

K-means Clustering

Roger D. Peng, Associate Professor of Biostatistics Johns Hopkins Bloomberg School of Public Health

Can we find things that are close together?

- · How do we define close?
- · How do we group things?
- · How do we visualize the grouping?
- · How do we interpret the grouping?

How do we define close?

- Most important step
 - Garbage in → garbage out
- · Distance or similarity
 - Continuous euclidean distance
 - Continous correlation similarity
 - Binary manhattan distance
- · Pick a distance/similarity that makes sense for your problem

K-means clustering

- · A partioning approach
 - Fix a number of clusters
 - Get "centroids" of each cluster
 - Assign things to closest centroid
 - Reclaculate centroids
- · Requires
 - A defined distance metric
 - A number of clusters
 - An initial guess as to cluster centroids
- · Produces
 - Final estimate of cluster centroids
 - An assignment of each point to clusters

K-means clustering - example

```
set.seed(1234)
par(mar = c(0, 0, 0, 0))
x <- rnorm(12, mean = rep(1:3, each = 4), sd = 0.2)
y <- rnorm(12, mean = rep(c(1, 2, 1), each = 4), sd = 0.2)
plot(x, y, col = "blue", pch = 19, cex = 2)
text(x + 0.05, y + 0.05, labels = as.character(1:12))</pre>
```


K-means clustering - starting centroids

K-means clustering - assign to closest centroid

K-means clustering - recalculate centroids

K-means clustering - reassign values

K-means clustering - update centroids

kmeans()

· Important parameters: *x*, *centers*, *iter.max*, *nstart*

```
dataFrame <- data.frame(x, y)
kmeansObj <- kmeans(dataFrame, centers = 3)
names(kmeansObj)</pre>
```

```
## [1] "cluster" "centers" "totss" "withinss"

## [5] "tot.withinss" "betweenss" "size" "iter"

## [9] "ifault"
```

```
kmeansObj$cluster
```

```
## [1] 3 3 3 3 1 1 1 1 2 2 2 2
```

kmeans()

```
par(mar = rep(0.2, 4))
plot(x, y, col = kmeansObj$cluster, pch = 19, cex = 2)
points(kmeansObj$centers, col = 1:3, pch = 3, cex = 3, lwd = 3)
```


Heatmaps

```
set.seed(1234)
dataMatrix <- as.matrix(dataFrame)[sample(1:12), ]
kmeansObj2 <- kmeans(dataMatrix, centers = 3)
par(mfrow = c(1, 2), mar = c(2, 4, 0.1, 0.1))
image(t(dataMatrix)[, nrow(dataMatrix):1], yaxt = "n")
image(t(dataMatrix)[, order(kmeansObj$cluster)], yaxt = "n")</pre>
```


Notes and further resources

- · K-means requires a number of clusters
 - Pick by eye/intuition
 - Pick by cross validation/information theory, etc.
 - Determining the number of clusters
- · K-means is not deterministic
 - Different # of clusters
 - Different number of iterations
- Rafael Irizarry's Distances and Clustering Video
- Elements of statistical learning