1.10.3 Wechselstromsteller,	11.2.1 Lichtstrom und Lichtausbeute217
Vielperiodensteuerung184	11.2.2 Beleuchtungsstärke und
0.11 Digitaltechnik185	Beleuchtungswirkungsgrad
0.11.1 Zahlensysteme185	11.2.3 Lichtstärke und Lichtstärkeverteilung 219
 Umwandlung von Dual- und 	11.2.4 Leuchtdichte
Sedezimalzahlen in Dezimalzahlen 186	11.2.5 Raumindex220
 Umwandlung von Dezimal- in 	11,2,6 Beleuchtungswirkungsgrad bei
Dual- oder in Sedezimalzahlen187	Innenraumbeleuchtung220
 Umwandlung von Sedezimalzahlen 	11.2.7 Ermittlung der Lampenzahl nach dem
und Dualzahlen187	Wirkungsgradverfahren221
3,11.2 Rechnen mit Dualzahlen188	11.3 Antennentechnik222
3.11.3 BCD-Code189	11.3.1 Verstärkungsfaktor, Dämpfungsfaktor 222
9.11,4 Schaltalgebra190	11.3.2 Verstärkungsmaß, Dämpfungsmaß 223
 Rechenregeln f ür eine Variable 	11.3.3 Pegel
und Umkehrterme190	11.3.4 Mechanische Sicherheit von
 ◆ Kommutativgesetze190 	Antennenstandrohren225
Assoziativgesetze	11.4 Kostenrechnen
Distributivgesetze190	11.4.1 Rechnungspreis und Gewinn226
 Umkehrgesetze für mehrere Variablen . 191 	11.4.2 Kostenarten
 Schaltungen in NAND- oder in 	11.5 Handelskalkulation226
NOR-Technik191	11.6 Angebotserstellung227
9.11.5 Analyse und Synthese von Binär-	
schaltungen192	
 Analyse von Binärschaltungen 192 	12 Elektrische Maschinen 229
 Synthese von Binärschaltungen 194 	
9.11.6 Minimieren von Schaltnetzwerken195	12.1 Transformatoren
Algebraisches Minimieren195	12.1.1 Einphasentransformatoren
KV-Diagramm	12.1.2 Transformatoren für
9.12 Datenmengen und Datenüber-	Dreiphasenwechselstrom
tragungsrate201	12.2 Antriebstechnik 240
9.12.1 Datenmengen	12.2.1 Leistung, Drehzahl und Drehmoment 240
9.12.2 Datenübertragungsrate 201	12.2.2 Übersetzungen, Riementrieb 241
• •	12.2.3 Zahnradtrieb
	12.2.4 Schneckentrieb
	12.2.5 Mehrfache Übersetzung244
10 Schutzmaßnahmen in elektrischen	12.3 Umlaufende elektrische Maschinen 244
Anlagen 202	12.3.1 Drehfelddrehzahl244
10.1 Schutzmaßnahmen	12.3.2 Synchronmaschine
10.1.1 Fehlerstromkreis	12.3.3 Zahnläufer und Schrittmotoren246
10.1.2 Isolationswiderstand von Fußböden oder	12.3.4 Drehstromasynchronmotor247
Wänden202	12.3.5 Wechselstromasynchronmotor 250
10.1.3 Schutzmaßnahmen im TN-System 203	12.3.6 Asynchrone Frequenzumformer 251
10.1.4 Schutzmaßnahmen im TT-System 204	12.3.7 Gleichstrommotoren
10.1.5 Kurzschlussschutz von isolierten Leitungen	 Fremderregter Gleichstrommotor 252
und Kabeln	 Gleichstrom-Nebenschlussmotor 253
10.1.6 Fehlerstrom-Schutzeinrichtung (RCD) 206	 Gleichstrom-Reihenschlussmotor 254
	12.3.8 Gleichstromgeneratoren 255
11 Anlagen- und Gebäudetechnik 207	
\$16.50.50.00 pt 1252.50.50 pt 1252.50 pt 125	13 Regelungstechnik 256
11.1 Leitungen	
11.1.1 Unverzweigte Leitungen für	13.1 Unstetiges Regeln256
Gleichstrom	13.2 Stetiges Regeln
11.1.2 Unverzweigte Leitungen für	13.2.1 Regeln mit Proportionalverhalten 258
Wechselstrom	13.2.2 Operationsverstärker als Regler259
11.1.3 Unverzweigte Leitungen für	13.2.3 Einstellen eines stetigen Reglers260
Drehstrom210	
11.1.4 Verzweigte Leitungen für	
Wechselstrom	14 Aufgaben zur Prüfungsvor-
11.1.5 Verzweigte Leitungen für Drehstrom 214	
11.1.6 Ringleitungen	2012.00
11.2 Beleuchtungstechnik217	Aufgaben261
-	39

1 Technische Mathematik

1.2 Grundrechnungsarten

1.2.1 Zahlen, Addition und Subtraktion

Lösungen zu 1.2.1

HIHATESACIPOLOGICA

1.2.2 Multiplikation und Division

g) $(y-9) \cdot (x-3) = 27 + xy - 9x - 3y$;

Lösungen zu 1.2.2

11/1.	a) $3a \cdot 5b = 15ab$; b) $8c \cdot 3ab = 3ab$		
	d) $4,5ab \cdot 8x - 2,5ax \cdot 9b + 5bx \cdot$	3a = 36abx - 22,5abx + 15abx	= 28,5abx
11/2.	a) $8 \cdot (-5b) = -40b$;	b) $4b \cdot (-e) = -4be$;	c) $(-10a) \cdot (-12x) = 120ax$;
	d) $(-n) \cdot (-m) \cdot (-x) = -nm$	$(e) (-2x) \cdot 3y \cdot (-4z) = 24xyz$	$z; f) 0.5x \cdot (-0.3y) \cdot 4 = -0.6xy;$
	g) $40:(-8)=-5$;	h) $(-63c): (-9) = 7c$	i) (24:4):2 = 3;
	j) $[24:(-4)]:2=-3;$	k) $[(-24):(-4)]:2=3;$	1) $[(-24):(-4)]:(-2)=-3$
11/3.	a) $(a+3) \cdot 6 = 18 + 6a$;	b) $(a - b) \cdot 7 = 3$	7a — 7b;
	c) $8 \cdot (2a - 5b + 6) = 48 + 16a$	-40b; d) $(8+4x-a)$	(-4) = -32 + 4a - 16x;
	e) $(a+b) \cdot 5 + 4 \cdot (a-b) = 9a - 6$	$+ b;$ f) $(2a + 3b) \cdot 2c$	+ 4bc = 4ac + 10bc;

h) $(n-3) \cdot (a+6) = an + 6n - 3a - 18$

11/4. a) $25 \cdot 12 + 15 \cdot 25 - 2 \cdot 25 = 25 \cdot (12 + 15 - 2) = 25 \cdot 25 = 625$

b) $ax - 4az + 7ay = a \cdot (x + 7y - 4z)$;

c) $24ab - 12by + 48ab = 12b \cdot (2a - y + 4a) = 12b \cdot (6a - y)$;

d) $25ab + 125ac + 100ax = 25a \cdot (b + 5c + 4x)$;

e) $5bx - 2bx - 15bx = bx \cdot (5 - 2 - 15) = -12bx$:

f) $am + bm - cm + zm = m \cdot (a + b - c + z)$:

g) $(a+b) \cdot x + (a+b) \cdot y = (a+b) \cdot (x+y)$:

h) $(b-c) \cdot y + b - c = (b-c) \cdot (y+1)$;

i) $(a-b) \cdot x + (a-b) \cdot y = (a-b) \cdot (x+y)$

1.3 Rechnen mit Brüchen

Lösungen zu 1.3

12/1. a)
$$\frac{1}{4} - \frac{3}{14} - \frac{3}{35} = \frac{1 \cdot 35}{4 \cdot 35} - \frac{3 \cdot 10}{14 \cdot 10} - \frac{3 \cdot 4}{35 \cdot 4} = \frac{35 - 30 - 12}{140} = -\frac{7}{140} = -\frac{1}{20} = -0.05$$

b)
$$\frac{9}{14} - \frac{1}{42} - \frac{17}{28} + \frac{2}{7} = \frac{9 \cdot 6}{14 \cdot 6} - \frac{1 \cdot 2}{42 \cdot 2} - \frac{17 \cdot 3}{28 \cdot 3} + \frac{2 \cdot 12}{7 \cdot 12} = \frac{54 - 2 - 51 + 24}{84} = \frac{25}{84} = 0.298$$

c)
$$\frac{5}{6} \cdot \frac{9}{35} = \frac{3}{14} = 0.214$$

c)
$$\frac{5}{6} \cdot \frac{9}{35} = \frac{3}{14} = 0.214$$
 d) 18: $\frac{24}{35} = \frac{105}{4} = 26.25$ e) $\frac{121}{27} : \frac{66}{45} = \frac{55}{18} = 3.056$

e)
$$\frac{121}{27}$$
 : $\frac{66}{45} = \frac{55}{18} = 3.056$

12/2. a)
$$\frac{7}{\frac{1}{3} + \frac{1}{4}} = \frac{7}{\frac{4+3}{12}} = \frac{7 \cdot 12}{7} = 12;$$
 b) $\frac{1}{\frac{3}{4} - \frac{2}{5}} = \frac{1}{\frac{15-8}{20}} = \frac{20}{7} = 2,857$

b)
$$\frac{1}{\frac{3}{4} - \frac{2}{5}} = \frac{1}{\frac{15 - 8}{20}} = \frac{20}{7} = 2,857$$

c)
$$\frac{-22}{\frac{1}{8} - \frac{5}{18}} = \frac{-22}{\frac{9-20}{72}} = \frac{-22 \cdot 72}{-11} = 144$$

d)
$$\frac{104 \text{glm}}{130 \text{gm}} = \frac{41}{5}$$

e)
$$\frac{28ef}{-84ef} = -\frac{1}{3}$$

f)
$$\frac{-68 \text{kmr}}{-102 \text{kr}} = \frac{2 \text{m}}{3}$$

12/3. a)
$$\frac{1}{d} + \frac{1}{e} = \frac{e+d}{e \cdot d}$$
 b) $\frac{6}{t} - \frac{1}{s} = \frac{6s-t}{st}$ c) $\frac{3}{ab} + \frac{2}{bc} = \frac{3c+2a}{abc}$

b)
$$\frac{6}{t} - \frac{1}{s} = \frac{6s - 1}{st}$$

c)
$$\frac{3}{ab} + \frac{2}{bc} = \frac{3c + 2a}{abc}$$

d)
$$\frac{15}{k} - 3 + \frac{7}{1 = \frac{151 - 3k1 + 7k}{k1}}$$
 e) $\frac{3}{uv} + \frac{12}{uw} - 15 = \frac{3w + 12v - 15uvw}{uvw} = \frac{3(w + 4v - 5uvw)}{uvw}$

12/4. a)
$$\frac{2f}{3r} + \frac{g}{2s} - \frac{5h}{rs} = \frac{4fs + 3gr - 30h}{6rs}$$

b)
$$\frac{5i}{6a} - k + \frac{h}{12ab} + \frac{5i}{18a} = \frac{30bi - 36abk + 3h + 10bi}{36ab} = \frac{40bi - 36abk + 3h}{36ab}$$

c)
$$\frac{6ab}{38cd} \cdot \frac{57}{48a} = \frac{3b}{16cd}$$

c)
$$\frac{6ab}{38cd} \cdot \frac{57}{48a} = \frac{3b}{16cd}$$
 d) $\frac{32b}{21cd} : \frac{20ab}{49d} = \frac{32b \cdot 49d}{21cd \cdot 20ab} = \frac{56}{15ac}$

12/5. a)
$$\frac{6x-30}{8}$$
: $\frac{5x-25}{20y-4} = \frac{(6x-30)\cdot(20y-4)}{8\cdot(5x-25)} = \frac{24\cdot(x-5)\cdot(5y-1)}{40\cdot(x-5)} = \frac{3\cdot(5y-1)}{5}$

b)
$$\frac{1-6v}{14s-2} : \frac{36v-6}{8-56s} = \frac{(1-6v)\cdot(8-56s)}{(14s-2)\cdot(36v-6)} = \frac{-(6v-1)\cdot8\cdot(1-7s)}{-2(1-7s)\cdot6\cdot(6v-1)} = \frac{2}{3}$$

c)
$$\frac{1}{\frac{2}{m} + \frac{3}{n}} = \frac{1}{\frac{2n + 3m}{m}} = \frac{mn}{2n + 3r}$$

c)
$$\frac{1}{\frac{2}{m} + \frac{3}{n}} = \frac{1}{\frac{2n + 3m}{mn}} = \frac{mn}{2n + 3m}$$
 d) $\frac{15a + 10}{\frac{3}{2} + \frac{1}{a}} = \frac{5 \cdot (3a + 2)}{\frac{3a + 2}{2a}} = 10a$

1.4 Potenzen und Wurzeln

1.4.1 Potenzen

Lösungen zu 1.4.1

- 13/1. a) x^6
- b) b^{2x+2}
- c) 10^{3x}

- e) $3x^{-3} \cdot y^{6}$
- f) 2^{-2x}

- 13/2. a) $a^2 + 2a + 1$
 - b) $16y^2 40y + 25$ d) $x^2 + 2xy + y^2$ e) $x^2 - 2xy + y^2$
- c) $9 + 12b + 4b^2$ f) $4r^2 + 12rs + 9s^2$
- 13/3. a) $(a+b) \cdot (a+b) = a^2 + 2ab + b^2$;
- b) $(a-b) \cdot (a-b) = a^2 2ab + b^2$
- c) $(a+b) \cdot (a+b) \cdot (a+b) = a^3 + 3a^2b + 3ab^2 + b^3$
- d) $(a-b) \cdot (a-b) \cdot (a-b) = a^3 3a^2b + 3ab^2 b^3$
- e) $(a + b) \cdot (a + b) \cdot (a + b) \cdot (a + b) = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$;
- f) $(a-b) \cdot (a-b) \cdot (a-b) \cdot (a-b) = a^4 4a^3b + 6a^2b^2 4ab^3 + b^4$
- 13/4. a) $\frac{4t^2}{9}$ b) $\frac{125}{8b^3}$ c) $\frac{16y^2}{49x^2}$ d) $\frac{4}{x^2 + 2x + 1}$ e) $\frac{25 10x + x^2}{25 + 10x + x^2}$

- 13/5. a) x^{10}
- c) 10^{2x}

d) 7d⁻²

- e) 10^{2x+2}
- f) 2^{3y-6}
- 13/6. a) 9; 900; 90000| 64; 6400; 640000; 64000000| 49; 0,49; 0,0049| 81; 0,81; 0,0081; 0,000081
 - b) 8; 8000; 8000000| 0,125; 125; 125000; 125000000| -1000; -0.001| -64; -0.064; -0.000064
- 13/7. a) $4 \cdot 10^{-3} \cdot 5 \cdot 10^2 = 20 \cdot 10^{-1} = 2$; $35 \cdot 10^{-3} \cdot 6 \cdot 10^4 = 210 \cdot 10^1 = 2100 = 2.1 \cdot 10^3$; $48 \cdot 10^{-5} \cdot 75 \cdot 10^4 = 3600 \cdot 10^{-1} = 360$; $24 \cdot 10^{-6} \cdot 15 \cdot 10^2 = 360 \cdot 10^{-4} = 36 \cdot 10^{-3}$; $16 \cdot 10^{-5} \cdot 45 \cdot 10^{3} = 720 \cdot 10^{-2} = 7.2$
 - b) $6 \cdot 10^2 / (12 \cdot 10^3) = 0.5 \cdot 10^{-1} = 50 \cdot 10^{-3}$; $48 \cdot 10^1 / (16 \cdot 10^4) = 3 \cdot 10^{-3}$; $20 \cdot 10^{-3} / (5.5 \cdot 10^{3}) = 3.6364 \cdot 10^{-6};$ $72 \cdot 10^{-4} / (36 \cdot 10^{2}) = 2 \cdot 10^{-6};$ $42 \cdot 10^{-5} / (35 \cdot 10^{3}) = 12 \cdot 10^{-9}$
- 13/8. a) $10^{1+7+3-6} = 10^5$:
- b) $10^{1-6+3} = 10^{-2}$;
- c) $10^{4-12+9+2} = 10^3$

- d) $10^{3-4+12-9} = 10^2$
- 13/9. a) $\frac{42\,000 \cdot 500}{0.06} = \frac{42 \cdot 10^3 \cdot 5 \cdot 10^2}{6 \cdot 10^{-2}} = 35 \cdot 10^7$
 - b) $\frac{46\,000 \cdot 0.5}{50\,000} = \frac{46 \cdot 10^3 \cdot 5 \cdot 10^{-1}}{5 \cdot 10^4} = 46 \cdot 10^{-2} = 0.46$
 - c) $\frac{0.0065 \cdot 0.025}{13\,000 \cdot 0.0005} = \frac{65 \cdot 10^{-4} \cdot 25 \cdot 10^{-3}}{13 \cdot 10^{3} \cdot 5 \cdot 10^{-4}} = 25 \cdot 10^{-6}$
 - d) $\frac{4200 \cdot 0,007}{35\,000} = \frac{42 \cdot 10^2 \cdot 7 \cdot 10^{-3}}{35 \cdot 10^3} = 8.4 \cdot 10^{-4}$

1

1.4.2 Wurzeln

Lösungen zu 1.4.2

14/2. a)
$$\frac{4a}{7c^2}$$

b)
$$\frac{2a \cdot c^2}{5b}$$
 c) $\frac{16q}{25s^2t}$ d) $\frac{7m^2}{6n}$

c)
$$\frac{16q}{25s^2t}$$

d)
$$\frac{7m^2}{6n}$$

e) 9 · |√z

$$\frac{3d^2}{5f}$$

b) 300;
$$(64 \cdot 10^6)^{1/3} = 400$$
; $(169 \cdot 10^{-6})^{1/2} = 0.013$

14/5. a)
$$\sqrt{u^2 + v^2} = \sqrt{8^2 + 6^2} = \sqrt{64 + 36} = \sqrt{100} = 10$$

$$\sqrt{10^2 + 7.5^2} = \sqrt{100 + 56.25} = \sqrt{156.25} = 12.5$$

c)
$$\sqrt{0.48^2 + 0.36^2} = \sqrt{0.2304 + 0.1296} = \sqrt{0.3600} = 0.60$$

b)
$$2 \cdot \sqrt{2 \cdot 25x} = 10 \cdot \sqrt{2x}$$
;

c)
$$90 \cdot \sqrt{\frac{2}{3} \cdot \frac{8}{9} \cdot \frac{3}{2}} = 90 \cdot \sqrt{\frac{48}{54}} = 90 \cdot \sqrt{\frac{16 \cdot 3}{6 \cdot 9}} = 120 \cdot \sqrt{\frac{1}{2}}$$
;

d)
$$11 \cdot \sqrt{x+y}$$

14/7. a)
$$\frac{4}{7} \cdot \sqrt[3]{\frac{c}{d}}$$

14/7. a)
$$\frac{4}{7} \cdot \sqrt[3]{\frac{c}{d}}$$
; b) $3 \cdot \frac{2 \cdot 4}{3} \cdot \sqrt[3]{\frac{\text{nab}}{x}} = 8 \cdot \sqrt[3]{\frac{\text{abn}}{x}}$;

c)
$$\sqrt{\frac{5xy}{60} \cdot \frac{30}{10x}} = \frac{1}{2} \cdot \sqrt{y}$$
; d) $\sqrt{\frac{5x}{6} \cdot \frac{12x}{20}} = x \cdot \sqrt{\frac{1}{2}}$

$$\sqrt{\frac{5x}{6} \cdot \frac{12x}{20}} = x \cdot \sqrt{\frac{1}{2}}$$

b)
$$\sqrt[3]{y}$$
; **c**) a + b;

14/9. a)
$$\frac{a^2b}{c^3}$$

b)
$$\frac{27m}{8n}$$
;

14/9. a)
$$\frac{a^2b}{c^3}$$
; b) $\frac{27m}{8n}$; c) $\frac{4}{5}\sqrt{\frac{x+2y}{a-2b}}$;

d)
$$\frac{5r}{3r}$$

1.5 Logarithmen

1.5.1 Rechnen mit Logarithmen

Lösungen zu 1.5.1

c)
$$4,4$$
; $3,4$; $2,4$; $1,4$; $0,4$; $-0,6$; $-1,1$

15/2. a)
$$\lg 250 + \lg 320 = 4,903$$
; $\lg (250 \cdot 320) = \lg 80\,000 = 4,903$; $10^{4.903} = 80\,000$; $\ln 250 + \ln 320 = 11,29$; $\ln (250 \cdot 320) = \ln 80\,000 = 11,29$; $e^{11.29} = 80\,000$

b)
$$\lg 25 + \lg 32 = 2,903$$
; $\lg (25 \cdot 32) = \lg 800 = 2,903$; $10^{2.903} = 800$; $\ln 25 + \ln 32 = 6,685$; $\ln (25 \cdot 32) = \ln 800 = 6,685$; $e^{6.685} = 800$

c)
$$\lg 4.5 + \lg 80 = 2,556$$
; $\lg (4,5 \cdot 80) = \lg 360 = 2,556$; $10^{2.556} = 360$; $\ln 4.5 + \ln 80 = 5,886$; $\ln (4,5 \cdot 80) = \ln 360 = 5,886$; $e^{5.886} = 360$

d)
$$\lg 0.45 + \lg 8 = 0.556$$
; $\lg (0.45 \cdot 8) = \lg 3.6 = 0.556$; $10^{0.556} = 3.6$; $\ln 0.45 + \ln 8 = 1.281$; $\ln (0.45 \cdot 8) = \ln 3.6 = 1.281$; $e^{1.281} = 3.6$

15/3. a)
$$\lg 18.52 = 1.2676$$
; $\frac{3}{2} \cdot \lg 7 = 1.2676$; $10^{1.2676} = 18.52$
b) $\lg 4.6416 = 0.6667$; $\frac{2}{3} \cdot \lg 10 = \frac{2}{3} = 0.6667$; $10^{0.6667} = 4.6419$
c) $\ln 63.00 = 4.143$; $\frac{2}{3} \cdot \ln 500 = 4.143$; $e^{4.143} = 2.718^{4.143} = 62.99$
d) $\ln 23.68 = 3.1646$; $\frac{3}{4} \cdot \ln 68 = 3.1646$; $e^{3.1646} = 2.718^{3.1646} = 23.68$
e) $\lg 0.6817 = -0.1664$; $\frac{3}{4} \cdot \lg 0.6 = -0.1664$; $10^{-0.1664} = 0.6817$
f) $\ln 0.1597 = -1.8346$; $\frac{2}{3} \cdot \ln 0.047 = -1.8346$; $e^{-1.8346} = 0.1597$

1.5.2 Logarithmische Maßstäbe

Lösungen zu 1.5.2

16/2. $I = 10 \mu A$ bis 100 μA

I in μA	10	20	30	50	100
U in V	0,51	0,54	0,56	0,58	0,6

zu 16/2.

1.6 Gleichungen und Formeln

1.6.1 Arbeiten mit Gleichungen

Lösungen zu 1.6.1

- 19/1.o. a) x = 44 17 = 27: x = 27 + 5 = 32: b) $3x = 12 \implies x = 4$: $7x = 14 \implies x = 2$ c) $2x = 2 \Rightarrow x = 1$: $5x = -15 \Rightarrow x = -3$
- 19/2.o. a) $3y = 45 \Rightarrow y = 15$; $5y = 13 \cdot 15 \Rightarrow y = 39$ b) $\frac{3y}{1} = \frac{5}{4} \Rightarrow y = \frac{5}{12}; y = \frac{5}{4};$ c) $\frac{5y}{2} = \frac{7}{2} \Rightarrow y = \frac{21}{12}; \frac{4y}{2} = \frac{2}{5} \Rightarrow y = \frac{3}{12}$
- 19./3.o. a) $x + 7 = 10 \Rightarrow x = 3$: $8 x = 6 \Rightarrow x = 2$ b) $5x + 4 = 24 \implies x = 4$; $\frac{7 + 2x}{5} = 7 \implies 7 + 2x = 35 \implies x = 14$ c) $\frac{2}{5} = \frac{2x+3}{6} \Rightarrow 12 = 10x+15 \Rightarrow x = -\frac{3}{10}; \frac{5}{3} = \frac{7-2x}{5} \Rightarrow 25 = 21-6x \Rightarrow x = -\frac{2}{5}$
- 19/4.o. a) $z^2 = 16 \Rightarrow z = \pm 4$; $\frac{4z^2}{c} = 16 \Rightarrow z = \pm 6$ b) $z^2 = 25 \implies z = \pm 5$; $\frac{4z^2}{3} = 27 \implies z = \pm \frac{9}{3}$ c) $75z^2 = 180 \Rightarrow 5z^2 = 12 \Rightarrow z = \pm \sqrt{\frac{12}{5}}; \quad \frac{3}{4z} = \frac{z}{3} \Rightarrow z = \pm \frac{3}{2}$
- 19/5.o. a) $\frac{1}{x} = \frac{2+3}{6} \Rightarrow x = \frac{6}{5}; \quad \frac{1}{y} = \frac{1+2}{6} \Rightarrow y = 2$ b) $\frac{1}{y} = \frac{6+4}{15} \Rightarrow y = \frac{3}{2}; \quad \frac{1}{y} = \frac{10-9}{24} \Rightarrow x = 24$ c) $\frac{2}{z} = \frac{5-3}{15} \Rightarrow z = 15; \quad \frac{11}{z} = \frac{15-4}{10} \Rightarrow z = 10$ d) $\frac{1}{\sqrt{3}} = \frac{1}{5} - \frac{1}{4} = -\frac{1}{20} \Rightarrow x = -20; \quad \frac{1}{x} = \frac{1}{10} - \frac{1}{5} = -\frac{1}{10} \Rightarrow x = -10$ e) $\frac{1}{x} = \frac{1}{3} - \frac{1}{6} = \frac{1}{6} \Rightarrow x = 6; \quad \frac{1}{x} = \frac{1}{7} - \frac{1}{2} = -\frac{5}{14} \Rightarrow x = -\frac{14}{5}$ f) $\frac{3}{2x} = \frac{2}{5} - \frac{3}{10} = \frac{1}{10} \Rightarrow x = 15; \quad \frac{4}{5x} = \frac{2}{5} - \frac{5}{4} = -\frac{17}{20} \Rightarrow x = -\frac{16}{17}$
- 19/6.0. a) $36-15z=100-25z \Rightarrow 10z=64 \Rightarrow z=6.4$ b) $5z + 105 = 63 - 9z \Rightarrow 14z = -42 \Rightarrow z = -3$ c) $5z + 120 = 126 - 7z \Rightarrow 12z = 6 \Rightarrow z = 0.5$
- 19/7.o. a) $x^2 = 16 \implies x = \pm 4$; b) $x^2 = 100 \implies x = \pm 10$ c) $4x^2 = 64 \implies x^2 = 16 \implies x = \pm 4$; d) $27x^2 = 12 \implies 9x^2 = 4 \implies x = \pm \frac{2}{3}$
- 19/8.o. a) $x = \ln 50 = 3.91$; $x = \ln 5 = 1.609$: b) $x = \ln 2 = 0.693$; $x = \ln 0.2 = -1.61$ c) $x = \ln 10 = 2.30$; $2x = \ln 10 \Rightarrow x = 0.5 \cdot \ln 10 = 1.15$ d) $0.2x = \ln 8 \Rightarrow x = 5 \cdot \ln 8 = 10.4$; $0.4x = \ln 8 \Rightarrow x = 2.5 \cdot \ln 8 = 5.20$
- 19/9.o. a) $-x = \ln 4 \Rightarrow x = -\ln 4 = -1.39$; $-x = \ln 16 \Rightarrow x = -\ln 16 = -2.77$ b) $-x/2 = \ln 3 \Rightarrow x = -2 \cdot \ln 3 = -2,20; -x/2 = \ln 9 \Rightarrow x = -2 \cdot \ln 9 = -4,39$ c) $2 = 4 \cdot (1 - e^{-x/8}) \Rightarrow 1 - e^{-x/8} = 0.5 \Rightarrow -x/8 = \ln 0.5 \Rightarrow x = 5.55$ d) $6.3 = 10 \cdot (1 - e^{-x/3}) \Rightarrow 1 - e^{-x/3} = 0.63 \Rightarrow -x/3 = \ln 0.37 \Rightarrow x = 2.98$

1.6.2 Arbeiten mit Formeln

Lösungen zu 1.6.2

- 19/1.u. a) $v = \frac{P}{F}$ b) $F = \frac{M}{r}$ c) $P = \frac{W}{t}$
- d) $R = \frac{U}{r}$

- e) $v = \frac{s}{1}$ f) $\omega = \frac{P}{1}$
- g) $\varrho = \frac{m}{V}$
- h) $d = \frac{u}{-}$
- 19/2.u. a) $h = \frac{V}{l \cdot h}$ b) $n = \frac{V}{d \cdot \pi}$ c) $B = \frac{U}{V \cdot l}$;
- d) $L = \frac{X_L}{2\pi + f}$

- 19/3.u. a) $U_2 = U U_1$
 - b) $U_0 = U + U_1$
- c) $t_0 = t_1 \Delta t$
- d) $R_i = R R_i$
- 19/4.u. a) $Q = I \cdot t$ b) $U = R \cdot I$ c) $P_1 = \frac{P_2}{r}$
- d) $F = \frac{P \cdot t}{r}$
- e) $A = \frac{l}{v \cdot R}$ f) $Q = \frac{F \cdot s}{ll}$ g) $R = \frac{\omega \cdot L}{Q}$
- h) $A = \frac{2I \cdot l}{v \cdot \Lambda l I}$
- 19/5.u. a) $U = \sqrt{\frac{2 \cdot W}{C}}$ b) $L = \frac{U^2}{\omega \cdot Q_{co}}$ c) $I = \sqrt{\frac{Q}{X}}$
- d) $U = \sqrt{\frac{Q_{bc}}{Q_{bc}}}$
- 19/6.u. a) $X_L = \sqrt{Z^2 R^2}$ b) $L = \frac{T^2}{4\pi^2 + C}$ c) $I_{bL} = \sqrt{I^2 I_w^2}$

- 19/7.u. a) $R_i = \frac{U_0 U}{I}$ b) $n = \frac{R_v + R_m}{R_m} = \frac{R_v}{R} + 1$ c) $F_1 = \frac{F_2 \cdot v P}{v} = F_2 \frac{P}{v}$
- 19/8.u. a) $C_1 = \frac{1}{\frac{1}{1-1}} = \frac{C_2 \cdot C}{C_2 C}$ b) $R_1 = \frac{R_2 \cdot R}{R_2 R}$ c) $R_1 = \frac{(U U_2) \cdot R_2}{U_2} = R_2 \left(\frac{U}{U_2} 1\right)$

- d) $R_m = R_p \cdot (n-1)$ e) $U = U_0 R_i \cdot I$ f) $U = \frac{U_{20} \cdot (R_1 + R_2)}{R_2} = U_{20} \left(\frac{R_1}{R_2} + 1\right)$
- 19/9.u. a) $e^{t/\tau} = \frac{U_0}{u_-} \Rightarrow t = \tau \cdot \ln\left(\frac{U_0}{u_-}\right) = -\tau \cdot \ln\left(\frac{u_0}{U_0}\right)$ b) $\frac{I_0}{I_0} = e^{t/\tau} \Rightarrow \tau = \frac{t}{\ln\left(I_-/I_0\right)}$

 - c) $I_0 \cdot e^{-t/\tau} = I_0 i_L \Rightarrow e^{t/\tau} = \frac{I_0}{I_1 i_1} \Rightarrow t/\tau = \ln\left(\frac{I_0}{I_1 i_1}\right) \Rightarrow t = \tau \cdot \ln\left(\frac{I_0}{I_1 i_1}\right)$

1.6.3 Verhältnisgleichungen, Dreisatzrechnen

Lösungen zu 1.6.3

- 20/1.o. 25 Stück ≙ 12 € ⇒ 6 Stück ≙ 2,88 €
- 20/2.o. 2,25 kg ≘ 50 m ⇒ 1,44 kg ≘ 32 m
- 20/3.o. 5 Leuchten \triangleq 240 h \Rightarrow 3 Leuchten \triangleq 400 h

1.6.4 Verhältnisgleichungen, Prozentrechnen

Lösungen zu 1.6.4

- 20/1.u. (100 25)% ≙ 54 € ⇒ 100% = **72** €
- 20/2.u. 100% ≘ 400 V ⇒ ±2,5% ≘ ± 10 V
- 20/3.u. 80% ≙ 84 Ah ⇒ 100% ≘ 105 Ah

1.7 Funktionen

Lösungen zu 1.7

22/1. a)
$$t_1 = 16 \text{ h} \Rightarrow U_1 = 11.5 \text{ V}$$

b) $U_2 = 12 \text{ V} \Rightarrow t_2 = 12 \text{ h}$

22/2. a)
$$P_1 = 50 \text{ W} \Rightarrow \eta_1 \approx 0.5$$

b)
$$\eta_{\rm m} = 0.75 \implies P_{\rm m} = 150 \,\rm W$$

c)
$$\eta_2 = 0.7$$
 $\Rightarrow P_{21} = 100 \text{ W}$
 $P_{22} = 200 \text{ W}$

22/3. a)
$$I_0 = 0 \Rightarrow U_0 = 4.5 \text{ V}$$

 $I_1 = 0.5 \text{ A} \Rightarrow U_1 = 3.5 \text{ V}$

b)
$$U_2 = 3.7 \text{ V} \implies I_2 = 0.4 \text{ A}$$

 $U_3 = 2.5 \text{ V} \implies I_3 = 0.96 \text{ A}$

c)
$$R = \frac{1}{\Delta I} = \frac{2,5 \text{ V}}{0,96 \text{ A} - 0 \text{ A}}$$

 $R = \left| -2,1 \frac{\text{V}}{\text{A}} \right| = 2,1 \frac{\text{V}}{\text{A}}$

22/4. a)
$$t_1 = 10 \text{ s} \Rightarrow U_{C1} = 30 \text{ V}$$

 $t_2 = 20 \text{ s} \Rightarrow U_{C2} = 43 \text{ V}$

b)
$$U_{c3} = 0.63 \cdot 60 \text{ V} = 37.8 \text{ V}$$

 $U_{c3} = 37.8 \text{ V} \implies t_3 = 15 \text{ s}$

22/5. a) b)

U in A	0	10	20	30	40	50	60
I in A	0	0,5	1,0	1,5	2,0	2,5	3,0

zu 22/5. c) d)

e)
$$U_1 = 25 \text{ V} \Rightarrow I_1 = 1.25 \text{ A}; \quad I_1 = \frac{25 \text{ V}}{20 \Omega} = 1.25 \text{ A}$$

f) Steigung =
$$\frac{\Delta I}{\Delta U} = \frac{3.0 \text{ A}}{60 \text{ V}} = 0.05 \frac{A}{V}$$

22/6.	a)

	I in A	0	0,20	0,40	0,60	0,80	1,0	1,2
-	U, in V	0	0,42	0,85	1,25	1,65	2,05	2,50

d) Steigung =
$$\frac{\Delta U_i}{\Delta I} = \frac{2,05 \text{ V}}{1,0 \text{ A}} = 2,05 \frac{\text{V}}{\text{A}} = 2,05 \Omega$$

zu 22/6. b) c)

0 0,2 0,4 0,6 0,8 A 1,2

1.8 Rechnen am Dreieck

1.8.1 Satz des Pythagoras

Lösungen zu 1.8.1

23/1. a)
$$c = \sqrt{(34 \text{ cm})^2 + (47 \text{ cm})^2} = 58.0 \text{ cm}$$

c)
$$b = \sqrt{(41 \text{ cm})^2 - (27 \text{ cm})^2} = 30.9 \text{ cm}$$

b)
$$a = \sqrt{(76 \text{ cm})^2 - (53 \text{ cm})^2} = 54.5 \text{ cm}$$

d) $a = \sqrt{(2.3 \text{ m})^2 - (0.92 \text{ m})^2} = 2.11 \text{ m}$

e)
$$b = \sqrt{(3.4 \text{ cm})^2 - (0.86 \text{ cm})^2} = 3.29 \text{ cm}$$

23/2.
$$l = \sqrt{(320 \text{ mm})^2 + (290 \text{ mm})^2} = 432 \text{ mm}$$

23/3.
$$s_1 = \sqrt{(650 \text{ mm})^2 + (500 \text{ mm})^2} = 820 \text{ mm}; \quad s_2 = \sqrt{(500 \text{ mm})^2 - (400 \text{ mm})^2} = 300 \text{ mm}$$

23/4.
$$s = \sqrt{(D/2)^2 + (D/2)^2} = \frac{D}{2} \cdot \sqrt{2} = 35 \text{ mm} \cdot 1,414 = 49,5 \text{ mm}$$

23/5.
$$\frac{s}{2} = \sqrt{\left(\frac{D}{2}\right)^2 - \left(\frac{D}{4}\right)^2} = \sqrt{\frac{3D^2}{16}} = \frac{D}{4} \cdot \sqrt{3} \implies s = \frac{D}{2} \cdot \sqrt{3} = 24 \text{ mm} \cdot 1,732 = 41.6 \text{ mm}$$

23/6.
$$U = \sqrt{U_W^2 + U_{bL}^2} = \sqrt{(208V)^2 + (98V)^2} = 230V$$

23/7.
$$I_{\text{int}} = \sqrt{I^2 - I_{\text{w}}^2} = \sqrt{3.6^2 A^2 - 2^2 A^2} = 3 A$$

1.8.2 Winkelfunktionen

Lösungen zu 1.8.2

24/1.

Teil	a	b	С	d	е	f	9	h	i
b in mm	79,5	26,5	86,6	45	32	21	44	63	50
a in mm	42,3	33,9	50,0	77,9	24	66,8	33	84	50
c in mm	90	43	100	90	40	70	55	105	70,7
β in °	62	38	60	30	53,1	17,5	53,1	36,9	45
αin°	28	52	30	60	36,9	72,5	36,9	53,1	45

24/2.
$$s = 4.5 \text{ m/cos } 25^\circ = 4.97 \text{ m}$$
; $h = 4.5 \text{ m} \cdot \tan 25^\circ = 2.1 \text{ m}$

24/3.
$$a = s/\tan \alpha = 2.7 \text{ mm/tan } 25^\circ = 5.79 \text{ mm}$$

24/4.
$$\tan \alpha = s/a = 3.5 \text{ mm/8 mm} = 0.438 \implies \alpha = 23.63^{\circ} = 23^{\circ}37'$$

24/5.

a)
$$\cos \alpha = \frac{a}{l}$$
 $\Rightarrow a = l \cdot \cos \alpha = 5 \text{ m} \cdot \cos 70^{\circ} = 1.71 \text{ m}$

b)
$$\sin \alpha = \frac{b}{l} \implies b = l \cdot \sin \alpha = 5 \,\text{m} \cdot \sin 70^\circ = 4.7 \,\text{m}$$

24/6. a)
$$\tan \alpha = \frac{b}{a} = \frac{11 \text{ m}}{100 \text{ m}} = 0.11$$

 $\alpha = 6.28^{\circ}$

b)
$$\cos \alpha = \frac{a}{l} \implies a = l \cdot \cos \alpha = 600 \,\text{m} \cdot \cos 6.28^{\circ} = 596.4 \,\text{m}$$

c)
$$b = \sqrt{l^2 - a^2} = \sqrt{600^2 m^2 - 596, 4^2 m^2} = 65.6 \text{ m}$$

1.8.3 Winkel im Grad- und Bogenmaß

Lösungen zu 1.8.3

25/1.

Teil	а	b	С	d	е	f	g	h	i
β_{G} in °	16	48	70	140	20,1	43,0	77,3	178	258
β_{B} in rad	0,279	0,834	1,222	2,443	0,351	0,75	1,35	3,11	4,5

25/2.

Teil	а	b	С	d	е	f	g	h	i
φin°	360	270	180	90	120	60	30	45	15
φ in rad	2 · π	3·π/2	π	π/2	2·π/3	π/3	π/6	π/4	π/12

25/3. a)
$$5.5^{\circ} = 5^{\circ} + 0.5^{\circ} = 5^{\circ} + 0.5^{\circ} \cdot \frac{60'}{1^{\circ}} = 5^{\circ} + 30' = 5^{\circ}30'$$

b)
$$3.28^{\circ} = 3^{\circ} + 0.28^{\circ} = 3^{\circ} + 0.28^{\circ} \cdot \frac{60'}{1^{\circ}} = 3^{\circ} + 16.8^{\circ} = 3^{\circ} + 16' + 0.8' = 3^{\circ} + 16' + 0.8' \cdot \frac{60''}{1'} = 3^{\circ} + 16' + 48'' = 3^{\circ} 16' 48''$$

c)
$$15.53^{\circ} = 15^{\circ} + 0.53^{\circ} = 15^{\circ} + 0.53^{\circ} \cdot \frac{60'}{1^{\circ}} = 15^{\circ} + 31.8' = 15^{\circ} + 31' + 0.8' = 15^{\circ} + 31' + 0.8' \cdot \frac{60''}{1'} = 15^{\circ} + 31' + 48'' = 15^{\circ}31'48''$$

25/4. a)
$$10^{\circ}24' = 10^{\circ} + 24' \cdot \frac{1^{\circ}}{60'} = 10^{\circ} + 0.4^{\circ} = 10.4^{\circ}$$

b)
$$7^{\circ}5'24'' = 7^{\circ} + 5' + 24'' = 7^{\circ} + 5' + 24'' \cdot \frac{1'}{60''} = 7^{\circ} + 5' + 0.4' = 7^{\circ} + 5.4' = 7^{\circ} + 5.4' \cdot \frac{1^{\circ}}{60'} = 7^{\circ} + 0.09^{\circ} = 7.09^{\circ}$$

c)
$$50^{\circ}25'30'' = 50^{\circ} + 25' + 30'' = 50^{\circ} + 25' + 30'' \cdot \frac{1^{\circ}}{60''} = 50^{\circ} + 25' + 0.5' = 50^{\circ} + 25.5' \cdot \frac{1^{\circ}}{60'} = 50^{\circ} + 0.425^{\circ} = 50.425^{\circ}$$

1.8.4 Rechnen am beliebigen Dreieck

Lösungen zu 1.8.4

26/1.

Teil	a	b	C	d	е	f	g
а	40 mm	84,3 mm	73,4 mm	3,5 m	55 cm	40 cm	6,0 cm
b	75,2 mm	55 mm	82,9 mm	5,5 m	35 cm	70 cm	4,0 cm
С	78,8 mm	74,1 mm	90 mm	5,98 m	78,6 cm	50 cm	4,8 cm
α	30°	80°	50°	35,2°	37,3°	34,04°	85,5°
β	70°	40°	60°	64,8°	22,7°	101,5°	41,6°
γ	80°	60°	70°	80°	120°	44,4°	52,9°

26/2.
$$\alpha = \beta = \frac{45^{\circ}}{2} = 22.5^{\circ}$$

 $\gamma = 180^{\circ} - \alpha - \beta = 180^{\circ} - 22.5^{\circ} - 22.5^{\circ} = 135^{\circ}$
 $\frac{F}{F_{1}} = \frac{\sin \gamma}{\sin \beta} \implies F_{1} = F \cdot \frac{\sin \beta}{\sin \gamma} = 5 \text{ kN} \cdot \frac{\sin 22.5^{\circ}}{\sin 135^{\circ}} = 2.7 \text{ kN}$

zu 26/2.

26/3.
$$a = \sqrt{(2.0 \text{ m})^2 + (1.5 \text{ m})^2 - 2 \cdot 2.0 \text{ m} \cdot 1.5 \text{ m} \cdot \cos 120^\circ} = 3.04 \text{ m}$$

 $h = 2.0 \text{ m} \cdot \sin (180^\circ - 120^\circ) = 2.0 \text{ m} \cdot \sin 60^\circ = 1.73 \text{ m}$

26/4.

zu 26/4.

$$\begin{split} e &= \sqrt{a^2 + b^2 - 2ab \cdot \cos\alpha} = \sqrt{(0.8 \, \text{m})^2 + (0.5 \, \text{m})^2 - 2 \cdot 0.8 \, \text{m} \cdot 0.5 \, \text{m} \cdot \cos 97^\circ} = \textbf{0.99} \, \text{m} \\ \frac{\sin\alpha}{\sin\beta} &= \frac{e}{b} \quad \Rightarrow \quad \sin\beta = \frac{b}{e} \cdot \sin\alpha = \frac{0.5 \, \text{m}}{0.99 \, \text{m}} \cdot \sin 97^\circ = 0.5013 \quad \Rightarrow \quad \beta = 30^\circ \\ \sin\beta &= \frac{\frac{f}{2}}{a} \quad \Rightarrow \quad f = 2a \cdot \sin\beta = 2 \cdot 0.8 \, \text{m} \cdot \sin 30^\circ = \textbf{0.8} \, \text{m} \end{split}$$

26/5.
$$b = \frac{1.6 \text{ m}}{\cos (90^\circ - 25^\circ - 40^\circ)} = \frac{1.6 \text{ m}}{\cos 25^\circ} = 1.77 \text{ m}; c = \frac{\sin 40^\circ}{\sin 25^\circ} \cdot b = 2.69 \text{ m}$$
 $c = 1.6 \text{ m} \cdot \tan (90^\circ - 25^\circ) - 1.6 \text{ m} \cdot \tan (90^\circ - 25^\circ - 40^\circ) = 1.6 \text{ m} \cdot (\tan 65^\circ - \tan 25^\circ) = 2.69 \text{ m}$

zu 26/6.

$$\gamma = 180^{\circ} - \alpha - \beta = 180^{\circ} - 30^{\circ} - 20^{\circ} = 130^{\circ}$$

Module im Querformat angeordnet:

$$\frac{\sin \beta}{\sin \gamma} = \frac{b}{c} \Rightarrow c = \frac{b \cdot \sin \gamma}{\sin \beta} = \frac{560 \text{ mm} \cdot \sin 130^{\circ}}{\sin 20^{\circ}} = 1254 \text{ mm}$$

$$n_{e} = \frac{8 \text{ m}}{a} = \frac{8000 \text{ mm}}{1200 \text{ mm}} = 6.6 \Rightarrow 6 \text{ Module}$$

$$d = \frac{10 \text{ m}}{c} = \frac{10000 \text{ mm}}{1254 \text{ mm}} = 7.97 \text{ Abstände} \implies n_{\text{L}} = 8 \text{ Reihen}$$

$$n_M = n_B \cdot n_L = 6 \cdot 8 = 48 \text{ Module}$$

 $A = n_M \cdot a \cdot b = 54 \cdot 1,2 \text{ m} \cdot 0.56 \text{ m} = 32.26 \text{ m}^2$

Module im Hochformat angeordnet:

$$\begin{split} \frac{\sin\beta}{\sin\gamma} &= \frac{a}{c} \quad \Rightarrow \quad c = \frac{a \cdot \sin\gamma}{\sin\beta} = \frac{1200 \, \text{mm} \cdot \sin 130^{\circ}}{\sin 20^{\circ}} = 2687,72 \, \text{mm} \\ n_B &= \frac{8 \, \text{m}}{b} = \frac{8000 \, \text{mm}}{560 \, \text{mm}} = 14,3 \quad \Rightarrow \quad 14 \, \text{Module} \\ d &= \frac{10 \, \text{m}}{c} = \frac{10 \, 000 \, \text{mm}}{2687,72 \, \text{mm}} = 3,72 \, \text{Abstände} \quad \Rightarrow \quad n_L = 4 \, \text{Reihen} \end{split}$$

$$n_M = n_B \cdot n_L = 14 \cdot 4 = 56 \text{ Module}$$

 $A = n_M \cdot a \cdot b = 56 \cdot 1,2 \text{ m} \cdot 0,56 \text{ m} = 37,63 \text{ m}^2$

Die Module müssen im Hochformat montiert werden.

1.9 Runden

Lösungen zu 1.9

- 27/1. a) $655,837 \Rightarrow 655,84$; 655,8; 656; $0,66 \cdot 10^3$; $0,7 \cdot 10^3$
 - b) $2174,95 \Rightarrow 2175,0$; 2175; $2,17 \cdot 10^3$; $2,2 \cdot 10^3$; $2 \cdot 10^3$
 - c) $18,7484 \Rightarrow 18,748; 18,75; 18,7; 19; 0.02 \cdot 10^3$
 - d) $5.68458 \Rightarrow 5.6846$; 5.685; 5.68; 5.7; 6
 - e) 0,963493 \Rightarrow 0,96349; 0,9635; 0,963; 0,96; 1
 - f) $0.748396 \Rightarrow 0.74840$; 0.7484; 0.748; 0.75; 0.75
 - g) $98,3185 \Rightarrow 98,319$; 98,32; 98,3; 98; $0,1 \cdot 10^3$
 - h) 8,97946 ⇒ 8,9795; 8,979; 8,98; 9,0; 9
 - i) 0,479658 \Rightarrow 0,47966; 0,4797; 0,480; 0,48; 0,5
 - k) $0.0845853 \Rightarrow 0.084585$; 0.08459; 0.0846; 0.085; 0.08

27/2.
$$F = \frac{k \cdot M}{100\%} = \frac{1\% \cdot 23,86 \, V}{100\%} = 0,2386 \, V$$

$$w_o = M + F = 23,86 \, V + 0,2386 \, V = 24,0986 \, V$$

$$w_u = M - F = 23,86 \, V - 0,2386 \, V = 23,621 \, V$$

$$w_u \leq \text{gerundeter } M \leq w_o$$

$$23,621 \, V \leq 24 \, V \leq 24,0986 \, V$$

27/3. a) n = 2

$$x_{min} = 10$$
; $o = 10.49$; $u = 9.50 \Rightarrow e_{max} = 0.5$

$$f_{\text{max}} = \frac{e_{\text{max}}}{x_{\text{min}}} \cdot 100\% = \frac{0.5}{10} \cdot 100\% = 5\%$$

$$x_{max} = 99$$
; $o = 99,49$; $u = 98,50 \Rightarrow e_{max} = 0,5$

$$f_{min} = \frac{e_{max}}{x_{max}} \cdot 100\% = \frac{0.5}{99} \cdot 100\% = 0.5\%$$

$$x_{min} = 100; o = 100,49; u = 99,50 \Rightarrow e_{max} = 0,5$$

$$f_{\text{max}} = \frac{e_{\text{max}}}{x_{\text{min}}} \cdot 100\% = \frac{0.5}{100} \cdot 100\% = 0.5\%$$

$$x_{max} = 999$$
; $o = 999,49$; $u = 998,50 \Rightarrow e_{max} = 0,5$

$$f_{min} = \frac{e_{max}}{X_{max}} \cdot 100\% = \frac{0.5}{999} \cdot 100\% = 0.05\%$$

$$x_{min} = 1000$$
; $o = 1000,49$; $u = 999,50 \Rightarrow e_{max} = 0,5$

$$f_{\text{max}} = \frac{e_{\text{max}}}{x_{\text{min}}} \cdot 100\% = \frac{0.5}{1000} \cdot 100\% = 0.05\%$$

$$x_{max} = 9999$$
; $o = 9999,49$; $u = 9998,50 \Rightarrow e_{max} = 0,5$

$$f_{min} = \frac{e_{max}}{x_{max}} \cdot 100\% = \frac{0.5}{9999} \cdot 100\% = 0.005\%$$

2 Physikalische Grundlagen

2.1 Vorsätze

Lösungen zu 2.1

28/1. a) 1,0 m; 0,075 m; 1,2 m; 6500 m

- b) 200 dm; 18,8 dm; 0,14 dm; 0,342 dm
- c) 300 cm; 812 cm; 1,72 cm; 2,4 cm
- d) 1200 mm; 410 mm; 890 mm; 0,08 mm
- e) 405 µm; 5000 µm; 1 625 µm
- f) 5,3 km; 0,625 km; 28,3 km

28/2. a) 1,8 m²; 0,12 m²; 0,00089 m²

- b) 190 dm²; 0,0845 dm²; 9,41 dm²
- c) 8700 cm²; 1200 cm²; 4,73 cm²
- d) 1050000 mm²; 160000 mm²; 18400 mm²

28/3. a) $115 \cdot 10^{-6} \,\mathrm{m}^3$; $61 \cdot 10^{-9} \,\mathrm{m}^3$; $12.4 \cdot 10^{-3} \,\mathrm{m}^3$

- b) 130 · 10⁻³ dm³; 10753 dm³; 4,2 · 10⁻³ dm³
- c) 10^7 cm^3 ; $28.4 \cdot 10^3 \text{ cm}^3$; $5 \cdot 10^{-3} \text{ cm}^3$
- d) 2000 mm³; 15 · 10⁶ mm³; 127 · 10⁹ mm³
- 28/4. a) 201,6 mil
- b) 295,3 mil
- c) 393,7 mil

- 28/5. a) 43,18 cm
- b) 53,34 cm
- c) 68,58 cm

28/6. a) Abstände: 4,233 mm; 3,175 mm

Längen: 88,9 mm; 139,7 mm; 152,4 mm; 177,8 mm; 215,9 mm; 279,4 mm; 304,8 mm; 355.6 mm

b) 297 mm = 11,69 in ≈ 12 in

2.2 Kreisumfang, gestreckte Länge

Lösungen zu 2.2

- 29/1. a) 56,55 mm
- **b**) 5,0 mm
- c) 138,2 mmg) 1,21 m
- d) 2,70 cm

- e) 80,11 cm
- f) 0,205 m
- 29/2. $u_m = \pi \cdot d_m = \pi \cdot (140 \text{ mm} + 16 \text{ mm}) = 490.1 \text{ mm}$

29/3. $d_m = \frac{D+d}{2} = \frac{250 \text{ mm} + 205 \text{ mm}}{2} = 227.5 \text{ mm}$ $u_m = d_m \cdot \pi = 227.5 \text{ mm} \cdot \pi = 714.7 \text{ mm} \approx 715 \text{ mm}$

29/4. a) $u_i = \pi \cdot d = \pi \cdot 750 \text{ mm} = 2356 \text{ mm}; \quad u_a = \pi \cdot D = \pi \cdot 1600 \text{ mm} = 5027 \text{ mm}$

b) $h = \frac{D-d}{2} = \frac{1600 \text{ mm} - 750 \text{ mm}}{2} = 425 \text{ mm}$

c) $d_m = \frac{D+d}{2} = \frac{1600 \text{ mm} + 750 \text{ mm}}{2} = 1175 \text{ mm}$

29/5. $L = \frac{\pi \cdot d_{m1}}{2} + 2 \cdot l_1 + \frac{\pi \cdot d_{m2}}{2} + 2 \cdot l_2 = \frac{\pi \cdot 45 \text{ mm}}{2} + 2 \cdot 10 \text{ mm} + \frac{\pi \cdot 15 \text{ mm}}{2} + 2 \cdot 10 \text{ mm} = 134 \text{ mm}$

- 29/6. a) $d_m = \frac{D+d}{2} = \frac{90 \text{ mm} + 80 \text{ mm}}{2} = 85 \text{ mm}; \quad l = \pi \cdot d_m = \pi \cdot 85 \text{ mm} = 267 \text{ mm}$ b) $L = 12 \cdot l + 11 \cdot 1 \text{ mm} = 12 \cdot 267 \text{ mm} + 11 \text{ mm} = 3215 \text{ mm}$
- 29/7. $L = 2 \cdot l + 2 \cdot b 8 \cdot r + \pi \cdot d_m = 2 \cdot 90 \text{ mm} + 2 \cdot 35 \text{ mm} 8 \cdot 3 \text{ mm} + \pi \cdot 26 \text{ mm} = 308 \text{ mm}$
- 29/8. $u_{max} = \pi \cdot 2 (r + 3 \text{ mm}) = \pi \cdot 2 (282 \text{ mm} + 3 \text{ mm}) = 1791 \text{ mm}$ $u_{min} = \pi \cdot 2 (r - 3 \text{ mm}) = \pi \cdot 2 (282 \text{ mm} - 3 \text{ mm}) = 1753 \text{ mm}$
- 29/9. $u = \frac{s}{n_{0mdr}} = \frac{s}{n_{1mp} \cdot \frac{1}{72}} = \frac{15 \text{ m}}{9000 \cdot \frac{1}{72}} = 0,12 \text{ m} = 12 \text{ cm}$ $r = \frac{u}{2\pi} = \frac{12 \text{ cm}}{2\pi} = 1,91 \text{ cm}$
- 29/10. $u = \pi \cdot d$; $u_1 = \pi \cdot 570 \text{ mm} = 1791 \text{ mm}$; $u_2 = \pi \cdot 564 \text{ mm} = 1772 \text{ mm}$ $n_1 = \frac{s}{u_1} = \frac{560 \text{ km}}{1791 \text{ mm}} = 312674; \quad n_2 = \frac{s}{u_2} = \frac{560 \text{ km}}{1772 \text{ mm}} = 316027$ $s' = \frac{s \cdot n_2}{n_1} = \frac{560 \text{ km} \cdot 316027}{312674} = 566 \text{ km}$

2.3 Flächen

Lösungen zu 2.3

30/1. $A = \frac{\pi}{4} (D^2 - d^2) = \frac{\pi}{4} (44^2 \text{ mm}^2 - 25^2 \text{ mm}^2) = 1030 \text{ mm}^2$ $b = \frac{D - d}{2} = \frac{44 \text{ mm} - 25 \text{ mm}}{2} = 9.5 \text{ mm}$

30/2. $A = A_1 + A_2$ $A_1 = l \cdot b - 2 \cdot l_1 \cdot l_2 = 6 \text{ cm} \cdot 4 \text{ cm} - 2 \cdot 3 \text{ cm} \cdot 1 \text{ cm} = 18 \text{ cm}^2$; $A_2 = l \cdot b_2 = 6 \text{ cm} \cdot 1 \text{ cm} = 6 \text{ cm}^2$ $A = 18 \text{ cm}^2 + 6 \text{ cm}^2 = 24 \text{ cm}^2$

30/3. $A = 12 \cdot (A_1 - A_{\square} - A_{\triangle}) = 12 \cdot \left(4 \text{ cm} \cdot 5 \text{ cm} - 2.5 \text{ cm} \cdot 2 \text{ cm} - \frac{2.5 \text{ cm} \cdot 2 \text{ cm}}{2}\right) = 150 \text{ cm}^2$ Werkstoffbedarf = $A \cdot 1.65 = 150 \text{ cm}^2 \cdot 1.65 = 247.5 \text{ cm}^2$

30/4. $A = 2 \cdot A_1 = 2 \cdot \frac{\pi \cdot 0.8^2 \text{ mm}^2}{4} = 1.0 \text{ mm}^2$

30/5. a) $A_1 = \frac{A}{2} = \frac{1 \text{ mm}^2}{2} = 0.5 \text{ mm}^2$; $d_1 = \sqrt{\frac{A_1 \cdot 4}{\pi}} = \sqrt{\frac{0.5 \text{ mm}^2 \cdot 4}{\pi}} = 0.80 \text{ mm}$; b) $A_1 = \frac{A}{3} = \frac{1 \text{ mm}^2}{3} = 0.33 \text{ mm}^2$; $d_1 = \sqrt{\frac{A_1 \cdot 4}{\pi}} = \sqrt{\frac{0.33 \text{ mm}^2 \cdot 4}{\pi}} = 0.65 \text{ mm}$

30/6. a) $A_1 = 26 \cdot \frac{\pi}{4} \cdot d_1^2 = 26 \cdot \frac{\pi}{4} \cdot 3^2 \text{ mm}^2 = 183.8 \text{ mm}^2$

b) $A_2 = 7 \cdot \frac{\pi}{4} \cdot d_2^2 = 7 \cdot \frac{\pi}{4} \cdot 2,33^2 \text{ mm}^2 = 29.8 \text{ mm}^2$

c) Al: $St = 183.8 \text{ mm}^2$: $29.8 \text{ mm}^2 = 6.16$: 1

b) $A = b \cdot h = 58.16 \,\text{cm} \cdot 36.35 \,\text{cm} = 2114.12 \,\text{cm}^2 \approx 21.14 \,\text{dm}^2$

2.4 Rauminhalt und Masse

Lösungen zu 2.4

31/1. $V = l \cdot b \cdot h = 8.8 \, dm \cdot 4.5 \, dm \cdot 4.3 \, dm = 170 \, dm^3 = 170 \, l$

31/2.
$$V = A \cdot l = 0.8 \cdot 0.1 \text{ dm}^2 \cdot 24 \text{ dm} = 1.92 \text{ dm}^3$$
; $m = V \cdot \varrho = 1.92 \text{ dm}^3 \cdot 2.7 \frac{\text{kg}}{\text{dm}^3} = 5.18 \text{ kg}$

31/3.
$$V = V_1 + 2 \cdot V_2 = 10 \text{ cm} \cdot 9 \text{ cm}^2 + 2 \cdot 7,5 \text{ cm} \cdot 9 \text{ cm}^2 = 225 \text{ cm}^3$$

$$\varrho = \frac{m}{V} = \frac{1766 \text{ g}}{225 \text{ cm}^3} = 7,85 \frac{\text{g}}{\text{cm}^3} = 7,85 \frac{\text{kg}}{\text{dm}^3} \implies \text{Stahl}$$

31/4.
$$m_{cu} = 3700 \text{ g} - 200 \text{ g} = 3500 \text{ g}$$
; $V_{cu} = \frac{m_{cu}}{\varrho} = \frac{3500 \text{ g}}{8.9 \frac{g}{\text{cm}^3}} = 393,26 \text{ cm}^3$

$$I = \frac{V_{cu}}{A} = \frac{393,26 \text{ cm}^3}{\frac{\pi}{4} \cdot 0.04^2 \cdot \text{cm}^2} = 312945 \text{ cm} \approx 3130 \text{ m}$$

31/5. a)
$$V = \frac{A_1 \cdot h_1}{3} + A_2 \cdot h_2 = \frac{\pi \cdot 5^2 \text{ mm}^2 \cdot 1.2 \text{ mm}}{4 \cdot 3} + \frac{\pi \cdot 2^2 \text{ mm}^2}{4} \cdot 2.5 \text{ mm} = 15.7 \text{ mm}^3$$

$$m = V \cdot \varrho \cdot 100 = 0.0157 \text{ cm}^3 \cdot 8.9 \frac{g}{\text{cm}^3} \cdot 100 = 14 \text{ g}$$

b)
$$V_1 = A_1 \cdot h_1 = \frac{\pi \cdot 15^2 \text{ mm}^2}{4} \cdot 2 \text{ mm} = 353 \text{ mm}^3$$

$$V_2 = V_1 + A_2 \cdot h_2 = 353 \text{ mm}^3 + \frac{\pi \cdot 8^2 \text{ mm}^2}{4} \cdot 7 \text{ mm} = 705 \text{ mm}^3$$

$$m = \left(0,353 \text{ cm}^3 \cdot 19,3 \frac{g}{\text{cm}^3} + 0,705 \text{ cm}^3 \cdot 8,9 \frac{g}{\text{cm}^3}\right) \cdot 60 = 785 \text{ g}$$

31/6. Kupferzahl =
$$\frac{\varrho_{\text{Cu}} \cdot \text{V}}{1 \text{ km}} = \frac{\varrho_{\text{Cu}} \cdot 3 \cdot \text{A} \cdot \text{I}}{1 \text{ km}} = \frac{8.9 \frac{\text{kg}}{\text{dm}^3} \cdot 3 \cdot 1.5 \cdot 10^{-4} \, \text{dm}^2 \cdot 1000 \cdot 10 \, \text{dm}}{1 \text{ km}} = 40.05 \frac{\text{kg}}{\text{km}}$$

2.5 Berechnung von Spulen

Lösungen zu 2.5

32/1. $d_2 = d_1 + 2 \cdot s = 1.2 \text{ mm} + 2 \cdot 0.04 \text{ mm} = 1.28 \text{ mm}$; $d_2 = 1.58 \text{ mm}$; 1.88 mm; 2.08 mm

32/2. a)
$$d_2 = d_1 + 2 \cdot s = 0.5 \text{ mm} + 2 \cdot 0.09 \text{ mm} = 0.68 \text{ mm}$$
; $d_2 = 0.78 \text{ mm}$; 0.93 mm; 1.68 mm b) $A_1 = \frac{d_1^2 \cdot \pi}{4} = \frac{0.5^2 \text{ mm}^2 \cdot \pi}{4} = 0.196 \text{ mm}^2$; $A_1 = 0.283 \text{ mm}^2$; 0.442 mm²; 1.767 mm²

32/3. a) $l_m = 2 \cdot a' + 2 \cdot b' + \pi \cdot h = 2 \cdot 10 \text{ mm} + 2 \cdot 4 \text{ mm} + \pi \cdot 5 \text{ mm} = 43.7 \text{ mm}$

b)
$$z = \frac{h}{d_2} = \frac{5 \text{ mm}}{0.12 \text{ mm}} = 41.7 \approx 41$$

b) $z = \frac{h}{d_2} = \frac{5 \text{ mm}}{0.12 \text{ mm}} = 41.7 \approx 41$ c) $N_1 = \frac{b}{d_2} = \frac{50 \text{ mm}}{0.12 \text{ mm}} = 416.7 \approx 416$

d) $N = z \cdot N_1 = 41 \cdot 416 = 17056 \approx 17050$

33/4. a)
$$N = \frac{b}{d_2} = \frac{90 \text{ mm}}{0.6 \text{ mm}} = 150$$
 b) $d_m = d + d_2 = 30 \text{ mm} + 0.6 \text{ mm} = 30.6 \text{ mm}$

c)
$$l = \pi \cdot d_m \cdot N = \pi \cdot 30.6 \text{ mm} \cdot 150 = 14420 \text{ mm} \approx 14.5 \text{ m}$$

33/5. a)
$$N = \frac{b}{d_2} = \frac{440 \text{ mm}}{0.2 \text{ mm}} = 2200$$

b) $d_m = d + d_2 = 60 \text{ mm} + 0.2 \text{ mm} = 60.2 \text{ mm}$; $l = \pi \cdot d_m \cdot N = \pi \cdot 60.2 \text{ mm} \cdot 2200 = 416 \text{ m}$

c)
$$m = \frac{\pi}{4} \cdot 0.02^2 \text{ cm}^2 \cdot 41600 \text{ cm} \cdot 8.3 \text{ g/cm}^3 = 108 \text{ g}$$

33/6.
$$A_w = b \cdot h = 60 \text{ mm} \cdot 10 \text{ mm} = 600 \text{ mm}^2$$
; $A_D = A_w \cdot f = 600 \text{ mm}^2 \cdot 0,65 = 390 \text{ mm}^2$

$$N = \frac{A_D}{A_1} = \frac{390 \text{ mm}^2}{\frac{\pi \cdot 0,4^2 \text{ mm}^2}{4}} = 3104 \approx 3100; \quad l = N \cdot l_m = N \cdot \pi \cdot d_m = 3100 \cdot \pi \cdot 50 \text{ mm} = 487 \text{ m}$$

33/7. a)
$$z = \frac{h}{d_2} = \frac{12 \text{ mm}}{0.8 \text{ mm}} = 15$$
; $N_1 = \frac{b}{d_2} = \frac{45 \text{ mm}}{0.8 \text{ mm}} = 56$; $N = z \cdot N_1 = 15 \cdot 56 = 840$
b) $l_m = 2 \cdot a' + 2 \cdot b' + \pi \cdot h = 2 \cdot 36 \text{ mm} + 2 \cdot 35 \text{ mm} + \pi \cdot 12 \text{ mm} = 180 \text{ mm}$

$$l = l_m \cdot N = 0.180 \text{ m} \cdot 840 = 151,20 \text{ m}; \quad l' = l + l \cdot 4\% = 151,20 \text{ m} + 6,05 \text{ m} = 157,25 \text{ m}$$

33/8.
$$d_m = d + d_2 = 30 \text{ mm} + 1,25 \text{ mm} = 31,25 \text{ mm}; N = \frac{l}{\pi \cdot d_m} = \frac{11000 \text{ mm}}{\pi \cdot 31,25 \text{ mm}} = 112$$

 $b = N \cdot d_2 = 112 \cdot 1,25 \text{ mm} = 140 \text{ mm}$

33/9.
$$z = \frac{h}{d_2} = \frac{220 \text{ mm}}{31 \text{ mm}} = 7.1$$
; 7 Lagen; $N_1 = \frac{b}{d_2} = \frac{500 \text{ mm}}{31 \text{ mm}} = 16.13$; 16 Wdg. je Lage $N = N_1 \cdot z = 16 \cdot 7 = 112$; $d_m = d + h = 500 \text{ mm} + 220 \text{ mm} = 720 \text{ mm}$ $l = \pi \cdot d_m \cdot N = \pi \cdot 720 \text{ mm} \cdot 112 = 253 \text{ m}$

33/10. a)
$$h = \frac{D-d}{2} = \frac{22 \text{ mm} - 9 \text{ mm}}{2} = 6.5 \text{ mm}$$
 b) $N_1 = \frac{b}{d_0} = \frac{40 \text{ mm}}{0.44 \text{ mm}} = 90$

b)
$$N_1 = \frac{b}{d_2} = \frac{40 \text{ mm}}{0.44 \text{ mm}} = 5$$

c)
$$z = \frac{h}{d_2} = \frac{6.5 \text{ mm}}{0.44 \text{ mm}} = 14.8; 14 \text{ Lagen}$$

d)
$$N = N_1 \cdot z = 90 \cdot 14 = 1260$$

e)
$$d_m = \frac{D+d}{2} = \frac{22 \text{ mm} + 9 \text{ mm}}{2} = 15,5 \text{ mm}; \quad l = \pi \cdot d_m \cdot N = \pi \cdot 15,5 \text{ mm} \cdot 1260 = 61.4 \text{ m}$$

f)
$$m = \frac{\pi}{4} \cdot d_1^2 \cdot l \cdot \varrho = \frac{\pi}{4} \cdot 0.04^2 \text{ cm}^2 \cdot 6140 \text{ cm} \cdot 8.9 \frac{g}{\text{cm}^3} = 68.7 \text{ g} \approx 69 \text{ g}$$

g)
$$f = \frac{N \cdot A_1}{b \cdot h} = \frac{1260 \cdot \frac{\pi}{4} \cdot 0.4^2 \text{ mm}^2}{40 \text{ mm} \cdot 6.5 \text{ mm}} = 0.61$$

33/11. a)
$$h = \frac{D-d}{2} = \frac{19 \text{ mm} - 7.6 \text{ mm}}{2} = 5.7 \text{ mm}; \quad z = \frac{h}{d_2} = \frac{5.7 \text{ mm}}{0.32 \text{ mm}} = 17.8; \quad 17 \text{ Lagen}$$
 $N_1 = \frac{b}{d_2} = \frac{36 \text{ mm}}{0.32 \text{ mm}} = 112.5; \quad 112 \text{ Windungen}; \quad N = z \cdot N_1 = 17 \cdot 112 = 1904 \approx 1900$ b) $d_m = \frac{D+d}{2} = \frac{19 \text{ mm} + 7.6 \text{ mm}}{2} = 13.3 \text{ mm}$

33/12. a) $l_m = 2 \cdot a' + 2 \cdot b' + \pi \cdot h = 2 \cdot 20 \text{ mm} + 2 \cdot 5 \text{ mm} + \pi \cdot 12 \text{ mm} = 87.7 \text{ mm}$

b)
$$z = \frac{h}{d_2} = \frac{12 \text{ mm}}{0.222 \text{ mm}} = 54 \text{ Lagen}$$

c)
$$N_1 = \frac{b}{d_2} = \frac{45 \text{ mm}}{0.222 \text{ mm}} = 202$$
; $N = N_1 \cdot z = 202 \cdot 54 = 10908 \approx 10900$

d)
$$l = l_m \cdot N = 87.7 \text{ mm} \cdot 10900 = 956 \text{ m}$$

33/13.
$$z = \frac{h}{d_2} = \frac{5 \text{ mm}}{0.09 \text{ mm}} = 55.6$$
; 55 Lagen; $N_1 = \frac{b}{d_2} = \frac{40 \text{ mm}}{0.09 \text{ mm}} = 444.4$; 444 Windungen/Lage $N = N_1 \cdot z = 444 \cdot 55 = 24420$ $l_m = 2 \cdot a' + 2 \cdot b' + \pi \cdot h = 2 \cdot 8 \text{ mm} + 2 \cdot 5 \text{ mm} + \pi \cdot 5 \text{ mm} = 41.7 \text{ mm}$ $l = N_1 \cdot l_m = 24420 \cdot 41.7 \text{ mm} = 1018 \text{ m}$

2.6 Bewegung mit konstanter Geschwindigkeit

2.6.1 Gleichförmige Bewegung

Lösungen zu 2.6.1

34/1.
$$v = \frac{s}{t} = \frac{32 \text{ m}}{24 \text{ s}} = 1,33 \frac{\text{m}}{\text{s}} \cdot 60 \frac{\text{s}}{\text{min}} = 80 \frac{\text{m}}{\text{min}}$$

34/2.
$$v = \frac{s}{t} = \frac{450 \text{ m}}{72 \text{ s}} = 6.25 \frac{\text{m}}{\text{s}}$$

34/3.
$$s = v \cdot t = 2,339 \frac{cm}{s} \cdot 240 \text{ min} = 2,339 \frac{cm}{s} \cdot 240 \cdot 60 s = 33681,6 \text{ cm} \approx 336,82 \text{ m}$$

34/4. a)
$$s_{LP} = v_{LP} \cdot t_{LP} = 12.5 \frac{mm}{s} \cdot \frac{1 \text{ m}}{1000 \text{ mm}} \cdot 90 \text{ min } \frac{60 \text{ s}}{1 \text{ min}} = 67.5 \text{ m}$$

b)
$$t_{SP} = \frac{s_{LP}}{v_{SP}} = \frac{67.5 \text{ m}}{18.8 \frac{\text{mm}}{\text{s}} \cdot \frac{1 \text{ m}}{1000 \text{ mm}}} = 3590.4 \text{ s} = 59.84 \text{ min} \approx 60 \text{ min}$$

34/5.
$$t = \frac{2 \cdot s}{v} = \frac{2 \cdot 384400 \text{ km}}{299800 \text{ km/s}} = 2,564 \text{ s}$$

34/6. a)
$$v = \frac{\Delta s}{\Delta t} = \frac{3 \text{ m}}{2 \text{ s}} = 1.5 \frac{\text{m}}{\text{s}}; \quad 1.5 \frac{\text{m}}{\text{s}} \cdot 3600 \frac{\text{s}}{\text{h}} : 1000 \frac{\text{m}}{\text{km}} = 5.4 \frac{\text{km}}{\text{h}}$$

zu 34/6.

34/7.
$$n = \frac{b}{1.2 \text{ mm}} = \frac{1140 \text{ mm}}{1.2 \text{ mm}} = 950 \text{ Arbeitshübe}$$

$$t_1 = \frac{s}{v_1} = \frac{950 \cdot (2.50 \text{ m} + 0.08 \text{ m})}{18 \text{ m/min}} = 136.17 \text{ min}; \quad t_2 = \frac{s}{v_2} = \frac{950 \cdot (2.50 \text{ m} + 0.08 \text{ m})}{25 \text{ m/min}} = 98.04 \text{ min}$$

$$t = t_1 + t_2 = 136.17 \text{ min} + 98.04 \text{ min} = 234.21 \text{ min} = 3 \text{ h} 54 \text{ min}$$

34/8. a) Rechteck mit den Seiten v_H und v_W; daraus Diagonale v.

$$v^{2} = v_{H}^{2} + v_{W}^{2} \Rightarrow v = \sqrt{v_{H}^{2} + v_{W}^{2}}$$

$$= \sqrt{6.3^{2} \left(\frac{m}{min}\right)^{2} + 19^{2} \left(\frac{m}{min}\right)^{2}} = \sqrt{400.69 \left(\frac{m}{min}\right)^{2}} = 20.02 \frac{m}{min} \approx 20 \frac{m}{min}$$
b) $s = v \cdot t = 20 \frac{m}{min} \cdot \frac{1}{60} \frac{min}{s} \cdot 16 s = 5.33 m$

2.6.2 Kreisförmige Bewegung mit konstanter Bahngeschwindigkeit Lösungen zu 2.6.2

35/1.
$$v = \pi \cdot d \cdot n = \pi \cdot 4 \text{ mm} \cdot 1440 \text{ min}^{-1} = 18,096 \frac{m}{\text{min}} = 0.3 \frac{m}{\text{s}}$$

35/2.
$$v = \pi \cdot d \cdot n = \pi \cdot 0.18 \text{ m} \cdot 8500 \text{ min}^{-1} = 4806.6 \frac{\text{m}}{\text{min}} \approx 80 \frac{\text{m}}{\text{s}}$$

35/3.
$$d = \frac{v}{\pi \cdot n} = \frac{30 \text{ m/s}}{\pi \cdot 18000 \text{ min}^{-1}} = \frac{30000 \text{ mm/s}}{\pi \cdot 300 \text{ s}^{-1}} \approx 31.8 \text{ mm}$$

35/4.
$$d = \frac{v}{\pi \cdot n} = \frac{45 \text{ m/s}}{\pi \cdot 43000 \text{ min}^{-1}} = \frac{45000 \text{ mm/s}}{\pi \cdot 716.7 \text{ s}^{-1}} = 20 \text{ mm}$$

35/5.
$$v = \pi \cdot d \cdot n \Rightarrow n = \frac{v}{\pi \cdot d} = \frac{7,85 \text{ m/s}}{\pi \cdot 0.025 \text{ m}} = 100 \text{ s}^{-1} = 6000 \text{ min}^{-1}$$

35/6.
$$n = \frac{v}{\pi \cdot d} = \frac{2,339 \text{ cm/s}}{\pi \cdot 0,352 \text{ cm}} = 2,115 \text{ s}^{-1} = 126,91 \text{ min}^{-1}$$

35/7. a)
$$s = u \cdot n = d \cdot \pi \cdot n = 27 \cdot 0,0254 \text{ m} \cdot \pi \cdot 4640 = 9996.9 \text{ m}$$

b)
$$n = {v \cdot t \over d \cdot \pi} = {25000 \, {m \over h} \cdot {1 \over 60} \, h \over 27 \cdot 0.0254 \, m \cdot \pi} = 193.4$$

c)
$$v = d \cdot \pi \cdot n = 27 \cdot 0.0254 \text{ m} \cdot \pi \cdot 5 \frac{1}{s} = 10.77 \frac{m}{s} = 38.8 \frac{km}{h}$$

2.7 Kräfte

Lösungen zu 2.7

a)
$$F_{1} = F_{1} + F_{2} + F_{3} = 500 \text{ N} + 700 \text{ N} + 1200 \text{ N} = 2400 \text{ N}$$

$$F = F_{1} + F_{2} + F_{3} = 500 \text{ N} + 700 \text{ N} + 1200 \text{ N} = 2400 \text{ N}$$

$$F = F_1 + F_3 - F_2 = 500 \text{ N} + 1200 \text{ N} - 700 \text{ N} = 1000 \text{ N}$$

36/2. a)
$$F = \sqrt{F_1^2 + F_2^2} = \sqrt{150^2 N^2 + 200^2 N^2} = 250 N$$

zu 36/3.

$$F = F'$$

34 mm $\triangleq F_1 = F_2$
 $F_1 = F_2 = 34 \text{ mm} \cdot 0.5 \frac{\text{kN}}{\text{mm}} = 17 \text{ kN}$

36/4. Kräftemaßstab: 100 N ≘ 1 mm

27 mm
$$\triangleq F_1 = F_2$$

 $F_1 = F_2 = 27 \text{ mm} \cdot 100 \frac{N}{\text{mm}} = 2.7 \text{ kN}$

36/5. Kräftemaßstab: 1 kN ≘ 2 mm

26 mm
$$\triangleq$$
 F
F = 26 mm · 0,5 $\frac{kN}{mm}$ = 13 kN

zu 36/5.

2.8 Moment und Hebel

Lösungen zu 2.8

37/1.
$$F = \frac{M}{r} = \frac{23 \text{ Nm}}{0.04 \text{ m}} = 575 \text{ N}$$

37/2.
$$F_2 = \frac{F_1 \cdot r_1}{r_2} = \frac{120 \text{ N} \cdot 100 \text{ mm}}{80 \text{ mm}} = 150 \text{ N}$$

37/3. a)
$$F_2 = \frac{F_1 \cdot r_1}{r_2} = \frac{650 \text{ N} \cdot 85 \text{ mm}}{240 \text{ mm}} = 230 \text{ N}$$

b) $r_2 = \frac{F_1 \cdot r_1}{F_2} = \frac{650 \text{ N} \cdot 85 \text{ mm}}{100 \text{ N}} = 553 \text{ mm}$

37/4.
$$M = F \cdot r = 200 \text{ N} \cdot 3.4 \text{ m} = 680 \text{ Nm}$$

37/5.
$$F = \frac{M}{r} = \frac{159 \text{ Nm}}{0.24 \text{ m}} = 662.5 \text{ N}$$

37/6.
$$F_1 = \frac{F_2 \cdot r_2}{r_1} = \frac{700 \text{ N} \cdot 12 \text{ mm}}{84 \text{ mm}} = 100 \text{ N}$$

2.9 Mechanische Arbeit

Lösungen zu 2.9

38/1. a)
$$F_g = m \cdot g = 5.4 \text{ kg} \cdot 9.81 \frac{m}{s^2} = 53 \text{ N}$$

b)
$$F_G = m \cdot g = 48 \text{ kg} \cdot 9.81 \frac{m}{s^2} = 471 \text{ N}$$

38/2.
$$W = F \cdot s = 1.3 \text{ kN} \cdot 15 \text{ m} = 19.5 \text{ kJ}$$

38/3.
$$h = \frac{W_h}{F_G} = \frac{180 \text{ kJ}}{9 \text{ kN}} = 20 \text{ m}$$

38/4. a)
$$F_G = \frac{W_h}{h} = \frac{30 \text{ kJ}}{2.5 \text{ m}} = 12 \text{ kN}$$

b) $m = \frac{F_G}{g} = \frac{12000 \text{ N}}{9.81 \text{ m/s}^2} = 1223 \text{ kg}$

38/5.
$$V = l \cdot b \cdot h = 320 \text{ m} \cdot 85 \text{ m} \cdot 16.5 \text{ m} = 448.8 \cdot 10^3 \text{ m}^3;$$

$$F_G = \varrho \cdot V \cdot g = 1 \frac{kg}{dm^3} \cdot 448.8 \cdot 10^6 \text{ dm}^3 \cdot 9.81 \frac{m}{s^2} = 4.40 \cdot 10^9 \text{ N} = 4.40 \text{ GN};$$

$$W_p = F_G \cdot h = 4.40 \text{ GN} \cdot 283 \text{ m} = 1246 \text{ GNm} = 1246 \text{ GJ}$$

38/6.
$$W = F \cdot s = 420 \text{ N} \cdot 2.5 \text{ m} = 1050 \text{ Nm} = 1.05 \text{ kJ}$$

38/7.
$$\varphi = 30^{\circ} \Rightarrow \cos \varphi = 0.866$$
:
a) $F_w = F \cdot \cos \varphi = 280 \text{ N} \cdot 0.866 = 242.5 \text{ N}$

b)
$$W = F_w \cdot s = 242,5 \text{ N} \cdot 2,5 \text{ m} = 606 \text{ J}$$

2.10 Mechanische Leistung

Lösungen zu 2.10

39/1.
$$P = \frac{F \cdot s}{t} = \frac{100 \text{ kN} \cdot 6.3 \text{ m}}{30 \text{ s}} = 21 \frac{\text{kNm}}{\text{s}} = 21 \text{ kW}$$

39/2. a) Kt1:
$$P = \frac{\Delta W}{\Delta t} = \frac{400 \text{ Nm}}{1 \text{ s}} = 400 \frac{\text{Nm}}{\text{s}} = 400 \text{ W}$$
; Kt 2: 120 W; Kt 3: 57,1 W; Kt 4: 14,3 W b) Leistung $= \frac{\Delta W}{\Delta t} = \text{Steigung der W (t)-Kennlinie}$.

39/3.
$$P = \frac{F \cdot s}{t} = \frac{\varrho \cdot V \cdot g \cdot s}{t} = \frac{1 \text{ kg} \cdot 120 \text{ dm}^3 \cdot 9.81 \text{ m} \cdot 51 \text{ m}}{\text{dm}^3 \cdot s^2 \cdot 60 \text{ s}} = 1000,62 \text{ W} = 1 \text{ kW}$$

39/4.
$$P = \frac{F \cdot s}{t} = \frac{m \cdot g \cdot s}{t} = \frac{75 \text{ kg} \cdot 9.81 \text{ m} \cdot 5.35 \text{ m}}{s^2 \cdot 1.2 \text{ s}} = 3280 \text{ W} = 3.28 \text{ kW}$$

39/5.
$$P = F \cdot v$$
; $\Rightarrow F = \frac{P}{v} = \frac{20 \text{ kW}}{1,25 \text{ m/s}} = \frac{20 \text{ kNm/s}}{1,25 \text{ m/s}} = 16 \text{ kN}$

39/6.
$$P = F \cdot v \Rightarrow v = \pi \cdot d \cdot n$$
; $P = F \cdot \pi \cdot d \cdot n = 0.275 \text{ kN} \cdot \pi \cdot 0.355 \text{ m} \cdot \frac{1450}{\text{min}} \cdot \frac{1}{60} \cdot \frac{\text{min}}{\text{s}} = 7.41 \text{ kW}$

39/7.
$$P = \frac{F \cdot s}{t} = \frac{m \cdot g \cdot s}{t} = \frac{1250 \text{ kg} \cdot 9.81 \text{ m} \cdot 1.8 \text{ m}}{s^2 \cdot 5.5 \text{ s}} = 4013 \text{ W} \approx 4 \text{ kW}$$

39/8.
$$F = \frac{P}{v} = \frac{160 \cdot 10^6 \text{ W}}{850 \text{ km/h}} = \frac{160 \cdot 10^6 \text{ W}}{236.11 \text{ m/s}} = 678 \text{ kN}$$

39/9.
$$v = \frac{P}{F} = \frac{3 \text{ kW}}{1.3 \text{ kN}} = 2.3 \frac{\text{m}}{\text{s}} = 138 \frac{\text{m}}{\text{min}}$$

39/10. F = 50 kN - 38 kN = 12 kN;
$$v = \frac{P}{F} = \frac{33 \text{ kW}}{12 \text{ kN}} = 2.75 \frac{\text{m}}{\text{s}}$$

3 Elektrotechnische Grundlagen

3.1 Umrechnen von Einheiten

Lösungen zu 3.1

a) 1 230 000 μV; 400 000 mV; 0,25 V; 0,4 kV

- b) 0,12 mA; 23 400 µA; 0,32 A; 6 kA
- c) $0.22 \,\mathrm{M}\Omega$; $1200 \,\mathrm{m}\Omega$; $0.0025 \,\Omega$
- d) 850W; 32mW; 4,5kW
- e) 0,1 kWh; 36 000 Ws; 7 200 000 Ws; 0.33 Wh

3.2 Stromstärke und Ladung

Lösungen zu 3.2

40/1.
$$I = \frac{Q}{t} = \frac{4.4 \text{ mAs}}{1 \text{ s}} = 4.4 \text{ mA}$$

40/2.
$$I = \frac{Q}{t} = \frac{6 \text{ mAs}}{4 \text{ s}} = 1.5 \text{ mA}$$

40/3.
$$Q = I \cdot t = 0.4 \text{ A} \cdot 0.001 \text{ s} = 0.4 \cdot 10^{-3} \text{ As} = 0.4 \text{ mAs}$$

40/4. a)
$$Q = n \cdot e = 1.87 \cdot 10^{19} \cdot 1.6021 \cdot 10^{-19} C = 2.996 C \approx 3 \text{ As}$$

b)
$$I = \frac{Q}{t} = \frac{3 \text{ As}}{2 \text{ s}} = 1.5 \text{ A}$$

3.3 Elektrische Spannung

Lösungen zu 3.3

41/1. a)
$$W = F \cdot s = 6 \text{ mN} \cdot 0.06 \text{ m} = 0.36 \text{ mNm} = 0.36 \text{ mJ}$$

$$O) U = \frac{W}{Q} = \frac{0.36 \text{ mJ}}{0.03 \text{ mC}} = 12 \text{ V}$$

41/2. a)
$$U = \frac{W}{Q} = \frac{0.36 \text{ mNm}}{30 \,\mu\text{C}} = \frac{0.36 \text{ mVAs}}{0.03 \text{ mAs}} = 12 \text{ V}$$

41/2. a)
$$U = \frac{13 \text{ V}}{Q} = \frac{13 \text{ V}}{30 \text{ µC}} = \frac{13 \text{ V}}{0.03 \text{ mAs}} = 12 \text{ V}$$

42/9. $R = \frac{U}{I} = \frac{13 \text{ V}}{0.04 \text{ A}} = 325 \Omega$

41/3. a) $S = \frac{W}{F} = \frac{2.88 \text{ mJ}}{220 \text{ mN}} = \frac{2.88 \text{ mNm}}{220 \text{ mN}} = 0.013 \text{ m} = 13 \text{ mm}$

b) $U = \frac{W}{Q} = \frac{2.88 \text{ mJ}}{0.12 \text{ mC}} = 24 \text{ V}$

$$O) U = \frac{W}{Q} = \frac{2,88 \text{ mJ}}{0,12 \text{ mC}} = 24 \text{ V}$$

3.4 Widerstand und Leitwert

Lösungen zu 3.4

41/1. a) 5Ω

b) 2Ω

c) 1,25 Ω

41/2. a) $G = \frac{1}{R} = \frac{1}{12.0} = 0.083 \,\text{S} = 83 \,\text{mS}$ b) 2.22 S c) 4 S d) 0.8 mS e) 16.7 mS

3.5 Ohmsches Gesetz

Lösungen zu 3.5

42/1.
$$I = \frac{U}{R} = \frac{230 \text{ V}}{40 \Omega} = 5.75 \text{ A}$$

42/2.
$$U = R \cdot I = 8 \text{ m}\Omega \cdot 16 \text{ A} = 128 \text{ mV}$$

42/3.
$$R = \frac{U_1}{I_1} = \frac{230 \text{ V}}{4,35 \text{ A}} = 52.87 \Omega$$

$$U_2 = U_1 \cdot 1,05 = 230 \text{ V} \cdot 1,05 = 241,5 \text{ V}$$

$$\mathbf{i_2} = \frac{U_2}{R} = \frac{241,5 \text{ V}}{52,87 \Omega} = 4.57 \text{ A}$$

42/4. a)
$$R = \frac{U}{I} = \frac{6 \text{ V}}{0.05 \text{ A}} = 120 \Omega$$
 b) $G = \frac{1}{R} = \frac{1}{120 \Omega} = 8.33 \text{ mS}$

b)
$$G = \frac{1}{R} = \frac{1}{120 \text{ O}} = 8,33 \text{ mS}$$

c)
$$I = \frac{U}{R} = \frac{9 \text{ V}}{120 \Omega} = 75 \text{ mA}$$

42/5. a)
$$R = \frac{U}{I} = \frac{10 \text{ kV}}{0.12 \text{ A}} = 83.3 \text{ k}$$

42/5. a)
$$R = \frac{U}{I} = \frac{10 \text{ kV}}{0.12 \text{ A}} = 83.3 \text{ k}\Omega$$
 b) $G = \frac{1}{R} = \frac{1}{83.3 \text{ k}\Omega} = 12 \cdot 10^{-6} \text{ S} = 12 \,\mu\text{S}$

42/6. a) Aus U-I-Diagramm bei U = 6 V:
$$I_1 = 12 \text{ A}$$
; $I_2 = 6 \text{ A}$; $I_3 = 3 \text{ A}$

b)
$$R_1 = \frac{U}{I_1} = \frac{6 \text{ V}}{12 \text{ A}} = 0.5 \Omega$$
; $R_2 = 1.0 \Omega$; $R_3 = 2.0 \Omega$

42/7. a) Aus Diagramm:
$$I_1 = 3 \text{ A}$$
; $I_2 = 1.5 \text{ A}$

b)
$$I = \frac{Q}{t} = \frac{3 \text{ As}}{2 \text{ s}} = 1.5 \text{ A}$$
 42/7. a) Aus Diagramm: $I_1 = 3 \text{ A}$; $I_2 = 1.5 \text{ A}$ b) $U = R_1 \cdot I_1 = R_2 \cdot I_2 = 20 \Omega \cdot 3 \text{ A} = 40 \Omega \cdot 1.5 \text{ A} = 60 \text{ V}$

42/8. a)
$$R = \frac{1}{G} = \frac{1}{40 \text{ mS}} = 25 \Omega;$$

 $I = \frac{U}{R} = \frac{230 \text{ V}}{25 \Omega} = 9.2 \text{ A}$

b)
$$U = \frac{W}{Q} = \frac{0.36 \text{ mJ}}{0.03 \text{ mC}} = 12 \text{ V}$$
b) $U = 0 \text{ V} \Rightarrow I = 0 \text{ A}$

$$z. \text{B. } U = 200 \text{ V} \Rightarrow I = \frac{U}{R} = \frac{200 \text{ V}}{25 \Omega} = 8 \text{ A}$$
c) Aus Diagrams: $U \approx 150 \text{ V}$

c) Aus Diagramm: U ≈ 150 V

zu 42/8.b

42/9.
$$R = \frac{0}{I} = \frac{13 \text{ V}}{0.04 \text{ A}} = 325 \Omega$$

42/10.
$$R = \frac{\Delta U}{\Delta I} = \frac{230 \text{ V} - 180 \text{ V}}{0.1 \text{ A}} = 500 \Omega$$
; $G = \frac{1}{R} = \frac{1}{0.5 \text{ k}\Omega} = 2 \text{ mS}$

42/11.
$$R_{max} = \frac{U}{I_{min}} = \frac{240 \text{ mV}}{190.5 \text{ μA}} = 1,26 \text{ k}\Omega$$

$$R_{min} = \frac{U}{I_{max}} = \frac{240 \text{ mV}}{210.5 \text{ μA}} = 1,14 \text{ k}\Omega \implies R = 1,2 \text{ k}\Omega$$

$$\Delta R_{max} = R_{max} - R = 1,26 \,k\Omega - 1,2 \,k\Omega = 60 \,\Omega$$

 $\Delta R_{min} = R_{min} - R = 1,14 \,k\Omega - 1,2 \,k\Omega = -60 \,\Omega$

$$\Delta R\% = \frac{\Delta R_{min/max}}{R} \cdot 100\% = \frac{\pm 60 \,\Omega}{1.2 \,\text{kO}} \cdot 100\% = \pm 5\%$$

⇒ E-Reihe

E24

42/12. a)
$$R_1 = \frac{U_{R1}}{I_{R1}} = \frac{8 \text{ V}}{40 \text{ mA}} = 200 \Omega$$

b)
$$I_{R3} = I_{R4} = \frac{U_4}{R_4} = \frac{1.8 \text{ V}}{100 \Omega} = 18 \text{ mA}$$

 $R_3 = \frac{U_3}{I_{R3}} = \frac{1.6 \text{ V}}{18 \text{ mA}} = 88,89 \Omega$

c) Farbkennzeichnung Braun, Grün, Braun, Gold \cong 150 Ω , Toleranz $\pm 5\%$ $\begin{array}{l} U_{\text{R2max}} = R_{2\text{max}} \cdot I = 150 \ \Omega \cdot 1,05 \cdot 22 \ \text{mA} = 3,465 \ \text{V} \\ U_{\text{R2min}} = R_{2\text{min}} \cdot I = 150 \ \Omega \cdot 0,95 \cdot 22 \ \text{mA} = 3,135 \ \text{V} \end{array}$

3.6 Stromdichte

Lösungen zu 3,6

43/1.
$$A = a \cdot b = 30 \text{ mm} \cdot 10 \text{ mm} = 300 \text{ mm}^2$$

$$J = \frac{I}{A} = \frac{630 \text{ A}}{300 \text{ mm}^2} = 2.1 \frac{A}{\text{mm}^2}$$

43/2.
$$I = \frac{U}{R} = \frac{24 \text{ V}}{100 \Omega} = 0.24 \text{ A}; \quad A = \frac{\pi \cdot d^2}{4} = \frac{\pi \cdot (0.35 \text{ mm})^2}{4} = 0.0962 \text{ mm}^2;$$

$$J = \frac{I}{A} = \frac{0.24 \text{ A}}{0.0962 \text{ mm}^2} = 2.49 \frac{A}{\text{mm}^2} = 2.5 \frac{A}{\text{mm}^2}$$

43/3. a) Aus Rechenbuch Elektrotechnik, Tabelle 1, Seite 269 bei
$$A_1=1.5\,\text{mm}^2$$
: $I_{r1}=19.5\,\text{A}$ bei $A_2=6\,\text{mm}^2$: $I_{r2}=46.0\,\text{A}$

b)
$$J_1 = \frac{I_{r_1}}{A_1} = \frac{19.5 \text{ A}}{1.5 \text{ mm}^2} = 13 \frac{A}{\text{mm}^2}$$

 $J_2 = \frac{I_{r_2}}{A_2} = \frac{46.0 \text{ A}}{6 \text{ mm}^2} = 7.67 \frac{A}{\text{mm}^2}$

c) Der Querschnitt hat sich vervierfacht, die Oberfläche jedoch nur verdoppelt. Die zulässige Stromdichte sinkt bei steigendem Querschnitt, da die Wärmeabfuhr schlechter wird.

43/4. a)
$$J = \frac{I}{A} \Rightarrow A = \frac{I}{J} = \frac{1,35 \text{ A}}{3.5 \frac{A}{\text{mm}^2}} = 0,386 \text{ mm}^2$$

b) $A = \frac{\pi \cdot d^2}{4} \Rightarrow d = \sqrt{\frac{4 \cdot A}{\pi}} = \sqrt{\frac{4 \cdot 0,386 \text{ mm}^2}{\pi}} = 0,70 \text{ mm}$

43/5. a)
$$U = I \cdot R = 4,35 \text{ A} \cdot 52,9 \Omega = 230 \text{ V}$$

b)
$$J_{zut} = \frac{I}{A_1} = \frac{4,35 \text{ A}}{1 \text{ mm}^2} = 4,35 \frac{A}{\text{mm}^2}$$

b)
$$J_{zut} = \frac{I}{A_1} = \frac{4,35 \text{ A}}{1 \text{ mm}^2} = 4,35 \frac{A}{\text{mm}^2}$$
 c) $J_{Heiz} = \frac{I}{A_2} = \frac{4,35 \text{ A}}{0,246 \text{ mm}^2} = 17,7 \frac{A}{\text{mm}^2}$

43/6.
$$A_1 = \frac{\pi \cdot d^2}{4} = \frac{\pi \cdot (0.45 \text{ mm})^2}{4} = 0.159 \text{ mm}^2; \quad A_2 = \frac{\pi \cdot d^2}{4} = \frac{\pi \cdot (0.35 \text{ mm})^2}{4} = 0.0962 \text{ mm}^2$$

$$J_1 = \frac{I}{A_1} = \frac{4.35 \text{ A}}{0.159 \text{ mm}^2} = 27.4 \frac{A}{\text{mm}^2}; \quad J_2 = \frac{I}{A_2} = \frac{4.35 \text{ A}}{0.0962 \text{ mm}^2} = 45.2 \frac{A}{\text{mm}^2}$$

3.7 Elektrischer Widerstand

3.7.1 Leiterwiderstand

Lösungen zu 3.7.1

44/1.
$$R = \frac{\varrho \cdot l}{A} = \frac{0.49 (\Omega \cdot mm^2)/m \cdot 150 m}{0.196 mm^2} = 375 \Omega$$

44/2.
$$R = \frac{l}{\gamma \cdot A}$$
; $l = R \cdot \gamma \cdot A = 0.6 \Omega \cdot 56 \text{ m}/(\Omega \cdot \text{mm}^2) \cdot 1.5 \text{ mm}^2 = 50.4 \text{ m}$

44/3. a)
$$A = \frac{\varrho \cdot l}{R} = \frac{0.01786 (\Omega \cdot mm^2)/m \cdot 100 m}{0.3 \Omega} = 5.95 mm^2$$

b) $A = \frac{\varrho \cdot l}{R} = \frac{0.0286 (\Omega \cdot mm^2)/m \cdot 100 m}{0.3 \Omega} = 9.53 mm^2$

44/4. a)
$$R = \frac{l}{\gamma \cdot A} = \frac{10 \text{ m}}{56 \frac{\text{m}}{\Omega \cdot \text{mm}^2} \cdot 2.5 \text{ mm}^2} = 0.071 \Omega \implies R = 71.43 \text{ m}\Omega$$

$$U = R \cdot I = 71.43 \text{ m}\Omega \cdot 8 A = 0.57 \text{ V}$$

44/5. a)
$$N = \frac{l}{s} = \frac{230 \text{ mm}}{0.5 \text{ mm}} = 460$$
 b) $l = \pi \cdot d_m \cdot N = \pi \cdot 0.0565 \text{ m} \cdot 460 = 81.6 \text{ m}$
c) $A = \frac{(0.5 \text{ mm})^2 \cdot \pi}{4} = 0.1963 \text{ mm}^2$; $R = \frac{\varrho \cdot l}{A} = \frac{0.49 (\Omega \cdot \text{mm}^2)/\text{m} \cdot 81.6 \text{ m}}{0.1963 \text{ mm}^2} = 204 \Omega$

44/6.
$$R = \frac{2 \cdot \varrho \cdot l}{A}$$
; $l = \frac{R \cdot A}{2 \cdot \varrho} = \frac{0,775 \Omega \cdot 70 \text{ mm}^2}{2 \cdot 0,0286 \frac{\Omega \cdot \text{mm}^2}{m}} = 948 \text{ m}$

44/7. a)
$$d_m = \frac{10 \text{ mm} + 23 \text{ mm}}{2} = 16.5 \text{ mm}; \quad U_m = \pi \cdot 16.5 \text{ mm} = 51.8 \text{ mm};$$

$$l = N \cdot U_m = 19900 \cdot 0.0518 \text{ m} = 1030 \text{ m}$$

$$A = \frac{l}{\gamma \cdot R} = \frac{1030 \text{ m}}{56 \text{ m}/(\Omega \cdot \text{mm}^2) \cdot 8800 \Omega} = 2.09 \cdot 10^{-3} \text{ mm}^2$$

$$A = \pi \cdot \frac{d^2}{4} \Rightarrow d = \sqrt{\frac{A \cdot 4}{\pi}} = \sqrt{\frac{2.09 \cdot 10^{-3} \text{ mm}^2 \cdot 4}{\pi}} = 0.0516 \text{ mm}$$
b) $d_2 = 0.0516 \text{ mm} + 0.007 \text{ mm} = 0.0586 \text{ mm}; \quad N_L = \frac{13 \text{ mm}}{0.0586 \text{ mm}} = 222;$

$$n_L = \frac{19900}{222} = 89 \text{ Lagen} \qquad c) I = \frac{U}{R} = \frac{230 \text{ V}}{8800 \Omega} = 26.1 \text{ mA}$$

3.7.2 Widerstand und Temperatur

Lösungen zu 3.7.2

45/1. a)
$$\Delta R = \alpha \cdot R_{20} \cdot \Delta \theta = 0,00015 \frac{1}{K} \cdot 104 \Omega \cdot 35 K = 0,546 \Omega$$

b) $R_0 = R_{20} + \Delta R = 104 \Omega + 0,5 \Omega = 104,5 \Omega$

45/2. a)
$$\Delta R = \alpha \cdot R_{20} \cdot \Delta \theta = 0,00004 \frac{1}{K} \cdot 4200 \Omega \cdot 10 K = 1,68 \Omega$$

b) $R_9 = R_{20} + \Delta R = 4200 \Omega + 1,68 \Omega = 4201.68 \Omega \approx 4202 \Omega$

45/3. a)
$$\Delta R = \alpha \cdot R_{20} \cdot \Delta \vartheta$$

= 0,0039 $\frac{1}{K} \cdot$ 12,5 $\Omega \cdot$ 60 K = 2,93 Ω

(Abbildung verkleinert)

c) Abgelesen aus Zeichnung für 40°C → 13,5 Ωfür 50°C → 14,0 Ω für 60°C → 14,5 Ω

45/5. a)
$$\Delta 9 = \frac{R_y - R_{20}}{\alpha \cdot R_{20}} = \frac{9 \Omega - 8.5 \Omega}{0.0055 \text{ } \% \text{ } \cdot 8.5 \Omega} = 10.7 \text{ K};$$

45/6.
$$\Delta \vartheta = \frac{R_y - R_{20}}{\alpha \cdot R_{20}} = \frac{0.185 \Omega - 0.170 \Omega}{0.004 \text{ }^{1}/\text{K} \cdot 0.17 \Omega} = 22.1 \text{ K};$$

45/7.
$$R_{20} = \frac{\Delta R}{\alpha \cdot \Delta \vartheta} = \frac{-3.3 \Omega}{-0.0013^{1}/\text{K} \cdot 80 \text{ K}} = 31.7 \Omega$$

45/8.
$$\alpha = \frac{R_3 - R_{20}}{\Delta \vartheta \cdot R_{20}} = \frac{150 \Omega - 110 \Omega}{130 \text{ K} \cdot 110 \Omega}; \quad \alpha = 0.0028 \frac{1}{\text{K}}$$

46/9.
$$R_{20} = \frac{\Delta R}{\alpha \cdot \Delta \vartheta} = \frac{5.5 \Omega}{0.0039^{1}/K \cdot 47 K} = 30.0 \Omega$$

46/10.
$$\begin{split} I &= \pi \cdot d_m \cdot N = \pi \cdot 20.5 \text{ mm} \cdot 400 = 25760 \text{ mm} = 25.8 \text{ m} \\ R_{20} &= \frac{\varrho \cdot l}{A} = \frac{0.49 \ \Omega \cdot \text{mm}^2 / \text{m} \cdot 25.8 \ \text{m}}{0.1963 \ \text{mm}^2} = 64.4 \ \Omega; \\ R_{3} &= R_{20} \cdot (1 + \alpha \cdot \Delta \vartheta) = 64.4 \ \Omega \cdot (1 + 0.00004 \ \frac{1}{K} \cdot 80 \ \text{K}) = 64.6 \ \Omega \end{split}$$

46/11. a)
$$l = \pi \cdot d_m \cdot N = \pi \cdot 0.06 \text{ m} \cdot 500 = 94.2 \text{ m}; \quad A = \left(\pi \cdot \frac{d^2}{4}\right) = 0.3848 \text{ mm}^2$$

$$R_{20} = \frac{l}{\gamma \cdot A} = \frac{94.2 \text{ m}}{56 \Omega \cdot \text{mm}^2/\text{m} \cdot 0.385 \text{ mm}^2} = 4.37 \Omega$$

b)
$$R_0 = R_{20} \cdot (1 + \alpha \cdot \Delta \theta) = 4.37 \Omega \cdot (1 + 0.0039 \frac{1}{K} \cdot 38 K) = 5.02 \Omega$$

c)
$$I_{20} = \frac{U}{R_{20}} = \frac{22 \text{ V}}{4.37 \Omega} = 5.03 \text{ A}$$
 d) $I_{3} = \frac{U}{R_{3}} = \frac{22 \text{ V}}{5.02 \Omega} = 4.38 \text{ A}$

d)
$$I_0 = \frac{U}{R_0} = \frac{22 \text{ V}}{5,02 \Omega} = 4.38 \text{ A}$$

45/4. a) $\Delta R = \alpha \cdot R_{20} \cdot \Delta \theta$

4200

R 4100

4000

3900

3800

3700

(Abbildung verkleinert)

c) Abgelesen aus Zeichnung

303,85 K ≘ 30,7°C

315,25 K = 42,1°C

b) $\theta = 293,15 \text{ K} + 10,7 \text{ K} = 303.85 \text{ K}$

 $9 = 293.15 \,\text{K} + 22.1 \,\text{K} = 315.25 \,\text{K}$

für 35°C → 4,02 kΩ $f\ddot{u}r$ 45°C → 4,17 kΩ

= $0.0039 \frac{1}{\nu} \cdot 3.8 \text{ k}\Omega \cdot 7 \text{ K} = 0.104 \text{ k}\Omega$

46/12. a)
$$\alpha$$
 = relative Widerstandszunahme je K = $\frac{0.4}{61 \text{ K}}$ = 0.00656 $\frac{1}{\text{K}}$;

b) z.B. um reines Eisen

3.7.3 Übertemperatur

Lösungen zu 3.7.3

$$46/1. \quad a) \quad \Delta\vartheta = \frac{R_2 - R_1}{R_1} \cdot (235 \text{ K} + \vartheta_1) + \vartheta_1 - \vartheta_3 = \\ = \frac{1,98 \, \Omega - 1,76 \, \Omega}{1,76 \, \Omega} \cdot (235 \, \text{K} + 17^{\circ}\text{C}) + 17^{\circ}\text{C} - 19^{\circ}\text{C} = \frac{0,22 \, \Omega}{1,76 \, \Omega} \cdot 252 \, \text{K} - 2 \, \text{K} = 29,5 \, \text{K}$$

$$b) \quad \Delta\vartheta = \frac{1,21 \, \Omega - 0,98 \, \Omega}{0,98 \, \Omega} \cdot (235 \, \text{K} + 18^{\circ}\text{C}) + 18^{\circ}\text{C} - 24^{\circ}\text{C} = \frac{0,23 \, \Omega}{0,89 \, \Omega} \cdot 253 \, \text{K} - 6 \, \text{K} = 53,4 \, \text{K}$$

$$c) \quad \Delta\vartheta = \frac{1,52 \, \Omega - 1,30 \, \Omega}{1,30 \, \Omega} \cdot (235 \, \text{K} + 22^{\circ}\text{C}) + 22^{\circ}\text{C} - 23^{\circ}\text{C} = \frac{0,22 \, \Omega}{1,30 \, \Omega} \cdot 257 \, \text{K} - 1 \, \text{K} = 42,5 \, \text{K}$$

$$d) \quad \Delta\vartheta = \frac{5,2 \, \Omega - 4,7 \, \Omega}{4,7 \, \Omega} \cdot (235 \, \text{K} + 23^{\circ}\text{C}) + 23^{\circ}\text{C} - 28^{\circ}\text{C} = \frac{0,5 \, \Omega}{4,7 \, \Omega} \cdot 258 \, \text{K} - 5 \, \text{K} = 22,4 \, \text{K}$$

46/2. a)
$$\Delta 9 = \frac{0.82 \Omega - 0.65 \Omega}{0.65 \Omega} \cdot (235 \text{ K} + 20 ^{\circ}\text{C}) + 20 ^{\circ}\text{C} - 23 ^{\circ}\text{C} = \frac{0.17 \Omega}{0.65 \Omega} \cdot 255 \text{ K} - 3 \text{ K} = 63.7 \text{ K}$$

b) Die Übertemperatur von 63.7 K ist zulässig.

46/3.
$$\Delta \vartheta = \frac{2,15 \Omega - 1,63 \Omega}{1,63 \Omega} \cdot (225 \text{ K} + 15^{\circ}\text{C}) + 15^{\circ}\text{C} - 17^{\circ}\text{C} = \frac{0,52 \Omega}{1,63 \Omega} \cdot 240 \text{ K} - 2 \text{ K} = 74,6 \text{ K}$$

3.8 Schaltung von Widerständen

3.8.1 Reihenschaltung von Widerständen

Lösungen zu 3.8.1

47/1. a)
$$R = R_1 + R_2 = 25 \Omega + 35 \Omega = 60 \Omega$$

b) $I = \frac{U}{R} = \frac{220 \text{ V}}{60 \Omega} = 3,67 \text{ A}$
c) $U_1 = I \cdot R_1 = 3,67 \text{ A} \cdot 25 \Omega = 91,7 \text{ V}$
 $U_2 = U - U_1 = 220 \text{ V} - 91,7 \text{ V} = 128,3 \text{ V}$

47/2. a)
$$R = R_1 + R_2 + R_3 =$$

= 1.5 k Ω + 2.2 k Ω + 6.8 k Ω = 10.5 k Ω

b)
$$I = \frac{U}{R} = \frac{9.0 \text{ V}}{10.5 \text{ k}\Omega} = 0.857 \text{ mA}$$

c)
$$U_1 = I \cdot R_1 = 0.857 \text{ mA} \cdot 1.5 \text{ k}\Omega = 1.29 \text{ V}$$

 $U_2 = I \cdot R_2 = 0.857 \text{ mA} \cdot 2.2 \text{ k}\Omega = 1.89 \text{ V}$
 $U_3 = I \cdot R_3 = 0.857 \text{ mA} \cdot 6.8 \text{ k}\Omega = 5.83 \text{ V}$

Graphische Lösung zu 47/1.

47/3. a)
$$I = \frac{U_2}{R_2} = \frac{75 \text{ V}}{150 \Omega} = 0.5 \text{ A}$$

b)
$$U_1 = I \cdot R_1 = 0.5 \text{ A} \cdot 50 \Omega = 25 \text{ V}; \quad U_3 = I \cdot R_3 = 0.5 \text{ A} \cdot 200 \Omega = 100 \text{ V}$$

c)
$$U = U_1 + U_2 + U_3 = 25 \text{ V} + 75 \text{ V} + 100 \text{ V} = 200 \text{ V}$$

d)
$$R = \frac{U}{I} = \frac{200 \text{ V}}{0.5 \text{ A}} = 400 \Omega$$
 oder $R = R_1 + R_2 + R_3 = 50 \Omega + 150 \Omega + 200 \Omega = 400 \Omega$

47/4. a)
$$R_2 = R - R_1 = 140 \Omega - 50 \Omega = 90 \Omega$$

c) $H = 1 \cdot R - 2 \wedge 140 \Omega - 390 \Omega$

b)
$$U_1 = I \cdot R_1 = 2 A \cdot 50 \Omega = 100 V;$$

48/5.
$$R_1 = \frac{U_1}{I} = \frac{10 \text{ V}}{0.1 \text{ A}} = 100 \Omega$$

 $U_3 = I \cdot R_3 = 0.1 \text{ A} \cdot 56 \Omega = 5.6 \text{ V}; \quad U_2 = U - (U_1 + U_3) = 24 \text{ V} - 10 \text{ V} - 5.6 \text{ V} = 8.4 \text{ V}$
 $R = \frac{U}{I} = \frac{24 \text{ V}}{0.1 \text{ A}} = 240 \Omega; \quad R_2 = R - R_1 - R_3 = 240 \Omega - 100 \Omega - 56 \Omega = 84 \Omega$

48/6. a)
$$\Sigma U_0 = 4 \cdot U_{01} = 4 \cdot 1,56 \text{ V} = 6,24 \text{ V}; \quad I = \frac{\Sigma U_0}{R} = \frac{6,24 \text{ V}}{37 \Omega} = 0,169 \text{ A}$$

b) $\Sigma U_0 = 2 \cdot U_{01} = 2 \cdot 1,56 \text{ V} = 3,12 \text{ V}; \quad I = \frac{\Sigma U_0}{R} = \frac{3,12 \text{ V}}{37 \Omega} = 0,0843 \text{ A} = 84,3 \text{ mA}$

48/7. a)
$$\Sigma U_0 = U_{01} + U_{02} = 12 \text{ V} + 6 \text{ V} = 18 \text{ V}$$

$$R = R_1 + R_2 + R_3 = 270 \Omega + 120 \Omega + 180 \Omega = 570 \Omega; \quad I = \frac{\Sigma U_0}{R} = \frac{18 \text{ V}}{570 \Omega} = 0.0316 \text{ A} = 31.6 \text{ mA}$$
b) $\Sigma U_0 = U_{01} + U_{02} = 12 \text{ V} - 6 \text{ V} = 6 \text{ V}; \quad I = \frac{\Sigma U_0}{R} = \frac{6 \text{ V}}{570 \Omega} = 0.0105 \text{ A} = 10.5 \text{ mA}$

48/8.
$$U_v = U - U_{Lampe} = 24 \text{ V} - 6 \text{ V} = 18 \text{ V}; \quad R_v = \frac{U_v}{I} = \frac{18 \text{ V}}{0.35 \text{ A}} = 51.4 \Omega$$

48/9. a)
$$U_{Lampe} = \frac{U_n}{n} = \frac{48 \text{ V}}{6} = 8 \text{ V}$$
b) Spannung je Lampe bei 8 Lampen: $U_{Lampe} = \frac{48 \text{ V}}{8} = 6 \text{ V} \implies 6 \text{ V} \cong 100\%$
Spannungserhöhung $\Delta U = 8 \text{ V} - 6 \text{ V} = 2 \text{ V} \implies 2 \text{ V} \cong \frac{2 \text{ V} \cdot 100\%}{6 \text{ V}} = 33,3\%$

48/10. Index I
$$\triangleq$$
 große Leistung; Index II \triangleq kleine Leistung
$$I_{I} = \frac{U}{R_{L \text{ fikolben}}} = \frac{230 \text{ V}}{1610 \Omega} = 0.143 \text{ A}; \quad \frac{U_{I}}{U_{II}} = \frac{I_{I}}{I_{II}} \Rightarrow I_{II} = \frac{U_{II} \cdot I_{I}}{U_{I}} = \frac{126 \text{ V} \cdot 0.143 \text{ A}}{230 \text{ V}} = 0.0783 \text{ A}$$

$$U_{v} = U_{I} - U_{II} = 230 \text{ V} - 126 \text{ V} = 104 \text{ V}; \quad R_{v} = \frac{U_{v}}{I_{II}} = \frac{104 \text{ V}}{0.0783 \text{ A}} = 1330 \Omega = 1.3 \text{ k}\Omega$$

48/11. a) Schalter S1, S2 und S3 geschlossen:
$$I=100$$
 mA; $U=U_4=I\cdot R_4=0.1$ A $\cdot 100$ $\Omega=10$ V Schalter S1 und S2 geschlossen: $I=\frac{100 \text{ mA} \cdot 100\%}{120\%}=83.3$ mA Schalter S1 geschlossen: $I=\frac{83.3 \text{ mA} \cdot 100\%}{120\%}=69.4$ mA

Alle Schalter offen:
$$I = \frac{69.4 \text{ mA} \cdot 100\%}{120\%} = 57.8 \text{ mA}$$

$$R = \frac{U}{I} = \frac{10 \text{ V}}{57.8 \text{ mA}} = 173 \Omega; \quad R_1 + R_2 + R_3 = R - R_4 = 173 \Omega - 100 \Omega = 73 \Omega$$

S1 geschlossen:
$$R = \frac{U}{I} = \frac{10 \text{ V}}{69.4 \text{ mA}} = 144 \Omega$$
; $R_1 = 173 \Omega - 144 \Omega = 29 \Omega$
S1 und S2 geschlossen: $R = \frac{U}{I} = \frac{10 \text{ V}}{100 \text{ V}} = 120 \Omega$; $R_2 = 144 \Omega = 120 \Omega$

S1 und S2 geschlossen:
$$R = \frac{U}{I} = \frac{10 \text{ V}}{83.3 \text{ mA}} = 120 \Omega$$
; $R_2 = 144 \Omega - 120 \Omega = 24 \Omega$
 $R_3 = 120 \Omega - 100 \Omega = 20 \Omega$

b) S1 und S2 geschlossen:
$$R = R_4 + R_3 = 100 \Omega + 20 \Omega = 120 \Omega$$
; $I = 83.3 \text{ mA}$ S1 und S3 geschlossen: $R = R_4 + R_2 = 100 \Omega + 24 \Omega = 124 \Omega$; $I = 80.6 \text{ mA}$ S2 und S3 geschlossen: $R = R_4 + R_1 = 100 \Omega + 29 \Omega = 129 \Omega$; $I = 77.5 \text{ mA}$

48/13. a)
$$I_m = \frac{U_m}{R_m} = \frac{100 \text{ mV}}{100 \Omega} = 1 \text{ mA}; \quad R_v = \frac{U - U_m}{I_m} = \frac{150 \text{ mV} - 100 \text{ mV}}{1 \text{ mA}} = 50 \Omega$$
b) $R_v = \frac{U - U_m}{I_m} = \frac{3 \text{ V} - 0.1 \text{ V}}{0.001 \text{ A}} = 2900 \Omega$
c) $R_v = \frac{U - U_m}{I_m} = \frac{600 \text{ V} - 0.1 \text{ V}}{0.001 \text{ A}} = 599900 \Omega = 599.9 \text{ k}\Omega$

48/14. a)
$$R_{\text{spule}} = \frac{U}{I} = \frac{48 \text{ V}}{0.029 \text{ A}} = 1655 \Omega$$
; $R = \frac{U}{I_{\text{Betr}}} = \frac{48 \text{ V}}{0.022 \text{ A}} = 2182 \Omega$
 $R_{\text{v}} = R - R_{\text{spule}} = 2182 \Omega - 1655 \Omega = 527 \Omega$
b) $U = R_{\text{spule}} \cdot I_{\text{Betr}} = 1655 \Omega \cdot 0.022 \text{ A} = 36.4 \text{ V}$

48/15. Stufe 1:
$$R = \frac{U - U_F}{I} = \frac{6 \, V - 2 \, V}{0.08 \, A} = 50 \, \Omega$$
; Stufe 2: $R = \frac{U - U_F}{I} = \frac{6 \, V - 2.2 \, V}{0.18 \, A} = 21.1 \, \Omega$
Stufe 3: $R = \frac{U - U_F}{I} = \frac{6 \, V - 2.4 \, V}{0.3 \, A} = 12 \, \Omega$; Stufe 4: $R = \frac{U - U_F}{I} = \frac{6 \, V - 2.6 \, V}{0.44 \, A} = 7.73 \, \Omega$

3.8.2 Parallelschaltung von Widerständen

Lösungen zu 3.8.2

49/1.
$$R = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{24 \Omega \cdot 36 \Omega}{24 \Omega + 36 \Omega} = 14.4 \Omega$$

$$49/2. \quad \frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4} = \frac{1}{10 \text{ k}\Omega} + \frac{1}{20 \text{ k}\Omega} + \frac{1}{30 \text{ k}\Omega} + \frac{1}{40 \text{ k}\Omega} = 0.208 \frac{1}{\text{k}\Omega}; \quad R = 4.8 \text{ k}\Omega$$

49/3.
$$R = \frac{R_1 \cdot R_2}{R_1 + R_2} \Rightarrow R_2 = \frac{R_1 \cdot R}{R_1 - R} = \frac{44 \Omega \cdot 33 \Omega}{44 \Omega - 33 \Omega} = \frac{1452 \Omega}{11 \Omega} = 132 \Omega$$

$$49/4. \quad \frac{1}{R_4} = \frac{1}{R} - \frac{1}{R_1} - \frac{1}{R_2} - \frac{1}{R_3} = \frac{1}{4\Omega} - \frac{1}{27\Omega} - \frac{1}{33\Omega} - \frac{1}{47\Omega} = 0.1614\frac{1}{\Omega}; \quad R_4 = 6.2\Omega$$

50/5.
$$\frac{1}{R_3} = \frac{1}{R} - \frac{1}{R_1} - \frac{1}{R_2} - \frac{1}{R_4} = \frac{1}{1\Omega} - \frac{1}{5,6\Omega} - \frac{1}{15\Omega} - \frac{1}{39\Omega} = 0,729\frac{1}{\Omega}; R_3 = 1,37\Omega$$

50/6. a) $\frac{I_1}{I_2} = \frac{R_4}{R_2} \Rightarrow I_1 = \frac{I_4 \cdot R_4}{R_2} = \frac{2 \text{ mA} \cdot 2.7 \text{ k}\Omega}{6.8 \text{ k}\Omega} = 0.794 \text{ mA}$ $I_2 = \frac{I_4 \cdot R_4}{R_2} = \frac{2 \text{ mA} \cdot 2.7 \text{ k}\Omega}{2.2 \text{ k}\Omega} = 2.45 \text{ mA}; \quad I_3 = \frac{I_4 \cdot R_4}{R_3} = \frac{2 \text{ mA} \cdot 2.7 \text{ k}\Omega}{5.6 \text{ k}\Omega} = 0.964 \text{ mA}$

b) $I = I_1 + I_2 + I_3 + I_4 = 0.794 \text{ mA} + 2.45 \text{ mA} + 0.964 \text{ mA} + 2 \text{ mA} = 6.21 \text{ mA}$

c)
$$U = I_4 \cdot R_4 = 2 \text{ mA} \cdot 2.7 \text{ k}\Omega = 5.4 \text{ V}$$

c)
$$U = I_4 \cdot R_4 = 2 \text{ mA} \cdot 2.7 \text{ k}\Omega = 5.4 \text{ V}$$
 d) $R = \frac{U}{I} = \frac{5.4 \text{ V}}{6.21 \text{ mA}} = 870 \Omega$

50/7. a) $I_1 = \frac{U_1}{R_1} = \frac{220 \text{ V}}{120 \Omega} = 1.83 \text{ A}; \quad I_2 = I - I_1 = 5 \text{ A} - 1.83 \text{ A} = 3.17 \text{ A}$

b)
$$R_2 = \frac{U}{I_2} = \frac{220 \text{ V}}{3,17 \text{ A}} = 69.4 \Omega$$
 c) $R = \frac{U}{I} = \frac{220 \text{ V}}{5 \text{ A}} = 44 \Omega$

c)
$$R = \frac{U}{I} = \frac{220 \text{ V}}{5 \text{ A}} = 44 \Omega$$

50/8. $U = I_2 \cdot R_2 = 2 \text{ A} \cdot 7 \Omega = 14 \text{ V}; R_1 = \frac{U}{I_1} = \frac{14 \text{ V}}{5 \text{ A}} = 2.8 \Omega$ $I = I_1 + I_2 = 5 A + 2 A = 7 A$; $R = \frac{U}{I} = \frac{14 \text{ V}}{7 A} = 2 \Omega$

50/9. $I_2 = \frac{U}{R_0} = \frac{100 \text{ V}}{150 \Omega} = 0.67 \text{ A}; \quad I_3 = \frac{U}{R_0} = \frac{100 \text{ V}}{200 \Omega} = 0.50 \text{ A}$ $I_1 = I - I_2 - I_3 = 3,50 \text{ A} - 0,67 \text{ A} - 0,50 \text{ A} = 2,33 \text{ A}$

50/10. $U = I_1 \cdot R_1 = 6 \text{ A} \cdot 30 \Omega = 180 \text{ V}; \quad I_2 = \frac{U}{R_2} = \frac{180 \text{ V}}{60 \Omega} = 3 \text{ A}; \quad R_3 = \frac{U}{I_3} = \frac{180 \text{ V}}{4 \text{ A}} = 45 \Omega;$ $I = I_1 + I_2 + I_3 = 6 A + 3 A + 4 A = 13 A;$ $R = \frac{U}{I} = \frac{180 \text{ V}}{13 \text{ A}} = 13.8 \Omega$

50/11. a) $I_1 = \frac{U_1}{R_1} = \frac{230 \text{ V}}{882 \Omega} = 0.261 \text{ A}$ b) $I = 6 \cdot I_1 = 6 \cdot 0.261 \text{ A} = 1.56 \text{ A}$ c) $R = \frac{U}{I} = \frac{230 \text{ V}}{1.56 \text{ A}} = 147 \Omega$

50/12. a) $U = R_m \cdot I_m = 2.4 \Omega \cdot 25 \text{ mA} = 0.06 \text{ V}$ $I_n = I - I_m = 50 \,\text{mA} - 25 \,\text{mA} = 25 \,\text{mA}$ $R_p = \frac{U}{I} = \frac{0,06 \text{ V}}{25 \text{ mA}} = 2,4 \Omega$

b) $I_p = I - I_m = 1.5 A - 25 mA = 1.475 A$ $R_p = \frac{U}{I} = \frac{0.06 \text{ V}}{1.475 \text{ A}} = 40.7 \text{ m}\Omega$

50/13. a) $I_1 = \frac{I}{n} = \frac{13.0 \text{ A}}{4} = 3.25 \text{ A}; \quad R_1 = \frac{U_1}{I_2} = \frac{230 \text{ V}}{3.25 \text{ A}} = 70.8 \Omega$

b) Stufe 1: 2 Widerstände parallel $R = \frac{R_1}{n} = \frac{70.8 \,\Omega}{2} = 35.4 \,\Omega$

Stufe 2: 3 Widerstände parallel $R = \frac{R_s}{\rho} = \frac{70.8 \Omega}{3} = 23.6 \Omega$

Stufe 3: 4 Widerstände parallel $R = \frac{R_1}{\Omega} = \frac{70.8 \Omega}{4} = 17.7 \Omega$

c) Stufe 1: $I = I_1 \cdot n = 3,25 \text{ A} \cdot 2 = 6,50 \text{ A}$; Stufe 2: $I = I_1 \cdot n = 3,25 \text{ A} \cdot 3 = 9,75 \text{ A}$ Stufe 3: I = I, $n = 3.25 \text{ A} \cdot 4 = 13.0 \text{ A}$

50/14. a) $R_{Girlande} = \frac{R_1}{n_*} = \frac{2116 \Omega}{24} = 88.2 \Omega$ b) $R = \frac{R_{Girlande}}{n_*} = \frac{88.2 \Omega}{4} = 22.05 \Omega$ c) $I = \frac{U}{R} = \frac{230 \text{ V}}{22.05 \Omega} = 10,43 \text{ A}$

50/15. a) Widerstandswert von 6 parallelen Widerständen = $\frac{K_1}{6}$ Widerstandswert von 4 parallelen Widerständen = $\frac{\kappa_1}{4}$ $\frac{R_1}{4} - \frac{R_1}{6} = 5 \Omega; \quad \frac{3R_1 - 2R_1}{12} = \frac{R_1}{12} = 5 \Omega; \quad R_1 = 5 \Omega \cdot 12 = 60 \Omega$ b) n = 6; $R = \frac{R_1}{6} = \frac{60 \Omega}{6} = 10 \Omega$ c) n = 4; $R = \frac{R_1}{4} = \frac{60 \Omega}{4} = 15 \Omega$

50/16. $I_3 = I - I_1 - I_2 - I_4 = 15.0 \text{ mA} - 5.25 \text{ mA} - 3.5 \text{ mA} - 4.2 \text{ mA} = 2.05 \text{ mA}$ $U_3 = U = I_3 \cdot R_3 = 2.05 \text{ mA} \cdot 6.8 \text{ k}\Omega = 13.9 \text{ V}$ $R_1 = \frac{U_1}{I_1} = \frac{13.9 \text{ V}}{5.25 \text{ mA}} = 2.65 \text{ k}\Omega; \quad R_2 = \frac{U_2}{I_2} = \frac{13.9 \text{ V}}{3.5 \text{ m}\Delta} = 3.97 \text{ k}\Omega$ $R_4 = \frac{U_4}{I_4} = \frac{13.9 \text{ V}}{4.20 \text{ mA}} = 3.31 \text{ k}\Omega; \quad R_{1-4} = \frac{U}{I} = \frac{13.9 \text{ V}}{15.0 \text{ mA}} = 927 \Omega$ $R_{1-5} = R_{1-4} - 40 \Omega = 927 \Omega - 40 \Omega = 887 \Omega; \quad I_{1-5} = \frac{U}{R_{1-5}} = \frac{13.9 \text{ V}}{887 \Omega} = 15.67 \text{ mA}$ $I_5 = I_{1-5} - I_{1-4} = 15,67 \text{ mA} - 15,0 \text{ mA} = 0,67 \text{ mA}; \quad R_5 = \frac{U}{I_0} = \frac{13,9 \text{ V}}{0.67 \text{ mA}} = 20,7 \text{ k}\Omega$

50/17. $R_1 = R_1$; $R_2 = 2R_1$; $R_3 = 3R_1$; $R_4 = 4R$ $R = \frac{1}{\frac{1}{1} + \frac{1}{2R_1} + \frac{1}{3R_1} + \frac{1}{4R_2}} = \frac{1}{\frac{25}{12R_2}} = \frac{12}{25}R_1; \quad I = \frac{U}{R} = \frac{9V}{\frac{12}{25}R_1} = \frac{75V}{4R_1}; \quad I' = I + 18 \text{ mA}$ $R' = R - 4.2 \Omega \Rightarrow \frac{U}{I'} = \frac{12}{25} R_1 - 4.2 \Omega$ $\frac{9 \text{ V}}{\frac{75 \text{ V}}{4 \text{ R}_1} + 18 \text{ mA}} = \frac{12}{25} \text{ R}_1 - 4.2 \Omega$ $9 \text{ V} = \left(\frac{75 \text{ V}}{4 \text{ R}_{1}} + 18 \text{ mA}\right) \cdot \left(\frac{12}{25} \text{ R}_{1} - 4.2 \Omega\right)$ $9 \text{ V} = 9 \text{ V} - \frac{78,75 \text{ V}\Omega}{\text{R}_{\bullet}} + 8,64 \text{ mA} \cdot \text{R}_{1} - 75,6 \text{ mA} \cdot \Omega$ | R₁ $8,64 \text{ mA} \cdot R_1^2 - 75,6 \text{ mV} \cdot R_1 - 78,75 \text{ V} \cdot \Omega = 0$ $R_{1(1/2)} = \frac{75.6 \text{ mV} \pm \sqrt{(75.6 \text{ mV})^2 + 4 \cdot 8.64 \text{ mA} \cdot 78.75 \text{ V}\Omega}}{47.00}$ $R_1 = \frac{75.6 \text{ mV} + \sqrt{(-75.6 \text{ mV})^2 + 2.7216 \text{ V}^2}}{17.28 \text{ mA}} = \frac{1.727 \text{ V}}{17.28 \text{ mA}} = 99.95 \Omega \approx 100 \Omega$ $R_2 = 2 \cdot 100 \,\Omega = 200 \,\Omega; \quad R_3 = 3 \cdot 100 \,\Omega = 300 \,\Omega; \quad R_4 = 4 \cdot 100 \,\Omega = 400 \,\Omega$ $R = \frac{12}{25} R_1 = \frac{12}{25} \cdot 100 \Omega = 48 \Omega$ $I_1 = \frac{U}{R_2} = \frac{9 \text{ V}}{100 \Omega} = 90 \text{ mA}; \quad I_2 = \frac{U}{R_2} = \frac{9 \text{ V}}{200 \Omega} = 45 \text{ mA}$ $I_3 = \frac{U}{R_2} = \frac{9 \text{ V}}{300 \Omega} = 30 \text{ mA}; \quad I_4 = \frac{U}{R_2} = \frac{9 \text{ V}}{400 \Omega} = 22,5 \text{ mA} \quad I_5 = 18 \text{ mA}$

$$R_5 = \frac{U}{I_5} = \frac{9 \text{ V}}{18 \text{ mA}} = 500 \,\Omega; \quad R' = \frac{U}{I'} = \frac{9 \text{ V}}{205,5 \text{ mA}} = 43.8 \,\Omega$$

3.8.3 Gemischte Schaltungen (Gruppenschaltungen)

Lösungen zu 3.8.3

51/1. a)
$$R_t = R_1 + R_2 = 60 \Omega + 40 \Omega = 100 \Omega$$
; $R = \frac{R_t \cdot R_3}{R_t + R_3} = \frac{100 \Omega \cdot 80 \Omega}{100 \Omega + 80 \Omega} = 44.4 \Omega$

b)
$$I_1 = \frac{U_2}{R_2} = \frac{60 \text{ V}}{40 \Omega} = 1.5 \text{ A}; \quad \frac{I_3}{I_1} = \frac{R_1}{R_3} \Rightarrow I_3 = I_1 \cdot \frac{R_1}{R_3} = 1.5 \text{ A} \cdot \frac{100 \Omega}{80 \Omega} = 1.88 \text{ A}$$

c) $I = I_1 + I_3 = 1.5 A + 1.88 A = 3.38 A$

d)
$$U_1 = R_1 \cdot I_1 = 60 \Omega \cdot 1.5 A = 90 V$$

e) $U = U_1 + U_2 = 90 \text{ V} + 60 \text{ V} = 150 \text{ V}$

51/2. a)
$$R_1 = \frac{R_2 \cdot R_3}{R_2 + R_3} = \frac{100 \Omega \cdot 25 \Omega}{100 \Omega + 25 \Omega} = 20 \Omega$$
; $R = R_1 + R_1 = 20 \Omega + 70 \Omega = 90 \Omega$

b)
$$I_2 = \frac{R_3 \cdot I_3}{R_2} = \frac{25 \Omega \cdot 2 A}{100 \Omega} = 0.5 A$$
; $I_1 = I_2 + I_3 = 0.5 A + 2 A = 2.5 A$

c) $U_1 = I_1 \cdot R_1 = 2.5 \text{ A} \cdot 70 \Omega = 175 \text{ V};$ $U_2 = R_3 \cdot I_3 = 25 \Omega \cdot 2 \text{ A} = 50 \text{ V}$

d) $U = U_1 + U_2 = 175 \text{ V} + 50 \text{ V} = 225 \text{ V}$

52/3. a)
$$U_3 = R_3 \cdot I = 40 \Omega \cdot 3.5 A = 140 V$$
; $U = U_1 + U_2 = 100 V + 140 V = 240 V$

b)
$$R = \frac{U}{I} = \frac{240 \text{ V}}{3.5 \text{ A}} = 68.57 \Omega$$
; $R' = R - R_3 = 68.57 \Omega - 40 \Omega = 28.57 \Omega$
 $\frac{1}{R'} = \frac{1}{R_1} + \frac{1}{R_2} \Rightarrow \frac{1}{R_1} = \frac{1}{R'} - \frac{1}{R_2} = \frac{1}{28.57 \Omega} - \frac{1}{50 \Omega} = 0.035 \frac{1}{\Omega} - 0.02 \frac{1}{\Omega} = 0.015 \frac{1}{\Omega}$
 $R_1 = \frac{1}{0.015} \Omega = 66.7 \Omega$

52/4. b)
$$R_1 = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{40 \Omega \cdot 120 \Omega}{40 \Omega + 120 \Omega} = 30 \Omega$$

 $R = R_1 + R_2 = 30 \Omega + 18 \Omega = 48 \Omega$

c)
$$I_1 = \frac{U_1}{R_1} = \frac{150 \text{ V}}{40 \Omega} = 3.75 \text{ A}$$

 $I_2 = \frac{U_1}{R_2} = \frac{150 \text{ V}}{120 \Omega} = 1.25 \text{ A}$

- d) $I = I_1 + I_2 = 3.75 A + 1.25 A = 5 A$
- e) $U_3 = I \cdot R_3 = 5 A \cdot 18 \Omega = 90 V$

f)
$$U = U_1 + U_3 = 150 \text{ V} + 90 \text{ V} = 240 \text{ V}$$

52/5. b)
$$R_1 = R_2 + R_3 = 24 \Omega + 36 \Omega = 60 \Omega$$

$$R_{II} = \frac{R_1 \cdot R_4}{R_1 + R_4} = \frac{60 \Omega \cdot 30 \Omega}{60 \Omega + 30 \Omega} = 20 \Omega$$

$$R = R_1 + R_{II} = 18 \Omega + 20 \Omega = 38 \Omega$$

c) Spannung an R₄:
$$\frac{U_{II}}{U} = \frac{R_{II}}{R}$$

$$U_4 = U_{II} = \frac{U \cdot R_{II}}{R} = \frac{230 \text{ V} \cdot 20 \Omega}{38 \Omega} = 121 \text{ V}$$

d) Strom durch R₂:
$$I_2 = \frac{U_{II}}{R_I} = \frac{121 \text{ V}}{60 \Omega} = 2,02 \text{ A}$$

zu 52/4.a)

zu 52/5.a)

52/6. a) $U_1 = R_1 \cdot I_1 = 150 \Omega \cdot 0.2 A = 30 V$; $U = U_1 + U_2 = 30 V + 20 V = 50 V$

b)
$$R_2 = \frac{U_2}{I_1} = \frac{20 \text{ V}}{0.2 \text{ A}} = 100 \Omega;$$

$$\frac{1}{R} = \frac{1}{R_1 + R_2} + \frac{1}{R_3} + \frac{1}{R_4} = \frac{1}{150 \Omega + 100 \Omega} + \frac{1}{220 \Omega} + \frac{1}{470 \Omega} = 0,01067 \frac{1}{\Omega};$$

$$R = \frac{1}{0.01067} \Omega = 93,69 \Omega$$

c)
$$I = \frac{U}{R} = \frac{50 \text{ V}}{93,69 \Omega} = 0,5337 \text{ A} = 533,7 \text{ mA}; \quad I_{34} = I - I_{1} = 533,7 \text{ mA} - 200 \text{ mA} = 333,7 \text{ mA}$$

$$I_{3} = \frac{U}{R_{3}} = \frac{50 \text{ V}}{220 \Omega} = 227,3 \text{ mA}; \quad I_{4} = \frac{U}{R_{4}} = \frac{50 \text{ V}}{470 \Omega} = 106,4 \text{ mA}$$

52/7.
$$U_1 = R_1 \cdot I_1 = 560 \Omega \cdot 34.8 \text{ mA} = 19.49 \text{ V}; \quad I_4 = I - I_1 = 50 \text{ mA} - 34.8 \text{ mA} = 15.2 \text{ mA}$$

$$R_4 = \frac{U}{I_4} = \frac{24 \text{ V}}{0.0152 \text{ A}} = 1579 \Omega; \quad R = \frac{U}{I} = \frac{24 \text{ V}}{0.05 \text{ A}} = 480 \Omega$$

$$U_2 = U - U_1 = 24 \text{ V} - 19.49 \text{ V} = 4.51 \text{ V}; \quad I_3 = \frac{U_2}{R_3} = \frac{4.51 \text{ V}}{180 \Omega} = 25.1 \text{ mA}$$

$$I_2 = I_1 - I_3 = 34.8 \text{ mA} - 25.1 \text{ mA} = 9.7 \text{ mA}; \quad R_2 = \frac{U_2}{I_2} = \frac{4.51 \text{ V}}{9.7 \text{ mA}} = 465 \Omega$$

52/8. b)
$$R_{12} = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{5.6 \text{ k}\Omega \cdot 4.7 \text{ k}\Omega}{5.6 \text{ k}\Omega + 4.7 \text{ k}\Omega} = 2,555 \text{ k}\Omega$$

$$R_{34} = \frac{R_3 \cdot R_4}{R_3 + R_4} = \frac{1.2 \text{ k}\Omega \cdot 1.8 \text{ k}\Omega}{1.2 \text{ k}\Omega + 1.8 \text{ k}\Omega} = 0,72 \text{ k}\Omega$$

$$R = R_{12} + R_{34} = 2,555 \text{ k}\Omega + 0,72 \text{ k}\Omega = 3,275 \text{ k}\Omega$$

$$C) \frac{U_4}{U_1} = \frac{R_{34}}{R_{12}} \Rightarrow U_4 = U_1 \cdot \frac{R_{34}}{R_{12}} = 3,7 \text{ V} \cdot \frac{0,72 \text{ k}\Omega}{2,555 \text{ k}\Omega} = 1,043 \text{ V}$$

e) $I = I_1 + I_2 = 0.661 \text{ mA} + 0.787 \text{ mA} = 1.448 \text{ mA}$ f) $U = I \cdot R = 1.448 \text{ mA} \cdot 3.275 \text{ k}\Omega = 4.74 \text{ V}$

zu 52/8.a)

52/9. b)
$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3 + R_4} = \frac{1}{680 \Omega} + \frac{1}{390 \Omega} + \frac{1}{560 \Omega + 1200 \Omega}$$

= 4,60 · 10⁻³ $\frac{1}{\Omega}$; R = 217,3 Ω

c) $I = \frac{U}{R} = \frac{24 \text{ V}}{217.3 \Omega} = 110.4 \text{ mA}$

d)
$$I_1 = \frac{U_1}{R_1} = \frac{24 \text{ V}}{680 \Omega} = 35,29 \text{ mA}; \quad I_2 = \frac{U_2}{R_2} = \frac{24 \text{ V}}{390 \Omega} = 61,54 \text{ mA}$$

$$I_3 = I_4 = \frac{U}{R_2 + R_2} = \frac{24 \text{ V}}{560 \Omega + 1200 \Omega} = 13,64 \text{ mA}$$

e) $U_1 = U_2 = U_{34} = 24 \text{ V}$ $U_3 = R_3 \cdot I_3 = 560 \Omega \cdot 13,64 \text{ mA} = 7,64 \text{ V}; \quad U_4 = R_4 \cdot I_4 = 1,2 \text{ k}\Omega \cdot 13,64 \text{ mA} = 16,37 \text{ V}$

52/10. R₃, R₄, R₅ und R₆ sind zueinander parallel geschaltet.

R =
$$270 \Omega + \frac{1}{\Omega} = 270 \Omega + 36,24 \Omega = 306,24 \Omega$$

b)
$$I = \frac{U}{R} = \frac{6 \text{ V}}{306,24 \Omega} = 19,6 \text{ mA}$$

 $U_3 = U - (R_1 + R_2) \cdot I = 6 \text{ V} - (120 \Omega + 150 \Omega) \cdot 0,0196 \text{ A} = 6 \text{ V} - 5,29 \text{ V} = 0,71 \text{ V}$
 $I_5 = \frac{U_3}{R_5} = \frac{0,71 \text{ V}}{100 \Omega} = 7,1 \text{ mA}$
c) $U_2 = R_2 \cdot I = 150 \Omega \cdot 0,0196 \text{ A} = 2,94 \text{ V}$

52/11. a)
$$R_1 = R_1 + R_2 = 10 \Omega + 20 \Omega = 30 \Omega$$
; $R_{11} = \frac{R_1 \cdot R_3}{R_1 + R_3} = \frac{30 \Omega \cdot 30 \Omega}{30 \Omega + 30 \Omega} = 15 \Omega$
 $R_{111} = R_{11} + R_4 = 15 \Omega + 40 \Omega = 55 \Omega$
 $R = \frac{R_{111} \cdot R_5}{R_{111} + R_5} = \frac{55 \Omega \cdot 50 \Omega}{55 \Omega + 50 \Omega} = \frac{2750 \Omega^2}{105 \Omega} = 26,19 \Omega$
b) $I_2 = \frac{U_2}{R_2} = \frac{3 V}{20 \Omega} = 0,15 A$; $U_{12} = U_3 = R_{12} \cdot I_2 = 30 \Omega \cdot 0,15 A = 4,5 V$
 $I_3 = \frac{U_3}{R_2} = \frac{4,5 V}{30 \Omega} = 0,15 A$; $I_4 = I_2 + I_3 = 0,15 A + 0,15 A = 0,3 A$

c)
$$U_4 = R_4 \cdot I_4 = 40 \Omega \cdot 0.3 A = 12 V; U = U_5$$

 $U_5 = U_3 + U_4 = 4.5 V + 12 V = 16.5 V$
 $I = \frac{U_5}{R} = \frac{16.5 V}{26.19 \Omega} = 0.63 A$

52/12.
$$R_{1} = \frac{R_{5} \cdot R_{6}}{R_{5} + R_{6}} = \frac{2 k\Omega \cdot 2 k\Omega}{2 k\Omega + 2 k\Omega} = 1 k\Omega$$

$$R_{1t} = R_{1} + R_{3} = 1 k\Omega + 2 k\Omega = 3 k\Omega$$

$$R_{1tt} = \frac{R_{1t} \cdot R_{2}}{R_{1t} + R_{2}} = \frac{3 k\Omega \cdot 2 k\Omega}{3 k\Omega + 2 k\Omega} = 1.2 k\Omega$$

$$R_{1v} = R_{1tt} + R_{4} = 1.2 k\Omega + 2 k\Omega = 3.2 k\Omega$$

$$R = \frac{R_{1v} \cdot R_{1}}{R_{1v} + R_{1}} = \frac{3.2 k\Omega \cdot 2 k\Omega}{3.2 k\Omega + 2 k\Omega} = 1.23 k\Omega$$

zu 52/12.

52/13. a)
$$\frac{1}{R_{I}} = \frac{1}{R_{4}} + \frac{1}{R_{5}} + \frac{1}{R_{6}} = \frac{1}{80 \Omega} + \frac{1}{100 \Omega} + \frac{1}{120 \Omega} = 0,03083 \frac{1}{\Omega}; \quad R_{I} = 32,4 \Omega$$

$$R_{II} = \frac{R_{2} \cdot R_{3}}{R_{2} + R_{3}} = \frac{200 \Omega \cdot 50 \Omega}{200 \Omega + 50 \Omega} = 40 \Omega$$

$$R = R_{1} + R_{1} + R_{II} = 60 \Omega + 32,4 \Omega + 40 \Omega = 132,4 \Omega$$

$$U = I \cdot R = 1,5 \Lambda \cdot 132,4 \Omega = 198,6 V$$
b) U an $R_{5} = U_{I} = I \cdot R_{I} = 1,5 \Lambda \cdot 32,4 \Omega = 48,6 V$
c) $I_{4} = \frac{U_{I}}{R_{4}} = \frac{48,6 V}{80 \Omega} = 0,608 \Lambda$

b) $\frac{U_3}{II} = \frac{R_{IV}}{R}$; $U_3 = U_{IV} = \frac{U \cdot R_{IV}}{R} = \frac{36 \text{ V} \cdot 14,07 \Omega}{39 \text{ I O}} = 12,96 \text{ V}$ $U_2 = \frac{U \cdot R_2}{R} = \frac{36 \text{ V} \cdot 15 \Omega}{39.07 \Omega} = 13.82 \text{ V}; \quad U_1 = \frac{U \cdot R_1}{R} = \frac{36 \text{ V} \cdot 10 \Omega}{39.07 \Omega} = 9.21 \text{ V}$ $\frac{U_4}{U_3} = \frac{R_4}{R_{III}}$; $U_4 = \frac{U_3 \cdot R_4}{R_{III}} = \frac{12,96 \text{ V} \cdot 25 \Omega}{47,5 \Omega} = 6,82 \text{ V}$ Probe: $U_3 + U_2 + U_1 = 12,96 \text{ V} + 13,82 \text{ V} + 9,21 \text{ V} = 35,99 \text{ V} \approx 36 \text{ V}$ $U_5 = U_3 - U_4 = 12,96 \text{ V} - 6,82 \text{ V} = 6,14 \text{ V}; \quad U_6 = \frac{U_5 \cdot R_6}{R_1} = \frac{6,14 \text{ V} \cdot 40 \Omega}{90 \Omega} = 2,73 \text{ V}$ $U_7 = U_8 - U_8 = 6.14 \text{ V} - 2.73 \text{ V} = 3.41 \text{ V}$ c) $I_6 = I_7 = \frac{U_6}{R_c} = \frac{2,73 \text{ V}}{40 \Omega} = 68.3 \text{ mA};$ $I_5 = \frac{U_5}{R_c} = \frac{6,14 \text{ V}}{30 \Omega} = 204.7 \text{ mA}$ $I_4 = I_6 + I_5 = 68.3 \text{ mA} + 204.7 \text{ mA} = 273 \text{ mA};$ $I_3 = \frac{U_3}{R_0} = \frac{12,96 \text{ V}}{20.0} = 0,648 \text{ A}$ Probe: $I = \frac{U}{R} = \frac{36 \text{ V}}{39.07 \text{ O}} = 0.921 \text{ A}$ $I = I_4 + I_3 = 0.273 A + 0.648 A = 0.921 A;$

53/15.
$$\frac{1}{R_{\text{cor}}} = \frac{1}{R} + \frac{1}{2R} = \frac{1+2}{2R} = \frac{3}{2R} \Rightarrow R_{\text{gos}} = \frac{3}{2} \cdot R = \frac{3}{2} \cdot 10 \Omega = 15 \Omega$$

53/17. a) A-C: $R_{23} = R_2 + R_3 = 35 \Omega + 35 \Omega = 70 \Omega$ $R_{ss} = R_s + R_s = 120 \Omega + 120 \Omega = 240 \Omega$ $R = R_1 + \frac{R_{23} \cdot R_{56}}{R_{22} + R_{56}} + R_7 = 480 \Omega + \frac{70 \Omega \cdot 240 \Omega}{70 \Omega + 240 \Omega} + 460 \Omega$ $= 480 \Omega + 54.2 \Omega + 460 \Omega = 994 \Omega$

I = $\frac{U}{R} = \frac{50 \text{ V}}{994 \Omega} = 50.3 \text{ mA}$ (I $\geq 50 \text{ mA} \Rightarrow \text{gefährlich, siehe Rechenbuch Elektrotechnik, Seite 191, Bild 2)}$

b) B-D: $R_{25} = R_2 + R_5 = 35 \Omega + 120 \Omega = 155 \Omega$; $R_{25} = R_{36}$ $R = R_4 + \frac{R_{25}}{2} + R_8 + R_{10} = 40 \Omega + \frac{155 \Omega}{2} + 20 \Omega + 850 \Omega = 987,5 \Omega$

 $I = \frac{U}{R} = \frac{50 \text{ V}}{987.5 \Omega} = 50.6 \text{ mA}$ (I $\geq 50 \text{ mA} \Rightarrow \text{gefährlich, siehe Rechenbuch Elektrotechnik, Seite 191, Bild 2)}$

c) A-D: $R_{236} = R_2 + R_3 + R_6 = 35 \Omega + 35 \Omega + 120 \Omega = 190 \Omega$ $R_1 = \frac{R_5 \cdot R_{236}}{R_5 + R_{236}} = \frac{120 \Omega \cdot 190 \Omega}{120 \Omega + 190 \Omega} = 73,55 \Omega$

 $R \, = \, R_{_1} + \, R_{_2} + \, R_{_3} = 480 \, \Omega + 73,55 \, \Omega + 20 \, \Omega + 850 \, \Omega = 1423,55 \, \Omega$

 $I = \frac{U}{R} = \frac{50 \text{ V}}{1,4236 \text{ k}\Omega} = 35.1 \text{ mA} \quad \text{(nicht ungefährlich, siehe Rechenbuch Elektrotechnik, Seite 191, Bild 2)}$

d) A-B: $R_{356} = R_3 + R_5 + R_6 = 35 \Omega + 120 \Omega + 120 \Omega = 275 \Omega$

 $R_{1} = \frac{R_{2} \cdot R_{356}}{R_{2} + R_{356}} = \frac{35 \Omega \cdot 275 \Omega}{35 \Omega + 275 \Omega} = 31,05 \Omega$

 $R = R_1 + R_1 + R_4 = 480 \Omega + 31,05 \Omega + 40 \Omega = 551,05 \Omega$

 $I = \frac{U}{R} = \frac{50 \text{ V}}{551,05 \,\Omega} = 90,7 \,\text{mA}$ (lebensgefährlich, siehe Rechenbuch Elektrotechnik, Seite 191, Bild 2)

53/18. a) Taster geöffnet: $U_{rel} = R_{rel} \cdot I = 3 k\Omega \cdot 8 mA = 24 V$ $U_1 = U - U_{rol} = 48 \text{ V} - 24 \text{ V} = 24 \text{ V}$

 $R_1 = \frac{U_1}{I} = \frac{24 \text{ V}}{8 \text{ mA}} = 3 \text{ k}\Omega$

Taster geschlossen: $U_{rel} = 24 \text{ V} - 8 \text{ V} = 16 \text{ V}$

 $I_1 = \frac{U_{rel}}{B} = \frac{16 \text{ V}}{3 \text{ kO}} = 5.33 \text{ mA}$

 $I = \frac{U - U_{rel}}{R.} = \frac{48 \text{ V} - 16 \text{ V}}{3 \text{ k}\Omega} = \frac{32 \text{ V}}{3 \text{ k}\Omega} = 10,67 \text{ mA}$

 $I_2 = I - I_1 = 10,67 \text{ mA} - 5,33 \text{ mA} = 5,34 \text{ mA}$

 $R_2 = \frac{U_{rel}}{I_2} = \frac{16 \text{ V}}{5.34 \text{ mA}} = 3 \text{ k}\Omega$ b) $I_{Rel} = \frac{U_{Rel}}{R_{rel}} = \frac{16 \text{ V}}{3 \text{ k}\Omega} = 5.34 \text{ mA}$

53/19. für n = 10: $R_m = R_p \cdot (n-1) \Rightarrow R_m = (R_{p1} + R_{p2} + R_{p3}) \cdot 9$ $\Rightarrow \frac{R_m}{Q} = R_{p1} + R_{p2} + R_{p3} \Rightarrow \frac{R_m}{Q} - R_{p1} = R_{p2} + R_{p3}$ (1)

für n = 50: $49(R_{p2} + R_{p3}) = (R_{p1} + R_m) \Rightarrow R_{p2} + R_{p3} = \frac{R_{p1}}{49} + \frac{R_m}{49}$ (2)

für n = 250: $249 R_{p3} = R_{p1} + R_{p2} + R_{m}$

(1) = (2): $\frac{R_m}{q} - R_{p1} = \frac{R_{p1}}{4q} + \frac{R_m}{4q} \Rightarrow \frac{R_m}{q} - \frac{R_m}{4q} = \frac{50}{49} R_{p1}$ $R_{\rm m} \left(\frac{1}{9} - \frac{1}{49} \right) = \frac{50}{49} R_{\rm p1} \implies R_{\rm p1} = 10 \,\Omega \left(\frac{1}{11\,025} \right) \cdot \frac{49}{50} = 0.89 \,\Omega$

(1) = (3):
$$249 R_{p3} - R_m = \frac{R_m}{9} - R_{p3}$$
$$\frac{R_m}{9} + R_m = 249 R_{p3} + R_{p3}$$
$$\frac{10}{9} R_m = 250 R_{p3}$$
$$R_{p3} = 0.044 \Omega$$
$$R_{p2} = \frac{R_m}{9} - R_{p1} - R_{p3} = \frac{10}{9} \Omega - 0.89 \Omega - 0.044 \Omega = 0.18 \Omega$$

53/20. $R_2 = \begin{pmatrix} R_2 = \\ 680 \Omega \end{pmatrix}_{U_2}$ $R_4 = \begin{pmatrix} R_4 = \\ 100 \Omega \end{pmatrix}_{U_4}$ $R_6 = \begin{pmatrix} R_6 = \\ 810 \Omega \end{pmatrix}_{U_6}$ $R_7 = \begin{pmatrix} R_7 = \\ 680 \Omega \end{pmatrix}_{U_7}$ $R_{10} = 390 \Omega$ $R_3 = 150 \Omega$

zu 53/20.

a) $R_{I} = \frac{R_9 \cdot R_{10}}{R_0 + R_{10}} = \frac{120 \ \Omega \cdot 390 \ \Omega}{120 \ \Omega + 390 \ \Omega} = 91.8 \ \Omega;$ $R_{II} = R_8 + R_1 = 150 \ \Omega + 91.8 \ \Omega = 241.8 \ \Omega$ $R_{III} = \frac{R_{II} \cdot R_7}{R_{II} + R_7} = \frac{241.8 \ \Omega \cdot 680 \ \Omega}{241.8 \ \Omega + 680 \ \Omega} = 178.4 \ \Omega; \quad R_{IV} = R_5 + R_{III} = 470 \ \Omega + 178.4 \ \Omega = 648.4 \ \Omega$ $R_{V} = \frac{1}{\frac{1}{R_{4}} + \frac{1}{R_{6}} + \frac{1}{R_{IV}}} = \frac{1}{\frac{1}{100 \Omega} + \frac{1}{810 \Omega} + \frac{1}{648,4 \Omega}} = \frac{1}{0,01277 \frac{1}{\Omega}} = 78,3 \Omega$ $R_{vr} = R_v + R_a = 78.3 \Omega + 150 \Omega = 228.3 \Omega$ $R_{VII} = \frac{R_{VI} \cdot R_2}{R_{VI} + R_2} = \frac{228.3 \ \Omega \cdot 680 \ \Omega}{228.3 \ \Omega + 680 \ \Omega} = 170.9 \ \Omega$ $R = R_1 + R_{vii} = 170.9 \Omega + 560 \Omega = 730.9 \Omega$ b) I = $\frac{U}{R} = \frac{220 \text{ V}}{730.9 \Omega} = 0.3010 \text{ A} = 301.0 \text{ mA}; U_1 = R_1 \cdot I_1 = 560 \Omega \cdot 0.301 \text{ A} = 168.6 \text{ V}$ $U_2 = U - U_1 = 220 \text{ V} - 168,6 \text{ V} = 51,4 \text{ V};$ $I_2 = \frac{U_2}{R_2} = \frac{51,4 \text{ V}}{680 \Omega} = 0,0756 \text{ A} = 75,6 \text{ mA}$ $I_3 = I - I_2 = 301,0 \text{ mA} - 75,6 \text{ mA} = 225,4 \text{ mA}$ $U_3 = R_3 \cdot I_3 = 150 \Omega \cdot 0.2254 A = 33.81 V$ $U_4 = U_6 = U_2 - U_3 = 51.44 V - 33.81 V = 17.63 V$ c) $I_4 = \frac{U_4}{R_4} = \frac{17,63 \text{ V}}{100 \Omega} = 0,1763 \text{ A} = 176,3 \text{ mA}; \ I_6 = \frac{U_6}{R_6} = \frac{17,63 \text{ V}}{810 \Omega} = 0,0218 \text{ A} = 21,8 \text{ mA}$ $I_5 = I_3 - I_4 - I_6 = 225,4 \text{ mA} - 176,3 \text{ mA} - 21.8 \text{ mA} = 27.3 \text{ mA}$ $U_5 = R_5 \cdot I_5 = 470 \Omega \cdot 0.0273 A = 12.83 V;$ $U_7 = U_6 - U_5 = 17.63 V - 12.83 V = 4.80 V$

 $I_7 = \frac{U_7}{R_-} = \frac{4,80 \text{ V}}{680 \Omega} = 7.1 \text{ mA}$

 $R_1 = 180 \,\Omega$

 $R_4 = 150 \Omega$

U = 9 V

Anschluss zwischen B und E

 $R_3 = 120 \Omega$

 $R_2 = 270 \Omega$

R₅ = 470 Ω

 $R_4 = 220 \Omega$

zu 53/21.c)

$$R_1 = \frac{R_5 \cdot R_6}{R_6 + R_6} = \frac{470 \Omega \cdot 220 \Omega}{470 \Omega + 220 \Omega} = 149,86 \Omega$$

$$R_{II} = R_I + R_4 = 149,86 \Omega + 150 \Omega = 299,86 \Omega$$

$$R_{III} = \frac{R_2 \cdot R_{II}}{R_2 + R_{II}} = \frac{270 \Omega \cdot 299,86 \Omega}{270 \Omega + 299,86 \Omega} = 142,07 \Omega$$

$$R_{v_1} = R_3 + R_{t11} = 120 \Omega + 142,07 \Omega = 262,07 \Omega$$

R =
$$\frac{R_1 \cdot R_{IV}}{R_1 + R_{IV}} = \frac{180 \Omega \cdot 262,07 \Omega}{180 \Omega + 262,07 \Omega} = 106,71 \Omega$$

$$U_1 = U = 9 \text{ V}; \quad I_1 = \frac{U_1}{R_1} = \frac{9 \text{ V}}{180 \Omega} = 50 \text{ mA}$$

$$I_3 = \frac{U}{R_{IV}} = \frac{9 \text{ V}}{262,07 \Omega} = 34,34 \text{ mA}$$

$$U_3 = R_3 \cdot I_3 = 120 \Omega \cdot 34,34 \text{ mA} = 4,121 \text{ V};$$

$$U_2 = U - U_3 = 9 V - 4,121 V = 4,879 V$$

$$I_2 = \frac{U_2}{R_2} = \frac{4,879 \text{ V}}{270 \Omega} = 18,07 \text{ mA}; \quad I_4 = I_3 - I_2 = 34,34 \text{ mA} - 18,07 \text{ mA} = 16,27 \text{ mA}$$

$$U_4 = R_4 \cdot I_4 = 150 \Omega \cdot 16,27 \text{ mA} = 2,441 \text{ V}$$

$$U_5 = U_6 = U_2 - U_4 = 4,879 \text{ V} - 2,441 \text{ V} = 2,438 \text{ V}$$

$$I_5 = \frac{U_5}{R_5} = \frac{2.438 \text{ V}}{470 \Omega} = 5.187 \text{ mA}; \quad I_6 = \frac{U_6}{R_6} = \frac{2.438 \text{ V}}{220 \Omega} = 11.08 \text{ mA}$$

53/21. b) Anschluss zwischen A und C:

$$R_1 = \frac{R_5 \cdot R_6}{R_5 + R_6} = \frac{470 \Omega \cdot 220 \Omega}{470 \Omega + 220 \Omega} = 149,86 \Omega$$

$$R_{11} = R_1 + R_4 = 149,86~\Omega + 150~\Omega = 299,86~\Omega$$

$$_{III} = \frac{R_{II} \cdot R_2}{R_{II} + R_2} = \frac{299,86 \Omega \cdot 270 \Omega}{299,86 \Omega + 270 \Omega} = 142,07 \Omega$$

$$\label{eq:rate_eq} R_{1} = R_{1} + R_{III} = 180~\Omega + 142,07~\Omega = 322,07~\Omega$$

$$R = \frac{R_3 \cdot R_{IV}}{R_3 + R_{IV}} = \frac{120 \Omega \cdot 322,07 \Omega}{120 \Omega + 322,07 \Omega} = 87,43 \Omega$$

$$I = \frac{U}{B} = \frac{9 \text{ V}}{87.43 \Omega} = 102,94 \text{ mA}$$

$$I_3 = \frac{U}{R_2} = \frac{9 \text{ V}}{120 \Omega} = 75 \text{ mA}$$

 $I_1 = I - I_3 = 102,94 \text{ mA} - 75 \text{ mA} = 27,94 \text{ mA};$ $U_1 = I_1 \cdot R_1 = 27,94 \text{ mA} \cdot 180 \Omega = 5,03 \text{ V}$

$$U_2 = U - U_1 = 9 V - 5.03 V = 3.97 V;$$

$$I_4 = I_1 - I_2 = 27.94 \text{ mA} - 14.7 \text{ mA} = 13.24 \text{ mA}; \quad U_4 = I_4 \cdot R_4 = 13.24 \text{ mA} \cdot 150 \Omega = 1.986 \text{ V}$$

$$U_5 = U_6 = U_2 - U_4 = 3,97 \text{ V} - 1,986 \text{ V} = 1,984 \text{ V}$$

$$I_5 = \frac{U_5}{R_5} = \frac{1,984 \text{ V}}{470 \Omega} = 4,22 \text{ mA};$$

Anschluss zwischen A und B

 $R_1 = 180 \Omega$

 $R_2 = 270 \Omega$

 $R_5 = 470 \Omega$

 $R_b = 220 \Omega$

zu 53/21.a)

 $R_L = 150 \Omega$

 $R_3 = 120 \ \Omega$

zu 53/21.b)

$$U_1 = I_1 \cdot R_1 = 27,94 \text{ mA} \cdot 180 \Omega = 5,03 \text{ V}$$

$$I_2 = \frac{U_2}{R_2} = \frac{3,97 \text{ V}}{270 \Omega} = 14,7 \text{ mA}$$

$$U_4 = I_4 \cdot R_4 = 13,24 \text{ mA} \cdot 150 \Omega = 1,986 \text{ V}$$

$$I_6 = \frac{U_6}{R_6} = \frac{1,984 \text{ V}}{220 \Omega} = 9,02 \text{ mA}$$

53/21. c) Anschluss zwischen B und C:

$$R_1 = \frac{R_5 \cdot R_6}{R_5 + R_6} = \frac{470 \Omega \cdot 220 \Omega}{470 \Omega + 220 \Omega} = 149,86 \Omega$$

$$R_{II} = R_1 + R_4 = 149,86 \Omega + 150 \Omega = 299,86 \Omega$$

 $R_{III} = R_1 + R_2 = 180 \Omega + 120 \Omega = 300 \Omega$

$$R_{III} = R_1 + R_3 = 180 \Omega + 120 \Omega = 300 \Omega$$

$$R = \frac{1}{\frac{1}{R_{II}} + \frac{1}{R_2} + \frac{1}{R_{III}}} = \frac{1}{\frac{1}{299,86 \Omega} + \frac{1}{270 \Omega} + \frac{1}{300 \Omega}} =$$
$$= \frac{1}{0,01037 \frac{1}{\Omega}} = 96.4 \Omega$$

$$I_1 = \frac{U}{R_{ttt}} = \frac{9 \text{ V}}{300 \Omega} = 30 \text{ mA}; \quad U_2 = U = 9 \text{ V};$$

$$U_1 = I_1 \cdot R_1 = 30 \text{ mA} \cdot 180 \Omega = 5.4 \text{ V}; \quad U_3 = I_1 \cdot R_3 = 30 \text{ mA} \cdot 120 \Omega = 3.6 \text{ V}$$

$$I_2 = \frac{U}{R_2} = \frac{9 \text{ V}}{270 \Omega} = 33.3 \text{ mA}; \quad I_4 = \frac{U}{R_0} = \frac{9 \text{ V}}{299.86 \Omega} = 30 \text{ mA}$$

$$U_4 = R_4 \cdot I_4 = 150 \Omega \cdot 30 \text{ mA} = 4.5 \text{ V}; \quad U_5 = U - U_4 = 9 \text{ V} - 4.50 \text{ V} = 4.50 \text{ V}$$

$$I_5 = \frac{U_5}{R_5} = \frac{4,50 \text{ V}}{470 \Omega} = 9,57 \text{ mA}; \quad I_6 = \frac{U_5}{R_6} = \frac{4,50 \text{ V}}{220 \Omega} = 20,5 \text{ mA}$$

53/21. d) Anschluss zwischen B und D:

$$R_1 = R_1 + R_3 = 180 \Omega + 120 \Omega = 300 \Omega$$

$$R_{11} = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{300 \Omega \cdot 270 \Omega}{300 \Omega + 270 \Omega} = 142,11 \Omega$$

$$R_{111} = \frac{R_5 \cdot R_6}{R_5 + R_6} = \frac{470 \Omega \cdot 220 \Omega}{470 \Omega + 220 \Omega} = 149,86 \Omega$$

$$R_{IV} = R_{II} + R_{III} = 142,11 \Omega + 149,86 \Omega = 291,97 \Omega$$

$$R = \frac{R_4 \cdot R_{III}}{R_4 + R_{III}} = \frac{150 \Omega \cdot 291,86 \Omega}{150 \Omega + 291,86 \Omega} = 99,09 \Omega$$

$$U_4 = U = 9 \text{ V}; \quad I_4 = \frac{U_4}{R_4} = \frac{9 \text{ V}}{150 \Omega} = 60 \text{ mA}$$

$$I_{5+6} = \frac{U}{R_{IV}} = \frac{9 \text{ V}}{291,86 \Omega} = 30,84 \text{ mA}$$

$$U_5 = U_6 = R_{UI} \cdot I_{5+6} = 149,86 \Omega \cdot 0,03084 A = 4,62 V$$

$$I_5 = \frac{U_5}{R_c} = \frac{4,62 \text{ V}}{470 \Omega} = 9,83 \text{ mA};$$

$$I_6 = \frac{U_6}{R_6} = \frac{4.62 \text{ V}}{220 \Omega} = 21 \text{ mA}$$

$$U_2 = U - U_5 = 9,00 \text{ V} - 4,62 \text{ V} = 4,38 \text{ V}$$

$$I_2 = \frac{U_2}{R_0} = \frac{4,38 \text{ V}}{270 \Omega} = 16,22 \text{ mA};$$

$$I_1 = I_3 = \frac{U_2}{R_1} = \frac{4,38 \text{ V}}{300 \Omega} = 14,6 \text{ mA}$$

$$U_1 = R_1 \cdot I_1 = 180 \Omega \cdot 14,6 \text{ mA} = 2,628 \text{ V}$$

$$U_3 = R_3 \cdot I_3 = 120 \Omega \cdot 14.6 \text{ mA} = 1.752 \text{ V}$$

53/21. e) Anschluss zwischen C und D:

$$R_{1} \, = \, R_{1} + R_{3} = 180 \, \Omega + 120 \, \Omega = 300 \, \Omega$$

$$R_{tt} = \frac{R_t \cdot R_2}{R_1 + R_2} = \frac{300 \ \Omega \cdot 270 \ \Omega}{300 \ \Omega + 270 \ \Omega} = 142,11 \ \Omega$$

zu 53/21.d)

Anschluss zwischen C und D

zu 53/21.e)

$$\begin{split} R_{III} &= R_{II} + R_4 = 142,11 \, \Omega + 150 \, \Omega = 292,11 \, \Omega \\ R &= \frac{1}{\frac{1}{R_{III}} + \frac{1}{R_5} + \frac{1}{R_6}} = \frac{1}{\frac{1}{292,11 \, \Omega} + \frac{1}{470 \, \Omega} + \frac{1}{220 \, \Omega}} = \frac{1}{0,010096 \, \frac{1}{\Omega}} = 99,04 \, \Omega \\ U &= U_5 = U_6 = 9 \, V; \quad I_5 = \frac{U_5}{R_5} = \frac{9 \, V}{470 \, \Omega} = 19,15 \, \text{mA}; \quad I_6 = \frac{9 \, V}{220 \, \Omega} = 40,91 \, \text{mA} \\ I_4 &= \frac{9 \, V}{R_{III}} = \frac{9 \, V}{292,11 \, \Omega} = 30,81 \, \text{mA}; \quad U_4 = I_4 \cdot R_4 = 30,81 \, \text{mA} \cdot 150 \, \Omega = 4,62 \, V \\ U_2 &= U - U_4 = 9 \, V - 4,62 \, V = 4,38 \, V; \quad I_2 = \frac{U_2}{R_2} = \frac{4,38 \, V}{270 \, \Omega} = 16,22 \, \text{mA} \\ I_1 &= I_3 = \frac{U_2}{R_1} = \frac{4,38 \, V}{300 \, \Omega} = 14,6 \, \text{mA} \\ U_1 &= I_1 \cdot R_1 = 14,6 \, \text{mA} \cdot 180 \, \Omega = 2,63 \, V; \quad U_3 = I_1 \cdot R_3 = 14,6 \, \text{mA} \cdot 120 \, \Omega = 1,75 \, V \end{split}$$

3.8.4 Spannungsteiler

Lösungen zu 3.8.4

Unbelasteter Spannungsteiler

54/1.
$$U_{20} = U \cdot \frac{R_2}{R_1 + R_2} = 12 \text{ V} \cdot \frac{5.5 \text{ k}\Omega}{1.5 \text{ k}\Omega + 5.5 \text{ k}\Omega} = 9.43 \text{ V}$$

54/2.
$$U_{20} = U \cdot \frac{R_2}{R_1 + R_2} = 15 \text{ V} \cdot \frac{90 \text{ k}\Omega}{25 \text{ k}\Omega + 90 \text{ k}\Omega} = 11.74 \text{ V}$$

54/3.
$$\frac{R_1}{R_2} = \frac{3}{5}$$
; $\frac{R_1}{R_2} = \frac{U}{U_{20}} - 1$; $U_{20} = \frac{U}{\frac{R_1}{R_2} + 1} = \frac{24 \text{ V}}{\frac{3}{5} + 1} = 15 \text{ V}$

54/4. a)
$$U_{AB} = U \cdot \frac{R_{AB}}{R} = 150 \text{ V} \cdot \frac{200 \Omega}{900 \Omega} = 33.3 \text{ V}$$
 b) $U_{AC} = U \cdot \frac{R_{AC}}{R} = 150 \text{ V} \cdot \frac{500 \Omega}{900 \Omega} = 83.3 \text{ V}$

b)
$$U_{AC} = U \cdot \frac{R_{AC}}{R} = 150 \text{ V} \cdot \frac{500 \Omega}{900 \Omega} = 83.3 \text{ V}$$

c)
$$U_{BC} = U \cdot \frac{R_{BC}}{R} = 150 \text{ V} \cdot \frac{300 \Omega}{900 \Omega} = 50.0 \text{ V}$$
 d) $U_{BD} = U \cdot \frac{R_{BD}}{R} = 150 \text{ V} \cdot \frac{700 \Omega}{900 \Omega} = 116.7 \text{ V}$ 55/3. a) $I_{q1} = q_1 \cdot I_B = 3 \cdot 1.0 \text{ mA} = 3.0 \text{ mA}$

d)
$$U_{BD} = U \cdot \frac{R_{BD}}{R} = 150 \text{ V} \cdot \frac{700 \Omega}{900 \Omega} = 116.7$$

e)
$$U_{CD} = U \cdot \frac{R_{CD}}{R} = 150 \text{ V} \cdot \frac{400 \Omega}{900 \Omega} = 66.7 \text{ V}$$

54/5.
$$U_{20} = U \cdot \frac{R_2}{R_1 + R_2} \Rightarrow U = U_{20} \cdot \frac{R_1 + R_2}{R_2} = 6.0 \text{ V} \cdot \frac{2.7 \text{ k}\Omega + 8.1 \text{ k}\Omega}{8.1 \text{ k}\Omega} = 8.0 \text{ V}$$

54/6.
$$\frac{R_1}{R_2} = \frac{U}{U_{20}} - 1 \Rightarrow R_1 = \frac{U \cdot R_2}{U_{20}} - R_2 = \frac{24 \, \text{V} \cdot 12 \, \text{k}\Omega}{9 \, \text{V}} - 12 \, \text{k}\Omega = 20.0 \, \text{k}\Omega$$

54/7.
$$N = R$$
; a) $N_2 = \frac{N \cdot U_{20}}{U} = \frac{640 \cdot 15 \text{ V}}{24 \text{ V}} = 400$; b) $N_2 = \frac{640 \cdot 5 \text{ V}}{24 \text{ V}} = 133.3$

b)
$$N_2 = \frac{640 \cdot 3 \text{ V}}{24 \text{ V}} = 133,$$

c)
$$N_2 = \frac{640 \cdot 3 \text{ V}}{24 \text{ V}} = 80$$
; d) $N_2 = \frac{640 \cdot 6.3 \text{ V}}{24.\text{V}} = 168$

54/8. a) Ermittelt aus Schaubild Rechenbuch Elektrotechnik, Seite 73, Bild 3: R_2 bei 20°C: $R_2 \approx 12 k\Omega$ R_2 bei 60°C: $R_2 \approx 2.5 \text{ k}\Omega$

bei 20°C:
$$U_{20} = U \cdot \frac{R_2}{R_1 + R_2} = 12 V \cdot \frac{12 k\Omega}{4.7 k\Omega + 12 k\Omega}$$

 $U_{20} = 8,62 V$

bei 60°C:
$$U_{20} = U \cdot \frac{R_2}{R_1 + R_2} = 12 \text{ V} \cdot \frac{2,5 \text{ k}\Omega}{4,7 \text{ k}\Omega + 2,5 \text{ k}\Omega}$$

$$U_{20} = 4,17 \text{ V}$$

b)
$$\frac{R_1}{R_2} = \frac{U}{U_{20}} - 1 \implies R_2 = \frac{R_1}{\frac{U}{U_{20}} - 1} = \frac{4.7 \text{ k}\Omega}{\frac{12 \text{ V}}{3.2 \text{ V}} - 1} = 1.71 \text{ k}\Omega$$

Ermittelt aus Schaubild Rechenbuch Elektrotechnik, Seite 73, Bild 3: $\vartheta \approx 72^{\circ}\text{C}$

54/9.
$$\frac{U_{20}}{U} = \frac{N_2}{N}$$
; $U_{20} = \frac{230 \text{ V} \cdot 1}{450} = 0,511 \text{ V}$

54/10.
$$U_{20} = \frac{24 \text{ V} \cdot 1}{380} = 63.2 \text{ mV}$$

Belasteter Spannungsteiler

55/1. a)
$$R_{2L} = \frac{R_2 \cdot R_L}{R_2 + R_L} = \frac{35 \Omega \cdot 50 \Omega}{35 \Omega + 50 \Omega} = 20.6 \Omega$$

$$U_2 = U \cdot \frac{R_{2L}}{R_1 + R_{2L}} = 30 V \cdot \frac{20.6 \Omega}{100 \Omega + 20.6 \Omega} = 5.12 V$$

b)
$$I_L = \frac{U_2}{R_L} = \frac{5,12 \text{ V}}{50 \Omega} = 0,102 \text{ A}$$

55/2. a) Stellung A: \Rightarrow Kurzschluss von R_{11} , R_{12} und $R_{2} \Rightarrow U_{2} = 0 \text{ V}$

$$R_{L} = \frac{R_{L1} \cdot R_{L2}}{R_{L1} + R_{L2}} = \frac{2.2 \text{ k}\Omega \cdot 1.2 \text{ k}\Omega}{2.2 \text{ k}\Omega + 1.2 \text{ k}\Omega} = 0.78 \text{ k}\Omega$$

$$U_{2} = \frac{U}{\frac{R_{1} \cdot (R_{L} + R_{2})}{R_{L} \cdot R_{2}} + 1} = \frac{6 \text{ V}}{\frac{820 \Omega \cdot (780 \Omega + 390 \Omega)}{780 \Omega \cdot 390 \Omega} + 1} = \frac{6 \text{ V}}{3.15 + 1} = 1.44 \text{ V}$$

55/3. a)
$$I_{q1} = q_1 \cdot I_B = 3 \cdot 1.0 \text{ mA} = 3.0 \text{ mA}$$

$$R_2 = \frac{U_2}{I_{q1}} = \frac{0.72 \text{ V}}{3.0 \text{ mA}} = 240 \Omega$$

$$R_1 = \frac{U - U_2}{I_{a1} + I_B} = \frac{12,00 \text{ V} - 0,72 \text{ V}}{3,0 \text{ mA} + 1,0 \text{ mA}} = 2820 \Omega$$

b)
$$I_{q2} = q_2 \cdot I_B = 4 \cdot 1.0 \text{ mA} = 4.0 \text{ mA}$$

$$R_2 = \frac{U_2}{I_{a2}} = \frac{0.72 \text{ V}}{4.0 \text{ mA}} = 180 \Omega$$

$$R_1 = \frac{U - U_2}{I_{q2} + I_B} = \frac{12,00 \text{ V} - 0,72 \text{ V}}{4,0 \text{ mA} + 1,0 \text{ mA}} = 2260 \Omega$$

c)
$$I_{q3} = q_3 \cdot I_B = 5 \cdot 1.0 \text{ mA} = 5.0 \text{ mA}$$

$$R_2 = \frac{U_2}{I_{g3}} = \frac{0.72 \text{ V}}{5.0 \text{ mA}} = 144 \Omega$$

$$R_{t} = \frac{U - U_{2}}{I_{q3} + I_{B}} = \frac{12,00 \text{ V} - 0,72 \text{ V}}{5,0 \text{ mA} + 1,0 \text{ mA}} = 1880 \Omega$$

b)
$$U_{20} = \frac{R_2}{R_1 + R_2} \cdot U = \frac{70 \Omega}{280 \Omega} \cdot 24 V = 6 V$$

c)
$$U_2 = \frac{U}{\frac{R_1 \cdot (R_L + R_2)}{R_1 \cdot R_2} + 1} = \frac{24 \text{ V}}{\frac{210 \Omega \cdot (200 \Omega + 70 \Omega)}{200 \Omega \cdot 70 \Omega} + 1} = \frac{24 \text{ V}}{4,05 + 1} = 4,75 \text{ V}$$

d)
$$I_q = \frac{U_2}{R_2} = \frac{4,75 \text{ V}}{70.0} = 0.068 \text{ A}$$

d)
$$I_q = \frac{U_2}{R_2} = \frac{4,75 \text{ V}}{70 \Omega} = 0.068 \text{ A}$$
 f) $q = \frac{I_q}{I_L} = \frac{I_q}{U_2/R_L} = \frac{0.068 \text{ A}}{0.0238 \text{ A}} = 2.9$

e)
$$I_L = \frac{U_2}{R_L} = \frac{4,75 \text{ V}}{200 \Omega} = 0.0238 \text{ A}$$

R_a aus Diagramm ablesen:

$$R_{23} = \frac{R_2 \cdot R_3}{R_2 + R_3} = \frac{18 \,k\Omega \cdot 32 \,k\Omega}{18 \,k\Omega + 32 \,k\Omega} = 11.5 \,k\Omega$$

$$U_2 = \frac{U \cdot R_{23}}{R_1 + R_{23}} = \frac{12 \,V \cdot 11.5 \,k\Omega}{15 \,k\Omega + 11.5 \,k\Omega} = 5.2 \,V$$

zu 55/5.b)

55/6. a) Siehe Schaltskizze

b)
$$U_{20} = \frac{R_2}{R_1 + R_2} \cdot U = \frac{6.2 \text{ k}\Omega}{(47 \text{ k}\Omega + 6.2 \text{ k}\Omega)} \cdot 50 \text{ V} = 5.83 \text{ V}$$

c) P1:
$$R_m = R_L = r_k \cdot U = 20 \frac{k\Omega}{V} \cdot 6 V = 120 k\Omega$$

$$U_{2} = \frac{U}{\frac{R_{1} \cdot (R_{L} + R_{2})}{R_{L} \cdot R_{2}} + 1} = \frac{50 \text{ V}}{\frac{47 \text{ k}\Omega \cdot (120 \text{ k}\Omega + 6.2 \text{ k}\Omega)}{120 \text{ k}\Omega \cdot 6.2 \text{ k}\Omega} + 1} = 5.57 \text{ V}$$

P2:
$$R_m = R_E = r_k \cdot U = 40 \frac{k\Omega}{V} \cdot 6 V = 240 k\Omega$$

$$U_2 = \frac{50 \text{ V}}{\frac{47 \text{ k}\Omega \cdot (240 \text{ k}\Omega + 6.2 \text{ k}\Omega)}{240 \text{ k}\Omega \cdot 6.2 \text{ k}\Omega} + 1} = 5.7 \text{ V}$$

d) Messfehler bei P1: $\Delta U = U_{20} - U_2 = 5.83 \text{ V} - 5.57 \text{ V} = 0.26 \text{ V}$

$$\Delta U_{\%} = \frac{0.26 \, \text{V} \cdot 100\%}{5.83 \, \text{V}} = 4.5 \, \%$$

bei P2:
$$\Delta U = U_{20} - U_2 = 5.83 \text{ V} - 5.7 \text{ V} = 0.13 \text{ V}; \quad \Delta U_{\%} = \frac{0.13 \text{ V} \cdot 100\%}{5.83 \text{ V}} = 2.2\%$$

3.8.5 Abgeglichene Brückenschaltung

Lösungen zu 3.8.5

$$56/1. \quad \frac{R_x}{R_n} = \frac{R_3}{R_4}$$

56/1.
$$\frac{R_x}{R_n} = \frac{R_3}{R_4}$$
 a) $R_x = \frac{R_3 \cdot R_n}{R_4} = \frac{100 \Omega \cdot 14 \Omega}{200 \Omega} = 7 \Omega$

b)
$$R_x = \frac{100 \Omega \cdot 250 \Omega}{200 \Omega} = 125 \Omega$$
 c) $R_x = \frac{100 \Omega \cdot 1400 \Omega}{200 \Omega} = 700 \Omega$

c)
$$R_x = \frac{100 \Omega \cdot 1400 \Omega}{200 \Omega} = 700 \Omega$$

56/2.
$$R_x = \frac{l_1 \cdot R_n}{l_2} = \frac{39 \text{ cm} \cdot 100 \Omega}{61 \text{ cm}} = 63.9 \Omega$$

56/3.
$$\frac{l_1}{l_2} = \frac{R_x}{R_n}$$
; $\frac{l_1}{l_2} = \frac{55 \Omega}{220 \Omega} = \frac{1}{4}$; $l_1 + l_2 = 1 \text{ m}$; $(1+4) \text{ Teile} = 1 \text{ m} \implies l_1 = 0.2 \text{ m}$; $l_2 = 0.8 \text{ m}$

56/4.
$$\frac{R_x}{R_n} = \frac{R_3}{R_4} \Rightarrow R_3 = \frac{R_x \cdot R_4}{R_n} = \frac{0.8 \text{ k}\Omega \cdot 2.2 \text{ k}\Omega}{1.7 \text{ k}\Omega} = 1.04 \text{ k}\Omega$$

56/5. a)
$$I_n = I_x = \frac{U_n}{R_n} = \frac{14V}{680\Omega} = 20,59 \text{ mA}$$

$$U_3 = U_x = U - U_n = 24V - 14V = 10V$$

$$R_x = \frac{U_x}{I_x} = \frac{10V}{20,59 \text{ mA}} = 485,67\Omega$$

$$U_4 = U_n = 14V$$

$$I_4 = I_3 = \frac{U_4}{R_4} = \frac{14V}{220\Omega} = 63,64 \text{ mA}$$

$$R_3 = \frac{R_x}{R_n} \cdot R_4 = \frac{485,67\Omega}{680\Omega} \cdot 220\Omega = 157,1\Omega$$
b) $I = I_x + I_3 = 20,59 \text{ mA} + 63,64 \text{ mA} = 84,23 \text{ mA}$

56/6. Bei 100°C:
$$R_x = R_3$$

$$R_3 = R_{20} \cdot (1 + \alpha \cdot \Delta 9) = 6.8 \, k\Omega \cdot \left(1 + 0.0039 \frac{1}{K} \cdot 80 \, K\right) = 8.92 \, k\Omega$$

$$R_n = \frac{R_3 \cdot R_4}{R_3} = \frac{8.92 \, k\Omega \cdot 470 \, \Omega}{1.5 \, k\Omega} = 2795 \, \Omega$$

56/7.
$$R_{i} = \frac{R_{3} \cdot R_{2}}{R_{4}} = \frac{56 \Omega \cdot 33 \Omega}{342 \Omega} = 5.4 \Omega$$

$$I_{Ri} = \frac{U}{R_{i} + R_{2}} = \frac{15 V}{5.4 \Omega + 33 \Omega} = 390.63 \text{ mA}$$

$$U_{Ri} = R_{i} \cdot I_{Ri} = 5.4 \Omega \cdot 390.63 \text{ mA} = 2.11 \text{ V}$$

56/8. Ermittelt aus Schaubild Rechenbuch Elektrotechnik, Seite 57, Bild 4:
$$R_4=R_{200}\approx 175\,\Omega$$

$$R_2=\frac{R_{200}\cdot R_1}{R_3}=\frac{175\,\Omega\cdot 560\,\Omega}{470\,\Omega}=208,5\,\Omega$$

56/9. b) 1. Lösungsweg:
$$\begin{aligned} & l = l_1 + l_2 \Rightarrow l_2 = l - l_1 & (1) \\ & \frac{R_1}{l + l_2} = \frac{R_2}{l_1} & (2) \\ & (1) \text{ in (2):} \\ & \frac{R_1}{l + l - l_1} = \frac{R_2}{l_1} \Rightarrow \frac{R_1}{2l - l_1} = \frac{R_2}{l_1} \end{aligned}$$

$$l_1 (R_1 + R_2) = 2l \cdot R_2$$

$$l_1 = 2l \cdot \frac{R_2}{R_1 + R_2} = 2 \cdot 1500 \text{ m} \cdot \frac{280 \Omega}{420 \Omega + 280 \Omega} = 1200 \text{ m}$$

2. Lösungsweg: In einer abgeglichenen Brückenschaltung verhalten sich entsprechende Widerstände (bzw. Widerstandsgruppen) gleich, also gilt:

$$\frac{R_2}{\text{Summe R linker Zweig}} = \frac{l_1}{\text{Summe R rechter Zweig}}$$

$$\frac{R_2}{R_1 + R_2} = \frac{l_1}{2l}$$

$$l_1 = 2l \cdot \frac{R_2}{R_1 + R_2} = 2 \cdot 1500 \text{ m} \cdot \frac{280 \Omega}{420 \Omega + 280 \Omega} = 1200 \text{ m}$$

3.8.6 Unabgeglichene Brückenschaltung

Lösungen zu 3.8.6

57/1. a)
$$U_3 = U \cdot \frac{R_3}{R_3 + R_4} = 12 \text{ V} \cdot \frac{220 \Omega}{220 \Omega + 390 \Omega} = 4,33 \text{ V}$$

Masche: $U_1 + U_{AB} - U_3 = 0 \Rightarrow U_1 = U_3 - U_{AB} = 4,33 \text{ V} - (-1 \text{ V}) = +5,33 \text{ V}$
 $U_2 = U - U_1 = 12 \text{ V} - 5,33 \text{ V} = 6,67 \text{ V}$
 $I_1 = \frac{U_1}{R_1} = \frac{5,33 \text{ V}}{100 \Omega} = 0,0533 \text{ A} = 53,3 \text{ mA}; \quad R_2 = \frac{U_2}{I_1} = \frac{6,67 \text{ V}}{0,0533 \text{ A}} = 125 \Omega$

b) $U_1 = U_3 - U_{AB} = 4,33 \text{ V} - 1 \text{ V} = 3,33 \text{ V}; \quad U_2 = U - U_1 = 12 \text{ V} - 3,33 \text{ V} = 8,67 \text{ V}$
 $I_1 = \frac{U_1}{R_1} = \frac{3,33 \text{ V}}{100 \Omega} = 0,0333 \text{ A}; \quad R_2 = \frac{U_2}{R_2} = \frac{8,67 \text{ V}}{0,0333 \text{ A}} = 260 \Omega$

57/2. a)
$$U = 10 \text{ V}; \quad R_1 = R_1 + R_2 = 20 \Omega + 30 \Omega = 50 \Omega; \quad R_{II} = R_3 + R_4 = 200 \Omega$$

$$\frac{U_1}{U} = \frac{R_1}{R_1} \Rightarrow U_1 = \frac{U \cdot R_1}{R_1} = \frac{10 \text{ V} \cdot 20 \Omega}{50 \Omega} = 4 \text{ V}; \quad U_3 = \frac{U \cdot R_3}{R_{II}} = \frac{10 \text{ V} \cdot 70 \Omega}{200 \Omega} = 3,5 \text{ V}$$

$$\text{Masche: } U_1 + U_{AB} - U_3 = 0; \Rightarrow U_{AB} = U_3 - U_1 = 3,5 \text{ V} - 4 \text{ V} = -0,5 \text{ V}$$

$$\text{b) } \frac{R_1}{R_2} = \frac{R_3}{R_4} \Rightarrow R_2 = R_1 \cdot \frac{R_4}{R_3} = 20 \Omega \cdot \frac{130 \Omega}{70 \Omega} = 37,1 \Omega$$

57/3. a)
$$R_1 = R_1 + R_2 = 8.2 \text{ k}\Omega + 5.6 \text{ k}\Omega = 13.8 \text{ k}\Omega$$
; $R_{IJ} = R_3 + R_4 = 2.7 \text{ k}\Omega + 3.9 \text{ k}\Omega = 6.6 \text{ k}\Omega$

$$\frac{U_1}{U} = \frac{R_1}{R_1} \Rightarrow U_1 = \frac{U \cdot R_1}{R_1} = \frac{5 \text{ V} \cdot 8.2 \text{ k}\Omega}{13.8 \text{ k}\Omega} = 2.97 \text{ V}; \quad U_3 = \frac{U \cdot R_3}{R_{II}} = \frac{5 \text{ V} \cdot 2.7 \text{ k}\Omega}{6.6 \text{ k}\Omega} = 2.05 \text{ V}$$
Masche: $U_1 + U_{AB} - U_3 = 0$; $U_{AB} = U_3 - U_1 = 2.05 \text{ V} - 2.97 \text{ V} = -0.92 \text{ V}$
b) $\frac{R_2}{R_4} = \frac{R_1}{R_2} \Rightarrow R_2 = \frac{R_1 \cdot R_4}{R_2} = \frac{8.2 \text{ k}\Omega \cdot 3.9 \text{ k}\Omega}{2.7 \text{ k}\Omega} = 11.8 \text{ k}\Omega$

57/4. a)
$$R_2 = \frac{R_0}{R_3} \cdot R_1 = \frac{100 \,\Omega}{470 \,\Omega} \cdot 470 \,\Omega = 100 \,\Omega$$

b) Ermittelt aus Rechenbuch Elektrotechnik, Seite 57, Bild 4: $R_{400} \approx 250 \,\Omega$
$$U_2 = \frac{R_2 \cdot U}{R_1 + R_2} = \frac{100 \,\Omega \cdot 12 \,V}{470 \,\Omega + 100 \,\Omega} = 2,105 \,V$$

$$U_{400} = \frac{R_{400} \cdot U}{R_{400} + R_3} = \frac{250 \,\Omega \cdot 12 \,V}{250 \,\Omega + 470 \,\Omega} = 4,167 \,V$$

$$U_{48} = U_2 - U_{400} = 2,105 \,V - 4,167 \,V = -2,06 \,V$$

57/5. a) Ablesung aus Schaubild Rechenbuch Elektrotechnik, Seite 73, Bild 3:

∂ in °C	0	10	20	30	40	50
R in kΩ	32	19	12,5	8,5	5,4	3,7

Für 0°C:
$$R_1 = R_1 + R_2 = 10 \text{ k}\Omega + 32 \text{ k}\Omega = 42 \text{ k}\Omega$$

 $R_{11} = R_3 + R_4 = 10 \text{ k}\Omega + 10 \text{ k}\Omega = 20 \text{ k}\Omega$
 $U_1 = \frac{U \cdot R_1}{R_1} = \frac{9 \text{ V} \cdot 10 \text{ k}\Omega}{42 \text{ k}\Omega} = 2,14 \text{ V};$
 $U_3 = \frac{U \cdot R_3}{R_{11}} = \frac{9 \text{ V} \cdot 10 \text{ k}\Omega}{20 \text{ k}\Omega} = 4,5 \text{ V}$

 $U_{AB} = U_3 - U_1 = 4.5 \text{ V} - 2.14 \text{ V} = 2.36 \text{ V}$

57/6. a) Die Spannung U_2 muss positiver als die Spannung U_4 sein, weil $U_{AB} = U_2 - U_4$ positiv sein soll. Zuordnung: R₁ → DMS2 (klein), R₂ → DMS1 (groß), R₃ → DMS3 (groß), R₄ → DMS4 (klein)

b)
$$U_2 = \frac{R_2}{R_2 + R_1} \cdot U = \frac{358 \Omega}{358 \Omega + 342 \Omega} \cdot 12 V = 6,14 V$$

$$U_4 = \frac{R_4}{R_4 + R_3} \cdot U = \frac{342 \Omega}{342 \Omega + 358 \Omega} \cdot 12 V = 5,86 V$$

$$U_{AB} = U_2 - U_4 = 6,14 V - 5,86 V = 0,28 V$$

3.9 Elektrische Leistung und Arbeit

3.9.1 Elektrische Leistung

Lösungen zu 3.9.1

58/1. a)
$$R = \frac{U}{I} = \frac{12 \text{ V}}{6.25 \text{ A}} = 1.92 \Omega$$

b) $P = U \cdot I = 12 \text{ V} \cdot 6.25 \text{ A} = 75 \text{ W}$

58/2. a)
$$I = \frac{P}{U} = \frac{25 \text{ W}}{230 \text{ V}} = 0.109 \text{ A};$$
 $R = \frac{U}{I} = \frac{230 \text{ V}}{0.109 \text{ A}} = 2110 \Omega$
b) $I = \frac{P}{U} = \frac{40 \text{ W}}{230 \text{ V}} = 0.174 \text{ A};$ $R = \frac{U}{I} = \frac{230 \text{ V}}{0.174 \text{ A}} = 1322 \Omega$

58/3.
$$R = \frac{U^2}{P_{220}} = \frac{(220 \text{ V})^2}{1000 \text{ W}} = 48.4 \Omega;$$
 $P_{230} = \frac{(230 \text{ V})^2}{48.4 \Omega} = 1093 \text{ W}$

58/4. a)
$$P = I^2 \cdot R = (0.007 \text{ A})^2 \cdot 2150 \Omega = 0.105 \text{ W} = 105 \text{ mW}$$

b) $U = R \cdot I = 2150 \Omega \cdot 0.01 \text{ A} = 21.5 \text{ V}$

58/5. Wertetabellen für
$$I = \frac{P}{II}$$
:

Abgelesen aus Zeichnung für:

- a) 500 mW und R = 1,5 k Ω : U = 28 V; I = 18 mA
- b) 1000 mW und R = 470 Ω : U = 22 V; I = 46 mA
- c) 250 mW und R = 8,2 k Ω : U = 45 V; I = 5 mA

58/6. a)
$$U = U_2 = I_2 \cdot R_2 = 4 \text{ mA} \cdot 8.2 \text{ k}\Omega = 32.8 \text{ V}$$

b)
$$I_3 = \frac{U}{R_3 + R_4} = \frac{32.8 \text{ V}}{10 \text{ k}\Omega + 1.5 \text{ k}\Omega} = 2.85 \text{ mA}$$

c)
$$\frac{1}{R} = \frac{1}{5.6 \text{ k}\Omega} + \frac{1}{8.2 \text{ k}\Omega} + \frac{1}{11.5 \text{ k}\Omega} = 0.387 \frac{1}{\text{k}\Omega} \Rightarrow R = 2.58 \text{ k}\Omega$$

$$P = \frac{U^2}{R} = \frac{(32.8 \text{ V})^2}{2.58 \text{ k}\Omega} = 0.417 \text{ W} \approx 0.42 \text{ W}$$

58/7. a)
$$U_2 = U_3 = I_2 \cdot R_2 = 9.9 \text{ mA} \cdot 270 \Omega = 2.67 \text{ V}$$

$$I_3 = \frac{U_3}{R_3} = \frac{2,67 \text{ V}}{150 \Omega} = 0,0178 \text{ A} = 17.8 \text{ mA}$$

$$I_4 = I_2 + I_3 = 9.9 \text{ mA} + 17.8 \text{ mA} = 27.7 \text{ mA}$$

$$U_4 = R_4 \cdot I_4 = 120 \Omega \cdot 27.7 \text{ mA} = 3.32 \text{ V}; \quad I_5 = \frac{U_5}{R_5} = \frac{U_2 + U_4}{R_5} = \frac{5.99 \text{ V}}{180 \Omega} = 33.3 \text{ mA}$$

$$I = I_1 = I_4 + I_5 = 27.7 \text{ mA} + 33.3 \text{ mA} = 61 \text{ mA}$$

$$U_1 = I_1 \cdot R_1 = 61 \text{ mA} \cdot 100 \Omega = 6.1 \text{ V}; \quad U = U_1 + U_5 = 6.1 \text{ V} + 5.99 \text{ V} = 12.1 \text{ V}$$

b) $P_1 = U_1 \cdot I_1 = 6.1 \text{ V} \cdot 61 \text{ mA} = 373 \text{ mW}$

$$P_2 = 2,67 \text{ V} \cdot 9,9 \text{ mA} = 26,4 \text{ mW};$$

$$P_3 = 2,67 \text{ V} \cdot 17,8 \text{ mA} = 47,5 \text{ mW}$$

 $P_5 = 5.99 \text{ V} \cdot 33.3 \text{ mA} = 2.300 \text{ mW}$

$$P_4 = 3.32 \text{ V} \cdot 27.7 \text{ mA} = 92.0 \text{ mW};$$

$$P_5 = 5,99 \text{ V} \cdot 33,3 \text{ mA} = \approx 200 \text{ mW}$$

c) Normwerte für
$$R_1$$
: 0,5 W; R_2 : 0,05 W; R_3 : 0,05 W; R_4 : 0,125 W; R_5 : 0,25 W

58/8. a)
$$P = U \cdot I \Rightarrow I = \frac{P}{U} = \frac{700 \text{ W}}{230 \text{ V}} = 3.04 \text{ A}$$
 b) $R = \frac{U}{I} = \frac{230 \text{ V}}{3.04 \text{ A}} = 75.6 \Omega$

b)
$$R = \frac{U}{I} = \frac{230 \text{ V}}{3,04 \text{ A}} = 75.6 \Omega$$

U 230 V 3,04 A b)
$$R = \frac{1}{I} = \frac{1}{3}$$

c) $U_{unter} = 230 \text{ V} \cdot 0.95 = 218.5 \text{ V}; P = \frac{U^2}{R} = \frac{(218.5 \text{ V})^2}{75.6 \Omega} = 632 \text{ W}$

$$P_{\%} = \frac{632 \text{ W} \cdot 100\%}{700 \text{ W}} = 90.3\% \Rightarrow \text{ Er gibt } 100\% - 90.3\% = 9.7\% \text{ weniger Leistung ab.}$$

59/9. a)
$$A = \frac{\pi \cdot d^2}{4} = \frac{\pi \cdot (0.5 \text{ mm})^2}{4} = 0.1963 \text{ mm}^2$$
; $R = \frac{\varrho \cdot l}{A} = \frac{1.45 \Omega \cdot \text{mm}^2 \cdot 20.5 \text{ m}}{\text{m} \cdot 0.1963 \text{ mm}^2} = 151.4 \Omega$
 $P = \frac{U^2}{R} \Rightarrow U = \sqrt{R \cdot P} = \sqrt{151.4 \Omega \cdot 2000 \text{ W}} = 550 \text{ V}$; b) $I = \frac{U}{R} = \frac{550 \text{ V}}{10.000 \text{ m}} = 3.63 \text{ A}$

59/10. a)
$$P = \frac{U^2}{R}$$
; $U = \sqrt{P \cdot R} = \sqrt{5 W \cdot 47 \Omega} = \sqrt{235} V = 15,3 V$; $I = \sqrt{\frac{P}{R}} = \sqrt{\frac{5 W}{47 \Omega}} = 326 \text{ mA}$

b)
$$U = \sqrt{1 \text{ W} \cdot 330 \Omega} = \sqrt{330} \text{ V} = 18.2 \text{ V}; \quad I = \sqrt{\frac{1 \text{ W}}{330 \Omega}} = 55 \text{ mA}$$

c)
$$U = \sqrt{0.125 \text{ W} \cdot 15000 \Omega} = \sqrt{1875 \text{ V}} = 43.3 \text{ V}; \quad I = \sqrt{\frac{0.125 \text{ W}}{15 \text{ k}\Omega}} = 2.88 \text{ mA}$$

d)
$$U = \sqrt{0.125 \text{ W} \cdot 0.1 \text{ M}\Omega} = \sqrt{0.0125 \text{ kV}} = 0.112 \text{ kV} = 112 \text{ V}; \quad I = \sqrt{\frac{0.125 \text{ W}}{100 \text{ k}\Omega}} = 1.12 \text{ mA}$$

e)
$$U = \sqrt{0.5 \text{ W} \cdot 4.7 \text{ M}\Omega} = \sqrt{2.35} \text{ kV} = 1.53 \text{ kV} = 1530 \text{ V}; \quad I = \sqrt{\frac{0.5 \text{ W}}{4.7 \text{ M}\Omega}} = 0.326 \text{ mA}$$

f)
$$U = \sqrt{0.25 \text{ W} \cdot 5600 \Omega} = \sqrt{1400 \text{ V}} = 37.4 \text{ V}; \quad I = \sqrt{\frac{0.25 \text{ W}}{5 \text{ k}\Omega}} = 7.07 \text{ mA}$$

59/11. a)
$$R_1$$
, R_2 und R_3 in Reihe an 400 V: $P = 18 \text{ kW}$

b)
$$R_1 + R_2 = \frac{U^2}{P} = \frac{(400 \text{ V})^2}{18000 \text{ W}} = 8,89 \Omega$$

 R_1 allein an 400 V: $P = 18 \text{ kW} \cdot 1,25 = 22,5 \text{ kW}$

$$R_1 = \frac{(400 \text{ V})^2}{22500 \text{ W}} = 7.11 \Omega; \quad R_2 = 8.89 \Omega - 7.11 \Omega = 1.78 \Omega$$

$$R_1 + R_2 + R_3$$
 an 400 V; $P = 18 \text{ kW} \cdot 0.85 = 15.3 \text{ kW}$:

$$R_1 + R_2 + R_3 = \frac{(400 \text{ V})^2}{15300 \text{ W}} = 10,46 \Omega$$

$$R_3 = 10,46 \Omega - 8,89 \Omega = 1,57 \Omega$$

Stufe 2 •

Stufe 2

Stufe 1 •

59/12. a) Stufe 3:
$$I = \frac{P}{U} = \frac{2000 \text{ W}}{230 \text{ V}} = 8,70 \text{ A}$$

Stufe 1 •:
$$I = \frac{P}{U} = \frac{450 \text{ W}}{230 \text{ V}} = 1.96 \text{ A}$$

Stufe 1:
$$I = \frac{P}{U} = \frac{305 \text{ W}}{230 \text{ V}} = 1.33 \text{ A}$$

Stufe 3:
$$R_{p3} = \frac{U^2}{P} = \frac{(230 \text{ V})^2}{2000 \text{ W}} = 26.5 \Omega$$

Stufe 1 •:
$$R_2 = \frac{U^2}{P} = \frac{(230 \text{ V})^2}{450 \text{ W}} = 118 \Omega$$

Stufe 1:
$$R_{1+2} = \frac{U^2}{P} = \frac{(230 \text{ V})^2}{305 \text{ W}} = 173 \Omega$$

$$R_1 = R_{1+2} - R_2 = 173 \Omega - 118 \Omega = 55$$

$$\begin{array}{c} R_1 = R_{1+2} - R_2 = 173 \ \Omega - 118 \ \Omega = 55 \ \Omega \\ \frac{1}{R_3} = \frac{1}{R_{p3}} - \frac{1}{R_1} - \frac{1}{R_2} = \frac{1}{26,5 \ \Omega} - \frac{1}{55 \ \Omega} - \frac{1}{118 \ \Omega} = 0.01108 \frac{1}{\Omega}; \quad R_3 = 90.3 \ \Omega \end{array}$$

Stufe •:
$$R_{1+2+3} = R_1 + R_2 + R_3 = 55 \Omega + 118 \Omega + 90.3 \Omega = 263.3 \Omega$$

$$I = \frac{U}{R_{1+2+3}} = \frac{230 \text{ V}}{263.3 \Omega} = 0.874 \text{ A}$$

Stufe 2:
$$I = \frac{U}{R_1} = \frac{230 \text{ V}}{55 \Omega} = 4,18 \text{ A}$$

Stufe 2 •:
$$R_{p2} = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{55 \Omega \cdot 118 \Omega}{55 \Omega + 118 \Omega} = 37.5 \Omega$$
; $I = \frac{U}{R} = \frac{230 \text{ V}}{37.5 \Omega} = 6.13 \text{ A}$

b) Stufe •: $P = U \cdot I_a = 230 \text{ V} \cdot 0.874 \text{ A} = 201 \text{ W}$ Stufe 2: $P = 230 \text{ V} \cdot 4,18 \text{ A} = 961 \text{ W}$ Stufe 2 •: $P = 230 \text{ V} \cdot 6.13 \text{ A} = 1410 \text{ W}$

3.9.2 Elektrische Arbeit

Lösungen zu 3.9.2

59/1.
$$W = P \cdot t = 0.14 \text{ kW} \cdot 4.25 \text{ h} = 0.595 \text{ kWh/Tag}$$

$$W_{\text{Mon}} = W \cdot \text{Tage} = 0.595 \text{ kWh/Tag} \cdot 30 \text{ Tage} = 17.9 \text{ kWh}$$

59/2. a) W = P · t;
$$t = \frac{W}{P} = \frac{1 \text{ kWh}}{0.015 \text{ kW}} = 66.7 \text{ h}$$
 b) $t = \frac{W}{P} = \frac{1 \text{ kWh}}{0.075 \text{ kW}} = 13.3 \text{ h}$

b)
$$t = \frac{W}{P} = \frac{1 \text{ kWh}}{0.075 \text{ kW}} = 13.31$$

59/3. a)
$$W = P \cdot t \Rightarrow P = \frac{W}{t} = \frac{160 \text{ Wh} \cdot 60 \text{ min}}{8 \text{ min} \cdot 1 \text{ h}} = 1200 \text{ W}$$

c)
$$R = \frac{U}{I} = \frac{230 \text{ V}}{5.22 \text{ A}} = 44.1 \Omega$$

b)
$$P = U \cdot I \Rightarrow I = \frac{P}{U} = \frac{1200 \text{ W}}{230 \text{ V}} = 5.22 \text{ A}$$

59/4. a)
$$R = \frac{l}{\gamma \cdot A} = \frac{90000 \text{ m}}{56 \frac{m}{\Omega \cdot \text{mm}^2} \cdot 50 \text{ mm}^2} = 32,14 \Omega$$

$$W = P \cdot t = I^2 \cdot R \cdot t = (27 \text{ A})^2 \cdot 32,14 \Omega \cdot 24 \text{ h} = 562321 \text{ Wh} = 562 \text{ kWh}$$

b)
$$\Delta U = R \cdot I = 32,14 \Omega \cdot 27 A = 868 V$$

59/5. a)
$$P = \frac{U^2}{R} = \frac{(12 \text{ V})^2}{27 \Omega} = 5.\overline{3} \text{ W}$$

b) W = P · t = 5,
$$\bar{3}$$
 W · $\frac{50}{60}$ h = 4, $\bar{4}$ Wh

c)
$$I = \frac{U}{R} = \frac{12 \text{ V}}{27 \Omega} = 0.44 \text{ A}$$

c)
$$I = \frac{U}{R} = \frac{12 \text{ V}}{27 \Omega} = 0.44 \text{ A}$$
 d) $W = \frac{U^2 \cdot t}{R} = \frac{(12 \text{ V})^2 \cdot 50 \text{ min} \cdot 1 \text{ h}}{39 \Omega \cdot 60 \text{ min}} = 3.08 \text{ Wh}$

Änderung: $\Delta W = 4,44 \text{ Wh} - 3,08 \text{ Wh} = 1,36 \text{ Wh}$; $1,36 \text{ Wh} \triangleq \frac{1,36 \text{ Wh} \cdot 100\%}{4.44 \text{ Wh}} = 31\%$

3.9.3 Leistungsbestimmung mit dem Zähler

Lösungen zu 3.9.3

60/1.
$$n = 2 \cdot 60 = 120 \frac{1}{h}$$
; $P = \frac{n}{C_z} = \frac{120 \text{ }^1/\text{h}}{1200 \text{ }^1/\text{kWh}} = 0.1 \text{ kW} = 100 \text{ W}$

60/2.
$$n = \frac{25 \cdot 60}{2} = 750 \frac{1}{h}$$
; $P = \frac{n}{C_z} = \frac{750 \, ^1/h}{600 \, ^1/kWh} = 1.25 \, kW$

60/3.
$$n = \frac{21 \cdot 60}{0.5} = 2520 \frac{1}{h}$$
; $P = \frac{n}{C_z} = \frac{2520 \, ^1/h}{120 \, ^1/kWh} = 21 \, kW$

60/4.
$$n = \frac{15 \cdot 60}{4} = 225 \frac{1}{h}$$
; $C_z = \frac{n}{P} = \frac{225 \, ^1/h}{0.2 \, kW} = 1125 \, \frac{1}{kWh}$

60/5. a)
$$P = 2 \cdot 0.06 \text{ kW} + 5 \cdot 0.009 \text{ kW} + 0.12 \text{ kW} = 0.29 \text{ kW}$$

$$P = \frac{n}{C_z}; \quad n = P \cdot C_z = 0.29 \text{ kW} \cdot 750 \frac{1}{\text{kWh}} = 218 \frac{1}{\text{h}}$$
in 2 min: $n = \frac{218 \text{ l/h} \cdot 2 \text{ min}}{60 \text{ min/h}} = 7.3 \text{ Umdr}.$
b) $I = \frac{P}{U} = \frac{290 \text{ W}}{230 \text{ V}} = 1.26 \text{ A}$

60/6. a)
$$P = \frac{n}{C_z}$$
; $n = P \cdot C_z = 3 \text{ kW} \cdot 375 \frac{1}{\text{kWh}} = 1125 \frac{1}{\text{h}}$
in 4 min: $n \cdot \frac{4}{60} = 1125 \frac{1}{\text{h}} \cdot \frac{4}{60} = 75 \text{ Umdrehungen}$
b) $I = \frac{P}{U} = \frac{3000 \text{ W}}{230 \text{ V}} = 13.0 \text{ A}$

60/7. a)
$$P = 30 \cdot 0.04 \text{ kW} + 50 \cdot 0.04 \text{ kW} + 120 \cdot 0.069 \text{ kW} + 4 \cdot 18 \text{ kW} + 24 \text{ kW} = 1.2 \text{ kW} + 2 \text{ kW} + 8.28 \text{ kW} + 72 \text{ kW} + 24 \text{ kW} = 107.5 \text{ kW}$$

$$P_{g1} = 107.5 \text{ kW} \cdot 0.24 = 25.8 \text{ kW}$$

$$n = P_{g1} \cdot C_z = 25.8 \text{ kW} \cdot 60 \frac{1}{\text{kWh}} = 1548 \frac{1}{h}; \text{ in 30 s: } n = \frac{1548}{2 \cdot 60} = 12.9 \text{ Umdrehungen}$$

b) W = P · t
$$\Rightarrow$$
 t = $\frac{W}{P} = \frac{5 \text{ kWh}}{25.8 \text{ kW}} = 0.194 \text{ h} = 11.6 \text{ min}$

c)
$$P = \frac{n}{C_z} \Rightarrow n = P \cdot C_z = 90 \text{ kW} \cdot 60 \frac{1}{\text{kWh}} = 5400 \frac{1}{\text{h}} = \frac{5400}{3600} \frac{1}{\text{s}} = 1.5 \frac{1}{\text{s}}$$

 $V = \pi \cdot d \cdot n = \pi \cdot 0.1 \text{ m} \cdot 1.5 \frac{1}{\text{s}} = 0.471 \frac{\text{m}}{\text{s}}$

60/8. a)
$$P = 6 \cdot 40 \text{ W} + 7 \cdot 60 \text{ W} + 4 \cdot 69 \text{ W} + 2000 \text{ W} + 3000 \text{ W} + 3300 \text{ W} + 18000 \text{ W} + 10000 \text{ W} = 37236 \text{ W} = 37.2 \text{ kW}$$

$$P_{g1} = 37.2 \text{ kW} \cdot 0.12 = 4.5 \text{ kW}$$

$$n = P_{g1} \cdot C_z = 4.5 \text{ kW} \cdot 150 \frac{1}{\text{kWh}} = 675 \frac{1}{\text{h}} \Rightarrow \text{ in 1 min: } \frac{675}{60} = 11.3 \text{ Umdrehungen}$$
b) $t = \frac{W}{P} = \frac{2 \text{ kWh}}{4.5 \text{ kW}} = 0.44 \text{ h} = 26.4 \text{ min}$
c) $n = P \cdot C_z = 25 \text{ kW} \cdot 150 \frac{1}{\text{kWh}} = 3750 \frac{1}{\text{h}} = \frac{3750}{3600} \frac{1}{\text{s}} = 1.042 \frac{1}{\text{s}}$

$$v = \pi \cdot d \cdot n = \pi \cdot 0.1 \text{ m} \cdot 1.042 \frac{1}{\text{s}} = 0.327 \frac{m}{\text{s}}$$

3.9.4 Wirkungsgrad

Lösungen zu 3.9.4

61/1. a)
$$\eta = \frac{P_{ab}}{P_{zu}}$$
; $P_{zu} = \frac{P_{ab}}{\eta} = \frac{30 \text{ kW}}{0.9} = 33.3 \text{ kW}$; b) $P_v = P_{zu} - P_{ab} = 33.3 \text{ kW} - 30 \text{ kW} = 3.3 \text{ kW}$

b)
$$P_v = P_{av} - P_{ab} = 33.3 \text{ kW} - 30 \text{ kW} = 3.3 \text{ kV}$$

61/2.
$$P_{zu} = P_{ab} + P_v = 18.5 \text{ kW} + 1.5 \text{ kW} = 20 \text{ kW}; \quad \eta = \frac{P_{ab}}{P_{zu}} = \frac{18.5 \text{ kW}}{20 \text{ kW}} = 0.925 = 92.5 \%$$

61/3.
$$\eta = \frac{P_{ab}}{P_{zu}} = \frac{U_2 \cdot I_2}{U_1 \cdot I_1} = \frac{13.8 \,\text{V} \cdot 5 \,\text{A}}{230 \,\text{V} \cdot 0.33 \,\text{A}} = 0.9 = 90 \,\%$$

61/4.
$$\eta = \frac{P_{ab}}{P_{20}}$$
; $P_{ab} = \eta \cdot P_{zu} = 0.94 \cdot 1570 \text{ W} = 1475.8 \text{ W}$

61/5.
$$\eta = \eta_G \cdot \eta_M = 0.86 \cdot 0.82 = 0.705 = 70.5\%$$

61/6.
$$P_{ab} = \frac{F \cdot s}{t} = \frac{80000 \text{ kg} \cdot 9.81 \text{ N/kg} \cdot 50 \text{ m}}{3600 \text{ s}} = 10900 \text{ W} = 10.9 \text{ kW}$$
$$P_{zu} = \frac{P_{ab}}{\eta} = \frac{10.9 \text{ kW}}{0.74} = 14.73 \text{ kW} = 15 \text{ kW}$$

b)
$$\eta = \frac{P_{ab}}{P_{ro}} = \frac{P_{ab}}{U \cdot I} = \frac{13000 \text{ W}}{220 \text{ V} \cdot 68 \text{ A}} = 0.869 = 87\%$$

c)
$$P_v = P_{zu} - P_{ab} = 14960 \text{ W} - 13000 \text{ W} = 1960 \text{ W}$$

61/8.
$$P_{ab} = P_{zu} \cdot \eta = 20 \text{ kW} \cdot 0.62 = 12.4 \text{ kW}; \quad F = \frac{P_{ab} \cdot t}{s} = \frac{12400 \text{ W} \cdot 30 \text{ s}}{15 \text{ m}} = 24800 \text{ N}$$

61/9. a)
$$P_{zvTu} = \frac{F \cdot s}{t} = \frac{110 \text{ kg}}{1 \text{ s}} \cdot 9.81 \frac{N}{\text{kg}} \cdot 19 \text{ m} = 20500 \frac{Nm}{s} = 20.5 \text{ kW}$$

$$P_{abTu} = P_{auTu} \cdot \eta_1 = 20.5 \text{ kW} \cdot 0.73 = 14.97 \text{ kW}$$

b)
$$P_{abGen} = P_{abTo} \cdot \eta_2 = 14,97 \text{ kW} \cdot 0.89 = 13,32 \text{ kW};$$
 c) $\eta_{ges} = \eta_1 \cdot \eta_2 = 0.73 \cdot 0.89 = 0.65 = 65\%$

61/10. a)
$$P_{abp} = \frac{F \cdot s}{t} = \frac{60000 \text{ kg} \cdot 9.81 \text{ N/kg} \cdot 26 \text{ m}}{3600 \text{ s}} = 4251 \text{ W} = 4.25 \text{ kW}$$

b)
$$P_{auP} = P_{abM} = \frac{P_{abT}}{\eta_P} = \frac{4,25 \text{ kW}}{0,71} = 5986 \text{ W} = 6.0 \text{ kW}$$

c)
$$P_{\text{zuM}} = \frac{P_{\text{ab M}}}{\eta_{\text{M}}} = \frac{6.0 \text{ kW}}{0.86} = 6.98 \text{ kW} = 7.0 \text{ kW};$$
 d) $\eta_{\text{ges}} = \eta_{\text{M}} \cdot \eta_{\text{P}} = 0.71 \cdot 0.86 = 0.611 = 61 \%$

3.10 Wärmeenergie

3.10.1 Wärmemenge und Wassermischung

Lösungen zu 3.10.1

62/1.
$$Q = c \cdot m \cdot \Delta \vartheta = 4.19 \frac{kJ}{kg \cdot K} \cdot 300 \, kg \cdot 67 \, K = 84219 \, kJ$$

62/2.
$$Q = c \cdot m \cdot \Delta \theta \Rightarrow \Delta \theta = \frac{Q}{c \cdot m} = \frac{3000 \text{ kJ}}{4,19 \frac{\text{kJ}}{\text{kg} \cdot \text{K}} \cdot 10 \text{ kg}} = 71,6 \text{ K}$$

 $\theta_2 = \theta_1 + \Delta \theta = 15^{\circ}\text{C} + 71,6 \text{ K} = 86,6^{\circ}\text{C}$

62/3.
$$m = 3000 \, l \cdot 0.89 \, \frac{kg}{l} = 2670 \, kg$$
; $Q = c \cdot m \cdot \Delta \vartheta = 1.9 \, \frac{kJ}{kg \cdot K} \cdot 2670 \, kg \cdot 30 \, K = 152190 \, kJ$

62/4.
$$Q = c \cdot m \cdot \Delta \theta$$
; $c = \frac{Q}{m \cdot \Delta \theta} = \frac{54500 \text{ kJ}}{78 \text{ kg} \cdot 580 \text{ K}} = 1,205 \frac{\text{kJ}}{\text{kg} \cdot \text{K}}$

$$62/5. \quad \vartheta_m = \frac{m_k \cdot \vartheta_k + m_w \cdot \vartheta_w}{m_k + m_w} = \frac{70 \text{ kg} \cdot 9 \text{°C} + 80 \text{ kg} \cdot 65 \text{°C}}{70 \text{ kg} + 80 \text{ kg}} = 38.9 \text{°C}$$

62/6.
$$m_{\rm m} \cdot \vartheta_{\rm m} = m_{\rm k} \cdot \vartheta_{\rm k} + m_{\rm w} \cdot \vartheta_{\rm w}; \quad \vartheta_{\rm k} = \frac{m_{\rm m} \cdot \vartheta_{\rm m} - m_{\rm w} \cdot \vartheta_{\rm w}}{m_{\rm k}} = \frac{400 \, \rm kg \cdot 37 \, ^{\circ}C - 120 \, \rm kg \cdot 85 \, ^{\circ}C}{280 \, \rm kg} = 16.4 \, ^{\circ}C$$

62/7.
$$\begin{aligned} m_{m} &\cdot \vartheta_{m} = m_{k} \cdot \vartheta_{k} + m_{w} \cdot \vartheta_{w} & | m_{k} = m_{m} - m_{w} \\ m_{m} &\cdot \vartheta_{m} = (m_{m} - m_{w}) \cdot \vartheta_{k} + m_{w} \cdot \vartheta_{w} \\ m_{m} &\cdot \vartheta_{m} = m_{m} \cdot \vartheta_{k} - m_{w} \cdot \vartheta_{k} + m_{w} \cdot \vartheta_{w} \\ m_{m} &\cdot \vartheta_{m} = m_{m} \cdot \vartheta_{k} - m_{w} \cdot \vartheta_{k} + m_{w} \cdot \vartheta_{w} \\ m_{m} &\cdot \vartheta_{m} = m_{w} \cdot \vartheta_{w} - \vartheta_{k} \\ m_{w} &= \frac{m_{m} (\vartheta_{m} - \vartheta_{k})}{\vartheta_{w} - \vartheta_{k}} = \frac{140 \text{ kg} (37 \text{ °C} - 12 \text{ °C})}{60 \text{ °C} - 12 \text{ °C}} = \frac{140 \text{ kg} \cdot 25 \text{ K}}{48 \text{ K}} = 72.9 \text{ kg} \approx 72.9 \text{ Lg} \end{aligned}$$

3.10.2 Elektrowärme und Wärmenutzungsgrad

Lösungen zu 3.10,2

63/1.
$$Q_s = P \cdot t = 0.08 \text{ kW} \cdot \frac{20}{60} \text{ h} \cdot 3600 \frac{\text{kJ}}{\text{kWh}} = 96 \text{ kJ}$$

63/2.
$$P = I^2 \cdot R = (25 \text{ A})^2 \cdot 0.8 \Omega = 625 \text{ A}^2 \cdot 0.8 \Omega = 500 \text{ W}$$

$$Q_s = P \cdot t = 0.5 \text{ kW} \cdot 0.25 \text{ h} \cdot 3600 \frac{\text{kJ}}{\text{kWh}} = 450 \text{ kJ}$$

63/3. a)
$$Q = P \cdot t$$
; $P = \frac{c \cdot m \cdot \Delta \theta}{\zeta \cdot t} = \frac{4.19 \text{ kJ/(kg} \cdot \text{K)} \cdot 10 \text{ kg} \cdot 25 \text{ K}}{0.97 \cdot 3600 \frac{\text{kJ}}{\text{kWb}} \cdot \frac{1}{60} \text{ h}} = 18 \text{ kW}$

b)
$$t = \frac{200l \cdot 1 \text{ min} \cdot 1 \text{ h}}{10l \cdot 60 \text{ min}} = 0.33 \text{ h}$$

 $W = P \cdot t = 18 \text{ kW} \cdot 0.33 \text{ h} = 5.94 \text{ kWh}$

63/4. a)
$$Q_N = c \cdot m \cdot \Delta \vartheta = 4.19 \frac{kJ}{kg \cdot K} \cdot 2.5 \text{ kg} \cdot 53 \text{ K} = 555 \text{ kJ}$$

b)
$$Q_s = P \cdot t = 2.2 \text{ kW} \cdot \frac{9}{60} \text{ h} \cdot 3600 \frac{\text{kJ}}{\text{kWh}} = 1188 \text{ kJ}$$

c)
$$\zeta = \frac{Q_N}{Q_S} = \frac{555 \text{ kJ}}{1188 \text{ kJ}} = 0.467 = 47\%$$

63/5. a) W =
$$\frac{c \cdot m \cdot \Delta \theta}{\zeta} = \frac{4,19 \text{ kJ/(kg} \cdot \text{K)} \cdot 80 \text{ kg} \cdot 41 \text{ K}}{0,97 \cdot 3600 \frac{\text{kJ}}{\text{kWh}}} = 3,94 \text{ kWh}$$

b) W = P · t;
$$t = \frac{W}{P} = \frac{3.94 \text{ kWh}}{6 \text{ kW}} = 0.657 \text{ h} = 39.4 \text{ min}$$

63/6. a)
$$P = \frac{U^2}{R}$$
; $R = \frac{U^2}{P} = \frac{(230 \text{ V})^2}{2000 \text{ W}} = 26.5 \Omega$

b)
$$Q = c \cdot m \cdot \Delta \vartheta = 4,19 \frac{kJ}{kg \cdot K} \cdot 1,5 \text{ kg} \cdot 82 \text{ K} = 515,4 \text{ kJ}$$

c)
$$\zeta = \frac{c \cdot m \cdot \Delta 9}{P \cdot t} = \frac{515,4 \text{ kJ}}{2 \text{ kW} \cdot \frac{5}{60} \text{ h} \cdot 3600 \frac{\text{kJ}}{\text{kWh}}} = 0,859 = 86\%$$

63/7.
$$P = \frac{c \cdot m \cdot \Delta 9}{\zeta \cdot t} = \frac{4,19 \text{ kJ/(kg \cdot K)} \cdot 83 \text{ K} \cdot 3 \text{ kg}}{0.7 \cdot \frac{12,5}{60} \text{ h} \cdot 3600 \frac{\text{kJ}}{\text{kWh}}} = 1,99 \text{ kW} = 2 \text{ kW}; \quad R = \frac{U^2}{P} = \frac{(230 \text{ V})^2}{2000 \text{ W}} = 26,5 \Omega$$

63/8.
$$R_{ges} = \frac{R_1}{3} = \frac{52.9 \Omega}{3} = 17.6 \Omega;$$
 $P_{ges} = \frac{U^2}{R_{ges}} = \frac{(230 \text{ V})^2}{17.6 \Omega} = 3006 \text{ W} = 3 \text{ kW}$

$$Q_s = P \cdot t = 3 \text{ kW} \cdot \frac{45}{60} \text{ h} = 2.25 \text{ kWh} = 8100 \text{ kJ};$$

$$\zeta = \frac{Q_N}{Q_s} \Rightarrow Q_N = \zeta \cdot Q_s = 0.83 \cdot 8100 \text{ kJ} = 6723 \text{ kJ}$$

$$Q_{N} = c \cdot m \cdot \Delta \vartheta \Rightarrow \Delta \vartheta = \frac{Q_{N}}{c \cdot m} = \frac{6723 \text{ kJ}}{30 \text{ kg} \cdot 4,19 \text{ kJ/(kg} \cdot \text{K)}} = 53.5 \text{ K}; 12^{\circ}\text{C} \triangleq 285,15 \text{ K}$$

$$\vartheta_{2} = \vartheta_{1} + \Delta \vartheta = 285,15 \text{ K} + 53.5 \text{ K} = 338,65 \text{ K} \approx 65.5^{\circ}\text{C}$$

Elektrotechnische Grundlagen

3.11 Spannungserzeuger

3.11.1 Galvanische Elemente

Lösungen zu 3.11.1

64/1.
$$U = U_0 - I \cdot R_i = 1,55 \text{ V} - 0,04 \text{ A} \cdot 0,15 \Omega = 1,544 \text{ V}$$

64/2.
$$I_k = \frac{U_0}{R_i}$$
; $R_i = \frac{U_0}{I_k} = \frac{4,68 \text{ V}}{5 \text{ A}} = 0.936 \Omega$

64/3.
$$R_i = \frac{U_o}{I_k} = \frac{1,58 \text{ V}}{4 \text{ A}} = 0,395 \Omega$$

64/4.
$$I_k = \frac{U_0}{R_i} = \frac{1.5 \text{ V}}{0.13 \Omega} = 11.54 \text{ A}$$

64/5. a)
$$U = U_0 - I \cdot R_i$$
; $R_i = \frac{U_0 - U}{I} = \frac{6.3 \text{ V} - 6.1 \text{ V}}{0.6 \text{ A}} = 0.33 \Omega$

b)
$$U = U_0 - I \cdot R_i = 6.3 \text{ V} - 2 \text{ A} \cdot 0.33 \Omega = 5.64 \text{ V}$$

c)
$$I_k = \frac{U_0}{R_i} = \frac{6.3 \text{ V}}{0.33 \Omega} = 19 \text{ A}$$
 (nur kurzfristig – Sicherung)

d) Leistungsanpassung R_i = R_L = 0.33
$$\Omega$$
; $P_{\text{max}} = \frac{U_0^2}{4 \cdot \text{R}_i} = \frac{(6.3 \text{ V})^2}{4 \cdot 0.33 \Omega} = 30 \text{ W}$

64/6. a)
$$R_i = \frac{U_0 - U}{I} = \frac{14.2 \text{ V} - 14.0 \text{ V}}{7.3 \text{ A}} = 0.0274 \Omega$$
 b) $I_k = \frac{U_0}{R} = \frac{14.2 \text{ V}}{0.0274 \Omega} = 518 \text{ A}$

c)
$$I = \frac{U_0}{R_i + R_L}$$
; $R_L = \frac{U_0}{I} - R_i = \frac{14.2 \text{ V}}{7.3 \text{ A}} - 0.0274 \Omega = 1.92 \Omega$
 $R_{L2} = \frac{R_L \cdot R_P}{R_L + R_P} = \frac{1.92 \Omega \cdot 0.82 \Omega}{1.92 \Omega + 0.82 \Omega} = 0.575 \Omega$; $I_2 = \frac{U_0}{R_{L2} + R_i} = \frac{14.2 \text{ V}}{0.575 \Omega + 0.0274 \Omega} = 23.6 \text{ A}$
 $U_2 = U_0 - I \cdot R_i = 14.2 \text{ V} - 23.6 \text{ A} \cdot 0.0274 \Omega = 13.6 \text{ V}$

64/7. a)
$$U_0 = U + I \cdot R_i$$
 (1); $R_i = \frac{U_0}{I_k}$ (2); (1) in (2) eingesetzt:
$$U_0 = \frac{U}{1 - \frac{I}{I_k}} = \frac{9 \text{ V}}{1 - \frac{0.7 \text{ A}}{10 \text{ A}}} = \frac{9 \text{ V}}{0.93} = 9.68 \text{ V}$$

b)
$$R_i = \frac{U_0}{I_k} = \frac{9.68 \text{ V}}{10 \text{ A}} = 0.968 \Omega$$

3.11.2 Schaltung von Spannungserzeugern

Lösungen zu 3.11.2

Reihenschaltung von Spannungserzeugern

65/1. a)
$$U_0 = n \cdot U_{01} = 4 \cdot 1.32 \text{ V} = 5.28 \text{ V}$$

$$R_i = n \cdot R_{i1} = 4 \cdot 0.3 \Omega = 1.2 \Omega$$

65/2. a)
$$U_0 = n \cdot U_{01} = 2 \cdot 3.6 \text{ V} = 7.2 \text{ V}$$

b)
$$R_i = n \cdot R_{i1} = 2 \cdot 0.15 \Omega = 0.3$$

c)
$$I = \frac{U_0}{R_1 + R_L} = \frac{7.2 \text{ V}}{0.3 \Omega + 40 \Omega} = \frac{7.2 \text{ V}}{40.3 \Omega} = 0.179 \text{ A}; \quad U = I \cdot R_L = 0.179 \text{ A} \cdot 40 \Omega = 7.16 \text{ V}$$

65/3. a)
$$n_{Anf} = \frac{U_0}{U_{01Anf}} = \frac{220 \text{ V}}{2.4 \text{ V}} = 91.7 \Rightarrow 92 \text{ Elemente}$$

b) $n_{CV} = \frac{U_0}{U_{01Anf}} = \frac{220 \text{ V}}{2.4 \text{ V}} = 118.8 \Rightarrow 110 \text{ Elemente}$

b)
$$n_{\text{End}} = \frac{U_0}{U_{\text{O1 End}}} = \frac{220 \text{ V}}{1,85 \text{ V}} = 118,9 \implies 119 \text{ Elemente}$$

65/4. a)
$$U_0 = n \cdot U_{01} = 30 \cdot 2.2 \text{ V} = 66 \text{ V}; \quad R_i = n \cdot R_{i1} = 30 \cdot 0.002 \Omega = 0.06 \Omega;$$

$$I = \frac{U_0}{R_i + R_L} = \frac{66 \text{ V}}{0.06 \Omega + 6.5 \Omega} = \frac{66 \text{ V}}{6.56 \Omega} = 10.06 \text{ A}; \quad U = R_L \cdot I_i = 6.5 \Omega \cdot 10.06 \text{ A} = 65.4 \text{ V}$$
 b) $I_k = \frac{U_0}{R_i} = \frac{66 \text{ V}}{0.06 \Omega} = 1100 \text{ A}$

65/5. a)
$$U = R_1 \cdot I_1 = 24 \Omega \cdot 0.4 A = 9.6 V$$

b)
$$I = \frac{n \cdot U_{01}}{R_L + n \cdot R_{i1}} \Rightarrow n = \frac{R_L \cdot I_i}{U_{01} - R_{i1} \cdot I} = \frac{24 \,\Omega \cdot 0.4 \,A}{1.5 \,V - 0.3 \,\Omega \cdot 0.4 \,A} = 6.96 \Rightarrow 7 \text{ Elemente}$$

b)
$$R_L = \frac{R_{L1}}{n} = \frac{38.4 \Omega}{30} = 1.28 \Omega$$
; $I = \frac{U_0}{R_i + R_L} = \frac{26.4 \text{ V}}{0.6 \Omega + 1.28 \Omega} = \frac{26.4 \text{ V}}{1.88 \Omega} = 14 \text{ A}$
 $U = R_L \cdot I = 1.28 \Omega \cdot 14 \text{ A} = 17.9 \text{ V}$

65/7. a)
$$n = \frac{R_L \cdot I}{U_{01} - R_{11} \cdot I} = \frac{47 \,\Omega \cdot 0.35 \,A}{1.56 \,V - 1.1 \,\Omega \cdot 0.35 \,A} = \frac{16.45 \,V}{1.175 \,V} = 14 \, \text{Elemente}$$
b) $U_0 = n \cdot U_{01 \, alt} = 14 \cdot 1.25 \,V = 17.5 \,V; \quad R_{1alt} = n \cdot R_{11 \, alt} = 14 \cdot 1.35 \,\Omega = 18.9 \,\Omega$

$$I = \frac{U_{0alt}}{R_{1alt} + R_L} = \frac{17.5 \,V}{18.9 \,\Omega + 47 \,\Omega} = \frac{17.5 \,V}{65.9 \,\Omega} = 0.266 \,A$$

Parallelschaltung von Spannungserzeugern

66/1. a)
$$U_0 = U_{01} = 1.5 \text{ V}; \quad R_i = \frac{R_{i1}}{n} = \frac{0.3 \Omega}{5} = 0.06 \Omega; \quad I = \frac{U_0}{R_i + R_L} = \frac{1.5 \text{ V}}{0.06 \Omega + 0.8 \Omega} = \frac{1.5 \text{ V}}{0.86 \Omega} = 1.74 \text{ A}$$

b) $U = R_L \cdot I = 0.8 \Omega \cdot 1.74 \text{ A} = 1.4 \text{ V}$

66/2. a)
$$U_o = U_{o1} = 2.1 \text{ V}; \quad R_i = \frac{R_{i1}}{n} = \frac{25 \text{ m}\Omega}{12} = 2.08 \text{ m}\Omega \approx 2.1 \text{ m}\Omega$$

$$I = \frac{U_o}{R_i + R_L} = \frac{2.1 \text{ V}}{2.1 \text{ m}\Omega + 1.2 \Omega} = \frac{2.1 \text{ V}}{1.202 \Omega} = 1.75 \text{ A}$$
 b) $I_k = \frac{U_o}{R_i} = \frac{2.1 \text{ V}}{2.1 \text{ m}\Omega} = 1000 \text{ A}$

66/3.
$$U_0 = R_L \cdot I + \frac{R_{i1}}{n} \cdot I \Rightarrow n = \frac{R_{i1} \cdot I}{U_{01} - R_L \cdot I} = \frac{0.5 \, \Omega \cdot 4 \, A}{1.5 \, V - 0.25 \, \Omega \cdot 4 \, A} = \frac{2 \, V}{1.5 \, V - 1 \, V} = 4 \text{ Elemente}$$

66/4. a)
$$U_0 = 2 \cdot U_{01} = 2 \cdot 1,55 \text{ V} = 3,10 \text{ V}$$

b)
$$R_{iges} = \frac{2 \cdot 0.8 \,\Omega}{3} = 0.533 \,\Omega$$
; $I = \frac{U_0}{R_{iges} + R_L} = \frac{3.1 \,V}{0.533 \,\Omega + 3 \,\Omega} = \frac{3.1 \,V}{3.533 \,\Omega} = 0.877 \,A$

c)
$$U = R_L \cdot I = 3 \Omega \cdot 0.877 A = 2.6$$

66/6. $U_{01} = U + R_{11} \cdot I_1 = 220 \text{ V} + 0.08 \Omega \cdot 130 \text{ A} = 220 \text{ V} + 10.4 \text{ V} = 230.4 \text{ V}$ $U_{02} = U + R_{12} \cdot I_2 = 220 \text{ V} + 0.09 \Omega \cdot 210 \text{ A} = 220 \text{ V} + 18.9 \text{ V} = 238.9 \text{ V}$ $U_{03} = U + R_{13} \cdot I_3 = 220 \text{ V} + 0.06 \Omega \cdot 180 \text{ A} = 220 \text{ V} + 10.8 \text{ V} = 230.8 \text{ V}$

3.11.3 Anpassung

Lösungen zu 3.11.3

67/1. a)
$$R_L = R_i = 8 \Omega$$
; $I = \frac{U_0}{R_i + R_L} = \frac{12 \text{ V}}{8 \Omega + 8 \Omega} = 0.75 \text{ A}$ b) $P = U \cdot I = 6 \text{ V} \cdot 0.75 \text{ A} = 4.5 \text{ W}$ c) $U_0 = \frac{U}{0.5} = \frac{6 \text{ V}}{0.5} = 12 \text{ V}$ d) $I_k = \frac{U_0}{R_i} = \frac{12 \text{ V}}{8 \Omega} = 1.5 \text{ A}$

67/2. a)
$$I_1 = \frac{U_0}{R_1 + R_{L1}} = \frac{230 \text{ V}}{0.5 \Omega + 120 \Omega} = 1.91 \text{ A}; \quad I_2 = \frac{U_0}{R_1 + R_{L2}} = \frac{230 \text{ V}}{0.5 \Omega + 150 \Omega} = 1.53 \text{ A}$$

$$U_1 = I \cdot R_{L1} = 1.91 \text{ A} \cdot 120 \Omega = 229.2 \text{ V}; \quad U_2 = I \cdot R_{L2} = 1.53 \text{ A} \cdot 150 \Omega = 229.5 \text{ V}$$

- b) Die Spannungen U₁ und U₂ sind nahezu gleich ⇒ Konstantspannungsquelle
- c) Spannungsanpassung: R_i ≫ R_i

67/3. a)
$$R_{Lges} = R_i = \frac{(4 \Omega + 8 \Omega + 4 \Omega) \cdot 16 \Omega}{4 \Omega + 8 \Omega + 4 \Omega + 16 \Omega} = \frac{16 \Omega \cdot 16 \Omega}{32 \Omega} = 8 \Omega; \quad I = \frac{U}{R_{Lges}} = \frac{25,3 \text{ V}}{8 \Omega} = 3,16 \text{ A}$$
b) $R_L = R_i \Rightarrow U_0 = 2 \cdot U = 2 \cdot 25,3 \text{ V} = 50,6 \text{ V}; \quad P_{max} = \frac{U_0^2}{4 \cdot R_i} = \frac{(50,6 \text{ V})^2}{4 \cdot 8 \Omega} = 80 \text{ W}$

$$P_{L1} = P_{L2} = I_1^2 \cdot R_{L1} = (1,58 \text{ A})^2 \cdot 4 \Omega = 10 \text{ W}; \quad P_{L3} = I_1^2 \cdot R_{L3} = (1,58 \text{ A})^2 \cdot 8 \Omega = 20 \text{ W}$$

$$P_{L4} = I_2^2 \cdot R_{L4} = (1,58 \text{ A})^2 \cdot 16 \Omega = 40 \text{ W}$$

67/4.
$$R_i = \frac{U_0 - U}{I} = \frac{70 \text{ V} - 12 \text{ V}}{150 \text{ A}} = 0.387 \Omega;$$
 $R_L = \frac{U_L}{I} = \frac{12 \text{ V}}{150 \text{ A}} = 0.08 \Omega$
 $R_L \leqslant R_i \Rightarrow \text{Stromanpassung}$

67/5. a)
$$U_{Bo} = 12 \text{ V}$$

$$U_{Bi} = I \cdot R_{Bi} = 18 \text{ A} \cdot 0.04 \Omega = 0.72 \text{ V}$$
Maschenregel: $\Sigma U = 0$;
$$U_{Gi} + U_{Bi} + U_{B0} - U_{G0} = 0$$

$$U_{Gi} = U_{G0} - U_{Bi} - U_{B0} =$$

$$= 15.2 \text{ V} - 0.72 \text{ V} - 12 \text{ V} = 2.48 \text{ V}$$

$$R_{Gi} = \frac{U_{Gi}}{I} = \frac{2.48 \text{ V}}{18 \text{ A}} = 0.138 \Omega = 137.8 \text{ m}\Omega$$
b) $R_{Bi} \ll R_{Gi} \Rightarrow \text{Stromanpassung}$

b) $P_{\text{max}} = \frac{U_0^2}{4 \cdot R} = \frac{(0.21 \text{ V})^2}{4 \cdot 300 \Omega} = 36.75 \,\mu\text{W}$

zu 67/5. 2u 67/5. 2u 67/5. 2u 67/5. 3u 67/5. 3u 67/5. 3u 67/5. 3u 67/5.

Batterie

67/7. a)
$$I_1 = \frac{U_0}{R_i + R_{L1}} = \frac{12 \text{ V}}{200 \Omega + 2 \Omega} = 59.4 \text{ mA}$$
 b) $I_2 = \frac{U_0}{R_i + R_{L2}} = \frac{12 \text{ V}}{200 \Omega + 4 \Omega} = 58.8 \text{ mA}$ c) I_1 und I_2 sind nahezu gleich (konstant) \Rightarrow Konstantstromquelle

3.11.4 Ersatzquellen

Lösungen zu 3.11.4

68/1. a)
$$R_1 = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{100 \Omega \cdot 270 \Omega}{100 \Omega + 270 \Omega} = 72,97 \Omega \approx 73 \Omega$$

b) $U_{20} = U_b \cdot \frac{R_2}{R_1 + R_2} = 9 \text{ V} \cdot \frac{270 \Omega}{100 \Omega + 270 \Omega} = 6,57 \text{ V}$

c)
$$U_L = U_{20} \cdot \frac{R_L}{R_i + R_L} = 6.57 \text{ V} \cdot \frac{47 \Omega}{73 \Omega + 47 \Omega} = 2.57 \text{ V}$$

68/2. a)
$$U_b = U_2 \cdot \frac{R_1 + R_2}{R_2} = 1.5 \text{ V} \cdot \frac{15 \text{ k}\Omega + 3.3 \text{ k}\Omega}{3.3 \text{ k}\Omega} = 8.32 \text{ V}; \quad I = \frac{U_b - U_1}{R_1} = \frac{8.32 \text{ V} - 1.5 \text{ V}}{15 \text{ k}\Omega} = 0.455 \text{ mA}$$
b) $R_i = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{15 \text{ k}\Omega \cdot 3.3 \text{ k}\Omega}{15 \text{ k}\Omega + 3.3 \text{ k}\Omega} = 2.70 \text{ k}\Omega$

$$I_L = I \cdot \frac{R_i}{R_i + R_L} = 0.455 \text{ mA} \cdot \frac{2.7 \text{ k}\Omega}{2.7 \text{ k}\Omega + 0.27 \text{ k}\Omega} = 0.414 \text{ mA}$$

68/3. c) Leerlauf:
$$U_{20} = U_2 = \frac{U_b \cdot R_2}{R_1 + R_2} = \frac{10 \text{ V} \cdot 180 \Omega}{100 \Omega + 180 \Omega} = 6.43 \text{ V}$$
d) $R_i = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{100 \Omega \cdot 180 \Omega}{100 \Omega + 180 \Omega} = 64.3 \Omega$

68/4. a)
$$U_{01} = U_b \cdot \frac{R_3}{R_1 + R_3} = 12 \text{ V} \cdot \frac{470 \Omega}{2200 \Omega + 470 \Omega} = 2.11 \text{ V}$$

$$R_{i1} = \frac{R_1 \cdot R_3}{R_1 + R_3} = \frac{2200 \,\Omega \cdot 470 \,\Omega}{2200 \,\Omega + 470 \,\Omega} = 387 \,\Omega$$

b)
$$U_{03} = U_b \cdot \frac{R_4}{R_2 + R_4} = 12 \text{ V} \cdot \frac{220 \Omega}{1500 \Omega + 220 \Omega} = 1.53 \text{ V}$$

$$R_{13} = \frac{R_2 \cdot R_4}{R_2 + R_4} = \frac{1500 \ \Omega \cdot 220 \ \Omega}{1500 \ \Omega + 220 \ \Omega} = 191.9 \ \Omega \approx 192 \ \Omega$$

b) I R₁ R₁₃

zu 68/3,b)

zu 68/3.a)

c) An der Reihenschaltung der Widerstände R_{i1}, R_L, R_{i3} liegt die Spannungsdifferenz

$$\Delta U = U_{01} - U_{03} = 2,11 \text{ V} - 1,53 \text{ V}$$

= 0,58 V

zu 68/4.c)

3.11.5 Laden und Entladen von Akkumulatoren Lösungen zu 3.11.5

69/1. a)
$$t_L = a \cdot \frac{K_n}{I_E} = 1.2 \cdot \frac{10 \, Ah}{1 \, A} = 12 \, h$$

b)
$$t_E = \frac{K_n}{I_E} = \frac{10 \text{ Ah}}{2.5 \text{ A}} = 4 \text{ h}$$

c)
$$K_L = I_L \cdot t_L = 1 A \cdot 12 h = 12 Ah$$

d)
$$K_E = I_E \cdot t_E = 2.5 \,A \cdot 4 \,h = 10 \,Ah$$

e)
$$\xi_{Ah} = \frac{K_E}{K_I} = \frac{10 \text{ Ah}}{12 \text{ Ah}} = 0.83$$

f)
$$W_E = U_E \cdot I_E \cdot t_F = 6.3 \text{ V} \cdot 2.5 \text{ A} \cdot 4 \text{ h} = 63 \text{ Wh}$$

g)
$$W_L = U_1 \cdot I_1 \cdot I_1 = 7,05 \text{ V} \cdot 1 \text{ A} \cdot 12 \text{ h} = 84,6 \text{ Wh}$$

h)
$$\xi_{Wh} = \frac{W_E}{W_L} = \frac{63 \, Wh}{84.6 \, Wh} = 0.74$$

69/2.
$$K_E = 0.8 \cdot K_N = 0.8 \cdot 19.5 \text{ Ah} = 15.6 \text{ Ah}$$

$$K_E = I_E \cdot t_E \implies t_E = \frac{K_E}{I_L} = \frac{15.6 \text{ Ah}}{0.06 \text{ A}} = 260 \text{ h}$$

69/3. a)
$$I_L = 0.5 \cdot \frac{1}{h} \cdot K_n = \frac{0.5 \cdot 1 \cdot 2000 \,\text{mAh}}{h} = 1000 \,\text{mA} = 1 \,\text{A}$$

b)
$$t_L = a \cdot \frac{K_n}{I_L} = 1.4 \cdot \frac{2000 \,\text{mAh}}{1000 \,\text{mA}} = 2.8 \,\text{h}$$

c)
$$I_E = 10 \cdot \frac{1}{h} \cdot K_n = \frac{10 \cdot 1 \cdot 2000 \text{ mAh}}{h} = 20000 \text{ mA} = 20 \text{ A}$$

d)
$$t_E = \frac{K_n}{I_E} = \frac{2000 \,\text{mAh}}{20\,000 \,\text{mA}} = 0.1 \,\text{h}$$

e)
$$K_E = I_E \cdot t_E = 20\,\text{A} \cdot \text{0.1}\,\text{h} = 2\,\text{Ah}$$

$$K_L = I_L \cdot t_L = 1 \, A \cdot 2.8 \, h = 2.8 \, Ah$$

$$\xi_{Ah} = \frac{K_E}{K_L} = \frac{2 \, Ah}{2.8 \, Ah} = 0.71$$

69/4. a)
$$I_L = 1 \cdot \frac{1}{h} \cdot K_n = \frac{1 \cdot 1 \cdot 6600 \text{ mAh}}{h} = 6600 \text{ mA} = 6,6 \text{ A}$$

$$t_L = a \cdot \frac{K_n}{I_L} = 1,04 \cdot \frac{6600 \text{ mAh}}{6600 \text{ mA}} = 1,04 \text{ h}$$
b) $I_E = 0.2 \cdot \frac{1}{h} \cdot K_n = \frac{0.2 \cdot 1 \cdot 6600 \text{ mAh}}{h} = 1320 \text{ mA} = 1,32 \text{ A}$

$$t_E = \frac{K_n}{I_E} = \frac{6600 \text{ mAh}}{1320 \text{ mA}} = 5 \text{ h}$$

c)
$$K_E = I_E \cdot t_E = 1.32\,\text{A} \cdot 5\,\text{h} = 6.6\,\text{Ah}$$

$$K_L = I_L \cdot t_L = 6.6 \,\text{A} \cdot 1.04 \,\text{h} = 6.86 \,\text{Ah}$$

$$\xi_{Ah} = \frac{K_E}{K_L} = \frac{6.6 \, Ah}{6.86 \, Ah} = 0.96$$

3.11.6 Fotovoltaik und Solarmodul

Lösungen zu 3.11.6

70/1. a) aus Kennlinie:

$$E = 1000 \text{ W/m}^2$$
: $U_{MPP} = 17.8 \text{ V}$, $I_{MPP} = 4.7 \text{ A}$
 $E = 400 \text{ W/m}^2$: $U_{MPP} = 17.4 \text{ V}$, $I_{MPP} = 1.8 \text{ A}$

Beleuchtungsstärke 1000 W/m²:
$$P_{MPP} = U_{MPP} \cdot I_{MPP} = 17.8 \text{ V} \cdot 4.7 \text{ A} = 83.66 \text{ W}$$

 400 W/m^2 : $P_{MPP} = 17.4 \text{ V} \cdot 1.8 \text{ A} = 31.32 \text{ W}$

b) Beleuchtungsstärke
$$1000 \text{ W/m}^2$$
: $P_{st} = E \cdot A = 1000 \frac{W}{m^2} \cdot 0.98 \text{ m}^2 = 980 \text{ W}$
 400 W/m^2 : $P_{st} = 400 \frac{W}{m^2} \cdot 0.98 \text{ m}^2 = 392 \text{ W}$

c) Beleuchtungsstärke
$$1000 \, \text{W/m}^2$$
: $\eta_{\text{MPP}} = \frac{P_{\text{MPP}}}{P_{\text{St}}} = \frac{83,66 \, \text{W}}{980 \, \text{W}} = 0,085 \cong 8,5 \, \%$
 $400 \, \text{W/m}^2$: $\eta_{\text{MPP}} = \frac{31,32 \, \text{W}}{392 \, \text{W}} = 0,08 \cong 8 \, \%$

d) aus Kennlinie:

$$E = 1000 \text{ W/m}^2$$
: $U_0 = 22.9 \text{ V}$, $I_K = 5.3 \text{ A}$
 $E = 400 \text{ W/m}^2$: $U_0 = 21 \text{ V}$, $I_K = 2.3 \text{ A}$

Beleuchtungsstärke 1000 W/m²:
$$FF = \frac{P_{MPP}}{U_0 \cdot I_K} = \frac{83,66 \text{ W}}{22,9 \text{ V} \cdot 5,3 \text{ A}} = 0,69$$

 400 W/m^2 : $FF = \frac{31,32 \text{ W}}{21 \text{ V} \cdot 2,3 \text{ A}} = 0,65$

71/2. a) Leistungsanpassung
$$R_i = R_L$$
 aus Kennlinie: $E = 600 \text{ W/m}^2$: $U_{MPP} = 17,6 \text{ V}, I_{MPP} = 2,8 \text{ A}$
$$R_i = R_L = \frac{U_{MPP}}{I_{Local}} = \frac{17,6 \text{ V}}{2.8 \text{ A}} = 6,29 \Omega$$

b) aus Kennlinie:
$$E = 200 \text{ W/m}^2$$
: $U_{MPP} = 16.5 \text{ V}$, $I_{MPP} = 0.9 \text{ A}$

$$R_i = R_L = \frac{U_{MPP}}{I_{MPP}} = \frac{16.5 \text{ V}}{0.9 \text{ A}} = 18.33 \Omega$$

71/3.

$$I = f(U); P = f(U)$$

	: =	100	10 V	V/m²	
	: =	50	10 N	√/m²	
	, р	ei <i>E</i>	=	1000	W/m^2
	o p	eì E	=	500	W/m²

71/3.a) und 3.b)

b) $P = U \cdot I$

E = 100	0 W/m	2	·····					
U in V	0	10	20	30	35	37	40	43
I in A	5,3	5,2	5,1	5,0	4,7	4,5	3,8	0
P in W	0	52	102	150	164,5	166,5	152	0
E = 500	W/m²						J	
U in V	0	10	20	30	35	37	40	43
I in A	2,5	2,4	2,3	2,2	2,15	2,1	1,9	0
P in W	0	24	46	66	75,25	77,7	76	0

71/4. a)
$$R_i = \frac{\Delta U}{\Delta I} = \frac{37 \text{ V} - 35 \text{ V}}{4.7 \text{ A} - 4.5 \text{ A}} = 10 \Omega$$

b) $R_i = \frac{\Delta U}{\Delta I} = \frac{37 \text{ V} - 35 \text{ V}}{2.15 \text{ A} - 2.1 \text{ A}} = 40 \Omega$

c) bei Leistungsanpassung
$$R_L = R_i$$

 \Rightarrow bei $E = 1000 \text{ W/m}^2$: $R_L = R_i = 10 \Omega$
bei $E = 500 \text{ W/m}^2$: $R_L = R_i = 40 \Omega$

71/5. a) P = U·l

E = 100	0 W/m ³	² (STC)					***************************************	
U in V	0	10	20	30	35	37	40	43
I in A	5,3	5,2	5,1	5,0	4,7	4,5	3,8	0
P in W	0	52	102	150	164,5	166,5	152	0

aus Tabelle P in W: P_{MPP} = 166,5 W

b) P = U (

E = 500	W/m²							
U in V	0	10	20	30	35	37	40	43
I in A	2,5	2,4	2,3	2,2	2,15	2,1	1,9	0
P in W	0	24	46	66	75,25	77,7	76	0

aus Tabelle P in W: $P_{MPP} = 77.7W$

c)
$$R_i = R_L = \frac{U_{MPP}}{I_{MPP}} = \frac{37 \text{ V}}{2.1 \text{ A}} = 17.62 \Omega$$

71/6. a) FF =
$$\frac{U_{MPP} \cdot I_{MPP}}{U_0 \cdot I_K} = \frac{17.5 \text{ V} \cdot 7.14 \text{ A}}{21.65 \text{ V} \cdot 7.69 \text{ A}} = 0.75$$

b)
$$P_{FF} = U_0 \cdot I_K = 21,65 \text{ V} \cdot 7,69 \text{ A} = 166,49 \text{ W}$$

c)
$$T_1 = \left(273.15 + \frac{9}{^{\circ}C}\right) K = (273.15 + 60) K = 333.15 K$$

$$T_2 = \left(273.15 + \frac{9}{^{\circ}C}\right) K = (273.15 + 25) K = 298.15 K$$

$$\Delta T = T_1 - T_2 = 333.15 K - 298.15 K = 35 K$$

$$I_{K3} = I_K + \alpha_I \cdot \Delta T = 7.69 A + \left(5.45 \frac{\text{mA}}{\text{K}} \cdot 35 K\right) = 7.88 A$$

$$U_{09} = U_0 + \alpha_U \cdot \Delta T = 21.65 V + \left(-72 \frac{\text{mV}}{\text{K}} \cdot 35 K\right) = 19.13 V$$

$$P_{\text{FF8}} = U_{09} \cdot I_{K3} = 19.13 V \cdot 7.88 A = 150.74 W$$

d)
$$T_1 = \left(273,15 + \frac{9}{^{\circ}C}\right) K = (273,15 + 40) K = 313,15 K$$

$$T_2 = \left(273,15 + \frac{9}{^{\circ}C}\right) K = (273,15 + 25) K = 298,15 K$$

$$\Delta T = T_1 - T_2 = 313,15 K - 298,15 K = 15 K$$

$$P_{MPP} = U_{MPP} \cdot I_{MPP} = 17,5 V \cdot 7,14 A = 124,95 W$$

$$P_{MPP3} = P_{MPP} + \alpha_P \cdot \Delta T = 124,95 W + \left(-440 \frac{mW}{K} \cdot 15 K\right) = 118,35 W$$

71/7. a)
$$FF = \frac{U_{MPP} \cdot I_{MPP}}{U_0 \cdot I_K} = \frac{16,02 \, \text{V} \cdot 5,86 \, \text{A}}{19,9 \, \text{V} \cdot 6,28 \, \text{A}} = 0.75$$

b) $T_1 = \left(273,15 + \frac{9}{^{\circ}\text{C}}\right) \text{K} = (273,15 + 50) \, \text{K} = 323,15 \, \text{K}$
 $T_2 = \left(273,15 + \frac{9}{^{\circ}\text{C}}\right) \text{K} = (273,15 + 25) \, \text{K} = 298,15 \, \text{K}$
 $\Delta T = T_1 - T_2 = 323,15 \, \text{K} - 298,15 \, \text{K} = 25 \, \text{K}$
 $P_{MPP} = U_{MPP} \cdot I_{MPP} = 16,02 \, \text{V} \cdot 5,86 \, \text{A} = 93,88 \, \text{W}$
 $P_{MPP3} = P_{MPP} + \alpha_P \cdot \Delta T = 93,88 \, \text{W} + \left(-440 \, \frac{\text{mW}}{\text{V}} \cdot 25 \, \text{K}\right) = 82,88 \, \text{W}$

71/8. a) $U_{max} = U_0 \cdot n \implies n = \frac{U_{max}}{U_0} = \frac{850 \text{ V}}{21,65 \text{ V}} = 39,26$

Es können maximal 39 Module an den Wechselrichter angeschlossen werden.

b)
$$U_{min} = U_{MPP} \cdot n \implies n = \frac{U_{min}}{U_{MPP}} = \frac{180 \text{ V}}{17.5 \text{ V}} = 10.29$$

Es sollen minimal 11 Module an den Wechselrichter angeschlossen werden.

4 Arbeiten mit Kennlinien

4.1 Lineare Widerstände

Lösungen zu 4.1

72/1. a) Maßstab: 1 cm ≤ 1 V 1 cm \triangleq 5 mA

b)
$$5 \text{ V} \Rightarrow 15 \text{ mA} \Rightarrow R = 333 \Omega$$

 $9 \text{ V} \Rightarrow 27 \text{ mA} \Rightarrow R = 333 \Omega$

72/2. a) Maßstab: 1 cm = 10 V 1 cm ≘ 10 mA

b) Leistungshyperbel/Wertetabelle P_{tol} = 2 W

U in V	100	80	60	50	40	25	20
I in mA	20	25	33	40	50	80	100

c)
$$R_1 \Rightarrow U_{max} = 30 \text{ V}$$
 $I_{max} = 65 \text{ mA}$
 $R_2 \Rightarrow U_{max} = 45 \text{ V}$
 $I_{max} = 45 \text{ mA}$
 $R_3 \Rightarrow U_{max} = 67 \text{ V}$
 $I_{max} = 30 \text{ mA}$

72/3. a)
$$R_1$$
; $U = 10 \text{ V}$, $I = 100 \text{ mA} \Rightarrow R_1 = 100 \Omega$
 R_2 ; $U = 20 \text{ V}$, $I = 90 \text{ mA} \Rightarrow R_2 = 222 \Omega$
 R_3 ; $U = 40 \text{ V}$, $I = 82 \text{ mA} \Rightarrow R_3 = 488 \Omega$
 R_4 ; $U = 60 \text{ V}$, $I = 60 \text{ mA} \Rightarrow R_4 = 1.0 \text{ k}\Omega$
 R_5 ; $U = 100 \text{ V}$, $I = 45 \text{ mA} \Rightarrow R_5 = 2.22 \text{ k}\Omega$
 R_6 ; $U = 100 \text{ V}$, $I = 21 \text{ mA} \Rightarrow R_6 = 4.76 \text{ k}\Omega$

b) Widerstände nach E12 $R_1 = 100 \Omega$, $R_2 = 220 \Omega$, $R_3 = 470 \Omega$, $R_4 = 1 \text{ k}\Omega$, $R_6 = 2.2 \text{ k}\Omega$, $R_6 = 4.7 \text{ k}\Omega$

c)
$$U_{max} = 64 \text{ V}$$
, $I_{max} = 31 \text{ mA}$;
 $P_{tot} = U_{max} \cdot I_{max} = 64 \text{ V} \cdot 0.031 \text{ A} \Rightarrow P_{rot} = 2 \text{ W}$

72/4. a)
$$U = 12 \text{ V}$$
, $I = 25 \text{ mA}$; $R = \frac{U}{I} = \frac{12 \text{ V}}{25 \text{ mA}} = 480 \Omega$
b) $R_{min} = \frac{12 \text{ V}}{32 \text{ mA}} = 375 \Omega$; $R_{max} = \frac{12 \text{ V}}{21 \text{ mA}} = 571 \Omega$; $\Delta R' = R_{min} - R \approx -100 \Omega$; $\Delta R = R_{max} - R \approx 100 \Omega$
 $\Delta R\% = \pm \frac{100 \Omega \cdot 100\%}{480 \Omega}$; $\Delta R\% = \pm 21 \% \approx \pm 20\%$

Diagramm nicht maßstabsgerecht

zu 72/2.a)

$$R_{min} = 1000 \Omega - 200 \Omega = 800 \Omega;$$

$$R_{\text{max}} = 1000 \ \Omega + 200 \ \Omega = 1200 \ \Omega$$

- b) U-I-Diagramm der Widerstandsgeraden für R_{min} , R_{max} und R = 6 V/7 mA
- c) Der gemessene Widerstand liegt im Toleranzbereich.

4.2 Logarithmische Darstellung

Lösungen zu 4.2

73/1.o. Aus Kennlinie:

a) C 990:
$$U_1 \Rightarrow I_1 \approx 13 \text{ mA}$$

$$U_2 \Rightarrow I_2 \approx 14 \,\text{mA}$$

b) C 960:
$$U_1 \Rightarrow I_1 \approx 120 \text{ mA}$$

$$U_2 \Rightarrow I_2 \approx 45 \, \text{mA}$$

73/2.o. Aus Kennlinie:

- a) C 960: $I \approx 320 \text{ mA}$; $U \approx 2 \text{ V}$; $\Rightarrow R \approx 6 \Omega$
- b) C990: $I \approx 65 \,\text{mA}$; $U \approx 4 \,\text{V}$; $\Rightarrow R \approx 61 \,\Omega$

4.3 Nichtlineare Widerstände

Lösungen zu 4.3

73/1.u.

٠	Temperatur	-20°C	0°C	20°C	40°C	60°C	80°C	100°C	120°C
	Widerstand	1 ΜΩ	350 kΩ	120 kΩ	50 kΩ	20 kΩ	10 kΩ	5 kΩ	2,5 kΩ

73/2.u.

J.	Widerstand 100 Ω		600 Ω	2 kΩ	10 kΩ	
	Temperatur	130°C	60°C	30°C	−8°C	

74/3. a) Aus Kennlinie Bild 1: \Rightarrow R = 1,1 M Ω

b)
$$I = \frac{U}{R} = \frac{65 \text{ V}}{1.1 \text{ M}\Omega} = 60 \text{ }\mu\text{A}$$

c)
$$U_1 = 80 \text{ V}; \Rightarrow R_1 \approx 200 \text{ k}\Omega \Rightarrow I_1 = \frac{U_1}{R_1} \approx \frac{80 \text{ V}}{200 \text{ k}\Omega} = 400 \text{ }\mu\text{A}$$

$$U_2 = 100 \text{ V}; \Rightarrow R_2 \approx 10 \text{ k}\Omega \Rightarrow I_2 = \frac{U_2}{R_2} \approx \frac{100 \text{ V}}{10 \text{ k}\Omega} = 10 \text{ mA}$$

$$U_3 = 150 \text{ V}; \implies R_3 \approx 3 \Omega \implies I_3 = \frac{U_3}{2} \approx \frac{150 \text{ V}}{2.0} = 50 \text{ A}$$

74/4. a) Maßstab: $1 \text{ cm} \triangleq 5 \text{ V}$; $1 \text{ cm} \triangleq 2 \text{ mA}$

b)
$$R_1 = \frac{U_1}{I_1} = \frac{14 \text{ V}}{10 \mu \text{A}} = 1.4 \text{ M}\Omega;$$

$$R_2 = \frac{U_2}{I_2} = \frac{18 \text{ V}}{100 \,\mu\text{A}} = 180 \,\text{k}\Omega;$$

$$\begin{array}{ll} R_3 = 20 \ k\Omega; \quad R_4 = 5.6 \ k\Omega; \quad R_5 = 4.2 \ k\Omega; \\ R_6 = 2.7 \ k\Omega \end{array} \label{eq:Radiation}$$

c) Leistungshyperbel

Wertetabelle $P_{tot} = 50 \text{ mW}$

U in V	30	25	20	15	10	5
I in mA	1,7	2	2,5	3,3	5	10

d) $U_{max} = 22 \text{ V}$, $I_{max} = 2.3 \text{ mA}$

zu 74/4.a)

74/5. a)
$$\vartheta = 40\,^{\circ}\text{C}$$
 aus Kennlinie $R_{40} \approx 10\,\text{k}\Omega;~~ I = \frac{U}{R_{40}} = \frac{6\,\text{V}}{10\,\text{k}\Omega} = 0.6\,\text{mA}$

- b) $I_2 = 5 \cdot I_1 = 5 \cdot 0.6 \text{ mA} = 3 \text{ mA}; \quad R_3 = \frac{U}{I_2} = \frac{6 \text{ V}}{3 \text{ mA}} = 2 \text{ k}\Omega$ aus Kennlinie bei $R_3 = 2 \text{ k}\Omega \implies \vartheta \approx 83 ^{\circ}\text{C}$
- 74/6. a) bei 25°C: $I = \frac{U_1}{R_1} = \frac{10.2 \text{ V}}{2.2 \text{ k}\Omega} = 4.6 \text{ mA}; \quad R_2 = \frac{U U_1}{I} = \frac{12 \text{ V} 10.2 \text{ V}}{4.6 \text{ mA}} = 388 \,\Omega \implies R_2 = 390 \,\Omega$ $\vartheta = 50 \,^{\circ}\text{C} \implies R_{50} \approx 1 \,\text{k}\Omega$ bei 50°C: $I = \frac{U}{R_{50} + R_2} = \frac{12 \,\text{V}}{1 \,\text{k}\Omega + 390 \,\Omega} = 8.6 \,\text{mA}; \quad U_1 = I \cdot R_{50} = 8.6 \,\text{mA} \cdot 1000 \,\Omega = 8.6 \,\text{V}$
 - b) $\theta = 80 \,^{\circ}\text{C} \Rightarrow R_{80} \approx 330 \,\Omega$; $I = \frac{U}{R_{80} + R_2} = \frac{12 \,\text{V}}{330 \,\Omega + 390 \,\Omega} = 16.7 \,\text{mA}$ $P_V = I^2 \cdot R_{80} = (16.7 \,\text{mA})^2 \cdot 330 \,\Omega = 92 \,\text{mW}$; $P_V < P_{tot} = 200 \,\text{mW} \Rightarrow \text{keine Überlastung}$
- 74/7. a) 60°C : $R_{60} = 200 \,\Omega$; 80°C : $R_{80} = 1300 \,\Omega$; $\Delta R = R_{80} R_{60} = 1300 \,\Omega 200 \,\Omega = 1100 \,\Omega$ b) 60°C : $R_{60} = 200 \,\Omega$; 100°C : $R_{100} = 150\,000 \,\Omega$ $\Delta R = R_{100} - R_{80} = 150\,000 \,\Omega - 200 \,\Omega \approx 150 \,k\Omega$
- 74/8. a) Aus Kennlinie: $R_{50} \approx 120 \,\Omega; \ R_{100} \approx 150 \,k\Omega$
 - b) $I_1 = \frac{U}{R_{50}} = \frac{1.2 \text{ V}}{120 \Omega} = 10 \text{ mA}; \quad I_2 = \frac{U}{R_{100}} = \frac{1.2 \text{ V}}{150 \text{ k}\Omega} = 8 \text{ }\mu\text{A}$
 - c) $R_{60} \approx 200 \,\Omega$; $R_{80} \approx 1.3 \,k\Omega$; $n = \frac{R_{80}}{R_{60}} = \frac{1.3 \,k\Omega}{200 \,\Omega} = 6.5$
- 74/9. a) θ = 80°C aus Kennlinie $R_{80} \approx 200 Ω$

$$R_{E} = \frac{R_{80} \cdot R_{2}}{R_{80} + R_{2}} = \frac{200 \Omega \cdot 2200 \Omega}{200 \Omega + 2200 \Omega} = 183 \Omega; \quad I = \frac{U_{b}}{R_{E}} = \frac{6 \text{ V}}{183 \Omega} = 33 \text{ mA}$$

b)
$$\theta = 100$$
 °C; $R_{100} \approx 2 \text{ k}\Omega \Rightarrow R_c = 1 \text{ k}\Omega$; $I = \frac{U_b}{I} = \frac{6 \text{ V}}{I} = \frac{6 \text{ mA}}{I}$

4.4 Ermittlung des Arbeitspunktes

4.4.1 Reihenschaltung linearer Widerstände

Lösungen zu 4.4.1

75/1. a) Maßstab: 1 cm = 5 V

1 cm

20 mA

1. Widerstandsgerade R₁ R1 => Ursprungsgerade P_0 (0 V, 0 mA); P_1 (20 V, 100 mA)

2. Arbeitsgerade für R₂

$$P'_0 = U_b = 30 \text{ V}; \quad P_2 = \frac{U_b}{R_2} = \frac{30 \text{ V}}{600 \Omega} = 50 \text{ mA}$$
 $1 = 37 \text{ mA}$

b) $U_1 = 7.5 \text{ V}$; $U_2 = 22.5 \text{ V}$

75/2. a) Aus der Kennlinie Arbeitspunkt A. I = 40 mA

b)
$$U_1 = 36 \text{ V}$$
; $U_2 = 24 \text{ V}$

c) Arbeitspunkt A₂ ⇒ 60 mA ⇒ 24 V

$$R_1 = \frac{U}{I} = \frac{24 \text{ V}}{60 \text{ mA}} = 400 \Omega$$

d) R_1 : $P_V = I \cdot U_1 = 60 \text{ mA} \cdot 24 \text{ V} = 1.44 \text{ W}$ ⇒ keine Überlastung

 R_2 : $P_V = I \cdot U_2 = 60 \text{ mA} \cdot 36 \text{ V} = 2.16 \text{ W}$ ⇒ Überlastung

75/3. a) Maßstab: 1 cm = 0.2 V; 1 cm = 0.5 A

1. Arbeitsgerade für R. $P_0' \triangleq U_0 = 1.5 \text{ V} (0.75 \text{ V})$

$$P_2 = \frac{U_b}{R_i} = 5 \text{ A} \quad (2.5 \text{ A})$$

Hilfsgerade verwenden, danach Hilfsgerade parallel verschieben an Po

$$U_{L1} = 1.34 \text{ V}; \quad U_{L2} = 1.20 \text{ V}$$

b)
$$R_1 = \frac{U_{L1}}{I_1} = \frac{1,34 \text{ V}}{0,5 \text{ A}} = 2,68 \Omega$$

$$R_2 = \frac{U_{L2}}{I_2} = \frac{1,20 \text{ V}}{1 \text{ A}} = 1,20 \Omega$$

c) $U_{i1} = 160 \text{ mV}$; $U_{i2} = 300 \text{ mV}$

d)
$$I_k = \frac{U_0}{R_i} = \frac{1.5 \text{ V}}{0.3 \Omega} = 5 \text{ A}$$

e) Der Konstruktionspunkt P2 der Arbeitsgeraden R_i entspricht dem Kurzschlussstrom I.

Diagramm nicht maßstabsgerecht

zu 75/1.a)

zu 75/2.a)

Diagramm nicht maßstabsgerecht

zu 75/3.a)

75/4. a) 1.
$$R_1 = 120 \Omega \Rightarrow R_2 = 360 \Omega$$

(12 V, 100 mA) $(P_0' \triangleq U_b = 24 \text{ V},$
 $P_2 \triangleq \frac{U_b}{R_2} = \frac{24 \text{ V}}{360 \Omega} = 67 \text{ mA})$

2. $R_1 = 240 \Omega \Rightarrow R_2 = 240 \Omega$ (18 V, 75 mA) $(P_0' = 24 \text{ V}, P_2 = 100 \text{ mA})$

3. $R_1 = 360 \Omega \Rightarrow R_2 = 120 \Omega$ $(18 \text{ V}, 50 \text{ mA}) \text{ } (P_0 = 24 \text{ V}; 12 \text{ V}),$ $P_2 = 200 \, \text{mA} \, (100 \, \text{mA}))$

b)
$$A_1$$
: $U_1 = 6 \text{ V}$, $U_2 = 18 \text{ V}$
 A_2 : $U_1 = 12 \text{ V}$, $U_2 = 12 \text{ V}$
 A_3 : $U_1 = 18 \text{ V}$, $U_2 = 6 \text{ V}$

$$\begin{cases} I_1 = 50 \text{ mA} \end{cases}$$

c) $R_E = \frac{R_2 \cdot R_L}{R_2 + R_L} = \frac{120 \Omega \cdot 60 \Omega}{120 \Omega + 60 \Omega} = 40 \Omega$ $R_1 = 360 \Omega$; $R_g = 40 \Omega$ $(P_0' \triangleq 24 \text{ V}, P_2 \triangleq \frac{U_b}{R_a} = 600 \text{ mA})$ Hilfsgerade P' = 4 V. P = 100 mA

d) $U_1 = 21.6 \text{ V}$, $U_2 = 2.4 \text{ V}$

zu 75/4.a)

4.4.2 Reihenschaltung linearer und nichtlinearer Widerstände

Lösungen zu 4.4.2

76/1. a) Aus Kennlinie:

b)
$$\Delta U = \pm \frac{U_{\text{oben}} - U_{\text{unten}}}{2} = \pm \frac{12 \text{ V} - 11 \text{ V}}{2} = \pm 0.5 \text{ V}$$

76/3. a) Aus Kennlinie: E = 1000 lx

b) Aus Kennlinie: Relais fällt ab bei E = 300 lx

c) $U_2 = 7 V$

zu 76/3.a)

76/4. a) siehe 76/4.a)

b) E = 1000 kg

c) $U_2 = 16 \text{ V}$; I = 3.3 mA; $R_2 = 4.85 \text{ k}\Omega$

d) E = 300 lx; $U_2 = 10 V$; $I_2 = 2.1 mA$ $E = 100 lx; U_2 = 3 V; I_2 = 0.6 mA$

zu 76/4.a)

76/5. a) aus Kennlinie bei B = 1 T
$$\Rightarrow \frac{R_B}{R_0} = 15$$

$$R_B = 15 \cdot R_0 = 15 \cdot 250 \Omega$$

$$R_B = 3,75 k\Omega$$

$$\frac{U_2}{U_b} = \frac{R_B}{R_V + R_B}$$

$$\Rightarrow U_2 = \frac{R_B}{R_V + R_B} \cdot U_b = \frac{3,75 k\Omega}{2,2 k\Omega + 3,75 k\Omega} \cdot 12 V = 7,6 V$$

b) aus Kennlinie bei B = 1 T; $\frac{R_B}{R_0} = 8 \Rightarrow R_B = 1.6 \text{ k}\Omega$; $U_2 = 5.0 \text{ V}$

zu 76/5.a)

4.5 Statischer und differentieller Widerstand Lösungen zu 4.5

77/1. a) Aus Kennlinie

A₁:
$$U_{F1} = 0.8 \text{ V}$$
; $I_{F1} = 30 \text{ mA}$
 $R_F = \frac{U_F}{I_F} = \frac{0.8 \text{ V}}{30 \text{ mA}} = 27 \Omega$

A₂:
$$U_{F2} = 0.92 \text{ V}$$
; $I_{F2} = 70 \text{ mA}$
 $R_{F} = 13 \Omega$

b) A₁:
$$r_{F1} = \frac{0.85 \text{ V} - 0.75 \text{ V}}{50 \text{ mA} - 20 \text{ mA}} = 3.3 \Omega$$

A₂:
$$r_{F2} = \frac{1.0 \text{ V} - 0.8 \text{ V}}{100 \text{ mA} - 30 \text{ mA}} = 2.9 \Omega$$

77/2.
$$r = \frac{\Delta U_F}{\Delta I_F} \Rightarrow \Delta I_F = \frac{\Delta U_F}{r} = \frac{0.1 \text{ V}}{20 \Omega} = 5 \text{ mA}$$

77/3. a) Aus Kennlinie für $\vartheta_u=25\,^{\circ}\mathrm{C}$ $U_{F1} = 0.5 \text{ V} \Rightarrow I_{F1} \approx 25 \,\mu\text{A}$

$$R_{\text{F1}} = \frac{U_{\text{F1}}}{I_{\text{F1}}} = \frac{0.5 \, \text{V}}{25 \, \mu \text{A}} \approx 20 \, \text{k} \Omega$$

$$U_{F2} = 0.8 \text{ V} \Rightarrow I_{F2} \approx 10 \text{ mA}; \quad R_{F2} \approx 80 \Omega$$

 $U_{F2} = 1.0 \text{ V} \Rightarrow I_{F3} \approx 100 \text{ mA}; \quad R_{F3} \approx 10 \Omega$

$$U_{\text{F1}} = 0.5 \text{ V} \Rightarrow I_{\text{F1}} \approx 0.3 \text{ mA} \Rightarrow R_{\text{F1}} \approx 1.67 \text{ k}\Omega$$

$$U_{F2} = 0.8 \text{ V} \Rightarrow I_{F2} \approx 35 \text{ mA} \Rightarrow R_{F2} \approx 23 \Omega$$

$$U_{F3} = 1.0 \text{ V} \Rightarrow I_{F3} \approx 200 \text{ mA} \Rightarrow R_{F3} \approx 5 \Omega$$

b)
$$r_F \approx \frac{1.0 \text{ V} - 0.9 \text{ V}}{200 \text{ mA} - 100 \text{ mA}} = 1 \Omega$$

77/4. a) Maßstab: 1 cm ≘ 100 mV

1 cm = 20 mA

b) Wertetabelle, Leistungshyperbel P_{tot} = 250 mW

					· tot		
U in V							
I in mA	357	312	278	250	227	208	200

c) $\theta_u = 25$ °C; $U_{max} \approx 1.08 \text{ V}; I_{max} \approx 230 \text{ mA}$ $\theta_u = 100$ °C; $U_{max} \approx 1.04 \text{ V}$; $I_{max} \approx 240 \text{ mA}$

d) 25°C:
$$R_F = \frac{U_{max}}{I_{max}} = \frac{1,08 \text{ V}}{230 \text{ mA}}$$
; $R_F = 4,7 \Omega$
100°C: $R_F = 4,3 \Omega$

e)
$$r_F = \frac{\Delta U_F}{\Delta I_F} = \frac{1.1 \text{ V} - 1.0 \text{ V}}{250 \text{ mA} - 100 \text{ mA}} = \frac{0.1 \text{ V}}{150 \text{ mA}}$$

 $r_F = 0.67 \Omega$

zu 77/1.a)

zu 77/3.a)

Diagramm nicht maßstabsgerecht 400

711 77/A AL