Prvi međuispit

25. ožujka 2011.

Ime i Prezime: Matični broj:

Napomena: Zadatke obavezno predati s rješenjima nakon završetka testa.

1. zadatak (6 bodova)

Proveden je identifikacijski eksperiment linearnog sustava prijenosne funkcije G(s) kao što je prikazano na slici 1, te su snimljene međukorelacijske funkcije signala postavne veličine i izlaza sustava R_{xy} te između signala postavne veličine i ulaza sustava R_{xy} .

Izvedite frekvencijsku karakteristiku sustava $G(j\omega)$ iz minimalnog broja međukorelacijskih mjerenja uz sljedeće pretpostavke:

- a) signali u i z koreliraju, a signali x i z ne koreliraju.
- b) signali u i z ne koreliraju.
- c) Ako se u slučaju b) na ulaz procesa u direktno dovodi postavna veličina x, tj. $G_x(s)=1$, koja je bijeli šum spektralne gustoće snage $S_{xx}(\omega)=2$, a $R_{xy}(\tau)=sin(\tau-1)e^{-|\tau|+1}$, čemu je jednaka težinska funkcija procesa?

Slika 1: Identifikacijski eksperiment

2. zadatak (3 boda)

Na slici 2 prikazan je jedan period PRBS signala (m-impulsni slijed).

- a) Odredite parametre PRBS signala c i Δt .
- b) Nacrtajte autokorelacijsku funkciju danog PRBS signala na intervalu $\tau \in [-4 \text{ s}, 4 \text{ s}].$
- c) Kako je moguće realizirati zadani PRBS signal korištenjem posmačnog registra i funkcije ISKLJUČIVO ILI? Nacrtajte prijedlog rješenja i odredite početne uvjete u posmačnom registru za realizaciju konkretnog PRBS signala sa slike 2 ako se funkcija ISKLJUČIVO ILI obavlja između 2 najniža bita u posmačnom registru.

Slika 2: PRBS signal

3. zadatak (4 boda)

Zadan je električni krug na slici 3. Napon izvora u je slučajna varijabla s jednolikom razdiobom na intervalu $[-10~\mathrm{V}, 10~\mathrm{V}]$. Pad je napona na diodama zanemariv. Odredite:

- a) očekivanje napona izvora u,
- b) očekivanje struja i_1 i i_2 .
- c) očekivanje umnoška struja i_1 i_2 . Jesu li struje korelirane?

4. zadatak (2 boda)

Skicirajte na donjem grafu slike 4 međukorelacijsku funkciju R_{x_2,x_1} pravokutnih impulsa $x_1(t)$ i $x_2(t)$.

Napomena:
$$R_{x_2,x_1}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x_2(t)x_1(t+\tau)dt$$

5. zadatak (2 boda)

Neka je X slučajna varijabla, a $Y(t) = X\cos(t)$ slučajni proces. Nađite očekivanje od Y(t).

Slika 3: Električni krug

Slika 4: Međukorelacija

6. zadatak (2 boda)

Identifikacijskim eksperimentom određene su spektralne gustoće ulaznog i izlaznog signala sustava, $S_{uu} = \frac{1+4\omega^2}{\omega^2+25}$ i $S_{yy} = \frac{9}{\omega^2+25}$. Odredite amplitudno frekvencijsku karakteristiku sustava.

7. zadatak (2 boda)

Parametarskom metodom identifikacije dobiven je ARMAX model sustava opisan polinomima:

$$A(z^{-1}) = 1 - 2z^{-1} + z^{-2}$$

 $B(z^{-1}) = z^{-1} + 5z^{-2}$
 $C(z^{-1}) = 1 + z^{-2}$

- a) Skicirajte blokovsku shemu ARMAX modelske strukture.
- b) Napišite jednadžbu diferencija identificiranog modela.

8. zadatak (5 bodova)

Pretpostavimo da metodom najmanjih kvadrata želimo estimirati otpor R neoznačenog otpornika iz n neovisnih zašumljenih mjerenja pada napona na njemu u_k te struje kroz njega i_k :

$$u_k = Ri_k + \varepsilon_k, k = 1, 2, \dots, n$$

 $E\left[\varepsilon_k \varepsilon_l\right] = \delta_{kl} \text{ za } \forall k, l.$

- a) Napišite sustav jednadžbi mjerenja u matričnom obliku: $\underline{u}=\varphi~\underline{R}+\underline{\varepsilon}$
- b) Koji kriterij $J(\underline{\varepsilon})$ minimiziramo u ovom slučaju?
- c) Izvedite optimalni estimat otpora \hat{R} .

$$Napomena: \ \frac{\partial \left(\underline{x}^T \underline{H} \ \underline{x}\right)}{\partial x} = 2\underline{x}^T \underline{H} \ \mathrm{i} \ \frac{\partial \left(\underline{x}^T \underline{H}\right)}{\partial x} = \underline{H}^T.$$