

shweta_s@cs.iitr.ac.in >

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Deep Learning - IIT Ropar (course)

Click to register for Certification exam (https:// examform.nptel.ac.in/2025_10/

exam_form/

dashboard)

If already registered, click to check your payment status

Course outline

About NPTEL()

How does an **NPTEL** online course work? ()

Week 0 ()

Week 1 ()

Week 2 ()

Week 3 ()

week 4 ()

Week 8 : Assignment 8

The due date for submitting this assignment has passed.

Due on 2025-03-19, 23:59 IST.

Assignment submitted on 2025-03-17, 14:31 IST

••		
1)	What are the challenges associated with using the Tanh(x) activation function?	1

1 point

- It is not zero centered
- Computationally expensive
- Non-differentiable at 0
- Saturation

Yes, the answer is correct.

Score: 1

Accepted Answers:

Computationally expensive

Saturation

2) Which of the following problems makes training a neural network harder while using 1 point sigmoid as the activation function?

Not-continuous at 0

Not-differentiable at 0

Saturation

Computationally expensive

Yes, the answer is correct.

Score: 1

Accepted Answers:

Saturation

Computationally expensive

3) Consider the Exponential ReLU (ELU) activation function, defined as:

1 point

1 of 4 24/06/25, 13:51

Week 5 ()	(m - m > 0)	
Week 6 ()	$f(x)=egin{cases} x, & x>0\ a(e^x-1), & x\leq 0 \end{cases}$	
Week 7 ()	where $a eq 0.$ Which of the following statements is true?	
Week 8 ()	The function is discontinuous at $x=0.$	
A quick recap of training deep neural networks (unit? unit=107&less on=108)	The function is non-differentiable at $x=0$. Exponential ReLU can produce negative values. Exponential ReLU is computationally less expensive than ReLU. Yes, the answer is correct. Score: 1 Accepted Answers:	
Unsupervised pre-training (unit? unit=107&less on=109)	Exponential ReLU can produce negative values. 4) We have observed that the sigmoid neuron has become saturated. What might be the possible output values at this neuron? 0.0666	1 point
 Better activation functions (unit? unit=107&less on=110) 	0.589 0.9734 0.498	
 Better initialization strategies (unit? unit=107&less on=111) 	No, the answer is incorrect. Score: 0 Accepted Answers: 0.0666 0.9734 5) What is the gradient of the sigmoid function at saturation?	
Batch Normalization (unit? unit=107&less on=112)	Yes, the answer is correct. Score: 1 Accepted Answers:	
Lecture Material for Week 8 (unit? unit=107&less on=113)	(Type: Numeric) 06) Which of the following are common issues caused by saturating neurons in deep networks?	1 point
Week 8 Feedback Form:Deep Learning - IIT Ropar!! (unit? unit=107&less on=191) Week 8: Solution (unit?	✓ Vanishing gradients ✓ Slow convergence during training ○ Overfitting ○ Increased model complexity Yes, the answer is correct. Score: 1 Accepted Answers: Vanishing gradients	

unit=107&less
on=252)
Quiz: Week 8
: Assignment
8 (assessment?
name=317)
Week 9 ()
week 10 ()
Week 11 ()
Week 12 ()
Download
Videos ()
Books ()
Text
Transcripts ()
Problem
Solving
Session -
Jan 2025 ()

Slow convergence during training 7) Given a neuron initialized with weights $w_1=0.9,\,w_2=1.7,$ and inputs $x_1=0.4,$ $x_2 = -0.7$, calculate the output of a ReLU neuron. 0 Yes, the answer is correct. Score: 1 Accepted Answers: (Type: Numeric) 0 1 point 8) Which of the following is incorrect with respect to the batch normalization process *0 points* in neural networks? We normalize the output produced at each layer before feeding it into the next layer Batch normalization leads to a better initialization of weights. Backpropagation can be used after batch normalization Variance and mean are not learnable parameters. Yes, the answer is correct. Score: 0 Accepted Answers: Variance and mean are not learnable parameters. 9) Which of the following is an advantage of unsupervised pre-training in deep 1 point learning? It helps in reducing overfitting Pre-trained models converge faster It requires fewer computational resources It improves the accuracy of the model Partially Correct. Score: 0.67 Accepted Answers: It helps in reducing overfitting Pre-trained models converge faster It improves the accuracy of the model 10) How can you tell if your network is suffering from the Dead ReLU problem? 1 point The loss function is not decreasing during training A large number of neurons have zero output The accuracy of the network is not improving The network is overfitting to the training data Yes, the answer is correct. Score: 1 Accepted Answers:

3 of 4 24/06/25, 13:51

A large number of neurons have zero output

4 of 4 24/06/25, 13:51