TTK4135 Optimization and Control Lab Report

750001, 750002, 750003, and 750004 (Tor Aksel Heirung) Group 99

January 1, 1999

Department of Engineering Cybernetics Norwegian University of Science and Technology

Abstract

Contents

Ał	ostract	2
Co	ontents	3
1	Introduction	4
2	Problem Description	5
3	Repetition/Introduction to Simulink/QuaRC	6
4	Optimal Control of Pitch/Travel without Feedback 4.1 State-space formulation	7 7 7 7
5	Optimal Control of Pitch/Travel with Feedback (LQ)	8
6	Optimal Control of Pitch/Travel and Elevation with and without Feedback	9
7	Discussion	10
8	Conclusion	11
A	MATLAB Code A.1 plot_constraint.m	12 12
В	Simulink Diagrams B.1 A Simulink Diagram	13
Bi	bliography	14

1 Introduction

2 Problem Description

3 Repetition/Introduction to Simulink/QuaRC

4 Optimal Control of Pitch/Travel without Feedback

4.1 State-space formulation

4.2 Discretization

4.3 Computation of optimal trajectory

An optimal trajectory can be generated by minimizing the cost function

$$\phi = \sum_{i=1}^{N} (\lambda_i - \lambda_f)^2 + q p_{ci}^2 \tag{1}$$

for some scalar weight $q \ge 0$ over the finite horizon of states and inputs

$$z = (x_1 \ x_2 \dots x_N \ u_1 \ u_2 \dots u_N)^T \tag{2}$$

The discrete-time system dynamics are implemented as equality constraints of the form $A_{\rm eq}z=B_{\rm eq}$, where $A_{\rm eq}$ and $B_{\rm eq}$ are given by the left- and right-hand side of the N constraints

$$x_{1} - Bu_{0} = Ax_{0}$$

$$x_{2} - Ax_{1} - Bu_{1} = 0$$

$$\vdots$$

$$x_{N} - Ax_{N-1} - Bu_{N-1} = 0$$

We would also like to constrain the system state and input to be within a range

$$x^{\min} \le x_{t+1} \le x^{\max} \tag{3}$$

$$u^{\min} \le u_t \le u^{\max} \tag{4}$$

for t = 0...N-1. Applying these constraints to all states and inputs in the solution horizon, we have

$$\begin{bmatrix} I \\ -I \end{bmatrix} z \le \begin{bmatrix} \{x_{t+1}^{max}\} \\ \{u_t^{max}\} \\ \{x_{t+1}^{min}\} \\ \{u_t^{min}\} \end{bmatrix}_{t=0..N-1}$$
 (5)

which can be implemented as an inequality constraint of the form $A_{iq}z \leq B_{iq}$.

Note that the cost function (1) does not take into consideration that λ_i plus some multiple of 2π describes the same physical orientation of the helicopter. For example, if the reference is 0 and $\lambda_i = 2\pi$, it will be regarded as a large error, even though the helicopter is infact in the desired orientation. A more optimal scheme would take this into consideration.

5 Optimal Control of Pitch/Travel with Feedback (LQ)

6 Optimal Control of Pitch/Travel and Elevation with and without Feedback

7 Discussion

8 Conclusion

A MATLAB Code

TODO: Se template

A.1 plot_constraint.m

```
1 % Plot a figure with some Latex in the labels
2 l = linspace(70,170)*pi/180;
3 a = 0.2;
4 b = 20;
5 l_b = 2*pi/3;
6
7 e = a*exp(-b*(l-l_b).^2);
8
9 l_deg = l*180/pi;
10 e_deg = e*180/pi;
11
12 figure(1)
13 plot(l_deg,e_deg, 'LineWidth', 2)
14
15 handles(1) = xlabel('$\lambda$/degrees');
16 handles(2) = ylabel('$e$/degrees');
17 set(handles, 'Interpreter', 'Latex');
```

B Simulink Diagrams

This section should contain your Simulink diagrams.

B.1 A Simulink Diagram

Figure 1 shows a Simulink diagram.

Figure 1: A Simulink diagram.

Bibliography

Nocedal, J. and Wright, S. J. (2006). *Numerical Optimization*. Springer, second edition.