

Causal Modeling

USAID MENA Advanced MEL Workshop

Session Objectives

- Understand USAID practice around causal modeling
- Introduce new analytical developments that can extend USAID practice of causal modeling and link it to impact evaluation and learning agendas
- Identify management opportunities to incorporate best practice and new trends into activity implementation

Level Set

How does USAID do causal modeling?

- ADS 201
- How-To Note: Developing a Project Logic Model
- Technical Note: The Logical Framework
- In Defense of Logic Models

Logic Model

- A graphic or visual depiction of a theory of change that illustrates the connection between what a strategy, project, or activity will do and what it hopes to achieve
- There are a wide range of logic models
 - Results Framework
 - LogFrame
 - Causal loop diagram

Results Framework

- A type of logic model representing the development hypothesis of a USAID mission's strategy
- Diagrams the causal links between the strategy's Goal,
 Development Objectives (DOs), and Intermediate Results (IRs)
- Explicates theory of change, aids strategic planning, and serves as a communications tool

LogFrame

- Complements the CDCS Results Framework by carrying the development hypothesis through from the overall program/project to the supporting activities
- Replicates the causal linkages, but starting from a
 Development Objective and ending with activity inputs
- Defines exactly what resources are needed to achieve results

Causal Loop Diagram

 A logic model that emphasizes feedback loops and includes notation for polarity of relationshpis

Understanding Smallholder Access to Finance, USAID/Uganda Feed the Future Market System Monitoring Activity

New Directions

Directed Acyclic Graphs (DAGs)

- A logic model with probabilities attached
- Causal influence revealed through ancestor/descendant relationships
- Directed = one way only!
- Acyclic = no feedback loops! Arrows cannot backtrack

The Four Confounds

The Fork The Pipe $D \longrightarrow X \longrightarrow Y$ The Collider The Descendant

McElreath, Richard. Statistical Rethinking: A Bayesian Course with Examples in R and Stan. 2nd ed.

The Fork

- X causes both treatment and outcome
- Must control for X (backdoor criterion)

$$D$$
 is NOT $\bot\!\!\!\!\bot Y$ $D \perp\!\!\!\!\!\bot Y \mid X$

Solve for the Fork

The fork is the most common problem researchers face

- All adjustment or matching methods attempt to solve the fork
 - Regression adjustment
 - Propensity score matching
 - Inverse probability weighting

The Pipe

- X is a post-treatment outcome
- Knowledge, Skills, Attitude, Practices
- DO NOT control for X !!

$$D \perp\!\!\!\perp Y$$

The Collider

• DO NOT control for X!!

$$D \perp\!\!\!\perp Y$$
 D IS NOT $\perp\!\!\!\!\perp Y \mid X$

The Descendant

- Z is not a post-treatment outcome, but a downstream unmeasured confounder
- Control for proxy variable X
- If X a strong enough proxy:

$$D \perp \!\!\!\perp Y \mid X$$

Latent Variables

- DAGs can include unmeasured or hidden (latent) variables
- Allows for other advanced analytical methods
 - Structural equation modeling
 - Latent class analysis
 - Factor analysis

Evaluation Designs as DAGs

- Randomized Controlled Trial (RCT)
- Instrumental Variables estimation (IV)
- Regression Discontinuity (RD)

Randomized Controlled Trial

Unmeasured confounder of treatment and outcome

Randomization of treatment

Instrumental Variables Estimation

Unmeasured confounder of treatment and outcome

Randomization through instrument

Regression Discontinuity

Score variable allocates treatment

Boundary imposes randomization

Cunningham, Scott. Causal Inference: The Mixtape.

Recap

- Logic modeling can be extended to methods such as causal loop diagrams or directed acyclic graphs
- These methods enable the integration of assumptions and hypotheses with data
- USAID must continue to push the boundary of causal modeling and link them to analytical methods

Looking forward

- Stay tuned for sessions on learning agendas, mapping, and Bayesian analysis
- We will attach probabilities to our causal models

Thank you!