Machine Learning Final Project

4105053128 唐永承

Dictionary Learning with two Dictionaries

 $\underset{D_{1},D_{2},x_{1},x_{2}}{\operatorname{argmin}} \|y_{1} - D_{1}x_{1}\|_{F}^{2} + \|y_{2} - D_{2}x_{2}\|_{F}^{2} + \lambda \|D_{1}^{T}D_{2}\|_{F}^{2} + \Gamma_{x}(x_{1}) + \Gamma_{x}(x_{2}) + \Gamma_{D}(D_{1}) + \Gamma_{D}(D_{2})$

 y_1 : picture 1

 y_2 : picture 2

 D_1 : dictionary for picture 1

 D_2 : dictionary for picture 2

 x_1 : sparse representation of picture 1 for D_1

 x_2 : sparse representation of picture 2 for D_2

 λ : regularization parameters

 Γ_{χ} : constraint for x (make it sparse)

 Γ_D : constraint for D (normalize)

Dictionary Training Method

- 1. Initial the dictionaries (D_1 and D_2) and the sparse representations (x_1 and x_2).
- 2. Update D_1 , D_2 , x_1 , and x_2 simultaneously (greedy algorithm)
- 3. Fix D_1 and D_2 , update x_1 and x_2 (soft threshold, soft_coef=0.01*mean)
- 4. Update D_1 , D_2 , x_1 , and x_2 simultaneously (greedy algorithm)

Repeat step 3 and 4 until convergence

Sparse Coding with two Dictionaries

$$\underset{x_{1},x_{2}}{\operatorname{argmin}} \frac{1}{2} \|y - D_{1}x_{1} - D_{2}x_{2}\|_{F}^{2} + \lambda_{1} \|x_{1}\|_{0} + \lambda_{2} \|x_{2}\|_{0}$$

- 1. Initial the sparse representation $(x_1 \text{ and } x_2)$.
- 2. Update x_1 and x_2 (soft thresholding, soft_coef=0.01*mean).
- 3. Update x_1 and x_2 (greedy).

Sparse Coding with two Dictionaries and a Analysis Dictionary

$$\underset{x_{1},x_{2}}{argmin} \frac{1}{2} \|y - D_{1}x_{1} - D_{2}x_{2}\|_{F}^{2} + \lambda_{1} \|x_{1}\|_{0} + \lambda_{2} \|x_{2}\|_{0} + \frac{\lambda_{3}}{2} \|AD_{1}x_{1} - z_{1}\|_{F}^{2} + \frac{\lambda_{4}}{2} \|AD_{2}x_{2} - z_{2}\|_{F}^{2} + \lambda_{5} \|z_{1}\|_{0} + \lambda_{6} \|z_{2}\|_{0}$$

- 1. Initial the sparse representation $(x_1 \text{ and } x_2)$.
- 2. Update x_1 and x_2 (soft thresholding, soft_coef=0.01*mean).
- 3. Update x_1 and x_2 (greedy).

A: analysis dictionary

 z_1 : auxiliary variable 1

 z_2 : auxiliary variable 2

 λ : regularization parameters

Experiment

To simplify the problem, let $y_1 = D_1 * x_1$, $y_2 = D_2 * x_2$

Two sets of y1 and y2 for experiment

Set 1	Set 2
D have 32 atoms, x have 3 nonzeros	D have 32 atoms, x have 10 nonzeros
y ₁ PSNR: 23.2350, y ₂ PSNR: 19.9591	y ₁ PSNR: 25.6146, y ₂ PSNR: 23.5446

Set 1 y_1

Set 1 *y*₂

Set 2 *y*₁

Set 2 *y*₂

Sparse Coding by two orthogonal dictionaries

Image 1 (sparse coding from y1+y2):

y1(DL) PSNR=27.7252

D1x1(after two orthogonal DL) PSNR=34.2670

Image 2 (sparse coding from y1+y2):

y2(DL) PSNR=24.5836

D2x2(after two orthogonal DL) PSNR=28.0402

Image 1

Image 2

Sparse Coding by two orthogonal dictionaries and a analysis dictionary

Image 1 (sparse coding from y1+y2):

y1(DL) PSNR=24.8747

D1x1(after two orthogonal DL) PSNR=27.5470

y2(DL) PSNR=19.2220

D2x2(after two orthogonal DL) PSNR=21.3965

Image 2

Sparse Coding from two orthogonal dictionaries

Image 1 (sparse coding from y1+y2):

y1(DL) PSNR=25.5493

D1x1(after two orthogonal DL) PSNR=31.1082

Image 2 (sparse coding from y1+y2):

y2(DL) PSNR=22.2436

D2x2(after two orthogonal DL) PSNR=26.8120

Image 1

 y_2

Image 2

Sparse Coding from two orthogonal dictionaries and a analysis dictionary

Image 1 (sparse coding from y1+y2):

y1(DL) PSNR=23.3555

D1x1(after two orthogonal DL) PSNR=26.7490

Image 2 (sparse coding from y1+y2):

y2(DL) PSNR=17.5180

D2x2(after two orthogonal DL) PSNR=20.1070

Image 1

 y_2

Image 2