

Universidad de Ingeniería y Tecnología Silabo de Curso - Periodo académico: 2018-1

1. Código del Curso y Nombre: EL6003 Control Automático

2. Créditos: 5

3. Horas de teoría por semana: 4

Horas de laboratorio: 4 cada dos semanas

Duración del Período: 16 semanas (incluye 1 semana de exámenes)

4. Nombre, e-mail y horas de atención del Intructor o Coordinador del curso

Instructor y coordinador: Arturo Rojas Moreno, <u>arojas@utec.edu.pe</u> Atención previa cita. Oficina: P520.

5. Bibliografía: Libro; título, autor y años de publicación

a. Básica

1. Dorf, R. C. y Bishop, R. H., Modern Control Systems, 12th Edition, Pearson Education, 2014.

b. Complementaria

- 1. Dorf, R. C. y Bishop, R. H., Modern Control Systems, 13th Edition, Pearson Education, 2017.
- 2. Dingyu Xue, YangQuan Chen, Derek P. Atherton, Linear Feedback Control Analysis and Design with MATLAB, SIAM (Society for Industrial and Applied Mathematics), 2007.
- 3. Ogata, K., Modern Control Engineering, 5th Edition, Prentice Hall, 2010.
- 4. Bishop H. R., Modern Control Systems with LabVIEW. National Technology and Science Press, 2012.
- 5. Aidan O'Dwyer, Handbook of PI and P ID Controller Tuning Rules, 3rd Edition, Imperial College Press, 2009.
- 6. Control System Toolbox, Getting Starting Guide 2000-2017, Mathworks.

2. Información del curso

a. Breve descripción del contenido del curso

Este curso cubre los tópicos siguientes: modelado de los equipos del Laboratorio 413 en el dominio de Laplace y en el espacio de estado, análisis de las características y de la estabilidad de sistemas de control a lazo abierto y cerrado, diseño de controladores on-off y PID. Diseño de compensadores usando los métodos del lugar geométrico de las raíces y de la respuesta en frecuencia, diseño de controladores mediante la ubicación de polos en el espacio de estado, uso de MATLAB, Simulink y Labview en el diseño de sistemas de control.

- b. Prerequisitos: EL4002 Modelado y Simulación
- c. Indicar si es un curso obligatorio o electivo: obligatorio
 - 3. Objetivos específicos del curso

a. Competencias específicas del curso

El curso aborda los siguientes resultados del estudiante ICACIT/ABET: b, c, e

- b1: Capacidad de diseñar y llevar a cabo experimentos (nivel 1)
- c1: Capacidad para diseñar un sistema, un componente o un proceso para satisfacer las necesidades deseadas dentro de restricciones realistas (nivel 1)
- e3: Capacidad para resolver problemas de ingeniería (nivel 1)

b. Resultados del aprendizaje

- Modelar sistemas de control en el dominio de Laplace y en el espacio de estado.
- Analizar las características de los sistemas de control realimentados.
- Analizar la estabilidad de los sistemas de control.
- Diseñar sistemas de control usando controladores PID.
- Diseñar sistemas de control usando el lugar geométrico de las raíces.
- Diseñar sistemas de control en el dominio de la frecuencia.
- Diseñar sistemas de control por ubicación de polos en el espacio de estado.
- Programar MATLAB/Simulink y LabVIEW para el diseño de sistemas de control.

4. Lista de temas a estudiar durante el curso

a. Temas (Ci: Capítuloi, i=1-12)

- C1: Introduccón a los sistemas de control.
- C2: Modelos matemáticos de sistemas
- C3: Modelo de sistemas en el espacio de estado.
- C4: Características de los sistemas de control realimentados.
- C5: El rendimiento de los sistemas de control realimentados.
- C6: La estabilidad de los sistemas de control realimentados.
- C7: El método del lugar geométrico de las raíces.
- C8: Métodos de respuesta en frecuencia.
- C9: Estabilidad en el dominio de la frecuencia.
- C10: El diseño de los sistemas de control realimentados.
- C11: El diseño de sistemas de control por ubicación de polos en el espacio de estado.
- C12: Control on-off. Control PID.

b. Laboratorios (Li: Laboratorio i, i = 1-7)

- L1: Modelado de sistemas (Lab. 413).
- L2: Control on-off (Lab. 413).
- L3: Control PID (Lab. 413).
- L4: Control de Flujo y de Nivel (Lab. 415).
- L5: Diseño de sistemas de control usando realimentación de estados (Lab. 413).
- L6: Diseño de compensadores usando el método del lugar geométrico de las raíces (Lab. 413).
- L7: Diseño de compensadores usando el método de la respuesta en frecuencia (Lab. 413).

a. Programación

Week	Topics
1	C1: Introducción a los sistemas de control.
	C2: Modelos matemáticos de sistemas
2	C3: Modelos en el espacio de estado.

	C4: Características de los sistemas de control realimentados.
	L1
3	C5: El rendimiento de los sistemas de control realimentados.
4	C12: Control on-off. Control PID
	L2
5	C12: Control on-off. Control PID
	P1: Prueba de aula 1
6	C11: El diseño de sistemas de control con realimentación de estados
	L3
7	C11: El diseño de sistemas de control con realimentación de estados
8	C6: La estabilidad de los sistemas de control realimentados.
	L4
	P2: Prueba de aula 2, P5: Prueba de aula 5.
9	C7: El método del lugar geométrico de las raíces
10	C8: Métodos de respuesta en frecuencia.
	L5
11	C8: Estabilidad en el dominio de la frecuencia.
12	C9: Estabilidad en el dominio de la frecuencia
	L6
	P3: Prueba de aula 3
13	C10: El diseño de los sistemas de control realimentados
14	C10: El diseño de los sistemas de control realimentados
15	C10: El diseño de los sistemas de control realimentados
	P4: Prueba de aula 4
	L7
16	E2: Examen final
	P5: Prueba de aula 6.

5. Mettodología y sistema de evaluación

Sesiones de teoría

Clases en aula, dirigidas por el profesor Arturo Rojas, mezclando presentaciones PowerPoint, desarrollo de problemas en pizarra con presentación de casos; empleo intensivo de software CAE y formulación de preguntas y ejercicios para que los alumnos intervengan.

Sesiones de Exámenes

Se toma un EF (Examen Final) escrito en la semana 16.

Sesiones de Prácticas de aula Pa

Se toman seis prácticas de aula programadas, denominadas P1, P2, P3, P4 y P5. Las pruebas P5 y P6 corresponden a la materia programación en LabVIEW-Core 1 y Core 2 respectivamente y es dictada por un profesor a tiempo parcial. La asistencia a todas las prácticas es obligatoria y no se elimina ninguna. La nota Pa se calcula de:

$$Pa = (P1 + P2 + P3 + P4 + P5 + P6)/6$$

Sesiones de Pruebas de Laboratorio Pb

El profesor Arturo Rojas con el apoyo de dos Asistentes de Enseñanza tiene a su cargo estos laboratorios. Los laboratorios L1 al L3 y L5 al L7 se realizan en el ambiente L413. El Lab L4 se

lleva a cabo en el ambiente L415. Cada sesión de laboratorio considera un test de entrada y una rúbrica de evaluación. El informe de laboratorio se realiza en la misma sesión. Al final de cada laboratorio, los alumnos participan en forma on-line en un foro para debatir los resultados obtenidos, las posibles aplicaciones del laboratorio desarrollado y la solución al reto previamente planteado por el profesor. Esta participación también forma parte de la rúbrica. No se anula ningún laboratorio. La nota Pb se obtiene de:

Pb = (L1+L2+L3+L4+L5+L6+L7)/7.

Sistema de Evaluación:

Nota Final = 0.4 Pa + 0.4 Pb + 0.2 EF

Donde:

EF = Examen Final Pa = Pruebas de Aula

Pb = Pruebas de Laboratorio