Lecture 19.

Old problems with fix+E)-fix

Let R be the field of real numbers.

Let $N=\{1,2,\dots\}$. A subset $X \subseteq N$ is

cofinite if INIXICOO. There exists an

ulhafilter Fin N, such that Fcontains all cofinite hubbets of N.

The field R^N/F contains an element $\varepsilon > 0$ Much that $\varepsilon < \frac{1}{n}$ for all $n \in \mathbb{N}$. Indeed, let $\varepsilon = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots)/F$.

Convergence with respect to a filter.

Let an, n>1, be a sequence of numbers. Let I be a filter in N.

Def. We say that $Q = limit of Qn, n > 1, with respect to F if <math>\forall E > 0$ Falarge Subset $X \in F$ such that

1a-an/<€ for all n∈X.

Example. The hobsets $N_n = \{n, n+1, n+2, ---\}, n \geqslant 1$, form a filter in N. The usual limit is the limit with respect to this filter.

It is easy to see that a sequence can not have more than one limit. Indeed, let a, b be limits of a sequence $a_n, n > 1$, $a \neq b$.

There exist large subsets $x_1, x_2 \in \mathcal{F}$: $|a-a_n| < \frac{1}{2} |a-b|$ for all $n \in x_1$; $|b-a_n| < \frac{1}{2} |a-b|$ for all $n \in x_2$.

Then $x_1 \cap x_2 = \beta$, a contradiction.

Lemma. Let I be an ultrafibler in the set X.

Let X_1, X_2 be subsets in X and $X_1 \cup X_2 \in \mathcal{F}$.

Then $X_1 \in \mathcal{F}$ or $X_2 \in \mathcal{F}$.

Irred. If $X_1 \not = \mathcal{F}$, $X_2 \not = \mathcal{F}$ then $X_1 \times X_2 \in \mathcal{F}$.

We have $(X \cdot X_1) \cap (X \cdot X_2) = X \cdot (X_1 \cup X_2) \in \mathcal{F}$.

This contradicts the assumption that $X_1 \cup X_2 \in \mathcal{F}. \quad \mathcal{I}$

Theorem. Let I be an ultrafilter in N. Then every bounded sequence has a limit.

Proof. By the assumption there exists a segment $S_1 = \Gamma - b$, b] much that all Q_n 's lie in S_1 . Consider the segments $\Gamma - b$, o) and Γo , b?. By the lemma one of the subsets $\{n \mid Q_n \in \Gamma - b, o\}$, $\{n \mid Q_n \in \Gamma o, b\}$ is large.

Let & [n | ane t-b, o) be laye, $S_0 = (-b, 0)$.

Again divide S_2 into two sequents $(-b, -b_2)$ and $(-b_2, 0)$. One of the sequents contains a

laye number of elements of the sequence.

Denote this segment as S3 and so on, $S_1 \supset S_2 \supset \dots$

Por each i {n/an∈Si}∈f.

The intersection $\cap Si = \{a\} \text{ condists of one }$ point. Then

 $\lim_{T} Q_n = Q.$

Metric Ultraproducts. Let (Mn, dn), n < N, be a sequence of metric spaces. We assume that all these metric spaces have finite diameters all all these diameters are uniformly bounded. In other words, \exists A > 0:

Un Vx,y∈Mn dn(x,y) ≤ A.

Let F be a nonprinciple uttrafilter in N. Consider the ultraproduct 17 Mn/F. Define

I ((2n) now /F, (yn) now /F) = lim dn (2n, yn)
The limit on the right hand Dise orists because

the seguence is bounded.

Clearly, the triangle in equality holds: $d(x, z) \leq d(x, y) + d(y, z).$

Is dametric?

Not nece Marily. There may be elements $(2\pi)_n/f + (y_n)_n/f + \lim_{n \to \infty} \int_{\mathbb{R}^n} \int_{$

Embeddings into ulhapsoducts of finite fields.

In this section we will prove:

Theorem (Lefschets Principle). A commutative

Lomain is embeddable in an ultaproduct of finite fields.

Le mma (on ultraproduct of ultraproducts). Let

 $A \cong \prod_{x \in X} A_x / \mathcal{F}$, let $A_x \cong \prod_{x \in X} A_{xx} / \mathcal{F}_{xx}$.

Here You is a set, For is an ultraproduct in You

Let $X = UY_{\infty}$. Large sets: let Ω be a large Aubset of X, i.e. SLEF. For each QESL let Sly be a large subset in Yq i.e. Sig & Fg. Consider the system S of none unty Subsets of X: Useq. Any finite collection of subsets from 5 has a nonempty intersec. tion. Hence 5 is embeddable in a filter and some ultrafilter I in the set X.

Then MAR/FC>MARY/F.

Consider $a = (a_x)_{x \in X}/f$, $a_x = (a_{xy})_{y \in Y_{2e}}/f_{xe}$. Let $\Psi(a) = (a_{xy})_{x \in X}, y \in Y_{2e}/f$. Exercise: 4 à au embedding.

Various Form of Nullstellensatz.

(1) Let F be an algebraically closed field; let $f_1, ..., f_m, g \in F(\mathfrak{D}_1, ..., \mathfrak{D}_n)$ be polynomials.

An metuple $(d_1,...,d_m) \in F^n$ is a root of $\{1,...,\{m\}\} \in F^n$

Suppose that for an arbitrary root $\alpha = (\alpha_1, ..., \alpha_n)$ of $f_1, ..., f_m$ we have $g(\alpha_1, ..., \alpha_n) = 0$. So,

every root of f1,..., fm is also a root of g.

Then there exists k > 1 huch that

ge id (f1,...,fm). In other words, there exist polynomials h1,..., hm = F [x1,...,xn) And that

gr = Efihi.

- (2) If A31 is a finitely generated commutative domain then the interection of all maximal ideals of A is (0).
- (3) If a field is finitely generated as a ring, then it is finite.

Lemma. A finitely generated commutative domain is embeddable in an ultraproduct of finite fields.

Proof. By (2) there exists a system of epimorphisms $\Psi_i: A \to F_i, i \in I$, F_i in a field, \bigcap Ker $\Psi_i = (0)$. By (3) all the fields F_i are finite.

For a nonzero element $a \in A$ let $J_a = \{i \in I \mid \Psi_i(a) \neq 0\}$. Then $\mathcal{Z}_{\mathcal{S}} J_a \cap J_b = J_{ab}$. Hence the system of Multets $\{J_a \mid 0 \neq a \in A\}$

lies in Dame ultrafilter Fin I. The mapping A > MFi/F is an embedding, $a \rightarrow (\psi_i(a))_{i \in I} / \mathcal{F}. \quad \mathcal{I}$

Theorem. A commentative domain in embeddable in an ultraproduct of finite fields.

Proof. By Malcer's Theorem AC> MAi, Ai are finitely generated commutative domains. By the lemma above each Ai is embeddable in an ultraproduct of finite fields. Hence by the lemma about ultraproduct of ulhaproducts" the domain A is embeddable in an alkaproduit of finite fields. I

Ax-Groethendieck Theorem.

Theorem. Let F be an algebraically closed bields. Then every injective polynomial mapping $P: F \to F^n$, $(d_1, ..., d_n) \to (P_1(d_1, ..., d_n), ..., P_n(d_1, ..., d_n))$; $P_1, ..., P_n \in Fige, ..., P_n, is$ Aniective.

For finite fields F it is obvious: every injective map of a finite set into itself is surjective.

Tujectivity means that $P(\hat{x}) = P(Y) \Rightarrow X = Y$.

Thus every root of the system $P_1(\hat{x}) - P_2(Y) = 0$,

..., $P_n(\hat{x}) - P_n(Y) = 0$ is a root of $9P_1 - Y_1$.

By the Nullstellensatz there exists $k_1 \ge 1$

-11-

and polynomials $h_{1i}(x,y)$, $l \in i \in L$, $l \in L$, l

Similarly for any t, $1 \le t \le n$, there exists $K_t \ge 1$ and polynomials $h_{t1}, ..., h_{tn}$:

(22+-4+) = \(\int_{(P_i(x)-P_i(Y))}\)\(\lambda_{i:1}(x,y)\).

Without loss of generality: K,=...=Kn=K.

Finitary form of Injectivity: there exists

K≥1 and polynomials hij (x, 4); 1≤i', j≤n,

such that

 $(\mathcal{X}_{t}-y_{t})^{K}=\sum_{i=1}^{N}\left(P_{i}(x)-P_{i}(Y)\right)h_{ti}(x,Y) \quad (*)$

for any t, 1 \le t \le h.

Non-Surjectivity: $\exists d = (d_1, ..., d_n)$ not an image of P. In other words, the hystem $P_1(x) - d_1 = 0, ..., P_n(x) - d_n = 0$ does not have roots. By the Nullstellensatz there exist polynomials $Q_1(x), ..., Q_n(x)$, such that $\sum_{i=1}^{n} (P_i(x) - d_i) Q_i(x) = 1 \qquad (**).$

This is a finitary Form of Non-Surjectivity.

Let us show that for any field F (*) and (**) are not compatible.

FC> MKi/F, 1Ki/200, finite fields.

If (*) and (**) hold in MK; /F then

(*) and (**) hold on a large number of fields K_i . But for these fields K_i it means that a certain polynomial map is injective but not surjective, a contradiction.