Chapitre 2

LES CONDUCTEURS

1/ Conducteur en équilibre électrostatique (CEE):

1.1/ Définition :

Un conducteur est un corps dans lequel les charges peuvent se déplacer facilement.

Un conducteur est en équilibre électrostatique (CEE) si toutes ses charges sont immobiles (au repos).

1.2/ Propriétés d'un CEE :

a) Le champ électrique :

• A l'intérieur d'un CEE le champ électrique est nul $\vec{E}_{int} = \vec{0}$

$$\vec{E}_{int} = \vec{0}$$

Démonstration :

Dans un CEE les charges sont immobiles :

$$\Rightarrow \qquad \sum \vec{F} = \vec{0} = q. \, \vec{E} \qquad \Rightarrow \quad \vec{E} = \vec{0}$$

• A la surface d'un conducteur le champ est perpendiculaire à cette dernière :

Démonstration :

Si \vec{E} n'est pas perpendiculaire (\bot) à la surface alors

on peut le décomposer en : $\, \vec{E} = \, \vec{E}_{\perp} + \, \vec{E}_{\parallel} \, ; \,$

et si $\vec{E}_{\parallel} \neq \vec{0}$ \Rightarrow $\vec{F} = q. \vec{E} \neq \vec{0}$ \Rightarrow mouvement des charges \Rightarrow ce n'est plus un CEE.

b) Le potentiel électrique :

A l'intérieur d'un conducteur en équilibre électrostatique (CEE) le potentiel est constant ($V = C^{st}$) : on dit que ce conducteur forme un <u>volume équipotentiel</u>.

Démonstration :

A l'intérieur d'un CEE $\Rightarrow \vec{E} = \vec{0}$ puisque on a $dV = -\vec{E} \cdot \vec{dl} = 0 \Rightarrow V = C^{st}$

c) Répartition des charges dans un CEE:

Dans un CEE la charge interne est nulle ($\sum q_{int} = 0$), cependant les charges se trouvent réparties sur la surface du conducteur.

Démonstration:

Si on applique le théorème de Gauss à l'intérieur

du conducteur, on aura:

$$\Phi = \iint \vec{E} \cdot \vec{dS} = 0 \quad \text{(I'intérieur d'un CEE} : \vec{E} = \vec{0}\text{)}$$

$$\Phi = \frac{\sum q_i}{\varepsilon_0} \quad \text{(2)}$$

Comme ① = ②
$$\Rightarrow \sum q_i = 0$$

d) Le champ $\vec{E} = ?$ au voisinage d'un conducteur :

Soit un conducteur portant une charge de densité surfacique σ , le champ à proximité immédiat (au voisinage) de ce conducteur est donné par :

$$\vec{E} = \frac{\sigma}{\varepsilon_0} \vec{n}$$

 $ec{n}$: le vecteur unitaire normal (ot) au conducteur

Choisissons un cylindre comme surface de Gauss passant par la surface du CEE :

En appliquant le théorème de Gauss on aura :

$$*\Phi = \iint \vec{E}.\overrightarrow{dS} = \iint \vec{E}.\overrightarrow{dS}_{sup} + \iint \vec{E}.\overrightarrow{dS}_{L} + \iint \vec{E}.\overrightarrow{dS}_{inf} = \iint E.dS_{sup}.\cos 0 = E.S \ \mbox{1}$$

d'autre part :

*
$$\Phi = \frac{\sum q_i}{\varepsilon_0} = \frac{\sigma.S}{\varepsilon_0}$$
 (les charge existent seulement sur la surface du CEE et S=S_{sup})

$$E.S = \frac{\sigma.S}{\varepsilon_0}$$

Puisque ce champ est \perp à la surface du conducteur alors vectoriellement il s'écrit :

$$\vec{E} = \frac{\sigma}{\varepsilon_0} \vec{n}$$

 $(\vec{n}: le \ vecteur \ unitaire \perp au \ conducteur)$

Remarque importante : « Répartition du champ sur la couche superficielle du CEE »

A l'intérieur d'un conducteur (CEE) le champ est nul $\vec{E} = \vec{E}_{int} = \vec{0}$, au voisinage immédiat du conducteur $\vec{E} = \vec{E}_{ext} = \frac{\sigma}{\varepsilon_0} \vec{n}$ donc par raison de continuité linéaire le champ à la surface du conducteur est égal à $\sigma/2\varepsilon_0$:

2/ Capacité et énergie interne d'un conducteur isolé :

2.1/ Capacité d'un conducteur isolé :

Soit un conducteur en équilibre électrostatique isolé qui porte une charge Q, il produit dans l'espace un champ \vec{E} et un potentiel V; on remarque que si on augmente la charge Q alors le potentiel V augmente aussi mais le rapport $\frac{Q}{V}$ reste constant, ce rapport est définit comme étant la capacité du conducteur :

$$C = \frac{Q}{V}$$
 avec:
$$\begin{cases} C \text{ en Farad } (F) \\ Q \text{ en Coulomb } (C) \\ V \text{ en Volt } (V) \end{cases}$$

La capacité C est une grandeur positive, elle dépend du matériau (permittivité) et de la géométrie du conducteur.

L'unité de la capacité est le « **Farad** », mais comme le Farad est une très grande capacité alors on utilise les sous multiples :

$$1\mu F = 10^{-6}F$$
;
 $1nF = 10^{-9}F$;
 $1pF = 10^{-12}F$

Exercice:

Calculer la capacité propre d'une sphère conductrice de rayon **R** chargée avec un densité surfacique de charge σ : $(Q = \sigma S)$.

On utilise le théorème de Gauss pour déterminer le champ à l'extérieur de la sphère:

La surface de Gauss choisie est une sphère de rayon r > R alors on aura :

*
$$\Phi = \iint \vec{E} \cdot \vec{dS} = E \iint dS = E \cdot 4\pi r^2$$
 ①

*
$$\Phi = \frac{\sum q_i}{\varepsilon_0} = \frac{Q}{\varepsilon_0} = (\frac{\sigma.S}{\varepsilon_0} = \frac{\sigma.4\pi R^2}{\varepsilon_0})$$
 (2)

(1) = (2)
$$\Rightarrow E = \frac{Q}{4\pi\varepsilon_0 \cdot r^2} = \frac{K \cdot Q}{r^2}$$

Comme
$$dV = -\vec{E} \cdot \vec{dl} = -E \cdot dr$$
 \Rightarrow $V = \int dV = -\int \frac{K \cdot Q}{r^2} = \frac{K \cdot Q}{r} + C$ à l'infini $V = 0$: $\lim_{r \to \infty} V(r) = 0$ \Rightarrow $C = 0$

donc le potentiel à l'extérieur de la sphère s'écrit : $V = \frac{K.Q}{r}$ et au voisinage immédiat de la sphère $(r \simeq R)$ on aura : $V = \frac{K.Q}{R}$

Finalement la capacité de la sphère conductrice sera :

$$C = \frac{Q}{V} = \frac{Q}{K \cdot Q/R} = \frac{R}{K} = 4\pi\varepsilon_0 R$$
 \Rightarrow $C = 4\pi\varepsilon_0 R$

2.2/ Energie interne d'un conducteur :

Soit un conducteur de capacité "C" portant une charge "q" : le potentiel de ce conducteur en fonction de la charge et de la capacité s'écrit : $V=\frac{q}{C}$

Quand on charge ce conducteur d'une charge élémentaire "dq" : $(q \rightarrow q + dq)$, on doit fournir un travail "dW" qui entraine une augmentation de l'énergie interne du conducteur :

$$dW = V. dq = \frac{q}{C} dq$$

L'énergie interne totale (emmagasinée) sera :

$$W = \int dW = \int_{0}^{Q} \frac{q}{C} dq = \frac{1}{2} \frac{Q^{2}}{C}$$

Comme: Q = V.C

alors, on peut écrire que :
$$\begin{cases} W = \frac{1}{2} \frac{Q^2}{C} \\ W = \frac{1}{2} CV^2 \\ W = \frac{1}{2} QV \end{cases}$$

Cette énergie interne représente l'énergie potentielle du conducteur.

Remarque: « énergie électrostatique en fonction du champ E »

• La densité volumique de l'énergie électrostatique est donnée par :

$$\frac{dW}{dV} = \frac{1}{2} \varepsilon_0 E^2 \qquad \text{avec : } \begin{cases} E: module \ du \ champ \ électrostatique \\ \varepsilon_0 : permittivité \ du \ vide \end{cases}$$

• L'énergie électrostatique sera :

$$W = \int dW = \int \frac{1}{2} \varepsilon_0 E^2 dV = \frac{1}{2} \varepsilon_0 \int E^2 dV$$

3/ Les condensateurs :

3.1/ Capacité d'un condensateur :

Un condensateur est un système formé de deux conducteurs A et B (en influence totale) le premier conducteur porte une charge ($Q_A = +Q$) et l'autre une charge ($Q_B = -Q$), les deux conducteurs appelés « armatures » sont séparés par une faible distance portant un isolant (air, papier...).

La charge du condensateur est :

$$Q = |Q_A| = |Q_B|$$

La capacité du condensateur est donnée par :

$$C = \frac{Q}{V} = \frac{Q}{V_A - V_B} = C^{st}$$

La capacité d'un condensateur (c'est-à-dire la quantité de charge qu'un conducteur peut emmagasiner) dépend de la forme des armatures et du milieu les séparant.

3.2/ Calcul des capacités :

Pour déterminer la capacité d'un condensateur, on doit passer par les étapes suivantes :

- Calculer le champ \vec{E} entre les armatures ;
- Déduire la différence de potentiel (d.d.p) entre les armatures $V_{\!\scriptscriptstyle A} V_{\!\scriptscriptstyle B}$:

$$\int_{V_A}^{V_B} dV = -\int \vec{E} \cdot \vec{dl} \quad \Rightarrow \quad V = V_A - V_B = \cdots$$

- Connaissant la charge $Q=\iint\sigma\;dS$ ightarrow On peut calculer la capacité C :

$$C = \frac{Q}{V} = \cdots$$

3.2.1/ Calcul de la capacité d'un condensateur plan :

Le champ entre les deux armatures est :

$$\vec{E} = \vec{E}^+ + \vec{E}^- = \frac{\sigma}{2\varepsilon_0}\vec{i} + \frac{\sigma}{2\varepsilon_0}\vec{i} = \frac{\sigma}{\varepsilon_0}\vec{i}$$

donc en module :

e : distance entre les armatures

• Comme
$$dV = -\vec{E} \cdot \vec{dl} = -\vec{E} \cdot \vec{dx} = -E \cdot dx$$

$$\int_{V_A}^{V_B} dV = -\int_0^e E \cdot dx = -\int_0^e \frac{\sigma}{\varepsilon_0} dx = -\frac{\sigma}{\varepsilon_0} [x]_0^e = -\frac{\sigma}{\varepsilon_0} e$$

Alors:
$$V_B - V_A = -\frac{\sigma}{\varepsilon_0} e$$
 c'est-à-dire $V_A - V_B = \frac{\sigma}{\varepsilon_0} e$

Finalement : la capacité d'un condensateur plan sera :

$$C = \frac{Q}{V_A - V_B} = \frac{\sigma.S}{\frac{\sigma}{\varepsilon_0} e} = \frac{S.\varepsilon_0}{e}$$
 $C = \frac{S.\varepsilon_0}{e}$

Remarque:

Pour augmenter la capacité d'un condensateur plan, on peut soit :

- changer le milieu entre les armatures ($\varepsilon = \varepsilon_0$. ε_r avec : ε_r : donnée);
- diminuer la distance entre les armatures ;
- augmenter la surface des plaques "S"

3.2.2/ Calcul de la capacité d'un condensateur sphérique :

Soit un condensateur sphérique constitué de deux sphères concentriques :

- la première de rayon R_1 , de charge Q_1 et de potentiel V_1 ;
- la deuxième de rayon R_2 , de charge Q_2 et de potentiel V_2

D'après le théorème de Gauss, on a vu que :

$$E = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2}$$
 pour $R_1 < r < R_2$ $(K = \frac{1}{4\pi\epsilon_0} = 9.10^9)$

Puisque : $dV = -E.dr \rightarrow \int dV = -\int E.dr$

$$\int_{V_1}^{V_2} dV = -\frac{Q}{4\pi\varepsilon_0} \int_{R_1}^{R_2} \frac{1}{r^2} dr = -\frac{Q}{4\pi\varepsilon_0} \left[-\frac{1}{r} \right]_{R_1}^{R_2} = \frac{Q}{4\pi\varepsilon_0} \left[\frac{1}{R_2} - \frac{1}{R_1} \right]$$

$$\Rightarrow V_2 - V_1 = \frac{Q}{4\pi\varepsilon_0} \left[\frac{R_1 - R_2}{R_1 R_2} \right] \quad \text{d'où} \quad \Rightarrow \quad V = V_1 - V_2 = \frac{Q}{4\pi\varepsilon_0} \left[\frac{R_2 - R_1}{R_1 R_2} \right]$$

Alors la capacité d'un condensateur sphérique sera :

$$C = \frac{Q}{V} = 4\pi\varepsilon_0 \frac{R_1 R_2}{R_2 - R_1}$$

3.2.3/ calcul de la capacité d'un condensateur cylindrique :

Même travail pour un condensateur cylindrique chargé avec " $Q = \lambda L$ " le champ entre les armatures de rayon R_1 et R_2 est : $E = \frac{Q}{2\pi r^2}$

La d.d.p sera
$$V=V_1-V_2=rac{Q}{2\pi\varepsilon_0L}lnrac{R_2}{R_1}$$
 ainsi la capacité sera : $C=rac{2\pi\varepsilon_0L}{lnrac{R_2}{R_1}}$

$$C = \frac{2\pi\varepsilon_0 L}{\ln\frac{R_2}{R_1}}$$

3.3/ Association des condensateurs :

3.3.1/ Condensateurs en parallèle :

Dans ce cas tous les condensateurs sont mis à la même différence de potentielle (ddp) donc à la même tension $U = V_A - V_B = V_1 = V_2 = V_3$:

$$Q_{1} \quad C_{1}$$

$$Q_{2} \quad C_{2}$$

$$V_{A} \quad Q_{2}$$

$$V_{B} \quad V_{B}$$

$$U = V_{A} - V_{B} = \frac{Q}{C_{eq}}$$

Comme:
$$U = V_1 = V_2 = V_3 = V_A - V_B$$

Alors:
$$V_A - V_B = \frac{Q_1}{C_1} = \frac{Q_2}{C_2} = \frac{Q_3}{C_3}$$

Puisque la charge totale : $Q = Q_1 + Q_2 + Q_3$

Alors on aura:
$$(V_A - V_B)$$
. $C_{eq} = (V_A - V_B)$. $C_1 + (V_A - V_B)$. $C_2 + (V_A - V_B)$. C_3

Donc:
$$C_{\acute{e}q} = C_1 + C_2 + C_3$$

D'une façon générale, si on a « n » condensateurs en parallèle alors la capacité équivalente sera :

$$C_{\acute{\mathbf{e}}q} = \sum_{i=1}^n C_i$$

3.3.2/ Condensateurs en série :

Soit des condensateurs placés en série, si la première armature du premier condensateur porte une charge +Q alors l'autre armature prendra la charge -Q comme cette dernière est reliée à l'armature du deuxième condensateur par un fil conducteur, alors une charge +Q apparaîtra sur cette dernière.

La ddp entre les points A et B est égal à la somme des différentes tensions (ddp) :

$$(V_A - V_B) = (V_A - V_C) + (V_C - V_D) + (V_D - V_B)$$
 1

Alors l'égalité ① devient :
$$\frac{Q}{C_{\acute{e}g}} = \frac{Q}{c_1} + \frac{Q}{c_2} + \frac{Q}{c_3}$$

C'est-à-dire:
$$\frac{1}{C_{\acute{e}a}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$$

D'une façon générale, si on a « n » condensateurs en série alors la capacité équivalente sera :

$$\frac{1}{C_{\acute{e}q}} = \sum_{i=1}^{n} \frac{1}{C_n}$$

3.4/ Energie interne d'un condensateur :

La quantité d'énergie emmagasinée par un condensateur est égale au travail accompli pour le charger (voir paragraphe 2.2):

$$dW = V. dq = \frac{q}{C} dq$$

L'énergie interne totale (emmagasinée) sera :

$$W = \int dW = \int_{0}^{Q} \frac{q}{C} dq = \frac{1}{2} \frac{Q^2}{C}$$

Comme: Q = V.C

Ce travail emmagasiné sous forme d'énergie potentielle électrique s'écrit :

$$W = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} CV^2 = \frac{1}{2} QV$$