1 Distribuciones discretas

Algunas de la más importantes variables aleatorias discretas, se listan a continuación:

1.1 Distribución de masa puntual

X tiene una distribución de masa puntual en a, $X \sim \delta_a$, si $\mathbb{P}(X = a) = 1$, en el caso que

$$F_X(x) = \begin{cases} 0 & x < a \\ 1 & x \ge a. \end{cases}$$

La función de masa de probabilidad es $p_X(x) = 1$ para x = a y 0 en otros casos.

1.2 Distribución uniforme discreta

Sea k > 1 un número entero. Supongamos que X tiene PMF dado por

$$p_X(x) = \begin{cases} 1/k & \text{para } 1, \dots, k \\ 0 & \text{en otros casos.} \end{cases}$$

Decimos que X tiene una distribución uniforme sobre $\{1, \ldots, k\}$.

1.3 Distribución de Bernoulli

Sea X que representa una lanzamiento de una moneda. Entonces $\mathbb{P}(X=1)=p$ y $\mathbb{P}(X=0)=1-p$ para algún $p\in[0,1]$, entonces decimos que X tiene una distribución de Bernoulli, escrita como $X\sim$ Bernoulli(p). La función probabilidad es $p_X(x)=p^x(1-p)^{1-x}$ para $x\in\{0,1\}$.

La distribución de Bernoulli (p) tiene una media:

$$\mathbb{E}(X) = \sum_{x=0,1} xp(X=x) = 0(1-p) + 1p = p.$$

Además:

$$\mathbb{E}(X)^2 = \sum_{x=0,1} x^2 p(X=x) = 0^2 (1-p) + 1^2 p = p$$

y así la varianza:

$$Var(X) = \mathbb{E}(X^2) - [\mathbb{E}(X)]^2 = p - p^2 = p(1 - p).$$

La varianza es maximizada para el valor de p=1/2 y cada momento es el mismo $\mathbb{E}(X^{\alpha})=0^{\alpha}(1-p)+1^{\alpha}p=p$.

1.4 Distribución binomial

Supongamos que tenemos una moneda, que cae cara con una probabilidad p para algún $0 \le p \le 1$. Lanzamos la moneda n veces y sea X el número de caras. Asumimos que estos lanzamientos son independientes. El PMF de X, $p_X(x) = \mathbb{P}(X = x)$ para esta distribución es:

$$p_X(x) = \begin{cases} \binom{n}{x} p^x (1-p)^x & \text{para } x = 0, \dots, n \\ 0 & \text{en otros casos.} \end{cases}$$

Esta es la suma de n variables aleatorias independientes de Bernoulli. Se denota como $X \sim \text{Binomial}(n, p)$.

Desde que la esperanza es un operador lineal, la esperanza de una distribución Binomial, es la suma de las esperanzas de las distribuciones de Bernoulli involucradas, así si *X* es una distribución Binomial (n,p):

$$\mathbb{E}(X) = np$$
,

y desde que la varianza de la suma de variables independientes es la suma de varianza,

$$Var(X) = np(1-p).$$

1.5 Distribución binomial negativa

Replicar un experimento de Bernoulli(p) de forma independiente hasta que ocurre el r-ésimo éxito ($r \ge 1$) Sea X el número de pruebas en el cual se produce el r-ésimo éxito. Entonces se dice que X tiene una distribución binomial negativa(r,p).

Existe otra definición de distribución binomial negativa, a saber, la distribución del número de fallos antes del r-ésimo éxito. (Esta es la definición empleada por R, en los cálculos).

La relación entre las dos definiciones es bastante simple. Si X es binomial negativo en el sentido usual y F es binomial negativo en el sentido de R, entonces:

$$F = X - r$$

¿ Cuál es la probabilidad de que el r-ésimo éxito ocurre en la prueba t, para $t \ge r$?. Para que esto suceda, debe haber t-r fracasos y r-1 éxitos, en las primeras t-1 pruebas, con un éxito en la prueba t.

Por independencia, esto sucede con la probabilidad binomial para r-1 éxitos en las primeras t-1 pruebas, por la probabilidad p de éxito en la pruena t:

$$\mathbb{P}(X = t) = \binom{t-1}{r-1} p^r (1-p)^{t-r} \ (t \ge r).$$

de esta manera la probabilidad es cero, cuando t < r. El caso especial r = 1 es llamada distribución geométrica. Es decir, X tiene una distribución geométrica con parámetro $p \in (0,1)$, denotada como

 $X \sim \text{Geometrica}(p)$, si

$$\mathbb{P}(X = k) = p(1-p)^{k-1}, \ k \ge 1.$$

Tenemos a partir de este resultado que

$$\sum_{k=1}^{\infty} \mathbb{P}(X=k) = p \sum_{k=1}^{\infty} (1-p)^k = \frac{p}{1-(1-p)} = 1.$$

X es el número de lanzamientos necesarios hasta que la primera cara salga, cuando una moneda es lanzada. La media de una distribución geométrica, tiene el valor de:

$$\mathbb{E}(X) = \sum_{t=1}^{\infty} t p (1-p)^{t-1} = \frac{1}{p}.$$

Además que se tiene:

$$\operatorname{Var}(X) = \mathbb{E}(X^2) - [\mathbb{E}(X)]^2 = \frac{1 - p}{p}.$$

La distribución binomial negativa(r,p) es la suma de r de variables aleatorias geométricas independientes Geometrica(p). Como la esperanza es un operador lineal positivo, se concluye que la media de binomial negativa(r,p) es r veces la media que Geometrica(p) y la varianza de una suma independiente es la suma de varianza, así:

Si $X \sim \text{binomial negativa(r,p), entonces:}$

$$\mathbb{E}(X) = \frac{r}{p} \text{ y } \operatorname{Var}(X) = \frac{r(1-p)}{p^2}.$$

1.6 Distribución multinomial

En un sentido, la distribución multinominal generaliza la distribución binomial a experimentos aleatorios independientes con más de dos resultados. Es la distribución de un vector que cuenta cuántas veces se produce cada resultado. Se denota como $X \sim \text{Multinomial}(n, \mathbf{p})$.

Un vector aleatorio multinomial es un m -vector \mathbf{X} de resultados en una secuencia de n repeticiones independientes de un experimento aleatorio con m resultados distintos.

Si el experimento tiene m resultados posibles y el i-ésimo resultado tiene probabilidad p_i , entonces la función de masa de probabilidad Multinomial(n, p) viene dada por:

$$\mathbb{P}(\mathbf{X} = (k_1, \dots, k_m)) = \frac{n!}{k_1! k_2! \cdots k_m!} p_1^{k_1} \cdot p_2^{k_2} \cdots p_m^{k_m}.$$

donde $k_1 + k_2 + \cdots + k_m = n$.

Si contamos el resultado k como éxito, entonces es obvio que cada X_k es simplemente una variable aleatoria binomial (n, pk). Pero los componentes no son independientes, ya que suman a n.

1.7 Distribución de Rademacher

La distribución Rademacher(p) es una variación de la distribución de Bernoulli, 1 todavía indica éxito, pero el fracaso se codifica como -1. Si Y es una variable aleatoria Bernoulli(p), entonces X = 2Y - 1 es una variable aleatoria Rademacher(p). La función de masa de probabilidad es:

$$\mathbb{P}(X=x) = \begin{cases} p & x=1\\ 1-p & x=-1 \end{cases}$$

Una variable aleatoria X Rademacher(p) tiene una media:

$$\mathbb{E}(X) = \sum_{x=-1,1} xp(X=x) = -1(1-p) + 1p = 2p - 1.$$

Además $X^2 = 1$, así:

$$\mathbb{E}(X^2)=1,$$

por tanto la varianza es:

$$Var(X) = \mathbb{E}(X^2) - [\mathbb{E}(X)]^2 = 1 - (2p - 1)^2 = 4p(1 - p).$$

Una secuencia de sucesivas sumas de variables aleatoria independientes de Rademacher(p) es llamado camino aleatorio. Esto es, si X_i son idénticamente distribuidas a variables aleatorias Rademacher(1/2), la secuencia S_1, S_2, \ldots es un camino aleatorio, donde:

$$S_n = X_1 + \cdots \times X_n$$
.

Desde que el operador esperanza es un operador lineal:

$$\mathbb{E}(S_n) = 0$$
, para todo n ,

y desde que la varianza de la suma de variables aleatorias independientes es la suma de varianzas:

$$Var(S_n) = n$$
, para todo n .

1.8 Distribución de Poisson

Una variable aleatoria de Poisson N modela el recuento de éxitos cuando la probabilidad de éxitos es pequeña y el número de pruebas independientes es grande, de modo que la tasa de éxito promedio μ . Se denota esta variable aleatoria como $X \sim \text{Poisson}(\mu)$ si:

$$\mathbb{P}(N=k) = e^{-\mu} \frac{\mu^k}{k!} \quad k = 0, 1, \dots$$

Así:

$$\mathbb{E}(N) = \mu \text{ y } Var(N) = \mu.$$

La distribución de Poisson es usado a menudo como un modelo para eventos, como decaimiento radiactivo y accidentes de tráfico.

Ladislaus von Bortkiewicz se refirió a la distribución de Poisson como La Ley de los números pequeños. Se puede pensar esto, como un límite peculiar de las distribuciones binomiales. Consideremos una secuencia de variables binomiales (n, p), donde la probabilidad p de éxito va a cero, pero el número n de pruebascrece de tal manera que $np = \mu$ permanece fijo. Entonces tenemos la siguiente proposición:

Proposición 1.1 Para cada *k*:

$$\lim_{n\to\infty} \operatorname{Binomial}(n,\mu/k)(k) = \operatorname{Poisson}(\mu)(k).$$