

UNIVERSIDAD DE SAN BUENAVENTURA FACULTAD DE INGENIERÍA TALLER COMPLEMENTARIO CÁLCULO DIFERENCIAL

Ejercicios básicos

En los siguientes ejercicios una partícula se mueve según una ley del movimiento s = f(t), con $t \ge 0$, donde t se mide en segundos y s en pies.

- a. Encuentre la velocidad en el instante t
- b. ¿Cuál es la velocidad después de 3 seg?
- c. ¿Cuánto está la partícula en reposo?
- d. ¿Cuándo se mueve hacia la dirección positiva?
- e. Encuentre la distancia total recorrida durante los primeros 8 seg
- f. Dibuje el diagrama que ilustre el movimiento de la partícula.
- g. Hallar la aceleración en el tiempo t y después de 3 seg
- h. Grafique las funciones de posición, velocidad y aceleración para $0 \le t \le 8$

1.
$$f(t) = t^3 - 8t^2 + 15t$$

2.
$$f(t) = 0.01t^4 - 0.08t^3$$

$$3. \quad f(t) = \cos\left(\frac{\pi}{4}t\right)$$

$$4. \quad f(t) = te^{-\frac{t}{2}}$$

Ejercicios intermedios

- 5. La función de posición de una partícula está dada por $s = t^3 4.5t^2 7t$, con $t \ge 0$
 - a. ¿Cuándo alcanza la partícula una velocidad de 5 $\frac{m}{s}$?
 - b. ¿Cuándo la aceleración es 0? ¿cuál es el significado de este valor de t?

Ejercicios avanzados

6. Si se lanza una piedra hacia arriba verticalmente desde la superficie de la Luna, con una velocidad de $10 \frac{m}{s}$, su altura (en metros) después de t segundos es $h = 10t - 0.83t^2$.

- a. ¿Cuál es la velocidad de la piedra después que transcurren 3 s?
- b. ¿Cuál es la velocidad de la piedra una vez que se ha elevado 25 m?

PROFESOR MILLER PALACIO CALCULO EN UNA VARIABLE 6TA EDICIÓN JAMES STEWART