Shukai Du Curriculum Vitae

Assistant Professor Email: sdu113@syr.edu

Department of Mathematics Website: https://shukaidu.github.io

Syracuse University

RESEARCH INTERESTS

• Scientific machine learning and data-driven methods

- Finite element and discontinuous Galerkin methods
- Computational inverse and ill-posed problems
- Numerical methods for radiative transfer
- Electromagnetic and elastic/viscoelastic waves

PROFESSIONAL EXPERIENCE

Syracuse University

• Assistant Professor Oct 2024 – now

University of Wisconsin-Madison

• Visiting Assistant Professor Sep 2020 – Sep 2024

University of Minnesota-Twin Cities

• Visiting Doctoral Student Sep 2019 – June 2020

EDUCATION

University of Delaware

• Ph.D in Applied Mathematics

2020

Advisor: Dr. Francisco-Javier Sayas

Thesis: Generalized projection-based error analysis of hybridizable discontinuous Galerkin methods

Wuhan University

• M.S. in Computational Mathematics

2015

• B.S. in Pure Mathematics

2012

PUBLICATIONS

Submitted

16. J. L. Torchinsky, **S. Du**, S. N. Stechmann. Angular-spatical hp-adaptivity for radiative transfer with discontinuous Galerkin spectral element methods.

Peer-reviewed

15. **S. Du**, and S. N. Stechmann. Element learning: a systematic approach of accelerating finite element-type methods via machine learning, with applications to radiative transfer. *J. Comp. Math.* (2024).

DOI: 10.4208/jcm.2407-m2024-0047

14. **S. Du**, and S. N. Stechmann. Inverse radiative transfer with goal-oriented hp-adaptive mesh refinement: adaptive-mesh inversion. *Inverse Probl. 39 (2023), no. 11*. DOI: 10.1088/1361-6420/acf785

13. B. Cockburn, **S. Du**, M. A. Sánchez. A priori error analysis of new semidiscrete, Hamiltonian HDG methods for the time-dependent Maxwell's equations. *ESAIM: M2AN 57* (2023), no.4, 2097-2129.

DOI: 10.1051/m2an/2023048

12. **S. Du**, and S. N. Stechmann. Fast, low-memory numerical methods for radiative transfer via hp-adaptive mesh refinement. *J. Comput. Phys.* 480 (2023). DOI: 10.1016/j.jcp.2023.112021

11. **S. Du**, and S. N. Stechmann. A universal predictor-corrector approach for minimizing artifacts due to mesh refinement. *J. Adv. Model. Earth Syst.* 15 (2023). DOI: 10.1029/2023MS003688

10. B. Cockburn, **S. Du**, M. A. Sánchez. Combining finite element space-discretization with symplectic time-marching schemes for linear hamiltonian systems. *Front. Appl. Math. Stat. 9* (2023).

DOI: 10.3389/fams.2023.1165371

9. M. A. Sánchez, **S. Du**, B. Cockburn, N.-C. Nguyen, J. Peraire. Symplectic Hamiltonian finite element methods for electromagnetics. *Comput. Methods Appl. Mech. Engrg.* 396 (2022).

DOI: 10.1016/j.cma.2022.114969

8. B. Cockburn, M. A. Sánchez, **S. Du**. Discontinuous Galerkin methods with time-operators in their numerical traces for time-dependent electromagnetics. *Comput. Meth. Appl. Math.* (2022).

DOI: 10.1515/cmam-2021-0215

7. **S. Du**, and F.-J. Sayas. A note on devising HDG+ projections on polyhedral elements. *Math. Comp. 90 (2021), 65-79*.

DOI: 10.1090/mcom/3573

6. **S. Du**. HDG methods for Stokes equation based on strong symmetric stress formulations. *J. Sci. Comput. 85, 8 (2020)*.

DOI: 10.1007/s10915-020-01309-7

5. **S. Du**, and F.-J. Sayas. A unified error analysis of hybridizable discontinuous Galerkin methods for the static Maxwell equations. *SIAM J. Numer. Anal.* 58 (2020), no. 2, 1367–1391.

DOI: 10.1137/19M1290966

4. **S. Du**, and F.-J. Sayas. New analytical tools for HDG in elasticity, with applications to elastodynamics. *Math. Comp. 89 (2020), 1745-1782.*

DOI: 10.1090/mcom/3499

3. **S. Du**, and N. Du. A factorization of least-squares projection schemes for ill-posed problems. *Comput. Meth. Appl. Math. 20 (2020), no. 4, 783-798*. DOI: 10.1515/cmam-2019-0173

2. T.S. Brown, **S. Du**, H. Eruslu, and F.-J. Sayas. Analysis of models for viscoelastic wave propagation. *Appl. Math. Nonlin. Sci. 3 (2018)*, no. 1, 55-96. DOI: 10.21042/AMNS.2018.1.00006

DOI: 10.210 (2) 11.111.0.2010.11.0000

Books

1. **S. Du**, and F.-J. Sayas. An invitation to the theory of the Hybridizable Discontinuous Galerkin Method. *SpringerBriefs in Mathematics* (2019).

DOI: 10.1007/978-3-030-27230-2

GRANTS

- NSF (DMS-2324368): Breaking the 1D Barrier in Radiative Transfer: Fast, Low-Memory Numerical Methods for Enabling Inverse Problems and Machine Learning Emulators. Senior personnel. \$498,832 total, \$350,000 at UW (2023-2026).
- NSF (AGS-2326631): Convective Processes in the Tropics Across Scales. Senior personnel. \$768,471 total, \$471,155 at UW (2024-2026).

PRESENTATION

Invited talks

31. Forward and inverse computation for radiative transfer via hp-adaptive mesh refine-

14th AIMS Conference, Abu Duhabi

Dec 2024

30. Inverse radiative transfer via goal-oriented hp-adaptive mesh refinement 14th AIMS Conference, Abu Duhabi

Dec 2024

29. Element learning: accelerating finite element-type methods via operator learning with cost-effective training

SIAM sectional meeting, Rochester Institute of Technology

Nov 2024

28. Forward and inverse computation for radiative transfer via hp-adaptive mesh refinement and machine learning acceleration

Analysis seminar, Binghamton University

Oct 2024

27. Element learning: a systematic approach of accelerating finite element-type methods via machine learning

CCAM seminar, Purdue University

Mar 2024

26. Element learning: a systematic approach of accelerating finite element-type methods via machine learning

Analysis and Data Science Seminar, SUNY at Albany

Feb 2024

25. Element learning: a systematic approach of accelerating finite element-type methods via machine learning

Math Department Colloquium, Syracuse University

Jan 2024

24. Element learning: a systematic approach of accelerating finite element-type methods via machine learning

Math Department Colloquium, Chinese University of Hong Kong

23. Element learning: a systematic approach of accelerating finite element-type methods, with applications to radiative transfer

University of Electronic Science and Technology of China

22. Element learning: a systematic approach of accelerating finite element-type methods via machine learning, with applications to radiative transfer

Scientific Computing Seminars, University of Houston

21. Element learning: a systematic approach of accelerating finite element-type methods via machine learning, with applications to radiative transfer Applied Math seminar, University of Louisiana at Lafayette Oct 2023

20. Element learning: a systematic approach of accelerating finite element-type methods,

with applications to radiative transfer

Numerical analysis and PDE seminar, University of Delaware

19. Energy-conserving discontinuous Galerkin methods with time-operators in their traces for time-dependent electromagnetics

17th UCNCCM, Albuquerque, NM

July 2023

18.	, low-memory methods for radiative transfer through hp-adaptive mesh r	
	ment 13th AIMS Conference, Wilmington, NC	June 2023
17	Unified analysis of HDG methods for the static Maxwell equations	June 2023
1/.	CILAMCE-PANACM 2021, Brazil	Nov 2021
16	Generalized projection-based error analysis of hybridizable discontinuou	
10.	(HDG) methods	5 Galerkiii
		June 2021
15	Projection-based analysis of hybridizable discontinuous Galerkin (HDG) me	
15.	Wenbo Li Prize Talk, U of Delaware	Feb 2020
1./	Unified analysis of HDG methods for the static Maxwell equations	160 2020
14.	•	Mar 2021
10	SIAM CSE2021, Virtual Meeting	Mai 2021
13.	New analysis techniques of HDG+ method	Oat 2010
10	SIAM Sectional Meeting, Iowa State U	Oct 2019
12.	Uniform-in-time optimal convergent HDG method for	
	transient elastic waves with strong symmetric stress formulation	A 0010
11	WAVES2019, TU Wien, Vienna	Aug 2019
11.	Hybridizable Discontinuous Galerkin schemes for elastic waves	. 1 0010
	ICIAM2019, Valencia	July 2019
10.	HDG for transient elastic waves	
	WONAPDE2019, U of Concepcion	Jan 2019
Cont	ributed talks	
	Element learning: accelerating finite element methods via operator learnin	Œ
9.	FEM Circus, U of Notre Dame	8 Oct 2023
0	·	
٥.	Three-dimensional radiative transfer: fast, low-memory numerical method:	
7	Collective Madison Meeting, Madison, WI	Aug 2022
/.	Projection-based analysis of HDG methods with reduced stabilization	M 2010
_		May 2019
0.	Projection-based error analysis of HDG methods for transient elastic waves	
_	FEM Circus, U of Delaware	Nov 2018
5.	Devising a tailored projection for a new HDG method in linear elasticity	N# 0010
	FEM Circus, U of Tennessee	Mar 2018
4.	A new HDG projection and its applications	
	Mid-Atlantic Numerical Analysis Day, Temple U	Nov 2017
Doct	er presentation	
	Fast, low-memory numerical methods for radiative transfer: forward as	nd inverse
J.	problems	ilu iliveise
	New Trends in Computational and Data Sciences, Caltech	Dec 2022
2	Hybridizable Discontinuous Galerkin methods in transient elastodynamics	20022
۷.	FACM2018, New Jersey Institute of Technology	Aug 2018
1	Building a computational code for 3D viscoelastic wave simulation	11ug 2010
1.	Mid-Atlantic Numerical Analysis Day, Temple U	Nov 2016
	who-rmanne runnenear rhiarysis Day, remple o	1101 7010

TEACHING

Instructor

• Linear Algebra and Differential Equations (Math320) Spring 2023

Teaching Assistant

 Analytic Geometry and Calculus C (Math243) 	2016&2017 Fall
 Analytic Geometry and Calculus B (Math242) 	2017 Spring
Calculus I (Math221)	2018 Spring
 Review of Advanced Mathematical Problems 	

(summer courses offered to incoming graduate students)

MENTORING ACTIVITIES

Graduate mentorship

• Jason Torchinsky (co-mentored with Samuel N. Stechmann) 2022 - 2023

Undergraduate mentorship

• WISCERS project at the University of Wisconsin-Madison 2023 – a research-focused mentorship program for undergraduate students

• GEMS summer research project at the University of Delaware Fall 2016

JOURNAL REFEREE

Journal of Scientific Computing

SIAM Multiscale Modelling and Simulation

ESAIM: Mathematical Modelling and Numerical Analysis

Computers and Mathematics with Applications

Frontiers in Applied Mathematics and Statistics

AWARDS AND HONORS

Wenbo Li Prize	2020
University Doctoral Fellowship Award at the University of Delaware	2019
ICIAM2019 travel grant	2019
Graduate Enrichment Fellowship at the University of Delaware	2018
GEMS project fund at the University of Delaware	Summer 2016
National Scholarship for Graduate Students of China	2013
People's Scholarship of Wuhan University	2011
Outstanding Student of Wuhan University	2009 - 2011

SERVICES

Mentor for SIAM Virtual Resume Building Workshop

Oct 2024

2018 Fall

CODING PROJECTS

Fast, low-memory methods for radiative transfer

2020 - 2022

- Build a cell-based structured adaptive mesh refinement (AMR) data structure
- Implement discontinuous Galerkin (DG) methods with hp-adaptivity for the full radiative transfer equation

Hybridizable Discontinuous Galerkin (HDG) methods (based on HDG3D library: github.com/team-pancho/HDG3D) 2016 - 2020

- Build Matlab codes of high order HDG methods on computing cluster for transient elastic/viscoelastic waves and Maxwell equations
- Write documentation with detailed implementation procedures for HDG methods for Maxwell equations

Finite Element Method (FEM)

2016

(based on Team Pancho FEM library: team-pancho.github.io)

• Build Matlab codes of high order FEM methods on computing cluster for simulation of viscoelastic waves.

Multiscale modeling

2013 - 2015

• Implement algorithms to calculate Cauchy stress tensor based on micro-scale molecular dynamics information

COMPUTER SKILLS

Theory

Data Structures • Algorithm • Object Oriented Programming

Languages & Software

Matlab • Python • C • C++ • Fortran • openMPI • LISP • Linux Shell

Last update: January 5, 2025