§1.7 Linear Independence

A set of vectors $\{\mathbf v_1, \dots, \mathbf v_p\}$ in $\mathbb R^n$ is said to be linearly independent if the vector equation $x_1\mathbf v_1+\dots+x_p\mathbf v_p=\mathbf 0$ has only the trivial solution. The set $\{\mathbf v_1,\dots,\mathbf v_p\}$ is said to be linearly dependent if there exist weights c_1,\dots,c_p , not all zero, such that $c_1\mathbf v_1+\dots+c_p\mathbf v_p=\mathbf 0$.

The columns of a matrix A are linearly independent if and only if the equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.

A set containing only one vector, \mathbf{v} , is linearly independent if and only if \mathbf{v} is not the zero vector since the vector equation $x_1\mathbf{v} = \mathbf{0}$ has only the trivial solution when $\mathbf{v} \neq \mathbf{0}$. The zero vector is linearly dependent because $x_1\mathbf{0} = \mathbf{0}$ has many nontrivial solutions.

A set of two vectors is linearly dependent if at least one of the vectors is a multiple of the other. The set is linearly independent if and only if neither of the vectors is a multiple of the other.

A set of two or more vectors is linearly dependent if and only if at least one of the vectors in the set is a linear combination of the others.

If a set contains more vectors than there are entries in each vector, then the set is linearly dependent.

More unknowns than equations \Leftrightarrow More columns than rows \Leftrightarrow Must be a free variable and therefore a nontrivial solution

If a set of vectors contains the zero vector, then the set is linearly dependent.