微积分 A (2)

姚家燕

第6讲

在听课过程中,

严禁使用与教学无关的电子产品!

第 5 讲回顾: 方向导数

- •方向导数的定义,方向导数存在并不意味着偏导数存在.
- 者沿某一个坐标轴的偏导数存在,则沿该轴 正、反两方向的方向导数存在且互负.
- 函数在一点处沿任意的方向均有方向导数, 并不意味着函数在该点可微.
- 方向导数的表达式 (借助微分或偏导数).

回顾: 数量场的梯度

- 梯度的定义及其意义.
- 当函数为可微时,其梯度可由偏导数构成的 列向量表示,而方向导数则可为梯度与指示 方向的单位向量的内积.
- 常值函数的梯度等于零;梯度满足与单变量 函数求导类似的四则运算及复合法则.
- 典型问题: 求函数在一点处的梯度与最大的方向导数, 以及沿某一向量的方向导数.

回顾: 高阶偏导数

- 二阶偏导数: $\frac{\partial^2 f}{\partial x_j \partial x_i} = \partial_{ji} f = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i}\right)$, $\frac{\partial^2 f}{\partial x_i^2}$.
- k 阶偏导数: $\frac{\partial^k f}{\partial x_{i_1} \cdots \partial x_{i_k}}$.
- 求偏导数一般不能交换次序.
- 设 $\Omega \subset \mathbb{R}^n$ 为开集. 若 $f:\Omega \to \mathbb{R}$ 在 Ω 上有 二阶偏导函数 $\frac{\partial^2 f}{\partial x_j \partial x_i}$, $\frac{\partial^2 f}{\partial x_i \partial x_j}$, 并且当中一个在 点 $X_0 \in \Omega$ 连续, 则 $\frac{\partial^2 f}{\partial x_i \partial x_i}(X_0) = \frac{\partial^2 f}{\partial x_i \partial x_j}(X_0)$.

回顾: 函数空间 $\mathscr{C}^{(k)}(\Omega)$

- 空间 $\mathscr{C}^{(k)}(\Omega)$ $(k \ge 0)$ 为整数).
- 若 $f \in \mathcal{C}^{(k)}(\Omega)$, 则称之在 Ω 上为 k 阶连续可导或 k 阶连续可微.
- 设 $k \ge 2$ 为整数. 若 $f \in \mathcal{C}^{(k)}(\Omega)$, 则对任意整数 $1 \le r \le k$, 均有 $f \in \mathcal{C}^{(r)}(\Omega)$ 并且 f 的任意 r 阶偏导数均与求偏导的次序无关.

第6讲

§5. 向量值函数的微分

回顾: 设 $A: \mathbb{R}^n \to \mathbb{R}^m$ 为线性映射, $\vec{e}_1, \ldots, \vec{e}_n$ 为 \mathbb{R}^n 的自然基底, 而 $\vec{f}_1, \ldots, \vec{f}_m$ 为 \mathbb{R}^m 的自然基底. 令 $a_{ij} = A\vec{e}_j \cdot \vec{f}_i$ $(1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n)$, 则 $A\vec{e}_j = \sum_{i=1}^m a_{ij} \vec{f}_i$. 若 $X = \sum_{j=1}^n x_j \vec{e}_j$, 那么

$$AX = \sum_{j=1}^{n} x_j A \vec{e_j} = \sum_{j=1}^{n} x_j \sum_{i=1}^{m} a_{ij} \vec{f_i} = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_j \right) \vec{f_i}.$$

故 $(AX)_i = (AX) \cdot \vec{f_i} = \sum_{j=1}^n a_{ij} x_j$. 于是 A 与 矩阵 $(a_{ij})_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}$ 对应起来, 可将之视为同一.

定义 1. 设 $X_0 = (x_1^{(0)}, \dots, x_n^{(0)}) \in \mathbb{R}^n$, r > 0, 而

$$ec{f}: B(X_0,r) \subset \mathbb{R}^n \to \mathbb{R}^m$$
, $g: B(X_0,r) \to \mathbb{R}$ 为映射. 若 $\lim_{X \to X_0} \frac{\|\vec{f}(X)\|}{|g(X)|} = 0$, 则记

$$\vec{f}(X) = \vec{o}(|g(X)|) = |g(X)|\vec{o}(1) \ (X \to X_0).$$

如果记 $\vec{f} = (f_1, \dots, f_m)^T$,则上式成立当且仅当对任意的整数 $1 \le i \le m$,我们均有

$$f_i(X) = o(|g(X)|) (X \to X_0).$$

定义 2. 假设 $X_0 = (x_1^{(0)}, \ldots, x_n^{(0)}) \in \mathbb{R}^n$, r > 0, $\vec{f}: B(X_0,r) \subset \mathbb{R}^n \to \mathbb{R}^m$ 为向量值函数. 如果 存在线性映射 $A: \mathbb{R}^n \to \mathbb{R}^m$ 使得 $X \to X_0$ 时, $\vec{f}(X) - \vec{f}(X_0) = A(X - X_0) + \vec{o}(\|X - X_0\|),$ 则称 \vec{f} 在点 X_0 可微并将映射 A 记作 $d\vec{f}(X_0)$, 称为 \vec{f} 在点 X_0 的全微分或微分. 线性映射 A所对应的矩阵记作 $J\vec{f}(X_0)$, 也被记作 $J_{\vec{f}}(X_0)$, 称为 \vec{f} 在点 X_0 处的 Jacobi 矩阵.

评注

- 若 \vec{f} 在点 X_0 处可微,则其微分唯一.
- 可微性蕴含连续性.
- 若记 $\vec{f} = (f_1, \dots, f_m)^T$, 则 $A = (a_{ij})_{\substack{1 \le i \le m \\ 1 \le j \le n}}$ 为 \vec{f} 在点 X_0 处的微分当且仅当 $X \to X_0$ 时,对任意的整数 $1 \le i \le m$,我们均有 $f_i(X) f_i(X_0) = \sum_{i=1}^n a_{ij}(x_j x_j^{(0)}) + o(\|X X_0\|).$

也即 f_i 在点 X_0 处可微, 并且有 $a_{ij} = \frac{\partial f_i}{\partial x_j}(X_0)$. 故 $\mathrm{d}\vec{f}(X_0)$ 所对应的矩阵的第 i 个行向量正好对应于 $\mathrm{d}f_i(X_0)$ 所对应的矩阵. 由此可知 \vec{f} 在点 X_0 可微当且仅当 f_1,\ldots,f_m 在该点可微且

$$d\vec{f}(X_0) = \begin{pmatrix} df_1(X_0) \\ \vdots \\ df_m(X_0) \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^n \frac{\partial f_1}{\partial x_j}(X_0) dx_j \\ \vdots \\ \sum_{j=1}^n \frac{\partial f_m}{\partial x_j}(X_0) dx_j \end{pmatrix},$$

讲而我们就有

$$d\vec{f}(X_0) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(X_0) & \cdots & \frac{\partial f_1}{\partial x_n}(X_0) \\ \vdots & \cdots & \vdots \\ \frac{\partial f_m}{\partial x_1}(X_0) & \cdots & \frac{\partial f_m}{\partial x_n}(X_0) \end{pmatrix} \begin{pmatrix} dx_1 \\ \vdots \\ dx_n \end{pmatrix},$$

也即 $J_{\vec{f}}(X_0) = \left(\frac{\partial f_i}{\partial x_j}(X_0)\right)_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}$. 若将最右边那个 列向量记作 $\mathrm{d}X$,则 $\mathrm{d}\vec{f}(X_0) = J_{\vec{f}}(X_0)\,\mathrm{d}X$. 通常

也将 $J_{\vec{f}}(X_0)$ 记作 $\frac{\partial(f_1,\ldots,f_m)}{\partial(x_1,\ldots,x_n)}(X_0)$ 或 $\frac{\partial(f_1,\ldots,f_m)}{\partial(x_1,\ldots,x_n)}|_{X_0}$.

当 m=n 时, 相应行列式被称为 Jacobi 行列式,

记作
$$\frac{D(f_1,...,f_m)}{D(x_1,...,x_n)}(X_0)$$
 或 $\frac{D(f_1,...,f_m)}{D(x_1,...,x_n)}|_{X_0}$.

例 1. $\forall (r, \varphi) \in D = (0, +\infty) \times (-\pi, \pi)$, 定义

$$\vec{f}(r,\varphi) = \left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{c} r\cos\varphi \\ r\sin\varphi \end{array} \right).$$

求 \vec{f} 在点 (r,φ) 处的微分及其 Jacobi 行列式.

解: 由于 \vec{f} 的分量均为初等函数, 故可微且

$$J_{\vec{f}}(r,\varphi) = \begin{pmatrix} \cos \varphi & -r \sin \varphi \\ \sin \varphi & r \cos \varphi \end{pmatrix}.$$

则所求 Jacobi 行列式 $\frac{D(x,y)}{D(r,\varphi)} = r$, 而所求微分为

$$d\vec{f}(r,\varphi) = \begin{pmatrix} dx \\ dy \end{pmatrix}$$

$$= \begin{pmatrix} \cos\varphi & -r\sin\varphi \\ \sin\varphi & r\cos\varphi \end{pmatrix} \begin{pmatrix} dr \\ d\varphi \end{pmatrix}$$

$$= \begin{pmatrix} \cos\varphi dr - r\sin\varphi d\varphi \\ \sin\varphi dr + r\cos\varphi d\varphi \end{pmatrix}.$$

作业题: 第 1.5 节第 54 页第 2 题并求其微分.

可微复合向量值函数的微分

回顾: 矩阵的范数. 令 $A = (a_{ij})_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}$. 定义

$$||A|| = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2\right)^{\frac{1}{2}},$$

称为矩阵 A 的范数. $\forall X = (x_1, \dots, x_n)^T \in \mathbb{R}^n$,

$$y_i = \sum_{j=1}^n a_{ij} x_j,$$

由此可立刻导出

$$||Y||_m^2 = \sum_{i=1}^m |y_i|^2 = \sum_{i=1}^m \left(\sum_{j=1}^n a_{ij}x_j\right)^2$$

i=1 i=1 $\leq \sum \left(\sum |a_{ij}||x_j|\right)^2 \leq \sum \left(\sum |a_{ij}|^2\right) \left(\sum |x_j|^2\right)$

i=1 i=1 $= \sum_{i} \left(\sum_{j} |a_{ij}|^2 \right) ||X||_n^2 = ||A||^2 ||X||_n^2,$

从而我们有 $||AX||_m = ||Y||_m \leq ||A|| \cdot ||X||_n$.

定理 1. 假设 $\Omega_1 \subseteq \mathbb{R}^n$, $\Omega_2 \subseteq \mathbb{R}^m$ 均为非空开集, $X_0 \in \Omega_1$, 而映射 $\vec{g}: \Omega_1 \to \Omega_2$ 在点 X_0 处可微,

 $\vec{f}: \Omega_2 \to \mathbb{R}^k$ 在点 $Y_0 = \vec{g}(X_0)$ 处可微, 则 $\vec{f} \circ \vec{g}$ 在点 X_0 处可微, 并且

$$d(\vec{f} \circ \vec{g})(X_0) = d\vec{f}(Y_0) \circ d\vec{g}(X_0).$$

证明: 令 $A = d\vec{g}(X_0)$, $B = d\vec{f}(Y_0)$, 则我们有

$$\vec{g}(X) - \vec{g}(X_0) = A(X - X_0) + \vec{o}(\|X - X_0\|_n) (X \to X_0),$$

$$\vec{f}(Y) - \vec{f}(Y_0) = B(Y - Y_0) + \vec{o}(\|Y - Y_0\|_m) (Y \to Y_0).$$

于是当 $X \to X_0$ 时, 我们有

$$\|\vec{g}(X) - \vec{g}(X_0)\|_m$$

$$= ||A(X - X_0) + \vec{o}(||X - X_0||_n)||_m$$

$$\leq ||A(X - X_0)||_m + |||X - X_0||_n \vec{o}(1)||_m$$

$$\leq ||A|| \cdot ||X - X_0||_n + ||X - X_0||_n o(1)$$

$$= ||X - X_0||_n O(1).$$

$$||B(\vec{o}(||X - X_0||_n))||_k \le ||B|| \cdot |||X - X_0||_n \vec{o}(1)||_m$$

 $\leq ||B|| \cdot ||X - X_0||_n o(1) = ||X - X_0||_n o(1).$

从而当 $X \to X_0$ 时, 我们有

$$\vec{f} \circ \vec{g}(X) - \vec{f} \circ \vec{g}(X_0) = B(\vec{g}(X) - \vec{g}(X_0)) + \vec{o}(\|\vec{g}(X) - \vec{g}(X_0)\|_m) = B(A(X - X_0) + \vec{o}(\|X - X_0\|_n)) + \|\vec{g}(X) - \vec{g}(X_0)\|_m \vec{o}(1) = B \circ A(X - X_0) + \|X - X_0\|_n \vec{o}(1) + \|X - X_0\|_n O(1) \vec{o}(1) = B \circ A(X - X_0) + \|X - X_0\|_n \vec{o}(1).$$

由微分的定义可知 $\vec{f} \circ \vec{g}$ 在点 X_0 可微且其微分为 $B \circ A$, 即 $d(\vec{f} \circ \vec{g})(X_0) = d\vec{f}(Y_0) \circ d\vec{g}(X_0)$.

可微复合向量值函数微分的矩阵表示

- $J_{\vec{f} \circ \vec{g}}(X_0) = J_{\vec{f}}(\vec{g}(X_0)) \cdot J_{\vec{g}}(X_0).$
- 记 $\vec{g}=(g_1,\ldots,g_m)^T$, $\vec{f}=(f_1,\ldots,f_k)^T$, 则

$$\frac{\partial (f_1 \circ \vec{g}, \dots, f_k \circ \vec{g})}{\partial (x_1, \dots, x_n)} \Big|_{X_0} = \frac{\partial (f_1, \dots, f_k)}{\partial (y_1, \dots, y_m)} \Big|_{\vec{g}(X_0)} \cdot \frac{\partial (g_1, \dots, g_m)}{\partial (x_1, \dots, x_n)} \Big|_{X_0}.$$

• 当 k = 1 时. 我们有

$$\frac{\partial(f \circ \vec{g})}{\partial(x_1, \dots, x_n)} = \left(\frac{\partial f \circ \vec{g}}{\partial x_1}, \dots, \frac{\partial f \circ \vec{g}}{\partial x_n}\right),
\frac{\partial(f)}{\partial(y_1, \dots, y_m)} = \left(\frac{\partial f}{\partial y_1}, \dots, \frac{\partial f}{\partial y_m}\right),
\frac{\partial(g_1, \dots, g_m)}{\partial(g_1, \dots, g_m)} = \left(\frac{\partial f}{\partial y_1}, \dots, \frac{\partial f}{\partial y_m}\right),$$

再注意到

$$\frac{\partial(g_1,\ldots,g_m)}{\partial(x_1,\ldots,x_n)} = \begin{pmatrix} \frac{\partial g_1}{\partial x_1}(X_0) & \cdots & \frac{\partial g_1}{\partial x_n}(X_0) \\ \vdots & \cdots & \vdots \\ \frac{\partial g_m}{\partial x_1}(X_0) & \cdots & \frac{\partial g_m}{\partial x_n}(X_0) \end{pmatrix},$$

于是对任意整数 $1 \le i \le n$, 我们有

$$\frac{\partial f \circ \vec{g}}{\partial x_i}(X_0) = \sum_{i=1}^m \frac{\partial f}{\partial y_i}(\vec{g}(X_0)) \frac{\partial g_j}{\partial x_i}(X_0).$$

也即我们有

$$\frac{\partial f(g_1, \dots, g_m)}{\partial x_i}(X_0) = \sum_{j=1}^m \frac{\partial f}{\partial y_j}(Y_0) \frac{\partial g_j}{\partial x_i}(X_0)$$

$$\frac{\partial x_{i}}{\partial x_{i}}(Y_{0}) \frac{\partial y_{j}}{\partial x_{i}}(X_{0}) + \frac{\partial f}{\partial y_{0}}(Y_{0}) \frac{\partial g_{2}}{\partial x_{i}}(X_{0}) + \dots + \frac{\partial f}{\partial y_{i}}(Y_{0}) \frac{\partial g_{m}}{\partial x_{i}}(X_{0}),$$

$$\frac{\partial f(g_1, \dots, g_m)}{\partial x_i} = \sum_{j=1}^m \frac{\partial f}{\partial y_j} \frac{\partial g_j}{\partial x_i}$$

 $= \frac{\partial f}{\partial u_1} \frac{\partial g_1}{\partial x_i} + \frac{\partial f}{\partial u_2} \frac{\partial g_2}{\partial x_i} + \dots + \frac{\partial f}{\partial u_m} \frac{\partial g_m}{\partial x_i}.$

例 2. 假设
$$z = f(u, v) = u^2v - uv^2$$
, $u = x \sin y$, $v = x \cos y$. 求 $\frac{\partial z}{\partial x}$.
解: 由题设可得

$$\frac{\partial z}{\partial x} = \frac{\partial f}{\partial u} \frac{\partial (x \sin y)}{\partial x} + \frac{\partial f}{\partial (x \cos y)} \frac{\partial v}{\partial x} \left(\text{ Psin } u \right)$$

$$= \frac{\partial f}{\partial u} \frac{\partial (x \sin y)}{\partial x} + \frac{\partial f}{\partial v} \frac{\partial (x \cos y)}{\partial x}$$
$$= (2uv - v^2) \sin y + (u^2 - 2uv) \cos y$$

$$= (2uv - v^{2})\sin y + (u^{2} - 2uv)\cos y$$

= $(2x^{2}\sin y\cos y - x^{2}\cos^{2}y)\sin y$

$$+(x^2\sin^2 y - 2x^2\sin y\cos y)\cos y$$

 $= \frac{3}{2}x^2(\sin y - \cos y)\sin(2y).$

例 3. 设 $z = f(xy, x^2 - y^2)$, f 可微. 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.

解: 由题设可知

$$\frac{\partial z}{\partial x} = \partial_1 f(xy, x^2 - y^2) \frac{\partial (xy)}{\partial x}
+ \partial_2 f(xy, x^2 - y^2) \frac{\partial (x^2 - y^2)}{\partial x}
= y \partial_1 f(xy, x^2 - y^2) + 2x \partial_2 f(xy, x^2 - y^2).
\frac{\partial z}{\partial y} = \partial_1 f(xy, x^2 - y^2) \frac{\partial (xy)}{\partial y}
+ \partial_2 f(xy, x^2 - y^2) \frac{\partial (x^2 - y^2)}{\partial y}
= x \partial_1 f(xy, x^2 - y^2) - 2y \partial_2 f(xy, x^2 - y^2).$$

例 4. 设 $z = \frac{y}{x} + xyf(\frac{y}{x})$, f 可微, 求 $\frac{\partial z}{\partial x}$.

解: 由题设可得

$$\frac{\partial z}{\partial x} = -\frac{y}{x^2} + yf(\frac{y}{x}) + xy \cdot f'(\frac{y}{x}) \cdot (-\frac{y}{x^2})$$
$$= -\frac{y}{x^2} + yf(\frac{y}{x}) - \frac{y^2}{x}f'(\frac{y}{x}).$$

例 5. 设 $z = f(g_1(x_1,\ldots,x_n),\ldots,g_m(x_1,\ldots,x_n))$,

$$f, g_1, \ldots, g_m$$
 二阶可微, 求 $\frac{\partial^2 z}{\partial x_i \partial x_j}$ $(1 \leqslant i, j \leqslant n)$.

$$\frac{\mathcal{H}}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_i} \left(\frac{\partial z}{\partial x_j} \right) = \frac{\partial}{\partial x_i} \left(\sum_{k=1}^{m} \frac{\partial f}{\partial y_k} (*) \frac{\partial g_k}{\partial x_j} \right)$$

$$= \sum_{k=1}^{m} \left[\frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial y_k} (*) \right) \frac{\partial g_k}{\partial x_j} + \frac{\partial f}{\partial y_k} (*) \frac{\partial}{\partial x_i} \left(\frac{\partial g_k}{\partial x_j} \right) \right]$$

$$= \sum_{k=1}^m \Big[\Big[\sum_{l=1}^m \frac{\partial}{\partial y_l} \Big(\frac{\partial f}{\partial y_k} \Big) (*) \frac{\partial g_l}{\partial x_i} \Big] \frac{\partial g_k}{\partial x_j} + \frac{\partial f}{\partial y_k} (*) \frac{\partial^2 g_k}{\partial x_i \partial x_j} \Big]$$

$$=\sum_{k=1}^m \Big[\sum_{l=1}^m \frac{\partial^2 f}{\partial y_l \partial y_k} (*) \frac{\partial g_l}{\partial x_i} \frac{\partial g_k}{\partial x_j} + \frac{\partial f}{\partial y_k} (*) \frac{\partial^2 g_k}{\partial x_i \partial x_j} \Big].$$

例 6. (Laplace 方程) 定义 $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$, $r = \sqrt{x^2 + y^2 + z^2}$. 求证: 在 $\mathbb{R}^3 \setminus \{(0, 0, 0)\}$ 上,

$$\Delta\left(\frac{1}{r}\right) = \frac{\partial^2\left(\frac{1}{r}\right)}{\partial x^2} + \frac{\partial^2\left(\frac{1}{r}\right)}{\partial y^2} + \frac{\partial^2\left(\frac{1}{r}\right)}{\partial z^2} = 0.$$

证明: 在 $\mathbb{R}^3 \setminus \{(0,0,0)\}$ 上, 我们有

$$\frac{\partial}{\partial x} \left(\frac{1}{r} \right) = -\frac{1}{r^2} \frac{\partial r}{\partial x} = -\frac{1}{r^2} \frac{x}{\sqrt{x^2 + y^2 + z^2}} = -\frac{x}{r^3}$$

$$\frac{\partial^2}{\partial x^2} \left(\frac{1}{r} \right) = -\frac{1}{r^3} + \frac{3x}{r^4} \frac{\partial r}{\partial x} = -\frac{1}{r^3} + \frac{3x^2}{r^5}.$$

于是由对称性可得

$$\Delta\left(\frac{1}{r}\right) = \left(-\frac{1}{r^3} + \frac{3x^2}{r^5}\right) + \left(-\frac{1}{r^3} + \frac{3y^2}{r^5}\right) + \left(-\frac{1}{r^3} + \frac{3z^2}{r^5}\right) + \left(-\frac{1}{r^3} + \frac{3z^2}{r^5}\right) = -\frac{3}{r^3} + \frac{3(x^2 + y^2 + z^2)}{r^5} = 0.$$

作业题: 第 1.5 节第 54 页第 3 题第 (1) 小题,

第 5 题, 第 7 题, 第 9 题第 (1) 小题.

§6. 隐 (向量值) 函数、反 (向量值) 函数的 存在性及其微分

问题: 如何解方程 F(x,y) = 0? 具体来说, 如何 从方程 F(x,y) = 0 出发来求解 y = y(x)?

线性的情形: 假设
$$F(x,y) = ax + by + c$$
. 此时

可从 F(x,y)=0 解出 y 当且仅当 $\frac{\partial F}{\partial y}=b\neq 0$,

这时我们有 $y = -\frac{1}{b}(ax + c)$.

圆周: 现在考虑方程 $F(x,y) := x^2 + y^2 - 1 = 0$. 此时我们有 $y = \pm \sqrt{1 - x^2}$.

- $\stackrel{\text{\tiny def}}{=} y > 0$ $\stackrel{\text{\tiny def}}{=} 1$, $y = \sqrt{1 x^2}$, $\frac{\partial F}{\partial y} = 2y > 0$.
- $\stackrel{\text{\tiny def}}{=} y < 0 \text{ pt}, y = -\sqrt{1 x^2}, \frac{\partial F}{\partial y} = 2y < 0.$
- 在 (1,0) 的附近, 无法求 y, 而 $\frac{\partial F}{\partial u}(1,0) = 0$.

启示: 方程 F(x,y) = 0 有解 y = y(x) 与 $\frac{\partial F}{\partial y}$ 是否等于零有关?

隐函数定理

定理 1. 设 $X_0 = (x_0, y_0) \in \mathbb{R}^2$, r > 0, 而数量值 函数 $F: B(X_0, r) \to \mathbb{R}$ 为 $\mathcal{C}^{(1)}$ 类的函数使得 $F(x_0,y_0)=0$, $\frac{\partial F}{\partial u}(x_0,y_0)\neq 0$. 则 $\exists \delta,\eta>0$ 使得 $B(x_0, \delta) \times B(y_0, \eta) \subset B(X_0, r) \perp \forall x \in B(x_0, \delta)$, $\exists ! y \in B(y_0, \eta)$ 使得 F(x, y) = 0. 定义 f(x) = y. 则 $f: B(x_0, \delta) \to B(y_0, \eta)$ 为 $\mathcal{C}^{(1)}$ 类函数, 并且 $\forall x \in B(x_0, \delta)$, 均有 $f'(x) = -\frac{\frac{\partial F}{\partial x}(x, f(x))}{\frac{\partial F}{\partial y}(x, f(x))}$.

证明: 不失一般性, 我们可假设 $\frac{\partial F}{\partial y}(x_0, y_0) > 0$. 否则考虑函数 -F.

存在性: 由题设可知 $\frac{\partial F}{\partial u}$ 连续, 则 $\exists \eta > 0$ 使得 $\forall (x,y) \in B(X_0,\sqrt{2}\eta) \subsetneq B(X_0,r), \frac{\partial F}{\partial y}(x,y) > 0.$ $\forall (x,y) \in B(X_0,\sqrt{2\eta})$, 我们令 $g_x(y) = F(x,y)$. 则对于每个固定的 $x \in [x_0 - \eta, x_0 + \eta]$, 函数 g_x 在 $[y_0 - \eta, y_0 + \eta]$ 上可导且 $g'_{x_0}(y) = \frac{\partial F}{\partial y}(x_0, y) > 0$, 从而 g_{x_0} 为严格递增函数. 又 $g_{x_0}(y_0) = 0$, 故

$$F(x_0, y_0 - \eta) = g_{x_0}(y_0 - \eta) < g_{x_0}(y_0) = 0$$

$$< g_{x_0}(y_0 + \eta) = F(x_0, y_0 + \eta).$$

注意到 F 连续, 于是由连续函数的保号性知, $\exists \delta \in (0, \eta)$ 使得 $\forall x \in (x_0 - \delta, x_0 + \delta)$, 均有

$$g_x(y_0 - \eta) = F(x, y_0 - \eta) < 0,$$

 $g_x(y_0 + \eta) = F(x, y_0 + \eta) > 0.$

又 $\forall y \in [y_0 - \eta, y_0 + \eta]$, 均有 $g'_x(y) = \frac{\partial F}{\partial y}(x, y) > 0$, 因此 g_x 在 $[y_0 - \eta, y_0 + \eta]$ 上严格递增且连续, 由连续函数介值定理, $\exists ! y \in (y_0 - \eta, y_0 + \eta)$ 使得 $F(x, y) = g_x(y) = 0$. 令 f(x) = y. 则 f 为所求.

连续性: 由前面讨论知, $\forall \varepsilon \in (0, \eta)$, $\exists \delta' \in (0, \varepsilon)$ 使 $\forall x \in B(x_0, \delta')$, $\exists ! y \in B(y_0, \varepsilon)$ 使 F(x, y) = 0, 此时 y = f(x), 也即当 $|x - x_0| < \delta'$ 时, 我们有 $|f(x) - f(x_0)| < \varepsilon$. 故函数 f 在点 x_0 处连续.

取 $x_1 \in B(x_0, \delta)$, $y_1 = f(x_1)$, 则 $F(x_1, y_1) = 0$ 且 $(x_1, y_1) \in B((x_0, y_0), \sqrt{2\eta})$, 故 $\frac{\partial F}{\partial y}(x_1, y_1) > 0$. 由前面的讨论可知, 存在 $\delta_1 \in (0, \delta), \eta_1 \in (0, \eta)$ 以及在 x_1 连续的函数 $g: B(x_1, \delta_1) \to B(y_1, \eta_1)$ 使F(x,g(x))=0. 另外可设 $B(x_1,\delta_1)\subset B(x_0,\delta)$.

由唯一性知 $\forall x \in B(x_1, \delta_1)$, 均有 f(x) = g(x), 故 f 在点 x_1 处连续.

可导性: 取 $x \in B(x_0, \delta)$, $h \in \mathbb{R}$ 使 $x + h \in B(x_0, \delta)$.

令y = f(x), $\Delta y = f(x+h) - f(x)$. 由 Lagrange 中值定理可知, $\exists \theta_1, \theta_2 \in (0,1)$ 使得

$$0 = F(x+h, y + \Delta y) - F(x, y)$$

$$= (F(x+h, y + \Delta y) - F(x, y + \Delta y))$$

$$+ (F(x, y + \Delta y) - F(x, y))$$

$$= \frac{\partial F}{\partial x}(x + \theta_1 h, y + \Delta y)h + \frac{\partial F}{\partial y}(x, y + \theta_2 \Delta y)\Delta y.$$

由于 $\frac{\partial F}{\partial x}$, $\frac{\partial F}{\partial y}$ 均连续, 于是由夹逼原理以及复合函数极限法则可知

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= -\lim_{h \to 0} \frac{\frac{\partial F}{\partial x}(x+\theta_1 h, y+\Delta y)}{\frac{\partial F}{\partial y}(x, y+\theta_2 \Delta y)}$$

$$= -\frac{\frac{\partial F}{\partial x}(x, y)}{\frac{\partial F}{\partial y}(x, y)} = -\frac{\frac{\partial F}{\partial x}(x, f(x))}{\frac{\partial F}{\partial y}(x, f(x))}.$$

上式同时表明 f' 为连续函数, 故 f 连续可导.

定理 2. 设 $X_0 \in \mathbb{R}^n$, $y_0 \in \mathbb{R}$, r > 0, 而数量值函数

$$F: B((X_0, y_0), r) \to \mathbb{R}$$
 为 $\mathcal{C}^{(1)}$ 类使 $F(X_0, y_0) = 0$, $\frac{\partial F}{\partial y}(X_0, y_0) \neq 0$. 则 $\exists \delta, \eta > 0$ 使得我们有

$$B(X_0,\delta) imes B(y_0,\eta) \subset B((X_0,y_0);r)$$
,

且
$$\forall X \in B(X_0, \delta)$$
, $\exists ! y \in B(y_0, \eta)$ 使 $F(X, y) = 0$.

且 $\forall X \in B(X_0, \delta)$ 与任意整数 $1 \leq i \leq n$, 均有

$$\frac{\partial f}{\partial x_i}(X) = -\frac{\frac{\partial F}{\partial x_i}(X, f(X))}{\frac{\partial F}{\partial y}(X, f(X))}.$$

评注

上述最后一个等式可由对恒等式

$$F(x_1,\ldots,x_n,f(x_1,\ldots,x_n))=0$$

求偏导数而得. 事实上, 对 x_i 求偏导数可得

$$\frac{\partial F}{\partial x_i}(X, f(X)) + \frac{\partial F}{\partial y}(X, f(X)) \frac{\partial f}{\partial x_i}(X) = 0,$$

由此我们可立刻导出

$$\frac{\partial f}{\partial x_i}(X) = -\frac{\frac{\partial F}{\partial x_i}(X, f(X))}{\frac{\partial F}{\partial y}(X, f(X))}.$$

定理 3. 设 $X_0 \in \mathbb{R}^n$, $Y_0 \in \mathbb{R}^m$, r > 0, 向量值函数

$$\vec{F} = (F_1, \dots, F_m)^T : B((X_0, Y_0), r) \to \mathbb{R}^m$$
为 $\mathcal{C}^{(1)}$ 类
使得 $\vec{F}(X_0, Y_0) = \vec{0}$, $\frac{\partial (F_1, \dots, F_m)}{\partial (y_1, \dots, y_m)} (X_0, Y_0)$ 可逆. 那么

$$\exists \delta, \eta > 0 \notin B(X_0, \delta) \times B(Y_0, \eta) \subset B((X_0, Y_0); r)$$

且
$$\forall X \in B(X_0, \delta)$$
, $\exists ! Y \in B(Y_0, \eta)$ 使 $\vec{F}(X, Y) = 0$.

令
$$\vec{f}(X) = Y$$
. 则 $\vec{f}: B(X_0, \delta) \rightarrow B(Y_0, \eta)$ 为 $\mathcal{C}^{(1)}$ 类,
并且 $\forall X \in B(X_0, \delta)$, 我们均有

$$J_{\vec{f}}(X) = -\left(\frac{\partial(F_1,\dots,F_m)}{\partial(y_1,\dots,y_m)}(X,\vec{f}(X))\right)^{-1} \cdot \frac{\partial(F_1,\dots,F_m)}{\partial(x_1,\dots,x_n)}(X,\vec{f}(X)).$$

评注

- 上述定理也可表述成: $\forall X \in B(X_0, \delta)$ 以及 $\forall Y \in B(Y_0, \eta)$, 等式 $\vec{F}(X, Y) = \vec{0}$ 成立当且 仅当我们有 $Y = \vec{f}(X)$.
- 若将 $\mathscr{C}^{(1)}$ 换成 $\mathscr{C}^{(k)}$ $(k \geqslant 1)$, 定理依然成立.
- 将 $F_i(X, \vec{f}(X)) = 0$ 对 x_j 求偏导可得 $\frac{\partial F_i}{\partial x_j}(X, \vec{f}(X)) + \sum_{l=1}^m \frac{\partial F_i}{\partial y_l}(X, \vec{f}(X)) \frac{\partial f_l}{\partial x_j}(X) = 0,$

讲而我们可以导出

$$\frac{\partial(F_1, \dots, F_m)}{\partial(x_1, \dots, x_n)}(X, \vec{f}(X)) + \frac{\partial(F_1, \dots, F_m)}{\partial(y_1, \dots, y_m)}(X, \vec{f}(X)) \cdot \frac{\partial(f_1, \dots, f_m)}{\partial(x_1, \dots, x_n)}(X) = \vec{0},$$

于是我们有

$$\frac{\partial(f_1,\ldots,f_m)}{\partial(x_1,\ldots,x_n)}(X) = -\left(\frac{\partial(F_1,\ldots,F_m)}{\partial(y_1,\ldots,y_m)}(X,\vec{f}(X))\right)^{-1} \cdot \frac{\partial(F_1,\ldots,F_m)}{\partial(x_1,\ldots,x_n)}(X,\vec{f}(X)).$$

例 1. $\forall (x, y, z) \in \mathbb{R}^3$, 定义

$$F(x, y, z) = x(1 + yz) + e^{x+y+z} - 1.$$

问方程 F(x,y,z)=0 是否能在原点的附近确定 一个隐函数 z = f(x, y)? 如果能, 求该隐函数在 点 (0,0) 处的偏导数.

解: 由题设可知 F 为初等函数, 从而为 $\mathcal{C}^{(1)}$ 类 并且我们还有 F(0,0,0) = 0, $\frac{\partial F}{\partial z} = xy + e^{x+y+z}$. 于是 $\frac{\partial F}{\partial z}(0,0,0) = 1 \neq 0$, 因此方程F(x,y,z) = 0能在原点附近确定一个隐函数 z = f(x, y).

另外, 我们还有

$$\frac{\partial f}{\partial x}(0,0) = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}\Big|_{(0,0,0)}$$
$$= -\frac{1+yz+e^{x+y+z}}{xy+e^{x+y+z}}\Big|_{(0,0,0)} = -2.$$

$$\frac{\partial f}{\partial y}(0,0) = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}\Big|_{(0,0,0)}$$
$$= -\frac{xz + e^{x+y+z}}{xy + e^{x+y+z}}\Big|_{(0,0,0)} = -1.$$

例 2. 设 F 为 $\mathcal{C}^{(2)}$ 类,则由方程 F(x,y,z)=0

确定的隐函数 z = f(x,y) 为 $\mathcal{C}^{(2)}$ 类, 求 $\frac{\partial^2 z}{\partial y \partial x}$.

解: 令 $u = \frac{\partial F}{\partial z}(x, y, z(x, y)) \neq 0$. 由题设可得

$$\frac{\partial^{2} z}{\partial y \partial x} = \frac{\partial}{\partial y} \left(-\frac{\frac{\partial F}{\partial x}(x, y, z(x, y))}{\frac{\partial F}{\partial z}(x, y, z(x, y))} \right)
= -\frac{1}{u^{2}} \left[\frac{\partial}{\partial y} \left(\frac{\partial F}{\partial x}(x, y, z(x, y)) \right) \frac{\partial F}{\partial z}(x, y, z(x, y)) -\frac{\partial F}{\partial x}(x, y, z(x, y)) \frac{\partial}{\partial y} \left(\frac{\partial F}{\partial z}(x, y, z(x, y)) \right) \right]$$

$$\frac{\partial^2 z}{\partial y \partial x} = -\frac{1}{u^2} \left[\frac{\partial}{\partial y} \left(\frac{\partial F}{\partial x} (x, y, z(x, y)) \right) \frac{\partial F}{\partial z} - \frac{\partial F}{\partial x} \frac{\partial}{\partial y} \left(\frac{\partial F}{\partial z} (x, y, z(x, y)) \right) \right]$$

$$= -\frac{1}{u^2} \left[\left(\frac{\partial^2 F}{\partial y \partial x} + \frac{\partial^2 F}{\partial z \partial x} \frac{\partial z}{\partial y} \right) \frac{\partial F}{\partial z} - \frac{\partial F}{\partial x} \left(\frac{\partial^2 F}{\partial y \partial z} + \frac{\partial^2 F}{\partial z^2} \frac{\partial z}{\partial y} \right) \right]$$

$$= -\frac{1}{u^2} \left[\left[\frac{\partial^2 F}{\partial y \partial x} + \frac{\partial^2 F}{\partial z \partial x} \left(-\frac{\frac{\partial F}{\partial y}}{u} \right) \right] \frac{\partial F}{\partial z} - \frac{\partial F}{\partial x} \left[\frac{\partial^2 F}{\partial y \partial z} + \frac{\partial^2 F}{\partial z^2} \left(-\frac{\frac{\partial F}{\partial y}}{u} \right) \right] \right]$$

$$= -\frac{1}{u^3} \left[\left(\frac{\partial F}{\partial z} \right)^2 \frac{\partial^2 F}{\partial y \partial x} - \frac{\partial F}{\partial y} \frac{\partial F}{\partial z} \frac{\partial^2 F}{\partial z \partial x} - \frac{\partial F}{\partial x} \frac{\partial F}{\partial z} \frac{\partial F}{\partial z} \frac{\partial F}{\partial z} \frac{\partial F}{\partial z} + \frac{\partial F}{\partial x} \frac{\partial F}{\partial y} \frac{\partial F}{\partial z} \right]$$

$$=-\frac{\left(\frac{\partial F}{\partial z}\right)^2\frac{\partial^2 F}{\partial y\partial x}-\frac{\partial F}{\partial y}\frac{\partial F}{\partial z}\frac{\partial^2 F}{\partial z\partial x}-\frac{\partial F}{\partial x}\frac{\partial F}{\partial z}\frac{\partial^2 F}{\partial y\partial z}+\frac{\partial F}{\partial x}\frac{\partial F}{\partial y}\frac{\partial^2 F}{\partial z^2}}{\left(\frac{\partial F}{\partial z}\right)^3}$$

例 3. 求证: 下述方程组

$$\begin{cases} F_1(x,y,u,v) = 3x^2 + y^2 + u^2 + v^2 - 1 = 0, \\ F_2(x,y,u,v) = x^2 + 2y^2 - u^2 + v^2 - 1 = 0, \end{cases}$$
在点 $P_0(0,\frac{1}{2},\sqrt{\frac{1}{8}},\sqrt{\frac{5}{8}})$ 的某邻域内确定了一个向量值函数 $\binom{u}{v} = \vec{f}(x,y)$, 并计算该向量值

函数 \vec{f} 在点 $(0,\frac{1}{2})$ 处的 Jacobi 矩阵与微分.

解:由于 F_1, F_2 均为初等函数,因此为 $\mathscr{C}^{(1)}$ 类.

又由题设可知 $F_1(P_0) = F_2(P_0) = 0$, 并且

$$\frac{D(F_1, F_2)}{D(u, v)}(P_0) = \begin{vmatrix} 2u & 2v \\ -2u & 2v \end{vmatrix} \Big|_{P_0} = 8uv \Big|_{P_0} = \sqrt{5},$$

从而 $\frac{\partial(F_1,F_2)}{\partial(u,v)}(P_0)$ 为可逆矩阵, 于是在点 P_0 的 邻域内, 上述方程组可确定一个向量值函数

$$\left(\begin{array}{c} u \\ v \end{array}\right) = \vec{f}(x,y),$$

进而可知所求 Jacobi 矩阵为

$$\begin{split} &\frac{\partial(u,v)}{\partial(x,y)}(0,\frac{1}{2}) = -\left(\frac{\partial(F_1,F_2)}{\partial(u,v)}(P_0)\right)^{-1}\frac{\partial(F_1,F_2)}{\partial(x,y)}(P_0) \\ &= -\left(\begin{array}{cc} 2u & 2v \\ -2u & 2v \end{array}\right)^{-1} \Big|_{P_0} \left(\begin{array}{cc} 6x & 2y \\ 2x & 4y \end{array}\right) \Big|_{P_0} \\ &= -\left(\begin{array}{cc} 2\sqrt{\frac{1}{8}} & 2\sqrt{\frac{5}{8}} \\ -2\sqrt{\frac{1}{8}} & 2\sqrt{\frac{5}{8}} \end{array}\right)^{-1} \left(\begin{array}{cc} 0 & 1 \\ 0 & 2 \end{array}\right) \\ &= -\frac{1}{\sqrt{5}} \left(\begin{array}{cc} 2\sqrt{\frac{5}{8}} & -2\sqrt{\frac{5}{8}} \\ 2\sqrt{\frac{1}{8}} & 2\sqrt{\frac{1}{8}} \end{array}\right) \left(\begin{array}{cc} 0 & 1 \\ 0 & 2 \end{array}\right) = \left(\begin{array}{cc} 0 & \frac{\sqrt{2}}{2} \\ 0 & -\frac{3\sqrt{10}}{10} \end{array}\right). \end{split}$$

于是所求微分为

$$\begin{aligned} d\vec{f}(0, \frac{1}{2}) &= \begin{pmatrix} du \\ dv \end{pmatrix} \Big|_{(0, \frac{1}{2})} \\ &= \begin{pmatrix} 0 & \frac{\sqrt{2}}{2} \\ 0 & -\frac{3\sqrt{10}}{10} \end{pmatrix} \begin{pmatrix} dx \\ dy \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{2}}{2} dy \\ -\frac{3\sqrt{10}}{10} dy \end{pmatrix}. \end{aligned}$$

作业题: 第 1.6 节第 65 页第 2 题第 (2) 小题,

第 66 页第 6 题.

谢谢大家!