	x = 2m + 1	
	y = 2n + 1, r $xy = (2m + 1)$ $= 4mn + 2$	
	$= 2(2mn + 2mn + m + n) = b \in \mathbb{Z}$	(-m+n)+1 Therefore it's odd
5	$x = 2m, m \in \mathbb{Z}$	
	$y = 2n, n \in \mathbb{Z}$ $xy = (2m)(2n)$	
	$= 4mn$ $= 2(2mn)$ $2mn = b \in \mathbb{Z}$	no it'a aran
7	$=2b, { m Therefore}$	
	$b = a$ $b^{2} = a^{2}c^{2}, c^{2} = a^{2}d, \text{Theref}$	
11	b =	$am, m \in \mathbb{Z}$
15	d = (ac)(mn), The	$cn, n \in \mathbb{Z}$ erefore $ac bd$ Case 2, odd n
19	Case 1, even n $n=2a, a\in \mathbb{Z}$	$n = 2b + 1, b \in \mathbb{Z}$ $n^2 + 3n + 4 = 4b^2 + 4b + 1 + 6b + 3 + 4$ $= 4b^2 + 10b + 8 = 2(2b^2 + 5b + 4)$
= 2	$n^{2} + 3n + 4 = 4a^{2} + 6a + 4$ $(2a^{2} + 3a + 2), (2a^{2} + 3a + 2) = c, c \in \mathbb{Z}$ $= 2c, \text{Therefore, } n^{2} + 3n + 4 \text{ is even}$	$2b^{2} + 5b + 4 = d \in \mathbb{Z}, = 2d$ Therefore, $n^{2} + 3n + 4$ is even
16	Case 1: Odd parity $a = 2x + 1, x \in \mathbb{Z}$	Case 2: Even parity $a=2x, x\in \mathbb{Z}$ $b=2y, y\in \mathbb{Z}$
	$b = 2y + 1, y \in \mathbb{Z}$ $a + b = (2x + 1) + (2y + 1)$ $= 2x + 2y + 2 = 2(x + y + 1)$	$a+b=(2x)+(2y)$ $=2x+2y=2(x+y)$ $x+y=z\in\mathbb{Z}, \text{Therefore, their sum is even}$
x + y 17	$z = z + 2g + 2 - 2(x + g + 1) + 1 = z \in \mathbb{Z}$, Therefore, their sum is even	
		$a = 2x, x \in \mathbb{Z}$ $b = 2y + 1, y \in \mathbb{Z}$
	$=4x$ $2xy+x=z\in\mathbb{Z}, \text{Therefore, } 1$	ab = (2x)(2y+1) $cy + 2x = 2(2xy+x)$ their product is even
	es for Section 9	
1. By the	contrapositive, suppose If n is odd then n^2 is od	$n = 2a + 1, a \in \mathbb{Z}$ $n^2 = (2a + 1)^2$
	$=4a^{2}+$ Therefore, by the contrapositive,If	$+4a + 1 = 2(2a^2 + 2a) + 1$ $= 2a^2 + 2a \in \mathbb{Z}$ $\exists n^2 \text{ is even, then n is even}$
3	Therefore, by the contrapositive, in	
		$a = 2x, x \in \mathbb{Z}$ $b = 2y, y \in \mathbb{Z}$ $a^{2}(b^{2} - 2b) = 4x^{2}(4y^{2} - 4y)$
	Therefore, by the contrapositive, if $a^2(b^2 -$	$16x^{2}y^{2} - 16x^{2}y = 2(8x^{2}y^{2} - 8x^{2}y)$ $= 8x^{2}y^{2} - 8x^{2}y \in \mathbb{Z}$ - 2b) is odd, then a and b are odd
5 By the 7	contrapositive, If $x \ge 0$, then $x^2 + 5x \ge 0$	Case 2: b odd, a even
	Case 1: a odd, b even $a = 2x + 1, x \in \mathbb{Z}$	$a = 2x, x \in \mathbb{Z}$ $b = 2y + 1, y \in \mathbb{Z}$ $a \cdot b = 4xy + 2x$
	$b = 2y, y \in \mathbb{Z}$ $a \cdot b = 4xy + 2y$ $= 2(2xy + y), (2xy + y) \in \mathbb{Z}$	$= 2(2xy + x), (2xy + x) \in \mathbb{Z}$ a times b is even $a + b = 2x + 2y + 1$
	a times b is even $a + b = 2x + 2y + 1$ $= 2(x + y) + 1$	= 2(x+y) + 1 a + b is odd
	a + b is odd	
	a	Sase 3: both odd $= 2x + 1, x \in \mathbb{Z}$ $= 2y + 1, y \in \mathbb{Z}$
	$a \cdot b = 4x$ = 2(2xy + x + y) + 1, (2	cy + 2x + 2y + 1
	a + b =	2x + 2y + 1 + 1 2(x + y + 1) + 1 a + b is even
Therefo	ore, by the contrapositive, in all cases, there's at	
J		$n = 3x, x \in \mathbb{Z}$ $n^2 = 9x^2 = 3(3x^2)$
11	Therefore, by the contrapositive, if 3 is not divi	
		$x = 2a + 1, a \in \mathbb{Z}$ $y = 2b, b \in \mathbb{Z}$ $x^{2}(y+3) = (4a^{2} + 4a + 1)(2b+3)$
	=2	$a^{2}b + 8ab + 2b + 12a^{2} + 12a + 2 + 1$ $2(4a^{2}b + 4ab + b + 6a^{2} + 6a + 1) + 1$ $(4a^{2}b + 4ab + b + 6a^{2} + 6a + 1) \in \mathbb{Z}$
15	Therefore, by the contrapositive, if $x^2(y+3)$	s) is even, then x is even or y is odd
		$x = 2a, a \in \mathbb{Z}$ $x^3 - 1 = (2a)^3 - 1$ $= 8a^3 - 1 = 2(4a^3 - 1) + 1$
	Therefore, by the contrapositive, if	$4a^3 - 1 \in \mathbb{Z}$
17		$n=2a+1, a\in\mathbb{Z}$
		$n^{2} - 1 = 8b, b \in \mathbb{Z}$ $a^{2} - 1 = 4a^{2} + 4a = 4a(a+1)$ $a^{2} - 2b \text{ even } = 4(2b) = 8b$
19	Therefore, by direct proof, if n is odd	, ,
	a	$-b = nx, x \in \mathbb{Z}$ $c - c = ny, y \in \mathbb{Z}$
20	Therefore, by direct production	$c - b = n(x - y)$ of, $c \equiv b \pmod{n}$
20		$a - 1 = 5x, x \in \mathbb{Z}$ $a = 5x + 1$
		$a^{2} = 25x^{2} + 10x + 1$ $a^{2} - 1 = 25x^{2} + 10x$ $a^{2} - 1 = 5(5x^{2} + 2x)$
	Therefore, if a congruence 1 mod	$5x^2 + 2x \in \mathbb{Z}$
23		$a-b=nx, x\in\mathbb{Z}$
	$ac - bc =$ Therefore, if $a \equiv b \pmod{n}$,	$= nxc, xc = y, y \in \mathbb{Z}$ hen $ca \equiv cb \pmod{n}$
Exercise $_{1.}$	es for Section 10	
	n^{2}	$n = 2a + 1, a \in \mathbb{Z}$ $2^{2} = 4a^{2} + 4a + 1 = 2(2a^{2} + 2a) + 1$
3	Therefore, by the contradiction, n^2 is even	$2b+1, b=(2a^2+2a)\in\mathbb{Z}$ and odd, which is a contradiction.
3		radiction, $\sqrt[3]{2}$ is rational p , In their simpliest form
	$2 = a^3 / 2b^3 = (2c)^3 =$	$b^{3} = 2b^{3} = a^{3}, a \text{ is even}$ = $8c^{3} = 2(4c^{3}), b \text{ is even}$
9	Therefore, by contradiction, a, b	o are both even and odd
	By contradiction, if a is rational and ab	b is irrational, then b is rational $a=n/m, n, m \in \mathbb{Z}$ $b=x/y, x, y \in \mathbb{Z}$
		ab = nx/my
	Therefore, by contradiction, al	o is both rational and irrational
11	Therefore, by contradiction, ale By contradiction, integers a and b e	is both rational and irrational exist, for which $18a+6b=1$
11	By contradiction, integers a and b ϵ	o is both rational and irrational
• Prove t	By contradiction, integers a and b experiments and become a sum of a rational number and an irration	exist, for which $18a+6b=1$ $1=18a+6b$ $1=2(9a+3b)$ radiction, 1 is even and odd
• Prove t	By contradiction, integers a and b e	exist, for which $18a+6b=1$ $1=18a+6b$ $1=2(9a+3b)$ radiction, 1 is even and odd and number is always irrational. and an irrational number is always rational $a=x/y, x, y \in \mathbb{Z}$ $b=irrational$
• Prove t	By contradiction, integers a and b experiments and become a sum of a rational number and an irration	exist, for which $18a+6b=1$ $1=18a+6b$ $1=2(9a+3b)$ radiction, 1 is even and odd and number is always irrational. Indeed an irrational number is always rational $a=x/y, x, y \in \mathbb{Z}$ $b=irrational$ $a+b=n/m, n, m \in \mathbb{Z}$ $b=n/m-x/y$
Prove tBProve t	By contradiction, integers a and beau Therefore, by contradiction are the sum of a rational number and an irration of a rational number are are contradiction, the sum of a rational number are	exist, for which $18a+6b=1$ $1=18a+6b$ $1=2(9a+3b)$ radiction, 1 is even and odd and number is always irrational. Indeed an irrational number is always rational $a=x/y, x, y \in \mathbb{Z}$ $b=irrational$ $a+b=n/m, n, m \in \mathbb{Z}$ $b=n/m-x/y$ contradiction, b is rational and irrational

b = (n/m)/(x/y)

Therefore, by contradiction, b is both rational and irrational

3x + 5 = 6a + 5 = 6a + 4 + 1

 $a^{3} + a^{2} + a = (4n^{2} + 4n + 1)(2n + 1) + (4n^{2} + 4n + 1) + 2n + 1$

Therefore, by the contrapositive, a is odd if and only if a^3 is odd.

Therefore, 14 — a if and only if 7—a and 2—a

 $(a-3)b^2 = (2n-3)(4m^2 + 4m + 1) = 8nm^2 + 8nm + 2n - 12m^2 - 12m - 4 + 1$

a + b = 2m + 2n + 1 = 2(m + n) + 1

By the existence method, the set is: $X = \{\mathbb{N}, 1, 2, 3, ...\}$

By the existence method, the number is: 10

Case 1: a is odd

 $a = 2x + 1, x \in \mathbb{Z}$

Therefore, it's even

 $(a-3)b^2 = (2x+1-3)b^2 = 2(x-1)b^2$

Case 1: a, b are even

1. By disproof, when x = -1 and y = -1, |x + y| = 0, |x| + |y| = 2

11 By disproof, when a=1, b=2 a+b=3, ab=2, so a+b; ab

9 By disproof, when A = 1,2, B = 1, P(A) - P(B) is not a subset of P(A-B)

7 By disproof, when C = ϕ , A = 1,2,3, B = 4,5,6, A \neq B

29 By disproof, y = 2, x = 0, |x + y| = |x - y|, but y is 2

a + b = 2m + 2n = 2(m + n)

17 By the existence method, 97 is that number.

 $a=2m, m\in\mathbb{Z}$

 $b=2n, n\in\mathbb{Z}$

It's even

Therefore, $(a-3)b^2$ is always even

Therefore, a + b is even

Exercises for Section 13

13 By existence, the set is $X = \mathbb{R} \cup \{\phi\}$

Therefore, if 14—a then 7—a and 2—a

By the contrapositive, if a is even and b is odd then $(a-3)b^2$ is odd

 $= 8n^3 + 8n^2 + 2n + 4n^2 + 4n + 1 + 4n^2 + 4n + 1 + 2n + 1$

 $= 8n^3 + 16n^2 + 12n + 3 = 2(4n^3 + 8n^2 + 6n + 1) + 1$

 $a^{3} + a^{2} + a = 8n^{3} + 4n^{2} + 2n = 2(4n^{3} + 2n^{2} + n)$

By the contrapositive, it's odd

 $a^{3} = 8n^{3} + 12n^{2} + 6n + 1$ $= 2(4n^{3} + 6n^{2} + 3n) + 1$

It's odd if a is odd

 $a^3 = 8n^3 = 2(4n^3)$

Therefore, by direct proof it's even

 $a = 14m, m \in \mathbb{Z}$ a = 7(2m) = 2(7m)

 $a = 2x, x \in \mathbb{Z}$ $a = 7y, y \in \mathbb{Z}$ $y = 2z, z \in \mathbb{Z}$

a = 14z

 $= 2(4nm^2 + 4nm + n - 6m^2 - 6m - 2) + 1$

 $a=2m, m\in \mathbb{Z}$ $b=2n+1, n\in \mathbb{Z}$

Therefore, a + b is odd

 $x = 2a, a \in \mathbb{Z}$

= 2(3a+2)+1Therefore it's odd

Exercises for Section 12

1.

3

5

9

11

15

18

20

b = ny/mx

a = 2n + 1

a = 2n + 1

a = 2n

 $a=2n, n\in\mathbb{Z}$

 $b = 2m + 1, m \in \mathbb{Z}$

Therefore, it's odd

 $(a-3)b^2 = (a-3)(2x)^2 = 2(a-3)2x^2$

a + b = 2m + 2n + 2 = 2(m + n + 1)

Case 2: b is even $b = 2x, x \in \mathbb{Z}$

Therefore, it's even

Case 2: a, b are odd $a = 2m + 1, m \in \mathbb{Z}$

 $b = 2n + 1, n \in \mathbb{Z}$

It's even

Proof Homework

Michael Padilla

June 22, 2024

Exercises for Section 8

 $x^2 = 4m^2 = 2(2m^2), n = 2m^2, n \in \mathbb{Z}$ Therefore x^2 is a even integer.

1. $x = 2m, m \in \mathbb{Z}$

 $3 \ a = 2m + 1, m \in \mathbb{Z}$