Cognitive Psychology

Lecture 4: Attention

What is attention?

- Attention is selective
 - Attention is the cognitive process of selectively concentrating on one aspect of the external or internal environment while ignoring other aspects.
- Attention is limited in capacity
 - · Resource-demanding / we can't attend to everything
- Attention can be voluntarily controlled
 - Internal thoughts and goals can direct attention (top-down)
 - External stimuli can also "capture" our attention (bottom-up)

Outline for today

- Top-down vs. bottom-up attention
 - · To what do we direct our attention?
- Divided attention and inattention
- Models of attention
 - Early filter model
 - Late filter model
 - Attenuation model
 - · Perceptual load

2/20/18 N.P. Brosowsky

What stimuli do we attend to?

- Attention can be controlled or automatic
- Top-down processes can guide attention
 - knowledge, goals, expectations
- Bottom-up processes can also guide attention
 - · Salient stimuli can "capture" attention
- Importantly, top-down and bottom-up processes often interact

What stimuli do we attend to?

Controlled Attention

- Slow
- Effortful
- Prepared
- Voluntary
- Flexible

Automatic Attention

- Fast
- Effortless
- Involuntary
- Rigid

N.P. Brosowsky

What stimuli do we attend to?

• The visual search task demonstrates top-down vs. bottom-up

Targets

Say Up
Say Down

Distractors

Set Size effects

- Top-down / controlled
- Visual scanning & overt attention
 - Each time you paused on one circle, you were making a **fixation**
 - When you moved from one circle to another, you were making a saccadic eye movement
- Covert attention
 - Although visual attention is influenced by our eye movements, it can operate independently

Pop-out effects

- Attention capture
 - Attention is directed automatically (bottom-up)
 - Stimulus salience
 - Saliency map

Controlled versus automatic

Like perception, how we attend changes with experience, knowledge, and expectations

E.g., the Stroop effect

- Experience can create interference
- Reading becomes automatic through experience

red
blue
green
yellow
blue
red
green
red
blue

blue green yellow red green yellow blue blue

Divided Attention & Inattention

• Can we divide our attention between two tasks?

Divided Attention

- Can we divide our attention between two tasks?
- Yes.. sometimes
 - The task must be easy, wellpracticed and automatized

2/20/18

N.P. Brosowsky

25

Divided Attention

- Can we divide our attention between two tasks?
- Yes.. sometimes
 - The task must be easy, wellpracticed and automatized
- Difficult tasks, even with practice cannot become automatized
 - E.g., switching between letter and number targets, using letter target and distractors

3

(a) Present target stimulus in memory set

(b) Present series of 20 test frames (fast!)

2/20/18

N.P. Brosowsky

20

Inattention

• What happens when we don't attend?

2/20/18 N.P. Brosowsky

Attentional blindness: Bonneteau

© Malika Auvray www.malika-auvray.com Kevin O'Regan http://nivea.psycho.univ-paris5.fr/

Change Blindness – Flicker paradigm

Change blindness – Flicker paradigm

- Explanation
 - The "bottom-up" perceptual processing is optimized towards continuous input.
 - In continuous input, changes are easily detected (usually changes are due to motion). Motion is highly salient and pulls our attention towards it.
 - The brief blank screen between the two pictures disrupt the basic bottom-up processing. No continuous motion can be detected.
 - Changes have to be searched for by deliberate attentional "top-down" control, searching location by location...

Perception sometimes requires attention

- If we look around us we experience an amazing richness of detail.
- But we do not notice the detail of objects unless attention is directed to them.

Demonstration: Without looking!

- What color shirt is the person behind you wearing?
- On your mobile phone, what's the bottom right item?
- Which way is Lincoln facing on the penny?

2/20/18 N.P. Brosowsky 3

Models of attention

- At what stage of processing do we filter information?
- Early selection model (Broadbent, 1958)
- Attenuator model (Treisman, 1964)
- Late-selection model (Deutsch & Deutsch, 1963)
- Theory of perceptual load (Lavie, 1995)

Early selection models

- Broadbent's filter model
 - · Filters before analysis for meaning

Evidence for early filters

How much is retained from the unattended message?

- A different message is played to each ear (dichotic listening task).
- Overtly repeat message played to one ear (shadowing task).

2/20/18

38

Evidence for early filters

How much is retained from the unattended message?

- Overt repetition requires strong focusing of attention on the attended input.
- Consequently, no attention on the ignored input.
- Was anything of the ignored remembered or recognized?

2/20/18 N.P. Brosowsky

Evidence for early filters

How much is retained from the unattended message?

- Mostly physical properties (e.g. tonality) were noticed
- · Virtually no noticing of
 - Meaning of the message
 - Change in language (English to German)
 - Change in gender (male to female)
 - Message in reverse speech
- This suggests that filter is early in processing (before meaning is processed)

- However...
- How would you hear your name if it was filtered out?
 - Moray (1959)
- Broadbent model is not able to account for this effect

Attenuator model

- Treisman, 1964
- Is based on Broadbent's filter model
- Different mechanism for filtering:
 - Not by an all-or-nothing filter (Broadbent)
 - But by a gradual working "attenuator"

Anne Treisman (with her husband, Daniel Kahneman, Psychologist and 2002 Nobel Prize Winner)

43

Attenuator Model Information is not blocked completely, but is weakened or attenuated Attenuation Control Perceptual Sensory STM Ε S N left ear and / or P P 0 (awareness) U N Meaning right ear 🛚 Т S Analysis Ε

N.P. Brosowsky

2/20/18

Late-selection models

 Selection of stimuli for final processing does not occur until after information has been analyzed for meaning

Evidence for Late-selection

This model suggests that even "ignored" stimuli are processed fully

- McKay (1973)
 - · In attending ear, participants heard ambiguous sentences
 - "They were throwing stones at the bank."
 - In unattended ear, participants heard either
 - "river"
 - · "money"

Evidence for Late-selection

- McKay (1973)
 - In test, participants had to choose which was closest to the meaning of attended to message:
 - They threw stones toward the side of the river yesterday
 - They threw stones at the savings and loan association yesterday
 - The meaning of the biasing word affected participants' choice
 - Participants were unaware of the presentation of the biasing words
- Also, some evidence for "subliminal priming"
 - (Dehaene et al., 1998)

2/20/18 N.P. Brosowsky 4

Early vs. Late selection

- Early selection:
 - Pros: Very efficient. Only spend resources on what we direct our attention
 - Cons: Since we filter before meaning, it's very likely we'll miss something important
- Late selection
 - Pros: Since all information is processed, it is unlikely that important information is missed.
 - Cons: Very resource demanding.

Perceptual Load

- Which model is correct?
 - · Maybe both?

Perceptual Load model of attention:

- Maybe sometimes selection is early, and sometimes late?
 - But what determines whether selection is early or late?

2/20/18 N.P. Brosowsky 4

Perceptual Load

- Theory of perceptual load (Lavie; 1995, 2000)
 - · "load theory"

Difficult tasks

- E.g., find a specific book among other books
- Require a lot of attentional resources
- Selection is early to make resources available

Easy tasks

- E.g., find a DVD among books
- Require only little attentional resources
- Selection is late since resources are available

Perceptual Load

- E.g., find the book called "all families are psychotic"
- Difficult task (high-load)
 - · Shift to early filter
 - no resources available for irrelevant information
 - · Won't be distracted

2/20/18

Perceptual Load

- E.g. find the purple book
- Easy task (low load)
 - · Shift to late filter
 - Could be distracted easily by someone talking

2/20/18

Model summary:

- Early selection model (Broadbent, 1958)
 - Unattended information is filtered out completely early in processing
- Attenuator model (Treisman, 1964)
 - · Unattended information is attenuated early in processing
- Late-selection model (Deutsch & Deutsch, 1963)
 - All information is processed, it is filtered out only late in processing
- Theory of perceptual load (Lavie, 1995)
 - · Selection is early in difficult task, and late in easy tasks

2/20/18 N.P. Brosowsky 5:

Other topics

- How does attention enable feature binding?
 - What is feature integration theory?
 - · What is an illusory conjunction?
- What does the physiological evidence tell us about attention?
 - What is the topographic map?
 - What is Balint's syndrome, and what does it tell us about attention?