Total No. of Questions: 10] [Total No. of Printed Pages: 4

Roll No.

EC-404(N)

B. E. (Fourth Semester) EXAMINATION, June, 2010

(New Scheme)

(Electronics & Communication Engg. Branch)

ELECTRONIC CIRCUITS

[EC - 404(N)]

Time: Three Hours

Maximum Marks: 100

Minimum Pass Marks: 35

Note: Attempt *one* question from each Unit. All questions carry equal marks.

Unit-I

1. (a) Determine the quiescent levels of I_{CQ} and V_{CEQ} for the network of fig. 1.

P. T. O.

Unit-II

3. (a) Find the optimal schedule for the following jobs with n = 7 profits:

 $(P_1, P_2, \dots, P_7) = (3, 5, 18, 20, 6, 1, 38)$ and deadlines $(d_1, d_2, d_3, \dots, d_7) = (1, 3, 3, 4, 1, 2, 1)$

(b) Explain Greedy algorithm for constructing a Huffman code.

Or

- 4. (a) Show how to solve fractional knapsack problem in θ (n) time.
 - (b) Explain Prim's algorithm. 10

Unit-III

- 5. (a) What is dynamic programming? Discuss the elements of dynamic programming. How does the dynamic programming differ from Greedy algorithm? 10
 - (b) Find the shortest path using Floyd Warshall algorithm

Fig. 1

Or

6. (a) Define how knapsack problem is solved by dynamic programming. Consider n = 3 ($w_1 w_2 w_3$) = (2, 3, 3), ($P_1 P_2 P_3$) = (1, 2, 4) and m = 6. Find optimal solution

CS/IT-404(N)

(b) Solve the given multistage graph.

Fig. 2

Unit-IV

- 7. (a) Explain and solve 4 queen's problem using Backtracking.
 - (b) Explain lower bound theory and its use in solving algebraic problem.

Or

- 8. (a) What is Hamiltonian cycle? Write an algorithm to find all Hamiltonian cycles is a graph.
 - (b) Explain CRCW and EREW algorithms. 10

Unit-V

- 9. (a) Create a B-Tree of order 5 from the following list of data items:
 - 30, 20, 35, 95, 15, 60, 55, 25, 5, 65, 70, 10, 40, 50, 80, 45
 - (b) Explain Np-complete and Np-hard problem. 8

Or

10. (a) In what way is an AVL tree is better than a Binary tree. Insert these keys in to an AVL free:

342, 206, 444, 523, 607, 301, 142, 183, 102, 157, 149.

P. T. O.

(b) Starting from vertex V_4 apply BFS and DFS in the given ahead fig. 3. $\stackrel{?}{\downarrow}$ 10

Fig. 3