Explain in Global defferential equation and Global integrate equation.

Varintegrate equation, and horizen cut of equations.

Masaaki Yamaguchi

$$\frac{\partial}{\partial f}F(x) = \int \int \operatorname{cohom} D_k(x)[I_m]$$

Cohomology element is constructed with isotopy of D-brane, and this isotopy of symmetry structure is sheaf of manifold, more over this brane of element is double integrate of projection.

$$\frac{\partial}{\partial f}F = {}^{t} - ff \operatorname{cohom} D_{k}(x)^{\ll p}$$

And global partial defferential equation is integrate of cut in cohomolgy, and this step of defferential D-brane of sheap value is varint of equals, inverse of horizen of cute of section value is reverse of integrate of operators. Three dimension of varint of manifolds in operator of sheaps, and this step of times of value is equal with D-brane of equations. Global differential equation and integrate equation is operator of global scales of horizen cut and add of cut equation are routs.

$$\oint r dx_m = \mathcal{O}(x, y)$$

t
 $ff_{D(\chi,x)}$ $Hom[D^{2}\psi]^{\ll p} \cong vol\left(\frac{V}{S}\right)$

$$\frac{\partial}{\partial f}F(x) = {}^{t}$$
-ffcohom $D_k(x)^{\ll p}$

$$\frac{d}{df}F = (F)^{f'}, \int F dx_m = (F)^f$$

$$\frac{d}{df} \int \int \frac{1}{(x \log x)^2} dx_m = \left(\int \int \frac{1}{(x \log x)^2} dx_m \right)^{f'}$$

$$f^{'} = (2x(\log x + \log(x+1)))$$

$$\int \int F dx_m = \left(\frac{1}{(x \log x)^2}\right)^{(\int 2x(\log x + \log(x+1))dx)}$$

$$= e^{-f}$$

$$\frac{d}{df} F = \left(\frac{1}{(x \log x)^2}\right)^{(2x(\log x + \log(x+1)))}$$

$$= e^f$$

$$\log(x \log x) \ge 2(y \log y)^{\frac{1}{2}}$$

$$\log(x \log x) \ge 2(\sqrt{y \log y})$$

Global differential manifold is calucrate with x of x times in non entropy of defferential values, and out of range in differential formula be able to oneselves of global differential compute system. Global integrate manifold is also calucrate with step of resulted with loop of integrate systems. Global differential manifold is newton and laiptitz formula of out of range in deprivate of compute systems. This system of calcurate formula is resulted for reverse of global equation each differential and intergrate in non entropy compute resulted values. 大域的微分方程式に、XのX乗のエントロピー不変量の微分量が計算に関わっている。外微分をこのエントロピー式に入れる。大域的積分多様体の多重積分は、多様体の階層によって、積分回数が決まっている。大域的微分多様体は、ニュートン形式とライプニッツ形式の外微分によって計算される。 大域的積分多様体と大域的微分多様体は、逆操作とエントロピー不変量で計算できる。

$$\pi(\chi, x) = [i\pi(\chi, x), f(x)]$$

$$\int \frac{1}{(x \log x)} dx = i \int \frac{1}{(x \log x)} dx^N + {}^N i \int \frac{1}{(x \log x)} dx$$

$$\int \frac{1}{(x \log x)} dx = i \int x \log x dx - \int \frac{1}{(x \log x)} dx$$

$$\int \int \frac{1}{(x \log x)^2} dx_m = i \frac{1}{2} x^2$$

$$\int \int \frac{1}{(x \log x)^2} dx_m = i \int \int_M dx_m$$

$$\leq \frac{1}{2} i + x^2$$

$$E = -\frac{1}{2} m v^2 + m c^2$$

$$\lim_{x \to \infty} \int \int \frac{1}{(x \log x)^2} dx_m \geq \frac{1}{2} i$$

$$\frac{d}{df} \int \int \frac{1}{(x \log x)^2} dx_m = \left(\int \int \frac{1}{(x \log x)^2} dx_m\right)^{(f)'}$$

$$= (f^f)'$$

$$= e^{x \log x}$$

$$\Gamma = \int e^{-x} x^{1-t} dx, \frac{d}{df} F = e^f, \int F dx_m = e^{-f}$$

$$\int x^{1-t} dx = \frac{d}{df} F, \int e^{-x} dx = \int F dx_m$$

$$e^{i\theta} = \cos \theta + i \sin \theta$$

$$x \perp y \to x \cdot y = \vec{0}, \frac{d}{df} \int \int \frac{1}{(x \log x)^2} dx_m = \frac{1}{2}i$$

$$\frac{d}{df} \int \int \frac{1}{(x \log x)^2} dx_m = \left(\int \int \frac{1}{(x \log x)^2} dx_m\right)^{(f)'}$$

$$\frac{1}{2} + \frac{1}{2}i = \vec{0}, \frac{1}{2} \cdot \frac{1}{2}i$$

$$A + B = \vec{0}, A \cdot B = \frac{1}{4}i$$

$$\tan 90 \neq 0, ||ds^2|| = A + B$$

 $(f)^{(f)'}$

Represented real pole is not only one of pole but also real pole of $\frac{1}{2}$, 自明な零点は実軸 $\frac{1}{2}$ に 1 を除いてある。 $\sin 0 = 0$ と

$$e^{i\theta} = \cos\theta + i\sin\theta$$

 θ によって、不確定性原理の関係でもあり、粒子、電子、原子が確率分布になっているのも開集合で証明できる。宇宙と異次元の関係にもなっている。 this result equation is non-certain system concerned with particle, electric particle and atoms in open set group with possibility of surface values, and have abled to proof in this group of system. Universe and the other dimension of concerned of relationship values.

$$\frac{d}{df}F = \frac{d}{df} \int \int \frac{1}{(x \log x)^2} dx_m + \frac{d}{df} \int \int \frac{1}{(y \log y)^{\frac{1}{2}}} dy_m = \Gamma(x, y)$$

$$\frac{d}{d\gamma} \Gamma = (e^{-x} x^{1-t})^{\gamma'} \to \frac{d}{d\gamma} \Gamma = \Gamma^{(\gamma)'}$$

$$\Gamma(s) = \int e^{-x} x^{s-1} dx, \Gamma'(s) = \int e^{-x} x^{s-1} \log x dx$$

$$x^{s-1} = e^{(s-1)\log x}$$

$$\frac{\partial}{\partial s} x^{s-1} = \frac{\partial}{\partial s} e^{-x} \cdot (e^{s-1\log x}) = e^{-x} \cdot \log x \cdot e^{(s-1)\log x}$$

$$= e^{-x} \cdot \log x \cdot x^{s-1}$$

$$\frac{d}{d\gamma} \Gamma = \Gamma^{(\gamma)'}$$

$$\frac{d}{d\gamma}\Gamma(s) = \left(\int_0^\infty e^{-x}x^{s-1}dx\right)^{\left(\int_0^\infty e^{-x}x^{s-1}\log xdx\right)'}$$

$$= \Gamma^{\left(\Gamma\int\log xdx\right)'}$$

$$= e^{-x\log x}$$

$$\Gamma(s) = \int_0^\infty e^{-x}x^{s-1}dx$$

$$\Gamma'(s) = \int_0^\infty e^{-x}x^{s-1}\log xdx$$

$$\frac{d}{df}F = \int x^{s-1}dx$$

$$\int Fdx_m = \int e^{-x}dx$$

$$\frac{d}{df}F = F^{(f)'}, \int Fdx_m = F^{(f)}$$

Global differential manifold and global integrate manifold are reached with begin estimate of gamma and beta function leaded solved, Global differential manifold is emerged with gamma function of themselves of first value of global differential manifold of gamma function, this equation of quota in newton and dalarnverles of equation is also of same results equations. Zeta function also resulted with quantum group reach with quanto algebra equation. 大域的微分多様体と大域的積分多様体を、ガンマ関数とベータ関数の導出にも使われている。ガンマ関数の大域的微分多様体が、ニュートン方程式とダランベール方程式を商代数で求めると、同型の解に求まる。ゼータ関数と、この式の対極する量子群を商代数で求めても、同じ解が求まる。

Included of diverse of gravity of influent in quantum physics, also quantum physics doesn't exist Gauss surface of theorem,

繰り込み理論を入れると発散を防げると言われているが、量子力学にはガウスの曲面論がないと言われている。

$$H\Psi = \bigoplus (i\hbar^{\nabla})^{\oplus L}$$
$$= \bigoplus \frac{H\Psi}{\nabla L}$$
$$= e^{x \log x} = x^{(x)'}$$

however, とすると、

$$\frac{d}{df}F = m(x)$$

and gravity equation in being abled to existed with quantum physics, and this physics is also represented with quantum level of differential geometry. と同じで量子力学で重力場方程式が表せられる。

$$\frac{d}{dt}\psi(t) = \hbar$$

$$= \frac{1}{2}ie^{i\hat{H}}$$

$$(i\hbar)' = (-e^{i\hat{H}})'$$

$$= -ie^{i\hat{H}}$$

$$\psi(x) = e^{-i\hat{H}t}, \bigoplus (i\hbar^{\nabla})^{\oplus L} = \frac{1}{2}e^{i\hat{H}}^{(-ie^{i\hat{H}})}$$

$$= (\frac{1}{2}f)^{-if}$$

$$= (\frac{1}{2})^{-if} \cdot e^{-x\log x} \cdot (f)^{i}$$

$$= \int e^{-x}x^{t-1}dx, \frac{d}{d\gamma}\Gamma = e^{-x\log x}$$

$$f = x, i = t, \frac{1}{2} = a, \bigoplus a^{-tx}x^{t}[I_{m}] \cong \int e^{-x}x^{t-1}dx$$

微分幾何の量子化は、ガンマ関数についての大域的微分方程式の解にもなっている。ハイゼンベルク方程式の 大域的積分多様体の解にも、この微分幾何の量子化は、多様体の微分系の形になっている。 Quantum level of differential geomerty is also resulted with Gamma function of global differential manifold of values, Heisenberg equation is also resulted with global integrate manifold and this quantum level of differential geometry is manifold of deprive of formula.

$$\begin{split} |\psi(t)\rangle_s &= e^{-i\hat{H}t} |\Psi\rangle_H, \hat{A}_s = \hat{A}_H(0) \\ |\Psi(t)\rangle_s &\to \frac{d}{dt} \\ i\frac{d}{dt} |\psi(t)\rangle_s &= \hat{H} |\psi(t)\rangle_s \\ \langle \hat{A}(t)\rangle &= \langle \Psi(t)|\hat{A}(0)|\Psi(t)\rangle \\ \frac{d}{dt}\hat{A} &= \frac{1}{i}[\hat{A},H] \\ \hat{A}(t) &= e^{i\hat{H}t}\hat{A}(0)e^{-i\hat{H}t} \\ \lim_{\theta \to 0} \begin{pmatrix} \sin\theta\\\cos\theta \end{pmatrix} \begin{pmatrix} \theta & 1\\1 & \theta \end{pmatrix} \begin{pmatrix} \cos\theta\\\sin\theta \end{pmatrix} &= \begin{pmatrix} 1 & 0\\0 & -1 \end{pmatrix} \\ f^{-1}(x)xf(x) &= I_m', I_m' &= [1,0] \times [0,1] \\ x + y &\geq \sqrt{xy} \\ \frac{x^{\frac{1}{2}+iy}}{e^{x\log x}} &= 1 \\ \mathcal{O}(x) &= \nabla_i \nabla_j \int e^{\frac{2}{m}\sin\theta\cos\theta} \times \frac{N \operatorname{mod}(e^{x\log x})}{O(x)(x + \Delta|f|^2)^{\frac{1}{2}}} \end{split}$$

$$x\Gamma(x) = 2\int |\sin 2\theta|^2 d\theta, \mathcal{O}(x) = m(x)[D^2\psi]$$
$$i^2 = (0,1) \cdot (0,1), |a||b|\cos \theta = -1$$
$$E = \operatorname{div}(E, E_1)$$
$$\left(\frac{\{f,g\}}{[f,g]}\right) = i^2, E = mc^2, I' = i^2$$

ガンマ関数の大域的微分方程式は、ガンマ関数の初期関数についての微分方程式でもあり、宇宙と異次元についてのビッグス場からのゼータ関数の生成も、3次元多様体の特異点定理になっている。宇宙と異次元の片方でも同じ解にもなっている。逆三角関数の双曲多様体もヒッグス場の密度エネルギーの値と同じ解にもなっている。微分幾何の量子化も、ゼータ関数の対極する量子群と同じ解にもなっている。ゼータ関数は、量子群の方程式についての対極に位置する大域的微分多様体の解にもなっている。 Gamma function of global differential equation is first of differential function deprivate with ordinary differential equations, more also universe and other dimension of Higgs field emerge with zeta function, more spectrum focus is three dimension of manifold of singularity or pair theorem, and universe and other dimension of each value equals. This reverse of circle function of manifolds is also Higgs fields of dense of entropy and result equation. And differential structure of quantum level in gravity is poled with zeta function and quantum group in high result values. Zeta funtion and quantum group is Global differential manifold of result in values.

$$\frac{d}{d\gamma}\Gamma = m(x)$$

$$= e^{-x \log x}$$

$$\sin ix = \frac{e^{-x} + e^x}{2i}$$

$$\frac{d}{df}F = m(x) = e^f + e^{-f}$$

$$= 2i\sin(ix \log x)$$

Hyper circle function is constructed with sheap of manifold in Beta function of reverse system emerged from Gamma fucntion and reverse of circle function of entropy value, and this reverse of hyper circle function of beta system is universe and the other dimension of zeta function, more over spectrum focus is this beta function of reverse in circle function is quantum level of differential structure oneselves, and this quantum level is also gamma function themselves. This gamma function is more also D-brane and anti-D-brane built with supplicant values. Higgs fileds is more also pair of universe and other dimension each other value elements. 逆三角関数の双曲多様体は、ガンマ関数の方程式からの導出でのベータ関数の逆三角関数のエントロピー値にもなっている。