1 Linear Regression

1.1 simple linear regression

$$y = \beta_1 + \beta_2 x + \epsilon$$

Assumptions

- 1. Linear
- 2. X matrix is fixed.
- 3. error term has zero mean
- 4. Homescedasticity or equal variance of ϵ
- 5. No autocorrelation between disturbances. $cov(\epsilon_i, \epsilon_j) = 0$.
- 6. Zero covariance between ϵ_i, X_i .
- 7. Number of observations n must be greater than the number of parameters.
- 8. Var(X) > 0.
- 9. no multicollinearity.

$$Y = X\beta + \epsilon$$

Where Y is a nx1 matrix, X is anxp matrix, beta is px1 vector and ϵ is nx1 vector with ϵ_i begin iid with normal distribution

1.2 Least Square Regression Model

The cost function is given by

$$f(\beta) = ||Y - X\beta||^2 = (Y - X\beta)^T (Y - X\beta) = Y^T Y - Y^T X\beta - \beta^T X^T Y + \beta^T X^T X\beta$$

Since third term are scalar,

$$\beta^T X^T Y = (\beta^T X^T Y)^T = Y^T X \beta$$

$$f(\beta) = Y^T Y - 2Y^T X \beta - \beta^T X^T X \beta = Y^T Y - 2(X^T Y)^T \beta + \beta^T X^T X \beta$$

The first term is a constant and its derivative is zero.

The deriviative of 2nd term

Consider the derivative of $\alpha^T \beta$ with respect to β .

$$\boldsymbol{\alpha}^T \boldsymbol{\beta} = \Sigma \alpha_i \beta_i$$
$$\frac{\partial \boldsymbol{\alpha}^T \boldsymbol{\beta}}{\partial \beta_i} = \alpha_i$$

Write the derivative in matrix form

$$\begin{pmatrix} \frac{\partial \boldsymbol{\alpha}^T \boldsymbol{\beta}}{\partial \beta_1} \\ \frac{\partial \boldsymbol{\alpha}^T \boldsymbol{\beta}}{\partial \beta_2} \\ \dots \\ \frac{\partial \boldsymbol{\alpha}^T \boldsymbol{\beta}}{\partial \beta_3} \end{pmatrix} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \dots \\ \alpha_p \end{pmatrix}$$

So if we let $\alpha = X^T Y$, we have

$$\frac{\partial 2(X^TY)^T\beta}{\partial\beta}=2X^TY$$

The derivative of 3rd term let $A = X^T X$,

$$\beta^T X^T X \beta = \beta^T \begin{pmatrix} \Sigma_i A_{1k} \beta_k \\ \Sigma_i A_{2k} \beta_k \\ \dots \\ \Sigma_k A_{pk} \beta_k \end{pmatrix} = \Sigma_j \beta_j (\Sigma_k A_{jk} \beta_k)$$

To calculate the derivative of $f(\beta)$, we note there are only 3 cases that the derivative does not vanish

1) l = j = k

$$\frac{f(\boldsymbol{\beta})}{\partial \beta_l} = 2A_{ll}\beta_l$$

2) $l=j, j \neq k$

$$\frac{f(\boldsymbol{\beta})}{\partial \beta_l} = \sum_{k,k \neq l} A_{lk} \beta_k$$

3) l=k, j \neq k

$$\frac{f(\boldsymbol{\beta})}{\partial \beta_l} = \Sigma_{j,j \neq l} A_{jl} \beta_j = \Sigma_{j,j \neq l} A_{lj}^T \beta_j$$

Therefore

$$\begin{aligned} \frac{f(\boldsymbol{\beta})}{\partial \beta_l} &= A_{ll}\beta_l + \Sigma_{k,k \neq l} A_{lk}\beta_k + A_{ll}\beta_l + \Sigma_{j,j \neq l} A_{lj}^T \beta_j \\ &= \Sigma_k A_{lk}\beta_k + \Sigma_j A_{lj}^T \beta_j \end{aligned}$$

The first term is the lth row of vector $A\beta = X^T X\beta$, and the 2nd term is the lth row of vector $A^T \beta = X^T X\beta$. So we put the whole derivative in matrix form

$$\frac{f(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = -2X^T Y + 2X^T X \beta$$

which is a px1 vector with each row corresponding to the derivative with respect to β_i letting the derivative equal to zero yields the estimation of β

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

1.3 Least Square Estimator for Simple Linear Regression

$$\begin{split} & \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} \\ = & (X^T X)^{-1} X^T Y \\ = & \left(\begin{pmatrix} 1 & 1 & \dots & 1 \\ x_1 & x_2 & \dots & x_n \end{pmatrix} \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_n \end{pmatrix} \right)^{-1} \begin{pmatrix} 1 & 1 & \dots & 1 \\ x_1 & x_2 & \dots & x_n \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix} \\ = & \frac{1}{n \sum x_i^2 - (\sum x_i)^2} \begin{pmatrix} \sum_i x_i^2 & -\sum_i x_i \\ -\sum_i x_i & n \end{pmatrix} \begin{pmatrix} \sum_i y_i \\ -\sum x_i y_i \end{pmatrix} \end{split}$$

So

$$\beta_1 = \frac{\sum x_i^2 \sum y_i - \sum x_i (\sum x_i y_i)}{n \sum x_i^2 - (\sum x_i)^2}$$
$$\beta_2 = \frac{-\sum x_i \sum y_i + n \sum x_i y_i}{n \sum x_i^2 - (\sum x_i)^2}$$

1.4 Projection matrix

Given $\hat{\beta} = (X^T X)^{-1} X^T Y$, we have the predictor value of $y = X \beta$

$$\hat{y} = X(X^T X)^{-1} X^T y$$

The matrix $P = X(X^TX)^{-1}X^T$ is a projection matrix. It projects the vector of y into the column space of X.

Understand the word projection

Let us understand this first through geometry point of view. Consider a vector on 2 dimensional space, $V_1 = (x_1, y_1)^T$, where x_1 and y_1 are the x and y component, respectively. If we project the vector V into x-line, then apparently we get $V_x = (x_1, 0)^T$, see graph below.

If we have a vector that is along the x axis

$$X = \left(\begin{array}{c} 1\\0 \end{array}\right)$$

The projection matrix of a vector into x line is

$$P_x = x(x^T x)^{-1} x^T$$

$$= \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

Applying this projection matrix to any 2 dimensional vector V gives $(V_x, 0)^T$. So it projects the vector into x line. Let us take another example. Imagine V_1 is vector if we project V onto the line that has 45 degree angle with x axis. See below.

In order to calculate V_1 , we see

$$r_{1} = r\cos(\pi/4 - alpha) = r(\frac{\sqrt{2}}{2}\frac{y}{r} + \frac{\sqrt{2}}{2}\frac{x}{r}) = \frac{\sqrt{2}}{2}y + \frac{\sqrt{2}}{2}x$$

$$V_{1x} = r_{1}\cos(\pi/4) = \frac{x+y}{2}$$

$$V_{1y} = r_{1}\sin(\pi/4) = \frac{x+y}{2}$$

After we understand this using geometry point of view, we can workout from algebra point of view. The vector we want to project onto is

$$i = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

The projection matrix of a vector into x line is

$$P_x = x(x^T x)^{-1} x^T$$

$$= \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 1 \end{pmatrix}$$

$$= \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

Therefore we easily see

$$V_1 = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{1}{2}(x+y) \\ \frac{1}{2}(x+y) \end{pmatrix}$$

which is the same as what we get based on geometry. For n dimensional vector y, if our X matrix has rank of k, then the projection matrix P projects the vector y into k dimensional hyperplane. For example, if we define

$$i_N = \left(\begin{array}{c} 1\\1\\\dots\\1\end{array}\right)$$

The projection matrix P is

$$P = i\frac{1}{N}i^{T} = \frac{1}{N} \begin{pmatrix} 1 & 1 & \dots & 1\\ 1 & 1 & \dots & 1\\ \dots & \dots & \dots & \dots\\ 1 & 1 & \dots & 1 \end{pmatrix}$$

Projection matrix into null space

If P is a projection matrix, the matrix I-P is also a projection matrix. In linear regression model

$$y = X\beta + \epsilon$$

$$P = X(X^TX)^{-1}X^T$$

$$\hat{\epsilon} = (I - P)y = (I - X(X^TX)^{-1}X^T)y$$

For the above example, we define $M = I - \frac{1}{N}ii^T$, and My express the mean deviations of a vector.

Idempotent property of projection matrix

Consider the previous example that we project a vector V onto x axis, how about we do this projection twice, we would end up the same vector V_x . Using a little matrix algebra, it is easy to prove that for any project matrix P, we have PP = P.

1.5 Variance of $\hat{\beta}$

$$Var(\hat{\beta}) = Var((X^TX)^{-1}X^T\epsilon) = (X^TX)^{-1}X^TVar(\epsilon)((X^TX)^{-1}X^T)^T$$
$$= \sigma^2(X^TX)^{-1}X^TX(X^TX)^{-1} = \sigma^2(X^TX)^{-1}$$

For simple linear regression

$$Var(\hat{\beta}) = \frac{\sigma^2}{n\Sigma x_i^2 - (\Sigma x_i)^2} \begin{pmatrix} \Sigma_i x_i^2 & -\Sigma_i x_i \\ -\Sigma_i x_i & n \end{pmatrix}$$
$$Var(\hat{\beta}_1) = \frac{\Sigma x_i^2 \sigma^2}{n\Sigma x_i^2 - (\Sigma x_i)^2}$$
$$Var(\hat{\beta}_2) = \frac{n\sigma^2}{n\Sigma x_i^2 - (\Sigma x_i)^2}$$

Try

$$\Sigma(x_i - \bar{x})^2 = \Sigma(x_i^2 - 2\bar{x}x_i + \bar{x}^2) = \Sigma_i(x_i^2 - 2(\Sigma_j \frac{x_j}{n})x_i + \frac{(\Sigma_j x_j)^2}{n^2})$$
$$= \Sigma_i x_i^2 - \frac{2}{n}(\Sigma_i x_i)^2 + \frac{(\Sigma_i x_i)^2}{n} = \Sigma_i x_i^2 - \frac{1}{n}(\Sigma_i x_i)^2$$

So

$$Var(\hat{\beta}_1) = \frac{\sum x_i^2 \sigma^2}{n\sum (x_i - \bar{x})^2}$$

$$Var(\hat{\beta}_2) = \frac{n\sigma^2}{n\Sigma(x_i - \bar{x})^2} = \frac{\sigma^2}{\Sigma(x_i - \bar{x})^2}$$

1.6 Sum of Square Error

$$SSE = \sum_{i} (y - \hat{y}_{i})^{2}$$

$$= (Y - X\beta)^{T} (Y - X\beta)$$

$$= (Y - X(X^{T}X)^{-1}X^{T}Y)^{T} (Y - X(XTX) - 1X^{T}Y)$$

$$= (Y - PY)^{T} (Y - PY)$$

$$= Y^{T} (1 - P)^{T} (1 - P)Y = Y^{T} (1 - P)Y$$

$$= (X\beta + \epsilon)^{T} (1 - P)(X\beta + \epsilon)$$

$$= \beta^{T} X^{T} (1 - P)X\beta + 2\beta^{T} X^{T} X^{T} (I - P)\epsilon + \epsilon^{T} (I - H)\epsilon$$

 $E[SSE] = E[\epsilon^{T}(I - P)\epsilon] = E[\epsilon^{T}\epsilon]trace(I - H) = \sigma^{2}(n - p)$