Modelagem Matemática

Formulação de problemas de otimização

Prof. Marcelo de Souza

55MQU – Métodos Quantitativos Universidade do Estado de Santa Catarina

Processo de formulação de problemas

Etapas

- 1. Definir as variáveis de decisão;
 - aquelas cujos valores serão determinados pela solução.
- 2. Determinar a função objetivo;
 - está relacionada com o que se busca (maior lucro, menor custo, menor tempo, etc.).
- 3. Definir o conjunto de restrições.
 - definem soluções viáveis e inviáveis;
 - ▶ não esquecer das restrições de não negatividade (i.e. $x_i \ge 0$).

lodelagem Matemática

Processo de formulação de problemas

Etapas

- 1. Definir as variáveis de decisão;
 - aquelas cujos valores serão determinados pela solução.
- 2. Determinar a função objetivo;
 - está relacionada com o que se busca (maior lucro, menor custo, menor tempo, etc.).
- 3. Definir o conjunto de restrições.
 - definem soluções viáveis e inviáveis;
 - ightharpoonup não esquecer das restrições de não negatividade (i.e. $x_i\geqslant 0$).

Alguns detalhes

- As restrições são definidas por equações e/ou inequações;
- ► Mantenha as variáveis do lado direito, e as constantes do lado esquerdo;
- Escreva as restrições respeitando a ordem das variáveis, i.e. x_i antes de x_{i+1} .

1odelagem Matemática

Reddy Mikks (mix de produtos) – enunciado

A Reddy Mikks produz tintas para interiores e exteriores com base em duas matérias-primas, M1 e M2. A tabela abaixo apresenta os dados básicos do problema.

	Tonelada de matéria-pri		
	Tinta para exteriores	Tinta para interiores	Máximo diário
Matéria-prima <i>M1</i>	6	4	24
Matéria-prima <i>M2</i>	1	2	6
Lucro/tonelada (\$1000)	5	4	

Uma pesquisa de mercado indica que a demanda diária de tintas para interiores não pode ultrapassar a de tintas para exteriores por mais de 1 t. Além disso, a demanda máxima diária de tinta para interiores é de 2 t.

A Reddy Mikks quer determinar o mix ótimo (o melhor) de produtos de tintas para interiores e exteriores que maximize o lucro total diário.

odelagem Matemática

Reddy Mikks (mix de produtos) – processo de formulação

Variáveis de decisão:

- $ightharpoonup x_1$: produção de tinta para **exteriores** (em toneladas);
- $ightharpoonup x_2$: produção de tinta para **interiores** (em toneladas).

Modelagem Matemática

Reddy Mikks (mix de produtos) - processo de formulação

Variáveis de decisão:

- \triangleright x_1 : produção de tinta para **exteriores** (em toneladas);
- $ightharpoonup x_2$: produção de tinta para **interiores** (em toneladas).

Função objetivo:

- - lucro total z: 5/t para x_1 t de tinta de exteriores e 4/t para x_2 t de tinta de interiores.

Reddy Mikks (mix de produtos) - processo de formulação

Variáveis de decisão:

- \triangleright x_1 : produção de tinta para **exteriores** (em toneladas);
- $ightharpoonup x_2$: produção de tinta para **interiores** (em toneladas).

Função objetivo:

- - lucro total z: 5/t para $x_1 t$ de tinta de exteriores e 4/t para $x_2 t$ de tinta de interiores.

Restrições:

- 1. Limite máximo de matéria-prima M1: $6x_1 + 4x_2 \le 24$
- 2. Limite máximo de matéria-prima M2: $x_1 + 2x_2 \leqslant 6$
- 3. Relação entre a produção dos tipos de tinta: $-x_1 + x_2 \leqslant 1$
- 4. Produção máxima de tinta para interiores: $x_2 \le 2$
- 5. Restrições de não-negatividade: $x_1, x_2 \ge 0$

Reddy Mikks (mix de produtos) – modelo/programa linear

$$\label{eq:continuous_problem} \begin{array}{ll} \text{maximiza} & z = 5x_1 + 4x_2 \\ \text{sujeito a} & 6x_1 + 4x_2 \leqslant 24 \\ & x_1 + 2x_2 \leqslant 6 \\ & - x_1 + x_2 \leqslant 1 \\ & x_2 \leqslant 2 \\ & x_1, x_2 \geqslant 0 \end{array}$$

Ozark Farms (problema da dieta) – enunciado

A Ozark Farms usa no mínimo 800 kg de ração especial por dia. Essa ração especial é uma mistura de milho e soja com as composições mostradas na tabela abaixo.

	kg por kg d	le ração	
Ração	Proteína	Fibra	Custo (\$/kg)
Milho Soja	0,09 0,60	0,02 0,06	0,30 0,90

Os requisitos nutricionais da ração especial são de no mínimo 30% de proteína e de no máximo 5% de fibra. A Ozark Farms quer determinar a mistura que gera a ração de mínimo custo diário.

Iodelagem Matemática

Ozark Farms (problema da dieta) – processo de formulação

Variáveis de decisão:

- $ightharpoonup x_1$: kg de **milho** na mistura;
- $ightharpoonup x_2$: kg de **soja** na mistura.

Modelagem Matemática

Ozark Farms (problema da dieta) – processo de formulação

Variáveis de decisão:

- \triangleright x_1 : kg de **milho** na mistura;
- $ightharpoonup x_2$: kg de **soja** na mistura.

Função objetivo:

- **minimiza** $z = 0.3x_1 + 0.9x_2$
 - ightharpoonup custo total z: \$0,30/kg para x_1 kg de milho e \$0,90/kg para x_2 kg de soja.

Ozark Farms (problema da dieta) – processo de formulação

Variáveis de decisão:

- $ightharpoonup x_1$: kg de **milho** na mistura;
- x₂: kg de soja na mistura.

Função objetivo:

- **minimiza** $z = 0.3x_1 + 0.9x_2$
 - custo total z: 0.30/kg para x_1 kg de milho e 0.90/kg para x_2 kg de soja.

Restrições:

- 1. Produção mínima: $x_1 + x_2 \ge 800$
- 2. Requisito de proteína: $0.09x_1 + 0.6x_2 \geqslant 0.3(x_1 + x_2)$ \therefore $0.21x_1 0.3x_2 \leqslant 0$
- 3. Requisito de fibra: $0.02x_1 + 0.06x_2 \le 0.05(x_1 + x_2)$ $\therefore 0.03x_1 0.01x_2 \ge 0$
- 4. Restrições de não-negatividade: $x_1, x_2 \geqslant 0$

Ozark Farms (problema da dieta) – modelo/programa linear

$$\begin{array}{ll} \text{minimiza} & z = 0.3x_1 + 0.9x_2 \\ \text{sujeito a} & x_1 + x_2 \geqslant 800 \\ & 0.21x_1 - 0.3x_2 \leqslant 0 \\ & 0.03x_1 - 0.01x_2 \geqslant 0 \\ & x_1, x_2 \geqslant 0 \end{array}$$

