Nama: Ahmad Jauharul Fu'ad

NIM : 190536645626

TUGAS METODE NUMERIK 4

1. Dapatkan akar-akar persamaan berikut :

a.
$$x^3 + 6.6x^2 - 29.05x + 22.64 = 0$$

b.
$$x^4 - 0.41x^3 + 1.632x^2 - 9.146x + 7.260 = 0$$

c.
$$x^5 - 2x^4 - 9x^3 + 22x^2 - 4x - 24 = 0$$

Dengan metode Iterasi

Jawab:

a.
$$x^3 + 6.6x^2 - 29.05x + 22.64 = 0$$
, kita asumsikan $x_0 = 0$
 $x^3 + 6.6x^2 + 22.64 = 29.05x$
 $x = (x^3 + 6.6x^2 + 22.64)/29.05$
 $f'(x) = (3x^2 + 13.2x)/29.05$

$$f'(x_0) = 0$$
, dan $0 < 1$ menandakan konvergen $f(x) = (x^3 + 6.6x^2 + 22.64)/29.05$

• Iterasi 1

$$f(x) = (x^3 + 6.6x^2 + 22.64)/29.05$$

$$f(x_0) = (0 + 0 + 22.64)/29.05 = 0.7793$$

$$x_1 = 0.7793$$

• Iterasi 2

$$f(x_1) = 0.7793^3 + 6.6 \times 0.7793^2 + 22.64 = (0.4733 + 4.0082 + 22.64) / 29.05 = 0.9336$$

$$x_2 = 0.9336$$

• Iterasi 3

$$f(x_2) = 0.9336^3 + 6.6 \times 0.9336^2 + 22.64 = (0.8137 + 5.7526 + 22.64) / 29.05 = 1.0054$$

$$x_3 = 1,0054$$

b.
$$x^4 - 0.41x^3 + 1.632x^2 - 9.146x + 7.260 = 0$$
, kita asumsikan $x_0 = 0$
 $x^4 - 0.41x^3 + 1.632x^2 + 7.260 = 9.146x$
 $x = (x^4 - 0.41x^3 + 1.632x^2 + 7.260) / 9.146$
 $f'(x) = (4x^3 + 1.23x^2 + 3.264x) / 9.146$

$$f'(x_0) = 0$$
, dan $0 < 1$ menandakan konvergen $f(x) = (x^4 - 0.41x^3 + 1.632x^2 + 7.260) / 9.146$

• Iterasi 1

$$f(x) = (x^4 - 0.41x^3 + 1.632x^2 + 7.260) / 9.146$$

$$f(x_0) = (0 + 0 + 7.260) / 9.146 = 0.7938$$

$$x_1 = 0.7938$$

• Iterasi 2

$$f(x_1) = (0.7938^4 - 0.41 \times 0.7938^3 + 1.632 \times 0.7938^2 + 7.260) / 9.146 = (0.39705 - 0.2051 + 1.02835 + 7.260) / 9.146 = 0.9272$$

$$x_2 = 0.9272$$

• Iterasi 3

$$f(x_2) = (0.9272^4 - 0.41 \times 0.9272^3 + 1.632 \times 0.9272^2 + 7.260) / 9.146 = (0.7391 - 0.3268 + 1.4030 + 7.260) / 9.146 = 0.9923$$

$$x_3 = 0.9923$$

c.
$$x^5 - 2x^4 - 9x^3 + 22x^2 - 4x - 22 = 0$$
, kita asumsikan $x_0 = 0$
 $x^5 - 2x^4 - 9x^3 + 22x^2 - 22 = 4x$
 $x = (x^5 - 2x^4 - 9x^3 + 22x^2 - 22) / 4$
 $f'(x) = (5x^4 - 8x^3 - 27x^2 + 44x) / 4$

$$f'(x_0) = 0$$
, dan $0 < 1$ menandakan konvergen $f(x) = (x^5 - 2x^4 - 9x^3 + 22x^2 - 22) / 4$

• Iterasi 1

$$f(x) = (x^5 - 2x^4 - 9x^3 + 22x^2 - 22) / 4$$

$$f(x_0) = (0 - 0 - 0 + 0 - 22) / 4$$

$$x_1 = -5.5$$

• Iterasi 2

$$f(x_1) = (-5,5^5 - 2 \text{ x } -5, 5^4 - 9 \text{ x } -5,5^3 + 22 \text{ x } -5,5^2 - 22) / 4 = (-25164,21875 - 1830,125 + 1497,375 + 665,5 = 22) / 4 = -6213,3672$$

$$x_2 = -6213,3672$$

• Iterasi 3

$$f(x_2) = (-6213,3672^5 - 2 \times -6213,3672^4 - 9 \times -6213,3672^3 + 22 \times -6213,3672^2 - 22) / 4 = (-9260514207733287945,5766 + 298083595314680,8853 + 2158855482405,1062 + 849330503,1648 - 22) / 4 = -2315053491108290094,6051$$

$$\mathbf{x}_3 =$$

-2315053491108290094,6051

- 2. Gunakan metode Newton-Raphson untuk mendapatkan akar persamaan-persamaan:
- a) $f(x) = -0.875 \times 2 + 1.75 \times + 2.625 \times i = 3.1$
- b) $f(x) = -2.1 + 6.21x 3.9x^2 + 0.667x^3$

c)
$$f(x) = -23,33+79,35x-88,09x2+41,6x3-8,68x4+0,658x5(xi=3,5)$$

Jawab:

a)
$$f(x) = -0.875 x 2 + 1.75 x + 2.625 (x i = 3.1)$$

 $f(x) = -1.75 x + 1.75$

Persamaan formulasi Newton-Raphson menjadi :

$$x_n + 1 = x_i - (-0.875x^2 + 1.75x + 2.625)/(-1.75x + 1.75)$$

• Iterasi 1 $f(x_n + 1) = 3,1 - (-0.875 \times 3,1^2 + 1.75 \times 3,1 + 2.625)/(-1.75 \times 3,1 + 1.75) = 3,1 - (-8.40875 + 5.425 + 2625)/-3.675 = -716.5738$

$$x_1 = -716,5738$$

• Iterasi 2 $f(x_1) = -716,5738 - (-0,875 \times -716,5738^2 + 1,75 \times -716,5738 + 2,625)/(-1,75 \times -716,5738 + 1,75) = -716,5738 - (-447922,2756/1255,75415) = -359,8779$ $x_2 = -359,8779$

• Iterasi 3 $f(x_1) = -359,8779 - (-0,875 \times -359,8779^2 + 1,75 \times -359,8779 + 2,625)/(-1,75 \times -359,8779 + 1,75) = -359,8779 - (-113323,0901/631,5363) = -180,4376$ $x_2 = -180,4376$

b)
$$f(x)=-2.1+6.21x-3.9x^2+0.667x^3$$

 $f'(x)=6.21-7.8x+200.1x^2$
 $x_{i+1}=x_i-\frac{f(x_i)}{f'\ddot{c}\ddot{c}}$
 $x_{i+1}=x_i-\frac{-2.1+6.21x-3.9x^2+0.667x^3}{6.21-7.8x+0.201x^2}$

Iterasi	x _i	X_{i+1}	$f(x_i)$	$f'(x_i)$	$f(x_{i+1})$
1	0	0.338164251	-2.1	6.21	-0.410046
2	0.338164251	0.44603874	-0.41004639	3.801143317	-0.0334360
3	0.44603874	0.456724617	-0.033436088	3.128997897	-2.20275E
4	0.456724617	0.456731804	-2.20275E-05	3.064951337	2.15452E-
5	0.456731804	0.456731734	2.15452E-07	3.064908415	-2.10891E
6	0.456731734	0.456731734199422	-2.10891E-09	3.064908835	2.06427E-
7	0.456731734199422	0.456731734192687	2.06427E-11	3.064908831	-2.02394E
8	0.456731734192687	0.456731734192753	-2.02394E-13	3.064908831	2.38698E-
9	0.456731734192753	0.456731734192752	2.38698E-15	3.064908831	0

Jadi salah satu akar persamaan $f(x) = -2.1 + 6.21x - 3.9x^2 + 0.667x$ adalah 0.456731734192752.

c)
$$f(x) = -23,33 + 79,35 x - 88,09 x 2 + 41,6 x 3 - 8,68 x 4 + 0,658 x 5 (x i = 3,5)$$

 $f'(x) = 79.35 - 176.18 x + 124.8 x 2 - 34.72 x 3 + 3.29 x 4$
 $xi = 3.5$
 $f(xi) = 1,9439374999999990$
 $f'(xi) = -3,39437499999990$
 $xi + 1 = xi - \frac{f(x)}{f'(x)}$
 $xi + 1 = 3,5 - \frac{1,943937499999890}{-3,394374999999910} = 4,072693794881220$

Untuk nilai xi + 1 selanjutnya akan dijelaskan pada tabel dibawah

Iteras	Xi	f(xi)	f'(xi)	xi + 1	Er (%)
i					
1	3,50000000000000000	1,943937499999890	-3,394374999999910	4,072693794881220	0,0561325618
2	4,072693794881220	-1,871703845913320	-8,428855960973690	3,850634733179430	0,0017014531
3	3,850634733179430	-0,049741344826089	-7,618971271073970	3,844106116249880	0,0000059982
4	3,844106116249880	-0,000174435830672	-7,565303032939940	3,844083058901100	0,000000001
5	3,844083058901100	-0,000000002213483	-7,565111043331400	3,844083058608510	0,0000000000
6	3,844083058608510	0,0000000000000000	-7,565111040895430	3,844083058608510	0,0000000000
7	3,844083058608510	0,0000000000000000	-7,565111040895430	3,844083058608510	0,0000000000

Jadi akar persamaan dari fungsi $-23,33 + 79,35x - 88,09x^2 + 41,6x^3 - 8,68x^4 + 0,658x^5$ ($x_i = 3,5$) adalah 3,844083058608510.

3. Sekarang gunakan metode Secant untuk maksud yang sama dari persamaan :

a)
$$f(x) = 9.36 - 21.963x + 16.2965x^2 - 3.70377x^3$$

b)
$$f(x) = x^4 - 8.6 x^3 - 35.51 x^2 + 464 x - 998.46 \quad (x_{i-1} = 7 dan x_i = 9)$$

c)
$$f(x) = x^3 - 6x^2 + 11x - 6$$
 $(x_{i+1} = 2,5 \text{ dan } x_i = 3,6)$
Jawab:

a)
$$f(x)=9.36-21.963x+16.2965x^2-3.70377x^3$$

 $x_{i+1}=x_i-\frac{f(x_i)(x_{i-1}-x_i)}{f(x_{i-1})-f(x_i)}$
 $x_{i+1}=1-\frac{(9.36)(0-1)}{-0.01027-(9.36)}$

iteras	X_{i-1}	X _i	<i>X</i> _{<i>i</i>+1}	$f(x_{i-1})$	$f(x_i)$	$f(x_{i+1})$
i						
1	0	1	0.99890398	9.36	-0.01027	-0.00973624
2	1	0.99890398	0.978911597	-0.01027	-0.0097362	0.00222076
3	0.99890398	0.9789116	0.982624754	-0.0097362	0.00222076	-0.00032229
4	0.9789116	0.98262475	0.982154175	0.00222076	-0.0003223	-8.2303E-06
5	0.9789116	-8.23E-06	0.979143906	0.00222076	9.36018076	0.00205728
6	0.9789116	0.97914391	0.982067482	0.00222076	0.00205728	4.9887E-05
7	0.97914391	0.98206748	0.982140138	0.00205728	4.9887E-05	1.1745E-06
8	0.98206748	0.98214014	0.982141889	4.9887E-05	1.1745E-06	7.0174E-10
9	0.98214014	0.98214189	0.98214189	1.1745E-06	7.0174E-10	1.2434E-14
10	0.98214189	0.98214189	0.982141890460	7.0174E-10	1.2434E-14	0

Jadi salah satu akar persamaan $f(x)=9.36-21.963x+16.2965x^2-3.70377x^3$ adalah 0.982141890460.

b)
$$f(x)=x^4-8.6x^3-35.51x^2+464x-998.46$$
 $(x_{i-1}=7 dan x_i=9)$

$$x_{i+1}=x_i-\frac{f(x_i)(x_{i-1}-x_i)}{f(x_{i-1})-f(x_i)}$$

$$x_{i+1}=9-\frac{592.83*(7-9)}{-39.25-592.83}$$

¿7.12419314

iterasi	<i>x</i> _{i-1}	xi	Xi+1	$f(x_{i-1})$	$f(x_i)$	$f(x_{i+1})$
1	7	9	7.12419314	-39.25	592.83	-28.73897027
2	7.12419314	9	7.21092327	-28.73897027	592.83	-19.85322683
3	7.21092327	9	7.268896044	-19.85322683	592.83	-13.15996498
4	7.268896044	9	7.306489517	-13.15996498	592.83	-8.483474687
5	7.306489517	9	7.330381969	-8.483474687	592.83	-5.370298072
6	7.330381969	9	7.345370839	-5.370298072	592.83	-3.36038085
7	7.345370839	9	7.354697028	-3.36038085	592.83	-2.0874384

8	7.354697028	9	7.360470045	-2.0874384	592.83	-1.290824212
9	7.360470045	9	7.364032191	-1.290824212	592.83	-0.795974353
10	7.364032191	9	7.366225809	-0.795974353	592.83	-0.489978483
11	7.366225809	9	7.36757502	-0.489978483	592.83	-0.301293986
12	7.36757502	9	7.368404246	-0.301293986	592.83	-0.185147641
13	7.368404246	9	7.368913653	-0.185147641	592.83	-0.113728752
14	7.368913653	9	7.369226501	-0.113728752	592.83	-0.069841645
15	7.369226501	9	7.369418601	-0.069841645	592.83	-0.042883713
16	7.369418601	9	7.369536544	-0.042883713	592.83	-0.026328712
17	7.369536544	9	7.369608953	-0.026328712	592.83	-0.01616374
18	7.369608953	9	7.369653405	-0.01616374	592.83	-0.009922903
19	7.369653405	9	7.369680694	-0.009922903	592.83	-0.006091528
20	7.369680694	9	7.369697446	-0.006091528	592.83	-0.003739452
21	7.369697446	9	7.369707729	-0.003739452	592.83	-0.002295547

Jadi akar persamaanya adalah 7.369707729.

c)
$$f(x) = x^3 - 6x^2 + 11x - 6$$
 $(x_{i+1} = 2.5 \text{ dan } x_i = 3.6)$
 $f(2.5) = -0.375 f(3.6) = 2.496$
 $x_{i+1} = x_i - \frac{f(x_i)(x_i - x_{i-1})}{f(x_i) - f(x_{i-1})}$
 $x_{i+1} = 3.6 - \frac{2.496 * (3.6 - 2.5)}{2.496 - (-0.375)}$
 $\stackrel{?}{\iota} 2.643678161$

iteras	X_{i-1}	X _i	<i>X</i> _{i+1}	$f(x_{i-1})$	$f(x_i)$	$f(x_{i+1})$
1						
1	2.5	3.6	2.643678161	-0.375	2.496	-0.376988412
2	3.6	2.64367816	2.769165006	2.496	-0.376988412	-0.3141156
		1				

3	2.643678161	2.76916500 6	3.396103337	-0.376988412	-0.3141156	1.325047998
4	2.769165006	3.39610333 7	2.889306223	-0.3141156	1.325047998	-0.18598456
5	3.396103337	2.88930622 3	2.95168505	1.325047998	-0.18598456	-0.08973968
6	2.889306223	2.95168505	3.009847686	-0.18598456	-0.08973968	0.019987258
7	2.95168505	3.00984768 6	2.999253099	-0.08973968	0.019987258	-0.001492129
8	3.009847686	2.99925309 9	2.999989083	0.019987258	-0.001492129	-2.18333E-05
9	2.999253099	2.99998908 3	3.000000012	-0.001492129	-2.18333E-05	2.4483E-08
10	2.999989083	3.00000001 2	3	-2.18333E-05	2.4483E-08	-4.08562E-13
11	3.000000012	3	3	2.4483E-08	-4.08562E-13	7.10543E-15
12	3	3	3	-4.08562E-13	7.10543E-15	-7.10543E-15
13	3	3	3	7.10543E-15	-7.10543E-15	0

4. Buatlah sebuah analisis dan kesimpulan mengenai metode yang paling efisien untuk menyelesaikan persamaan berikut (mulai metode tertutup, metode terbuka sampai akar ganda):

$$f(x) = x4 - 24.8 x3 + 57.04 x2 - 56.76 x + 20.57$$

Jawab:

a. Metode Grafik

$$Y = x 4 - 24,8 x 3 + 57,04 x 2 - 56,76 x + 20,57$$

b. Metode Tabulasi

X	F(X)	X	F(X)	X	F(X)
0	20.57	0.7	0.5213	0.74	0.053015
0.1	15.4397	0.71	0.402188	0.741	0.041558
0.2	11.3208	0.72	0.284524	0.742	0.030113
0.3	8.0141	0.73	0.168177	0.743	0.018677
0.4	5.4308	0.74	0.053015	0.744	0.007252
0.5	3.4125	0.75	-0.06109	0.745	-0.00416
0.6	1.8212	0.76	-0.17428	0.746	-0.01557
0.7	0.5213	0.77	-0.28667	0.747	-0.02696
0.8	-0.6204	0.78	-0.3984	0.748	-0.03835
0.9	-1.7347	0.79	-0.5096	0.749	-0.04973
1	-2.95	0.8	-0.6204	0.75	-0.06109

c. Met ode

Bolzano

$$F(x) = x^4 - 24.8x^3 + 57.04x^2 - 56.76x + 20.57$$

Diantara x = 0.7 dan x = 0.8

Untuk
$$x = 1$$
, $F(0,7) = (0,7)^4 - 24,8(0,7)^3 + 57,04(0,7)^2 - 56,76(0,7) + 20,57 = 0,5213$
Untuk $x = 2$, $F(0,8) = (0,8)^4 - 24,8(0,8)^3 + 57,04(0,8)^2 - 56,76(0,8) + 20,57 = -0,6204$

$$Xt = (X1 + X2) / 2 = (0.7 + 0.8) / 2 = 0.75$$

 $F(Xt = 0.75) = (0.75)^4 - 24.8(0.75)^3 + 57.04(0.75)^2 - 56.76(0.75) + 20.57 = -0.06109375$

Sehingga interval yang baru adalah x = 0.75 dan x = 0.8

d. Metode akar ganda dengan metode Newton-Raphson

iterasi	xn
0	0
	_
	0.0154
1	2
	-
	1.4783
2	9

Metode Newton atau yang biasa dikenal dengan metode Newton Raphson dapat digunakan untuk mencari akar dari suatu fungsi. Keunggulan metode ini adalah memiliki laju konvergensi kuadratik, sehingga metode ini lebih cepat untuk konvergen menuju akar pendekatan daripada metode lain yang memiliki laju konvergensi linear. Pencarian akar dilihat dari tan gradien grafik suatu fungsi persamaan (turunan fungsi persamaan). Pada dasarnya, algoritma metode Newton untuk mencari akar suatu fungsi f(x) dimulai dengan menentukan nilai awal iterasi terlebih dahulu, misalkan x = a. Pada setiap iterasi, metode Newton ini akan mencari suatu nilai katakanlah b yang berada pada sumbu-x. Nilai b ini diperoleh dengan menarik garis singgung fungsi f(x) di titik x = a ke sumbu-x.

- 1. Definisikan fungsi F(x)
- 2. ambil range nilai x = [a, b] dengan jumlah pembagi n
- 3. Masukkan torelansi error (e) dan masukkan iterasi n
- 4. Gunakan algoritma tabel diperoleh titik pendekatan awal x_0 dari : $F(x_k) \cdot F(x_{k+1}) \le 0$ maka $x_0 = x_k$
- 5. Hitung $F(x_0)$ dan $F^1(x_0)$
- 6. Bila $F(abs(F^1(x_0))) < e$ maka pendekatan awal x_0 digeser sebesar dx (dimasukkan)

$$x_0 = x_0 + dx$$

hitung $F(x_0)$ dan $F^1(x_0)$

7. Untuk iterasi I= 1 s/d n atau $|F(x_i)| \ge e$

$$x_1 = x_{i-1} - \frac{F(x_{i-1})}{F^1(x_{i-1})}$$
hitung $F(x_i)$ den F^1

hitung $F(x_i)$ dan $F^1(x_i)$ bila $|F^1(x_i)| \le e$ maka

$$x_i = x_i + dx$$

hitung $F(x_i)$ dan $F^1(x_0)$

8.Akar persamaan adalah x terakhir yang diperoleh.

Dengan menggunakan algoritma newton raphson yang dimodifikasikan diharapkan akar yang diperoleh sesuai dengan harapan dan bila terdapat lebih dari satu akar dalam range ditunjuk, akan ditampilkan semuanya.

Algoritma Metode Newton-Raphson original

- 1. Definisikan fungsi f(x) dan f(x)
- 2. Tentukan toleransi error (e) dan iterasi maksimum (n)
- 3. Tentukan nilai pendekatan awal x0
- 4. Hitung f(x0) dan f1(x0)
- 5. Untuk iterasi I = 1 s/d n atau $|f(xi)| \ge e$

$$\mathbf{x_{i+1}} = x_i - \frac{f(x_i)}{f^1(x_i)}$$

Akar persamaan adalah nilai xi yang terakhir diperoleh.

Flow chartnya:

