CS771: Assignment-1

Group name: ML_squad

Anushree 210175

Dasari Charithambika 210302 Gude Rachana 210398 Hrishita Agrawal 210450

Kurmapu Vennela 210548 Shreya Yadav 211004

Abstract

This document contains the solutions of Assignment-1 of CS771 (Introduction of Machine Learning) by the group member mentioned above. This document submitted to the course instructor Prof. Purushottam Kar in the summer semester of 2023-24.

1 Cross Connection PUF

1.1 Solution of 1^{st} question

Given $\phi(\mathbf{c}):\{0,1\}^{32}\to\mathbb{R}^D$ mapping 32-bit 0/1-valued challenge vectors to D-dimensional feature vectors (for some D>0) so that for any arbiter PUF, there exists a D- dimensional linear model $\mathbf{W}\in\mathbb{R}^D$ and a bias term $b\in\mathbb{R}$ such that for all CRPs $\mathbf{c}\in\{0,1\}^{32}$, we have

$$\mathbf{W}^T \phi(\mathbf{c}) + b = t^u(\mathbf{c})$$

where $t^u(\mathbf{c})$ is the time it takes for the upper signal to reach the finish line when challenge \mathbf{c} is input Let $d_i = 1 - 2c_i \ \forall i = 0, 1, ..., 31$

To derive $t^u(\mathbf{c})$,

$$\begin{split} t_1^u &= (1-c_1)(t_0^u + p_1) + c_1(t_0^l + s_1) \\ &= (1-2c_1+1)\frac{(t_0^u + p_1)}{2} - (1-2c_1-1)\frac{(t_0^l + s_1)}{2} \\ &= (d_1+1)\frac{(t_0^u + p_1)}{2} - (d_1-1)\frac{(t_0^l + s_1)}{2} \\ &= d_1\frac{(t_0^u - t_0^l)}{2} + d_1\frac{(p_1 + s_1)}{2} + \frac{(t_0^u + t_0^l)}{2} + \frac{(p_1 + s_1)}{2} \\ t_1^l &= (1-c_1)(t_0^l + q_1) + c_1(t_0^u + r_1) \\ &= (1-2c_1+1)\frac{(t_0^l + q_1)}{2} - (1-2c_1-1)\frac{(t_0^u + r_1)}{2} \\ &= (d_1+1)\frac{(t_0^l + q_1)}{2} - (d_1-1)\frac{(t_0^u + r_1)}{2} \\ &= -d_1\frac{(t_0^u - t_0^l)}{2} + d_1\frac{(q_1 + r_1)}{2} + \frac{(t_0^u + t_0^l)}{2} + \frac{(q_1 + r_1)}{2} \end{split}$$

Let $x_i = t_i^u - t_i^l \ \forall i = 0, 1, ..., 31$

Preprint. Under review.

$$\begin{split} x_1 &= t_1^u - t_1^l \\ &= d_1(t_0^u - t_0^l) + d1 \frac{p_1 - q_1 + s_1 - r_1}{2} + \frac{p_1 - q_1 + s_1 - r_1}{2} \\ &= d_1 x_0 + d_1 \alpha_1 + \alpha_1 \ ; \alpha_1 = \frac{p_1 - q_1 + s_1 - r_1}{2} \end{split}$$

Let $x_{-1} = 0$ so

$$x_{0} = d_{0}x_{-1} + d_{0}\alpha_{0} + \alpha_{0}$$

$$= d_{0}\alpha_{0} + \alpha_{0}$$

$$x_{1} = d_{1}x_{0} + d_{1}\alpha_{1} + \alpha_{1}$$

$$= \alpha_{0} \cdot d_{1}d_{0} + (\alpha_{0} + \alpha_{1}) \cdot d_{1} + \alpha_{1}$$

$$x_{2} = d_{2}x_{1} + d_{2}\alpha_{2} + \alpha_{2}$$

$$= d_{2}(\alpha_{0} \cdot d_{1}d_{0} + (\alpha_{0} + \alpha_{1}) \cdot d_{1} + \alpha_{1}) + d_{2}\alpha_{2} + \alpha_{2}$$

$$= \alpha_{0} \cdot d_{2}d_{1}d_{0} + (\alpha_{0} + \alpha_{1}) \cdot d_{2}d_{1} + (\alpha_{1} + \alpha_{2}) \cdot d_{2} + \alpha_{2}$$

$$\vdots$$

$$x_{31} = \mathbf{U}^{T}\gamma(\mathbf{c}) + b_{x}$$

$$x_{31} = \mathbf{U}^T \gamma(\mathbf{c}) + b_x$$

$$\mathbf{U} = [U_0, U_1, \dots, U_{31}]_{32x1}$$

$$U_0 = \alpha_0$$

$$U_i = \alpha_{i-1} + \alpha_i \ \forall i = 1, 2, \dots, 31$$

$$\gamma(\mathbf{c}) = [\gamma_0, \gamma_1, \dots, \gamma_{31}]_{32x1}$$

$$\gamma_i = d_i d_{i+1} d_{i+2} \dots d_{31} \ \forall i = 0, 1, \dots, 31$$

$$b_x = \alpha_{31}$$

Let
$$y_i = t_i^u + t_i^l \ \forall i = 0, 1, ..., 31$$

$$y_1 = t_1^u + t_1^l$$

$$= d_1 \frac{p_1 + s_1 + q_1 + r_1}{2} + (t_0^u + t_0^l) + \frac{p_1 + s_1 + q_1 + r_1}{2}$$

$$= d_1 \beta_1 + y_0 + \beta_1 \ ; \beta_1 = \frac{p_1 + s_1 + q_1 + r_1}{2}$$

Let $y_{-1} = 0$

$$y_{0} = d_{0}\beta_{0} + y_{-1} + \beta_{0}$$

$$= d_{0}\beta_{0} + \beta_{0}$$

$$y_{1} = y_{0} + d_{1}\beta_{1} + \beta_{1}$$

$$= d_{0}\beta_{0} + d_{1}\beta_{1} + (\beta_{0} + \beta_{1})$$

$$y_{2} = y_{1} + d_{2}\beta_{2} + \beta_{2}$$

$$= d_{0}\beta_{0} + d_{1}\beta_{1} + d_{2}\beta_{2} + (\beta_{0} + \beta_{1} + \beta_{2})$$

$$\vdots$$

$$y_{31} = \mathbf{V}^{T}\delta(\mathbf{c}) + b_{y}$$

$$y_{31} = \mathbf{V}^T \delta(\mathbf{c}) + b_y$$

$$\mathbf{V} = [V_0, V_1,, V_{31}]_{32x1}$$

$$V_i = \beta_i \ \forall i = 0, 1, ..., 31$$

$$\delta(\mathbf{c}) = [\delta_0, \delta_1,, \delta_{31}]_{32x1}$$

$$\delta_i = d_i \ \forall i = 0, 1, ..., 31$$

$$b_y = \sum_{i=0}^{31} \beta_i$$

Thus,
$$t^u(\mathbf{c}) = \frac{x_{31} + y_{31}}{2}$$

$$\begin{split} t^{u}(\mathbf{c}) &= \frac{x_{31} + y_{31}}{2} \\ &= \frac{\mathbf{U}^{T} \gamma(\mathbf{c}) + b_{x} + \mathbf{V}^{T} \delta(\mathbf{c}) + b_{y}}{2} \\ &= \frac{\mathbf{U}^{T} \gamma(\mathbf{c}) + \mathbf{V}^{T} \delta(\mathbf{c})}{2} + \frac{b_{x} + b_{y}}{2} \\ &= \mathbf{W}^{T} \phi(\mathbf{c}) + b \\ \phi(\mathbf{c}) &= [\phi_{0}, \phi_{1}, \dots, \phi_{62}]_{63x1} \\ \phi_{i} &= \begin{cases} d_{i} d_{i+1} d_{i+2}, \dots, d_{31} & 0 \leq i \leq 31 \\ d_{63-i-1} & 32 \leq i \leq 62 \end{cases} \\ \mathbf{W} &= [W_{0}, W_{1}, \dots, W_{62}]_{63x1} \\ W_{i} &= \begin{cases} \frac{\alpha_{0}}{2} & i = 0 \\ \frac{(\alpha_{i-1} + \alpha_{i})}{2} & 1 \leq i \leq 30 \\ \frac{(\alpha_{i-1} + \alpha_{i} + \beta_{i})}{2} & i = 31 \\ \frac{\beta_{i}}{2} & 32 \leq i \leq 62 \end{cases} \\ b &= \frac{b_{x} + b_{y}}{2} \\ &= \frac{\alpha_{31} + \sum_{i=0}^{31} \beta_{i}}{2} \end{split}$$

Therefore,
$$t^u(\mathbf{c}) = \mathbf{W}^T \phi(\mathbf{c}) + b$$

Thus
$$t^{l}(\mathbf{c}) = \frac{y_{31} - x_{31}}{2}$$

$$t^{l}(\mathbf{c}) = \frac{y_{31} - x_{31}}{2}$$

$$= \frac{\mathbf{V}^{T}\delta(\mathbf{c}) + b_{y} - \mathbf{U}^{T}\gamma(\mathbf{c}) - b_{x}}{2}$$

$$= \frac{\mathbf{V}^{T}\delta(\mathbf{c}) - \mathbf{U}^{T}\gamma(\mathbf{c})}{2} + \frac{b_{y} - b_{x}}{2}$$

$$= \mathbf{P}^{T}\phi(\mathbf{c}) + q$$

$$\phi(\mathbf{c}) = [\phi_{0}, \phi_{1}, \dots, \phi_{62}]_{63x1}$$

$$\phi_{i} = \begin{cases} d_{i}d_{i+1}d_{i+2}, \dots, d_{31}, & 0 \le i \le 31 \\ d_{63-i-1}, & 32 \le i \le 62 \end{cases}$$

$$\mathbf{P} = [P_{0}, P_{1}, \dots, P_{62}]_{63x1}$$

$$P_{i} = \begin{cases} \frac{-\alpha_{0}}{2}, & i = 0 \\ \frac{(-\alpha_{i-1} - \alpha_{i})}{2}, & 1 \le i \le 30 \\ \frac{(\beta_{i} - \alpha_{i-1} - \alpha_{i})}{2}, & i = 31 \\ \frac{\beta_{i}}{2}, & 32 \le i \le 62 \end{cases}$$

$$q = \frac{b_{y} - b_{x}}{2}$$

$$= \frac{\sum_{i=0}^{31} \beta_{i} - \alpha_{31}}{2}$$

1.2 Solution of 2^{nd} question

The dimensionality of the linear model needs to predict the arrival time of the upper signal for an arbiter PUF.

- 1. The dimension of Wis 63 x 1 (D = 63)
- 2. The dimension of $\phi(\mathbf{c})$ is 63 x 1
- 3. $t^u(\mathbf{c}), b \in \mathbb{R}$ (a real number)

1.3 Solution of 3^{rd} question

Let the time taken

- For the upper signal of PUF0 to reach the finish line be $t^{u0} = \mathbf{G_0}^T \phi(\mathbf{c}) + h_0$
- For the lower signal of PUF0 to reach the finish line be $t^{l0} = \mathbf{W_0}^T \phi(\mathbf{c}) + b_0$
- For the upper signal of PUF1 to reach the finish line be $t^{u1} = \mathbf{G_1}^T \phi(\mathbf{c}) + h_1$
- For the lower signal of PUF1 to reach the finish line be $t^{l1} = \mathbf{W_1}^T \phi(\mathbf{c}) + b_1$

[In the 3^{rd} question, the values of $\mathbf{W}, \mathbf{G}, b, h$ are

•
$$\mathbf{W} = [W_0, W_1,, W_{62}]_{63x1}$$

$$W_i = \begin{cases} \frac{-\alpha_0}{2} &, i = 0\\ \frac{(-\alpha_{i-1} - \alpha_i)}{2} &, 1 \leq i \leq 30\\ \frac{(\beta_i - \alpha_{i-1} - \alpha_i)}{2} &, i = 31\\ \frac{\beta_i}{2} &, 32 \leq i \leq 62 \end{cases}$$

•
$$\mathbf{G} = [G_0, G_1, \dots, G_{62}]_{63x1}$$

$$G_i = \begin{cases} \frac{\alpha_0}{2} &, i = 0\\ \frac{(\alpha_{i-1} + \alpha_i)}{2} &, 1 \le i \le 30\\ \frac{(\alpha_{i-1} + \alpha_i + \beta_i)}{2} &, i = 31\\ \frac{\beta_i}{2} &, 32 \le i \le 62 \end{cases}$$

•
$$h_i = \frac{\alpha_{31} + \sum_{j=0}^{31} \beta_j}{2} \ \forall \ i = 0, 1$$

•
$$b_i = \frac{\sum_{j=0}^{31} \beta_j - \alpha_{31}}{2} \ \forall \ i = 0, 1$$

]

Thus,

- In Arbiter 1, $\Delta_1 = t^{u1} t^{u0}$, then the Response 1 $(r^1(\mathbf{c})) = \frac{1 + \text{sign}(\Delta_1)}{2}$
- In Arbiter0, $\Delta_0=t^{l1}-t^{l0}$, then the Response0 $(r^0(\mathbf{c}))=rac{1+\mathrm{sign}(\Delta_0)}{2}$

The Response0,

$$r^{0}(\mathbf{c}) = \frac{1 + \operatorname{sign}(\Delta_{0})}{2}$$

$$\Delta_{0} = t^{l1} - t^{l0}$$

$$= \mathbf{W_{1}}^{T} \phi(\mathbf{c}) + b_{1} - \mathbf{W_{0}}^{T} \phi(\mathbf{c}) - b_{0}$$

$$= (\mathbf{W_{1}} - \mathbf{W_{0}})^{T} \phi(\mathbf{c}) + (b_{1} - b_{0})$$

Let

$$\mathbf{W_1} - \mathbf{W_0} = \widetilde{\mathbf{W}}$$
$$b_1 - b_0 = \widetilde{b}$$

Thus,

$$\begin{split} \Delta_0 &= \widetilde{\mathbf{W}}^T \phi(\mathbf{c}) + \widetilde{b} \\ r^0(\mathbf{c}) &= \frac{1 + \mathrm{sign}(\widetilde{\mathbf{W}}^T \phi(\mathbf{c}) + \widetilde{b})}{2} \end{split}$$

Similarly, Response 1 $(r^1(\mathbf{c}))$,

$$r^{1}(\mathbf{c}) = \frac{1 + \operatorname{sign}(\Delta_{1})}{2}$$

$$\Delta_{1} = t^{u1} - t^{u0}$$

$$= \mathbf{G_{1}}^{T} \phi(\mathbf{c}) + h_{1} - \mathbf{G_{0}}^{T} \phi(\mathbf{c}) - h_{0}$$

$$= (\mathbf{G_{1}} - \mathbf{G_{0}})^{T} \phi(\mathbf{c}) + (h_{1} - h_{0})$$

Let

$$\mathbf{G_1} - \mathbf{G_0} = \widetilde{\mathbf{G}}$$
$$h_1 - h_0 = \widetilde{h}$$

Thus,

$$\Delta_1 = \widetilde{\mathbf{G}}^T \phi(\mathbf{c}) + \widetilde{h}$$

$$r^1(\mathbf{c}) = \frac{1 + \operatorname{sign}(\widetilde{\mathbf{G}}^T \phi(\mathbf{c}) + \widetilde{h})}{2}$$

The response values $(r^1(\mathbf{c}), r^0(\mathbf{c}))$ are $r^i(\mathbf{c}) = \begin{cases} 0 & , \Delta_i < 0 \\ 1 & , \Delta_i > 0 \end{cases}$ for i = 0, 1

1.4 Solution of 4^{th} question

The dimensionality of the linear model needs to predict Response0 and Response1.

- 1. The dimension of $\widetilde{\mathbf{W}}$, $\widetilde{\mathbf{G}}$ is 63 x 1 ($\widetilde{D} = 63$)
- 2. The dimension of $\phi(\mathbf{c})$ is 63 x 1
- 3. $\widetilde{b_i}, \widetilde{h_i} \in \mathbb{R}$ (a real number) $\forall i = 0, 1$
- 4. Response $0(r^0(\mathbf{c}))$, Response $1(r^1(\mathbf{c}))$ give binary outcome $[r^0(\mathbf{c}), r^1(\mathbf{c}) \in \{0, 1\}]$

1.5 Solution of 5^{th} question

Submitted via the code submission page.

1.6 Solution of 6^{th} question

Various hyperparameters affected training time and test accuracy using tables and charts

(a) changing the loss hyperparameter in LinearSVC (hinge vs squared hinge)

Loss Fu	nction	Training time(s)	Accuracy(Response0)	Accuracy(Response1)
hing	ge	1.8766	98.41	99.6
squared	hinge	5.4145	98	99.78

- (b) setting C in LinearSVC and LogisticRegression to high/low/medium values
 - C v/s Training time

Figure 1: C v/s Training time for Linear SVC

Figure 2: C v/s Training time for Logistic Regression

- C v/s Accuracy

Figure 3: C v/s Accuracy for Linear SVC

Figure 4: C v/s Accuracy for Logistic Regression

(c) changing tol in LinearSVC and LogisticRegression to high/low/medium values
- Linear SVC

tol values	Training time(s)	Accuracy(Response0)	Accuracy(Response1)
1e-3	5.6226	98	99.78
1e-6	5.353	98	99.78
1e-8	5.335	98	99.78

- Logistic Regression

tol values	Training time(s)	Accuracy(Response0)	Accuracy(Response1)
1e-3	0.5884	98.06	99.7
1e-6	0.5214	98.06	99.7
1e-8	0.4723	98.06	99.7

Note:

- For Response0, we opted to LinearSVC which have **hinge** loss, C = 0.2, tol = 1e 03,
- For Response 1, we opted to Logistic Regression which have C = 400, tol = 1e-08