Functional data analysis applied to neurology

Clément Bonvoisin, Pierre Ludmann

CMLA (ENS Cachan), Cognac-G (Paris V)

30 juin 2014

Plan

- Introduction
- 2 Formalisation et outils
- 3 Implémentations
- 4 Conclusion

- Introduction
 - Introduction au problème
 - Segmentation d'un signal
- 2 Formalisation et outils
- Implémentations
- 4 Conclusion

Présentation du problème

Projet pluridisciplinaire

- Médecins
- Mathématiciens

Enjeux variés

- Fournir une base de donnée aux deux acteurs
- Tester des modèles sur des signaux réels
- Suivi des patients
- Étudier les troubles de la marche

Protocole expérimental

- Placements des capteurs
- Mouvements
- Référentiel de travail

Exemple sur des signaux physiologiques

Figure : Segmentation à la main d'un signal de marche

- Introduction
- Pormalisation et outils
 - Définition
 - Algorithme CUSUM
 - Hypothèses et conséquences
- Implémentations
- 4 Conclusion

Formaliser les ruptures

Signaux réalisations d'un nombre fini de variables aléatoires

$$(X_n)_{n\in\llbracket 1;N\rrbracket}$$

Ruptures aux R instants t_r où la loi des variables aléatoires X_i change.

$$\forall r \in \llbracket 0\,;R-1 \rrbracket, (X_n)_{n\in \llbracket t_{r-1}\,;t_r-1 \rrbracket} \sim p_r$$
 où $t_{-1}=1$ et $t_R=N+1$

Une détection par CUSUM hors-ligne

Comparer l'hypothèse d'une rupture à l'hypothèse de non-rupture

$$L_{k} = \ln \left[\frac{\sup_{\theta_{0}} \left\{ \prod_{i=1}^{k-1} p_{\theta_{0}}(x_{i}) \right\} \cdot \sup_{\theta_{1}} \left\{ \prod_{i=k}^{N} p_{\theta_{1}}(x_{i}) \right\}}{\sup_{\tilde{\theta}} \left\{ \prod_{i=i}^{N} p_{\tilde{\theta}}(x_{i}) \right\}} \right]$$
(1)

Rupture au temps de vraisemblance logarithmique maximale

$$t_0 = \arg\max_{1 \le k \le N} L_k \tag{2}$$

Hypothèses de travail

Hypothèse forte d'indépendance temporelle et spatiale Hypothèse de signaux supposés suivre une distribution normale :

$$p_{\mu,\sigma}(y) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{y-\mu}{\sigma}\right)^2\right]$$
 (3)

⇒ bornes supérieures atteintes aux estimateurs

Paramètre θ : changement de la moyenne et/ou de l'écart-type du signal

Choix des paramètres - Formules correspondantes

Trois choix possibles:

$$\theta = \mu$$
 : (4) avec $\mu = \frac{1}{n} \sum_{i=1}^{n} y_i$ et σ fixé

$$\theta = \sigma$$
: (5) avec μ fixé et $\sigma = \frac{1}{n} \sum_{i=1}^{n} (y_i - \mu)^2$

$$\theta = (\mu, \theta)$$
 : (5) avec $\mu = \frac{1}{n} \sum_{i=1}^{n} y_i$ et $\sigma = \frac{1}{n} \left[\sum_{i=1}^{n} y_i^2 - (\sum_{i=1}^{n} y_i)^2 \right]$

$$L_{k} = \frac{1}{2\sigma^{2}} \left[(k-1)\mu_{0}^{2} + (N-k+1)\mu_{1}^{2} - N\tilde{\mu}^{2} \right]$$
 (4)

ou

$$L_k = N \ln(\tilde{\sigma}) - (k-1) \ln(\sigma_0) - (N-k+1) \ln(\sigma_1)$$
 (5)

Détection d'une rupture

Figure : Détection d'une rupture par l'algorithme CUSUM

- Introduction
- Pormalisation et outils
- 3 Implémentations
 - Dichotomie
 - Fenêtre
- 4 Conclusion

Implémentation par dichotomie

Principe:

Maintenir un ensemble de ruptures éligibles

Extraire la meilleure rupture de cet ensemble

Calculer les ruptures - éligibles - de chaque coté de la précédente

Boucler jusqu'à avoir extrait suffisamment de ruptures

Figure: Principe du CUSUM dichotomique

Figure : Exemple d'une segmentation par CUSUM dichotomique (1 rupture)

Figure : Exemple d'une segmentation par CUSUM dichotomique (2 ruptures)

Figure : Exemple d'une segmentation par CUSUM dichotomique (3 ruptures)

Figure : Exemple d'une segmentation par CUSUM dichotomique (4 ruptures)

Figure : Exemple d'une segmentation par CUSUM dichotomique (5 ruptures)

Figure : Exemple d'une segmentation par CUSUM dichotomique (6 ruptures)

Implémentation par fenêtre

Principe:

Fixer une fenêtre de travail au début du signal Calculer le ratio d'une rupture au milieu de la fenêtre Glisser la fenêtre sur le signal en refaisant le calcul

Figure : Principe du CUSUM par fenêtre

Log-likelihood ratios sur un signal physiologique

Figure : Scores obtenus avec le CUSUM par fenêtre

Segmentation par fenêtre de signaux physiologiques

Figure : Exemple d'une segmentation par CUSUM en fenêtre

- Introduction
- 2 Formalisation et outils
- Implémentations
- 4 Conclusion

Approche par dichotomie:

- Résultats en temps réel
- Moins adaptée à la théorie de l'algorithme CUSUM
- De nombreuses double-ruptures, des ruptures mal détectées

Approche par fenêtre :

- Besoin d'un paramètre en plus (espace minimal)
- Plus adaptée à la théorie
- Plus performante pour des petits écarts entre deux ruptures

Capteurs actuels à 100Hz : bonne détection

Travail sur les segments : différencier et détecter les différents types de maladies

⇒ apprentissage sur les segments obtenus