

National University

of Computer and Emerging Sciences Chiniot-Faisalabad Campus

EE1005 – Digital Logic Design Quiz# 2

Instructor: Muhammad Adeel Tahir Sections: BCS-2F Name:	Time:	60 Minutes	
Roll No:	Total Marks: 50		
Instructions: • Read each question carefully; n requirements. • Scientific calculators are not		Ç	

Question 1: Solve the following parts of the questions carefully.

Marks for each question are indicated alongside the question.

[12 marks]

a. Convert the sequence from 60_{10} , 61_{10} to Gray code. Show proper working or no marks will be given (2+2=4)

b. Convert the following into BCD code and add: 295 + 157

(2)

c.	In an 8-bit two's-complement system, what decimal number does the bit pattern 1000011 represent? Show proper steps in finding the actual decimal number. (2)	
	represent: Show proper steps in finding the actual decimal number.	,
d.	One of the following bit patterns is valid BCD (binary-coded decimal), but the other one is not, Which one is not valid? For credit to be given, you must give a correct reason. (1)	S
_	1. 100110110100 2. 100100111000	=
_		
W te	That number does the valid bit pattern from part (d) represent? Give your answer in base n. (1))
	The <i>ten-bit</i> Gray code for (353) ₁₀ is 0111010001. Explain briefly but precisely why it cannot true that 0111010100 is the ten-bit Gray code for (354) ₁₀ also calculate gray code for 35410 (2)	
R	eason:	-
_		-
G	ray code for 35410:	
Q	uestion 2: Solve the following problems, show proper working. [15 marks]	
	a. Using 10's complement. subtract 72532 - 3250. (2)	

b.	Given the two binary numbers $X = 1010100$ and $Y = 1000$	0011 perform the subtraction
	i) X - Y andii) Y - X by using 2's complements.	(2) (2)

- c. Simplify the given Boolean expressions, and specify the laws used for each step within brackets where the question does not specifically mention which laws to be used. Note: If the laws used are not mentioned, the question will receive zero marks even if the answer is correct.
 (4)
- i) $[A\overline{B}(C + BD) + \overline{A}\overline{B}]C$

ii)	Apply Demorgan's theorem to the following expressions:	(1+1+1=3)
	a. $\overline{(A+B)} + \overline{C}$	

b.
$$\overline{(\overline{A}+B)+CD}$$

c.
$$\overline{(A+B)\overline{C}\,\overline{D}+E+\overline{F}}$$

Taking the Boolean expression of Exclusive OR Gate as starting point. Use any rules or laws that are applicable to develop an expression for the exclusive-NOR gate. (2)

Working:			

Q3: Given the following circuit below, Solve the given parts carefully.	[10]
---	------

- a) Derive the Boolean expression from the following circuit diagram. Make sure you label each output carefully in neat and clean handwriting (**on the diagram**) to score the maximum marks. Write your final answer in the space provided. (5)
- b) Draw the truth table of the derived equation. (5)

F = ____

Truth Table:			

Q:4 Determine the output time diagram (waveform) for the XOR gate and for the XNOR gate, given the input waveforms, A and B, in Figure given below. (5)

Q5: Convert the hexadecimal to base-7. Proper working must be shown. (2.5+2.5=5)
(9A3.F)₁₆

Q:6 Choose the correct answer

[3 marks]

- 1) Which of the following is a characteristic of Gray Code?
- a) Only one bit changes at a time
- b) It is a weighted code
- c) It is a decimal to binary code
- d) All of the above
- 2) What is the range of 8-bit signed binary numbers?
- a) -128 to 127
- b) 0 to 255
- c) -256 to 255
- d) -127 to 128
- 3) Which of the following gates is known as an inverter?
- a) AND gate
- b) OR gate
- c) NOT gate
- d) NAND gate