Contrôle continu no.2.

Durée 2h. Barème indicatif.

Documents et calculatrices interdits.

Toute réponse (et toute opération TàT) doit être justifiée.

Exercice 1. (6 pts)

- 1. Donner le rayon de convergence de la série entière $\sum_{n=1}^{\infty} a_n x^n$ dans les cas suivants : (i) lorsque $a_n = \frac{n^2}{5^n}$ (ii) lorsque $a_n = \left(1 + \frac{1}{n}\right)^n$ (iii) lorsque $a_n = \begin{cases} 0, & \text{si } n \text{ est pair } \\ 3^n, & \text{si } n \text{ est impair.} \end{cases}$ Indication: Chacune des formules (Hadamard, Cauchy, D'Alembert) sera utile.
 - 2. (a)Montrer que la fonction $f: x \mapsto \frac{x}{3-x}$ se décompose en série entière $\sum_{m=0}^{\infty} \frac{x^m}{3^m}$ sur l'intervalle ouvert]-3,3[.

La convergence sur cet intervalle est-elle absolue? Est-elle normale?

- (c) Justifier (sans calculer l'intégrale) l'égalité $\int_0^2 f(x) dx = 2 \sum_{m=1}^{\infty} \frac{2^m}{(m+1)3^m}.$
- (d) Vérifier que $(x+3\ln(3-x))' = -f(x)$ et trouver la somme de la série $\sum_{n=0}^{\infty} \frac{(2/3)^n}{n+2}$.

Exercice 2. (7 pts)

On désigne par f(.) la fonction paire, 2π -périodique qui sur l'intervalle $[0,\pi]$ est donnée par l'expression

$$f(x) = \pi - 2x.$$

- 1. (a) Esquisser le graphe de f(.). Indiquer, sans preuve, la régularité qu'a cette fonction (continue sur \mathbb{R} ? C^1 sur \mathbb{R} ? C^1 par morceaux)?
 - (b) En déduire l'ensemble des valeurs de x pour lesquelles $SF_f(x) = f(x)$.
 - (c) En utilisant le croquis (on ne demande pas de preuve par le calcul), trouver la valeur de $\max_{x \in \mathbb{R}} |f(x)|$.
- 2. (a) Montrer que la série de Fourier de f(.) s'écrit

$$SF_f(x) = \frac{8}{\pi} \sum_{k=0}^{+\infty} \frac{\cos((2k+1)x)}{(2k+1)^2}.$$

Pour le calcul des coefficients a_n , $n \ge 1$, séparer les cas selon la parité de n.

- (b) La série $SF_f(.)$ converge-t-elle uniformément sur \mathbb{R} ?
- (c) En utilisant le théorème de Dirichlet, trouver la somme de la série $\sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2}$.

3. En utilisant les résultats des questions précédentes, justifier que l'on a

$$\int_{-\pi}^{\pi} |f(x)|^2 \, dx \le 2\pi^3$$

et en déduire que $\sum_{k=0}^{+\infty} \frac{1}{(2k+1)^4} \le \frac{\pi^4}{32}.$

Exercice 3. (7 pts)

1. On considère la fonction sh : $\mathbb{R} \to \mathbb{R}$ définie par sh $(x) = \frac{e^x - e^{-x}}{2}$ (elle est parfois notée sinh). Montrer que pour tout $x \in \mathbb{R}$ on a

$$\operatorname{sh}(x) = \sum_{k=0}^{+\infty} \frac{x^{2k+1}}{(2k+1)!} = 1 + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots$$

2. On s'intéresse à la résolution, par la méthode des séries entières, de l'équation différentielle

$$y'' - 4y = 4 \tag{ED}$$

avec les conditions initiales

$$y(0) = -1, \ y'(0) = 2.$$
 (CI)

On cherche la solution y(x) de (ED),(CI) sous la forme d'une série entière

$$y(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + \dots$$

On va supposer en premier temps que l'on a le droit de dériver l'expression de y(x) terme à terme.

- (a) Identifier les valeurs a_0 et a_1 .
- (b) Montrer que $a_2 = 0$ puis que, pour $n \ge 1$, $4a_n = (n+1)(n+2)a_{n+2}$.
- (c) Poser $b_n = \frac{a_n}{2^n}$. Déduire des questions précédentes que $b_1 = 1$, $b_2 = 0$ et que pour $n \ge 1$, $b_n = (n+1)(n+2)b_{n+2}$.
- (d) En déduire l'expression de b_k pour $k \geq 3$ (on ne demande pas la justification par récurrence) puis celle de a_k , $k \geq 3$. Expliciter la série obtenue pour y(x).
- (e) La dérivation terme à terme pour la série obtenue est-elle justifiée, à ce stade?
- 3. Donner une expression de la solution recherchée y en utilisant la fonction sh.

Exercice 4. (hors barème) Soit

$$f(x) = 2 + 3\sin(x) - \cos(5x).$$

Montrer que $\int_{-\pi}^{\pi} |f(x)|^2 dx = 18\pi.$