takeUforward

~ Strive for Excellence

April 13, 2022 • Interviews

Striver's SDE Sheet - Top Coding Interview Problems

Striver's SDE Sheet

(Striver's SDE Sheet – Sheet for the sole purpose of quick revision and preparation in less time focusing on top coding interview problems)

Made with love by takeUforward!

What is Striver SDE Sheet?

SDE Sheet contains very handily crafted and picked top coding interview questions from different topics of Data Structures & Algorithms. These questions are one of the most asked coding interview questions in coding interviews of companies like Amazon, Microsoft, Media.net, Flipkart, etc, and cover almost all of the concepts related to Data Structure & Algorithms.

Why trust the Striver SDE sheet?

This is sheet is prepared by Raj Vikramaditya A.K.A Striver, Candidate Master, 6*, who has bagged offers from **Google** Warsaw, **Facebook** London, **Media.net**(Directi). He has also interned at **Amazon** India. He is also one of the top educators at Unacademy and was at GeeksforGeeks as well. Not only this, hundreds of students cleared interviews of top companies with the help of this sheet. What are you waiting for?

Share on Whatsapp

Note: If you find the sheet useful, you can also contribute an article or solution for any problem to be published on takeuforward.org! <u>Click here for more details</u>.

Find both C++/Java codes of all problem in the articles in the first column.

Problem	Practice Link	Video Solution	Practice Link 2
<u>Set Matrix Zeroes</u>	<u>Link 1</u>	YT	Link 2
<u>Pascal's Triangle</u>	<u>Link 1</u>	YT	Link 2
Next Permutation	Link 1	YT	Link 2
<u>Kadane's Algorithm</u>	Link 1	YT	Link 2
Sort an array of 0's 1's 2's	Link 1	YT	Link 2
Stock buy and Sell	Link 1	YT	Link 2

Day 2: Arrays Part-II

Find both C++/Java codes of all problem in the articles in the first column.

Problem	Practice Link 1	Video Solution	Practice Link 2
Rotate Matrix	Link 1	YT	Link 2
Merge Overlapping Subintervals	Link 1	YT	Link 2
Merge two sorted Arrays without extra space	<u>Link 1</u>	YT	Link 2
Find the duplicate in an array of N+1 integers.	Link 1	YT	Link 2
Repeat and Missing Number	Link 1	YT	Link 2
Inversion of Array (Pre-req: Merge Sort)	Link 1	YT	Link 2

Problem	Practice Link 1	Video Solution	Practice Link 2
Search in a 2d Matrix	Link 1	YT	Link 2
<u>Pow(X,n)</u>	Link 1	YT	Link 2
Majority Element (>N/2 times)	Link 1	YT	Link 2
Majority Element (>N/3 times)	Link 1	YT	Link 2
Grid Unique Paths	Link 1	YT	Link 2
Reverse Pairs (Leetcode)	Link 1	YT	Link 2

Day 4: Arrays Part-IV

×

Find both C++/Java codes of all problem in the articles in the first column.

Problem	Practice Link 1	Video Solution	Practice Link 2
2-Sum-Problem	Link 1	YT	Link 2
<u>4-sum-Problem</u>	Link 1	YT	Link 2
Longest Consecutive Sequence	Link 1	YT	Link 2
Largest Subarray with 0 sum	Link 1	YT	Link 2
Count number of subarrays with given Xor K	Link 1	YT	Link 2
Longest Substring without repeat	Link 1	YT	Link 2

Day 5: Linked List

×

Problem	Practice Link 1	Video Solution	Practice Link 2
Reverse a LinkedList	Link 1	YT	Link 2
Find the middle of LinkedList	Link 1	YT	Link 2
Merge two sorted Linked List (use method used in mergeSort)	Link 1	YT	Link 2
Remove N-th node from back of LinkedList	Link 1	YT	Link 2

pay 6: Linked List Part-II

Find both C++/Java codes of all problem in the articles in the first column.

Problem	Practice Link 1	Video Solution	Practice Link 2
Find intersection point of Y LinkedList	Link 1	YT	Link 2
Detect a cycle in Linked List	Link 1	YT	Link 2
Reverse a LinkedList in groups of size k.	Link 1	YT	Link 2
Check if a LinkedList is palindrome or not.	<u>Link 1</u>	YT	Link 2
Find the starting point of the Loop of LinkedList	Link 1	YT	Link 2
Flattening of a LinkedList	Link 1	YT	Link 2

Day 7: Linked List and Arrays

Find both C++/Java codes of all problem in the articles in the first column.

Problem	Practice Link 1	Video Solution	Practice Link 2
Rotate a LinkedList	Link 1	YT	Link 2
Clone a Linked List with random and next pointer	Link 1	YT	Link 2
<u>3 sum</u>	Link 1	YT	<u>Link 2</u>
<u>Trapping rainwater</u>	Link 1	YT	Link 2
Remove Duplicate from Sorted array	Link 1	YT	Link 2
Max consecutive ones	Link 1	YT	Link 2

Day 8: Greedy Algorithm ×

Problem	Practice	Video	Practice	
Problem	Link 1	Solution	Link 2	

Minimum number of platforms required for a railway	Link 1	YT	Link 2
<u>Job sequencing Problem</u>	Link 1	YT	Link 2
<u>Fractional Knapsack Problem</u>	Link 1	YT	Link 2
Greedy algorithm to find minimum number of coins	Link 1	YT	Link 2
Activity Selection (it is the same as N meeting in one room)	Link 1	YT	Link 2

Day 9: Recursion

×

Find both C++/Java codes of all problem in the articles in the first column.

I will recommend you to do <u>this</u> playlist at first, so that you learn A-Z of recursion.

Problem	Practice Link	Video Solution	Practice Link 2
<u>Subset Sums</u>	Link 1	YT	Link 2
Subset-II	Link 1	YT	Link 2
Combination sum-1	Link 1	YT	Link 2
Combination sum-2	Link 1	YT	Link 2
Palindrome Partitioning	Link 1	YT	Link 2
K-th permutation Sequence	Link 1	YT	Link 2

Day 10: Recursion and Backtracking

Find both C++/Java codes of all problem in the articles in the first column.

I will recommend you to do this playlist at first, so that you learn A-Z of recursion.

Problem	Practice Link 1	Video Solution	Practice Link 2
Print all permutations of a string/array	Link 1	YT	Link 2
<u>N queens Problem</u>	Link 1	YT	Link 2
<u>Sudoku Solver</u>	Link 1	YT	Link 2
M coloring Problem	Link 1	YT	Link 2
Rat in a Maze	Link 1	YT	Link 2
Word Break (print all ways)	Link 1	YT	Link 2

Find both C++/Java codes of all problem in the articles in the first column.

Problem	Practice Link 1	Video Solution	Practice Link 2
The N-th root of an integer	Link 1	YT	Link 2
Matrix Median	Link 1	YT	Link 2
Find the element that appears once in a sorted array, and the rest element appears twice (Binary search)	Link 1	YT	Link 2
Search element in a sorted and rotated array/ find pivot where it is rotated	Link 1	YT	Link 2
Median of 2 sorted arrays	Link 1	YT	Link 2
K-th element of two sorted arrays	Link 1	YT	Link 2
Allocate Minimum Number of Pages	Link 1	YT	Link 2
Aggressive Cows	Link 1	YT	Link 2

Day 12: Heaps

Find both C++/Java codes of all problem in the articles in the first column.

Problem	Practice Link 1	Video Solution	Practice Link 2
Max heap, Min Heap Implementation (Only for interviews)	Link 1	NA	NA
Kth Largest Element	Link 1	NA	Link 2
Maximum Sum Combination	Link 1	NA	Link 2
Find Median from Data Stream	Link 1	NA	Link 2
Merge K sorted arrays	Link 1	NA	Link 2
K most frequent elements	Link 1	NA	Link 2

Day 13: Stack and Queue X

Problem	Practice Link 1	Video Solution	Practice Link 2
Implement Stack Using Arrays	<u>Link 1</u>	YT	Link 2

single queue)			
Implement Queue using Stack (0(1) amortized method)	Link 1	YT	Link 2
Check for balanced parentheses	Link 1	YT	Link 2
Next Greater Element	Link 1	YT	Link 2
Sort a Stack	Link 1	YT	Link 2

Day 14: Stack and Queue Part-II

Find both C++/Java codes of all problem in the articles in the first column.

Problem	Practice Link 1	Video Solution	Practice Link 2
Next Smaller Element	Link 1	YT	Link 2
LRU cache (IMPORTANT)	Link 1	YT	Link 2
LFU Cache	Link 1	YT	Link 2
Largest rectangle in a histogram	Link 1	<u>YT1</u> / <u>YT2</u>	Link 2
Sliding Window maximum	Link 1	YT	Link 2
Implement Min Stack	Link 1	YT	Link 2
Rotten Orange (Using BFS)	Link 1	YT	Link 2
Stock Span Problem	Link 1	YT	Link 2
Find the maximum of minimums of every window size	Link 1	YT	Link 2
The Celebrity Problem	Link 1	YT	<u>Link 2</u>

Day 15: String

Find both C++/Java codes of all problem in the articles in the first column.

Problem	Practice Link 1	Video Solution	Practice Link 2
Reverse Words in a String	Link 1	YT	Link 2
Longest Palindrome in a string	Link 1	YT	Link 2
Roman Number to Integer and vice versa	Link 1	YT	Link 2
Implement ATOI/STRSTR	Link 1	YT	Link 2
Longest Common Prefix	Link 1	YT	Link 2

Find both C++/Java codes of all problem in the articles in the first column.

Problem	Practice Link 1	Video Solution	Practice Link 2
Z-Function	Link 1	YT	Link 2
KMP algo / LPS(pi) array	Link 1	YT	Link 2
Minimum characters needed to be inserted in the beginning to make it palindromic	Link 1	YT	Link 2
Check for Anagrams	Link 1	YT	Link 2
Count and Say	Link 1	YT	Link 2
Compare version numbers	Link 1	YT	Link 2

Day 17: Binary Tree

Find both C++/Java codes of all problem in the articles in the first column.

I will recommend you to do this playlist at first, so that you learn A-Z of Binary Trees.

Problem	Practice Link 1	Video Solution	Practice Link 2
<u>Inorder Traversal</u>	Link 1	<u>YT1</u> / <u>YT2</u>	Link 2
<u>Preorder Traversal</u>	Link 1	<u>YT1</u> / <u>YT2</u>	Link 2
<u>Postorder Traversal</u>	Link 1	<u>YT1</u> / <u>YT2</u>	Link 2
Morris Inorder Traversal	Link 1	YT	Link 2
Morris Preorder Traversal	Link 1	YT	Link 2
<u>LeftView Of Binary Tree</u>	Link 1	YT	Link 2
Bottom View of Binary Tree	Link 1	YT	Link 2
<u>Top View of Binary Tree</u>	Link 1	YT	Link 2
Preorder inorder postorder in a single traversal	Link 1	YT	Link 2
<u>Vertical order traversal</u>	Link 1	YT	Link 2
Root to node path in a Binary Tree	Link 1	YT	Link 2
Max width of a Binary Tree	Link 1	YT	Link 2

I will recommend you to do this playlist at first, so that you learn A-Z of Binary Trees.

Problem	Practice Link 1	Video Solution	Practice Link 2
Level order Traversal / Level order traversal in spiral form	Link 1	YT	Link 2
<u>Height of a Binary Tree</u>	Link 1	YT	Link 2
<u>Diameter of Binary Tree</u>	Link 1	YT	Link 2
Check if the Binary tree is height- balanced or not	Link 1	YT	Link 2
LCA in Binary Tree	Link 1	YT	Link 2
Check if two trees are identical or not	Link 1	YT	Link 2
Zig Zag Traversal of Binary Tree	Link 1	YT	Link 2
Boundary Traversal of Binary Tree	Link 1	YT	Link 2

Day 19: Binary Tree part-III

×

Find both C++/Java codes of all problem in the articles in the first column.

I will recommend you to do this playlist at first, so that you learn A-Z of Binary Trees.

Problem	Practice Link 1	Video Solution	Practice Link 2
Maximum path sum	Link 1	YT	Link 2
Construct Binary Tree from inorder and preorder	Link 1	YT	Link 2
Construct Binary Tree from Inorder and Postorder	Link 1	YT	Link 2
Symmetric Binary Tree	Link 1	YT	Link 2
Flatten Binary Tree to LinkedList	Link 1	YT	Link 2
Check if Binary Tree is the mirror of itself or not	Link 1	YT	Link 2
Check for Children Sum Property	Link 1	YT	Link 2

Day 20: Binary Search Tree

>

	Link 1	Solution	Link 2
Populate Next Right pointers of Tree	Link 1	YT	Link 2
Search given Key in BST	Link 1	YT	Link 2
Construct BST from given keys	Link 1	YT	Link 2
Construct BST from preorder traversal	Link 1	YT	Link 2
Check is a BT is BST or not	Link 1	YT	Link 2
Find LCA of two nodes in BST	Link 1	YT	Link 2
Find the inorder predecessor/successor of a given Key in BST.	Link 1	YT	Link 2

Day 21: Binary Search Tree Part-II

×

Find both C++/Java codes of all problem in the articles in the first column.

I will recommend you to do this playlist at first, so that you learn A-Z of Binary Trees.

Problem	Practice Link 1	Video Solution	Practice Link 2
Floor in a BST	Link 1	YT	Link 2
Ceil in a BST	Link 1	YT	Link 2
Find K-th smallest element in BST	Link 1	YI	Link 2
Find K-th largest element in BST	Link 1	YT	Link 2
Find a pair with a given sum in BST	Link 1	YT	Link 2
BST iterator	Link 1	YT	Link 2
Size of the largest BST in a Binary Tree	Link 1	YT	Link 2
Serialize and deserialize Binary Tree	Link 1	YT	Link 2

Day 22: Binary Trees[Miscellaneous]

Find both C++/Java codes of all problem in the articles in the first column.

I will recommend you to do this playlist at first, so that you learn A-Z of Binary Trees.

	Practice	Video	Practice	
Problem				X

Find median in a stream of running integers.	<u>Link 1</u>	YT	Link 2
K-th largest element in a stream.	Link 1	YT	Link 2
Distinct numbers in Window.	Link 1	YT	Link 2
K-th largest element in an unsorted array.	Link 1	YT	Link 2
Flood-fill Algorithm	Link 1	YT	Link 2

Day 23: Graph

Find both C++/Java codes of all problem in the articles in the first column.

I will recommend you to do this playlist at first, so that you learn A-Z of Graphs.

Problem	Practice Link 1	Video Solution	Practice Link 2
Clone a graph (Not that easy as it looks)	<u>Link 1</u>	YT	Link 2
DFS	Link 1	YT	Link 2
<u>BFS</u>	Link 1	YT	Link 2
Detect A cycle in Undirected Graph using BFS	Link 1	YT	Link 2
Detect A cycle in Undirected Graph using DFS	Link 1	YT	Link 2
Detect A cycle in a Directed Graph using DFS	<u>Link 1</u>	YT	Link 2
Detect A cycle in a Directed Graph using BFS	<u>Link 1</u>	YT	Link 2
<u>Topological Sort BFS</u>	Link 1	YT	Link 2
<u>Topological Sort DFS</u>	Link 1	YT	Link 2
Number of islands(Do in Grid and Graph Both)	<u>Link 1</u>	YT	Link 2
Bipartite Check using BFS	Link 1	YT	Link 2
Bipartite Check using DFS	Link 1	YT	Link 2

Day 24: Graph Part-II

Problem	Practice	Video	Practice
	Link 1	Solution	Link 2
Strongly Connected	Link 1	YT	Link 2
<u>Component(using KosaRaju's algo)</u>			
<u>Dijkstra's Algorithm</u>	Link 1	<u>YT</u>	Link 2
Bellman-Ford Algo	Link 1	<u>YT</u>	Link 2
Floyd Warshall Algorithm	Link 1	YT	Link 2
MST using Prim's Algo	Link 1	YT	Link 2
MST using Kruskal's Algo	Link 1	<u>YT</u>	Link 2

Day 25: Dynamic Programming

×

Find both C++/Java codes of all problem in the articles in the first column.

I will recommend you to do this playlist at first, so that you learn A-Z of DP.

Problem	Practice Link 1	Video Solution	Practice Link 2
Max Product Subarray	Link 1	YT	Link 2
Longest Increasing Subsequence	Link 1	YT	Link 2
Longest Common Subsequence	Link 1	YT	Link 2
<u>0-1 Knapsack</u>	Link 1	YT	Link 2
Edit Distance	Link 1	YT	Link 2
Maximum sum increasing subsequence	Link 1	YT	Link 2
Matrix Chain Multiplication	Link 1	YT	Link 2

Day 26: Dynamic Programming Part-II

×

Find both C++/Java codes of all problem in the articles in the first column.

I will recommend you to do this playlist at first, so that you learn A-Z of DP.

Problem	Practice	Video	Practice
	Link 1	Solution	Link 2
Minimum sum path in the matrix, (count paths and similar type do, also backtrack to find the Minimum path)	<u>Link 1</u>	YT	Link 2

Rod Cutting	Link 1	<u>YT</u>	Link 2
Egg Dropping	<u>Link 1</u>	YT	Link 2
Word Break	Link 1	YT	Link 2
Palindrome Partitioning (MCM Variation)	Link 1	YT	Link 2
Maximum profit in Job scheduling	Link 1	YT	Link 2

Day 27: Trie

Find both C++/Java codes of all problem in the articles in the first column.

I will recommend you to do this playlist at first, so that you learn A-Z of Tries.

Problem	Practice Link 1	Video Solution	Practice Link 2
Implement Trie (Prefix Tree)	Link 1	YT	Link 2
<u>Implement Trie – 2 (Prefix Tree)</u>	Link 1	YT	Link 2
Longest String with All Prefixes	Link 1	YT	Link 2
Number of Distinct Substrings in a String	Link 1	YT	Link 2
Power Set (this is very important)	Link 1	YT	Link 2
Maximum XOR of two numbers in an array	Link 1	YT	Link 2
Maximum XOR With an Element From Array	Link 1	YT	Link 2

Day 28: Operating System Revision (Refer Sheet for OS Questions)

- 1. Revise OS notes that you would have made during your sem
- 2. If not made notes, spend 2 or 3 days and make notes from Knowledge Gate.

Day 29: DBMS Revision (Refer <u>Sheet</u> for DBMS Questions)

- 1. Revise DBMS notes that you would have made during your sem
- 2. If not made notes, spend 2 or 3 days and make notes from Knowledge Gate.

Day 30: Computer Networks Revision (Refer Sheet for CN Questions) ★

1. Revise CN notes that you would have made during your sem

×

Make a note of how will your represent your projects, and prepare all questions related to tech which you have used in your projects. Prepare a note which you can say for 3-10 minutes when he asks you that say something about the project.

Hurrah!! You are ready for your placement after a month of hard work without a cheat day.

— ~Striver

Share the sheet with your friends, created with love for takeUforward fam!

Share on Whatsapp

« Previous Post

Next Post »

For loop in Java

Sliding Window Technique

Load Comments

Copyright © 2022 takeuforward | All rights reserved