

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	Airyzone Technology Co., Ltd.
Applicant Address	5F., No.17-4, Ln. 112, Weiguo St., East Dist. Tainan Taiwan 701
FCC ID	2AC8FGC133020
Manufacturer's company	UONG XING TECHNOLOGY CO., LTD
Manufacturer Address	No.416, Sec. 1, Beixing Rd., Zhudong Township, Hsinchu County 310, Taiwan (R.O.C.)

Product Name	Airyzone Mobile Beacon
Brand Name	AIRYZONE
Model Name	MBFX14-FUL01, MBFX14-BSC01, MBFX14-SMP01, MBFXzz-xxxvy
Test Rule Part(s)	47 CFR FCC Part 15 Subpart C § 15.249
Test Freq. Range	2402 ~ 2480MHz
Received Date	Sep. 02, 2014
Final Test Date	Sep. 26, 2014
Submission Type	Original Equipment

Statement

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2013 and 47 CFR FCC Part 15 Subpart C. The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1. CE	ERTIFICATE OF COMPLIANCE	1
2. SU	JMMARY OF THE TEST RESULT	2
3. GE	ENERAL INFORMATION	
3.1		
3.2	2. Accessories	3
3.3	3. Table for Carrier Frequencies	3
3.4		
3.5		
3.6		5
3.7		5
3.8	8. Test Configurations	6
4. TES	ST RESULT	8
4.1		8
4.2		
4.3	3. Radiated Emissions Measurement	14
4.4		
4.5		
5. LIS	ST OF MEASURING EQUIPMENTS	26
6. ME	EASUREMENT UNCERTAINTY	27
A DDEI	ENDIV A TEST DUOTOS	A1 A5

:Oct. 13, 2014

Issued Date

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR490278	Rev. 01	Initial issue of report	Oct. 13, 2014

Certificate No.: CB10310070

Page No.

: 1 of 27

Issued Date : Oct. 13, 2014

1. CERTIFICATE OF COMPLIANCE

Product Name : Airyzone Mobile Beacon

Brand Name : AIRYZONE

Model Name : MBFX14-FUL01, MBFX14-BSC01, MBFX14-SMP01, MBFXzz-xxxvy

Applicant: Airyzone Technology Co., Ltd.

Test Rule Part(s): 47 CFR FCC Part 15 Subpart C § 15.249

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Sep. 02, 2014 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Reviewed By:

Sam Chen

SPORTON INTERNATIONAL INC.

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart C						
Part	Rule Section	Result	Under Limit				
-	15.207	AC Power Line Conducted Emissions	Complies	Note			
4.1	15.249(a)	Field Strength of Fundamental Emissions	Complies	2.62 dB			
4.2	15.215(c)	20dB Spectrum Bandwidth	Complies	-			
4.3	15.249(a)/(d)	Radiated Emissions	Complies	10.78 dB			
4.4	15.249(d)	Band Edge Emissions	Complies	2.23 dB			
4.5	15.203	Antenna Requirements	Complies	-			

Note: It was supplied power by battery for EUT; it's not necessary to apply to AC Power Port Conducted emission.

 Report Format Version: 01
 Page No. : 2 of 27

 FCC ID: 2AC8FGC133020
 Issued Date : Oct. 13, 2014

3. GENERAL INFORMATION

3.1. Product Details

Items	Description
Power Type	From battery 3V*1
Modulation	GFSK
Frequency Range	2402 ~ 2480MHz
Operation Frequency	2402 MHz, 2426 MHz, 2480 MHz
Channel Number	3
Channel Band Width (99%)	1.07 MHz
Max. Field Strength	91.38 dBuV/m at 3m
Carrier Frequencies	Please refer to section 3.3
Antenna	Antenna Type: Chip Antenna
	Antenna Gain: 3.45dBi

3.2. Accessories

Power	Brand	Model	Rating			
Battery	MITSUBISHI	CR2032	3.0V/210mAh			
Others						
Silicon Case*12						

3.3. Table for Carrier Frequencies

Frequency Band	Channel No.	Frequency
	37	2402 MHz
2402 ~ 2480MHz	38	2426 MHz
	39	2480 MHz

 Report Format Version: 01
 Page No. : 3 of 27

 FCC ID: 2AC8FGC133020
 Issued Date : Oct. 13, 2014

3.4. Table for Test Modes

Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Channel	Antenna
Field Strength of Fundamental Emissions	CTX	37/38/39	1
20dB Spectrum Bandwidth			
Radiated Emissions 30MHz \sim 1GHz	Normal Link	-	-
Radiated Emissions 1GHz~10 th Harmonic	CTX	37/38/39	1
Band Edge Emissions	CTX	37/38/39	1

The following test modes were performed for all tests:

For Radiated Emission below 1GHz test:

Mode 1. EUT standing

Mode 2. EUT laying

Mode 2 is the worst case, so it was selected to record in this test report

For Radiated Emission above 1GHz test:

The EUT was performed at X axis, Y axis and Z axis position. The worst case was found at Y axis, so it was selected to perform test and its test result was written in the report.

Mode 1. Y axis

Note: CTX=continuously transmitting

Report Format Version: 01 Page No. : 4 of 27
FCC ID: 2AC8FGC133020 Issued Date : Oct. 13, 2014

3.5. Table for Testing Locations

	Test Site Location						
Address:	No.	No.8, Lane 724, Bo-ai St., Jhubei City, Hsinchu County 302, Taiwan, R.O.C.					
TEL:	886	886-3-656-9065					
FAX:	886	886-3-656-9085					
Test Site N	lo.	o. Site Category Location FCC Reg. No. IC File No. VCCI Reg. No					
03CH01-0	СВ	B SAC Hsin Chu 262045 IC 4086D -					
TH01-CE	3	OVEN Room Hsin Chu 262045 IC 4086D -				-	

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC); Fully Anechoic Chamber (FAC).

3.6. Table for Multiple Listing

The brand/model names in the following table are all refer to the identical product.

EUT No.	Brand Name	Model Name			Desci	iption	
201110.				LED	Buzzer	Button	Sensor
EUT1	AIRYZONE	MBFX14-FUL01	MDEVELVOOR	V	V	V	V
EUT2	AIRYZONE	MBFX14-SMP01	MBFXzz-xxxvy zz (Note 1)	V	V	-	-
EUT3	AIRYZONE	MBFX14-BSC01	(NOIE I)	-	-	-	-

Note1: MBFXzz-xxxvy: zz: $00\sim99$; xxx: $000\sim999$ /AAA \sim ZZZ; v: $0\sim9$; y: $0\sim9$, the difference model name only for marketing purpose.

Note2: According to above, there is only EUT 1 were selected to test and record in the report as a result.

3.7. Table for Supporting Units

Test Site: 03CH01-CB (Below 1G)

Support Unit	Brand	Model	FCC ID
iPad	Apple	A1458	DoC

Test Site: 03CH01-CB (Above 1G)

Support Unit	Brand	Model	FCC ID
Notebook	DELL	M1330	E2K4965AGNM
Fixture	Texas Instruments	DN304	N/A

Test Site: TH01-CB

Support Unit	Brand	Model	FCC ID
Notebook	DELL	E6220	DoC
Fixture	Texas Instruments	DN304	N/A

: 5 of 27 Page No. Issued Date : Oct. 13, 2014 FCC ID: 2AC8FGC133020

3.8. Test Configurations

3.8.1. Radiation Emissions Test Configuration

Test Configuration: 30MHz~1GHz

Item	Connection	Shielded	Length(m)
1	Power cable	No	1.8
2	USB cable	Yes	1.5

4. TEST RESULT

4.1. Field Strength of Fundamental Emissions Measurement

4.1.1. Limit

The field strength of fundamental emissions within these bands specified at a distance of 3 meters (measurement instrumentation employing an average detector) shall comply with the following table.

Frequency Band (MHz)	Fundamental Emissions Limit (dBuV/m) at 3m		
2402 ~ 2480MHz	94 (Average)		
2402 ~ 2400IVITZ	114 (Peak)		

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Power Meter Parameter	Setting			
RBW	1 MHz Peak / 3MHz Peak			
VBW	1 MHz Peak / 10Hz Average			
Detector	Peak			
Trace	Max Hold			
Sweep Time	Auto			

Report Format Version: 01 Page No. : 8 of 27
FCC ID: 2AC8FGC133020 Issued Date : Oct. 13, 2014

4.1.3. Test Procedures

Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 1.5
meter above ground. The phase center of the receiving antenna mounted on the top of a
height-variable antenna tower was placed 3 meters far away from the turntable.

- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- The height of the broadband receiving antenna was varied between one meter and four meters
 above ground to find the maximum emissions field strength of both horizontal and vertical
 polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. For Fundamental emissions, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.

4.1.4. Test Setup Layout

4.1.5. Test Deviation

There is no deviation with the original standard.

4.1.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: 01
 Page No.
 : 9 of 27

 FCC ID: 2AC8FGC133020
 Issued Date
 : Oct. 13, 2014

4.1.7. Test Result of Field Strength of Fundamental Emissions

Temperature	25°C	Humidity	58%
Test Engineer	Serway Li	Configurations	Channel 37, 38, 39
Test Date	Sep. 23, 2014		

Channel 37

	Freq	Level						Preamp Factor			Pol/Phase	Remark
	MHz	dBu\//m	dBu√/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1	2402.10	88.26	94.00	-5.74	56.67	3.69	27.90	0.00	163	288	VERTICAL	Average
2	2402.33	89.37	114.00	-24.63	57.78	3.69	27.90	0.00	163	288	VERTICAL	Peak

Item 1, 2 are the fundamental frequency at 2402 MHz.

Channel 38

	Freq	Level		0∨er Limit							Pol/Phase	Remark
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1	2426.10	87.85	94.00	-6.15	56.25	3.70	27.90	0.00	100	202	VERTICAL	Average
2	2426.33	88.97	114.00	-25.03	57.37	3.70	27.90	0.00	100	202	VERTICAL	Peak

Item 1, 2 are the fundamental frequency at 2426 MHz.

Channel 39

	Freq	Level						Preamp Factor		T/Pos	Pol/Phase	Remark
	MHz	dBu\//m	dBu\//m	dB	dBu∀	dB	dB/m	dB	cm	deg		
1	2480.07	91.38	94.00	-2.62	59.75	3.73	27.90	0.00	138	288	VERTICAL	Average
2	2480.07	91.92	114.00	-22.08	60.29	3.73	27.90	0.00	138	288	VERTICAL	Peak

Item 1, 2 are the fundamental frequency at 2480 MHz.

Note:

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

Report Format Version: 01 Page No. : 10 of 27 FCC ID: 2AC8FGC133020 Issued Date : Oct. 13, 2014

4.2. 20dB Spectrum Bandwidth Measurement

4.2.1. Limit

Intentional radiators must be designed to ensure that the 20 dB bandwidth of the emissions in the specific band ($2402 \sim 2480 MHz$).

4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> 20dB Bandwidth
RBW	100 kHz
VBW	100 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

4.2.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- 2. The resolution bandwidth of 100 kHz and the video bandwidth of 100 kHz were used.
- 3. Measured the spectrum width with power higher than 6dB below carrier.

4.2.4. Test Setup Layout

Report Format Version: 01 Page No. : 11 of 27
FCC ID: 2AC8FGC133020 Issued Date : Oct. 13, 2014

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.2.7. Test Result of 20dB Spectrum Bandwidth

Temperature	26°C	Humidity	63%
Test Engineer	Jim Huang	Configurations	Channel 37/38/39

Frequency	20dB BW (MHz)	99% OBW (MHz)	Frequency range (MHz) f _L > 2400MHz	Frequency range (MHz) f _H < 2483.5MHz	Test Result
2402 MHz	1.22	1.07	2401.4760	-	Complies
2426 MHz	1.24	1.07	-	-	Complies
2480 MHz	1.24	1.07	-	2480.6920	Complies

20 dB/99% Bandwidth Plot on 2402 MHz

Date: 22.SEP.2014 18:01:33

 Report Format Version: 01
 Page No.
 : 12 of 27

 FCC ID: 2AC8FGC133020
 Issued Date
 : Oct. 13, 2014

20 dB/99% Bandwidth Plot on 2426 MHz

Date: 22.SEP.2014 17:47:55

20 dB/99% Bandwidth Plot on 2480 MHz

Date: 22.SEP.2014 17:59:46

 Report Format Version: 01
 Page No. : 13 of 27

 FCC ID: 2AC8FGC133020
 Issued Date : Oct. 13, 2014

4.3. Radiated Emissions Measurement

4.3.1. Limit

Harmonic emissions limits comply with below 54 dBuV/m at 3m. Other emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or comply with the radiated emissions limits specified in section 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance		
(MHz)	(micorvolts/meter)	(meters)		
0.009~0.490	2400/F(kHz)	300		
0.490~1.705	24000/F(kHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

4.3.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak, 1 MHz / 10Hz for Average
RBW / VBW (Emission in non-restricted band)	100kHz/300kHz for Peak

Receiver Parameter	Setting
Attenuation	Auto
Start \sim Stop Frequency	9kHz~150kHz / RBW 200Hz for QP
Start \sim Stop Frequency	150kHz~30MHz / RBW 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RBW 120kHz for QP

Report Format Version: 01 Page No. : 14 of 27 FCC ID: 2AC8FGC133020 Issued Date : Oct. 13, 2014

4.3.3. Test Procedures

Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 1.5
meter above ground. The phase center of the receiving antenna mounted on the top of a
height-variable antenna tower was placed 3 meters far away from the turntable.

- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- The height of the broadband receiving antenna was varied between one meter and four meters
 above ground to find the maximum emissions field strength of both horizontal and vertical
 polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

 Report Format Version: 01
 Page No.
 : 15 of 27

 FCC ID: 2AC8FGC133020
 Issued Date
 : Oct. 13, 2014

4.3.4. Test Setup Layout

For Radiated Emissions: 9kHz ~30MHz

For Radiated Emissions: 30MHz~1GHz

For Radiated Emissions: Above 1GHz

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: 01 Page No. : 16 of 27 FCC ID: 2AC8FGC133020 Issued Date : Oct. 13, 2014

4.3.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	25°C	Humidity	58%
Test Engineer	Serway Li	Configurations	Normal Link
Test Date	Sep. 26, 2014		

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

 $\label{eq:limit_limit} \mbox{Limit line} = \mbox{specific limits (dBuV)} + \mbox{distance extrapolation factor}.$

 Report Format Version: 01
 Page No. : 17 of 27

 FCC ID: 2AC8FGC133020
 Issued Date : Oct. 13, 2014

4.3.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	25 ℃	Humidity	58%
Test Engineer	Serway Li	Configurations	Normal Link
Test Mode	Mode 2		

Horizontal

	Free	Laval		Over Limit					A/Pos	T/Pos	Pol/Phase	Demark
	11 64	Level	LINE	LIMIC	Level	L033	raccor	raccor			POI/Filase	Kallai K
	MHz	dBu\//m	dBu\//m	dB	dBu∀	dB	dB/m	dB	cm	deg		
1	30.00	15.52	40.00	-24.48	28.71	0.64	17.98	31.81	300	16	HORIZONTAL	Peak
2	55.22	8.96	40.00	-31.04	33.93	0.87	5.94	31.78	400	360	HORIZONTAL	Peak
3	144.46	19.73	43.50	-23.77	39.33	1.43	10.51	31.54	100	24	HORIZONTAL	Peak
4	195.87	10.74	43.50	-32.76	31.83	1.68	8.74	31.51	200	272	HORIZONTAL	Peak
5	344.28	18.08	46.00	-27.92	33.03	2.30	14.10	31.35	100	105	HORIZONTAL	Peak
6	909.79	25.32	46.00	-20.68	31.83	3.98	20.70	31.19	150	40	HORIZONTAL	Peak

 Report Format Version: 01
 Page No.
 : 18 of 27

 FCC ID: 2AC8FGC133020
 Issued Date
 : Oct. 13, 2014

Vertical

	Freq	Level		0ver Limit						T/Pos	Pol/Phase	Remark
	MHz	dBu\//m	dBu\//m	dB	dBu∀	dB	dB/m	dB	cm	deg		
1	30.97	19.18	40.00	-20.82	32.91	0.65	17.44	31.82	100	28	VERTICAL	Peak
2	48.43	20.01	40.00	-19.99	42.66	0.83	8.32	31.80	100	165	VERTICAL	Peak
3	86.26	15.20	40.00	-24.80	37.82	1.10	7.94	31.66	125	76	VERTICAL	Peak
4	135.73	13.43	43.50	-30.07	32.39	1.38	11.20	31.54	150	273	VERTICAL	Peak
5	475.23	19.41	46.00	-26.59	31.16	2.72	16.75	31.22	150	152	VERTICAL	Peak
6	709.97	21.97	46.00	-24.03	30.71	3.43	19.11	31.28	200	102	VERTICAL	Peak

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Report Format Version: 01 Page No. : 19 of 27
FCC ID: 2AC8FGC133020 Issued Date : Oct. 13, 2014

4.3.9. Results for Radiated Emissions (1GHz~10th Harmonic)

Temperature	25°C	Humidity	58%
Test Engineer	Serway Li	Configurations	Channel 37
Test Date	Sep. 23, 2014		

Horizontal

	Freq	Level						Preamp Factor		T/Pos	Pol/Phase	Remark
	MHz	dBu∀/m	dBu√/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1	4803.60	48.92	74.00	-25.08	45.81	5.66	32.74	35.29	138	112	HORIZONTAL	Peak
2	4804.38	43.22	54.00	-10.78	40.11	5.66	32.74	35.29	138	112	HORIZONTAL	Average

Vertical

	Freq	Level						Preamp Factor		T/Pos	Pol/Phase	Remark
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1 2											VERTICAL VERTICAL	

 Report Format Version: 01
 Page No. : 20 of 27

 FCC ID: 2AC8FGC133020
 Issued Date : Oct. 13, 2014

Temperature	25°C	Humidity	58%
Test Engineer	Serway Li	Configurations	Channel 38
Test Date	Sep. 23, 2014		

Horizontal

	Freq	Level		0∨er Limit						T/Pos	Pol/Phase	Remark
	MHz	dBu∀/m	dBu√/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1	4852.54	42.54	54.00	-11.46	39.35	5.72	32.78	35.31	100	131	HORIZONTAL	Average
2	4852.74	48.24	74.00	-25.76	45.05	5.72	32.78	35.31	100	131	HORIZONTAL	Peak
3	7269.76	41.94	54.00	-12.06	33.17	7.04	37.11	35.38	128	300	HORIZONTAL	Average
4	7271.32	49.94	74.00	-24.06	41.17	7.04	37.11	35.38	128	300	HORIZONTAL	Peak

Vertical

	Freq	Level						Preamp Factor			Pol/Phase	Remark
-	MHz	dBu\//m	dBu√/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1	4852.46	39.92	54.00	-14.08	36.73	5.72	32.78	35.31	115	236	VERTICAL	Average
2	4852.66	46.48	74.00	-27.52	43.29	5.72	32.78	35.31	115	236	VERTICAL	Peak
3	7268.80	41.83	54.00	-12.17	33.06	7.04	37.11	35.38	141	83	VERTICAL	Average
4	7285.14	50.89	74.00	-23.11	42.09	7.05	37.12	35.37	141	83	VERTICAL	Peak

 Report Format Version: 01
 Page No. : 21 of 27

 FCC ID: 2AC8FGC133020
 Issued Date : Oct. 13, 2014

Temperature	25°C	Humidity	58%
Test Engineer	Serway Li	Configurations	Channel 39
Test Date	Sep. 23, 2014		

Horizontal

	Freq	Level						Preamp Factor		T/Pos	Pol/Phase	Remark
_	MHz	dBu\//m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1 2 3 4	4959.76 4960.00 7435.76 7436.52	48.13 50.94	74.00 74.00	-25.87 -23.06	44.76 41.95	5.85 7.11	32.87 37.17	35.35 35.29	100 100 100 100	128 322	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL	Peak Peak

Vertical

	Freq	Level		0ver Limit							Pol/Phase	Remark
	MHz	dBu∀/m	dBu∨/m	dB	dBu∀	dB	dB/m	dB	cm	deg		
1	4959.46	46.73	74.00	-27.27	43.36	5.85	32.87	35.35	121	271	VERTICAL	Peak
2	4959.80	38.59	54.00	-15.41	35.22	5.85	32.87	35.35	121	271	VERTICAL	Average
3	7431.92	49.88	74.00	-24.12	40.90	7.10	37.17	35.29	135	76	VERTICAL	Peak
4	7436.28	41.74	54.00	-12.26	32.75	7.11	37.17	35.29	135	76	VERTICAL	Average

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

 Report Format Version: 01
 Page No. : 22 of 27

 FCC ID: 2AC8FGC133020
 Issued Date : Oct. 13, 2014

4.4. Band Edge Emissions Measurement

4.4.1. Limit

Band edge emissions radiated outside of the specified frequency bands shall be attenuated by at least 50 dB below the level of the fundamental or comply with the radiated emissions limits specified in section 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak, 1 MHz / 10Hz for Average
RBW / VBW (Emission in non-restricted band)	100kHz/300kHz for Peak

4.4.3. Test Procedures

- 1. The test procedure is the same as section 4.3.3, only the frequency range investigated is limited to 2MHz around bandedges.
- 2. In case the emission is fail due to the used RBW/VBW is too wide, marker-delta method of FCC Public Notice DA00-705 will be followed.

4.4.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.3.4.

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: 01 Page No. : 23 of 27
FCC ID: 2AC8FGC133020 Issued Date : Oct. 13, 2014

4.4.7. Test Result of Band Edge and Fundamental Emissions

Temperature	25 ℃	Humidity	58%
Test Engineer	Serway Li	Configurations	Channel 37, 38, 39
Test Date	Sep. 23, 2014		

Channel 37

	Freq	Level	Limit Line					Preamp Factor		T/Pos	Pol/Phase	Remark
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB	cm	deg		
1	2388.00	56.50	74.00	-17.50	24.92	3.68	27.90	0.00	163	288	VERTICAL	Peak
2	2390.00	40.58	54.00	-13.42	9.00	3.68	27.90	0.00	163	288	VERTICAL	Average
3	2399.50	51.77	54.00	-2.23	20.19	3.68	27.90	0.00	163	288	VERTICAL	Average
4	2399.60	60.47	74.00	-13.53	28.89	3.68	27.90	0.00	163	288	VERTICAL	Peak
5 6	2402.10 2402.40				56.40 57.52	3.69 3.69	27.90 27.90		163 163		VERTICAL VERTICAL	Average Peak

Item 5, 6 are fundamental frequency at 2402 MHz.

Channel 38

	Freq	Level	Limit Line	0ver Limit	Read Level			Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB	cm	deg		
1	2389.60	56.18	74.00	-17.82	24.60	3.68	27.90	0.00	164	219	HORIZONTAL	Peak
2	2390.00	40.69	54.00	-13.31	9.11	3.68	27.90	0.00	164	219	HORIZONTAL	Average
3	2396.60	57.73	74.00	-16.27	26.15	3.68	27.90	0.00	164	219	HORIZONTAL	Peak
4	2400.00	40.78	54.00	-13.22	9.19	3.69	27.90	0.00	164	219	HORIZONTAL	Average
5	2426.20	81.80			50.20	3.70	27.90	0.00	164	219	HORIZONTAL	Average
6	2426.40	83.04			51.44	3.70	27.90	0.00	164	219	HORIZONTAL	Peak
7	2483.50	40.91	54.00	-13.09	9.28	3.73	27.90	0.00	164	219	HORIZONTAL	Average
8	2487.90	57.26	74.00	-16.74	25.63	3.73	27.90	0.00	164	219	HORIZONTAL	Peak

Item 5, 6 are fundamental frequency at 2426 MHz.

Channel 39

	Freq	Level						Preamp Factor		T/Pos	Pol/Phase	Remark
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB	cm	deg		
1	2479.80	92.20			60.57	3.73	27.90	0.00	138	288	VERTICAL	Peak
2	2480.10	91.08			59.45	3.73	27.90	0.00	138	288	VERTICAL	Average
3	2483.50	45.08	54.00	-8.92	13.45	3.73	27.90	0.00	138	288	VERTICAL	Average
4	2483.50	55.81	74.00	-18.19	24.18	3.73	27.90	0.00	138	288	VERTICAL	Peak

Item 1, 2 are fundamental frequency at 2480 MHz.

Note:

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Report Format Version: 01 Page No. : 24 of 27 FCC ID: 2AC8FGC133020 Issued Date : Oct. 13, 2014

4.5. Antenna Requirements

4.5.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.5.2. Antenna Connector Construction

Please refer to section 3.1 in this test report, antenna connector complied with the requirements.

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
BILOG ANTENNA	Schaffner	CBL6112D	22021	20MHz ~ 2GHz	May 26, 2014	Radiation (03CH01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9 kHz - 30 MHz	Nov. 05, 2012*	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz~18GHz	Nov. 01, 2013	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	0.1MHz ~ 1.3GHz	Nov. 12, 2013	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Dec. 16, 2013	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSP40	100019	9kHz~40GHz	Dec. 02, 2013	Radiation (03CH01-CB)
EMI Test Receiver	Agilent	N9038A	MY52260123	9kHz ~ 8GHz	Dec. 12, 2013	Radiation (03CH01-CB)
Turn Table	INN CO	CO 2000	N/A	0 ~ 360 degree	N.C.R.	Radiation (03CH01-CB)
Antenna Mast	INN CO	CO 2000	N/A	1 m - 4 m	N.C.R.	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz - 1 GHz	Nov. 17, 2013	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-1	N/A	1 GHz – 26.5 GHz	Nov. 17, 2013	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-2	N/A	1 GHz – 26.5 GHz	Nov. 17, 2013	Radiation (03CH01-CB)
Signal analyzer	R&S	FSV40	100979	9kHz~40GHz	Nov. 29, 2013	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-7	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-8	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-9	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-10	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-11	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

N.C.R. means Non-Calibration required.

 Report Format Version: 01
 Page No. : 26 of 27

 FCC ID: 2AC8FGC133020
 Issued Date : Oct. 13, 2014

[&]quot;*" Calibration Interval of instruments listed above is two years.

6. MEASUREMENT UNCERTAINTY

Test Items	Uncertainty	Remark
Radiated Emission (30MHz \sim 1,000MHz)	3.6 dB	Confidence levels of 95%
Radiated Emission (1GHz \sim 18GHz)	3.7 dB	Confidence levels of 95%
Radiated Emission (18GHz \sim 40GHz)	3.5 dB	Confidence levels of 95%
Conducted Emission	1.7 dB	Confidence levels of 95%

 Report Format Version: 01
 Page No. : 27 of 27

 FCC ID: 2AC8FGC133020
 Issued Date : Oct. 13, 2014