Al 5030: Probability and Stochastic Processes

INSTRUCTOR: DR. KARTHIK P. N.

Homework 2 Topics: Sample Space, Algebra, σ -Algebra

Recall that a set is said to be countable if it is finite or countably infinite. For all the problems below, unless explicitly stated otherwise, the sample space Ω can be countable or uncountable.

- 1. Let Ω be a sample space, and let \mathscr{F} be a σ -algebra of subsets of Ω . Argue that \mathscr{F} is closed under countable intersections. Hint: Apply De Morgan's laws.
- 2. Let Ω be a sample space. Let \mathscr{F}_1 and \mathscr{F}_2 be two σ -algebras of subsets of Ω . Show, via an example, that $\mathscr{F}=\mathscr{F}_1\cup\mathscr{F}_2$ is not necessarily a σ -algebra. Note: This exercise shows that union of σ -algebras is not necessarily a σ -algebra.
- 3. Let Ω be a sample space.
 - (a) Let \mathscr{F}_1 and \mathscr{F}_2 be two σ -algebras of subsets of Ω . Show that $\mathscr{F} = \mathscr{F}_1 \cap \mathscr{F}_2$ is also a σ -algebra.
 - (b) More generally, let \mathcal{I} be an arbitrary index set (finite, countably infinite, or uncountable), and for each $i \in \mathcal{I}$, let \mathscr{F}_i be a σ -algebra of subsets of Ω . Show that

$$\mathscr{F} = \bigcap_{i \in \mathcal{I}} \mathscr{F}_i$$

is also a σ -algebra.

This exercise shows that intersection of σ -algebras is necessarily a σ -algebra.

4. Let Ω be a sample space, and let $\mathscr F$ be a σ -algebra of subsets of Ω . Fix $B\in\mathscr F$, and consider the collection

$$\mathscr{G} = \{A \cap B : A \in \mathscr{F}\}.$$

That is, $\mathscr G$ is a collection of subsets of B formed by taking the intersection of each set in $\mathscr F$ with B. Show that $\mathscr G$ is a σ -algebra of subsets of B.

5. Let Ω be a sample space. Consider the collection

$$\mathscr{A}_1 = \{ A \subseteq \Omega : A \text{ is finite or } \Omega \setminus A \text{ is finite} \}. \tag{1}$$

- (a) Prove that \mathcal{A}_1 is an algebra.
- (b) Construct an example to show that \mathscr{A}_1 is not necessarily a σ -algebra. Hint: Consider $\Omega = \mathbb{R}$ and $A = \mathbb{Q}$, the set of rational numbers. What do you know about \mathbb{Q} and $\mathbb{R} \setminus \mathbb{Q}$?
- 6. Let Ω be a sample space. Consider the collection

$$\mathscr{A}_2 = \{ A \subseteq \Omega : A \text{ is countable or } \Omega \setminus A \text{ is countable} \}. \tag{2}$$

Prove that \mathcal{A}_2 is a σ -algebra.

Hint: Recall that countable means finite or countably infinite.

Use the lemma "countable union of countable sets is countable" covered in class.