

B. Bike Parking

Problem Name	bikeparking
Time Limit	1 second
Memory Limit	1 gigabyte

Սաննեն վերջերս մտահղացել է շահութաբեր բիզնես գաղափար` պրեմիում դասի հեծանիվների վարձակալման կայանատեղի Էյնդհովենի երկաթուղային կայարանում։ Իր շահույթը մեծացնելու համար նա հեծանիվների կանգնելու տեղերը բաժանել է N տաբեր բաժինների, որոնք համարակալված են 0-ից N-1 թվերով։ 0 համարի բաժինը լավագույնն է, այն գնացքի հարթակներին շատ մոտ է գտնվում։ Մեծ համարի բաժիններում վատագույն տեղերն են (որքան համարը մեծ է, այնքան հեծանիվը կանգնեցնելու տեղը վատն է)։ t բաժնում հեծանիվի տեղերի քանակը x_t է։

Օգտատերերը իրենց հեծանիվների համար կայանատեղերը վերցնում են հեռախոսի հավելվածի միջոցով։ Յուրաքանչյուր օգտատեր ունի բաժանորդագրման մակարդակ և ակնկալում է ստանալ հեծանվի տեղ համապատասխան բաժնում։ Սակայն, ծառայությունը չի կարող երաշխավորել, որ օգտատերերը կստանան ճիշտ կարգի տեղեր։

Եթե օգտատերի բաժանորդագրման մակարդակը s է, իսկ իրեն տեղ է տրվել t բաժնում, ապա կարող են տեղի ունենալ հետևյալ երեք դեպքերը.

- 1. Եթե t < s, ապա օգտատերը գոհ է լինում և հավելվածին տալս է բացասական գնահատական։
- 2. Եթե t=s, ապա օգտատերը բավարարված է լինում, և ոչինչ չի անում։
- 3. Եթե t>s, ապա օգտատերը դժգոհ է լինում և հավելվածին տալիս է դրական գնահատական։

Այսօր Սաննեյի հավելվածում գրանցված են $y_0+y_1+...+y_{N-1}$ օգտատերեր, որտեղ y_s -ը ցույց է տալիս բաժանորդագրման s մակարդակ ունեցող օգտատերերի քանակը։ Նա օգտատերերին հեծանիվի տեղեր հատկացնելու համար Ձեր օգնության կարիքն ունի։ Յուրաքանչյուր օգտատեր պետք է ստանա ճիշտ մեկ տեղ։ Ոչ մի տեղ չպիտի հատկացվի մեկից ավել օգտատիրոջ։ Բայց նորմալ է, եթե ինչ-որ տեղեր ազատ մնան և ոչ մի օգտատիրոջ չտրվեն։ Բացի դա օգտատերերի ընդհանուր քանակը չի գերազանցում հեծանիվների տեղերի քանակին։

Սաննեն ցանկանում է մաքսիմիզացնել հավելվածի ռեյտինգը։ Դիցուք, այդ դեպքում, հավելվածին դրական գրահատած օգտատերերի քանակը U է, իսկ բացասական գնահատածինը՝ D։ Ձեր խնդիրն է մաքսիմիզացնել U-D տարբերությունը։

Մուտքային տվյալներ

Առաջին տողում տրված է մեկ բնական N թիվ, որը ցույց է տալիս բաժինների, կամ, որ նույնն է, բաժանորդագրության մակարդակների քանակը։

երկրորդ տողը պարունակում է N ամբողջ $x_0,x_1,...,x_{N-1}$ թվեր` բաժիններում հեծանիվների տեղերի քանակները։

երրորդ տողը պարունակում է N ամբողջ $y_0, y_1, ..., y_{N-1}$ թվեր` բաժանորդագրության մակարդակներից յուրաքանչյուրի համար օգտատերերի քանակները։

Ելքային տվյալներ

Արտածեք մեկ ամբողջ թիվ U-D-ի մաքսիմալ արժեքը, որը ստացվում է լավագույն ձևով հեծանիվների տեղերը հատկացնելու դեպքում։

Սահմանափակումներ և միավորներ

- $1 < N < 3 \cdot 10^5$.
- $0 \le x_i, y_i \le 10^9 \ i = 0, 1, ..., N-1$ hwdwn:
- $y_0 + y_1 + ... + y_{N-1} \le x_0 + x_1 + ... + x_{N-1} \le 10^9$.

Ձեր լուծումը ստուգվելու է մի շարք թեստերի խմբերի միջոցով, յուրաքանչյուր խմբին հատկացված է որոշակի միավոր։ Յուրաքանչյուր խմբում կան որոշակի քանակությամբ թեստեր։ Միավորը ստանալու համար Ձեր ծրագիրը պետք է համապատասխան խմբի բոլոր թեստերի համար ճիշտ պատասխան տա։

խումբ	Միավոր	Սաիմանափակում
1	16	$N=2, x_i \leq 100, y_i \leq 100$
2	9	$x_i=x_j=y_i=y_j$ բոլոր i,j -երի համար։ Այլ կերպ ասած, մուտքային տվյալներում բոլոր x -երը և բոլոր y -ներն իրար հավասար են։
3	19	$x_i,y_i \leq 1$
4	24	$N, x_i, y_i \leq 100$
5	32	Լրացուցիչ սահմանափակումներ չկան

Օրինակներ

Նկատենք, որ կան օրինակներ, որ ոչ բոլոր ենթախնդիրների պայմաններին են բավարարում։ The i-րդ օրինակն առնվազն բավարարում է i-րդ ենթախնդրին։

Առաջին օրինակում կարող ենք 0 մակարդակով օգտատիրոջը տեղ տալ 0 բաժնում, 1 մակարդակ ունեցող երկու օգտատերերին տեղ հատկացնել 0 բաժնում (ստանալով 2 դրական գնահատական), և մնացած 1 մակարդակով օգտատիրոջը` 1 բաժնում։ Արդյունքում հավելվածի վարկանիշը կլինի 2։

Երկրորդ օրինակում կարող ենք 1 մակարդակով օգտատիրոջը տեղ տալ 0 բաժնում, 2 մակարդակով օգտատիրոջը` 1 բաժնում, և 0 մակարդակով օգտատիրոջը` 2 բաժնում։ Արդյունքում ստացվում է 2 դրական և 1 բացասական գնահատական, պատասխանը` 1։

Երրորդ օրինակում կարող ենք 1 մակարդակով օգտատիրոջը տեղ հատկացնել 0 բաժնում, 0 մակարդակով օգտատիրոջը` 2 բաժնում, և 4 մակարդակի օգտատիրոջը` 3 բաժնում։ Արդյունքում կրկին կստանանք 2 դրական և 1 բացասական գնահատական,, և վարկանիշը կլինի 1։

Չորրորդ օրինակը պատկերված է ստորև։ Կարող ենք 1 մակարդակի չորս օգտատերերերին տեղ հատկացնել 0, 0, 3 և 3 բաժիններում, արդյունքում կստացվի 2 դրական և 2 բացասական գնահատական։ 2 մակարդակով օգտատերերին տեղեր հատկացնենք 1, 2, 3 և 3 բաժիններում, կստացվի 1 դրական և 2 բացասական գնահատական։ Արդյունքում կլինի 3 դրական և 4 բացասական գնահատական, և վարկանիշը կլինի —1։

<ինգերորդ օրինակում բոլորին կարող ենք տեղ հատկացնել հենց իրենց մակարդակի բաժնում, և ստանալ 0 վարկանիշ։

Input	Output
2 3 3 1 3	2
3 1 1 1 1 1 1	1
6 1 0 1 1 0 1 1 1 0 0 1 0	1
4 2 1 1 8 0 4 4 0	-1
1 100000000 100000000	0