Identificação de sistemas lineares - Trabalho 5

Tassiano Neuhaus

Universidade Federal do Rio Grande do Sul - Departamento de Engenharia Elétrica Av. Osvaldo Aranha, 103 - Bairro Bom Fim CEP: 90035-190 - Porto Alegre - RS - Brasil

Resumo—Identificar um modelo ARX para um processo que não pode ser representado por este modelo e também um modelo completo. Ao fim, será feito um comparativo qualitativo das duas estimativas obtidas.

Palavras-chave—Identificação de sistemas lineares, métodos paramétricos.

I. INTRODUÇÃO

Neste trabalho será apresentado um modelo ARX para um sistema que não pode ser completamente representado por este modelo (1). Em seguida será utilizado um modelo mais completo e será feito um comparativo qualitativo das estimativas obtidas para o modelo utilizando cada um dos métodos.

$$G_0(q) = \frac{2}{q - 0.8}$$
 $H_0(q) = \frac{q + 0.9}{q - 0.5}$ (1)

II. MODELO ARX

O sistema real apresentado em (1) será identificado pelo modelo ARX onde genericamente o modelo utilizado é como apresentado em (2) e para o modelo ARX tem-se que apenas os polinômios A e B são diferentes de 1. [1]

$$A(q,\theta)Y(t) = \frac{B(q,\theta)}{F(q,\theta)}U(t) + \frac{C(q,\theta)}{D(q,\theta)}e(t) \tag{2}$$

Onde:

$$A(q,\theta) = 1 + a_1 q^{-1} + a_2 q^{-2} + \dots + a_{na} q^{-na}$$

$$B(q,\theta) = b_1 q^{-1} + b_2 q^{-2} + \dots + b_{nb} q^{-nb}$$

$$C(q,\theta) = 1 + c_1 q^{-1} + c_2 q^{-2} + \dots + c_{nc} q^{-nc}$$

$$D(q,\theta) = 1 + d_1 q^{-1} + d_2 q^{-2} + \dots + d_{na} q^{-nd}$$

$$F(q,\theta) = 1 + f_1 q^{-1} + f_2 q^{-2} + \dots + f_{nf} q^{-nf}$$

Desta forma o modelo ARX pode ser representado como em (??). Para o sistema apresentado em (1), o modelo ARX fica como em (4).

$$A(q,\theta)Y(t) = B(q,\theta)U(t) + e(t)$$
(3

$$G(q,\theta) = \frac{a}{q-b}$$
 $H(q,\theta) = \frac{q}{q-b}$ (4)

$$y(t) = G(q, \theta)r(t) + H(q, \theta)e(t)$$

Onde e(t) é ruido branco com média zero.

Este modelo não consegue representar o sistema descrito em (1). Foi utilizado o script do matlab apresentado no Anexo (A) para simular as estimativas obtidas para os parâmetros a e b

Figura 1. Simulação do sistema para uma entrada aleatória e utilizando o modelo ARX

deste modelo, o script utiliza o método dos mínimos quadrados para estimar os parâmetros.

O resultado da simulação é apresentado na Figura (1).

A média das estimativas obtidas para o sistema foi de a=2.003 e b=0.7999.

Aplicando na entrada do processo uma senoide de frequência $\pi/4$ obtém-se a estimativa como apresentado na Figura (2).

Figura 2. Simulação do sistema para uma entrada $sin(\pi/4)$ e utilizando o modelo ARX.

A média das estimativas obtidas para o sistema foi de a=2.1627 e b=0.7837.

Aplicando na entrada do processo uma senoide de frequência $\pi/20$ obtém-se a estimativa como apresentado na Figura (3).

Figura 3. Simulação do sistema para uma entrada $sin(\pi/20)$ e utilizando o modelo ARX.

A média das estimativas obtidas para o sistema foi de a=2.1687 e b=0.7831.

Observa-se claramente que a estimativa está polarizada, ou seja, a média das estimativas não está centrada nos valores reais dos parâmetros. Isso de deve ao fato que o modelo utilizado para a estimativa não consegue representar na totalidade o sistema original.

III. MODELO COMPLETO

Como apresentado na seção (II) o modelo ARX não consegue representar o sistema (1) completamente, e a estimativa dos parâmetros da Função de transferência são polarizados. Para contornar este problema utilizaremos um modelo para descrever o sistema (1) de forma completa. [2]

O modelo escolhido para representar o sistema real é apresentado em (5).

$$G(q,\theta) = \frac{a}{q-b}$$
 $H(q,\theta) = \frac{q-c}{q-d}$ (5)

Utilizando o estimador ótimo (6) obtém-se a equação de diferenças apresentada em (7). Utilizando o *script* A obtém-se o resultado para os parâmetros a, b, c e d para a função $G(q,\theta)$ e $H(q,\theta)$.

$$\hat{y}(t/t - 1, \theta) = H^{-1}(q, \theta)G(q, \theta)u(t) + [1 - H^{-1}(q, \theta)]y(t)$$
(6)

$$\begin{split} \hat{y}(t/t-1,\theta) = & \quad a \; u(t-1) - ad \; u(t-2) + (d-c)y(t-1) \\ & \quad -b(d-c)y(t-2) + (b+c)\hat{y}(t-1/t-2,\theta) \\ & \quad -cb \; \hat{y}(t-2/t-3,\theta) \end{split}$$

Desta forma temos para o método dos mínimos quadrados as seguintes equiões:

$$\Theta = \begin{bmatrix} a \\ a & d \\ (d-c) \\ b(d-c) \\ (b+c) \\ c & b \end{bmatrix}^{T}$$

$$\varphi(t) = \begin{bmatrix} u(t-1) \\ -u(t-2) \\ y(t-1) \\ -y(t-2) \\ \hat{y}(t-1/t-2,\theta) \\ -\hat{y}(t-2/t-3,\theta) \end{bmatrix}^{T}$$

Nas Figuras (4) e (5) apresentam-se os valores estimados para os parâmetros das funções de transferência G(q) e H(q) respectivamente.

Figura 4. Simulação do sistema para uma entrada aleatória e utilizando o modelo completo - variáveis do processo $G(q)\ a\ e\ b.$

Figura 5. Simulação do sistema para uma entrada aleatória e utilizando o modelo completo - variáveis do ruido $H(q)\ c$ e d.

A média das estimativas para os parâmetros em questão é apresentado na Tabela (I).

 $\label{eq:table_eq} \mbox{Tabela I} $$ \mbox{M\'edia da estimativa para os parâmetros de } G(q) \to H(q) $$$

Parâmetro	Média
a	2.0000
b	0.7748
c	-0.9006
d	0.4875

IV. CONCLUSÕES

Na seção (II) obteve-se uma estimativa para o sistema (1), mesmo que o modelo ARX utilizado (4) não conseguisse representar o sistema completamente. Desta forma obteve-se estimativas polarizadas para os parâmetros a e b, como observado nas Figuras (2) e (3), além de que a informação estimada para o ruido não era representativa com a realidade, já que para o modelo ARX considera-se que o ruido é submetido a influencia dos mesmos polos da função de transferência G(q).

Para resolver este grave problema da polarização foi utilizado o método dos mínimos quadrados generalizado, onde utilizando-se outro estimador (6) para sistema, obteve-se resultados bem mais promissores, que podem ser observados nas Figuras (4) e (5), com este algoritmo, foi possível considerar um modelo completo para representar o sistema, o que trouxe a estimativa alem dos parâmetros de G(q) também da função H(q).

Neste trabalho observamos que quando a família de modelos não representa o sistema real, tem-se erro de polarização das estimativas efetuadas. Desta forma, mesmo utilizando mais pontos para a simulação e fazendo-se mais simulações, os parâmetros estimados na média não chegam ao valor real do sistema. Foi apontado um algoritmo para resolução de problemas onde o modelo padrão dos mínimos quadrados (ARX) não pode ser utilizado, e os resultados foram apresentados.

APÊNDICE

1 - Script para Simulação do modelo ARX

```
|% item 1 e 2
\mathcal{H}=tf([1\ 0],[1\ -0.8],\ Ts);
H=tf([1 \ 0.9],[1 \ -0.5], Ts);
% Replace the default stream with a stream whose
seed is based on CLOCK, so
% RAND will return different values in different
     MATLAB sessions
RandStream\,.\,setDefaultStream\,(
     RandStream ('mt19937ar',
     sum(100* clock)));
% identification using MMQ
% model y(t) = 2*u(t-1) + 0.8*y(t-1) + u(t) + 0.8*y(t-1)
teta = [2; 0.8];
n = size (teta, 1);
% e entrada u saida do controlador
%phy = [u(t-1); y(t-1)]
% numero de vezes que sera aplicado o metodo.
a = zeros(M, 1);
b=zeros(M,1):
for j=1:M
     % make a randon noise with std = 0.1
     ran = rand(N, 1);
     s = std(ran):
     % now ran_s has std=1;
     ran_s=ran/s;
     m=mean(ran_s);
     % make noise be zero mean
     rh = (ran_s - m) * STD;
       % make a randon noise with std = 1
       ran=rand(N, 1);
       s = std(ran);
       m=mean(ran);
%
       % now rr has std=Inusoidal input signal
       rr = (ran - m) / s;
     %sim
     rr=sin (freq*tempo);
     mean(rr)
     yr=lsim(G, rr, tempo);
ynoise=lsim(H, rh, tempo);
     y=yr+ynoise;
     u=rr;
     phy=zeros(N, n);
     for t=2:N
         phy(t, 1)=u(t-1);
         phy(t, 2)=y(t-1);
     end
     % make sure, rank(phy) = n :)
     teta_r=inv(phy'*phy)*phy'*y;
     % to be used in grafic plot
     a(j)=teta_r(1);
     b(j)=teta_r(2);
end
PN=[a, b];
ma=mean(a)
sa=std(a);
mb=mean(b)
sb=std(b);
plot(a, b, 'bo');
hold:
plot(ma, mb, 'rx');
hold:
title ('Simulacao do sistema para um modelo ARX')
 xlabel('Valor da estimativa para a variavel a')
ylabel ('Valor da estimativa para a variavel b')
legend ('Estimativas', 'Media')
%valor da tabela chi-quadrado para 95% de confianca
chi = 5.991;
ang = linspace(0,2*pi,360)';
[avetor, SCR, avl] = princomp(PN);
```

```
Diagonal= diag(sqrt(chi*avl));
elipse=[cos(ang) sin(ang)] * Diagonal * avetor' +
    repmat(mean(PN), 360, 1);
line(elipse(:,1), elipse(:,2), 'linestyle', '-',
    'color', 'k');
```

Listing 1. Descriptive Caption Text

2 - Script para Simulação do modelo completo

```
% Identificação de sistemas
% Tassiano Neuhaus
% tassianors@gmail.com
% UFRGS
close all; clear all;
% Definitions
Ts=1e-3;
% frequency used when u(t) is a sinusoidal signal.
freq = \mathbf{pi}/20;
Tf=1*2*pi/freq;
STD = 0.1;
tempo = 0:Ts:Tf;
N=size (tempo, 2);
M = 100;
% TFs
G=tf([2],[1 -0.8], Ts);
% item 1 e 2
%H=tf([1 0],[1 -0.8], Ts);
H=tf([1 \ 0.9],[1 \ -0.5], Ts);
% Replace the default stream with a stream whose
seed is based on CLOCK, so
% RAND will return different values in different
    MATLAB sessions
RandStream ( 'mt19937ar', 'seed',
    sum(100* clock)));
% identification using MMQ
% model y(t)=2*u(t-1)+0.8*y(t-1) +u(t) +0.8*y(t-1)
teta=[2; 0.8; 0.5; 0.9; 1; 1];
n = size (teta, 1);
% e entrada u saida do controlador
%phy = [u(t-1); y(t-1)]
% numero de vezes que sera aplicado o metodo.
t1 = zeros(M, 1); t2 = zeros(M, 1); t3 = zeros(M, 1);
    t4 = zeros(M, 1);
t5=zeros(M,1); t6=zeros(M,1); ychap=zeros(M,1);
a=zeros(M,1); b=zeros(M,1); c=zeros(M,1);
    d = zeros(M, 1);
for j=1:M
    % make a randon noise with std = 0.1
    ran=rand(N, 1);
    s = std(ran);
    % now ran_s has std=1;
    ran_s=ran/s;
    m=mean(ran_s);
    % make noise be zero mean
    rh = (ran_s - m) *STD;
    % make a randon noise with std = 1
    ran=rand(N, 1);
    s = std(ran):
    m=mean(ran);
    % now rr has std=Inusoidal input signal
    rr = (ran - m) / s;
    %sim
%
      rr = sin(freq * tempo);
```

```
\begin{array}{l} yr = l \, sim \, (G, \ rr \ , \ tempo \,) \, ; \\ yno ise = l \, sim \, (H, \ rh \ , \ tempo \,) \, ; \end{array}
     y=yr+ynoise;
     u=rr:
  % in the first simulation, use only u(t) and y(t)
     if j == 1
         phy=zeros(N, n-2);
         phy=zeros(N, n);
     end
     for t=3:N
          phy(t, 1)=u(t-1);
         phy(t, 1)-u(t-1);

phy(t, 2)=-u(t-2);

phy(t, 3)=y(t-1);

phy(t, 4)=-y(t-2);
          \mathbf{i} \mathbf{f} \hat{\mathbf{j}} = 1
               ychap(t)=t1(j-1)*u(t-1)-t2(j-1)*u(t-2)
                    +t3(j-1)*y(t-1) -t4(j-1)*y(t-2)
                    +t5(j-1)*ychap(t-1)
                    -t6(j-1)*ychap(t-2);
               phy(t, 5)=ychap(t-1);
phy(t, 6)=-ychap(t-2);
          end
    end \\
    % make sure, rank(phy) = n :)
     teta_r = inv (phy '* phy ) * phy '* y;
    % to be used in grafic plot
     t1(j)=teta_r(1);
     t2(j)=teta_r(2);
     t3(j) = teta_r(3);
     t4(j)=teta_r(4);
     if j^{-} = 1
          t5(j)=teta_r(5);
          t6(j) = teta_r(6);
    end
  % get values of a b c and d
     a(j)=t1(j);
     d(j)=t2(j)/t1(j);
     c(j)=-t3(j)+d(j);
    b(j)=t4(j)/t3(j);
PN=[a, b];
ma=mean(a)
mb=mean(b)
mc=mean(c)
md=mean(d)
% not useful
me=mean(t5)
mf=mean(t6)
% plot a x b graph
plot(a, b, 'bo');
hold;
plot(ma, mb, 'rx');
hold;
title ('Simulacao do sistema - estimativa dos
     parametros a e b')
xlabel ('Valor da estimativa para a variavel a')
ylabel('Valor da estimativa para a variavel a')
legend('Estimativas', 'Media')
%valor da tabela chi-quadrado para 95% de confianca
chi = 5.991;
ang = linspace(0,2*pi,360)';
[avetor, SCR, av1] = princomp(PN);
Diagonal = diag(sqrt(chi*avl));
elipse = [cos(ang) sin(ang)] * Diagonal * avetor ' +
    repmat(mean(PN), 360, 1);
line(elipse(:,1), elipse(:,2), 'linestyle', '-', 'color', 'k');
% plot c x d graph
figure (2);
```

```
plot(c, d, 'bo');
hold;
plot(mc, md, 'rx');
hold;
title('Simulacao do sistema - estimativa dos
    parametros c e d - Ruido')
xlabel('Valor da estimativa para a variavel c')
ylabel('Valor da estimativa para a variavel d')
legend('Estimativas', 'Media')

%valor da tabela chi-quadrado para 95% de confianca
chi = 5.991;
ang = linspace(0,2*pi,360)';
[avetor,SCR, avl] = princomp([c, d]);
Diagonal= diag(sqrt(chi*avl));
elipse=[cos(ang) sin(ang)] * Diagonal * avetor' +
    repmat(mean([c, d]), 360, 1);
line(elipse(:,1), elipse(:,2), 'linestyle', '-',
    'color', 'k');
```

Listing 2. Descriptive Caption Text

REFERÊNCIAS

- [1] L. A. Aguirre, Introdução à identificação de sistemas, Técnicas lineares e não-lineares aplicadas a sistemas reais, 2nd ed. Belo Horizonte, Minas Gerais: Editora UFMG, 2004, vol. 1.
- [2] T. Soderstrom and P. Stoica, System idendification. New york: Prentice Hall, 2001.