MP309

Experiment 10

Capacitative Rectification

Name:- Patel Mihir Hemantkumar

Roll no. :- I18PH037

List of Figures

1	Filtering	3
2	Full Wave Rectification with Filtering	3
3	Ripple Voltage and Ripple Factor	
4	Half Wave vs Full Wave Capacitive Rectification	5
5	Half Wave Circuit	
6	Half Wave Controls	7
7	Capacitative Rectification for Half Wave Rectifier Graph	8
8	Half Wave Capacitive Rectifier Calculations	
9	Full Wave Circuit	9
10	Full Wave Capacitive Rectifier Controls	10
11	Full Wave Capacitive Rectifier Graph	
12		

Figure 1: Filtering

Figure 2: Full Wave Rectification with Filtering

Figure 3: Ripple Voltage and Ripple Factor

Figure 4: Half Wave vs Full Wave Capacitive Rectification

Capacitative Rectification for Half Wave Rectifier

Figure 5: Half Wave Circuit

Parameters

- 1. Load Resistance (R): $1K\Omega$
- 2. Capacitance (C): 102μ F
- 3. AC source: 50Hz, 2V
- 4. Channel 1 Input Waveform (in Volt/div): 1V/div
- 5. Channel 2 Output Waveform (in Volt/div): 1V/div
- 6. Sine wave is used.

Figure 6: Half Wave Controls

Figure 7: Capacitative Rectification for Half Wave Rectifier Graph

Figure 8: Half Wave Capacitive Rectifier Calculations

Capacitative Rectification for Full Wave Rectifier

Figure 9: Full Wave Circuit

Parameters

- 1. Load Resistance (R): $1K\Omega$
- 2. Capacitance (C): 102μ F
- 3. AC source: 50Hz, 2V
- 4. Channel 1 Input Waveform (in Volt/div): 1V/div
- 5. Channel 2 Output Waveform (in Volt/div): 1V/div
- 6. Sine wave is used.

Figure 10: Full Wave Capacitive Rectifier Controls

Figure 11: Full Wave Capacitive Rectifier Graph

Calculation

(1)C=100
$$\mu F$$
 , $f=50Hz$, $R_L=1K\Omega$ Ripple Factor,r = $\frac{1}{4\sqrt{3}fR_LC}=0.029$

(2) C=500
$$\mu F$$
 , $f=50Hz$, $R_L=1K\Omega$ Ripple Factor,r = $\frac{1}{4\sqrt{3}fR_LC}=0.0058$

(3) C=1000
$$\mu F$$
 , $f=50Hz$, $R_L=1K\Omega$ Ripple Factor,r = $\frac{1}{4\sqrt{3}fR_LC}=0.0029$

(4) C=1500
$$\mu F$$
 , $f=50Hz$, $R_L=1K\Omega$ Ripple Factor,r = $\frac{1}{4\sqrt{3}fR_LC}$ =0.0019

(5) C=2000
$$\mu F$$
 , $f=50Hz$, $R_L=1K\Omega$ Ripple Factor,r = $\frac{1}{4\sqrt{3}fR_LC}=0.0014$

(6) C=2500
$$\mu F$$
 , $f=50Hz$, $R_L=1K\Omega$ Ripple Factor,r = $\frac{1}{4\sqrt{3}fR_LC}=0.0012$

(7) C=3000
$$\mu F$$
 , $f=50Hz$, $R_L=1K\Omega$ Ripple Factor,r = $\frac{1}{4\sqrt{3}fR_LC}=0.0010$

(8) C=3500
$$\mu F$$
 , $f=50Hz$, $R_L=1K\Omega$ Ripple Factor,r = $\frac{1}{4\sqrt{3}fR_LC}=0.0008$

Figure 12: Graph for Capacitance v/s Ripple Factor

