МАТЕМАТИЧНА КРИПТОГРАФІЯ

Алгоритм Евкліда

Теорема (алгоритм подільності) Для "a ї \mathbf{Z} ," b ї \mathbf{N} однозначно визначені числа q,r ї \mathbf{N} такі, що a=qb+r де q – частка, r – остача, r î $\mathbf{[}0;b$ $\mathbf{)}$.

Будемо говорити, що a **ділиться** на b (націло) або b ділить a (позначається $b \mid a$), якщо r = 0. $a \mod b = r$

Найбільший спільний дільник – $HC\mathcal{I}(a,b)$.

Числа a та b взаємно прості, якщо $HC\mathcal{I}(a,b)=1$.

Алгоритм Евкліда ґрунтується на співвідношеннях

$$HC\mathcal{I}(a,b) = HC\mathcal{I}(b, a \mod b)$$

$$HCД(a,0)=a$$

Алгоритм знаходження HCД(a,b), a 挝**Z**,b N,b < a:

$$1.r_0 = a, r_1 = b, i = 1.$$

- 2.Ділимо r_{i-1} на r_i і отримуємо $r_{i-1} = q_i r_i + r_{i+1}$.
- 3.Якщо $r_{i+1} > 0$, то прийняти i = i + 1 і перейти на крок 2. Інакше $HC\mathcal{I}(a,b) = r_i$.

Твердження. Для кожної пари взаємно простих a та b можна знайти такі числа u та v, що au + bv = 1.

<u>Доведення.</u> За умови, що $HC\mathcal{I}(a,b)=1$ на передостанньому кроці алгоритму Евкліда

$$r_{m-2} = q_{m-1}r_{m-1} + 1 \pm 1 r_{m-2} + (-q_{m-1})r_{m-1} = 1.$$

Нехай ця рівність виконується для i -ого кроку:

$$u_{i-1}r_{i-1} + v_{i-1}r_{i-1} = 1$$

$$u_{i}q_{i}r_{i} + u_{i}r_{i+1} + v_{i-1}r_{i} = (u_{i}q_{i} + v_{i-1})r_{i} + u_{i}r_{i+1}$$

Враховуючи, що $r_0 = a$, $r_1 = b$ отримуємо твердження.

Розширений алгоритм Евкліда:

- 1.Покласти $r_0 = a$, $r_1 = b$, $u_0 = v_1 = 1$, $u_1 = v_0 = 1$, i = 1 .
- $2. r_{i-1} = q_i r_i + r_{i+1}$
- 3.Обчислити u_{i+1} = u_i $q_i u_i$, v_{i+1} = v_{i-1} $q_i v_i$
- 4.Якщо $r_{i+1} > 0$, то прийняти i = i + 1 і перейти на крок 2. Інакше $HC\mathcal{I}(a,b) = r_i$

Твердження. $r_i = u_i a + v_i b$, i = 0, m, де m – кількість ітерацій.

<u>Доведення.</u> При i=0 $r_0>a$, при i=0 $r_1>b$. Допустимо, що виконується на i-ому кроці. Тоді

$$r_{i+1} = r_{i-1} - q_i r_i = u_{i-1} a + v_{i-1} b - q_i u_i a - q_i v_i b =$$

$$= (u_{i-1} + q_i u_i) a + (v_{i-1} - q_i v_i) b = u_{i+1} a + v_{i+1} b$$

Отже твердження виконується для всіх i .

Використовується для знаходження мультиплікативної інверсії за модулем $c \times c^{-1} \mod n = 1$

Конгруенції

Цілі x та y називають **конгруентними** або *рівними за модулем* n, якщо $x \operatorname{mod} n = y \operatorname{mod} n$ і позначаються $x^{\mathsf{o}} y \pmod{n}$.

Твердження. Наступні умови еквівалентні:

$$x \circ y \pmod{n}$$
 : $x = y + kn, k \mid \mathbb{Z}$: $n \mid (x - y) = x + kn, k \mid \mathbb{Z}$

Твердження. Конгруенції мають властивості:

- 1) відношення еквівалентності:
 - -) $x \circ x \pmod{n}$ (рефлективність)
 - =) x 恨 $y \pmod{n}$ $y \pmod{n}$ (симетричність)
 - \equiv) $\begin{pmatrix} x \circ y \pmod{n} \\ x \circ z \pmod{n} \end{pmatrix}$ $\not\equiv y \pmod{n}$ (транзитивність)
- 2) конгруенції можна почленно додавати і перемножувати

$$\begin{vmatrix} x_1 & x_2 \pmod{n} \\ y_1 & x_2 \pmod{n} \end{vmatrix} \mapsto \begin{vmatrix} x_1 + y_1 & x_2 + y_2 \pmod{n} \\ x_1 & x_2 & x_2 \pmod{n} \end{vmatrix}$$

3) обидві частини конгруенції можна скорочувати на їх спільний дільник, якщо він взаємно простий з модулем

$$d \mid x, d \mid y$$

 $HC\mathcal{I}(d,n)=1$ 薛 $\frac{x}{d}$ $\frac{y}{d}$ (mod n)
 $x \circ y$ (mod n)

4) обидві частини конгруенції і їх модуль можна скорочувати на їхній спільний дільник

$$\frac{d|x,d|y,d|n}{x^{\circ}y(\text{mod}n)}$$
 藓 $\frac{x}{d}$ $\frac{y}{d}$ $\frac{y}{d}$ $\frac{n}{d}$ $\stackrel{\ddagger}{=}$

5)

6) для простих чисел $\,p\,$ та $\,q\,$:

$$x$$
 恨 y (mod pq) $x \circ y$ (mod p) $x \circ y$ (mod q)

Кільце лишків

 $\mathbf{Z}_n = \{0, K, n-1\}$ - множина, наділена операціями додавання та множення за модулем n. $x + y = (x + y) \bmod n$ та $x \times y = (x \times y) \bmod n$.

В такому означенні \mathbf{Z}_n – комутативне кільце з одиницею і називається *кільцем* зведених лишків за модулем n . \mathbf{Z}_n^* – мультиплікативна група елементів, для яких в \mathbf{Z}_n є обернені відносно множення.

Твердження. \mathbf{Z}_n складається з елементів x взаємно простих з n.

<u>Доведення</u>. (*Необхідність*) Якщо $HC\mathcal{I}(x,n)=1$, то для деяких цілих u та v виконується ux + vn = 1. Тоді $ux^{o} \ 1 \pmod{n}$, а отже $x^{-1} \ o \ u \pmod{n}$. Шукати обернені можна розширеним алгоритмом Евкліда.

(Достатність) Нехай $xx^{-1} \circ 1 \pmod{n}$, тоді $xx^{-1} + kn = 1$ і позначивши $u := x^{-1}$ та v := k отримаємо, що $x \in n$ та n = n взаємно прості.

Ділення на x в кільці \mathbf{Z}_n – це множення на x^{-1} . Віднімання в \mathbf{Z}_n – це додавання (-x). Зауважимо, що – 1=n-1 в \mathbf{Z}_n .

Твердження. Для простого модуля p - \mathbf{Z}_n ε полем.

<u>Означення</u>. Функцією Ейлера f(n) позначатимемо кількість натуральних чисел не більших за n і взаємно простих з n. Отже, функція Ейлера – це порядок групи \mathbf{Z}_n^* .■

Теорема Ейлера. Для взаємно простих $x \not \boxtimes \mathbf{Z}, n$ **N** виконується $x^{f(n)} \circ 1 \pmod{n}$

Доведення. Припустимо $1 \pounds x < n$ і розглянемо x як елемент мультиплікативної групи \mathbf{Z}_n^* . За теоремою Лагранжа порядок елемента x є дільником порядку групи, в нашому випадку f(n). Тому $x^{f(n)} = 1$ в \mathbf{Z}_n^* , звідси і випливає теорема. ■

Випадок довільного x зводимо до попереднього, використавши конгруенцію $x^{f(n)}$ о $(x \bmod n)^{f(n)} (\bmod n)$.

Якщо p – просте, то f(p) = p - 1, а тому наслідком теореми Ейлера є мала теорема Ферма.

Мала теорема Ферма. Якщо $x \bar{1} \mathbb{Z}$ не ділиться на просте p, то $x^{p-1} \circ 1 \pmod{p}$.

Китайська теорема про остачі

Нехай n_1, n_2 $\mathfrak{W} N, x_1, x_2$ \mathbf{Z} . Якщо n_1 та n_2 – взаємно прості, то існує таке x \mathbf{I} \mathbf{Z} , для якого виконується x \mathbf{v} \mathbf{v} \mathbf{I} \mathbf{I} \mathbf{v} \mathbf{v}

 n_1u + n_2v = 1. Тоді ми можемо вибрати $x\coloneqq x_2n_1u+x_1n_2v$, що

$$x \pmod{n_1} = x_1 n_2 v \pmod{n_1} = x_1 \pmod{n_1} * n_2 v \pmod{n_1} = x_1 \pmod{n_1}.$$

Аналогічно $x^{\circ} x_2 \pmod{n_2}$.

Твердження. Нехай $n = n_1 n_2$, $HC \square (n_1, n_2) = 1$. Тоді відображення

$$f: \mathbf{Z}_n \ \mathbf{B} \ \mathbf{Z}_{n_1} \ \mathbf{Z}_{n_2}$$
 , де $f(x) = (x \mod n_1, x \mod n_2)$ є ізоморфізмом кілець. (2)

Доведення. 1. Доведемо, що це гомоморфізм.

$$f(x+y) = (x+y \bmod n_1, x+y \bmod n_2), f_i(x) = x \bmod n_1,$$

$$((x+y) \bmod n) \bmod n_i = (x+y) \bmod n_i = x \bmod n_i + y \bmod n_i.$$

Аналогічно і для операції множення.

- 2. Сур'єктивність випливає з китайської теореми про остачі.
- 3. Ін'єктивність випливає із тривіальності ядра, оскільки найменше натуральне число, яке ділиться націло на n_1 та n_2 є n .■

Теорема. Нехай $n = n_1 n_2$, n_1, n_2 $\hat{\mathbf{I}}$ \mathbf{N} і n_1 та n_2 – взаємно прості. Тоді звуження відображення (2) \mathbf{Z}_n^* $\mathbf{B} \, \mathbf{Z}_{n_1}^*$ $\mathbf{Z}_{n_2}^*$ є ізоморфізмом.

<u>Доведення</u>. Випливає як наслідок попереднього твердження та теореми про обернене відображення. ■

Теорема (Мультиплікативність функцій Ейлера). Для попарно взаємно простих n_1, n_2, K , n_l , функція Ейлера рівна $f\left(n_1 n_2 ... n_l\right) = f\left(n_1\right) \not \not \not \not \not \not \not \mid (n_l)$.

<u>Доведення</u>. За індукцією з огляду на те, що при l=2 рівність справджується завдяки попередньому твердженню. ■

Теорема (Формула для функцій Ейлера). Нехай $n = p_1^{a_1} - \frac{1}{p_1} + \frac{1}{p_1} + \frac{1}{p_k} + \frac$

<u>Доведення</u>. Нехай l=1. Тоді $n=p^a$ для деякого простого p. Числами, які не перевищують p^a не є взаємно прості з ним, є $p,2p,3p,\mathsf{K}$, $p^{a-1} \times p$ — всього p^{a-1} чисел. Отже $f(n)=p^a-p^{a-1}=n\Big(1-\frac{1}{p}\Big)$. Далі за індукцією з використанням мультиплікативності функцій. ■

Для n > 4 можна оцінити функцію Ейлера знизу без знання розкладу n на прості співмножники:

$$f(n) > \frac{n}{6 \ln \ln n}$$

АРИФМЕТИЧНІ ЗАДАЧІ ТА АЛГОРИТМИ

Задачі

Задача обчислення функції: $f:A^* \otimes B^*$ полягає в знаходженні для вказаного слова w $\hat{\mathbf{I}}$ A^* значення функції f(w).

Масова задача

Індивідуальна задача

Задано: $w \hat{\mathbf{I}} A^*$

Задано: $x \mid \mathbf{N}$

Обчислити: f(w).

Обчислити: χ^2 .

Нехай L Í A^* - множина слів у алфавіті A^* . L називають мовою. Задача

розпізнавання мови L полягає у визначенні, належить задане слово $w\, \hat{\mathbf{l}} \, A^*$ цій мові

Задано: $w \hat{\mathbf{I}} A^*$ Задано: $x \hat{\mathbf{I}} \mathbf{N}$

Розпізнати: $w \bar{l} L$.

Розпізнати: чи є x повним квадратом?

Задача пошуку елемента із задаю властивістю

Задано: $w \hat{\mathbf{I}} A^*$

Задано: $x \hat{\mathbf{I}} \mathbf{N}$

Знайти: u таке, що w#u I P.

Знайти: $y \bar{\mathbf{I}} \mathbf{Z}$ таке, що $x = y^2$.

Алгоритми

Команди – слова, з яких складається прямолінійна програма.

Складність прямолінійної програми – кількість її команд:

- **мультиплікативна складність** кількість команд множення
- *адитивна складність* кількість команд додавання

Складністю обчислення функції F прямолінійної програми називається найменша довжина прямолінійної програми, яка обчислює $F.F(x) = x^4 + x^2$

$$z_1 = x \times x$$

$$z_2 = z_1 \times x$$

$$z_3 = z_2 \times x$$

$$z_4 = z_3 + z_1$$

$$z_1 = x \times x$$

$$z_2 = z_1 + 1$$

$$z_3 = z_1 \times z_2$$

Піднесення до степеня

$$f(x) = x^d$$
 Þ

$$z_{1} = x \times x$$

$$z_{2} = z_{1} \times x$$

$$z_{3} = z_{2} \times x$$

$$\vdots$$

$$z_{d-1} = z_{d-2} \times x$$

Бінарний метод піднесення до степеня

Задано: $x \not \boxtimes Z_n, d = N$. Потрібно обчислити $x^d \bmod n$.

Можна вважати, що $d \le n$. Якщо це не так, то степінь можна понизити за теоремою Ейлера.

Подамо d у двійковій системі числення:

$$d = d_l 2^l + d_{l-1} 2^{l-1} + ... + d_1 \times 2 + d_0$$

Покладемо z_0 = 1 і для i = 2,...,l + 1 обчислимо

$$z_i = \dot{f}_{z_{i-1}}^{z_{i-1}} z_{i-1}$$
, якщо $d_{l+1-i} = 0$ z_{i-1} $\not \ge_{i-1}$ x , якщо $d_{l+1-i} = 1$

Легко бачити, що $z_i = z_{i-1} \not \geqslant_{i-1} x^{d_{l+1-i}}$. На l+1 кроці маємо:

$$(...((x^{d_l})^2 x^{d_{l-1}})^2 x^{d_{l-2}}...)^2 = x^{d_l 2^l + d_{l-1} 2^{l-1} + ... + 2 * d_0} = x^d$$

Для обчислення $x^d \bmod n$ бінарним методом потрібно $2l\,\hat{\mathbf{l}}$ $\overset{\mathbf{E}}{\mathbf{a}} \overset{l-1}{\mathbf{a}} d_i, 2\log_2 d$

множень.

Випадковий вибір

Випадкова двійкова послідовність довжини l може розглядатися як двійковий запис випадкового елемента з Z_n при $n=2^l$ або випадкового елемента з Z_p^* для простого $p=2^l+1$.

Якщо n (або просте p) довільне, використовують такий алгоритм:

- 1. обчислити $l = [\log_2 n]$
- 2. вибрати випадковий елемент x $\hat{\mathbf{l}}$ Z_{2^l} .
- 3. якщо x^3 n, то перейти на крок 2.

Позначимо a - ймовірність того, що вибраний на кроці 2 x < n. Очевидно, a > 1/2. Ймовірність того, що x попаде в Z_n лише за i-им разом, дорівнює $b_i = a(1-a)^{i-1}$.

Тоді
$$\lim_{i ext{till}} ib_i = a$$
 $i(1-a)^{i-1} = \frac{1}{a} < 2$

Тобто математичне сподівання кількості повторів кроку 2 не перевищує 2.

Якщо потрібно знайти випадковий x $\hat{\mathbf{I}}$ Z_{pq}^* (p,q - прості числа), то можна використати наслідок з китайської теореми про остачі:

- 1. знайти випадкові елементи x_1 $\hat{\mathbf{I}}$ Z_p^* та x_2 $\hat{\mathbf{I}}$ Z_q^*
- 2. обчислити x Î Z_{pq}^* , для якого $x_1 = x \operatorname{mod} p$ та $x_2 = x \operatorname{mod} q$.

Розглянемо ще один спосіб знаходження випадкового елемента $x\,\hat{\mathbf{l}}\,\,\,Z_{pq}^*$, який використовується у випадку великих значень p та q:

- 1. вибрати випадковий елемент x $\hat{\mathbf{l}}$ Z_{pq}
- 2. якщо $x \bmod p = 0$ або $x \bmod q = 0$, перейти на крок 1.

Ймовірність того, що x, вибраний на кроці 1, буде належати множині $Z_{\it pq}^{\it *}$, дорівнює

$$a = \frac{f(pq)}{pq} = \frac{1}{p} \frac{1}{p} \frac{1}{q}.$$

Подібний алгоритм можна використовувати для знаходження випадкового елемента x Î Z_n^* для довільного n:

- 1. вибрати випадковий елемент x $\hat{\mathbf{I}}$ Z_n і обчислити $\mathrm{HC} \Xi(x,n)$
- 2. якщо HCД(x,n) > 1, перейти на крок 1.

Первісні корені

Нехай p N . Число g Z називається **первісним коренем за модулем** p , якщо лишок $g \bmod p$ є твірним елементом групи Z_p^* .

Для простого p група Z_p^* (як мультиплікативна група для скінченного поля) є циклічною. Тому первісні корені існують для всіх простих модулів. Число g є первісним коренем за простим модулем p, якщо послідовність

$$g^0 \mod p = 1, g^1 \mod p, g^2 \mod p, ..., g^{p-2} \mod p$$
 (1)

містить всі елементи множини $Z_p^{\hat{}}$. Ця умова рівносильна тому, що всі елементи послідовності (1) попарно різні.

<u>Приклад</u>. g = 5 є первісним коренем за модулем p = 23. Послідовність (1) у цьому випадку така: 1,5,2,10,4,20,8,17,16,11,9,22,18,21,13,19,3,15,6,7,12,14.

Твердження. Нехай p - просте число і p - $1 = q_1^{a_1} q_2^{a_2} ... q_s^{a_s}$ - розклад p - 1 на прості співмножники. Тоді:

- 1. в $Z_p^* \varepsilon$ рівно f(p-1) первісних коренів за модулем p
- 2. для того, щоб число $g \, \hat{\mathbb{I}} \, Z$ було первісним коренем за модулем $\, p \, , \,$ необхідно та достатньо, щоб

$$g^{(p-1)/q_i-1} \ 1(\text{mod } p), \quad i = 1,...,s$$
 (2)

Приклад.

Нехай p = 29 \triangleright $(p - 1) = 2^2 \times 7$.

Оскільки 2^{14} χ 28(mod 29), 2^4 16(mod 29) **�** g 2 – первісний корінь за модулем p = 29.

g = 5 не є первісним коренем за модулем p = 29 оскільки 5^{14} о $1 \pmod{29}$.

Квадратичні лишки

Нехай n \mathbb{I} N. Ціле число x \mathbb{I} Z називається **квадратичним лишком за модулем** n, якщо $\mathrm{HC} \Pi(x,n)=1$ і x o $y^2 (\bmod n)$ для деякого числа y. У цьому випадку y називається **квадратним коренем з** x за модулем n.

Якщо $\mathrm{HC} \Pi(x,n)=1$ і x не є квадратичним лишком за модулем n, то x називається **квадратичним нелишком** за модулем n.

Квадратичні лишки за модулем n, які набувають значення від 1 до n - 1, називаються зведеними. Множину зведених квадратичних лишків за модулем n позначимо Q_n .

Твердження. Нехай p – непарне просте число. Тоді наступні умови еквівалентні:

- 1. x ε квадратичний лишком за моделям p
- 2. $x^{(p-1)/2} \circ 1 \pmod{p}$
- 3. Якщо g Î Z_p^* первісний корінь за модулем p, то для деякого парного k в Z_p^* виконується рівність $x=g^k$.

Критерій Ейлера. Нехай x - ціле, p - непарне просте. Тоді

$$\sum_{x} \frac{p-1}{2} \pmod{p},$$

де Ё - символ Лежандра:

1, якщо
$$x \in \text{квадратичним лишком за модулем } p$$
1, якщо $x \in \text{квадратичним нелишком за модулем } p$
1, якщо $x \in \text{квадратичним нелишком за модул ем } p$
0, якщо $p \mid x$

Властивості символу Лежандра. Нехай p - непарне просте, x_1, x_2 $\hat{\mathbb{I}}$ Z. Тоді:

$$1. x_1 恨 x_2 \pmod{p}$$

3.
$$x_2 \pmod{p} > 0$$

3.
$$x_2 \pmod{p} > 0$$
 \Rightarrow $\begin{cases} \frac{x_1 x_2^2}{x_1 + x_2} = \frac{x_1}{x_2} \\ \frac{x_1}{x_2} = \frac{x_2}{x_1} \end{cases}$

Символ Якобі

Нехай n^3 3 – непарне ціле число з розкладом на прості співмножники $n = p_1^{a_1} p_2^{a_2} ... p_s^{a_s}, x \bar{1} Z$. Означимо *символ Якобі*:

Очевидно, що для простого n символ Якобі буде символом Лежандра.

Властивості символу Якобі. Нехай x, x_1, x_2 Î Z, n, n_1, n_2 – непарні цілі числа, більші за 2. Тоді:

1)
$$x_1$$
 恨 $x_2 \pmod{n}$

柳 町 杪
$$\frac{x_1}{x_2} \stackrel{?}{=} \frac{x_1}{x_2}$$

$$2) \frac{\mathbb{E}_1}{\mathbb{E}_2} = \frac{\mathbb{E}_1 x_2}{\mathbb{i}_n}$$

3) НСД
$$(x_2, n) = 1$$
 Þ $\begin{cases} x_1 x_2^2 \\ x_1 x_2 \end{cases}$ \vdots

4)
$$\frac{\mathbb{R}^{x}}{m_{1}n_{2}}$$
 $\frac{\mathbb{R}^{x}}{m_{1}}$ $\frac{\mathbb{R}^{x}}{m_{1}}$ $\frac{\mathbb{R}^{x}}{m_{2}}$

5) якщо x – квадратичний лишок за модулем n, тоді ξ

Квадратичний закон взаємності Гауса. Нехай $m,n \ge 2$ - взаємно прості непарні натуральні числа. Тоді

1)
$$\frac{1}{4} = (-1)^{\frac{(m-1)(n-1)}{4}}$$
 2)
$$\frac{n^2-1}{8}$$

Алгоритм обчислення символу Якобі. Можна вважати, що 0 # x = n, оскільки $\frac{1}{\sqrt{n}} \frac{1}{\sqrt{n}} \frac{1}{\sqrt{n}}$ на основі властивості 1. кожен наступний крок алгоритму зводить

обчислення
$$(x,y)$$
 (x,y) до обчислення (x,y) де (x,y) (x,y)

1. Якщо $x = 2^{2j} y$, то за властивістю 3 отримаємо $\frac{1}{2}$.

2. Якщо
$$x = 2^{2j+1}y$$
, то за властивостями 3 та 2 маємо $\frac{y}{y}$ $\frac{y}{$

На підставі пункту 2) квадратичного закону взаємності отримаємо

3. Якщо x непарне, то з пункту 1) квадратичного закону взаємності випливає

$$\frac{1}{2}$$
 据 $\frac{1}{2}$ (- 1) $\frac{(x-1)(n-1)}{4}$.

Виконання кроків алгоритму неминуче зведе обчислення 🕌 до обчислення символу

Якобі виду $\frac{1}{2}$, який (за властивістю 5) дорівнює 1 для довільного непарного n.

Приклад.

Розподіл простих чисел

Позначимо p(n) - кількість простих чисел, не більших за n .

Теорема Чебишева (1850р.). Для довільного n^3 $n_0 > 1$ виконуються нерівності

$$\frac{0.92n}{\ln n} < p(n) < \frac{1.1n}{\ln n}.$$

Теорема Адамара – Валле Пуссена.

$$\lim_{n \to \infty} p(n) \frac{\ln n}{n} = 1.$$

Теорема. Для довільного n^3 55 виконуються нерівності

$$\frac{n}{\ln n} < p(n) < \frac{n}{\ln n - 4}.$$

Ліва нерівність виконується при n^3 17.

Постулат Бертрана. Для довільного n > 2 існує просте $p \ \hat{I} \ [n, 2n - 2]$.

Теорема. Для довільного n > 2 існує просте p **Î** $[n, n + n^{107/200}]$.

<u>Гіпотеза.</u> Для довільних c > 2, n > 2 існує d > 0 таке, що інтервал $[n, n + d \times (\log n)^c]$ містить просте число.

Тестування простоти

Алгоритми перевірки, чи число $n\, \tilde{\mathbf{I}}\,\,\, N$ є простим, називаються тестами простоти.

Сито Ератосфена.

Покладемо l = 2.

- 1. Якщо $l > \lfloor n/2 \rfloor$, тоді алгоритм завершити з результатом n просте.
- 2. Якщо $l \, \mathfrak{L} \, [n/2]$ і $l \, | \, n$, тоді алгоритм завершити з результатом n складене.
- 3. Якщо $l \, {\mathfrak L} \, [n/2]$ і l не ділить n , покласти l = l + 1 та перейти до кроку 1.

Цей алгоритм належить до класу детермінованих і має експоненційну (від n) кількість обчислень.

Найкращий на сьогодні детермінований алгоритм має квазіполіноміальну кількість обчислень $O((\log n)^{c \log \log \log n}), \quad c > 0.$

Ймовірносний тест Соловея-Штрассена.

Якщо n - складене, тоді $\|S_n\| \mathfrak{L} \ f(n) / 2$.

Алгоритм.

- 1. Вибрати випадковий елемент x \hat{I} [1, n-1].
- 2. Якщо $\mathrm{HC} \coprod (x,n)^{\, \mathbf{1}} \, 1$, тоді алгоритм завершити з результатом n складене.
- 3. Якщо $(x)^{\frac{n-1}{2}}$ $(x)^{\frac{n-1}{2}}$ (
- 4. Якщо ж $(x)^{\frac{n-1}{2}} \pm x^{\frac{n-1}{2}} \pmod{n}$, алгоритм завершити з результатом n просте.

Тест побудовано на твердженні, що n є простим тоді і лише тоді, коли

HCД
$$(x,n) = 1$$
 і $(x,n) = 1$ і $(x,n) = 1$

Якщо n - просте, то для довільного x $\hat{\mathbf{I}}$ [1, n - 1] перша рівність справедлива за означенням простого числа, а друга — за теоремою Ейлера. А тому для простого n тест завжди дає правильну відповідь.

Якщо ж n - складене, то ці дві умови справедливі лише для $x\,\hat{\mathbf{l}}\,$ S_n , тобто ймовірність хибної відповіді дорівнює

$$\frac{\|S_n\|}{n-1} = \frac{f(n)}{2(n-1)} < \frac{1}{2}.$$

Алгоритми обчислення $\mathrm{HC} \mu(x,n)$ (алгоритм Евкліда), символу Якобі та

 $x^{\frac{n-1}{2}} \pmod{n}$ (бінарний метод) роблять $O(\log n)$ операцій множення у кільці Z_n . А тому ймовірнісний тест Соловея-Штрассена має поліноміальну кількість обчислень. Повторимо тест k разів. Ймовірність того, що k разів буде хибне твердження, менша за $\frac{1}{n-1}$.

Псевдопрості числа

Мала теорема Ферма Якщо n - просте, то $x^{n-1} \circ 1 \pmod{n}$ для довільного $x \mathbf{\hat{I}} \quad Z_n^*$. Непарне складене n називається n севдопростим за основою x, якщо $x^{n-1} \circ 1 \pmod{n}$, $x \mathbf{\hat{I}} \quad Z_n^*$

Деякі складені числа є псевдопростими за довільною основою $x \hat{\mathbf{I}} \ Z_n^*$. Вони називаються *числами Кармайкла*. Найменше з них – 561 = 3 **1** 17.

Критерій Ейлера стверджує: якщо n - непарне просте, то $\frac{\sqrt{n}}{2}$ $\dot{\pm}$ $\frac{1}{2}$ $\cot n$ для

довільного x $\hat{\mathbf{I}}$ Z_n^* .

Непарне складене n називається nсевдопростим числом Ейлера за основою x, якщо

$$\sum_{n=1}^{\infty} \frac{1}{2} \pmod{n}, x \hat{\mathbf{1}} Z_n^*$$

Нехай n - непарне і n - $1=2^st$, де t - непарне. Нехай $x\,\hat{\mathbf{l}}\, Z_n^*$.

Якщо або x^{t} о $1(\bmod n)$, або існує j \mathbb{I} [0,s] таке, що $x^{2^{j}t}$ о - $1(\bmod n)$, то n називається сильно псевдопростим числом за основою x.

Теорема.

- 1. Кожне псевдопросте число Ейлера за основою x є також псевдопростим Ферма за основою x.
- 2. Сильно псевдопросте число за основою x є також псевдопростим Ейлера за основою x.
- 3. Непарне складене число n є сильно псевдопростим за основою x щонайбільше для четвертої частини всіх x [[1, n 1].

Доведено, що лише число 3 215 031 751 $\,\varepsilon$ сильно псевдопростим за кожною із основ 2, 3, 5, 7 серед чисел, менших за $25\,{}^4\,0^9$. Тому для тестування простоти числа $n < 25\,{}^4\,0^9$ достатньо перевірити його на сильну псевдопростість за основами 2, 3, 5 та 7.

Ймовірнісний тест Міллера-Рабіна

Нехай n - непарне натуральне число і n - 1 = $2^s t$, де t - непарне. Сформулюємо алгоритм тестування числа n на простоту.

- 1. Вибрати випадкове число $x \, \bar{\mathbf{I}} \, [1, n-1].$
- 2. Якщо $HCД(x,n)^{-1}$ 1, тоді алгоритм завершити з результатом n складене.
- 3. Обчислити $y_0 = x^t \pmod{n}$.
- 4. Якщо y_0 军 $1 \pmod{n}$, тоді алгоритм завершити з результатом n просте.
- 5. Обчислювати $y_1 = y_0^2 (\bmod n), ..., y_j = y_{j-1}^2 (\bmod n)$, доки при деякому j матимемо: y_j 军 $1 (\bmod n)$.
- 6. Якщо y_j о $1(\bmod n)$, то n складене, а якщо y_j о $1(\bmod n)$, то n просте.

Для простого n тест Міллера-Рабіна завжди дає позитивний результат.

У випадку складеного n тест може зробити неправильний висновок з імовірністю не більшою за $\frac{1}{4}$.