

COIG3 COBETCKNX COLUMNINCTALECKHX PECTYS/INK

m SU m 1686124 A1

(51)5 E 21 B 29/10

ГОСУДАРСТВЕННЫЯ KOMMITET по изобретениям и открытиям **TIPM FIXHT CCCP** 

## ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 4678841/03 (22) 24.02.89 (46) 23.10.91. Бюл. № 39 (71) Всесоюзный научно-исследовательский и проектный институт по креплению скважин и буровым растворам (72) О.А. Ледяшов, С.Ф. Петров, М.Л. Кисельман, В.И. Мишин и А.В. Бреус

(53) 622.245.4(088.8) (56) Авторское свидетельство СССР

Nº 976019, KA. E 21 B 29/10, 1982. Нефтяное хозяйство, 1987, № 2, с. 76--78.

(54) СПОСОБ РЕМОНТА ОБСАДНОЙ КО-**ЛОННЫ** 

(57) Изобретение относится к ремонту обсадных колони эксплуатационных, нагнетательных и других скважин. Целью изобретения является повышение эффективности ремонта обсадной колонны за счет увеличения устойчивости пластырей действию сминающих усилий при депрессиях. превышающих 8-9 МПа. Для этого после установки в месте дефекта первого продольно гофрированного пластыря устанавливают эторой. Причем периметр эторого пластыря выбирают меньшим периметра первого пластыря, а перинетр первого выбирают меньшим париметра обсадной колоним. Длину второго устанавливаемого пластыря выбирают большей длины первого на зеличниц, большую рабочего хода гидравлической доринрующей головки. Перед установкой второго пластыря один из его торцов смещают относительно торца первого на величину рабочего хода гидравлической доримрующей головки в направлении, противоположном направлению рабочего хода дорнирующей головки.

2 -

Изобретение относится к ремонту эксплуатационных, нагнетательных и других скважин, более точно к восстановлению герметичности обсадных колони металлическими пластырями.

Целью изобретения является повышение эффективности ремонта обсадной колонны за счет увеличения устойчивости пластырей действию сминающих усилий при депрессиях, превышающих 8-9 МПа.

Способ осуществляется следующим об-

В скважину спускают первый продольно гофрированиый пластырь периметром, большим периметра обсадной колонны, доставляют его к месту дефекта обсадной колонны и устанавливают в этом месте прижатием гидравлической дорнирующей головки. Затем к месту дефекта спускают второй продольно гофрированный пластырь периметром, меньшим периметра первого устанавливаемого пластыря, и длиной, большей длины переого устанавливаемого пластыря, на величину, большую рабочего хода гидравлической дорнирующей головки. Перед уствновкой второго пластыря один из его торцов смещают относительно торца первого пластыря на величину рабочего хода гидравлической дориирующей головки в направлении, противоположном направлению рабочего хода гидравлической дорнирующей головки, в затем производят установку второго пластыря внахлест с первым и полным перекрытием первого патрубка по всей его длине.

Опыт свидетельствует, что при ремонте точной информации о действительном периметре внутренией поверхности колонны (показания измерителя периметра, измерения при спуске труб в скважину для экспения при предела, то оттимальным ввляется натиг. в 1 ость Пробрам, то ость Пробрам, то ость Пробрам, то ость пределах, достигается надажная герметичность.

При использовании производственной информации о толирина станки трубы в ин- 20 тервале ремонта рекомендуется принимать П—П<sub>им.к.</sub>+6.

Большинство труб согласно многочисленным замерам имеют действительные внешний и особенно внутренний диаметры 25 приблизительно на 1 мм больше номинальных значений, что находится в пределах и в соответствии с допусками по ГОСТу. Кроме того, работа с фактическим натягом в пределах +6 мм вполне приемлема и не вызывает 30 превышения допустимых нагрузок.

После установки первого пластыря внутренний диаметр den и периметр Пен соответственно составляют

d<sub>m1</sub> = d<sub>mx</sub> - 2 δ = d<sub>mx</sub> - 6; Π<sub>m1</sub> = π(d<sub>mx</sub> - 2 δ)=Π<sub>mx</sub> - 18.

Считая, что сведения о был и Пыл, также опираются на производственную документацию (былк и Пылк), для участка двойного перекрытия согласно методике выбирают эквикалентный диаметр внешней поверхности од и периметр Па еторого пластыря

ли dz = d<sub>эн1</sub> + 2 = d<sub>эн.х</sub> - 6 + 2 = d<sub>эн.х</sub> - 4; Пz = П<sub>эн1</sub> + 6=П<sub>эн.х</sub> - 18 - 6 = П<sub>эн.х</sub> - 12.

Таким образом, при выбора первого и второго пластырей рекомандуется прини- $\Pi_1 = \Pi_{\text{out.}} + 6$  и  $\Pi_2 = \Pi_{\text{out.}} = 12$  (при  $\delta = 3$ ).

В значении П2 могут быть внесены коррективы по результатам установки первого пластыря. Если усилие на дорнирующей головке при его расширении окажется значительно ниже нормального (14-18 т) — признак того, чтс действительное Пыла больше, П2 следует выбрать увеличенным на 2-5 мм соразмерно степени уменьшения действительной осевой силы, если усилие окажется выше нормы, П2 следует укленьшить соответствующим образом. Таким образом, к неравенству  $\Pi_1 > \Pi_{\text{вид}} > \Pi_2$  уместны следующие дополнения;

 $\Pi_1 = \Pi_{\text{sM,K}} + 6$ ;  $\Pi_2 = \Pi_{\text{sM,K}} = 12 \pm (2 - 5)$ .

Длину первого пластыря выбирают так, чтобы перекрыть дефект с достаточным перехлестом вверх и вниз (÷1,5-2,5 м). Величну перехлеста следует выбирать в указанных пределах, увеличивая или уменьшая вго, в завысимости от степени достоверности информации о резмере и месте дефекта. Длина второго пластыря прежде всего должив соответствовать с запасом длина дефектной части колонны и перекрывать соответствующий участок первого пластыря.

Считая, что первый пластырь установлен в требуемом месте и обеспечено задянное перекрытие дефекта с перехлестом по длине, при выборе размеров и схемы установки второго пластыря возможны следуюшме варианты. Технология установки пластыря включает три этапа: расширение начального участка для зацепления пластыря с обсадной колонной путем втягивания дориирующей головки под давлением гидродомкратом на величкну его хода - 1,5 м при удержании пластыря от осевого смещения упором устройства; расширение основного участка пластыря протягиванием дорнирующей головки (обычно без дзеления) талевой системой, пластырь при этом разгружается от осевого воздействия головки через начальный расширенный участок на колониу; запрессовка расширенного пластыря мно-35 гократным проходом дорнирующей головки под дзвлением.

Опасность смещения пластыря по колонне возникает на втором этапе установки
из-за недостаточного зацепления начально40 го расширенного участка, например при
значительном несоответствии натягов. При
недостаточном или отрицательном натяга
начальный участок после расширения молет быть недостаточно прижат к колонне.
45 При большом избыточном натяга гидродомкрат при заданном давлении может втянуть
головку в пластырь на незначительную
часть своего хода.

Второй пластырь выполняется с пери50 метром согласно рекомендации, длина принимается в соответствии с длиной первого
пластыря плюс 1,5-2,0 м. При спуске нижний конец располагают на 1,5-2,0 м ниже
торца первого пластыря. Далее — расширение начального участка с разгрузкой верхнего торца пластыря в упор дорна, затем
протягмаение дорнирующей головки без
дваления — расширение основной части и
запрессоака пластыря в несколько прохо-

дов дорнирующей головки под давлением 120-150 KF/CM

Таким образом достигается гарантированное расширение начального участка на полный код гидродомкрата, так как периметр второго пластыря на участке ниже торца пераого на 12 мм меньше периметра обседной колонны Пана и расширение проискодит при большом отрицательном натяге (по существу в безопорном режиме). Прм 10 последующим протягнавним доримрующей головки без давления пластырь либо ударживается за счет зацепления начального участка в колонне, либо смещается веерх до упора расширенным участком в торец перрвого пластыря. Упор обеспечен надежный, так как периметр расширенного участка второго пластыря на 6 мм (по днаметру на 2 мм) превышает внутреннюю поверхность первого пластыря

 $\Pi_2 = \Pi_{\text{su.t}} = \Pi_{\text{su.t}} = 12 = \Pi_{\text{su.t}} + 6 = 6$ 

Расширение основной части второго пластыря на всей ее длине производится дорнирующей головкой без давления, т.е. с минимальным осевым усилием, что также 25 исключает случайность. Пластырь гарантирован от смещения по колонне на величину. превышающую специально предусмотренное смещение, всегда точно размещается в

соответствующем месте, полностью перекрыв дефект колонны,

Формула изобретения

Способ ремонта обсадной колонии. включающий спуск и месту дефекта обсадной колониы двух продольно гофрированных пластырей и их последовательную установку внахлест и прижатие к обседной колоние гидравлической дорнирующей головкой, ОТЯИЧВЮЩИЙСЯТЕМ, ЧТО, С целью повышения эффективности ремонта обседной колонны за счет увеличения устойчивости пластырей действию сминающих усилий при депрессиях, превышающих 8-9 МЛа, периметр первого устанавливаемого пластыря выбирают больше периметра ремонтируемой обседной колониы, периметр эторого устанавливаемого пластыря выбирают моньшине периметра первого устанавливаемого пластыря, а длину второго устанавливаемого пластыря выбирают большей длине перчого на величенку, большую рабочего хода гидравлической дориирующей головки, причем перед установкой второго пластыря один из его торцов смещают относительно торца парвого на величину рабочего хода гидравлической дориирующей головки в направлении, противоположном направлению рабочего хода гидразимеской дорнирующей головки.

Составитель И.Левковва

Техред М.Моргентал

Корректор М.Демчик

Редактор И.Шулла

Подписное

ВНИИЛИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР 3akas 3583 113035, Москва, Ж-35, Раушская наб., 4/5

[state seal] Union of Soviet Socialist Republics

(19) <u>SU</u> (11) <u>1686124</u> <u>A1</u>

USSR State Committee on Inventions and Discoveries of the State Committee on Science and Technology (51)5 E 21 B 29/10

## SPECIFICATION OF INVENTOR'S CERTIFICATE

(21) 4679841/03

(22) Feb, 24 1989

(46) Oct, 23 1991, Bulletin No. 39

(71) All-Union Scientific-Research and Planning Institute of Well Casing and Drilling Muds

(72) O. A. Ledyashov, S. F. Petrov, M. L. Kisel'man, V. I. Mishin, and A. V. Breus (53) 622.245.4 (088.8)

(56) USSR Inventor's Certificate No. 976019, cl. E 21 B 29/10, 1982.

Neftyanoe Khozyaystvo, No. 2, pp. 76-78.

(54) A METHOD FOR CASING REPAIR

(57) The invention relates to repair of casings in development, injection, and other wells. The aim of the invention is to improve the effectiveness

of casing repair by increasing the collapse resistance of the patch for drawdowns exceeding 8-9 MPa. For this purpose, after placement of a first longitudinally corrugated patch at the location of the defect, a second patch is placed. Here the perimeter of the second patch is selected to be less than the perimeter of the first patch, while the perimeter of the first patch is selected to be less than the perimeter of the casing. The length of the second patch to be placed is selected to be greater than the length of the first patch by an amount greater than the working travel of the hydraulic coring head. Before placing the second patch, one of its ends is displaced relative to the end of the first patch by an amount equal to the working travel of the hydraulic coring head, in the direction opposite to the direction of working travel of the coring head.

[vertically along right margin]

(19) <u>SU</u> (11) <u>1686124 A1</u>

The invention relates to repair of development, injection, and other wells, more precisely to restoration of leaktightness of casings by means of metal patches.

The aim of the invention is to improve the effectiveness of casing repair by increasing the collapse resistance of the patch for drawdowns exceeding 8-9 MPa.

The method is carried out as follows.

A first longitudinally corrugated patch of perimeter greater than the perimeter of the casing is lowered into the well, it is conveyed to the location of the defect in the casing,

and is placed in this location by squeezing by the hydraulic coring head. Then a second longitudinally corrugated patch, with perimeter less than the perimeter of the patch to be placed first and a length greater than the length of the patch to be placed first by an amount greater than the working travel of the hydraulic coring head, is lowered to the location of the defect. Before placement of the second patch, one of its ends is displaced relative to the end of the first patch by an amount equal to the working travel of the hydraulic coring head, in the direction opposite to the direction of the working travel of the hydraulic coring head, and then

the second patch is placed to overlap the first patch and the first sleeve is completely covered over its entire length.

Experience shows that for repair of 140 mm, 146 mm, 168 mm, and 178 mm strings, if accurate information is obtained about the actual perimeter of the inner surface of the string (perimeter gage readings, measurements when lowering the pipes into the well for the experiment), the optimum allowance is 1 mm with respect to diameter or 3 mm with respect to perimeter, i.e.,  $P_1 = P_{in.str} + 3$ . In this case, the axial stress and the pressure in the cylinder of the mandrel during placement of the patch is found to be within the recommended range, and reliable leaktightness is achieved.

When using manufacturer's information about the wall thickness of the pipe in the repair interval, it is recommended to assume that  $P_1 = P_{in.str} + 6$ .

Most pipes, according to many measurements, have actual outer and especially inner diameters approximately 1 mm greater than the nominal values, which is within the range and in conformance with GOST [State Standards] tolerances. Furthermore, work with an actual allowance in the range +6 mm is quite acceptable, and does not result in exceeding the permissible loads.

After placement of the first patch, the inner diameter d<sub>in</sub> and the perimeter P<sub>in</sub> are respectively

$$d_{in1} = d_{in.str.} - 2\delta = d_{in.str.} - 6;$$
  
 $P_{in1} = \pi(d_{in.str.} - 2\delta) = P_{in.str.} - 18.$ 

Assuming that the information about  $d_{in1}$  and  $P_{in1}$  also is based on the manufacturer's documentation ( $d_{in.str.}$  and  $P_{in.str.}$ ), for the section of double overlap according to the procedure, we select the equivalent diameter of the outer surface  $d_2$  and the perimeter  $P_2$  for the second patch

$$d_2 = d_{in1} + 2 = d_{in.str.} - 6 + 2 = d_{in.str.} - 4;$$
  
 $P_2 = P_{in1} + 6 = P_{in.str.} - 18 - 6 = P_{in.str.} - 12.$ 

Thus when selecting the first and second patches, it is recommended to use  $P_1 = P_{in.str.} + 6$  and  $P_2 = P_{in.str.} - 12$  (for  $\delta = 3$ ).

Corrections may be made to the value of P<sub>2</sub> according to the results of placement of the first patch. If the force on the coring head during expansion of the first patch proves to be significantly lower than normal (14-18 tons), this is an indication that the actual P<sub>in.str.</sub> is larger, and P<sub>2</sub> should be selected as 2-5 mm greater in proportion to the degree of decrease in the actual axial force; if the force proves to be higher than the normal value, P<sub>2</sub> should be decreased accordingly.

Thus it is appropriate to add the following to the inequality  $P_1 > P_{in.str.} > P_2$ :

 $P_1 = P_{in.str.} + 6$ ;  $P_2 = P_{in.str.} - 12 \pm (2-5)$ .

The length of the first patch is selected so that the defect is covered with sufficient overlap above and below (+1.5-2.5 m). The overlap should be selected within the indicated range, increasing or decreasing it depending on the extent to which the information about the size and location of the defect is reliable. The length of the second patch especially must correspond to a conservative estimate of the length of the defective portion of the string, and must overlap the corresponding portion of the first patch.

Assuming that the first patch is placed at the required location and that the specified coverage of the defect with overlap along the length is assured, in selecting the dimensions and configuration for placement of the second patch, the following embodiments are possible. The technology for placement of the patch includes three stages: expansion of the initial portion to make contact between the patch and the casing, by means of pulling in the coring head under pressure, using the hydraulic jack, by a distance equal to its travel, 1.5 m, while the patch is restrained from moving axially by the stop of the device; expansion of the main portion of the patch by pulling the coring head through (usually without pressure) by means of a block-and-tackle system, where the axial loading of the patch by the head is relieved through the initial expanded portion to the string; pressing of the expanded patch by multiple passes of the coring head under pressure.

A risk of the patch shifting along the string arises in the second stage of placement due to insufficient contact made by the initial expanded portion, for example when there is significant mismatch of the allowances. For insufficient or negative allowance, the initial portion after expansion may be insufficiently squeezed against the string. When the excess allowance is large, the hydraulic jack for the specified pressure may pull the head into the patch by a distance equal to an insignificant portion of its travel.

The second patch is made with a perimeter according to the recommendation, the length is taken to match the length of the first patch plus 1.5-2.0 m. When lowered, the lower end is positioned 1.5-2.0 m below the end of the first patch. Next: expansion of the initial portion with the stop of the mandrel relieving the load on the upper end of the patch, then pulling the coring head through without pressure; the expansion of the main portion and pressing of the patch in several passes

of the coring head under a pressure of 120-150 kg/cm<sup>2</sup>.

Thus expansion of the initial portion for complete travel of the hydraulic jack is assured, since the perimeter of the second patch in the portion below the end of the first patch is 12 mm less than the perimeter of the casing  $P_{\text{in.str.}}$ , and expansion occurs with a large negative allowance (essentially under unsupported conditions). When the coring head is subsequently pulled through without pressure, the patch either is restrained because of contact made with the initial portion in the string, or is shifted upward as far as it will go by the expanded portion to the end of the first patch. Reliable seating is assured, since the perimeter of the expanded portion of the second patch is 6 mm greater (2 mm greater in diameter) than for the inner surface of the first patch

 $P_2 - P_{in1} = P_{in.str.} - 12 - P_{in.str.} + 6 = 6.$ 

Expansion of the main portion of the second patch over its entire length is carried out by the coring head without pressure, i.e., with minimal axial stress, which also eliminates accidents. The patch is guaranteed not to move along the string a distance greater than the specially called for displacement, and is always disposed precisely at

the appropriate location, and the defect in the string is completely sealed.

Claim

A method for repair of a casing, including lowering to the location of the defect in the casing of two longitudinally corrugated patches and their successive overlapping placement and squeezing against the casing by a hydraulic coring head, distinguished by the fact that, with the aim of improving the effectiveness of casing repair by increasing the collapse resistance of the patch for drawdowns exceeding 8-9 MPa, the perimeter of the first patch to be placed is selected to be greater than the perimeter of the casing under repair, the perimeter of the second patch to be placed is selected to be less than the perimeter of the first patch to be placed, and the length of the second patch to be placed is selected to be greater than the length of the first by an amount greater than the working travel of the hydraulic coring head, where before placement of the second patch, one of its ends is moved relative to the end of the first patch by a distance equal to the working travel of the hydraulic coring head, in the direction opposite to the direction of working travel of the hydraulic coring head.

Compiler I. Levkoeva Tech. Editor M. Morgental

Proofreader M. Demchik

Order 3583

Editor I. Shulla

Run

Subscription edition

All-Union Scientific Research Institute of Patent Information and Technical and Economic Research of the USSR State Committee on Inventions and Discoveries of the State Committee on Science and Technology [VNIIPI]

4/5 Raushkaya nab., Zh-35, Moscow 113035

"Patent" Printing Production Plant, Uzhgorod, 101 ul. Gagarina

## **AFFIDAVIT OF ACCURACY**

I, Kim Stewart, hereby certify that the following is, to the best of my knowledge and belief, true and accurate translations performed by professional translators of the following patents/abstracts from Russian to English:

ATLANTA BOSTON BRUSSELS CHICAGO DALL 45 FRANKFURT HOUSTON LONDON LOS ANGELES MIAAMI MINNEAPOLIS NEW YORK PARIS PHILADELPHIA SAN DIEGO SAN FRANCISCO SEATILE

WASHINGTON, DC

Patent 953172
Abstract 976020
Patent 1686124A1
Patent 1747673A1

Kim Stewart

TransPerfect Translations, Inc. 3600 One Houston Center

1221 McKinney

Houston, TX 77010

Sworn to before me this 14th day of February 2002.

Signature, Notary Public

OFFICIAL SEAL
MACIA A. SERNA
NOTARY PUBLIC
Confidence of Texas
Macine of Texas
Macine of Texas

Stamp, Notary Public

Harris County -

Houston, TX