Integrated Transceiver Modules for WLAN 802.11 a/b/g/n, Bluetooth, Bluetooth Low Energy (BLE), and ANT

FCC ID: 2AA6A-ISPACE IC: 11476A-ISPACE MODEL: E0150-MOD

FEATURES

- IEEE 802.11 a,b,g,n,d,e,I compliant
- Typical WLAN Sensitivity:
 - o -88 dBm, 8% PER,11 Mbps
 - o -74 dBm, 10% PER, 54 Mbps
 - -72 dBm, 10% PER, 65 Mbps
- Bluetooth 2.1+EDR, Power Class 1.5
- Full support for BLE 4.0 and ANT
- Miniature footprint: 18 mm x 13 mm
- Low height profile: 1.9 mm
- Terminal for PCB/Chip antenna feeds
- Worldwide acceptance: FCC (USA) and IC (Canada)
- Modular certification allows reuse of FCC ID certification without repeating the expensive testing on your end product
- Compact design based on Texas Instruments WL1273L Transceiver
- Seamless integration with TI OMAP™ application processors
- SDIO Host data path interfaces
- Bluetooth Advanced Audio Interfaces
- Low power operation modes
- RoHS compliant

DESCRIPTION

The Radio module is a high performance 2.4 /5.5 GHz IEEE 802.11 a/b/g/n, Bluetooth 2.1+EDR, and Bluetooth Low Energy (BLE) 4.0 radio in a cost effective, pre-certified footprint.

The module realizes the necessary PHY/MAC layers to support WLAN applications in conjunction with a host processor over a SDIO interface.

The module also provides a Bluetooth platform through the UART or btSPI HCI transport layer. Both WLAN and Bluetooth share the same antenna port.

RADIO MODULE FOOTPRINT AND PIN DEFINITIONS

To apply the E0150-MODmodule, it is important to use the module pins in your application as they are designated in below and in the corresponding pin definition table found on pages 3 and 4. Not all the pins on the E0150-MOD module may be used, as some are reserved for future functionality.

Figure 1 E0150-MOD Pinout (Top View)

PIN DESCRIPTIONS

Module Pin	Name	I/O Type	Buffer Type	Logic Level	Description
1	VBAT	PI	-	1	Battery Voltage 3.6 VDC Nominal (3.0-4.8 VDC)
2	BT_FUNC5	DO	4 mA	1.8 VDC	HOST_WU (*)
3	WL_UART_DBG	DIO	4 mA	1.8 VDC	WL_UART_DBG
4	WLAN_IRQ	DO	4 mA	1.8 VDC	WLAN Interrupt Request
5	BT_EN	DI	-	1.8 VDC	Bluetooth Enable
6	FM_EN	DI	-	1.8 VDC	NOT SUPPORTED, CONNECT TO GND
7	WL_RS232_RX	DI	-	1.8 VDC	WLAN TEST UART RX (*)
8	WL_RS232_TX	DO	4 mA	1.8 VDC	WLAN TEST UART TX (*)
9	FM_I2S_FSYNC	DO	4 mA	1.8 VDC	NOT SUPPORTED, NO CONNECT
10	WL_EN	DI	-	1.8 VDC	WLAN Enable
11	VIO	PI	-	ı	POWER SUPPLY FOR 1.8 VDC DIGITAL DOMAIN
12	GND	GND	-	ı	Ground
13	SDIO_D3	DIO	8 mA	1.8 VDC	SDIO INTERFACE, HOST PULL UP
14	SDIO_D2	DIO	8 mA	1.8 VDC	SDIO INTERFACE, HOST PULL UP
15	SDIO_D1	DIO	8 mA	1.8 VDC	SDIO INTERFACE, HOST PULL UP
16	SDIO_D0	DIO	8 mA	1.8 VDC	SDIO INTERFACE, HOST PULL UP
17	SDIO_CMD	DIO	8 mA	1.8 VDC	HOST PULL UP
18	SDIO_CLK	DI	-	1.8 VDC	HOST PULL UP
19	SLOW_CLK	DI	-	1.8 VDC	SLEEP CLOCK (32 kHz)
20	FM_IRQ	DO	4 mA	1.8 VDC	NOT SUPPORTED, NO CONNECT
21	FM_SDA	DO	4 mA	1.8 VDC	NOT SUPPORTED, NO CONNECT
22	FM_SCL	DO	4 mA	1.8 VDC	NOT SUPPORTED, NO CONNECT
23	FM_I2S_CLK	DO	4 mA	1.8 VDC	NOT SUPPORTED, NO CONNECT
24	FM_I2S_DI	DI	4 mA	1.8 VDC	NOT SUPPORTED, CONNECT TO GND
25	FM_I2S_DO	DO	4 mA	1.8 VDC	NOT SUPPORTED, NO CONNECT
26	FM_AUD_RIN	Al	-	-	NOT SUPPORTED, CONNECT TO GND
27	FM_AUD_LIN	Al	-	-	NOT SUPPORTED, CONNECT TO GND
28	FMRFOUT	AO	-	-	NOT SUPPORTED, NO CONNECT
29	FMRFIN	Al	-	-	NOT SUPPORTED, CONNECT TO GND
30	GND	GND	-	-	Ground
31	FM_AUD_ROUT	AO	-	-	NOT SUPPORTED, NO CONNECT

Module Pin	Name	I/O Type	Buffer Type	Logic Level	Description
32	FM_AUD_LOUT	AO	-	-	NOT SUPPORTED, NO CONNECT
33	AUD_FSYNC	DIO	4 mA	1.8 VDC	PCM I/F
34	HCI_RX	DI	8 mA	1.8 VDC	Bluetooth HCI UART RX (*)
35	HCI_RTS	DO	4 mA	1.8 VDC	Bluetooth HCI UART RTS (*)
36	HCI_TX	DIO	8 mA	1.8 VDC	Bluetooth HCI UART TX
37	AUD_CLK	DO	4 mA	1.8 VDC	PCM I/F (*)
38	AUD_OUT	DO	4 mA	1.8 VDC	PCM I/F (*)
39	HCI_CTS	DI	4 mA	1.8 VDC	Bluetooth HCI UART CTS (*)
40	AUD_IN	DI	4 mA	1.8 VDC	PCM I/F (*)
41	BT_FUNC2	DI	4 mA	1.8 VDC	Bluetooth Wakeup[DI] / DC2DC mode[DO](*)
42	BT_FUNC4	DO	4 mA	1.8 VDC	BT_UARTD (DEBUG) (*)
43	VDD_LDO_CLASS_1P5	NC	-	-	VBAT VOLTAGE PRESENT, NO CONNECT
44	GND	GND	-	-	Ground
45	GND	GND	-	-	Ground
46	GND	GND	-	-	Ground
47	GND	GND	-	-	Ground
48	ANT	RF		-	Antenna terminal for WLAN and Bluetooth (note [1])
49	GND	GND	-	-	Ground
50	GND	GND	-	-	Ground
51	GND	GND	-	-	Ground
52	GND	GND	-	-	Ground

 $PI = Power Input \qquad PO = Power Output \qquad DI = Digital Input (1.8 VDC Logic Level) \qquad DO = Digital Output (1.8 VDC Logic Level) \\ AI = Analog Input \qquad AO = Analog Output \qquad AIO = Analog Input/Output \qquad \frac{RF = RF}{Port} \\ \qquad GND = Ground$

Note[1]: Antenna terminal presents DC short circuit to ground.

 $(\mbox{\ensuremath{^{\star}}})$ indicates that pin is capable of bidirectional operation, but is used as the type shown.

Table 1 E0150-MOD Module Pin Descriptions

All digital I/O signals use 1.8V logic. If the host microcontroller does not support 1.8V logic, then level shifters MUST be used.

INI FILE RADIO PARAMETERS

There is an ini file that contains WLAN radio parameters which are critical to both the RF performance and EMC compliance of the module.

The settings specified in the appropriate ini file must be used to operate the module in compliance with the modular certification for FCC. There is a unique ini file for operating the module in compliance with FCC regulations.

ELECTRICAL SPECIFICATIONS

The majority of these characteristics are based on controlling and conditioning the tests using the E0150-MOD control software application. Other control conditions may require these values to be recharacterized by the customer.

Absolute Maximum Ratings

Parameter	Min	Max	Unit
Power supply voltage (VBAT) ⁽⁴⁾⁽⁵⁾	-0.5	+5.5	V
Digital supply voltage (VIO)	-0.5	2.1	V
Voltage on any GPIO	-0.5	VIO + 0.5	V
Voltage on any Analog Pins ⁽³⁾	-0.5	2.1	V
RF input power, antenna port		+10	dBm
Operating temperature ⁽⁶⁾	-40	+85	۰C
Storage temperature	-55	+125	۰C

- Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device and are not
 covered by the warranty. These are stress ratings only and functional operation of the device at these or any other
 conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolutemaximum-rated conditions for extended periods may affect device reliability.
- All parameters are measured as follows unless stated otherwise: VDD_IN=1.8V, VDDIO_1.8V=1.8V, VDD_LDO_CLASS1P5=3.6V
- 3. Analog pins: XTALP, XTALM, RFIOBT, DRPWRXBM, DRPWRXBP, DRPWTXB, and also FMRFINP, FMRFINM, FMRFINM, FMAUDLIN, FMAUDRIN, FMAUDLOUT, FMAUDROUT
- 4. The following signals are from the VBAT group, PMS_VBAT and VDD_LDO_CLASS1P5 (if BT class 1.5 direct VBAT is used).
- 5. Maximum allowed depends on accumulated time at that voltage; 4.8V for 7 years lifetime, 5.5V for 6 hours cumulative.
- 6. The device can be reliably operated for 5,000 active-WLAN cumulative hours at T_A of 85°C.

Table 2 Absolute Maximum Ratings

Recommended Operating Conditions

Parameter	Min	Тур	Max	Unit
V _{BAT}	3.0	3.6	4.8	V
VIO	1.62	1.8	1.92	V
V _{IH}	0.65 x VIO	-	VIO	V
VIL	0	-	0.35 x VIO	V
V _{OH} @ 4, 8 mA	VIO - 0.45	-	VIO	V
Vol. @ 4, 8 mA	0	-	0.45	V
Ambient temperature range	-40	25	85	۰C

Table 3 Recommended Operating Conditions

General Characteristics

Parameter	Min	Тур	Max	Unit
WLAN RF frequency range 1	2412		2462	MHz
WLAN RF frequency range 2	5180		5835	MHz
WLAN RF data rate	1	802.11 a/b/g/n rates supported	65	Mbps
BT RF frequency Range	2402		2480	MHz

Table 4 General Characteristics

Power Consumption – WLAN 2.4 GHz

Parameter	Test Conditions	Min	Тур	Max	Unit
CCK (802.11b) TX Current	2437 MHz, V _{BAT} =3.6V, T _{amb} =+25°C Po=18.3 dBm, 11 Mbps CCK L=1200 bytes, t _{delay} (idle)=4 μS	-	247	-	mA
OFDM (802.11g) TX Current	2437 MHz, V _{BAT} =3.6V, T _{amb} =+25°C Po=14.4 dBm, 54 Mbps OFDM L=1200 bytes, t _{delay} (idle)=4 μS	-	180	-	mA
OFDM (802.11n) TX Current	2437 MHz, V _{BAT} =3.6V, T _{amb} =+25°C Po=12.5 dBm, 65 Mbps OFDM L=1200 bytes, t _{delay} (idle)=4 μS	-	166	-	mA
CCK (802.11b) RX Current		-	93	-	mA
OFDM (802.11g) RX Current		-	93	-	mA
OFDM (802.11n) RX Current		-	93	-	mA
Dynamic Mode [1]		-	<1.2	-	mA

^[1] Total Current from V_{BAT} for reception of Beacons with DTIM=1 TBTT=100 mS, Beacon duration 1.6ms, 1 Mbps beacon reception in Listen Mode.

Table 5 2.4 GHz WLAN Power Consumption

Power Consumption – WLAN 5 GHz

Parameter	Test Conditions	Min	Тур	Max	Unit
OFDM 9 Mbps (802.11a) TX Current	5745 MHz, V _{BAT} =3.6V, T _{amb} =+25°C Po=17.6 dBm, 9 Mbps OFDM L=1200 bytes, t _{delay} (idle)=4 μS	-	296	-	mA
OFDM 54 Mbps (802.11a) TX Current	5745 MHz, V _{BAT} =3.6V, T _{amb} =+25°C Po=15.0 dBm, 54 Mbps OFDM L=1200 bytes, t _{delay} (idle)=4 μS	-	235	-	mA
MCS0 6.5 Mbps (802.11a) TX Current	5745 MHz, V _{BAT} =3.6V, T _{amb} =+25°C Po=18.0 dBm, MCS0 OFDM L=1200 bytes, t _{delay} (idle)=4 μS	-	298	-	mA
MCS7 65 Mbps (802.11a) TX Current	5745 MHz, V _{BAT} =3.6V, T _{amb} =+25°C Po=13.2 dBm, MCS7 OFDM L=1200 bytes, t _{delay} (idle)=4 μS	-	219	-	mA
54/65 Mbps (802.11a/n) RX Current		-	100	-	mA
Dynamic Mode [1]		-	<1.2	-	mA

^[1] Total Current from V_{BAT} for reception of Beacons with DTIM=1 TBTT=100 mS, Beacon duration 1.6ms, 1 Mbps beacon reception in Listen Mode.

Table 6 5 GHz WLAN Power Consumption

Power Consumption - Bluetooth

Parameter	Test Conditions	Min	Тур	Max	Unit
GFSK TX Current	Constant Transmit, 1DH5, PRBS9	-	45	-	mA
EDR TX Current	Constant Transmit, 2DH5,3DH5, PRBS9	-	43	-	mA
GFSK RX Current	Constant Receive, 1DH1	-	35	-	mA
EDR RX Current	Constant Receive, 2DH5, 3DH5	-	41	-	mA
Deep Sleep Current	Deep Sleep Mode	-	70	-	μΑ

Table 7 Bluetooth Power Consumption

DC Characteristics - General Purpose I/O

Parameter	Test Conditions	Min	Тур	Max	Unit
VIO Current			-	16	mA
Logic input low, V _{IL}		0	-	0.35 x VIO	V
Logic input high, V _{IH}		0.65 x VIO	-	VIO	V
Logic output low, VoL	lout = 8 mA	0	-	0.45	V
(Full Drive)	lout = 4 mA	0	-	16 0.35 x VIO VIO	V
Logic output low, VoL	lout = 1 mA	0	-	0.112	V
(Reduced Drive)	lout = 0.09 mA	0	-	16 0.35 x VIO VIO 0.45 0.45 0.112 0.01 VIO VIO VIO	V
Logic output high, V _{OH}	lout = -8 mA	VIO - 0.45	-	VIO	V
(Full Drive)	lout = -4 mA	VIO - 0.45	-	VIO	V
Logic output high, V _{OH}	lout = -1 mA	VIO - 0.112	-	VIO	V
(Reduced Drive)	lout = -0.3 mA	VIO - 0.033	-	16 0.35 x VIO VIO 0.45 0.45 0.112 0.01 VIO VIO VIO	V

Table 8 DC Characteristics General Purpose I/O

WLAN RF Characteristics

WLAN Transmitter Characteristics 2.4 GHz (TA=25°C, VBAT=3.6 V)

Parameter	Test Conditions	Typ EVM	Min	Тур	Max	Unit
11 Mbps CCK (802.11b) TX Output Power	11 Mbps CCK , 802.11(b) Mask Compliance, 35% EVM RMS power over TX packet	1.1	-	18.3	-	dBm
9 Mbps OFDM (802.11g) TX Output Power	9 Mbps OFDM , 802.11(g) Mask Compliance, -8 dB EVM RMS power over TX packet	-24	-	18.0	ı	dBm
54 Mbps OFDM (802.11g) TX Output Power	54 Mbps OFDM, 802.11(g) Mask Compliance, -25 dB EVM RMS power over TX packet	-34	-	14.4	-	dBm
6.5 Mbps OFDM (802.11n) TX Output Power	6.5 Mbps OFDM, 802.11(n) Mask Compliance, -5 dB EVM RMS power over TX packet	-24	-	18.2	-	dBm
65 Mbps OFDM (802.11n) TX Output Power	65 Mbps OFDM, 802.11(n) Mask Compliance, -28 dB EVM RMS power over TX packet	-35	-	12.5	-	dBm

Table 9 WLAN 2.4 GHz Transmitter RF Characteristics

WLAN Transmitter Characteristics 5 GHz (TA=25°C, VBAT=3.6 V)

Parameter	Test Conditions	Typ EVM	Start Freq	Min	Тур	Max	End Freq	Unit
	9 Mbps OFDM , 802.11(a) Mask	-31	5170		13.0		5240	
9 Mbps TX Output Power	Compliance, -8 dB EVM RMS	-28	5260	-	15.6	-	5700	dBm
l	power over TX packet	-21	5745		17.8		5825	
	54 Mbps OFDM , 802.11(a) Mask	-31	5170		13.0		5240	
54 Mbps TX Output Power	Compliance, -25 dB EVM RMS power over TX packet	-30	5260	-	14.6	-	5700	dBm
TX Output Power		-28	5745		15.2		5825	
	MCS0 OFDM , 802.11(a) Mask	-31	5170		13.1		5240	
MCS0 6.5 Mbps TX Output Power	Compliance, -5 dB EVM RMS	-28	5260	-	15.7	-	5700	dBm
17. Output 1 owol	power over TX packet	-21	5745		18.2		5825	
	MCS7 OFDM , 802.11(a) Mask	-31	5170		12.5		5240	
MCS7 65 Mbps TX Output Power	Compliance, -27 dB EVM RMS	-31	5260	-	12.8	-	5700	dBm
Calput ronor	power over TX packet	-29	5745		13.5		5825	

Table 10 WLAN 5 GHz Transmitter RF Characteristics

WLAN Receiver Characteristics 2.4 GHz (TA=25°C, VBAT=3.6 V) [1]

Parameter	Test Conditions	Min	Тур	Max	Unit
1 Mbps CCK (802.11b) RX Sensitivity	8% PER	-	-97	-	dBm
11 Mbps CCK (802.11b) RX Sensitivity	8% PER	-	-88	-	dBm
9 Mbps OFDM (802.11g) RX Sensitivity	10% PER	-	-89	-	dBm
54 Mbps OFDM (802.11g) RX Sensitivity	10% PER	-	-74	-	dBm
6.5 Mbps OFDM (802.11n) RX Sensitivity	10% PER	-	-89	-	dBm
65 Mbps OFDM (802.11n) RX Sensitivity	10% PER	-	-72	-	dBm
11 Mbps CCK (802.11b) RX Overload Level	8% PER	-	-	-10	dBm
9 Mbps OFDM (802.11g) RX Overload Level	10% PER	-	-	-17	dBm
54 Mbps OFDM (802.11g) RX Overload Level	10% PER	-	-	-17	dBm
65 Mbps OFDM (802.11n) RX Overload Level	10% PER	-	-	-17	dBm

^[1] Up to 2 dB degradation at Channel 13 for 11g/n modes and up to 2 dB degradation at Channel 14 for 11b/g/n modes.

Table 11 2.4 GHz WLAN Receiver RF Characteristics

WLAN Receiver Characteristics 5 GHz (TA=25°C, VBAT=3.6 V) [1]

Parameter	Test Conditions	Min	Тур	Max	Unit
9 Mbps (802.11a) RX Sensitivity	10% PER	-	-87	-	dBm
54 Mbps (802.11a) RX Sensitivity	10% PER	-	-72	-	dBm
MCS0 6.5 Mbps (802.11a) RX Sensitivity	10% PER	-	-88	-	dBm
MCS7 65 Mbps (802.11a) RX Sensitivity	10% PER	-	-70	-	dBm
Max Input Level (3) OFDM (11a or 11n)	<10% PER	-	-	-17	dBm

Table 12 5 GHz WLAN Receiver RF Characteristics

Bluetooth RF Characteristics

Bluetooth Transmitter GFSK and EDR Characteristics, Class 1.5 (TA=25°C, VBAT=3.6 V)

Parameter	Test Conditions	Min	Тур	Max	Bluetooth Spec	Unit
GFSK RF Output Power		-	9.5	-	-	dBm
EDR RF Output Power		-	7.3	-		dBm
Power Control Step Size		2	5	8	2-8	dB
EDR Relative Power		-2		1	-4/+1	dB

Table 13 Bluetooth Transmitter RF Characteristics

Bluetooth Receiver Characteristics (TA=25°C, VBAT=3.6 V)

Parameter	Test Conditions	Min	Тур	Max	Bluetooth Spec	Unit
GFSK Sensitivity	BER=0.1%	-	-91	-	-70	dBm
EDR 2 Mbps Sensitivity	BER=0.01%	-	-90	-	-70	dBm
EDR 3 Mbps Sensitivity	BER=0.01%	-	-83	-	-70	dBm
GFSK Maximum Input Level	BER=0.1%	-	-	-5	-20	dBm
EDR 2 Maximum Input Level	BER=0.1%	-	-	-10	-	dBm
EDR 3 Maximum Input Level	BER=0.1%	-	-	-10	-	dBm

Table 14 Bluetooth Receiver RF Characteristics

Bluetooth Low Energy RF Characteristics

Bluetooth BLE Transmitter GMSK and EDR Characteristics, Class 1.5 (TA=25°C, VBAT=3.6 V)

Parameter	Test Conditions	Min	Тур	Max	Bluetooth Spec	Unit
GMSK RF Output Power		-	10	-	-	dBm
Power Control Step Size		2	5	8	2-8	dB

⁽¹⁾ BLE spec = 10dBm max can be achieved using normal system losses due to filters etc, or by reducing value through VS command.

Table 15 Bluetooth Low Energy Transmitter RF Characteristics

Bluetooth BLE Receiver Characteristics (TA=25°C, VBAT=3.6 V)

Parameter	Test Conditions	Min	Тур	Max	Bluetooth Spec	Unit
GMSK Sensitivity	PER = 30.8%	-	-90	-	-70	dBm
GMSK Maximum Input Level	PER = 30.8%	-	-5	-	-20	dBm

Table 16 Bluetooth Low Energy Receiver RF Characteristics

WLAN POWER-UP SEQUENCE

The following sequence describes device power-up from shutdown. Only the WLAN Core is enabled; the Bluetooth and FM cores are disabled.

Figure 2 E0150-MOD Power-up Sequence Requirements

- No signals are allowed on the IO pins if no IO power is supplied, because the IOs are not 'failsafe'.
 Exceptions are CLK_REQ_OUT, SLOWCLK, XTALP, and AUD_xxx, which are failsafe and can tolerate external voltages with no VDDS and DC2DC.
- 2. VBAT, VIO, and SLOWCLK must be available before WL EN.
- 3. Twakeup = T1 + T2

The duration of T1 is defined as the time from WL_EN=high until Fref is valid for the SoC. T1=~55ms

The duration of T2 depends on:

- Operating system
- Host enumeration for the SDIO/WSPI
- PLL configuration
- Firmware download
- Releasing the core from reset
- Firmware initialization

WLAN POWER-DOWN SEQUENCE

Notes:

- The DC2DC(1.8V) signal can be monitored on BT_FUNC2 Module Pin (#41) DC_REQ and CLK_REQ are internal signals shown for reference only

Figure 3 E0150-MOD Module Power-down Sequence Requirements

- 1. DC_REQ will go low only if WLAN is the only core working. Otherwise if another core is working (e.g. BT) it will stay high.
- 2. CLK_REQ will go low only if WLAN is the only core working. Otherwise if another core is working and using the FREF (e.g BT) it will stay high.
- 3. If WLAN is the only core that is operating, WL_EN must remain de-asserted for at least 64µsec before it is re-asserted.

BLUETOOTH POWER-UP SEQUENCE

The following sequence describes device power up from shutdown. Only the Bluetooth core is enabled; the WLAN core is disabled.

- Notes:
- 1. (A) After this sequence is completed, the device is in the low VIO-leakage state while in shutdown
- 2. The DC2DC(1.8V) signal can be monitored on BT_FUNC2 Module Pin (#41)
- 3. DC_REQ, CLK_REQ, and F_{REF} are internal signals shown for reference only

Figure 4 Bluetooth Power-up Sequence

Power up requirements:

- No signals are allowed on the IO pins if no IO power supplied, because the IOs are not 'failsafe'. Exceptions are CLK_REQ_OUT, SLOWCLK, XTALP, and AUD_xxx, which are failsafe and can tolerate external voltages with no VDDS and DC2DC.
- 2. VDDS and SLOWCLK must be stable before releasing BT_EN.
- 3. Fast clock must be stable maximum 55 ms after BT_EN goes HIGH.

BLUETOOTH POWER-DOWN SEQUENCE

Notes:

- 1. The DC2DC(1.8V) signal can be monitored on BT_FUNC2 Module Pin (#41)
- 2. DC_REQ and CLK_REQ are internal signals shown for reference only

Figure 5 Bluetooth Power-down Sequence

The E0150-MOD module indicates completion of Bluetooth power-up sequence by asserting HCI_RTS low. This occurs up to 100 ms after BT_EN goes high.

ENABLE SCHEME

The module has 3 enable pins, one for each core: WL_EN, and BT_EN and FM_EN. Presently, there are 2 modes of active operation now supported: WLAN and Bluetooth. It is recommended that the FM_EN pin be grounded to disable the FM section. It is also recommended that the FM section be disabled by Bluetooth HCI commands.

- 1. Each core is operated independently by asserting each EN signal to Logic '1'. In this mode it is possible to control each core asynchronously and independently.
- Bluetooth mode operation. WLAN will be operated through WL_EN asynchronously and independently of Bluetooth.

IRQ OPERATION

- 1. The default state of the WLAN_IRQ prior to firmware initialization is 0.
- 2. During firmware initialization, the WLAN_IRQ is configured by the SDIO module; a WLAN_IRQ changes its state to 1.
- 3. A WLAN firmware interrupt is handled as follows:
 - a. The WLAN firmware creates an Interrupt-to-Host, indicated by a 1-to-0 transition on the WLAN_IRQ line (host must be configured as active-low or falling-edge detect).
 - b. After the host is available, depending on the interrupt priority and other host tasks, it masks the firmware interrupt. The WLAN_IRQ line returns to 1 (0-to-1 transition on the WLAN_IRQ line).
 - c. The host reads the internal register status to determine the interrupt sources the register is cleared after the read.
 - d. The host processes in sequence all the interrupts read from this register
 - e. The host unmasks the firmware interrupts.
- 4. The host is ready to receive another interrupt from the WLAN device.

SLOW (32 KHZ) CLOCK SOURCE REQUIREMENTS

The slow clock is always supplied from an external source. It is input on the SLOW_CLK pin, and can be a digital signal in the range of VIO only. For slow clock frequency and accuracy refer to Table 17. The external slow clock must be stable before the system exits from shut down mode.

Parameter [1]	Condition	Symbol	Min	Тур	Max	Unit
Input slow clock frequency				32768		Hz
Input slow clock accuracy	WLAN, BT				+/-250	ppm
Input transition time $T_{\text{r}}/T_{\text{f}}$ – 10% to 90%		T_r/T_f			100	ns
Frequency input duty cycle			30	50	70	%
Input voltage limits	Square wave, DC coupled	VIH	0.65 x VDDS		VDDS	V _{peak}
VIL	0		0.35 x VDDS			
Input impedance			1			MW
Input capacitance					5	pF
Rise and fall time					100	ns
Phase noise	1 kHz			-125		dBc/Hz

[1] Slow clock is a fail safe input

Table 17 Slow Clock Source Requirements

BLUETOOTH HCI UART

Figure 6 Bluetooth UART Timing

Symbol	Characteristics	Condition	Min	Тур	Max	Unit
	Baud rate	Most rates ⁽¹⁾	37.5		4000	kbps
t5, t7	Baud rate accuracy	Receive/Transmit			-2.5 to 1.5	%
t3	CTS low to TX_DATA on		0	2		μS
t4	CTS high to TX_DATA off	Hardware flow control			1	byte
t6	CTS-high pulse width		1			bit
t1	RTS low to RX_DATA on		0	2		μS
t2	RTS high to RX_DATA off	Interrupt set to 1/4 FIFO			16	byte
tb	Bit width (Jitter)		See application note ⁽¹⁾		% relative to ideal bit width	

⁽¹⁾ Some exceptions: e.g. for 19.2-MHz max baud rate = 3.84 kbps.

Table 18 Bluetooth UART Timing

Figure 7 Bluetooth UART Data Frame

Symbol	Description
STR	Start bit
D0Dn	Data bits (LSB first)
PAR	Parity bit (optional)
STP	Stop bit

Table 19 Bluetooth UART Data Frame

SDIO INTERFACE TIMING

	PARAMETER			MAX	UNIT
t _{CR}	Read-command CMD valid to card-response CMD valid to card-response CMD valid		2	64	Clock cycles
toc	t _{CC} Delay time, CMD command valid to CMD command valid				Clock cycles
t _{RC}	t _{RC} Delay time, CMD response valid to CMD command valid				Clock cycles
t _{AC}	AC Access time, CMD command valid to SD3-SD0 read data valid				Clock cycles

Table 20 SDIO Interface Read (see Figure 8)

Figure 8 SDIO Single Block Read

	PARAMETER	MIN	MAX	UNIT
t _{d1}	Delay time, CMD card response invalid to SD3-SD0 write data valid	2		Clock cycles
t _{d2}	Delay time, SD3-SD0 write data invalid end to CRC status valid	2	2	Clock cycles

Table 21 SDIO Interface Write (see Figure 9)

NOTE: CRC status and busy waveforms are only for data line 0. Data lines 1–3 are N/A. The busy waveform is optional, and may not be present.

Figure 9 SDIO Single Block Write

SDIO CLOCK TIMING

Over Recommended Operating Conditions

Note: all timing parameters are indicated for the maximum Host-interface clock frequency.

	PARAMETER				UNIT
f _{clock}	Clock frequency, CLK	C _L ≤ 30 pF	0	26	MHz
DC	Low/high duty cycle	C _L ≤ 30 pF	40	60	%
t _{TLH}	Rise time, CLK	C _L ≤ 30 pF		4.3	ns
t _{THL}	Fall time, CLK	C _L ≤ 30 pF		3.5	ns
t _{ISU}	Setup time, input valid before CLK T	C _L ≤ 30 pF	4		ns
t _{IH}	Hold time, input valid after CLK ↑	C _L ≤ 30 pF	5		ns
toply	Delay time, CLK↓ to output valid	C _L ≤ 30 pF	2	12	ns

Table 22 SDIO Timing

Figure 10 SDIO Timing

SOLDERING RECOMMENDATIONS

Recommended Reflow Profile for Lead Free Solder

Note: The quality of solder joints on the castellations ('half vias') where they contact the host board should meet the appropriate IPC Specification. See IPC-A-610-D Acceptability of Electronic Assemblies, section 8.2.4 Castellated Terminations."

Figure 11 Reflow Profile

CLEANING

In general, cleaning the populated modules is strongly discouraged. Residuals under the module cannot be easily removed with any cleaning process.

- Cleaning with water can lead to capillary effects where water is absorbed into the gap between the host board and the module. The combination of soldering flux residuals and encapsulated water could lead to short circuits between neighboring pads. Water could also damage any stickers or labels.
- Cleaning with alcohol or a similar organic solvent will likely flood soldering flux residuals into the RF shield, which is not accessible for post-washing inspection. The solvent could also damage any stickers or labels.
- Ultrasonic cleaning could damage the module permanently.

OPTICAL INSPECTION

After soldering the Module to the host board, consider optical inspection to check the following:

- Proper alignment and centering of the module over the pads.
- Proper solder joints on all pads.
- Excessive solder or contacts to neighboring pads, or vias.

REWORK

The module can be unsoldered from the host board if the Moisture Sensitivity Level (MSL) requirements are met as described in this datasheet.

Never attempt a rework on the module itself, e.g. replacing individual components. Such actions will terminate warranty coverage.

SHIPPING, HANDLING, AND STORAGE

Shipping

Bulk orders of the E0150-MOD modules are delivered in trays of 100 or reels of 1,000.

Handling

The E0150-MOD modules contain a highly sensitive electronic circuitry. Handling without proper ESD protection may destroy or damage the module permanently.

Moisture Sensitivity Level (MSL)

Per J-STD-020, devices rated as MSL 4 and not stored in a sealed bag with desiccant pack should be baked prior to use.

After opening packaging, devices that will be subjected to reflow must be mounted within 72 hours of factory conditions (<30°C and 60% RH) or stored at <10% RH.

Bake devices for 48 hours at 125°C.

Storage

Please use this product within 6 months after receipt. Any product used after 6 months of receipt needs to have solderability confirmed before use.

The product shall be stored without opening the packing under the ambient temperature from 5 to 35deg.C and humidity from 20 to 70%RH. (Packing materials, in particular, may be deformed at the temperatures above this range.)

Do not store in salty air or in an environment with a high concentration of corrosive gas, such as Cl2, H2S, NH3, SO2, or NOX.

Do not store in direct sunlight.

The product should not be subject to excessive mechanical shock.

Repeating Reflow Soldering

Only a single reflow soldering process is encouraged for host boards.

AGENCY CERTIFICATIONS

FCC ID: 2AA6A-ISPACE

IC ID: 11476A-ISPACE

AGENCY STATEMENTS

Federal Communication Commission Interference Statement

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

UNII devices operating within 5.15-5.25 GHz are to be restricted to indoor operations to reduce any potential for harmful interference to co-channel MSS operations.

FCC 15.407(c) states: The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization a description of how this requirement is met.

Description to meet FCC 15.407(c):

Data transmission is always initiated by software, which is then passed down through the MAC, through the digital and analog baseband, and finally to the RF transceiver. Several special packets (ACKs, CTS, PSPoll, etc) are initiated by the MAC. These are the only ways the digital baseband portion will turn on the RF transmitter, which it then turns off at the end of the packet. Therefore, the transmitter will be on only while one of the aforementioned packets are being transmitted.

<u>FCC CAUTION</u>: Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.

Industry Canada Statements

This device complies with Industry Canada License-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that permitted for successful communication.

This device has been designed to operate with the antenna(s) listed below, and having a maximum gain of -0.6 dBi @ 2.39 to 2.49 GHz; 4.5 dBi @ 5.15 to 5.35 GHz; and 3.5dBi @ 5.7 to 5.9 GHz. Antennas not included in this list or having a gain greater than -0.6 dBi @ 2.39 to 2.49 GHz; 4.5 dBi @ 5.15 to 5.35 GHz; and 3.5dBi @ 5.7 to 5.9 GHz bands are strictly prohibited for use with this device. The required antenna impedance is 50 ohms.

List of all Antennas Acceptable for use with the Transmitter

1) Ethertronics Prestta WLAN Embedded Antenna (1000423)

UNII devices operating within 5.15-5.25 GHz are to be restricted to indoor operations to reduce any potential for harmful interference to co-channel MSS operations.

IC RSS-210 A9.4 (4) states: The device shall automatically discontinue transmission in case of absence of information to transmit, or operational failure. A description of how this is done shall accompany the application for equipment certification. Note that this is not intended to prohibit transmission of control or signaling information or the use of repetitive codes where required by the technology.

Description to meet IC RSS-210 A9.4(4):

Data transmission is always initiated by software, which is then passed down through the MAC, through the digital and analog baseband, and finally to the RF transceiver. Several special packets (ACKs, CTS, PSPoII, etc) are initiated by the MAC. These are the only ways the digital baseband portion will turn on the RF transmitter, which it then turns off at the end of the packet. Therefore, the transmitter will be on only while one of the aforementioned packets are being transmitted.

IC RSS-210 A9.4(7)

WARNING - Users should also be advised that high-power radars are allocated as primary users (i.e. priority users) of the bands 5250–5350 MHz and 5650–5850 MHz and that these radars could cause interference and/or damage to LE-LAN devices.

Cet appareil est conforme aux normes d'Industrie Canada exempts de licence RSS (s). L'opération est soumise aux deux conditions suivantes: (1) cet appareil ne peut pas provoquer d'interférences et (2) cet appareil doit accepter toute interférence, y compris les interférences qui peuvent causer un mauvais fonctionnement de l'appareil.

Pour réduire le risque d'interférence aux autres utilisateurs, le type d'antenne et son gain doiventêtre choisis de manière que la puissance isotrope rayonnée équivalente (PIRE) ne dépasse pascelle permise pour une communication réussie.

Cet appareil a été conçu pour fonctionner avec l'antenne (s) ci-dessous, et ayant un gain maximal de -0,6 dBi@2.39 à 2,49 GHz; 4,5 dBi@5.15 à 5,35 GHz, et 3.5dBi @ 5.7 à 5.9 GHz. Antennes pas inclus dans cette liste ou présentant un gain supérieur à -0,6 dBi@2.39 à 2,49 GHz; 4,5 dBi@5.15 à 5,35 GHz, et 3.5dBi @ 5.7 à 5.9 GHz est strictement interdit d'utiliser avec cet appareil. L'impédance d'antenne requise est de 50 ohms.

Liste de toutes les antennes acceptables pour une utilization avec l'émetteur

1) Ethertronics Prestta WLAN Embedded Antenna (1000423)

Dispositifs UNII opérant dans 5.15-5.25 GHz doivent être limitées à des opérations à l'intérieur afin de réduire tout risque d'interférences nuisibles à la co-canal exploitation du MSS.

IC RSS-210 A9.4 (4): le dispositif doit automatiquement cesser d'émettre en cas d'absence d'informations à transmettre, ou l'échec opérationnel. Une description de la façon dont cela est fait doit accompagner la demande d'homologation du matériel. Notez que ce n'est pas pour objet d'interdire la transmission de contrôle ou de signalisation d'informations ou l'utilisation de codes répétitifs requis par la technologie.

Description de rencontrer IC RSS-210 A9.4 (4):

La transmission de données est toujours initiée par le logiciel, qui est ensuite transmis à travers la MAC, à travers la bande de base numérique et analogique et, enfin, à l'émetteur-récepteur RF. Plusieurs paquets spéciaux (ACK, CTS, PSPoll, etc) sont initiées par le MAC. Ce sont les seuls moyens de la partie bande de base numérique se met en marche l'émetteur RF, ce qui lui puis s'éteint à la fin du paquet. Par conséquent, l'émetteur sera sur que lorsque l'un des paquets ci-dessus sont transmises.

IC RSS-210 A9.4 (7)

AVERTISSEMENT - Les utilisateurs doivent également être informés que les radars à haute puissance sont désignés comme utilisateurs principaux (à savoir des utilisateurs prioritaires) des bandes 5250-5350 MHz et 5650-5850 MHz et que ces radars pourraient cause des interférences et / ou endommager les périphériques LAN-.

OEM RESPONSIBILITIES TO COMPLY WITH FCC AND INDUSTRY CANADA REGULATIONS

The E0150-MOD Module has been certified for integration into products only by OEM integrators under the following conditions:

This device is granted for use in Mobile only configurations in which the antennas used for this transmitter must be installed to provide a separation distance of at least 20cm from all person and not be co-located with any other transmitters except in accordance with FCC and Industry Canada multi-transmitter product procedures.

As long as the two conditions above are met, further transmitter testing will not be required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed (for example, digital device emissions, PC peripheral requirements, etc.).

IMPORTANT NOTE: In the event that these conditions cannot be met (for certain configurations or co-location with another transmitter), then the FCC and Industry Canada authorizations are no longer considered valid and the FCC ID and IC Certification Number cannot be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC and Industry Canada authorization.

Le module de E0150-MOD a été certifié pour l'intégration dans des produits uniquement par des intégrateurs OEM dans les conditions suivantes:

Ce dispositif est accordé pour une utilisation dans des configurations mobiles seul dans lequel les antennes utilisées pour cet émetteur doit être installé pour fournir une distance de séparation d'au moins 20cm de toute personne et ne pas être colocalisés avec les autres émetteurs, sauf en conformité avec la FCC et de l'Industrie Canada, multi-émetteur procédures produit.

Tant que les deux conditions précitées sont réunies, les tests de transmetteurs supplémentaires ne seront pas tenus. Toutefois, l'intégrateur OEM est toujours responsable de tester leur produit final pour toutes les exigences de conformité supplémentaires requis avec ce module installé (par exemple, les émissions appareil numérique, les exigences de périphériques PC, etc.)

NOTE IMPORTANTE: Dans le cas où ces conditions ne peuvent être satisfaites (pour certaines configurations ou de co-implantation avec un autre émetteur), puis la FCC et Industrie autorisations Canada ne sont plus considérés comme valides et l'ID de la FCC et IC numéro de certification ne peut pas être utilisé sur la produit final. Dans ces circonstances, l'intégrateur OEM sera chargé de réévaluer le produit final (y compris l'émetteur) et l'obtention d'un distincte de la FCC et Industrie Canada l'autorisation.

OEM LABELING REQUIREMENTS FOR END-PRODUCT

The E0150-MOD module is labeled with its own FCC ID and IC Certification Number. The FCC ID and IC certification numbers are not visible when the module is installed inside another device, as such the end device into which the module is installed must display a label referring to the enclosed module. The final end product must be labeled in a visible area with the following:

"Contains Transmitter Module FCC ID: 2AA6A-ISPACE"

"Contains Transmitter Module IC: 11476A-ISPACE"

or

"Contains FCC ID: 2AA6A-ISPACE"

"Contains IC: 11476A-ISPACE"

The OEM of the E0150-MOD Module must only use the approved antenna(s) listed above, which have been certified with this module.

Le module de E0150-MOD est étiqueté avec son propre ID de la FCC et IC numéro de certification. L'ID de la FCC et IC numéros de certification ne sont pas visibles lorsque le module est installé à l'intérieur d'un autre appareil, comme par exemple le terminal dans lequel le module est installé doit afficher une etiquette faisant référence au module ci-joint. Le produit final doit être étiqueté dans un endroit visible par le suivant:

"Contient Module émetteur FCC ID: 2AA6A-ISPACE"
"Contient Module émetteur IC: 11476A-ISPACE"

ou

"Contient FCC ID: 2AA6A-ISPACE"
"Contient IC: 11476A-ISPACE"

Les OEM du module E0150-MOD ne doit utiliser l'antenne approuvée (s) ci-dessus, qui ont été certifiés avec ce module.

OEM END PRODUCT USER MANUAL STATEMENTS

The OEM integrator should not to provide information to the end user regarding how to install or remove this RF module or change RF related parameters in the user manual of the end product.

The user manual for the end product must include the following information in a prominent location:

This device is granted for use in Mobile only configurations in which the antennas used for this transmitter must be installed to provide a separation distance of at least 20cm from all person and not be co-located with any other transmitters except in accordance with FCC and Industry Canada multi-transmitter product procedures.

Other user manual statements may apply.

L'intégrateur OEM ne devraient pas fournir des informations à l'utilisateur final sur la façon d'installer ou de supprimer ce module RF ou modifier les paramètres liés RF dans le manuel utilisateur du produit final.

Le manuel d'utilisation pour le produit final doit comporter les informations suivantes dans unendroit bien en vue:

Ce dispositif est accordé pour une utilisation dans des configurations mobiles seule dans laquelle les antennes utilisées pour cet émetteur doit être installé pour fournir une distance de séparation d'au moins 20cm de toute personne et ne pas être co-localisés avec les autres émetteurs, sauf en conformité avec FCC et Industrie Canada, multi-émetteur procédures produit.

Autres déclarations manuel de l'utilisateur peuvent s'appliquer.

Warning to OEM's - UNII Band Requirements

UNII devices operating within 5.15-5.25 GHz are to be restricted to indoor operations to reduce any potential for harmful interference to co-channel MSS operations and outdoor use is strictly prohibited.

Avertissement à des OEM - Exigences UNII Band

Dispositifs UNII opérant dans 5.15 à 5.25 GHz doivent être limités à des opérations à l'intérieur afin de réduire tout risque d'interférence nuisible aux canaux de l'exploitation du MSS et l'utilisation extérieure est strictement interdite

MECHANICAL DATA

Figure 12 Module Mechanical Dimensions (Maximum Module Height = 1.9mm)

PCB FOOTPRINT

Figure 13 E0150-MOD Recommended PCB Footprint (Top View)