# Układy oscylacyjne

### Marcin Gruchała 249882 Jan Bronicki 249011

### 1 Cel ćwiczenia.

Badanie odpowiedzi czasowej członu oscylacyjnego zgodnie z tabelą:

| Przedział      | Wybrana wartość $\xi$ | Wykres biegunów | Wykres skokowy |
|----------------|-----------------------|-----------------|----------------|
| $\xi < -1$     | -1.5                  | Rysunek 2       | Rysunek 3      |
| $-1 < \xi < 0$ | -0.2                  | Rysunek 4       | Rysunek 9      |
| $\xi = 0$      | 0                     | Rysunek 6       | Rysunek 7      |
| $0 < \xi < 1$  | 0.5                   | Rysunek 8       | Rysunek 9      |
| $1 < \xi$      | 1.5                   | Rysunek 10      | Rysunek??      |

### 2 Schemat.

Schemat simulink:

#### x"+2\*ksi\*w\*x'+w^2\*x=b\*u



Rysunek 1: Schemat simulinka

## 3 Wykresy rozwiązań.

a) Przedział:  $-1>\xi,$  Wartość:  $\xi=-1.5$  Wykres biegunów:



Rysunek 2: Wykres biegunów, dla  $\xi=-1.5$ 



Rysunek 3: Wykres skokowy, dla  $\xi=-1.5$ 

b) Przedział:  $-1 < \xi < 0,$  Wartość:  $\xi = -0.2$  Wykres biegunów:



Rysunek 4: Wykres biegunów, dla  $\xi=-0.2$ 



Rysunek 5: Wykres skokowy, dla  $\xi=-0.2$ 

c) Przedział:  $\xi=0,$  Wartość:  $\xi=0$  Wykres biegunów:



Rysunek 6: Wykres biegunów, dla  $\xi=0$ 



Rysunek 7: Wykres skokowy, dla  $\xi=0$ 

d) Przedział: 0 <  $\xi < 1,$  Wartość: <br/>  $\xi = 0.5$  Wykres biegunów:



Rysunek 8: Wykres biegunów, dla  $\xi=0.5$ 



Rysunek 9: Wykres skokowy, dla  $\xi=0.5$ 

e) Przedział: 1 <  $\xi$ , Wartość:  $\xi=1.5$ Wykres biegunów:



Rysunek 10: Wykres biegunów, dla  $\xi=1.5$ 

Wykres odpowiedzi skokowej:



Rysunek 11: Wykres skokowy, dla  $\xi=1.5$ 

### 4 Wnioski.

Ćwiczenie pokazuje wpływ wartości współczynnika  $\xi$  na równanie drugiego stopnia. Jak widać na wykresach po tym w jakim przedziale znajduje się  $\xi$  można stwierdzić stabilność lub niestabilność układu.

### 5 Załączniki

```
1
       clear;
2
       close all;
       %x''+2*ksi*w*x'+w^2 * x=b*u
3
4
5
       u=0;
6
       ksi=-1.5 ;
7
       w=1.5;
8
       b=1;
9
       % Rozne wartosci ksi dla porownania
10
       ksi_all=[ksi];
11
       [t]=sim('main_schemat');
13
       figure;
14
       plot(t,x);
15
       grid on;
16
       xlabel('t');
17
       ylabel('x');
18
       % Obliczanie biegunow dla glownego ksi
19
       lambdal = -ksi*w+w*sqrt(ksi*ksi-l);
20
       lambda2 = -ksi*w-w*sqrt(ksi*ksi-1);
21
22
23
       %Petla ksi, dla narysowania biegunow
24
25
       figure;
26
       %wartosci roznych ksi oraz kolory dla ich biegonow
       ksi_colors=["bo","mo","go","ro"]
29
30
       hold on;
31
       grid on;
     for i=1:1:(length(ksi all))
32
          lambdal = -ksi_all(i)*w+w*sqrt(ksi_all(i)*ksi_all(i)-1);
lambda2 = -ksi_all(i)*w-w*sqrt(ksi_all(i)*ksi_all(i)-1);
33
34
35
36
           plot(real(lambdal),imag(lambdal),ksi_colors(i));
37
           plot(real(lambda2),imag(lambda2),ksi_colors(i));
38
39
           line([0,(2*real(lambdal))],[0,0],'Color','k');
40
           line([0,(2*real(lambda2))],[0,0],'Color','k');
 44
 45
             line([0,0],[0,(2*imag(lambdal)+6)],'Color','k');
             line([0,0],[0,(2*imag(lambda2)-6)],'Color','k');
 46
 47
 48
         xlabel('Re');
 49
         ylabel('Im');
```