3.5 Série de TD n°4 - problèmes du plus court chemin

Exercice 1

En appliquant l'algorithme de Dijkstra, déterminez l'arborescence des plus courts chemins issus du sommet A dans le réseau suivant :

Exercice 2

En appliquant l'algorithme de Bellman, déterminez l'arborescence des plus courts chemins issus du sommet 1 du réseau suivant. Trouvez ensuite l'arborescence des plus courts chemins issus du sommet 7.

Exercice 3

Une compagnie aérienne dessert cinq villes (A, B, C, D et E) selon le tableau suivant :

Ļ	Α	В	С	D	E
Α		1h15	1h45		2h
В	1h30				3h
C	2h			2h30	
D			3h10		1h10
E	2h15	3h15	1h30		

- 1. Déterminez les trajets optimaux entre les villes.
- 2. En réalité, lorsque le trajet entre deux villes passe par une ville intermédiaire, un temps d'escale de 30 minutes est rajouté à la durée du voyage (30 minutes pour chaque ville d'escale). Calculez alors les trajets optimaux entre les destinations.