Long-term care provision and hospital bed-blocking: Evidence from a policy reform

Ana Moura

Department of Econometrics & OR Tilburg University

June, 2020

Setting the stage

Long-term care (LTC):

- Care needed by individuals with some degree of functional dependency;
- Includes healthcare, rehabilitation, help with activities of daily living, and accommodation;
- Can be provided either in nursing homes or at home.

Hospital bed-blocking (aka delayed discharges):

- Occurs when a patient is medically ready to be discharged from a hospital but requires some form of aftercare, that is not readily available;
- The patient stays at the hospital until a safe discharge can be made.

This paper

Does the entry of LTC providers alleviate hospital bed-blocking?

Related literature:

- Bed-blocking and substitutability of LTC and acute hospital care
 - Forder (2009); Gaughan et al. (2015, 2017a,b); Costa-Font et al. (2018), among others.
 - Variation in LTC availability from a policy reform.
 - Separate impacts of nursing homes and home-care teams.

Today's talk

- Institutional background
- Data & methods
- Main results & model assumptions
- Conclusion

Institutional background

Hospital care in Portugal:

- Covered by the National Health System;
- Hospitals are paid prospectively in a DRG-type system;
- No incentive to prolong hospital stays.

LTC in Portugal:

- Before 2006: Not within the scope of the National Health System;
- Start of the public LTC Network in 2006;
- 2006 onward: Highly-subsidized, government-funded nursing homes (NH);
- 2008 onward: Teams providing home-care (HC); More on NH and HC
- To enter the LTC Network individuals need a referral; See scheme
- Individuals are matched with providers in their region of residence (ACES).

Data

Emergency inpatient admissions at public hospitals in Portugal 2000-2015:

- Outcome variable: length of stay (LOS) in days;
- Bed-blockers: proxied by information on "underlying social factors influencing health status and contact with health services" See evolution
 - Living alone;
 - Having no family to care;
 - Having inappropriate housing/other socioeconomic issues.
- Age, gender, comorbidities, DRG group, patients' residence, etc.;

Data on the roll-out of the public LTC network by the government:

• Entry month of nursing homes (NH) and home-care teams (HC) across ACES regions. See map

Empirical approach: DID

$$y_{it} = \alpha_1 BB_i + \alpha_2 PostHC_{mt} + \alpha_3 PostHC_{mt} \times BB_i + \alpha_4 PostNH_{mt} + \alpha_5 PostNH_{mt} \times BB_i + \delta X_i + \gamma_d + \gamma_m + \gamma_t + \varepsilon_{it},$$

 y_{it} : LOS of patient i, admitted to the hospital in year t

 $PostNH_{mt}$, $PostHC_{mt}$: indicators for periods after the first NH and HC enters region m

 BB_i : vector of indicators for each type of bed-blocker

 X_i : vector of indicators for demographics and comorbidities

 γ_d , γ_m , γ_t : DRG, region, and year fixed-effects

 ε_{it} : error term

Baseline results

Heterogeneity

Significant heterogeneity by medical diagnosis:

- HC reduce LOS of the average bed-blocker, who is admitted with respiratory conditions;
- NH reduce LOS of bed-blockers with high care needs, such as those admitted with stroke.

Parallel trend assumption

- In the absence of LTC entry, any trends in lengths of stay of bed-blockers and regular patients would, in expectation, have been similar across regions;
- Event-study specifications do not typically suggest pre-trends.

Exogeneity of LTC entry

- Treatment timing is not anticipated by outcomes in earlier periods;
- Violated if entry occurred first in regions where bed-blocking was a bigger concern, ie. higher share of bed-blockers

No compositional changes

- Stable composition of treatment and control groups;
- Violated if there are changes in coding frequency of bed-blocking categories upon the entry of the first NH and HC team.

$$BB_{i}^{j} = \rho_{1} PostNH_{mt} + \rho_{2} PostHC_{mt} + \gamma_{m} + \gamma_{t} + \epsilon_{i}$$

	Living alone	No family to care	Housing/ econ. issues
Post NH (ρ_1)	-0.0000	0.0001	-0.0005
	(0.0009)	(0.0003)	(0.0006)
Post HCBS (ρ_2)	0.0010	0.0001	0.0002
	(0.0006)	(0.0003)	(0.0005)
Observations	7,829,912	7,813,584	7,828,093

^{*} *p* < 0.1, ** *p* < 0.05, *** *p* < 0.01

Conclusion

Does the entry of LTC providers in a region alleviate hospital bed-blocking?

- Yes, the entry of the first home-care team reduces LOS of bed-blockers by 4-5 days;
- The entry of the first nursing home reduces LOS of bed-blockers with high care needs only.

Does it matter? Impact on hospital costs:

- I estimate that bed-blocking imposes a cost-burden € M18.5 per year on hospitals;
- My baseline estimates imply a 30% reduction of this cost burden.

Thank you!

a.c.moura@tilburguniversity.edu www.anamoura.site

Twitter: @ana_c_moura

References I

- Joan Costa-Font, Sergi Jimenez-Martin, and Cristina Vilaplana. Does long-term care subsidization reduce hospital admissions and utilization? *Journal of Health Economics*, 58:43–66, 2018.
- Julien Forder. Long-term care and hospital utilisation by older people: an analysis of substitution rates. *Health Economics*, 18:1322–1338, 2009.
- James Gaughan, Hugh Gravelle, and Luigi Siciliani. Testing the bed-blocking hypothesis: Does nursing and care home supply reduce delayed hospital discharges? *Health Economics*, 24:32–44, 2015.
- James Gaughan, Hugh Gravelle, Rita Santos, and Luigi Siciliani. Long-term care provision, hospital bed-blocking, and discharge destination for hip fracture and stroke patients. *International Journal of Health Economics and Management*, 17:311331, 2017a.
- James Gaughan, Hugh Gravelle, and Luigi Siciliani. Delayed discharges and hospital type: Evidence from the English NHS. *Fiscal Studies*, 38(3): 495–519, 2017b.

Institutional setting, LTC Network

	Nursing home (NH)	Home-care (HC)
Start of roll-out	2006	2008
Providers	Private	Public
Funding	Public	Public
Setup	Government contracts with existing providers	Teams created in primary care centers
Price	Highly subsidized (meanstested) co-payments	Free
Services	24-hour medical care, rehabilitation, food, hygiene, accommodation, etc.	Preventive care, help with ADLs, food, hygiene, medication, etc.

Accessing the LTC network

Evolution of share of potential bed-blockers

Entry of the first NH and HC team

Inpatient data: Length of stay

$$y_{it} = \beta BB_i + \delta X_i + \gamma_d + \gamma_h + \gamma_t + \varepsilon_{it},$$

 y_{it} : length of stay of patient i, admitted to the hospital year t

BBi: vector of indicators for each type of potential bed-blocking

 X_i : vector of indicators for demographics and comorbidities

 $\gamma_d, \gamma_h, \gamma_t$: DRG, hospital, and year fixed-effects

 ε_{it} : error term

