```
import pandas as pd
data = pd.read_csv('pollution_data.csv')
```

data.head()		_	
_			
	Country	City	AQI Value

<u>'</u>	Country	City	AQI Value	AQI Category	CO AQI Value	CO AQI Category	Ozone AQI Value	Ozone AQI Category	NO2 AQI Value	NO2 AQI Category	PM2.5 AQI Value	PM2.5 AQI Category	11.
0	Russian Federation	Praskoveya	51	Moderate	1	Good	36	Good	0	Good	51	Moderate	
1	Brazil	Presidente Dutra	41	Good	1	Good	5	Good	1	Good	41	Good	
2	Italy	Priolo Gargallo	66	Moderate	1	Good	39	Good	2	Good	66	Moderate	
3	Poland	Przasnysz	34	Good	1	Good	34	Good	0	Good	20	Good	
4	France	Punaauia	22	Good	0	Good	22	Good	0	Good	6	Good	

View recommended plots Next steps: Generate code with data New interactive sheet

data.isnull().sum()

```
→
                           0
                         427
           Country
             City
                            1
          AQI Value
                           0
        AQI Category
                           0
        CO AQI Value
                           0
       CO AQI Category
                           0
       Ozone AQI Value
                           0
     Ozone AQI Category
                           0
        NO2 AQI Value
                           0
      NO2 AQI Category
                            0
       PM2.5 AQI Value
                           0
     PM2.5 AQI Category
                           0
```

dtype: int64

```
data.columns
Index(['Country', 'City', 'AQI Value', 'AQI Category', 'CO AQI Value', 'CO AQI Category', 'Ozone AQI Value', 'Ozone AQI Category', 'NO2 AQI Value', 'NO2 AQI Category', 'PM2.5 AQI Value',
               'PM2.5 AQI Category'],
             dtype='object')
data_cleaned = data.dropna()
features = ['CO AQI Value', 'Ozone AQI Value', 'NO2 AQI Value']
target = 'PM2.5 AQI Value'
X = data_cleaned[features]
y = data_cleaned[target]
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
X_train.shape, X_test.shape, y_train.shape, y_test.shape

→ ((18428, 3), (4607, 3), (18428,), (4607,))
```

```
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X_train, y_train)
\overline{2}
     ▼ LinearRegression
     LinearRegression()
from sklearn.metrics import mean_squared_error, r2_score
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print(f"Mean Squared Error: {mse}")
print(f"R-squared: {r2}")
    Mean Squared Error: 2323.6262043401234
     R-squared: 0.2729451520893512
from sklearn.ensemble import RandomForestRegressor
rf_model = RandomForestRegressor(n_estimators=100, random_state=42)
rf_model.fit(X_train, y_train)
y_pred_rf = rf_model.predict(X_test)
mse_rf = mean_squared_error(y_test, y_pred_rf)
r2_rf = r2_score(y_test, y_pred_rf)
print(f"Random Forest Mean Squared Error: {mse_rf}")
print(f"Random Forest R-squared: {r2_rf}")
Random Forest Mean Squared Error: 2188.300390245912
     Random Forest R-squared: 0.3152881455539962
Start coding or generate with AI.
```