$$f(x) = |x|$$

1 Comprie

3 re L- m

O he dudodo

Breeno L-magnerin

Определение М-Липшецевой функции

Пусть дана функция $f: \mathbb{R}^d \to \mathbb{R}$. Будем говорить, что она является M-Липшицева, если для любых $x,y \in \mathbb{R}^d$ выполнено

$$|f(x)-f(y)| \leq M||x-y||_2.$$

Breene spagnenma

Субградиент и субдифференциал

Пусть дана выпуклая функция $f: \mathbb{R}^d \to \mathbb{R}$. Вектор g будем называть субградиентом этой функции f в точке $x \in \mathbb{R}^d$, если для любого $y \in \mathbb{R}^d$ выполняется:

$$f(y) \ge f(x) + \langle g, y - x \rangle$$
.

Множество $\partial f(x)$ всех субградиентов f в x будем называть субдифференциалом.

NB g= D5 bomproveno

Теорема (условие оптимальности)

 x^* — минимум выпуклой функции f тогда и только тогда, когда $f \in \mathcal{F}^d$ $0 \in \partial f(x^*)$.

of (0)=[-1;1]

$$\frac{\text{pox-loi:}}{\Rightarrow f(x) \geqslant f(x^*)} \quad \forall x \in \mathbb{R}^d$$

$$f(x) \geq f(x^*) + \langle 0; x - x^* \rangle \quad \forall x \in \mathbb{R}^d$$

$$\text{no arg upogag } 0 \in \mathcal{J}(x^*)$$

$$\iff 0 \in \mathcal{J}(x^*) \quad \text{no boursem } n \text{ arg upof-}$$

$$f(x) \geq f(x^*) + \langle g; x - x^* \rangle = f(x^*) \quad \forall x \in \mathbb{R}^d$$

Лемма (свойство М-Липшицевой функции)

Пусть дана выпуклая функция $f:\mathbb{R}^d \to \mathbb{R}$. Тогда функция f является M-Липшицевой тогда и только тогда, когда для любого $x \in \mathbb{R}^d$ и $g \in \partial f(x)$ имеем $\|g\|_2 \leq M$.

Don-lo: => f bommus a M-lumungebe no bongrivemu a vopez garping S(g) - S(x) ≥ <g; g-x> tg ∈ Jf(x) M- lummyeborno M | x -y | 2 = 5(g) - 5(x) = <9; y - x> y = x + 9M ||g||2 => ||g||2 => ||g||2 EM to bommoune u no omge yodge $f(y) - f(x) \ge \langle q; y - x \rangle$ F(x) - f(g) < < g; x-y> KELLI f(x)- f(x) = ||g||2. ||x-y||2 |5(x) -5(q) = M. 11xg112 7

min f(x)

nger: b you anjeke bjane cydynaquem

Алгоритм 2 Субградиентный метод

 $\mathbf{Bxog:}$ размеры шага $\gamma>0$, стартовая точка $x^0\in\mathbb{R}^d$, количество итераций K

- 1: for $k=0,1,\ldots,K-1$ do
- 2: Вычислить $g^k \in \partial f(x^k)$
- $3: x^{k+1} = x^k \gamma g^k$
- 4: end for

Выход: $\frac{1}{K} \sum_{k=0}^{K-1} x^k$

Don-be: · f bonymus · f M- hommyeba $\|X_{[44]} - X_{*}\|_{5}^{5} = \|X_{k} - X_{k} - X_{*}\|_{5}^{5}$ $= \|x^{k} - x^{*}\|_{2}^{2} - 2 \gamma \langle g^{k}; x^{k} - x^{*} \rangle + \gamma^{2} \|g^{k}\|_{2}^{2}$ M- lummazebras 1/9 1/2 = M < ||x^k-x[†]||² -27<9^k, x^k-x^{*}>+ x²M² 2x<9k; x6-x+> < ||x6-x4||3 - |1x6-x4||3 + x4||3 + x4|| $2 \int_{K} \frac{|x-t|}{|x-t|} \left(f(x^{k}) - f(x) \right) \leq \frac{1}{|x|} \frac{|x-t|}{|x|} ||x^{k} - x^{k}||_{2}^{2} - ||x^{k+t} - x^{k}||_{2}^{2} + ||x^{k} -$ 11X -X 11 3 - 11X 1 - X 113 $\leq \frac{1}{\|X_{\circ}-X_{\star}\|_{s}^{2}} + \int_{s}W_{s}$ 1) min 5(xk) 2) $\sum_{k=0}^{K-1} \frac{1}{k} f(x^k)$ $\hat{x} - c.\ell. \{x^k; p = k\}$ ____E f(x) - n.o bongmon q. Trensen (ES(x) > f(Ex) $\frac{k!}{2} = f(x^k) \geq f\left(\frac{1}{k} \sum_{k=1}^{k-1} x^k\right)$ 2 \ \(\f(\hat{x}^{K}) - f(\hat{x}^{*}) \) \(= \frac{||x^{o} - \hat{x}^{*}||_{2}^{2}}{|c|} + \gamma^{2} M^{2} \) f(x)-f(x) = 11x0-x11/2 - x M2

Теорема сходимость субградиентного спуска для М-Липшицевых и выпуклых функций

Пусть задача безусловной оптимизации с М-Липшицевой, выпуклой целевой функцией f решается с помощью субградиентного спуска. Тогда справедлива следующая оценка сходимости

$$f\left(\frac{1}{K}\sum_{k=0}^{K-1}x^{k}\right)-f(x^{*})\leq \frac{M\|x^{0}-x^{*}\|_{2}}{\sqrt{K}}$$

Более того, чтобы добиться точности ε по функции, необходимо

$$K = O\left(rac{M^2\|x^0-x^*\|_2^2}{arepsilon^2}
ight)$$
 итераций.

Jugara cocurrence.

1) yereson. um = newen oxy. (newerin omerox) 2) norregal nouse - he velay xoromes

$$X = \frac{\|X^{\circ} - X^{\circ}\|_{2}}{M \int K} \qquad \text{for the points}$$

$$\int_{M-\text{lim}} |xy|^{-1} \text{ uner.}$$

AdaGrad Norm - agennubroens nog wor cl-be M-lumm.

2) here
$$|g_{k}| \leq M$$

$$|g_{k}| \leq M$$

$$||x^{e} - x^{r}||_{2}^{2}$$

3)
$$\int_{\mathbb{R}} = \frac{D}{\sqrt{\frac{1}{2} \|g^{\dagger}\|_{2}^{2}}} \quad \|x^{\circ} - x^{\star}\| \leq D$$

Алгоритм 3 AdaGradNorm

 \mathbf{B} ход: D > 0, стартовая точка $x^0 \in \mathbb{R}^d$, сумма квадратов норм градиентов $G^0 = 0$, параметр сглаживания e = 1e-8, количество

- 1: **for** k = 0, 1, ..., K 1 **do**

- Вычислить $g^k \in \partial f(x^k)$ Вычислить $G^{k+1} = G^k + \|g^k\|_2^2$ $x^{k+1} = x^k \frac{D}{\sqrt{G^{k+1} + e}} g^k$

5: end for

Выход: $\frac{1}{K} \sum_{k=0}^{K} x^{k}$

Ada Grad Norm => Ada Grad

agammbaras ne morg.

$$\sum_{t=0}^{\infty} (g_t^t)^2 + e^{-t}$$
was que morg. i

Алгоритм 4 AdaGrad

Вход: $D_i > 0$, стартовая точка $x^0 \in \mathbb{R}^d$, сумма квадратов градиентов $G_i^0 = 0$, параметр сглаживания e = 1е-8, количество итераций K

- 1: for k = 0, 1, ..., K 1 do
- Вычислить $g^k \in \partial f(x^k)$ 2:
- 3:
- Для каждой координаты: $G_i^{k+1} = G_i^k + (g_i^k)^2$ Для каждой координаты: $x_i^{k+1} = x_i^k \frac{D_i}{\sqrt{G_i^{k+1} + \varepsilon}} g_i^k$
- 5: end for

Выход: $\frac{1}{K} \sum_{k=0}^{K} x^k$

Dox-bo:

-5- borganise

-5- M- borganise

$$|x_{i}^{hi} - x_{i}^{*}|^{2} = |x_{i}^{k} - x_{i}^{k}|^{2} - 2x_{i}^{k}|^{2}$$

$$= |x_{i}^{k} - x_{i}^{*}|^{2} - 2x_{i}^{k}|^{2} - 2x_{i}^{k}|^{2}$$

$$= |x_{i}^{k} - x_{i}^{*}|^{2} - 2x_{i}^{k}|^{2} - 2x_{i}^{k}|^{2}$$

$$= |x_{i}^{k} - x_{i}^{*}|^{2} - 2x_{i}^{k}|^{2} - |x_{i}^{ki} - x_{i}^{*}|^{2}$$

$$+ |x_{i}^{k}|^{2} - |x_{i}^{k}|^{2} - |x_{i}^{ki} - x_{i}^{*}|^{2}$$

$$+ |x_{i}^{k}|^{2} - |x_{i}^{k}|^{2} - |x_{i}^{k}|^{2} - |x_{i}^{k}|^{2}$$

$$+ |x_{i}^{k}|^{2} - |x_{i}^{k}|^{2} - |x_{i}^{k}|^{2} - |x_{i}^{k}|^{2}$$

$$+ |x_{i}^{k}|^{2} - |x_{i}^{k}|^{2} - |x_{i}^{k}|^{2} - |x_{i}^{k}|^{2} - |x_{i}^{k}|^{2}$$

$$+ |x_{i}^{k}|^{2} - |x_{i}^{k}|^{2} - |x_{i}^{k}|^{2} - |x_{i}^{k}|^{2} - |x_{i}^{k}|^{2}$$

$$+ |x_{i}^{k}|^{2} - |x_{i}^{k}|^{2} - |x_{i}^{k}|^{2} - |x_{i}^{k}|^{2} - |x_{i}^{k}|^{2}$$

$$+ |x_{i}^{k}|^{2} - |x_{i$$

$$\leq \frac{1}{k} \sum_{i=1}^{k} \sum_{k=0}^{k-1} \left[\frac{1}{2\chi_{k,i}} - \frac{1}{2\chi_{k,i,i}} \right] \times \sum_{i=1}^{k} \sum_{k=0}^{k} \sum_{k=0}^{k} \sum_{k=0}^{k} \sum_{i=1}^{k} \sum_{i=1}^{k} \sum_{k=0}^{k} \sum_{i=1}^{k} \sum_{k=0}^{k} \sum_{i=1}^{k} \sum_{k=0}^{k} \sum_{i=1}^{k} \sum_{i=1}^{k} \sum_{k=0}^{k} \sum_{i=1}^{k} \sum_{i=1}^{$$

$$= \frac{3}{2K} \sum_{i=1}^{d} D_{i} \int_{\frac{1}{4}=0}^{\frac{K-1}{2}} (g_{i}^{1})^{2}$$

$$\leq \frac{3}{2K} \cdot \sum_{i=1}^{d} D_{i} \cdot \int_{\frac{1}{2}}^{K-1} (g_{i}^{1})^{2}$$

$$= \frac{3M}{2K} \sum_{i=1}^{d} D_{i}$$

Theorem

Пусть задача оптимизации с M-Липшицевой, выпуклой целевой функцией f решается с помощью AdaGrad на ограниченном множестве. Тогда справедлива следующая оценка сходимости:

$$f\left(\frac{1}{K}\sum_{k=0}^{K-1}x^k\right)-f(x^*)\leq \frac{3M\tilde{D}}{2\sqrt{K}},$$

где $ilde{D} = \sum_{i=1}^d D_i$.

Более того, чтобы добиться точности ε по функции, необходимо

$$\mathcal{K} = O\left(rac{9M^2 ilde{D}^2}{4arepsilon^2}
ight)$$
 итераций.

Ada Grad => PMS Prop

$$\sum_{k=0}^{k} \frac{D_{i}}{\sum_{k=0}^{k} \frac{C(0,1)}{\sum_{k=0}^{k} \frac{C(0,1)$$

Алгоритм **5** RMSProp

Вход: шаг $D_i > 0$, параметр сглаживания $\mathbb{R} \in [0,1]$, стартовая точка $x^0 \in \mathbb{R}^d$, сглаженная сумма квадратов градиентов $G_i^0 = 0$, параметр сглаживания $\varepsilon=1$ е-8, количество итераций K

- 1: for k = 0, 1, ..., K 1 do
- Вычислить $g^k \in \partial f(x^k)$
- Для каждой координаты: $G_i^{k+1} = \sum_i G_i^k + (1-\sum_i)(g_i^k)^2$ Для каждой координаты: $x_i^{k+1} = x_i^k \frac{D_i}{\sqrt{G_i^{k+1} + \varepsilon}} g_i^k$
- 5: end for

Выход: $\frac{1}{K} \sum_{k=0}^{K} x^k$

$$||S_{2}|| = ||S_{2}||^{k} ||$$

Алгоритм 6 Adam

Вход: шаг $D_i > 0$, параметры сглаживания $\beta_1 = 0.9$ и $\beta_2 =$ 0.99, стартовая точка $x^0 \in \mathbb{R}^d$, сглаженная сумма квадратов градиентов $G_i^0 = 0$, сглаженная сумма градиентов $v^0 = 0$, параметр сглаживания $\varepsilon=1$ е-8, количество итераций K

- 1: for k = 0, 1, ..., K 1 do
- Вычислить $g^k \in \partial f(x^k)$
- 3:
- Вычислить $v^{k+1}=\beta_1 v^k+(1-\beta_1)g^k$ Для каждой координаты: $G_i^{k+1}=\beta_2 G_i^k+(1-\beta_2)(g_i^k)^2$ Для каждой координаты: $x_i^{k+1}=x_i^k-\frac{D_i}{\sqrt{G_i^{k+1}+\varepsilon}}v_i^{k+1}$
- 6: end for

Выход: $\frac{1}{K} \sum_{k=0}^{K} x^k$

De morne unner.

E gon nanomb

(SOTA go obysem) herrocemen