

Genetic Algorithms to create Blues Riffs

By Eli Yale June 7, 2018

Goal

Use a Genetic
Algorithm to aid in
the discovery of
Blues Riffs

Genetic Algorithm Review

Representing Music

Challenges

- Note, Time, Duration
- Integer Pairs
- ◆ A, C#, B ...
- Multi-note
- Ease of use

Approach

- Read Midi file
- Extract monophonic Notes
- ['67', '58', '51']
- Use MidiString as Target
- Gene_pool = notes from song
- Write midi DAW

Fitness Function: Score Closeness to Target

Normalized Information **Distance**

$$NID(x,y) = rac{\max\{K(x\mid y),K(y\mid x)\}}{\max\{K(x),K(y)\}},$$

Normalized Compression Distance [1]

$$NID(x,y) = \frac{\max\{K(x \mid y), K(y \mid x)\}}{\max\{K(x), K(y)\}}, \qquad \text{NCD}(x,y) = \frac{\max\{C(xy) - C(x), C(yx) - C(y)\}}{\max\{C(x), C(y)\}}$$

NCD: 0-1, Values closer to 0 = similarity to the target, avg: 0.5-1.0

Fitness = NCD(X,Y)⁻¹ \rightarrow higher values = greater fitness, avg: 1.1-2.5

LZ77 compression [2]: Avg Compression: 0.6% - 0.8%

Results and Tuning Parameters

Change in fitness as population evolves

Interactive Mode

Works Cited

 M. Alfonseca, M. Cebrian and A. Ortega, "A simple genetic algorithm for music generation by means of algorithmic information theory," 2007 IEEE Congress on Evolutionary Computation, Singapore, 2007, pp. 3035-3042. doi: 10.1109/CEC.2007.4424858https://ieeexplore.ieee.org/document/4424858/

2. Compression: https://github.com/LLcoolNJ/LZ77

3. Pygame: https://www.pygame.org/news

4. Mido: https://mido.readthedocs.io/en/latest/

