(1) Never Ganna Give you up (Anonymans) 2) Sweet Hone Alabama (Vaibhav Agawal) Playlist: (bit.ly/Ibajukebox) (2) First op amp module: Bufter (aka voltage bulter) 3 Sofia-Clairo (Anonymas) 4) Vocabulay: "gain" - multiplier/scaling factor (1) Implications of opcount model on availyses (don't lock at node voltage on artput) (3) Compavator pehaviar and practice (5) Golden Rules - application OH: WIDAM-12PM PT (HWP) email: moses won (a) Leavning Objectives EECS 16A DIS10B

EECS 16A Designing Information Devices and Systems I Fall 2020 Discussion 10B

1. Op-Amp Rules and Negative Feedback Rules

Here is an equivalent circuit of an op-amp (where we are assuming that $V_{SS} = -V_{DD}$) for reference:

(a) What are the currents flowing into the positive and negative terminals of the op-amp (i.e., what are I^+ and I^-)? Based on this answer, what are some of the advantages of using an op-amp in your circuit designs?

(b) Suppose we add a resistor of value R_L between u_{out} and ground. What is the value of v_{out} ? Does your answer depend on R_L ? In other words, how does R_L affect Av_C ? What are the implications of this with respect to using op-amps in circuit design?

NFB-Negative Feedbelck , buffer

For the rest of the problem, consider the following op-amp circuit in negative feedback:

(c) Assuming that this is an ideal op-amp, what is v_{out} ?

(d) Draw the equivalent circuit for this op-amp and calculate v_{out} in terms of A, v_{in} , and R_L for the circuit in negative feedback. Does v_{out} depend on R_L ? What is v_{out} in the limit as $A \to \infty$?

$$u^- = A(u^+ - u^-)$$

$$u^{-1}A^{-1} = Au^{+}$$

$$\infty$$
 ($u^{t} - u^{t}$)

Spedoesn't $u = \frac{A}{1+A} vin$ Not change $A = 9 \times \frac{A}{1+A} = 1$ Vant

2. Comparators

For each of the circuits shown below, plot V_{out} for V_{in} ranging from -10 V to 10 V for part (a) and from 0 V

(b)

 $u^{+}-u^{-}=\frac{2}{3}v_{in}-2v$

3√in-2√20 Vant=51

 $\frac{2}{3}V_{in} > 2V$ $V_{in} > 3V \quad V_{ant} = 5V$

SV V_{IN}

= Vont=-5V

3 Vin < 2V Vin < 3V Vart=-SV op amp

w/o

FB