The Xilinx PicoBlaze Microcontroller

Microcontrollers in HW-Based Systems

- Don't always need the speed of custom HW
- Lots of sequential control is hard in HW
 - Easier using SW
 - If performance allows using SW, do it
- Reads and writes on bus
 - Decode them, read/write registers inside FPGA logic in response...

Microcontroller Vs. Logic CoDesign Tradeoffs

	PicoBlaze Microcontroller	FPGA Logic
Strengths	 Easy to program, excellent for control and state machine applications Resource requirements remain constant with increasing complexity Re-uses logic resources, excellent for lower-performance functions 	 Significantly higher performance Excellent at parallel operations Sequential vs. parallel implementation trade-offs optimize performance or cost Fast response to multiple, simultaneous inputs
Weaknesses	 Executes sequentially Performance degrades with increasing complexity Program memory requirements increase with increasing complexity Slower response to simultaneous inputs 	Control and state machine applications more difficult to program Logic resources grow with increasing complexity

PicoBlaze Architecture Features

Program memory

Register file

Flags

Scratch-pad Memory

Call/Return Stack

I/O port

 Timing instruction

Interrupt Response = 5 clock cycles

= 1024 18-bit instructions

= 16 8-bit general-purpose registers

= Zero and Carry

= 64 8-bit locations

= 31 entries deep

= 8-bit data, 8-bit address

= 2 clock cycles per

PicoBlaze + Program Memory

Input Port

UG129_06_02_060404

Input Port Decoding

MUX selects which device's signals are fed into IN_PORT

READ_STROBE can be used to indicate that something has been read...

Use of READ_STROBE

- Some devices <u>don't</u> care when you read them...
 - Switches
 - No need to even look at READ_STROBE
- Some devices <u>do</u> care when you read them...
 - FIFO
 - Use READ_STROBE to indicate when a data value has been consumed so it can be removed

Output Port

How to Use a PicoBlaze

- Insert PicoBlaze and its memory into design
- Insert FPGA logic into design
 - Registers
 - UART
 - -FIFO's
 - . . .
- Create logic to decode bus and control FPGA
- Create logic to decode bus and have FPGA respond
- Program the PicoBlaze with a program

Going Forward

- There is lots of PicoBlaze documentation available
 - Go to Xilinx and look for it
- We are not going to focus on programming the PicoBlaze
 - We are going to use canned PicoBlaze designs + programs to drive our hardware designs
 - If you want to learn to program it, can do on your own

