Tugas Pemrograman 1 - Searching Kecerdasan Buatan

Disusun Oleh:

Muhammad Vikhan Muharram (1302213089) Bimo Zachriansyah Wicaksono Hermawan (1302213012) Faris Siddiq Ramdan Putra (1302213133)

> Kelas : SE-45-01

PROGRAM STUDI S1 REKAYASA PERANGKAT LUNAK
UNIVERSITAS TELKOM
BANDUNG
2023

Laporan ini dibuat untuk menyelesaikan permasalahan mencari nilai x1 dan x2 sehingga diperoleh nilai minimum dari fungsi berikut.

$$f(x_1, x_2) = -\left(\sin(x_1)\cos(x_2) + \frac{4}{5}\exp\left(1 - \sqrt{x_1^2 + x_2^2}\right)\right)$$

Dengan domain (batas nilai) untuk x1 dan x2 adalah sebagai berikut

$$-10 \le x_1 \le 10 \text{ dan } -10 \le x_2 \le 10$$

Tim melakukan penyelesaian dengan cara membuat kode program python dengan metode Algoritma Genetika (GA). Tim melakukan analisis dan desain program GA dengan melakukan implementasi berikut.

A. Ukuran Populasi, Rancangan Kromosom, dan Cara Decode

Pada pengujian, tim menentukan populasi sebanyak 10. Dalam satu populasi, tim menentukan terdapat 10 kromosom. Cara decode yang tim pilih adalah sebagai berikut :

```
x = batas bawah + (batas atas - batas bawah) * <math>\frac{x}{2^{n}-1}
# Fungsi generate chromosome
def generateChromosome(chromosomeSize):
    chromosome = []
    for i in range(chromosomeSize):
        chromosome.append(random.randint(0, 1))
    return chromosome
# Fungsi decode chromosome
def decodeChromosome(chromosome):
   x1 = chromosome[0:5]
   x2 = chromosome[5:10]
   x1 = int(''.join([str(i) for i in x1]), 2)
   x2 = int(''.join([str(i) for i in x2]), 2)
   x1 = -10 + (10 - (-10)) * (x1/(2**5-1))
   x2 = -10 + (10-(-10)) * (x2/(2**5-1))
   return round(x1, 3), round(x2, 3)
```

B. Metode Pemilihan Orangtua

Tim menentukan metode pemilihan orangtua dengan cara memilih dua populasi yang memiliki tingkat fitness tertinggi

```
# Fungsi penghitungan fitness
def fitness(x1, x2):
    heuristics = -1 * (math.sin(x1) * math.cos(x2) + (4/5) * math.exp(1 - math.sqrt(x1**2 + x2**2)))
    return (1 / heuristics)

# Fungsi pemilihan orangtua
def selectParents(population, numParents):
    parents = []
    for i in range(numParents):
        x = random.randint(0, len(population) - 1)
        parents.append(population[x])
    return parents
```

```
sortPopulationHighest = sorted(fitnessPopulation, key=fitnessPopulation.get, reverse=True)
# Menggunakan fungsi selectParents untuk memilih orangtua
parents = selectParents(sortPopulationHighest, 2) # Memilih 2 orangtua
parent1 = parents[0]
parent2 = parents[1]
```

C. Metode Operasi Genetik (Pindah Silang dan Mutasi)

Tim memilih metode operasi genetika pindah silang berupa single crossover dengan probabilitas (P_c) . Prinsipnya adalah menukar sebagian gen antara dua kromosom parent untuk menghasilkan dua kromosom offspring yang baru. Fungsi Mutasi menggunakan metode flip bit pada fungsi mutasi dengan probabilitas (P_m) .

Prinsipnya adalah mengubah nilai 1 bit tertentu pada kromosom dari 0 menjadi 1 atau sebaliknya.

```
def crossover(parent1, parent2):
    offspring1 = []
    offspring2 = []
    pc = 0.8
    for i in range(10):
        if random.random() < pc:</pre>
            offspring1.append(parent1[i])
            offspring2.append(parent2[i])
            offspring1.append(parent2[i])
            offspring2.append(parent1[i])
    return offspring1, offspring2
# Fungsi mutasi
def mutasi(child1, child2):
   pm = 0.3
    for i in range(len(child1)):
       if random.random() < pm:</pre>
           child1[i] = str(1 - int(child1[i]))
    for i in range(len(child2)):
        if random.random() < pm:</pre>
            child2[i] = str(1 - int(child2[i]))
    return child1, child2
```

D. Probabilitas Operasi Genetik (Pc dan Pm)

Tim memilih tingkat probabilitas crossover (P_c) sebesar 0,8 dan probabilitas mutasi (P_m) sebesar 0,3

```
pc = 0.8 pm = 0.3
```

E. Metode Pergantian Generasi (Seleksi Survivor)

Seleksi survivor yang dipakai oleh tim adalah suatu mekanisme jika fitness dari individu keturunan lebih tinggi daripada individu dengan fitness terendah dalam populasi, maka individu terendah tersebut digantikan dengan individu keturunan.

```
if (fitness(x11, x21) > min(fitnessPopulation.values()) and (fitness(x12, x22) > min(fitnessPopulation.values()))):
    fitnessPopulation.popitem()
    fitnessPopulation[child1] = fitness(x11, x21)
    fitnessPopulation[child2] = fitness(x12, x22)

fitnessPopulation = dict(sorted(fitnessPopulation.items(), key=lambda item: item[1], reverse=True))
```

F. Kriteria Penghentian Evolusi (Loop)

Tim menentukan kriteria penghentian berupa "Evolusi Tidak Menghasilkan Kemajuan", yaitu kriteria penghentian ketika evolusi tidak menghasilkan perbaikan dalam beberapa generasi terakhir dan menghentikan GA jika tidak ada perbaikan yang terlihat dengan jumlah batasan evolusi yang ditentukan oleh tim sebanyak 100

```
stagnationLimit = 100  # Ambang batas stagnasi (misalnya, 10 generasi tanpa peningkatan)
stagnationCount = 0  # Menghitung berapa banyak generasi tanpa peningkatan
bestFitness = -float('inf')  # Menyimpan fitness terbaik yang ditemukan

if fitnessPopulation[highestPopulation[0]] > bestFitness:
    bestFitness = fitnessPopulation[highestPopulation[0]]
    stagnationCount = 0  # Reset stagnation count
else:
    stagnationCount += 1  # Tidak ada peningkatan, tambahkan stagnationCount

# Periksa apakah telah terjadi stagnasi
if stagnationCount >= stagnationLimit:
    print("Evolusi tidak menghasilkan kemajuan. Menghentikan evolusi.")
    break
```

Output Program

-						_
I	Population	Chromosome	x1	x2	Fitness	
-						-
	1	1101101001	7.419	-4.194	2.227625838799169	
	2	0110000101	-2.258	-6.774	1.4704936571346336	
	3	0001110010	-8.065	1.613	-23.901743058313343	
	4	0110000110	-2.258	-6.129	1.3146042629645462	
	5	1100000100	5.484	-7.419	3.313057812300181	
	6	1100110101	6.129	3.548	-6.9982397185352285	
	7	1101100010	7.419	-8.71	1.460097169039153	
	8	1100011100	5.484	8.065	-6.655049102279447	
	9	1001001001	1.613	-4.194	2.1243852814738373	
	10	0100000100	-4.839	-7.419	-2.3904564696251884	

Generation	Chromosome	x1	x2	Fitness	1
1	1100000100	-2.258	-6.129	3.313057812300181	
2	1100000100	2.903	-6.129	3.313057812300181	İ
3	1100000100	7.419	-4.194	3.313057812300181	
4	1100000100	7.419	-4.194	3.313057812300181	
5	1100000100	7.419	-6.129	3.313057812300181	
6	1100000100	-7.419	-6.129	3.313057812300181	
7	1100000100	-0.968	-7.419	3.313057812300181	
8	1100000100	-0.968	-8.71	3.313057812300181	
9	1100000100	-8.065	-5.484	3.313057812300181	
10	1100000100	5.484	-5.484	3.313057812300181	
11	1100000100	1.613	-4.194	3.313057812300181	İ
12	1100000100	7.419	-7.419	3.313057812300181	
13	1100000100	-8.065	-7.419	3.313057812300181	
14	1100000100	5.484	-7.419	3.313057812300181	
15	1100000100	5.484	-7.419	3.313057812300181	Ĺ
16	1100000100	5.484	-7.419	3.313057812300181	
17	1100000100	5.484	-7.419	3.313057812300181	

4		and the second second			ı	
	18	1100000100	5.484	-7.419	3.313057812300181	
	19	1100000100	5.484	-7.419	3.313057812300181	
	20	1100000100	5.484	-7.419	3.313057812300181	
	21	1100000100	5.484	-7.419	3.313057812300181	
	22	1100000100	5.484	-7.419	3.313057812300181	
	23	1100000100	5.484	-7.419	3.313057812300181	
	24	1100000100	5.484	-7.419	3.313057812300181	
	25	1100000100	5.484	-7.419	3.313057812300181	
	26	1100000100	5.484	-7.419	3.313057812300181	
	27	1100000100	5.484	-7.419	3.313057812300181	
	28	1100000100	5.484	-7.419	3.313057812300181	
	29	1100000100	5.484	-7.419	3.313057812300181	
	30	1100000100	5.484	-7.419	3.313057812300181	
	31	1100000100	5.484	-7.419	3.313057812300181	
	32	1100000100	5.484	-7.419	3.313057812300181	
	33	1100000100	5.484	-7.419	3.313057812300181	
	34	1100000100	5.484	-7.419	3.313057812300181	
	35	1100000100	5.484	-7.419	3.313057812300181	
	36	1100100100	5.484	-7.419	15.486662790940798	
	37	1100100100	5.484	-7.419	15.486662790940798	
	38	1100100100	6.129	-7.419	15.486662790940798	
	39	1100100100	6.129	-7.419	15.486662790940798	
	40	1100100100	6.129	-7.419	15.486662790940798	
	41	1100100100	6.129	-7.419	15.486662790940798	
	42	1100100100	6.129	-7.419	15.486662790940798	
	43	1100100100	6.129	-7.419	15.486662790940798	
	44	1100100100	6.129	-7.419	15.486662790940798	
	45	1100100100	6.129	-7.419	15.486662790940798	
	46	1100100100	6.129	-7.419	15.486662790940798	
	47	1100100100	6.129	-7.419	15.486662790940798	
	48	1100100100	6.129	-7.419	15.486662790940798	
	49	1100100100	6.129	-7.419	15.486662790940798	
	50	1100100100	6.129	-7.419	15.486662790940798	
				•	•	•

ĺ	51	1100100100	6.129	-7.419	15.486662790940798	
	52	1100100100	6.129	-7.419	15.486662790940798	
	53	1100100100	6.129	-7.419	15.486662790940798	
	54	1100100100	6.129	-7.419	15.486662790940798	
	55	1100100100	6.129	-7.419	15.486662790940798	
	56	1100100100	6.129	-7.419	15.486662790940798	
	57	1100100100	6.129	-7.419	15.486662790940798	
	58	1100100100	6.129	-7.419	15.486662790940798	
	59	1100100100	6.129	-7.419	15.486662790940798	
	60	1100100100	6.129	-7.419	15.486662790940798	
	61	1100100100	6.129	-7.419	15.486662790940798	
	62	1100100100	6.129	-7.419	15.486662790940798	
	63	1100100100	6.129	-7.419	15.486662790940798	
	64	1100100100	6.129	-7.419	15.486662790940798	
	65	1100100100	6.129	-7.419	15.486662790940798	
	66	1100100100	6.129	-7.419	15.486662790940798	
	67	1100100100	6.129	-7.419	15.486662790940798	
	68	1100100100	6.129	-7.419	15.486662790940798	
	69	1100100100	6.129	-7.419	15.486662790940798	
	70	1100100100	6.129	-7.419	15.486662790940798	
	71	1100100100	6.129	-7.419	15.486662790940798	
	72	1100100100	6.129	-7.419	15.486662790940798	
	73	1100100100	6.129	-7.419	15.486662790940798	
	74	1100100100	6.129	-7.419	15.486662790940798	
	75	1100100100	6.129	-7.419	15.486662790940798	
	76	1100100100	6.129	-7.419	15.486662790940798	
	77	1100100100	6.129	-7.419	15.486662790940798	
	78	1100100100	6.129	-7.419	15.486662790940798	
	79	1100100100	6.129	-7.419	15.486662790940798	
	80	1100100100	6.129	-7.419	15.486662790940798	
	81	1100100100	6.129	-7.419	15.486662790940798	
	82	1100100100	6.129	-7.419	15.486662790940798	
	83	1100100100	6.129	-7.419	15.486662790940798	
	84	1100100100	6.129	-7.419	15.486662790940798	

84	1100100100	6.129	-7.419	15.486662790940798	
85	1100100100	6.129	-7.419	15.486662790940798	ĺ
86	1100100100	6.129	-7.419	15.486662790940798	ĺ
87	1100100100	6.129	-7.419	15.486662790940798	ĺ
88	1100100100	6.129	-7.419	15.486662790940798	
89	1100100100	6.129	-7.419	15.486662790940798	
90	1100100100	6.129	-7.419	15.486662790940798	
91	1100100100	6.129	-7.419	15.486662790940798	
92	1100100100	6.129	-7.419	15.486662790940798	
93	1100100100	6.129	-7.419	15.486662790940798	
94	1100100100	6.129	-7.419	15.486662790940798	
95	1100100100	6.129	-7.419	15.486662790940798	
96	1100100100	6.129	-7.419	15.486662790940798	
97	1100100100	6.129	-7.419	15.486662790940798	
98	1100100100	6.129	-7.419	15.486662790940798	
99	1100100100	6.129	-7.419	15.486662790940798	
100	1100100100	6.129	-7.419	15.486662790940798	
101	1100100100	6.129	-7.419	15.486662790940798	
102	1100100100	6.129	-7.419	15.486662790940798	
103	1100100100	6.129	-7.419	15.486662790940798	
104	1100100100	6.129	-7.419	15.486662790940798	
105	1100100100	6.129	-7.419	15.486662790940798	
106	1100100100	6.129	-7.419	15.486662790940798	
107	1100100100	6.129	-7.419	15.486662790940798	
108	1100100100	6.129	-7.419	15.486662790940798	
109	1100100100	6.129	-7.419	15.486662790940798	
110	1100100100	6.129	-7.419	15.486662790940798	
111	1100100100	6.129	-7.419	15.486662790940798	
112	1100100100	6.129	-7.419	15.486662790940798	
113	1100100100	6.129	-7.419	15.486662790940798	
114	1100100100	6.129	-7.419	15.486662790940798	
115	1100100100	6.129	-7.419	15.486662790940798	
116	1100100100	6.129	-7.419	15.486662790940798	
117	1100100100	6.129	-7.419	15.486662790940798	I
117	1100100100	6.129	-7.419	15.486662790940798	l
118	1100100100	6.129	-7.419	15.486662790940798	
119	1100100100	6.129	-7.419	15.486662790940798	
120	1100100100	6.129	-7.419	15.486662790940798	
121	1100100100	6.129	-7.419	15.486662790940798	
122	1100100100	6.129	-7.419	15.486662790940798	
123	1100100100	6.129	-7.419	15.486662790940798	l
124	1100100100	6.129	-7.419	15.486662790940798	l
125	1100100100	6.129	-7.419	15.486662790940798	
126	1100100100	6.129	-7.419	15.486662790940798	ļ
127	1100100100	6.129	-7.419	15.486662790940798	ļ
128	1100100100	6.129	-7.419	15.486662790940798	ļ
129	1100100100	6.129	-7.419	15.486662790940798	ļ
130	1100100100	6.129	-7.419	15.486662790940798	ļ
131	1100100100	6.129	-7.419	15.486662790940798	ļ
132	1100100100	6.129	-7.419	15.486662790940798	ļ
133	1100100100	6.129	-7.419	15.486662790940798	Į.
134	1100100100	6.129	-7.419	15.486662790940798	ļ
135	1100100100	6.129	-7.419	15.486662790940798	ļ
136	1100100100	6.129	-7.419	15.486662790940798	I

Evolusi tidak menghasilkan kemajuan. Menghentikan evolusi.

Kromosom terbaik : 1100100100

x1 : 6.129 x2 : -7.419

Fitness: 15.486662790940798

Kode Program

 $\underline{https://github.com/vikhanmuhammad/TubesAiAlJabbar}$

Nama	Bagian/Peran	
Muhammad Vikhan Muharram	Metode Pergantian Generasi (Seleksi Survivor) & Kriteria Penghentian Evolusi (Loop)	
Bimo Zachriansyah Wicaksono Hermawan	Ukuran Populasi, Rancangan Kromosom, dan Cara Decode & Metode Pemilihan Orangtua	
Faris Siddiq Ramdan Putra	Metode Operasi Genetik (Pindah Silang dan Mutasi), Probabilitas Operasi Genetik (Pc dan Pm)	