Lecture 8 - Random Variables

uesday, February 18, 2020 2:02 PM

 $\frac{\text{Ex. Flip a coin 3 times (independently)}}{\text{X} = \text{# of heads}}$

D	X(D)
H H H	3
HHT	2
H T H	2
HTT	
T H H	2
T H T	(
TTH	1
TTT	

Defn: Random Variable

a r.V. X is a function

 $\chi: \mathcal{S} \longrightarrow \mathbb{R}$

ex,

(1) toss two dice / X = sm of two dice

(2) +085 a coin 75 times

X = longer + chain of consecrative Hs

Aside: Inverse Image of A under f

A A

A

A

Sloppy hotation: for b \(B \) write \(f \) to mean \(f \) \(B \).

Notation: X is a r.V., we write P(XEA) where ACR wears = $\mathbb{P}(\chi^{-1}(A))$

$$2 \times P(\chi = 1)$$

$$= (P(\chi \in S13))$$

$$= P(\chi'(S13))$$

$$= P(SHTT, THT, THS) = 3/8$$

$$P(X = 1 \text{ or } 2)$$

$$= P(X \in \{1, 2\})$$

$$= P(X^{-1}(\{1, 2\}))$$

$$= P(\{1, 2\}) = \sqrt{8}$$

Defn: Support of a 12.V.

If X is a V.V. thou the support of
X is the set of possible values:

$$Im(X) = X(S)$$

 l image of S under X .

$$\mathcal{E}_{X}$$
, $X = \#$ heads.
Support $(X) = \{0,1,2,3\}$.

Ex. (at
$$S = So, \pm 1, \pm 2, \dots$$
)
and define Y so that
$$Y(s) = \begin{cases} a & \text{if } s \neq 0 \\ b & \text{if } s \neq 0 \end{cases}$$

Support
$$(X) = \{a, b\}$$
.

$$P(Y=a) = P(Y'(a)) = P(s_0,-1,-2,-3,...s)$$

$$P(Y=b) = P(Y'(b)) = P(s_1,2,3,4,...s).$$

$$P(Y=c) = 0$$
 where $c \neq a$, $c \neq b$.

P(X(A)) = P(Ø) = 0.

Types of Random Variables Heuristic: (Informal Def)

> discrete: if the support is "discrete" (finite or countably infinite)

Cr. Flip a coin 3 times 3 support

X = # heads 3 support

Ex, $\chi = \#$ of customers arriving at restaurant.

Support = N

Confinoras: the support is uncontably infinite. ex. X = waiting time for bus Support = [0, 50) Defn: Cumulative Distribution Function (CDF) The CDF of a r.v. X is a function $F: \mathbb{R} \to \mathbb{R}$ obefored for XER as $F(\chi) = P(\chi \leq \chi)$ $f(\chi) = P(\chi \leq \chi)$ if the χ is a real number half F(x) = P() = prob of being here $\frac{1}{(-\infty, \chi)}$ Notertian: $F(x) = P(\chi \in x) = P(\chi \in (-\infty, x])$ $= \mathbb{P}(\mathbb{X}((-\infty, \times]))$

$$F(0) = P(X \le 0) = \frac{1}{8}$$

$$F(1) = P(X \le 1) = \frac{4}{8} = \frac{1}{2}$$

$$F(2) = P(X \le 2) = \frac{1}{8}$$

$$F(3) = P(X \le 3) = 1$$

$$F(-1) = P(\chi \leq -1) = 0$$

$$F(x) = 0$$
 for $x < 0$

Theorem: If F is a CDF then

$$\bigcirc 0 \leq F(x) \leq 1$$

Note:
$$F(x) = \mathbb{P}(\ldots) \in [0,1]$$

(2)
$$\lim_{X \to -\infty} F(x) = 0$$
 and $\lim_{X \to \infty} F(x) = 1$.

(3) F is non-decreasing: if
$$\chi_1 < \chi_2$$

$$F(\chi_1) \leq F(\chi_2)$$

Application of $F(\chi_1) \leq F(\chi_2)$

$$F(\chi_1) = P(X \in (-\infty, \chi_1)) \leq P(X \in (-\infty, \chi_2)) = F(\chi_2).$$

(4) $P(a < X \leq b) = F(b) - F(a)$

$$F(a) = P(X \in (a, b])$$

$$F(a < X \leq b) = P(X \in (a, b])$$

$$F(a < X \leq b) = P(X \in (a, b])$$

$$F(a < X \leq b) = P(X \in (a, b])$$

$$F(a < X \leq b) = P(X \in (a, b])$$

$$F(a < X \leq b) = P(X \in (a, b])$$

$$F(a < X \leq b) = P(X \in (a, b])$$

$$F(a < X \leq b) = P(X \in (a, b])$$

$$F(a < X \leq b) = P(X \in (a, b])$$

$$F(a < X \leq b) = P(X \in (a, b])$$

$$F(a < X \leq b) = F(a)$$

$$F(a < X \leq b)$$

$$F(a < X$$

recall a cfs for $f: \lim_{x\to a} f(x) = f(a)$ Theorem: If F:R->R then Fir the CDF for some v.J. X if $\lim_{X\to\infty} F(x) = 1 \quad \lim_{X\to-\infty} F(x) = 0$ (2) Fis non-decreasing (3) F is right continuous-(Note of F is continuous, it is right)
continuous) \underline{ex} , let $F(x) = \frac{1}{1+p-x}$, $x \in \mathbb{R}$ D: is this a valid CDF? (1) $\lim_{X\to\infty} F(x) = \lim_{X\to\infty} \frac{1}{1+e^{-X}} = 1$ $\lim_{x \to \infty} F(x) = \lim_{x \to \infty} \frac{1}{x} = 0$

 $\chi \rightarrow -10 + e^{-x}$ (2) non-decreasing? $F(x) = \frac{e}{(t e^{-\pi})^2}$ 3) Right continuous? yes, its continuous Defu: We say two roundan variables X and Y are identically distributed if for ony ACR $P(X \in A) = P(Y \in A)$. This is not the same as saying X=Y as functions. If X = Y as a fuetion then they are identically distributed. Converse is false. Ex. Flip 3 coins.

let X = # heads, Y = # tails. $\chi = \chi$ equal in dist, $E \cdot S \cdot P(\chi = 1) = 3/8$ od $P(\chi = 1) = 3/8$ $S \cdot HTT, THT, TTH$ $S \cdot HH, H+TH, H+HT$ rete: X(HTT)=1 but Y(H7T)=2. theorem: X = Y iff F = Fy CCDFs of X ad X are egal as fus.