INLÄMNINGSUPPGIFT 2

Yasir Riyadh Jabbar, KTH

Uppgift 1. Excel

$$p = 7, q = 1 \rightarrow klass = 53 + p + q = 61$$
 studenter

a) Tentamen består av 8 uppgifter. Varje uppgift ger max 4 poäng

Tabell 1: generera slumptal (0-4)

u1	u2	u3	u4	u5	u6	u7	u8	
1	1	0	3	0	1	1	4	
3	3	2	4	0	2	3	2	
1	4	2	0	3	0	3	3	
0	1	4	3	4	1	4	4	
1	4	1	4	2	3	4	3	
3	4	3	4	2	4	1	2	
1	3	1	0	0	0	1	4	
1	0	4	0	2	3	3	1	
0	2	2	0	2	4	2	2	

- b) Beräkna poängsumman för varje student. Beräkna därefter medelvärdet och standardavvikelsen för poängsumma i klassen. Bestäm själv vilken formel passar bäst: stickprovets standardavvikelse eller standardavvikelse för hela populationen.
- c) Använd Excel-kommandon för att bestämma betyg enligt ovanstående regler.

Tabell 2: fast nummer från tabell 1 (klipp och klistra endast värden)

u1	u2	u3	u4	u5	u6	u7	u8	Sum	Mean	SD (S)	SD (P)	Betyg	
1	3	4	3	2	0	1	2	16	15.65574	3.987001	3.954185	D	
0	3	0	2	4	3	1	3	16				D	
4	4	0	3	2	1	4	4	22				С	
3	0	0	4	0	4	2	1	14				E	
3	1	3	4	1	4	4	2	22				С	
3	2	0	0	3	1	1	2	12				E	
2	1	4	0	3	0	0	3	13				E	
1	4	2	1	3	1	4	3	19				D	
3	4	0	0	2	4	0	1	14				E	

Vi är normalt intresserade av att känna till standardavvikelse för hela populationen eftersom klassen innehåller alla värden vi är intresserade av.

Uppgift 2. Matlab

$$p=7$$
, $q=1$

$$f_{\xi}(x) = \begin{cases} k_1 11 \ x^2, & \textit{för} \quad 0 < x < 3 \\ 0 & \textit{för \"{o}vrigt} \end{cases} \qquad f_{\eta}(x) = \begin{cases} k_2 6x, & \textit{f\"{o}r} \quad 0 < x < 1 \\ k_2 6(2-x) & \textit{f\"{o}r} \quad 1 \leq x < 2 \\ 0 & \textit{f\"{o}r \"{o}vrigt} \end{cases}$$

	Krav	Metod	Resultat av Matlab
i)	Bestäm värdet på $k_{\scriptscriptstyle 1}$	$\int_0^3 f_{\xi}(x) \ dx = 1$	$k_1 = \frac{1}{99}$
ii)	Bestäm väntevärdet E (ξ)	$\mu = E(\xi) = \int_0^3 x f_{\xi}(x) dx$	$E\left(\xi\right)=\frac{9}{4}$
iii)	Bestäm variansen V (ξ)	$V(\xi) = \int_0^3 (x - \mu)^2 f_{\xi}(x) dx$	$V(\xi) = \frac{27}{80}$
iv)	Bestäm värdet på ${\it k}_{\it 2}$	$\int_0^2 f_\eta(x) \ dx = 1$	$k_2 = \frac{1}{6}$
v)	Bestäm väntevärdet E (η)	$\mu = E(\eta) = \int_0^2 x f_{\eta}(x) dx$	$E\left(\eta\right)=1$
vi)	Bestäm variansen V (η)	$V(\eta) = \int_0^2 (x - \mu)^2 f_{\eta}(x) dx$	$V(\eta) = \frac{1}{6}$
	Bestäm väntevärdet för 4 ξ +6 η	$= 4 E (\xi) + 6 E (\eta)$	= 15
vii)	Bestäm variansen för 4 ξ +6 η	$= 16 \text{ V } (\xi) + 36 \text{ V } (\eta)$	$=\frac{57}{5}$

Uppgift 3. Excel

$$q = 1 \rightarrow L = 50 + q = 51$$
 komponenter

- a) Bestäm m=medelvärdet av alla tal i listan L och därefter bestäm parameter $\lambda \approx \frac{1}{m}$.
- b) Beräkna sannolikheten att en komponent fungerar i mer än 1220 timmar.

$$F(x) = P(\xi \le x) = 1 - e^{-\lambda x}$$

$$P(\xi > 1220) = 1 - P(\xi \le 1220) = 1 - F(1220) = e^{-\lambda(1220)}$$

c) Bestäm sannolikheten att nedanstående system, som består av 9 sådana komponenter, fungerar i mer än 1220 timmar. (Vi menar att systemet fungerar om det finns minst en fungerande väg mellan A och B. Vi antar att de 9 komponenter fungerar oberoende av varandra.)

väg 1 fungerar med sannolikheten $v1 = P(k1 \cap k2 \cap k3) = P(k1).p(k2).p(k3) = p^3$

väg 2 fungerar med sannolikheten
$$v2 = P(k4 \cap k5) = P(k4).p(k5) = p^2$$

väg 3 fungerar med sannolikheten v3 = P(k6) = p

väg 4 fungerar med sannolikheten
$$v4 = P(k7 \cap k8) = P(k7).p(k8) = p^2$$

väg 5 fungerar med sannolikheten v5 = P(k9) = p

$$P(v1 \cup v2 \cup v3) = 1 - P(v1^c \cap v2^c \cap v3^c) = 1 - P(v1^c)P(v2^c)P(v3^c) = 1 - (1 - p^3)(1 - p^2)(1 - p)$$

$$P(v4 \cup v5) = 1 - P(v4^c \cap v5^c) = 1 - P(v4^c)P(v5^c) = 1 - (1 - p^2)(1 - p)$$

Sannolikheten att fungera mellan A och B = $P(v1 \cup v2 \cup v3) \cap P(v4 \cup v5) = P(v1 \cup v2 \cup v3).P(v4 \cup v5)$

=
$$[1 - (1 - p^3)(1 - p^2)(1 - p)].[1 - (1 - p^2)(1 - p)]$$

L (tim)	m	λ=1/m	$p=P(\xi>1220)$	P(väg fran A till B)
1238	1224.14	0.000817	0.369124878	0.21957324
1232				
1204				
1223				
1207				
1245				
1204				
1220				
1203				

Uppgift 4. Excel

- A) Den stokastiska variabeln X är N (63,10). Bestäm
- i) $P(X \le 68)$
- ii) P(X > 72)
- iii) P $(48 < X \le 65)$
- iv) talet c så att P $(X \le c) = 0.95$
- v) talet c så att P ($X \le c$) =0.90
- B) Den stokastiska variabeln Y är t-fördelad med 10 frihetsgrader. Bestäm talet c så att P (Y≤ c) =0.92

	Krav	Excel-funktion
A i)	$P(X \le 68)$	NORM.DIST(68,63,10, TRUE)
A ii)	P(X > 72) =1- $P(X \le 72)$	1 - NORM.DIST(72,63,10, TRUE)
A iii)	$P (48 < X \le 65)$ = $P (X \le 65) - P (X \le 48)$	NORM.DIST(65,63,10, TRUE) - NORM.DIST(48,63,10, TRUE)
A iv)	$P(X \le c) = 0.95$	NORM.INV (0.95,63,10)
A v)	$P(X \le c) = 0.90$	NORM.INV (0.90,63,10)
В	$P(Y \le c) = 0.92$	T.INV (0.92,10)

i) $P(X \leq 68)$	ii) P (X >72)	iii) P (48 <x 65)<="" th="" ≤=""><th>iv) P (X ≤ c)=0.95</th><th>v) P (X ≤ c)=0.90</th><th>$P (Y \le c) = 0.92$</th></x>	iv) P (X ≤ c)=0.95	v) P (X ≤ c)=0.90	$P (Y \le c) = 0.92$
0.69146246	0.18406013	0.512452508	79.44853627	75.81551566	1.517897992