

SEQUENCE LISTING

<110> NAKARI-SETALA, Tiina et al.

<120> A METHOD FOR DECREASING THE FOAM FORMATION DURING CULTIVATION OF A MICROORGANISM

<130> 0365-0529P

<140> US 10/050,000

<141> 2002-05-03

<160> 9

<170> PatentIn Ver. 2.1

<210> 1

<211> 2868

<212> DNA

<213> Trichoderma reesei

<220>

<221> gene

<222> (1523)..(1950)

<223> hfb1

<400> 1

tttgtatggc tggatctcgaaaggcccttg tcatacgccaa ggcgtggctaa tatcaatga 60
gggacaccga gttgcataatc tcctgatcat tcaaaca gactgtgaggt aggcaatcct 120
cgtatccat tgctggctg aaagcttcac acgtatcgca taagcgtctc caaccagtgc 180
ttaggtgacc cttaaggata cttagactaa gactgttata agtcagtcac tctttcactc 240
gggcttgaa tacgatccctc aataactcccg ataacagtaa gaggatgata cagcctgcag 300
ttggcaaatg taagcgtaat taaactcagc tgaacggccc ttgttgaagatctctcg 360
tcaaagcaaa gctatccaca gacaagggtt aagcaggctc actcttccta cgccttggat 420
atgcagcttgcgcagcatcg cgcatggcca atgatgcacc cttcacggcc caacggatct 480
cccgtaaac tccccctgtaa ctggcatca ctcatctgtg atcccaacag actgagttgg 540
gggctgcggc tggcggatgt cgagcaaaag gatcacttca agagcccaga tccggttgg 600
ccattgccaa tggatctaga ttccggcacct tgatctcgat cactgagaca tggtagttg 660
cccgacgc ccacaactcc cccctgtgtca ttgagttcccc atatgcgtct tctcagcgtg 720
caactctgag acggattagt cctcacatcg aaattaacctt ccagcttaag ttcgttagcct 780
tgaatgatgt aagaaatttc aaaaacaaac tgagtagagg tcttgagcag ctgggttgg 840
acgccccctcc tcgactcttgcgacatcgta cggcagagaa tcaacggatt cacacctttg 900
ggtcgagatg agctgatctc gacagatacg tgcttcacca cagctgcagc taccttgcc 960
caaccattgc gttccaggat ctgtatctac atcaccgcag caccgcagcc aggacggaga 1020
gaacaatccg gccacagagc agcaccgcct tccaaactctg ctccctggcaa cgtcacacaa 1080
cctgatattt gatatccacc tgggtgattt ccattgcaga gaggtggcag ttggtagatac 1140
cgactggcca tgcaagacgc ggccgggcta gctgaaatgt ccccgagagg acaattggga 1200
gcgtctatga cggcggtggag acgacgggaa aggactcagc cgtcatgtt tggttgc当地 1260
ttgagattgt tgaccggaa agggggggac aagagatgg ctgggtgagg tggtagttgg 1320
aggatgcattt attcgactca gtgagcgatg tagagctcca agaatataaa tatcccttct 1380
ctgtcttctc aaaatctcttccatcttgc cttcatctcag caccagagcc agcctgaaca 1440
cctccaggatca acttccctta ccactacatc tgaatcaaca tccattctt gaaatctcac 1500
cacaaccacc atcttcttca aaatgaagtt ctccggcattc gccgctctt ttgccgcgc 1560
tgccgttgcc cagcctctcg aggacccgac caacgcaac gcataatgtt gcccctccgg 1620
cctcttgc aaccccccagt gctgtgccac ccaagtcctt ggcctcatcg gccttgactg 1680
caaagtccgt aagttgagcc ataacataag aatcccttgc acggaaatat gccttctcac 1740
tccttaccc ctgaacagcc tccagaacacg tttacgacgg caccgacttc cgcaacgtct 1800

gcgcacaaac cggcgcccag cctctctgct gcgtggcccc cgttgtaaat ttagcccca 1860
gctcaagctc cagtcttgg caaacccatt ctgacaccca gactgcaggc cggccaggct 1920
cttctgtgcc agaccgcccgt cggtgcttga gatgcccgc cggggtaaag gtgtgcccgt 1980
gagaaaagccc acaaagtgtt gatgaggacc atttcggta ctgggaaagt tggctccacg 2040
tgtttggca gttttggca agttgtgttag atattccatt cgtacccat tcttattctc 2100
caatatttca gtacactttt cticataaat caaaaagact gctattctt ttgtgacatg 2160
ccggaaggga acaattgctc ttggctctg ttatttgc aaatggatgg gagattcgcc 2220
tttagagaaag tagagaagct gtgcttgacc gtgggtgtgac tcgacgagga tggactgaga 2280
gtgttaggat taggtcgaac gttgaagtgt atacaggatc gtctggcaac ccacggatcc 2340
tatgacttga tgcaatggta aagatgaatg acagtgtaa aggaaaagga aatgtccgccc 2400
ttcagctgat atccaccca atgatacagc gatatacctc caatatctgt gggaaacgaga 2460
catgacatat ttgtggaaac aacttcaaac agcgagccaa gacctaata tgcacatcca 2520
aagccaaaca ttggcaagac gagagacagt cacattgtcg tcgaaagatg gcatcgtacc 2580
caaatcatca gctctcatta tcgcctaaac cacagattgt ttgcgtccc ccaactccaa 2640
aacgttacta caaaagacat gggcgaatgc aaagacctga aagcaaacc ttttgcgac 2700
tcaattccct cctttgtcct cgaatgtat atccttcacc aagtaaaaaga aaaagaagat 2760
tgagataata catgaaaagc acaacggaaa cggaaacc aggaaaagaa taaatctatc 2820
acgcacccctg tcccccacact aaaagcaaca ggggggtaa aatgaaat 2868

<210> 2
<211> 3585
<212> DNA
<213> Trichoderma reesei

<220>
<221> gene
<222> (1191)..(1593)
<223> hfb2

<220>
<221> unknown
<222> (1917)..(1917)
<223> n = a, c, t, g, unknown, or other

<220>
<221> unknown
<222> (2160)..(2160)
<223> n = a, c, t, g, unknown, or other

<220>
<221> unknown
<222> (3515)..(3515)
<223> n = a, c, t, g, unknown, or other

<400> 2
ctcgagcagc tgaagcttgc atgcctgcat cctttgttag cgactgcatttgcac 60
acactgcccgt cgacgtctct ctccgacct tggccagctg gacaaggcaac acaccaatga 120
cgctttgtat tattagatgtatgcaagtc tcaggactat cgactcaact ctacccaccc 180
aggacgatcg cggcacgata cggccctcggtt ctcattggcc caaggagacc aactgcccct 240
ggagcaagat tcagcccaag ggagatggac ggcaggccac gccaggcccc caccaccaag 300
ccactccctt tggccaaatc agcttgcatt tcaagagaca tcgagctgtg ccttggaaatt 360
actaacaacc agggatggaa aacgaaggct gctttggaa agacaacaat gagagagaga 420
gagagaggaa gagagacaat gaggccaca aacctggtag tgctccgcca atgcgtctga 480
aatgtcacat ccgagtcttgc gggcctctgt gagaatgtcc agagtaatac gtgtttgcg 540
aatagtccctc ttcttgagg actggatacc tacgataacc ttttggatt gatgcgggtgc 600
tttgcgtat ttagtctggag gatagaagac gtcttagttaa ctacacaaaaa ggcctataact 660

ttggggagta gcccaacgaa aggttaactcc tacggcctct tagagccgtc atagatccct 720
 cagcctcttg gagccgtcat agatcacatc tgttagacc gacattctat gaataatcat 780
 ctcatcatgg ccacatacta ctacatacgt gtctctgcct acctgacatg tagcagtggc 840
 caagacacca aggcccagc atcaaggcctc cctacctatc cttccatg tacagcggca 900
 gagagattgc gatgagccct cttccatcct acagacggct gacaatgtcc gtataaccacc 960
 agccaacgtg atgaaaacaa ggacatgagg aacaggctgc gagagctgga agatgaagag 1020
 ggccagaaaa aaaagtataa agaagacctc gattccgcct atccaacaat ctttccatc 1080
 ctcatcagca cactcatcta caaccatcac cacattcaact caactcctct ttctcaactc 1140
 tccaaacaca aacattctt gttgaatacc aaccatcacc acctttcaag atgcagttct 1200
 tcgcccgtcgcc cctttcgcc accagcgccc tggctgtgt ctgcccattc ggcctttct 1260
 ccaaccctct gtgctgtgcc accaacgtcc tcgacccat tggcggttgc tgcaagaccc 1320
 gtatgttcaa ttccaatctc tggcatcct gacattggac gatacgttg acttacacga 1380
 tgctttacag ctaccatcgc cgtcgacact ggcgcacatc tccaggctca ctgtgccagc 1440
 aaggcgtcca agcctcttg ctgcgttgct cccgtggtaa gtagtgcctg caatggcaaa 1500
 gaagtaaaaaa gacattttggg cctggatcg ctaactctt atatcaaggc cgaccaggct 1560
 ctcctgtgcc agaaggccat cgccacccat taaagaatg gcttgctta ctgccccggc 1620
 tcttgagaa ctctgggtc aaaaaagacg acttgcattt atcatggggg ctcgcaat 1680
 ggaggatttg gaggggattt aggtgggtt tggcctatta gaggattgca taatggaga 1740
 tttgcgagca ggacatagac gtatcttagat ttcttagtcaa tacattattt aaaaatgg 1800
 gtatacctat cgctggact ggtatcttgc agatatcttct tcttcttgc aggttatgt 1860
 tggcaatcag tcgaaatcta ttgtaaagaca gagctcaagc ttcaaaacatt cactgtngaa 1920
 ttgaccattt tggttcgatg gtgcgttg tgggtgtca cttctgcaat catgtacgag 1980
 cacaagtata gcagtattcc atctgatctg catctggta aatgtcgcca ctctacctag 2040
 gtacccaata aataccgaat tggcgtc tgggtgaca aaccggcccg cttttcgacc 2100
 gtgctctgtc caattcttagg ctgtcaatg ttccctgact gtgataaaacc ttggagctan 2160
 cataacttac cttacaataa atccaaactgc cgccacttgc ttcccttcac ccaaccactc 2220
 gcaaacatca cgcaaccctgt ctgcattcccc tggccaaat ctgctggca acgtatcatc 2280
 acaaatacata cacacagaca aaaaggagcc aaagcagcaa tggcaagaca ccgaggccgg 2340
 cagcgcgccc gtcggcggtt taaaaaagcg aagcgcggaa ggcggcaac acctgcgca 2400
 acgaacaacg aaggctttcc cccggcgca ggcggccggc aatgtcgcca gactttct 2460
 cgtcggaga cgaaggccgg cacagagtca agaggcgca gaggacggcc gtcgtcaccg 2520
 ccggccggga gggcgccgc gcccggcaac cggggcggccg gggccggccg aacagccggc 2580
 ttcacggcca acagaagcgt cccgattgtc gacagcaacg acgcgacccaa gcacagcaac 2640
 tggtagcgcg aggacgcaaa ggacggcgtc tggccaaaga acctcctcgat atttcgaga 2700
 gcttccaagg acgcgcagcc agacggcacc tacaaggccc tggcgaacca gacgtcctt 2760
 atacaaaaga atccggatgc gccccggaaag acagttgggc cctgtcaagc gcctaccaac 2820
 atccgcaccg tcaccattac agattatgcc cgggacacgt taaaagatgt agttgcattc 2880
 aataccaga atcccccccccc cgataccgt acattgagca tatgtctact cgtcataatc 2940
 tttcttagta tcgcataacc ggctatataa gtactccct tttccatgt tattccagtc 3000
 gctgtactgac atttcttaga gccttactg tggtttggc gacaattgca agtatcttca 3060
 cgcgagagaa gacctcaagg caggctggca gctggatcaa gagtggggaaa aggtcaccac 3120
 gggcaagaag aacctggggg gaacggtagt ggccggccgg aaccggaaaca aggccaagg 3180
 ggacgaggggc gacgcacgacg acgacgaaaga ggcgtatgc gagaacatcc cggttgcctg 3240
 catcatctgc agggaatcgt acaaggagcc gattgtgacg aggtgcgggc actactttt 3300
 cctggcgatgc gctctgcacg ggtacaagaa ggttccgacg tggctggcggt gtggctcggt 3360
 cacgaatggc gtgttaatt cggcgtcgac gttgaagaag ctgtctggaga agaagaggga 3420
 gagggcgccaggaggagac aggaggcgat agagaggggc gaggaagtcgtatgtaa 3480
 ggaggaggag gaggaggact gatgtatgtt gggcnagatg acgtatgcagg tcgactctag 3540
 agatccccgg taccgagctc gaattcatcg atgatatcag atccc 3585

<210> 3
 <211> 63
 <212> DNA
 <213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: 5' primer

<400> 3
actacacgga ggagctcgac gacttcgagc agcccgagct gcacgcagag caacggcaac 60
63
ggc

<210> 4
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: 3' primer

<400> 4
tcgtacggat cctcaagcac cgacggcggt 30

<210> 5
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: linker

<400> 5
Pro Gly Ala Ser Thr Ser Thr Gly Met Gly Pro Gly Gly
1 5 10

<210> 6
<211> 14
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: linker

<400> 6
Gly Thr Leu Val Pro Arg Gly Pro Ala Glu Val Asn Leu Val
1 5 10

<210> 7
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: 5' primer

<400> 7
gaattcggta ccctcggtccc tcgcggtccc gccgaagtga acctggtg 48

```
<210> 8
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: 3'primer

<400> 8
tgaattccat atgctaaccc cgtttcatct ccag 34

<210> 9
<211> 157
<212> PRT
<213> Artificial Sequence

<220>
<223> Hydrophobin protein derived from fungi

<220>
<221> misc_feature
<222> (1)..(38)
<223> Xaa can be any naturally occurring amino acid and at least
      2 and up to 38 amino acids can either be present or absent

<220>
<221> misc_feature
<222> (40)..(48)
<223> Xaa can be any naturally occurring amino acid and at least
      5 and up to 9 amino acids can either be present or absent

<220>
<221> misc_feature
<222> (51)..(89)
<223> Xaa can be any naturally occurring amino acid and at least
      11 and up to 39 amino acids can either be present or absent

<220>
<221> misc_feature
<222> (91)..(113)
<223> Xaa can be any naturally occurring amino acid and at least
      8 and up to 23 amino acids can either be present or absent

<220>
<221> misc_feature
<222> (115)..(123)
<223> Xaa can be any naturally occurring amino acid and at least
      5 and up to 9 amino acids can either be present or absent

<220>
<221> misc_feature
<222> (126)..(143)
<223> Xaa can be any naturally occurring amino acid and at least
      6 and up to 18 amino acids can either be present or absent
```

<220>
<221> misc_feature
<222> (145)..(157)
<223> Xaa can be any naturally occurring amino acid and at least
2 and up to 13 amino acids can either be present or absent

<400> 9

Xaa
1 5 10 15

Xaa
20 25 30

Xaa Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
35 40 45

Cys Cys Xaa
50 55 60

Xaa
65 70 75 80

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa
85 90 95

Xaa
100 105 110

Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys Cys Xaa Xaa Xaa
115 120 125

Xaa Cys
130 135 140

Xaa
145 150 155