Aluno: _____

Exercício 4 - Regulação de Densidade e Determinação da Taxa de Corte em Floresta Inequiânea

DAP C.C.	Frequência (ha)	V_{m} (m^{3})	V (m³/ha)
10	251	0,0384	9,6384
20	163	0,1322	21,5486
30	97	0,3683	35,7251
40	50	0,9431	47,155
50	21	1,8935	39,7635
60	14	2,7157	38,0198
70	4	4,1501	16,6004
80	2	5,9331	11,8662
\sum	602		220,317

$$\begin{array}{c|cccc} \ln N_i = b_0 + b_1 \,.\, d_i \\ \hline X & Y \\ \hline D_i & \ln N_i \\ \hline 10 & 5,5254529 \\ 20 & 5,0937502 \\ 30 & 4,574711 \\ 40 & 3,912023 \\ 50 & 3,0445224 \\ 60 & 2,6390573 \\ 70 & 1,3862944 \\ 80 & 0,6931472 \\ \hline \end{array}$$

$$\mathbf{b_0} = 6,521363$$

$$\mathbf{b_1} = -0,070283$$

$$\mathbf{R^2} = 0,98316$$

$$\mathbf{q} = e^{(b_1.(x_i-x_{i+1}))}$$

$$\mathbf{q} = 2,019464$$

1. Recalcular B₀ e B₁ com base no q estratégico

q _{estratégico}	2,1
$\mathrm{D}_{m\acute{ax}}$	50 cm
G_{rem}	22 m ² /ha

$$b_1 = \frac{\ln q}{[d_i - d_{i+1}]} = -0.0741937$$

$$\mathbf{B_0} = 6,605445517$$
 $\mathbf{B_1} = -0,0741937$

$$b_0 = \ln \left[\frac{G \times 40000}{\pi \times \sum (x_i^2 \times e^{b_1 \times x_i})} \right] = 6,605446$$

DAP	$\sum (X^2 * e^{\cdot}(bi*$
10	47,61905
20	90,70295
30	97,18173
40	82,27025
50	61,21298
	378,987

2. Determinar o incremento

ln ICA = 5,7142 - 1,3318.lnd

DAP C.C.	V (m³/ha)	ICA %	V x ICA		
10	9,6384	14,120352	136,0976		
20	21,5486	5,6096244	120,8796		
30	35,7251	3,2690039	116,7855		
40	47,155	2,2285482	105,0872		
50	39,7635	1,6556071	65,83273		
Σ	153,8306		544,6826		

Universidade Federal de Mato Grosso Faculdade de Engenharia Florestal Disciplina de Silvicultura Tropical

3. Determinação da Taxa de Corte pelo Método Mexicano

$$n = 15$$
 anos
$$IC = \left[1 - \frac{1}{(1+p)^n}\right] \times 100 = 40,66273 \%$$

Taxa de Corte =
$$\frac{\text{Volume Total/ha x IC}}{100}$$
 = 89,5869 m³/ha

DAP	Povoamento Real		Povoar	Povoamento Remanescente			Corte		
C.C.	N (ha)	G (m²/ha)	V (m³/ha)	N (ha)	G (m²/ha)	V (m³/ha)	N (ha)	G (m²/ha)	V (m³/ha)
10	251	1,9713494	9,6384	351,9567	2,764262	13,515137			
20	163	5,120796	21,5486	167,5984	5,26526	22,156513			
30	97	6,856526	35,7251	79,80878	5,64135	29,393572	17,19122	1,215176	6,331528
40	50	6,2831853	47,155	38,00418	4,775746	35,841742	11,99582	1,507439	11,31326
50	21	4,1233404	39,7635	18,09723	3,553382	34,267102	2,902772	0,569958	5,496398
60	14	3,9584067	38,0198				14	3,958407	38,0198
70	4	1,5393804	16,6004				4	1,53938	16,6004
80	2	1,0053096	11,8662				2	1,00531	11,8662
$\overline{\Sigma}$				-			-		89,62758

89,02758

4. Correção

A Taxa de Corte é de 89,5869 m³, e o somatório do Corte é de 89,62758 m³. Logo, é preciso uma correção de 0,040687 m³ na classe de 30 cm de DAP.

 $\begin{bmatrix} 17,19122 & ---- & 6,331528 \\ X & ---- & 6,2908409 \\ X = & 17,080752 & \text{árv/ha} \end{bmatrix}$

 $89,62758 - 89,5869 = 0,0406866 \text{ m}^3$

17,19122 - 17,08075183 =

0,110471 árv/ha

 $6,331528 - 0,0406866 = 6,2908409 \text{ m}^3$

Assim, precisamos incluir 0,1104714 árvores remanescentes na classe de 30 cm de DAP.

DAP	Povoamento Real		Povoar	Povoamento Remanescente			Corte		
C.C.	N (ha)	G (m²/ha)	V (m³/ha)	N (ha)	G (m²/ha)	V (m³/ha)	N (ha)	G (m²/ha)	V (m³/ha)
10	251	1,9713494	9,6384	251	1,971349	9,6384	0	0	0
20	163	5,120796	21,5486	163	5,120796	21,5486	0	0	0
30	97	6,856526	35,7251	79,91925	5,649159	29,434259	17,08075	1,207367	6,290841
40	50	6,2831853	47,155	38,00418	4,775746	35,841742	11,99582	1,507439	11,31326
50	21	4,1233404	39,7635	18,09723	3,553382	34,267102	2,902772	0,569958	5,496398
60	14	3,9584067	38,0198	0	0	0	14	3,958407	38,0198
70	4	1,5393804	16,6004	0	0	0	4	1,53938	16,6004
80	2	1,0053096	11,8662	0	0	0	2	1,00531	11,8662
\sum	602	30,858294	220,317	550,0207	21,07043	130,7301	51,97934	9,787861	89,5869

	Provas
N (ha)	602 = 550,0207 + 51,97934
G (m²/ha)	30,858294 = 21,07043 + 9,787861
$V(m^3/ha)$	220,317 = 130,7301 + 89,5869