

FUNÇÕES

Limites no Infinito

Considere a função $f(x) = \frac{2x^2}{x^2 + 1}$ cujo um esboço do gráfico é mostrado a seguir:

\overline{x}	-1000	-100	-10	-1	0	1	10	100	1000
f(x)	1,999998	1,9998	1,98020	1	0	1	1,98020	1,9998	1,999998

Percebemos, pelo gráfico e pela tabela, que à medida que x cresce ilimitadamente $(x \to \infty)$ ou decresce ilimitadamente $(x \to -\infty)$, os valores da função f(x) se aproxima cada vez mais de 2.

Assim podemos escrever $\lim_{x\to\infty}\frac{2x^2}{x^2+1}=2$ no sentido de que podemos tornar a diferença entre 2 e f(x) tão pequena quanto desejarmos, tomando x cada vez maior.

De igual modo, podemos escrever $\lim_{x\to -\infty}\frac{2x^2}{x^2+1}=2$ indicando que podemos tornar a diferença entre 2 e f(x) tão pequena quanto desejarmos, tomando x cada vez menor.

Formalmente, temos as definições:

Definição 1: Suponha que f esteja definida em um intervalo (a, ∞) . Dizemos que

$$\lim_{x \to \infty} f(x) = L$$

se para todo $\varepsilon > 0$, existe um número positivo N tal que $|f(x) - L| < \varepsilon$ sempre que x > N.

Definição 2: Suponha que f esteja definida em um intervalo $(-\infty, a)$. Dizemos que

$$\lim_{x \to -\infty} f(x) = L$$

se para todo $\varepsilon > 0$, existe um número negativo N tal que $|f(x) - L| < \varepsilon$ sempre que x < N.

Teorema: Se r é um inteiro positivo qualquer, então

$$\lim_{x \to \infty} \left(\frac{1}{x^r} \right) = 0 \qquad \text{e} \qquad \lim_{x \to -\infty} \left(\frac{1}{x^r} \right) = 0$$

Os teoremas de limite dados anteriormente, bem como suas consequências, continuam válidos quando substituímos $x \to a$ por $x \to \infty$ ou $x \to -\infty$.

Exemplo: Calcule os limites:

a)
$$\lim_{x \to \infty} \left(\frac{2x+1}{5x-2} \right) = \lim_{x \to \infty} \left(\frac{\frac{2x+1}{x}}{\frac{5x-2}{x}} \right) = \lim_{x \to \infty} \left(\frac{2+\frac{1}{x}}{5-\frac{2}{x}} \right) = \frac{\lim_{x \to \infty} \left(2+\frac{1}{x} \right)}{\lim_{x \to \infty} \left(5-2\frac{1}{x} \right)} = \frac{2+0}{5-2.0} = \frac{2}{5}$$

b)
$$\lim_{x \to -\infty} \left(\frac{2x^2 - x + 3}{x^3 - 8x + 5} \right) = \lim_{x \to -\infty} \left(\frac{\frac{2x^2 - x + 3}{x^3}}{\frac{x^3 - 8x + 5}{x^3}} \right) = \lim_{x \to -\infty} \left(\frac{\frac{2}{x} - \frac{1}{x^2} + \frac{3}{x^3}}{1 - \frac{8}{x^2} + \frac{5}{x^3}} \right) = \frac{0 - 0 + 0}{1 - 0 + 0} = 0$$

Exercícios

1. Calcule os limites:

$$\mathbf{a)} \lim_{x \to \infty} \left(\frac{8x^2 - 7x}{7x^2 + 5} \right)$$

b)
$$\lim_{x \to \infty} \left(\frac{4x^2 + 3}{2x^2 - 1} \right)$$

c)
$$\lim_{x \to \infty} \left(\frac{x+7}{5x^2-8} \right)$$

d)
$$\lim_{x \to \infty} \left(\frac{3x^4 - 7x^2 + 2}{2x^4 + 1} \right)$$

e)
$$\lim_{x \to -\infty} \left(\frac{5x^2 - 7x + 3}{8x^2 + 5x + 1} \right)$$

$$\mathbf{f)} \lim_{x \to -\infty} \left(\frac{x^{100} + x^{99}}{x^{101} - x^{100}} \right)$$

Limites Infinitos

Considere a função $f(x) = \frac{3}{(x-2)^2}$ cujo um esboço do gráfico é mostrado a seguir:

Observamos que podemos tornar f(x) tão grande quanto desejarmos, tomando valores de x próximos de 2, sendo esta aproximação feita por valores menores ou maiores que 2. Escrevemos, $\lim_{x\to 2^-} \frac{3}{(x-2)^2} = \infty \text{ e } \lim_{x\to 2^+} \frac{3}{(x-2)^2} = \infty, \text{ respectivamente.}$

Portanto quando x se aproxima de 2 pela direita ou pela esquerda, f(x) cresce ilimitadamente e escrevemos $\lim_{x\to 2} \frac{3}{(x-2)^2} = \infty$. Formalmente, temos a definição:

Definição 1: Seja f definida num intervalo aberto contendo a, exceto possivelmente no próprio a. Dizemos que:

$$\lim_{x \to a} f(x) = \infty$$

se para qualquer N>0 existir um $\delta>0$ tal que f(x)>N sempre que $0<|x-a|<\delta.$

Analogamente, temos:

Definição 2: Seja f definida num intervalo aberto contendo a, exceto possivelmente no próprio a. Dizemos que:

$$\lim_{x \to a} f(x) = -\infty$$

se para qualquer N < 0 existir um $\delta > 0$ tal que f(x) < N sempre que $0 < |x - a| < \delta$.

Observação: Definições semelhantes podem ser feitas ao trocarmos, $x \to a$ por $x \to a^+$ ou $x \to a^-$.

Teorema 1: Se r for um inteiro positivo qualquer, então

(i)
$$\lim_{x \to 0^+} \frac{1}{x^r} = \infty$$

(ii)
$$\lim_{x\to 0^-} \frac{1}{x^r} = \begin{cases} -\infty \text{ se } r \text{ for impar} \\ \infty \text{ se } r \text{ for par} \end{cases}$$

Exemplos: Do teorema anterior, temos:

a)
$$\lim_{x \to 0^+} \frac{1}{x^3} = +\infty$$

b)
$$\lim_{x \to 0^+} \frac{1}{x^4} = +\infty$$

c)
$$\lim_{x \to 0^{-}} \frac{1}{x^3} = -\infty$$

d)
$$\lim_{r \to 0^{-}} \frac{1}{r^4} = +\infty$$

Teorema 2: Se $\lim_{x\to a} f(x) = 0$ e $\lim_{x\to a} g(x) = c$, em que c é uma constante não nula, então

(i) se
$$c > 0$$
 e se $f(x) \to 0$ por valores positivos, $\lim_{x \to a} \frac{g(x)}{f(x)} = \infty$

(ii) se
$$c > 0$$
 e se $f(x) \to 0$ por valores negativos, $\lim_{x \to a} \frac{g(x)}{f(x)} = -\infty$

(iii) se
$$c < 0$$
 e se $f(x) \to 0$ por valores positivos, $\lim_{x \to a} \frac{g(x)}{f(x)} = -\infty$

(iv) se
$$c < 0$$
 e se $f(x) \to 0$ por valores negativos, $\lim_{x \to a} \frac{g(x)}{f(x)} = \infty$

Teorema 3: Se $\lim_{x\to a} f(x) = \pm \infty$ e $\lim_{x\to a} g(x) = c$, em que c é uma constante não nula, então

(i)
$$\lim_{x \to a} [f(x) + g(x)] = \pm \infty$$

(ii) se
$$c > 0$$
, então $\lim_{x \to a} [f(x).g(x)] = \pm \infty$

(iii) se
$$c < 0$$
, então $\lim_{x \to a} [f(x).g(x)] = \mp \infty$

(iv)
$$\lim_{x \to a} \frac{g(x)}{f(x)} = 0$$

O teoremas também são válidos se $x \to a$ for substituído por $x \to a^+$ ou $x \to a^-$.

3

Exemplos: calcule:

a)
$$\lim_{x\to 1^-} \frac{2x}{x-1} = -\infty$$
 (item ii do teorema 2)

b)
$$\lim_{x \to 1} \left(\frac{x^2}{1 - x^2} \right)$$

$$\lim_{x \to 1^+} \left(\frac{x^2}{1 - x^2} \right) = -\infty \text{(item ii do teorema 2)}$$

$$\lim_{x \to 1^-} \left(\frac{x^2}{1 - x^2} \right) = \infty \text{(item i do teorema 2)}$$

$$\lim_{x \to 1^{-}} \left(\frac{x^2}{1 - x^2} \right) = \infty \text{(item i do teorema 2)}$$

Como os limites laterais assumem valores diferentes, logo o limite $\lim_{x\to 1} \left(\frac{x^2}{1-x^2}\right)$ não existe

c)
$$\lim_{x\to 0} \frac{x+1}{|x|} = \infty$$
 (item i do teorema 2)

d)
$$\lim_{x\to 3^+} \frac{x^2 - x + 2}{x^2 - 2x - 3} = \infty$$
 (item i do teorema 2)

e)
$$\lim_{x \to \infty} \frac{2x^3 - 4}{5x + 3} = \lim_{x \to \infty} \frac{\frac{2x^3 - 4}{x^3}}{\frac{5x + 3}{x^3}} = \lim_{x \to \infty} \frac{2 - \frac{4}{x^3}}{\frac{5}{x^2} + \frac{3}{x^3}} = \infty$$
 (item i do teorema 2)

1. Calcule os limites:
a)
$$\lim_{x\to 3} \frac{8x}{(x-3)^2}$$

b)
$$\lim_{x \to 3} \frac{4x^2}{9 - x^2}$$

c)
$$\lim_{x \to 4} \frac{x}{(x-4)}$$

$$d) \lim_{x \to 0} \frac{\sqrt{1+x}}{x}$$

e)
$$\lim_{x\to 2^+} \frac{\sqrt{x^2-4}}{(x-2)}$$

e)
$$\lim_{x \to 2^+} \frac{\sqrt{x^2 - 4}}{(x - 2)}$$
 f) $\lim_{x \to 0^+} \frac{\sqrt{4 + 3x^2}}{5x}$

$$g) \lim_{x \to \infty} (5x^2 - 3x)$$

h)
$$\lim_{x \to -1^+} \left(\frac{3}{(x+1)} - \frac{5}{x^2 - 1} \right)$$
 i) $\lim_{x \to \infty} (\sqrt{x^2 + 2x} - x)$

i)
$$\lim_{x \to \infty} (\sqrt{x^2 + 2x} - x)$$

$$j) \lim_{x \to \infty} \frac{2x - x^2}{3x + 5}$$

$$k) \lim_{x \to \infty} \frac{x^2}{x+1}$$

1)
$$\lim_{x \to \infty} \frac{7x^3 - 15x^2}{13x}$$