



# The Road to Realizing In-space Manufacturing

Characterize → Certify → Institutionalize → Design for AM

Presented to Barnard-Seyfert Astronomical Society  
of Nashville  
June 18, 2014



Mallory M. Johnston  
In-Space Manufacturing  
Science and Technology Office  
NASA Marshall Space Flight Center

Marshall Space Flight Center's technical capabilities and engineering expertise are essential to the nation's space exploration goal of sending humans beyond Earth and into deep space.

- Our core capability is in space transportation and propulsion systems with unique expertise in large-scale complex space systems development.
- We advance space technologies, spark economic development, expand our knowledge, and inspire a new generation of explorers.



# The National Aeronautics and Space Administration



**Human Exploration  
and Operations**



**Space  
Technology**



**Science**



**Aeronautics  
Research**

***Marshall supports three of the NASA Mission Areas.***



# Marshall Mission Areas



**Understanding Our  
World and Beyond**

**Living and Working  
in Space**



**Traveling To and  
Through Space**





# America's Human Spaceflight Architecture



Commercial support for ISS  
in low-Earth orbit



SLS for reaching new destinations  
beyond low-Earth orbit

*Ensuring our nation can send humans beyond  
Earth and into deep space.*



# Traveling To and Through Space



## Space Launch System (SLS)

America's next human-rated heavy-lift rocket – safe, affordable, and sustainable for beyond Earth orbit exploration

## Commercial Spaceflight

Partnering for success – sharing facilities and expertise

## Research for the Future

New fuels, new manufacturing and test methods, and advanced concepts



Launching SLS in 2017

Testing J2-X Upper Stage Engine

Supporting Commercial Spaceflight

Affordable Testing for Nuclear Fuel Prototypes

Collaborative Engineering Design

In-space Cryogenic Fuel Storage Concept

**Marshall is leading our nation's propulsion capabilities.**



# Traveling To and Through Space



## SLS – America's Heavy-lift Rocket

- Provides initial lift capacity of 70 metric tons (t), evolving to 130 t
- Carries the Orion Multi-Purpose Crew Vehicle (MPCV) and significant science payloads
- Supports national and international missions beyond Earth's orbit, such as near-Earth asteroids and Mars



Solid Rocket  
Booster Test



Friction Stir  
Welding for Core  
Stage



Shell Buckling  
Structural Test



MPCV Stage Adapter  
Assembly



Selective Laser  
Melting Engine  
Parts



RS-25 Core Stage  
Engines in Inventory

***SLS is essential to the nation's space exploration goals.***



# Traveling To and Through Space



[www.nasa.gov/sls](http://www.nasa.gov/sls)

## SLS – On track for first flight in 2017

- Focusing on key tenets of safety, affordability, and sustainability
- Meeting commitments on or ahead of schedule
- Engaging the U.S. aerospace industry: prime contractors on board, with work being done across the country
- Spurring innovation through advanced development contracts
- Manufacturing Orion spacecraft adapter hardware for 2014 flight test
- Delivering a national infrastructure asset for missions to asteroids and Mars



# Understanding Our World and Beyond



**Observing  
Earth**

**Studying  
Our Solar  
System**

**Exploring  
Our  
Universe**



Weather & Climate  
Monitoring

SERVIR

SUMI Solar  
Capture

Discovery &  
New Frontiers

Chandra

James Webb  
Space Telescope

***Marshall is expanding knowledge of our world and beyond.***



# Observing Earth



- Understanding global climate system patterns
- Improving weather forecasts and storm warning times
- Predicting the intensity and dynamics of storms
- Providing and analyzing data for urban planning and natural resource and environmental management



AMPR



Weather &  
Climate Monitoring



PEOPLE - ACE



Hurricane  
Imaging  
Radiometer



SERVIR



SPoRT



# Studying Our Solar System



Solar Atmospheric imaging

- Managing missions through our solar system to learn more about asteroids, planets, and their moons
- Developing robotic landers that can safely land on precise locations without human control
- Learning how the sun and space weather affect life on Earth
- Mapping the moon and measuring its gravitational field



GRAIL, twin spacecraft mapping the moon



Asteroid Vesta from Dawn spacecraft



Robotic Lander autonomous landing test



Preparing SUMI for flight



Solar Wind, Electrons, Alphas, and Protons (SWEAP)



# Exploring the Universe Beyond



- Analyzing complex data from various space observation instruments
- Developing and testing optical systems for advanced deep-space telescopes applications
- Capturing visible and infrared light, gamma rays, and X-rays



JWST mirror  
testing



JWST instrument  
testing



Cats Eye Nebula  
from Chandra X-ray  
Observatory



Fermi Gamma-ray  
Space Telescope map  
of the Gamma-ray sky



Omega Nebula  
from Hubble



# Living and Working in Space



Supporting Life in Space

Supporting Scientific Research on the  
International Space Station



Lab Training  
Complex



Payload Operations  
Center



ECLSS testing  
at Marshall



Microgravity  
Science Glovebox



ISS U.S. Destiny Lab

***From large space structures to life support systems  
and operations, Marshall supports crews in space.***



# Living and Working in Space



## Supporting Life in Space

- International Space Station
  - Continual human presence since 2000
  - Completed in 2010
- Major U.S. nodes and modules
- Cleaning air and recycling water
- Environmental effects on people and materials



ISS Test Facility  
at Marshall



Node 3  
Tranquility



Delivery of the ISS  
Cupola



Atmosphere  
Resource Recovery  
and Environmental  
Monitoring



Multi-purpose  
Logistics Module,  
Leonardo



Environmental  
Control & Life  
Support System  
(ECLSS)

***Marshall develops systems for living and working on the ISS.***



# Living and Working in Space



## Supporting Scientific Research in Space

- Manage science operations around the clock
- Window Observational Research Facility
- Materials Science Research Rack
- Microgravity Science Glovebox



Payload Operations Center at Marshall



WORF – Window Observational Research Facility



EXPRESS Racks for Destiny Module



Materials Science Research Racks



Microgravity Science Glovebox



Destiny Laboratory

***Marshall is the command post for science on the ISS.***



# NASA Advanced Manufacturing Technology



Deep Space Missions

## ISS Platform

- In-space Fab & Repair Plastics Demonstration via 3D Printing in Zero-G
- Qualification/Inspection of On-orbit Parts using Optical Scanner
- Printable SmallSat Technologies
- On-orbit Plastic Feedstock Recycling Demonstration
- In-space Metals Manufacturing Process Demonstration



/ISS-based



Planetary Surfaces

## Planetary Surfaces Platform

In-situ Feedstock Test Beds and Reduced Gravity Flights Which Directly Support Technology Advancements for Asteroid Manufacturing as well as Future Deep Space Missions.

- Additive Construction
- Regolith Materials Development & Test
- Synthetic Biology: Engineer and Characterize Bio-Feedstock Materials & Processes

## Earth-based Platform

- Certification & Inspection of Parts Produced In-space
- In-space Metals Fabrication Independent Assessment & NASA Systems Trade Study



Earth-based

## Earth-based Platform (cont.)

- Printable Electronics & Spacecraft
- Self-Replicating/Repairing Machines
- In-situ Feedstock Development & Test: See Asteroid Platform



# In-space Manufacturing Technology Development Vision



## Earth-based



## International Space Station



### 3D Print Tech Demo

|                 |                       |                        |
|-----------------|-----------------------|------------------------|
| Metal Printing  | Printable Electronics | Add Mfctr. Facility    |
| Optical Scanner | SmallSats Recycler    | Self-repair/ replicate |

## Pre-2012

*Ground & Parabolic centric:*

- Multiple FDM Zero-G parabolic flights
- Trade/System Studies for Metals
- Ground-based Printable Electronics/Spacecraft
- Verification & Certification Processes under development
- Materials Database
- Cubesat Design & Development

## 2014

- In-space:3D Print: First Plastic Printer on ISS Tech Demo
- NIAC Contour Crafting
- NIAC Printable Spacecraft
- Small Sat in a Day
- AF/NASA Space-based Additive NRC Study
- Synthetic Biology
- ISRU Phase II SBIRs
- Ionic Liquids
- Printable Electronics

## 2015

- 3D Print Utilization Catalogue
- In-space Verification: Optical Scanner
- Additive Manufacturing Facility (AMF)
- In-space Recycler Demo: recycle printed plastic part back into feedstock
- Metal Demo Options
- In-space Material Database

## 2016

**ISS: Utilization/Facility Focus**

- Integrated Facility Systems for stronger types of extrusion materials for multiple uses including metals & various plastics
- Printable Electronics Tech Demo
- SmallSat Build & Deploy
- Synthetic Biology Demo

## 2017

## 2018

## Exploration



## 2020-25

*Lunar, Lagrange FabLabs*

- Initial Robotic/Remote Missions
- Provision some feedstock
- Evolve to utilizing in situ materials (natural resources, synthetic biology)
- Product: Ability to produce multiple spares, parts, tools, etc. "living off the land"
- Autonomous final milling to specification

## 2025

*Planetary Surfaces Points Fab*

- Transport vehicle and sites would need Fab capability
- Additive Construction

## 2030 - 40

*Mars Multi-Material Fab Lab*

- Utilize in situ resources for feedstock
- Build various items from multiple types of materials (metal, plastic, composite, ceramic, etc.)
- Product: Fab Lab providing self-sustainment at remote destination

*ISS Technology Demonstrations are Key in 'Bridging' Technology Development to Full Implementation of this Critical Exploration Technology.*



# The Road to In Space Manufacturing

## In-Space Additive Manufacturing



*Parallel paths toward Certification of Space System Designs*



# 3D Print Tech Demo on ISS



Microgravity Research



3D Print Ground Testing

The 3D Print project will deliver the first 3D printer on the ISS and will investigate the effects of consistent microgravity on melt deposition additive manufacturing by printing parts in space.



Melt deposition modeling:  
1) nozzle ejecting molten plastic,  
2) deposited material (modeled part),  
3) controlled movable table

## Potential Mission Accessories



Threads



Springs



Containers



Buckles



Caps



Clamps

## 3D Print Specifications

### Dimensions

33 cm x 30 cm x 36 cm

### Print Volume

6 cm x 12 cm x 6 cm

### Mass

20 kg (w/out packing material or spares)

### Est. Accuracy

95 %

### Resolution

.35 mm

### Maximum Power

176W (draw from MSG)

### Software

MIS SliceR

### Traverse

Linear Guide Rail

### Feedstock

ABS Plastic



3D Print in Micro-G Science  
Glovebox (MSG)



THE FIRST  
3D PRINTER  
IN SPACE



# What is 3D Printing?

**Additive Manufacturing (AM) or 3D Printing (3DP) is the method of building parts layer-by-layer. Melt deposition fabrication builds the object out of plastic deposited by a wire-feed via the extruder head. The parts are 'printed' from 3D CAD drawings loaded on the printer or uplinked from Earth.**



Melt deposition modeling:

1 - nozzle ejecting molten plastic

2 - deposited material (modeled part)

3 - controlled movable table

## • Benefits

- Low energy, low mass
- Relatively low melting temperature
- Toxicity level 0
- Adaptable (could be used in the future to print parts approximately 6cm x 12 cm x 6 cm uplinked from Earth)
- Risk mitigation for a future AM facility



**Small Part on Print Tray**

[3D Printing in Zero-G You Tube Video](#)



# 3D Print Images



**3D Print Flight Unit with the MSG Engineering Unit in the background**



**CAD model of the 3D Print printer and electronics box in the MSG**



**3D Print Flight Unit within the MSG Engineering Unit at MSFC**



# 3D Print Roles and Responsibilities



- Made in Space, Inc. responsibilities
  - The design, build, and craftsmanship of the hardware and software as is defined by the SBIR Phase III effort.
  - Assure that the design satisfies all requirements, both functional, safety and interface
- MSFC NASA roles and responsibilities
  - The MSFC Additive Manufacturing (AM) branch, EM42, serves as the NASA PI for functional objectives
  - To provide insight to ensure that the hardware meets minimum flight requirements and passes flight qualification testing
    - With the understanding that this is a Technology Demonstration and the project accepts the risk associated with that.
    - These minimum flight requirements, whether in the ICD or via the safety process, primarily fall under the safety and/or 'do no harm' to interfaces categories.
  - To perform integrated development testing and final V&V testing of the delivered flight hardware
  - To integrate the delivered MIS printer into the ISS MSG

**This has been an ideal collaboration which illustrates how leveraging the mutual strengths of the government and small business can lead to remarkable capabilities that would not otherwise be possible, particularly with such ambitious schedules and budgets.**



# Additive Manufacturing Facility on ISS: The Bridge to Essential Exploration Technologies



## 3D Printing in Zero-G ISS Tech Demo

***3D Print is the foundation for In-Space Manufacturing***



- Step 1: Demonstration of Printer and Process in micro-g
- Step 2: Demonstration of functionality/ utilization of printed parts

## Additive Manufacturing Facility



- AMF incorporates design, process, and operational lessons learned from 3D Print Tech Demo
- AMF provides commercialization, exploration, and ISS Logistics/Tools functionality
- Potential for additional Tech Demos and/or facilities such as a Recycler, Metal Printer, Printable Electronics, etc. for increasing In-space Manufacturing capability

## Critical Enabler for Exploration Missions



- In-space Manufacturing Tech Development & Demonstration on ISS is a critical enabler for the future of space exploration
- Enables a sustainable/ Earth independent capability
- Will be a testbed for:
  - **human exploration** (to use in space mfg. as a tool),
  - **building large structures** (design w/out launch environments & restrictions),
  - **building spacecraft in space** (for on-demand missions),
  - **building in situ** (for exploring/building on the moon, Mars, asteroids and beyond)

**The 3D Printing in Zero-G Demonstration serves as a design, process, and operational risk mitigation for the commercial Additive Manufacturing Facility**



# Additive Manufacturing Facility (AMF) Development



- AMF will incorporate key design, process, and operational lessons learned from the 3D Print Tech Demonstration in order to provide a permanent, commercial 3D Printer on ISS for both external and NASA customers. Updates will include, but are not limited to:
  - New material capabilities (for more usable, robust parts)
  - Larger Build Platform resulting in wider range of print options
  - State of the art electronics and s/w upgrade (for increased automation, more finite resolution, and faster prints)
  - New build platform addition (for stronger parts and more automation)
  - Additional lessons expected to come out of the tech demo when on the ISS later in 2014

## • AMF Enables

- Commercialization – MIS has marketing plan and multiple external commercial customers identified
- ISS Utilization – Discussions underway with Crew Tools, Logistics & Maintenance, and Payload Teams to identify potential parts for On-orbit Utilization Catalogue
- Exploration Test-bed – Collaborate with other NASA AES projects, such as Heat Compactor and Advanced ECLSS to lay the groundwork for Additive Manufacturing in-space systems using ISS as a test-bed.

### AMF Example Printed Parts





# Structured Light Scanning



***Close-up of simulated MMOD  
Damage to External ISS Panel***

***Scanning the Damaged Panel***



***CAD for custom doubler 'patch' for  
damaged area***

- A verification and certification process for parts additively manufactured on-orbit is needed.
- First step in establishing such a process:
  - Flight certify a CoTS Structured Light Scanner, an optical measuring technique frequently used for the characterization of the surface geometry of parts
  - Demonstrate scanning and geometric verification/validation on ISS for 3D Printer Technology Demonstration parts
  - Compare parts printed in space to CAD nominal and ground-based parts using quantifiable data on the accuracy of the build process and parameters
  - Verify that parts printed in space meet design specification
- Additional uses:
  - Create duplicate parts - scan original parts, create build instructions, print
  - 'Reverse Engineering' and repair of broken parts on ISS
  - Physiological measurements for crew health/human research projects
  - Any payload or experiment requiring data on geometrical changes (coatings, micro-meteoroid impacts to external experiments or components).
  - Convert packaging and waste to feedstock



# Recycler

Build



*Original Part Printed*

Recycle



*Recycle printed part back into  
Feedstock Filament*

Sustainable Reuse



*Use Recycled Filament  
to Print new parts*

- Recycling and reclaiming the feedstock is required to develop a self-sustaining, closed-loop in-space manufacturing capability
  - Less mass to launch
  - Increase “on demand” capability in space
- 2014 Phase I SBIR call entitled, “Recycling/Reclamation of 3-D Printer Plastic for Reuse” closed on 1/29/14.
- Potential transition from SBIR to ISS Technology Demonstration in conjunction with 3D Printer activities

## **What Could Be:**

- Expand recycle/reclamation capability to include other build materials, e.g. metals
- Convert packaging (packaging material selection compatibility with manufacturing technology) and potentially trash to build materials



# Design for AM



- To achieve maximum benefit and integration to the fullest extent. Additive Manufacturing (AM) must be incorporated at the Design Level - Design for AM, On-Orbit Repair and Replacement.





# The Road Ahead

## In-Space Additive Manufacturing



*Ground-Based Additive Manufacturing of Propulsion Components*

**Parallel paths toward Certification of Space System Designs**



# What Could Be



| NON-METALS                                                                                                                                                                                                                                                                                                        | PRINTED ELECTRONICS                                                                                                                                                                                                                                                             | PRINT-A-SAT                                                                                                                                                                                                        | METALS                                                                                                                                                                                                                                                                                                                                                                                                         | REPAIRS                                                                                                                                                                                                                                                                                                                                                                                                       | CONTOUR CRAFTING                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <br>Additive manufacturing using nonmetallitics is the simplest solution to many on-orbit needs. An expanding suite of feedstock materials coupled with manufacturing in vacuum creates new architecture and design possibilities. | <br>Leverage ground-based developments to enable in-space manufacturing of functional electronic components, sensors, and circuits.<br><i>Image: Courtesy of Dr. Jessica Koehne (NASA/ARC)</i> | <br>The combination of 3D Print coupled with Printable Electronics enables on-orbit capability to produce "on demand" satellites. | <br>Additively manufacturing metallic parts in space is a desirable capability for large structures, high strength requirement components (greater than nonmetallics or composites can offer), and repairs. NASA is evaluating various technologies for such applications. <i>Image: Manufacturing Establishment website</i> | <br>Astronauts will perform repairs on tools, components, and structures in space using structured light scanning to create digital model of damage and AM technologies such as 3D Print and metallic manufacturing technologies (e.g. E-beam welding, ultrasonic welding, EBF3) to perform the repair. <i>Image: NASA</i> | <br>Contour Crafting Simulation Plan for Lunar Settlement Infrastructure Build-Up<br>B. Khoshnevis, USC<br><br><br>Illustration of a lunar habitat, constructed using the Moon's soil and a 3D printer.<br><i>Credit: Foster+Partners</i> |

Characterize → Certify → Institutionalize → Design for AM



# Non-Metals



- ABS plastic will be used for initial Additive Manufactured demonstration articles on ISS
- Other nonmetallic materials, currently being utilized/developed for ground-based printers are candidates for ISS evaluation/applications
  - Ultem 9085 high strength thermoplastic
  - Carbon fiber reinforced WINDFORM XT
  - Other polymer matrix composites, e.g. UTEP developments
- **Conductive Polymers**
  - Build circuits into structure
  - Build sensors, antennas, customized heat exchangers
- **Cubesat structures**
- **Go external**
  - ISS Technology Demonstration for automated external additive manufacturing
  - Free-flying platforms for autonomous manufacturing of on-demand cubesats



Above: Tools • Below: Spares/Standard Hardware



Left: Printed Cubesat structural elements  
Right: Cubesats deployed from ISS



Cubesat swarm from Autonomous Manufacturing Platform



# Printable Electronics



**Inkjet Printing:** (a) Dimatix piezoelectric inkjet printer (b) CNT ink spot by drop casting showing CNT aggregation (c) Single jet plasma system (d) spot of CNT ink by plasma jet showing even, conformal deposition and no aggregation

- **Develop in-space manufacturing capabilities to produce functional electronic and photonic components on demand.**
- **Printable inexpensive functional electrical devices is a rapidly evolving field**
  - substrates include plastic, glass, silicon wafer, transparent or stretchable polymer, and cellulose paper, textiles
  - Various inks with surfactants for stability are emerging (carbon nanotubes, silver, gold, titanium dioxide, silicon dioxide)
- **Take the first step towards printing electronics on-demand in space – building block approach**
  - Select, develop and characterize inks for electronics printing
  - Development and fabrication of electronic printer
  - Demonstrate circuit blocks
- **Fly a Technology Demonstration on ISS to build some functional electronic/ photonic circuits, sensors, electrodes, displays, etc.**
- Mature on-orbit capability to print-on-demand. Parts are printed from computer aided design (CAD) models which can be pre-loaded or uplinked from Earth



# Print A Sat Project



Print ChipSat Structure  
On ISS using 3D Print



Launch Six Unique ChipSats Printed  
on the Ground by ARC & JPL



First 100% Printed Cubesat to  
be Printed in space using  
printable electronics

- Develop the capability to additively manufacture a Cubesat in space which incorporates proof-of-concept for printable electronics
- Interest across NASA, DoD, DARPA, Commercial, and Academia
- First step:
  - Print Cubesat's structural supports using 3D Print ISS Tech Demo On-orbit
  - Print ChipSats on ground and launch to ISS
  - Deploy from ISS to demonstrate Printable Spacecraft proof-of-concept
- Next steps
  - Develop capability to print electronics on ISS
  - Enable “science on demand” or “observations on demand”
  - Establish pathfinder for commercial model of in-space Cubesat production on ISS



# Metals



- **NASA/MSFC contracted with Wohlers Associates to perform independent assessment of mainstream and novel metals AM technologies for in space applications**
  - Ten (10) Selection Criteria identified including: microgravity; working in a vacuum; post-processing requirements; material form, use, recyclability, and disposal.
  - Nine (9) AM technologies for evaluation identified
    - Crowd sourcing with social media
    - Interviews with AM experts
    - Discussions with Aerospace leaders such as Made In Space, Langley Research Center; and ESA
  - Approach to evaluation identified
- **Final Report due June 30, 2014**
- **NASA Space Technology Mission Directorate tasked LaRC to conduct systems analyses of Metals AM technologies to support 2015 selection for ISS tech demonstration**

Electron beam  
freeform fabrication



Courtesy of NASA

Laser-engineered  
net shaping



Courtesy of Optomec

Electron beam  
melting



Courtesy of SIRRIS

Microgravity  
Casting Process



Courtesy of Made In Space

Status  
Courtesy  
of

 **WOHLERS**  
ASSOCIATES



# Repairs





# Contour Crafting

- A new technology (developed at the University of Southern California) for robotic and autonomous construction; allows for versatile design options & construction materials
- Current capabilities (at USC and MSFC) are for small structures only
- Current R&T efforts to improve TRL and space and terrestrial applicability (NIAC)
- Large-scale demonstration of the new technology will be proposed in conjunction with US Army's Corps of Engineers in FY15
- Space applications focusing on remote lunar base construction, MMOD and radiation protection solutions
- Terrestrial applications for forward operating bases construction capability for military; for rapid, disaster relief efforts (FEMA); and low cost housing for developing countries



Lunar base construction



CC nozzle with corrugated wall



MSFC Demonstration



# Summary



- **In-space Manufacturing offers:**
  - Dramatic paradigm shift in the development and creation of space architectures
  - Mission safety risk reduction for low Earth orbit and deep space exploration
  - New paradigms for maintenance, repair, and logistics.
- **TRL advancement to application-based capabilities evolve rapidly due to leveraging of significant ground-based technology developments, process characterization, and material properties databases**
- **NASA-unique Investments are required primarily in applying the technologies to microgravity environment.**
- We must do the foundational work. It's not always sexy, but it is fundamental.
  - Characterize
  - Certify
  - Institutionalize
  - Design for AM
- **What Could Be – is limited only by the imagination (and funding)**

***“What will we build? We will build EVERYTHING”***

**– Astronaut Don Pettit**



For more information please contact:

Mallory M. Johnston  
[mallory.m.johnston@nasa.gov](mailto:mallory.m.johnston@nasa.gov)



# Characterize



- **Materials – constituents, feedstock, components (microstructure, surface finish, etc.)**
- **Properties – full/tailored suite of physical, mechanical, thermal properties as would be required for any space qualified component**
- **Process**
  - Ground-based
  - Microgravity-based
- **Inspection processes as applied to additively manufactured parts**
- **Reuse/Recycling**
  - Contamination
  - Properties vs. Original/Virgin Feedstock
  - Qualify Verification against Feedstock Specifications

*Characterization element benefits significantly from ground-based Additive Manufacturing development*



# Certify



- Technical capability to print parts on-orbit must go hand-in-hand with qualification/certification process to ultimately enable production of usable parts, structures, and systems in space.
- Typical certification process involves one or a combination of:
  - Test
  - Analysis
  - Similarity
- **Certify the Process - Generate process repeatability & reliability data at statistically significant levels**
  - Geometric verification/validation of parts
  - Material properties
  - Process monitoring for real time “certification” of build
  - Database of every part needed for configuration management
- **Certify the part**
  - Inspect Components
  - Test on ground and/or on orbit?
- **Certify by process similarity – how to validate process/print was performed as designed (visual monitoring, other sensors)**

*Test what you fly. Fly what you test.*



# Institutionalize



- **Mature from lab curiosity to in-line capability**
  - Culture – awareness and acceptance of additive manufacturing technologies
  - Building block approach for development of more complex systems
  - Standardize
    - Feedstock, materials, processes, inspections, acceptance procedures
    - Configuration control
    - Life cycle management
  - Demonstrate reliability – trust the process and the part
  - Innovation – expand the application space
  - Involve astronauts, crew systems, space systems developers
    - First line implementers
- **Create standard parts catalog for ISS**
- **Go external**
  - Large and more complex systems and structures will require capabilities that operate autonomously in space
  - Development efforts can build on foundation established by Earth-based and ISS-based (pressurized volume) capabilities and characterization efforts



# Design for AM

- To achieve maximum benefit and integration to the fullest extent. Additive Manufacturing (AM) must be incorporated at the Design Level - Design for AM, On-Orbit Repair and Replacement.

