Meta aprendizaje: aprendiendo de pocos ejemplos

Aprendizaje Profundo

PCIC IIMAS UNAM

Prof. Gibran Fuentes Pineda Ayud. Bere & Ricardo Montalvo Lezama

Enero 2021

Aprendizaje convencional

• Se entrena un modelo por cada tarea a resolver.

¿Por qué es importante aprender con pocos datos?

• Existen muchos dominios donde los datos etiquetados son escasos.

traducción de lenguas raras

robótica

imágenes médicas

Report: opacidades de aspecto intersticioalveolar parcheadas y bilaterales que predominan en ambos lobulos inferiores sospechosas de infeccion por COVID-19 . senos costofrenicos libres .

Labels: COVID 19, alveolar pattern, interstitial pattern, pneumonia Locations: costophrenic angle, lobar, bilateral, lower lobe

DICOM Fields	
Study Date 202	200317
Patient's Sex N	Л
Patient's Birth	Date 1986
Modality CR	
Manufacturer (GE Healthcare

Date	Test	Result
17.03.2020	PCR	NEGATIVE
18.03.2020	PCR	NEGATIVE
19.03.2020	IGG	POSITIVE
19.03.2020	IGM	POSITIVE
20.03.2020	PCR	POSITIVE

Transferencia de conocimiento

• Aprovecha el conocimiento de una tarea base en una tarea objetivo.

Adaptación de dominio

 Aprender un modelo de una distribución origen y se aplica a una distribución diferente.

Aprendizaje multitarea

• Aprendizaje simultáneo de varias tareas relacionadas.

Una intuición de meta aprendizaje

Entrenamiento Prueba

¿Qué artista pintó esta obra? ¿Braque o Cezanne?

• Familia de técnicas enfocadas adaptarse rápidamente a nueva información.

Tipos de meta aprendizaje

Métricas

Optimizadores

Alucinaciones

comparación

optimización

aumentado

Métricas

Verificación de rostros

• Comparar la imagen del rostro de una persona con otra y verificar si coinciden.

ejemplo positivo

ejemplo negativo

Red Siamesa

representaciones

Representaciones

Pérdida constractiva

$$J(x_1, x_2, y) = (y d^2) + (1 - y) (max (0, m - d)^2)$$

d: distancia euclideana entre representaciones $d = \sqrt{(x_1 - x_2)^2}$

y: etiqueta de las parejas (1 similares, 0 distintas)

m: margen

Similares

$$y = 0$$

$$J(x_1, x_2, y) = d^2$$

$$J(x_1, x_2, y) = max(0, m-d)^2$$

Para minimizar *J* se maximiza *d*

Aprendizaje de una observación

¡tiempo de programar!
7b_mtl_siamese.ipynb

Red relacional

Optimizador

Clasificación con pocas observaciones con episodios

conjunto de meta-entrenamiento

conjunto de meta-validación

tarea 3

Meta optimizador

Meta optimizador vs SGD

$$\theta = 1 \ \theta_{t-1} + \alpha \frac{\partial}{\partial \ \theta_i} \ J \ (\theta_0 \ , \ \theta_1)$$
 SGD

$$\theta = \mathbf{f} \;\; \theta_{t\,-\,1} + \mathbf{i} \; \frac{\partial}{\partial \;\; \theta_i} \; J \; \left(\; \theta_0 \; \text{,} \;\; \theta_1 \right) \qquad \qquad \text{meta-aprendiz}$$

¡Gracias!