

COX PROPORTIONAL HAZARDS MODEL AND ITS CHARACTERISTICS

OUTLINE

- Introduction to Linear Regression
- The Formula for the Cox PH Model
- Example
- Why the Cox PH Model is Popular
- Computing the Hazard Ratio
- ML Estimation of the Cox PH Model
- Adjusted Survival Curves
- The Meaning of the PH Assumption
- Summary

INTRODUCTION TO LINEAR REGRESSION

March 11, 2011 Cox Proportional Hazards Model

Linear Regression

- Describes a relation between some explanatory (predictor) variables and a variable of special interest, called the response variable
- Example: response var.: apartment rent predictor vars.: size, location, furnishing,...
- Goals with regression
 - Understanding the relation between explanatory and response vars.
 - Prediction of the value of the response var. for new explanatory vars.

Simple Linear Regression

- Only 1 predictor
- Model:

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
, $i = 1,...,n$

• Where: Y is the response x is the predictor

 β_0 and β_1 regression coefficients

 ε is an error term, s.t. $E[\varepsilon_i] = 0$ for all i

$$Var(\varepsilon_i) = \sigma^2 \text{ for all } i$$

 $Cov(\varepsilon_i, \varepsilon_i) = 0 \text{ if } i \neq j$

Simple Linear Regression

- Parameter estimation
 - lacksquare Estimates of eta_0 and eta_1 denoted by \hateta_0 and \hateta_1
 - Determined by least square approach
 - Interpretation: x increases by 1 unit $\Rightarrow Y$ increases by β_1
- Inference on parameters
 - Is there a statistically significant relation btw. x and Y?
 - Is $\hat{\beta}_1$ signifficantly different from 0?
- Prediction

$$\hat{Y}^* = \hat{\beta}_0 + \hat{\beta}_1 x^*$$

Swiss Federal Institute of Technology Zurich

Multiple Linear Regression

- p predictors, p > 1
- Model:

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + \varepsilon_i$$
, $i = 1, \dots, n$

Where: Y is the response

 $x_1,...,x_p$ are predictors

 $\beta_0,...,\beta_p$ are regression coefficients

 ε is an error term, with the same assumptions as before

Multiple Linear Regression

- Parameters estimation
 - Done in the same way as before, but interpretation of coefficients slightly different: $\hat{\beta}_j$ is the increase in Y if the predictor x_j increases by 1 unit and all other predictors are held constant

- Inference & prediction
 - Analogous to the case of simple linear regression

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Can a Multiple Regression be Substituted by Many Simple Regressions?

Consider the following models:

(1)
$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \varepsilon_i$$

(2)
$$Y_i = \beta_0' + \beta_1' x_{i1} + \varepsilon_i'$$

(3)
$$Y_i = \beta_0'' + \beta_2'' x_{i2} + \varepsilon_i''$$

• Assume x_1 and x_2 are correlated and $\hat{\beta}_1$ and $\hat{\beta}_2$ are significantly different from zero. Then if we use model (2), a part of the effect of x_2 will be mistakenly attributed to x_1 . Hence $\hat{\beta}_1 \neq \hat{\beta}_1'$ in general. Similarly, $\hat{\beta}_2 \neq \hat{\beta}_2''$.

Confounding and Interaction

Confounding:

- Extraneous variable correlated with both dependent and independent variable
- May lead to wrong conclusions about causal relationship of independent and dependent variable

Interaction:

- Independent variables combine to affect a dependent variable
- Not to be confused with correlation

Example of Confounding

Education

Example of Interaction

Precision gain

- Assume a multiple regression with two regressors X₁ and X₂
- X_1 is the variable of interest and X_2 is not statistically significant
- Yet confidence interval for X_1 is narrower when X_2 is present
- We prefer to keep X₂ in the model to have a better estimate for X₁

THE FORMULA FOR THE COX PH MODEL

March 11, 2011 Cox Proportional Hazards Model

The Formula for the Cox PH Model

The formula for the Cox PH model is

$$h(t, \mathbf{X}) = h_0(t) \exp\left(\sum_{i=1}^p \beta_i X_i\right)$$

where

$$\mathbf{X} = \left(X_1, X_2, \dots, X_p\right)$$

are the explanatory/predictor variables.

Explanation of the Formula

$$h(t, \mathbf{X}) = h_0(t) \exp\left(\sum_{i=1}^p \beta_i X_i\right)$$

- Product of two quantities:
 - $h_0(t)$ is called the baseline hazard
 - Exponential of the sum of β_i and X_i
- X 's zero (no X 's): reduces to baseline hazard
- Baseline hazard is an unspecified function
 - Semi-parametric model
 - Reason for Cox model being popular

Swiss Federal Institute of Technology Zurich

Parametric Models

- Functional form is completely specified
- Example: Weibull

$$h(t, \mathbf{X}) = \lambda p t^{p-1}$$

where

and

$$\lambda = \exp\left(\sum_{i=1}^{p} \beta_i X_i\right)$$

$$h_0(t) = pt^{p-1}$$

• Parameters: p, β_i (more in chapter 7)

Important Properties of the Cox PH Formula

$$h(t, \mathbf{X}) = h_0(t) \exp\left(\sum_{i=1}^p \beta_i X_i\right)$$

- The baseline hazard $h_0(t)$ does not depend on \mathbf{X} but only on t .
- The exponential involves the X 's but not t.
- The X are time-independent
- Proportional Hazard assumption follows

Time Independent Variables

- Not changing over time
 - Example: sex
- Values are set at time t = 0
- Variables unlikely to change are often considered time independent
 - Example: smoking status
- Also other variables are sometimes treated as time independent
 - Examples: age, weight

Extension to Time Dependent X

- Doesn't satisfy PH assumption
- Need extended Cox model (chapter 6)

NUMERICAL EXAMPLE

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Example: Data

- T = weeks until going out of remission
- X_1 = group status
- $X_2 = \log WBC$ (confounder, effect modifier)

Interaction?

• $X_3 = X_1 \times X_2 = \text{group status} \times \text{log WBC}$

Same dataset for each model

n = 42 subjects

T = time (weeks) until out of remission

Model 1: Rx only

Model 2: *Rx* and log WBC

Model 3: Rx, log WBC, and $Rx \times \log WBC$

EXAMPLE

T 1			-
Δ11	zamia	Remission	Data
LCU	nei illa	IXCIII I SSIVII	Data

Group 3	1(n=21)	Group	2(n=21)
t(weeks)	log WBC	t(weeks)	log WBC
6	2.31	1	2.80
6	4.06	1	5.00
6	3.28	2	4.91
7	4.43	2	4.48
10	2.96	3	4.01
13	2.88	4	4.36
16	3.60	4	2.42
22	2.32	5	3.49
23	2.57	5	3.97
6+	3.20	8	3.52
9+	2.80	8	3.05
10+	2.70	8	2.32
11+	2.60	8	3.26
17+	2.16	11	3.49
19+	2.05	11	2.12
20+	2.01	12	1.50
25+	1.78	12	3.06
32+	2.20	15	2.30
32+	2.53	17	2.95
34+	1.47	22	2.73
35+	1.45	23	1.97
- domotoo	aamaamad a'	baamratian	

⁺ denotes censored observation

Example: R Output Model 1

```
Call:
coxph(formula = Surv(time, event) ~ Rx, data = Data, method = "breslow")
```

```
n = 42
       coef exp(coef)
                            se(coef) z 	 Pr(>|z|)
                            0.4096
       1.5092 4.5231
                                           3.685 0.000229 ***
Rx
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
       exp(coef) exp(-coef) lower .95
                                               upper .95
       4.523
                     0.2211
                                   2.027
                                                  10.09
Rx
Rsquare= 0.304 (max possible= 0.989)
Likelihood ratio test = 15.21 on 1 df, p=9.615e-05
wald test
          = 13.58 on 1 df, p=0.0002288
Score (logrank) test = 15.93 on 1 df, p=6.571e-05
> model1$loglik[2]
[1] -86.37962
```


Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

24

Example: R Output Model 3

```
call:
coxph(formula = Surv(time, event) ~ Rx * logWBC, data = Data, method =
"breslow")
```

```
n = 42
                     coef
                                exp(coef) se(coef) z
                                                                 Pr(>|z|)
                     2.3549
                                10.5375 1.6810
                                                      1.401
                                                                 0.161
Rx
logwbc
                                6.0665 0.4467
                                                      4.036
                                                                5.45e-05 ***
                     1.8028
                                           0.5197
Rx:logWBC
                     -0.3422
                                0.7102
                                                      -0.658
                                                                 0.510
                                                               P = 0.510: -0.342
                                                                            =-0.66 = Z Wald statistic
           exp(coef) exp(-coef) lower .95 upper .95
                                                               LR statistic: uses Log likelihood = -72.066
           10.5375
                       0.0949
                                   0.3907
                                               284,201
Rx
                                                               -2 \ln L (\log likelihood statistic) = -2 \times (-72.066)
logWBC
           6.0665
                       0.1648 2.5275
                                               14.561
                                                               = 144.132
Rx:logWBC 0.7102
                       1.4080 0.2564
                                               1.967
                                                               LR (interaction in model 3)
Rsquare= 0.648 (max possible= 0.989 )
                                                               = -2 \ln L_{\text{model } 2} - (-2 \ln L_{\text{model } 3})
Likelihood ratio test= 43.8 on 3 df,
                                               p=1.633e-09
                                                               =(-2\times-72.280)-(-2\times-72.066)
Wald test
                        = 30.6 on 3 df.
                                              p=1.030e-06
                                                               = 144.550 - 144.132 = 0.428
Score (logrank) test = 45.9 on 3 df.
                                               p=5.95e-10
                                                               (LR is \chi^2 with 1 d.f. under H_0:
                                                               no interaction.)
> model3$loglik[2]
                                                               0.40 < P < 0.50, not significant
[1] +72.06572
                                                               Wald test P = 0.510
```

Swiss Federal Institute of Technology Zurich

Example: R Output Model 2

```
Call:
coxph(formula = Surv(time, event) ~ Rx + logWBC, data = Data, method =
"breslow")
```

```
n = 42
         coef
                  \exp(\operatorname{coef})\operatorname{se}(\operatorname{coef})z \Pr(>|z|)
                  3.6476 0.4221 3.066
         1.2941
                                              0.00217 **
Rx
                                              1.11e-06 ***
logWBC
         1.6043
                  4.9746
                          0.3293
                                     4.872
         exp(coef) exp(-coef) lower .95 upper .95
         3.648
                    0.2742
                                1.595
Rx
                                           8.343
         4.975
                    0.2010
                                2,609
                                           9.486
logWBC
Rsquare= 0.644 (max possible= 0.989)
Likelihood ratio test= 43.41 on 2 df.
                                            p=3.744e-10
wald test
                      = 31.78 on 2 df.
                                            p=1.254e-07
Score (logrank) test = 42.94 on 2 df, p=4.743e-10
> model2$loglik[2]
\lceil 1 \rceil - 72.27926
```


Example: Continued

Reasons to include logWBC in the model

Confounding: crude versus adjusted HR are meaningfully different

→ must control for logWBC

Precision of confidence intervals: even if no confounding we might prefer to keep logWBC if CI is smaller

Model 1:				
	Coef.	Std. Err.	p> z	Haz. Ratio
Rx	1.509	0.410	0.000	4.523
No. of subject	cts = 42 L	og likelihoo	d = -86.	380
Model 2:				
	Coef.	Std. Err.	p > z	Haz. Ratio
\overline{Rx}	Coef. 1.294	Std. Err. 0.422	p > z	Haz. Ratio 3.648
Rx log WBC				

	[95% Conf. Interval]
Rx model 1	2.027 10.094
	width = 8.067
	111 4 7 40
	width = 6.748
$Rx \mod 2$	1.595 8.343
Rx model 2 log WBC	

WHY IS THE COX PH MODEL POPULAR?

March 11, 2011 Cox Proportional Hazards Model 27

Reasons for the Popularity of the Model

- Robustness
 - Cox model is a "safe" choice of a model in many situations
- Because of the model form:

$$h(t, \mathbf{X}) = \underbrace{h_0(t)}_{\geq 0} \times \exp\left(\sum_{i=1}^p \beta_i X_i\right)$$

the estimated hazards are always non-negative.

• Even though $h_0(t)$ is unspecified we can estimate β_i 's and thus compute the hazard ratio.

Reasons for the Popularity of the Model

- $h(t, \mathbf{X})$ and $S(t, \mathbf{X})$ can be estimated for a Cox model using a minimum of assumptions.
- In survival analysis the Cox model is preferred to a logistic model, since the latter one ignores survival times and censoring information.

COMPUTING THE HAZARD RATIO

March 11, 2011 Cox Proportional Hazards Model 30

Swiss Federal Institute of Technology Zurich

31

Definition of the Hazard Ratio

The Hazard Ratio is defined as

$$HR = \frac{\hat{h}(t, \mathbf{X}^*)}{\hat{h}(t, \mathbf{X})}$$

where

$$\mathbf{X}^* = (X_1^*, X_2^*, \dots, X_p^*)$$

and

$$\mathbf{X} = \left(X_1, X_2, \dots, X_p\right)$$

Interpretation of the Hazard Ratio

- Hazard for one individual divided by the hazard for a different individual
- For sake of interpretation we usually want $HR \ge 1$ i.e.

$$\hat{h}(t, \mathbf{X}^*) \geq \hat{h}(t, \mathbf{X})$$

- We thus typically take
 - X*: group with larger hazard (e.g. placebo group)
 - X : group with smaller hazard (e.g. treatment group)

Swiss Federal Institute of Technology Zurich

Simplification of the Hazard Ratio

Baseline hazard cancels out

$$HR = \frac{\hat{h}(t, \mathbf{X}^*)}{\hat{h}(t, \mathbf{X})} = \frac{\hat{h}_0(t) \exp\left(\sum_{i=1}^p \hat{\beta}_i X_i^*\right)}{\hat{h}_0(t) \exp\left(\sum_{i=1}^p \hat{\beta}_i X_i\right)} = \exp\left(\sum_{i=1}^p \hat{\beta}_i \left(X_i^* - X_i\right)\right)$$

Example: Remission Data, Model 1

- Only one variable of interest: exposure status
 - Placebo group: $X_1^* = 1$
 - Treatment group: $X_1 = 0$
- Hazard Ratio simplifies to

$$HR = \exp\left(\hat{\beta}_1 \left(X_1^* - X_1\right)\right) = e^{\hat{\beta}_1}$$

• Since $\hat{\beta}_1 = 1.509$

we have HR = 4.523

Swiss Federal Institute of Technology Zurich

Example: Remission Data, Model 2

- Two variables of interest: exposure status and logWBC
 - Placebo group: $X_1^* = 1$
 - Treatment group: $X_1 = 0$
 - logWBC is held constant
- No product terms

$$HR = \exp(\hat{\beta}_1(X_1^* - X_1) + \hat{\beta}_2(X_2^* - X_2))$$

$$= \exp(\hat{\beta}_1(1 - 0) + \hat{\beta}_2(\log WBC - \log WBC))$$

$$= e^{\hat{\beta}_1}$$

Example: Remission Data, Model 2

• Since $\hat{\beta}_1 = 1.294$

we have HR = 3.648

- Hazard Ratio is independent of logWBC
- Hazard Ratio different from model 1 because estimates change

Example: Remission Data, Model 3

- Three variables of interest
- Product terms

$$HR = \exp\left(\sum_{i=1}^{3} \hat{\beta}_{i} \left(X_{i}^{*} - X_{i}\right)\right)$$

$$= \exp\left(\hat{\beta}_{1} - \hat{\beta}_{3} \left(1 \times \log WBC - 0 \times \log WBC\right)\right)$$

$$= \exp\left(\hat{\beta}_{1} - \hat{\beta}_{3} \log WBC\right)$$

Hazard Ratio depends on logWBC

ML ESTIMATION OF THE COX PH MODEL

March 11, 2011 Cox Proportional Hazards Model 38

Full Likelihood and Baseline Hazard Estimation

The full Likelihood can be written in the following form

$$L_{n}(F) = \prod_{j=1}^{n} f(T_{j})^{\delta_{j}} (1 - F(T_{j}))^{1 - \delta_{j}}$$

$$= \prod_{j=1}^{n} h(T_{j} | X_{j})^{\delta_{j}} S(T_{j} | X_{j}) =$$

$$= \prod_{j=1}^{n} h_{0}(T_{j})^{\delta_{j}} \exp(\beta' X_{j})^{\delta_{j}} \exp(-H_{0}(T_{j})) \exp(\beta' X_{j})$$

This allows to derive estimator for the baseline hazard

$$\hat{h}_{0i} = \frac{1}{\sum_{j \in R(t_i)} \exp(\beta' X_j)}$$

$$\hat{H}_0(t) = \sum_{t_i \le t} \frac{1}{\sum_{j \in R(t_i)} \exp(\beta' X_j)}$$

The Cox Likelihood

- Assume k different failure times $t_{(1)} < t_{(2)} < ... < t_{(k)}$ s.t. there is exactly one failure at each $t_{(i)}$, i = 1,...,k.
- Let [i] denote the subject with an event at time $t_{(i)}$ and R(t) the risk set at time t
- The Cox likelihood is given by

$$L(\boldsymbol{\beta}) = \prod_{j=1}^{k} \frac{\exp\left(\sum_{i=1}^{p} \beta_{i} X_{[j]i}\right)}{\sum_{l \in R(t_{(j)})} \exp\left(\sum_{i=1}^{p} \beta_{i} X_{li}\right)}$$

The Cox Likelihood

- L is also called "partial" likelihood
 - Considers probabilities for subject who fail
 - Does not consider probabilities for censored subjects explicitly
 - Censored subjects are taken into account in the risk set
- Estimates of β_i 's denoted by $\hat{\beta}_i$'s

•
$$\hat{\beta}_i$$
 solves $\frac{\partial \log L}{\partial \beta_i} = 0$, $i = 1,..., p$

• i.e. $\hat{\beta}_i$'s maximize the Cox likelihood

Properties of the Estimates

- $\hat{\beta} \xrightarrow{p} \beta$ as $k \to \infty$
- $Var(\hat{\beta}) = I^{-1}$ where *I* is the Fisher information matrix given by

$$I_{i,j} = E\left[\left(\frac{\partial}{\partial \beta_i} \log L(\boldsymbol{\beta})\right) \times \left(\frac{\partial}{\partial \beta_j} \log L(\boldsymbol{\beta})\right)\right]$$

• $\hat{\beta}$ is asymptotically normal

The Cox Likelihood: Example

- Gary, Larry, Barry have lottery tickets
- Winning tickets chosen at times t₁, t₂, . . .
- Each person ultimately chosen
- Can be chosen only once
- What is the probability that the order chosen is as follows: Barry, Gary, Larry?

Answer:

Probability =
$$\frac{1}{3} \times \frac{1}{2} \times \frac{1}{1} = \frac{1}{6}$$
Barry Gary Larry

The Cox Likelihood: Example

- New scenario: Barry has 4 tickets, Gary has 1 ticket, Larry has 2 tickets
- What is the probability that the order chosen is again: Barry, Gary, Larry?

Answer: Probability =
$$\frac{4}{7} \times \frac{1}{3} \times \frac{2}{2} = \frac{4}{21}$$

- Subject's number of tickets affects probability
- For Cox model subject's pattern of covariates affects likelihood of ordered events

The Cox Likelihood: Example

Data

ID	TIME	STATUS	SMOKE
Barry	2	1	1
Gary	3	1	0
Harry	5	0	0
Larry	8	1	1

• Cox PH Model $h(t) = h_0(t)e^{\beta_1 SMOKE}$

$$h(t) = h_0(t)e^{\beta_1 SMOKE}$$

ID	Hazard
Barry Gary Harry	$h_0(t)e^{\beta_1}$ $h_0(t)e^0$ $h_0(t)e^0$
Larry	$h_0(t)e^{\beta_1}$

The Cox Likelihood: Example

The likelihood

$$L = \left[\frac{h_0(t)e^{\beta_1}}{h_0(t)e^{\beta_1} + h_0(t)e^0 + h_0(t)e^0 + h_0(t)e^{\beta_1}} \right]$$

$$\times \left[\frac{h_0(t)e^0}{h_0(t)e^0 + h_0(t)e^0 + h_0(t)e^{\beta_1}} \right] \times \left[\frac{h_0(t)e^{\beta_1}}{h_0(t)e^{\beta_1}} \right]$$

- The baseline hazard cancels out and does not play any role in estimation
- Likelihood determined only by the order of events

ADJUSTED SURVIVAL CURVES USING THE COX PH MODEL

Estimation of Survival Curves

- No Model: Kaplan-Meier method (chapter 2)
- Cox model: adjusted survival curves
 - Adjust for explanatory variables used as predictors
 - Like KM curves plotted as step functions

Converting Hazard Functions to Survival Functions

Hazard Function:

$$h(t, \mathbf{X}) = h_0(t) \exp\left(\sum_{i=1}^p \beta_i X_i\right)$$

Survival Function:

$$S(t, \mathbf{X}) = \left[S_0(t) \right]^{\exp\left(\sum_{i=1}^p \beta_i X_i\right)}$$

Estimated Survival Function

Estimated survival function:

$$\hat{S}(t, \mathbf{X}) = \left[\hat{S}_{0}(t)\right]^{\exp\left(\sum_{i=1}^{p} \hat{\beta}_{i} X_{i}\right)}$$

• Estimated quantities: $\hat{S}_0(t), \hat{\beta}_i$

Example: Remission Data

```
### R Code
## Read the data
## Fit model 2 and plot
model2 <- coxph(Surv(time, event)</pre>
   \sim Rx + logWBC,
   method="breslow", data=Data)
plot(survfit(model2,
   newdata=data.frame(Rx=c(0,1),
   logwbc=rep(mean(logwbc),2))),
   lty=c(1,2), xlab="Time",
   ylab="Estimated S(t)",
   main="Adjusted Survival
   Curves")
```


MEANING OF THE PROPORTIONAL HAZARDS ASSUMPTION

March 11, 2011 Cox Proportional Hazards Model 52

Meaning of the PH Assumption

 Remember that the PH assumption requires that the HR is constant over time

$$HR = \exp\left(\sum_{i=1}^{p} \hat{\beta}_{i} \left(X_{i}^{*} - X_{i}\right)\right)$$

Meaning of the PH Assumption: Example

- A study in which cancer patients are randomized to either surgery or radiation therapy without surgery
- (0,1) exposure variable denoting surgery status, with 0 if a patient receives surgery and 1 if not
- exposure variable is the only variable of interest
- Is this model appropriate?
- No. Why?

Meaning of the PH Assumption: Example

- High risk for complications from surgery or perhaps even death early in the recovery process
- We expect to see hazard functions for each group that cross
- It is therefore inappropriate to use a CoxPH model for this situation

General rule: If the hazards cross, then a Cox PH model is not appropriate

Meaning of the PH assumption: What if Cox PH Model is Inappropriate?

- Start analysis using data after HR curves cross
- Fit PH model data before HR crossing and after crossing; get HR estimates (before crossing) and HR estimates (after crossing)
- Stratify by exposure (use KM curves)
- Use extended Cox model
- More on this in chapters 5 and 6

- Introduction to Linear Regression
 - Simple vs. multiple
 - Confounding and interaction
 - Precision gain
- The Formula for the Cox PH Model

Formula:
$$h(t, \mathbf{X}) = h_0(t) \exp\left(\sum_{i=1}^p \beta_i X_i\right)$$

- Semi-parametric model
- Leukemia example

- Why is the Model Popular?
 - Robustness
 - Gives non-negative hazards
 - Can calculate hazard ratio
 - Can estimate $h(t, \mathbf{X})$ and $S(t, \mathbf{X})$
- Computing the Hazard Ratio

Formula:
$$\frac{h(t, \mathbf{X}^*)}{h(t, \mathbf{X})} = \exp\left[\sum_{i=1}^p \hat{\beta}_i (X_i^* - X_i)\right]$$

- ML Estimation for Cox PH Model
 - Full likelihood
 - Partial likelihood
 - Example
- Adjusted Survival Curves Using the Cox PH Model
 - Survival curve formula obtained from hazard function
 - $S(t, \mathbf{X}) = [S_0(t)]^{\exp(\sum \beta_i X_i)}$
 - To get adjusted curve usually use mean values for the covariates

- The Meaning of the PH Assumptions
 - Hazard ratio independent of time
 - Baseline hazard not involved in the HR formula
 - An example when PH assumption does not hold (crossing hazards)

References

- [1] D. G. Kleinbaum & M. Klein, Survival Analysis A Self-Learning Text. Springer, Second Edition, 2005.
- [2] D. R. Cox, Regression Models and Life-Tables. Imperial College, London, 1972.
- [3] J. Fox, Applied Regression Analysis, Linear Models, and Related Methods.
 Sage Publications, 1997.
- [4] M. Dettling, Lecture Notes on Applied Statistical Regression. ETH Zurich, 2010. Available at http://stat.ethz.ch/education/semesters/as2010/asr/ASR-HS10-Scriptum.pdf
- [5] J. P. Klein & M. L. Moeschberger, Survival Analysis: Techniques for Censored and Truncated Data. Springer, Second Edition, 2003.