

## MSML610: Advanced Machine Learning

# **Deep Learning**

Instructor: GP Saggese, PhD - gsaggese@umd.edu

References:

## **Neural networks**

- Neural networks
  - Biological inspiration
  - Neural networks
- Advanced Neural Network Architectures

# **Deep learning**

- Deep learning is a family of ML models and techniques with complex expressions and tunable connection strengths
  - "Deep" as circuits are organized in layers with many connection paths between inputs and outputs
  - Represent hypotheses as computation graphs with tunable weights
  - Compute the gradient of the loss function with respect to those weights
  - Optimize the weights to fit the training data
- Deep learning is extremely effective for:
  - Image recognition/synthesis
  - Machine translation
  - Speech recognition/synthesis

## DL vs ML

- Many ML methods can:
  - Handle a large number of input variables
  - The path from input to output is very short (e.g., multiply and sum)
  - There are no variable interactions
  - E.g., decision trees
    - Allow long computation paths
    - Only a small fraction of variables can interact
- The expressive power of such models is very limited
  - Real-world concepts are far more complex

# **Biological inspiration**

- Neural networks
  - Biological inspiration
  - Neural networks
- Advanced Neural Network Architectures

## **Neural network**

- Model networks of neurons in the brain with computational circuits
  - Mimic how human brains process information
  - Consist of layers of interconnected nodes or "neurons"
  - Each connection has a weight that adjusts as learning proceeds
- Resemblance with neural cells and structures is superficial
  - Architecture is inspired by the brain but does not replicate its complexity
  - Neural networks simplify the brain's processes to make them computationally feasible
- Deep learning encompasses a broader range of models and algorithms beyond neural networks

### Neural Networks $\subseteq$ Deep Learning

- Neural Networks are building blocks for many deep learning models (e.g., convolutional neural networks)
- E.g., a convolutional neural network (CNN) is used for image classification tasks
- E.g., recurrent neural networks (RNNs) are used for sequence prediction tasks like language modeling

## Biological inspiration for neural networks

- To perform a function like in a biological system, just replicate its structure
- There is a leap of faith: the structure matters to achieve a functionality
- E.g.,
  - ullet Birds fly, birds have wings  $\Longrightarrow$  build a contraption with wings
  - We want to learn, the brain learns. The brain has many neurons and synapses 
    if we get many simple units connected together we can build a model that learns like the brain

### Neurons in the brain

- The brain is jam-packed with neurons
- Each neuron has inputs (dendrites) and an output (axon)
- Neurons connect their output to inputs of different neurons, sending pulse of electricity
- Senses (e.g., eyes) send pulses to the neurons
- Neurons send pulses to the muscles to make them contract

# The "one learning algorithm" theory

- The brain can perform various tasks (process vision, sense of touch, do math, play pickle ball)
  - It doesn't have thousands of different programs; it seems to have a single learning algorithm
- The "one learning algorithm" idea has been experimentally verified
  - Re-route the connection from eyes to the brain's sound-processing area
  - After training, the brain can "see," e.g., visual discrimination
- The AI dream: if we can implement a (simplified) version of the brain algorithm, we can have a ML model that can learn anything

# Why resurgence of neural networks?

- Proposed in the 1950, popular in '80s and '90s but then they fell out of fashion
  - Interest declined due to limitations (e.g., XOR problem, lack of data, compute)

#### Key Reasons for Resurgence

- 1. Increased Computational Power
  - GPUs and TPUs enable training of large models
  - Parallel processing suited for matrix operations in neural nets
- 2. Availability of Big Data
  - Large datasets crucial for deep learning success
  - Internet, IoT, and digital storage generate massive amounts of labeled data

#### • 3. Algorithmic Improvements

- Better activation functions (ReLU)
- Advanced optimization techniques (Adam, RMSprop)
- Regularization methods (dropout, batch normalization)

#### • 4. Breakthrough Architectures

- CNNs for image tasks
- RNNs and LSTMs for sequences
- Transformers for language and vision

#### • 5. Open-Source Ecosystem

Frameworks like TensorFlow and PyTorch simplify experimentation

# Neural networks vs logistic regression + non-linear transform

- Logistic regression with non-linear transformations might seem sufficient for any problem
  - However, the number of features increases rapidly
  - Neural networks synthesize their own features, offering an advantage
- E.g., in computer vision for  $50 \times 50$  256-color images
  - There are 7500 bytes available as features
  - Using all cubic terms for a non-linear model requires  $\approx 7500^3$  features  $\propto (10^4)^3 = 10^{12} = 1$  trillion features
  - Which ones are really needed?
  - The features are predetermined an not learned
- Each neuron in a neural network performs logistic regression
  - Features used are computed by other neurons
  - We are not limited to using inputs  $\underline{x}$  or polynomial terms derived from  $\underline{x}$ ; we can infer features automatically

## **Neural networks**

- Neural networks
  - Biological inspiration
  - Neural networks
- Advanced Neural Network Architectures

# Model of a neural network perceptron

- A perceptron (aka "artificial neuron", "logistic unit") has n inputs and 1 output (like a brain neuron)
- The inputs are combined using a non-linear activation function  $\theta(s)$  to implement:

$$y = h_{\underline{w}}(\underline{x}) = \theta(\underline{w}^T\underline{x})$$

- The parameters  $\underline{\mathbf{w}}$  are typically called weights in neural network literature
- Same functional form as logistic regression ( $\theta$  is logit) or linear classification ( $\theta$  is sign)

## **Activation Functions**

- Map the neuron's input signal s to an output activation value
- Introduce non-linearity to enable learning complex functions
- General Behavior:
  - Approximately linear for small s
  - Saturate or threshold for large |s|
  - Many functions cross the origin or have  $\theta(0) = 0$

#### Sigmoid Function:

- $\theta(s) = \frac{1}{1 + \exp(-s)}$
- Output range: [0, 1]
- Smooth, differentiable, and used for probabilistic outputs
- Saturates at extremes; suffers from vanishing gradient

### Hyperbolic Tangent (tanh):

- $\theta(s) = \tanh(s) = \frac{e^s e^{-s}}{e^s + e^{-s}}$
- Output range: [-1, +1]
- Zero-centered; improves convergence over sigmoid
- ReLU (Rectified Linear Unit):

# Neural networks to compute boolean functions

- We can build AND, OR, NOT functions with linear perceptrons using proper bias and weights
- Consider a sigmoid activation function  $\theta(s)$  with threshold where y=-1 for s<-1 and y=1 for s>1
- AND is implemented by a single neuron with 2 inputs  $x_1$  and  $x_2$  and bias
  - Implement in terms of s:

• Plot a diagram and find a proper decision boundary:

$$y = \theta(w_0 * 1 + w_1 * x_1 + w_2 * x_2) = 2(-1.5 + w_1 + w_2)$$

Weights are  $(w_0, w_1, w_2) = (-3, 2, 2)$ 

- For OR.
  - use weights (-10, 20, 20)

## Universal Approximation in Feedforward Networks

#### • Power of Composition

- Connecting perceptrons enables complex functions
- A network of sufficient size and depth can approximate any Boolean or continuous function
- This is due to the compositional structure: each layer builds on the previous one

#### Role of Nonlinearity

- Nonlinear activation functions (e.g., sigmoid, tanh, ReLU) are essential
- Without nonlinearity, stacked layers reduce to a single linear transformation
- Nonlinearity allows modeling of complex, non-linear decision boundaries

#### Universal Approximation Theorem

- A feedforward network with:
  - A single hidden layer of nonlinear units
  - An output layer of linear units
- Can approximate any continuous function to arbitrary precision
- Implies shallow networks are theoretically powerful, though they may be impractically large

#### Geometric Intuition

- To separate two classes with a circular boundary:
  - Use multiple perceptrons (e.g., 8–16) to approximate the circle with a polygon
  - Combine outputs logically for the final decision

# Issues with fitting a neural networks

- 1. Generalization: we need to match the model complexity to the data resources, since the model has so much flexibility we need lots of data
- 2. Optimization: there are several layers of perceptrons with an hard threshold, which turns the optimization problem into a combinatorial one

### Feedforward vs Recurrent Neural Networks

#### Feedforward Neural Networks

- Information flows in one direction from input to output without cycles in the computational graph
- · Can model static relationships between inputs and outputs
  - E.g., classifying a handwritten digit from an image
- Limited in handling temporal or sequential dependencies (can only consider a fixed window of inputs)

### Recurrent Neural Networks (RNNs)

- Allow cycles in the computational graph with delays
  - Each unit can take input from its previous output: adds memory
  - Designed to process sequences: outputs depend on current and previous inputs
- Update rule:  $z_t = f_w(z_{t-1}, x_t)$  defines a time-homogeneous process
- Suitable for sequential data (e.g., time series, language modeling) and model longer-range dependencies
- · E.g., predicting the next word in a sentence based on previous words

# Structure of feedforward neural network in terms of layers

#### Layered Architecture

- A feedforward network consists of an ordered set of layers indexed by I
- Typical structure includes:
  - 1. Input layer (I = 0)
  - 2. One or more hidden layers (0 < l < L)
  - 3. Output layer (I = L)
- Each layer l contains d(l) units or neurons
  - Layers can vary in size: d(I) is layer-specific

#### • Input Layer (/ = 0)

- Represents the input vector  $(x_0 = 1, x_1, x_2, ..., x_d)$
- $x_0 = 1$  acts as the bias input
- Hidden Layers (0 < l < L)
  - Each neuron computes a weighted sum of inputs from the previous layer
  - Applies a nonlinear activation function  $\theta$
  - Includes a bias unit with constant output 1
  - Fully connected: every node in layer l-1 connects to every node in layer l
  - Enables the network to approximate complex, non-linear functions
- Output Layer (l = L)
  - Final layer producing the output vector y
  - Output can be:

# Conventions for neurons and weights in a neural network

- Each neuron  $x_i^{(l)}$ 
  - Belongs to a layer with index I
  - Accepts inputs from the previous layer (scanning index i)
  - Has an index j in the layer for its output
  - ij are organized as input-output
- Weights are identified by 3 indices  $w_{ij}^{(l)}$  where:
  - $0 \le I \le L$  denotes the layer
  - $0 \le j \le d(I)$  denotes the output of the layer (i.e., the neuron in the layer)
  - $0 \le i \le d(l-1)$  denotes the inputs: we start from 0 to account for the bias; we use l-1 in d(l-1) since we look at the previous layer

# Feedforward propagation algorithm

- The output of the generic *I*-th layer is  $\underline{x}^{(I)}$
- The outputs of the input layer (I = 0) are the inputs of the network:

$$\underline{\mathbf{x}}^{(0)} = (x_0^{(0)}, x_1^{(0)}, ..., x_{d(0)}^{(0)}) = \underline{\mathbf{x}} = (1, x_1, ..., x_d)$$

- The output of the *j*-th neuron of the *l*-th layer is  $x_i^{(l)}$ :
  - This neuron has d(I-1) inputs from the previous layer combined with the weights to compute the signal  $s_j^{(I)}$ , and then the activation function  $\theta$  is applied:

$$x_j^{(l)} = \theta(s_j^{(l)}) = \theta(\sum_{i=0}^{d(l-1)} w_{ij}^{(l)} x_i^{(l-1)})$$

- The output of the network is the output of the only neuron in the last layer  $y = h(\underline{x}) = x_1^{(L)}$ :
  - The last neuron outputs  $s_1^{(L)}$  or  $\theta(s_1^{(L)})$  depending on regression or classification setup

## Vectorized feedforward propagation algorithm

- Neuron evaluation can be vectorized:
  - The j-th neuron of the l-th layer uses the d(l-1) outputs of the previous layer to compute its output:

$$x_j^{(l)} = \theta(\sum_i w_{ij}^{(l)} x_i^{(l-1)}) = \theta((\underline{\boldsymbol{w}}_j^{(l)})^T \underline{\boldsymbol{x}}^{(l-1)})$$

• Compute all inputs  $\underline{s}^{(l)}$  to the activation function as a matrix-vector product:

$$\underline{\boldsymbol{s}}^{(l)} = \underline{\underline{\boldsymbol{W}}}^{(l)} \cdot \underline{\boldsymbol{x}}^{(l-1)}$$

- Define  $\underline{\underline{W}}^{(I)}$  as a matrix with weight vectors for each neuron in layer I as rows
  - Include the bias by adding a column to the weight matrix  $\underline{\underline{W}}$  and padding inputs  $\mathbf{x}^{(l)}$  with 1s
  - Apply the activation function in a vectorized form:

$$\underline{\boldsymbol{x}}^{(l)} = \underline{\boldsymbol{\theta}}(\underline{\boldsymbol{s}}^{(l)}) = \underline{\boldsymbol{\theta}}(\underline{\underline{\boldsymbol{W}}}^{(l)} \cdot \underline{\boldsymbol{x}}^{(l-1)})$$

# Cost function for single-class neural network classification

 For binary classification using neural networks, we use the logistic regression cost function with a regularization term:

$$E_{in}(\underline{\boldsymbol{w}}) = -\frac{1}{N} \sum_{i=1}^{N} (y_i \log h(\underline{\boldsymbol{x}}_i) + (1 - y_i) \log(1 - h(\underline{\boldsymbol{x}}_i))) + \frac{\lambda}{N} \sum_{j=1}^{P} \|\underline{\boldsymbol{w}}_j\|^2$$

 Note that by convention, we don't regularize the bias, as it is constant and does not affect the minimum w

# Multi-output neural networks for multi-class classification

- In one-vs-all approach, train *n* models, one per class, to recognize each class, then pick the model with the highest probability
- The output is a one-hot encoding of each class
- E.g., use 4 output neurons to discriminate pedestrian, car, motorcycle, truck
  - Encode pedestrian = (1, 0, 0, 0), car = (0, 1, 0, 0), ...
- Instead of training n neural networks, train a single neural network with an output layer of n nodes
  - a global optimization vs *n* local optimizations

# Cost function for multi-class neural network classification

• If we encode one-hot the expected outputs  $\underline{y}_i$  and the outputs from the model  $h(x_i)$ :

$$E_{in}(\underline{\boldsymbol{w}}) = -\frac{1}{N} \sum_{i} \sum_{k} \underline{\boldsymbol{y}}_{i}|_{k} \log \underline{\boldsymbol{h}}(\underline{\boldsymbol{x}}_{i})|_{k} + (1 - \underline{\boldsymbol{y}}_{i}|_{k}) \log (1 - \underline{\boldsymbol{h}}(\underline{\boldsymbol{x}}_{i})|_{k}) + \frac{\lambda}{N} \sum_{l=1}^{L} \sum_{j=1}^{d(l)} \sum_{i=1}^{d(l)} \sum_{k=1}^{d(l)} \sum_{j=1}^{d(l)} \sum_{i=1}^{d(l)} \sum_{j=1}^{d(l)} \sum_{j$$

Note that again we avoid to consider the inputs  $(I \neq 0)$  and the bias terms  $(i \neq 0, j \neq 0)$ 

## Fitting a neural networks for SGD

- ullet Use SGD (stochastic gradient descent) to determine the weights  $\underline{oldsymbol{w}}$ 
  - Consider the error on a single example  $(\underline{x}, y)$ :

$$E_{in}(\underline{\boldsymbol{w}}) = e(h_{\underline{\boldsymbol{w}}}(\underline{\boldsymbol{x}}), y) = e(\underline{\boldsymbol{w}})$$

• The same reasoning holds for both regression and classification:

$$e(h_{\underline{w}}(\underline{x}), y) = (h_{\underline{w}}(\underline{x}) - y)^{2}$$

$$e(h_{\underline{w}}(\underline{x}), y) = -y \log h_{\underline{w}}(\underline{x}) - (1 - y) \log(1 - h_{\underline{w}}(\underline{x}))$$

• Need to compute  $\nabla_{\underline{w}} e(\underline{w}_0)$  by computing all the partial derivatives

$$\frac{\partial e(\underline{\mathbf{w}})}{\partial w_{ij}^{(I)}} \, \forall i, j, I$$

• The entire formula for the hypothesis  $h_{\underline{w}}(\underline{x})$  is very convoluted: non-linearity  $\theta$  of linear combinations of weights and  $\theta$  of linear combinations of weights and  $\theta$  of . . .

$$h_{\underline{\boldsymbol{w}}}(\underline{\boldsymbol{x}}) = \theta((\underline{\boldsymbol{w}}^{(L)})^T \cdot \underline{\boldsymbol{x}}^{(L-1)}) = \theta((\underline{\boldsymbol{w}}^{(L)})^T \cdot \underline{\theta}(\underline{\underline{\boldsymbol{w}}}^{(L-1)} \cdot \underline{\boldsymbol{x}}^{(L-2)}) = \dots$$

# **Computing the gradient**

Need to compute all the partial derivatives to get:

$$\nabla_{\underline{\boldsymbol{w}}}e(\underline{\boldsymbol{w}}_0)$$

- We can compute:
  - The analytic expression of the derivatives by brute force
  - Approximate the derivatives numerically by changing each  $w_{ij}^{(l)}$  and computing the variation of e
  - There is a very efficient algorithm (backpropagation or BackProp) that makes computing the gradient efficient
- Backpropagation
  - Efficient algorithm for computing gradients of the loss function with respect to all weights in the network
  - Enables training of multi-layer neural networks via gradient descent
  - Based on the chain rule of calculus
  - Propagates error backward from the output layer to the input layer
  - · Updates weights to minimize the overall prediction error

## **Backpropagation in Neural Networks**

- Steps of Backpropagation
  - 1. Forward Pass:
    - Compute outputs of each neuron layer by layer from input to output
    - Store activations and weighted sums (z values) for use in backward pass
  - 2. Compute Output Error:
    - At the output layer, compute the error derivative using:

$$\delta^L = \nabla_{\mathbf{y}} \mathcal{L} \circ \theta'(\mathbf{z}^L)$$

- Where  $\mathcal{L}$  is the loss function and  $\theta'$  is the derivative of the activation
- 3. Backward Pass:
  - For each hidden layer l = L 1 down to 1, compute:

$$\delta' = (\mathbf{w}^{l+1})^T \delta^{l+1} \circ \theta'(z^l)$$

- $\delta^I$  represents the error signal for layer I
- 4. Gradient Computation:
  - Gradient of the loss w.r.t. weight w<sup>1</sup><sub>ij</sub>:

$$\frac{\partial \mathcal{L}}{\partial w_{ii}^{I}} = \delta_{j}^{I} \cdot a_{i}^{I-1}$$

- Where  $a_i^{l-1}$  is the activation from the previous layer
- 5. Parameter Update:
  - Using gradient descent:

$$w_{ij}^l \leftarrow w_{ij}^l - \eta \frac{\partial \mathcal{L}}{\partial w_{ij}^l}$$

# SGD + backpropagation pseudo-algorithm for neural networks

- Initialize weights  $\underline{\boldsymbol{w}}$  randomly (avoid  $\underline{\boldsymbol{0}}$  as it is an unstable equilibrium point)
- For each iteration
  - Pick a random input  $\underline{x}_n$  (SGD setup)
  - Forward pass: compute outputs of all neurons  $x_j^{(l)}$  given  $\underline{x}_n$  and current weights  $\underline{w}(t)$
  - Backpropagation: compute all  $\delta_j^{(I)}$  using backpropagation for current  $\underline{x}_n$  and  $\underline{w}(t)$
  - Compute derivatives of errors:  $\frac{\partial e}{\partial w_i^{(l)}} = \delta_j^{(l)} x_i^{(l-1)}$
  - · Update weights using derivatives

$$egin{aligned} \underline{oldsymbol{w}}(t+1) \leftarrow \underline{oldsymbol{w}}(t) - \eta 
abla_{\underline{oldsymbol{w}}} e(\underline{oldsymbol{w}}(t)) \ w_{ij}^{(I)}(t+1) \leftarrow w_{ij}^{(I)}(t) - \eta rac{\partial e}{\partial w_{ij}^{(I)}} \end{aligned}$$

- Iterate until termination
- If we want to use batch gradient descent (instead of SGD)

## **Gradient checking**

- For some algorithms (e.g., back-propagation in neural networks), the analytical expression of the gradient becomes complicated, and mistakes are possible
- One approach is to compute the gradient numerically:

$$\frac{\partial E_{in}(\underline{\boldsymbol{w}})}{\partial w_{i}} \approx \frac{E_{in}(\underline{\boldsymbol{w}} - \hat{w}_{j}\varepsilon) - E_{in}(\underline{\boldsymbol{w}} + \hat{w}_{j}\varepsilon)}{2\varepsilon}$$

and then compare the analytical gradient to the numerical approximation

- One should pick  $\varepsilon$  small (e.g.,  $\varepsilon=10^{-4}$ ) but not so small to cause numerical issues
- Automatic differentiation packages solve this issue

# Automatic Differentiation and End-to-End Learning

### Automatic Differentiation (AD)

- Computes gradients by applying calculus rules to numerical programs
- Avoids manual gradient derivation for new architectures

#### Backpropagation as Reverse Mode AD

- A special case of reverse mode automatic differentiation
- Applies the chain rule efficiently from output to input
- Beneficial for models with many inputs but few outputs

#### Practical Benefits

- Major deep learning frameworks (e.g., TensorFlow, PyTorch) implement AD
- Enables rapid experimentation with network structures, activation functions, and loss functions
- Frees users from manually re-deriving learning rules

## Encouragement of End-to-End Learning

- Complex tasks (e.g., machine translation) modeled as compositions of trainable subsystems
- Trained on input-output pairs without explicit internal supervision
- Requires minimal prior knowledge about internal components or roles

## **Advanced Neural Network Architectures**

- Neural networks
- Advanced Neural Network Architectures
  - Convolutional networks
  - Recurrent Neural Networks (RNNs)
  - Deep learning learning algorithms
  - Deep learning architectures

### Convolutional networks

- Neural networks
- Advanced Neural Network Architectures
  - Convolutional networks
  - Recurrent Neural Networks (RNNs)
  - Deep learning learning algorithms
  - Deep learning architectures

## Introduction to Convolutional Networks

#### Motivation

- Standard feedforward networks do not scale well with high-dimensional inputs like images
- Convolutional neural networks (CNNs) are designed to exploit spatial structure in data

#### Key Idea

- Use local connectivity and weight sharing to detect spatially local patterns
- Convolutions act as learnable filters applied across input regions

#### Basic Components

- Convolutional layer: applies multiple filters across input
- Activation function: non-linearity (e.g., ReLU) after convolution
- Pooling layer: reduces spatial dimensions (e.g., max pooling)
- Fully connected layers: typically at the end for classification

# **Convolution Operation and Feature Maps**

#### Convolutional Layer Mechanics

- Filter (or kernel): small matrix of weights (e.g.,  $3 \times 3$ )
- Applies dot product between filter and local patch of input
- Produces a **feature map** showing activations across the input

#### Weight Sharing

- Each filter is reused across all spatial locations
- Reduces number of parameters and improves generalization

#### Stacking Convolutions

- Multiple layers can detect increasingly abstract features:
  - Early layers detect edges, textures
  - · Later layers detect object parts or entire objects

#### Example

• An image of size  $32 \times 32 \times 3$  with a  $5 \times 5$  filter creates a  $28 \times 28$  feature map (ignoring padding)

# Advantages and Applications of CNNs

#### Advantages

- Parameter efficiency due to local connectivity and weight sharing
- Invariant to translation and small distortions in input
- Scalable to large input sizes (e.g., high-resolution images)

#### Regularization via Pooling

- · Pooling layers help summarize features and reduce overfitting
- Common pooling: max pooling, average pooling

#### Common Architectures

LeNet, AlexNet, VGG, ResNet — widely used in vision tasks

#### Applications

- Image classification, object detection, face recognition
- Also used in NLP, audio processing, and medical imaging

# Recurrent Neural Networks (RNNs)

- Neural networks
- Advanced Neural Network Architectures
  - Convolutional networks
  - Recurrent Neural Networks (RNNs)
  - Deep learning learning algorithms
  - Deep learning architectures

# Recurrent Neural Networks (RNNs)

- Designed for sequential data (e.g., time series, text)
- Maintain a hidden state that evolves over time
- Struggle with long-term dependencies (vanishing gradients)
- Suitable for simple sequences
- Output depends on current input and previous hidden state
- Example: predicting next word in a sentence

# Long Short-Term Memory (LSTM) Networks

- Solve vanishing gradient problem of RNNs
- Introduce memory cells and gates:
  - Forget, input, and output gates
- Control what to remember and forget
- Able to capture long-term dependencies
- Widely used in NLP and time series forecasting
- Example: LSTM for language modeling tasks

# **Gated Recurrent Units (GRUs)**

- Simplified variant of LSTM networks
- Combine forget and input gates into an update gate
- Fewer parameters than LSTM
- Faster training with comparable performance
- Effective for many sequential tasks
- Example: GRU-based network for speech recognition

## **Transformer Architecture**

- Relies on **self-attention** mechanisms
- Processes all input tokens simultaneously (no recurrence)
- Key components:
  - Multi-head attention
  - Positional encoding
- Scales better than RNNs/LSTMs for large datasets
- Backbone of modern NLP models (e.g., BERT, GPT)
- Example: Transformer model for machine translation

# Deep learning learning algorithms

- Neural networks
- Advanced Neural Network Architectures
  - Convolutional networks
  - Recurrent Neural Networks (RNNs)
  - Deep learning learning algorithms
  - Deep learning architectures

# Regularization in neural networks

- (Soft) weight elimination: fewer weights  $\implies$  smaller VC dimension, so we would like to remove some neurons (i.e., push weights towards 0)
- For any activation function (e.g., tanh()) a small weight means that we
  work in the linear regime, while a large weight leaves us in the binary
  regime
- Using a normal regularization

$$\Omega(\underline{\mathbf{w}}) = \sum_{i,j,l} (w_{ij}^{(l)})^2$$

we have the problem that a neuron in binary regime is penalized more than many neurons in linear regime

So for neural networks we use a regularizer as:

$$\Omega(\underline{\boldsymbol{w}}) = \lambda \sum_{i,j,l} \frac{(w_{ij}^{(l)})^2}{\beta^2 + (w_{ij}^{(l)})^2}$$

so that the penalization is quadratic for small  $\underline{\boldsymbol{w}}$  and then it saturates as function of the weight magnitude

## **Deep learning architectures**

- Neural networks
- Advanced Neural Network Architectures
  - Convolutional networks
  - Recurrent Neural Networks (RNNs)
  - Deep learning learning algorithms
  - Deep learning architectures

## **Choosing a NN architecture**

- The number of neurons in the input layer is determined by the number of features (fixed in the problem)
- The number of neurons in the output layer is determined by the number of classes (fixed in the problem)
- We need to choose as hyper-parameters
  - The number of hidden layers
  - The number of neurons per hidden layer

## Reasonable choices for NN architecture

- A single hidden layer (I = 1)
- Multiple hidden layers with the same number of neurons
- Number of neurons in the hidden layers comparable to the number of features (e.g., from 1x to 3x)