Other Common Sequences and Series

Factorials

While this particular class does not focus on them much, they become important in calculus and probability.

Definition: Factorial

For a nonnegative integer n, the **factorial** of n is defined as

$$n! = n(n-1)(n-2)\cdots(3)(2)(1)$$

with the special case that 0! = 1.

The factorial of n is the product of all positive integers less than or equal to n, which is a recursive sequence: n! = n(n-1)!.

Simplify the following factorials.

1.
$$\frac{8!}{2! \cdot 6!}$$

2.
$$\frac{n!}{(n-1)!}$$

3.
$$\frac{4!(n+2)!}{6!n!}$$

Binomial Coefficient

Definition: Combinations

For a nonnegative integers n and r, with $0 \le r \le n$, then

$${}_{n}C_{r} = \frac{n!}{(n-r)!r!}.$$

The symbol $\binom{n}{r}$ is often used of the C notation when referring to the binomial coefficient.

Evaluate each of the following expressions.

1.
$${}_{8}C_{2}$$

$$2. \binom{10}{3}$$

3.
$$_{7}C_{4}$$

4.
$$_{7}C_{3}$$

The Binomial Theorem

Introductory Example:

By repeated foiling, expand the expression $(x+y)^3$. Then, compute the values of $\begin{pmatrix} 3 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 3 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$, and $\begin{pmatrix} 3 \\ 3 \end{pmatrix}$. What do you notice?

Definition: The Binomial Theorem

For all $n \in \mathbb{Z}^+$, the expansion of $(x+y)^n$ is

$$(x+y)^n = x^n + nx^{n-1}y + \dots + \binom{n}{r}x^{n-r}y^r + \dots + nxy^{n-1} + y^n.$$

The Binomial Theorem allows us to expand, or partially expand, binomials quickly or to higher degrees without foiling repeatedly.

Practice: .

1. Expand each expression

(a)
$$(2x+1)^4$$

(b)
$$(3x - 2y)^5$$

(c)
$$\left(x^2 + \frac{1}{x}\right)^6$$

2. Find the sixth term of the expansion of $(a+2b)^8$.

3. Find the coefficient of the a^6b^5 term in the expansion of $(2a-5b)^11$.

4. Find the coefficient of the constant term in the expansion of $\left(3x - \frac{2}{x^2}\right)^{10}$.