Subsucesiones y Teorema de Bolzano-Weierstrass

Análisis Matemático 1 Prof. J. Rivera Noriega

ITAM

Primavera de 2020

Subsucesiones

Dada $X=(x_n)$ una sucesión en \mathbb{R}^p queremos definir una subsucesión de X. Para ésto, consideremos una colección $r_j\in\mathbb{N}$ cumpliendo $r_1< r_2< \cdots < r_j< r_{j+1}< \cdots$ Obsérvese que $r_j>j$ para toda $j\in\mathbb{N}$. Decimos entonces que $X'=(x_{r_j})$ es una subsucesión de X.

Nótese que hay una cantidad infinita de subsucesiones de la misma sucesión.

- Si la sucesión $X = (x_n)$ converge a x, entonces cualquier subsucesión de X converge a x.
- En particular, cualquier truncación de X, definida para $m \in \mathbb{N}$ como la subsucesión $X' = (x_{m+1}, x_{m+2}, \dots)$ converge a la misma x.

Sucesiones acotadas

Recordemos que el *Teorema de Bolzano-Weierstrass* para conjuntos de \mathbb{R}^p dice que todo conjunto infinito y acotado de \mathbb{R}^p tiene un punto de acumulación.

Planteamos entonces la pregunta de la convergencia para las sucesiones que permanecen acotadas. Una primera respuesta puede darse para sucesiones monótonas en \mathbb{R} .

Decimos que una sucesión $X=(x_n)$ es monótona creciente, o bien monótona decreciente, si $x_j \leq x_{j+1}$, o bien $x_j \geq x_{j+1}$ para toda $j \in \mathbb{N}$.

Teorema (Teorema de convergencia monótona)

Supóngase que $X=(x_j)$ es una sucesión monótona creciente. Entonces X converge si y sólo si es acotada superiormente. Bajo este supuesto, $\lim x_n = \sup\{x_n : n \in \mathbb{N}\}.$

Nótese que hay una versión para sucesiones monótonas decrecientes (que se deja de ejercicio)

Demostración del teorema de convergencia monótona

 (\Rightarrow) Se ha visto que una sucesión convergente es acotada. Faltaría probar que lím $x_n = x$ es el supremo.

Para comenzar x es cota superior de la sucesión (x_n) , pues si existiera k tal que $x_{k-1} \le x < x_k$ se tendría que en el intervalo $(x - \delta, x + \delta)$ no contiene término alguno de la sucesión, si $\delta = \min\{(x - x_{k-1})/8, (x_k - x)/8\}$.

Ahora probaremos la propiedad de *"salto de supremo"*. Para $\epsilon > 0$ sabemos que existe $K \in \mathbb{N}$ tal que $x - \epsilon < x_K < x + \epsilon$. Pero de hecho tenemos $x - \epsilon < x_K \le x$ pues ya se probó que x es cota superior de la sucesión.

(\Leftarrow) Suponiendo que (x_n) es acotada, demostraremos que de hecho converge a $x = \sup\{x_n : n \in \mathbb{N}\}$. Por el "salto de supremo", dada $\epsilon > 0$ existe un término x_N de la sucesión tal que $x - \epsilon < x_N \le x$.

Como la sucesión es monótona creciente y x es cota superior de la sucesión, entonces para n > N ocurrirá $x - \epsilon < x_n \le x$. En conclusión para n > N

$$x - \epsilon < x_n \le x < x + \epsilon$$

Veamos que en efecto lím $\left(1+\frac{1}{n}\right)^n=e$, donde e es el número de Euler $e\approx 2{,}718281\ldots$ De hecho sólo veremos que es creciente, acotada y convergente a un número entre 2 y 3

Definamos $e_n = \left(1 + \frac{1}{n}\right)^n$ que por el teorema del binomio se escribe como

$$e_n = \left(1 + \frac{1}{n}\right)^n = 1 + \frac{n}{1} \frac{1}{n} + \frac{n(n-1)}{2!} \frac{1}{n^2} + \frac{n(n-1)(n-2)}{3!} \frac{1}{n^3} + \dots + \frac{n(n-1)\cdots 2\cdot 1}{n!} \frac{1}{n^n}$$

$$= 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \frac{1}{3!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) + \dots + \dots + \frac{1}{n!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{n-1}{n}\right)$$

Similarmente

$$e_{n+1} = 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n+1} \right) + \frac{1}{3!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) + \dots +$$

$$+ \frac{1}{n!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \dots \left(1 - \frac{n-1}{n+1} \right)$$

$$+ \frac{1}{(n+1)!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \dots \left(1 - \frac{n}{n+1} \right)$$

Entonces e_n tiene n+1 términos y e_{n+1} tiene n+2 términos; además cada término de e_n es menor o igual al correspondiente término de e_{n+1} .

En conclusión $2 \le e_1 < e_2 < \cdots < e_n < e_{n+1} < \cdots$

Finalmente probaremos que (e_n) está acotada superiormente.

Nótese que para $p=1,2,\ldots,n$ se tiene $\left(1-\frac{1}{p}\right)<1$. También recuérdese que $2^{p-1}\leq p!$ por lo que si $\frac{1}{p!}\leq \frac{1}{2^{p-1}}$.

Entonces tendremos

$$2 \leq e_n < 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^{n-1}}$$

Finalmente deducimos que $2 < e_n < 3$ notando que

$$\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^{n-1}} = 1 - \frac{1}{2^{n-1}} < 1$$

Una familia de ejemplos

Con la idea del Teorema de Convergencia Monótona se pueden calcular límites de sucesiones definidas recursivamente.

• Definimos $y_1 = 1$, $y_n = \frac{2y_{n-1} + 3}{4}$, n = 2, 3, ...

En este caso se probará que (y_n) es monótona creciente y acotada por 2.

Procedemos por inducción

- B.I. Es directo verificar que $y_1 \le y_2 < 2$
- H.I. Suponemos cierto $y_{n-1} \le y_n < 2$
- P.I. Debemos probar que $y_n \le y_{n+1} < 2$. Obsérvese que por definición

$$\frac{2y_{n-1}+3}{4} \leq \frac{2y_n+3}{4} < \frac{2\cdot 2+3}{4} < 2$$

Para calcular el límite, volvemos a la fórmula de recursión y allí tomamos límites:

$$L = \frac{2L+3}{4}$$
 por tanto $L = \frac{3}{2}$

Una familia de ejemplos

• Definimos ahora
$$x_1 > 1$$
, $x_n = 2 - \frac{1}{x_{n-1}}$, $n = 2, 3, ...$

En este caso obtenemos de manera más o menos directa $1 < x_n < 2$ para toda $n \in \mathbb{N}$. Ahora, aplicamos un argumento por inducción para probar que $x_n \le x_{n-1}$. B.l. Nótese que

$$x_2 - x_1 = 2 - \frac{1}{x_1} - x_1 = \frac{2x_1 - 1 - x_1^2}{x_1} = -\frac{(x_1 - 1)^2}{x_1} < 0$$

- H.I. Suponemos cierto $x_k x_{k-1} < 0$
- P.I. Debemos probar que $x_{k+1} \le x_k < 0$. Nótese que

$$x_{k+1} - x_k = \frac{x_k - x_{k-1}}{x_k x_{k-1}} < 0$$

Para calcular el límite:

$$L=2-\frac{1}{I}$$
 \Leftrightarrow L^2-2L+1 \Leftrightarrow $L=1$, $L=-1$

Teoerma de Bolzano-Weierstrass

Teorema

Toda sucesión acotada en \mathbb{R}^p tiene una subsucesión convergente.

• Supongamos primero que el rango de la sucesión $X = (x_n)$ es finito, es decir, que sólo se alcanzan un número finito de valores.

Esto quiere decir que uno de esos valores es alcanzado por un número infinito de términos de la sucesión, digamos que $x_{n_k} = A$

Así que en este caso basta tomar la subsucesión (x_{n_k}) , que resulta ser convergente a A.

• Suponiendo que el rango de la sucesión $X = (x_n)$ es infinito

Tenemos que $R = \{x_n : n \in \mathbb{N}\}$ es infinito y acotado, por lo que podemos invocar al teorema de Bolzano-Weierstrass y existe x^* punto de acumulación de R.

Prueba del teoerma de Bolzano-Weierstrass

Al ser x^* punto de acumulación de $R=\{x_n:n\in\mathbb{N}\}$, existe x_{n_1} tal que $\|x_{n_1}-x^*\|<1$. Luego notemos que x^* es también punto de acumulación de $R_1=\{x_n:n>n_1\}$, y entonces elegimos $x_{n_2}\in R_1$ tal que $\|x_{n_2}-x^*\|<1/2$; nótese que se tiene $n_2>n_1$ por definición de R_1 .

Recursivamente, dado que x^* es punto de acumulación de $R_{k-1} = \{x_n : n > n_{k-1}\}$, podemos obtener $x_{n_k} \in R_{k-1}$ tal que $\|x_{n_k} - x^*\| < 1/k$

Hemos obtenido una subsucesión $X'=(x_{n_1},x_{n_2},\dots)$ de la sucesión original $X=(x_n)$ tal que $\|x_{n_k}-x^*\|<1/k$.

Esto es suficiente para probar que $x_{n_n} \to x^*$, pues dada $\epsilon > 0$, por propiedad arquimediana hallamos $N \in \mathbb{N}$ tal que $1/N < \epsilon$. Entonces para k > N obtendremos

$$||x_{n_k} - x^*|| < \frac{1}{k} < \frac{1}{N} < \epsilon$$

Un corolario

Obsérvese que la parte final de esta demostración de hecho establece el siguiente

Corolario

Si una sucesión tiene un punto de acumulación x^* entonces tiene una subsucesión que converge a x^* .

Daremos una aplicación del Teorema de Bolzano-Weierstrass que se relaciona con sucesiones de Cauchy. Ésto a su vez nos llevará a una aplicación en sucesiones contractivas

Sucesiones de Cauchy

Una sucesión $X=(x_n)$ en \mathbb{R}^p es sucesión de Cauchy en \mathbb{R}^p si para toda $\epsilon>0$ existe $M=M(\epsilon)\in\mathbb{N}$ tal que

$$m, n > M$$
 \Rightarrow $||x_m - x_n|| < \epsilon$

- Si la sucesión (x_n) es convergente entonces es de Cauchy.
- Si la sucesión (x_n) es de Cauchy entonces es acotada.
- Si $X = (x_n)$ es una sucesión de Cauchy y X' es una subsucesión de X que converge a $x \in \mathbb{R}^p$, entonces la sucesión completa X converge también a x.

Para probar la primera afirmación, supongamos que $x_n \to x$, y observemos que si $\epsilon > 0$ existe $N \in \mathbb{N}$ tal que m, n > N implica

$$||x_m - x_n|| \le ||x_m - x|| + ||x - x_n|| < \epsilon/2 + \epsilon/2 = \epsilon$$

Sucesiones de Cauchy

Para probar la segunda aseveración, iniciamos con $\epsilon_1=1$ y hallamos $M\in\mathbb{N}$ tal que n>M implica $\|x_n\|\leq \|x_n-x_M\|+\|x_M\|<1+\|x_M\|.$

Entonces tendremos

$$\|x_j\| \le R$$
 para $R = \max\{\|x_1\|, \|x_2\|, \dots, \|x_M\|, 1 + \|x_M\|\}$

Para la tercera afirmación supongamos que $X'=(x_{n_k})$ es una subsucesión de $X=(x_n)$ que converge a $x\in\mathbb{R}^p$. Sea $\epsilon>0$

Por ser X de Cauchy, existe $M_1 \in \mathbb{N}$ tal que $m,n>M_1$ implica $\|x_m-x_n\|<\epsilon/2$

Por ser X' convergente, existe $M_2 \in \mathbb{N}$ tal que $k > M_2$ implica $\|x_{n_k} - x\| < \epsilon/2$

En conclusión si $n > M := \max\{M_1, M_2\}$ tendremos, recordando que para k > M se tiene $n_k > M$ y por tanto $\|x_n - x\| \le \|x_n - x_{n_k}\| - \|x_{n_k} - x\| < \epsilon$

Criterio de Cauchy

Con las propiedades anteriores podemos dar una caracterización de las sucesiones convergentes basado en las sucesiones de Cauchy

Teorema

Una sucesión en \mathbb{R}^p es convergente si y sólo si es de Cauchy.

Iniciando con una sucesión convergente, ya hemos demostrado que será de Cauchy.

Reciprocamente, podemos concatenar las afirmaciones anteriores junto con el teorema de Bolzano-Weierstrass:

X de Cauchy implica X acotada

X acotada implica que tiene una subsucesión X' convergente Una subsucesión convergente X' de una sucesión de Cauchy X implica que la sucesión completa X converge al mismo límite.

• Definase $x_1 = 1$, $x_2 = 2$ y $x_n = \frac{x_{n-2} + x_{n-1}}{2}$

En este caso se puede probar que $1 \le x_n \le 2$ para toda $n \in \mathbb{N}$.

Puede verse que (x_n) no es monótona, pues de hecho está oscilando.

Nótese ahora que una inducción nos permite probar que $|x_n - x_{n+1}| = \frac{1}{2^{n-1}}$ Veremos ahora que (x_n) es de Cauchy: Para m > n

$$|x_n - x_m| \le |x_n - x_{n+1}| + \dots + |x_{m-1} - x_m|$$

$$= \frac{1}{2^{n-1}} + \dots + \frac{1}{2^{m-2}} = \frac{1}{2^{n-1}} \left(1 + \frac{1}{2} + \dots + \frac{1}{2^{m-n-1}} \right)$$

Ahora usamos las fórmulas para sumas geométricas para concluir

$$|x_n - x_m| < \frac{1}{2^{n-2}} = \frac{4}{2^n}$$

Dada $\epsilon>0$ se elige $N\in\mathbb{N}$ tal que $\frac{1}{2^k}<\frac{\epsilon}{4}$ para k>N. En conclusión, si m,n>N entonces $|x_n-x_m|<\frac{4}{2^n}<\epsilon/4$

Por el criterio de Cauchy concluimos que (x_n) es convergente. Pero aquí no sirve tomar límites en la fórmula de recurrencia: llegaríamos a L=(L+L)/2.

Para calcular el límite se usan otras ideas, ver [Bartle, p. 110-111]: $x_n \rightarrow 5/3$.

Sucesiones contractivas

Son sucesiones (x_n) para las que existe 0 < C < 1 tal que

$$|x_{n+2}-x_{n+1}| \leq C|x_{n+1}-x_n|$$
 para toda $n \in \mathbb{N}$.

Nótese que repitiendo recursivamente la desigualdad

$$|x_{n+2}-x_{n+1}| \le C^2|x_n-x_{n-1}| \le \cdots \le C^n|x_2-x_1|$$

Así, si m > n entonces

$$|x_{m} - x_{n}| \leq |x_{m} - x_{m-1}| + \dots + |x_{n+1} - x_{n}|$$

$$\leq (C^{m-2} + C^{m-3} + \dots + C^{n-1}) |x_{2} - x_{1}|$$

$$< C^{n-1} \left(\frac{1}{1 - C}\right) |x_{2} - x_{1}|$$

Nótese que de aquí podemos concluir que (x_n) es de Cauchy y por tanto convergente.

Ejemplo de sucesión contractiva

• Definamos $x_1 = 2$ y $x_{n+1} = 2 + \frac{1}{x_n}$. Probar que (x_n) es convergente y de ser posible determinar el límite.

Nótese que $x_n \ge 2$ por lo que

$$|x_{n+2} - x_{n+1}| = \left| \frac{1}{x_{n+1}} - \frac{1}{x_n} \right| = \frac{|x_n - x_{n+1}|}{|x_n x_{n+1}|} \le \frac{1}{4} |x_{n+1} - x_n|$$

En este caso podemos también calcular el límite:

$$L = 2 + \frac{1}{I}$$
, $L^2 - 2L - 1 = 0$, $L = 1 \pm \sqrt{2}$