\$1 Exact sequences

Def A sequence ... - Min fis Mi fin Min --
af maps of A-modules as called exact of M(Pi) = ker(Pin)

for all i.

Example 1

O - M f N exact (-) f sinjective

N f P - O exact (-) f sinjective

O - M - N f P exact (-) M = ker(f)

MIN - P - O exact (f)

Short exact segmence = ex segmence of the form

Short exact sequence = ex sequence of the form

0 - M - N - P - 0

E.g. 0-0 A -0 A/a -0

Such as 0 - 2 - 2/ 2 - 0

Example 2 $A = k[E]/(E^2)$. Then following is exact:

— $A \stackrel{\cdot}{=} A \stackrel{\cdot}{=} A \stackrel{\cdot}{=} A - A/(E) \longrightarrow 0$.

Example 3 Any map f: M - N can be extended by a four-term exact sequence:

— $ker(f) \longrightarrow M \stackrel{f}{=} N \longrightarrow coker(f) \longrightarrow 0$ Prop 4 Assume $M \stackrel{+}{\to} N \stackrel{3}{\to} P \longrightarrow 0$ is exact.

Here $A \stackrel{\cdot}{\to} A \stackrel{\cdot}{\to} A \stackrel{\cdot}{\to} A \longrightarrow 0$ is exact.

And $A \stackrel{+}{\to} A \stackrel{\cdot}{\to} A \stackrel{\cdot}{\to} A \longrightarrow 0$ is exact.

And $A \stackrel{+}{\to} A \stackrel{\cdot}{\to} A \stackrel{\cdot}{\to} A \longrightarrow 0$ is exact.

And $A \stackrel{+}{\to} A \stackrel{\cdot}{\to} A \longrightarrow A \longrightarrow 0$ is exact.

Proof 1) Exactness in PQQ: This means $g \otimes id_Q$ sujective. Seen last leature: For any two A-modules X and Y, $X \otimes_X Y$ is generated by the image of the nuresal bilinear map $X \times Y \longrightarrow X \otimes_A Y$, $(x,y) \longmapsto x \otimes y$. (Recall image = set of elementary tensors.)

& exact.

Since $N \times Q$ $\xrightarrow{(g,id_Q)} P \times Q$ is surjective by assumption, every elementary tensor of $P \otimes_X Q$ is of the form $g(n) \otimes q$, hence $g \otimes id_Q$ surjective.

2) Exactner in $N \otimes_{\mathcal{A}} Q$: This means $\ker(g \otimes id_{Q})$ $= \operatorname{Im}(f \otimes id_{Q})$

Equivalent by neweral proporties of image & kernel: Given an A-linear map f, $N \otimes_A Q$ $\xrightarrow{g \otimes id_Q} P \otimes_X Q$ the fectour ation f earls (*) f f exists? If and only if $f \otimes (f \otimes id_Q) = 0$. (**)

By unreval property of tensor products, (*) holds it and only if $N \times Q \longrightarrow P \times Q$ there is the factorization P for

the believe map $P(n,q) = \phi(n \otimes q)$.

This is equivalent to $P/(\log x) \times Q = 0$.

Since to (g) = hu(f) by assumption, this is equivalent to

§ 2 Perentation and tentor products

Defn Presentation of an A-module M = Choice of sets I, J and maps f, p s. Sh. following is exact:

ADJ fo ABI Pro M - O

(Translation: p sujective and ker(p) = lm(f).)

Pub differently, ne mite M as

 $M \simeq \bigoplus_{i \in I} A \cdot e_i / \langle u_j, j \in J \rangle$

Each 4; can be nother as

U; = & aij ei (for fixed j, almost all aij zuro)

Zemma 5 Every module M admits a presentation Proof Let $m_i \in M$, $i \in I$, be generators.

(Example: I = M and $m_m := m$.) Then $A^{\otimes I} \stackrel{f}{=} M$, $p(e_i) = m_i$ is sujective.

Let $u_j \in ker(p)$, $j \in J$, be generators. Then $A^{\otimes J} \stackrel{f}{=} A^{\otimes J}$ is a sugection onto ker(p) $e_j \stackrel{g}{=} m_j$

and hence (f, p) give a presentation. \square Example 6 A = k(x, y). $M = (x, y) \subset A$.

We have seen in leature 6 that

 $A = \begin{pmatrix} -Y \\ X \end{pmatrix} \qquad A = \begin{pmatrix} X \\ Y \end{pmatrix} \qquad M = O$

is a presentation. Bonus feature here: I rejective. This is not required by the definition.

Example 7 or \subseteq A ideal generated by $(a_1, -a_n)$. Then $A^{\otimes n} \longrightarrow A \longrightarrow A/or \longrightarrow O$ is a presentation.

Pop 7 Poperties of the tensor product:

- 1) A Q M = M via a & x ax
- 2) MON = NON via xoy yox
- 3) $(M \otimes_{X} N) \otimes_{X} P \cong M \otimes_{X} (N \otimes_{X} P)$ via $(x \otimes_{Y}) \otimes_{Z} \mapsto x \otimes (y \otimes_{Z})$
- $4)\left(\underset{i \in I}{\Phi} M_i \right) \otimes N \cong \underset{i \in I}{\Phi} M_i \otimes N \quad \text{wa} \quad \left(\underset{i \in I}{\sum} x_i \right) \otimes y \longmapsto \underset{i \in I}{\sum} x_i \otimes y.$

First recall the tensor calculus rules from our proof of existence of the tensor product :

$$(\alpha x) \otimes y = \alpha \cdot (x \otimes y) = x \otimes (\alpha y)$$

$$(x_1 + x_2) \otimes y = x_1 \otimes y + x_2 \otimes y$$

$$x \otimes (y_1 + y_2) = x \otimes y_1 + x \otimes y_2$$

The proof strategy for Prop 7 2 to use there + unresal property of tensor product to construct all maps in question.

I prove 1) & 2) or examples and leave 3) & 4) as exercise.

Proof 1) A×M — M, (a,m) — a.m is bolinear,
hence factors through ARM — M

aom — am.

It is clearly surjective. For nigethinity: Let $x \in A \otimes_{\mathcal{A}} M$ be any, mate it as linear combination of elementary lensors, say $x = \sum_{i=1}^{n} a_i \otimes x_i$, assume $\phi(x) - \sum_{i=1}^{n} a_i x_i = 0$.

Ruk 1) reflects

Bitson_A(A, M; P) \cong Hom_A(A, Hom_A(M, P)) \cong Hom_A(M, P). $f \longmapsto [a \mapsto f(a, -)] \longmapsto f(1, -)$

2) By @, M×N - NoM, N×M - MON (m,n) - nom, (n,m) - mon

are A-belinear, hence factor through two mays

2) Assume $M = \omega k \omega \left(A^{\oplus J} = (a_{ij})_{i,j}, A^{\oplus J} \right)$ is a promoted module.

Proof 1) (outshe Prop 7, 1) and 4).

2) By Prop 4, $M \otimes_{\chi} N \cong \text{cokes}(f \otimes id_{\chi})$. We compute this map resing the isomorphism in 1):

$$A^{\oplus J} = \sum_{i=1}^{\infty} A^{\oplus J} \otimes A^$$

Here I have mitten $n \cdot e_j = (o, -, o, n, o, -, -)$ j-th component

That is, foid, is given by the same makix (aij)i,j
under the identifications from part 1).

§3 Examples

Example 9 Leb $\alpha = (X, Y) \subseteq A = k[X, Y]$. Then $\alpha \otimes A/\alpha \cong \text{Cokes}\left(A \xrightarrow{\begin{pmatrix} -Y \\ X \end{pmatrix}} A^{\otimes 2}\right) \otimes A/\alpha$ $\cong \text{Cokes}\left(A \xrightarrow{\begin{pmatrix} -Y \\ X \end{pmatrix}} (A/\alpha)^{\otimes 2}\right)$ $\cong \text{Cokes}\left(A/\alpha \xrightarrow{\begin{pmatrix} -Y \\ X \end{pmatrix}} (A/\alpha)^{\otimes 2}\right)$

Int $X, Y \in O$, so $X \cdot Alon = Y \cdot Alon = O$. Hence $\cong \text{Color} \left(Alon \xrightarrow{\circ} (Alon)^{\otimes 2} \right)$ $\cong \left(Alon \right)^{\otimes 2} \cong \mathbb{R}^{2}$

is a two-dimensional k-vsp.

Example 10 A any may, or, b = A two ideals. Then

or x b — or b (a,b) — a.b is A-bilinear,

hence factors through an A-linear map or of b — or b

a b — or b

Thus map is always surjective since $\alpha b = (f \cdot g) f \in \alpha, g \in b$.

When is it injective? This is a subtle question: $Eg. A = k [E]/(E^2)$, $\alpha = b = (E)$.

Then $\alpha \cong coker(A \xrightarrow{E} A)$, so $\alpha \bowtie \alpha \cong coker(\alpha \xrightarrow{E} \alpha) \cong coker(\alpha \xrightarrow{C} \alpha) \cong \alpha$.

But $\alpha^2 = (E)^2 = 0$.

E.g. A PID, $\alpha = (l)$, b = (g) with $fg \neq 0$. Then $A \xrightarrow{\sim} \alpha$, $A \xrightarrow{\sim} b$, hence $1 \xrightarrow{\leftarrow} f$, $1 \xrightarrow{\sim} g$

E.g. A = k[X,Y], $\alpha = b = (X,Y)$. Then $\alpha^2 = (x^2, xY, Y^2)$.

By Sheet 5, Ex.3, or \$\alpha \text{Alor} \cong \text{83} \text{Port \$\alpha \text{Alor} \$\alpha \text{Alor

On the other hand, by Pop S, $(Older \otimes_{A} Older) \otimes_{A} A/Older \cong Older \otimes_{A} (Older \otimes_{A} A/Older)$ $\cong Older \otimes_{A} (A/Older) \otimes_{A} (A/Older)$ $\cong (Older \otimes_{A} A/Older) \otimes_{A} (A/Older)$ $\cong (Older \otimes_{A} A/Older) \otimes_{A} (A/Older)$ $\cong (A/Older) \otimes_{A} (A/Older)$ $\cong (A/Older) \otimes_{A} (A/Older)$

Thus $0.007 \longrightarrow 0.2$ sujective, but no isomorphism. Concretely: $2 = X \otimes Y - Y \otimes X$ be in kernel, is $\neq 0$. (Check this!) Moreove: $X \cdot 2 = X^2 \otimes Y - XY \otimes X$

around or long as multiplication happens milling the A-module or.

Similarly, $y \cdot z = 0$. So even though $67 \cdot 20$ a torsionfree modulo over an sute gral domain, there is an suchesion. $k \cong Na \cdot z \longrightarrow 67.89$

Appendix Affer the lecture, I realized that the reference to sheets, Ex 3 on page 10 can be early circumvented:

Claim or a A any. Then

or & A lor ~ or /orn+1.

Proof Xeb $a_i \in a$, $i \in I$, be generators of a_i .

Then $A^{\oplus I} \longrightarrow A \longrightarrow A / a_i$ or a_i is a perentation of a_i a_i a_i a_i