1.1 The Division Algorithm

Evan Hughes

January 2023

Revisiting \mathbb{Z}

 \mathbb{Z} is the set of all integers. $\mathbb{Z} = \{\pm 1, \pm 2, \pm 3, \ldots\}.$

Well Ordering Axiom: Every non-empty set of integers has a smallest element. However this is not true for all sets. For example, \mathbb{R} does not have a smallest element. For any ratio r, there is always a smaller ratio r/2. This also does not hold true for \mathbb{Z} because there is no smallest negative integer.

Understanding Division

One can start by writing out what division is verbally. It can be written as:

$$dividend = (quotient) \times (divisor) + (remainder)$$

Theorem 1.1: The Division Algorithm

Let a, b be Integers with b > 0. Then there exist unique Integers q and r such that

$$a = bq + r$$
 and $0 \le r < b$.

Theorem 1.1 allows for the possibility of the dividend a being negative. However r, the remainder, is required to be positive and less than the divisor b.

An **example** of why the last requirement is necessary is if a = -14 and b = 3 as it leaves 3 possibilities for q and r. If you require r to be non negative there is always one solution.

Proof of Theorem 1.1

Let a and b be integers with b > 0. Consider the set S of all integers of the form

$$a - bx$$
, where x is an integer and $a - bx > 0$.

Step 1: Show that S is non-empty. You do this by finding a value for x such that $a - bx \ge 0$. a - bx is in S when x = |-a|, which means S is nonempty.

Step 2: Find q and r such that a = bq + r and $0 \le r < b$. By the **Well Ordering Axiom**, S has a smallest element. This smallest element is r. Since $r \in S \implies r \ge 0$ and r = a - bx for some x, like x = q. Meaning a = bq + r and $r \ge 0$.

Step 3: Show that r < b. To show that r < b, we must show that $r \ge b$ is false. Then $r - b \ge 0$, so that

$$0 \le r - b = (a - bq) - b = a - b(q + 1).$$

 $a - b(q + 1) = r - b < r.$
 $a = bq + \text{ and } 0 \le r < b$

Step 4: Show that r and q are the only numbers with these properties. To prove uniqueness, we suppose that there are integers q_1 and r_1 such that $a = bq_1 + r_1$ and $0 \le r_1 < b$, and prove that $q_1 = q$ and $r_1 = r$.