VEKTOREN, MATRIZEN UND LGS

* Multiple Choice. Sei $a \in \mathbb{R}^2 \setminus \{0\}$ und $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \in \mathbb{R}^2$.

1. $a \perp e_1$ und $|a| = 1 \Longrightarrow a = e_2$.

 \Box Wahr, \Box Falsch

 $2. \ a \cdot e_1 = 0 \Longrightarrow a \perp e_1.$

 \Box Wahr, \Box Falsch

Lösung.

* Matrizenprodukt. Berechnen Sie falls möglich die Matrizenprodukte $A\cdot B,\, B\cdot A,\, A^2:=A\cdot A$ und $B^2:=B\cdot B$ für

$$A = \begin{pmatrix} 1 & 2 & 3 & 7 \\ 0 & 2 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 4 & 1 \\ 1 & 1 \\ 0 & -2 \\ 1 & 3 \end{pmatrix}.$$

Lösung.

* Lineare Gleichungssysteme I. Schreiben Sie das LGS in Matrixform Ax = b und berechnen Sie die allgemeine Lösung:

Lineare Gleichungssysteme II. Lösen Sie in Abhängigkeit von $c \in \mathbb{R}$ das LGS:

*	Multiple	Choice.
---	----------	---------

1. Wie viele Lösungen besitzt das LGS?

 \square 0, \square 1, \square 2, \square ∞

$$\begin{array}{rclr} 27x_1 & - & 108x_2 & = & 397 \\ 54x_1 & - & 216x_2 & = & 794 \end{array}$$

2. Es gibt ein LGS, das genau zwei Lösungen hat.

 \square Wahr, \square Falsch

3. Jedes LGS mit zwei Gleichungen und drei Unbekannten hat unendlich viele Lösungen. $\hfill\Box$ Wahr, $\hfill\Box$ Falsch

Lösung.

Lineare Gleichungssysteme III. Für welche Werte von $t \in \mathbb{R}$ ist der Lösungsraum des zu

gehörigen homogenen Systems eindimensional? Wie lautet in diesem Fall die allgemeine Lösung des inhomogenen Systems?

* Inverse Matrix. Ist folgende Matrix A invertierbar? Berechnen Sie ggf. die inverse Matrix.

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 3 & 0 \\ 3 & 4 & 1 \end{pmatrix}$$

Determinante. Für welche $a \in \mathbb{R}$ gilt $\det A = 0$, wobei

$$A = \begin{pmatrix} 12 & a & 7 & -3 \\ 2a & 2 & a & -1 \\ 3a & 3 & 2a & a \\ 11 & a & 6 & -3 \end{pmatrix}.$$

Wann ist A invertierbar?

* Multiple Choice. Seien $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, B = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \in \mathbb{R}^{2 \times 2}.$

1. A ist invertierbar.

 \square Wahr, \square Falsch

 $2. AB = BA = \det(A)E_2.$

 \square Wahr, \square Falsch

3. Für $\det(A) \neq 0$ gilt $A^{-1} = \frac{1}{\det(A)}B$.

 \square Wahr, \square Falsch

Lösung.