Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИУК «Информатика и управление»
КАФЕДРА	ИУК4 «Программное обеспечение ЭВМ,
информационн	ые технологии»

Лабораторная работа №2

«Графический метод решения задачи математического программирования»

ДИСЦИПЛИНА: «Моделирование»

Выполнил: студент гр. ИУК4-72Б			Сафронов Н.С.
Проверил:	(подпись)	_ (_	(Ф.И.О.) Никитенко У.В. (Ф.И.О.)
Дата сдачи (защиты):			
Результаты сдачи (защиты): - Балльная - Оценка:	оценка:		

Калуга, 2023

Цель работы: изучение математического аппарата математического программирования на примере задач небольшой размерности, допускающих графическое решение.

Постановка задачи

Вариант 14

Найти условный экстремум функции методом множителей Лагранжа:

$$z = 2x_1 - x_2 + x_3 \rightarrow extr$$
при условии
 $x_1^2 + x_2^2 + x_3^2 = 1$

Решение

$$L = f(x_1, x_2, x_3) + \lambda \phi(x_1, x_2, x_3)$$

$$\phi(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 - 1 = 0$$

$$L = 2x_1 - x_2 + x_3 + \lambda(x_1^2 + x_2^2 + x_3^2 - 1)$$

$$L'_{x_1} = 2 + 2\lambda x_1$$

$$L'_{x_2} = -1 + 2\lambda x_2$$

$$L'_{x_3} = 1 + 2\lambda x_3$$

$$\begin{cases} 2 + 2\lambda x_1 = 0 \\ -1 + 2\lambda x_2 = 0 \\ 1 + 2\lambda x_3 = 0 \end{cases}$$

$$x_1^2 + x_2^2 + x_3^2 - 1 = 0$$

$$\begin{cases} x_1 = -\frac{1}{\lambda} \\ x_2 = \frac{1}{2\lambda} \\ x_3 = -\frac{1}{2\lambda} \\ x_1^2 + x_2^2 + x_3^2 - 1 = 0 \end{cases}$$

$$\frac{1}{\lambda^2} + \frac{1}{4\lambda^2} + \frac{1}{4\lambda^2} - 1 = 0$$

$$\frac{6}{4\lambda^2} = 1$$

$$\lambda^{2} = \frac{3}{2}$$

$$\lambda = \pm \sqrt{\frac{3}{2}}$$

$$\begin{cases}
x_{1} = -\frac{1}{\lambda} = -\sqrt{\frac{2}{3}} \\
x_{2} = \frac{1}{2\lambda} = \sqrt{\frac{2}{12}} \\
x_{3} = -\frac{1}{2\lambda} = -\sqrt{\frac{2}{12}} \\
\lambda = \sqrt{\frac{3}{2}}
\end{cases}$$

$$\begin{cases}
x_{1} = -\frac{1}{\lambda} = \sqrt{\frac{2}{3}} \\
x_{2} = \frac{1}{2\lambda} = -\sqrt{\frac{2}{12}} \\
x_{3} = -\frac{1}{2\lambda} = \sqrt{\frac{2}{12}} \\
x_{3} = -\frac{1}{2\lambda} = \sqrt{\frac{2}{12}} \\
\lambda = -\sqrt{\frac{3}{2}}
\end{cases}$$

$$L''_{x_{1}x_{1}} = 2\lambda$$

$$L''_{x_{2}x_{2}} = 2\lambda$$

$$L''_{x_{2}x_{2}} = 2\lambda$$

$$L''_{x_{1}x_{2}} = L''_{x_{1}x_{3}} = L''_{x_{2}x_{1}} = L''_{x_{2}x_{3}} = L''_{x_{3}x_{1}} = L''_{x_{3}x_{2}} = 0$$

$$d^{2}L = L''_{x_{1}x_{1}}(dx_{1})^{2} + L''_{x_{2}x_{2}}(dx_{2})^{2}L''_{x_{3}x_{3}}(dx_{3})^{2} = 2\lambda(dx_{1})^{2} + 2\lambda(dx_{2})^{2} + 2\lambda(dx_{3})^{2}$$

$$\lambda = \frac{3}{3}$$

$$\begin{cases} d^{2}L > 0 \\ \lambda = \sqrt{\frac{3}{2}} = > M_{1} = \left(-\sqrt{\frac{2}{3}}, \sqrt{\frac{2}{12}}, -\sqrt{\frac{2}{12}}\right) \approx \end{cases}$$

 $\approx (-0.82, 0.41, -0.41)$ — точка условного минимума

$$z = f(M_1) = f\left(-\sqrt{\frac{2}{3}}, \sqrt{\frac{2}{12}}, -\sqrt{\frac{2}{12}}\right) = -4\sqrt{\frac{2}{12}} - \sqrt{\frac{2}{12}} - \sqrt{\frac{2}{12}} =$$
$$= -6\sqrt{\frac{1}{6}} \approx -2.45$$

$$\int_{0}^{d^{2}L} d^{2}L = L_{x_{1}x_{1}}^{"}(dx_{1})^{2} + L_{x_{2}x_{2}}^{"}(dx_{2})^{2}L_{x_{3}x_{3}}^{"}(dx_{3})^{2} = 2\lambda(dx_{1})^{2} + 2\lambda(dx_{2})^{2} + 2\lambda(dx_{3})^{2}$$

$$\lambda = -\sqrt{\frac{2}{3}}$$

$$\begin{cases} d^{2}L < 0 \\ \lambda = \sqrt{\frac{2}{3}} => M_{2} = \left(\sqrt{\frac{2}{3}}, -\sqrt{\frac{2}{12}}, \sqrt{\frac{2}{12}}\right) \approx \end{cases}$$

 $\approx (0.82, -0.41, 0.41)$ — точка условного максимума

$$z = f(M_1) = f\left(\sqrt{\frac{2}{3}}, -\sqrt{\frac{2}{12}}, \sqrt{\frac{2}{12}}\right) = 4\sqrt{\frac{2}{12}} + \sqrt{\frac{2}{12}} + \sqrt{\frac{2}{12}} = 6\sqrt{\frac{1}{6}} \approx 2.45$$

Построим графики функций и обозначим на них полученные точки:

Рисунок 1 – Найденная точка условного локального минимума

Рисунок 2 – Найденная точка условного локального максимума

Вывод: в ходе выполнения лабораторной работы был изучен математический аппарат математического программирования на примере задач небольшой размерности, допускающих графическое решение.

приложения

Листинг программы

```
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
from skimage import measure
def function(x 1: float, x 2: float, x 3: float, z: float) -> float:
    return 2 * x 1 - x 2 + x 3 - z
def condition(x 1: float, x 2: float, x 3: float) -> float:
    return np.power(x 1, 2) + np.power(x 2, 2) + np.power(x 3, 2) - 1
def plot_implicit(
        axis: plt.Axes, fn, bbox=(-2.5, 2.5), color="red",
        order=1
):
    xl = np.linspace(-3, 3, 25)
   X, Y, Z = np.meshgrid(xl, xl, xl)
    F = fn(X, Y, Z)
   verts, faces, normals, values = measure.marching cubes(
        F, 0, spacing=[np.diff(xl)[0]] * 3
    )
   verts -= 3
    axis.plot trisurf(
        verts[:, 0], verts[:, 1], verts[:, 2], triangles=faces,
        color=color, lw=0, zorder=order
    )
def plot implicit contour(
        axis: plt.Axes, fn, bbox=(-2.5, 2.5), color="red",
        order=1
):
   A = np.linspace(-1, 1, 100)
    B = np.linspace(-1, 1, 15)
   A1, A2 = np.meshgrid(A, A)
    for z in B:
        X, Y = A1, A2
        Z = fn(X, Y, z)
        cset = axis.contour(
            X, Y, Z + z, [z], zdir="z", colors=[color],
            zorder=order
        )
    for y in B:
        X, Z = A1, A2
        Y = fn(X, y, Z)
        cset = axis.contour(
            X, Y + Y, Z, [Y], Zdir="Y", Zcolors=[Zcolor],
            zorder=order
        )
```

```
for x in B:
        Y, Z = A1, A2
        X = fn(x, Y, Z)
        cset = axis.contour(
            X + x, Y, Z, [x], zdir="x", colors=[color],
            zorder=order
        )
def show result plot(
        function,
        condition,
        z: float,
        point: list,
        colors: dict,
        legend: list
):
    figure = plt.figure()
    axis = figure.add subplot(111, projection="3d", computed zorder=False)
   plot implicit(axis, condition, color=colors["red"], order=1)
   plot implicit contour(
        axis, lambda x 1, x 2, x 3: function(x 1, x 2, x 3, z),
        color=colors["blue"], order=2
    axis.plot(
        point[0], point[1], point[2], ".", c=colors["black"],
        markersize=20, zorder=3
    axis.set xlabel("$x 1$")
    axis.set_ylabel("$x_2$")
   axis.set zlabel("$x 3$")
   axis.set xlim(-1, 1)
   axis.set ylim(-1, 1)
   axis.set zlim(-1, 1)
    plt.legend(
       handles=legend
   plt.show()
if name == " main ":
    colors = {
        "red": "#B34B3E",
        "blue": "#0174C3",
        "black": "#5DCA6E"
    }
   min_z = -6 * np.sqrt(1 / 6)
    red_legend_handle = matplotlib.lines.Line2D(
        [], [], color=colors["red"], marker="s", ls="",
        label="$x 1^2$ + <math>$x 2^2$ + <math>$x 3^2$ = 1"
    blue legend handle = matplotlib.lines.Line2D(
        [], [], color=colors["blue"], marker="s", ls="",
        label=f''2$x_1$ - $x_2$ + $x_3$ = {min_z:.4f}''
    green legend handle = matplotlib.lines.Line2D(
        [], [], color=colors["black"], marker="s", ls="",
```

```
label=f"M = ({-np.sqrt(2 / 3):.2f}, "
          f"{np.sqrt(2 / 12):.2f}, {-np.sqrt(2 / 12):.2f})"
legend = [red legend handle, blue legend handle, green legend handle]
point = [-np.sqrt(2 / 3), np.sqrt(2 / 12), -np.sqrt(2 / 12)]
show result plot(function, condition, min z, point, colors, legend)
max z = 6 * np.sqrt(1 / 6)
blue legend handle = matplotlib.lines.Line2D(
    [], [], color="blue", marker="s", ls="",
    label=f"2x_1 - x_2 + x_3 = {max z:.4f}"
green legend handle = matplotlib.lines.Line2D(
    [], [], color="green", marker="s", ls="",
    label=f"M = ({np.sqrt(2 / 3):.2f}, "
         f"{-np.sqrt(2 / 12):.2f}, {np.sqrt(2 / 12):.2f})"
legend = [red legend handle, blue legend handle, green legend handle]
point = [np.sqrt(2 / 3), -np.sqrt(2 / 12), np.sqrt(2 / 12)]
show result plot(function, condition, max z, point, colors, legend)
```