Алгоритмы и структуры данных

Сергей Григорян

16 октября 2024 г.

Содержание

1	Лекция 5		3
	1.1	Биномиальная куча	3
	1.2	Амортизационный анализ	
		1.2.1 Динамический массив	
		(std::vector)	5
2	Лекция 6		
	2.1	Связные списки	6
	2.2	Куча Фиббоначи	7
		2.2.1 Consolidate (Операция причёсывания кучи)	8
		2.2.2 Анализ времени работы	8
3	Лен	кция 7	9
-		Стеки и очереди	9

1 Лекция 5

1.1 Биномиальная куча

Хотим следующие операции:

- getMin()
- extractMin()
- insert(x)
- decreaseKey(ptr, \triangle)
- merge(heap1, heap2) обЪединение куч.

Определение 1.1. Биномиальное дерево ранга k:

 ${\bf k}=0)\ T_0$ - одна вершина

 $\mathbf{k}=1)\ T_1$ - вершина с одним ребёнком

 ${\bf k}=2)\ T_2$ - Дерево $T_1,$ к корню кот. ещё подвешено T_1

 $\mathbf{k}=\mathbf{n})\ T_n$ - Дерево T_{n-1} , к корню кот. ещё подвешено T_{n-1}

Кроме того, в вершинах дерева, есть числа, удовл. усл. обыкновенной кучи (значение в родителе \leq значения в сыновьях)

<u>Определение</u> **1.2.** Биномиальная куча - это набор биномиальных деревьев, попарно различных рангов.

Пример.

 $\overline{T_0, T_1, T_5}$ - OK T_3, T_5, T_5 - NOT OK

Замечание. 1) Если в куче всего n - эл-ов, то в ней не более $\log_2 n$ - деревьев, m. к. в T_k ровно 2^k вершин.

Пример.
$$n = 11 = 1011_2 \Rightarrow T_0 + T_1 + T_3$$

2) Дерево ранга k имеет глубину k

$$k \le \log_2 n$$

Реализация:

- getMin(): Храним указатель на корень с наим. значением. $\Rightarrow O(1)$
- $merge(H_1, H_2)$:
 - 1) Если в H_1 и H_2 не содержатся деревья одинаковых рангов, то просто объединяем.
 - 2) Иначе пусть есть дерево L_k , R_k два дерева одинакового ранга. Сделаем из них T_{k+1} . Повторяем процедуру, пока у нас есть деревья равных рангов. $(O(\log_2 n))$
- insert(x): Заводим биномиальную кучу из одной вершины с значением x, затем merge новой и старой кучи $\Rightarrow O(\log_2 n)$
- extractMin(): Пусть min вершина в H_2 . На самом деле дерево H_2 тоже корректная куча. Оставшуюся кучу обозначим за H_1 . Удалим из H_2 min, из оставшихся деревьев составим новую кучу H_2' и смёрджим его с H_1
- decrease Key(ptr, \triangle): Как в бинарной. $(O(\log_2 n)) + \Pi$ роверить, не изменился ли min корень

1.2 Амортизационный анализ

Определение 1.3. Пусть S - какая-то СД, способная обрабатывать m типов запросов. Тогда ф-ции $a_1(n), a_2(n), \ldots, a_m(n)$ наз-ся учётными (амортизационными) асимптотиками ответов на запросы, если $\forall n \forall$ п-ть из n запросов с типами i_1, i_2, \ldots, i_n суммарное время их обработки = $O(\sum_{i=1}^n a_{i_j}(n))$

Пример. В бинарной куче:

- $insert: O(\log n)$
- $extractMin: O^*(\log n)$

• $getMin(): O^*(\log n)$

• erase: аморт. $O(\log n)$

Cл-но, любые n запросов работают за $O(n \log n)$

Замечание. Можно даже считать так:

• insert: $O^*(\log n)$

• $extractMin: O^*(1) \le k$

• $getMin: O^*(1)$

• erase: $O^*(1) \leq k$

 $Ha\ n\ запросов.$

Из них k - insert. Тогда реальное время работы: $O(k \log k + n - k)$

1.2.1 Динамический массив (std::vector)

Хранит массив: $a_0, a_1, \ldots, a_{n-1}$ Отвечает на запросы:

- []: по i вернуть a_i O(1)
- push-back x: добавить x в конец массива.
- pop-back: удалить последний эл-т.

2 Лекция 6

 $\frac{\mathbf{Утверждение}}{n\ \textit{запросов},\ t_i}$ - реальное время выполнения i-ого запроса.

Пусть d_i - число монет, положенных на счёт; w_i число снятых монет. Тогда, если баланс на счёте всегда ≥ 0 , то:

$$a_i = t_i + d_i - w_i$$

учётная стоимость і-ого запроса.

Доказательство. $\{a_i\}$ - явл-ся уч. стоимостями, если реальное время $=O(\sum_{i=1}^n a_i)$

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} t_i + d_i - w_i = \sum_{i=1}^{n} t_i + \sum_{i=1}^{n} (d_i - w_i), (d_i - w_i \ge 0)$$

$$\Rightarrow \sum_{i=1}^{n} a_i \ge \sum_{i=1}^{n} t_i$$

Рассм. динам. массив:

- Лёгкий push-back/pop-back:
 - $-t_i = O(1)$
 - $-d_i \le 20$
 - $-w_i=0$
 - $-a_i = O(1)$
- Тяжёлый push-back/pop-back:
 - $-t_i \le 4C$
 - $-w_i = t_i$
 - $-d_i=0$
 - $-a_i=0$

 $O^*(1)$ - учётное время работы всех операций

2.1 Связные списки

- 1) За линейное от размера списка время можно просмотреть все его эл-ты
- 2) В списке можно выполнять удаление по указателю за O(1)

Замечание. Для удобства реализации, в начало и конец списка можно положить некий фиктивный эл-т.

2.2 Куча Фиббоначи

Умеет:

- 1) getMin O(1)
- 2) insert O(1)
- 3) merge O(1)
- 4) extractMin $O^*(\log n)$
- 5) decreaseKey $O^*(1)$

Куча - **связный список** деревьев, каждое из кот. удовл. требованиям кучи.

Что храним в вершине?

- 1) Указатель на левого и правого брата.
- 2) element $x \in X$
- 3) **Связный список** детей (А именно, указатель на самого левого сына)
- 4) Степень вершины (Кол-во детей) (int degree)
- 5) bool mark: вырезался ли 1 из сыновей.
- 6) Указатель на родителя.

Разбираем операции:

- <u>getMin:</u> Вместе со списком корней будем хранить указатель на минимальный корень.
- Merge: склеиваем два списка корней и пересчитываем min-root
- insert x: Создаём кучу из одного эл-та + merge.
- <u>extractMin</u>: Удалим вершину min-root, а всех детей merge-ым со старой кучей.
- $\frac{\text{decreaseKey ptr }\triangle}{\text{вей.}}$, а у всех остальных не больше одного.

2.2.1 Consolidate (Операция причёсывания кучи)

Будем проходиться по всем корням и объединять деревья одного ранга. (ранг = degree). Объединение:

Из двух деревье одного ранга (H_1, H_2) , пусть H_1 - с меньшим числом в корне. Тогда подвесим H_2 к H_1 . Теперь ранг H_1 увеличился на 1.

Пусть D(n) - тах возможный ранг вершины в куче из n эл-ов. (Позже покажем, что $D(n) = O(\log n)$). Тогда реальное время работы:

$$D(n) + \#(\text{Объединений деревьев})$$

2.2.2 Анализ времени работы

Метод бух. учёта:

На каждом корне лежит по 1 монетке, на каждой вершине c mark = true лежит по 2 монетки. Тогда:

- 1) decreaseKey работает за O(1)
- 2) extractMin работает за $O^*(D(n))$

Осталось показать, что $D(n) = O(\log n)$

Пусть S(k) - min кол-во вершин в дереве, ранг кот. равен k S(0)=1, S(1)=2, S(k)=?

$$S(k) \ge 1 + 1 + S(0) + \ldots + S(k-2)$$

Отсюда следует, что $S(k) \geq F_{k+2}$, где F_k - k-ое число Фиббоначи.

$$S(k) = \Omega(\phi^{k+2})$$

Утверждение 2.2.

$$2 + F_2 + F_3 + \ldots + F_k = F_{k+2}$$

Доказательство.

$$k = 2: 2 + F_2 = 3 = F_3$$

 $k = k: 2 + F_2 + \ldots + F_{k+1} = F_{k+3}$

$$F_n = \frac{\phi^n - (-\phi)^{-n}}{\sqrt{5}}, \phi = \frac{1 + \sqrt{5}}{2} > 1$$
$$F_n = \Theta(\phi^n) \Rightarrow S(k) = \Omega(\phi^k)$$

Если в дереве n вершин, то макс. степень корня $\leq \log_{\phi}(n)$

3 Лекция 7

3.1 Стеки и очереди

Определение 3.1. Стек - СД:

- \bullet push x добавить x в начало
- рор х удалить первый эл-т из начала
- top x вывести первый эл-т из начала.

Реализация на основе связного списка. ПСССССССССП

ОБРАТНАЯ ПОЛЬСКАЯ ЗАПИИИИИИИИИИИИСЬ Спарсы