if we compute the inner product $x \cdot e_i$, we get

$$x \cdot e_i = x_1 e_1 \cdot e_i + \dots + x_i e_i \cdot e_i + \dots + x_m e_m \cdot e_i = x_i,$$

since

$$e_i \cdot e_j = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j \end{cases}$$

is the property characterizing an orthonormal family. Thus,

$$x_i = x \cdot e_i$$

which means that $x_i e_i = (x \cdot e_i) e_i$ is the orthogonal projection of x onto the subspace generated by the basis vector e_i . See Figure 12.3. If the basis is orthogonal but not necessarily

Figure 12.3: The orthogonal projection of the red vector x onto the black basis vector e_i is the maroon vector $x_i e_i$. Observe that $x \cdot e_i = ||x|| \cos \theta$.

orthonormal, then

$$x_i = \frac{x \cdot e_i}{e_i \cdot e_i} = \frac{x \cdot e_i}{\|e_i\|^2}.$$

All this is true even for an infinite orthonormal (or orthogonal) basis $(e_i)_{i\in I}$.

However, remember that every vector x is expressed as a linear combination

$$x = \sum_{i \in I} x_i e_i$$

where the family of scalars $(x_i)_{i\in I}$ has **finite support**, which means that $x_i = 0$ for all $i \in I - J$, where J is a finite set. Thus, even though the family $(\sin px)_{p\geq 1} \cup (\cos qx)_{q\geq 0}$ is orthogonal (it is not orthonormal, but becomes so if we divide every trigonometric function by