

GRANITOS, BRILLOS, IMPERFECCIONES. DILES ADIÓS CON

Descúbrelo ahora en CLARINS.COM con un 30%* de descuento. Código:

 En coordenadas usuales del espacio euclídeo R³ calcula un movimiento helicoidal respecto de la recta

$$\mathcal{R} = \{(x, y, z) \in \mathbb{R}^3 : x = 1, y = 2\},\$$

de ángulo $\theta = \pi/4$ y con vector de desplazamiento v = (0, 0, 2).

2. Razona si las siguientes afirmaciones son verdaderas o falsas:

- a) Sean $\mathcal{R}_1, \mathcal{S}_1$ dos rectas que se cruzan en \mathbb{R}^3 e igualmente $\mathcal{R}_2, \mathcal{S}_2$ otro par de rectas que se cruzan en \mathbb{R}^3 . Entonces existe una isometría $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que $f(\mathcal{R}_1) = \mathcal{R}_2$ y $f(\mathcal{S}_1) = \mathcal{S}_2$.
- b) Sean $\mathcal{R}_1, \mathcal{S}_1$ dos rectas de \mathbb{R}^2 que forman un ángulo $\theta \in (0, \pi/2)$ y $\mathcal{R}_2, \mathcal{S}_2$ otro par de rectas formando el mismo ángulo. Entonces existen exactamente dos isometrías $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ tal que $f(\mathcal{R}_1) = \mathcal{R}_2$ y $f(\mathcal{S}_1) = \mathcal{S}_2$.
- 3. Clasifica desde un punto de vista euclídeo la cónica de \mathbb{R}^2 de ecuación

$$3x^2 - 2xy + 3y^2 - 2x + 6y + 1 = 0$$

y determina un sistema de referencia euclídeo en el que esta cónica tenga una expresión reducida.

4. En el plano proyectivo \mathbb{P}^2 consideremos las rectas

$$\mathcal{R} = \{(x_0: x_1: x_2) \in \mathbb{P}^2: \ x_0 + x_1 = 0\}, \quad \mathcal{S} = \{(x_0: x_1: x_2) \in \mathbb{P}^2: \ x_1 + x_2 = 0\}$$

y el punto $p_0 = (1:1:1)$.

Calcula la aplicación $f : \mathbb{R} \longrightarrow S$ tal que a cada punto $p \in \mathbb{R}$ le hace corresponder el único punto de corte entre las rectas $p_0 + p$ y S. ¿Es f una proyectividad de \mathcal{R} en \mathcal{S} ?

Granada, 10 de enero de 2020.

