Les nombres complexes (partie 2)

I. Fonction polynôme à coefficients réels:

Définition :

Soient *n* un entier naturel et $\alpha_0, \alpha_1, ..., \alpha_n$ des réels.

On appelle fonction polynôme à coefficients réels la fonction P définie sur C par :

$$P(z) = \alpha_n z^n + \alpha_{n-1} z^{n-1} + ... + \alpha_1 z + \alpha_0 = \sum_{k=0}^{n} \alpha_k z^k$$

Vocabulaire:

- On parlera plus simplement de polynôme.
- •Les réels α_k sont les **coefficients** de P.

Cas particulier:

Si tous les coefficients de P sont nuls, P est appelé le polynôme nul.

Vocabulaire:

- Le plus grand entier n tel que α_n est non nul et appelé **le degré de** P. Si P est le polynôme nul on dira que son degré est $-\infty$.
- Une équation polynomiale de degré n peut s'écrire sous la forme P(z)=0

Exemples:

- On considère le polynôme P définit pour tout complexe z par $P(z) = 2z^2 3z + 1$. Ses coefficients sont. 2z = 2 2z = 3z + 1
- On considère le polynôme P définit pour tout complexe z par $P(z) = 4z^5 3z^2 z + 2$. Ses coefficients sont...95.5.4...94.5.9...94.5...

Remarque:

«Le polynôme est nul » ne veut pas dire « le polynôme s'annule ».

Plannie : 3 a E C , P(a) = 0

<u>Définition:</u>

Soient a un nombre complexe et P un polynôme.

On dit que a est une racine de P si P(a) = 0.

Exemples: P(-1) = 0 donc 1 ext line tracine $P(z) = z^3 - z^2 + z - 1$ P(1) = 0 donc 1 ext line tracine

II. Factorisation des polynômes :

Propriété :

Soient z et a deux nombres complexes

Pour tout entier naturel *n* non nul: $z^n - a^n = (z - a)^{n-1} a^k z^{n-1-k}$

Remarque:

(7-a)(3-1+a2n-2+a22n-3+...+an-27+an-1) = 3 "+ a 3 " + a 2 7 "-2 + - + a " - 2 2 + a " - 1 3 - Q 3 n-1 - 02 3 n-1 - 03 3 n-3 + - - a n-7 - an = 3 n - a n

Methode 2 (Rigery port hoe)

$$(3-a) \sum_{k=0}^{m-1} a^k 3^{m-1-k} = 3 \sum_{k=0}^{m-1} a^k 3^{m-1-k} - a \sum_{k=0}^{m-1} a^k 3^{m-1-k}$$

$$= \sum_{k=0}^{m-1} a^k 3^{m-k} - \sum_{k=0}^{m-1} a^k 3^{m-1-k}$$

$$= 3^m + \sum_{k=0}^{m-1} a^k 3^{m-k} - a^m - \sum_{k=0}^{m-1} a^k 3^{m-1-k}$$

Propriété :

Soient a un nombre complexe et P un polynôme de degré n supérieur ou égal à 1. a est une racine de P si, et seulement si, il existe un polynôme Q de degré n-1 tel que, pour tout nombre complexe z, P(z) = (z - a) O(z).

Démonstration:

 \leftarrow : On suppose qu'il existe un tel polynôme Q, alors P(a) = (a - a) Q(a) = 0.

Donc a est bien une racine de P.

 \Rightarrow : On suppose que a est une racine de P, donc que P(a) = 0.

$$P(z)$$
 s'écrit $\sum_{k=0}^{n} \alpha_k z^k$ donc $P(a) = \sum_{k=0}^{n} \alpha_k a^k$

On peut donc écrire :

$$P(z) = P(z) - 0 = P(z) - P(a) = \sum_{k=0}^{n} \alpha_k z^k - \sum_{k=0}^{n} \alpha_k a^k = \alpha_0 + \alpha_1 z + \dots + \alpha_n z^n - (\alpha_0 + \alpha_1 a + \dots + \alpha_n a^n)$$