Discrete Math Problem Set 7

Will Krzastek

March 28th, 2024

1. Let X be a set. Show that $(\forall Y \in \mathbb{P}(X))(|Y| \leq |X|)$.

Proof. Let X, Y be sets. Assume $Y \in \mathbb{P}(X)$. Because $\mathbb{P}(X)$ is the set of all subsets of X, and $Y \in \mathbb{P}(X)$, we then know $Y \subseteq X$. By the definition of a subset, we know $\forall b(b \in Y \Rightarrow b \in X)$.

Recall that $|Y| \leq |X| \Leftrightarrow \exists f(f: Y \hookrightarrow X)$ by the definition of equinumerosity. Consider an f where $f: Y \to X$. Also, let $a, b \in Y$.

Now let f be defined as f(a) = a. Because $Y \subseteq X$, we know $\forall a (a \in Y \Rightarrow a \in X)$. Recall that the definition of injectivity is $\exists f(f(a) = f(b) \Rightarrow a = b)$. To prove f is injective, assume f(a) = f(b). Then by the definition of f, we know that f(a) = a and f(b) = b. So, we have f(a) = a and f(b) = b by the definition of f.

Since f(a) = f(b), we know a = b.

So, by the definition of *injectivity*, we know that f is injective.

So, $|Y| \leq |X|$ by the definition of injectivity.

2. Show that $\forall X \forall Y(|X| \leq |Y| \Rightarrow \exists Z(Z \subseteq Y \land |X| = |Z|))$.

Proof. Let X, Y, Z be sets. Assume $|X| \leq |Y|$. By definition, this means that $\exists f(f: X \hookrightarrow Y)$, which means there exists an injective function f from X to Y. Now, let $Z := \{f(a) \mid a \in X\}$. Because Y is the codomain of f, Z only contains elements of Y, so $Z \subseteq Y$.

Now, let $g: X \to Z$ be the function g(a) := f(a) where $a \in X$.

Now, we want to show that |X| = |Z|, so we want to show that g is a bijection. To do so, we will independently show that g is both an injection and a surjection. First, we will show g is injective. Recall the definition of injectivity: $(\forall a, b \in X)(g(a) = g(b) \Rightarrow a = b)$. Assume g(a) = g(b). By the definition of g, we then know that f(a) = f(b). So, we have a = b because f is injective. So, g is injective.

Now, we want to show that g is surjective. Let h be an element of Z. Recall the definition of surjectivity: $(\forall h \in Z)(\exists x \in X)(g(x) = h)$. h = f(a) where $a \in X$. Thus, g(a) = f(a) because we know this is true $\forall h \in Z$. So, g(a) = h

by definition. Thus, g is surjective.

Because g is injective and surjective, g is by definition bijective. Thus, we obtain |X| = |Z| by definition. Therefore, $|X| \le |Y| \Rightarrow \exists Z(Z \subseteq Y \land |X| = |Z|)$.

3. Let X, Y, Z be sets and consider $f: X \to Y$ and $g: Y \to Z$. We define the *composition* of f with g to be the function $g \circ f: X \to Z$ given by $(g \circ f)(x) := g(f(x))$ for all $x \in X$.

(a) Show that, if f and g are both injections, then $g \circ f$ is injective.

Proof. Let X, Y, Z be sets. Let $f: X \to Y$ and $g: Y \to Z$. Recall $(\forall x \in X)(g \circ f(x) := g(f(x)))$. Also recall the definition of injectivity: $(\forall a, b \in X)(g(f(a)) = g(f(b)) \Rightarrow a = b)$. Assume f and g are both injections. Also assume g(f(a)) = g(f(b)).

Because g is injective, we know f(a) = f(b).

Because f is injective, we then know a = b.

So, if g and f are injections, $g \circ f$ is injective.

(b) Show that, if f and g are both surjections, then $g \circ f$ is surjective.

Proof. Let X, Y, Z be sets. Let $f: X \to Y$ and $g: Y \to Z$. Recall the definition of surjectivity: $(\forall a \in A)(\exists b \in B)(f(b) = a)$.

Assume g and f are both surjections.

Because f is surjective, $(\forall y \in Y)(\exists x \in X)(f(x) = y)$.

Because g is surjective, $(\forall z \in Z)(\exists y \in Y)(g(y) = z)$.

Thus, g(f(x)) = g(y) = z for arbitrary values of y and z.

So, if g and f are surjections, then $g \circ f$ is a surjection.

(c) Show that, if f and g are both bijections, then $g \circ f$ is bijective.

Proof. Let X, Y, Z be sets. Let $f: X \to Y$ and $g: Y \to Z$. Recall the definition of bijectivity is possessing sujrectivity and injectivity.

Assume g and f are bijections.

So, g and f are both injective and surjective by definition.

In 3(a), we proved $g \circ f$ is injective when g and f are injective.

In 3(b), we proved $g \circ f$ is surjective when g and f are surjective.

Because $g \circ f$ is injective and surjective when g and f are bijections, $g \circ f$ is bijective.

2

- 4. For this problem, let X and Y be nonempty sets and let $f: X \to Y$.
 - (a) If f is injective, show there exists $g: Y \to X$ where $g \circ f = id_X$. **Proof.** Let X, Y be sets. Let $f: X \to Y$. Assume f is injective. We want to show $(\exists g: Y \to X)(g \circ f = id_X)$. Because X is nonempty, an arbitrary element $x \in X$ exists. Remember $id_X := g(f(x)) = x$. Because f is injective, we know f(x) = y for some distinct $y \in Y$, where x is the only input mapped to y. Now, consider g(y) := x where y is the same y as the output of f(x). Here, we see that g(f(x)) = g(y) = x. When f(x) = y, this would mean that g(f(x)) = g(y) = x. Therefore, $g \circ f = x$, which means that $(\exists g: Y \to X)(g \circ f = id_X)$.
 - (b) If f is surjective, show there exists $g: Y \to X$ where $f \circ g = id_Y$. **Proof.** Let X, Y be sets. Let $f: X \to Y$. Assume f is surjective. We want to show $(\exists g: Y \to X)(f \circ g = id_Y)$. Because Y is nonempty, an arbitrary $y \in Y$ exists. Remember $id_Y := f(g(x)) = y$. Because f is surjective, we know that f(x) = y for some $x \in X$. Now, consider g(y) := x where x is the same x that is input into f. This means that f(g(y)) = f(x) = y. Therefore, $f \circ g = y$, which means that $(\exists g: Y \to X)(f \circ g = id_Y)$.
 - (c) If f is a bijection, then show there exists a function $g:Y\to X$ such that $g\circ f=id_X$ and $f\circ g=id_Y$. **Proof.** Let X,Y be sets. Let $f:X\to Y$. Assume f is a bijection. By definition, this means that f is both surjective and injective. In 4(a), we proved that when f is an injection, there exists a function $g:Y\to X$ where $g\circ f=id_X$ and we defined this function as g:=x. In 4(b), we proved that when f is a surjection, there exists a function $g:Y\to X$ where $f\circ g=id_Y$ and we defined this function as g:=x. Therefore, when f is injective and surjective, the function g:=x exists where $g\circ f=id_X$ and $f\circ g=id_Y$.

5. Euler's totient function is the function: $\varphi_e : \mathbb{N} \to \mathbb{N}$ that counts how many positive integers are *coprime* with each $n \in \mathbb{N}$, defined below:

$$\varphi_e(n) := |\{z \in \mathbb{N} \mid 1 \le z \le n \land gcd(z, n) = 1\}|$$

(a) If $p, k, m \in \mathbb{N}_+$ are positive naturals with p prime and $m \leq p^k$, then prove that $\gcd(p^k, m) \neq 1 \Leftrightarrow p \mid m$.

Proof. Let $p, k, m \in \mathbb{N}_+$ and assume p is prime and $m \leq p^k$. We will prove this by cases.

Case 1: $gcd(p^k, m) \neq 1 \Rightarrow p \mid m$.

Assume $\gcd(p^k,m) \neq 1$. This means that p^k and m share a common divisor. Recall that $p^k := p * p$ (k many times). Thus, p is the only prime factor of p^k because of the unique prime factorization of p^k and the FTA. Because they share a common divisor and p is the only prime divisor of p^k , p must divide m. Therefore, $p \mid m$.

Case 2: $p \mid m \Rightarrow gcd(p^k, m) \neq 1$.

Assume $p \mid m$. So, p is a divisor of m. Remember, p is the only prime divisor of p^k as shown in Case 1. As such p is a divisor of p^k and m, so $\gcd(p^k, m) \geq p$, and p is prime so p > 1. Therefore, $\gcd(p^k, m) \neq 1$.

Thus, both cases hold so $gcd(p^k, m) \neq 1 \Leftrightarrow p \mid m$.

(b) If p is prime, then prove that $\varphi_e(p) = p - 1$.

Proof. Let $p \in \mathbb{N}_+$ and assume p is prime.

We then define $\varphi_e(p) := |\{z \in \mathbb{N} \mid 1 \le z \le p \land gcd(z, p) = 1\}|.$

We want to now show that $\varphi_e(p) = p - 1$.

The set of all numbers that satisfies $1 \le z \le p$ is [p+1], but 0 is excluded, so its cardinality will be p. Because p is prime, the set of all numbers that satisfies gcd(z,p) = 1 while being less than or equal to p is every number strictly less than p. So, $\varphi_e(p)$ will be [p], but we still must exclude 0. So, $\varphi_e(p) = |[p] - 1|$. A set with p elements has cardinality p, so we equivalently get $\varphi_e(p) = p - 1$.

(c) If p is prime and $k \in \mathbb{N}_+$, then prove that $\varphi_e(p^k) = p^k - p^{k-1}$.

Proof. Let $p, k \in \mathbb{N}_+$ and assume p is prime.

We then define $\varphi_e(p^k) := |\{z \in \mathbb{N} \mid 1 \le z \le p^k \land gcd(z, p^k) = 1\}|.$

We want to show that $\varphi_e(p^k) = p^k - p^{k-1}$.

The set of all numbers that satisfies $1 \le z \le p^k$ is $[p^k+1]$, but 0 is excluded, so its cardinality is p^k .

Because p is prime and p is the only prime divisor of p^k as we proved in 5(a), z cannot equal a multiple of p, or else they would share a common

divisor and $\gcd(z,p^k)\neq 1$. So, the set of all numbers that satisfies $1\leq z\leq p^k\wedge \gcd(z,p^k)=1$ is p^k minus the set of all multiples of p up to p^k . Let M:= the set of all multiples of p up to p^k excluding p^k . We can find |M| by looking at the number of elements of the original set (p^k) , and dividing it by the difference between the first element (0) and p, which is just p. So, we see that $|M|=p^k/p$. By basic arithmetic, we know $p^k/p=p^{k-1}$. Thus, $|M|=p^{k-1}$. So, $\varphi_e(p^k)=p^k-|M|$, which is equal to p^k-p^{k-1} . Therefore, $\varphi_e(p^k)=p^k-p^{k-1}$.