Exercício Computacional 1

MAP 3121

Daniel Nery Silva de Oliveira Mateus Almeida Barbosa

9349051 9349072

Professor Pedro Peixoto

Escola Politécnica da Universidade de São Paulo 14 de maio de 2017

Sumário

Sumário

Sobre o EP	3
Conclusão	4

Sobre o FP

O objetivo desse Exercício Computacional (EP) é o estudo de fluxo de potência em corrente contínua, dando ênfase à análise da sensibilidade dos fluxos de potência ativa a variações nos ângulos das tensões.

Para tanto, serão consideradas algumas hipóteses simplificativas como o intuito de simplificar os cálculos a serem realizados. O EP receberá como entradas a matriz de suceptâncias série (-[B]) e o vetor com as potências injetadas (P), e terá como saída um vetor com valores dos ângulos.

Para a resolução dos sistemas lineares propostos, será aplicado o método de fatoração QR através do de transformações de Householder. Poderão ser resolvidos tanto sistemas determinados quanto sobredeterminados.

Conclusão

O EP em questão prezou que fossem desenvolvidos algoritmos que trouxessem maior eficiência computacional, uma vez que um dos exemplos utilizados consistia de um sistema baseado em uma concessionária real, levando a uma matriz 6259x6259.

Com os métodos adotados, foi possível resolver todos os exercícios propostos, cujos resultados seguem:

- 2.881550853505e+000
- -1.833765757206e+000
- -1.513988527821e+000
- -1.521904714965e+000
- -4.537922912287e-001
- 5.856699199060e+000
- 3.421927953419e+000
- 3.656561734578e+000
- 1.203683002252e+000
- 6.125340831263e+000
- -2.479717478354e+000
- -1.477930261848e+000
- -1.203899366242e+000
- 1.284181396879e-001
- 6.501589871797e+000
- 1.149105260131e+001
- 1.458052573992e+001

Sistema 20x17

3.200000000000e+001	3.380000000000e+002	5.000000000000e+002
6.300000000000e+001	3.570000000000e+002	5.070000000000e+002
9.29999999999e+001	3.750000000000e+002	5.130000000000e+002
1.220000000000e+002	3.920000000000e+002	5.180000000000e+002
1.500000000000e+002	4.080000000000e+002	5.220000000000e+002
1.770000000000e+002	4.230000000000e+002	5.250000000000e+002
2.030000000000e+002	4.370000000000e+002	5.270000000000e+002
2.280000000000e+002	4.500000000000e+002	5.280000000000e+002
2.520000000000e+002	4.620000000000e+002	5.280000000000e+002
2.750000000000e+002	4.730000000000e+002	5.270000000000e+002
2.970000000000e+002	4.830000000000e+002	5.250000000000e+002
3.180000000000e+002	4.920000000000e+002	5.220000000000e+002

5.180000000000e+002	4.230000000000e+002	2.280000000000e+002
5.130000000000e+002	4.080000000000e+002	2.030000000000e+002
5.070000000000e+002	3.920000000000e+002	1.770000000000e+002
5.000000000000e+002	3.750000000000e+002	1.500000000000e+002
4.920000000000e+002	3.570000000000e+002	1.220000000000e+002
4.830000000000e+002	3.380000000000e+002	9.30000000000e+001
4.730000000000e+002	3.180000000000e+002	6.300000000000e+001
4.620000000000e+002	2.970000000000e+002	3.200000000000e+001
4.500000000000e+002	2.750000000000e+002	
4.370000000000e+002	2.520000000000e+002	0:-1