Paper Presentation

Combat Long-tails in Medical Classification with Relation-aware Consistency and Virtual Features Compensation

Li Pan^{1*}, Yupei Zhang^{2*}, Qiushi Yang³, Tan Li⁴, Zhen Chen^{5⊠}

¹ The Chinese University of Hong Kong

³ City University of Hong Kong

Presenter: Gefei Gu(顧格非)

² The Centre for Intelligent Multidimensional Data Analysis (CIMDA)

Department of Computer Science, The Hang Seng University of Hong Kong 5 Centre for Artificial Intelligence and Robotics (CAIR), HKISI-CAS zhen.chen@cair-cas.org.hk

- BACKGROUND
- OVERVIEW
- **3** METHODOLOGY
- EXPERIMENTS
- **5** CONCLUSION

BACKGROUND

Background

Long-tailed Problem

Scarcity of diseased samples

- \rightarrow inherent imbalance datasets
- → degrade classification performance

(a) DR grading from retinal images; (b) Gastro-intestinal image classification.

Y. Zhang et al., Deep Long-Tailed Learning: A Survey. Arxiv, 2021.

A. Galdran et al., Balanced-MixUp for Highly Imbalanced Medical Image Classification. MICCAI, 2021.

OVERVIEW

Current Approaches

Reweight the contribution of different class

CROSSENTROPYLOSS

```
CLASS torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=-100, reduce=None, reduction='mean', label_smoothing=0.0) [SOURCE]
```

This criterion computes the cross entropy loss between input logits and target.

It is useful when training a classification problem with C classes. If provided, the optional argument weight should be a 1D *Tensor* assigning weight to each of the classes. This is particularly useful when you have an unbalanced training set.

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

Current Approaches

• Rebalance the data distribution (under-sample the head classes, over-sample the tail classes)

Current Approaches

- Rebalance the data distribution (under-sample the head classes, over-sample the tail classes)
- Two-Stage method:
 - Train the model on the entire dataset
 - Fine-tune the classifier using rebalancing techniques

METHODOLOGY

Methodology

 In the first stage, the authors introduce the Multi-view Relation-aware Consistency (MRC) to boost representation learning for the encoder g.

Methodology

- In the first stage, the authors introduce the Multi-view Relation-aware Consistency (MRC) to boost representation learning for the encoder g.
- In the second stage, they proposed Virtual Features Compensation (VFC) to recalibrate the classifier f by generating massive balanced virtual features, which compensates the tails classes without dropping the samples of the head classes.

Stage 1

Stage 1

Multi-view Relation-aware Consistency

$$\mathcal{L}_{\text{prob}} = \frac{1}{B} \text{KL}(f \cdot g(\boldsymbol{x}_s), f' \cdot g'(\boldsymbol{x}_w))$$
 (1)

$$\mathcal{L}_{\text{batch}} = \frac{1}{B} \| \mathcal{S}_b(g(\boldsymbol{x}_s)) - \mathcal{S}_b(g'(\boldsymbol{x}_w)) \|_2$$
 (2)

$$\mathcal{L}_{\text{channel}} = \frac{1}{C} \| \mathcal{S}_c(g(\boldsymbol{x}_s)) - \mathcal{S}_c(g'(\boldsymbol{x}_w)) \|_2$$
 (3)

$$\mathcal{L}_{CE} = \frac{1}{B} L(f \cdot g(\boldsymbol{x}_w), y)$$
 (4)

$$\mathcal{L}_{\mathsf{stage}1} = \mathcal{L}_{\mathsf{CE}} + \lambda_1 \mathcal{L}_{\mathsf{batch}} + \lambda_2 \mathcal{L}_{\mathsf{channel}} + \lambda_3 \mathcal{L}_{\mathsf{prob}}$$

In its released code, $\lambda_1, \lambda_2, \lambda_3$ are set as hyper-parameters as 10,10,5.

February 26, 2024

Stage 2

Stage2: Classifier Recalibration

Expectation-Maximization

E-step:freeze the classifier and train the encoder

$$\mathcal{L}_{\text{stage2}}^{E} = \frac{1}{N} \sum_{\boldsymbol{x} \in X} \frac{(1 - (f \cdot g^{I}(\boldsymbol{x})y)^{q})}{q}$$

M-step:freeze the encoder and train the classifier

$$\mathcal{L}_{\text{stage2}}^{M} = \frac{1}{RK} \sum_{k=1}^{K} \sum_{\boldsymbol{v}_i \in V_k} L_{\text{CE}}(f(\boldsymbol{v}_i), y)$$

EXPERIMENTS

Experimental Results

Experiments were performed on two dermatology datasets, on four NVIDIA GeForce GTX 1080 Ti GPUs.

ISIC-2019-LT						
Methods	Acc(%) @ Factor=100	Acc(%) @ Factor=200	Acc(%) @ Factor=500			
CE	56.91	53.77	43.89			
RS	61.41	55.12	47.76			
MixUp 27	59.85	54.23	43.11			
GCE+SR 32	64.57	58.28	54.36			
Seesaw loss 26	68.82	65.84	62.92			
Focal loss 16	67.54	65.93	61.66			
CB loss 8	67.54	66.70	61.89			
FCD 15	70.15	68.82	63.59			
FS 12	71.97	69.30	65.22			
Ours w/o MRC	75.04	73.13	70.13			
Ours w/o VFC	72.91	71.07	67.48			
Ours	77.41	75.98	74.62			

$ISIC ext{-}Archive ext{-}LT$						
Methods	Head (Acc%)	Medium (Acc%)	Tail (Acc%)	All (Acc%		
CE	71.31	49.22	38.17	52.90		
RS	70.17	55.29	34.29	53.25		
GCE+SR 32	64.93	57.26	38.22	53.47		
Seesaw loss 26	70.26	55.98	42.14	59.46		
Focal loss 16	69.57	56.21	39.65	57.81		
CB loss [8]	64.98	57.01	61.61	61.20		
FCD 15	66.39	61.17	60.54	62.70		
FS 12	68.69	58.74	64.48	63.97		
Ours w/o MRC	69.06	62.14	65.12	65.44		
Ours w/o VFC	65.11	62.35	67.30	64.92		
Ours	69.71	63.47	70.34	67.84		

Comparison on ISIC-2019-LT dataset

Comparison on ISIC-Archive-LT dataset

Experimental Results

Significantly promotes the performance of tail classes.

Figure: Comparison of head/tail classes in ISIC-Archive-LT dataset

CONCLUSION

Conclusion

To address the long-tails in computer-aided diagnosis, the authors propose the MRC-VFC framework to improve medical image classification in two stages. MRC introduces multi-view relation-aware consistency. VFC helps to train an unbias classifier by generating massive virtual features. Extensive experiments shows that MRC-VFC outperforms SOTA algorithms remarkably.

THANK YOU!