

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULADE DE ENGENHARIA MECÂNICA

RELATÓRIO DE ALGORITMO IMPLEMENTADO CÁLCULO DE SOLUÇÕES DE PROBLEMAS DE VALOR INICIAL MÉTODO DE EULER

Aluno: Diego Fernando Luque Martin

Matrícula: 191606

Campinas

SUMÁRIO

1.	Introdução	3	
	Método		
	2.1. Algoritmo	4	
	2.2. Teste	6	
	2.3. Validação	8	
	Exercícios resolvidos		
4.	Conclusão	13	
5.	Referências		
ΑN	IEXO A. Código Fonte	15	

1. INTRODUÇÃO

Este relatório tem por fundamento a apresentação numérica do Método de Euler para resolução de problemas de valor inicial (PVI).

O método descrito aqui é apenas uma das formas de resolução de Equações Diferenciais Ordinárias, sendo que, outros métodos serão estudados posteriormente no curso.

2. MÉTODO

O Método de Euler é um método de resolução de problema de valor inicial, onde, como pré-requisito, é necessário possuir o valor inicial dado.

Neste método, adotaremos a aproximação da solução de um problema conforme abaixo:

$$\frac{dy}{dt} = f(t, y), \qquad a \le t \le b, \qquad y(a) = \alpha$$

Com t sendo:

$$t = a + i \cdot h, \qquad h = \frac{(b - a)}{N}$$

E finalmente temos a aproximação w:

$$w_0 = a$$
, $w_{i+1} = w_i + h \cdot f(t_i, w_i)$

Assim como os métodos estudados anteriormente, é possível efetuar os cálculos manualmente ou por meio da implantação de um algoritmo.

2.1. Algoritmo

O livro Analise Numérica (Burden, Análise Numérica, 2015), fornece o seguinte algoritmo:

ENTRADA: extremidades a e b; número inteiro N; condição inicial α.

SAÍDA: aproximação w de y nos (N + 1) valores de t.

Passo 1: Faça h = (b - a) / N;

t = a;

 $w = \alpha$;

SAÍDA: (t, w)

Passo 2: Para i = 1, 2, ..., N, execute os Passos 3 e 4.

Passo 3: Faça w = w + hf(t, w); (Calcule w_i .)

t = a + ih. (Calcule t_i .)

Passo 4: SAÍDA (t, w).

Passo 5: PARE.

5

Com base no descrito acima, é sabido que o algoritmo deverá apresentar ao

final de sua execução uma aproximação do problema de valor inicial.

Com base no exemplo dado acima, o algoritmo deverá exigir informações do

usuário:

- Valor do início do intervalo [a];

- Valor do fim do intervalo [b];

- Número de pontos da malha [n];

- Valor da condição inicial [α].

Após realizadas as iterações de cálculo, o algoritmo deverá apresentar ao final

de sua execução uma das seguintes alternativas:

- Aproximação para a solução do problema de valor inicial bem-posto;

- Erro devido a informação de parâmetros informados errados.

Para execução do programa em linguagem de programação, os seguintes

parâmetros foram adotados:

- Linguagem de Programação: C;

- Compilador: Code::Blocks 16.01

2.2. Teste

Para teste do código fonte escrito em linguagem de programação C, foi usado exemplo de cálculo dado pelo Livro Análise Numérica (Burden, 2015), página 293:

$$y' = y - t^2 + 1$$
, $y(t) = (t + 1)^2 - 0.5e^t$, $0 \le t \le 2$, $y(0) = 0.5$, $N = 10$

Resultados:

```
Digite o início do intervalo [a]: 0
Digite o fim do intervalo [b]: 2
Digite o número de pontos da malha [n]: 10
Digite a condição inicial do valor [alpha]: 0,5
Os parâmetros digitados foram: [a]= 0,000 [b]= 2,000 [n]= 10 [alpha] = 0,500
        t= 0,00000000
                         w= 0,50000000
                                         y= 0,50000000
i= 0
                                                         e= 0,00000000
i= 1
        t= 0,20000000
                         W = 0,80000000
                                         y= 0,82929862
                                                         e= 0,02929862
        t= 0,40000000
i= 2
                         W = 1,15200000
                                         y= 1,21408761
                                                         e= 0,06208761
i= 3
        t= 0,60000000
                         w= 1,55039999
                                         y= 1,64894068
                                                         e= 0,09854069
i=4
        t= 0,80000000
                         w= 1,98847997
                                         y= 2,12722945
                                                         e= 0,13874948
i= 5
        t= 1,00000000
                         w = 2,45817597
                                         y= 2,64085913
                                                         e= 0,18268316
i= 6
        t= 1,20000000
                         w = 2,94981115
                                         y= 3,17994165
                                                         e= 0,23013051
i= 7
        t= 1,40000000
                         w = 3,45177338
                                         y= 3,73239994
                                                         e= 0,28062656
        t= 1,60000000
                                         y= 4,28348398
                                                         e= 0,33335593
i= 8
                         W = 3,95012805
i= 9
        t= 1,80000000
                         w = 4,42815363
                                         y= 4,81517601
                                                         e= 0,38702238
i= 10
        t= 2,00000000
                         w = 4,86578438
                                         y= 5,30547190
                                                         e= 0,43968751
```

A título de avaliação dos erros do método para cálculo de soluções de problemas de valor inicial, foi possível traçar um gráfico tendo o valor de t no eixo horizontal e o valor de w e y no eixo vertical. Desta maneira pode se observar a característica de propagação do erro conforme o valor de t aumenta:

Foi realizado também um teste com os mesmos parâmetros alterando se apenas o valo de divisões N do intervalo:

$$y'=y-t^2+1$$
, $y(t)=(t+1)^2-0.5e^t$, $0 \le t \le 2$, $y(0)=0.5$, $N=20$ Digite o fim do intervalo $[b]$: 2 Digite o número de pontos da malha $[n]$: 20 Digite a condição inicial do valor $[alpha]$: 0,5 Os parâmetros digitados foram: $[a]=0.000$ $[b]=2.000$ $[n]=20$ $[alpha]=0.500$ $[a]=0$ $[b]=0$ $[b]=0$

Também é possível verificar que conforme a diminuição do passo, ou o aumento de divisões N do intervalo [a,b], há uma melhor aproximação w de y(t) como pode ser visto comparando se os resultados e ilustrado na figura 2 onde são plotados os valores de w1 (N=10) e w2 (N=20).

2.3. Validação

Para validação do algoritmo escrito foi utilizado o exemplo de cálculo demonstrado no livro Análise Numérica, (Burden, 2015), página 293, onde o autor demostra o método de Euler com os seguintes parâmentros:

$$y' = y - t^2 + 1$$
, $y(t) = (t + 1)^2 - 0.5e^t$, $0 \le t \le 2$, $y(0) = 0.5$, $N = 10$

Os resultados obtidos pelo autor estão na tabela 1 abaixo:

Tabela 1 (Burden, 2011)				
t_i	w_i	$y_i = y(t_i)$	$ y_i - w_i $	
0.0	0.5000000	0.5000000	0.0000000	
0.2	0.8000000	0.8292986	0.0292986	
0.4	1.1520000	1.2140877	0.0620877	
0.6	1.5504000	1.6489406	0.0985406	
0.8	1.9884800	2.1272295	0.1387495	
1.0	2.4581760	2.6408591	0.1826831	
1.2	2.9498112	3.1799415	0.2301303	
1.4	3.4517734	3.7324000	0.2806266	
1.6	3.9501281	4.2834838	0.3333557	
1.8	4.4281538	4.8151763	0.3870225	
2.0	4.8657845	5.3054720	0.4396874	

Utilizando os mesmos critérios de aproximação e tolerância do exemplo acima e aplicando ao algoritmo, obteve se os seguintes resultados:

```
t= 0,00000000
                        w= 0,50000000 y= 0,50000000
                                                       e= 0,00000000
i= 0
i= 1
        t= 0,20000000
                       w= 0,80000000 y= 0,82929862
                                                       e= 0,02929862
i= 2
        t= 0,40000000
                        w= 1,15200000 y= 1,21408761
                                                       e= 0,06208761
i= 3
       t= 0,60000000
                        w= 1,55039999 y= 1,64894068
                                                       e= 0,09854069
        t= 0,80000000
                        w= 1,98847997
                                       y= 2,12722945
                                                       e= 0,13874948
i= 4
        t= 1,00000000
i= 5
                        w = 2,45817597
                                       y= 2,64085913
                                                       e= 0,18268316
i= 6
        t= 1,20000000
                                       y= 3,17994165
                        w= 2,94981115
                                                       e= 0,23013051
        t= 1,40000000
i= 7
                        w = 3,45177338
                                       y= 3,73239994
                                                       e= 0,28062656
i= 8
        t= 1,60000000
                        w = 3,95012805
                                       y= 4,28348398
                                                       e= 0,33335593
                                       y= 4,81517601
i= 9
        t= 1,80000000
                        w = 4,42815363
                                                       e= 0,38702238
                                       y= 5,30547190
i= 10
        t= 2,00000000
                        w = 4,86578438
                                                       e= 0,43968751
```

Com base nos resultados da iteração 10, o algoritmo foi considerado válido pois os valores de w tem igualdade em todas as casas decimais apresentadas pelo autor salvo arredondamentos.

3. EXERCÍCIOS RESOLVIDOS

Exercício 5.2 – 1a (Burden, 2015)

```
y'=te^{3t}-2y, \qquad 0\leq t\leq 1, \qquad y(0)=0, \qquad h=0,5 Digite o início do intervalo [a]: 0 Digite o fim do intervalo [b]: 1 Digite o número de pontos da malha [n]: 2 Digite a condição inicial do valor [alpha]: 0,5 0s \ parâmetros \ digitados \ foram: \ [a]=0,000 \ [b]=1,000 \ [n]=2 \ [alpha]=0,500 \ i=0 \qquad t=0,00000000 \qquad w=0,500000000 \qquad y=0,000000000 \qquad e=0,500000000 \ i=1 \qquad t=0,500000000 \qquad w=0,000000000 \qquad y=0,28361651 \qquad e=0,28361651
```

Exercício 5.2 – 1b (Burden, 2015)

i= 2

$$y' = 1 + (t - y)^2$$
, $2 \le t \le 3$, $y(2) = 1$, $h = 0.5$

t= 1,00000000 w= 1,12042224 y= 3,21909928 e= 2,09867704

```
Digite o início do intervalo [a]: 2
Digite o fim do intervalo [b]: 3
Digite o número de pontos da malha [n]: 2
Digite a condição inicial do valor [alpha]: 1
```

```
Os parâmetros digitados foram: [a]= 2,000 [b]= 3,000 [n]= 2 [alpha] = 1,000 i= 0 t= 2,00000000 w= 1,000000000 y= 1,000000000 e= 0,000000000 i= 1 t= 2,500000000 w= 2,000000000 y= 1,833333333 e= 0,16666667 i= 2 t= 3,000000000 w= 2,625000000 y= 2,5000000000 e= 0,125000000
```

Exercício 5.2 – 2c (Burden, 2015)

$$y' = -y + ty^{\frac{1}{2}},$$
 $2 \le t \le 3,$ $y(2) = 2,$ $h = 0.25$

```
Digite o início do intervalo [a]: 2
Digite o fim do intervalo [b]: 3
Digite o número de pontos da malha [n]: 4
Digite a condição inicial do valor [alpha]: 2
```

```
Os parâmetros digitados foram: [a]=2,000 [b]=3,000 [n]=4 [alpha]=2,000 i=0 t=2,00000000 w=2,00000000 y=2,00000000 e=0,00000000 i=1 t=2,25000000 w=2,20710678 y=2,24412107 e=0,03701429 i=2 t=2,50000000 w=2,49099891 y=2,56445193 e=0,07345302 i=3 t=2,75000000 w=2,85468034 y=2,96519375 e=0,11051340 i=4 t=3,00000000 w=3,30259646 y=3,45128655 e=0,14869009
```

Exercício 5.2 – 2d (Burden, 2015)

$$y' = t^{-2}(sen(2t) - 2ty),$$
 $1 \le t \le 2,$ $y(1) = 2,$ $h = 0.25$

```
Digite o início do intervalo [a]: 1
Digite o fim do intervalo [b]: 2
Digite o número de pontos da malha [n]: 4
Digite a condição inicial do valor [alpha]: 2
```

```
Os parâmetros digitados foram: [a]= 1,000 [b]= 2,000 [n]= 4 [alpha] = 2,000
       t= 1,00000000
                     w= 2,00000000 y= 2,00000000
                                                e= 0,00000000
i= 0
i= 1
       t= 1,25000000
                     w= 1,22732437  y= 1,40319896
                                                e= 0,17587459
i= 2
      t= 1,50000000
                     w= 0,83215016  y= 1,01641011  e= 0,18425995
                     i=3
      t= 1,75000000
     t= 2,00000000
                     w= 0,37882663  y= 0,52968711  e= 0,15086047
i= 4
```

Exercício 5.2 - 5a (Burden, 2015)

Digite o início do intervalo [a]: 1

$$y' = \frac{y}{t} - \left(\frac{y}{t}\right)^2$$
, $1 \le t \le 2$, $y(1) = 1$, $h = 0.1$

```
Digite o fim do intervalo [b]: 2
Digite o número de pontos da malha [n]: 10
Digite a condição inicial do valor [alpha]: 1
Os parâmetros digitados foram: [a]= 1,000 [b]= 2,000 [n]= 10 [alpha] = 1,000
                 w= 1,00000000 y= 1,00000000 e= 0,00000000
i= 0
      t= 1,00000000
      t= 1,10000000
                 w= 1,00000000 y= 1,00428176
                                        e= 0,00428176
      t= 1,20000000
                 t= 1,30000000
                 i=3
                 i= 4
     t= 1,40000000
```

Exercício 5.2 – 5b (Burden, 2015)

$$y' = 1 + \frac{y}{t} + \left(\frac{y}{t}\right)^2$$
, $1 \le t \le 3$, $y(1) = 0$, $h = 0,2$

```
Digite o início do intervalo [a]: 1
Digite o fim do intervalo [b]: 3
Digite o número de pontos da malha [n]: 10
Digite a condição inicial do valor [alpha]: 0
```

```
Os parâmetros digitados foram: [a]= 1,000 [b]= 3,000 [n]= 10 [alpha] = 0,000
       t= 1,00000000
                     W = 0,00000000
                                    y= 0,00000000
                                                  e= 0,00000000
i= 0
i= 1
       t= 1,20000000
                     W = 0,20000000
                                    y= 0,22124283
                                                  e= 0,02124283
i=2
       t= 1,40000000
                     W = 0,438888888
                                    y= 0,48968163
                                                  e= 0,05079275
i= 3
       t= 1,60000000
                     w = 0,72124276
                                   y= 0,81275278
                                                  e= 0,09151002
       t= 1,80000000
                     w= 1,05203805
                                   y= 1,19943857
                                                  e= 0,14740052
i= 4
i= 5
       t= 2,00000000
                     w= 1,43725119
                                   y= 1,66128170
                                                  e= 0,22403052
i= 6
       t= 2,20000000
                     w= 1,88426085  y= 2,21350193
                                                  e= 0,32924109
                     w= 2,40226965 y= 2,87655187
                                                 e= 0,47428222
i= 7
      t= 2,40000000
     t= 2,60000000
t= 2,80000000
i= 8
                     i= 9
                     i= 10
     t= 3,00000000
                     w= 4,51427755 y= 5,87410021
                                                  e= 1,35982265
```

Exercício 5.2 – 6c (Burden, 2015)

```
y' = t^{-1}(y^2 + y),  1 \le t \le 3,  y(1) = -2,  h = 0.2
Digite o início do intervalo [a]: 1
Digite o fim do intervalo [b]: 3
Digite o número de pontos da malha [n]: 10
Digite a condição inicial do valor [alpha]: -2
Os parâmetros digitados foram: [a]= 1,000 [b]= 3,000 [n]= 10 [alpha] = -2,000
                                               w= -2,00000000
                t= 1,00000000
                                                                                 y= -2,00000000
                                                                                                                                 e= 0,00000000
i= 1
                 t= 1,20000000
                                                 w= -1,60000000
                                                                                        y= -1,71428567
                                                                                                                                 e= 0,11428567

      w= -1,60000000
      y= -1,71428567
      e= 0,11428567

      w= -1,44000000
      y= -1,55555557
      e= 0,11555557

      w= -1,34948570
      y= -1,45454544
      e= 0,10505975

      w= -1,29053246
      y= -1,38461540
      e= 0,09408293

      w= -1,24887229
      y= -1,33333333
      e= 0,08446105

      w= -1,21779132
      y= -1,29411764
      e= 0,07632632

      w= -1,19368001
      y= -1,26315788
      e= 0,06947787

      w= -1,17441401
      y= -1,23809525
      e= 0,06368124

      w= -1,15865752
      y= -1,21739131
      e= 0,05873378

      w= -1,14552683
      y= -1,200000000
      e= 0,05447317

i= 2
              t= 1,40000000
i= 3
              t= 1,60000000
i= 4
              t= 1,80000000
              t= 2,00000000
              t= 2,20000000
i= 6
i= 7
              t= 2,40000000
i= 8
              t= 2,60000000
i= 9 t= 2,80000000
            t= 3,00000000
i= 10
```

Exercício 5.2 – 6d (Burden, 2015)

$$y' = -ty + 4ty^{-1}$$
, $0 \le t \le 1$, $y(0) = \frac{1}{3}$, $h = 0.1$

```
Digite o início do intervalo [a]: 0
Digite o fim do intervalo [b]: 1
Digite o número de pontos da malha [n]: 10
Digite a condição inicial do valor [alpha]: 1
```

```
Os parâmetros digitados foram: [a]= 0,000 [b]= 1,000 [n]= 10 [alpha] = 1,000
       t= 0,00000000
                     w= 1,00000000
                                   y= 1,00000000 e= 0,00000000
       t= 0,10000000
i= 1
                      w= 1,00000000
                                    y= 1,01481545
                                                  e= 0,01481545
                                    y= 1,05718100 e= 0,02718100
i= 2
       t= 0,20000000
                      w= 1,03000000
       t= 0,30000000
                                    y= 1,12169802 e= 0,03462811
                     w= 1,08706991
i= 3
                                    y= 1,20148599 e= 0,03663969
i= 4
       t= 0,40000000
                     w= 1,16484630
i= 5
       t= 0,50000000
                     w= 1,25560963
                                   y= 1,28980529 e= 0,03419566
      t= 0,60000000
i= 6
                     w= 1,35211432  y= 1,38093126
                                                  e= 0,02881694
i= 7
      t= 0,70000000
                      w= 1,44848725  y= 1,47041523
                                                  e= 0,02192798
i= 8
      t= 0,80000000
                      i= 9
      t= 0,90000000
                      w= 1,62490488  y= 1,63261318
                                                  e= 0,00770830
                      w= 1,70021488  y= 1,70187008
i= 10
     t= 1,00000000
                                                  e= 0,00165521
```

Exercício 5.2 – 16 (Burden, 2015)

$$\begin{split} y' &= C\frac{d^2\epsilon}{dt^2} + \frac{1}{R}\frac{d\epsilon}{dt} + \frac{1}{L}\epsilon\\ \epsilon &= e^{-0.06\pi t}sen(2t-\mu), \qquad C=0.3;\; R=1.4;\; L=1.7 \end{split}$$

Substituindo ε , C, R e L em y':

$$y' = e^{-0.188496t} ((-1.20238)cos(2t) + (0.735745)sen(2t))$$

Com: $0 \le t \le 10$, $y(0) = 0$, $h = 0.1$

Para efeito de cálculo do algoritmo a função f (solução da equação diferencial ordinária) retornará sempre o valor 1, o valor de y e o valor de e devem ser desconsiderados:

```
Digite o início do intervalo [a]: 0
Digite o fim do intervalo [b]: 10
Digite o número de pontos da malha [n]: 100
Digite a condição inicial do valor [alpha]: 0
Os parâmetros digitados foram: [a]= 0,000 [b]= 10,000 [n]= 100 [alpha] = 0,000
        t= 0,00000000
                       w= 0,00000000 y= 1,00000000
i= 0
                                                    e= 1,00000000
i= 1
        t= 0,10000000
                       w= -0,12023799 y= 1,00000000
                                                     e= 1,12023799
i= 2
       t= 0,20000000
                       w= -0,22153473 y= 1,00000000
                                                    e= 1,22153473
     t= 0,30000000
t= 0,40000000
i=3
                       w= -0,30059268 y= 1,00000000
                                                     e= 1,30059268
i= 4
                       w= -0,35511413 y= 1,00000000
                                                     e= 1,35511413
i= 5
       t= 0,50000000
                       w= -0,38385485 y= 1,00000000
                                                     e= 1,38385485
i= 95
       t= 9,50000000
                       W = 0,18956961
                                      y= 1,00000000
                                                     e= 0,81043039
       t= 9,60000000
                       w= 0,17157531
                                                     e= 0,82842469
i= 96
                                      y= 1,00000000
i= 97
        t= 9,70000000
                       w= 0,15722136
                                      y= 1,00000000
                                                     e= 0,84277864
i= 98
       t= 9,80000000
                       w= 0,14693958
                                     y= 1,00000000
                                                     e= 0,85306042
i= 99
       t= 9,90000000
                      w= 0,14098520
                                     y= 1,00000000
                                                     e= 0,85901480
e= 0,86056691
```

4. CONCLUSÃO

Foi possível verificar durante o estudo do método que a aproximação calculada por w apresenta um erro crescente proporcional ao aumento do valor de t, ou seja, na soma dos passos h, porém quanto maior o número de divisões ou quanto menor o passo h dentro dos limites de a e b, pode se observar a diminuição do erro.

Constatou se que o método é relativamente simples, porém apresenta erro relativamente alto, o que o torna pouco utilizável na prática.

.

5. REFERÊNCIAS

- Burden, R. L. (2011). *Numerical Analysis* (9th Edition ed.). Boston: Cengage Learning.
- Burden, R. L. (2015). *Análise Numérica* (Tradução da 10ª edição norte-americana ed.). São Paulo: Cengage Learning.

ANEXO A. CÓDIGO FONTE

```
/***************
 * \brief Programa realizado para a Aula de Métodos Númericos em Fenômenos de Transporte
           Análise Numérica - Burden, Richard - 10ª edição - Pág. 78
           Algoritmo 5.1 - Método de Euler
 * \param
           Extremidade a
 * \param
           Extremidade b
 * \param
           Número de Pontos da Malha
 * \param
          Condição Inicial w0
 * \return Aproximação w de y em (N+1) valores de t
 #include <stdio.h>
#include <math.h>
#include <locale.h>
/*Função f(solução da equação diferencial ordinária*/
float f(float t, float y)
{
    /*validação ex. 1 no intervalo [0,2], n = 10, w0 = 0,5*/
                                                                     return(pow((t + 1), 2) - 0.5 *
exp(t));
    /*exercicio 5.2-1a no intervalo [0,1], n = 2, w0 = 0,5*/
                                                                                      /*return((exp(-
(2*t))/25+(t*exp(3*t)/5)-(exp(3*t)/25));*/
   /*exercicio 5.2-1b no intervalo [2,3], n = 2, w0 = 2*/
                                                                  /*return(t + (1 / (1 - t)));*/
    /*exercicio 5.2-2c no intervalo [2,3], n = 4, w0 = 2*/
                                                                     /*return(pow((t - 2 + sqrt(2) *
exp(1) * 1 / exp(t / 2)),2));*/
                                                                   /*return((4 + cos(2) - cos(2 * t)))
    /*exercicio 5.2-2d no intervalo [1,2], n = 4, w0 = 2*/
/ (2 * pow(t, 2)));*/
    /*exercicio 5.2-5a no intervalo [1,2], n = 10, w0 = 1*/
                                                                  /*return(t / (1 + log(t)));*/
    /*exercicio 5.2-5b no intervalo [1,3], n = 10, w0 = 0*/
                                                                   /*return(t * tan(log(t)));*/
    /*exercicio 5.2-6c no intervalo [1,3], n = 10, w0 = -2*/
                                                                  /*return((2 * t) / (1 - 2 * t));*/
    /*exercicio 5.2-6d no intervalo [0,1], n = 10, w0 = 1/3*/
                                                                        /*return(sqrt(4 - 3 * exp(-
pow(t,2))));*/
    /*exercicio 5.2-16 no intervalo [0,10], n = 100, w0 = 0*/
                                                                  /*return(1);*/
/*Função derivada f'*/
float dy(float t, float w)
                                                                  return(w - pow(t, 2) +1);
/*return(t * exp(3 * t) - 2 * w);*/
    /*validação ex. 1 no intervalo [0,2], n = 10, w0 = 0,5*/
    /*exercicio 5.2-1a no intervalo [0,1], n = 2, w0 = 0,5*/
    /*exercicio 5.2-1b no intervalo [2,3], n = 2, w0 = 2*/
                                                                  /*return(1 + pow((t - w),2));*/
    /*exercicio 5.2-2c no intervalo [2,3], n = 4, w0 = 2*/
                                                                  /*return(-w + t * sqrt(w));*/
                                                                  /*return(pow(t, -2) * (sin(2 * t) -
    /*exercicio 5.2-2d no intervalo [1,2], n = 4, w\theta = 2*/
2 * t * w));*/
   /*exercicio 5.2-5a no intervalo [1,2], n = 10, w0 = 1*/
                                                                       /*return(w / t - pow((w / t),
2));*/
    /*exercicio 5.2-5b no intervalo [1,3], n = 10, w0 = 0*/
                                                                   /*return(1 + w / t + pow((w / t),
2));*/
    /*exercicio 5.2-6c no intervalo [1,3], n = 10, w0 = -2*/
                                                                     /*return(pow(t, -1) * (pow(w, 2))
+w));*/
   /*exercicio 5.2-6d no intervalo [0,1], n = 10, w0 = 1/3*/
                                                                     /*return(-t * w + 4 * t * (1 / 
    /*exercicio 5.2-16 no intervalo [0,10], n = 100, w0 = 0*/
                                                                     /*return(1 / exp(0.188496 * t) *
((-1.20238) * cos(2 * t) + (0.735745) * sin(2 * t)));*/
/*Programa principal*/
int main(void)
   setlocale(LC ALL,"");
    /*Declaração de variáveis*/
    double a, b, alpha, h, t, w;
   double y, e;
    int n, i;
   /*Entrada de parâmetros*/
```

```
printf("Digite o início do intervalo [a]: ");
   scanf("%lf", &a);
printf("Digite o fim do intervalo [b]: ");
   scanf("%lf", &b);
printf("Digite o número de pontos da malha [n]: ");
    scanf("%d", &n);
    printf("Digite a condição inicial do valor [alpha]: ");
    scanf("%lf", &alpha);
    /*Exibição dos parâmetros de cáculo para o usuário*/
   printf ("\nOs parâmetros digitados foram: [a]= %.3f [b]= %.3f [n]= %i [alpha] = %.3f \n", a, b, n,
alpha);
    /*Cálculo do Passo h*/
    h = (b - a) / n;
    t = a;
    w = alpha;
    for(i=0; i<=n; i++)
        /*Cálculo de ti*/
        t = a + i * h;
        /*Cálculo da solução da equação diferencial*/
        y = f(t, w);
        /*Erro (diferença do valor exato y com a aproximação w)*/
        e = fabs(y - w);
        /*Exibição dos valores calculados para o usuário*/
        printf("i= %d \t t= %.8f \t w= %.8f \t y= %.8f \t e= %.8f \n", i, t, w, y, e);
        /*Equação de diferença de Euler*/
        w = w + h * dy(t, w);
    }
    return 0;
}
```