A type scheme $\forall \{\alpha_1,...,\alpha_n\}(\tau')$ generalises a type τ if τ can be obtained from τ' by substituting types for the type variables $\alpha_1,...,\alpha_n$: $\tau = \tau'[\tau_1/\alpha_1,...,\tau_n|\alpha_n]$.

For the given $\sigma_1, \sigma_2, \tau_1, \tau_2$ we have: $\sigma_1 > \tau_1$, using $\alpha \mapsto (\alpha \rightarrow \beta)$, $\beta \mapsto \alpha$ $\sigma_1 > \tau_2$, using $\alpha \mapsto (\beta \rightarrow \alpha)$, $\beta \mapsto \beta$ $\sigma_2 \neq \tau_1$, because if $\sigma_2 > \tau$ then τ must be of the form ? $\rightarrow \beta$ (and $\beta \neq \alpha$) $\sigma_2 > \tau_2$, using $\alpha \mapsto (\beta \rightarrow \alpha)$.

Write "Tok" to mean the free type variables in Ita are in Itr.

(1) Axiom for variables:

Thus: τ if Tok and $(x, \sigma) \in \Gamma_{ta}$ with $\sigma > \tau$ and type vars of τ in Γ_{tv} (2) Axiom for boolean values b := tme |false:

[rb:bool if lok

(3) Rule for conditionals!

THMI: bool THM2: T THM3: T

[rif M, then Mz else M3: 7

(4) Rule for function abstractions:

$$\frac{\Gamma, \alpha : \tau_1 \vdash M : \tau_2}{\Gamma \vdash \lambda \alpha(M) : \tau_1 \rightarrow \tau_2} \quad \text{if } \alpha \notin \text{dom}(\Gamma_{t\alpha})$$

where
$$\int (\Gamma, x : \tau_1)_{tv} \stackrel{\triangle}{=} \Gamma_{tv}$$

$$\left((\Gamma, x : \tau_1)_{ta} \stackrel{\triangle}{=} \Gamma_{ta} [x \mapsto \forall \phi(\tau_1)] \right)$$

(s) Rule for function applications:

$$\frac{\Gamma \vdash M_1 : \tau_1 \rightarrow \tau_2 \quad \Gamma \vdash M_2 : \tau_1}{\Gamma \vdash M_1 M_2 : \tau_2}$$

(6) Rule for let-expressions:

$$\frac{A, \Gamma \vdash M_1 : \tau_1 \quad \Gamma_1 x : \forall A(\tau_1) \vdash M_2 : \tau_2}{\Gamma \vdash \text{let} \ x = M_1 \text{ in } M_2 : \tau}$$

if An Tev = \$\phi\$ and \$x\infty dom(\text{Fea})

where
$$\{(A,\Gamma)_{tv} \triangleq A \cup \Gamma_{tv} \}$$

 $\{(A,\Gamma)_{ta} \triangleq \Gamma_{ta} \}$

and $f, x: \forall A(\tau_1)$ is as above.

(8)

The ML type system allows let-bound variables to be used polymorphically in the body of the let-expression; the same is not true for λ -bound variables _ all occurrences of a λ -bound variable in the body of a λ -abstraction must have the same implicit type. For example

re have $\{\alpha\}, \emptyset \vdash \text{let } x = \lambda y(y) \text{ in } \alpha x : \alpha \to \alpha$ implicitly of type $(\alpha \to \alpha) \to (\alpha \to \alpha)$ type $\alpha \to \alpha$

as witnessed by proof: $\frac{\{\alpha,\beta\},\{y:\beta\}\vdash y:\beta}{\{\alpha,\beta\},\{y:\beta\}\vdash y:\beta} \xrightarrow{(4)} \frac{[+1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})}{[+1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \xrightarrow{[+1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \frac{[+1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})}{[+1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \xrightarrow{[+1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \frac{[+1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})}{[+1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \xrightarrow{[+1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \frac{[+1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})}{[+1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \xrightarrow{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \frac{[+1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})}{[+1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \xrightarrow{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \frac{[+1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})}{[+1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \xrightarrow{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \frac{[+1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})}{[+1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \xrightarrow{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)}]} \frac{[+1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})}{[-1:(\alpha+\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \xrightarrow{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)}]} \frac{[+1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})}{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \xrightarrow{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)}]} \frac{[+1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})}{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \xrightarrow{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)}]} \frac{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})}{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \xrightarrow{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)}]} \frac{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})}{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \xrightarrow{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)}]} \frac{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})}{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \xrightarrow{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)}]} \frac{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})}{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \xrightarrow{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)}]} \frac{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})}{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \xrightarrow{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)}]} \frac{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})}{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \xrightarrow{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \frac{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})}{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \xrightarrow{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \frac{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})}{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \xrightarrow{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \frac{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})}{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \xrightarrow{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \frac{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})}{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \xrightarrow{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \frac{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})}{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \xrightarrow{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \frac{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})}{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \xrightarrow{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)\rightarrow(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \frac{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})}{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \xrightarrow{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)\rightarrow(\alpha+\alpha)\rightarrow(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \xrightarrow{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)\rightarrow(\alpha+\alpha)\rightarrow(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \xrightarrow{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)\rightarrow(\alpha+\alpha)\rightarrow(\alpha+\alpha)\rightarrow(\alpha+\alpha)\rightarrow(\alpha+\alpha)^{(1)})} \xrightarrow{[-1:(\alpha+\alpha)\rightarrow(\alpha+\alpha)\rightarrow(\alpha+\alpha)\rightarrow(\alpha+\alpha)\rightarrow(\alpha+\alpha)$

whereas $\Gamma + (\lambda x(xx))(\lambda y(y)) : T$ holds for no τ . For if there were such a τ , the proof of typing would have to have the following structure

 $\frac{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{5}}{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}} (s)$ $\frac{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{5}}{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}} (s)$ $\frac{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{5}}{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}} (s)$ $\frac{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{5}}{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}} (s)$ $\frac{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{5}}{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}} (s)$ $\frac{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{5}}{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}} (s)$ $\frac{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{5}}{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}} (s)$ $\frac{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{5}}{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}} (s)$ $\frac{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{5}}{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}} (s)$ $\frac{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{5}}{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}} (s)$ $\frac{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{5}}{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}} (s)$ $\frac{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{5}}{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}} (s)$ $\frac{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{5}}{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}} (s)$ $\frac{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{5}}{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}} (s)$ $\frac{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{5}}{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}} (s)$ $\frac{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{5}}{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}} (s)$ $\frac{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{5}}{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}} (s)$ $\frac{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{5}}{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}} (s)$ $\frac{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}}{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}} (s)$ $\frac{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}}{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}} (s)$ $\frac{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}}{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}} (s)$ $\frac{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}}{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}} (s)$ $\frac{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}}{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}} (s)$ $\frac{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}}{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}} (s)$ $\frac{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}}{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}} (s)$ $\frac{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}}{\Gamma_{1}x : \tau_{6}} (s)$ $\frac{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}}{\Gamma_{1}x : \tau_{6}} (s)$ $\frac{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}}{\Gamma_{1}x : \tau_{6}} (s)$ $\frac{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}}{\Gamma_{1}x : \tau_{6}} (s)$ $\frac{\Gamma_{1}x : \tau_{3} \vdash x : \tau_{6}}{\Gamma_{1}x : \tau_{6}} (s)$ $\frac{\Gamma_{1}x : \tau_{6}x : \tau_{6}}{\Gamma_{1}x : \tau_{6}} (s)$ $\frac{\Gamma_{1}x : \tau_{6}x : \tau_{6}}{\Gamma_{1}x : \tau_{6}} (s)$ $\frac{\Gamma_{1}x : \tau_{6}x : \tau$

with $\forall \phi(\tau_3) > \tau_5 - so \quad \tau_3 = \tau_5$ $\forall \phi(\tau_3) > \tau_6 - so \quad \tau_3 = \tau_6$ hence we and $\tau_5 = \tau_6 \rightarrow \tau_4$ would have $\tau_3 = \tau_3 \rightarrow \tau_4$ & no such τ_3 (an exist (by counting # A \rightarrow symbols on LHS & RHS).