## **Development of FrED Run Condition Models.**

Regression analysis of FrED run condition data to develop operational models for process optimization.

Uses auto porcessed run condition data - "Run Condition Data Summary.csv"

J. Cuiffi, - Penn State New Kensington

```
In [1]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn.linear_model import LinearRegression
    from sklearn.svm import SVR
    from sklearn.preprocessing import PolynomialFeatures
    from sklearn.preprocessing import StandardScaler
    from sklearn.pipeline import Pipeline
    import seaborn as sn
    from mpl_toolkits.mplot3d import Axes3D
    import pickle
```

```
In [2]: # load run condition data into dataframe
# current file - 050820 11:06pm
path_local = 'C:/Users/cuiff/Dropbox/Python Common Library/python-fred/data/Reports/'
data = pd.read_csv(path_local + 'Run Condition Data Summary.csv')
data.head()
```

#### Out[2]:

|   | Run File                                             | Feed<br>Rate Ave<br>(RPS) | Spool<br>Wind<br>Rate<br>Set<br>(RPS) | Spool<br>Rate Ave<br>(RPS) | Wind BF<br>Rate Ave<br>(PPS) | Heater<br>Set<br>(C) | Heater<br>Temp Ave<br>(C) | Filament<br>Diamter<br>Ave<br>(mm) | Filament<br>Std Dev<br>(mm) | System<br>Power<br>Ave (W) | System<br>Power<br>Std Dev<br>(W) | Cı              |
|---|------------------------------------------------------|---------------------------|---------------------------------------|----------------------------|------------------------------|----------------------|---------------------------|------------------------------------|-----------------------------|----------------------------|-----------------------------------|-----------------|
| 0 | log_Manual<br>Control2020-<br>04-12_12-13-<br>50.csv | 0.001000                  | 1.00                                  | 1.000132                   | 127.730719                   | 90.0                 | 90.009313                 | 0.213487                           | 0.016746                    | 29.041052                  | 1.000198                          | 17 <sup>-</sup> |
| 1 | log_Manual<br>Control2020-<br>04-12_17-26-<br>48.csv | 0.000312                  | 0.25                                  | 0.250982                   | 20.426288                    | 90.0                 | 90.068162                 | 0.228383                           | 0.044286                    | 30.064674                  | 1.123981                          | 19              |
| 2 | log_Manual<br>Control2020-<br>04-12_17-26-<br>48.csv | 0.000312                  | 0.50                                  | 0.499899                   | 28.561457                    | 90.0                 | 90.080434                 | 0.172805                           | 0.012332                    | 29.126951                  | 1.001411                          | 18 <sub>′</sub> |
| 3 | log_Manual<br>Control2020-<br>04-12_17-49-<br>04.csv | 0.000500                  | 0.25                                  | 0.254232                   | 45.159629                    | 90.0                 | 89.850642                 | 0.302968                           | 0.022932                    | 28.685025                  | 1.093912                          | 18:             |
| 4 | log_Manual<br>Control2020-<br>04-12_17-49-<br>04.csv | 0.000500                  | 0.50                                  | 0.499777                   | 63.865360                    | 90.0                 | 90.043857                 | 0.217002                           | 0.014405                    | 28.366543                  | 0.931641                          | 17              |

In [3]: # add a dataframe column that includes sqrt(feed speed / spool speed) as shown in our basic model
 data['Sqrt Feed/Spool'] = np.sqrt(data['Feed Rate Ave (RPS)'] / data['Spool Rate Ave (RPS)'])
 data.head()

Out[3]:

|   | Run File                                             | Feed<br>Rate Ave<br>(RPS) | Spool<br>Wind<br>Rate<br>Set<br>(RPS) | Spool<br>Rate Ave<br>(RPS) | Wind BF<br>Rate Ave<br>(PPS) | Heater<br>Set<br>(C) | Heate<br>Temp Av<br>(C | e Diamter  | Filament<br>Std Dev<br>(mm) | System<br>Power<br>Ave (W) | System<br>Power<br>Std Dev<br>(W) | Cı              |
|---|------------------------------------------------------|---------------------------|---------------------------------------|----------------------------|------------------------------|----------------------|------------------------|------------|-----------------------------|----------------------------|-----------------------------------|-----------------|
| 0 | log_Manual<br>Control2020-<br>04-12_12-13-<br>50.csv | 0.001000                  | 1.00                                  | 1.000132                   | 127.730719                   | 90.0                 | 90.00931               | 3 0.213487 | 0.016746                    | 29.041052                  | 1.000198                          | 17              |
| 1 | log_Manual<br>Control2020-<br>04-12_17-26-<br>48.csv | 0.000312                  | 0.25                                  | 0.250982                   | 20.426288                    | 90.0                 | 90.06816               | 2 0.228383 | 0.044286                    | 30.064674                  | 1.123981                          | 19              |
| 2 | log_Manual<br>Control2020-<br>04-12_17-26-<br>48.csv | 0.000312                  | 0.50                                  | 0.499899                   | 28.561457                    | 90.0                 | 90.08043               | 4 0.172805 | 0.012332                    | 29.126951                  | 1.001411                          | 18 <sub>′</sub> |
| 3 | log_Manual<br>Control2020-<br>04-12_17-49-<br>04.csv | 0.000500                  | 0.25                                  | 0.254232                   | 45.159629                    | 90.0                 | 89.85064               | 2 0.302968 | 0.022932                    | 28.685025                  | 1.093912                          | 18:             |
| 4 | log_Manual<br>Control2020-<br>04-12_17-49-<br>04.csv | 0.000500                  | 0.50                                  | 0.499777                   | 63.865360                    | 90.0                 | 90.04385               | 7 0.217002 | 0.014405                    | 28.366543                  | 0.931641                          | 17              |
| 4 |                                                      |                           |                                       |                            |                              |                      |                        |            |                             |                            |                                   | •               |

# **Fiber Diameter Modeling**

Explore regression machine learning to develop a model for fiber diameter.

```
In [4]: # plot filament diameter versus sqrt(feed/spool)
%matplotlib inline
fig, ax1 = plt.subplots()
fig.set_size_inches(10,5)
ax1.scatter(data['Sqrt Feed/Spool'],data['Filament Diamter Ave (mm)'])
ax1.set_xlabel('Square Root of (Feed Rate (RPS)/Spool Rate (RPS))')
ax1.set_ylabel('Fiber Diameter (mm)')
print('Fiber Diameter versus Sqrt(Feed/Spool)')
```

#### Fiber Diameter versus Sqrt(Feed/Spool)



```
In [5]: # perform a simple linear regression to develop a model for fiber diameter
# input data - reshaped to be a column vector
X = data['Sqrt Feed/Spool'].to_numpy().reshape(-1,1)
# target data - row vector
Y = data['Filament Diamter Ave (mm)'].to_numpy()
# create model, fit data, report coefficients
model = LinearRegression()
model.fit(X,Y)
print('Slope = ', model.coef_[0])
print('Intercept = ', model.intercept_)
print('Score (R^2) = ', model.score(X,Y))
```

Slope = 5.802830190291016 Intercept = 0.03145952131840202 Score (R^2) = 0.9905204454820381

```
In [6]: # plot model versus actual
    # create prediction
    X = np.linspace(.02,.1).reshape(-1,1)
    Y = model.predict(X)
    # plot together
    fig, ax1 = plt.subplots()
    fig.set_size_inches(10,5)
    ax1.scatter(data['Sqrt Feed/Spool'],data['Filament Diamter Ave (mm)'])
    ax1.plot(X,Y,c='red')
    ax1.set_xlabel('Square Root of (Feed Rate (RPS)/Spool Rate (RPS))')
    ax1.set_ylabel('Fiber Diameter (mm)')
    print('Predicted Fiber Diameter versus Sqrt(Feed/Spool)')
```

#### Predicted Fiber Diameter versus Sqrt(Feed/Spool)



#### In [8]: # plot model as a 3D surface versus feed and spool speed %matplotlib notebook # create prediction using a meshgrid to represent x (feed) , y (spool) and z (diameter) values feeds = np.linspace(.0003,.005) spools = np.linspace(.25,1.5) xx, yy = np.meshgrid(feeds, spools) sqrts = np.sqrt(np.divide(xx,yy)) dias = model.predict(sqrts.flatten().reshape(-1,1)) zz = dias.reshape(xx.shape) # plot fig = plt.figure() ax1 = Axes3D(fig)ax1.scatter(data['Feed Rate Ave (RPS)'],data['Spool Rate Ave (RPS)'],data['Filament Diamter Ave (m m)'],c=data['Filament Diamter Ave (mm)']) ax1.plot\_surface(xx,yy,zz,cmap=plt.cm.viridis,alpha=.5) ax1.set xlabel('Feed Rate Ave (RPS)') ax1.set\_ylabel('Spool Rate Ave (RPS)') ax1.set zlabel('Filament Diamter Ave (mm)') print('Fiber Diameter versus Feed and Spool Speed')



Fiber Diameter versus Feed and Spool Speed

```
In [9]: # showing the above in a 2D plot
%matplotlib inline
    fig, ax1 = plt.subplots()
    fig.set_size_inches(10,5)
    CS = ax1.contourf(xx,yy,zz, levels=30, alpha=1.0, vmin=0.15, vmax=.7)
    ax1.scatter(data['Feed Rate Ave (RPS)'],data['Spool Rate Ave (RPS)'], s=500*data['Filament Diamter Ave (mm)'], c=data['Filament Diamter Ave (mm)'],edgecolors='black',vmin=0.15, vmax=.7)
    ax1.set_ylabel('Spool Speed (RPS)')
    ax1.set_xlabel('Feed Speed (RPS)')
    CB = fig.colorbar(CS)
    CB.ax.set_ylabel('Fiber Diameter (mm)')
    print('Fiber Diameter versus Feed and Spool Speed')
```

Fiber Diameter versus Feed and Spool Speed



```
In [10]: # Add heater temperature for multi-variable regression
# input data - autmatically reshaped to be column vectors
X = data[['Sqrt Feed/Spool','Heater Temp Ave (C)']].to_numpy()
#print(X)
# target data - row vector
Y = data['Filament Diamter Ave (mm)'].to_numpy()
# create model, fit data, report coefficients
model2 = LinearRegression()
model2.fit(X,Y)
print('Slopes = ', model2.coef_)
print('Intercept = ', model2.intercept_)
print('Score (R^2) = ', model2.score(X,Y))
```

Slopes = [5.83116286e+00 4.17516686e-04] Intercept = -0.004973260581682903 Score (R^2) = 0.990761373259778

```
# plot model as a 3D surface versus sqrt feed/spool and temperature
In [11]:
         %matplotlib notebook
         \# create prediction using a meshgrid to represent x (sqrt(feed/spool)) and z (diameter) values
         sqrts = np.linspace(.025,.105)
         temps = np.linspace(75,95)
         xx, yy = np.meshgrid(sqrts, temps)
         #print(xx.flatten())
         #np.array([xx.flatten(),yy.flatten()]).T
         dias = model2.predict(np.array([xx.flatten(),yy.flatten()]).T)
         zz = dias.reshape(xx.shape)
         # plot
         fig = plt.figure()
         ax1 = Axes3D(fig)
         ax1.scatter(data['Sqrt Feed/Spool'],data['Heater Temp Ave (C)'],data['Filament Diamter Ave (mm)'],
         c=data['Filament Diamter Ave (mm)'],edgecolors='black',vmin=.15,vmax=.65)
         ax1.plot surface(xx,yy,zz,cmap=plt.cm.viridis,alpha=.5,vmin=.15,vmax=.65)
         ax1.set_xlabel('Sqrt Feed/Spool')
         ax1.set ylabel('Heater Temp Ave (C)')
         ax1.set_zlabel('Filament Diamter Ave (mm)')
         print('Fiber Diameter Model versus Sqrt (feed/spool) and Temperature')
```



Fiber Diameter Model versus Sqrt (feed/spool) and Temperature

3.88793784e+03 -5.53565528e+01 -7.28530068e+01 -8.93949548e+00 -5.83368594e-02 -5.01696898e-01 -2.21322886e-01 1.10023686e-02

-2.81707884e-04 1.31164714e-03 2.81006743e-06]

Intercept = 14440.812827407366 Score (R^2) = 0.9960060426153632

```
In [13]:
         # plot with 4th order model, setting one temeprature
         feeds = np.linspace(.0003,.005)
         spools = np.linspace(.25,1.5)
         # choose 80C
         temps = np.ones(50)*80
         xx, yy, aa = np.meshgrid(feeds, spools, temps)
         dias = model3.predict(np.array([xx.flatten(),yy.flatten(),aa.flatten()]).T)
         zz = dias.reshape(xx.shape)
         # plot
         fig = plt.figure()
         ax1 = Axes3D(fig)
         ax1.scatter(data['Feed Rate Ave (RPS)'],data['Spool Rate Ave (RPS)'],data['Filament Diamter Ave (m
         m)'],c=data['Filament Diamter Ave (mm)'])
         ax1.plot\_surface(xx[:,:,0],yy[:,:,0],zz[:,:,0],cmap=plt.cm.viridis,alpha=.5)
         ax1.set_xlabel('Feed Rate Ave (RPS)')
         ax1.set ylabel('Spool Rate Ave (RPS)')
         ax1.set_zlabel('Filament Diamter Ave (mm)')
         print('Fiber Diameter versus Feed and Spool Speed')
```



Fiber Diameter versus Feed and Spool Speed

```
In [14]: # show a support vector machine model
pipe = Pipeline([('scale', StandardScaler()),('svr', SVR(C=1.0, epsilon=0.01))])
X = data[['Feed Rate Ave (RPS)','Spool Rate Ave (RPS)','Heater Temp Ave (C)']].to_numpy()
Y = data['Filament Diamter Ave (mm)'].to_numpy()
model4 = pipe.fit(X,Y)
print('Score (R^2) = ', model4.score(X,Y))
```

Score  $(R^2) = 0.9923640867627394$ 

```
In [15]:
         # plot with SVM model, setting one temeprature
         feeds = np.linspace(.0003,.005)
         spools = np.linspace(.25,1.5)
         # choose 80C
         temps = np.ones(50)*80
         xx, yy, aa = np.meshgrid(feeds, spools, temps)
         dias = model4.predict(np.array([xx.flatten(),yy.flatten(),aa.flatten()]).T)
         zz = dias.reshape(xx.shape)
         # plot
         fig = plt.figure()
         ax1 = Axes3D(fig)
         ax1.scatter(data['Feed Rate Ave (RPS)'],data['Spool Rate Ave (RPS)'],data['Filament Diamter Ave (m
         m)'],c=data['Filament Diamter Ave (mm)'])
         ax1.plot\_surface(xx[:,:,0],yy[:,:,0],zz[:,:,0],cmap=plt.cm.viridis,alpha=.5)
         ax1.set_xlabel('Feed Rate Ave (RPS)')
         ax1.set ylabel('Spool Rate Ave (RPS)')
         ax1.set_zlabel('Filament Diamter Ave (mm)')
         print('Fiber Diameter versus Feed and Spool Speed')
```



Fiber Diameter versus Feed and Spool Speed

## Fiber Diameter - Standard Deviation Modeling

Develop a model for standard deviation with unknown influences.

```
In [84]: # multi-variable regression with a polynomial modifier
pipe = Pipeline([('poly', PolynomialFeatures(degree=2)),('linreg', LinearRegression())])
X = data[['Feed Rate Ave (RPS)','Spool Rate Ave (RPS)','Heater Temp Ave (C)']].to_numpy()
Y = data['Filament Std Dev (mm)'].to_numpy()
model5 = pipe.fit(X,Y)
print('Score (R^2) = ', model5.score(X,Y))
```

Score  $(R^2) = 0.5510268240028662$ 

```
In [72]: | # plot result at a given fiber diameter- .214mm
         feeds = np.linspace(.0003,.002)
         # solve for spool rates using simple equation
         spools = feeds / (.214/5.8)**2
         #print(spools)
         temps = np.linspace(75,95)
         xx, yy, aa = np.meshgrid(feeds, spools, temps)
         #print(xx)
         #print(xx[:,:,0])
         #print(yy)
         #print(aa)
         dias = model5.predict(np.array([xx.flatten(),yy.flatten(),aa.flatten()]).T)
         zz = dias.reshape(xx.shape)
         # clip .214mm data from frame
         df = data[data['Filament Diamter Ave (mm)'] < .22]</pre>
         df = df[df['Filament Diamter Ave (mm)'] > .21]
         fig = plt.figure()
         ax1 = Axes3D(fig)
         ax1.scatter(df['Feed Rate Ave (RPS)'],df['Heater Temp Ave (C)'],df['Filament Std Dev (mm)'],c=df[
          'Filament Std Dev (mm)'])
         ax1.plot_surface(xx[0,:,:],aa[0,:,:],zz[0,:,:],cmap=plt.cm.viridis,alpha=.5)
         ax1.set_xlabel('Feed Rate Ave (RPS)')
         ax1.set_ylabel('Heater Temp Ave (C)')
         ax1.set zlabel('Filament Std Dev (mm)')
         print('Fiber Diameter Std Dev versus Feed and Temperature (.214mm nom)')
```



Fiber Diameter Std Dev versus Feed and Temperature (.214mm nom)

```
In [76]: # plot result at a given fiber diameter- .41mm
         feeds = np.linspace(.0003,.005)
         # solve for spool rates using simple equation
         spools = feeds / (.41/5.8)**2
         #print(spools)
         temps = np.linspace(75,95)
         xx, yy, aa = np.meshgrid(feeds, spools, temps)
         dias = model5.predict(np.array([xx.flatten(),yy.flatten(),aa.flatten()]).T)
         zz = dias.reshape(xx.shape)
         # clip .214mm data from frame
         df = data[data['Filament Diamter Ave (mm)'] < .42]</pre>
         df = df[df['Filament Diamter Ave (mm)'] > .4]
         # plot
         fig = plt.figure()
         ax1 = Axes3D(fig)
         ax1.scatter(df['Feed Rate Ave (RPS)'],df['Heater Temp Ave (C)'],df['Filament Std Dev (mm)'],c=df[
         'Filament Std Dev (mm)'])
         ax1.plot_surface(xx[0,:,:],aa[0,:,:],zz[0,:,:],cmap=plt.cm.viridis,alpha=.5)
         ax1.set_xlabel('Feed Rate Ave (RPS)')
         ax1.set_ylabel('Heater Temp Ave (C)')
         ax1.set zlabel('Filament Std Dev (mm)')
         print('Fiber Diameter Std Dev versus Feed and Temperature (.41mm nom)')
```



Fiber Diameter Std Dev versus Feed and Temperature (.41mm nom)

### **Power Consumption Modeling**

Develop a model for Power with unknown influences.

```
In [78]: # multi-variable regression with a polynomial modifier
    pipe = Pipeline([('poly', PolynomialFeatures(degree=2)),('linreg', LinearRegression())])
    X = data[['Feed Rate Ave (RPS)','Spool Rate Ave (RPS)','Heater Temp Ave (C)']].to_numpy()
    Y = data['System Power Ave (W)'].to_numpy()
    model6 = pipe.fit(X,Y)
    print('Score (R^2) = ', model6.score(X,Y))
```

Score  $(R^2) = 0.8980641185337678$ 

```
In [81]:
         # plot result at a given fiber diameter- .214mm
         feeds = np.linspace(.0003,.002)
         # solve for spool rates using simple equation
         spools = feeds / (.214/5.8)**2
         #print(spools)
         temps = np.linspace(75,95)
         xx, yy, aa = np.meshgrid(feeds, spools, temps)
         dias = model6.predict(np.array([xx.flatten(),yy.flatten(),aa.flatten()]).T)
         zz = dias.reshape(xx.shape)
         # clip .214mm data from frame
         df = data[data['Filament Diamter Ave (mm)'] < .22]</pre>
         df = df[df['Filament Diamter Ave (mm)'] > .21]
         # plot
         fig = plt.figure()
         ax1 = Axes3D(fig)
         ax1.scatter(df['Feed Rate Ave (RPS)'],df['Heater Temp Ave (C)'],df['System Power Ave (W)'],c=df['S
         ystem Power Ave (W)'])
         ax1.plot_surface(xx[0,:,:],aa[0,:,:],zz[0,:,:],cmap=plt.cm.viridis,alpha=.5)
         ax1.set xlabel('Feed Rate Ave (RPS)')
         ax1.set ylabel('Heater Temp Ave (C)')
         ax1.set zlabel('System Power Ave (W)')
         print('System Power Ave (W) versus Feed and Temperature (.214mm nom)')
```



```
In [82]:
         # plot power/production metric at a given fiber diameter- .214mm
         feeds = np.linspace(.0003,.002)
         # solve for spool rates using simple equation
         spools = feeds / (.214/5.8)**2
         #print(spools)
         temps = np.linspace(75,95)
         xx, yy, aa = np.meshgrid(feeds, spools, temps)
         dias = model6.predict(np.array([xx.flatten(),yy.flatten(),aa.flatten()]).T)
         zz = dias.reshape(xx.shape)
         # clip .214mm data from frame
         df = data[data['Filament Diamter Ave (mm)'] < .22]</pre>
         df = df[df['Filament Diamter Ave (mm)'] > .21]
         # plot
         fig = plt.figure()
         ax1 = Axes3D(fig)
         ax1.scatter(df['Feed Rate Ave (RPS)'],df['Heater Temp Ave (C)'],df['System Power Ave (W)']/df['Fee
         d Rate Ave (RPS)'],c=df['System Power Ave (W)'])
         ax1.plot_surface(xx[0,:,:],aa[0,:,:],zz[0,:,:]/xx[0,:,:],cmap=plt.cm.viridis,alpha=.5)
         ax1.set_xlabel('Feed Rate Ave (RPS)')
         ax1.set_ylabel('Heater Temp Ave (C)')
         ax1.set_zlabel('Power Metric')
         print('Power Metric versus Feed and Temperature (.214mm nom)')
```



Power Metric versus Feed and Temperature (.214mm nom)

#### **Export Models**

Save models in files to import in other code. Uses pickle.

```
In [85]: model_path = './Models/'
# linear regression for fiber diameter - model2
# inputs ['Sqrt Feed/Spool', 'Heater Temp Ave (C)']
pickle.dump(model2, open(model_path + 'dia_mod_1.p', 'wb'))

# polynomial regression (order 2) for fiber standard deviation - model5
# inputs ['Feed Rate Ave (RPS)', 'Spool Rate Ave (RPS)', 'Heater Temp Ave (C)']
pickle.dump(model5, open(model_path + 'dia_std_mod_1.p', 'wb'))

# polynomial regression (order 2) for system power - model6
# inputs ['Feed Rate Ave (RPS)', 'Spool Rate Ave (RPS)', 'Heater Temp Ave (C)']
pickle.dump(model6, open(model_path + 'sys_pow_mod_1.p', 'wb'))
```

### **3D Slice Practice and Examples**

```
In [64]: a = np.linspace(0,2,3)
b = np.linspace(3,5,3)
c = np.linspace(6,8,3)
#print(a)
#print(b)
#print(c)
aa, bb, cc = np.meshgrid(a,b,c)
print(aa)
print(aa[:,1,:])
print('**')
print(bb)
print(cc)
yy = aa + bb + cc
print(yy)
print('**')
print(yy[0,:,:])
```

```
[[[0. 0. 0.]
          [1. 1. 1.]
          [2. 2. 2.]]
         [[0. 0. 0.]
          [1. 1. 1.]
          [2. 2. 2.]]
         [[0. 0. 0.]
          [1. 1. 1.]
          [2. 2. 2.]]]
         [[1. 1. 1.]
         [1. 1. 1.]
         [1. 1. 1.]]
         [[[3. 3. 3.]
          [3. 3. 3.]
          [3. 3. 3.]]
         [[4. 4. 4.]
          [4. 4. 4.]
          [4. 4. 4.]]
         [[5. 5. 5.]
          [5. 5. 5.]
          [5. 5. 5.]]]
         [[[6. 7. 8.]
          [6. 7. 8.]
          [6. 7. 8.]]
         [[6. 7. 8.]
          [6. 7. 8.]
          [6. 7. 8.]]
         [[6. 7. 8.]
          [6. 7. 8.]
          [6. 7. 8.]]]
         [[[ 9. 10. 11.]
          [10. 11. 12.]
          [11. 12. 13.]]
         [[10. 11. 12.]
          [11. 12. 13.]
          [12. 13. 14.]]
         [[11. 12. 13.]
          [12. 13. 14.]
          [13. 14. 15.]]]
         [[ 9. 10. 11.]
         [10. 11. 12.]
         [11. 12. 13.]]
In [ ]:
```

/