模拟电路与数字系统 II

数字电路与逻辑设计

第2章 逻辑代数与硬件描述语言基础

张江山 zhangjs@hust.edu.cn 信息工程系

2 逻辑代数与硬件描述语言基础

- 2.1 逻辑代数的基本定理和恒等式
- 2.2 逻辑函数表达式的形式
- 2.3 逻辑函数的代数化简法
- 2.4 逻辑函数的卡诺图化简法
- 2.5 硬件描述语言 Verilog HDL 基础

A电子信息与通信学院

1/72

₹电子信息与通信学院

2/72

教学要求

- 1. 掌握逻辑代数常用基本定律、恒等式和规则
- 2. 掌握逻辑函数的基本表达式及相互转换, 代数化简方法
- 3. 掌握逻辑函数最小项和最大项定义及性质,卡诺图化简法
- 4. 掌握硬件描述语言 Verilog HDL
- 5. 掌握正、负逻辑运算
- 6. 掌握逻辑符号的等效变换

2.1 逻辑代数的基本定理和规则

- ◆是分析和设计现代数字逻辑电路的数学工具
- ◆逻辑代数的定律、定理和规则,用于对表达式进行处理,以完成对逻辑 电路的化简、变换、分析和设计
- ●逻辑关系
 - ◆是事件产生的条件和结果之间的因果关系
 - ◆在数字电路中,将事情的条件作为输入信号,结果作为输出信号
 - ◆条件和结果中两种对立状态分别用逻辑1和0表示

€D电子信息与通信学院

3/72

▲电子信息与通信学院

4/72

2.1.1 逻辑代数的基本定律和恒等式

2.1.1 逻辑代数的基本定律和恒等式

基本定律 与 或 8. 吸收律 A(A+B)=A A+AB=A 吸收律 A(A+B)=AB $BC \pi + AC + BC = AB + AC$

证明: AB+AC+BC=AB+AC

证: 左式 = $AB + \overline{A}C + (A + \overline{A})BC$ = $AB + \overline{A}C + ABC + \overline{A}BC$

=AB+AC

E 电子信息与通信学院

6/72

▲电子信息与通信学院

2.1.1 逻辑代数的基本定律和恒等式

等式证明

①. 代数法

②. 穷举法

证明吸收律 AB+AB=A

用真值表法证明摩根定理

证: AB+AB=A(B+B)=A

证: $\overline{A+B} = \overline{A} \cdot \overline{B}$

将等式两边分别用 F_1 , F_2 表示, 穷举输入变量所有取值的组合, 分别代入 F_1 和 F_2 算出相应的结果, 若都相等,则 $F_1 = F_2$,否则, $F_1 \neq F_2$

令:	\boldsymbol{F}_1	ı = .	A +	B , I	72=	$A \cdot B$
		A	В	F_1	F_2	
		0	0	1	1	
		0	1	0	0	
		1	0	0	0	
		1	1	0	0	

得证

2.1.1 逻辑代数的基本定律和恒等式

例:证明 $A+\overline{A}\cdot B=A+B$

 $A+\overline{A}\cdot B=A(1+B)+\overline{A}\cdot B=A+AB+\overline{A}B=A+(A+\overline{A})\cdot B=A+B$

例: 试化简下列逻辑函数 $L=(A+B)(\overline{A}+B)$

L = AA + AB + BA + BB (分配率)

$$= 0 + AB + BA + B \qquad (A \cdot A = 0, A \cdot A = A)$$

$$= B(A + A + 1) \qquad (AB + AC = A(B + C))$$

=B $(A+1=A,A\cdot 1=A)$

A 电子信息与通信学院

9/72

(电子信息与通信学院

IWI TOWN

2.1.2 逻辑代数的基本规则

1. 代入规则

●规则:任何含有某变量的等式,若等式中所有出现该变量的位置均 代之以一个逻辑函数式,则此等式依然成立

●作用: 扩大基本公式的应用范围

利用摩根定律

例如,根据反演律 $A \cdot B = A + B$ BC 代替 B

得: $\overrightarrow{ABC} = \overrightarrow{A} + \overrightarrow{BC} = \overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C}$

由此, 摩根定律能推广到 n 个变量:

 $\overline{A_1 \cdot A_2 \cdot \dots \cdot A_n} = \overline{A_1} + \overline{A_2} + \dots + \overline{A_n}$

 $\overline{A_1} + \overline{A_2} + \dots + \overline{A_n} = \overline{A_1} \cdot \overline{A_2} \cdot \dots \cdot \overline{A_n}$

\电子信息与通信学院

2.1.2 逻辑代数的基本规则

2. 反演规则

●规则:对于任意一个逻辑函数式F,做如下处理,得到的新函数 式称为原函数式 F 的反函数式

- ◆若把式中的运算符·换成+, +换成·
- ◆常量 0 换成 1, 1 换成 0
- ◆原变量换成反变量,反变量换成原变量
- ◆保持原函数的运算次序不变
- ●作用: 求原函数式 F 的反函数式

例 2.1.1 试求 $L = \overline{AB} + CD + 0$ 的反函数

解: 按照反演规则, 得 $\overline{L} = (A+B) \cdot (\overline{C}+\overline{D}) \cdot 1 = (A+B)(\overline{C}+\overline{D})$

电子信息与通信学院

10/72

2.1.2 逻辑代数的基本规则

- ① 保持原函数的运算次序不变,必要时适当地加入括号
- ② 不属于单个变量上的非号有两种处理方法:
 - ●非号保留,而非号下面的函数式按反演规则变换
 - ●将非号去掉,而非号下的函数式保留不变

例如 $F(A,B,C)=AB+(A+C)B+A\cdot B\cdot C$

其反函数为 $F = (\overline{A} + B) \cdot \overline{A \cdot C} + \overline{B} \cdot (A + B + C)$

或 $F = (\overline{A} + B) \cdot (A + C) \cdot B \cdot (A + B + C)$

将(A+C)B看成一个变量P

2.1.2 逻辑代数的基本规则

3. 对偶规则

ullet对偶式:任意逻辑函数式F,做如下处理,得到的新函数式称为原 函数式 F 的对偶式 F' , 也称对偶函数

- ◆若把式中的运算符·换成+, +换成·
- ◆常量 0 换成 1, 1 换成 0
- ◆保持原函数的运算次序不变
- ●规则: 若 F₁=F₂, 则 F₁'=F₂'
- ●作用: 使定理公式的证明步骤减半

例:逻辑函数 L=(A+B)(A+C) 的对偶式为 L=AB+AC

£~电子信息与通信学院

\电子信息与通信学院 11/72

2.1.2 逻辑代数的基本规则

注意事项: 保持原函数的运算次序不变, 必要时适当地加入括号

2. 已知 $A+A\cdot B=A+B$ 求证 $A\cdot (A+B)=A\cdot B$

$$F_1 = A + \overline{A} \cdot B$$
 $F'_1 = A \cdot (A + B)$
 $F_2 = A + B$ $F'_2 = A \cdot B$
 $\therefore F_1 = F_2$ $\therefore F'_1 = F'_2$

A 电子信息与通信学院

HIST

2.1.2 逻辑代数的基本规则

逻辑函数有不同形式

 $AC+\overline{C}D$ 与 - 或式

与非 - 与非式 $AC \cdot \overline{CD}$ (摩根定理可证与上式等价)

或 - 与式
$$(A+\overline{C})(C+D)$$

= $AC+AD+CD=AC+CD+AD(C+C)$
= $AC+CD+ADC+ACD=AC+CD$

或非-或非式 (A+C)+(C+D)

与-或-非式 $\overline{AC+CD}$

任何表达式都可变换为上述五种形式的表达式

最简与或表达式:与项数最少,且各与项中变量数最少的与-或表达式

电子信息与通信学院

2.2 逻辑函数形式 2.2.2 最小项表达式

- 1. 最小项的定义和性质
- ●最小项: n 个变量 $X_1, X_2, ..., X_n$ 的最小项, 是 n 个因子的乘积, 各变量必须都以其原或反变量的形式在乘积项中出现且仅出现一次
- ●n 个变量的最小项应有 2" 个
 - ◆一个变量 A 有二个 (2^1) 最小项: \overline{A} , A
 - ◆二个变量 A, B 有四个 (2²) 最小项: AB, AB, AB, AB
 - ◆三个变量 A, B, C 有八个 (2³) 最小项: \overline{ABC} , \overline{ABC}

对于三个变量来说, \overline{AB} , \overline{ABCA} , $\overline{A(B+C)}$ 是不是最小项?

当然不是

|电子信息与通信学院

15/72

HILL

2.2.2 最小项表达式

2. 最小项的性质

性质1:任意一个最小项,只有一组变量取值使得它的值为1

性质 2: 不同的最小项, 使得它的值为 1 的那一组变量取值也不同

性质 $3: m_i \cdot m_j = 0 \ (i \neq j)$ 性质 4: 全部最小项之和为 1

三变量的最小项

1 P C	m_0	m_1	m ₂	m_3	m_4	<i>m</i> ₅	m_6	m_7	$F = \sum_{n=1}^{2^{n-1}} m_n$
A B C	ABC	ABC	ABC	A BC	ABC	ABC	AB C	ABC	$F = \sum_{i=0}^{\infty} m_i$
0 0 0	1	0	0	0	0	0	0	0	1
0 0 1	0	1	0	0	0	0	0	0	1
0 1 0	0	0	1	0	0	0	0	0	1
0 1 1	0	0	0	1	0	0	0	0	1
100	0	0	0	0	1	0	0	0	1
1 0 1	0	0	0	0	0	1	0	0	1
1 1 0	0	0	0	0	0	0	1	0	1
111	0	0	0	0	0	0	0	1	1
- VE O 12 6	医心区	15 '3 18	_						16/72

2.2.2 最小项表达式

- 3. 最小项的编号
- ●可用 m_i 表示最小项
- ●下标i的取值规则:用1表示最小项中的原变量,用0表示反变量,由此 得到一个二进制数,与该二进制数对应的十进制数即下标;的值

2.2.2 最小项表达式

- 4. 最小项表达式
- ●由若干最小项构成的与 或表达式, 也称为标准与 或式 ◆为"与或"逻辑表达式
 - ◆在"与或"式中的每个乘积项都是最小项
- ●任何逻辑函数都可变换成唯一的最小项表达式
- ●转换的方法有: ①.代数转换法, ②.真值表转换法

(电子信息与通信学院

18/72

(电子信息与通信学院

2.2.2 最小项表达式

①. 代数转换法

第一步

第二步

第一步:将逻辑函数转换成一般与或表示式

第二步:反复使用 X=X(Y+Y) ,将所有非最小项的与项变为最小项

例 2.2.1 $L(A,B,C)=(AB+\overline{A}B+\overline{C})\cdot\overline{AB}$

摩根定理 $\overline{A \cdot B} = \overline{A} + \overline{B}$

 $=(AB+\overline{AB}+\overline{C})+AB=\overline{AB}\cdot\overline{AB}\cdot\overline{C}+AB$

 $\overline{A+B}=\overline{A}\cdot\overline{B}$

19/72

HUT?

21/72

ı M

HWT

 $=(\overline{A}+\overline{B})\cdot(A+B)\cdot C+AB=(\overline{A}B+A\overline{B})\cdot C+AB$

 $=\overline{A}BC+ABC+AB(C+\overline{C})$

 $=\overline{A}BC+ABC+ABC+AB\overline{C}$

 $= m_3 + m_5 + m_6 + m_7 = \sum m(3,5,6,7)$

 $= \overline{A} BC + A \overline{B} C + AB$

2 变量共有 4 个最小项

 $m_0 = A B$

 $m_2 = A \overline{B}$ $m_3 = AB$

2.2.2 最小项表达式

②. 真值表转换法——基本思想

最小项表达式是若干最小项构成的,若某组变量值使表达式 F=1 ,则 F中一定有该组变量值所对应的结果为1的最小项

例如,已知两变量逻辑函数F真值表如下

 $m_1 = A B$

\boldsymbol{A}	В	F	m _i
0	0	0	$m_0 = 1$
0	1	1	$m_1 = 1$
1	0	1	$m_2 = 1$
1	1	0	$m_3 = 1$

 $F = m_0? + m_1? + m_2? + m_3?$

 $A \cdot B$ 取 $0 \cdot 0$ 时: $m_0 = 1$

而此时 F=0, 故 F 中不能包含 m_0

A, B 取 0, 1 时: $m_1 = 1$

而此时 F=1, 故 F 中包含 m_1

 $F = m_1 + m_2 = \overline{A} B + A \overline{B}$

电子信息与通信学院

20/72

HIST I

HUST

2.2.2 最小项表达式

A 电子信息与通信学院

在举重比赛中有三个裁判员,只有当两个或两个以上裁判员认为杠铃 已经举起时, 才算是成功, 试写出逻辑表达式

输入: A, B, C

0表示认为失败, 1表示认为成功

输出: F

0表示失败, 1表示成功

列真值表

1 24 IH	2			
A	В	C	F	$F = \overline{ABC} + A\overline{BC} + AB\overline{C} + ABC$
0	0	0	0	
0	1	0	Ŏ	APC - w
	0	0	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$ABC = m_3$
1	0	1 0	1	$ ABC = m_5 $ $ ABC = m_6 $
1	Î	ĺ	1 i-	$ABC = m_{\gamma}$

2.2.2 最小项表达式

②. 真值表转换法——方法

第一步:将逻辑函数转换成一般与或表示式

0

n

1 0

1

1

1

第二步:列真值表,写出标准与或表示式

C

0

O

0

例 F(A,B,C)=AB+BC

R

Λ

1

0

0

1

4

0

0

1

1

1

第二步:列真值表 A, B 取 1, 0 时: F=1

B,C取1,0时: F=1

已是一般与或式,不需要第一步

其余填0

故 F 中包含四个最小项: m_2, m_4, m_5, m_6

 $F = m_2 + m_4 + m_5 + m_6 = \sum m(2,4,5,6)$

0 电子 信息与通信

22/72

2.2.3 最大项表达式

1. 最大项的定义和性质

\电子信息与通信学院

- ●n 个变量 $X_1, X_2, ..., X_n$ 的最大项,是 n 个因子的或项,各变量都以原变 量或非变量的形式在或项中出现且仅出现一次
- ●n 个变量的最大项应有 2 " 个

例如, A, B, C 三个逻辑变量的最大项有 $2^3 = 8$ 个, 即

$$(\overline{A}+\overline{B}+\overline{C}), (\overline{A}+\overline{B}+C), (\overline{A}+\overline{B}+\overline{C}), (\overline{A}+\overline{B}+C),$$

 $(A+\overline{B}+\overline{C}), (A+\overline{B}+C), (A+B+\overline{C}), (A+B+C)$

2.2.3 最大项表达式

- 1. 最大项的定义和性质
- ●最大项的表示:通常用 M_i 表示最大项,下标i为最大项号
- ●最大项的性质:
- ◆对于一个最大项,只有一组变量的取值使其值为 0,该组值对应的十进 制数是其下标编号(0表示原变量,1表示反变量)
- ◆任意两个最大项的之和为1
- ◆全体最大项之积为 0
- 2. 最小项和最大项的关系

两者之间为互补关系: $m_i = M_i$, 或者 $M_i = m_i$

2.2.3 最大项表达式

例:逻辑电路的真值表如右,写出最小项和最大项表达式

●最小项表达式:将L=1的各个最小项相加

$$L(A,B,C) = m_3 + m_5 + m_6$$

$$= \sum m(3,5,6)$$

$$= \overline{A \cdot B \cdot C} + A \cdot B \cdot C + A \cdot B \cdot \overline{C}$$

●最大项表达式:将L=0的各个最大项相乘

$$L(A, B, C) = M_0 \cdot M_1 \cdot M_2 \cdot M_4 \cdot M_7$$

= $\prod M(0,1,2,4,7)$

电子信息与通信学院

11 (-,-,-	, -,· ,						
=(A+B+C)	(A+B+C)	(A+B+C)	$\cdot (\overline{A} \cdot$	+ <i>B</i> + <i>C</i>)-(A+B+c	C)

2.3 代数法化简

化简的目的:降低电路成本,以较少的门实现电路

两图电路逻辑功能相同

$$L = AB + \overline{A}B + \overline{A}B$$

L = A + B

$$=AB+\overline{A}(B+\overline{B})$$

 $=AB+\overline{A}(B+1)$

=AB+AB+A=B+A

电子信息与通信学院

26/72

HET?

2.3 代数法化简

函数式变换的目的,除了化简,也可减少门电路的种类 通常在一片集成电路芯片中只有一种门电路

例: 已知 L = ABD + ABD + ABD + ABCD + ABCD

- (1) 求最简的与-或式,并画出相应的逻辑图
- (2) 画出仅用与非门实现的电路

 $L = AB(\overline{D} + D) + \overline{A} \overline{B} \overline{D} + \overline{A} \overline{B} D(\overline{C} + C)$

 $=AB+\overline{ABD}+\overline{ABD}$

 $=AB+\overline{A}\overline{B}(D+\overline{D})$

 $=AB+\overline{AB}$

=AB+AB

 $= \overline{AB \cdot AB}$

电子信息与通信学院

27/72

29/72

25/72

HIST

2.4 卡诺图化简法 2.4.1 用卡诺图表示逻辑函数

1. 卡诺图的引出

卡诺图:将n变量的全部最小项都用方格表示,并使具有逻辑相邻的最小项 在几何位置上也相邻地排列起来,这样,所得到的图形叫n变量的卡诺图

n个变量有2"个最小项,n个变量的卡诺图由2"个方格组成。每一个方格 代表坐标值对应的一个最小项

逻辑相邻的最小项: 如果两个最小项只有一个变量互为反变量, 那么, 就称 这两个最小项在逻辑上相邻

例如三变量最小项: $m_6 = AB\overline{C}$ 与 $m_7 = ABC$ 在逻辑上相邻。

 m_6 m_{7}

电子信息与通信学院

28/72

ı I

10

2.4.1 用卡诺图表示逻辑函数

- ●相邻方格对应的最小项,只有一个因子的差别,故其坐标按循环码排列
- ●如: 00,01,11,10

▲电子信息与通信学

2.4.1 用卡诺图表示逻辑函数

2. 卡诺图特点

相邻方格的最小项, 在逻辑上也是相邻的 卡诺图的几何相邻

- ① 相接——紧挨的
- ② 相对——任一行或一列的两头
- ③ 相重——对折起来后位置相重
- n 个变量的最小项 m_i ,有 n 个相邻项 相邻的最小项可合并

 $m_{12}+m_{14}=AB\overline{C}\overline{D}+ABC\overline{D}$ $=AB\overline{D}(\overline{C}+C)=AB\overline{D}$

去掉的是不同的。

$m_{12} = ABCD$
$m_4 = \underline{A} B C D$
$m_8 = A B C D$
$m_{13} = ABCD$
$m_{14} = ABC\overline{D}$

例:找出 m₁₂ 和 m₂ 的相邻项

 m_1 m_3 m,

 m_5 m_7 m_6

 m_{13} m_{15} m_{14}

m

 m_{11} m_{10}

 \mathcal{L}

ΑB

00 m_0

11

CD 00 01

m, 01

 m_{\perp}

m

电子信息与通信学院

- 2. 卡诺图的特点:
 - 两变量卡诺图

2.4.1 用卡诺图表示逻辑函数

- 3. 逻辑函数的卡诺图
- 当逻辑函数为最小项表达式时,将表达式中出现的最小项对应的方格,在 卡诺图中标为1,其余方格标0(也可不标),便得到逻辑函数的卡诺图
- ●任何逻辑函数都等于其卡诺图中标 1 方格所对应的最小项之和

例如 画出 $L(A,B,C,D)=\sum m(0,1,2,3,4,8,10,11,14,15)$ 的卡诺图

注: 函数卡诺图中 0 可以不填

0 方格

电子信息与通信学院

31/72

33/72

HWT

2.4.1 用卡诺图表示逻辑函数

卡诺图是真值表的一种平面几何图形表示方法

若一组变量值使逻辑函数 F 为 1 ,则该组值便是其卡诺图中标 1 方格的坐标

$$F = \sum m(1,2,3,7) = \underline{ABC} + \underline{ABC} + \underline{ABC} + \underline{ABC}$$

函数 F 真值表

A	В	С	F
0	0	0	0
0	0	_1_	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1_	1	_1	1

F) B	C 00			
A	00	01	11	10
0	0	1	1	1
1	0	0	1	0

函数F的卡诺图

电子信息与通信学院

32/72

HET?

HWT

2.4.1 用卡诺图表示逻辑函数

逻辑函数 F 的卡诺图表示步骤:

- ① 求逻辑函数 F 的与或式
- ② 根据变量数确定卡诺图形式
- ③根据各与项,在卡诺图上标1
- 例如 $F = AB + CD + \overline{ABC}$

- ① 不需要
- ② 根据变量数确定卡诺图形式
- ③根据各与项,在卡诺图上标1
 - (1)A = 1, B = 1, F = 1
 - ② C = 1, D = 1, F = 1
 - (3)A = 0, B = 0, C = 1, F = 1

其余填0, 也可不填, 即得到F的卡诺图

CD CD 00 01 \overrightarrow{AB} 00 01 1 AB1 10

2.4.1 用卡诺图表示逻辑函数

例 2.2.3 画出 L 卡诺图

 $L = (\overline{A} + \overline{B} + \overline{C} + \overline{D})(\overline{A} + \overline{B} + C + \overline{D})(\overline{A} + \overline{B} + \overline{C} + \overline{D})(\overline{A} + \overline{B} + \overline{C} + \overline{D})(\overline{A} + \overline{B} + C + \overline{D})$

解:根据反演规则

 $L = ABCD + ABCD + ABCD + ABCD + ABCD = \sum m(15,13,10,6,0)$

画出 \bar{L} 卡诺图

L CI	00	01	11	10_
00	1	0	0	0
01	0	0	0	1
11	0	1	1	0
10	0	0	0	1

L CI	00	01	11	10
00	0	1	1	1
01	1	1	1	0
11	1	0	0	1
10	1	1	1	0

画出 L 卡诺图

根据反函数在 m_{15} , m_{13} , m_{10} , m_6 , m_0 填 0 ,可直接画出 L 卡诺图

电子信息与通信学院

34/72

2.4.2 用卡诺图化简逻辑函数

1. 卡诺图化简的依据

依据:卡诺图中相邻方格对应的最小项在逻辑上相邻,而逻辑相邻的最小项可合并

- 2个相邻最小项合并,消去1个变量
- 4个相邻最小项合并,消去2个变量
- 8个相邻最小项合并,消去3个变量

2.4.2 用卡诺图化简逻辑函数

BC

- ●任何逻辑函数都等于其卡诺图中为1的方格所对应的最小项之和
- ●若将卡诺图中1方格所对应的最小项合并,则达到化简的目的

电子信息与通信学院

36/72

▲ 电子信息与通信学院

2.4.2 用卡诺图化简逻辑函数

- 2. 卡诺图化简的步骤
- (1) 将逻辑函数转换成与 或表达式
- •
- (2) 根据逻辑函数与 或表达式填卡诺图, 得到逻辑函数的卡诺图
- (3) 合并最小项
 - ●相邻的2"个1格圈为一个卡诺圈,各圈对应一个乘积项
 - ●1 格可重复被圈,但新增圈中必须有未曾被圈过的1格
 - ●卡诺圈中的格数尽量多,卡诺圈的数量尽量少
- (4) 将各卡诺圈对应的乘积项相或, 便得到最简与或表达式

E 电子信息与通信学院

38/72

2.4.2 用卡诺图化简逻辑函数

例:用卡诺图化简 F = ABD + AD + ABC + ACD

(1) 画出逻辑函数的卡诺图

A电子信息与通信学院 SCHOOL OF ELECTRONIC INFORMATION AND COMMUNICATIONS

39/72

41/72

HUT

2.4.2 用卡诺图化简逻辑函数

例:用卡诺图化简 F = ABD + AD + ABC + ACD

(3) 将每个卡诺圈对应的与项相或,就得到最简与或表达式

F = AD + ACD + BCD

】电子信息与通信学院 SCHOOL OF ELECTROMIC INFORMATION AND COMMUNICATIONS 40/50

2.4.2 用卡诺图化简逻辑函数

例 2.2.6 用卡诺图化简

$$L(A,B,C,D) = \sum_{m \in \mathbb{Z}} m(0..3,5..11,13..15)$$
解:画出函数 L 的卡诺图 画出函数 L 的卡诺图

●可用圈 0 法先求出反函数最简与或式,再求反

2.4.2 用卡诺图化简逻辑函数

- 3. 含无关项的逻辑函数化简
- ●一些实际问题中,输入变量之间存在相互制约或特殊限定等
- ●部分变量取值与实际问题无关,即称为包含无关条件的逻辑问题
- ●这些无关条件的变量取值对应的最小项称为无关项或任意项
- ●卡诺图化简时,这些无关项可根据实际化简目的取任意值

A电子信息与通信学院 SCHOOL OF ELECTRONIC INFORMATION AND COMMUNICATIONS E 电子信息与通信学院

2.4.2 用卡诺图化简逻辑函数

例 2.2.7 设计电路, 能判断一位十进制数是奇数还是偶数 奇数时, 电路输出为 1, 为偶数时, 电路输出为 0

解:

- (1) 列出真值表
- (2) 画卡诺图化简

10 0 O 必须填无关项 否则可能错当 0

HIST

•HDL (Hardware Description Language)

- ◆可描述逻辑电路图,逻辑表达式,信号及逻辑电路功能行为
- ●逻辑仿真(前仿真,行为仿真)

2.5 硬件描述语言 Verilog HDL 基础

- ◆用计算机仿真软件对数字逻辑电路的结构和行为进行预测
- ◆仿真器对 HDL 描述进行解释,以文本或波形描述电路输出
- ●逻辑综合
 - ◆根据 HDL 描述导出电路基本元件表及其连接关系(门级网表)的过程
 - ◆类似高级程序语言的编译过程
 - ◆根据网表数据库,可制作出集成电路或印刷电路板 PCB
- ●时序仿真(后仿真)

电子信息与通信学院

44/72

2.5.1 Verilog HDL 语言的基本语法规则

●建模:用规定的语法规则描述数字电路的过程

1 1 1

●间隔符:分隔文本

电子信息与通信学

- **◆**如:空格符(**b**)、TAB键(**t**)、页符
- ●注释符: 改善可读性,不影响编译
 - ◆多行注释符(用于写多行注释): /* --- */
 - ◆单行注释符: 以 // 开始到行尾结束为注释文字
- ●标识符:用字符串标识对象(如模块、输入/输出端口、变量)
 - ◆以英文字母或下划线开始
 - ◆如 clk, counter8, _net, bus_A
- ●关键词:用来定义语言结构的特殊词汇
 - ◆关键词都是小写,关键词不能作为标识符使用
 - ◆如 module, endmodule, input, output, wire, reg, and 等

电子信息与通信学院

45/72

2.5.1 Verilog HDL 语言的基本语法规则

整数型 常量 实数型常量

十进制数的形式的表示方法:表示有符号常量 例如: 30,-2

带基数的形式的表示方法:表示常量 格式为: <+/->< 位宽 > ' < 基数符号 > < 数值 > 例如: 3'b101,5'o37,8'he3,8'b1001_0011

十进制记数法 如: 0.1,2.0,5.67

科学记数法 如:23 5.1e2 = 235.1×102 $5e-4 = 5 \times 10^{-4}$

电子信息与通信学院

46/72

2.5.1 Verilog HDL 语言的基本语法规则

●Verilog 参数定义语句可定义标识符代表常量, 称为符号常量

●格式为:

parameter 参数名1=常量表达式1,参数名2=常量表达式2, ······; 如: parameter BIT = 1, BYTE = 8, PI = 3.14;

●字符串:字符串是双撇号内的字符序列

2.5.2 变量的数据类型

●线网型:用于标识连线,一般指电路中的物理连接

例:线网型变量 L 的值由与门的驱动信号 a 和 b 所 决定。即 L = a & ba, b 的值发生变化,线网 L 的值会立即跟着变化

常用的线网类型由关键词 wire 定义 wire 型变量的定义格式如下: wire [n-1:0] 变量名 1, 变量名 2, …, 变量名 n;

变量位宽度

// 将输出信号 L 声明为线网型变量 wire [7:0] data_bus; // 声明 8-bit 宽的线网型总线变量

电子信息与通信学院

2.5.2 变量的数据类型

●寄存型:用于行为描述时,暂存临时状态或中间结果 寄存型变量只能在 initial 或 always 语句块内被赋值

行为级描述是电路功能行为的抽象描述,并不描述电路的具体组成结构

4 种寄存器类型的变量

寄存器类型	功能说明
reg	1 位寄存型变量
integer	32 位带符号的整数寄存型变量
real	64 位带符号的实数寄存型变量
time	64 位无符号的时间寄存型变量

例:

电子信息与通信学院

49/72

51/72

2.5.3 运算符及其优先级

1. 运算符

{} {{}}	Concatenation, replication	拼接,复制
unary + unary -	Unary operators	单目正负
+ = * / **	Arithmetic	算术
%	Modulus	模
> >= < <=	Relational	关系
!	Logical negation	逻辑非
&&	Logical and	逻辑与
	Logical or	逻辑或
=	Logical equality	逻辑相等
!=	Logical inequality	逻辑不等
全等	Case equality (including	x and z)
!== 不全等	Case inequality (including	g x and z)

~		Bitwise negation	位非
&		Bitwise and	位与
1		Bitwise inclusive or	位或
^		Bitwise exclusive or	位异或
^~ 0	r~^	Bitwise equivalence	位同或
&		Reduction and	单目缩位与
~&:		Reduction nand	单目缩位与非
		Reduction or	单目缩位或
~		Reduction nor	单目缩位或非
^		Reduction xor	单目缩位异或
~^ 0	r^-	Reduction xnor	单目缩位同或
<<		Logical left shift	逻辑左移
>>		Logical right shift	逻辑右移
<<<		Arithmetic left shift	算术左移
>>>		Arithmetic right shift	算术右移

Conditional

(电子信息与通信学院

50/72

2.5.3 运算符及其优先级

位拼接运算符

将两个或多个信号的某些位拼接起来成为一个新的操作数

设A = 1'b1 , B = 2'b10 , C = 2'b00

 $\{B, C\} = 4'b10_00$

 ${A, B[1], C[0]} = 3'b1_1_0$

 $\{A, B, C, 3'b101\} = 8'b1_10_00_101$

对同一个操作数的重复拼接还可以双重大括号构成的运算符 { { } } }

例如 {4{A}} = 4'b1111

 $\{\{2\{A\}\}, \{2\{B\}\}, C\} = 8'b11_1010_00$

电子信息与通信学院

2.5.3 运算符及其优先级

位运算与缩位运算

A: 4'b1010

B: 4'b1111

A: 1010 B: 1111

A&B: A与B进行位运算

1010

& A: A 进行缩位运算, 1 & 0 & 1 & 0 = 0

€D电子信息与通信学院

52/72

2. 运算符的优先级

2.5.4 Verilog 内部的基本门级元件

门级建模:将逻辑电路图用 HDL 规定的文本语言表示出来

基本门级元件模型

	and	与门	nand	与非门
多输入门	or	或门	nor	或非门
	xor	异或门	xnor	异或非门
多输出门	buf	缓冲器	not	反相器
- * ! 7	bufif1	高电平有效控制三态缓冲器	notif1	高电平有效控制三态反相器
三态门	bufif0	低电平有效控制三态缓冲器	notif0	低电平有效控制三态反相器

电子信息与通信学院

2.5.4 Verilog 内部的基本门级元件

1. 多输入门

调用名

只允许有一个输出, 但可以有多个输入 and A1(out, in1, in2, ...);

OI.	OI(Out,	TIII,	ııı,	<i>ا</i> ز	
xor	X1(out,	in1,	in2,);	

and			or			xor		
in1	in2	out	in1	in2	out	in1	in2	out
0	0	0	0	0	0	0	0	0
0	1	0	0	1	1	0	1	1
0	x	0	0	х	х	0	х	х
0	z	0	0	z	х	0	z	х
1	1	1	1	1	1	1	1	0
1	х	х	1	х	1	1	х	х
1	z	х	1	z	1	1	z	х
х	х	х	x	х	х	x	х	х
х	z	х	х	z	х	x	z	х
z	z	х	z	z	х	z	z	х

2.5.4 Verilog 内部的基本门级元件

2. 多输出门

允许有多个输出, 但只有一个输入

not

not			
in	out		
0	1		
1	0		
x	x		
_			

buf in out 0 0 1 1 х x z x

电子信息与通信学院

56/72

电子信息与通信学院

2.5.4 Verilog 内部的基本门级元件

3. 三态门

有输出、数据输入和输入控制端各1个, 若控制信号无效, 则输出高阻态 z

ŀ	bufif1		1	notif1		
ctrl	in	out	ctrl	in	out	
0	0	z	0	0	z	
0	1	z	0	1	z	
0	x	z	0	х	z	
0	z	z	0	z	z	
1	0	0	1	0	1	
1	1	1	1	1	0	
1	x	х	1	х	х	
1	z	х	1	z	х	

2.5.5 Verilog 程序的基本结构

● 模块是 Verilog 描述电路的基本单元

module ABC(port1, port2, ...); // 各模块通过端口相互连接 inout/input/output ...; // 端口类型说明 // 变量类型说明 reg/wire/ ...; parameter ...; // 参数定义, 逗号分割多个参数 and/or/ \dots ; // 结构描述方式 , 逻辑门或底层模块 assign ...; // 数据流描述方式 , 连续赋值语句 // 行为描述方式 , 过程块结构 alwavs/initial begin // 多条语句组成的行为描述块 if ... else ... ; // 条件描述语句 case // 分支描述语句 endcase // 无实际语义的语句无分号

end endmodule

endmodule

电子信息与通信学院

电子信息与通信学院

58/72

60/72

电子信息与通信学院

57/72

HUST

2.5.5 Verilog 程序的基本结构

● Verilog 2005 标准新增的参数和端口定义形式

module ABC #(parameter WIDTH = 32) (output reg port1, inout port2, ...); endmodule

● 新增的模块使用形式 ABC #(8) abc1(.port2(x), .port1(y), ...);

2.5.5 Verilog 程序的基本结构

例 用结构描述方式建立门电路 Verilog 模型

£ 电子信息与通信学院

2.5.5 Verilog 程序的基本结构

例 用数据流描述方式建立模型


```
module mux2to1(output Y, input[1:0] D, input S);
  assign Y = (~S & D[0]) | (S & D[1]);
endmodule
```

- ●assign 语句, 左边变量的数据类型必须是 wire 型
- ●端口变量默认为 wire 型

▲ 电子信息与通信学院 SCHOOL OF ELECTRONIC INFORMATION AND COMMUNICATIONS

61/72

Taun

HWT

2.5.5 Verilog 程序的基本结构

例 用行为描述方式建模,实现二选一选择器电路


```
module mux2to1(output reg Y, input[1:0] D, input S);
always @(S, D)
  if(S == 1) Y = D[1];
  else Y = D[0];
endmodule
```

●always 和 initial 语句块中,被赋值变量类型必须是寄存型

c<a>◆中子信息与通信学院

62/72

2.5.6 逻辑功能的仿真与测试

1. 编写 Testbench 测试向量

```
`include "mux2to1.v"
                                // 包含被测试模块描述文件
 timescale 1us/100ns
                                // 定义单位时间/精度
                                // 测试模块
module testbench:
 reg[1:0] D;
                                // 定义测试信号
 reg S;
wire Y:
                               // 放置被测模块,将测试信号接入端口
 mux2to1 test(Y, D, S);
 // 格式化输出字符串,类似 printf
// 20 个单位时间后,结束仿真
   $display("Running testbench");
 initial begin
D = 2'b00;
S = 0;
#10 S = 1;
                                // 初始化(各描述块是独立并行的)
                               // 10 个单位时间后改变 S 信号
 end
                               // 周期性行为,各描述块是独立并行的
// D[0] 周期 2us, D[1] 周期 10us
 always #1 D[0] = ~D[0];
 always #5 D[1] = ~D[1];
endmodule
```

63/72

2.5.6 逻辑功能的仿真与测试

1. 安装 iverilog

•sudo apt install iverilog, gtkwave

2. 编译

iverilog testbench.v -o testbench.o

3. 行为仿真(前仿真)

vvp -n testbench.o # 非单步仿真

4. 波形分析

gtkwave testbench.vcd

- 5. 综合: 用支持所选器件的综合工具输出网表数据
- 6. 时序仿真(后仿真): 不同器件时延参数不同,可能影响结果
- 7. 下载网表数据至所选器件

E 电子信息与通信学院 SCHOOL OF ELECTRONIC INFORMATION AND COMMUNICATIONS 64/72

3.7 逻辑描述中的几个问题 3.7.1 正负逻辑问题

1. 正负逻辑的规定

电子信息与通信学院

在数字系统中,可用两种逻辑体制表示电路输入和输出的高、低电平正逻辑体制:将高电平用逻辑 1 表示,低电平用逻辑 0 表示负逻辑体制:将高电平用逻辑 0 表示,低电平用逻辑 1 表示若无特别说明,一般采用正逻辑体制

3.7.1 正负逻辑问题

2. 正负逻辑等效变换

逻辑内涵一致(电路功能一致)的正、负逻辑表达式是等效的

IE	逻辑	
A	В	F
0	0	1
0	1	1
1	0	1
1	1	0

 $F = A \cdot B$

F = A + B

A电子信息与通信学院 SCHOOL OF ELECTRONIC INFORMATION AND COMMUNICATIONS

66/72

3.7.2 门电路的等效符号及其应用

1. 基本逻辑门电路的等效符号

同一逻辑体制下,逻辑内涵一致的逻辑门电路符号,称为等效符号

与非门及等效符号如图 $A = L = A \cdot B$

或非门及等效符号如图 A = L = A + B $A = L = A \cdot I$

与门及等效符号如图 $A \longrightarrow L = A + B$ $A \longrightarrow B$ $A \longrightarrow L = A + B$

或门及等效符号如图 $A \longrightarrow L = A + B \longrightarrow A \longrightarrow B$

€ 电子信息与通信学院

3.7.2 门电路的等效符号及其应用

2. 逻辑门等效符号的应用

HIST

67/72

利用逻辑门等效符号,可直接变换逻辑电路

€ 电子信息与通信学院

68/72

HET?

3.7.2 门电路的等效符号及其应用

3. 逻辑门等效符号可强调有效电平,便于理解信号高低电平作用低电平有效:信号低电平时,电路履行预期功能,用反变量形式表示高电平有效:信号高电平时,电路履行预期功能,用原变量形式表示例如:高电平有效的三态非门,EN=1时,具有非门功能,否则输出为高阻状态低电平有效的三态非门,EN=0时,具有非门功能,否则输出为高阻状态

3.7.2 门电路的等效符号及其应用

3. 逻辑门等效符号可强调有效电平,便于理解信号高低电平作用

当 RE = 1, $\overline{AL} = 0$, G_2 门两个输入均有效, 输出有效, \overline{EN} 有效

电子信息与通信学院

70/72

A电子信息与通信学院 School of Electronic Information and Communications

69/72

3.7.2 门电路的等效符号及其应用

3. 逻辑门等效符号可强调有效电平,便于理解信号高低电平作用可根据不同控制信号要求,用等效符号描述有效控制信号

要求 要求 要求 要求 RE=1, AL=1 $RE=0, \overline{AL}=0$ RE=1, AL=1 L=1 L=1

AL L AL L RE RE L

作业

康华光教材 7 版	罗杰教材	
2.1.1	2.1.1 (5, 6)	
2.1.2	2.1.2	
2.2.7	2.3.5	
2.3.4	2.2.4	
2.4.1	2.4.1	
2.4.3	2.4.3	
2.5.6	6.4.1	