LECTURE 5: DYNAMIC PROGRAMMING

STAT 545: INTRO. TO COMPUTATIONAL STATISTICS

Vinayak Rao

Purdue University

September 3, 2018

DYNAMIC PROGRAMMING

Solve a complex problem by breaking it into simpler problems Recursion without recalculation:

- Relate solution of a problem to solutions of simpler problems (recursion)
- · Identify and solve initial (base) problems
- Reuse existing solutions to compute more complicated solutions (memoization)

PROB 1: WHO IS THE TALLEST PERSON IN CLASS?

Setup: We can only compare heights one pair at a time.

Naïve approach: build a binary relation matrix:

 $O(N^2)$ comparisons, but lots of redundancy.

Can we do better?

PROB 2: ORDER-DEPENDENT SUMS

Pick a set of unique integers. E.g. {1, 3, 4}. Find the number of ways to write N as sums of these.

E.g. for
$$N = 5$$
, the answer is 6:

$$5 = 1 + 1 + 1 + 1 + 1$$

$$= 1 + 1 + 3$$

$$= 1 + 3 + 1$$

$$= 3 + 1 + 1$$

$$= 1 + 4$$

$$= 4 + 1$$

http://web.stanford.edu/class/cs97si/
04-dynamic-programming.pdf

How do we solve for N = 1000?

How do we solve for N = 1000?

Let D_N be the solution (e.g. $D_5 = 6$).

How do we solve for N = 1000?

Let D_N be the solution (e.g. $D_5 = 6$).

Define a recursion. Observe that

- any sum ends with a 1,3 or 4.
- if the last term is i, the remaining sum to N i.
- $D_N = D_{N-1} + D_{N-3} + D_{N-4}$

How do we solve for N = 1000?

Let D_N be the solution (e.g. $D_5 = 6$).

Define a recursion. Observe that

- · any sum ends with a 1,3 or 4.
- if the last term is i, the remaining sum to N i.

•
$$D_N = D_{N-1} + D_{N-3} + D_{N-4}$$

Also,
$$D_0 = D_1 = D_2 = 1, D_3 = 2$$

How do we solve for N = 1000?

Let D_N be the solution (e.g. $D_5 = 6$).

Define a recursion. Observe that

- · any sum ends with a 1,3 or 4.
- if the last term is i, the remaining sum to N i.

$$D_N = D_{N-1} + D_{N-3} + D_{N-4}$$

Also,
$$D_0 = D_1 = D_2 = 1, D_3 = 2$$

```
ordered_sum <- function(N) {
  D <- rep(1,N); D[c(3,4)] <- c(2, 3)
  for(i in 5:N) {
    D[i] <- D[i-1] + D[i-3] + D[i-4] }
  return(D[N]) }</pre>
```

Given:

- · a bag with (integer) capacity W lbs
- *n* types of objects, with integer weights (w_1, \ldots, w_n) lbs and positive value (v_1, \ldots, v_n)
- Unlimited objects of each type

Goal: Fill bag to maximize value $\mathbb{V}(W)$

Given:

- · a bag with (integer) capacity W lbs
- *n* types of objects, with integer weights $(w_1, ..., w_n)$ lbs and positive value $(v_1, ..., v_n)$
- · Unlimited objects of each type

Goal: Fill bag to maximize value $\mathbb{V}(W)$

What is $\mathbb{V}(0)$?

How about V(1) and V(2)?

Given:

- · a bag with (integer) capacity W lbs
- *n* types of objects, with integer weights (w_1, \ldots, w_n) lbs and positive value (v_1, \ldots, v_n)
- Unlimited objects of each type

Goal: Fill bag to maximize value $\mathbb{V}(W)$

What is $\mathbb{V}(0)$?

How about V(1) and V(2)?

Can we express $\mathbb{V}(i)$ in terms of $\mathbb{V}(j), j < i$?

Given:

- · a bag with (integer) capacity W lbs
- *n* types of objects, with integer weights (w_1, \ldots, w_n) lbs and positive value (v_1, \ldots, v_n)
- Unlimited objects of each type

Goal: Fill bag to maximize value $\mathbb{V}(W)$

What is $\mathbb{V}(0)$?

How about V(1) and V(2)?

Can we express $\mathbb{V}(i)$ in terms of $\mathbb{V}(j), j < i$?

$$\mathbb{V}(i) = \max_{j:w_j \le i} \mathbb{V}(i - w_j) + v_j$$

A 2-DIMENSIONAL DYNAMIC PROGRAM

A DNA molecule is a sequence of nucleotides (A,T,G and C). Want to align two DNA sequences

Similarity can suggest functionality of a newly sequenced gene

Russell Doolittle and colleagues found similarities between cancer-causing gene and normal growth factor (PDGF) gene

What is the best alignment?

A 2-DIMENSIONAL DYNAMIC PROGRAM

A DNA molecule is a sequence of nucleotides (A,T,G and C). Want to align two DNA sequences

Similarity can suggest functionality of a newly sequenced gene

Russell Doolittle and colleagues found similarities between cancer-causing gene and normal growth factor (PDGF) gene

Simple sources of misalignment:

Substitution: A-A-C-T-G-G-A

A-A-C-T-C-G-A

Insertion: A-A-C-G-G-A

A-A-C-*-G-A

Deletion: A-A-C-T-*-G-A

A-A-C-T-C-G-A

SEQUENCE ALIGNMENT

Given two sequences:

$$A-A-C-T-A-T-G-G-C-C-A$$

What is the best alignment?

SEQUENCE ALIGNMENT

Given two sequences:

Define a distance between two sequences:

- Each substitution has a cost C_S
- Each insertion/deletion has a cost C_G (gap penalty)
- · In practice, these can depend on the nucleotides

A-A-*-C-T-A-T-G-G-C-C-A
A-C-A-C-T-A-T-G-G-*-C-T
This alignment has cost
$$2C_S + 2C_G$$
.

DYNAMIC PROGRAMMING RECURSION

Consider aligning to two strings S_1 and S_2 of length i and j: $S_1 = ... - G - C - C - A$ and $S_2 = ... - G - G - C - T$

DYNAMIC PROGRAMMING RECURSION

Consider aligning to two strings S_1 and S_2 of length i and j:

$$S_1 = \dots -G-C-C-A$$
 and $S_2 = \dots -G-G-C-T$
Three possibilities:

· The last two characters are matched:

A	$C_M(i,j) =$	Cost(i-1,j-1)+ Cost of match-
T		ing elements $S_1(i)$ and $S_2(j)$.

· A gap in the first string:

*	$C_I(i,j) =$	Cost(i, j - 1) + Cost of inserting
T		gap after $S_2(j)$.

A gap in the second string:

A	$C_D(i,j) =$	Cost(i - 1, j) + Cost of inserting
*		gap after $S_1(i)$.

The actual (best) cost:

$$Cost(i,j) = \min(C_M(i,j), C_I(i,j), C_D(i,j))$$

DEMO

 $[\verb|http://baba.sourceforge.net|]$

Forward recursion only returns cost of the best alignment. What is this alignment?

Compute via a backward trace

Forward recursion only returns cost of the best alignment. What is this alignment?

Compute via a backward trace

Recall:
$$Cost(i,j) = min(C_M(i,j), C_I(i,j), C_D(i,j))$$

Forward recursion only returns cost of the best alignment. What is this alignment?

Compute via a backward trace

Recall:
$$Cost(i,j) = min(C_M(i,j), C_I(i,j), C_D(i,j))$$

• If $Cost(i,j) = C_M(i,j)$ then add $S_1(i)$ and $S_2(j)$ to the heads of strings 1 and 2 respectively, and decrement i and j.

Forward recursion only returns cost of the best alignment. What is this alignment?

Compute via a backward trace

Recall:
$$Cost(i,j) = min(C_M(i,j), C_I(i,j), C_D(i,j))$$

- If $Cost(i,j) = C_M(i,j)$ then add $S_1(i)$ and $S_2(j)$ to the heads of strings 1 and 2 respectively, and decrement i and j.
- If $Cost(i,j) = C_l(i,j)$ then add $S_1(i)$ to the head of strings 1, and decrement i.

Forward recursion only returns cost of the best alignment. What is this alignment?

Compute via a backward trace

Recall:
$$Cost(i,j) = min(C_M(i,j), C_I(i,j), C_D(i,j))$$

- If $Cost(i,j) = C_M(i,j)$ then add $S_1(i)$ and $S_2(j)$ to the heads of strings 1 and 2 respectively, and decrement i and j.
- If $Cost(i,j) = C_1(i,j)$ then add $S_1(i)$ to the head of strings 1, and decrement i.
- If $Cost(i,j) = C_D(i,j)$ then add $S_2(j)$ to the head of strings 2, and decrement j.

DEMO (CONTD)

[http://baba.sourceforge.net]

Overall algorithm: Needleman-Wunsch algorithm.

Cost (for sequences of length N and M):

- Forward pass: O(NM) time (computations)
 O(NM) space (memory)
- Backward pass: O(N + M) time

CONCLUSION

We looked at dynamic programming to solve complicated looking problems by recursively solving simpler subproblems.

Next class we'll focus on a special problem, viz. Kalman filtering.