Welcome to STN International! Enter x:x

LOGINID:ssspta1633cxq

PASSWORD:

TERMINAL (ENTER 1, 2, 3, OR ?):2

NEWS 1 Web Page for STN Seminar Schedule - N. America

NEWS 2 JAN 12 Match STN Content and Features to Your Information Needs, Quickly and Conveniently

NEWS 3 JAN 25 Annual Reload of MEDLINE database

NEWS 4 FEB 16 STN Express Maintenance Release, Version 8.4.2, Is Now Available for Download

NEWS 5 FEB 16 Derwent World Patents Index (DWPI) Revises Indexing of Author Abstracts

NEWS 6 FEB 16 New FASTA Display Formats Added to USGENE and PCTGEN

NEWS 7 FEB 16 INPADOCDB and INPAFAMDB Enriched with New Content and Features

NEWS 8 FEB 16 INSPEC Adding Its Own IPC codes and Author's E-mail Addresses

NEWS 9 APR 02 CAS Registry Number Crossover Limits Increased to 500,000 in Key STN Databases

NEWS 10 APR 02 PATDPAFULL: Application and priority number formats enhanced

NEWS 11 APR 02 DWPI: New display format ALLSTR available

NEWS 12 APR 02 New Thesaurus Added to Derwent Databases for Smooth Sailing through U.S. Patent Codes

NEWS 13 APR 02 EMBASE Adds Unique Records from MEDLINE, Expanding Coverage back to 1948

NEWS 14 APR 07 CA/CAplus CLASS Display Streamlined with Removal of Pre-IPC 8 Data Fields

NEWS 15 APR 07 50,000 World Traditional Medicine (WTM) Patents Now Available in CAplus

NEWS 16 APR 07 MEDLINE Coverage Is Extended Back to 1947

NEWS EXPRESS FEBRUARY 15 10 CURRENT WINDOWS VERSION IS V8.4.2, AND CURRENT DISCOVER FILE IS DATED 15 JANUARY 2010.

NEWS HOURS STN Operating Hours Plus Help Desk Availability NEWS LOGIN Welcome Banner and News Items

Enter NEWS followed by the item number or name to see news on that

specific topic.

All use of STN is subject to the provisions of the STN customer agreement. This agreement limits use to scientific research. Use for software development or design, implementation of commercial gateways, or use of CAS and STN data in the building of commercial products is prohibited and may result in loss of user privileges and other penalties.

FILE 'HOME' ENTERED AT 12:06:56 ON 20 APR 2010

=> FIL BIOSIS CAPLUS EMBASE COST IN U.S. DOLLARS

SINCE FILE TOTAL ENTRY SESSION 3.30 3.30

FULL ESTIMATED COST

FILE 'BIOSIS' ENTERED AT 12:15:37 ON 20 APR 2010 Copyright (c) 2010 The Thomson Corporation

FILE 'CAPLUS' ENTERED AT 12:15:37 ON 20 APR 2010 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2010 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'EMBASE' ENTERED AT 12:15:37 ON 20 APR 2010 Copyright (c) 2010 Elsevier B.V. All rights reserved.

=> s (BLC or ELC) (3a) promoter L1 3 (BLC OR ELC) (3A) PROMOTER

=> dup rem 11
PROCESSING COMPLETED FOR L1

L2 3 DUP REM L1 (0 DUPLICATES REMOVED)

=> d bib abs 1-

YOU HAVE REQUESTED DATA FROM 3 ANSWERS - CONTINUE? Y/(N):y

L2 ANSWER 1 OF 3 EMBASE COPYRIGHT (c) 2010 Elsevier B.V. All rights

reserved on STN

AN 0019807029 EMBASE

CP MEDLINE® is the source for the citation and abstract of this record.

 ${\tt TI}$  New putative control elements in the promoter OF CXCL13 chemokine gene, a

target of alternative NF-kappaB pathway.

AU Britanova, L.V. (correspondence); Kuprash, D.V.

SO Molekuliarnaia biologiia, (2009 Jul-Aug) Vol. 43, No. 4, pp. 657-665.

ISSN: 0026-8984

- CY Russian Federation
- DT Journal; Article
- FS MEDLINE
- LA Russian
- ED Entered STN: 13 Apr 2010

Last Updated on STN: 13 Apr 2010

AB We searched the proximal promoter region of CXCL13/BLC chemokine gene for new putative control elements, including potential

 $\ensuremath{\mathsf{NF}}\xspace-{\mathsf{kappaB}}$  binding sites. Using electrophoretic mobility shift assay and

reporter gene analysis we identified two new promoter elements. The first

element contains Rel/NF-kappaB binding site and seems to participate in

inducible gene expression, while another site binds transcription factor

Spl and is critical for basic transcription. It is the first indication

that alternative NF-kappaB pathway target genes are probably cooperatively

controlled by factors Rel/NF-kappaB and Spl. Identification of a functional Spl site in the promoter of a target gene of alternative

NF-kappaB pathway will be useful for investigation of molecular mechanisms

and signal pathwaysinvolved.

L2 ANSWER 2 OF 3 CAPLUS COPYRIGHT 2010 ACS on STN

AN 2002:717163 CAPLUS

DN 137:380824

TI Dynamic changes in histone H3 Lys 9 methylation occurring at tightly

regulated inducible inflammatory genes

AU Saccani, Simona; Natoli, Gioacchino

CS Institute for Research in Biomedicine, Bellinzona, CH6501, Switz.

SO Genes & Development (2002), 16(17), 2219-2224 CODEN: GEDEEP; ISSN: 0890-9369

PB Cold Spring Harbor Laboratory Press

DT Journal

LA English

AB Methylation of histone H3 at Lys 9 is causally linked to formation of

heterochromatin and to long-term transcriptional repression. We report an  $\ensuremath{\mathsf{T}}$ 

unexpected pattern of  ${\rm H3}$  Lys 9 methylation occurring at a subset of

inducible inflammatory genes. This pattern is characterized by relatively

low constitutive levels of  ${\rm H3}\ {\rm Lys}\ 9$  methylation that are erased upon

activation and restored concurrently with post-induction transcriptional

repression. Changes in  ${\rm H3\ Lys\ 9\ methylation\ strongly\ correlate}$  with  ${\rm RNA\ }$ 

polymerase II recruitment and release. In particular, remethylation  $% \left( 1\right) =\left( 1\right) +\left( 1\right)$ 

correlates with RNApolII release more strongly than does histone deacetylation. We propose that, by generating a window of time in which

transcription is permitted, dynamic modulation of H3 Lys 9 methylation

adds an addnl. regulatory level to transcriptional activation of tightly

controlled inducible genes.

OSC.G 84 THERE ARE 84 CAPLUS RECORDS THAT CITE THIS RECORD (84 CITINGS)

RE.CNT 39 THERE ARE 39 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

L2 ANSWER 3 OF 3 CAPLUS COPYRIGHT 2010 ACS on STN

AN 1991:443480 CAPLUS

DN 115:43480

OREF 115:7437a,7440a

TI Synthetic genes for streptokinase and streptokinase analogs and their

expression in Escherichia coli

IN Fujii, Setsuro; Katano, Tamiki; Majima, Eiji; Ogino, Koichi; Ono, Kenji;

Sakata, Yasuyo; Uenoyama, Tsutomu

PA Otsuka Pharmaceutical Factory, Inc., Japan

SO Eur. Pat. Appl., 76 pp.

CODEN: EPXXDW

DT Patent

LA English

FAN.CNT 1

| PATENT NO.     | KIND   | DATE         | APPLICATION NO. |
|----------------|--------|--------------|-----------------|
| DATE           |        |              |                 |
|                |        |              |                 |
|                |        |              |                 |
| PI EP 407942   | A2     | 19910116     | EP 1990-113099  |
| 19900709       |        |              |                 |
| EP 407942      | А3     | 19910904     |                 |
| EP 407942      | В1     | 19951011     |                 |
| R: AT, CH, DE, | DK, ES | , FR, GB, IT | , LI, NL, SE    |
| JP 04011892    | A      | 19920116     | JP 1990-179851  |
| 19900706       |        |              |                 |
| US 5240845     | A      | 19930831     | US 1990-549049  |
| 19900706       |        |              |                 |
| AU 9058806     | A      | 19910117     | AU 1990-58806   |
| 19900709       |        |              |                 |
| AU 648029      | В2     | 19940414     |                 |
| AT 129014      | Τ      | 19951015     | AT 1990-113099  |
| 19900709       |        |              |                 |

| ES 20      | 78925      | Т3 | 19960101 | ES | 1990-113099  |
|------------|------------|----|----------|----|--------------|
| 19900709   |            |    |          |    |              |
| CA 20      | 20828      | A1 | 19910112 | CA | 1990-2020828 |
| 19900710   |            |    |          |    |              |
| PRAI JP 19 | 989-179432 | A  | 19890711 |    |              |
| JP 19      | 989-307957 | A  | 19891127 |    |              |
| JP 19      | 990-96830  | A  | 19900411 |    |              |

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT AB Genes encoding streptokinase (I) and its derivs. are synthesized and

expressed in a host such as Escherichia coli for manufacture of I suitable for

clin. application. The DNA encoding natural-type I was synthesized by

standard chemical and used for construction of expression plasmid pSKXT, which in

turn expressed the I gene using the E. coli tac promoter and the blc signal sequence. Efficient expression of the gene in the E. coli transformants and purification of the protein product were

demonstrated.

I analogs with a carboxy-terminal deletions, optionally with internal

modifications were also described.

OSC.G 3 THERE ARE 3 CAPLUS RECORDS THAT CITE THIS RECORD (3 CITINGS)

=> FIL STNGUIDE

| COST IN U.S. DOLLARS                       | SINCE FILE | TOTAL   |
|--------------------------------------------|------------|---------|
|                                            | ENTRY      | SESSION |
| FULL ESTIMATED COST                        | 30.60      | 33.90   |
|                                            |            |         |
| DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS) | SINCE FILE | TOTAL   |
|                                            | ENTRY      | SESSION |
| CA SUBSCRIBER PRICE                        | -1.70      |         |
| -1.70                                      |            |         |

FILE 'STNGUIDE' ENTERED AT 12:22:26 ON 20 APR 2010 USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT COPYRIGHT (C) 2010 AMERICAN CHEMICAL SOCIETY (ACS)

FILE CONTAINS CURRENT INFORMATION.
LAST RELOADED: Apr 16, 2010 (20100416/UP).

=> FIL BIOSIS CAPLUS EMBASE

| COST IN U.S. DOLLARS                       | SINCE FILE          | TOTAL            |
|--------------------------------------------|---------------------|------------------|
|                                            | ENTRY               | SESSION          |
| FULL ESTIMATED COST                        | 0.07                | 33.97            |
| DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS) | SINCE FILE<br>ENTRY | TOTAL<br>SESSION |
| CA SUBSCRIBER PRICE                        | 0.00                | DEDDION          |

-1.70

FILE 'BIOSIS' ENTERED AT 12:23:18 ON 20 APR 2010 Copyright (c) 2010 The Thomson Corporation

FILE 'CAPLUS' ENTERED AT 12:23:18 ON 20 APR 2010 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2010 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'EMBASE' ENTERED AT 12:23:18 ON 20 APR 2010 Copyright (c) 2010 Elsevier B.V. All rights reserved.

=> s NF kapp B

L3 1 NF KAPP B

=> s NF kappa B

L4 113335 NF KAPPA B

=> s 14 and (Blc or Elc)

L5 36 L4 AND (BLC OR ELC)

=> s 15 and promoter

L6 5 L5 AND PROMOTER

=> dup rem 16

PROCESSING COMPLETED FOR L6

L7 4 DUP REM L6 (1 DUPLICATE REMOVED)

=> d bib abs 1-y

'ACC' IS NOT VALID WITH MULTIFILE PROCESSING

DISPLAY ACC is not allowed in a multifile environment. Enter "DISPLAY HISTORY" to locate the file the L# was created in, use the FILE command to enter that file, and re-enter the DISPLAY ACC command.

=> d bib abs 1-

YOU HAVE REQUESTED DATA FROM 4 ANSWERS - CONTINUE? Y/(N):y

L7 ANSWER 1 OF 4 BIOSIS COPYRIGHT (c) 2010 The Thomson Corporation on STN  $\,$ 

DUPLICATE 1

AN 2009:551971 BIOSIS

DN PREV200900553074

TI New putative control elements in the promoter of the gene for the CXCL13 chemokine, a target of the alternative NFkappa B pathway.

AU Britanova, L. V. [Reprint Author]; Kuprash, D. V.

CS Russian Acad Sci, VA Engelhardt Mol Biol Inst, Moscow 119991, Russia

kuprash@eimb.ru

SO Molecular Biology (Moscow), (AUG 2009) Vol. 43, No. 4, pp. 604-611.

CODEN: MOLBBJ. ISSN: 0026-8933. E-ISSN: 1608-3245. DT Article English LA EDEntered STN: 30 Sep 2009 Last Updated on STN: 30 Sep 2009 The proximal promoter region of the gene for the CXCL13/ AΒ BLC chemokine has been studied by electrophoretic mobility shift assay and reporter gene analysis in order to detect new control elements, in particular, NF-kappa B binding sites. Two new putative control elements have been identified. One of them contains a Rel/NF-kappa B binding site and seems to participate in inducible gene expression. The other is an Sp1 factor binding site, essential for basal transcription. the first time that such a site is found in the promoter of a target gene of the alternative NF-kappa B pathway. This finding indicates that genes under the control of the alternative NF-kappa B pathway can be cooperatively regulated by Rel/NF-kappa B and Sp1. Our results will add to the understanding of the signaling pathways that govern the expression of genes controlled by the alternative NFkappa B pathway. L7 ANSWER 2 OF 4 EMBASE COPYRIGHT (c) 2010 Elsevier B.V. All rights reserved on STN 2007484110 EMBASE ΑN Involvement of RelB in aryl hydrocarbon receptor-mediated ΤТ induction of chemokines. Vogel, Christoph F.A. (correspondence); Sciullo, Eric; Matsumura, Fumio Department of Environmental Toxicology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States. cfvogel@ucdavis.edu Biochemical and Biophysical Research Communications, (23 Nov SO 2007) Vol. 363, No. 3, pp. 722-726. Refs: 16 ISSN: 0006-291X; E-ISSN: 1090-2104 CODEN: BBRCA9 S 0006-291X(07)01993-6 PUI United States CY DT Journal; Article FS026 Immunology, Serology and Transplantation 029 Clinical and Experimental Biochemistry LA English English SL

EDEntered STN: 30 Oct 2007 Last Updated on STN: 30 Oct 2007 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a well-known AB immunotoxic compound affecting the expression of inflammatory genes. We found that TCDD induces the expression of the B-cell activating factor of necrosis factor family (BAFF), B-lymphocyte chemoattractant (BLC ), CC-chemokine ligand 1 (CCL1), and the transcription factor interferon  $\gamma$  responsive factor (IFR3) in U937 macrophages in an aryl hydrocarbon receptor- (AhR) and RelB-dependent manner. The induction was associated with increased binding activity of an AhR/RelB complex without participation of ARNT to a NF-.kappa.B element that is recognized by the NF-.kappa.B subunit RelB and localized on promoters of the cytokine and chemokine genes BAFF, BLC, CCL1, and the transcription factor IRF3. The interaction of AhR with RelB binding on a novel type of NF-. kappa.B binding site represents a new regulatory function of the AhR. .COPYRGT. 2007 Elsevier Inc. All rights reserved. L7 ANSWER 3 OF 4 CAPLUS COPYRIGHT 2010 ACS on STN 2005:324285 CAPLUS AN 142:385993 DN ΤI Inhibitors of the IkB protein kinase  $\alpha$  signal transduction pathway for therapeutic regulation of gene expression Karin, Michael; Bonizzi, Giussepina; Bebien, Magali ΙN PAThe Regents of the University of California, USA PCT Int. Appl., 128 pp. SO CODEN: PIXXD2 Patent DT English LA FAN.CNT 1 PATENT NO. KIND DATE APPLICATION NO. DATE ---- ----WO 2005033284 A2 20050414 WO 2004-US32246 PI20040929 WO 2005033284 А3 20050707 AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,

CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,

GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR,

LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,

GB, GD,

KZ, LC,

NA, NI,

```
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK,
SL, SY,
             TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA,
ZM, ZW
         RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW, AM,
             AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ,
DE, DK,
             EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT,
RO, SE,
             SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML,
MR, NE,
             SN, TD, TG
     US 20080280286
                                 20081113 US 2008-574333
                          Α1
20080721
PRAI US 2003-508349P
                          Р
                                 20031001
     WO 2004-US32246
                          W
                                 20040929
ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT
    MARPAT 142:385993
OS
     Oligonucleotides that bind I\kappa B kinase \alpha (IKK\alpha) that
AB
     block its ability to induce cytokine-mediated gene expression are
     described for therapeutic use. Oligonucleotides that block the
activation
     and interactions of the downstream transcription factors RelA
and RelB.
     Expts. identifying the role of IKK\alpha in the induction of
chemokine
     gene expression in stromal cells are reported.
L7
     ANSWER 4 OF 4 CAPLUS COPYRIGHT 2010 ACS on STN
ΑN
     2002:717163 CAPLUS
     137:380824
DN
ΤI
     Dynamic changes in histone H3 Lys 9 methylation occurring at
tightly
     regulated inducible inflammatory genes
     Saccani, Simona; Natoli, Gioacchino
ΑU
     Institute for Research in Biomedicine, Bellinzona, CH6501, Switz.
CS
     Genes & Development (2002), 16(17), 2219-2224
SO
     CODEN: GEDEEP; ISSN: 0890-9369
PΒ
     Cold Spring Harbor Laboratory Press
     Journal
DT
LA
     English
     Methylation of histone H3 at Lys 9 is causally linked to
AB
     heterochromatin and to long-term transcriptional repression.
report an
     unexpected pattern of H3 Lys 9 methylation occurring at a subset
of
     inducible inflammatory genes. This pattern is characterized by
relatively
     low constitutive levels of H3 Lys 9 methylation that are erased
```

upon

activation and restored concurrently with post-induction transcriptional

repression. Changes in  ${\rm H3\ Lys\ 9\ methylation\ strongly\ correlate}$  with  ${\rm RNA\ }$ 

polymerase II recruitment and release. In particular, remethylation  $\ \ \,$ 

correlates with RNApolII release more strongly than does histone deacetylation. We propose that, by generating a window of time in which

transcription is permitted, dynamic modulation of  ${\rm H3\ Lys\ 9}$  methylation

adds an addnl. regulatory level to transcriptional activation of tightly

controlled inducible genes.

OSC.G 84 THERE ARE 84 CAPLUS RECORDS THAT CITE THIS RECORD (84 CITINGS)

RE.CNT 39 THERE ARE 39 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

=> FIL STNGUIDE

| COST IN U.S. DOLLARS                       | SINCE FILE | TOTAL   |
|--------------------------------------------|------------|---------|
|                                            | ENTRY      | SESSION |
| FULL ESTIMATED COST                        | 44.10      | 78.07   |
| DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS) | SINCE FILE | TOTAL   |
|                                            | ENTRY      | SESSION |
| CA SUBSCRIBER PRICE                        | -1.70      |         |
| -3.40                                      |            |         |

FILE 'STNGUIDE' ENTERED AT 12:28:53 ON 20 APR 2010 USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT COPYRIGHT (C) 2010 AMERICAN CHEMICAL SOCIETY (ACS)

FILE CONTAINS CURRENT INFORMATION.
LAST RELOADED: Apr 16, 2010 (20100416/UP).

=> FIL BIOSIS CAPLUS EMBASE

| COST IN U.S. DOLLARS                       | SINCE FILE | TOTAL   |
|--------------------------------------------|------------|---------|
|                                            | ENTRY      | SESSION |
| FULL ESTIMATED COST                        | 0.14       | 78.21   |
|                                            |            |         |
| DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS) | SINCE FILE | TOTAL   |
|                                            | ENTRY      | SESSION |
| CA SUBSCRIBER PRICE                        | 0.00       |         |
| -3.40                                      |            |         |

FILE 'BIOSIS' ENTERED AT 12:29:56 ON 20 APR 2010 Copyright (c) 2010 The Thomson Corporation

FILE 'CAPLUS' ENTERED AT 12:29:56 ON 20 APR 2010 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.

PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2010 AMERICAN CHEMICAL SOCIETY (ACS) FILE 'EMBASE' ENTERED AT 12:29:56 ON 20 APR 2010 Copyright (c) 2010 Elsevier B.V. All rights reserved. => d his (FILE 'HOME' ENTERED AT 12:06:56 ON 20 APR 2010) FILE 'BIOSIS, CAPLUS, EMBASE' ENTERED AT 12:15:37 ON 20 APR 2010 L13 S (BLC OR ELC) (3A) PROMOTER L23 DUP REM L1 (0 DUPLICATES REMOVED) FILE 'STNGUIDE' ENTERED AT 12:22:26 ON 20 APR 2010 FILE 'BIOSIS, CAPLUS, EMBASE' ENTERED AT 12:23:18 ON 20 APR 2010 L3 1 S NF KAPP B 113335 S NF KAPPA B L4L5 36 S L4 AND (BLC OR ELC) L6 5 S L5 AND PROMOTER L7 4 DUP REM L6 (1 DUPLICATE REMOVED) FILE 'STNGUIDE' ENTERED AT 12:28:53 ON 20 APR 2010 FILE 'BIOSIS, CAPLUS, EMBASE' ENTERED AT 12:29:56 ON 20 APR 2010 => s CCL21 or CXCL13 2987 CCL21 OR CXCL13 L8 => s 18 (3a) promoter L9 11 L8 (3A) PROMOTER => dup rem 19 PROCESSING COMPLETED FOR L9 5 DUP REM L9 (6 DUPLICATES REMOVED) L10 => d bib abs 1-YOU HAVE REQUESTED DATA FROM 5 ANSWERS - CONTINUE? Y/(N):y ANSWER 1 OF 5 EMBASE COPYRIGHT (c) 2010 Elsevier B.V. All L10 rights reserved on STN ΑN 0019807029 EMBASE MEDLINE® is the source for the citation and abstract of this CP record. New putative control elements in the promoter OF CXCL13 ΤI chemokine gene, a target of alternative NF-kappaB pathway. ΑU Britanova, L.V. (correspondence); Kuprash, D.V. SO Molekuliarnaia biologiia, (2009 Jul-Aug) Vol. 43, No. 4, pp. 657-665.

ISSN: 0026-8984

```
CY Russian Federation
```

DT Journal; Article

FS MEDLINE

LA Russian

ED Entered STN: 13 Apr 2010

Last Updated on STN: 13 Apr 2010

AB We searched the proximal promoter region of CXCL13/BLC chemokine gene for new putative control elements, including potential

 $\ensuremath{\mathsf{NF}}\xspace-{\mathsf{kappaB}}$  binding sites. Using electrophoretic mobility shift assay and

reporter gene analysis we identified two new promoter elements. The first

element contains  $\operatorname{Rel/NF-kappaB}$  binding site and seems to participate in

inducible gene expression, while another site binds transcription factor

Spl and is critical for basic transcription. It is the first indication

that alternative NF-kappaB pathway target genes are probably cooperatively

controlled by factors Rel/NF-kappaB and Spl. Identification of a functional Spl site in the promoter of a target gene of alternative

NF-kappaB pathway will be useful for investigation of molecular mechanisms

and signal pathwaysinvolved.

L10 ANSWER 2 OF 5 CAPLUS COPYRIGHT 2010 ACS on STN

AN 2009:1037606 CAPLUS

TI New putative control elements in the promoter of the gene for the CXCL13

chemokine, a target of the alternative NF- $\kappa$ B pathway

AU Britanova, L. V.; Kuprash, D. V.

CS Engelgardt Institute of Molecular Biology, Russian Academy of Sciences,

Moscow, 119991, Russia

SO Molecular Biology (Moscow, Russian Federation, English Edition) (2009),

43(4), 604-611

CODEN: MOLBBJ; ISSN: 0026-8933

PB Pleiades Publishing, Ltd.

DT Journal

LA English

AB The proximal promoter region of the gene for the CXCL13/BLC chemokine has

been studied by electrophoretic mobility shift assay and reporter gene

anal. in order to detect new control elements, in particular,  $\text{NF-}\kappa\text{B}$ 

binding sites. Two new putative control elements have been identified.

One of them contains a Rel/NF-  $\kappa B$  binding site and seems to participate in inducible gene expression. The other is an Spl factor

binding site, essential for basal transcription. It is the first time

that such a site is found in the promoter of a target gene of the alternative NF-  $\kappa B$  pathway. This finding indicates that genes under

the control of the alternative NF- $\kappa B$  pathway can be cooperatively

regulated by Rel/NF- $\kappa B$  and Spl. Our results will add to the understanding of the signaling pathways that govern the expression of

genes controlled by the alternative NF- $\kappa$ B pathway.

RE.CNT 31 THERE ARE 31 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

L10 ANSWER 3 OF 5 BIOSIS COPYRIGHT (c) 2010 The Thomson Corporation on STN  $\,$ 

DUPLICATE 1

AN 2007:187927 BIOSIS

DN PREV200700189352

TI TNF receptor-associated factor 2-dependent canonical pathway is crucial

for the development of Peyer's patches.

AU Piao, Jiang-Hu; Yoshida, Hisahiro; Yeh, Wen-Chen; Doi, Takahiro; Xue, Xin;

Yagita, Hideo; Okumura, Ko; Nakano, Hiroyasu [Reprint Author] CS Juntendo Univ, Sch Med, Dept Immunol, Bunkyo Ku, 2-1-1 Hongo, Tokyo

1138421, Japan

hnakano@med.juntendo.ac.jp

SO Journal of Immunology, (FEB 15 2007) Vol. 178, No. 4, pp. 2272-2277.

CODEN: JOIMA3. ISSN: 0022-1767.

DT Article

LA English

ED Entered STN: 14 Mar 2007

Last Updated on STN: 14 Mar 2007

AB Activation of the noncanonical pathway through the interaction of lymphotoxin (LT)-alpha(1)beta(2) and LT-beta R is essential for the

development of secondary lymphoid organs including lymph nodes (LN) and

Peyer's patches (PP). Although TNFR-associated factor (TRAF) 2 and TRAF5

were identified as signal transducers for the LT-OR, roles for TRAF2 and  $\,$ 

TRAF5 in the development of secondary lymphoid organs remain obscure. In

this study, we show that PP but not mesenteric LN development is severely  $\frac{1}{2}$ 

impaired in traj2(-/-) and traf2(-/-)traf5(-/-) mice. Development of

VCAM-1(+) and ICAM-1(+) mesenchymal cells and expression of CXCL13, a

crucial chemokine for the development of PP, are severely impaired in PP  $\,$ 

anlagen in the intestines of  $\operatorname{traj2}(-/-)$  mice. Surprisingly,  $\operatorname{TNF-alpha}$ 

stimulation potently up-regulates cxcl13 mRNA expression in wild-type

murine embryonic fibroblasts, which is impaired in  ${\rm trq/2(-/-)}$  and  ${\rm relA(-/-)}$  murine embryonic fibroblasts. Moreover, RelA is recruited to

the promoter of cxcl13 gene upon TNF-alpha stimulation and PP development is impaired in TNFR type 1 (tnfr1)(-/-) mice. These

results underscore a crucial role for the TNFR1-TRAF2-RelA-dependent

canonical pathway in the development of PP through up-regulation of  $\ensuremath{\mathsf{cxc113}}$ 

mRNA.

L10 ANSWER 4 OF 5 BIOSIS COPYRIGHT (c) 2010 The Thomson Corporation on STN  $\,$ 

DUPLICATE 2

AN 2007:463276 BIOSIS

DN PREV200700463443

 ${\tt TI}$  Characterization of the CCL21-mediated melanoma-specific immune responses

and in situ melanoma eradication.

AU Novak, Laura; Igoucheva, Olga; Cho, Stephanie; Alexeev, Vitali [Reprint

Authorl

CS Thomas Jefferson Univ, Jefferson Med Coll, Dept Dermatol and Cutaneous

Biol, 233 S 10th St, BLSB, Room 326, Philadelphia, PA 19107 USA vitali.alexeev@jefferson.edu

SO Molecular Cancer Therapeutics, (JUN 2007) Vol. 6, No. 6, pp. 1755-1764.

ISSN: 1535-7163.

DT Article

LA English

OS GenBank-MMU88322; EMBL-MMU88322; DDBJ-MMU88322

ED Entered STN: 29 Aug 2007

Last Updated on STN: 29 Aug 2007

AB Previous studies have shown that secondary lymphoid chemokine, CCL21, can

be used for modulation of tumor-specific immune responses.

Here, using

B16F0 melanoma cells stably expressing CCL21 under the control of cytomegalovirus and ubiquitin promoters, we showed that CCL21-activated

immune responses depend on the amount of melanoma-derived chemokine,

which, in turn, depends on the strength of the promoter. We showed that

ubiquitin promoter-driven expression of CCL21 enabled massive infiltration of tumors with CD4(+)CD25(-), CD8(+) T lymphocytes,

and  ${\tt CD11c(+)}$  dendritic cells, and consequent activation of cellular and

humoral immune responses sufficient for complete rejection of CCL21-positive melanomas within 3 weeks in all tumor-inoculated mice.

Mice that rejected CCL21-positive tumors acquired protective immunity

against melanoma, which was transferable to naive mice via splenocytes and

central memory T cells. Moreover, melanoma-derived CCL21 facilitated

immune-mediated remission of preestablished, distant wild-type melanomas.

Overall, these results suggest that elevated levels of tumor-derived CCL21

are required for the activation of strong melanoma-specific immune

responses and generation of protective immunologic memory. They also open

new perspectives for the development of novel vaccination strategies

against melanoma, which use intratumoral delivery of the optimized

CCL21-encoding vectors in conjunction with DNA-based vaccines.

L10 ANSWER 5 OF 5 BIOSIS COPYRIGHT (c) 2010 The Thomson Corporation on STN  $\,$ 

DUPLICATE 3

AN 2005:53628 BIOSIS

DN PREV200500053206

TI A novel model for lymphocytic infiltration of the thyroid gland generated

by transgenic expression of the CC chemokine CCL21.

AU Martin, Andrea P.; Coronel, Elizabeth C.; Sano, Gen-ichiro; Chen, Shu-g;

Vassileva, Galya; Canasto-Chibuque, Claudia; Sedgwick, Jonathon D.;

Frenette, Paul S.; Lipp, Martin; Furtado, Glaucia C.; Lira, Sergio A.

[Reprint Author]

CS Immunobiol Ctr, Mt Sinai Sch Med, 1425 Madison Ave, Box 1630, New York, NY,

10029, USA

sergio.lira@mssm.edu

SO Journal of Immunology, (October 15 2004) Vol. 173, No. 8, pp. 4791-4798.

print.

ISSN: 0022-1767 (ISSN print).

- DT Article
- LA English
- ED Entered STN: 3 Feb 2005

Last Updated on STN: 3 Feb 2005

AB Lymphocytic infiltrates and lymphoid follicles with germinal centers are

often detected in autoimmune thyroid disease (AITD), but the mechanisms

underlying lymphocyte entry and organization in the thyroid remain

unknown. We tested the hypothesis that CCL21, a chemokine that regulates  $% \left( 1\right) =\left( 1\right) \left( 1\right) +\left( 1\right) \left( 1\right) \left( 1\right) +\left( 1\right) \left( 1\right)$ 

homeostatic lymphocyte tracking, and whose expression has been detected in

AITD, is involved in the migration of lymphocytes to the thyroid. We show

that transgenic mice expressing CCL21 from the thyroglobulin promoter (TGCCL21 mice) have significant lymphocytic infiltrates, which are topologically segregated into B and T cell areas. Although high

endothelial venules expressing peripheral lymph node addressin were

frequently observed in the thyroid tissue, lymphocyte recruitment was

independent of L-selectin or lymphotoxin-a but required CCR7 expression.

Taken together, these results indicate that CCL21 is sufficient to drive

lymphocyte recruitment to the thyroid, suggest that CCL21 is involved in  $% \left( 1\right) =\left( 1\right) +\left( 1\right) +\left$ 

AITD pathogenesis, and establish TGCCL21 transgenic mice as a novel model

to study the formation and function of lymphoid follicles in the thyroid.

=> d his

(FILE 'HOME' ENTERED AT 12:06:56 ON 20 APR 2010)

FILE 'BIOSIS, CAPLUS, EMBASE' ENTERED AT 12:15:37 ON 20 APR 2010 L1 3 S (BLC OR ELC) (3A) PROMOTER

L2 3 DUP REM L1 (0 DUPLICATES REMOVED)

FILE 'STNGUIDE' ENTERED AT 12:22:26 ON 20 APR 2010

FILE 'BIOSIS, CAPLUS, EMBASE' ENTERED AT 12:23:18 ON 20 APR 2010

- L3 1 S NF KAPP B
- L4 113335 S NF KAPPA B
- L5 36 S L4 AND (BLC OR ELC)

```
L6
              5 S L5 AND PROMOTER
L7
              4 DUP REM L6 (1 DUPLICATE REMOVED)
     FILE 'STNGUIDE' ENTERED AT 12:28:53 ON 20 APR 2010
    FILE 'BIOSIS, CAPLUS, EMBASE' ENTERED AT 12:29:56 ON 20 APR 2010
           2987 S CCL21 OR CXCL13
L8
L9
             11 S L8 (3A) PROMOTER
              5 DUP REM L9 (6 DUPLICATES REMOVED)
L10
=> s 14 and 18
           110 L4 AND L8
T.11
=> s 111 and promoter
             5 L11 AND PROMOTER
L12
=> dup rem 15
PROCESSING COMPLETED FOR L5
             22 DUP REM L5 (14 DUPLICATES REMOVED)
L13
=> d bib abs 1-
YOU HAVE REQUESTED DATA FROM 22 ANSWERS - CONTINUE? Y/(N):y
    ANSWER 1 OF 22 BIOSIS COPYRIGHT (c) 2010 The Thomson
Corporation on STN
     DUPLICATE 1
     2010:175759 BIOSIS
AN
    PREV201000175759
DN
ΤI
     SLC/CCR7 Stimulates the Proliferation of BMDCs by the pNF-kappa
B p65
     Pathway.
     Zhou, Shuang; Li, Rilun; Qin, Jie; Zhong, Cuiping; Liang,
ΑU
Chunmin [Reprint
     Authorl
CS
    Fudan Univ, Shanghai Med Coll, Dept Anat Histol and Embryol, 138
Yixueyuan
     Rd, Shanghai 200032, Peoples R China
     cpzhong@shmu.edu.cn; cmliang@fudan.edu.cn
SO
     Anatomical Record, (JAN 2010) Vol. 293, No. 1, pp. 48-54.
     ISSN: 1932-8486. E-ISSN: 1932-8494.
    Article
DT
LA
    English
    Entered STN: 31 Mar 2010
ED
     Last Updated on STN: 31 Mar 2010
     The chemokine receptor CCR7 is highly expressed in dendritic
AΒ
cells (DCs),
     T cells, and other immune effector cells. One of the
high-affinity ligand
     that can bind to CCR7 is the secondary lymphoid tissue chemokine
(SLC).
     The SLC/CCR7 axis plays an important role in the immune system
```

by inducing

the chemotaxis and migration of immune effector cells. In this study, we

examined the effect of SLC at different concentrations (0, 50, 100, 200,

300, and 400  $\rm ng/mL$ ) on the proliferation of bone-marrow-derived dendritic

cells (BMDCs). ELC (CCL19), another high-affinity ligand for CCR7, was used as the control at the same time. We found that SLC

directly stimulated the proliferation of BMDCs and enhanced the antigen-presenting function and CCR7 expression. Western blot analysis

showed that pNF-kappa Bp65 was involved in this mechanism. We also found

that the NF-kappa B inhibitor PDTC could

specifically block the proliferation and CCR7 expression of BMDCs induced

by SLC or ELC (200  $\rm ng/mL$ ). The results suggested that there were cross-talk signals between the chemotaxis and proliferation of BMDCs

involving the SLC/CCR7 axis. Anat Rec, 293:48-54, 2010. (C) 2009 Wiley-Liss, Inc.

L13 ANSWER 2 OF 22 CAPLUS COPYRIGHT 2010 ACS on STN

AN 2010:314782 CAPLUS

TI Signaling mechanism of NO-induced increase in cardiac tolerance to

ischemia-reperfusion

AU Maslov, L. N.; Kolar, F.; Barsakh, E. I.

CS Scientific-Research Institute of Cardiology of Siberian Branch, RAMS,

Tomsk, Russia

SO Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova (2009), 95(11),

1175-1189

CODEN: RFZSFY; ISSN: 1029-595X

PB Sankt-Peterburgskaya Izdatel'skaya Firma RAN "Nauka"

DT Journal

LA Russian

AB In the review it is analyzes published data on the signaling mechanism of

cardioprotective impact of nitric oxide. It was shown that nitric oxide

exhibited a rapid and a delayed cardioprotective effects. In the rapid

effect, endothelial NO-synthase (NOS) is involved was involved as well as

guanylate cyclase, cGMP, kinase G, kinase C, PI3-kinase, Akt-kinase,

mitochondrial ATP-sensitive K+-channel, reactive oxygen species, MPT-pore.

Delayed cardioprotective effect of NOS required synthesis of proteins de

novo. In this process, transcription factors NF-.kappa

.B, STAT1/3, HIF-1 are involved. Some published data state that peroxynitrite, cGMP, kinase G, kinase C, Src kinase, p38 kinase, ERX-kinase can be involved in delayed cardioprotective effect of NOS. The

cardioprotective impact of nitric oxide was shown to depend on enhancement

in expression of NOS, cyclooxygenase-2 and Blc-2 protein which inhibits MPT-pore.

L13 ANSWER 3 OF 22 BIOSIS COPYRIGHT (c) 2010 The Thomson Corporation on STN

DUPLICATE 2

AN 2009:551971 BIOSIS

DN PREV200900553074

TI New putative control elements in the promoter of the gene for the CXCL13

chemokine, a target of the alternative NF-kappa B pathway.

AU Britanova, L. V. [Reprint Author]; Kuprash, D. V.

CS Russian Acad Sci, VA Engelhardt Mol Biol Inst, Moscow 119991, Russia

kuprash@eimb.ru

SO Molecular Biology (Moscow), (AUG 2009) Vol. 43, No. 4, pp. 604-611.

CODEN: MOLBBJ. ISSN: 0026-8933. E-ISSN: 1608-3245.

DT Article

LA English

ED Entered STN: 30 Sep 2009

Last Updated on STN: 30 Sep 2009

AB The proximal promoter region of the gene for the CXCL13/BLC chemokine has been studied by electrophoretic mobility shift assay and

reporter gene analysis in order to detect new control elements, in

particular, NF-kappa B binding sites. Two

new putative control elements have been identified. One of them contains

a Rel/NF-kappa B binding site and seems to

participate in inducible gene expression. The other is an Sp1 factor

binding site, essential for basal transcription. It is the first time

that such a site is found in the promoter of a target gene of the alternative NF-kappa B pathway. This

finding indicates that genes under the control of the alternative  $\ensuremath{\mathsf{NF}}\xspace-\mathsf{kappa}$  B pathway can be cooperatively

regulated by Rel/NF-kappa B and Spl. Our

results will add to the understanding of the signaling pathways that

govern the expression of genes controlled by the alternative NF-kappa B pathway.

L13 ANSWER 4 OF 22 BIOSIS COPYRIGHT (c) 2010 The Thomson Corporation on STN  $\,$ 

DUPLICATE 3

AN 2008:426137 BIOSIS

DN PREV200800426136

TI Distinct effect of CD40 and TNF-signaling on the chemokine/chemokine

receptor expression and function of the human monocyte-derived dendritic

cells.

AU Xia, Yu; Dai, Jun; Lu, Peirong; Huang, Yong; Zhu, Yipei; Zhang, Xueguang

[Reprint Author]

CS Soochow Univ, Med Biotechnol Inst, 708 Renmin Rd, Suzhou 215007, Jiangsu,

Peoples R China

smbxuegz@public1.sz.js.cn

SO Cellular & Molecular Immunology, (APR 2008) Vol. 5, No. 2, pp. 121-131.

ISSN: 1672-7681.

DT Article

LA English

ED Entered STN: 6 Aug 2008

Last Updated on STN: 6 Aug 2008

AB A key and limiting step in the process of human monocyte-derived dendritic

cells (mDCs) for clinical use is their in vitro maturation and in vivo

 $\,$  migration. We previously observed that CD40 signal facilitated human mDC  $\,$ 

growth and maturation. To further explore this process, mDCs generated

with GM-CSF and IL-4 were co-cultured with apoptotic tumor cells for  $24\,$ 

TNF-alpha for 48 hours to generate mature DCs. The chemokine/chemokine

receptor expression and functions of mature DCs upon various stimuli were

determined. The expression of costimulatory molecules on apoptotic tumor

cell-loaded mature DCs co-cultured with either anti-CD40 antibody (anti-CD40-DCs) or TNF-alpha (TNF-DCs) were up-regulated compared to

immature DCs, consistent with the abilities of these cytokine to drive DC  $\,$ 

maturation in vitro. The mRNA levels of chemokines such as stromal

cell-derived factor-1 alpha (SDF-1 alpha), EBV-induced molecule 1 ligand

chemokine (ELC), and IFN inducible protein-10 (IP-10) in anti-CD40 activated DO were increased and the dendritic cell-specific chemokine 1 (DC-CK1) was moderately up-regulated as compared with other mature DCs. The corresponding chemokine receptors CXCR4 and anti-CD40-DCs were significantly expressed. The CXCR3 expression on activated T cells stimulated by anti-CD40-DCs was also increased. Moreover, the anti-CD40-DCs had a stronger ability to stimulate T cell proliferation than any other DCs. The NF-kappa B activity was much higher in anti-CD40-DCs than that of TNF-DCs. These results offer further evidence of the importance of the CD40 signal in developing efficient human DC vaccines for cancer immune therapy. ANSWER 5 OF 22 BIOSIS COPYRIGHT (c) 2010 The Thomson L13 Corporation on STN DUPLICATE 4 2008:11118 BIOSIS AN DNPREV200800002229 Involvement of RelB in aryl hydrocarbon receptor-mediated ΤI induction of chemokines. Vogel, Christoph F. A. [Reprint Author]; Sciullo, Eric; ΑU Matsumura, Fumio Univ Calif Davis, Dept Environm Toxicol, 1 Shields Ave, Davis, CS CA 95616 USA cfvogel@ucdavis.edu Biochemical and Biophysical Research Communications, (NOV 23 SO 2007) Vol. 363, No. 3, pp. 722-726. CODEN: BBRCA9. ISSN: 0006-291X. DT Article LA English ED Entered STN: 12 Dec 2007 Last Updated on STN: 12 Dec 2007 AB 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a well-known immunotoxic compound affecting the expression of inflammatory genes. We found that TCDD induces the expression of the B-cell activating factor of the tumor necrosis factor family (BAFF), B-lymphocyte chemoattractant (BLC ), CC-chemokine ligand I (CCL1), and the transcription factor interferon gamma responsive factor (IFR3) in U937 macrophages in an aryl

hydrocarbon

receptor- (AhR) and RelB-dependent manner. The induction was associated with increased binding activity of an AhR/RelB complex without participation of ARNT to a NF-kappa B element that is recognized by the NF-kappa B subunit RelB and localized on promoters of the cytokine and chemokine genes BAFF, BLC, CCL 1, and the transcription factor IRF3. interaction of AhR with RelB binding on a novel type of NFkappa B binding site represents a new regulatory function of the AhR. (C) 2007 Elsevier Inc. All rights reserved. L13 ANSWER 6 OF 22 BIOSIS COPYRIGHT (c) 2010 The Thomson Corporation on STN DUPLICATE 5 2006:370141 BIOSIS AN PREV200600369173 DN ΤI NF-kappa B-inducing kinase regulates selected gene expression in the Nod2 signaling pathway. Pan, Qilin; Kravchenko, Vladimir; Katz, Alex; Huang, Shuang; Ii, ΑU Masayuki; Mathison, John C.; Kobayashi, Koichi; Flavell, Richard A.; Schreiber, Robert D.; Goeddel, David; Ulevitch, Richard J. [Reprint Author] Scripps Res Inst, Dept Immunol, 10550 N Torrey Pines Rd, IMM-12, CS La Jolla, CA 92037 USA ulevitch@scripps.edu Infection and Immunity, (APR 2006) Vol. 74, No. 4, pp. SO 2121-2127. CODEN: INFIBR. ISSN: 0019-9567. Article DТ LA English Entered STN: 26 Jul 2006 ΕD Last Updated on STN: 26 Jul 2006 The innate immune system surveys the extra- and intracellular AB environment for the presence of microbes. Among the intracellular sensors is a protein known as Nod2, a cytosolic protein containing a leucine-rich repeat domain. Nod2 is believed to play a role in determining host responses to invasive bacteria. A key element in upregulating host defense involves activation of the NF-kappa B pathway. It has been suggested through indirect studies that NF -kappa B inducing kinase, or NIK, may be involved in Nod2 signaling. Here we have used macrophages derived from primary

explants of bone marrow from wild-type mice and mice that either

bear a

mutation in NIK, rendering it inactive, or are derived from NIK-/- mice,

in which the NIK gene has been deleted. We show that NIK binds to  ${\tt Nod2}$ 

and mediates induction of specific changes induced by the specific  $\ensuremath{\mathsf{Nod2}}$ 

activator, muramyl dipeptide, and that the role of NIK occurs in settings

where both the Nod2 and TLR4 pathways are activated by their respective

agonists. Specifically, we have linked NIK to the induction of the  $\mbox{\ensuremath{B-cell}}$ 

chemoattractant known as BLC and suggest that this chemokine may play a role in processes initiated by Nod2 activation that lead to

improved host defense.

- L13 ANSWER 7 OF 22 CAPLUS COPYRIGHT 2010 ACS on STN
- AN 2005:729611 CAPLUS
- DN 143:206465
- TI Therapeutic and carrier molecules
- IN Ferrante, Antonio; Rathjen, Deborah Ann
- PA Peplin Biolipids Pty Ltd, Australia
- SO PCT Int. Appl., 180 pp. CODEN: PIXXD2
- DT Patent
- LA English

PL, PT,

| FAN.CNT 1 PATENT NO. DATE        | KIND    | DATE      | APPLICATION NO. |              |         |  |  |  |
|----------------------------------|---------|-----------|-----------------|--------------|---------|--|--|--|
| <br>PI WO 2005073164<br>20050128 | A1      | 20050811  | WO 2005-2       | WO 2005-AU98 |         |  |  |  |
| W: AE, AG, AL,                   | AM, AT  | , AU, AZ, | BA, BB, BG,     | BR, BW,      | BY, BZ, |  |  |  |
| CA, CH,<br>CN, CO, CR,           | CU, CZ  | , DE, DK, | DM, DZ, EC,     | EE, EG,      | ES, FI, |  |  |  |
| GB, GD,                          | HR HII  | TD TI.    | IN, IS, JP,     | KE KC        | KD KB   |  |  |  |
| KZ, LC,                          |         |           |                 |              |         |  |  |  |
| LK, LR, LS, NA, NI,              | LT, LU  | , LV, MA, | MD, MG, MK,     | MN, MW,      | MX, MZ, |  |  |  |
| NO, NZ, OM, SL, SY,              | PG, PH  | , PL, PT, | RO, RU, SC,     | SD, SE,      | SG, SK, |  |  |  |
| TJ, TM, TN,                      | TR, TT  | , TZ, UA, | UG, US, UZ,     | VC, VN,      | YU, ZA, |  |  |  |
| ZM, ZW<br>RW: BW, GH, GM,        | KE, LS  | , MW, MZ, | NA, SD, SL,     | SZ, TZ,      | UG, ZM, |  |  |  |
| ZW, AM,                          | K7. MD  | RII T.T   | TM, AT, BE,     | BC CH        | CV C7   |  |  |  |
| DE, DK,                          |         |           |                 |              |         |  |  |  |
| EE, ES, FI,                      | f'R, GB | , GR, HU, | IE, IS, IT,     | LT, LU,      | MC, NL, |  |  |  |

RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG AU 2005209331 Α1 20050811 AU 2005-209331 20050128 CA 2554735 A 1 20050811 CA 2005-2554735 20050128 20061108 EP 2005-700130 EP 1718602 Α1 20050128 AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, R: MC, PT, IE, SI, LT, FI, RO, CY, TR, BG, CZ, EE, HU, PL, SK, IS CN 1934072 А 20070321 CN 2005-80008891 20050128 BR 2005007236 А 20070626 BR 2005-7236 20050128 JP 2007522118 T 20070809 JP 2006-549788 20050128 20090827 US 2009-588094 US 20090215895 A1 20090507 Ρ PRAI US 2004-540604P 20040130 WO 2005-AU98 W 20050128 ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT MARPAT 143:206465 The present invention relates generally to compds. comprising a AB

AB The present invention relates generally to compds. comprising a hydrocarbon chain portion and more particular to compds. comprising chemical

derivatizations of the hydrocarbon chain which are useful therapeutic and  $% \left( 1\right) =\left( 1\right) +\left( 1\right) +$ 

prophylactic mols. The present invention further provides compds. where  $\protect\endsymbol{\protect}$ 

the hydrocarbon chain portion is a carrier mol. for functional groups,

moieties or agents. The present invention can include naturally including

polyunsatd. fatty acids as well as synthetic, modified or derivatized

polyunsatd. fatty acids. Furthermore. these polyunsatd. fatty acids can

be conjugated to amino acids, peptides or proteins. The compds. of the

present invention are particularly useful in the treatment and prophylaxis

of a range of conditions including cancers, protein kinase c(PKC) - or

NF.kappa.B-related- or -associated conditions,

cardiovascular conditions, pain, inflammatory conditions, vascular or

immunol. conditions such as diabetes, neurol. conditions and infection by

a range of viruses or prokaryotic or eukaryotic organisms. The present

invention further provides pharmaceutical compns. and methods of medical

treatment.

OSC.G THERE ARE 1 CAPLUS RECORDS THAT CITE THIS RECORD (1 CITINGS)

RE.CNT 37 THERE ARE 37 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

L13 ANSWER 8 OF 22 CAPLUS COPYRIGHT 2010 ACS on STN

AN 2005:395470 CAPLUS

DN 142:442896

Methods for differentiating stem cells using a self-replicating ΤI neocentromeric artificial chromosome with chromatin domains expressing

transgenes for gene therapy

Choo, Kong-Hong Andy; Wong, Lee Hwa; Saffery, Richard Eric ΙN

Murdoch Childrens Research Institute, Australia PA

PCT Int. Appl., 168 pp. SO

CODEN: PIXXD2

PRAI AU 2003-905894

DT Patent

FAN.CNT 1

LA English

| PATENT NO. DATE |                              |     |        | KIN  | ND DATE APPLICATION NO |       |       | NO. |                |          |       |     |     |     |     |      |
|-----------------|------------------------------|-----|--------|------|------------------------|-------|-------|-----|----------------|----------|-------|-----|-----|-----|-----|------|
| <br>PI<br>200   | PI WO 2005040391<br>20041025 |     |        | A1   | A1 20050506            |       |       | Ţ   | WO 2004-AU1469 |          |       |     |     |     |     |      |
|                 |                              | W:  | AE,    | AG,  | AL,                    | AM,   | AT,   | AU, | AZ,            | BA,      | BB,   | BG, | BR, | BW, | BY, | BZ,  |
| CA,             | CH,                          |     | CN.    | CO-  | CR.                    | CII.  | C7    | DE, | DK.            | DM -     | D7    | EC. | EE. | EG. | ES. | FT.  |
| GB,             | GD,                          |     | 011,   | 00,  | 011,                   | 00,   | 047   | 22, | DIC,           | 211,     | 22,   | 20, | ,   | 20, | LU, | /    |
| KΖ,             | T.C                          |     | GE,    | GH,  | GM,                    | HR,   | HU,   | ID, | IL,            | IN,      | IS,   | JP, | KE, | KG, | KP, | KR,  |
| 112,            | цс,                          |     | LK,    | LR,  | LS,                    | LT,   | LU,   | LV, | MA,            | MD,      | MG,   | MK, | MN, | MW, | MX, | MZ,  |
| NA,             | NI,                          |     | NΟ     | NI 7 | $\cap$ M               | PC    | DН    | PL, | РΤ             | ₽∩       | דום   | 9.C | SD  | Q F | g C | CK   |
| SL,             | SY,                          |     | 110,   | 114, | OP1,                   | rG,   | F 11, | гш, | гт,            | 110,     | 1.0,  | 50, | SD, | oш, | 5G, | DIV, |
| ZM,             | 77 Ta7                       |     | TJ,    | TM,  | TN,                    | TR,   | TT,   | TZ, | UA,            | UG,      | US,   | UZ, | VC, | VN, | YU, | ZA,  |
| ∠1 <b>1</b> 1,  | ∠ ₩                          | RW: | BW,    | GH,  | GM,                    | KE,   | LS,   | MW, | MZ,            | NA,      | SD,   | SL, | SZ, | TZ, | UG, | ZM,  |
| ZW,             | AM,                          |     | 71. 17 | DV   | TZ C                   | TZ 17 | MD    | DII | т т            | TT 1. // | 7. 17 | חדי | DC  | CII | CV  | C 7  |
| DE,             | DK,                          |     | ΑΔ,    | BI,  | NG,                    | KΔ,   | MD,   | RU, | 10,            | 1 1v1,   | A1,   | DL, | BG, | Сп, | CI, | C4,  |
| D.O.            | G.D.                         |     | EE,    | ES,  | FI,                    | FR,   | GB,   | GR, | HU,            | IE,      | IT,   | LU, | MC, | NL, | PL, | PT,  |
| RO,             | SE,                          |     | SI,    | SK,  | TR,                    | BF,   | ВJ,   | CF, | CG,            | CI,      | CM,   | GA, | GN, | GQ, | GW, | ML,  |
| MR,             | NE,                          |     |        | TD,  |                        | •     | ·     | ·   | ,              | ,        | •     | ,   | ,   | ~,  | ,   | ·    |

The present invention relates to the field of tissue engineering and

20031027

A

genetic manipulation of cells and to methods for generating tissue

suitable for use in repair, replacement, rejuvenation or augmentation

therapy. The present invention contemplates a method for genetically

manipulating a stem cell by introducing a nucleic acid mol. comprising a

centromere or neo-centromere into the stem cell, wherein the nucleic acid

mol. conveys genetic information which is capable of introducing to or

modifying a trait within the stem cell or progeny of the stem cell such as

but not limited to modulating the level of stem cell proliferation,

differentiation and/or self-renewal. The neo-centromere is devoid of

 $\alpha\text{-satellite}$  repeat DNA. One aspect of the present invention provides a stem cell comprising a self-replicating artificial chromosome

with a neo-centromere having centromeric chromatin domains comprising

expressible genetic material which modifies or introduces at least one

trait in said stem cell. Microarray gene expression profiles were

conducted for human 10q25 centromeric region. The engineered stem cells

may also be re-programmed, for example, to direct the cells down

different cell lineage.

OSC.G 2 THERE ARE 2 CAPLUS RECORDS THAT CITE THIS RECORD (2 CITINGS)

RE.CNT 3 THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

L13 ANSWER 9 OF 22 CAPLUS COPYRIGHT 2010 ACS on STN

AN 2005:324285 CAPLUS

DN 142:385993

TI Inhibitors of the IkB protein kinase  $\alpha$  signal transduction pathway for therapeutic regulation of gene expression

IN Karin, Michael; Bonizzi, Giussepina; Bebien, Magali

PA The Regents of the University of California, USA

SO PCT Int. Appl., 128 pp. CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 1

PATENT NO. KIND DATE APPLICATION NO.

DATE

\_\_\_\_\_

-----

```
PΙ
     WO 2005033284
                         Α2
                                 20050414 WO 2004-US32246
20040929
                          Α3
                                 20050707
     WO 2005033284
             AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ,
CA, CH,
             CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD,
             GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR,
KZ, LC,
             LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NA, NI,
             NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK,
SL, SY,
             TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA,
ZM, ZW
         RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW, AM,
             AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ,
DE, DK,
             EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT,
RO, SE,
             SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML,
MR, NE,
             SN, TD, TG
     US 20080280286
                          Α1
                                 20081113
                                             US 2008-574333
20080721
PRAI US 2003-508349P
                          Р
                                 20031001
     WO 2004-US32246
                                 20040929
                          W
ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT
     MARPAT 142:385993
OS
AB
     Oligonucleotides that bind I\kappa B kinase \alpha (IKK\alpha) that
     block its ability to induce cytokine-mediated gene expression are
     described for therapeutic use. Oligonucleotides that block the
activation
     and interactions of the downstream transcription factors RelA
and RelB.
     Expts. identifying the role of IKK\alpha in the induction of
chemokine
     gene expression in stromal cells are reported.
     ANSWER 10 OF 22 BIOSIS COPYRIGHT (c) 2010 The Thomson
L13
Corporation on
     STN
ΑN
     2006:209029
                 BIOSIS
     PREV200600210758
DN
     Helicobacter pylori contributes to lymphocyte infiltration and
ΤI
     anti-apoptosis via NF-kappab alternative pathway.
ΑU
     Ohmae, Tomoya; Hirata, Yoshihiro; Maeda, Shin; Shibata, Wataru;
Yanai,
```

Ayako; Ogura, Keiji; Yamaji, Yutaka; Okamoto, Makoto; Yoshida,

Haruhiko;

Kawabe, Takao; Omata, Masao

SO Gastroenterology, (APR 2005) Vol. 128, No. 4, Suppl. 2, pp. A350.

Meeting Info.: Annual Meeting of the

 ${\tt American-Gastroenterological-Association/Digestive-Disease-Week.} \\ {\tt Chicago,}$ 

IL, USA. May 14 -19, 2005. Amer Gastroenterol Assoc.

CODEN: GASTAB. ISSN: 0016-5085.

DT Conference; (Meeting)

Conference; Abstract; (Meeting Abstract)

LA English

ED Entered STN: 29 Mar 2006

Last Updated on STN: 29 Mar 2006

AB Background and aim: Helicobacter pylori infection is known as a major

cause of chronic active gastritis, accompanied with lymphocytic infiltration. We have reported that the bacterium activates NF-kB via

both classical and alternative pathway in lymphocyte in vitro, Although

the activation of classical pathway is reported to induce anti-apoptosis,

the consequence of the activation of alternative pathway is not fully

understood. in this study, we have examined the effect of alternative  $% \left( \frac{1}{2}\right) =\frac{1}{2}\left( \frac{1}{2}\right) =\frac{1}{$ 

pathway activation on cell proliferation and apoptosis in vitro, The

activation of alternative pathway was also investigated in vivo.Methods:

The effect of the activation of NF-kB alternative pathway by  ${\rm H}_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}$  pylon on

apoptosis was analyzed in IM-9, human lymphoblastoid cell line. Some

cells were pretreated with siRNAs for IKKa, or NF-kB2/p100, and then  $\,$ 

stimulated with  ${\rm H.}$  pylon cells (MOI 100). The apoptosis of the human

cells was analyzed by cell death detection ELISA. The cell proliferation

was examined by BrdU ELISA. The localization of NF-kB2/p100 in human

gastric mucosa was also investigated by immunohistochemistry in patients

with and without H. Pylon infection. The expression of blc, etc and sdf-1-al the target genes of the NF-kB alternative pathway in

gastric mucosa was analyzed with RT-PCR.Results: H. pylori enhanced

apoptosis of IM-9 cells 1.8 + -0.4-fold in untreated cells. This proapoptotic effect of H. Pylon was further enhanced 2.1-fold by IKKa and

2.2-fold by NFkB2/p100 silencing (p<0.05 for each siRNA compared with

control siRNA), suggesting that alternative pathway was involved in  $% \left( 1\right) =\left( 1\right) +\left( 1\right)$ 

anti-apoptotic response. Cell proliferation induced by  ${\rm H.}$  Pylon was not

markedly affected by IKKa or NF-kB2/p100 siRNA. In H. pylon-infected

mucosa, NF-kB2/p100 and p52 were immunohistochemically detected in both

cytoplasm and nucleus of lymphocytes but nowhere in epithelial cells. The

mRNA expression of blc, etc, and sdf-1-a in the gastric tissue was very low in uninfected mucosa, while markedly up-regulated in H.

pylon-infected mucosa. Conclusion: In H. pylori-infected tissue,  $\operatorname{NF-kB}$ 

alternative pathway was found to be activated only in lymphocytes. Our

results showed that H. Pylon up-regulates chemokine gene expression and

induces anti-apoptosis both in vivo and in vitro. The activation of NF-kB  $\,$ 

alternative pathway may promote lymphocyte infiltration into gastric

epithelium and may allow lymphocytes to acquire malignant potential.

L13 ANSWER 11 OF 22 BIOSIS COPYRIGHT (c) 2010 The Thomson Corporation on

STN

AN 2006:78291 BIOSIS

DN PREV200600085032

TI Helicobacter pylori activates Nf-kappa B via

both classical and alternative pathway in murine and human peripheral

blood mononuclear cells.

AU Ohmae, Tomoya; Hirata, Yoshihiro; Maeda, Shin; Shibata, Watarn; Yanai,

Ayako; Ogura, Keiji; Yoshida, Haruhiko; Kawabe, Takao; Omata, Masao

SO Gastroenterology, (APR 2004) Vol. 126, No. 4, Suppl. 2, pp. A405.

Meeting Info.: Digestive Disease Week/105th Annual Meeting of the American-Gastroenterological-Association. New Orleans, LA, USA. May 16

-20, 2004. Amer Gastroenterol Assoc.

CODEN: GASTAB. ISSN: 0016-5085.

DT Conference; (Meeting)

Conference; Abstract; (Meeting Abstract)

LA English

ED Entered STN: 25 Jan 2006

Last Updated on STN: 25 Jan 2006

AB Background and aim: Although gastric Mucosa-associated lymphoid tissue

(MALT) lymphoma is associated with chronic infection of Helicobacter pylon

(H. pylon). it is not clear how IT pylori contributes to the development

of MALT lymphoma. Recently, especialy in B lymphocytes, the alternative

pathway for NF-kappa B activation, which

includes IKK alpha and NF-kappa B2/p52, has been reported to contribute to

B cell development, survival, attenuation of apoptosis, and even proliferation. In this study, we analyzed whether H, Pylon induced

NF-kappa B activation through both classical

and alternative pathways in murine and human peripheral blood mononuclear

cells. The role of cag PAI for NF-kappa B

activation in lymphocytes was also examined. Methods: Murine, splenic B

cells and peripheral blood mononuclear cells from human healthy volunteer

were cultured with or without  ${\rm H.}$  pylon cells (TN2 and its knockout mutant

Delta cagE). After several hours, the cells were harvested and the total

cellular lysates were prepared immediately. Western blot analysis was

performed to detect p-I kappa B alpha, I kappa B alpha, and NF-kappa B2  $\,$ 

(p52 and its precursor p100). Total cellular RNA was also extracted. The  $\,$ 

expression of blc, elc, or sdf-1-alpha was analyzed by RT-PCR. Results: In murine splenic B cells and human peripheral blood

mononuclear cells, H. pylori infection induced I kappa B alpha phosphorylation as seen in gastric epitherial cells. In addition,

NF-kappa B 2/p52 was also increased by H.

Pylon in Western blot analysis. The mRNA expression of blc, elc, or sdf-1-alpha, all known as NF-kappa B2/p52 target genes, was upregulated by H. pylon infection after 8 hours. TN2 Delta cagE

induced I kappa B alpha phosphorylation and NF-kappa B2/p52 production to

the similar extent as the wild type did. Conclusion: In both murine

splenic B cells and human peripheral blood mononuclear cells,  ${\tt H.}$  pylori

activated the alternative NF-kappa B

signaling pathway, related to NF-kappa B2/p52, as well as the classical

pathway involving I kappa B alpha. H. Pylon cag PAI does not seem to

have any roles for the NF-kappa B activation

of lymphocytes. These results support the idea that  ${\tt H.}$  pylon stimulates  ${\tt B}$ 

cell proliferation through NF-kappa B

pathways and may promote MALT lymphomas by direct interaction.

L13 ANSWER 12 OF 22 BIOSIS COPYRIGHT (c) 2010 The Thomson Corporation on

STN DUPLICATE 6

AN 2004:147630 BIOSIS

DN PREV200400151114

TI Epstein-Barr virus latent infection membrane protein 1 TRAF-binding site

induces NIK/IKKalpha-dependent noncanonical NF-kappaB activation.

AU Luftig, Micah; Yasui, Teruhito; Soni, Vishal; Kang, Myung-soo; Jacobson,

Nils; Cahir-McFarland, Ellen; Seed, Brian; Kieff, Elliott [Reprint Author]

CS Channing Laboratory, Brigham and Women's Hospital, 181 Longwood Avenue,

8th Floor, Boston, MA, 02115, USA

ekieff@rics.bwh.harvard.edu

SO Proceedings of the National Academy of Sciences of the United States of

America, (January 6 2004) Vol. 101, No. 1, pp. 141-146. print. ISSN: 0027-8424 (ISSN print).

DT Article

LA English

ED Entered STN: 17 Mar 2004

Last Updated on STN: 17 Mar 2004

AB Epstein-Barr virus (EBV) latent infection membrane protein 1 (LMP1)-induced NF-kappaB activation is important for infected cell

survival. LMP1 activates NF-kappaB, in part, by engaging tumor necrosis

factor (TNF) receptor-associated factors (TRAFs), which also mediate

NF-kappaB activation from LTbetaR and CD40. LTbetaR and CD40 activation

of p100/NF-kappaB2 is now known to be NIK/IKKalpha-dependent and IKKbeta/IKKgamma independent. In the experiments described here, we found

that EBV LMP1 induced p100/NF-kappaB2 processing in human lymphoblasts and

 $\tt HEK293$  cells. LMP1-induced p100 processing was NIK/IKKalpha dependent and

IKKbeta/IKKgamma independent. Furthermore, the LMP1 TRAF-binding site was

required for p100 processing and p52 nuclear localization, whereas the

 ${\tt LMP1}$  death domain-binding site was not. Moreover, the LMP1 TRAF-binding

```
site preferentially caused RelB nuclear accumulation. In murine
embryo
    fibroblasts (MEFs), IKKbeta was essential for LMP1 up-regulation
of
    macrophage inflammatory protein (MIP)-2, TNFalpha, I-TAC, ELC,
    MIG, and CXCR4 RNAs. Interestingly, in IKKalpha knockout MEFs,
LMP1
    hyperinduced MIP-2, TNFalpha, and I-TAC expression, consistent
with a role
    for IKKalpha in down-modulating canonical IKKbeta activation or
its
    effects. In contrast, LMP1 failed to up-regulate CXCR4 and MIG
RNA in
     IKKalpha knockout MEFs, indicating a dependence on noncanonical
IKKalpha
    activation. Furthermore, LMP1 up-regulation of MIP-2 RNA in
MEFs was both
     IKKbeta- and IKKgamma-dependent, whereas LMP1 up-regulation of
MIG and
     I-TAC RNA was fully IKKgamma independent. Thus, LMP1 induces
typical
     canonical IKKbeta/IKKgamma-dependent, atypical canonical
     IKKbeta-dependent/IKKgamma-independent, and noncanoni-cal
    NIK/IKKalpha-dependent NF-kappaB activations;
NIK/IKKalpha-dependent
    NF-kappaB activation is principally mediated by the LMP1
TRAF-binding
    site.
    ANSWER 13 OF 22 CAPLUS COPYRIGHT 2010 ACS on STN
L13
AN
    2003:373862 CAPLUS
    138:380364
DN
ΤI
    A nucleic acid array of genes associated with disease responses
in
    macrophages and their use in the diagnosis of disease
    Stuhlmueller, Bruno; Haeupl, Thomas
IN
    Oligene G.m.b.H., Germany
PA
    Eur. Pat. Appl., 180 pp.
SO
    CODEN: EPXXDW
DT
    Patent
LΑ
    German
FAN.CNT 1
                       KIND DATE APPLICATION NO.
    PATENT NO.
DATE
     _____
_____
    EP 1310567
                        A2 20030514 EP 2002-90348
PΙ
20021002
    EP 1310567
                        A3
                              20040225
        R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE,
MC, PT,
```

IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, SK

A1 20030522 DE 2001-10155600 DE 10155600 20011109 В4 DE 10155600 20090827 US 20050037344 A1 20050217 US 2002-278698 20021023 PRAI DE 2001-10155600 А 20011109 ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT An array of  $\approx 250$  genes that show differential expression in macrophages in health and immune disorders is described for use in the diagnosis and monitoring of macrophage associated immune disorders and in screening of drugs. OSC.G THERE ARE 3 CAPLUS RECORDS THAT CITE THIS RECORD (3 CITINGS) THERE ARE 1 CITED REFERENCES AVAILABLE FOR THIS RECORD RE.CNT 1 ALL CITATIONS AVAILABLE IN THE RE FORMAT L13 ANSWER 14 OF 22 BIOSIS COPYRIGHT (c) 2010 The Thomson Corporation on STN ΑN 2004:154844 BIOSIS PREV200400148381 DN Imatinib mesylate (STI571) can act on non-malignant CD34+ peripheral blood progenitor cells by affecting their development into dendritic cells. Appel, Silke [Reprint Author]; Boehmler, Andreas M. [Reprint ΑU Authorl: Gruenebach, Frank [Reprint Author]; Mueller, Martin R. [Reprint Author]; Rupf, Anette [Reprint Author]; Weck, Markus M. [Reprint Author]; Hartmann, Ulrike [Reprint Author]; Reichardt, Volker L. [Reprint Author]; Kanz, Lothar [Reprint Author]; Brummendorf, Tim H. [Reprint Author]; Brossart, Peter [Reprint Author] Hematology, Oncology and Immunology, Internal Medicine II, CS University of Tuebingen, Tuebingen, Germany Blood, (November 16 2003) Vol. 102, No. 11, pp. 826a. print. SO Meeting Info.: 45th Annual Meeting of the American Society of Hematology. San Diego, CA, USA. December 06-09, 2003. American Society of Hematology. CODEN: BLOOAW. ISSN: 0006-4971. DT Conference; (Meeting) Conference; (Meeting Poster) Conference; Abstract; (Meeting Abstract) LA English Entered STN: 17 Mar 2004 ED

Last Updated on STN: 17 Mar 2004

AB Imatinib mesylate (STI571; Glivec) is a competitive Bcr-Abl tyrosine

kinase inhibitor and has yielded encouraging results in treatment of

chronic myelogenous leukemia (CML) and gastrointestinal stroma tumors.

Apart from inhibition of the Abl protein tyrosine kinases, it also shows

activity against PDGF-R, c-Kit, ARG and their fusion proteins while

sparing other kinases. In vitro studies have revealed that imatinib

mesylate can inhibit growth of cell lines and primitive malignant progenitor cells in CML expressing Bcr-Abl. However, little is known

about the effects of imatinib mesylate on non-malignant hematopoietic

cells. Since the ligand of c-Kit, stem cell factor (SCF), has been shown

to play an important role in development of dendritic cells (DC), we here

explored a potential effect of STI571 on the development of mobilized  $\,$ 

human CD34+ peripheral blood progenitor cells into DC. In our study we

demonstrate that in vitro exposure of mobilized human CD34+ progenitors to

therapeutic concentrations of imatinib mesylate (1-5) muM) inhibits their

differentiation into dendritic cells. DC obtained after 10-16 days of

culture in the presence of STB71 showed concentration dependent reduced

expression levels of CD1a and co-stimulatory molecules like CD80 and CD40  $\,$ 

without affecting their morphology or viability. Expression analyses of

chemokines known to be important for DC function by RT-PCR revealed an

increased expression of MIP-1a whereas no differences in the expression of  $\ensuremath{\mathsf{MIP}}\xspace-1$ 

TARC and the chemokine receptor CCR6 were observed. In contrast, mRNA

levels of ELC (CCL19) and the corresponding receptor CCR7 were reduced in the presence of imatinib mesylate. Furthermore, exposure to

 $$\operatorname{STI571}$  inhibited CD40 ligand induced activation of generated DC and the

initiation of primary CTL responses. To determine the possible role of

c-Kit in the observed inhibition of DC development, we incubated  $\ensuremath{\text{CD34+}}$ 

cells with blocking antibodies against SCF and its receptor c-Kit.

imatinib mesylate acts by inhibition of other tyrosine kinases. The

effects of imatinib mesylate were accompanied by downregulation of nuclear

localized RelB protein which has been shown to be important for DC

differentiation and function. Interestingly, there was no reduction in

the expression of c-Rel or RelA proteins, other members of the  $\operatorname{NF-kappaB}$ 

family. Our results demonstrate that imatinib mesylate can act on normal

hematopoietic cells and inhibits the differentiation and function of DC by  $\begin{array}{c} \text{ } \\ \text{ } \\ \text{ } \\ \text{ } \\ \text{ } \end{array}$ 

interfering with the NF-kappaB signal transduction pathway.

L13 ANSWER 15 OF 22 CAPLUS COPYRIGHT 2010 ACS on STN

AN 2003:120036 CAPLUS

DN 138:236622

TI RelB in secondary lymphoid organ development: differential regulation by

lymphotoxin and tumor necrosis factor signaling pathways

AU Yilmaz, Z. Buket

CS Institut fuer Toxikologie und Genetik, Germany

SO Wissenschaftliche Berichte - Forschungszentrum Karlsruhe (2002), FZKA

6793, i-xv, 1-117

CODEN: WBFKF5; ISSN: 0947-8620

DT Report

LA English

AB Primary lymphoid organs are the major sites of lymphopoiesis where

lymphocytes proliferate and mature into functional but naive cells.

Secondary lymphoid organs are sites where these lymphocytes encounter

antigens and elicit immune responses. RelB is a member of the  $\operatorname{Rel}/$ 

NF-.kappa.B family of inducible dimeric

transcription factors. RelB is abundantly expressed in secondary lymphoid

organs, such as spleen, lymph nodes, and Peyer's patches (PP). RelB-deficient mice have improper spleen structure and lack organizing

centers for PPs, defects that can not be restored by the adoptive transfer

of wild-type bone marrow cells. The work presented here revealed a reduction

in expression of the homing chemokines B lymphocyte chemoattractant (

BLC) and secondary lymphoid organ chemokine (SLC) in

RelB-deficient spleen, suggesting a role for RelB in proper expression of

chemokines by splenic stromal cells. Moreover, interleukin-7 (IL-7)-induced expression of lymphotoxin (LT) in intestinal cells, a

crucial step in early PP development, was not impaired in RelB-deficient

embryos, suggesting functional hematopoietic inducers and a defect in

LT $\beta$  receptor (LT $\beta R$ ) expressing stromal responders. Activation of LT $\beta R$  signaling in fibroblasts resulted in the specific induction

of p52-RelB heterodimers, while tumor necrosis factor (TNF) induced

classical p50-RelA NF-.kappa.B complexes.

 $\text{LT}\beta\text{R--induced}$  RelB nuclear translocation and DNA binding of p52-RelB

heterodimers required the degradation of the inhibitory p52 precursor, p100,

which was dependent on the IkB kinase (IKK) complex subunit IKK $\alpha$ , but not on IKK $\beta$  or IKK $\gamma$ . In contrast to LT $\beta$ R

signaling, TNFR signaling increased p100 and RelB levels both in  $\operatorname{cytoplasm}$ 

and nucleus and RelB was bound to p100 in both compartments. Despite the

abundant presence of RelB in the nucleus, RelB DNA binding was almost  $% \left( 1\right) =\left( 1\right) +\left( 1$ 

undetectable in TNF treated fibroblasts. Forced expression of p50 and p52

could not rescue the lack of DNA binding. In contrast, RelB DNA binding

increased in cells lacking the C-terminus of p100, but not of p105,

strongly suggesting that it is the specific inhibitory function of the

C-terminal domain of p100, rather than the lack of the heterodimerization

partner, which prevents RelB DNA binding in TNF-stimulated fibroblasts.

Thus, RelB and p52 in stromal cells could function in the proper development of the spleen by regulating the expression of chemokines such

as BLC. Furthermore, generation of p52-RelB heterodimers by the LT  $\beta R$  pathway involving p100 degradation, appears to be a critical step in

the formation of PP anlage.

RE.CNT 118 THERE ARE 118 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

L13 ANSWER 16 OF 22 CAPLUS COPYRIGHT 2010 ACS on STN

AN 2002:717163 CAPLUS

DN 137:380824

TI Dynamic changes in histone H3 Lys 9 methylation occurring at tightly

regulated inducible inflammatory genes

AU Saccani, Simona; Natoli, Gioacchino

CS Institute for Research in Biomedicine, Bellinzona, CH6501, Switz.

SO Genes & Development (2002), 16(17), 2219-2224 CODEN: GEDEEP; ISSN: 0890-9369

PB Cold Spring Harbor Laboratory Press

DT Journal

LA English

AB Methylation of histone H3 at Lys 9 is causally linked to formation of

heterochromatin and to long-term transcriptional repression. We report an  $\ensuremath{\,^{\circ}}$ 

unexpected pattern of  ${\rm H3}\ {\rm Lys}\ 9$  methylation occurring at a subset of

inducible inflammatory genes. This pattern is characterized by relatively

low constitutive levels of  ${\rm H3}\ {\rm Lys}\ 9$  methylation that are erased upon

activation and restored concurrently with post-induction transcriptional

repression. Changes in H3 Lys 9 methylation strongly correlate with RNA

polymerase II recruitment and release. In particular, remethylation  $% \left( 1\right) =\left( 1\right) +\left( 1\right)$ 

correlates with RNApolII release more strongly than does histone deacetylation. We propose that, by generating a window of time in which

transcription is permitted, dynamic modulation of  ${\rm H3\ Lys\ 9}$  methylation

adds an addnl. regulatory level to transcriptional activation of tightly

controlled inducible genes.

OSC.G 84 THERE ARE 84 CAPLUS RECORDS THAT CITE THIS RECORD (84 CITINGS)

RE.CNT 39 THERE ARE 39 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

L13 ANSWER 17 OF 22 BIOSIS COPYRIGHT (c) 2010 The Thomson Corporation on

STN DUPLICATE 7

AN 2002:576578 BIOSIS

DN PREV200200576578

TI The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways.

AU Dejardin, Emmanuel; Droin, Nathalie M.; Delhase, Mireille; Haas, Elvira;

Cao, Yixue; Makris, Constantin; Li, Zhi-Wei; Karin, Michael; Ware, Carl

F.; Green, Douglas R. [Reprint author]

CS Division of Cellular Immunology, La Jolla Institute for Allergy and

Immunology, 10355 Science Center Drive, San Diego, CA, 92121, USA doug@liai.org

- SO Immunity, (October, 2002) Vol. 17, No. 4, pp. 525-535. print. ISSN: 1074-7613.
- DT Article
- LA English
- ED Entered STN: 13 Nov 2002 Last Updated on STN: 13 Nov 2002
- AB The lymphotoxin-beta receptor (LTbetaR) plays critical roles in inflammation and lymphoid organogenesis through activation of NF-kappaB.

In addition to activation of the classical NF-kappaB, ligation of this

receptor induces the processing of the cytosolic NF-kappaB2/p100 precursor

to yield the mature p52 subunit, followed by translocation of p52 to the

nucleus. This activation of NF-kappaB2 requires NIK and IKKalpha, while

NEMO/IKKgamma is dispensable for p100 processing.

IKKbeta-dependent

activation of canonical NF-kappaB is required for the expression but not

processing of pl00 and for the expression of proinflammatory molecules

including VCAM-1, MIP-1beta, and MIP-2 in response to LTbetaR ligation.

In contrast, IKKalpha controls the induction by LTbetaR ligation of

chemokines and cytokines involved in lymphoid organogenesis, including

SLC, BLC, ELC, SDF1, and BAFF.

- L13 ANSWER 18 OF 22 CAPLUS COPYRIGHT 2010 ACS on STN DUPLICATE 8
- AN 2002:858817 CAPLUS
- DN 137:336538
- TI CCL9/MIP-1 $\gamma$  and its receptor CCR1 are the major chemokine ligand/receptor species expressed by osteoclasts
- AU Lean, Jenny M.; Murphy, Chiho; Fuller, Karen; Chambers, Timothy J.
- CS Department of Cellular Pathology, St. George's Hospital Medical School,

London, SW17 ORE, UK

- SO Journal of Cellular Biochemistry (2002), 87(4), 386-393 CODEN: JCEBD5; ISSN: 0730-2312
- PB Wiley-Liss, Inc.
- DT Journal
- LA English
- AB Although much has been learned recently of the mechanisms by which the

differentiation of osteoclasts is induced, less is known of the factors

that regulate their migration and localization, and their interactions

with other bone cells. In related cell types, chemokines play a major

role in these processes. The authors therefore systematically tested the

expression of RNA for chemokines and their receptors by osteoclasts.

Because bone is the natural substrate for osteoclasts and may influence

osteoclast behavior, the authors also tested expression on bone slices.

Quant. RT-PCR using real-time anal. with SYBR Green was therefore performed on RNA isolated from bone marrow cells after incubation with

macrophage-colony stimulating factor (M-CSF) with/without receptor-activator of NF.kappa.B ligand

(RANKL), on plastic or bone. The authors found that RANKL induced  $\ensuremath{\mathsf{RANKL}}$ 

expression of CCL9/MIP-1 $\gamma$  to levels comparable to that of tartrate-resistant acid phosphatase (TRAP), a major specialized product of

osteoclasts. CCL22/MDC, CXCL13/BLC/BCA-1, and CCL25/TECK were also induced. The dominant chemokine receptor expressed by osteoclasts

was CCR1, followed by CCR3 and CX3CR1. Several receptors expressed on  $\,$ 

macrophages and associated with inflammatory responses, including CCR2 and  $\,$ 

CCR5, were down-regulated by RANKL. CCL9, which acts through CCR1,

stimulated cytoplasmic motility and polarization in osteoclasts, identical

to that previously observed in response to CCL3/MIP-1 $\alpha$ , which also acts

through CCR1 and is chemotactic for osteoclasts. These results identify  $% \left( 1\right) =\left( 1\right) \left( 1\right) +\left( 1\right) \left( 1\right) \left( 1\right) +\left( 1\right) \left( 1\right)$ 

 $\tt CCL9$  and its receptor CCR1 as the major chemokine and receptor species

expressed by osteoclasts, and suggest a crucial role for CCL9 in the  $\ensuremath{\mathsf{CCL9}}$ 

regulation of bone resorption.

OSC.G 52 THERE ARE 52 CAPLUS RECORDS THAT CITE THIS RECORD (52 CITINGS)

RE.CNT 28 THERE ARE 28 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

L13 ANSWER 19 OF 22 CAPLUS COPYRIGHT 2010 ACS on STN

AN 2000:296360 CAPLUS

DN 133:57549

TI Alymphoplasia (aly)-type nuclear factor  $\kappa B$ -inducing kinase (NIK) causes defects in secondary lymphoid tissue chemokine receptor signaling

and homing of peritoneal cells to the gut-associated lymphatic tissue

system

AU Fagarasan, Sidonia; Shinkura, Reiko; Kamata, Tadashi; Nogaki, Fumiaki;

Ikuta, Koichi; Tashiro, Kei; Honjo, Tasuku

CS Department of Medical Chemistry Faculty of Medicine, Kyoto University,

Kyoto, 606-8501, Japan

SO Journal of Experimental Medicine (2000), 191(9), 1477-1486 CODEN: JEMEAV; ISSN: 0022-1007

PB Rockefeller University Press

DT Journal

LA English

AB Alymphoplasia (aly) mice, which carry a point mutation in the nuclear

factor  $\kappa B-\text{inducing kinase}$  (NIK) gene, are characterized by the systemic absence of lymph nodes and Peyer's patches, disorganized splenic

and thymic architectures, and immunodeficiency. Another unique feature of

aly/aly mice is that their peritoneal cavity contains more  ${\tt B1}$  cells than

normal and aly/+ mice. Transfer expts. of peritoneal lymphocytes from

aly/aly mice into recombination activating gene (RAG)-2-/- mice revealed

that B and T cells fail to migrate to other lymphoid tissues, particularly

to the gut-associated lymphatic tissue system. In vivo homing defects of

aly/aly peritoneal cells correlated with reduction of their in vitro  $\ensuremath{\text{vitro}}$ 

chemotactic responses to secondary lymphoid tissue chemokine (SLC) and  $\ensuremath{\mathsf{B}}$ 

lymphocyte chemoattractant (BLC). The migration defect of aly/aly lymphocytes was not due to a lack of expression of chemokines and

their receptors, but rather to impaired signal transduction downstream of

the receptors for SLC, indicating that NIK is involved in the chemokine

signaling pathway known to couple only with G proteins. The results

showed that the reduced serum levels of Igs and the absence of class

switch to IgA in aly/aly mice are due, at least in part, to a migration

defect of lymphocytes to the proper microenvironment where  $\ensuremath{\mathtt{B}}$  cells

proliferate and differentiate into Iq-producing cells.

OSC.G 76 THERE ARE 76 CAPLUS RECORDS THAT CITE THIS RECORD (76 CITINGS)

RE.CNT 50 THERE ARE 50 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

L13 ANSWER 20 OF 22 CAPLUS COPYRIGHT 2010 ACS on STN

AN 2000:885658 CAPLUS

DN 135:45130

TI Mechanism of B1 cell differentiation and migration in GALT

AU Fagarasan, Sidonia; Shinkura, Reiko; Kamata, Tadashi; Nogaki, Fumiaki;

Ikuta, Koichi; Honjo, Tasuku

CS Department of Medical Chemistry, Kyoto University Faculty of Medicine,

Japan

SO Current Topics in Microbiology and Immunology (2000), 252(B1 Lymphocytes

in B Cell Neoplasia), 221-229

CODEN: CTMIA3; ISSN: 0070-217X

PB Springer-Verlag

DT Journal

LA English

AB A study was conducted to investigate the homing capacity of peritoneal

cavity (PEC) cells from aly/aly and aly/+ mice. It was found that PEC

cells from aly/aly mice have a defect in homing to other lymphoid tissues,  $% \left( 1\right) =\left( 1\right) +\left( 1\right)$ 

and this defect was more severe regarding their migration to the gut-associated lymphatic tissue system. In vivo migration defect correlated

with in vitro decrease of chemotactic activity of SLC (secondary lymphoid-tissue chemokine) and BLC (B lymphocyte

chemoattractant) on aly/aly PEC cells. The defective chemotactic response

of aly/aly PEC lymphocytes was not due to the lack of chemokine or their

receptors but to a defect in signaling pathway through the chemokine

receptors. It was observed that the aly mutation of the NF-. kappa.B-inducing kinase (NIK) gene blocks signaling from

the receptors for SLC, providing the first evidence that NIK is involved

in signal transduction through seven-transmembrane protein receptors.

OSC.G 8 THERE ARE 8 CAPLUS RECORDS THAT CITE THIS RECORD (8 CITINGS)

RE.CNT 28 THERE ARE 28 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

L13 ANSWER 21 OF 22 CAPLUS COPYRIGHT 2010 ACS on STN DUPLICATE 9

AN 1999:810216 CAPLUS

DN 132:106889

TI Distinct activities of p52/NF-.kappa.B

required for proper secondary lymphoid organ microarchitecture: functions

enhanced by Bcl-3

AU Poljak, Ljiljana; Carlson, Louise; Cunningham, Kirk; Kosco-Vilbois, Marie

H.; Siebenlist, Ulrich

CS Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892,

USA

SO Journal of Immunology (1999), 163(12), 6581-6588 CODEN: JOIMA3; ISSN: 0022-1767

PB American Association of Immunologists

DT Journal

LA English

AB Mice rendered deficient in p52, a subunit of NF-.kappa .B, or in Bcl-3, an  $I\kappa B$ -related regulator that assocs.

with p52 homodimers, share defects in the microarchitecture of secondary

lymphoid organs. The mutant mice are impaired in formation of  $\ensuremath{\mathtt{B}}$  cell

follicles and are unable to form proper follicular dendritic cell (FDC)

networks upon antigenic challenge. The defects in formation of B cell

follicles may be attributed, at least in part, to impaired production of the  $\ensuremath{\mathsf{B}}$ 

lymphocyte chemoattractant (BLC) chemokine, possibly a result of defective FDCs. The p52- and Bcl-3-deficient mice exhibit addnl. defects

within the splenic marginal zone, including reduced nos. of metallophilic

macrophages, reduced deposition of the laminin-  $\!\beta 2$  chain and impaired

expression of a mucosal addressin marker on sinus-lining cells. Whereas

 $$\operatorname{p} 52\operatorname{-deficient}$  mice are severely defective in all of these aspects,

Bcl-3-deficient mice are only partially defective. We determined that FDCs or

other non-hemopoietic cells that underlie FDCs are intrinsically impaired

in p52-deficient mice. Adoptive transfers of wild-type bone marrow into

 $\ensuremath{\text{p52-deficient}}$  mice failed to restore FDC networks or follicles. The

transfers did restore metallophilic macrophages to the marginal zone,

however. Together, the results suggest that p52 carries out functions

essential for a proper splenic microarchitecture in both hemopoietic and nonhemopoietic cells and that Bcl-3 is important in enhancing these essential activities of p52. THERE ARE 50 CAPLUS RECORDS THAT CITE THIS RECORD (50 OSC.G CITINGS) RE.CNT 43 THERE ARE 43 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT ANSWER 22 OF 22 CAPLUS COPYRIGHT 2010 ACS on STN L13 1997:568166 CAPLUS AN DN 127:215961 OREF 127:41909a,41912a Gene therapy of endothelial cells with anti-apoptotic proteins ΤI for transplantation and inflammatory conditions INBach, Fritz H.; Ferran, Christiane Novartis A.-G., Switz.; New England Deaconess Hospital PACorporation; Bach, Fritz H.; Ferran, Christiane PCT Int. Appl., 74 pp. SO CODEN: PIXXD2 DT Patent LA English FAN.CNT 1 PATENT NO. KIND DATE APPLICATION NO. DATE \_\_\_\_\_ \_\_\_\_\_ PI WO 9730083 A1 19970821 WO 1997-EP676 19970213 W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN RW: KE, LS, MW, SD, SZ, UG, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG A1 19970821 CA 1997-2245503 CA 2245503 19970213 AU 9718730 A 19970902 AU 1997-18730 19970213 A1 19981230 EP 1997-905019 EP 886650 19970213

R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE,

MC, PT,

IE, SI, FI, RO

JP 2000510326 T 20000815 JP 1997-528990

19970213

PRAI US 1996-601515 A 19960214 US 1996-634995 A 19960419 WO 1997-EP676 W 19970213

AB A method of genetically modifying mammalian, especially endothelial cells to

render them less susceptible to an inflammatory or other immunol. activation stimulus is described, which comprises inserting in that cell

or a progenitor thereof DNA encoding an anti-apoptotic polypeptide capable

of inhibiting NF-.kappa.B and expressing the protein, whereby NF-.kappa.B in the cell is

substantially inhibited in the presence of a cellular activating stimulus.

Suitable polypeptides are selected from those having activity of a

mammalian A20, BCL-2, BCL-XL (MCL-1) or Al protein, including homologs and

truncated forms of the native proteins. The BCL-2, BCL-XL or  ${\tt Al}$  active

polypeptides can also be employed as homodimers or as heterodimers with

another anti-apoptotic polypeptide of the BCL family. The method, which

can be carried out in vivo or ex vivo or in vitro, is particularly useful

in connection with allogeneic or, especially, xenogeneic transplantation, as

well as to treat systemic or local inflammatory conditions. Transgenic or

somatic recombinant non-human mammals can be prepared expressing such a

polypeptide on a regulable basis by the endothelial cells thereof, and

tissues or organs comprising such cells can be obtained for grafting into

a mammalian recipient. An example illustrating the invention is transformation of endothelial cells to recombinantly express BCL-2 and

BCL-XL. Transcription factor NF-.kappa.B

was inhibited in these cells as demonstrated using reporter genes.

OSC.G 7 THERE ARE 7 CAPLUS RECORDS THAT CITE THIS RECORD (7 CITINGS)

RE.CNT 6 THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

COST IN U.S. DOLLARS

SINCE FILE TOTAL
ENTRY SESSION
FULL ESTIMATED COST

DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)

SINCE FILE TOTAL

ENTRY

SESSION

CA SUBSCRIBER PRICE -11.05

-14.45

FILE 'STNGUIDE' ENTERED AT 12:35:33 ON 20 APR 2010 USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT COPYRIGHT (C) 2010 AMERICAN CHEMICAL SOCIETY (ACS)

FILE CONTAINS CURRENT INFORMATION.
LAST RELOADED: Apr 16, 2010 (20100416/UP).

=> FIL BIOSIS CAPLUS EMBASE

COST IN U.S. DOLLARS
SINCE FILE TOTAL
ENTRY SESSION
FULL ESTIMATED COST
0.42 175.03

DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS) SINCE FILE TOTAL ENTRY SESSION

CA SUBSCRIBER PRICE 0.00

-14.45

FILE 'BIOSIS' ENTERED AT 12:38:56 ON 20 APR 2010 Copyright (c) 2010 The Thomson Corporation

FILE 'CAPLUS' ENTERED AT 12:38:56 ON 20 APR 2010 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2010 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'EMBASE' ENTERED AT 12:38:56 ON 20 APR 2010 Copyright (c) 2010 Elsevier B.V. All rights reserved.

=> d his

(FILE 'HOME' ENTERED AT 12:06:56 ON 20 APR 2010)

FILE 'BIOSIS, CAPLUS, EMBASE' ENTERED AT 12:15:37 ON 20 APR 2010 L1 3 S (BLC OR ELC) (3A) PROMOTER L2 3 DUP REM L1 (0 DUPLICATES REMOVED)

FILE 'STNGUIDE' ENTERED AT 12:22:26 ON 20 APR 2010

FILE 'BIOSIS, CAPLUS, EMBASE' ENTERED AT 12:23:18 ON 20 APR 2010

L3 1 S NF KAPP B

L4 113335 S NF KAPPA B

L5 36 S L4 AND (BLC OR ELC)

L6 5 S L5 AND PROMOTER

FILE 'STNGUIDE' ENTERED AT 12:28:53 ON 20 APR 2010

FILE 'BIOSIS, CAPLUS, EMBASE' ENTERED AT 12:29:56 ON 20 APR 2010

L8 2987 S CCL21 OR CXCL13

L9 11 S L8 (3A) PROMOTER

L10 5 DUP REM L9 (6 DUPLICATES REMOVED)

L11 110 S L4 AND L8

L12 5 S L11 AND PROMOTER

L13 22 DUP REM L5 (14 DUPLICATES REMOVED)

FILE 'STNGUIDE' ENTERED AT 12:35:33 ON 20 APR 2010

FILE 'BIOSIS, CAPLUS, EMBASE' ENTERED AT 12:38:56 ON 20 APR 2010

=> s 111 and py <= 2004

L14 21 L11 AND PY<=2004

=> dup rem 114

PROCESSING COMPLETED FOR L14

L15 11 DUP REM L14 (10 DUPLICATES REMOVED)

=> d bib abs 1-

YOU HAVE REQUESTED DATA FROM 11 ANSWERS - CONTINUE? Y/(N):y

L15 ANSWER 1 OF 11 CAPLUS COPYRIGHT 2010 ACS on STN

AN 2007:647385 CAPLUS

DN 147:87651

TI Gene expression profiles to identify effectors of innate immunity for the

treatment of inflammation or sepsis

IN Hancock, Robert E.W.; Finlay, B. Brett; Gough Scott, Monisha; Bowdish,

Dawn; Rosenberger, Carrie Melissa; Steven Powers, Jon-Paul; Yu, Jie;

Mookherjee, Neeloffer

PA University of British Columbia, Can.

SO U.S. Pat. Appl. Publ., 213 pp., Cont.-in-part of U.S. Ser. No. 241,882.

CODEN: USXXCO

DT Patent

LA English

FAN.CNT 4

|          | PATENT NO.     | KIND | DATE     | APPLICATION NO. |  |  |  |
|----------|----------------|------|----------|-----------------|--|--|--|
| DATE     |                |      |          |                 |  |  |  |
|          |                |      |          |                 |  |  |  |
|          |                |      |          |                 |  |  |  |
| ΡI       | US 20070134261 | A1   | 20070614 | US 2006-400411  |  |  |  |
| 20060407 |                |      |          |                 |  |  |  |
|          | US 20040001803 | A1   | 20040101 | US 2002-308905  |  |  |  |
| 2002     | 1202 <         |      |          |                 |  |  |  |

| US 7507787           | В2 | 20090324 |                  |
|----------------------|----|----------|------------------|
| CN 101215601         | A  | 20080709 | CN 2007-10168028 |
| 20021202             |    |          |                  |
| NZ 563261            | A  | 20080829 | NZ 2002-563261   |
| 20021202             |    |          |                  |
| US 20040180038       | A1 | 20040916 | US 2003-661471   |
| 20030912 <           |    |          |                  |
| US 7687454           | В2 | 20100330 |                  |
| US 20070190533       | A1 | 20070816 | US 2005-241882   |
| 20050929             |    |          |                  |
| AU 2007201885        | A1 | 20070517 | AU 2007-201885   |
| 20070427             |    |          |                  |
| PRAI US 2001-336632P | P  | 20011203 |                  |
| US 2002-308905       | A2 | 20021202 |                  |
| US 2003-661471       | A2 | 20030912 |                  |
| US 2005-241882       | A2 | 20050929 |                  |
| AU 2002-365675       | А3 | 20021202 |                  |
| CN 2002-827327       | A3 | 20021202 |                  |
| NZ 2002-533721       | А3 | 20021202 |                  |

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT AB This invention is based on the discovery that based on patterns of

polynucleotide expression regulated by endotoxic lipopolysaccharide,

lipoteichoic acid, CpG DNA, or other cellular components (e.g., microbes),

and affected by cationic peptides, one can screen for novel compds. that

block or reduce sepsis and/or inflammation in a subject. The method

includes contacting cells with lipopolysaccharide, lipoteichoic acid, CpG

DNA, and/or intact microbes or microbial components in the presence or  $% \left( 1\right) =\left( 1\right) +\left( 1\right) +\left($ 

absence of a peptide; detecting a pattern of polynucleotide expression for

the cells in the presence and absence of the peptide, wherein the pattern  $% \left( 1\right) =\left( 1\right) +\left( 1\right) +$ 

in the presence of the peptide represents inhibition of an inflammatory or

septic response. A method of identifying a polynucleotide or pattern of

polynucleotides regulated by one or more sepsis or inflammatory inducing

agents and inhibited by a peptide is described. In another aspect, the

invention provides methods and compds. for enhancing innate immunity in a

subject. Based on the use of cationic peptides as a tools, one can

identify selective enhancers of innate immunity that do not trigger the  $% \left( 1\right) =\left( 1\right) +\left( 1\right) +\left($ 

sepsis reaction and that can block/dampen inflammatory and/or septic

responses. A method of selectively suppressing sepsis is provided, while

maintaining expression of an anti-inflammatory gene. Cationic peptides,

such as human cathelicidin LL-37 or KSRIVPAIPVSLL and related peptides,

are provided for protection against bacterial infection by enhancing

immune response via down-regulation of pro-inflammatory genes and up-regulation of anti-inflammatory genes.

OSC.G 0 THERE ARE 0 CAPLUS RECORDS THAT CITE THIS RECORD (0 CITINGS)

L15 ANSWER 2 OF 11 CAPLUS COPYRIGHT 2010 ACS on STN DUPLICATE 1  $\,$ 

AN 2004:927620 CAPLUS

DN 142:5222

TI  $I\kappa B$  Kinase Complex  $\alpha$  Kinase Activity Controls Chemokine and High Endothelial Venule Gene Expression in Lymph Nodes and Nasal-Associated Lymphoid Tissue

AU Drayton, Danielle L.; Bonizzi, Giuseppina; Ying, Xiaoyan; Liao, Shan;

Karin, Michael; Ruddle, Nancy H.

CS Department of Epidemiology and Public Health, Section of Immunobiology,

Yale University School of Medicine, New Haven, CT, 06520, USA

SO Journal of Immunology (2004), 173(10), 6161-6168 CODEN: JOIMA3; ISSN: 0022-1767

PB American Association of Immunologists

DT Journal

LA English

AB The lymphotoxin (LT)  $\boldsymbol{\beta}$  receptor plays a critical role in secondary

lymphoid organogenesis and the classical and alternative NF-.

kappa.B pathways have been implicated in this process.

IKK $\alpha$  is a key mol. for the activation of the alternative NF -.kappa.B pathway. However, its precise role and

target genes in secondary lymphoid organogenesis remain unknown,

particularly with regard to high endothelial venules (HEV). Ithis

study, we show that  $\textsc{IKK}\alpha AA$  mutant mice, who lack inducible kinase

activity, have hypocellular lymph nodes (LN) and nasal-associated lymphoid

(NALT) tissue characterized by marked defects in microarchitecture and  $% \left( 1\right) =\left( 1\right) +\left( 1\right) +\left($ 

HEV. In addition, IKK  $\alpha$ AA LNs showed reduced lymphoid chemokine CCL19,

CCL21, and CXCL13 expression. IKK $\alpha$ AA LN- and

 $\ensuremath{\mathsf{NALT-HEV}}$  were abnormal in appearance with reduced expression of peripheral

node addressin (PNAd) explained by a severe reduction in the  $\ensuremath{\mathsf{HEV}}\xspace$  -associated

proteins, glycosylation-dependent cell adhesion mol. 1 (GlyCAM-1), and

high endothelial cell sulfotransferase, a PNAd-generating enzyme that is a

target of LT $\alpha\beta$ . In this study, anal. of LT $\beta$ -/- mice identifies GlyCAM-1 as another LT $\beta$ -dependent gene. In contrast, TNFRI-/- mice, which lose classical NF- $\kappa$ 

B pathway activity but retain alternative NF-.

kappa.B pathway activity, showed relatively normal

GlyCAM-1 and HEC-6ST expression in LN-HEV. In addition, in this communication, it is demonstrated that LT  $\beta R$  is prominently expressed

on LN- and NALT-HEV. Thus, these data reveal a critical role for  $\text{IKK}\alpha$ 

in LN and NALT development, identify GlyCAM-1 and high endothelial cell

sulfotransferase as new IKK $\alpha$ -dependent target genes, and suggest that LT  $\beta$ R signaling on HEV can regulate HEV-specific gene expression.

OSC.G 26 THERE ARE 26 CAPLUS RECORDS THAT CITE THIS RECORD (26 CITINGS)

RE.CNT 42 THERE ARE 42 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 3 OF 11 CAPLUS COPYRIGHT 2010 ACS on STN DUPLICATE 2

AN 2004:230483 CAPLUS

DN 140:269393

TI Impaired lymphoid chemokine-mediated migration due to a block on the

chemokine receptor switch in human cytomegalovirus-infected dendritic

cells

AU Moutaftsi, Magdalena; Brennan, Paul; Spector, Stephen A.; Tabi, Zsuzsanna

CS Section of Infection and Immunity, University of Wales College of Medicine, Cardiff, CF14 2TL, UK

SO Journal of Virology (2004), 78(6), 3046-3054 CODEN: JOVIAM; ISSN: 0022-538X

PB American Society for Microbiology

DT Journal

LA English

AB Dendritic cell (DC) migration from the site of infection to the site of

 $\ensuremath{\mathsf{T-cell}}$  priming is a crucial event in the generation of antiviral  $\ensuremath{\mathsf{T-cell}}$ 

responses. Here we present to our knowledge the first functional evidence

that human cytomegalovirus (HCMV) blocks the migration of infected

monocyte-derived DCs toward lymphoid chemokines CCL19 and CCL21.

 $\,$  DC migration is blocked by viral impairment of the chemokine receptor

switch at the level of the expression of CCR7 mols. The inhibition occurs

with immediate-early-early kinetics, and viral interference with NF-.kappa.B signaling is likely to be at least

partially responsible for the lack of CCR7 expression. DCs which migrate

from the infected cultures are HCMV antigen neg., and consequently they do

not stimulate HCMV-specific CD8+ T cells, while CD4+-T-cell activation is

not impaired. Although CD8+ T cells can also be activated by alternative  $\ \ \,$ 

antigen presentation mechanisms, the spatial segregation of naive  ${\tt T}$  cells

and infected DCs seems a potent mechanism of delaying the generation of

primary CD8+-T-cell responses and aiding early viral spread. OSC.G 20 THERE ARE 20 CAPLUS RECORDS THAT CITE THIS RECORD (20 CITINGS)

RE.CNT 38 THERE ARE 38 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 4 OF 11 BIOSIS COPYRIGHT (c) 2010 The Thomson Corporation on STN

DUPLICATE 3

AN 2004:405713 BIOSIS

DN PREV200400408862

 ${\tt TI}$  A stroma-derived defect in NF-kappaB2-/- mice causes impaired lymph node

development and lymphocyte recruitment.

AU Carragher, Damian; Johal, Ramneek; Button, Adele; White, Andrea; Eliopoulos, Aristides; Jenkinson, Eric; Anderson, Graham; Caamano, Jorge

[Reprint Author]

CS Sch MedMRCCtr Immune Regulat, Univ Birmingham, Birmingham, W Midlands, B15

2TT, UK

J.Caamano@bham.ac.uk

SO Journal of Immunology, (August 15 2004) Vol. 173, No. 4, pp. 2271-2279. print. ISSN: 0022-1767 (ISSN print).

DT Article

LA English

ED Entered STN: 20 Oct 2004
Last Updated on STN: 20 Oct 2004

AB The NF-kappaB family of transcription factors is vital to all aspects of

immune function and regulation in both the hemopoietic and stromal

compartments of immune environments. Recent studies of mouse  $\mathsf{models}$ 

deficient for specific members of the NF-kappaB family have revealed

critical roles for these proteins in the process of secondary lymphoid

tissue organogenesis. In this study, we investigate the role of NF-kappaB

family member NF-kappaB2 in lymph node development and lymphocyte recruitment. Inguinal lymph nodes in nfkappab2-/- mice are reduced in

size and cellularity, most notably in the B cell compartment. Using in

vitro and in vivo lymph node grafting assays, we show that the defect

resides in the stromal compartment. Further examination of the nfkappab2-/- inguinal lymph nodes revealed that expression of peripheral

node addressin components CD34 and glycosylation-dependent cell adhesion

molecule-1 along with the high endothelial venule-restricted sulfoltransferase HEC-GlcNAc6ST was markedly reduced. Furthermore,

expression of the lymphocyte homing chemokines CCL19, CCL21, and CXCL13 was down-regulated. These data highlight the role of NF-kappaB2 in inguinal lymph node organogenesis and recruitment of

lymphocytes to these organs due to its role in up-regulation of essential

cell adhesion molecules and chemokines, while suggesting a potential role

for NF-kappaB2 in organization of lymph node endothelium.

L15 ANSWER 5 OF 11 CAPLUS COPYRIGHT 2010 ACS on STN

AN 2004:373928 CAPLUS

DN 141:86767

TI Transcriptional profiling reveals suppressed erythropoiesis, up-regulated

glycolysis, and interferon-associated responses in murine malaria AU Sexton, Adrienne C.; Good, Robert T.; Hansen, Diana S.; D'Ombrain, Marthe

C.; Buckingham, Lynn; Simpson, Ken; Schofield, Louis CS The Walter and Eliza Hall Institute of Medical Research, Parkville,

Australia

SO Journal of Infectious Diseases (2004), 189(7), 1245-1256 CODEN: JIDIAQ; ISSN: 0022-1899

PB University of Chicago Press

DT Journal

LA English

AB The primary pathophysiol. events contributing to fatal malaria are the

cerebral syndrome, anemia, and lactic acidosis. The mol. basis of each

event was unclear. In the present study, microarray anal. of murine

transcriptional responses during the development of severe disease

revealed temporal, organ-specific, and pathway-specific patterns. More

than 400 genes in the brain and 600 genes in the spleen displayed transcriptional changes. Dominant patterns revealed strongly suppressed

erythropoiesis, starting early during infection, and highly up-regulated

transcription of genes that control host glycolysis, including lactate

dehydrogenase. The latter presents a mechanism that may contribute to

metabolic acidosis. No evidence for hypoxia-mediated regulation of these

events was observed Interferon-regulated gene transcripts dominated the

inflammatory response to cytokines. These results demonstrate previously

unknown transcriptional changes in the host that may underlie the development of malarial syndromes, such as anemia and metabolic dysregulation, and increase the utility of murine models in investigation

of basic malarial pathogenesis.

OSC.G 42 THERE ARE 42 CAPLUS RECORDS THAT CITE THIS RECORD (42 CITINGS)

RE.CNT 35 THERE ARE 35 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 6 OF 11 CAPLUS COPYRIGHT 2010 ACS on STN

AN 2004:308816 CAPLUS

DN 140:301754

TI Injury-induced NF-.kappa.B activation in the hippocampus: implications for neuronal survival

AU Kassed, Cheryl A.; Butler, Tanya L.; Patton, Geoffrey W.; De Mesquita,

Dirson D.; Navidomskis, Matthew T.; Memet, Sylvie; Israeel, Alain;

Pennypacker, Keith R.

CS Dep. of Pharmacol. and Therapeutics, Univ. of South Florida, Tampa, FL,

33612, USA

SO FASEB Journal (2004), 18(6), 723-724, 10.1096/fj.03-0773fje CODEN: FAJOEC; ISSN: 0892-6638

PB Federation of American Societies for Experimental Biology

DT Journal

LA English

AB Nuclear factor (NF)-.kappa.B p50 protein is involved in promoting survival in hippocampal neurons after trimethyltin

(TMT)-injury. In the current study, hippocampal NF-.

kappa.B activity was examined and quantitated from

transgenic  $\kappa \text{B-lacZ}$  reporter mice after chemical-induced injury.

NF-.kappa.B activity was localized primarily

to hippocampal neurons and significantly elevated over that in saline-treated mice between 4 and 21 days after TMT injection. Seven days

after TMT injection, a time-point of elevated NF-.kappa

.B activity, gene expression in the hippocampus was studied by microarray anal. through comparison of expression profiles between treated

nontransgenic and p50-null mice with their saline-injected controls.

Seventeen genes increased in nontransgenic TMT-treated mice relative to

saline-treated as well as showing no increase in p50-null mice, indicating

a role for p50 in their regulation. One of these genes, the Na+,K+-ATPase- $\gamma$  subunit, was detected in brain for the first time.

Several of the genes modulated by NF-.kappa.B

are potentially related to neuroplasticity, providing addnl. evidence that

this transcription factor is a neuroprotective signal in the hippocampus.

OSC.G 24 THERE ARE 24 CAPLUS RECORDS THAT CITE THIS RECORD (24 CITINGS)

RE.CNT 120 THERE ARE 120 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 7 OF 11 BIOSIS COPYRIGHT (c) 2010 The Thomson Corporation on STN

DUPLICATE 4

AN 2004:389553 BIOSIS

DN PREV200400388523

TI Chemokine receptor CCR7 induces intracellular signaling that inhibits

apoptosis of mature dendritic cells.

AU Sanchez-Sanchez, Noelia; Riol-Blanco, Lorena; de la Rosa, Gonzalo;

Puig-Kroger, Amaya; Garcia-Bordas, Julio; Martin, Daniel; Longo, Natividad; Cuadrado, Antonio; Cabanas, Carlos; Corbi, Angel L.; Sanchez-Mateos, Paloma; Rodriguez-Fernandez, Jose Luis [Reprint nor]

- CS Ctr Invest Biol, CSIC, C Ramiro de Maeztu 9, Madrid, 28040, Spain rodrifer@cib.csic.es
- SO Blood, (August 1 2004) Vol. 104, No. 3, pp. 619-625. print. CODEN: BLOOAW. ISSN: 0006-4971.
- DT Article
- LA English
- ED Entered STN: 6 Oct 2004

  Last Updated on STN: 6 Oct 2004

AB Acquisition of CCR7 expression is an important phenotype change during

dendritic. cell (DC) maturation that endows these cells with the capability to migrate to lymph nodes. We have analyzed the possible role

of CCR7 on the regulation of the survival of DCs. Stimulation with CCR7

ligands CCL19 and CCL21 inhibits apoptotic hallmarks of serum-deprived DCs, including membrane phosphatidylserine exposure, loss

of mitochondria membrane potential, increased membrane blebs, and nuclear

changes. Both chemokines induced a rapid activation of phosphatidylinositol 3'-kinase/Akt1 (PI3K/Akt1), with a prolonged and

persistent activation of Aktl. Interference with PI3K, Gi, or G protein

betagamma subunits abrogated the effects of the chemokines on Akt1

activation and on survival. In contrast, inhibition of extracellular

signal-related kinase 1/2 (Erk1/2), p38, or c-Jun N-terminal kinase (JNK)

was ineffective. Nuclear factor-kappaB (NFkappaB) was involved in the

antiapoptotic effects of chemokines because inhibition of NFkappaB blunted

the effects of CCL19 and CCL21 on survival. Furthermore, chemokines induced down-regulation of the NFkappaB inhibitor IkappaB, an

increase of NFkappaB DNA-binding capability, and translocation of the  $\,$ 

NFkappaB subunit p65 to the nucleus. In summary, in addition to its

well-established role in chemotaxis, we show that CCR7 also induces  $\ensuremath{\mathsf{CCR7}}$ 

antiapoptotic signaling in mature DCs.

L15 ANSWER 8 OF 11 CAPLUS COPYRIGHT 2010 ACS on STN DUPLICATE 5

AN 2003:911958 CAPLUS

DN 140:40609

TI Differential regulation of CCL21 in lymphoid/nonlymphoid tissues for effectively attracting T cells to peripheral tissues

AU Lo, James C.; Chin, Robert K.; Lee, Youjin; Kang, Hyung-sik; Wang, Yang;

Weinstock, Joel V.; Banks, Theresa; Ware, Carl F.; Franzoso, Guido; Fu,

Yang-xin

- CS Committee on Immunology, University of Chicago, Chicago, IL, USA
- SO Journal of Clinical Investigation (2003), 112(10), 1495-1505 CODEN: JCINAO; ISSN: 0021-9738
- PB American Society for Clinical Investigation

DT Journal

LA English

AB CC chemokine ligand 21 (CCL21)/secondary lymphoid chemokine (SLC), a ligand for CC chemokine receptor 7 (CCR7), has been demonstrated

to play a vital role in the homing and localization of immune cells to  $% \left( \frac{1}{2}\right) =\frac{1}{2}\left( \frac{1}{2}\right) =\frac{1}$ 

lymphoid tissues, but its role in nonlymphoid tissues largely remains

undefined. Here, we provide evidence that CCL21 in lymphoid and nonlymphoid tissues is differentially regulated by lymphotoxin-dependent

(LT-dependent) and -independent mechanisms, resp. This differential

regulation is due to the selective regulation of the CCL21
-Ser/CCL21a but not the CCL21-Leu/CCL21b gene by the LT and noncanonical NF-.kappa.B pathways. This alternate pathway, not dependent on LT or lymphocytes, leading to constitutive expression of CCL21 in nonlymphoid tissues, is critical for the initial recruitment of T lymphocytes to peripheral effector

sites. CCL21 expression is subsequently further enhanced in a LT-dependent fashion following airway challenge, potentially facilitating

a pos. feedback loop to attract addnl. CCR7+ effector cells. These  $\,$ 

findings establish an essential role for CCL21 in the recruitment of effector T cells to peripheral tissues and suggest that

LT-dependent and -independent regulation of CCL21 plays a role in balancing the central and peripheral immune responses between lymphoid

and nonlymphoid tissues.

OSC.G 38 THERE ARE 38 CAPLUS RECORDS THAT CITE THIS RECORD (38 CITINGS)

RE.CNT 46 THERE ARE 46 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 9 OF 11 CAPLUS COPYRIGHT 2010 ACS on STN

AN 2003:854656 CAPLUS

DN 140:58113

TI The chemokine CCL21 modulates lymphocyte recruitment and fibrosis in chronic hepatitis C

AU Bonacchi, Andrea; Petrai, Ilaria; De Franco, Raffaella M. S.; Lazzeri,

Elena; Annunziato, Francesco; Efsen, Eva; Cosmi, Lorenzo; Romagnani,

Paola; Milani, Stefano; Failli, Paola; Batignani, Giacomo; Liotta,

Francesco; Laffi, Giacomo; Pinzani, Massimo; Gentilini, Paolo; Marra,

Fabio

CS Dipartimento di Medicina Interna, University of Florence, Florence, Italy

SO Gastroenterology (2003), 125(4), 1060-1076 CODEN: GASTAB; ISSN: 0016-5085

PB W. B. Saunders Co.

DT Journal

LA English

AB The chemokines CCL19 and CCL21 bind CCR7, which is involved in the organization of secondary lymphoid tissue and is expressed during

chronic tissue inflammation. The authors investigated the expression of

CCL21 and CCR7 in chronic hepatitis C. The effects of CCL21 on hepatic stellate cells (HSCs) were also studied. Expression of CCL21 was assessed by in situ hybridization and immunohistochem. CCR7 on T cells was analyzed by flow cytometry. Cultured human HSCs were studied in their activated phenotype.

In

patients with chronic hepatitis C, expression of CCL21 and CCR7 was up-regulated. CCL21 was detected in the portal tracts and around inflammatory lymphoid follicles, in proximity to T lymphocytes and

dendritic cells, which contributed to expression of this chemokine.

Expression of CCR7 was also increased in patients with primary biliary

cirrhosis. Intrahepatic CD8+ T lymphocytes isolated from patients with

chronic hepatitis  ${\tt C}$  had a higher percentage of positivity for  ${\tt CCR7}$  than

those from healthy controls, and the expression of CCR7 was associated with  $\,$ 

that of CXCR3. Cultured  ${\tt HSCs}$  expressed functional CCR7, the activation of

which stimulated cell migration and accelerated wound healing in an in

vitro model. Exposure of HSCs to CCL21 triggered several signaling pathways, including extracellular signal-regulated kinase, Akt,

and nuclear factor  $\kappa B$ , resulting in induction of proinflammatory genes. Thus, expression of CCL21 during chronic hepatitis C is implicated in the recruitment of T lymphocytes and the organization of

inflammatory lymphoid tissue and may promote fibrogenesis in the inflamed

areas via activation of CCR7 on HSCs.

OSC.G 41 THERE ARE 41 CAPLUS RECORDS THAT CITE THIS RECORD (41 CITINGS)

RE.CNT 44 THERE ARE 44 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

L15 ANSWER 10 OF 11 BIOSIS COPYRIGHT (c) 2010 The Thomson Corporation on

STN DUPLICATE 6

- AN 2002:614600 BIOSIS
- DN PREV200200614600
- TI Long-lived immature dendritic cells mediated by TRANCE-RANK interaction.
- AU Cremer, Isabelle; Dieu-Nosjean, Marie-Caroline; Marechal, Sylvie; Dezutter-Dambuyant, Colette; Goddard, Sarah; Adams, David; Winter.
- Nathalie; Menetrier-Caux, Christine; Sautes-Fridman, Catherine; Fridman,
  - Wolf H.; Mueller, Chris G. F. [Reprint author]
- CS Centre de Recherches Biomedicales des Cordeliers, INSERM U255, 15 Rue de
  - l'Ecole de Medecine, Paris Cedex 6, 75270, France chmuller@infobiogen.fr
- SO Blood, (November 15, 2002) Vol. 100, No. 10, pp. 3646-3655. print.

  CODEN: BLOOAW. ISSN: 0006-4971.
- DT Article
- LA English
- ED Entered STN: 4 Dec 2002 Last Updated on STN: 4 Dec 2002
- AB Immature dendritic cells (DCs) reside in interstitial tissues (int-DC) or
- in the epidermis, where they capture antigen and, thereafter, mature and
- migrate to draining lymph nodes (LNs), where they present processed
- antigen to T cells. We have identified int-DCs that express both  $\ensuremath{\mathsf{TRANCE}}$
- (tumor necrosis factor-related activation-induced cytokine) and  $\ensuremath{\mathsf{RANK}}$
- (receptor activator of NF-kappaB) and have generated these cells from  $% \left( 1\right) =\left( 1\right) \left( 1\right) +\left( 1\right) \left( 1\right) \left( 1\right) +\left( 1\right) \left( 1\right) \left($
- CD34+ human progenitor cells using macrophage colony-stimulating factor
- (M-CSF). These CD34+-derived int-DCs, which are related to macrophages,
- are long-lived, but addition of soluble RANK leads to significant reduction of cell viability and Bcl-2 expression. This suggests that
- constitutive TRANCE-RANK interaction is responsible for CD34+-derived
- int-DC longevity. Conversely, CD1a+ DCs express only RANK and are
- short-lived. However, they can be rescued from cell death either by
- recombinant soluble TRANCE or by CD34+-derived int-DCs. CD34+-derived  $\,$
- int-DCs mature in response to lipopolysaccharide (LPS) plus CD40 ligand
  - (L) and become capable of CCL21/CCL19-mediated chemotaxis and

naive T-cell activation. Upon maturation, they lose TRANCE, making them,

like CD1a+ DCs, dependent on exogenous TRANCE for survival. These  $\,$ 

findings provide evidence that  $\ensuremath{\mathsf{TRANCE}}$  and  $\ensuremath{\mathsf{RANK}}$  play important roles in the

homeostasis of DCs.

L15 ANSWER 11 OF 11 CAPLUS COPYRIGHT 2010 ACS on STN DUPLICATE 7

AN 2002:858817 CAPLUS

DN 137:336538

TI CCL9/MIP-1 $\gamma$  and its receptor CCR1 are the major chemokine ligand/receptor species expressed by osteoclasts

AU Lean, Jenny M.; Murphy, Chiho; Fuller, Karen; Chambers, Timothy J.

CS Department of Cellular Pathology, St. George's Hospital Medical School,

London, SW17 ORE, UK

SO Journal of Cellular Biochemistry (2002), 87(4), 386-393 CODEN: JCEBD5; ISSN: 0730-2312

PB Wiley-Liss, Inc.

DT Journal

LA English

AB Although much has been learned recently of the mechanisms by which the

differentiation of osteoclasts is induced, less is known of the factors

that regulate their migration and localization, and their interactions

with other bone cells. In related cell types, chemokines play a major  $% \left( 1\right) =\left( 1\right) +\left( 1$ 

role in these processes. The authors therefore systematically tested the

expression of RNA for chemokines and their receptors by osteoclasts.

Because bone is the natural substrate for osteoclasts and may influence

osteoclast behavior, the authors also tested expression on bone slices.

Quant. RT-PCR using real-time anal. with SYBR Green was therefore performed on RNA isolated from bone marrow cells after incubation with

macrophage-colony stimulating factor (M-CSF) with/without receptor-activator of NF.kappa.B ligand

(RANKL), on plastic or bone. The authors found that RANKL induced

expression of CCL9/MIP-1 $\gamma$  to levels comparable to that of tartrate-resistant acid phosphatase (TRAP), a major specialized product of

osteoclasts. CCL22/MDC, CXCL13/BLC/BCA-1, and CCL25/TECK were also induced. The dominant chemokine receptor expressed by osteoclasts

was CCR1, followed by CCR3 and CX3CR1. Several receptors expressed on  $\,$ 

macrophages and associated with inflammatory responses, including CCR2 and

CCR5, were down-regulated by RANKL. CCL9, which acts through CCR1,

stimulated cytoplasmic motility and polarization in osteoclasts, identical

to that previously observed in response to CCL3/MIP-1 $\alpha$ , which also acts

through CCR1 and is chemotactic for osteoclasts. These results identify  $% \left( 1\right) =\left( 1\right) +\left( 1\right) +\left($ 

 $\tt CCL9$  and its receptor CCR1 as the major chemokine and receptor species

expressed by osteoclasts, and suggest a crucial role for CCL9 in the

regulation of bone resorption.

OSC.G 52 THERE ARE 52 CAPLUS RECORDS THAT CITE THIS RECORD (52 CITINGS)

RE.CNT 28 THERE ARE 28 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

=> FIL STNGUIDE

| COST IN U.S. DOLLARS                       | SINCE FILE | TOTAL   |
|--------------------------------------------|------------|---------|
|                                            | ENTRY      | SESSION |
| FULL ESTIMATED COST                        | 39.80      | 214.83  |
|                                            |            |         |
| DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS) | SINCE FILE | TOTAL   |
| ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~    | ENTRY      | SESSION |
| CA SUBSCRIBER PRICE                        | -6.80      | 323231  |
| -21 25                                     | 0.00       |         |

FILE 'STNGUIDE' ENTERED AT 12:41:55 ON 20 APR 2010 USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT COPYRIGHT (C) 2010 AMERICAN CHEMICAL SOCIETY (ACS)

FILE CONTAINS CURRENT INFORMATION.
LAST RELOADED: Apr 16, 2010 (20100416/UP).

=>

---Logging off of STN---

=>

Executing the logoff script...

| COST IN U.S. DOLLARS                       | SINCE FILE | TOTAL   |
|--------------------------------------------|------------|---------|
|                                            | ENTRY      | SESSION |
| FULL ESTIMATED COST                        | 0.28       | 215.11  |
|                                            |            |         |
| DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS) | SINCE FILE | TOTAL   |
|                                            | ENTRY      | SESSION |
| CA SUBSCRIBER PRICE                        | 0.00       |         |
| -21.25                                     |            |         |

STN INTERNATIONAL LOGOFF AT 12:44:30 ON 20 APR 2010