第八章 假设检验

第七章研究的问题包括

- 1、参数等于什么?
- 2、参数在什么范围?

第八章研究的问题:

3、一个关于总体分布的判断正确吗?

例如: $\theta=2$? $\theta\neq2$? $\mu=0$? $\mu>0$? $\mu<0$? 等等。

例1 某车间用一台包装机包装葡萄糖,包装的袋装糖重量是一个随机变量,它服从正态分布。当机器正常时,其均值为0.5公斤,标准差为0.015公斤. 某日开工后为检验包装机是否正常,随机地抽取它所包装的糖9袋,称得净重为(公斤):

 $0.497 \ 0.506 \ 0.518 \ 0.524 \ 0.498 \ 0.511 \ 0.520$

0.515 0.512

问机器是否正常?

M

以X 代表任取一代糖的重量,则X 服从正态分布。一般而言,方差比较稳定,在这个问题中,我们设 $\sigma=0.015$ 。所以 $X\sim N(\mu,0.015^2)$, μ 未知。

问题: $\mu = 0.5$ 还是 $\mu \neq 0.5$?

统计假设一一关于总体分布的一个判断。

注意:这里的"判断"是预先不知道到底是否正确的那种判断。不同于"已知条件"。

而 " $\sigma = 0.015$ "是 已知条件。

上述的 μ =0.5,由于是原来的经 验,我们把它叫作原假设,记 为 $H_0: \mu = 0.5$; 而它的对立面 (否定) $\mu \neq 0.5$ 称为备择假设, 记为 $H_1: \mu \neq 0.5$ 。

在一对互为否定的假设中,一般按照以下原则确定原假设:

- 1、以前的经验作为原假设;
- 2、不能轻易否定的作为原假设;
- 3、带等号的一个作为原假设。

注意:不能把自己"认为"对的作为原假设。

假设检验考虑问题的方法类似于"反证法"

- 注意: 1、增大是指"大于", 不增大是指"小于等于"
- 2、没有变化是指"等于"
- 3、有变化是指"不等于"
- 4、不能把"希望要的结论"作为原假设。而是要根据前面的原则确定什么是原假设。

М

记
$$\sigma_0$$
=0.015, μ_0 =0.5

由于样本均值 \overline{X} 在 μ 的附近取值。因此,如果 μ =0.5 的话, \overline{X} 的观测值应在0.5的附近。

考虑问题的思路:确定一个数a>0,

1) 当
$$\frac{|X - \mu_0|}{\sigma_0/\sqrt{n}} \ge a$$
 时否定 H_0

2)当
$$\frac{|X-\mu_0|}{\sigma_0/\sqrt{n}}$$
 < a 时不否定 H_0 ,即接受 H_0

a的选取:由于 $H_0: \mu=\mu_0$ 不能轻易否定。我们

要求: 当 H_0 为真时,否定错了的概率比较小。

即
$$P$$
{当 H_0 为真时拒绝 H_0 } = P_{μ_0} $\left\{ \left| \frac{\overline{X} - \mu_0}{\sigma_0 / \sqrt{n}} \right| \ge a \right\}^{idh} = \alpha$

比较小。一般取 α 为0.05, 0.01或0.1

当
$$H_0$$
为真时,
$$\frac{X-\mu_0}{\sigma_0/\sqrt{n}} \sim N(0,1)$$

取
$$a = z_{\alpha/2}$$
即可

综上所述: 检验问题是 $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$

1、选取统计量
$$Z = \frac{X - \mu_0}{\sigma_0 / \sqrt{n}}$$
;

- 2、当 H_0 为真时, $Z \sim N(0,1)$;
- 3、 $|\mathbf{Z}| \ge z_{\alpha/2}$ 时拒绝 H_0 ; $|\mathbf{Z}| < z_{\alpha/2}$ 时接受 H_0

a)
$$Z = \frac{X - \mu_0}{\sigma_0 / \sqrt{n}}$$
 称为检验统计量;

- b) α 称为显著性水平;
- c) $|\mathbf{Z}| \ge z_{\alpha/2}$ 称为拒绝域。

М

例1 某车间用一台包装机包装葡萄糖,包装的袋装糖重量是一个随机变量,它服从正态分布。当机器正常时,其均值为0.5公斤,标准差为0.015公斤. 某日开工后为检验包装机是否正常,随机地抽取它所包装的糖9袋,称得净重为(公斤):

0.497 0.506 0.518 0.524 0.498 0.511 0.520

0.515 0.512

问机器是否正常?

M

解: 设总体"一代糖的重量" $X \sim N(\mu, 0.015^2)$ 。

要检验的假设是: H_0 : $\mu = \mu_0 = 0.5$, H_1 : $\mu \neq \mu_0$

取显著性水平 $\alpha = 0.05$,则 $z_{0.025} = 1.96$

选取检验统计量
$$Z = \frac{\overline{X} - \mu_0}{\sigma_0 / \sqrt{n}}$$

拒绝域为: $|\mathbf{Z}| \ge z_{\alpha/2} = 1.96$

由样本算得 x = 0.511,故

$$|Z| = \frac{|0.511 - 0.5|}{0.015 / \sqrt{9}} = 2.2 > z_{\alpha/2}$$
. 拒绝原假设 H_0

即可以认为该日机器工作不正常。

上述介绍的方法是显著性检验中的一类—— 双边显著性检验。除此之外还有"单边"检 验 单边检验:有时候我们可能关心如下的问题"总体的均值"是否增大(减小)?

这类问题就是如下的检验问题:

$$H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$$
 (1.3),右边检验
或者

 $H_0: \mu \ge \mu_0, H_1: \mu < \mu_0$ (1.4),左边检验

带等号的作为原假设

×

例2 公司从生产商购买牛奶。公司怀疑生产商 在牛奶中掺水以谋利。通过测定牛奶的冰点, 可以检验出牛奶是否掺水。天然牛奶的冰点温度 近似服从正态分布,均值 $\mu_0 = -0.545^{\circ}$ C,标准差 $\sigma = 0.008$ °C。牛奶掺水可使冰点温度升高而接近 于水的冰点温度(°C)。测得生产商提交的5 批牛 奶的冰点温度, 其均值为 $x = -0.535^{\circ}$ C。是否可 以认为生产商在牛奶中掺了水? 取 $\alpha = 0.05$.

解:设总体分布为 $N(\mu,0.008^2)$ 。需检验假设

 $H_0: \mu \leq \mu_0 = -0.545$ (即设牛奶未掺水)

 $H_1: \mu > \mu_0$ (即设牛奶已掺水)为什么?

取检验统计量
$$z = \frac{\overline{X} - \mu_0}{\sigma_0 / \sqrt{n}}$$

检验统计量取值偏大有利于备择假设,反 之有利于原假设。故拒绝域形如 Z≥k P{当 H_0 为真时拒绝 H_0 }

$$= P_{\mu \le \mu_0} \left\{ \frac{\overline{X} - \mu_0}{\sigma_0 / \sqrt{n}} \ge \mathbf{k} \right\}$$

当
$$\mu \le \mu_0$$
时,由 $\frac{X - \mu_0}{\sigma_0 / \sqrt{n}} \le \frac{X - \mu}{\sigma_0 / \sqrt{n}}$ 可得:

事件
$$\left\{\frac{\overline{X} - \mu_0}{\sigma_0/\sqrt{n}} \ge k\right\}$$
包含于事件 $\left\{\frac{\overline{X} - \mu}{\sigma_0/\sqrt{n}} \ge k\right\}$

$$= P_{\mu \leq \mu_0} \left\{ \frac{\overline{X} - \mu_0}{\sigma_0 / \sqrt{n}} \geq \mathbf{k} \right\}$$

$$\leq P_{\mu \leq \mu_0} \left\{ \frac{\overline{X} - \mu}{\sigma_0 / \sqrt{n}} \geq k \right\} = P \left\{ \frac{\overline{X} - \mu}{\sigma_0 / \sqrt{n}} \geq k \right\}$$

$$= P_{\mu=\mu_0} \left\{ \frac{X - \mu_0}{\sigma_0 / \sqrt{n}} \ge k \right\} = 1 - \Phi(k)$$

r,e

拒绝域为
$$z = \frac{\overline{X} - \mu_0}{\sigma_0 / \sqrt{n}} \ge z_{0.05} = 1.645$$

现在

$$z = \frac{-0.535 - (-0.545)}{0.008/\sqrt{5}} = 2.7951 > 1.645,$$

z落在拒绝域中。所以,在显著性水平 $\alpha = 0.05$ 下拒绝 H_0 ,即认为牛奶商在牛奶中掺了水.

类似地可得左边检验问题

$$H_0: \mu \ge \mu_0, H_1: \mu < \mu_0$$

的拒绝域为

$$z = \frac{x - \mu_0}{\sigma_0 / \sqrt{n}} \le -z_\alpha \quad (方差已知时)$$

表8-1 正态总体均值的检验法 (方差已知)

原假设 H_0	检验统计量	备择假设 H_1	拒绝域
$\mu \leq \mu_0$		$\mu > \mu_0$	$z \ge z_{\alpha}$
$\mu \geq \mu_0$	$Z = \frac{X - \mu_0}{\sigma / \sqrt{n}}$	$\mu < \mu_0$	$z \le -z_{\alpha}$
$\mu = \mu_0$		$\mu \neq \mu_0$	$ z \ge z_{\alpha/2}$
(σ ² 己知)			

统计假设---一个关于总体分布的判断

第一类错误---拒绝正确的原假设所犯的错误

第二类错误---接受错误的原假设所犯的错误

显著性水平---犯第一类错误的概率

拒绝域---样本(或检验统计量)落入该集合时拒绝原假设

原假设, 备择假设, 双边检验, 单边检验。

显著性检验的基本思想: 在控制犯第一类错误的概率的前提下,通过选择适当的检验方法(即拒绝域)使得犯第二类错误的概率尽可能小。

实际情况结论	原假设为真	原假设为假
接受原假设	V	第二类错误
拒绝原假设	第一类错误	V

- 1、犯第一类错误的概率和犯第二类错误的概率之和最大可以取到1。所以, 不可能同时使犯两类错误的概率都小。
- 2、按上述原则构造的检验称为显著性 检验。除此之外还有其他检验方法, 我们不学。
 - 3、显著性检验的基本思想:在控制犯第一类错误的概率的前提下,通过选择适当的检验方法(即拒绝域)使得犯第二类错误的概率尽可能小。

- 注意: 1、增大是指"大于", 不增大是指"小于等于"
- 2、没有变化是指"等于"
- 3、有变化是指"不等于"
- 4、不能把"希望要的结论"作为原假设。而是要根据前面的原则确定什么是原假设。