Analyse 3

Feuille d'exercices : Séries numériques

Les exercices avec des étoiles sont à préparer en priorité et sont les seuls qui seront à coup sûr corrigés ¹ en TD.

Nature de séries de terme général de signe constant (à partir d'un certain rang)

*Exercice 1. Déterminer la nature des séries données par les termes généraux suivants :

1.
$$u_n = \frac{1}{n+3}$$

9.
$$u_n = \frac{1}{3n - \sqrt{n}}$$

17.
$$u_n = \frac{\sqrt{n+1}}{\ln(n)^2}$$

$$2. \ u_n = \frac{2^n + 5}{3^n + 11}$$

10.
$$u_n = \frac{1}{n^2 \sqrt{n} + 1}$$

10.
$$u_n = \frac{1}{n^2 \sqrt{n} + 1}$$
 18. $u_n = \left(\frac{1}{2}\right)^{\ln(n)}$

3.
$$u_n = \left(\frac{1}{2} + \frac{1}{n}\right)^n$$

11.
$$u_n = \frac{1}{\sqrt{n} + 2n}$$

19.
$$u_n = \frac{n+5}{n^2+4}$$

$$4. \ u_n = \left(1 - \frac{1}{n}\right)^n$$

12.
$$u_n = \frac{n}{n^2 + 1}$$

20.
$$u_n = \frac{e^{-n}}{n^2}$$

5.
$$u_n = \frac{n+2}{n!}$$

13.
$$u_n = \frac{n + (-1)^n}{n^2 + 1}$$

$$21. \ u_n = \frac{n^2 + 2^n}{n^2 + n}$$

$$\mathbf{6.} \ u_n = n^2 \sin\left(\frac{1}{2^n}\right)$$

14.
$$u_n = \frac{1}{n + (-1)^n}$$

22.
$$u_n = \frac{e^{\frac{n}{2}}}{n^2}$$

7.
$$u_n = \frac{1}{n^2 - 2023}$$

15.
$$u_n = \frac{n}{n^3 - 3n + 5}$$

23.
$$u_n = \frac{n^2 + (-1)^n}{n^2 + n}$$

8.
$$u_n = \frac{1}{n^2 + 1}$$

16.
$$u_n = \ln(1 + \frac{1}{n^{\alpha}}), \alpha \in \mathbb{R}$$
 24. $\frac{1}{shn}$.

24.
$$\frac{1}{shn}$$
.

[.] Partiellement dans le cas des exos 1 et 13

25.
$$\sqrt[n]{n+1} - \sqrt[n]{n}$$
.

25.
$$\sqrt[n]{n+1} - \sqrt[n]{n}$$
. **27.** $2\ln(n^3+1) - 3\ln(n^2+1)$. **29.** $\frac{1}{(\ln n)^{\ln n}}$.

26.
$$\left(1+\frac{1}{n}\right)^n - e$$
.

28.
$$\frac{2.4.6...(2n)}{n^n}$$
.

*Exercice 2. Séries de Bertrand

Soit $u_n = \frac{1}{n^{\alpha}(\ln n)^{\beta}}$ où α et β sont deux paramètres réels. Nature de la série de terme général u_n .

Indication 1 : comparer à des séries de Riemann permet de régler bien des cas.

Indication 2 : calculer la dérivée de $(\ln x)^{\lambda}$ et de $\ln(\ln x)$.

Exercice 3. Soit $\alpha < 1$. Déterminer un équivalent de $\sum_{k=1}^{n} \frac{1}{k^{\alpha}}$. On pourra faire une comparaison série/intégrale.

Exercice 4. Pour quels α la série de terme général $u_n = \frac{1}{n^{\alpha}} - \frac{1}{(n+1)^{\alpha}}$ (pour $n \geq 1$) converge t-elle? Calculer alors sa somme. Peut-on écrire

$$\sum_{n=1}^{+\infty} v_n = \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}} - \sum_{n=1}^{+\infty} \frac{1}{(n+1)^{\alpha}}$$

*Exercice 5. Nature de la série de terme général $u_n = \frac{1}{2n+1} - \frac{1}{2n+2}$. De la série de terme général $u_n = \frac{1}{2n+1} + \frac{1}{2n+2}$?

Exercice 6. Déterminer la nature de la série de terme général

$$u_n = \begin{cases} 1/n & \text{si } n \text{ est un carr\'e} \\ 1/n^2 & \text{sinon} \end{cases}$$

Exercice 7. Soit $\sum a_n$ une série à termes positifs convergente. Nature de la série de terme général

$$u_n = a_0 a_1 \dots a_n$$
?

Exercice 8. Soit $(a_n)_{n\geq 1}$ une suite réelle positive. On pose $u_n=\frac{a_n}{(1+a_1)(1+a_2)\dots(1+a_n)}$ et on considère la série de terme général u_n , dont les sommes partielles sont notées

- 1. Ecrire explicitement S_k pour de petites valeurs de k. En déduire une hypothèse de récurrence sur la formule générale de S_k , puis la démontrer.
- **2.** En déduire que la série $\sum u_n$ converge.
- **3.** On suppose que la série $\sum a_n$ diverge. Calculer $\sum_{n=1}^{+\infty} u_n$.

Exercice 9. 1. Soit u_n une suite positive décroissante telle que $\sum u_n$ est convergente. Montrer que $u_n = o(1/n)$.

2. Montrer que ce n'est plus vrai si u_n n'est pas supposée décroissante. Indication : regarder les autres exos!

Exercice 10. Critère de Raabe-Duhamel.

Soit (u_n) une suite à termes positifs telle qu'il existe $\alpha \in \mathbb{R}$ vérifiant

$$\frac{u_{n+1}}{u_n} = 1 - \frac{\alpha}{n} + o\left(\frac{1}{n}\right), \text{ avec } \alpha \in \mathbb{R}.$$

On fixe $\beta \in \mathbb{R}$ et on pose

$$v_n = n^{\beta} u_n$$
.

1. Montrer que

$$\frac{v_{n+1}}{v_n} = 1 + \frac{\beta - \alpha}{n} + o\left(\frac{1}{n}\right)$$

2. On suppose que $\alpha > 1$. En choisissant astucieusement β , montrer que la série de terme général u_n converge.

On suppose que $\alpha < 1$. En choisissant astucieusement β , montrer que la série de terme général u_n diverge.

- 3. En utilisant les séries de Bertrand, montrer qu'on ne peut pas conclure dans le cas $\alpha = 1$.
- **4.** Pour traiter le cas limite, on suppose désormais que $\frac{u_{n+1}}{u_n} = 1 \frac{1}{n} + O\left(\frac{1}{n^2}\right)$. On choisit $\beta = 1$ et on définit

$$w_n = \ln(v_{n+1}) - \ln(v_n).$$

- 1. Montrer que dans ce cas $w_n = O\left(\frac{1}{n^2}\right)$.
- 2. En déduire que $u_n \sim \frac{\lambda}{n}$ avec $\lambda \geq 0$. Quelle est la nature de la série de terme général u_n ?
- 3. Traiter les cas $u_n = \frac{(2n)!}{2^{2n}(n!)^2}$, $u_n = \frac{(2n)!}{(2n-1)2^{2n}(n!)^2}$.

2 Cas général

Les résultats des deux premiers exercices de cette section peuvent être admis pour résoudre les exercices suivants.

Exercice 11. Série géométrique et série géométrique dérivée. Soit α in \mathbb{R} , on considère les deux séries de terme général u_n et v_n , avec $n \geq 0$ et $u_n = \alpha^n$, $v_n = n\alpha^{n-1}$ (par convention $v_0 = 0$).

- 1. Nature des séries $\sum u_n$ et $\sum v_n$, en fonction de α .
- 2. On suppose $|\alpha| < 1$. Calculer explicitement les sommes partielles de la série de terme général u_n en fonction de α . En déduire une formule explicite pour les sommes partielles de la série de terme général u_n en fonction de α .

3. En déduire que, si $|\alpha| < 1$,

$$\sum_{n=0}^{+\infty} \alpha^n = \frac{1}{1-\alpha}$$

$$\sum_{n=1}^{+\infty} n\alpha^{n-1} = \frac{1}{(1-\alpha)^2}$$

4. Question subsidiaire : montrer que les formules des deux questions précédentes sont toujours vraies en supposant α complexe de module strictement plus petit que 1. Puisqu'on ne sait pas dériver dans $\mathbb C$ il est suggéré de raisonner par récurrence.

Exercice 12. Série exponentielle réelle. Soit x in \mathbb{R} , on considère la série de terme général $\frac{x^n}{n!}$ pour $n \geq 0$.

- 1. Montrer que la série est convergente pour tout $x \in \mathbb{R}$.
- 2. En utilisant le développement limité de e^x en 0 avec reste intégral, montrer que

$$\sum_{n=0}^{+\infty} \frac{x^n}{n!} = e^x$$

*Exercice 13. Justifier la convergence des séries suivantes et calculer leurs sommes.

3.
$$\sum_{n=2}^{\infty} \frac{1}{n^2 - 1}$$

10.
$$\sum_{n=0}^{\infty} \frac{1}{n!}$$

17.
$$\sum_{n=0}^{\infty} \frac{n^3 + 5n^2 + n + 1}{n!}$$

$$4. \sum_{n=0}^{\infty} \frac{n(n-1)}{5^n}$$

11.
$$\sum_{n=0}^{\infty} \frac{4(-1)^{n+1}}{n!}$$

18.
$$\sum_{n=0}^{\infty} \frac{2018^n}{n!}$$

5.
$$\sum_{n=1}^{\infty} \frac{n^2}{5^n}$$
,

12.
$$\sum_{n=0}^{+\infty} \frac{n2^n}{n!}$$

19.
$$\sum_{n=0}^{\infty} \frac{2018^n}{(n+3)!}$$

6.
$$\sum_{n=1}^{\infty} \frac{4n^2 + 5n}{5^n}$$

13.
$$\sum_{n=0}^{\infty} \frac{3^n}{(n+1)!}$$

20.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n!}$$

7.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{3^n}$$

14.
$$\sum_{n=0}^{\infty} \frac{1}{(n+2)!}$$

21.
$$\sum_{n=0}^{\infty} \frac{2^n + 3^n}{n!}$$

8.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n^2}{3^n}$$

15.
$$\sum_{n=0}^{\infty} \frac{n}{(n+1)!}$$

4

22.
$$u_n = \frac{(-1)^n}{n^2}$$

9.
$$\sum_{n=2}^{\infty} \frac{(-1)^n n(n-1)}{3^n}$$

16.
$$\sum_{n=0}^{\infty} \frac{n^2}{n!}$$

23.
$$u_n = \frac{(-1)^{n^2 - n}}{n^3}$$

Exercice 14. Deux exemples de transformations d'Abel.

Une transformation d'Abel, dans le cadre des séries, consiste à exprimer le terme général comme différence de deux sommes, choisies astucieusement. Nous en donnons deux exemples ici.

- 1. On veut déterminer la nature de $\sum \frac{\sin n}{n}$.
- a) On pose $S_n = \sum_{k=0}^n \sin(k)$. Exprimer $\sin(n)$ en fonction des S_k .
- b) Montrer que pour tout $N \in \mathbb{N}$, on a :

$$\sum_{n=1}^{N} \frac{\sin n}{n} = \sum_{k=1}^{N} \frac{S_n}{n(n+1)} - S_0 + \frac{S_{N+1}}{N+1}.$$

- c) Montrer que (S_n) est bornée.
- d) Conclure.
- 2. Soit $\sum a_k$ une série convergente à termes positifs. Notons R_n le reste d'ordre n, c'est à dire :

$$R_n := \sum_{k=n+1}^{+\infty} a_k.$$

- a) Exprimer a_n en fonction des R_k .
- b) Montrer que $\sum R_n$ et $\sum n.a_n$ sont de même nature.

*Exercice 15. La constante d'Euler

1. Montrer que la suite de terme général $u_n = \left(\sum_{k=1}^n \frac{1}{k}\right) - \ln n$ est convergente. On pourra considérer la série de terme général $u_{n+1} - u_n$.

Sa limite est appelée constante d'Euler, notée γ .

- 2. En déduire que $\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + o(1)$.
- 3. En déduire que $\sum_{k=1}^{+\infty} \frac{(-1)^{k+1}}{k} = \ln 2$.

Exercice 16. 1. La série $\sum_{n>0} \frac{(-1)^n}{\sqrt{n+1}}$ est-elle convergente? absolument convergente?

2. Montrer que le produit de Cauchy de la série $\sum_{n\geq 0} \frac{(-1)^n}{\sqrt{n+1}}$ par elle-même donne une série divergente.

Exercice 17. Soit une série convergente de terme général $u_k \ge 0$. Montrer que la série de terme général $(u_k)^2$ est elle aussi convergente. Est-ce toujours le cas si u_k n'est pas une suite positive?

- *Exercice 18. Utilisation de Développements asymptotiques
- 1. On veut déterminer la nature de la série $\sum \frac{(-1)^n}{n+(-1)^n}$.
- a) Peut-on appliquer le critère spécial des séries alternées?
- b) En factorisant n au dénominateur, déterminer un développement asymptotique à 2 termes de $\frac{(-1)^n}{n+(-1)^n}$ et en déduire que la série converge.
- **2.** Quelle est la nature de $\frac{(-1)^n}{\sqrt{n}+(-1)^n}$?

Exercice 19. Soit (u_n) la suite définie par $u_0 \in [0, \pi]$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = 1 - \cos u_n$. Montrer que $u_n \to 0$ et déterminer la nature de la série de terme général u_n .

Exercice 20. La série $\sum \frac{(-1)^n}{\sqrt{n}}$ est-elle convergente? absolument convergente?

Montrer qu'on peut obtenir une série divergent vers $+\infty$ en réordonnant les termes de cette série.

Exercice 21. 1. Montrer que
$$th(a+b) = \frac{th(a) + th(b)}{1 + th(a) \cdot th(b)}$$
.

2. Soit $(x_n)_{n\in\mathbb{N}}$ une suite à valeurs dans [0,1[. On définit une suite $(y_n)_{n\in\mathbb{N}}$ par

$$y_0 = x_0, \quad y_{n+1} = \frac{x_{n+1} + y_n}{1 + x_{n+1} \cdot y_n}.$$

Montrer que la suite $(y_n)_{n\in\mathbb{N}}$ est convergente.

3. Discuter la convergence de la suite de terme général $z_n = \frac{1+y_n}{1-y_n}$ en fonction de celle de la série de terme général x_n .

Exercice 22. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombres réels.

1. On suppose que

$$\forall n \in \mathbb{N}, u_n > 0.$$

Montrer que si la série de terme général u_n est convergente, alors, la série de terme général u_n^2 est convergente.

2. Ce résultat demeure-t-il vrai si les réels u_n ne sont plus supposés positifs?