SECOND SEMESTER 2020-21 COURSE HANDOUT

Date: 18.01.2021

In addition to part I (General Handout for all courses appended to the Timetable) this portion gives further specific details regarding the course.

Course No : PHY F416

Course Title : SOFT CONDENSED MATTER PHYSICS

Instructor-in-Charge : NAVIN SINGH

Instructor(s)
Tutorial/Practical Instructors:

1. Course Description:

Soft matter or soft condensed matter is a subfield of condensed matter comprising a variety of physical systems that are deformed or structurally altered by thermal or mechanical stress of the magnitude of thermal fluctuations. They include liquids, colloids, polymers, foams, gels, granular materials, liquid crystals, and biomolecules. These materials share an essential characteristic feature in that predominant physical behaviors occur at an energy scale comparable with room temperature thermal energy. At these temperatures, quantum aspects are less significant.

In this course, our aim would be to understand the structure, properties, and dynamics of the soft matter. What is the order of forces and times scales that affect the overall behaviour of this class of matter?

2. Scope and Objective of the Course:

- Develop familiarity with the basics of soft condensed matter.
- To develop an understanding about the forces and order of thermal fluctuations in soft matter.
- Why some part of matter is classified as soft matter?

3. Textbooks:

- 1. Soft Matter Physics, Masao Doi, Oxford University Press, I edition (2013)
- 2. Soft Condensed Matter, R.A.L. Jones, Oxford University Press, I edition (2002)

4. Reference Books:

1. Essentials of Soft Matter Science, Linda S. Hirst, CRC Press (Taylor & Francis), II edition (2020).

5. Course Plan:

Module Number	Lecture session/Tutorial Session.	Reference	Learning Outcome	
Soft Matter: Introduction	• Why it is called as soft matter?	TB1: 1.1-1.5 The students shall be able to		
(Number of lectures: 1)	• Concept of thermal energies.		identify the concept of soft	
L: 1	• How it is different than condensed		matter (or soft condensed matter).	
	matter?			
	• Three states of matter: solid, liquid			
	& gas			
	• Inter-molecular forces			
Phase transitions in soft	• Thermodynamics of solutions TB: 2.1-3.6		Students will be able to	
matter	• Concept of phase transition.		understand the concept of	
(Number of lectures: 6)	• Phase separation.		phase transition.	
L: 2-7	• Kinetics of the transition.			
Theory of Polymers	Elasticity of Polymers	TB1: 3.1-3.5	Students will develop an	
(Number of lectures: 9)	Random Walk model of polymers	TB2: 5.1-5.5	understanding of the	
L: 8-16	Rubber elasticity		polymers and their elastic	
	•		response.	
Theory of Colloids	• What are Colloids?	TB2: 4.1-4.4	Student will be able to know	
(Number of lectures: 7)	• Flow of colloids: Stokes' law		about this class of matter.	
L: 17-23	Brownian motion & Einstein		They will learn about the forces and motions in	
	equation		colloids.	
	• Forces between colloids		Consider	
Theory of Liquid crystals	Phases in liquid crystals	TB1: 5.1-5.3	Students will develop an	
(Number of lectures: 7)	• The nematic to isotropic transition	TB2: 7.1-7.7	understanding about the	
L: 24-30	Topological defects in liquid		liquid crystals. During	
	crystals		discussion student will be	
	Polymer liquid crystals		able to understand the	
			defects in liquid crystals	
			and their importance.	
Theory of Gels	• Introduction of Gels	TB2: 6.1-6.3	Students will develop an	
(Number of lectures: 4)	• Classes of gels		understanding about the	
L: 31-34	Theory of gelation		different class of gels.	
Brownian Motion and	• Brownian motion of a free particle	TB1: 7.1-7.5	Students will develop an	
thermal fluctuations	Brownian motion in a potential		understanding about the	
(Number of lectures: 6)	field		diffusion of soft matter in	
L: 35-40	• Fluctuation-Dissipation theorem		solutions.	

6. Evaluation Scheme:

Component	Duration	Weightage	Date & Time	Nature of component
		(%)		(Close Book/ Open Book)
Mid-Semester Test	90 Min.	30	To be announced latter	Open book.
Comprehensive Examination	120 Min.	40	05/05/2020 (FN)	Open book
Tutorial		20	To be announced in the class	Open book.
Assignments	-	10	To be announced in the class	Open source.

- **7. Chamber Consultation Hour**: Saturday (10:00-11:00 AM)
- **8. Notices:** To be announced on NALANDA or by email.
- **9. Make-up Policy:** No make-up for Tutorial tests. For other components, depending on the merit of the reason for missing the evaluative component.
- **10. Note (if any):** It is a four units' course. The discussion related to the mentioned topics won't be confined to the books only. More readings from research papers and review articles will be expected from the students.

NAVIN SINGH (Instructor-in-charge) Course No.: PHY F416