Uncovering the saliency of local topological features for Alzheimer's disease characterisation

Philip Hartout

November 26, 2020

Alzheimer's disease: 🤏

Alzheimer's disease:

Nearly 40 million people live with AD

Alzheimer's disease:

- Nearly 40 million people live with AD
- Cost in US alone \$ 2 trillion by 2030

Alzheimer's disease:

- Nearly 40 million people live with AD
- Cost in US alone \$ 2 trillion by 2030
- Among leading causes of death in EU

Alzheimer's disease:

- Nearly 40 million people live with AD
- Cost in US alone \$ 2 trillion by 2030
- Among leading causes of death in EU

Alzheimer's disease:

9

- Topology:
- Nearly 40 million people live with AD
- Cost in US alone \$ 2 trillion by 2030
- Among leading causes of death in EU

Alzheimer's disease:

- -
- Nearly 40 million people live with AD
- Cost in US alone \$ 2 trillion by 2030
- Among leading causes of death in EU

 Concerned with "properties of a geometric object that are preserved under continuous deformations, such as [...] crumpling."

Alzheimer's disease:

- -
- Nearly 40 million people live with AD
- Cost in US alone \$ 2 trillion by 2030
- Among leading causes of death in EU

- Concerned with "properties of a geometric object that are preserved under continuous deformations, such as [...] crumpling."
- Recently, persistent homology has emerged to quantify (differences in) the shape of data.

Alzheimer's disease:

- -
- Nearly 40 million people live with AD
- Cost in US alone \$ 2 trillion by 2030
- Among leading causes of death in EU

- Concerned with "properties of a geometric object that are preserved under continuous deformations, such as [...] crumpling."
- Recently, persistent homology has emerged to quantify (differences in) the shape of data.
- How can we apply persistent homology to quantify changes in shape due to Alzheimer's disease?

Topology in AD - Research Avenues <a>©

Topology in AD - Research Avenues <a> ©

1. Classification

Topology in AD - Research Avenues 3

- 1. Classification
- 2. Subtype identification

Topology in AD - Research Avenues 3

- 1. Classification
- 2. Subtype identification
- 3. Progression & forecasting

Unprocessed

Figure 2: AUPRC on each patch, achieved using a model described in earlier work. Chosen patch for analyses is boxed in red (patch with highest accuracy).

I - Persistent homology

I - Classification - Persistence Images

Persistence image (H_0, H_1, H_2)

Methodological considerations

- 4 fold CV, 3 inits. Stratified for age, diagnoses and no patients are spread over folds.
- Same experimental settings as from Brüningk, Sarah C et al https://arxiv.org/abs/2011.06531

I - Classification - Performance

Local	PI	3D Conv	
Global			PI
Validation accuracy	0.79 ± 0.02	0.85 ± 0.06	0.76 ± 0.02
Precision	0.81 ± 0.04	0.87 ± 0.04	0.74 ± 0.02
Recall	0.81 ± 0.02	0.87 ± 0.08	0.88 ± 0.08
AUC	0.85 ± 0.03	0.89 ± 0.05	0.78 ± 0.02

Table 1: Performance metrics of the different models trained on the same data. Metrics from Brüningk, Sarah C *et al* https://arxiv.org/abs/2011.06531.

I - Classification - Performance

Local Global	PI	3D Conv	PI
Validation accuracy	00 0		0.76 ± 0.02
Precision Recall	0.00	0.87 ± 0.04 0.87 ± 0.08	0.74 ± 0.02 0.88 ± 0.08
AUC	0.85 ± 0.03	0.89 ± 0.05	0.78 ± 0.02

Table 1: Performance metrics of the different models trained on the same data. Metrics from Brüningk, Sarah C *et al* https://arxiv.org/abs/2011.06531.

- → Local PI training time is 2 minutes on a **laptop CPU**. Very efficient compression of features!
- \rightarrow Local 3D Conv training takes 15 minutes on a **server GPU**.

I - Classification - Performance

Local Global	PI	3D Conv	PI
Validation accuracy	0.79 ± 0.02	0.85 ± 0.06	0.76 ± 0.02
Precision	0.81 ± 0.04	0.87 ± 0.04	0.74 ± 0.02
Recall	0.81 ± 0.02	0.87 ± 0.08	0.88 ± 0.08
AUC	0.85 ± 0.03	0.89 ± 0.05	0.78 ± 0.02

Table 1: Performance metrics of the different models trained on the same data. Metrics from Brüningk. Sarah C *et al* https://arxiv.org/abs/2011.06531.

- ightarrow Local PI training time is 2 minutes on a **laptop CPU**. Very efficient compression of features!
- ightarrow Local 3D Conv training takes 15 minutes on a **server GPU**.

Persistent homology produces **highly salient compressed** features for AD characterization.

Limitations & Outlook

Limitations:

• Using raw images is better, but more expensive.

Limitations & Outlook

Limitations:

- Using raw images is better, but more expensive.
- Does not take atrophy from other regions into account

Limitations & Outlook

Limitations:

- Using raw images is better, but more expensive.
- Does not take atrophy from other regions into account

Future directions:

Can persistent homology be used to diagnose prodromal forms of AD?

Limitations & Outlook

Limitations:

- Using raw images is better, but more expensive.
- Does not take atrophy from other regions into account

Future directions:

- Can persistent homology be used to diagnose **prodromal** forms of AD?
- Use a similar approach for **subtype identification**.

Thanks!

GitHub repository of the project

github.com/pjhartout/TDA_ADNI_MLCB

With thanks to Bastian Rieck for the supervision and Sarah Brueningk, Felix Hensel, Catherine Jutzeler, Merel Kuijs and Louis Lukas for insightful discussions, code, and data.

Questions?

II - Distance analysis among patients in CN, MCI & AD

Median persistence landscape.

Figure 3: CN

Figure 4: MCI

Figure 5: AD

II - Distance analysis among patients in CN, MCI & AD

Question: How topologically heterogenous is the data?

	Mean	Median	Standard deviation	Q3	Max	Skewness
CN H ₀	2.16	2.00	0.78	2.50	7.41	1.78
$CN H_1$	2.61	2.27	1.17	2.93	9.47	1.92
$CN H_2$	2.38	2.23	0.88	2.79	7.19	1.39
$MCIH_0$	2.24	2.04	0.82	2.55	6.21	1.71
$MCIH_1$	2.57	2.19	1.29	2.80	11.87	2.57
$MCIH_2$	2.40	2.27	0.83	2.82	6.55	1.18
AD H_0	2.40	2.18	0.96	2.77	7.77	1.97
AD H_1	2.47	2.13	1.15	2.77	9.28	2.10
AD H ₂	2.36	2.20	0.80	2.75	8.39	1.64

Table 2: Summary statistics of the distribution of distances

Question: Among the patients who deteriorate, do we see higher average pairwise distances compared to patients who don't deteriorate?

Question: Among the patients who deteriorate, do we see higher average pairwise distances compared to patients who don't deteriorate?

The data is a longitudinal dataset (multiple timepoints are available for each patient)

Question: Among the patients who deteriorate, do we see higher average pairwise distances compared to patients who don't deteriorate?

- The data is a longitudinal dataset (multiple timepoints are available for each patient)
- Some patients deteriorate (transition from CN \rightarrow MCI or from MCI \rightarrow AD)

Question: Among the patients who deteriorate, do we see higher average pairwise distances compared to patients who don't deteriorate?

- The data is a longitudinal dataset (multiple timepoints are available for each patient)
- Some patients deteriorate (transition from CN→MCI or from MCI→AD)
- Compute pairwise distance between patients (L^1 PL distance, Wasserstein distance and bottleneck distance), and average for each patient.

Example of L^1 norm between PLs of a deteriorating patient.

Figure 6: H_0

Figure 7: H_1

Figure 8: H_2

Example of L^1 norm between PLs of a subject who does *not* deteriorate.

Figure 9: H_0

Figure 10: H_1

Figure 11: H_2

Figure 12: H_0

Figure 13: H_1

Figure 14: H_2

Figure 18: H_0

Figure 19: H_1

Figure 20: H_2