Multivariate Analysis

Javier Ferrando Monsonis

PCA

PCA Analysis in R^p

We consider \mathbf{X} as the centered dataset matrix of n observations and p features.

$$N = \begin{pmatrix} w_1 & 0 \\ & \ddots & \\ 0 & w_n \end{pmatrix}$$

 ${\bf N}$ is a diagonal matrix containing weights (importance) for each of the observations in the data.

 $\mathbf{u}_1 \in R^p$ is considered a unitary vector defining a direction in R^p . Ψ_{1i} represents the projection of the observation i on \mathbf{u}_1 . When projecting all the individuals on \mathbf{u}_1 , we get

$$\Psi_1 = \mathbf{X} \cdot \mathbf{u}_1$$

The goal is to obtain orthogonal vectors \mathbf{u} in the directions which maximizes the variance (or inertia I_n) of their Ψ , maximizing the sum of the individual's projections on \mathbf{u} . So, in the case of the First Principal Component the objective function we will try to maximize is

$$\max_{\mathbf{u}_1} I_{total} = \max_{\mathbf{u}_1} \sum_{i=1}^n w_i \Psi_{1i}^2 = \Psi_1^\intercal \mathbf{N} \Psi_1 = \mathbf{u}_1^\intercal \mathbf{X}^\intercal \mathbf{N} \mathbf{X} \mathbf{u}_1$$

Subject to $\mathbf{u}_1\mathbf{u}_1^{\mathsf{T}} = \|\mathbf{u}_1\|_2^2 = 1$

Method of Lagrange multipliers $\rightarrow \mathcal{L}(x, y, \lambda) = f(x, y) - \lambda g(x, y)$,

$$\ell = \mathbf{u}_1^\mathsf{T} \mathbf{X}^\mathsf{T} \mathbf{N} \mathbf{X} \mathbf{u}_1 - \lambda_1 (\mathbf{u}_1^\mathsf{T} \mathbf{u}_1 - 1)$$

Setting $\frac{\partial \ell}{\partial u} = 0$

$$2\mathbf{X}^{\mathsf{T}}\mathbf{N}\mathbf{X}\mathbf{u}_{1} - 2\lambda_{1}\mathbf{u}_{1} = 0$$

$$\mathbf{X}^{\mathsf{T}}\mathbf{N}\mathbf{X}\mathbf{u}_{1} = \lambda_{1}\mathbf{u}_{1}$$

Since we are using a centered matrix, $\mathbf{X}^{\intercal}\mathbf{N}\mathbf{X} = Cov(\mathbf{X})$, \mathbf{u}_1 represents an eigenvector of $Cov(\mathbf{X})$ and λ_1 its associated eigenvalue. Taking the largest λ_1 will give the eigenvector with maximum variance (First Principal Component).

 $\Psi_{\alpha} \in R^n$ where each component represent the projection of each individual i on the Principal Component u_{α} .

Since u_1 is a unitary vector we deduce from previous formulas that $\Psi_1^\intercal \mathbf{N} \Psi_1 = \lambda_1 = var(\Psi_1)$

$$I_{total} = \sum_{j=1}^{p} \sum_{i=1}^{n} w_i (x_{ij} - \overline{x}_j)^2 = \sum_{j=1}^{p} var(x_j) = \sum_{\alpha=1}^{p} \lambda_{\alpha}$$

Projected inertia on the first axis

$$I_1 = \sum_{i=1}^{n} \frac{1}{n} \Psi_{1i}^2 = \lambda_1$$

When working with standardized **X** matrix, $\mathbf{X}^{\intercal}\mathbf{N}\mathbf{X} = Cor(\mathbf{X})$

PCA Analysis in \mathbb{R}^n

 $\mathbf{v}_1 \in R^n$ is considered a unitary vector defining a direction in R^n . φ_{1j} denotes the projections of variable j onto \mathbf{v}_1 , $\mathbf{X}^{\intercal}\mathbf{N}^{1/2}\mathbf{v}_1$, when using a standardized matrix, $\varphi_1 = cor(\mathbf{X}, \Psi_1)$. The function to maximize is

$$\max_{\mathbf{v}_1} I_{total} = \max_{\mathbf{v}_1} \sum_{j=1}^p \varphi_{1j}^2 = \varphi_1^\mathsf{T} \varphi_1 = \mathbf{v}_1^\mathsf{T} \mathbf{N}^{1/2} \mathbf{X} \mathbf{X}^\mathsf{T} \mathbf{N}^{1/2} \mathbf{v}_1$$

Subject to $\mathbf{v}_1\mathbf{v}_1^{\mathsf{T}} = \|\mathbf{v}_1\|_2^2 = 1$ Following the same optimization procedure that in R^p we get

$$\mathbf{N}^{1/2}\mathbf{X}\mathbf{X}^{\mathsf{T}}\mathbf{N}^{1/2}\mathbf{v}_1 = \lambda_1\mathbf{v}_1$$

Transition relationships between both fits

$$\mathbf{u}_{\alpha} = \lambda^{-1/2} \mathbf{X}^{\mathsf{T}} \mathbf{N}^{1/2} \mathbf{v}_{\alpha}$$

$$\mathbf{v}_{\alpha} = \lambda^{-1/2} \mathbf{N}^{1/2} \mathbf{X} \mathbf{u}_{\alpha}$$

Singular Value Decomposition

Let's call $\mathbf{M} = \mathbf{N}^{1/2}\mathbf{X}$

$$\mathbf{M}\mathbf{u}_{\alpha} = \mathbf{v}_{\alpha}\sqrt{\lambda_{\alpha}}$$

$$\mathbf{M}^{\intercal}\mathbf{v}_{\alpha} = \mathbf{u}_{\alpha}\sqrt{\lambda_{\alpha}}$$

In matrix form

$$\mathbf{M}\mathbf{U} = \mathbf{V}\Lambda^{1/2} o \mathbf{M} = \mathbf{V}\Lambda^{1/2}\mathbf{U}^{\mathsf{T}}$$

So, the singular values of \mathbf{M} are the ones contained in the diagonal of $\Lambda^{1/2}$, been the eigenvalues of $\mathbf{M}\mathbf{M}^\intercal = \mathbf{N}^{1/2}\mathbf{X}\mathbf{X}^\intercal\mathbf{N}^{1/2}$ the square of the singular values obtained.

Attributes from PCA RFactominer

Having pca\$ind and pca\$var as the objects returned by PCA function.

• coord

Values of the projections of individuals and variables on the Principal Components

• cos2

Contribution (importance) of a component to the squared distance of the observation to the origin (G) in the original cloud of points. Quality of the representations.

$$\cos^2(i,\alpha) = \frac{\Psi_{\alpha i}^2}{d_{i,G}^2}$$

$$\cos^2(j,\alpha) = \frac{\varphi_{\alpha j}^2}{s_j^2}$$

• contrib

Contribution of an individual or variable to the variance explained by a component α

$$ctr(i,\alpha) = \frac{w_i \Psi_{\alpha i}^2}{\lambda_{\alpha}}$$

$$ctr(j,\alpha) = \frac{\varphi_{\alpha j}^2}{\lambda_{\alpha}}$$

Factominer \$contrib multiplies by 100 these values, so the sum of contributions is 100.

- dist(\$ind)
- cor(\$var)

Correlation between a component and a variable $\varphi_{\alpha j} = cor(x_j, \Psi_1)$ (standardized **X**). How much information they share.

Supplementary variables

Categorical variables

In \mathbb{R}^p , its displayed the projection of the centroid of the individuals which share each of the categories onto the Principal Components.

Continuous variables

In \mathbb{R}^n , the correlation between the supplementary variable and the Principal Components are shown.

Correspondence Analysis

$\overline{\mathbf{C}\mathbf{A}}$

$$x_{i\bullet} = \sum_{j=1}^{J} x_{ij}$$
 $x_{\bullet j} = \sum_{i=1}^{I} x_{ij}$ $n = x_{\bullet \bullet} = \sum_{i,j} x_{ij}$

In CA it is also considered the probability tables associated with contingency tables as the general term $f_{ij} = x_{ij}/n$, the probability of carrying both the categories i (of V1) and those of j (V2)

$$f_{i\bullet} = \sum_{j=1}^{J} f_{ij}$$
 $f_{\bullet j} = \sum_{i=1}^{I} f_{ij}$ $f_{\bullet \bullet} = \sum_{i,j} f_{ij} = 1$

Independence Model and χ^2 Test

$$\chi^2 \ = \ \sum_{i,j} \frac{(\text{Actual Sample Size} - \text{Theoretical Sample Size})^2}{\text{Theoretical Sample Size}},$$

$$\chi^2 \quad = \quad \sum_{i,j} \frac{(nf_{ij} - nf_{i\bullet}f_{\bullet j})^2}{nf_{i\bullet}f_{\bullet j}} = n \sum_{i,j} \frac{(f_{ij} - f_{i\bullet}f_{\bullet j})^2}{f_{i\bullet}f_{\bullet j}} = n \Phi^2,$$

If each category of V_1 where independent from every category of V_2

$$\forall i, j \quad \frac{f_{ij}}{f_{i\bullet}} = f_{\bullet j}$$

 $f_{\bullet j}$ is the conditional probability $P(j|i) = \frac{P(j,i)}{P(i)}$. So, the probability of carrying category j when carrying category i does not depend on the category i (in the independence model).

The cloud of row profiles

Distance between two profiles: $d_{\chi^2}^2(i,i') = \sum_{j=1}^J \frac{1}{f_j} \left(\frac{f_{ij}}{f_{i.}} - \frac{f_{i'j}}{f_{i'.}}\right)^2$

Distance to the mean profile G_l : $d_{\chi^2}^2(i,G_l) = \sum_{j=1}^J \frac{1}{f_j} \left(\frac{f_{ij}}{f_{i.}} - f_j\right)^2$

The cloud of column profiles

Distance between two profiles: $d_{\chi^2}^2(j,j') = \sum_{i=1}^{I} \frac{1}{f_i} \left(\frac{f_{ij}}{f_j} - \frac{f_{ij'}}{f_{j'}}\right)^2$ Distance to the mean profile G_J : $d_{\chi^2}^2(j,G_J) = \sum_{i=1}^{I} \frac{1}{f_i} \left(\frac{f_{ij}}{f_i} - f_{i,i}\right)^2$

The further the data is from independence, the more the profiles spread from the origin

Inertia(N_I/G_I) =
$$\sum_{i=1}^{J} Inertia(i/G_I) = \sum_{i=1}^{J} f_{i.} d_{\chi^2}^2(i, G_I)$$

= $\sum_{i=1}^{J} f_{i.} \left(\sum_{j=1}^{J} \frac{1}{f_j} \left(\frac{f_{ij}}{f_i} - f_j \right)^2 \right)$
= $\sum_{i=1}^{J} \sum_{j=1}^{J} \frac{(f_{ij} - f_{i.}f_{.j})^2}{f_{i.}f_{.j}} = \frac{\chi^2}{n} = \phi^2$

 ϕ^2 measures the strength of the link

Find **P** that maximizes $\sum_{i=1}^{I} f_{i\bullet}(OH_i)^2$

Decision trees

Regression tree

Classification tree

Split criterion

AID

AID split criterion is based on decomposition of variance

$$\sum_{i=1}^{n_t} (y_i - \overline{y}_t)^2 = \sum_{k=1}^q n_{t_k} (\overline{y}_{t_k} - \overline{y}_t) + \sum_{k=1}^q \sum_{i \in t_k}^{n_{t_k}} (y_i - \overline{y}_{t_k})^2$$

Where the first term of the equation refers to the variance between child nodes t_k and parent node t and the second term, the variance within child nodes.

 y_i denotes the response for every individual i out of n_t (number of individuals in node t), q the number of children nodes (2 in a binary tree), \overline{y}_t the mean response in node t.

We can now calculate the F statistic, $F = \frac{\text{between-nodes variability}}{\text{within-nodes variability}}$

$$F = \frac{\sum_{k=1}^{q} n_{t_k} (\overline{y}_{t_k} - \overline{y}_t)/q - 1}{\sum_{k=1}^{q} \sum_{i \in t_k}^{n_{t_k}} (y_i - \overline{y}_{t_k})^2/n - q}$$

The goal is to obtain the feature and its cutpoint that leads to the highest F value, increasing as much as possible the between-nodes variability.

CHAID

CHAID split criterion is based on the Chi-square statistic comparing the frequency of each class and children node

$$\chi^2 = \sum_{k=1}^m \sum_{j=1}^q \frac{\left(n_{kt_j} - n_k \cdot \frac{n_{t_j}}{n_t}\right)^2}{n_k \cdot \frac{n_{t_j}}{n_k}}$$

The goal is to obtain the feature and its cutpoint that leads to the highest χ^2 value.

Impurity of a node

p(j|t) probability of class j in node t

Categorical response

Gini

$$i(t) = \sum_{i \neq j} p(j|t)p(i|t) = 1 - \sum_{j}^{q} p_j^2$$

• Information (Entropy)

$$i(t) = \sum_{j} p(j|t)log_2 p(j|t)$$

Continuous response

• Variance

$$i(t) = \frac{\sum_{i \in t} (y_i - \overline{y}_t)}{n}$$

The objective is to maximize the decrement of impurity between the parent and its children. The decrement of impurity is defined as follows

$$\Delta i(t) = i(t) - \frac{n_{tl}}{n_t} i(t_l) - \frac{n_{tr}}{n_t} i(t_r)$$

Cost of the tree

Cost of a node (classification tree)

$$r(t) = 1 - \max_{j} p(j|t)$$

Cost of a node (regression tree)

$$r(t) = \frac{1}{n_t} \sum_{i \in t}^{n_t} (y_i - \overline{y}_t)^2$$

Cost of a classification tree

$$R(t) = \frac{\sum_{t \in T} p(t)r(t)}{r(root)} \cdot 100$$

Cost of a regression tree (guessing)

$$R(t) = \sum_{t \in T} \frac{1}{n_t} \sum_{i \in t}^{n_t} (y_i - \overline{y}_t)^2$$

The criterion to optimize is to minimize R(t)

Penalization of complexity

Since the previous objective function would lead to large trees, we use α as a complexity parameter to control its size.

The new objective function becomes

$$Min(R(t) + \alpha |T|)$$

Model selection

Training data: train trees with increasing values of α . Each obtained tree will have Min(R(t)) within the set of trees with complexity α (|T|).

Validation data: calculate every tree R(T) using validation data and get the optimum one.

ROC and Concentration curves

Confusion matrix			
In Test data	Predicted class YES	Predicted class NO	
Real class YES	TP	FN	P
Real class NO	FP	TN	N

$$Precision = \frac{1}{2} \left[\frac{TP}{TP + FP} + \frac{TN}{TN + FN} \right]$$

$$Accuracy = 1 - \frac{FN + FP}{n}$$

$$Recall = Sensitivity = \frac{TP}{P}$$

Association Rules

Support

$$Support(I_k) = \frac{|T|\{I_k\} \subseteq T}{|\tau|}$$

Probability of finding I_k itemset in the set T of transactions

Confidence

$$Confidence(LHS \rightarrow RHS) = \frac{Support(LHS, RHS)}{Support(LHS)}$$

Probability of RHS, having occurred LHS

$$P(RHS|LHS) = \frac{P(RHS, LHS)}{P(LHS)}$$

Lift

$$Lift(LHS \rightarrow RHS) = \frac{Support(LHS, RHS)}{Support(LHS) \cdot Support(RHS)}$$

Lift $\in [0, \infty]$, can be interpreted as how much better is a rule than a random prediction of the consequent (RHS). For Lift values < 1, should rely on Support(RHS) rather than following the rule.