

Machine Learning-I

- Shikha Sharma
- Aron Rock
- Sanjana Godolkar

Introduction

Stroke is a life-threatening condition that disrupts blood flow to the brain, leading to a high risk of disability and death
Our project aims to utilize machine learning algorithms to develop models that predict the risk of having a stroke.

Dataset Description

- Source: Kaggle ("healthcare-dataset-stroke-data")
- 5,110 observations with 12 attributes
- Attributes: ID, Gender, Age, Hypertension, Heart Disease, Ever Married, Work Type, Residence Type, Avg. Glucose Level, BMI, Smoking Status, Stroke
- Imbalanced dataset:

Stroke cases: 249

Non-stroke cases: 4861

Data Preprocessing

- Cleaning and preparing data for model development
- Excluding 'id' column
- Handling missing values: Filling null values in 'BMI' column with mean
- Label encoding for categorical variables
- Balancing the dataset using the SMOTE technique

Heat Map

Feature Reduction

- Dropped the following features:
 (gender', 'ever_married', 'work_type',
 (Residence_type', 'avg_glucose_level', 'bmi',
 (smoking status')
- Keeping the following features:

 'age', 'hypertension', 'heart_disease'

SMOTE

- SMOTE (Synthetic Minority Over-sampling Technique) is an oversampling technique used in machine learning to handle imbalanced datasets.
- It creates synthetic examples of the minority class by selecting the nearest neighbors and changing them to generate new samples.
- SMOTE helps to balance the class distribution, allowing for better performance of machine learning models and reducing the risk of overfitting.
- SMOTE can be applied to various classification algorithms, such as logistic regression, decision trees, and support vector machines.

Before and After SMOTE

Class counts before SMOTE oversampling:

Class 0: 3383

Class 1: 129

Class counts after SMOTE oversampling:

Class 0 : 3383

Class 1: 3383

Random Forest

random-forest C	lassificati	on report		
t	recision	recall	f1-score	support
0	0.97	0.92	0.94	843
1	0.17	0.39	0.23	36
accuracy			0.90	879
macro avg	0.57	0.65	0.59	879
weighted avg	0.94	0.90	0.91	879
Accuracy-Random-	-forest			
: 0.895335608646	51889			

XGBoost

```
XGB00ST confusion matrix-
 [[766 77]
 [ 21 15]]
XGB00ST Classification report
                            recall f1-score
               precision
                                                support
                             0.91
                   0.97
                                        0.94
                                                   843
                   0.16
                             0.42
                                        0.23
                                                    36
                                        0.89
                                                   879
    accuracy
                                        0.59
                                                   879
                   0.57
                             0.66
   macro avg
                   0.94
                             0.89
                                        0.91
                                                   879
weighted avg
```


Logistic Regression

Logistic Regression Accuracy: 0.7690557451649602				
[[653 190]				
[13 23]]				
	precision	recall	f1-score	support
			_	
0	0.98	0.77	0.87	843
1	0.11	0.64	0.18	36
			•	
accuracy			0.77	879
macro avg	0.54	0.71	0.53	879
weighted avg	0.94	0.77	0.84	879

K Nearest Neighbor

K-Nearest Neighbors Accuracy: 0.9556313993174061					
[[839	4]				
[35	1]]				
		precision	recall	f1-score	support
	0	0.96	1.00	0.98	843
	1	0.20	0.03	0.05	36
200				0.96	879
act	curacy			0.90	6/9
macı	ro avg	0.58	0.51	0.51	879
weighte	ed avg	0.93	0.96	0.94	879

Support Vector Machine

Support Vector Machine Accuracy: 0.7565415244596132 [[643 200] [14 22]]				
	precision	recall	f1-score	support
0	0.98	0.76	0.86	843
1	0.10	0.61	0.17	36
accuracy			0.76	879
macro avg	0.54	0.69	0.51	879
weighted avg	0.94	0.76	0.83	879

Multi-Layer Perceptron

	precision	recall	f1-score	support
0 1	0.99 0.10	0.70 0.81	0.82 0.18	843 36
accuracy macro avg weighted avg	0.55 0.95	0.75 0.70	0.70 0.50 0.79	879 879 879

Accuracy: 0.704
Precision: 0.103
Recall: 0.806
F1-score: 0.182

Keras Model

	precision	recall	f1-score	support
0 1	0.98 0.10	0.74 0.64	0.84 0.17	843 36
accuracy macro avg weighted avg	0.54 0.94	0.69 0.74	0.74 0.51 0.82	879 879 879

Accuracy: 0.737 Precision: 0.095 Recall: 0.639 F1-score: 0.166

Model Comparison

Model Name	Precision	F1 Score	ROC	Accuracy	Recall
Random Forest	0.17	0.23	0.76	0.89	0.39
XGboost	0.16	0.23	0.78	0.88	0.42
Logistic Regression	0.11	0.18	0.80	0.77	0.64
KNN	0.20	0.05	0.74	0.95	0.03
SVM	0.10	0.17	0.72	0.75	0.61
MLP	0.10	0.18	0.75	0.70	0.81
Keras	0.09	0.16	0.75	0.74	0.61

Conclusion

- Based off all the models we have built, we choose MLP to be the best model
- This is because MLP has the highest recall score
- Since our problem statement deals with stroke prediction, recall is our evaluating metric.

