Process isolation for real time IoT devices — an overview

Fabian Kovacs

- introduce and motivate your topic (1-2 slides)
- 2. mention some related work / references you looked at, but will *not* cover in your survey (1 slide). The goal here is to help position and define your focus.

provide a sample list of references you plan to cover in your survey and 1-2

- 3. provide a tentative structure/skeleton for your report (1-2 slides)
- references that you will study in more depth (1-2 slides).

 Aim to briefly present orally (e.g. 1-2 sentence per item) the main references in your list
 - a. Aim to briefly present orally (e.g. 1-2 sentence per item) the main references in your list
- 5. break down your tentative schedule towards final report submission (1 slide)
- 6. list open questions you may have (1 slide)

Motivation

Process Isolation — with realtime requirements

- 1. Multiple Interested Parties on same device of potentially conflicting interest and origin
 - a. Eg.: Device with multiple sensors by different vendors, where data needs to be combined
- 2. Minimize the potential harm of a misbehaving actor
 - a. Protect memory domains from untrusted access
 - b. Secure communication between processes
 - c. Processes may not starve resources
 - d. Minimize reliance on Trusted Computing Base

Examplary Architecture from TyTAN

Real time IoT devices

- 1. Processes are working with deadlines
 - a. Hard tasks must meet their deadlines Soft tasks try minimize average response time
 - b. Missing hard deadlines can be fatal
- 2. Realtime implies low computational overhead and guaranteed execution
- 3. Solutions for process isolation exist in commodity hardware (virtualization / paging / rings)
 - a. Expensive hardware and high overhead
- 4. Real time requirements dictate low computational overhead
 - a. And fault tolerance in case of uncooperative software
- 5. IoT devices need to be cheap and have modest power consumption
- 6. Bespoke Hardware solutions are feasible at IoT scale

Related Work — What's not covered.

- Brief discussion of Attestation/Measuring
- Brief intro to Realtime
- Memory encryption will not be discussed
- Side Channel attacks will not be discussed

Structure

- 1. Motivation for Process Isolation & Protected Module Architectures
 - a. Define / Differentiate Process Isolation
 - b. Define / Differentiate Real Time
 - c. Threat Model(s)
 - d. Challenges from real time requirements
 - e. Secure Interprocess Communication
- 2. Overview / Structure
- 3. Process Isolation
 - a. Limitations for IoT devices / Real Time applications
 - b. Secure IPC (A little bit on Attestation)
 - c. Software Solutions Overview and Challenges
 - d. Hardware (assisted) Solutions Overview and Challenges

Structure — cont'd

1. Real time solutions

- a. Challenges from Multiple Actors
- b. Scheduling and Interrupt handling at real time
- c. Process Isolation with real time guarantees

References

- Maene et al. (2018). Hardware-Based Trusted Computing Architectures for Isolation and Attestation. IEEE Transactions on Computers, 67(3), 361–374. https://doi.org/10.1109/TC.2017.2647955
 - Very recent overview of relevant technologies.
- Noorman et al. (2017). Sancus 2.0. ACM Transactions on Privacy and Security, 20(3), 1–33. https://doi.org/10.1145/3079763
 - Recent and seemingly popular implementation of OS/Hardware solution
- Brasser et al. (2015). TyTAN. 1–6. https://doi.org/10.1145/2744769.2744922
 - o Implementation and Discussion of details for Process Isolation mechanisms
- Van Bulck et al. (2016). Towards availability and real-time guarantees for protected module architectures. 146–151.
 https://doi.org/10.1145/2892664.2892693
 - Side-paper for Sancus and in-depth discussion for PMA which seems promising

Schedule

- Weeks 1-3: Writeup and discussion of Process Isolation Technologies
 - Selection of candidates for deeper study
- Week 2-3: Comparison of Technologies and evaluation for Realtime applications
- Week 3-4: Deep dive into selected candidates

Open Questions

- Are there feasible software side solutions?
- 2. Are hardware solutions feasible wrt cost and power consumption?
- 3. Have these solutions been implemented and evaluated in the wild? (Most seem to be emulated so far)