A1) Prove that e^x is uniformly continuous on $(-\infty,0]$ but not on $\mathbb R.$

Proof: For $y < x \leqslant 0$ and |x - y| < arepsilon,

$$e^{x} - e^{y} = e^{y}(e^{y-x} - 1) \le e^{\varepsilon} - 1.$$

Hence e^x is uniformly continuous on $(-\infty,0]$. But for any $\delta>0$, there exists y and $x=y+\delta$ such that

$$e^x - e^y = e^y \cdot (e^\delta - 1) > 1.$$

Therefore e^x is not uniformly continuous on $\mathbb R.$

A2) Prove that the function $f:\mathbb{R}_{>0} imes\mathbb{R}\to\mathbb{R},\ (x,\alpha)\mapsto x^{\alpha}$ is continuous on $\mathbb{R}_{>0} imes\mathbb{R}$.

Proof: For $(x, \alpha), (y, \beta)$,

$$|x^{lpha} - y^{eta}| \leqslant |x^{lpha} - y^{lpha}| + |y^{lpha} - y^{eta}|.$$

Since x^{α} and a^x are both continuous (as functions of x), so is $x^{\alpha}: \mathbb{R}_{>0} \times \mathbb{R} \to \mathbb{R}$.

A3) Prove that for any x,y>0 and α,β , $(xy)^\alpha=x^\alpha y^\alpha$, $(x^\alpha)^\beta=x^{\alpha\beta}$, $a^{\log_a x}=x$. If x>0,y>0, then $a^{x+y}=a^xa^y$, $\log_a(x\cdot y)=\log_a x+\log_a y$.

Proof: See PSE of HW2.

A4) Consider the sequence of functions $\{f_n(x)\}_{n\geqslant 1}$ defined on [0,1], where $f_n(x)=x^n$. Prove that for any a<1, $\{f_n(x)\}_{n\geqslant 1}$ converges uniformly to 0 on [0,a], but $\{f_n(x)\}_{n\geqslant 1}$ does not converge uniformly on [0,1).

Proof: For any a<1, and any $\varepsilon>0$, let $N=\log_a x$, then for any n>N, $f_n(x)<\varepsilon$, hence $\{f_n(x)\}_{n\geqslant 1}$ converges uniformly to 0 on [0,a]. Let $\varepsilon=1/2$, then for any $N\in\mathbb{N}$, there exists $1>x>2^{-1/N}$ such that $f_N(x)>\varepsilon$. Hence $\{f_n(x)\}_{n\geqslant 1}$ is not uniformly convergent on [0,1).

A5) Consider the sequence of functions $\{f_n(x)\}_{n\geqslant 1}$, where $f_n(x)=\frac{nx}{1+n^2x^2}$. Prove that $\{f_n(x)\}_{n\geqslant 1}$ converges point-wise to 0 on $\mathbb R$, but does not converge uniformly.

Proof: For any $x\in\mathbb{R}$, and any arepsilon>0 , there exists N=1/(xarepsilon) such that for any $n\geqslant N$,

$$\left| rac{nx}{1+n^2x^2}
ight| \leqslant rac{1}{|nx|} < arepsilon.$$

Hence $f_n(x)$ converges to 0 for any $x\in\mathbb{R}.$

Let $\varepsilon=1/2$, then for any $n\in\mathbb{N}$, there exists x=1/n such that $f_n(x)=\varepsilon$, so f is not uniformly continuous on \mathbb{R} .

A6) Consider the sequence of functions $\{f_n(x)\}_{n\geqslant 1}$, where

$$f_n(x)=egin{cases} rac{nx^2}{1+nx}, & x>0; \ rac{nx^3}{1+nx^2}, & x\leqslant 0. \end{cases}$$

Determine the convergence of $\{f_n(x)\}_{n\geqslant 1}$ on $\mathbb R$ (both point-wise and uniformly). Proof: For any $\varepsilon>0$, let $N=\max\{1/\varepsilon,1/4\varepsilon^2\}$, then for any x>0 and n>N,

$$|f_n(x)-x|=\left|rac{x}{1+nx}
ight|<rac{1}{n}$$

For any x < 0,

$$|f_n(x)-x|=\left|rac{x}{1+nx^2}
ight|\leqslant rac{1}{2\sqrt{n}}$$

Hence $\{f_n\}_{n\geqslant 1}$ converges uniformly to x.

A7) Given $\varphi:\mathbb{R}_{\geqslant 0} \to \mathbb{R}$ such that $\varphi(0)=0$, $\lim_{x\to\infty} \varphi(x)=0$, φ is continuous and not identically zero. Prove that the sequences $\{f_n(x)\}_{n\geqslant 1}$ and $\{g_n(x)\}_{n\geqslant 1}$ converge point-wise to 0, but uniformly, where $f_n(x)=\varphi(nx)$, $g_n(x)=\varphi(x/n)$.

Proof: Point-wise convergence is trivial. Let $\varepsilon=|\varphi(1)|>0$, then for any n there exists x=1/n>0 such that $|f_n(x)|=\varepsilon$, hence $\{f_n(x)\}_{n\geqslant 1}$ is not uniformly convergent. Likewise $\{g_n(x)\}_{n\geqslant 1}$ is not uniformly continuous.

A8)
$$f\in C([a,b]).$$
 For $n\geqslant 1$, let $a_k=a+(k-1)(b-a)/n.$ Define $S_n=\sum_{k=1}^nrac{b-a}{n}f(a_k).$

Prove that $\{S_n\}_{n\geqslant 1}$ converges, and denote this limit by $\int_a^b f$. Further show that the mapping

$$\int_a^b:C([a,b]) o \mathbb{R},\,f\mapsto \int_a^bf$$

is linear and continuous with metric d_∞ on C([a,b]). Proof: For any $n,m\in\mathbb{N}$, note that $|S_n-S_m|\leqslant |S_n-S_{nm}|+|S_{nm}-S_m|$, and

$$|S_n - S_{nm}| \leqslant \sum_{k=1}^n rac{b-a}{n} \left| f(a_k^{(n)}) - rac{1}{m} \sum_{j=1}^m f(a_{n(k-1)+j}^{(nm)})
ight| \leqslant (b-a) \sup_{|x-y| < 1/n} |f(x) - f(y)|.$$

Since f is uniformly continuous on [a,b], the sequence $\{S_n\}_{n\geqslant 1}$ is Cauchy. Obviously $\int_a^b\cdot$ is linear, and for $f,g\in C([a,b])$,

$$\left|\int_a^b f - \int_a^b g
ight| = \lim_{n o \infty} \lvert S_n(f) - S_n(g)
vert \leqslant (b-a) \lVert f - g
Vert_\infty.$$

Hence $\int_a^b \cdot$ is continuous on C([a,b]) with metric $d_\infty.$

A9) For any $f:[a,\infty)\to\mathbb{R}$, suppose f is bounded on any closed interval [a,b], then when the limits in RHS exist,

$$egin{aligned} &\lim_{x o\infty}rac{f(x)}{x}=\lim_{x o\infty}f(x+1)-f(x).\ &\lim_{x o\infty}f(x)^{1/x}=\lim_{x o\infty}rac{f(x+1)}{f(x)}, ext{if for any } x\in[a,\infty), f(x)\geqslant c>0. \end{aligned}$$

Proof: Suppose $\lim_{x \to \infty} f(x+1) - f(x) = A$, then for any $\varepsilon > 0$ there exists M such that for any x > M, $|f(x+1) - f(x) - A| < \varepsilon$, so for any $n \geqslant 1$, $|f(x+n) - f(x) - nA| < n\varepsilon$. Hence

$$\left|\frac{f(n+x)}{n+x} - A\right| \leqslant \left|\frac{f(n+x) - f(x) - nA}{n+x}\right| + \left|\frac{f(x) - xA}{n+x}\right| \leqslant \varepsilon A + \frac{|f(x) - xA|}{n} \to 0.$$

For any x>M. Therefore (since f is bounded on any closed interval) there exists N such that for any x>N, $|f(x)/x-A|<2\varepsilon A$, and hence

$$\lim_{x o \infty} rac{f(x)}{x} = A = \lim_{x o \infty} f(x+1) - f(x).$$

Substitute f by $\log f$ and we obtain the second identity.

PSB: Uniform Continuity

Determine whether the following functions f are uniformly continuous on I:

B1)
$$f(x) = x^{1/3}$$
, $I = (0, \infty)$

For any arepsilon>0 and $x-y\in(0,arepsilon)$,

$$x^{1/3} - y^{1/3} = rac{x - y}{x^{2/3} + x^{1/3}y^{1/3} + y^{2/3}} \leqslant rac{arepsilon}{arepsilon^{2/3}} = arepsilon^{1/3}.$$

Hence f(x) is uniformly continuous on I.

B2)
$$f(x) = \log x$$
, $I = (0, 1)$

For any arepsilon>0 and $x-y\in(0,arepsilon)$,

$$\log x - \log y = \log \left(1 + \frac{x - y}{y} \right).$$

When $y \to 0$ and x-y is constant, $\log x - \log y \to \infty$, hence $\log x$ is not uniformly continuous on I.

B3)
$$f(x) = \cos x^{-1}$$
, $I = (0, 1)$

Note that for $x_n=1/(2n\pi)$ and $y_n=1/(2n\pi+\pi)$, $f(x_n)=1$ and $f(y_n)=-1$. Hence for $\varepsilon=1$ and any $\delta>0$, there exists n such that $|x_n-y_n|<\delta$ but $|f(x_n)-f(y_n)|=2>\varepsilon$. Therefore f is not uniformly continuous on I.

B4)
$$f(x) = x \cos x^{-1}$$
, $I = (0, \infty)$

For x > y > 1 and $|x - y| < \varepsilon$,

$$\begin{aligned} |x\cos x^{-1} - y\cos y^{-1}| &\leqslant |x - y| |\cos x^{-1}| + |y| \cdot |\cos x^{-1} - \cos y^{-1}| \\ &\leqslant \varepsilon + 2|y| \cdot |\sin \left(x^{-1} + y^{-1}\right) / 2\sin \left(x^{-1} - y^{-1}\right) / 2| \leqslant \varepsilon + \frac{y}{2} \left(\frac{1}{y^2} - \frac{1}{x^2}\right) \leqslant 2\varepsilon. \end{aligned}$$

For 1>x>y and |x-y|<arepsilon,

$$|x\cos x^{-1} - y\cos y^{-1}| \leqslant |x| + |y| < 2\varepsilon.$$

Hence f is uniformly continuous on I.

PSC: Existence of Limits

C1) $\alpha > 0$,

$$\lim_{x o 1}rac{\log x}{(x-1)^lpha}=\lim_{t o 0}rac{\log (1+t)}{t^lpha}=\lim_{t o 0}t^{1-lpha}$$

exists iff $\alpha \leqslant 1$.

C2) $\alpha > 0$,

$$\lim_{x o 1}rac{e^x-e}{(x-1)^lpha}=e\lim_{t o 0}rac{e^t-1}{t^lpha}=\lim_{t o 0}et^{1-lpha}.$$

exists iff $\alpha \leqslant 1$.

C3) $\alpha > 0$,

$$\lim_{x o 1}rac{x^x-1}{(x-1)^lpha}=\lim_{x o 1}rac{x^x(\log x+1)}{lpha(x-1)^{lpha-1}}$$

exists iff $\alpha \leqslant 1$.

C4) $\alpha > 0$,

$$\lim_{x o 1}rac{\sqrt[3]{1-\sqrt{x}}}{(x-1)^lpha}$$

exists iff $\alpha \leqslant 1/3$.

C5)

$$\lim_{x o 0} rac{\sqrt{1+x^2}-1}{1-\cos x} = 1.$$

C6)

$$\lim_{x \to 0} \frac{\sqrt{1 + x^4} - 1}{1 - \cos^2 x} = 0.$$

C7) $\alpha > 0$,

$$\lim_{x\to 1}\frac{(x-1)^\alpha}{\sin{(\pi x)}}$$

exists iff $\alpha \geqslant 1$.

PSD: Problems on Uniform Continuity

D1) If f is continuous, monotonic and bounded on the open interval I, then f is uniformly continuous on I.

Proof: Otherwise if there exists $\varepsilon>0$ such that for any $\delta>0$ there exists $|x-y|<\delta$ such that $|f(x)-f(y)|>\varepsilon$. We define x_n,y_n inductively as follows: Let $L=\min\{x_1,\cdots,x_{n-1}\}$, $R=\max\{y_1,\cdots,y_{n-1}\}$. Since f is uniformly continuous on [L,R], there exists $\delta>0$ such that for any $|s-t|<\delta$, $|f(s)-f(t)|<\varepsilon$. Hence there exists x< y such that $x,y\not\in [L,R]$, $|x-y|<\delta$ and $|f(x)-f(y)|>\varepsilon$. Let $x_n=x,y_n=y$, then (x_n,y_n) are disjoint intervals and $|f(x_n)-f(y_n)|>\varepsilon$. Which contradicts the fact that f is monotonic and bounded. Therefore f is uniformly continuous on I.

D2) I is an interval with finite length. Prove that the function f on I is uniformly continuous iff for any Cauchy sequence $\{x_n\}_{n\geqslant 1}\subset I$, $\{f(x_n)\}_{n\geqslant 1}$ is also a Cauchy sequence.

(f should be continuous, otherwise after changing the value of f at one point, $\{f(x_n)\}$ remains a Cauchy sequence.)

Proof: ==> If $\{x_n\}_{n\geqslant 1}$ is a Cauchy sequence, then for any $\varepsilon>0$ there exists $\delta>0$ such that for all $|x-y|<\delta$, $|f(x)-f(y)|<\varepsilon$. There exists N such that for all n,m>N, $|a_n-a_m|<\delta$, hence $|f(a_n)-f(a_m)|<\varepsilon$, so $\{f(x_n)\}_{n\geqslant 1}$ is a Cauchy sequence. <== If I=(a,b) is open we can take $x_n\to a$ and define $f(a)=\lim_{n\to\infty}f(x_n)$, hence we can

D3) f is uniformly continuous on $\mathbb R.$ Prove that there exists $a,b\in\mathbb R_{>0}$ such that for any $x\in\mathbb R$,

assume that I is closed. Therefore f is uniformly continuous.

$$|f(x)| \leqslant a|x| + b.$$

Proof: For $\varepsilon=1$, there exists $\delta>0$ such that $|x-y|<\delta \implies |f(x)-f(y)|<1$. Hence let $C=\sup_{x\in[0,\delta]}|f(x)|$, then $|f(x)|\leqslant C+|x|\cdot(\frac{1}{\delta}+1)$.

D4) Suppose f is uniformly continuous on $[0,\infty)$ and for any $x\in[0,1]$, $\lim_{n\to\infty}f(x+n)=0$. Prove that

$$\lim_{x \to \infty} f(x) = 0.$$

If we change the condition to f is continuous, will the statement still hold? Proof: For any $\varepsilon>0$, there exists $\delta>0$ such that $|x-y|<\delta \Longrightarrow |f(x)-f(y)|<\varepsilon$. Let $N=\lfloor 1/\delta\rfloor+1$, then for any $1\leqslant n\leqslant N$, there exists M_n such that for all $m>M_n$, $|f(m+n/N)|<\varepsilon$. Let $M=\max\{M_1,\cdots,M_N\}$, then for all x>M, there exists $m\in\mathbb{Z}_{>M}$ and $1\leqslant n\leqslant N$ such that $|x-m-n/N|<\delta$. Hence

$$|f(x)|\leqslant arepsilon+|f(m+n/N)|<2arepsilon.$$

Therefore $\lim_{x \to \infty} f(x) = 0$.

D5) Suppose X is an interval, $f:X\to\mathbb{R}$ is continuous. If there is a constant L>0 such that for any $x,y\in X$,

$$|f(x) - f(y)| \leqslant L|x - y|.$$

We say f satisfy the Lipschitz condition on X.

1. Prove that f satisfy the Lipschitz condition implies f is uniformly continuous. Proof: For any $\varepsilon>0$, let $\delta=\varepsilon/L$, then for any $|x-y|<\delta$, $|f(x)-f(y)|\leqslant L|x-y|<\varepsilon$.

- 2. Determine whether the reversed statement holds. Consider the function $f(x)=x^{1/2}$, then f is uniformly continuous but $\frac{f(x)-f(y)}{x-y}=\frac{1}{\sqrt{x}+\sqrt{y}}$ is unbounded, hence does not satisfy the Lipschitz condition.
- 3. If f satisfy the Lipschitz condition on $[a, \infty)$, where a > 0, prove that f(x)/x is uniformly continuous on $[a, \infty)$.

Proof: Same as D3), there exists C such that $|f(x)|\leqslant C|x|$ for $x\in [a,\infty)$, then for a< x< y,

$$\left| \frac{f(x)}{x} - \frac{f(y)}{y} \right| = \frac{|xf(y) - yf(x)|}{xy} \leqslant \frac{x|f(y) - f(x)| + |f(x)|(y - x)}{xy}$$
$$\leqslant \frac{L + C}{y} \cdot |x - y|.$$

Hence f(x)/x satisfy the Lipschitz condition.

PSE:

Exactly the same as PSC in HW4?

PSF: Calculate Limits

F1)

$$\lim_{x\to\pi}\frac{\sin mx}{\sin nx}=\frac{m(-1)^m}{n(-1)^n}.$$

F2)

$$\lim_{x\to 0}\frac{1-\cos x\sqrt{\cos 2x}\sqrt[3]{\cos 3x}}{x^2}=3.$$

F3)

$$\lim_{x \to \infty} \sin \sqrt{1+x} - \sin \sqrt{x} = 0.$$

Since the function $\sin x$ is uniformly continuous and $\lim_{x \to \infty} \sqrt{1+x} - \sqrt{x} = 0$.

F4)

$$\lim_{x \to 0} \frac{\sqrt{1 + x \sin x} - 1}{e^{x^2} - 1} = \frac{1}{2}.$$

Since $\lim_{x\to 0} x^2/(e^{x^2}-1)=1$, $\lim_{x\to 0} x\sin x/x^2=1$ and $\lim_{x\to 0} 1/(1+\sqrt{1+x\sin x})=1/2$.

F5)

$$\lim_{n\to\infty}\sin^{(n)}(x)=0.$$

Since the sequence $\{a_n=\sin^{(n)}(x)\}_{n\geqslant 1}$ is decreasing and bounded by 0, and its limit A satisfy $A=\sin A$. Therefore $\lim_{n\to\infty}\sin^{(n)}(x)=0$.

Problem G

The continuous function $f: \mathbb{R} \to \mathbb{R}$ satisfy the following property: for any $\delta > 0$,

$$\lim_{n o\infty}f(n\delta)=0.$$

Prove that $\lim_{x o \infty} f(x) = 0$.

Proof: Consider any arepsilon>0. For any $N\in\mathbb{N}$,

$$A_N = \{\delta > 0 : \forall n \geqslant N, |f(n\delta)| < \varepsilon\}.$$

Then by the continuity of f, A_N is closed, and by $\lim_{n \to \infty} f(n\delta) = 0$ for any $\delta > 0$, $\bigcup_{N \geqslant 1} A_N = \mathbb{R}_{>0}$. Hence by Baire Category Theorem, there exists an N > 0 such that $(a,b) \subset A_N$ for some interval (a,b). Let $X = \{x \in \mathbb{R}_{>0} : |f(x)| < \varepsilon\}$, then since $(a,b) \subset A_N$, for any $n \geqslant N$, $(na,nb) \subset X$. Note that when n > b/(b-a), nb > (n+1)a, hence there exists M > 0 such that $(M,\infty) \subset X$. Therefore $\lim_{x \to \infty} f(x) = 0$.

Problem H

The continuous function $\varphi:\mathbb{R}\to\mathbb{R}$ satisfy the following properties:

1. $\lim_{x \to \infty} (\varphi(x) - x) = \infty$.

2. $\{x \in \mathbb{R} : \varphi(x) = x\}$ is a non-empty finite set.

Prove that if $f:\mathbb{R} \to \mathbb{R}$ is continuous and $f\circ \varphi = f$, then f is constant.

(Probably need the condition $\lim_{x \to -\infty} \varphi(x) - x = -\infty$).

Proof: Suppose $\{x \in \mathbb{R} : \varphi(x) = x\} = \{a_1, \dots, a_n\}$ where $a_1 < \dots < a_n$. For any $x \in \mathbb{R}$, we will show that $f(x) \in \{f(a_1), \dots, f(a_n)\}$ hence f is constant.

If $a_i < x < a_{i+1}$. Suppose $\varphi(x) > x$, then let $x_0 = x$, and inductively define x_k as a point in (a_k, x_{k-1}) such that $\varphi(a_i) = a_i < \varphi(x_k) = x_{k-1} < \varphi(x_{k-1})$. Since φ is continuous and a_1, \cdots, a_n are all the roots of $\varphi(x) = x$, we know that $\varphi(x_k) > x_k$ for all $k \geqslant 0$. The sequence $\{x_k\}_{k\geqslant 0}$ is decreasing and bounded by a_i , hence has a limit A. From $\varphi(x_k) = x_{k-1}$ we know that $\varphi(A) = A$, so $A = a_i$. Note that $f(x_k) = f(\varphi(x_k)) = f(x_{k-1})$, hence $f(x) = f(x_k) = \lim_{k \to \infty} f(x_k) = f(a_i)$. The case $\varphi(x) < x$ is the same, by constructing a sequence which tends to a_{i+1} .

If $x>a_n$, then $\varphi(x)>x$, likewise we can construct a sequence x_k such that $x_{k-1}=\varphi(x_k)$ and $\lim_{k\to\infty}x_k=a_n$. The case $x< a_1$ is the same.

Hence for all $x \in \mathbb{R}$, $f(x) \in \{f(a_1), \cdots, f(a_n)\}$.

Problem I

The continuous function $f:\mathbb{R}_{\geqslant 0}\to\mathbb{R}$ satisfy $\lim_{x\to\infty}f(x)/x=0$. Suppose $\{a_n\}_{n\geqslant 1}$ is a sequence of non-negative real numbers and the sequence $\{a_n/n\}_{n\geqslant 1}$ is bounded. Prove that $\lim_{n\to\infty}f(a_n)/n=0$.

Proof: Suppose $\{a_n/n\}$ is bounded by M.

For any $\varepsilon>0$, we need to find N such that $n\geqslant N \Longrightarrow |f(a_n)|<\varepsilon n$. For C>0, we can divide n into two parts: If $a_n\leqslant C$, then $|f(a_n)|\leqslant \sup_{x\in [0,C]}|f(x)|$, otherwise $a_n\geqslant C$, then $|f(a_n)|\leqslant \sup_{x\geqslant C}|f(x)/x|\cdot Mn$. Therefore, if we choose C>0 such that $\sup_{x\geqslant C}|f(x)/x|<\varepsilon/M$, and choose N such that $N>\sup_{x\in [0,C]}|f(x)|/\varepsilon$, then for any $n\geqslant N$, $|f(a_n)|<\varepsilon n$, hence

$$\lim_{n o\infty}rac{f(a_n)}{n}=0.$$

Ex: Proof of the infinity of primes using topology

Proof: Assume otherwise that the set $\mathcal P$ of primes is finite. Let $L_{a,b}=\{at+b:t\in\mathbb Z\}, orall (a,b)\in I=\mathbb Z_{>0} imes\mathbb Z$. Then

$$\mathbb{Z} \subset igcup_{b \in \mathbb{Z}} L_{1,b} \subset igcup_{(a,b) \in I} L_{a,b} \subset \mathbb{Z} \implies igcup_{(a,b) \in I} L_{a,b} = \mathbb{Z}.$$

and for any $x\in igcap_{i=1}^n L_{a_i,b_{i'}}$ let $a=\mathrm{lcm}(a_1,\cdots,a_n)$, then

$$x\in L_{a,x}\subset igcap_{i=1}^n L_{a_i,bi}.$$

Hence $L_{a,b}$ form a base.Consider the topology $\mathcal T$ on $\mathbb Z$ generated by the base $\{L_{a,b}:(a,b)\in I\}$. Note that

$$L_{a,b}=\mathbb{Z}ackslash\bigcup_{r=1}^{a-1}L_{a,b+r}$$

so $L_{a,b}$ is also closed. Since ${\mathcal P}$ is finite, the set

$$igcup_{p\in\mathcal{P}}L_{p,0}=\mathbb{Z}ackslash\{-1,1\}$$

is closed, hence $\{-1,1\}$ is open. However, an open set G is the union of $L_{a,b}$ which is infinite, so G is infinite, leading to contradiction.

Quote:

As for everything else, so for a mathematical theory: beauty can be perceived but not explained.

——A. Cayley