

GTU Electronics Engineering

ELEC 331 Electronic Circuits 2

Fall Semester

Instructor: Assist. Prof. Önder Şuvak

HW 5 Questions

Updated October 20, 2017 - 13:41

Assigned:

Due:

Answers Out:

Late Due:

Contents

Title Page	1
Contents	1
Question 1	2
Question	2
Question 2	3
Question	3
Question 3	4
Question	4
Question 4	5
Question	5
Question 5	7
Question	7
Question 6	8
Question	8

BJT Bias and SCTC

- 8.19 In Fig. P8.19, $\beta = 200$.
- (a) Find I_B so that the transistor is biased at $I_C = 2.5$ mA. (b) Find the numerical value of r_{π} .
- (c) Write an equation for C so that the low-frequency pole is located at 100 rad/s.

Figure P8.19

Necessary Knowledge and Skills: BJT biasing and small signal equivalent circuit, small signal impedance computations, method of SCTC (short-circuit time constants) for estimating the lower freq. cut off frequency (also interpreted as half-power freq.).

BJT Bias and SCTC

8.20 Use short-circuit time constants to estimate the lower half-power frequency for Fig. P8.20; $\beta = 99$, $r_{\pi} = 100 \Omega$.

Figure P8.20

Necessary Knowledge and Skills: BJT biasing and small signal equivalent circuit, small signal impedance computations, method of SCTC (short-circuit time constants) for estimating the lower freq. cut off frequency (also interpreted as half-power freq.).

CS Amplifier Frequency Response

4.94 In a particular MOSFET amplifier for which the midband voltage gain between gate and drain is -27 V/V, the NMOS transistor has $C_{gs} = 0.3$ pF and $C_{gd} = 0.1$ pF. What input capacitance would you expect? For what range of

signal-source resistances can you expect the 3-dB frequency to exceed 10 MHz? Neglect the effect of R_G .

Note: Consider this question as of a common source amplifier configuration.

Additional Tasks: Review Miller's theorem, reprove it on paper.

Necessary Knowledge and Skills: Miller's effect in common source configuration, dominant pole determined by the Miller effect, OCTC method for computing the approximate high freq. cut-off, equivalent Thevenin impedance calculations, design for increasing bandwidth.

CS Amplifier OCTC, SCTC and Miller's Effect

D4.95 In a FET amplifier, such as that in Fig. 4.49(a), the resistance of the source $R_{\rm sig} = 100 \text{ k}\Omega$, amplifier input resistance (which is due to the biasing network) $R_{\rm in} = 100 \text{ k}\Omega$, $C_{gs} = 1 \text{ pF}$, $C_{gd} = 0.2 \text{ pF}$, $g_m = 3 \text{ mA/V}$, $r_o = 50 \text{ k}\Omega$, $R_D = 8 \text{ k}\Omega$, and $R_L = 10 \text{ k}\Omega$. Determine the expected 3-dB cutoff frequency f_H and the midband gain. In evaluating ways to double f_H , a designer considers the alternatives of changing either $R_{\rm out}$ or $R_{\rm in}$. To raise f_H as described, what separate change in each would be required? What midband voltage gain results in each case?

CS Amplifier OCTC, SCTC and Miller's Effect

Note: This is a common source configuration.

Additional Tasks: Apply the SCTC method for computing the low freq. cut-off, iterate over the AC coupling capacitors, leave results in terms of the parameters used.

Necessary Knowledge and Skills: OCTC methods for computing the high freq cut-off, Thevenin equivalent impedance calculations, small signal equivalent circuits, bandwidth and gain trade-off, gain bandwidth product calculations, Miller's effect.

CE Amplifier OCTC, SCTC and Miller's Effect

5.159 Consider the common-emitter amplifier of Fig. P5.159 under the following conditions: $R_{\rm sig} = 5~{\rm k}\Omega$, $R_1 = 33~{\rm k}\Omega$, $R_2 = 22~{\rm k}\Omega$, $R_E = 3.9~{\rm k}\Omega$, $R_C = 4.7~{\rm k}\Omega$, $R_L = 5.6~{\rm k}\Omega$, $V_{CC} = 5~{\rm V}$. The dc emitter current can be shown to be $I_E \cong 0.3~{\rm mA}$, at which $\beta_0 = 120$, $r_o = 300~{\rm k}\Omega$, and $r_x = 50~\Omega$. Find the input resistance $R_{\rm in}$ and the midband gain A_M . If the transistor is specified to have $f_T = 700~{\rm MHz}$ and $C_\mu = 1~{\rm pF}$, find the upper 3-dB frequency f_H .

FIGURE P5.159

Notes: This is a common emitter configuration.

Additional Tasks: Apply the SCTC method for computing the low freq. cut-off, iterate over the AC coupling capacitors, leave results in terms of the parameters used.

Necessary Knowledge and Skills: OCTC methods for computing the high freq cut-off, Thevenin equivalent impedance calculations, small signal equivalent circuits, bandwidth and gain trade-off, gain bandwidth product calculations, Miller's effect.

BJT Differential Amplifier High-Freq. Response

- **7.82** A BJT differential amplifier operating with a 1-mA current source uses transistors for which $\beta = 100$, $f_T = 600$ MHz, $C_{\mu} = 0.5$ pF, and $r_x = 100$ Ω . Each of the collector resistances is 10 k Ω , and r_o is very large. The amplifier is fed in a symmetrical fashion with a source resistance of 10 k Ω in series with each of the two input terminals.
- (a) Sketch the differential half-circuit and its high-frequency equivalent circuit.
- (b) Determine the low-frequency value of the overall differential gain.
- (c) Use Miller's theorem to determine the input capacitance and hence estimate the 3-dB frequency f_H and the gain-bandwidth product.

Notes: None.

Additional Tasks: None.

Necessary Knowledge and Skills: Differential amplifier, half circuit in differential mode, no emitter degeneration, small signal equivalent of BJT, differential voltage midband gain calculation, OCTC, Miller's effect, dominant pole approximation, gain bandwidth product.