2. Planární vedení

2.1 Základní typy vedení

mikropáskové (microstrip line)	
stíněné	
zavěšené (suspended)	umiorerumnuuummaaniirumum.
invertované (inverted)	zamuuuua <mark>n muun amerimiin</mark>
omezený substrát	
překryté (overlay)	
pohřbené (burried)	
páskový dielektrický vlnovod (strip dielectric waveguide)	
symetrické páskové	
koplanární 3 vodičové (coplanar waveguide)	
se zemní deskou	
koplanární 2 vodičové (coplanar strips)	
štěrbinové (slotline)	

U nehomogeních vedení se elektromagnetické pole šíří jako superpozice vln TE a TM, hybridní vlna HEM.

Na relativně nízkých kmitočtech (vlnová délka vzhledem k příčným rozměrům) aproximace pomocí TEM vlny.

2.2. Konektory používané pro MIO

Obvykle 50 Ω .

7 mm konektory

18 GHz

N (Navy)

APC 7 (Amphenol Precission Connector 7 mm)

průměry vnější/vnitřní vodič 7 / 3,04 mm

dielektrikum: vzduch

SMA (Sub-Miniature A)

26 GHz

průměry vnější/vnitřní vodič 4,05 / 1,35 mm

dielektrikum: teflon

3,5 mm konektory

36 GHz

2,92 mm konektory

40 GHz

2,4 mm konektory

50 GHz

1,85 mm konektory

65 GHz

Vedení propojující konektor (launcher) s planárním vedením

koaxiální

$$Z_{V} = \frac{60}{\sqrt{\varepsilon_{r}}} \ln \frac{R}{r}$$

- kruhový vodič

 $Z_{v} = \frac{60}{\sqrt{\varepsilon_{r}}}$ arg $\cosh\left(\frac{h}{2r}\right)$

- plochý pásek nad vodivou rovinou

nad vodivou rovinou

 Z_{V} možno určit pomocí vztahů pro mikropáskové vedení

2.3. Substráty

Výběr substrátu je ovlivněn mnoha vzájemně souvisejícími hledisky.

- kmitočtové pásmo
- použité konektory
- rozměry použitých součástek
- dostupná technologie
- cena
- relativní permitivita ε_r (její kmitočtová a teplotní závislost)
- ztrátový činitel tgδ (jeho změna s frekvencí a teplotou)
- tepelná vodivost
- homogenita
- použitelný teplotní rozsah
- rozměrová stabilita (teplotní během výroby obvodu, stárnutím, vlhkostí)
- odolnost vůči vodě a chemikáliím
- fyzikální a mechanické vlastnosti (pevnost, křehkost, pružnost, ohebnost, opracovatelnost)
- povrchová metalizace (Cu, Al, Au,...)
- dostupné rozměry (tlouštka, plocha)

Dostupných substrátů je značné množství. Existuje řada světových výrobců: Rogers, Arlon, Polyflon,..., viz Tab. 2.3.1 a příloha I.

Žádný substrát není nejlepší.

Výběr vhodného substrátu je základním kamenem návrhu každého planárního obvodu.

Základní parametry vybraných substrátů a kovových materiálů, [1], [3]. Tab. 2.3.1.

Materiál	ϵ_r	tgδ	teplotní roztažnost	teplotní vodivost	Emax
	10 GHz	10 GHz	[.10 ⁻⁷ /°C]	$[W/cm/^{\circ}C]$	[kV/cm]
Safir (monokrystal Al ₂ O ₃)	11,7	0,0001	80	0,25	4.10^3
Korund, Al ₂ O ₃ 99,5%	9,7	0,0002	67	0,29	4.10^3
Tavený k?emen, SiO ₂	3,8	0,0001			10.10^3
Polystyren	2,53	0,00047			280
Beryliová keram., BeO 99,5%	6,6	0,0001	60	1,68	
GaAs, $\rho = 10^7 \Omega$ cm	12,3	0,0016			350
$Si, \rho = 10^3 \Omega \text{ cm}$	11,7	0,0050	30-40	0,84	300
Arlon CuClad250 Type GX	2,5-2,6	0,0022			
Arlon DiClad 527	2,5	0,0019			> 45
Rogers 5870	2,35	0,0012			
Arlon CuClad 233	2,33	0,0012			
Arlon DiClad 870	2,33	0,0012			> 45
Rogers 5880	2,2	0,0009			
Arlon CuClad 217	2,17	0,0009			> 45
Arlon DiClad 880	2,2	0,0009			> 45
Rogers 6010	10,2	0,0023			
Arlon AR1000	10	0,0035			
Rogers TMM6	6	0,0018			
Teflon	2,1	0,0018	900	0,0025	500
Kuprextit (10 GHz)	4,2	0,01			
7059 Sklo (Alumino-Silikát)			45	0,0126	
7052 Sklo (Borosilikát)			46	0,0126	
0120 Sklo(Potaš Sodn.olov.)			89	0,084	
Měď			167	3,99	
Molybden			53	1,6	
Tungsten			54	1,68	
Zlato			142	2,98	
Hliník			236	2,52	
Stříbro			197	4,2	
Kovar			60	0,17	
1010 Ocel			135	0,5	

Tloušťky substrátů obvykle odvozeny od palcové míry. Tj. 0,008" (0,203 mm), 0,010" (0,254 mm), 0,020" (0,508 mm), 0,030" (0,762 mm), 0,060" (1,524 mm), ...
Další informace o substrátech jsou uvedeny v příloze I.

2.4. Technologie výroby MIO

Vodiče pro MIO

Vlastnost	Ag	Cu	Au	Al	Ni	Cr	Ta
M č rná vodivost σ.10 ⁻⁷ [S/m]	6,17	5,8	4,1	3,7	1,14	0,77	0,64
Hloubka vniku/10 GHz δ[μm]	0,641	0,661	0,786	0,825	1,491	1,814	1,989
Povrch. odp./10 GHz [mΩ/[]]	25,3	26,1	31	32,6	58,9	71,6	78,5

Tenkovrstvá technologie

- Výroba fotomatrice:

Zvětšená předloha s následným fotografickým zmenšením na film či skleněnou desku.

Přímé zhotovení v měřítku 1:1 pomocí generátoru obrazců.

- Kontrola povrchu substrátu a jeho čištění.
- Vakuové napaření tenké (10 30 nm) vrstvy adhezního kovu (Cr, Ta, Ti, Mb, Va) na keramický substrát. Vznikne chem. vazba, kov je oxidován ohřátým substrátem.
- Napaření tenké vrstvy vysoce vodivého kovu (Cu, Ag, Au, Al).
- Fotolitografické zamaskování substrátu v místech kde není požadována vodivá plocha. (Nanesení fotorezistu, expozice přes masku, vyvolání.)
- Galvanické zesílení odkrytých ploch na 3 až 5-ti násobek hloubky vniku (3 10 μm).
- Odstranění fotorezistu a odleptání tenké pouze napařené vrstvy.

Používají se kombinace kovů: Cr-Au, Cr-Cu-Au, Cr-Cu-Ni-Au, Ti-Pd-Au, Ti-Pt-Au.

Výhody: vysoká přesnost výroby (±5μm)

nízký útlum obvodu

Nevýhody: nákladné technologické vybavení

jedovaté chemikálie

Tlustovrstvá technologie

- Používá se sítotisku.
- Vytvoření potřebného motivu na sítu pomocí masky a fotorezistu.
- Pomocí sítotiskové techniky se na keramický substrát nanese do požadovaných míst vodivá pasta. (Au, Ag, Pa-Au, Ag-Pd, Pt-Au, Ag-Pd v práškové podobě smíchané se skleněným práškem a pojivem.)
- Vpalování pasty za vysoké teploty (až 800 $^{\circ}$ C) do substrátu.

Výhody: jednoduchost

jednoduché technologické vybavení

Nevýhody: nelze dosáhnout ostrého ohraničení okrajů (± 20 μm)

větší drsnost povrchu vodičů větší útlum na vyšších kmitočtech

Leptací technologie

Používají se většinou měkké substráty oboustraně plátované Al nebo Cu vrstvou.

- Výroba fotomatrice.

Zvětšená předloha s následným fotografickým zmenšením na film či skleněnou desku.

Přímé zhotovení v měřítku 1:1 pomocí fotoplotru.

- Nanesení fotorezistu na substrát a jeho sušení.
- Expozice přes masku ultrafialovým světlem.
- Vyvolání (v roztoku NaOH).
- Zakrytí opačné strany substrátu.
- Odleptání nežádoucích vodivých ploch (chlorid železitý)

Výhody: velmi levné technologické vybavení

použití levných měkkých substrátů

Nevýhody: dosažitelná přesnost max. ±0,05 mm

podleptávání okrajů a odleptání ostrých rohů

Součástky pro MIO

- planární, přímo vytvořené na substrátu
- diskrétní pouzdřené

levné, snadno kontaktovatelné

vlivem parazitních prvků pouzdra horší parametry na vyšších kmitočtech použití do cca 25 GHz (50 GHz)

- MMIO čipy obsahující jednotlivé součástky i celé obvody

vynikající vlastnosti vlivem minimálních parazitních prvků

vyžadují nákladnou technolodii montáže

použití do cca 100 GHz

- pouzdřené MMIO

jednoduchá technologie montáže a dobré parmetry málo ovlivněné parazitními

prvky pouzdra

vhdně navržené pouzdro se chová jako cca 50 Ω vedení

Kontaktování diskrétních součástek

- čipy - náročná technologie

lepení vodivými epoxidy

pájení v ochranné atmosféře

kuličková termokomprese

(ultrazvukové kontaktování)

- pouzdřené součástky - relativně jednoduchá technologie

montáž ručně nebo osazovacími automaty

pájení

2.5. Metody výpočtu Z_{ν} , λ_{g} , ϵ_{ef} , β , disperze

Přehled metod pro mikropáskové vedení, [2].

Kvazistatický přístup - předpoklad čistě TEM vlny

- konformní zobrazení
- metody: konečných diferencí
 - integrálních rovnic
 - variační

Disperzní modely založené na:

- vazbě mezi TEM a TMo videm povrchové vlny
- empirické výrazy
- vlnovodu částečně vyplněném dielektrikem
- planárním vlnovodu

Řešení vlnové rovnice

- otevřená struktura - metoda integrálních rovnic

- Galerkinova metoda

- uzavřená struktura - metoda konečných diferencí

- metoda integrálních rovnic

- Galerkinova metoda

Kvazistatický přístup vycházející z konformního zobrazení

Předpoklad kvazi TEM vlny.

Konformní zobrazení zachovává kapacitu.

Základní veličiny vedení určeny z kapacity resp. indukčnosti na jednotku délky vedení.

Vlnový odpor Z_{ν}

$$Z_{v} = \sqrt{\frac{L}{C}}; \qquad v_{f} = \frac{1}{\sqrt{LC}};$$

$$\Rightarrow Z_{v} = \frac{1}{v_{f}.C} = \frac{\sqrt{\epsilon_{ef}}}{c.C} = v_{f}.L = \frac{c}{\sqrt{\epsilon_{ef}}}.L \qquad (2.5.1)$$

kde $c = \frac{1}{\sqrt{\mu_0 \cdot \varepsilon_0}}$ je rychlost světla

Efektivní permitivita ϵ_{ef}

$$\varepsilon_{ef} = \frac{C}{C'} \tag{2.5.2}$$

kde C' - kapacita vedení na jednotku délky - kapacita vedení na jednotku délky na substrátu s $\epsilon_r = 1$ dále platí

$$Z_{V} = \frac{\sqrt{\varepsilon_{ef}}}{c.C} = \frac{1}{c.\sqrt{C.C'}} = \frac{\sqrt{\varepsilon_{ef}}.\sqrt{\varepsilon_{0}.\mu_{0}}}{C} = \frac{\sqrt{\varepsilon_{ef}}.\varepsilon_{0}.120.\pi}{C}$$
(2.5.3)

neboť $\sqrt{\frac{\mu_0}{\epsilon_0}} = 120.\pi = Z_0$ (charakteristická impedance volného prostoru)

Určení kapacity C

Obr. 2.5.1. Určení kapacity konformním zobrazením.

Vztah (2.5.3) lze pak upravit na

$$Z_{V} = \frac{120.\pi}{\sqrt{\varepsilon_{ef}}} \cdot \frac{h}{w_f} \tag{2.5.5}$$

Vlnová délka λ_g

$$\lambda_g = \frac{c}{f \cdot \sqrt{\epsilon_{ef}}} = \frac{\lambda_0}{\sqrt{\epsilon_{ef}}}$$
 (2.5.6)

Fázová konstanta α

$$\alpha = \frac{2\pi}{\lambda_g} \tag{2.5.7}$$

Konstanta útlumu ß

- konečná vodivost vodičů příčiny

 $\sigma_c \neq \infty$ $\operatorname{tg} \delta = \frac{\sigma_d}{\omega \varepsilon} \neq 0$ - ztrátové dielektrikum

vyzařování

U reálných vedení $\sigma_c \sim 10^7 \, \text{S/m}; \ \text{tg} \delta \sim 10^{-3} \div 10^{-4} \Rightarrow \ \text{malý útlum}.$ Jednotlivé příspěvky k útlumu lze stanovit samostatně.

$$\beta = \beta_c + \beta_d \tag{2.5.8}$$

 β_c - útlum způsobený ztrátami ve vodičích, β_d - útlum způsobený ztrátami v dielektriku.

Určení β_c

Základní myšlenka:

Při výrazném skinefektu, tj. rozměrech vodičů a poloměrech zakřivení větších než hloubka vniku $\delta = \sqrt{\frac{2}{\omega\mu\sigma_c}}$ lze β_c stanovit pomocí indukčnosti či kapacity na jednotku délky vedení.

Metodu navrhl Wheeler v [34].

Postup:

Bude ukázáno, že reálná složka charakteristické impedance vodiče (způsobující ztráty ve vodiči) je stejně veliká jako její imaginární složka. Pro výpočet ztrát lze tedy použít i imaginární složku této impedance. Imaginární složka bude vyjádřena pomocí vnitřní indukčnosti vodiče a tato pak pomocí vnější indukčnosti vedení určené prostřednictvím jeho vlnového odporu Z_{ν} , jehož odvození již bylo ukázáno.

Obr. 2.5.2

$$\Delta \mathbf{J} + k^2 \mathbf{J} = 0$$
, $k^2 = -j\omega\mu \cdot [\sigma_c + (j\omega\varepsilon \cong 0)]$

$$\frac{d^2 J_x}{dz^2} + k^2 J_x = 0$$

$$J_x = C_1 e^{-jkz} + C_2 e^{+jkz}, \quad J \to 0 \text{ pro } z \to \infty \Longrightarrow C_2 = 0$$

$$J_x = J_p \cdot e^{-jkz},$$

$$jk = j\sqrt{-j\omega\mu\sigma_c} = j\sqrt{\frac{\omega\mu\sigma_c}{2}} (1-j) = \sqrt{\frac{\omega\mu\sigma_c}{2}} \cdot (1+j) = \frac{1+j}{\delta}$$

$$I = \int_0^\infty J_x \cdot w \cdot dz = wJ_p \int_0^\infty e^{-jkz} dz = \frac{wJ_p}{1+j} \cdot \sqrt{\frac{2}{\omega\mu\sigma_c}}$$

$$U = E_p \cdot l = \frac{J_p}{\sigma_c} \cdot l$$

$$Z = \frac{U}{I} = \sqrt{\frac{\omega\mu}{2\sigma_c}} \cdot \frac{l}{w} \cdot (1+j) = Z_c \cdot \frac{l}{w} = (R_s + j\omega L_i) \cdot \frac{l}{w}$$
(2.5.9)

Z je vf. impedance kvádru o rozměrech l, w, ∞ , (Z_C je charakteristická impedance vodiče, $R_S = \sqrt{\frac{\omega \mu}{2\sigma_c}}$ je specifický vysokofrekvenční odpor vodiče s rozměrem [Ω na čtverec], L_i je vnitřní specifická indukčnost vodiče s rozměrem [A/m na čtverec]). Vzhledem k (2.5.9) tedy platí:

$$Re(Z_C) = Im(Z_C) \tag{2.5.10}$$

$$Im(Z_C) = \omega L_i \Rightarrow \omega L_i = \sqrt{\frac{\omega \mu}{2\sigma_C}}$$

tedy

$$L_i = \sqrt{\frac{\mu}{2\omega\sigma_c}} = \mu.\frac{\delta}{2} \tag{2.5.11}$$

 L_i lze interpretovat jako indukčnost čtvercové vrstvy o tlouštce $\frac{\delta}{2}$, ve které je konstantní

$$H_{y}(z) = H_{y}(0)$$
. (2.5.12)

Lze totiž ukázat, že nějaké vrstvě tlouštky $\frac{\delta}{2}$, ve které je konstantní rozložení intenzity magnetického pole podle (2.5.12) a l=w odpovídá právě taková indukčnost jakou udává vztah (2.5.11).

$$\oint_C \mathbf{H} y(z) \mathbf{dl} = I \Rightarrow H_y(0).w = I$$

Tedy

$$H_{y}(0) = \frac{I}{w} \tag{2.5.13}$$

Ve vrstvě s konstantním rozložením intenzity H_y při l = w platí:

 $\Phi = B.S = \mu.H_{\mathcal{Y}}(0).\frac{\delta}{2}.I = \mu.\frac{I}{w}.\frac{\delta}{2}.I = \mu.I.\frac{\delta}{2}$

Pro odpovídající indukčnost pak platí:

$$L_i = \frac{\Phi}{I} = \mu \cdot \frac{\delta}{2} \tag{2.5.14}$$

Tedy totéž co udává vztah (2.5.11). Vnitřní indukčnost vodiče danou vztahem (2.5.11) lze tedy nahradit indukčností vrstvy tlusté $\frac{\delta}{2}$ s konstantním rozložením.

$$H_{y} = H_{y}(0) (2.5.15)$$

Při výrazném skinefektu je δ podstatně menší než příčné rozměry vodičů. Bude-li se nadále uvažovat L_i jako celková vnitřní indukčnost vodiče lze ji vzhledem k (2.5.15) vyjádřit jako přírůstek vnější indukčnost vedení L_e vzniklý posunutím povrchu vodiče směrem do jeho vnitřku o poloviční hloubku vniku zvětšenou $\frac{\mu}{\mu_0}$ krát vzhledem k případnému $\mu_r \neq 1$ vodiče, tj. $z = \frac{\mu}{\mu_0} \cdot \frac{\delta}{2}$.

Vnitřní indukčnost vodiče lze tedy vyjádřit pomocí vnější indukčnosti vedení vztahem:

$$L_{i} = \frac{\mu}{\mu_{0}} \cdot \frac{\partial L_{e}}{\partial z} \cdot \frac{\delta}{2}$$
 (2.5.16)

Podle (2.5.1) a (2.5.3) platí:

$$Z_{v} = \frac{c}{\sqrt{\epsilon_{ef}}} L_{e} = \frac{1}{\sqrt{\mu_{0}\epsilon_{0}}} \cdot \frac{1}{\sqrt{\epsilon_{ef}}} L_{e} = \frac{1}{\mu_{0}} \frac{Z_{0}}{\sqrt{\epsilon_{ef}}} L_{e}, \qquad (2.5.17)$$

kde

$$\frac{Z_0}{\sqrt{\varepsilon_{ef}}} \tag{2.5.18}$$

je charakteristická impedance prostředí s relativní permitivitou ε_{ef} nezávislá na přičných rozměrech vedení. Pro L_i pak podle (2.5.16) a (2.5.17) platí:

$$L_{i} = \sqrt{\varepsilon_{ef}} \frac{\mu}{Z_{0}} \cdot \frac{\delta}{2} \cdot \frac{\partial Z_{v}}{\partial z}$$
 (2.5.19)

Derivaci $\frac{\partial Z_{\nu}}{\partial z}$ lze pro dvourozměrný průřez běžného vedení nahradit derivací podle normály k povrchu, tj. $\frac{\partial Z_{\nu}}{\partial n}$.

Střední hodnota výkonu P_z zmařeného na teplo v jednotkové délce vedení lze vyjádřit:

$$P_z = \frac{1}{2} \text{Re}(Z) \cdot |I|^2$$
 (2.5.20)

Vzhledem k (2.5.10), (2.5.11), (2.5.19) pak platí:

$$P_z = \frac{1}{2} \cdot \omega L_i \cdot |I|^2 = \frac{1}{2} \omega \mu \frac{\sqrt{\varepsilon_{ef}}}{Z_0} \cdot \frac{\delta}{2} \cdot \frac{\partial Z_v}{\partial n} \cdot |I|^2$$
 (2.5.21)

Konstantu útlumu vedení lze vyjádřit pomocí přenášeného výkonu P a zmařeného výkonu P_z :

$$\beta = \frac{1}{2} \frac{P_z}{P}$$
 [Np/m] (2.5.22)

kde $P = \frac{1}{2} Z_V |I|^2$ (2.5.23)

Pro β_C tedy platí:

$$\beta_{C} = \frac{1}{2} \cdot \frac{\omega \mu}{Z_{v}} \cdot \frac{\sqrt{\epsilon_{ef}}}{Z_{0}} \cdot \frac{\delta}{2} \cdot \frac{\partial Z_{v}}{\partial n}$$
 [Np/m] (2.5.24)

Určení β_d

Předpokládá se útlum shodný s útlumem rovinné vlny ve stejném dielektriku. Pro rovinnou vlnu platí:

$$\beta_d = \omega \cdot \sqrt{\frac{\mu \varepsilon}{2} \left[-1 + \sqrt{1 + \left(\frac{\sigma_d}{\omega \varepsilon}\right)^2} \right]}$$
 (2.5.25)

Pro nízkoztrátové substráty je tg $\delta = \frac{\sigma_d}{\omega \epsilon}$ malý a $\sqrt{1 + \left(\frac{\sigma_d}{\omega \epsilon}\right)^2} \cong 1 + \frac{(\text{tg}\delta)^2}{2}$

Konstantu útlumu β_d lze pak vyjádřit:

$$\beta_d = \frac{\omega}{2} \cdot \sqrt{\mu \epsilon} \cdot \text{tg}\delta$$
 [Np/m] (2.5.26)

resp.

$$\beta_d = 27, 3. \sqrt{\varepsilon_r}. \frac{\log \delta}{\lambda_0} = 27, 3. f. \sqrt{\mu \varepsilon}. \log \delta$$
 [dB/m] (2.5.27)

U planárních vedení s děleným dielektrikem vzduch-substrát pak nutno uvažovat $\epsilon_{\it ef}~$ místo ϵ a $tg\delta_{ef}$ místo $tg\delta$, jak bude dále zmíněno.

- přenášený výkon je omezený
 - elektrickou pevností dielektrika
 - max. povolenou teplotou dielektrika (problém u dielektrik s malou tepelnou vodivostí a malou max. povolenou teplotou)

2.6. Symetrické páskové vedení (Stripline Line, Tri-plate Line, Sandwich Line)

 $h, w < \lambda_g/2$ pro potlačení vyších vidů

dominantní vid TEM

Obr. 2.6.1.

Pole na vedení lze řešit

- Laplaceovou rovnicí
- konformním zobrazením
- pomocí výpočtu kapacity na okraji středního vodiče
- variační metodou

Vlnová délka λ_g

$$\lambda_g = \frac{c}{f\sqrt{\epsilon_r}} \tag{2.6.1}$$

Vlnový odpor Z_{ν} , [4]

Pomocí konformního zobrazení a aproximačních vztahů odvodil Wheeler [5] pro $t \neq 0$:

$$Z_{v} = \frac{30}{\sqrt{\varepsilon_{r}}} \cdot \ln \left\{ 1 + \frac{4}{\pi} \frac{(h-t)}{w_{ef}} \left[\frac{8(h-t)}{\pi w_{ef}} + \sqrt{\left(\frac{8(h-t)}{\pi w_{ef}}\right)^{2} + 6,27} \right] \right\}$$
(2.6.2)

kde w_{ef} je tzv. efektivní šířka pásku, pro kterou platí:

$$w_{ef} = w_S + \Delta w \tag{2.6.3}$$

 w_s je skutečná šířka pásku a Δw je korekce skutečné šířky pásku vzhledem k $t \neq 0$.

Pro Δw platí:

$$\Delta w = \frac{t}{\pi} \ln \frac{e}{\sqrt{\left(\frac{t}{2(h-t)+t}\right)^2 + \left(\frac{0.0796}{w_S/t+1.1}\right)^m}}$$
(2.6.4)

a

$$m = 6/\left(3 + \frac{2t}{(h-t)}\right)$$
 (2.6.5)

Vztahy jsou platné pro $w_{ef}/(h-t) < 10$ s chybou Z_v menší než 0,5 %.

Konstanta útlumu βc , [47]

Podle (2.5.24) lze odvodit pro útlum ztrátami ve vodičích:

Pro $w_s / (h - t) \le 0.35$

$$\beta_{C} = \frac{0.0114\sqrt{f}}{hZ_{v}} \left\{ 1 + \frac{h}{\Phi} \left[0.5 + 0.669 \frac{t}{w_{s}} - 0.225 \left(\frac{t}{w_{s}} \right)^{2} + \frac{1}{2\pi} \ln \left(\frac{4\pi w_{s}}{t} \right) \right] \right\} \cdot \sqrt{\frac{\sigma_{Cu}}{\sigma_{c}}}$$
(2.6.6)

$$\left[\, \mathsf{dB/m}, \mathsf{GHz}, \mathsf{m}^{-1}, \Omega^{-1} \,\right]$$

kde σ_{Cu} je specifická vodivost mědi a Φ je dáno vztahem:

$$\Phi = \frac{w_s}{2} \left\{ 1 + \frac{t}{w_s} \left[1 + \ln \frac{4\pi w_s}{t} + 0,51\pi \left(\frac{t}{w_s} \right)^2 \right] \right\}$$
 (2.6.7)

Pro $w_S / (h - t) \ge 0.35$

$$\beta_{c} = 2,02.10^{-6}.\epsilon_{r}.\sqrt{f}.\frac{Z_{v}}{h-t}\left[1 + \frac{2w_{s}}{h-t} + \frac{1}{\pi}.\frac{h+t}{h-t}.\ln\left(\frac{2h}{t} - 1\right)\right].\sqrt{\frac{\sigma_{Cu}}{\sigma_{c}}}$$
 (2.6.8)

$$[dB/m, GHz, m^{-1}, \Omega^{-1}]$$

Konstanta útlumu β_d

 β_d je dáno vztahem (2.5.26) resp. (2.5.27).

2.7. Mikropáskové vedení (Microstrip line)

Obr. 2.7.1. Mikropáskové vedení.

- 1. Nad horní plochou substru je v okolí mikropásku značné rozptylové pole.
- 2. Příčná nehomogennost vedení znemožňuje šíření TEM vlny, ani čisté TM a TE vlny. $E_z, H_z \neq 0$, hybridní vlna HEM.

Na nízkých kmitočtech kde jsou příčné rozměry mikropásku $<<\lambda g$ v dielektriku, je $E_z<< E_y$ a $H_z<< H_X$. Pole lze aproximovat vlnou kvazi TEM.

Určení w_f

Přesné konformní zobrazení vyřešil Schneider pomocí Schwarzova-Christofelova integrálu. Rozměry obrazu v rovině z_1 , viz obr. 2.5.1, jsou vyjádřeny pomocí úplných eliptických integrálů, Jacobiho eliptických funkcí a theta funkcí. To je pro technickou praxi nevhodné. Proto bylo přesné řešení aproximováno přibližnými vztahy předpokládajícími t=0. Např. Schneider, [6], uvádí:

$$w_{f} = \frac{2\pi h}{\ln\left(\frac{8h}{w} + \frac{w}{4h}\right)} \quad \text{pro } w/h \le 1$$

$$w_{f} = w + 2,42h - 0,44.\frac{h^{2}}{w} + h.\left(1 - \frac{h}{w}\right)^{6} \quad \text{pro } w/h \ge 1 \quad (2.7.1)$$

Chyba aproximace je max. 0,25% pro w/h < 10 a max. 1% pro w/h > 10.

Wheeler podle [7] udává:

$$w_f = \frac{2\pi h'}{\ln\left(\frac{8h'}{w}\right)}, \quad h' = h.\left(1 + \frac{w^2}{32h^2}\right) \quad \text{pro } w/h \le 1$$

$$w_f = w + \frac{2h}{\pi} \cdot \ln\left[17,08 \cdot \left(\frac{w}{2h} + 0,85\right)\right]$$
 pro $w/h \ge 1$ (2.7.2)

Vliv konečné tlouštky $t \neq 0$

Vliv nenulové tlouštky pokovení $t \neq 0$ lze postihnout zavedením efektivní šířky vodiče podle (2.6.3), tj.

$$w_{ef} = w_S + \Delta w \tag{2.7.3}$$

Pro korekci Δw uvádí např. Gupta, [4] vztahy:

$$\Delta w = 1, 25 \frac{t}{\pi} \left(1 + \ln \frac{2h}{t} \right) \qquad \text{pro } w/h \ge \frac{1}{2\pi}$$

$$\Delta w = 1, 25 \frac{t}{\pi} \left(1 + \ln \frac{4\pi w}{t} \right) \qquad \text{pro } w/h \le \frac{1}{2\pi} \quad (2.7.4)$$

Ve vztazích (2.7.1) a (2.7.2) je pak nutno místo w dosazovat w_{ef} . Další užitečné vztahy lze nalézt v [8].

Efektivní permitivita

Při konformním zobrazení se rozhraní vzduch dielektrikum rovině z viz obr. 2.5.1 přetransformuje do roviny z_1 a v dielektriku deskového kondenzátoru vytvoří vzduchovou "bublinu", která sníží hodnotu relativní permitivity z ε_r na ε_{ef} . Platí:

$$\frac{\varepsilon_r + 1}{2} \le \varepsilon_{ef} \le \varepsilon_r \tag{2.7.5 a}$$

Wheeler zavedl koeficient plnění q jako podíl plochy zaplněné dielektrikem a podíl celkové plochy příčného průřezu vedení v rovině z_1 , viz obr. 2.5.1. Pro ε_{ef} pak platí vztah:

$$\varepsilon_{ef} = \varepsilon_{r,q} + 1.(1 - q) = 1 + q.(\varepsilon_{r} - 1)$$
 (2.7.5 b)

Výpočet ε_{ef} s korekcí na tlouštku pokovení uvádí např.[2], [10], [11], viz též [9].

$$\varepsilon_{ef} = \frac{\varepsilon_{r}+1}{2} + \frac{\varepsilon_{r}-1}{2} \cdot \left[\frac{1}{\sqrt{1+12 \cdot \frac{h}{w}}} + 0,04 \cdot \left(1 - \frac{w}{h}\right)^{2} \right] - \frac{\varepsilon_{r}-1}{4,6} \cdot \frac{t/h}{\sqrt{w/h}} \quad \text{pro } w/h \le 1$$

$$\varepsilon_{ef} = \frac{\varepsilon_{r}+1}{2} + \frac{\varepsilon_{r}-1}{2} \cdot \frac{1}{\sqrt{1+12 \cdot \frac{h}{w}}} - \frac{\varepsilon_{r}-1}{4,6} \cdot \frac{t/h}{\sqrt{w/h}} \quad \text{pro } w/h \ge 1$$

$$(2.7.6)$$

Chyba je max. 1% pro t = 0.

Fázová rychlost v_f a délka vlny λg

Jsou dány vztahy (2.5.1) a (2.5.6).

Vlnový odpor

Je určen vztahem (2.5.5), tj.

$$Z_{\mathcal{V}} = \frac{120\pi}{\sqrt{\varepsilon_{ef}}} \cdot \frac{h}{w_f}$$
 ,

kde ε_{ef} a w_f je dáno vztahy (2.7.5) a (2.7.1) nebo (2.7.2).

Vliv tlouštky pokovení určený těmito vztahy je nevýznamný pro $t/h \le 0,005, \ 2 \le \varepsilon_r \le 10, w/h \ge 0, 1$, což dobře souhlasí s experimentálními výsledky podle [41].

Vyšší vidy

- vlnovodné vidy

Obr. 2.7.2. Mikropáskové vedení přetransformované konformním zobrazením.

Obdélníkový "vlnovod" se dvěma ideálními elektrickými a dvěma ideálními magnetickými stěnami.

$$\lambda_{m} = \frac{2\pi}{\sqrt{\left(\frac{m\pi}{w_{f}}\right)^{2} + \left(\frac{n\pi}{h}\right)^{2}}}$$
TE: $m = 1, 2, 3, ...$
 $n = 0, 1, 2, ...$

 $n = 1, 2, 3, \dots$

TM: m = 0, 1, 2, ...

Nejnižší vlnovodné vidy: $\lambda_m^{TM01} = 2h$, $\lambda_m^{TE10} = 2w_f$

$$f_{m}^{TE10} = \frac{c}{\sqrt{\epsilon_{ef}} \cdot \lambda_{m}^{TE10}} = \frac{1}{\sqrt{\epsilon_{0}\mu_{0}}} \cdot \frac{1}{\sqrt{\epsilon_{ef}} \cdot 2w_{f}} = \frac{1}{\sqrt{\epsilon_{0}\mu_{0}}} \cdot \frac{Z_{v}}{\sqrt{\frac{\mu_{0}}{\epsilon_{0}} \cdot 2h}} = \frac{Z_{v}}{2\mu_{0}h} (2.7.8)$$

Při použití vztahu (2.5.5).

Pásmo jednovidosti vidu kvazi-TEM: $f < f_m^{TE10} = \frac{Z_v}{2\mu_0 h}$, tj. praktický požadavek:

 $w < \lambda g/2 \tag{2.7.9}$

- povrchové vlny

Mohou se šířit podél rozhraní dielektrika a vzduchu. Nejnižší z těchto vln je vid TE_1 s mezním kmitočtem [7]:

$$f_{m}^{TE_{1}} = \frac{c}{4h\sqrt{\varepsilon_{r}-1}} \tag{2.7.10}$$

Pro vlnu kvazi-TEM tedy musí být: $f < f_{\it m}^{\it TE}_{\it 1}$

Disperze vidu kvazi-TEM

Přesným numerickým řešením vlnové rovnice pro vlnu HEM i experimentálně bylo zjištěno, že s rostoucím kmitočtem Z_V a zároveň i ε_{ef} mírně rostou. Aproximaci kvazi-TEM lze použít při zavedení kmitočtových korekcí do ε_{ef} , Z_V , resp. w_f .

Kmitočtová korekce efektivní permitivity.

Getsinger [12] odvodil poloempirický vztah pro kmitočtovou závislost efektivní permitivity:

$$\varepsilon_{eff}(f) = \varepsilon_r - \frac{\varepsilon_r - \varepsilon_{ef}(0)}{1 + G \cdot \left(\frac{f}{f_m^{TE10}}\right)^2}$$
 (2.7.11)

kde $\epsilon_{ef}(0)$ je efektivní permitivita na nízkých kmitočtech určená např. vztahem (2.7.6), f_{m}^{TE10} je dáno vztahem (2.7.8), G je empirický faktor určený vztahem:

$$G = \sqrt{\frac{Z_{\nu} - 5}{60}} + 0,004.Z_{\nu}(0)$$
 (2.7.12)

 $Z_{V}(0)$ v těchto vztazích je je vlnový odpor mikropásku na nízkých kmitočtech daný vztahem (2.5.5).

Poněkud přesnější vztah pro kmitočty 2-18 GHz pro G navrhl Edwards [13]:

$$G = (0, 43 - 0, 009f) \cdot \frac{1}{4\mu_0^2} \cdot \left(\frac{Z_{\nu}(0)}{h}\right)^{0.67}$$
 (2.7.13)

Další variantu navrhl pro všechny běžně používané substráty Hammerstad [14]:

$$G = \frac{\pi^2}{12} \cdot \frac{\varepsilon_r - 1}{\varepsilon_{ef}(0)} \cdot \sqrt{\frac{Z_{\nu}(0)}{60}}$$
 (2.7.14)

- kmitočtová korekce efektivní šířky vedení

Owens [15] navrhl vztah:

$$w_f(f) = w_S + \frac{w_f(0) - w_s}{1 + \left(\frac{f}{f^{E10}}\right)^2}$$
 (2.7.15)

kde $w_f(0)$ je fiktivní šířka mikropásku při nízkých kmitočtech určená vztahem (2.7.3), w_s je skutečná šířka mikropásku.

kmitočtová korekce vlnového odporu

Vlnový odpor je i při uvážení kmitočtové závislosti určen vztahem (2.5.5), tj.

$$Z_{\mathcal{V}}(f) = \frac{120\pi h}{w_f(f) \cdot \sqrt{\varepsilon_{ef}(f)}}$$
 (2.7.16)

Bianco v [16] nabízí vztah pro přímou korekci kmitočtové závislost vlnového odporu:

$$Z_{v} = 2.Z_{vstrip} - \frac{2.Z_{vstrip} - Z_{v}(0)}{1 + G\left(\frac{f}{f_{m}^{TE10}}\right)^{2}}$$
(2.7.17)

kde Z_{vstrip} je vlnový odpor symetrického páskového vedení s šířkou stejnou jako mikropásek, ale dvojnásobnou tlouštkou dielektrika, G je určeno vztahem (2.7.12).

Konstanta útlumu βc

Např. Schneider v [6] uvádí vztahy pro výpočet β_c odvozené na základě (2.5.24):

$$\beta_{C} = \frac{1,38.R_{s}}{hZ_{v}.\left(\frac{8h}{w_{ef}} + \frac{w_{ef}}{4h}\right).\left(\frac{8h}{w_{ef}} - \frac{w_{ef}}{4h}\right).\left(1 + \frac{h}{w_{ef}} + \frac{h}{w_{ef}}.\frac{\partial w_{ef}}{\partial t}\right) \qquad \text{pro } w_{ef}/h \leq 1$$

$$\beta_{C} = 6, 1.10^{-5} \cdot \frac{R_{s} \cdot Z_{v}}{h} \cdot \left[1 + 0, 44 \cdot \left(\frac{h}{w_{ef}} \right)^{2} + 6 \cdot \left(\frac{h}{w_{ef}} \right)^{2} \cdot \left(1 - \frac{h}{w_{ef}} \right)^{5} \right].$$

$$\cdot \left(1 + \frac{w_{ef}}{h} + \frac{\partial w_{ef}}{\partial t} \right) \qquad \text{pro } w_{ef}/h \ge 1$$

kde $R_S = \sqrt{\frac{\omega \mu_0}{2\sigma_c}} = \text{Re}(Z)$ podle (2.5.9) je měrný vf. odpor povrchu vodiče a

$$\frac{\partial w_{ef}}{\partial t} = \frac{1}{\pi} \cdot \ln\left(\frac{4\pi w_s}{t}\right) \qquad \text{pro } w_S/h \le \frac{1}{2\pi}$$

$$\frac{\partial w_{ef}}{\partial t} = \frac{1}{\pi} \cdot \ln\left(\frac{2h}{t}\right) \qquad \text{pro } w_S/h \ge \frac{1}{2\pi} \qquad (2.7.18)$$

Konstanta útlumu β_d

Pro výpočet β_d lze použít vztah (2.5.26) resp. (2.5.27) zde však při uvážení ϵ_{ef} a $tg\delta_{ef}$ daného vztahem:

$$tg\delta_{ef} = \frac{\sigma_{ef}}{\omega.\varepsilon_0\varepsilon_{ef}},\tag{2.7.19}$$

kde

$$\sigma_{ef} = q.\sigma_d + (1 - q).\sigma_{vzduch} = q\sigma_d$$
 (2.7.20)

Vzhledem k (2.7.5b) pak:

$$\sigma_{ef} = q.\sigma_d = \frac{\varepsilon_{ef} - 1}{\varepsilon_r - 1}.\sigma_d \tag{2.7.21}$$

a

$$tg\delta_{ef} = \frac{\varepsilon_{ef}-1}{\varepsilon_{r}-1} \cdot \frac{\varepsilon_{r}}{\varepsilon_{ef}} \cdot tg\delta \tag{2.7.22}$$

 β_d je pak určeno vztahem:

$$\beta_{d} = \frac{\omega \cdot \sqrt{\varepsilon_{0}\mu_{0}}}{2} \cdot \frac{\varepsilon_{r}}{\varepsilon_{r}-1} \cdot \frac{\varepsilon_{ef}-1}{\sqrt{\varepsilon_{ef}}} \cdot tg\delta \qquad [\text{Np/m}]$$
 (2.7.23)

resp.

$$\beta_{el} = 27, 3. \frac{\varepsilon_r}{\varepsilon_r - 1}. \frac{\varepsilon_{el} - 1}{\sqrt{\varepsilon_{el}}}. \frac{tg\delta}{\lambda_0}$$
 [dB/m] (2.7.24)

Praktické poznámky

Tlouštka pásků t by měla být min $3 \div 5$ násobek hloubky vniku do daného materiálu na uvažovaných kmitočtech. To nelze splnit na nízkých kmitočtech kde je pak skutečný útlum β_C vedení větší, než udává vztah (2.7.18).

- vliv omezené zemní elektrody

Obr. 2.7.3.

Podle [17] má omezení šířky zemní desky poměrně malý vliv na $Z_{\mathcal{V}}$. Pro $T/w \ge 2$ je změna vlnového odporu <3% a změna ε_{ef} je velmi malá.

- vliv omezeného substrátu

Obr. 2.7.4.

Podle [18] se vliv omezeného substrátu projevuje ještě méně. Pro T/w > 0, 5 je změna vlnového odporu < 0.5 %.

- vliv vodivé plochy nad substrátem

Obr. 2.7.5.

Pro W > 5w a H > 5h lze dle [9] vliv stínění zanedbat. Pozor však na vlnovodné vidy celé struktury.

2.8. Štěrbinové vedení (Slot Line)

Obr. 2.8.1. Štěrbinové vedení.

Struktura umožňuje šíření téměř TE vlny. Přesně je to však HEM vlna, $H_z \neq 0$.

Orientační přiblížení prostřednictvím vidu kvazi-TEM pomocí konformního zobrazení, [7].

Obr. 2.8.2. Konformně přetransformovaná struktura štěrbinového vedení.

$$\varepsilon_{ef} = \frac{\varepsilon_r + 1}{2}$$

$$- 26 -$$
(2.8.1)

$$Z_{v} = \frac{120\pi}{\sqrt{\varepsilon_{ef}}} \cdot \frac{K(k)}{K'(k)}, \quad k = tgh\left(\frac{\pi w}{4h}\right)$$
 (2.8.2)

kde K(k) je úplný eliptický integrál I. druhu,

$$K(k) = \int_{0}^{1} \frac{dx}{\sqrt{(1-x^2).(1-k^2x^2)}},$$
 (2.8.3)

a

$$K'(k) = K(\sqrt{1-k^2}) = K(k').$$
 (2.8.4)

Approximace (chyba $\leq 8.10^{-6}$), [4]:

$$\frac{K(k)}{K'(k)} = \frac{\pi}{\ln\left(2 \cdot \frac{1 + \sqrt{k'}}{1 - \sqrt{k'}}\right)} \qquad \text{pro} \qquad 0 \le k \le \frac{1}{\sqrt{2}}$$

$$\frac{K(k)}{K'(k)} = \frac{1}{\pi} \cdot \ln \left(2 \cdot \frac{1 + \sqrt{k}}{1 - \sqrt{k}} \right)$$
 pro $\frac{1}{\sqrt{2}} \le k \le 1$ (2.8.5)

Výsledky výpočtu Z_v jsou vždy o 10% až 30% větší než správné hodnoty.

Aproximace přesného řešení

Přesným numerickým řešením rozložením pole ve štěrbinovém vedení se zabývala řada autorů při využití různých numerických metod, [2]. Žádná však nevede k výrazům v uzavřeném tvaru vhodným pro výpočet Z_{ν} a λ_{g} v technické praxi.

Garg a Gupta [18] odvodili aproximační vztahy vycházející z numerického řešení, které navrhl Cohn, [17].

Pro $0,02 \le w/h \le 0,2$

$$\lambda_g/\lambda_0 = 1/\sqrt{\varepsilon_{ef}} = 0,923 - 0,448.\log \varepsilon_r + 0,2.w/h - (0,29.w/h + 0,017).\log(100.h/\lambda_0)$$

$$Z_{v} = 72,62 - 35,19.\log\varepsilon_{r} + 50.\frac{h}{w}.(w/h - 0,02).(w/h - 0,1) + \log(100.w/h).[44,28 - 19,58.\log\varepsilon_{r}] - [0,32.\log\varepsilon_{r} - 0,11 + (1,07.\log\varepsilon_{r} + 1,44).w/h].$$

$$.(11,4 - 6,07.\log\varepsilon_{r} - 100.h/\lambda_{0})^{2}$$
(2.8.6)

Pro $0, 2 \le w/h \le 1, 0$

$$\lambda_g/\lambda_0 = 0,987 - 0,483 \cdot \log \varepsilon_r + (0,111 - 0,0022 \cdot \varepsilon_r) \cdot w/h - -(0,121 + 0,094 \cdot w/h - 0,0032 \cdot \varepsilon_r) \cdot \log (100 \cdot h/\lambda_0)$$

$$Z_{v} = 113, 19 - 53, 55. \log \varepsilon_{r} + 1, 25.(114, 59 - 51, 58. \log \varepsilon_{r}).w/h + +20.(w/h - 0, 2).(1 - w/h) - -[0, 15 + 0, 23. \log \varepsilon_{r} + (-0, 79 + 2, 07. \log \varepsilon_{r}).w/h].$$

$$.[10, 25 - 5. \log \varepsilon_{r} + (2, 1 - 1, 42. \log \varepsilon_{r}).w/h - 100.h/\lambda_{0}]^{2}$$
(2.8.7)

Vztahy mají chybu < 2% pro:

$$9, 7 \le \varepsilon_r \le 20; \quad 0, 02 \le w/h \le 1, 0 \quad \text{a} \quad 0, 01 \le h/\lambda_0 \le \frac{1}{4.\sqrt{\varepsilon_r - 1}}$$

Pro nižší hodnoty hodnoty dielektrické konstanty odvodili Janaswamy a Schaubert, [20] následující vztahy.

Pro $2, 2 \le \varepsilon_r \le 3, 8$ a $0,0015 \le w/\lambda_0 \le 0,075$

$$\lambda g/\lambda_{0} = 1,045 - 0,365. \ln \varepsilon_{r} + \frac{6,4.(w/h).\varepsilon_{r}^{0,945}}{238,64 + 100.w/h} - \left[0,148 - \frac{8,81.(\varepsilon_{r} + 0,95)}{100.\varepsilon_{r}}\right]. \ln \left(\frac{h}{\lambda_{0}}\right)$$

$$Z_{v} = 60 + 3,69. \sin \left[\frac{(\varepsilon_{r} - 2,22).\pi}{2,36}\right] + 133,5. \ln (10.\varepsilon_{r}). \sqrt{w/\lambda_{0}} + + 2,81.[1 - 0,011.\varepsilon_{r}.(4,48 + \ln \varepsilon_{r})].(w/h). \ln \left(100.h/\lambda_{0}\right) + + 131,1.(1,028 - \ln \varepsilon_{r}). \sqrt{h/\lambda_{0}} + + 12,48.(1 + 0,18 \ln \varepsilon_{r}). \frac{w/h}{\sqrt{\varepsilon_{r} - 2,06 + 0,85.(w/h)^{2}}}$$

$$(2.8.8)$$

Vztahy mají chybu $Z_{\mathcal{V}} \le 2,7\%$, $\lambda_g/\lambda_0 \le 2,2\%$ pro $2,2 \le \epsilon_{\mathcal{V}} \le 3,8$ a $0,006 \le h/\lambda_0 \le 0,06$.

Pro $2, 2 \le \varepsilon_r \le 3, 8$ a $0,075 \le w/\lambda_0 \le 1, 0$ pak:

$$\lambda g/\lambda_0 = 1,194 - 0,24. \ln \varepsilon_r - \frac{0,621.\varepsilon_r^{0,835}(w/\lambda_0)^{0,48}}{1,344+w/h} - \frac{-0,0617.\left(1,91 - \frac{\varepsilon_r + 2}{\varepsilon_r}\right). \ln(\frac{h}{\lambda_0})}{1}$$

$$Z_V = 133 + 10,34.(\varepsilon_r - 1)^2 + 2,87.\left[2,96 + (\varepsilon_r - 1,582)^2\right].$$

$$.\left\{ (w/h + 2,32\varepsilon_r - 0,56).\left[(32,5 - 6,67\varepsilon_r).\left(100.h/\lambda_0\right)^2 - 1\right]\right\}^{1/2} - \left[(684,45.h/\lambda_0).(\varepsilon_r + 1,35)^2 + 13,23.\left[(\varepsilon_r - 1,722).w/\lambda_0\right]^2 \right\}$$

$$(2.8.10)$$

Vztahy mají chybu $Z_{\nu} \le 5,4\%$, $\lambda_g/\lambda_0 \le 2,6\%$ pro $2,2 \le \epsilon_r \le 3,8$ a $0,006 \le h/\lambda_0 \le 0,06$.

Pro střední hodnoty relativní permitivity 3, $8 \le \varepsilon_r \le 9$, 8 a 0, $0015 \le w/\lambda_0 \le 0$, 075

$$\lambda g/\lambda_{0} = 0,9217 - 0,277. \ln \varepsilon_{r} + 0,0322. (w/h). \sqrt{\frac{\varepsilon_{r}}{w/h + 0,435}} - 0,01 \ln \left(h/\lambda_{0} \right). \left[4,6 - \frac{3,65}{\varepsilon_{r}^{2}. \sqrt{w/\lambda_{0}}. (9,06 - 100.w/\lambda_{0})} \right]$$

$$Z_{v} = 73,6 - 2,15.\varepsilon_{r} + (638,9 - 31,37.\varepsilon_{r}). \left(w/\lambda_{0} \right)^{0,6} + \left(36,23. \sqrt{\varepsilon_{r}^{2} + 41,0} - 225,0 \right). \frac{w/h}{w/h + 0,875.\varepsilon_{r} - 2,0} + 0,51.(\varepsilon_{r} + 2,12).(w/h). \ln \left(100.h/\lambda_{0} \right) - 0,753.\varepsilon_{r}. \frac{h/\lambda_{0}}{\sqrt{w/\lambda_{0}}}$$
 (2.8.11)

Vztahy mají chybu $Z_v \le 5,4\%$, $\lambda_g/\lambda_0 \le 3\%$.

Pro 3, $8 \le \varepsilon_r \le 9$, 8 a 0, $0.75 \le w/\lambda_0 \le 1$ pak:

$$\lambda g/\lambda_{0} = 1,05 - 0,04.\varepsilon_{r} + 1,411.10^{-2}.(\varepsilon_{r} - 1,421).$$

$$. \ln [w/h - 2,012.(1,0 - 0,146.\varepsilon_{r})] + 0,111.(1 - 0,366.\varepsilon_{r}).\sqrt{w/\lambda_{0}} +$$

$$+0,139.[1 + 0,52.\varepsilon_{r}.\ln(14,7 - \varepsilon_{r})].(h/\lambda_{0}).\ln(h/\lambda_{0})$$

$$Z_{v} = 120,75 - 3,74.\varepsilon_{r} + 50.\left[\tan^{-1}(2.\varepsilon_{r}) - 0,8\right].$$

$$.(w/h)\{1,11+[0,132.(\varepsilon_{r}-27,7)/(100.h/\lambda_{0}+5)]\}.$$

$$. \ln\left[100.h/\lambda_{0} + \sqrt{(100.h/\lambda_{0})^{2} + 1}\right] +$$

$$+14,21.(1 - 0,458.\varepsilon_{r}).(100.h/\lambda_{0} + 5,1.\ln\varepsilon_{r} - 13,1).(w/\lambda_{0} + 0,33)^{2}$$

$$(2.8.12)$$

Vztahy mají chybu $Z_{\nu} \le 5,8\%$ a $\lambda_{g}/\lambda_{0} \le 3,2\%$.

Vliv konečné tlouštky pokovení

Vztahy pro korekci v důsledku $t \neq 0$ zatím nebyly publikovány. S rostoucí tlouštkou t klesá efektivní permitivita ε_{ef} , roste λ_g a klesá Z_V . Změna proti t = 0 je při tlouštkách $5 \div 10 \ \mu m$ cca 5%.

Měrný útlum štěrbinového vedení

Nebyl dosud početně stanoven. Naměřené hodnoty jsou přibližně stejné jako u mikropáskového vedení, [7].

2.9. Třívodičové koplanární vedení (Koplanární vlnovod, Coplanar Waveguide)

Obr. 2.9.1. Třívodičové koplanární vedení.

Dominantní vid HEM. Na nízkých kmitočtech aproximace kvazi-TEM.

"Štěrbinový vid". Vzduchové můstky (air bridges).

Šířka zemních ploch na obou stranách vedení cca 5 x větší než s + 2w a $s + 2w < \lambda/2$ pro potlačení vyšších módů.

Zjednodušená analýza pro t = 0 a h >> w, tj. tlustý substrát, pomocí konformního zobrazení za předpokladu vidu kvazi-TEM.

Určí se kapacita na jednotku délky vedení.

Obr. 2.9.2. Konformní zobrazení struktury.

Úplné eliptické integrály 1. druhu modulu k

$$K(k) = \int_{0}^{1} \frac{dt}{\sqrt{(1-t^2)(1-k^2t^2)}}, \quad K'(k) = K(\sqrt{1-k^2}) = K(k'), \quad k' = \sqrt{1-k^2}, \ k = s/(s+2w)$$

(2.9.1)

$$C_a = \varepsilon_0 \cdot \frac{2K(k)}{K'(k)}$$
; $C_d = \varepsilon_r \cdot C_a$. (2.9.2)

 C_a a C_d jsou spojeny paralelně. Tj.:

$$C = C_a + C_d = (1 + \varepsilon_r).C_a = \varepsilon_0.\varepsilon_{ef}.\frac{4.K(k)}{K'(k)},$$
 (2.9.3)

kde

$$\varepsilon_{ef} = \frac{1 + \varepsilon_r}{2} \tag{2.9.4}$$

Vzhledem k (2.5.3) lze Z_v určit

$$Z_{v} = \frac{\sqrt{\varepsilon_{ef}} \cdot \varepsilon_{0} \cdot 120\pi}{\varepsilon_{0} \cdot \varepsilon_{ef} \cdot \frac{4K(k)}{K'(k)}} = \frac{30\pi}{\sqrt{\varepsilon_{ef}}} \cdot \frac{K'(k)}{K(k)} = \frac{30\pi}{\sqrt{\frac{1+\varepsilon_{r}}{2}}} \cdot \frac{K'(k)}{K(k)}$$
(2.9.5)

Pro výpočet podílu eliptických integrálů lze použít aproximaci (2.8.5).

Má-li substrát konečnou tlouštku *h*, vnikne v konformním zobrazení koplanární struktury vzduchová bublina, viz obr. 2.9.2. Efektivní permitivitu je pak nutno určit numerickými metodami.

Vliv "bubliny", [21]:

Změna Z_V pro h > 2w a $\varepsilon_r < 120$ vzhledem k Z_V při $h \to \infty$ pro k < 0, 6, tj. vedení s úzkým páskem není větší než 3%.

Změna ε_{ef} je větší. Pro k=0,6 klesne ε_{ef} o 10 % při změně z $h\to\infty$ na h=3w .

Numerické řešení pro h konečných rozměrů.

Stále předpoklad kvazi-TEM vidu. Řešení Laplaceovy rovnice metodou konečných diferencí [22].

Obr. 2.9.3. Struktura vedení pro numerické řešení.

Stínění musí být dostatečně daleko, aby neovlivňovalo rozložení pole. Numerické výsledky byly aproximovány analytickým vztahem, [2]:

$$\varepsilon_{ef} = \frac{\varepsilon_r + 1}{2} \cdot \left\{ \tanh \left[1,785 \log \left(h/w \right) + 1,75 \right] + \frac{kw}{h} \left[0,04 - 0.7k + 0,01(1 - 0,1\varepsilon_r) \cdot (0,25 + k) \right] \right\}$$
(2.9.6)

kde k = s/(s+2w). Vztah (2.9.6) je platný pro $\varepsilon_r \ge 9$, $h \ge w$, $0 \le k \le 0, 7$. Přesnost vztahu je lepší než 1,5 %. Vzhlem k (2.5.3) je Z_V určeno vztahem:

$$Z_{\mathcal{V}} = \frac{30\pi}{\sqrt{\varepsilon_{ef}}} \cdot \frac{K'(k)}{K(k)} \tag{2.9.7}$$

Opět lze použít aproximaci (2.8.5).

Další vztah pro výpočet ε_{ef} vycházející z konformního zobrazení uvádí [9] str. 73 resp. str. 83, viz též [24] a [25]:

$$\varepsilon_{ef} = 1 + \frac{\varepsilon_r - 1}{2} \cdot \frac{K(k') \cdot K(k_1)}{K(k) \cdot K(k'_1)}$$
(2.9.8)

kde

$$k = s/(s+2w), \ k' = \sqrt{1-k^2}, \ k'_1 = \sqrt{1-k_1^2}, \ k_1 = \frac{\sinh\left(\frac{\pi s}{4h}\right)}{\sinh\left(\frac{\pi(s+2w)}{4h}\right)}$$

Vztah nemá omezení pro ε_r a platí pro: $1,25 \le (s+2w)/w \le 10$, $(s+2w)/h \le 20$ a t=0. Vlnový odpor pak udává vztah (2.9.7), kde je ε_{ef} určeno vztahem (2.9.8), s použitím (2.8.5).

Vliv konečné tlouštky $t \neq 0$

Gupta v [2] zavádí efektivní šířku pásku a štěrbiny.

$$s_{ef} = s + \Delta, \qquad w_{ef} = w - \Delta \tag{2.9.9}$$

kde

$$\Delta = 1,25.\frac{t}{\pi} \left[1 + \ln\left(4\pi.\frac{s}{t}\right) \right]$$
 (2.9.10)

Vztah (2.9.10) byl odvozen na základě představy rozptylového pole na hraně mikropásku. Vliv $t \neq 0$ je pak postihován jak ve vztahu pro výpočet efektivní permitivity, tak v určení vlnového odporu.

$$\varepsilon_{eft} = \varepsilon_{ef} - \frac{0.7(\varepsilon_{ef}-1) \cdot \frac{t}{w}}{\frac{K(k)}{K'(k)} + 0.7 \cdot \frac{t}{w}},$$
(2.9.11)

kde k = s/(s+2w) a ε_{ef} je určeno vztahem (2.9.6), kde je počítáno s s a w.

$$Z_{\mathcal{V}} = \frac{30\pi}{\sqrt{\varepsilon_{eft}}} \cdot \frac{K'(k_{ef})}{K(k_{ef})},\tag{2.9.12}$$

kde $k_{ef} = s_{ef} / \left(s_{ef} + 2w_{ef} \right)$. Korekce na tlouštku platí s chybou <3% pro $\epsilon_r = 20$ a $t/w \le 0, 1$.

Hoffmann a Divina odvodili, [23], korekci na tlouštku pokovení na základě koncepce přídavných dílčích kapacit mezi hranami vodičů a určení efektivní permitivity podle (2.5.2).

Obr. 2.9.4. Přídavné kapacity na hranách tlustých vodičů.

Kapacita vedení na jednotku délky pro t = 0 je dána vztahem (2.9.3).

$$C = \varepsilon_0 \varepsilon_{ef} \cdot \frac{4K(k)}{K(k')} \tag{2.9.13}$$

Při vzduchovém dielektriku:

$$C_1 = \varepsilon_0 \frac{4K(k)}{K(k')} \tag{2.9.14}$$

Pro
$$t \neq 0$$

$$C_g = 2\varepsilon_0 \cdot \frac{t}{w}$$
 (2.9.15)

$$C_t = C + \varepsilon_0 \cdot \frac{2t}{w} = \varepsilon_0 \left(\varepsilon_{ef} \cdot \frac{4K(k)}{K(k')} + \frac{2t}{w} \right)$$
 (2.9.16)

$$C_{1t} = C_1 + \varepsilon_0 \cdot \frac{2t}{w} = \varepsilon_0 \left(\frac{4K(k)}{K(k')} + \frac{2t}{w} \right)$$
 (2.9.17)

Efektivní permitivita ve vztahu (2.9.16) je určena podle (2.9.8).

Korigovanou efektivní permitivitu pro $t \neq 0$ udává vztah (2.5.2), tj.

$$\varepsilon_{eft} = \frac{C_t}{C_{1t}} \tag{2.9.18}$$

Pro Z_V při $t \neq 0$ pak podle (2.5.3):

$$Z_{v} = \frac{\sqrt{\varepsilon_{eft}}}{c.C_{t}} = \sqrt{\frac{C_{t}}{C_{1t}}} \cdot \frac{1}{c} \cdot \frac{1}{C_{t}} = \frac{1}{c.\sqrt{C_{t}.C_{1t}}}$$
(2.9.19)

Vztahy (2.9.18) a (2.9.19) vyhovují pro $t/w \to \infty$. Pro t/w < 0.1 dávají odlišné hodnoty od přesného numerického řešení, [26]. Proto byly vztahy (2.9.16) a (2.9.17) upraveny:

$$C_t = \varepsilon_0 \cdot \left[\varepsilon_{ef} \cdot \frac{4K(k)}{K(k')} + \left(2, 3.1, 65^{-18\frac{t}{w}} + 2 \right) \cdot \frac{t}{w} \right]$$
 (2.9.20)

$$C_{1t} = \varepsilon_0 \cdot \left[\frac{4K(k)}{K(k')} + \left(2, 3.1, 65^{-18\frac{t}{w}} + 2 \right) \cdot \frac{t}{w} \right]$$
 (2.9.21)

 ε_{eft} a Z_V jsou pak určeny vztahy (2.9.18) a (2.9.19) při využití (2.9.20) a (2.9.27). Vztahy vyhovují jak pro $0 \le t/w \le 0$, 1s chybou cca 0,2 % vzhledem k přesnému numerickému řešení známému pro $\varepsilon_r = 20$, h = 0, 1mm, s = 0, 05 mm, w = 0, 1mm [26], tak i pro $t/w \to \infty$.

Konstanta útlumu βc

Na základě (2.5.24) udává Gupta v [2], [4]:

$$\beta c = 4,88.10^{-4}.R_{s}.\epsilon_{ef}.Z_{v}.\frac{P}{\pi.w}.\left[\frac{K(k)}{K'(k)}\right]^{2} \left(1 + \frac{s}{w}\right).\frac{\frac{1,25}{\pi}.\ln\left(\frac{4\pi s}{t}\right) + 1 + \frac{1,25t}{\pi s}}{\left[2 + \frac{s}{w} - \frac{1,25t}{\pi w}.\left(1 + \ln\left(\frac{4\pi s}{t}\right)\right)\right]^{2}} \quad [dB/m]$$

kde

$$k = s/(s + 2w)$$

$$P = \frac{k}{\left(1 - \sqrt{1 - k^2}\right) \cdot \left(1 - k^2\right)^{\frac{3}{4}}} \qquad 0 \le k \le 0,707$$

$$P = \frac{1}{\left(1 - k\right) \cdot \sqrt{k}} \cdot \left(\frac{K'(k)}{K(k)}\right)^2 \qquad 0,707 \le k \le 1$$
(2.9.22)

Konstanta útlumu β_d

Pro útlum v důsledku dielektrických ztrát při uvážení činitele plnění dielektrika udává Gupta v [2] vztah stejný jako pro mikropáskové vedení, viz (2.7.23).

Disperze

Disperzi struktury možno určit numerickými metodami, viz např. [27], [2]. Experimentální výsledky jsou uvedeny v [30].

Riaziat v [31] uvádí neměřitelnou disperzi v kmitočtovém pásmu 10 GHz až 100 GHz pro třívodičové koplanární vedení realizované na GaAs substrátu při s + 2w = h/8. Analytické vztahy použitelné v technické praxi zatím nejsou k dispozici.

2.10. Dvouvodičové koplanární vedení (Coplanar Strips)

Obr. 2.10.1. Dvouvodičové koplanární vedení.

Dominantní vid HEM. Na nízkých kmitočtech aproximace kvazi-TEM.

Zjednodušená analýza pro t = 0 a h >> w, h >> s, tj. tlustý substrát, pomocí konformního zobrazení za předpokladu vidu kvazi-TEM.

Určí se kapacita na jednotku délky vedení.

Obr. 2.10.2. Konformní zobrazení struktury.

Ca a C_d spojeny paralelně.

$$C = \varepsilon_0 \cdot \frac{1 + \varepsilon_r}{2} \cdot \frac{K'(k)}{K(k)} = \varepsilon_0 \cdot \varepsilon_{ef} \cdot \frac{K'(k)}{K(k)}$$
 (2.10.1)

kde $\varepsilon_{\it ef}$ je určeno vztahem (2.9.4), tj.:

$$\varepsilon_{ef} = \frac{\varepsilon_r + 1}{2}$$

a k = s/(s+2w).

Vzhledem k (2.5.3) lze Z_V určit:

$$Z_{\mathcal{V}} = \frac{\sqrt{\varepsilon_{ef}} \cdot \varepsilon_0 \cdot 120 \cdot \pi}{\varepsilon_0 \cdot \varepsilon_{ef} \cdot \frac{K'(k)}{K(k)}} = \frac{120 \cdot \pi}{\sqrt{\varepsilon_{ef}}} \cdot \frac{K'(k)}{K(k)} = \frac{120 \cdot \pi}{\sqrt{\frac{1+\varepsilon_r}{2}}} \cdot \frac{K(k)}{K'(k)}$$
(2.10.2)

Pro výpočet podílu eliptických integrálů lze použít aproximaci (2.8.5).

Numerické řešení pro h konečných rozměrů.

Vliv konečné tlouštky substrátu se uplatní podobně jako u trojvodičového koplanárního vedení. Pro výpočet ε_{ef} lze použít vztahů (2.9.6) a (2.9.8). Z_{v} pak určuje vztah (2.10.2).

Vliv konečné tlouštky $t \neq 0$

Gupta v [2] zavádí efektivní šířku pásku a štěrbiny.

$$S_{ef} = S - \Delta, \qquad W_{ef} = W + \Delta \tag{2.10.3}$$

kde Δ je určeno vztahem (2.9.10), tj.:

$$\Delta = 1, 25 \cdot \frac{t}{\pi} \left[1 + \ln \left(4\pi \cdot \frac{s}{t} \right) \right]$$

Vliv $t \neq 0$ je pak postihován obdobně jako u trojvodičového koplanárního vedení jak ve vztahu pro výpočet efektivní permitivity, tak v určení vlnového odporu.

$$\varepsilon_{eff} = \varepsilon_{ef} - \frac{1, 4.(\varepsilon_{ef} - 1).\frac{t}{s}}{\frac{K'(k)}{K(k)} + 1, 4.\frac{t}{s}}$$
(2.10.4)

kde ε_{ef} je určeno podle (2.9.6) a k = s/(s + 2w).

$$Z_{v} = \frac{120.\pi}{\sqrt{\epsilon_{ef}}} \cdot \frac{K(k_{e})}{K'(k_{e})}$$
 (2.10.5)

 $kde k_{ef} = s_{ef} / (s_{ef} + 2w_{ef})$

Hoffmann a Divina uvádějí v [23] vztahy pro výpočet korekce na tlouštku pokovení na základě koncepce přídavné kapacity mezi hranami pásků podobně jako u trojvodičového koplanárního vedení.

Obr. 2.10.3. Přídavné kapacity na hranách tlustých vodičů.

Kapacitu jednotkové délky vedení při t = 0 určuje vztah (2.10.1), tj.:

$$C = \varepsilon_0 \varepsilon_{ef} \frac{K(k')}{K(k)} \tag{2.10.6}$$

Pro vzduchové dielektrikum pak:

$$C_1 = \varepsilon_0 \frac{K(k')}{K(k)} \tag{2.10.7}$$

Efektivní permitivitu ε_{ef} pro opět udává vztah (2.9.8). Přídavná kapacita C_g při $t \neq 0$ je:

$$C_g = \varepsilon_0 \frac{t}{s} \tag{2.10.8}$$

Pro C resp. C_1 korigované pro $t \neq 0$ pak:

$$C_t = \varepsilon_0 \left[\varepsilon_{ef} \cdot \frac{K(k')}{K(k)} + \left(2, 3.1, 65^{-18} \frac{t}{\$} + 2 \right) \cdot \frac{t}{2\$} \right]$$
 (2.10.9)

$$C_{1t} = \varepsilon_0 \cdot \left| \frac{K(k')}{K(k)} + \left(2, 3.1, 65^{-18} \frac{t}{s} + 2\right) \cdot \frac{t}{2s} \right|$$
 (2.10.10)

Korigovanou efektivní permitivitu pro $t \neq 0$ opět udává vztah (2.5.2), tj.:

$$\varepsilon_{eft} = \frac{C_t}{C_{1t}} \tag{2.10.11}$$

Vlnový odpor Z_v pro $t \neq 0$ pak vztah (2.5.3):

$$Z_{v} = \frac{\sqrt{\varepsilon_{eft}}}{c.C_{t}} = \sqrt{\frac{C_{t}}{C_{1t}}} \cdot \frac{1}{c} \cdot \frac{1}{C_{t}} = \frac{1}{c.\sqrt{C_{t}.C_{1t}}}$$
(2.10.12)

Vztahy (2.10.11) a (2.10.12) platí pro $1,25 \le (s+2w)/w \le 10$ a $(s+2w)/h \le 20$ a pokrývají rozsah $0 \le t/s < \infty$. Porovnání s přesným numerickým řešením nebylo uděláno.

Konstanta útlumu β_c

Na základě (2.5.24) udává Gupta v [2], [4]:

$$\beta_c = 17,34. \frac{R_s}{Z_v} \cdot \frac{P}{\pi s} \cdot \left[\frac{K(k)}{K'(k)} \right]^2 \cdot (1 + w/s) \cdot \frac{\frac{1,25}{\pi} \ln \frac{4\pi w}{t} + 1 + \frac{1,25t}{\pi w}}{\left[1 + 2\frac{w}{s} + \frac{1,25t}{\pi s} \cdot \left(1 + \ln \frac{4\pi w}{t} \right) \right]^2}$$
(2.10.13)

kde

$$k = s/(s+2w)$$

$$P = \frac{k}{\left(1 - \sqrt{1 - k^2}\right) \cdot \left(1 - k^2\right)^{\frac{3}{4}}} \qquad 0 \le k \le 0,707$$

$$P = \frac{1}{(1-k)\sqrt{k}} \cdot \left(\frac{K'(k)}{K(k)}\right)^2 \qquad 0,707 \le k \le 1$$

Konstanta útlumu β_d

Útlum je podle [2], [4] určen stejným vztahem jako u mikropáskového vedení, (2.8.25), tj.:

$$\beta_d = 27, 3 \cdot \frac{\varepsilon_r}{\varepsilon_r - 1} \cdot \frac{\varepsilon_{ef} - 1}{\sqrt{\varepsilon_{ef}}} \cdot \frac{tg\delta}{\lambda_0}$$
 [dB/m] (2.10.14)

Disperze

Disperzní efekty lze určit numerickými metodami. Některé napočítané závislosti lze nalézt v [27], resp. [2], viz též [28] a [29]. Závislosti jsou podobné jako u mikropáskového vedení. Vztahy použitelné v technické praxi zatím nejsou k dispozici.

2.11. Vázané symetrické páskové vedení (Coupled Sriplines Line)

Obr. 2.11.1. Vázané symetrické páskové vedení.

Dominantní vid TEM ve dvou konfiguracích.

Obr. 2.11.2. Sudý a lichý vid na vázaném vedení.

 Z_{vo} , Z_{ve} jsou vlnové odpory vždy jednoho z dvojice pásků při daném rozložení pole.Platí: $Z_{ve} > Z_v > Z_{vo}$. Kde Z_v je vlnový odpor samostatného symetrického páskového vedení. Pro $s \to \infty$ bude $Z_{ve} \to Z_v$ a $Z_{vo} \to Z_v$.

Analýza pro t = 0

Pomocí konformního zobrazení a příslušných kapacit lze získat vztahy [4]:

$$Z_{ve} = \frac{30\pi}{\sqrt{\varepsilon_r}} \cdot \frac{K'(k_e)}{K(k_e)}, \qquad k_e = \tanh\left(\frac{\pi w}{2h}\right) \cdot \tanh\left(\frac{\pi}{2} \cdot \frac{w+s}{h}\right)$$
$$Z_{vo} = \frac{30\pi}{\sqrt{\varepsilon_r}} \cdot \frac{K'(k_o)}{K(k_o)}, \qquad k_o = \tanh\left(\frac{\pi w}{2h}\right) \cdot \coth\left(\frac{\pi}{2} \cdot \frac{w+s}{h}\right) \tag{2.11.1}$$

Pomocí aproximace eliptických integrálů lze tyto přesné vztahy upravit podle [32] na:

$$Z_{ve} = \sqrt{\frac{\mu_r}{\varepsilon_r}} \cdot \frac{15\pi^2}{\lg\left[2\sqrt{\frac{\cosh(\pi u_2/h)}{\cosh(\pi u_1/h)}}\right]} \qquad 0 \le Z_{ve} \le 30\pi\sqrt{\mu_{r/\varepsilon_r}}$$

$$Z_{ve} = 60\sqrt{\frac{\mu_r}{\varepsilon_r}} \cdot \lg \left[2\frac{\sqrt{\frac{\cosh(\pi u_2/h)}{\cosh(\pi u_1/h)}} + 1}{\sqrt{\frac{\cosh(\pi u_2/h)}{\cosh(\pi u_1/h)}} - 1} \right] \qquad 30\pi\sqrt{\mu_r/\varepsilon_r} \le Z_{ve} \le \infty$$

$$Z_{vo} = \sqrt{\frac{\mu_r}{\varepsilon_r}} \cdot \frac{15\pi^2}{\lg\left[2\sqrt{\frac{\sinh(\pi u_2/h)}{\sinh(\pi u_1/h)}}\right]} \qquad 0 \le Z_{vo} \le 30\pi\sqrt{\mu_r/\varepsilon_r}$$

$$Z_{vo} = 60\sqrt{\frac{\mu_r}{\varepsilon_r}} \cdot \lg \left[2\frac{\sqrt{\frac{\sinh(\pi u_2/h)}{\sinh(\pi u_1/h)}} + 1}{\sqrt{\frac{\sinh(\pi u_1/h)}{\sinh(\pi u_1/h)}} - 1} \right] \qquad 30\pi\sqrt{\mu_r/\varepsilon_r} \le Z_{vo} \le \infty$$

$$(2.11.2)$$

kde $u_1 = s/2$, $u_2 = s/2 + w$. Chyba aproximace je menší než 3.10^{-3} .

Vzhledem k homogennímu dielektriku platí:

$$\varepsilon_{ef} = \varepsilon_{r}, \quad v_f = v_{fe} = v_{fo} = \frac{c}{\sqrt{\varepsilon_r}}, \quad \lambda_{ge} = \lambda_{go} = \frac{c}{f\sqrt{\varepsilon_r}}$$
 (2.11.3)

Vliv konečné tlouštky $t \neq 0$

Gupta v [4] s odvoláním na Cohna [33] uvádí vztahy pro Z_{ve} a Z_{vo} platné pro t/h < 0, 1 a $w/h \ge 0, 35$:

$$Z_{ve} = \frac{30\pi(h-t)}{\sqrt{\varepsilon_r}\left(w + \frac{h.C_f}{2\pi}.A_e\right)} \qquad A_e = 1 + \frac{\ln\left(1 + \tanh\Theta\right)}{\ln 2}$$

$$Z_{vo} = \frac{30\pi(h-t)}{\sqrt{\varepsilon_r} \left(w + \frac{hC_f}{2\pi} A_o \right)} \qquad A_o = 1 + \frac{\ln\left(1 + \coth\Theta\right)}{\ln 2}$$

$$\Theta = \frac{\pi s}{2h}, \qquad C_f = 2\ln\left(\frac{2h-t}{h-t}\right) - \frac{t}{h}\ln\left[\frac{t(2h-t)}{(h-t)^2}\right]$$
(2.11.4)

kde

Konstanta útlumu β_{ce}, β_{co}

Na základě (2.5.24) odvodil Gupta v [4] následující vztahy:

$$\beta_{ce} = \frac{0.0231.R_s \sqrt{\varepsilon_r}}{30\pi(h-t)} \{60\pi + Z_{ve}.\sqrt{\varepsilon_r} \left[1 - \frac{A_e}{\pi}.(\ln\frac{2h-t}{h-t} + \frac{1}{2}\ln\frac{t(2h-t)}{(h-t)^2}) + \frac{C_f.\frac{(1+s/h)}{4\ln 2}.\frac{1}{(1+\tanh\Theta)}}{1+\tanh\Theta}\right]\}$$
 [dB/m]

$$\beta_{CO} = \frac{0,0231.R_s \sqrt{\epsilon_r}}{30\pi(h-t)} \cdot \{60\pi + Z_{VO} \sqrt{\epsilon_r} \left[1 - \frac{A_o}{\pi} \left(\ln \frac{2h-t}{h-t} + \frac{1}{2} \ln \frac{t(2h-t)}{(h-t)^2}\right) - C_f \cdot \frac{(1+s/h)}{4\ln 2} \cdot \frac{\frac{1}{\sinh^2}}{1+\coth \Theta}\right] \}$$
 [dB/m]

Konstanta útlumu β_{de} , β_{do}

Ztráty v dielektriku popisuje Gupta v [4] podle (2.5.27):

$$\beta_{de} = \beta_{do} = 27, 3\sqrt{\epsilon_r} \cdot \frac{\text{tg}\delta}{\lambda_0} \qquad [dB/m] \qquad (2.11.6)$$

Obr. 2.11.3. Další konstrukční možnosti.

2.12. Mikropáskové vázané vedení (Microstrip Coupled Line)

Obr. 2.12.1. Vázané mikropáskové vedení.

Šíření sudého a lichého HEM vidu.

Na nižších kmitočtech aproximace sudým a lichým kvazi TEM videm.

Zjednodušená analýza pro t = 0

Konformní zobrazení neposkytuje řešení pro kapacity v uzavřeném tvaru, [35]. Řešení pomocí Greenovy funkce [36], [37] i variační metody [38], [39], [40] neposkytují návrhové vztahy použitelné v technické praxi.

Garg a Bahl uvádějí v [2] vztahy pro impedance a efektivní permitivitu sudého a lichého vidu na základě statických kapacit sudého a lichého vidu.

Obr. 2.12.2. Statické kapacity pro sudý a lichý vid.

Pro určení $Z_{VO,e}$ se hledá kapacita na jednotku délky každého z pásků při jednom a druhém rozložení pole.

sudý vid:
$$C_e = C_p + C_f + C_f'$$
 lichý vid:
$$C_o = C_p + C_f + C_{gd} + C_{ga}$$
 (2.12.1)

$$C_p = \varepsilon_0 \cdot \varepsilon_r \cdot \frac{w}{h}$$
 $C_f = \frac{\sqrt{\varepsilon_{ef}}}{2c \cdot Z_v} - \frac{1}{2} \varepsilon_0 \varepsilon_r \frac{w}{h}$ (2.12.2)

kde Z_V a ε_{ef} je odpovídá samostatnému mikropáskovému vedení s rozměry w. C_f je rozptylová kapacita na vnější hraně vázaného mikropásku, tj. 1/2 celkové rozptylové kapacity samostatného mikropásku. C_f je rozptylová kapacita na hraně mikropásku ovlivněná přítomností druhého z dvojice vázaných pásků.

$$C_f' = \frac{C_f}{1 + A(h/s)\tanh(10s/h)} \sqrt{\frac{\varepsilon_r}{\varepsilon_{ef}}},$$
 (2.12.3)

kde $A = \exp[-0, 1.\exp(2, 33 - 2, 53.w/h)]$. Kapacita C_{ga} odpovídá kapacitě mezi horním plochou pásku a svislou elektrickou stěnou ve vzduchu. Ta je pak určena pomocí kapacity štěrbiny dvouvodičového koplanárního vedení se vzduchovým dielektrikem. Tedy:

$$C_{ga} = \varepsilon_0 \cdot \frac{K(k')}{K(k)} \tag{2.12.4}$$

kde

$$k = \frac{s/h}{s/h + 2w/h} = \frac{s}{s + 2w}, \qquad k' = \sqrt{1 - k^2}$$
.

Aproximace eliptických integrálů podle (2.8.5) vztahy zjednodušší.

$$C_{ga} = \frac{\varepsilon_0}{\pi} \cdot \ln \left(2 \cdot \frac{1 + \sqrt{k'}}{1 - \sqrt{k'}} \right) \qquad 0 \le k^2 \le 0, 5$$

$$C_{ga} = \frac{\pi \varepsilon_0}{\ln\left(2.\frac{1+\sqrt{k}}{1-\sqrt{k}}\right)}$$
 0, 5 \le k^2 \le 1 (2.12.5)

 C_{gd} je kapacita mezi dolní plochou pásku a svislou elektrickou stěnou v dielektriku. Při využití vztahů pro vázané symetrické vedení byl odvozen aproximační vztah:

$$C_{gd} = \frac{\varepsilon_0 \varepsilon_r}{\pi} \cdot \ln \left[\coth \left(\frac{\pi s}{4h} \right) \right] + 0,65 \cdot C_f \cdot \left[\frac{0,02}{s/h} \cdot \sqrt{\varepsilon_r} + \left(1 - \frac{1}{\varepsilon_r^2} \right) \right]$$
(2.12.6)

Vzhledem k (2.5.2) a (2.5.3) pak:

$$Z_{ve} = \frac{1}{c\sqrt{C_e.C_e(\varepsilon_r = 1)}}, \qquad \varepsilon_{efe} = \frac{C_e}{C_e(\varepsilon_r = 1)}$$

$$Z_{vo} = \frac{1}{c\sqrt{C_o.C_o(\varepsilon_r = 1)}}, \qquad \varepsilon_{efo} = \frac{C_o}{C_o(\varepsilon_r = 1)}$$
(2.12.6)

kde $C_e(\varepsilon_r = 1)$, $C_o(\varepsilon_r = 1)$ jsou kapacity sudého a lichého vidu určené podle (2.12.1), ale pro vzduchové dielektrikum.

Kapacity C_e a C_o jsou určeny s chybou < 3% pro $\varepsilon_r \ge 1$. Chyby Z_{ve} a Z_{vo} jsou menší než 3% pro $0, 2 \le w/h \le 2$, $0, 05 \le s/h \le 2$ a $\varepsilon_r \ge 1$.

Většinou platí:
$$C_o > C_e$$
, $\varepsilon_{efo} < \varepsilon_{efe} \implies \lambda_{go} > \lambda_{ge}$, $v_{fo} > v_{fe}$

Vliv konečné tlouštky $t \neq 0$

Nenulová tlouštka *t* ovlivní velikost rozptylových kapacit na hranách pásků. Garg a Bahl v [2] modifikují (2.12.1) na:

$$C_{et} = C_p + C_{ft} + C'_{ft}$$

$$C_{ot} = C_p + C_{ft} + C_{ga} + C_{gd} + C_{gt}$$

$$- 41 -$$
(2.12.7)

kde C_{gt} je kapacita vnitřní boční stěny mikropásku vůči svislé elektrické stěně daná vztahem:

$$C_{gt} = \frac{2\varepsilon_0.t}{s} \tag{2.12.8}$$

 C_{ff} je určena jako rozptylová kapacita na hraně samostatného mikropásku nenulové tlouštky turčená vztahem:

$$C_{ft} = \frac{1}{2} \cdot \left[\frac{\sqrt{\varepsilon_{ef}(t)}}{c.Z_{v}(t)} - \varepsilon_{0} \varepsilon_{r} \frac{w}{h} \right]$$
 (2.12.9)

 $Z_{v}(t)$ a $\varepsilon_{ef}(t)$ odpovídají mikropáskovému vedení nenulové tlouštky $t \neq 0$ určené vztahy

(2.7.6), (2.7.4) a (2.5.5). Rozptylová kapacita C_{ft}^{\prime} na vnitřní hraně mikropásku přilehlé ke štěrbině je nenulovým t také ovlivněna. C'_{ft} určuje modifikovaný vztah (2.12.3):

$$C'_{ft} = \frac{C_{ft}}{1 + A(h/s)\tanh(10s/h)} \sqrt{\frac{\varepsilon_r}{\varepsilon_{ef}}}$$
(2.12.10)

Vlnový odpor a efektivní permitivita je pro $t \neq 0$ určena modifikovanými vztahy (2.12.6).

$$Z_{Ve} = \frac{1}{c\sqrt{C_{et}.C_{et}(\varepsilon_r=1)}} \qquad \varepsilon_{efe} = \frac{C_{et}}{C_{et}(\varepsilon_r=1)}$$

$$Z_{Vo} = \frac{1}{c.\sqrt{C_{ot}.C_{ot}(\varepsilon_r=1)}} \qquad \varepsilon_{efo} = \frac{C_{ot}}{C_{ot}(\varepsilon_r=1)} \qquad (2.12.11)$$

Disperze

Disperzní chování lze analyzovat různými numerickými metodami. Getsinger odvodil poloempirické vztahy vhodné pro technickou praxi, [42]. Vychází přitom ze vztahů odvozených pro disperzi samostatného mikropáskového vedení.

$$\varepsilon_{efe,o}(f) = \varepsilon_{r} - \frac{\varepsilon_{r} - \varepsilon_{efe,o}}{1 + \left(\frac{f}{fpe,o}\right)^{2} G_{e,o}}$$

kde

$$G_e = 0, 6 + 0,0045.Z_{ve}$$

 $G_o = 0, 6 + 0,018.Z_{vo}$

$$fpe = \frac{Z_{ve}}{4\mu_0 h}$$

$$fpo = \frac{Z_{vo}}{\mu_0 h} \tag{2.12.12}$$

Pro vlnové odpory pak uvádí Gupta, [4]:

$$Z_{ve,o} = 2.Z_{ve,o}^{s} - \frac{2Z_{ve,o}^{s} - Z_{ve,o}(0)}{1 + G_{e,o} \cdot \left(\frac{f}{f_{pe,o}}\right)^{1,6}}$$
(2.12.13)

kde $Z_{Ve,O}^{S}$ je vlnový odpor vázaných symetrických páskových vedení s rozměry $w, s, 2h, \varepsilon_{r}$ a $Z_{Ve,O}(0)$ je vlnový odpor sudého a lichého vidu při nízkých frekvencích.

Další popis disperzních vlivů umožňují rozsáhlé vztahy, které uvádějí Kirschning a Jansen v [43]. Jejich vztahy jsou platné pro $0, 1 \le w/h \le 10, 0, 1 \le s/h \le 10, 1 \le \epsilon_r \le 18$. Uváděná přesnost lepší než 1,5% platí pro $\epsilon_r \le 12, 9$ a f.h [GHz, mm] ≤ 15 .

Konstanta útlumu β_{ce} , β_{co}

Wheelerovu metodu z [34] použil Gupta, [4], pro odvození:

$$\beta_{Ce,o} = \frac{8,686.R_s}{120\pi.h.Z_{ve,o}} \cdot \frac{\sqrt{\mu_0 \varepsilon_0}}{C_{e,o}^2(\varepsilon_r = 1)}.$$

$$\cdot \left[\left(1 + \frac{w}{h} \right) \cdot \frac{\partial C_{e,o}(\varepsilon_r = 1)}{\partial (w/h)} - \left(1 - \frac{s}{h} \right) \cdot \frac{\partial C_{e,o}(\varepsilon_r = 1)}{\partial (s/h)} + \left(1 + \frac{t}{h} \right) \cdot \frac{\partial C_{e,o}(\varepsilon_r = 1)}{\partial (t/h)} \right] \qquad [dB/m]$$

$$(2.12.14)$$

Obdobný vztah používající derivace vlnového odporu lze nalézt v [2], resp. [44].

$$\beta_{Ce,o} = \frac{8,686.R_s}{120\pi.h.Z_{ve,o}}.$$

$$\left[\left(1 - \frac{s}{2h} \right) \cdot \frac{\partial (\epsilon_{efe,o}.Z_{ve,o})}{\partial (s/h)} - \left(1 - \frac{t}{2h} \right) \cdot \frac{\partial (\epsilon_{efe,o}.Z_{ve,o})}{\partial (t/h)} - \left(1 - \frac{w}{2h} \right) \cdot \frac{\partial (\epsilon_{efe,o}.Z_{ve,o})}{\partial (w/h)} \right] [dB/m]$$
(2.12.15)

Konstanta útlumu β_{de} , β_{do}

Měrný útlum v důsledku ztrát v dielektiku uvádí Rama v [44]:

$$\beta_{de,o} = 27, 3 \frac{\varepsilon_r}{\sqrt{\varepsilon_{efe,o}}} \cdot \frac{\varepsilon_{efe,o} - 1}{\varepsilon_r - 1} \cdot \frac{tg\delta}{\lambda_0} \quad [dB/m] \quad (2.12.16)$$

Další konstrukční možnosti

Obr. 2.1.13.