Clinical Background [1][2][3]:

- Prostate cancer is the #2 cancer of men worldwide
- Gleason Grading is a reliable method of determining the severity of prostate cancer and planning treatment
- Estimation of Gleason grades requires
 expert pathologists → problem for low-resource
 settings

Problem Statement:

Deep learning image analysis can be a useful tool, but previous models are

- Non-generalizable
- Trained on small datasets
- Don't account for differences in pathologist determination.

Method:

Dataset:

AGGC 2022 dataset [4] Ground truth provided by multiple pathologists

Subset 1: Whole Mount Images

Subset 2: Biopsy Images

Subset 3: Whole Mount, Multiple Scanners

Conclusions:

We developed a deep learning model to automatically identify all five Gleason patterns with an accuracy of 0.74

Future Direction:

- Determine generalizability of methods/model to other cancer classification tasks
- Determine clinical utility of final product, refine model and outputs accordingly

DEEP LEARNING METHODS FOR AUTOMATED GLEASON GRADING

BDD Team Gleason Grading: Yujie Zhao, Ananya Tandri, Ruitao Hu, Yuxin Du Project Mentors: Zhenzhen Wang, Adam Charles

Results:

(1) Subset-dependent model performs better than Subset-independent model

	Training Resources	Accuracy	Averaged
Subset-dependent	Subset1	0.67	
	Subset2	0.79	0.74
	Subset3	0.75	
Subset-independent	All Subset	0.66	0.66

(2) Morphological transformation further improved results

Figure 1: Comparison of weighted F1 with and without morphology transformation.

F1=2×Precision×Recall/(Precision+ Recall); Precision=TP/(TP+FP); Recall=TP/(TP+FN) Subset-wise Weighted F1= $0.25 * F1_G3 + 0.25 * F1_G4 + 0.25 * F1_G5 + 0.125 * F1_Normal + 0.125 * F1_Stroma Total Weighted Average F1 = <math>0.6 *$ weighted F1_subset_1 + 0.2 * weighted F1_subset_2 + 0.2 * weighted F1_subset_3

(3) Predicted heatmap shows good alignment with ground truth

Figure 2: An example of the predicted heatmap in comparison with ground truth. Heatmap opaqueness was adjusted by confidence level, where more transparent regions indicate lower confidence level.