

Machine Learning on Graphs: A Model and Comprehensive Taxonomy

Bryan Perozzi w/ Ines Chami, Sami Abu-El-Haija, Christopher Ré and Kevin Murphy

Talk Outline

Graph Representation Learning

Our Model & Taxonomy

Unsupervised Graph Embedding

Supervised Graph Embeddings

Graph Representation Learning

Graph-structured data

- Graph: G = (V, E) = Nodes + Edges
- Universal data structure to represent complex relational data
- Ubiquitous in ML

Phylogenetics

Figure: <u>NASA</u>

Social Networks

Molecules

Figure: <u>Hapala et al</u> - Nature Comms

Graph Representation Learning (GRL)

Goal: Map graphs to continuous, low-dimensional, dense vector representations that preserve the graph information

Why useful: These representations can be used to solve any ML task!

Challenge: Graphs = Discrete, high-dimensional and sparse representations, how do we preserve the graph structure/similarities between nodes?

ML Applications

Unsupervised

• Link Prediction
$$f: V \times V \rightarrow \{0, 1\}$$

- Visualization/Graph compression
- Clustering/Community detection

$$f: V \to \{1, \dots, k\}$$

Supervised

• Node Classification $f: V \to \{0, 1\}$

$$f: V \to \{0, 1\}$$

• Graph Classification $f: G \rightarrow \{0, 1\}$

Bryan Perozzi | Twitter: @phanein

Our Model & Taxonomy

The GraphEDM Model

GraphEDM is a general model describing how two inputs (Graph A and Feature Matrix X) are transformed into latent space (Z) and then utilized for tasks.

Taxonomy of GNNs

We can then map GNN models into the parameter space of GraphEDM to get a Taxonomy of methods.

Unsupervised Methods

Problem Setup

Input: Graph G = (V, E)

- Vertices: $V = \{v_1, \dots, v_n\}$
- Adjacency matrix: $A \in \mathbb{R}^{n \times n}$
- (Optional) Node features: $X \in \mathbb{R}^{n \times d_0}$

Goal: Learn a mapping
$$f:V o \mathbb{R}^d$$
 $v_i o z_i$

Such that graph information is preserved

$$sim(v_i, v_j) \approx sim(z_i, z_j)$$

GraphEDM for Unsupervised GRL

Shallow Encoders

Shallow encoder = simple embedding look-up:

Example: Graph Factorization (Ahmed et al. 2013)

Idea: Learn a low-rank decomposition of the similarity matrix (1st order)

Possible extensions:

- directed graphs using asymmetric embeddings (source + target): GraRep (Cao et al. 2015), HOPE (Ou et al. 2016)
- Higher-order representations using random walks: DeepWalk (Perozzi et al. 2014), node2vec (Grover et al. 2016)

Supervised Methods

Problem Setup

Input: Graph G = (V, E)

- Vertices: $V = \{v_1, \dots, v_n\}$
- Adjacency matrix: $A \in \mathbb{R}^{n \times n}$
- (Optional) Node features: $X \in \mathbb{R}^{n \times d_0}$

Goal: Learn a mapping f:V o y

That predicts graph properties (node/graph labels, ...)

Figure: Rezaei et al, WWW'17

GraphEDM for Supervised GRL

Example: Graph Convolutions (Kipf et al. 2017)

Figure: Kipf and Welling

Thank you!

Many other methods!

Paper:

Machine Learning on Graphs: A Model and Comprehensive Taxonomy (JMLR, 2022)

Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, Kevin Murphy

Paper: https://arxiv.org/abs/2005.03675

LinkedIn:

Twitter: ophanein

