- 1. Determine si las siguientes afirmaciones son verdaderas o falsas. Justifique.
 - (a) La suma de matrices diagonales es una matriz diagonal.
 - (b) La suma de matrices simétricas es una matriz simétrica.
 - (c) La suma de matrices antisimétricas es una matriz antisimétrica.
 - (d) El producto de matrices diagonales es una matriz diagonal.
 - (e) El producto de dos matrices simétricas es una matriz simétrica.
 - (f) El producto de dos matrices antisimétricas es una matriz antisimétrica.
 - (g) Si A y B son matrices cuadradas tales que $A^2 = A y B = I A$, entonces $B^3 = B$
- 2. Sean las matrices

$$A = \begin{bmatrix} 7 & 2 & 5 \\ -1 & 2 & 4 \\ 3 & 2 & 4 \end{bmatrix}, \ B^t = \begin{bmatrix} 2 & -1 & 3 \\ 4 & 1 & 5 \end{bmatrix}, \ C = \begin{bmatrix} 2 & 1 & 4 & 3 \\ 2 & 0 & 10 & 8 \end{bmatrix}$$

- (a) Calcule las matrices: AB, A^2 y $(BB^t + CC^t)$
- (b) Determine las matrices X e Y tales que $A^2X = Y$ y $B^tY = C$
- 3. Determine todas las matrices A de 2×2 tales que AB=BA si

$$B = \begin{bmatrix} 1 & -3 \\ 0 & 2 \end{bmatrix}$$

- 4. Sea $A \in M_{4\times 2}$ y $P = A(A^tA)^{-1}A^t$. Demuestre que P es idempotente y simétrica.
- 5. Para

$$A = \begin{bmatrix} 9 & 4 & -2 \\ 4 & 6 & 0 \\ -2 & 0 & 10 \end{bmatrix}$$

Calcule una matriz triangular superior B tal que $B^tB=A$.

6. Sea A una matriz cuadrada de orden 3 y $v=\begin{pmatrix} 3\\2\\1 \end{pmatrix}$ un vector de \mathbb{R}^3 . Suponga que:

$$Av = e_1, \ A^2v = e_2, \ A^3v = e_3$$

donde e_1, e_2, e_3 vectores canónicos de \mathbb{R}^3 . Determine A.