# НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО»

Кафедра конструювання електронно-обчислювальної апаратури

## КУРСОВА РОБОТА

з дисципліни <u>Електронна компонентна база радіоелектронної апаратури</u> на тему: FM приймач

|                | Студента 2 курсу групи ДК-92                                                |                                                        |  |  |  |  |  |  |
|----------------|-----------------------------------------------------------------------------|--------------------------------------------------------|--|--|--|--|--|--|
|                | Напряму підготовки: Телекомунікації та                                      |                                                        |  |  |  |  |  |  |
|                | радіо                                                                       | радіотехніка                                           |  |  |  |  |  |  |
|                | Мануков І. С. (прізвище та ініціали) Керівник: доцент, к.т.н. Короткий Є.В. |                                                        |  |  |  |  |  |  |
|                |                                                                             |                                                        |  |  |  |  |  |  |
|                |                                                                             |                                                        |  |  |  |  |  |  |
|                |                                                                             |                                                        |  |  |  |  |  |  |
|                | (посада, вчене звання, науковий ступінь, прізвище та ініціали)              |                                                        |  |  |  |  |  |  |
|                | Національна оцінка:                                                         |                                                        |  |  |  |  |  |  |
|                | Кільк                                                                       | ість балів: Оцінка: ECTS                               |  |  |  |  |  |  |
| Члени комісії: |                                                                             | доцент, к.т.н. Короткий С.В.                           |  |  |  |  |  |  |
| -              | (підпис)                                                                    | (вчене звання, науковий ступінь, прізвище та ініціали) |  |  |  |  |  |  |
|                | (підпис)                                                                    | (вчене звання, науковий ступінь, прізвище та ініціали) |  |  |  |  |  |  |
|                | ( ,, )                                                                      | , , , , , , , , , , , , , , , , , , , ,                |  |  |  |  |  |  |

м. Київ

2021 рік

# 3MICT

| Список умовних скорочень                                  | 3  |
|-----------------------------------------------------------|----|
| Вступ                                                     | 4  |
| Розділ 1 – Вибір та дослідження принципової схеми приладу | 5  |
| Розділ 2 – Моделювання роботи приладу                     | 7  |
| Розділ 3 – Вибір електронних компонентів                  | 9  |
| Розділ 4 – Створення 3D моделі компоненту                 | 14 |
| Розділ 5 – Створення конструкторської документації        | 21 |
| Висновки                                                  | 23 |
| Перелік використаних лжерел                               | 24 |

# СПИСОК УМОВНИХ СКОРОЧЕНЬ

ПП – підсилювач потужності

#### ВСТУП

Радіочастоти  $\epsilon$  важливою частиною у житті сучасної людини. Вони повсюди та щодня допомагають нам працювати, навчатися, створювати, та звісно ж відпочивати.

Нині велику популярність отримали бездротові навушники та музичні колонки, що працюють за допомогою технології Bluetooth або FM-сигналу. Я вирішив не забувати традиції та зробити власний FM-приймач, але із урахуванням сучасних тенденцій, тобто портативний, компактний та дешевий.

Тож, метою даної роботи є створення 3D моделі компонентів, з наміром навчитися працювати з 3D моделями, розробка друкованої плати та виготовлення власного зручного та недорогого FM-приймача. Цей FM-приймач має бути компактним, легким, витримувати звичайні погодні умови та споживати відносно малу кількість електроенергії, щоб бути дійсно портативним та мати змогу працювати від гальванічного елементу або, наприклад Power-bank<sup>1</sup>, тривалий час.

Для досягнення поставленої цілі необхідно:

- 1. Вибрати та аналізувати принципову схему приладу.
- 2. Визначення характеристик елементів схеми для вибору компонентів. Промоделювати пристрій в програмі ltspice.
- 3. Вибрати електронні компоненти.
- 4. Створити 3D модель компоненту.
- 5. Створити конструкторську документацію на друкований вузол.

# Примітка.

Power-bank – це портативний пристрій, для багаторазового заряджання без доступу до мережі.

### Вибір та дослідження принципової схеми приладу

# Опис використаної мікросхеми:

LM386 являє собою ПП, який можна використовувати в пристроях з низькою напругою живлення. Наприклад від батареї. За замовчуванням її внутрішня схема обмежує посилення по напрузі в районі 20. Але підключаючи зовнішні резистор і конденсатор можна змінювати посилення від 20 до 200, а вихідна напруга автоматично встановлюється рівним половині напруги живлення. Споживання електроенергії в холостому режимі складає всього 24 мілівата, при напрузі від 6 В.

#### Особливості

- Мінімум зовнішніх компонентів
- Широкий діапазон харчування: від 4 до 12 В або від 5 до 18 В
- Низький струм: 4 мА
- Посилення по напрузі від 20 до 200
- Низький коефіцієнт спотворень: 0.2% (при AV = 20, VS = 6 B, RL = 8 OM, PO = 125 мВт, f = 1 к $\Gamma$ ц)

#### Сфери використання:

- підсилювачі радіоприймачів;
- підсилювачі портативних програвачів;
- домофони;
- звукові системи тв-приймачів;
- лінійні приводи;
- ультразвукові приводи;
- невеликі сервоприводи;
- перетворювачі.

В якості схеми FM-приймача я вибрав схему з сайту «instructables circuits», зображено на Мал. 1.1.



Мал. 1.1 – Схема FM-приймача з сайту «instructables circuits» Транзистор T2 разом з резистором R1 та потенціометром TM1, котушкою L1, змінним конденсатором С1 і внутрішньою ємністю транзистора Т1, включає так званий генератор Кольпіца. Тобто транзистор T2 та LC-ланцюжок з котушки L1 та змінного конденсатору C1 утворює високочастотний генератор, що працює близько частоти у 100 МГц. Потім ми подаємо змінний сигнал на базу транзистора та ємність переходу база-емітер змінюється, внаслідок чого змінюється й резонансна частота. Резонансна частота цього генератора встановлюється C1 та TM1 відповідно до частоти станції, яку ми хочемо почути (тобто вона повинна бути змінена між 88 і 108 МГц). Сигнал, тобто інформація, яка використовується в передавачі для здійснення модуляції, витягується на резисторі R2 і направляється від нього до ПП, а від нього до навушників або динаміку через конденсатор С6, отримуючи таким чином ФВЧ. Виходи ПП 1 та 8 з'єднані через конденсатор С7 щоб отримати максимально можливе посилення сигналу, тобто приблизно у 200 разів. Задля поліпшення характеристик підсилення вхідний контакт з'єднують із землею, а сьомий контакт з'єднують через конденсатор.

Визначення характеристик приладу. Моделювання роботи приладу Розрахуємо значення струму та напруги на елементах схеми, коли змінний сигнал дорівнює 10 мВ з частотою 1 кГц, щоб отримати реальні значення працюючої схеми та побачити, які характеристики елементів нам будуть потрібні, постійна напруга дорівнює 5В.

Значення на змінному резисторі та конденсаторі візьмемо за максимальні, тобто (R2)TM1 = 25K, (C5)C1 =  $30\pi\Phi$ .

Додав до схеми світлодіод, щоб можна було ідентифікувати, чи під'єднане до схеми живлення. До нього послідовно додав резистор, щоб обмежити струм. У програмі LTspice XVII зібрав аналогічну схему (Мал. 3.1), щоб впевнитися у правильності розрахунків та промоделювати поведінку схеми. Для спрощення моделювання замінив змінні конденсатор та резистор на звичайні. Для функціонування ПП додав бібліотеку. Навушники або динамік замінені на резистор зі схожим опором. У 3D моделі друкованої плати постійну напругу будемо отримувати через роз'єм mini-USB.



Мал. 2.1 – Схема FM-приймача у програмі LTspice XVII

В результаті симуляції отримав наступні результати наведенні у Табл. 2.1 (далі буду вказувати позначення згідно зі схемою у LTspice).

| №  | Умовне позначення | Напруга | Сила струму |
|----|-------------------|---------|-------------|
| 1  | Q1                | 10 мВ   | 141 пА      |
| 2  | Q2                | 10 мВ   | 141 пА      |
| 3  | C1                | 260 мкВ | 167 нА      |
| 4  | C2                | 115 мВ  | 330 мА      |
| 5  | C3                | 750 мкВ | 45 мкА      |
| 6  | C4                | 1,5 мВ  | 1 мкА       |
| 7  | C5                | 10 мВ   | 1,8 нА      |
| 8  | V1                | 5       | 325 мА      |
| 9  | D1                | 752 мВ  | 42,5 мА     |
| 10 | R1                | 2,2 мВ  | 311 нА      |
| 11 | R2                | 7, мВ   | 311 нА      |
| 12 | R3                | 4,25 B  | 42,5 мА     |
| 13 | R4                | 1,67 мВ | 167 нА      |
| 14 | R5                | 1,3 B   | 330 мА      |
| 15 | L1                | 31 мкВ  | 120 пА      |

Табл. 2.1

#### Вибір електронних компонентів

Керуючись значеннями отриманими у другому розділі, цілями, котрі я поставив на початку (погодні умови вулиці, тобто перепади температур та можливі опади, ціна, розмір, адже я прагну створити портативний та дешевий FM-приймач) та специфікою обладнання (залежність деяких елементів від частоти, наприклад конденсаторів) обрав елементи.

У якості транзисторів обрав BF199, як вже було вказано на схемі. Він має характеристики, що повністю мене задовольняють. Має широкі температурні межі — -55°C -  $\pm$ 155°C та не залежить від рівня вологості навколишнього середовища.

У якості котушки індуктивності обрав 78F150J-RC. Вона має широкі температурні межі — -55°C - +105°C та не залежить від рівня вологості навколишнього середовища.

У якості роз'єма mini-USB обрав M701-340542. Він має широкі температурні межі — -55°С - +105°С проте погано реагує на вологу та не має жодного протоколу пило та влагозахищенності. Цей вибір було зроблено в пользу здешевлення, адже найдешевший mini-USB роз'єм з протоколами захисту стоїть у 10-15 разів більше. У якості захисту від вологи пропоную використовувати силіконовий ковпачок, такі ковпачки коштують близько \$0,05.

У якості світлодіода обрав LTW-M140ZVS. Він має достатні температурні межі — -30°С - +85°С та не залежить від рівня вологості навколишнього середовища. Прямий ток дорівнює 20 мА, максимальний — 100 мА. Колір не важливий.

У якості ПП обрана мікросхема LM386 у версії LM386N-3, як вже зазначенно на схемі. Вона має робочу температуру -20°C - +85°C, проте зберігатися може в температурному режимі -40°C - +150°C, рівень вологості на її роботу не вливає, максимальна розсіювальна потужність 0,7 Вт.

Усі резистори обираю з ряду Е6 задля здешевлення. Для резистора R1 враховую найгірші умови, коли опір потенціометра R2 буде мінімальним, а змінна напруга відсутня. Тоді на ньому буде виділятися близько 3,5 В та 2,5 мВт, враховуючи запас у 30%-40% обрав SG731JTTD472M. Він має широкі температурні межі — -55°C - +155°C, розсіювальну потужність у 0,1 Вт та не залежить від рівня вологості навколишнього середовища.

Потенціометер R2 обираю виходячи з тієї ж логіки, тобто, коли на ньому буде найбільша напруга та потужність. Обрав CB6MH253M він має розсіювальну потужність близько 1 мВт, широкі температурні межі та не залежить від рівня вологості навколишнього середовища.

У якості резистора R3 обрав SR0805MR-7W100RL. Він має широкі температурні межі — -55°C - +155°C, розсіювальну потужність у 0,25 Вт та не залежить від рівня вологості навколишнього середовища.

У якості резистора R4 обрав FCR0603MT10K0. Він має широкі температурні межі — -55°C - +125°C, розсіювальну потужність у 0,1 Вт та не залежить від рівня вологості навколишнього середовища.

У якості резистора R5 виступає динамік WSP-7704. Він має достатні температурні межі — -20°С - +50°С, потужність у 3 Вт та пилевологозахищенність стандарту IP65.

У якості конденсаторів С1 та С4 обрав керамічні конденсатори CL05A104KP5NNND. Вони мають широкі температурні межі — -55°C - +85°C та не залежить від рівня вологості навколишнього середовища.

У якості конденсатора С2 обрав електролітичний конденсатор ЕСА-0ЈНG471В. Він має широкі температурні межі — -55°С - +105°С, працює на частоті до 100 к $\Gamma$ ц, чого нам достатьньо, та не залежить від рівня вологості навколишнього середовища.

У якості конденсатора СЗ обрав електролітичний конденсатор 106СКЕ063М. Він має широкі температурні межі — -40°С - +105°С, працює на частоті до 100 кГц та не залежить від рівня вологості навколишнього середовища.

У якості змінного конденсатора С5 обрав GKG30086-05. Він має достатні температурні межі — -25°С - +85°С, працює на частоті до 1 М $\Gamma$ ц та не залежить від рівня вологості навколишнього середовища.

У якості змінного джерела напруги, тобто антени, можна використовувати дріт, його можна припаяти до плати, або, наприклад, додати другий mini-USB роз'єм та підключити через нього, це не найчутливіша антена, проте найдешевша.

|   | Name            | Description                                                                                    | Designator | Quantity | Manufacturer 1            | Manufacturer Part | Manufacturer                      | Supplier | Supplier Part Number   | Supplier Unit | Supplier   |
|---|-----------------|------------------------------------------------------------------------------------------------|------------|----------|---------------------------|-------------------|-----------------------------------|----------|------------------------|---------------|------------|
|   | Name            |                                                                                                |            |          |                           | Number 1          | Lifecycle 1                       | 1        | 1                      | Price 1       | Subtotal 1 |
| 1 | ANT             |                                                                                                | ANT        | 1        |                           |                   |                                   |          |                        |               |            |
| 2 | 6.5-30p         | Cap Trimmer SMD                                                                                | C?         | 1        | Sprague<br>Goodman        | GKG30086-05       | Not Recommended<br>for New Design | Digi-Key | SG9122CT-ND            | 1,64          | 1,64       |
| 3 | 10u             | Aluminum Electrolytic Capacitors - Radial Leaded 10uF 63 Volts 20% LYTICS/IC                   | C?         | 1        | CDE Illinois<br>Capacitor | 106CKE063M        | Not Recommended<br>for New Design | Digi-Key | 106CKE063M-ND          |               |            |
| 4 | 100n            | Cap Ceramic 0.1uF<br>10V X5R 10% SMD<br>0402 85C Paper T/R                                     | C?         | 2        | Samsung                   | CL05A104KP5NNNI   | Volume Production                 | Digi-Key | CL05A104KP5NNND-<br>ND |               |            |
| 5 | 470u            | Cap Aluminum 470uF<br>6.3V 20% (6.3 X<br>11.2mm) Radial 5mm<br>230mA 1000 hr 105C<br>Ammo Pack | C?         | 1        | Panasonic                 | ECA-0JHG471B      | Volume Production                 | Digi-Key | ECA-0JHG471B-ND        |               |            |
| 6 | LTW-<br>M140ZVS | White 120° Viewing<br>Angle 3 x 1.05 x 1.2<br>mm 3.5 V 20 mA<br>Surface Mount Lamp             | D?         | 1        | Vishay Lite-On            | LTW-M140ZVS       | Volume Production                 | Mouser   | 859-LTW-M140ZVS        | 0,45          | 0,45       |
| 7 | 15u             | BOURNS JW<br>MILLER 78F150J-<br>RC CHOKE, 15UH,<br>150MA, 5%, 16MHZ                            |            | 1        | Bourns JW<br>Miller       | 78F150J-RC        | Volume Production                 | Mouser   | 542-78F150J-RC         | 0,21          | 0,21       |

Табл. 3.1 - Bill of Materials

| 8  | LM386N-3 | Audio Amp Speaker<br>1-CH Mono 0.7W<br>Class-AB 8-Pin PDIP<br>Rail                             | LM386 | 1 | TI National<br>Semiconductor       | LM386N-3             | Obsolete                          | Digi-Key | 2156-LM386N-3-ND                |      |      |
|----|----------|------------------------------------------------------------------------------------------------|-------|---|------------------------------------|----------------------|-----------------------------------|----------|---------------------------------|------|------|
| 9  | BF199    | TRANSISTOR RF<br>NPN 25V 50MA TO-<br>92                                                        | Q?    | 2 | ON<br>Semiconductor<br>/ Fairchild | BF199                | Obsolete                          | Digi-Key | BF199FS-ND                      |      |      |
| 10 | 1-25K    | Res Carbon Film Trimmer 25K Ohm 20% 0.15W 1(Elec)/1(Mech)Turn (9.8 X 5 X 12.1mm) Pin Thru-Hole | R?    | 1 | TE<br>Connectivity<br>Citec        | CB6MH253M            | Not Recommended<br>for New Design | Digi-Key | CB6MH253M-ND                    |      |      |
| 11 | 4.7K     | Thick Film Resistors -<br>SMD 0.1W 4.7Kohm<br>20% 200ppm                                       | R?    | 1 | KOA Speer                          | SG731JTTD472M        | Volume Production                 | Digi-Key | 2019-<br>SG731JTTD472MTR-<br>ND |      |      |
| 12 | 10K      | Res Thick Film 0603<br>10kOhm 20% 1/10W<br>±200ppm/°C Molded<br>Paper T/R                      | R?    | 1 |                                    |                      |                                   | Digi-Key | FCR0603MT10K0-ND                |      |      |
| 13 | 100      | Res 100 Ohm 20%<br>1/4W 0805                                                                   | R?    | 1 | Yageo                              | SR0805MR-<br>7W100RL | Not Recommended<br>for New Design | Digi-Key | SR0805MR-<br>7W100RL-ND         |      |      |
| 14 | WSP-7704 |                                                                                                | SP?   | 1 | Soberton                           | WSP-7704             | Unknown                           | Digi-Key | 433-1182-ND                     | 3,48 | 3,48 |
| 15 | 5V       | USB Connectors MINI USB SINGLE SMT 5P HORIZONTAL                                               | V?    | 1 | Harwin                             | M701-340542          | Volume Production                 | Digi-Key | 952-2197-ND                     | 1,23 | 1,23 |

Продовж. табл. 3.1

## Створення 3D моделі компоненту

Для жодного зі створених мною компонентів не було створено 3D моделі, тому усі з них я малював власноруч.

Для прикладу продемонструю покроковий шлях для побудування моделі. Буду будувати LED, тобто світлодіод.

Створюємо циліндр діаметром 5 мм та висотою 1 мм. Це буде основа світлодіода.



Мал. 4.1 - Основний циліндр

Потім створюємо паралелепіпед висотою 1 мм або більше та шириною 0,1 мм або більше. Розташовуємо так, щоб перетиналися наші фігури лише на 0,1 мм. Та відрізаємо зайве. Так я позначаю катод діоду.



Мал. 4. 2 – Обрізання частини основи

Далі створюємо ще один циліндр висотою 6,6 мм та діаметром 4,8 мм.



Мал. 4.3 – Другий циліндр

Далі, беручі за точку основи центр верхньої площини другого циліндра, будуємо кулю, радіусом 2,4 мм.



Мал. 4.4 – Після створення кулі

Залишилося зробити лише контакти. Так як катод ми вже позначили, то візьмемо контакти однакової довжини — 3 мм та діаметром у 0.4 мм, відстань між контактами — 2 мм. Обєднавши всі частини разом отримуємо наступну деталь:



Мал. 4.5 – Після об'єднання

Залишилося пофарбувати і роботу можна завершувати. Я пофарбую контакти у колір блискучого алюмінію, а матеріал тіла заміню на червоний акріл.



Мал. 4.6 – Після фарбування

На виході отримав не дуже гарний результат, бо видно сферу повністю, але це можна вирішити змінивши колір на непрозорий або зрізавши зайве методом, який я показував раніше.

У кінці вивів це у креслення та зберіг у форматі PDF.



Мал. 4.7 – Креслення

#### Створення конструкторської документації

Для створення друкованої плати завантажив у бібліотеку, створені власноруч або взяті з мережі, 3D моделі для усих компонентів. Після цього додав 3D моделі до вкладки для створення друкованої плати та розташував елементи згідно зі схемою, проте максимально компактно. Отримав два варіанти друкованої плати — із закріпленим динаміком, та без нього. Для подальшої роботи та створення прототипа обрав варіант без динаміка, за його менші розміри.



Мал. 5.1 − 3D модель схеми без динаміка

На Мал. 5.1 зображено 3 Динаміку, але елементи підняті з нижнього шару, щоб їх краще було видно.

На Мал. 5.2 зображені верхній (червоні доріжки) та нижній (сині доріжки) шари, усі елементи, окрім роз'єму mini-USB, розташовані знизу.



Мал. 5.2 – Шари схеми

У роботі, під час конструювання, були застосовані наступні конструкторські прийоми:

- 1. Використання уніфікованих деталей. У схемі використовуються однакові компоненти (транзистори, конденсатори) та широкорозповсюджений роз'єм mini-USB, який легко можна знайти для ремонту або зміни на micro-USB або USB type C.
- 2. Скорочення обсягу механічної обробки. У схемі застосовуються отвори схожих диаметрів, що дозволяє застосовувати лише свердла з двома різними діаметрами.
- 3. Забезпечення точності взаємного розташування деталей. Сполучення посадочних поверхонь. У схемі передбачені можливі неточності при виготовлені компонентів, тому отвори та відстань між ними та деталями збільшені для спрощення монтажу.
- 4. Скорочення часу та зменшення витрат на проектування. Через виготовлення на даному етапі лише прототипу було заощаджено на розташувані шовкографії, через її відсутність на прототипі.

#### ВИСНОВОК

У цій роботі я вибрав принципову схему, що задоволняла мої потреби, описані у вступі, доповнив її індикацією підключення живлення.

Проаналізував та промоделював її у програмі LTspise XVII, записав отримані результати. Вибрав елементи, що задоволняли за функціоналом та ціною за допомогою сайту Digikey. Створив схему та 3D моделі для елементів своєї схеми у Altium Designer та записав покроковий опис створення 3D моделі світлодіоду у Fusion 360. Застосував створені 3D моделі для створення 3D моделі принципової схеми на друкованій платі. Описав застосовані під час проектування конструкторські прийоми.

## СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

- 1. Build Your Own Crude FM Radio. Instructables circuits URL: https://www.instructables.com/Build-your-own-Crude-FM-Radio/
- LM386 Low Voltage Audio Power Amplifier URL: https://www.electroschematics.com/wp-content/uploads/2008/09/lm386.pdf
- 3. 3D модель корпусу мікросхеми DIP-8 URL: https://pcbdesigner.ru/file-archive/3d-model-korpusa-mikroshemy-dip-8.html
- 4. STEP-моделі: Поодинокі потенціометри фірми ALPHA. 3RP / 1610N-XA1 Series URL:

https://tqfp.org/parts/step-modeli-odinochnye-potenciometry-firmy-alpha-3rp-1610n-xa1-series.html

5. Digikey URL:

https://www.digikey.com/