// LINDO was used to solve the problems.

Problem #1

(a)

<Objective Function>

max dc

<Constraints>

dg = 0

 $dv - du \le w(u, v)$ for every edge from u to v, where w(u, v) is the length of edge from u to v.

<Code>

max dc

ST

dg = 0

dh - dg <= 3

dg - de <= 7

 $dd - dg \le 2$

 $db - dh \le 9$

da - dh <= 4

db - da <= 8

de - db <= 10

dd - de <= 9

de - dd <= 25

df - da <= 10

da - df <= 5

 $db - df \le 7$

 $dc - db \le 4$

 $dc - df \le 3$

dd - dc <= 3

df - dd <= 18

de - df <= 2

END

<Output>

LP OPTIMUM FOUND AT STEP 6

OBJECTIVE FUNCTION VALUE

1) 16.00000

VARIABLE	VALUE	REDUCED COST
DC	16.000000	0.000000
DG	0.000000	0.000000
DH	3.000000	0.000000
DE	0.000000	0.000000
DD	0.000000	0.000000
DB	12.000000	0.000000
DA	4.000000	0.000000
DF	13.000000	0.000000

ROW SLACK OR SURPLUS DUAL PRICES

2)	0.000000	1.000000
3)	0.000000	1.000000
4)	7.000000	0.000000
5)	2.000000	0.000000
6)	0.000000	1.000000
7)	3.000000	0.000000
8)	0.000000	0.000000
9)	22.000000	0.000000
10)	9.000000	0.000000
11)	25.000000	0.000000

11)	25.000000	0.000000
12)	1.000000	0.000000
121	1.4.000000	0.000000

13)	14.000000	0.000000
14)	8.000000	0.000000
15)	0.000000	1.000000

16)	0.000000	0.000000
17\	10 000000	0.000000

19) 15.000000 0.000000

NO. ITERATIONS= 6

The distance of shortest path is 16.

<Objective Function>

max dc + da + db + dd + de + df + dg + dh

<Constraints>

dg = 0

 $dv - du \le w(u, v)$ for every edge from u to v, where w(u, v) is the length of edge from u to v.

<Code>

max dc + da + db + dd + de + df + dg + dhST

dg = 0

 $dh - dg \le 3$

dg - de <= 7

 $dd - dg \le 2$

db - dh <= 9

da - dh <= 4

db - da <= 8

de - db <= 10

dd - de <= 9

de - dd <= 25

df - da <= 10

da - df <= 5

 $db - df \le 7$

 $dc - db \le 4$

 $dc - df \le 3$

 $dd - dc \le 3$

df - dd <= 18

de - df <= 2

END

<Output>

LP OPTIMUM FOUND AT STEP 9

OBJECTIVE FUNCTION VALUE

1) 76.00000

VARIABLE	VALUE	REDUCED COST
DC	16.000000	0.000000
DA	7.000000	0.000000
DB	12.000000	0.000000
DD	2.000000	0.000000

DE	19.000000	0.000000
DF	17.000000	0.000000
DG	0.000000	0.000000
DH	3.000000	0.000000

ROW SLACK OR SURPLUS DUAL PRICES

110 00	JEACK ON JOH	LOS DOA
2)	0.000000	8.000000
3)	0.000000	6.000000
4)	26.000000	0.000000
5)	0.000000	1.000000
6)	0.000000	2.000000
7)	0.000000	3.000000
8)	3.000000	0.000000
9)	3.000000	0.000000
10)	26.000000	0.000000
11)	8.000000	0.000000
12)	0.000000	2.000000
13)	15.000000	0.000000
14)	12.000000	0.000000
15)	0.000000	1.000000
16)	4.000000	0.000000
17)	17.000000	0.000000
18)	3.000000	0.000000

NO. ITERATIONS= 9

19)

The distance of shortest path from G to

0.000000

1.000000

A = 7

B = 12

C = 16

D = 2

E = 19

F = 17

G = 0

H = 3

Problem #2

```
sp = selling price
lc = labor cost
mc = material cost
s = the number of Silk tie
p = the number of Polyester tie
b = the number of Blend1 tie
c = the number of Blend2 tie
```

<Objective Function>

max sp - lc - mc

<Constraints>

```
\begin{split} sp &= 6.7s + 3.55p + 4.31b + 4.81c \\ lc &= 0.75s + 0.75p + 0.75b + 0.75 \ c \\ mc &= (0.125 * 20)s + (0.08 * 6)p + (0.05 * 6 + 0.05 * 9)b + (0.03 * 6 + 0.07 * 9) \\ 6000 &<= s <= 7000 \\ 10000 &<= p <= 14000 \\ 13000 &<= b <= 16000 \\ 6000 &<= c <= 8500 \\ 0.125s &<= 1000 \\ 0.08p + 0.05b + 0.03c &<= 2000 \\ 0.05b + 0.07c &<= 1250 \end{split}
```

<Code>

```
max sp - lc - mc

ST

sp - 6.7s - 3.55p - 4.31b - 4.81c = 0
lc - 0.75s - 0.75p - 0.75b - 0.75c = 0
mc - 2.5s - 0.48p - 0.75b - 0.81c = 0
s >= 6000
s <= 7000
p >= 10000
p <= 14000
b >= 13000
b <= 16000
c >= 6000
c <= 8500
0.125s <= 1000
```

 $0.08p + 0.05b + 0.03c \le 2000$

0.05b + 0.07c <= 1250

END

<Output>

LP OPTIMUM FOUND AT STEP 4

OBJECTIVE FUNCTION VALUE

1) 120196.0

VARIAB	LE VALU	E REDUCED	COST
SP	192614.750	0.000	000
LC	31668.7500	0.0000	00
MC	40750.000	0.000	000
S	7000.00000	0.00000)
Р	13625.0000	0.00000	00
В	13100.0000	0.00000	00
С	8500.00000	0.00000	0

ROW SLACK OR SURPLUS DUAL PRICES

	SEA CON SON	1 200	ONLI	IVICE
2)	0.000000	1.0000	00	
3)	0.000000	-1.0000	00	
4)	0.000000	-1.0000	00	
5)	1000.000000	0.000	0000	
6)	0.000000	3.4500	00	
7)	3625.000000	0.000	0000	
8)	375.000000	0.000	000	
9)	100.000000	0.000	000	
10)	2900.000000	0.00	0000	
11)	2500.000000	0.00	0000	
12)	0.000000	0.4760	000	
13)	125.000000	0.000	0000	
14)	0.000000	29.000	000	

NO. ITERATIONS= 4

Optimal profit = \$120,196

0.000000

Optimal numbers of ties of each type to maximize profit

27.200001

silk = 7000

15)

poly = 13625

blend1 = 13100

blend2 = 8500

Problem #3

- p = the number of coin 1
- n = the number of coin 5
- d = the number of coin 10
- q = the number of coin 25

(a)

<Objective Functions>

min p + n + d + q

<Constraints>

- 25q + 10d + 5n + p = 202
- q >= 0
- d >= 0
- n >= 0
- p >= 0

<Code>

- min p + n + d + q
- ST
- 25q + 10d + 5n + p = 202
- END
- GIN p
- GIN n
- GIN d
- GIN q

Minimum number of used coins

10

The number of each coin

- p = 2
- n = 0
- d = 0
- q = 8

(b)

a = the number of coin 1

b = the number of coin 3

c = the number of coin 7

d = the number of coin 12

e = the number of coin 27

<Objective Functions>

min a + b + c + d + e

<Constraints>

a + 3b + 7c + 12d + 27e = 293

a >= 0

b >= 0

c >= 0

d >= 0

e >= 0

<Code>

min a + b + c + d + e

ST

a + 3b + 7c + 12d + 27e = 293

END

GIN a

GIN b

GIN c

GIN d

GIN e

Minimum number of used coins

14

The number of each coin

a = 0

b = 0

c = 2

d = 3

e = 9

Problem #4

(a)

- 1) The objective function is a maximization. So, we can use this.
- 2) Every variable is greater than or equal to 0. So, we don't need a substitution.
- **3)** We can change the second and third inequalities to have a less-than-or-equal-to sign by multiplying -1 to both right-hand and left-hand side.

Maximize 2x1 - 6x3 Subject to x1 + x2 - x3 <= 7 - 3x1 + x2 <= - 8 x1 - 2x2 - 2x3 <= 0 x1, x2, x3 >= 0

4) We put slack variables to constraints to remove inequalities sign, and move all non-basic variables to left-hand side.

Maximize 2x1 - 6x3 Subject to s1 = 7 - x1 - x2 + x3 s2 = -8 + 3x1 - x2 s3 = -x1 + 2x2 + 2x3 x1, x2, x3, s1, s2, s3 >= 0

5) Change to slack form

z = 2x1 - 6x3 s1 = 7 - x1 - x2 + x3 s2 = -8 + 3x1 - x2 s3 = -x1 + 2x2 + 2x3x1, x2, x3, s1, s2, s3 >= 0

(b)

basic variables: s1, s2, s3 non-basic variables: x1, x2, x3