Al+X 고급(5주차)

Evaluation of Object Detection

지난학기

논문 2件 Student Draft 완성

"I will take it from here."

지난학기

특허 준비 진행 중

이번학기 과제

The Plan (1/2)

9/8 Intro

9/15 6 Ideas Presentation (15% 결과: Pass)

(KT 교수님 지도)

9/22 Theme 확정, 데이터 수집 검토

※ 데이터 수집계획(案) (어떤 데이터를 어떻게?) 9/29(금)까지 제출 (제출 완료)

9/29 추석

The Plan (2/2)

```
10/6 데이터 수집 및 전처리 착수, 모델링 착수
10/13 모델링 지속, 중간발표 가이드, 성능평가 강의
10/20 데이터 및 모델링 점검 (KT 교수님 지도)
10/27 모델링 개선 및 Back/Front 개발 착수
```

11/3 중간고사 발표 (KT 교수님 지도) (20%)

중간발표 평가항목

- 컨셉, 시나리오 및 기능 정의
- USP (기존 서비스 대비) 도출 및 BM 기획
- 데이터 수집, 전처리, 모델 개발
- 모델성능 평가
- 추후 계획 (B/F 개발 포함)

과제현황 및 고민 (1/3)

1.진행상황공유

- GPU설정을 꼭 먼저 해야 함
- 버스 정류장의 형태가 쉘터형과
- 거리계산 알고리즘 추천 논문
 - § 추가
 - § 이의철교수님 왈
 - § 고정된구도와 이미지면 거리계산 가능하지만 사용자가 찍어서 하는 방법 이면 거리계산이 어려울 것이다.
 - → 거리계산은 포기하는게 정신건강에 이로울 것 같다.
- 버스정류장 크롤링 진행해보았다 → 하다보니 버스정류장의 형태가 온전하지 못하게 나오는것 같다.
- 한국버스정류장 데이터가 많이 없다(Al HUB랑 로보플로우를 합쳐서 사용해야 할 듯)

과제현황 및 고민 (2/3)

- 지하철역 출구데이터가 문제
 - § 지하철역 이름으로 디텍션을 하는 방법으로는 안되나?
 - § 지하철역앞 보도블록
- 킥보드 2200장 돌려봤을때는 잘 탐지하는것 같다.
- 일단 지하철역과 버스정류장 디텍션을 하고 추가로 점자블록과 횡단보도를 하는것이 베 스트(특허와의 차별성)

2.정해야 할 일

- 역할나누기
 - § 데이터 수집 -
 - § 지하철역 (최소 100장 최대한 개별적인 역 위주로 기둥이나 간판이 나오게)
 - § 1호선 유진 1000부터
 - § 2호선 만서
 - § 3호선 진석

과제현황 및 고민 (3/3)

- § 4호선 우성 4000부터 시작
- § 7호선 수환
- § 6호선 종한
- → 금요일까지 최대한 해보기
- § 버스정류장은 → 지하철 해보고 나서
- § 전처리 및 수집
- § 모델링
- 분류모델을 안쓴 이유
 - § 신고를 할때는 불법인 경우의 사진을 올리기 때문에?
 - § 불법이 아닌경우에 대한 것 자동이면 필요한가?

Project Scope

- 1. 컨셉 구체화 및 기능 및 서비스 정의
- 2. 데이터 수집 및 전처리 로드가큼ㅠ
 - 3. AI 모델링
 - 4. Backend/Frontend 개발

주어진 것은 한 학기

Scoping

1. PM은 킥보드로 한정

- 2. 불법주차 위치가 실제로는 다양하지만
 - → 1~2개로 선정

개발순서 (지난주)

- 1. YOLO 통한 킥보드 Object Detection 개발 (Model 1)
- 2. 합법/불법 분류 모델 (Model 2)
- 불법위치를 인식하는게 제일 중요!
- 여러가지 불법주차 위치에서의 사진을 찍어 학습하기엔 시간이 많이 걸리므로, Roboflow
 - 1~2개 불법위치만 선정하고 사진 모우고 증강 및 학습
- 핵심은 1~2개가 빈번하고 자주 "불법 " 하는 곳이어야함 줄인다고 아무거나 선정하면 안됨

개발순서 (지난주)

- 2. 합법/불법 분류 모델 (Model 2)
- 불법위치를 인식하는게 제일 중요!
- 여러가지 불법주차 위치에서의 사진을 찍어 학습하기엔 시간이 많이 걸리므로,
 1~2개 불법위치만 선정하고 사진 모우고 증강 및 학습
- 핵심은 1~2개가 빈번하고 자주 "불법 " 하는 곳이어야함
- . 버스정류장이나 지하철입구 등 사람들이 많이 이용하는데 위치한 킥보드를 찾아 사진 찍고 이미지 학습, 이미지 불법/합법 분류
- . AND/OR 위도경도로 지하철위치, 버스정류장위치 찾아 불법 여부 확인
- . 킥보드와 불법위치가 포함된 사진을 모우는게 핵심 CF) 킥보드와 불법위치 포함된 사진에서 킥보드와 불법위치 둘 다 객체탐지 되면 좋은데 쉽지 않음

개발순서 (지난주)

3. 사진을 업로드 → 1. 킥보드 Detection 모델 2. 합법/불법 분류 모델

4. 킥보드 신고사이트 자동 연동 (서비스 기획 중)

피드백

- 불법주차 전체 탐지에서 제한한 것은 현실적인 의사결정
- → 지하철 및 버스정류장에서 **지하철만으로 한정**하는 것도 고려
- → 지하철 사진 수집, BBox 작업, 라벨링도 많은 시간과 노력
- → Fallback Plan: 분류 모델로 지하철인지 아닌지
- 현재 있어야할 지점
 - . 어떤 데이터를, 어떤 목적으로, 어떻게 모델링하겠다 라는 안(案) 나와 있어야함

다음주

10/6 데이터 수집 및 전처리 착수, 모델링 착수

10/13 모델링 지속, 중간고사 발표 가이드

10/20 데이터 및 모델링 점검 (KT 교수님 지도)

10/27 모델링 개선 및 Back/Front 개발 착수

11/3 중간고사 발표 (KT 교수님 지도) (20%)

성능지표

Object Detection (객체검출) Performance Criteria

mAP (Mean Average Precision)

Common Metric for Evaluating Object Detection Models

mAP The average precision (AP) for all classes

AP The area under the precision-recall curve for each class

OU (Intersection Over Union)

How close the predicted bounding box is to the ground truth bounding box.

GT와 모델이 예측한 값이 얼마나 겹치는가?

에 대한 지표

실제 Box와 예측한 Box의

교집합(분자) / 합집합(분모)

mAP 계산과의 관계

다양한 수준의 IoU 역치(Thresholds)가 고려됨
(0.5, 0.75, etc.
0.5 to 0.95 with step size 0.05)

CS (Confidence Score) BBox內 물체가 있을 확률

알고리즘 마다 다름

- 그냥 Object 있을 확률
- Object 있을 확률 x IoU
- 특정 Class일 확률 x IoU

Precision vs Recall

어떻게 평가할 것인가?

- 회귀 모델 평가
 - 회귀 모델이 정확한 값을 예측하기는 사실상 어려움
 - 예측 값과 실제 값에 차이(=오차)가 존재할 것이라 예상함
 - 예측 값이 실제 값에 가까울 수록 좋은 모델이라 할 수 있음
 - → 예측한 값과 실제 값의 차이(=오차)로 모델 성능을 평가
- 분류 모델 평가
 - 분류 모델은 0인지 1인지를 예측하는 것
 - 실제 값도 0과 1이고 예측 값도 0과 1임(이진분류의 경우)
 - 하지만 0을 1로 예측하거나 1을 0으로 예측할 수 있음
 - 예측 값이 실제 값과 많이 같을 수록 좋은 모델이라 할 수 있음
 - → 정확히 예측한 비율로 모델 성능을 평가

얼마나 맞췄는지 확인

실제	예측	
1	1	
1	1	
0	1	
0	0	
1	0	
0	0	
0	0	
1	0	
1	1	
1	1	

		예측값		
		0	1	
실제값	0	0 → 0 3	0 → 1 1	
실자	1	1 → 0 2	1 > 1 4	

얼마나 정확히 맞췄을까?

- 1과 0을 정확히 예측한 비율은?
- 1이라 예측한 것 중에서 정말 1인 비율은?
- 실제 1인 것을 1이라고 예측한 비율은?

평가한 값에 이름을 부여

		예측값		
		0	1	
실제값	0	0 > 0 3	0 > 1 1	
실기	1	1 → 0 2	1 → 1 4	

GT		Predicted Value		
		Negative 0	Positive 1	
Actual Value	Negative 0	True Negative TN	False Positive FP	
Actual	Positive 1	False Negative FN	True Positive TP	

• 1과 0을 정확히 예측한 비율은 =
$$\frac{7}{10}$$
 = 정확도(Accuracy) = $\frac{TN + TP}{TN + FP + FN + TP}$

• 1이라 예측한 것 중에서 정말 1인 비율은 =
$$\frac{4}{5}$$
 = 정밀도(Precision) = $\frac{TP}{FP + TP}$

• 실제 1인 것을 1이라고 예측한 비율은 =
$$\frac{4}{6}$$
 = **재현율(Recall)** = $\frac{TP}{FN + TP}$

왜 이리 많은 평가 방법이 필요?

2024년 비가 올 지 예측!!

(0: 비 안 온다. 1: 비 온다)

2/15	3/20	4/20	5/5	5/18	6/7	7/15
0	0	0	0	0	0	1

8/12	9/23	10/5	11/1	11/24	12/2	12/25
1	0	0	0	0	0	0

제 예측이 몇 % 정도 맞출 것 같 나요? 정확도가 80~90% 되지 않을까요?그럼 돗자리 깔까요?

분명 정확도 만으로는 신통력을 인정할 수 없을 것입니다.

True / False Positive / Negative 암기법 (안헷갈리는 법!)

- 예측결과의 진위(True, False) + 예측(Positive, Negative) "내가 Positive으로 예상을 했는데 결론적으로 맞았다." True Positive

- 뒤의 명사부터 볼 것

합성명사 (형용사 + 명사)

Bad Boy

False Positive (FP)

혼동 행렬

Confusion Matrix(오분류표)

		Predicted Value			
		Negative 0	Positive 1		
Actual Value	Negative 0	True Negative TN	False Positive FP		
Actual	Positive 1	False Negative FN	True Positive TP		

- TN(True Negative, 진음성): 음성으로 잘 예측한 것(음성을 음성이라고 예측한 것)
- FP(False Positive, 위양성): 양성으로 잘 못 예측한 것(음성을 양성이라고 예측한 것)
- FN(False Negative, 위음성): 음성으로 잘 못 예측한 것(양성을 음성이라고 예측한 것)
- TP(True Positive, 진양성): 양성으로 잘 예측한 것(양성을 양성이라고 예측한 것)

Accuracy

- 정확도
 - 정분류율 이라고 부르기도 함 TRUE!
 - 전체 중에서 Positive와 Negative 로 정확히 예측한(TN + TP) 비율
 - Negative를 Negative로 예측한 경우도 옳은 예측임을 고려하는 평가 지표
 - 가장 직관적으로 모델 성능을 확인할 수 있는 평가 지표

Predicted Value

, -		Negative 0	Positive 1
Value	Negative 0	True Negative TN	False Positive FP
Actual	Positive 1	False Negative FN	True Positive TP

$$(Accuracy) = \frac{TN + TP}{TN + FP + FN + TP}$$

Precision

- 정밀도
 - Positive로 예측한 것(FP + TP) 중에서 실제 Positive(TP)인 비율
 - 예) 비가 내릴 것으로 예측한 날 중에서 실제 비가 내린 날의 비율
 - 예) 암이라 예측한 환자 중에서 실제 암인 환자의 비율
- 정밀도가 낮을 경우 발생하는 상황
 - 비가 오지 않는데 비가 온다고 했으니 불필요한 우산을 챙기는 수고 발생
 - 암이 아닌데 암이라 했으니 불필요한 치료 발생

		Predicted Value			
		Negative 0	Positive 1		
Actual Value	Negative 0	True Negative TN	False Positive FP		
Actual	Positive 1	False Negative FN	True Positive TP		

$$(Precision) = \frac{TP}{FP + TP}$$

모든 검출 결과 중 (FP + TP)

옳게 검출한 비율! (TP)

Precision

• 정밀도

Miss

- Positive로 예측한 것(FP + TP) 중에서 실제 Positive(TP)인 비율
- 예) 비가 내릴 것으로 예측한 날 중에서 실제 비가 내린 날의 비율
- 예) 암이라 예측한 환자 중에서 실제 암인 환자의 비율
- 정밀도가 낮을 경우 발생하는 상황
 - 비가 오지 않는데 비가 온다고 했으니 불필요한 우산을 챙기는 수고 발생
 - 암이 아닌데 암이라 했으니 불필요한 치료 발생

Recall

- 재현율
 - 실제 Positive(FN + TP) 중에서 Positive로 예측한(TP) 비율
 - 민감도(Sensitivity)라고 부르는 경우가 많음
 - 예) 실제 비가 내린 날 중에서 비가 내릴 것으로 예측한 날의 비율
 - 예) 실제 암인 환자 중에서 암이라고 예측한 환자의 비율
- 재현율이 낮을 경우 발생하는 문제
 - 비가 내리는 날 내리지 않을 것이라 했으니 우산을 챙기지 않아 비를 맞음
 - 암인 사람에게 암이 아니라 했으니 심각한 결과 초래

검출해내야 하는 물체 중에서

(FN + TP)

제대로 검출한 비율

(TP)

모델 성능이 좋기 위해서는

물론 둘 다 높아야 하나,

일반적으로 Precision과

Recall은 반비례 관계

Voice Trigger 기술

F1-Score

- 정밀도와 재현율의 조화평균 Harmonic Mean
- 분자가 같지만 분모가 다를 경우 조화평균이 정확
- 정밀도와 재현율이 적절하게 요구 될 때 사용

$$(F1 - Score) = 2 \times \frac{1}{\frac{1}{Precesion} + \frac{1}{Recall}} = \frac{2 \times Precesion \times Recall}{Precesion + Recall}$$

산술평균

기하평균

조화평균

• 조화평균

- 작은 값 쪽으로 치우친, 작은 값과 큰 값 사이의 값을 가진 평균
- 산술평균 보다 큰 값이 끼치는 영향이 줄어듦

분류 평가 지표 정리

Predicted Values

		Negative 0	Positive 1
Values	Negative 0		
Actual	Positive 1		

$$(Precision) = \frac{}{|+|}$$

$$(F1 - Score) = \frac{2 \times \Box}{\Box}$$

이중 분류 성능 평가 예

confusion_matrix

[[69 23] [14 14]]

		Predicted	d Values
		0	1
Actual Values	0	69	23
Actual	1	14	14

정밀도 재현율

	Precision	Recall	F1-Score
0	69/83	69/92	
1	14/37	14/28	
Accuracy	83/120		

classification_report

	precision	recall	f1-score	support
0	0.83	0.75	0.79	92
1	0.38	0.50	0.43	28
accuracy			0.69	120
macro avg weighted avg	0.60 0.73	0.62 0.69	0.61 0.71	120 120
mergineed avg	0.75	0.05	0.71	120

	Precision	Recall	F1-Score
0	0.83	0.75	0.79
1	0.38	0.50	0.43
Accuracy	0.69		

다중 분류 성능 평가 예

confusion_matrix

[[7 0 0] [0 11 1] [0 2 9]]

		Pred	dicted Va	lues
		Α	В	С
Values	Α	7	0	0
	В	0	11	1
Actual	С	0	2	9

	Precision	Recall	F1-Score
Α	7/7	7/7	
В	11/13	11/12	
С	9/10	9/11	
Accuracy		27/30	

classification_report

osincation_re	Sincution_report						
	precision	recall	f1-score	support			
Α	1.00	1.00	1.00	7			
В	0.85	0.92	0.88	12			
С	0.90	0.82	0.86	11			
accuracy	L		0.90	30			
macro avg weighted avg	0.92 0.90	0.91 0.90	0.91 0.90	30 30			

	Precision	Recall	F1-Score
Α	1.00	1.00	1.00
В	0.85	0.92	0.88
С	0.90	0.82	0.86
Accuracy	0.90		

모델 성능이 좋기 위해서는

물론 둘 다 높아야 하나,

일반적으로 Precision과

Recall은 반비례 관계

Detections	confidences	TP or FP	
Α	57%	TP	
В	78%	TP	
С	43%	FP	
D	85%	TP	
E	91%	TP	
F	13%	FP	
G	45%	TP	
Н	68%	FP	
I	95%	TP	
J	81%	TP	

Case

- Image has 15 objects
- Model detected 10
- TP count: 7
- FP count: 3

PREDICTIVE VALUES

POSITIVE (1) NEGATIVE (0)

NALUE (1)

NEGATIVE (0)

TP = 7	FN = 8
FP = 3	TN

Confidence Threshold 0

Precision 7/10

Recall 7/15

역치를 0으로 잡다니

너무 하는 것 아닙니까?

ACTUAL VALUES

PREDICTIVE VALUES

POSITIVE (1) NEGATIVE (0)

POSITIVE (1)

NEGATIVE (0)

TP = 1	FN = 14
FP = 0	TN

Confidence Threshold 95 (그래서 이건 서비스가 결정함!!!!)

Precision 1/1 (!!!!)

Recall 1/15

내림차순 정리

Detections	confidences	TP or FP	누적 TP	누적 FP	Precision	Recall
I	95%	TP	1	0	1/1=1	1/15=0.067
Е	91%	TP	2	0	2/2=1	2/15=0.13
D	85%	TP	3	0	3/3=1	3/15=0.2
J	81%	TP	4	0	4/4=1	4/15=0.27
В	78%	TP	5	0	5/5=1	5/15=0.33
Н	68%	FP	5	1	5/6=0.83	5/15=0.33
Α	57%	TP	6	1	6/7=0.86	6/15=0.4
G	45%	TP	7	1	7/8=0.88	7/15=0.47
С	43%	FP	7	2	7/9=0.78	7/15=0.47
F	13%	FP	7	3	7/10=0.7	7/15=0.47

Precision - Recall Curve

AP The area under the precision-recall curve for each class

Precision - Recall Curve

mAP (Mean Average Precision) Class마다 AP 계산 그들의 평균

mAP50 = 0.820

참고영상

mAP 설명 및 파이썬 코드

https://www.youtube.com/watch?v=FppOzcDvaDI