Algebra II: Complementary exercises on Galois groups

April 29, 2022

Problem 1 (Computing Galois groups). Compute $G(L) = \operatorname{Aut}_{\mathbb{Q}}(L)$, list all subgroups H of G(L) and determine the corresponding intermediate field L^H for each of the following field extensions L over \mathbb{Q} :

- 1. $L = \mathbb{Q}(\sqrt[3]{2}),$
- 2. $L = \mathbb{Q}(\sqrt[4]{2}),$
- 3. L is the splitting field of $x^8 1$ over \mathbb{Q} ,
- 4. L is the splitting field of $x^3 2$ over \mathbb{Q} .
- 5. $L = \mathbb{Q}(e^{2\pi i/5}),$
- 6. $L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$.
- 7. L is the splitting field of $x^4 + 1$ over \mathbb{F}_3 .
- 8. $L = \mathbb{Q}(i + \sqrt{2}).$

- **Solution.** 1. Suppose that $L = \mathbb{Q}(\sqrt[3]{2})$. Note that $\sqrt[3]{2}$ is the root of the monic irreducible polynomial x^3-2 over \mathbb{Q} . The roots of x^3-2 in L are $\sqrt[3]{2}$. The group $\operatorname{Aut}_{\mathbb{Q}}(L)$ is trivial, has no non-trivial subgroups, and the field extension has no intermediate fields.
 - 2. Suppose that $L = \mathbb{Q}(\sqrt[4]{2})$. Note that $\sqrt[4]{2}$ is the root of the monic irreducible polynomial $x^4 2$ over \mathbb{Q} . The roots of $x^4 2$ in L are $\pm \sqrt[4]{2}$, so any non-trivial $\sigma \in \operatorname{Aut}_{\mathbb{Q}}(L)$ must map $\sqrt[4]{2}$ to $-\sqrt[4]{2}$. We write $\operatorname{Aut}_{\mathbb{Q}}(L) = \{id, \sigma\}$; in particular, $|\operatorname{Aut}_{\mathbb{Q}}(L)| = 2$. There is only one group of order 2, so $\operatorname{Aut}_{\mathbb{Q}}(L) \cong \mathbb{Z}_2$. The two subgroups of G are G and $\{id\}$. By considering the basis $\{1, \sqrt[4]{2}, \sqrt{2}, \sqrt[4]{8}\}$ of L over \mathbb{Q} , one can easily see that $L^G = \mathbb{Q}(\sqrt{2})$ and $L^{\{id\}} = L$.
 - 3. Suppose that L is the splitting field of x^8-1 . Since $x^8-1=(x-1)(x+1)(x^2+1)(x^4+1)$, $L=\mathbb{Q}(\zeta_8)$ where $\zeta_8=\sqrt{2}/2+i\sqrt{2}/2$ is a primitive 8th root of unity. It is a Galois extension since it is the splitting field of x^8-1 over a perfect field. The Galois group $\operatorname{Aut}_{\mathbb{Q}}(L)$ is isomorphic to the group $(\mathbb{Z}/8\mathbb{Z})^{\times}=(\mathbb{Z}/2\mathbb{Z})\times(\mathbb{Z}/2\mathbb{Z})$. We omit the discussion on trivial subgroups. It has 3 non-trivial subgroups, that are cyclic of order 2. One is generated by the automorphism σ_3 sending ζ_8 to ζ_8^3 . Notice that $\zeta_8+\zeta_8^3$ is fixed by the automorphism. Thus, the quadratic subfield $\mathbb{Q}(\sqrt{-2})$ is fixed by this automorphism. Then, by Galois correspondence, this subfield is the corresponding fixed field of the subgroup generated by σ_3 . The analysis of the other two cases should be similar. We omit it.
 - 4. This was discussed during the lectures, but we will go over some of the details again. Suppose that L is the splitting field of $x^3 2$ over \mathbb{Q} . We know that $L = \mathbb{Q}(\omega, \sqrt[3]{2})$, where $\omega = \exp(2\pi i/3)$. This is clearly a Galois extension. Since it is of degree 6, G is of order 6, say $G = \{id, \sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5\}$. There are two non-isomorphic groups of order 6: $\mathbb{Z}/6\mathbb{Z}$ and S_3 . The first is cyclic (and hence abelian), and the other is the permutation group on 3 elements (which is not abelian). To distinguish them, we can compute orders ($\mathbb{Z}/6\mathbb{Z}$ has an element of order 6 but S_3 does not!). The elements of $\operatorname{Aut}_{\mathbb{Q}}(L)$ are completely determined by their action on $\sqrt[3]{2}$ and ω ; furthermore this action must send roots of $x^3 2$ (and roots of $x^3 1$) to roots of $x^3 2$ (to roots of $x^3 1$ respectively). Therefore, the five non-trivial \mathbb{Q} -automorphisms of L are:

$$\sigma_{1}(\sqrt[3]{2}) = \sqrt[3]{2}\omega, \qquad \sigma_{2}(\sqrt[3]{2}) = \sqrt[3]{2}\omega^{2}, \qquad \sigma_{3}(\sqrt[3]{2}) = \sqrt[3]{2},$$

$$\sigma_{1}(\omega) = \omega, \qquad \sigma_{2}(\omega) = \omega, \qquad \sigma_{3}(\omega) = \omega^{2},$$

$$\sigma_{4}(\sqrt[3]{2}) = \sqrt[3]{2}\omega, \qquad \sigma_{5}(\sqrt[3]{2}) = \sqrt[3]{2}\omega^{2},$$

$$\sigma_{4}(\omega) = \omega^{2}, \qquad \sigma_{5}(\omega) = \omega^{2}.$$

A short calculation shows that $|\sigma_1| = 3$, $|\sigma_2| = 3$, $|\sigma_3| = 2$, $|\sigma_4| = 2$, and $|\sigma_5| = 2$. Thus, $Gal_{\mathbb{Q}}(L) \simeq S_3$. Since the non-trivial subgroups of S_3 are of order 2 or 3, they

¹Here, $|\mathrm{Aut}_{\mathbb{Q}}(L)| = 2 < 4 = [L:K]$, which confirms that this extension is not Galois.

should be cyclic groups. Explicitly:

$$G_1 = \langle \sigma_1 \rangle = \{id, \sigma_1, \sigma_2\}.$$

$$G_2 = \langle \sigma_2 \rangle = \{id, \sigma_2, \sigma_1\}.$$

$$G_i = \langle \sigma_i \rangle = \{id, \sigma_i\}, \text{ for } i = 3, 4, 5.$$

It is not surprising that $G_1 = G_2$, since $\sigma_1^2 = \sigma_2$, and \mathbb{Z}_3 has two generators. Hence, G has six subgroups (4 non-trivial subgroups). Since the extension is Galois, we know what the fixed fields for the trivial subgroups G and $\{1\}$ are. To compute the fixed fields for the non-trivial subgroups, pick a suitable basis of L. Then, one can show that $L^{G_1} = \mathbb{Q}(\omega)$, $L^{G_3} = \mathbb{Q}(\sqrt[3]{2})$, $L^{G_4} = \mathbb{Q}(\sqrt[3]{2}\omega^2)$, $L^{G_5} = \mathbb{Q}(\sqrt[3]{2}\omega)$.

- 5. Suppose that $L = \mathbb{Q}(e^{2\pi i/5})$. L is the 5th cyclotomic field which is Galois over \mathbb{Q} . Its Galois group is isomorphic to $(\mathbb{Z}/5\mathbb{Z})^{\times}$. So it is a cyclic group of order 4 since $\mathbb{Z}/5\mathbb{Z}$ is a finite field, which consists of the automorphisms sending $e^{2\pi i/5}$ to other 5th primitive roots of unity. It has two trivial subgroups, i.e., the trivial group and itself. You can easily compute their fixed fields. Its only non-trivial subgroup is a subgroup of order 2. By Galois correspondence, it corresponds to a quadratic extension over \mathbb{Q} . Since $e^{2\pi i/5} + e^{-2\pi i/5} = 2\cos(2\pi i/5) = -1/2 + \sqrt{5}/2$. This quadratic extension is $\mathbb{Q}(\sqrt{5})$.
- 6. Suppose that $L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Since L is the splitting field of $(x^2 2)(x^2 3)$ over a perfect field \mathbb{Q} , L/\mathbb{Q} is Galois. You can easily find that the Galois group is generated by two automorphisms σ_2, σ_3 where σ_2 sends $\sqrt{2}$ to $-\sqrt{2}$ and fixes $\sqrt{3}$ and σ_3 fixes $\sqrt{2}$ and sends $\sqrt{3}$ to $-\sqrt{3}$. Thus, the Galois group is isomorphic to $(\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$. For two trivial subgroups, the descriptions are similar. It has another three subgroups of order 2, which are generated by σ_2 , σ_3 , and $\sigma_2\sigma_3$, respectively. By Galois correspondence, the corresponding fixed subfields are $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\sqrt{3})$, and $\mathbb{Q}(\sqrt{6})$.
- 7. Suppose that L is the splitting field of $x^4 + 1$ over \mathbb{F}_3 . First, you easily check that $x^4 + 1$ is irreducible over \mathbb{F}_3 . So, the splitting field of $x^4 + 1$ over \mathbb{F}_3 is simply adding a root of $x^4 + 1$ to \mathbb{F}_3 . Thus, L/\mathbb{F}_3 is of degree 4. The Galois group by our discussion of finite fields, must be a cyclic group of order 4, which is generated by the Frobenius automorphism $\sigma \colon x \mapsto x^3$. We omit the discussion of trivial subgroups. Thus, the only non-trivial subgroup is cyclic of order 2, which is generated by $\sigma^2 \colon x \mapsto x^9$. The fixed field is obviously seen to be \mathbb{F}_9 under the identification.
- 8. Note that $\sqrt{2} + i$ is a root of the irreducible polynomial $f(x) = x^4 2x^2 + 9$, so [L:K] = 4. Furthermore, f splits completely in L so L is a splitting field for f over \mathbb{Q} . Since \mathbb{Q} is a perfect field, this implies that L:K is a Galois extension, and so

 $G = \operatorname{Aut}_{\mathbb{Q}}(L)$ has order 4. Explicitly, $G = \{Id, \sigma_1, \sigma_2, \sigma_3\}$ where

$$\sigma_1(i) = i,$$
 $\sigma_2(i) = -i,$ $\sigma_3(i) = -i,$ $\sigma_1(\sqrt{2}) = -\sqrt{2},$ $\sigma_2(\sqrt{2}) = \sqrt{2},$ $\sigma_3(\sqrt{2}) = -\sqrt{2}.$

In particular, each of the automorphisms σ_i has order 2, so $G \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. The proper subgroups of G are isomorphic to \mathbb{Z}_2 ; explicitly they are $G_1 = \{Id, \sigma_1\}, G_2 = \{Id, \sigma_2\}, G_3 = \{Id, \sigma_3\}$. In order to compute L^{G_i} , we choose a convenient basis for elements in L. It is easy to see that the set $\{1, \sqrt{2}, i, i\sqrt{2}\}$ is a \mathbb{Q} -basis of L. Then:

$$L^{G_1} = \mathbb{Q}(i), \quad L^{G_2} = \mathbb{Q}(\sqrt{2}), \quad \text{and} \quad L^{G_3} = \mathbb{Q}(i\sqrt{2}).$$