Eléments de correction « régulation de température »

1) 1.1)

a)
$$P_U = \frac{U^2}{R}$$
 au point de fonctionnement : $U_0 = \sqrt{P_{U0}.R} = 50V$

b)
$$\frac{dP_U}{dU} = \frac{2U}{R}$$
 au point de fonctionnement : $\frac{dP_U}{dU} = 200$

c)
$$\frac{P_U}{U_1} = 200*10 = 2000$$

d)
$$K_1 = 2000$$
 et $\tau_1 = 6s$

1.2)
$$A_2(p) = A_3(p) = \frac{4}{1 + 20p}$$

1.3)
$$A(p) = A_1.A_2(p) = \frac{8}{(1+20p)(1+0.1p)}$$

2)2.1)

$$A.B(p) = \frac{10}{(1+20p)(1+2p)(1+0,1p)}$$

Marge de phase peu importante, donc réponse indicielle mal amortie en boucle fermée.

$$V_{EP} = \frac{1}{1 + (8*1,25)} = 0.091 \Rightarrow \theta_S = 0.091*8 \approx 0.73$$

2.2) $R_1(p)$: régulateur PI $R_2(p)$: régulateur PID

R_1AB :

 $V_{\rm EP}=0$ (intégration dans le terme A(p))

R_2AB :

 $V_{\it EP}=0 \,\,\, ({
m intégration \,\, dans \,\, le \,\, terme \,\, A(p)})$

3)

$$\theta_{S} = -Q_{E}A_{3} - R_{2}AB\theta_{S} \quad (V_{E} = 0)$$

$$\frac{\theta_{S}}{Q_{E}} = \frac{A_{3}}{1 + R_{2}AB} = -\frac{\frac{4}{1 + 20p}}{1 + \frac{10}{20p(1 + 0.2p)(1 + 0.1p)}}$$

Gain statique nul : $\frac{\theta_s}{Q_E}(p \to 0) \to 0$

Pas d'effet de Q_{E} sur θ_{S} en régime permanent.