

INVESTIGATION OF SECONDARY METABOLITES
PRESENT IN ALKALOIDAL EXTRACTS OF HUNTERIA
UMBELLATA LEAVES USING COMPUTATIONAL
MOLECULAR NETWORKING TOOL

Rukayat A. Adedeji^{1*}., Musibau Opemipo¹., Oluwabukunmi Babalola¹., Solomon O. Julius²., Stephenie C. Alaribe^{1*}

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Lagos, Nigeria Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, Nigeria Presenter Contact: rukayatadedeji064@gmail.com

Abstract Number: FPC-24-018

UNIVERSITY OF LAGOS

FACULTY OF PHARMACY

3RD SCIENTIFIC CONFERENCE

Background

- Hunteria umbellata K. Schum, a tropical rainforest tree found in western and central Africa.
- African traditional herbalists use various portions of the plant for a wide variety of medicinal purposes.
- The aim of this study was to investigate the secondary metabolites present in the leave extract of the plant using metabolomics tools and a computational molecular networking platform.

Picture from www.gbif.org

Methodology

UNIVERSITY OF LAGOS

FACULTY OF PHARMACY

3RD SCIENTIFIC CONFERENCE

Results

- Several alkaloids were isolated as shown in the chromatogram
- 3 unique compounds identified:
 - Picrinine

IUPAC: Methyl 14-ethylidene-18-oxa-2,12-diazahexacyclo[9.6.1.19,15.01,9.03,8.012,17]nonadeca -3,5,7-triene-19-carboxylate

- (3beta,5xi,9xi,13alpha,17alpha,18xi)-3-Hydroxy-13,28epoxyurs-11-en-28-one
- Pheophorbide A

IUPAC: (3S,4S)-9-Ethenyl-14-ethyl-21-(methoxycarbonyl)-4,8,13,18-tetramethyl-20oxo-3-phorbinepropanoic acid

Chromatogram showing the spectrum peaks of the isolated compounds in the alkaloidal extract

UNIVERSITY OF LAGOS

FACULTY OF PHARMACY

3RD SCIENTIFIC CONFERENCE

Results

Pheophorbide A

(3beta,5xi,9xi,13alpha,17alpha,18xi)-3-Hydroxy-13,28-epoxyurs-11-en-28-one

Conclusion

Hunteria umbellata demonstrates significant pharmacological potential, highlighted by the rich presence of secondary metabolites in its leaves. Several identified compounds have been associated with therapeutic activities in pharmacological studies. The discovery of both known and novel compounds emphasizes the need for further research in drug development and natural product chemistry.

References

1.Fox Ramos, A.E., Pavesi, C., Litaudon, M., Dumontet, V., Poupon, E., Champy, P., Genta-Jouve, G. and Beniddir, M.A., 2019. CANPA: computer-assisted natural products anticipation. Analytical chemistry, 91(17), pp.11247-11252.

2.Stafford, G. I., Jäger, A. K., & Van Staden, J., 2009. African psychoactive plants. African Natural Plant Products: New Discoveries and Challenges in Chemistry and Quality, 323, 346.

3. Wang, M., Carver, J.J., Phelan, V.V., Sanchez, L.M., Garg, N., Peng, Y., Nguyen, D.D., Watrous, J., Kapono, C.A., Luzzatto-Knaan, T. and Porto, C., 2016. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nature biotechnology, 34(8), pp.828-837.