Introduction to Number Theory

Dr. E.SURESH BABU

Assistant Professor

Computer Science and Engineering Department

National Institute of Technology, Warangal

Warangal

Basic Concepts

Basic Concepts

❖ Before going into modular arithmetic, let's review some basic concepts

Set of Integers

❖ The **set of integers**, denoted by **Z**, contains all integral numbers

(with no fraction) from negative infinity to positive infinity

$$\mathbf{Z} = \{ \ldots, -2, -1, 0, 1, 2, \ldots \}$$

Binary Operations on Integers

- ❖ In cryptography, we are interested in **three binary operations** applied to the set of integers.
- * A binary operation takes **two inputs** and creates **one output**.

Integer Division

Integer Division

❖ In integer arithmetic, if we **divide a by n**, we can get **q** and **r**. The relationship between these **four integers** can be shown as

$$a = q \times n + r$$

Division Algorithm for Integer

Observation

❖ When a is negative then r and q will be negative. How can we apply the restriction that r needs to be positive?

we decrement the value of q by 1 and we add the value of n to r to make it positive.

-255

Modular Arithmetic

Modular Arithmetic

- Many complex cryptographic algorithms are actually based on fairly simple modular arithmetic.
- ❖ In modular arithmetic all **operations are performed** regarding a positive integer, i.e. **the modulus**.

Modular Arithmetic

❖ Given any integer a and a positive integer n, and given a division of a by n that leaves the remainder between 0 and n − 1,both inclusive, we define

a mod n

Operations on Modular Arithmetic

❖ In modular arithmetic, the numbers we are dealing with are just

integers and the operations used are

- ✓ Addition,
- ✓ Subtraction,
- ✓ Multiplication and
- ✓ Division.

Division Modular Arithmetic

Modulo Operator

❖ The modulo operator is shown as mod. The second input(n) is called the modulus. The output r is called the residue.

- ❖ Find the result of the following operations:
 - 1. 27 mod 5
 - 2. 36 mod 12
 - 3. -18 mod 14
 - 4. -7 mod 10

❖ Find the **result of the following operations:**

```
27 mod 5;
q = 5; r = 2;
27 mod 5 = 2
```

❖ Find the **result of the following operations:**

```
36 mod 12;
q = 3; r = 0;
36 mod 12 = 0
```

- ❖ Find the result of the following operations
 - $-18 \mod 14$;
 - -18 Mod 14 = -4 Which is a Negative
- ❖ To Make it **Positive**, We will **add the Modulus 14**

$$-4 + 14 = 10$$

Finally $-18 \mod 14 = 10$

❖ Find the result of the following operations

```
-7 mod 10;
```

- -7 Mod 10 = -7 Which is a Negative
- ❖ To Make it Positive, We will add the Modulus 10

$$-7 + 10 = 3$$

Finally
$$-7 \mod 10 = 3$$

Set of Residues in MA

Set of Residues

• For arithmetic modulo n, let Z_n denote the set

$$\mathbf{Z}_n = \{ 0, 1, 2, 3, \dots, (n-1) \}$$

Z_n is the **set of remainders** in arithmetic modulo n. It is officially called the **set of residues**.

$$\mathbf{Z}_2 = \{ 0, 1 \}$$

$$\mathbf{Z}_6 = \{ 0, 1, 2, 3, 4, 5 \}$$

$$|\mathbf{Z}_2 = \{0, 1\}|$$
 $|\mathbf{Z}_6 = \{0, 1, 2, 3, 4, 5\}|$ $|\mathbf{Z}_{11} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}|$

Congruence

Congruence

❖ In Cryptography, We often use the concept of **Congruence** (Instead of **Equality**).

***** For Example:

2 Mod 10 = 2; 12 Mod 10 = 2; 22 Mod 10 = 2; and so on

We Call {2, 12, 22} are called as Congruent Mod 10

Congruence Operator

❖ To show that two integers are **congruent**, we use the **congruence** operator (\equiv).

❖ We will call two integers **a and b** to be **congruent modulo n** if

```
(a \mod n) = (b \mod n)
```

Symbolically, we will express such a congruence by

```
a \equiv b \pmod{n}
```

One way of seeing the congruences (for mod 3 arithmetic):

```
... 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 ...
...- 9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 ...
```

✓ Where the **top line is the output** of modulo 3 arithmetic and

the bottom line the set of all integers.

Concept of Congruence

$$-8 \equiv 2 \equiv 12 \equiv 22 \pmod{10}$$

Congruence Relationship

Residue Classes

 \clubsuit A residue class [a] or [a]_n is the set of integers congruent modulo n.

$$[0] = \{..., -15, -10, -5, 0, 5, 10, 15, ...\}$$

$$[1] = \{..., -14, -9, -4, 1, 6, 11, 16, ...\}$$

$$[2] = \{..., -13, -8, -3, 2, 7, 12, 17, ...\}$$

$$[3] = \{..., -12, -7, -5, 3, 8, 13, 18, ...\}$$

$$[4] = \{..., -11, -6, -1, 4, 9, 14, 19, ...\}$$

1.
$$7 \equiv 1 \pmod{3}$$

$$2. -8 \equiv 1 \pmod{3}$$

$$3. -2 \equiv 1 \pmod{3}$$

4.
$$7 \equiv -8 \pmod{3}$$

5.
$$-2 \equiv 7 \pmod{3}$$

```
1. 7 \equiv 1 \pmod{3}

7 Mod 3 = 1;

1 Mod 3 = 1; we call as

7 \equiv 1 \pmod{3}
```

$$-2 \equiv 1 \pmod{3}$$
a) $-2 \pmod{3} = -2$;
$$-2 + 3 = 1$$
; $-2 \pmod{3} = 1$;
b) $1 \pmod{3} = 1$; we write as
$$-2 \equiv 1 \pmod{3}$$

$$-8 \equiv 1 \pmod{3}$$
a) $-8 \pmod{3} = -2$

$$-2 + 3 = 1 ; -8 \pmod{3} = 1 ;$$
b) $1 \pmod{3} = 1 ;$ we write as $-8 \equiv 1 \pmod{3}$

$$7 \equiv -8 \pmod{3}$$
a) $7 \pmod{3} = 1$;
b) $-8 \pmod{3} = -2$
 $-2 + 3 = 1$; $8 \pmod{3} = 1$; we write as $7 \equiv -8 \pmod{3}$

$$-2 \equiv 7 \pmod{3}$$

a)
$$-2 \mod 3 = -2$$

$$-2 + 3 = 1 ; -2 \mod 3 = 1$$

b)
$$7 \text{ Mod } 3 = 1$$

$$-2 \equiv 7 \pmod{3}$$

Modulo Operator: Some More Examples

❖ Find the **Remainder of the following operations:**

$$2 \equiv 12 \pmod{10}$$
 $13 \equiv 23 \pmod{10}$ $3 \equiv 8 \pmod{5}$ $8 \equiv 13 \pmod{5}$

Modulo Operator: Some More Examples

```
1. 38 \equiv 23 \mod 15 because 38 = 15*2 + 8 and 23 = 15 + 8;
```

2.
$$-1 \equiv 1 \mod 2$$
 because $-1 = -1*2+1$ and $1 = 0*2+1$;

3.
$$8 \equiv 3 \mod 5$$
 because $8 = 5+3 \mod 3 = 0*5+3$;

4.
$$-8 \equiv 2 \mod 5$$
 because $-8 = -2*5+2$ and $2 = 0*5+2$;

5.
$$8 \not\equiv -8 \mod 5$$
 because $8 = 5+3 \mod -8 = -2*5+2$.

The remainders 3 and 2 are not the same.

Modular Arithmetic Operations

Modular Arithmetic Operations

- ❖ The three binary operations (+,*,-) that can be performed on the set Z.
- \diamond These operation can also be defined for the **set Z**_n.
- ❖ To Achieve this
 - \checkmark The result will be mapped to Z_n using the **mod operator**.

Modular Arithmetic Operations (Z_n)

Modular Arithmetic Operations

```
[(a \mod n) + (b \mod n)] \mod n = (a + b) \mod n
[(a \mod n) - (b \mod n)] \mod n = (a - b) \mod n
[(a \mod n) \times (b \mod n)] \mod n = (a \times b) \mod n
```

Modular Arithmetic Operations $(\frac{Z_n}{Z_n})$

a. Original process

b. Applying properties

Modular Arithmetic Operations(Z_n): Some More Examples

$$3. (1,723,345 \times 2,124,945) \mod 16$$

Modular Arithmetic Operations (Z_N) And Its Properties

 \diamond Let's now consider the set $\mathbf{Z_n}$ along with the following **two binary**

operators defined for the set:

- 1. Modulo n addition; and
- 2. Modulo n multiplication.

 \diamond The **elements of Z_n** obey the following properties:

1. Commutativity:

 \checkmark (w + x) mod n = (x + w) mod n

 \diamond The **elements of Z_n** obey the following properties:

2. Associativity:

$$\sqrt{[(w + x) + y] \mod n} = [w + (x + y)] \mod n$$

- \Leftrightarrow The **elements of Z_n** obey the following properties:
 - 3. Distributivity of Multiplication over Addition:
 - \checkmark [w × (x + y)] mod n = [(w × x) + (w × y)] mod n
 - 4. Existence of Identity Elements:
 - $\checkmark (0 + w) \mod n = (w + 0) \mod n$

- \diamond The **elements of Z**_n obey the following properties:
 - 5. Existence of Additive Inverses:

For each $w \in \mathbb{Z}_n$, there exists a $z \in \mathbb{Z}_n$ such that

 $w + z = 0 \mod n$

Inverses of Z_n

Modulo Addition and Modulo Multiplication Over \mathbf{Z}_{n}

- ❖ When we are working in modular arithmetic, we often need to find the **inverse of a number relative** to an operation.
- ❖ We are normally looking for an
 - 1. Additive Inverse
 - 2. Multiplicative Inverse

Modulo Addition Over Z_n

- \diamond For every element of Z_n , there exists an **additive inverse** in Z_n .
- ❖ In modular arithmetic, each integer has an additive inverse.
 - ✓ The sum of an integer and its additive inverse is congruent to 0 modulo n.

$$a + b \equiv 0 \pmod{n}$$

Modulo Addition Over Z_n: Example

 \clubsuit Find all additive inverse pairs in Z_{10} .

Modulo Multiplicative Over Z_n

- \clubsuit Like, every non-zero element of Z_n . There exist an additive inverse in Z_n .
 - ✓ But there does not exist a multiplicative inverse for every non-zero element of Z_n .
- ❖ In modular arithmetic, an integer may or may not have a multiplicative inverse.

Modulo Multiplicative Over Z_n

- ❖ The product of the integer and its multiplicative inverse is congruent to 1 modulo n.
- \clubsuit In Z_n , two numbers **a and b are the multiplicative inverse** of each other if

$$a \times b \equiv 1 \pmod{n}$$

Modulo Multiplicative Over Z_n: Example

❖ Find the Additive and Multiplicative inverse in Z₈

Modulo Multiplicative Over Z_n: Example

❖ Find the Multiplicative inverse in Z₆ and Z₅

Multiplication modulo 6

*	1	2	3	4	5
1	1	2	3	4	5
2	2	4	0	2	4
3	3	0	3	0	3
2 3 4 5	2 3 4 5	4 0 2	0	2 0 4	2
5	5	4	3	2	1

Multiplication modulo 5

*	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

Modulo Multiplicative Over Z_n: Example

- \Leftrightarrow Find all multiplicative inverses in Z_{10} .
 - \checkmark There are only three pairs: (1, 1), (3, 7) and (9, 9).
 - ✓ The numbers 0, 2, 4, 5, 6, and 8 do not have a multiplicative inverse.

Observation....

The multiplicative inverses exist for only those elements of Z_n that are relatively prime/Coprime to n.

Two Integers are said to be relatively prime/Coprime, iff the only two integers that divides both of them should be only 1

Observation....

Two integers are relatively prime to each other if the integer 1 is the only common positive divisor.

More formally, two integers a and b are relatively prime to each other if gcd(a, b) = 1 where GCD denotes the Greatest Common Divisor.

Finally....

❖ The existence of the multiplicative inverse for an element 'a' of
Z_n is predicated on a being relatively prime to n

Two integers are relatively prime to each other depends on their greatest common divisor (GCD),

Thank U