Current Trends in Audio Source Separation

Fabian-Robert Stöter INRIA

Stefan Uhlich Sony R&D Center

SONY

AES Virtual Symposium: Applications of Machine Learning in Audio September 28th, 2020

Contents

- Introduction to Audio Source Separation
- Current Trends and Open Problems
- Ecosystems, Datasets and Upcoming Competitions

Contents

- Introduction to Audio Source Separation
- Current Trends and Open Problems
- Ecosystems, Datasets and Upcoming Competitions

Introduction to Audio Source Separation (I)

Task: Separate mixture into individual sound sources

SONY

(here: instruments)

Introduction to Audio Source Separation (II)

- In general, this task is ill-posed and difficult to solve
 - We often deal with an under-determined source separation problem
 - E.g., monaural speech enhancement (single sample x(n) for two sources)
 - E.g., stereo music separation (single sample x(n) for four sources)
 - Classical methods only worked to some extent
 - Best method for music by 2012 was multichannel NMF (FASST), see e.g. [1]

[1] Ozerov, Alexey, et al. "A general flexible framework for the handling of prior information in audio source separation." TASLP 2011.

Introduction to Audio Source Separation (III)

- However, DNNs came to a rescue ©
 - First approaches: [1-4]
 - Popular architectures nowadays
 - Time domain: Conv-TasNet, DPRNN, Demucs, ...
 - Frequency domain: Open-Unmix, Deep U-Net, ...

- Same architecture can be used for separation of different/same source types
 - Loss function for different source types (e.g., vocals/accompaniment)

$$L(\hat{\boldsymbol{s}}_1, \boldsymbol{s}_1) + L(\hat{\boldsymbol{s}}_2, \boldsymbol{s}_2)$$

PIT loss function [5] for same source types (e.g., two unknown speakers or two violins)

$$\min \{L(\hat{\mathbf{s}}_1, \mathbf{s}_1) + L(\hat{\mathbf{s}}_2, \mathbf{s}_2), L(\hat{\mathbf{s}}_1, \mathbf{s}_2) + L(\hat{\mathbf{s}}_2, \mathbf{s}_1)\}\$$

- [1] Narayanan, Arun, and DeLiang Wang. "Ideal ratio mask estimation using deep neural networks for robust speech recognition." ICASSP 2013.
- [2] Huang, Po-Sen, et al. "Deep learning for monaural speech separation." ICASSP 2014.
- [3] Grais, Emad M., et al. "Deep neural networks for single channel source separation." ICASSP 2014
- [4] Weninger, Felix, et al. "Discriminatively trained recurrent neural networks for single-channel speech separation." GlobalSIP 2014.
- [5] Yu, Dong, et al. "Permutation invariant training of deep models for speaker-independent multi-talker speech separation." ICASSP 2017.

Progress for Speech Separation

Plot shows scale-invariant SDR improvement (SI-SDRi) on wsj0-mix2 (higher is better) Source: https://paperswithcode.com/task/speech-separation

Progress for Speech Separation

Plot shows scale-invariant SDR improvement (SI-SDRi) on wsj0-mix2 (higher is better) Source: https://paperswithcode.com/task/speech-separation

Two milestones

- Milestone 1: DL-based approach for speech separation
 - Deep Clustering [1]
 - Permutation invariant training (PIT) [2]

$$\min \{L(\hat{\mathbf{s}}_1, \mathbf{s}_1) + L(\hat{\mathbf{s}}_2, \mathbf{s}_2), L(\hat{\mathbf{s}}_1, \mathbf{s}_2) + L(\hat{\mathbf{s}}_2, \mathbf{s}_1)\}\$$

Source: https://de.mitsubishielectric.com/en/news-events/releases/global/2017/0524-e/index.html

- Milestone 2: End-to-end time domain architectures
 - TasNet [3] / Conv-TasNet [4]

- [1] Hershey, John R., et al. "Deep clustering: Discriminative embeddings for segmentation and separation." ICASSP 2016
- [2] Yu, Dong, et al. "Permutation invariant training of deep models for speaker-independent multi-talker speech separation." ICASSP 2017
- [3] Luo, Yi, and Nima Mesgarani. "Tasnet: time-domain audio separation network for real-time, single-channel speech separation." ICASSP 2018.
- [4] Luo, Yi, and Nima Mesgarani. "Conv-tasnet: Surpassing ideal time–frequency magnitude masking for speech separation." TASLP 2019

General Source Separation architecture

Encoder

- Fixed filterbanks (STFT,MEL)
- Trainable filterbanks
- Free filterbanks

Separator

- LSTMs, TCN, U-Net...
- Complex networks (CaC)

Decoder

- Inverse encoders
- Vocoder (waveglow?)

Loss

- fixed/ permutation invariant
- Spectrogram loss, end2end loss, combined

Figure from Pariente, Manuel, et al. "Asteroid: the PyTorch-based audio source separation toolkit for researchers." *arXiv preprint arXiv:2005.04132* (2020).

Reference Architecture: Conv-TasNet

All improvements add up 5dB

- Learnable transforms
- Time domain loss
- Normalization (layer norm)
- Separator (TCN capacity)
- Short windows (almost 2dB)

M Pariente, S Cornell, A Deleforge, E Vincent "Filterbank design for end-to-end speech separation"- ICASSP 2020

Luo, Yi, and Nima Mesgarani. "Conv-TasNet: Surpassing Ideal Time—Frequency Magnitude Masking for Speech Separation." IEEE/ACM Transactions on Audio, Speech, and Language Processing 27.8 (2019): 1256–1266.

Contents

- Introduction to Audio Source Separation
- Current Trends and Open Problems
- Ecosystems, Datasets and Upcoming Competitions

Trend #1: From "Supervised" to "Universal" Separation

Supervised separation

- Mixture is composed of a small number of sources (2 or 4)
- Number of sources known a priori
- Type of sources known a priori

Example datasets

- MSD100/DSD100/MUSDB18
- wsj0-mix2

Universal separation

- Unknown number of sources
- Unknown type of sources

Example datasets

- WildMix dataset [1]
- Free Universal Sound Separation (FUSS) dataset [2]
- Slakh2100 [3]

- [1] Zadeh, Amir, et al. "WildMix Dataset and Spectro-Temporal Transformer Model for Monoaural Audio Source Separation." arXiv preprint arXiv:1911.09783 (2019).
- [2] https://opensource.googleblog.com/2020/04/free-universal-sound-separation.html
- [3] Manilow, Ethan, et al. "Cutting music source separation some slakh: a dataset to study the impact of training data quality and quantity." WASPAA 2019.

Trend #1: From "Supervised" to "Universal" Separation

- Universal sound separation not yet solved but recently lot of progress
 - Source separation for an unknown number of sources [1, 2]
 - Example: Approach [1] uses "one vs. rest"-PIT $L = \min_i l(\hat{s}(t), s_i(t)) + \frac{1}{N-1} l(\hat{r}(t), \sum_{n \neq i} s_n(t))$

[1] Takahashi, Naoya, et al. "Recursive speech separation for unknown number of speakers." InterSpeech 2019

[2] Nachmani, Eliya, Yossi Adi, and Lior Wolf. "Voice Separation with an Unknown Number of Multiple Speakers." ICML 2020.

Trend #1: From "Supervised" to "Universal" Separation

- Universal sound separation not yet solved but recently lot of progress
 - Source separation for large number of classes [1–3]
 - Example: System [1] for the 527 AudioSet classes
 - Can separate mixtures of two sources using a conditioned network f(x,c)
 - Training with weakly-labeled data is done in two steps:
 - 1. Train sound event detector (SED) on AudioSet
 - 2. Use SED to detect anchor segments which can be used for training

$$f(\mathbf{s}_1+\mathbf{s}_2,\mathbf{c}_j)=\hat{\mathbf{s}}_j$$

where condition vector contains probabilities from SED

- Training on dataset with only mixtures: Mixture invariant training (MixIT) [3]
- [1] Kong, Qiuqiang, et al. "Source separation with weakly labelled data: An approach to computational auditory scene analysis." ICASSP 2020.
- [2] Kavalerov, Ilya, et al. "Universal sound separation." WASPAA 2019.
- [3] Wisdom, Scott, et al. "Unsupervised sound separation using mixtures of mixtures." arXiv preprint arXiv:2006.12701 (2020).

Trend #2: Dealing with "Imperfect" Training Data

- "Imperfect" = weakly labeled data
 - Idea of [1, 2] is to use sound event classifier
 - Classifier provides labels on which source is active (frame-level or clip-level)
 - This information is used to train the separation network
 - Approach [1]:

Figure from [1]

- [1] Pishdadian, Fatemeh et al. "Finding strength in weakness: Learning to separate sounds with weak supervision." TASLP 2020.
- [2] Kong, Qiuqiang, et al. "Source separation with weakly labelled data: An approach to computational auditory scene analysis." ICASSP 2020.

Trend #2: Dealing with "Imperfect" Training Data

- "Imperfect" = unknown mixtures of sources
 - Separation net can be learned even in this unsupervised setting using MixIT [1] (assuming that mixtures are "random")

Figure from [1]

(b) Unsupervised mixture invariant training (MixIT).

[1] Wisdom, Scott, et al. "Unsupervised sound separation using mixtures of mixtures." arXiv preprint arXiv:2006.12701 (2020).

Trend #2: Dealing with "Imperfect" Training Data

- "Imperfect" = noisy speech
 - For speech enhancement, obtaining large amounts of high-quality, multi-language clean speech is not straight-forward
 - Many speech datasets were created for ASR
 - Might still contain noise (maybe even on purpose)
 - E.g., Mozilla Common Voice:
 - Microphone switch-on sound
 - sample dropping
 - _ ...

- Some work on this topic using "Noise2Noise" approach [1, 2] or bootstrapping [3]
- But problem is still unsolved MixIT cannot be used as "mixture" is not random

^[3] Wang, Yu-Che et al. "Self-supervised Learning for Speech Enhancement." ICML 2020.

^[1] Chang, Yen-Yu et al. "Noise-to-noise speech enhancement: speech denoising without clean speech.", 2019

^[2] Alamdari, Nasim et al. "Improving Deep Speech Denoising by Noisy2Noisy Signal Mapping." arXiv preprint arXiv:1904.12069 (2019).

Trend #3: Perceptual Loss Functions for SE

- Perceptual measures are commonly used for speech enhancement
 - E.g., PESQ, composite measures (CSIG, CBAK, COVL) and STOI
 - Recent work has taken these to define perceptual loss functions, e.g. [1-5]

• Either approximating them by differentiable terms or by treating them as black-box

(finite differences, QualityNet, MetricGAN, ···)

 Helps to improve perceptual quality of the separated speech

^[1] Martín-Doñas, et al. "A deep learning loss function based on the perceptual evaluation of the speech quality." SPL 2018

^[5] Kolbæk, Morten, et al. "On loss functions for supervised monaural time-domain speech enhancement." TASLP 2020

Figure from [4]

^[2] Zhang, Hui, et al. "Training supervised speech separation system to improve STOI and PESQ directly." ICASSP 2018.

^[3] Fu, Szu-Wei, et al. "Learning with learned loss function: Speech enhancement with quality-net to improve perceptual evaluation of speech quality." SPL 2019

^[4] Fu, Szu-Wei, et al. "MetricGAN: Generative Adversarial Networks based Black-box Metric Scores Optimization for Speech Enhancement." ICML 2019

Trend #3: Perceptual Loss Functions for SE

- However for music, perceptual measures are not really common
 - PEASS seldomly used although APS showed good correlation with humans in [1]
 - Very recently an interesting idea came up in [2] for speech/vocals separation
 - A codec $\Phi(x)$ (e.g., low-bit rate MP3) is used to define a better loss function

$$L(s,\hat{s})$$
 Perceptual loss $L(\Phi(s),\Phi(\hat{s}))$ Differentiability $L(g_{\Phi}(s),g_{\Phi}(\hat{s}))$

There is a need for more work on perceptual measures/loss functions for music

^[2] Ananthabhotla, Ishwarya et al. "Using a Neural Network Codec Approximation Loss to Improve Source Separation Performance in Limited Capacity Networks." WCCI/IJCNN 2020

^[1] Ward, Dominic, et al. "BSS Eval or PEASS? Predicting the perception of singing-voice separation." ICASSP 2018.

Trend #4: Multi-Task Training

- Separation + Classification
 - Does separation help classification task?
 - Long standing research question
 - Relevant for music and speech tasks
 - Results will be presented at DCASE 2020

http://dcase.community/challenge2020/task-sound-event-detection-and-separation-in-domestic-environments

Trend #4: Multi-Task Training

- Multi-task training for speech enhancement
 - Training jointly mask for speech and noise is better than only speech mask [1, 2]

$$L = L(\mathbf{x}, \widehat{\mathbf{x}}) + L(\mathbf{n}, \widehat{\mathbf{n}})$$

- Additional task acts as "regularizer"
- Speech mask generalizes better

Results from [2] for training only speech mask (K = 1) or speech and noise masks (K = 2) on VBD

Figure from [1]

- [1] Kinoshita, Keisuke, et al. "Improving noise robust automatic speech recognition with single-channel time-domain enhancement network." ICASSP 2020.
- [2] Koyama, Yuichiro, et al. "Exploring the Best Loss Function for DNN-Based Low-latency Speech Enhancement with Temporal Convolutional Networks." arXiv preprint arXiv:2005.11611 (2020).

Trend #5: From Research to Deployment

- Recent progress allows commercial use of audio source separation
 - Quality reached level that was unthinkable five years ago
 - Computational resources on edge devices sufficient for real-time inference (e.g., smartphone, tinyML)
- Example: Real-time Speech enhancement
 - separate noisy speech into speech and noise many demos on YouTube

Google Meet noise cancellation

NVIDIA RTX Voice

krisp.ai

Trend #5: From Research to Deployment

- Example: Karaoke
 - Traditionally: Karaoke uses "cover-version" material split into vocals/accomp.
 - Not all songs available for Karaoke
 - Varying degree of quality of Karaoke songs
 - Now: Using source separation allows to enjoy Karaoke version of any song
 - Spotify SingAlong [1]
 - Allows to turn down the volume of the vocals and shows synchronized lyrics
 - Line Music Japan/Taiwan [2]
 - Realizes Karaoke feature by on-device, real-time source separation from Sony
 - Allows to enjoy Karaoke version of many songs from the catalogue

Figure from [2]

- [1] https://research.atspotify.com/making-sense-of-music-by-extracting-and-analyzing-individual-instruments-in-a-song/
- [2] https://prtimes.jp/main/html/rd/p/00000004.000061313.html

Trend #5: From Research to Deployment

- Example: Sony Xperia 1 II "Intelligent Wind Filter"
 - Reduces wind noise for an even clearer audio recording
 - Demo: https://www.youtube.com/watch?v=tR MHXpyIwA

- Example: Columbia Classics 4K Ultra HD Collection
 - Sony AI separation was used to create the Dolby ATMOS version of two movies ("Lawrence of Arabia" and "Gandhi")

More Open Problems

- Speech enhancement w/ sample rate of 48kHz lacks "ecosystem"
 - No large-scale, clean studio-quality data available
 - VBD small, MCV noisy + bandlimited
 - Perceptual measures (PESQ, ···) are only there for 8kHz or 16kHz
- Phase reconstruction for music separation
 - Many works in this direction [1, 2, ···] but not really yet a breakthrough
 - This is in contrast to speech separation/enhancement tasks
- Better use of transformers
 - Transformers dominate sequence modeling in NLP
 - However, in source separation (not yet) so commonly used
 - Interesting idea: Complex transformer which was proposed in [3]?

^[3] Yang, Muqiao, et al. "Complex Transformer: A Framework for Modeling Complex-Valued Sequence." ICASSP 2020

^[1] Takahashi, Naoya, et al. "PhaseNet: Discretized Phase Modeling with Deep Neural Networks for Audio Source Separation." InterSpeech 2018.

^[2] Le Roux, Jonathan, et al. "Phasebook and friends: Leveraging discrete representations for source separation." JSTSP 2019

Contents

- Introduction to Audio Source Separation
- Current Trends and Open Problems
- Ecosystems, Datasets and Upcoming Competitions

Ecosystems for Audio Source Separation

The importance of open source for research

- Music Separation 2019
 - State of the art: SONY corporation systems presented ICASSP 2015
 - Open (and popular) implementations 2.5 dB behind state of the art!
 - In 2019 a many (pretrained) Open Source systems were released
 - Open-Unmix (2019) sigsep/open-unmix-pytorch
 - Demucs (2019) facebookresearch/demucs
 - Spleeter (2019) deezer/spleeter
 - Nussl (2020) nussl/nussl
- Speech Separation
 - Same trend but new systems are all open source
 - Asteroid (2020) mpariente/asteroid

Other audio tools

- Sampling strategies, how to chunk/batch
 - Scaper justinsalamon/scaper
 - MUDA bmcfee/muda
 - Wavaugment facebookresearch/WavAugment
- Move pre-processing to GPU
 - DDSP magenta/ddsp
 - Torchaudio pytorch/audio
 - Karpe
- Source separation often has I/O bottlenecks
 - tfio tensorflow/io
 - Dali nvidia/dali

https://github.com/faroit/python_audio_loading_benchmark/

https://github.com/faroit/awesome-python-scientific-audio

Datasets for Audio Source Separation

Single Utterance / Tracks

Music Separation:

- MedleyDB
- Slakh

Speech

- WSJ
- VCTK
- VoiceBank+Demand
- DNS challenge dataset
- Mozilla commonvoice

✓ English

German

French

Welsh

Breton

Chuvash

Turkish

Tatar

Kyrgyz

Irish

1/- 6- 1-

Supervised Separation

Music Separation:

MUSDB18

Speech

- WSJ0X-mix
- Librimix
- WHAM/WHAMR

Vocals Drums Bass Other Accompaniment Mixture

Universal Separation

- AudioSet
- WildMix
- Free Sound Dataset
- ...

Upcoming Competitions

- SiSEC 2021
 - Music Separation Challenge
 - For the first time private test data will be used specifically produced for challenge
- Deep Noise Suppression Challenge
 - First challenge is/was together with InterSpeech 2020
 - Second challenge has started and will be run together with ICASSP 2021
 - More information: https://dns-challenge.azurewebsites.net

Conclusions

- Is the problem solved?
 - "A system that achieves human auditory analysis performance in all listening situation" (Wang)
 - Thanks to deep learning a lot of progress has been made
 - But from the contest results we know that we are not there yet
- Resources Overview Papers
 - Wang, DeLiang, and Jitong Chen. "Supervised speech separation based on deep learning: An overview."
 IEEE/ACM Transactions on Audio, Speech, and Language Processing 26.10 (2018): 1702-1726
 - Rafii, Zafar, et al. "An overview of lead and accompaniment separation in music." IEEE/ACM Transactions on Audio, Speech, and Language Processing 26.8 (2018): 1307-1335.
 - Gannot, Sharon, et al. "A consolidated perspective on multimicrophone speech enhancement and source separation." IEEE/ACM Transactions on Audio, Speech, and Language Processing 25.4 (2017): 692-730

Thank you for your attention

If you have any questions, then please contact us

<u>fabian-robert.stoter@inria.fr</u> <u>stefan.uhlich@sony.com</u>

