Distance d'un point à une droite.

On appelle distance du point M à la droite \mathcal{D} , la distance MH où H est le projeté orthogonal de M sur D.

Partie A: un premier exemple.

Soit (O, \vec{i} , \vec{j}) un repère orthonormé du plan.

- 1. Tracer \mathcal{D} : 2x y + 1 = 0 et placer M(1;2).
- 2. Déterminer une équation cartésienne de la droite \mathcal{D}_1 perpendiculaire à \mathcal{D} et passant par M et la tracer.
- 3. En déduire les coordonnées de H projeté orthogonal de M sur \mathcal{D} puis calculer MH.

Partie B: cas général.

 \mathcal{D} est la droite passant par A de vecteur normal \vec{n} .

M est un point quelconque du plan et H est son projeté orthogonal sur \mathcal{D} .

- 1. Point de vue géométrique.
 - a. Démontrer que $\overrightarrow{AM} \cdot \overrightarrow{n} = \overrightarrow{HM} \cdot \overrightarrow{n}$.
 - a. Démontrer que $A_{IM} = n$ b. En déduire que $d = \frac{|\overrightarrow{AM} \cdot \overrightarrow{n}|}{||\overrightarrow{n}||}$.
- 2. Point de vue algébrique.

Dans le plan rapporté à un repère orthonormé (O; \vec{i} , \vec{j}), on suppose que \mathcal{D} : ax + by + c = 0, $A(x_A; y_A)$ et M(x; y).

a. Démontrer que $\overrightarrow{AM} \cdot \overrightarrow{n} = ax + by + c$.

Indication : les coordonnées de A vérifient l'équation de D.

- b. En déduire que $d = \frac{|ax+by+c|}{\sqrt{a^2+L^2}}$.
- c. Retrouver le résultat de la partie A en utilisant cette formule.

Distance d'un point à une droite.

On appelle distance du point M à la droite \mathcal{D} , la distance MH où H est le projeté orthogonal de M sur D.

Partie A: un premier exemple.

Soit $(0, \vec{i}, \vec{j})$ un repère orthonormé du plan.

- 1. Tracer \mathcal{D} : 2x y + 1 = 0 et placer M(1;2).
- 2. Déterminer une équation cartésienne de la droite \mathcal{D}_1 perpendiculaire à \mathcal{D} et passant par M et la tracer.
- 3. En déduire les coordonnées de H projeté orthogonal de M sur \mathcal{D} puis calculer MH.

Partie B: cas général.

 \mathcal{D} est la droite passant par A de vecteur normal \vec{n} .

M est un point quelconque du plan et H est son projeté orthogonal sur \mathcal{D} .

- 1. Point de vue géométrique.
 - a. Démontrer que $\overrightarrow{AM} \cdot \overrightarrow{n} = \overrightarrow{HM} \cdot \overrightarrow{n}$.
 - b. En déduire que $d = \frac{|\overrightarrow{AM} \cdot \overrightarrow{n}|}{||\overrightarrow{n}||}$.
- 2. Point de vue algébrique.

Dans le plan rapporté à un repère orthonormé (O; \vec{i} , \vec{j}), on suppose que \mathcal{D} : ax+by+c=0, $A(x_A; y_A)$ et M(x; y).

a. Démontrer que $\overrightarrow{AM} \cdot \overrightarrow{n} = ax + by + c$.

Indication : les coordonnées de A vérifient l'équation de D.

- b. En déduire que $d = \frac{|ax+by+c|}{\sqrt{a^2+b^2}}$
- c. Retrouver le résultat de la partie A en utilisant cette formule.