Modular Network Models for Class Dependencies in Software

Rodrigo Souza, Dalton Guerrero, Jorge Figueiredo

Departamento de Sistemas e Computação

Universidade Federal de Campina Grande

Campina Grande, Brazil

rodrigorgs@gmail.com, dalton@dsc.ufcg.edu.br, abrantes@dsc.ufcg.edu.br

Abstract—Software clustering algorithms can automatically decompose a software system into modules by analyzing the network of dependencies between its components (e.g., classes in object-oriented systems). Empirical evaluation of these algorithms is difficult because few software systems have reference decompositions to be compared with the decompositions found by the algorithms. Alternatively, the algorithms can be evaluated by applying them on computer-generated networks with built-in decompositions, but the validity of this approach depends on the similarity between real and computer-generated networks. In this paper we present three network models and show that, with a proper choice of parameters, they can generate networks that are indistinguishable from class dependency networks.

Keywords-software clustering; empirical evaluation; complex networks.

I. INTRODUCTION

Large software systems need to be decomposed in modules in order to be effectively maintained by groups of developers working concurrently. Software clustering algorithms [1], also known as architecture recovery algorithms, find suitable decompositions by analyzing the dependencies between components in a software system (e.g., classes in object-oriented systems) and then grouping together highly interdependent components.

Although many software clustering algorithms have been proposed, there is little empirical evaluation regarding the external quality of the decompositions they find. One important test for a software clustering algorithm is to apply it to a collection of software systems with known reference decompositions made by experienced developers [1]. It is expected that a good algorithm finds decompositions that are similar to reference decompositions, which can be measured by a similarity metric such as MoJo or EdgeSim [2].

Unfortunately, there are few publicly available reference decompositions [1] and, as a result, there are few studies that compare software clustering algorithms. Also, because it is costly to obtain reference decompositions for large systems, most studies test the algorithms with a couple of small and medium systems [1], [3].

An alternative approach is to run the algorithms on synthetic, i.e., computer- generated, component dependency

networks with built-in reference decompositions. This approach enables one to test algorithms with arbitrarily large samples in a controlled manner. Nevertheless, this approach is often overlooked, mainly because networks synthesized by naive random network models are very dissimilar from real component dependency networks.

In this paper, we show that three recently proposed network models are capable of synthesizing networks that resemble software component dependency networks. For the sake of simplicity, we limit our analysis to networks of static dependencies between classes in object-oriented systems written in Java.

The paper is organized as follows: Section II summarizes main characteristics of the three network models. Section III demonstrates a method to tell if a network resembles a software component dependency network. Section IV shows empirically that the three models synthesize networks that resemble software component dependency networks. Section V discusses the impact of this research and future work.

II. NETWORK MODELS

Network theory studies general properties of many types of networks by using statistical analysis. Of special interest are the so called scale-free networks, i.e., networks with a highly heterogeneous distribution of the number of edges per vertex. Scale-free networks have been found in many domains, including sociology, biology, technology, linguistics, and software. It has been found that class dependency networks, represented as directed unweighted graphs, are scale-free [4]. Thus, the study of the structure of object-oriented software systems can benefit from the vast literature available about scale-free networks.

Scale-free network models are algorithms that can be proven, either formally or empirically, to synthesize networks that are scale-free. Although many scale-free network models have been proposed, we were able to find in the literature only two network models with built-in modules: CGW [5] and LFR [6]. Also, we adapted a simple and flexible model, BCR [7], to produce modules. We called the new model BCR+.

Figure 1. The 13 network triads.

The networks generated by the three models are represented as directed unweighted graphs with modules, which makes them suitable for testing software clustering algorithms. All models are controllable by a set of parameters, including number of vertices and number of modules. Parameters specific to each model influence network characteristics such as number of edges and proportion of external edges (edges connecting vertices from distinct modules).

III. CHARACTERIZATION OF SOFTWARE NETWORKS

In the remaining of this paper, we will use the expression "software network" to refer to a network of static dependencies between classes of a software system, in contrast to networks studied in other domains.

Our research hypothesis is that at least one of the presented models can synthesize networks that are similar to software networks. A central issue, thus, is how to measure similarity between networks.

We already know that the models synthesize networks that, just like software networks, are scale-free. This single property, though, is insufficient to prove the hypothesis, since many known scale-free networks are not software networks (e.g., biologic networks). Therefore, the similarity metric should be able to distinguish between software and non-software networks.

In this section we present a similarity metric and validate it by applying it to a data set containing both software and non-software networks.

A. Similarity Between Networks

In a recent work, Milo et al. [8] proposed to characterize networks by analyzing their triad concentration. A triad is a network with three vertices in which all vertices are connected. There are only 13 distinct triads, one for each possible configuration of directed edges, as shown in Figure 1.

By counting how many times each triad appears in a network, one can build a triad concentration profile (TCP), which is a vector with 13 numbers that summarize the local structure of the network. Figure 2 shows the TCP for networks from two distinct domains.

Following the work by Milo et al. [8], similarity between two networks is measured by computing Pearson's correlation coefficient between the corresponding TCPs, which

Triad Concentration Profiles

Figure 2. Triad concentration profiles (TCP) for two networks. On the left, network extracted from the software system JabRef, version 2.5b2. On the right, word adjacency network for the Japanese language [8].

yields a value between -1 (most dissimilar) and 1 (most similar):

$$similarity(a, b) = cor(TCP(a), TCP(b)),$$

where a and b are networks, TCP(x) is the triad concentration profile for network x, and cor(x, y) is Pearson's correlation coefficient.

B. Data Set

To support the evaluation of the metric, we have collected 131 networks from many different domains. The networks are described in detail at http://bit.ly/7DPW5X.

- 1) Software networks: We have collected 65 software systems written in Java, with size ranging from 111 to 35,363 classes. Java was chosen for being a popular programming language in which many open source systems have been written. The software networks, representing static dependencies between classes, were extracted with the tool Dependency Finder (http://depfind.sf.net).
- 2) Non-software networks: We have collected 66 networks from distinct domains, such as biology, sociology, technology, and linguistics, with size ranging from 32 to 18,163 vertices. These networks are freely available on the Internet and have been previously studied in the literature.

C. Evaluation of the Similarity Metric

For the purposes of this research, a similarity metric must fulfill two conditions: (i) it must yield high similarity between software networks, and (ii) it must yield lower similarity between software networks and networks from other domains.

Using the data set we can define S-score, a metric that represents how much a particular network resemble software networks. It is defined as the average similarity between the network and a sample of software networks:

$$\text{S-score}(a) \ = \ \frac{\displaystyle\sum_{s \in S} \text{similarity}(a,s)}{|S|},$$

where S is the set of sample software networks, and |S| is the number of networks in S. In this work we use the full software data set consisting of 65 software networks as our sample.

We used the tool igraph (http://igraph.sf.net/) to extract the TCP for each network in the data set. Then, we measured the S-score for each software network, which ranged from 0.83 to 0.98. The average S-score was 0.97 and the standard deviation, 0.03. The high average S-score and the low standard deviation show that the metric successfully characterizes software networks by capturing their common structural patterns.

Then we measured the S-score for each non-software network. The majority of the networks (97.0%) had a S-score lower than 0.83, which is the lowest S-score for software networks in the sample. Some networks, e.g., the friendship networks between students, showed negative S-score, meaning that they are very different from software networks.

Two networks, though, showed high S-score: the network of links between blogs on politics, with S-score 0.97, and the neural network of the worm C. Elegans, with S-score 0.88. Further investigation is needed in order to discover the reasons behind the high values and whether auxiliary metrics can differentiate these networks from software networks.

D. A Network Classification Model

Although the S-score of a network tells how close it is from software networks, it does not tell whether a network is close enough that it can be considered software-like. What is needed is a binary classification model that distinguishes software-like networks from the other networks. The distinction can be made by choosing a suitable S-score threshold. Networks with S-score below the threshold are considered dissimilar from software networks; only networks with S-score above the threshold are considered software-like.

As we have shown on the previous section, there are non-software networks with high S-scores, hence it is impossible to build a perfect classification model, regardless of the threshold. Nonetheless, a classification model can be evaluated by its precision and recall. Consider our data set with both software and non-software networks. Let S be the set of all software networks, and L the set of all networks that were classified by the model as software-like. The precision of the model is

precision:
$$\frac{S \cap L}{L}$$
,

and the recall is

recall:
$$\frac{S \cap L}{S}$$
.

Increasing the threshold has the effect of reducing the recall, because fewer software networks are classified as software-like. Decreasing the threshold has the effect of reducing the precision, because more non-software networks are classified as software-like.

The choice of a proper threshold, thus, depends on whether it is more important to have high precision or high recall. Because our research hypothesis is that networks synthesized by the presented models are software-like, higher precision means a stronger test, as fewer networks are classified as software-like.

To get 100% precision, the threshold needs to be 0.98, so the non-software network with highest S-score is below the threshold. The recall in this case, though, would be too low, because most software networks would be misclassified. So we chose the value 0.88, that is immediately above the second greater S-score for a non-software network. With this value, we have both high recall (95.4%) and high precision (96.9%).

IV. EVALUATION OF NETWORK MODELS

In the previous section it was shown that many networks, although scale-free, can be distinguished from software networks by a simple classification model based on triad concentration profiles. In this section we show empirically that the three network models previously presented can synthesize networks that are indistinguishable from software networks. The experiment consists of synthesizing networks using many combinations of parameters from the three models, and then classifying each network as software-like or non software-like.

Because the possible combinations of parameter values are infinite, we have set the number of vertices to 1000 and then varied the remaining parameters in discrete steps. The number of modules varied between 2, 4, 8, 16, and 32. For each of the remaining model-specific parameters, at least 3 values were chosen. These values were chosen either to cover the domain for the parameter or, when the domain was infinite, were tuned to approximate characteristics networks in the software network data set. In total, 9,500 networks were generated by the BCR+ model, 38,790 by the CGW model, and 1,296 by the LFR model.

A. Results

Each synthesized network was classified as software-like or non software-like, using the classification model presented in section III-D. The results are summarized in Table I.

 $\label{thm:local_transformation} Table\ I$ Results for the classification of synthetic networks

Model	Networks classified as software-like
BCR+	21.18%
CGW	19.40%
LFR	31.25%

Table II

Rules for predicting the classification of a synthetic network. S stands for software-like and N stands for non software like; α , p_1 , and γ are parameters.

Model	Rule	Accuracy
BCR+	$\begin{array}{l} \alpha \geq 0.7 \Rightarrow S \\ \alpha < 0.7 \Rightarrow N \end{array}$	82.4%
CGW	$p_1 \ge 0.5 \Rightarrow S$ $p_1 < 0.5 \Rightarrow N$	82.3%
LFR	$\begin{array}{c} \gamma < 2.44 \Rightarrow S \\ \gamma \ge 2.44 \Rightarrow N \end{array}$	78.9%

All models synthesized both software-like and non software-like networks. The proportion of software-like networks was greater than 19% for all models, discarding the possibility that this result was obtained by pure chance. (The specific proportion of software-like networks for each network should not be interpreted as a measure of quality: with these results we cannot tell whether one model is better than the others.)

Of course, this result is of little practical value unless there is a relationship between parameter values and S-score. For the purpose of this research, it is important to know which values are more likely to lead to software-like networks.

The algorithm 1R [9] from machine learning was used to help discover such relationship. It analyzes the parameters and the classification of each network and finds a rule that relates the value of a single parameter with the classification (software/non-software). Such rules can be evaluated according to their accuracy, i.e., the proportion of networks that are correctly classified. The rules found by 1R are shown in Table II.

The rules are very simple and, thus, easy to follow. Despite their simplicity, they have high accuracy, approximately 80% for all models.

V. CONCLUSION AND FUTURE WORK

We have shown empirically that network models found in the literature can synthesize networks that resemble the network of static dependencies between classes in objectoriented systems. This result supports the use of synthetic networks in the evaluation of software clustering algorithms.

The use of synthetic data is common in distributed computing research, but still under-explored in software engineering research. Because many reverse engineering tasks rely on dependency data, we expect this work to have impact beyond the software clustering community.

We accept that it is important to evaluate the algorithms with real software networks, but we argue that the use of synthetic networks in a complementary manner can give researchers new insights about the algorithms. First, the use of models allows the creation of large test sets, thus diminishing the small sample effects. Moreover, the networks are created in a controlled way, according to model parameters, so it is possible to study the behavior of the algorithms with different parameter values.

In a future work, we intend to use synthetic networks in the evaluation of software clustering algorithms that were previously tested with real networks. After that we will be able to compare the results obtained by the two approaches.

ACKNOWLEDGMENT

Thanks to Christina, Garcia, Charles, Fabiola, Italo, Roberto, Jemerson, Sandra, and Lancichinetti.

REFERENCES

- [1] N. Anquetil and T. C. Lethbridge, "Experiments with clustering as a software remodularization method," in *Proc. Sixth Working Conference on Reverse Engineering*, 1999, pp. 235–255.
- [2] B. S. Mitchell and S. Mancoridis, "Comparing the decompositions produced by software clustering algorithms using similarity measurements," in *Proc. IEEE International Conference on Software Maintenance*, 2001, pp. 744–753.
- [3] R. A. Bittencourt and D. D. S. Guerrero, "Comparison of graph clustering algorithms for recovering software architecture module views," in CSMR '09: Proceedings of the 2009 European Conference on Software Maintenance and Reengineering. Washington, DC, USA: IEEE Computer Society, 2009, pp. 251–254.
- [4] C. R. Myers, "Software systems as complex networks: structure, function, and evolvability of software collaboration graphs." *Phys Rev E Stat Nonlin Soft Matter Phys*, vol. 68, no. 4 Pt 2, p. 046116, Oct 2003.
- [5] T. Chen, Q. Gu, S. Wang, X. Chen, and D. Chen, "Module-based large-scale software evolution based on complex networks," 8th IEEE International Conference on Computer and Information Technology, pp. 798—803, 2008.
- [6] A. Lancichinetti and S. Fortunato, "Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities," 2009. [Online]. Available: http://arxiv.org/abs/0904.3940
- [7] B. Bollobás, C. Borgs, J. Chayes, and O. Riordan, "Directed scale-free graphs," in SODA '03: Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2003, pp. 132–139.
- [8] R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzenshtat, M. Sheffer, and U. Alon, "Superfamilies of evolved and designed networks." *Science*, vol. 303, no. 5663, pp. 1538–1542, March 2004. [Online]. Available: http://dx.doi.org/10.1126/science.1089167

[9] R. C. Holte, "Very simple classification rules perform well on most commonly used datasets," *Mach. Learn.*, vol. 11, no. 1, pp. 63–90, April 1993. [Online]. Available: http://dx.doi.org/10.1023/A:1022631118932