SMARANDACHE HYPER K-ALGEBRAS

YOUNG BAE JUN, EUN HWAN ROH* AND HABIB HARIZAVI

Received October 22, 2005; revised November 28, 2006

ABSTRACT. We introduce the notion of an extension of hyper K-algebra and Smarandache hyper (\cap, \in) -ideal in hyper K-algebra, and investigate its properties.

1. Introduction

Generally, in any human field, a $Smarandache\ Structure$ on a set A means a weak structure W on A such that there exists a proper subset B of A which is embedded with a strong structure S. In [10], W. B. Vasantha Kandasamy studied the concept of $Smarandache\ groupoids$, subgroupoids, ideal of groupoids, semi-normal subgroupoids, $Smarandache\ Bol\ groupoids\ and\ obtained\ many interesting\ results\ about\ them.$ $Smarandache\ semigroups\ are\ very\ important\ for\ the\ study\ of\ congruences,\ and\ it\ was\ studied\ by\ R.\ Padilla\ [9].$

In this paper, we introduce the notion of an extension of hyper K-algebra and Smarandache hyper $K(\cap, \in)$ -ideal in hyper K-algebra, and investigate its properties.

2. Preliminaries

We include some elementary aspects of hyper K-algebras that are necessary for this paper, and for more details we refer to [1] and [11]. Let H be a non-empty set endowed with a hyper operation "o", that is, \circ is a function from $H \times H$ to $\mathcal{P}^*(H) = \mathcal{P}(H) \setminus \{\emptyset\}$. For two subsets A and B of H, denote by $A \circ B$ the set $\bigcup a \circ b$.

By a hyper BCK-algebra we mean a non-empty set H endowed with a hyperoperation "o" and a constant 0 satisfying the following axioms:

- (HK1) $(x \circ z) \circ (y \circ z) \ll x \circ y$,
- (HK2) $(x \circ y) \circ z = (x \circ z) \circ y$,
- $(HK3) \ x \circ H \ll \{x\},\$
- (HK4) $x \ll y$ and $y \ll x$ imply x = y,

for all $x, y, z \in H$, where $x \ll y$ is defined by $0 \in x \circ y$ and for every $A, B \subseteq H$, $A \ll B$ is defined by $\forall a \in A, \exists b \in B$ such that $a \ll b$.

By a hyper I-algebra we mean a non-empty set H endowed with a hyper operation "o" and a constant 0 satisfying the following axioms:

- $(H1) (x \circ z) \circ (y \circ z) < x \circ y,$
- (H2) $(x \circ y) \circ z = (x \circ z) \circ y$,
- (H3) x < x,
- (H4) x < y and y < x imply x = y

²⁰⁰⁰ Mathematics Subject Classification. 06F35, 03G25.

Key words and phrases. Smarandache hyper K-algebra, extension of hyper K-algebra, union of hyper K(hyper BCK)-algebra, hyper K-product of hyper K-algebra, hyper BCK-product of hyper BCK-algebra, Smarandache hyper (\cap, \in) -ideal of hyper K-algebra.

^{*} Corresponding author: Tel.: +82 55 740 1232; fax: +82 55 740 1230

for all $x, y, z \in H$, where x < y is defined by $0 \in x \circ y$ and for every $A, B \subseteq H$, A < B is defined by $\exists a \in A$ and $\exists b \in B$ such that a < b. If a hyper *I*-algebra $(H, \circ, 0)$ satisfies an additional condition:

(H5) 0 < x for all $x \in H$,

then (H, 0, 0) is called a hyper K-algebra (see [1]).

Every hyper BCK-algebra is a hyper K-algebra. We know that there exists a proper hyper K-algebra, that is, there exists a hyper K-algebra which is not a hyper BCK-algebra (See [1, Theorem 3.5]).

In a hyper I-algebra H, the following hold (see [1, Proposition 3.4]):

- (a1) $(A \circ B) \circ C = (A \circ C) \circ B$,
- (a2) $A \circ B < C \Leftrightarrow A \circ C < B$,
- (a3) $A \subseteq B$ implies A < B

for all non-empty subsets A, B and C of H.

In a hyper K-algebra H, the following holds (see [1, Proposition 3.6]):

(a4) $x \in x \circ 0$ for all $x \in H$.

Definition 2.1. ([1]) Let $(H, \circ, 0)$ be a hyper K-algebra and let S be a subset of H containing 0. If S is a hyper K-algebra with respect to the hyperoperation " \circ " on H, we say that S is a hyper K-subalgebra of H.

Note that if S be a non-empty subset of a hyper K-algebra $(H, \circ, 0)$, then S is a hyper K-subalgebra of H if and only if $x \circ y \subseteq S$ for all $x, y \in S$ (See [3, Theorem 4.12]).

Definition 2.2. ([3, Theorem 3.4]) A Smarandache hyper K-algebra is defined to be a hyper K-algebra $(H, \circ, 0)$ in which there exists a proper subset Ω of H such that $(\Omega, \circ, 0)$ is a non-trivial hyper BCK-algebra.

Example 2.3. ([3, Example 3.5]) Let $H = \{0, a, b, c\}$ and define an hyper operation "o" on H by the following Cayley table:

o	0	\boldsymbol{a}	_ b	\boldsymbol{c}
0	{0}	{0}	$-\frac{\{0\}}{}$	{0}
\boldsymbol{a}	$\{a\}$	{0}	$\{0\}$	$\{0\}$
\boldsymbol{b}	{b}	$\{a\}$	$\{0,a\}$	$\{0,a\}$
\boldsymbol{c}	$\{c\}$	$\{a,b,c\}$	$\{a,b,c\}$	$\{0,b,c\}$

Table a3

Then $(H, \circ, 0)$ is a Smarandache hyper K-algebra because $(\Omega = \{0, a, b\}, \circ, 0)$ is a hyper BCK-algebra.

Example 2.4. ([3, Example 3.6]) Let $H = \{0, a, b\}$ and define an hyper operation "o" on H by the following Cayley table:

$$\begin{array}{c|cccc} \circ & 0 & a & b \\ \hline 0 & \{0\} & \{0\} & \{0\} \\ a & \{a,b\} & \{0,a,b\} & \{0,a\} \\ b & \{b\} & \{a,b\} & \{0,a,b\} \\ \end{array}$$

Table a4

Then $(H, \circ, 0)$ is not a Smarandache hyper K-algebra since $(\Omega_1 = \{0, a\}, \circ, 0)$ and $(\Omega_2 = \{0, b\}, \circ, 0)$ are not hyper BCK-algebras.

Definition 2.5. ([3, Definition 3.7]) Let H be a Smarandache hyper hyper K-algebra and Ω be a non-trivial hyper BCK-algebra which is properly contained in H. Then a non-empty subset I of H is called a Smarandache hyper (\ll, \in) -ideal of H related to Ω (or briefly, Ω -Smarandache hyper (\ll, \in) -ideal of H) if it satisfies:

- (c1) $0 \in I$,
- (c2) $(\forall x \in \Omega) \ (\forall y \in I) \ (x \circ y \ll I \Rightarrow x \in I).$

If I is a Smarandache hyper (\ll, \in) -ideal of H related to every hyper BCK-algebra contained in H, we simply say that I is a Smarandache hyper (\ll, \in) -ideal of H.

Definition 2.6. ([3, Definition 3.14]) Let H be a Smarandache hyper hyper K-algebra and Ω be a non-trivial hyper BCK-algebra which is properly contained in H. Then a non-empty subset I of H is called a Smarandache hyper (\subseteq, \in) -ideal of H related to Ω (or briefly, Ω -Smarandache hyper (\subseteq, \in) -ideal of H) if it satisfies:

- (c1) $0 \in I$,
- (cw) $(\forall x \in \Omega) \ (\forall y \in I) \ (x \circ y \subseteq I \Rightarrow x \in I)$.

If I is a Smarandache hyper (\subseteq, \in) -ideal of H related to every hyper BCK-algebra contained in H, we simply say that I is a Smarandache hyper (\subseteq, \in) -ideal of H.

3. Main results

Proposition 3.1. Let $(H, \circ, 0)$ be a hyper K-algebra with $|H| \geq 3$. Then the following statements hold:

- (i) If there exists a hyper K-subalgebra S of H such that 1 < |S| < |H| and $|x \circ y| = 1$ for all $x, y \in S$, then H is a Smarandache hyper K-algebra.
- (ii) If there exists $x \in H$ such that $x \circ x \subseteq \{0, x\}$, then H is a Smarandache hyper K-algebra.

Proof. (i) Let S be a hyper K-subalgebra of H such that $2 \le |S| < |H|$ and $|x \circ y| = 1$ for all $x, y \in S$. Then it can be easily verified that $(S, \circ, 0)$ is a hyper BCK-algebra. Therefore H is a Smarandache hyper K-algebra.

(ii) Let $x \in H$ be such that $x \circ x \subseteq \{0, x\}$. Note that $(\{0, x\}, \circ, 0)$ is a hyper BCK-algebra, and so H is a Smarandache hyper K-algebra.

Example 3.2. The condition $|x \circ y| = 1$ for all $x, y \in S$ in the Proposition 3.1(i) is necessary. To show this, we consider $H = \{0, a, b\}$ in Example 2.4. Then $(S = \{0, a\}, \circ, 0)$ is a hyper K-algebra, but $(H, \circ, 0)$ is not a Smarandache hyper K-algebra.

Definition 3.3. Let $(H, \circ_H, 0)$ be a hyper K-algebra. By an extension of H we mean a hyper K-algebra $(L, \circ_L, 0)$ such that

- (i) $H \subset L$,
- (ii) $(\forall x, y \in H)(x \circ_H y = x \circ_L y)$.

Example 3.4. ([1, Theorem 3.7]) Let $(H_1, \circ_1, 0)$ and $(H_2, \circ_2, 0)$ be hyper K-algebras (resp. hyper BCK-algebras) such that $H_1 \cap H_2 = \{0\}$ and $H = H_1 \cup H_2$. Then $(H, \circ, 0)$ is a hyper K-algebra (resp. hyper BCK-algebra), where the hyperoperation " \circ " on H is defined as follows:

$$x \circ y := \left\{ egin{array}{ll} x \circ_1 y & ext{if} & x,y \in H_1, \ x \circ_2 y & ext{if} & x,y \in H_2, \ \{x\} & oterwise \end{array}
ight.$$

for all $x, y \in H$.

We use the notation $H_1 \oplus H_2$ for the union of two hyper K-algebras (resp. hyper BCK-algebra) H_1 and H_2 .

Theorem 3.5. If H is a Smarandache hyper K-algebra, then every extension of H is also a Smarandache hyper K-algebra.

The following example show that there exists a non-Smarandache hyper K-algebra H such that an extension L of H is a Smarandache hyper K-algebra.

Example 3.6. Let $(H = \{0, x\}, o_1, 0)$ be a hyper BCK-algebra and let $(K = \{0, y\}, o_2, 0)$ be a hyper K-algebra with the following Cayley tables:

$$egin{array}{c|cccc} \circ_1 & 0 & x & & & \circ_2 & 0 & y \\ \hline 0 & \{0\} & \{0\} & & & \hline 0 & \{0\} & \{0\} \\ x & \{x\} & \{0,x\} & & & y & \{0,y\} & \{0\} \\ \hline \end{array}$$

Then $(L = H \oplus K, \circ, 0)$ is a Smarandache hyper K-algebra and it is an extension of H. But H is not a Smarandache hyper K-algebra since does not exist a proper subset Ω of H such that $(\Omega, \circ, 0)$ is a non-trivial hyper BCK-algebra.

Lemma 3.7. ([1, Theorem 3.9]) Let $(H_1, \circ_1, 0)$ and $(H_2, \circ_2, 0)$ be hyper K-algebras (resp. hyper BCK-algebras) and $H = H_1 \times H_2$. We define a hyperoperation " \circ " on H is defined as follows,

$$(a_1,b_1)\circ(a_2,b_2)=(a_1\circ a_2,b_1\circ b_2)$$

for all $(a_1,b_1),(a_2,b_2)\in H$, where for $A\subseteq H_1$ and $B\subseteq H_2$ by (A,B) we mean

$$(A,B) = \{(a,b) : a \in A, b \in B\}, \ 0 = (0_1,0_2)$$

and

$$(a_1, b_1) < (a_2, b_2) \Leftrightarrow a_1 < a_2, b_1 < b_2.$$

Then $(H, \circ, 0)$ is a hyper K-algebra (resp. hyper BCK-algebra), and it is called the hyper K-product (resp. hyper BCK-product) of H_1 and H_2 .

Theorem 3.8. Let $(H_1, \circ_1, 0)$ and $(H_2, \circ_2, 0)$ be hyper K-algebras. If $(H_1, \circ_1, 0)$ is a Smarandache hyper K-algebra or $(H_2, \circ_2, 0)$ is a Smarandache hyper K-algebra, then the hyper K-product $H = H_1 \times H_2$ of H_1 and H_2 is also a Smarandache hyper K-algebra.

Proof. We may assume that $(H_1, \circ_1, 0)$ is a Smarandache hyper K-algebra without loss of generality. Then there exists a non-trivial hyper BCK-algebra Ω in H_1 . Let $\Gamma = \Omega \times \{0_2\}$. Then Γ is a proper subset of $H = H_1 \times H_2$ and obviously $(\Gamma, \circ, 0)$ is a non-trivial hyper BCK-algebra. Hence $H = H_1 \times H_2$ is a Smarandache hyper K-algebra.

The following example shows that the converse of Theorem 3.8 is not true in general.

Example 3.9. Let $H_1 = \{0_1, x\}$ and $H_2 = \{0_2, y\}$ and define the hyperoperations "o₁" and "o₂" on H_1 and H_2 respectively as follow:

Then H_1 is a hyper BCK-algebra and H_2 is a hyper K-algebra. We know that $(H_1 \times H_2, \circ, 0 = (0_1, 0_2))$ is a hyper K-algebra with the following Cayley table:

$$\begin{array}{c|ccccc} \circ & (0_1,0_2) & (0_1,y) & (x,0_2) & (x,y) \\ \hline (0_1,0_2) & (0_1,0_2) & (0_1,0_2) & (0_1,0_2) & (0_1,0_2) \\ (0_1,y) & (0_1,\{0_2,y\}) & (0_1,0_2) & (0_1,\{0_2,y\}) & (0_1,0_2) \\ (x,0_2) & (x,0_2) & (x,0_2) & (\{0_1,x\},0_2) & (\{0_1,x\},0_2) \\ (x,y) & (x,\{0_2,y\}) & (x,0_2) & (\{0_1,x\},\{0_2,y\}) & (\{0_1,x\},0_2) \end{array}$$

Now a proper subset $H_1 \times \{0\}$ of $H_1 \times H_2$ is a non-trivial hyper BCK-algebra. Thus $H_1 \times H_2$ is a Smarandache hyper K-algebra. But we know that neither H_1 nor H_2 is a Smarandache hyper K-algebra.

Proposition 3.10. Let $(H_1, \circ_1, 0)$ and $(H_2, \circ_2, 0)$ be hyper K-algebras. If $(H_1 \times H_2, \circ, 0)$, the hyper K-product of H_1 and H_2 , is a Smarandache hyper K-algebra, then at least one of H_1 and H_2 is a Smarandache hyper K-algebra.

Proof. Let $(H_1 \times H_2, \circ, 0)$ be a Smarandache hyper K-algebra. Then there exists a proper subset Ω of $H_1 \times H_2$ such that $(\Omega, \circ, 0)$ is a non-trivial hyper BCK-algebra. Let $\Omega_1 = \{x \in H_1 : (x, b) \in \Omega, \text{ for some } b \in H_2\}$ and $\Omega_2 = \{y \in H_2 : (a, y) \in \Omega, \text{ for some } a \in H_1\}$. It is easily verified that $\Omega = \Omega_1 \cup \Omega_2$. Let $x, y, z \in \Omega_1$. Then there exist $a, b, c \in H_2$ such that $(x, a), (y, b), (z, c) \in \Omega$. Now we show that $(\Omega_1, \circ_1, 0)$ is a hyper BCK-algebra.

(HK1) Since $(\Omega, \circ, 0)$ satisfies the condition (HK1), we have

$$((x,a)\circ(z,c))\circ((y,b)\circ(z,c))\ll(x,a)\circ(y,b),$$

that is,

$$((x \circ_1 z) \circ_1 (y \circ_1 z), (a \circ_2 c) \circ_2 (b \circ_2 c)) \ll (x \circ_1 y, a \circ_2 b).$$

Hence $(x \circ_1 z) \circ_1 (y \circ_1 z) \ll x \circ_1 y$ and so (HK1) holds in $(\Omega_1, \circ_1, 0)$. (HK2) Since $(\Omega, \circ, 0)$ satisfies the condition (HK2), we have

$$((x,a)\circ(y,b))\circ(z,c)=((x,a)\circ(z,c))\circ(y,b),$$

which implies that $((x \circ_1 y) \circ_1 z, (a \circ_2 b) \circ_2 c) = ((x \circ_1 z) \circ_1 y, (a \circ_2 c) \circ_2 b)$. Hence, we get $(x \circ_1 y) \circ_1 z = (x \circ_1 z) \circ_1 y$ and so (HK2) holds in $(\Omega_1, \circ_1, 0)$.

(HK3) Since $(\Omega, \circ, 0)$ satisfies the condition (HK3), we have $(x, a) \circ (y, b) \ll (x, a)$, which implies that $(x \circ_1 y, a \circ_2 b) \ll (x, a)$. Hence, we get $x \circ_1 y \ll x$ and so (HK3) holds in $(\Omega_1, \circ_1, 0)$.

(HK4) Let $(x,a) \ll (y,b)$ and $(y,b) \ll (x,a)$. Since $(\Omega,\circ,0)$ satisfies the condition (HK4), we have (x,a)=(y,b). Hence, we get x=y and so (HK4) holds in $(\Omega_1,\circ_1,0)$.

Thus, $(\Omega_1, \circ_1, 0)$ is a hyper BCK-algebra. In the similar way we can show that $(\Omega_2, \circ_2, 0)$ is a hyper BCK-algebra. It follows from $\Omega \neq (0,0)$ that $\Omega_1 \neq 0$ or $\Omega_2 \neq 0$. Without loss of generality we may assume that $\Omega_1 \neq 0$. Note that $\Omega_1 \subseteq H_1$, but $\Omega_1 \neq H_1$ since H_1 is a proper hyper K-algebra. Hence, Ω_1 is a proper subset of H_1 such that $(\Omega_1, \circ_1, 0)$ is a non-trivial hyper BCK-algebra. Therefore H_1 is a Smarandache hyper K-algebra. \square

Proposition 3.11. Let $(H_1, \circ_1, 0)$ and $(H_2, \circ_2, 0)$ be hyper K-algebras such that $H_1 \cap H_2 = \{0\}$. If at least one of H_1 and H_2 is a Smarandache hyper K-algebra, then $(H_1 \oplus H_2, \circ, 0)$, the union of H_1 and H_2 , is also a Smarandache hyper K-algebra.

Proof. Let $(H_1, \circ_1, 0)$ and $(H_2, \circ_2, 0)$ be hyper K-algebras such that $H_1 \cap H_2 = \{0\}$. Without loss of generality we may assume H_1 is a Smarandache hyper K-algebra. Then there exists a proper subset Ω of H_1 such that $(\Omega, \circ_1, 0)$ is a non-trivial hyper BCK-algebra. Since $H_1 \subseteq H_1 \oplus H_2$, Ω is a proper subset of $H_1 \oplus H_2$. By the definition of hyperoperation "o" on $H_1 \oplus H_2$ and $\Omega \subseteq H_1$, we have $(\Omega, \circ_1, 0) = (\Omega, \circ, 0)$. Hence, Ω is a proper subset of $H_1 \oplus H_2$ such that $(\Omega, \circ, 0)$ is non-trivial hyper BCK-algebra and so $H_1 \oplus H_2$ is a Smarandache hyper K-algebra.

The following example shows that the converse of Proposition 3.11 may not be true.

Example 3.12. Consider the hyper K-algebras $H_1 = \{0, x\}$ and $H_2 = \{0, y\}$ as in Example 3.9, where $0 = 0_1 = 0_2$. It is easily verified that $(H_1 \oplus H_2, 0, 0)$ is a hyper K-algebra under

the following Cayley table.

0	0	\boldsymbol{x}	\boldsymbol{y}
0	{0}	{0}	{0 }
\boldsymbol{x}	{ <i>x</i> }	$\{0,x\}$	$\{x\}$
\boldsymbol{y}	$\mid \{0,y\}$	$\{y\}$	$\{0\}$

Using the above table it is easily verified that $(\{0, x\}, \circ, 0)$ is a hyper BCK-algebra. Therefore, $H_1 \oplus H_2$ is a Smarandache hyper K-algebra. But H_1 and H_2 are not Smarandache hyper K-algebra, since $|H_1| = 2 = |H_2|$.

Proposition 3.13. Let $(H_1, \circ_1, 0)$ and $(H_2, \circ_2, 0)$ be hyper K-algebras such that $H_1 \cap H_2 = \{0\}$. If $(H_1 \oplus H_2, \circ, 0)$ is a Smarandache hyper K-algebra, then at least one of H_1 and H_2 is a Smarandache hyper K-algebra.

Proof. Let $(H_1 \oplus H_2, \circ, 0)$ be a Smarandache hyper K-algebra. Then there exists a proper subset Ω of $H_1 \oplus H_2$ such that $(\Omega, \circ, 0)$ is a non-trivial hyper BCK-algebra. Assume that $\Omega_1 = \Omega \cap H_1$ and $\Omega_2 = \Omega \cap H_2$. Then $\Omega = \Omega_1 \cup \Omega_2$, and so $\Omega_1 \neq \{0\}$ or $\Omega_2 \neq \{0\}$. Without loss of generality we may assume that $\Omega_1 \neq \{0\}$. Since $x \circ y = x \circ_1 y$ for all $x, y \in \Omega_1$, we have $(\Omega_1, \circ_1, 0) = (\Omega_1, \circ, 0)$. Let $x, y \in H_1$ and $x, y \in \Omega$. Then $x \circ y = x \circ_1 y \in H_1$ and $x \circ y \in \Omega$. Therefore $x \circ y \in \Omega_1$. This shows that Ω_1 is a hyper subalgebra of Ω . Hence, $(\Omega_1, \circ, 0) = (\Omega_1, \circ_1, 0)$ is a non-trivial hyper BCK-algebra. Obviously Ω_1 is a proper subset of H_1 . Therefore H_1 is a Smarandache hyper K-algebra.

Definition 3.14. Let H be a Smarandache hyper hyper K-algebra, Ω be a non-trivial hyper BCK-algebra which is properly contained in H. Then a non-empty subset I of H is called a Smarandache hyper (\cap, \in) -ideal of H related to Ω (or briefly, Ω -Smarandache hyper (\cap, \in) -ideal) of H if it satisfies:

- (c1) $0 \in I$,
- (cs) $(\forall x \in \Omega)(\forall y \in I)((x \circ y) \cap I \neq \emptyset \Rightarrow x \in I)$.

If I is a Smarandache hyper (\cap, \in) -ideal of H related to every hyper BCK-algebra contained in H, we simply say that I is a Smarandache hyper (\cap, \in) -ideal of H.

Example 3.15. Let $H = \{0, a, b, c\}$ and define the hyperoperation "o" on H by the following Cayley table:

0	0	\boldsymbol{a}	b	\boldsymbol{c}
0	{0}	{0}	{0}	{0}
\boldsymbol{a}	{a}	{0}	$\{a\}$	$\{a\}$
b	{b}	$\{b\}$	$\{0,b\}$	$\{0,b\}$
\boldsymbol{c}	{c}	$\{c\}$	$\{b,c\}$	$\{0,b,c\}$

Then $(H, \circ, 0)$ is a Smarandache hyper K-algebra because $(\Omega = \{0, a, b\}, \circ, 0)$ is a hyper BCK-algebra. Moreover, a subset $\{0, a\}$ is an Ω -Smarandache hyper (\cap, \in) -ideal of H.

Theorem 3.16. Let H be a Smarandache hyper hyper K-algebra, Ω be a non-trivial hyper BCK-algebra which is properly contained in H. Then every Ω -Smarandache hyper (\cap, \in) -ideal of H is an Ω -Smarandache hyper (\ll, \in) -ideal of H.

Proof. Let I be an Ω -Smarandache hyper (\cap, \in) -ideal of H and let $x \in \Omega$ and $y \in I$ be such that $x \circ y \ll I$. Then for any $a \in x \circ y$ there exists $i \in I$ such that $a \ll i$, which implies that $0 \in a \circ i$. Hence $(a \circ i) \cap I \neq \emptyset$ and so by (cs), we have $a \in I$. This implies that $(x \circ y) \cap I \neq \emptyset$ and so by (cs) we have $x \in I$.

The following example shows that the converse of Theorem 3.16 may not be true.

Example 3.17. Let $H = \{0, a, b, c\}$ and define the hyperoperation "o" on H by the following Cayley table:

0	0	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}
		{0}	{0}	{0}
\boldsymbol{a}	{a}	$\{0,a\}$	$\{0,a\}$	$\{a\}$
\boldsymbol{b}	{b}	$\{a,b\}$	$\{0, oldsymbol{a}, b\}$	$\{0,b\}$
	$\{c\}$	$\{c\}$	$\{b,c\}$	$\{0,a,b,c\}$

Then $(H, \circ, 0)$ is a Smarandache hyper K-algebra because $(\Omega = \{0, a, b\}, \circ, 0)$ is a hyper BCK-algebra. Moreover, a subset $I = \{0, a\}$ is an Ω -Smarandache hyper (\ll, \in) -ideal of H. But it is not an Ω -Smarandache hyper (\cap, \in) -ideal of H, since $(b \circ a) \cap I \neq \emptyset$ and $a \in I$, but $b \notin I$.

Corollary 3.18. Let H be a Smarandache hyper hyper K-algebra, Ω be a non-trivial hyper BCK-algebra which is properly contained in H. Then every Ω -Smarandache hyper (\cap, \in) -ideal of H is an Ω -Smarandache hyper (\subseteq, \in) -ideal of H.

Proof. The result is obvious by Theorem 3.16 and Theorem 3.16 in [3].

Theorem 3.19. Let H be a Smarandache hyper hyper K-algebra, Ω be a non-trivial hyper BCK-algebra which is properly contained in H and let I be an Ω -Smarandache hyper (\ll, \in) -ideal of H such that

$$(\forall x \in \Omega)(x \circ x \subseteq I \subseteq \Omega).$$

Then the following implication is valid:

$$(\forall x, y \in \Omega)((x \circ y) \cap I \neq \emptyset \Rightarrow x \circ y \subseteq I).$$

Proof. Let $x,y \in \Omega$ be such that $(x \circ y) \cap I \neq \emptyset$. Then there exists $t \in \Omega$ such that $t \in (x \circ y) \cap I$. It follows from (HK1) that $(x \circ y) \circ (x \circ y) \ll x \circ x$ so from hypothesis that $(x \circ y) \circ (x \circ y) \ll I$. This implies that $s \circ t \ll I$ for all $s \in x \circ y$, and hence $s \in I$ since I is an Ω -Smarandache hyper (\ll, \in) -ideal of H and $t \in I$. Therefore $x \circ y \subseteq I$.

Theorem 3.20. Let H be a Smarandache hyper hyper K-algebra, Ω be a non-trivial hyper BCK-algebra which is properly contained in H and let I be an Ω -Smarandache hyper (\ll, \in) -ideal of H such that

$$(\forall x \in \Omega)(x \circ x \subseteq I \subseteq \Omega).$$

Then I be an Ω -Smarandache hyper (\cap, \in) -ideal of H.

Proof. Let $x, y \in \Omega$ be such that $(x \circ y) \cap I \neq \emptyset$ and $y \in I$. Then $x \circ y \subseteq I$ by Theorem 3.19, and so $x \circ y \ll I$. Since I is an Ω -Smarandache hyper (\ll, \in) -ideal of H, it follows that $x \in I$. Therefore I is an Ω -Smarandache hyper (\cap, \in) -ideal of H.

Acknowledgements

The authors are deeply grateful to the referees for the valuable suggestions and comments.

REFERENCES

- R. A. Borzooei, A. Hasankhani, M. M. Zahedi and Y. B. Jun, On hyper K-algebras, Math. Japonica 52 (2000), no. 1, 113-121.
- [2] R. A. Borzooei, M. M. Zahedi and H. Rezaei, Classifications of hyper BCK-algebras of order 3, Italian J. of Pure and Appl. Math. 12 (2002), 175-184.
- [3] Y. B. Jun and E. H. Roh, Smarandache hyper algebras, Scientiae Mathematicae Japonicae Online e-2005, 305-310.
- [4] Y. B. Jun, M. M. Zahedi, X. L. Xin and R. A. Borzooei, On hyperBCK-algebras, Italian J. Pure Appl. Math. 8 (2000), 127-136.

- [5] Y. B. Jun and E. H. Roh, On strong hyper K-ideals of hyper K-algebras, Italian J. of Pure and Appl. Math. 10 (2001), 79-84.
- [6] Y. B. Jun, X. L. Xin, E. H. Roh and M. M. Zahedi, Strong hyper BCK-ideals of hyper BCK-algebras, Math. Japonica 51(3) (2000), 493-498.
- [7] F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandinaves, Stockholm (1934), 45-49.
- [8] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoonsa, Seoul, Korea 1994.
- [9] R. Padilla, Smarandache algebraic structures, Bull. Pure Appl. Sci., Delhi, 17E (1998), no. 1, 119–121;
 http://www.gallup.unm.edu/smarandache/alg-s-tx.txt.
- [10] W. B. Vasantha Kandasamy, Smarandache groupoids, http://www.gallup.unm.edu / smarandache/Groupoids.pdf.
- [11] M. M. Zahedi, R. A. Borzooei, Y. B. Jun and A. Hasankhani, Some results on hyper K-algebras, Scientiae Mathematicae 3 (2000), no. 1, 53-59.

YOUNG BAE JUN, DEPARTMENT OF MATHEMATICS EDUCATION, GYEONGSANG NATIONAL UNIVERSITY, JINJU 660-701, KOREA

E-mail address: ybjun@gsnu.ac.kr

EUN HWAN ROH, DEPARTMENT OF MATHEMATICS EDUCATION, CHINJU NATIONAL UNIVERSITY OF EDUCATION, JINJU 660-756, KOREA

E-mail address: ehroh@cue.ac.kr

Habib Harizavi, Department of Mathematics, Sistan and Baluchestan University, Zhedan, Iran E-mail address: harizavi@hamoon.usb.ac.ir