Chapitre 2 : Étude de fonctions polynomiales du second degré

Premières Spécialité Mathématiques

1 Rappel: Fonctions affines

Définition 1. Une fonction affine est une fonction f définie sur telle que pour tout $x \in :$

$$f(x) = ax + b$$

avec $a \neq 0$ et b deux réels.

Le réel a est appelé coefficient directeur de f.

Le réel b est appelé ordonnée à l'origine de f.

Remarque. Quand b = 0, c'est-à-dire quand f(x) = ax, on dit que la fonction est **linéaire**.

Proposition 1. Soit $f: x \mapsto ax + b$ une fonction affine avec $a \neq 0$ et b deux nombres réels; et (O; I; J) un repère orthonormée. Alors, la courbe représentative de f dans ce repère est une droite.

Proposition 2. Soit (O; I; J) un repère orthonormée, et f une fonction définie sur dont la courbe représentative est une droite. Alors, f est une fonction affine telle que f(x) = ax + b pour tout $x \in où$:

- son coefficient directeur a est donnée par la pente de la droite;
- son ordonnée à l'origine b est l'ordonnée du point de la droite d'abscisse 0.

2

Exercice 1. Sur le repère (0; I; J) ci-contre, on a tracé la courbe représentative de deux fonctions affines f et g.

En déduire l'expression algébrique de f et g.

Proposition 3. Soit $f: x \mapsto ax + b$ une fonction affine, et $x < x_2$ deux réels distincts. Alors,

$$a = \frac{f(x_2)}{x_2} \quad f(x)$$
 et $b = f(x)$ ax

Proposition 4. Soit $f: x \mapsto ax + b$ une fonction affine.

- $Si \ a < 0$, alors f est décroissante sur .
- $Si \ a > 0$, alors f est croissante sur

Méthode 1. Pour dresser le tableau de signes d'une fonction affine $f: x \mapsto ax + b$, il faut :

- 1. Déterminer l'antécédant de 0 de f, autrement dit, trouver x tel que ax+b=0 :
- 2. Le tableau de signes s'obtient en suivant la variation de la fonction, autrement dit, cela dépend du signe de a

Exercice 2. Dresser le tableau de signes des fonctions trouvées dans l'exercice 1.