CS598:VISUAL INFORMATION RETRIEVAL

Lecture II: Image Representation:

Color, Texture, and Shape

RE-CAP OF LECTURE I

- What is visual information retrieval?
- Why do we care about it?
- What are the fundamental challenges?

LECTURE II: PART I

Color, Texture, Shape Descriptors

Quiz:

- How would you describe the image?
- How would we make a computer to numerically encode such a description?

OUTLINE

- Color
 - Color histogram
 - Color correlogram
- Texture
 - Local binary pattern
- Shape
 - Histogram of oriented gradient

Basics of Color Image

Black, V=0

Green, H=120° V White, S=0,V=1

Red, H=0°

- For a color image of size W×H
 - Each pixel is represented by a (r,g,b) tuple,
 - The r, g, b represent the red, green, and blue component respectively,
 - The luminance of a color pixel can be calculated as
 - L=0.30r+0.59g+0.11b
 - Normalized RGB
 - nr=r/(r+g+b), ng=g/(r+g+b) when $r+g+b\neq 0$, 0 otherwise
 - HSV color model
 - RGB conversion to HSV
 - http://en.wikipedia.org/wiki/HSL_and_HSV

Color Histogram (1)

- The color histogram defines the image color distribution.
 - Partition the color space
 - Count of pixels for each color zone

Color HISTOGRAM (2)

- How do we partition the color space?
 - Uniform partition of the color space
 - Clustering the color pixels

REVIEW OF K-MEANS CLUSTERING

K-means clustering

K-MEANS CLUSTERING

- Input
 - The number of cluster K.
 - The data collection $X_1, X_2, ..., X_n$.
- Step 1: Choose a set of K instances as initial cluster center, i.e., $\mu_1, \mu_2, ..., \mu_K$.
- Step 2: Iterative refinement until convergence
 - Assign each data sample X_i to the closest cluster center
 - Recalculate the cluster center by averaging all the data samples assigned to it
- Output:
 - A set of refined cluster center

Quiz: K-means

Is K-means optimizing any objective function?

$$\min_{\mu_1, \mu_2, \dots, \mu_K} \sum_{h=1}^K \sum_{X_{ih} \in c(\mu_h)} ||X_{ih} - \mu_h||^2$$

K-MEANS: EXAMPLE

DISCUSSION: VARIATIONS OF K-MEANS

□ How to select the initial K means?

What distances to use?

Strategies to calculate cluster means?

EXTENSION: HIERARCHICAL K-MEANS

- Hierarchical k-means
 - Building a tree on the training features
 - Children nodes are clusters of k-means on the parent node
 - Treat each node as a "word", so the tree is a hierarchical codebook

Using K-means for color histogram

- Image independent clustering
 - Gather a large set of training images
 - Run K-means on all color pixels from all images
 - Use the learned cluster center to calculate the histogram
 - No need to encode the cluster centers in the histogram
- Image dependent clustering
 - Run K-means on the color pixels from each image
 - Use the learned clusters from each image to calculate the histogram for that image
 - The cluster centers need to be encoded together with the histogram.
 - It is also called a color signature of the image.

Quiz: Color histogram

What is the shortcoming of color histogram?

Quiz: Color histogram

How do you calculate the dominant color of an image?

OUTLINE

- Color
 - Color histogram
 - Color correlogram
- Texture
 - Local binary pattern
- Shape
 - Histogram of oriented gradient

Color Correlogram

- Color Correlogram is
 - a variant of histogram that accounts for local spatial correlation of colors;
 - based on stimation of the probability of finding a pixel of color *j* at a distance k from a pixel of color *i* in an image.

Image:

Quantized colors: c_p, c_p, \dots, c_m

Distance between two pixels: $|p_1 - p_2| = max |x_1 - x_2|, |y_1 - y_2|$

Pixel set with color c: $I_c = p \mid I(p) = c$

Given distance: k

Color Correlogram

The color correlogram is defined as

$$\gamma_{c_i,c_j}^{(k)}(I) = \Pr_{p_1 \in I_{c_i}, p_2 \in I}[p_2 \in I_{c_j} \parallel p_1 - p_2 \models k]$$

The auto-correlogram is

$$\alpha_c^{(k)}(I) = \gamma_{c,c}^{(k)}(I)$$

Quiz

□ What is the color auto-correlogram when k=0?

OUTLINE

- Color
 - Color histogram
 - Color correlogram
- Texture
 - Local binary pattern
- Shape
 - Histogram of oriented gradient

Summary of Local Binary

- A 2D surface texture descriptor
- Simple to compute
- Invariant w.r.t. illumination changes
- Invariant w.r.t. spatial rotation of objects

Local binary pattern (LPB)

Original Image

	1	0
1		1
1	0	0

Sub-Image

Sub-Image

 $(00111101)_{2}(61)_{10}$ index

Quiz

- Why is LBP illumination invariant?
- How to describe texture at different scale?

LBP AT DIFFERENT SCALE

- Extend LBP operator to use neighborhoods of different sizes
- Defining the local neighborhood as a set of sampling points evenly spaced on a circle centered at the pixel
- If a sampling point does not fall in the center of a pixel using bilinear interpolation.

LBP: Uniform pattern

Uniform Pattern

• A local binary pattern is called uniform if the binary pattern contains at most two circular bitwise transitions from 0 to 1 or vice versa

Examples:

- 00000000 (0 transitions) is uniform
- 01110000 (2 transitions) is uniform
- 11001111 (2 transitions) is uniform
- 11001001 (4 transitions) is NOT uniform
- 01010011 (6 transitions) is NOT uniform
- There are 58 uniform patterns for 8bit LBP

LBP HISTOGRAM OF UNIFORM PATTERNS

- Each uniform pattern corresponds to one bin.
- All non-uniform patterns are mapped to one bin
- A 59 dimensional histogram can thus be constructed for each image with 8bit LBP

OUTLINE

- Color
 - Color histogram
 - Color correlogram
- Texture
 - Local binary pattern
- Shape
 - Histogram of oriented gradient

Basics of image filtering

Let f be the image and g be the kernel. The output of convolving f with g is denoted f *g.

$$(f * g)[m,n] = \sum_{k,l} f[m-k,n-l]g[k,l]$$

MATLAB functions: conv2, filter2, imfilter

Derivatives with convolution

For 2D function f(x,y), the partial derivative is:

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon,y) - f(x,y)}{\varepsilon}$$

For discrete data, we can approximate using finite differences:

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x+1,y) - f(x,y)}{1}$$

To implement above as convolution, what would be the associated filter?

Partial derivatives of an image

 $\frac{\partial f(x,y)}{\partial x}$

 $\frac{\partial f(x,y)}{\partial y}$

-1 1

-1 1

Which shows changes with respect to x?

FINITE DIFFERENCE FILTERS

Other approximations of derivative filters exist:

Prewitt:
$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
; $M_y = \begin{bmatrix} 1 & 1 \\ 0 & 0 \\ -1 & -1 \end{bmatrix}$

Sobel:
$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$
; $M_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

Roberts:
$$M_x = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
 ; $M_y = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

IMAGE GRADIENT

☐ The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$

The gradient points in the direction of most rapid increase in intensity

How does this direction relate to the direction of the edge?

The gradient direction is given by
$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Source: Steve Seitz

HISTOGRAM OF ORIENTED GRADIENT (1)

Calculate the gradient vectors at each pixel location

HISTOGRAM OF ORIENTED GRADIENT (2)

Histogram of gradient orientations-Orientation -Position

Weighted by magnitude

HISTOGRAM OF ORIENTED GRADIENT (3)

Radial Bins, Angular Bins

$$L1 - norm : v \longrightarrow v/(||v||_1 + \epsilon)$$

$$L2-norm: v \longrightarrow v/\sqrt{||v||_2^2 + \epsilon^2}$$

$$L1 - sqrt : v \longrightarrow \sqrt{v/(||v||_1 + \epsilon)}$$

L2-hys: L2-norm, plus clipping at .2 and renomalizing

From HoG to Global Image Description

- Strategy 1: Pooling
 - Average Pooling: Take the average the HoG vectors from all blocks to form a single vector
 - Max Pooling: Take the max of the HoG vectors from all blocks to form a single vector
- □ Strategy 2:
 - Concatenate all HoG vectors to form a single vector

Quiz

How do you compare these two strategies?

COARSE-TO-FINE SPATIAL MATCH

Spatial pyramid

Source: S. Lazebnik

LECTURE II: PART I I

Similarity and distance measures

OUTLINE

- Distance measures
 - <u>Euclidean distances (L2) distances</u>
 - L1 and Lp distances
 - Chi-square distances
 - Kullback-Liebler divergence
 - Earth mover distances
- Similarity measures
 - Cosine similarity
 - Histogram intersection

DISTANCE BETWEEN TWO HISTOGRAMS

• Let's start with something familiar to you...

$$D(I,J) = \sqrt{\sum_{i} (H_I(i) - H_J(i))^2}$$

where H_I and H_J are the global histogram descriptors extracted from image I and J respectively

- How do we usually call it?
 - Euclidean distance or L₂ distance

Quiz

 \square What is the potential issue with L_2 distance?

$$D(I,J) = \sqrt{\sum_{i} |H_{I}(i) - H_{J}(i)|^{2}}$$

Is it robust to noise?

L_1 distance

Now consider another distance...

$$D(I,J) = \sum_{i} |H_I(i) - H_J|$$

- How do we usually call it?
 - L_1 distance
 - Absolute distance
 - City-block distance
 - Manhattan distance
- Is it more robust to noise?

L_P: Minkowski-form distance

 \Box L_p distance

$$D(I,J) = \left(\sum_{i} |H_I(i) - H_J(i)|^p\right)^{1/p}$$

Spatial cases

- L_1 : absolute, cityblock, or mahattan
- L₂: Euclidean distance
- L_{∞} : Maximum value distance

OUTLINE

- Distance measures
 - Euclidean distances (L2) distances
 - L1 and Lp distances
 - Chi-square distances
 - Kullback-Liebler divergence
 - Earth mover distances
- Similarity measures
 - Cosine similarity
 - Histogram intersection

CHI-SQUARE DISTANCES

■ Motivated from nonparametric Chi-Square $(χ^2)$ test statistics

$$D(I,J) = \sum_{i} \frac{2(H_I(i) - H_J(i))^2}{H_I(i) + H_J(i)}$$

- It penalize dimensions which are large in value!
 - More robust to noise.....

OUTLINE

- Distance measures
 - Euclidean distances (L2) distances
 - L1 and Lp distances
 - Chi-square distances
 - Kullback-Liebler divergence
 - Earth mover distances
- Similarity measures
 - Cosine similarity
 - Histogram intersection

KL DIVERGENCE

- Motivated from Information Theory
 - Cost of encoding one distribution as another

$$KL(I,J) = \sum_{i} H_{I}(i) log \frac{H_{I}(i)}{H_{J}(i)}$$

- Unfortunately it is not symmetric
 i.e., KL(I,J) ≠ KL(J,I)
- KL distances

$$D(I,J) = \frac{KL(I,J) + KL(J,I)}{2}$$

QUIZ:

What is the problem of all the distance measures?

OUTLINE

- Distance measures
 - Euclidean distances (L2) distances
 - L1 and Lp distances
 - Chi-square distances
 - Kullback-Liebler divergence
 - Earth mover distances
- Similarity measures
 - Cosine similarity
 - Histogram intersection

A GOOD CROSS BIN MATCHING ALGORITHM

Which of the following two is better?

EARTH MOVER'S DISTANCE (EMD)

Earth mover distance is defined as

$$D(I,J) = \frac{\sum_{i,j} f_{ij} d_{ij}}{\sum_{i,j} f_{ij}}$$

where d_{ij} is the distance between bin i in H_I and bin j in H_J , and $\{f_{ij}\}$ is transportation of value from different bins to make the two distribution equal.

Notes

- $\{f_{ij}\}$ is obtained by solving a linear optimization problem, the transportation problem
- Minimal cost to transform one distribution to the other
- Total cost = sum of costs from individual features

Slides credit on EMD : Frederik Heger

EMD

Slides credit on EMD : Frederik Heger

Slides credit on EMD : Frederik Heger

EMD

Slides credit on EMD : Frederik Heger

Slides credit on EMD: Frederik Heger

Move earth only from P to Q

$$f_{ij} \geq 0$$

I cannot send more earth than there is

J cannot receive more earth than it can hold

As much earth as possible must be moved

Color-based image retrieval

L1 distance

Jeffrey divergence

 χ^2 statistics

Earth Mover Distance

Y. Rubner, J. Puzicha, C. Tomasi and T.M. Buhmann, "Empirical Evaluation of Dissimilarity Measures for Color and Texture", CVIU'2001

Slides credit on EMD: Frederik Heger

OUTLINE

- Distance measures
 - Euclidean distances (L2) distances
 - L1 and Lp distances
 - Chi-square distances
 - Kullback-Liebler divergence
 - Earth mover distances
- Similarity measures
 - Cosine similarity
 - Histogram intersection

HISTOGRAM INTERSECTION

• Measuring how much overlap two histograms have

$$S(I,J) = \sum_{i} \min(H_I(i), H_J(i))$$

It defines a proper kernel function.....

Issues with EMD

- High computational complexity
 - Prohibitive for texture segmentation
- Features ordering needs to be known
 - Open eyes / closed eyes example
- Distance can be set by very few features.
 - E.g. with partial match of uneven distribution weight

EMD = 0, no matter how many features follow

SUMMARY

- Color, texture, descriptors
 - Color histogram
 - Color correlogram
 - LBP descriptors
 - Histogram of oriented gradient
 - Spatial pyramid matching
- Distance & Similarity measure
 - \bullet L_p distances
 - Chi-Square distances
 - KL distances
 - EMD distances
 - Histogram intersection