Машинное обучение (Machine Learning) Регрессионные модели

Уткин Л.В.

Содержание

- Линейные регрессионные модели
 - Метод наименьших квадратов
 - Гребневая регрессия, метод Лассо, эластичные сети
- Логистическая регрессия
- Нелинейная регрессия

Презентация является компиляцией и заимствованием материалов из замечательных курсов и презентаций по машинному обучению:

K.B. Воронцова, А.Г. Дьяконова, Н.Ю. Золотых, С.И. Николенко, Andrew Moore, Lior Rokach, Matthias Schmid, Rong Jin, Cheng Li, Luis F. Teixeira, Alexander Statnikov и других.

Регрессия

MY HOBBY: EXTRAPOLATING

https://www.explainxkcd.com/wiki/index.php/605: Extrapolating

Линейные регрессионные модели

Линейная регрессионная модель

- Обучающая выборка: $\mathbf{S} = \{(\mathbf{x}_1, \widehat{\mathbf{y}}_1), (\mathbf{x}_2, \widehat{\mathbf{y}}_2), ..., (\mathbf{x}_n, \widehat{\mathbf{y}}_n)\}, \ \mathbf{x}_i = (x_{i,1}, ..., x_{i,m})$
- ullet Линейная модель: $f(\mathbf{x},\mathbf{b}) = b_0 + b_1 X_1 + ... + b_m X_m$
- Оценки:

$$\widehat{y}_i = f(\mathbf{x}_i, \mathbf{b}) + \epsilon = b_0 + b_1 x_{i,1} + \dots + b_m x_{i,m} + \epsilon, \ \epsilon \sim \mathcal{N}(0, \sigma^2)$$

- Задача: найти "наилучшую" линейную функцию $f(\mathbf{x}, \mathbf{b})$, аппроксимирующую **S**
- ullet Задача: или найти ${f b} = (b_0, b_1, ..., b_m)^{
 m T}.$

Линейная регрессионная модель

y	=	$b_0 + b_1 X_1 + \ldots + b_m X_m$
Зависимая переменная		Свободные переменные
Dependent variable		Independent variables
Outcome variable		Predictor variables
Response variable		Explanatory variables

Линейная регрессионная модель - матричная форма

$$\hat{y}_{1} = b_{0} + b_{1}x_{1,1} + \dots + b_{m}x_{1,m} + \epsilon_{1}
\hat{y}_{2} = b_{0} + b_{1}x_{2,1} + \dots + b_{m}x_{2,m} + \epsilon_{2}
\vdots
\hat{y}_{n} = b_{0} + b_{1}x_{n,1} + \dots + b_{m}x_{n,m} + \epsilon_{n}$$

$$\Rightarrow \mathbf{Y} = \mathbf{X}\mathbf{b} + \epsilon$$

$$\mathbf{Y} = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_m \end{pmatrix}, \ \mathbf{X} = \begin{pmatrix} 1 & x_{1,1} & \cdots & x_{1,m} \\ 1 & x_{2,1} & & x_{2,m} \\ \dots & \dots & \dots & \dots \\ 1 & x_{n,1} & \cdots & x_{n,m} \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} b_0 \\ b_1 \\ \dots \\ b_m \end{pmatrix}$$

Линейная регрессионная модель

$$\widehat{y}_i = b_0 + b_1 x_{i,1} + \epsilon, \qquad \widehat{y}_i = b_0 + b_1 x_{i,1} + b_1 x_{i,2} + \epsilon$$

Какая модель лучше?

Линейная регрессионная модель

Линейная регрессионная модель - эмпирический функционал риска

$$E(\mathbf{b}) = \frac{1}{2N} \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i, \mathbf{b}))^2$$

$$= \frac{1}{2N} \sum_{i=1}^{n} (y_i - (b_0 + b_1 x_{i,1} + \dots + b_m x_{i,m}))^2 \to \min_{\mathbf{b}}$$

Матричная форма:

$$E(\mathbf{b}) = \frac{1}{2N} (\mathbf{Y} - \mathbf{X}\mathbf{b})^{\mathrm{T}} (\mathbf{Y} - \mathbf{X}\mathbf{b}) \rightarrow \min_{\mathbf{b}}$$

МНК - метод наименьших квадратов Как найти коэффициенты **b**? Производные по всем $b_0, b_1, ..., b_m$.

Решение задачи определения параметров

$$E(\mathbf{b}) = \frac{1}{2N} (\mathbf{Y} - \mathbf{X}\mathbf{b})^{\mathrm{T}} (\mathbf{Y} - \mathbf{X}\mathbf{b})
ightarrow \min_{\mathbf{b}}$$

$$\frac{\partial E(\mathbf{b})}{\partial b_k} = \sum_{i=1}^n (b_0 + b_1 x_{i,1} + ... + b_m x_{i,m} - y_i) x_{i,k}$$
$$= \left(\sum_{i=1}^n \mathbf{b} \mathbf{x}_i - \sum_{i=1}^n y_i x_{i,k}\right) = 0, \ k = 0, ..., m.$$

Здесь
$$\mathbf{x}_i = (1, x_{i,1}, ..., x_{i,m})$$

$$\mathbf{b} = \left(\mathbf{X}^{\mathrm{T}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{Y}$$

Некоторые проблемы с линейной регрессией

- Что делать, если размерность переменных больше, чем количество наблюдений?
- МНК не работает, так как система уравнений имеет бесконечное число решений
- Основная идея: ограничить множество решений путем ограничений на множество параметров **b**

Гребневая регрессия

- Пусть $f(\mathbf{x}, \mathbf{b}) = b_0 + b_1 x_1 + ... + b_m x_m = b_0 + \sum_{i=1}^m b_i x_i$
- ullet Ограничим возможные большие коэффициенты ${f b}$ условием $\sum_{i=1}^m b_i^2 < C$
- ullet $\sum_{i=1}^m b_i^2 = \|{f b}\|^2$ Эвклидова норма
- Гребневая регрессия (ridge regression):

$$\mathbf{b} = \arg\min_{\mathbf{b}} \sum_{i=1}^{n} \left(y_i - b_0 - \sum_{j=1}^{m} b_j x_{ij} \right)^2$$

при ограничении

$$\sum_{j=1}^m b_j^2 < C$$

Гребневая регрессия (двойственная форма)

 Используя метод множителей Лагранжа, получим эквивалентную задачу

$$\mathbf{b} = \arg\min_{\mathbf{b}} \sum_{i=1}^{n} \left(y_i - b_0 - \sum_{j=1}^{m} b_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{m} b_j^2$$

- Это задача квадратичной оптимизации
- ullet Второе слагаемое штраф, зависящий от $\| {f b} \|^2 = \sum_{j=1}^m b_j^2$

Решение задачи оптимизации

• Производная по **b** приравнивается 0:

$$\begin{aligned} & (\mathbf{Y} - \mathbf{X}\mathbf{b})^{\mathrm{T}}(\mathbf{Y} - \mathbf{X}\mathbf{b}) + \lambda \mathbf{b}^{\mathrm{T}}\mathbf{b} \\ & = \mathbf{b}^{\mathrm{T}}[\mathbf{X}^{\mathrm{T}}\mathbf{X} + \lambda I]\mathbf{b} - \mathbf{b}^{\mathrm{T}}\mathbf{X}^{\mathrm{T}}\mathbf{Y} - \mathbf{Y}^{\mathrm{T}}\mathbf{X}\mathbf{b} + \mathbf{Y}^{\mathrm{T}}\mathbf{Y} = 0 \end{aligned}$$

• Решение

$$\mathbf{b}_{\mathsf{гребH}} = (\mathbf{X}^{\mathrm{T}}\mathbf{X} {+} \lambda I)^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{Y}$$

Лассо (Tibshirani, 1996)

- Least Absolute Shrinkage and Selection Operator -LASSO
- Заменим Эвклидову норму $\|\mathbf{b}\|^2$ нормой L_1 :

$$\mathbf{b} = \arg\min_{\mathbf{b}} \sum_{i=1}^{n} \left(y_i - b_0 - \sum_{j=1}^{m} b_j x_{ij} \right)^2$$

при ограничении

$$\sum_{j=1}^m |b_j| < C$$

• Двойственная форма:

$$\mathbf{b} = \arg\min_{\mathbf{b}} \sum_{i=1}^{n} \left(y_i - b_0 - \sum_{i=1}^{m} b_j x_{ij} \right)^2 + \lambda \sum_{i=1}^{m} |b_j|$$

Лассо (двойственная форма)

• Задача оптимизации больше не квадратическая, но выпуклая

$$\mathbf{b} = \arg\min_{\mathbf{b}} \sum_{i=1}^{n} \left(y_i - b_0 - \sum_{j=1}^{m} b_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{m} |b_j|$$

- В отличие от гребневой регрессии, нет аналитического решения
- Efron et al. (2002) предложили эффективный алгоритм *lars* для решения
- Решение разреженное

Лассо и гребневая регрессия

Эластичные сети

- При помощи Лассо получаем разреженное решение
- При помощи гребневой регрессии имеем слишком "размазанное" решение
- А можно что-то промежуточное?
- Эластичные сети (elastic net):

$$\mathbf{b} = \arg\min_{\mathbf{b}} \sum_{i=1}^{n} \left(y_i - b_0 - \sum_{j=1}^{m} b_j x_{ij} \right)^2 + \lambda_1 \sum_{j=1}^{m} b_j^2 + \lambda_2 \sum_{j=1}^{m} |b_j|$$

Логистическая регрессия

Логистическая регрессия

- А можно ли использовать регрессию для классификации, т.е., когда $y \in \{0,1\}$?
- Если $\mathbf{x}_i \mathbf{b} \ge 0$, то $y_i = 1$, иначе $y_i = 0$.

Функционал риска в регрессии

• Используем в регрессии:

$$E(\mathbf{b}) = \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i, \mathbf{b}))^2$$

- Функционал риска может давать плохие результаты в классификации, т.к. чем больше отступ или ошибка $(y_i f(\mathbf{x}_i, \mathbf{b}))^2$, тем хуже, а в классификации положительный отступ лучше
- Попробуем логарифмический функционал риска

Логарифмический функционал риска

$$E(\mathbf{b}) = \sum_{i=1}^{n} \log_2 \left(1 + e^{y_i f(\mathbf{x}_i, \mathbf{b})} \right)$$

• Это эквивалентно замене линейной функции $f(\mathbf{x}, \mathbf{b})$ логистической или сигмоидной функцией (сигмоид)

$$g(z) = \frac{1}{1 + e^{-z}}, \quad z = \mathbf{b}^{\mathrm{T}}\mathbf{x}, \quad 0 \le g(z) \le 1$$

Сигмоид

$$g(z) = \frac{1}{1 + e^{-z}}$$

Классификация

Используя сигмоид, получим вероятности:

$$P(y = 0|\mathbf{x}, \mathbf{b}) = g(\mathbf{b}^{\mathrm{T}}\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{b}^{\mathrm{T}}\mathbf{x}}}$$

$$P(y = 1 | \mathbf{x}, \mathbf{b}) = 1 - g(\mathbf{b}^{\mathrm{T}} \mathbf{x}) = \frac{e^{-\mathbf{b}^{\mathrm{T}} \mathbf{x}}}{1 + e^{-\mathbf{b}^{\mathrm{T}} \mathbf{x}}}$$

Классификация

Параметры классификации

Метод максимума функции правдоподобия

$$L(y|\mathbf{x},\mathbf{b}) = \prod_{i=1}^{n} (1 - g(\mathbf{b}^{\mathrm{T}}\mathbf{x}_{i}))^{y_{i}} g(\mathbf{b}^{\mathrm{T}}\mathbf{x}_{i})^{(1-y_{i})} \to \max_{\mathbf{b}}$$

или логарифм

$$L(y|\mathbf{x}, \mathbf{b}) = \sum_{i=1}^{n} y_i \ln \left(1 - g(\mathbf{b}^{\mathrm{T}}\mathbf{x}_i)\right) + (1 - y_i) \ln(\mathbf{b}^{\mathrm{T}}\mathbf{x}_i)$$
$$= \sum_{i=1}^{n} y_i \mathbf{b}^{\mathrm{T}}\mathbf{x}_i - \ln \left(1 + e^{-\mathbf{b}^{\mathrm{T}}\mathbf{x}_i}\right) \to \max_{\mathbf{b}}$$

Параметры классификации

- Решение задачи оптимизации: частные производные по **b**.
- Проблема: нельзя получить решение в явном виде
- Но: функция производной является вогнутой
- Следовательно можно получить численное решение, например, при помощи градиентного спуска.

Логистическая регрессия со сглаживанием

 Целевая функция - отрицательная логарифмическая функция правдоподобия

$$\min_{\mathbf{b}} \left[-\frac{1}{n} \sum_{i=1}^n y_i \mathbf{b}^{\mathrm{T}} \mathbf{x}_i - \ln \left(1 + \mathrm{e}^{-\mathbf{b}^{\mathrm{T}} \mathbf{x}_i} \right) \right] + \lambda_1 \sum_{j=1}^m b_j^2 + \lambda_2 \sum_{j=1}^m |b_j|$$

Нелинейная регрессия

Полиномиальная регрессионная модель

$$f(x, \mathbf{a}) = a_0 + a_1 x + a_2 x^2 + ... + a_M x^M = \sum_{i=0}^{M} a_i x^i$$

Сумма квадратов отклонений

$$E(\mathbf{a}) = \frac{1}{2} \sum_{i=1}^{N} (f(x_i, \mathbf{a}) - y_i)^2$$

Полином 0-ой степени

Полином 1-ой степени

Полином 3-ей степени

Полином 9-ой степени

Зависимость ошибки от степени полинома (переобучение)

Среднеквадратическая ошибка $E_{RMS} = \sqrt{2E(\mathbf{a})/n}$

Регуляризация (сглаживание)

Штрафуем возможные большие коэффициенты полинома f(x,w)

$$E(w) = \frac{1}{2} \sum_{i=1}^{N} (f(x_i, w) - y_i)^2 + \frac{\lambda}{2} ||w||^2$$
$$= \frac{1}{2} \sum_{i=1}^{N} (f(x_i, w) - y_i)^2 + \frac{\lambda}{2} \sum_{k=1}^{m} w_k^2$$

Программная реализация в R

- https://cran.r-project.org/web/views/MachineLearning.html
- Package 'glmnet', практически все модели: гребневая регрессия, метод Лассо, эластичные сети, логистическая регрессия
- Package 'lars', метод Лассо
- Функция 'Im()', обычная линейная регрессия
- Функция 'polyGC()', полиномиальная регрессия

?