Année scolaire 2016 – 2017

 $\frac{\text{Classe}}{\text{Heure}} : \mathbf{7}^{le} \mathbf{E} \cdot \mathbf{A}$ $\frac{\text{Heure}}{\text{Heure}} : \mathbf{4} \text{ heures}$

Premier Devoir Surveillé du deuxième trimestre

 ${\bf \acute{E}preuve}: {\it Math\acute{e}matiques}$

Situation d'évaluation

EXERCICE 1

L'espace est muni d'un repère orthonormé direct $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. Soient (P_1) et (P_2) les plans d'équations respectives 2x + y + 2z + 1 = 0 et x - 2y + 6z = 0.

- 1. Montrer que les plans (P_1) et les plans (P_2) sont sécants selon une droite (D) dont on préciserea une représentations paramétriques
- 2. On considère les points A, BetC de coordonnées respectives (1;0;2), (1;1;4), (-1;1;1)
 - (a) Détermine les coordonnées du vecteur $\overrightarrow{n} = \overrightarrow{AB} \Lambda \overrightarrow{AC}$
 - (b) Montrer que les points A, BetC ne sont pas alignés
 - (c) En déduire une équation cartésienne du plan (ABC)

EXERCICE 2

On pose $a = \frac{u + iv}{2 - 3i}$ où u et v sont deux nombres réels

- (a) Sachant que $|a| = \sqrt{2}$ et que $\frac{3\pi}{4}$ est un argument de a, determine uetv
- (b) Sachant que (E): $z^4 476 + 480i = 0$
 - i. Justifie que si z_0 est une solution de (E), alors $-z_0$, iz_0 et $-iz_0$ sont aussi solutions de (E)
 - ii. Calcul $(1+5i)^4$ sous forme algébrique
 - iii. Déduis-en la résolution de l'équation (E)

PROBLEME

On considère la fonction u de la variable réelle x, définie par $u(x) = x + 1 + \sqrt{x^2 + 2x}$.

Soit (C) la courbe représentative de u dans le plan rapporté à un repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j})$.

Partie A

- 3. (a) Justifie que l'ensemble de définition D de u est : $D=]-\infty,2]\cup[0,+\infty[$
 - (b) Etudie la dérivabilité de u à gauche en -2 et à droite en 0

- (c) Que peut-on en conclure pour la courbe (\mathcal{C}) aux points d'abscisses respectives -2 et 0?
- (d) Etudie les variations de u et dresser le tableau de ces variations.
- 4. (a) Démontrer que la courbe (\mathcal{C}) admet deux asymptotes dont on précisera les équations respectives
 - (b) construire (C)

Partie B

Soit la fonction définie de $]0, +\infty[$ dans $]1, +\infty[$ par v(x) = u(x)

- 5. Démontre que v est une bijection .
 - (a) On désigne par v^{-1} la bijection réciproque de v.
 - (b) Prouver que v^{-1} est dérivable sur un intervalle J à préciser .
 - (c) Calcul $(v^{-1})'(x)$, pour tout x appartenent à J
 - (d) Construire, dans le meme repère que la courbe (\mathcal{C}) de u, la courbe (\mathcal{C})' de v^{-1}

Partie C

Soit f la fonction définie sur $]0, +\infty[$ par $f(x) = \frac{1}{x^2 + 2x}$. On désigne par (Γ) la courbe représentative de f dna sle repère $(O; \vec{i}; \vec{j})$.

On rappel que
$$(\ln(g(x)))' = \frac{g'(x)}{g(x)}$$

6. Démontre que la fonction F définie par :

 $F(x) = \ln(x + 1 + \sqrt{x^2 + 2x})$, est une primitive sur $]0, +\infty[$ de la fonction f

7. Calcul l'aire \mathcal{A} de la région (R) du plan délimitée par la courbe (Γ) , l'axe des abscisses et les droites d'équations x=1 et x=3.

(Sachant que $\mathcal{A} = F(3) - F(2)$)

8. Détermine les nombre réels α et β tels que , pour tout x appartenant à $]0,+\infty[$, on ait

$$\frac{1}{x^2 + 2x} = \frac{\alpha}{x} + \frac{\beta}{x+2}$$