STA401

Statistique et Calcul des Probabilités

Responsable : Carole Durand-Desprez

CHAPITRE 5 : Autres tests statistiques.
Comparaison d'échantillons

I. <u>Test de comparaison de deux séries appariées,</u> (un test paramétrique particulier):

Condition: X - X' suit une loi Normale

Test: H_0 : Les 2 séries sont identiques H_1 : Les 2 séries sont différentes H_1 : Les 2 méthodes sont différentes

Nouvelle variable des différences : D = X - X'.

On remplace les 2 séries de données de valeurs x_i et x_i' par $d_i = x_i - x_i'$

Condition: D suit $N(\mu_d; \sigma_d^2)$

Test
$$\iff$$
 $H_0: \mu_d = 0 \longrightarrow Test paramétrique de moyenne, σ_d^2 inconnue$

La statistique
$$T = \frac{\overline{D} - 0}{S_d / \sqrt{n-1}}$$
 suit T_{n-1}

Test bilatéral : Rejet de
$$H_0 \Leftrightarrow T < -t_{1-\alpha/2}^{n-1}$$
 ou $T > t_{1-\alpha/2}^{n-1}$

Test unilatéral : Rejet de
$$H_0 \Leftrightarrow T > t_{1-\alpha}^{n-1}$$

Si on accepte H_0 , on conclut que les 2 'méthodes' sont identiques avec une proba $(1-\alpha)$

Si on accepte H_1 , on conclut que les 2 'méthodes' sont différentes avec un risque α

Exemple: Amphi: n=122 étudiants. Variable: note au partiel.

X note du correcteur 1; X' note du correcteur 2.

Le correcteur 1 note-t'il plus largement au seuil de 5% ?

On suppose que X-X' suit loi *Normale*.

$$ightarrow$$
 d: 0 -1 2 0 1 -1 ...

$$\bar{d} = 1.5$$
; $s_d = 5$; $n = 122$

$$H_0$$
: Les 2 correcteurs notent pareil H_1 : Le correcteur 1 note plus large

$$\begin{array}{c}
H_0: \mu_d = 0 \\
H_1: \mu_d > 0
\end{array}$$

$$H_1$$
: Le correcteur 1 note plus large

$$H_1: \mu_d > 0$$

D suit
$$N(\mu_d; \sigma_d^2)$$
 donc $T = \frac{\overline{D} - 0}{S_d / \sqrt{n-1}}$ suit T_{n-1}

$$T_{calc} = \frac{1.5}{5/\sqrt{121}} = 3.3$$
 $t_{1-\alpha}^{n-1} \approx u_{1-\alpha} = 1.645$ (ngrand)

Test unilatéral : Rejet de
$$H_0 \Leftrightarrow T > t_{1-\alpha}^{n-1}$$

Ici, T_{calc}>1,645, donc on accepte H₁. On conclut que le correcteur 1 note plus largement que le correcteur 2 avec un risque de 5% de se tromper.

II. Tests de comparaison de 2 échantillons indépendants :

Modèle

Deux échantillons d'individus différents

Une même variable mesurée

Échantillons indépendants

Conditions: X suit $N(\mu_1; \sigma_1^2)$ et X' suit $N(\mu_2; \sigma_2^2)$ et elles sont indépendantes.

$$H_0 : \sigma_1^2 = \sigma_2^2 \\ H_1 : \sigma_1^2 \neq \sigma_2^2$$
 et
$$H_0 : \mu_1 = \mu_2 \\ H_1 : \mu_1 \neq \mu_2$$

$$H_1: \sigma_1^2 \neq \sigma_2^2$$

$$\int_{0}^{\infty} H_{0} : \mu_{1} = \mu_{2}$$

$$H_1: \mu_1 \neq \mu_2$$

a) Test de comparaison de 2 variances : test de Fisher

$$\begin{cases} H_0 : \sigma_1^2 = \sigma_2^2 \\ H_1 : \sigma_1^2 \neq \sigma_2^2 \end{cases} \iff \begin{cases} H_0 : \sigma_1^2 / \sigma_2^2 = 1 \\ H_1 : \sigma_1^2 / \sigma_2^2 \neq 1 \end{cases}$$

La statistique :

$$T = \frac{S_1^{\prime 2}}{S_2^{\prime 2}} = \frac{\frac{n_1}{n_1 - 1} S_1^2}{\frac{n_2}{n_2 - 1} S_2^2} \quad suit \quad F_{(n_1 - 1; n_2 - 1)}$$

Règle de décision: Rejet de
$$H_0 \Leftrightarrow T < f_{\alpha/2}^{(n_1-1;n_2-1)}$$
 ou $T > f_{1-\alpha/2}^{(n_1-1;n_2-1)}$

Remarque : Les tables de Fisher ne donnent que des valeurs de *f* supérieures à 1.

On remarque que
$$f_{\alpha/2}^{(n_1-1;n_2-1)} = 1/f_{1-\alpha/2}^{(n_2-1;n_1-1)}$$

<u>En pratique</u>: On se ramène à T > 1, (si ça n'est pas le cas, échanger le rôle de X et X', ainsi que n₁ et n₂). Alors :

Règle de décision: Rejet de $H_0 \Leftrightarrow T > f_{1-\alpha/2}^{(n_1-1;n_2-1)}$

b) Test des moyennes : test de Student

$$\begin{cases} H_0 : \mu_1 = \mu_2 \\ H_1 : \mu_1 \neq \mu_2 \end{cases}$$

$$\begin{cases} H_0 : \mu_1 = \mu_2 \\ H_1 : \mu_1 \neq \mu_2 \end{cases} \iff \begin{cases} H_0 : \mu_1 - \mu_2 = 0 \\ H_1 : \mu_1 - \mu_2 \neq 0 \end{cases} (ou > 0)$$

$$Si \quad \sigma_1^2 = \sigma_2^2$$
 (inconnues)

La statistique

$$T = \sqrt{\frac{n_1 + n_2 - 2}{\frac{1}{n_1} + \frac{1}{n_2}}} \frac{\bar{X} - \bar{X}'}{\sqrt{n_1 S_1^2 + n_2 S_2^2}} \quad suit \quad T_{(n_1 + n_2 - 2)}$$

Règle de décision:

Test bilatéral : Rejet de
$$H_0 \Leftrightarrow T < -t_{1-\alpha/2}^{(n_1+n_2-2)} \text{ ou } T > t_{1-\alpha/2}^{(n_1+n_2-2)}$$

Test unilatéral supérieur : Rejet de
$$H_0 \Leftrightarrow T > t_{1-\alpha}^{(n_1+n_2-2)}$$

Preuve (construction de la statistique):

$$\begin{cases} H_0: \ \mu_1 - \mu_2 = 0 \\ H_1: \ \mu_1 - \mu_2 \neq 0 \ (ou > 0) \end{cases} \quad avec \quad \sigma_1^2 = \sigma_2^2$$

X suit $N(\mu_1; \sigma_1^2)$ et X' suit $N(\mu_2; \sigma_2^2)$ par hypothèse et elles sont indépendantes donc :

$$\bar{X} + \bar{X}'$$
 suit $N(\mu_1 + \mu_2; \sigma_1^2/n_1 + \sigma_2^2/n_2)$.

De plus, la variance globale vérifie : $\sigma^2 = \sigma_1^2 = \sigma_2^2$ donc :

$$\bar{X} + \bar{X}'$$
 suit $N(\mu_1 + \mu_2; \sigma^2(1/n_1 + 1/n_2))$.

On déduit que la statistique T du test est : $T = \frac{\overline{X} - X'}{\sqrt{\widehat{\sigma^2} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$ suit $T_{(n_1 + n_2 - 2)}$

L'estimateur global de la variance est la moyenne pondérée des estimateurs des variances :

$$\widehat{\sigma^2} = \frac{n_1 S_1^2 + n_2 S_2^2}{n_1 + n_2 - 2}$$

On conclut alors:
$$T = \sqrt{\frac{n_1 + n_2 - 2}{\frac{1}{n_1} + \frac{1}{n_2}}} \frac{\bar{X} - \bar{X}'}{\sqrt{n_1 S_1^2 + n_2 S_2^2}} \quad suit \quad T_{(n_1 + n_2 - 2)}$$

c) <u>Test des moyennes :</u> Cas asymptotique (n grand)

<u>La statistique</u>: $T = \frac{\overline{X} - \overline{X'}}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \quad suit \quad N(0; 1)$

Règle de décision :

Test bilatéral : Rejet de $H_0 \Leftrightarrow T < -u_{1-\alpha/2} \text{ ou } T > u_{1-\alpha/2}$

Test unilatéral supérieur : Rejet de $H_0 \Leftrightarrow T > u_{1-\alpha}$

Synthèse

H₁ acceptée alors les 2 échantillons sont différents. STOP

H₀ acceptée (variances =), faire le test des moyennes.

H₁ acceptée alors les 2 échantillons sont différents. Test des moyennes

H₀ acceptée alors les 2 échantillons sont identiques.

Attention au risque α

Exemple: Amphi 1: n=122 étudiants. Amphi 2: n=101 étudiants.

Variable: note au partie. (X notes amphi 1; X' notes amphi 2)

Les 2 amphis ont-ils eu des notes semblables (en moyenne et en variance) au seuil de 5%? On suppose que X et X' suivent des lois Normale.

Les 2 échantillons sont indépendants (individus différents). Lois gaussiennes.

$$x: 12 \ 11 \ 15 \ 10 \ 9 \ 4 \ ...$$
 $n_1 = 122 \ ; \ \bar{x} = 12 \ ; \ s_1'^2 = 5,2$ $n_2 = 101 \ ; \ \bar{x}' = 13 \ ; \ s_2'^2 = 4,5$

• Test des variances :

$$\begin{cases} H_0: \sigma_1^2 = \sigma_2^2 \\ H_1: \sigma_1^2 \neq \sigma_2^2 \end{cases} \qquad T_{calc} = \frac{5,2}{4,5} = 1,155 \qquad f_{1-\alpha/2}^{(n_1-1;n_2-1)} = f_{0,975}^{(121;100)} = 1,4$$

Rejet de
$$H_0 \iff T < f_{\alpha/2}^{(n_1 - 1; n_2 - 1)} \text{ ou } T > f_{1 - \alpha/2}^{(n_1 - 1; n_2 - 1)}$$

$$H_0$$

Ici, T_{calc} < 1,4 (et T>1) donc on accepte H_0 .

• Test des moyennes :

$$\begin{cases} H_0: \mu_1 = \mu_2 \\ H_1: \mu_1 \neq \mu_2 \end{cases} \qquad n \text{ grand} \qquad T_{calc} = \frac{-1}{0,296} = -3,378 \qquad u_{1-\alpha/2} = 1,96$$

Ici, T_{calc}< -1,96, donc on accepte H₁. On conclut que les notes moyennes ne sont pas identiques dans les deux amphis, avec un risque de 5% de se tromper. [Amphi 2 meilleur que amphi 1 car différence des moyennes négative]

III. Test de comparaison de deux proportions :

On note p₁ et p₂ les proportions d'un caractère sur deux populations de taille n₁ et n₂. On veut déterminer s'il s'agit des deux mêmes popolations. Condition : Indépendance.

$$\begin{cases} H_0 : p_1 = p_2 \\ H_1 : p_1 \neq p_2 \end{cases} \longleftrightarrow \begin{cases} H_0 : p_1 - p_2 = 0 \\ H_1 : p_1 - p_2 \neq 0 \end{cases} (ou > 0)$$

<u>La statistique</u>: (si n₁ et n₂ sont assez grands)

On note
$$F = \frac{n_1 F_1 + n_2 F_2}{n_1 + n_2}$$
 (moyenne pondérée des fréquences)

$$T = \frac{F_1 - F_2}{\sqrt{F(1 - F)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \quad suit \quad N(0; 1)$$

Règle de décision :

Test bilatéral : Rejet de $H_0 \Leftrightarrow T < -u_{1-\alpha/2}$ ou $T > u_{1-\alpha/2}$

Test unilatéral supérieur : Rejet de $H_0 \Leftrightarrow T > u_{1-\alpha}$

<u>Exemple</u>: On étudie un certains évènement 'A' dans deux pays différents. Dans un échantillon de $n_1 = 11034$ individus, l'évènement A s'est réalisé pour 239. Dans un échantillon de $n_2 = 11037$ individus, il s'est réalisé 139 fois. Peut-on dire que l'évènement A est réduit dans le second pays (au seuil de 5%) ?

Ici
$$\begin{cases} H_0: p_1 = p_2 \\ H_1: p_1 > p_2 \end{cases}$$
 avec $f_1 = 0.0217$ et $f_2 = 0.0126$; $f_1 = 0.0126$; $f_2 = 0.0126$; $f_2 = 0.0126$; $f_3 = 0.0126$; $f_4 = 0.0126$; $f_5 = 0.0126$; $f_5 = 0.0126$; $f_7 = 0.012$

Attention aux conclusions trop rapides !!!

 $f_1 - f_2 = 0,0091$ très petit, il "semblerait" qu'il n'y ait pas réduction $f_1 / f_2 = 1,72$, il "semblerait" qu'il y ait 1,7 fois plus d'évènements A dans le pays 1

$$f = \frac{n_1 f_1 + n_2 f_2}{n_1 + n_2} = 0.017149$$
. La valeur calculée de la statistique T est : 5,2

Test unilatéral supérieur : Rejet de $H_0 \Leftrightarrow T > u_{1-\alpha}$ avec $u_{0,95} = 1,645$

Ici, T> 1,645, donc on accepte H₁. On conclut que l'apparition de A est réduit dans le second pays, avec un risque de 5% de se tromper.

IV. Tests du khi-deux :

a) Test du khi-deux d'ajustement (adéquation) :

X une variable qualitative (modalités), n la taille de l'échantillon des données. $(c_1, ..., c_r)$ la répartition en r classes de toutes les valeurs possibles de Xn, l'effectif observé dans l'échantillon de la classe c, p; la probabilité théorique de la classe c; pour la loi P

X	C ₁ C _r	Total
Données	n ₁ n _r	n
Loi P	np ₁ np _r	n

 $H_0: X$ suit la loi P $H_1: X$ ne suit pas la loi P

La statistique:
$$T = \sum_{i=1}^{r} \frac{(n_i - np_i)^2}{np_i} \quad suit \quad \aleph_{r-1}$$

S'il y a k paramètres à estimer pour avoir la loi P, alors T suit \aleph_{r-1-k}

[Remarque: $si \ \forall i \ n_i \approx np_i \Rightarrow n_i - np_i \approx 0 \Rightarrow T \approx 0$]

Règle de décision:

Rejet de
$$H_0 \Leftrightarrow T > z_{1-\alpha}^{r-1}$$

b) Test du khi-deux d'indépendance (contingence) :

POUR INFORMATION

X et Y deux variables qualitatives de modalités respectives x_i et y_i n la taille de l'échantillon des données.

 n_{ii} l'effectif observé dans l'échantillon croisant les modalités x_i et y_i

X / Y	y ₁ y _q	Marge ligne
X ₁ .	n ₁₁ n _{1q} .	n ₁ .
		-
X _p .	n _{p1} n _{pq} .	n _p .
Marge colonne	n. ₁ n. _q	n.

$$n_{i.} = \sum_{j} n_{ij} \qquad n_{.j} = \sum_{i} n_{ij}$$

Profils–lignes (colonnes) : $\frac{n_{ij}}{n_{i.}}$ et $\frac{n_{ij}}{n_{.j}}$

 H_0 : X et Y sont indépendantes H_1 : X et Y non indépendantes

La statistique:
$$T = \sum_{i} \sum_{j} \frac{\left(n_{ij} - n_{i.} n_{.j} / n\right)^{2}}{n_{i.} n_{.j} / n} \quad suit \quad \aleph_{(p-1)(q-1)}$$

Règle de décision :

Rejet de
$$H_0 \Leftrightarrow T > z_{1-\alpha}^{r-1}$$

Conditions: effectifs > 5 et n > 50

Rem:
$$si \ \forall i,j \quad \frac{n_{ij}}{n_{i.}} \approx \frac{n_{.j}}{n} \Rightarrow n_{ij} - n_{i.} n_{.j} / n \approx 0 \Rightarrow T \approx 0$$

Preuve (éléments de la construction de la statistique) :

POUR INFORMATION

Si X et Y sont indépendantes (H_o vraie), tous les profils-lignes (et colonnes) sont identiques. La connaissance de X ne change pas les distributions conditionnelles de Y.

Donc, pour tout
$$j$$
:
$$\frac{n_{1j}}{n_{1}} = \frac{n_{2j}}{n_{2}} = \cdots = \frac{n_{pj}}{n_{p}}$$

Donc, pour tout
$$i$$
 et j : $\frac{n_{ij}}{n_{i.}} = \frac{n_{.j}}{n}$ (la moyenne des profils-lignes)

X et Y sont indépendantes (
$$H_o$$
 vraie) ssi : $n_{ij} = \frac{n_{i.} n_{.j}}{n}$ pour tout i et j.

Ce qui justifie l'emploi de la métrique du Khideux pour mesurer l'écart à l'indépendance. D'où la statistique et la loi de ce test (effectifs théoriques sont supérieurs à 5).

$$T = \sum_{i} \sum_{j} \frac{(n_{ij} - n_{i.} n_{.j}/n)^{2}}{n_{i.} n_{.j}/n} \quad suit \qquad \aleph_{(p-1)(q-1)}^{2}$$

De plus, en développant le carré, on obtient aussi :

$$T = n \left(\sum_{i} \sum_{j} \frac{\left(n_{ij}\right)^{2}}{n_{i.}n_{.j}} - 1 \right)$$

c) Test du khi-deux de comparaison d'échantillons (hom POUR INFORMATION

X une variable qualitative, de modalités x_i . On a e_j ... e_p : des échantillons d'individus. Pas d'hypothèse d'indépendance, et de normalité dans ce test. n la taille de tous les échantillons réunis. n_{ij} l'effectif de x_i dans l'échantillon e_i . n_i la taille de l'échantillon e_i

X	x ₁ x _q	Marge ligne
e ₁	n ₁₁ n _{1q}	n ₁ .
e_p	n _{p1} n _{pq}	n _p .
Marge colonne	n. ₁ n. _q	n

 H_0 : Tous les échantillons sont homogènes H_1 : Tous non homogènes.

La statistique:
$$T = \sum_{i} \sum_{j} \frac{(n_{ij} - n_{i.} n_{.j}/n)^{2}}{n_{i.} n_{.j}/n} = n \left(\sum_{i} \sum_{j} \frac{(n_{ij})^{2}}{n_{i.} n_{.j}} - 1 \right)$$
 suit $\aleph_{(p-1)(q-1)}$

Règle de décision:

Rejet de
$$H_0 \Leftrightarrow T > z_{1-\alpha}^{(p-1)(q-1)}$$

$$H_0$$
 α H_1

Exemple 1:

On souhaite tester l'hypothèse selon laquelle un dé n'est pas truqué. On lance 600 fois ce dé.

Numéro dé	1	2	3	4	5	6	Total
Observ.	88	109	107	94	105	97	600
Р	1/6	1/6	1/6	1/6	1/6	1/16	
Effect. P	100	100	100	100	100	100	600

 $H_0: X$ suit la loi Uniforme $H_1: X$ ne suit pas la loi Uniforme

$$T_{calc} = \frac{(88 - 100)^2}{100} + \dots + \frac{(97 - 100)^2}{100} = 3,44$$

Lecture sur $\aleph_5^2 \longrightarrow p_{val} = 1 - P(T < 3.44)$ et 0.1 val</sub> < 0.9

Pour tout risque α < 50%, on accepte H₀ et on conclut que le dé n'est pas truqué.

[Remarque: $si \ \alpha = 0.05 \ alors \ z_{0.95}^5 = 11.07 \ donc \ T \le 11.07 \ H_0 \ acceptée$]

Exemple 2:

Même expérience de Mendel (à l'origine du test). On s'intéresse à deux variables qualitatives sur des pois : Couleur (jaune et vert) et Forme (rond, ridé). On a alors un tableau croisant 2 variables qualitatives (Tableau de contingence, d'effectifs)

X/Y	Rond	Ridé	marges
Jaune	315	101	416
Vert	108	32	140
marges	423	133	556

X / Y	Rond	Ridé	marge
Jaune	316,49	99,51	416
Vert	106,51	33,49	140
marge	423	133	556

 H_0 : X et Y indépendantes

 H_1 : X et Y non indépendantes

Tableau théorique (si indépendance):

$$\frac{n_{1.}n_{.1}}{n} = \frac{423 * 416}{556} = 316,49 \quad ect...$$

$$T_{calc} = \frac{(315 - 316,49)^2}{316,49} + \dots + \frac{(32 - 33,49)^2}{33,49} = 0,11$$

Lecture sur \aleph_1^2 \longrightarrow $p_{val} = 1 - P(T < 0.11) = 1 - 0.016 = 0.984$

Pour tout risque α inférieur à 98,4%, on accepte l'hypothèse d'indépendance.

[Remarque: pour $\alpha = 0.05$ alors $z_{0.95}^1 = 3.841$ donc $T \le 3.841 \rightarrow H_0$ acceptée]