In [7]:	from sigmoidGradient import sigmoidGradient from randInitializeWeights import randInitializeWeights from nnCostFunction import nnCostFunction from checkNNGradients import checkNNGradients from fmincg import fmincg Setup the parameters you will use for this exercise input_layer_size = 400; # 20x20 Input Images of Digits
;	hidden_layer_size = 25; # 25 hidden units num_labels = 10; # 10 labels, from 0 to 9 # (note that we have mapped "0" to label 9 to follow # the same structure used in the MatLab version) ===================================
In [8]:	Load Training Data print('Loading and Visualizing Data') mat = scipy.io.loadmat('digitdata.mat') mat2 = scipy.io.loadmat('debugweights.mat') X = mat['X'] y = mat['y'] y = np.squeeze(y) m, _ = np.shape(X)
:	# Randomly select 100 data points to display sel = np.random.choice(range(X.shape[0]), 100) sel = X[sel,:] displayData(sel) Loading and Visualizing Data
	9 5 1 1 9 0 8 5 8 4 7 6 4 9 2 5 6 6 4 0 0 9 2 8 4 6 4 6 9 5 5 8 1 3 3 8 7 0
	0 2 4 4 3 2 5 1 9 9 5 0 7 2 5 3 3 1 5 4 0 8 4 4 8 8 3 6 7 9 2 5 9 8 2 4 3 5 7 7
In [9]:	In this part of the exercise, we load some pre-initialized neural network parameters. print('Loading Saved Neural Network Parameters') # Load the weights into variables Theta1 and Theta2 mat = scipy.io.loadmat('debugweights.mat');
- - -	<pre># Unroll parameters Theta1 = mat['Theta1' [30 cm]] Theta1_1d = np.reshape(Theta1, Theta1.size, order='F') Theta2 = mat['Theta2' [61 cm]] Theta2_1d = np.reshape(Theta2, Theta2.size, order='F') nn_params = np.hstack((Theta1_1d, Theta2_1d)) Loading Saved Neural Network Parameters</pre>
in [10]:	After training the neural network, we would like to use it to predict the labels. You will now implement the "predict" function to use the neural network to predict the labels of the training set. This lets you compute the training set accuracy. pred = predict(Theta1, Theta2, X); #print(X) print('Training Set Accuracy: ', (pred == y-1).mean()*100)
n [19]: !	Training Set Accuracy: 97.52 Changing show_examples: show_examples = True; if show_examples: # Randomly permute examples rp = np.random.permutation(m)
	<pre>for i in range(m): print(i) # Display print('Displaying Example Image') tmp = np.transpose(np.expand_dims(X[rp[i], :], axis=1)) displayData(tmp) pred = predict(Theta1, Theta2, tmp) print('Neural Network Prediction: ', pred, '(digit ', pred%10, ')')</pre>
	input('Program paused. Press enter to continue') Displaying Example Image
	ValueError Traceback (most recent call last) ~\AppData\Local\Temp\ipykernel_19984\356482801.py in <module> 12 displayData(tmp)</module>
	<pre>13> 14</pre>
	<pre><_array_function internals> in hstack(*args, **kwargs) c:\ProgramData\Anaconda3\lib\site-packages\numpy\core\shape_base.py in hstack(tup)</pre>
;	ValueError: all the input array dimensions for the concatenation axis must match exactly, but along dimension 0, the array at index as size 5000 and the array at index 1 has size 1 ===================================
	<pre>print('Evaluating sigmoid gradient') example = np.array([-15, -1, -0.5, 0, 0.5, 1, 15]) g = sigmoidGradient(example) print('Sigmoid gradient evaluated at', example, ':') print(g) Evaluating sigmoid gradient Sigmoid gradient evaluated at [-1510.5 0. 0.5 1. 15.]: [3.05902133e-07 1.96611933e-01 2.35003712e-01 2.500000000e-01</pre>
(2.35003712e-01 1.96611933e-01 3.05902133e-07] ===================================
; ; ;	<pre>initial_Theta1 = randInitializeWeights(input_layer_size, hidden_layer_size) initial_Theta2 = randInitializeWeights(hidden_layer_size, num_labels) # Unroll parameters initial_Theta1 = np.reshape(initial_Theta1, initial_Theta1.size, order='F') initial_Theta2 = np.reshape(initial_Theta2, initial_Theta2.size, order='F') initial_nn_params = np.hstack((initial_Theta1, initial_Theta2)) print(initial_nn_params) Initializing Neural Network Parameters</pre>
:	[0.0668311
7	<pre>print('Checking Backpropagation') # Check gradients by running checkNNGradients checkNNGradients() Checking Backpropagation [[-9.27825235e-03] [8.89911959e-03] [-8.36010761e-03] [7.62813551e-03]</pre>
	[-6.74798369e-03] [-3.04978931e-06] [1.42869450e-05] [-2.59383093e-05] [3.69883213e-05] [-4.68759787e-05] [-1.75060084e-04] [2.33146356e-04] [-2.87468729e-04] [3.35320347e-04] [-3.76215588e-04]
	[-9.62660640e-05] [1.17982668e-04] [-1.37149705e-04] [1.53247079e-04] [-1.66560297e-04] [3.14544970e-01] [1.11056588e-01] [9.74006970e-02] [1.64090819e-01] [5.75736494e-02]
	[5.04575855e-02] [1.64567932e-01] [5.77867378e-02] [5.07530173e-02] [1.58339334e-01] [5.59235296e-02] [4.91620841e-02] [1.51127527e-01] [5.36967009e-02] [4.71456249e-02] [1.49568335e-01]
	[5.31542052e-02] [4.65597186e-02]] [[-9.27825236e-03] [8.89911960e-03] [-8.36010762e-03] [7.62813551e-03] [-6.74798370e-03] [-3.04978914e-06] [1.42869443e-05] [-2.59383100e-05] [3.69883234e-05]
	[-4.68759769e-05] [-1.75060082e-04] [2.33146357e-04] [-2.87468729e-04] [3.35320347e-04] [-3.76215587e-04] [-9.62660620e-05] [1.17982666e-04] [-1.37149706e-04] [1.53247082e-04]
	[-1.66560294e-04] [3.14544970e-01] [1.11056588e-01] [9.74006970e-02] [1.64090819e-01] [5.75736493e-02] [5.04575855e-02] [1.64567932e-01] [5.77867378e-02] [5.07530173e-02]
	[1.58339334e-01] [5.59235296e-02] [4.91620841e-02] [1.51127527e-01] [5.36967009e-02] [4.71456249e-02] [1.49568335e-01] [5.31542052e-02] [4.65597186e-02]] The above two columns you get should be very similar.
ı	(Left-Numerical Gradient, Right-(Your) Analytical Gradient) If your backpropagation implementation is correct, then the relative difference will be small (less than 1e-9). Relative Difference: 2.2359677253003813e-11 ==================================
In [14]:	Once your backpropagation implementation is correct, you should now continue to implement the regularization gradient. print('Checking Backpropagation (w/ Regularization) ') ## Check gradients by running checkNNGradients lambda_value = 3 checkNNGradients(lambda_value)
1	<pre># Also output the costFunction debugging values debug_J = nnCostFunction(nn_params, input_layer_size, hidden_layer_size,</pre>
	[-8.36010761e-03] [7.62813551e-03] [-6.74798369e-03] [-1.67679797e-02] [3.94334829e-02] [5.93355565e-02] [2.47640974e-02] [-3.26881426e-02] [-6.01744725e-02] [-3.19612287e-02]
	[2.49225535e-02] [5.97717617e-02] [3.86410548e-02] [-1.73704651e-02] [-5.75658668e-02] [-4.51963845e-02] [9.14587966e-03] [5.46101547e-02] [3.14544970e-01] [1.11056588e-01]
	[9.74006970e-02] [1.18682669e-01] [3.81928689e-05] [3.36926556e-02] [2.03987128e-01] [1.17148233e-01] [7.54801264e-02] [1.25698067e-01] [-4.07588279e-03] [1.69677090e-02] [1.76337550e-01]
	[1.13133142e-01] [8.61628953e-02] [1.32294136e-01] [-4.52964427e-03] [1.50048382e-03]] [[-9.27825236e-03] [8.89911960e-03] [-8.36010762e-03] [7.62813551e-03] [-6.74798370e-03] [-1.67679797e-02]
	[3.94334829e-02] [5.93355565e-02] [2.47640974e-02] [-3.26881426e-02] [-6.01744725e-02] [-3.19612287e-02] [2.49225535e-02] [5.97717617e-02] [3.86410548e-02] [-1.73704651e-02]
	[-5.75658668e-02] [-4.51963845e-02] [9.14587966e-03] [5.46101547e-02] [3.14544970e-01] [1.11056588e-01] [9.74006970e-02] [1.18682669e-01] [3.81928696e-05] [3.36926556e-02] [2.03987128e-01]
	[1.17148233e-01] [7.54801264e-02] [1.25698067e-01] [-4.07588279e-03] [1.69677090e-02] [1.76337550e-01] [1.13133142e-01] [8.61628953e-02] [1.32294136e-01] [-4.52964427e-03]
:	[1.50048382e-03]] The above two columns you get should be very similar. (Left-Numerical Gradient, Right-(Your) Analytical Gradient) If your backpropagation implementation is correct, then the relative difference will be small (less than 1e-9). Relative Difference: 2.145456436880053e-11 Cost at (fixed) debugging parameters (w/ lambda = 10): 0.5760512469501331 (this value should be about 0.576051)
;	You have now implemented all the code necessary to train a neural network. To train your neural network, we will now use "fmincg", which is a function which works similarly to "fminunc". Recall that these advanced optimizers are able to train our cost functions efficiently as long as we provide them with the gradient computations print('Training Neural Network')
9 1 -	# After you have completed the assignment, change the MaxIter to a larger # value to see how more training helps. MaxIter = 150 # You should also try different values of lambda lambda_value = 1 # Create "short hand" for the cost function to be minimized y = np.expand_dims(y, axis=1)
7	<pre>costFunction = lambda p : nnCostFunction(p, input_layer_size, hidden_layer_size,</pre>
	Theta2 = np.reshape(nn_params[((hidden_layer_size * (input_layer_size + 1))):],
	<pre>Iteration 7 Cost: [2.01952011] Iteration 8 Cost: [1.93903851] Iteration 9 Cost: [1.71926739] Iteration 10 Cost: [1.59412409] Iteration 11 Cost: [1.49311928] Iteration 12 Cost: [1.38502091] Iteration 13 Cost: [1.30423807] Iteration 14 Cost: [1.18038896] Iteration 15 Cost: [1.12379057] Iteration 16 Cost: [1.04033805]</pre>
	Iteration 17 Cost: [1.00197703] Iteration 18 Cost: [0.95638689] Iteration 19 Cost: [0.87753565] Iteration 20 Cost: [0.83080562] Iteration 21 Cost: [0.8147841] Iteration 22 Cost: [0.77740566] Iteration 23 Cost: [0.75664163] Iteration 24 Cost: [0.74826419] Iteration 25 Cost: [0.72162929] Iteration 26 Cost: [0.70931688]
	Iteration 27 Cost: [0.70132021] Iteration 28 Cost: [0.68819843] Iteration 29 Cost: [0.65670892] Iteration 30 Cost: [0.64226727] Iteration 31 Cost: [0.63196736] Iteration 32 Cost: [0.62311014] Iteration 33 Cost: [0.60234863] Iteration 34 Cost: [0.58860837] Iteration 35 Cost: [0.58392114] Iteration 36 Cost: [0.57864921]
	Iteration 37 Cost: [0.57427392] Iteration 38 Cost: [0.55753241] Iteration 39 Cost: [0.54362082] Iteration 40 Cost: [0.52566924] Iteration 41 Cost: [0.51837609] Iteration 42 Cost: [0.51789042] Iteration 43 Cost: [0.50784483] Iteration 44 Cost: [0.5058133] Iteration 45 Cost: [0.50286738] Iteration 46 Cost: [0.50144614]
	Iteration 47 Cost: [0.50000984] Iteration 48 Cost: [0.49518887] Iteration 49 Cost: [0.48922948] Iteration 50 Cost: [0.48795312] Iteration 51 Cost: [0.48619594] Iteration 52 Cost: [0.48427577] Iteration 53 Cost: [0.48291344] Iteration 54 Cost: [0.4778732]
:	Iteration 55 Cost: [0.47219129] Iteration 56 Cost: [0.46805445]
:	Iteration 55 Cost: [0.47219129] Iteration 56 Cost: [0.46805445] Iteration 57 Cost: [0.4657894] Iteration 58 Cost: [0.45797399] Iteration 59 Cost: [0.44858045] Iteration 60 Cost: [0.43981085] Iteration 61 Cost: [0.43754722] Iteration 62 Cost: [0.43614048] Iteration 63 Cost: [0.4309787] Iteration 64 Cost: [0.4269013] Iteration 65 Cost: [0.42360141] Iteration 66 Cost: [0.42150815]
	Iteration 55 Cost [0.47219129]
	Iteration 55 Cost:
	Iteration 55 Cost: 0.47219129] Iteration 57 Cost: 0.48805445] Iteration 57 Cost: 0.48797399] Iteration 58 Cost: 0.48797399] Iteration 59 Cost: 0.48858045] Iteration 50 Cost: 0.48858045] Iteration 61 Cost: 0.488797399] Iteration 62 Cost: 0.4387772] Iteration 63 Cost: 0.4387787] Iteration 63 Cost: 0.4380787] Iteration 64 Cost: 0.4380787] Iteration 65 Cost: 0.4380787] Iteration 66 Cost: 0.4289013] Iteration 67 Cost: 0.4289014] Iteration 68 Cost: 0.4289815] Iteration 69 Cost: 0.4289816] Iteration 70 Cost: 0.4195827] Iteration 71 Cost: 0.4195825] Iteration 72 Cost: 0.41289865] Iteration 73 Cost: 0.4128984] Iteration 74 Cost: 0.4128984] Iteration 75 Cost: 0.40893855] Iteration 76 Cost: 0.40893855] Iteration 77 Cost: 0.40893855] Iteration 78 Cost: 0.40893893] Iteration 79 Cost: 0.3794895] Iteration 79 Cost: 0.3794895] Iteration 79 Cost: 0.3794895] Iteration 80 Cost: 0.4977133] Iteration 80 Cost: 0.3794895] Iteration 81 Cost: 0.3794895] Iteration 82 Cost: 0.3794895] Iteration 83 Cost: 0.37948999] Iteration 84 Cost: 0.37948999] Iteration 85 Cost: 0.37948999] Iteration 86 Cost: 0.38896996] Iteration 87 Cost: 0.38896996] Iteration 89 Cost: 0.3687457] Iteration 89 Cost: 0.3687457] Iteration 99 Cost: 0.3687457] Iteration 91 Cost: 0.3687457] Iteration 91 Cost: 0.3687457] Iteration 91 Cost: 0.3687457] Iteration 91 Cost: 0.3687457] Iteration 92 Cost: 0.3687457] Iteration 93 Cost: 0.3687457] Iteration 94 Cost: 0.3687476] Iteration 95 Cost: 0.3697478]
	Interaction
	Identication 56 Cost. 6.47219129
	Interaction 50 Cost: (0.48250454)
	Transfer St. Cast 1.4757065 T. 1.000000 T. 1.0000000 T. 1.00000000 T. 1.00000000 T. 1.00000000 T. 1.00000000 T. 1.00000000 T. 1.00
In [16]:	Transmiss Sect Ox. 1979/1999 Co. 1999 Co. 199
In [16]:	Storage Storage Control 1,4000000 Storage St
In [16]:	Storage Storage Control 1,4859348 Control 1,4869348

Machine Learning: Artificial Neural Networks

This file contains code that helps you get started. You will need to complete the following functions

For this exercise, you will not need to change any code in this file, or any other files other than those mentioned above.

Instructions _____

- predict.m

- sigmoidGradient.m

- nnCostFunction.m

- randInitializeWeights.m

Import the required packages