	TP1 SAD - Audiffren Ayza	Pt		A B C D	Note	
ı	Préparation du travail					
1	Compléter le schéma TI avec l'instrumentation et les liaisons nécessaires à la conception de la boucle de régulation.	2,0	С	_	0,7	
2	Quel est le nom de la grandeur réglée ?	0,5	Α		0,5	
3	Quel est le principe utilisé pour mesurer la grandeur réglée ?	0,5	Α		0,5	Normalement on est en présence d'une régulation
4	Quelle est la grandeur réglante ?	0,5	Α		0,5	de pression
5	Donner une grandeur perturbatrice.	0,5	Α		0,5	ue pression
6	Etablir le schéma de câblage complet en tenant compte de la nature des signaux utilisés. Prévoir les convertisseurs, alimentations, générateurs nécessaires. Faire apparaître les polarités.	1,0	Α		1	
II.	Etude du procédé					
1	Paramétrer les entrées-sorties de votre régulateur en fonction de la nature des signaux utilisés.	1,0	Α		1	
2	Tracer la caractéristique statique de votre procédé. On prendra au moins 6 mesures (3 pour les régulations de température et niveau).	1,0	В		0,75	Les résultats que vous obtenez paraissent bizarres.
3	En déduire le gain statique du procédé autour du point de fonctionnement.	1,0	Α		1	
	En déduire le sens d'action à régler sur le régulateur.	1,0	Α		1	
5	Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.	3,0		_	0,15	
III.	Etude du régulateur	-,-		_	5,25	
1	Déterminer la structure interne (parallèle, série ou mixte) du correcteur PID utilisé par Lintools.	1,5	D		0,075	
2	En déduire le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours.	1,5	D		0,075	
IV.	Performances et optimisation					
1	Programmer votre régulateur pour assurer le fonctionnement de la régulation.	1	D		0,05	
2	Mesurer les performances de votre régulation en réponse à un échelon de consigne de 10%. On mesurera le temps de réponse à 10%, la valeur du premier dépassement et la précision relative.	1,5	D		0,075	
3	Améliorer votre réglage pour réduire au maximum la valeur du temps de réponse. On donnera le nom et la valeur des paramètres modifiés.	1	D		0,05	
4	Mesurer à nouveau les performances de votre régulation, comparer les avec celles obtenues à la question précédente.	1,5	D		0,075	
			No	te sur : 20	8,0	

I. Préparation du travail (5pt)

1. Compléter le schéma TI avec l'instrumentation et les liaisons nécessaires à la conception de la boucle de régulation.(2pt)

- 2. Quel est le nom de la grandeur réglée ? (0.5pt) la grandeur réglé est le débit de sortie de la vanne vs
- 3. Quel est le principe utilisé pour mesurer la grandeur réglée ? (0.5pt) le principe utilisé est une mesure de débit grâce a une membrane déformable qui mesure la pression, cette pression est ensuite convertie en débit.-
- 4. Quelle est la grandeur réglante ? (0.5pt) la grandeur réglante est le débit à l'entré de la cuve
- 5. Donner une grandeur perturbatrice. (0.5pt)
 la pression dans la cuve est la grandeur perturbatrice
- 6. Etablir le schéma de câblage complet en tenant compte de la nature des signaux utilisés. Prévoir les convertisseurs, alimentations, générateurs nécessaires. Faire apparaître les polarités. (1pt)

II. Etude du procédé (7pt)

1. Paramétrer les entrées-sorties de votre régulateur en fonction de la nature des signaux utilisés. (1pt)

Entrée

TagName	01M01_04		LIN Name	01M01_04	
Туре	AI_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>00	
			Sitello	1	
PV	0.0	%	Channel	1	
HR	100.0	%	InType	mA	
LR	0.0	%	HR_in	20.00	mA
			LR_in	4.00	mΑ
HiHi	100.0	%	AI	0.00	mΑ
Hi	100.0	%	Res	0.000	Ohms
Lo	0.0	%			
LoLo	0.0	%	CJ_type	Auto	
Hyst	0.5000	%	CJ_temp	0.000	
			LeadRes	0.000	Ohms
Filter	0.000	Secs	Emissiv	1.000	
Char	Linear		Delay	0.000	Secs
UserChar					
			SBreak	Up	
PVoffset	0.000	%	PVErrAct	Up	
Alm0nTim	0.000	Secs	Options	>0000	
Alm0fTim	0.000	Secs	Status	>0000	

Sortie

TagName	02P01_04		LIN Name	02P01_04	
Туре	AO_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>00	
			Sitello	2	
OP	0.0	%	Channel	1	
HR	100.0	%	OutType	m.A.	
LR	0.0	%	HR_out	20.00	mA
			LR_out	4.00	mΑ
Out	0.0	%	AO	0.00	mΑ
Track	0.0	%			
Trim	0.000	mΑ	Options	>0000	

2. Tracer la caractéristique statique de votre procédé. On prendra au moins 6 mesures (3 pour les régulations de température et niveau). (1pt)

Op	Pv
0	0
20	19
40	38
60	61
80	80
100	99

- 3. En déduire le gain statique du procédé autour du point de fonctionnement. (1pt) Gain statique du procéder =DeltaX/DeltaY=(100-0)/(99-0)=1,01
- 4. En déduire le sens d'action à régler sur le régulateur. (1pt) Le procéder est direct donc le régulateur est inverse
- 5. Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement. (3pt)

Je sais pas

III. Etude du régulateur (3pt)

- 1. Déterminer la structure interne (parallèle, série ou mixte) du correcteur PID utilisé par Lintools. (1.5pt)
 - Je sais pas
- 2. En déduire le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours. (1.5pt)

Je sais pas

IV. Performances et optimisation (5pt)

- 1. Programmer votre régulateur pour assurer le fonctionnement de la régulation.(1pt) Je sais pas
- 2. Mesurer les performances de votre régulation en réponse à un échelon de consigne de 10%. On mesurera le temps de réponse à 10%, la valeur du premier dépassement et l'erreur statique. (1.5pt)

 Je sais pas
- 3. Améliorer votre réglage pour réduire au maximum la valeur du temps de réponse. On donnera le nom et la valeur des paramètres modifiés. (1pt)
 Je sais pas
- 4. Mesurer à nouveau les performances de votre régulation, comparer les avec celles obtenues à la question précédente. (1.5pt)

Je ne sais pas.