Guillaume Pinot

Canal TP 20 rue Hector Malot 75012 Paris, France guillaume.pinot@canaltp.fr

ROADEF 2015

Présentation de Canal TP

Canal TP:

- éditeur logiciel fournissant expertise et solutions;
- centré sur l'information voyageurs.

navitia:

- un moteur disponible en logiciel libre https://github.com/CanalTP/navitia;
- un web service http://navitia.io;
- présentation de l'offre de transport : lignes, arrêts, horaires ;
- autocompletion et géolocalisation;
- calcul d'itinéraires multimodaux porte-à-porte.

Problématique

(a	lend	ri	⊃r

Lu	Ма	Me	Je	Ve	Sa	Di
27	28	29	30	1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	31

Sortie

111100011110001110100111111000111110

Et pour un humain?

Table des matières

- 1 Le problème
- 2 Comparaison avec l'existant et complexité
- 3 Algorithme
- 4 Conclusions et perspectives

- 1 Le problème
- 2 Comparaison avec l'existant et complexité
- 3 Algorithme
- 4 Conclusions et perspectives

Calendrier

Lu	Ма	Me	Je	Ve	Sa	Di
27	28	29	30	1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	31

Sortie humaine

Du Lundi au Vendredi du 27 avril au 31 mai 2015 sauf les 1, 8, 14 et 25 mai, avec en plus le 30 mai. un rythme hebdomadaire une période de validité une liste de date exclues une liste de date incluses minimiser le nombre d'exceptions

Description du problème

Calendrier

Lu	Ма	Me	Je	Ve	Sa	Di
27		29	30	1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	31

Sortie humaine

Du Lundi au Vendredi du 27 avril au 31 mai 2015 sauf les 1, 8, 14 et 25 mai, avec en plus le 30 mai. un rythme hebdomadaire une période de validité une liste de date exclues une liste de date incluses

Description du problème

Calendrier

Lu	Ма	Me	Je	Ve	Sa	Di
27	28	29	30	1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	<i>30</i>	31

Sortie humaine

Du Lundi au Vendredi du 27 avril au 31 mai 2015 sauf les 1, 8, 14 et 25 mai, avec en plus le 30 mai. Objectif:

une période de validité une liste de date exclues une liste de date incluses minimiser le nombre d'exceptions

un rythme hebdomadaire

Données du problème

Calendrier							
	Lu	Ма	Me	Je	Ve	Sa	Di
	27	28	29	30	1	2	3
	4	5	6	7	8	9	10
	11	12	13	14	15	16	17
	18	19	20	21	22	23	24
	25	26	27	28	29	30	31

Données du problème

111100011110001110100111111000111110

Données du problème

Calendrier								
	Lu	Ма	Me	Je	Ve	Sa	Di	
	27	28	29	30	1	2	3	
	4	5	6	7	8	9	10	
	11	12	13	14	15	16	17	
	18	19	20	21	22	23	24	
	25	28 5 12 19 26	27	28	29	30	31	

Données du problème

S = 1111000, 1111000, 1110100, 1111100, 0111110

Les rythmes hebdomadaires de chaque semaine

Données du problème

Calendrier							
	Lu	Ма	Me	Je	Ve	Sa	Di
	27	28	29	30	1	2	3
	4	5	29 6 13	7	8	9	10
	11	12					
	18	19	20	21	22	23	24
	25	26	27	28	29	30	31

Données du problème

S = 1111000, 1111000, 1110100, 1111100, 0111110

Les rythmes hebdomadaires de chaque semaine.

Distance de Hamming

Comment exprimer un rythme avec un autre et des exceptions?

Compter les exceptions

Du Mardi au Samedi $s_1 = 01111110$

Du Lundi au Vendredi $s_2 = 1111100$

Distance de Hamming [Hamming, 1950] $d(s_1, s_2) = 2$

Distance de Hamming

Comment exprimer un rythme avec un autre et des exceptions?

Compter les exceptions

Du Mardi au Samedi $s_1 = 01111110$

Du Lundi au Vendredi $s_2 = 11111100$

Distance de Hamming

Comment exprimer un rythme avec un autre et des exceptions?

Compter les exceptions

Du Mardi au Samedi $s_1 = 01111110$ Du Lundi au Vendredi $s_2 = 11111100$

 $d(s_1, s_2) = 2$ Distance de Hamming [Hamming, 1950]

Modèle mathématique

Le meilleur rythme hebdomadaire

Soit $S = s_1, s_2, \dots, s_n$, n chaînes binaires de longueur 7. Soit $d_{s_i}^{\Sigma} = \sum_{s_i \in S} d(s_i, s_j)$.

Le meilleur rythme hebdomadaire est représenté par la chaîne s tel que d_s^{Σ} soit minimale.

Notre exemple

 $\mathcal{S} = 1111000, 1111000, 1110100, 1111100, 0111110$ Pour le rythme « du Lundi au Vendredi », $s_i = 11111100$: $d_{s_i}^{\Sigma} = \sum_{s_i \in \mathcal{S}} d(s_i, s_j) = 1 + 1 + 1 + 0 + 2 = 5$

Table des matières

- 1 Le problème
- 2 Comparaison avec l'existant et complexité
- Algorithme
- 4 Conclusions et perspectives

Le closest string problem

Le closest string problem

Soit $S = s_1, s_2, \ldots, s_n$, n chaînes sur l'alphabet Σ de longueur m. Soit $d_{s_i}^{\max} = \max_{s_j \in S} d(s_i, s_j)$.

Le *closest string problem* a pour solution la chaîne s tel que d_s^{\max} soit minimale.

Complexité:

- NP-difficile [Lanctot et al., 2003]
- $O(nm + nd_s^{\max}(16|\Sigma|)^{d_s^{\max}})$ [Ma and Sun, 2008] (exponentielle sur m)

Le meilleur rythme hebdomadaire

Soit $S = s_1, s_2, \dots, s_n$, *n* chaînes binaires de longueur 7. Soit $d_{s_i}^{\Sigma} = \sum_i d(s_i, s_i)$.

Le meilleur rythme hebdomadaire est représenté par la chaîne s tel que d_s^{Σ} soit minimale.

Le closest string problem

Soit $S = s_1, s_2, \ldots, s_n$, n chaînes sur l'alphabet Σ de longueur m. Soit $d_{s_i}^{\max} = \max_{s_i \in \mathcal{S}} d(s_i, s_j)$.

Le closest string problem a pour solution la chaîne s tel que d_s^{max} soit minimale.

Le meilleur rythme hebdomadaire

Soit $S = s_1, s_2, \dots, s_n$, n chaînes binaires de longueur 7. Soit $d_{s_i}^{\Sigma} = \sum_{s_i \in S} d(s_i, s_j)$.

Le meilleur rythme hebdomadaire est représenté par la chaîne s tel que d_s^{Σ} soit minimale.

Le closest string problem

Soit $S = s_1, s_2, \ldots, s_n$, n chaînes sur l'alphabet Σ de longueur m. Soit $d_{s_i}^{\max} = \max_{s_j \in S} d(s_i, s_j)$.

Le *closest string problem* a pour solution la chaîne s tel que d_s^{\max} soit minimale.

Comme le *closest string problem* est exponentiel sur *m*, nous pouvons espérer trouver un algorithme polynomial à notre problème.

Le meilleur rythme hebdomadaire

Soit $S = s_1, s_2, \dots, s_n$, *n* chaînes binaires de longueur 7. Soit $d_{s_i}^{\Sigma} = \sum_i d(s_i, s_i)$.

Le meilleur rythme hebdomadaire est représenté par la chaîne s tel que d_s^{Σ} soit minimale.

Le closest string problem

Soit $S = s_1, s_2, \dots, s_n$, *n* chaînes sur l'alphabet Σ de longueur *m*. Soit $d_{s_i}^{\max} = \max_{s_i \in \mathcal{S}} d(s_i, s_j)$.

Le closest string problem a pour solution la chaîne s tel que d_s^{max} soit minimale.

Le meilleur rythme hebdomadaire

Soit $S = s_1, s_2, \dots, s_n$, n chaînes binaires de longueur 7. Soit $d_{s_i}^{\Sigma} = \sum_{s_i \in S} d(s_i, s_j)$.

Le meilleur rythme hebdomadaire est représenté par la chaîne s tel que d_s^Σ soit minimale.

Le closest string problem

Soit $S = s_1, s_2, \ldots, s_n$, n chaînes sur l'alphabet Σ de longueur m. Soit $d_{s_i}^{\max} = \max_{s_j \in S} d(s_i, s_j)$.

Le *closest string problem* a pour solution la chaîne s tel que d_s^{\max} soit minimale.

Comme le *closest string problem* est exponentiel sur *m*, nous pouvons espérer trouver un algorithme polynomial à notre problème.

Le meilleur rythme hebdomadaire

Soit $S = s_1, s_2, \dots, s_n$, n chaînes binaires de longueur 7. Soit $d_{s_i}^{\Sigma} = \sum_{s_i \in S} d(s_i, s_j)$.

Le meilleur rythme hebdomadaire est représenté par la chaîne s tel que d_s^Σ soit minimale.

Le closest string problem

Soit $S = s_1, s_2, \ldots, s_n$, n chaînes sur l'alphabet Σ de longueur m. Soit $d_{s_i}^{\max} = \max_{s_j \in S} d(s_i, s_j)$.

Le *closest string problem* a pour solution la chaîne s tel que d_s^{\max} soit minimale.

Comme le *closest string problem* est exponentiel sur *m*, nous pouvons espérer trouver un algorithme polynomial à notre problème.

Table des matières

- 3 Algorithme

Énumération exhaustive

Soit \mathcal{D} l'ensemble des chaînes binaires de longueur 7.

$$s \leftarrow 0000000$$

 $d_s^{\Sigma} \leftarrow \infty$

$$\forall s_i \in \mathcal{D}$$
 :

• calculer
$$d_{s_i}^{\Sigma} = \sum_{s_i \in \mathcal{S}} d(s_i, s_j)$$

$$O(mn) = O(7n) = O(n$$

• si
$$d_{s_i}^{\Sigma} < d_s^{\Sigma}$$
:
• $d_s^{\Sigma} \leftarrow d_{s_i}^{\Sigma}$
• $s \leftarrow s_i$

Résultat : s est le meilleur rythme hebdomadaire, avec d_{ϵ}^{Σ} exceptions.

Complexité :
$$O(mn|\Sigma|^m) = O(128 \times 7n) = O(n)$$

4□ > 4□ > 4□ > 4□ > 4□ = 1□

Énumération exhaustive

Soit \mathcal{D} l'ensemble des chaînes binaires de longueur 7.

$$s \leftarrow 0000000$$

 $d_s^{\Sigma} \leftarrow \infty$

$$u_s \leftarrow \infty$$

 $\forall s_i \in \mathcal{D}$:

$$\forall s_i \in \mathcal{D}$$
.

• calculer
$$d_{s_i}^{\Sigma} = \sum d(s_i, s_j)$$
 $O(mn) = O(7n) = O(n)$

• si
$$d_{s_i}^{\Sigma} < d_s^{\Sigma}$$
:
• $d_s^{\Sigma} \leftarrow d_{s_i}^{\Sigma}$
• $s \leftarrow s_i$

Résultat : s est le meilleur rythme hebdomadaire, avec d_{ε}^{Σ} exceptions.

Complexité :
$$O(mn|\Sigma|^m) = O(128 \times 7n) = O(n)$$

 $|\Sigma|^m = 2^7 = 128$ fois

$$\mathcal{S} = 101, 110, 110, 011, \ldots = 4 \times 011, 3 \times 101, 5 \times 110 = 4s_3, 3s_5, 5s_6$$

$$\begin{pmatrix} 0 & 1 & 1 & 2 & 1 & 2 & 2 & 3 \\ 1 & 0 & 2 & 1 & 2 & 1 & 3 & 2 \\ 1 & 2 & 0 & 1 & 2 & 3 & 1 & 2 \\ 2 & 1 & 1 & 0 & 3 & 2 & 2 & 1 \\ 1 & 2 & 2 & 3 & 0 & 1 & 1 & 2 \\ 2 & 1 & 3 & 2 & 1 & 0 & 2 & 1 \\ 2 & 3 & 1 & 2 & 1 & 2 & 0 & 1 \\ 3 & 2 & 2 & 1 & 2 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 4 \\ 0 \\ 3 \\ 5 \\ 0 \end{pmatrix} = \begin{pmatrix} 24 \\ 22 \\ 18 \\ 20 \\ 38 \\ 5 \\ 0 \end{pmatrix} = \begin{pmatrix} s_0 = 000 \\ s_1 = 001 \\ s_2 = 010 \\ s_3 = 011 \\ s_4 = 100 \\ s_5 = 101 \\ s_6 = 110 \\ s_7 = 111 \end{pmatrix}$$

$$d_s^{\Sigma} = d_{s_7}^{\Sigma} = 12, s = s_7 = 111$$

Modélisation matricielle

$$\mathcal{S} = 101, 110, 110, 011, \ldots = 4 \times 011, 3 \times 101, 5 \times 110 = 4s_3, 3s_5, 5s_6$$

$$\begin{pmatrix} 0 & 1 & 1 & 2 & 1 & 2 & 2 & 3 \\ 1 & 0 & 2 & 1 & 2 & 1 & 3 & 2 \\ 1 & 2 & 0 & 1 & 2 & 3 & 1 & 2 \\ 2 & 1 & 1 & 0 & 3 & 2 & 2 & 1 \\ 1 & 2 & 2 & 3 & 0 & 1 & 1 & 2 \\ 2 & 1 & 3 & 2 & 1 & 0 & 2 & 1 \\ 2 & 3 & 1 & 2 & 1 & 2 & 0 & 1 \\ 3 & 2 & 2 & 1 & 2 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 4 \\ 0 \\ 3 \\ 5 \\ 0 \end{pmatrix} = \begin{pmatrix} 24 \\ 22 \\ 18 \\ 16 \\ 20 \\ 18 \\ 14 \\ 20 \\ 18 \\ 14 \\ 12 \end{pmatrix}$$

$$s_0 = 000$$

$$s_1 = 001$$

$$s_2 = 010$$

$$s_3 = 011$$

$$s_4 = 100$$

$$s_5 = 101$$

$$s_6 = 110$$

$$s_7 = 111$$

$$d_s^{\Sigma} = d_{s_7}^{\Sigma} = 12, s = s_7 = 111$$

$$S = 101, 110, 110, 011, \ldots = 4 \times 011, 3 \times 101, 5 \times 110 = 4s_3, 3s_5, 5s_6$$

$$\begin{pmatrix} 0 & 1 & 1 & 2 & 1 & 2 & 2 & 3 \\ 1 & 0 & 2 & 1 & 2 & 1 & 3 & 2 \\ 1 & 2 & 0 & 1 & 2 & 3 & 1 & 2 \\ 2 & 1 & 1 & 0 & 3 & 2 & 2 & 1 \\ 1 & 2 & 2 & 3 & 0 & 1 & 1 & 2 \\ 2 & 1 & 3 & 2 & 1 & 0 & 2 & 1 \\ 2 & 3 & 1 & 2 & 1 & 2 & 0 & 1 \\ 3 & 2 & 2 & 1 & 2 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 4 \\ 0 \\ 3 \\ 5 \\ 0 \end{pmatrix} = \begin{pmatrix} 24 \\ 22 \\ 18 \\ 20 \\ 18 \\ 20 \\ 18 \\ 14 \\ 12 \end{pmatrix}$$

$$s_0 = 000$$

$$s_1 = 001$$

$$s_2 = 010$$

$$s_3 = 011$$

$$s_4 = 100$$

$$s_5 = 101$$

$$s_6 = 110$$

$$s_7 = 111$$

$$d_s^{\Sigma} = d_{s_7}^{\Sigma} = 12, s = s_7 = 111$$

$$S = 101, 110, 110, 011, \ldots = 4 \times 011, 3 \times 101, 5 \times 110 = 4s_3, 3s_5, 5s_6$$

$$\begin{pmatrix} 0 & 1 & 1 & 2 & 1 & 2 & 2 & 3 \\ 1 & 0 & 2 & 1 & 2 & 1 & 3 & 2 \\ 1 & 2 & 0 & 1 & 2 & 3 & 1 & 2 \\ 2 & 1 & 1 & 0 & 3 & 2 & 2 & 1 \\ 1 & 2 & 2 & 3 & 0 & 1 & 1 & 2 \\ 2 & 1 & 3 & 2 & 1 & 0 & 2 & 1 \\ 2 & 3 & 1 & 2 & 1 & 2 & 0 & 1 \\ 3 & 2 & 2 & 1 & 2 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 4 \\ 0 \\ 3 \\ 5 \\ 0 \end{pmatrix} = \begin{pmatrix} 24 \\ 22 \\ 18 \\ 16 \\ 20 \\ 18 \\ 14 \\ 20 \\ 18 \\ 14 \\ 12 \end{pmatrix}$$

$$s_0 = 000$$

$$s_1 = 001$$

$$s_2 = 010$$

$$s_3 = 011$$

$$s_4 = 100$$

$$s_5 = 101$$

$$s_6 = 110$$

$$s_7 = 111$$

$$d_s^{\Sigma} = d_{s_7}^{\Sigma} = 12, s = s_7 = 111$$

$$S = 101, 110, 110, 011, \ldots = 4 \times 011, 3 \times 101, 5 \times 110 = 4s_3, 3s_5, 5s_6$$

$$\begin{pmatrix} 0 & 1 & 1 & 2 & 1 & 2 & 2 & 3 \\ 1 & 0 & 2 & 1 & 2 & 1 & 3 & 2 \\ 1 & 2 & 0 & 1 & 2 & 3 & 1 & 2 \\ 2 & 1 & 1 & 0 & 3 & 2 & 2 & 1 \\ 1 & 2 & 2 & 3 & 0 & 1 & 1 & 2 \\ 2 & 1 & 3 & 2 & 1 & 0 & 2 & 1 \\ 2 & 3 & 1 & 2 & 1 & 2 & 0 & 1 \\ 3 & 2 & 2 & 1 & 2 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 4 \\ 0 \\ 3 \\ 5 \\ 0 \end{pmatrix} = \begin{pmatrix} 24 \\ 22 \\ 18 \\ 16 \\ 20 \\ 18 \\ 6 \\ 14 \\ 12 \end{pmatrix}$$

$$s_0 = 000$$

$$s_1 = 001$$

$$s_2 = 010$$

$$s_3 = 011$$

$$s_4 = 100$$

$$s_5 = 101$$

$$s_6 = 110$$

$$s_7 = 111$$

$$d_s^{\Sigma} = d_{s_7}^{\Sigma} = 12, s = s_7 = 111$$

4 🗆 🕨 4 🗆

Table des matières

- 4 Conclusions et perspectives

Conclusions et perspectives

Conclusions:

- présentation d'un petit problème pratique;
- problème proche du closest string problem qui est NP-difficile;
- le problème est malgré tout polynômial.

- plusieurs rythmes.

Conclusions et perspectives

Conclusions:

- présentation d'un petit problème pratique;
- problème proche du closest string problem qui est NP-difficile;
- le problème est malgré tout polynômial.

Perspectives:

- semaines partielles sur les bords;
- plusieurs rythmes.

Présenter une liste de dates de manière lisible : complexité et algorithme

Guillaume Pinot

Canal TP 20 rue Hector Malot 75012 Paris, France guillaume.pinot@canaltp.fr

ROADEF 2015

Bibliographie I

Error detecting and error correcting codes.

Bell System Technical Journal, 26(2):147–160.

Lanctot, J. K., Lia, M., Mab, B., Wangc, S., and Zhang, L. (2003).

Distinguishing string selection problems.

Information and Computation, 185:41–55.

Ma, B. and Sun, X. (2008).

More efficient algorithms for closest string and substring problems.

In Research in Computational Molecular Biology, volume 4955, pages 396–409. Springer.

