ETR0341-011

1A LDO Voltage Regulator with "GreenOperation"

GreenOperation-Compatible

GENERAL DESCRIPTION

The XC6220 series is a highly accurate, low noise, high speed, low dropout, and large current CMOS voltage regulator with GreenOperation function. The series consists of a voltage reference, an error amplifier, a current limiter, an inrush current prevention circuit and a phase compensation circuit plus a driver transistor.

With a 0.2Ω on-resistance driver transistor integrated, the ultra low dropout voltage performance with output currents up to 1A greatly extends battery life as does the GreenOperation function which can switch between high speed and power save modes automatically. A low ESR ceramic capacitor can be used for the output stabilization capacitor (C_L).

Output voltage is selectable in 0.05V increments within the range of 0.8V~5.0V, using laser trimming technologies.

An over current protection circuit and a thermal shutdown circuit are built in. The over current protection circuit will operate when the output current reaches its limit current. The thermal shutdown circuit will operate when the junction temperature reaches its limit temperature. The inrush prevention circuit works by controlling the inrush current which charges to C_L when the IC starts up. In this way, voltage fluctuations in power supply caused by inrush current during system start up can be minimized.

The CE function enables the output to be turned off and the IC becomes a stand-by mode resulting in greatly reduced power consumption.

APPLICATIONS

Optical disk drive

Magnetic disk drive

Digital still cameras / Camcorders

Digital audio equipments

FEATURES

 $\begin{tabular}{lll} \textbf{Maximum Output Current} & : 1000 \text{mA} (1.2 \text{V} & \text{V}_{\text{OUT}} & 5.0 \text{V}) \\ \textbf{Dropout Voltage} & : 20 \text{mV} @ 100 \text{mA} (\text{V}_{\text{OUT}} = 3.0 \text{V}) \\ \end{tabular}$

: 60mV@ 300mA (V_{OUT}=3.0V)

Operating Voltage Range : 1.6V ~ 6.0V

Output Voltage Range : 0.8V ~ 5.0V (0.05V increments)

Accuracy : $\pm 1\% (V_{OUT} 2.0V)$

 $\pm 20 \text{mV} (V_{OUT} < 2.0 \text{V})$

Low Power Consumption : 8 µ A (TYP.) in PS mode

: 50 µ A (TYP.) in HS mode

Operating Ambient Temperature : - 40 ~ +85

Thermal Shutdown : Detect 150 , Release 135 (TYP.)

Inrush Current Prevention : 700mA (MAX.)

CL Auto Discharge: XC6220 Series B/D typeCE Pull-Down Resistor: XC6220 Series C/D typeOutput Capacitor: Ceramic Capacitor CompatiblePackages: USP-6C, SOT-25, SOT-89-5

SOP-8FD(Under Development)

Environmentally Friendly: EU RoHS Compliant, Pb Free

TYPICAL APPLICATION CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS

PIN CONFIGURATION

 * For the USP-6C, the No.5 and 6 V_{IN} pins should be connected. The No.1 and 2 pins V_{OUT} pins should be connected. The dissipation pad should be solder-plated in reference mount pattern and metal masking so as to enhance mounting strength and heat release. If the pad needs to be connected to other pins, it should be connected to the V_{SS} (No. 4) pin.

*For the SOP-8FD, two power input pins (No.7 and No.8) output pins (No.1 and 2) should be connected. The dissipation pad should be solder-plated in electrically open or connecting to the $V_{\rm SS}$ (No.4) pin.

PIN ASSIGNMENT

	PIN NU	JMBER			
SOT-25	SOT-89-5	USP-6C	SOP-8FD (Under Development)	PIN NAME	FUNCTIONS
3	1	3	5	CE	ON/OFF Control
1	4	6 & 5	7,8	V _{IN}	Power Input
2	2	4	4	V_{SS}	Ground
5	5	1 & 2	1,2	V_{OUT}	Output
4	3	-	3,6	NC	No connection

CE PIN LOGIC CONDITION

PIN NAME	DESIGNATOR	CONDITIONS	IC OPERATION
	L	V _{CE} 0.4V	OFF
	Н	1.2V V _{CE} 6.0V	ON
CE			Undefined state
	OPEN	V _{CE} =OPEN ^(*1)	(XC6220A/B Series)
			OFF(XC6220C/D Series)

^(*1) Please avoid the state of OPEN, and connect CE pin to any arbitrary voltage.

^{*} For the XC6220C/D series, CE function logic is fixed as L level because of the CE pull-down resister.

FUNCTIONS

PRODUCT NAME	IC FUNCTION				
PRODUCT NAIVIE	CE PULL-DOWN RESISTOR	C _L AUTO DISCHARGE			
XC6220A	Not Available	Not Available			
XC6220B	Not Available	Available			
XC6220C	Available	Not Available			
XC6220D	Available	Available			

PRODUCT CLASSIFICATION

Ordering Information

XC6220 - (*1)

DESIGNATOR	ITEM	SYMBOL	DESCRIPTION
		Α	without CE Pull-down resistor, without C _L discharge (Semi-custom)
	Time of OF	В	without CE Pull-down resistor, with C _L discharge (Standard)
	Type of CE	С	with CE Pull-down resistor, without C _L discharge (Semi-custom)
		D	with CE Pull-down resistor, with C _L discharge (Semi-custom)
	Output Voltage	08~50	e.g. 3.0V =3, =0
	Output Voltage	1	Output voltage { . 0v} (the 2 nd decimal place is "0")
	(the 2 nd decimal place)	В	Output voltage { . 5v} (the 2 nd decimal place is "5")
		MR	SOT-25 (3,000/Reel)
		MR-G	SOT-25 (3,000/Reel)
	Dealers	PR	SOT-89-5 (1,000/Reel)
-	Packages (Order Unit)	PR-G	SOT-89-5 (1,000/Reel)
	(Order Unit)	ER	USP-6C (3,000/Reel)
		ER-G	USP-6C (3,000/Reel)
		QR-G	SOP-8FD (1,000/Reel) (Under Development)

 $[\]ensuremath{^{(\mbox{\tiny{11}})}}$ The "-G" suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.

BLOCK DIAGRAMS

XC6220 Series Type A (Semi-custom)

CE ON/OFF Control CE CE/ Rang Green Operation Operati

XC6220 Series Type B

XC6220 Series Type C (Semi-custom)

XC6220 Series Type D (Semi-custom)

^{*} Diodes inside the circuits are ESD protection diodes and parasitic diodes.

ABSOLUTE MAXIMUM RATINGS

Ta=25

PARAME ⁻	PARAMETER		RATINGS	UNITS
Input Volt	Input Voltage V _{IN}		V _{SS} -0.3 ~ +6.5	V
Output Curr	Output Current (*1) I _{OUT}		1400	mA
Output Vol	tage	V _{OUT}	V _{SS} -0.3 ~ V _{IN} +0.3	V
CE Input Vo	oltage	V_{CE}	V _{SS} -0.3 ~ 6.5	V
	SOT-25		250 600 (PCB mounted) ^(*2)	
	SOT-89-5		500 1300 (PCB mounted) ^(*2)	
Power Dissipation	USP-6C	Pd	120 1000 (PCB mounted) ^(*2)	mW
	SOP-8FD		300	
	(Under Development)		1500 (PCB mounted) ^(*2)	
Operating Ambient	Operating Ambient Temperature		- 40 ~ + 85	
Storage Temp	erature	Tstg	- 55 ~ + 125	

^{*1} Please use within the range of Pd > $(V_{IN} - V_{OUT}) \times I_{OUT}$

^{*2:} The power dissipation figure shown is PCB mounted. Please refer to pages 26 ~ 29 for details.

ELECTRICAL CHARACTERISTICS

XC6220A/B/C/D Series Ta=25

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
		High Speed Mode (HS) 2.0V V _{OUT(T)} 5.0V V _{CE} =V _{IN} , I _{OUT} =30mA	×0.99		×1.01		
Output Voltage	V _{OUT(E)}	High Speed Mode (HS) 0.8V V _{OUT(T)} 1.95V V _{CE} =V _{IN} , I _{OUT} =30mA	-0.02	V _{OUT(T)} ^(*2)	+0.02	V	
Output Voltage	(~1)	Power Save Mode (PS) 2.0V V _{OUT(T)} 5.0V V _{CE} =V _{IN} , I _{OUT} =0.1mA	×0.98	VOUI(I)	×1.02	V	
		$\begin{array}{ccc} \text{Power Save Mode (PS)} \\ \text{0.8V} & \text{V}_{\text{OUT(T)}} & \text{1.95V} \\ \text{V}_{\text{CE}}\text{=V}_{\text{IN}}, \text{I}_{\text{OUT}}\text{=0.1mA} \end{array}$	-0.04		+0.04		
Output Current	lau	V _{CE} =V _{IN} V _{IN} =V _{OUT(T)} +1.0V 0.8V V _{OUT(T)} 1.15V	700	1200	-	- mA	
Output Current	Output Current I _{OUTMAX}	V _{CE} =V _{IN} V _{IN} =V _{OUT(T)} +1.0V 1.2V V _{OUT(T)} 5.0V	1000	1200 -		IIIA	
Load Regulation	ΔV_{OUT}	High Speed Mode (HS), V _{CE} =V _{IN,} 10mA I _{OUT} 300mA	-	10	45	mV	
Dropout Voltage1	Vdif (*3)	I _{OUT} =300mA, V _{CE} =V _{IN}	-	E-	1	mV	
Dropout Voltage2	Vdif (*3)	I _{OUT} =1000mA, V _{CE} =V _{IN}	-	-	E-2	mV	
Supply Current 1	Supply Current 1 I _{SS1}	High Speed Mode(HS) V _{IN} =V _{CE} =V _{OUT(T)} +1.0V I _{OUT} =10mA (A/B Series)	-	50	108	μА	
Опрыу описти		High Speed Mode(HS) V _{IN} =V _{CE} =V _{OUT(T)} +1.0V I _{OUT} =10mA (C/D Series)	-	50	E-3	μπ	
Supply Current 2	I _{SS2}	Power Save Mode(PS) V _{IN} =V _{CE} =V _{OUT(T)} +1.0V I _{OUT} =0.1mA (A/B Series)	-	8	18	μΑ	
Supply Sulfail 2	1552	Power Save Mode(PS) V _{IN} =V _{CE} =V _{OUT(T)} +1.0V I _{OUT} =0.1mA (C/D Series)	-	8	E-4	μ.ν.	
Stand-by Current	I _{STBY}	V_{IN} =6.0V, V_{CE} = V_{SS}	-0.1	0.01	0.1	μΑ	
Line Regulation	$\Delta V_{OUT}/$ $(\Delta V_{IN} \cdot V_{OUT})$	V _{OUT(T)} +0.5V V _{IN} 6.0V 1.1V V _{OUT(T)} 5.0V V _{CE} =V _{IN} , I _{OUT} =100mA 1.6V V _{IN} 6.0V 0.8V V _{OUT(T)} 1.05V V _{CE} =V _{Inm} , I _{OUT} =100mA	-	0.01	0.20	%/∨	
Input Voltage	V _{IN}		1.6	-	6.0	V	
Output Voltage Temperature Characteristics	ΔV _{OUT} / (ΔTa·V _{OUT})	V _{CE} =V _{IN} I _{OUT} =30mA -40 Ta 85	-	±100	-	ppm/	

ELECTRICAL CHARACTERISTICS (Continued)

Ta=25

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
		V _{IN} =5.75VDC+0.5Vp-pAC 4.75V V _{OUT(T)} 5.0V V _{CE} =V _{IN} , I _{OUT} =30mA, f=1kHz					
Ripple Rejection Ratio	PSRR		-	50	-	dB	
		V_{IN} =1.85VDC+0.5Vp-pAC $V_{OUT(T)}$ =0.8V V_{CE} = V_{IN} , I_{OUT} =30mA, f=1kHz					
Limit Current		$V_{CE}=V_{IN}=V_{OUT(T)}+1.0V$ 0.8V $V_{OUT(T)}$ 1.15V	705	1200	-	m A	
Limit Gurrent	I _{LIM}	V _{CE} =V _{IN} = V _{OUT(T)} +1.0V 1.2V V _{OUT(T)} 5.0V	1005	1200	-	mA mA	
Short Current	I _{SHORT}	V _{CE} =V _{IN} Short V _{OUT} to V _{SS} level	-	180	-	mA	
PS Switching Current	I _{GOR}	$\begin{array}{ll} :1.45V & V_{OUT(T)} & 5.0V \\ V_{IN}=V_{OUT(T)}+1.0V, \ V_{CE}=V_{IN} \\ :0.8V & V_{OUT(T)} & 1.4V \\ V_{IN}=1.6V, \ V_{CE}=V_{IN} \\ I_{OUT}=heavy \ to \ light \ load \end{array}$	1.0	2.0	-	mA	
HS Switching Current	I _{GO}	:1.45V V _{OUT(T)} 5.0V V _{IN} =V _{OUT(T)} +1.0V, V _{CE} =V _{IN} :0.8V V _{OUT(T)} 1.4V V _{IN} =1.6V, V _{CE} =V _{IN} I _{OUT} =light to heavy load	-	5.0	10	mA	
Switch Current Hysteresis Range	I _{GOhys}	I _{GOhys} =I _{GO} -I _{GOR}	-	3.0	-	mA	
PS Switching Delay Time	t _{DPS}	$V_{IN}=V_{OUT(T)}+1.0V$, $V_{CE}=V_{IN}$ Time until HS mode is changed-over to PS mode by I_{GOR} .	-	-	E-5	μs	
CE High Level Voltage	V_{CEH}		1.2	-	6.0	V	
CE Low Level Voltage	V_{CEL}		-	-	0.4	V	
CE High Level Current	I _{CEH}	V _{CE} =V _{IN} =6.0V(A/B series)	-0.1	-	0.1	μΑ	
OE Trigit Edver durion	ICER	V _{CE} =V _{IN} =6.0V (C/D series)	-	9	15	μΑ	
CE Low Level Current	I _{CEL}	V _{CE} =V _{SS}	-0.1	-	0.1	μΑ	
CL Discharge Resistance (*4)	R _{DCHG}	V_{IN} =6.0V, V_{OUT} =5.0V, V_{CE} = V_{SS}	-	460	-		
Thermal Shutdown Detect Temperature	T _{TSD}	Junction Temperature	-	150	-		
Thermal Shutdown Release Temperature	T _{TSR}	Junction Temperature	ı	135	-		
Inrush Current	I _{RUSH}	$V_{IN}=V_{OUT(T)}+1.0V, C_L=22 \mu F$ $V_{CE}=0V \rightarrow V_{OUT(T)}+1.0V$ (Only when rising and within 1ms)	-	-	700	mA	

^{* 1:} V_{OUT (E)} = Effective output voltage
(The output voltage when an amply stabilized "V_{OUT (T)} + 1.0V" is provided at the V_{IN} pin while maintaining a certain I_{OUT} value.)
* 2: V_{OUT (T)} = Nominal output voltage. (Shown in the voltage chart E-0)
* 3: Vdif = {V_{IN1}-V_{OUT1}}

V_{IN1} to the input voltage when V_{OUT1} appears at the V_{OUT} pin while input voltage is gradually decreased.
V_{OUT1} is the voltage equal to 98% of the HS mode output voltage when an amply stabilized V_{OUT(T)}+1.0V are supplied to the V_{IN} pin.

* 4: For the XC6220B/D series only. The XC6220A/C series (semi-custom) discharges by only R1 and R2 resistors as shown in the block diagrams.

ELECTRICAL CHARACTERISTICS (Continued)

Voltage Chart 1 Ta=25

SYMBOL	E-0		E-	-1	E-2	E-3	E-4	E-5		
NOMINAL	OUT	PUT	OUT	PUT	DROF	POUT	DROPOUT	SUPPLY	SUPPLY	PS
OUTPUT	VOLTA	AGE 1	VOLT	AGE 2	VOLTA	AGE 1	VOLTAGE 2	CURRENT 1	CURRENT 2	SWITCH
VOLTAGE	(HS N	Mode)	(PS N	Mode)	Vdif 1	(mV)	Vdif 2 (mV)	(XC6220C/D)	(XC6220C/D)	DELAY
(V)	(\	V)	(V)	I _{OUT} =3	00mA	I _{OUT} =1000mA	(µ A)	(µ A)	TIME
	Vc	DUT	V	DUT	V _c	ILEA	$V_{\rm dif2}$	I _{SS1}	I _{SS2}	(µs)
$V_{OUT(T)}$	MIN.	MAX.	MIN.	MAX.	TYP.	MAX.	MAX.	MAX.	MAX.	MAX.
0.80	0.7800	0.8200	0.7600	0.8400				112.500	22.500	
0.85	0.8300	0.8700	0.8100	0.8900				112.625	22.625	
0.90	0.8800	0.9200	0.8600	0.9400	400	575		112.750	22.750	
0.95	0.9300	0.9700	0.9100	0.9900				112.875	22.875	
1.00	0.9800	1.0200	0.9600	1.0400			-	113.000	23.000	
1.05	1.0300	1.0700	1.0100	1.0900	240	405		113.125	23.125	
1.10	1.0800	1.1200	1.0600	1.1400				113.250	23.250	
1.15	1.1300	1.1700	1.1100	1.1900	180	305		113.375	23.375	
1.20	1.1800	1.2200	1.1600	1.2400				113.500	23.500	650
1.25	1.2300	1.2700	1.2100	1.2900				113.625	23.625	
1.30	1.2800	1.3200	1.2600	1.3400	450			113.750	23.750	
1.35	1.3300	1.3700	1.3100	1.3900	150	215	460	113.875	23.875	
1.40	1.3800	1.4200	1.3600	1.4400				114.000	24.000	
1.45	1.4300	1.4700	1.4200	1.4800				114.125	24.125	
1.50	1.4800	1.5200	1.4700	1.5300				114.250	24.250	
1.55	1.5300	1.5700	1.5100	1.5900				114.375	24.375	
1.60	1.5800	1.6200	1.5600	1.6400				114.500	24.500	
1.65	1.6300	1.6700	1.6100	1.6900	100	150		114.625	24.625	
1.70	1.6800	1.7200	1.6600	1.7400				114.750	24.750	
1.75	1.7300	1.7700	1.7100	1.7900				114.875	24.875	
1.80	1.7800	1.8200	1.7600	1.8400				115.000	25.000	
1.85	1.8300	1.8700	1.8100	1.8900				115.125	25.125	
1.90	1.8800	1.9200	1.8600	1.9400				115.250	25.250	
1.95	1.9300	1.9700	1.9100	1.9900				115.375	25.375	
2.00	1.9800	2.0200	1.9600	2.0400				115.500	25.500	
2.05	2.0295	2.0705	2.0090	2.0910				115.625	25.625	850
2.10	2.0790	2.1210	2.0580	2.1420	85	130		115.750	25.750	000
2.15	2.1285	2.1715	2.1070	2.1930	00	130		115.875	25.875	
2.20	2.1780	2.2220	2.1560	2.2440			655	116.000	26.000	
2.25	2.2275	2.2725	2.2050	2.2950				116.125	26.125	
2.30	2.2770	2.3230	2.2540	2.3460				116.250	26.250	
2.35	2.3265	2.3735	2.3030	2.3970				116.375	26.375	
2.40	2.3760	2.4240	2.3520	2.4480				116.500	26.500	
2.45	2.4255	2.4745	2.4010	2.4990				116.625	26.625	
2.50	2.4750	2.5250	2.4500	2.5500				116.750	26.750	
2.55	2.5245	2.5755	2.4990	2.6010				116.875	26.875	
2.60	2.5740	2.6260	2.5480	2.6520				117.000	27.000	
2.65	2.6235	2.6765	2.5970	2.7030				117.125	27.125	
2.70	2.6730	2.7270	2.6460	2.7540	65	110		117.250	27.250	
2.75	2.7225	2.7775	2.6950	2.8050				117.375	27.375	1200
2.80	2.7720	2.8280	2.7440	2.8560				117.500	27.500	
2.85	2.8215	2.8785	2.7930	2.9070				117.625	27.625	
2.90	2.8710	2.9290	2.8420	2.9580				117.750	27.750	
2.95	2.9205	2.9795	2.8910	3.0090				117.875	27.875	

ELECTRICAL CHARACTERISTICS (Continued)

Voltage Chart 2 Ta=25

			_		_					1a-25
SYMBOL		E	-U		E-	-1	E-2	E-3	E-4	E-5
NOMINAL	OUT	PUT	OUT	PUT	DROF	POUT	DROPOUT	SUPPLY	SUPPLY	PS
OUTPUT	VOLT	ΓAGE	VOLT	ΓAGE	VOLTA	AGE 1	VOLTAGE 2	CURRENT 1	CURRENT 2	SWITCH
VOLTAGE	(HS N	Mode)	(PS N	/lode)	Vdif 1	(mV)	Vdif 2 (mV)	(XC6220C/D)	(XC6220C/D)	DELAY
(V)	(\	/)	(V)	I _{OUT} =3	00mA	I _{OUT} =1000mA	(µ A)	(µ A)	TIME
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						\ <u>/</u>			(µ s)
$V_{OUT(T)}$	Vo			DUT	V _d		V _{dif2}	I _{SS1}	I _{SS2}	t _{DPS}
	MIN.	MAX.	MIN.	MAX.	TYP.	MAX.	MAX.	MAX.	MAX.	MAX.
3.00	2.9700	3.0300	2.9400	3.0600				118.000	28.000	
3.05	3.0195	3.0805	2.9890	3.1110				118.125	28.125	
3.10	3.0690	3.1310	3.0380	3.1620				118.250	28.250	
3.15	3.1185	3.1815	3.0870	3.2130				118.375	28.375	
3.20	3.1680	3.2320	3.1360	3.2640				118.500	28.500	
3.25	3.2175	3.2825	3.1850	3.3150				118.625	28.625	
3.30	3.2670	3.3330	3.2340	3.3660				118.750	28.750	
3.35	3.3165	3.3835	3.2830	3.4170				118.875	28.875	
3.40	3.3660	3.4340	3.3320	3.4680				119.000	29.000	
3.45	3.4155	3.4845	3.3810	3.5190				119.125	29.125	
3.50	3.4650	3.5350	3.4300	3.5700	60	95		119.250	29.250	1200
3.55	3.5145	3.5855	3.4790	3.6210				119.375	29.375	
3.60	3.5640	3.6360	3.5280	3.6720				119.500	29.500	
3.65	3.6135	3.6865	3.5770	3.7230				119.625	29.625	
3.70	3.6630	3.7370	3.6260	3.7740				119.750	29.750	
3.75	3.7125	3.7875	3.6750	3.8250				119.875	29.875	
3.80	3.7620	3.8380	3.7240	3.8760				120.000	30.000	
3.85	3.8115	3.8885	3.7730	3.9270				120.125	30.125	
3.90	3.8610	3.9390	3.8220	3.9780				120.250	30.250	
3.95	3.9105	3.9895	3.8710	4.0290				120.375	30.375	
4.00	3.9600	4.0400	3.9200	4.0800			655	120.500	30.500	
4.05	4.0095	4.0905	3.9690	4.1310				120.625	30.625	
4.10	4.0590	4.1410	4.0180	4.1820				120.750	30.750	
4.15	4.1085	4.1915	4.0670	4.2330				120.875	30.875	
4.20	4.1580	4.2420	4.1160	4.2840				121.000	31.000	
4.25	4.2075	4.2925	4.1650	4.3350				121.125	31.125	
4.30	4.2570	4.3430	4.2140	4.3860				121.250	31.250	
4.35	4.3065	4.3935	4.2630	4.4370				121.375	31.375	
4.40	4.3560	4.4440	4.3120	4.4880				121.500	31.500	
4.45	4.4055	4.4945	4.3610	4.5390				121.625	31.625	
4.50	4.4550	4.5450	4.4100	4.5900	53	85		121.750	31.750	1450
4.55	4.5045	4.5955	4.4590	4.6410				121.875	31.875	
4.60	4.5540	4.6460	4.5080	4.6920				122.000	32.000	
4.65	4.6035	4.6965	4.5570	4.7430				122.125	32.125	
4.70	4.6530	4.7470	4.6060	4.7940				122.250	32.250	
4.75	4.7025	4.7975	4.6550	4.8450				122.375	32.375	
4.80	4.7520	4.8480	4.7040	4.8960				122.500	32.500	
4.85	4.8015	4.8985	4.7530	4.9470				122.625	32.625	
4.90	4.8510	4.9490	4.8020	4.9980				122.750	32.750	
4.95	4.9005	4.9995	4.8510	5.0490				122.875	32.875	
5.00	4.9500	5.0500	4.9000	5.1000				123.000	33.000	

OPERATIONAL EXPLANATION

The voltage divided by resistors R1 & R2 is compared with the internal reference voltage by the error amplifier. The P-channel MOSFET which is connected to the V_{OUT} pin is then driven by the subsequent control signal. The output voltage at the V_{OUT} pin is controlled & stabilized by a system of negative feedback. The current limit circuit and short protect circuit operate in relation to the level of output current. The GO function monitors the output current and switches the IC between two operating modes according to the level of output current. Further, the IC's internal circuitry can be shutdown via the CE pin's signal.

<GreenOperation>

The XC6220 series always operates in a green operation (GO) mode. The GO mode enables the IC to switch automatically between the high speed (HS) mode or the power save (PS) mode according to the level of output current. The switching point of the HS mode and the PS mode is fixed inside the IC. When the output current becomes $I_{\rm GOR} = 1.0 \text{mA}$ (MIN.) or below, the mode changes automatically to the PS mode after a delay time of hundreds of microseconds. Supply current in light load is greatly reduced. Also when the output current becomes $I_{\rm GO}$ 10mA (MAX.) or more, the mode changes automatically to the HS mode and the IC returns to high speed operation.

XC6220x301

<Low ESR capacitor>

The XC6220 series has a built-in phase compensation circuit which means that a stable output voltage is achieved even if the IC is used with low ESR capacitors. In order to ensure stable phase compensation it is recommended that a C_L capacitor is connected as close as possible to the V_{OUT} pin and V_{SS} pin. For a stable power supply, please connect an input capacitor (C_{IN}) between the V_{IN} pin and the V_{SS} pin.

Values required for the phase compensation are shown in the chart below. If a loss of the capacitance happens, the stable phase compensation may not be obtained. Please ensure to use a capacitor which does not depend on bias or temperature too much.

Recommended output capacitor (CL)

V(\/)	OUTPUT CAPACITOR VALUE(C _L)					
$V_{OUT(T)}(V)$	C _{IN} =4.7 μ F	C _{IN} =10 μ F	C _{IN} =22 μ F			
0.80V ~ 0.95V	×	×	22 µ F			
1.00V ~ 1.45V	47 µ F	47 µ F	22 µ F			
1.50V ~ 1.75V	47 µ F	22 µ F	10 µ F			
1.80V ~ 2.95V	47 µ F	6.8 µ F	6.8 µ F			
3.00V ~ 3.50V	47 µ F	4.7 µ F	4.7 µ F			
3.55V ~ 5.00V	47 µ F	10 μ F	6.8 µ F			

[×] No option

<Current Limiter, Short-Circuit Protection>

The XC6220 series includes a fold-back circuit, which aids the operation of the current limiter and circuit protection. When the load current reaches the current limit level, the fold-back circuit operates and output voltage drops. As a result of this drop in output voltage, output current also decreases. When the output pin is shorted, a current of about 180mA flows.

<CE Pin>

The IC's internal circuitry can be shutdown via the signal from the CE pin with the XC6220 series. With the XC6220A/C series, output at the V_{OUT} pin will be pulled down to the V_{SS} level. However, with XC6220B/D series, the C_L auto-discharge N-channel transistor switch is connected in parallel to R1 and R2 while the power supply is applied to the V_{IN} pin. Therefore, the time until the V_{OUT} pin reaches the V_{SS} level is shortened. The output voltage of the XC6220A/B series becomes unstable, when the CE pin is open. If this IC is used with the correct output voltage for the CE pin, the logic is fixed and the IC will operate normally. On the other hand, with the XC6220C/D series, the IC operation is stopped when the CE pin is open. However, the CE pin input current may increase as a result of through current in the pull-down resistor (R_{CE}) when the IC is under operation.

OPERATIONAL EXPLANATION (Continued)

<C_L Discharge Function>

The XC6220B/D series can quickly discharge the electric charge at the output capacitor (C_L) via the N-channel transistor located between the Vout pin and the Vss pin, when a low signal is inputted to the CE pin, which enables the whole IC circuit put into an OFF state (cf. BLOCK DIAGRAM).

 $(V_{OUT} pin voltage) \div (N-channel transistor through current) = C_L discharge resistance (R_{DCHG})$

The C_L auto-discharge resistance value is fixed to 460 $(V_{IN}=6.0V, V_{OUT}=5.0V)$ at TYP.). The discharge time of the output capacitor (C_L) is set by the C_L auto-discharge resistance (R_{DCHG}) and the output capacitor (C_L) . By setting a time constant of the C_L auto-discharge resistance value $[R_{DCHG}]$ and an output capacitor value (C_L) as (C_L) as output voltage after discharge via the N-channel transistor is calculated by the following formulas.

$$V = V_{OUT(E)} \times e^{-t/}$$
, or t= ln($V_{OUT(E)} / V$)

where

V : Output voltage after discharge

 $V_{\text{OUT(E)}}$: Output voltage t: Discharge time

: C_L auto-discharge resistance $R_{\text{DCHG}} \times \text{Output}$ capacitor (C_L) value C)

<Inrush Current Prevention>

The XC6220 series includes an inrush current Prevention circuit.

The inrush current protection circuit suppresses inrush current charged to C_L when the IC starts up to 700 mA (MAX.) for approximately 1ms.

* Please note that the device can not provide the output current beyond 700 mA for a period of approximately 1ms after the CE pin goes high.

NOTES ON USE

- 1. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded.
- 2. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current. Please strengthen V_{IN} and V_{SS} wiring in particular.
- 3. Please wire the input capacitor (C_{IN}) and the output capacitor (C_L) as close to the IC as possible.
- 4. As for the XC6220A/C series (semi-custom), the output voltage may float with a leakage current of the driver transistor between V_{IN} and V_{OUT} and R1+R2 resistance while stand-by (operation stop). Please take consideration of this and check it before use.
- 5. Torex places an importance on improving our products and their reliability. We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their systems.

TEST CIRCUITS

Circuit 1: Output Voltage, Output Current, Dropout Voltage, Input Voltage, Line Regulation, Load Regulation, Current Limit, Short Current, C_L Discharge Resistance, Output Voltage Temperature, Thermal Shutdown Detect Temperature, Thermal Shutdown Release Temperature

Circuit 2: Supply Current, Stand-by Current

Circuit 3: Ripple Rejection Ratio

TEST CIRCUITS (Continued)

Circuit 4: CE "H" Level Voltage, CE"L" Level Voltage, CE "H" Level Current, CE "L" Level Current

Circuit 5: HS Switching Current, PS Switching Current, Switch Current Hysteresis Range, PS Switching Delay Time

Circuit 6: Inrush Current

12/31

TYPICAL PERFORMANCE CHARACTERISTICS

(1) Output Voltage vs. Output Current

XC6220x301

XC6220x301

XC6220x501

- IOUT=100mA

5

(2) Output Voltage vs. Input Voltage

0

0

Input Voltage: V_{IN} (V) XC6220x501

(3) Dropout Voltage vs. Output Current

XC6220x121

(3) Dropout Voltage vs. Output Current

XC6220x501

(4) Output Voltage vs. Ambient Temperature

XC6220x301

(5) Supply Current vs. Input Voltage

XC6220x301

XC6220x301

XC6220x501

(6) PS Switching Delay Time vs. Ambient Temperature

XC6220x501

Ambient Temperature: Tpor ()

(7) CL Discharge Resistance vs. Ambient Temperature

(9) Load Transient Response

CH1:100mV/div CH2:100mA/div

XC6220x301

CH1:100mV/div CH2:100mA/div

XC6220x501

CH1:100mV/div CH2:100mA/div

XC6220x121

CH1:100mV/div CH2:100mA/div

XC6220x301

CH1:100mV/div CH2:100mA/div

XC6220x501

 $200~\mu~s/div \\ CH1:100mV/div~CH2:100mA/div$

(10) Line Transient Response

100 μ s/div CH1:1V/div CH2:20mV/div

XC6220x501

 $100~\mu~s/div \\ CH1:500mV/div~CH2:20mV/div$

(11) Input Rise Characteristics

XC6220x301

CH1:1V/div CH2:20mV/div

XC6220x121

200 μ s/div CH1:1V/div CH2:500mV/div

(11) Input Rise Characteristics

 $200~\mu~s/div \\ CH1:2V/div~CH2:2V/div$

XC6220x501

(12) CE Rise Characteristics

XC6220x121

CH1:500mV/div CH2:500mV/div

XC6220x301

 $200~\mu~s/div \\ CH1:2V/div~CH2:2V/div$

XC6220x501

CH1:2V/div CH2:2V/div

(12) CE Rise Characteristics

XC6220x301

100 μ s/div CH1:500mV/div CH2:1V/div

XC6220x501

CH1:500mV/div CH2:2V/div

(13) Inrush Current

XC6220x121

CH1:500mV/div CH2:1V/div CH3:100mA/div

XC6220x301

100 μ s/div CH1:500mV/div CH2:1V/div

XC6220x501

CH1:500mV/div CH2:2V/div

XC6220x301

CH1:500mV/div CH2:1V/div CH3:100mA/div

(13) Inrush Current

XC6220x501

CH1:500mV/div CH2:1V/div CH3:100mA/div

(14) CL Discharge Time

XC6220x301 (B/D)

CH1:500mV/div CH2:2V/div

XC6220x301 (A/C)

CH1:500mV/div CH2:2V/div

(15) Ripple Rejection Ratio

XC6220x121 (HighSpeed mode)

XC6220x121 (PowerSave mode)

(15) Ripple Rejection Ratio

XC6220x301 (HighSpeed mode)

XC6220x301 (PowerSave mode)

XC6220x501 (HighSpeed mode)

XC6220x501 (PowerSave mode)

XC6220 Series

PACKAGING INFORMATION

SOT-25 (unit:mm)

SOT-89-5 (unit:mm)

SOP-8FD (unit:mm) (Under Development)

0. 22 + 0. 03

USP-6C Reference Pattern Layout

USP-6C Reference Metal Mask Design

SOT-25 Power Dissipation

Power dissipation data for the SOT-25 is shown in this page.

The value of power dissipation varies with the mount board conditions.

Please use this data as one of reference data taken in the described condition.

1. Measurement Condition (Reference data)

Condition: Mount on a board
Ambient: Natural convection
Soldering: Lead (Pb) free

Board: Dimensions 40 x 40 mm (1600 mm² in one side)

Copper (Cu) traces occupy 50% of the board area

In top and back faces

Package heat-sink is tied to the copper traces

(Board of SOT-26 is used.)

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm

Through-hole: 4 x 0.8 Diameter

Evaluation Board (Unit: mm)

2. Power Dissipation vs. Ambient temperature

Ambient Temperature()	Power Dissipation Pd(mW)	Thermal Resistance (/W)
25	600	166.67
85	240	100.07

SOT-89-5 Power Dissipation

Power dissipation data for the SOT-89-5 is shown in this page.

The value of power dissipation varies with the mount board conditions.

Please use this data as one of reference data taken in the described condition.

2. Measurement Condition (Reference data)

Condition: Mount on a board
Ambient: Natural convection
Soldering: Lead (Pb) free

Board: Dimensions 40 x 40 mm (1600 mm² in one side)

Copper (Cu) traces occupy 50% of the board area

In top and back faces

Package heat-sink is tied to the copper traces

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm

Through-hole: 5 x 0.8 Diameter

Evaluation Board (Unit: mm)

2. Power Dissipation vs. Ambient temperature

Ambient Temperature()	Power Dissipation Pd(mW)	Thermal Resistance (/W)
25	1300	76.92
85	520	70.92

USP-6C Power Dissipation

Power dissipation data for the USP-6C is shown in this page.

The value of power dissipation varies with the mount board conditions.

Please use this data as one of reference data taken in the described condition.

1. Measurement Condition (Reference data)

Condition: Mount on a board

Ambient: Natural convection

Soldering: Lead (Pb) free

Board: Dimensions 40 x 40 mm (1600 mm² in one side)

Copper (Cu) traces occupy 50% of the board area

In top and back faces

Package heat-sink is tied to the copper traces

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm

Through-hole: 4 x 0.8 Diameter

Evaluation Board (Unit: mm)

2. Power Dissipation vs. Ambient temperature

Ambient Temperature ()	Power Dissipation Pd(mW)	Thermal Resistance (/W)
25	1000	100.00
85	400	100.00

SOP-8FD Power Dissipation (Under Development)

Power dissipation data for the SOP-8FD is shown in this page.

The value of power dissipation varies with the mount board conditions.

Please use this data as one of reference data taken in the described condition.

1. Measurement Condition (Reference data)

Condition: Mount on a board

Ambient: Natural convection

Soldering: Lead (Pb) free

Board: Dimensions 40 x 40 mm (1600 mm² in one side)

Copper (Cu) traces occupy 50% of the board area

In top and back faces

Package heat-sink is tied to the copper traces

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm

Through-hole: 4 x 0.8 Diameter

Evaluation Board (Unit: mm)

2. Power Dissipation vs. Ambient temperature

Ambient Temperature()	Power Dissipation Pd(mW)	Thermal Resistance (/W)
25	1500	66.67
85	600	00.07

XC6220 Series

MARKING RULE

SOT-25, SOT-89-5, USP6C, SOP-8FD SOT89-5 SOT25

USP6C

represents product series

MARK	PRODUCT SERIES
Н	XC6220*****

represents type of CE, voltage range, and accuracy

MARK	CE	OUTPUT VOLTAGE RANGE	OUTPUT VOLTAGE ACCURACY	PRODUCT SERIES
0	Α	0.8 ~ 2.9	1	XC6220A081** ~ XC6220A291**
1	Α	0.85 ~ 2.95	В	XC6220A08B** ~ XC6220A29B**
2	Α	3.0 ~ 5.0	1	XC6220A301** ~ XC6220A501**
3	Α	3.05 ~ 4.95	В	XC6220A30B** ~ XC6220A49B**
4	В	0.8 ~ 2.9	1	XC6220B081** ~ XC6220B291**
5	В	0.85 ~ 2.95	В	XC6220B08B** ~ XC6220B29B**
6	В	3.0 ~ 5.0	1	XC6220B301** ~ XC6220B501**
7	В	3.05 ~ 4.95	В	XC6220B30B** ~ XC6220B49B**
8	С	0.8 ~ 2.9	1	XC6220C081** ~ XC6220C291**
9	С	0.85 ~ 2.95	В	XC6220C08B** ~ XC6220C29B**
Α	С	3.0 ~ 5.0	1	XC6220C301** ~ XC6220C501**
В	С	3.05 ~ 4.95	В	XC6220C30B** ~ XC6220C49B**
С	D	0.8 ~ 2.9	1	XC6220D081** ~ XC6220D291**
D	D	0.85 ~ 2.95	В	XC6220D08B** ~ XC6220D29B**
Е	D	3.0 ~ 5.0	1	XC6220D301** ~ XC6220D501**
F	D	3.05 ~ 4.95	В	XC6220D30B** ~ XC6220D49B**

^{*} Accuracy "1" · · · 0.1V increments, Accuracy "B" · · · 0.05V increments

represents output voltage

MARK	OUTPUT VOLTAGE (V)		MARK	OUTPUT VOLTAGE (V)		MARK	OUTPUT VOLTAGE (V)	
0	-	3.0x	Α	1.0x	4.0x	N	2.0x	5.0x
1	-	3.1x	В	1.1x	4.1x	Р	2.1x	-
2	-	3.2x	С	1.2x	4.2x	R	2.2x	-
3	-	3.3x	D	1.3x	4.3x	S	2.3x	-
4	-	3.4x	Е	1.4x	4.4x	T	2.4x	-
5	-	3.5x	I.	1.5x	4.5x	J	2.5x	-
6	-	3.6x	Н	1.6x	4.6x	V	2.6x	-
7	-	3.7x	K	1.7x	4.7x	Χ	2.7x	-
8	0.8x	3.8x	L	1.8x	4.8x	Υ	2.8x	-
9	0.9x	3.9x	M	1.9x	4.9x	Z	2.9x	-

represents production lot number

^{01 ~ 09, 0}A ~ 0Z, 11···9Z, A1 ~ A9, AA···Z9, ZA ~ ZZ repeated (G, I, J, O, Q, W excluded)
*No character inversion used.

- 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
- 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet.
- 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet.
- 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user.
 - (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.)
- Please use the products listed in this datasheet within the specified ranges.
 Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives.
- 6. We assume no responsibility for damage or loss due to abnormal use.
- 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD.

TOREX SEMICONDUCTOR LTD.