QF Group Theory CC2022 By Zaiku Group

Lecture 03

Delivered by Bambordé Baldé

Friday, 25/03/2022

Session Agenda

- 1. Learning Journey Timeline
- 2. Course Approach Overview
- 3. Upcoming Event

Pre-session Comments

- 1. The Zero Element
- 2. Nilpotent Elements
- 3. Zero Element Extension
- 4. Nilpotent Semigroup

Main Session

Learning Journey Timeline

We're here!

Exposing Abstract Mathematical Structures to Aspiring Quantum Pros

Organized by Washington DC/Toronto / Warsaw Quantum Computing Meetup

May 21, 2022 Saturday · 13:00 - 15:00 EDT

Moderator

Speaker

Event Sponsors

Zaiku Group

The Zero Element

Definition 1.0

Let (S,*) be a semigroup. An element $z \in S$ is called a 'zero element' or 'absorbing element' if z*a=a*z=z for all $a \in S$.

• Obviously it follows that z * z = z! Hence, z is idempotent right?!

Homework Challenge 1

Let (S, *) be a semigroup with a zero element $z \in S$.

• Is it true that z is unique i.e. if z_1 and z_2 are two zero elements then $z_1 = z_2$?

Homework Challenge 2

Let $(S_1, *_1)$ and $(S_2, *_2)$ be semigroups. Now suppose that a map $f: S_1 \longrightarrow S_2$ is a homomorphism and there is a zero element $z \in S_1$.

• Is it true that f(z) is a zero element in S_2 ?

The Zero Element (Examples)

- If $(S,*) = (\mathbb{R}, \times)$, then the zero element z is the ordinary 0!
- ② What if $(S,*) = (\mathbb{R},+)$? Is the ordinary 0 still a zero element as per our definition?
- If we now consider the semigroup $M_2(\mathbb{R})$ of 2 by 2 matrices over the reals under matrix multiplication. Then the zero element is of course the zero matrix i.e. $\mathbf{z} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.
- **©** Consider $M_2(\mathbb{R})$ under the matrix addition. Is the zero matrix $\mathbf{z} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ still a zero element?

Obviously the above is true for $M_n(\mathbb{R})$ for any $n \geq 1$.

The Zero Element (mod 3 Example A)

• Consider $\mathbb{Z}_3 = \{0, 1, 2\}$ with the binary operation + defined by the following table:

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

• Clearly there is no zero element right?

The Zero Element (mod 3 Example B)

 \bullet Consider $\mathbb{Z}_3=\{0,1,2\}$ with the binary operation \times defined by the following table:

×	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

• There is now a zero element right?!

Nilpotent Elements

Definition 1.1

Let (S,*) be a semigroup with a zero element $z \in S$. An element $a \in S$ is called nilpotent if there exists a natural number $n \in \mathbb{N}$ such that $a^n = z$.

- Obviously the zero element z itself is nilpotent right?
- We'll denote by Nilp(S) the set of all nilpotent elements in S i.e $Nilp(S) = \{a \in S \text{ such that there exists some } n \in \mathbb{N} \mid a^n = z\}.$
- Obviously, we may have $Nilp(S) = \{z\}$ or even $Nilp(S) = \emptyset$!
- Is it true that if $Nilp(S) \neq \emptyset$ then Nilp(S) is a subsemigroup?

Homework Challenge 3

Let $(S_1, *_1)$ and $(S_2, *_2)$ be semigroups with zero elements. Now suppose that $f: S_1 \longrightarrow S_2$ is a homomorphism.

• Is it true that if $a \in S_1$ is nilpotent then f(a) is nilpontent in S_2 ?

Nilpotent Elements (Boring Examples)

- Let $(S,*) = (\mathbb{Z}, \times)$ where \times is the ordinary multiplication in \mathbb{Z} . Then 0 is the only nilpotent element i.e. $Nilp(\mathbb{Z}) = \{0\}$?
- Now if $(S,*)=(\mathbb{Z},+)$ where + is the ordinary addition in \mathbb{Z} then $\mathit{Nilp}(\mathbb{Z})=\emptyset$?
- Let now $(S,*)=(\mathbb{R},\times)$ where \times is the ordinary multiplication in \mathbb{R} . Then $\mathit{Nilp}(\mathbb{R})=\{0\}$?
- If $(S,*)=(\mathbb{R},+)$. Then again $Nilp(\mathbb{R})=\emptyset$?
- Similarly, if now $(S,*)=(\mathbb{C},\times)$ where \times is the ordinary multiplication in \mathbb{C} . Then $Nilp(\mathbb{C})=\{0\}$. Obviously if $(S,*)=(\mathbb{C},+)$, then $Nilp(\mathbb{C})=\emptyset$.
- Can you notice anything interesting when the binary operation * is the notion of 'addition'?

Question: Are there examples of semigroup structure where Nilp(S) is not trivial/boring like the examples above?

Nilpotent Elements (Matrix Examples)

- Consider the set $M_2(\mathbb{R})$ of two by two matrices over the reals, then:
- ① Trivially, $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ is nilpotent in respect to matrix multiplication!
- ② Nontrivial examples are $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ -3 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 7 \\ 0 & 0 \end{bmatrix}$.

Question: Do you notice anything about the trace and determinant?

Nilpotent Elements (mod 4 Example A)

 \bullet Consider $\mathbb{Z}_4=\{0,1,2,3\}$ with the binary operation + defined by the following table:

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

 $Nilp(\mathbb{Z}_4) = \emptyset$ right?

Nilpotent Elements (mod 4 Example B)

 \bullet Consider $\mathbb{Z}_4 = \{0,1,2,3\}$ again but now with \times defined by the following table:

(0, -, -, 0) -8							
×	0	1	2	3			
0	0	0	0	0			
1	0	1	2	3			
2	0	2	0	2			
3	0	3	2	1			

• We finally have a nontrivial example because $\mathit{Nilp}(\mathbb{Z}_4) = \{0,2\}$ right?!

Question 1: Are there more nontrivial examples for n > 4?

Spoiler alert: Unfortunately \mathbb{Z}_5 is boring too i.e. $Nilp(\mathbb{Z}_5) = \{0\}!$

Question 2: What about \mathbb{Z}_6 ? Is it boring too i.e. $Nilp(\mathbb{Z}_6) = \{0\}$?

Nilpotent Elements (mod 6 Example)

 \bullet Consider $\mathbb{Z}_6 = \{0,1,2,3,4,5\}$ with \times defined by the following table:

×	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

• Unfortunately $\mathit{Nilp}(\mathbb{Z}_6) = \{0\}$ right?!

Spoiler alert: Unfortunately \mathbb{Z}_7 is boring too i.e. $Nilp(\mathbb{Z}_7) = \{0\}!$

Question: Are there really more nontrivial examples for n > 4?

Nilpotent Elements (mod 8 Example)

• Consider $\mathbb{Z}_8 = \{0, 1, 2, 3, 4, 5, 6, 7\}$ with \times defined by the following table:

×	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

 \bullet We have another nontrivial example because $\textit{Nilp}(\mathbb{Z}_8) = \{0,4\}$ right?!

Spoiler alert: \mathbb{Z}_9 is nontrivial too because $Nilp(\mathbb{Z}_9) = \{0,3,6\}!$

Question: Can you figure out why \mathbb{Z}_4 , \mathbb{Z}_8 and \mathbb{Z}_9 are special?

Nilpotent Elements (mod 5, 7, 9 **Tables)**

×	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

×	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

×	0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8
2	0	2	4	6	8	1	3	5	7
3	0	3	6	0	3	6	0	3	6
4	0	4	8	3	7	2	6	1	5
5	0	5	1	6	2	7	3	8	4
6	0	6	3	0	6	3	0	6	3
7	0	7	5	3	1	8	6	4	2
8	0	8	7	6	5	4	3	2	1

Nilpotent Elements (mod n > 9 Multiplication)

- For $\mathbb{Z}_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$, $\textit{Nilp}(\mathbb{Z}_{10}) = \{0\}$.
- For $\mathbb{Z}_{11} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $Nilp(\mathbb{Z}_{11}) = \{0\}$.
- For $\mathbb{Z}_{12} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$, $Nilp(\mathbb{Z}_{12}) = \{0, 6\}$.
- For $\mathbb{Z}_{13} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$, $Nilp(\mathbb{Z}_{13}) = \{0\}$.
- For $\mathbb{Z}_{14} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13\}$, $Nilp(\mathbb{Z}_{14}) = \{0\}$.
- For $\mathbb{Z}_{15} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14\}$, $\textit{Nilp}(\mathbb{Z}_{15}) = \{0\}$.
- For $\mathbb{Z}_{16} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15\}$, $Nilp(\mathbb{Z}_{16}) = \{0, 4, 8, 12\}$.
- For $\mathbb{Z}_{17} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16\}$, $\mathit{Nilp}(\mathbb{Z}_{17}) = \{0\}$.
- $\bullet \ \ \mathsf{For} \ \mathbb{Z}_{18} = \{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17\}, \textit{Nilp}(\mathbb{Z}_{18}) = \{0,6\}.$

By the way, \mathbb{Z}_{20} , \mathbb{Z}_{24} , \mathbb{Z}_{25} , \mathbb{Z}_{27} , \mathbb{Z}_{28} , \mathbb{Z}_{32} , and \mathbb{Z}_{36} are also part of the nontrivial gang!

Question: Can you now figure out what's going on?

ullet What if a semigroup (S,*) does not have a 'zero element'? Can we do anything about it?

Adding Zero Element to a Semigroup

Definition 1.2

Let (S,*) be a semigroup without a zero element. We define the set $S^0 = S \cup \{0\}$. We can construct a binary operation $\hat{*}$ on S^0 as follows:

- $\mathbf{0}$ $a \hat{*} b = a * b$ for all $a, b \in S$.
- **2** $x \hat{*} \mathbf{0} = \mathbf{0} \hat{*} x = \mathbf{0}$ for all $x \in S^0$.
- With $\hat{*}$ define above, $(S^0, \hat{*})$ forms a semigroup structure right?
- In particular, 0 is nilpotent right?

Homework Challenge 4

Consider the semigroups $(\mathbb{Z}_3, +)$, $(\mathbb{Z}_4, +)$, $(\mathbb{Z}_5, +)$. Try construct the tables for $(\mathbb{Z}_3^0, \hat{+})$, $(\mathbb{Z}_4^0, \hat{+})$ and $(\mathbb{Z}_5^0, \hat{+})!$

Nilpotent Semigroup

Definition 1.3

Let (S,*) be a semigroup with a zero element z. We say (S,*) is a nilpotent semigroup if all the elements of S are nilpotent i.e. for all $a \in S$ there exists some $n \in \mathbb{N}$ such that $a^n = z$.

• Can you find a nontrivial example of nilpotent semigroup?

Hint: Consider starting your hunt with matrices!

GitHub: github.com/quantumformalism

YouTube: youtube.com/ZaikuGroup

Discord: discord.gg/SPcmcsXMD2

Twitter: twitter.com/ZaikuGroup

LinkedIn: linkedin.com/company/zaikugroup