1 notation and definitions (skippable)

Notation and definition are standard, but this section still exists for completeness.

2 \mathbb{R}/\mathbb{Z} is compact

Suppose $\{U_{\lambda} \mid \lambda \in \Lambda\}$ is an open cover of $\frac{\mathbb{R}}{\mathbb{Z}}$. Define $V_{\lambda} = \pi_{\sim}^{-1}(U_{\lambda})$. Note that $\{V_{\lambda} \cap [0,1] \mid \lambda \in \Lambda\}$ is an open cover of [0,1] with subspace topology. Hence, there exists an open cover $\{V_1 \cap [0,1], \ldots, V_n \cap [0,1]\}$ of [0,1]. Note that saturation of [0,1] is \mathbb{R} and V_{λ} are \sim - saturated. Hence, $\{V_1,\ldots,V_n\}$ is an open cover of \mathbb{R} . Lastly, $\bigcup_{i=1}^n \pi_{\sim}(V_{\lambda_i}) = \bigcup_{i=1}^n U_{\lambda_i} = \pi_{\sim}(\bigcup_{i=1}^n V_{\lambda_i}) = \pi_{\sim}(\mathbb{R}) = \frac{\mathbb{R}}{\mathbb{Z}}$.

Hence, we found a finite subcover.

3 \mathbb{R}/\mathbb{Z} is connected

For any space X and an equivalence relation \sim on X, X is connected $\implies X/_{\sim}$ is connected.

Proof: Let $X/_{\sim}$ be not connected, i.e. there exists a continuous map $f: X/_{\sim} \to \{0,1\}$. But π_{\sim} is continuous, hence $f \circ \pi_{\sim} : X \to \{0,1\}$ is continuous, which contradicts connectedness of \mathbb{R} .

4 \mathbb{R}/\mathbb{Z} is locally connected