MA 16200: Plane Analytic Geometry and Calculus II

Lecture 29: Introduction to Polar Coordinates

Zachariah Pence

Purdue University

Sections Covered: 12.2 (Part I)

Cartesian Coordinates

Our usual system is called **Cartesian coordinates** (or Rectangular coordinates or Box coordinates). A point in space is described using the ordered pair

where x is the horizontal component and y is the vertical component.

Polar Coordinates (When $r \ge 0$)

In **Polar Coordinates**, a point in space is described using the ordered pair

$$(r,\theta)$$

where r (called the **radial coordinate**) is the distance from the origin (called the **pole**) and θ is angle the ray \overrightarrow{OP} makes with the positive x-axis (called the **polar axis**). Positive angles are measured counterclockwise.

Polar Coordinates (When r < 0)

When r is negative,

Problem 1

Plot the points whose polar coordinates are given:

(a)
$$(1, 5\pi/4)$$

(b)
$$(2,3\pi)$$

(c)
$$(2, -2\pi/3)$$

(a)
$$(1, 5\pi/4)$$
 (b) $(2, 3\pi)$ (c) $(2, -2\pi/3)$ (d) $(-3, 3\pi/4)$

Representations are not Unique

Unlike in Cartesian coordinates, there are multiple ways to describe the same point in space. Why?

In practice, we restrict $r \geq 0$ and $\theta \in (-\pi, \pi]$ to make it unique (although this is not required). This is useful in plotting points, not necessarily when plotting curves.

Z. Pence

Problem 2

Give two alternative representations for each point:

(a)
$$(1,5\pi/4)$$
 (b) $(2,3\pi)$ (c) $(2,-2\pi/3)$ (d) $(-3,3\pi/4)$

From Cartesian to Polar

How can we convert a point in Cartesian coordinates to Polar?

Converting Between Coordinate Systems

From Polar to Cartesian

How can we convert a point in Polar coordinates to Cartesian?

Summary of Formulas

Theorem 3 (Converting Coordinates)

A point with polar coordinates (r, θ) has Cartesian coordinates (x, y), where:

$$x = r \cos \theta$$
 $y = r \sin \theta$

A point with Cartesian coordinates (x, y) has polar coordinates (r, θ) , where:

$$r^2 = x^2 + y^2 \quad \tan \theta = \frac{y}{x}$$

Problem 4

Express the point with polar coordinates $P(2, \frac{3\pi}{4})$ in Cartesian coordinates.

Problem 5

Express the point with Cartesian coordinates Q(1,-1) in Polar Coordinates.

Problem 6

Express the point with polar coordinates $P(2, \frac{\pi}{3})$ in Cartesian coordinates.

Problem 7

Express the point with Cartesian coordinates $(-4, -4\sqrt{3})$ in Polar Coordinates.

Functions in Polar Coordinates

We can relate r and θ like in Cartesian, these are called **polar** curves.

	Cartesian	Polar
Explicit	y = f(x)	$r = f(\theta)$
	y = 3x	$r = 1 + \sin \theta$
Implicit	F(x,y)=0	$F(r,\theta)=0$
	$x^2 + y^2 - 1 = 0$	$r \sin \theta = 4$

Problem 8

What curve is represented by the polar equation r = a (where a is a constant)?

Polar Curves

Example

Problem 9

Find the polar equation for a circle whose center is the (cartesian) point (a, b) and intersects the origin.

Problem 10

What curve is represented by the polar equation $\theta = \theta_0$ (where θ_0 is a constant)?

Problem 11

What curve is represented by the polar equation $r = \theta$?

Polar Curves 00000000

Example

Problem 12

What curve is represented by the polar equation $r \sin \theta = 10$?

Problem 13

What curve is represented by the polar equation $r \cos \theta = 5$?

Problem 14

Convert the equation for a line y = mx + b into Polar coordinates.

Annuli

Problem 15

Describe the region in space: $1 \le r \le 2$

Sectors

Problem 16

Describe the region in space: $\frac{\pi}{6} \leq \theta \leq \frac{\pi}{3}$, r < 3

Polar Boxes

Problem 17

Describe the region in space: $1 \le r \le 2$, $0 \le \theta \le \frac{\pi}{4}$

