Role of Hypoxic Conditions in Cartilage Tissue Engineering

Chan Cheuk Ka 1155174356

Supervisor: Prof Li Zhong Alan

Associate Examiner: Prof CHAN Pui Barbara

Table of contents

O1 Background

Problem statement

02

Theory

Experimental rationale

03 Materials & Methods

Experimental protocols

04

Results & Discussion

Experimental results

01 Background

Problem statement

Cartilage Damage

Current situation

Cartilage damage is a very common ailment affecting many people worldwide

[1] M. Liu et al., Bone Research, 2017

Limited Regeneration Capacity [2]

Avascular

Lacks direct oxygen supply

Aneural

Lacks stimulation

Alymphatic

Slow metabolism

Lack Progenitors

Slow healing

[2] C. A. Vilela et al., ACS biomaterials science & engineering, 2015 [3] A. Lindahl et al., Tissue Engineering, 2023

Background

Theory

Materials & Methods

Results & Discussion

Hyaline Cartilage

- Smooth in nature
- Rich in type II collagen
- Exhibits low friction
- Aids joint articulation [4]

[4] J. C. Sherwood *et al.*, *Drug Discovery Today*, 2014 [3] A. Lindahl *et al.*, *Tissue Engineering*, 2023 [5] X. Li *et al.*, *Advanced Healthcare Materials*, 2024

Fibrocartilage Formation

- Form after injuries
- Rich in type I collagen
- Inferior biomechanical properties
- Unsuitable for joint articulation
- Degrades cartilage
- Can lead to osteoarthritis [7]

[6] Y. A. Pei et al., Cellular and Molecular Life Sciences, 2022

[7] J. Li et al., Science Advances, 2022

Current Treatments

Microfracture

Joint replacement

[8] K. R. Stone, www.stoneclinic.com, 2020 [9] J. R. H. Foran et al., Aaos.org, 2016

Autologous Chondrocyte Implantation

[1] M. Liu et al., Bone Research, 2017

Mesenchymal Stem Cells (MSCs)

[10] Proteintech Group, Ptglab.com, 2018

Chondrocyte Phenotypic Instability

02Theory

Experimental design rationale

2% - 7% O₂

The native oxygen concentration of cartilage

5-10 mins half-life in $O_{2_{[13]}}$

Normoxia:

Degraded via prolyl hydroxylation and proteasome degradation [14]

Hypoxia:

Hydroxylases are inhibited [15,16]

[15] G. Teti et al., Stem Cells International, 2018[16] M. Y. Koh et al., Trends in Biochemical Sciences, 2012

Regulates differentiation [17]

Upregulates related genes like Sox9

Stabilises phenotype [18]

Epigenetic effects

[17] M. B. Goldring et al., Annals of the New York Academy of Sciences, 2010 [18] D. K. Taheem et al., Tissue Engineering Part B: Reviews, 2020

Hypoxia mimetic agent CoCl₂

3D Culturing

3D

- Promote cell-cell & cell-ECM interactions [19]
- Natural cell morphology by allowing aggregation and micro-environments [19]
- Can induce more chondrogenic markers and proteins_[20]

2D

- Convenient
- Easily reproducible
- Cannot mimic in vivo environments (mostly cell-plastic & cell-medium interactions) [20,21]

[19] D. Antoni et al., International Journal of Molecular Sciences, 2015 [20] M. M. J. Caron et al., Osteoarthritis and Cartilage, 2012

[21] J. C. Fontoura et al., Materials Science and Engineering: C, 2020

03Materials & Methods

Experimental protocols

Experimental Flow

Chondrogenesis Evaluation

Gene (qPCR)	Chondrogenic Involvement	Expectation		
Hif1 α	Regulates chondrogenic differentiation	↑ in hypoxia		
Collal	Type I collagen	↓ in hypoxia		
Col2a1	Type II collagen: major cartilage component	↑ in hypoxia		
Col10a1	Type X collagen	↓ in hypoxia		
Acan	Aggrecan: major cartilage component	↑ in hypoxia		
Sox9	Sox9 Maintains cartilage homeostasis			
Mmp13	Degrades type II collagen	↓ in hypoxia		

04 Results & Discussion

Experimental results

MSC Thawing

Day 3 14-3-2025

Day 5 16-3-2025

Day 7 18-3-2025

Day 9 20-3-2025

MSCs in T75 flask, 10× magnification

MSC Culturing

MSCs in 12-well plate, 10× magnification

MSC Chondrogenesis

MSCs in 12-well plate, 10× magnification

Alcian Blue Staining

MSCs in 12-well plate (Alcian blue)

RNA extraction

Sample	Concentration (ng/μL)	A260/A280	A260/A230
Norm-1	0.74	1.67	0.09
Norm-2	1.28	1.80	0.18
Norm-3	<u>1.92</u>	2.09	<u>3.30</u>
Нуро-1	<u>1.98</u>	<u>2.98</u>	<u>3.09</u>
Нуро-2	1.70	1.57	0.58
Нуро-3	1.58	3.37	0.01

Нурохіа

	Gene	Normalised Cq					Mean		SD			
			NORM			HYPO		NORM	HYPO	NORM	НҮРО	P-value
	Hif1α	-1.46	-4.04	-1.31	-4.56	-4.02	-3.89	-2.27	-4.15	1.54	0.36	0.054
т— ъ	Col1a1	-0.40	-10.8	-10.2	-11.4	-10.8	-10.2	-7.14	-10.8	5.85	0.61	0.170
	Col2a1	-	-	+6.87	+8.50	-	+6.59	+6.87	+7.54	1.35	1.35	-
	Col10a1	+3.19	+3.22	+2.95	+0.96	+2.24	-0.46	+3.12	+0.91	0.15	1.35	0.024
	Acan	+4.71	+5.68	+5.73	+6.06	+8.26	+6.32	+5.37	+6.88	0.57	1.2	0.061
	Sox9	-0.30	+1.20	+0.41	+0.42	+0.71	+0.57	+0.44	+0.57	0.75	0.15	0.392
	Mmp13	0.21	+0.32	-0.21	-0.62	-0.14	-0.26	+0.11	-0.34	0.28	0.25	0.053

10-

qPCR (Trial 4)

 $\Delta\Delta$ Cq = -1.88

Gene

ightarrow 3.69× higher in hypoxia p=0.054

Background

Theory

Materials & Methods

Results & Discussion

Discussion

qPCR & Staining

To be reattempted in the future to acquire more conclusive results

Implications

Based on literature...

Hypoxic culturing of cartilage tissue in vitro is viable

It is an effective and efficient method of phenotypic control, compared to the use of factor and hormone cocktails

References

- [1] M. Liu *et al.*, "Injectable Hydrogels for Cartilage and Bone Tissue Engineering," *Bone Research*, vol. 5, no. 17014, p. 17014, May 2017, doi: https://doi.org/10.1038/boneres.2017.14.
- [2] C. A. Vilela, C. Correia, J. M. Oliveira, R. A. Sousa, J Espregueira-Mendes, and R. L. Reis, "Cartilage Repair Using Hydrogels: A Critical Review of in Vivo Experimental Designs," *ACS biomaterials science & engineering*, vol. 1, no. 9, pp. 726–739, Aug. 2015, doi: https://doi.org/10.1021/acsbiomaterials.5b00245.
- [3] A. Lindahl *et al.*, "Cartilage and Bone Regeneration," in *Tissue Engineering (Third Edition)*, J. de Boer, C. A. van Blitterswijk, J. A. Uquillas, and N. Malik, Eds., Academic Press, 2023, pp. 533–583. doi: https://doi.org/10.1016/b978-0-12-824459-3.00016-0.
- [4] J. C. Sherwood, J. Bertrand, S. E. Eldridge, and F. Dell'Accio, "Cellular and Molecular Mechanisms of Cartilage Damage and Repair," *Drug Discovery Today*, vol. 19, no. 8, pp. 1172–1177, Aug. 2014, doi: https://doi.org/10.1016/j.drudis.2014.05.014.
- [5] X. Li et al., "Research Progress in Hydrogels for Cartilage Organoids," Advanced Healthcare Materials, vol. 13, no. 22, May 2024, doi: https://doi.org/10.1002/adhm.202400431.
- [6] Y. A. Pei, S. Chen, and M. Pei, "The Essential anti-angiogenic Strategies in Cartilage Engineering and Osteoarthritic Cartilage Repair," *Cellular and Molecular Life Sciences*, vol. 79, no. 1, Jan. 2022, doi: https://doi.org/10.1007/s00018-021-04105-0.
- [7] J. Li *et al.*, "Articular fibrocartilage-targeted therapy by microtubule stabilization," *Science Advances*, vol. 8, no. 46, Nov. 2022, doi: https://doi.org/10.1126/sciadv.abn8420.
- [8] K. R. Stone, "Failed Microfracture," www.stoneclinic.com, Mar. 17, 2020. https://www.stoneclinic.com/blog/failed-microfracture (accessed May 20, 2024).
- [9] J. R. H. Foran and P. W. Manner, "Knee Replacement Implants Ortholnfo AAOS," *Aaos.org*, 2016.
- https://orthoinfo.aaos.org/en/treatment/knee-replacement-implants/
- [10] Proteintech Group, "Are Mesenchymal Stem Cells (MSCs) true stem cells?," Ptglab.com, 2018.
- https://www.ptglab.com/news/blog/are-mesenchymal-stem-cells-mscs-true-stem-cells/

References

- [11] Z. Liu, T. Wang, X. Sun, and M. Nie, "Autophagy and apoptosis: Regulatory Factors of Chondrocyte Phenotype Transition in Osteoarthritis," *Human Cell*, vol. 36, no. 4, pp. 1326–1335, Jun. 2023, doi: https://doi.org/10.1007/s13577-023-00926-2.
- [12] H. Le, W. Xu, X. Zhuang, F. Chang, Y. Wang, and J. Ding, "Mesenchymal Stem Cells for Cartilage Regeneration," *Journal of Tissue Engineering*, vol. 11, p. 204173142094383, Jan. 2020, doi: https://doi.org/10.1177/2041731420943839.
- [13] S. Salceda and J. Caro, "Hypoxia-inducible Factor 1α (HIF- 1α) Protein Is Rapidly Degraded by the Ubiquitin-Proteasome System under Normoxic Conditions," *Journal of Biological Chemistry*, vol. 272, no. 36, pp. 22642–22647, Sep. 1997, doi: https://doi.org/10.1074/jbc.272.36.22642.
- [14] R. Amarilio, Sergey Viukov, Amnon Sharir, Idit Eshkar-Oren, R. S. Johnson, and Elazar Zelzer, "HIF1α Regulation of *Sox9* Is Necessary to Maintain Differentiation of Hypoxic Prechondrogenic Cells during Early Skeletogenesis," *Development*, vol. 134, no. 21, pp. 3917–3928, Nov. 2007, doi: https://doi.org/10.1242/dev.008441.
- [15] G. Teti *et al.*, "The Hypoxia-Mimetic Agent Cobalt Chloride Differently Affects Human Mesenchymal Stem Cells in Their Chondrogenic Potential," *Stem cells international*, vol. 2018, pp. 1–9, Jan. 2018, doi: https://doi.org/10.1155/2018/3237253. [16] M. Y. Koh and G. Powis, "Passing the baton: the HIF switch," *Trends in Biochemical Sciences*, vol. 37, no. 9, pp. 364–372, Sep. 2012, doi: https://doi.org/10.1016/j.tibs.2012.06.004.
- [17] M. B. Goldring and S. R. Goldring, "Articular Cartilage and Subchondral Bone in the Pathogenesis of Osteoarthritis," *Annals of the New York Academy of Sciences*, vol. 1192, no. 1, pp. 230–237, Apr. 2010, doi: https://doi.org/10.1111/j.1749-6632.2009.05240.x. [18] D. K. Taheem, G. Jell, and E. Gentleman, "Hypoxia Inducible Factor-1\alpha in Osteochondral Tissue Engineering," *Tissue Engineering Part B: Reviews*, vol. 26, no. 2, Jan. 2020, doi: https://doi.org/10.1089/ten.teb.2019.0283.
- [19] D. Antoni, H. Burckel, E. Josset, and G. Noel, "Three-Dimensional Cell Culture: A Breakthrough in Vivo," *International Journal of Molecular Sciences*, vol. 16, no. 12, pp. 5517–5527, Mar. 2015, doi: https://doi.org/10.3390/ijms16035517.

References

[20] M. M. J. Caron et al., "Redifferentiation of Dedifferentiated Human Articular chondrocytes: Comparison of 2D and 3D Cultures," Osteoarthritis and Cartilage, vol. 20, no. 10, pp. 1170–1178, Oct. 2012, doi: https://doi.org/10.1016/j.joca.2012.06.016. [21] J. C. Fontoura et al., "Comparison of 2D and 3D Cell Culture Models for Cell growth, Gene Expression and Drug Resistance," Materials Science and Engineering: C, vol. 107, p. 110264, Feb. 2020, doi: https://doi.org/10.1016/j.msec.2019.110264.

Thanks!

Guidance and assistance from PhD student CAI RunXuan are acknowledged
Gratitude to Nelson SO for providing the teaching lab for use
Gratitude to Priscilla YU for giving additional briefings

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**