Final EXAM- ADDENDUM

Method of moments Estimation:

Equate the population and sample moments to estimate the parameters

Moment (population): $\mu_i = E(X^i)$ Central Moment (population): $\mu'_i = E(X - \mu_1)^i$

Moment (sample): $m_i = (\sum X^i) / n$ Central Moment (sample): $m'_i = \sum (X - m_1)^i / n$

Method of Max Likelihood:

Find the value for parameter that maximizes log-likelihood by equating its derivative to 0

$$\frac{d}{d\theta}(\ln L(X_1, X_2, ... X_n)) = \frac{d}{d\theta}(\ln(P(X_1)P(X_2) ... P(X_n))) = 0$$

Confidence Intervals:

If parameter θ has an unbiased, Normally distributed estimator $\hat{\theta}$, then

Confidence interval, Normal distribution

$$\hat{\theta} \pm z_{\alpha/2} \cdot \sigma(\hat{\theta}) \ = \ \left[\hat{\theta} - z_{\alpha/2} \cdot \sigma(\hat{\theta}), \ \hat{\theta} + z_{\alpha/2} \cdot \sigma(\hat{\theta}) \right]$$

is a $(1 - \alpha)100\%$ confidence interval for θ .

If the distribution of $\hat{\theta}$ is approximately Normal, we get an approximately $(1 - \alpha)100\%$ confidence interval.

If we do not know the population std. dev. but we know the n is large, then $\sigma(\theta)$ can be replaced by $s(\theta)$

Confidence interval for the difference of means; known standard deviations

$$\bar{X} - \bar{Y} \pm z_{\alpha/2} \sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}$$

Confidence interval for a population proportion

$$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Confidence interval for the difference of proportions

$$\hat{p}_1 - \hat{p}_2 \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$

Common Z values:

$$z_{0.10} = 1.282,$$
 $z_{0.05} = 1.645,$ $z_{0.025} = 1.960$ $z_{0.01} = 2.326,$ $z_{0.005} = 2.576.$

Can also obtained from Z-table or from T-table with $v = \infty$

If n is small,

Confidence interval for the mean; σ is unknown

$$\bar{X} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$$

where $t_{\alpha/2}$ is a critical value from T-distribution with n-1 degrees of freedom

Confidence
interval for
the difference
of means;
equal, unknown
standard deviations

$$\bar{X} - \bar{Y} \pm t_{\alpha/2} s_p \sqrt{\frac{1}{n} + \frac{1}{m}}$$

where s_p is the pooled standard deviation, a root of the pooled variance in (9.11) and $t_{\alpha/2}$ is a critical value from T-distribution with (n+m-2) degrees of freedom

Pooled Std. Deviation:

$$s_p^2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2 + \sum_{i=1}^m (Y_i - \bar{Y})^2}{n + m - 2} = \frac{(n-1)s_X^2 + (m-1)s_Y^2}{n + m - 2}.$$
 (9.11)

Confidence
interval
for the difference
of means;
unequal, unknown
standard deviations

$$\bar{X} - \bar{Y} \pm t_{\alpha/2} \sqrt{\frac{s_X^2}{n} + \frac{s_Y^2}{m}}$$

where $t_{\alpha/2}$ is a critical value from T-distribution with ν degrees of freedom given by formula (9.12)

Statterthwaite approximation of degrees of freedom (9.12) [Round up to nearest integer]:

$$\nu = \frac{\left(\frac{s_X^2}{n} + \frac{s_Y^2}{m}\right)^2}{\frac{s_X^4}{n^2(n-1)} + \frac{s_Y^4}{m^2(m-1)}}$$

Hypothesis Testing (Z-tests):

Hypothesis Testing (t-tests):

For a right-tail alternative,

$$\left\{ \begin{array}{ll} \text{reject } H_0 & \text{ if } \quad t \geq t_\alpha \\ \text{accept } H_0 & \text{ if } \quad t < t_\alpha \end{array} \right.$$

For a left-tail alternative,

$$\left\{ \begin{array}{ll} \text{reject } H_0 & \text{ if } \quad t \leq -t_\alpha \\ \text{accept } H_0 & \text{ if } \quad t > -t_\alpha \end{array} \right.$$

For a two-sided alternative,

$$\left\{ \begin{array}{ll} \text{reject } H_0 & \text{ if } & |t| \geq t_{\alpha/2} \\ \text{accept } H_0 & \text{ if } & |t| < t_{\alpha/2} \end{array} \right.$$

Summary of Z - Tests

Null hypothesis	Parameter, estimator	If H_0 is true:		Test statistic
H_0	$ heta,\hat{ heta}$	$\mathbf{E}(\hat{ heta})$	$\operatorname{Var}(\hat{ heta})$	$Z = \frac{\hat{\theta} - \theta_0}{\sqrt{\operatorname{Var}(\hat{\theta})}}$
One-sar	mple Z-tests for	r means	and proportions, based or	a sample of size n
$\mu = \mu_0$	μ, \bar{X}	μ_0	$\frac{\sigma^2}{n}$	$\frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$
$p = p_0$	p,\hat{p}	p_0	$\frac{p_0(1-p_0)}{n}$	$\frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$
Two-sample Z-tests comparing means and proportions of two populations, based on independent samples of size n and m				
$\mu_X - \mu_Y = D$	$\mu_X - \mu_Y,$ $\bar{X} - \bar{Y}$	D	$\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}$	$\frac{\bar{X} - \bar{Y} - D}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}}$
$p_1 - p_2 = D$	$p_1 - p_2,$ $\hat{p}_1 - \hat{p}_2$	D	$\frac{p_1(1-p_1)}{n} + \frac{p_2(1-p_2)}{m}$	$\frac{\hat{p}_1 - \hat{p}_2 - D}{\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n} + \frac{\hat{p}_2(1-\hat{p}_2)}{m}}}$
$p_1 = p_2$	$p_1 - p_2,$ $\hat{p}_1 - \hat{p}_2$	0	$p(1-p)\left(\frac{1}{n} + \frac{1}{m}\right),$ where $p = p_1 = p_2$	$\frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n} + \frac{1}{m}\right)}}$ where $\hat{p} = \frac{n\hat{p}_1 + m\hat{p}_2}{n+m}$

Summary of t-tests

Hypothesis H_0	Conditions	Test statistic t	Degrees of freedom
$\mu = \mu_0$	Sample size n ; unknown σ	$t = \frac{\bar{X} - \mu_0}{s/\sqrt{n}}$	n-1
$\mu_X - \mu_Y = D$	Sample sizes n, m ; unknown but equal standard deviations, $\sigma_X = \sigma_Y$	$t = \frac{\bar{X} - \bar{Y} - D}{s_p \sqrt{\frac{1}{n} + \frac{1}{m}}}$	n + m - 2
$\mu_X - \mu_Y = D$	Sample sizes n, m ; unknown, unequal standard deviations, $\sigma_X \neq \sigma_Y$	$t = \frac{\bar{X} - \bar{Y} - D}{\sqrt{\frac{s_X^2}{n} + \frac{s_Y^2}{m}}}$	Satterthwaite approximation, formula (9.12)

P Values (Reject H_0 if P < 0.01, Accept H_0 if P > 0.1, Not enough evidence otherwise):

P values for Z tests:

Hypothesis H_0	Alternative H_A	P-value	Computation
	$\begin{array}{c} \text{right-tail} \\ \theta > \theta_0 \end{array}$	$P\left\{Z \geq Z_{ m obs} ight\}$	$1-\Phi(Z_{\rm obs})$
$\theta = \theta_0$	$\begin{array}{c} \text{left-tail} \\ \theta < \theta_0 \end{array}$	$P\left\{Z \leq Z_{\mathrm{obs}}\right\}$	$\Phi(Z_{\rm obs})$
	two-sided $\theta \neq \theta_0$	$P\{ Z \ge Z_{\mathrm{obs}} \}$	$2(1 - \Phi(Z_{\rm obs}))$

P values for t tests:

Hypothesis H_0	Alternative H_A	P-value	Computation
	$\begin{array}{c} \text{right-tail} \\ \theta > \theta_0 \end{array}$	$P\left\{t \geq t_{\mathrm{obs}}\right\}$	$1 - F_{\nu}(t_{\rm obs})$
$\theta = \theta_0$	$\begin{array}{l} \text{left-tail} \\ \theta < \theta_0 \end{array}$	$P\left\{t \leq t_{\mathrm{obs}}\right\}$	$F_{\nu}(t_{\rm obs})$
	two-sided $\theta \neq \theta_0$	$P\{ t \ge t_{ m obs} \}$	$2(1 - F_{\nu}(t_{\rm obs}))$

Confidence Intervals (variance):

Confidence interval for the variance

$$\left[\frac{(n-1)s^2}{\chi^2_{\alpha/2}}, \ \frac{(n-1)s^2}{\chi^2_{1-\alpha/2}}\right]$$

Confidence interval for the standard deviation

$$\left[\sqrt{\frac{(n-1)s^2}{\chi_{\alpha/2}^2}}, \sqrt{\frac{(n-1)s^2}{\chi_{1-\alpha/2}^2}} \right]$$

Hypothesis tests for variance (can also be used for Std Dev by conv question to variance):

Null Hypothesis	Alternative Hypothesis	Test statistic	Rejection region	P-value
	$\sigma^2 > \sigma_0^2$		$\chi^2_{ m obs} \ge \chi^2_{lpha}$	$P\left\{\chi^2 \geq \chi^2_{ m obs} ight\}$
$\sigma^2 = \sigma_0^2$	$\sigma^2 < \sigma_0^2$	$\frac{(n-1)s^2}{\sigma_0^2}$	$\chi^2_{\rm obs} \le \chi^2_{1-\alpha}$	$P\left\{\chi^2 \le \chi^2_{ m obs}\right\}$
	$\sigma^2 \neq \sigma_0^2$		$\chi^2_{\text{obs}} \ge \chi^2_{\alpha/2} \text{ or }$ $\chi^2_{\text{obs}} \le \chi^2_{1-\alpha/2}$	$2\min\left(\boldsymbol{P}\left\{\chi^{2} \geq \chi_{\mathrm{obs}}^{2}\right\},\right.$ $\boldsymbol{P}\left\{\chi^{2} \leq \chi_{\mathrm{obs}}^{2}\right\}\right)$

Testing ratio of Variances (can also be used for Std Dev by conv question to variance):

Null H	ypothesis $H_0: \frac{\sigma_X^2}{\sigma_Y^2} = \theta_0$	Test statistic $F_{\text{obs}} = \frac{s_X^2}{s_Y^2}/\theta_0$
Alternative Hypothesis	Rejection region	P-value Use $F(n-1, m-1)$ distribution
$\frac{\sigma_X^2}{\sigma_Y^2} > \theta_0$	$F_{\text{obs}} \ge F_{\alpha}(n-1, m-1)$	$m{P}\left\{ F\geq F_{\mathrm{obs}} ight\}$
$\frac{\sigma_X^2}{\sigma_Y^2} < \theta_0$	$F_{\text{obs}} \le 1/F_{\alpha}(m-1, n-1)$	$P\left\{ F \leq F_{ m obs} \right\}$
$\frac{\sigma_X^2}{\sigma_Y^2} \neq \theta_0$	$F_{\text{obs}} \ge F_{\alpha/2}(n-1, m-1) \text{ or } F_{\text{obs}} \le 1/F_{\alpha/2}(m-1, n-1)$	$2 \min (P \{F \ge F_{obs}\}, P \{F \le F_{obs}\})$

Bayesian Statistics

Given a prior distribution $\pi(\theta)$ and a model for some observations $f(x|\theta) = f(x_1, x_2, x_3, ... x_n|\theta)$ the posterior distributions $\pi(\theta|x)$ is given by

$$\begin{array}{|c|c|c|c|c|} \textbf{Posterior} & \pi(\theta|\boldsymbol{x}) = \pi(\theta|\boldsymbol{X} = \boldsymbol{x}) = \frac{f(\boldsymbol{x}|\theta)\pi(\theta)}{m(\boldsymbol{x})}. \end{array}$$

Where

Marginal distribution of data

$$m(\boldsymbol{x}) = \sum_{\theta} f(x|\theta)\pi(\theta)$$
 for discrete prior distributions π
$$m(\boldsymbol{x}) = \int_{\theta} f(x|\theta)\pi(\theta)d\theta$$
 for continuous prior distributions π

This holds true for pmf and for pdfs.

Conjugate families for Bayesian statistics

Model $f(x \theta)$	Prior $\pi(\theta)$	Posterior $\pi(\theta \boldsymbol{x})$
$Poisson(\theta)$	$Gamma(\alpha, \lambda)$	$Gamma(\alpha + n\bar{X}, \lambda + n)$
$Binomial(k,\theta)$	$Beta(\alpha, \beta)$	Beta $(\alpha + n\bar{X}, \beta + n(k - \bar{X}))$
$Normal(\theta, \sigma)$	$\operatorname{Normal}(\mu, au)$	Normal $\left(\frac{n\bar{X}/\sigma^2 + \mu/\tau^2}{n/\sigma^2 + 1/\tau^2}, \frac{1}{\sqrt{n/\sigma^2 + 1/\tau^2}}\right)$

Bayesian Estimate

$$\hat{ heta}_{ ext{B}} = \mathbf{E} \left\{ heta | oldsymbol{X} = oldsymbol{x}
ight\} = \left\{ egin{array}{l} \sum_{ heta} heta \pi(heta | oldsymbol{x}) \ \int_{ heta} heta \pi(heta | oldsymbol{x}) d heta \end{array}
ight.$$

depending on discrete or continuous posterior

The variance gives posterior risk

$$\rho(\hat{\theta}) = \text{Var}\left\{\theta | \boldsymbol{x}\right\}$$

Bayesian Credible set

DEFINITION 10.5 —

Set C is a $(1 - \alpha)100\%$ credible set for the parameter θ if the posterior probability for θ to belong to C equals $(1 - \alpha)$. That is,

$$P\{\theta \in C \mid X = x\} = \int_C \pi(\theta|x)d\theta = 1 - \alpha.$$

If the posterior $\pi(\theta|x)$ is Normal (or can be approximated as Normal), This is given by.

$$\mu_x \pm z_{\alpha/2} \tau_x = \left[\mu_x - z_{\alpha/2} \tau_x, \mu_x + z_{\alpha/2} \tau_x \right]$$

Bayesian Inference

- Calculate Posterior distribution $\pi(\theta|x)$
- Identify H₀ and H_A
- If $P\{H_0\}$ is greater than $P\{H_A\}$ according to $\pi(\theta|x)$ then accept H_0 . Else, reject H_0 .

Simulating sampling of Random Variable on the basis of samples from U(0,1)

- ♦ Basic distributions:
 - Bernoulli(p)
 - 1) If u < p return 1 else return 0
 - Binomial(n, p)
 - 1) Generate n samples from Bernoulli(p)
 - 2) Count the number of '1' samples
 - Geometric(p)
 - 1) Keep generating samples from Bernoulli(p) till '1' sample is generated
 - 2) Return number of samples generated
 - Negative-Binomial(k, p)
 - 1) Generate k samples from Geometric(p)
 - 2) Add the values together
- Discrete distributions
 - Method 1
 - 1) Generate u
 - 2) Find i such that $F(i-1) \le u < F(i)$, where F(x) is the cumulative distribution function
 - Method 2
 - 1) Generate u
 - 2) Find the smallest possible value of i such that F(i) > u, where F(x) is the cumulative distribution function

- ♦ Continuous distributions
 - Method 1 (Rejection Method)
 - 1) Find a, b, x such that a,b and 0,c forms a bounding box on f(x) where f(x) is the probability distribution function [for all a<= x <= b, 0 <= f(x) <= c]
 - 2) Generate u₁, u₂
 - 3) $X = a + (b-a) u_1$ and $Y = cu_2$
 - 4) If Y <= f(X) accept X as the desired sample. Else return to step 2
 - Method 2 (Inverse Transform Method)
 - 1) Generate u
 - 2) Return $F^{-1}(u)$ where $F^{-1}(x)$ is the inverse of F(x), the cumulative density function
- ♦ Inverse Transform Methods
 - Geometric: $X = \left[\frac{\ln(1-U)}{\ln(1-p)}\right]$
 - Exponential: $X = -\frac{1}{\lambda} \ln(1 U)$
 - Gamma: Generate α samples from Exponential(λ) and add them
- ♦ Special Methods
 - Uniform(a, b)
 - 1) Generate u
 - 2) Return u * (b-a) + a
 - Poisson (λ)
 - 1) Generate u₁, u₂ ...
 - 2) Find the largest value k for which $u_1 * u_2 * ... * u_k >= e^{-\lambda}$
 - 3) Return k
 - Normal(μ, σ) [Box-Mueller Transform]
 - 1) Generate u₁, u₂
 - 2) $z_1 = \sqrt{-2\ln(u_1)}\cos(2\pi u_2)$
 - 3) $z_2 = \sqrt{-2\ln(u_1)}\sin(2\pi u_2)$
 - 4) $x_1 = z_1 \sigma + \mu$
 - 5) $x_2 = z_2 \sigma + \mu$

Monte Carlo Methods

Represent any complex distribution in terms of simpler distributions and use the given methods to generate samples