MATH 205

3.7 The Chain Rule

Review

- Find $\frac{d}{dx}(4x+5)^2$ by
- 1. Foiling and using sum/difference rule
- 2. Using the product rule
- There is a third method for this type of problem and it is called the chain rule!
- Find $\frac{d}{dx} (8x^5 6x^3 + 18x 8)^6$

The Chain Rule

If f is differentiable at y = g(x) and g is differentiable at x, the $(f \circ g)(x) = f(g(x))$ is differentiable at x and

$$(f \square g)'(x) = f'(g(x)) \cdot g'(x)$$

or if $y = f(u)$ and $u = g(x)$ then

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$
, where $\frac{dy}{du}$ is evaluated at $u = g(x)$

The derivative of the outer function in terms of the inner function times the derivative of the inner function.

Time To Break It Down

For each of the following:

 \blacksquare Determine the inner function u(x)

Determine the outer function f(u)

Determine f'(u) and u'(x)

Determine f'(x)

1. $f(x) = (4 \sin x - 3x^2)^5$

2.
$$f(x) = \tan(x^2 - 6x + 1)$$

3. $\frac{d}{d\theta} \tan(\cos \theta)$

4.
$$\frac{d}{dx} \frac{\sin(3x^4 - 10x)}{4x^9 - 6e^{5x}}$$

5.
$$\frac{d}{dx}\sqrt{7x^5-6x^3+8}$$

6.
$$\frac{d}{dx}\cot x(4x^7\sec x)^{-10}$$

7.
$$\frac{d}{d\theta} \left(\sin^2 \theta + \cos^2 \theta \right)$$

$$8. \frac{d}{dx} \cos\left(\sqrt{\sin(5x^3 + 6x^2 - 11)}\right)$$

Application

9. Determine the equation of the tangent line to yat $x = \frac{\pi}{3}$ if $y = 7\cos^2 x$

Application

The displacement of a mass on a spring suspended from the ceiling is given by $y = 10e^{\frac{-t}{2}}\cos\left(\frac{\pi t}{8}\right)$

Graph the displacement function

. Determine and graph v(t).