

Effective Layer Pruning Through Similarity Metric Perspective

Ian Pons, Bruno Yamamoto, Anna H. Reali Costa and Artur Jordao Escola Politécnica, Universidade de São Paulo

Deep Learning

- Deep neural networks have been the predominant paradigm in machine learning for solving cognitive tasks
- Such models, however, are restricted by a high computational overhead, limiting their applicability on low-resource environments
- The recent Llama 3 model (Dubey et al., 2024) family comprehends a concrete example
 - Training requires up to 16K H100 GPUs globally distributed
 - The largest model (Llama 405B) requires 16 GPUs with 16-bit precision for inference

Pruning

- Extensive research demonstrated that pruning structures from deep models is a straightforward approach to improving efficiency
- Most works in pruning focus on removing filters (He et al., 2023; Cheng et al. 2024)

Layer Pruning

- Layer pruning emerges as a promising alternative to standard filter pruning
 - It reduces network depth, which directly addresses model latency
- Despite positive results, most layer-pruning methods fail to preserve accuracy
 - Even when equipped with additional techniques such as knowledge distillation
- Simple criteria are unable to characterize all underlying properties exhibited by layers

Contributions

- In this work, we propose a novel pruning criterion that leverages an effective similarity representation metric: **C**entered **K**ernel **A**lignment (CKA)
- Powered by CKA, we develop a layer-pruning method that removes entire layers from neural networks without compromising predictive ability
- Our criterion identifies unimportant layers: layers that, when removed, preserve similarity regarding the original model

Problem Statement and Proposed Method

Problem Statement

Methodology

- Given a network $\mathcal N$ composed of a layer set L, our goal is to remove certain layers to produce a shallower network $\mathcal N'$ composed by L'
 - $L' \ll L$
 - The accuracy of N' is as close as possible (ideally better) than its unpruned version ${\mathcal N}$

Proposed Method

Methodology

- Given a pre-trained network \mathcal{N} , we extract its representation (feature maps) R
 - Here, we use some training input examples
- We create a temporary **pruned** (subnetwork) model by removing a candidate layer $l_i \in L$ from \mathcal{N} and, then, extract its representation R_i

Proposed Method

Methodology

- ullet For each subnetwork, we compare their representations with the original network using CKA
- Finally, we select the temporary network that yields the highest similarity
 - Similar representations between a dense (unpruned) network and its optimal sparse (pruned) candidate indicate lower relative importance \mathcal{N}'_{l_1}

Proposed Method

Methodology

Overview

Layer Pruning using our CKA criterion – O(|L|)

Input: Trained Network \mathcal{N} , Candidate Layers $l_i \in L$, Training Samples X

Output: Pruned Version of ${\mathcal N}$

 $R \leftarrow M(\mathcal{N}, X) \triangleright Extracts \ representation$

for $i \leftarrow to |L| do$

 $\mathcal{N}_{l_i} \leftarrow \mathcal{N} \setminus l_i \triangleright Removes\ layer\ l_i\ from\ \mathcal{N}$

 $R_i \leftarrow M(\mathcal{N}_{l_i}, X) \triangleright Representation \ extraction \ of \mathcal{N}_{l_i}$

 $S \leftarrow S \cup CKA(R, R_i)$

end for

 $j \leftarrow argmax(S) \triangleright Index (layer) of highest similarity in S$

 $\mathcal{N} \leftarrow \mathcal{N}_{l_i} \rhd \mathcal{N}$ becomes its pruned version

Experimental Setup

- Datasets
 - CIFAR-10/100
 - ImageNet
 - Different tabular datasets
- Architectures
 - ResNet32/44/56/110
 - ResNet50
 - MobileV2
 - Transformer-like (for tabular data)

Effectiveness of the Proposed CKA Criterion

- Our method outperforms existing layer pruning techniques by a large margin
 - The reason for these remarkable results is that our method carefully selects which layers to eliminate
- Additionally, our method is more cost-friendly

	Method	Δ Acc.	FLOPS (%)
	PLS	(-) 0.98	30.00
ResNet56	FRPP	(+) 0.26	34.80
on	ESNB	(-) 0.62	52.60
CIFAR10	LPSR	(+) 0.19	56.29
	CKA (ours)	(+) 0.95	56.29

	Method	Δ Acc.	FLOPS (%)
ResNet110	ESNB	(+) 1.15	29.89
on	PLS	(+) 0.06	37.73
CIFAR10	CKA (ours)	(+) 1.16	50.33
ResNet50 on ImageNet	LPRS	(-) 1.38	37.38
	CKA (ours)	(-) 0.18	39.62
	PLS	(-) 0.67	45.28
	CKA (ours)	(-) 0.90	45.28

Comparison with the State of the Art

Experiments

- We evaluate our method against the most recent and top-performing techniques mainly based on the survey by He et al. (2023)
 - We report the results of each method according to the original paper

DECORE (+) 0.08 26.30 SOKS (+) 0.16 35.91	ResNet110 on	WhiteBox CRL-RNF	(+) 0.62 (+) 0.14	66.00 66.00
SOKS (+) 0.16 35.91	on		(+) 0.14	66.00
		DECORE		00.00
CKA (Ours) (+) 1.25 37.52	CIFAR10	DECORE	(-) 0.79	76.83
ResNet56 WhiteBox (+) 0.28 55.60		CKA (Ours)	(+) 0.23	76.42
on CLR-RNF (+) 0.01 57.30		WhiteBox	(-) 0.83	45.60
CIFAR10 CKA (Ours) (+) 0.78 60.04	ResNet50	CLR-RNF	(-) 1.16	40.39
Hrank (-) 2.54 74.09	on	SOSP	(-) 0.94	45.00
GCNP (-) 0.97 77.22	ImageNet	DECORE	(-) 1.57	42.30
CKA (Ours) (-) 0.66 78.80		CKA (Ours)	(-) 0.90	45.28

He et al. Structured Pruning for Deep Convolutional Neural Networks: A Survey. PAMI, 2023

Comparison with the State of the Art

Experiments

Our method dominates existing pruning methods by a remarkable margin

Effectiveness in Shallow Architectures

- The keys to the success of pruning is the overparameterized regime of neural networks, particularly evident in deep models
- This experiment verifies the applicability of our method to shallow models
 - ResNet32/44 and MobileV2 (please check our paper)

	Method	Δ Acc.	FLOPS (%)
	DAIS	(+) 0.57	53.90
ResNet32	SOKS	(-) 0.80	54.58
	CKA (Ours)	(+) 0.05	54.61
ResNet44	DCP-CAC	(-) 0.03	50.04
	AGMC	(-) 0.82	50.00
	CKA (Ours)	(+) 0.47	53.27

Robustness to Adversarial Samples

Experiments

Goodfellow et al. Explaining and Harnessing Adversarial Examples. ICLR, 2015

Lu et al. Harder or Different? A Closer Look at Distribution Shift in Dataset Reproduction. ICML, 2020

Robustness to Adversarial Samples

Conclusions

Conclusions

- We proposed a novel criterion for identifying and removing unimportant layers
 - Our criterion leverages the Centered Kernel Alignment (CKA) to select unimportant layers from a set of candidates
 - Our criterion capture underlying properties exhibited by layers and preventing model collapse
- Powered by CKA, we showed that similar representations between a dense (unpruned) network and its optimal pruning candidate indicate lower relative importance

Conclusions

- Unlike most existing layer-pruning criteria that fail to capture underlying properties of layers, our method effectively assigns layer importance and thus prevents model collapse
- We believe our results open new opportunities to prune through the lens of similarities metrics and encourage further efforts on layer pruning

Acknowledgements

• The authors would like to thank grant #2023/11163-0, São Paulo Research Foundation (FAPESP), and grant #402734/2023-8, National Council for Scientific and Technological Development (CNPq). Artur Jordao Lima Correia would like to thank Edital Programa de Apoio a Novos Docentes 2023. Processo USP nº: 22.1.09345.01.2. Anna H. Reali Costa would like to thank grant #312360/2023-1 CNPq. This study was also partially financed by the Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior – Brasil (CAPES) – Finance Code 001

Appendix

The Effect of Layer Pruning on Efficiency

Appendix

Technical Details Behind Layer Pruning

Appendix

