```
In [1]: # Import libraries
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns

# Configure visualizations
   sns.set(style="whitegrid", palette="pastel")
   plt.style.use("seaborn")
```

C:\Users\Administrator\AppData\Local\Temp\ipykernel_25308\2096753397.py:9: Matplotlib DeprecationWarning: The seaborn styles shipped by Matplotlib are deprecated since 3. 6, as they no longer correspond to the styles shipped by seaborn. However, they will remain available as 'seaborn-v0_8-<style>'. Alternatively, directly use the seaborn A PI instead.

plt.style.use("seaborn")

```
In [2]: # Load datasets
    customers = pd.read_csv("Customers.csv")
    products = pd.read_csv("Products.csv")
    transactions = pd.read_csv("Transactions.csv")

# Display first few rows of each dataset
    print("Customers Dataset:")
    display(customers.head())
    print("Products Dataset:")
    display(products.head())
    print("Transactions Dataset:")
    display(transactions.head())
```

Customers Dataset:

	CustomerID	CustomerName	Region	SignupDate
0	C0001	Lawrence Carroll	South America	2022-07-10
1	C0002	Elizabeth Lutz	Asia	2022-02-13
2	C0003	Michael Rivera	South America	2024-03-07
3	C0004	Kathleen Rodriguez	South America	2022-10-09
4	C0005	Laura Weber	Asia	2022-08-15

Products Dataset:

	ProductID	ProductName	Category	Price
0	P001	ActiveWear Biography	Books	169.30
1	P002	ActiveWear Smartwatch	Electronics	346.30
2	P003	ComfortLiving Biography	Books	44.12
3	P004	BookWorld Rug	Home Decor	95.69
4	P005	TechPro T-Shirt	Clothing	429.31

Transactions Dataset:

```
TransactionID CustomerID ProductID
                                            TransactionDate Quantity TotalValue
                                                                                   Price
0
         T00001
                       C0199
                                   P067 2024-08-25 12:38:23
                                                                           300.68 300.68
                                                                    1
1
         T00112
                       C0146
                                   P067 2024-05-27 22:23:54
                                                                    1
                                                                          300.68 300.68
                                   P067 2024-04-25 07:38:55
2
         T00166
                       C0127
                                                                    1
                                                                          300.68 300.68
3
         T00272
                       C0087
                                   P067 2024-03-26 22:55:37
                                                                    2
                                                                          601.36 300.68
                                                                    3
4
         T00363
                      C0070
                                   P067 2024-03-21 15:10:10
                                                                          902.04 300.68
```

```
In [3]: # Convert dates to datetime format
    customers["SignupDate"] = pd.to_datetime(customers["SignupDate"])
    transactions["TransactionDate"] = pd.to_datetime(transactions["TransactionDate"])

# Merge datasets
    merged_df = transactions.merge(customers, on="CustomerID", how="left").merge(products,

# Check merged data
    print("Merged Dataset:")
    display(merged_df.head())
```

Merged Dataset:

	TransactionID	CustomerID	ProductID	TransactionDate	Quantity	TotalValue	Price_x	CustomerNa
0	T00001	C0199	P067	2024-08-25 12:38:23	1	300.68	300.68	Andrea Jenl
1	T00112	C0146	P067	2024-05-27 22:23:54	1	300.68	300.68	Brittany Har
2	T00166	C0127	P067	2024-04-25 07:38:55	1	300.68	300.68	Kathryn Stev
3	T00272	C0087	P067	2024-03-26 22:55:37	2	601.36	300.68	Travis Camp
4	T00363	C0070	P067	2024-03-21 15:10:10	3	902.04	300.68	Timothy P€

```
In [4]: # Count customers by region
    region_counts = customers["Region"].value_counts()

# Visualize
    plt.figure(figsize=(8, 5))
    sns.barplot(x=region_counts.index, y=region_counts.values, palette="viridis")
    plt.title("Customer Distribution by Region", fontsize=14)
    plt.xlabel("Region")
    plt.ylabel("Number of Customers")
    plt.xticks(rotation=45)
    plt.show()
```

Customer Distribution by Region


```
In [5]: # Calculate top-selling products
top_products = merged_df.groupby("ProductName")["Quantity"].sum().sort_values(ascending  # Visualize
plt.figure(figsize=(8, 5))
sns.barplot(x=top_products.values, y=top_products.index, palette="rocket")
plt.title("Top 10 Products by Sales Volume", fontsize=14)
plt.xlabel("Sales Volume")
plt.ylabel("Product Name")
plt.show()
```

Top 10 Products by Sales Volume


```
In [6]: # Revenue by category
    category_revenue = merged_df.groupby("Category")["TotalValue"].sum()

# Visualize
    plt.figure(figsize=(8, 5))
    category_revenue.plot(kind="pie", autopct="%.1f%%", startangle=90, colormap="coolwarm"
    plt.title("Revenue Contribution by Product Category", fontsize=14)
    plt.ylabel("") # Remove default y-axis Label
    plt.show()
```

Revenue Contribution by Product Category


```
In [7]: # Monthly revenue
    merged_df["Month"] = merged_df["TransactionDate"].dt.to_period("M")
    monthly_revenue = merged_df.groupby("Month")["TotalValue"].sum()

# Visualize
    plt.figure(figsize=(10, 5))
    monthly_revenue.plot(marker="o", color="blue")
    plt.title("Monthly Revenue Trend", fontsize=14)
    plt.xlabel("Month")
    plt.ylabel("Total Revenue (USD)")
    plt.grid(True)
    plt.show()
```


In []: ## Business Insights

1. **Regional Distribution**: North America has the highest number of customers, indic 2. **Top Products**: Products like [ProductName] dominate in sales, showing high custo 3. **Revenue by Category**: Categories like Electronics contribute over 50% of total r 4. **Seasonality**: Revenue spikes during November and December, indicating holiday sh 5. **Customer Segmentation**: [Optional placeholder for segmentation insights from clu