Database Theory and Applications for Biomedical Research and Practice

BMIN 502 / EPID 635 Week 2: Data normalization

John H. Holmes, PhD

Objectives for today

- · You will learn:
 - Basic normalization theory
 - When and why normalization is desirable
 - What happens when data are not normalized
 - How to normalize a database

The Schema: Another approach to logical data modeling

- · Describes the contents of a table
 - Name of table
 - List of fields (entity attributes)
 - Key fields
- Each schema ultimately becomes a table in the database
- Syntax
 - Table(FIELD LIST)
 - · Primary keys are underlined and listed first
 - Foreign keys can be underlined with a dashed line

_		
-		
-		

So what? Haven't we already created a logical model in the E-R?

- Yes, but the schema provides a way to double check the robustness of the model
 - An ERD models entities and relationships between them
 - A schema models entity attributes and relationships between them
- The schema provides a way to normalize the relations and the entire database

Normalization

- A process in which an "unsatisfactory" relational schema is decomposed into smaller, more "desirable" schemata
- Performed to eliminate redundancy and update anomalies in database tables
- · Levels of normalization are hierarchical
 - ONF
 - 1NF
 - 2NF
 - 3NF

First Normal Form

A table is in 1NF only if no composite attributes and no repeating groups exist in the table

What is a composite attribute?

- An attribute that represents more than one concept
- Examples
 - Study IDs such as "001-01" where "001" is the subject's study serial number and "01" is the study site
 Addresses such as "123 Main St., Philadelphia, PA"
- · Why do we care?
 - You can't get at the component concepts without parsing
- · Solution
 - Make all attributes atomic: one concept and only one concept

What is a repeating group?

- One or more concepts represented many times in the same table
- Two examples
 - HB1 HB2 HB3
 - HB represents a single concept, but is repeated
 - HB1 HCT1 HB2 HCT2 HB3 HCT3
 - HB+HCT represent two concepts, are repeated together

What if a database is not normalized?

Case 1: Repeating Groups

- Subject(SUBJ_ID DOB SEX DX1 DX2 DX3)
- DX1...DX3 represent a repeating group
 - What happens if you need DX4?
 - If you want to look for all MI patients, you need to go through three separate fields

How to get a table into First Normal Form

Subject(SUBJ ID DOB SEX DX1 DX2 DX3)

- Is not in 1NF
- (DX1, DX2, and DX3 repeat the same concept, DX)
- Create a new table for each non-similar repeating group, adding the primary key to the new table(s):

Subject(SUBJ ID DOB SEX)
Diagnosis(SUBJ ID DX)

Thus... SUBJ_ID DOB SEX DX1 DX2 DX3 320.0 191.0 1/1/50 Mala 401.0 1 XXXX 2 5/14/58 Female 388.1 516.0 3 8/11/60 Female 70.0 512.0 090.0

This is better						
				*	SUBJ_ID	DX
			1.M relations	, Llain	1	320.0
			1:M relations	snib	1	191.0
SUBJ_ID	DO)B	SEX		1	401.0
1	1/1/	50	Male		2	388.1
2	5/14	/58	Female	1	2	516.0
3	8/11	/60	Female		3	710.0
			Missings are	•	3	512.0
			no problem!		3	090.0

Functional Dependency Modeling

- Focuses on constraints between sets of attributes
- Example: an FD exists between SUBJECT_ID and SEX if, for every entity instance, SUBJECT_ID determines the value of SEX
- · Facilitates identification of key attributes
- · Maps easily to normalized relations

The Vocabulary of Functional Dependency Modeling

- · Attributes are represented by name
- Multiple attributes can participate in a dependency
- Dependencies are represented by an arrow pointing toward the dependent attribute(s)

Examples of functional dependencies

- Full, functional dependency
 - $-SUBJ ID \rightarrow NAME AGE SEX$
 - NAME, AGE, and SEX are fully, functionally dependent on SUBJ_ID
- Partial functional dependency
 - -SUBJ ID MD ID \rightarrow MD ADDRESS
 - MD_ADDRESS is dependent on only MD_ID, not SUBJ_ID and MD_ID

What if a database is not normalized? Case 2: Partial Functional Dependency	
Situation: Multi-site clinical trial, where subjects at each site are given a unique, site-specific ID number (ID=1-100, X5)	
Subject(SUBJ_ID_SITE_ID_DOB_SITE_ADDRESS)	
SITE_ADDRESS is partially dependent on the primary key (only the SITE_ID, not SUBJ_ID and SITE_ID)	
What happens if the address of the site changes?	
	1
Second Normal Form	
A relation is in 2NF if it is in 1NF and every non-key attribute is fully dependent on the	
entire primary key	
How to get a table into Second Normal Form	
Solution: create a new table that contains as its primary key the attributes involved in the	
its primary key the attributes involved in the partial dependency	
Subject(SUBJ ID SITE ID DOB SITE_ADDRESS)	
decomposes to: Subject(SUBJ_ID_SITE_ID_DOB)	
Site(<u>SITE_ID_SITE_ADDR</u> ESS)	

Thus					
SUBJ_ID	SITE_ID	SITE_ADDRESS			
1	HUR	3400 Spruce St.			
2	HUP	3400 Spruce St.			
3	HUP	3400 Spruce St.			
1	Presby	3900 Market St.			
2	Presby	3900 Market St.			
1	Pennsy	800 Spruce St.			
2	Pennsy	800 Spruce St.			
•	•				

Second Normal Form: Shortcuts

- A table is in 2NF automatically, if it is in 1NF and the primary key contains one and only one attribute
 - No possibility of a partial dependency!
- A table is in 2NF automatically, if it is in 1NF and there are no non-key attributes
 - No dependency at all!

Transitive dependency · In short: – $X \rightarrow Z$ because $X \rightarrow Y$ and $Y \rightarrow Z$ • SUBJ ID \rightarrow ICD ICD TEXT - ICD is dependent on SUBJ_ID - ICD_TEXT is dependent on SUBJ_ID, but only because is it is dependent on ICD • SUBJ_ID → ICD_TEXT is a transitive dependency • SUBJ_ID \rightarrow ICD_TEXT because – SUBJ_ID \rightarrow ICD and ICD \rightarrow ICD_TEXT What if a database is not normalized? Case 2: Transitive Dependency · Situation: Diagnosis captured on patient that includes text description with the ICD-9 code • Subject(SUBJ ID ICD DX_TEXT) • A transitive dependency exists between DX_TEXT and ICD - What happens if the text of DX_TEXT changes over – What happens if the text of DX_TEXT is misspelled? **Third Normal Form** A relation is in 3NF if it is in 2NF and no dependency exists between non-key attributes

How to get a table into Third Normal Form

- Create a new table which contains the transitive dependency
- Identify the attribute(s) in the dependency as a primary key
- Make sure the key attribute is kept in both tables
 - The primary key in the new table will be a foreign key in the old
- Subject(<u>SUBJ ID</u> DOB SEX ICD DX_TEXT) decomposes to:

Subject(SUBJ ID DOB SEX ICD) ICD(ICD DX_TEXT)

Thus...

SUBJ_ID	DOB	SEX	ICD	DX_TEXT
1	1/1/50	Male	250.0	Diabetes mellitus, no complications
2	5/14/58	Female	370.0	Corneal ulcer
3	8/11/60	Female	753.1	Cystic kidney disease

This is better...

Third Normal Form: Shortcuts • A table is in 3NF automatically, if it is in 2NF and there are no (or only one) non-key attributes - No possibility of a transitive dependency! Assignment 2: Create a 3NF normalized schema for the ABIC database Submit as a Word document to Canvas by 9am 2/5