Volume Visualization. Introduction

Isabel Navazo & Pere-Pau Vázquez Dept. Computer Science – UPC

Polygons vs voxels

- Is that all?
 - No, voxels have information from the model inside

- Is that all?
 - No, voxels have information from the model inside
- We can not render with the usual pipeline

- Polygons:
 - Data: 3+ vertices
 - Rendering pipeline:
 - Upload data to GPU (through supported data structures & primitives)
 - Render (transform vertices + rasterize + shade)
- Voxels:
 - Data: set of 2D images
 - No polygons
 - Images do not carry volume (intermediate values) data

Applications: Medicine

er Science – UPC

Applications: Medicine

Applications: Geology

Muschelkalk Virtual Reality Group, University of Erlangen

Applications: Sciences

Material Science, Quality Control

Biology

Micro CT, Compound Material,
Material Science Department, University of Erlangen

Virtual Reality Group, University if Erlangen

Applications: Archeology

Hellenic Statue of Isis

3rd century B.C.

ARTIS, University of ErlangenNuremberg, Germany

Sotades Pygmaios Statue,
5th century B.C
ARTIS, University of ErlangenNuremberg, Germany

Applications: vector visualization

Computational Science and Engineering

Applications: Computer Science

Visualization of Pseudo Random Numbers

Entropy of Pseudo Random Numbers,
Dan Kaminsky, Doxpara Research, USA,
www.doxpara.com

Volume Data

Real World

Simulations

Synthetic Models

- Number and dimension of the sampled data
- Dimension and topology of the grid

Volume Data: Grid types (1)

- Cartesian, uniform grids:
 - Spacing: regular
 - Geometry: regular
 - Topology: regular
 - Cell type: same
- Non-Uniform grids:
 - Spacing: irregular
 - Geometry: regular
 - Topology: regular
 - Cell type: same
- Curvilinear grids:
 - Spacing: irregular
 - Geometry: irregular
 - Topology: regular
 - Cell type: same

Dept. Computer Science – UPC

Volume Data: Grid types (2)

- Unstructured grids:
 - Spacing: irregular
 - Geometry: irregular
 - Topology: irregular
 - Cell type: same
- Hybrid grids:
 - Spacing: irregular
 - Geometry: irregular
 - Topology: irregular
 - Cell type: mixed

Volume Data: discrete data

- Nearest neighbor (non-continuous)
- Data points has voxel value of voxel closest to him (clamping)
- Outdated concept

Volume Data: discrete data

Trilinear volume interpolation

• Four linear interpolations on edges

On top of that, two linear interpolations (two bilinear

interpolations)

• On top of that, one

Pere-Pau Vázquez

scalar S

scalar **S**

scalar **S**

Classification

Specifies the visual appearance of volume data: the Transfer Function

Classification

- Some considerations: pros & cons
- FT gives good results in many applications
- Focuses on "materials" not on anatomy structures
 - Some structures has the same "material" (due to acquisition devices limitations)
 - It is not possible "identify" all structures
 - Fuzzy boundaries (densities)
- Not semantic information only visual perception
- Some times is difficult to design the needed TF

Texture-based Approaches

No volumetric hardware-primitives!

Proxy geometry (Polygonal Slices)

Scientific Visualization

Pere-Pau Vázquez

Dept. Computer Science – UPC

Ray-casting

Volume Visualization. Introduction

Volume Visualization. Introduction

- Data:
 - Volumetric models: CT, MRI, SPECT, simulation...
- Users:
 - Medical doctors, researchers
- Tasks:
 - Surgery planning, diagnostic, surgery, training (surgery simulation, diagnose), education...

Application overview (medicine)

Other applications

Scientific Visualization

Pere-Pau Vázquez

Dept. Computer Science – UPC

Volume Rendering Pipeline

Used techniques

- Image processing
- Identification of structures (segmentation)
- Isosurface
- Visualization

Challenges

- Data acquisition
 - Limited resolution (size)
 - Limited information (what does it represent)
 - Speed (moving organs)

Challenges

- Data processing
 - Segmentation
 - Registration
 - Storage

Challenges

- Rendering
 - Identification of structures (e.g. TF design)
 - Speed
 - VR
 - Interaction (pointing, selecting, measuring...)
 - Accuracy

Concepts: Volume Data Acquisition

Sampling Theorem (Nyquist, Shannon):

For a sufficient reconstruction of a signal, it must be sampled at least twice as fast (Nyquist - Rate)

Concepts: Volume Data Artifacts

- Source of most artifacts can be traced back to the following phenomena:
 - Violations of the sampling theorem
 - Partial volume effects
 - Interpolation artifacts

Volume Models

Volume Data / Image Stack:

- Images/slices are composed of image elements
 Pixel (Picture Element)
 - Pixel, Grid point/ Data point

- Array 2D, 3D (textures)
- Run-length
- Shell (fuzzy voxels)
- Octrees, wavelets,...

Fundamentals

- Introduction:
 - Definition of Volume Modeling and Visualization
 - Scientific Applications
 - Volume representation
 - The visualization pipeline
- Isosurface extraction

Volume Visualization. Introduction

Isabel Navazo & Pere-Pau Vázquez Dept. Computer Science – UPC