论文阅读:单张图片进行3D重建的点云生成 网络

论文题目: A Point Set Generation Network for 3D Object Reconstruction from a Single Image

作者: H Fan, H Su, LJ Guibas

发表: CVPR2017 引用频次: 665 原文链接: 原文链接

一、背黒

用点云做三维重建的开山之作。

单张照片进行3D重建的困难:

- 单张图片给出的信息极其有限,不足以生成绝对完美的重建结构。
- 物体的背部信息等于没有。

本文使用点云解决了从单个图像进行3D重建的问题。

Figure 1. A 3D point cloud of the **complete** object can be reconstructed from a single image. Each point is visualized as a small sphere. The reconstruction is viewed at two viewpoints (0° and 90° along azimuth). A segmentation mask is used to indicate the scope of the object in the image.

跟原有的解决方案相比,点云表示可能无法有效地表示底层连续3D几何图形,但就本文的目标而言,它具有许多优势:

• 点云是一种简单、统一的结构,更容易学习。

• 当涉及几何变换和变形时,由于不必更新连接性,因此点云允许简单的操作。

网络的目标是估计图像的可见部分的深度,并对象几何体的非可见部分产生假想,并评估几种不同假想的可信度。 从统计学的角度来看,最理想的情况是我们能够完全复现出真实空间的景观,或者能够相应地对可信的候选人进行选择(允许一张图片有多重联想情况)。

本文称最终算法是一个条件采样器(conditional sampler),它在给定输入图像的情况下,从 "Ground Truth"空间中选择可信的点云。

文章提到的贡献

- 在从单个图像进行3D重建的任务上,我们应用了点云生成网络,并且性能大大优于现有技术;
- 系统地探索点云生成网络的体系结构和损失函数设计中的问题;
- 讨论并解决了从单一图像任务进行3D重建时的Ground Truth的不确定问题。

二、方法

1、定义

• 点云如何表示

$$S = \{(x_i, y_i, z_i)\}_{i=1}^N$$

这就体现出来点集的一个优点就是无序性,在旋转或缩放对象时,坐标值可以直接进行简单的线性变换。

关于点云中点的个数,文中设置为1024,作者认为这个个数已经足够表现大部分的几何形状。

● 在模型构建的时候由于单个2D图像的局限性,即使是人也无法猜出正确的形状,因此从众多模棱两可的'真像'中预测结果也是一大难题。因此文中定义了预测出的点集是一个概率分布

$$P(\cdot|I)$$

这就是全文提到的3D重建的随机性和不确定性。

• 由于GT是一个抽样结果,所以我们要训练的是某一个条件样本下的神经网络

$$S = G(I, r; \theta)$$

其中G是生成网络,I是输入图像,Θ表示网络参数,r 是随机变量。

2、网络

● 第一个网络:网络大致由一个编码器和一个解码器构成,编码器是由一系列卷积层和激活函数构成。输入一张图片I和一个向量r,r用来模拟重建任务中的不确定性,输出的是一个Nx3的矩阵。解码器中的全链接层用来生成点云的坐标。

第二个网络:为了更好的使模型作用在大而平滑的物体上,论文提出了改进版。因为每一个点都是被独立预测的,全链接层并不能很好的预测物体的几何结构,所以第二阶段的解码器由两部分组成,一个是全链接层,另一个是反卷积层。全链接层还是生成N个点,而反卷积层则是生成尺寸为HxW的3通道图片,这三个值分别是该点的位置坐标,稍后,全链接层的输出和反卷积层的输出会被合并在一个单元中。这里的跳跃连接增强了流过编码器和预测器的信息流。

● 第三个网络:这一阶段引入了"沙漏结构",这种深度神经网络重复执行编码和解码操作,从而进一步增强了模型的提取和表达能力。

3、Loss

点云的Loss很好定义,就是预测集和Ground Truth集的距离。

$$L(\{S_i^{pred},S_i^{gt}\}) = \sum d(\{S_i^{pred},S_i^{gt}\})$$

其中i是训练抽样的索引。

文章中列出了度量距离需要的要求:

- 关于点位置可区分;
- 计算效率高,因为数据将被多次转发和反向传播;
- 对集中的少量异常点具有鲁棒性

倒角距离Chamfer Distance

3D空间的倒角距离常见于点云重建或者3D重建工作。

$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} \|x - y\|_2^2 + \sum_{y \in S_2} \min_{x \in S_1} \|x - y\|_2^2$$

以上公式的S1和S2分别表示两组3D点云,第一项代表S1中任意一点x 到S2 的最小距离之和,第二项则表示S2 中任意一点y 到S1 的最小距离之和。如果该距离较大,则说明两组点云区别较大;如果距离较小,则说明重建效果较好。

对于每个点,CD算法都会找到另一个集合中最接近的邻居,并将平方距离求和。从S1和S2中的点位置来看,CD是连续且分段平滑的。每个点的范围搜索是独立的,因此可以并行化。同样,像KD-tree这样的空间数据结构也可以用来加速最近邻搜索。

尽管简单,但CD在实践中会产生合理的高质量结果。

Earth Mover's Distance (EMD)距离 陆地移动距离

EMD的方法则是,找出一个能够映射,该映射能够使S1的点转换成S2的距离最近。从而该映射就是最优映射。

$$d_{EMD}(S_1, S_2) = \min_{\phi: S_1 o S_2} \sum_{x \in S_1} \left\| x - \phi(x)
ight\|_2$$

EMD求解需要其运算复杂度较高,平均而言至少是二次方级别。作者使用了一个近似的变通方法,使 其满足度量距离需要的要求,并且能够并行化计算。

结论呢, 两种方法各有优劣, 用哪个都行

总体来说,由于2D转3D的不确定性,网络最终输出的是一个预测点的集合,作者希望网络会倾向于以平均的形式(Mean-shape)综合这些点输出一个最可信的形状。(下图可以看出两种Loss的情况下是如何平均可能的点集的)

Figure 3. Mean-shape behavior of EMD and CD. The shape distributions are (a) a circle with varying radius; (b) a spiky arc moving along the diagonal; (c) a rectangle bar, with a square-shaped attachment allocated randomly on one of the four corners; (d) a bar, with a circular disk appearing next to it with probability 0.5. The red dots plot the mean shape calculated according to EMD and CD accordingly.

- EMD捕获与隐藏变量的平均值相对应的形状。相比之下,CD会引起飞溅的形状,从而模糊了形状的几何结构。
- 为了解决变化部分的不确定性,CD将一些点分布在主体外部的正确位置。而EMD明显失真。

问题:如果不能在算法中抑制这些不确定性,即2D图片重构后可能的形状有很多种,那在网络中如何解决

4、产生多个可能的形状

前面提到过,所训练的网络是在某一抽样条件下的训练结果,如果只使用输入图像与前面提到的Loss函数来训练网络,Loss的最小化会使随机性无效,也就是只能训练一个特定条件下的结果,预测的输出也会和最开始从Ground Truth中的那一组抽样同分布。

文章提出了一个方法来模拟3D重建的不确定性,就是通过引入一个随机变量r使输入图片I变得凌乱,这个类似于CGAN(条件生成对抗网络)中的条件变量,这样每一个变量r都会使网络生成一个与原图片不一样的输出结果,n个不同的r就能产生n个不同的点云集合。

这样会生成多个候选3D结构,那么就从这么多个候选结构中,选出距离groundtruth最接近的,作为最终的重建结果,这就是Min-of-N loss(MoN)的由来。

$$\min_{\theta} \sum_{k} \min_{r_j 1 \leq j \leq n} \{d(G(I_k, r_j; \theta), S_k^{gt})\}$$

作者认为从直觉上来看,我们会相信n次中会至少有一次预测会非常接近真正的答案,因此可以认为这n次预测与真正的答案的距离的最小值应该要最小。后续实验中证明一般设n为2,也就是产生2个预测模型就OK了。

效果

最后,作者的实验建立在 ShapeNet数据集上,里面包含了大量的人造3D物体模型,作者运用了其中 220K个模型共2000类进行训练。

● 与当时的SOTA方法3D-R2N2比较

category	Ours	3D-R2N2		
	1 view	1 view	3 views	5 views
plane	0.601	0.513	0.549	0.561
bench	0.550	0.421	0.502	0.527
cabinet	0.771	0.716	0.763	0.772
car	0.831	0.798	0.829	0.836
chair	0.544	0.466	0.533	0.550
monitor	0.552	0.468	0.545	0.565
lamp	0.462	0.381	0.415	0.421
speaker	0.737	0.662	0.708	0.717
firearm	0.604	0.544	0.593	0.600
couch	0.708	0.628	0.690	0.706
table	0.606	0.513	0.564	0.580
cellphone	0.749	0.661	0.732	0.754
watercraft	0.611	0.513	0.596	0.610
mean	0.640	0.560	0.617	0.631

Table 1. 3D reconstruction comparison (per category). Notice that in the single view reconstruction setting we achieved higher IoU in all categories. The mean is taken category-wise. For 8 out of 13 categories, our results are even better than 3D-R2N2 given 5 views.

Figure 13. Visualization of predictions on synthetic and real world data.

● 损失函数中距离量度的不同选择对网络的预测模式有不同的影响。下图例示了相应地由CD和EMD 训练的两个网络之间的差异。

Figure 15. Comparison of predictions of networks trained by CD (blue, on the left) and EMD (green, on the right).

结束