TAREA 1 Métodos de Ecuaciones Diferenciales IMT3410 2022-II

Prof. Manuel A. Sánchez Agosto 2022

Preguntas

1. (20 puntos) Programación de Métodos para EDO escalar

Programe los siguientes métodos numéricos para resolver un problema de valor inicial

- 1. Euler explícito
- 2. Runge Kutta explícito con Tableu dado por:

$$\begin{array}{c|cccc}
0 & & & \\
2/3 & 2/3 & & \\
\hline
2/3 & 0 & 2/3 & \\
\hline
& 1/4 & 3/8 & 3/8
\end{array}$$

- 3. Método de la regla trapezoidal
- 4. Método de Runge Kutta implicito con Tableu

$$\begin{array}{c|cccc} \frac{1}{6}(3-\sqrt{3}) & \frac{1}{4} & \frac{1}{12}(3-2\sqrt{3}) \\ \frac{1}{6}(3+\sqrt{3}) & \frac{1}{12}(3+2\sqrt{3}) & \frac{1}{4} \\ \hline & \frac{1}{2} & \frac{1}{2} \end{array}$$

- 5. Método de paso múltiple de Adams-Bashforth
- 6. Método de paso múltiple de Adams-Moulton

Testee los métodos con el siguiente problema de valor inicial

$$\dot{x} = x^2 + \frac{t^4 - 6t^3 + 12t^2 - 14t + 9}{(1+t)^2}, \qquad x(0) = 2$$

Calcule la aproximación en [0, 2] usando los metodos numéricos del 1 al 6. Muestre la convergencia de los métodos numéricos refinando el tamaño de paso y calcule la razón de convergencia aproximada r, esto es, complete la siguiente tabla.

Además grafique el error versus h en escala logarítmica.

2. (10 puntos) Sistemas no lineales.

Considere la siguiente lista de problemas de valores iniciales:

1. Oscilador de van der pol.

$$y'_1 = y_2,$$
 $y_1(0) = 1/2$
 $y'_2 = (1 - y_1^2)y_2 - y_1,$ $y_2(0) = 1/2,$

para $t \in [0, 10].$ Grafique y_1 vs. y_2 y su respectiva evolución en t.

Cuadro 1: Convergencia de los métodos numéricos

	Met. 1	Met. 2	Met. 3	Met. 4	Met. 5	Met. 6
h	error r					
$\overline{1/2}$	_	_	_	_		
1/4						
1/8						
1/16						
1/32						
1/64						
1/128						

2. Ecuaciones de FitzHugh-Nagumo

$$w' = v + a - bw,$$
 $w(0) = 1/2,$
 $\tau v' = v - \frac{v^3}{3} - w + I_{\text{ext}},$ $v(0) = 1/2,$

con parámetros $I_{\rm ext}=0.5,~a=0.7,~b=0.8$ y $\tau=12.5,$ para $t\in[0,10].$ Grafique w vs. v y su respectiva evolución en t.

3. Péndulo esférico con coordenadas $x = \sin(\theta)\cos(\varphi)$ y $y = \sin(\theta)\sin(\varphi)$

$$\ddot{\theta} = ((\dot{\varphi})^2 \cos(\theta) - 1) \sin(\theta), \quad \theta(0) = 1, \, \dot{\theta}(0) = 0,$$

 $\ddot{\varphi} = -2\dot{\theta}\dot{\varphi}\cot(\theta), \qquad \qquad \varphi(0) = 0, \, \dot{\varphi}(0) = 0,17.$

Grafique x vs. y para $t \in [0, 100]$. Además grafique la evolución de la energía del sistema

$$H = \frac{1}{2} \left((\dot{\theta})^2 + (\dot{\varphi})^2 \right) - \cos(\theta)$$

Escoja un método numérico por cada sistema no lineal y aproxime su solución. Justifique su elección.

3. (10 puntos) Muestre que el siguiente método de paso múltiple

$$y_{n+3} + \alpha_2 y_{n+2} + \alpha_1 y_{n+1} + \alpha_0 y_n = h \left(\beta_2 f_{n+2} + \beta_1 f_{n+1} + \beta_0 f_n \right)$$

es de orden 4 solo si $\alpha_0 + \alpha_2 = 8$ y $\alpha_1 = -9$. Así deduzca que no puede ser de cuarto orden y convergente.

4. (10 puntos) Considere el sistema de n ecuaciones diferenciales de primer orden homogéneo con coeficientes constantes

$$\dot{x}(t) = Ax(t), \quad x(0) = x_0 \in \mathbb{R}^n$$

con $A \in \mathbb{R}^{n \times n}$, encuentre la solución usando la iteración de Picard y escríbala en términos de la matriz exponencial.

5. (10 puntos) Considere el método θ :

$$y_{n+1} = y_n + h((1-\theta)f_n + \theta f_{n+1}),$$

para $\theta \in [0,1]$. Muestre que el método es A-estable si y solo si $\theta \geq 0.5$.

6. (0 puntos) Aplique la iteración de Picard a las ecuaciones diferenciales de primer order y decida si converge

a)
$$\dot{x} = x$$
, $x(0) = 1$.

b)
$$\dot{x} = x^2$$
, $x(0) = 1$.

c)
$$\dot{x} = 2t - \sqrt{\max(0, x)}, \quad x(0) = 0.$$

- 7. (0 puntos) Suponga que $f \in \mathcal{C}^k(U, \mathbb{R}^n)$, $k \geq 1$, donde U es un subconjunto abierto de \mathbb{R}^{n+1} , y $(t_0, x_0) \in U$. Entonces, la solución local \bar{x} del PVI está en $\mathcal{C}^{k+1}(I)$.
- 8. (0 puntos) Continuidad Lipschitz.
 - a) Muestre que la función $f(x) = \sqrt{x}$ es contínua pero no Lipschitz contínua. Proponga otro ejemplo.
 - b) Muestre que la función f(x) = |x| es Lipschitz contínua pero no \mathcal{C}^1 . Proponga otro ejemplo.
 - c) Muestre que la funcón $f(x) = x^2$ es C^1 pero no globalmente Lipschitz contínua.
 - d) Muestre que $f \in \mathcal{C}^1(\mathbb{R}^m, \mathbb{R}^n)$ es localmente Lipschitz continua. En efecto, muestre que

$$|f(y) - f(x)| \le \sup_{\varepsilon \in [0,1]} \left\| \frac{\partial f(x + \varepsilon(y - x))}{\partial x} \right\| |x - y|$$

Concluya que $f \in \mathcal{C}^1(U,\mathbb{R}^n)$, $U \in \mathbb{R}^{n+1}$ es localmente Lipschitz continua en el segundo argumento y uniformemente contínua con respecto al primero, y asi satisface las hipotesis del Teorema de Picard-Lindelof.

- 9. (0 puntos) Desigualdad de Gronwall. Considere la desigualdad de Gronwall. Pruebe que
 - a) Si $\alpha(s) \leq \alpha(t)$, para $s \leq t$, entonces

$$\psi(t) \le \alpha(t) \exp(\int_0^t \beta(s) ds), \quad t \in [0, T].$$

b) Si $\alpha \in \mathbb{R}$, $\beta \geq 0$, y $\gamma \in \mathbb{R}$ son constantes, y

$$\psi(t) \le \alpha + \int_0^t (\beta \psi(s) + \gamma) ds, \quad t \in [0, T],$$

entonces

$$\psi(t) \le \alpha \exp(\beta t) + \frac{\gamma}{\beta} (\exp(\beta t) - 1), \quad t \in [0, T].$$

10. (0 puntos) Considere alguno de los métodos de Heun visto en clases (RK3). Pruebe que es de orden 3.