## **Identification of Aedes Aegypti Eggs**

Image classification using Keras. This project uses the Keras Fast RCNN model to identify Aedes Aegypti eggs in images taken from traps spread around Recife and Region.

The dataset was provided by Pickcells.

Authors: Tácio Nery / Gustavo Soares

## **Preprocessing**

To perform Image Classification, the first thing to do is Label a sample of images. To do so, I used <a href="LabelImg"><u>LabelImg</u></a>. It will generate a XLM file with the coordinates of the objects marked. The sample images are on <a href="data/training">data/training</a>.

After label the images, it's time to generate a CSV with the data includes on XML. The python script utils/xml to csv.py will do the job.

## **Visualizing Data**

The below script demonstrates how the labels work. Simply load the CSV file and chose one image to display rectangles on the marked coordinates, which has the objects to detect.

```
import pandas as pd
import matplotlib.pyplot as plt

%matplotlib inline

from matplotlib import patches

print("Pandas Version:", pd.__version__)
```

```
Pandas Version: 0.24.1
```

```
# Load the Tranining Set
train = pd.read_csv('aedes_labels.csv')
train.head(10)
```

|   | filename                                     | width | height | class | xmin | ymin | xmax | ymax |
|---|----------------------------------------------|-------|--------|-------|------|------|------|------|
| 0 | 0b57cceb-4d17-417c-<br>a3c5-ffb0b62d8b59.jpg | 640   | 480    | full  | 169  | 134  | 237  | 177  |
| 1 | 0b57cceb-4d17-417c-<br>a3c5-ffb0b62d8b59.jpg | 640   | 480    | full  | 481  | 168  | 547  | 225  |
| 2 | 0b57cceb-4d17-417c-<br>a3c5-ffb0b62d8b59.jpg | 640   | 480    | full  | 470  | 332  | 544  | 389  |
| 3 | 0b57cceb-4d17-417c-<br>a3c5-ffb0b62d8b59.jpg | 640   | 480    | full  | 489  | 34   | 553  | 89   |
| 4 | 0ca5874c-22db-4016-<br>8d5c-5d2626dda567.jpg | 640   | 480    | full  | 576  | 221  | 607  | 280  |
| 5 | 0ca5874c-22db-4016-<br>8d5c-5d2626dda567.jpg | 640   | 480    | full  | 250  | 319  | 311  | 360  |
| 6 | 0ca5874c-22db-4016-<br>8d5c-5d2626dda567.jpg | 640   | 480    | full  | 212  | 335  | 268  | 370  |
| 7 | 0ca5874c-22db-4016-<br>8d5c-5d2626dda567.jpg | 640   | 480    | full  | 173  | 271  | 223  | 316  |
| 8 | 0ca5874c-22db-4016-<br>8d5c-5d2626dda567.jpg | 640   | 480    | full  | 288  | 213  | 344  | 237  |
| 9 | 0ca5874c-22db-4016-<br>8d5c-5d2626dda567.jpg | 640   | 480    | full  | 279  | 233  | 355  | 258  |

```
# Mark the Aedes egg using one of the training set images
fig = plt.figure()
ax = fig.add_axes([0,0,1,1])
image = plt.imread('data/training/' + train.filename[0])
plt.imshow(image)
for _,row in train[train.filename == '0b57cceb-4d17-417c-a3c5-ffb0b62d8b59.jpg'].i
terrows():
    xmin = row.xmin
    xmax = row.xmax
    ymin = row.ymin
    ymax = row.ymax
    width = xmax - xmin
    height = ymax - ymin
    edgecolor = 'g'
    ax.annotate('WBC', xy=(xmax-40,ymin+20))
    rect = patches.Rectangle((xmin,ymin), width, height, edgecolor = edgecolor, fa
cecolor = 'none')
    ax.add patch(rect)
```



## **Training**

The Keras Faster RCNN needs a txt file with the same format the CSV file generated before.

Now the model is has enough resources to be trained. The model can be found in model/keras-frcnn directory. To perform the training just run in terminal:

python train\_frcnn.py -o simple -p ../../annotate.txt --num\_epochs=50 . The model was edited to perform 50 epochs with 10 iterations each due to hardware limitations, it could take too long to train.

Once the traning finishes, the weights file will be generated into model/kearas-frcnn/model\_frcnn.hdf5. Now the test can be performed with the command python test\_frcnn.py -p ../../data/testing. The result of the testing will be saved in data/output directory.

Here's one sample of the output generated by the test.

```
test_output = plt.imread('data/output/13.jpg')
plt.imshow(test_output)
```

```
<matplotlib.image.AxesImage at 0x109bf92e8>
```

