

Wintersemester 2023/24 Prof. Dr. Stephan Elsenhans 06.11.2023 Benedikt Wolf

Lineare Algebra: Aufgabenblatt 04

4.1 Direktes Produkt

/30 Punkte

(a) Zeigen Sie: Sind $(G, *, e_G)$ und (H, \star, e_H) Gruppen, dann ist auch $G \times H$ mit der Verknüpfung

$$\odot: (G\times H)\times (G\times H)\to G\times H, \quad (g_1,h_1)\odot (g_2,h_2):=(g_1*g_2,h_1\star h_2)$$

und dem neutralen Element (e_G, e_H) eine Gruppe. Diese Gruppe nennt man auch das direkte Produkt von G und H.

- (b) Zeigen Sie: Sind $(R, +, \cdot)$ und $(S, \star, *)$ Ringe, dann ist auch $R \times S$ mit den Verknüpfungen \oplus und \odot , definiert durch $(r_1, s_1) \oplus (r_2, s_2) := (r_1 + r_2, s_1 \star s_2)$ bzw. $(r_1, s_1) \odot (r_2, s_2) := (r_1 \cdot r_2, s_1 \star s_2)$ ein Ring.
- (c) Beweisen oder widerlegen Sie: Ist $(K, +, \cdot)$ ein Körper, dann ist auch $K \times K$ mit den Verknüpfungen wie in (b) ein Körper.

4.2 Kürzen in Ringen

/10 Punkte

Zeigen Sie: In einem Ring $(R,+,\cdot)$ gilt genau dann die Kürzungsregel "Falls $a\in R\setminus\{0\}$ und $x,y\in R$ beliebig sind, dann gilt $a\cdot x=a\cdot y\Rightarrow x=y$ ", wenn R nullteilerfrei ist.

4.3 Verknüpfungsverträglich

/20 Punkte

Es seien $(G, \cdot, e_G), (H, *, e_H)$ Gruppen und $\alpha : G \to H$ ein Gruppenhomomorphismus. Zeigen Sie:

- (a) $U = \{u \in G | \alpha(u) = e_H\}$ ist eine Untergruppe von G.
- (b) $\alpha(G)$ ist eine Untergruppe von H.
- (c) Durch $a \sim b \Leftrightarrow ab^{-1} \in U$ wird eine verknüpfungsverträgliche Äquivalenzrelation auf G definiert.

4.4 Rechnen in verschiedenen Ringen

/20 Punkte

- (a) Bestimmen Sie das inverse Element von $\overline{6}$ in $\mathbb{Z}/4\mathbb{Z}$, $\mathbb{Z}/5\mathbb{Z}$, $\mathbb{Z}/7\mathbb{Z}$ bzw. $\mathbb{Z}/35\mathbb{Z}$ oder weisen Sie nach, dass es nicht existiert.
- (b) Bestimmen Sie die Charakteristik von $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$ bzw. $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$, wobei die beiden Teile des Produktes als Ringe interpretiert werden und die Verknüpfung wie in 4.1(b) definiert wird.
- (c) Bestimmen Sie alle $z \in \mathbb{C}$, die die Gleichung $z^2 + 2 = 0$ erfüllen.
- (d) Berechnen Sie $(7+i)(6-i)^{-1}$ und geben Sie das Ergebnis ale komplexe Zahl gemäß Definition 2.4.14 an.
- (e) Bestimmen Sie die Einerstelle von 27¹⁰¹.

4.5 "Komplexe Zahlen" über endlichen Ringen

/20 Punkte

Wir können analog zur Konstruktion komplexer Zahlen vorgehen, um aus $\mathbb{Z}/n\mathbb{Z}$ größere Ringe zu konstruieren, d.h. für festes $n \in \mathbb{N}$ definieren wir auf $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ die Addition \oplus bzw. Multiplikation \odot durch

$$(a_1,b_1) \oplus (a_2,b_2) := (a_1 + a_2,b_1 + b_2)$$

bzw.

$$(a_1,b_1)\odot(a_2,b_2):=(a_1a_2-b_1b_2,a_1b_2+a_2b_1)$$

für alle $(a_1,b_1),(a_2,b_2)\in \mathbb{Z}/n\mathbb{Z}\times \mathbb{Z}/n\mathbb{Z}$

Entscheiden Sie, für welche $n \in \{2,3,4\}$ mit dieser Konstruktion ein Körper entsteht.

Lösungshinweise

Aufgabe 1:

Nutzen Sie die Definitionen

Aufgabe 2:

Bringen Sie die Addition ins Spiel.

Aufgabe 3:

. . .

Aufgabe 4:

Man kann jede ganze Zahl als $a \cdot 10 + b$ mit $b \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ und $a \in \mathbb{Z}$ schreiben. b ist dann die Einerstelle.

Aufgabe 5:

Suchen Sie Gemeinsamkeiten und Unterschiede.