

Licence de Mathématiques et Informatique 2020-2021

Analyse 3

TD2

1 Exercices d'application

Exercice 1. Montrer, en utilisant la définition de la limite, que :

1.
$$\lim_{n \to +\infty} \frac{1}{n^2 + 1} = 0$$

Solution : Un calcul préliminaire : soit $\varepsilon > 0$. On a alors $\frac{1}{n^2+1} < \varepsilon$ si et seulement si $\frac{1}{\varepsilon} - 1 < n^2$. Ici il faut distinguer deux cas (en effet, bien que le ε de la définition de la convergence d'une suite est surtout compris comme étant arbitrairement petit, en toute rigueur, la définition demande de considérer tout $\varepsilon > 0$) : soit $\varepsilon > 1$, auquel cas $\frac{1}{\varepsilon} - 1 < n^2$ est vraie pour tout $n \ge 0$, soit $\varepsilon < 1$, auquel cas $\frac{1}{\varepsilon} - 1 > 0$, et donc la première inégalité est équivalente à $\sqrt{\frac{1}{\varepsilon} - 1} < n$.

Posons donc $n_0 = \left\lfloor \sqrt{\frac{1}{\varepsilon} - 1} \right\rfloor + 1$. Ainsi pour tout $n \ge n_0$, $n^2 \ge n_0^2 > \frac{1}{\varepsilon} - 1$ et donc $\left| \frac{1}{n^2 + 1} - 0 \right| = \frac{1}{n^2 + 1} < \varepsilon$. D'où le résultat.

2.
$$\lim_{n \to +\infty} \frac{\cos(n) + n + 1}{n} = 1$$

Solution : De même, un calcul préliminaire : soit $\varepsilon > 0$: on a $\left| \frac{\cos(n) + n + 1}{n} - 1 \right| < \varepsilon$ si et seulement si $\left| \frac{\cos(n) + 1}{n} \right| < \varepsilon$. Comme $\left| \frac{\cos(n) + 1}{n} \right| \le \frac{2}{n}$, une condition suffisante pour que $\left| \frac{\cos(n) + n + 1}{n} - 1 \right| < \varepsilon$ est de demander que $\frac{2}{n} < \varepsilon$ ce qui équivaut à $\left| \frac{2}{\varepsilon} \right| + 1 \le n$.

On pose donc $n_0 = \left\lfloor \frac{2}{\varepsilon} \right\rfloor + 1$. Le calcul précédent montre alors que pour $n \geq n_0$, on a $\left\lfloor \frac{\cos(n) + n + 1}{n} - 1 \right\rfloor < \varepsilon$, ce qui est le résultat demandé.

3.
$$\lim_{n\to+\infty} \ln n = +\infty$$

Solution : Soit A > 0. Alors pour tout $n \ge 0$, $\ln(n) > A$ si et seulement si $n > e^A$. On pose donc $n_0 = \lfloor e^A \rfloor + 1$. Alors pour $n \ge n_0$, on a par croissance de $\ln, \ln(n) \ge \ln(n_0) > A$, ce qui est le résultat demandé.

Exercice 2. Soit $(u_n)_n$ une suite convergente. La suite $(\lfloor u_n \rfloor)_n$ (où $\lfloor \cdot \rfloor$ désigne la fonction partie entière) est-elle convergente?

Solution : Si la limite est non entière, oui : dans ce cas, à partir d'un certain rang la suite va rester strictement entre deux entiers et donc sa partie entière va être stationnaire. Précisons : en effet, supposons que $u_n \to x$ pour $n \to \infty$, pour un certain réel x qui n'est pas entier. Quitte à remplacer u_n par $u_n - \lfloor x \rfloor$, on peut supposer sans perte de généralité que $x \in]0,1[$. Comme 0 < x < 1, posons $\varepsilon = \min(x,1-x)/2 > 0$. Ainsi, $\varepsilon > 0$ est la moitié de la distance de x aux bords du segment [0,1]. Comme (u_n) converge vers x, il existe un rang n_0 tel que pour tout $n \ge n_0$, $|u_n - x| < \varepsilon$. Ainsi, $-\varepsilon + x < u_n < \varepsilon + x$ et donc, par définition de ε , $0 < \frac{x}{2} = -\frac{x}{2} + x < u_n < x + \frac{1-x}{2} < 1$ et donc $u_n \in]0,1[$ pour tout $n \ge n_0$. Mais alors $\lfloor u_n \rfloor$ est identiquement 0 pour $n \ge n_0$. Donc la suite $(\lfloor u_n \rfloor)$ est stationnaire donc convergente. Si la limite de (u_n) est un entier, on ne peut rien dire en général : regarder les exemples 1/n, -1/n et $(-1)^n/n$.

Exercice 3. Soit $(u_n)_n$ une suite à valeurs dans \mathbb{Z} . Montrer que si $(u_n)_n$ converge, alors $(u_n)_n$ est stationnaire.

Solution simple: En écrivant la définition de la convergence pour $\varepsilon = \frac{1}{4}$, il existe $n_0 \ge 0$ tel que pour $n \ge n_0 \ |u_n - l| < \frac{1}{4}$. Prenons maintenant $n \ge n_0$ et $m \ge n_0$. On alors $|u_n - u_m| \le |u_n - l| + |u_m - l| < \frac{1}{2}$. Or u_n et u_m sont des entiers donc $u_n - u_m$ est aussi un entier. Or le seul entier k tel que $|k| < \frac{1}{2}$ est k = 0. Donc $u_n = u_m$ pour $n, m \ge n_0$: la suite est stationnaire.

Exercice 4. Soit $(u_n)_n$ une suite réelle. On pose $S_n = \frac{1}{n} \sum_{k=1}^n u_k$.

- **1.** On suppose que $(u_n)_n$ converge vers 0. Soit $\varepsilon > 0$ et $N \in \mathbb{N}$ tels que, pour tout $n \ge N$, on ait $|u_n| \le \varepsilon$.
 - **1.1.** Montrer qu'il existe une constante M_N tel que, pour tout $n \ge N$, on a :

$$|S_n| \leqslant \frac{M_N}{n} + \varepsilon$$

Solution : On sépare la somme en deux : Pour tout $n \geq N$, $|S_n| = \frac{1}{n} \left| \sum_{k=1}^N u_k + \sum_{k=N+1}^n u_k \right| \leq \frac{1}{n} \sum_{k=1}^N |u_k| + \frac{1}{n} \sum_{k=N+1}^n |u_k|$, par inégalité triangulaire. Posons $M_N = \max\{|u_k|, k = 1, \ldots, N\}$. Le premier terme dans la somme précédente est alors majoré par $\frac{M_N}{n}$. Pour le second terme, on a par hypothèse que pour tout $n \geqslant N$, $|u_n| \leqslant \varepsilon$ et donc $\frac{1}{n} \sum_{k=N+1}^n |u_k| \leq \varepsilon \frac{n-N}{n} \leq \varepsilon$.

1.2. En déduire que $(S_n)_n$ converge vers 0.

Solution : La suite (indexée par n) $\left(\frac{M_N}{n}\right)$ tend vers 0 pour $n \to \infty$. Il existe donc $n_1 \ge 1$ tel que pour tout $n \ge \max(N, n_1)$, $\frac{M_N}{n} < \varepsilon$. Ainsi pour de tels $n, S_n \le 2\varepsilon$. Ainsi $S_n \to 0$ pour $n \to \infty$.

2. On suppose que $(u_n)_n$ converge vers l. Montrer que $(S_n)_n$ converge vers l.

Solution : On se ramène à la question précédente en posant $v_n = u_n - l$. Ainsi, (v_n) tend vers 0 pour $n \to \infty$. Par application de la question précédente, il vient que $\frac{1}{n} \sum_{k=1}^{n} v_k$ tend vers 0 pour $n \to \infty$. Or, $\frac{1}{n} \sum_{k=1}^{n} v_k = \frac{1}{n} \sum_{k=1}^{n} v_k - l$, ce qui donne le résultat.

3. On suppose que $u_n = (-1)^n$. Que dire de $(S_n)_n$? Qu'en déduisez-vous?

Solution : On a alors dans ce cas : $S_n = \frac{1}{n} \sum_{k=1}^n (-1)^k 0$ qui vaut 0 si n est pair et vaut $\frac{-1}{n}$ si n est impair. Ainsi $S_n \to 0$ pour $n \to \infty$. Cependant la suite $((-1)^n)$ ne converge pas. Cette question montre que la réciproque de la question précédente est fausse.

4. On suppose que $(u_n)_n$ tend vers $+\infty$. Montrer que $(S_n)_n$ tend vers $+\infty$.

Solution: On adapte le même raisonnement que la première question. Comme $(u_n)_n$ tend vers $+\infty$, alors pour tout A>0 il existe $N\geq 1$ tel que pour tout $n\geq N$, $u_n>A$. Mais alors $S_n=\frac{1}{n}\sum_{k=1}^N u_k+\frac{1}{n}\sum_{k=N+1}^n u_k$. Le premier terme tend vers 0 pour $n\to\infty$, donc en particulier minoré. De plus, le second terme est plus grand que $\frac{n-N}{n}A$ qui est plus grand que A/2 dès que $\frac{N}{n}\leq \frac{1}{2}$. Tout ceci donne le résultat.

Exercice 5. Soit $(u_n)_{n\geq 0}$ une suite de réels strictement positifs telle que : $\lim_{n\to +\infty}\frac{u_{n+1}}{u_n}=l$

- **1.** On suppose l < 1 et on fixe $\varepsilon > 0$ tel que $l + \varepsilon < 1$.
 - **1.1.** Montrer qu'il existe un entier N tel que, pour tout $n \ge N$, on ait : $u_n \le u_N (l+\varepsilon)^{n-N}$

Solution : On écrit le fait que $\lim_{n\to +\infty}\frac{u_{n+1}}{u_n}=l$: pour tout $\varepsilon>0$ (et donc en particulier pour le ε donné dans cette question), il existe $N\geq 1$ tel que pour tout $n\geq N, \frac{u_{n+1}}{u_n}< l+\varepsilon$. Il suffit d'écrire un produit télescopique $\frac{u_{N+1}}{u_N}\frac{u_{N+2}}{u_{N+1}}\dots\frac{u_n}{u_{n-1}}$ donc chacun des termes est majoré par $l+\varepsilon$ pour conclure.

1.2. En déduire que $(u_n)_{n\geq 0}$ converge vers 0

Solution : La suite $((l+\varepsilon)^n)$ est une suite géométrique de raison strictement plus petite que 1. Donc $(l+\varepsilon)^n \to 0$ pour $n \to \infty$. On conclut par le théorème des gendarmes.

2. On suppose l > 1. Montrer que $(u_n)_{n \ge 0}$ tend vers $+\infty$.

Solution : Appliquer la question précédente à la suite donnée par $v_n = \frac{1}{u_n}$.

3. Étudier le cas l=1.

Solution simple : On ne peut rien conclure dans ce cas : considérer $u_n = n, u_n = 1, u_n = 1/n$.

Exercice 6. Étudier la nature des suites suivantes, et calculer leur limite éventuelle :

1.
$$u_n = \frac{\sin n + 3\cos(n^2)}{\sqrt{n}}$$

Solution : Il s'agit ici d'appliquer les théorèmes usuels d'opérations sur les suites. Ici, le numérateur est borné et le dénominateur tend vers $+\infty$. Donc la suite (u_n) tend vers 0.

2.
$$u_n = \frac{2n + (-1)^n}{5n + (-1)^{n+1}}$$

Solution : On simplifie par n de chaque côté pour conclure que (u_n) tend vers $\frac{2}{5}$.

3.
$$u_n = \frac{n^3 + 5n}{4n^2 + \sin n + \ln n}$$

Solution : Un équivalent du numérateur est n^3 et du dénominateur est $4n^2$. Donc (u_n) tend vers $+\infty$.

3

4.
$$u_n = \frac{a^n - b^n}{a^n + b^n}$$
, où $a, b > 0$

Solution : Si a = b la suite est nulle. Si a > b on simplifie par a^n de chaque côté et la suite tend vers 1 et si a < b on simplifie par b^n de chaque côté et la suite tend vers -1.

Exercice 7. Étudier la nature des suites suivantes :

1.
$$u_n = \sum_{k=1}^n \frac{n}{n+k}$$

Solution simple: $\frac{n}{n+k} \ge \frac{1}{2}$, donc $\lim u_n = +\infty$

Solution simple: $\sum_{k=1}^{n} \frac{1}{n+k} \to \ln 2$ d'après la convergence des sommes de Riemann. Donc $u_n \sim n \ln 2 \to +\infty$.

2.
$$u_n = \sum_{k=0}^{2n+1} \frac{n}{n^2 + k}$$

Solution simple: $\frac{n}{n^2} \ge \frac{n}{n^2+k} \ge \frac{n}{(n+1)^2}$, donc $u_n \to 2$.

Exercice 8. Étudier la limite de la suite $(u_n)_{n\geqslant 1}$ lorsque :

1.
$$u_n = \sqrt{n^2 + 9} - n$$
;

Solution : On multiplie par le "conjugué" : $u_n = \frac{(\sqrt{n^2+9}-n)(\sqrt{n^2+9}+n)}{\sqrt{n^2+9}+n} = \frac{9}{\sqrt{n^2+9}+n}$, quantité qui tend vers 0 pour $n \to \infty$.

2.
$$u_n = (1 + \frac{1}{n})^n$$
;

Solution : Un grand classique : $u_n = (1 + \frac{1}{n})^n = \exp(n \ln(1 + 1/n)) = \exp(n(1/n + o(1/n)))$ qui tend vers e.

3.
$$u_n = (n^2 + n + 1)^{1/n}$$
;

Solution : On écrit $u_n = (n^2 + n + 1)^{1/n} = \exp\left(\frac{1}{n}\ln(n^2 + n + 1)\right) = \exp\left(\frac{1}{n}\left(2\ln(n) + \ln(1 + n^{-1} + n + 1)\right)\right)$ quantité qui tend vers 1 pour $n \to \infty$.

4.
$$u_n = \int_0^1 \frac{e^{-nt}}{1 + e^{-t}} dt$$
;

Solution : Un théorème de convergence dominée est largement exagéré pour des étudiants de L2... Il suffit de voir que $\frac{1}{1+e^{-t}} \le 1$ puis de calculer la majoration explicitement. La suite tend vers 0.

5.
$$u_n = \prod_{k=1}^n (1 + e^{-k});$$

Solution : On montre la convergence de la suite vers $\prod_{k=1}^{+\infty} \left(1 + e^{-k}\right)$: passant au logarithme, il vient $\ln(u_n) = \sum_{k=1}^n \ln(1 + e^{-k})$ qui est la somme partielle d'une série à termes positifs. On peut donc utiliser la caractérisation de la convergence d'une série à termes positifs par les équivalents : pour $k \to \infty$, $\ln(1 + e^{-k}) \sim e^{-k}$ qui est le

4

terme général d'une série convergente (série géométrique de raison $e^{-1} \in [0, 1]$). D'où la convergence de $\ln(u_n)$ vers un nombre positif, donc celle de (u_n) par continuité de l'exponentielle.

6.
$$u_n = \int_0^{\pi/2} \cos^n(t) dt$$
 (plus difficile).

Solution : Il s'agit de l'intégrale de Wallis. De même, un théorème de convergence dominée est exagéré ici. Une possibilité est de découper $[0, \pi/2]$ en $[0, \varepsilon/2]$ et $[\varepsilon/2, \pi/2]$. La première intégrale est majorée par $\varepsilon/2$. Sur le second intervalle, par décroissance de $t \mapsto \cos(t)^n$ sur $[0, \pi/2]$, on a $0 \le \cos(t)^n \le \cos(\varepsilon/2)^n$ avec $\cos(\varepsilon/2) \in]0, 1[$. On conclut en prenant n grand.

Exercice 9.

1. Montrer que pour tout $n \in \mathbb{N}$, on a :

$$\sqrt{n+1} - \sqrt{n} \leqslant \frac{1}{2\sqrt{n}}$$

Solution : On multiplie encore une fois par le conjugué.

2. En déduire le comportement de la suite définie par :

$$u_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$$

Solution : On somme, on reconnait d'un côté une somme télescopique et on conclut par le théorème des gendarmes : (u_n) tend vers $+\infty$.

Exercice 10. On définit la suite (u_n) par : $u_0 = 1$ et $u_{n+1} = \ln(1 + u_n)$ pour $n \in \mathbb{N}$.

1. Montrer que pour tout $n \in \mathbb{N}^*$, $u_n \in]0,1]$.

Solution : On raisonne par récurrence, en utilisant l'inégalité $0 < \ln(1+u) \le u$ pour u > 0.

2. Montrer que la suite (u_n) est convergente et déterminer sa limite.

Solution : La même inégalité précédente montre que la suite est décroissante. Or elle minorée donc elle converge vers $l \in [0, 1]$. Par continuité, on a $l = \ln(1 + l)$ donc l = 0.

Exercice 11. Soit k un entier naturel non nul. Pour tout $n \in \mathbb{N}$, on considère la fonction f_n de \mathbb{R} dans \mathbb{R} définie par

$$\forall x \in \mathbb{R}, \quad f_n(x) = x^{k+1} + x^k - n.$$

1. Montrer que, pour tout entier $n \in \mathbb{N}$, il existe un unique réel positif x tel que $f_n(x) = 0$. On le note u_n .

Solution détaillée : Soit $n \in \mathbb{N}$. Les fonctions $x \mapsto x^k$ et $x \mapsto x^{k+1}$ sont continues et strictement croissantes sur \mathbb{R}_+ . Il en est donc de même pour la fonction f_n . L'image de \mathbb{R}_+ par f_n est le sous-ensemble $[-n, +\infty[$, qui contient 0. D'après le théorème des valeurs intermédiaires, il existe donc $u_n \in \mathbb{R}_+$ tel que $f_n(u_n) = 0$. Comme f_n est strictement croissante sur \mathbb{R}_+ , u_n est le seul réel qui vérifie cette équation.

2. Étudier la monotonie de $(u_n)_{n\in\mathbb{N}}$.

Aide simple : On pourra considérer $f_n(u_{n+1})$.

Solution détaillée : Soit $n \in \mathbb{N}$. Alors

$$f_n(u_{n+1}) = f_{n+1}(u_{n+1}) + 1 = 0 + 1 > 0 = f_n(u_n).$$

Comme f_n est strictement croissante sur \mathbb{R}_+ , l'inégalité précédente implique $u_{n+1} > u_n$. La suite $(u_n)_{n \in \mathbb{N}}$ est donc strictement croissante.

3. Montrer que $\lim_{n\to+\infty}u_n=+\infty$.

Solution détaillée: La suite $(u_n)_{n\in\mathbb{N}}$ étant croissante et positive, elle admet une limite $l\in[0,+\infty[\cup\{+\infty\}]$ quand n tend vers $+\infty$. Raisonnons par l'absurde et supposons que l soit fini. Alors la continuité des fonctions puissances implique :

$$\lim_{n \to +\infty} f_n(u_n) + n = \lim_{n \to +\infty} (u_n)^{k+1} + (u_n)^k = l^{k+1} + l^k \in [0, +, \infty[.$$

D'autre part :

$$\lim_{n \to +\infty} f_n(u_n) + n = \lim_{n \to +\infty} 0 + n = +\infty$$

On obtient ainsi une contradiction. La limite l est égale à $+\infty$:

$$\lim_{n\to+\infty}u_n=+\infty.$$

Exercice 12. Soit a et b tels que 0 < a < b, on considère les suites (u_n) et (v_n) définies par :

$$u_0 = a, \ v_0 = b, \ u_{n+1} = \sqrt{u_n v_n}, \ v_{n+1} = \frac{1}{2}(u_n + v_n).$$

Montrer que (u_n) et (v_n) convergent vers une même limite l.

Solution : Notons qu'on montre par une récurrence immédiate que $u_n \ge 0$ et $v_n \ge 0$ pour tout $n \ge 0$: les deux suites sont bien définies.

On montre que les suites (u_n) et (v_n) sont adjacentes : pour tout $n \ge 1$, $u_{n+1} - u_n = \sqrt{u_n}(\sqrt{v_n} - \sqrt{u_n})$ et $v_n - v_{n+1} = \frac{v_n - u_n}{2}$. Ainsi, nous aurons montré que les suites u et v sont respectivement croissante et décroissante dès que nous aurons montré que $u_n \le v_n$ pour tout $n \ge 0$. Ceci est vrai pour n = 0 par hypothèse. De plus pour $n \ge 0$, $v_{n+1} - u_{n+1} = \frac{(\sqrt{u_n} - \sqrt{v_n})^2}{2} \ge 0$.

Montrons maintenant que $v_n - u_n$ tend vers 0 pour $n \to \infty$: on $0 \le v_{n+1} - u_{n+1} \le v_{n+1} - u_n = \frac{v_n - u_n}{2}$. Ainsi, par une récurrence immédiate, $0 \le v_n - u_n \le \frac{b-a}{2^n}$ et on conclut par le théorème des gendarmes.

Les deux suites sont adjacentes donc convergentes de même limite. On note M(a,b) cette limite commune, appelée moyenne arithmético-géométrique de a et b.

2 Exercices de synthèse

Exercice 13. Soit
$$H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$$
.

1. En utilisant une intégrale, montrer que pour tout n > 0: $\frac{1}{n+1} \le \ln(n+1) - \ln(n) \le \frac{1}{n}$.

Solution détaillée : La fonction $t\mapsto \frac{1}{t}$ est décroissante sur [n,n+1] donc

$$\frac{1}{n+1} \leqslant \int_{n}^{n+1} \frac{dt}{t} \leqslant \frac{1}{n}$$

(C'est un encadrement de l'aire de l'ensemble des points (x, y) du plan tels que $x \in [n, n+1]$ et $0 \le y \le 1/x$ par l'aire de deux rectangles.) Par calcul de l'intégrale nous obtenons l'inégalité :

$$\frac{1}{n+1} \leqslant \ln(n+1) - \ln(n) \leqslant \frac{1}{n}.$$

2. En déduire que $\ln(n+1) \leqslant H_n \leqslant \ln(n) + 1$.

Solution détaillée : $H_n=\frac{1}{n}+\frac{1}{n-1}+\cdots+\frac{1}{2}+1$, nous majorons chaque terme de cette somme en utilisant l'inégalité $\frac{1}{k}\leqslant \ln(k)-\ln(k-1)$ obtenue précédemment : nous obtenons $H_n\leqslant \ln(n)-\ln(n-1)+\ln(n-1)-\ln(n-2)+\cdots-\ln(2)+\ln(2)-\ln(1)+1$. Cette somme est télescopique (la plupart des termes s'éliminent et en plus $\ln(1)=0$) et donne $H_n\leqslant \ln(n)+1$.

L'autre inégalité s'obtient de la façon similaire en utilisant l'inégalité $\ln(k+1) - \ln(k) \le \frac{1}{k}$.

3. Déterminer la limite de H_n .

Solution détaillée : Comme $H_n \ge \ln(n+1)$ et que $\ln(n+1) \to +\infty$ quand $n \to +\infty$ alors $H_n \to +\infty$ quand $n \to +\infty$.

4. Montrer que $u_n = H_n - \ln(n)$ est décroissante et positive.

Solution détaillée : $u_{n+1} - u_n = H_{n+1} - H_n - \ln(n+1) + \ln(n) = \frac{1}{n+1} - (\ln(n+1) - \ln(n)) \le 0$ d'après la première question. Donc $u_{n+1} - u_n \le 0$. Ainsi $u_{n+1} \le u_n$ et la suite (u_n) est décroissante.

Enfin comme $H_n \ge \ln(n+1)$ alors $H_n \ge \ln(n)$ et donc $u_n \ge 0$.

5. Conclusion?

Solution détaillée : La suite (u_n) est décroissante et minorée (par 0) donc elle converge vers un réel γ . Ce réel γ s'appelle la constante d'Euler (d'après Leonhard Euler, 1707-1783, mathématicien d'origine suisse). Cette constante vaut environ 0,5772156649... mais on ne sait pas si γ est rationnel ou irrationnel.

Exercice 14. Soit a > 0. On définit la suite $(u_n)_{n \in \mathbb{N}}$ par u_0 un réel vérifiant $u_0 > 0$ et par la relation

$$u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right)$$

7

1. Montrer que $u_{n+1}^2 - a = \frac{(u_n^2 - a)^2}{4u_n^2}$

Solution : Cet exercice illustre la méthode dite de Héron qui permet de calculer \sqrt{a} par une interprétation géométrique : a est l'aire d'un rectangle de largeur 1 et de longueur $u_0 = a$. On remplace alors ce rectangle par un autre rectangle "plus proche" du carré de côté \sqrt{a} de la façon itérative : si à l'étape n on a un rectangle de largeur v_n et de longueur u_n , d'aire a (donc $u_n v_n = a$), le rectangle à l'itération n+1 a pour une nouvelle longueur $u_{n+1} = \frac{u_n + v_n}{2}$ et pour nouvelle largeur $v_{n+1} = \frac{a}{u_{n+1}}$. Ainsi, on a $u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right)$, ce qui est exactement la formule de l'énoncé. Notons qu'une récurrence immédiate montre que $u_n > 0$ pour tout $n \ge 0$ et donc la

suite u est bien définie.

On calcule: $u_{n+1}^2 - a = \frac{1}{4u_n^2} (u_n^2 + a)^2 - a = \frac{1}{4u_n^2} (u_n^4 + 2au_n^2 + a^2 - 4au_n^2) = \frac{(u_n^2 - a)^2}{4u^2}$.

2. Montrer que si $n \ge 1$ alors $u_n \ge \sqrt{a}$ puis que la suite $(u_n)_{n \ge 1}$ est décroissante.

Solution : D'après la question précédente, $u_{n+1}^2 - a \ge 0$ pour tout $n \ge 0$ et comme $u_{n+1} > 0$, on a bien $u_{n+1} \ge \sqrt{a}$ pour tout $n \ge 0$. Mais alors $u_{n+1} - u_n = \frac{1}{2u_n}(a - u_n^2) \le 0$, donc la suite est décroissante.

3. En déduire que la suite (u_n) converge vers \sqrt{a}

Solution : La suite u est décroissante et minorée par \sqrt{a} , donc convergente vers $l \geq \sqrt{a} > 0$. Passant à la limite dans la définition de u, on a par continuité, $l = \frac{1}{2}(l + \frac{a}{l})$ et donc $l^2 = a$ et donc $l = \sqrt{a}$.

4. Donner une majoration de $u_{n+1} - \sqrt{a}$ en fonction de $u_n - \sqrt{a}$

Solution : On a $u_{n+1} - \sqrt{a} = \frac{(u_n - \sqrt{a})^2}{2u_n}$. Or $u_n \ge \sqrt{a}$ et donc $u_{n+1} - \sqrt{a} \le \frac{(u_n - \sqrt{a})^2}{2\sqrt{a}}$

5. Si $u_1 - \sqrt{a} \leqslant k$ et pour $n \geqslant 1$, montrer que

$$u_n - \sqrt{a} \leqslant 2\sqrt{a} \left(\frac{k}{2\sqrt{a}}\right)^{2^{n-1}}$$

Solution : En itérant l'inégalité de la question précédente, il vient (par une récurrence immédiate) $u_n - \sqrt{a} \le 2\sqrt{a} \left(\frac{u_1 - \sqrt{a}}{2\sqrt{a}}\right)^{2^{n-1}}$. Le résultat s'en déduit.

Exercice 15. Soit $(u_n)_n$ la suite définie par :

$$u_n = \prod_{k=1}^n \left(1 + \frac{k}{n^2} \right)$$

On pose $v_n = \ln u_n$ pour tout $n \in \mathbb{N}^*$.

1. Montrer pour tout $x \ge 0$, l'inégalité :

$$x - \frac{x^2}{2} \leqslant \ln\left(1 + x\right) \leqslant x$$

Solution : La seconde inégalité vient de la concavité de $x \mapsto \ln(1+x)$: le graphe est en dessous de sa tangente en 0 donc $\ln(1+x) \le x$. De plus, une application de la formule de Taylor (reste intégral) donne $\ln(1+x) = x - \frac{x^2}{2} + \int_0^x \frac{(x-t)^2}{1+t)^3} dt$. Pour $x \ge 0$, le terme intégral est positif.

2. Montrer par récurrence que pour tout $n \in \mathbb{N}$:

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

Solution : Un grand classique, sans difficulté.

3. En déduire que :

$$\frac{n+1}{2n} - \frac{(n+1)(2n+1)}{12n^3} \leqslant v_n \leqslant \frac{n+1}{2n}$$

Solution : Il suffit de procéder par sommation et d'utiliser la question précédente.

4. Montrer que $(v_n)_n$ converge et préciser sa limite.

Solution : Par théorème des gendarmes, v converge vers $\frac{1}{2}$.

5. Montrer que $(u_n)_n$ converge et préciser sa limite.

Solution : Par continuité de l'exponentielle, u converge vers $e^{\frac{1}{2}}$.