BIOGRAPHICAL SKETCH

Provide the following information for the Senior/key personnel and other significant contributors. Follow this format for each person. **DO NOT EXCEED FIVE PAGES**.

NAME: Dolson, Emily

eRA COMMONS USER NAME (credential, e.g., agency login): dolsone

POSITION TITLE: Postdoctoral Fellow

EDUCATION/TRAINING (Begin with baccalaureate or other initial professional education, such as nursing, include postdoctoral training and residency training if applicable. Add/delete rows as necessary.)

INSTITUTION AND LOCATION	DEGREE (if applicable)	Completion Date MM/YYYY	FIELD OF STUDY
Swarthmore College	B.A	05/2013	Biology and Computer Science
Michigan State University	Graduate Certificate	12/2016	Spatial Ecology
Michigan State University	Ph.D.	05/2019	Computer Science & Engineering and Ecology, Evolutionary Biology, & Behavior
Cleveland Clinic	Postdoctoral	08/2020	Translational Hematology and Oncology Research

A. Personal Statement

My highly interdisciplinary background makes me ideally suited to coming up with novel solutions to open problems in medical research. I am fascinated by the question of how we can control the evolution of a wide range of ecological communities. Previously, I have used my knowledge of computer science and ecological and evolutionary theory to advance the current understanding of why evolution-based machine learning algorithms work the way they do and how we can improve them. I have also used these machine learning algorithms as a model system for testing out new ecology and evolutionary theory to apply to biology. By working with a digital system, I can perform experiments that would be impossible *in vitro* or *in vivo*. In particular I have studied the effects of spatial heterogeneity (in micro-environment and in mortality rate) on long-term evolutionary trajectories. Additionally, I have developed techniques for quantifying the mode of evolution in complex ecological communities. Now, I'm applying this work to understanding the process by which cancer evolves resistance to therapy. Because cancer involves a complex ecosystem of cells living in a spatially heterogeneous environment, I am well-situated to help tackle this problem.

Note that many of my publications are in computer science conferences. In computer science, conferences are peer-reviewed and respected venues for publishing scientific findings.

- 1. Dolson, E.L. & Ofria, C.A. (2017). Spatial resource heterogeneity creates local hotspots of evolutionary potential. European Conference on Artificial Life, 122–29. Lyon, France. MIT Press.
- 2. Dolson, E.L., Lalejini, A.M., Jorgensen, S.P. & Ofria, C.A. (In press). Interpreting the tape of life: Ancestry-based analyses provide insights and intuition about evolutionary dynamics. Artificial Life Journal. MIT Press.
- 3. Dolson, E.L., Wiser, M.J. & Ofria, C.A. (2016). The effects of evolution and spatial structure on diversity in biological reserves. The Fifteenth International Conference on Artificial Life, 434–440. Cancun, Mexico.

2014 –

B. Positions and Honors

Positions and Employment

2013	Fink Fellow, Hubbard Brook Experimental Forest, North Woodstock, NH
2013 – 2019	PhD Student, BEACON Center for Evolution in Action, Michigan State University, East
	Lansing, MI
2019 –	Postdoctoral Fellow, Translational Hematology and Oncology Research, Cleveland Clinic,
	OH

Member, Association for Computing Machinery

Other Experience and Professional Memberships

2014 –	Member, International Society for Artificial Life
2016 –	Chair, International Society for Artificial Life Student and Post-doc Group
Honors	
2019	Outstanding Student Publication Award, International Society for Artificial Life
2019	Exceptional Service Award, International Society for Artificial Life
2017	Outstanding Service Award, Michigan State University Department of Computer Science and
	Engineering
2013 – 2018	University Distinguished Fellowship, Michigan State University
2014 – 2018	NSF Graduate Research Fellowship
2013	B.A. awarded with honors, Swarthmore College

C. Contribution to Science

- 1. Quantifying evolutionary processes: Computational evolution platforms provide us with perfect information about the exact steps that lead up to a given large-scale evolutionary outcome. However, evolution is a noisy process involving a high degree of stochasticity. As a result, extracting insight from the vast quantity of data that computational systems provide requires novel approaches to measurement. I have developed a range of methodological tools for interpreting such data. Specifically, I have developed two suites of metrics and data visualizations: one aimed at aggregating the micro-events in the evolutionary process into interpretable patterns, and one aimed at screening for high-level evolutionary patterns. All of these metrics are based on analysis of phylogenies, and so can easily be translated to non-computational systems as well.
 - a. **Dolson, E.L.**, Vostinar, A.E., Wiser, M.J. & Ofria, C.A. (2019). The MODES toolbox: Measurements of Open-Ended Dynamics in Evolving Systems. *Artificial Life*. 25(1), 50 73.
 - b. **Dolson, E.L.**, Lalejini, A.M., Jorgensen, S.P. & Ofria, C.A. (In press). Interpreting the tape of life: Ancestry-based analyses provide insights and intuition about evolutionary dynamics. *Artificial Life*.
 - c. **Dolson, E.L.**, Lalejini, A.M. & Ofria, C.A. (2019). Exploring genetic programming representations with MAP-Elites. In *Genetic Programming in Theory and Practice XVI*. Springer.
 - d. Wiser, M.J., **Dolson, E.L.**, Vostinar, A.E., Lenski, R.E., & Ofria, C.A. (2018). The Boundedness Illusion: Asymptotic projections from early evolution underestimate evolutionary potential. *PeerJ Preprints*.
- 2. Evolutionary trajectories in spatially heterogeneous environments: Most populations in the real world exist in spatially heterogeneous environments (i.e. environments in which different regions of space are unique). This reality contrasts with the homogeneous environments used in most theoretical work. Using computational model systems, I have laid the groundwork for extending eco-evolutionary theory to a spatially heterogeneous context. In particular, I have showed that spatial heterogeneity influences the evolutionary trajectory that a population takes through the space of possible genotypes. Thus, it is theoretically possible to use landscape composition as a tool for controlling the outcome of evolution.
 - a. **Dolson, E.L.** & Ofria, C.A. (2017). Spatial resource heterogeneity creates local hotspots of evolutionary potential. European Conference on Artificial Life, 122–29. Lyon, France. MIT Press.

- b. Dolson, E.L., Wiser, M.J. & Ofria, C.A. (2016). The effects of evolution and spatial structure on diversity in biological reserves. The Fifteenth International Conference on Artificial Life, 434–440. Cancun, Mexico. MIT Press.
- c. **Dolson, E.L.** Perez, S.A., Olson, R.S., & Ofria, C.A. (2017). Spatial resource heterogeneity increases diversity and evolutionary potential. *bioRxiv*. doi:10.1101/148973
- 3. Improving evolutionary computation with eco-evolutionary dynamics: Evolutionary computation is a machine learning technique that uses evolutionary dynamics to find solutions to computational problems. I have demonstrated that it is mathematically identical to many models of biological evolution and ecology. In so doing, I have laid the groundwork for improving the state of the art of evolutionary computation through the application of theory developed in biology. Simultaneously, I have shown that we can effectively use evolutionary computation research as a source of pilot data for evolutionary theory research. The field of evolutionary computation has a wealth of well-understood and non-trivial fitness landscapes, making it particularly well-suited as a model system for research on steering evolving ecological communities.
 - a. **Dolson, E.L.**, Banzhaf, W. & Ofria, C.A. (2018). Ecological Theory Provides Insights about Evolutionary Computation. *PeerJ Pre-prints*.
 - b. **Dolson, E.L.**, Banzhaf, W. & Ofria, C.A. (2018). Applying ecological principles to genetic programming. In *Genetic Programming in Theory and Practice XV*. Springer.
 - c. Hernandez, J.G., Lalejini, A.M., **Dolson, E.L.**, & Ofria, C.A. (2019). Random subsampling improves performance in lexicase selection. *GECCO '19 Companion: Genetic and Evolutionary Computation Conference*. Prauge, Czech Republic. ACM.

Complete List of Published Work in MyBibliography:

https://www.ncbi.nlm.nih.gov/myncbi/emily.dolson.1/bibliography/public/

D. Research Support and Scholastic Performance

Completed Research Support

BEACON Center for Evolution in Action Internal Grant Ofria (PI) 09/01/18–3/31/19

Synthesizing Concepts within Evolution in Action

The goal of this project was the creation of an interdisciplinary synthesis paper on population diversity in evolution. The resulting work brings together perspectives on diversity from researchers in ecology, evolutionary biology, and evolutionary computation.

Role: Helped write, supported by

BEACON Center for Evolution in Action Internal Grant Ofria (PI) 09/01/17–3/31/19

Harnessing Eco-Evolutionary Dynamics for Open-Ended Evolution of Intelligence

The goal of this project was to solidify the theoretical basis of evolutionary computation algorithms by importing eco-evolutionary theory from biology.

Role: Helped write, supported by

Scholastic Performance

YEAR	COURSE TITLE	GRADE
	MICHIGAN STATE UNIVERSITY	
2013	Advanced Computer Architecture	4.0
2013	Population and Community Ecology	4.0
2014	Multi-disciplinary Research Methods for the Study of Evolution	4.0
2014	Selection Topics in Computer Science: Large-scale Data Analysis	4.0
2014	Evolutionary Biology	3.5
2014	Evolutionary Computation	4.0

2014	Statistical Methods for Ecology and Evolution	4.0
2014	Selected Topics in Plant Biology: Teaching Biology	4.0
2015	Design and Theory of Algorithms	4.0
2015	Landscape Ecology	4.0
2015	Spatial Ecology	4.0
2015	Spatial Data Analysis	4.0

Level required for a passing grade: 2.0 or above