Feuille TD 3: Continuité

Exercice 1. Déterminer les bornes inférieures, bornes supérieures, maximum, minimum des ensembles suivants

$$\mathbf{d)} \ [0,+\infty$$

e)
$$[0, \sqrt{2}]$$

b)
$$[0,1[$$
 c) $[0,1]$ **d**) $[0,+\infty[$ **e**) $[0,\sqrt{2}]$ **f**) $[0,\sqrt{2}] \cap \mathbb{Q}$

Exercice 2. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par $f(x) = x^2$. Déterminer l'image par f des ensembles suivants:

a)
$$[-1,1]$$
 b) $[-2,1[$ c) $]-2,1[$ d) $[-2,1]$ e) $[-3,-1]$ f) $[-3,-1] \cup [-2,1]$ g) $[-3,-1] \cap [-2,1]$

b)
$$[-2,1[$$

c)
$$]-2,1[$$

d)
$$[-2,1]$$

f)
$$[-3, -1] \cup [-2,$$

$$(c) = 2, 1$$

 $(c) = 2, 1$
 $(c) = 2, 1$
 $(c) = 2, 1$

h) Comparer les résultats obtenus en d,e,f,g

Exercice 3. Soit I un intervalle de \mathbb{R} et $f: I \mapsto \mathbb{R}$ une fonction continue telle que pour tout $x \in I$, $f(x)^2 = 1$. Montrer que f = 1 ou f = -1 (c'est à dire que f est la fonction constante égale à 1 ou la fonction constante égale à -1).

Exercice 4. Etudier la continuité des fonctions définies sur \mathbb{R} de la manière suivante:

a)
$$a(x) = \begin{cases} x^2 \cos(x) & \text{si } x \in \mathbb{R}^3 \\ 0 & \text{si } x = 0 \end{cases}$$

b)
$$b(x) = xE(x)$$
 (E est la fonction partie entière)

c)
$$c(x) = \begin{cases} \sin(x)\sin(\frac{1}{x}) & \text{si } x \in \mathbb{R}^* \\ 0 & \text{si } x = 0 \end{cases}$$

Exercise 4. Etudier la continuité des fonctions définies sur
$$\mathbb{R}$$
 de la manière suivante:

a) $a(x) = \begin{cases} x^2 \cos(x) & \text{si } x \in \mathbb{R}^* \\ 0 & \text{si } x = 0 \end{cases}$
b) $b(x) = xE(x)$ (E est la fonction partie entière)

c) $c(x) = \begin{cases} \sin(x)\sin(\frac{1}{x}) & \text{si } x \in \mathbb{R}^* \\ 0 & \text{si } x = 0 \end{cases}$
d) $d_{\alpha}(x) = \begin{cases} x^2\cos(\frac{1}{x}) & \text{si } x \in \mathbb{R}^* \\ \alpha & \text{si } x = 0 \end{cases}$, où $\alpha \in \mathbb{R}$

f) $f(x) = \begin{cases} \exp(-\frac{1}{x^2}) & \text{si } x \in \mathbb{R}^* \\ 0 & \text{si } x = 0 \end{cases}$
g) $g(x) = \begin{cases} \exp(\frac{1}{x}) & \text{si } x \in \mathbb{R}^* \\ 0 & \text{si } x = 0 \end{cases}$
h) $h(x) = \begin{cases} \frac{x\sqrt{x^2-2x+1}}{x-1} & \text{si } x \neq 1 \\ 1 & \text{si } x = 1 \end{cases}$

$$\mathbf{f}) \ f(x) = \begin{cases} \exp(-\frac{1}{x^2}) & \text{si } x \in \mathbb{R}^* \\ 0 & \text{si } x = 0 \end{cases}$$

$$\mathbf{g}) \ g(x) = \begin{cases} \exp(\frac{1}{x}) & \text{si } x \in \mathbb{R}^{n} \\ 0 & \text{si } x = 0 \end{cases}$$

h)
$$h(x) = \begin{cases} \frac{x\sqrt{x^2 - 2x + 1}}{x - 1} & \text{si } x \neq 1\\ 1 & \text{si } x = 1 \end{cases}$$

Exercice 5. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ la fonction définie par

$$f(x) = \begin{cases} x & \text{si } x < 1\\ x^2 & \text{si } 1 \le x \le 4\\ 8\sqrt{x} & \text{si } x > 4 \end{cases}$$

- a) Montrer que f est continue et bijective de \mathbb{R} sur \mathbb{R} .
- **b)** Tracer le graphe de f.
- c) Quelle est la bijection réciproque de f?

Exercice 6. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ la fonction définie par $f(x) = x^3 - 5x + 3$.

- a) Montrer que l'équation f(x) = 0 admet une solution $x_1 \in]-3, -2[$, une solution $x_2 \in]0, 1[$ et une solution $x_3 \in]1, 2[$.
- b) Calculer f(1/2). Pour approcher x_2 , peut-on être plus précis que $x_2 \in]0,1[?]$
- c) Décrire un algorithme permettant de donner une valeur approchée de x_2 à 0.1 près.

Exercice 7. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ la fonction définie par $f(x) = \frac{x}{1+|x|}$

- a) Montrer que f est bien définie et continue sur \mathbb{R} .
- b) Montrer que f est strictement croissante et impaire.
- c) Montrer que $f(\mathbb{R}) =]-1,1[$. f est-elle bijective de \mathbb{R} sur son image? Si oui, calculer la bijection réciproque.