Exercises: Artificial Intelligence

A*

A*

A* ALGORITHM

A* Algorithm

- Input:
 - QUEUE: Path only containing root
- Algorithm:
 - WHILE (QUEUE not empty && first path not reach goal) DO
 - Remove <u>first path</u> from <u>QUEUE</u>
 - Create paths to all children
 - Reject paths with loops
 - Add paths and sort <u>QUEUE</u> (by f = cost + heuristic)
 - IF QUEUE contains paths: P, Q
 AND P ends in node N_i && Q contains node N_i
 AND cost P ≥ cost Q
 THEN remove P
 - IF goal reached THEN success ELSE failure

A*

FIRST EXAMPLE ON A*

0 7 7 **f** = accumulated path cost + heuristic

QUEUE = path containing root

QUEUE: <S>

f = accumulated path cost + heuristic

Remove <u>first path</u>, Create <u>paths to all</u> <u>children</u>, Reject <u>loops</u> and <u>Add paths</u>.

<u>Sort QUEUE by f</u>

QUEUE: <SB,SA>

A*

PROBLEM

Problem

 Perform the A* Algorithm on the following figure. Explicitly write down the queue at each step.

A*

A* SEARCH

QUEUE:

SC

SA

SB

SA

SCD

SB

SB

QUEUE:

SAEF

SCD

SB

SAEB

QUEUE:

SCD

SB

SAEFG

SAEFD

Exercises: Artificial Intelligence

Iterated Deepening A*

Iterated Deepening A*

IDA* ALGORITHM

IDA* Algorithm

- f-bound $\leftarrow f(S)$
- Algorithm:
 - WHILE (goal is not reached) DO
 - f-bound ← f-limitted_search(f-bound)
 - Perform <u>f-limited search</u> with <u>f-bound</u>(See next slide)

f-limitted Search Algorithm

Input:

- QUEUE ← Path only containing root
- f-bound ← Natural number
- f-new ← ∞

• Algorithm:

- WHILE (QUEUE not empty && goal not reached) DO
 - Remove first path from QUEUE
 - Create paths to children
 - Reject paths with loops
 - Add paths with f(path) ≤ f-bound to front of QUEUE (depth-first)
 - <u>f-new</u> ← minimum({<u>f-new</u>} ∪ {f(P) | P is rejected path})
- IF goal reached THEN success ELSE report <u>f-new</u>

Iterated Deepening A*

PROBLEM

Problem

 Perform the IDA* Algorithm on the following figure.

	S	Α	В	С	D	G
heuristic	0	0	4	3	0	0

Iterated Deepening A*

IDA* SEARCH

IDA* Search

f-bound = 0 f-new = ∞

IDA* Search

f-bound = 0 f-new = 10

Children are explored depth-first!

f-bound = 10 f-new = ∞

f-bound = 11 f-new = ∞

f-bound = 12 f-new = ∞

f-bound = 12 f-new = ∞

f-bound = 12 f-new = ∞

f-bound = 13 f-new = ∞

f-bound = 13 f-new =
$$\infty$$

f-bound = 13 f-new = ∞

Exercises: Artificial Intelligence

Simplified Memory-bounded A*

Simplified Memory-bounded A*

SMA* ALGORITHM

- Optimizes A* to work within reduced memory
- Key Idea:
 - IF memory full for extra node (C)
 - Remove highest f-value leaf (A)
 - Remember best-forgotten child in each parent node (15 in S)

E.g. Memory of 3 nodes only

- Generate Children 1 by 1
 - Expanding: add 1 child at the time to QUEUE
 - Avoids memory overflow
 - Allows monitoring if nodes need deletion

- Too long paths: Give up
 - Extending path cannot fit in memory
 - give up (C)
 - Set **f-value** node **(C)** to ∞
 - Remembers: path cannot be found here

E.g. Memory of 3 nodes only

Adjust f-values

- IF all children M_i of node N have been explored
- AND $\forall i: f(S...M_i) > f(S...N)$
- **THEN reset** (through N \Longrightarrow through children)
 - f(S...N) = min{f(S...M_i) | M_i child of N}

Better estimate for f(S)

Simplified Memory-bounded A*

SMA* BY EXAMPLE

Perform SMA* (memory: 3 nodes) on the following figure.

	S	Α	В	С	G
heuristic	3	0	2	1	0

Generate children (One by one)

Generate children (One by one)

Generate children (One by one)

Memory full

All children are explored

Adjust f-values

Generate children (One by one)

Memory full

All children are explored

Adjust f-values

All children are explored (update)

Adjust f-values

Generate children (One by one)

Memory full

SMA* by Example

Generate children (One by one)

Memory full

SMA* by Example

Generate children (One by one)

Memory full

Simplified Memory-bounded A*

PROBLEM

• Perform SMA* (memory: 4 nodes) on the following figure.

	S	Α	В	С	D	Ε	F	Н	G
heuristic	12	5	5	5	2	2	1	1	0

Exercises: Artificial Intelligence

Monotonicity 1

Monotonicity 1

PROBLEM

Problem

- Prove that:
 - IF a heuristic function h satisfies the monotonicity restriction
 - $h(x) \leq cost(x...y) + h(y)$
 - **THEN** *f* is monotonously non-decreasing
 - $f(s...x) \leq f(s...x...y)$

- Given:
 - <u>h</u> satisfies the <u>monotonicity restriction</u>
- Proof:

```
f(S...A) = cost(S...A) + h(A)
```

- Given:
 - <u>h</u> satisfies the <u>monotonicity restriction</u>
- Proof:

```
f(S...A) = cost(S...A) + h(A)

\leq cost(S...A) + cost(A...B) + h(B)
```

- Given:
 - <u>h</u> satisfies the <u>monotonicity restriction</u>
- Proof:

```
f(S...A) = cost(S...A) + h(A)
\leq cost(S...A) + cost(A...B) + h(B)
\leq cost(S...A...B) + h(B)
```

- Given:
 - <u>h</u> satisfies the <u>monotonicity restriction</u>
- Proof:

```
f(S...A) = cost(S...A) + h(A)
\leq cost(S...A) + cost(A...B) + h(B)
\leq cost(S...A...B) + h(B)
\leq f(S...A...B)
```

Exercises: Artificial Intelligence

PROBLEM

Problem

- Prove or refute:
 - IF f is monotonously non-decreasing
 - $f(s...x) \le f(s...xy)$
 - THEN h is an admissable heuristic
 - h is an underestimate of the remaining path to the goal with the smallest cost
- Can an extra constraint on h change this?

- Given:
 - f is mononously non-decreasing
- Proof (Counter-example):

f is monotonously non-decreasing, yet h is not an admissable heuristic.

- Given:
 - f is mononously non-decreasing
 - Extra constraint: h(G) = 0
- Proof:

```
f(S...A) \le f(S...AB) \le ... \le f(S...AB...G)
```

- Given:
 - f is mononously non-decreasing
 - Extra constraint: h(G) = 0
- Proof:

```
f(S...A) \le f(S...AB) \le ... \le f(S...AB...G) \Leftrightarrow
f(S...A) \le f(S...G)
```

- Given:
 - f is mononously non-decreasing
 - Extra constraint: h(G) = 0
- Proof:

```
\frac{f(S...A) \le f(S...AB) \le ... \le f(S...AB...G)}{f(S...A) \le f(S...G)} \Leftrightarrowcost(S...A) + h(A) \le cost(S...G) + h(G)
```

- Given:
 - f is mononously non-decreasing
 - Extra constraint: h(G) = 0
- Proof:

```
f(S...A) \le f(S...AB) \le ... \le f(S...AB...G) \Leftrightarrow
f(S...A) \le f(S...G) \Leftrightarrow
cost(S...A) + h(A) \le cost(S...G) + h(G) \Leftrightarrow
cost(S...A) + h(A) \le cost(S...A) + cost(A...G) + h(G)
```

- Given:
 - f is mononously non-decreasing
 - Extra constraint: h(G) = 0
- Proof:

```
f(S...A) \le f(S...AB) \le ... \le f(S...AB...G) ⇔

f(S...A) \le f(S...G) ⇔

cost(S...A) + h(A) \le cost(S...G) + h(G) ⇔

cost(S...A) + h(A) \le cost(S...A) + cost(A...G) + h(G) ⇔

h(A) \le cost(A...G) + h(G)
```

- Given:
 - f is mononously non-decreasing
 - Extra constraint: h(G) = 0
- Proof:

```
f(S...A) \le f(S...AB) \le ... \le f(S...AB...G) 

f(S...A) \le f(S...G) 

cost(S...A) + h(A) \le cost(S...G) + h(G) 

cost(S...A) + h(A) \le cost(S...A) + cost(A...G) + h(G) 

h(A) \le cost(A...G) + h(G) 

h(A) \le cost(A...G)
```