ImageNet Classification

Sunpreet Arora & Josh Klontz

April 22, 2013

Intraclass variation

- Intraclass variation
- Interclass similarity

- Intraclass variation
- Interclass similarity
- Scale

- Intraclass variation
- Interclass similarity
- Scale
- Pose

- Intraclass variation
- Interclass similarity
- Scale
- Pose
- Illumination

- Intraclass variation
- Interclass similarity
- Scale
- Pose
- Illumination
- Occlusion

- Intraclass variation
- Interclass similarity
- Scale
- Pose
- Illumination
- Occlusion
- Clutter

Methodology

Feature Descriptors

16 orientation histograms, 8 bins each.

Feature Descriptors

SIFT

128 dimensions

16 orientation histograms, 8 bins each.

LBP

59 dimensions

Compute histogram of the 59 "U2" patterns.

Feature Descriptors

SIFT

128 dimensions

16 orientation histograms, 8 bins each.

LBP

59 dimensions

Compute histogram of the 59 "U2" patterns.

RG

64 dimensions

$$R = \frac{r}{r+g+b}$$

$$G = \frac{g}{r+g+b}$$
 (1)

R and G each quantized into 32-bin histogram.

Multi-Scale Dense Feature Extraction

Dense sampling at 3 scales

Multi-Scale Dense Feature Extraction

Dense sampling at 3 scales

Bag of words

Classifiers

• Train three different SVM classifiers for each of the codebooks.

Classifiers

- Train three different SVM classifiers for each of the codebooks.
- Linear kernel does not work very well because the classes are not well separable in the feature space.

Classifiers

- Train three different SVM classifiers for each of the codebooks.
- Linear kernel does not work very well because the classes are not well separable in the feature space.
- Need to map the data to a higher dimensional space: RBF kernel.

Parameter Selection

 Effectiveness of SVM classifiers depends on the selection of the right set of parameters.

Parameter Selection

- Effectiveness of SVM classifiers depends on the selection of the right set of parameters.
- Two different parameters for RBF-SVM: soft margin parameter C and kernel width G.

Parameter Selection

- Effectiveness of SVM classifiers depends on the selection of the right set of parameters.
- Two different parameters for RBF-SVM: soft margin parameter C and kernel width G.
- Coarse-to-fine grid search (with 5 fold cross validation) for selecting the optimum set of parameters.

Classifier Combination

Results

• Top-5 accuracy:

Training Set: 99.99%Validation Set: 88.55%

• **Test Set**: 88.94%

Validation Set Accuracy (%)		
SIFT	81.55	
LBP	82.6	
Color	77.58	
All	88.55	

Results

Top-5 accuracy:

Training Set: 99.99%Validation Set: 88.55%

• **Test Set**: 88.94%

• Classes where the approach really works well: *odometer, rapeseed, website.*

Validation Set Accuracy (%)	
SIFT	81.55
LBP	82.6
Color	77.58
All	88.55

Results

Top-5 accuracy:

Training Set: 99.99%Validation Set: 88.55%

• Test Set: 88.94%

 Classes where the approach really works well: odometer, rapeseed, website.

 Classes where the approach does not work very well: lopener, hatchet, cleaver.

Validation Set Accuracy (%)		
SIFT	81.55	
LBP	82.6	
Color	77.58	
All	88.55	

Success

 $\{ 'odometer', 'spatula', 'gondola', 'hook', 'elocomotive' \}$

Success

 $\{ 'yflower', 'daisy', 'flamingo', 'ladle', 'plunger' \}$

Failure

 $\{ 'plunger', 'ladle', 'spatula', 'hook', 'cleaver' \}$

Failure

 $\{'odometer', 'daisy', 'flamingo', 'ladle', 'spatula'\}$

Questions?