

Network Meta-Interpolation

Fast and accurate NMA with effect modification

Ofir Harari ofir@coreclinicalsciences.com

Joint work with Mohsen Soltanifar, Andre Verhoek, Joseph Cappelleri, Mario Ouwens, Caitlin Daly and Bart Heeg

June 3, 2023

Effect modification in Network Meta-Analysis

Effect modification

- When the magnitude of the effect of treatment on an outcome varies along the value of a variable, X, we call X an effect modifier (EM).
- ullet In statistical terms, this means that X interacts with the treatment assignment.
 - Different treatment effects for different levels of X.
- Example: in the OAK study¹ (2017, Atezolizumab vs. Docetaxel for advanced NSCLC patients), the ITT hazard ratio for overall survival was 0.66 [CI: 0.51–0.86] for males and 0.81 [0.66–0.99] for females
 - Is sex an effect modifier?
- In network meta-analysis (NMA), an evidence network of trials with unbalanced EM distributions could lead to considerable bias.

Effect modification (continued)

Consider the following hypothetical evidence network –

Study	Trt1	Trt2	% age > 65	% high severity	TE	SE
1	Α	В	62.8	45.7	1.387	0.188
2	Α	В	84.3	61.8	1.475	0.183
3	Α	В	78.7	59.2	1.612	0.187
4	Α	С	73.3	50.3	2.757	0.204
5	Α	С	70.5	46.8	2.526	0.198
6	Α	С	60.0	40.5	2.134	0.191
7	Α	D	53.3	30.3	0.667	0.187

- Here the proportion of patients aged 65+ ranges from 53% to 84%, while the proportion of severe cases (at baseline) varies between 30% and 62%.
- If age and/or disease severity are effect modifiers, our analysis must take into account this study heterogeneity.

NMA methods and shared effect modification

Existing methods

The following methods assume(in their basic form) *shared effect modification* (SEM), that is: that all EMs affect outcome in the exact same way across different treatments.

1. Network Meta Regression (NMR)

- Aggregate-level data (AgD) network meta-regression (NMR).²
- The version the allows non-SEM is over-parameterized for the typical network size.

2. Multi-level Network Meta Regression (ML-NMR)

- A recent approach³ implemented in the *multinma* R package⁴.
- Resolves study imbalance by learning the EM distribution from IPD studies and sampling random pseudo-populations from the AgD studies.
- In practice, requires one IPD per treatment class to fit a non-SEM model.

The SEM assumption is extremely limiting, and is probably rarely reasonable to make.

Fitting a SEM model to non-SEM data only exacerbates bias.

Existing methods (continued)

3. Matching-Adjusted Indirect Comparison (MAIC) and Simulated Treatment Comparison (STC)

- MAIC uses propensity-score weighting, while STC is based on regression adjustments.
- Both methods are limited to two studies: one IPD and one AgD.
- ITC when using these methods is restricted to the EM conditions of the AgD study.
- Even within said restrictions, their performance is inadequate⁵.

Network Meta-Interpolation (NMI)

Data requirements

We assume that we have the following information available for all studies -

Trt1	Trt2	# patients	Prop. age > 65	Prop. high severity	TE	SE
А	В	600	0.628	0.457	1.387	0.188
Α	В		1		1.829	0.242
Α	В		0		0.492	0.319
Α	В			1	1.363	0.267
Α	В			0	1.464	0.270

- $1^{\rm st}$ row: treatment effect estimate and standard error for the full trial (62.8% 65 or older, 45.7% severe cases at baseline).
- 2^{nd} and 3^{rd} rows: TE and SE for the >= 65 and < 65 subgroups, respectively.
- ullet 4th and 5th rows: TE and SE data on the high and low severity subgroups, respectively.
- This kind of information is often reported, but is hardly extracted and never used.
- Empty cells in the age and severity columns stand contain missing data.

Outline of the method

- NMI is a "population adjustment" heuristic that aims to balance on study EM distribution.
- The idea: put effort into data pre-processing and keep modelling simple.
- The method consists of the following three steps:
 - 1. Enrich the data by imputing the missing cells in the table for all studies.
 - 2. Interpolate treatment effect estimates and standard errors for all studies at "neutral" EM values.
 - 3. Perform standard NMA⁶ on the resultant study-level data, now that all studies are balanced.

Modelling assumptions (two EMs)

For each study, and assume that the data are generated by the generalized linear model

$$g(heta;oldsymbol{eta}) = eta_{00} + eta_{01}x_{1i} + eta_{02}x_{2i} + eta_{12}x_{1i}x_{2i} + eta_{03}T_i + eta_{13}x_{1i}T_i + eta_{23}x_{2i}T_i,$$

- Here x_{1i} and x_{2i} are two binary covariate values for patient i.
- T_i is the treatment indicator (1 for treatment, 0 for baseline).
- The method is applicable to any number of binary EMs.

Modelling assumptions (continued)

• The relative treatment effect at the aggregate level is given by

$$egin{aligned} \hat{\Delta}\left(ar{x}_1,ar{x}_2
ight) := \mathrm{g}\left(heta;\hat{oldsymbol{eta}},ar{x}_1,ar{x}_2,T=1
ight) - \mathrm{g}\left(heta;\hat{oldsymbol{eta}},ar{x}_1,ar{x}_2,T=0
ight) \ &= \hat{eta}_{03} + \hat{eta}_{13}ar{x}_1 + \hat{eta}_{23}ar{x}_2. \end{aligned}$$

The associated variance is then

$$\hat{\sigma}_{\hat{\Lambda}}^2\left(ar{x}_1,ar{x}_2
ight) = \hat{\sigma}_{00} + ar{x}_1^2\hat{\sigma}_{11} + ar{x}_2^2\hat{\sigma}_{22} + 2ar{x}_1\hat{\sigma}_{01} + 2ar{x}_2\hat{\sigma}_{02} + 2ar{x}_1ar{x}_2\hat{\sigma}_{12},$$

where

$$\hat{\sigma}_{ij} = \operatorname{Cov}\left(\hat{eta}_{i3},\hat{eta}_{j3}
ight), \ \ 0 \leq i \leq j \leq 2.$$

• Both equations are linear in their respective parameters (given the \bar{x} -s).

Step 1

• Recall that our study-level data is of the form

$$egin{bmatrix} ar{x}_1 & ar{x}_2 & \widehat{ ext{TE}}_1 & \widehat{ ext{SE}}_1 \ 1 & \widehat{ ext{TE}}_2 & \widehat{ ext{SE}}_2 \ 0 & \widehat{ ext{TE}}_3 & \widehat{ ext{SE}}_3 \ 0 & \widehat{ ext{TE}}_4 & \widehat{ ext{SE}}_4 \ 1 & \widehat{ ext{TE}}_5 & \widehat{ ext{SE}}_5 \ \end{bmatrix}$$

- First, we take advantage of any IPD we have to estimate the Pearson correlation $ho_{\scriptscriptstyle X_1,X_2}$.
- Then we use it to replace the missing values with the best linear unbiased prediction (BLUP)

$$ar{x}_{j}^{*}\left(x_{i}
ight)=\hat{
ho}_{_{X_{1},X_{2}}}\hat{\sigma}_{_{X_{1}}}\hat{\sigma}_{_{X_{2}}}\left(x_{i}-ar{x}_{j}
ight)+ar{x}_{j},\ 1\leq i
eq j\leq2,\ x_{i}=0,1.$$

Step 1: an example

The original study

Trt1	Trt2	x1	x2	TE	se
Α	В	0.628	0.457	1.387	0.188
А	В	1		1.829	0.242
А	В	0		0.492	0.319
Α	В		1	1.363	0.267
А	В		0	1.464	0.270

...and the imputed one

Trt1	Trt2	x1	x2	TE	se
Α	В	0.628	0.457	1.387	0.188
Α	В	1.000	0.538	1.829	0.242
Α	В	0.000	0.321	0.492	0.319
Α	В	0.739	1.000	1.363	0.267
Α	В	0.535	0.000	1.464	0.270

Step 1 output

• Now that we have a completed study-level matrix (all 5 rows)

we may proceed to Step 2 of NMI and go back to our equations.

Step 2

The first equation

$$\hat{\Delta}(\bar{x}_1, \bar{x}_2) = \hat{\beta}_{03} + \hat{\beta}_{13}\bar{x}_1 + \hat{\beta}_{23}\bar{x}_2,$$

induces the system

$$oldsymbol{M}_1 \hat{oldsymbol{eta}}_{3 imes 1} = \hat{oldsymbol{\Delta}}_{5 imes 1}$$

for

$$oldsymbol{M}_1 = egin{bmatrix} ert & ert & ert & ert \ \mathbf{1} & ar{oldsymbol{x}}_1^* & ar{oldsymbol{x}}_2^* \ ert & ert & ert \end{bmatrix}_{5 imes 3}$$

• This overdetermined system gives rise to the least square solution

$$\hat{\hat{oldsymbol{eta}}} = ig(oldsymbol{M}_1^\mathsf{T}oldsymbol{M}_1ig)^{-1}oldsymbol{M}_1^\mathsf{T}\hat{oldsymbol{\Delta}}$$

Step 2 (continued)

The second equation,

$$\hat{\sigma}_{\hat{\Lambda}}^{2}\left(ar{x}_{1},ar{x}_{2}
ight)=\hat{\sigma}_{00}+ar{x}_{1}^{2}\hat{\sigma}_{11}+ar{x}_{2}^{2}\hat{\sigma}_{22}+2ar{x}_{1}\hat{\sigma}_{01}+2ar{x}_{2}\hat{\sigma}_{02}+2ar{x}_{1}ar{x}_{2}\hat{\sigma}_{12},$$

takes the form

$$oldsymbol{M}_2\hat{oldsymbol{\sigma}}_{\scriptscriptstyle{6 imes1}}=\hat{oldsymbol{\sigma}}_{\hat{oldsymbol{\Delta}},5 imes1}^2$$

for

$$m{M}_2 = egin{bmatrix} | & | & | & | & | & | \ m{1} & ar{m{x}}_1^{st\,2} & ar{m{x}}_2^{st\,2} & 2ar{m{x}}_1^{st} & 2ar{m{x}}_2^{st} & 2ar{m{x}}_1^{st} ar{m{x}}_2^{st} \ | & | & | & | & | \end{bmatrix}_{5 imes 6}$$

• Here we use the Moore-Penrose pseudo-inverse for underdetermined systems

$$\hat{\hat{oldsymbol{\sigma}}} = oldsymbol{M}_2^{\mathsf{T}} ig(oldsymbol{M}_2 oldsymbol{M}_2^{\mathsf{T}}ig)^{-1} \hat{oldsymbol{\sigma}}_{\hat{oldsymbol{\Delta}}}^2$$

Step 2 (continued)

Once we have obtained $\hat{\hat{\beta}}$ and $\hat{\hat{\sigma}}$, the relative treatment effect at any new vector $(\bar{x}_1^{\text{new}}, \bar{x}_2^{\text{new}})$ and its associated variance are approximated by

$$\hat{\hat{\Delta}} \left(ar{x}_1^{
m new}, ar{x}_2^{
m new}
ight) = \hat{\hat{eta}}_{03} + \hat{\hat{eta}}_{13} ar{x}_1^{
m new} + \hat{\hat{eta}}_{23} ar{x}_2^{
m new}$$

and

$$ilde{\hat{\sigma}}_{\hat{\Delta}}^2 \left(ar{x}_1^{
m new}, ar{x}_2^{
m new}
ight) = ilde{\hat{\sigma}}_{00} + (ar{x}_1^{
m new})^2 ilde{\hat{\sigma}} + (ar{x}_2^{
m new})^2 ilde{\hat{\sigma}}_{22} + 2ar{x}_1^{
m new} ilde{\hat{\sigma}}_{01} + 2ar{x}_2^{
m new} ilde{\hat{\sigma}}_{02} + 2ar{x}_1^{
m new} ar{\hat{\sigma}}_{12},$$

respectively.

Step 2: an example

- ullet Suppose that we wish to perform ITC at $(ar{x}_1^{
 m new},ar{x}_2^{
 m new})=(0.675,0.475)$
- Step 1 output

Trt1	Trt2	x1	x2	TE	se
А	В	0.628	0.457	1.387	0.188
А	В	1.000	0.538	1.829	0.242
Α	В	0.000	0.321	0.492	0.319
А	В	0.739	1.000	1.363	0.267
А	В	0.535	0.000	1.464	0.270

is now collapsed into

Trt1	Trt2	x1	x2	TE	se
Α	В	0.675	0.475	1.44	0.189

Step 3

- Repeat steps 1-2 for each AgD study in the evidence network.
- The final dataset will contain exactly one row per study.
- Perform standard (fixed or random effect) AgD NMA on that resultant dataset.

Summary of NMI

- 1. Impute all missing sub-population means in the AgD subgroup analyses using BLUP.
- 2. Solve two linear systems (per study) to obtain relative TEs and SEs at neutral EM values.
- 3. Perform standard AgD NMA.

A worked example

The AgD data sets used

#Displaying NMR/NMA AgD
disp_tab(NMR_AgD)

#Displaying ML-NMR AgD
disp_tab(ML_NMR_AgD[1:10,])

#Displaying NMI AgD
disp_tab(NMI_AgD[6:15,])

Study	Trt1	Trt2	x1	x2	TE	se
1	Α	В	0.628	0.457	1.387	0.188
2	Α	В	0.843	0.618	1.475	0.183
3	Α	В	0.787	0.592	1.612	0.187
4	Α	С	0.733	0.503	2.757	0.204
5	Α	С	0.705	0.468	2.526	0.198
6	Α	С	0.600	0.405	2.134	0.191
7	Α	D	0.533	0.303	0.667	0.187

Tr	n	r	X1	X2
Α	318	58	0.597	0.472
В	282	133	0.663	0.440
Α	317	65	0.842	0.625
В	283	150	0.845	0.611
Α	292	57	0.767	0.589
В	308	169	0.805	0.594
Α	301	56	0.751	0.495
С	299	234	0.716	0.512
Α	280	58	0.682	0.461
C	320	245	0.725	0.475

Study	Trt1	Trt2	x1	x2	TE	se
2	Α	В	0.843	0.618	1.475	0.183
2	Α	В	1		1.577	0.198
2	Α	В	0		0.946	0.525
2	Α	В		1	1.517	0.232
2	Α	В		0	1.412	0.298
3	Α	В	0.787	0.592	1.612	0.187
3	Α	В	1		1.858	0.215
3	Α	В	0		0.643	0.398
3	Α	В		1	1.662	0.241
3	Α	В		0	1.542	0.296

The network

```
net = combine_network(
  set_ipd(IPD %>%
           mutate(TrC = Tr),
          study = Study,
         trt = Tr,
         trt_class = TrtClass,
          r = Y),
  set_agd_arm(ML_NMR_AgD %>%
               mutate(TrC = Tr),
             study = Study,
             trt = Tr,
             trt_class = TrtClass,
              r = r
             n = n),
 trt_ref = "A")
plot(net)
```


NMI (Step 1-2)

disp_tab(tail(NMI_object\$Imputed, 10))

disp_tab(N	MI_object\$Final)) #data	for NMA
------------	-------------------	---------	---------

Study	Trt1	Trt2	x1	x2	TE	se
6	Α	С	0.600	0.405	2.134	0.191
6	Α	С	1.000	0.489	3.139	0.279
6	Α	С	0.000	0.279	1.056	0.287
6	Α	С	0.725	1.000	3.768	0.380
6	Α	С	0.515	0.000	1.307	0.233
7	Α	D	0.533	0.303	0.667	0.187
7	Α	D	1.000	0.394	0.008	0.278
7	Α	D	0.000	0.200	1.305	0.266
7	Α	D	0.692	1.000	-0.286	0.374
7	Α	D	0.464	0.000	0.997	0.223

Study	Trt1	Trt2	x1	x2	TE	se
1	Α	В	0.675	0.475	1.439	0.189
2	Α	В	0.675	0.475	1.370	0.216
3	Α	В	0.675	0.475	1.480	0.196
4	Α	С	0.675	0.475	2.786	0.200
5	Α	С	0.675	0.475	2.571	0.195
6	Α	С	0.675	0.475	2.540	0.209
7	Α	D	0.675	0.475	0.289	0.221

Results

A more comprehensive simulation study

Simulation description

We generated 1000 random datasets from the following non-SEM model -

$$\log rac{p_i}{1-p_i} = arepsilon_i + egin{cases} -1.39 + 0.69T_i + x_{1i}T_i & ext{A-B trials} \ -1.39 + T_i + 1.61x_{1i}T_i + x_{2i}T_i & ext{A-C trials} \ -1.39 + 1.5T_i - 1.2x_{1i}T_i - x_{2i}T_i & ext{A-D trial} \end{cases}$$

and 1000 more from the following SEM model -

$$\log rac{p_i}{1-p_i} = arepsilon_i + egin{cases} -1.39 + 0.69T_i + 1.61x_{1i}T_i + x_{2i}T_i & ext{A-B trials} \ -1.39 + T_i + 1.61x_{1i}T_i + x_{2i}T_i & ext{A-C trials} \ -1.39 + 1.5T_i + 1.61x_{1i}T_i + x_{2i}T_i & ext{A-D trial} \end{cases}$$

where $arepsilon_i \sim \mathcal{N}\left(0, 0.2^2
ight)$.

Simulation description (continued)

- The network consisted of three A-B (AgD), three A-C (AgD) and one A-D (IPD) studies.
- The effect modifiers X_1 and X_2 where drawn from a bivariate distribution with correlation $ho_{_{X_1X_2}}=0.244$ and marginal binary distributions with

A-B trials A-C trials A-D trial

$\Pr(X_1=1)$	0.50	0.56	0.62	0.68	0.73	0.79	0.85
$\Pr(X_2=1)$	0.30	0.36	0.42	0.48	0.53	0.59	0.65

- Each time, the posterior means of all treatment effects were recorded along with their 95% Crls for all methods.
- Root mean squared error (RMSE) was calculated for each treatment effect estimate, as well as the proportion of the time that the 95% CrI covered the true value.

Simulation results: non-SEM data

Simulation results (averaged over all effects)

Simulation results: non-SEM data

Method	RMSE	Coverage
NMR	0.541	80.2%
NMA	0.241	98.3%
ML-NMR	0.447	92.6%
NMI	0.228	99.0%

Simulation results: SEM data

Method	RMSE	Coverage
NMR	0.381	91.2%
NMA	0.381	88.3%
ML-NMR	0.255	98.7%
NMI	0.222	99.0%

- Under non-SEM data, standard NMA is preferable to NMR/ML-NMR.
- ML-NMR shines under a SEM data model.
- NMI performs well either way.
- Read the paper for more scenarios.

Concluding remarks

Summary

- SEM is an extremely restrictive assumption in ITC that is impossible to validate.
- Adjusting for effect modification under a misplaced SEM assumption is worse than not adjusting at all.
- NMI requires extraction of subgroup analyses, but serves as an insurance policy against non-SEM data.
- NMI handles any number of studies and does not limit ITC to the EM conditions of one study.
- Our Research Synthesis Methods paper is open access and includes code and datasets.

Network meta-interpolation: Effect modification adjustment in network meta-analysis using subgroup analyses

First published: 25 October 2022 | https://doi.org/10.1002/jrsm.1608

Bibliography

References

- 1. Rittmeyer, A. *et al.* Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. *Lancet* **389**, 255–265 (2017).
- 2. Dias, S., Sutton, A. J., Welton, N. J. & Ades, A. E. *NICE DSU technical support document 3: Heterogeneity: Subgroups, meta-regression, bias and bias-adjustment*. (National Institute for Health; Clinical Excellence, 2011).
- 3. Phillippo, D. M. *et al.* Multilevel network meta-regression for population-adjusted treatment comparisons. *Journal of the Royal Statistical Society: Series A (Statistics in Society)* **183**, 1189–1210 (2020).
- 4. Phillippo, D. M. *Multinma: Network meta-analysis of individual and aggregate data in stan.* (2021).
- 5. Phillippo, D. M., Dias, S., Ades, A. E. & Welton, N. J. Assessing the performance of population adjustment methods for anchored indirect comparisons: A simulation study. *Statistics in Medicine* **39**, 4885–4911 (2020).
- 6. Dias, S., Welton, N., Sutton, A. & Ades, A. *NICE DSU technical support document 2: A generalised linear modelling framework for pairwise and network meta-analysis of randomised controlled trials*. (National Institute for Health; Clinical Excellence, 2011).