Proposition 1. If N is a natural number then it is a perfect square or \sqrt{N} is irrational.

Proof. Suppose $N \in \mathbb{N}$ and N is not a perfect square. By the prime factorisation

theorem, $N=2^{m_1}3^{m_2}...p^{m_K}$ for some $m\in\mathbb{Z}_+$. Let $E^2=2^{2n_1}3^{2n_2}...p^{2n_K}$ for some $n\in\mathbb{Z}_+$ be all the factorised even powers of N, and let $O=2^{M_1}3^{M_2}...p^{M_K}$ for $M=\{0,1\}$ be the leftover single powers of N. (E.g. if $N=3^22^3$, then $E^2=3^22^2$ and $O=2^1$).

We get $N = E^2O$, and $\sqrt{N} = E\sqrt{O}$.

Now $E=2^{n_1}3^{n_2}...p^{n_K}$, so $E\in\mathbb{Q}$. We know that the product of a rational and irrational number is irrational, so if $\sqrt{N} \in \mathbb{Q}$, then $E\sqrt{O} \in \mathbb{Q}$, so $\sqrt{O} \in \mathbb{Q}$.

Assume $\sqrt{O}\in\mathbb{Q}$, that is $\sqrt{O}=\frac{\alpha}{\beta}$ for some $\alpha,\beta\in\mathbb{N}$. Re-arranging we find $\alpha^2 = \beta^2 O$. Rewriting α , β , and O in terms of their prime factor decompositions we have $2^{2A_1}_{\alpha} 3^{2A_2}_{\alpha} ... r^{2A_K}_{\alpha} = 2^{2B_1}_{\beta} 3^{2B_2}_{\beta} ... q^{2B_K}_{\beta} (2^{M_1} 3^{M_2} ... p^{M_K})$ where q and r are prime and $A, B \in \mathbb{Z}_+$.

By the prime factorisation theorem, the LHS and the RHS must have the same prime factor decompositions, therefore $2_{\alpha}^{2A_1}=2_{\beta}^{2B_1}(2^{M_1})$, and $3_{\alpha}^{2A_2}=3_{\beta}^{2B_2}(3^{M_2})$ etc... So the equalities only hold if $M_k=0$, otherwise we have a contradiction. This implies O=1, which implies $N=E^2$ is a square number.

Therefore if N is a natural number and N is not a perfect square, then \sqrt{N} is irrational, as required.