

HiPerFAST™ IGBT

IXGH 30N60C2 IXGT 30N60C2

C2-Class High Speed IGBTs

Symbol	Test Conditions	Maximum Ra	Maximum Ratings		
V _{CES}	T _J = 25°C to 150°C	600	V		
V _{CGR}	$T_{_{ m J}}$ = 25°C to 150°C; $R_{_{ m GE}}$ = 1 M Ω	600	V		
$\mathbf{V}_{\mathtt{GES}}$	Continuous	±20	V		
V_{GEM}	Transient	±30	V		
I _{C25}	T _c = 25°C (limited by leads)	70	Α		
I _{C110}	T _c = 110°C	30	Α		
I _{CM}	$T_{\rm c}$ = 25°C, 1 ms	150	Α		
SSOA	$V_{GE} = 15 \text{ V}, T_{VJ} = 125^{\circ}\text{C}, R_{G} = 10 \Omega$	I _{CM} = 60	Α		
(RBSOA)	Clamped inductive load @ ≤ 600 V				
P _c	T _c = 25°C	190	W		
T_J		-55 +150	°C		
T _{JM}		150	°C		
T_{stg}		-55 + 150	°C		
	ead temperature for soldering	300	°C		
1.6 mm (0.0	062 in.) from case for 10 s				
Plastic body	for 10s	250	°C		
M _d	Mounting torque (M3) (TO-247)	1.13/10Nm	ı/lb.in.		
Weight	TO-247	6	g		
	TO-268	4	g		

	'	, ,
TO-247 (IXGH)		
G		C (TAB)
C E		

C = Collector,

TAB = Collector

C (TAB)

Features

G = Gate, E = Emitter,

TO-268 (IXGT)

- Very high frequency IGBT
- Square RBSOA
- High current handling capability
- MOS Gate turn-on
 - drive simplicity

Applications

- PFC circuits
- Uninterruptible power supplies (UPS)
- Switched-mode and resonant-mode power supplies
- AC motor speed control
- DC servo and robot drives
- DC choppers

Symbol	Test Conditions	Characteristic Values
		$(T_J = 25^{\circ}C, \text{ unless otherwise specified})$

			min.	typ.	max.	
$\mathbf{V}_{\text{GE(th)}}$	$I_{C} = 250 \mu A, V_{CE} = V_{GE}$		2.5		5.0	٧
I _{CES}	$V_{CE} = V_{CES}$ $V_{GE} = 0 V$	T _J = 25°C T _J = 150°C			50 1	μA mA
I _{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = \pm 20 \text{ V}$				±100	nA
V _{CE(sat)}	$I_{\rm C} = 24 \text{A}, V_{\rm GE} = 15 \text{V}$	T _J = 25°C T _J = 25°C		2.0	2.7	V

Symbol	Test Conditions Ch. $ (T_{_{\! J}} = 25^{\circ} \text{C, unless} \\ \text{min.} $		stic Values se specified) max.
g _{fs}	$I_{\rm C}=24$ A; $V_{\rm CE}=10$ V, 18 Pulse test, t ≤ 300 μ s, duty cycle ≤ 2 %	28	S
C _{ies})	1430	pF
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$	110	pF
C _{res}	J	40	pF
\mathbf{Q}_{g}		70	nC
\mathbf{Q}_{ge}	$I_{\rm C} = 24 \text{A}, V_{\rm GE} = 15 \text{V}, V_{\rm CE} = 300 \text{V}$	10	nC
\mathbf{Q}_{gc}	J	23	nC
t _{d(on)}		13	ns
t _{ri}	Inductive load, T _J = 25°C	15	ns
$\mathbf{t}_{d(off)}$	$I_{c} = 24 \text{ A}, V_{GE} = 15 \text{ V}$ $V_{CF} = 400 \text{ V}, R_{G} = 5 \Omega$	70	140 ns
t _{fi}	V _{CE} - 400 V, IV _G - 3.22	60	ns
E _{off})	0.29	0.30 mJ
$\mathbf{t}_{d(on)}$		13	ns
t _{ri}	Inductive load, T _J = 125°C	17	ns
E _{on}	$I_{\rm C} = 24 \text{A}, V_{\rm GE} = 15 \text{V}$	0.22	mJ
t _{d(off)}	$V_{CE} = 400 \text{ V}, R_{G} = 5 \Omega$	120	ns
t _{fi}		130	ns .
E _{off})	0.59	mJ
R_{thJC}			0.65 K/W
R_{thCK}	(TO-247)	0.25	K/W

Min. Recommended Footprint

(Dimensions in inches and mm)

TO-247 AD Outline

Dim.	Millimeter		Inc	Inches	
	Min.	Max.	Min.	Max.	
Α	4.7	5.3	.185	.209	
A ₁	2.2	2.54	.087	.102	
A ₂	2.2	2.6	.059	.098	
b	1.0	1.4	.040	.055	
b ₁	1.65	2.13	.065	.084	
b ₂	2.87	3.12	.113	.123	
С	.4	.8	.016	.031	
D	20.80	21.46	.819	.845	
Е	15.75	16.26	.610	.640	
е	5.20	5.72	0.205	0.225	
L	19.81	20.32	.780	.800	
L1		4.50		.177	
ØP	3.55	3.65	.140	.144	
Q	5.89	6.40	0.232	0.252	
R	4.32	5.49	.170	.216	
S	6.15	BSC	242	BSC	

TO-268 Outline

MYZ	INCHES		MILLIMETERS		
3111	MIN	MAX	MIN	MAX	
Α	.193	.201	4.90	5.10	
A1	.106	.114	2.70	2.90	
A2	.001	.010	0.02	0.25	
b	.045	.057	1.15	1.45	
b2	.075	.083	1.90	2.10	
С	.016	.026	0.40	0.65	
C2	.057	.063	1.45	1.60	
D	.543	.551	13.80	14.00	
D1	.488	.500	12.40	12.70	
E	.624	.632	15.85	16.05	
E1	.524	.535	13.30	13.60	
е	.215 BSC		5.45 BSC		
Н	.736	.752	18.70	19.10	
L	.094	.106	2.40	2.70	
L1	.047	.055	1.20	1.40	
L2	.039	.045	1.00	1.15	
L3	.010 BSC		0.25 BSC		
L4	.150	.161	3.80	4.10	

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 1. Output Characteristics @ 25 Deg. C

Fig. 3. Output Characteristics @ 125 Deg. C

Fig. 5. Collector-to-Emitter Voltage vs. Gate-to-Emitter voltage

Fig. 2. Extended Output Characteristics @ 25 deg. C

Fig. 4. Dependence of V_{CE(sat)} on Temperature

Fig. 6. Input Admittance

35

30

25

20

15

10

5

0

g _s - Siemens

T_J = 25°C 125°C

Fig. 7. Transconductance

20 40 60 80 100 120 140 160 180 200 I_C- Amperes

Fig. 9. Dependence of Turn-Off Energy on I_C

Fig. 11. Dependence of Turn-Off Switching Time on $R_{\rm g}$

Fig. 8. Dependence of Turn-Off Energy on R_G

Fig. 10. Dependence of Turn-Off Energy on Temperature

Fig. 12. Dependence of Turn-Off Switching Time on $\rm I_{\rm C}$

Fig. 13. Dependence of Turn-Off Switching Time on Temperature

Fig. 14. Gate Charge

Fig. 15. Capacitance

Fig. 16. Maximum Transient Thermal Resistance

