Distancia entre puntos- Rectas: Pendiente-Paralelismo-Perpendicularidad- Ecuación-Intersección

- 1) Grafique: y = |x|
- 2) Escriba las expresiones que correspondan y grafique, de modo que sus gráficas con respecto a: y = |x|, resulten:
 - a) Desplazadas 4 unidades hacia arriba
 - b) Desplazadas 2 unidades hacia abajo
 - c) Desplazadas 1 unidades hacia la izquierda
 - d) Desplazadas 3 unidades hacia la derecha
 - e) Reflejadas respecto al eje "x"
 - f) Reflejadas respecto al eje "y"
 - g) Alargadas verticalmente por un factor de 2.
 - h) Contraídas verticalmente por un factor de 4.
- 3) Resuelva gráficamente, indicando los intervalos en los que se cumple la condición dada:

$$|x+2| \ge |x-3|$$

4) En un plano cartesiano x-y, marque un par de puntos: P (-1; 4), Q (3;-2). Complete el cuadro de valores siguiente y extraiga conclusiones:

	Δγ	Δx	Δy/Δx	$\sqrt{\Delta y^2 + \Delta x^2}$
PQ				
QP				

Luego repita lo hecho para cualquier par de puntos de la recta determinada por P y Q. Cambian las conclusiones extraídas?

5) En un plano cartesiano x-y, marque los puntos:

$$A(5;6)$$
; $B(5;4)$; $C(5;2)$; $D(5;1)$; $E(5;-1)$; $F(5;-4)$; $G(5;-6)$; $P(2;1)$; $Q(10;1)$.

a) Complete los cuadros de valores siguientes:

	Δγ	Δx	m=Δy/Δx	$d = \sqrt{(\Delta y)^2 + (\Delta x)^2}$
PA				
PB				
PC				
PD				
PE				
PF				
PG				

	Δγ	Δx	m=Δy/Δx	$d = \sqrt{(\Delta y)^2 + (\Delta x)^2}$
QA				
QB				
QC				
QD				
QE				
QF				
QG				

- b) Aprecie como cambia el valor de "m" y su signo en relación con el gráfico. Identifique aquellos segmentos que tienen igual valor "m". En el plano destaque las rectas que contienen a dichos segmentos. ¿Cómo son entre sí? Calcule analíticamente la distancia entre ambas.
- c) Encuentre los 3 pares de segmentos que pertenecen a rectas perpendiculares. Destaque esas rectas en el plano. ¿Cuáles son los valores de sus pendientes? Encuentre analíticamente las coordenadas de los puntos donde los pares de rectas se intersectan a 90º.
- d) Obtenga analíticamente la distancia entre el punto "E" y la recta determinada por el segmento FQ.
- e) Exprese las ecuaciones de las rectas que contienen al segmento AG y al segmento PQ e indique si son funciones.
- 6) Encuentre la ecuación de la recta que pasa por (4; -3) y:
 - a) Tiene pendiente -2
 - b) Es paralela al eje "x"
 - c) Es paralela al eje "y"
 - d) Es paralela a la recta L: 3x-2y=5
 - e) Es perpendicular a la recta L: 2y = 5 + 4x
- 7) Encuentre la intersección de las rectas dadas, analítica y gráficamente:

7.1)
$$L_1: y = 4x - 5$$
 $L_2: y = -2x + 3$

7.2)
$$L_1: 2x-3y=4$$
 $L_2: \frac{y}{5} + \frac{2x}{3} = 1$

7.3)
$$L_1: \frac{2}{3}(x-1) + \frac{1}{5}y = 4$$
 $L_2: \frac{1}{4}(\frac{y}{5}-2) + \frac{2x}{3} = 1$

7.4)
$$L_1: y-4x-2=1$$
 $L_2: y=4x+6$

8) La recta r_0 tiene una pendiente de valor $\frac{1}{3}$ e intersecta al eje x en x=-6 La recta r_1 es perpendicular a r_0 y corta a esta en un punto de absisa 3 La recta r_2 es paralela a r_0 y se intersecta con la recta r_1 en un punto de absisa 2.

Obtener la ecuación de la recta r_2 . Graficar las 3 rectas, e indicar los puntos de intersección.

9) Identificar cada recta del gráfico siguiente y expresar su ecuación:

10) a) Hallar analíticamente el intervalo de valores de "x" en que se cumple lo señalado, y hacer una representación gráfica (utilizando las expresiones lineales del numerador y del denominador) que permita con su lectura deducir el intervalo solicitado haciendo las justificaciones que considere necesarias y suficientes.

$$f(x) = \frac{-x+2}{x+5} < 0$$

b) Indique el intervalo de valores que satisface cada expresión dada:

$$a) f(x) = \frac{1}{(x+5)(-x+2)} < 0 \qquad b) f(x) = (x+5)(-x+2) \le 0$$