

SEQUENCE LISTING

RECEIVED NOV 0 5 2004 OFFICE OF PETITIONS

<120> Methods and Compositions for Controlling Dental Caries, and Recombinant SmaA Polypeptides Useful for Same

```
<110> Gregory;
<130> IU97
<140>
<141>
<150> 60/132,312
<151> 1999-05-03
<160> 6
<170> PatentIn Ver. 2.1
<210> 1
<211> 7
<212> PRT
<213> Streptococcus mutans
<400> 1
Glu Glu Gln Ser Gly Gly Thr
<210> 2
<211> 7
<212> PRT
<213> Streptococcus mutans
<400> 2
Tyr Leu Met Lys Gly Gly Thr
<210> 3
<211> 11
<212> PRT
<213> Streptococcus mutans
<400> 3
Met Ser Ser Gln Ala Lys Ala Asn Asn Ile Pro
<210> 4
<211> 11
<212> PRT
<213> Streptococcus mutans
```

Met Gln Arg Pro Thr Glu Phe Xaa Glu Asp Lys

5

10

<211> 2985 <212> DNA <213> Streptococcus mutans <220> <221> CDS <222> (816)..(1820) <400> 5 ggatcctcgc caccgagatc gtattgcctt tgtgcggatt gtctcaggtg aatttgaacg 60 cggcatgtct gtcaaccttg cccgcactgg taagagcgtt aagctgtcaa acgtcactca 120 gtttatggca gaatctcgtg agaatgtaga aaatgctgtc gctggtgata ttatcggagt 180 ttacgataca ggaacttatc aggttggtga taccttaact gttggtaaaa ataaatttga 240 atttgagcca ctgccgacct ttacaccaga gctctttatg aaagtttctg ctaaaaatgt 300 tatgaagcag aagtettte ataaaggeat tgagcaattg gtgcaagaag gtgctataca 360 gctttatacc aactatcaaa ctggtgaata tatgcttgga gcagtcggtc agctccagtt 420 tgaagttttc aaacaccgca tggaaaatga atacaatgcg gaggttatca tgacacccat 480 gggtaagaaa acggtgcgtt ggattaagga ggaagatctt gatgaacgta tgtcttccag 540 ccgcaatata ttggctaaag accgctttaa caagcccgtt ttcctctttc aaaatgactt 600 ttctcttcat tggtttgcag ataaatatcc agatatagtt ttggaagaga agatgtaaca 660 atagtaaaaa tttttcaaaa aatatattac gtaagtattg ctaaatattt cttttgtgtt 780 tcaatatagg tgaaaaaaga aaatgaagga agatt atg aat caa aaa ata gtc 833 Met Asn Gln Lys Ile Val 1 gtc att tcg tca ttt tac atg tta ggt gct cat tca ttt tca aag gca 881 Val Ile Ser Ser Phe Tyr Met Leu Gly Ala His Ser Phe Ser Lys Ala 20 1.5 gta tat cat aat gat agg agt gtg aaa ctt atg aaa aga att gat att 929 Val Tyr His Asn Asp Arg Ser Val Lys Leu Met Lys Arg Ile Asp Ile 30 977 aat cat caa gca caa cgt ttt tct att cgt aaa tat gca ttt gga gct Asn His Gln Ala Gln Arg Phe Ser Ile Arg Lys Tyr Ala Phe Gly Ala 45 40 gca tct gtt tta att ggc tgt gtc ttt ttt cta ggt acc caa aat gtt 1025 Ala Ser Val Leu Ile Gly Cys Val Phe Phe Leu Gly Thr Gln Asn Val 55 60

<210> 5

•					•											
				•												
tct Ser	gca Ala	caa Gln	gag Glu	cag Gln 75	gga Gly	act Thr	caa Gln	ttg Leu	cca Pro 80	gca Ala	agt Ser	gaa Glu	aac Asn	gca Ala 85	gtt Val	1073
gtg Val	aac Asn	gtg Val	gct Ala 90	gaa Glu	aat Asn	tca Ser	gtt Val	gct Ala 95	atc Ile	agc Ser	caa Gln	gca Ala	gtt Val 100	gca Ala	gat Asp	1121
aag Lys	gca Ala	gca Ala 105	act Thr	caa Gln	aca Thr	act Thr	cta Leu 110	aca Thr	gaa Glu	aca Thr	ccc Pro	caa Gln 115	gtt Val	gaa Glu	gtt Val	1169
gag Glu	gag Glu 120	aaa Lys	gaa Glu	agt Ser	aag Lys	gta Val 125	aat Asn	gct Ala	cct Pro	gct Ala	tta Leu 130	aat Asn	gtc Val	gat Asp	gac Asp	1217
aaa Lys 135	ggt Gly	gca Ala	aaa Lys	tcc Ser	aaa Lys 140	gaa Glu	gat Asp	gtg Val	aac Asn	cct Pro 145	act Thr	att Ile	tca Ser	aag Lys	aca Thr 150	1265
gca Ala	agt Ser	gaa Glu	gtg Val	gaa Glu 155	gct Ala	tct Ser	gca Ala	gta Val	act Thr 160	gct Ala	act Thr	gat Asp	act Thr	aaa Lys 165	aat Asn	1313
tca Ser	aat Asn	cca Pro	caa Gln 170	gtc Val	aat Asn	gtt Val	gaa Glu	act Thr 175	gac Asp	tca Ser	agt Ser	gaa Glu	aaa Lys 180	gac Asp	gaa Glu	1361
aat Asn	aaa Lys	atg Met 185	gtc Val	acc Thr	tcg Ser	gct Ala	cca Pro 190	gct Ala	aag Lys	gag Glu	act Thr	gag Glu 195	gca Ala	gaa Glu	caa Gln	1409
aat Asn	gag Glu 200	Lys	gcg Ala	gtc Val	Arq	Glu	Asn	Leu	Met	Gln	aga Arg 210	GIn	gct Ala	aag Lys	gct Ala	1457
gtc Val 215	Ser	att Ile	cca Pro	tcg Ser	caa Gln 220	Gly	aat Asn	tat Tyr	gtt Val	ttc Phe 225	e GIn	gaa Glu	aca Thr	act Thr	cct Pro 230	1505
gta Val	aaa Lys	aat Asn	gca Ala	gcc Ala 235	Ser	atg Met	tcc	ago Ser	Pro) Thr	caa Gln	ttt Phe	aac Asn	ttt Phe 245	gat Asp	1553
aaa Lys	gga Gly	gat Asp	aag Lys 250	Val	ttt. Phe	tat Tyr	gat Asp	aat Asn 255	· Val	tta Lev	a gaa 1 Glu	gcg Ala	gat Asp 260) GT	g cat 7 His	1601
caa Gln	tgg Trp	g att 5 Ile 265	e Ser	tat Tyr	gtg Val	tct Ser	tac Tyr 270	Ser	ggt Gly	att / Ile	cgt Arg	cgo Arg 275	ј туг	gct Ala	cct Pro	1649
att Ile	gct Ala 280	a Val	g aca L Thr	att : Ile	gaa e Glu	gaa Glu 285	ı Lev	g aaq ı Lys	g caa s Gli	a aaa n Lys	a gaa s Glu 290	1 TT6	gtt Val	caq l Glr	g caa n Gln	1697

ļ

aat tta ccg gca caa gga acc tat cac ttt act aaa cag cag agc tta Asn Leu Pro Ala Gln Gly Thr Tyr His Phe Thr Lys Gln Gln Ser Leu 295 300 305 310	.745
aaa atg aag cta aac tgt cta gtc cga ccc aat tct cgt ttt aca acg 1 Lys Met Lys Leu Asn Cys Leu Val Arg Pro Asn Ser Arg Phe Thr Thr 315 320 325	.793
gag atc acg ttt ttt atg ata agg ttt tagaagcgga tggacatcaa 1 Glu Ile Thr Phe Phe Met Ile Arg Phe 330 335	L840
tggattagct atgtgtccta cagtggtatc cgtcgttatg ttgttattgg aaagcttacg 1	1900
acacaaccct ctccaattga aactaaagta tcaggtacta ttgtcatcca aaataaaacg 1	1960
gctcaacaat tcgatgttgt catttctaat gcttcaagca atcaaggcat aaaagaggta 2	2020
ttagtgccag tttggtcaga gcaaaacggg caggatgaca ttgtctggta tcaagcaact 2	2080
aaacaaggtg aaggcgttta taaggtgacc gttaaggtca gtgaccataa aaataatagc 2	2140
ggtaactatc atgtccatct ttattatctt ttggataatg gtgaacaaag aggagtcggg 2	2200
gcaacaatga ctgaggtgga agcaccagag cctgtagaaa caacaggtat cattagcatt 2	2260
gccaataaga gcagccaagg atttgatgtt ttgattacta atgcttccag cactcaagac 2	2320
ataaaagagg ttttagtgcc ggtttggtca gaacaaaacg gacaggacga tattatttgg 2	2380
tatcaagcaa ctaaacaagg cgaaggcgtt tataaggtgg ccgttaaggt cagtgaccat 2	2440
aaaaatgaca gtggtaacta taacattcac ctttattatc gccttgtaac tggtgaatta 2	2500
aaggttgttg gaggaaagac aacgacagta gaagccccta atagagtcaa tcttccagca 2	2560
caaggaactt atgttttcac taataaagtt gaggttaaaa atgaggccag aacatctagt 2	2620
ccaactcagt ttacctttaa taaaggagaa agtatttact atgacagtat cttgaatgct 2	
gatggacatc aatggattag ctatcgttcc tacagtggta ttcgtcgtta tattatcatt	
ggttgaagta aaaaaggtta ggatgacaaa atcctgactt ttttgtgctt tagaattaat	
gttggataaa gtgtggagtt tgtgctcgaa aaatagcagc gattgaatgt gtttataatt	
tgattcagac attagttttt atttcaagca aaaaatttga caaatcaaat	
acaattttt aacgtatatt acaaaaatat atttggaaga tttattcaga tttggaggat	
	2985

<210> 6

<211> 335

<212> PRT

<213> Streptococcus mutans

Met Asn Gln Lys Ile Val Val Ile Ser Ser Phe Tyr Met Leu Gly Ala 5 His Ser Phe Ser Lys Ala Val Tyr His Asn Asp Arg Ser Val Lys Leu Met Lys Arg Ile Asp Ile Asn His Gln Ala Gln Arg Phe Ser Ile Arg Lys Tyr Ala Phe Gly Ala Ala Ser Val Leu Ile Gly Cys Val Phe Phe Leu Gly Thr Gln Asn Val Ser Ala Gln Glu Gln Gly Thr Gln Leu Pro Ala Ser Glu Asn Ala Val Val Asn Val Ala Glu Asn Ser Val Ala Ile 90 Ser Gln Ala Val Ala Asp Lys Ala Ala Thr Gln Thr Thr Leu Thr Glu 105 100 Thr Pro Gln Val Glu Val Glu Glu Lys Glu Ser Lys Val Asn Ala Pro 120 Ala Leu Asn Val Asp Asp Lys Gly Ala Lys Ser Lys Glu Asp Val Asn 130 Pro Thr Ile Ser Lys Thr Ala Ser Glu Val Glu Ala Ser Ala Val Thr 155 150 Ala Thr Asp Thr Lys Asn Ser Asn Pro Gln Val Asn Val Glu Thr Asp 170 Ser Ser Glu Lys Asp Glu Asn Lys Met Val Thr Ser Ala Pro Ala Lys 185 180 Glu Thr Glu Ala Glu Gln Asn Glu Lys Ala Val Arg Glu Asn Leu Met 200 Gln Arg Gln Ala Lys Ala Val Ser Ile Pro Ser Gln Gly Asn Tyr Val 215 210 Phe Gln Glu Thr Thr Pro Val Lys Asn Ala Ala Ser Met Ser Ser Pro 235 230 Thr Gln Phe Asn Phe Asp Lys Gly Asp Lys Val Phe Tyr Asp Asn Val 250 Leu Glu Ala Asp Gly His Gln Trp Ile Ser Tyr Val Ser Tyr Ser Gly 260 Ile Arg Arg Tyr Ala Pro Ile Ala Val Thr Ile Glu Glu Leu Lys Gln 280 Lys Glu Ile Val Gln Gln Asn Leu Pro Ala Gln Gly Thr Tyr His Phe 290 295 300

Thr Lys Gln Gln Ser Leu Lys Met Lys Leu Asn Cys Leu Val Arg Pro 305 310 315

Asn Ser Arg Phe Thr Thr Glu Ile Thr Phe Phe Met Ile Arg Phe 325 330 335