Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.

Growth Of Immature Stands

Of Ponderosa Pine In . OF AGRICULTURE The Black Hills

1.9622 R2St2

by Clifford A. Myers, James L. Van Deusen Research Foresters

Station Paper No. 61

OCT 1 6 1361

United States Department of Agriculture

National Agricultural Library

Advancing Access to Global Information for Agriculture

GROWTH OF IMMATURE STANDS OF PONDEROSA PINE

IN THE BLACK HILLS

by

Clifford A. Myers, and James L. Van Deusen, Research Foresters

Rocky Mountain Forest and Range Experiment Station 1

CONTENTS Page Introduction . 1 Methods used Results . Diameters Basal areas . Total cubic volumes Merchantable cubic volumes Cordwood volumes Periodic mortality Application . Literature cited . Growth tables Stand in 10 years . 8 Stand in 20 years .

¹ Central headquarters is maintained in cooperation with Colorado State University at Fort Collins; research reported here was conducted in cooperation with South Dakota School of Mines and Technology at Rapid City.

GROWTH OF IMMATURE STANDS OF PONDEROSA PINE

IN THE BLACK HILLS

by

Clifford A. Myers and James L. Van Deusen

INTRODUCTION

Expanded precommercial thinning and harvest of roundwood in the Black Hills have increased interest in the effects of density and other stand characteristics on the growth of immature stands. Available information, however, is limited. Meyer (1938) stated that his regional yield tables are probably not applicable to Black Hills conditions. Normally stocked young stands stagnate, hence stand age is not a good indicator of tree size or volume. Also, the yield tables do not indicate possible changes in growth through reduction of stand density. The required information cannot yet be obtained from permanent plots. Data from thinned plots represent only a narrow range of sites, stand diameters, and other characteristics (Myers, 1958). Growth and mortality plots on the Black Hills National Forest were established too recently to provide data for periods of 10 or 20 years.

Until data from permanent plots or yield tables become available, approximate methods of estimating growth must be used. One rapid approximation is a comparison in which past stand measurements and subsequent growth are reconstructed from present stand measurements and increment cores. These values are used to predict the growth of stands now similar to what the reconstructed stands were in the past. Such a method has been developed for immature ponderosa pine (Pinus ponderosa Laws.) in the Black Hills of South Dakota and Wyoming. Changes in diameter, basal area, and volume can be estimated for 10- and 20-year periods by the use of conventional stand measurements.

METHODS USED

Fifty-seven temporary plots were selected in the Black Hills of South Dakota and Wyoming and the Bear Lodge Mountains of Wyoming. Plot sizes varied with tree size and stand density; most had about 150 trees. Even-aged (range 20 years or less) thinned and unthinned stands averaging 3 to 12 inches d.b.h. were sampled in a wide range of site indexes and stand densities and reconstructed to conditions 20 years before measurement, as shown in the following tabulation:

Factor	Range measured
Site index	37 to 73 feet (base 100 years)
Age	31 to 148 years
Trees	202 to 5,575 per acre
Basal area	23 to 234 square feet per acre
Average d.b.h.	1.9 to 10.8 inches
Total cubic feet	115 to 5, 210 cubic feet per acre
Merchantable cubic feet	0 to 5,000 cubic feet per acre

Combinations of the variables sampled can be determined by noting the locations of the entries in tables 4 to 9 (see pages 8 to 14). Each plot was carefully checked for uniformity of density, age, and site index. None of the plots had been thinned or otherwise disturbed during the 20-year period preceding measurement.

A complete inventory was made on each plot, and data were obtained for computing the past stand. All trees were bored to determine radial growth at breast height for the past 10 and 20 years. Heights were measured on a sample of the trees and past height growth was determined by boring. The site index of each plot was computed from soil and topography (Myers and Van Deusen, 1960b) to avoid errors due to the effect of stand density on tree height. Average age of the main stand on each plot was determined; occasional small invaders in stands of low density were omitted. Dead trees were measured and classed as having died 0-10, 11-20, or 21+ years ago. Dead trees on permanent plots and in stands thinned at known dates were used as guides in estimating time of death.

Stand tables and height-over-diameter curves were prepared for the present stand and for the stand 10 and 20 years previously. Past diameters outside bark were determined from radial growth, with adjustments for bark growth (Myers and Van Deusen, 1958). Dead trees were included in the appropriate past stand tables. The tables and curves were used to compute current and past basal areas and volumes by 0.1-inch d.b.h. classes.

Total (Myers, 1957) and merchantable (Myers and Van Deusen, 1960a) volumes in cubic feet were computed. Total volumes were the volumes inside bark from ground to tip of all trees. Merchantable volumes were the volumes inside bark from the top of 0.5-foot stumps upward to where diameter inside bark was 4.0 inches. Merchantable volumes were computed for trees 6.0 inches d.b.h. and larger. All stand measures were converted to amounts per acre before further analysis.

Equations for estimating average d.b.h. and other stand variables 10 and 20 years after date of measurement were computed by linear multiple regression with transformation of variables where necessary. The coefficients were tested by analysis of variance and only significant variables were included in the final equations.

RESULTS

Six equations with six tables for predicting diameters, basal areas, and total cubic-foot volumes were computed. Three of each were for stands after 10 years and three for stands after 20 years. Reliability of each regression is indicated by a standard error of estimate (Sy) and a multiple correlation coefficient (R). Conversion factors are presented for computing merchantable cubic-foot and cord volumes from total cubic-foot volumes. Present and future values are for present and future live trees only; mortality is not included. Net periodic increments can be estimated by subtracting present from future diameters, basal areas, or volumes.

DIAMETERS

Average stand d.b.h. in 10 or 20 years can be estimated from present d.b.h., present basal area, and site index (tables 4, 7). Future d.b.h. increases with increase in present d.b.h. and site index. It decreases with increase in present basal area. For this study, a tree of average d.b.h. is a tree of average basal area.

The tables give future diameters for site index 55, the average for the Black Hills. Diameters for other site indexes can be obtained by adding or subtracting the amounts indicated in the table footnotes. Straight-line interpolation for intermediate values of all independent variables will give satisfactory results.

The distribution of diameters in 10 or 20 years can be estimated from the coefficient of variation of diameter. It averages 29 percent in thinned and unthinned stands within the range of average diameters measured. Thus, about 68 percent of the trees will have diameters within + 29 percent of average d.b.h. About 95 percent of the tree diameters will be within + 58 percent of the average.

BASAL AREAS

Basal area per acre 10 years in the future can be estimated from present basal area, site index, and number of trees per acre (table 5). Stand age should also be used for estimating basal areas 20 years in the future (table 8). Future basal area increases with present basal area, site index, and number of trees per acre. It decreases with increased stand age during a 20-year period.

The tables give future basal areas for site index 55 feet. Basal areas for other site indexes can be determined by using the values given in the table footnotes. Straight-line interpolation may be used for intermediate values of all independent variables.

Although age was not a significant variable for estimating basal areas after 10 years, it is probably a significant factor in basal area growth. Age proved highly significant (1 percent level) for estimating basal area after 20 years. Similar results have been reported for other species.

TOTAL CUBIC VOLUMES

Total cubic-foot volumes after 10 or 20 years can be estimated from present cubic-foot volume, site index, and number of trees per acre (tables 6, 9) Present basal area improves the estimates for periods of 10 years. Future total volume increases with present volume, site index, and number of trees. It decreases with increase in basal area.

Tables 6 and 9 are more complex than the other growth tables because logarithmic values had to be used for three variables. Straight-line interpolation for intermediate values of independent variables will be satisfactory for most purposes. The equations must be solved if greater accuracy is desired.

MERCHANTABLE CUBIC VOLUMES

Present and future merchantable cubic-foot volumes can be computed from present and future total cubic-foot volumes. To do this, determine present and future average d.b.h. and total volume of the stand and obtain the proper ratios from table 1. These ratios express plot volumes in merchantable cubic feet divided by the corresponding volumes in total cubic feet. Multiply the measured or computed total volume by the appropriate ratio to obtain merchantable volume. For example, total volume of a stand averaging 7.0 inches d.b.h. is 3,500 cubic feet per acre. The ratio from table 1 for 7.0 inches is 0.735. The product of 3,500 times 0.735 is 2,572 cubic feet.

Table 1. --Ratios of merchantable cubic-foot to cubic-foot volumes for immature Black Hills ponderosa pine 1

Average stand d.b.h.	Ratio	Average stand d.b.h.	Ratio
Inches		Inches	
3.0	0.037	8.0	.823
3.5	. 085	8.5	.853
4.0	.148	9.0	.881
4.5	. 228	9.5	. 906
5.0	. 335	10.0	. 925
5.5	. 467	10.5	. 942
6.0	. 578	11.0	. 956
6.5	. 671	11.5	. 967
7.0	.735	12.0	. 976
7.5	.788		

¹ Basis: Plot volumes computed from merchantable (Myers and Van Deusen, 1960a) and total (Myers, 1957) cubic-foot volume tables.

Accuracy of the ratios varies with average d.b.h. of the stand. In stands averaging 3.5 inches or less the ratios may indicate the presence of merchantable volume where none actually exists. This is because the largest tree in one stand may be 5.9 inches, while in a similar stand it is 6.1 inches. One stand has merchantable volume while the other does not, yet both stands can have the same average d.b.h. In the sample plots with trees averaging more than 3.5 inches, the difference between actual and computed merchantable volume was often 1 percent or less of actual volume.

Future merchantable volumes can be computed from equations similar to those presented for total volume. Present merchantable volume, number of trees, and total volume in trees that are expected to grow to 6.0 inches d.b.h. during the period are significant independent variables. Equations solved with these variables, however, gave less accurate estimates of future volumes than the ratios.

CORDWOOD VOLUMES

Present and future cordwood volumes can be computed from corresponding merchantable cubic-foot volumes. Conversion factors have been developed for use with the merchantable cubic-foot volume table used in this study (Woodfin and Landt, 1960). The factors convert cubic volume to standard peeled or unpeeled cords.

To illustrate, let us assume that a stand has an average volume of 2,572 merchantable cubic feet per acre. The conversion factor for unpeeled cords is 76.92. The stand therefore has $2,572 \div 76.92$ or 33.4 standard cords of unpeeled pulpwood per acre. The factor for peeled wood is 98.39, so the stand has 26.1 peeled cords per acre.

PERIODIC MORTALITY

The number of trees that died in 10 or 20 years was related to the initial number of trees (table 2). The mortality reported represents averages for all plots measured. Some plots differed considerably from the averages.

Table 2. -- Decrease in number of trees per acre after 10 and 20 years

Original stand (trees per acre, number)	: After 10 years	: After 20 years
	Number	Number
200	196	193
300	287	283
400	385	380
600	583	576
800	780	765
1,000	975	950
1,500	1,455	1,345
2,000	1,850	1,670
3,000	2, 480	2, 165
4,000	2,950	2,520
5,000	3, 330	2,815
6,000	3,580	3,065

Mortality was mostly limited to death by suppression of trees in the smallest size classes. The largest measured loss in merchantable volume in 20 years was 209 cubic feet per acre, less than 3 cords. On most of the plots on which the trees averaged 5.4 inches d.b.h. or larger, loss was less than 1 cord in 20 years. No merchantable cubic-foot volume was lost on plots where the trees averaged less than 5.4 inches d.b.h.

Determination of mortality is an important source of error in studies of this type. The slow rate of decay in the Black Hills aided mortality estimation. Numerous areas thinned at known dates were available as study plots or to provide guides for dating time of death of trees on the study plots. Cut living and dead stems had been piled or laid perpendicular to the contour so trees that died and fell over after thinning were readily located. Suitable reconstructions of past stand tables could therefore be made.

APPLICATION

This method can be used to estimate the future characteristics of a stand or to compare potential results from alternate methods of treatment. For example, a stand now has the measurements given in column 2 of table 3. The stand may be thinned or left unthinned. If left unthinned, the stand after 10 years will have the measurements given in column 4 of the table. Thinning to 80 square feet of basal area might convert the present stand to one having the values shown in column 3. After 10 years the thinned stand would have the characteristics shown in column 5. With this information a land manager is in a better position to decide whether or not to thin to produce the product desired.

Table 3. -- Present and future stands per acre with two alternative methods of treatment

26.5.500	Present a	mounts	Amounts	in 10 years
Measure	Unthinned	Thinned	Unthinned	Thinned
Site index	55	55	55	55
D.b.h., inches	5.0	6.5	5.7	7.5
Basal area, square feet	170	80	187	104
Number of trees	1,250	347	1,220	335
Total cubic feet	2,000	1,000	2,464	1,528
Merchantable cubic feet	670	670	1,269	1, 204
Unpeeled cords	8.7	8.7	16.5	15.7

The characteristics of a stand after cutting can be determined by marking the stand for cutting and measuring the unmarked trees. Data from thinning studies (Myers, 1958) can be used to estimate changes due to thinning if information based on local practice is available. Better initial data will be obtained if thinnings are subtracted from present stand tables and diameters, basal areas, and volumes are computed from the adjusted tables.

The equations and other prediction aids are intended for use only with existing stands within the range of variables sampled. Black Hills stands have suffered periods of suppression during their development. It is not known how well the equations will apply to stands that have not suffered similar periods of suppression. Extension of the results beyond the ranges of the variables sampled could result in errors. The possible magnitude of the errors cannot be foretold.

LITERATURE CITED

- Meyer, Walter H.
 - 1938. Yield of even-aged stands of ponderosa pine. U. S. Dept. Agr. Tech. Bul. 630, 59 pp., illus.
- Myers, Clifford A.
 - 1957. Cubic -foot volume table for immature ponderosa pine in the Black Hills. U. S. Forest Serv., Rocky Mountain Forest and Range Expt. Sta. Res. Note 25, 2 pp. [Processed.]
- 1958. Thinning improves development of young stands of ponderosa pine in the Black Hills. Jour. Forestry 56: 656-659, illus.
 - and Van Deusen, James L.
- 1958. Estimating past diameters of ponderosa pines in the Black Hills.

 U. S. Forest Serv., Rocky Mountain Forest and Range Expt.

 Sta. Res. Note 32, 2 pp. [Processed.]
- and Van Deusen, James L.
 1960a. Merchantable cubic-foot volume table for immature Black Hills
 ponderosa pine. U. S. Forest Serv., Rocky Mountain Forest
 and Range Expt. Sta. Res. Note 44, 2 pp. [Processed.]
 - and Van Deusen, James L.
 - 1960b. Site index of ponderosa pine in the Black Hills from soil and topography. Jour. Forestry 58: 548-555, illus.
- Woodfin, R. O., Jr., and Landt, E. F.
 - 1960. Conversion of cubic-foot volumes of Black Hills ponderosa pine to cords. U. S. Forest Serv., Rocky Mountain Forest and Range Expt. Sta. Res. Note 31 (Revised), 2 pp. [Processed.]

Tables for estimating average d.b.h., basal areas, and total cubic-foot volumes after 10 and 20 years.

Table 4. -- Average d.b.h. after 10 years, immature Black Hills ponderosa pine, 1 site index 55 feet²

D.b.h. at beginning	:_		Bas	al are	a a	at begin	ning of p	eriod,	square fe	et per	acre	
of period (Inches)	:	30	:	50	:	80	110	: 140	: 170	200) :	230
					-	D.b.h.	after 1	years,	inches			
2.0		3.3		3.1		2.9	2.7	2.6	2.5	2.5	5	2.4
3.0		4.3		4.1		3.9	3.8	3.7	3.6	3.5	5	3.5
4.0		5.4		5.2		5.0	4.8	4.7	4.7	4. 6	,	
5.0				6.2		6.0	5.9	5.8	5.7	5.6	5	
6.0				7.2		7.0	6.9	6.8	6.7			
7.0				8.2		8.0	7.9	7.8	7.7			
8.0				9.2		9.0	8.8	8.7	8.6			
9.0		`		10.1		9.9	9.8	9.7	9.6			
10.0				11.0		10.8	10.7	10.6	10.5			
11.0				11.9		11.7	11.6	11.5	11.4			

¹ From equation:

$$Y = 1.57 + 1.131 X_1 - 0.011 X_1^2 - 0.966 \log X_2 + 0.016 X_3$$

Where: Y = Average d.b.h. in 10 years

X₁ = Present average d.b.h.

X₂ = Present basal area per acre

 X_3 = Site index

R = 0.9952

Sy = 0.1941 inch

² Add 0.1 inch for each 5 feet above 55, subtract 0.1 inch for each 5 feet below.

Table 5.--Basal area per acre after 10 years, immature Black Hills ponderosa pine, 1 site index 55 feet2

Number	:	,	Basa	al ar	ea a	t beg	inni	ng o	f pe	riod,	sq	uare	fee	t per	ac:	re
trees at beginning of period	:	30	:	50	:	80	:	110	:	140	:	170	:	200	:	230
	•	_			Basa	al are		ter		ears,		quare		et - •	<u> </u>	
200	,	- 4		7.0		0.4								_		
200	_	54		70		94		118								
400		55		82		106		130		155		179				
600	- 6	69		85		110		134		158		183				
800	7	71		87		112		136		160		185				
1,000	7	72		89		113		137		162		186				
1,500	-	74		90		114		139		163		187				
2,000				91		115		140		164		188		213		
3,000						116		140		165		189		213		
4,000										165		189		214		
5,000										165		190		214		238
6,000										166		190		214		238

¹ From equation:

$$Y = 26.51 + 0.811 X_1 + 0.477 X_2 - 4709.26/X_3$$

Where: Y = Basal area in 10 years

X₁ = Present basal area

 X_2 = Site index

 X_3 = Number of trees per acre

R = 0.9833

Sy = 8.07 square feet

Add 2.4 square feet for each 5 feet above 55, subtract 2.4 square feet for each 5 feet below.

Table 6. --Total cubic feet per acre after 10 years, immature Black Hills ponderosa pine

230	acre	5000	1 1	1	ł	1	;	1	1	ł	1	;	1		1	1	1	1711	1362	1647	2122	2092	3086
Basal area	Trees per a	3000	Cubic feet	1	1	1	1	ł	ł	1	;	1		:	578	779	973	1164	1353	1637	2110	2586	3067
	Tree	1000	8	ł	1	ŀ	1	ŧ	1	ŀ	1	ł	1	1	1	1	1	;	1	!	1	1	1
** **	• •	5000	1	1	ł	ł	ŀ	1211	1408	1703	2195	2690	3191	,	:	!	;	1316	1530	1821	2386	2924	3469
		3000	1	1	598	805	9001	1203	1399	1692	2181	2674	3172		920	875	1093	1308	1551	1840	2372	2907	3448
ea 180	r acre	1000	feet -	365	580	781	926	9911	1358	1643	7112	2595	3078	397	631	849	1901	1270	1477	1786	2302	2821	3347
Basal area 180	Trees per	3 002	Cubic feet	358	695	992	958	9711	1332	1191	ł	1	1	390	619	833	τήστ	1246	1449	1752	2258	2768	3283
, щ	i.	1,00	1	1	1	}	ł	ŀ	1	ł	ŧ	1	1	37.1	280	797	992	1187	1381	1670	2152	1	:
		200	1	;	1	1	;	ŀ	1	1	ł	ł	1	:	528	210	887	1901	:	}	1	1	:
		5000	:	1	;	;	1	1361	1583	1914	2467	3024	3587	1	ł	1	ł	1479	1720	2081	2682	3287	3899
		3000	1	1	672	906	1130	1353	1573	1905	2452	3006	3565	1	731	987	1229	11/70	1710	2068	5666	3268	3876
еа 130	r acre	1000	feet -	117	653	878	1097	1313	1527	1846	2380	2917	3460	777	406	955	1193	1427	1660	2007	2587	3171	3762
Basal area 130	Trees per	700	Cubic	403	049	862	1076	1288	1498	1811	2335	2862	3395	1,38	969	937	07.11	1400	1628	1969	2538	3111	3690
Д	ī	1,00	1	384	019	821	1026	1228	1428	1726	2225	2728	3236	147	699	893	31115	1334	1552	1877	2419	2965	3517
		200	1,	1	545	734	917	1097	1276	1544	ŀ	;	;	1	593	798	266	1193	1387	1678	2163	2651	3145
** **	00 00	5000	:	- 1	:	ł	ŧ	1530	1779	1512	2773	3399	4032	:	1	ŧ	ŀ	1663	1934	2339	3014	3698	4383
		3000		ŧ	773	1017	1271	1551	1768	2138	2756	3379	9007	;	822	9011	1381	1653	1922	2325	5662	3673	4357
атеа 80	r acre	1000	feet -	7462	733	786	1233	11/176	1716	2076	5675	3279	3890	505	797	1073	1341	1091	1866	2256	2908	3565	4229
Basal ar	Trees per acre	700	Cubic feet	453	720	896	1210	3448	1684	2036	2624	3217	3816	1,92	782	1053	1315	1574	1830	2214	2853	34,97	8414
П	Į.	700		432	989	923	1153	1380	1605	1941	2501	3066	3637	694	971	1001	1254	1500	17ևև	2110	2719	3333	3954
		200	1	1	613	825	1031	1234	1435	1735	2236	2741	3252	1	299	897	1121	1341	1560	1886	2431	2980	3535
		5000	-	ŧ	ŀ	ŀ	ì	1719	2000	2418	3117	3821	4532	1	ł	1	ł	1869	2174	5629	3388	4254	1,927
		3000		:	849	1143	1428	1709	1988	2404	3098	3798	4505	1	923	1243	1553	1858	2161	. 2613	3368	4129	14897
ea 30	r acre	10000	feet -	519	824	0111	1386	1659	1929	2333	3007	3686	4372	795	968	1206	1507	1803	2097	2536	3269	1004	h753
Basal area 30	Trees per	700	- Cubic feet	605	809	1089	1360	1627	1892	2289	2950	3616	4289	553	879	1183	1479	1769	2057	24,88	3207	3931	1663
		004		485	177	1038	1296	1551	1804	21812	2812	3447	1,088	528	838	1128	1409	1686	1961	2372	3057	3747	4444
		200	;	ł	689	928	1159	1387	1613	1950	2514	3081	3655	1	7149	1008	1260	1508	1753	2120	2733	.3350	3973
Present	total ; cubic ;	feet		200	700	009	800	1000	1200	1500	2000	2500	3000	200	700	009	800	1000	1200	1500	2000	2500	3000
60 44	Site:	84 64	Feet	10								- 1	10 -	50									

14 14 15 15 15 15 15 15
1569 1561 1562 1311 1562 1311 1361
1569 1569 1569 1569 1560 1566 1569 1468 1469 1469 1470 1470 1470 1470 1470 1470 1470 1470
1486 1991 1993 1989 2001 1136 1696 1966 1997 2092 2097 1136 1469 1569
259 2616 2115 2126 2127 2116 2129
14 15 15 15 15 15 15 15
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13
1478 1982 5089 5213 5775 5781 1421 1457 1464 1469 3367 3765 1420
596 626 640
1279 1342 1366 14h2 756 84b 84b 901 902 673 722 169 1340 1340 1340 1018 1340 1340 1340 135 135 135 135 135 135 135 135 135 135
1549 1347 1348 1340 1018 1138 1134 124 127 1254 1018 1136 1137 126 127 127 127 127 127 127 127 127 127 127
1912 2006 2045 2107 2120 1521 1402 1402 1521 1567 131 1265 137 1369 1510 1568 1510 1200 1510 1200 1200 1510 1400 140
1912 2006 2045 2170 2180 1521 1701 1785 1880 1875 1886 1353 1514 1588 1619 1668 1618 1870 1870 1870 1870 1870 1870 1870 18
2524 233 2379 245 2465 1769 1979 2076 2116 2180 2193 157h 1760 18h7 1882 19h0 1951 1h00 1566 16h3 1675 1725 1736 1490 1535 2492 2437 2653 1993 2129 2233 2277 2346 2360 1693 1891 1987 2025 2087 2098 1802 1895 2493 2493 2494 2494 2494 2494 2494 2494
2690 2822 2877 2964 2982 2139 2139 2135 2510 2559 2637 2653 1903 2129 2213 2217 2146 2140 1894 1987 2025 2087 2089 1802 1895 1895 2013 2013 2013 2013 2013 2013 2013 2013
3467 3637 3708 3820 3843 2757 3084 3236 3298 3149 2453 2744 2897 3934 3023 3041 2182 2441 2561 2610 2650 2766 2322 2393 2420 4425 4425 4425 4425 4425 4425 4425
4250 4459 4545 4683 4711 3380 3781 3967 4043 4156 4191 3007 3363 3529 3597 3706 3728 2675 2992 3139 3200 3297 3117 284.7 2933 201 3934 3177 284.7 2933 201 3934 3177 284.7 2933 201 3934 3177 3479 2041 5289 5391 5554 5558 600 4420 3724 3796 600 4420 3724 3796 3911 3934 3177 3479 2042 2042 2042 2042 2042 3724 3796 3911 3934 3177 3479 2042 2042 2042 2042 2042 3724 3796 3911 3934 3177 3479 2042 2042 2042 2042 2042 2042 2042 204
50\lambda 5289 5391 555\lambda 5588 \lambda 0009 \lambda \lambda 140\text{176} \lambda 1406 \lambda 140\text{176} \lambda 1400 \lambda 140\text{176} \lambda 1400 \rangle 140\text{176} \lambda 1400 \rangle 1400 \ra
6652 6979 5291 5918 6209 14707 5264 14187 14684 1528 5847 1588 7751 5876 6572 5228 5847 5228 5847
8305 8713 605 7388 7751 5876 6572 5228

Where: Y = Cubic feet in 10 years

X₁ = Present cubic feet
X₂ = Site index
X₃ = Number of trees
X₄ = Basal area
R = 0.9924
Sy = 8

Sy = 8 percent at mean cubic feet

70

69

Table 7. -- Average d.b.h. after 20 years, immature Black Hills ponderosa pine, 1 site index 55 feet²

D.b.h. at beginning	: :		Basal	area	at be	ginning o	f perio	d, square	feet per	acre
of period (Inches)	:	30	5	0 :	80	: 110	14	0 : 170	200	230
	-				D.b. 1	h. after i	20 year	s, inches		
2.0		4.1	3.	8	3.5	3.3	3. 1	3.0	2.9	2, 8
3.0		5.3	5.	0	4.7	4.4	4.3	4. 2	4.0	3.9
4.0		6.4	6.	1	5.8	5.5	5.4	5.3	5.1	
5.0			7.	2	6.9	6.6	6.5	6.4	6.2	
6.0		~ ~	8.	2	7.9	7.7	7.5	7.4		
7.0			9.	2 .	8.9	8.7	8.5	8.4		~ -
8.0			10.	1	9.8	9.6	9.4	9.3		~ -
9.0			11.	0	10.7	10.5	10.3	10.2		
10.0			11.	9	11.6	11.4	11. 2	11.1		
11.0			12.	8	12.4	12.2	12.0	11.9		

¹ From equation:

$$Y = 2.431 + 1.268 X_1 - 0.021 X_1^2 - 1.540 \log X_2 + 0.028 X_3$$

Where: Y = Average d.b.h. in 20 years

X₁ = Present average d.b.h.

X₂ = Present basal area per acre

 $X_3 = Site index$

R = 0.9855

Sy = 0.3482 inch

² Add 0.3 inch for each 10 feet above 55, subtract 0.3 inch for each 10 feet below.

Table 8. --Basal area per acre after 20 years, immature Black Hills ponderosa pine, ¹ site index 55 feet²

e feet	170	- 1	175	193	199	201	203	902		169	187	192	195	197	199			,X4							
Basal area at beginning of period, square feet	140	square feet	152	169	175	178	180	;		146	163	169	172	174	ŧ			- 48.592 log X ₃ - 6971.52/X ₄							
of perio	110	years, s	128	146	151	154	1	;		122	139	145	148	1	-{			log X3 -							
eginning	80	after 20 years,	105	122	128	131	1	;		86	116	122	1	1	1			48.592					acre		
rea at b	50	Basal area	81	86	1	1	1	-		75	9.5	1	1	1	1				20 years	larea			ees per		feet
Basal a	30 :	- Bas	<u>.</u>	1	;	1	+	;		1	1	;	+	1	;			X1 + 0.	= Basal area in 20 years	= Present basal area	index		ber of tre	0	= 10,73 square feet
er of	ning		0	0	0	0	0	0		0	0	0	0	01	0		1:	$= 132.14 + 0.786 X_1 + 0.715 X_2$	Y = Basal	X ₁ = Pres	X ₂ = Site index	X ₃ = Age	X4 = Number of trees per acre	R = 0.9690	Sy = 10, 7
Number of	beginning of period		200	400	009	800	1,000	1,500		200	400	009	800	1,000	1,500		From equation:		Where:					н	0,
open Ducto	(Years)		06							120							1 From	Y	Α						
						_			-					r		-							_	_	
e feet	170	eet -	:	ŧ	1	;	1	1	;	1	1	ĺ	1		1	1	1	210	212	214	215	216	217	217	218
d, square feet	140 : 170		1	1	1	:	1	1	;	1	1	1	1		-	178	184	186 210	188 212	190 214	192 215	193 216	193 217	194 217	194 218
		square feet	1																						
	140	after 20 years, square feet	1	1	{	1	1	;	1	1	1	;	1		1	178	184	186	188	190	192	193	193	194	194
at beginning of period,	110 : 140 :	area after 20 years, square feet	1	1	1	1	:	182	183	184	184	185	185		1	154 178	160 184	163 186	165 188	167 190	168 192	193	193	194	194
	0 : 80 : 110 : 140 :	after 20 years, square feet	1	1	:	154	156	158 182	159 183	160 184	161 184	161 185	161 185		113	131 154 178	136 160 184	139 163 186	141 165 188	143 167 190	21 144 168 192	193	193	194	194
of Basal area at beginning of period,	50 80 110 140	Basal area after 20 years, square feet	1	122	127	130 154	132 156	134 158 182	136 159 183	137 160 184	137 161 184	138 161 185	138 161 185		90 113	107 131 154 178	113 136 160 184	116 139 163 186	117 141 165 188	120 143 167 190	121 144 168 192	193	193	194	194

 $^2\,$ Add 7 square feet for each 10 feet above 55, subtract 7 square feet for each 10 feet below.

Table 9. -- Total cubic feet per acre after 20 years, immature Black Hills ponderosa pine¹

Site index	Present		Presen	Present number of trees		per acre		Site index	Present		Presen	Present number of trees	of trees	per acre	
(Feet)	cubic feet per acre	200	. 400	. 700	1,000	3,000	5,000	(Feet)	cubic feet per acre	200	400	002	1,000	3,000	5,000
			1	Cubic feet	t per acre)	Cubic feet per acre	t per acr	-	
40	200	1	883	914	927	1	-	09	200	1	1,144	1, 185	1,202	1	-
	400	1,080	1,172	1,214	1, 231	1,258	1		400	1,400	1,519	1,573	1,595	1,630	;
	009	1, 295	1,405	1,455	1,476	1,509	1		009	1,679	1,822	1,887	1,913	1,955	1
	800	1,484	1,610	1,668	1,691	1,729	:	1	800	1,923	2,087	2, 162	2, 192	2, 241	;
	1,000	1,656	1,797	1,861	1,888	1,929	1, 938		1,000	2, 147	2,330	2, 413	2, 447	2,501	2,512
	1,200	1,816	1,971	2,041	2,070	2, 116	2, 125		1,200	2,354	2,555	2,646	2,684	2,743	2,755
	1,500	2,040	2, 214	2, 293	2,325	2,377	2, 387		1,500	2,645	2,870	2, 972	3,014	3,081	3,094
	2,000	2,383	2,586	2,678	2,716	2,776	2,788		2,000	3,089	3, 352	3,472	3,521	3, 598	3,614
	2,500	1	2,929	3,033	3,076	3, 144	3, 158		2,500	3,498	3,797	3, 932	3,988	4,076	4,093
									3,000	3,884	4, 215	4,365	4,427	4,524	4,544
90	200	1	1,018	1,055	1,070	1	1								
	400	1,245	1,352	1,400	1,420	1,451	1	7.0	200	1	1,263	1,308	1,327		;
	009	1,494	1,621	1,679	1,703	1,740	1		400	1,545	1,676	1,736	1,761	1,800	1
	800	1,712	1,858	1,924	1,951	1,994	1		009	1,853	2,010	2,082	2, 112	2, 158	1
	1,000	1,910	2,073	2, 147	2, 177	2, 225	2, 235		800	2, 123	2,304	2, 386	2,420	2,473	i
	1,200	2,095	2,274	2,355	2,388	2, 441	2, 451	i.	1,000	2,369	2,571	2,663	2,700	2,760	2,772
	1,500	2,353	2,554	2,645	2,682	2,742	2,754		1,200	2, 598	2,820	2,920	2,962	3,027	3,040
	2,000	2,749	2,983	3,089	3, 133	3, 202	3, 216		1,500	2,919	3, 168	3, 281	3, 327	3,400	3,415
	2,500	3, 113	3,379	3,499	3,549	3,627	3,643		2,000	3,409	3,700	3,832	3,886	3, 971	3,989
	3,000	3,456	3,750	3,884	3,939	4,026	4,044		2,500	3,861	4, 190	4,340	4,401	4,498	4,518
									3,000	4,286	4,652	4,818	4,886	4, 993	5,015
1 From	1 From equation:								4,000	5,079	5, 512	- ;	;	1	- 1
Lo	Log Y = 1.515 + 0.083 (log X_1) ² + 0.640 log X_2 -	0.083 (log	$(X_1)^2 + 0$. 640 log 3	X ₂ - 14, 212 X ₃	71.7			5,000	5,817	6, 313	1	1	1	;
A AA	Lere	al cubic rea	et per ac	re in 20 v	roare										

Sy = 13 percent at mean cubic feet

 X_2 = Site index X_3 = Number of trees

R = 0.9669

