Roll				
No				1

End Semester Examination 2024

Name of the Course: BCA	Semester: _II	
Name of the Paper: <u>Introduction to</u>	Paper Code: TBC201	_
Data Structures	,	

Time: 3 Hour's Maximum Marks: 100

Note:

- (i) All Questions are compulsory.
- (ii) Answer any two sub questions among a, b and c in each main question.
- (iii) Total marks in each main question are twenty.
- (iv) Each question carries 10 marks.

Q1	(10 X2 = 20 Marks)	
(a)	Define Algorithm and its characteristics. Develop an algorithm to linearly find an	
	element in an array. Assume suitable algorithmic notations.	CO1
(b)	What is recursion? Give and illustrate recursive algorithm to solve Tower of	
	Hanoi problem with 3 disks.	
(c)	What is 2-D array? How it can be stored in memory? Given an	b
	array A[110][115] with a base address of 100 and the size of each element	
	is 1 Byte in memory. Find the address of A[8][6] with the help of Row-major	
Q2	order and Column-major order. (10 X2 = 20 Marks)	
(a)	Write a C Program to illustrate PUSH and POP operations over stack using	
(-)	linked list representation.	CO2
(b)	Write a program in C to insert an element in circular queue represented using	
	array. Also illustrate dry run that includes all cases.	
(c)	Write algorithm/function to convert infix expression to postfix. Convert 27 / (8 -	
	3) + 5 * (3 + 7) - 5 to postfix notation and then evaluate the equivalent postfix	
	expression using tabular method (STACK).	
Q3	(10 X2 = 20 Marks)	
(a)	What are the benefits of using 2-way linked list? Write a pseudo code to delete a	CO3
	node from doubly linked list.	
(b)	What are the advantages of circular linked list over singly linked list? Write	
	pseudo code to add node at the end in circular linked list.	
(c)	Define the structure of a node in singly linked list. Assume that you have a single	
	linked list, write a C function to count the nodes having data value as the prime	
	number.	
Q4	(10 X2 = 20 Marks)	
(a)	Describe the steps to sort the following elements using Bubble sort in ascending	
1	order: 37, 35, 75, 26, 55, 36, 72, 57, 77, 63, 45, 10, 15.	CO2 &
(b)	Write the algorithm for insertion sort and explain with the help of an example?	CO4
(c)	Write short notes on following.	
	(i) Hash function and collision resolution techniques.	
	(ii) Priority Queue and its applications.	
	(iii) Double Ended Queue and its types.	
Q5	(10 X2 = 20 Marks)	
(a)	Write an algorithm for pre-order traversal and post-order traversal in a Binary	COF
	tree and explain with an example.	CO5
(b)	If the in-order traversal of a binary tree is B, I, D, A, C, G, E, H, F and its post	
	order traversal is I, D, B, G, C, H, F, E, A. Determine the binary tree.	
(c)	Given infix expression A-(B+C)+(B/D)*A+Z*U, Construct a binary tree.	
(0)	Orton min expression in (2.5) (2.2)	