Logika układów cyfrowych lab.

Prowadzący: Mgr inż. Antoni Sterna (E02-38m, wtorek 17:05)

sprawozdanie 9 - 2017.12.12

Jakub Dorda 235013 Marcin Kotas 235098

> 19 grudnia 2017 L⁴T_EX

1 Wprowadzenie/cel ćwiczeń

Celem ćwiczeń było zaprojektowanie automatu asynchronicznego statystycznego realizującego zadaną funkcję. Poznanie problemów występujących w tego typu układach oraz metod ich eliminacji; zjawiska hazardu i wyścigów. Po zaprojektowaniu układu oraz wyeliminowaniu niepożądanych zachowań, należało sprawdzić poprawność działania na zestawie UNILOG.

2 Tabela prawdy i siatki Karnaugh:

2.1 Przebieg "czasowy" automatu:

	1	2	3	4	1	5	1	2	6	5	1	2	3	5	1	5	1	5	6	4	1	2	6	4	1	2	3	4	6
x_1		-		-				-	-			-							-	-		-	-	-		-		-	-
x_2						-			-	-				-		-		-	-				-						-
У		-	-	-				-				-	-									-				-	-		

Tabela 1: Uproszczony zapis przebiegu "czasowego" stanów automatu

symbol "-" odpowiada stanowi wysokiemu, jego brak stanowi niskiemu

2.2 Tabele przejść/wyjść automatu:

Q x_1x_2	00	01	11	10	Y
1	1	5	-	2	0
2	3	-	6	2	1
3	3	5	-	4	1
4	1	-	6	4	0
5	1	5	6	-	0
6	-	5	6	4	0

Tabela 2: tabela przejść/wyjść

Q x_1x_2	00	01	11	10	Y
1	1	5	-	2	0
2	3	-	6	2	1
3	3	5	-	4	1
4	1	4	4	4	0

Tabela 3: po uproszczeniach

2.3 Kodowanie:

Q_1Q_2 x_1x_2	00	01	11	10
00	00	11	-	01
01	10	-	11	0)
10	10	11	-	11
11	00	0	0	0

Tabela 4: zakodowana tabela no.3

Q_1Q_2 x_1x_2	00	01	11	10
00	00	10	10	01
01	10	-	10	0)
10	①	10	10	10
11	00	10)	10)	10)

Tabela 5: kodowoanie po eliminacji wyścigów

Q_1Q_2 x_1x_2	00	01	11	10
00	0	1	1	0
01	1	-	1	0
11	1	1	1	1
10	0	1	1	1

Q_1Q_2 x_1x_2	00	01	11	10
00	0	0	0	1
01	1	-	0	1
11	1	0	0	0
10	0	0	0	0

Tabela 6: Q'_1

Tabela 7: Q'_2

$$Q_1' = x_2 + \overline{x}_1 \cdot Q_2 + x_1 \cdot Q_1 = \overline{\overline{x}_2 \cdot \overline{x}_1 Q_2} \cdot \overline{x}_1 \overline{Q_1}$$
 (1)

$$Q_2' = \overline{x_1}\overline{x_2}Q_2 + x_1\overline{x_2}\overline{Q}_1 + \overline{x_2}\overline{Q}_1Q_2 = \overline{\overline{x_1}\overline{x_2}Q_2} \cdot \overline{x_1}\overline{x_2}\overline{Q}_1 \cdot \overline{x_2}\overline{Q}_1Q_2$$
 (2)

$$Y = Q_2' \tag{3}$$

2.4 Użyte wzory:

$$\overline{a \cdot b} = \overline{a} + \overline{b} \tag{4}$$

$$\overline{a+b} = \bar{a} \cdot \bar{b} \tag{5}$$

2.5 Schemat układu:

Schemat 1 - automatu asynchroniczny

3 Wnioski/podsumowanie

W celu sprawdzenia poprawności działania automatu asynchronicznego należało przeprowadzić testy dla wszystkich możliwych kombinacji wejść oraz stanów. Podczas testów należało też zbadać zachowanie układu w przypadku rozłączenia pętli zwrotnych.