Hints and Answer

Problem set 9(Vector Analysis)

- 1. Find the gradient $\nabla \phi$ at the given point and the unit vector along the gradient $\left(\frac{\nabla \phi}{|\nabla \phi|}\right)$.
- 2. Find $\nabla f|_{(x,y,z)} \cdot \hat{n}$.
 - (a) $-1/\sqrt{5}$.
 - (b) -3.
 - (c) 1.
 - (d) $3(1+2\sqrt{3})$.
- 3. Maximum directional derivative is $96\sqrt{19}$, and it's direction is $\hat{i} + 3\hat{j} 3\hat{k}$.
- 4. Use $\nabla \phi_1 \cdot \nabla \phi_2 = |\nabla \phi_1| \cdot |\nabla \phi_2| \cos \theta$, and find θ . (Ans $\theta = \cos^{-1}(2/3\sqrt{6})$)
- 5. a = 5/2, b = 1.
- 6. -
- 7. -
- 8. -
- 9. Find $\vec{\nabla} \times \vec{v}$.
- 10. \vec{F} is solenoidal, but not irrotational.
- 11. Show $\nabla \cdot (\vec{A} \times \vec{B}) = 0$.
- 12. Make $\nabla \cdot (r^n \vec{r}) = 0$.
- 13. Show $\nabla \times \vec{v} = 0$, and find f such that $\vec{v} = \nabla f$.
- 14. -
- 15. -

- 16. -
- 17. -
- 18. -