1. Introdução

Considere que existe uma coleção de dados representando as condições diárias da precipitação pluviométrica num determinado período do mês. Se o desejado é a média mensal desta precipitação basta somar todos os dados e dividí-los pelo número de dias do mês. Porém se quisermos traçar um gráfico representativo da função precipitação no tempo, necessitaremos ordenar uma coleção de dados seguindo a ordem cronológica:

Esta forma de estrutura de dados, na qual o tipo de relacionamento entre os dados é a relação de ordem, é a mais simples e comum e chamamos de ordenada ou linear.

São exemplos de estruturas lineares:

- dias da semana,
- cartas de baralho,
- pauta de chamada,
- anos em que um time foi campeão

Exemplo:

```
sinonimos_dict = {'bom': ['agradavel', 'otimo']}
altera_sinonimos("hoje o dia esta bom")
```

Out: "hoje o dia esta otimo"

2. Definição

Uma lista linear é uma estrutura dinâmica caracterizada por uma sequência ordenada de elementos, chamados de nós, no sentido da sua posição relativa: x1, x2, ...xn, tal que:

- 1. Existem n nós na sequência;
- 2. x₁ é o primeiro nó da sequência;
- 3. x_n é o último nó da sequência;
- 4. Para todo i, j entre 1 e n, se i < j, então o nó x^i antecede o nó $x_{i:}$
- 5. Caso i = j 1, x_i é o antecessor de x_j e x_j é o sucessor de x_i .

Existem várias operações que podem ser realizadas em listas lineares. Por exemplo, em uma lista de alunos inscritos em um curso podemos verificar a presença dos alunos (Percurso), novos alunos são matriculados (inserção) e alguns alunos, eventualmente, desistem (retirada).

Portanto:

- Uma coleção de objetos do mesmo tipo que possuem um relacionamento posicional entre si é chamada de Lista Linear.
- Uma Lista Linear é composta de nós que contém as informações sobre os objetos.
 Estes nós podem ser de um tipo primitivo ou definido pelo programador. Assim, definimos uma Lista Linear como sendo o conjunto de n >= 0 nós denominados x₁, x₂, ..., x_k, ..., x_n organizados estruturalmente de forma a refletir as posições relativas dos mesmos:
 - Se n > 0 então x1 é o primeiro nó e xn é o último nó;
 - Para 1 < k < n, o nó x_{k} ~ é precedido pelo nó x_{k-1} chamado antecessor e sucedido pelo nó x_{k+1} , chamado sucessor;
 - Quando n = 0, dizemos que a lista está vazia.

0

3. Propriedades de uma Lista

- 1. Uma Lista pode ter 0 ou mais nós;
- 2. Um nó pode ser incluído em qualquer posição da lista;
- 3. Qualquer nó da lista pode ser eliminado;
- 4. Qualquer nó da lista pode ser acessado;
- 5. Podemos visitar cada nó da lista na sua vez.

4. Operações básicas em uma lista

- **Percurso** : operação que permite utilizar cada um dos nós de uma lista linear de tal forma que:
 - o O primeiro nó a ser utilizado é o primeiro nó da lista linear
 - Para utilizar um nó x_i, todos os nós de x₁ até x_{i-1} já foram utilizados
 - o O último nó utilizado é o último nó da lista linear.
- Acesso a um nó: operação que procura um nó específico da lista linear. A busca pode ser
 efeituada de duas formas: ou o nó é identificado por sua posiçao relativa na lista ou o nó é
 identificado pelo seu conteúdo. O objetivo deste acesso pode ser tanto para consultar
 informações como para alterá-las.
- Inserção: operação que incorpora um nó x a uma lista linear, de tal forma que:
 - O nó x terá um sucessor e/ou um antecessor;
 - A inserção é realizada de tal forma que ao inserir o nó x na posição i, onde i está no intervalo de 1 a (n+1), esse nó passa a ser o i-ésimo nó da lista linear;
 - o O número de nós (n) é acrescido de uma unidade.
- **Retirada**: operação que retira um nó X de uma lista linear, de tal forma que :
 - o Se x_i é o nó retirado, o seu sucessor passa a ser o sucessor de seu antecessor, ou seja, x_{i+1} passa a ser o sucessor de x_{i-1} . Se x_i é o primeiro nó, o seu sucessor passa ser o primeiro; Se x_i é o último nó, o seu antecessor passa a ser o último;
 - o O número de nós (n) é decrescido de uma unidade.

Nota: Nos casos de *Busca, Inserção* e *Retirada*:

1. se a lista tem seus nós posicionados de tal forma que há classificação por um campo de informação do nó, chamado chave, tal classificação deve ser preservada.

2. se a lista não permite que haja dois nós com mesmo valor em um campo de informação, chamado chave, tal situação(não repetição) deve ser preservada