Department of Mathematics

National Institute of Technology Kurukshetra B.Tech. (II Semester) MID TERM-II Exam, MAY -2021

Subject: Integral Calculus and Difference Equations

Code: MAIR 12 Max. Marks: 15

Branch: CE, CS, EC, EE, IT, ME, PI

Timings: 9:30a.m-10:10 a.m.

Note: a) All questions are compulsory.

- b) The question paper consists of 10 objective questions. First Five questions are of two marks each and rest are of one mark each.
- 1) The value of the constants a and b so that the surface $bx^2 ayz = (b+2)x$ is orthogonal to the surface $4x^2y + z^3 = 4$ at the point (1, -1, 2) are

(A)
$$a = \frac{5}{2}$$
, $b = 1$ (B) $a = 1$, $b = \frac{5}{2}$ (C) $a = -1$, $b = \frac{5}{2}$ (D) $a = -\frac{5}{2}$, $b = 1$

- 2) The directional derivative of $f(x, y, z) = xy e^{x^2 + z^2 5}$ at the point (1, 3, -2) in the direction of the vector $\vec{v} = (3, -1, 4)$ is
 - (A) $-27/\sqrt{26}$ (B) -27 (C) $-20/\sqrt{26}$ (D) -20
- 3) Complete solution for the difference equation $4y_n y_{n+2} = 0$; with $y_0 = 0$, $y_1 = 2$ is $(A)(2)^n + (-2)^n$ $(B)(2)^{n-1} + (-2)^{n-1}$ $(C)(2)^n + n(-2)^n$ $(D)(2)^{n-1} n(-2)^n$
- 4) Apply Dirichlet's integral to find the volume of the solid $\left(\frac{x}{a}\right)^{2/3} + \left(\frac{y}{b}\right)^{2/3} + \left(\frac{z}{c}\right)^{2/3} = 1$ in the positive octant.
 - $(A)\frac{\pi abc}{35} \qquad (B)\frac{4\pi abc}{35} \qquad (C)\frac{\pi abc}{70} \qquad (D)\frac{4\pi abc}{27}$
 - 5) What is the value of $\int_{0}^{\pi/2} \sqrt{\sin \theta} \ d\theta \cdot \int_{0}^{\pi/2} \frac{d\theta}{\sqrt{\sin \theta}}$
 - (A) π (B)1 (C) $\sqrt{\pi}$ (D) $\frac{2}{\sqrt{\pi}}$

6). The difference equation formed	hx	v eliminating	the constant	from $v_n =$	(A +	$-Bn)2^n$ is
o). The difference equation formed	U	y chiliniathig	the constant	n = 100 m	(11	DIU_{JL} 13

(A) $y_{n+2} + 6y_{n+1} + 4y_n = 0$ (B) $y_{n+2} + 4y_{n+1} + 4y_n = 0$ (C) $y_{n+2} - 4y_{n+1} + 4y_n = 0$

(D)
$$y_{n+2} - 6y_{n+1} + 4y_n = 0$$

7). If $\vec{r} = xi + yj + zk$, than ∇r^n is

$$(A)r^{n+2}\vec{r}$$

(B)
$$nr^n\vec{r}$$

(C)
$$nr^{n-2}$$

(D)
$$nr^{n-2}\vec{r}$$

8). By Green's theorem the value of the line integral $\oint (x-y)dx + (x+y)dy$, where C is the circle $x^2 + y^2 = a^2$, is

(A)
$$\frac{3}{2} \pi \alpha^2$$
 (B) $2 \pi \alpha^2$

(B)
$$2 \pi a^2$$

(C)
$$\pi a^2$$

(D)
$$4 \pi a^2$$

9). Using Dirichlet's integral , the triple integral $\iiint_V xyz \, dxdydz$ where the region V is complete ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$ is

(A)
$$\frac{a^2b^2c^2}{8}$$
 (B) $\frac{a^3b^3c^3}{6}$

$$(B)\frac{a^3b^3c^3}{6}$$

(C)
$$\frac{a^2b^2c^2}{48}$$

(C)
$$\frac{a^2b^2c^2}{48}$$
 (D) $\frac{a^3b^3c^3}{36}$

10). The value of B(x+1, y) is equal to

$$(A) \ B(x,y+1)$$

(B)
$$\frac{x}{x+y}B(x,y)$$

$$(C) \frac{x+y}{x} B(x,y)$$

(D)None of these.