Sistemas secuenciales generalizados

Tema 14

Universidad
de La Laguna

Contenido

- > Introducción
- > Detectores de trama
- > Otros circuitos (ver problemas)

F

Universidad

Introducción

Sistema secuencial generalizado

> Fases de diseño (síntesis)

- 1. Extracción del diagrama de estados
- 2. Tabla de transiciones
 - > Codificación de los estados $\implies 2^{n^{\circ}FFs} \geq n^{\circ} \ estados$
 - > Selección de los biestables
 - Obtención de los valores de entrada a los biestables
- 3. Síntesis del circuito
 - > Obtención de las funciones f y g
 - > Dibujar el circuito

Detectores de trama

- > Con solapamiento (sin reinicio)
- > Sin solapamiento (con reinicio)

Ejemplo: detector de la secuencia 101

t=	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
X=	0	0	1	1	0	1	1	0	0	1	0	1	0	1	0
z (con solapamiento) =	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0
z (sin solapamiento) =	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0

Ejemplo: detector de la secuencia 101 con solapamiento Máquina Moore

Máquina Mealy

 $2^{n^{\circ}FFs} \geq n^{\circ}$ estados

4 estados => 2 flip-flops

lop	S ₀ 0 0 S 1 0 S 1 0	S ₁ S ₂	0

Estado	Est.	sig.	Salida			
actual	x=0	x=1	x=0	x=1		
s0	s0	s1	0	0		
s1	s2	s1	0	0		
s2	s0	s1	0	1		

3 estados => 2 flip-flops

Estado actual	Esta sigui	Salida	
	x=0	x=1	
s0	s0	s1	0
s1	s2	s1	1
s2	s0	s3	1
s3	s2	s1	0

Universidad de La Laguna

Ejemplo: detector de la secuencia 101 con solapamiento

Máquina Mealy

(hacer con biestables tipo D y tipo T)

Est. actual	Est. x=0	sig. x=1	Sa	lida	x=0	x=1
$Q_A Q_B$	$oldsymbol{Q_A^+Q_B^+}$	$Q_A^+Q_B^+$	x=0	x=1	$T_A T_B$	$T_A T_B$
00	00	01	0	0	00	01
01	10	01	0	0	11	00
10	00	01	0	1	10	11
11	XX	XX	X	X	XX	XX

 $D_A D_B D_A D_B$

Máquina Mealy

(hacer con biestables tipo D y tipo T)

Est. actual	Est. x=0	. sig. x=1	Sa	lida	x=0	x=1
$Q_A Q_B$	$Q_A^+Q_B^+$	$Q_A^+Q_B^+$	x=0	x=1	$T_A T_B$	$T_A T_B$
00	00	01	0	0	00	01
01	10	01	0	0	11	00
10	00	01	0	1	10	11
11	XX	XX	Χ	X	XX	XX

 $D_A D_B D_A D_B$

Máquina Mealy

Est. actual	Est x=0	. sig. x=1	Sa	lida	x=0	x=1
$Q_A Q_B$	$Q_A^+Q_B^+$	$Q_A^+Q_B^+$	x=0	x=1	$T_A T_B$	$T_A T_B$
00	00	01	0	0	00	01
01	10	01	0	0	11	00
10	00	01	0	1	10	11
11	XX	XX	X	Χ	XX	XX

 $D_A D_B D_A D_B$

Máquina Moore

(hacer con biestables tipo D y tipo T)

Est. actual	Est. x=0	sig. x=1	Salida	x=0	x=1
$Q_A Q_B$	$oldsymbol{Q_A^+Q_B^+}$	$oldsymbol{Q}_A^+ oldsymbol{Q}_B^+$	Z	$T_A T_B$	$T_A T_B$
00	00	01	0	00	01
01	10	01	0	11	00
10	00	11	0	10	01
11	10	01	1	01	10

$$D_A D_B D_A D_B z = Q_A Q_B$$

 $+xQ_AQ_B$

Máquina Moore

(hacer con biestables tipo D y tipo T) $T_A = \overline{x} \overline{Q}_A Q_B + \overline{x} Q_A \overline{Q}_B$

(1	9		(
Est. actual	Est. x=0	sig. x=1	Salida	x=0	x=1	$Q_{\underline{A}}$
$Q_A Q_B$	$Q_A^+Q_B^+$	$Q_A^+Q_B^+$	Z	$T_A T_B$	$T_A T_B$	_
00	00	01	0	00	01	
01	10	01	0	11	00	_
10	00	11	0	10	01	
11	10	01	1	01	10	_
	D_AD_B	D_AD_B	$z = Q_A Q_B$			

)	4
01		05
11	03	1
10	1	06
(T _B)	T _B =>	(⊕Q _B
$X_{A}Q_{B}$	0	1
00	00	1/4
01	1	05
11	X ₃	X_7
10	02	A 6
	11 10 T _B X AQ _B 00 01	11 0 ₃ 10 1 ₂ T _B T _B X 0 00 0 ₀ 01 1 ₁ 11 X ₃

Ejemplo 2: detector de las secuencias 0101 ó 1001 en lotes de 4 bits

Hacer usando máquina Mealy y biestables tipo D

 $2^{n^{\circ}FFs} \geq n^{\circ}$ estados

t=	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
X=	0	1	0	1	0	0	1	0	1	0	0	1	0	1	0	0
z =	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0

Ejemplo 2: detector de las secuencias 0101 ó 1001 en lotes de 4 bits

Máquina Mealy

	Esta actu				stade =0	o siç	Salida x=0 x=1				
	Q_2	Q_1	Q_0	Q_2^+	Q_1^+	Q_0^+	Q_2^+	Q_1^+	Q_0^+	Z	Z
s_0	0	0	0	0	0	1	1	0	0	0	0
s_1	0	0	1	1	0	1	0	1	0	0	0
s_2	0	1	0	0	1	1	1	1	0	0	0
s_3	0	1	1	0	0	0	0	0	0	0	1
S ₄	1	0	0	0	1	0	1	0	1	0	0
s ₅	1	0	1	1	1	0	1	1	0	0	0
<i>s</i> ₆	1	1	0	0	0	0	0	0	0	0	0
	1	1	1	X	X	X	X	X	X	X	X

 D_2 D_1 D_0 D_2 D_1 D_0

Universidadde La Laguna

Ejemplo 2: detector de las secuencias 0101 ó 1001 en lotes de 4 bits

Hacer usando máquina Moore y biestables tipo JK

$$A=(A_3,A_2,A_1,A_0)$$

 $B=(B_3,B_2,B_1,B_0)$

Se introducen primero los bits menos significativos

CODIFICACIÓN DE ESTADOS:

 $2^{n^{\circ}FFs} \geq n^{\circ} \ estados$

Q_A	Q_{B}	
0	0	IGUALES
0	1	AMENOR
1	0	AMAYOR

Q_A	Q_{B}	
0	0	IGUALES
0	1	AMENOR
1	0	AMAYOR

RESET-		\longrightarrow S ₂ (=1 si A>B)
A	Comparador	S ₁ (=1 si A=B)
В —	\wedge	→ S ₀ (=1 si A <b)< td=""></b)<>
'	clk	•

EST. ACTUAL		SALIDA			
0.0	AB=00	AB=01	AB=10	AB=11	CCC
Q_AQ_B	$oldsymbol{Q}_A^+ oldsymbol{Q}_B^+$	$Q_A^+Q_B^+$	$Q_A^+Q_B^+$	$Q_A^+Q_B^+$	$S_2S_1S_0$
00	00	01	10	00	010
01	01	10	01	01	001
10	10	01	10	10	100
11	XX	XX	XX	XX	XXX

Q_A	Q_B	
0	0	IGUALES
0	1	AMENOR
1	0	AMAYOR

TABLA DE TRANSICIONES:

EST. ACTUAL	ESTADO SIGUIENTE												SALIDA
0.0	AB=00	AB=01	AB=10	AB=11	AB	=00	AB:	=01	AB:	=10	AE	B=11	
Q_AQ_B	$Q_A^+Q_B^+$	$Q_A^+Q_B^+$	$Q_A^+Q_B^+$	$Q_A^+Q_B^+$	$J_A K_A$	J_BK_B	$J_A K_A$	J_BK_B	$J_A K_A$	J_BK_B	J_AK_A	J_BK_B	$S_2S_1S_0$
00	00	01	10	00	0X	0X	0X	1X	1X	0X	0X	0X	010
01	01	10	01	01	0X	Х0	0 X	X0	1X	X1	0X	X0	001
10	10	01	10	10	Х0	0X	X1	1X	X0	0X	X0	0X	100
11	XX	XX	XX	XX	XX	XX	XX	XX	XX	XX	XX	XX	XXX

 s_1 $s_1 = \overline{Q}_A \overline{Q}_B$

EST. ACTUAL	ESTADO SIGUIENTE												SALIDA
0.0	AB=00	AB=01	AB=10	AB=11	AB	=00	AB:	=01	AB:	=10	AE	S=11	
Q_AQ_B	$Q_A^+Q_B^+$	$Q_A^+Q_B^+$	$Q_A^+Q_B^+$	$Q_A^+Q_B^+$	J_AK_A	J_BK_B	J_AK_A	J_BK_B	J_AK_A	J_BK_B	J_AK_A	J_BK_B	$S_2S_1S_0$
00	00	01	10	00	0 X	0X	0 X	1X	1X	0X	0 X	0X	010
01	01	10	01	01	0 X	X ₀	0 X	X ₀	1X	X1	0 X	X ₀	001
10	10	01	10	10	X0	0X	X1	1X	X0	0X	X0	0X	100
11	XX	XX	XX	XX	XX	XX	XX	XX	XX	XX	XX	XX	XXX

 J_A $J_A=A\overline{B}$

 (K_A) $K_A = \overline{A}B$

 $\overline{J_B}$ $J_B = \overline{A}B$

 $\left(\mathbf{K}_{\mathsf{B}}\right)$ $\mathbf{K}_{\mathsf{B}} = \mathsf{A}\overline{\mathsf{B}}$

S ₂	S2=	:Q _A	S ₁	$s_1 = \overline{Q}_A \overline{Q}$				
Q _A	0	1	Q _A	0	1			
0	0	1	0	1	0			
1	0	\mathbf{x}	1	0	Х			

s_0	S 0=	Q_B
QA QB	0	1
0	0	0
1	1	X