Written Assignment 7

Due: Wednesday, August 10th

- 1. Find the equation for $f^{[-1]}(Q)$ or state that f is not one-to-one. If you claim that f is not one-to-one, show at least one computation to justify the claim.
 - (a) $f(t) = 3e^{-2t}$
 - (b) $g(t) = 6 + \log_2(t-1)$
 - (c) $h(t) = 11 + t^3$
- 2. The density of a tumor is the ratio of its mass and volume. The mass is constant at 0.2 kilograms. Is this function one-to-one? If so, find the inverse.
- 3. For the following questions, assume f and g are both one-to-one functions such that
 - the domain of f is (0,3)
 - the domain of g is $[-1, \infty)$.
 - the image of f is $(-\infty, \infty)$.
 - the image of g is (-2, 2].
 - f(2) = 0
 - g(0) = 1
 - (a) What is the domain of $f^{[-1]}$?
 - (b) What is the domain of $g^{[-1]}$?
 - (c) What is the image of $f^{[-1]}$?
 - (d) What is the image of $g^{[-1]}$?
 - (e) Sketch a possible graph of $f^{[-1]}$ and $g^{[-1]}$.
- 4. Let $f(t) = \frac{1}{2-t}$. Compute $f^{[-1]}(t)$ and $f(t)^{-1}$. What is the difference between these functions? Are they the same?
- 5. (Extra Credit) Find as many functions as possible that are their own inverse function. Be sure to show that this is true! More points for more functions.