CHAPTER 2. SOCIAL EXPERIMENTS (RANDOMIZED CONTROL TRIALS AND NATURAL EXPERIMENTS)

Joan Llull

Quantitative Statistical Methods II Barcelona GSE

Randomized Experiments

In the treatment effect approach, a randomized field trial is regarded as the ideal design.

Long **history** of randomized field trials in social welfare in the U.S., beginning in the 1960s (see Moffitt (2003) for a review).

Encouraged by U.S. Federal Government, eventually almost mandatory. Legislation introduced in 1988.

Resistance from many states on ethical grounds (more so in other countries, where treatment groups are often areas for treatment instead of individuals).

Sometimes experiments are provided by nature: **natural experiments** (e.g. John Snow and the cholera case in SoHo).

Random Assignment and Treatment Effects

In a controlled experiment, treatment status is **randomly assigned** by the researcher, which by construction, ensures **independence**:

$$Y_{1i}, Y_{0i} \perp \!\!\! \perp D_i$$
.

This eliminates the selection bias (see Chapter 1), and implies $\alpha_{TT} = \beta$, as:

$$\mathbb{E}[Y_{0i}|D_i = 1] = \mathbb{E}[Y_{0i}|D_i = 0] = \mathbb{E}[Y_{0i}].$$

Also
$$\alpha_{ATE} = \alpha_{TT} = \beta$$
, as $\mathbb{E}[Y_{1i} - Y_{0i}|D_i = 1] = \mathbb{E}[Y_{1i} - Y_{0i}]$.

Thus, the average treatment effect can be estimated by a simple linear regression of the observed outcome Y_i on the treatment dummy D_i and a constant.

Standard Errors and Inference

The standard default options for regression in statistical packages assume that residuals U_i are homoskedastic. This implies:

$$Var(Y_i|D_i = 1) = Var(Y_i|D_i = 0) = Var(U_i) = Var(Y_{0i}) = Var(Y_{1i}).$$

In the context of **heterogeneous** treatment effects, this is often violated.

 $Var(Y_{1i})$ can be expressed as:

$$Var(Y_{1i}) = Var(Y_{0i}) + Var(Y_{1i} - Y_{0i}) + 2 Cov(Y_{1i} - Y_{0i}, Y_{0i}),$$

which is obtained by noting that $Var(Y_{1i}) = Var(Y_{0i} + (Y_{1i} - Y_{0i}))$.

Homogeneous treatment effects $\Rightarrow Y_{1i} - Y_{0i}$ is a constant $\Rightarrow \text{Var}(Y_{1i} - Y_{0i}) = \text{Cov}(Y_{1i} - Y_{0i}, Y_{0i}) = 0$.

Heterogeneous treatment effects \Rightarrow not necessarily the case (e.g. effect of lottery ticket on wealth).

Standard Errors and Inference

Standard error of the ATE is the variance of the difference in means:

$$\operatorname{Var}(\beta^S) = \operatorname{Var}(\bar{Y}_T - \bar{Y}_C) = \operatorname{Var}(\bar{Y}_T) + \operatorname{Var}(\bar{Y}_C) = \frac{\sigma_T^2}{N_1} + \frac{\sigma_C^2}{N_0},$$

where σ_T^2 and σ_C^2 are sample variances of the outcome computed on treated and control subsamples, and N_1 and N_0 are the sizes of each subsample.

Alternatively, from the regression we can compute robust standard errors:

$$\operatorname{Var}\begin{pmatrix} \hat{\beta}_0\\ \hat{\beta} \end{pmatrix} = \frac{1}{N} \operatorname{\mathbb{E}}[X_i X_i']^{-1} \operatorname{\mathbb{E}}[X_i X_i' \hat{U}_i^2] \operatorname{\mathbb{E}}[X_i X_i']^{-1},$$

where $X_i \equiv (1, D_i)'$. The sample analog is:

$$\widehat{\text{Var}} \begin{pmatrix} \widehat{\beta}_0 \\ \widehat{\beta} \end{pmatrix} = \frac{1}{N} \left(\frac{1}{N} \sum_{i=1}^N X_i X_i' \right)^{-1} \left(\frac{1}{N} \sum_{i=1}^N X_i X_i' U_i^2 \right) \left(\frac{1}{N} \sum_{i=1}^N X_i X_i' \right)^{-1}$$

$$= \begin{pmatrix} \frac{\sum_{i:D_i = 0} \widehat{U}_i^2}{N_0^2} & -\frac{\sum_{i:D_i = 0} \widehat{U}_i^2}{N_0^2} \\ -\frac{\sum_{i:D_i = 0} \widehat{U}_i^2}{N_0^2} & \frac{\sum_{i:D_i = 0} \widehat{U}_i^2}{N_0^2} + \frac{\sum_{i:D_i = 1} \widehat{U}_i^2}{N_1^2} \end{pmatrix}.$$

Maybe observations are **not independent** \Rightarrow **clustering** (e.g. Progresa).

Introduction of Additional Regressors

Additional regressors W_i are not needed for **consistency** as:

$$\gamma \frac{\operatorname{Cov}(W_i, D_i)}{\operatorname{Var}(D_i)} = 0.$$

Yet, it can be interesting to include them for several reasons:

- If they are relevant, they can increase **precision** (Frisch-Waugh Theorem).
- Checking randomization: are there statistical difference in these regressors between treated and controls?
- Used in the randomization (e.g. village-level randomization).

The last two lead to the context of **conditional independence**.

Warning: Partial Complience

So far we have assumed **perfect complience**: everyone elected takes the treatment and no control takes it.

Now: $D_i = 1\{\text{treatment taken}\}\$ and $Z_i = 1\{\text{assigned to treatment}\}\$.

We may have $D_i = 0$ and $Z_i = 1$ (no-shows), and $D_i = 1$ and $Z_i = 0$ (cross-overs).

Now $Y_{1i}, Y_{0i} \not\perp\!\!\!\perp D_i$ but $Y_{1i}, Y_{0i} \perp\!\!\!\perp Z_i$. The latter can be used in an **IV fashion** to obtain α_{TT} (Chapter 4), or compute an **intention-to-treat** effect.

Warning: Longer Run Outcomes

National Supported Work program (NSW):

- designed in the U.S. in the mid 1970s
- training and job opportunities to disadvantaged workers
- NSW guaranteed to treated participants 12 months of subsidized employment (as trainees) in jobs with gradual increase in work standards.
- experimental design on women who volunteered for training
- Requirements: unemployed, a long-term AFDC recipient, and have no preschool children
- Participants were randomly assigned to treatment (275) and control groups (266) in 1976-1977
- Training in 1976, and then followed.
- Ham and LaLonde (1996) analyze the effects of the program.

Effects on Unemployment Rates

Thanks to randomization, comparison of employment rates for treated and control gives an **unbiased estimate** of the effect of the program on employment at different horizons.

Initially, by construction there is a mechanical effect from the fact that treated women are offered a **subsidized job**.

Compliance with the treatment is decreasing over time, as women can decide to **drop from** the subsidized job.

The **employment growth for controls** is a reflection of the program's eligibility criteria.

Importantly, after the program ends, a 9 percentage points difference in employment rates is sustained.

Ham and LaLonde's Additional Point

But Ham and LaLonde (1996) make an important additional point: randomization does not guarantee independence for any possible outcomes.

Two examples: wages and unemployment durations (hazards).

Effect of training program on employment rates of the treated \Rightarrow those who are working are a **selected sample**.

Notation: W_i wages; $Y_i = 1$ if employed; $\eta_i = 1$ skilled type.

Suppose:

$$P(Y_i = 1 | D_i = 1, \eta_i = j) > P(Y_i = 1 | D_i = 0, \eta_i = j), \quad j = 0, 1$$

and:

$$\frac{P(Y_i = 1 | D_i = 1, \eta_i = 0)}{P(Y_i = 1 | D_i = 0, \eta_i = 0)} > \frac{P(Y_i = 1 | D_i = 1, \eta_i = 1)}{P(Y_i = 1 | D_i = 0, \eta_i = 1)}.$$

This implies that the **frequency of low skill** will be greater in the group of employed treatments than in the employed controls:

$$P(\eta_i = 0|Y_i = 1, D_i = 1) > P(\eta_i = 0|Y_i = 1, D_i = 0),$$

which is a way to say that η_i , which is unobserved, is **not independent** of D_i given $Y_i = 1$, although, unconditionally, $\eta_i \perp D_i$.

Consider the **conditional effects**:

$$\Delta_j \equiv \mathbb{E}[W|Y_i = 1, D_i = 1, \eta_i = j] - \mathbb{E}[W_i|Y_i = 1, D_i = 0, \eta_i = j], \quad j = 0, 1$$

Our effect of interest is:

$$\Delta_{ATE} = \Delta_0 P(\eta_i = 0) + \Delta_1 P(\eta_i = 1),$$

and comparison of average wages between treatments and controls is:

$$\Delta_W = \mathbb{E}[W_i | Y_i = 1, D_i = 1] - \mathbb{E}[W_i | Y_i = 1, D_i = 0] < \Delta_{ATE}.$$

 \Rightarrow may not be possible to correctly measure the effect on wages.