Solving Atomix with Pattern Databases

Alex Gliesch, Marcus Ritt

Institute of Informatics
Universidade Federal do Rio Grande do Sul

October 7, 2016

 A puzzle taking place on a rectangular 2D grid

- A puzzle taking place on a rectangular 2D grid
- On the grid, there are obstacles (walls)

- A puzzle taking place on a rectangular 2D grid
- On the grid, there are obstacles (walls)

- A puzzle taking place on a rectangular 2D grid
- On the grid, there are obstacles (walls)
- As well as pieces called atoms

- A puzzle taking place on a rectangular 2D grid
- On the grid, there are obstacles (walls)
- As well as pieces called atoms

- A puzzle taking place on a rectangular 2D grid
- On the grid, there are obstacles (walls)
- As well as pieces called atoms
- The player may move those atoms using sliding operations

- A puzzle taking place on a rectangular 2D grid
- On the grid, there are obstacles (walls)
- As well as pieces called atoms
- The player may move those atoms using sliding operations

- A puzzle taking place on a rectangular 2D grid
- On the grid, there are obstacles (walls)
- As well as pieces called atoms
- The player may move those atoms using sliding operations

- A puzzle taking place on a rectangular 2D grid
- On the grid, there are obstacles (walls)
- As well as pieces called atoms
- The player may move those atoms using sliding operations

- A puzzle taking place on a rectangular 2D grid
- On the grid, there are obstacles (walls)
- As well as pieces called atoms
- The player may move those atoms using sliding operations

- A puzzle taking place on a rectangular 2D grid
- On the grid, there are obstacles (walls)
- As well as pieces called atoms
- The player may move those atoms using sliding operations

- A puzzle taking place on a rectangular 2D grid
- On the grid, there are obstacles (walls)
- As well as pieces called atoms
- The player may move those atoms using sliding operations

- A puzzle taking place on a rectangular 2D grid
- On the grid, there are obstacles (walls)
- As well as pieces called atoms
- The player may move those atoms using sliding operations
- The objective is to assemble the atoms in a specific way, which is called a molecule

- A puzzle taking place on a rectangular 2D grid
- On the grid, there are obstacles (walls)
- As well as pieces called atoms
- The player may move those atoms using sliding operations
- The objective is to assemble the atoms in a specific way, which is called a molecule

- A puzzle taking place on a rectangular 2D grid
- On the grid, there are obstacles (walls)
- As well as pieces called atoms
- The player may move those atoms using sliding operations
- The objective is to assemble the atoms in a specific way, which is called a molecule
- ► The molecule (usually) can be formed in more than one place

- A puzzle taking place on a rectangular 2D grid
- On the grid, there are obstacles (walls)
- As well as pieces called atoms
- The player may move those atoms using sliding operations
- The objective is to assemble the atoms in a specific way, which is called a molecule
- ► The molecule (usually) can be formed in more than one place

► Motivation: find the minimum number of slides needed to form the molecule, using state space search (A*, IDA*)

- ► Motivation: find the minimum number of slides needed to form the molecule, using state space search (A*, IDA*)
- Improve existing heuristics using a method called pattern databases (PDBs)

- Motivation: find the minimum number of slides needed to form the molecule, using state space search (A*, IDA*)
- Improve existing heuristics using a method called pattern databases (PDBs)
- ▶ In this work, we propose:

- Motivation: find the minimum number of slides needed to form the molecule, using state space search (A*, IDA*)
- Improve existing heuristics using a method called pattern databases (PDBs)
- ▶ In this work, we propose:
 - ► An abstraction of Atomix in order to build PDBs

- Motivation: find the minimum number of slides needed to form the molecule, using state space search (A*, IDA*)
- Improve existing heuristics using a method called pattern databases (PDBs)
- In this work, we propose:
 - An abstraction of Atomix in order to build PDBs
 - 2 types of PDBs: static and dynamic

- Motivation: find the minimum number of slides needed to form the molecule, using state space search (A*, IDA*)
- Improve existing heuristics using a method called pattern databases (PDBs)
- In this work, we propose:
 - An abstraction of Atomix in order to build PDBs
 - 2 types of PDBs: static and dynamic
 - Different method of handling multiple goal states

- Motivation: find the minimum number of slides needed to form the molecule, using state space search (A*, IDA*)
- Improve existing heuristics using a method called pattern databases (PDBs)
- ▶ In this work, we propose:
 - An abstraction of Atomix in order to build PDBs
 - 2 types of PDBs: static and dynamic
 - Different method of handling multiple goal states
 - Use of Partial Expansion A* in order to reduce memory consumption

- Motivation: find the minimum number of slides needed to form the molecule, using state space search (A*, IDA*)
- Improve existing heuristics using a method called pattern databases (PDBs)
- ▶ In this work, we propose:
 - An abstraction of Atomix in order to build PDBs
 - 2 types of PDBs: static and dynamic
 - Different method of handling multiple goal states
 - Use of Partial Expansion A* in order to reduce memory consumption
- ▶ This presentation: focus on PDBs, other contributions with more details in the paper

 Hüffner et al. (2001) studied state space search on Atomix and proposed the generalized moves heuristic

- Hüffner et al. (2001) studied state space search on Atomix and proposed the generalized moves heuristic
- Relaxation: slides allow atoms to stop anywhere on the way

- Hüffner et al. (2001) studied state space search on Atomix and proposed the generalized moves heuristic
- Relaxation: slides allow atoms to stop anywhere on the way

- Hüffner et al. (2001) studied state space search on Atomix and proposed the generalized moves heuristic
- Relaxation: slides allow atoms to stop anywhere on the way

- Hüffner et al. (2001) studied state space search on Atomix and proposed the generalized moves heuristic
- Relaxation: slides allow atoms to stop anywhere on the way

- Hüffner et al. (2001) studied state space search on Atomix and proposed the generalized moves heuristic
- Relaxation: slides allow atoms to stop anywhere on the way

- Hüffner et al. (2001) studied state space search on Atomix and proposed the generalized moves heuristic
- Relaxation: slides allow atoms to stop anywhere on the way

- Hüffner et al. (2001) studied state space search on Atomix and proposed the generalized moves heuristic
- Relaxation: slides allow atoms to stop anywhere on the way

- Hüffner et al. (2001) studied state space search on Atomix and proposed the generalized moves heuristic
- Relaxation: slides allow atoms to stop anywhere on the way

- Hüffner et al. (2001) studied state space search on Atomix and proposed the generalized moves heuristic
- Relaxation: slides allow atoms to stop anywhere on the way

- Hüffner et al. (2001) studied state space search on Atomix and proposed the generalized moves heuristic
- Relaxation: slides allow atoms to stop anywhere on the way

- Hüffner et al. (2001) studied state space search on Atomix and proposed the generalized moves heuristic
- Relaxation: slides allow atoms to stop anywhere on the way

- Hüffner et al. (2001) studied state space search on Atomix and proposed the generalized moves heuristic
- Relaxation: slides allow atoms to stop anywhere on the way

- ► Hüffner et al. (2001) studied state space search on Atomix and proposed the generalized moves heuristic
- Relaxation: slides allow atoms to stop anywhere on the way
- Generalized distance: minimum number of relaxed moves from one position to another

- Hüffner et al. (2001) studied state space search on Atomix and proposed the generalized moves heuristic
- Relaxation: slides allow atoms to stop anywhere on the way
- Generalized distance: minimum number of relaxed moves from one position to another
- Heuristic value of a state: sum of generalized distances from every atom, independently, to its final position in a molecule

Each atom is handled independently.

Each atom is handled independently. The heuristic for this state is 8: 1 for H_1

Each atom is handled independently. The heuristic for this state is 8: 1 for \mathbf{H}_1

Each atom is handled independently.

The heuristic for this state is 8: 1 for H_1 , 2 for H_2 , 3 for H_3 and 2 for N.

Each atom is handled independently.

The heuristic for this state is 8: 1 for H_1 , 2 for H_2 , 3 for H_3 and 2 for N.

Each atom is handled independently.

The heuristic for this state is 8: 1 for H_1 , 2 for H_2 , 3 for H_3 and 2 for N.

Each atom is handled independently.

The heuristic for this state is 8: 1 for H_1 , 2 for H_2 , 3 for H_3 and 2 for N.

 Distances are pre-computed before search starts by an all-pairs-shortest-paths algorithm

▶ Idea: map state space to a smaller, abstract state space that can be fully explored (with backward BFS from goal) and keep the optimal distances to each abstract state in a look-up table. called a PDB

- Idea: map state space to a smaller, abstract state space that can be fully explored (with backward BFS from goal) and keep the optimal distances to each abstract state in a look-up table, called a PDB
- Solution to abstract state must be a lower bound to the solution of the original state

- Idea: map state space to a smaller, abstract state space that can be fully explored (with backward BFS from goal) and keep the optimal distances to each abstract state in a look-up table, called a PDB
- Solution to abstract state must be a lower bound to the solution of the original state
- Normally, in puzzles like Atomix, abstraction is done by removing some pieces

- Idea: map state space to a smaller, abstract state space that can be fully explored (with backward BFS from goal) and keep the optimal distances to each abstract state in a look-up table, called a PDB
- Solution to abstract state must be a lower bound to the solution of the original state
- Normally, in puzzles like Atomix, abstraction is done by removing some pieces
- In particular, we are interested in additive PDBs: if the abstract states use disjoint sets of pieces, we can add their distances and still be admissible

In Atomix, an abstraction that only removes pieces is inadmissible:

In Atomix, an abstraction that only removes pieces is inadmissible:

In Atomix, an abstraction that only removes pieces is inadmissible:

In Atomix, an abstraction that only removes pieces is inadmissible:

In Atomix, an abstraction that only removes pieces is inadmissible:

In Atomix, an abstraction that only removes pieces is inadmissible:

In Atomix, an abstraction that only removes pieces is inadmissible:

In Atomix, an abstraction that only removes pieces is inadmissible:

In Atomix, an abstraction that only removes pieces is inadmissible:

In Atomix, an abstraction that only removes pieces is inadmissible:

In Atomix, an abstraction that only removes pieces is inadmissible:

In Atomix, an abstraction that only removes pieces is inadmissible:

In Atomix, an abstraction that only removes pieces is inadmissible:

In Atomix, an abstraction that only removes pieces is inadmissible:

Using the generalized moves relaxation, atoms do not need positive interactions to reach places: they can stop anywhere they want

- Using the generalized moves relaxation, atoms do not need positive interactions to reach places: they can stop anywhere they want
- Removing pieces in the relaxed version is an admissible heuristic for the relaxed version

- Using the generalized moves relaxation, atoms do not need positive interactions to reach places: they can stop anywhere they want
- Removing pieces in the relaxed version is an admissible heuristic for the relaxed version
- ► An admissible heuristic for the relaxed version is also admissible for the standard version

- Using the generalized moves relaxation, atoms do not need positive interactions to reach places: they can stop anywhere they want
- Removing pieces in the relaxed version is an admissible heuristic for the relaxed version
- ► An admissible heuristic for the relaxed version is also admissible for the standard version
- A PDB on relaxed Atomix penalizes negative interactions (such as linear conflicts) between atoms within the PDB's set of pieces

Statically-partitioned PDB

▶ Partition the *n* atoms into disjoint subsets (patterns) of size *k*, and construct PDB for each pattern

Statically-partitioned PDB

- ▶ Partition the *n* atoms into disjoint subsets (patterns) of size *k*, and construct PDB for each pattern
- ▶ Heuristic is the sum of the optimal solutions of each pattern of k atoms. This is stored in the PDB. Complexity: $O(\lfloor n/k \rfloor)$

Statically-partitioned PDB

- ▶ Partition the n atoms into disjoint subsets (patterns) of size k, and construct PDB for each pattern
- ▶ Heuristic is the sum of the optimal solutions of each pattern of k atoms. This is stored in the PDB. Complexity: $O(\lfloor n/k \rfloor)$
- ► Chosen patterns of *k* of atoms stay the same during search
 - Some partitions may yield better overall lower bounds than others
 - Would be good to pick a partition that captures more conflicts within the patterns

▶ Consider the partition with k = 2 { H_1 , H_2 } and { H_3 , N}

- ▶ Consider the partition with $k = 2 \{H_1, H_2\}$ and $\{H_3, N\}$
- Before search starts, build PDB for {H₁, H₂} (BFS from goal, store distances to all possible configurations in memory)

- ▶ Consider the partition with $k = 2 \{H_1, H_2\}$ and $\{H_3, N\}$
- Before search starts, build PDB for {H₁, H₂} (BFS from goal, store distances to all possible configurations in memory)
- ► Same thing for {H₃, N}

- ▶ Consider the partition with k = 2 { H_1 , H_2 } and { H_3 , N}
- ▶ Before search starts, build PDB for {H₁, H₂} (BFS from goal, store distances to all possible configurations in memory)
- ▶ Same thing for {H₃, N}
- To compute heuristic of state, add heuristic of corresponding abstract states {H₁, H₂} and {H₃, N}

- ▶ Consider the partition with $k = 2 \{H_1, H_2\}$ and $\{H_3, N\}$
- ▶ Before search starts, build PDB for {H₁, H₂} (BFS from goal, store distances to all possible configurations in memory)
- ▶ Same thing for {H₃, N}
- To compute heuristic of state, add heuristic of corresponding abstract states {H₁, H₂} and {H₃, N}

- ▶ Consider the partition with k = 2 { H_1 , H_2 } and { H_3 , N}
- ▶ Before search starts, build PDB for {H₁, H₂} (BFS from goal, store distances to all possible configurations in memory)
- ▶ Same thing for {H₃, N}
- To compute heuristic of state, add heuristic of corresponding abstract states {H₁, H₂} and {H₃, N}

- ▶ Consider the partition with k = 2 { H_1 , H_2 } and { H_3 , N}
- ▶ Before search starts, build PDB for {H₁, H₂} (BFS from goal, store distances to all possible configurations in memory)
- ▶ Same thing for {H₃, N}
- To compute heuristic of state, add heuristic of corresponding abstract states {H₁, H₂} and {H₃, N}

- ► Consider the partition with $k = 2 \{H_1, H_2\}$ and $\{H_3, N\}$
- ▶ Before search starts, build PDB for {H₁, H₂} (BFS from goal, store distances to all possible configurations in memory)
- ▶ Same thing for {H₃, N}
- To compute heuristic of state, add heuristic of corresponding abstract states {H₁, H₂} and {H₃, N}

- ▶ Consider the partition with k = 2 { H_1 , H_2 } and { H_3 , N}
- ▶ Before search starts, build PDB for {H₁, H₂} (BFS from goal, store distances to all possible configurations in memory)
- ▶ Same thing for {H₃, N}
- To compute heuristic of state, add heuristic of corresponding abstract states {H₁, H₂} and {H₃, N}

- ▶ Consider the partition with k = 2 { H_1 , H_2 } and { H_3 , N}
- ▶ Before search starts, build PDB for {H₁, H₂} (BFS from goal, store distances to all possible configurations in memory)
- ► Same thing for {H₃, N}
- To compute heuristic of state, add heuristic of corresponding abstract states {H₁, H₂} and {H₃, N}

- ▶ Consider the partition with k = 2 { H_1 , H_2 } and { H_3 , N}
- ▶ Before search starts, build PDB for {H₁, H₂} (BFS from goal, store distances to all possible configurations in memory)
- ► Same thing for {H₃, N}
- To compute heuristic of state, add heuristic of corresponding abstract states {H₁, H₂} and {H₃, N}

- ▶ Consider the partition with $k = 2 \{H_1, H_2\}$ and $\{H_3, N\}$
- ▶ Before search starts, build PDB for {H₁, H₂} (BFS from goal, store distances to all possible configurations in memory)
- ► Same thing for {H₃, N}
- To compute heuristic of state, add heuristic of corresponding abstract states {H₁, H₂} and {H₃, N}

- ▶ Consider the partition with k = 2 { H_1 , H_2 } and { H_3 , N}
- ▶ Before search starts, build PDB for {H₁, H₂} (BFS from goal, store distances to all possible configurations in memory)
- ▶ Same thing for {H₃, N}
- To compute heuristic of state, add heuristic of corresponding abstract states {H₁, H₂} and {H₃, N}

- ▶ Consider the partition with k = 2 { H_1 , H_2 } and { H_3 , N}
- ▶ Before search starts, build PDB for {H₁, H₂} (BFS from goal, store distances to all possible configurations in memory)
- ▶ Same thing for {H₃, N}
- To compute heuristic of state, add heuristic of corresponding abstract states {H₁, H₂} and {H₃, N}

- ► Consider the partition with $k = 2 \{H_1, H_2\}$ and $\{H_3, N\}$
- ▶ Before search starts, build PDB for {H₁, H₂} (BFS from goal, store distances to all possible configurations in memory)
- ▶ Same thing for {H₃, N}
- To compute heuristic of state, add heuristic of corresponding abstract states {H₁, H₂} and {H₃, N}

- ▶ Consider the partition with k = 2 { H_1 , H_2 } and { H_3 , N}
- ▶ Before search starts, build PDB for {H₁, H₂} (BFS from goal, store distances to all possible configurations in memory)
- ▶ Same thing for {H₃, N}
- ▶ To compute heuristic of state, add heuristic of corresponding abstract states $\{H_1, H_2\}$ and $\{H_3, N\}$

- ▶ Consider the partition with $k = 2 \{H_1, H_2\}$ and $\{H_3, N\}$
- ▶ Before search starts, build PDB for {H₁, H₂} (BFS from goal, store distances to all possible configurations in memory)
- ▶ Same thing for {H₃, N}
- To compute heuristic of state, add heuristic of corresponding abstract states {H₁, H₂} and {H₃, N}

- ▶ Consider the partition with k = 2 { H_1 , H_2 } and { H_3 , N}
- ▶ Before search starts, build PDB for {H₁, H₂} (BFS from goal, store distances to all possible configurations in memory)
- ▶ Same thing for {H₃, N}
- To compute heuristic of state, add heuristic of corresponding abstract states {H₁, H₂} and {H₃, N}

- ► Consider the partition with k = 2 { H_1 , H_2 } and { H_3 , N}
- Before search starts, build PDB for {H₁, H₂} (BFS from goal, store distances to all possible configurations in memory)
- ▶ Same thing for {H₃, N}
- To compute heuristic of state, add heuristic of corresponding abstract states {H₁, H₂} and {H₃, N}
- ► Final heuristic: 3 for {H₁, H₂} and 8 for {H₃, N} , total 11. Recall that without PDBs it was 8

Dynamically-partitioned PDB

- ▶ Build PDB for all possible $\binom{n}{k}$ partitions of the *n* atoms
- ► At every heuristic call, choose the partition with maximum heuristic value
- For k = 2, the best heuristic is obtained by a maximum weight perfect matching

▶ Build a full graph where:

- ► Build a full graph where:
- ► Each atom is a node

- ► Build a full graph where:
- ► Each atom is a node

- Build a full graph where:
- ► Each atom is a node
- ► Weight of each edge is the solution of the abstract state using only the two atoms that edge connects

- Build a full graph where:
- Each atom is a node
- ► Weight of each edge is the solution of the abstract state using only the two atoms that edge connects
- ▶ Compute maximum cost perfect matching, in $O(n^3)$

- Build a full graph where:
- Each atom is a node
- Weight of each edge is the solution of the abstract state using only the two atoms that edge connects
- ▶ Compute maximum cost perfect matching, in $O(n^3)$
- ▶ If $k \ge 3$, matching is NP-hard: better use heuristic methods

▶ 155 instances, averaging 10.39 atoms and 5.57 goal states per instance

- ▶ 155 instances, averaging 10.39 atoms and 5.57 goal states per instance
- ► AMD FX-8150 1.4 GHz, 32 GB RAM

- ▶ 155 instances, averaging 10.39 atoms and 5.57 goal states per instance
- AMD FX-8150 1.4 GHz, 32 GB RAM
- ► Tests limited to 1h execution time and 10GB memory

- ▶ 155 instances, averaging 10.39 atoms and 5.57 goal states per instance
- AMD FX-8150 1.4 GHz, 32 GB RAM
- ► Tests limited to 1h execution time and 10GB memory
- ▶ 10 replications of each run

PDB Results

	Static $k = 3$	Dynamic $k = 2$	No PDB
# Solved	82.8	71	77
Avg. rel. deviation $(\%)$	0.58	1.72	1.47
Avg. initial heuristic (%)	24.04	23.39	26.23
Time (s)	2,952	17,405	3,420
Nodes expanded ($\times 10^8$)	3.39	2.39	8.72

Comparison with Hüffner et al. (2001)

	This work (w/ static PDB)	Hüffner et al.
# Solved	82.8	75
Avg. rel. deviation (%)	0.56	1.67
Time (s)	9,211	12,962
Nodes expanded ($\times 10^8$)	6.79	47.18

▶ PDBs produce better heuristics and reduce node expansions by a factor of 2 to 3, on average

- ▶ PDBs produce better heuristics and reduce node expansions by a factor of 2 to 3, on average
- ▶ Static PDB yields better lower bounds than standard heuristic and in same time O(n)

- ▶ PDBs produce better heuristics and reduce node expansions by a factor of 2 to 3, on average
- ▶ Static PDB yields better lower bounds than standard heuristic and in same time O(n)
- ▶ Dynamic PDB yields even better lower bounds, even with smaller k, but is very slow to compute $(O(n^3))$

- ▶ PDBs produce better heuristics and reduce node expansions by a factor of 2 to 3, on average
- ▶ Static PDB yields better lower bounds than standard heuristic and in same time O(n)
- ▶ Dynamic PDB yields even better lower bounds, even with smaller k, but is very slow to compute $(O(n^3))$
- Static PDB solves 7.8 more instances and expands, on average, 6.94 times fewer nodes compared to previous state of the art

Questions?