Контакт на ANSYS

1 Построение геометрии в SpaceClaim

```
# isFirst = True при первом запуске (когда модель пустая)
# isFirst = False при последующих запусках
# Если всё пересоздавать, то обновляются ID тел
# И для сферы на следующем этапе сбрасывается свойство "Rigid"
shareTopology_tol = 1.e-10
#isFirst = True
isFirst = False
# первом запуске
if isFirst:
  ClearAll()
  Component Helper. {\bf CreateNewComponent()}
  GetRootPart().Components[0].SetName("halfSpace")
  ComponentHelper.SetRootActive()
  ComponentHelper.CreateNewComponent()
  GetRootPart().Components[1].SetName("sphere")
  ComponentHelper.SetRootActive()
if not isFirst:
  GetRootPart().Components[0].Content.ClearAllPartData()
# входные параметры
R = Parameters.R
c1 = Parameters.c1
c2 = Parameters.c2
c3 = c2*2
eps = R/10000
from System import Array
v = Array.CreateInstance(Point, 19)
v[0] = Point.Create(-c2, -c2, -c3)
v[1] = Point.Create(0, -c2, -c3)
v[2] = Point.Create(-c2, 0, -c3)
v[3] = Point.Create(0, 0, -c3)
\#z = -c2
v[4] = Point.Create(-c2, -c2, -c2)
v[5] = Point.Create(0, -c2, -c2)
v[6] = Point.Create(-c2, 0, -c2)
v[7] = Point.Create(0, 0, -c2)
\#z = -c1
v[8] = Point.Create(-c1, -c1, -c1)
v[9] = Point.Create(0, -c1, -c1)
v[10] = Point.Create(-c1, 0, -c1)
v[11] = Point.Create(0, 0, -c1)
#z = 0
v[12] = Point.Create(-c2, -c2, 0)
v[13] = Point.Create(0, -c2, 0)
v[14] = Point.Create(-c1, -c1, 0)
v[15] = Point.Create(0, -c1, 0)
v[16] = Point.Create(-c2, 0, 0)
v[17] = Point.Create(-c1, 0, 0)
v[18] = Point.Create(0, 0, 0)
# Шестигранные подобласти
SketchRectangle.Create(v[0],v[1],v[2])
SketchRectangle. Create(v[4], v[5], v[6])
ViewHelper.SetViewMode(InteractionMode.Solid)
selection = Selection.Create(GetRootPart().Bodies[0].Faces[0], GetRootPart().Bodies[1].Faces[0])
Loft.Create(selection)
selection = Selection.Create(GetRootPart().Bodies[0])
component = Selection.Create(GetRootPart().Components[0])
ComponentHelper.MoveBodiesToComponent(selection, component, False)
```

```
SketchRectangle. Create(v[4], v[5], v[6])
SketchRectangle. Create(v[8],v[9],v[10])
ViewHelper.SetViewMode(InteractionMode.Solid)
selection = Selection.Create(GetRootPart().Bodies[0].Faces[0], GetRootPart().Bodies[1].Faces[0])
Loft.Create(selection)
selection = Selection.Create(GetRootPart().Bodies[0])
component = Selection.Create(GetRootPart().Components[0])
ComponentHelper.MoveBodiesToComponent(selection, component, False)
SketchRectangle. Create(v[4], v[5], v[12])
SketchRectangle.Create(v[8],v[9],v[14])
ViewHelper.SetViewMode(InteractionMode,Solid)
selection = Selection.Create(GetRootPart().Bodies[0].Faces[0], GetRootPart().Bodies[1].Faces[0])
Loft.Create(selection)
selection = Selection.Create(GetRootPart().Bodies[0])
component = Selection.Create(GetRootPart().Components[0])
ComponentHelper.MoveBodiesToComponent(selection, component, False)
SketchRectangle. Create(v[4], v[6], v[12])
SketchRectangle. \textbf{Create}(v[8], v[10], v[14])
ViewHelper.SetViewMode(InteractionMode.Solid)
selection = Selection.Create(GetRootPart().Bodies[0].Faces[0], GetRootPart().Bodies[1].Faces[0])
Loft.Create(selection)
selection = Selection. Create(GetRootPart().Bodies[0])
component = Selection.Create(GetRootPart().Components[0])
ComponentHelper.MoveBodiesToComponent(selection, component, False)
SketchRectangle. Create(v[8], v[9], v[10])
SketchRectangle.Create(v[14],v[15],v[17])
ViewHelper. \textbf{Set ViewMode} (InteractionMode. Solid)
selection = Selection. \textbf{Create}(\textbf{GetRootPart}().Bodies[0].Faces[0], \textbf{GetRootPart}().Bodies[1].Faces[0])
Loft.Create(selection)
selection = Selection.Create(GetRootPart().Bodies[0])
component = Selection.Create(GetRootPart().Components[0])
ComponentHelper.MoveBodiesToComponent(selection, component, False)
if isFirst:
  # 1/8 wapa
  # Добавление шара
  SphereBody.Create(Point.Create(0, 0, R), Point.Create(R, 0, R), ExtrudeType.None)
  # Разрезание шара 3-мя плоскостями
  # Плоскость X = 0
  bodySelection = Selection.Create(GetRootPart().Bodies[0])
  frame = Frame.Create(Point.Create(eps, 0, 0), Direction.Create(1, 0, 0))
  plane = Plane.Create(frame)
  SplitBody. Execute(body Selection, plane)
  selection = Selection.Create(GetRootPart().Bodies[1])
  Delete. Execute (selection)
  # \Piлоскость Y = 0
  bodySelection = Selection.Create(GetRootPart().Bodies[0])
  frame = Frame.Create(Point.Create(0, eps, 0), Direction.Create(0, 1, 0))
  plane = Plane.Create(frame)
  SplitBody. Execute(body Selection, plane)
  selection = Selection.Create(GetRootPart().Bodies[1])
  Delete. Execute (selection)
  # \Piлоскость Z = R
  bodySelection = Selection.Create(GetRootPart().Bodies[0])
  frame = Frame. Create(Point. Create(0, 0, R), Direction. Create(0, 0, 1))
  plane = Plane.Create(frame)
  SplitBody. Execute(body Selection, plane)
  selection = Selection.Create(GetRootPart().Bodies[1])
  Delete.Execute(selection)
  selection = Selection.Create(GetRootPart().Bodies[0])
  component = Selection.Create(GetRootPart().Components[1])
  ComponentHelper.MoveBodiesToComponent(selection, component, False)
# именованые тела
# полупространство
primarySelection = Selection.Create([
  GetRootPart().Components[0].Content.Bodies[0],
  GetRootPart().Components[0].Content.Bodies[1],
  GetRootPart().Components[0].Content.Bodies[2],
```

```
GetRootPart().Components[0].Content.Bodies[3],
  GetRootPart().Components[0].Content.Bodies[4]])
secondarySelection = Selection()
NamedSelection. Create(primarySelection, secondarySelection)
NamedSelection.Rename("
                             1", "halfSpace")
if isFirst:
  primarySelection = Selection.Create(GetRootPart().Components[1].Content.Bodies[0])
  secondarySelection = Selection()
  NamedSelection. Create(primarySelection, secondarySelection)
  NamedSelection.Rename("
                                1", "sphere")
# именованые поверхности
primarySelection = Selection.Create([
  GetRootPart().Components[0].Content.Bodies[2].Faces[0],
  \textbf{GetRootPart()}. Components [0]. Content. Bodies [4]. Faces [0],\\
  GetRootPart().Components[0].Content.Bodies[1].Faces[0],
  GetRootPart().Components[0].Content.Bodies[0].Faces[0]])
secondarySelection = Selection()
NamedSelection. Create(primarySelection, secondarySelection)
NamedSelection.Rename("
                              1", "bc1_X")
primarySelection = Selection.Create()
  GetRootPart().Components[0].Content.Bodies[4].Faces[3],
  GetRootPart().Components[0].Content.Bodies[3].Faces[0],
  GetRootPart().Components[0].Content.Bodies[1].Faces[3],
  GetRootPart().Components[0].Content.Bodies[0].Faces[3]])
secondarySelection = Selection()
Named Selection. \textbf{Create} (primary Selection, secondary Selection)
NamedSelection.Rename("
                             1", "bc1_Y")
primarySelection = Selection.Create(GetRootPart().Components[0].Content.Bodies[0].Faces[5])
secondarySelection = Selection()
NamedSelection. Create(primarySelection, secondarySelection)
NamedSelection.Rename("
                             1", "bc1 Z")
# контакт contact
primarySelection = Selection.Create([
  GetRootPart().Components[0].Content.Bodies[4].Faces[4],
  GetRootPart().Components[0].Content.Bodies[3].Faces[3],
  GetRootPart().Components[0].Content.Bodies[2].Faces[3]])
secondarySelection = Selection()
NamedSelection. Create(primarySelection, secondarySelection)
NamedSelection.Rename("
                              1", "contact")
# контакт target
if isFirst:
  primary Selection = Selection. \textbf{Create}(\textbf{GetRootPart}(). Components[1]. Content. Bodies[0]. Faces[3])
  secondarySelection = Selection()
  Named Selection. \textbf{Create} (primary Selection, secondary Selection)
  NamedSelection.Rename("
                                1", "target")
# именованые рёбра
# рёбра без сгущения с разбиением N
primarySelection = Selection.Create2([
  GetRootPart().Components[0].Content.Bodies[4].Edges[4],
  GetRootPart().Components[0].Content.Bodies[4].Edges[3],
  GetRootPart().Components[0].Content.Bodies[4].Edges[6],
  GetRootPart().Components[0].Content.Bodies[4].Edges[0],
  GetRootPart().Components[0].Content.Bodies[4].Edges[7],
  GetRootPart().Components[0].Content.Bodies[4].Edges[10],
  GetRootPart().Components[0].Content.Bodies[4].Edges[9],
  {\bf GetRootPart()}. Components [0]. Content. Bodies [4]. Edges [11],
  GetRootPart().Components[0].Content.Bodies[4].Edges[1],
  GetRootPart().Components[0].Content.Bodies[4].Edges[8],
  GetRootPart().Components[0].Content.Bodies[4].Edges[2],
  GetRootPart().Components[0].Content.Bodies[4].Edges[5],
  GetRootPart().Components[0].Content.Bodies[3].Edges[0],
  GetRootPart().Components[0].Content.Bodies[3].Edges[10],
  GetRootPart().Components[0].Content.Bodies[3].Edges[7],
  GetRootPart().Components[0].Content.Bodies[3].Edges[4],
  GetRootPart().Components[0].Content.Bodies[2].Edges[10],
  GetRootPart().Components[0].Content.Bodies[2].Edges[4],
  {\bf GetRootPart}(). Components[0]. Content. Bodies[2]. Edges[0],
```

```
GetRootPart().Components[0].Content.Bodies[1].Edges[10],
  GetRootPart().Components[0].Content.Bodies[1].Edges[0],
  {\bf GetRootPart()}. Components [0]. Content. Bodies [0]. Edges [7],
  GetRootPart().Components[0].Content.Bodies[0].Edges[10],
  GetRootPart().Components[0].Content.Bodies[0].Edges[0],
  GetRootPart().Components[0].Content.Bodies[0].Edges[4]])
secondarySelection = Selection()
NamedSelection. Create(primarySelection, secondarySelection)
                             1", "edges_in")
NamedSelection.Rename("
# рёбра со сгущением
primarySelection = Selection.Create([
  GetRootPart().Components[0].Content.Bodies[1].Edges[6],
  GetRootPart().Components[0].Content.Bodies[1].Edges[9],
  GetRootPart().Components[0].Content.Bodies[1].Edges[3],
  {\bf GetRootPart}(). Components[0]. Content. Bodies[1]. Edges[1],
  GetRootPart().Components[0].Content.Bodies[2].Edges[8],
  GetRootPart().Components[0].Content.Bodies[2].Edges[3],
  GetRootPart().Components[0].Content.Bodies[3].Edges[1]])
secondarySelection = Selection()
NamedSelection. Create(primarySelection, secondarySelection)
NamedSelection.Rename("
                            1", "edges_thickening")
# рёбра без сгущения с разбиением N/2
primarySelection = Selection.Create([
  GetRootPart().Components[0].Content.Bodies[0].Edges[9],
  GetRootPart().Components[0].Content.Bodies[0].Edges[6],
  GetRootPart().Components[0].Content.Bodies[0].Edges[3],
  GetRootPart().Components[0].Content.Bodies[0].Edges[1]])
secondarySelection = Selection()
NamedSelection. Create(primarySelection, secondarySelection)
NamedSelection.Rename("
                             1", "edges_half_N")
# Share Topology
options = ShareTopologyOptions()
options.Tolerance = shareTopology tol
result = ShareTopology.FindAndFix(options)
```


Рис. 1: Геометрия при n=0, $\bar{\delta}_{max}=110$, $\frac{E^*}{Y}=550$

2 Сетка

Для полупространства заданы фиксированные количества промежутков на рёбрах и сгущение к центру. Для поверхности шара заданы размеры элементов вблизи точки начального контакта.

Рис. 2: Сетка при n=0, $\bar{\delta}_{max}=110$, $\frac{E^*}{V}=550$, N = 16

3 Контакт

Задаётся метод множителей Лагранжа (метод штрафа требует регулировки параметра контактной жёсткости; расширенный метод Лагранжа, который заключается в многократном применении метода штрафа, тоже требует настройки параметров и плохо сходится). Направление силы, действующей на полупространство — по нормали к поверхности шара ("Nodal-Normal To Target" — "Nodal-Normal To Target"). Для поверхности шара задана преимущественно 4-угольная сетка 2-го порядка со сглаживание сферой (сглаживаются узлы в центрах 4-угольников).

Поверхность полупространства ("контактная") задаётся элементами CONTAC174, поверхность шара ("целевая") задаётся элементами TARGE170.

∃ Scope						
Scoping Method	Named Selection					
Contact	contact					
Target	target					
Contact Bodies	Multiple					
Target Bodies	sphere\Твердое тело					
Protected	Yes					
Definition						
Туре	Frictionless					
Scope Mode	Manual					
Behavior	Asymmetric					
Trim Contact	Off					
Suppressed	No					
Advanced						
Formulation	Normal Lagrange					
Small Sliding	Off					
Detection Method	Nodal-Normal To Target					
Stabilization Damping Factor	O,					
Pinball Region	Radius					
Pinball Radius	0,1 m					
Time Step Controls	None					
Geometric Modification						
Interface Treatment	Add Offset, No Ramping					
Offset	0, m					
Contact Geometry Correction	None					
Target Geometry Correction	Smoothing					
Target Orientation	Sphere Center Point					
Target Center Point	sphereCenter					

Рис. 3: Условия контакта

4 Материал полупространства

Упруго-пластичный материал с изотропным упрочнением задаётся кусочнолинейной диаграммой одноосного растяжения (ТВ,МІSO,,,). Диаграмма для степенного упрочнения:

$$\begin{cases} \sigma = E\varepsilon, \text{ если } \sigma < Y, \\ \sigma = Y \left(\frac{\varepsilon}{\varepsilon_Y}\right)^n, \text{ если } \sigma \geqslant Y, \end{cases}$$
 (1)

где $\varepsilon_Y = Y/E$.

При n=0 задаётся билинейная диаграмма (TB,BISO,,).

Базисные функции первого порядка, элементы SOLID185.

Рис. 4: Условия контакта

Количество элементов: $16^3*4.5$ шестигранных, 16^2 контактных, плюс, видимо, соседние 16*4+3 контактных (+3 т.к. в углу по диагонали нет соседнего), итого 18755. То есть количество элементов правильное.

(Встроенное степенное упрочнение (ТВ,NLISO,,,,POWER) задаёт другую кривую при $n \neq 0$.)

5 Краевые условия

Зафиксированы перемещения по x, y, z на поверхностях x = 0, y = 0, z = h, где h — высота образца. Шар как твёрдое тело движется по траектории к полупространству, затем возвращается.

6 Параметры решателя

Задан метод Ньютона-Рафсона, фиксированное количество подшагов.

	Step Controls			
	Number Of Steps	2,		
	Current Step Number	1,		
	Step End Time	110, s		
	Auto Time Stepping	Off		
	Define By	Substeps		
	Number Of Substeps	110,		
Solver Controls				
Ì	Solver Type	Program Controlled		
	Weak Springs	Off		
	Solver Pivot Checking	Program Controlled		
	Large Deflection	Off		
	Inertia Relief	Off		
Rotordynamics Controls				
	Coriolis Effect	Off		
Restart Controls				
	Generate Restart Poi	Off		
	Retain Files After Fu	No		
	Combine Restart Files	No		
Nonlinear Controls				
	Newton-Raphson O	Full		
	Force Convergence	On		
	Value	Calculated by solver		
	Tolerance	1,e-006%		
	Minimum Reference	1,e-002 N		
	Moment Convergence	Remove		
	Displacement Conve	On		
	Value	Calculated by solver		
	Tolerance	1,e-006%		
	Minimum Reference	O, m		
	Rotation Convergen	Remove		
	Line Search	Off		
	Stabilization	Off		

Рис. 5: Параметры решателя

7 PRE ADPL

Команды, запускающиеся перед первым шагом:

```
! Main parameters
n_powerlaw = ARG1
                        !power law coefficient
bd_max = ARG2
                         !nondimentional indentation depth
bYeldCoef = ARG3
n_substeps = ARG4
                       !fixed load/unload substeps nomber
! Calculated parameters
sigma_y = ARG5
d_max = ARG6
                   !yeld sigma
                       !max indentation depth
!\ Calculated\ parameters\ for\ calculating\ nondimentional\ values
dY = ARG7
                !begin flow indentation depth
P_Y = ARG8
                     !begin flow pressure
A_Y = ARG9
                      !begin flow area
!\ Fixed\ parameters
mat index = 1
                      !index of elasto-plastic matherial (change if index != 1)
mat_E = 10000000000 !Young's modulus
mat_NU = 0.3
                      !Poisson's ratio
mat_curve_N = 100
                               !the number of multilinear curve points
mat_curve_max_eps = 0.1
                                 !curve for eps = eps_y...(eps_y + mat_curve_max_eps)
! Rigid sphere displacement table d(time)
! Time values
loadvari180uz(1,0,1) = 0.
loadvari180uz(2,0,1) = 110.
_loadvari180uz(3,0,1) = 220.
```

```
! Load values
loadvari180uz(1,1,1) = 0.
loadvari180uz(2,1,1) = -d max
loadvari180uz(3,1,1) = 0
! Plastic curve
TBDELE,PLAS,mat_index
                                        !delete wb plastic curve
*IF, n powerlaw, EQ, 0, THEN
! 1) n_powerlaw = 0: bilinear isotropic hardening model
                         !"1" - one fixed temperature point
TB,BISO,mat index,1
TBDAT,1, sigma_y
                       !yeld sigma
TBDAT,2, 0.
                     !horizontal (tan = 0)
*ELSE
! 2) n_powerlaw != 0: multilinear isotropic hardening model
!note: TB,MISO,,, - 1D sigma_eqv(eps_eqv) curve (isotropic multilinear hardening)
!note: TB,PLAS,,,MISO - 1D sigma_eqv(q) curve (isotropic multilinear hardening)
                                            !"1" - one fixed temperature point
!"1" - one fixed temperature point, MISO - isotropic hardening
TB,MISO,mat_index,1,mat_curve_N
!TB,PLAS,mat_index,1,mat_curve_N,MISO
TBTEMP,22
                                   !our fixed default temperature value
mat_curve_fn = 'curve_%n_powerlaw%'
                                             !curve output file name
! Delete output file
!fn out1
/OUTPUT, mat_curve_fn, txt,,
/OUTPUT
/DELETE, mat_curve_fn, txt,
!curve function: F(eps) = sigma_y*(eps/eps_y)^n
eps_y = sigma_y/mat_E
*do,i,0,mat curve N-1,
                                     !multilinear curve points cycle
!curve_eps = eps_y + (i/(mat_curve_N-1.)) *mat_curve_max_eps
!need more points at begin of curve, so
curve\_eps = eps\_y + (i^{**}3)/((mat\_curve\_N-1.)^{**}3)^*mat\_curve\_max \ eps
curve_sigma = sigma_y*((curve_eps/eps_y)**n_powerlaw)
TBPT, curve eps, curve sigma
! Output curve points in file
/OUTPUT, mat_curve_fn, txt,, APPEND
 *VWRITE,curve_eps,curve_sigma, "" "" "" ""
 %17.10G %17.10G
/OUTPUT
*enddo !end of i cycle
*ENDIF
! Elastic modulus of plastic matherial
MP,EX,mat_index,mat_E,
MP,NUXY,mat index,mat NU,
! Fictitious elastic matherial for rigid sphere
MP,EX,6,1e+20,
MP, NUXY, 6, 0.3,
```

Команды, запускающиеся перед каждым шагом:

```
nsub,n_substeps,n_substeps,n_substeps !fixed substeps nomber NEQIT, 100 !max iterations number
```

8 POST1 ADPL

Площадь рассчитывается 2-мя способами:

1. Суммирование площадей контакта на всех контактных элементах (etable, carea, nmisc, 58). Такая площадь совпадает с площадью, которая выводится по-

средством GUI. Площадь внутри ANSYS рассчитывается по формуле

$$S = \sum_{i} \frac{N_i}{4} S_i \tag{2}$$

где S_i — площадь 4-угольного элемента контактной поверхности, N_i — количество узлов этого 4-угольника, находящихся в состоянии контакта. Выяснилось благодаря совпадению с таким же расчётом площади своим решателем. Если "Detection Method" = "Nodal-Projected Normal From Contact" то площадь рассчитывается каким-то другим способом и получается более гладкая (наверно учитывается сетка целевой поверхности контакта).

2. Суммирование площадей контактных элементах, которые находятся в статусе контактирующих (т.е. нижняя граница). Равносильно суммированию площадей 4-угольных элементов контактной поверхности, у которых все 4 узла находятся в состоянии контакта:

$$S = \sum_{i} \left\lfloor \frac{N_i}{4} \right\rfloor S_i. \tag{3}$$

Сила реакции рассчитывается суммированием сил реакции узлов, принадлежащих контактным элементам, вдоль оси Z. Совпадает с результатом в GUI.

Рис. 6: Статус контакта

```
RESUME
fn_out1 = 'rt_%n_powerlaw%_%bd_max%_%bYeldCoef%'
fn out2 = 'rv_%n_powerlaw%_%bd_max%_%bYeldCoef%'
!delete output files
!fn_out1
/OUTPUT, fn_out1, txt,,
/OUTPUT
/DELETE, fn_out1, txt,
!fn out2
/OUTPUT, fn_out2, txt,,
/OUTPUT
```

 $sep_d = 0$!variable for finding separation depth

*do,loadstep,1,2, !loadsteps cycle *do,substep,1,n_substeps,!substeps cycle

!use our step and substep numbers SET, loadstep, substep

! 1) contact area by NMISC

/DELETE, fn out2, txt,

CMSEL, S, contact !select contact (contact - named selection) ESLN,S,1 !select elements attached to these nodes

ESEL,R,ENAME,,174 !reselect the contact elements (174 - type of contact elements)

ESEL, STAT !write debug information

ETABLE,carea,NMISC,58 !create table of element contact areas (carea - name of our table)

ESEL, STAT !write debug information

SSUM

*GET, nmisc_area, SSUM, 0, ITEM, carea !solve sum of contact element areas from our table carea

!output1 file name

!output2 file name

! 2) contact area by STAT+VOLU

CMSEL, S, contact !select contact (contact - named selection) ESLN.S.1 !select elements attached to these nodes

ESEL,R,ENAME,174 !reselect the contact elements (174 - type of contact elements)

ESEL, STAT !write debug information

ETABLE, etstat, CONT, STAT !create table of contact stats (etstat - name of our table)

ESEL, S, ETAB, etstat, 2,3 !select from our table etstat if value between 2 and 3

ESEL, STAT !write debug information

*GET,num_el,ELEM,0,COUNT !count number of selected contact elements ETABLE, c_area, VOLU !create table of contact elements areas

ETABLE, STAT, CONT, STAT !write debug information

!write debug information ! PRETAB, c area

SSUM

*GET, t area, SSUM, 0, ITEM, c area !solve sum of contact element areas from our table c area

ETABLE, etstat, ERAS !erase etstat ETABLE, c area, ERAS !erase c area ETABLE, carea, ERAS !erase carea

ETABLE, STAT, CONT, STAT !write debug information

! 3) contact reaction

CMSEL, S, contact

ESLN.S.1 !select elements attached to these nodes

ESEL,R,ENAME,,174 !reselect the contact elements (174 - type of contact elements) !select nodes attached to these elements

NSLE, S NSEL, STAT !write debug information

FSUM, CONT !solve sum of contact nodal forces

*GET, t P, FSUM, 0, ITEM, FZ !FZ sum

!out our results

*IF, loadstep, EQ, 1, THEN

 $d = d_max*substep/n_substeps$

d = d_max*(n_substeps-substep)/n_substeps

*ENDIF

P = -t P*4A = t area*4

A_nmisc = nmisc_area*4

 $bd = d/d_Y$

bP = P/P Y

```
bA = A/A_Y
bA_nmisc = A_nmisc/A_Y
!seporation depth
*IF, sep_d, EQ, 0, THEN
                            !sep_depth is not found yet
*IF, loadstep, EQ, 2, THEN
                             !unloading
*IF, P, EQ, 0, THEN
                            !separated
sep_d = d
*ENDIF
*ENDIF
*ENDIF
! Output results in file (P, A and A_nmisc divided by 4 to compare easy with gui wb result)
/OUTPUT, fn_out1, txt,, APPEND
*VWRITE, loadstep, substep, num_el, d, P/4, A/4, A_nmisc/4, bd, bP, bA, bA_nmisc,,, ,,,
                %17.10E %17.10E %17.10E %17.10E
                                                        %17.10E %17.10G %17.10G %17.10G
!(f8.0, f8.0, f8.0, e18.10, e18.10, e18.10, e18.10, e18.10, e18.10)
/OUTPUT
*enddo !end of sybsteps cycle
*enddo !end of loadsteps cycle
/OUTPUT, fn out2, txt,, APPEND
*VWRITE, sep_d/d_max,,,,,,,,,
%17.10G
/OUTPUT
```

9 Входные параметры, Exel VBS

```
Attribute VB_Name = "fill"
Function SQR(x As Double) As Double
 SQR = x * x
End Function
Function sqrt(x As Double) As Double
 sqrt = x ^0.5
End Function
Function pow(x As Double, y As Double) As Double
 pow = x^y
End Function
Sub fill()
Dim PI As Double
PI = Application. Worksheet Function. PI
'магическая константа
Dim c As Double
c = 1.08
' координаты ячейки
Dim i, j As Integer
 ' основные параметры
Dim n_powerlaw, bd_max, bYeldCoef As Double
Dim n substeps As Integer 'количество шагов нагружения/разгрузки
Dim NN As Integer 'разбиение сетки
' зафиксированные параметры
' для NN = 16 коэффициент сгущения 1/q = 1/7.970957e-01 = 1,2545545033
' для NN = 8 коэффициент сгущения принят на глаз 1.6 (Должно быть 1/q = 1/6.216904e-01 = 1.60851768018)
Dim R As Double 'paduyc шара
Dim EE As Double 'модуль Юнга
Dim Nu As Double 'коэффициент Пуассона
Dim grid_mnojitel1 As Double 'c1=grid_mnojitel1*L_contact
Dim grid_mnojitel2 As Double 'c2=grid_mnojitel2*L_contact
R = 1
EE = 10000000000#
Nu = 0.3
grid mnojitel1 = 1.5
grid_mnojitel2 = 15#
```

```
' проход по строкам
і = 3 'основные параметры начинаются с 3-й строки
Do While 1
  If IsEmpty(Cells(i, 1)) Then
    Exit Do
  End If
  ' Чтение основных параметров
  j = 1
  n powerlaw = Cells(i, j): j = j + 1 'коэффициент степенного упрочнения
  bd_{max} = Cells(i, j): j = j + 1
                                   'безразмерная глубина индентации
  bYeldCoef = Cells(i, j): j = j + 1
                                   'E*/Y
  n_substeps = Cells(i, j): j = j + 1 'количество шагов нагружения/разгрузки
  NN = Cells(i, j): j = j + 1 'разбиения полупространства
  NN_sphere = Cells(i, j): j = j + 1 'разбиение сферы (размер элемента = c1/NN_sphere)
  ' Расчёт параметров
  Dim sigma_y As Double 'предел текучести
  Dim E As Double
                         'приведённый модуль упругости
  Dim d_Y As Double
                           'глубина индентации в начале текучести
  Dim P Y As Double
                           сила реакции опоры в начале текучести
  Dim A_Y As Double
                           'глубина индентации в начале текучести
  Dim d max As Double
                           'глубина индентации
  Dim c1 As Double
                         'размер внутреннего куба
  Dim c2 As Double
                         'размер внешнего куба
  Dim c3 As Double
                         '2*c2 - общий размер образца
  E = EE / (1# - SQR(Nu))
  sigma_y = E / bYeldCoef
  P Y = 9 \# / 16 \# * pow(PI, 3) * pow(c, 3) * SQR(R) * sigma y / SQR(E / sigma y)
  A Y = 9\#/16\# * pow(PI, 3) * pow(c, 2) * SQR(R)/SQR(E/sigma_y)
  d_Y = 9# / 16# * pow(PI, 2) * pow(c, 2) * R / SQR(E / sigma_y)
  d \max = bd \max * d Y
  Dim L_contact As Double
  L_{contact} = sqrt(2 * R * d_{max} - SQR(d_{max}))
  c1 = grid_mnojitel1 * L_contact
  c2 = grid_mnojitel2 * L_contact
  c3 = c2 * 2#
  ' 2 пустые строки
  j = j + 1: j = j + 1
  ' Заполнение ячеек входных параметров для ANSYS
  Cells(i, j) = R: j = j + 1
  Cells(i, j) = c1: j = j + 1
  Cells(i, j) = c2: j = j + 1
  Cells(i, j) = NN: j = j + 1
  Cells(i, j) = NN: j = j + 1
  Cells(i, j) = NN/2: j = j + 1
  Cells(i, j) = R * 2#: j = j + 1
  Cells(i, j) = R / 2#: j = j + 1
  Cells(i, j) = c1: j = j + 1
Cells(i, j) = c1 / NN_sphere: j = j + 1
                                       ' Размер элементов поверхности сферы в зоне возможного контакта
  Cells(i, j) = n powerlaw: j = j + 1
  Cells(i, j) = bd_max: j = j + 1
  Cells(i, j) = bYeldCoef: j = j + 1
  Cells(i, j) = n_substeps: j = j + 1
  Cells(i, j) = sigma_y: j = j + 1
  Cells(i, j) = d_max: j = j + 1
  Cells(i, j) = d_Y: j = j + 1
  Cells(i, j) = P_Y: j = j + 1

Cells(i, j) = A_Y: j = j + 1
  i = i + 1
Loop
```

End Sub

10 Учёт больших деформаций

ails of "Analysis Settir	ngs"		De	etails of "Frictionless - contact	To target"	
Step Controls		· [Г	Contact	contact	
Number Of Steps	2,	_		Target	target	
Current Step Number	1,		Contact Bodies	Multiple		
Step End Time	110, s			Target Bodies	sphere\Твердое тело	
Auto Time Stepping	Off		Protected	Yes		
Define By	Substeps		⊟			
Number Of Substeps	110,			Туре	Frictionless	
Solver Controls Solver Type Program Controlled		.		Scope Mode	Manual	
				Behavior	Asymmetric	
Weak Springs	Off	- - - =		Trim Contact	Off	
Solver Pivot Checking	Program Controlled			Suppressed	No	
	On On		⊟	Advanced		
Large Deflection				Formulation	Augmented Lagrange	
Inertia Relief Off				Small Sliding	Off	
Rotordynamics Controls		-		Detection Method	Nodal-Normal To Targe	
Restart Controls				Penetration Tolerance	Value	
Nonlinear Controls				Penetration Tolerance Value	1,e-005 m	
Newton-Raphson O	Full			Normal Stiffness	Factor	
Force Convergence	On	- 		Normal Stiffness Factor	0,1	
Value	Calculated by solver			Update Stiffness	Never	
Tolerance	1,e-002%			Stabilization Damping Factor	•	
Minimum Reference	1,e-002 N		Pinball Region	Radius		
Moment Convergence	Remove			Pinball Radius	0,1 m	
Displacement Conve	On			Time Step Controls	None	
Value	Calculated by solver		╚	Geometric Modification		
Tolerance	1,e-002%			Interface Treatment	Add Offset, No Rampi	
Minimum Reference	O, m			Offset	O, m	
Rotation Convergen	•	-		Contact Geometry Correction		
Line Search	On			Target Geometry Correction	Smoothing	
				Target Orientation	Sphere Center Point	
Stabilization	Off			Target Center Point	sphereCenter	

Рис. 7: Параметры решателя и контакта

Для сходимости пришлось установить 440 шагов нагружения/разгрузки вместо 110, увеличить требуемые невязки по силам и перемещениям до 10^{-4} , изменить решатель контакта на расширенный метод Лагранжа с высоким допуском зазора (сходится при зазоре примерно $\frac{1}{200}d_{max}-\frac{1}{100}d_{max}$). Особенно плохо сходится при n=0.9.