EE5110: Probability Foundations for Electrical Engineers July - Nov 2024, Math Review - I

1 References

- See Appendix A: Preliminaries, from Gray and Davisson for a review of set theory, set algebra and related problems.
- "Principles of Mathematical Analysis", Walter Rudin, is an excellent reference for analysis (real number system, sequences, series, continuity, integration).
- You may use online references for the basic concepts (e.g., Wikipedia).

2 Solved Problems

1. Show that $\sum_{n=1}^{\infty} p^{n-1} = \frac{1}{1-p}$ for |p| < 1.

 $\sum_{n=1}^{\infty} p^{n-1}$ is a series. Hence, we need to compute the partial sum sequence $\{s_n\}$ and find the limit of the partial sum sequence.

Consider the partial sum $s_n = \sum_{i=1}^n p^{i-1}$. Multiplying (1-p) on both the sides, we get

$$s_n(1-p) = \left(\sum_{i=1}^n p^{i-1}\right)(1-p)$$

$$= (1+p+p^2+\dots+p^{n-1})(1-p)$$

$$= 1-p^n$$

We can rearrange the terms when $p \neq 1$ to get

$$s_n = \frac{1 - p^n}{1 - p}$$

Let us now find the limit of the partial sum sequence $\{s_n\}$.

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{1 - p^n}{1 - p} = \frac{1}{1 - p} - \lim_{n \to \infty} \frac{p^n}{1 - p} = \frac{1}{1 - p} - \frac{1}{1 - p} \lim_{n \to \infty} p^n$$

We know that $\lim_{n\to\infty} p^n = 0$ for |p| < 1. Hence,

$$\lim_{n \to \infty} s_n = \frac{1}{1 - p}$$

for |p| < 1. Hence, $\sum_{n=1}^{\infty} p^{n-1} = \frac{1}{1-p}$ for |p| < 1.

2. Let $x_n \to x$ and $y_n \to y$ be convergent sequences in \mathbb{R} . Show that $x_n + y_n \to x + y$.

Given $x_n \to x$. Then, for any $\epsilon_1 > 0$, we have an $N_{\epsilon_1}^x$ such that $||x_n - x|| < \epsilon_1$ for all $n > N_{\epsilon_1}^x$. Also, we are given that $y_n \to y$. Then, for any $\epsilon_2 > 0$, we have an $N_{\epsilon_2}^y$ such that $||y_n - y|| < \epsilon_2$ for all $n > N_{\epsilon_2}^y$.

Define a new sequence $\{z_n\}$ where $z_n = x_n + y_n$ for all n. To show that $z_n \to x + y$, we need to find, for any $\epsilon > 0$, a N_{ϵ}^z such that $||z_n - (x+y)|| < \epsilon$ for all $n > N_{\epsilon}^z$.

Given $\epsilon > 0$, define $\epsilon_1 = \frac{\epsilon}{2}$ and $\epsilon_2 = \frac{\epsilon}{2}$. Now, consider $N_{\epsilon}^z = \max(N_{\epsilon_1}^x, N_{\epsilon_2}^y)$ for the appropriately defined ϵ_1 and ϵ_2 .

$$||z_n - (x+y)|| = ||x_n + y_n - x - y||$$

$$= ||(x_n - x) + (y_n - y)||$$

$$\leq ||x_n - x|| + ||y_n - y||$$

where the last inequality follows from triangle inequality. We know that for any $n > N_{\epsilon}^z = \max(N_{\frac{\epsilon}{2}}^x, N_{\frac{\epsilon}{2}}^y)$, $||x_n - x|| < \frac{\epsilon}{2}$ and $||y_n - y|| < \frac{\epsilon}{2}$. Hence,

$$||z_n - (x+y)|| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Hence, $z_n \to x + y$.

3. Let A_1, A_2, \cdots be sets in Ω . Define for any $n = 1, 2, \cdots$

$$B_{1} = A_{1}$$

$$B_{2} = A_{2} - A_{1},$$

$$\vdots$$

$$B_{n} = A_{n} - \bigcup_{i=1}^{n-1} A_{i}$$

$$\vdots$$

Show that $\{B_n\}$ are disjoint and

$$\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} B_n$$

We note that $B_1 = A_1$, $B_2 = A_2 - A_1 = A_2 A_1^c$, $B_3 = A_3 - (A_1 \cup A_2) = A_3 A_2^c A_1^c$ and so on. In general, $B_n = A_n A_{n-1}^c \dots A_1^c$.

Consider n and m, integers, such that n > m.

$$B_n B_m = (A_n \dots A_m^c A_{m-1}^c \dots A_1) \cap (A_m A_{m-1}^c \dots A_1)$$

$$= A_n \dots (A_m A_m^c) \dots A_1^c \qquad \text{(using associativity)}$$

$$= A_n \dots \phi \dots A_1^c \qquad (AA^c = \phi)$$

$$= \phi \qquad (A\phi = \phi)$$

Thus, $B_n B_m = \phi$, or, B_n and B_m are disjoint for any $n \neq m$. Hence, the collection of sets are B_1, B_2, \cdots disjoint.

We will first show that $\bigcup_{i=1}^{n} B_i = \bigcup_{i=1}^{n} A_i$. We will prove the result using mathematical induction.

We know $B_1 = A_1$. Hence, the result is true for n = 1. Suppose that the result is true for n - 1, i.e., $\bigcup_{i=1}^{n-1} B_i = \bigcup_{i=1}^{n-1} A_i$. We will now show that the result is true for n, i.e., $\bigcup_{i=1}^{n} B_i = \bigcup_{i=1}^{n} A_i$.

Consider $\bigcup_{i=1}^{n} B_i$.

$$\bigcup_{i=1}^{n} B_{i} = B_{n} \cup \left(\bigcup_{i=1}^{n-1} B_{i}\right) \\
= B_{n} \cup \left(\bigcup_{i=1}^{n-1} A_{i}\right) \qquad \text{(by induction)} \\
= \left(A_{n} A_{n-1}^{c} \dots A_{1}^{c}\right) \cup \left(\bigcup_{i=1}^{n-1} A_{i}\right) \qquad \text{(by definition of } B_{n}) \\
= \left(A_{n} \cap \left(A_{n-1} \cup A_{n-2} \dots \cup A_{1}\right)^{c}\right) \cup \left(\bigcup_{i=1}^{n-1} A_{i}\right) \qquad \text{(by DeMorgan's law)} \\
= \left(A_{n} \cap \left(\bigcup_{i=1}^{n-1} A_{i}\right)^{c}\right) \cup \left(\bigcup_{i=1}^{n-1} A_{i}\right) \qquad \text{(by distributivity)} \\
= \left(A_{n} \cup \left(\bigcup_{i=1}^{n-1} A_{i}\right)\right) \cap \left(\left(\bigcup_{i=1}^{n-1} A_{i}\right)^{c} \cup \left(\bigcup_{i=1}^{n-1} A_{i}\right)\right) \qquad \text{(by distributivity)} \\
= \bigcup_{i=1}^{n} A_{i} \cap \left(\Omega\right) \qquad \qquad \left(A \cup A^{c} = \Omega\right) \\
= \bigcup_{i=1}^{n} A_{i} \qquad \left(A \cap \Omega = A\right)$$

By induction, the result is true for all n.

We have shown that $\bigcup_{i=1}^n B_i = \bigcup_{i=1}^n A_i$ for all $n=1,2,\cdots$. But, this does not imply that

$$\bigcup_{i=1}^{\infty} B_i = \bigcup_{i=1}^{\infty} A_i$$

We need to prove the equality of the two sets in the old-fashioned way. Define

$$B = \bigcup_{i=1}^{\infty} B_i$$
, and $A = \bigcup_{i=1}^{\infty} A_i$

We will show that $A \subset B$ and $B \subset A$.

Consider $\omega \in B$. Then, there exists a n such that $\omega \in B_n$ (by definition). Now, we know that $B_n \subset A_n$ (by definition). Hence, $\omega \in A_n$ as well and trivially, $\omega \in A$ as well. Or, $B \subset A$.

Consider $\omega \in A$. Then, there exists a n such that $\omega \in A_n$ (by definition). Clearly, $\omega \in \bigcup_{i=1}^n A_i$ and so $\omega \in \bigcup_{i=1}^n B_i$ (we proved this result just now). Further, $\omega \in B$ as well (since $\bigcup_{i=1}^n B_i \subset B$). Hence, $A \subset B$.

Since $A \subset B$ and $B \subset A$, we have A = B.

3 Practice Problems

- 1. Show that $\sum_{n=1}^{\infty} \frac{1}{n} = \infty$ (i.e., show that the infinite series diverges to infinity (or) show that the sequence of partial sums increases monotonically to infinity).
- 2. Let $x_n \to x$ and $y_n \to y$ be convergent sequences in \mathbb{R} . Show that $x_n y_n \to xy$ (i.e., given $\epsilon > 0$, find N_{ϵ} such that $||x_n y_n xy|| < \epsilon$ for all $n > N_{\epsilon}$).
- 3. Using the identities $(A^c)^c = A$, $A \cup B = B \cup A$ and $(A \cup B)^c = A^c \cap B^c$, show that
 - (a) $A \cap B = B \cap A$
 - (b) $(A \cap B)^c = A^c \cup B^c$
- 4. Show that the set of rational numbers, \mathbb{Q} , is countable.