

協調フィルタリングによる プロジェクトデータ分析

EPM データを用いた協調フィルタリングの応用例

大杉 直樹,松本 健一 奈良先端科学技術大学院大学 情報科学研究科

発表の流れ

・ 協調フィルタリングの手順

手順 1: 類似度計算

手順 2: 予測値計算

手順 3: 推薦作成

- EPM データを用いた協調フィルタリングの応用例
 - 類似度計算結果の応用例(現状把握)
 - 予測値計算結果の応用例(見積もり)
 - 推薦作成結果の応用例(情報推薦)
- ・まとめと今後の課題
- お願い

手順 1:類似度計算

・ 推薦対象ユーザと他ユーザの間の類似度を計算する.

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl, J.,
"GroupLens: An Open Architecture for Collaborative Filtering of Netnews,"
Proceedings of ACM 1994 Conference on Computer Supported Cooperative Work (CSCW'94), pp.175-186, 1994.

	書籍 1	書籍 2	書籍 3	書籍 4	書籍 5	
推薦対象ユーザ	5 (好き)	5 (好き)	1 (嫌い)	3 (普通)	? (予測対象)	
ユーザ A	5 (好き)	5 (好き)	1 (嫌い)	? (未評価)	5 (好き)	類似度:1.0
ユーザ B	? (未評価)	5 (好き)	1 (嫌い)	3 (普通)	5 (好き)	類似度:0.98
ユーザ C	1 (嫌い)	1 (嫌い)	? (未評価)	5 (好き)	1 (嫌い)	類似度:-0.97

手順 2: 予測値計算

• 類似度の高い k (例えば k=2)人のユーザの評価を加重平均し,推薦対象のユーザの評価を予測する.

	書籍 1	書籍 2	書籍 3	書籍 4	書籍 5	
推薦対象ユーザ	5 (好き)	5 (好き)	1 (嫌い)	3 (普通)	5 (好き)	予測する
ユーザ A	5 (好き)	5 (好き)	1 (嫌い)	? (未評価)	5 (好き)	類似度:1.0
ユーザ B	? (未評価)	5 (好き)	1 (嫌い)	3 (普通)	5 (好き)	類似度:0.98
ユーザ C	1 (嫌い)	1 (嫌い)	? (未評価)	5 (好き)	1 (嫌い)	類似度:-0.97

手順 3:推薦作成

- ・推薦対象ユーザがまだ評価していない書籍全てについて,予測評価値を計算する.
- ・ 予測評価値に関して書籍を降順にソートする.
- ・ 評価値の高い書籍から順にユーザに推薦する.

EPM データを用いた協調フィルタリングの応用例

協調フィルタリングの過程で得た処理結果を,異なる用途に応用できる。

手順	処理結果の用途	EPM データを用いた 応用例
手順1. 類似度計算	現状把握	類似性可視化 , エキスパート同定 etc.
手順2. 予測値計算	見積もり	バグ数予測 , 規模予測 etc.
手順3. 推薦作成	情報推薦	リマインダ etc.

類似度計算結果の応用例:現状把握(1)

• 類似性可視化

- データ中の各要素間の類似性を可視化する.
- デモンストレーション: EPM で収集された「EASE プロジェクト 関係者用メーリングリストの投稿履歴」を使って...
 - EASE プロジェクト関係者間の類似性を可視化する.
 - ・メールのサブジェクトに含まれる単語間の類似性を可視化する。

類似度計算結果の応用例:現状把握(2)

エキスパート同定

- データ中の特定要素に関して知識を持っている人物(エキスパート)を特定する.
- デモンストレーション: EPM で収集された「EASE プロジェクト 関係者用メーリングリストの投稿履歴」を使って...
 - ・メールのサブジェクトに含まれる特定の単語に詳しい人物を特定する。

予測値計算結果の応用例: 見積もり

- ・ バグ数予測 規模予測 etc.
 - データ中の未測定要素を,類似する過去のプロジェクトの値 を加重平均して予測する.
 - EPM で収集可能な時系列データへの応用も考えられる.

	LOC	サイクロ マチック数	開発者数	ファイル 総数	総バグ数	
現行 PJ	50k	1000	3	40	400	予測する
過去 PJ A	45k	1000	2	36	360	類似 PJ
過去 PJ B	50k	1100	3	44	440	類似 PJ
過去 PJ C	10k	500	6	20	300	非類似 PJ

推薦作成結果の応用例:情報推薦

・リマインダ

- 開発者が過去に扱った情報の傾向を分析し,開発者が扱うべきであるにも関わらず,見落としていると思われる情報を提示する.
- デモンストレーション: EPM で収集された「EASE プロジェクト 関係者用メーリングリストの投稿履歴」を使って...
 - リプライを返すべきであるにも関わらず,見落とされているメールのサブジェクトを提示する。

まとめ

- 協調フィルタリングの手順について概説した。
- EPM データを用いて協調フィルタリングを行い,その過程で得られる処理結果の応用例を紹介した.

今後の課題

- ・ 応用方法(アプリケーション)の考案
 - ソフトウェア開発に役立つ協調フィルタリングのアプリケーションを考える。
- ・ アプリケーションの有用性検証
 - 実際のソフトウェア開発プロジェクトから収集されたデータを 用いて精度評価実験を行い、アプリケーションの有用性を検 証する.
- アプリケーションの実装
 - 検証の結果,有効だと判断されたアプリケーションを
 - EPM の機能として実装する。
 - ・各企業様の環境(データ収集手順や方法)に適合するツールとして実装する.

お願い1:アンケートにご協力ください

- お名前と電子メールアドレスのご記入について。
 - 本名や会社の電子メールアドレスのご記入が難しい方は, ニックネームやフリーメールアドレスをご記入ください.

・ 回答方法について

- アンケート用紙に記した各キーワードについて,「知っている」 或いは「知らない」をお答え〈ださい.「知っている」とお答えの 場合,どの程度ご興味をお持ちか,4 段階でお答え〈ださい.

・ アンケート結果の分析について

- アンケート結果に協調フィルタリングを適用し,参加者間,並びに,キーワード間の類似関係を可視化します.
- ご興味をお持ちになると思われるキーワード(お勧めキーワード)を推薦します.推薦結果は,ご記入いただいた電子メールアドレスに個別に連絡いたします.

お願い2:ご意見をお聞かせください

- ソフトウェア開発に役立つ協調フィルタリングの応用方法として, どんなものが考えられるでしょうか。
- Amazon社の書籍推薦システムで用いられる表データの代わりに、どんなデータが考えられるでしょうか。

列ラベル1 列ラベル2 列ラベル3 列ラベル4 列ラベル5

行ラベルA	要素	要素	要素	要素	?
	A-1	A-2	A-3	A-4	(予測対象)
行ラベルB	要素	要素	要素	要素	要素
	B-1	B-2	B-3	B-4	B-5
行ラベルC	要素	要素	要素	要素	要素
	C-1	C-2	C-3	C-4	C-5
行ラベルD	要素	要素	要素	要素	要素
	D–1	D-2	D-3	D-4	D-5

宣伝

- 今回の分析は、オープンソースプロジェクト NCFE (Naist Collaborative Filtering Engines)で開発された ソフトウェアを用いて行いました。
 - http://sourceforge.jp/projects/ncfe/

MEMO

複数プロジェクトから収集されたデータへの _[適用

- 協調フィルタリングを用いた工数見積もり技法では、
 - 下図のような表データを使用し、
 - プロジェクト(Pj)間の類似度を算出し,
 - 類似する過去 Pj の工数から現行 Pj の工数を予測する.

	設計工数	製造工数	基本設計 欠陥数	詳細設計 欠陥数	試験工数	
現行 Pj	50	20	3	10	40	予測する
過去 Pj A	45	18	2	? (欠損値)	36	類似 Pj
過去 Pj B	? (欠損値)	22	3	11	44	類似 Pj
過去 Pj C	10	10	? (欠損値)	5	30	非類似 Pj

ミクロ的データへの適用

- 協調フィルタリングを用いた工数見積もり技法では、
 - 下図のような表データを使用し、
 - プロジェクト(Pj)間の類似度を算出し,
 - 類似する過去 Pj の工数から現行 Pj の工数を予測する.

	設計工数	製造工数	基本設計 欠陥数	詳細設計 欠陥数	試験工数	
現行 Pj	50	20	3	10	40	予測する
過去 Pj A	45	18	2	? (欠損値)	36	類似 Pj
過去 Pj B	? (欠損値)	22	3	11	44	類似 Pj
過去 Pj C	10	10	? (欠損値)	5	30	非類似 Pj

アプリケーションの実装イメージ

開発者の視点に立ったアプリケーション

管理者の視点に立ったアプリケーション

デモ

- EPM 開発プロジェクトのデータからのナレッジマイニング

デモ: EPM 開発プロジェクトのデータからの COSC ナレッジマイニング EASE PROJECT

お願い1: データをください!

- 必ず実りある分析結果をお返しします。
 - 協調フィルタリングを適用し、ナレッジマイニングを行います.
- ・ ご業務に役立つアプリケーションを提案します.
 - 共同研究契約を結んでいただければ,提案したアプリケーションをツールとして実装いたします.
- ・ どんなデータでも構いません.
 - ご業務(ソフトウェア開発プロジェクトに限りません)の過程で 収集されたデータをご提供ください.
- データを加工する必要はありません。
 - 欠損値や異常値が沢山含まれていても構いません.
- 秘密は厳守します。
 - データに触れる者は全員、守秘義務契約を結びます。

類似度計算結果の応用例:現状把握(1)

• 類似性可視化

- データ中の各要素間の類似性を可視化する.
- デモンストレーション: EPM で収集された「EASE プロジェクト 関係者用メーリングリストの投稿履歴」を使って...
 - EASE プロジェクト関係者間の類似性を可視化する.
 - ・ メールのサブジェクトに含まれる単語間の類似性を可視化する.

	開発者 A	開発者 B	開発者C	開発者 D	開発者 E
単語 1	Aが1を使用	Bが1を使用	C が1を使用	Dが1を使用	?
	した頻度	した頻度	した頻度	した頻度	(予測対象)
単語 2	Aが2を使用 した頻度	Bが2を使用 した頻度	Cが2を使用 した頻度	Dが2を使用 した頻度	Eが2を使用した頻度
単語 3	Aが3を使用	Bが3を使用	Cが3を使用	Dが3を使用	Eが3を使用
	した頻度	した頻度	した頻度	した頻度	した頻度
単語 4	Aが4を使用	Bが4を使用	Cが4を使用	Dが4を使用	Eが4を使用
	した頻度	した頻度	した頻度	した頻度	した頻度

類似度計算結果の応用例:現状把握(2)

エキスパート同定

- データ中の特定要素に関して知識を持っている人物(エキスパート)を特定する.
- デモンストレーション: EPM で収集された「EASE プロジェクト 関係者用メーリングリストの投稿履歴」を使って...
 - ・ メールのサブジェクトに含まれる特定の単語に詳しい人物を特定する.

	単語 1	単語 2	単語 3	単語 4	単語 5
開発者 A	Aが1を使用	Aが2を使用	Aが3を使用	Aが4を使用	?
	した頻度	した頻度	した頻度	した頻度	(予測対象)
開発者 B	Bが1を使用	Bが2を使用	Bが3を使用	Bが4を使用	Bが5を使用
	した頻度	した頻度	した頻度	した頻度	した頻度
開発者C	Cが1を使用	C が 2を使用	Cが3を使用	Cが4を使用	C が 5を使用
	した頻度	した頻度	した頻度	した頻度	した頻度
開発者 D	Dが1を使用	Dが2を使用	Dが3を使用	Dが4を使用	Dが5を使用
	した頻度	した頻度	した頻度	した頻度	した頻度