Package 'networkmeasures'

August 1, 2019

Type Package	
Fitle Quantify Complexity of igraph networks	
Version 0.1	
Author Mark van der Loo, Edwin de Jonge, Benjamin Schwetz	
Maintainer Mark van der Loo <mark.vanderloo@gmail.com></mark.vanderloo@gmail.com>	
Description Quantify Complexity of igraph networks	
License GPL (>= 2)	
Depends purrr (>= 0.3.1)	
Imports igraph	
gests tinytest, knitr	
RoxygenNote 6.1.1	
VignetteBuilder knitr	
R topics documented:	
efficiency	1
	2
_ ,	2
vulnerability_edges	1
vulliciability_nodes	-
Index	5
efficiency Efficiency of an undirected graph	_

Description

The efficiency, according to Latora (2001), of an undirected network is calculated by summing the inverse distances for all node-node pairs of the graph and divide by the same metric for a fully connected network.

Usage

efficiency(g)

2 local_efficiency

Arguments

g a graph of type igraph

References

Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical review letters, 87(19), 198701.

See Also

Other efficiency measure: local_efficiency

information_content

Topological information content

Description

Topological information content

Usage

information_content(g)

Arguments

g a graph

Details

The topological information content is defined as the logarithm of the size of the automorphism group to the base of 2.

local_efficiency

local efficiency of a graph

Description

local_efficiency is a generalized form of the measure defined by Latora (2001). For each node the efficiency of the egonetwork without the central node is calculated. The Latora definition uses order = 1 (default).

Usage

```
local_efficiency(g, order = 1L)
```

Arguments

g a graph

order the order of the egonetwork. The default is taking only direct neighbors.

vulnerability_edges 3

References

Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical review letters, 87(19), 198701.

See Also

Other efficiency measure: efficiency

vulnerability_edges

Network vulnerability per edge

Description

The vulnerability, according to Gol'dshtein (2004) and Latora et al (2005).

Usage

```
vulnerability_edges(g, efficiency = NULL)
```

Arguments

g a graph

efficiency A precomputed efficiency for g (optional)

References

Goldshtein, V., Koganov, G. A., & Surdutovich, G. I. (2004). Vulnerability and Hierarchy of Complex Networks. Cond-mat/0409298.

Latora, V., & Marchiori, M. (2005). Vulnerability and protection of infrastructure networks. Physical Review E, 71(1), 015103.

vulnerability_nodes

Network vulnerability per node

Description

The vulnerability, according to Gol'dshtein (2004) and Latora et al (2005).

Usage

```
vulnerability_nodes(g, efficiency = NULL)
```

Arguments

g a graph

efficiency A precomputed efficiency for g (optional)

4 vulnerability_nodes

References

Goldshtein, V., Koganov, G. A., & Surdutovich, G. I. (2004). Vulnerability and Hierarchy of Complex Networks. Cond-mat/0409298.

Latora, V., & Marchiori, M. (2005). Vulnerability and protection of infrastructure networks. Physical Review E, 71(1), 015103.

Index

```
efficiency, 1, 3
information_content, 2
local_efficiency, 2, 2
vulnerability_edges, 3
vulnerability_nodes, 3
```