

800mA, Low Noise, Low Quiescent Current, High PSRR, Low Dropout Linear Regulator

GENERAL DESCRIPTION

The SGM2212 is a low noise, low quiescent current, high PSRR, fast transient response and low dropout voltage linear regulator which is designed using CMOS technology. It provides 800mA output current capability. The operating input voltage range is from 2.7V to 20V. The fixed output voltages are 1.2V, 1.8V, 2.5V, 2.8V, 3.3V, 5V and adjustable output voltage range is from 1.25V to 15V.

Other features include short-circuit current limit and thermal shutdown protection.

The SGM2212 is available in Green TO-252-2, TO-263-3, SOT-223-3 and TDFN-3×3-8L packages. It operates over an operating temperature range of -40°C to +125°C.

FEATURES

- Input Voltage Range: 2.7V to 20V
- Output Current: 800mA
- Fixed Outputs of 1.2V, 1.8V, 2.5V, 2.8V, 3.3V, 5V
- Adjustable Output Voltage Range: 1.25V to 15V
- Output Voltage Accuracy: ±1% at +25°C
- Line Regulation: 0.012% (MAX)
- Load Regulation: 0.4% (MAX)
- Stable with Small Case Size Ceramic Capacitors
- Output Current Limit
- Thermal Shutdown Protection
- -40°C to +125°C Operating Temperature Range
- Available in Green TO-252-2, TO-263-3, SOT-223-3 and TDFN-3×3-8L Packages

APPLICATIONS

Portable Electronic Device
Battery-Powered Equipment
Industrial and medical Equipment
Post Regulator for Switching DC/DC Converters

TYPICAL APPLICATION

Fixed Voltage Typical Application Circuit

Adjustable Voltage Typical Application Circuit

Figure 1. Typical Application Circuits

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM2212-1.8	TO-252-2	-40°C to +125°C	SGM2212-1.8XOB2G/TR	SGMCFB XOB2 XXXXX	Tape and Reel, 2500
SGM2212-2.5	TO-252-2	-40°C to +125°C	SGM2212-2.5XOB2G/TR	SGMCFC XOB2 XXXXX	Tape and Reel, 2500
SGM2212-2.8	TO-252-2	-40°C to +125°C	SGM2212-2.8XOB2G/TR	SGMCFD XOB2 XXXXX	Tape and Reel, 2500
SGM2212-3.3	TO-252-2	-40°C to +125°C	SGM2212-3.3XOB2G/TR	SGMCFE XOB2 XXXXX	Tape and Reel, 2500
SGM2212-5.0	TO-252-2	-40°C to +125°C	SGM2212-5.0XOB2G/TR	SGMCFF XOB2 XXXXX	Tape and Reel, 2500
SGM2212-1.8	TO-263-3	-40°C to +125°C	SGM2212-1.8XOA3G/TR	SGMCF6 XOA3 XXXXX	Tape and Reel, 800
SGM2212-2.5	TO-263-3	-40°C to +125°C	SGM2212-2.5XOA3G/TR	SGMCF7 XOA3 XXXXX	Tape and Reel, 800
SGM2212-2.8	TO-263-3	-40°C to +125°C	SGM2212-2.8XOA3G/TR	SGMCF8 XOA3 XXXXX	Tape and Reel, 800
SGM2212-3.3	TO-263-3	-40°C to +125°C	SGM2212-3.3XOA3G/TR	SGMCF9 XOA3 XXXXX	Tape and Reel, 800
SGM2212-5.0	TO-263-3	-40°C to +125°C	SGM2212-5.0XOA3G/TR	SGMCFA XOA3 XXXXX	Tape and Reel, 800
SGM2212-1.2	SOT-223-3	-40°C to +125°C	SGM2212-1.2XKC3G/TR	0CI XXXXX	Tape and Reel, 2500
SGM2212-1.8	SOT-223-3	-40°C to +125°C	SGM2212-1.8XKC3G/TR	CAD XXXXX	Tape and Reel, 2500
SGM2212-2.5	SOT-223-3	-40°C to +125°C	SGM2212-2.5XKC3G/TR	CAE XXXXX	Tape and Reel, 2500
SGM2212-2.8	SOT-223-3	-40°C to +125°C	SGM2212-2.8XKC3G/TR	CAF XXXXX	Tape and Reel, 2500
SGM2212-3.3	SOT-223-3	-40°C to +125°C	SGM2212-3.3XKC3G/TR	MN4 XXXXX	Tape and Reel, 2500
SGM2212-5.0	SOT-223-3	-40°C to +125°C	SGM2212-5.0XKC3G/TR	MN5 XXXXX	Tape and Reel, 2500
SGM2212-ADJ	TDFN-3×3-8L	-40°C to +125°C	SGM2212-ADJXTDB8G/TR	SGM MN6DB XXXXX	Tape and Reel, 4000

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

TO-252-2/TO-263-3/SOT-223-3/TDFN-3×3-8L

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

VIN to GND	22V
Package Thermal Resistance	
TO-252-2, θ _{JA}	56°C/W
TO-252-2, θ _{JB}	30°C/W
TO-252-2, θ _{JC}	63°C/W
TO-263-3, θ _{JA}	51°C/W
TO-263-3, θ _{JB}	28°C/W
TO-263-3, θ _{JC}	53°C/W
SOT-223-3, θ _{JA}	117°C/W
SOT-223-3, θ _{JB}	29°C/W
SOT-223-3, θ _{JC}	62°C/W
TDFN-3×3-8L, θ_{JA}	82°C/W
TDFN-3×3-8L, θ_{JB}	42°C/W
TDFN-3×3-8L, θ _{JC}	54°C/W
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	7000V
CDM	1000V

RECOMMENDED OPERATING CONDITIONS

Input Voltage Range	2.7V to 20V
Input Effective Capacitance, C _{IN}	1µF (MIN)
Output Effective Capacitance, C _{OUT}	1μF to 10μF
Operating Junction Temperature Range.	40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATIONS

PIN DESCRIPTION

	Р	IN		NAME	FUNCTION
TO-252-2	TO-263-3	SOT-223-3	TDFN- 3×3-8L	NAME	FUNCTION
1	1	1	1	GND	Ground.
2	2	2	5, 6, 7	VOUT	Regulator Output Pin. It is recommended to use a ceramic capacitor with effective capacitance in the range of 1μ F to 10μ F to ensure stability. Pins 5, 6 and 7 must be connected together for TDFN-3×3-8L package.
3	3	3	2, 3, 4	VIN	Input Voltage Supply Pin. Pins 2, 3 and 4 must be connected together for TDFN-3×3-8L package.
_	_	_	8	ADJ	Feedback Input Pin (adjustable voltage version only). Connect this pin to the midpoint of an external resistor divider to adjust the output voltage. Place the resistors as close as possible to this pin.
TAB	TAB	TAB	Exposed Pad	VOUT	Exposed Pad. Connected to VOUT pin.

ELECTRICAL CHARACTERISTICS

 $(V_{IN} = V_{OUT(NOM)} + 1V, C_{IN} = C_{OUT} = 2.2 \mu F, T_J = -40 ^{\circ}C$ to +125 $^{\circ}C$, typical values are at $T_J = +25 ^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	IBOL CONDITIONS		MIN	TYP	MAX	UNITS		
Input Voltage	V _{IN}			2.7		20	V		
D ()//#	.,	00140040 AD I	I _{OUT} = 10mA, T _J = +25°C	1.238	1.25	1.262	.,		
Reference Voltage	V_{ADJ}	SGM2212-ADJ	12-ADJ	1.268	V				
		0011001010	I _{OUT} = 10mA, T _J = +25°C	1.188	1.2	1.212			
		SGM2212-1.2	I _{OUT} = 0 to 800mA	1.182		1.218			
		0011001010	I _{OUT} = 10mA, T _J = +25°C	1.782	1.8	1.818			
		SGM2212-1.8	I _{OUT} = 0 to 800mA	1.773		1.827]		
		00110010 0 5	I _{OUT} = 10mA, T _J = +25°C	2.475	2.5	2.525			
Outro A Valla in a	.,	SGM2212-2.5	I _{OUT} = 0 to 800mA	2.463		2.537	1 ,,		
Output Voltage	V _{OUT}	2011001000	I _{OUT} = 10mA, T _J = +25°C	2.772	2.8	2.828	V		
		SGM2212-2.8	I _{OUT} = 0 to 800mA	2.758		2.842	1		
		00110010 0 0	I _{OUT} = 10mA, T _J = +25°C	3.267	3.3	3.333	1		
		SGM2212-3.3	I _{OUT} = 0 to 800mA	3.251		3.349	1		
		20110010 5 0	I _{OUT} = 10mA, T _J = +25°C	4.950	5.0	5.050	-		
		SGM2212-5.0	I _{OUT} = 0 to 800mA	4.925		5.075			
	ΔV_{OUT}	40.4	SGM2212-ADJ, T _J = +25°C		0.001	0.007	0/ 0/		
	$\Delta V_{IN} \times V_{OUT}$	I _{OUT} = 10mA	SGM2212-ADJ			0.012	%/V		
			SGM2212-1.8, T _J = +25°C		0.2	1.5			
			SGM2212-1.8			2.5	mV		
	ΔV _{оυт}	I _{OUT} = 0mA	SGM2212-2.5, T _J = +25°C		0.2	1.5			
Line Demoleties			SGM2212-2.5			2.5			
Line Regulation			SGM2212-2.8, T _J = +25°C		0.2	1.5			
			SGM2212-2.8			2.5			
			SGM2212-3.3, T _J = +25°C		0.2	1.5			
			SGM2212-3.3			2.5			
			SGM2212-5.0, T _J = +25°C		0.2	1.5			
			SGM2212-5.0			2.5	1		
	ΔV_{OUT}		SGM2212-ADJ, T _J = +25°C		0.08	0.32	0/		
	V _{OUT}	I _{OUT} = 0mA to 800mA	SGM2212-ADJ			0.4	- %		
			SGM2212-1.8, T _J = +25°C		1	4			
			SGM2212-1.8			5	1		
			SGM2212-2.5, T _J = +25°C		1.2	6	1		
			SGM2212-2.5			7	1		
Load Regulation	A3.4		SGM2212-2.8, T _J = +25°C		1.5	6	1 . <i>.</i>		
	ΔV_{OUT}	I _{OUT} = 0mA to 800mA	SGM2212-2.8			8	mV		
			SGM2212-3.3, T _J = +25°C		2	8			
			SGM2212-3.3			10			
			SGM2212-5.0, T _J = +25°C		2	8	7		
			SGM2212-5.0			10			

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{IN} = V_{OUT(NOM)} + 1V, C_{IN} = C_{OUT} = 2.2 \mu F, T_J = -40 ^{\circ}C$ to +125 $^{\circ}C$, typical values are at $T_J = +25 ^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
		I _{OUT} = 100mA, T _J = +25°C		35	45	m)/
		I _{OUT} = 100mA			55	mV
Dropout Voltage (1)	M	I _{OUT} = 500mA, T _J = +25°C		170	210	
$(ADJ, V_{OUT} = 3.3V)$	V_{DROP}	I _{OUT} = 500mA			275	mV
		I _{OUT} = 800mA, T _J = +25°C		280	350	mV
		I _{OUT} = 800mA			450	IIIV
Dropout Voltage ⁽¹⁾ (V _{OUT} = 3.3V)		I _{OUT} = 100mA, T _J = +25°C		50	60	mV
		I _{OUT} = 100mA			80	IIIV
	VDROP	$I_{OUT} = 500 \text{mA}, T_J = +25 ^{\circ}\text{C}$		240	280	mV
	V DROP	I _{OUT} = 500mA			380	IIIV
		$I_{OUT} = 800 \text{mA}, T_J = +25 ^{\circ}\text{C}$		390	450	mV
		I _{OUT} = 800mA		610	IIIV	
Output Current Limit	I _{LIMIT}	$V_{OUT} = 80\% \times V_{OUT(NOM)}$ (2)	810	1100		mA
Short Current Limit	I _{SHORT}	$V_{IN} = 3V$, $V_{OUT} = 0V$		360		mA
		$I_{OUT} = 0$ mA, $T_J = +25$ °C		80	110	μΑ
		I _{OUT} = 0mA			116	
Ground Pin Current		$I_{OUT} = 100 \text{mA}, T_J = +25 ^{\circ}\text{C}$		290	360	
Glound Fill Current	I_{GND}	I _{OUT} = 100mA			370	μA
		$I_{OUT} = 800 \text{mA}, T_J = +25 ^{\circ}\text{C}$		1350	1560	
		I _{OUT} = 800mA			1610	μΑ
Power Supply Rejection Ratio	PSRR	f_{RIPPLE} = 120Hz, V_{RIPPLE} = $\Delta 0.2 V_{P-P}$		80		dB
ADJ Pin Current	I _{ADJ}	$T_J = +25^{\circ}C$		1	5	nA
AD3 Fill Cullent	IADJ				10	IIA
Long Term Stability		1000Hrs, T _J = +125°C		0.1		%
RMS Output Noise		(% of V_{OUT}), f = 10Hz to 100kHz, I_{OUT} = 50mA		0.002		%
Thermal Shutdown Temperature	T_{SHDN}			165		°C
Thermal Shutdown Hysteresis	ΔT_{SHDN}			25		°C

NOTES:

- 1. The dropout voltage is defined as the difference between V_{IN} and V_{OUT} when V_{OUT} falls to 95% × $V_{\text{OUT(NOM)}}$.
- 2. $V_{OUT} = 80\% \times V_{OUT(NOM)}$ when $V_{OUT} \le 2.8V$, $V_{IN} = V_{OUT} + 1.3V$.

TYPICAL PERFORMANCE CHARACTERISTICS

 $T_J = +25^{\circ}C$, $C_{IN} = C_{OUT} = 2.2 \mu F$, unless otherwise noted.

Time (200µs/div)

Power Supply Rejection Ratio vs. Frequency

Power Supply Rejection Ratio vs. Output Current

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 T_J = +25°C, C_{IN} = C_{OUT} = 2.2 μ F, unless otherwise noted.

FUNCTIONAL BLOCK DIAGRAMS

Figure 2. Fixed Output Regulator Block Diagram

Figure 3. Adjustable Output Regulator Block Diagram

APPLICATION INFORMATION

The SGM2212 is a low noise, low quiescent current, high PSRR, fast transient response and low dropout voltage linear regulator. It consumes only 80µA (TYP) quiescent current and provides 800mA output current. The SGM2212 provides the protection functions for output overload, output short-circuit condition and overheating.

Input Capacitor Selection (C_{IN})

The input decoupling capacitor should be placed as close as possible to the VIN pin for ensuring the device stability. 2.2µF or greater X7R or X5R ceramic capacitor is selected to get good dynamic performance.

When V_{IN} is required to provide large current instantaneously, a large effective input capacitor is required. Multiple input capacitors can limit the input tracking inductance. Adding more input capacitors is available to restrict the ringing and to keep it below the device absolute maximum ratings.

Output Capacitor Selection (C_{OUT})

The output capacitor should be placed as close as possible to the VOUT pin. 2.2 μ F or larger X7R or X5R ceramic capacitor is selected to get good dynamic performance. The minimum effective capacitance of C_{OUT} that SGM2212 can remain stable is 1 μ F. For ceramic capacitor, temperature, DC bias and package size will change the effective capacitance, so enough margin of C_{OUT} must be considered in design. Additionally, C_{OUT} with larger capacitance and lower ESR will help increase the high frequency PSRR and improve the load transient response.

Adjustable Regulator

The output voltage of the SGM2212-ADJ can be adjusted from 1.25V to 15V. The ADJ pin will be connected to two external resistors as shown in Figure 4. The output voltage is determined by the following equation:

$$V_{OUT} = V_{ADJ} \times \left(1 + \frac{R_1}{R_2}\right) \tag{1}$$

where:

 V_{OUT} is output voltage and V_{ADJ} is the internal voltage reference, V_{ADJ} = 1.25V.

 R_1 and R_2 can be calculated for any output voltage range using equation 1. Choose R_2 = 10k Ω to maintain a 125 μ A minimum load.

Figure 4. Adjustable Output Voltage Application

Input Power Supply

The input power supply range is from 2.7V to 20V. V_{IN} must be larger than $(V_{OUT} + V_{DROP})$ in application. The input ceramic capacitor must be placed as close as possible to the IN pin, this C_{IN} can help improve the output noise performance of LDO.

Output Current Limit and Short-Circuit Protection

When overload events happen, the output current is internally limited to 1100mA (TYP). When the OUT pin is shorted to ground, the short-circuit protection will limit the output current to 360mA (TYP).

Thermal Shutdown

The SGM2212 can detect the temperature of die. When the die temperature exceeds the threshold value of thermal shutdown, the SGM2212 will be in shutdown state and remain in this state until the die temperature decreases to +140°C.

Power Dissipation (P_D)

Power dissipation (P_D) of the SGM2212 can be calculated by the equation $P_D = (V_{IN} - V_{OUT}) \times I_{OUT}$. The maximum allowable power dissipation ($P_{D(MAX)}$) of the SGM2212 is affected by many factors, including the difference between junction temperature and ambient temperature ($T_{J(MAX)} - T_A$), package thermal resistance from the junction to the ambient environment (θ_{JA}), the rate of ambient airflow and PCB layout. $P_{D(MAX)}$ can be approximated by the following equation:

$$P_{D(MAX)} = (T_{J(MAX)} - T_A)/\theta_{JA}$$
 (2)

Layout Guidelines

To get good PSRR, low output noise and high transient response performance, the input and output bypass capacitors must be placed as close as possible to the VIN pin and VOUT pin separately.

800mA, Low Noise, Low Quiescent Current, High PSRR, Low Dropout Linear Regulator

SGM2212

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

JULY 2023 – REV.A.1 to REV.A.2	Page
Added SGM2212-1.2XKC3G/TR to Package/Ordering Information section	2
Updated Electrical Characteristics section	5
FEBRUARY 2022 – REV.A to REV.A.1	Page
Updated Electrical Characteristics section	6
Changes from Original (DECEMBER 2019) to REV.A	Page
Changed from product preview to production data	All

PACKAGE OUTLINE DIMENSIONS

TO-252-2

Symbol		nsions meters	Dimensions In Inches			
	MIN	MAX	MIN	MAX		
Α	2.200	2.400	0.087	0.094		
A1	0.000	0.127	0.000	0.005		
b	0.660	0.860	0.026	0.034		
С	0.460	0.580	0.018	0.023		
D	6.500	6.700	0.256	0.264		
D1	5.100	5.460	0.201	0.215		
D2	4.830	REF	0.190 REF			
E	6.000	6.200	0.236	0.244		
е	2.186	2.386	0.086	0.094		
L	9.800	10.400	0.386	0.409		
L1	2.900	REF	0.114	REF		
L2	1.400	1.700	0.055	0.067		
L3	1.600	REF	0.063	REF		
L4	0.600	1.000	0.024	0.039		
θ	0°	8°	0°	8°		
V	5.350	REF	0.211 REF			

- Body dimensions do not include mode flash or protrusion.
 This drawing is subject to change without notice.

PACKAGE OUTLINE DIMENSIONS

TO-263-3

Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
А	4.470	4.670	0.176	0.184	
A1	0.000	0.150	0.000	0.006	
В	1.120	1.420	0.044	0.056	
b	0.710	0.910	0.028	0.036	
b1	1.170	1.370	0.046	0.054	
С	0.310	0.530	0.012	0.021	
c1	1.170	1.370	0.046	0.054	
D	10.010	10.310	0.394	0.406	
E	8.500	8.900	0.335	0.350	
е	2.540) TYP	0.100 TYP		
e1	4.980	5.180	0.196	0.204	
L	14.940	15.500	0.588	0.610	
L1	4.950	5.450	0.195	0.215	
L2	2.340	2.740	0.092	0.108	
θ	0°	8°	0°	8°	
D1	7.510	8.510	0.296	0.335	
V	4.800	5.800	0.189	0.228	

- Body dimensions do not include mode flash or protrusion.
 This drawing is subject to change without notice.

PACKAGE OUTLINE DIMENSIONS SOT-223-3

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	_	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α		1.800		0.071	
A1	0.020	0.100	0.001	0.004	
A2	1.500	1.700	0.059	0.067	
b	0.660	0.840	0.026	0.033	
b1	2.900	3.100	0.114	0.122	
С	0.230	0.350	0.009	0.014	
D	6.300	6.700	0.248	0.264	
Е	3.300	3.700	0.130	0.146	
E1	6.700	7.300	0.264	0.287	
е	2.300 BSC		0.091	BSC	
L	0.750		0.030		
θ	0°	10°	0°	10°	

NOTES

- 1. Body dimensions do not include mode flash or protrusion.
- 2. This drawing is subject to change without notice.

PACKAGE OUTLINE DIMENSIONS

TDFN-3×3-8L

k D1 N1

TOP VIEW

SIDE VIEW

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	_	nsions meters	Dimensions In Inches			
J	MIN	MAX	MIN	MAX		
Α	0.700	0.800	0.028	0.031		
A1	0.000	0.050	0.000	0.002		
A2	0.203	REF	0.008 REF			
D	2.900	3.100	0.114	0.122		
D1	2.200	2.400	0.087	0.094		
E	2.900	3.100	0.114	0.122		
E1	1.400	1.600	0.055	0.063		
k	0.200	MIN	0.008 MIN			
b	0.180	0.300	0.007	0.012		
е	0.650) TYP	0.026 TYP			
L	0.375	0.575	0.015	0.023		

NOTE: This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

DIRECTION OF FEED

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TO-252-2	13"	16.4	6.90	10.50	2.70	4.0	8.0	2.0	16.0	
TO-263-3	13"	24.4	10.80	16.13	5.21	4.0	16.0	2.0	24.0	
SOT-223-3	13"	12.4	6.55	7.25	1.90	4.0	8.0	2.0	12.0	Q3
TDFN-3×3-8L	13"	12.4	3.35	3.35	1.13	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
13"	386	280	370	5	DD0002