CN Practical

Shakeeb Shaikh

TCS2526068

Practical 10

Aim: Create a network and implement eBGP

eBGP: eBGP (External Border Gateway Protocol) is a type of Border Gateway Protocol (BGP) used to exchange routing information between different autonomous systems (ASes) on the internet.

1. What is BGP?

- BGP is a standardized exterior gateway protocol used to exchange routing information across the internet.
- It is a path vector protocol, which makes routing decisions based on paths, network policies, and rules.
- 2. What is an Autonomous System (AS)?
 - An AS is a collection of IP networks and routers under a single administrative domain that presents a common routing policy.
 - Each AS is identified by a unique Autonomous System Number (ASN).

3. What is eBGP?

- eBGP (External BGP) is used between routers in different ASes.
- For example, an ISP's router communicating with another ISP or with a large enterprise is an eBGP session.

iBGP: iBGP (Internal Border Gateway Protocol) is a type of BGP (Border Gateway Protocol) used to exchange routing information within the same Autonomous System (AS).

1. What is iBGP?

- **iBGP** is used between routers that **belong to the same AS**.
- It allows routers inside an AS to share routes learned via eBGP with each other.
- Like eBGP, iBGP also uses **TCP port 179** for communication.

iBGP vs eBGP

Feature	iBGP	eBGP
Used Between	Routers in the same AS	Routers in different ASes
Default TTL	255	1
AS_PATH Behavior	Not modified	Adds local AS to AS_PATH
Next-hop Attribute	Preserved	Usually changed to sender IP
Full Mesh Requirement	Yes (unless route reflectors or confederations are used)	No
Purpose	Internal route distribution	Inter-AS route exchange

Router Configuration AS-1

Router Configuration of AS-2

Router(config) #interface Serial2/0

Router(config-if)#

Тор

Router Configuration of AS-3

Practical 11:

Aim: Create a MAC protocol for wireless network

What is a MAC ID (MAC Address)?

MAC ID (also called MAC Address) stands for Media Access Control address.

Key Points:

- It is a unique identifier assigned to a network interface card (NIC) of a device (like a computer, smartphone, router, etc.).
- Used at the Data Link Layer (Layer 2) of the OSI model.
- MAC addresses are hardcoded into the hardware by the manufacturer but can sometimes be changed (called MAC spoofing).

00:1A:2B:3C:4D:5E

What is Wireless MAC Filtering?

Wireless MAC Filtering is a security feature on routers or access points that controls which devices can connect to the Wi-Fi network based on their MAC addresses.

How It Works:

- The router keeps a list of allowed or denied MAC addresses.
- When a device tries to connect to the Wi-Fi:
 - o If its MAC address is on the allow list $\rightarrow \bigvee$ It connects.
 - o If it's on a deny list \rightarrow X It's blocked.

Types of MAC Filtering:

- 1. Allow list (Whitelist):
 - o Only devices on this list are allowed to connect.
 - o All others are denied.
- 2. Deny list (Blacklist):
 - o Devices on this list are blocked.
 - o All others can connect.

