STAT 212 Problem Set 2.

Due: Friday, February 21st at 11:59PM

Instructions: Collaboration with your classmates is encouraged. Please identify everyone you worked with at the beginning of your solution PDF (e.g. Collaborators: Alice, Bob). Your solutions should be *written* entirely by you, even if you collaborated to *solve* the problems. The first person to report each typo in this problem set (by emailing me and Somak) will receive 1 extra point; more serious mistakes will earn more points.

1. Let $\{X_n : n \geq 1\}$ be a sequence of IID integrable random variables. Define

$$\bar{X}_n = \frac{X_1 + \dots + X_n}{n}.$$

- (a) Prove that the sequence $\{\bar{X}_n : n \geq 1\}$ is a UI backwards martingale. Hence the limit $\bar{X} = \lim_{n \to \infty} \bar{X}_n$ exists almost surely and in L^1 .
- (b) Show that for any $\lambda > 1$,

$$\mathbb{P}[\sup_{k\geq 1} \bar{X}_k \geq \lambda \mathbb{E}[X_1]] \leq 1/\lambda.$$

- (c) Let \bar{X}' be an independent copy of \bar{X} . Show that $\frac{\bar{X}+\bar{X}'}{2}\stackrel{d}{=}\bar{X}$.
- (d) Deduce the strong law of large numbers, i.e. that $\bar{X} = \mathbb{E}[X_1]$ almost surely. (Hint: if \bar{X} is not a.s. constant, show $\mathbb{E}|\frac{\bar{X}+\bar{X}'}{2}-a|<\mathbb{E}|\bar{X}-a|$ for some $a\in\mathbb{R}$.)
- 2. Suppose $X_n \to X$ in L^1 , and let $\{\mathcal{F}_n : n \ge 1\}$ be a filtration. Define $\mathcal{F}_{\infty} = \sigma(\cup_{n \ge 1} \mathcal{F}_n)$. Prove that $\mathbb{E}[X_n | \mathcal{F}_n] \to \mathbb{E}[X | \mathcal{F}_{\infty}]$ a.s. and in L^1 .
- 3. Consider a box containing a black and a red ball. At each step, we sample a ball uniformly from the box, and return this ball, along with an additional ball of the same color, to the box. Let $\{A_n : n \ge 1\}$ denote the number of black balls after n-rounds.
 - (i) Prove that $M_n = \frac{A_n}{n+2}$ is a martingale.
 - (ii) Show that $M_n \to M_\infty$ a.s. and in L^p for all $p \in [1, \infty)$, but not in L^∞ .
- 4. Place N red points R_k and N blue points B_k uniformly and independently in $[0,1]^2$. Let X be the length of the minimum matching between red and blue points, i.e. the minimum value of

$$\sum_{k=1}^{N} \|R_k - B_{\pi(k)}\|$$

across all bijections $\pi:[k]\to[k]$. Show that

$$\mathbb{P}[|X - \mathbb{E}[X]| \ge \lambda] \le 2e^{-\frac{\lambda^2}{4N}}.$$

1

Optional questions (not graded)

• Let $f: \mathbb{Z}^2 \to [0,1]$ be such that for all $a,b \in \mathbb{Z}$, we have

$$f(a,b) = \frac{f(a+1,b) + f(a-1,b) + f(a,b+1) + f(a,b-1)}{4}.$$

Prove that f is constant. For an extra challenge, extend the result to higher dimensions.