1	T emission	m. he =	hcr	
	/ fans	, ,		· 100
lu n		enumber 1 = V (cm		r slaruszta is i A. e. f
ab abs		en 100 100 tan 140	ra Persona Y No Ang	at in section (A)
for hy d	rogen atom			
	is a state	131ev		
		12.78.	-o Brackett ser	ies
1:3		n.07ev		
		3 8-1	- Pashen Paschen serie	
n:2 -		10.14eV	-s Balmer serils	1
			, Lyman Seils	
			^	
em ission	spectrum of hydron	gen :	<i>[</i>	
	wavenumbers of all		sit int one equation	
\bigcirc				
V	$V = -R_H \left(\frac{1}{\Omega_2} \right)^2$	n,2) [am 1]	Tineray o	f photon emitted:
	aventum	of levels	E, -> E2	
	number of trans	Tion	~ / 4 bi	R1 (+EL)
	/ (en) that.	f bre levels	$F_{2}hc\tilde{v}=\left(-\frac{\kappa c}{2}\right)$	R)-(- hck
Rydh	eg constant of A	atom	= f. 2 -	
Expe	imentally:			
	Ru: 109677.8cm	(
Re: dista				
EX. NITIAL	irent value for di	HOME WALL.		

Phys chem 72 12.

Atomic spectra

Bohr's 3 postulate (proposals)

- It ets move in circular orbit around the charged nucleum

anly estain white

- only certain orbits are allowed w/ integer values of no bit energy while they are in orbit

- single photon is emitted/absorbed when an el mare from one other to another

4 angular mor enter - s always conserved - direction always I to plane of notation

L=Iw.
Prody

For one particle: L. Iw

4 = WLM

I: Emici2

I angular equivalent of mass

- ;MCV 4

Tur Listoger atom, F= -e2 uxser2

\$ St & Bhr postulated angular momentum (mevr)

 $= \frac{1}{2} \left(\frac{\ell^2}{\mu x_{for}} \right) - \frac{\ell}{L x_{for}}$

E- FW, - GE

L=mevr = 1 22

= 1

mur = ht

V = nt

2 - 8x61

E=# - PXS

 $\frac{me^2}{\Lambda^2h^2\epsilon_0} = -\frac{me^4z}{8\pi\epsilon_0^2h^2}$

2 /

 $=\frac{e^4M}{9\xi_1^2h^2}\left(n^2\right)$

-hcR

R= 852/2

 $M\left(\frac{nh}{mr}\right)^{2} = \frac{e^{2}}{4\pi \xi_{0}r}$ $M\left(\frac{nh}{mr}\right)^{2} = \frac{e^{2}}{4\pi \xi_{0}r}$

 $K_{X} \frac{h^{2}h}{m^{2}c^{2}} = \frac{e^{2}}{4\pi i_{x}r}$

12 /2 = 12 EXE

me2 = h2h2 Es of anel should be Time2 I diff for differ.

Extentions to Bhr model e' and p' both rotate obod common cente of mass $\mu = \frac{m_{em_n}}{m_{em_n}}$ if $m_{n >> m_e}$ $m_{em_n} = \frac{e^{\mu} \mu}{8 \xi_0 h^3 c}$ $m_{em_n} = \frac{m_e m_n}{m_{em_n}} \approx \frac{m_e m_n}{m_em_n} \approx \frac{m$ M= mem = mem = me Mo = me Roo = Reale = 2 me = 109737cm-1 Lusing 1800 me: mm] - correct reduced man for hydrogen atom M = 1800 me = 0.9994 me RHORE) = 8.99944 et me RHOOL) = 0.99944 me = 0.99944 Ro . If for phelectrons atomo: E-hc2 E=hcz2 Rx [n]
ratoria energy hi Towization energies - energy required to remove an e/ from the ground state of an atom to infinite distance IE = - R (== - 1/2) 2 R/1/2 when determining ionization energy w/ a graph [Lyman sories] [n, = ((constant))] $\hat{V} = \frac{R}{n^2} - \frac{R}{n^2}$ $V = -\frac{R}{n_2} + IE$ gradient = -R y-intercept: IE

y: Mx + c

eg. $1s^2 2s^2 3p^3$ $1 = 1 \Rightarrow 32 \times 0.85 = 1.7$ $1 \times 1.2 \times 0.2 \times 1.1$ $2 = 1.7 \times 1.7 \times 1.7$ $1 \times 1.3 \times 1.7$

& love IE for BKO

-B: removal of 2pels

- B,C,N: removing 2p e/ which sits on its own in its orbitals

- O,F, Ne: removing one pair of e's from 2p

Lo spin paired e's less stable than spin parallel

in the same orbital

Breakdown of Bohr model:

8 lines in atomic spectra of alkali metals contain similar soires as H atom Using wave mechanics: E: -hcR/2 & energy level expression for H-atom. Schrödinger equation for hydrogen atom > e/soccupy orbitals (sput) w/ using quantum number 1, 1, m, m, My -> component of orbital angular momentum dong the z-axis in quantized. I can have 3 orientation of 2 oxis lz = mch = t Tan) Absorption Sportrum: atransitions in absorption involve Is one (angular moredum symmetry conservation) Lo result in a selection rule for absorption lomission of photon : 01 = +1 Day = 0, 12 Dupon absorbing/omitting a photon 2 must change by 1.

photon how one unit of I & how odd parity

Emission Spectrum: - more complicated - 11 atoms can be excitat to many levels

by excitation source - but of transitions are then possible

- must conform to relation rules for all transition

is 01:11 if a photon is emitted.

- calculate energy using Bhr formula:

~= Ru{1/n1-1/2)

Electron Spins praem by Stern - Gerlack experiment is a beam of Ag atoms ("d"Ss") was sent into an Inhomogeners B-field. 6 Beam observed to split into 2 parts 6 splitting mas assigned to the outer e/ having a sph angular nomentum 5; 1/2 Ms = \$\frac{1}{2} (spin up / down) in the homogeneous B-field these 2 spin orientations have diff energies & squerate Sph - just a convincent some for the intriviz momentum of the e/ Le/s possesses a magnetic moment interaction between the spin angular momentum (s) spin-orbit Corylling Orbital angular momentum (1). Angula momenta in one-e/atoms: - Spin-orbit interaction : e's have s & ? is presence of el spin spits all energy lule of [cport from 13 6/8] It atoms which have orbital angular momentum (100) into 2.

Splitting ocars :		1.00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-els have a-	delle coull be mornet)	
- eT has a magnetic moment (just the a small ser magnes	
is arose from charged e/	spinning on and weis	. a charge orbiting the nucleu
BUT when 270 -> e1 man or	rbital angular momentum [picture a	3
also generate a magnetic	moment at the unders like .	a bor magnet)
- two magnetic moments in our system	m value of the same of the sam	
La magneti can be allight	al or opposed	13
motion win these magnetic	spin & its orbital	higher livery
notion via these magnetis	effects issu	N The grand
(spin-orbita	1 interestion	
when Iso is a		
6 when a level w/ 270	is split	27 Just bare
into two magnetic moment	***	IN S every
by spin-ordit inter	a.T.	. # . 1:
	reason why the lines spectrum are It of	/ 11 1
	spectrum are the	loubled
- spin-orbit effects are mot included i	'n	
- Spin-orbit effects are not included in the Bohr equation: But in Hatom	n, so small Ishwa	
	∆	
spin-orbit interactions It will Z is splitting, one more	1. Recharge alamata	
Spilling are mare	Myanian Pan man end smell	

Spin-orbit inGrantion ; orbital angular momentum -> 1 i can take value from the Spin u sum of 2 le total , down in steps of one -s value of l's possible values of j given by - used in WMR (photon spins) j: 2ts , 2+5-1, ... 12-51 3-10 lating arguler merentum [Clebel Gordon Strike] in microwave spectra el in sorbital e/ in p-orbital 6: 1 , 2-0 2+5= 12+12-5/= 2 j= 3 12.51= 2 1: 12 - only have one state J= = 1 6 2 In a proibital (100) resultain 2 states 6 states w/ diff angular momentum

Term symbols: - summarizing 2,5 d; multiplicity 1): orbital angular momentum 2st 1 2 j (I) total angular momentum 25+1: multiplicity [one et atom: 25+1: 2(2)+1:2] I for polyetectrona atom: need total 5 from combining spins of all els leg. Na, He] 1: 5,P,D etc for 1:0,1,2 I for multi et atom: combine the Ivalues of all ets to get total orbital orgular momentum) j: 2ts, 2ts-1, 12-51 ey term symbol for 2 states arising from the 3d'level of the Hatom for dorbital 2:2 205/2,32 Recap: - energy levels of H atom varies: EH = -hc RH - derivation of Rydbeg constant by Bohr - explaination of Radii & energies of orbits by Bhr 0 - Bohr's idea of orbito lead to release or orbitals 17 - transitions observed in the Hatom spectrum are governed by the selection rule 01: ±1 - for H atoms good approximation of all orbitals w/ some n, have same energy - elspin & spin orbit cruping sinteraction habiter elspin & its orbital motion via magnet effect of the system Lo means on el lap.d.t Cento in two energy states and the second s

Fine structure when els are in p,d,t orbitals is a pair of states w/ diff values of j Gevidence from doubbet in No spectrum holy high resolution Lower boking at very high resolutions at Hatom transitions modern spectroscopic to we might see more than one line technique using losers Lo multiple lines - termed as "Fine structure" of the transition 4 fine structure is due to spin-orbit coupling 13762 has a fine structure - splitting of levels by spin consit coupling

BUT come very small splitting us bohr formula 山路到七七條紀

7 transitions as observed

4 close Like single wavenumber

the Bohr equation 123-2

of this transition predicted my

constructing a fine structure

I what levels we have?

- each orbitals w/1 >0

will split into doublet

25 1:0 5= 2 j= = 74 Si

2p 1=1 5= 1= 3/2=> 2p p3 2pp2

 $3^{2} \int_{0}^{1} \int_{0}^{1$

7d 1:2 5: \(\frac{1}{2} \) j=\(\frac{5}{2} \) \(\frac{2}{2} \) = 273d \(^2\) 01 \(\frac{34}{2} \) 05_2

We have 8 possible levels

& lowest j is larest in energy

A selection rule:

D1=+1

Ds: 0 => spin does not change upon absorbing or emitting aphoton Instringulant for Hatom have one electron 5 = 2 always)

0j=0,±1 => total angular momentum can stay the same or change by one unit

Zeeman & Stark effects!

separation of my levels by E-field => Stark effect separation of my levels by B-field => Zeeman effect [Zeeman effect for Haton in same for Na)

- Anomalous Zeeman effect:

1 strong studied has non-zero spin ungular momentum (5>>)

erg. H atom, splitting in a B-field solitting of mi

magnetiz full field energies of m; sub-levels of given; state: Ezeeman = kg; m;

constant depending the size of the 18-field of the fundamental constants splittings between my levels from different i state aren't necessarily the same

- splitting between different my levels of
given j state in given by gj gi > Lande g-factor'
- levels with diff combindings of list split to
diff extents depending on gi

A colabote gis to know the relative splitting of the level is working out what pattern lines will be observed

- splitting of mj

4s mj sublevels w/ lange

tve/-ve value of mj

shifted the most in enemy

-ve mj values for mj sublerels

Go shifted to lower energy

tve mj value for mj sublevels

Lo shifted to higher energies

splittings between mj levels fromth

same jotate we the same

iff transitions will occur a same energy lovelap in the spectrum; same for 2 j levels - m; components of the 2 levels will split the same amount

$$27 \ 5 = \frac{3 \times \frac{1}{2} \times \frac{2}{3} + \frac{1}{3} \times \frac{2}{3} - | \times 2}{2 \times \frac{1}{3} \times \frac{3}{2}}$$

-, 9: 2

For sodium atoms - place to start considering multi-electron atoms 152252763p as they contain one et outside a closed-shell core Term symbols for Sodium

> I and spin of all els in any full set of orbitals corned out i only consider ets in partially filled orbitals for allculi metal along - only have single onte of to consider is hard to excite any els from the core Lo alkali melal atomo one termed pseudo-one-elec e/ atom is expect their spectra to be similar to H-atom

as into duce notation:

[core] np

[core]nt'

S -> total spin angular momentum Si - spir angular momentum L -> orbital angular momentum

1; s orbital angular momentum 1=1,2,7,4 at the det of plant.

for alkali metals: one owhere / -> i=1

J=1+5 J= U15, L+5-1.... | L-5 |

I ten symbol, are identical to the

tate for alkali metals:

[core] ns! S: 5= \frac{1}{2} L= 2= 0 J= \frac{1}{2} \frac{2}{3} \frac{1}{2} \text{ orbitals } \frac{1}{2} \frac{1}{2} \frac{1}{2} \text{ orbitals } \frac{1}{2} \

& orbitals u/ some hel offa 5= 2 L=1=1 J=3, 1 2P2, 2P2 to (3s) EE (3n)

lare] nd' 5= 2 L:1:2 J= 5, 3 2 205

diff energies for aborbitals w/ same a but diff ? in multi e/ atoms are the to diff 5= 1 L-1:3 7= 3,5 2F3, 2F3 Ls [diff orbitals experiencing

> effective nuclear charge · of their shape

Big difference in energy of state for M . Same vidue of a

(s expect order el in Na to 'see' only

ore of the tre charges

rest of the tre charges are 'somered'

by the Dowler core els

Ver diemit superior all ub time for from the madeous nudous

for given value of 1 spend

nore time near the nucleus - "inde" the core els

Ls 1 v -> h+ 1 effective nucleus charge

the el deperiences

Ls for given n, storest energies: 5 < p < d < f

y penetication of the orbitals 17 as 2 b)

11 .

Na -> [core] 3s' 251

Absorption spectrum of Wa Vall species start in their ground state

apply selection rules for possible transitions:

- provide no restriction 25, - 2 P; all available states have S= 1 D1=21 > ostricts us to p-state = 25; > 2p3 100-201

predict series of doublets converging to a series limit [also is observed]

4 Principal Series 4 similar to H atom spin - orbit coupling OUT spin-orbit splitting is much larger than in H-atom 2 7 ZNu > Zu

Emission spectrum

Gobserve several serie of lines in emission eg. 25/2 -> 3p 2p3/2

4 important series:

see doublets

ne (10, 10, 1) - 3s (25,) [also seen in absorption]

nd (10, 10, 10, 1) - 3p (10, 10, 10) [see triplets only appear - Shape series: - Principal series: - Diffue series

nf (2 63, 2) → 3 d (2 62 1/2)] - Fundemental serces:

@ low res

Energy level expressions -> predict brergies of transitions	
absorption l'enission spectra of Na one made of service of line: just like 14 a tom	
$E_{n2} = \frac{-h_c R_{Na}}{(n - \delta_{n2})^2}$	
for Ma:	
8 nr : quantum defect	
Sns=1.3 ~ depends v. strongly on 2	
5 me 0.8	
Sad = 0 (0.05) - quentities the degree of penetration	
if it to assumption; for dorbitals	
4	
is a hardly peretrate the core	
S 5 1 20 00	
Summary:	
-Na 極小XH	
The state of the s	
- spectrum diff -> more series visible	
différence in energies of	
es. 3plo 3s & np. ns, nd for some n	
transitions occurs in [peretration is the reason]	
BUT NOT POSSIBLE in the Robe	
model of the Haton.	
- Spin-orbit splittings are greater for Na.	

```
He live atom:
          Usanside 2 interacting ets [1/s2]
         to excite an He stom - one of the 2 eTr
             about always remains in the 1s orbital.
          4 mly consider 1s' no as excited state
  continue april angular anomentum
 combining spin angular momentum:
     5= 5,+52 - 5,+52-1,.... 15,-52 - He has only 2ets by 25+1= slate
                                           5: 5: 5: \frac{1}{2} = 1 Triplet state
                                              S = 1 - 1 = 0 Singlet state
 combining orbital angular momentum
 L= Li+lz, Li+lz-1 - 1Li-Li)
He configurations 15'2
                                                 Selection cules: soactly analogous to
the H-atom

DS=0 DJ=0,±1
 152 closed shall -s 'So
1 1 1 1 1 1 2 = 0 = > L=0 5 = 5 = 2 = 7 S = 0,1 15 35, T=01 1145
                J=0,2 [L+5=0+0 or 0+i]
np 2=0, 2=1=> L=1 S1=52=> S=0,1
L21 5=0=> J=1 -> 'P.

What L:1 5=1=> J=2,1,0 -> 'P2, 'P0, 'P0 ('P2,1,0)
'nd' 2,=0,1,=2=1 L=2 5,=5=2=75=0,1
     L=2 S=0 \Rightarrow J=2 \rightarrow D_2
L=2 S=1 \Rightarrow J=3,2,1 \rightarrow D_3, D_2, D_2, D_3, D_4, D_5, D_6
```

Absorption	spectrum
M by loga M	specuari

consider transitions to singlet states in absorption

is 2 ground state is a singlet state

transitions are only single lines in Problem have J=1

to no triplet states

seeing a series of single lines:

152 ('so) -> 15' no' ('Pr)

Emission spectrum:

- more complex: atom can be excited to both

singlet I triplet by excitation source I discharge heat I

- two sets of emission lines: one set between-singlet state [50] P. 102)

singlet

sin

For multi electron atomo

4 combine angular momenta of individual eTs. > SUL

2. combine LUS -> J

3. apply selectionrules 05=0

01=0,11

OL: 0,+ 1