1.	In	the	follov	ving (examp	ole,	what	is 1	the	value	e of	the	max	-weig	ght
ind	ере	ende	nt set	, and	that	of t	he ou	tpu	t of	our	gree	edy a	algori	thm	

1-4-5-4

- 1. 14 and 10
- 2. 8 and 6
- 3. 8 and 8
- 4. 9 and 8
- (2) is the correct answer. The maximum indepedent set are the vertices with weights 4 and 4. The greedy algorithm would select the largest weight vertex and from there select any maximum weight vertex that is still valid. This would result in a total weight of 6. This shows that a greedy approach the problem will not be optimal
- 2. How many different independent sets does a complete graph with 5 vertices have? How about a cycle with 5 vertices?
 - 1. 1 and 2
 - 2. 5 and 10
 - 3. 6 and 11
 - 4. 6 and 16
- (3) is the correct answer. For the complete graph once we have chosen a vertex we have no other vertex that can be joined alongside it. Since we have 5 choices the amount of independent sets with at least one vertex is 5. We now include the independent set with no vertices for a total of 6 independent sets for a graph complete graph with 5 vertices. For a cycle graph with 5 vertices we can again use the same analysis to get 6 independent sets but now we have the options of getting independent sets with at least two members. The total number of independent sets with at least two elements is 5 hence we get a total of 11 independent sets for a cycle graph with 5 vertices.
- **3.** What is the total weight of the output of the greedy algorithm when the input graph is the four-vertex path? Is this the maximum possible?
 - 1. 6;no
 - 2. 6;yes
 - 3. 8;no

- 4. 8;yes
- (1) is the correct answer. We the algorithm would first choose the 5 and then choose the 1 to get a total of 6. But the maximum independent set has a total weight of 8 implying that the greedy algorithm fails to solve the problem correctly.
- **4.** What is the asymptotic running time of the recursive WIS algorithm, as a function of the number n of vertices?
 - 1. O(n)
 - 2. $O(n \cdot log n)$
 - 3. $O(n^2)$
 - 4. none of the above
- (4) We have a recurrence of $T(n) = T(n-1) + T(n-2) + \Theta(1) \ge F_n$ where F_n is nth fibonacci number. This simplifies to $T(n) \ge \Theta(\phi^n)$ where ϕ is the golden ratio.
- **5.** Each of the recursive calls of the recursive WIS algorithm is responsible for computing an MWIS of a specified input graph. Ranging over all of the calls, how many *distinct* input graphs are ever considered?
 - 1. $\Theta(1)$
 - 2. $\Theta(n)$
 - 3. $\Theta(n^2)$
 - 4. $2^{\Theta(n)}$