Norma e seminorma ℓ^1

Sia X uno spazio topologico.

$$\ldots \xrightarrow{d_{n+2}} C_{n+1}(X) \xrightarrow{d_{n+1}} C_n(X) \xrightarrow{d_n} C_{n-1}(X) \xrightarrow{d_{n-1}} \ldots$$

Norma ℓ^1 su $C_n(X)$

$$\left\|\sum a_i s_i\right\|_1 = \sum |a_i| \in (0, +\infty)$$

Seminorma ℓ^1 su $H_n(X)$

$$\|\alpha\|_1 = \inf\{\|c\|_1 : c \in Z_n(X), [c] = \alpha\} \in [0, +\infty)$$

Classe fondamentale

Sia *M* una *n*-varietà chiusa orientata.

- $ightharpoonup H_n(M,\mathbb{Z})\simeq \mathbb{Z}.$
- ▶ L'orientazione fissa un generatore $[M]_{\mathbb{Z}} \in H_n(M, \mathbb{Z})$.
- ▶ Il cambio di coefficienti $C_{\bullet}(M, \mathbb{Z}) \to C_{\bullet}(M, \mathbb{R})$ induce

$$H_{\bullet}(M, \mathbb{Z}) \longrightarrow H_{\bullet}(M, \mathbb{R})$$

 $[M]_{\mathbb{Z}} \longmapsto [M]_{\mathbb{R}} = [M].$

Definizione

Sia M una n-varietà chiusa orientata, $[M] \in H_n(M)$ la sua classe fondamentale. Si chiama $volume\ simpliciale\ il\ numero\ reale$

$$||M|| = ||[M]||_1$$
.

- Non dipende dall'orientazione ⇒ è ben definito per varietà chiuse orientabili.
- Può essere nullo, anche se $[M] \neq 0$.

Principio di proporzionalità

Teorema

Sia M una varietà Riemanniana chiusa.

Allora il rapporto

$$\frac{\|M\|}{\operatorname{Vol}(M)}$$

dipende solo dal tipo di isometria del rivestimento universale di M.

Principio di proporzionalità

Lo dimostreremo con un'ipotesi aggiuntiva.

Teorema

Sia M una varietà Riemanniana chiusa con curvatura non positiva. Allora il rapporto

$$\frac{\|M\|}{\operatorname{Vol}(M)} = \frac{1}{\left\| \left[\operatorname{Vol}_{\widetilde{M}} \right]_{c}^{G} \right\|_{\infty}}$$

dipende solo dal tipo di isometria del rivestimento universale di M.

Applicazioni

Limitazione del grado

Proposizione

Siano M, N n-varietà chiuse orientate, $f: M \rightarrow N$ una funzione continua di grado d. Allora

$$|d| \cdot ||N|| \le ||M||$$
.

Corollario

Sia $f: M \to M$ di grado $d \ge 2$. Allora ||M|| = 0.

Applicazioni

Varietà euclidee

- L'*n*-toro $(S^1)^n$ ammette endomorfismi di grado arbitrariamente alto; di conseguenza, $||(S^1)^n|| = 0$.
- ▶ $(S^1)^n$ ammette una metrica piatta, con rivestimento universale isometrico a \mathbb{R}^n .
- Data una qualunque *n*-varietà chiusa euclidea *M*, vale

$$\frac{\|M\|}{\text{Vol}(M)} = \frac{\|(S^1)^n\|}{\text{Vol}((S^1)^n)} = 0$$

da cui ||M|| = 0.

Applicazioni Varietà iperboliche

Teorema

Sia M una n-varietà chiusa iperbolica. Allora

$$||M|| = \frac{\operatorname{Vol}(M)}{\operatorname{Va}}, > 0$$

dove v_n è il volume dell'n-simplesso ideale regolare in \mathbb{H}^n .

Applicazioni Varietà iperboliche

Corollario

Una varietà chiusa M non può ammettere contemporaneamente una metrica euclidea e una iperbolica.

Corollario

Se M, N sono varietà iperboliche e $f: M \rightarrow N$ una funzione continua, allora

$$|\deg(f)| \leq \frac{\|M\|}{\|N\|} = \frac{\operatorname{Vol}(M)}{\operatorname{Vol}(N)}.$$

principio di proporzionalità

Applicazioni

Superfici chiuse

Sia Σ_g la superficie chiusa orientabile di genere g.

- ▶ Per $g \le 1$ vale $\|\Sigma_g\| = 0$. \longrightarrow $\Sigma_0 = S^2$, $\Sigma_1 = S^1 \times S^1$;
- Per $g \ge 2$, Σ_g ammette una metrica iperbolica.

Applicazioni

Superfici chiuse

Sia Σ_g la superficie chiusa orientabile di genere g.

- ▶ Per $g \le 1$ vale $\|\Sigma_g\| = 0$. ← $\Sigma_0 = S^2$, $\Sigma_1 = S^1 \times S^1$;
- ▶ Per $g \ge 2$, $\|\Sigma_g\| = 4g 4$.
- ▶ Sia $f: \Sigma_{g_1} \to \Sigma_{g_2}$ con $g_1 \ge 1$, $g_2 \ge 2$. Allora

$$|\operatorname{\mathsf{deg}}(f)| \leq rac{g_1-1}{g_2-1} = rac{\chi(\Sigma_{g_1})}{\chi(\Sigma_{g_2})}.$$

Norma e seminorma ℓ^{∞}

Sia X uno spazio topologico.

$$\ldots \xleftarrow{\delta^{n+1}} C^{n+1}(X) \xleftarrow{\delta^n} C^n(X) \xleftarrow{\delta^{n-1}} C^{n-1}(X) \xleftarrow{\delta^{n-2}} \ldots$$

Norma ℓ^{∞} su $C^n(X)$

$$\|\varphi\|_{\infty} = \sup\{|\varphi(c)| : c \in C_n(X), \|c\|_1 \le 1\} \in (0, +\infty]$$

Seminorma ℓ^{∞} su $H^n(X)$

$$\|\beta\|_{\infty} = \inf\{\|\varphi\|_{\infty} : \varphi \in Z^n(X), [\varphi] = \beta\} \in [0, +\infty]$$

Il prodotto di Kronecker è l'applicazione bilineare ben definita

$$\langle -, - \rangle \colon H^n(X) \times H_n(X) \longrightarrow \mathbb{R}$$

 $([\varphi] , [z]) \longmapsto \varphi(z).$

Proposizione

Sia $\alpha \in H_n(X)$. Allora

$$\|\alpha\|_1 = \max\{\langle \beta, \alpha \rangle : \beta \in H^n(X), \|\beta\|_{\infty} \le 1\}.$$

Coclasse fondamentale

Sia M una n-varietà chiusa orientata, $[M] \in H_n(M)$ la sua classe fondamentale.

Esiste un'unica classe $[M]^* \in H^n(M)$ tale che

$$\langle [M]^*, [M] \rangle = 1.$$
 $H_n(M) \simeq \mathbb{R}$
 $H^n(M) \simeq \mathbb{R}$

Per dualità, vale

$$||M|| = ||[M]||_1 = \frac{1}{||[M]^*||_{\infty}}.$$

Coomologia Γ-invariante

- ➤ Sia *M* una *n*-varietà Riemanniana chiusa e orientata con curvatura non positiva.
- ▶ Sia $p: \widetilde{M} \to M$ il rivestimento universale.
- ▶ Sia $\Gamma = \pi_1(M)$ identificato con $\operatorname{Aut}(\widetilde{M}, p)$.< $\operatorname{Isom}^+(\widetilde{M})$

 Γ agisce sul complesso di cocatene $C^{\bullet}(\widetilde{M})$.

Proposizione

Il rivestimento p induce isomorfismi isometrici

$$p^{\bullet} : C^{\bullet}(M) \longrightarrow C^{\bullet}(\widetilde{M})^{\Gamma},$$

$$H^{\bullet}(p^{\bullet}) : H^{\bullet}(M) \longrightarrow H^{\bullet}(C^{\bullet}(\widetilde{M})^{\Gamma}).$$

Curvatura non negativa

Teorema (Cartan-Hadamard)

La mappa esponenziale

$$\exp_{x} \colon T_{x}\widetilde{M} \longrightarrow \widetilde{M}$$

è un diffeomorfismo

- $ightharpoonup \widetilde{M}$ è diffeomorfo a \mathbb{R}^n .
- Per ogni $x, y \in \widetilde{M}$ esiste un'unica geodetica che li collega.
- ► Le parametrizzazioni a velocità costante delle geodetiche dipendono in modo liscio dagli estremi.

Mappa di raddrizzamento

Il teorema di Cartan-Hadamard permette di definire il *simplesso* dritto di vertici $x_0, \ldots, x_k \in \widetilde{M}$.

- ▶ $k = 0 \rightsquigarrow [x_0]$ è lo 0-simplesso avente immagine x_0 .
- ▶ $k > 0 \rightsquigarrow [x_0, ..., x_k]$ è il "cono geodetico" di vertice x_k e base $[x_0, ..., x_{k-1}]$.

Cociclo volume

Per ogni *n*-simplesso $s: \Delta^n \to M$ definiamo

$$\mathsf{Vol}_M(s) = \int_{\mathsf{str}_n(s)} \omega_M.$$

- Stokes $Vol_M(d_{n+1}(s)) = 0$, dunque è un cociclo.
- ▶ Definisce una classe $[Vol_M] \in H^n(M)$ in coomologia.
- Vale $[Vol_M] = Vol(M) \cdot [M]^*$. $||M|| = \frac{1}{||[M]^*||_{\infty}} = \frac{Vol(M)}{||[Vol_M]||_{\infty}}$

$$C^{\bullet}(M) \xrightarrow{p^{\bullet}} C^{\bullet}(\widetilde{M})^{\Gamma}$$

$$C^{\bullet}(M) \xrightarrow{p^{\bullet}} C^{\bullet}(\widetilde{M})^{\Gamma}$$

$$H^{\bullet}(M) \stackrel{\simeq}{\longrightarrow} H^{\bullet}(C^{\bullet}(\widetilde{M})^{\Gamma})$$

$$C^{\bullet}(M) \xrightarrow{p^{\bullet}} C^{\bullet}(\widetilde{M})^{\Gamma}$$
 Vol_{M}

$$H^{\bullet}(M) \stackrel{\simeq}{\longrightarrow} H^{\bullet}(C^{\bullet}(\widetilde{M})^{\Gamma})$$

Cociclo volume

$$C^{ullet}(M) \xrightarrow{p^{ullet}} C^{ullet}(\widetilde{M})^{\Gamma}$$
 Vol_M

$$H^{\bullet}(M) \xrightarrow{\simeq} H^{\bullet}(C^{\bullet}(\widetilde{M})^{\Gamma})$$

 $[Vol_M]$

$$C^{\bullet}(M) \xrightarrow{\stackrel{p^{\bullet}}{\simeq}} C^{\bullet}(\widetilde{M})^{\Gamma}$$

$$Vol_{M} \longmapsto Vol_{\widetilde{M}}$$

$$H^{\bullet}(M) \xrightarrow{\simeq} H^{\bullet}(C^{\bullet}(\widetilde{M})^{\Gamma})$$

$$[Vol_{M}]$$

$$C^{\bullet}(M) \xrightarrow{p^{\bullet}} C^{\bullet}(\widetilde{M})^{\Gamma}$$

$$Vol_{M} \longmapsto Vol_{\widetilde{M}}$$

$$H^{\bullet}(M) \xrightarrow{\simeq} H^{\bullet}(C^{\bullet}(\widetilde{M})^{\Gamma})$$

$$[Vol_{M}]$$

$$Vol_{\widetilde{M}}(s) = \int_{str_{n}(s)} \omega_{\widetilde{M}}$$

$$C^{\bullet}(M) \xrightarrow{\overset{p^{\bullet}}{\simeq}} C^{\bullet}(\widetilde{M})^{\Gamma}$$

$$Vol_{M} \longmapsto Vol_{\widetilde{M}}$$

$$H^{\bullet}(M) \xrightarrow{\simeq} H^{\bullet}(C^{\bullet}(\widetilde{M})^{\Gamma})$$

$$[Vol_{M}] \longmapsto [Vol_{\widetilde{M}}]^{\Gamma}$$

$$Vol_{\widetilde{M}}(s) = \int_{str_{0}(s)} \omega_{\widetilde{M}}$$

$$C^{\bullet}(M) \xrightarrow{p^{\bullet}} C^{\bullet}(\widetilde{M})^{\Gamma}$$

$$Vol_{M} \longmapsto Vol_{\widetilde{M}}$$

$$H^{\bullet}(M) \xrightarrow{\simeq} H^{\bullet}(C^{\bullet}(\widetilde{M})^{\Gamma})$$

$$[Vol_{M}] \longmapsto [Vol_{\widetilde{M}}]^{\Gamma}$$

$$Vol_{\widetilde{M}}(s) = \int_{Str_{\alpha}(s)} \omega_{\widetilde{M}} \implies \grave{e} G-invariante$$

$$C^{\bullet}(M) \xrightarrow{\rho^{\bullet}} C^{\bullet}(\widetilde{M})^{\Gamma} \longleftrightarrow C^{\bullet}(\widetilde{M})^{G}$$

$$Vol_{M} \longmapsto Vol_{\widetilde{M}} \Longrightarrow Vol_{\widetilde{M}}$$

$$H^{\bullet}(M) \xrightarrow{\simeq} H^{\bullet}(C^{\bullet}(\widetilde{M})^{\Gamma})$$

$$[Vol_{M}] \longmapsto [Vol_{\widetilde{M}}]^{\Gamma}$$

$$Vol_{\widetilde{M}}(s) = \int_{str_{G}(s)} \omega_{\widetilde{M}} \Longrightarrow \grave{e} G\text{-invariante}$$

$$C^{\bullet}(M) \xrightarrow{\overset{p^{\bullet}}{\simeq}} C^{\bullet}(\widetilde{M})^{\Gamma} \longleftrightarrow C^{\bullet}(\widetilde{M})^{G}$$

$$Vol_{M} \longmapsto Vol_{\widetilde{M}} \Longrightarrow Vol_{\widetilde{M}}$$

$$H^{\bullet}(M) \xrightarrow{\simeq} H^{\bullet}(C^{\bullet}(\widetilde{M})^{\Gamma}) \longleftrightarrow H^{\bullet}(C^{\bullet}(\widetilde{M})^{G})$$

$$[Vol_{M}] \longmapsto [Vol_{\widetilde{M}}]^{\Gamma} \longleftrightarrow [Vol_{\widetilde{M}}]^{G}$$

$$Vol_{\widetilde{M}}(s) = \int_{str_{G}(s)} \omega_{\widetilde{M}} \Longrightarrow \grave{e} G\text{-invariante}$$

$$C^{\bullet}(M) \xrightarrow{p^{\bullet}} C^{\bullet}(\widetilde{M})^{\Gamma} \longleftrightarrow C^{\bullet}(\widetilde{M})^{G}$$

$$Vol_{M} \longmapsto Vol_{\widetilde{M}} \Longrightarrow Vol_{\widetilde{M}}$$

$$H^{\bullet}(M) \xrightarrow{\simeq} H^{\bullet}(C^{\bullet}(\widetilde{M})^{\Gamma}) \xleftarrow{?} H^{\bullet}(C^{\bullet}(\widetilde{M})^{G})$$

$$[Vol_{M}] \longmapsto [Vol_{\widetilde{M}}]^{\Gamma} \longleftarrow [Vol_{\widetilde{M}}]^{G}$$

$$C^{\bullet}(M) \xrightarrow{\stackrel{p^{\bullet}}{\simeq}} C^{\bullet}(\widetilde{M})^{\Gamma} \longleftrightarrow C^{\bullet}(\widetilde{M})^{G}$$

$$Vol_{M} \longmapsto Vol_{\widetilde{M}} \Longrightarrow Vol_{\widetilde{M}}$$

$$H^{\bullet}(M) \xrightarrow{\simeq} H^{\bullet}(C^{\bullet}(\widetilde{M})^{\Gamma}) \longleftrightarrow H^{\bullet}(C^{\bullet}(\widetilde{M})^{G})$$

$$[Vol_{M}] \longmapsto [Vol_{\widetilde{M}}]^{\Gamma} \longleftrightarrow [Vol_{\widetilde{M}}]^{G}$$

Coomologia continua

Sia $S_k(M) = \{\Delta^k \to M\}$ lo spazio dei k-simplessi singolari, munito della topologia compatta-aperta.

Definizione

Una cocatena $\varphi \in C^k(M)$ è *continua* se la restrizione

$$\varphi \colon S_k(M) \longrightarrow \mathbb{R}$$

è continua.

- ▶ Si definisce $C_c^k(M) = \{ \varphi \in C^k(M) : \varphi \text{ è continua} \}.$
- $ightharpoonup C_c^{\bullet}(M)$ è un sottocomplesso di $C^{\bullet}(M)$.
- ightharpoonup Si pone $H_c^{\bullet}(M) = H^{\bullet}(C_c^{\bullet}(M))$.

Coomologia continua

Proposizione

L'inclusione $C_c^{ullet}(M) \hookrightarrow C^{ullet}(M)$ induce un isomorfismo isometrico $H_c^{ullet}(M) \simeq H^{ullet}(M).$

Proposizione

L'inclusione $C_c^{\bullet}(\widetilde{M})^G \hookrightarrow C_c^{\bullet}(\widetilde{M})^\Gamma$ induce un'immersione isometrica

$$H^{\bullet}(C_c^{\bullet}(\widetilde{M})^G) \hookrightarrow H^{\bullet}(C_c^{\bullet}(\widetilde{M})^\Gamma).$$

Isomorfismi isometrici

 $C^{\bullet}(M)$ Vol_{M}

 $H^{\bullet}(M)$

 $[Vol_M]$

$$C^{\bullet}(M) \longleftrightarrow C_c^{\bullet}(M)$$

$$Vol_M = Vol_M$$

$$H^{\bullet}(M) \stackrel{\simeq}{\longleftarrow} H_c^{\bullet}(M)$$

$$[Vol_M] \longleftarrow [Vol_M]_c$$

$$C^{\bullet}(M) \longleftrightarrow C_{c}^{\bullet}(M) \xrightarrow{p^{\bullet}} C_{c}^{\bullet}(\widetilde{M})^{\Gamma}$$

$$Vol_{M} \Longrightarrow Vol_{M} \longmapsto Vol_{\widetilde{M}}$$

$$anche in H_{c}^{\bullet}$$

$$H^{\bullet}(M) \overset{\simeq}{\longleftarrow} H_{c}^{\bullet}(M) \xrightarrow{\simeq} H^{\bullet}(C_{c}^{\bullet}(\widetilde{M})^{\Gamma})$$

$$[Vol_{M}] \longleftrightarrow [Vol_{M}]_{c} \longmapsto [Vol_{\widetilde{M}}]_{c}^{\Gamma}$$

$$C^{\bullet}(M) \longleftrightarrow C_{c}^{\bullet}(M) \xrightarrow{p^{\bullet}} C_{c}^{\bullet}(\widetilde{M})^{\Gamma} \longleftrightarrow C_{c}^{\bullet}(\widetilde{M})^{G}$$
 $Vol_{M} = Vol_{\widetilde{M}} \longleftrightarrow Vol_{\widetilde{M}}$

$$H^{\bullet}(M) \stackrel{\simeq}{\longleftarrow} H^{\bullet}_{c}(M) \stackrel{\simeq}{\longrightarrow} H^{\bullet}(C_{c}^{\bullet}(\widetilde{M})^{\Gamma}) \longleftrightarrow H^{\bullet}(C_{c}^{\bullet}(\widetilde{M})^{G})$$

$$[Vol_{M}] \longleftarrow [Vol_{\widetilde{M}}]_{c}^{\Gamma} \longleftarrow [Vol_{\widetilde{M}}]_{c}^{G}$$

$$H^{\bullet}(M) \stackrel{\simeq}{\longleftarrow} H^{\bullet}_{c}(M) \stackrel{\cong}{\longrightarrow} H^{\bullet}(C^{\bullet}_{c}(\widetilde{M})^{\Gamma}) \longleftrightarrow H^{\bullet}(C^{\bullet}_{c}(\widetilde{M})^{G})$$

$$[\operatorname{Vol}_{M}] \longleftarrow [\operatorname{Vol}_{\widetilde{M}}]_{c}^{\Gamma} \longleftarrow [\operatorname{Vol}_{\widetilde{M}}]_{c}^{G}$$

$$H^{\bullet}(M) \stackrel{\simeq}{\longleftarrow} H^{\bullet}_{c}(M) \stackrel{\simeq}{\longrightarrow} H^{\bullet}(C^{\bullet}_{c}(\widetilde{M})^{\Gamma}) \longleftrightarrow H^{\bullet}(C^{\bullet}_{c}(\widetilde{M})^{G})$$

$$[\mathsf{Vol}_{M}] \longleftarrow [\mathsf{Vol}_{\widetilde{M}}]_{c}^{\Gamma} \longleftarrow [\mathsf{Vol}_{\widetilde{M}}]_{c}^{G}$$

Isomorfismi isometrici

$$H^{\bullet}(M) \stackrel{\simeq}{\longleftarrow} H^{\bullet}_{c}(M) \stackrel{\cong}{\longrightarrow} H^{\bullet}(C^{\bullet}_{c}(\widetilde{M})^{\Gamma}) \stackrel{\longleftarrow}{\longleftarrow} H^{\bullet}(C^{\bullet}_{c}(\widetilde{M})^{G})$$

$$[\operatorname{Vol}_{M}] \stackrel{\longleftarrow}{\longleftarrow} [\operatorname{Vol}_{\widetilde{M}}]^{\Gamma}_{c} \stackrel{\longleftarrow}{\longleftarrow} [\operatorname{Vol}_{\widetilde{M}}]^{G}_{c}$$

Possiamo infine calcolare:

Isomorfismi isometrici

$$H^{\bullet}(M) \stackrel{\simeq}{\longleftarrow} H^{\bullet}_{c}(M) \stackrel{\simeq}{\longrightarrow} H^{\bullet}(C^{\bullet}_{c}(\widetilde{M})^{\Gamma}) \stackrel{\longrightarrow}{\longleftarrow} H^{\bullet}(C^{\bullet}_{c}(\widetilde{M})^{G})$$

$$[\operatorname{Vol}_{M}] \longleftarrow [\operatorname{Vol}_{\widetilde{M}}]_{c}^{\Gamma} \longleftarrow [\operatorname{Vol}_{\widetilde{M}}]_{c}^{G}$$

Possiamo infine calcolare:

$$\|M\| = \frac{1}{\|[M]^*\|_{\infty}} = \frac{\operatorname{Vol}(M)}{\|[\operatorname{Vol}_M]\|_{\infty}}$$
dualità
$$[\operatorname{Vol}_M] = \operatorname{Vol}(M) \cdot [M]^*$$

Isomorfismi isometrici

$$H^{\bullet}(M) \stackrel{\simeq}{\longleftarrow} H^{\bullet}_{c}(M) \stackrel{\cong}{\longrightarrow} H^{\bullet}(C^{\bullet}_{c}(\widetilde{M})^{\Gamma}) \longleftarrow H^{\bullet}(C^{\bullet}_{c}(\widetilde{M})^{G})$$

$$[\operatorname{Vol}_{M}] \longleftarrow [\operatorname{Vol}_{\widetilde{M}}]_{c}^{\Gamma} \longleftarrow [\operatorname{Vol}_{\widetilde{M}}]_{c}^{G}$$

Possiamo infine calcolare:

$$\|M\| = \frac{1}{\|[M]^*\|_{\infty}} = \frac{\operatorname{Vol}(M)}{\|[\operatorname{Vol}_M]\|_{\infty}} = \frac{\operatorname{Vol}(M)}{\|[\operatorname{Vol}_{\widetilde{M}}]_c^G\|_{\infty}}.$$

Varietà iperboliche

Sia *M* una *n*-varietà iperbolica chiusa.

- ▶ Il rivestimento universale è $\widetilde{M} = \mathbb{H}^n$.
- $lackbr{\triangleright}$ Obiettivo: stimare $\|[\mathsf{Vol}_{\mathbb{H}^n}]_c^G\|_{\infty}$
- ▶ I simplessi dritti sono *geodetici*.

$$\operatorname{Vol}_{\mathbb{H}^n}(s) = \int_{\operatorname{str}_n(s)} \omega_{\mathbb{H}^n} \leq v_n$$

Teorema

Sia Δ un *n*-simplesso geodetico in \mathbb{H}^n . Allora

$$Vol(\Delta) \leq v_n$$

dove v_n è il volume del n-simplesso regolare ideale.

Varietà iperboliche

Teorema

Sia Δ un *n*-simplesso geodetico in \mathbb{H}^n . Allora

$$Vol(\Delta) \leq v_n$$

dove v_n è il volume del n-simplesso regolare ideale.

▶ Per ogni $x \in C_n(\mathbb{H}^n)$ vale

$$|\operatorname{Vol}_{\mathbb{H}^n}(c)| \le v_n \cdot ||c||_1 \implies ||\operatorname{Vol}_{\mathbb{H}^n}||_{\infty} \le v_n.$$

Allora

$$\|[\operatorname{Vol}_{\mathbb{H}^n}]_c^G\|_{\infty} \leq \|\operatorname{Vol}_{\mathbb{H}^n}\|_{\infty} \leq v_n.$$

$$\|M\| \geq \frac{\operatorname{Vol}(M)}{v_n}$$