

ECT - 2018/2019/2020/2021

Ficha de Trabalho 2: Métodos de Pesquisa

Objetivo: Pretende-se promover a aquisição de conhecimentos e desenvolvimento de competências relativas aos seguintes algoritmos: subida da colina (Hill Climbing) e Simulated Annealing.

- 1) Explique o princípio de funcionamento do algoritmo da subida da colina (maximização). Apresente o pseudo-código para este algoritmo. (*T*)
- 2) Considere a função unidimensional (1) ilustrada na figura seguinte para o intervalo especificado:

$$f_1(x) = 4(\sin(5\pi x + 0.5)^6 \exp(\log_2((x - 0.8)^2))) \quad 0 \le x \le 1.6$$
 (1)

Como se pode visualizar na figura seguinte esta função tem vários máximos locais e um máximo global.

Figura 1: Espaço de pesquisa unidimensional definido pela função (1).

- i) Identifique os máximos (global e locais) desta função. (T)
- ii) **Determine** os máximos (global e locais) desta função. (P)
- iii) Replique a Figura 1 representando os máximos da função. (P)
- iv) Considere a solução inicial x=0.180. Represente o ponto correspondente no gráfico (T-P).
- v) Considere que o algoritmo pode testar pontos aleatórios gerados numa vizinhança com um raio 1/100 da amplitude do intervalo de pesquisa. Quais os limites inferior e superior do intervalo de pesquisa inicial? (*T*)
- 3) Considere o exemplo apresentado na Tabela 1, para um problema de maximização, na qual *It* representa o número da iteração e *x*_{new} uma potencial solução para o problema. As potenciais soluções estão representadas na Figura 2.

It	0	1	2	3	4	5	6	7	8	9	10
x	0.180	0.210	0.220	0.230	0.240	0.250	0.250	?	?	?	?
f(x)	0.000	0.0453	0.1228	0.2502	0.4089	0.5563	0.5563	?	?	?	?
x_new		0.210	0.220	0.230	0.240	0.250	0.250	0.2850	0.2450	0.120	0.110
$f(x_new)$		0.0453	0.1228	0.2502	0.4089	0.5563	0.5563	0.4768	0.4872	0.1358	0.3378

Tabela 1: Exemplo de potenciais pontos para a subida da colina.

© Paulo Moura Oliveira 1/4

Figura 2: Representação de 10 potenciais soluções apresentadas nas Tabelas 1-3.

- i) Aplicando o critério de decisão do algoritmo da subida da colina complete os espaços em branco das variáveis x e f(x). (T)
- ii) Confirme os valores apresentados para f(x) e represente os pontos correspondentes a melhoria da função na figura. (T-P)
- iii) Na eventualidade da pesquisa estar presa num máximo local, que estratégia utilizaria para explorar outras regiões do espaço (*T*)
- 4) Explique o princípio de funcionamento do algoritmo *Simulated Annealing (SA)* (maximização). Apresente o pseudo-código para este algoritmo. (*T*)
- 5) Considere que utiliza o algoritmo SA para o mesmo problema apresentado na alínea 3).
 - i) Sabendo que os perfis utilizados para a probabilidade (p) e temperatura (T) são os apresentados na Figura 2, explique qual a relação entre as duas variáveis. (T)

© Paulo Moura Oliveira 2/4

Figura 2: Perfis da probabilidade e temperatura.

- ii) Qual é relação entre o decaimento do valor da probabilidade e a diminuição do grau de aleatoriedade do SA? (*T*)
- iii) Represente a condição associada ao critério de decisão a utilizar quando a solução de teste piorar o valor atual da solução? (*T*)
- iv) Considere o exemplo apresentado na Tabela 2, na qual p representa o valor da probabilidade e rand um valor aleatório gerado no intervalo [0,1]. Aplicando o critério de decisão do algoritmo do SA complete os espaços em branco na linha das variáveis x e f(x). (T)
- iv) Represente os pontos aceites na figura. (*T-P*)
- v) Sabendo que a expressão utilizada no arrefecimento da temperatura é representada por: $T = \alpha T$, com base nos valores apresentados na Tabela 2 determine o valor de α .

It	0	1	2	3	4	5	6	7	8	9	10
x	0.180										
f(x)	0.000										
x_new		0.210	0.220	0.230	0.240	0.250	0.260	0.2850	0.2450	0.120	0.110
$f(x_new)$		0.0453	0.1228	0.2502	0.4089	0.5563	0.6433	0.4768	0.4872	0.1358	0.3378
T		2.4000	2.2080	2.0314	1.8689	1.7193	1.5818	1.4553	1.3388	1.2317	1.1332
p								0.8919	0.992	0.753	0.838
rand								0.601	0.934	0.124	0.280

Tabela 2: Exemplo de potenciais pontos para o Simulated Annealing: caso I.

- vi) Considere o exemplo apresentado na Tabela 3, que transpõe o hipotético caso apresentado na Tabela 3, para as últimas 10 iterações (num total de 100). Aplicando o critério de decisão do algoritmo do SA complete os espaços em branco na linha das variáveis x e f(x) (T)
- vii) Compare os resultados obtidos na alínea iv) com os da alínea vi). (T)
- viii) Represente os pontos aceites na figura. (*T-P*)

© Paulo Moura Oliveira 3/4

It	90	91	92	93	94	95	96	97	98	99	100
х	0.180										
f(x)	0.000										
x_new		0.210	0.220	0.230	0.240	0.250	0.260	0.2850	0.2450	0.120	0.110
$f(x_new)$		0.0453	0.1228	0.2502	0.4089	0.5563	0.6433	0.4768	0.4872	0.1358	0.3378
T		0.0014	0.0013	0.0012	0.0011	0.0010	0.0009	0.0008	0.0007	0.00067	0.00063
p								0.0000	0.0000	0.00000	0.00000
rand								0.844	0.7882	0.0370	0.8371

Tabela 3: Exemplo de potenciais pontos para o Simulated Annealing: caso II.

Referências:

P. B. de Moura Oliveira, E. J. Solteiro Pires e Paulo Novais, (2016), "Revisiting the Simulated Annealing Algorithm from a Teaching Perspective", M. Graña et al. (eds.), International Joint Conference SOCO'16-CISIS'16-ICEUTE'16, Advances in Intelligent Systems and Computing 527, DOI 10.1007/978-3-319-47364-2_70

© Paulo Moura Oliveira 4/4