СВТ, Домашнее задание №1

Агеев Николай, 303 группа

21 марта 2025 г.

1 Описание задачи

Требуется численно решить одномерную краевую задачу Дирихле для уравнения Лапласа:

$$\begin{cases} -u''(x) = f(x), & x \in (0;1) \\ u(0) = a, \ u(1) = b \end{cases}$$

Протестировать программу требуется на функции $u(x) = \sin x$. Таким образом, правая часть в системе равна $f(x) = -u''(x) = \sin x$.

2 Описание метода

2.1 Аппроксимация уравнения Лапласа

Решение краевой задачи нужно искать с помощью метода конечных разностей. На отрезке [0;1] вводится равномерная сетка $\{x_0,x_1,\ldots,x_N\}$, где $x_i=ih,\ h=1/N$ - шаг сетки. Вводятся дискретные неизвестные $y_i=u(x_i),\ i=0,1,2,...,N$. В каждой точке $x_i,\ i=1,...,N-1$ вторая производная функция приближается формулой конечных разностей по трём точкам:

$$u''(x_i) \approx \frac{y_{i-1} - 2y_i + y_{i+1}}{h^2}$$

Таким образом получается дискретная аппроксимация уравнения:

$$-\frac{y_{i-1} - 2y_i + y_{i+1}}{h^2} = f(x_i)$$

2.2 Решение системы

С учётом граничных условий система для дискретного решения принимает вид

$$\frac{1}{h^2} \begin{bmatrix} 2 & -1 & & & & \\ -1 & 2 & -1 & & & \\ & -1 & 2 & -1 & & \\ & & & \dots & & \\ & & & -1 & 2 & -1 \\ & & & & -1 & 2 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \dots \\ y_{N-2} \\ y_{N-1} \end{bmatrix} = \begin{bmatrix} f(x_1) + a/h^2 \\ f(x_2) \\ f(x_3) \\ \dots \\ f(x_{N-2}) \\ f(x_{N-1}) + b/h^2 \end{bmatrix}$$

Данная система с трёхдиагональной матрицей решается методом прогонки. Компоненты искомого вектора y связаны соотношениями

$$y_i = \alpha_{i+1}y_{i+1} + \beta_{i+1}, \quad i = N-1, N-2, \dots, 1.$$

Из подстановки этих соотношений в систему находятся следующие соотношения:

$$\alpha_i = \frac{-B}{A\alpha_{i-1} + C}$$

$$\beta_i = \frac{f_i - A\beta_{i-1}}{A\alpha_{i-1} + C}$$

, где A,B и C - значения на нижней, верхней и главной диагоналях соответственно (в конкретной задаче $A=B=-1,\ C=2$).

Таким образом, путём вычисления чисел $\alpha_1,...,\alpha_{n-1}$ и $\beta_1,...,\beta_{n-1}$ в прямом порядке, а затем чисел $y_{n-1},...,y_1$ в обратном порядке, можно решить вышеописанную систему с трёхдиагональной матрицей.

3 Результаты

На построенном графике можно увидеть зависимость C-нормы и дискретной L2-нормы ошибки решения от числа отрезков сетки N.

Рис. 1: Зависимость С-нормы и дискретной L2-нормы ошибки решения от N

N	С-норма	L2-норма
8	7.711480319994024e-05	0.00015853731268067868
16	1.9527005310160384e-05	5.6025866704240535e-05
32	4.881036226200841e-06	1.9805395130868587e-05
64	1.2202947158312938e-06	7.0020117296487744e-06
128	3.0514463944530945e-07	2.4755623564508607e-06
256	7.628601383924405e-08	8.752417478909127e-07
512	1.907150082303133e-08	3.094446602983054e-07
1024	4.7678090364655645e-09	1.0940435300766819e-07
2048	1.1923435572214203e-09	3.869228273675233e-08
4096	3.0025071318107166e-10	1.3779491004256964e-08
8192	7.818268255022076e-11	5.123022464215595e-09
16384	3.362587985833443e-11	3.2387394519678575e-09
32768	8.972789178329776e-11	9.649261583665113e-09
65536	1.8768331333518518e-10	3.2491817544386773e-08
131072	2.3339774557484816e-10	2.332949725552739e-08
262144	9.160457725698734e-09	2.414226184246755e-06
524288	1.947166099469655e-07	9.131482374945842e-05

Таблица 1: Зависимость С-нормы и дискретной L2-нормы ошибки решения от N

На из графика и таблицы видно, что обе нормы ошибки решения уменьшаются с ростом числа отрезков сетки, но начиная с N=16384 ошибка растёт. Это происходит из-за большого роста числа обусловленности трёхдиагональной матрицы, с которой решается система.

4 Выводы

Написаны функции для численного решения уравнения Лапласа, протестированы на функции $u(x) = \sin x$, построены графики норм ошибок и приведена таблица со значениями ошибок на разном числе отрезков сетки.