Existence of Minima

Determine whether there exists a minimum value in the range (set of values) of the following functions defined on the set of real numbers:

- 1. $f(x) = 2^x + 2^{-x}$
- 2. $f(x) = \frac{1}{x^2+1}$
- 3. $f(x) = x^3$
- 4. $f(x) = x^2$

Solutions

a)
$$f(x) = 2^x + 2^{-x}$$

Analysis:

The function $f(x) = 2^x + 2^{-x}$ is the sum of two exponential functions. To find its minimum value, we can use the properties of exponential functions.

Finding the Minimum:

To analyze the function, rewrite 2^{-x} as $\frac{1}{2^x}$:

$$f(x) = 2^x + \frac{1}{2^x}$$

Let $y = 2^x$. Since y > 0, the function can be expressed in terms of y:

$$f(y) = y + \frac{1}{y}$$

To find the minimum value, take the derivative of f(y) with respect to y and set it to zero:

$$f'(y) = 1 - \frac{1}{y^2}$$

Setting f'(y) = 0:

$$1 - \frac{1}{y^2} = 0 \implies y^2 = 1 \implies y = 1 \quad (y > 0)$$

Now, evaluate f(y) at this critical point:

$$f(1) = 1 + 1 = 2$$

Conclusion: The minimum value of f(x) is 2, and therefore, there exists a minimum value in the range of the function.

b)
$$f(x) = \frac{1}{x^2+1}$$

Analysis:

The function $f(x) = \frac{1}{x^2+1}$ is defined for all real numbers x. The denominator $x^2 + 1$ is always positive and achieves its minimum value of 1 when x = 0.

Finding the Minimum:

The maximum value of f(x) occurs at x = 0:

$$f(0) = \frac{1}{0^2 + 1} = 1$$

As |x| increases, $x^2 + 1$ increases, leading to a decrease in f(x):

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{1}{x^2 + 1} = 0$$

However, f(x) never actually reaches 0; it only approaches it.

Conclusion: Therefore, there is no minimum value (infimum) in the range of the function f(x) because while it can get arbitrarily close to 0, it never actually reaches it.

c)
$$f(x) = x^3$$

Analysis:

The function $f(x) = x^3$ is a cubic polynomial. It is defined for all real x. Finding the Minimum:

As x approaches negative infinity, f(x) also approaches negative infinity:

$$\lim_{x \to -\infty} f(x) = -\infty$$

As x approaches positive infinity, f(x) approaches positive infinity:

$$\lim_{x \to \infty} f(x) = \infty$$

Since the function can take any real value, there is no minimum value in the range.

Conclusion: There is no minimum value in the range of the function f(x).

d)
$$f(x) = x^2$$

Analysis:

The function $f(x) = x^2$ is a quadratic polynomial. It is defined for all real x and is always non-negative.

Finding the Minimum:

The minimum value occurs at x = 0:

$$f(0) = 0^2 = 0$$

As |x| increases, f(x) also increases:

$$\lim_{x \to \pm \infty} f(x) = \infty$$

Conclusion: The minimum value of f(x) is 0, and therefore, there exists a minimum value in the range of the function.

Summary of Results

- 1. $f(x) = 2^x + 2^{-x}$: Exists minimum value, 2
- 2. $f(x) = \frac{1}{x^2+1}$: Does not exist minimum value
- 3. $f(x) = x^3$: Does not exist minimum value
- 4. $f(x) = x^2$: Exists minimum value, **0**