

CHEMISTRY Chapter 5

ENLACE COVALENTE

Helicomotivación

ENLACE COVALENTE

Es la fuerza que mantiene unidos a los átomos que comparten uno o varios pares de electrones de valencia; generalmente se da entre los No Metales.

CLASIFICACIÓN DE LOS ENLACES COVALENTES

A. POR LA POLARIDAD DEL ENLACE

1. ENLACE COVALENTE NO POLAR (APOLAR)

Se forma entre átomos iguales, donde la diferencia de electronegatividades es igual a cero ($\Delta E.N.=0$).

2. ENLACE COVALENTE POLAR

Se forma entre átomos diferentes, donde la $\Delta E.N. < 1,7$ Ejm: HCl

B. POR EL ORIGEN DE LOS ELECTRONES COMPARTIDOS

	Simple	Covalente normal	A ° B	
		Covalente dativo	A⊸B	
	Múltiple	Enlace doble	A = B	
		Enlace triple	A ≅σ B π	
α: par enlazante sigma π: par enlazante pi				

I.	HōÇi:	Π' :Ω <u>α</u> C <u>α</u> Ω:
II.	$H \xrightarrow{\sigma} C \frac{\pi}{\pi} \sigma \ddot{N}$	rv. :ö <u>₹</u> s∽ö:

C. POR EL NÚMERO DE PARES COMPARTIDOS

1. ENLACE COVALENTE SIMPLE

$$H \cdot + CI \cdot \longrightarrow H \cdot CI \cdot$$

$$H - CI$$

1. ENLACE COVALENTE DOBLE

3. ENLACE COVALENTE TRIPLE

 σ σ : enlace sigma π : enlace π

$$A = B$$

$$A^{\frac{\pi}{\sigma}}$$
 B

CHEMISTRY

PROPIEDADES DE LOS COMPUESTOS COVALENTES

- 1. Presentan bajo punto de fusión y ebullición, se encuentran en los tres estados.
- 2. Generalmente son insolubles en solventes polares como el agua, pero solubles en solventes apolares como en el Benceno (C6H6)
- 3. Generalmente son malos conductores de la corriente eléctrica.
- 4. Forman moléculas.

Con respecto a los enlaces covalentes y las sustancias covalentes, escriba verdadero (V) o falso (F) según corresponda.

- a. Se producen generalmente por la compartición de pares de electrones. ()
- b. En los enlaces \mathbf{V} covalentes apolares, la diferencia de electronegatividad (Δ EN) generalmente es cero. ()
- c. Generalmente solubles en agua. ()
- d. Los compuestos covalentes presentan bajos puntos de fusión y ebullición. ()

Determine la cantidad de enlaces sigma (σ) en:

RESOLUCIÓN

$$H^{\sigma} = G H$$

$$H^{\sigma} = G H$$

Determine la cantidad de enlaces pi (π) en:

RESOLUCIÓN

¿Qué especie presenta enlace covalente apolar?

- A) HCI
- B) NH₃ C) NaCl D) CO
- E) O_2

RESOLUCIÓ

- A) HCl

- B) NH₃ C) NaCl D) CO
- E) O_2

C. polar C. polar Iónico C. polar C. Apolar

Rpta: E

Determine el número de enlaces sigma (σ) y pi (π) en la siguiente estructura.

RESOLUCIÓN

σ: 13

 π : 3

$$H H$$

$$H-C-C-C-C=C-C \equiv C-H$$

$$H H H H$$

El 1-propanol es un alcohol primario líquido incoloro que se forma naturalmente en pequeñas cantidades durante muchos procesos de fermentación y se usa como solvente en la industria farmacéutica. Con respecto a la estructura

Seleccione la alternativa incorrecta.

- A) Presenta 2 pares de electrones no enlazantes. V
- B) Contiene 2 enlaces apolares y 9 enlaces polares
- C) Contiene un enlace 🛱.
- D) En la molécula hay un total de 11 enlaces sigma/

RESOLUCIÓN

El enlace sigma (σ) se forma entre dos átomos de un compuesto covalente, debido a la superposición directa o frontal de los orbitales; es más fuerte y determina la geometría de la molécula. El enlace pi (π) se forma después del enlace sigma (σ). Indique cuáles de las siguientes moléculas presentan enlaces pi (π) en su estructura.

- I. CS₂
- II. CH₄
- III. HCN

Datos: $C \rightarrow 4 \text{ e- v}$, $H \rightarrow 1 \text{ e- v}$, $S \rightarrow 6 \text{ e- v}$, $N \rightarrow 5 \text{ e- v}$

RESOLUCIÓN

II.CH₄

III.HCN

Rpta: I y III