Relatório Competição 1

Isabella Beatriz da Silva, 201802727

Dezembro 2022

1 Análise exploratória dos dados

Na etapa exploratória dos dados, inicialmente a base de dados de treino foi aberta em uma planilha para facilitar a visualização dos valores disponíveis em cada coluna. Com isso, foi possível definir variáveis que do ponto de vista de negócio seriam interessantes, os tipos dos dados e se as variáveis eram discretas, categóricas ou se tinham uma ordem entre as categorias.

Em um segundo momento, com auxílio da biblioteca Pandas foi feita uma análise do tipo de dados de cada variável e a quantidade de valores não nulos como mostrado na Figura 1. Com isso, as variáveis que em sua maioria possuíam valores nulos foram excluídas do modelo de treinamento. Além disso, observando o tipo de cada informação foi decidido que tipo de pré-processamento aplicar para garantir que não informações erradas não seriam trazidas para o modelo.

Outra análise muito importante foi da quantidade de valores únicos contidos em cada variável. As que possuíam muitos valores distintos ou campos de texto livre exigiriam que o modelo e o pré-processamento dos dados fosse bem mais complexo. Por isso, esses atributos com muitas categorias foram excluídos do modelo. Como exemplificado na Figura 2, pode-se observar que a variável "DS_INDICACAO_CLINICA" por mais que pareça ter informações muito ricas para o problema é de texto livre, tornando seu uso muito difícil.

2 Pré-processamentos realizados

O primeiro pré-processamento realizado foi preenchimento de valores ausentes. Para as variáveis discretas esses valores foram preenchidos com o número zero (0) e para as categóricas com uma string de valor zero ('0').

As variáveis foram separadas entre categóricas e discretas. Para aquelas consideradas discretas foi realizado *Standard Scaler Encoding* o qual remove a média e dimensiona a variação dos valores. Para as categóricas foi realizado o processo de *One Hot Encoding*, o qual cria uma nova coluna para cada categoria em que o valor é um caso pertença à categoria e zero caso não pertença.

Para o enriquecimento dos dados, um dos pré-processamentos realizados foi a criação da variável idade utilizando o conceito de *Feature engineering*, que consiste na criação de informações a partir da combinação de outros atributos.

Essa nova variável foi chamada de 'idade' e obtida através da subtração da data da requisição da autorização pela data de nascimento do paciente.

Para o treinamento do modelo foram escolhidos alguns atributos do dataset, tanto variáveis discretas como categóricas. Cada uma delas tve um porquê para ser escolhida do ponto de vista do negócio.

Variáveis discretas

• IDADE: variável criada a partir de um pré-processamento que subtrai a 'DT_REQUISICAO' pela 'DT_NASCIMENTO' A idade é importante porque geralmente pessoas mais velhas tem uma necessidade maior que seus exames sejam autorizados.

Variáveis categóricas

- DS_TIPO_PREST_SOLICITANTE: caracteriza onde foi feita a solicitação do exame (hospital, clínica, laboratório...)
- DS_CBO: tipo de médico que atendeu o paciente;
- DS_INDICACAO_ACIDENTE: tipo do acidente que levou ao atendimento, inclusive mostra quando n\u00e3o houve acidente;
- DS_CARATER_ATENDIMENTO: se foi uma consulta de rotina ou emergência, geralmente os exames são autorizados em casos de emergência;
- DS_TIPO_INTERNACAO: o tipo da internação do paciente que levou a solicitação;
- DS_TIPO_ACOMODACAO: onde o paciente estava (enfermaria, UTI...);
- DS_TIPO_ATENDIMENTO: qual tipo de procedimento foi solicitado (exame, cirurgia, terapia).

3 Algoritmos utilizados

Para a etapa de classificação dos dados foram selecionados alguns algoritmos para teste e o que obteve o melhor resultado entre eles foi escolhido.

- Árvore de decisão: este algoritmo é utilizado para classificação e regressão. Uma árvore de decisão é uma estrutura de fluxograma em que o nó raiz é um dos atributos da base de dados e os nós-folha que são os resultados dos testes. A ligação entre esses nós se dá por regras do tipo "se-então", em que dependendo do valor do resultado o próximo nó ficará para esquerda ou direita.
- Random forest: as árvores de decisão têm uma alta variância. O algoritmo Random forest combina o resultado de várias árvores de decisão geradas em paralelo e para problemas de classificação o resultado com mais votos é escolhido. Por isso, É uma ótima opção para reduzir a variância da árvore de decisão e obter resultados melhores.

- SVM: Uma máquina de vetores de suporte (SVM)
- MLP: Um Multilayer Perceptron (MLP) é um tipo de rede neural artificial. Um MLP simples consiste em pelo menos 3 camadas de nós, sendo uma camada de input, uma camada oculta e uma de saída.

4 Resultados

O resultado dos algoritmos de Árvore de decisão e Random forest foram bastante próximos, como podem ser observados na Figura 3 e na Figura 4 apresentando um score um pouco melhor para a árvore sozinha. Com o conjunto de validação esse score foi de aproximadamente 0.743 já para o conjunto de testes esse número caiu para 0.68.

Já o algoritmo MLP apresentou um resultado um pouco inferior com o conjunto de validação, como apresentado na Figura 5 apresentou um score de 0,708 para os dados de validação. No entanto, quando validado com o conjunto de teste completo o score se manteve praticamente o mesmo com um valor de 0.705. Por isso foi o escolhido como submissão final.

Com o intuito de melhorar esses resultados, acredito que seria possível além de testar outros algoritmos reavaliar os atributos escolhidos para o modelo. Além disso pode-se melhorar a qualidade do conjunto de treinamento aplicando mais técnicas de pré-processamento como balancear o dataset.

5 Referências bibliográficas

SCIKIT learn. In: Sklearn.preprocessing.StandardScaler. [S. l.]. Disponível em: https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html. Acesso em: 12 dez. 2022.

Get dummies vs one hot encoder qual método escolher. [S. l.], Agosto 2022. Disponível em: https://www.alura.com.br/artigos/get-dummies-vs-onehotencoder-qual-metodo-escolher. Acesso em: 12 dez. 2022.

OMNI parte 2: Feature engineering. [S. l.], abril 2022. Disponível em: https://www.kaggle.com/code/lusaugustodoprado/omni-parte-2?scriptVersionId=9386333. Acesso em: 19 dez. 2022.

GEEKS for Geeks. In: Decision tree. [S. l.], outubro 2022. Disponível em: https://www.geeksforgeeks.org/decision-tree/. Acesso em: 12 dez. 2022.

UNDERSTANDING Random Forests Classifiers in Python Tutorial. [S. l.], 1 maio 2018. Disponível em: https://www.datacamp.com/tutorial/random-forests-classifier-python. Acesso em: 11 dez. 2022.

6 Apêndices

RangeIndex: 227122 entries, 0 to 227121

Data columns (total 32 columns):

#	Column	Non-Null Count	Dtype
		Non-Null Count	
0	Unnamed: 0	227122 non-null	int64
1	NR_SEQ_REQUISICAO	227122 non-null	
2	NR_SEQ_ITEM	227122 non-null	
3	DT_REQUISICAO	227122 non-null	int64
4	DS_TIPO_GUIA	227122 non-null	
5	DT_NASCIMENTO	227112 non-null	
6	NR_PRODUTO	227122 non-null	
7	DS_TIPO_PREST_SOLICITANTE	227122 non-null	object
8	DS_CBO	227122 non-null	-
9	DS_TIPO_CONSULTA	10511 non-null	object
10	QT_TEMPO_DOENCA	266 non-null	float64
11	DS_UNIDADE_TEMPO_DOENCA	266 non-null	object
12	DS_TIPO_DOENCA	531 non-null	object
13	DS_INDICACAO_ACIDENTE	209539 non-null	object
14	DS_TIPO_SAIDA	0 non-null	float64
15	DS_TIPO_INTERNACAO	59863 non-null	object
16	DS_REGIME_INTERNACAO	59863 non-null	object
17	DS_CARATER_ATENDIMENTO	227122 non-null	object
18	DS_TIPO_ACOMODACAO	59781 non-null	object
19	QT_DIA_SOLICITADO	58995 non-null	float64
20	CD_GUIA_REFERENCIA	37463 non-null	float64
21	DS_TIPO_ATENDIMENTO	168045 non-null	object
22	CD_CID	131250 non-null	object
23	DS_INDICACAO_CLINICA	179944 non-null	object
24	DS_TIPO_ITEM	227122 non-null	object
25	CD_ITEM	227122 non-null	int64
26	DS_ITEM	227122 non-null	object
27	DS_CLASSE	227122 non-null	object
28	DS_SUBGRUPO	227122 non-null	object
29	DS_GRUPO	227122 non-null	object
30	QT_SOLICITADA	227122 non-null	float64
31	DS_STATUS_ITEM 4	227122 non-null	object
dtyp	es: float64(6), int64(6), o	bject(20)	

Figure 1: Valores únicos disponíveis em cada variável.

11. 0	007400
Unnamed: 0	227122
NR_SEQ_REQUISICAO	80699
NR_SEQ_ITEM	227122
DT_REQUISICAO	357
DS_TIPO_GUIA	3
DT_NASCIMENTO	16557
NR_PRODUTO	1
DS_TIPO_PREST_SOLICITANTE	12
DS_CB0	59
DS_TIPO_CONSULTA	4
QT_TEMPO_DOENCA	17
DS_UNIDADE_TEMPO_DOENCA	3
DS_TIPO_DOENCA	2
DS_INDICACAO_ACIDENTE	4
DS_TIPO_SAIDA	0
DS_TIPO_INTERNACAO	6
DS_REGIME_INTERNACAO	3
DS_CARATER_ATENDIMENTO	2
DS_TIPO_ACOMODACAO	8
QT_DIA_SOLICITADO	34
CD_GUIA_REFERENCIA	4610
DS_TIPO_ATENDIMENTO	13
CD_CID	1626
DS_INDICACAO_CLINICA	40428
DS_TIPO_ITEM	2
CD_ITEM	6220
DS_ITEM	6146
DS_CLASSE	460
DS_SUBGRUPO	72
DS_GRUPO	9
QT_SOLICITADA	270
DS_STATUS_ITEM	2
dtype: int64	

Figure 2: Valores únicos disponíveis em cada variável.

	3551] 6546]] pre	cision	recall	f1-score	support
Autoriz	ado	0.77	0.88	0.82	30796
Neg	ado	0.65	0.45	0.53	14629
accur	acy			0.74	45425
macro	avg	0.71	0.67	0.68	45425
weighted	avg	0.73	0.74	0.73	45425
0.7438855	25591634	6			

Figure 3: Métricas para o resultado do algoritmo de Árvore de decisão.

[[26852 [7749	3944 6880		recall	f1-score	support	
Autori Ne	zado gado	0.78 0.64	0.87 0.47	0.82 0.54	30796 14629	
accu macro weighted	avg	0.71 0.73	0.67 0.74	0.74 0.68 0.73	45425 45425 45425	

Figure 4: Métricas para o resultado do algoritmo Random Forest.

0.7425866813428729

[[27261 3535 [9727 4902	-	recall	f1-score	support
Autorizado Negado	0.74 0.58	0.89 0.34	0.80 0.43	30796 14629
accuracy macro avg weighted avg	0.66 0.69	0.61 0.71	0.71 0.61 0.68	45425 45425 45425

0.7080462300495322

Figure 5: Métricas para o resultado do algoritmo MLP.