Two Topics in High Dimensional Space: Hubness and Low Dimensional Geometry

Jiaji Huang

July 18th

Agenda

Hubness explained

2 Bilingual Lexicon Induction (BLI) and Hubness Reduction [1]

3 Low-dimensionality: Miscellaneous Results [2, 3]

Agenda

Hubness explained

② Bilingual Lexicon Induction (BLI) and Hubness Reduction [1]

3 Low-dimensionality: Miscellaneous Results [2, 3]

Hubness 1

► Hubs: "popular" nearest neighbors

¹M. Radovanović et. al, JMLR 2010

Hubness ¹

- ► Hubs: "popular" nearest neighbors
- ▶ N_k (k-occurrence against a query set): "the number of times a point being the k-NN of query items"

¹M. Radovanović et. al, JMLR 2010

Hubness

- Example: multivariate Gaussian, k=5
- ► For each data point, retrieve its 5-NN among all the generated data points

Figure: Distribution of 5-occurrence

► Conclusion: When *d* big, some data points are being retrieved too many times!

Hubness Degrades NN Search

Evidence seen in

- ▶ Bilingual Lexicon Induction ²
- Document classification ³
- Audio Retrieval ⁴
- Zero-shot Image labeling ⁵

²Dinu et. al. ICLR 2014

³Suzuki et. al. EMNLP 2013

⁴Aucouturier et. al. Pattern recognition 2008

⁵Shigeto et. al. KDD 2015

Agenda

Hubness explained

2 Bilingual Lexicon Induction (BLI) and Hubness Reduction [1]

3 Low-dimensionality: Miscellaneous Results [2, 3]

Bilingual Lexicon Induction

- ► How to translate words without parallel corpora?
- ▶ isometry between word embedding spaces of two languages

Bilingual Lexicon Induction

- ► How to translate words without parallel corpora?
- isometry between word embedding spaces of two languages

Bilingual Lexicon Induction

Introduce Some anchors by using a seeding dictionary

- ▶ Align the anchors via a rotation
- More translation pairs can be induced by Nearest Neighbor (NN) Search

Inverted Softmax Mitigates Hubness ⁶

▶ Distance matrix $D_{i,j}$ where

$$i=1,\ldots,m:$$
 index of source; $j=1,\ldots,n:$ index of target

• Kernel matrix $\exp(-D_{i,j}/\epsilon)$

Target, n=3					
m=3	0.2	0.4	0.8		
	0.6	0.2	0.8		
Source,	0.4	0.2	0.4		
Kernel					

⁶Smith et. al., ICLR 2017

Inverted Softmax Mitigates Hubness ⁶

▶ Distance matrix $D_{i,j}$ where

$$i=1,\ldots,m$$
: index of source; $j=1,\ldots,n$: index of target

• Kernel matrix $\exp(-D_{i,j}/\epsilon)$

	Target, n=3					
m=3	0.2	0.4	0.8			
	0.6	0.2	0.8			
Source,	0.4	0.2	0.4			
	17					

	rarget, n-s				
m=3	1/6	1/2	2/5		
Source, r	1/2	1/4	2/5		
	1/3	1/4	1/5		

Kernel

normalize columns

⁶Smith et. al., ICLR 2017

Inverted Softmax Mitigates Hubness ⁶

▶ Distance matrix $D_{i,j}$ where

$$i=1,\ldots,m: \text{index of source}; \quad j=1,\ldots,n: \text{index of target}$$

• Kernel matrix $\exp(-D_{i,j}/\epsilon)$

Target, n=3					
m=3	0.2	0.4	0.8		
	0.6	0.2	0.8		
Source,	0.4	0.2	0.4		
I/ a a l					

Target, n=3					
m=3	1/6	1/2	2/5		
	1/2	1/4	2/5		
Source,	1/3	1/4	1/5		

Target, n=3

| 5/32 | 15/32 | 12/32 |
| 10/23 | 5/23 | 8/23 |
| 20/47 | 15/47 | 12/47

normalize rows

Kernel normalize columns

⁶Smith et. al., ICLR 2017

Doubts ...

- ► ISF works but not clear why
- ▶ What if run the normalization for multiple times?

Let's back off a bit ...

▶ NN is equivalent to $\arg\max_{j} \exp(-D_{i,j}/\epsilon)$.

- ▶ NN is equivalent to $\arg \max_{i} \exp(-D_{i,j}/\epsilon)$.
- Obviously,

$$\arg\max_{j} \exp(-D_{i,j}/\epsilon) \equiv \arg\max_{j} \frac{\exp(-D_{i,j}/\epsilon)}{\sum_{j'} \exp(-D_{i,j'}/\epsilon)}$$

- ▶ NN is equivalent to $\arg\max_{j} \exp(-D_{i,j}/\epsilon)$.
- Obviously,

$$\arg\max_{j} \exp(-D_{i,j}/\epsilon) \equiv \arg\max_{j} \frac{\exp(-D_{i,j}/\epsilon)}{\sum_{j'} \exp(-D_{i,j'}/\epsilon)}$$

RHS is the solution of the following

$$\min_{\mathbf{P}} \langle \mathbf{D}, \mathbf{P} \rangle + \epsilon \sum_{i,j} P_{i,j} \log P_{i,j}$$

$$s.t. P_{i,j} \ge 0, \quad \sum_{j} P_{i,j} = 1$$
(1)

Proposition 1 (NN as an optimization problem)

The NN criterion is equivalent to $\arg \max_{j} P_{i,j}$, where **P** is the solution of the following optimization problem,

$$\min_{\mathbf{P}} \langle \mathbf{D}, \mathbf{P} \rangle + \epsilon \sum_{i,j} P_{i,j} \log P_{i,j}
s.t. P_{i,j} \ge 0, \quad \sum_{j} P_{i,j} = 1$$
(\mathcal{P}_0)

▶ Column mean of P encodes how popular each target item is

5/32	15/32	12/32
10/23	5/23	8/23
20/47	15/47	12/47

▶ Column mean of P encodes how popular each target item is

▶ Column mean of P encodes how popular each target item is

▶ Let's enforce them to be equally "popular"

Definition 1 (Equal Preference Assumption)

$$pf_j \triangleq \frac{1}{m} \sum_{i} P_{i,j} = \frac{1}{n}, \quad \forall j$$

▶ Column mean of P encodes how popular each target item is

▶ Let's enforce them to be equally "popular"

Definition 1 (Equal Preference Assumption)

$$pf_j \triangleq \frac{1}{m} \sum_{i} P_{i,j} = \frac{1}{n}, \quad \forall j$$

ightharpoonup Approximately holds when m, n are huge

Hubless Nearest Neighbor (HNN)

Applying the assumption:

Definition 2 (HNN)

HNN is the criterion that retrieves index $\arg\max_{j}P_{i,j}$, where \mathbf{P} is the solution of problem

$$\min_{\mathbf{P}} \langle \mathbf{D}, \mathbf{P} \rangle + \epsilon \sum_{i,j} P_{i,j} \log P_{i,j}$$

$$s.t. P_{i,j} \ge 0, \quad \sum_{j} P_{i,j} = 1, \quad \frac{1}{m} \sum_{i} P_{i,j} = \frac{1}{n}$$
(P₁)

Sovling (\mathcal{P}_1)

Algorithm 1 Sinkhorn Iteration

```
Input: D  \begin{aligned} \textbf{Output: P} \\ \textbf{P} \leftarrow \exp(-\mathbf{D}/\epsilon) & \text{ where } \exp \text{ is on elements.} \\ \textbf{while } & \text{stopping criteria not met } \textbf{do} \\ & // & \text{ normalize columns} \\ \textbf{P} \leftarrow \textbf{Pdiag}\left\{\frac{m}{n}./(\mathbf{P}^{\top}\mathbf{1})\right\} \\ & // & \text{ normalize rows} \\ \textbf{P} \leftarrow \text{diag}\{1./(\mathbf{P}\mathbf{1})\} \textbf{P} \\ & \text{end while} \end{aligned}
```

- ISF is a single step of Sinkhorn iteration!
- ▶ Less efficient if m, n are huge

Dual of $(\mathcal{P}_1)^{7}$

Proposition 2 (Dual of (\mathcal{P}_1))

The solution of problem (\mathcal{P}_1) can be expressed as

$$P_{i,j} = \frac{\exp\left(\frac{\beta_j - D_{i,j}}{\epsilon}\right)}{\sum_j \exp\left(\frac{\beta_j - D_{i,j}}{\epsilon}\right)},\tag{2}$$

where β_j is the solution of

$$\min_{\beta} \sum_{i} \left\{ \ell_{i} \triangleq \left[\epsilon \log \sum_{j} \exp \left(\frac{\beta_{j} - D_{i,j}}{\epsilon} \right) - \frac{1}{n} \sum_{j} \beta_{j} \right] \right\} \quad (\mathcal{D})$$

- $ightharpoonup \exp(-\beta_i/\epsilon)$ is a column normalizer
- ▶ ISF simply sets the normalizer as $\sum_{i} \exp(-D_{i,j}/\epsilon)$

⁷Genevay et. al., 2016

Dual Solver

Algorithm 2 Dual Solver for Problem (\mathcal{P}_1)

Input: D Output: P 1: $\beta \leftarrow 0$

2: while stopping criteria not met do

3: for
$$i=1,\ldots,m$$
 do

5: Compute gradient
$$\nabla \ell_i$$
.

7:
$$\boldsymbol{\beta} \leftarrow \boldsymbol{\beta} - \eta \cdot \frac{1}{m} \sum_{i} \nabla \ell_{i}$$

9: Compute \mathbf{P} by E.q. (2) and return.

Illustrative Experiments

- dimension d=300, number of classes C=10K, m=n=10K
- $p(\mathbf{x}|c) = \mathcal{N}(\boldsymbol{\mu}_c, 0.01), c = 1, \dots, C$, uniform prior p(c)

(b) Algo. 1 iterations

(c) Column Normalizer

Illustrative Experiments (contd.)

Top-1, top-5, top-10 retrieval accuracies

	P@1	P@5	P@10
NN	51.71	71.88	78.51
ISF	73.75	88.57	92.36
HNN	78.85	91.43	94.60
(Algorithm 1)	70.03	91.43	94.00
HNN	78.84	91.41	94.59
(Algorithm 2)	70.04	91.41	94.39

BLI experiments⁸

sourc	target	en	es	fr	it	pt	de
	NN		54.98	55.66	46.30	37.02	53.03
	ISF		70.35	72.31	63.75	53.02	65.75
en	CSLS		71.21	72.62	64.11	53.54	66.50
	HNN		71.34	73.65	64.91	54.03	64.61
	NN	59.87		60.76	61.95	66.94	48.73
	ISF	73.11		76.82	76.33	78.67	61.70
es	CSLS	73.02		76.44	76.44	80.29	62.29
	HNN	74.38		78.24	77.86	81.09	60.78
	NN	61.60	61.73		59.43	46.31	57.10
c.	ISF	74.46	75.72		73.78	60.89	69.07
fr	CSLS	74.88	76.68		74.34	62.06	70.34
	HNN	75.97	77.23		75.12	63.10	67.94
it	NN	51.38	64.63	61.45		51.91	50.68
	ISF	65.57	77.76	76.64		67.32	63.58
	CSLS	65.32	78.46	76.74		68.85	64.57
	HNN	67.57	79.75	78.56		70.33	62.96
	NN	42.21	68.93	47.48	50.98		37.95
pt	ISF	55.76	81.67	64.37	68.37		51.07
	CSLS	54.75	81.98	63.68	67.92		51.77
	HNN	57.42	83.96	66.19	70.44		49.93
	NN	56.06	44.33	52.78	45.44	33.20	
4.	ISF	69.74	60.77	71.59	65.99	52.74	
de	CSLS	68.65	59.21	69.88	63.69	50.72	
	HNN	69.20	60.22	70.71	65.09	52.08	

⁸Follow setups in https://github.com/facebookresearch/MUSE

Analysis

Why HNN is less impressive on German?

Figure: $var[pf_j]$ for all the pairs

► Hubness reduced?

Analysis

Table: Some representative "hubs"

word	N_5	N_5	frequency
word	by NN	by HNN	rank
conspersus	1,776	0	484,387
oryzopsis	1,235	5	472,161
these	1,042	25	122
s+bd	912	16	440,835
were	798	24	40
you	474	20	50
would	467	40	73

- ► Typos (extremely low-frequency) are likely to be hubs ⁹
- ▶ Some functional words (very frequent) can also be hubs

⁹Dinu et. al.. ICLR 2014

Agenda

Hubness explained

② Bilingual Lexicon Induction (BLI) and Hubness Reduction [1]

3 Low-dimensionality: Miscellaneous Results [2, 3]

Principal Angles and Subspace Classification [2]

Robustness and Local Geometry Preservation [3]

- ▶ Application of (K, ϵ) -robustness ¹⁰
- ▶ Deep Network $+\sum_{(i,j)\in NB} |d(f_i,f_j) d(x_i,x_j)|$ where NB is local neighborhood

¹⁰Xu et. al., Machine Learning 2012

Reference I

- [1] J. Huang *et. al.* Hubless Nearest Neighbor Search for Bilingual Lexicon Induction. ACL 2019.
- [2] J. Huang *et. al.* The Role of Principal Angles in Subspace Classification. IEEE Transactions on Signal Processing. 2015
- [3] J. Huang *et. al.* Discrimnative Robust Feature Transformation. NIPS 2015