Tidal Constituents

This Standard list of Tidal Constituents was prepared by Mr Bernard Simon of SHOM and Cdr John Page of the UKHO on behalf of the IHO Tidal Committee.

Comments on this list are welcomed and should be sent to Christopher.Jones@ukho.gov.uk, gwenaele.jan@shom.fr, and gael.andre@shom.fr with a copy to the IHB David.Wyatt@iho.int

In the interests of safe navigation, effective oil and hazardous material spill response, efficient search and rescue and improved environmental management, the development of quality-assured tidal predictions is a complicated matter, where comprehensive knowledge and experience of tidal theory and practice are absolute prerequisites. This list contains information about constituents. It is not intended to be used to produce accurate tidal predictions. Neither the IHO nor anyone supplying the information are responsible for any use, misuse or non-use to which this information may be put.

Name	Speed	XDO		Nodal
Name	(Deg/hr)	Numerical	Alphabetical	Correction

Long Term Constituents

Zo		0.000 000	0 555 555	Z ZZZ ZZZ	Z
Sa		0.041 067	0 565 545	Z ZAZ ZYZ	Z
Sa		0.041 069	0 565 555	Z ZAZ ZZZ	Z
Ssa		0.082 137	0 575 555	Z ZBZ ZZZ	Z
Sta		0.123 204	0 585 544	Z ZCZ ZYY	Х
MSm		0.471 521	0 636 555	Z AXA ZZZ	Х
Mnum	(Mvm)	0.471 521	0 636 555	Z AXA ZZZ	Х
Mm		0.544 375	0 654 555	Z AZY ZZZ	у
MSf		1.015 896	0 735 555	Z BXZ ZZZ	b
MSo		1.015 896	0 735 555	Z BXZ ZZZ	b
SM		1.015 896	0 735 555	Z BXZ ZZZ	Х
Mf		1.098 033	0 755 555	Z BZZ ZZZ	у
KOo		1.098 033	0 755 555	Z BZZ ZZZ	Х
MKo		1.098 033	0 755 555	Z BZZ ZZZ	Х
Snu2	(Sv2)	1.487 417	0 816 555	Z CVA ZZZ	Х
SN		1.560 270	0 834 555	Z CXY ZZZ	Х
MStm		1.569 554	0 836 555	Z CXA ZZZ	Х
Mfm		1.642 408	0 854 555	Z CZY ZZZ	а
2SM		2.031 792	0 915 555	Z DVZ ZZZ	С
MSqm		2.113 929	0 935 555	Z DXZ ZZZ	b
Mqm		2.186 782	0 953 555	Z DZX ZZZ	m
2SMN		2.576 166		Z EVY ZZZ	Х

Diurnal Constituents

2Q1 12.854 286 1 257 554 A WZB ZZY NJ1 12.854 286 1 257 554 A WZB ZZY nuJ1 (νJ1) 12.927 140 1 275 554 A WBZ ZZY sigma1 (σ1) 12.927 140 1 275 554 A WBZ ZZY	0 X 0 0
nuJ1 (vJ1) 12.927 140 1 275 554 A WBZ ZZY	0
	0
sigma1 (c1) 12.927 140 1 275 554 A WBZ ZZY	
1	_
Q1 13.398 661 1 356 554 A XZA ZZY	0
NK1 13.398 661 1 356 555 A XZA ZZZ	Х
rho1 (ρ1) 13.471 515 1 374 554 A XBY ZZY	0
nuK1 (vK1) 13.471 515 1 374 554 A XBY ZZY	Х
O1 13.943 036 1 455 554 A YZZ ZZY	у
MK1 13.943 036 1 455 554 A YZZ ZZY	Х
MS1 13.984 104 1 465 557 A YAZ ZZB	Х
MP1 14.025 173 1 475 555 A YBZ ZZZ	m
MP1 14.025 173 1 475 556 A YBZ ZZA	m
tau1 (τ1) 14.025 173 1 475 556 A YBZ ZZA	k
M1B 14.487 410 1 554 554 A ZZY ZZY	у
M1B 14.487 410 1 554 556 A ZZY ZZA	Υ
M1C 14.492 052 1 555 555 A ZZZ ZZZ	Υ
M1 14.492 052 1 555 556 A ZZZ ZZA	Υ
M1 14.492 052 1 555 557 A ZZZ ZZB	Υ
NO1 14.496 694 1 556 556 A ZZA ZZA	Χ
M1A 14.496 694 1 556 556 A ZZA ZZA	Υ
M1 14.496 694 1 556 556 A ZZA ZZA	у
LP1 14.569 548 1 574 554 A ZBY ZZY	Х
chi1 (χ1) 14.569 548 1 574 556 A ZBY ZZA	j
pi1 (π1) 14.917 865 1 625 564 A AWZ ZAY	Z
TK1 14.917 865 1 625 564 A AWZ ZAY	Χ
P1 14.958 931 1 635 554 A AXZ ZZY	Z
SK1 14.958 931 1 635 555 A AXZ ZZZ	Х

Name		Speed	XI	DO	Nodal
	(Deg/hr)	Numerical	Alphabetical	Correction	
S1		15.000 000	1 645 555	A AYZ ZZZ	Z
S1		15.000 000	1 645 557	A AYZ ZZB	Z
S1		15.000 002	1 645 566	A AYZ ZAA	Z
SP1		15.041 069	1 655 555	A AZZ ZZZ	Х
K1		15.041 069	1 655 555	A AZZ ZZZ	у
MO1		15.041 069	1 655 555	A AZZ ZZZ	Х
K1		15.041 069	1 655 556	A AZZ ZZA	у
RP1		15.082 135	1 665 544	A AAZ ZYY	Х
psi1	(ψ1)	15.082 135	1 665 546	A AAZ ZYA	Z
phi1	(Φ 1)	15.123 206	1 675 556	A ABZ ZZA	j
KP1		15.123 206	1 675 556	A ABZ ZZA	Х
lambdaO1	(λΟ1)	15.512 590	1 736 554	A BXA ZZY	Х
theta1	(θ1)	15.512 590	1 736 556	A BXA ZZA	j
MQ1		15.585 443	1 754 555	A BZY ZZZ	Х
J1		15.585 443	1 754 556	A BZY ZZA	у
2PO1		15.974 827	1 815 554	A CVZ ZZY	Х
SO1		16.056 964	1 835 555	A CXZ ZZZ	Х
SO1		16.056 964	1 835 556	A CXZ ZZA	Х
001		16.139 102	1 855 556	A CZZ ZZA	d
ups1	(v1)	16.683 476	1 954 556	A DZY ZZA	d
KQ1		16.683 476	1 954 556	A DZY ZZA	Х

Semi-Diurnal Constituents

3M(SK)2 26	6.407 938 6.870 175	2 096 555	B UDA ZZZ	Х
	6.870 175	0 475 555		
0141/00		2 175 555	B VBZ ZZZ	Х
3MKS2 26	6.870 175	2 175 555	B VBZ ZZZ	Х
2NS2 26	6.879 459	2 177 555	B VBB ZZZ	Х
3M2S2 26	6.952 313	2 195 555	B VDZ ZZZ	Х
3MS2 26	6.952 313	2 195 555	B VDZ ZZZ	Х
2NK2S2 26	6.961 596	2 197 555	B VDB ZZZ	Х
OQ2 27	7.341 696	2 256 555	B WZA ZZZ	Х
MNK2 2	7.341 696	2 256 555	B WZA ZZZ	Х
OQ2 27	7.341 696	2 256 557	B WZA ZZB	Х
MNS2 2	7.423 834	2 276 555	B WBA ZZZ	Х
eps2 (ε2) 27	7.423 834	2 276 555	B WBA ZZZ	m
MnuS2 (MvS2) 23	7.496 687	2 294 555	B WDY ZZZ	Х
2ML2S2 2	7.496 687	2 294 557	B WDY ZZB	Х
MNK2S2 2	7.505 971	2 296 555	B WDA ZZZ	Х
2MS2K2 2	7.803 934	2 335 555	B XXZ ZZZ	Х
2MK2 2	7.886 071	2 355 555	B XZZ ZZZ	Х
O2 27	7.886 071	2 355 555	B XZZ ZZZ	Х
NLK2 27	7.886 071	2 355 557	B XZZ ZZB	Х
2N2 27	7.895 355	2 357 555	B XZB ZZZ	m
mu2 $(\mu 2)$ 27	7.968 208	2 375 555	B XBZ ZZZ	m
2MS2 2	7.968 208	2 375 555	B XBZ ZZZ	Х
SNK2 28	3.357 592	2 436 555	B YXA ZZZ	Х
NA2 28	3.398 661	2 446 555	B YYA ZZZ	f
NA2 28	3.398 663	2 446 565	B YYA ZAZ	f
N2 28	3.439 730	2 456 555	B YZA ZZZ	m
KQ2 28	8.439 730	2 456 555	B YZA ZZZ	Х
NB2 28	3.480 796	2 466 545	B YAA ZYZ	f
NA2* 28	3.480 798	2 466 555	B YAA ZZZ	f
nu2 (v2) 28	8.512 583	2 474 555	B YBY ZZZ	m
2KN2S2 28	8.604 004	2 496 555	B YDA ZZZ	Х

No	.ma	Speed	X	DO	Nodal
IN a	ime	(Deg/hr)	Numerical	Alphabetical	Correction
MSK2		28.901 967	2 535 555	B ZXZ ZZZ	Х
OP2		28.901 967	2 535 555	B ZXZ ZZZ	Х
OP2		28.901 967	2 535 557	B ZXZ ZZB	Х
gamma2	(γ2)	28.911 251	2 537 557	B ZXB ZZB	у
MA2	(1 /	28.943 036	2 545 555	B ZYZ ZZZ	f
MPS2		28.943 036	2 545 556	B ZYZ ZZA	Х
alpha2	(α2)	28.943 038	2 545 567	B ZYZ ZAB	у
M(SK)2	,	28.943 038	2 545 567	B ZYZ ZAB	X
M2		28.984 104	2 555 555	B ZZZ ZZZ	у
KO2		28.984 104	2 555 555	B ZZZ ZZZ	X
M(KS)2		29.025 171	2 565 545	B ZAZ ZYZ	Х
MSP2		29.025 173	2 565 554	B ZAZ ZZY	Х
MB2		29.025 173	2 565 555	B ZAZ ZZZ	f
MA2*		29.025 173	2 565 555	B ZAZ ZZZ	f
MKS2		29.066 242	2 575 555	B ZBZ ZZZ	X
delta2	(δ2)	29.066 242	2 575 555	B ZBZ ZZZ	у
M2(KS)2	(=)	29.148 379	2 595 555	B ZDZ ZZZ	X
2KM2S2		29.148 379	2 595 555	B ZDZ ZZZ	X
2SN(MK)2		29.373 488	2 616 555	B AVA ZZZ	X
lambda2	(λ2)	29.455 625	2 636 557	B AXA ZZB	m
L2	(102)	29.528 479	2 654 557	B AZY ZZB	У
2MN2		29.528 479	2 654 557	B AZY ZZB	X
L2A		29.528 479	2 654 557	B AZY ZZB	p
L2B		29.537 763	2 656 555	B AZA ZZZ	q
NKM2		29.537 763	2 656 555	B AZA ZZZ	X
2SK2		29.917 863	2 715 555	B BVZ ZZZ	X
T2		29.958 933	2 725 565	B BWZ ZAZ	Z
S2		30.000 000	2 735 555	B BXZ ZZZ	Z
KP2		30.000 000	2 735 555	B BXZ ZZZ	X
R2		30.041 067	2 745 547	B BYZ ZYB	Z
K2		30.082 137	2 755 555	B BZZ ZZZ	У
MSnu2	(MSv2)	30.471 521	2 816 555	B CVA ZZZ	X
MSN2	(101012)	30.544 375	2 834 555	B CXY ZZZ	X
xi2	(ξ2)	30.553 658	2 836 555	B CXA ZZZ	V
eta2	(η2)	30.626 512	2 854 555	B CZY ZZZ	У
KJ2	(1/4)	30.626 512	2 854 557	B CZY ZZB	X
2KM(SN)2		30.708 649	2 874 555	B CBY ZZZ	X
2SM2		31.015 896	2 915 555	B DVZ ZZZ	X
2MS2N2		31.088 749	2 933 555	B DXX ZZZ	X
SKM2		31.098 033	2 935 555	B DXZ ZZZ	X
2Snu2	(2Sv2)	31.487 417		B ETA ZZZ	X
3(SM)N2	(2012)	31.487 417		B ETA ZZZ	X
2SN2		31.560 270		B EVY ZZZ	X
SKN2		31.642 408		B EXY ZZZ	X
3S2M2		32.031 792		B FTZ ZZZ	
2SK2M2		32.113 929		B FVZ ZZZ	X
ZUNZIVIZ		32.113 323		טועב בבב	X

Name	Speed	XDO		Nodal
Name	(Deg/hr)	Numerical	Alphabetical	Correction
Third-Diurnal Constit	tuents			
MQ3	42.382 765	3 356 554	C XZA ZZY	Х
NO3	42.382 765	3 356 554	C XZA ZZY	Х
MQ3	42.382 765	3 356 555	C XZA ZZZ	X
NO3	42.382 765	3 356 555	C XZA ZZZ	X
MO3	42.927 140	3 455 554	C YZZ ZZY	Х
2MK3	42.927 140	3 455 554	C YZZ ZZY	Х
MO3	42.927 140	3 455 555	C YZZ ZZZ	Х
2NKM3	42.936 423	3 457 556	C YZB ZZA	Х
2MS3	42.968 208	3 465 557	C YAZ ZZB	Х
2MP3	43.009 277	3 475 556	C YBZ ZZA	Х
M3	43.476 156	3 555 557	C ZZZ ZZB	g
NK3	43.480 798	3 556 555	C ZZA ZZZ	Х
NK3	43.480 798	3 556 556	C ZZA ZZA	Х
SO3	43.943 036	3 635 554	C AXZ ZZY	Х
MP3	43.943 036	3 635 554	C AXZ ZZY	Х
MP3	43.943 036	3 635 555	C AXZ ZZZ	Х
MS3	43.984 104	3 645 557	C AYZ ZZB	Х
MK3	44.025 173	3 655 555	C AZZ ZZZ	Х
MK3	44.025 173	3 655 556	C AZZ ZZA	Х
NSO3	44.496 694	3 736 556	C BXA ZZA	Х
2MQ3	44.569 548	3 754 556	C BZY ZZA	Х
SP3	44.958 931	3 815 554	C CVZ ZZY	Х
SP3	44.958 931	3 815 555	C CVZ ZZZ	Х
S3	45.000 000	3 825 557	C CWZ ZZB	х
SK3	45.041 069	3 835 555	C CXZ ZZZ	х
SK3	45.041 069	3 835 556	C CXZ ZZA	х
K3	45.123 206	3 855 555	C CZZ ZZZ	х
K3	45.123 206	3 855 556	C CZZ ZZA	х
2SO3	46.056 964		C EVZ ZZA	х

Quarter-Diurnal Constituents

Qualiti-Diulilai Oolistituciits						
4MS4		55.936 417	4 195 555	D VDZ ZZZ	Х	
4M2S4		55.936 417	4 195 555	D VDZ ZZZ	Х	
2MNK4		56.325 801	4 256 555	D WZA ZZZ	Х	
3NM4		56.335 084	4 258 555	D WZC ZZZ	Х	
2MNS4		56.407 938	4 276 555	D WBA ZZZ	Х	
2MnuS4	(2MvS4)	56.480 792	4 294 555	D WDY ZZZ	Х	
3MK4		56.870 175	4 355 555	D XZZ ZZZ	Х	
MNLK4		56.870 175	4 355 557	D XZZ ZZB	Х	
N4		56.879 459	4 357 555	D XZB ZZZ	Х	
2N4		56.879 459	4 357 555	D XZB ZZZ	Х	
3MS4		56.952 313	4 375 555	D XBZ ZZZ	Х	
2NKS4		56.961 596	4 377 555	D XBB ZZZ	Х	
MSNK4		57.341 696	4 436 555	D YXA ZZZ	Х	
MN4		57.423 834	4 456 555	D YZA ZZZ	Х	
Mnu4	(Mv4)	57.496 687	4 474 555	D YBY ZZZ	Х	
2MLS4		57.496 687	4 474 557	D YBY ZZB	Х	
MNKS4		57.505 971	4 476 555	D YBA ZZZ	Х	
2MSK4		57.886 071	4 535 555	D ZXZ ZZZ	Х	
MA4		57.927 140	4 545 555	D ZYZ ZZZ	Х	
M4		57.968 208	4 555 555	D ZZZ ZZZ	Х	
2MRS4		58.009 275	4 565 547	D ZAZ ZYB	Х	
2MKS4		58.050 346	4 575 555	D ZBZ ZZZ	Х	

Name	Speed XDO		DO	Nodal
Ivairie	(Deg/hr)	Numerical	Alphabetical	Correction
SN4	58.439 730	4 636 555	D AXA ZZZ	Х
3MN4	58.512 583	4 654 555	D AZY ZZZ	Х
ML4	58.512 583	4 654 555	D AZY ZZZ	Х
ML4	58.512 583	4 654 557	D AZY ZZB	Х
KN4	58.521 867	4 656 555	D AZA ZZZ	Х
NK4	58.521 867	4 656 555	D AZA ZZZ	Х
2SMK4	58.901 967	4 715 555	D BVZ ZZZ	Х
M2SK4	58.901 967	4 715 555	D BVZ ZZZ	Х
MT4	58.943 038	4 725 565	D BWZ ZAZ	Х
MS4	58.984 104	4 735 555	D BXZ ZZZ	Х
MR4	59.025 171	4 745 547	D BYZ ZYB	Х
MK4	59.066 242	4 755 555	D BZZ ZZZ	Х
2SNM4	59.455 625	4 816 555	D CVA ZZZ	Х
2MSN4	59.528 479	4 834 555	D CXY ZZZ	Х
2MSN4	59.528 479	4 834 557	D CXY ZZB	Х
SL4	59.528 479	4 834 557	D CXY ZZB	Х
2MKN4	59.610 616	4 854 555	D CZY ZZZ	Х
ST4	59.958.933	4 905 565	D DUZ ZAZ	Х
S4	60.000 000	4 915 555	D DVZ ZZZ	Х
SK4	60.082 137	4 935 555	D DXZ ZZZ	Х
K4	60.164 275	4 955 555	D DZZ ZZZ	Х
3SM4	61.015 896		D FTZ ZZZ	Х
2SKM4	61.098 033		D FVZ ZZZ	Х

Fifth-Diurnal Constituents

			- >/- 4>/	
MNO5	71.366 869	5 356 554	E XZA ZZY	Х
2MQ5	71.366 869	5 356 554	E XZA ZZY	Χ
2NKMS5	71.453 648	5 377 556	E XBB ZZA	Х
3MK5	71.911 244	5 455 554	E YZZ ZZY	X
2MO5	71.911 244	5 455 554	E YZZ ZZY	X
2NK5	71.920 528	5 457 556	E YZB ZZA	Х
3MS5	71.952 313	5 465 557	E YAZ ZZB	Х
3MP5	71.993 381	5 475 556	E YBZ ZZA	X
NSO5	72.382 765	5 536 554	E ZXA ZZY	Х
M5	72.460 261	5 555 556	E ZZZ ZZA	g
M5	72.460 261	5 555 557	E ZZZ ZZB	g
M5	72.464 902	5 556 556	E ZZA ZZA	g
MNK5	72.464 902	5 556 556	E ZZA ZZA	Х
MB5	72.501 329	5 565 556	E ZAZ ZZA	Х
MSO5	72.927 140	5 635 554	E AXZ ZZY	Х
2MP5	72.927 140	5 635 554	E AXZ ZZY	Х
2MS5	72.968 208	5 645 557	E AYZ ZZB	Х
3MO5	73.009 277	5 655 556	E AZZ ZZA	Х
2MK5	73.009 277	5 655 556	E AZZ ZZA	Х
NSK5	73.471 515	5 734 556	E BXY ZZA	Х
3MQ5	73.553 652	5 754 556	E BZY ZZA	Х
MSP5	73.943 036	5 815 554	E CVZ ZZY	Х
MSK5	74.025 173	5 835 555	E CXZ ZZZ	Х
MSK5	74.025 173	5 835 556	E CXZ ZZA	Х
3KM5	74.107 310	5 855 554	E CZZ ZZY	Х
2SP5	74.958 931		E ETZ ZZY	Х
2SK5	75.041 069		E EVZ ZZA	Х
(SK)K5	75.123 206		E EXZ ZZA	Х

Name		Speed	X	Nodal	
		(Deg/hr)	Numerical	Alphabetical	Correction
Civth Diurn	nal Constitue	140			
2(MN)K6	iai Constituei	84.765 530	6 157 555	F VZB ZZZ	Х
5MKS6		84.838 384	6 175 555	F VBZ ZZZ	
2(MN)S6		84.847 668	6 177 555	F VBB ZZZ	X
				F VDZ ZZZ	X
5M2S6		84.920 521	6 195 555	F WZA ZZZ	X
3MNK6		85.309 905	6 256 555		X
N6		85.319 189	6 258 555	F WZC ZZZ	X
3MNS6		85.392 042	6 276 555	F WBA ZZZ	X
3NKS6	(014,00)	85.401 326	6 278 555	F WBC ZZZ	X
3MnuS6	(3MvS6)	85.464 896	6 294 555	F WDY ZZZ	X
4MK6		85.854 280	6 355 555	F XZZ ZZZ	Х
2NM6		85.863 563	6 357 555	F XZB ZZZ	X
M2N6		85.863 563	6 357 555	F XZB ZZZ	X
4MS6		85.936 417	6 375 555	F XBZ ZZZ	X
2NMKS6		85.945 701	6 377 555	F XBB ZZZ	X
2MSNK6		86.325 801	6 436 555	F YXA ZZZ	X
2MN6		86.407 938	6 456 555	F YZA ZZZ	Х
2Mnu6	(2Mv6)	86.480 792	6 474 555	F YBY ZZZ	X
2MNO6		86.480 792	6 474 555	F YBY ZZZ	X
2MNKS6		86.490 075	6 476 555	F YBA ZZZ	X
3MSK6		86.870 175	6 535 555	F ZXZ ZZZ	X
MA6		86.911 244	6 545 555	F ZYZ ZZZ	X
M6		86.952 313	6 555 555	F ZZZ ZZZ	Х
3MKS6		87.034 450	6 575 555	F ZBZ ZZZ	Х
MTN6		87.382 767	6 626 565	F AWA ZAZ	Х
MSN6		87.423 834	6 636 555	F AXA ZZZ	Х
4MN6		87.496 687	6 654 555	F AZY ZZZ	Х
2ML6		87.496 687	6 654 557	F AZY ZZB	Х
MNK6		87.505 971	6 656 555	F AZA ZZZ	Х
MKN6		87.505 971	6 656 555	F AZA ZZZ	Х
MKnu6	(MKv6)	87.578 825	6 674 555	F ABY ZZZ	Х
2(MS)K6	,	87.886 071	6 715 555	F BVZ ZZZ	Х
2MT6		87.927 142	6 725 565	F BWZ ZAZ	Х
2MS6		87.968 208	6 735 555	F BXZ ZZZ	Х
2MK6		88.050 346	6 755 555	F BZZ ZZZ	Х
2SN6		88.439 730	6 816 555	F CVA ZZZ	Х
3MTN6		88.471 517	6 824 565	F CWY ZAZ	Х
3MSN6		88.512 583	6 834 555	F CXY ZZZ	Х
MSL6		88.512 583	6 834 557	F CXY ZZB	Х
NSK6		88.521 867	6 836 555	F CXA ZZZ	X
SNK6		88.521 867	6 836 555	F CXA ZZZ	X
MKL6		88.594 720	6 854 557	F CZY ZZB	X
3MKN6		88.594 720	6 854 555	F CZY ZZZ	X
MST6		88.943 038	6 905 565	F DUZ ZAZ	X
2SM6		88.984 104	6 915 555	F DVZ ZZZ	X
MSK6		89.066 242	6 935 555	F DXZ ZZZ	X
SKM6		89.066 242	6 935 555	F DXZ ZZZ	X
2KM6		89.148 379	6 955 555	F DZZ ZZZ	X
2MSTN6		89.487 412		F EUY ZAZ	X
2(MS)N6		89.528 479		F EVY ZZZ	X
2MSKN6		89.610 616		F EXY ZZZ	
S6		+		F FTZ ZZZ	X
30		90.000 000		FFIZZZZ	Х

Name	Speed	•		Nodal
	(Deg/hr)	Numerical	Alphabetical	Correction
Seventh-Diurnal Con	stituents			
2MNO7	100.350 974	7 356 554	G XZA ZZY	Х
3MQ7	100.350 974	7 356 554	G XZA ZZY	Х
4MK7	100.895 348	7 455 554	G YZZ ZZY	X
2NMK7	100.904 632	7 457 556	G YZB ZZA	Х
MNSO7	101.366 869	7 536 554	G ZXA ZZY	Х
M7	101.444 365	7 555 557	G ZZZ ZZB	g
M7	101.449 007	7 556 556	G ZZA ZZA	g
2MNK7	101.449 007	7 556 556	G ZZA ZZA	Х
MNKO7	101.449 007	7 556 556	G ZZA ZZA	Х
2MSO7	101.911 244	7 635 554	G AXZ ZZY	Х
3MK7	101.993 381	7 655 556	G AZZ ZZA	Х
MSKO7	103.009 277	7 835 554	G CXZ ZZY	Х

Eighth-Diurnal Constituents

Lightii-Diarnai Constitue	1110			
3M2NS8	113.831 772	8 177 555	H VBB ZZZ	Х
4MNS8	114.376 146	8 276 555	H WBA ZZZ	Х
5MK8	114.838 384	8 355 555	H XZZ ZZZ	Х
2(MN)8	114.847 668	8 357 555	H XZB ZZZ	Х
5MS8	114.920 521	8 375 555	H XBZ ZZZ	Х
2(MN)KS8	114.929 805	8 377 555	H XBB ZZZ	Х
3MSNK8	115.309 905	8 436 555	H YXA ZZZ	Х
3MN8	115.392 042	8 456 555	H YZA ZZZ	Х
3Mnu8 (3Mv8)	115.464 896	8 474 555	H YBY ZZZ	Х
3MNKS8	115.474 180	8 476 555	H YBA ZZZ	Х
4MSK8	115.854 280	8 535 555	H ZXZ ZZZ	Х
MA8	115.895 348	8 545 555	H ZYZ ZZZ	Х
M8	115.936 417	8 555 555	H ZZZ ZZZ	Х
4MKS8	116.018 554	8 575 555	H ZBZ ZZZ	Х
2MSN8	116.407 938	8 636 555	H AXA ZZZ	Х
3ML8	116.480 792	8 654 555	H AZY ZZZ	Х
2MNK8	116.490 075	8 656 555	H AZA ZZZ	Х
3M2SK8	116.870 175	8 715 555	H BVZ ZZZ	Х
2(NS)8	116.879 459	8 717 555	H BVB ZZZ	Х
3MT8	116.911 246	8 725 565	H BWZ ZAZ	Х
3MS8	116.952 313	8 735 555	H BXZ ZZZ	Х
3MK8	117.034 450	8 755 555	H BZZ ZZZ	Х
2SNM8	117.423 834	8 816 555	H CVA ZZZ	Х
2SMN8	117.423 834	8 816 555	H CVA ZZZ	Х
2MSL8	117.496 687	8 834 557	H CXY ZZB	Х
MSNK8	117.505 971	8 836 555	H CXA ZZZ	Х
4MSN8	117.578 825	8 854 555	H CZY ZZZ	Х
2MST8	117.927 142	8 905 565	H DUZ ZAZ	Х
2(MS)8	117.968 208	8 915 555	H DVZ ZZZ	Х
2MSK8	118.050 346	8 935 555	H DXZ ZZZ	Х
2(MK)8	118.132 483	8 955 555	H DZZ ZZZ	Х
3SN8	118.439.730		H ETA ZZZ	Х
2SML8	118.512 583		H EVY ZZB	Х
2SKN8	118.521 867		H EVA ZZZ	Х
MSKL8	118.594 720		H EXY ZZB	Х
3SM8	118.984 104		H FTZ ZZZ	Х
2SMK8	119.066 242		H FVZ ZZZ	Х
S8	120.000 000		H HRZ ZZZ	Х

Name	Speed XDO		00	Nodal	
Name	(Deg/hr)	Numerical	Alphabetical	Correction	
Ninth-Diurnal Constituents					
3MNO9	129.335 076	9 356 554	I XZA ZZY	Х	
2M2NK9	129.888 738	9 457 556	I YZB ZZA	Х	
2(MN)K9	129.888 738	9 457 556	I YZB ZZA	Х	
MA9	130.387 400	9 545 555	I ZYZ ZZZ	Х	
3MNK9	130.433 113	9 556 556	I ZZA ZZA	Х	
4MK9	130.977 488	9 655 556	I AZZ ZZA	Х	
3MSK9	131.993 383	9 835 556	I CXZ ZZA	Х	

Tenth-Diurnal Constituents

5MNS10	143.360 251	 J WBA ZZZ	Х
3M2N10	143.831 772	 J XZB ZZZ	X
6MS10	143.904 625	 J XBZ ZZZ	X
3M2NKS10	143.913 909	 J XBB ZZZ	X
4MSNK10	144.294 009	 J YXA ZZZ	Х
4MN10	144.376 146	 J YZA ZZZ	Х
4Mnu10 (4Mv10)	144.449 000	 J YBY ZZZ	Х
5MSK10	144.838 384	 J ZXZ ZZZ	Х
M10	144.920 521	 J ZZZ ZZZ	Х
5MKS10	145.002 658	 J ZBZ ZZZ	Х
3MSN10	145.392 042	 J AXA ZZZ	Х
6MN10	145.464 896	 J AZY ZZZ	Х
4ML10	145.464 896	 J AZY ZZB	Х
3MNK10	145.474 180	 J AZA ZZZ	Х
2(SN)M10	145.863 563	 J BVB ZZZ	Х
4MS10	145.936 417	 J BXZ ZZZ	Х
4MK10	146.018 554	 J BZZ ZZZ	Х
2(MS)N10	146.407 938	 J CVA ZZZ	Х
2MNSK10	146.490 075	 J CXA ZZZ	Х
5MSN10	146.562 929	 J CZY ZZZ	Х
3M2S10	146.952 313	 J DVZ ZZZ	Х
3MSK10	147.034 450	 J DXZ ZZZ	Х
3SMN10	147.423 834	 J ETA ZZZ	Х
2SMKN10	147.505 971	 J EVA ZZZ	Х
4M2SN10	147.578 825	 J EXY ZZZ	Х
3S2M10	147.968 208	 J FTZ ZZZ	Х
2(MS)K10	148.050 346	 J FVZ ZZZ	X

Eleventh-Diurnal Constituent

Lieventi-Diamai Constituent				
4MSK11	160.977 486		K CXZ ZZA	Х

Twelfth-Diurnal Constituents

5M2NS12	171.799 980	 L VBB ZZZ	Х
3(MN)12	172.271 501	 L WZC ZZZ	Х
6MNS12	172.344 355	 L WBA ZZZ	Х
4M2N12	172.815 876	 L XZB ZZZ	Х
7MS12	172.888 730	 L XBZ ZZZ	Х
4M2NKS12	172.898 013	 L XBB ZZZ	Х
5MSNK12	173.278 113	 L YXA ZZZ	Х

Name	Speed	X	DO	Nodal
	(Deg/hr)	Numerical	Alphabetical	Correction
3N2MS12	173.362 457		L YZA YZZ	Х
5MN12	173.360 251		L YZA ZZZ	Х
5Mnu12 (5Mv12)	173.433 104		L YBY ZZZ	Х
6MSK12	173.822 488		L ZXZ ZZZ	Х
3M2SN12	173.831 772		L ZXB ZZZ	Х
MA12	173.863 557		L ZYZ ZZZ	Х
M12	173.904 625		L ZZZ ZZZ	Х
4MSN12	174.376 146		L AXA ZZZ	Х
4ML12	174.449 000		L AZY ZZB	Х
4MNK12	174.458 284		L AZA ZZZ	Х
2(MSN)12	174.847 668		L BVB ZZZ	Х
5MT12	174.879 455		L BWZ ZAZ	Х
5MS12	174.920 521		L BXZ ZZZ	Х
5MK12	175.002 658		L BZZ ZZZ	Х
3M2SN12	175.392 042		L CVA ZZZ	Х
6MSN12	175.464 896		L CXY ZZZ	Х
3MNKS12	175.474 180		L CXA ZZZ	Х
5MSN12	175.547 033		L CZY ZZZ	Х
4MST12	175.895 350		L DUZ ZAZ	Х
4M2S12	175.936 417		L DVZ ZZZ	Х
4MSK12	176.018 554		L DXZ ZZZ	Х
3(MS)12	176.952 313		L FTZ ZZZ	Х
3M2SK12	177.034 450		L FVZ ZZZ	Х

Fourteenth-Diurnal Constituents

5MSN14	203.360 251	 N AXA ZZZ	Х
5MNK14	203.442 388	 N AZA ZZZ	Х
6MS14	203.904 625	 N BXZ ZZZ	Х

Nodal Corrections - Application

- x indicates that the corrections should be derived from the name of the constituent using the principles set out in Annex B.
- y indicates that reference should be made to Annex A which shows the derivations most commonly used for specific individual constituents.
- **z** indicates that u = 0 and f = 1
- **a** u and f are same as Mm
- **b** u of MSf and MSo = -u of M2 f of MSf and MSo = f of M2
- c u of 2SM = -2(u of M2)f of 2SM = $(f \text{ of M2})^2$
- **d** u and f are same as KQ1
- **e** u and f are same as K2
- there are theoretical reasons why u and f of MA2, MB2, NA2, NB2 (and alternative names) should be the same as those for M2. The constituents are so small that there will be no significant error if values of u=0 and f=1 are used either in analysis or prediction, and this is often the case.
- g apart from M1, the constituents MS (where "S" is an odd species) have values of :

$$u = -S (1.07 \sin N)$$

$$f = (\sqrt{\text{f of M2}})^{\text{s}}$$

these values are also used in place of the normal ones for M1 where this forms part of a compound constituent.

- \mathbf{j} u and f are same as J1
- **k** u and f are same as K1
- \mathbf{m} u and f are same as M2
- **o** *u* and *f* are same as O1
- \mathbf{p} u and f are same as 2MN2
- **q** u and f are same as NKM2

Computation of Nodal Corrections u and f

The nodal corrections \boldsymbol{u} and \boldsymbol{f} must be derived from the Orbital Elements (p and N) using the appropriate formulae as follows :

```
M1B: f.\sin u = 2.783 \sin 2p + 0.558 \sin (2p - N) + 0.184 \sin N
f.\cos u = 1 + 2.783 \cos 2p + 0.558 \cos (2p - N) + 0.184 \cos N
```

M1:
$$f.\sin u = \sin p + 0.2 \sin (p - N)$$

 $f.\cos u = 2 [\cos p + 0.2 \cos (p - N)]$

M1A:
$$f.\sin u = -0.3593 \sin 2p - 0.2 \sin N - 0.066 \sin (2p - N)$$

 $f.\cos u = 1 + 0.3593 \cos 2p + 0.2 \cos N + 0.066 \cos (2p - N)$

gamma 2:
$$f.\sin u = 0.147 \sin 2(N-p)$$

 $f.\cos u = 1 + 0.147 \cos 2(N-p)$

alpha 2:
$$f.\sin u = -0.0446 \sin (p - p')$$

 $f.\cos u = 1 - 0.0446 \cos (p - p')$

delta 2 :
$$f.\sin u = 0.477 \sin N$$

(B ZBZ ZZZ) $f.\cos u = 1 - 0.477 \cos N$

xi 2 / eta 2 :
$$f.\sin u = -0.439 \sin N$$

 $f.\cos u = 1 + 0.439 \cos N$

L2:

```
f.\sin u = -0.2505 \sin 2p - 0.1102 \sin (2p - N) - 0.0156 \sin (2p - 2N) - 0.037 \sin N

f.\cos u = 1 - 0.2505 \cos 2p - 0.1102 \cos (2p - N) - 0.0156 \cos (2p - 2N) - 0.037 \cos N
```

From these formulae the values of \boldsymbol{u} and \boldsymbol{f} can be derived

The formulae for the following fundamental constituents are:

```
u 	ext{ of } Mm = 0
f 	ext{ of } Mm = 1 - 0.1311 	ext{ cos } N + 0.0538 	ext{ cos } 2p + 0.0205 	ext{ cos } (2p - N)
u 	ext{ of } Mf = -23.7 	ext{ sin } N + 2.7 	ext{ sin } 2N - 0.4 	ext{ sin } 3N
f 	ext{ of } Mf = 1.084 + 0.415 	ext{ cos } N + 0.039 	ext{ cos } 2N
u 	ext{ of } O1 = 10.80 	ext{ sin } N - 1.34 	ext{ sin } 2N + 0.19 	ext{ sin } 3N
f 	ext{ of } O1 = 1.0176 + 0.1871 	ext{ cos } N - 0.0147 	ext{ cos } 2N
u 	ext{ of } K1 = -8.86 	ext{ sin } N + 0.68 	ext{ sin } 2N - 0.07 	ext{ sin } 3N
f 	ext{ of } K1 = 1.0060 + 0.1150 	ext{ cos } N - 0.0088 	ext{ cos } 2N + 0.0006 	ext{ cos } 3N
u 	ext{ of } J1 = -12.94 	ext{ sin } N + 1.34 	ext{ sin } 2N - 0.19 	ext{ sin } 3N
f 	ext{ of } J1 = 1.1029 + 0.1676 	ext{ cos } N - 0.0170 	ext{ cos } 2N + 0.0016 	ext{ cos } 3N
u 	ext{ of } M2 = -2.14 	ext{ sin } N
f 	ext{ of } M2 = 1.0007 - 0.0373 	ext{ cos } N + 0.0002 	ext{ cos } 2N
u 	ext{ of } K2 = -17.74 	ext{ sin } N + 0.68 	ext{ sin } 2N - 0.04 	ext{ sin } 3N
f 	ext{ of } K2 = -1.0246 + 0.2863 	ext{ cos } N + 0.0083 	ext{ cos } 2N - 0.0015 	ext{ cos } 3N
u 	ext{ of } M3 = -3.21 	ext{ sin } N
f 	ext{ of } M3 = (\sqrt{f 	ext{ of } M2})^3
```

Values for all other constituents can either be derived form the above using the methods described in Annex B or else they have values of u = 0 and f = 1.

Annex B

<u>Derivation of Speeds and values of *u* and *f* from Constituent Names</u>

As shown in Annex A the values of u and f have been derived from the Orbital Elements for the constituents given, but the values for other constituents can be derived from the construction of the individual constituent names using the principles below.

Speeds:

Starting from the left add all the values of the letters of the same name. Therefore, for example, MS4 = M2 + S2.

But if such addition produces the wrong number of cycles per day, then the signs of the compound constituents must be changed progressively from the right until the correct number of cycles is reached. Thus:

 $2MN6 = 2 \times M2 + N2$ resulting in the correct 6 cycles per day

however, $4MN6 = 4 \times M2 + N2$ which gives incorrect 10 cycles per day, therefore changing the sign of N2 produces :

 $4MN6 = 4 \times M2 - N2$ which gives the correct value of 6 cycles per day

Some other examples are:

MP1 = M2 - P1

 $3M2S2 = 3 \times M2 - 2 \times S2$

Value of u:

When using the above principles it needs to be borne in mind that u sometimes has a value of zero.

For example, u of 3M2S2 = 3 x (u of M2) - 2 x (u of S2) but u of S2 = 0

therefore, $u \text{ of } 3M2S2 = 3 \times (u \text{ of } M2)$

Likewise, $u { of MP1} = (u { of M2}) - (u { of P1})$ but $u { of P1} = 0$

therefore, u of MP1 = u of M2

In addition, because several astronomical constituents have the same values of \boldsymbol{u} the expression may sometimes be simplified. For example, M2 and N2 have the same value for \boldsymbol{u} and therefore,

 $u \text{ of } 2MN6 = 3 \times (u \text{ of } M2)$

Value of f:

The values of f are obtained in basically the same manner but multiplying instead of adding the individual contributions. Furthermore, f is <u>always</u> obtained by multiplication and <u>not</u> by division even if a change of sign becomes necessary as explained above.

As with the values of u the expression if often simplified by the fact that some astronomical constituents have values of f = 1, and several have the same value.

For example,

therefore,
$$f ext{ of MS4} = f ext{ of M2} ext{ x fof S2} ext{ but } f ext{ of S2} = 1$$

therefore, $f ext{ of MS4} = f ext{ of M2}$
 $f ext{ of 2MN6} = (f ext{ of M2})^2 ext{ x fof N2} ext{ but } f ext{ of N2} = f ext{ of M2}$

therefore, $f ext{ of 4MN6} = (f ext{ of M2})^4 ext{ x fof N2} ext{ but } f ext{ of N2} = f ext{ of M2}$

therefore, $f ext{ of MP1} = f ext{ of M2} ext{ x fof P1} ext{ but } f ext{ of P1} = 1$

therefore, $f ext{ of MP1} = f ext{ of M2}$

Exceptions:

therefore,

There are several exceptions to all the above principles. The primary ones are:

 $f \text{ of } 3M2S2 = (f \text{ of } M2)^3$

MSf this has a speed equal to (S2 - M2) and should be treated, therefore, as if it were SMf, and hence the value of \boldsymbol{u} becomes $(-\boldsymbol{u})$ of M2). This will of course have no effect on the value of \boldsymbol{f} , which is always obtained by multiplication and thus equals (f) of M2).

 $f \circ f \circ 3M2S2 = (f \circ f \circ M2)^3 \times (f \circ f \circ S2)^2 \text{ but } f \circ f \circ S2 = 1$

MA2 and MB2:

despite their appearance neither of them, nor constituents of other species which include A and B, are compound constituents – there are no constituents A or B to form a compound. They are constituents whose speeds differ by one cycle a year from that of M2. The A in MA2 was intended to signify the Annual differences.

MB2 was originally called Ma2 but this became ambiguous when spoken, or typed on computers without lower case, and so it was initially changed to MA2*. However, this in turn was thought to be clumsy and hence MB2 was finally adopted. Although theoretically they should have the same values of \boldsymbol{u} and \boldsymbol{f} as M2, they are so small that they are commonly treated as having values of $\boldsymbol{u} = 0$ and $\boldsymbol{f} = 1$.

NA2 and NB2:

the self same reasoning applies to these two constituents. They are constituents whose speeds differ by one cycle a year from that of N2. Although theoretically they should have the same values of \boldsymbol{u} and \boldsymbol{f} as N2 they are so small that they are commonly treated as having values of u=0 and t=1.

M3 despite the fact that it has more than 2 cycles per day it is nevertheless an astronomical constituent.

MSm found in some lists is apparently mis-named. Its speed corresponds to a name of MNum (Mvm) by which name it is referred to in the foregoing list.

Note:

Greek letters present difficulties for most computer keyboards and the solution often employed is to spell out the letter phonetically – for example, theta1; mu2.

Care has to be taken when using this method in order not to confuse P1 with the Greek PI 1 (= π 1). ν (nu or Nu) by virtue of its close resemblance to the letter ν is often written as ν or V. Thus M ν 4 may be written as Mnu4; MNu4; Mv4 or MV4.