

线性代数 (B1)

童伟华

第一章向量与 复数

线性代数 (B1)

童伟华 管理科研楼 1205 室 ¹ E-mail: tongwh@ustc.edu.cn

1 数学科学学院 中国科学技术大学

2021-2022 学年第二学期 MATH1009.08

线性代数与解析几何

线性代数 (B1)

童伟华

第一章向量与 复数

\$11 向量的线性运算 \$1.2 坐标系 \$1.3 向量的数量积 \$1.4 向量的向量积 \$1.5 向量的混合积 \$1.6 高维数组向量 \$1.7 复数

什么是代数学?

E. Artin:研究代数系统的结构与表示理论。

例如: 自然数、有理数、无理数、实数、复数及其上面的运

算;群、环、域、模等代数结构。

什么是几何学?

F. Klein: 群作用下的不变量。

例如:点、线、面、空间等;距离、面积、体积、夹角等;

共线、共面、相似等。

线性代数与解析几何

线性代数 (B1)

重伟华

第一章向量与 复数

\$1.1 向量的线性运算 \$1.2 坐标系 \$1.3 向量的数量积 \$1.4 向量的向量积 \$1.5 向量的混合积

§1.6 高维数组问1 §1.7 复数 §1.8 数域 §1.9 求和符号

解析几何

解析几何:形与数的结合,其核心思想:用代数的方法去研究几何问题。

创立者: 笛卡尔(哲学家, 数学家, 物理学家)

逻辑推理 \Rightarrow 符号运算 \Rightarrow 计算机运算 (几何定理的机械化证明,吴文俊等)

几何问题代数化: 坐标法或向量法, 图形方程化

§1.1.1 向量及其表示

线性代数 (B1)

童伟华

第一章向量与 复数 {1.1 向量的线性运算

31.2 坐标系 31.3 向量的数量积 31.4 向量的向量积 31.5 向量的混合积 31.6 高维数组向量 31.7 复数

§1.8 数域 §1.9 求和符 定义 1.1

既有大小又有方向的量称为句量。

例如:力,加速度等,记为 \overrightarrow{AB} 或 \mathbf{a} (即黑体的小写字母表示,板书时常用 $\overrightarrow{\mathbf{a}}$)

向量相等: $\mathbf{a} = \mathbf{b}$ 零向量与负向量: $\mathbf{0}$, - \mathbf{a}

向量的长度: |a|, 向量的核 单位向量: 模为 1 的向量

向量的夹角,平行与垂直(正交): $\mathbf{a}//\mathbf{b}$, $\mathbf{a} \perp \mathbf{b}$

规定:零向量与任何向量都平行且正交

线性代数 (B1)

童伟华

第一章向量与 复数 {1.1 向量的线性运算

§1.2 坐标系 §1.3 向量的数量积 §1.4 向量的向量积 §1.5 向量的混合积 §1.6 高维数组向量

§1.7 复数 §1.8 数域

§1.9 求和符

平行四边形法则(或三角形法则)

$$\mathbf{a} + \mathbf{c} = \mathbf{c}, \overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{OC}$$

 $\lambda \mathbf{a}, \lambda \overrightarrow{OA}$

向量不是数,但可以像数那样运算!

基本运算:加法+数乘

高级运算:数量积,向量积,混合积

线性代数 (B1)

童伟华

第一章向量与 复数

§1.1 向量的线性运算 §1.2 坐标系 §1.3 向量的数量积 §1.4 向量的向量积 §1.5 向量的混合积 §1.6 高推数组向量 §1.7 复数 加法运算规律: (交換律,结合律,单位元,逆元)

$$a + b = b + a$$
 $a + (b + c) = (a + b) + c$
 $a + 0 = a$
 $a + (-a) = 0$

线性代数 (B1)

童伟华

第一章向量与 复数

\$1.1 向量的线性运算 \$1.2 坐标系 \$1.3 向量的数量积 \$1.4 向量的向量积 \$1.5 向量的混合积 \$1.6 高堆数组向量 \$1.7 包数

§1.7 复数

§1.9 求和符号

数乘运算规律: (两条分配律,结合律,单位元)

 $1\mathbf{a} = \mathbf{a}$

$$\lambda(\mathbf{a} + \mathbf{b}) = \lambda \mathbf{a} + \lambda \mathbf{b}$$
$$(\lambda + \mu)\mathbf{a} = \lambda \mathbf{a} + \mu \mathbf{a}$$
$$\lambda(\mu \mathbf{a}) = (\lambda \mu)\mathbf{a}$$

线性代数 (B1)

童伟华

第一章向量与 复数 {1.1 向量的线性运算

\$1.2 坐标系 \$1.3 向量的数量积 \$1.4 向量的向量积 \$1.5 向量的混合积 \$1.6 高维数组向量 \$1.7 复数 \$1.8 数域 单位向量: $\mathbf{a}^0 = \frac{\mathbf{a}}{|\mathbf{a}|}$

线性运算:加法+数乘

线性空间或向量空间

集合+加法+数乘+八条运算规律

线性代数的核心之一: 把二维或三维向量空间推广至 n 维抽象的向量空间!

§1.1.3 向量的共线与共面

线性代数 (B1)

童伟华

第一章向量与 复数

\$1.1 向量的线性运算 \$1.2 坐标系 \$1.3 向量的数量积 \$1.4 向量的向量积 \$1.5 向量的混合积 \$1.6 高维数组向量 \$1.7 复数 几何命题代数化

共线:一组向量称为共线的 ⇔ 都平行于某条直线

共面: 一组向量称为共面的 ⇔ 都平行于某个平面

命题 1.1

向量 \mathbf{a},\mathbf{b} 共线的充分必要条件是存在不全为零的实数 λ,μ ,

使得

$$\lambda \mathbf{a} + \mu \mathbf{b} = \mathbf{0}.$$

优点:形式对称

§1.1.3 向量的共线与共面

线性代数 (B1)

童伟华

第一章向量与 复数 {1.1 向量的线性运算

§1.3 向量的数量形 §1.4 向量的向量形 §1.5 向量的混合形

§1.7 复数 §1.8 数域 §1.9 求和符号

命题 1.2

向量 a,b,c 共面的充分必要条件是存在不全为零的实数 λ,μ,ν ,使得

$$\lambda \mathbf{a} + \mu \mathbf{b} + \nu \mathbf{c} = \mathbf{0}.$$

线性组合

给定一组向量 $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$ 及一组数 $\lambda_1, \lambda_2, \ldots, \lambda_n$,称

$$\mathbf{a} = \lambda_1 \mathbf{a}_1 + \lambda_2 \mathbf{a}_2 + \cdots + \lambda_n \mathbf{a}_n,$$

为向量 $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$ 的线性组合。

§1.1.3 向量的共线与共面

线性代数 (B1)

童伟华

第一章向量与 复数 §1.1 向量的线性运算

\$1.2 坐标系 \$1.3 向量的数量积 \$1.4 向量的向量积 \$1.5 向量的混合积 \$1.6 高维数组向量 \$1.7 复数 \$1.8 数域

线性相关与线性无关

一组向量 $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ 称为线性相关, 如果存在一组<mark>不全为</mark>零的数 $\lambda_1, \lambda_2, \dots, \lambda_n$,使得

$$\mathbf{a} = \lambda_1 \mathbf{a}_1 + \lambda_2 \mathbf{a}_2 + \dots + \lambda_n \mathbf{a}_n = \mathbf{0}.$$

反之,不是线性相关的一组向量称为线性无关。也就是说,如果上式成立,当且仅当 $\lambda_1 = \lambda_2 = \cdots = \lambda_n = 0$ 。

线性代数 (B1)

童伟华

第一章向量与 复数

§1.1 向量的线性运算 §1.2 坐标系

§1.4 向量的数量积 §1.4 向量的向量积 §1.5 向量的混合积 §1.6 高维数组向量 §1.7 复数 向量运算 ⇒ 坐标运算(通常更方便)

定理 1.3

设 e_1, e_2, e_3 为空间中三个不共面的向量,则对每个向量 a 都存在唯一的三元有序实数组 (x_1, x_2, x_3) ,使得

$$\mathbf{a} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + x_3 \mathbf{e}_3.$$

线性代数 (B1)

童伟华

第一章向量与 复数

§1.1 向量的线性运算 §1.2 坐标系 §1.3 向量的数量积 §1.4 向量的向量积 §1.5 向量的混合积

§1.4 向量的向量积 §1.5 向量的混合积 §1.6 高维数组向量 §1.7 复数 §1.8 数域

定义 1.2

空间中任意三个有序的不共面的向量 $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ 称为空间的一组基。对于向量 \mathbf{a}_1 若

$$\mathbf{a} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + x_3 \mathbf{e}_3,$$

则称 (x_1,x_2,x_3) 为向量 a 在基 $\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3$ 下的仿射坐标或简称 坐标。

线性代数 (B1)

童伟华

第一章问量与 复数 \$11 內量的线性运算 \$12 坐标系 \$13 內量的数量积 \$14 內層的的最积 \$15 內層的混合积 \$16 高维数组向量 \$17 复数 \$18 数域

定义 1.3

空间中任意一点 O 和一组基 $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ 合在一起称为空间的一个仿射坐标系,记为 $[O; \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3]$ 。点 O 称为坐标原点, $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ 称为坐标向量。 $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ 所在直线分别称为x 轴,y 轴和x 轴,统称为坐标轴。三个坐标轴的任意两个决定了一个平面,称为坐标面,分别记为 Oxy, Oyz, Ozx。

八个卦限

位置关系: 左手仿射坐标系; 右手仿射坐标系。

线性代数 (B1)

童伟华

第一章向量与 复数

\$1.2 坐标系 \$1.3 向量的数量积 \$1.4 向量的向量积 \$1.5 向量的混合积 \$1.6 高维数组向量 \$1.7 复数 \$1.8 数域 虽然空间中的点和向量都可以用坐标表示,但在仿射空间中, 点与向量是不同的!

```
点 + 向量 = 点
点 - 点 = 向量
点 + 点 = ? (无意义!)
```


§1.2.2 直角坐标系

线性代数 (B1)

空间直角坐标系:要求三个坐标向量为两两垂直的单位向量, 用 i, j, k 表示,相应的坐标轴为 x 轴, y 轴, z 轴。

向量长度:

$$|\mathbf{a}| = |\overrightarrow{OP}| = \sqrt{OR^2 + RQ^2 + QP^2} = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

(思考: 若为一般的仿射坐标系, 如何计算?)

§1.2.2 直角坐标系

线性代数 (B1)

童伟华

第一章向量与 复数

§1.1 向量的线性运算 §1.2 坐标系 §1.3 向量的数量积 §1.4 向量的向量积 §1.5 向量的混合积 §1.6 高维数组向量

§1.7 复数 §1.8 数域 §1.9 求和符号 空间中任意两点 $A(x_1,x_2,x_3), B(y_1,y_2,y_3)$ 之间的距离:

$$|AB| = |\overrightarrow{AB}| = \sqrt{(y_1 - x_1)^2 + (y_2 - x_2)^2 + (y_3 - x_3)^2}$$

方向余弦: $\cos \alpha, \cos \beta, \cos \gamma$, 满足

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$

§1.2.3 向量的坐标运算

线性代数 (B1)

§1.2 坐标系

$$\mathbf{a} = (a_1, a_2, a_3), \ \mathbf{b} = (b_1, b_2, b_3)$$

加法:

$$\mathbf{c} = \mathbf{a} + \mathbf{b} = (a_1\mathbf{e}_1 + a_2\mathbf{e}_2 + a_3\mathbf{e}_3) + (b_1\mathbf{e}_1 + b_2\mathbf{e}_2 + b_3\mathbf{e}_3)$$

= $(a_1 + b_1)\mathbf{e}_1 + (a_2 + b_2)\mathbf{e}_2 + (a_3 + b_3)\mathbf{e}_3$

数乘:

$$\mathbf{d} = \lambda \mathbf{a} = \lambda (a_1 \mathbf{e}_1 + a_2 \mathbf{e}_2 + a_3 \mathbf{e}_3) = (\lambda a_1) \mathbf{e}_1 + (\lambda a_2) \mathbf{e}_2 + (\lambda a_3) \mathbf{e}_3$$

§1.3.1 数量积的定义与性质

线性代数 (B1)

童伟华

第一章向量与 复数 §1.1 向量的线性运 §1.2 坐标系 §1.3 向量的数量积

§1.4 向量的数量积 §1.5 向量的向量积 §1.5 向量的混合积

§1.7 复数

§1.9 求和符

定义 1.4

两个向量 \mathbf{a} 与 \mathbf{b} 的数量积为一个实数,它等于两个向量的模长与两向量夹角的余弦的乘积,记为 $\mathbf{a} \cdot \mathbf{b}$ 。如果向量 \mathbf{a}, \mathbf{b} 的 夹角为 θ ,则

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}||\mathbf{b}|\cos\theta.$$

数量积也常称为内积。

向量 \mathbf{a} 与 \mathbf{b} 的内积 $\mathbf{a} \cdot \mathbf{b} = 0$ ⇔ 两个向量是正交的(垂直)

常用于证明垂直

§1.3.1 数量积的定义与性质

线性代数 (B1)

童伟华

第一章向量与 复数

§1.2 坐标系 §1.3 向量的数量积

1.4 向量的向量积
 1.5 向量的混合积

§1.6 高维数组向量 §1.7 复数

§1.7 复数 §1.8 数域

§1.9 求和符

命题 1.4

对向量 a,b,c 及实数 λ ,我们有

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$$

$$(\mathbf{a} + \mathbf{b}) \cdot \mathbf{c} = \mathbf{a} \cdot \mathbf{c} + \mathbf{b} \cdot \mathbf{c}$$

$$(\lambda \mathbf{a}) \cdot \mathbf{b} = \lambda (\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (\lambda \mathbf{b}),$$

$$(\mathbf{a})^2 = \mathbf{a} \cdot \mathbf{a} \ge 0$$
, 等号成立当且仅当 $\mathbf{a} = \mathbf{0}$.

$$(\mathbf{a} \pm \mathbf{b})^2 = (\mathbf{a} \pm \mathbf{b}) \cdot (\mathbf{a} \pm \mathbf{b}) = \mathbf{a}^2 \pm 2(\mathbf{a} \cdot \mathbf{b}) + \mathbf{b}^2$$

思考:几何含义?

§1.3.2 直角坐标系下数量积的计算

线性代数 (B1)

重伟华

第一章向量与 复数

§1.1 问量的既性运算 §1.2 坐标系 §1.3 向量的数量积

§1.4 向量的向量积 §1.5 向量的混合积 §1.6 高维数组向量

§1.7 复数 §1.8 数域

§1.9 求和符

取空间直角坐标系 [O; i, j, k]

$$\mathbf{a} = (a_1, a_2, a_3), \ \mathbf{b} = (b_1, b_2, b_3)$$

$$\mathbf{a} \cdot \mathbf{b} = (a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}) \cdot (b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k})$$

= $a_1 b_1 + a_2 b_2 + a_3 b_3$

(思考: 若为一般的仿射坐标系, 如何计算?)

$$|\mathbf{a} \cdot \mathbf{a}| = a_1^2 + a_2^2 + a_3^2 \Rightarrow |\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| \cdot |\mathbf{b}|} = \frac{a_1 b_1 + a_2 b_2 + a_3 b_3}{\sqrt{a_1^2 + a_2^2 + a_3^2} \cdot \sqrt{b_1^2 + b_2^2 + b_3^2}}$$

§1.4.1 向量积的定义与性质

线性代数 (B1)

里巾午

第一章向量与 复数 §1.1 向量的线性运算 §1.2 坐标系 §1.3 向量的数量积 **§1.4 向量的向量积** §1.5 向量的混合积

\$1.4 问量的问题状 \$1.5 向量的混合积 \$1.6 高维数组向量 \$1.7 复数 \$1.8 数域 \$1.9 求和符号

定义 1.5

两个向量 \mathbf{a} , \mathbf{b} 的向量积 $\mathbf{a} \times \mathbf{b}$ 为一个向量,它的方向与 \mathbf{a} , \mathbf{b} 都垂直,且使 \mathbf{a} , \mathbf{b} , $\mathbf{a} \times \mathbf{b}$ 构成右手系;它的模等于以 \mathbf{a} , \mathbf{b} 为 边的平行四边形的面积,即 $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin\theta$,其中 θ 为 \mathbf{a} , \mathbf{b} 间的夹角。向量积也常称为外积。

例如: 力矩, 电磁场的旋量等。

方向的选取: 左手系或右手系

常用于证明平行

§1.4.1 向量积的定义与性质

线性代数 (B1)

童伟华

第一草问量与 复数

§1.1 向量的线性运算 §1.2 坐标系 §1.3 向量的数量积 **81.4 向量的向量积**

§1.4 向量的向量积 §1.5 向量的混合积

§1.6 局维数组回1 §1.7 复数

§1.8 数域

§1.9 求和?

向量积运算性质

命题 1.5

设 a,b,c 为三个向量, λ 为实数,则有

$$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$$

$$(\lambda \mathbf{a}) \times \mathbf{b} = \lambda (\mathbf{a} \times \mathbf{b}) = \mathbf{a} \times (\lambda \mathbf{b}),$$

$$(\mathbf{a} + \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{c}.$$

§1.4.2 角坐标系下向量积的计算

线性代数 (B1)

重伟1

第一章向量与 复数

\$1.1 向量的统性运算 \$1.2 坐标系 \$1.3 向量的数量积 **\$1.4 向量的向量积** \$1.5 向量的混合积 \$1.6 高维数组向量 \$1.7 复数 \$1.8 数域 取空间直角坐标系 [O; i, j, k, j + i, j, k] 为两两垂直的单位 向量且满足右手法则

$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}, \quad \mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$$

 $\mathbf{a} \times \mathbf{b} = (a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}) \times (b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k})$
 $= \cdots$
 $= (a_2 b_3 - a_3 b_2) \mathbf{i} + (a_3 b_1 - a_1 b_3) \mathbf{j} + (a_1 b_2 - a_2 b_1) \mathbf{k}$

是否有更简洁的记号? — 行列式

§1.4.2 直角坐标系下向量积的计算

线性代数 (B1)

童伟华

第一章向量与 复数

§1.1 向量的线性运算 §1.2 坐标系 §1.3 向量的数量积 **§1.4 向量的向量积**

§1.5 向量的混合积 §1.6 高维数组向量 §1.7 复数

§1.8 数域 §1.9 求和名

二阶行列式

$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1.$$

三阶行列式

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix}$$

$$= a_1b_2c_3 + a_2b_3c_1 + a_3b_1c_2 - a_1b_3c_2 - a_2b_1c_3 - a_3b_2c_1.$$

§1.4.2 直角坐标系下向量积的计算

线性代数 (B1)

童伟华

第一章向量上 复数

§1.1 向量的线性运算 §1.2 坐标系 §1.3 向量的数量积 **§1.4 向量的向量积** §1.5 向量的混合积 §1.6 高维数组向量 §1.7 复数 利用行列式的语言

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \mathbf{k}$$
$$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

(思考: 若为一般的仿射坐标系, 如何计算?)

§1.5.1 混合积的定义

线性代数 (B1)

童伟华

第一章向量与 复数

§1.1 向量的线性运算 §1.2 坐标系 §1.3 向量的数量积 §1.4 向量的向量积 §1.5 向量的混合积

§1.6 高维数组向量 §1.7 复数 §1.8 数域

§1.9 求和符

定义 1.6

给定三个向量 \mathbf{a} , \mathbf{b} , \mathbf{c} , 称 $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$ 为 \mathbf{a} , \mathbf{b} , \mathbf{c} 的混合积,它是一个数量。

几何含义:以 a, b, c 为棱的平行六面体的有向体积

正、负的含义: 左手系或右手系

轮换对称性: $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = (\mathbf{b} \times \mathbf{c}) \cdot \mathbf{a} = (\mathbf{c} \times \mathbf{a}) \cdot \mathbf{b}$

常用于证明共面

§1.5.2 直角坐标系下混合积的计算

线性代数 (B1)

童伟华

第一章向量与 复数

\$1.4 向無的改建場件 \$1.3 向量的数量积 \$1.4 向量的向量积 **\$1.5 向量的混合积** \$1.6 高维数组向量 \$1.7 复数 利用行列式的语言

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

(思考: 若为一般的仿射坐标系, 如何计算?)

命题 1.6

三个向量
$$\mathbf{a}=(a_1,a_2,a_3), \mathbf{b}=(b_1,b_2,b_3), \mathbf{c}=(c_1,c_2,c_3)$$
 共面当且仅当 $(\mathbf{a}\times\mathbf{b})\cdot\mathbf{c}=0.$

§1.5.3 二重向量积

线性代数 (B1)

童伟华

第一章向量与 复数

\$1.2 坐标系 \$1.3 向量的数量积 \$1.4 向量的向量积 **\$1.5 向量的混合积** \$1.6 高维数组向量 \$1.7 复数 \$1.8 数域

定义 1.7

给定三个向量 \mathbf{a} , \mathbf{b} , \mathbf{c} , 称 $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$ 为这三个向量的二重外积。

命题 1.7

对任意向量 a, b, c, 有

$$(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{b} \cdot \mathbf{c})\mathbf{a}.$$

₹1.6 高维数组向量

线性代数 (B1)

§1.6 高维数组向量

定义 1.8

-个n 维数组向量 a 是-个有序的 n 元数组

$$\mathbf{a}=(a_1,a_2,\ldots,a_n),$$

其中 $a_i \in F, i = 1, 2, ..., n$ 称为向量 a 的第 i 个分量。这里 F表示实数集、复数集或其他数域。

行向量: n 维数组写成行的形式, 如 $\mathbf{a} = (a_1, a_2, \dots, a_n)$

列向量:
$$n$$
 维数组写成列的形式, 如 $\mathbf{a} = \begin{bmatrix} 1 \\ a_2 \\ \vdots \\ a \end{bmatrix}$

§1.6 高维数组向量

线性代数 (B1)

童伟华

第一章向量与 复数

\$1.1 向量的线性运算 \$1.2 坐标系 \$1.3 向量的数量积 \$1.4 向量的向量积 \$1.5 向量的混合积 \$1.6 高维数组向量

§1.7 复数 §1.8 数域

§1.9 求和符

向量
$$\mathbf{a} = (a_1, a_2, \dots, a_n)$$
, $\mathbf{b} = (b_1, b_2, \dots, b_n)$, $\lambda \in F$

向量相等 \Leftrightarrow 当它们对应的分量分别相等,即 $a_i = b_i, i = 1, 2, \cdots n$

加法运算: $\mathbf{a} + \mathbf{b} = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$

数乘运算: $\lambda \mathbf{a} = (\lambda a_1, \lambda a_2, \dots, \lambda a_n)$

零向量,负向量,八条运算规律

n 维数组向量构成数域 F 上的线性空间!

§1.6 高维数组向量

线性代数 (B1)

童伟4

第一章向量与 复数

§1.1 向量的线性运算 §1.2 坐标系 §1.3 向量的数量积 §1.4 向量的向量积 §1.5 向量的混合积

§1.6 高维数组向量 §1.7 复数

§1.8 数域 §1.9 求和符 基本概念:线性组合、线性相关、线性无关、维数

基本向量: 第 i 个分量为 1, 其余分量为 0, 即

$$\mathbf{e}_i = (0, \cdots, \overset{\downarrow}{1}, \cdots, 0), \ i = 1, 2, \dots, n$$

n 个基本向量 $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$ 构成 n 维数组空间的一组基

任何一个 n 维数组向量都可以唯一的表示为基本向量的线性组合,即

$$\mathbf{a} = a_1 \mathbf{e}_1 + a_2 \mathbf{e}_2 + \dots + a_n \mathbf{e}_n.$$

§1.7 复数

线性代数 (B1)

童伟华

第一章向量与 复数

> 1.2 坐标系 1.3 向量的数量积 1.4 向量的向量积 1.5 向量的混合积

§1.7 复数 §1.8 数域 §1.9 求和符号 复数起源于求解三次方程的根

虚数单位 $i = \sqrt{-1} \Leftrightarrow i^2 = -1$

欧拉 ($e^{ix} = \cos x + i \sin x$) 高斯 (复数的几何解释)

代数基本定理

任何一个一元复系数方程式都至少有一个复数根,即复数域 是代数封闭的。

推论:任何一个非零的一元 n 次复系数多项式有且仅有 n 个 复数根(计根的重数)。

§1.7.1 复数的四则运算

线性代数 (B1)

童伟华

第一章向量与 复数

§1.2 坐标系 §1.3 向量的数量积 §1.4 向量的向量积

§1.5 向量的混合形 §1.6 高维数组向量

§1.7 复数 §1.8 数域 复数 $z = x + iy, x, y \in \mathbb{R}$

x,y 分别称为复数 z 的实部与虚部,记作 Rez 和 Imz

$$z_1 = x_1 + iy_1$$
, $z_2 = x_2 + iy_2$, $\lambda \in \mathbb{R}$

加法运算:
$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$$

数乘运算:
$$\lambda z_1 = \lambda x_1 + i \lambda y_1$$

乘法运算:
$$z_1z_2 = (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1)$$

除法运算:
$$\frac{z_1}{z_2} = \frac{(x_1x_2 + y_1y_2) + i(x_1y_2 - x_2y_1)}{x_2^2 + y_2^2}$$
, $z_2 \neq 0$

§1.7.2 复数的几何表示

线性代数 (B1)

童伟华

第一章向量与 复数

\$1.1 向量的线性运算 \$1.2 坐标系 \$1.3 向量的数量积 \$1.4 向量的向量积

§1.5 向量的混合积 §1.6 高维数组向量

§1.8 数域

定义 1.9

在平面中取一个直角坐标系 Oxy,我们用坐标为 (x,y) 的点 P 表示复数 z=x+iy。这样,复数就与平面中的点一一对 应。x 轴与实数对应,也称为实轴;y 轴与纯虚数对应,也称为 x 为 x 多。与复数建立了这种对应关系的平面称为 x 多。

复数的模: $|z| = r = \sqrt{x^2 + y^2}$

三角不等式: $|z_1+z_2| \leq |z_1|+|z_2|$

§1.7.2 复数的几何表示

线性代数 (B1)

童伟华

第一章向量与 复数

\$1.2 坐标系 \$1.3 向量的数量积 \$1.4 向量的向量积 \$1.5 向量的混合积 \$1.6 高维数组向量 \$1.7 复数 定义 1.10

复数 z 所对应的向量 \overrightarrow{OP} 与 x 轴正向的夹角 θ 称为复数 z 的 **% % %** 记作 $\arg z$

复数 z 的幅角不并唯一,它们彼此相差 2π 的整数倍。在实际中,我们一般规定 $0 \le \arg z < 2\pi$,称之为幅角的主值。

复数 x - iy 称为复数 z = x + iy 的共轭复数,记为 \bar{z}

$$|z|^2 = z\overline{z}, \quad \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}, \quad \overline{z_1}\overline{z_2} = \overline{z_1}\ \overline{z_2}$$

利用共轭复数有:
$$\frac{z_1}{z_2} = \frac{z_1 \bar{z}_2}{z_2 \bar{z}_2} = \frac{z_1 \bar{z}_2}{|z_2|^2}$$

§1.7.2 复数的几何表示

线性代数 (B1)

童伟华

第一章向量与 复数 \$11 內量的线性运算 \$12 坐标系 \$13 內量的數量积 \$14 內量的內層积 \$15 內量的別當合稅 \$16 高惟數組內量 \$17 复数 \$18 数域

复数的三角表示:

$$z = x + iy = r\cos\theta + ir\sin\theta = r(\cos\theta + i\sin\theta)$$

$$\begin{split} z_1 &= r_1(\cos\theta_1 + i\sin\theta_1), \ z_2 = r_2(\cos\theta_2 + i\sin\theta_2) \\ z_1z_2 &= r_1r_2\left[\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)\right] \\ |z_1z_2| &= |z_1||z_2|, \ \arg(z_1z_2) = \arg z_1 + \arg z_2 \end{split}$$

利用欧拉公式

$$z_1 z_2 = r_1 e^{i\theta_1} r_2 e^{i\theta_2} = r_1 r_2 e^{i(\theta_1 + \theta_2)}$$

恒等式: $e^{i2\pi} = 1$

§1.8 数域

线性代数 (B1)

童伟华

第一章向量与 复数

§1.1 向量的线性运算 §1.2 坐标系 §1.3 向量的数量积 §1.4 向量的向量积

§1.5 向量的混合形 §1.6 高维数组向量

§1.6 高维数组向量 §1.7 复数

§1.8 数域

常用的数集: $\mathbb{N} \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{R} \to \mathbb{C}$

(思考:是否有更大的数域?)

运算: 二元函数或一元函数

封闭:设F为一个数集,在F中任取两数作某种运算,如果

其结果仍在 F 中,则称数集 F 对这种运算是封闭的。

§1.8 数域

线性代数 (B1)

童伟华

第一章向量! 复数

\$1.1 向量的线性运算 \$1.2 坐标系 \$1.3 向量的数量积 \$1.4 向量的向量积 \$1.5 向量的混合积 \$1.6 高维数组向量 \$1.7 复数

§1.8 数域 §1.9 求和名 定义 1.11

设数集 F 至少包含两个不同的元素,称 F 为数域,如果 F 对数的加减乘除运算是封闭的,即当 $a,b\in F$ 时, $a\pm b,ab,\frac{a}{b}(b\neq 0)\in F$ 。

一个数域必含有0,1两个元素。

容易验证: $\mathbb{C}, \mathbb{R}, \mathbb{Q}$ 是数域, \mathbb{Z}, \mathbb{N} 不是数域。

线性代数 (B1)

童伟华

第一章向量与 复数 \$11 向量的线性运动 \$12 坐标系 \$13 向量的数量积 \$15 向量的的量积 \$15 向量的数量积 \$16 高维数组内量 \$17 复数

₹1.9 求和符号

求和符号

设 $a_1, a_2 \cdots, a_n$ 为 n 个数,通常我们用 $\sum_{i=1}^n a_i$ 表示和式 $a_1 + a_2 + \cdots + a_n$ 。其中 \sum 为求和符号,i 为求和指标, \sum 的上下标表示求和指标 i 的取值范围。

(在数学、物理、化学、生物等学科中,书写符号也是非常 重要的,可以简化描述,帮助我们思考!)

注意: 求和指标是可以替换的,不影响求和符号的值,与积分变量类似。

线性代数 (B1)

童伟华

第一章向量与 复数

31.1 向量的线性运 51.2 坐标系 51.3 向量的数量积 51.4 向量的向量积 51.5 向量的词令和

§1.5 向量的混合积 §1.6 高维数组向量

§1.8 数域

§1.9 求和符

求和符号性质:

$$\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i,$$

$$\sum_{i=1}^{n} \lambda a_i = \lambda \sum_{i=1}^{n} a_i.$$
 (其中 λ 为常数)

若视求和符号为作用于 n 数组向量空间上的映射,则求和符号是线性映射。

线性代数 (B1)

多重求和: 从内向外对每个求和符号逐次求和, 例如:

$$\sum_{j=1}^{m} \sum_{i=1}^{n} a_{ij} = \sum_{j=1}^{m} (a_{1j} + a_{2j} + \dots + a_{nj})$$

$$= \sum_{j=1}^{m} a_{1j} + \sum_{j=1}^{m} a_{2j} + \dots + \sum_{j=1}^{m} a_{nj}.$$

容易看出:
$$\sum_{j=1}^{m} \sum_{i=1}^{n} a_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij}$$

性质: 在多重求和时, 可以交换求和符号的次序。

思考:与积分符号有什么相似与不同之处?

线性代数 (B1)

童伟华

第一章向量년 复数

1.2 坐标系 1.3 向量的数量积 1.4 向量的向量积 1.5 向量的混合积

\$1.7 复数 \$1.8 数域 **\$1.9 求和符号** 条件求和:不是对所有的项求和,而只是对满足一定条件的项求和,例如:

$$\sum_{1 \le i \le j \le n} a_{ij} = a_{11} + (a_{12} + a_{22}) + (a_{13} + a_{23} + a_{33})$$

$$+ \dots + (a_{1n} + a_{2n} + \dots + a_{nn})$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{i} a_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}$$

注意: 带变量范围的求和不可轻易交换求和指标!

线性代数 (B1)

童伟华

第一章向量与 复数

\$1.1 问题的线性运算 \$1.2 坐标系 \$1.3 向量的数量积 \$1.4 向量的向量积 \$1.5 向量的混合积 \$1.6 高维数组向量

§1.7 复数 §1.8 数域 **§1.9 求和符号** 一般求和:设 Λ 为一个有限集, Λ 中每个元素 λ 对应了一个数 a_{λ} ,我们将所有 a_{λ} ($\lambda \in \Lambda$) 的和记为 $\sum_{\lambda \in \Lambda} a_{\lambda}$ 。

乘积符号: 设 a_1, a_2, \cdots, a_n 为一列数,我们用 $\prod_{i=1}^n a_i$ 表示乘积 $a_1, a_2, \cdots a_n$ 。

乘积符号的上下标的含义等与求和符号完全一样。

线性代数 (B1)

童伟华

第一章向量与 复数

§1.1 向量的线性运算 §1.2 坐标系 §1.3 向量的数量积 §1.4 向量的向量积 §1.5 向量的混合积

§1.6 高维数组向

§1.8 数域

§1.9 求和符·

Thanks for your attention!