First Order Inference

51

Inference Rules in FOL

- PL inference rules apply in FOL as well.
- Universal Elim: If $\forall x P(x)$ is true, then P(c) is true for any constant c in the domain.
- Existential Intro: If P(c) is true, then $\exists x \ P(x)$ is true.
- Existential Elim: If $\exists x \ P(x)$ is true, then P(c) is true for some constant c not appearing in any other sentence (Skolem constant).

Inference Rules in FOL

- Generalized Modus Ponens
 - Combines AND-Intro, Univeral-Elim, and Modus Ponens
 - Ex. From P(c), Q(c), and $\forall x (P(x) \land Q(x)) \Rightarrow R(x)$ derive R(c).
 - Let $subst(\theta, \alpha)$ denote substitutions resulting from applying substitution list θ to sentence α .
 - Given atomic sentences $P_1,...,P_n$ and implication $(Q_1 \land ... \land Q_n) \Rightarrow R$ and subst (θ,P_i) = subst (θ,Q_i) , derive subst (θ,R) .

53

Inference in FOL

- Recall the Generalized Modus Ponens inference rule.
- This rule requires the ability to find substitutions allowing "facts" to match left-hand-sides of rules.
- This matching process is called "unification."

Unification

- •unify(p,q) = θ ,
 - where subst $(\theta, p) = \text{subst}(\theta, q)$
 - \bullet p and q are sentences to be unified.
- Examples:
 - unify(P(a,x),P(a,b))
 - unify(P(a,x),P(y,b))
 - unify(P(a,x),P(y,f(y))
 - unify(P(a,x),P(x,b))

55

Unification

- •unify(p,q) = θ ,
 - where subst (θ, p) = subst (θ, q)
 - \bullet p and q are sentences to be unified.
- Examples:
 - unify(P(a,x), P(a,b)) = $\{x/b\}$
 - •unify(P(a,x),P(y,b)) = $\{x/b,y/a\}$
 - unify(P(a,x),P(y,f(y)) = $\{y/a,x/f(a)\}$
 - unify(P(a,x),P(x,b)) = FAIL

Unification

- To avoid last problem, standardize apart variables.
- Replace first x with x_1 and second x with x_2 .
- •unify(P(a, x_1), P(x_2 , b)) = { x_1/b , x_2/a }
- Not everything can be unified
 - unify(P(a,b),P(x,x)) = FAIL
 - unify (P(a, f(a)), P(x, b)) = FAIL
 - unify(P(x),P(P(x))) = FAIL (need "occurs check")

57

Unification Algorithm

```
inputs: x, a variable, constant, list, or compound y, a variable, constant, list, or compound θ, the substitution built up so far (optional, defaults to empty)
if θ = failure then return failure else if x = y then return θ else if VARIABLE?(x) then return UNIFY-VAR(x, y, θ) else if VARIABLE?(y) then return UNIFY-VAR(y, x, θ) else if COMPOUND?(x) and COMPOUND?(y) then return UNIFY(ARGS[x],ARGS[y],UNIFY(OP[x],OP[y],θ)) else if LIST?(x) and LIST?(y) then return UNIFY(REST[x],REST[y],UNIFY(FIRST[x],FIRST[y],θ)) else return failure
```

function UNIFY (x, y, θ) **returns** a substitution making x and y identical

Unification Algorithm

function UNIFY-VAR(var, x, θ) **returns** a substitution **inputs:** var, a variable x, any expression θ , the substitution built up so far

if $\{var / val\} \in \theta$ then return UNIFY (val, x, θ) else if $\{x / val\} \in \theta$ then return UNIFY (var, val, θ) else if OCCUR-CHECK?(var, x) then return failure else return $\theta + \{var / x\}$

59

Sample Proof

- Given:
 - Bob is a buffalo.
 - Pat is a pig.
 - Buffaloes outrun pigs.
- Prove:
 - Bob outruns Pat.

60

Sample Proof

- Convert premises to FOL.
 - Buffalo(Bob)
 - Pig(Pat)
 - $\forall x,y \; Buffalo(x) \land Pig(y) \Rightarrow Faster(x,y)$
- Convert goal to FOL.
 - Faster(Bob,Pat)

61

Sample Proof

- Proceed with proof.
 - $Buffalo(Bob) \wedge Pig(Pat)$, AND Intro.
 - $(Buffalo(Bob) \land Pig(Pat)) \Rightarrow Faster(Bob,Pat)$, Universal Elimination $\{x/Bob, y/Pat\}$
 - Faster(Bob,Pat), Modus Ponens Q.E.D.

