Lecture 7: Introduction to Hierarchical Modelling, Empirical Bayes, and MCMC

Merlise Clyde

September 16

Normal Means Model

Suppose we have normal data with

$$Y_i \stackrel{iid}{\sim} (\mu_i, \sigma^2)$$

separate mean for each observation!

Question: How can we possibly hope to estimate all these μ_i ? One y_i per μ_i and n observations!

Naive estimator: just consider only using y_i in estimating and not the other observations.

 $lacksquare \mathsf{MLE}\ \hat{\mu}_i = y_i$

Hierarchical Viewpoint: Let's borrow information from other observations!

Motivation

- Example y_i is difference in gene expression for the i^{th} gene between cancer and control lines
- may be natural to think that the μ_i arise from some common distribution, $\mu_i \stackrel{iid}{\sim} g$

• unbiased but high variance estimators of μ_i based on one observation!

Low Variability

- little variation in μ_i s so a better estimate might be \bar{y}
- Not forced to choose either what about some weighted average between y_i and \bar{y} ?

Simple Example

Data Model

$$Y_i \mid \mu_i, \sigma^2 \stackrel{iid}{\sim} (\mu_i, \sigma^2)$$

Means Model

$$\mu_i \mid \mu, au \stackrel{iid}{\sim} (\mu, \sigma_\mu^2)$$

- not necessarily a prior!
- Now estimate μ_i (let $\phi = 1/\sigma^2$ and $\phi_{\mu} = 1/\sigma_{\mu}^2$)
- Calculate the "posterior" $\mu_i \mid y_i, \mu, \phi, \phi_{\mu}$

Hiearchical Estimates

- Posterior: $\mu_i \mid y_i, \mu, \phi, \phi_\mu \stackrel{ind}{\sim} \mathsf{N}(\tilde{\mu}_i, 1/\tilde{\phi}_\mu)$
- estimator of μ_i weighted average of data and population parameter μ

$$ilde{\mu}_i = rac{\phi_\mu \mu + \phi y_i}{\phi_\mu + \phi} \hspace{1cm} ilde{\phi}_\mu = \phi + \phi_\mu$$

- if ϕ_{μ} is large relative to ϕ all of the μ_{i} are close together and benefit by borrowing information
- lacksquare in limit as $\sigma_{\mu}^2 o 0$ or $\phi_{\mu} o \infty$ we have $ilde{\mu}_i = \mu$ (all means are the same)
- if ϕ_{μ} is small relative to ϕ little borrowing of information
- lacksquare in the limit as $\phi_{\mu}
 ightarrow 0$ we have $ilde{\mu}_i = y_i$

Bayes Estimators and Bias

Note: you often benefit from a hierarchical model, even if its not obvious that the μ_i s are related!

- The MLE for the μ_i is just the sample y_i .
- y_i is unbiased for μ_i but can have high variability!
- the posterior mean is actually biased.
- Usually through the weighting of the sample data and prior, Bayes procedures have the tendency to pull the estimate of μ_i toward the prior or **shrinkage** mean.
- Why would we ever want to do this? Why not just stick with the MLE?
- MSE or Bias-Variance Tradeoff

Modern relevance

- The fact that a biased estimator would do a better job in many estimation/prediction problems can be proven rigorously, and is referred to as **Stein's paradox**.
- Stein's result implies, in particular, that the sample mean is an inadmissible estimator of the mean of a multivariate normal distribution in more than two dimensions -- i.e. there are other estimators that will come closer to the true value in expectation.
- In fact, these are Bayes point estimators (the posterior expectation of the parameter μ_i).
- Most of what we do now in high-dimensional statistics is develop biased estimators that perform better than unbiased ones.
- Examples: lasso regression, ridge regression, various kinds of hierarchical Bayesian models, etc.

Population Parameters

- we don't know μ (or σ^2 and σ^2_{μ} for that matter)
- Find marginal likelihood $\mathcal{L}(\mu, \sigma^2, \sigma_\mu^2)$ by integrating out μ_i with respect to g

$$\mathcal{L}(\mu, \sigma^2, \sigma_\mu^2) \propto \prod_{i=1}^n \int \mathsf{N}(y_i; \mu_i, \sigma^2) \mathsf{N}(\mu_i; \mu, \sigma_\mu^2) \, d\mu_i$$

■ Product of predictive distributions for $Y_i \mid \mu, \sigma^2, \sigma_\mu^2 \stackrel{iid}{\sim} \mathsf{N}(\mu, \sigma^2 + \sigma_\mu^2)$

$$\mathcal{L}(\mu,\sigma^2,\sigma_\mu^2) \propto \prod_{i=1}^n (\sigma^2+\sigma_\mu^2)^{-1/2} \exp \Biggl\{ -rac{1}{2} rac{(y_i-\mu)^2}{\sigma^2+\sigma_\mu^2} \Biggr\}$$

■ Find MLE's

MLEs

$$\mathcal{L}(\mu,\sigma^2,\sigma_\mu^2) \propto (\sigma^2+\sigma_\mu^2)^{-n/2} \exp \left\{-rac{1}{2} \sum_{i=1}^n rac{(y_i-\mu)^2}{\sigma^2+\sigma_\mu^2}
ight\}$$

- lacksquare MLE of μ : $\hat{\mu} = \bar{y}$
- Can we say anything about σ_{μ}^2 ? or σ^2 individually?
- MLE of $\sigma^2 + \sigma_\mu^2$ is

$$\widehat{\sigma^2 + \sigma_\mu^2} = rac{\sum (y_i - ar{y})^2}{n}$$

• Assume σ^2 is known (say 1)

$$\hat{\sigma}_{\mu}^2=rac{\sum(y_i-ar{y})^2}{n}-1$$

Empirical Bayes Estimates

- plug in estimates of hyperparameters into the prior and pretend they are known
- resulting estimates are known as Empirical Bayes
- underestimates uncertainty
- Estimates of variances may be negative constrain to 0 on the boundary)
- Fully Bayes would put a prior on the unknowns

Bayes and Hierarchical Models

- We know the conditional posterior distribution of μ_i given the other parameters, lets work with the marginal likelihood $\mathcal{L}(\theta)$
- need a prior $\pi(\theta)$ for unknown parameters are $\theta = (\mu, \sigma^2, \sigma_\mu^2)$ (details later)

Posterior

$$\pi(heta \mid y) = rac{\pi(heta) \mathcal{L}(heta)}{\int_{\Theta} \pi(heta) \mathcal{L}(heta) \, d heta} = rac{\pi(heta) \mathcal{L}(heta)}{m(y)}$$

■ Except for simple cases (conjugate models) m(y) is not available analytically

Large Sample Approximations

■ Appeal to BvM (Bayesian Central Limit Theorem) and approximate $\pi(\theta \mid y)$ with a Gaussian distribution centered at the posterior mode $\hat{\theta}$ and asymptotic covariance matrix

$$V_{ heta} = \left[-rac{\partial^2}{\partial heta \partial heta^T} \{ \log(\pi(heta)) + \log(\mathcal{L}(heta)) \}
ight]^{-1}$$

- we can try to approximate m(y) but this may involve a high dimensional integral
- Laplace approximation to integral (also large sample)

Stochastic methods

Stochastic Integration

$$\mathsf{E}[h(heta) \mid y] = \int_{\Theta} h(heta) \pi(heta \mid y) \, d heta pprox rac{1}{T} \sum_{t=1}^T h(heta^{(t)}) \qquad heta^{(t)} \sim \pi(heta \mid y)$$

what if we can't sample from the posterior but can sample from some distribution q()

$$\mathsf{E}[h(heta) \mid y] = \int_{\Theta} h(heta) rac{\pi(heta \mid y)}{q(heta)} q(heta) \, d heta pprox rac{1}{T} \sum_{t=1}^T h(heta^{(t)}) rac{\pi(heta^{(t)} \mid y)}{q(heta^{(t)})}$$

where $\theta^{(t)} \sim q(\theta)$

Without the denominator in $\pi(\theta \mid y)$ we just have $\pi(\theta \mid y) \propto \pi(\theta) \mathcal{L}(\theta)$

use twice for numerator and denominator

Important Sampling Estimate

Estimate of m(y)

$$m(y) pprox rac{1}{T} \sum_{t=1}^{T} rac{\pi(heta^{(t)}) \mathcal{L}(heta^{(t)})}{q(heta^{(t)})} \qquad heta^{(t)} \sim q(heta)$$

$$\mathsf{E}[h(heta) \mid y] pprox rac{\sum_{t=1}^T h(heta^{(t)}) rac{\pi(heta^{(t)}) \mathcal{L}(heta^{(t)})}{q(heta^{(t)})}}{\sum_{t=1}^T rac{\pi(heta^{(t)}) \mathcal{L}(heta^{(t)})}{q(heta^{(t)})}} \qquad heta^{(t)} \sim q(heta)$$

$$\mathsf{E}[h(heta) \mid y] pprox \sum_{t=1}^T h(heta^{(t)}) w(heta^{(t)}) \qquad heta^{(t)} \sim q(heta)$$

with un-normalized weights $w(\theta^{(t)}) \propto \frac{\pi(\theta^{(t)})\mathcal{L}(\theta^{(t)})}{q(\theta^{(t)})}$

(normalize to sum to 1)

Markov Chain Monte Carlo (MCMC)

■ Typically $\pi(\theta)$ and $\mathcal{L}(\theta)$ are easy to evaluate

How do we draw samples only using evaluations of the prior and likelihood in higher dimensional settings?

■ construct a Markov chain $\theta^{(t)}$ in such a way the the stationary distribution of the Markov chain is the posterior distribution $\pi(\theta \mid y)$!

$$\theta^{(0)} \stackrel{k}{\longrightarrow} \theta^{(1)} \stackrel{k}{\longrightarrow} \theta^{(2)} \cdots$$

- $k_t(\theta^{(t-1)}; \theta^{(t)})$ transition kernel
- initial state $\theta^{(0)}$
- choose some nice k_t such that $\theta^{(t)} \to \pi(\theta \mid y)$ as $t \to \infty$
- biased samples initially but get closer to the target

Metropolis Algorithm (1950's)

- Markov chain $\theta^{(t)}$
- propose $\theta^* \sim g(\theta^{(t-1)})$ where g() is a symmetric distribution centered at $\theta^{(t-1)}$
- set $\theta^{(t)} = \theta^*$ with some probability
- otherwise set $\theta^{(t)} = \theta^{(t-1)}$

Acceptance probability is

$$lpha = \min \left\{ 1, rac{\pi(heta^*) \mathcal{L}(heta^*)}{\pi(heta^{(t-1)}) \mathcal{L}(heta^{(t-1)})}
ight\}$$

ratio of posterior densities where normalizing constant cancels!

Example

- Let's use a prior for $p(\mu) \propto 1$
- Posterior for $\mu \mid \sigma^2, \sigma_\mu^2$ is $\mathsf{N}\left(\bar{y}, \frac{\sigma^2 + \sigma_\mu^2}{n}\right)$

$$\mathcal{L}(\sigma^2,\sigma_{ au}^2) \propto (\sigma^2+\sigma_{\mu}^2)^{-rac{n-1}{2}} \exp \Biggl\{-rac{1}{2} \sum_i rac{(y_i-ar{y})^2}{\sigma^2+\sigma_{\mu}^2)} \Biggr\}$$

- Take $\sigma^2 = 1$
- Use a Cauchy(0,1) prior on σ_u
- Symmetric proposal for σ_{τ} ? Try a normal with variance $\frac{2.4^2}{d} \text{var}(\sigma_{\mu})$ where d is the dimension of θ (d = 1)

Trace Plots

Acceptance probability is 0.57

Goal is around 0.44 in 1 dimension to 0.23 in higher dimensions

AutoCorrelation Function

Joint Posterior

Marginal Posterior

MLE of σ_{μ} is 0.11

