What is Database?

A database is an organized collection of structured data, typically stored electronically in a computer system, designed for efficient storage, retrieval, and management of information.

Types of Databases

There are two main types:

1. Relational Databases (SQL)

Examples: MySQL, PostgreSQL, SQLite

Data is stored in tables (rows & columns)

You use SQL (Structured Query Language) to interact

Great for structured, relational data

2. Non-Relational Databases (NoSQL)

Examples: MongoDB, Firebase, CouchDB

Data is stored in flexible formats like JSON

Good for unstructured or changing data

SQL vs NoSQL:

Feature	SQL (Relational DB)	NoSQL (Non-relational DB)
Examples	MySQL, PostgreSQL, SQLite, Oracle	MongoDB, Cassandra, Redis, Neo4j
Data Format	Tables (rows & columns)	JSON, key-value, graph, wide-columns
Schema	Fixed & predefined	Dynamic & flexible
Best For	Structured data, strong relationships, consistency	Semi/unstructured data, scalability, flexibility
Joins	Supports complex joins	Limited or no joins (often denormalized)
Scalability	Vertical (scale-up: bigger servers)	Horizontal (scale-out: more servers)
Transactions (ACID)	Fully ACID compliant (Atomicity, Consistency, Isolation, Durability)	Some are eventually consistent (BASE: Basically Available, Soft state, Eventually consistent)
Query Language	SQL (Structured Query Language)	Varies: Mongo Query, CQL, Gremlin, etc.
Examples Use Case	Banking, ERP, HR systems	Social media, real-time analytics, chat apps

Data TypeDescriptionExampleStructuredClearly defined format (rows/columns)Spreadsheets, SQL tablesSemi-StructuredHas some structure but not strictJSON, XML, CSVUnstructuredNo fixed format or schemaImages, videos, PDFs, audioTime-SeriesData collected over timeSensor logs, stock pricesGraph DataEntities connected by relationshipsSocial networks, route mapsGeospatialData with geographic/location contextGPS coordinates, mapsTextual/NLPNatural language contentReviews, tweets, articles	1. What Are the Different Types of Data? Data comes in many flavors — here are the main ones:			
Semi-StructuredHas some structure but not strictJSON, XML, CSVUnstructuredNo fixed format or schemaImages, videos, PDFs, audioTime-SeriesData collected over timeSensor logs, stock pricesGraph DataEntities connected by relationshipsSocial networks, route mapsGeospatialData with geographic/location contextGPS coordinates, maps	Data Type	Description	Example	
Unstructured No fixed format or schema Images, videos, PDFs, audio Time-Series Data collected over time Sensor logs, stock prices Graph Data Entities connected by relationships Social networks, route maps Geospatial Data with geographic/location context GPS coordinates, maps	Structured	Clearly defined format (rows/columns)	Spreadsheets, SQL tables	
Time-Series Data collected over time Sensor logs, stock prices Graph Data Entities connected by relationships Social networks, route maps Geospatial Data with geographic/location context GPS coordinates, maps	Semi-Structured	Has some structure but not strict	JSON, XML, CSV	
Graph Data Entities connected by relationships Social networks, route maps Geospatial Data with geographic/location context GPS coordinates, maps	Unstructured	No fixed format or schema	Images, videos, PDFs, audio	
Geospatial Data with geographic/location context GPS coordinates, maps	Time-Series	Data collected over time	Sensor logs, stock prices	
	Graph Data	Entities connected by relationships	Social networks, route maps	
Textual/NLP Natural language content Reviews, tweets, articles	Geospatial	Data with geographic/location context	GPS coordinates, maps	
	Textual/NLP	Natural language content	Reviews, tweets, articles	

What Kind of Data Can SQL Databases Store?

SQL databases are **relational** and best for:

Best For:

- · Structured data
- Data with clear **relationships** (foreign keys, joins)
- Transactional systems (banking, accounting)
- Use cases needing **ACID compliance** (consistency, reliability)

What Kind of Data Can NoSQL Databases Store?

NoSQL is more **flexible** and can handle a **wider range of data types**.

Best For:

- · Semi-structured or unstructured data
- Frequently changing data
- High-speed ingestion (IoT, analytics)
- Data without strict relationships
- Big data and real-time apps

Can NoSQL Store Structured Data?

Yes, NoSQL can store structured data — it's just more **flexible** about it.

But unlike SQL (which **requires** a fixed structure), NoSQL databases:

- Allow structured data
- **Don't require** you to define the structure up front
- Let you **mix and match** structures across records (called *documents* or *items*)

Example of Structured Data in NoSQL (MongoDB):

```
{
  "_id": "user123",
  "name": "Alice",
  "age": 25,
  "email": "alice@example.com"
}
```

That's clearly structured — it has defined fields and data types:

• name: string

• age: number

• email: string

This looks similar to a SQL table row — but it's stored as a **JSON-like document** in a NoSQL DB.

When Would You Store Structured Data in NoSQL?

- When you want **flexibility** (different records can have extra fields)
- When your app may **evolve quickly** (add/remove fields without changing schemas)
- When you need fast development and scalability
- When you prefer storing **nested structures** (which SQL struggles with)

Types of NoSQL Databases:

	No. 10 May 1	
Туре	Data It Stores	Ideal For
Document (MongoDB)	JSON-like documents	App data, user profiles
Key-Value (Redis)	Simple key-value pairs	Caching, sessions
Columnar (Cassandra)	Columns grouped by families	Analytics, logs
Graph (Neo4j)	Nodes and edges	Social networks, recommendations

What is MongoDB?

MongoDB is a **NoSQL database** that stores data in a **document format** (like JSON). It's designed for **speed**, **scalability**, and **flexibility**, and it's one of the most popular modern databases used in full-stack development.

- Built for modern applications
- Handles structured, semi-structured, or unstructured data
- Perfect for fast-changing or large-scale data

Features of MongoDB:

Feature	Description
Document-Oriented	Stores data in flexible, JSON-like documents
🔄 Dynamic Schema	No need to define schema upfront — great for evolving data
High Performance	Fast reads/writes, great for real-time apps
🌣 Horizontal Scalability	Easy to scale across multiple servers (sharding)
Geospatial Queries	Supports location-based search (nearby places)
 Security	Access control, authentication, and encryption
Aggregation Framework	Process and analyze data like SQL GROUP BY
⊕ Cross-platform	Works on Linux, Windows, Mac, and in the cloud (MongoDB Atlas)

Benefits of MongoDB:

Benefit	Why It Matters
	Add fields and documents without modifying tables
📦 Store Complex Data	Embedded arrays, objects, and nested documents
Schema Flexibility	Adjust data structure on the fly — no migrations needed
<mark>∏</mark> Big Data Ready	Can handle millions of records across distributed servers
Easy Integration	Works seamlessly with Node.js, Express, Python, Java, etc.
<mark>,√</mark> Scalable	Designed to grow with your app, horizontally

Use Cases of MongoDB:

Use Case	Why MongoDB Fits
PReal-time Chat Apps	Messages are dynamic, fast, and need quick reads/writes
👣 E-commerce Platforms	Store flexible product data, customer info, orders
Mobile/Web App Backends	Dynamic user profiles, preferences, and activity logs
Secontent Management Systems (CMS)	Articles, tags, media, flexible metadata
❖ IoT and Sensor Data	Unpredictable, high-volume, time-based logs
Ceolocation Apps	Find nearby stores, track delivery routes
🕹 Gaming Backends	Store player stats, progress, inventory
Real-time Analytics	High-speed log ingestion, dashboards, user behavior tracking