Advance Encryption Standard (AES) core implemented in VHDL

Introduction

This project consists of an AES encryption core that operates on a 128-bit keys and a 4 x 4 column-major order matrix of bytes termed the *state*. The implementation takes 10 clock cycles for a ciphered output to be generated.

SPECIFICATION

- Input:
 - o 4 x 4 column-major order matrix *i state*
 - 4 x 4 column-major order key i_key
 - Clock clock
 - o Reset reset
- Output:
 - 4 x 4 encrypted column-major matrix o_state
 - Valid encrypted output state o_valid
- Toolset: Vivado 2018.1

MODULE HIERARCHY

- Aes_encryption_implementation top level with state machine
 - Aes_encryption_key_schedule generates the key schedule
 - g_function required for generating key schedule
 - **s_box** s-box substitution
 - Aes_encryption_key_addition first round addRoundkey implementation
 - Aes_encryption_round
 - **s_box** s-box substitution
 - Aes_encryption_ShiftRows implements ShiftRows
 - Aes_encryption_MixColumns implements mixColumns
 - Aes_encryption_key_addition implements addRoundKey
 - Aes_encryption_last_round
 - s_box s-box substitution
 - Aes_encryption_ShiftRows implements ShiftRows
 - Aes_encryption_key_addition implements addRoundKey

TEST BENCH

The project contains various testbenches for different modules that makes up the AES encryption core.

This includes the top-level testbench for the overall implementation. Below illustrates the waveform of the top-level waveform.

Running a testbench can be done by going into simulation sources in project manager, selecting the testbench as top then "run simulation" from the flow navigator.

HIGH LEVEL ARCHITECTURE

REFERENCES

Pub, N. F. (2001). 197: Advanced encryption standard (AES). Federal information processing standards publication, 197(441), 0311.

Paar, C., & Pelzl, J. (2009). *Understanding cryptography: a textbook for students and practitioners*. Springer Science & Business Media.