北京邮电大学 2018-2019 学年第一学期

《概率论与数理统计》4课时

期末考试试题答案(B)

考试注意事项: 学生必须将答题内容写在答题纸上, 写在试题纸上一律无效

- 一. 填空与选择题(本大题共10小题,每小题4分,共40分)
- 1. 己知 10 件产品中有 2 件次品,从该产品中任意取 3 件,则恰好取到一件次品的概率等于 $\frac{7}{15}$.
- 2. 设事件 A, B 相互独立,且 $P(A) = \frac{1}{3}$, P(B) > 0, 则 $P(A|B) = \frac{1}{3}$.
- 3. 设随机变量 X 的概率密度 $f(x) = \begin{cases} Ax^2, \ 0 \le x \le 1; \\ 0, & \text{其他,} \end{cases}$ 则常数 A = 3.
- 4. 设泊松分布随机变量 $X \sim P(\lambda)$, 且 $P\{X = 0\} = e^{-1}$,则 E(X) = 1.
- 5. 设二维随机变量 (X,Y) 服从区域 G: $0 \le x \le 2$, $0 \le y \le 2$ 上的均匀分布,则 $P\{X \le 1, Y \le 1\} = 0.25$.
- 6. 设随机变量X的数学期望E(X)与方差D(X)都存在,且有E(X)=10,

 $E(X^2) = 109$, 由切比雪夫不等式估计 $P\{|X-10| \ge 6\} \le 0.25$.

- 7. 设来自总体 N(0,1) 的样本 X_1, \dots, X_6 ,则常数 $C = \frac{1}{3}$ 使得 $CY \sim \chi^2$ 分布,其中 $Y = (X_1 + X_2 + X_3)^2 + (X_4 + X_5 + X_6)^2$.
- 8. 设总体 $X \sim N(1, 4)$, x_1 , x_2 , ..., x_{10} 为来自该总体的样本, $\overline{x} = \frac{1}{10} \sum_{i=1}^{10} x_i$,则 $D(\overline{x}) = \underline{0.4}$.
- 9.下列函数中可作为随机变量分布函数的是(C)

DIX) = DIX)

A.
$$F_1(x) = \begin{cases} 1, & 0 \le x \le 1; \\ 0, & 其他. \end{cases}$$

B.
$$F_2(x) = \begin{cases} -1, & x < 0; \\ x, & 0 \le x < 1; \\ 1, & x \ge 1. \end{cases}$$

C.
$$F_3(x) = \begin{cases} 0, & x < 0; \\ x, & 0 \le x < 1; \\ 1, & x \ge 1. \end{cases}$$

D.
$$F_4(x) = \begin{cases} 0, & 0 < 0; \\ x, & 0 \le x < 1; \\ 2, & x \ge 1. \end{cases}$$

10.设X1, X2来自任意总体X的一个容量为2的样本,则在下列E(X)的 无偏估计量中,最有效的估计量是(D

A.
$$\frac{2}{3}X1 + \frac{1}{3}X2$$
 B. $\frac{1}{4}X1 + \frac{3}{4}X2$

B.
$$\frac{1}{4}X1 + \frac{3}{4}X2$$

C.
$$\frac{2}{5}X1 + \frac{3}{5}X2$$

C.
$$\frac{2}{5}X1 + \frac{3}{5}X2$$
 D. $\frac{1}{2}X1 + \frac{1}{2}X2$

二 (8 %). 设随机变量 X 服从参数为 1 的指数分布,概率密度函数为

$$f(x) = \begin{cases} e^{-x} & x > 0 \\ 0 & x \le 0 \end{cases}, \quad \bar{x} Y = X^2 的概率密度函数。$$

解:

$$Y \sim F_Y(y) = P(Y \le y) = P(-\sqrt{y} < X \le \sqrt{y}) = P(X \le \sqrt{y}) - P(X \le -\sqrt{y})$$

$$= \begin{cases} \int_{0}^{\sqrt{y}} e^{-x} dx + 0 = 1 - e^{-\sqrt{y}}, & y > 0 \\ 0, & y \le 0 \end{cases}$$
 (6 $\%$)

$$\therefore Y \sim f_Y(y) = \begin{cases} \frac{1}{2\sqrt{y}} e^{-\sqrt{y}}, & y > 0. \\ 0, & y \le 0. \end{cases}$$
 (2 \(\frac{1}{2}\))

三(12 分). 设随机变量(X,Y)的概率密度为

$$f(x, y) = \begin{cases} be^{-(x+y)}, & 0 < x < 1, 0 < y < +\infty \\ 0, & 其它 \end{cases}$$

- (1) 试确定常数 b, (2) 求边缘概率密度 $f_X(x)$, $f_Y(y)$,
- (3) 求函数 U=max (X, Y)的分布函数。

解: (1)
$$1 = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dy dx = \int_{0}^{1} \int_{0}^{+\infty} b e^{-(x+y)} dy dx = b[1 - e^{-1}]$$

$$\therefore b = \frac{1}{1 - e^{-1}} \quad (4 \%)$$

(2)
$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx$$

$$= \begin{cases} 0 & , & y \le 0 \\ \int_{0}^{1} be^{-(x+y)} dx = e^{-y} & y > 0 \end{cases}$$
(2 $\frac{1}{2}$)

(3)
$$F_U(u) = P \{U \le u\} = P \{\max(X, Y) \le u\} = P \{X \le u, Y \le u\}$$

= $F(u, u) = \int_{-\infty}^{u} \int_{-\infty}^{u} f(x, y) dx dy$

$$u < 0, F_U(u) = 0$$

$$0 \le u < 1, \ F_U(u) = \int_0^u \int_0^u be^{-(x+y)} dx \ dy = \frac{(1 - e^{-u})^2}{1 - e^{-1}}$$

$$u \ge 1$$
, $F_U(u) = \int_0^u \int_0^1 be^{-(x+y)} dx \, dy = 1 - e^{-u}$ (4 $\%$)

四(10分)设(X,Y)的分布律为

Y	1	2	3
-1	0.2	0.1	0
0	0.1	0	0.3
1	0.1	0.1	0.1

(1) 求 X, Y的边缘分布律,

- (2) E(X), E(Y),
- (3) 设Z=Y/X, 求E(Z).

解: (1)由 X, Y的分布律易得边缘分布为

Y	1	2	3	
-1	0.2	0.1	0	0.3
0	0.1	0	0.3	0.4
1	0.1	0.1	0.1	0.3
	0.4	0.2	0.4	1

(4分)

(2)

$$E(X)=1\times0.4+2\times0.2+3\times0.4=0.4+0.4+1.2=2.$$

$$E(Y) = (-1) \times 0.3 + 0 \times 0.4 + 1 \times 0.3 = 0. \tag{4 \%}$$

(3) Z 的分布律

Z=Y/X	— 1	-1/2	-1/3	0	1/3	1/2	1
p_k	0.2	0.1	0	0.4	0.1	0.1	0.1

$$E(Z) = (-1) \times 0.2 + (-0.5) \times 0.1 + (-1/3) \times 0 + 0 \times 0.4 + 1/3 \times 0.1 + 0.5 \times 0.1 + 1 \times 0.1$$
$$= (-1/4) + 1/30 + 1/20 + 1/10 = (-15/60) + 11/60 = -1/15. \quad (2 \%)$$

五(8分). 设 $X \sim N(\mu, \sigma^2)$, $Y \sim N(\mu, \sigma^2)$, 且 X, Y 相互独立。求 $Z_1 = \alpha X + \beta Y$ 和 $Z_2 = \alpha X - \beta Y$ 的相关系数(其中 α , β 是不为零的常数).

解:由于 X, Y 相互独立

$$Cov(Z_1, Z_2) = E(Z_1Z_2) - E(Z_1) E(Z_2)$$

$$=E[(\alpha X+\beta Y)(\alpha X-\beta Y)]-(\alpha E(X)+\beta E(Y))(\alpha E(X)-\beta E(Y))$$

$$=\alpha^2 E(X^2) - \beta^2 E(Y^2) - \alpha^2 (E(X))^2 + \beta^2 (E(Y))^2$$

$$=\alpha^2 D(X) - \beta^2 D(Y) = (\alpha^2 - \beta^2) \sigma^2$$
 (4 $\frac{4}{12}$)

$$D(Z_1) = \alpha^2 D(X) + \beta^2 D(Y) = (\alpha^2 + \beta^2) \sigma^2$$
, $D(Z_2) = \alpha^2 D(X) + \beta^2 D(Y) = (\alpha^2 + \beta^2) \sigma^2$,

故
$$\rho_{Z_1Z_2} = \frac{Cov(Z_1, Z_2)}{\sqrt{DZ_1}\sqrt{DZ_2}} = \frac{(\alpha^2 - \beta^2)}{(\alpha^2 + \beta^2)}$$
 (4分)

六(12分) 设总体 $X \sim b(1, p)$, X_1 , X_2 , …, X_n 是来自 X 的样本,

(1) 求
$$\sum_{i=1}^{n} X_i$$
 的分布律,

- (2) 求参数 p 的极大似然估计量,
- (3) 求参数 p 的矩估计量,并判断它是否为无偏估计.

解: (1) 由二项分布可加性
$$\sum_{i=1}^{n} X_i \sim b(n,p)$$
, 若记 $\sum_{i=1}^{n} X_i = Y$, 则

分布律为
$$P(Y = k) = C_n^k p^k (1-p)^{n-k}, k = 0, 1, \dots, n$$
. (2分)

(2) 设 x_1, x_2, \dots, x_n 为相应于样本 X_1, X_2, \dots, X_n 的 一个样本值X的分布律为 $P\{X = x\} = p^x (1-p)^{1-x}, x = 0.1,$

$$L(p) = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i}$$

$$\ln L(p) = \left(\sum_{i=1}^{n} x_i\right) \ln p + \left(n - \sum_{i=1}^{n} x_i\right) \ln (1-p),$$

$$\Leftrightarrow \frac{\mathrm{d}}{\mathrm{d}p} \ln L(p) = \frac{\sum_{i=1}^{n} x_i}{p} - \frac{n - \sum_{i=1}^{n} x_i}{1-p} = 0,$$

$$p$$
 的最大似然估计量为
$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i = X.$$
(6 分)

(3) E(X)=p,p 的矩估计量是 \overline{X} .

因为
$$E(\overline{X})=E(X)=p$$
,故它是无偏估计. (4分)

七(10 分). 某矿砂的 5 个样品中的镍含量, 经测定为 3.25, 3.27, 3.24, 3.26, 3.24 (单位%), 设测定值总体 X 服从正态分布 $N(\mu, \sigma^2)$ 。

- (1) 求 μ 的置信水平为 0.99 的双侧置信区间?
- (2) 在显著性水平 $\alpha = 0.01$ 下,这批矿砂的含镍量的均值 μ 是否为 3.25?

计算可得: 样本均值 $\bar{X} = 3.252, S = 0.01304, \sqrt{5} = 2.236$

附表: $t_{0.005}(5)$ =4.0322, $t_{0.01}(5)$ =3.3649, $t_{0.005}(4)$ =4.6041, $t_{0.01}(4)$ =3.7469

解: (1) 测定值总体 $X\sim N(\mu, \sigma^2)$, σ^2 未知时, μ 的置信水平为 $1-\alpha$ 的双

侧置信区间为
$$\left(\overline{X} - \frac{S}{\sqrt{n}} t_{\alpha/2}(n-1), \overline{X} + \frac{S}{\sqrt{n}} t_{\alpha/2}(n-1)\right)$$

n=5, $\alpha=0.01$, $t_{0.005}(4)=4.6041$, 计算可得(3.225, 3.278)。(4 分)

(2) 测定值总体 $X \sim N(\mu, \sigma^2), \sigma^2$ 未知

$$H_0: \mu=3.25; H_1: \mu\neq3.25$$

检验统计量为
$$t = \frac{\overline{X} - 3.25}{S/\sqrt{n}} \sim t(n-1)$$

拒绝域为 $|t| \ge t_{\alpha/2}(n-1)$.

n=5, $\alpha = 0.01$, $t_{0.005}(4)=4.6041$,

代入样本值有
$$|t| = \left| \frac{3.252 - 3.25}{0.01304 / \sqrt{5}} \right| = 0.343 < t_{\alpha/2} (n-1)$$

故在 $\alpha = 0.01$ 下,接受假设 H_0 ,认为这批矿砂的含镍量的均值 μ 为 3.25。(6 分)