

Taller Relaciones y funciones

Matemáticas Discretas I / 750083M / Grupo 01 / Prof. Juan Francisco Díaz / Monitor Juan Marcos Caicedo / 2018-2

- 1. Complete cada espacio en blanco con un $\mathbf{S}\mathbf{i}$ o un \mathbf{No} , dependiendo si dicha relación cumple con dicha propiedad. Todas estas relaciones están definidas sobre el conjunto $A = \{1, 2, 3\}$. En caso de no cumplir la propiedad, muestre un contraejemplo que demuestre que efectivamente dicha propiedad no es cumplida.
 - $R1 = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1)\}$
 - $R2 = \{(1,1), (1,3), (2,1), (2,2), (3,3)\}$
 - $R3 = \{(1,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$

	Reflexiva	Simétrica	Antisimétrica	Transitiva
R1				
R2				
R3				

- 2. Tome en cuenta las siguientes relaciones X,Y,Z:
 - $X = \{(1,2), (2,2), (3,1), (3,3)\}$
 - $Y = \{(a,b), (d,c), (e,f), (p,w)\}$
 - $Z = \{(2, g), (1, h), (c, 7), (w, 9)\}$

Basándose en las definiciones de: *Dominio de definición, Rango y Transpuesta y Composición* de las relaciones, (definidos en las diapositivas del curso), calcule:

- (a) dom X =
- (b) ranX =
- (c) $dom Y^T =$
- (d) $ranZ^T =$
- (e) $dom X \cap dom Z =$
- (f) $dom X \cup ran X =$
- (g) $dom X \cap dom Y =$
- (h) $dom X \cup dom Y =$
- (i) $ranY \cup ranZ =$
- (j) $Z \circ X =$
- (k) $Z \circ Y =$
- (1) $Z \circ X^T =$
- (m) $Z^T \circ Y^T =$

3. Tome en cuenta las siguientes relaciones U, V, W definidas sobre $A = \{1, 2, 3\}$:

•
$$U = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,3)\}$$

•
$$V = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$$

•
$$W = \{(1,1), (1,2), (2,1)\}$$

Basándose en la definición de: *Relación de equivalencia* (definida en las diapositivas del curso), determine si cada relación es, o no, una **relación de equivalencia**. De ser negativa la respuesta, diga qué propiedad(es) no se satisfacía(n) y muestre un contraejemplo de ella(s).

- (a) Es la relación U una relación de equivalencia?
- (b) Es la relación V una relación de equivalencia?
- (c) Es la relación W una relación de equivalencia?
- 4. Tenga en cuenta la relación R:
 - $R: \mathbb{Z} \Leftrightarrow \mathbb{Z}$ tal que $R(a,b) \equiv (a+b)$ es par

Basándose en la definición de: Clase de equivalencia de una relación (definida en las diapositivas del curso), de al menos 10 elementos distintos para cada conjunto de la clase de equivalencia correspondiente:

(a)
$$[4]_R = \{$$

(b)
$$[7]_R = \{$$

5. Tome en cuenta las siguientes relaciones P, Q, R definidas sobre $B = \{a, b, c\}$:

- $P = \{(a, a), (a, b), (b, c), (a, c)\}$
- $Q = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)\}$
- $R = \{(a, a), (a, b), (b, a), (b, b), (c, c)\}$

Basándose en la definición de: *Relación de orden parcial* (definida en las diapositivas del curso), determine si cada relación es, o no, una **relación** de orden parcial. De ser negativa la respuesta, diga qué propiedad(es) no se satisfacía(n) y muestre un contraejemplo de ella(s).

- (a) Es la relación P una relación de orden parcial?
- (b) Es la relación Q una relación de orden parcial?
- (c) Es la relación R una relación de orden parcial?
- 6. Tome en cuenta las siguientes relaciones I, J, K definidas sobre $C = \{x, y, z\}$:
 - $I = \{(x, y), (y, z), (x, z)\}$
 - $J = \{(x, x), (y, y), (z, z)\}$
 - $K = \{(y, z), (z, x)\}$

Basándose en la definición de: Relación de orden estricto (definida en las diapositivas del curso), determine si cada relación es, o no, una relación de orden estricto. De ser negativa la respuesta, diga qué propiedad(es) no se satisfacía(n) y muestre un contraejemplo de ella(s).

- (a) Es la relación I una relación de orden estricto?
- (b) Es la relación J una relación de orden estricto?
- (c) Es la relación K una relación de orden estricto?

7. Tome en cuenta las siguientes funciones con sus respectivos dominio y codominio:

•
$$f(x) =$$

$$\mathbb{Z} \Leftrightarrow \mathbb{R}$$
• $g(x) =$

$$\mathbb{R} - \{8\} \Leftrightarrow \mathbb{R}$$
• $h(x) =$

$$\mathbb{R} \Leftrightarrow \mathbb{R}$$
• $m(x) =$

$$\mathbb{Z} \Leftrightarrow \mathbb{Z}$$
• $n(x) =$

$$x^{\frac{2}{x} - 8}$$

$$\frac{x}{x - 8}$$

$$\frac{x^{2} + 4}{x}$$

$$x$$

$$3x + 5$$

$$x^{2} + 1$$

 $\mathbb{R} \Leftrightarrow \mathbb{R}$

Analizando las funciones, rellene la tabla indicando $\mathbf{S}\mathbf{i}$ o \mathbf{No} , en caso de ser negativo, muestre el contraejemplo que impide que se cumpla tal propiedad

	Es total?	Es 1-1?	Es sobre?
f(x)			
g(x)			
h(x)			
m(x)			
n(x)			