

Università degli Studi di Bergamo

SCUOLA DI INGEGNERIA Corso di Laurea Magistrale in Ingegneria Informatica

Laboratorio di Elettronica

Relazione esperienza di laboratorio 1

Prof. **Luigi Gaioni**

Candidati **Giulia Allievi**Matricola 1058231

Martina Fanton Matricola 1059640

Filtro passa-basso attivo

1.1 Introduzione

Il primo circuito che abbiamo realizzato è un filtro passa-basso attivo. Questo circuito per funzionare ha bisogno di un amplificatore operazionale, che è un dispositivo... Per il nostro circuito abbiamo utilizzato un amplificatore operazionale general purpose, il µA741. Nell'immagine sottostante, la figura 1.1, si possono vedere i numeri e la funzione di ogni terminale di questo componente.

Figura 1.1: Package e funzione dei pin del µA741.

1.2 Schema del circuito e analisi teorica

Lo schema del circuito è riportato in figura 1.2. Dato che l'amplificatore operazionale è un circuito attivo, per funzionare correttamente deve essere alimentato. Abbiamo utilizzato un'alimentazione duale, con tensione positiva di 10 V e alimentazione negativa di -10 V. è duale perché non c'è un'alimentazione pari alla massa.

Figura 1.2: Schema dell'amplificatore invertente.

Per analizzare questo circuito facciamo riferimento alla figura 1.3. La resistenza R_1 e il condensatore C_1 sono in parallelo, pertanto si può calcolare l'impedenza equivalente:

$$Z_{eq} = C_1 /\!\!/ R_1 = \frac{\frac{1}{s \cdot C_1} \cdot R_1}{\frac{1}{s \cdot C_1} + R_1} = \frac{\frac{R_1}{s \cdot C_1}}{\frac{1 + s \cdot R_1 C_1}{s \cdot C_1}} = \frac{R_1}{1 + s \cdot R_1 C_1}$$
 Per ricavare la funzione di trasferimento del circuito è sufficiente fare un bilancio di correnti all'ingresso

invertente. Con I_1 si intende la corrente che scorre nell'impedenza equivalente Z_{eq} .

$$I_2 = I_1 + I^-$$

La corrente in ingresso all'OPAMP è molto piccola, idealmente $I^+ = I^- \to 0A$. Perciò l'equazione precedente diventa:

$$I_2 = I_1$$

Utilizzando la legge di Ohm generalizzata, le correnti si possono esprimere come:

$$\frac{V^{-}(s) - V_{i}(s)}{R_{2}} = (V_{o}(s) - V^{-}(s)) \cdot \frac{1 + s \cdot R_{1}C_{1}}{R_{1}}$$

Se un circuito è retroazionato negativamente, $V^+ = V^-$ per il principio del cortocircuito virtuale. Dato che V^+ è a massa, la sua tensione è di 0V, di conseguenza anche V^- si troverà a questa tensione. L'equzione precedente diventa:

$$\frac{-V_i(s)}{R_2} = V_o(s) \cdot \frac{1 + s \cdot R_1 C_1}{R_1}$$

Figura 1.3: Schema per analizzare l'amplificatore invertente.

Tramite quest'equazione è facile ricavare la funzione di trasferimento del circuito, che risulta:

$$\frac{V_o(s)}{V_i(s)} = -\frac{R_1}{R_2} \cdot \frac{1}{1 + s \cdot R_1 C_1}$$

La funzione di trasferimento ottenuta è quella di un filtro passa-basso, perché al denominatore troviamo il termine $1+s\cdot R_1C_1$. Vediamo che c'è però anche un fattore di guadagno pari al rapporto fra R_1 e R_2 . Compare anche un segno meno, pertanto l'ingresso e l'uscita saranno sfasate di 180° Se passiamo al regime sinusoidale, sostituiamo s con $j\omega$. La funzione di trasferimento diventa:

$$\frac{V_o(\omega)}{V_i(\omega)} = -\frac{R_1}{R_2} \cdot \frac{1}{1 + j\omega \cdot R_1 C_1}$$

1.3 Misure e osservazioni

Frequenza	$ m V_{PP,in} [V]$	$ m V_{PP,out}[V]$	Guadagno	Sfasamento [°]
100 Hz	0.488	4.804	9.84	-179.3
500 Hz	0.488	4.799	9.83	-176.8
1 kHz	0.485	4.779	9.85	-173.4
5 kHz	0.481	4.188	8.71	-149.7
8.8 kHz	0.484	3.388	7.00	-133.9
10 kHz	0.485	3.163	6.52	-129.7
50 kHz	0.483	0.833	1.72	-96.3
100 kHz	0.484	0.427	0.88	-87.7
500 kHz	0.487	0.943	1.94	-58.6
1 MHz	0.488	0.542	1.11	-41.9
5 MHz	0.477	0.621	1.30	-35.9
10 MHz	0.430	0.106	0.25	-9.8

Tabella 1.1: Grandezze misurate ad ongi frequenza.