Teoria dei Giochi - Prova del 30 Novembre 2012

Cognome, Nome, Corso di Laurea, email:

Esercizio 1. Si consideri il seguente gioco. Il primo giocatore può scegliere un numero tra $\{1,3,4,6\}$; il secondo giocatore può scegliere un numero tra $\{2,5,36,216\}$. Sia x il numero scelto dal primo giocatore e y il numero scelto dal secondo giocatore. Il primo giocatore vince un euro se x < y e y è una potenza di x, oppure se x > y e x non è una potenza di y. (Analogamente, il secondo giocatore vince un euro se x > y e x è una potenza di y, oppure se x < y e y non è una potenza di x.)

Si consideri innanzitutto il gioco in strategia pura.

- **1.1** Indicare tutte le strategie debolmente dominanti per il primo giocatore, se ve ne sono, e tutte le strategie debolmente dominanti per il secondo, se ve ne sono. Non è richiesto di giustificare la risposta.
 - **1.2** Indicare tutti gli equilibri di Nash del gioco, se ve ne sono. Non è richiesto di giustificare la risp. Si consideri ora il gioco l'*estensione in strategia mista* del gioco.
- **1.3** Formulare i problemi di programmazione lineare che il primo e il secondo giocatore devono risolvere per individuare, ciascuno, la propria strategia conservativa (non è richiesto di risolvere tali programmi). Si consideri quindi la seguente strategia per il primo giocatore

•
$$\xi_1^i = \frac{1}{4} \ \forall i = 1, \dots, 4$$

e la seguenti strategie per il secondo giocatore:

•
$$\xi_2^j = \frac{1}{4} \ \forall j = 1, \dots, 4$$

•
$$\xi_2^1 = \xi_2^2 = \frac{1}{2}, \xi_2^3 = \xi_2^4 = 0$$

(al solito indichiamo con $\xi_1=(\xi_1^1,\ldots,\xi_1^4)$ il vettore stocastico associato alle 4 possibili strategie pure del primo giocatore, e con $\xi_2=(\xi_2^1,\ldots,\xi_2^4)$ il vettore stocastico associato alle 4 possibili strategie pure del secondo giocatore). Per ciascuna di queste strategie, indicare quanto paga, nel caso peggiore, il giocatore che la utilizza. (Giustificare brevemente la risposta).

- **1.4** Qualcuna delle strategie indicate al punto 1.3 è conservativa? (Giustificare brevemente la risposta).
- **1.5** Esistono equilibri di Nash in strategia mista? (Se ve ne sono, indicarne quanti più possibile; se ve ne sono ma non è possibile individuarli, spiegare perché; se non ve ne sono, spiegare perché.)
 - 1.6 Qual è il valore del gioco in strategia mista? (Se non è possibile individuarlo, spiegare perché).

Soluzione

- **1.1** Giocare 6 è una strategia debolmente dominante per il primo giocatore; giocare 5, 36, 216 sono strategie debolmente dominanti per il secondo giocatore.
- **1.2** L'incrocio di strategie debolmente dominanti restituisce equilibri di Nash, quindi (6,5), (6,36), (6,216) sono equilibri di Nash. Possiamo però verificare che anche (6,2) è un equilibrio di Nash.
 - **1.3** La matrice C dei payoff per il primo giocatore (in forma di costo) è la seguente

1

Se indichiamo con c_{ij} l'elemento alla riga i e la colonna j di tale matrice, il problema di programmazione lineare che devi risolvere per individuare la tua strategia conservativa è il seguente:

 $\min z$

$$z \ge \sum_{i=1}^{4} c_{ij} \xi_1^i \quad j = 1, \dots, 4$$
$$\xi_1^i \ge 0 \quad i = 1, \dots, 4$$
$$\sum_{i=1}^{4} \xi_1^i = 1$$

• il valore ottimo di questo programma, in corrispondenza alla soluzione fornita è $z = \frac{1}{2}$. Quindi, se il primo giocatore utilizza questa strategia, paga, nel caso peggiore, (in media) $\frac{1}{2}$ euro per ogni round del gioco.

Il problema di programmazione lineare che deve risolvere il tuo avversario per individuare la sua strategia conservativa è il seguente:

max w

$$w \le \sum_{j=1}^{4} c_{ij} \xi_{2}^{j} \quad i = 1, \dots, 4$$
$$\xi_{2}^{j} \ge 0 \quad j = 1, \dots, 4$$
$$\sum_{j=1}^{4} \xi_{2}^{j} = 1$$

- il valore ottimo di questo programma, in corrispondenza ad entrambe le soluzioni fornite è w = -1. Quindi, se il secondo giocatore utilizza questa strategia, paga, nel caso peggiore, (in media) 1 euro per ogni round del gioco.
- **1.4 1.6** Abbiamo visto al punto 1.1 che giocare 6 è una strategia debolmente dominante per il primo giocatore e giocare 5, 36, 216 sono strategie debolmente dominanti per il secondo giocatore. Sappiamo che una strategia debolmente dominante è anche conservativa, e che le strategie conservative pure sono (particolari) strategie conservative miste. Possiamo concludere quindi che:
 - il valore del gioco, ottenuto incrociando le strategie conservative dei giocatori, è pari a -1;
 - anche (1/4,1/4,1/4) e (1/2,1/2,0,0) sono strategie conservative per il secondo giocatore. Infatti, se il secondo giocatore utilizza queste strategie, paga, nel caso peggiore, (in media) proprio -1, il valore del gioco;
 - poiché l'incrocio di strategie miste conservative determina equilibri di Nash, sono equilibri di Nash in strategia mista: ((0,0,0,1), (0,0,0,1)); ((0,0,0,1), (0,0,1,0)); ((0,0,0,1), (0,1,0,0)); ((0,0,0,1), (1/4,1/4,1/4,1/4)); ((0,0,0,1), (1/2,1/2,0,0));

Esercizio 2 In un parlamento siedono 6 deputati. Di questi, 4 provengono da una stessa regione A, uno proviene da una regione B e uno proviene da una regione C.

- **2.1** Supponete che una legge possa essere approvata se e solo se a suo favore votano: i 4 deputati di *A* (più eventualmente il deputato di *B* e/o il deputato di *C*); oppure sia il deputato di *B* che il deputato di *C* (più eventualmente qualche deputato di *A*). Se è possibile formulare il processo di approvazione di una legge come un gioco cooperativo, determinare il valore di Shapley di ciascun deputato (giustificando la risposta). Se non è possibile, spiegare perché.
- **2.2** Supponete ora che una legge possa essere approvata se e solo se a suo favore votano: i 4 deputati di *A* ed almeno uno tra il deputato di *B* e il deputato di *C*; oppure sia il deputato di *B* che il deputato di *C* (più eventualmente qualche deputato di *A*). Se è possibile formulare il processo di approvazione di una legge come un gioco cooperativo, determinare il valore di Shapley di ciascun deputato (giustificando la risposta). Se non è possibile, spiegare perché.

Soluzione 2.1 Il gioco non può' essere formulato come un gioco cooperativo, perché non vale la superadditività: esistono due coalizioni disgiunte a valore 1, quella formata dai deputati di A e quella formata dal deputato di B e dal deputato di C.

2.2 Adesso vale la superadditività e il gioco può essere formulato come un gioco cooperativo. Per determinare il valore di Shapley per questo gioco cooperativo conviene utilizzare la formula:

$$S_i(v) = \frac{\text{\# permutazioni tali che: la coalizione } A_p^i \text{ vince e la coalizione } A_p^i \setminus i \text{ perde}}{n!}$$

Prendiamo in considerazione un deputato i proveniente dalla regione A. Le permutazioni in cui A_p^i vince, $A_p^i \setminus i$ perde sono sono quelle in cui il deputato si trova in quinta posizione e in sesta posizione c'e' il deputato di B oppure il deputato di C.

Quindi il valore del deputato è pari a $\frac{2\cdot 4!}{6!} = \frac{1}{15}$: quindi il potere di ciascun deputato della regione A è $\frac{1}{15}$.

Per quanto riguarda il deputato della regione B e il deputato di C, possiamo concludere che il loro valore di Shapley è:

$$S(v) = \frac{1}{2} \left(1 - 4 \cdot \frac{1}{15} \right) = \frac{11}{30}.$$

Esercizio 3 Considera il seguente gioco non cooperativo. È dato un grafo (bipartito) con vertici $x_1, x_2, x_3, y_1, y_2, y_3, y_4$ e spigoli $\{a_1 = x_1y_1, a_2 = x_1y_2, a_3 = x_2y_2, b_1 = x_1y_3, b_2 = x_3y_1, c_1 = x_2y_1, c_2 = x_3y_3, c_3 = x_3y_4\}$.

Ci sono 3 giocatori: il giocatore A controlla gli spigoli a_1, a_2, a_3 ; il giocatore B controlla gli spigoli b_1, b_2 ; il giocatore C controlla gli spigoli c_1, c_2, c_3 . Gli spigoli controllati da ciascun giocatore sono le sue possibili strategie: quindi A ha disposizione 3 strategie, B ha disposizione 2 strategie, C ha disposizione 3 strategie. Ogni giocatore sceglie quindi uno spigolo tra quelli a sua disposizione e il payoff, in forma di utilità, è determinato in questo modo:

- (1) se i 3 spigoli scelti formano un matching di cardinalità 3 (ovvero sono tre spigoli tali che nessuna coppia di spigoli ha un estremo in comune), il payoff di ogni giocatore è 1;
- (2) se i 3 spigoli non formano un matching di cardinalità 3 ma contengono un matching di cardinalità 2 (ovvero esiste una coppia di spigoli, tra i 3 scelti, che non ha un estremo in comune), il payoff di ogni giocatore è 0;
- (3) se i 3 spigoli non formano un matching di cardinalità 3 e non contengono un matching di cardinalità 2 (ovvero i 3 spigoli scelti hanno tutti e 3 un estremo in comune), il payoff di ogni giocatore è 0.

Per ognuna delle seguenti affermazioni dire se essa è vera o falsa. Se una affermazione è ritenuta vera, non è necessaria giustificarla. Se una affermazione è ritenuta falsa, è necessario esibire un controesempio.

- **3.1** Se i tre spigoli scelti rientrano nel caso (1), allora siamo sempre su un equilibrio di Nash.
- 3.2 Se i tre spigoli scelti rientrano nel caso (1), allora non siamo mai su un equilibrio di Nash.
- 3.3 Se i tre spigoli scelti rientrano nel caso (2), allora siamo sempre su un equilibrio di Nash.
- 3.4 Se i tre spigoli scelti rientrano nel caso (2), allora non siamo mai su un equilibrio di Nash.
- **3.5** Se i tre spigoli scelti rientrano nel caso (3), allora siamo sempre su un equilibrio di Nash.
- **3.6** Se i tre spigoli scelti rientrano nel caso (3), allora non siamo mai su un equilibrio di Nash.
- 3.7 Per ciascun giocatore, una qualunque strategia è debolmente dominante.
- 3.8 Per ciascun giocatore, nessuna strategia è debolmente dominante.

Soluzione 3.1, 3.2 Esiste una sola scelta dei giocatori che conduce a un matching di cardinalità 3, quello formato dagli spigoli a_3, b_1, c_3 . Ed è immediato verificare che è un equilibrio di Nash. Quindi 3.1 è vera e 3.2 è falsa (e il controesempio è appunto il matching $\{a_3, b_1, c_3\}$).

- **3.3, 3.4** Esistono diverse scelte dei giocatori che conducono a un matching di cardinalità 2. Alcune di questi matching diventerebbero di cardinalità 3 semplicemente cambiando uno spigolo (ovvero la scelta di un giocatore): questi quindi non corrispondono ad equilibri di Nash: per esempio $\{a_3,b_1,c_1\}$. Altre scelte conducono a un matching di cardinalità 2 che non potrebbe diventare di cardinalità 3 semplicemente cambiando *uno* spigolo: questi quindi corrispondono ad equilibri di Nash: per esempio $\{a_2,b_2,c_2\}$. Quindi 3.3 e 3.4 sono false (e i controesempi sono rispettivamente i due matching precedenti).
- **3.5, 3.6** Esiste una sola scelta dei giocatori che conduce a un matching di cardinalità 3, quello formato dagli spigoli a_1, b_2, c_1 . Ed è immediato verificare che è un equilibrio di Nash. Quindi 3.5 è vera e 3.6 è falsa (e il controesempio è appunto il matching $\{a_1, b_2, c_1\}$).
- **3.7, 3.8** In generale, qualunque cosa facciano gli altri giocatori, un giocatore può giocare una qualunque delle sue strategie e il payoff sarà 0, perché non si formerà un matching di cardinalità 3. C'è una sola eccezione per ogni giocatore: se B gioca b_1 e C gioca c_3 , la migliore risposta per A è giocare a_3 ; se A gioca a_3 e C gioca a_3 , la migliore risposta per a_3 è una strategia debolmente dominante per a_3 ; giocare a_3 è una strategia debolmente dominante per a_3 ; e nessuna altra strategia è debolmente dominante per a_3 ; e nessuna altra strategia è debolmente dominante per a_3 ; e nessuna altra strategia è debolmente dominante per a_3 ; e nessuna altra strategia è debolmente dominante per a_3 ; e nessuna altra strategia è debolmente dominante per i giocatori. Quindi 3.7 e 3.8 sono false.

Esercizio 4 Si consideri un'istanza dello Stable Marriage problem con 4 uomini e 4 donne. I seguenti ordini totali rappresentano le graduatorie di ciascun uomo e ciascuna donna:

- Uomo 1: $\{C,B,A,D\}$; Uomo 2: $\{D,C,A,B\}$; Uomo 3: $\{D,A,B,C\}$; Uomo 4: $\{A,D,C,B\}$.
- Donna A: {2,1,3,4}; Donna B: {4,3,1,2}; Donna C: {4,3,2,1}; Donna D: {2,3,4,1}.
- **4.1** Il matching $M = \{(1,B), (2,A), (3,D), (4,C)\}$ è una soluzione stabile? (In caso affermativo, non è necessario giustificare la risposta; in caso negativo, è invece necessario giustificare la risposta).
- **4.2** Esiste un matching M che non sia stabile né rispetto alla coalizione $S_1 = \{1, B\}$, né rispetto alla coalizione $S_2 = \{3, B\}$? (In caso affermativo, esibire tale matching; in caso negativo, è invece necessario giustificare la risposta).
- **4.3** Esiste un matching M che non sia stabile né rispetto alla coalizione $S_1 = \{2,A\}$, né rispetto alla coalizione $S_2 = \{4,C\}$? (In caso affermativo, esibire tale matching; in caso negativo, è invece necessario giustificare la risposta).
 - **4.4** Si considerino ora le seguenti graduatorie di preferenza *parziali*:
 - Uomo 1: $\{D, ?, ?, ?\}$; Uomo 2: $\{A, ?, ?, B\}$; Uomo 3: $\{D, ?, ?, B\}$; Uomo 4: $\{?, ?, ?, ?\}$.
 - Donna A: {4,?,?,1}; Donna B: {1,2,3,4}; Donna C: {?,?,3,4}; Donna D: {2,?,1,?}.

È possibile completare le graduatorie in modo tale che il matching $M = \{(1,D), (2,C), (3,A), (4,B)\}$ risulti stabile? (In caso affermativo, esibire un tale completamento; in caso negativo, non è invece necessario giustificare la risposta).

Soluzione:

- **4.1** *M* non è stabile. Non è stabile rispetto alla coalizione $S = \{2, D\}$.
- **4.2** $M = \{(1,A), (2,B), (3,C), (4,D)\}$
- **4.3** Un matching M non stabile né rispetto alla coalizione $S_1 = \{2,A\}$, né rispetto alla coalizione $S_2 = \{4,C\}$ dovrebbe assegnare la donna B sia all'uomo 2 che al 4, quindi è impossibile che esista.
 - **4.4** Un possibile completamento:
 - Uomo 1: {*D*,*A*,*B*,*C*};
 - Uomo 2: $\{A, C, D, B\}$;
 - Uomo 3: {*D*,*A*,*C*,*B*};
 - Uomo 4: $\{B,A,C,D\}$.
 - Donna A: {4,3,2,1};
 - Donna B: {1,2,3,4};
 - Donna C: {2,1,3,4};
 - Donna D: {2,4,1,3}.