Automaten und Formale Sprachen Tutorium

Teil V.

Christopher Blöcker (inf8871)

FH Wedel, SS 2010

Aufgaben

Aufgaben

Gegeben sei das Alphabet $\Sigma = \{0, 1\}$. Beweisen Sie:

- **1** Die Menge aller Typ-0-Sprachen über Σ ist abzählbar.
- $oldsymbol{0}$ Die Menge aller Sprachen über Σ ist überabzählbar.

abzählbar, überabzählbar

- Eine Menge \mathcal{M} ist abzählbar, wenn es eine bijektive Funktion $f: \mathcal{M} \to \mathbb{N}$ gibt.
- Eine Menge \mathcal{M} ist überabzählbar, wenn sie nicht endlich ist und es keine bijektive Funktion $f: \mathcal{M} \to \mathbb{N}$ gibt.

Aufgaben

Abzählbarkeit der Menge der Typ-0-Sprachen über $\Sigma = \{0,1\}$

Typ-0-Sprachen werden von **TM**'s erkannt, dabei erkennt jede **TM** genau eine Sprache.

Jeder Turingmaschine kann eine Gödelnummer zugeordnet werden, diese Gödelnummer kann als natürliche Zahl aufgefasst werden.

Somit existiert eine Funktion $f: \mathbf{TM} \to \mathbb{N}$.

ightarrow Die Menge der Typ-0-Sprachen muss abzählbar sein.

Aufgaben

Überabzählbarkeit der Menge aller Sprachen über $\Sigma = \{0,1\}$

Der Beweis erfolgt indirekt.

Angenommen, die Menge aller Sprachen über $\Sigma = \{0,1\}$ sei abzählbar.

Dann lassen sich alle Sprachen in einer zweiseitig unendlichen Matrix aufzählen.

Es sei
$$w_i \in L_j \Leftrightarrow \zeta(i,j) = 1$$

ζ	<i>w</i> ₁	<i>W</i> ₂	<i>W</i> ₃	W ₄	
L_1	1	1	0	1	• • •
L_2	0	1	0	1	• • •
L ₃	0	0	0	1	• • •
L_4	1	1	1	0	•••
:	:	:::	:	:	٠

Überabzählbarkeit der Menge aller Sprachen über $\Sigma = \{0,1\}$

Wir konstruieren nun die Sprache \mathcal{L} . Dabei soll gelten

$$w_i \in \mathcal{L} \Leftrightarrow w_i \notin L_i$$

ζ	W_1	<i>W</i> ₂	<i>W</i> ₃	<i>W</i> ₄	• • •
L_1	1	1	0	1	• • •
L ₂	0	1	0	1	• • •
L ₃	0	0	0	1	• • •
L ₄	1	1	1	0	• • •
÷	:	÷	:	:	٠
L_k	0	0	1	1	• • •

Überabzählbarkeit der Menge aller Sprachen über $\Sigma = \{0,1\}$

Wir haben nun eine Sprache konstruiert, die von jeder anderen in der Auflistung verschieden sein muss, da es immer wenigstens ein Wort w_i gibt, welches in \mathcal{L} enthalten ist, aber in der jeweiligen Sprache L_i **nicht**.

Die Annahme, dass die Menge aller Sprachen über $\Sigma=\{0,1\}$ abzählbar ist, muss somit falsch sein, also ist die Menge aller Sprachen über Σ überabzählbar.

Definition: Deterministische Turingmaschine **DTM**

Eine deterministische Turingmaschine **DTM** ist ein 7-Tupel.

$$\mathcal{A} = (\mathcal{Q}, \Sigma, \Gamma, \delta, q_0, q_{YES}, q_{NO})$$

mit

- Q endliche, nichtleere Menge von Zuständen
- $\Sigma \qquad \text{endliche, nichtleere Menge, das Eingabealphabet mit} \\ \Sigma \cap \mathcal{Q} = \emptyset \text{ und } \sqcup \notin \Sigma$
- Γ endliche, nichtleere Menge, das Bandalphabet mit $\Sigma \subset \Gamma$ und $\sqcup \in \Gamma$
- δ Uberführungsfunktion mit $δ: Q \times Γ \rightarrow Q \times Γ \times \{R, M, L\}$
- q₀ Startzustand
- q_{YES} Akzeptierender Endzustand
- q_{NO} Zurückweisender Endzustand

Definition: Nichtdeterministische Turingmaschine NDTM

Eine nichtdeterministische Turingmaschine **NDTM** ist ein 7-Tupel.

$$\mathcal{A} = (\mathcal{Q}, \Sigma, \Gamma, \delta, q_0, q_{YES}, q_{NO})$$

mit

- Q endliche, nichtleere Menge von Zuständen
- $\Sigma \qquad \text{endliche, nichtleere Menge, das Eingabealphabet mit} \\ \Sigma \cap \mathcal{Q} = \emptyset \text{ und } \sqcup \notin \Sigma$
- $\Gamma \qquad \text{endliche, nichtleere Menge, das Bandalphabet mit} \\ \Sigma \subset \Gamma \text{ und } \sqcup \in \Gamma$
- δ Überführungsrelation mit $δ : Q \times Γ \times Q \times Γ \times \{R, M, L\}$
- q_0 Startzustand
- q_{YES} Akzeptierender Endzustand
- q_{NO} Zurückweisender Endzustand

Arbeitsweise einer Turingmaschine

- Das Eingabewort $w \in \Sigma^*$ wird in die Bandfelder 0..|w-1| eingetragen.
- Entsprechend der Überführungsfunktion (bzw. -relation) wird der Bandinhalt verändert.
- **3** Die Berechnung stoppt, sobald die **TM** den Zustand q_{YES} oder q_{NO} erreicht hat.
- \bullet $w \in \mathcal{L}(A)$ wenn die **TM** in q_{YES} stoppt.

Definition: Linear beschränkter Automat LBA

Ein linear beschränkter Automat ist eine Turingmaschine, bei der das Arbeitsband nur eine endliche Länge hat.

