1

Definition 1. A K-algebra \mathcal{A} is a ring that is also a K-vector space, such that for $\lambda \in K$ and $a, b \in \mathcal{A}$ such that

$$\lambda(ab) = (\lambda a)b = a(\lambda b) \tag{1}$$

Example 1.1. 1. ring containing K such as field extensions

- $2. \ K[X,Y]$
- 3. K[[X]]
- 4. $\operatorname{Mat}_{n \times n}(K)$

Definition 2. A R-algebra $\mathcal A$ is a ring that is also an R-module.

Theorem 3. Let K be a field that is finitely generated as a \mathbb{Z} -module then its finite.

Proof. 1. Let $x \in K$.

 $2. \ x = z_1 x_1 + \dots + z_n x_n$