CS 188: Artificial Intelligence Inference in Markov Models

Instructors: Stuart Russell and Dawn Song
University of California, Berkeley

HMM as probability model

- Joint distribution for Markov model: $P(X_0, \dots, X_T) = P(X_0) \prod_{t=1:T} P(X_t \mid X_{t-1})$
- Joint distribution for hidden Markov model:

$$P(X_0, X_1, \dots, X_T, E_T) = P(X_0) \prod_{t=1:T} P(X_t \mid X_{t-1}) P(E_t \mid X_t)$$

- Future states are independent of the past given the present
- Current evidence is independent of everything else given the current state

Useful notation:

$$X_{a:b} = X_{a}, X_{a+1}, ..., X_{b}$$

Inference tasks

- Filtering: $P(X_t | e_{1:t})$
 - belief state—input to the decision process of a rational agent
- **Prediction**: $P(X_{t+k}|e_{1:t})$ for k > 0
 - evaluation of possible action sequences; like filtering without the evidence
- Smoothing: $P(X_k | e_{1:t})$ for $0 \le k < t$
 - better estimate of past states, essential for learning
- Most likely explanation: arg $\max_{x_{1:t}} P(x_{1:t} \mid e_{1:t})$
 - speech recognition, decoding with a noisy channel

Other HMM Queries

Filtering: $P(X_t | e_{1:t})$

Prediction: $P(X_{t+k} | e_{1:t})$

Smoothing: $P(X_k | e_{1:t})$, k<t

Explanation: $P(X_{1:t} | e_{1:t})$

Filtering / Monitoring

- Filtering, or monitoring, or state estimation, is the task of maintaining the distribution $f_{1:t} = P(X_t | e_{1:t})$ over time
- We start with f_0 in an initial setting, usually uniform
- Filtering is a fundamental task in engineering and science
- The Kalman filter (continuous variables, linear dynamics, Gaussian noise) was invented in 1960 and used for trajectory estimation in the Apollo program; core ideas used by Gauss for planetary observations

Example from Michael Pfeiffer

Sensor model: four bits for wall/no-wall in each direction, never more than 1 mistake

Transition model: action may fail with small prob.

but *less likely* (required 1 mistake)

Prob 0 1

Prob 0 1

Prob

t=4

Filtering algorithm

Aim: devise a recursive filtering algorithm of the form

$$P(X_{t+1} | e_{1:t+1}) = g(e_{t+1}, P(X_t | e_{1:t}))$$

$$P(X_{t+1} | e_{1:t+1}) =$$

Filtering algorithm

Aim: devise a recursive filtering algorithm of the form

$$P(X_{t+1} | e_{1:t+1}) = g(e_{t+1}, P(X_t | e_{1:t}))$$
 Apply Bayes' rule
$$P(X_{t+1} | e_{1:t+1}) = P(X_{t+1} | e_{1:t}, e_{t+1})$$
 Apply conditional independence
$$= \alpha P(e_{t+1} | X_{t+1}, e_{1:t}) P(X_{t+1} | e_{1:t})$$
 Condition on X_t Apply conditional independence
$$= \alpha P(e_{t+1} | X_{t+1}) P(X_{t+1} | e_{1:t})$$
 Apply conditional independence
$$= P(e_{t+1} | X_{t+1}) P(X_{t+1} | e_{1:t}) P(X_{t+1} | X_{t}, e_{1:t})$$
 Normalize
$$(e_{t+1} | Y_{t+1}) P(X_{t+1} | Y_{t+1}) P(X_{t+1} | Y_{t})$$

Filtering algorithm

$$P(X_{t+1} | e_{1:t+1}) = \alpha P(e_{t+1} | X_{t+1}) \sum_{xt} P(x_t | e_{1:t}) P(X_{t+1} | x_t)$$
Normalize Update Predict

$$\mathbf{f}_{1:t+1} = FORWARD(\mathbf{f}_{1:t}, e_{t+1})$$

- Cost per time step: $O(|X|^2)$ where |X| is the number of states
- Time and space costs are constant, independent of t
- $O(|X|^2)$ is infeasible for models with many state variables
- We get to invent really cool approximate filtering algorithms

And the same thing in linear algebra

- Transition matrix T, observation matrix O_t
 - ullet Observation matrix has state likelihoods for $ullet_t$ along diagonal

• E.g., for
$$U_1 = \text{true}$$
, $O_1 = \begin{pmatrix} 0.2 & 0 \\ 0 & 0.9 \end{pmatrix}$

Filtering algorithm becomes

$$\bullet \boldsymbol{f}_{1:t+1} = \alpha \, O_{t+1} T^{\mathsf{T}} \boldsymbol{f}_{1:t}$$

X _{t-1}	$P(X_{t} X_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W _t	P(U _t W _t)	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Example: Weather HMM

W _{t-1}	$P(W_{t} W_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W _t	P(U _t W _t)	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Pacman – Hunting Invisible Ghosts with Sonar

Video of Demo Pacman – Sonar

Most Likely Explanation

Inference tasks

- Filtering: $P(X_t | e_{1:t})$
 - belief state—input to the decision process of a rational agent
- **Prediction**: $P(X_{t+k} | e_{1:t})$ for k > 0
 - evaluation of possible action sequences; like filtering without the evidence
- Smoothing: $P(X_k | e_{1:t})$ for $0 \le k < t$
 - hetter estimate of past states, essential for learning
- Most likely explanation: $arg max_{x_{1:t}} P(x_{1:t} | e_{1:t})$
 - speech recognition, decoding with a noisy channel

Most likely explanation = most probable path

State trellis: graph of states and transitions over time

• $\operatorname{arg\,max}_{x_{1:t}} P(x_{1:t} | e_{1:t})$ = $\operatorname{arg\,max}_{x_{1:t}} \alpha P(x_{1:t}, e_{1:t})$ = $\operatorname{arg\,max}_{x_{1:t}} P(x_{1:t}, e_{1:t})$ = $\operatorname{arg\,max}_{x_{1:t}} P(x_0) \prod_t P(x_t | x_{t-1}) P(e_t | x_t)$

- Each arc represents some transition $x_{t-1} \rightarrow x_t$
- Each arc has weight $P(x_t \mid x_{t-1}) P(e_t \mid x_t)$ (arcs to initial states have weight $P(x_0)$)
- The product of weights on a path is proportional to that state sequence's probability
- Forward algorithm computes sums of paths, Viterbi algorithm computes best paths

Forward / Viterbi algorithms

Forward Algorithm (sum)

For each state at time *t*, keep track of the *total probability of all paths* to it

$$f_{1:t+1} = FORWARD(f_{1:t}, e_{t+1})$$

= $\alpha P(e_{t+1}|X_{t+1}) \sum_{xt} P(X_{t+1}|X_t) f_{1:t}$

Viterbi Algorithm (max)

For each state at time *t*, keep track of the *maximum probability of any path* to it

$$m_{1:t+1} = VITERBI(m_{1:t}, e_{t+1})$$

= $P(e_{t+1}|X_{t+1}) \max_{xt} P(X_{t+1}|x_t) m_{1:t}$

Viterbi algorithm contd.

W _{t-1}	$P(W_{t} W_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W _t	$P(U_t W_t)$	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Time complexity?
O(|X|² T)

Space complexity?

O(|X| T)

Number of paths?

O(|X|^T)

Viterbi in negative log space

- = argmin of sum of negative log probabilities
- = minimum-cost path

Viterbi is essentially breadth-first graph search What about A*?

W _{t-1}	P(W _t W _{t-1})	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W _t	P(U _t W _t)	
	true	false
sun	0.2	0.8
rain	0.9	0.1