Real Analysis

Problem Set 5

June 10, 2021

I. Show that the $\sum x_n \notin \mathbb{R}$ where x_n are as follows:

(a) $x_n = 1$

(b)
$$x_n = (-1)^n$$

Does $\sum x_n \in \overline{R}$ in the each of the above?

- 2. Let $x_n \ge 0$ such that $\sum x_n \in \mathbb{R}$. If $m \ge 1$, show that $\sum (x_n)^m \in \mathbb{R}$. What happens if $m \in (0,1)$?
- 3. Let $f \in \mathbb{R}^{\mathbb{N}}$ be a sequence. Let $i, j \in \mathbb{N}^{\mathbb{N}}$ be strictly increasing functions such that $i(\mathbb{N}) \cup j(\mathbb{N}) = \mathbb{N}$ and $i(\mathbb{N}) \cap j(\mathbb{N}) = \emptyset$. Now look at the subsequences $\alpha \coloneqq f \circ i, \beta \coloneqq f \circ j \in \mathbb{R}^{\mathbb{N}}$. In simpler terms, we are looking at two disjoint subsequences which exhaust the original sequence. If α, β converge to the same limit $L \in \mathbb{R}$, show that f converges to $L \in \mathbb{R}$.
- 4. Let $x_n \ge 0$ be a decreasing sequence such that $\lim x_n = 0$. Consider $s_n = \sum_{i=1}^n (-1)^n x_i$.
 - (a) Show that each subsequence $\{s_{2n}\}$ and $\{s_{2n-1}\}$ is monotonic and bounded.
 - (b) Show that $\lim s_{2n} = \lim s_{2n-1}$. Call this limit *L*.
 - (c) Conclude that $\lim s_n = L$.
- 5. Show that $\sum \frac{(-1)^n}{n} \in \mathbb{R}$.