See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/10682109

Antiviral activity of Inonotus hispidus

ARTICLE in FITOTERAPIA · AUGUST 2003

Impact Factor: 2.35 · DOI: 10.1016/S0367-326X(03)00119-9 · Source: PubMed

CITATIONS READS

37

89

5 AUTHORS, INCLUDING:

Nasser Ali Albaha University

42 PUBLICATIONS 457 CITATIONS

SEE PROFILE

Ulrike Lindequist

University of Greifswald

252 PUBLICATIONS 3,375 CITATIONS

SEE PROFILE

Ramzi A A Mothana

King Saud University

70 PUBLICATIONS 883 CITATIONS

SEE PROFILE

Fitoterapia 74 (2003) 483-485

FITOTERAPIA

www.elsevier.com/locate/fitote

Short report

Antiviral activity of Inonotus hispidus

N.A. Awadh Ali^{a,b}, R.A.A. Mothana^{a,b}, A. Lesnau^c, H. Pilgrim^a, U. Lindequist^{a,*}

^aInstitute of Pharmacy/Pharmaceutical Biology, Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17487, Germany ^bPharmacognosy Department, Pharmacy Division, Sanaʻa University, P.O. Box 33039, Sanaʻa, Yemen ^cRobert Koch Institute Berlin, Nordufer 20, Berlin 13353, Germany

Received 8 November 2002; accepted 8 April 2003

Abstract

The antiviral activity of two phenolic compounds, hispolon and hispidin, isolated from the fruit bodies of the basidiomycete *Inonotus hispidus* as well as of some extracts prepared from fruit bodies and mycelial cultures of this fungus was investigated in allantois on the shell-test system. Ethanolic extracts, hispidin and hispolon showed considerable antiviral activity against influenza viruses type A and B.

© 2003 Elsevier Science B.V. All rights reserved.

Keywords: Inonotus hispidus; Antiviral activity; Hispolon; Hispidin

Plant. *Inonotus hispidus* (Bull.: Fr.) Karst (Hymenochaetaceae), fruit bodies collected in July 1994 in Greifswald (Germany). The mushrooms were cut into small pieces, dried and stored at room temperature in air-tight containers. The fungal material was kindly identified by Prof. Dr H. Kreisel, Institute of Biology, Ernst–Moritz–Arndt University, Greifswald. A voucher specimen is deposited at the Institute of Pharmacy/Pharmaceutical Biology, Ernst–Moritz–Arndt University, Greifswald.

^{*}Corresponding author. Tel.: +49-3834-864868; fax: +49-3834-864885. *E-mail address:* lindequi@uni-greifswald.de (U. Lindequist).

Uses in traditional medicine. *I. hispidius* was formerly used as a purgative in Germany [1]. Hispidin and hispolon showed in vitro inhibiting effects on immune cells [2].

Previously isolated classes of constituents. Amino acids [3], lipids [4], hispidin [5], hispolon [6].

Tested material. 80% Ethanolic extract (EE) and aqueous extract (WE) from freeze-dried, pulverized and defatted (treatment with *n*-hexane for 12 h in a Soxhlet apparature) fruit bodies (yield: 26.0 and 3.8%, respectively), and from lyophilized cultivated mycelium (yield: 19.5 and 32%, respectively). Mycelial cultures were derived from tissue plugs of fruit bodies and maintained in 500-ml Erlenmeyer flasks in Hagem medium [7] on a rotary shaker (70 rev./min) at room temperature for 7 days. At the end of the cultivation, the cultures were filtered and the mycelia were freeze-dried. Hispolon and hispidin were isolated from ethanolic extracts of *I. hispidus* as described previously [6]. Amantadine HCl was used as the standard substance.

Table 1 Antiviral activity of hispidin, hispolon, WE and EE from fruit bodies and cultured mycelium of *I. hispidus* on influenza virus type A and B

Treatment	Concentration	Reduction of infectious titer (log $_{10}$) of influenza virus A and B		
		Type A		Type B
		H1N1	H3N2	
WE ^a	80 μg/ml	0.91	0.83	0.83
WE^b	80 μg/ml	0.75	0.66	0.5
EEa	80 μg/ml	2.17	1.00	0.33
EE ^b	80 μg/ml	2.00	1.17	1.67
Hispidin	40 μg/ml	3.00	3.00	n.d.
Hispolon	10 μg/ml	0.67	1.50	0.50
•	20 μg/ml	2.84	3.16	1.34
	40 μg/ml	3.80	3.80	n.d.
	80 μg/ml	4.00	n.d.	n.d.
Amantadine HCl	$5 \mu g/ml$	2.50	1.50	0

N=6. All assays in duplicate.

WE^a = water extract of fruit bodies.

WE^b = water extract of cultured mycelium.

EEa = ethanol extract of fruit bodies.

EE^b = ethanol extract of cultured mycelium.

n.d. = Not determined.

A reduction of 1 or more titer units implies an antiviral effect.

Studied activity. Antiviral activity against influenza viruses using the allantois on the shell-test system according to Ref. [8].

Used micro-organisms. Influenza viruses A/Brazil/11/78 (H1N1), A/Hongkong/ 1/68 (H3N2) and B/Singapore/222/79 adjusted to a titer of 10^{-5} or 10^{-6} EID₅₀ (EID=egg infection dose).

Results. Reported in Table 1.

Conclusions. Ethanolic extracts of fruit bodies and mycelial cultures from *I. hispidus* showed interesting antiviral activity against influenza virus type A and B. The activity might be due to the presence of hispolon and hispidin in the extracts.

Acknowledgments

The authors wish to thank Prof. H. Kreisel, Institute of Biology, Ernst Moritz Arndt University Greifswald, for his help on the field of mycology.

References

- [1] Hobbs Chr. Medicinal mushrooms. Santa Cruz: Botanica Press, 1995.
- [2] Ali NAA, Lüdtke J, Pilgrim H, Lindequist U. Pharmazie 1996;51:667.
- [3] Casalicchio G, Paoletti C, Bernicchia A, Govi G. Micol Ital 1975;4:21.
- [4] Casalicchio G, Bernicchia A, Govi G, Giovanni L. Micol Ital 1975;4:29.
- [5] Fiasson JL. Biochem Syst Ecol 1982;10:289.
- [6] Ali NAA, Jansen R, Pilgrim H, Liberra K, Lindequist U. Phytochemistry 1996;41:927.
- [7] Kreisel H, Schauer F. Methoden des mykologischen laboratoriums. Jena: Gustav-Fischer-Verlag, 1987.
- [8] Hils J, May A, Sperber M, Klöcking R, Helbig B, Sprössing M. Biomed Biochim Acta 1986;45:1173.