Lecture 8: Machine Learning Mas allá de la linealidad

Big Data and Machine Learning en el Mercado Inmobiliario Educación Continua

Ignacio Sarmiento-Barbieri

Universidad de los Andes

March 31, 2022

Agenda

- 1 Recap
 - Predicción y Overfit
- 2 Selección de Modelos y Regularización
- 3 Selección de Modelos y Regularización
 - Lasso
 - Ridge
- 4 Elastic net
- 5 Break

Overfit y Predicción fuera de Muestra

- ML nos interesa la predicción fuera de muestra
- Overfit: modelos complejos predicen muy bien dentro de muestra, pero tienden a hacer un mal trabajo fuera de muestra
- Hay que elegir el modelo que "mejor" prediga
 - Métodos de Remuestreo
 - Enfoque del conjunto de validación
 - Loocv
 - ▶ Validación cruzada en K-partes (5 o 10)

Selección de Modelos: Motivación

$$Precio = \beta_0 + \beta_1 Habitaciones + \epsilon \tag{1}$$

 $mean_squared_error(y_test,y_pred):2.648756376377227e+18$

$$Precio = \beta_0 + \beta_1 Habitaciones + \beta_2 Superficie + \epsilon$$
 (2)

mean_squared_error(y_test,y_pred2): 2.520184992914835e+18

$$Precio = \beta_0 + \beta_1 Habitaciones + \beta_2 Superficie + \beta_3 Dormitorios + \epsilon$$
 (3)

 ${\tt mean_squared_error(y_test,y_pred3): 2.232920478011764e+18}$

Selección de Modelos: Motivación

- ightharpoonup Tenemos M_k modelos
- Queremos encontrar el que mejor predice fuera de muestra
- Hay distintas formas de enfrentarlo
- Las clásicas
 - Elección del mejor conjunto
 - Elección por pasos
 - Hacia adelante (Forward selection)
 - Hacia atras (Backward selection)

Regularización

Lasso

Para un $\lambda \geq 0$ dado, consideremos el siguiente problema de optimización

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - \beta_0 - x_{i1}\beta_1 - \dots - x_{ip}\beta_p)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$
 (4)

Lasso

lacktriangle Para un $\lambda \geq 0$ dado, consideremos el siguiente problema de optimización

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - \beta_0 - x_{i1}\beta_1 - \dots - x_{ip}\beta_p)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$
 (4)

- ► "LASSO's free lunch": selecciona automáticamente los predictores que van en el modelo $(\beta_j \neq 0)$ y los que no $(\beta_j = 0)$
- ▶ Porque? Los coeficientes que no van son soluciones de esquina
- $ightharpoonup L(\beta)$ es no differentiable

6/30

Lasso Intuición en 1 Dimension

Lasso Intuición

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda|\beta|$$
 (5)

- Un solo predictor, un solo coeficiente
- ightharpoonup Si $\lambda = 0$

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 \tag{6}$$

y la solución es

 $\hat{\beta}_{OLS}$

(7)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda|\beta|$$
 (8)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda|\beta|$$
(9)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda|\beta|$$
(10)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda|\beta|$$
(11)

11/30

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda|\beta|$$
 (12)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda|\beta|$$
(13)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda|\beta|$$
 (14)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda|\beta|$$
(15)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda|\beta|$$
 (16)

la solución analítica es

$$\hat{\beta}_{lasso} = \begin{cases} 0 & \text{si } \lambda \ge \lambda^* \\ \hat{\beta}_{OLS} - \frac{\lambda}{2} & \text{si } \lambda < \lambda^* \end{cases}$$
 (17)

16/30

Intuición en 2 Dimensiones (OLS)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_{i1}\beta_1 - x_{i1}\beta_2)^2$$
(18)

Fuente: https://allmodelsarewrong.github.io

Intuición en 2 Dimensiones (Lasso)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_{i1}\beta_1 - x_{i1}\beta_2)^2 \text{ s.a } (|\beta_1| + |\beta_2|) \le c$$
 (19)

Ridge

Para un $\lambda \geq 0$ dado, consideremos ahora el siguiente problema de optimización

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - \beta_0 - x_{i1}\beta_1 - \dots - x_{ip}\beta_p)^2 + \lambda \sum_{j=1}^{p} (\beta_j)^2$$
 (20)

La intuición es similar a lasso, pero la vamos a extender a 2-Dim

Intuición en 2 Dimensiones (OLS)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_{i1}\beta_1 - x_{i1}\beta_2)^2$$
 (21)

Fuente: https://allmodelsarewrong.github.io

► Al problema

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - \beta_0 - x_{i1}\beta_1 - \dots - x_{ip}\beta_p)^2 + \lambda \sum_{j=1}^{p} (\beta_j)^2$$
 (22)

podemos escribirlo como

$$\min_{\beta} E(\beta) = \sum_{i=1}^{n} (y_i - x_{i1}\beta_1 - x_{i1}\beta_2)^2$$
sujeto a
$$((\beta_1)^2 + (\beta_2)^2) \le c$$
(23)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_{i1}\beta_1 - x_{i1}\beta_2)^2 \text{ s.a } ((\beta_1)^2 + (\beta_2)^2) \le c$$
 (24)

Fuente: https://allmodelsarewrong.github.io

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_{i1}\beta_1 - x_{i1}\beta_2)^2 \text{ s.a } ((\beta_1)^2 + (\beta_2)^2) \le c$$
 (25)

Fuente: https://allmodelsarewrong.github.io

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_{i1}\beta_1 - x_{i1}\beta_2)^2 \text{ s.a } ((\beta_1)^2 + (\beta_2)^2) \le c$$
 (26)

Fuente: https://allmodelsarewrong.github.io

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_{i1}\beta_1 - x_{i1}\beta_2)^2 \text{ s.a } ((\beta_1)^2 + (\beta_2)^2) \le c$$
 (27)

Fuente: https://allmodelsarewrong.github.io

Lasso y Ridge Ejemplo

Comentarios técnicos

- Lasso y ridge son sesgados, pero las disminuciones en varianza pueden compensar estoy y llevar a un MSE menor
- Lasso encoje a cero, Ridge no tanto
- Importante para aplicación:
 - Estandarizar los datos (media 0, y varianza 1)
 - ► Como elegimos λ ?

Comentarios técnicos: selección de λ

- ightharpoonup Como elegimos λ ?
- $ightharpoonup \lambda$ es un parámetro y lo elegimos usando validación cruzada
 - 1 Partimos la muestra de entrenamiento en K Partes: $M_{train} = M_{fold\,1} \cup M_{fold\,2} \cdots \cup M_{fold\,K}$
 - 2 Cada conjunto $M_{fold\ K}$ va a jugar el rol de una muestra de evaluación $M_{eval\ k}$. Entonces para cada muestra
 - $ightharpoonup M_{train-1} = M_{train} M_{fold 1}$

 - $ightharpoonup M_{train-k} = M_{train} M_{fold\,k}$
 - 3 Luego hacemos el siguiente loop
 - 1 Para $\lambda_i = 0.0.001, 0.002, \dots, \lambda_{max}$
 - Para k = 1, ..., K
 - Ajustar el modelo $m_{i,k}$ con λ_i en $M_{train-k}$
 - Calcular y guardar el $MSE(m_{i,k})$ usando M_{eval-k}
 - fin para k
 - Calcular y guardar $MSE_i = \frac{1}{K}MSE(m_{i,k})$
 - 2 fin para λ
 - Encontrar el menor MSE_i y usar ese $\lambda_i = \lambda^*$

Elastic net

$$min_{\beta}NEL(\beta) = \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij}\beta_j)^2 + \alpha \left(\lambda_1 \sum_{j=1}^{p} |\beta_j|\right) + (1 - \alpha) \left(\lambda_2 \sum_{j=1}^{p} (\beta_j)^2\right)$$
(28)

- ightharpoonup Si $\alpha = 1$ Lasso
- Si $\alpha = 0$ Rigdge
- $ightharpoonup \hat{eta}_{EN} = rac{1}{\sqrt{1+\lambda_2}}\hat{eta}_{naive\,EN}$

Volvemos en 5 mins con Python