Automatically Identifying and Georeferencing Street Maps on the Web

Sneha Desai, Craig A. Knoblock, Yao-Yi Chiang, Ching-Chien Chen and Kandarp Desai

University of Southern California
Department of Computer Science and
Information Sciences Institute

Outline

- Introduction and Motivation
- Overall Approach and Algorithms
- Experimental Results
- Related Work
- Conclusion and Future Work

Introduction and Motivation

- Various street maps are available on the web, but many of them
 - cannot be easily distinguished with other images
 - lack the metadata that describes the geocoordinates and scales

Introduction and Motivation

- In this work, we
 - identify the street maps among different images
 - apply our previous work to automatically extract road intersections from the street maps (Chiang et al.)
 - apply conflation techniques to find the geocoordinates and align the streets on the maps with imagery (Chen et al.)

- Introduction and Motivation
- Overall Approach and Algorithms
- Experimental Results
- Related Work
- Conclusion and Future Work

Identifying Street Maps

Law's Texture Classification Algorithm

(K. Laws. 1980)

- Street maps have the unique textures
 - lines, labels, characters
- Generate 75 different attributes (25R,25G,25B) to distinguish these textures on the images

Identifying Street Maps

- Support Vector Machine (Joachims, 1999)
 - Machine learning classification
 - Given training examples labeled either "yes" or "no", SVM creates a hyperplane to separate data into two classes
 - The dimension of the hyperplane is the number of attributes

Identifying Street Maps

- We train on one set of images and test on a separate set of images
- Training:
 - We provided 1150 different positive and negative examples of images
 - 75 attributes per image
- Classification:
 - Using the trained SVM model to classify test images

Outline

- Introduction and Motivation
- Overall Approach and Algorithms
- Experimental Results
- Related Work
- Conclusion and Future Work

Experimental Results

- On the stage of
 - Identifying street maps,
 100% recall, 95.45% precision
 - Georeferencing,
 100% recall, 71.43% precision
- The average computation time for identifying one street map 29.65 seconds

Outline

- Introduction and Motivation
- Overall Approach and Algorithms
- Experimental Results
- Related Work
- Conclusion and Future Work

Related Work

- "Functionality Based Web Image Categorization", Hu et al.
 - Focuses on frequency domain and image features such as uniformity, size, and aspect ratio
 - These features are not sufficient to distinguish different types of map
- "Webseer: an image search engine for the world wide web." Frankel et al.
 - Exploits image context (file name, size, type) and contents (most common color, color saturation and intensity)
 - These features are not as reliable as the image texture used in this work

Outline

- Introduction and Motivation
- Overall Approach and Algorithms
- Experimental Results
- Related Work
- Conclusion and Future Work

Conclusion

Main Contribution:

- Identification of the street maps
- Automatically georeferencing street maps
 - determine the geocoordinates, scales
 - align the map with satellite imagery

Future Work

We plan to:

- Classify the images into categories
 - political maps
 - weather maps
 - etc.
- Incorporate character recognition techniques

Thank you