Sequences (S)

Jongmin Lim

April camp 2020

Here are some powerful techniques in solving questions with sequences.

1 Linear recurrences

1.1 Linear Homogeneous Recurrences

Example 1: $a_{n+2} = 3a_{n+1} - 2a_n$, where $a_0 = 0$, $a_1 = 1$.

We start with the ansatz $a_n = x^n$. This gets us

$$x^{n+2} = 3x^{n+1} - 2x^n$$

$$x^2 - 3x + 2 = 0$$

$$(x-1)(x-2) = 0$$

Hence we conclude that $a_n = 2^n$ and $a_n = 1^n$ are solutions to the recurrence relation. Notice that any linear combination of these two solutions is also a solution to the recurrence. So the general solution to the recurrence is $a_n = A2^n + B1^n$ for some constants A and B. Since $a_0 = A + B = 0$ and $a_1 = 2A + B = 1$, we conclude that A = 1, B = -1. Hence, the solution to this recurrence is $a_n = 2^n - 1$.

Example 2: $a_{n+2} = 4a_{n+1} - 4a_n$, where $a_0 = 1$, $a_1 = 6$.

Using the same ansatz, we get the equation $(x-2)^2 = 0$. Notice that we now have a root with multiplicity. So, alongside the usual solution of $a_n = 2^n$, we also have the solution $a_n = n2^n$ (If it was a triple root, then we have the solution $a_n = n^22^n$, etc (check it!)). As before, the general solution is $a_n = (A + Bn)2^n$ for some constants A, B, where we deduce A = 1 and B = 2 via the initial conditions. Thus, the solution is $a_n = (1 + 2n)2^n$. **Exercises:** Find the general term.

1. $a_{n+3} = 6a_{n+2} - 11a_{n+1} + 6a_n$, where $(a_0, a_1, a_2) = (-1, 0, 4)$

2.
$$a_{n+2} = a_{n+1} - a_n$$
, where $(a_0, a_1) = (0, 1)$

3. $a_{n+3} = a_{n+2} + a_{n+1} - a_n$, where $(a_0, a_1, a_2) = (2, 2, 6)$

4. $F_{n+2} = F_{n+1} + F_n$, where $(a_0, a_1) = (0, 1)$.

Problems:

1. Let $\{a_n\}$ be a positive sequence such that $a_{n+2} = -a_{n+1} + 2a_n$. Show that a_n must be a constant sequence.

- 2. Let $\{a_n\}$ be an integer sequence such that $2a_{n+2} = 5a_{n+1} 3a_n$. Show that a_n must be a constant sequence.
- 3. Find all functions $f: \mathbb{R}^+ \to \mathbb{R}^+$ such that f(f(x)) = 4f(x) + 5x.
- 4. Find all functions $f: \mathbb{R}^+ \to \mathbb{R}^+$ such that f(x) > x and f(f(x) x) = 2x.
- 5. (ISL 2010 A5) Find all functions $f: \mathbb{Q}^+ \to \mathbb{Q}^+$ such that $f(f(x)^2 y) = x^3 f(xy)$.
- 6. (China 2017) The sequences $\{u_n\}$ and $\{v_n\}$ are defined by $u_{n+2} = 2u_{n+1} 3u_n$, where $(u_0, u_1) = (1, 1)$ and $v_{n+3} = v_{n+2} 3v_{n+1} + 27v_n$, where $(v_0, v_1, v_2) = (a, b, c)$. There exists a positive integer N such that for any n > N, u_n divides v_n . Prove that 3a = 2b + c.
- 7. (SMMC sample) Consider a circle with circumference $\frac{1+\sqrt{5}}{2}$ and mark a point P_0 on it. Going clockwise, you mark the points P_1, P_2, \cdots for every unit arc length. Suppose you terminate at step n, after you mark the point P_n . Show that if P_i , P_j are adjacent on the circle, then |i-j| is a Fibonacci number.

1.2 Linear Inhomogeneous Recurrences

These are sequences with linear a_n terms, with along with some functions of n. The homogeneous version of the recurrence gives the general part of the solution, while you need a particular solution to take care of the inhomogeneous part (this is where you need to be smart).

Example 1:
$$a_{n+1} = 3a_n - 2$$
, where $a_0 = 0$.

The homogeneous version, $a_{n+1} = 3a_n$ has an easy general solution $a_n = A3^n$. We can guess a particular solution to the original equation, which is $a_n \equiv 1$. Thus, the general solution is $a_n = A3^n + 1$, where we tweak A = -1 to match the initial condition. Thus, the solution is $a_n = 1 - 3^n$.

The methodical way to do this is to rearrange the original equation to $a_{n+1}-1=3(a_n-1)$, and define $b_n=a_n-1$. Then the b_n recurrence is $b_{n+1}=3b_n$, etc. Sometimes guessing is not that easy, so these substitutions are useful.

Example 2:
$$a_{n+1} - 5a_n = 5^{n+1}$$
, where $a_0 = 0$

Divide both sides with 5^{n+1} to get $\frac{a_{n+1}}{5^{n+1}} - \frac{a_n}{5^n} = 1$. Define $b_n = \frac{a_n}{5^n}$, then we get $b_{n+1} - b_n = 1$, with $b_0 = \frac{a_0}{5^0} = 0$. This is yields $b_n = n$, so we conclude $a_n = n5^n$.

Problems:

- 1. $a_{n+1} 5a_n = (2n+1)5^{n+1}$, where $a_0 = 0$.
- 2. (AMO 2015) Define the sequence $\{a_n\}$ such that $a_{n+2} = 2a_{n+1} a_n + 2$ with $(a_0, a_1) = (4, 7)$. Show that $a_n a_{n+1}$ is always a term of the sequence.
- 3. (102 PiC) How many subsets of $\{1, 2, 3, \dots, 2020\}$ has the property that the sum of its elements is a multiple of 5?

1.3 First Order Multi-variable Homogeneous Recurrences

Sometimes you have more than one sequence working in tandem to define each other.

Example: Find the number of binary sequences of length n such that there does not exist consecutive zeros. Let a_n , b_n be the number of binary sequences of length n ending with 0 and 1 respectively. As there cannot be consecutive zeros, we have $a_{n+1} = b_n$ (every sequence counted in a_{n+1} is a 0 subtended to a b_n sequence) and $b_{n+1} = a_n + b_n$ (every sequence counted in b_{n+1} is 1 subtended to a a_n or b_n sequence).

Since we're only interested in the sum $x_n := a_n + b_n$, let us inspect this instead.

$$x_n = a_n + b_n = b_{n-1} + b_n = (a_{n-2} + b_{n-2}) + (a_{n-1} + b_{n-1}) = x_{n-2} + x_{n-1}$$

Hence the recurrence is the Fibonacci recurrence.

What if the double-recurrence isn't nice enough so that such manipulations are not immediately obvious?

Our double recurrence can be expressed as $\begin{pmatrix} a_{n+1} \\ b_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} a_n \\ b_n \end{pmatrix}$. Let $\mathbf{x_n} := \begin{pmatrix} a_n \\ b_n \end{pmatrix}$ and $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$. Then $\mathbf{x_{n+1}} = A\mathbf{x_n}$. Thus, our general form becomes $\mathbf{x_n} = A^n\mathbf{x_0}$. The real task is figuring out how to find A^n in a reasonable amount of time. You can *diagonalise* the matrix such that $A = PDP^{-1}$ for some diagonal matrix D (which means we can find D^n easily), so we get $A^n = PD^nP^{-1}$, which is actually solvable (details not included for sanity; look up how to diagonalise a matrix).

1.4 Pell equations

In number theory, this is a Pell equation: $x^2 - dy^2 = 1$ for a non-square number d.

Example: $x^2 - 2y^2 = 1$.

We need an initial solution. There is no method to find this, so good luck with your guesses. In this case, (x,y) = (3,2) is a solution. Let (x_n,y_n) be a solution to the equation. Then we do a weird factorisation.

$$(x_n - y_n\sqrt{2})(x_n + y_n\sqrt{2}) = 1$$
$$(3 - 2\sqrt{2})(3 + 2\sqrt{2}) = 1$$

Multiplying the terms at their respective locations,

$$((3x_n + 4y_n) - (2x_n + 3y_n)\sqrt{2})((3x_n + 4y_n) + (2x_n + 3y_n)\sqrt{2}) = 1$$

So we see that $(x_{n+1}, y_{n+1}) = (3x_n + 4y_n, 2x_n + 3y_n)$ is a new solution to this Pell equation.

Before you start to write matrices, look a bit closer on how we generated the solutions. $x_n \pm y_n \sqrt{2} = (3 \pm 2\sqrt{2})^n$.

$$x_n = \frac{(3+2\sqrt{2})^n + (3-2\sqrt{2})^n}{2}$$
 $y_n = \frac{(3+2\sqrt{2})^n - (3-2\sqrt{2})^n}{2\sqrt{2}}$

Problems:

- 1. (AMO 2020) Sequences $\{a_n\}$ and $\{b_n\}$ satisfy $a_1 = b_1 = 1$ and $a_{n+1} = \frac{a_n+2}{a_n+1}$ and $b_{n+1} = \frac{b_n}{2} + \frac{1}{b_n}$. Show that $b_{n+1} = a_{2^n}$.
- 2. (Crux) $x_{n+2} = x_{n+1}\sqrt{x_n^2 + 1} + x_n\sqrt{x_{n+1}^2 + 1}$ satisfies $x_0 = x_1 = 1$. Find its general form.
- 3. (2016 April prep) Positive integers a, b, c satisfy $c(ac+1)^2 = (5c+2b)(2c+b)$. Show that if c is odd, then c is a perfect square. Does there exist a solution with an even c? Show that there are infinitely many solutions for this equation (Hint: Try gcd(b, c) = 1).

2 Generating functions

Given a sequence $\{a_n\}$, we consider a formal power series $f(x) = a_0 + a_1x + a_2x^2 + \cdots$. This is actually completely meaningless, but it somehow works under some situations and nobody knows why (which is why it's cool).

Under a combinatorial setting a_n is thought of as the number of ways to choose n things.

Example 1: You have 1 apples, 2 bananas, 3 carrots. How many ways can you choose 4 things?

The gf for apples is a(x) = 1+x, the gf for bananas is $b(x) = 1+x+x^2$ and the gf for carrots is $1+x+x^2+x^3$. The gf for the whole thing is $a(x)b(x)c(x) = (1+x)(1+x+x^2)(1+x+x^2+x^3) = x^6+3x^5+5x^4+6x^3+5x^2+3x+1$. Since the coefficient for x^4 is 5, the answer is 5.

The multiplication of the gfs make perfect sense. To choose n things, you must count the number of ways to choose k things, and multiply it with the number of ways to choose n-k things, for all $k=0,1,\dots,n$, and this is exactly how polynomial multiplication works. It even works when it's not a polynomial.

Example 2: You have apples, bananas, carrots, and durians. You have to choose a multiple of 5 apples, even number of bananas, at most 1 carrot and at most 4 durians. How many ways can you choose 2020 things?

The gf for apples is $a(x) = 1 + x^5 + x^{10} + \dots = \frac{1}{1 - x^5}$.

The gf for bananas is $b(x) = 1 + x^2 + x^4 + \cdots = \frac{1}{1-x^2}$.

The gf for carrots is c(x) = 1 + x.

The gf for durians is $d(x) = 1 + x + x^2 + x^3 + x^4$.

The gf for the whole thing is $a(x)b(x)c(x)d(x) = \frac{1}{(1-x)^2}$. To retrieve the power series form, write out the Taylor series $f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots$. Probably the easier way in this particular case is to use the commonly known $\frac{1}{1-x} = 1 + x + x^2 + \cdots$ and differentiate both sides. The answer is 2021.

Try subbing in x = 1/2 and show off to all your friends that if a_n is the general answer to the problem above, then $\sum_{n=0}^{\infty} \frac{a_n}{2^n} = 2$.

Problems:

- 1. Consider an $n \times n$ grid. Let c_n be the number of shortest paths along the gridlines from the bottom left corner to the top right corner. Find the general form for c_n . What is $\sum_{n=0}^{\infty} \frac{c_n}{4^n}$?.
- 2. (SMMC 2018) For each positive integer n, consider a cinema with n seats in a row, numbered left to right from 1 up to n. There is a cup holder between any two adjacent seats and there is a cup holder on the right of seat n. So seat 1 is next to one cup holder, while every other seat is next to two cup holders. There are n people, each holding a drink, waiting in line to sit down. In turn, each person chooses an available seat uniformly at random and does the following:
 - (a) If they sit next to two empty cup holders, then they choose a cup holder at random and put their drink in it
 - (b) If they sit next to one empty cup holder, then they place their drink in that cup holder.
 - (c) Otherwise, they get angry.

Let p_n be the probability that no one gets angry. What is $p_1 + p_2 + p_3 + \cdots$?

3. An alternating permutation is a permutation of $\{1, 2, \dots, n\}$ such that $a_1 < a_2 > a_3 < a_4 > a_5 \cdots$. How many alternating permutations are there?