

Linux Systems and Open Source Software

Course Overview

Introduction

- Instructor: Chia-Heng Tu (涂嘉恒)
 - chiaheng@mail.ncku.edu.tw
 - Office @ Room 65B03
 - Office hours: by appointment
 - Tel: 06-2757575 ext. 62527
- TA:
 - 王紹華、黃柏瑄、吳昱宗、鄭育丞
 - Office @ Room 65704 (Advanced Systems Research Lab)
 - Tel: 06-2757575 ext. 62520 #2704
 - Email: <u>asrlab@csie.ncku.edu.tw</u>
 Email subject starts with ``[Linux2021Fall]''

Class Arrangement

• A 3-hour class is separated into three time slots:

Wednesday @R65203

- 1. 10:10 ~ 11:15 (Lectures)
- 2. 11:20 ~ 12:00 (Hands-on Labs)

Friday @R65203 or R65704

3. 9:10 ~ 10:00 (Hands-on Labs and Office hours)

Open Source Software is Everywhere

 Open source software provides almost everything you may need

- Operating systems
- Browsers
- Databases
- Project management
- Email client

_

Why Open Source Software (OSS)

Cost Reduction

Quality Improvement

Quick Time to Market

Full Ownership and control

rive innovation with rapid pace

No vendor lock-in, great flexibility

Broad perspective (more eyes on the code)

Integration and Customization- Easy to modify and enhance

Collaboration approach gives better solutions- Community support

Linux-Based Systems Are Everywhere

- Linux is a family of open source Unix-like operating systems
- Linux is the core of various systems
 - Servers
 - 3C products
 - **Appliances**
 - Autonomous vehicles

Simplified history of Unix-like operating systems.

This Course Will ...

- Be suitable for students who have little or zero experiences in the open source development
- Be good for you to get familiar with open source development tools and flows
- Pave the road for your further studies related to systems or other research fields
- Provide you with many hands-on experiences

Requirements

- Pre-requisite:
 - Programming in C
 - Commitment to spending time for hands-on works

- Efforts:
 - Attend the classes
 - Do hands-on labs and mini projects
 - Hand in your codes and lab results almost every week
 - Hand in your codes and results of the mini projects on special topics

Timetable

This page will be updated separately Keep an eye on the schedule at Moodle

1.	9/15 Course introduction				
2.	9/22 Basics of hardware platform for Linux systems				
3.	9/29 Version control system: Git	Basis of Linux tools			
4.	10/6 Vim and its plug-in				
5.	10/13 Bash and Shell Scripts				
6.	10/20 Makefile and Maven				
7.	10/27 Linux command-line tools				
8.	11/3 Review and discussion (Discuss with TAs @R65704)				
9.	11/10 Package management				
10.	11/17 Process management	Basis of Linux systems			
11.	11/24 Networking				
12.	12/1 Basics of performance analysis				
13.	12/8 Tools for performance analysis				
14.	12/15 Inter-process communication				
15.	12/22 Robotic Operating Systems (ROS)	Advanced topics for Autonomous Driving			
16.	12/29 ROS-based autonomous driving systems				
17.	1/5 Simulated autonomous driving systems				
18.	1/12 Review and discussion (Discuss with Tas @R657	(04)			

Grading...

- Weekly lab exercises: 75%
 - ♦ Weeks 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 15, 16
 - You should hand in codes/results by the end of each Friday class
- Mini projects: 25%
 - ♦ Weeks 5 (10%), 14 (10%)
 - **₩eeks** 17 (5%)
 - You should hand in your codes/results at the specific dates The preliminary dates are shown in the following page
- No labs at
 - Weeks 1, 8, 18
- Online submission of your codes to Moodle to get the above scores

	1.	9/15 Course introduction	1.	N/A	
	2.	9/22 Basics of hardware platform for Linux systems	2.	\Diamond	
	3.	9/29 Version control system: Git	3.	\Diamond	
	4.	10/6 Vim and its plug-in	4.	\Diamond	
	5.	10/13 Bash and Shell Scripts	5.	♦	
	6.	10/20 Makefile and Maven	6.	\Diamond	
	7.	10/27 Linux command-line tools	7.	\Diamond	
	8.	11/3 Review and discussion (Discuss with TAs @R65704)	8.	N/A	
	9.	11/10 Package management	9.	\Diamond	
	10.	11/17 Process management	10.	\Diamond	
	11.	11/24 Networking	11.	\Diamond	
	12.	12/1 Basics of performance analysis	12.	\Diamond	
	13.	12/8 Tools for performance analysis	13.	\Diamond	
	14.	12/15 Inter-process communication	14.	♦	
	15.	12/22 Robotic Operating Systems (ROS)	15.	\Diamond	
,	16.	12/29 ROS-based autonomous driving systems	16.	\Diamond	
•	17.	1/5 Simulated autonomous driving systems	17.	\bigoplus	
S	18.	1/12 Review and discussion (Discuss with Tas @R65704)	18.	N/A	
					-

depending on the status of COVID-19 pandemic

Timetable (Each Color Has Different Meaning)

- 1. 9/15 Course introduction ← No labs
- 3. 9/29 Version control system: Git
- 4. 10/6 Vim and its plug-in
- 5. 10/13 Bash and Shell Scripts ← A mini project; hand-in by 11/3
- 6. 10/20 Makefile and Maven
- 7. 10/27 Linux command-line tools
- 8. 11/3 Review and discussion (Discuss with TAs @R65704)
- 9. 11/10 Package management
- 10. 11/17 Process management
- 11. 11/24 Networking
- 12. 12/1 Basics of performance analysis
- 13. 12/8 Tools for performance analysis
- 14. 12/15 Inter-process communication ← A mini project; hand-in by 1/12
- 15. 12/22 Robotic Operating Systems (ROS)
- 16. 12/29 ROS-based autonomous driving systems
- 18. 1/12 Review and discussion (Discuss with Tas @R65704)

In Each Class

- You will use your PC or the PC in the classroom
- You should download the VM image or use a USB stick to do the labs and projects
 - We have about 20 USB sticks for the students
 - You can use your own USB stick (~32GB)

- You are expected to finish your labs on Wed class
 - If you cannot make it, you can ask questions
 - You should finish labs by no later than each Friday class

September 14, 2021

Now, make your own decision

- Drop this class, if you expect to
 - listen to lectures and take exams

- Take this class, if you want to
 - learn something practical and get hands dirty

QUESTIONS?

