Quantum Technologies

Important Values and Definitions

Andrew Simon Wilson

9th December, 2022

EMIMEO Programme

Module Coordinator: Prof. Artoni Maurizio

CONTENTS Quantum Technologies

Author Details

Andrew Simon Wilson, BEng

Post-graduate Master's Student - EMIMEO Programme

@ andrew.wilson@protonmail.com

in andrew-simon-wilson

AS-Wilson

J +44 7930 560 383

Contents

1	Constants & Relevant Definitions	1
	1.1 Constants	1
	1.2 Relevant Classical Definitions	2
2	Units Involved and Some Important Starting Equations	3
3	Conversions	4
4	Properties of Elemental Particles	5

Explanation and Introduction of this Document

I wrote this document for the students studying Quantum Technologies to have a nice handout set for the important definitions involved in the course. I hope that it is sufficient for this task and it helps all of your studies.

I spent have spent a lot of time developing the template used to make this LaTEX document, I want others to benefit from this work so the source code for this template is available on GitHub [1].

1 Constants & Relevant Definitions

1.1 Constants

Table 1: Important constants involved in Quantum Mechanics

Symbol/Definition	Name/info	Value
с	Speed of Light in Vacuum [2]	2.998×10^8 metres/second (m/s)
e	Elementary unit of charge, charge of an electron/proton [3]	-1.602×10^{-19} Coulomb (C)
h	Planck's Constant [4]	6.626×10^{-34} Joule·second (J·s)
		$= 4.136 \times 10^{-15} \text{ eV-second (eV-s)}$
. h	The reduced Planck constant, Planck's	1.055×10^{-34} Joule-second (J·s)
$\hbar = \frac{h}{2\pi}$	constant in terms of Radians instead of Hertz. [5]	$= 0.658 \times 10^{-15} \text{ eV-second (eV-s)}$
$k_{e}=rac{1}{4\pi\epsilon_{0}}$	Coulomb's Constant, the Electric Force Constant, or the Electrostatic Constant. [6]	$8.988 \times 10^9 \frac{\text{Newton} \cdot \text{metre}^2}{\text{Coulomb}^2} \left(\frac{\text{N} \cdot \text{m}^2}{\text{C}^2} \right)$
N_A	Avogadro's Constant [7]	$6.022 \times 10^{23} \text{ mole}^{-1} \text{ or } \frac{1}{\text{mole}}$
G	Gravitational Constant [8]	$6.672 \times 10^{-11} \frac{\text{metre}^3}{\text{Kilogram} \cdot \text{second}^2} \left(\frac{\text{m}^3}{\text{Kg} \cdot \text{s}^2}\right)$
· ·	Gravitational Constant [0]	$= 6.672 \times 10^{-8} \frac{\text{centimetre}^3}{\text{gram} \cdot \text{second}^2} \left(\frac{\text{cm}^3}{\text{g} \cdot \text{s}^2}\right)$
$k_{B} = \frac{R}{N_{A}}$	Boltzmann's Constant, this relates the relative	1.38×10^{-23} Joule·Kelvin (J·K)
$\left(\frac{\textit{Molar Gas Constant}}{\textit{Number of Molecules}}\right)$	kinetic energy of particles in a gas with the thermodynamic temperature of the gas. [9]	$= 8.617 \times 10^{-5} \text{ eV-Kelvin (eV-K)}$
		19.865 · 10 ^{−26} Joules·metre (J·m)
hc	Planck's Constant · Speed of Light in Vacuum	$12.41 \cdot 10^3$ electronvolt-Angstrom (eV-Å)
		1241 Mega-electronvolt·femto-metre (MeV·fm)

Table 1: Important constants involved in Quantum Mechanics (Continued)

	Normalised Planck's Constant · Speed of Light in Vacuum	$3.165 \cdot 10^{-26}$ Joules·metre (J·m)
ħc		1973 electronvolt-Angstrom (eV-Å)
		197.3 Mega-electronvolt-femto-metre (MeV-fm)
$k_c e^2$	Coulomb's Constant energy ²	1.44 Mega-electronvolt-femto-metre (MeV-fm)
$\frac{k_c e^2}{\hbar c}$	The Fine-Structure Constant [10]	$\frac{1}{137}$
и_ <u>ећ</u>	The DebuManustan [44]	9.27×10^{-24} Joule/Tesla (J/T)
$\mu_{\rm B} - \frac{1}{2 \rm m_e}$	The Bohr Magneton [11]	5.79×10^{-5} electronvolt/Tesla (eV/T)

1.2 Relevant Classical Definitions

TODO

Force Moving on a Charge	Electric Field of a Charge	
Magnetic Field of a Current	Induced Electromotive Force	
Energy Density in the Field		

 Table 2: Important Definitions Involved in Classical Physics that will be Relevant for Quantum Physics.

2 Units Involved and Some Important Starting Equations

Table 3: Important Units Involved in Classical Physics that will be Relevant for Quantum Physics.

Measurement/Info	Abbreviation	SI Unit (& Other Common/Useful Units)
Distance	S	metres (m), Angstrom (Å) [12]
Mass	m	kilograms (kg)
Time	t	second (s)

Velocity	υ	metres/Second (m/s)
Momentum	p	$\frac{\textit{kilogram} \cdot \textit{metres}}{\textit{second}} \left(\frac{\textit{kg} \cdot \textit{m}}{\textit{s}} \right)$
Force	F	Newtons (N), $\frac{kilogram \cdot metres}{second^2} \left(\frac{kg \cdot m}{s^2}\right)$
Energy, Work Done	W, E	Joules (J) [13], electronVolts (eV) [14], Newton metres (Nm)
Power	P	Watts (W), $\frac{\text{Joules}}{\text{second}} \left(\frac{J}{s} \right)$

Electric Charge	q	Coulombs (C), Ampere-seconds (A-s)
Electric Charge Density	ρ	$\frac{Coulomb}{metre^3} \left(\frac{C}{m^3} \right)$
Electric Potential	φ	Volts (V), $\frac{Joules}{Coulomb} \left(\frac{J}{C} \right)$
Electric Field	$ec{E}$	$\frac{\text{Volts}}{\text{metre}} \left(\frac{\text{V}}{\text{m}} \right), \frac{\text{Newtons}}{\text{Coulomb}} \left(\frac{\text{N}}{\text{C}} \right)$

Electric Current	I	Amperes (A), $\frac{Coulomb}{second} \left(\frac{C}{s}\right)$
Electric Current Density	$ec{J}$	$\frac{Amperes}{metre^2} \left(\frac{A}{m^2} \right)$

3 CONVERSIONS Quantum Technologies

Table 3: Important Units Involved in Classical Physics that will be Relevant for Quantum Physics. (Continued)

Resistance	R	Ohm (Ω), $\frac{\text{Volts}}{\text{Ampere}} \left(\frac{\text{V}}{\text{A}} \right)$
Resistivity	ρ	Ohm·metre (Ω·m)

Magnetic Flux Density	$ec{B}$	Tesla (T) [15], $\frac{\text{Newtons}}{\text{Ampere} \cdot \text{metre}} \left(\frac{\text{N}}{\text{A} \cdot \text{m}} \right)$
Magnetic Field Strength	$ec{H}$	$\frac{Amperes}{metre} \left(\frac{A}{m}\right)$
Magnetic Flux	$\vec{\Phi}$	Weber (W), Tesla·metre² (T·m²)

Capacitance	С	Farads (F), $\frac{\text{seconds}}{\text{Ohm}} \left(\frac{s}{\Omega} \right)$
Inductance	L	Henries (H), Ohm-seconds (Ω -s)

3 Conversions

1 electronvolt (eV)	1.602×10^{-19} Joules (J)
1 Angstrom (Å)	10×10^{-10} metres (m)
1 Ohm (Ω)	$1.13 \times 10^{-12} \frac{\text{seconds}}{\text{centimetre}} \left(\frac{\text{s}}{\text{cm}}\right)$
1 Farad (F)	9×10^8 metres (m)
1 Henry (H)	$1.13 \times 10^{-12} \frac{\text{seconds}^2}{\text{centimetre}} \left(\frac{\text{s}^2}{\text{cm}}\right)$

 Table 4: Some Conversions for Quantum Mechanics

4 Properties of Elemental Particles

Electron Properties [3]			
Property	Abbreviation	Value	
Mass at rest	m _e	9.109×10^{-31} kilogram (kg)	
		$9.109 \times 10^{-28} gram (g)$	
Charge	q _e , e ⁻	−1 elementary charge (e)	
		-1.602×10^{-19} Coulombs (C)	
Energy	$E_e = m_e c^2$	0.511 Mega electronvolt (MeV)	
Intrinsic Magnetic Moment	$\mu_{ m e}$	-9.285×10^{-24} Joule/Tesla (J/T)	
		-1.001 Bohr Magneton (μ_B)	
Spin	S _e	$\pm \frac{1}{2}$	

 Table 5: Important Properties of the Electron for Quantum Mechanics

Proton Properties [16]			
Property	Abbreviation	Value	
Mass at rest	m _p	1.673×10^{-27} kilogram (kg)	
		$1.673 \times 10^{-24} \text{gram (g)}$	
Charge	q_p, e^+	+1 elementary charge (e)	
		$+1.602 \times 10^{-19}$ Coulombs (C)	
Energy	$E_p = m_p c^2$	938.3 Mega electronvolt (MeV)	
Intrinsic Magnetic Moment	$\mu_{ m p}$	$+1.411 \times 10^{-26}$ Joule/Tesla (J/T)	
		$+1.521 \times 10^{-3}$ Bohr Magneton (μ_B)	
Spin	S_p	$\pm \frac{1}{2}$	

Table 6: Important Properties of the Proton for Quantum Mechanics

Properties of Elemental Particles Cont...

Neutron Properties [17]			
Property	Abbreviation	Value	
Mass at rest	m _n	1.675×10^{-27} kilogram (kg)	
		1.675×10^{-24} gram (g)	
Chargo	~	pprox 0 elementary charge (e)	
Charge	q_n	$(-2 \pm 8) \times 10^{-22} e$	
Energy	$E_n = m_n c^2$	939.6 Mega electronvolt (MeV)	
Intrinsic Magnetic Moment	$\mu_{ m n}$	≈ 0 Joule/Tesla (J/T)	
Spin	S _n	$\pm \frac{1}{2}$	

 Table 7: Important Properties of the Neutron for Quantum Mechanics

REFERENCES Quantum Technologies

References

- [1] A. Wilson. (2021, Apr.) Academic report template. GitHub. (accessed: 16.07.2021). [Online]. Available: https://github.com/AS-Wilson/Academic-Report-Template/tree/dev-AS-Wilson
- [2] Speed of light. Wikipedia. (accessed: 23.11.2022). [Online]. Available: https://en.wikipedia.org/wiki/Speed_of_light
- [3] Electon. Wikipedia. (accessed: 23.11.2022). [Online]. Available: https://en.wikipedia.org/wiki/Electron
- [4] Planck's constant. Wikipedia. (accessed: 23.11.2022). [Online]. Available: https://en.wikipedia.org/wiki/Planck_constant
- [5] Reduced planck's constant. Wikipedia. (accessed: 23.11.2022). [Online]. Available: https://en.wikipedia.org/wiki/Planck_constant#Reduced_Planck_constant
- [6] Coulomb's constant. Wikipedia. (accessed: 23.11.2022). [Online]. Available: https://en.wikipedia.org/wiki/Coulomb_constant
- [7] Avogadro constant. Wikipedia. (accessed: 23.11.2022). [Online]. Available: https://en.wikipedia.org/wiki/Avogadro_constant
- [8] Gravitational constant. Wikipedia. (accessed: 23.11.2022). [Online]. Available: https://en.wikipedia.org/wiki/Gravitational_constant
- [9] Boltzmann constant. Wikipedia. (accessed: 23.11.2022). [Online]. Available: https://en.wikipedia.org/wiki/Boltzmann_constant
- [10] Fine-structure constant. Wikipedia. (accessed: 23.11.2022). [Online]. Available: https://en.wikipedia.org/wiki/Fine-structure_constant
- [11] Bohr magneton. Wikipedia. (accessed: 23.11.2022). [Online]. Available: https://en.wikipedia.org/wiki/Bohr magneton
- [12] Angstrom. Wikipedia. (accessed: 23.11.2022). [Online]. Available: https://en.wikipedia.org/wiki/Angstrom.
- [13] Joule. Wikipedia. (accessed: 23.11.2022). [Online]. Available: https://en.wikipedia.org/wiki/Joule
- [14] Electronvolt. Wikipedia. (accessed: 23.11.2022). [Online]. Available: https://en.wikipedia.org/wiki/Electronvolt
- [15] Tesla (unit). Wikipedia. (accessed: 23.11.2022). [Online]. Available: https://en.wikipedia.org/wiki/Tesla (unit)
- [16] Proton. Wikipedia. (accessed: 23.11.2022). [Online]. Available: https://en.wikipedia.org/wiki/Proton
- [17] Neutron. Wikipedia. (accessed: 23.11.2022). [Online]. Available: https://en.wikipedia.org/wiki/Neutron