# Secular terms of classical planetary theories using the results of general theory

#### J. Laskar

Service de Mécanique Céleste du Bureau des Longitudes, Equipe de Recherche Associée au CNRS, 77 Avenue Denfert-Rochereau, F-75014 Paris, France

Received January 9, accepted July 29, 1985

Summary. Using the methods of the general theory given in (Laskar, 1985), we have analytically computed the differential system giving the secular variations of the orbital elements for the 8 major planets, at the order 2 with respect to the masses and up to degree 5 in the eccentricity-inclination variables with a relative precision of 10<sup>-6</sup>. Relativistic and lunar perturbations are included. The entire system is integrated numerically over 10000 years and then developed in Taylor expansion around J2000.

We obtain new polynomial secular terms for the inner planets up to the power 10 of the time. Comparisons are made with Bretagon's theory VSOP82 and with the numerically integrated JPL ephemeris, DE102 (Newhall et al., 1983). The global accuracy is approximately 0".042 02/1000 yr for the inclination of the Earth. Using the theory of the rotation of the rigid Earth of Kinoshita (1977), we derive new formulas for the precessional quantities, up to  $t^{10}$ , and valid over 10000 years.

**Key words:** celestial mechanics – planetary theory – secular perturbations – precession

# 1. Introduction

In an earlier publication (Laskar, 1985) we described our methods for the construction of a general planetary theory based on the work of Duriez (1977, 1979). We have shown that it was possible to obtain accurate results in the computation of the differential system giving the secular variations of the orbital elements of the 8 major planets, at the order 2 with respect to the masses and up to degree 5 in the variables eccentricity-inclination.

In the present paper we integrate this differential system numerically and obtain the secular terms which appear in semi-analytical planetary theories in a polynomial form. The relativistic perturbations are included, along with the effect of the Moon on the motion of the Earth-Moon center of mass (Sect. 2)

To estimate the precision of our theory we make direct comparisons with the semi-analytical theory VSOP82 developed by Bretagnon (1982) at the Bureau des Longitudes. We also make comparisons with the numerically integrated JPL ephemeris, DE102 (Newhall et al., 1983) (Sect. 3).

In Sect. 4 we use both the secular motion of the ecliptic computed in Sect. 3 and the theory of the rotation of the rigid Earth

of Kinoshita (1977) to derive new formulas for the precessional quantities, developed up to the power 10 of the time.

# 2. Equations for the planetary secular terms

### 2.1. Notation

We employ classical notation for the elliptic elements of a planet:

- a: semi-major axis
- e: eccentricity
- i: inclination
- $\Omega$ : longitude of the ascending node
- $\bar{\omega}$ : longitude of perihelion
- ε: mean longitude at the initial epoch

The variable n denotes the mean motion, N the mean mean motion, A the semi-axis of reference (Laskar, 1985), and  $\lambda$  the mean longitude. We have:

$$\lambda = \int n \, dt + \varepsilon \tag{2}$$

and the Kepler relation:

$$n^2 a^3 = N^2 A^3 = k^2 (1 + m/m_{\odot}) \tag{3}$$

where k is the Gaussian gravitational constant, m the mass of the designated planet, and  $m_{\odot}$  the solar mass.

We use also the variables  $p, z, \zeta$  defined by

$$n = N(1+p) \Leftrightarrow a = A(1+p)^{-2/3}$$

$$z = e \exp \sqrt{-1\bar{\omega}}$$

$$\zeta = \sin\frac{i}{2} \exp \sqrt{-1}\Omega$$
(4)

and the conjugates  $\bar{z}$   $\bar{\zeta}$ . The variables z,  $\bar{z}$ ,  $\zeta$ ,  $\bar{\zeta}$  are called the eccentricity-inclination variables, as well as their real and imaginary parts,  $\mathbf{k}$ ,  $\mathbf{h}$ ,  $\mathbf{q}$ ,  $\mathbf{p}$ :

$$z = \mathbf{k} + \sqrt{-1}\mathbf{h}$$

$$\zeta = \mathbf{q} + \sqrt{-1}\mathbf{p}$$
(5)

In all this paper, except when explicitly specified, all the variables are mean variables.

### 2.2. The autonomous system

With the methods developed in a previous paper (Laskar, 1985), we have computed the autonomous system of order 2 (with respect to the masses) for the 8 planets, keeping all the terms up to degree 5 in the eccentricity-inclination variables. This system gives the secular variations of the variables eccentricity  $\bar{z}_i$  and inclination  $\bar{\zeta}_i$  ( $i=1,\ldots,8$ ). It includes 153824 monomial terms and can be expressed in the form:

$$\dot{\alpha} = \sqrt{-1}(\Phi_1 \alpha + \Phi_3(\alpha, \bar{\alpha}) + \Phi_5(\alpha, \bar{\alpha})) \tag{6}$$

where

$$\alpha = (\overline{z}_1, \overline{z}_2, \dots, \overline{z}_8, \overline{\zeta}_1, \dots \overline{\zeta}_8)$$

 $\Phi_1$  is a real matrix with constant coefficients.

 $\Phi_3$  gathers all the terms of degree 3.

 $\Phi_5$  gathers all the terms of degree 5.

All the 153824 numerical coefficients are real and are computed with a relative precision of 10<sup>-6</sup> (Laskar, 1984, 1985).

The usual approach in general planetary theory is to integrate analytically such a system in order to obtain a solution expanded as a quasi-periodic function having the form

$$\alpha = \sum_{i} \alpha_{k} e^{\sqrt{-1}(\Sigma_{i} k_{i} \beta_{i})t} \tag{7}$$

(Brumberg and Egorova, 1971; Brumberg, 1980; Bretagnon, 1974; Duriez, 1977, 1979).

We have shown that the presence of small divisors in the computation make this method very difficult if one wants to obtain an accurate solution (Laskar, 1984). On the other hand, the main periods of this system are very large, over 50000 years (the solution of the linear Laplace Lagrange system  $\dot{\alpha} = \sqrt{-1}\Phi_1$   $\alpha$  gives a good approximation of these periods).

The secular variations of the elliptic elements are then very smooth, and it is quite easy to perform a numerical integration of the entire system (6), despite the 153824 terms, because the step size can be as large as 500 years. This numerical integration has been made over 1 million years (Laskar, 1984), and the results will be presented in a forthcoming paper. In the present paper, we are interested in the very beginning of this solution, over about 10000 years which will provide us enough points to compute numerically the Taylor expansion of the elliptic elements at the origin up to degree 10. This expansion will give us an accurate representation of the solution for historical use, and will allow us to make direct comparisons with the classical theories. For a longer span of time (up to several million years), there is no necessity for such high precision and a quasi-periodical representation which gives the main long periods of the solution should be preferred.

# 2.3. Perturbations due to relativity and the Moon

To compute the relativistic perturbations in the elliptical elements, we need consider only the first order terms in the motion of the perihelion, as given in (Brumberg, 1972) or (Lestrade and Bretagnon, 1982).

These terms are limited to the post-Newtonian approximation in  $1/c^2$  (c is the speed of light). In the system (6), we just

**Table 1.** Initial values for the mean motion n and corresponding values of the semi-major axis a for J2000 (Bretagnon, 1982). Values of the relativistic perturbation.  $\kappa_R$  (Eq. 9)

| Planet  | n (rd/yr)        | a (AU)            | $\kappa_R \times 10^{12}$ |
|---------|------------------|-------------------|---------------------------|
| Mercury | 26.0879360339024 | 0.387098350584818 | 1995650                   |
| Venus   | 10.2133357162869 | 0.723329859446194 | 418116                    |
| Earth   | 6.2830662287852  | 1.00000105726665  | 186053                    |
| Mars    | 3.3406528698589  | 1.5236793816472   | 64924                     |
| Jupiter | 0.5297217887326  | 5.202603230909    | 3015                      |
| Saturn  | 0.2127618949734  | 9.554909635329    | 659                       |
| Uranus  | 0.0745768020043  | 19.2184461013     | 114                       |
| Neptune | 0.0380284307602  | 30.1103869089     | 37                        |

have to add the terms:

$$\frac{d\bar{z}}{dt}\Big|_{R} = -\sqrt{-1}\,\delta_{R}\bar{z}\tag{8}$$

with

$$\delta_R = 3 \frac{n^3 a^2}{c^2 (1 + m/m_{\odot})} \times \frac{1}{1 - e^2} = \kappa_R \frac{1}{1 - e^2}$$
 (9)

Here, a is the mean value of the semi major axis of the considered planet, and n is connected with a by Kepler's law  $n^2a^3 = k^2(1 + \text{m/m}_{\odot})$ . The values of a and n are taken from (Bretagnon, 1982) and are given in Table 1, as well as the computed values of  $\kappa_R$ . We use the value of the astronomical unit (AU) and the speed of light (c) adopted by the IAU of Grenoble (1976):

$$c = 299792458 \,\mathrm{ms}^{-1}$$

 $1 \text{ AU} = 1.49597870 \, 10^{11} \, \text{m}$ 

from which

 $c = 63241.0774 \,\mathrm{AU/yr}$ 

The perturbations due to the moon are limited to a single term:

$$\frac{d\bar{z}}{dt}\Big|_{L} = -\sqrt{-1}\,\delta_{L}\bar{z}_{3} \tag{10}$$

with

 $\delta_L = 3.192472 \, 10^{-7}$ 

### 3. The NGT solution for the secular terms of the inner planets

# 3.1. Polynomial expression of the secular terms

In classical planetary theories, like VSOP82, the secular variations of the mean variables  $a_i$ ,  $\eta_i$ ,  $\mathbf{k}_i$ ,  $\mathbf{h}_i$ ,  $\mathbf{q}_i$ ,  $\mathbf{p}_i$ , are given in a polynomial form:

$$x = x_0 + x_1 t + x_2 t^2 + x_3 t^3 + \cdots$$
 (11)

which is supposed to be the Taylor expansion of the considered variable x(t) at the origin (t = 0). The coefficients are computed order by order with respect to the masses, and each order requires more and more computations. The VSOP82 solution is of order 3 with respect to the masses; the secular terms are then given to degree 3 for all the planets. This limitation to degree 3

Table 2. Integration constants J2000 (2451545) of NGT and VSOP82 (Bretagnon, 1982)

| Planet  | 1/ <b>m</b> | N  (rd/1000 yr)  | $\mathbf{k}_{0}$ | $\mathbf{h}_{\mathrm{o}}$ | $\mathbf{q}_{0}$ | $\mathbf{p}_{0}$ |
|---------|-------------|------------------|------------------|---------------------------|------------------|------------------|
| Mercury | 6023600     | 26087.9031415742 | 0.04466059760    | 0.20072331368             | 0.04061563384    | 0.04563550461    |
| Venus   | 408523.5    | 10213.2855462110 | -0.00449282133   | 0.00506684726             | 0.00682410142    | 0.02882285775    |
| Earth   | 328900.5    | 6283.0758491800  | -0.00374081650   | 0.01628447663             | 0.               | 0.               |
| Mars    | 3098710.    | 3340.6124314923  | 0.08536560252    | -0.03789973236            | 0.01047042574    | 0.01228449307    |
| Jupiter | 1047.355    | 529.6909650946   | 0.04698572124    | 0.01200385748             | -0.00206561098   | 0.01118377157    |
| Saturn  | 3498.5      | 213.2990954380   | -0.00296003595   | 0.05542964254             | -0.00871747436   | 0.01989147301    |
| Uranus  | 22869.      | 74.7815985673    | -0.04595132376   | 0.00563791307             | 0.00185915075    | 0.00648617008    |
| Neptune | 19314.      | 38.1330356378    | 0.00599977571    | 0.00669242413             | -0.01029147819   | 0.01151683985    |

with respect to the time makes the precision decrease rapidly after 1000 years, and the solution was extended later on up to degree 6 for the outer planets by an iterative method (Bretagnon, 1982).

Our method is different from the classical theories. We have computed the differential system (6) in a fully analytical way. It gives the secular variations of the mean variables for any time at the order 2 with respect to the masses. The solution of this system is obtained numerically and then expanded up to any power of the time in the form of the classical theories (11). The main limitation is then the precision of the differential system (6).

We performed the numerical integration of the system (6), including the effects due to the relativity (9) and the Moon (10), with a fourth-order Runge-Kutta method and a step size of

250 yr. The integration spanned 10000 yr on each sides of the origin (J2000) and used the initial values given in Table 2. The global accuracy of the numerical integration is estimated by comparing the results with a 125 yr step size integration, and is better than  $10^{-10}$ .

We have then computed numerically the derivatives at the origin with the method of symmetric differences and a step of 500 yr up to order 10. The relative precision of these derivatives decreases with the order, but the higher powers of t require less precision than the lower powers. Our solution will be denoted by NGT (Numerical General Theory) in the remainder of this paper.

We obtain a Taylor expansion which we can directly compare with the secular terms of the classical theory VSOP82 for the different planets (Table 3). In this table, we have limited the

**Table 3.** Comparison of the secular polynomials of NGT (above), and VSOP82 (below). The time t is measured in units of 10000 julian years from J2000 (JD 2451545.0)

|         |                             | t          | $t^2$     | $t^3$     | $t^4$    |
|---------|-----------------------------|------------|-----------|-----------|----------|
| Mercury | $\mathbf{k} \times 10^{10}$ | -552206151 | -18628892 | 7904951   | 589540   |
|         |                             | -552114624 | -18603970 | 6336200   |          |
|         | $\mathbf{h} \times 10^{10}$ | 143780476  | -79764913 | -3043725  | 811285   |
|         |                             | 143750118  | -79746890 | -2630900  |          |
|         | $\mathbf{q} \times 10^{10}$ | 65445517   | -10713235 | 2245279   | -376780  |
|         | _                           | 65433117   | -10712150 | 2114900   |          |
|         | $\mathbf{p} \times 10^{10}$ | -127599238 | -9132313  | 1898818   | -640089  |
|         | -                           | -127633657 | -9133500  | 1800400   |          |
| Venus   | $\mathbf{k} \times 10^{10}$ | 31262529   | 6045841   | -6834889  | 493964   |
|         |                             | 31259019   | 6059130   | -6923900  |          |
|         | $h \times 10^{10}$          | -36123807  | 18469749  | 328049    | -613650  |
|         |                             | -36121239  | 18396270  | 97100     |          |
|         | $\mathbf{q} \times 10^{10}$ | 138139141  | -10911318 | -18641793 | 601726   |
|         | -                           | 138133826  | -10909420 | -18592000 |          |
|         | $\mathbf{p} \times 10^{10}$ | -40387970  | -62329244 | 2473042   | 4228784  |
|         | -                           | -40384791  | -62328910 | 2513700   |          |
| Earth   | $\mathbf{k} \times 10^{10}$ | -82273540  | 27632106  | 11695572  | -2695722 |
|         |                             | -82266699  | 27489390  | 10421700  |          |
|         | $\mathbf{h} \times 10^{10}$ | -62033371  | -33841635 | 8510121   | 2770542  |
|         |                             | -62030259  | -33538880 | 7118500   |          |
|         | $\mathbf{q} \times 10^{10}$ | -113462152 | 12373396  | 12654170  | -1371808 |
|         | -                           | -113469002 | 12373140  | 12705000  |          |
|         | $\mathbf{p} \times 10^{10}$ | 10183600   | 47019367  | -5417367  | -2507948 |
|         | •                           | 10180391   | 47019980  | -5382900  |          |

(Continued)

Table 3 (continued)

|         |                             | t          | $t^2$      | $t^3$     | $t^4$      |
|---------|-----------------------------|------------|------------|-----------|------------|
| Mars    | $\mathbf{k} \times 10^{10}$ | 376295028  | -246525938 | -36760524 | 11112422   |
|         |                             | 376330152  | -246574160 | -39524100 |            |
|         | $\mathbf{h} \times 10^{10}$ | 624615290  | 155237412  | -63487894 | -6592895   |
|         |                             | 624657465  | 155272320  | -67194000 |            |
|         | $\mathbf{q} \times 10^{10}$ | 17131135   | -40767021  | -13883445 | 916176     |
|         | -                           | 17138526   | -40775910  | -13860000 |            |
|         | $\mathbf{p} \times 10^{10}$ | -107996526 | -19223063  | 8718504   | 3090121    |
|         | _                           | -108020083 | -19221950  | 8837300   |            |
| Jupiter | $\mathbf{k} \times 10^{10}$ | 111977082  | -107308403 | -42835068 | 18629325   |
| _       |                             | 113010377  | -109301260 | -42874800 | 20539000   |
|         | $\mathbf{h} \times 10^{10}$ | 216186108  | 97412918   | -49954664 | -10191892  |
|         |                             | 217149360  | 98585390   | -51310900 | -9007000   |
|         | $\mathbf{q} \times 10^{10}$ | -31351179  | - 16648979 | 7994237   | 3567383    |
|         |                             | -31340156  | -16673920  | 7692600   |            |
|         | $\mathbf{p} \times 10^{10}$ | -23437577  | 20825055   | 5342201   | -3397595   |
|         | _                           | -23427562  | 20867600   | 5072100   |            |
| Saturn  | $\mathbf{k} \times 10^{10}$ | -524323398 | 301658976  | 127946660 | -59122530  |
|         |                             | -529602626 | 309284050  | 129621500 | - 59959000 |
|         | $\mathbf{h} \times 10^{10}$ | -371623742 | -314855651 | 153439338 | 30789323   |
|         |                             | -375593887 | -319902360 | 159863300 | . 32451000 |
|         | $\mathbf{q} \times 10^{10}$ | 80165285   | 41304350   | -20016004 | -8728168   |
|         |                             | 80171499   | 41422820   | -19604900 | -9439000   |
|         | $\mathbf{p} \times 10^{10}$ | 59460176   | -52230829  | -13164931 | 8546654    |
|         |                             | 59439766   | -52351170  | -12721900 | 8295000    |
| Uranus  | $\mathbf{k} \times 10^{10}$ | 18145856   | -672379    | -4377283  | 1576471    |
|         |                             | 18344050   | -808490    | -4539600  | 2185000    |
|         | $\mathbf{h} \times 10^{10}$ | -74663156  | 11837002   | -4049094  | -1177159   |
|         |                             | -74964350  | 12102000   | -4208800  | -1714000   |
|         | $\mathbf{q} \times 10^{10}$ | -12375589  | -2050962   | 778117    | 159537     |
|         |                             | -12449382  | -2073730   | 762100    |            |
|         | $\mathbf{p} \times 10^{10}$ | -11687971  | 3134975    | 706005    | -488530    |
|         |                             | -11744733  | 3177990    | 731700    |            |
| Neptune | $\mathbf{k} \times 10^{10}$ | 815372     | -1138645   | -290625   | 112243     |
|         |                             | 871279     | -1199020   | -403400   |            |
|         | $\mathbf{h} \times 10^{10}$ | 7559591    | 767685     | -325657   | -83896     |
|         |                             | 7824336    | 808010     | - 395500  |            |
|         | $\mathbf{q} \times 10^{10}$ | -78472     | -64004     | 89989     | 24765      |
|         |                             | -72727     | -65680     | 166800    |            |
|         |                             | 2570836    | 194213     | 74755     | 42727      |
|         | $\mathbf{p} \times 10^{10}$ | 2575536    | 193770     | 133100    |            |

degree of our solution to 4 to make the comparisons easier (for higher degrees, see Table 5). In Table 3, the time t is expressed in units of  $10000 \, \text{yr}$ .

### 3.2. Comparison of VSOP82 and NGT

VSOP82 is an order 3 classical theory. In such a theory, the powers of the time are computed order by order: the coefficients of t appear at order 1, the coefficients of  $t^2$  appear only at order 2, and so on. The coefficient  $x_1$  of t in (11) is then computed at order 3 with respect to the masses, the coefficient  $x_2$  of  $t^2$  at the order 2, and the coefficient  $x_3$  of  $t^3$  at the order 1 with respect

to the masses. As with NGT, the coefficient  $x_1$  of VSOP82 does include the perturbations due to relativity and the effects of the Moon on the Earth-Moon center of mass. However, in VSOP82, the eccentricity and inclination variables are included numerically, so their contributions exist at all degrees.

In NGT each coefficient  $x_i$  of the Taylor expansion (11) is given with the same precision (order 2 with respect to the masses and degree 5 in the eccentricity-inclination.) We can then consider the coefficients  $x_1$  of t in VSOP82 as a solution of reference which should differ very little from the exact value (this difference is of order 4 with respect to the masses). This coefficient  $x_1$  is also the value of the derivative of x(t) at the origin. An estimate of the precision of our differential system (6), and hence of our

**Table 4.** Relative precision of the General Theory. This precision is estimated by comparing the values of the derivatives at the origin (Eq. 6) with the corresponding values of VSOP82 (Table 3). For each variable x,  $\Delta x = |x_{NGT} - x_{VSOP82}|$ 

| Mercury | $\Delta \mathbf{k}_1/\sqrt{\mathbf{k}_1^2+\mathbf{h}_1^2}$ | $\Delta \mathbf{h}_1/\sqrt{\mathbf{k}_1^2+\mathbf{h}_1^2}$ | $\Delta q_1/\sqrt{q_1^2+p_1^2}$ | $\Delta \mathbf{p}_1/\sqrt{\mathbf{p}_1^2+\mathbf{p}_1^2}$ |
|---------|------------------------------------------------------------|------------------------------------------------------------|---------------------------------|------------------------------------------------------------|
| Mercury | 0.000160                                                   | 0.000053                                                   | 0.000086                        | 0.000240                                                   |
| Venus   | 0.000073                                                   | 0.000054                                                   | 0.000037                        | 0.000022                                                   |
| Earth   | 0.000066                                                   | 0.000030                                                   | 0.000060                        | 0.000028                                                   |
| Mars    | 0.000048                                                   | 0.000058                                                   | 0.000068                        | 0.000215                                                   |
| Jupiter | 0.004244                                                   | 0.003956                                                   | 0.000282                        | 0.000256                                                   |
| Saturn  | 0.008215                                                   | 0.006178                                                   | 0.000062                        | 0.000204                                                   |
| Uranus  | 0.002579                                                   | 0.003920                                                   | 0.004335                        | 0.003335                                                   |
| Neptune | 0.007353                                                   | 0.034819                                                   | 0.002234                        | 0.001827                                                   |

solution NGT, is thus given by the differences between the coefficients of t in VSOP82 and in NGT (Table 4). In this table, we have put the relative precision of the second hand member of (6) for each of the variables k, h, q, p. We can see that the precision is high, especially in the case of the inner planets. For the inclination of the Earth, for example, it gives a difference of about 0.0.15 after 1000 yr. This table shows that the differential system (6) obtained by the methods of the general planetary theory is very accurate. This precision still exists in the numerical solution NGT, and it allows us to use these results in order to extend VSOP82.

For the outer planets, our solution is less accurate, due to our limitation in degree and order. Indeed, for the Jupiter-Saturn couple, the contribution of degree 7 and of order 3 resulting from the great inequality  $2N_5-5N_6$  is probably important and would explain the differences between NGT and VSOP82.

On the other hand, with the classical theories, it is possible to obtain higher degree terms,  $x_4, x_5, x_6$  for the outer planets with an iterative method (Bretagnon, 1982), and even higher for the Jupiter-Saturn couple by harmonic analysis (Simon and Francou, 1982). For these two reasons, we shall now restrict ourselves to the inner planets only (Mercury, Venus, the Earth, and Mars).

# 3.3. New secular terms for the variables k,h,q,p of the inner planets

We shall derive new secular terms for the inner planets up to degree 10 in the time t, using the results of NGT and VSOP82.

The initial values  $x_0$  are taken from VSOP82 (Table 2).

We have already said that the  $x_1$  term in VSOP82 is always the best, and we shall keep it.

The  $x_2$  terms of both solutions are computed at the same order, but there are some slight differences between them:

- in NGT, the degree in the eccentricity-inclination variables is limited to 5.
- in VSOP82, all the contributions from relativity and of the Moon are not included in the x<sub>2</sub> terms.

So we have kept the Keplerian part of  $x_2$  from VSOP82 and added to it the Moon and relativity contributions from NGT.

The  $x_3$  terms are taken from NGT. Indeed, they are computed up to order 2 while the VSOP82  $x_3$  terms are computed up to order 1.

The terms  $x_4, x_5, \ldots, x_{10}$  appear only in NGT.

The resulting secular polynomials of degree 10 for the inner

planets are given in Table 5 for each of the eccentricity-inclination variables  $\mathbf{k}$ ,  $\mathbf{h}$ ,  $\mathbf{q}$ ,  $\mathbf{p}$ .

### 3.4. Semi-major axis $a_i$ and mean longitude $\lambda_i$

Poisson's Theorem (Duriez, 1978) shows that there are no secular terms in the semi-major axis of the planets at the order 2 with respect to the masses. However, some secular terms appear in the classical theories at the order 3 with respect to the masses (Simon and Bretagnon, 1978).

NGT is a second order theory, but the identification order by order is not strictly made at the order 2 with respect to the masses, and some secular terms may appear in the variable  $p_i$  related to the semi-major axis  $a_i$  (5). These secular terms are just a little part of the order 3 contribution and are then meaningless until we compute the complete order 3 (which is a difficult task): for the present, NGT cannot give reliable information about the secular variations of the semi-major axis.

The study of the mean longitude  $\lambda$  is more difficult because it involve the study of the variable p connected with the semi-major axis a and of the mean longitude of the initial epoch,  $\varepsilon(4)$ . Indeed, n = N + Np and

$$\frac{d\lambda}{dt} = N + Np + \frac{d\varepsilon}{dt} \tag{12}$$

The secular variation of  $\varepsilon$  is given by an autonomous system similar to (6), even in the eccentricity-inclination variables, and limited to degree 4 in our computations (Laskar, 1985).

$$\frac{d\varepsilon}{dt} = K_0 + K_2(\alpha, \bar{\alpha}) + K_4(\alpha, \bar{\alpha}) \tag{13}$$

with 
$$\alpha = (\overline{z}_1, \dots, \overline{z}_8, \dots, \overline{\zeta}_1, \dots, \overline{\zeta}_8)$$
.

We must add to these terms the relativistic perturbation, given in (Lestrade and Bretagnon, 1982):

$$\begin{aligned} \frac{d\lambda}{dt} \bigg|_{R} &= \frac{n^{3}a^{2}}{c^{2}(1+m/m_{\odot})} \left\{ -\frac{1-e^{2}-\sqrt{1-e^{2}}}{e^{2}} \right. \\ &\left. \left[ -10 \left\langle \frac{a^{4}}{r^{4}} \right\rangle (1-e^{2}) + \left\langle \frac{a^{3}}{r^{3}} \right\rangle (17+e^{2}) - 7 \left\langle \frac{a^{2}}{r^{2}} \right\rangle \right] \right. \\ &\left. + 8 \left\langle \frac{a^{3}}{r^{3}} \right\rangle (1-e^{2}) - 20 \left\langle \frac{a^{2}}{r^{2}} \right\rangle + 6 \right\} \end{aligned} \tag{14}$$

where r is the radius vector, and  $\langle x \rangle$  denotes the averaged value of x.

T able 5. Secular terms for the inner planets. The time t is measured in units of 10000 julian years from J2000 (JD 2451545.0)

|                 | $\lambda \times 10^{10}$ | $\mathbf{k} \times 10^{10}$ | $\mathbf{h} \times 10^{10}$ | $\mathbf{q} \times 10^{10}$ | $\mathbf{p} \times 10^{10}$ |
|-----------------|--------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| Mercury         |                          |                             |                             |                             |                             |
|                 | 44026088424              | 446605976                   | 2007233137                  | 406156338                   | 456355046                   |
| t               | 2608790314157420         | -552114624                  | 143750118                   | 65433117                    | -127633657                  |
| $t^2$           | -9084250                 | -18607467                   | 79744997                    | -10713296                   | -9134193                    |
| $t^3$           | 1796404                  | 7904951                     | -3043725                    | 2245279                     | 1898818                     |
| t <sup>4</sup>  | 805422                   | 589540                      | 811285                      | - 376780                    | -640089                     |
| t <sup>5</sup>  | -59877                   | -156482                     | -78243                      | -30978                      | -25951                      |
| $t^6$           | -101925                  | -52991                      | 27580                       | 10508                       | 47156                       |
| $t^7$           | 16604                    | 18290                       | 8853                        | -8728                       | -5477                       |
| $t^8$           | 13915                    | 4274                        | -4219                       | 3403                        | -2271                       |
| t <sup>9</sup>  | -1795                    | -1597                       | -383                        | 509                         | 1944                        |
| $t^{10}$        | -290                     | -49                         | 10                          | -99                         | -14                         |
| Venus           |                          |                             |                             |                             |                             |
|                 | 31761466969              | -44928213                   | 50668473                    | 68241014                    | 288228577                   |
| t               | 1021328554621100         | 31259019                    | -36121239                   | 138133826                   | -40384791                   |
| $t^2$           | 2846522                  | 6041681                     | 18468752                    | -10909716                   | -62328916                   |
| $t^3$           | 690608                   | -6834889                    | 328049                      | -18641793                   | 2473042                     |
| $t^4$           | -10986                   | 493964                      | -613650                     | 601726                      | 4228784                     |
| $t^5$           | -148464                  | 597550                      | -168598                     | 746057                      | -57042                      |
| $t^6$           | 12166                    | -109138                     | -123616                     | -40592                      | -116943                     |
| $t^7$           | 21487                    | -68614                      | 49912                       | -17319                      | -12239                      |
| t <sup>8</sup>  | 2956                     | 16888                       | 20100                       | 9132                        | 2584                        |
| $t^9$           | <b>–944</b>              | 5132                        | -6528                       | 254                         | 3467                        |
| t <sup>10</sup> | <b>-454</b>              | -170                        | -330                        | -254                        | -166                        |
| Earth           |                          |                             |                             |                             |                             |
|                 | 17534703144              | -37408165                   | 162844766                   | 0                           | C                           |
| t               | 628307584918000          | -82266699                   | -62030259                   | -113469002                  | 10180391                    |
| $t^2$           | -9793168                 | 27626329                    | -33829810                   | 12372674                    | 47020439                    |
| $t^3$           | 429738                   | 11695572                    | 8510121                     | 12654170                    | -5417367                    |
| $t^4$           | 734935                   | -2695722                    | 2770542                     | -1371808                    | -2507948                    |
| t <sup>5</sup>  | 83525                    | -715070                     | -467407                     | -320334                     | 463486                      |
| $t^6$           | - 59447                  | 218146                      | -62395                      | 5072                        | 56431                       |
| $t^7$           | -52555                   | 22635                       | 247                         | -6941                       | -50813                      |
| t <sup>8</sup>  | 13798                    | -19921                      | 403                         | 15095                       | - 2799                      |
| t <sup>9</sup>  | 14426                    | -2032                       | 686                         | -72                         | 8609                        |
| t <sup>10</sup> | - 564                    | 475                         | -423                        | -352                        | -67                         |
| Mars            |                          |                             |                             |                             |                             |
|                 | 62034809134              | 853656025                   | -378997324                  | 104704257                   | 122844931                   |
| t               | 334061243149230          | 376330152                   | 624657465                   | 17138526                    | -108020083                  |
| $t^2$           | 4416007                  | -246579527                  | 155295878                   | -40776201                   | -19221776                   |
| $t^3$           | -317199                  | -36760524                   | -63487894                   | -13883445                   | 8718504                     |
| $t^4$           | 718030                   | 11112422                    | -6592895                    | 916176                      | 3090121                     |
| t <sup>5</sup>  | -765245                  | 259071                      | 729862                      | 1759071                     | 37687                       |
| $t^6$           | -68083                   | 7855                        | 113707                      | 112984                      | 8722                        |
| $t^7$           | 197772                   | 27211                       | 184557                      | -128937                     | -21863                      |
| t <sup>8</sup>  | 26923                    | -16901                      | 12638                       | -128937 $-1438$             | -1887 <del>6</del>          |
| t <sup>9</sup>  | -30823                   | -5266                       | -31421                      | 4131                        | 7764                        |
| 1-              |                          |                             |                             |                             |                             |

We have integrated numerically the variables  $\alpha_i$  over 10000 yr. We can use these computed values to compute the values of  $\frac{d\varepsilon}{dt}$  every 250 yr. The numerical derivation gives then the Taylor

expansion of  $\frac{d\varepsilon}{dt}$  up to degree 9, and by integration, the Taylor expansion of  $\varepsilon$  up to degree 10 for all the inner planets.

In VSOP82, some secular terms appear in the semi-major

axis, and thus in the variable p, but the contribution of the term Np in (12) is negligible for Mercury, Venus, and the Earth; it remains small in the case of Mars unlike the outer planets where it represents the main part of  $\frac{d\lambda}{dt}$  (Simon and Francou, 1981). As we deal only with the inner planets, we shall only compute the contribution of Np for Mars.

In VSOP82, we have:

$$a_4 = a_{40} + a_{41}t \tag{15}$$

The Kepler relation  $n^2a^3 = k^2(1 + m/m_{\odot})$  gives then:

$$\frac{dn}{dt} = -\frac{3}{2} \frac{da}{dt} \frac{n}{a} \tag{16}$$

We thus shall add to the coefficient  $\lambda_{42}$  of  $t^2$  in the longitude of Mars, the term:

$$\lambda_{42}' = -\frac{3}{4} a_{41} \frac{n_4}{a_4} \tag{17}$$

That is, with  $a_{41} = 31 \, 10^{-10} \, \text{AU}/10000 \, \text{yr}$ , and the values of  $n_4$  and  $a_4$  given in Table 1:

$$\lambda'_{42} = -509750 \, 10^{-10} / (10000 \, \text{yr})^2$$

which is not negligible beyond the total value of  $\lambda_{42}$  given in Table 5.

The full results of the secular terms of the mean longitude for the inner planets,  $\lambda_i$  are given in Table 5. In the case of the variables,  $\mathbf{k_i}$ ,  $\mathbf{h_i}$ ,  $\mathbf{q_i}$ ,  $\mathbf{p_i}$ , the initial values are the values of the considered variable for t=0 as given in Table 2 (Bretagnon, 1982). In the case of the mean longitude, the initial value is given by the relation:

$$\left. \frac{d\lambda_i}{dt} \right|_{t=0} = N_i \tag{18}$$

where  $N_i$  is the mean mean motion (Bretagnon, 1982, Table 2). The coefficients of t in the secular variation of the mean longitude is then equal to  $N_i$ . Except for the correction to the coefficient of  $t^2$  of Mars which we have just quoted, all the coefficients of  $t^2, t^3, \ldots, t^{10}$  in Table 5 are taken from NGT for the mean longitudes.

# 3.5. Mixed terms in the inequality $4N_3 - 8N_4 + 3N_5$

We have partially extended the results of Laskar (1985) in order to compute the mixed terms of the form  $t \sin t$ ,  $t^2 \sin t$ , etc...for an inequality different from the secular inequality. These results have been applied to compute the contribution of the inequality  $4N_3 - 8N_4 + 3N_5$  in the longitudes of the Earth and Mars, coming from the Np part of (12). (In this case, the contribution of  $\frac{d\varepsilon}{dt}$  is negligible in regard to the accuracy of our computations).

The variation of the part of p involving the inequality  $4N_3 - 8N_4 + 3N_5$  is then given by a differential system similar to (6):

$$\frac{dp}{dt} = \Phi_{4N_3 - 8N_4 + 3N_5}(\alpha, \bar{\alpha}) \exp \sqrt{-1}(4\lambda_3 - 8\lambda_4 + 3\lambda_5)$$
 (19)

where  $\Phi_{4N_3-8N_4+3N_5}(\alpha,\bar{\alpha})$  is similar to  $\Phi_1\alpha+\Phi_3(\alpha,\bar{\alpha})+\Phi_5(\alpha,\bar{\alpha})$  in (6), and gathers monomials of degree 1, 3, and 5.

The integration of the system (19) is processed in the same way as the integration of (13): we compute the values of  $\Phi_{4N_3-8N_4+3N_5}(\alpha, \bar{\alpha})$  every 250 yr and then compute its Taylor expansion up to degree k with respect to the time. That gives:

$$\frac{dp}{dt}\Big|_{4N_3-8N_4+3N_5} = (\phi_0 + \phi_1 t + \dots + \phi_k t^k + o(t^k)) \times \exp\sqrt{-1} (4\lambda_3 - 8\lambda_4 + 3\lambda_5)$$
(20)

where  $\phi_i$  are complex numbers and  $o(t^k)$  is the classical notation for the remainder of the Taylor expansion. We just keep the linear part of the longitudes in the exponential, and the other part is expanded in power series of the time. This system is then integrated, and by (12), gives the mixed terms in the longitude on the form:

$$\lambda_{4N_3-8N_4+3N_5} = (x_0 + x_1t + \dots + x_kt^k + o(t^k))$$

$$\times \exp \sqrt{-1}((4\lambda_{30} - 8\lambda_{40} + 3\lambda_{50}) + (4N_3 - 8N_4 + 3N_5)t)$$
(21)

The  $x_i$  are complex numbers, but  $\lambda_{4N_3-8N_4+3N_5}$  is real, and (21) can also be expanded in the form:

$$\lambda_{4N_3-8N_4+3N_5} = (y_0^s + y_1^s t + \dots + y_k^s t^k + o(t^k))$$

$$\times \sin(4\lambda_{30} - 8\lambda_{40} + 3\lambda_{50} + (4N_3 - 8N_4 + 3N_5)t)$$

$$+ (y_0^c + y_1^c t + \dots + y_k^c t^k + o(t^k))$$

$$\times \cos(4\lambda_{30} - 8\lambda_{40} + 3\lambda_{50} + (4N_3 - 8N_4 + 3N_5)t)$$
(22)

The values of the coefficients  $y_i^s$ ,  $y_i^c$  are given in Table 6. Practically, we have limited our computation to the degree k = 4.

In Table 6, we compare our values to the similar values obtained by Bretagnon in VSOP82 for the coefficients of degree 0 and 1.

Let us notice that  $4N_3 - 8N_4 + 3N_5$  is an inequality which appears only at the second order. In VSOP82, the coefficients  $y_1^s$  and  $y_1^c$  are then computed only at the first order with respect

**Table 6.** Mixed terms for the inequality  $4N_3 - 8N_4 + 3N_5$  in NGT and VSPO82 (Eq. 22). The time t is measured in units of 10000 julian years from J2000 (JD 2451545.0)

|       | Earth                  |                        | Mars                   |                        |  |
|-------|------------------------|------------------------|------------------------|------------------------|--|
|       | $y_i^c \times 10^{10}$ | $y_i^s \times 10^{10}$ | $y_i^c \times 10^{10}$ | $y_i^s \times 10^{10}$ |  |
| NG    | Т                      |                        |                        |                        |  |
|       | 327749                 | -96842                 | -2660804               | 786122                 |  |
| t     | 19178                  | -424825                | -155762                | 3448928                |  |
| $t^2$ | -272641                | -21359                 | 2213451                | 173426                 |  |
| $t^3$ | <b>– 4479</b>          | 128681                 | 36371                  | -1044706               |  |
| $t^4$ | 41445                  | 971                    | -336478                | 7870                   |  |
| VSC   | )P82                   |                        |                        |                        |  |
|       | 321853                 | -97066                 | -2613137               | 788039                 |  |
| t     | -13470                 | -399400                | 109970                 | 3244110                |  |
|       |                        |                        |                        |                        |  |









Fig. 1a-e. Mercury. Differences VSOP82 minus DE102 (thin curve) and (NGT + VSOP82) minus DE102 (bold curve) over the period -1400, +3000. Unit is  $10^{-7}$  rad  $(50\,10^{-7}$  rad  $\approx 1''$ )









Fig. 2a-e. Venus. Differences VSOP82 minus DE102 (thin curve) and (NGT + VSOP82) minus DE102 (bold curve) over the period -1400, +3000. Unit is  $10^{-7}$  rad  $(50\,10^{-7}$  rad  $\approx 1")$ 

in (Kinoshita, 1975, 1977):

$$\frac{dp_A}{dt} = R(\epsilon_A) - \cot \epsilon_A \left( \sin p_A + \Omega \frac{di}{dt} + \sin i \cos p_A + \Omega \frac{d\Omega}{dt} \right) - (1 - \cos i) \frac{d\Omega}{dt}$$
(23)

$$\frac{d\epsilon_A}{dt} = \cos p_A + \Omega \frac{di}{dt} - \sin i \sin p_A + \Omega \frac{d\Omega}{dt}$$

with

$$R(\epsilon_{A}) = \frac{3k^{2}m_{M}}{a_{L}^{3}\omega} \frac{2C - A - B}{2C} \left[ (M_{0} - M_{2}/2)\cos\epsilon_{A} + M_{1} \frac{\cos 2\epsilon_{A}}{\sin\epsilon_{A}} - M_{3} \frac{m_{M}}{m_{E} + m_{M}} \frac{n_{M}^{2}}{\omega n_{\Omega}} \frac{2C - A - B}{2C} (6\cos^{2}\epsilon_{A} - 1) \right] + \frac{3k^{2}m_{\odot}}{a_{\odot}^{3}\omega} \frac{2C - A - B}{2C} \left[ (S_{0} - S_{2}/2)\cos\epsilon_{A} \right]$$
(24)

1986A&A...157...59L



Fig. 3a-e. Earth. Differences VSOP82 minus DE102 (thin curve) and (NGT + VSOP82) minus DE102 (bold curve) over the period -1400, +3000. Unit is  $10^{-7}$  rad  $(50\ 10^{-7}\ rad \approx 1'')$  Fig. 4a-e. Mars. Differences VSOP82 minus DE102 (thin curve) and (NGT + VSOP82) minus DE102 (bold curve) over the period -1400, +3000. Unit is  $10^{-7}$  rad  $(50\ 10^{-7}\ rad \approx 1'')$ 

to the masses. We have then retained the values of NGT given in Table 6 for  $y_1^s, y_2^s, \ldots, y_6^s$ , and  $y_1^c, y_2^c, \ldots, y_6^c$ .

### 3.6. Comparison with DE102

We have obtained new values for the secular terms of the inner planets up to degree 10 with respect to the time for the mean longitude  $\lambda$ , and the eccentricity-inclination variables **k**, **h**, **q**, **p**, (Table 5) for the 4 inner planets. We have also computed the mixed terms up to degree 4 for the contribution of the inequality  $4N_3 - 8N_4 + 3N_5$  in the longitudes of the Earth and Mars. To check the accuracy of these new terms, we have compared our solution NGT with the results of the numerically integrated JPL ephemeris, DE102 (Newhall et al., 1982), over the whole range of DE102, that is -1400, 3000 yr.

A mere difference NGT – DE102 will not be very convenient because NGT does not include the short period terms which can reach  $8\,10^{-5}$  in the variables **k**, **h** of Mars (for example). To avoid these problems, we used the short-period terms of VSOP82, and we have plotted the differences (NGT + VSOP82) – DE102 for the 5 variables  $\lambda$ , **k**, **h**, **q**, **p** of the inner planets (Fig. 1-4). For comparison, we have also plotted VSOP82 – DE102 for the same variables in Fig. 1-4.

Except for the longitude of Mercury, where some uncertainty remains in the interpretation of the results, we can see that the utilisation of the secular terms given by the general theory NGT leads to a real improvement of VSOP82 beyond 1000 yr.

For the longitude of Venus (Fig. 2a), this improvement is due to the secular terms of Table 5, while for the longitude of the Earth and Mars, it is mainly due to the mixed terms coming from the inequality  $4N_3 - 8N_4 + 3N_5$  (Table 6).

In Table 7, we have put the maximum values of |(NGT + VSOP82) - DE102| over the whole range of DE102. If we just consider the secular terms, these values should even be reduced, owing to the fact that some short periods appear in Fig. 1-4, due to the lack of knowledge of the high-degree mixed terms for some of the inequalities.

# 4. New formulas for the precession, valid over 10000 year

The precessional quantities are completely determined by the two motions of the equatorial and ecliptic pole. The actual formulas given in *Connaissance des Temps* (1984) have been computed by Lieske et al. (1977), and are based upon the secular variations of the ecliptic pole from Newcomb's Theory of the Sun. The improvements of the VSOP82 theory lead Bretagnon and Chapront (1981) to compute new formulas; but they did not take into account the secular variations of the eccentricity of the Sun in their computations of the precessional quantities. On the other hand, Kinoshita (1975, 1977) has improved the theory of the rotation of the Earth, but the precessional quantities he computed were based on Newcomb's theory of the Sun and on initial values which slightly differ from the IAU (Grenoble, 1976) values

Our computation of the precessional quantities is based on Kinoshita's theory of the rotation of the rigid Earth and on the secular motion of the ecliptic, given in Table 5. They are developed up to degree 10 with respect to the time, and are valid over 10000 yr with a precision estimated at 0'.01 after 1000 yr and a few seconds of arc after 10000 yr (Table 8).

**Table 7.** Maximum value of |(NGT + VSOP82) - DE102| over the whole range of DE102, -1400/3000 yr. This value is given in units of  $10^{-10}$  rad (above) and in seconds of arc (below)

|         | $\Delta \lambda$ | ⊿k     | ⊿h     | ⊿q     | ⊿p     |
|---------|------------------|--------|--------|--------|--------|
| Mercury | 53236            | 1657   | 889    | 171    | 800    |
| -       | 1''098           | 0"035  | 0''018 | 0"004  | 0''017 |
| Venus   | 13152            | 2251   | 3756   | 548    | 1992   |
|         | 0"271            | 0"046  | 0''077 | 0"011  | 0"041  |
| Earth   | 13283            | 6227   | 9090   | 816    | 1192   |
|         | 0"274            | 0"128  | 0′′187 | 0"017  | 0"025  |
| Mars    | 51767            | 16634  | 29433  | 2037   | 1219   |
|         | 1′′068           | 0′′343 | 0''607 | 0''042 | 0′′025 |

**Table 8.** Formulas for the precession. The general accumulated precession  $p_A$  and the obliquity  $\varepsilon_A$  are given in arcseconds and the time t is measured in units of 10000 julian years from J2000 (JD 2451545.0). NGT denotes our solution (Numerical General Theory). L denotes the solution of Lieske et al. (1977). BC denotes the solution of Bretagnon and Chapront (1981)

|                 | NGT       | L                   | BC        |
|-----------------|-----------|---------------------|-----------|
|                 |           | $p_A(")$            |           |
| t               | 502909.66 | 502909.66           | 502909.66 |
| $t^2$           | 11119.71  | 11111.3             | 11137.0   |
| $t^3$           | 77.32     | -6.                 | 76.       |
| t <sup>4</sup>  | -2353.16  |                     |           |
| $t^5$           | -180.55   |                     |           |
| $t^6$           | 174.51    |                     |           |
| $t^7$           | 130.95    |                     |           |
| $t^8$           | 24.24     | •                   |           |
| t <sup>9</sup>  | -47.59    |                     |           |
| t <sup>10</sup> | -8.66     |                     |           |
|                 |           | $\varepsilon_A$ (") |           |
| t               | -4680.93  | -4681.50            | -4680.93  |
| $t^2$           | -1.55     | -5.9                | -1.5      |
| $t^3$           | 1999.25   | 1813.               | 2001.     |
| $t^4$           | -51.38    |                     |           |
| $t^5$           | -249.67   |                     |           |
| $t^6$           | -39.05    |                     |           |
| $t^7$           | 7.12      |                     |           |
| $t^8$           | 27.87     |                     |           |
| $t^9$           | 5.79      |                     |           |
| t10             | 2.45      |                     |           |

### 4.1. Equations for the precession

We shall use the notations of (Lieske et al., 1977) for the precessional quantities:  $p_A$  denotes the general precession, and  $\varepsilon_A$  the obliquity of the equatorial plane on the ecliptic plane. For the other variables, we keep the notations already given in Part I. The angle between the axis of figure and the angular momentum axis is of order  $10^{-6}$  and we neglect this effect. We use the equations for the precessional motion of the mean equator given

 $R(\epsilon_A)$  is the secular term due to the direct lunisolar perturbations. The factors  $M_0$ ,  $M_1$ , and  $M_2$  in the Eq. (24) come from the

secular terms of  $\frac{1}{2(a/r)^3(1-3\sin^2\beta)}$ ,  $(a/r)^3\sin\beta\cos\beta\sin\lambda$ , and

 $(a/r)^3\cos^2\beta\cos^2\lambda$ , respectively, where  $\lambda$  and  $\beta$  are the longitude and latitude of the Moon referred to the ecliptic of date and the mean equinox of date. The factors So and So are the same quantities for the Sun. The term with M3 comes from the second-order secular perturbations. The quantities M<sub>0</sub>, M<sub>1</sub>, M<sub>2</sub>, M<sub>3</sub>, S<sub>0</sub>, and S<sub>2</sub> depend only on the orbital elements of the Moon and the Sun, and their numerical values are obtained from Brown's theory of the Moon as improved by Eckert, et al. (1966), and Newcomb's theory of the Sun. The terms having  $M_1$ ,  $M_2$ , M<sub>3</sub>, as factors are not included in Newcomb's precessional theory; M<sub>1</sub>, M<sub>2</sub>, and S<sub>2</sub> come from the long-periodic terms in the motions of the Moon and the Sun. The principal moments of inertia of the Earth are denoted by A, B, and C, and the angular velocity of the Earth is  $\omega$ . The masses of the Sun, the Earth, and the Moon are denoted by  $m_{\odot}$ ,  $m_{E}$ , and  $m_{M}$ ; the sidereal mean motion of the Sun and of the Moon by  $n_{\odot}$  and  $n_{M}$ ; and the mean motion of the node of the Moon by  $n_{\Omega}$ . The other terms present in Eq. (23) represent the effects of the secular variation of the ecliptic, caused by the secular planetary perturbations. The numerical values of  $M_0$ ,  $M_1$ ,  $M_2$ ,  $M_3$  are given in (Kinoshita, 1977):

$$M_0 = 496303.3 \, 10^{-6}$$
 $M_1 = -20.7 \, 10^{-6}$ 
 $M_2 = -0.1 \, 10^{-6}$ 
 $M_3 = 3020.2 \, 10^{-6}$ 
(25)

The constant  $S_2$  of Kinoshita is smaller than  $10^{-7}$ ; it is very small in comparison to  $S_0$  and we shall neglect it in (24). If the orbit of the Sun is assumed to be Keplerian, we have:

$$S_0 = \frac{1}{2}(1 - e^2)^{-3/2} \tag{26}$$

The actual value of  $S_0$  differs from this value, due to the secular terms  $\delta S_0$  coming from the short-period terms. We have then:

$$S_0 = \frac{1}{2}(1 - e^2)^{-3/2} + \delta S_0 \tag{27}$$

Kinoshita gives:

$$S_{0.1900} = 500210.1 \times 10^{-6}$$

that is, as  $e_{1900} = 0.01675104$ ,  $\delta S_{0,1900} = -0.422 \times 10^{-6}$ . This value is very small and we shall consider that  $\delta S_0$  is a constant. The value of  $S_0$  is then given by:

$$S_0 = \frac{1}{2}(1 - e^2)^{-3/2} - 0.422 \, 10^{-6} \tag{28}$$

We shall keep this analytical expression for  $S_0$  in (23) and (24) so we do not have to consider the  $\Delta S_0 t$  term which appears in (Kinoshita, 1975a, 1975b). Moreover, for a very long time like 10000 yr, a linear estimation  $S_0(t) = S_0 + \Delta S_0 t$  may not be enough to represent the variations of  $S_0$  with good accuracy.

In the case of the Moon, the secular variations of the eccentricity are very small, and we shall keep the values of  $M_0, M_1, M_2, M_3$  constant, as they were computed by Kinoshita.

We use also the following numerical values, taken from the Connaissance des Temps, Aoki et al. (1982), Bretagnon (1982),

and Chapront-Touzé and Chapront (1983):

 $m_{\odot}/m_E = 332946.0$ 

$$\omega = 474659981.59757 \operatorname{arsec yr}^{-1}$$

$$n_{M} = 17325593.4318 \operatorname{arsec yr}^{-1}$$

$$n_{\Omega} = -69679.1936222 \operatorname{arsec yr}^{-1}$$

$$a_{\odot} = 1.00000101778 \,\text{AU}$$

$$a_{M} = 384747980.645 \,\text{m}$$

$$k = 0.01720209895$$

$$m_{\odot}/(m_{E} + m_{M}) = 328900.5$$
(29)

In order to use the results of Sect. 1, we shall express the differential system (23) in the variables  $\mathbf{q}$ ,  $\mathbf{p}$  (5) we obtain:

$$\frac{dp_A}{dt} = R(\varepsilon_A) - \cot \varepsilon_A [\mathbf{A}(\mathbf{p}, \mathbf{q}) \sin p_A + \mathbf{B}(\mathbf{p}, \mathbf{q}) \cos p_A] - 2\mathbf{C}(\mathbf{p}, \mathbf{q})$$

$$\frac{d\varepsilon_A}{dt} = -\mathbf{B}(\mathbf{p}, \mathbf{q}) \sin p_A + \mathbf{A}(\mathbf{p}, \mathbf{q}) \cos p_A$$
(30)

with:

$$\mathbf{A}(\mathbf{p}, \mathbf{q}) = \frac{2}{\sqrt{1 - p^2 - q^2}} (\dot{\mathbf{q}} + \mathbf{p}(\mathbf{q}\dot{\mathbf{p}} - \mathbf{p}\mathbf{q}))$$

$$\mathbf{B}(\mathbf{p}, \mathbf{q}) = \frac{2}{\sqrt{1 - \mathbf{p}^2 - \mathbf{q}^2}} (\dot{\mathbf{p}} - \mathbf{q}(\mathbf{q}\dot{\mathbf{p}} - \mathbf{p}\dot{\mathbf{q}}))$$

$$\mathbf{C}(\mathbf{p}, \mathbf{q}) = (\mathbf{q}\dot{\mathbf{p}} - \mathbf{p}\dot{\mathbf{q}})$$
(31)

For t=0, we have  $p_A=0$ ,  $\varepsilon_A=\varepsilon_0$ ,  $\mathbf{p}=\mathbf{q}=0$ , and thus:

$$\frac{dp_A}{dt}\bigg|_{t=0} = R(\varepsilon_0) - 2\dot{\mathbf{p}}_{t=0}\cot\varepsilon_0 \tag{32}$$

In fact, we must add to  $\frac{dp_A}{dt}$  in (30) the geodesic precession due

to the general relativity (de Sitter and Brouwer, 1938). As shown in (Barker and O'Connell, 1970), this geodesic precession  $p_g$  is one half of the Earth relativistic motion of its perihelion, that is (9), (Table 1):

$$p_q = \delta_R/2 = 191''.88/10000 \,\text{yr}$$
 (33)

The initial values for the resolution of (30) are given by the value of the general precession p and obliquity  $\varepsilon_0$  at the origin (J2000). We have:

$$\left. \frac{dp_A}{dt} \right|_{t=0} = p + p_g \tag{34}$$

and the initial values adopted by the IAU (Grenoble, 1976):

$$p = 502909.66/10000 \text{ yr}$$
  
 $\varepsilon_0 = 23^{\circ}26'21.448$  (35)

The resolution of (32) with the initial values (35) gives the value of the dynamical ellipticity of the Earth,  $\frac{2C - A - B}{2C}$ . We can

then integrate numerically the differential system (30) and obtain the general precession  $p_A$  for all times. The general precession is then corrected by the geodesic precession  $p_g$ . The secular variation of the geodesic precession itself is below 0″.03/10000 yr, so we neglect it and consider the geodesic precession as a constant.

### 4.2. Formulas for precession

The variations of the variables  $\mathbf{p}$ ,  $\mathbf{q}$ ,  $\dot{\mathbf{p}}$ ,  $\dot{\mathbf{q}}$ , of the Earth are given in Table 5. We have integrated numerically the differential system (30) with a simple Runge-Kutta method of order 4 and step of 250 yr, which ensure us a global internal precision of  $10^{-4}$  arcseconds.

By numerical derivation, we compute then the Taylor expansion of  $p_A$  and  $\varepsilon_A$  up to degree 10, valid over 10000 yr with a probable accuracy of 0."02 after 1000 yr, and a few arcseconds after 10000 yr (Table 8).

For comparison, we give also the values for the same quantities computed by Lieske et al. (1977), (L) and by Bretagnon and Chapront (1981), (BC). The solution BC does not include the secular variation of the eccentricity of the Sun. It explains the difference with NGT on the coefficient of  $t^2$  of the precession, while the coefficients of  $t^3$  are quite identical. We can also see in Table 8 that the differences between NGT and the solution L which is generally adopted are far from negligible, and reached 320" over 6000 yr for the precession, principally due to the presence of a quite large term in  $t^4$  which does not exist in Lieske's formulas. This shows that precessional formulas for the historians must take these terms into account (Bretagnon et al., 1985).

Note: The limitation in the precision of our theory over 1000 yr is principally due to the precision of the variables  $\mathbf{q}$ ,  $\mathbf{p}$ ; but we did not consider the lack of accuracy of the initial values p and  $\varepsilon_0$  (35). In fact, the uncertainty in the value of p is about 1".5/1000 yr and 0".1 in  $\varepsilon_0$ , which is far more important than the uncertainty of our theory.

# 5. Conclusions

The numerical integration of the autonomous system of our general theory gives accurate results for the secular variations of the inner planets. Using the terms in  $t^0$ ,  $t^1$  and  $t^2$  from VSOP82 (Bretagnon, 1982), and the terms computed by our theory, we have derived new accurate secular terms for the inner planets, up to  $t^{10}$  (Table 5). The comparison with DE102 (Newhall et al. 1983) shows that these secular terms behave very well, and they can be used in the construction of ephemerides over about  $10000 \, \mathrm{yr}$ .

We have also used the general theory to compute the mixed terms of the inequality  $4N_3 - 8N_4 + 3N_5$  in the mean longitude of the Earth and Mars, and in this case also, the successive utilisation of analytical and numerical methods is successful.

The accuracy on the secular variations of the ecliptic given by Table 5 is about 0".02 after 1000 years.

We have then used the theory of (Kinoshita, 1977) for the rotation of the rigid Earth, and we have derived new formulas for the precessional quantities, up to the power 10 of the time (Table 8).

The probable accuracy is of about 0."02 after 1000 years, and a few arcseconds after 10000 years when supposing that the initial constants p and  $\varepsilon_0$  (35) are exact.

Acknowledgements. I am indebted to P. Bretagnon for his help in the comparisons with his own results. I want also to thank J. Chapront, L. Duriez and J.-L. Simon for helpful discussions.

### References

Aoki, S., Guinot, B., Kaplan, G.H., Kinoshita, H., McCarthy, D.D, Seidelmann, P.K.: 1982, Astron. Astrophys. 105, 359

Barker, B.M., O'Connell, R.F.: 1970, Phys. Rev. D2 1428

Bretagnon, P.: 1974, Astron. Astrophys. 30, 141

Bretagnon, P.: 1980, Astron. Astrophys. 84, 329

Bretagnon, P.: 1981, Astron. Astrophys. 101, 342

Bretagnon, P.: 1982, Astron. Astrophys. 114, 278

Bretagnon, P., Chapront, J.: 1981, Astron. Astrophys. 103, 103 Bretagnon, P., Simon, J.L., Laskar, J.: 1985, Presentation of new Solar and Planetary Tables of interest for historical calculations. Journal for the History of Astronomy (in press)

Brumberg, V.A., Egorova, A.V.: 1971, Nablyudenya Iskustvenykh Nebesnykh Tel **62**, 42 (in russian)

Brumberg, V.A.: 1972, Relativistic Celestial Mechanics, *Nauka*, *Moscow* (in russian)

Brumberg, V.A.: 1980, Analytical Algorithms of Celestial Mechanics, *Nauka*, *Moscow* (in russian)

Chapront-Touzé, M., Chapront, J.: 1983, Astron. Astrophys. 124, 50

Connaissance des Temps: 1984, SHOM, Brest

Duriez, L.: 1977, Astron. Astrophys. 54, 93

Duriez, L.: 1978, Astron. Astrophys. 68, 199

Duriez, L.: 1979, Approche d'une Théorie Générale Planétaire en variables elliptiques héliocentriques, *Thèse*, *Lille* 

Kinoshita, H.: 1975, Smithsonian Astrophys. Obs. Special Report No. 364

Kinoshita, H.: 1977, Celes. Mech. 15, 277

Laskar, J.: 1984, Thèse de troisème cycle, Observatoire de Paris Laskar, J.: 1985, Astron. Astrophys. 144, 133

Lestrade, J.F., Bretagnon, P.: 1982, Astron. Astrophys. 105, 42 Lieske, J.H., Lederle, T., Fricke, W., Morando, B.: 1977, Astron. Astrophys. 58, 1

Newhall, X.X., Standish, E.M., Williams, J.G.: 1983, Astron. Astrophys. 125, 150

Simon, J.-L., Bretagnon, P.: 1977, Astron. Astrophys. 69, 369

Simon, J.-L., Bretagnon, P.: 1984, Astron. Astrophys. 138, 169 Simon, J.-L., Francou, G.: 1981, Astron. Astrophys. 103, 223

Simon, J.-L., Francou, G.: 1982, Astron. Astrophys. 114, 125de Sitter, W., Brouwer, D.: 1938, Bull. Astron. Inst. Netherlands 8, 213