Background

PA, HR, and

Margina Models Subject Specific Effects

Application Fatigability

Future Work

Scalar on Function Regression

Application: Predicting Alcohol Consumption Joint modeling of daily patterns of heart rate and physical activity data: Estimating individual heterogeneity in physiologic response to physical activity

Andrew Leroux

October 15, 2019

Motivation

Background

PA, HR, and HRR

Marginal Models Subject Specific Effects

Fatigability

Future Work

Scalar on Function Regression

- the "big" questions:
 - What is the effect of physical activity (PA) on heart rate (HR)?
 - Can we quantify individual heterogeneity in this effect adjusting for age, health status, and diurnal patterns of both PA and HR?
 - Is this individual heterogeneity associated with outcomes of interest?
- Challenges:
 - Need (good) data (lots of it)
 - Normalize for differences in capacity ("maximum" and resting heart rate)
 - What is a sensible statistical model?

Data

Background

PA, HR, ar HRR Marginal Models Subject Specific Effects

Application Fatigability

Future Worl

Scalar on Function Regression

- Baltimore Longitudinal Study on Aging (BLSA)
- Actiheart chest worn uniaxial accelerometer and heart rate monitor
- Exclusion criteria
 - Ages 30-90
 - ullet Peak respiratory exchange ratio ≥ 1.1
 - Estimated $VO_2 \text{ max} \ge 10$
 - No missing data for demographic variables, several comorbidities, and alcohol consumption
 - At least 3 days of "good" Actiheart data
 - No beta blockers
- Final sample: 446 subjects, 233 male and 213 female

Defining Activity Intensity Using Heart Rate Reserve

Backgroun

PA, HR, and HRR

Marginal Models Subject Specific Effects

Application Fatigability

Future Work

Scalar on Function Regression

Application: Predicting Alcohol Consumption $\mbox{Heart Rate Reserve} = \mbox{Maximum Heart Rate} - \mbox{Resting Heart Rate}$

Vigorous: 60% or greater of HRR over resting

Moderate: 40-59% Light: 20-39%

Sedentary: <20%

We can approximate maximum heart rate using observed maximum heart rate from the treadmill test, but we need to estimate resting heart rate.

Backgroun

PA, HR, and HRR

Marginal Models Subject Specific Effects

Application Fatigability

Future Wor

Scalar on Function Regression

Application: Predicting Alcohol Consumption

Resting heart rate estimation algorithm:

- Step 1: Examine 5 minute moving windows to find all 10-minute intervals between 01:00-07:00 with 0 total activity counts
 - Step 2: Calculate average heart rate of the last 5 minutes of each interval found in (1)
 - Step 3: Take the average of the heart rates found in (2)

Backgroun

PA, HR, and HRR

Marginal Models Subject Specific Effects

Application Fatigability

Future Work

Scalar on Function Regression

Background

PA, HR, and HRR

Marginal Models Subject Specific Effects

Application Fatigability

Future Wor

Scalar on Function Regression

Background

PA, HR, and HRR

Marginal Models Subject Specific Effects

Fatigability

Future Wor

Scalar on Function Regression

Application: Predicting Alcohol Consumption

Day-to-day Variability in Resting RH

Background

PA, HR, and HRR

Marginal Models Subject Specific Effects

Application Fatigability

Future Wor

Scalar on Function Regression

Background

PA, HR, and HRR

Marginal Models Subject Specific Effects

Application Fatigability

Future Wor

Scalar on Function Regression

ackground

PA, HR, and HRR

Marginal Models Subject Specific Effects

Application Fatigability

Future Wor

Scalar on Function Regression

74F, hypertension, cancer, 16 VO₂, 89 max HR, 13 borg scale

Marginal Models Subject Specific Effects

Fatigability

Future Worl

Scalar on Function Regression

PA, HR, and HRR vs Age

Background

PA, HR, and HRR

Marginal Models Subject

Subject Specific Effects

Fatigability

Future Work

Scalar on Function Regression

Application: Predicting Alcohol Consumption Model daily patterns of PA, HR, and HRR as a function of age

• Fit 3 separate models:

$$E[Y_{ij}(t)|\mathbf{X}_i, \mathsf{Age}_i, t] = f_0(t) + \sum_{p=1}^P X_{ip} f_p(t) + \beta(\mathsf{Age}_i, t)$$

- $i=1,\ldots,N$ subject, $j=1,\ldots,J_i$ day, $t=1,\ldots,1440$ minute of the day
- X_{ip} are scalar covariates (BMI, comorbidities, etc.)
- $\beta(Age_i, t)$ allows for outcome to vary smoothly in time and age

HR vs Age

HRR vs Age

PA, HR, and HRR vs Age

Background

PA, HR, and HRR

Marginal Models Subject Specific

Application Fatigability

Future Wor

Scalar on Function Regression

PA, HR, and HRR vs Age

Background

PA, HR, and HRR

Marginal Models Subject

Subject Specific Effects

Fatigability

Future Worl

Scalar on Function Regression

Application: Predicting Alcohol Consumption Attempt to adjust for PA at a given time

$$E[\mathsf{HRR}_{ij}(t)|\cdot] = f_0(t) + \sum_{
ho=1}^P X_{i
ho} f_
ho(t) + eta(\mathsf{Age}_i,t) + \gamma_1(t) \mathsf{LAC}_{ij}(t)$$

- Concurrent effect of activity on heart rate
- Historical effect of PA?

HRR adjusting for PA

Background

PA, HR, and

Marginal Models Subject Specific

Application Fatigability

Future Wor

Scalar on Function Regression

Application: Predicting Alcohol

PA, HR, and HRR vs Age

Background

PA, HR, and HRR Marginal Models

Subject Specific Effects

Application Fatigability

Future Wor

Scalar on Function Regression

- HRR at rest will vary from person-to-person (latent health status) and day-to-day (hydration, mental state, etc.)
- For now ignore day-to-day variability

PA, HR, and HRR vs Age

Background

PA, HR, and HRR Marginal Models Subject Specific Effects

Application Fatigability

Future Worl

Scalar on Function Regression

Application: Predicting Alcohol Consumption HRR at rest will vary from person-to-person (latent health status) and day-to-day (hydration, mental state, etc.)

• For now ignore day-to-day variability

$$\mathsf{HRR}_{ij}(t) = \eta_i(t) + \gamma(t)\mathsf{LAC}_{ij}(t) + b_{0i}(t) + b_{1ij}(t)\mathsf{LAC}_{ij}(t) + \epsilon_{ij}(t)$$

- $\eta_i(t) = f_0(t) + \sum_{p=1}^{P} X_{ip} f_p(t) + \beta(Age_i, t)$
- $b_{0i}(t)$ represents subject i's average HRR difference from the population at rest
- $b_{1i}(t)$ represents subject i's deviation from the population in response to PA

Estimating $b_{1i}(t)$

Backgroun

PA, HR, and HRR Marginal Models Subject Specific

Effects Application Fatigability

Future Worl

Scalar on Function Regression

- How to estimate subject specific responses?
 - Fit marginal model, obtain residuals, fit N separate regressions
 - Fit marginal model, obtain residuals, GLS, fit N separate regressions
 - 3 Fit the "full" model (functional mixed effects model)
- Choice of estimation procedure depends on goals.

Estimating $b_{1i}(t)$

Backgroun

PA, HR, and

Marginal Models

Subject Specific Effects

Fatigabilit

Future Wor

Scalar on Function Regression

Application: Predicting Alcohol

Using Estimated $\tilde{b}_{1i}(t)$

Background

PA, HR, and HRR

Margina Models

Subject Specific Effects

Application Fatigability

Future Wor

Scalar on Function

- $\tilde{b}_{1i}(t)$ as a functional predictor
- ullet scalar summary (e.g. $\int_{\mathcal{T}} \tilde{b}_{1i}(t) dt$, the average across the day)

Fatigability

Backgroun

PA, HR, and HRR

Marginal Models Subject Specific Effects

Application: Fatigability

Future Wor

Scalar on Function

Fatigability

Application:

Fatigability

Alcohol

```
Residuals:
    Min
                Median
                                   Max
             10
                            30
-2.8233 -1.2287 -0.3259
                        0.9551 5.5196
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.173061
                        0.885410
                                  6.972 1.24e-11 ***
                       0.007577
            0.038331
                                  5.059 6.37e-07 ***
age
bmi
            0.011762
                       0.019528
                                  0.602 0.547284
                       0.161772
sexMale
            -0.728330
                                  -4.502 8.76e-06 ***
TAC mu
            -0.025157
                       0.007552
                                  -3.331 0.000943 ***
            18.951565
                       6.392608
                                  2.965 0.003206 **
b2i mu
Signif. codes:
                        0.001 '**' 0.01 '*' 0.05 '.' 0.1
Residual standard error: 1.636 on 413 degrees of freedom
```

Multiple R-squared: 0.1978, Adjusted R-squared: 0.1881 F-statistic: 20.37 on 5 and 413 DF, p-value: < 2.2e-16

Next steps/Open questions

Backgroun

PA, HR, and HRR Marginal

Marginal Models Subject Specific Effects

Application Fatigability

Future Work

Scalar on Function Regression

- What does it mean when $\gamma(t) + b_{i1}(t) \leq 0$? Individual thresholds? Bad data?
- Day-to-day variability?
- Building in a historical effect of activity (of heart rate?)

Scalar on Function Regression

Backgroun

PA, HR, and HRR Marginal Models Subject Specific

Application Fatigability

Future Work

Scalar on Function Regression

Application: Predicting Alcohol Consumption Scalar on function regression can take many forms

 Functional Generalized Linear Model¹(FGLM): Association varies with time of day, but scales linearly with (log) activity count

$$g(E[Y_i]) = X_i'\beta + \int_T f(t)Z_i(t)dt$$

 Functional Generalized Additive Model²(FGAM):
 Association varies smoothly with both time of day and value of (log) activity count

$$g(E[Y_i]) = X_i'\beta + \int_T f[t, Z_i(t)]dt$$

²McLean MW, Hooker G, Staicu AM, Scheipl F, Ruppert D. Functional Generalized Additive Models. J Comput Graph Stat. 2014;23(1):249-269.

²Müller HG, Stadtmüller U. Generalized functional linear models. Annals of Statistics. 2005;33(2):774-805.

Scalar on Function Regression

 In both FGLR and FGAM estimation is done by applying a spline basis to the coefficient and then approximating the functional term numerically.

$$\begin{split} \int_{\mathcal{T}} f(t) Z_i(t) dt &= \int_t \sum_{k=1}^K \xi_k \phi_k(t) Z_i(t) dt \quad \text{Apply spline basis} \\ &\approx \sum_{l} \delta_l \sum_{k=1}^K \xi_k \phi_k(l) Z_i(l) \quad \text{Numeric Approximation} \\ &= \sum_{k=1}^K \xi_k \left[\sum_{l} \delta_l \phi_k(l) Z_i(l) \right] \\ &= \sum_{k=1}^K \xi_k \tilde{Z}_i(k) \end{split}$$

Background

PA, HR, and HRR

Marginal Models Subject Specific Effects

Application Fatigability

Future Worl

Scalar on Function Regression

SoFR: Heavy Drinkers

Backgroun

PA, HR, and HRR

Marginal Models Subject Specific Effects

Fatigability

Future Wor

Scalar on Function Regression

Application: Predicting Alcohol Consumption • Let Y_i be the binary indicator that subject i self reports heavy drinking

Logistic regression

• FGLR: logit $(p_i|X_i, \mathbf{Z}_i) = X_i'\beta + \int_T f(t)Z_i(t)dt$

• FGAM: $logit(p_i|X_i, \mathbf{Z}_i) = X_i'\beta + \int_T f[t, Z_i(t)]dt$

- Estimation via using refund::pfr() function
- Adjust for linear effects of age, body mass index, and sex

Background

PA, HR, and HRR

Marginal Models Subject Specific Effects

Application Fatigability

Future Worl

Scalar on Function Regression

FGAM

Backgroun

PA, HR, and HRR Marginal Models Subject Specific

Application Fatigability

Future Wor

Scalar on Function Regression

- Estimated coefficient surface seems to imply high heart rate at any time of the is associated with increased log odds of drinking heavily
- Very few "high" HRR during the early morning hours
- Consider a transformation to reduce data sparsity. Here we use the empirical CDF $\hat{g}_t(x) = \frac{1}{N} \sum_{i=1}^{N} I(Z_i(t) < x)$ for all t.

$$logit(p_i|X_i, \mathbf{Z}_i) = X_i'\beta + \int_T f[t, g_t(Z_i(t))]dt$$

Background

PA, HR, and HRR

Marginal Models Subject Specific Effects

Application Fatigability

Future Wor

Scalar on Function

