Worksheet 2: Some More Probability

Name: Due September 18, 2022

- 1. (Checking definitions) Show that a convex combination $\alpha \mathbb{P} + (1 \alpha) \mathbb{P}'$ of probability measures \mathbb{P}, \mathbb{P}' and $\alpha \in [0, 1]$, is a probability measure.
- 2. (Practice with principles) Let $\mathcal{X} = \mathbb{R}$ and define $\mathbb{P}_{\mathcal{X}}(S) = \sum_{j=1}^{\infty} \frac{1}{2^{j}} \mathbb{1}_{r_{j} \in S}$ for $S \subset \mathbb{R}$, where $\{r_{j}\}_{j=1}^{\infty} = \mathbb{Q}$ is an enumeration of the rational numbers. Show that $\mathbb{P}_{\mathcal{X}}$ defines a probability measure on \mathbb{R} . (You may need to recall rearrangement.)

3. (Function of random variable) Let $\mathcal{X}^2 = [0,1]^2$ with independent uniform measure $\mathbb{P}_{\mathcal{X}^2}([a,b] \times [c,d]) = (d-c)(b-a)$ for $a < b, c < d \in [0,1]$. Consider random variable $+: \mathcal{X}^2 \to \mathbb{R}$ defined by $(x_1,x_2) \mapsto x_1 + x_2$ (see fig. 1, here n=2). Using the *law of total expectation (probability)*, express both $\mathbb{P}_{\mathcal{X}^2}(x_1+x_2 \le t)$ as well as the pdf (you may draw a picture).

4. (Loose concentration) Let $(\mathcal{X}=\{0,1\},\mathbb{P}_{\mathcal{X}}(\{1\})=p)$ be Bernoulli p. Show that you may estimate p to precision $\varepsilon>0$ with probability at least $1-\delta$ by taking at least $m\geq \frac{p(1-p)}{\delta\varepsilon^2}$ samples x_1,\ldots,x_m . (Define random variable $s_m:\mathcal{X}^m\to\mathbb{R}$ by $(x_1,\ldots,x_m)\mapsto \frac{1}{m}\sum_{j=1}^m x_j$, the empirical mean, and be sure to define your measure $\mathbb{P}_{\mathcal{X}^m}$.)

5. (How fat can tails be?) For probability space $(\mathcal{X} = \mathbb{R}, \mathbb{P}_{\mathcal{X}})$ with mean 0 and finite variance (wlog suppose that $\sigma = 1$), prove the following tail probability bound

$$\mathbb{P}_{\mathcal{X}}(|x| > k) \le \frac{1}{k^2}.\tag{1}$$

Construct a measure/random variable for which $\mathbb{P}_{\mathcal{X}}(x > t) > \frac{1}{t^p} \cdot \mathbb{1}_{t>1}$ for $\mathfrak{p} \in (1,2)$, and justify why this bound does not contradict the one in (1).

Figure 1: Geometry of LLN

6. (LLN) Let $\mathcal{X} = [0,1]$ with uniform measure $\mathbb{P}_{\mathcal{X}}([a,b]) = b - a$ for $0 \le a \le b \le 1$, and $\mathbb{P}_{\mathcal{X}^m} = \prod_{j=1}^m \mathbb{P}_{\mathcal{X}}$ be independent. Using the relevant concentration bound (a stronger one than Chebyshev!), directly verify this instance of the Law of Large Numbers, namely that

$$\mathbb{P}_{\mathcal{X}^{\mathfrak{m}}}\left(\left|\frac{1}{\mathfrak{m}}\sum_{i=1}^{\mathfrak{m}}x_{j}-\frac{1}{2}\right|>\epsilon\right)\xrightarrow{\mathfrak{m}\to\infty}0,$$

give a bound on the rate of convergence, and shade in the figure region of probability concentration.

7. (Strong concentration: Boosting) Let $\mathcal{X}=\{0,1\}$ with $\mathbb{P}_{\mathcal{X}}(\{1\})=1/2+\epsilon$ ("slightly biased coin"), and define random variable $M_m:\mathcal{X}^m\to\mathbb{R}$ by $M_m(x_1,\ldots,x_m):=\mathbb{1}_{S_m\geq 1/2}$, where $S_m:=\frac{1}{m}\sum_{i=1}^m x_i$ denotes the empirical mean. Show that we may guarantee $M_m=1$ with probability at least $1-\delta$ as long as $m>\frac{1}{2\epsilon^2}\log\left(\frac{1}{\delta}\right)$. Don't forget to define your measure. (Notice that dependence on $1/\delta$ is a logarithmic relation, rather than linear as in problem #4; you will use a different concentration inequality in this problem.)