Geometría I Grado en Matemáticas. Grupo A Segunda prueba intermedia

22 de enero de 2015

Ejercicio 1.- Contesta razonadamente a las siguientes cuestiones:

- (a) [0.5 puntos] Sea V un espacio vectorial sobre K con $\dim_K(V) = 1$ ¿Es cierto que para cada $f \in \operatorname{End}_K(V)$ existe un único $a \in K$ de manera que f(v) = av, para todo $v \in V$?
- (b) [0.5 puntos] Para $g \in \text{End}_{\mathbb{R}}(\mathbb{R}^2)$ se sabe que g(1,3) = (0,2) y g(4,2) = (1,1) ¿Puede ocurrir que g(2,5) = g(1,2)?
- (c) Se sabe que $h \in \operatorname{End}_{\mathbb{R}}(\mathbb{R}^2)$ tiene rango(h) = 1.

 [1 punto] ¿Es posible encontrar bases ordenadas $B \setminus B'$ de \mathbb{R}^2 de manera que $M(h, B, B') = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$?

 $[1\ \mathbf{punto}]$ ¿Es posible encontrar siempre una base ordenada \widetilde{B} de manera que $M(h,\widetilde{B})=\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right)?$

(d) [1 punto] Considera dos formas lineales $\alpha, \beta \in (\mathbb{R}^2)^*$, ambas no nulas y tales que $\operatorname{Ker}(\alpha) = \operatorname{Ker}(\beta)$ ¿Existe $c \in \mathbb{R}$, $c \neq 0$, tal que $\beta = c \alpha$?

Ejercicio 2.- [3 puntos] Considera los subespacios $U = \{(x,y,z) \in \mathbb{R}^3 / x + 2y - z = 0\}$ y $W = \{(x,y,z) \in \mathbb{R}^3 / x - 3y + 2z = 0, x + y + z = 0\}$ de \mathbb{R}^3 . Construye, si es posible, un endomorfismo f de \mathbb{R}^3 que cumpla $\operatorname{Im}(f) = U$ y $\operatorname{Ker}(f) = W$, dando su matriz respecto de la base ordenada usual de \mathbb{R}^3 .

Ejercicio 3.- Sea $\mathcal{A}_3(\mathbb{R})$ el espacio vectorial de las matrices antisimétricas reales de orden 3. Considera la forma lineal $\varphi \in \mathcal{A}_3(\mathbb{R})^*$ dada por $\varphi(A) = b - c$, para cada

$$A = \begin{pmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{pmatrix}, a, b, c \in \mathbb{R}.$$

- (a) [1 punto] Encuentra una base $\widetilde{\mathcal{B}}$ de $\mathcal{A}_3(\mathbb{R})^*$ que contenga a φ .
- (b) [1 punto] Calcula la base \mathcal{B} de $\mathcal{A}_3(\mathbb{R})$ cuya dual es $\widetilde{\mathcal{B}}$.
- (c) [1 punto] En una base ordenada \widetilde{B} obtenida de $\widetilde{\mathcal{B}}$, calcula las coordenadas de la forma lineal ψ , dada por $\psi(A) = 2a + 3c$.

Duración: 2 horas.

- 1(a) Como dim $\chi V = 1$, tomo $\mathfrak{B} = \{v_1\}$ base de V. Existe $a \in K$ de manera que $f(v_1) = a v_1$. Dado $v \in V$ cualquiera escribimos $v = b v_1 \Rightarrow f(v) = b f(v_1) = b(a v_1) = (ba) v_1 = ab) v_1 = a(b v_1) = av$ (donde ab = ba pues K es conmutativo).
- 1(b) 6000 $\{(1,3), (4,2)\}$ son independientes (comprué bese) entonces forman una base de $\mathbb{R}^2(\mathbb{R})$. Como $\{(0,2), (1,1)\}$ también es base (comprué bese) geleva base en base. Por tanto ges biyectiva. Si ocurriera g(2,5)=g(1,2) ya no seria inyectiva.
- I(c) Primera parte: Como rango (f) = 1 \Rightarrow mulidad |f) = 2-1 = 1. Tomo { v_2 } base de Ker(f). Amplio a una base $B = (v_1 v_2)$ de R^2 . Como $f(v_1) \neq 0$, llamo $v_1 = f(v_1)$ y amplio { v_1 } a una base $B' = (v_1 v_2)$ de R^2 . I(c) Segunda parte: Si fuese M(f, B) = (10) en tonces

M(fof, B) = M(f, B), M(f, B) = $\binom{10}{00}$. $\binom{10}{00}$ = $\binom{10}{00}$ = M(f, B) \Rightarrow fof = f. Lvego la respuesta es NO y un contraejample es fe End_RR² dado por M(f, B) = $\binom{01}{00}$ donde By=(e1,e2) es la

base usual.

1(d) Se cumple 3= mulidad(α)+ range(α) con range (α) ≤ 1 . Come α no es la forma lineal mula \Rightarrow range (α)=1. Asi, tanto range(α) como mulidad(α) son ignals α 1. Lo mismo para β . Como su ponemos $\ker(\alpha)=\ker(\beta)$ tomans una base suya $\{w_1\}$. Amplianos α una base de \mathbb{R}^2 , $\{w_1, w_2\}$. Necesariamente α (w_2) \neq 0 y β (w_2) \neq 0. Se cumple β (w_2) = α d (w_2) si endo $\alpha = \frac{\beta w_2}{\alpha(w_2)}$. Como esta misma ignaldad se cumple para w_1 , tenano que β (ϑ) = α d(ϑ) para todo $\vartheta \in \mathbb{R}^2$.

2. - Considerances bases de V_y de W_s , respectivamente $\{v_1'=(1,0,1), v_2'=(0,1,2)\}$ y $\{v_3=(-5,1,4)\}$ (compruébese). Amplio a una base de \mathbb{R}^3 la base de W_s :

 $N_1 = (1,0,0), V_2 = (0,1,0), V_3 = (-5,1,4)$

Construjo ficomo el muico endomerfismo de IR3 que cumple (segon el teorema de existencia yunicidad conocidas las imágenes de los vectores de una base) $f(v_A) = : v_A$

 $f(v_1) = v_1$ $f(v_2) = v_2$ $f(v_3) = 0$

es de air $f(a_1v_1 + a_2v_2 + a_3v_3) = a_1v_1 + a_2v_2$ vector analquiera de \mathbb{R}^3

Sabernos dimp U=2 y esta claro que rango(f)=2. Pero Im(f)
que esta generada por vi, viz coincide con U. Ker(f) con
dimensión 1 contiene a W, que también tiene dimensión 1, así
Ker(f)=W.

Tengo que calcular $f(e_1)$, $f(e_2)$, $f(e_3)$ expresa dos en función de e_1, e_2, e_3 . $e_1 = \sqrt{1} \Rightarrow f(e_1) = f(v_1) = v'_1 = e_1 + e_3$. $e_2 = \sqrt{v_2} \Rightarrow f(e_1) = f(v_2) = v'_2 = \frac{e_2 + 2e_3}{4}$. $e_3 = \frac{5}{4}\sqrt{1 + (-\frac{1}{4})v_2 + \frac{1}{4}v_3} \Rightarrow f(e_3) = \frac{5}{4}f(v_1) - \frac{1}{4}f(v_2) + \frac{1}{4}f(v_3)$ $\Rightarrow f(e_3) = \frac{5}{4}(e_1 + e_3) - \frac{1}{4}(e_2 + 2e_3)$. De mauera que $M(f_1B_u) = \begin{pmatrix} 1 & 0 & 5/4 \\ 0 & 1 & -1/4 \\ 1 & 2 & 3/4 \end{pmatrix}$.

3(a) Llamamos 93=9 y tomamos 91,92 E A3(IR)* definidas por 9,(A) = a, 92(A) = b. Veaus que {9,1,92,13} es indep. Si a, 1, + a2 12+a313= 90 (la forma lived nula sobre d3 (TR)) teneuro (a, 9, + a, 9,)(A) = 0, $\forall A \in \mathcal{A}_3(\mathbb{R})$; es decir a, a+a, b+a, (b-c)=0 para enalisquiera a,b, c \in R. Tomando a=1, b=c=0 resulta [a_1=0]. Asi, azb+ez(b-c)=0, \begin{aligned} \text{b,ceR. Tomando} \quad b=c=1 \text{ resulta az=0} \end{az=0} y para b=1, c=0, resulta [az=0]. Como diangots (R) = 3, temmo que {91,92,93} es una base de of (R)*

3(b) Ponemos A= (0 a1 b1), A= (0 a2 b2)
-a10 c1), A= (0 a2 b2) $A_3 = \begin{pmatrix} 0 & a_3 & b_3 \\ -a_2 & 0 & c_3 \\ -b_3 & -c_3 & 0 \end{pmatrix}$

 $1 = f_1(A_1) = a_1$ $0 = \frac{1}{2} (A_1) = b_1$ $0 = 4_3 (A_1) = b_1 - c_1$ por tanto a=1, b=c=0 | pr tanto a=0, b=c=1

 $0 = {}^{\varphi}_{1}(A_{2}) = a_{2}$ $1 = \frac{4}{2}(A_2) = b_2$ $0 = \frac{9}{3}(A_2) = b_2 - c_2$

 $0 = 4(A_3) = a_3$ $0 = 4_2 (A_3) = b_3$ $1 = 4_3 (A_3) = b_3 - c_3$ portanto a= = = 0, c3 = -1

\$= {A1, A2, A3} base de A3(R) y B*= {9,12,93}.

3(c) Ponemos B=(A1, A2, A3) y B=(41, 92, 93) (= B) Y=c191+292+1393 donde c1=+(A1)=2, c2=+(A2)=3 $y = c_3 = +(A_3) = -3$. Las coordenadas pedides son (2,3,-3).