Lecture 15

Theorem: If X is a cts RV and

1) g is invertible

(2) g is differentiable

then

$$f_{\chi}(y) = f_{\chi}(g(y)) \left| \frac{dg}{dy} \right|$$

et. Care 1: 9 increasing

prev. CDF thrm said

$$F_{yyy} = F_{x}(g^{-1}(y))$$

$$f_{y}(y) = \frac{df_{y}}{dy} = f_{x}(g'(y)) \left| \frac{dg'}{dy} \right|$$

Case 2: 9 decreasing

$$F_{y}(y) = 1 - F_{x}(g^{-1}(y))$$

$$f_{y}(y) = \frac{dF_{y}}{dy} = -f_{x}(g^{-1}(y)) \frac{dg^{-1}}{dy}$$

$$= f_{x}(g^{-1}(y)) \frac{dg^{-1}}{dy}$$

Ex.
$$\chi \sim \text{Gamma}(k, \lambda)$$

$$f_{\chi}(\chi) = \frac{\lambda e^{-\lambda \chi}(\lambda \chi)}{\Gamma(k)} \chi > 0$$

$$f_{\chi}(x) = \frac{\lambda e^{-\lambda x}(\lambda x)}{P(k)} \chi > 0$$

$$\gamma = \gamma$$

$$g(x) = \frac{1}{2} = y \Rightarrow x = \frac{1}{y} = \frac{1}{9}(y)$$

$$\frac{dg^{-1}}{dy} = -\frac{1}{y^2}$$

$$f_{\chi}(y) = f_{\chi}(g^{-1}(y)) \left| \frac{dg^{-1}}{dy} \right|$$

2) The image of Ai under 9; is the Same for all i $f_{\chi}(y) = \sum_{i=1}^{K} f_{\chi}(g_i(y)) \left| \frac{dg_i}{dy} \right|$ fer y E 80. Chi-Squand Dist. If X~N(0,1) and Y=X2 then I has a Chi-Sq. dist. u/ one degree of freedom. $A_2 = (-\infty, 0)$ $A_1 = (0, \infty)$

$$A_{1} = (0, \infty), g_{1}(x) = x^{2}$$

$$g_{1}^{-1}(y) = \sqrt{y} \Rightarrow \frac{dg_{1}^{-1}}{dy} = \frac{1}{2\sqrt{y'}}$$

$$A_{2} = (-\infty, 0), g_{2}(x) = x^{2}$$

$$g_{2}^{-1}(x) = -\sqrt{y'} \Rightarrow \frac{dg_{2}^{-1}}{dy} = \frac{1}{2\sqrt{y'}}$$

$$f_{x}(x) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}x^{2})$$

$$f_{y}(y) = f_{x}(g_{1}^{-1}(y)) \left| \frac{dg_{1}^{-1}}{dy} \right| + f_{x}(g_{2}^{-1}(y)) \left| \frac{dg_{2}^{-1}}{dy} \right|$$

$$= \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}\sqrt{y'}) \left| \frac{1}{2\sqrt{y'}} \right| + \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}(-\sqrt{y})^{2}) \left| \frac{1}{2\sqrt{y'}} \right|$$

$$= \frac{2}{\sqrt{2\pi}} \exp(-\frac{1}{2}(y)) \frac{1}{2\sqrt{y'}} , y > 0$$

$$= \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{y'}} \exp(-\frac{1}{2}(y)), y > 0$$

Theorem: Prob. Integral Transf. If X is cts w/ CDF Fx then $\frac{1}{2} = F_{\chi}(\chi) \sim U(o_{1}).$ Pf. Fx is strictly increasing.

So, Fx-1 existr.

Our CDF theorem says if

Y = g(X), g inc, then Fy(y)=Fx(g(y)) Fy(y) = $F_{\chi}(F_{\chi}(y)) = y \leftarrow CDF \circ f$ for 0 < y < 1 U(G|1)CDF of WOID

$$F_{z}(3) = P(Z \leq 3)$$

$$= P(F_{x}^{-1}(u) \leq 3)$$

$$= P(U \leq F_{x}(3))$$

$$= F_{u}(F_{x}(3))$$

Ex. Want
$$X \sim \text{Exp}(1)$$

CDF of Exp(1) is $F_{\chi}(x) = 1 - e^{-\chi}$
 $F_{\chi}(x) = -\log(1-\chi)$

Bivariate RVs

If X:S->P and Y:S->P

then Z=(X,Y) is called a

bivariate RV.

$$Z: S \rightarrow \mathbb{Z}^2$$
 s.t. $Z(A) = (X(A), Y(A))$.

Say: P(Z&Z) CCR2
= P((X,Y)&C)

SES	Z(A) ER2
HHH	(1,3)
HHT	(0, 2)
HTH	(1/2)
HTT	(0, 1)
THH	(1,2)
THT	(0, 1)
TTH	(1/1)
TTT	(0,0)
•	- /

Defn: Bivariate CDF (Joint CDF)

The joint CDF is a function

F:R2->R

defined for (x,y) as

$$F(x,y) = P(X \leq x, Y \leq y)$$

Properties of Joint CDF

- (1) F(x,y) > 0
- $\frac{2}{x,y\rightarrow\infty}$ | im F(x,y) = 1
- $\lim_{X \to -\infty} F(x,y) = 0$ $\lim_{X \to -\infty} F(x,y) = 0$ $\lim_{Y \to -\infty} F(x,y) = 0$
 - 4) F is non-decreasing and right-ets in each argument