Math 40002 Analysis 1

Problem Sheet 3

- Without looking at your notes, say out loud (ideally to a friend) the definition of a_n → a in English (not maths!). Pass back and forwards between maths and English (e.g. ∀ε > 0 ←→ "However close I want to get", etc.).
 Write down your definition. Now check your notes. Are there any subtle differences (things in a different order, ∀ replaced by ∃, etc.?) If so they're VERY important. Is your definition still correct? There are many correct and incorrect ways of writing the same definition. If it's only nearly correct, it's very wrong can you find a counterexample to your definition?
- 2.* Which of the following sequences are convergent and which are not? What is the limit of the convergent ones? Give proofs for each.

(a) $\frac{n+7}{n}$

(d) $\frac{n^3-2}{n^2+5n+6}$

(b) $\frac{n}{n+7}$

 $\left(\mathbf{e}\right) \quad \frac{1-n(-1)^n}{n}$

(c) $\frac{n^2+5n+6}{n^3-2}$

- 3. We've defined what it means for (a_n) to converge to a real number $a \in \mathbb{R}$ as $n \to \infty$. Professor Lee Beck thinks infinity is cool, so he comes up with some definitions of $a_n \to +\infty$ as $n \to \infty$. Which are right and which are wrong? For any wrong ones, illustrate its wrongness with an example.
 - (a) $\forall a \in \mathbb{R}, \ a_n \not\to a.$
 - (b) $\forall \epsilon > 0 \ \exists N \in \mathbb{N} \text{ such that } n \geq N \ \Rightarrow \ |a_n \infty| < \epsilon.$
 - (c) $\forall R > 0 \ \exists N \in \mathbb{N} \text{ such that } n \geq N \implies a_n > R.$
 - (d) $\forall a \in \mathbb{R} \ \exists \epsilon > 0 \text{ such that } \forall N \in \mathbb{N} \ \exists n \geq N \text{ such that } |a_n a| \geq \epsilon.$
 - (e) $\forall \epsilon > 0 \ \exists N \in \mathbb{N} \text{ such that } \forall n \geq N, \ a_n > \frac{1}{\epsilon}$.
 - (f) $\forall n \in \mathbb{N}, \ a_{n+1} > a_n.$
 - (g) $\forall R \in \mathbb{R}, \exists n \in N \text{ such that } a_n > R.$
 - (h) $1/\max(1, a_n) \to 0$.
- 4. Let $S \subset \mathbb{R}$ be nonempty and bounded above. Show that there exists a sequence of numbers $s_n \in S$, $n = 1, 2, 3, \ldots$, such that $s_n \to \sup S$.
- 5. Give without proof examples of sequences (a_n) , (b_n) with the following properties.
 - (i) Neither of a_n, b_n is convergent, but $a_n + b_n$, $a_n b_n$ and a_n/b_n all converge.
 - (ii) a_n converges, b_n is un bounded, but a_nb_n converges.
 - (iii) a_n converges, b_n bounded, but $a_n b_n$ diverges.

You should prepare starred questions * to discuss with your personal tutor.