

Analisi I - 13/6/24 - Prova Scritta (versione A)

Esercizio 1 (6 punti). Calcolare il seguente limite:

$$\lim_{x \to 0} \frac{\sin\left(1 - \cos\sqrt{x}\right)}{x}$$

Si utilizzino gli sviluppi di Taylor delle funzioni sin e cos. Risulta $\sin(1-\cos\sqrt{x}) = \frac{x}{2} + o(x), x \to 0$. Pertanto

$$\lim_{x \to 0} \frac{\sin\left(1 - \cos\sqrt{x}\right)}{x} = \frac{1}{2}.$$

Esercizio 2 (9 punti). Studiare la funzione

$$f(x) = \arctan\left(\frac{|x-1|}{\sqrt{x+2}}\right)$$

rispondendo ai seguenti punti.

(2a) Dominio, eventuali simmetrie e periodicità.

Il dominio di f e'] $-2, +\infty$ [. Non ci sono simmetrie e periodicità.

(2b) Limiti agli estremi del dominio ed eventuali asintoti.

Per $x \to -2^+$ e per $x \to +\infty$, l'argomento dell'arcotangente tende a $+\infty$, quindi $f(x) \to \frac{\pi}{2}$. La retta di equazione $y = \frac{\pi}{2}$ e' quindi un asintoto orizzontale per il grafico di f per $x \to +\infty$.

(2c) Segno e zeri.

Poiche' l'argomento della funzione arcotangente e' sempre non negativo e si annulla soltanto per x = 1, si ha che $f(x) \ge 0$ su tutto il dominio di f e f(x) = 0 se e solo se x = 1.

(2d) Derivata e intervalli di monotonia.

La funzione f e' derivabile sul suo dominio per $x \neq 1$, e la sua derivata e'

$$f'(x) = \frac{1}{1 + \left[\frac{|x-1|}{\sqrt{x+2}}\right]^2} \frac{\frac{x-1}{|x-1|}\sqrt{x+2} - |x-1|\frac{1}{2\sqrt{x+2}}}{x+2} = \frac{x+2}{x+2+|x-1|^2} \frac{\frac{x-1}{|x-1|}(x+2) - \frac{1}{2}|x-1|}{(x+2)\sqrt{x+2}} = \frac{2(x-1)(x+2) - (x-1)^2}{2[x+2+(x-1)^2]\sqrt{x+2}|x-1|} = \frac{x^2+4x-5}{2(x^2-x+3)\sqrt{x+2}|x-1|}.$$

La funzione non e' invece derivabile per x=1. Dette infatti $g(x)=\arctan\frac{1-x}{\sqrt{x+2}}$ e $h(x)=\arctan\frac{x-1}{\sqrt{x+2}}$, si avrå $f'_-(1)=g'(1)=\lim_{x\to 1^-}f'(x)=-\frac{1}{\sqrt{3}}$ e $f'_+(1)=h'(1)=\frac{1}{\sqrt{3}}$.

Si nota inoltre che f'(x) > 0 se e solo se $\frac{x^2 + 4x - 5}{x^2 - x + 3} > 0$, cioe' se e solo se $x^2 + 4x - 5 > 0$, e dunque, dovendo considerare x all'interno di D(f), se e solo se x > 1. Quindi f e' decrescente in]-2,1], crescente in $[1,+\infty[$, e quindi biiettiva da tali intervalli a $[0,\frac{\pi}{2}[$.

(2e) Eventuali massimi e minimi.

Poiché, come gia' osservato, $f(x) \ge 0$ su tutto D(f) e f(x) = 0 se e solo se x = 1, x = 1 e' un punto di minimo globale per f. Non ci sono invece punti di massimo locale.

(2f) Tracciare un grafico qualitativo di f.

