MATH 5590H HOMEWORK 12

BRENDAN WHITAKER

Exercise 7.6.7. Let $n|m, n, m \in \mathbb{N}$. Prove that the natural surjective ring projection $\pi : \mathbb{Z}_m \to \mathbb{Z}_n$ is also surjective on the units: $\mathbb{Z}_m^{\times} \to \mathbb{Z}_n^{\times}$.

Proof. Let $n|m, n, m \in \mathbb{N}$. By corollary 18 and the Chinese remainder theorem, we know that if $m = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$, $m = p_1^{\beta_1} \cdots p_k^{\beta_k}$, where $\beta_i \leq \alpha_i \ \forall i$, then

$$\mathbb{Z}_{m} = \mathbb{Z}_{p_{1}^{\alpha_{1}}} \times \cdots \times \mathbb{Z}_{p_{k}^{\alpha_{k}}},
\mathbb{Z}_{n} = \mathbb{Z}_{p_{1}^{\beta_{1}}} \times \cdots \times \mathbb{Z}_{p_{k}^{\beta_{k}}},
\mathbb{Z}_{m}^{\times} = \mathbb{Z}_{p_{1}^{\alpha_{1}}}^{\times} \times \cdots \times \mathbb{Z}_{p_{k}^{\alpha_{k}}}^{\times},
\mathbb{Z}_{n}^{\times} = \mathbb{Z}_{p_{1}^{\beta_{1}}}^{\times} \times \cdots \times \mathbb{Z}_{p_{k}^{\beta_{k}}}^{\times}.$$
(1)

So if $\pi: \mathbb{Z}_m \to \mathbb{Z}_n$ is the natural projection homomorphism, we know π is surjective, and $\pi_i: \mathbb{Z}_{p_i^{\alpha_i}} \to \mathbb{Z}_{p_i^{\beta_i}}$ is also surjective. We want to show $\pi_i: \mathbb{Z}_{p_i^{\alpha_i}}^{\times} \to \mathbb{Z}_{p_i^{\beta_i}}^{\times}$ is surjective. Let $x_i \in \mathbb{Z}_{p_i^{\beta_i}}^{\times}$. Then we must have that $(x_i, p_i) = 1$. And $\pi_i^{-1}(x_i) = \{l_i p_i^{\beta_i} + x_i : 0 \le l_i \le p_i^{\alpha_i - \beta_i} - 1, l_i \in \mathbb{Z}\}$. Suppose $(l_i p_i^{\beta_i} + x_i, p_i^{\alpha_i}) = a_i > 1$ $\forall l_i$. We know if $a_i | l_i p_i^{\beta_i}$, and $a_i | p_i^{\alpha_i}$, then $a_i = p_i^{\gamma_i}$ for some non-negative integer $\gamma_i \le \alpha_i$. Let $l_i = 1$. Then $(p_i^{\beta_i} + x_i, p_i^{\alpha_i}) = p_i^{\gamma_i}$. So $\exists r_i \in \mathbb{Z}$ s.t. $p_i^{\beta_i} + x_i = r_i p_i^{\gamma_i} \Rightarrow x_i = r_i p_i^{\gamma_i} - p_i^{\beta_i}$. We assume $\beta_i > 0$ else $\mathbb{Z}_{p_i^{\beta_i}} = 1$, and π_i is the trivial homomorphism, hence surjective on the units. And $\gamma_i > 0$, else $a_i = 1$, so $p_i | x_i$, which is a contradiction since we said $(x_i, p_i) = 1$, so we must have that $a_i = p_i^{\gamma_i} = 1 \ \forall i$, so $(p_i^{\beta_i} + x_i, p_i^{\alpha_i}) = 1 \ \forall i$, so $\exists y_i = x_i + p_i^{\beta_i} \in \mathbb{Z}_{p_i^{\alpha_i}}^{\times}$ s.t. $\pi_i(y_i) = x_i$, so $\pi_i: \mathbb{Z}_{p_i^{\alpha_i}}^{\times} \to \mathbb{Z}_{p_i^{\beta_i}}^{\times}$ is surjective on the units, hence $\pi: \mathbb{Z}_m^{\times} \to \mathbb{Z}_n^{\times}$ is surjective on the units.

Exercise 8.3.3. Determine all the representations of the integer $2130797 = 17^2 \cdot 73 \cdot 101$ as a sum of two squares.

We first find all the representations of $73 \cdot 101 = 7373$. Now 73 = (8+3i)(8-3i) and 101 = (10+i)(10-i), so if we wish to write $7373 = A^2 + B^2$, the possible factorizations of A + Bi in the Gaussian integers are

$$(8+3i)(10+i) = 80 + 38i - 3 = 77 + 38i,$$

$$(8+3i)(10-i) = 80 + 22i + 3 = 83 + 22i,$$

$$(8-3i)(10+i) = 80 - 22i + 3 = 83 - 22i,$$

$$(8-3i)(10-i) = 80 - 38i - 3 = 77 - 38i.$$
(2)

Then $7373 = (\pm 77)^2 + (\pm 38)^2 = (\pm 83)^2 + (\pm 22)^2$, which gives us 8 possible combinations, and switching the order of A and B gives us another 8, for a total of 16 representations. So by multiplying each of A and B by 17, we get 16 unique representations of 2130797 as a sum of two squares of the form $(17A)^2 + (17B)^2$. But since $17 \equiv 1 \mod 4$, we have additional representations. Note that $17^2 = (4+i)^2(4-i)^2$. Thus we have

Date: AU17.

several factorizations if A = Bi s.t. $A^2 + B^2 = 2130797$ given by:

$$(4+i)^{2}(8+3i)(10+i) = 851 + 1186i,$$

$$(4+i)^{2}(8+3i)(10-i) = 1069 + 994i,$$

$$(4+i)^{2}(8-3i)(10+i) = 1421 + 334i,$$

$$(4+i)^{2}(8-3i)(10-i) = 1459 + 46i,$$

$$(4-i)^{2}(8+3i)(10+i) = 1459 - 46i,$$

$$(4-i)^{2}(8+3i)(10-i) = 1421 - 334i,$$

$$(4-i)^{2}(8-3i)(10+i) = 1069 - 994i,$$

$$(4-i)^{2}(8-3i)(10-i) = 851 - 1186i.$$
(3)

So we have $2130797 = (\pm 851)^2 + (\pm 1186)^2 = (\pm 1069)^2 + (\pm 994)^2 = (\pm 1421)^2 + (\pm 334)^2 = (\pm 1459)^2 + (\pm 46)^2$. This gives us 16 combinations, and switching the order of A and B gives us another 16, so we have 32 additional representations of 2130797 as a sum of two squares, for a total of 48.

Exercise 8.3.6.

(a) Prove that the quotient ring $Q = \mathbb{Z}[i]/(1+i)$ is a field of order 2.

Proof. Observe:

$$\mathbb{Z}[i]/(1+i) \cong \mathbb{Z}[x]/(x^2+1,x+1) \cong \mathbb{Z}[-1]/((-1)^2+1) = \mathbb{Z}/(2) \cong \mathbb{Z}_2.$$
 (4)

(b) Let $q \in \mathbb{Z}$ be a prime with $q \equiv 3 \mod 4$. Prove that the quotient ring $\mathbb{Z}[i]/(q)$ is a field with q^2 elements.

Proof. Note since $q \equiv 3 \mod 4$, we know q is irreducible, and since the Gaussian integers are a UFD, we know q is also prime by Proposition 8.3.18. Then we must have that (q) is a prime ideal. Since $\mathbb{Z}[i]$ is also a principal ideal domain, we know that (q) is also a maximal ideal by Proposition 8.2.7, which means $\mathbb{Z}[i]/(q)$ is a field since $\mathbb{Z}[i]$ is commutative, by Proposition 7.4.12. Then since 1, i generate $\mathbb{Z}[i]$, they also generate $\mathbb{Z}[i]/(q)$, so we have two cyclic subgroups $\langle 1 \rangle, \langle i \rangle$, each of order q. Now $\mathbb{Z}[i]/(q) = \langle 1 \rangle + \langle i \rangle$ and $\langle 1 \rangle \cap \langle i \rangle = 0$ so we must have that $\mathbb{Z}[i]/(q) \cong \langle 1 \rangle \times \langle i \rangle \cong \mathbb{Z}_q^2$ as groups. Thus our field must have q^2 elements.

(c) Let $p = \pi \overline{\pi} \equiv 1 \mod 4$ be a prime in \mathbb{Z} . Show that the hypotheses for the Chinese remainder theorem are satisfied, and that $\mathbb{Z}[i]/(p) \cong \mathbb{Z}[i]/(\pi) \times \mathbb{Z}[i]/(\overline{\pi})$ as rings. Show that the quotient ring $\mathbb{Z}[i]/(p)$ has order p^2 and conclude that $\mathbb{Z}[i]/(\pi)$ and $\mathbb{Z}[i]/(\overline{\pi})$ are both fields of order p.

Proof. By Proposition 8.3.18, we know that p can be written as a sum of two squares, so $p=a^2+b^2=(a+bi)(a-bi)=\pi\overline{\pi}$. And by the same Proposition, we know $\pi,\overline{\pi}$ are irreducibles in $\mathbb{Z}[i]$, and since we are in a UFD, we know these elements are also prime. Then we know that they are coprime and so since $\mathbb{Z}[i]$ is a Euclidean domain, we know $\exists r,s\in\mathbb{Z}[i]$ s.t. $r\pi+s\overline{\pi}=1$, so since $(1)=\mathbb{Z}[i]$, we know that $(\pi)+(\overline{\pi})=\mathbb{Z}[i]$, and hence they are comaximal ideals, and thus the hypotheses for the Chinese remainder theorem are satisfied. Then from this, we know $(\pi)\cap(\overline{\pi})=(\pi)(\overline{\pi})=(p)$. Hence we have $\mathbb{Z}[i]/(p)=\mathbb{Z}[i]/((\pi)\cap(\overline{\pi}))\cong\mathbb{Z}[i]/(\pi)\times\mathbb{Z}[i]/(\pi)$ as rings. Then since $\mathbb{Z}[i]$ is also a PID, we know $(\pi),(\overline{\pi})$ are maximal ideals, and thus $\mathbb{Z}[i]/(\pi),\mathbb{Z}[i]/(\overline{\pi})$ are fields since $\mathbb{Z}[i]$ is commutative. Finally, $\mathbb{Z}[i]/(p)\cong\mathbb{Z}_p[i]=\{a+bi:a,b\in\mathbb{Z}\}$ which means we have p distinct choices for each of a,b, hence p^2 total elements in our ring.

Exercise 9.2.5. Exhibit all the ideals in the ring F[x]/(p(x)), where F is a field and p(x) a polynomial in F[x].

Factor p(x) into irreducibles $p(x) = q_1(x) \cdots q_k(x)$. Then since the ideals in F[x]/(p(x)) are of the form I/(p(x)) for any ideal I in F[x] s.t. $(p(x)) \subset I$. Then all ideals are of the form $(\Pi^r q_i(x))/(p(x))$ where $r \leq k$.

Exercise 9.2.9. Determine the greatest common divisor of $a(x) = x^5 + 2x^3 + x^2 = x + 1$ and the polynomials $b(x) = x^5 + x^4 + 2x^3 + 2x^2 + 2x + 1$ in $\mathbb{Q}[x]$ and write it as a linear combination.

We compute the gcd:

$$b(x) = a(x) + x^{4} + x^{2} + x,$$

$$a(x) = x(x^{4} + x^{2} + x) + x^{3} + x + 1,$$

$$x^{4} + x^{2} + x = x(x^{3} + x + 1),$$
(5)

and thus the gcd is $x^3 + x + 1$. So we write:

$$x^{3} + x + 1 = a(x) - x(x^{4} + x^{2} + x)$$

$$= a(x) - x(b(x) - a(x))$$

$$= (x + 1)a(x) - xb(x).$$
(6)

and so we've written the gcd as a linear combination of a(x), b(x).

Exercise 9.3.4. Let $R = \mathbb{Z} + x\mathbb{Q}[x] \subset \mathbb{Q}[x]$ be the set of polynomials in x with rational coefficients whose constant terms is an integer.

(a) Prove that R is an integral domain and its units are ± 1 .

Proof. Note that \mathbb{Q} is a field, hence $\mathbb{Q}[x]$ is a PID, and thus an integral domain, and since R is a subset of this integral domain, it too can't possibly have any zero divisors, hence it is also an integral domain. Also since the units in $\mathbb{Q}[x]$ are just the elements of \mathbb{Q} , since \mathbb{Q} is a field, we know that the units in R must also be constant terms, and the only integers with inverses are ± 1 , hence these are the units in R.

(b) Show that the irreducibles in R are $\pm p$ where p is a prime in \mathbb{Z} and the polynomials f(x) which are irreducible in $\mathbb{Q}[x]$ and have constant term ± 1 . Prove that these irreducibles are prime in R.

Proof. As noted above, $\mathbb{Q}[x]$ must be a PID, and thus we have that it is also a UFD, and so by Proposition 8.3.12, every irreducible element is also prime. Let $f(x) \in R$ be irreducible. We first consider the case where f is constant. Then f is an integer, and so since we already know the units are ± 1 in R, exactly the primes in \mathbb{Z} are irreducible in this case. Now suppose that f(x) is a nonconstant polynomial, and let the constant term $a_0 \neq \pm 1$. If the constant terms is 0, we can divide by x, which is not a unit, and in the case where $f(x) = \alpha x$, we know $\alpha x = \alpha \frac{1}{2}x$, and so αx is not irreducible. Then clearly we may divide by $|a_0|$, and since all the other coefficients are rationals, we have constructed some $g(x) \neq \pm 1$ s.t. $f(x) = |a_0|g(x)$, i.e. f is the product of two non-units, hence reducible. Thus we must have that $a_0 = \pm 1$ if and only if f is irreducible in this case.

(c) Show that x cannot be written as the product of irreducibles in R (in particular, x is not irreducible) and conclude that R is not a UFD.

Proof. Let f, g, ..., h be irreducibles in R. But then we cannot have any non-constant terms, since that would imply a degree ≥ 2 by part (b), so all are constant, which is impossible, so x is not a product of irreducibles. And we proved in part (b) that x is not irreducible, and so R cannot be a UFD since x cannot be written as a product of primes.

(d) Show x is not a prime and describe R/(x).

Proof. Suppose x were a prime. Then since R is an integral domain, x would also be irreducible, but it's not, so it can't be.

 $R/(x) = \{ax + b : a \in \mathbb{Q}, b \in \mathbb{Z}\}$. Every non-unit is a zero divisor, since we can multiply by $\frac{1}{b}x$. Hence we are not in an integral domain, but we do have ± 1 units and the ring is still commutative.

Exercise 9.5.5. Prove that $\sum \phi(d) = n$ where d runs through the divisors of n.

Proof. Consider \mathbb{Z}_n . Let d|n, then write n=dk, and consider $\langle k \rangle$. This a cyclic subgroup of order d. This subgroup is unique because if it were not, we would have l a generator of another subgroup of order d in \mathbb{Z}_n , hence $dk \equiv dl \equiv 0 \mod n$, and since d is the minimal integer such that $dk \equiv 0 \mod n$, we must have that dk|dl, but this is also true for l, so dl|dk and so dk = dl and l = k, a contradiction. And so the number of elements of order d in R is $\phi(d)$, since \mathbb{Z}_d has exactly that many generators, and we have only one such subgroup. If there were another element of order d not in $\langle k \rangle$, it would form another subgroup which is impossible. Hence since every integer from 1 to n is an element of order d for some d|n we have the desired equality.