Máximos e Mínimos

Luis Alberto D'Afonseca

Cálculo de Funções de Várias Variáveis – I

 $17~\mathrm{de}~\mathrm{agosto}~\mathrm{de}~2025$

Conteúdo

Extremos locais

Teste da derivada segunda

Exemplos

Lista mínima

Extremos locais

Seja f(x, y) definida em uma região R que contém o ponto (a, b)

ightharpoonup f(a,b) é um valor máximo local de f se

$$f(a,b) \ge f(x,y)$$

para (x, y) do domínio em um disco aberto centrado em (a, b)

ightharpoonup f(a,b) é um valor mínimo local de f se

$$f(a,b) \le f(x,y)$$

para (x, y) do domínio em um disco aberto centrado em (a, b)

Teste da derivada de primeira ordem

Se f(x,y) tiver um máximo ou mínimo local em um ponto interior (a,b) do seu domínio e se as derivadas de primeira ordem existirem em (a,b), então

$$f_x(a,b) = 0 \qquad f_y(a,b) = 0$$

Ponto crítico

Um Ponto Crítico de uma função f(x, y)

é um ponto (a, b), no interior do domínio de f, onde

$$f_x(a,b) = 0 \ \mathbf{e} \ f_y(a,b) = 0$$

$$\nabla f(a,b) = 0$$

ou

$$f_x(a,b)$$
 ou $f_y(a,b)$ não exista

$$\nabla f(a,b)$$
 não existe

Ponto de sela

Uma função diferenciável f(x,y) possui um ponto de sela em (a,b) se em todo disco aberto centrado em (a,b) existirem pontos (x,y) onde

$$f(x,y) > f(a,b)$$

e existirem pontos (x, y) onde

$$f(x, y) < f(a, b)$$

Exemplo 1

Encontre os pontos críticos e valores extremos locais da função

$$f(x, y) = x^2 + y^2 - 4y + 9$$

Exemplo 1 – Derivadas parciais

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} (x^2 + y^2 - 4y + 9) = 2x$$

$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} (x^2 + y^2 - 4y + 9) = 2y - 4$$

Exemplo 1 – Pontos críticos

As derivadas existem em todos os pontos do plano

Plano tangente horizontal

$$f_x(x, y) = 0$$
 $f_y(x, y) = 0$ $2x = 0$ $2y - 4 = 0$ $y = 2$

Ponto critico é (0,2)

Exemplo 1 – Avaliando a função

Onde a função vale

$$f(0,2) = (x^2 + y^2 - 4y + 9) \Big|_{(0,2)} = 0 + 4 - 8 + 9 = 5$$

Analisando a função percebemos que 5 é o menor valor que ela assume, portanto é um ponto de mínimo local (e nesse caso global também)

Conteúdo

Extremos locais

Teste da derivada segunda

Exemplos

Lista mínima

Hessiana

Matriz Hessiana

$$H(x,y) = egin{bmatrix} f_{xx}(x,y) & f_{xy}(x,y) \ f_{yx}(x,y) & f_{yy}(x,y) \end{bmatrix}$$

Discriminante (ou hessiano)

$$D(x, y) = \det H(x, y) = f_{xx}(x, y) f_{yy}(x, y) - f_{xy}^{2}(x, y)$$

Teste da derivada segunda

Seja
$$f(x, y)$$
 diferenciável e (a, b) um ponto crítico onde $f_x(a, b) = f_y(a, b) = 0$

- 1. se $\det H(a, b) = 0$ o teste é inconclusivo
- 2. se $\det H(a, b) < 0$ f tem um ponto de sela em (a, b)
- 3. se $\det H(a, b) > 0$ testamos a derivada segunda em x (ou y)
 - 3.1 se $f_{xx}(a, b) < 0$ f tem um máximo local em (a, b)
 - 3.2 se $f_{xx}(a, b) > 0$ f tem um mínimo local em (a, b)

Conteúdo

Extremos locais

Teste da derivada segunda

Exemplos

Lista mínima

Exemplo 2

Encontre e classifique os pontos críticos da função

$$f(x, y) = xy - x^2 - y^2 - 2x - 2y + 4$$

Avalie os valores extremos locais de f

Exemplo 2 – Derivadas parciais

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} (xy - x^2 - y^2 - 2x - 2y + 4) = y - 2x - 2$$

$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \left(xy - x^2 - y^2 - 2x - 2y + 4 \right) = x - 2y - 2$$

Exemplo 2 – Pontos críticos

As derivadas existem em todos os pontos do plano

Buscando os pontos onde plano tangente é horizontal

Exemplo 2 – Resolvendo o sistema

$$y-2x-2=0$$
 $f_x(x,y)=y-2x-2=0$
 $y-2(2y+2)-2=0$
 $y-4y+-6=0$
 $y=-2$
 $x=2y+2$
 $y=-2$
 $y=-2$
Ponto crítico $y=-2$

Exemplo 2 – Calculando as derivadas segundas

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} (y - 2x - 2) = -2$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} (x - 2y - 2) = -2$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} (x - 2y - 2) = 1$$

Discriminante

$$D(x, y) = f_{xx}(x, y)f_{yy}(x, y) - f_{xy}^{2}(x, y) = (-2)(-2) - 1 = 3$$
$$D(-2, -2) = 3$$

Exemplo 2 – Caracterização do ponto

Como
$$D(-2, -2) = 3 > 0$$
 e $f_{xx}(-2, -2) = -2 < 0$

O ponto (-2,-2) é um ponto de máximo local

O valor da função neste máximo local é

$$f(-2,-2) = (xy - x^2 - y^2 - 2x - 2y + 4) \Big|_{(-2,-2)}$$

$$= (-2)(-2) - (-2)^2 - (-2)^2 - 2(-2) - 2(-2) + 4$$

$$= 4 - 4 - 4 + 4 + 4 + 4$$

$$= 8$$

Exemplo 3

Encontre e classifique os pontos críticos da função

$$f(x,y) = 3y^2 - 2y^3 - 3x^2 + 6xy$$

Avalie os valores extremos locais de f

Exemplo 3 – Derivadas parciais

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \left(3y^2 - 2y^3 - 3x^2 + 6xy \right) = -6x + 6y = 6y - 6x$$

$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \left(3y^2 - 2y^3 - 3x^2 + 6xy \right) = 6y - 6y^2 + 6x$$

Exemplo 3 – Pontos críticos

As derivadas existem em todos os pontos do plano

Buscamos os pontos onde as derivadas parciais são nulas

Exemplo 3 – Derivadas parciais

$$f_x(x, y) = 6y - 6x = 0$$

 $f_y(x, y) = 6y - 6y^2 + 6x = 0$
 $6y - 6x = 0$
 $x = y$

$$6y - 6y^{2} + 6x = 0$$

$$6y^{2} - 6y - 6x = 0$$

$$6y^{2} - 6y - 6y = 0$$

$$6y^{2} - 12y = 0$$

$$6y(y - 2) = 0$$

Portanto y = 0 ou y = 2

Os pontos críticos são (0,0) e (2,2)

Exemplo 3 – Derivadas segundas

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} (6y - 6x) = -6$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(6y - 6y^2 + 6x \right) = 6 - 12y$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} (6y - 6x) = 6$$

Discriminante

$$D(x, y) = f_{xx}(x, y)f_{yy}(x, y) - f_{xy}^{2}(x, y)$$

$$= (-6)(6 - 12y) - 6^{2}$$

$$= -36 + 72y - 36$$

$$= 72(y - 1)$$

Exemplo 3 – Analisando o ponto (0,0)

Como

$$D(0,0) = 72(0-1) = -72 < 0$$

esse ponto é um ponto de sela

Exemplo 3 – Analisando o ponto (2, 2)

Como

$$D(2,2) = 72(2-1) = 72 > 0$$
 $f_{xx}(2,2) = -6 < 0$

o ponto (2,2) é um máximo local com valor

$$f(2,2) = (3y^2 - 2y^3 - 3x^2 + 6xy) \Big|_{(2,2)}$$

$$= 3 \times 2^2 - 2 \times 2^3 - 3 \times 2^2 + 6 \times 2 \times 2$$

$$= 12 - 16 - 12 + 24$$

$$= 8$$

Exemplo 4

Seja

$$f(x,y)=e^x\cos(y)$$

encontre os pontos críticos de f e classifique-os

Exemplo 4 – Derivadas primeiras

$$f_x(x,y)=e^x\cos(y)$$

$$f_y(x, y) = -e^x \operatorname{sen}(y)$$

Pontos onde as derivadas são nulas

$$f_x(x, y) = 0$$

 $e^x \cos(y) = 0$
 $\cos(y) = 0$
 $y = \frac{\pi}{2} + n\pi \quad n \in \mathbb{Z}$

$$f_y(x, y) = 0$$

$$-e^x \operatorname{sen}(y) = 0$$

$$\operatorname{sen}(y) = 0$$

$$y = n\pi \quad n \in \mathbb{Z}$$

Exemplo 4 – Soluções

Não existe solução simultânea $e \mbox{ as derivadas existem em todos os pontos de } \mathbb{R}^2,$ portanto, não há pontos críticos

Exemplo 5

Seja

$$f(x, y) = \ln(x^2 + y^2 + 1)$$

encontre os pontos críticos de f e classifique-os

Exemplo 5 – Derivadas primeiras

$$f_{x}(x,y) = \frac{\partial}{\partial x} \left(\ln(x^{2} + y^{2} + 1) \right) \qquad f_{y}(x,y) = \frac{\partial}{\partial y} \left(\ln(x^{2} + y^{2} + 1) \right)$$

$$= \frac{1}{x^{2} + y^{2} + 1} \frac{\partial}{\partial x} (x^{2} + y^{2} + 1) \qquad = \frac{1}{x^{2} + y^{2} + 1} \frac{\partial}{\partial y} (x^{2} + y^{2} + 1)$$

$$= \frac{2x}{x^{2} + y^{2} + 1} \qquad = \frac{2y}{x^{2} + y^{2} + 1}$$

Exemplo 5 – Pontos onde as derivadas são nulas

$$f_x(x, y) = 0$$
 $f_y(x, y) = 0$ $\frac{2x}{x^2 + y^2 + 1} = 0$ $\frac{2y}{x^2 + y^2 + 1} = 0$ $y = 0$

Ponto crítico (0,0)

Exemplo 5 – Derivadas segundas

$$f_{xx}(x, y) = rac{\partial}{\partial x} \left(rac{2x}{x^2 + y^2 + 1}
ight)$$

$$= rac{\partial}{\partial x} (2x)(x^2 + y^2 + 1) - 2x rac{\partial}{\partial x} (x^2 + y^2 + 1)}{(x^2 + y^2 + 1)^2}$$

$$= rac{2(x^2 + y^2 + 1) - 2x(2x)}{(x^2 + y^2 + 1)^2}$$

$$= rac{2(y^2 + 1 - x^2)}{(x^2 + y^2 + 1)^2}$$

Exemplo 5 – Derivadas segundas

$$f_{yy}(x,y) = \frac{\partial}{\partial y} \left(\frac{2y}{x^2 + y^2 + 1} \right)$$

$$= \frac{\frac{\partial}{\partial y} (2y)(x^2 + y^2 + 1) - 2y \frac{\partial}{\partial y} (x^2 + y^2 + 1)}{(x^2 + y^2 + 1)^2}$$

$$= \frac{2(x^2 + y^2 + 1) - 2y(2y)}{(x^2 + y^2 + 1)^2}$$

$$= \frac{2(x^2 + 1 - y^2)}{(x^2 + y^2 + 1)^2}$$

Exemplo 5 – Derivadas segundas

$$f_{xy}(x, y) = \frac{\partial}{\partial y} \left(\frac{2x}{x^2 + y^2 + 1} \right)$$

$$= 2x \frac{\partial}{\partial y} \left(x^2 + y^2 + 1 \right)^{-1}$$

$$= 2x \frac{-1}{(x^2 + y^2 + 1)^2} \frac{\partial}{\partial y} \left(x^2 + y^2 + 1 \right)$$

$$= \frac{-2x}{(x^2 + y^2 + 1)^2} (2y)$$

$$= \frac{-4xy}{(x^2 + y^2 + 1)^2}$$

$$f_{xx}(x,y) = rac{2(y^2 + 1 - x^2)}{(x^2 + y^2 + 1)^2}$$
 $f_{xx}(0,0) = 2$ $f_{yy}(x,y) = rac{2(x^2 + 1 - y^2)}{(x^2 + y^2 + 1)^2}$ $f_{yy}(0,0) = 2$ $f_{xy}(x,y) = rac{-4xy}{(x^2 + y^2 + 1)^2}$ $f_{xy}(0,0) = 0$

Exemplo 5 – Discriminante

$$D(0,0) = f_{xx}(0,0)f_{yy}(0,0) - f_{xy}^{2}(0,0)$$
$$= 2 \times 2 - 0^{2}$$
$$= 4 > 0$$

$$f_{xx}(0,0) = 2 > 0$$

O ponto (0,0) é um mínimo local

Exemplo 6

Seja

$$f(x,y) = xe^{-x^2 - y^2}$$

Encontre os pontos críticos de f e classifique-os

Exemplo 6 – Derivadas primeiras

$$f_x(x, y) = rac{\partial}{\partial x} \left(x e^{-x^2 - y^2}
ight)$$

$$= rac{\partial x}{\partial x} e^{-x^2 - y^2} + x rac{\partial}{\partial x} e^{-x^2 - y^2}$$

$$= e^{-x^2 - y^2} + x e^{-x^2 - y^2} rac{\partial}{\partial x} \left(-x^2 - y^2
ight)$$

$$= e^{-x^2 - y^2} + x e^{-x^2 - y^2} \left(-2x
ight)$$

$$= \left(1 - 2x^2
ight) e^{-x^2 - y^2}$$

Exemplo 6 – Derivadas primeiras

$$f_{y}(x, y) = \frac{\partial}{\partial y} \left(xe^{-x^{2} - y^{2}} \right)$$

$$= x \frac{\partial}{\partial y} e^{-x^{2} - y^{2}}$$

$$= xe^{-x^{2} - y^{2}} \frac{\partial}{\partial y} \left(-x^{2} - y^{2} \right)$$

$$= xe^{-x^{2} - y^{2}} \left(-2y \right)$$

$$= -2xye^{-x^{2} - y^{2}}$$

Exemplo 6 – Pontos críticos

As derivadas existem em todos os pontos do plano

Pontos com plano tangente horizontal

Exemplo 6 – Sistema

$$egin{cases} f_y(x,y) = 0 \ f_x(x,y) = 0 \end{cases}$$

$$\begin{cases} 1 - 2x^2 = 0 \\ xy = 0 \end{cases}$$

$$\begin{cases} (1 - 2x^2) e^{-x^2 - y^2} = 0 \\ -2xye^{-x^2 - y^2} = 0 \end{cases}$$

$$xy = 0$$
$$x = 0 \text{ ou } y = 0$$

Exemplo 6 – Sistema

Se
$$x = 0$$

$$f_x(0,y)=0$$

$$1-2\times0^2=0$$

$$1 = 0$$

Não existe solução

Pontos críticos
$$\left(\frac{-1}{\sqrt{2}},0\right)$$
 e $\left(\frac{1}{\sqrt{2}},0\right)$

Se
$$y = 0$$

$$f_x(x,0)=0$$

$$1-2x^2=0$$

$$2x^2 = 1$$

$$x = \frac{\pm 1}{\sqrt{2}}$$

$$f_{xx}(x,y) = \frac{\partial}{\partial x} \left(\left(1 - 2x^2 \right) e^{-x^2 - y^2} \right)$$

$$= \frac{\partial}{\partial x} \left(1 - 2x^2 \right) e^{-x^2 - y^2} + \left(1 - 2x^2 \right) \frac{\partial}{\partial x} e^{-x^2 - y^2}$$

$$= -4xe^{-x^2 - y^2} + \left(1 - 2x^2 \right) e^{-x^2 - y^2} \frac{\partial}{\partial x} \left(-x^2 - y^2 \right)$$

$$= -4xe^{-x^2 - y^2} + \left(1 - 2x^2 \right) e^{-x^2 - y^2} \left(-2x \right)$$

$$= \left[-4x + \left(1 - 2x^2 \right) \left(-2x \right) \right] e^{-x^2 - y^2}$$

$$= 2x \left(2x^2 - 3 \right) e^{-x^2 - y^2}$$

$$f_{yy}(x, y) = \frac{\partial}{\partial y} \left(-2xye^{-x^2 - y^2} \right)$$

$$= -2x \left(\frac{\partial y}{\partial y} e^{-x^2 - y^2} + y \frac{\partial}{\partial y} e^{-x^2 - y^2} \right)$$

$$= -2x \left(e^{-x^2 - y^2} + ye^{-x^2 - y^2} \frac{\partial}{\partial y} \left(-x^2 - y^2 \right) \right)$$

$$= -2x \left(e^{-x^2 - y^2} + ye^{-x^2 - y^2} (-2y) \right)$$

$$= -2x \left(1 - 2y^2 \right) e^{-x^2 - y^2}$$

$$= 2x \left(2y^2 - 1 \right) e^{-x^2 - y^2}$$

$$f_{xy}(x, y) = \frac{\partial}{\partial y} \left((1 - 2x^2) e^{-x^2 - y^2} \right)$$

$$= (1 - 2x^2) \frac{\partial}{\partial y} e^{-x^2 - y^2}$$

$$= (1 - 2x^2) e^{-x^2 - y^2} \frac{\partial}{\partial y} (-x^2 - y^2)$$

$$= (1 - 2x^2) e^{-x^2 - y^2} (-2y)$$

$$= 2y (2x^2 - 1) e^{-x^2 - y^2}$$

Derivadas segundas

$$f_{xx}(x, y) = 2x (2x^2 - 3) e^{-x^2 - y^2}$$

 $f_{yy}(x, y) = 2x (2y^2 - 1) e^{-x^2 - y^2}$
 $f_{xy}(x, y) = 2y (2x^2 - 1) e^{-x^2 - y^2}$

$$f_{xx}\left(\frac{1}{\sqrt{2}},0\right) = 2\left(2x^3 - 3x\right)e^{-x^2 - y^2}\Big|_{(1/\sqrt{2},0)}$$

$$= 2\left(2\left(\frac{1}{\sqrt{2}}\right)^3 - \frac{3}{\sqrt{2}}\right)e^{-(1/\sqrt{2})^2}$$

$$= 2\left(\frac{2}{2\sqrt{2}} - \frac{3}{\sqrt{2}}\right)e^{-1/2}$$

$$= 2\frac{1-3}{\sqrt{2}}e^{-1/2}$$

$$= -2\sqrt{2}e^{-1/2}$$

$$egin{align} f_{yy}\left(rac{1}{\sqrt{2}},0
ight) &= 2x\left(2y^2-1
ight)e^{-x^2-y^2}igg|_{(^1/\sqrt{2},0)} \ &= rac{2}{\sqrt{2}}(-1)e^{-^1/2} \ &= -\sqrt{2}e^{-^1/2} \ \end{cases}$$

$$f_{xy}\left(\frac{1}{\sqrt{2}},0\right) = 2y\left(2x^2 - 1\right)e^{-x^2 - y^2}\Big|_{(1/\sqrt{2},0)} = 0$$

Exemplo 6 – Discriminante

$$D\left(\frac{1}{\sqrt{2}},0\right) = \det H\left(\frac{1}{\sqrt{2}},0\right) = f_{xx}\left(\frac{1}{\sqrt{2}},0\right) f_{yy}\left(\frac{1}{\sqrt{2}},0\right) - f_{xy}^{2}\left(\frac{1}{\sqrt{2}},0\right)$$
$$= \left(-2\sqrt{2}e^{-1/2}\right) \left(-\sqrt{2}e^{-1/2}\right) - 0$$
$$= 4e^{-1} = \frac{4}{e} > 0$$

$$f_{xx}\left(rac{1}{\sqrt{2}},0
ight) = -2\sqrt{2}e^{-1/2} < 0$$

O ponto $\left(\frac{1}{\sqrt{2}},0\right)$ é um máximo local

$$f_{xx}\left(\frac{-1}{\sqrt{2}},0\right) = 2\left(2x^3 - 3x\right)e^{-x^2 - y^2}\Big|_{(-1/\sqrt{2},0)}$$

$$= 2\left(2\left(\frac{-1}{\sqrt{2}}\right)^3 + \frac{3}{\sqrt{2}}\right)e^{-(-1/\sqrt{2})^2}$$

$$= 2\left(\frac{-2}{2\sqrt{2}} + \frac{3}{\sqrt{2}}\right)e^{-1/2}$$

$$= 2\frac{-1 + 3}{\sqrt{2}}e^{-1/2}$$

$$= 2\sqrt{2}e^{-1/2}$$

$$egin{align} f_{yy}\left(rac{-1}{\sqrt{2}},0
ight) &= 2x\left(2y^2-1
ight)e^{-x^2-y^2}igg|_{(-^1/\sqrt{2},0)} \ &= rac{-2}{\sqrt{2}}(-1)e^{-^1/2} \ &= \sqrt{2}e^{-^1/2} \ \end{cases}$$

$$f_{xy}\left(\frac{-1}{\sqrt{2}},0
ight) = 2y\left(2x^2-1
ight)e^{-x^2-y^2}\bigg|_{(-1/\sqrt{2},0)} = 0$$

Exemplo 6 – Discriminante

$$D\left(\frac{-1}{\sqrt{2}}, 0\right) = \det H\left(\frac{-1}{\sqrt{2}}, 0\right) = f_{xx}\left(\frac{-1}{\sqrt{2}}, 0\right) f_{yy}\left(\frac{-1}{\sqrt{2}}, 0\right) - f_{xy}^{2}\left(\frac{-1}{\sqrt{2}}, 0\right)$$
$$= \left(2\sqrt{2}e^{-1/2}\right)\left(\sqrt{2}e^{-1/2}\right) - 0$$
$$= 4e^{-1} = \frac{4}{e} > 0$$

$$f_{xx}\left(rac{-1}{\sqrt{2}},0
ight) = 2\sqrt{2}e^{-1/2} > 0$$

O ponto $\left(\frac{-1}{\sqrt{2}},0\right)$ é um mínimo local

Exemplo 7

Considerando a função
$$f(x, y) = x^3 + 3xy + y^3$$

- a) Calcule o gradiente de f
- b) Calcule a hessiana de f
- c) Encontre todos os pontos críticos de f
- d) Classifique cada ponto crítico de f

Exemplo 7 – a

Precisamos das derivadas parciais de f

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \left[x^3 + 3xy + y^3 \right] = 3x^2 + 3y$$
$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \left[x^3 + 3xy + y^3 \right] = 3x + 3y^2$$

então

$$\nabla f = \left(\begin{array}{c} 3x^2 + 3y \\ 3x + 3y^2 \end{array}\right)$$

Exemplo 7 – b

Precisamos das derivadas parciais de segunda ordem de f

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left[3x^2 + 3y \right] = 6x$$

$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \left[3x + 3y^2 \right] = 6y$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \frac{\partial f}{\partial y} = \frac{\partial}{\partial x} \left[3x + 3y^2 \right] = 3$$
Itan

então

$$H = \left(\begin{array}{cc} 6x & 3\\ 3 & 6y \end{array}\right)$$

Exemplo 7 – c

A função é um polinômio, então possui derivadas em todos os pontos do plano. Assim os pontos críticos são apenas os pontos onde as derivadas parciais são zero, $\nabla f=0$

$$3x^2 + 3y = 0$$
 e $3x + 3y^2 = 0$

ou, simplificando,

$$x^2 + y = 0$$
 e $x + y^2 = 0$

Exemplo 7 – c

Isolando y na primeira equação, $y = -x^2$, e substituindo na segunda, temos

$$x + y^{2} = 0$$

$$x + (-x^{2})^{2} = 0$$

$$x + x^{4} = 0$$

$$x(1 + x^{3}) = 0$$

As soluções dessa equação são x=0 ou x-1. Se x=0 temos y=0 e se x=-1 temos y=-1. Portanto, os pontos críticos são

$$(x_1, y_1) = (0, 0)$$
 e $(x_2, y_2) = (-1, -1)$

Exemplo 7 – d

Para classificar os pontos críticos precisamos avaliar o discriminante nos pontos críticos.

Exemplo 7 – d

Considerando o ponto $(x_1, y_1) = (0, 0)$

$$f_{xx}(0,0) = 0$$

 $f_{yy}(0,0) = 0$
 $f_{xy}(0,0) = 3$
 $D_1 = f_{xx}(0,0)f_{yy}(0,0) - f_{xy}^2(0,0) = 0 \times 0 - 3^2 = -9 < 0$

Portanto, o ponto (0,0) é um ponto de sela.

Exemplo 7 – d

Considerando o ponto $(x_2, y_2) = (-1, -1)$

$$f_{xx}(-1, -1) = -6$$

$$f_{yy}(-1, -1) = -6$$

$$f_{xy}(-1,-1)=3$$

$$D_2 = f_{xx}(-1, -1)f_{yy}(-1, -1) - f_{xy}^2(-1, -1) = (-6)(-6) - 3^2 = 36 - 9 = 25 > 0$$

Portanto, o ponto (-1,-1) é um máximo ou mínimo local. Como $f_{xx}(-1,-1)=-6<0\,$ o ponto é um ponto de máximo local.

Exemplo 8

Considerando a função $f(x, y) = 4xy - x^4 - y^4$

- a) Calcule o gradiente de f
- b) Calcule a hessiana de f
- c) Encontre todos os pontos críticos de f
- d) Classifique cada ponto crítico de f

Exemplo 8 – a

Precisamos das derivadas parciais de f

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \left[4xy - x^4 - y^4 \right] = 4y - 4x^3$$

$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \left[4xy - x^4 - y^4 \right] = 4x - 4y^3$$

então

$$\nabla f = \left(\begin{array}{c} 4y - 4x^3 \\ 4x - 4y^3 \end{array}\right)$$

Exemplo 8 – b

Precisamos das derivadas parciais de segunda ordem de f

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left[4y - 4x^3 \right] = -12x^2$$

$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \left[4x - 4y^3 \right] = -12y^2$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \frac{\partial f}{\partial y} = \frac{\partial}{\partial x} \left[4x - 4y^3 \right] = 4$$
atão

então

$$H=\left(egin{array}{cc} -12x^2 & 4 \ 4 & -12y^2 \end{array}
ight)$$

Exemplo 8 – c

A função é um polinômio, então possui derivadas em todos os pontos do plano. Assim os pontos críticos são apenas os pontos onde as derivadas parciais são zero, $\nabla f=0$

$$4y - 4x^3 = 0$$
 e $4x - 4y^3 = 0$

ou, simplificando,

$$y - x^3 = 0$$
 e $x - y^3 = 0$

Exemplo 8 – c

Isolando y na primeira equação, $y = x^3$, e substituindo na segunda, temos

$$x - y^{3} = 0$$

$$x - (x^{3})^{3} = 0$$

$$x - x^{9} = 0$$

$$x(1 - x^{8}) = 0$$

As soluções dessa equação são x=0, x=1 ou x-1. Se x=0 temos y=0, se x=1 temos y=1 e se x=-1 temos y=-1. Portanto, os pontos críticos são

$$(x_1, y_1) = (0, 0),$$
 $(x_2, y_2) = (1, 1)$ e $(x_3, y_3) = (-1, -1)$

Exemplo 8 – d

Para classificar os pontos críticos precisamos avaliar o discriminante nos pontos críticos.

Exemplo 8 – d

Considerando o ponto $(x_1, y_1) = (0, 0)$

$$f_{xx}(0,0) = 0$$

 $f_{yy}(0,0) = 0$
 $f_{xy}(0,0) = 4$
 $D_1 = f_{xx}(0,0)f_{yy}(0,0) - f_{xy}^2(0,0) = 0 \times 0 - 4^2 = -16 < 0$

Portanto, o ponto (0,0) é um ponto de sela.

Exemplo 8 – d

Considerando o ponto $(x_2, y_2) = (1, 1)$

$$f_{xx}(1,1) = -12$$
 $f_{yy}(1,1) = -12$
 $f_{xy}(1,1) = 4$
 $D_2 = f_{xx}(1,1)f_{yy}(1,1) - f_{xy}^2(1,1) = (-12)(-12) - 4^2 = 144 - 16 = 128 > 0$

Portanto, o ponto (1,1) é um máximo ou mínimo local. Como $f_{xx}(1,1)=-12<0$ o ponto é um ponto de máximo local.

Exemplo 8 – d)

Considerando o ponto $(x_3, y_3) = (-1, -1)$

$$f_{xx}(-1,-1) = -12$$

$$f_{yy}(-1,-1) = -12$$

$$f_{rv}(-1,-1)=4$$

$$J_{xy}(-1,-1)=4$$

Portanto, o ponto (-1, -1) é um máximo ou mínimo local. Como $f_{rr}(-1, -1) = -12 < 0$ o ponto é um ponto de máximo local.

 $D_3 = f_{xx}(-1, -1)f_{yy}(-1, -1) - f_{xy}^2(-1, -1) = (-12)(-12) - 4^2 = 144 - 16 = 128 > 0$

73/84

Exemplo 9

Considerando a função $f(x, y) = x^4 + y^4 + 4xy$

- a) Calcule o gradiente de f
- b) Calcule a hessiana de f
- c) Encontre todos os pontos críticos de f
- d) Classifique cada ponto crítico de f

Precisamos das derivadas parciais de f

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \left[x^4 + y^4 + 4xy \right] = 4x^3 + 4y$$

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \left[x^4 + y^4 + 4xy \right] = 4x^3 + 4y$$

 $\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \left[x^4 + y^4 + 4xy \right] = 4y^3 + 4x$

então

$$\nabla f = \left(\begin{array}{c} 4x^3 + 4y \\ 4y^3 + 4x \end{array}\right)$$

Precisamos das derivadas parciais de segunda ordem de f

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left[4x^3 + 4y \right] = 12x^2$$

$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \left[4y^3 + 4x \right] = 12y^2$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \frac{\partial f}{\partial y} = \frac{\partial}{\partial x} \left[4y^3 + 4x \right] = 4$$
então

$$H = \left(\begin{array}{cc} 12x^2 & 4\\ 4 & 12y^2 \end{array}\right)$$

A função é um polinômio, então possui derivadas em todos os pontos do plano. Assim os pontos críticos são apenas os pontos onde as derivadas parciais são zero, $\nabla f=0$

$$4x^3 + 4y = 0$$
 e $4y^3 + 4x = 0$

ou, simplificando,

$$x^3 + y = 0$$
 e $y^3 + x = 0$

Isolando y na primeira equação, $y=-x^3$, e substituindo na segunda, temos

$$y^{3} + x = 0$$

$$(-x^{3})^{3} + x = 0$$

$$-x^{9} + x = 0$$

$$x^{9} - x = 0$$

$$x(x^{8} - 1) = 0$$

As soluções dessa equação são x=0, x=1 ou x-1. Se x=0 temos y=0, se x=1 temos y=-1 e se x=-1 temos y=1. Portanto, os pontos críticos são

$$(x_1, y_1) = (0, 0),$$
 $(x_2, y_2) = (1, -1)$ e $(x_3, y_3) = (-1, 1)$

Para classificar os pontos críticos precisamos avaliar o discriminante nos pontos críticos.

Considerando o ponto $(x_1, y_1) = (0, 0)$

$$f_{xx}(0,0) = 0$$

 $f_{yy}(0,0) = 0$
 $f_{xy}(0,0) = 4$
 $D_1 = f_{xx}(0,0)f_{yy}(0,0) - f_{xy}^2(0,0) = 0 \times 0 - 4^2 = -16 < 0$

Portanto, o ponto (0,0) é um ponto de sela.

Considerando o ponto $(x_2, y_2) = (1, -1)$

$$f_{xx}(1,-1)=12$$

$$f_{yy}(1,-1)=12$$

$$f_{xy}(1,-1)=4$$

$$D_2=f_{xx}(1,-1)f_{yy}(1,-1)-f_{xy}^2(1,-1)=12\times 12-4^2=144-16=128>0$$

Portanto, o ponto (1,-1) é um máximo ou mínimo local. Como $f_{xx}(1,-1)=12>0\,$ o ponto é um ponto de mínimo local.

Considerando o ponto $(x_3, y_3) = (-1, 1)$

$$f_{xx}(-1,1) = 12$$

$$f_{yy}(-1,1) = 12$$

$$f_{xy}(-1,1) = 4$$

$$D_3 = f_{xx}(-1,1)f_{yy}(-1,1) - f_{xy}^2(-1,1) = 12 \times 12 - 4^2 = 144 - 16 = 128 > 0$$

Portanto, o ponto (-1,1) é um máximo ou mínimo local. Como $f_{xx}(-1,1)=12>0\,$ o ponto é um ponto de mínimo local.

Conteúdo

Extremos locais

Teste da derivada segunda

Exemplos

Lista mínima

Lista mínima

Cálculo Vol. 2 do Thomas 12^a ed. – Seção 14.7

- 1. Estudar o texto da seção
- 2. Resolver os exercícios: 2, 9, 11, 21, 23, 24, 25, 27

Atenção: A prova é baseada no livro, não nas apresentações