Lista 7 - Álgebra Linear

Mudança de base e transformação inversa

2° quadrimestre de 2014 - Professores Maurício Richartz e Vladislav Kupriyanov

- 1. As inversas são, respectivamente, $\begin{bmatrix} -1 & 1 \\ 0 & \frac{1}{2} \end{bmatrix}$, $\begin{bmatrix} 0 & -1 \\ -1 & -1 \end{bmatrix}$ e $\begin{bmatrix} -1 & 0 \\ -\frac{1}{2} & -\frac{1}{2} \end{bmatrix}$ Representam, respectivamente, $[I]_{\beta_1}^{\beta_2}$, $[I]_{\beta_2}^{\beta_3}$ e $[I]_{\beta_1}^{\beta_3}$.
- 2. a) $[I]_{\beta_1}^{\beta_2} = \begin{bmatrix} 4/15 & 8/15 & 2/5 \\ 2/5 & -1/5 & 3/5 \\ 0 & 0 & -1 \end{bmatrix}$. b) $[I]_{\beta_2}^{\beta_1} = \begin{bmatrix} 3/4 & 2 & 3/2 \\ 3/2 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$. c) $[\mathbf{v}]_{\beta_1} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ e $[\mathbf{v}]_{\beta_2} = [I]_{\beta_2}^{\beta_1} [\mathbf{v}]_{\beta_1} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$.
- 3. $\beta = \{(3,5), (3,6)\}.$
- 4. É a matriz identidade de ordem n, onde n é a dimensão de V (tente entender o porquê).
- 5. $[I]_{\beta_1}^{\beta_2} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$. Para encontrar $[I]_{\beta_2}^{\beta_1}$, inverta a matriz $[I]_{\beta_1}^{\beta_2}$.
- 6. (obs: esse exercício é bem trabalhoso) a) $[T]_{\beta_1}^{\beta_1} = \begin{bmatrix} 2 & 3 & -5 \\ 1 & -1 & -1 \\ 2 & 1 & 1 \end{bmatrix}$. b) $[I]_{\beta_1}^{\beta_2} = \begin{bmatrix} 1 & 3 & 1 \\ 2 & 2 & 1 \\ 3 & 1 & 0 \end{bmatrix}$. c) Ache a inversa da matriz do item b), isto é $[I]_{\beta_2}^{\beta_1} = \begin{bmatrix} -1/4 & 1/4 & 1/4 \\ 3/4 & -3/4 & 1/4 \\ -1 & 2 & -1 \end{bmatrix}$, e então calcule $[T]_{\beta_2}^{\beta_2} = [I]_{\beta_2}^{\beta_1} [T]_{\beta_1}^{\beta_1} [I]_{\beta_1}^{\beta_2}$. d) Sim (basta mostrar que o determinante de uma das matrizes é diferente de zero). Inverta as matrizes dos itens a) e c) para obter a resposta.
- 7. a) ver lista 6 ex.1a. b) Seja γ_1 a base canônica de \mathcal{P}_3 e γ_2 a base canônica de \mathcal{P}_2 . Então $[I]_{\gamma_1}^{\alpha} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$ e $[I]_{\gamma_2}^{\beta} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Invertendo esta última, obtemos $[I]_{\beta}^{\gamma_2} = \begin{bmatrix} 1/2 & -1/2 & 0 \\ 1/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. c) Calcule $[T]_{\beta}^{\alpha} = [I]_{\beta}^{\gamma_2} [T]_{\gamma_2}^{\gamma_1} [I]_{\gamma_1}^{\alpha} = \begin{bmatrix} -1/2 & 1/2 & -1 & -1 \\ -1/2 & 1/2 & 1 & 1 \\ 0 & 0 & -3 & 3 \end{bmatrix}$. d) Não. (Por que?)
- 8. a) ver lista 6 ex.1c. b) Seja γ_1 a base canônica de \mathcal{P}_2 e γ_2 a base canônica de \mathbb{R} . Então $[I]_{\gamma_1}^{\alpha} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ e $[I]_{\gamma_2}^{\beta} = [-3]$. Invertendo esta última, obtemos $[I]_{\beta}^{\gamma_2} = [-1/3]$. c) Calcule $[T]_{\beta}^{\alpha} = [I]_{\beta}^{\gamma_2} [T]_{\gamma_2}^{\gamma_1} [I]_{\gamma_1}^{\alpha} = [-1/6 1/2 1/9]$. d) Não. (Por que?)