Algebraic Geometry: Assessed Homework 2

Matthew Byrne

March 2025

Question 1.

- (a) Find all the elements of $\max \operatorname{Spec}(\mathbb{C}[X])$, $\max \operatorname{Spec}(\mathbb{C}[X, X^{-1}])$, and $\max \operatorname{Spec}(\mathbb{C}[X, X^{-1}, Y])$ explicitly.
- b) Let $U = \mathbb{A}^1 \setminus \{0\}$. Consider the isomorphism $\varphi : U \to U$; $a \mapsto 1/a$, and the pullback $\varphi^* : \mathbb{C}[X, X^{-1}] \to \mathbb{C}[Y, Y^{-1}]$. Compute:

$$\varphi^*\underbrace{(X^{-1})}_{f_1}, \qquad \varphi^*\underbrace{\left(2X^2+\frac{2X^3+4X}{X^5}\right)}_{f_2}, \qquad \varphi^*\underbrace{(2-X)}_{f_3}.$$

Solution. (a) We note that since \mathbb{C} is a field, we know that $\mathbb{C}[X]$ is a PID. Thus all ideals in $\mathbb{C}[X]$ are of the form (f), for $f \in \mathbb{C}[X]$. Further, (f) is maximal if and only if $f \in \mathbb{C}[X] \setminus \mathbb{C}$ is irreducible. By the Fundamental Theorem of Algebra, the only irreducibles in $\mathbb{C}[X] \setminus \mathbb{C}$ are those polynomials of the form $X - \alpha$ for some $\alpha \in \mathbb{C}$. Thus

$$\max \operatorname{Spec}(\mathbb{C}[X]) = \{(f) \mid f \in \mathbb{C}[X] \setminus \mathbb{C} \text{ is irreducible}\} = \{(X - \alpha) \mid \alpha \in \mathbb{C}\}.$$

Now consider $\mathbb{C}[X,X^{-1}]\cong\mathbb{C}[X,Z]/(XZ-1)$. We can see that $\max \operatorname{Spec}(\mathbb{C}[X,Z]/(XZ-1))$ can be identified with the affine variety $V:=\mathbb{V}(XZ-1)\subseteq\mathbb{A}^2$, and thus the points of $\max \operatorname{Spec}(\mathbb{C}[X,Z]/(XZ-1))$ are exactly the maximal ideals corresponding to the points $(a,1/a)\in V$. That is,

$$\max \operatorname{Spec}(\mathbb{C}[X,Z]/(XZ-1)) = \{(X-a,Z-1/a) \mid a \in \mathbb{C}^{\times}\}.$$

Going back through the identification, in $\mathbb{C}[X, X^{-1}]$ we have that

$$X^{-1} - 1/a = -\frac{1}{aX}(X - a) \in (X - a),$$

and thus

$$\max \operatorname{Spec}(\mathbb{C}[X,X^{-1}]) = \{(X-a) \mid a \in \mathbb{C}^{\times}\}.$$

Then $\max \operatorname{Spec}(\mathbb{C}[X,X^{-1},Y])$ can be identified with $V' = \mathbb{V}(XZ-1) \subseteq \mathbb{A}^3$, so $(x,z,y) \in V'$ if and only if $(x,z) \in V$. So $(X-a,Y-b) \in \max \operatorname{Spec}(\mathbb{C}[X,X^{-1},Y])$ if and only if $(X-a) \in \max \operatorname{Spec}(\mathbb{C}[X,X^{-1}])$. Hence

$$\max \operatorname{Spec}(\mathbb{C}[X, X^{-1}, Y]) = \{(X - a, Y - b) \mid a \in \mathbb{C}^{\times}, b \in \mathbb{C}\}.$$

(b) By definition, for $f \in \mathbb{C}(X)$ we have that $\varphi^*(f) = f \circ \varphi$, and thus we have that for all $a \in U$,

$$\varphi^*(f_1)(a) = (f_1 \circ \varphi)(a) = f_1(a^{-1}) = a, \implies \varphi^*(X^{-1}) = Y.$$

We note also that the pullback of a constant function is $\varphi^*(\beta) = \beta$, and thus since φ^* is a \mathbb{C} -algebra homomorphism, we have that

$$\varphi^*(f_2) = 2\varphi^*(X)^2 + \frac{2\varphi^*(X)^3 + 4\varphi^*(X)}{\varphi^*(X)^5} = 2Y^{-2} + 2Y^2 + 4Y^4, \qquad \varphi^*(f_3) = 2 - \varphi^*(X) = 2 - Y^{-1}.$$

Question 2. Consider the affine algebraic hypersurface $V := \mathbb{V}(Y - UX) \subseteq \mathbb{A}^3$.

- (a) Prove that the projection $\pi: \mathbb{A}^3 \to \mathbb{A}^2$; $(x, y, u) \mapsto (x, u)$ restricts to an isomorphism $V \to \mathbb{A}^2$;
- (b) Prove that the projection $\pi': \mathbb{A}^3 \to \mathbb{A}^2$; $(x, y, u) \mapsto (x, y)$ does not restrict to an isomorphism $V \to \mathbb{A}^2$.
- Solution. (a) By definition of a morphism of CAAVs, $\varphi := \pi|_V : V \to \mathbb{A}^2$ is a morphism of varieties. We then consider the map $\iota: \mathbb{A}^2 \to \mathbb{A}^3$ given by $(x, u) \mapsto (x, ux, u)$. By construction, $\iota(\mathbb{A}^2) \subseteq V$, and thus ι corestricts to a morphism $\psi: \mathbb{A}^2 \to V$. Now let $(x, u) \in \mathbb{A}^2$, then

$$(\varphi \circ \psi)(x, u) = \varphi(x, ux, u) = (x, u) \implies \varphi \circ \psi = \mathrm{id}_{\mathbb{A}^2}.$$

Similarly if $(x, y, u) \in V$ then by definition of V we have y = ux, and thus

$$(\psi \circ \varphi)(x, y, u) = \psi(x, u) = (x, ux, u) = (x, y, u) \implies \psi \circ \varphi = \mathrm{id}_V.$$

Thus φ, ψ are a pair of mutually inverse morphisms, thus they are both isomorphisms. So π restricts to an isomorphism $\varphi: V \xrightarrow{\sim} \mathbb{A}^2$.

(b) We note once again that π' restricts to a morphism $\varphi': V \to \mathbb{A}^2$. Suppose now that $\psi' = (\psi'_1, \psi'_2, \psi'_3) : \mathbb{A}^2 \to V$ is an inverse morphism. Then for all $(x, y, u) \in V$ we must have that

$$(x, y, u) = (\psi' \circ \varphi')(x, y, u) = \psi'(x, y),$$

and thus $\psi_3'(x,y) = u = y/x$ for all $x,y \in \mathbb{C}^{\times}$. So $\psi_3' = Y/X$ on all of $\mathbb{C}^{\times} \times \mathbb{C}^{\times}$, which trivially no polynomial satisfies. Thus any such map cannot be a morphism of CAAVs. Thus φ' is not an isomorphism.

Question 3.

(a) Prove that if $g \in \mathbb{C}[X,Y]$, then the projective closure of the variety

$$\overline{\mathbb{V}(g)} = \mathbb{V}(\tilde{g}) \subseteq \mathbb{P}^2$$

 $\overline{\mathbb{V}(g)} = \mathbb{V}(\tilde{g}) \subset \mathbb{P}^2$.

where $\tilde{g} \in \mathbb{C}[X, Y, Z]$ is the homogenisation of g.

(b) Consider the following polynomials in $\mathbb{C}[X,Y]$:

$$f_1 = X + Y + 1$$
, $f_2 = X^2 + 6Y^2 + 1$, $f_3 = X^2 + 3Y + 1$, $f_4 = X^3 + 3XY^2 + 4$.

Determine whether or not each of the projective closures of their respective varieties in \mathbb{P}^2 includes the points:

- (i) [1:0:0],
- (ii) [0:1:0],
- (iii) [0:0:1].
- (c) Can you find a general necessary and sufficient condition on $g \in \mathbb{C}[X,Y]$ such that its homogenisation does not pass through any of these three points?
- Solution. (a) We appeal to Theorem 3.28 from the lecture notes: we have that $\overline{\mathbb{V}(g)} = \mathbb{V}\left(\overline{(g)}\right) \subseteq \mathbb{P}^2$, where $\overline{(g)}$ is the

homogenisation of the ideal
$$(g)$$
. Thus, by the Nullstellensatz, it suffices to show that
$$\widetilde{(g)} = (\widetilde{g}).$$

Short proof, as ideals in
$$\mathbb{C}[X,Y,Z]$$
. Since $g \in (g)$, we have that $\widetilde{g} \in (\widetilde{g})$, and thus by properties of ideals we get $(\widetilde{g}) \subseteq (\widetilde{g})$. Now suppose that $f \in (\widetilde{g})$, that is suppose that

$$f = \sqrt{g} = \sqrt{g}$$

$$f = \lambda_1 \widetilde{h_1} + \dots + \lambda_n \widetilde{h_n}$$
 (9)
2 we can take $N = 1$

$$f|_{V_2} = \alpha g \implies f_{\stackrel{=}{(*)}} z^{m} \widetilde{\alpha} \widetilde{g} \Rightarrow f_{\varepsilon}(\widetilde{g})$$

for some $\lambda_j \in \mathbb{C}[X,Y,Z]$ and some $h_j \in (g)$. Since each $h_j \in (g)$, there exists $\alpha_j \in \mathbb{C}[X,Y]$ so that $h_j = \alpha_j g$. Then, for $\mu_j = \lambda_j (X,Y,1) \in \mathbb{C}[X,Y]$ we have that

Similar To Proof $f(X,Y,1) = \lambda_1(X,Y,1)\widetilde{h_1}(X,Y,1) + \cdots + \lambda_n(X,Y,1)\widetilde{h_n}(X,Y,1)$ $= \mu_1h_1 + \cdots + \mu_nh_n$ $= \mu_1\alpha_1g + \cdots + \mu_n\alpha_ng$ $= (\mu_1\alpha_1 + \cdots + \mu_n\alpha_n)g$ $= (\mu_1\alpha_1 + \cdots + \mu_n\alpha_n)g$

thus f is the homogenisation of some element of (g), thus $(\widetilde{g}) = (\widetilde{g})$, as required.

(b) We use part (a) to conclude that the projective closure of $V(f_j)$ passes through one of these points iff \tilde{f}_j vanishes on that point. We thus homogenise:

$$\widetilde{f}_1 = X + Y + Z$$
, $\widetilde{f}_2 = X^2 + 6Y^2 + Z^2$, $\widetilde{f}_3 = X^2 + 3YZ + Z^2$, $\widetilde{f}_4 = X^3 + 3XY^2 + 4Z^2$.

We can thus directly compute that \widetilde{f}_1 and \widetilde{f}_2 do not vanish on any of these three points, whereas \widetilde{f}_3 and \widetilde{f}_4 vanish only on (ii).

(c) The reason for some of these projective curves passing through these points is that their homogenisations have 'cross-terms', that is their monomial summands are not all monomials solely in either X, Y, or Z. Thus, a nonzero polynomial $g \in \mathbb{C}[X,Y]$ has projective closure not passing through points (i-iii) if and only if g has a decomposition of the form

$$g = aX^d + bY^d + c,$$

where $a, b, c \in \mathbb{C}^{\times}$ and d > 0 is a positive integer. This constant c has to be nonzero as otherwise no Z term will appear on homogenisation, and thus the corresponding curve will pass through [0:0:1].

Try x3+ y3+ C + x x2y +pxy + xy + 8 xx+...

Ouestion 4.

- (a) Prove that \mathbb{P}^n is compact with respect to the quotient Euclidean topology from $\mathbb{A}^{n+1} \setminus \{0\}$.
- (b) What is the projective Zariski-closure of $\mathbb{V}(Y \sin(X))$ in \mathbb{P}^2 ? How do you compare this to Chow's Lemma? **Hint.** In Example 3.44 we have seen that this curve is not algebraic.

Solution. (a) Let $G = (0, \infty)$ the multiplicative group of positive real numbers. Then G acts on $\mathbb{C}^{n+1} \setminus \{0\}$ naturally by scaling, and we can associate the (n+1)-sphere $S^{n+1} \subseteq \mathbb{C}^{n+1} \setminus \{0\}$ with the quotient by this action. That is,

$$S^{n+1} = \frac{\mathbb{C}^{n+1} \setminus \{0\}}{G}.$$

Then, naturally, since $\mathbb{C}^{\times} = G \oplus \mu$ (with μ the multiplicative group of complex numbers of modulus 1) we must have that

$$\mathbb{P}^n = \frac{\mathbb{C}^{n+1} \setminus \{0\}}{\mathbb{C}^{\times}} = \frac{S^{n+1}}{u},$$

so \mathbb{P}^n (under the Euclidean topology) is a quotient of S^{n+1} . We know also that each S^{n+1} is compact. Thus \mathbb{P}^n must too be compact.

- (b) Let $V = \mathbb{V}(Y \sin(X)) \subseteq \mathbb{A}^2$ and let $Z \subseteq \mathbb{P}^2$ denote its projective closure. We have seen that V is not algebraic, and it intersects infinitely many distinct irreducible algebraic curves. Thus its Zariski closure must be all of \mathbb{A}^2 . Hence Z contains \mathbb{P}^2 , so is equal to \mathbb{P}^2 . By part (a) we have that $Z = \mathbb{P}^2$ is compact in the Euclidean topology, and thus since $V \subseteq Z \subseteq \mathbb{P}^2$ is closed it too much be compact. Thus $V \subseteq \mathbb{P}^2$ is compact and non-algebraic, so by the Chow Lemma $V = \mathbb{V}(Y \sin(X)) \subseteq \mathbb{A}^2 \subseteq \mathbb{P}^2$ cannot be an analytic subvariety of \mathbb{P}^2 .
- (Out of interest: I've seen something about 'holomorphicity at infinity', and I can see that sin is not holomorphic at infinity is this related?)

analytic (obv. given by analy

- (a) The variety of a polynomial of the form $aX + bY + cZ \in \mathbb{C}[X, Y, Z]$ (for $a, b, c \in \mathbb{C}$) is called a *line* in \mathbb{P}^2 . Prove that any two distinct lines in \mathbb{P}^2 intersect exactly at one point.
- (b) Assume that $C_1, C_2 \subseteq \mathbb{A}^2$ are two CAA curves.
 - (i) Prove that

(ii) Find two curves such that the above inclusion is strict.

 $\overline{C_1 \cap C_2} \notin \overline{C_1} \cap \overline{C_2}$. Closed and Contains Cinc

Solution. (a) We first recall that we can decompose \mathbb{P}^2 as a disjoint union

$$\mathbb{P}^2 = U_Z \sqcup U_Z',$$

where $U_Z = \{[x:y:1] \in \mathbb{P}^2\}$ and $U_Z' = \{[x:y:0] \in \mathbb{P}^2\}$. Then $U_Z \cong \mathbb{A}^2$ and $U_Z' \cong \mathbb{P}^1$. Let (a,b,c) be a 3-tuple of complex numbers, and $V_{a,b,c}$ the projective variety $V_{a,b,c} = \mathbb{V}(aX + bY + cZ) \subseteq \mathbb{P}^2$. We understand the behaviour of lines in \mathbb{A}^2 , so consider $V_{a,b,c} \cap U_Z'$. If b=0 then this is exactly the singleton $\{[0:1:0]\}$, so suppose that $b \neq 0$. Suppose that $[x:y:0] \in V_{a,b,c} \cap U_Z'$, then by definition

$$ax + by = 0 \implies y = -\frac{a}{b}x,$$

and thus $[x:y:0] = [1:-\frac{a}{b}:0]$. We can check that this is always a solution, and thus (with some abuse of notation)

$$V_{a,b,c} \cap U_Z' = \begin{cases} [0:1:0], & \text{if } b = 0\\ [1:-\frac{a}{b}:0], & \text{if } b \neq 0 \end{cases}$$

So any two distinct lines in \mathbb{P}^2 intersect in U_Z' at most once, and they intersect if and only if the gradient of their de-homogenisations is the same. But for two distinct lines in \mathbb{P}^2 , they intersect in $U_Z \cong \mathbb{A}^2$ if and only if the gradients of their de-homogenisations are different, and we know that two lines in \mathbb{A}^2 can intersect at most once. Thus two distinct projective lines intersect in U_Z if and only if they do not intersect in U_Z' , and in both sets they can intersect at most once. Thus, they must intersect exactly once.

(i) Closed affine algebraic curves are exactly of the form $C_i = \mathbb{V}(f_i)$ for $f_i \in \mathbb{C}[X,Y]$. We then appeal to Q3(a) (b) and Theorem 3.28. We have that $\overline{C_i} = \mathbb{V}(f_i)$, and that

$$\overline{C_1 \cap C_2} = \overline{\mathbb{V}(f_1, f_2)} = \overline{\mathbb{V}(f_1, f_2)},$$

and thus by the Nullstellensatz we have that this inclusion holds if and only if

$$(\widetilde{f_1,f_2})\supseteq (\widetilde{f_1},\widetilde{f_2}),$$

but by definition of the homogenisation of an ideal, this holds trivially.

(ii) Consider $f_1 = X^2$, $f_2 = X^2 + Y$. Then $\tilde{f}_1 = X^2$ and $\tilde{f}_2 = X^2 + YZ$. We note that $Y = f_2 - f_1$ is homogeneous and an element of (f_1, f_2) , thus is an element of (f_1, f_2) . However, $(\widetilde{f_1}, \widetilde{f_2}) \not\ni Y$. Thus

$$\widetilde{(f_1, f_2)} \supset (\widetilde{f}_1, \widetilde{f}_2),$$

and so we must have that

$$\overline{\mathbb{V}(f_1,f_2)}\subset\overline{\mathbb{V}(f_1)}\cap\overline{\mathbb{V}(f_2)}.$$

take two lines that don't intersect

10

Question 6. (Bonus Question)

- (a) Let Y be a closed affine algebraic variety and $U \subseteq Y$ an open subset. Prove that $\mathcal{O}_Y(U)$ is a \mathbb{C} -algebra.
- (b) A sheaf \mathcal{F} of rings on a topological space X consists of the following data:
 - I. To each open set $U \subseteq X$, it associates a ring $\mathcal{F}(U)$, whose elements are called *sections*;
 - II. To each inclusion $U \hookrightarrow V$ of open sets, it associates a map

$$\operatorname{res}_U^V : \mathcal{F}(V) \to \mathcal{F}(U)$$

called the restriction map, satisfying $\operatorname{res}_U^U = \operatorname{id}_{\mathcal{F}(U)}$ and $\operatorname{res}_U^V \circ \operatorname{res}_V^W = \operatorname{res}_U^W$ for all open sets $U \subseteq V \subseteq W$;

- III. For each collection $f_i \in \mathcal{F}(U_i)$ agreeing on the intersections, there exists a mutual lift $f \in \mathcal{F}(U)$ of all of the f_i , where $U = \bigcup_i U_i$;
- IV. If $f, f' \in \mathcal{F}(U)$ are such that $\operatorname{res}_{U_i}^U f = \operatorname{res}_{U_i}^U f'$ for all i, where $\{U_i\}_i$ is an open cover of U, then f = f'. Let X be an irreducible quasi-projective variety.
 - (i) Assume that $U \subseteq V$ are open subsets of X. Briefly explain why $f \in \mathcal{O}_X(V)$ implies that $f|_U \in \mathcal{O}_X(U)$;
- (ii) Briefly explain why \mathcal{O}_X forms a sheaf of rings on X.
- Solution. (a) Since the set of functions $U \to \mathbb{C}$ is a \mathbb{C} -algebra (with 0 the zero function and 1 the constant function with value 1), we need only show that $\mathcal{O}_Y(U)$ is a \mathbb{C} -subalgebra, i.e. that it is both a linear subspace and a subring. Clearly $0, 1 \in \mathcal{O}_Y(U)$, and so to show this, it will suffice to show that whenever $f, g \in \mathcal{O}_Y(U)$ and $\lambda \in \mathbb{C}$, we have that $f + \lambda g, fg \in \mathcal{O}_Y(U)$. Let $p \in U$, then there exists some open neighbourhoods $U_p, V_p \subseteq U$ of p and some polynomials $A_p, B_p, C_p, D_p \in \mathbb{C}[X_1, \ldots, X_n]$ such that

$$f|_{U_p} = \frac{A_p}{B_p}\Big|_{U_p} \qquad \qquad g|_{V_p} = \frac{C_p}{D_p}\Big|_{V_p}$$

Note that $W_p := U_p \cap V_p$ is also an open neighbourhood of p, since the intersection of finitely many open sets is open. Then

$$(f+\lambda g)|_{W_p} = f|_{W_p} + \lambda(g|_{W_p}) = \left.\frac{A_p}{B_p}\right|_{W_p} + \lambda\left.\left(\frac{C_p}{D_p}\right|_{W_p}\right) = \left.\left(\frac{A_p}{B_p} + \frac{\lambda C_p}{D_p}\right)\right|_{W_p} = \left.\left(\frac{A_p D_p + \lambda B_p C_p}{B_p D_p}\right)\right|_{W_p} = \left.\left(\frac{A_p D_p D_p}{B_p D_p}\right)\right|_{W_p} = \left.\left(\frac{A_p D_p D_p$$

and thus $f + \lambda g \in \mathcal{O}_Y(U)$. Similarly,

$$(fg)|_{W_p} = (f|_{W_p})(g|_{W_p}) = \left(\frac{A_p}{B_p}\Big|_{W_p}\right) \left(\frac{C_p}{D_p}\Big|_{W_p}\right) = \left(\frac{A_p}{B_p}\frac{C_p}{D_p}\right)\Big|_{W_p} = \left.\frac{A_pC_p}{B_pD_p}\Big|_{W_p}\right) = \left.\frac{A_pC_p}{B_pD_p}\Big|_{W_p} = \left.\frac{A_pC_p}{B_pD_p}\Big|_{W_p}\right) = \left(\frac{A_p}{B_pD_p}\right) \left(\frac{C_p}{D_p}\right) \left(\frac{C_p}{D_p}\right)$$

and so $fg \in \mathcal{O}_Y(U)$. Thus $\mathcal{O}_Y(U)$ is a \mathbb{C} -subalgebra of $\{f \mid f : U \to \mathbb{C}\}$, and so is a \mathbb{C} -algebra.

- (b) (i) Let $f \in \mathcal{O}_X(V)$. If $p \in U \subseteq V$ and f is given locally (say in neighbourhood U_p) by the rational function Q_p , then f is given by Q_p in the open neighbourhood $U_p \cap U$, and thus $f|_U$ is locally given by rational functions. That is, $f|_U \in \mathcal{O}_X(U)$.
 - (ii) By almost identical reasoning to Q6(a), each $\mathcal{O}_X(U)$ is a \mathbb{C} -algebra and thus is a ring. By Q6(b.i), \mathcal{O}_X (with res $_U^V = \cdot \mid_U$) satisfies point II (thus \mathcal{O}_X is a *presheaf* of rings on X).

Now suppose that $\{U_i\}_i$ is an open cover of U. If $f_i \in \mathcal{O}_X(U_i)$ agree on overlaps (when intersections exist), then we can define a function $f: U \to \mathbb{C}$ by $f(x) = f_i(x)$ whenever $x \in U_i$. This is well-defined by our assumption that the f_i behave nicely on intersections, for any $p \in U$, there is some $U_i \ni p$, which must contain an open neighbourhood of p on which $f|_{U_i} = f_i$ is given by a rational function. Thusw $f \in \mathcal{O}_X(U)$.

So \mathcal{O}_X satisfies property III. Supposing that $f, f' \in \mathcal{O}_X(U)$ are distinct, then by definition of equality of functions, there is some $x \in U$ such that $f(x) \neq f'(x)$. But since $\{U_i\}_i$ is an open cover, there is some $U_i \ni x$, and thus in particular $f|_{U_i} \neq f'|_{U_i}$, so \mathcal{O}_X satisfies property IV.

Since \mathcal{O}_X is a presheaf of rings on X satisfying properties III-IV, it must be a *sheaf* of rings on X, as required.