Problem jankovAxiom

Input formula: $\neg a \lor \neg \neg a$

Logic: GL

Proved

Clauses in R_0 (7) are defined at the end of the document Implication clauses in X_0 (2):

$$\lambda_0 = (\tilde{p}_0 \to \bot) \to \tilde{p}_1$$

$$\lambda_1 = (a \to \bot) \to \tilde{p}_0$$

Substitution

$$\tilde{p}_0 \mapsto \neg a$$

$$\tilde{p}_1 \mapsto \neg \neg a$$

$$\tilde{p}_2 \mapsto \neg a \vee \neg \neg a$$

 $\tilde{g} \mapsto \text{input formula}$

Start

(1)
$$R_0 \vdash_{\mathbf{c}} \tilde{g}$$
?

 $No(\emptyset)$

New world: w_0

$$\begin{array}{c|c} W & \lambda \text{ s.t. } w \not \succ_W \lambda \\ \hline w_0 & \emptyset & \lambda_0, \, \lambda_1 \end{array}$$

Selected: $\langle w_0, \lambda_0 = (\tilde{p}_0 \to \bot) \to \tilde{p}_1 \rangle$

(2)
$$R_0, w_0, \tilde{p}_0 \vdash_{\mathsf{c}} \bot ?$$

No(
$$\{\tilde{g}, \tilde{p}_0, \tilde{p}_2\}$$
)

New world: w_1

W		λ s.t. $w \not \triangleright_W \lambda$
w_1	$\tilde{g}, ilde{p}_0, ilde{p}_2$	Ø
w_0	Ø	λ_1

Selected: $\langle w_0, \lambda_1 = (a \to \bot) \to \tilde{p}_0 \rangle$

(3)
$$R_0, w_0, a \vdash_{\mathbf{c}} \bot ?$$

No(
$$\{a, \tilde{g}, \tilde{p}_1, \tilde{p}_2\}$$
)

New world: w_2

W		λ s.t. $w \not\succ_W \lambda$
w_2	$a, \tilde{g}, \tilde{p}_1, \tilde{p}_2$	Ø
w_1	$ ilde{g}, ilde{p}_0, ilde{p}_2$	Ø
w_0	Ø	Ø

Check the obtained model model (see file model.png)

Semantic failure

Learned axiom:

$$(a \to \neg a) \lor (\neg a \to a)$$

New clauses after clausification (6):

$$\tilde{p}_3 \rightarrow \tilde{p}_4$$

$$a \to \tilde{p}_5$$

$$\tilde{p}_3 \wedge \tilde{p}_5 \to a$$

$$a \wedge \tilde{p}_4 \rightarrow \tilde{p}_3$$

$$a \wedge \tilde{p}_3 \rightarrow \bot$$

$$\tilde{p}_4 \vee \tilde{p}_5$$

New implication clauses after clausifications (3):

$$\lambda_4 = (\tilde{p}_3 \to a) \to \tilde{p}_5$$

$$\lambda_3 = (a \to \bot) \to \tilde{p}_3$$

$$\lambda_2 = (a \to \tilde{p}_3) \to \tilde{p}_4$$

 $R_1 = R_0 + \text{new clauses}$

Substitution

$$\tilde{p}_0 \mapsto \neg a$$

$$\tilde{p}_1 \mapsto \neg \neg a$$

$$\tilde{p}_2 \mapsto \neg a \vee \neg \neg a$$

$$\tilde{p}_3 \mapsto \neg a$$

$$\tilde{p}_4 \mapsto a \to \neg a$$

$$\tilde{p}_5 \mapsto \neg a \to a$$

$$\tilde{g} \mapsto \text{input formula}$$

Learned axiom with the substitution applied

$$(a \to \neg a) \lor (\neg a \to a)$$

Restart 1 (semantic)

(4)
$$R_1 \vdash_{\mathsf{c}} \tilde{g}$$
?

 $\operatorname{No}(\lbrace \tilde{p}_4 \rbrace)$

New world: w_3

Selected: $\langle w_3, \lambda_0 = (\tilde{p}_0 \to \bot) \to \tilde{p}_1 \rangle$

(5) $R_1, w_3, \tilde{p}_0 \vdash_{\mathbf{c}} \bot ?$

No($\{\tilde{g}, \, \tilde{p}_0, \, \tilde{p}_2, \, \tilde{p}_4\}$)

New world: w_4

W		$\lambda \text{ s.t. } w \not \succ_W \lambda$
w_4	$\tilde{g},\tilde{p}_0,\tilde{p}_2,\tilde{p}_4$	λ_3,λ_4
w_3	$ ilde{p}_4$	$\lambda_1,\lambda_3,\lambda_4$

Selected: $\langle w_4, \lambda_4 = (\tilde{p}_3 \to a) \to \tilde{p}_5 \rangle$

(6) $R_1, w_4, \tilde{p}_3 \vdash_{\mathbf{c}} a ?$

No($\{\tilde{g}, \tilde{p}_0, \tilde{p}_2, \tilde{p}_3, \tilde{p}_4\}$)

New world: w_5

W		λ s.t. $w \not\succ_W \lambda$
w_5	$\tilde{g},\tilde{p}_0,\tilde{p}_2,\tilde{p}_3,\tilde{p}_4$	Ø
w_4	$\tilde{g}, \tilde{p}_0, \tilde{p}_2, \tilde{p}_4$	λ_3
w_3	$ ilde{p}_4$	λ_1,λ_3

Selected: $\langle w_4, \lambda_3 = (a \to \bot) \to \tilde{p}_3 \rangle$

(7) $R_1, w_4, a \vdash_{c} \bot ?$

 $\operatorname{Yes}(\{a,\,\tilde{p}_0\})$

 $R_1, a, \tilde{p}_0 \vdash_{\mathbf{c}} \bot$

Learned basic clause: $\tilde{p}_0 \rightarrow \tilde{p}_3$

 $R_2 = R_1 + \text{learned basic clause}$

Restart 2 (basic)

(8) $R_2 \vdash_{\mathbf{c}} \tilde{g}$?

No($\{a, \tilde{p}_5\}$)

New world: w_6

Selected: $\langle w_6, \lambda_0 = (\tilde{p}_0 \to \bot) \to \tilde{p}_1 \rangle$

(9) $R_2, w_6, \tilde{p}_0 \vdash_{\mathbf{c}} \bot ?$

 $\operatorname{Yes}(\left\{\,a,\,\tilde{p}_{0}\,\right\}\,)$

 $R_2, a, \tilde{p}_0 \vdash_{\mathbf{c}} \bot$

Learned basic clause: $a \to \tilde{p}_1$

 $R_3 = R_2 + \text{learned basic clause}$

Restart 3 (basic)

(10) $R_3 \vdash_{\mathbf{c}} \tilde{g}$?

No($\{\tilde{p}_3, \tilde{p}_4\}$)

New world: w_7

	W		λ s.t. $w \not\succ_W \lambda$	
٠	w_7	\tilde{p}_3, \tilde{p}_4	λ_0,λ_1	

Selected: $\langle w_7, \lambda_0 = (\tilde{p}_0 \to \bot) \to \tilde{p}_1 \rangle$

(11) $R_3, w_7, \tilde{p}_0 \vdash_{\mathbf{c}} \bot ?$

No($\{\tilde{g}, \tilde{p}_0, \tilde{p}_2, \tilde{p}_3, \tilde{p}_4\}$)

New world: w_8

_	W		λ s.t. $w \not \succ_W \lambda$
	w_8	$\tilde{g},\tilde{p}_0,\tilde{p}_2,\tilde{p}_3,\tilde{p}_4$	Ø
	w_7	$ ilde{p}_3, ilde{p}_4$	λ_1

Selected: $\langle w_7, \lambda_1 = (a \to \bot) \to \tilde{p}_0 \rangle$

(12) $R_3, w_7, a \vdash_{\mathbf{c}} \bot ?$

 $\operatorname{Yes}(\{a,\,\tilde{p}_3\})$

 $R_3, a, \tilde{p}_3 \vdash_{\mathbf{c}} \bot$

Learned basic clause: $\tilde{p}_3 \to \tilde{p}_0$

 $R_4 = R_3 + \text{learned basic clause}$

Restart 4 (basic)

(13) $R_4 \vdash_{\rm c} \tilde{g}$?

No($\{\tilde{p}_5\}$)

New world: w_9

$$\frac{W \mid \lambda \text{ s.t. } w \not\models_W \lambda}{w_9 \mid \tilde{p}_5 \mid \lambda_0, \lambda_1, \lambda_2, \lambda_3}$$

Selected: $\langle w_9, \lambda_0 = (\tilde{p}_0 \to \bot) \to \tilde{p}_1 \rangle$

(14) $R_4, w_9, \tilde{p}_0 \vdash_{\mathbf{c}} \bot ?$

 $\operatorname{Yes}(\{\tilde{p}_0,\,\tilde{p}_5\})$

 $R_4, \, \tilde{p}_0, \, \tilde{p}_5 \, \vdash_{\mathbf{c}} \, \bot$

Learned basic clause: $\tilde{p}_5 \rightarrow \tilde{p}_1$

 $R_5 = R_4 + \text{learned basic clause}$

Restart 5 (basic)

(15) $R_5 \vdash_{\mathbf{c}} \tilde{g}$?

 $\operatorname{No}(\lbrace \tilde{p}_4 \rbrace)$

New world: w_{10}

W		$\lambda \text{ s.t. } w \not\succ_W \lambda$	
w_{10}	$ ilde{p}_4$	$\lambda_0,\lambda_1,\lambda_3,\lambda_4$	

Selected: $\langle w_{10}, \lambda_0 = (\tilde{p}_0 \to \bot) \to \tilde{p}_1 \rangle$

(16) $R_5, w_{10}, \tilde{p}_0 \vdash_{\mathbf{c}} \bot ?$

No($\{\tilde{g}, \tilde{p}_0, \tilde{p}_2, \tilde{p}_3, \tilde{p}_4\}$)

New world: w_{11}

W			λ s.t. $w \not\succ_W \lambda$
w_1	1	$\tilde{g},\tilde{p}_0,\tilde{p}_2,\tilde{p}_3,\tilde{p}_4$	Ø
w_{10}	0	$ ilde{p}_4$	λ_1, λ_3

Selected: $\langle w_{10}, \lambda_1 = (a \to \bot) \to \tilde{p}_0 \rangle$

(17) $R_5, w_{10}, a \vdash_{\mathbf{c}} \bot ?$

 $\operatorname{Yes}(\{a,\,\tilde{p}_4\})$

 $R_5, a, \tilde{p}_4 \vdash_{\mathbf{c}} \bot$

Learned basic clause: $\tilde{p}_4 \to \tilde{p}_0$

 $R_6 = R_5 + \text{learned basic clause}$

Restart 6 (basic)

(18)
$$R_6 \vdash_{c} \tilde{g}$$
 ?
 $\operatorname{Yes}(\emptyset)$
 $R_6 \vdash_{c} \tilde{g}$

Goal proved

Problem description

Restarts: 6 (5 basic, 1 semantic) Learned axioms (1): $(a \to \neg a) \lor (\neg a \to a)$ Flat clauses R_0 (7): $\tilde{g} \to \tilde{p}_2$ $\tilde{p}_0 \to \tilde{p}_2$ $a \wedge \tilde{p}_0 \to \bot$ $\tilde{p}_1 \to \tilde{p}_2$ $\tilde{p}_0 \wedge \tilde{p}_1 \to \bot$ $\tilde{p}_2 \to \tilde{g}$ $\tilde{p}_2 \to \tilde{p}_0 \vee \tilde{p}_1$ Implication clauses X_0 (2): $\lambda_0 = (\tilde{p}_0 \to \bot) \to \tilde{p}_1$ $\lambda_1 = (a \to \bot) \to \tilde{p}_0$ Clauses added in basic restarts (5): $\tilde{p}_0 \to \tilde{p}_3$ $a \to \tilde{p}_1$ $\tilde{p}_3 \to \tilde{p}_0$ $\tilde{p}_5 \to \tilde{p}_1$ $\tilde{p}_4 \to \tilde{p}_0$ Clauses added in semantic restarts (6): $\tilde{p}_3 \to \tilde{p}_4$ $a \to \tilde{p}_5$ $\tilde{p}_3 \wedge \tilde{p}_5 \to a$ $a \wedge \tilde{p}_4 \rightarrow \tilde{p}_3$ $a \wedge \tilde{p}_3 \rightarrow \bot$ $\tilde{p}_4 \vee \tilde{p}_5$

Implication clauses learned in semantic restarts (3):

$$\lambda_2 = (a \to \tilde{p}_3) \to \tilde{p}_4$$

$$\lambda_3 = (a \to \bot) \to \tilde{p}_3$$

$$\lambda_4 = (\tilde{p}_3 \to a) \to \tilde{p}_5$$

Substitution

$$\tilde{p}_0 \mapsto \neg a$$

$$\tilde{p}_1 \mapsto \neg \neg a$$

$$\tilde{p}_2 \mapsto \neg a \vee \neg \neg a$$

$$\tilde{p}_3 \mapsto \neg a$$

$$\tilde{p}_4 \mapsto a \rightarrow \neg a$$

$$\tilde{p}_5 \mapsto \neg a \to a$$

 $\tilde{g} \; \mapsto \; \text{input formula}$