Automates et Langages Partie 2

Emmanuelle Grislin

INSA 3 FISA Informatique

Partie 2

Mars 2021

Organisation

Module Automates et Langages :

- Partie 1 : Langages réguliers et automates avec S. Piechowiak
- ▶ Partie 2 : Autres types de langages avec focus sur langages algébriques et automates à piles
 - volume horaire : 4h30 CM (FISE et FISA)
 - 4h30 TD en FISE 6h en FISA
 - 12h TP en FISE 18hTP en FISA
- évaluation :
 - une note de DS reprenant les 2 parties du module
 - et une note TP

Objectifs de cette partie du module "Automates et Langages"

Savoirs :

- connaissance du vocabulaire utile à la compréhension de la théorie des langages
- connaissance de la hiérarchie de Chomsky
- connaissance du théorème d'équivalence de Kleene
- connaissance de la représentation par automate à pile

Objectifs de cette partie du module "Automates et Langages"

Savoirs :

- connaissance du vocabulaire utile à la compréhension de la théorie des langages
- connaissance de la hiérarchie de Chomsky
- connaissance du théorème d'équivalence de Kleene
- connaissance de la représentation par automate à pile

Savoir-faire :

- donner des dérivations obtenues à partir d'une grammaire, créer un arbre de dérivation
- établir si un mot m appartient à un langage L de type 3 ou 2
- déterminer le type d'un langage au sens de la hiérarchie de Chomsky
- donner le langage reconnu par une grammaire de type 3 ou 2
- donner une grammaire engendrant un langage de type 3 ou 2
- construire un automate à pile reconnaissant un langage algébrique donné

3/23

Sommaire

- Introduction et rappels
- @ Grammaires et dérivations
- 3 Hiérarchie de Chomsky
- 4 Grammaires algébriques
 - Opérations sur les langages algébriques
 - Automates à pile
- Conclusion

Objectifs du cours 1/4

- Savoirs :
 - connaissance du vocabulaire utile à la compréhension de la théorie des langages
- Savoir-faire :
 - donner des dérivations obtenues à partir d'une grammaire

- Introduction et rappels
- @ Grammaires et dérivations
- 3 Hiérarchie de Chomsky
- Grammaires algébriques
 - Opérations sur les langages algébriques
 - Automates à pile
- Conclusion

Introduction

- ▶ langage source → compilation → langage objet
- niveaux d'analyse du texte source :
 - analyse lexicale : reconnaître les éléments en entrée et les catégoriser
 - analyse syntaxique :
 vérifier que le code est conforme aux règles de constitution du langage
 de programmation, détecter les erreurs de syntaxe
 - analyse sémantique : donner du "sens", une interprétation

Rappels: alphabet, mot

alphabet

ensemble fini non vide dont les éléments sont appelés des lettres ou symboles

mot

suite finie de lettres ou symboles d'un alphabet donné

- Un mot u constitué de n symboles est dit de **longueur** n et noté : |u| = n
- lacktriangle Mot de longueur 0 est le **mot vide**, noté ϵ
- $ightharpoonup \Sigma^*$: ensemble des mots sur l'alphabet Σ
- ho Σ⁺ = Σ* \ $\{\epsilon\}$: ensemble de tous les mots non vides sur Σ
- Σ : ensemble des mots de longueur i : Σ* = $⋃_{i∈𝒩} Σ$

Rappels: langages

Langage

Un langage L sur un alphabet Σ est un sous-ensemble quelconque de Σ^* $(L \subseteq \Sigma^*)$, un ensemble de mots définis sur le mĺme alphabet.

Opérations sur les langages

- Opérations ensemblistes :
 - union : $L_1 \cup L_2 = \{u \in \Sigma^* | u \in L_1 \text{ ou } u \in L_2\}$
 - intersection : $L_1 \cap L_2 = \{u \in \Sigma^* | u \in L_1 \text{ et } u \in L_2\}$
 - complémentaire : $CL = \{u \in \Sigma^* | u \notin L\}$
 - différence : $L_1 \setminus L_2 = \{u \in \Sigma^* | u \in L_1 \text{ et } u \notin L_2\}$
- Produit ou concaténation :

$$L_1L_2 = \{u \in \Sigma^* | u = u_1u_2 \text{ avec } u_1 \in L_1 \text{ et } u_2 \in L_2\}$$

- Puissance : $L^0 = \{\epsilon\}$, $L^1 = L$, $L^{n+1} = LL^n$
- ▶ Etoile de Kleene ("fermeture") : union de toutes les puissances de L $L^* = L^0 \cup L^1 \cup L^2 \dots = \bigcup_{n \geq 0} L^n$

Méthodes de définition d'un langage

- en extension : énumération de tous les mots du langage (pas tjrs possible)
- par une expression régulière (ou expression "rationnelle") : (pas tjrs possible) vu en partie 1 du cours
- par une propriété caractéristique (ex. "tous les mots qui commencent par a")
- en utilisant des **paramètres** (ex. $\{a^n b^n | n \ge 0\}$)
- par une grammaire formelle : cf. suite du cours

- Introduction et rappels
- ② Grammaires et dérivations
- 3 Hiérarchie de Chomsky
- 4 Grammaires algébriques
 - Opérations sur les langages algébriques
 - Automates à pile
- Conclusion

Grammaire formelle

Grammaire

Une **grammaire** est définie par un quadruplet $G = < \Sigma, V, S, R > a$ vec

- $ightharpoonup \Sigma$: ensemble fini de **symboles terminaux**, l'alphabet
- ightharpoonup V : ensemble fini de **variables** (symboles non terminaux, $otin \Sigma$)
- ► S : symbole de V particulier appelé racine (ou "axiome")
- ▶ *R* : ensemble fini de **règles** de production (ou "de réécriture")

Règles et dérivation

Règle :

• Sur un alphabet Σ , une **règle de production** est un couple ordonné de deux mots de Σ^* séparés par le symbole \rightarrow .

Ex. :
$$u \rightarrow v$$

• Avec une règle de production $u \to v$ et un mot contenant u, le mot $\omega_1 u \omega_2$ peut Ître réécrit en $\omega_1 v \omega_2 : \omega_1 u \omega_2 \to \omega_1 v \omega_2$

Règles et dérivation

► Règle :

• Sur un alphabet Σ , une **règle de production** est un couple ordonné de deux mots de Σ^* séparés par le symbole \rightarrow .

Ex. :
$$u \rightarrow v$$

• Avec une règle de production $u \to v$ et un mot contenant u, le mot $\omega_1 u \omega_2$ peut Ître réécrit en $\omega_1 v \omega_2 : \omega_1 u \omega_2 \to \omega_1 v \omega_2$

Dérivation :

- Le mot y **dérive** en 1 pas du mot x, noté $x \to y$, ssi il existe une règle $u \to v$ et 2 mots ω_1, ω_2 tels que $x = \omega_1 u \omega_2$ et $y = \omega_1 v \omega_2$
- Généralisation avec plusieurs réécritures successives :
 - **Dérivation** en *n* pas : $x_1 \rightarrow x_2 \rightarrow ... \rightarrow x_n : x_1 \stackrel{n}{\rightarrow} x_n$
 - Le mot y **dérive** du mot $x: x \stackrel{*}{\rightarrow} y$

Grammaire

Une **grammaire** est définie par un quadruplet $G = <\Sigma, V, S, R>$ avec

- $ightharpoonup \Sigma$: ensemble fini de **symboles terminaux**
- ightharpoonup V : ensemble fini de **variables** (symboles non terminaux, $otin \Sigma$)
- ► S : symbole de V particulier appelé racine (ou "axiome")
- R : ensemble fini de règles de production (ou "de réécriture")

Langage

Langage engendré par la grammaire G= ensemble des mots de Σ^* qui dérivent de la racine de G

$$L(G) = \{x \in \Sigma^* | S \stackrel{*}{\rightarrow} x\}$$

Exemple de grammaire engendrant un langage régulier

- ▶ Soit la grammaire définie par $G = < \Sigma, V, S, R >$ avec
 - l'alphabet $\Sigma = \{a, b\}$
 - les variables $V = \{S, T\}$
 - la racine S
 - $\bullet \ \ \mathsf{les\ r\`{e}gles}\ R = \{S \rightarrow \mathsf{a}\mathsf{S}, S \rightarrow \mathsf{b}\mathsf{T}, T \rightarrow \mathsf{b}\mathsf{T}, T \rightarrow \epsilon\}$

Exemple de grammaire engendrant un langage régulier

- ▶ Soit la grammaire définie par $G = < \Sigma, V, S, R >$ avec
 - l'alphabet $\Sigma = \{a, b\}$
 - les variables $V = \{S, T\}$
 - la racine S
 - les règles $R = \{S \rightarrow aS, S \rightarrow bT, T \rightarrow bT, T \rightarrow \epsilon\}$
- ▶ Le langage engendré par la grammaire G est l'ensemble des mots de Σ^* qui dérivent de la racine $S: L(G) = \{x \in \Sigma^* | S \stackrel{*}{\to} x\}$
 - ullet $S o aS o aaS o aaaS \ldots o a...abT o a...abbT \ldots o a...ab...b$
 - ullet ou : $S
 ightarrow bT
 ightarrow bbT \ldots
 ightarrow b...b$
 - ullet ou S
 ightarrow bT
 ightarrow b

Exemple de grammaire engendrant un langage régulier

- ▶ Soit la grammaire définie par $G = < \Sigma, V, S, R >$ avec
 - l'alphabet $\Sigma = \{a, b\}$
 - les variables $V = \{S, T\}$
 - la racine S
 - les règles $R = \{S \rightarrow aS, S \rightarrow bT, T \rightarrow bT, T \rightarrow \epsilon\}$
- ▶ Le langage engendré par la grammaire G est l'ensemble des mots de Σ^* qui dérivent de la racine $S: L(G) = \{x \in \Sigma^* | S \stackrel{*}{\to} x\}$
 - ullet $S o aS o aaS o aaaS \ldots o a...abT o a...abbT \ldots o a...ab...b$
 - ullet ou : $S
 ightarrow bT
 ightarrow bbT \ldots
 ightarrow b...b$
 - ou $S \rightarrow bT \rightarrow b$
- ▶ Description par une expression régulière : $L(G) = a^*bb^*$

◆ロト ◆昼 ト ◆ 重 ト ◆ 重 ・ 夕 Q ②

- Chaque grammaire engendre un langage et un seul
- ▶ Mais un langage peut Ítre engendré par une infinité de grammaires

Grammaires équivalentes

Deux grammaires G_1 et G_2 sont équivalentes ssi $L(G_1) = L(G_2)$.

On note $G_1 \sim G_2$

- Chaque grammaire engendre un langage et un seul
- Mais un langage peut Ître engendré par une infinité de grammaires

Grammaires équivalentes

Deux grammaires G_1 et G_2 sont équivalentes ssi $L(G_1) = L(G_2)$. On note $G_1 \sim G_2$

Ex.

►
$$G_2 = <\{a, b\}, \{S, T, U, V\}, S, \{S \to aT|U, T \to Ta|U, U \to bU|V, V \to b\} >$$

- Chaque grammaire engendre un langage et un seul
- Mais un langage peut Ître engendré par une infinité de grammaires

Grammaires équivalentes

Deux grammaires G_1 et G_2 sont équivalentes ssi $L(G_1) = L(G_2)$. On note $G_1 \sim G_2$

Ex.

- ► $G_2 = <\{a, b\}, \{S, T, U, V\}, S, \{S \to aT | U, T \to Ta | U, U \to bU | V, V \to b\} >$
- $L(G_2) = a^*b^*b = a^*bb^*$

- Chaque grammaire engendre un langage et un seul
- Mais un langage peut Ître engendré par une infinité de grammaires

Grammaires équivalentes

Deux grammaires G_1 et G_2 sont équivalentes ssi $L(G_1) = L(G_2)$. On note $G_1 \sim G_2$

Ex.

- ► $G_2 = <\{a, b\}, \{S, T, U, V\}, S, \{S \to aT | U, T \to Ta | U, U \to bU | V, V \to b\} >$
- $ightharpoonup L(G_2) = a^*b^*b = a^*bb^*$
- $G_2 \sim G_1 = \langle \{a, b\}, \{S, T\}, S, \{S \rightarrow aS|bT, T \rightarrow bT|\epsilon \} \rangle$

Dérivation

Application d'une règle de grammaire sur un mot nécessite choix :

- be de la variable (symbole non terminal) à réduire
- ▶ de la règle à appliquer

Dérivation gauche (resp. droite)

Dérivation s'appliquant uniquement à la variable la plus à gauche $(resp. \ a)$ droite) du mot :

- dérivation gauche : $uA\gamma \rightarrow_G ua\gamma$
- dérivation droite : $\gamma Au \rightarrow_D \gamma au$
- o $u \in \Sigma^*, A \rightarrow a \in R \text{ at } \gamma \in (\Sigma \cup V)^*$

Arbre de dérivation

L'analyse syntaxique permet de créer un arbre de dérivation :

Arbre de dérivation

Un arbre de dérivation d'une grammaire $G=<\Sigma,V,S,R>$ est un arbre ordonné tel que :

- racine étiquetée par la racine S de G
- feuilles étiquetées sur $\Sigma \cup \{\epsilon\}$ (symboles terminaux)
- nœuds internes étiquetés sur V (symboles non terminaux)
- $(\alpha_1, \alpha_2, \dots, \alpha_n)$: liste ordonnée des étiquettes des nœuds fils du nœud N ssi $N \to \alpha_1 \alpha_2 \dots \alpha_n$ est une règle de R

Ex. : Si $N o AB\overline{C} \in R$, on représente graphiquement la dérivation par :

Arbre de dérivation

Arbre de dérivation

- ▶ mot obtenu par dérivation = concaténation des étiquettes des feuilles, lues de gauche à droite
- des suites de dérivation différentes peuvent Ître associées à un mÎme arbre
- à toute arbre de dérivation correspond une unique dérivation à gauche (resp. à droite) = parcours en profondeur d'abord de l'arbre

Cours 1: objectifs atteints?

- Savoirs :
 - connaissance du vocabulaire utile à la compréhension de la théorie des langages :
 - langage? grammaire? différence entre les 2?
 - grammaires équivalentes?
 - règle de production ? dérivation ? dérivation gauche droite ?
- Savoir-faire :
 - donner des dérivations obtenues à partir d'une grammaire? créer un arbre de dérivation?

- Introduction et rappels
- ② Grammaires et dérivations
- 3 Hiérarchie de Chomsky
- 4 Grammaires algébriques
 - Opérations sur les langages algébriques
 - Automates à pile
- Conclusion

- Introduction et rappels
- ② Grammaires et dérivations
- 3 Hiérarchie de Chomsky
- 4 Grammaires algébriques
 - Opérations sur les langages algébriques
 - Automates à pile
- Conclusion

- Introduction et rappels
- ② Grammaires et dérivations
- 3 Hiérarchie de Chomsky
- 4 Grammaires algébriques
 - Opérations sur les langages algébriques
 - Automates à pile
- Conclusion