2024-06-03

Regression

 $\log(y_{it}) = \log(x_{it1})\beta_1 + \log(x_{it2})\beta_2 + \log(x_{it3})\beta_3 + z_{it}\gamma + \log(\theta_i) + \log(\epsilon_{it})$

Or with an abuse of notation, we can rewrite it as

$$\log(y_{it}) = \log(x_{it1})\beta_1 + \log(x_{it2})\beta_2 + \log(x_{it3})\beta_3 + z_{it}\gamma + \theta_i + \varepsilon_{it}$$

where y_{it} is the number of full time equivalent registered nurses, x_{it1} is the number of short term acute care (STAC) inpatient stays, x_{it2} is the number of STAC outpatient stays, and x_{it3} is the number of sessions. z_{it} is the CASEMIX index provided by Hospidiag. θ_i is the fixed effect at the establishment(hospital) level. ϵ_{it} is the error term.

Sufficient statistics

Following the discussion in GilraineMichaelGu2020_TVA, and relabel everything

$$A_{it}^* = X_{it}\beta + \theta_i + \varepsilon_{it}$$
 for $i = 1, \dots, n$

We have

$$A_{it} = A_{it}^* - X_{it}\hat{\beta} = \theta_i + \varepsilon_{it} + X_{it}(\beta - \hat{\beta}) \approx \theta_i + \varepsilon_{it}$$

where $\hat{\beta}$ is the OLS estimate of β .

Thus, averaging over t, we have

$$\bar{A}_i = \frac{\sum_t A_{it}}{T_i} = \theta_i + \varepsilon_{it} + \bar{X}_i(\beta - \hat{\beta}) \approx \theta_i + \bar{\varepsilon}_i \sim N(\theta_i, \frac{\sigma_i^2}{T_i})$$

We denote \bar{A}_i to be the sufficient statistic for θ_i as in GuKoenker2017_EmpiricalBayesball.

Also the **sufficient statistics** for σ_i^2 is

$$S_i = \frac{1}{T_i - 1} \sum_t (A_{it} - \bar{A}_i + (X_{it} - \bar{X}_i)(\beta - \hat{\beta}))^2 \approx \frac{1}{T_i - 1} \sum_t (A_{it} - \bar{A}_i)^2 \sim \gamma(r_i, \frac{\sigma^2}{r_i})$$

where $r_i = (T_i - 1)/2$.

Hierarchy

Location mixutre

• We (boldly) assume that the sufficient statistics \bar{A}_i for θ_i follow a normal distribution $N(\theta_i, \sigma_i^2/2)$ and the θ_i follows an unknown distribution G which we aim to estimate.

Scale mixture

• We assume that the S_i follows a gamma distribution $\gamma(r_i, \sigma_i^2/r_i)$ and the σ_i^2 follows an unknown distribution H which we aim to estimate.

Figure 1: Sufficient statistics for theta_i

Location-Scale mixture

- If we assume that the θ_i and σ_i^2 are independent. We need to estimate G and H
- If we assume that the θ_i and σ_i^2 are dependent. We need to estimate $G(\theta_i, \sigma_i^2)$ jointly.

Compound decision (borrowing strength from the ensemble G)

Posterior mean

As shown in GuKoenker2023_CompoundDecision, if we assume N to be normal, and G is the prior distribution of θ_i , we have the **Tweedie formula**:

$$t_G(Y) = E(\alpha|Y) = \frac{\int \alpha \phi(Y - \alpha) dG(\alpha)}{\int \phi(Y - \alpha) dG(\alpha)} = Y + \frac{f'(Y)}{f(Y)}$$

where $f(Y) = \int \phi(Y - \alpha) dG(\alpha)$ and ϕ is the standard normal density function.

Linear shrinkage is a special case of the James-Stein shrinkage. While James-steing shrinkage is a special case of G being **normal**.

However we can non-parametrically estimate G following the contribution of KoenkerMizeria2014 by utilizing the MOSEK package in convex optimization.

Posterior tail probability

This is a natural criterion when we consider the **selection** problem. We want to select the top(R)/bottom(L) α % of the individual θ_i .

For example, for the **right tail selection** of α %, we define $\theta_{\alpha} = G(1 - \alpha)$ to be the $1 - \alpha$ quantile of G. We want to select the θ_i such that $\theta_i > \theta_{\alpha}$ given the observed \bar{A}_i and S_i .

This requires the an estimate of G. We will use KW and KWsmooth to estimate G.

MLE

Take the face value of \bar{A}_i and perform the selection.

Linear

A special case of posterior mean but with G estimated parametrically (normal) instead of non-parametrically.

We will compare the 4 rules in terms of the selection results.

Results of G and (H)

Homogeneous variance

Not implemented: To test the procedure, we can pool all S_i together and estimate the universal σ^2 for all $N(\theta_i, \sigma^2)$. ### Heterogeneous known variance Implemented: For simplicity and to test the procedure, we first assume that the σ_i^2 is known and we set it to the sufficient statistics S_i .

Estimated Location Mixing Density with Heterogeneous Known Variance

Heterogeneous unknown variance

The location mixture ${\cal G}$

Density of σ

The scale mixture ${\cal H}$

Results of selection

Hetereogeneous known variance

Implemented: For simplicity and to test the the procedure, we first assume that the σ_i^2 is known and we set it to the sufficient statistics S_i . If we set the **capacity constraint** to be the top 20%. the False Discovery Rate constraint to be 0.05. We have the following results:

If we ignore the FDR constraint when performing selection subject to capacity constraint only, we have the following results:

	$\alpha = 4\%$	$\alpha = 10\%$	$\alpha = 15\%$	$\alpha = 20\%$	$\alpha = 25\%$
TP	0.39	0.17	0.11	0.13	0.12
PM	0.40	0.18	0.11	0.13	0.13
MLE	0.40	0.18	0.11	0.13	0.13
James-	0.40	0.18	0.11	0.14	0.13
Stein					

Heterogeneous unknown variance

To be figured out.

Completed

- Extended the data from 2013-2022.
- Estimated the \hat{G} and \hat{H} .
- Implemented the selection procedure for the heterogeneous known variance case.
- Estimate the false discovery rate.

Next steps

- Implement the selection procedure for the heterogeneous unknown variance case.
- Identify the selected institutions and classify them into different legal categories.
- Explore other specifications of the regression model. (other regressors, other functional forms, other dependent variables, etc.)
- Conclusion that may seem interesting (?).

Issues

- 1. The variance is so small that setting FDR to be 0.2 is not a binding constraint. Unlike the kidney dialysis example in the GuKoenker2023_CompoundDecision paper.
- 2. The estimated \bar{A}_i is very noisy. This is due to the very short time span of the data.
- 3. Justify the efficiency measure using the number of registered nurses. Also explore the use of medical doctors.
- 4. Input demand function or Production function to estimate the efficiency/fixed effect of the hospitals.
- 5. To what extent can we interpret the fixed effect as efficiency?