- 1. Let $x[n] = \{1, 2, 3, 0\}$ and let $y[n] = \{3, 2, 1, 0\}$.
- (2 pts.) a) Let z[n] = x[n] * y[n], where * denotes the convolution operator. Find z[n].
- (6 pts.) b) Let $X_{DFT,4}[k]$ denote the 4-point DFT of x[n]. Use the fft algorithm to find $X_{DFT,4}[k]$.
- (6 pts.) c) Let $W_{\mathrm{DFT,4}}[k] = X_{\mathrm{DFT,4}}[k] \times Y_{\mathrm{DFT,4}}[k]$ and let w[n] denote the 4-point IDFT of $W_{\mathrm{DFT,4}}[k]$. Work in the time-domain to find w[n]. You may check your answer using matlab but to get credit you must provide a time-domain solution (i.e., show how you found w[n] without the need to find $W_{\mathrm{DFT,4}}[k]$).
- (2 pts.) d) Repeat part (c) for the case when all DFT sizes are changed to 8 (i.e., find w[n], the 8-point IDFT of $W_{DFT,8}[k]$ where $W_{DFT,8}[k] = X_{DFT,8}[k] \times Y_{DFT,8}[k]$.). Explain.
 - 2. Every point in the z-plane can be expressed in terms of its magnitude r and its phase $\theta = 2\pi F$ as follows: $z = re^{j\theta} = re^{j2\pi F}$. Determine the values of r and F which describe the point in the z-plane to which the Bilinear Transform maps each of the following s-domain points. Assume a sampling rate of 40 samples per second.
- (1 pts.) a) $s = j2\pi 5$
- (1 pts.) b) $s = j2\pi 10$
- (1 pts.) c) $s = j2\pi 20$
- (1 pts.) d) $s = j2\pi 200$
- (1 pts.) e) $s = -10 + j2\pi 5$
- (1 pts.) f) $s = -20 + j2\pi 5$
- (1 pts.) g) $s = -200 + j2\pi 5$
- (1 pts.) h) $s = -10 + j2\pi 10$
- (1 pts.) i) $s = 10 + j2\pi 5$
- (8 pts.) 3. The transfer function of a continuous-time first-order low pass filter (LPF) with 3 dB cutoff frequency f_c Hz is known to be:

$$H(s) = \frac{2\pi f_c}{s + 2\pi f_c}$$

Use the bilinear transform, together with the analog prototype above to design a discrete-time LPF with 3 dB cutoff $F_c = 0.2$ cycles/sample.