CIRCUITOS LOGICOS DIGITALES

Universidad Peruana de Ciencias Aplicadas

Laureate International Universities®

SUBSISTEMAS ARITMÉTICOS Y LÓGICOS

CICLO ACADÉMICO: 2024-I

SUMADOR BINARIO SEMISUMADOR – HALF ADDER, 1-BIT

- El **semisumador** acepta 2 números binarios o 2 entradas (A, B) de un solo digito cada uno y produce 2 números binarios o 2 salidas (S, Co) de un solo digito: un bit de suma (S) y un bit de acarreo de salida (Co).
- □ En el **semisumador** no podemos propagar acarreos.

	A	В	s	Со
0	0	0	0	0
1	0	1	1	0
2	1	0	1	0
3	1	1	0	1

TABLA DE VERDAD

SUMADOR BINARIO SEMISUMADOR – HALF ADDER, 1-BIT

- El **semisumador** acepta 2 números binarios o 2 entradas (A,B) de un solo digito cada uno y produce 2 números binarios o 2 salidas (S,Co) de un solo digito: un bit de suma (S) y un bit de acarreo de salida (Co).
- En el semisumador no podemos propagar acarreos.

SEMISUMADOR – HALF
ADDER, 1-BIT, USANDO
PUERTAS BÁSICAS
XOR

 $S = A\overline{B} + \overline{A}B = A \oplus B$ Propagación (Pi)

TABLA DE VERDAD

 $Co = A \cdot B$ Generación de Co (Gi)

SUMADOR BINARIO SEMISUMADOR – HALF ADDER, 1-BIT, CON PUERTAS NAND

	A	В	Ø	Со
0	0	0	0	0
1	0	1	1	0
2	1	0	1	0
3	1	1	0	1

SUMADOR BINARIO SEMISUMADOR – HALF ADDER, 1-BIT, CON PUERTAS NOR

CIRCUITO LÓGICO

SIMBOLO LÓGICO

TABLA DE VERDAD

A	В	S	Со
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

SUMADOR BINARIO SUMADOR COMPLETO – FULL ADDER, 1-BIT

El **sumador completo** acepta 2 números binarios o 2 entradas $(A_i B_i)$ y 1 acarreo de entrada (C_i) y genera 2 salidas $(S_i C_{i+1})$: la suma (S_i) y el acarreo de salida (C_{i+1}) .

TABLA DE VERDAD

	${ t A_i}$	B _i	$C_{\mathtt{i}}$	C _{i+1}	Si
0 1 2	0 0	0 0 1	0 1 0	0 0	0 1 1
3	0	1	1	1	0
5 6 7	1 1 1 1	0 0 1 1	0 1 0 1		1 0 0 1
_					_

Desde un Half-Adder, se tiene:

$$S = A \oplus B$$
 Propagación (Pi)

$$Co = A \cdot B$$
 Generación de Co (Gi)

De la tabla de verdad, se tiene:

$$S_{i} = (A_{i} \oplus B_{i}) \oplus C_{i}$$

$$= P_{i} \oplus C_{i}$$

$$C_{i+1} = C_{o} = (A_{i} \overline{B}_{i} + \overline{A}_{i} B_{i}) C_{i} + (A_{i} B_{i})$$

$$= (A_{i} \oplus B_{i}) C_{i} + (A_{i} B_{i})$$

$$= P_{i} C_{i} + G_{i}$$

SUMADOR BINARIO SUMADOR COMPLETO – FULL ADDER, 1-BIT, USANDO HALF ADDER

 Podemos diseñar un sumador completo a partir de dos semisumadores

 $\mathbf{A_i} \; \mathbf{B_i}$

 C_{i+1}

 S_i

SUMADOR BINARIO SUMADOR COMPLETO – FULL ADDER, 1-BIT, USANDO PUERTAS BÁSICAS

SUMADOR BINARIO SUMADOR PARALELO, 4-BIT, USANDO 4 FULL-ADDER

SUMADOR BINARIO SUMADOR, 4-BITS, USANDO IC 74LS83/74LS83A

DISTRIBUCION DE LOS PINES DE LOS ICs 74LS83A/83

SUMADOR – RESTADOR BINARIO DE 4-BITS

 La integración de un circuito Complemento a 2 en un sumador de 4-bits posibilita la realización de sumas y restas.

 $Ci \rightarrow 0$, sumador

 $Ci \rightarrow 1$, restador

OPERACIÓN ARITMÉTICA:

	AO	A1	A02	А3
+/-	1	0	0	0
	В0	B1	B2	В3
	1	1	1	0

Cout	S3	S2	S1	S0
0	1	0	0	0
Cout	R3	R2	R1	R0
0	1	0	1	0

MÓDULOS LÓGICOS: COMPARADOR

Son circuitos cuya función es comparar las magnitudes de 2 números binarios para determinar la relación que existe entre estas cantidades: mayor, menor, o igual. Estos módulos lógicos son muy utilizados en ingeniería. A continuación se muestra su símbolo lógico y tabla de verdad:

	A	В	A>B	A=B	A < B
0	0	0	0	1	0
1	0	1	0	0	1
2	1	0	1	0	0
3	1	1	0	1	0

TABLA DE VERDAD

MÓDULOS LÓGICOS: COMPARADOR DE 1-BIT

Son circuitos cuya función es comparar las magnitudes de 2 números binarios para determinar la relación que existe entre estas cantidades: mayor, menor, o igual. Estos módulos lógicos son muy utilizados en ingeniería. A continuación se muestra su símbolo lógico y tabla de verdad:

MÓDULOS LÓGICOS COMPARADOR DE 2-BITS USANDO COMPARADOR DE 1-BIT

□ Comparador de 2 bits

Z1: A1>B1 v (A1=B1 ^ A0>B0)

Z2: A1=B1 ^ (A0=B0)

Z3: A1<B1 v (A1=B1 ^ A0<B0)

TABLA DE VERDAD

•	A1	A0	B1	В0	Z 1	Z 2	Z 3
0	0	0	0	0	0	1	0
1	0	0	0	1	0	0	1
2 3	0	0	1	0	0	0	1
3	0	0	1	1	0	0	1
4	0	1	0	0	1	0	0
5	0	1	0	1	0	1	0
	0	1	1	0	0	0	1
7	0	1	1	1	0	0	1
8	1	0	0	0	1	0	0
9	1	0	0	1	1	0	0
10	1	0	1	0	0	1	0
11	1	0	1	1	0	0	1
12	1	1	0	0	1	0	0
13	1	1	0	1	1	0	0
14	1	1	1	0	1	0	0
15	1	1	1	1	0	1	0
•							

MÓDULOS LÓGICOS COMPARADOR DE 4-BITS USANDO PUERTAS LÓGICAS

MÓDULOS LÓGICOS COMPARADOR DE 4-BITS USANDO PUERTAS LÓGICAS

Comparan dos números binario de 4-bits y habilita únicamente la salida que representa la relación que existe entre estas.
SIMBOLO LÓGICO

MÓDULOS LÓGICOS COMPARADOR DE 4-BITS USANDO IC 74LS85/74HC85

MÓDULOS LÓGICOS COMPARADOR DE 8-BITS USANDO ICS 74LS85/74HC85

CIRCUITO LÓGICO

