Rudin: Functions of Several Variables

James Pagan

October 2023

Contents

1	Nor	emed Vector Spaces	2
	1.1	Definition	2
	1.2	Matrix Norm	3
	1.3	Properties of Linear Maps	4
	1.4	Completeness of $\mathcal{L}(\mathbb{C}^n, \mathbb{C}^m)$	5
2 Differentiation		Gerentiation	7
	2.1	The Derivative	7
	2.2	Chain Rule	8
	2.3	The Partial Derivative	9
	2.4	Mixed Partial Derivatives	10
	2.5	Real-Valued Functions	11
3 The Inverse Function Theorem		e Inverse Function Theorem	12
	3.1	The Contraction Principle	12
	3.2	The Inverse Function Theorem	13
	3.3	The Implicit Function Theorem	15

1 Normed Vector Spaces

1.1 Definition

A **normed vector space** is a complex vector space X equipped with a mapping $\|\cdot\|: X \to \mathbb{R}$ that satisfies the following properties:

- 1. **Positivity**: $\|\mathbf{x}\| \ge 0$, with equality if and only if $\mathbf{x} = \mathbf{0}$.
- 2. Homogenity: $\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|$ for all $\lambda \in \mathbb{C}$.
- 3. Triangle Inequality: $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$

A complete normed vector space is called a **Banach space**. As demonstrated in RealAnalysis/babyrudin3.tex, all the desired limit formulas hold on normed vector spaces.

Theorem 1. Norms are uniformly continuous mappings from X to \mathbb{R} .

Proof. For all $\epsilon > 0$, we have that

$$0 < \|\mathbf{x} - \mathbf{y}\| < \epsilon \implies \|\|\mathbf{x}\| - \|\mathbf{y}\|\| \le \|\mathbf{x} - \mathbf{y}\| < \epsilon.$$

We conclude that $\|\cdot\|: X \to \mathbb{R}$ is uniformly continuous.

Theorem 2. Let X be a finite-dimensional vector space over \mathbb{C} . Then any two norms on X are equivalent.

Proof. Let dim X = n. We first prove the theorem for \mathbb{C}^n ; let $\mathbf{e}_1, \dots, \mathbf{e}_n$ be the canonical basis of \mathbb{C}^n , and suppose $\|\cdot\|_1 : \mathbb{C}^n \to [0, \infty)$ is a norm. We prove that $\|\mathbf{z}\|_1$ is equivalent to the canonical norm $\|\mathbf{z}\|$.

Consider the boundary of the unit ball of the canonical norm in \mathbb{C}^n . Since $\|\cdot\|_1$ is continuous, the Extreme Value Theorem guarantees that there exists $\mathbf{u}, \mathbf{s} \in X$ with canonical norm 1 such that

$$\|\mathbf{u}\|' = \inf_{\|\mathbf{z}\|=1} \{\|\mathbf{z}\|'\}$$
 and $\|\mathbf{s}\|' = \sup_{\|\mathbf{z}\|=1} \{\|\mathbf{z}\|'\}$

Then for all $\mathbf{z} \in \mathbb{C}^n$, the constants $\|\mathbf{u}\|'$ and $\|\mathbf{s}\|'$ allow for norm equivalence:

$$\|\mathbf{u}\|'\|\mathbf{z}\| \, \leq \, \left\|\frac{\mathbf{z}}{\|\mathbf{z}\|}\right\|'\|\mathbf{z}\| \, = \, \|\mathbf{z}\|' \, = \, \left\|\frac{\mathbf{z}}{\|\mathbf{z}\|}\right\|'\|\mathbf{z}\| \, \leq \, \|\mathbf{s}\|'\|\mathbf{z}\|.$$

We conclude that all norms on \mathbb{C}^n are equivalent to the canonical norm. Proving norm equivalence from X to \mathbb{C}^n is not challenging.

1.2 Matrix Norm

Let X and Y be normed vector spaces. If T is bounded, the **norm** of T is as follows:

$$\|\mathbf{T}\| = \sup\{\|\mathbf{T}\mathbf{x}\| \mid \mathbf{x} \in X, \|\mathbf{x}\| \le 1\}.$$

The **critical vector** of **T** is the vector $\mathbf{x} \in X$ such that $\|\mathbf{x}\| \le 1$ and $\|\mathbf{T}\mathbf{x}\| = \|\mathbf{T}\|$; the critical vector always has norm 1. Naturally, $\|\mathbf{T}\mathbf{x}\| \le \|\mathbf{T}\| \cdot \|\mathbf{x}\|$; since equality is attained, $\|\mathbf{T}\mathbf{x}\| \le \lambda \mathbf{x}$ implies $\|\mathbf{T}\| \le \lambda$.

Theorem 3. If $T, S \in \mathcal{B}(X, Y)$, then $||T + S|| \le ||T|| + ||S||$. X = Y entails $||TS|| \le ||T|| ||S||$.

Proof. Let \mathbf{x} be the critical vector of $\mathbf{T} + \mathbf{S}$. Then

$$\|\mathbf{T} + \mathbf{S}\| = \|(\mathbf{T} + \mathbf{S})\mathbf{x}\| \le \|\mathbf{T}\mathbf{x}\| + \|\mathbf{S}\mathbf{x}\| \le \|\mathbf{T}\|\|\mathbf{x}\| + \|\mathbf{S}\|\|\mathbf{x}\| = \|\mathbf{T}\| + \|\mathbf{S}\|.$$

Now suppose X = Y and let w be the critical vector of **TS**. Then

$$\|TS\| = \|TSw\| \le \|T\|\|Sw\| \le \|T\|\|S\|\|w\| = \|T\|\|S\|.$$

This completes the proof.

Theorem 4. The matrix norm is a metric of all bounded linear maps in $\mathcal{B}(X,Y)$.

Proof. Suppose $\mathbf{T}, \mathbf{S} \in \mathcal{B}(X, Y)$ are bounded. We must perform four rather routine calculations:

1. **Positivity**: The matrix norm is nonnegative. If $\|\mathbf{T} - \mathbf{S}\| = 0$, then $\|\mathbf{x}\| = 1$ implies $(\mathbf{T} - \mathbf{S})\mathbf{x} = \mathbf{0}$; hence for all $\mathbf{x} \in X$,

$$(\mathbf{T} - \mathbf{S})\mathbf{x} = \|\mathbf{x}\| \left((\mathbf{T} - \mathbf{S}) \left(\frac{\mathbf{x}}{\|\mathbf{x}\|} \right) \right) = \|\mathbf{x}\|(0) = 0;$$

thus $\mathbf{T} - \mathbf{S} = \mathbf{0}$ and $\mathbf{T} = \mathbf{T}$.

2. **Symmetry**: Notice that $(\mathbf{T} - \mathbf{S})\mathbf{x} = -(\mathbf{S} - \mathbf{T})\mathbf{x}$ for all $\mathbf{x} \in X$. Naturally if \mathbf{w} is the critical vector of $\mathbf{T} - \mathbf{S}$, then $-\mathbf{w}$ is the critical vector of $\mathbf{S} - \mathbf{T}$; thus

$$\|\mathbf{T} - \mathbf{S}\| = \|\mathbf{w}\| = \|-\mathbf{w}\| = \|\mathbf{S} - \mathbf{T}\|.$$

3. Triangle Inequality: For all bounded $\mathbf{R} \in \mathcal{L}(X,Y)$,

$$\|T - S\| = \|(T - R) + (R - S)\| \le \|T - R\| + \|R - S\|.$$

We conclude that the matrix norm is a metric of the bounded matricies of $\mathcal{L}(X,Y)$. \square It is straightforward that $\|\lambda \mathbf{T}\| = |\lambda| \|\mathbf{T}\|$ for all $\lambda \in \mathbb{C}$ as well.

1.3 Properties of Linear Maps

Theorem 5. Let X be a finite-dimensional normed vector space, and let Y be a normed vector space. Then all $\mathbf{T} \in \mathcal{L}(X,Y)$ are bounded.

Proof. Let dim X = n and let $\mathbf{e}_1, \dots, \mathbf{e}_n$ be a basis of X. Then for all $\mathbf{z} = z_1 \mathbf{e}_1 + \dots + z_n \mathbf{e}_n$, we have

$$\|\mathbf{Tz}\| \le |z_1| \|\mathbf{Te}_1\| + \dots + |z_n| \|\mathbf{Te}_n\| \le C(|z_1| + \dots + |z_n|),$$

where $C = \max\{\|\mathbf{T}\mathbf{e}_i\|\}$. Realize that $\|\mathbf{z}\|_1 = |z_1| + \cdots + |z_n|$ defines a norm on X; since all norms finite-dimensional vector spaces are equivalent, there exists another constant M such that $|z_1| + \cdots + |z_n| = \|\mathbf{z}\|_1 \le M\|\mathbf{z}\|$. Therefore

$$\|\mathbf{T}\mathbf{z}\| \le CM\|\mathbf{z}\|,$$

so **T** is bounded. This completes the proof.

Theorem 6. If $T \in \mathcal{L}(X,Y)$ is bounded, then T is uniformly continuous.

Proof. Let **T** be bounded. For all $\epsilon > 0$, then $0 \le \|\mathbf{x} - \mathbf{y}\| < \frac{\epsilon}{\|\mathbf{T}\|}$ implies

$$\|\mathbf{T}\mathbf{x} - \mathbf{T}\mathbf{y}\| \le \|\mathbf{T}\| \cdot \|\mathbf{x} - \mathbf{y}\| < \|\mathbf{T}\| \left(\frac{\epsilon}{\|\mathbf{T}\|}\right) = \epsilon.$$

Thus, T is uniformly continuous.

Let Ω be the set of all bounded, invertible linear operators on X. Recall from Linear Algebra that an operator $\mathbf{T} \in \mathcal{L}(\mathbb{C}^n)$ is invertible if and only if range $\mathbf{T} = \mathbb{C}^n$.

Theorem 7. Let X be a finite dimensional vector space. If $\mathbf{T} \in \Omega$ and $\mathbf{S} \in \mathcal{L}(X)$ are both bounded, then

$$\|\mathbf{T}^{-1}\| \cdot \|\mathbf{S} - \mathbf{T}\| < 1$$

implies $\mathbf{S} \in \Omega$.

Proof. Suppose $\mathbf{S} \notin \Omega$. Then there exists $\mathbf{x} \in X$ of norm 1 such that $\mathbf{S}\mathbf{x} = \mathbf{0}$, so

$$1 = \|\mathbf{x}\|$$

$$= \|\mathbf{T}^{-1}\mathbf{T}\mathbf{x}\|$$

$$\leq \|\mathbf{T}^{-1}\| \cdot \|\mathbf{T}\mathbf{x}\|$$

$$= \|\mathbf{T}^{-1}\| \cdot \|\mathbf{S}\mathbf{x} - \mathbf{T}\mathbf{x}\|$$

$$\leq \|\mathbf{T}^{-1}\| \cdot \|\mathbf{S} - \mathbf{T}\| \cdot \|\mathbf{x}\|$$

$$= \|\mathbf{T}^{-1}\| \cdot \|\mathbf{S} - \mathbf{T}\|.$$

Taking the contrapositive yields the desired result.

Theorem 8. Let X be a finite-dimensional normed vector space. Then Ω is an open subset of $\mathcal{L}(X)$, and the bijection $f: \mathbf{T} \to \mathbf{T}^{-1}$ is continuous on Ω .

Proof. Let $\mathbf{T} \in \Omega$. Since $\|\mathbf{T}^{-1}\|$ is nonzero, we may consider the open ball at \mathbf{T} of radius $\frac{1}{\|\mathbf{T}^{-1}\|}$; more specifically, all $\mathbf{S} \in \mathcal{L}(\mathbb{C}^n)$ such that

$$\|\mathbf{T} - \mathbf{S}\| < \frac{1}{\|\mathbf{T}^{-1}\|}.$$

Since $\|\mathbf{T}\|$ is nonzero, $\|\mathbf{T} - \mathbf{S}\| \cdot \|\mathbf{T}^{-1}\| < 1$; hence $\mathbf{S} \in \Omega$. The open ball is contained within Ω , so the set Ω is open. As per continuity, realize that

$$\lim_{S \to T^{-1}} \|\mathbf{T} - \mathbf{S}\|$$

As per continuity: **Rudin's proof is nonrigorous**, and I don't know how to rectify it. The basic idea is that

$$\|\mathbf{T}^{-1} - \mathbf{S}^{-1}\| = \|\mathbf{T}^{-1}\mathbf{S}\mathbf{S}^{-1} - \mathbf{T}^{-1}\mathbf{T}\mathbf{S}^{-1}\| \le \|\mathbf{T}^{-1}\| \cdot \|\mathbf{S} - \mathbf{T}\| \cdot \|\mathbf{S}^{-1}\|,$$

but using this to bound ϵ depends on \mathbf{T}^{-1} and \mathbf{S}^{-1} . I will leave this unfinished until instructor clarification.

1.4 Completeness of $\mathcal{L}(\mathbb{C}^n, \mathbb{C}^m)$

Before we discuss the completeness of $\mathcal{L}(\mathbb{C}^n, \mathbb{C}^m)$, we must uncover an important inequality. Let $\mathbf{z} = (z_1, \dots, z_n) \in \mathbb{C}^n$; for any $\mathbf{T} \in \mathcal{L}(\mathbb{C}^n, \mathbb{C}^m)$, define the components of \mathbf{T} as t_{ij} for $i \in \{1, \dots, n\}$ and $j \in \{1, \dots, m\}$. Then

$$\mathbf{Tz} = \left(\sum_{j=1}^n t_{1j}z_j\right)\mathbf{e}_1 + \dots + \left(\sum_{j=1}^n t_{mj}z_j\right)\mathbf{e}_m.$$

Then via the Cauchy-Schwarz Inequality,

$$\|\mathbf{T}\mathbf{z}\|^{2} = \left(\sum_{j=1}^{n} t_{1j} z_{j}\right)^{2} + \dots + \left(\sum_{j=1}^{n} t_{mj} z_{j}\right)^{2}$$

$$\leq \left(\sum_{j=1}^{n} t_{1j}^{2}\right) \left(\sum_{j=1}^{n} z_{j}^{2}\right) + \dots + \left(\sum_{j=1}^{n} t_{mj}^{2}\right) \left(\sum_{j=1}^{n} z_{j}^{2}\right)$$

$$= \left(\sum_{j=1}^{n} z_{j}^{2}\right) \left(\sum_{i=1}^{m} \sum_{j=1}^{n} t_{ij}^{2}\right) = \|\mathbf{z}\|^{2} \left(\sum_{i=1}^{m} \sum_{j=1}^{n} t_{ij}^{2}\right).$$

Let \mathbf{w} be the critical vector of \mathbf{T} . Then

$$\|\mathbf{T}\| = \|\mathbf{T}\mathbf{w}\| \le \|\mathbf{z}\| \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} t_{ij}^2} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} t_{ij}^2}.$$

While $\mathcal{L}(\mathbb{C}^n, \mathbb{C}^m)$ and \mathbb{C}^{n+m} may be isomorphic, the relevant bijection is not an isometry.

Theorem 9. If Y is a Banach space, then $\mathcal{B}(X,Y)$ is a Banach space.

Proof. Let (\mathbf{T}_n) be a Cauchy sequence in $\mathcal{B}(X,Y)$; for all $\epsilon > 0$, there exists N such that

$$N \le n, m \implies \|\mathbf{T}_n - \mathbf{T}_m\| < \epsilon. \tag{1}$$

We will define the limit of (\mathbf{T}_n) . For any $\mathbf{x} \in X$, we have that

$$\|\mathbf{T}_n\mathbf{x} - \mathbf{T}_m\mathbf{x}\| \le \|\mathbf{T}_n - \mathbf{T}_m\|\|\mathbf{x}\| \le \epsilon \|\mathbf{x}\|.$$

By selecting $\frac{\epsilon}{\|\mathbf{x}\|}$ in equation (1), we find that $(\mathbf{T}_n\mathbf{x})$ is a Cauchy sequence in in Y. Thus, it converges to a unque vector in Y. Define a mapping $\mathbf{T}: X \to Y$ as follows:

$$\mathbf{T}\mathbf{z} \stackrel{\mathrm{def}}{=} \lim_{n \to \infty} \mathbf{T}_n \mathbf{z}$$

It is relatively easy to show that **T** is linear: for all $\mathbf{x}, \mathbf{y} \in X$ and $\lambda \in \mathbb{C}$, we have

$$\mathbf{T}(\mathbf{x} + \mathbf{y}) = \lim_{n \to \infty} \mathbf{T}_n(\mathbf{x} + \mathbf{y}) = \lim_{n \to \infty} \mathbf{T}_n\mathbf{x} + \lim_{n \to \infty} \mathbf{T}_n\mathbf{y} = \mathbf{T}\mathbf{x}\mathbf{T}\mathbf{y}$$
$$\mathbf{T}(\lambda\mathbf{x}) = \lim_{n \to \infty} \mathbf{T}_n(\lambda\mathbf{x}) = \lambda \lim_{n \to \infty} \mathbf{T}\mathbf{x} = \lambda\mathbf{T}_x.$$

We must show that **T** is bounded and is the limit of (\mathbf{T}_n) . Observe that

$$\|\mathbf{T}\mathbf{z}\| \leq \|\mathbf{T}\mathbf{z} - \mathbf{T}_n\mathbf{z}\| + \|\mathbf{T}_n\mathbf{z}\|.$$

Observe that the transformation $\phi : \mathbf{y} \to ||\mathbf{T}_n \mathbf{x} - \mathbf{y}||$ is continuous, since it is a composition of continuous functions. Hence

$$\|\mathbf{T}_n\mathbf{z}\mathbf{x} - \mathbf{T}_m\mathbf{z}\| \le \epsilon \|\mathbf{z}\| \implies \|\mathbf{T}_n - \mathbf{T}\mathbf{z}\| = \lim_{m \to \infty} \|\mathbf{T}_n\mathbf{z} - \mathbf{T}_m\mathbf{z}\| \le \epsilon \|\mathbf{x}\|.$$

Then pick $\epsilon = 1$ and n = N. We find that

$$\|\mathbf{T}\mathbf{x}\| \le \|(\mathbf{T} - \mathbf{T}_n)\mathbf{x}\| + \|\mathbf{T}_n\mathbf{x}\|$$

$$\le \|\mathbf{x}\| + \|\mathbf{T}_N\|\|\mathbf{x}\|$$

$$\le (1 + \|\mathbf{T}_N\|)\mathbf{x}.$$

Letting $c = 1 + ||\mathbf{T}_N||$ yields that **T** is bounded. As per the limit condition, we have that

$$\|\mathbf{T}_n - \mathbf{T}\| = \sup_{\mathbf{x} \neq \mathbf{0}} \frac{\|(\mathbf{T}_n - \mathbf{T})\mathbf{x}\|}{\|\mathbf{x}\|} \le \epsilon,$$

which completes the proof.

Corollary 1. If the components of $\mathbf{T} \in \mathcal{L}(\mathbb{C}^n, \mathbb{C}^m)$ are continuous functions from a metric space X to \mathbb{R} , then the mapping $X \to \mathbf{T}$ is continuous.

Proof. Let the continuous components be f_{ij} . For all $\epsilon > 0$, there are N_{ij} such that

$$0 < d(x, y) < \delta_{ij} \implies |f_{ij}(x) - f_{ij}(y)| < \frac{\epsilon}{\sqrt{mn}}.$$

Then identical means as Theorem 6 demonstrate that the mapping $X \to \mathbf{T}$ is continuous.

2 Differentiation

2.1 The Derivative

Let $f: E \to \mathbb{R}^m$ for an open set $E \subset \mathbb{R}^n$. Then f is **differentiable** at $\mathbf{x} \in E$ if there exists a linear map $D \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ such that

$$\lim_{\mathbf{h}\to\mathbf{0}}\frac{\|f(\mathbf{x}+\mathbf{h})-f(\mathbf{x})-\mathbf{J}\mathbf{h}\|}{\|\mathbf{h}\|}=0,$$

we say that f is **differentiable** at \mathbf{x} and write $f'(\mathbf{x}) = \mathbf{J}$, where J is the **total derivative** of f at \mathbf{x} — also called the matrix of partial derivatives, the differential, or the total derivative. If f is differentiable at $all \ \mathbf{x} \in U$, we say that f itself is differentiable over U.

Lemma 1. The total derivative is unique.

Proof. Define f like above. Suppose that for contradiction that there exist two matricies $\mathbf{J} \neq K$ such that

$$\lim_{\mathbf{h}\to\mathbf{0}}\frac{\|f(\mathbf{x}+\mathbf{h})-f(\mathbf{x})-\mathbf{J}\mathbf{h}\|}{\|\mathbf{h}\|}=\lim_{\mathbf{h}\to\mathbf{0}}\frac{\|f(\mathbf{x}+\mathbf{h})-f(\mathbf{x})-K\mathbf{h}\|}{\|\mathbf{h}\|}=0.$$

See that $\mathbf{J} - K \neq 0$, so ||J - K|| > 0. Then there exist d_1 and d_2 such that

$$0 < \|\mathbf{h}\| < \delta_1 \implies \frac{\|-f(\mathbf{x} + \mathbf{h}) + f(\mathbf{x}) + \mathbf{J}\mathbf{h}\|}{\|\mathbf{h}\|} < \frac{\|J - K\|}{2}$$
$$0 < \|\mathbf{h}\| < \delta_2 \implies \frac{\|f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) - K\mathbf{h}\|}{\|\mathbf{h}\|} < \frac{\|\mathbf{J} - K\|}{2}$$

For $0 < \|\mathbf{h}\| < \min\{\delta_1, \delta_2\}$, we have that

$$\begin{aligned} \|\mathbf{J} - K\| &= \frac{\|J - K\|}{2} + \frac{\|J - K\|}{2} \\ &> \frac{\|-f(\mathbf{x} + \mathbf{h}) + f(\mathbf{x}) + \mathbf{J}\mathbf{h}\|}{\|\mathbf{h}\|} + \frac{\|f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) - K\mathbf{h}\|}{\|\mathbf{h}\|} \\ &\geq \frac{\|(-f(\mathbf{x} + \mathbf{h}) + f(\mathbf{x}) + \mathbf{J}\mathbf{h}) + (f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) - K\mathbf{h})\|}{\mathbf{h}} \\ &= \frac{\|(\mathbf{J} - K)\mathbf{h}\|}{\mathbf{h}}, \end{aligned}$$

so $\|\mathbf{J} - K\| \|\mathbf{h}\| > \|(J - K)\mathbf{h}\|$, which is our desired contradiction.

As an example, if $T \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ and $\mathbf{x} \in \mathbb{R}^n$, then the derivative of T at \mathbf{x} is T, as

$$\lim_{\mathbf{h}\to\mathbf{0}} \frac{\|T(\mathbf{x}+\mathbf{h}) - T\mathbf{x} - T\mathbf{h}\|}{\|\mathbf{h}\|} = \lim_{\mathbf{h}\to\mathbf{0}} \frac{\|\mathbf{0}\|}{\|\mathbf{h}\|} = 0.$$

It is very intuitive to think of **J** as an approximation of f at \mathbf{x}_0 — namely, that there exists $r(\mathbf{h})$ such that $f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0) = J\mathbf{h} - r(\mathbf{h})$ and $\lim_{\mathbf{h}\to\mathbf{0}} \frac{r(\mathbf{h})}{\mathbf{h}} = 0$. This strategy will be exhibited in the following proof:

2.2 Chain Rule

Theorem. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^k$. If f is differentiable at \mathbf{x}_0 and g is differentiable at $f(\mathbf{x}_0)$ — and if \mathbf{x}_0 and $f(\mathbf{x}_0)$ are contained within open sets in the domains of f and g respectively — then $g \circ f$ is differentiable at \mathbf{x}_0 , and

$$(g \circ f)' = g'(f(\mathbf{x}_0))f'(\mathbf{x}_0).$$

Proof. Let $f'(\mathbf{x}_0) = \mathbf{J}$ and $g'(f(\mathbf{x}_0)) = K$. We have that

$$\lim_{\mathbf{h}\to\mathbf{0}} \frac{\|f(\mathbf{x}_0+\mathbf{h})-f(\mathbf{x}_0)-\mathbf{J}\mathbf{h}\|}{\|\mathbf{h}\|} = 0 = \lim_{\mathbf{h}\to\mathbf{0}} \frac{\|g(f(\mathbf{x}_0)+\mathbf{h})-g(f(\mathbf{x}_0))-K\mathbf{h}\|}{\|h\|}.$$

Define the function $\mathbf{k} = f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0)$; clearly, $\lim_{\mathbf{h} \to \mathbf{0}} \mathbf{k} = 0$. We have that

$$g(f(\mathbf{x}_0 + \mathbf{h})) - g(f(\mathbf{x}_0)) - (K\mathbf{J})\mathbf{h}$$

$$= g(f(\mathbf{x}_0) + \mathbf{k}) - g(f(\mathbf{x}_0)) - K(\mathbf{J}\mathbf{h} - f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0) + \mathbf{k})$$

$$= g(f(\mathbf{x}_0) + \mathbf{k}) - g(f(\mathbf{x}_0)) - K\mathbf{k} + K(f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0) - \mathbf{J}\mathbf{h}).$$

We now establish bounds for $\|\mathbf{k}\|$:

$$\|\mathbf{k}\| = \|f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0) - \mathbf{J}\mathbf{h} + J\mathbf{h}\| \le \|\mathbf{h}\| \left(\|J\| + \frac{\|f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0) - J\mathbf{h}\|}{\|\mathbf{h}\|} \right)$$

Then using the composition rule for limits,

$$0 \leq \lim_{\mathbf{h} \to \mathbf{0}} \frac{\|g(f(\mathbf{x}_0 - \mathbf{h})) - g(f(\mathbf{x}_0)) - (K\mathbf{J})\mathbf{h}\|}{\|\mathbf{h}\|}$$

$$\leq \lim_{\mathbf{h} \to \mathbf{0}} \frac{\|g(f(\mathbf{x}_0) + \mathbf{k}) - g(f(\mathbf{x}_0)) - K\mathbf{k}\|}{\|\mathbf{h}\|} + \lim_{\mathbf{h} \to \mathbf{0}} \frac{\|K\|\|f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0) - \mathbf{J}\mathbf{h}\|}{\|\mathbf{h}\|}$$

$$\leq \lim_{\mathbf{h} \to \mathbf{0}} \frac{\|g(f(\mathbf{x}_0) + \mathbf{k}) - g(f(\mathbf{x}_0)) - K\mathbf{k}\|}{\|\mathbf{k}\|} \lim_{\mathbf{h} \to \mathbf{0}} \left(\|\mathbf{J}\| + \frac{\|f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0) - J\mathbf{h}\|}{\mathbf{h}}\right)$$

$$= (0)(\|\mathbf{J}\| + 0) = 0.$$

so $(g \circ f)'(\mathbf{x}_0) = K\mathbf{J} = g'(f(\mathbf{x}_0))f'(\mathbf{x}_0)$ as required. Yes, that last step of Rudin's is nonrigorous — define it as a piecewise expression equal to 0 whenever $\mathbf{k} = \mathbf{0}$, etc.

2.3 The Partial Derivative

Consider $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$, where U is an open subset of \mathbb{R}^n ; let $\mathbf{e}_1, \dots, \mathbf{e}_n$ and $\mathbf{e}_1, \dots, \mathbf{e}_m$ be the standard bases of \mathbb{R}^n and \mathbb{R}^m . The **components** of f are the real functions f_1, \dots, f_m defined by

$$f(\mathbf{x}) = f_1(\mathbf{x})\mathbf{e}_1 + \dots + f_m(\mathbf{x})\mathbf{e}_m,$$

or equivalently by $f_i(\mathbf{x}) = f(\mathbf{x}) \cdot \mathbf{e}_i$ for each $i \in \{1, ..., m\}$. Then for $x \in U$, $i \in \{1, ..., m\}$, and $j \in \{1, ..., n\}$, we define the **partial derivative** of f_i with respect to x_j as

$$\frac{\partial f_i}{\partial x_j} = \lim_{t \to 0} \frac{f_i(\mathbf{x} + t\mathbf{e}_j) - f_i(\mathbf{x})}{t}.$$

The fact this is a one-variable limit explains why the computation of partial derivatives aligns so closely with differentiation of univarite functions.

Lemma. The entries of the total derivative are the partial derivatives: namely, if $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ (where U is open) and f is differentiable at x_0 , then the partial derivatives exist and

$$f'(\mathbf{x}_0)\mathbf{e}_j = \sum_{i=1}^m \left(\frac{\partial f_i}{\partial x_j}\right)(\mathbf{x})\mathbf{e}_i$$

Proof. Let j be any integer in the set $\{1,\ldots,n\}$. Since f is differentiable at \mathbf{x} ,

$$\lim_{t \to 0} \frac{f(\mathbf{x}_0 + t\mathbf{e}_j) - f(\mathbf{x}_0)}{t} - f'(\mathbf{x})\mathbf{e}_j = \lim_{t \to 0} \frac{\|f(\mathbf{x}_0 + t\mathbf{e}_j) - f(\mathbf{x}_0) - f'(\mathbf{x}_0)(t\mathbf{e}_j)\|}{\|t\mathbf{e}_j\|} = 0.$$

Therefore,

$$f'(\mathbf{x})\mathbf{e}_{j} = \lim_{t \to 0} \frac{f(\mathbf{x}_{0} + t\mathbf{e}_{j}) - f(\mathbf{x}_{0})}{t}$$

$$= \lim_{t \to 0} \frac{\sum_{i=1}^{m} (f_{1}(\mathbf{x}_{0} + t\mathbf{e}_{j})\mathbf{e}_{i}) - \sum_{i=1}^{m} (f_{i}(\mathbf{x}_{0})\mathbf{e}_{i})}{t}$$

$$= \sum_{i=1}^{m} \left(\lim_{t \to 0} \frac{f(\mathbf{x}_{0} + t\mathbf{e}_{j}) - f(\mathbf{x}_{0})}{t}\mathbf{e}_{i}\right)$$

$$= \sum_{i=1}^{m} \left(\frac{\partial f_{i}}{\partial x_{j}}\right) (\mathbf{x}_{0})\mathbf{e}_{i},$$

as desired.

We denote D_{21} as the double partial derivative of f with respect to the first, then the second, variable.

2.4 Mixed Partial Derivatives

Lemma. Suppose f is defined in an open set $U \subset R^2$ and D_1 and D_{21} exist at every point of U. Let $Q \subset U$ be a closed rectangle with sides parallel to the coordinate exes with opposite verticies (a,b) and (a+h,b+k) for $h,k \neq 0$, and define

$$\triangle(f,Q) = f(a+h,b-k) - f(a+h,b) - f(a,b+k) + f(a,b).$$

Then there is a point (x, y) in the interior of Q such that

$$\triangle(f,Q) = hk(D_{21}f)(x,y).$$

Proof. Define u(t) = f(t, b+k) - f(t, b). Then by the Mean Value Theorem, there exists a x between a and a + h and y between b and b + K such that

$$\triangle(f,Q) = u(a+h) - u(a)$$
= $hu'(x)$
= $h(D_1 f(x, b+k) - D_1 f(x, b))$
= $hkD_{21} f(x, y)$.

Theorem 10. Suppose f is defined in an open set $U \in \mathbb{R}^2$, that D_1 and D_2 exist at all points of U, and that D_{21} is continuous at some point $(a,b) \in U$. Then D_{12} exists at (a,b), and

$$D_{12}f(a,b) = D_{21}f(a,b).$$

Proof.

2.5 Real-Valued Functions

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable real-valued function. Then f' is a 1-by-n matrix:

$$f' = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x^n} \end{bmatrix}.$$

The transpose of this matrix is called the **gradient** of f;

$$\nabla f = f'^{\top} = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix} = \frac{\partial f}{\partial x_1} \mathbf{e}_1 + \dots + \frac{\partial f}{\partial x_n} \mathbf{e}_n,$$

where $\mathbf{e}_1, \dots, \mathbf{e}_n$ is the standard basis of \mathbb{R}^n . Observe that $f'\mathbf{v} = \nabla f \cdot \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^n$ — so the gradient and the derivative of a real-valued function are dual concepts. We can define the derivative of f as a vector ∇f such that

$$\lim_{\mathbf{h}\to 0} \frac{\|f(\mathbf{x}+\mathbf{h}) - f(\mathbf{x}) - \nabla f \cdot \mathbf{h}\|}{\|\mathbf{h}\|} = 0.$$

The directional derivative of f at \mathbf{x} along a unit vector \mathbf{v} is defined as

$$\nabla_{\mathbf{v}} f = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{v}) - f(\mathbf{x})}{t}$$

Observe that $\nabla_{\mathbf{e}_i} f = \frac{\partial f}{\partial x_i} = \nabla f \cdot \mathbf{e}_i$ for all $i \in \{1, \dots, n\}$. This might lead us to conclude the following lemma:

Lemma. If $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable at \mathbf{x}_0 , then $\nabla_{\mathbf{v}} f = \mathbf{v} \cdot (\nabla f)$ for all unit vectors \mathbf{v} .

Proof. Observe that $f'\mathbf{v} = \nabla f \cdot \mathbf{v}$, so we may express the definition of the total derivative in terms of the gradient of f, and that $||t\mathbf{v}|| = |t|$:

$$\begin{split} \nabla_{\mathbf{v}} f &= \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{v}) - f(\mathbf{x})}{t} \\ &= \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{v}) - f(\mathbf{x}) - \nabla f \cdot (t\mathbf{v})}{t} + \lim_{t \to 0} \frac{\nabla f \cdot (t\mathbf{v})}{t} \\ &= 0 + \lim_{t \to 0} \nabla f \cdot \mathbf{v} \\ &= \nabla f \cdot \mathbf{v}, \end{split}$$

as required.

Lemma. If $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable at \mathbf{x}_0 , then the maximum of $\nabla_{\mathbf{v}} f(\mathbf{x}_0)$ across all unit vectors \mathbf{v} occurs when \mathbf{v} points in the direction of $\nabla f(\mathbf{x}_0)$.

Proof. If **v** is a unit vector, then the Cauchy-Schwarz Inequality guarantees that

$$\nabla_{\mathbf{v}} f(\mathbf{x}_0) = \mathbf{v} \cdot \nabla f(\mathbf{x}_0) \le \|\mathbf{v}\| \|\nabla f(\mathbf{x}_0)\| = \|\nabla f(\mathbf{x}_0)\| = \left(\frac{\nabla f(\mathbf{x}_0)}{\|\mathbf{x}_0\|}\right) \cdot \nabla f(\mathbf{x}_0)$$

so the maximum of $\nabla_{\mathbf{v}} f(\mathbf{x}_0)$ occurs when \mathbf{v} is the normalization of the gradient vector and points in the direction of $\nabla f(\mathbf{x}_0)$.

More generally, we have that if θ is the angle between the unit vector \mathbf{v} and ∇f , then

$$\nabla_{\mathbf{v}} f = \mathbf{v} \cdot \nabla f = \|\mathbf{v}\| \|\nabla f\| \cos(\theta) = \|\nabla f\| \cos(\theta).$$

The directional derivative oscilates like a sine wave as \mathbf{v} walks around the unit hypersphere.

3 The Inverse Function Theorem

3.1 The Contraction Principle

Let X be a metric space with metric d. If $\varphi: X \to X$ and there exists a real c < 1 such that

$$d(\varphi(x), \varphi(y)) \le c \cdot d(x, y)$$

for all $x, y \in X$, then φ is a **contraction** of X into X.

Theorem. If X is a complete metric space and if φ is a contraction of X into X, then there exists a unique element $x \in X$ such that $\varphi(x) = x$

Proof. Let c be a constant such that $d(\varphi(x), \varphi(y)) \leq c \cdot d(x, y)$ for all $x, y \in X$, and select from X some element x_0 . We define the sequence x_0, x_1, \ldots recursively by setting

$$x_{n+1} = \varphi(x_n)$$

for all $n \in \mathbb{Z}_{\geq 0}$. We have via induction that

$$d(x_{n+1}, x_n) = d(\varphi(x_n), \varphi(x_{n-1})) = c \cdot d(x_n, x_{n-1}) = \dots = c^n \cdot d(x_1, x_0).$$

We seek to invoke the completeness of X. Observe that for all N < n < m,

$$d(x_m, x_n) \le d(x_{n+1}, x_n) + d(x_{n+2}, x_{n+1}) + \dots + d(x_m, x_{m-1})$$

$$\le (c^n + c^{n+1} + \dots + c^{m-1})d(x_1, x_0)$$

$$= c^n (1 + \dots + c^{m-n-1})d(x_1, x_0)$$

$$= \left(\frac{c^m - c^n}{c - 1}\right) d(x_1, x_0)$$

As the right-hand side of this equation gets arbitrarily small (select $N = \log_c(\epsilon)$ and let magic happen), we find that x_0, x_1, \ldots is a Cauchy sequence. By completeness, it converges to some $x \in X$. Therefore,

$$x = \lim_{n \to \infty} x_n = \lim_{n \to \infty} \varphi(x_n) = \varphi(f).$$

To prove that f is unique, note that if $\varphi(x) = x$ and $\varphi(y) = y$ for $x, y \in X$, then

$$d(x,y) = d(\varphi(x), \varphi(y)) \le c \cdot d(x,y).$$

As c < 1, we must have that d(x, y) = 0, so x = y.

3.2 The Inverse Function Theorem

Theorem. Suppose that C is a C^1 mapping of an open set $E \subset \mathbb{R}^n$ to \mathbb{R}^n , that the matrix $f'(\mathbf{a})$ is invertible for $\mathbf{a} \in E$, and define $\mathbf{b} = f(\mathbf{a})$ — then there exist open sets $U, V \in \mathbb{R}^n$ such that $\mathbf{a} \in U$, $\mathbf{b} \in V$, and f is a bijective mapping from U to V — and the inverse $g: V \to U$ of f defined by $g(f(\mathbf{x})) = \mathbf{x}$ for all $\mathbf{x} \in U$ is C^1 .

Proof. Let $f'(\mathbf{a}) = \mathbf{J}$, and let $\lambda = \frac{1}{2\|J^{-1}\|}$, and let U be the open ball defined by all vectors \mathbf{x} such that

$$||f'(\mathbf{x}) - \mathbf{J}|| < \lambda.$$

Further define V = f(U) (or more formally, $\mathbf{y} \in \mathbb{R}^m \mid \exists \mathbf{x} \in U, \mathbf{x} = \mathbf{y}$). We must prove that f is invertible, that V is open, and that g is C^1 .

Invertability of f: We now associate to each $y \in \mathbb{R}^n$ a function φ_y defined by

$$\varphi_{\mathbf{y}}(\mathbf{x}) = \mathbf{x} + \mathbf{J}^{-1}(\mathbf{y} - f(\mathbf{x})).$$

Clearly, $f(\mathbf{x}) = \mathbf{y}$ if and only if $\varphi_{\mathbf{y}}(\mathbf{x}) = \mathbf{x}$. Since $\varphi'_{\mathbf{y}}(\mathbf{x}) = I - \mathbf{J}^{-1}f'(\mathbf{x}) = J^{-1}(J - f'(\mathbf{x}))$ for all \mathbf{x}), we find that

$$\|\varphi'_{\mathbf{y}}(\mathbf{x})\| = \|\mathbf{J}^{-1}(J - f'(\mathbf{x}))\| \le \|J^{-1}\|\|J - f'(\mathbf{x})\| < \|J^{-1}\|\lambda = \frac{1}{2}.$$

We use an above theorem to conclude that for all $x_1, x_2 \in U$,

$$\|\varphi_{\mathbf{y}}(\mathbf{x}_1) - \varphi_{\mathbf{y}}(\mathbf{x}_2)\| < \frac{1}{2} \|\mathbf{x}_1 - \mathbf{x}_2\|.$$

We conclude that the Contraction Principle guarantees that $\varphi_{\mathbf{y}}(\mathbf{x}) = \mathbf{x}$ has exactly one solution — so $f(\mathbf{x}) = \mathbf{y}$ has exactly one solution. We conclude that f is bijective (and thus invertible) over U.

Openness of V: For all $\mathbf{y}_0 \in V$, select \mathbf{x}_0 such that $f(\mathbf{x}_0) = \mathbf{y}_0$, and let r be the radius of an open ball $B_{\mathbf{x}_0}$ centered at \mathbf{x}_0 contained within U. We claim that if $\|\mathbf{y} - \mathbf{y}_0\| < \lambda r$, then $\mathbf{y} \in V$.

We must construct $\mathbf{x} \in U$ such that $f(\mathbf{x}) = \mathbf{y}$, which we do by proving that $\varphi_{\mathbf{y}}$ is a contraction of $B_{\mathbf{x}_0}$ into U. If $\|\mathbf{y} - \mathbf{y}_0\| < \lambda r$, observe that

$$\|\varphi_{\mathbf{y}}(\mathbf{x}_0) - \mathbf{x}_0\| = \|\mathbf{J}^{-1}(\mathbf{y} - \mathbf{y}_0)\| < \|J^{-1}\|\lambda r < \frac{r}{2}.$$

Then if $\mathbf{x} \in B$, $\|\mathbf{x} - \mathbf{x}_0\| < r$, so

$$\|\varphi_{\mathbf{y}}(\mathbf{x}) - \mathbf{x}_0\| \le \|\varphi_{\mathbf{y}}(\mathbf{x}) - \varphi_{\mathbf{y}}(\mathbf{x}_0)\| + \|\varphi_{\mathbf{y}}(\mathbf{x}_0) - \mathbf{x}_0\| < \frac{1}{2}\|\mathbf{x} - \mathbf{x}_0\| + \frac{r}{2} \le r,$$

so $\varphi_{\mathbf{y}}(\mathbf{x}) \in B_{\mathbf{x}_0}$. We conclude that $\varphi_{\mathbf{y}}$ is a contraction of the complete metric space $B_{\mathbf{x}_0}$ into itself, so it must have some fixed point $\mathbf{x} \in B_{\mathbf{x}_0}$ such that $\varphi_{\mathbf{y}}(\mathbf{x}) = \mathbf{x}$. Then $f(\mathbf{x}) = \mathbf{y}$, so $\mathbf{y} \in f(B_{\mathbf{x}_0}) \subset f(U) = V$. Thus V is an open set.

Smoothness of Inverse: For all $\mathbf{y} \in V$ and $\mathbf{y} + \mathbf{k} \in V$, there exists \mathbf{x} and $\mathbf{x} + \mathbf{h} \in U$ such that $\mathbf{y} = f(\mathbf{x})$ and $\mathbf{y} + \mathbf{k} = f(\mathbf{x} + \mathbf{h})$. Then

$$\begin{aligned} \left\| \mathbf{h} - \mathbf{J}^{-1} \mathbf{k} \right\| &= \left\| \mathbf{h} + J^{-1} (f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x})) \right\| \\ &= \left\| \varphi_{\mathbf{y}} (\mathbf{x} + \mathbf{h}) - \varphi_{\mathbf{y}} (\mathbf{x}) \right\| \\ &\leq \frac{1}{2} \|\mathbf{x} + \mathbf{h} - \mathbf{x} \| \\ &= \frac{1}{2} \|\mathbf{h} \|. \end{aligned}$$

Then $\|\mathbf{J}^{-1}\mathbf{k}\| \geq \frac{1}{2}\|\mathbf{h}\|$, so $\mathbf{h} \leq 2\|J^{-1}\|\mathbf{k} = \frac{1}{\lambda}\mathbf{k}$. We begin to now investigate the derivative: see that as

$$||f'(\mathbf{a}) - \mathbf{J}|| ||J^{-1}|| < \lambda ||J^{-1}|| = \frac{1}{2} < 1$$

 $f'(\mathbf{a})$ is invertible. Since

$$g(\mathbf{y} + \mathbf{k}) - g(\mathbf{y}) - f'(\mathbf{x})^{-1}\mathbf{k} = \mathbf{h} - f'(\mathbf{x})\mathbf{k} = -f'(\mathbf{x})^{-1}(f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) - f'(\mathbf{x})\mathbf{h}),$$

we have that

$$\frac{\left\|g(\mathbf{y}+\mathbf{k})-g(\mathbf{y})-f'(\mathbf{x})^{-1}\mathbf{k}\right\|}{\|\mathbf{k}\|} \leq \frac{\left\|f'(\mathbf{x})^{-1}\right\|}{\lambda} \frac{\left\|f(\mathbf{x}+\mathbf{h})-f(\mathbf{x})-f'(\mathbf{x})\mathbf{h}\right\|}{\mathbf{h}}.$$

As $\mathbf{k} \to \mathbf{0}$, we have that $\mathbf{h} \to \mathbf{0}$ (this is nonrigorous; we'd need to define a piecewise function in the instance that $\mathbf{k} = 0$). Then as the right-hand side of this inequality tends to 0, the left-hand side does by the Squeeze Theorem. Thus,

$$g'(\mathbf{y}) = f'(\mathbf{x})^{-1} = f(g(\mathbf{y}))^{-1}$$

Finally, note that as g is a continuous mapping of V onto U, that f' is a continuous mapping of U into Ω , then $(f')^{-1}$ is a continuous mapping of U into Ω , so $g'(\mathbf{y})$ is a continuous mapping of V into Ω . This completes the proof of the most complex (and beautiful) theorem I've ever studied.

If we lessen the restriction that f need be C^1 , the only part of the Inverse Function Theorem that fails is that g is C^1 ; if f is merely differentiable, we may derive that g is differentiable too.

3.3 The Implicit Function Theorem