# Nearest State/County Finder

•••

Group 4

Dian Jin, Yachen Wang, Qilong Wang, Tianze Li, Yu Guo

### **Project Overview**

- Given the locations of cities and counties in the US as reference points
- Users could enter a latitude and longitude to find the nearest counties

• Return the nearest K ( $1 \le K \le 10$ ) counties and their states

Dataset: The website of US Board on Geographic Names

### Approach - KD Tree

- Data structure for organizing points in a K-dimensional space
- Binary search tree where data in each node is a K-Dimensional point in space

#### Build:



Step 1: choose the middle node on the x-axis and draw a vertical line.

Step 2: choose the middle node on the y-axis and draw a horizontal line.

Step 3: repeat steps above until all the nodes have drawn lines.

# Approach - KD Tree Search





Example search nearest 3 points for (-1, -5)

- 1. DownSearch: Compare from the root to bottom: X-Y-X-Y-X...
- 2. Calculate the distance. Update or Discard.
- 3. Upsearch: Go to the upper level. Calculate the distance.
- 4. Decide whether to search other subtrees

•••••

# Time Complexity

Node numbers:

$$O(\sqrt{n})$$

$$T\left(n\right)=2^{k-1}T\left(n/2^{k}\right)+O(1)$$



In our project, 
$$k = 2$$
  $T(n) = \theta(k \cdot \sqrt{n})$ 

# Difficulty encountered

- Building Tree Sorting
- Search Tree Upward Search
- K-nearest neighbors

#### **Distance Calculation**



Formula to calculate the distance between two points on Earth

$$x = (\lambda 2-\lambda 1) * Cos((\phi 1+\phi 2)/2);$$
  
 $y = (\phi 2-\phi 1);$   
Distance = Sqrt(x\*x + y\*y) \* R;

where  $\phi$  is latitude,  $\lambda$  is longitude, R is earth's radius

#### Results

After entering a decimal latitude and a decimal longitude and a number K in the terminal, it will output the K nearest counties/states for this specific location.

```
PS C:\Users\dell\Desktop\ezyZip> g++ near.cpp -o near
PS C:\Users\dell\Desktop\ezyZip> ./near 40 -70 10

name: Siasconset, state id: MA, latitude: 41.263596, longitude: -69.971800, distance: 143.130816 km

name: West Chatham, state id: MA, latitude: 41.680423, longitude: -69.991800, distance: 187.007193 km

name: East Harwich, state id: MA, latitude: 41.708097, longitude: -70.033900, distance: 192.468616 km

name: Harwich Port, state id: MA, latitude: 41.672402, longitude: -70.064100, distance: 195.142107 km

name: Harwich Center, state id: MA, latitude: 41.692283, longitude: -70.069400, distance: 198.722361 km

name: North Eastham, state id: MA, latitude: 41.853915, longitude: -69.996800, distance: 206.165980 km

name: Northwest Harwich, state id: MA, latitude: 41.691710, longitude: -70.102600, distance: 210.492016 km

name: Dennis Port, state id: MA, latitude: 41.667703, longitude: -70.135800, distance: 223.847314 km

name: Madaket, state id: MA, latitude: 41.282618, longitude: -70.185500, distance: 228.963315 km

name: South Dennis, state id: MA, latitude: 41.705117, longitude: -70.153700, distance: 236.444263 km
```

#### Reference

- Instruction of KNN Algorithm and KD Tree. [Online]. Available:
   https://blog.csdn.net/zzpzm/article/details/88565645. [Accessed: 02-May-2023].
- An Explanation of KD Tree. [Online]. Available: https://zhuanlan.zhihu.com/p/53826008. [Accessed: 02-May-2023].
- B. Himite, "Calculating the distance between two points on Earth," *Medium*, 29-May-2020. [Online].
   Available:

   https://medium.com/swlh/calculating-the-distance-between-two-points-on-earth-bac5cd50c840.
   [Accessed: 02-May-2023].
- www.movable-type.co.uk Chris Veness, "Movable type scripts," Calculate distance and bearing between two Latitude/Longitude points using haversine formula in JavaScript. [Online]. Available: http://www.movable-type.co.uk/scripts/latlong.html. [Accessed: 02-May-2023].