K Means Clustering

> library(swirl)
Hi! Type swirl() when you are ready to begin.
> swirl()
Welcome to swirl! Please sign in. If you've been here before, use the same name as you did then. If you are new,
call yourself something unique.
What shall I call you? Stephen
Please choose a course, or type 0 to exit swirl.
1: Data Analysis
2: Exploratory Data Analysis
3: Getting and Cleaning Data
4: Mathematical Biostatistics Boot Camp
5: Open Intro
6: R Programming
7: Regression Models
8: Statistical Inference
9: Take me to the swirl course repository!
Selection: 2
Please choose a lesson, or type 0 to return to course menu.

1: Principles of Analytic Gr	aphs 2: Exploratory Graphs	3: Graphics Devices in R
4: Plotting Systems	5: Base Plotting System	6: Lattice Plotting System
7: Working with Colors	8: GGPlot2 Part1	9: GGPlot2 Part2
10: GGPlot2 Extras	11: Hierarchical Clustering	12: K Means Clustering
13: Dimension Reduction	14: Clustering Example	15: CaseStudy
Selection: 12		
Attempting to load lessor	n dependencies	
Package 'ggplot2' loaded	correctly!	
Package 'fields' loaded co	orrectly!	
Package 'jpeg' loaded cor	rectly!	
Package 'datasets' loaded	i correctly!	
I		0%
K_Means_Clustering. (Slid	des for this and other Data So	cience courses may be found at github
https://github.com/Datas downloaded as a zip	ScienceSpecialization/course	s/. If you care to use them, they must be
file and viewed locally. Th	nis lesson corresponds to 04_	_ExploratoryAnalysis/kmeansClustering.)
==		2%

In this lesson we'll learn about k-means clustering, another sim	ple way of examining and organizing
multi-dimensional data. As with hierarchical clustering, this tec of	hnique is most useful in the early stages
analysis when you're trying to get an understanding of the data relationship	a, e.g., finding some pattern or
between different factors or variables.	
====	4%
\mid R documentation tells us that the k-means method "aims to pa that the sum of	rtition the points into k groups such
squares from points to the assigned cluster centres is minimize	d."
	1
=====	6%
Since clustering organizes data points that are close into group measure of	s we'll assume we've decided on a
distance, e.g., Euclidean.	
	1 00/
=======	8%

| To illustrate the method, we'll use these random points we generated, familiar to you if you've already

gone

through the hierarchical clustering lesson. We'll demonstrate k-means clustering in several steps, but first we'll		
explain the general idea.		
========	10%	
As we said, k-means is a partioning approach you have (or	which requires that you first guess how many clusters	
want). Once you fix this number, you random and assign	ly create a "centroid" (a phantom point) for each cluster	
each point or observation in your dataset to t assigned a	he centroid to which it is closest. Once each point is	
centroid, you readjust the centroid's position	by making it the average of the points assigned to it.	
=========	12%	
Once you have repositioned the centroids, yo the centroids	u must recalculate the distance of the observations to	
and reassign any, if necessary, to the centroid done, readjust	closest to them. Again, once the reassignments are	
the positions of the centroids based on the ne reach an iteration	ew cluster membership. The process stops once you	
in which no adjustments are made or when yo iterations.	ou've reached some predetermined maximum number of	
==========	14%	

As described, what does this process require?	
1: A number of clusters	
2: An initial guess as to cluster centroids	
3: All of the others	
4: A defined distance metric	
Selection: 3	
Great job!	
======================================	16%
So k-means clustering requires some distance metric (sclusters, and	ay Euclidean), a hypothesized fixed number of
an initial guess as to cluster centroids. As described, wh	at does this process produce?
1: An assignment of each point to a cluster	
2: All of the others	
3: A final estimate of cluster centroids	
Selection: 2	
All that practice is paying off!	
======================================	18%
When it's finished k-means clustering returns a final po	sition of each cluster's centroid as well as the

assignment of each data point or observation to a c	luster.
======================================	20%
Now we'll step through this process using our rando stored in 2	om points as our data. The coordinates of these are
\mid vectors, \boldsymbol{x} and $\boldsymbol{y}.$ We eyeball the display and guess t centroids,	hat there are 3 clusters. We'll pick 3 positions of
one for each cluster.	
	22%
We've created two 3-long vectors for you, cx and cy for 3	. These respectively hold the x- and y- coordinates
proposed centroids. For convenience, we've also sto	ored them in a 2 by 3 matrix cmat. The x
first row and the y coordinates in the second. Look	at cmat now.
> cmat	
[,1] [,2] [,3]	
[1,] 1 1.8 2.5	
[2,] 2 1.0 1.5	
Excellent work!	
	24%

The coordinates of these points are (1,2), (1.8,1) and (2.5,1.5). We'll add these centroids to the plot of our
points. Do this by calling the R command points with 6 arguments. The first 2 are cx and cy, and the third is col
set equal to the concatenation of 3 colors, "red", "orange", and "purple". The fourth argument is pch set equal to
3 (a plus sign), the fifth is cex set equal to 2 (expansion of character), and the final is lwd (line width) also
set equal to 2.
> points(cx,cy,col=c("red", "orange", and "purple"), pch=3, cex=2, lwd=2)
Error: unexpected string constant in "points(cx,cy,col=c("red", "orange", and "purple""
> points(cx,cy,col=c("red", "orange", "purple"), pch=3, cex=2, lwd=2)
You got it!
======================================
We see the first centroid (1,2) is in red. The second (1.8,1), to the right and below the first, is orange, and
the final centroid (2.5,1.5), the furthest to the right, is purple.
======================================
1 == 2/3
Now we have to calculate distances between each point and every centroid. There are 12 data points and 3
centroids. How many distances do we have to calculate?

1: 36
2: 15
3: 9
4: 108
Selection: 1
You're the best!
======================================
We've written a function for you called mdist which takes 4 arguments. The vectors of data points (x and y) are
the first two and the two vectors of centroid coordinates (cx and cy) are the last two. Call mdist now with these
arguments.
> View(mdist)
Keep trying! Or, type info() for more options.
Type mdist(x,y,cx,cy) at the command prompt.
> mdist(x,y,cx,cy)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1.392885 0.9774614 0.7000680 1.264693 1.1894610 1.2458771 0.8113513 1.026750 4.5082665 4.5255617
[2,] 1.108644 0.5544675 0.3768445 1.611202 0.8877373 0.7594611 0.7003994 2.208006 1.1825265 1.0540994

[3,] 3.461873 2.3238956 1.7413021 4.150054 0.3297843 0.2600045 0.4887610 1.33 0.4614472	7896 0.3737554
[,11] [,12]	
[1,] 4.8113368 4.0657750	
[2,] 1.2278193 1.0090944	
[3,] 0.5095428 0.2567247	
Nice work!	
=======================================	32%
We've stored these distances in the matrix distTmp for you. Now we have to assign	n a cluster to each
point. To do that we'll look at each column and?	
1: pick the maximum entry	
2: pick the minimum entry	
3: add up the 3 entries.	
Selection: 2	
You got it!	
=======================================	34%
From the distTmp entries, which cluster would point 6 be assigned to?	
1: none of the above	
1: none of the above	
2:1	
3: 2	

4:	3

Selection: 4	
Nice work!	
======================================	36%
R has a handy function which.min which you can apply to ALL the columns of distTmp Simply call the R function apply with 3 arguments. The first is distTmp, the second is 2	
the columns of distTmp, and the third is which.min, the function you want to apply to of distTmp. Try this now.	_
> apply(distTmp, 2, which.min)	
[1] 2 2 2 1 3 3 3 1 3 3 3 3	
=====================================	38%
You can see that you were right and the 6th entry is indeed 3 as you answered before first 3 entries were assigned to the second (orange) cluster and only 2 points (4 and 8) assigned to the first (red) cluster.	
======================================	40%
We've stored the vector of cluster colors ("red","orange","purple") in the array cols1 f	for you and

we've also stored the cluster assignments in the array newClust. Let's color the 12 data po	ints
according to their assignments. Again, use the command points with 5 arguments. The first	st 2 are x
and y. The third is pch set to 19, the fourth is cex set to 2, and the last, col is set to	
cols1[newClust].	
> points(x,y,pch=19, cex=2, col=cols1[newClust])	
That's correct!	
	42%
Now we have to recalculate our centroids so they are the average (center of gravity) of th	e cluster
of points assigned to them. We have to do the x and y coordinates separately. We'll do the	e x
coordinate first. Recall that the vectors x and y hold the respective coordinates of our 12 c	data
points.	
	
	44%

| We can use the R function tapply which applies "a function over a ragged array". This means that | every element of the array is assigned a factor and the function is applied to subsets of the array | (identified by the factor vector). This allows us to take advantage of the factor vector newClust | we calculated. Call tapply now with 3 arguments, x (the data), newClust (the factor array), and | mean (the function to apply).

> tapply(x, newClust, mean)

1 2 3

1.210767 1.010320 2.498011

That's a job well done!	
	46%
Repeat the call, except now apply it to the vector y instead of x.	
> tapply(y, newClust, mean)	
1 2 3	
1.730555 1.016513 1.354373	
Perseverance, that's the answer.	
	48%
Now that we have new x and new y coordinates for the 3 centroids we can plot them. We've	ve stored of
the coordinates for you in variables newCx and newCy. Use the R command points with the	ese as the
first 2 arguments. In addition, use the arguments col set equal to cols1, pch equal to 8, cex	equal
to 2 and lwd also equal to 2.	
> points(newCx,newCy,pch=8, cex=2, col=2, lwd=2)	
You almost had it, but not quite. Try again. Or, type info() for more options.	
Type points(newCx,newCy,col=cols1,pch=8,cex=2,lwd=2) at the command prompt.	
> points(newCx,newCy,col=cols1,pch=8,cex=2,lwd=2)	
You are quite good my friend!	

======================================	50%
We see how the centroids have moved closer to their respective clusters. This is especially true of	:
\mid the second (orange) cluster. Now call the distance function mdist with the 4 arguments x, y, new C	Σx,
and newCy. This will allow us to reassign the data points to new clusters if necessary.	
> mdist(x,y,newCx,newCy)	
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]	
[1,] 0.98911875 0.539152725 0.2901879 1.0286979 0.7936966 0.8004956 0.4650664 1.028698 3.3053706	
[2,] 0.09287262 0.002053041 0.0734304 0.2313694 1.9333732 1.8320407 1.4310971 2.926095 3.5224442	
[3,] 3.28531180 2.197487387 1.6676725 4.0113796 0.4652075 0.3721778 0.6043861 1.643033 0.2586908	
[,10] [,11] [,12]	
[1,] 3.282778 3.5391512 2.9345445	
[2,] 3.295301 3.5990955 3.2097944	
[3,] 0.309730 0.3610747 0.1602755	
All that hard work is paying off!	
=====================================	I
We've stored off this new matrix of distances in the matrix distTmp2 for you. Recall that the first	
cluster is red, the second orange and the third purple. Look closely at columns 4 and 7 of	
distTmp2. What will happen to points 4 and 7?	

1: They're the only points that won't change clusters

2: They will both change to cluster 2
3: Nothing
4: They will both change clusters
Selection: 4
Excellent work!
=====================================
Now call apply with 3 arguments, distTmp2, 2, and which.min to find the new cluster assignments for the points.
> apply(distTmp2, 2, which.min)
[1] 2 2 2 2 3 3 1 1 3 3 3 3
You are doing so well!
=====================================
We've stored off the new cluster assignments in a vector of factors called newClust2. Use the R
function points to recolor the points with their new assignments. Again, there are 5 arguments, x
and y are first, followed by pch set to 19, cex to 2, and col to cols1[newClust2].
> points(x,y,pch=19, cex=2, col=cols1[newClust2])
Excellent work!

Keep up the great work!
======================================
We've stored off these coordinates for you in the variables finalCx and finalCy. Plot these new
centroids using the points function with 6 arguments. The first 2 are finalCx and finalCy. The
argument col should equal cols1, pch should equal 9, cex 2 and lwd 2.
> points(finalCx,finalCy,col=cols1,pch=9,cex=2,lwd=2)
Keep up the great work!
======================================
It should be obvious that if we continued this process points 5 through 8 would all turn red, while
points 1 through 4 stay orange, and points 9 through 12 purple.
======================================
Now that you've gone through an example step by step, you'll be relieved to hear that R provides a
command to do all this work for you. Unsurprisingly it's called kmeans and, although it has several
parameters, we'll just mention four. These are x, (the numeric matrix of data), centers, iter.max,
and nstart. The second of these (centers) can be either a number of clusters or a set of initial
centroids. The third, iter.max, specifies the maximum number of iterations to go through, and

| nstart is the number of random starts you want to try if you specify centers as a number.

...

|-----

| 70%

| Call kmeans now with 2 arguments, dataFrame (which holds the x and y coordinates of our 12 points) | and centers set equal to 3.

> kmeans(dataFrame, centers = 3)

K-means clustering with 3 clusters of sizes 8, 2, 2

Cluster means:

х у

1 2.4220935 1.4954726

2 0.6447237 0.9113461

3 1.1361870 1.1023953

Clustering vector:

[1] 2 3 3 2 1 1 1 1 1 1 1 1

Within cluster sum of squares by cluster:

[1] 3.96919665 0.03479993 0.02904713

(between_SS / total_SS = 64.0 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss" "betweenss"

[7] "size" "iter" "ifault"

You're the best!
=====================================
The program returns the information that the data clustered into 3 clusters each of size 4. It also
returns the coordinates of the 3 cluster means, a vector named cluster indicating how the 12 points
were partitioned into the clusters, and the sum of squares within each cluster. It also shows all
the available components returned by the function. We've stored off this data for you in a kmeans
object called kmObj. Look at kmObj\$iter to see how many iterations the algorithm went through.
> kmObj\$iter
[1] 2
You are really on a roll!
======================================
Two iterations as we did before. We just want to emphasize how you can access the information
available to you. Let's plot the data points color coded according to their cluster. This was
stored in kmObj\$cluster. Run plot with 5 arguments. The data, x and y, are the first two; the
third, col is set equal to kmObj\$cluster, and the last two are pch and cex. The first of these
should be set to 19 and the last to 2.
> plot(x,y,col=kmObj\$cluster, pch=19, cex=2)
You got it!

76%
Now add the centroids which are stored in kmObj\$centers. Use the points function with 5 arguments
The first two are kmObj\$centers and col=c("black", "red", "green"). The last three, pch, cex, and
lwd, should all equal 3.
> points(kmObj\$centers, col=c("black","red","green"), pch=3, cex=3, lwd=3)
You are quite good my friend!
78%
Now for some fun! We want to show you how the output of the kmeans function is affected by its
random start (when you just ask for a number of clusters). With random starts you might want to rul
the function several times to get an idea of the relationships between your observations. We'll
call kmeans with the same data points (stored in dataFrame), but ask for 6 clusters instead of 3.
···
=====================================
We'll plot our data points several times and each time we'll just change the argument col which
will show us how the R function kmeans is clustering them. So, call plot now with 5 arguments. The
first 2 are x and y. The third is col set equal to the call kmeans(dataFrame,6)\$cluster. The last

| two (pch and cex) are set to 19 and 2 respectively.

> plot(x,y,col=kmeans(dataFrame,6)\$cluster, pch=19, cex=2)
Perseverance, that's the answer.
======================================
==== 82%
See how the points cluster? Now recall your last command and rerun it.
> plot(x,y,col=kmeans(dataFrame,6)\$cluster, pch=19, cex=2)
That's a job well done!
======================================
===== 84%
See how the clustering has changed? As the Teletubbies would say, "Again! Again!"
> plot(x,y,col=kmeans(dataFrame,6)\$cluster, pch=19, cex=2)
That's the answer I was looking for.
======================================
======= 86%

| So the clustering changes with different starts. Perhaps 6 is too many clusters? Let's review!

======== 88%
True or False? K-means clustering requires you to specify a number of clusters before you begin.
1: False
2: True
Selection: 2
You nailed it! Good job!
True or False? K-means clustering requires you to specify a number of iterations before you begin.
1: True
2: False
Selection: 2
Great job!
=======================================

•••

True or False? Every data set has a single fixed number of clusters.
1: True 2: False
Selection: 2
You got it right!
1
94%
True or False? K-means clustering will always stop in 3 iterations
1: True
2: False
Selection: 2
That's a job well done!
=======================================
True or False? When starting kmeans with random centroids, you'll always end up with the same final
clustering.

```
1: True
2: False
Selection: 2
| Your dedication is inspiring!
======== | 98%
| Congratulations! We hope this means you found this lesson oK.
|------
=======| 100%
| Would you like to receive credit for completing this course on Coursera.org?
1: No
2: Yes
                                    Functions
mdist <- function(x,y,cx,cy){</pre>
distTmp <- matrix(NA,nrow=3,ncol=12)
distTmp[1,] <- (x-cx[1])^2 + (y-cy[1])^2
distTmp[2,] <- (x-cx[2])^2 + (y-cy[2])^2
distTmp[3,] <- (x-cx[3])^2 + (y-cy[3])^2
return(distTmp)
```


#

