Rendering Pipeline

Erickson Nascimento
erickson@dcc.ufmg.br/~erickson

UFmG

Computer Graphics Challenges

- Suppose we can create a precise computer representation of the 3D world
- Questions:
 - How can we generate realistic 2D?
 - What are the best way to model 3D world?
 - How to render such model?

UF m G

1

2

Rendering

- Synthesizing an image given
 - objects
 - virtual cameras
 - light sources
- Techniques
 - rasterization
 - ray casting

UF<u>m</u>G

3

X, V, Z, Object representation • List of vertices and attributes - X, Y, Z (3D coordinates) 3 2 - R, G, B (color) 8 70 u, v (texture coordinates) Geometric information - Positions, normals, curvature List of triangles - How are the triangles connected (Topological information)? UFmG

Why do we use triangles?

- · Minimal planar primitives
- Piecewise linear representation
- Easy to implement in hardware
- Easy to interpolate attributes
 - Convex Linear Interpolation

UF m G

9

10

Rendering Pipeline

- Input
 - Soup of 3D triangles
 - Camera and illumination configuration
- Output
 - 2D image
- Each triangle is sent through it in the pipeline

UFmG

11 12

Illumination (Shading) · Vertices shaded according to material properties, surface properties (normal) and light sources • Local lighting model - Diffuse - Ambient - Phong Flat Gouraud UF<u>m</u>G

15 16

18

Projection to Screen Space • The objects are projected to the 2D image place (1.E, 2.6) [Akenine-Moeller et al.: Real-time Rendering] UF<u>m</u>G

20 19

Rasterization • Scan Conversion — Interpolate values (color, depth, etc.) and draw the objects — Our primitives are continuous, but the screen is discrete

21 22

