	Utech
Name :	
Roll No.:	A Space of Exercising and Explana
Invigilator's Signature :	

CS/B.Tech (CT)/SEM-6/MS(CT)-601/2011 2011

ENGINEERING MATERIALS SCIENCE

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

 $1. \quad \hbox{Choose the correct alternatives for any $\it ten$ of the following:}\\$

 $10 \times 1 = 10$

- i) The no. of lattice points in a primitive cell are
 - a) 1

b) -

c) 2

- d) $\frac{3}{2}$.
- ii) The packing factor of cubic crystal is
 - a) 60%
 - b) 56%
 - c) 90%
 - d) none of these.

6428 [Turn over

3.Teo	ch (C'	Γ)/SEM-6/MS(CT)-601/	201	1000
iii)	The	coordination number	in th	ne case of simple cubic
	crys	tal structure is		An Alexander (5° Karra leafige Final Excellents)
	a)	12	b)	6
	c)	2	d)	1.
iv)	Mille	er indices of the plane	para	llel to the x and y -axes
	are			
	a)	(1,0,0)	b)	(0, 1, 0)
	c)	(0,0,1)	d)	(1, 1, 1).
v)	X-ra	ys are produced when	an	element of high atomic
	weight is bombarded by high energy			
	a)	protons		
	b)	photons		
	c)	neutrons		
	d)	electrons.		
vi)	The	number of Bravais latti	ces a	re
	a)	14	b)	7
	c)	21	d)	28.

d)

Swelling.

Weathering

c)

CS/B.Tech (CT)/SEM-6/MS(CT)-601/2011

- x) Which of the following can be used for cathodic protection?
 - a) Cd

b) Al

c) Cu

- d) none of these.
- xi) Weld-decay is a term attributed to
 - a) Crevice corrosion
 - b) Pitting corrosion
 - c) Intergranular corrosion
 - d) Stress corrosion cracking.

GROUP – B (Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$

- 2. Distinguish between Seebeelk and Petier effects.
- 3. Define atomic radius in crystals and hence calculate the atomic radii in the case of bcc and fcc lattices.
- 4. What do you understand by polymorphism? Explain it with example in connection with iron.
- 5. Find the distance d_{hkl} between adjacent plane of side a crystal lattice.
- 6. Discuss the diffusion mechanisms of oxide formation on metals.
- 7. Derive the critical resolved shear stress for slip.

6428

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

- 8. Show that the number of Frenkel defects in equilibrium at a given temperature is proportional to $(NNi)^{\frac{1}{2}}$, where N be the number of atoms and Ni be the interstitial atoms.
- 9. Derive Bragg's laws of X-rays diffraction in crystals. By using Bragg's X-ray spectrometer, show that NaCl crystal has a fcc structure. 6+9
- 10. Sketch the time-strain curve for an elastic behaviour and compare it with the time-strain curve in the Voigt-Kelvin element. What do you deduce from it ? 6+6+3
- 11. a) Why real crystals are found to be weaker than what might be theoretically possible?
 - b) What is slip system? State the principal slip planes and directions in bcc, fcc and hcp crystals. Why are fcc metals more plastic then bcc and hcp?

CS/B.Tech (CT)/SEM-6/MS(CT)-601/2011

- c) Calculate the macroscopic shear strain resulting from the motion of dislocations.
- d) A relatively large plate of a glass is subjected to a tensile stress of 40 MPa. If the specific surface energy and modulous of elasticity for this glass are 0.3 J/m^2 and 69 GPa, respectively, determine the maximum length of a surface flaw that is possible without fracture. 2+4+6+3
- 12. a) Discuss the quantum force electron theory of metals pointing out the shortcomings therof.
 - b) Discuss 'Density of States' of electron giving mathematical expression. 12 + 3
- 13. a) What are the important factors that affect corrosion of materials? Why corrosion is considered as the reverse process of extractive metallurgy?
 - b) Narrate the different ways to express the rates of corrosion. State the Nernst equation.
 - c) What is intergranular corrosion? Discuss the metallurgical condition leading to intergranular corrosion in an austenitic stainless steel.
 - d) Discuss how can you cathodically protect a metal from corroding. 3+4+3+5

6428

- 14. Discuss briefly any three of the following:
 - a) Griffith's criterion of brittle fracture.
 - b) Theoretical cohesive strength of metals.
 - c) Distinction between slip & twinning deformation.
 - d) Slip in a perfect lattice.
 - e) Recrystallization of metals.
 - f) Passivation.