FUNCIONES VECTORIALES DE VARIABLE REAL. PARAMÉTRICAS

Una función vectorial de variable real o también llamada función paramétrica, es una función cuyo dominio es el conjunto de los números reales y cuyo rango o imagen es un conjunto de vectores $g\colon R\to R^m$

Las gráficas de estas funciones son curvas en el plano o curvas en el espacio ya sea la g: $R \rightarrow R^2$, g: $R \rightarrow R^3$

Curvas en el Plano. $R \rightarrow \mathbb{R}^2$

Si g1(t) y g2(t) son funciones continuas en t en un intervalo (a, b), entonces las ecuaciones:

$$x = g1(t)$$

 $y = g2(t)$
para $a \le t \le b$

Se denominan ecuaciones paramétricas, siendo t el parámetro. El conjunto de puntos, m(x, y) obtenidos cuando t varía en el intervalo (a, b) representa la gráfica de las ecuaciones paramétricas.

El par formado por las ecuaciones paramétricas definen, la función paramétrica g(t)=[g1(t),g2(t)] y el gráfico de su imagen representa una curva en el plano o una curva plana.

Curvas en el espacio: R→R³

Si g1(t), g2(t), y g3 (t) son funciones continúas en t en un intervalo (a, b), entonces las ecuaciones:

$$x = g1(t), y = g2(t), z = g3(t)$$
 $a \le t \le b$

Las mismas representan las ecuaciones paramétricas, que definen g(t)=[g1(t),g2(t),g3(t)] y el gráfico de su imagen representa una curva en el espacio.

Al trabajar con funciones paramétricas nos interesa especialmente el gráfico de su imagen, ya sea en el plano o en el espacio.

Métodos para graficar la imagen de éstas funciones.

1) Dada una curva descripta por ecuaciones paramétricas, construir una tabla donde le damos valores al parámetro t.

Ejemplo: $x=t^2-4$ y=t/2 $g(t)=(t^2-4, t/2) -2 \le t \le 3$

t	X	у
-2	0	-l
- l	-3	-1/2
0	-4	0
I	-3	1/2
2	0	I
3	5	3/2

Para pensar... Si tengo el dato de un punto sobre la curva dado por el par ordenado (0,1), y tengo la función $g(t)=(t^2-4, t/2)$. ¿Cómo calculo el valor de t?

2) Eliminar el parámetro t y encontrar la ecuación cartesiana.

Una vez eliminado el parámetro tenemos la ecuación cartesiana $y = \pm \frac{\sqrt{x+4}}{2}$ como la ecuación de una parábola de eje horizontal y vértice (-4,0). Destacar la palabra ECUACIÓN para representar el lugar geométrico de la gráfica representada en el gráfico 1 .

El gráfico de toda la función de g(t) será una parábola en R³.

Ejemplo: Gráfico de la Imagen. $g(t) = (r \cos t, r \sin t)$

Gráfico de la I(f) =
$$\begin{cases} x = r \cos t \\ y = r \sin t \\ x^2 + y^2 = r^2 \text{ La imagen es un circulo de radio } r \end{cases}$$
(Elevamos al cuadrado a ambos miembros de las igualdades y sumamos.)
$$x^2 + y^2 = r^2 \text{ La imagen es un circulo de radio } r$$

Gráfico de la función.

Si r = 1, $g(t) = (\cos t, \sin t)$. Generamos las ternas para los distintos valores de t. (cos t, sen t, t)

Para
$$t = 0$$
; (1,0,0)

Para
$$t = \frac{\pi}{4}$$
 ; $(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, \frac{\pi}{4})$

Para t =
$$\frac{\pi}{2}$$
 ; $(0, 1, \frac{\pi}{2})$

Esto significa que la curva está en un cilindro circular recto de radio 1 centrado en el eje z. La curva crece en un espiral ascendente

Ejemplo. Desparametrizar $g(t) = (a \cos t, b \sin t)$

Ejemplo.

Dados los siguientes gráficos, expresar las ecuaciones que parametricen cada tramo del recorrido, es decir encontrar la g(t) de cada trayectoria.

Tramo I:
$$x = t$$
 , $y = 0$ $g(t) = (t, 0)$ $0 \le t \le 4$

Tramo 2: ec. de la recta que pasa por
$$P_1(4,0)$$
 $P_2(0,6)$ $x = t$ $y = -3/2 \times +6$ $g(t) = (t, -3/2 t +6)$ $0 \le t \le 4$

Tramo 3:
$$x = 0$$
 $y = t$ $g(t) = (0, t)$ $0 \le t \le 6$

Límite de una función vectorial de variable real.

Siendo
$$g(t) = [gl(t), g2(t),...,gm(t)]$$

El límite de una función vectorial se define obteniendo los límites de cada una de sus funciones componentes.

$$\lim_{t\to 0} = \left[\lim_{t\to 0} g_1(t), \lim_{t\to 0} g_2(t), \dots, \lim_{t\to 0} g_m(t) \right]$$

Ejemplo. g(t) = (sen t, cos t)

RECTA TANGENTE

La recta tangente es la recta que **contiene** al vector tangente y la podemos obtener mediante la siguiente expresión.

$$r(t) = g(t_0) + t g'(t_0)$$

Ejemplo:
$$g(t) = (t, t^2)$$
 $t_0 = 1$

VELOCIDAD Y ACELERACIÓN

 $g(t_0)$ = vector posición

V(t) = || g'(t) || = Velocidad instantánea o rapidez.

 $\|g'(t)\|' = (a_t)$ Componente escalar de la aceleración tangencial

|| g''(t) || = aceleración instantánea.

$$\hat{\tau} = \frac{1}{\|g'(t)\|} g'(t)$$
 Dirección del movimiento

 $\vec{a}_t = a_t \cdot \hat{\tau}$. Componente vectorial de la aceleración tangencial (multiplicamos tao por la componente escalar de la aceleración tangencial)

 $(at)^2 = (at)^2 + (an)^2$ Componente escalar de la aceleración normal (teniendo la aceleración instantánea y la componente escalar de la aceleración tangencial, podemos obtener la a_n .

LONGITU DE ARCO

Si una función g(t) es continua por tramos, la longitud de arco nos permite calcular longitudes de curvas mediante la siguiente expresión:

$$l_c = \int_a^b \|g'(t_k)\| dt$$

Ejemplo:
$$g(t) = (r \cos t, r \sin t)$$

$$0 \le t \le 2 \pi$$