5. Подпоследовательности, частичные пределы. Теорема Больцано-Вейерштрасса. Критерий Коши

1. Подпоследовательности

1.1. Определение

Пусть задана последовательность $\{x_n\}$ и строго возрастающая последовательность натуральных чисел $n_1 < n_2 < n_3 < \dots$ Тогда последовательность $\{x_{n_k}\}$ называется **подпоследовательностью** последовательности $\{x_n\}$.

Обозначение: $\{x_{n_k}\}\subset \{x_n\}$

1.2. Связь с пределом исходной последовательности

- ullet Если $\lim_{n o\infty}x_n=a$, то любая подпоследовательность $\{x_{n_k}\}$ также сходится к a.
- Если последовательность неограничена, то существует подпоследовательность, стремящаяся к $+\infty$ или $-\infty$.

Доказательство первого утверждения:

Формальное доказательство:

Пусть $\lim x_n=a$. Тогда для любого $\varepsilon>0$ существует N такой, что для всех $n\geq N$ выполняется $|x_n-a|<\varepsilon$.

Поскольку $n_k o \infty$ при $k o \infty$, найдётся K такой, что для всех $k \ge K$ выполняется $n_k \ge N$.

Тогда для $k \geq K$ имеем $|x_{n_k} - a| < arepsilon$. Следовательно, $\lim x_{n_k} = a$.

Доказательство второго утверждения:

Если последовательность неограничена сверху, то для любого M>0 существует бесконечно много членов таких, что $x_n>M$. Выбирая $M=1,2,3,\ldots$, можно построить подпоследовательность, стремящуюся к $+\infty$. Аналогично для неограниченности снизу.

2. Частичные пределы

2.1. Определение

Число $a \in \mathbb{R}$ называется **частичным пределом** последовательности $\{x_n\}$, если существует подпоследовательность $\{x_{n_k}\}$, сходящаяся к a.

2.2. Три эквивалентные характеристики частичного предела

Для числа $a\in\mathbb{R}$ следующие условия эквивалентны:

- 1. a частичный предел последовательности $\{x_n\}$
- 2. В любой ϵ -окрестности точки a содержится бесконечно много членов последовательности
- 3. Для любого ε > 0 и для любого N существует n ≥ N такое, что $|x_n-a|<arepsilon$

Доказательство эквивалентности:

Формальное доказательство:

• (1) \Rightarrow (2): Если a — частичный предел, то существует подпоследовательность $x_{n_k} \to a$. Для любого $\varepsilon > 0$ найдется К такое, что для всех $k \ge K$ выполняется $|x_{n_k} - a| < \varepsilon$. Таким образом, в ε -окрестности точки а содержится бесконечно много членов подпоследовательности, а значит и исходной последовательности.

- (2) \Rightarrow (3): Если в любой ε-окрестности точки а содержится бесконечно много членов последовательности, то для любого N найдется n ≥ N такое, что x_n попадает в эту окрестность.
- (3) \Rightarrow (1): Построим подпоследовательность, сходящуюся к а. Возьмем ϵ_1 = 1. Найдем n_1 такое, что $|x_{n_1} a| < 1$. Затем возьмем ϵ_2 = 1/2. Найдем $n_2 > n_1$ такое, что $|x_{n_2} a| < 1/2$. Продолжая этот процесс, получим подпоследовательность x_{n_k} , для которой $|x_{n_k} a| < 1/k \to 0$, значит $x_{n_k} \to a$.

3. Верхний и нижний пределы

3.1. Определения через супремумы и инфимумы

• **Верхний предел** последовательности $\{x_n\}$:

$$\limsup_{n o\infty}x_n=\inf_{n\geq 1}\sup_{k>n}x_k$$

• **Нижний предел** последовательности $\{x_n\}$:

$$\liminf_{n o\infty}x_n=\sup_{n\geq 1}\inf_{k\geq n}x_k$$

3.2. Эквивалентные характеристики

Число a является верхним пределом последовательности $\{x_n\}$ тогда и только тогда, когда:

- 1. Для любого arepsilon>0 существует бесконечно много номеров n таких, что $x_n>a-arepsilon$
- 2. Для любого arepsilon>0 существует лишь конечное число номеров n таких, что $x_n>a+arepsilon$

Доказательство эквивалентности определений:

Формальное доказательство:

Пусть $L = \limsup x_n = \inf_n \sup_{k \geq n} x_k$.

• Покажем, что L удовлетворяет условиям 1 и 2:

- Для любого $\varepsilon > 0$ и для любого n имеем $\sup_{k \ge n} x_k \ge L$. Значит, для каждого n найдется $k \ge n$ такое, что $x_k > L \varepsilon$. Таким образом, условие 1 выполнено.
- Предположим, что условие 2 не выполнено. Тогда существует $\varepsilon > 0$ такое, что бесконечно много $xn > L + \varepsilon$. Но тогда для всех n будет s\sup{k \geq n} x \geq L + ε \$, значит $L = \lim_{n \to \infty} \|x\|$
- Теперь докажем обратное: пусть число а удовлетворяет условиям 1 и 2. Покажем, что а = L.
 - Из условия 2 следует, что для любого ε > 0 существует N такое, что для всех n ≥ N выполняется хn ≤ a + ε . Значиm, \$\sup{n \geq N} x_n \leq a + ε \$, поэтому L ≤ a + ε . Так как ε произвольно, то L ≤ a.
 - Из условия 1 следует, что для любого $\epsilon > 0$ и для любого N существует n ≥ N такое, что xn > a ϵ . Значит, \$\sup{n \geq N} x_n > a ϵ \$, поэтому L ≥ a ϵ . Так как ϵ произвольно, то L ≥ a.
 - Таким образом, L = a.

4. Теорема Больцано-Вейерштрасса

Теорема: Всякая ограниченная последовательность имеет сходящуюся подпоследовательность.

Доказательство (метод деления отрезка пополам):

Формальное доказательство:

- 1. Пусть последовательность $\{x_n\}$ ограничена: $a \leq x_n \leq b$ для всех n. Рассмотрим отрезок $I_0 = [a,b]$.
- 2. Разделим I_0 пополам. Хотя бы в одной из половин содержится бесконечно много членов последовательности. Выберем эту половину и обозначим её I_1 .

- 3. Продолжим процесс: на k-м шаге имеем отрезок I_k , содержащий бесконечно много членов последовательности. Разделим его пополам и выберем половину I_{k+1} , содержащую бесконечно много членов.
- 4. Длина отрезков I_k стремится к нулю: $|I_k|=rac{b-a}{2^k} o 0.$
- 5. По принципу вложенных отрезков существует единственная точка c, принадлежащая всем отрезкам I_k .
- 6. Построим подпоследовательность, сходящуюся к c:
 - ullet Выберем n_1 такой, что $x_{n_1} \in I_1$
 - ullet Выберем $n_2>n_1$ такой, что $x_{n_2}\in I_2$
 - Продолжая, получим подпоследовательность $\{x_{n_k}\}$, где $x_{n_k} \in I_k$
 - Так как $|x_{n_k}-c| \leq |I_k| o 0$, то $x_{n_k} o c$

5. Критерий Коши сходимости числовой последовательности

5.1. Фундаментальная последовательность

Последовательность $\{x_n\}$ называется **фундаментальной** (или последовательностью Коши), если:

$$orall arepsilon > 0 \; \exists N(arepsilon) \in \mathbb{N} : orall n, m \geq N(arepsilon) \Rightarrow |x_n - x_m| < arepsilon$$

5.2. Критерий Коши

Последовательность сходится тогда и только тогда, когда она фундаментальна.

Доказательство необходимости (⇒):

Формальное доказательство необходимости:

Если $\lim x_n = a$, то для $\varepsilon > 0$ найдётся N такой, что для всех $n, m \geq N$ выполняется:

$$|x_n-a|<rac{arepsilon}{2},\quad |x_m-a|<rac{arepsilon}{2}$$

Тогда $|x_n-x_m| \leq |x_n-a|+|a-x_m| < arepsilon$. Следовательно, последовательность фундаментальна.

Доказательство достаточности (⇐):

Формальное доказательство достаточности:

1. Покажем, что фундаментальная последовательность ограничена. При $\varepsilon=1$ найдётся N такой, что для всех $n,m\geq N$ выполняется $|x_n-x_m|<1$. Тогда для $n\geq N$ имеем:

$$|x_n| \leq |x_N| + |x_n - x_N| < |x_N| + 1$$

Значит, последовательность ограничена.

- 2. По теореме Больцано-Вейерштрасса существует сходящаяся подпоследовательность $\{x_{n_k}\} o a$.
- 3. Покажем, что вся последовательность сходится к a. Для $\varepsilon>0$ найдём N такой, что:
 - ullet Для всех $n,m\geq N$ выполняется $|x_n-x_m|<rac{arepsilon}{2}$ (фундаментальность)
 - Найдём k такой, что $n_k \geq N$ и $|x_{n_k} a| < rac{arepsilon}{2}$ Тогда для всех $n \geq N$:

$$|x_n-a| \leq |x_n-x_{n_k}| + |x_{n_k}-a| < rac{arepsilon}{2} + rac{arepsilon}{2} = arepsilon$$

Следовательно, $\lim x_n = a$.

6. Вопросы для самопроверки

- 1. Дайте определение подпоследовательности. Докажите, что если последовательность сходится, то любая её подпоследовательность сходится к тому же пределу.
- 2. Что такое частичный предел? Сформулируйте и докажите три эквивалентных определения частичного предела.
- 3. Докажите, что для любой последовательности верхний предел равен наибольшему частичному пределу, а нижний предел наименьшему.
- 4. Докажите теорему Больцано-Вейерштрасса методом деления отрезка пополам.
- 5. Что такое фундаментальная последовательность? Докажите критерий Коши сходимости последовательности.
- 6. Верно ли, что если последовательность фундаментальна, то она ограничена? Докажите.
- 7. Пусть $\{x_n\}$ ограниченная последовательность. Докажите, что её верхний предел является наибольшим частичным пределом.
- 8. Приведите пример последовательности, у которой множество частичных пределов совпадает с отрезком [0,1].