Problem Set 4: Biased Methods and Regularization

Donggyun Kim 27008257 3/21/2018

1) Properties of PLS Regression

a)

$$\begin{aligned} ||\mathbf{w}_{h}|| &= \mathbf{w}_{h}^{t} \mathbf{w}_{h} = 1. \\ \mathbf{p}_{h} &= \frac{\mathbf{X}_{h-1}^{t} \mathbf{z}_{h}}{\mathbf{z}_{h}^{t} \mathbf{z}_{h}} &= \frac{\mathbf{X}_{h-1}^{t} \mathbf{X}_{h-1} \mathbf{w}_{h}}{\mathbf{w}_{h}^{t} \mathbf{X}_{h-1}^{t} \mathbf{X}_{h-1} \mathbf{w}_{h}}. \\ \mathbf{w}_{h}^{t} \mathbf{p}_{h} &= \frac{\mathbf{w}_{h}^{t} \mathbf{X}_{h-1}^{t} \mathbf{X}_{h-1} \mathbf{w}_{h}}{\mathbf{w}_{h}^{t} \mathbf{X}_{h-1}^{t} \mathbf{X}_{h-1} \mathbf{w}_{h}} = 1. \end{aligned}$$

b)

$$\begin{split} \mathbf{X}_h &= \mathbf{X}_{h-1} - \mathbf{z}_h \mathbf{p}_h^t = \mathbf{X}_{h-1} - \mathbf{X}_{h-1} \mathbf{w}_h \mathbf{p}_h^t. \\ \mathbf{X}_h \mathbf{w}_h &= \mathbf{X}_{h-1} \mathbf{w}_h - \mathbf{X}_{h-1} \mathbf{w}_h \mathbf{p}_h^t \mathbf{w}_h. \\ \mathbf{w}_h^t \mathbf{X}_h^t &= (\mathbf{X}_h \mathbf{w}_h)^t = \mathbf{w}_h^t \mathbf{X}_{h-1}^t - \mathbf{w}_h^t \mathbf{p}_h \mathbf{w}_h^t \mathbf{X}_{h-1}^t = \mathbf{w}_h^t \mathbf{X}_{h-1}^t - \mathbf{w}_h^t \mathbf{X}_{h-1}^t = 0. \end{split}$$

2) Bias of Regression Coefficients in PCR

a)

$$\begin{split} \hat{\beta}_{Z}^{(k)} &= V_{k} \hat{\beta}_{PCR}^{(k)}. \\ \mathbb{E}[V_{k} \hat{\beta}_{PCR}^{(k)}] &= V_{k} (Z_{k}^{t} Z_{k})^{-1} Z_{k}^{t} \mathbb{E}[y] = V_{k} (\Lambda_{k})^{-1} (X V_{k})^{t} (X \beta) = V_{k} (\Lambda_{k})^{-1} V_{k}^{t} X^{t} X \beta. \\ \mathbb{E}[V_{k} \hat{\beta}_{PCR}^{(k)} - \beta] &= \mathbb{E}[V_{k} \hat{\beta}_{PCR}^{(k)}] - \beta = V_{k} (\Lambda_{k})^{-1} V_{k}^{t} X^{t} X \beta - \beta = (V_{k} (\Lambda_{k})^{-1} V_{k}^{t} X^{t} X - I) \beta. \end{split}$$

b)

$$\begin{split} \hat{\beta}_{Z}^{(p)} &= V_{p} \hat{\beta}_{PCR}^{(p)}. \\ \mathbb{E}[V_{p} \hat{\beta}_{PCR}^{(p)}] &= V_{p} (Z_{p}^{t} Z_{p})^{-1} Z_{p}^{t} \mathbb{E}[y] &= V_{p} ((X V_{p})^{t} X V_{p})^{-1} (X V_{p})^{t} (X \beta) &= V_{p} (V_{p}^{t} X^{t} X V_{p})^{-1} V_{p}^{t} X^{t} X \beta &= V_{p} V_{p}^{t} (X^{t} X)^{-1} V_{p} V_{p}^{t} X^{t} X \beta &= \beta. \end{split}$$

$$\mathbb{E}[V_{p} \hat{\beta}_{PCR}^{(p)} - \beta] = 0.$$

3) Bias of Ridge Regression Coefficients

```
\begin{split} X &= UDV^t. \\ \hat{\beta}_r &= (X^tX + kI)^{-1}X^ty = ((UDV^t)^tUDV^t + kI)^{-1}(UDV^t)^ty = (VD^2V^t + kI)^{-1}VDU^ty. \\ \mathbb{E}[\hat{\beta}_r] &= (VD^2V^t + kI)^{-1}VDU^tX\beta = (VD^2V^t + kI)^{-1}VDU^tUDV^t\beta = (VD^2V^t + kI)^{-1}VD^2V^t\beta. \\ D^2 &= \Lambda. \\ \mathbb{E}[\hat{\beta}_r - \beta] &= \mathbb{E}[\hat{\beta}_r] - \beta = (V\Lambda V^t + kI)^{-1}V\Lambda V^t\beta - \beta = ((V\Lambda V^t + kI)^{-1}V\Lambda V^t - I)\beta. \end{split}
```

4) Models for Solubility Data

4.1) PCR

```
library(AppliedPredictiveModeling)
library(caret)
library(pls)
library(elasticnet)
library(ggplot2)
data(solubility)
# 10-fold cross-validation
ctrl <- trainControl(method = "cv", number = 10)</pre>
set.seed(1991)
pcr_fit <- train(x = solTrainXtrans, y = solTrainY,</pre>
                 method = "pcr",
                 tuneLength = 40,
                 trControl = ctrl,
                 preProcess = c("center", "scale"))
pcr_fit
## Principal Component Analysis
## 951 samples
## 228 predictors
## Pre-processing: centered (228), scaled (228)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 855, 857, 855, 857, 855, ...
## Resampling results across tuning parameters:
##
##
    ncomp RMSE
                       Rsquared
##
          2.0393844 0.01330618 1.5768251
     2 1.9802436 0.08618857 1.5600094
##
     3 1.7098785 0.30775962 1.3508311
4 1.6039381 0.38902366 1.2491550
##
##
##
     5 1.5655620 0.41438454 1.2160916
     6 1.4419644 0.50548830 1.1133483
##
     7
          1.2816012 0.60844627 1.0008166
##
```

```
##
      8
            1.2837318
                        0.60644396
                                     1.0030821
##
      9
            1.2845568
                        0.60575993
                                     1.0043077
##
     10
            1.2630788
                        0.61833048
                                     0.9805825
##
            1.2389026
                        0.63310862
                                     0.9595090
     11
##
     12
            1.2411704
                        0.63155212
                                     0.9651889
##
     13
            1.2394323
                        0.63270101
                                     0.9608776
##
                        0.66024430
     14
            1.1923383
                                     0.9291284
##
     15
            1.1673741
                        0.67410421
                                     0.9143805
##
     16
            1.1192399
                        0.69994038
                                     0.8829070
##
     17
            1.0568173
                        0.73286887
                                     0.8342530
##
     18
            1.0469036
                        0.73821332
                                     0.8264794
##
     19
            1.0369036
                        0.74282876
                                     0.8135459
##
     20
            1.0106942
                        0.75501073
                                     0.7931272
##
     21
            1.0084359
                        0.75693801
                                     0.7910714
##
     22
            1.0077410
                        0.75762006
                                     0.7907431
##
     23
            0.9824906
                        0.76956926
                                     0.7709785
##
     24
            0.9823339
                        0.76968098
                                     0.7703055
##
     25
            0.9807215
                        0.77067359
                                     0.7701617
##
            0.9744918
                        0.77358933
                                     0.7643884
     26
##
     27
            0.9646638
                        0.77820852
                                     0.7572924
##
     28
            0.9635618
                       0.77853798
                                     0.7549437
##
     29
            0.9622526
                        0.77899192
                                     0.7528061
##
                        0.77883793
                                     0.7531227
     30
            0.9626567
##
            0.9464459
                        0.78605250
                                     0.7422126
     31
##
     32
            0.9308610
                        0.79410333
                                     0.7278662
##
     33
            0.9205904
                        0.79876222
                                     0.7171017
##
     34
            0.9210315
                        0.79901759
                                     0.7171882
##
                        0.80247076
     35
            0.9118633
                                     0.7125940
            0.8955050
##
     36
                        0.80969558
                                     0.6990453
##
     37
            0.8898150
                        0.81229196
                                     0.6925830
##
     38
            0.8869713
                        0.81345299
                                     0.6896258
##
     39
            0.8880278
                        0.81262668
                                     0.6904784
##
     40
            0.8815142 0.81589128
                                     0.6832985
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was ncomp = 40.
# plot the RMSEs against the number of PCs
plot(pcr_fit)
```



```
# the number of PCs that gives the minimum RMSE value
pcr_fit$bestTune
```

```
##
      ncomp
## 40
          40
# Make a plot of the regression coefficient paths
pcr_coef <- pcr_fit$finalModel$coefficients</pre>
n <- nrow(pcr_coef)</pre>
p <- as.numeric(pcr_fit$bestTune)</pre>
variable <- rep(rownames(pcr_coef), p)</pre>
PC \leftarrow rep(1:p, each = n)
pcr_coef <- as.matrix(pcr_coef)</pre>
dat <- data.frame(variable,</pre>
                    coefficient = pcr_coef,
                   PC,
                    stringsAsFactors = FALSE)
ggplot(dat, aes(x = PC, y = coefficient, col = variable)) +
  geom_step() +
  xlab("# Component") +
  ylab("Coefficient") +
  theme(legend.position = "none")
```


4.2) PLSR

```
set.seed(1991)
pls_fit <- train(x = solTrainXtrans, y = solTrainY,</pre>
                 method = "pls",
                 tuneLength = 30,
                 trControl = ctrl,
                 preProcess = c("center", "scale"))
pls_fit
## Partial Least Squares
## 951 samples
## 228 predictors
##
## Pre-processing: centered (228), scaled (228)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 855, 857, 855, 857, 855, ...
## Resampling results across tuning parameters:
##
##
     ncomp RMSE
                       Rsquared
                                  MAE
##
     1
            1.2834799 0.6039945 0.9916002
      2
            1.0565748 0.7313375 0.8338149
##
##
            0.9421131 0.7896398 0.7295970
```

```
##
          0.8672854 0.8202404 0.6763828
##
     5
          0.8234981 0.8385276 0.6400779
##
     6
          0.7858546 0.8533009 0.6099090
##
     7
          0.7576326  0.8632534  0.5803275
##
     8
          ##
     9
          0.7336407  0.8715244  0.5620758
##
    10
          0.7197659 0.8770720 0.5536012
##
    11
          ##
    12
          ##
    13
          0.7077955 0.8812824 0.5413748
##
    14
          0.7072088  0.8816105  0.5404051
##
    15
          0.7020926  0.8833477  0.5355129
##
    16
          0.7027772  0.8829757  0.5367203
##
          0.6980264 0.8849057 0.5346358
    17
##
    18
          0.7001560 0.8843897 0.5370392
##
    19
          0.6987062 0.8852104 0.5342642
##
    20
          0.6999291 0.8847274 0.5341114
##
    21
          0.6995291 0.8851151 0.5357248
##
          0.7009689 0.8846909 0.5347051
    22
##
    23
          0.7038482  0.8835812  0.5356718
##
    24
          0.7060065 0.8828946 0.5373671
##
    25
          0.7103322  0.8814441  0.5406134
##
    26
          0.7140135  0.8801809  0.5413654
##
    27
          0.7170543 0.8792074 0.5427062
##
    28
          0.7175550 0.8790947 0.5423010
##
    29
          ##
    30
          0.7202488  0.8781004  0.5422940
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was ncomp = 17.
# plot the RMSEs against the number of PLS components
plot(pls_fit)
```


the number of PLS components that gives the minimum RMSE value pls_fit\$bestTune

##

ncomp

```
## 17
          17
# make a plot of the regression coefficient paths
pls_coef <- pls_fit$finalModel$coefficients</pre>
n <- nrow(pls_coef)</pre>
p <- as.numeric(pls_fit$bestTune)</pre>
variable <- rep(rownames(pls_coef), p)</pre>
comp \leftarrow rep(1:p, each = n)
pls_coef <- as.matrix(pls_coef)</pre>
dat <- data.frame(variable,</pre>
                    coefficient = pls_coef,
                    comp)
ggplot(dat, aes(x = comp, y = coefficient, col = variable)) +
  geom_step() +
  xlab("# Component") +
  ylab("Coefficient") +
  theme(legend.position = "none")
```


4.3) Ridge Regression

```
ridgeGrid <- data.frame(.lambda = seq(0, .1, length = 15))</pre>
set.seed(1991)
ridge_fit <- train(x = solTrainXtrans, y = solTrainY,</pre>
                method = "ridge",
                tuneGrid = ridgeGrid,
                trControl = ctrl,
                preProcess = c("center", "scale"))
ridge_fit
## Ridge Regression
##
## 951 samples
## 228 predictors
## Pre-processing: centered (228), scaled (228)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 855, 857, 855, 857, 855, ...
## Resampling results across tuning parameters:
##
##
    lambda
                           Rsquared
                 RMSE
                                      MAE
    0.00000000 0.7071944
                           0.8814257
##
                                      0.5257221
##
```

```
##
    ##
    0.021428571
                0.6836460 0.8898722 0.5199234
##
    0.028571429
                0.6835001 0.8900898
                                    0.5213092
    0.035714286
##
                0.6844180 0.8900088
                                    0.5230327
##
    0.042857143
                0.6860243
                          0.8897518
                                    0.5248594
    0.050000000 0.6881167 0.8893846
##
                                    0.5270827
    0.057142857
                0.6905749 0.8889460
                                    0.5295143
##
##
    0.064285714
                0.6933224
                          0.8884605
                                    0.5321482
##
    0.071428571
                0.6963083
                          0.8879441
                                    0.5348864
##
    0.078571429
                0.6994975
                          0.8874080
                                    0.5378075
##
    0.085714286
                0.7028648
                          0.8868596
                                    0.5407873
##
    0.092857143
                0.7063920
                          0.8863046
                                    0.5438502
    0.100000000
                0.7100654
                          0.8857467
##
                                    0.5469702
##
```

 $\mbox{\tt \#\#}$ RMSE was used to select the optimal model using the smallest value.

The final value used for the model was lambda = 0.02857143.

plot the RMSEs against the values of the tuning parameter lambda
plot(ridge_fit)

 $\mbox{\#}$ the value of lambda that gives the minimum RMSE value $\mbox{ridge_fit\$bestTune}$

```
## lambda
## 5 0.02857143
```

make a plot of the regression coefficient paths
plot(ridge_fit\$finalModel, xvar = "penalty", use.color = TRUE)

4.4) Lasso

```
enetGrid <- expand.grid(.lambda = c(0, 0.01, .1),</pre>
                         .fraction = seq(.05, 1, length = 20))
set.seed(1991)
lasso_fit <- train(x = solTrainXtrans, y = solTrainY,</pre>
                   method = "enet",
                   tuneGrid = enetGrid,
                   trControl = ctrl,
                   preProcess = c("center", "scale"))
lasso_fit
## Elasticnet
##
## 951 samples
## 228 predictors
##
## Pre-processing: centered (228), scaled (228)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 855, 857, 855, 857, 855, ...
## Resampling results across tuning parameters:
##
##
     lambda fraction RMSE
                                   Rsquared
                                              MAE
                                              0.6593669
     0.00
             0.05
##
                       0.8694393 0.8367154
##
     0.00
             0.10
                       0.6882519
                                  0.8883257
                                              0.5249954
##
     0.00
             0.15
                       0.6714866
                                  0.8931908
                                             0.5133845
##
     0.00
             0.20
                       0.6701005
                                  0.8935851
                                              0.5125415
     0.00
             0.25
                       0.6769459
##
                                  0.8914827
                                              0.5126865
##
     0.00
             0.30
                       0.6843558 0.8890745 0.5179973
```

##	0.00	0.35	0.6918879	0.8866338	0.5234601
	0.00	0.40	0.6970105	0.8849352	0.5280080
##					
##	0.00	0.45	0.6981910	0.8845023	0.5288807
##	0.00	0.50	0.6981295	0.8844524	0.5284216
##	0.00	0.55	0.6981444	0.8844082	0.5278100
##	0.00	0.60	0.6981516	0.8843850	0.5269660
##	0.00	0.65	0.6985908	0.8842072	0.5259632
##	0.00	0.70	0.6994292	0.8838955	0.5254815
##	0.00	0.75	0.7001222	0.8836637	0.5251417
##	0.00	0.80	0.7009164	0.8834005	0.5248366
##	0.00	0.85	0.7021745	0.8830045	0.5247800
##	0.00	0.90	0.7035777	0.8825485	0.5248372
##	0.00	0.95	0.7052453	0.8820344	0.5251640
##	0.00	1.00	0.7071944	0.8814257	0.5257221
##	0.00	0.05	1.5172575	0.6481926	1.1629621
##	0.01	0.10	1.1316121	0.7707836	0.8644227
##	0.01	0.15	0.9022421	0.8266589	0.6836986
##	0.01	0.20	0.7849595	0.8580220	0.5983956
##	0.01	0.25	0.7280635	0.8755480	0.5555230
##	0.01	0.30	0.6990802	0.8845478	0.5341814
##	0.01	0.35	0.6854148	0.8887916	0.5246724
##	0.01	0.40	0.6783782	0.8909363	0.5192493
##	0.01	0.45	0.6749279	0.8919645	0.5173129
##	0.01	0.50	0.6717883	0.8929277	0.5154451
##	0.01	0.55	0.6690558	0.8938298	0.5135199
##	0.01	0.60	0.6687896	0.8939771	0.5131305
##	0.01	0.65	0.6697231	0.8937514	0.5126997
##	0.01	0.70	0.6712940	0.8933490	0.5123954
##	0.01	0.75	0.6728448	0.8928764	0.5123212
##	0.01	0.80	0.6750877	0.8921643	0.5130300
##	0.01	0.85	0.6779499	0.8912939	0.5144052
##	0.01	0.90	0.6815677	0.8901898	0.5167259
##	0.01	0.95	0.6852845	0.8890690	0.5194156
##	0.01	1.00	0.6886007	0.8880743	0.5217469
	0.01	0.05	1.6876421	0.5172217	1.2938453
##					
##	0.10	0.10	1.4050887	0.7004963	1.0731807
##	0.10	0.15	1.1679369	0.7633412	0.8905843
##	0.10	0.20	1.0035064	0.7912991	0.7622082
##	0.10	0.25	0.8904595	0.8233943	0.6744600
##	0.10	0.30	0.8172256	0.8436821	0.6226784
##	0.10	0.35	0.7748367	0.8565541	0.5963412
##	0.10	0.40	0.7521196	0.8648159	0.5780088
##	0.10	0.45	0.7352072	0.8716584	0.5647150
##	0.10	0.50	0.7254667	0.8759264	0.5577237
##	0.10	0.55	0.7189654	0.8789894	0.5534675
##	0.10	0.60	0.7145841	0.8810958	0.5507771
##	0.10	0.65	0.7112406	0.8827524	0.5481277
##	0.10	0.70	0.7106350	0.8834483	0.5473125
##	0.10	0.75	0.7105176	0.8838941	0.5467777
##	0.10	0.80	0.7103955	0.8843254	0.5466359
##	0.10	0.85	0.7103572	0.8847166	0.5469637
##	0.10	0.90	0.7103120	0.8850839	0.5471206
##	0.10	0.95	0.7102830	0.8854133	0.5471128
##	0.10	1.00	0.7100654	0.8857467	0.5469702
пπ	0.10	1.00	0.1100004	5.0001 ±01	0.0400102

```
##
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were fraction = 0.6 and lambda = 0.01.
```

plot the RMSEs against the values of the tuning parameter lambda
plot(lasso_fit)

the value of lambda that gives the minimum RMSE value
lasso_fit\$bestTune

```
## fraction lambda
## 32 0.6 0.01
```

make a plot of the regression coefficient paths
plot(lasso_fit\$finalModel, xvar = "penalty", use.color = TRUE)

4.5) Model Selection

```
# compute test-MSEs for PCR
y_pcr <- predict(pcr_fit, solTestXtrans)</pre>
MSE_pcr <- mean((solTestY - y_pcr)^2)</pre>
MSE_pcr
## [1] 0.8070032
# compute test-MSEs for PLSR
y_pls <- predict(pls_fit, solTestXtrans)</pre>
MSE_pls <- mean((solTestY - y_pls)^2)</pre>
MSE_pls
## [1] 0.5326949
# compute test-MSEs for Ridge Regression
y_ridge <- predict(ridge_fit, solTestXtrans)</pre>
MSE_ridge <- mean((solTestY - y_ridge)^2)</pre>
MSE_ridge
## [1] 0.5182821
\# compute test-MSEs for PCR
y_lasso <- predict(lasso_fit, solTestXtrans)</pre>
MSE_lasso <- mean((solTestY - y_lasso)^2)</pre>
MSE_lasso
## [1] 0.5001638
# graph the test-MSEs
MSEs <- rbind(MSE_pcr, MSE_pls, MSE_ridge, MSE_lasso)</pre>
plot(MSEs, main = "Test MSEs", xlab = "Model", type = "b", xaxt = "n")
```

axis(1, at = 1:4, labels = rownames(MSEs))

Test MSEs

the smallest test-MSE
MSEs[which.min(MSEs), 1]

MSE_lasso ## 0.5001638