FCC REPORT

Applicant: HUNG WAI PRODUCTS LIMITED

Address of Applicant: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street,

Shatin, Hong Kong

Equipment Under Test (EUT)

Product Name: Wireless Module - Android

Model No.: DTCOMM-DL, 410-BWRTL87000

FCC ID: 2AB6Z-DTCOMM-DL

Applicable standards: FCC CFR Title 47 Part 15 Subpart B

Date of sample receipt: 29 Jul., 2014

Date of Test: 29 Jul., to 11 Aug., 2014

Date of report issued: 11 Aug., 2014

Test Result: Pass*

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 **Version**

Version No.	Date	Description
00	11 Aug., 2014	Original

Luna Gas Report Clerk Prepared by: Date: 11 Aug., 2014

11 Aug., 2014 Reviewed by: Date:

Project Engineer

Contents

3

			Page
1	(COVER PAGE	1
2	١	VERSION	2
3	(CONTENTS	3
4	7	TEST SUMMARY	4
5	(GENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	CENTER LE DESCRIT FIOR OF ELOTT	
	5.3	1 231 111002	
	5.4		
	5.5		
	5.6	E ABON A COCATION	
	5.7	TEST MOTIONENTS EIST	
6	7	TEST RESULTS AND MEASUREMENT DATA	8
	6.1	Conducted Emission	8
	6.2		
7	Т	TEST SETUP PHOTO	15
8	F	EUT CONSTRUCTIONAL DETAILS	16

4 Test Summary

Test Item	Section in CFR 47	Result		
Conducted Emission	Part15.107	Pass		
Radiated Emission	Part15.109	Pass		

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	HUNG WAI PRODUCTS LIMITED
Address of Applicant:	Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin, Hong Kong
Manufacturer / Factory:	HUNG WAI ELECTRONICS (HUIZHOU) LTD.
Address of Manufacturer / Factory:	3 rd floor, NO. 3, Minfeng Road, Huinan High and New Technology Industry Park, Huiao Avenue, Huizhou City, Guangdong, China

5.2 General Description of E.U.T.

Product Name:	Wireless Module - Android
Model No.:	DTCOMM-DL, 410-BWRTL87000
Power supply:	DC 5V by USB Port
Remark:	The Model: DTCOMM-DL and 410-BWRTL87000 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being different Model Number for customer and for HUNG WAI.

5.3 Test Mode

Operating mode	Detail description
PC mode	Data communication with PC

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

Page 5 of 16

5.4 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	L MONITOR E178FPC		N/A	DoC
DELL	DELL KEYBOARD		N/A	DoC
DELL	DELL MOUSE		N/A	DoC
HP Printer		CB495A	05257893	DoC
MERCURY Wireless router		MW150R	12922104015	FCC ID
MEIZU Smart Phone		M040	040ACGDK6HA9	N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

● IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

● CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102
Telephone: +86 (0) 755 2311 8282 Fax: +86 (0) 755 2311 6366

Page 6 of 16

5.7 Test Instruments list

Radia	Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	June 09 2014	June 08 2015			
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	May 25 2014	May 24 2015			
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	May 25 2014	May 24 2015			
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	Apr. 01 2014	Mar. 31 2015			
6	Amplifier Compliance Direction (1GHz-18GHz) Systems Inc.		PAP-1G18	CCIS0011	June 09 2014	June 08 2015			
7	Pre-amplifier (18-26GHz) Rohde & Schwarz		AFS33-18002 650-30-8P-44	GTS218	Apr. 01 2014	Mar. 31 2015			
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 30 2014	Mar. 29 2015			
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A			
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A			
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	May. 25 2014	May. 24 2015			
12	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	May 25 2014	May. 24 2015			
13	Loop antenna	Laplace instrument	RF300	EMC0701	Aug 12 2013	Aug 12 2014			
14	Universal radio		CMU200	CCIS0069	May. 25 2014	May. 24 2015			
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	May. 25 2014	May. 24 2015			

Conducted Emission:									
Item Test Equipment Manufacturer Model No. Inventory Cal.Date Cal.Due da No. (mm-dd-yy) (mm-dd-yy)									
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	June 09 2014	June 08 2015			
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	May 25 2014	May. 24 2015			
3	LISN	CHASE	MN2050D	CCIS0074	Apr. 01 2014	Mar. 31 2015			
4	Coaxial Cable	CCIS	N/A	CCIS0086	Apr. 01 2014	Mar. 31 2015			

6 Test results and Measurement Data

6.1 Conducted Emission

	Test Requirement:	FCC Part15 B Section 15.107						
	Test Method:	ANSI C63.4:2003						
	Test Frequency Range:	150kHz to 30MHz						
	Class / Severity:	Class B						
	Receiver setup:	RBW=9kHz, VBW=30kHz						
	Limit:		Li	mit (dBµV)				
		Frequency range (MHz)	Quasi-peak	1	Average			
1		0.15-0.5	66 to 56*		56 to 46*			
		0.5-5	56		46			
		0.5-30	60		50			
	Test setup:	Reference Plane						
	Test procedure	AUX Equipment Test table/Insulation plane Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators are a	EMI Receiver	C power	ough a line			
		 impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). 						
		Both sides of A.C. line are che order to find the maximum emi of the interface cables must be conducted measurement.	ssion, the relative p	ositions of e	quipment and all			
	Test environment:	Temp.: 23 °C Humic	l.: 56%	Press.:	1 01kPa			
	Measurement Record:	Uncertainty: 3.28dB						
	Test Instruments:	Refer to section 5.7 for details						
	Test mode:	Refer to section 5.3 for details						
	Test results:	Pass						

Measurement data:

PC Mode

Line:

Trace: 9

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site Condition

: Wireless Module EUT Model : DTCOMM-DL Test Mode : PC Mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Garen

Kemark	Fran	Read	LISN Factor	Cable	Level	Limit Line	Over	Remark
	Freq	rever	ractor	Loss	rever	Line	Limit	Remark
	MHz	dBuV	₫B	₫₿	dBu∜	dBuV	₫B	
1	0.154	22.90	0.27	10.78	33.95	55.78	-21.83	Average
2	0.258	16.39	0.27	10.75	27.41	51.51	-24.10	Average
3	0.727	28.92	0.22	10.78	39.92	56.00	-16.08	QP
1 2 3 4 5 6 7 8 9	0.747	18.64	0.23	10.79	29.66	46.00	-16.34	Average
5	1.160	28.37	0.25	10.89	39.51	56.00	-16.49	QP
6	2.088	30.92	0.26	10.96	42.14	56.00	-13.86	QP
7	2.900	34.31	0.27	10.92	45.50	56.00	-10.50	QP
8	2.931	25.86	0.27	10.92	37.05	46.00	-8.95	Average
9	16.928	26.68	0.33	10.91	37.92	50.00	-12.08	Average
10	17.383	27.29	0.33	10.91	38.53	60.00	-21.47	QP
11	22.896	29.34	0.45	10.89	40.68	60.00	-19.32	QP
12	23.018	27.12	0.45	10.89	38.46	50.00	-11.54	Average

Telephone: +86 (0) 755 2311 8282 Fax: +86 (0) 755 2311 6366

Page 9 of 16

Neutral:

Trace: 11 Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

EUT : Wireless Module Model : DTCOMM-DL Test Mode : PC Mode Power Rating : AC 120V/60Hz Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Garen

Remark

TOMALA	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
2575	MHz	dBu∜	dB	₫₿	dBu₹	dBu∀	dB	
1	0.154	29.48	0.25	10.78	40.51	65.78	-25.27	QP
2	0.258	17.92	0.26	10.75	28.93	51.51	-22.58	Average
2 3 4 5 6 7 8 9	0.385	15.29	0.25	10.72	26.26	48.17	-21.91	Average
4	0.751	20.69	0.19	10.79	31.67	46.00	-14.33	Average
5	0.771	27.64	0.19	10.80	38.63	56.00	-17.37	QP
6	1.117	27.47	0.23	10.88	38.58	56.00	-17.42	QP
7	2.077	23.52	0.29	10.96	34.77	46.00	-11.23	Average
8	2.121	31.93	0.29	10.95	43.17		-12.83	
9	2.809	34.05	0.29	10.93	45.27	56.00	-10.73	QP
10	3.025	26.34	0.29	10.92	37.55	46.00	-8.45	Average
11	16.398	26.73	0.25	10.91	37.89	60.00	-22.11	QP
12	22.775	27.15	0.39	10.89	38.43	50.00	-11.57	Average

1. The following Quasi-Peak and Average measurements were performed on the EUT

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Shenzhen, China 518102

Telephone: +86 (0) 755 2311 8282 Fax: +86 (0) 755 2311 6366

6.2 Radiated Emission

Test Requirement:	FCC Part15 B Section 15.109						
Test Method:	ANSI C63.4:2003						
Test Frequency Range:	30MHz to 6000MHz						
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)						
Receiver setup:	Frequency Detector RBW VBW		Remark				
	30MHz-1GHz	30MHz-1GHz Quasi-peak		300KHz	Quasi-peak Value		
	Above 1GHz			3MHz	Peak Value		
	Above 10112	Peak	1MHz	10Hz	Average Value		
Limit:	Frequency		Limit (dBuV/	m @3m)	Remark		
	30MHz-8	8MHz	40.0		Quasi-peak Value		
	88MHz-21	16MHz	43.5	5	Quasi-peak Value		
	216MHz-9	60MHz	46.0)	Quasi-peak Value		
	960MHz-	1GHz	54.0)	Quasi-peak Value		
	A h a a . 4	CU-	54.0)	Average Value		
	Above	GHZ	74.0)	Peak Value		
Test setup:	Δ00/0 1(-Η7						

Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 							
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.							
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.							
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.							
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.							
Test environment:	Temp.: 25 °C Humid.: 55% Press.: 1 01kPa							
Measurement Record:	Uncertainty: 4.88dB							
Test Instruments:	Refer to section 5.7 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

Measurement Data

PC Mode

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

EUT : Wireless Module - Android

Model : DTCOMM-D
Test mode : PC Mode
Power Rating : AC120V / 60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Garen

REMARK									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu₹	dB/m	₫B	dB	dBuV/m	dBuV/m	dB	
1	46, 178	38.74	13.48	0.57	29.85	22.94	40.00	-17.06	QP
2	90.855	37.68	12.07	0.91	29.57	21.09	43.50	-22.41	QP
2	155.364	44.64	8.48	1.33	29.17	25.28		-18.22	
4	213.015	53.21	10.97	1.45	28.75	36.88	43.50	-6.62	QP
5	321.061	37.23	13.40	1.84	28.50	23.97	46.00	-22.03	QP
6	385.281	35.30	14.73	2.07	28.72	23.38	46.00	-22.62	QP

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

EUT : Wireless Module - Android

: DTCOMM-D Model Test mode : PC Mode Power Rating : AC120V / 60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Garen REMARK

TV :								
						and a dis-		A CONTRACTOR OF THE PARTY OF TH
MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
39, 162	43.30	13, 34	0.51	29.91	27.24	40.00	-12.76	QP
46.178	47.33	13.48						
158.112	44.09	8.58	1.33	29.15	24.85	43.50	-18.65	QP
277.094	41.41							
365.539	38.89	14.48						
528.246	34.83	17.15	2.48	29.04	25.42	46.00	-20.58	QP
	Freq MHz 39.162 46.178 158.112 277.094 365.539	Read Freq Level MHz dBuV 39.162 43.30 46.178 47.33 158.112 44.09 277.094 41.41 365.539 38.89	ReadAntenna Freq Level Factor MHz dBuV dB/m 39.162 43.30 13.34 46.178 47.33 13.48 158.112 44.09 8.58 277.094 41.41 12.59 365.539 38.89 14.48	ReadAntenna Cable Freq Level Factor Loss MHz dBuV dB/m dB 39.162 43.30 13.34 0.51 46.178 47.33 13.48 0.57 158.112 44.09 8.58 1.33 277.094 41.41 12.59 1.70 365.539 38.89 14.48 2.00	ReadAntenna Cable Preamp Loss Factor MHz dBuV dB/m dB dB 39.162 43.30 13.34 0.51 29.91 46.178 47.33 13.48 0.57 29.85 158.112 44.09 8.58 1.33 29.15 277.094 41.41 12.59 1.70 28.49 365.539 38.89 14.48 2.00 28.63	ReadAntenna Cable Preamp Freq Level Factor Loss Factor Level MHz dBuV dB/m dB dB dBuV/m 39.162 43.30 13.34 0.51 29.91 27.24 46.178 47.33 13.48 0.57 29.85 31.53 158.112 44.09 8.58 1.33 29.15 24.85 277.094 41.41 12.59 1.70 28.49 27.21 365.539 38.89 14.48 2.00 28.63 26.74	ReadAntenna Cable Preamp Limit	ReadAntenna Cable Preamp Limit Over

Above 1 GHz Data

Note: The emissions above 1 GHz were not shown in report because of the emissions above 1 GHz just were noise floor.

7 Test Setup Photo

8 EUT Constructional Details

Reference to the test report No. CCIS14070062001

-----End of report-----