1.69" 240*280 IPS ST7789V2 262K SPI FPC Connector 12 Pin

4 ALP ELECTRONIX

- ST7789V2 is driven with 18 bit color depth.
- Single chip TFT-LCD Controller/Driver with On-chip Frame Memory (FM).
- Display Features
 - Programmable Partial Display Duty
 - CABC for saving current consumption
- · Driving Algorithm
 - Dot Inversion.
 - Column Inversion.
 - Color enhancement.
- Display Colors (Color Mode)
 - Full Color: 262K, RGB=(666), Idle Mode Off
 - Color Reduce: 8-color, RGB=(111), Idle Mode On
- Programmable Pixel Color Format (Color Depth) for Various Display Data input Format
 - 12-bit/pixel: RGB=(444)
 - 16-bit/pixel: RGB=(565)
 - 18-bit/pixel: RGB=(666)
- SPI interface
 - 4 Line SPI Interface.
- · Normally black.
- IPS, all view direction.
- · Power Supply
 - VDD: 2.4V 3.3V.
 - VDDIO: 1.65V 3.3V.
- Brightness: 350 cd/m².
- FPC Connector.

1 General Specifications

No.	Item	Contents	Unit
1	LCD Size	1.69"	inch
2	LCD Type	TFT/TRANSMISSIVE	-
3	Viewing Direction	ALL view	-
4	Outline Dimensions (WxHxT)	30.07(W) x 37.43(H) x 1.56(T)	mm
5	Viewing Area	28.63 x 35.64	mm
6	Active Area	27.97(W) x 32.63(H)	mm
7	Number of Dots	240RGB x 280 Dots	-
8	Pixel Pitch (WxH)	0.073 x 0.219	mm
9	Driver IC	ST7789	-
10	Interface Type	4 Line SPI	-
11	Input Voltage	2.8V	-
12	Module Power Consumption	TBD	mW
13	Colors	262K	=
14	Luminance	350	cd/m ²
15	Backlight	3 White LED Parallel	-
16	Operating Temperature	-20°C - +70°C	-
17	Storage Temperature	-30°C - +80°C	-
18	Weight	-	gram

2 Electrical Characteristics

2.1 Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Supply Voltage	V _{DD}	-0.3	4.6	V
Supply Voltage for Logic	V _{DDIO}	-0.3	4.6	V
Operation Temperature	T _{OP}	-20	70	°C
Storage Temperature	T _{st}	-30	80	°C
Humidity	R _H		90%(Max60 °C)	R _H

2.2 Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage for Logic	V _{DD}	2.7	2.8	3.3	V
Operating Current For VDD	I _{DD}		TBD	TBD	mA
Innut Voltage	V _{IH}	0.7*V _{DD}	-	V _{DD}	V
Input Voltage	V _{IL}	V _{ss}		0.3*V _{DD}	V
Output Voltage	V _{OH}	0.8*V _{DD}	-	V _{DD}	V
Output Voltage	V _{oL}	V _{SS}	-	0.2*V _{DD}	V

2.3 Backlight Unit

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Voltage for LED backlight	V _{LED}	3.0	3.2	3.4	V	
Current for LED backlight	I _{LED}	-	40	-	mA	2 LED
Power Consumption ¹	Pы	-	128	-	mW	1
Connection Mode	-	-	Parallel	-	-	2
LED Life Time ³		20000	-	-	hr	3

Using condition: constant current driving method If=40mA(+/-10%).

Notes:

- 1. Where I_{LED} = 60mA, V_{LED} = 3.0V, $P_{CONSUMPTION}$ = I_{LED} * V_{LED} .
- 2. Uniform measure condition:
 - a) Measure 9 point, measure location is shown on the right side.
 - b) Uniform = (Min. brightness / Max brightness) * 100%
 - c) Best contrast.
- 3. The environmental test has been conducted under ambient air flow

at T_A = 25±2°C, 60%RH±5%.

3 Mechanical Drawing

4 Pin Definition

Pin no.	Symbol	Description
1	TE	
2	GND	Power Ground.
3	D/C	Data or command select signal input
4	RESET	This signal will reset the device. Signal is active low.
5	SDA	SPI interface input/output pin .the data is latched on the rising edge of the SCL signal.
6	SCK	This pin is used to be serial interface clock
7	CS	Chip selection pin. Active low.
8	VDD	Power supply, VDD = 2.4V-3.3V.
9	VDDIO	Power supply for interface logic.
10	LEDA	LED anode pin.
11	LEDK	LED cathode pin.
12	GND	Power Ground.

Note: The voltage power of the interface logic pin depend on VDDIO and GND, Such as DBn, IMn and function pins.

5 Optical Characteristics

Item	Symbol	Measuring Conditions		Min.	Тур.	Max.	Unit
	θ	Φ = 0°	25°C		45	-	
Viewing Angle ¹		Ф = 180°	25°C	-	45	-	Dograd
Viewing Angle	θ	Φ = 90°	25°C	-	35	-	Degree
	•	Ф = 270°	25°C	-	15	-	
Brightness	L _{br}		ī	100	-	-	cd/m²
Surface Luminance (LCM)	L _v		-	75			
Contrast Ratio(LCM)	CR	-	25°C	-	150	-	
Response Time	T _R +T _F	θ = 0°	25°C	_	50	-	mS
		Φ = 0°	ے۔ دے	_			
Transmittance(LCM)	T(%)				5		%
	White	X	25°C	0.205	0.275	0.346	
	wnite	Y	25°C	0.244	0.314	0.384	
	D-J	X	25°C	0.516	0.566	0.616	
Color of CIE Coordinate	Red	Y	25°C	0.262	0.312	0.362	
Color of CIE Coordinate	6	Х	25°C	0.271	0.321	0.371	-
	Green	Y	25°C	0.540	0.590	0.640	
	Blue	Х	25°C	0.095	0.145	0.195	
	Diue	Y	25°C	0.042	0.092	0.142	

Notes:

1. Definition of Viewing Angle:

2. Definition of Contrast Ratio (CR): measured at the center point of panel

 $Contrast\ Ratio\ (CR) = \frac{Luminance\ measured\ when\ LCD\ is\ on\ the\ White\ state}{Luminance\ measured\ when\ LCD\ is\ on\ the\ Black\ state}$

3. Definition of Response Time: Sum of $T_{\scriptscriptstyle R}$ and $T_{\scriptscriptstyle F}$

6 Reliability

6.1 Contents of Reliability Tests

No.	Item	Conditions	Inspection After Test			
1	High Temperature Operation	70°C ±2°C, 120 hrs	Inspection after 2~4hours			
2	Low Temperature Operation	-20°C ±2°C, 120 hrs	storage at room temperature,			
3	High Temperature Storage	80°C ±2°C, 120 hrs	the sample shall be free from			
4	Low Temperature Storage	-30°C ±2°C, 120 hrs	defects:			
5	High Temperature /Humidity Operation	60°C ±2°C, 90% RH, 120 hrs	1. Air bubble in the LCD; 2. Seal leak;			
6	Temperature Cycling	-30°C 30min↔70°C 30min 24 cycle. Temperature conversion time: Less than 5min	3. Non-display; 4. missing segments; 5. Glass crack;			
7	Vibration Test	Vibration Frequency:10~55Hz One cycle 60 seconds to 3 direction of X, Y, Z each 10 minutes.	6. Current I _{DD} is twice higher than initial value.			
8	Dropping Test	08m LCD≥3.0inch	Not allowed cosmetic and electrical defects.			

Note: No charge on display and in operation under the following test condition. Please note that the reliability test project requires the use of virgin samples.

Condition: Unless otherwise specified ,tests will be conducted under the following condition.

 $Temperature : 20 ^{\circ}\text{C} \pm 5 ^{\circ}\text{C}.$

Humidity:65±5%RH.

Tests will be not conducted under functioning state.

Find Us Online

7 Precautions For Use of Lcd Modules

7.1 Handling Precautions

- The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.
- Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- The polarizer covering the display surface of the LCD module is soft and easily scratched.
- Handle this polarizer carefully.
- If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:
 - Isopropyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

- Do not attempt to disassemble the LCD Module.
- If the logic circuit power is off, do not apply the input signals.
- To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
- a. Be sure to ground the body when handling the LCD Modules.
- b. Tools required for assembly, such as soldering irons, must be properly ground.
- c. To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
- d. The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.

7.2 Storage Precautions

- When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.
- The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:

Temperature : 0°C ~ 40°C Relatively humidity: ≤80%

- 10.2.3 The LCD modules should be stored in the room without acid, alkali and harmful gas.
- The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.

8 Revision History

Revision	Details
1.0	Initial Release – 01.01.2023

IMPORTANT NOTICE AND DISCLAIMER

AE PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with AE products. You are solely responsible for (1) selecting the appropriate AE products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. AE grants you permission to use these resources only for development of an application that uses the AE products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other AE intellectual property right or to any third party intellectual property right. AE disclaims responsibility for, and you will fully indemnify AE and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

AE's products are provided subject to AE's Terms of Sale or other applicable terms available either on alpelectronix.com or provided in conjunction with such AE products. AE's provision of these resources does not expand or otherwise alter AE's applicable warranties or warranty disclaimers for AE products.

AE objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Alp Electronix, Sjöhagvägen 6A, Västerås 721 32, Sweden Copyright © 2023, Alptron AB