

Intelligence Artificielle pour les systèmes autonomes (IAA)

Vehicle dynamics and control

Prof. Yann Thoma - Prof. Marina Zapater

Février 2024

Basé sur le cours du Prof. A. Geiger

TE1 – QCM et questions théoriques

Contenu et préparation du TE du 23.4.2023

- → Contenu:
 - Chapitres de théorie du 01 au 05 (aujourd'hui) y compris.
- → Déroulement:
 - QCM
 - Questions théoriques générales
- → Préparation:
 - Slides du cours avec vidéos et liens fournis
 - Vos notes prises durant les discussions des séances de cours
- → Pendant le test:
 - Une feuille de notes manuscrites recto-verso

Summary

Today's lesson

\rightarrow Vehicle dynamics

- Kinematics
- Bicycle model
- Tires and dynamic bicycle model

→ Vehicle control

- Controller basics
- Types of controllers

Importance of vehicle dynamics

Enabling accurate control

- → **Kinematics**: geometric description of motion in space (based on reference frames and coordinate systems)
- → Kinetics (or dynamics): describe the laws of the causes of motion (forces/moments in Newton's laws)

Position, velocity and acceleration

- → **Inertial frame:** fixed to the earth
- → Vehicle frame: attached to the vehicle.

- → **Position** is given by 3 coordinates
- → Vehicle **velocity** and **acceleration** are the first and second order derivatives of position

$$\mathbf{r}_{P}(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} \qquad \mathbf{v}_{P}(t) = \dot{\mathbf{r}}_{P}(t) = \begin{pmatrix} \dot{x}(t) \\ \dot{y}(t) \\ \dot{z}(t) \end{pmatrix} \qquad \mathbf{a}_{P}(t) = \ddot{\mathbf{r}}_{P}(t) = \begin{pmatrix} \ddot{x}(t) \\ \ddot{y}(t) \\ \ddot{z}(t) \end{pmatrix}$$

Relation between inertial and vehicle frame

Yaw, pitch and roll

→ Angles in between inertial and vehicle frame define the yaw, pitch and roll

 \rightarrow For an airplane:

Constraints on position and velocity

Holonomic vs Non-holonomic constraints

Holonomic constraints

- → Constraints position (config) space
- → Can freely move in any direction
- → Controllable degrees of freedom equal the total degrees of freedom
- \rightarrow A constraint is defined as f(x,y,z)=0

Example: a 3D-particle in which z=0

Non-holonomic constraints

- → Constraints velocity space (i.e. the derivative of position)
- → Cannot freely move in any direction
- → Controllable degrees of freedom <u>less</u> than the total degrees of freedom
- \rightarrow Constraint cannot be defined as f(x,y,z)=0

Kinematics of a rigid body

"Cars" are not just one point P, they are a collection of points

- → A rigid body refers to an infinite collection of small mass points rigidly connected
- → Its motion can be described by an arbitrary reference point (C), plus the relative motion of other points P with respect to C
 - C: reference point fixed to the rigid body
 - P: arbitraty point of the rigid body
 - w: angular velocity of the rigid body
- → A rigid body has 6 Degrees-of-Freedom (DoF)
 - 3 positions, 3 rotations

Holonomic vs. Non-holonomic systems

- → A robot can be subject to both holonomic and non-holonomic constraints
- → A car (rigid body in 3D) is kept on the ground by 3 holonomic constraints
- → One additional non-holonomic constraint prevents sideways sliding

Rigid body motion

How can we estimate the motion of the car?

- → Condition #1 : Different points of the body move along different circular trajectories
- → Condition #2 : Rear wheels do not steer
 - Slip angle: angle between the velocity of the wheel (trajectory) and the wheel orientation
- → Simplification: Kinematic bicycle model
 - Two rear weels and two front wheens are combined into one (imaginary) real wheel and one front wheel.

Kinematic Bicycle model

Principle, model and motion equations

$$X_{t+1} = X_t + v\cos(\psi)\,\Delta t$$

$$Y_{t+1} = Y_t + v\sin(\psi)\,\Delta t$$

$$\psi_{t+1} = \psi_t + \frac{v\delta}{\ell_f + \ell_r} \, \Delta t$$

What about tires?

Slippery terrains

- → Tire models are necessary
- → They describe lateral and longitudinal forces on the tires

→ Longitudinal force:

- As soon as the wheel is driven, tire tread blocks adhere to the ground, deform and slip when loosing contact
- If the driving force increases beyond static friction, the blocks slip earlier
- If the tire tread blocks start sliding at the beginning, only friction can be applied

Tread block model

A simple qualitative description

- → Slippage: difference between surface speed of the wheel and vehicle speed
 - Force grows linearly with slippage at the beginning
 - When large slippage leads to reduction of F (sliding friction < static friction)
- → In slippery terrain (low friction) the maximum reduces due to a decreased static friction
 - Tread blocks start sliding earlier
- → Lateral and longitudinal forces should not exceed maximum friction force

Dynamic bicycle model

Taking into account tire forces and wheel slip

- → Assumes that the vehicle motion is restricted to the X/Y plane
- → The vehicle is a rigid body
- → Lateral tire forces are considered, generated by a linear tile model
- → It also considers slipping of tires

Summary

Today's lesson

- → Vehicle dynamics
 - Kinematics
 - Bicycle model
 - Tires and dynamic bicycle model

→ Vehicle control

- Controller basics
- Types of controllers

Approaches to self-driving

Require vehicle control

Vehicle control

A brief history of the controllers already deployed in today's cars

- → 1926: Servo braking (Pierce-Arrow)
- → 1951: Servo steering (Chrysler)
- → 1958: Cruise control (Chrysler)
- → 1978: Anti-lock braking system ABS (Bosch)
- → 1986: Traction control system ASR (Bosch)
- → 1995: Electronic stability program ESP (Bosch/BMW)
- → 2000: Adaptive cruise control ACC (Mitsubishi/Toyota/Bosch)
- → 2002: Emergency brake assistant (Mercedes Benz)
- → 2003: Lane-keeping assistant (Honda)
- → 2007: Automatic park assistant (Valeo)

Controller basics

Open-loop control

- → Requires precise knowledge of the plan and the influence factors
- → No feedback about the controlled variable
- → Cannot handle unknown disturbances, resulting in drifts

Controller basics

Closed-loop control

- → Exploits feedback to minimize error between reference and measurement
- → This is what is used for controlling a car

Closed-loop control

Basics

- → A vehicle needs to be controlled longitudinally and laterally
- → Three types of controllers:
 - **1. Black box** : don't require knowledge about the process
 - 2. **Geometric**: exploit geometric relationships between the vehicle and the path, resulting in compact control laws for path tracking
 - **3. Optimal**: use knowledge of the system and minimize an objective function over future time steps

1.Black-box controller

Bang-bang control (a.k.a. "hysteresis controller" or "on/off control")

- → Simple example: a house thermostat
- → Switches between two states

$$u(t) = \begin{cases} u_1, & \text{if } e(t) \geq \tau \\ u_2, & \text{otherwise} \end{cases}$$

1.Black-box controller

PID Control

- → Proportional: the P element alone leads to overshooting/oscillation
- → Integral : corrects residual errors by integrating past error measurements
- → **D**erivative : alleviates oscillation by introducing a damping behavior

P vs PD vs PID

Controller performance

- \rightarrow Controlled variable : position y(t) = x(t)
- \rightarrow Correcting variable : acceleration u(t) = a(t)

P control

An example for cars

Waypoint-based Vehicle control

- → We want the vehicle to follow waypoints
- → Input: waypoints
- → Velocity: longitudinal PID control
- → Steering angle: lateral PID control

2.Geometric control

Pure pursuit control

- → Goal: track a target point at a lookahead distance "d" to follow path.
- → Exploiting geometric relationship between vehicle and path to follow
- → Steering angle determined by angle between vehicle heading direction and the lookahead direction

2.Geometric control

Stanley control

- → Control Law used by Stanley in a DARPA Challenge 2008
- → Reference at front axle, no lookahead
- → Combines heading and crosstrack error
- → Crosstrack error converges exponentially (so, fast) to zero
- → Works for small velocities without disturbances

2.Geometric control

Stanley control

→ Video of DARPA Challenge 2008

3. Optimal control

Model Predictive Controller (MPC)

- → We formalize the problem as an optimization
 - Based on LQR (Linear Quadratic Regulator)
- → Non-linear cost function and dynamics
- → Flexible: allows for rececing window and incorporation of constraints
- → But expensive : non-linear optimization required at every iteration

3. Optimal control

Model Predictive Controller (MPC)

- → We formalize the problem as an optimization
 - Based on LQR (Linear Quadratic Regulator)
- → Non-linear cost function and dynamics
- → Flexible: allows for rececing window and incorporation of constraints
- → But expensive : non-linear optimization required at every iteration

Summary

Vehicle control

- → Open-loop controllers cannot handle unknown disturbances
- → In practice, we thus require closed-loop control with sensor feedback
- → Black box controllers don't require knowledge about the process
 - Most popular black box controller: PID controller
- → Geometric controllers exploit geometric relationships for path tracking
- → Optimal controllers use a vehicle model and optimize a cost function
 - MPC is the most flexible and powerful approach
 - However, MPC requires solving an optimization problem at every time step

TODO's for today

Exercises

- 1. Vehicle dynamics sommaire des techniques
- 2. Controller of the Crazyflie:
 https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-areas/sensor-to-control/controllers/
 - How many and what type of controllers come into the crazyflie and how do they work?

HE TG

REDS
Institut
Reconfigurable
and Embedded

Digital Systems

