

100 —

	Map name	Sampling Requirement	Minimum Isotropy	Map Components
102 —	OpenGL	8	0	1
	Cube	24	0.58	. 6
	Dual Stereographic	32	1	2
	Lat/Long	19.7	0	1
104	Dual Equidistant*	19.7	0.64	2
	Low Distortion Area Preserving*	19.7	0.29	1
	Polar-Capped* (stretch invariant)	14.8	0.71	3
	Polar-Capped* (conformal)	16.5	1	3
	Polar-Capped* (hexagonally reparameterized)	13.5	0.58	3
	Optimal Isometric**	12.57	1	∞
	Optimal**	10.9	0.58	∞

Fig. 2

(b) hexagonal

Fig. 4

200 —

	Equidistant	Gnomonic	Stereographic	Lambert Equal Area
$\theta(r)$	(π/2)r	$\cos^{-1}\left(\sqrt{1/(r^2+1)}\right)$	$\cos^{-1}\left(\left(1-r^2\right)/\left(1+r^2\right)\right)$	$\cos^{-1}(1-r^2)$
properties	stretch-preserving	projects great cir- cles to lines	conformal, projects circles to circles	area- preserving
r* covering hemisphere	[0, 1]	[0,∞]	[0, 1]	[0, 1]
r* covering sphere	[0, 2]	-	[0,∞]	$[0,\sqrt{2}]$
r(θ)	$2\theta/\pi$	$ an oldsymbol{ heta}$	$\tan(\theta/2)$	$\sqrt{1-\cos\theta}$
$\sin heta$	$\sin((\pi/2)r)$	$r/\sqrt{r^2+1}$	$2r/(1+r^2)$	$r\sqrt{2-r^2}$
$\cos heta$	$\cos((\pi/2)r)$	$\sqrt{1/(r^2+1)}$	$(1-r^2)/(1+r^2)$	$1-r^2$
$\lambda_1(\theta)$	$\pi/2$	$\cos heta$	$1 + \cos \theta$	$2/\sqrt{1+\cos\theta}$
$\lambda_2(\theta)$	$(\pi/2)$ sinc θ	$\cos^2 \theta$	$1 + \cos \theta$	$\sqrt{1+\cos\theta}$
$\alpha(\theta)$	$\operatorname{sinc} heta$	$\cos heta$	1	$(1+\cos\theta)/2$
$\tau(\theta)$	$(\pi/2)^2 \operatorname{sinc} \theta$	$\cos^3 \theta$	$(1+\cos\theta)^2$	2
$\lambda_1^{\bullet}(\theta)$	$\pi/2$	1	2	$2/\sqrt{1+\cos\theta}$
$M_{s}(\theta)$. 4 $ heta^2$	$4 \tan^2 \theta$	$16 \tan^2(\theta/2)$	$16 \tan^2(\theta/2)$
inverse map	$f = (\pi/2)\operatorname{sinc}(\cos^{-1} z)$ $u = x/f$ $v = y/f$	u = x/z $v = y/z$	u = x/(1+z) $v = y/(1+z)$	$u = x / \sqrt{1 + z}$ $v = y / \sqrt{1 + z}$

500 —

	Plane Chart	Equal Area	Mercator
$\theta(v)$	2πν	sin⁴V	sin ⁴(tanh(2πν))
properties	stretch-preserving	area-preserving	conformal
v covering sphere	[-1/4,1/4]	[4, 1]	[-∞, ∞]
<i>ν</i> (<i>θ</i>)	$\theta/(2\pi)$	$\sin heta$	$\tanh^{-1}(\sin\theta)/(2\pi)$ $= \ln((1+\sin\theta)/(1-\sin\theta))/(2\pi)$
$\cos heta$	$\cos(2\pi v)$	$\sqrt{1-v^2}$	$\operatorname{sech}(2\pi v) = 2/(e^{-2\pi v} + e^{2\pi v})$
$\sin heta$	$\sin(2\pi v)$	v	$\tanh(2\pi v) = (e^{2\pi v} - e^{-2\pi v})/(e^{2\pi v} + e^{-2\pi v})$
$\lambda_1(\theta)$	2π	$\max(1/\cos\theta, 2\pi\cos\theta)$	$2\pi\cos\theta$
$\lambda_2(\theta)$	$2\pi\cos\theta$	$\min(1/\cos\theta, 2\pi\cos\theta)$	$2\pi\cos\theta$
$\alpha(\theta)$	$\cos heta$	$\min(1/(2\pi\cos^2\theta), 2\pi\cos^2\theta)$	1
$\tau(heta)$	$4\pi^2\cos\theta$	2π	$4\pi^2\cos^2\theta$
$\lambda_1^{ullet}(heta)$	2π	$\max(1/\cos\theta, 2\pi)$	2π
$M_{s}(\theta)$	$2\pi\theta$	$\max(1/\cos^2\theta, 4\pi^2)\sin\theta$	$2\pi \tanh^{-1}(\sin\theta)$ $= \pi \ln((1+\sin\theta)/(1-\sin\theta))$
inverse map	$u = (\tan 2(y, x))/(2\pi)$ $v = (\sin^{-1} z)/(2\pi)$	$u = (\tan 2(y, x))/(2\pi)$ $v = z$	$u = (\tan 2(y, x))/(2\pi)$ $v = \tanh^{-1} z/(2\pi)$ $= \ln((1+z)/(1-z))/(4\pi)$

