1/3/2019 7.17. Don't cares

7.17 Don't cares

Incompletely specified functions

An *incompletely specified function* does not define output values for every input combination. Ex: A 3-position knob may so 01, or 10. Combination 11 is not possible and thus f is not specified for that combination.

All possible minterms of a function can be divided into an **on set** (function is 1), **off set** (function is 0), and **don't care set** (function is 1). In a truth table or on a K-map, don't cares are drawn with an X.

1/3/2019

Indicate whether the function f having inputs a, b is completely specified.	
1) f is 1 for a'b', 1 for ab', and 0 for ab.	-
O Complete	
O Incomplete	
2) f is 1 for a'b', and 0 otherwise.	_
O Complete	
O Incomplete	
3) f is 1 for a'b', and for ab.	_
O Complete	
O Incomplete	
4) f is 1 for a'b', 1 for a'b, and 0 for ab'.	_
O Complete	
O Incomplete	
5) For a'b', f is 1. For ab, the output value doesn't matter. All other combinations output 0.	-
O Complete	
O Incomplete	

Minimizing with don't cares

Due to the nature of digital circuits, a circuit will output either 0 or 1 for every input value combination. Thus, even for an inc specified function, a designer must still choose whether to output 0 or 1 for each don't care input value combination. Comr make a choice that allows for greatest circuit minimization.

A designer can decide whether to set a don't care output value X to 0 or 1 when drawing circles. If setting to a 1 allows for a then 1 is a better choice, leading to fewer literals in a term. Otherwise, setting to 0 is a better choice, leading to fewer terms

ACTIVITY

7.17.5: Minimizing with don't care minterms.

Indicate whether each X should be chosen to output 0 or 1.

i \int k	00	01	11	10
0	0	0	Xa	1
1	0	Xb	1	1

i \int k	00	01	11	10
0	0	Xc	1	0
1	0	Xd	1	0

- 1) Xa
 - 0 0
 - 0
- 2) Xb
 - 0 0
 - 0 1
- 3) Xc
 - 0 0
 - 0 1
- 4) Xd
 - **O** 0
 - 0 1

Warning

Many designers recommend avoiding don't cares except in rare cases. Even though an input combination should never appear, the combination could possibly appear, even briefly—due to

1/3/2019 7.17. Don't cares

electrical noise, due to glitches while switching, or during startup. If the output really does matter in that case, then a safe value should be chosen. Ex: For the earlier three-position knob example, if f = 1 turns on a device, then 11 is not really a don't care, because the device should not turn on. So f should be set to 0 for input 11, just in case a 11 accidentally appears.

Example: Electronic die

A die can display values 1-6. When rolled, a circuit lights an LED if a high-number is rolled, defined as 4-6. If the die's value is circuit in binary as 3 bits, then combinations 000 and 111 (0 and 7) can't occur. Thus, 000 and 111 are don't care values.

1) If the designer makes the X in cell 111 a 0, what is f after covering the 1's with circles?	•
O ab'	
O ac	
O ab' + ac'	
2) If the designer makes the X in cell 111 a 1, what is f after covering the 1's with circles?	•
O a'	
O a	
O ab' + ab	
3) If the designer makes the X in cell 000 a 1, what additional term would result?	_
O b'c'	
O None	

Provide feedback on this section