SEMESTER-VI DEPARTMENT OF ELECTRONIC SCIENCE

Category I

(B.Sc. Honours in Electronics)

DISCIPLINE SPECIFIC CORE COURSE - 16: Digital Signal Processing

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title &	Credits	Credit distribution of the course			Eligibility criteria	Pre- requisite
Code		Lecture	Tutorial	Practical/ Practice		of the course (if any)
Digital Signal Processing	4	3	-	1	Class XII passed with Physics + Mathematics/Applied Mathematics + Chemistry OR Physics + Mathematics/Applied Mathematics + Computer Science/Informatics Practices	Signals and Systems (DSC 9, Sem III)

Learning Objectives

The Learning Objectives of this course are as follows:

To introduce the techniques of modern digital processing that are fundamental to a wide variety of application areas. Special emphasis is placed on the basic concepts related to discrete-time signals and systems, the analysis of signals in time and frequency using Fourier and Z transform. Introduction to techniques involved in the architecture and design of digital filters.

Learning outcomes

The Learning Outcomes of this course are as follows:

- Grasp fundamentals of discrete time signals, linear time-invariant systems, Z-transform and Fourier transform
- Analyze linear time-invariant systems using Fourier and Z transform

- Understand the Design techniques of Digital FIR and IIR filters using direct methods and methods involving conversion of the analog filter into the digital filter by various transformations.
- Use DFT to perform frequency analysis of signals and application of FFT algorithms.

SYLLABUS OF ELDSC-16

Total Hours- Theory: 45 Hours, Practicals: 30 Hours

UNIT – I (10 Hours)

Discrete Time Sequences and Systems: Introduction to Discrete Time sequences, Properties of DT systems.

Fourier Transform: Fourier Transform, Properties of Fourier Transform, Inverse Fourier Transform, Transfer Function of LSI systems.

UNIT - II (12 Hours)

Z-Transform: Definition, Unilateral Z- transform, Region of Convergence and its properties, Properties of Z-Transform, Initial and final value theorem.

Inverse Z Transform: Long division, Partial fraction, and Residual methods. Parseval's Theorem and applications.

System Function: Linear constant coefficient difference equation, Representation and analysis of Discrete Time Systems, Stability, Causality, Realisation of Digital Linear Systems: Block diagram, signal flow graph, structure for IIR and FIR systems

UNIT – III (12 Hours)

Discrete Fourier Transform: DFT assumptions and Inverse DFT, magnitude and phase representation Matrix relations, relationship with Fourier Transform, Linear and circular convolution, properties of DFT, Computation of DFT. FFT Algorithms-Decimation in time FFT. Decimation in frequency FFT, FFT using radix 2 FFT — Butterfly structure, Concept of Gibb's phenomenon and word length effects.

UNIT – IV (11 Hours)

Digital Filters: Comparison of Analog and Digital Filters, Types of Digital Filters: FIR and Hanning, Hamming, Blackman, Design of IIR Filters by Approximation of Derivates, Impulse Invariant Method, Bilinear Transformation, Butterworth Filter.

Practical component (if any) – Digital Signal Processing (Scilab/MATLAB/Python other Mathematical Simulation software)

Learning outcomes

The Learning Outcomes of this course are as follows:

Simulate, synthesize and process signals using a software tool.

- Apply transform methods for representing signals and systems in the time and frequency domain.
- Simulation and design of FIR and IIR Filters

LIST OF PRACTICALS (Total Practical Hours- 30 Hours)

- 1. Write a program to generate discrete time Unit Sample, Unit Step, Unit ramp and Sinusoidal sequences.
- 2. Write a program to find the Fourier Transform of a sequence.
- 3. Write a program to find the pole-zero plot of a function.
- 4. Write a program to find a function's Z transform and inverse Z transform.
- 5. Write a program to find the circular convolution of two sequences.
- 6. Write a program to find the DFT of a sequence using the direct method.
- 7. Write a program to find the DFT of a sequence using FFT.
- 8. Magnitude Response of Low Pass Filter and High Pass Filter.
- 9. Design FIR Filter using Window Function.
- 10. Convert Analog Filter to Digital IIR Filter

Note: Students shall sincerely work towards completing all the above listed practicals for this course. In any circumstance, the completed number of practicals shall not be less than nine.

Essential/recommended readings

- 1. A.V. Oppenheim and Schafer, Discrete Time Signal Processing, Prentice Hall, 1999.
- 2. John G. Proakis and D.G. Manolakis, Digital Signal Processing: Principles, Algorithms and Applications, Prentice Hall, 2007.

Suggestive readings

- 1. S. Salivahanan, Digital Signal Processing, McGraw Hill, 2015.
- 2. Tarun Kumar Rawat, Digital Signal Processing, Oxford University Press, 2015.
- 3. Monson Hayes, Digital Signal Processing: Second Edition, Schaum's Outline Series

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.