ENTREGABLE 7:

1. Caja negra:

Lista de entrada y salidas:

a. Entradas:

- Energía: La conexión a una fuente de energía eléctrica para el funcionamiento del dispositivo
- Información: Presión/flexión detectada por el sensor.

b. Salidas:

- Sonido: Emitirá un sonido al detectar un cambio no saludable en la presión/flexión de la espalda.
- **Movimiento:** Vibración del es para estimular el áreas dañadas o donde se ejerció más presión.

2. Esquema de funciones:

- **Regular:** Se regularizar la cantidad de energía que se utilizara para el funcionamiento de los componentes del dispositivo
- **Medir:** Evaluar y mensura la información recibida por el paciente, en este caso la presión/flexión detectada por el sensor
- Mover: Inicia el movimiento del dispositivo, comienza la energia mecanica
- Almacenar: Guarda la información obtenida para detectar qué medidas de presión/flexión son anómalas y cuales son normales
- Procesar: Analiza la información para proceder a la mandar una respuesta correspondiente a la señal recibida
- **Indicar:** Notifica mediante el sonido y movimiento en caso se trate de una señal de presión/flexión anormal.

3. Matriz morfológica:

4. Tabla de valoración:

(/4)

Criterios	Descripción	C.S1	C.S2	C.S3	C.S4
Efectividad Clínica	Mejora la postura y mejora calidad de vida	3	3	4	2
Costo de Producción	Viabilidad económica (USD): <100 = 4; 100-300 = 3; 300-500 = 2; >500 =1	3	3	2	3
Facilidad de Uso	Requiere mínimo entrenamiento para el paciente/cuidador.	4	3	3	2
Accesibilidad	Disponibilidad de materiales y tecnología en mercado local.	3	3	2	2
Innovación	Grado de originalidad y avance tecnológico.	1	2	3	1
Durabilidad	Resistencia a uso continuo (vida útil >2 años = 4; <1 año = 2).	3	3	2	2
Facilidad de ensamblaje	Es la dificultad de ensamblaje del equipo	4	3	2	3
Mantenimien to	Facilidad de reparación y limpieza.	4	4	3	3
Total	Suma de puntajes	25	24	21	18

5. Conclusión:

Tras analizar las 4 opciones, rescatamos las mejores partes de cada una, siendo que en la parte de alimentación del prototipo elegimos la batería recargable, por su facilidad de manejo y versatilidad en el uso diario, elegimos ambos sensores (de fuerza y flex) para poder tener una mejor lectura de datos y evaluación de la posición del paciente, como microcontrolador elegimos el arduino nano por su balance entre tamaño y

capacidad para controlar los componentes del prototipo, para la alerta necesaria del dispositivo, escogimos el buzzer para un mayor impacto

6. Bocetos:

