EGR226 Operating Systems & Networking

Benjamin Sanders, MS California Baptist University

Today's Objectives

- Syllabus
- Textbook
- Overview of a Computer System

Required Resources

• **Textbook:** Operating System Concepts, Silberschatz, Galvin and Gagne.

Hardware Top-Level View

A Motherboard

The Microprocessor is the invention that brought about desktop and handheld computing

Graphical Processing Units (GPU's) provide efficient computation on arrays of data

For some applications, the microprocessor is giving way to the System on a Chip (SoC)

Characteristics of a Hypothetical Machine

(b) Integer format

These are absurdly small word lengths in modern terms, but the principles hold.

Program counter (PC) = Address of instruction Instruction register (IR) = Instruction being executed Accumulator (AC) = Temporary storage

(c) Internal CPU registers

0001 = Load AC from memory 0010 = Store AC to memory 0101 = Add to AC from memory

(d) Partial list of opcodes

Flow of Control Without Interrupts

(a) No interrupts

Interrupts: Short I/O Wait

(b) Interrupts; short I/O wait

Transfer of Control via Interrupts

Figure 1.6 Transfer of Control via Interrupts

Instruction Cycle With Interrupts

Figure 1.7 Instruction Cycle with Interrupts

Simple Interrupt Processing

Note the requirements on system software

Figure 1.10 Simple Interrupt Processing

Transfer of Control With Multiple Interrupts:

Nested

(b) Nested interrupt processing

Example Time Sequence of Multiple Interrupts

Figure 1.13 Example Time Sequence of Multiple Interrupts

The Memory Hierarchy

Figure 1.14 The Memory Hierarchy

Cache Memory

Cache and Main Memory

(a) Single cache

(b) Three-level cache organization

Performance of a Simple Two-Level Memory

Cache/Main-Memory Structure

Figure 1.17 Cache/Main-Memory Structure

Cache Read Operation

Figure 1.18 Cache Read Operation

CACHE DESIGN

I/O Techniques

Three techniques are possible for I/O operations:

Programmed I/O

Interrupt-Driven I/O Direct Memory Access (DMA)

Symmetric Multiprocessors (SMP)

SMP Organization

Figure 1.19 Symmetric Multiprocessor Organization

Intel Core i7

Figure 1.20 Intel Corei7 Block Diagram

Basic Hardware Organization

- Basic Elements
 - processor, main memory, I/O modules, system bus
 - GPUs, SIMD, DSPs, SoC
 - Instruction execution
 - » processor-memory, processor-I/O, data processing, control
 - Interrupt/Interrupt Processing
 - Memory Hierarchy
 - Cache/cache principles and designs
 - Multiprocessor/multicore

