

Лекция 2

Группы и гомоморфизмы

Содержание лекции:

В настоящей лекции мы введем одно из центральных структур алгебры - группу. Рассматривая группу как иллюстративный пример множества с внутренним законом композиции, мы введем основные опредления, связанные с этой структурой, а также подготовимся к формулировке одного из самых известных утверждений о группах - теоремы об изоморфизме.

Ключевые слова:

Магма, полугруппа, моноид, группа, коммутативная группа, гомоморфизм групп, изоморфизм, автоморфизм, ядро гомоморфизма, образ гомоморфизма, вложение.

Авторы курса:

Трифанов А.И.

Москаленко М. А.

Ссылка на ресурсы:

mathdep.ifmo.ru/geolin

2.1 Основные структуры

Множество, наделенное внутренним законом композиции, называется магмой.

Пример 2.1. Пусть множество M содержит только три элемента $\{-1,0,1\}$. Алгебраическую структуру магмы на S задает следующий закон композиции:

$$x \circ y = x <=> y = \begin{cases} 1, & x < y, \\ 0, & x = y, \\ -1, & x > y. \end{cases}$$

Множество M, наделенное **ассоциативным** всюду определенным законом композиции называется **полугруппой**.

Пример 2.2. Множество натуральных чисел \mathbb{N} с операцией операцией $\circ = " + "$ является полугруппой $(\mathbb{N}, " + ")$.

 $\|$ Полугруппа S, содержащая **нейтральный элемент**, называется **моноидом**.

Пример 2.3. Множество натуральных чисел $\mathbb N$ с операцией операцией $\circ = "\cdot"$ является моноидом $(\mathbb N,1,"\cdot")$.

2.2 Определение группы

Непустое множество G называется **группой**, если на нем задан закон композиции $G \times G \to G$, так что $(x,y) \mapsto xy$ и имеют место следующие три свойства:

G1. Ассоциативность закона:

$$\forall x, y, z \in G \quad (xy)z = x(yz).$$

G2. Существует нейтральный элемент:

$$\exists e \in G: \forall x \in G \quad xe = x = ex.$$

G3. Существует обратный элемент:

$$\forall x \in G \quad \exists \, x^{-1} : \quad xx^{-1} = e = x^{-1}x.$$

ГРУППЫ И ГОМОМОРФИЗМЫ

Пример 2.4. На практике группы чаще всего встречаются в виде *групп преобра- зований* каких-то объектов:

- группа D_3 симметрий правильного треугольника;
- симметрическая группа S_n перестановок;
- группа Рубика группа внутренних вращений кубика Рубика;

Коммутативной или **абелевой** называется такая группа, любые два элемента которой *коммутируют*:

$$\forall x, y \in G \quad xy = yx.$$

Пример 2.5. Примеры коммутативных групп:

- 1. Аддитивная группа целых чисел \mathbb{Z}^+ ;
- 2. Мультипликативная группа вещественных чисел $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$;
- 3. Группа углов (точек единичной окружности) группа вещественныз чисел \mathbb{R}^+ по модулю $2\pi\mathbb{Z}$. Групповая операция \oplus определяется следующим образом:

$$\begin{cases} x \oplus y = x + y, & x + y < 2\pi \\ x \oplus y = x + y - 2\pi, & x + y \ge 2\pi \end{cases}$$

- 4. Булева группа множества X множество 2^X всех подмножеств множества X вместе с операцией симметрической разности Δ ;
- 5. Группа размерностей физических величин;

2.3 Гомоморфизмы групп

Гомоморфизмом групп G и G' называется отображение $\sigma: G \to G'$, обладающее следующими свойствами:

$$\forall x, y \in G \quad \sigma(xy) = \sigma(x)\sigma(y), \quad \sigma(e) = e'.$$

Nota bene Множество гомоморфизмов из группы G в группу G' принято обозначать $\mathrm{Hom}(G,G')$. Гомоморфизмы из G в G называются эндоморфизмами и их множество обозначается $\mathrm{End}(G) \triangleq \mathrm{Hom}(G,G)$.

ГРУППЫ И ГОМОМОРФИЗМЫ

Nota bene Напомним некоторые свойства отображений. Пусть M и N - два множества и $f: M \to N$. Отображение f называется индективным (или индекцией), если имеет место свойство:

$$f(x) = f(y) \Rightarrow x = y.$$

Далее, отображение f называется $c \omega p \omega e \kappa m u \varepsilon h \omega m u \varepsilon \omega p \omega e \kappa u u e \ddot{u}$, если

$$\forall y \in N \quad \exists x \in M : \quad f(x) = y.$$

 \mathbf{M} , наконец, f, будучи сюрьекцией и инъекцией называется биекцией (или взаимнооднозначным отображением). В этом случае

$$\exists g: N \to M$$
 : $g \circ f = \mathrm{id}_M$, $f \circ g = \mathrm{id}_N$.

Рассмотрим ситуацию, когда соответствующие множества имеют структуру группы.

Лемма 2.1. Пусть $\sigma \in \text{Hom}(G, G')$, тогда

$$\forall x \in G \quad \sigma(x^{-1}) = \sigma(x)^{-1}.$$

Гомоморфизм σ называется **изоморфизмом**, если

$$\exists \chi \in \text{Hom}(G', G) : \quad \chi \circ \sigma = \text{id}_G, \quad \sigma \circ \chi = \text{id}_{G'}.$$

Соответствующие группы при этом называются *изоморфными* (пишут $G \simeq G'$).

Nota bene Подмножество отображений в Hom(G,G'), являющихся изоморфизмами, принято обозначать Iso(G,G'). В случае Iso(G,G) обычно пишут Aut(G) и соответствующие отображения называют **автоморфизмами**.

Пример 2.6. Множество Aut(G) вместе с операцией композиции и тождественным отображением id_G является группой (автоморфизмов группы G).

Ядром гомоморфизма $\sigma \in \text{Hom}(G, G')$ называется множество

$$\ker \sigma = \{ g \in G : \quad \sigma(g) = e' \}.$$

Лемма 2.2. Ядро $\ker \sigma$ является группой.

Лемма 2.3. Гомоморфизм $\sigma \in \text{Hom}(G, G')$ ядро которого тривиально иньективен.

Образом гомоморфизма $\sigma \in \text{Hom}(G, G')$ называется подмножество G, такое что

Im
$$\sigma = \{ g' \in G' : \exists g \in G, \sigma(g) = g' \}$$
.

Лемма 2.4. Образ $\text{Im } \sigma$ является группой.

Вложением называется гомоморфизм $\sigma \in \text{Hom}(G, G')$, обладающий следующим свойством

$$G \simeq \operatorname{Im} \sigma \subset G'$$
.