CHAPITRE

31

CONVERGENCE SIMPLE ET UNIFORME DES SUITES DE FONCTIONS

Dans tout ce chapitre, les fonctions considérées sont, sauf mention expresse du contraire, à valeurs réelles et définies sur une partie $X \subset \mathbb{R}$, non vide.

31.1 CONVERGENCE SIMPLE ET UNIFORME DES SUITES DE FONCTIONS

§1 Convergence simple

Définition 1

Une suite $(f_n)_{n\in\mathbb{N}}$ de fonctions de X vers \mathbb{R} est une application de \mathbb{N} vers $\mathscr{F}(X,\mathbb{R})$.

Définition 2

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de X vers \mathbb{R} et f une fonction de X vers \mathbb{R} . On dit que la suite $(f_n)_{n\in\mathbb{N}}$ **converge simplement** vers f sur X, lorsque pour tout $x\in X$, la suite de nombres réels $(f_n(x))_{n\in\mathbb{N}}$ converge vers f(x):

$$\forall x \in X, \forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_0 \implies \left| f_n(x) - f(x) \right| \leq \varepsilon.$$

On dit aussi que f est **limite simple** de la suite (f_n) .

Exemple 3

Prenons $X = \mathbb{R}$ et $f_n(x) = x^n$. Soit $x \in \mathbb{R}$ fixé. La suite réelle $(x^n)_{n \in \mathbb{N}}$ converge si, et seulement si $x \in]-1,1]$:

• Si |x| < 1, la suite (x^n) converge vers 0,

• Si x = 1, la suite (x^n) converge vers 1.

Nous dirons donc que la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur]-1,1] vers la fonction

$$f:]-1,1] \rightarrow \mathbb{R}$$

$$x \mapsto \begin{cases} 0 & \text{si } x \in]-1,1[\\ 1 & \text{si } x = 1. \end{cases}$$

Exemple 4

Définissons une suite de fonctions $(f_n : [0,1] \to \mathbb{R})$ par $f_0 = 0$ et pour tout $n \in \mathbb{N}$,

$$\forall x \in [0, 1], f_{n+1}(x) = f_n(x) + \frac{1}{2} \left(x - f_n(x)^2 \right).$$

La suite (f_n) converge simplement vers la fonction $x \mapsto \sqrt{x}$.

§2 Convergence uniforme

Définition 5

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de X vers \mathbb{R} et f une fonction de X vers \mathbb{R} . On dit que la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur X, lorsque

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, \left(n \geq n_0 \implies \forall x \in X, \left| f_n(x) - f(x) \right| \leq \varepsilon \right).$$

Proposition 6

Si $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f, alors $(f_n)_{n\in\mathbb{N}}$ converge simplement vers f.

Notation

Pour toute application bornée $f: X \to \mathbb{R}$, posons

$$||f||_{\infty} = \sup_{x \in X} |f(x)|.$$

On peut également convenir que cette borne supérieure est $+\infty$ lorsque f n'est pas bornée.

Notation

On note $\mathcal{B}(X,\mathbb{R})$ l'ensemble des applications bornées de X dans \mathbb{R} .

Proposition 7

Norme de la convergence uniforme

Soit $f,g:X\to\mathbb{R}$ *deux fonctions bornées.*

- 1. L'égalité $||f||_{\infty} = 0$ implique f = 0.
- **2.** Pour tout $\alpha \in \mathbb{R}$, $\|\alpha f\|_{\infty} = |\alpha| \|f\|_{\infty}$.
- 3. On a l'inégalité triangulaire $||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$.

On dit que l'application $\mathcal{B}(X,\mathbb{R}) \to \mathbb{R}$ est une norme sur $\mathcal{B}(X,\mathbb{R})$. $f \mapsto ||f||_{\infty}$

Théorème 8

La suite $(f_n: X \to \mathbb{R})_{n \in \mathbb{N}}$ converge uniformément vers $f: X \to \mathbb{R}$ si, et seulement si

$$\lim_{n \to +\infty} ||f_n - f||_{\infty} = 0.$$

En particulier, si (f_n) converge uniformément vers f, les fonctions $f_n - f$ sont bornées à partir d'un certain rang.

Exemple 9

Reprenons l'exemple X =]-1,1] et $f_n : x \mapsto x^n$. La suite converge simplement vers $f:]-1,1] \rightarrow \mathbb{R}$ telle que

$$f(1) = 1$$
 et $\forall x \in]-1, 1[, f(x) = 0.$

La convergence de (f_n) vers f n'est pas uniforme car pour tout $n \in \mathbb{N}$,

$$||f_n - f||_{\infty} = \sup_{x \in]-1,1]} |f_n(x) - f(x)| = \sup_{x \in]-1,1[} |f_n(x) - f(x)| = \sup_{x \in]-1,1[} |x^n| = 1.$$

Considérons un réel $a \in [0, 1[$, alors pour tout $n \in \mathbb{N}$,

$$\sup_{x \in [-a,a]} \left| f_n(x) - f(x) \right| = \sup_{x \in [-a,a]} \left| f_n(x) - f(x) \right| = a^n.$$

Or $\lim_{n\to+\infty} a^n = 0$, ce qui montre que la convergence de (f_n) vers f (c'est-à-dire vers 0) est uniforme sur [-a, a].

Méthode

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de X vers \mathbb{R} et f une fonction de X vers \mathbb{R} .

1. Pour que la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur X, il suffit qu'il existe une suite $(\varepsilon_n)_{n\in\mathbb{N}}$ de nombres réels positifs, telle que

$$\forall x \in X, |f_n(x) - f(x)| \le \varepsilon_n$$
 et $\lim_{n \to +\infty} \varepsilon_n = 0$.

2. Pour que la suite $(f_n)_{n\in\mathbb{N}}$ ne converge pas uniformément vers f sur X, il suffit qu'il existe une suite $(x_n)_{n\in\mathbb{N}}$ de points de X telle que la suite

$$\left(f_n(x_n) - f(x_n)\right)_{n \in \mathbb{N}}$$

ne tende pas vers zéro.

Convergence uniforme et continuité **§3**

Théorème 10

Soit $(f_n : X \to \mathbb{R})_{n \in \mathbb{N}}$ une suite d'applications convergeant uniformément vers $f: X \to \mathbb{R} \ et \ a \in X$.

Si chaque f_n est continue au point a, alors f est continue au point a.

Théorème 11

Toute limite uniforme d'applications continues est continue.

Exemple 12

On retrouve que la convergence de la suite définie par $f_n: x \mapsto x^n$ ne peut pas être uniforme sur]-1,1] car la limite simple de (f_n) n'est pas continue au point 1.

31.2 FONCTIONS CONTINUE PAR MORCEAUX

§1 Fonctions continues par morceaux

Définition 13

Soit $(a, b) \in \mathbb{R}^2$ tel que a < b.

• Une subdivision de [a, b] est une famille $\sigma = (x_i)_{i \in [0, n]}$ de réels telle que

$$a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$$

- On dit que la subdivision $\sigma = (x_i)_{i \in [0,n]}$ est **plus fine** que la subdivision $\sigma' = (b_i)_{i \in [0,p]}$ si σ contient tous les points de σ' .
- Le **pas** de la subdivision $(x_i)_{i \in [0,n]}$ est $\sup_{i \in [0,n-1]} (x_{i+1} x_i)$.

Exemple 14

Subdivision régulière

La subdivision (x_0, x_1, \dots, x_n) de [a, b] définie par

$$\forall x \in [0, n], x_i = a + i \frac{b - a}{n}$$

est appelée subdivision régulière.

Lemme 15

Étant donnée deux subdivisions σ' et σ'' de [a,b], il existe une subdivision σ plus fine que σ' et σ'' .

En particulier, étant données deux fonctions en escalier $\varphi, \psi \in \mathcal{E}([a,b])$, il existe une subdivision $(x_i)_{i \in [0,n]}$ adaptée à la fois à φ et à ψ .

Définition 16

• On dit qu'une fonction f est **continue par morceaux** sur le segment [a,b] s'il existe une subdivision $(x_i)_{i\in [0,n]}$ de [a,b] telle que pour tout $i\in [0,n-1]$, la restriction $f|_{]x_i,x_{i+1}[}$ admet un prolongement continu à $[x_i,x_{i+1}]$.

Dans ce cas, une telle subdivision est dite **adaptée** à f.

• Une fonction f est continue par morceaux sur l'intervalle I si elle continue par morceaux sur tout segment inclus dans I.

Remarque

Dire que f est continue par morceaux sur le segment [a, b] revient à dire qu'il existe une subdivision $(x_i)_{i \in [0, n]}$ de [a, b] telle que pour tout $i \in [0, n-1]$,

• f est continue sur $]x_i, x_{i+1}[,$

- f a une limite finie à gauche en x_{i+1} ,
- f a une limite finie à droite en x_i .

Notation

On note $\mathcal{C}_m([a,b])$ l'ensemble des fonctions continues par morceaux sur [a,b].

Proposition 17

L'ensemble $\mathcal{C}_m([a,b])$ des fonctions continues par morceaux sur le segment [a,b] est stable par combinaisons linéaires, par produits et par prise de la valeur absolue.

Corollaire 18

L'ensemble $\mathcal{C}_m([a,b])$ est un sous-espace vectoriel et un sous-anneau de l'ensemble $\mathcal{F}([a,b],\mathbb{R})$ de toutes les applications de [a,b] dans \mathbb{R} .

Proposition 19

Toute fonction continue par morceaux sur [a, b] est bornée.

§2 Fonctions dérivables par morceaux

Définition 20

- On dit qu'une fonction f est **dérivable par morceaux** sur le segment [a,b] s'il existe une subdivision $(x_i)_{i\in [0,n]}$ de [a,b] telle que pour tout $i\in [0,n-1]$, la restriction $f|_{]x_i,x_{i+1}[}$ admet un prolongement dérivable à $[x_i,x_{i+1}]$.
- Une fonction f est dérivable par morceaux sur l'intervalle I si elle dérivable par morceaux sur tout segment inclus dans I.

De manière analogue, on peut définir la notion de fonction de classe \mathscr{C}^n par morceaux.

§3 Fonctions en escalier

Définition 21

Une fonction $\varphi : [a, b] \to \mathbb{R}$ est **étagée** ou **en escalier** s'il existe une subdivision $(x_i)_{i \in [0,n]}$ de [a, b] telle que f soit constante sur $]x_{i-1}, x_i[$ pour $i \in [1, n]]$. Dans ce cas, une telle subdivision est dite **adaptée** à φ .

L'ensemble des fonctions en escalier sur [a, b] est noté $\mathcal{E}([a, b])$.

Proposition 22

L'ensemble $\mathcal{E}([a,b])$ des fonctions en escalier sur le segment [a,b] est stable par combinaisons linéaires, par produits et par prise de la valeur absolue.

§4 Approximation uniforme par les fonctions en escalier

Lemme 23

Soit f une application continue sur un segment [a,b] et $\varepsilon > 0$. Alors, il existe des applications en escalier $(\varphi, \psi) \in \mathcal{E}([a,b])^2$ telles que

$$\forall x \in [a, b], \ \varphi(x) \le f(x) \le \psi(x) \quad et \quad \psi(x) - \varphi(x) \le \varepsilon$$

Théorème 24

Soit f une application continue par morceaux sur un segment [a,b] et $\varepsilon > 0$. Alors, il existe des applications en escalier $(\varphi,\psi) \in \mathcal{E}([a,b])^2$ telles que

$$\forall x \in [a, b], \ \varphi(x) \le f(x) \le \psi(x) \quad et \quad \psi(x) - \varphi(x) \le \varepsilon$$

Théorème 25

Soit f une application continue par morceaux sur un segment [a,b]. Il existe alors une suite $(f_n)_{n\in\mathbb{N}}$ de fonctions en escalier qui converge uniformément vers f sur [a,b].