Московский физико-технический институт Физтех-школа прикладной математики и информатики

ОСНОВЫ КОМБИНАТОРИКИ И ТЕОРИИ ЧИСЕЛ

II CEMECTP

Лектор: Андрей Михайлович Райгородский

Автор: Киселев Николай Репозиторий на Github

Содержание

1	Паросочетания (в двудольных графах)	2
	1.1 Алгоритм Куна	3

1 Паросочетания (в двудольных графах)

Определение 1.1. G = (V, E) - граф, $M \subset E$ называется паросочетанием, если никакие два ребра из M не имеют общих концов.

Подобные темы будут часто встречаться в задачах о назначениях, где нужно находить максимальное паросочетание

Определение 1.2.

- 1. Назовем ребро e насыщенным, если $e \in M$
- 2. Назовем вершину v насыщенной, если есть насыщенное ребро с этой вершиной.

Определение 1.3. Путь P в графе называется увеличивающим относительно паросочетания M, если:

- $1. \ P$ простой
- 2. $|P| \ge 1$, то есть содержит хотя бы 1 ребро
- 3. Концы P ненасыщенные
- 4. Типы ребер вдоль P чередуются

$$\bigcirc \not \in M \qquad \not \in M \qquad \not \in M \qquad \dots \bigcirc \in M \qquad \not \in M \qquad \not \in M \qquad \not \in M \qquad \bigcirc \emptyset$$

Теорема 1.1 (Берж). Паросочентание M - максимальное (то есть самое большое по размеру среди всех паросочетаний) \iff относительно M нет увеличивающих путей.

Доказательство.

- \implies От противного. Пусть M максимальное, но существует увеличивающий путь P. Выполнив чередование вдоль P, заменяя ребра не из M на ребра из M, мы его увеличим.
- \leftarrow От противного. Пусть M' максимальное паросочетание, $H=(V,M\Delta M')$. Тогда в H степень каждой вершины не превосходит 2, так как каждое ребро берется из паросочетания, в котором степень каждой вершины равна 1.

Пемма 1.1. Если $\Delta(H) \leq 2$, то любая компонента связности в H - либо простой путь, либо простой цикл.

 $\Delta(H)$ - максимальная степень вершины

Доказательство. Ходим, ходим, ходим - либо зациклились (тогда предпериода нет), либо дошли до конца пути. \Box

Теперь заметим, что H не содержит нечетных циклов, то есть циклов нечетной длины. Ведь цикл получен из ребер M и M', а значит, в нем ребра вида M и вида M' чередуются \Longrightarrow длина цикла четна.

Итог: В H могут быть только

```
⇒ четные циклы⇒ четные пути⇒ нечетные пути
```

Первые два типа содержат одинаковое число ребер из M и M', тогда по нашему предположению существует хотя бы 1 нечетный путь, причем в нем количество ребер из M' больше. Тогда это будет увеличивающим для M. Противоречие.

Замечание. Для поиска наибольшего паросочетания можно находить увеличивающий путь, делать из него паросочетание и т. д.

1.1 Алгоритм Куна:

G - двудольный граф. Положим M максимальное паросочетание, равное изначально \varnothing . Пока в G есть увеличивающий путь относительно M, выполняем вдоль него чередование, увеличивая |M|.

Как находить увеличивающий путь?

Заметим, что увеличивающий путь в двудольном графе - это просто путь в ориентированном графе из ненасыщенной вершины левой доли в ненасыщенную вершину правой доли. А значит, нам нужно просто запустить dfs.

```
// L - левая доля
// R - правая доля
vector<vector<int>> g; // g[v] - список соседей вершин L
vector<int> match; // match[u] = -1, если u (из R) не насыщенна, и сосед слева иначе
vector<bool> used = {false, false, ..., false};
// функция проверки "есть ли увеличивающий путь с начальной вершиной v"
bool Augment(int v) {
  if (used[v]) return false;
  used[v] = true;
  for (int to : g[v]) {
    if ((match[to] == -1) || Augment(match[to])) {
      match[to] = v; return true;
    }
  }
  return false;
for (int v = 0; v < n; ++v) {
  if (Augment(v)) {
    used = {false, false, ..., false};
}
Aсимnmomu\kappa a O(ans \cdot m)
```

Замечание. Кажется, что после Augment(v) = true надо начинать проверку с самой первой вершины, но это не так.

Утверждение 1.1. Пусть M получено из M чередованием вдоль увелчивающего пути. Пусть из $v \not\supseteq$ увеличающего пути относительно M. Тогда из $v \not\supseteq$ увеличивающего пути относительно M'.

Доказательство. Пусть x,y - ненасыщенные концы увеличивающего путя L, из которого M была получена. Пусть существует увеличивающий путь K из v относительно M'. Понятно, что v лежит вне L. Пусть пути K и L пересекаются в вершине z (Почему пересекаются?), тогда какой-то из путей $v \to z \to x$ или $v \to z \to y$ будет увеличивающим относительно M, то есть будет рассмотрен нами.

Определение 1.4. Независимое множество графа G - подмножество вершин, где никакие 2 вершины не соединены ребром.

Определение 1.5. Вершинное покрытие графа G - подмножество вершин C такое, что любое ребро графа содержит хотя бы один элемент C.

Теорема 1.2 (Кёниг). В двудольном графе размер минимального вершинного покрытия равен размеру максимального паросочетания.

Доказательство. Предъявим алгоритм:

- 1. Находим максимальное паросочетание.
- 2. Ориентируем все ребра так, чтобы ребра не из M вели из левой доли в правую, а ребра из M из правой в левую.
- 3. Запустим обход графа из всех ненасыщенных вершин L.

Обозначим за L^+, R^+ - посещенные вершины из соответсвующих долей графа, а L^-, R^- - непосещенные

4. $L^+ \cup R^-$ - максимальное независимое множество, $(L^- \cup R^+)$ - минимальное вершинное покрытие.

Это так, так как не существует ребер из

- (a) $L^+ \to R^-$
- (b) $R^+ \rightarrow L^-$
- (c) $R^- \rightarrow L^+$

Почему $(L^- \cup R^+)$ — минимальное вершинное покрытие?

Заметим, что все вершины в этом множестве насыщенные.

 L^- : все ненасыщенные из левой доли лежат в L^+

 R^+ : если есть ненасыщенная, то мы нашли увеличивающий путь.

При этом каждое ребро M пересекается с $L^- \cup R^+$ не более чем 1 концом. А тогда размер этого множества не больше размера паросочетания. Оценка в другую сторону очевидна.