Lista de exercícios

Análise de Viabilidade de Projetos

Gestão de Tecnologia da Informação

GETI03 – Turma Centro

Grupo

- Alexander Inácio Batista
- Avelino Ferreira Gomes Filho
- Bruno Borsato
- Bruno Nunes
- Felipe Castilho
- Sandro Veras
- Thiago Matossian

Página 8

4. JUROS SIMPLES

Fórmula

C = R\$ 2.500,00

n = 65d

i = 3% a.m.

HP 12c

C = R\$ 2.500,00

n = 65d

i = 3% a.m.

$$i_k = \frac{i}{k}$$

$$i_1 = \frac{0.03}{30}$$

 $i_1 = 0,001$

M = C(1 + in)

 $M = 2.500 (1 + 0.001 \times 65)$

 $M = 2.500 \times 1,065$

f 5

0,03 [Enter]

30÷

[Enter]

65 x

→ 0,06500

→ 0,00100

1+

→ 1,06500

2500 x

→R\$ 2.662,50

M = R\$ 2.662,50

Fórmula

$$i_k = \frac{l}{k}$$

$$i_1 = \frac{0.2}{360}$$

$$i_1 = 0.00056$$

$$M = C(1 + in)$$

$$500 = C(1 + 0.00056 \times 20)$$

$$C = \frac{500}{1.01111}$$

C = R\$ 494,51

HP 12c

→R\$ 494,51

Fórmula

$$M = C(1 + in)$$

$$1.099,94 = 1.000(1 + i_d \times 303)$$

$$1.099,94 = 1.000 + 303.000 i_d$$

$$i_d = \frac{1.099,94 - 1.000}{303.000}$$

$$i_d = 3.3 \times 10^{-4}$$

 $i_a = (3.3 \times 10^{-4}) \times 360$
 $i_a = 11.87 \% a. a.$

HP 12c

1099,94 [Enter]

1000 -

360 X

→ 0,00056

303 ÷

10 ÷

→ 11,87%a.a

Taxa diária $i_d = \frac{i_m}{p}$ $i_d = \frac{0,08}{30}$ $i_d = 0,003$

Fórmula

$$J = Cni$$

$$J1 = 900 \times 3 \times 0,003 = 7,2$$

$$J2 = 500 \times 4 \times 0,003 = 5,32$$

$$J3 = 800 \times 10 \times 0,003 = 21,33$$

Total de Juros Pago

$$JT = J1 + J2 + J3$$

 $JT = 7,2 + 5,33 + 21,34 = R$ 33,87$

Página 12 e 13

4. JUROS COMPOSTOS

Atenção: Quando o prazo for específico ele não pode ser arredondado para meses.

15/05 – 15/09 != 4 meses

Calculando o prazo Maio Junho Julho Agosto Setembro 31d 30d 31d 30d 31d 16d + 30d + 31d + 31d + 15d = 123d

Fórmula

n = 123d i = 60% a.a. C = 1.050,00

$$M = C \times (1+i)^{n}$$

$$M = 1.050 \times (1+0.6)^{\frac{123}{360}}$$

$$M = 1.050 \times (1.6)^{0.3416666}$$

$$M = 1.050 \times (1.6)^{0.3416666}$$

$$M = R$1.232.91$$

HP 12c

g D.MY
15.052012 [Enter]
15.092012 g
$$\Delta$$
DYS
g D.MY → 123
[Enter]
360 ÷ → 0,34
n
60 i
1050 PV
FV → R\$ 1.232,91

C= R\$ 1.500,00 Recebeu 3 aumentos **cumulativos** de 10%, 14% e 15%

 $M\hat{e}s_0 = R\$.1.500,00$

 $M\hat{e}s_1 = R$1.500,00 \times 1,1 = R$1.650,00$

 $M\hat{e}s_2 = R\$1.650,00 \times 1,14 = R\$1.881,00$

 $M\hat{e}s_3 = R$1.881,00 x 1,15 = R$2.163,15$

M = R\$ 300,00

$$C = M \times \frac{1}{(1+i)^n}$$

$$C = 300 \times \frac{1}{(1+0.2)^2}$$

$$C = 300 \times \frac{1}{(1+0.2)^2}$$

$$C = 300 \times 0.694$$

$$C = R$ 208.33$$

Total
$$_{A}$$
 = R\$ 200,00 + R\$ 208,33
Total $_{A}$ = R\$ 408,33

$$C = M \times \frac{1}{(1+i)^n}$$

$$C = 245 \times \frac{1}{(1+0,2)^2}$$

$$C = 245 \times \frac{1}{(1+0,2)^2}$$

$$C = 245 \times 0,694$$

$$C = R$ 170,14$$

Total
$$_{\rm B}$$
 = R\$ 240,00 + R\$ 170,14
Total $_{\rm B}$ = R\$ 410,14

3 HP 12c Opção A Sinal = R\$ 200,00 C = ?

i = 20%a.a.

n = 2a

M = R\$ 300,00

300 CHS FV

20 i

2 n

PV → 208,33

[Enter]

200 + → 408,33

Opção B

Sinal = R\$ 240,00

C =

i = 20%a.a.

n = 2 a

M = R\$ 245,00

245 CHS FV

20 i

2 n

PV → 170,14

[Enter]

240+ → 410,14

Primeira parcela = R\$ 55,00 Segunda parcela = R\$ 95,00

$$M = C \times (1+i)^{n}$$

$$95 = 70 (1+i)^{\frac{45}{360}}$$

$$(1+i) = \sqrt[45]{\frac{95}{70}}$$

$$(1+i) = \sqrt[0.125]{\frac{95}{70}}$$

$$(1+i) = \sqrt[0.125]{\frac{1}{360}}$$

$$i = 11,5081 - 1$$

$$i = 10,5081 \text{ (taxa nominal)}$$

$$i = 10,5081 \times 100$$

$$i = 1.050,81\% \ a. \ a.$$

C = 70,00

Total = R\$ 125,00

Primeira parcela = R\$ 55,00 Segunda parcela = R\$ 95,00

n = 45d i = ?% a.a. 70 CHS PV 95 FV 45 [Enter] 360 ÷ n

→ 1.050,81 % a.a.

Valor simbólico da mercadoria = R\$ 100,00

Formas de Pagamento

Forma A Forma B

Sinal = R\$ 50,00 À Vista = R\$ 95,00

Final = R\$ 50,00

n = 30d

I = ? a.m.

$$C = 95,00_{a \text{ vista}} - 50,00_{sinal} = 45,00$$

$$n = 30d = 1m$$

$$i = ? a.m.$$

$$M = 50,00$$

$$M = C \times (1+i)^{n}$$

$$50 = 45 (1+i)^{1}$$

$$(1+i) = \frac{50}{45}$$

$$(1+i) =$$

$$i = 1,1111 - 1$$

 $i = 0,1111$ (taxa nominal)
 $i = 0,1111 \times 100$

$$i = 11.11\%a.m.$$

5 HP 12c

Valor simbólico da mercadoria = R\$ 100,00

Formas de Pagamento

Forma A Forma B
Sinal = R\$ 50,00 À Vista = R\$ 95,00
Final = R\$ 50,00
n = 30d
I = ? a.m.

 $C = 95,00_{a \text{ vista}} - 50,00_{sinal} = 45,00$ 1 n = 30d = 1m n

i = ? a.m.

M = 50,00

n = 1m

i = ?% a.m.

C = 45,00

→ 11,11% a.m.

45 CHS PV

$$M = C \times (1+i)^{n}$$

$$2000 = 2200 (1+i)^{\frac{35}{30}}$$

$$(1+i) = \sqrt[3\frac{5}{30}]{2200}$$

$$1+i = \sqrt[1,16666]{1,1}$$

$$i = 1,085124 - 1$$

$$i = 0,085124 \text{(taxa nominal)}$$

$$i = 0,085124 \times 100$$

$$\underline{i = 8,51\%a.m.}$$

```
À Vista = R$ 2.200,00
      Sinal = R$ 200,00
      Final = R$ 2.200,00
      n = 35d
      i = ? a.m.
      C = 2.200,00 - 200,00 = R$ 2.000,00
      n = 35d
      i = ?
      M = R$ 2.200,00
                           M = 2.200,00
          n = 35d
          i = ?% a.m.
C = 2.000,00
```

2000 CHS PV
35 [Enter]
30 ÷
n
2200 FV
i → 8,51% a.m.

1º Título

$$M = C \times (1+i)^{n}$$

$$M = 1000 \times (1+0.04)^{2}$$

$$M = 1000 \times 1.0816$$

$$M = R$1.081,60$$

2º Título

C = ?
n = 15d
i = 4% a.m
M = R\$1.000,00
M=1.000,00
M=1.000,00
M=1.000,00
M=1.000,00
M=1.000,00
C = ?
M = C × (1 + i)ⁿ
1000 = C × (1 + 0,04)¹⁵/₃₀
1000 = C × 1,0198
C =
$$\frac{1000}{1,0198}$$

$$C = R$ 980,58$$

Total devido = R\$1.081,60 + R\$980,58 = <math>R\$2.062,18

1º Título

C = R\$1.000,00n = 2mi = 4% a.mM = ?M = ?n = 2mi = 4% a.m. C = 1.000,001000 CHS PV 2 n 4 i → 1.081,60 FV

2º Título

C = ?

n = 15d

i = 4% a.m

M = R\$1.000,00

M=1.000,00

N=15d

i = 4% a.m.

C = ?

1000 FV

15 [Enter]

30 ÷

n

4 i

PV

$$\Rightarrow$$
 980,58

Total devido = R\$1.081,60 + R\$980,58 = <math>R\$2.062,18

Fórmula

$$i_k = 1 - (1 + i_p)^n$$
 100 CHS PV $i_{365} = 1 - (1 + 0.08)^{\frac{365}{180}}$ 8 i $i_{365} = 1 - (1.08)^{2.027}$ 365 [Enter] $i_{365} = 1 - 1.1689$ 180 ÷ n FV \rightarrow 116,89 100- \rightarrow 16,89%

Fórmula

$$i_k = 1 - (1 + i_p)^n$$

$$i_1 = 1 - (1 + 0.5)^{\frac{1}{10}}$$

$$i_1 = 1 - (1.5)^{0.1}$$

$$i_1 = 1 - 1.0414$$

$$i_1 = 4.14\%$$

HP 12c

100 CHS PV 50 i

1 [Enter]

10 ÷

n

FV → 104,14

100- →<u>4,14%</u>

Fórmula

$$i_k = 1 - (1 + i_p)^n$$

$$i_{34} = 1 - (1 + 0.0295)^{\frac{34}{31}}$$

$$i_{34} = 1 - (1.5)^{0.1}$$

$$i_{34} = 1 - 1.0324$$

$$i_{34} = 3,24\%$$

Alternativa A = 3,24% em 34 d Alternativa B = 3,22% em 34d Resposta: <u>Opção A é mais vantajosa</u>

HP 12c

100 CHS PV

3,22 i

31 [Enter]

34 ÷

n

FV → 102,93

100- →2,93%

A alternativa A = 2,95% em 31d

A alternativa B = 2,93% em 31d

Resposta: Opção A é mais vantajosa

Página 17

5. SÉRIE DE PAGAMENTOS

$$C = R \times \frac{(1+i)^n - 1}{i(1+i)^n}$$

$$5000 = R \times \frac{(1+0.02)^{12}-1}{0.02 (1+0.02)^{12}}$$
$$5000 = R \times \frac{0.26824}{0.02536}$$

$$R = R$472,71$$

HP 12c

5000 CHS PV 2 i 12 n

PMT

→R\$ 472,71

Descobrindo o valor presente da parcela adicional n6

5000 [Enter]

1000 FV

2 i

6 n

PV

+

→ -887,97

→ 4.112,03

Descobrindo o valor presente da parcela adicional n12

12 n

PV

→-788,49

+

→ 3.323,54

Descobrindo o valor das Prestações

PV

0 FV

PMT

→ R\$ <u>314, 27</u>

* Levando em consideração que os registros da calculadora não são limpos durante todo o processo.

Empréstimo = 50.000,00 n = 36 i =2 %a.m. 1ª em 60 dias

50.000 CHS PV

2 i

1 n

FV → 51.000

[Enter]

PV

0 FV

36 n

PMT \rightarrow R\$ 2.008,00

144,22 CHS PMT
36 n
3 i
PV → 3.148,65
200 + → R\$ 3.348,65

Página 19

6. SISTEMAS DE AMORTIZAÇÃO

Price sem juros durante a carência

Montando a Tabela Price

	Calculando até o 1º 50.000 CHS PV	Pagamento	66.550 CHS PV 5 n	Wortando a Tabela Fifice
	10 %	→ 5.000	10 i	
Saldo: R\$ 50.000,00 n = 5 a i = 10% a.a. 1º Pagamento no 4º ano	+ 10 % + 10 % +	→ 55.000 → 5.500 → 60.500 → 6.050 → 66.550	PMT 1 f AMORT R RCL PV 1 f AMORT R RCL PV	 → 17.555,72 (valor das parcelas) → 6.655,00 (Juros ano 4) → 10.900,00 (Amortização ano 4) → 55.649,28 (Saldo ano 4) → 5.564,93 (Juros ano 5) → 11.990,79 (Amortização ano 5) → 43.658,49 (Saldo ano 5)

Ano	Valor da Parcela	Juros	Amortização	Saldo Devedor
0	0	0	0	50.000
1	0	5.000	-5.000	55.000
2	0	5.500	-5.500	60.500
3	0	6.050	-6.050	66.550
4	17.555,72	6.655	10.900,72	55.649,28
5	17.555,72	5.564,93	11.990,79	43.658,49
6	17.555,72	4.365,85	13.189,87	30.468,62
7	17.555,72	3.046,86	14.508,86	15.959,76
8	17.555,72	1.595,98	15.959,74	0,02

n = 5 a

i = 10% a.a.

Saldo: R\$ 50.000,00

1º Pagamento no 4º ano

Price com juros durante a carência

Montando a Tabela Price

50.000 CHS PV

5 n

10 i

PMT → <u>13.189,87 (valor das parcelas)</u>

1 f AMORT \rightarrow 5.000 (Juros ano 4)

R↓ → 8.189,87 (Amortização ano 4)

RCL PV \rightarrow 41.810,13 (Saldo ano 4) 1 f AMORT \rightarrow 4.181,01 (Juros ano 5)

R↓ → 9.008,86 (Amortização ano 5)

RCL PV → 32.801,27 (Saldo ano 5)

...

Ano	Valor da Parcela	Juros	Amortização	Saldo Devedor
0	0	0	0	50.000
1	5000	5.000	0	50.000
2	5000	5.000	0	50.000
3	5000	5.000	0	50.000
4	13.189,87	5.000	8.189,87	41.810,13
5	13.189,87	4.181,01	9.008,86	32.801,27
6	13.189,87	3.280,13	9.909,74	22.891,53
7	13.189,87	2.289,15	10.900,72	11.990,81
8	13.189,87	1.199,08	11.990,79	0,02

SAC sem juros durante a carência

→ 66.550

Calculando até o 1º Pagamento

66.550 [Enter]

50.000 CHS PV 10 %

5 ÷ **→** 13.310,00 **Calculando os Juros**

Calculando a Amortização

+ Saldo: R\$ 50.000,00 n = 5 a i = 10% a.a.

+

1º Pagamento no 4º ano

→ 5.000 **→** 55.000 **→** 5.500 10 %

66.550 [Enter] 10 % **→** 6.655,00

+ **→** 60.500 **→** 6.050 10 %

Calculando o valor da Parcela

6.655 [Enter]

13.310,00 + → 19.965,00

Calculando o Saldo Devedor

66.550 [Enter]

13.310 -**→** 45.535,00

Ano	Valor da Parcela	Juros	Amortização	Saldo Devedor
0	0	0	0	50.000
1	0	5.000	0	55.000
2	0	5.500	0	60.500
3	0	6.050	0	66.550
4	19.965,00	6.655	13.310,00	53.240,00
5	18.634,00	5.324,00	13.310,00	39.930,00
6	17.303,00	3.993,00	13.310,00	26.620,00
7	15.972,00	2.662,00	13.310,00	13.310,00
8	14.641,00	1.331,00	13.310,00	0

Saldo: R\$ 50.000,00

n = 5 a

i = 10% a.a.

1º Pagamento no 4º ano

SAC com juros durante a carência

Calculando a Amortização

50.000 [Enter]

5 ÷ → 10.000,00

Calculando os Juros

5.000 [Enter]

10 % → 5.000,00

Calculando o valor da Parcela

5.000 [Enter]

10.000,00 + → 15.000,00

Calculando o Saldo Devedor

50.000 [Enter]

10.000 - → 40.000,00

Ano	Valor da Parcela	Juros	Amortização	Saldo Devedor
0	0	0	0	50.000,00
1	5.000,00	5.000,00	0	50.000,00
2	5.000,00	5.000,00	0	50.000,00
3	5.000,00	5.000,00	0	50.000,00
4	15.000,00	5.000,00	10.000,00	40.000,00
5	14.000,00	4.000,00	10.000,00	30.000,00
6	13.000,00	3.000,00	10.000,00	20.000,00
7	12.000,00	2.000,00	10.000,00	10.000,00
8	11.000,00	1.000,00	10.000,00	0,00

Página 29-30

7. ANÁLISE DE PROJETOS

Payback simples

Taxa: 8% a.a.

	Projeto A		Proje	eto B
Ano	Fluxo	Saldo	Fluxo	Saldo
0	(43,00)	(43,00)	(43,00)	(43,00)
1	15,00	(28,00)	10,00	(33,00)
2	15,00	(13,00)	10,00	(23,00)
3	15,00	2,00	10,00	(13,00)
4	1,50	3,50	10,00	(3,00)
5	1,50	5,00	10,00	7,00
6	1,50	6,50	10,00	17,00
7	1,50	8,00	10,00	27,00

$$1 \rightarrow 15$$

$$t_{m} \rightarrow 13$$

$$PB_{s \text{ projeto A}} = 2 + t_{m}$$

$$PB_{s \text{ projeto A}} = \underline{2,87anos}$$

$$1 \rightarrow 10$$

$$t_{m} \rightarrow 3$$

$$PB_{s \text{ projeto B}} = 4 + t_{m}$$

$$PB_{s \text{ projeto B}} = 4.3 \text{ anos}$$

Calculando o Saldo Projeto A

43 CHS [Enter]

15 + → -28

• • •

1,5 + → 8,00

Calculando o Payback A

2 [Enter]

13 [Enter]

15 ÷

+ \rightarrow 2,87 anos

Calculando o Saldo Projeto B

43 CHS [Enter]

10 + → -33

...

10+ → 27,00

Calculando o Payback A

4 [Enter]

3 [Enter]

10 ÷

→ 4,3 anos

Pelo Pay back simples escolheríamos o **Projeto A**

Payback descontado

R= 1,5

Calculando o Saldo Projeto A

43 CHS [Enter] 15 CHS FV

8 i

1 n

→ 13,89 PV**→** -29,11 +

2 n

PV**→** 12,86 **→** -16,15 +

1,5 CHS FV

7 n

PV**→** 0,88 **→** -0,39 +

Projeto A

3

4

1

R = 15,00

i: 8% a.a.

Calculando o Saldo Projeto B

43 CHS [Enter] 10 CHS FV

8 i 1 n

→ 9,26 PV**→** -33,74 +

...

→ 5,83

Calculando o Payback B

5 [Enter] 3,07 [Enter]

6,3 ÷

+

 \rightarrow 5,49 anos

Projeto B

7 n PV**→** 9,06 + C = 43

7

Payback descontado

1 continuação

Taxa: 8% a.a.

	Projeto A			Projeto B		
Ano	Fluxo	Valor Presente	Saldo	Fluxo	Valor Presente	Saldo
0	(43,00)	0	(43,00)	(43,00)	0	(43,00)
1	15,00	13,89	(29,11)	10,00	9,26	(33,74)
2	15,00	12,86	(16,25)	10,00	8,57	(25,17)
3	15,00	11,91	(4,34)	10,00	7,94	(17,23)
4	1,50	1,10	(3,24)	10,00	7,35	(9,88)
5	1,50	1,02	(2,22)	10,00	6,81	(3,07)
6	1,50	0,95	(1,27)	10,00	6,30	3,23
7	1,50	0,88	(0,39)	10,00	5,83	9,06

O **Projeto A** não se paga

$$1 \rightarrow 6,30$$

$$t_{m} \rightarrow 3,07$$

$$PB_{D \text{ projeto B}} = 5 + t_{m}$$

$$PB_{D \text{ projeto B}} = 5,49 \text{ anos}$$

Pelo Pay back descontado escolheríamos o **Projeto B**

Calculando o Saldo

100.000 CHS [Enter] 38.000 CHS FV 10 i 1 n PV **→** 34.545,45 **→** -65.454,55 + 2 n PV**→** 31.404,96 **→** -34.049,59 3 n PV **→** 28.549,96 **→** -5.499,62 + 4 n PV**→** 25.954,51 **→** 20.454,89

Calculando o Payback

3 [Enter]
5.499,62 [Enter]
25.954,51 ÷
+ → 3,21 anos

Taxa: 10% a.a.

Ano	Fluxo	Valor Presente	Saldo
0	(100.000,00)	0	(100.000,00)
1	38.000,00	34.545,45	(65.454,55)
2	38.000,00	31.404,96	(34.049,59)
3	38.000,00	28.549,96	(5.499,63)
4	38.000,00	25.954,51	20.454,88

1 → 25.954,51

$$t_m$$
 → 5.499,63
 $PB_D = 3 + t_m$
 $PB_D = 3,21 \text{ anos}$

Calculando o VPL

15 i

15.000 CHS g CF₀

6.000 g CFj

 $3 gN_i$

5.000 g CFj

0 g CFj

5.000 g CFj

f NPV

 \rightarrow 3.719,75

Calculando a TIR

f IRR \rightarrow 25, 24 % a.a.

Conclusões

Projeto é atraente, pois:

- VPL é maior que 0 (zero)
- TIR (25,24%) é maior que a TMA (15%)

Payback descontado

Ano	Fluxo	Valor Presente	Saldo
0	(250.000,00)	0	(250.000,00)
1	120.000,00	107,142,86	(142.857,14)
2	120.000,00	95.663,27	(47.193,88)
3	120.000,00	85.413,63	38,219.75
4	120.000,00	76.262,17	114.481,92
5	120.000,00	68.091,22	182.573,14

Calculando o Payback

2 [Enter] 47.193,88 [Enter] 85.413,63 ÷

→ 2,55 anos

Calculando o VPL

12 i 250.000 CHS g CF_0 120.000 g CF_j 5 gN_j f NPV \rightarrow 182.573,14

Calculando a TIR

f IRR \rightarrow 33, 89 % a.a.

Payback Descontado: 2,55 anos

VPL: R\$ 182.573,14

TIR: 33,89% a.a.

TMA: 15% a.a.

R = 200K R = 280K R = 350K R = 380K

Payback descontado

Ano	Fluxo	Valor Presente	Saldo
0	(600.000,00)	0	(600.000,00)
1	200.000,00	173.913,04	(426.086,96)
2	280.000,00	211.720,23	(214.366,73)
3	350.000,00	230.130,68	15.763,95
4	380.000,00	217.266,23	233.030,19
5	450.000,00	223.729,53	456.759,72

Calculando o Payback

2 [Enter] 214.366,73[Enter] 230.130,68 ÷

→ 2,93 anos

Calculando o VPL

15 i

600.000 CHS g CF₀

200.000 g CFj

280.000 g CFj

350.000 g CFj

380.000 g CFj

450.000 g CFj

→ <u>456.759,72</u> f NPV

Calculando a TIR

f IRR → 39,64 % a.a.

Payback Descontado: 2,93 anos

VPL: R\$ 456.759,72

TIR: 39,64% a.a.

Mantendo o sistema atual: R\$ 60.000,00 / ano Novo Sistema:

- Investimento: R\$ 100.000,00
- Custos de manutenção: R\$ 20.000,00

Com o sistema novo, por ano a empresa economiza R\$ 60.000,00 - R\$ 20.000,00 = R\$ 40.000,00 / ano, nos próximos 5 anos

Calculando o VPL

15 i 100.000 CHS g CF_0 40.000 g CF_j 5 gN_j f NPV \rightarrow 34.086,20

Calculando a TIR

f IRR \rightarrow 28,65 % a.a.

Conclusões

Projeto é atraente, pois:

- VPL é maior que 0 (zero)
- TIR (28,65%) é maior que a TMA (15%)

Situação atual:

• Fluxo de Caixa: R\$ 1.200.000,00 / ano

Proposta:

- Investimento: R\$ 500.000,00
- Fluxo de Caixa: R\$ 1.500.000,00 / ano Ganho com a proposta:

Ganho = 1.500.000 - 1.200.000Ganho = R\$ 300.000,00

Taxa = 15% a.a.

Calculando o VPL

15 i 500.000 CHS g CF_0 300.000 g CF_j 3 gNj f NPV \rightarrow 184.967,53

Calculando a TIR

f IRR \rightarrow 36,31 % a.a.

Conclusões

Projeto é atraente, pois:

- VPL é maior que 0 (zero)
- TIR (36,31%) é maior que a TMA (15%)

Página 32

7. CUSTO MÉDIO PONDERADO DO CAPITAL

% de Capital de Terceiros 35% Custo anual Capital de Terceiros 9% % de Capital de Próprio 65% Custo anual Capital de Próprio 10% I.R. 30%

	Capital (R\$)	i juros	Juros(R\$)
Próprio	65	10%	6,50
Terceiros	35	$9\% \times (100\% - 30\%) = 6.3\%$	2,21
Total	100		8,71

CMPC =
$$\frac{8,71}{100} \times 100$$

CMPC = 8,71 %

CMPC =
$$K_e \times \frac{E}{E+D} + K_d + \frac{D}{E+D} \times (1 - IR)$$

CMPC = $0.1 \times \frac{65}{100} + 0.09 \times \frac{35}{100} \times (1 - 0.3)$
CMPC = $\frac{6.5}{100} + \frac{2.21}{100} = 8.71 \%$

Capital Ordinário: R\$ 70.000.000,00 Custo anual Capital de Ordinário 25%

Capital Preferencial: R\$ 30.000.000,00 Custo anual Capital de Ordinário: 10%

Capital de Terceiros: R\$ 45.000.000,00 Custo anual Capital de Terceiros: 19%

I.R.: 34%

	Capital (R\$)	i juros	Juros(R\$)
Ordinário	70.000.000,00	25%	17.500.000,00
Preferencial	30.000.000,00	10%	3.000.000,00
Terceiros	45.000.000,00	19% × (100% – 34%) = 12,54%	5.643.000,00
Total	145.000.000,00		26.143.000,00

CMPC =
$$\frac{26.143.000}{145.000.000} \times 100$$

CMPC = 18,03 %

CMPC =
$$0.25 \times \frac{70.000.000}{145.000.000} + 0.1 \times \frac{30.000.000}{145.000.000} + 0.1254 \times \frac{45.000.000}{145.000.000} \times (1 - 0.34)$$

$$CMPC = \frac{17.5}{145} + \frac{3}{145} + \frac{5.643}{145} = 18.03\%$$

Capital de Próprio: 5.000.000 - 1.862.500,00 = R\$ 3.137.500,00

Custo anual Capital de Próprio 18%

Capital de Terceiros: R\$ 1.862.500,00 Custo anual Capital de Terceiros: 9%

I.R. 35%

	Capital (R\$)	i juros	Juros(R\$)
Próprio	3.137.500,00	18%	564.750,00
Terceiros	1.862.500,00	$9\% \times (100\% - 35\%) = 5,85\%$	108.956,25
Total	5.000.000,00		673.706,25

$$CMPC = \frac{673.706,25}{5.000.000} \times 100$$

$$CMPC = 13,47\%$$

CMPC =
$$K_e \times \frac{E}{E+D} + K_d + \frac{D}{E+D} \times (1 - IR)$$

CMPC = $0.18 \times \frac{3.137.500}{5.000.000} + 0.0585 \times \frac{1.862.500}{5.000.000} \times (1 - 0.35)$
CMPC = 13.47%

Capital de Próprio: R\$ 8.500.000,00 Custo anual Capital de Próprio 15%

Capital de Terceiros: R\$ 1.500.000,00 Custo anual Capital de Terceiros: 10%

I.R.: 0%

	Capital (R\$)	i juros	Juros(R\$)
Próprio	8.500.000,00	15%	1.275.000,00
Terceiros	1.500.000,00	10%	150.000,00
Total	10.000.000,00		1.425.000,00

$$CMPC = \frac{1.425.000}{10.000.000} \times 100$$

$$CMPC = 14,25\%$$

CMPC =
$$K_e \times \frac{E}{E+D} + K_d + \frac{D}{E+D} \times (1 - IR)$$

CMPC = $0.15 \times \frac{1.275.000}{10.000.000} + 0.1 \times \frac{150.000}{10.000.000} \times (1 - 0)$
CMPC = $14,25\%$

Capital de Próprio: R\$ 10.000.000,00 Custo anual Capital de Próprio 20%

Capital de Terceiros: R\$ 10.000.000,00 Custo anual Capital de Terceiros: 13,78%

I.R. 35%

	Capital (R\$)	i juros	Juros(R\$)
Próprio	10.000.000,00	20%	2.000.000,00
Terceiros	10.000.000,00	$13,78\% \times (100\% - 35\%) = 8,96\%$	895.700,00
Total	20.000.000,00		2.895.700,00

$$CMPC = \frac{2.895.700}{20.000.000} \times 100$$

$$CMPC = 14,48\%$$

CMPC =
$$K_e \times \frac{E}{E+D} + K_d + \frac{D}{E+D} \times (1-IR)$$

CMPC = $0.18 \times \frac{3.137.500}{5.000.000} + 0.0585 \times \frac{1.862.500}{5.000.000} \times (1-0.35)$
CMPC = 13.47%

Página 32 – 33

7. CAPM – MODELO DE PRECIFICAÇÃO DE ATIVOS FINANACEIROS

Rm = 20%
Rf = 15,25%
$$\beta = 0.85$$

Ri = ?

Investidor no mercado de ações?

$$Ri = Rf + (Rm - Rf) \times \beta$$

 $Ri = 15,25 + (20 - 15,25) \times 0,85$
 $Ri = 19,29\%$

$$m = Rm - Rf$$

 $m = 20 - 15,25$
 $m = 4,75\%$

CAPM: 19,29%

Prêmio exigido pelo investidor do mercado de ações: 4,75%

Rm = 25%
Rf = 8%
$$\beta$$
 = 0,90
Ri = ?

Investidor no título?

$$Ri = Rf + (Rm - Rf) \times \beta$$

$$Ri = 8 + (25 - 8) \times 0.9$$

$$Ri = 23.30\%$$

$$i = Ri - Rf$$

 $i = 23,30 - 8$
 $m = 15,30\%$

CAPM: 23,30%

Prêmio exigido pelo investidor no título: 15,30%

Rm = 20%
Rf = 6,5%
$$\beta$$
 = 0,65
Ri = ?

$$Ri = Rf + (Rm - Rf) \times \beta$$

 $Ri = 6.5 + (20 - 6.5) \times 0.65$
 $Ri = 15.28\%$

CAPM: 15,28%

Rm = 15%
Rf = 6,49%
$$\beta$$
 = 1,2
Ri = ?

$$Ri = Rf + (Rm - Rf) \times \beta$$

 $Ri = 6,49 + (15 - 6,49) \times 1,20$
 $Ri = 16,70\%$

CAPM: 16,70%