Solving and Estimating an Incomplete Information Entry Game

Carlos Enrique Lezama Jacinto

Instituto Tecnológico Autónomo de México

clezamaj@itam.mx

Suppose there are two firms, A and B, that simultaneously decide whether to enter in the market $m \in \{1, ..., M\}$ or not. If firm $i \in \{A, B\}$ decides to enter, its profits are given by

$$\Pi_{i,m} = X_{i,m}\beta - D_{j,m}\alpha + \nu_m + u_{i,m}, \quad \forall i, j \in \{A, B\}, i \neq j$$

where $X_{i,m}$ is an observable characteristic of firm i that boosts profits in market m, $D_{j,m} \in \{0,1\}$ is j's decision of entering the market, ν_m is a market fixed effect, and $u_{i,m}$ captures unobserved idiosyncratic shocks to profits.

On the other hand, if firm i decides not to enter market m, its profits are zero.

Notice that $u_{i,m}$ is observed by i but not by its opponent j. Consequently, the firms are playing an incomplete information entry game described below.

		Firm B	
		Enter	Do not enter
Firm A	Enter	$(\Pi_{A,m},\Pi_{B,m})$	$(X_{A,m}\beta + \nu_m + u_{A,m}, 0)$
	Do not enter	$(0, X_{B,m}\beta + \nu_m + u_{B,m})$	(0,0)

Thus, the expected profits of firm A if it decides to enter market m are

$$E(\Pi_{A,m}) = (D_{A,m}) (p(D_{B,m} = 1) (X_{A,m}\beta - \alpha + \nu_m + u_{A,m}) + (1 - p(D_{B,m} = 1)) (X_{A,m}\beta - \alpha + u_{A,m})) + (1 - D_{A,m}) \cdot 0$$

where, $\forall i, j \in \{A, B\}, i \neq j$, the condition for firm i to enter the market in terms of its expected profits is defined as follows:

2 Lezama

$$D_{i,m} = \mathbf{1} \left(p(D_{j,m} = 1) \left(X_{i,m} \beta - \alpha + \nu_m + u_{i,m} \right) + \left(1 - p(D_{j,m} = 1) \right) \left(X_{i,m} \beta + \nu_m + u_{i,m} \right) > 0 \right).$$

Namely, the probability that firm A enters market m is

$$p(D_{A,m=1}) = p(X_{A,m}\beta - \alpha p(D_{B,m} = 1) + \nu_m + u_{A,m} > 0)$$

= $p(u_{A,m} > -(X_{A,m}\beta - \alpha p(D_{B,m} = 1) + \nu_m))$
= $\Phi(X_{A,m}\beta - \alpha p(D_{B,m} = 1) + \nu_m)$

where $\Phi = \mathcal{N}(0,1)$. Recall that we assume $u_{i,m} \sim \mathcal{N}(0,1), \forall i, j \in \{A, B\}, i \neq j$. Similarly,

$$p(D_{B,m} = 1) = \Phi(X_{B,m}\beta - \alpha p(D_{A,m} = 1) + \nu_m).$$

Furthermore, we propose the following parametrization to simulate our model: