

GOMYCODE

Checkpoint number 26: Introduction to Databases

Realized by: Asma KHARROUBI

Instructor: Mr. Fedi Touzri

Introduction

Structured Query Language SQL is a standard language used for storing, manipulating and retrieving data from relational databases management system (RDBMS).

No Structured Query Language Not Only SQL is a database provides a mechanism for storage and rertrieval of data that is modeled in means other than the tabular relations used in relational databases.

SQL and NoSQL are two different approaches to data management and represent two distinct categories of databases.

SQL VS NoSQL

SQL databases are also known as
Relational Databases and are based on a
relational model. In a relational database,
data is stored in tables, with each table

having a unique identifier
(Primary Key) and relationships
defined between tables using
Foreign Keys.

SQL VS NOSQL

Structured Database Non-Relational

Select Ouery Storage

SQL Storage

NoSQL NoSQL Retrieval NoSQL Language

Database Management Scaling Language

Performance

SQL databases are well suited for structured data and are ideal for use cases where transactional consistency is a priority, such as financial applications.

On the other hand, NoSQL databases do not follow the relational model and offer more flexibility in terms of data storage.

NoSQL databases are designed to handle large amounts of unstructured or semistructured data, and are better suited for use cases where scalability and performance are the main priorities.

NoSQL databases can handle diverse data types, including documents, key-value pairs, and graph data, and can be easily scaled horizontally.

MySQL

NoSQL

Nature	Relational database			Non-Relational database	
Design	Based on the concept of tables			Based on the concept of documents	
Scalable	Tough to scale due to its relational nature			Easily scalable big data compared to relation	onal
Model	Detailled database model is needded before creation			No need of a detailled database model	
Community	Vast community available			Community is growing rapidly, but still smaller compared to MySQL	
Standardization	SQL is a standard language			Lacks standard query language	
Schema	The schema is rigid		NoSQL	The schema is dynamic	
Flexibility	Not very flexibale in iterms of design			Very flexibale in iterms of design	
Insertions	Inserting new columns or fields affect the design			No effect on the design with insertion of new columns or fields	03
					-

Use Case

Legacy applications or applications that require multi-row transactions

Data structure

Structured data with clear schema

Risk

Risk of SQL injection attacks

Analysis

MySQL is perfect when your data is structured and you are in need of a traditional relationship database

Use Case

♥ mongoDB。

Real-time analytics, content management, IOT, mobile applications

Data structure

No schema definition required

Risk

Less risk of attack due to design

Analysis

MongoDB works great for unstructured data and lends you opportunity for growth

Conclusion

SQL and NoSQL databases have different design goals and trade-offs, and the choice between the two will depend on the specific requirements of the use case. While SQL databases are best suited for structured data and transactional consistency, NoSQL databases are better suited for handling large amounts of unstructured or semi-structured data, and can be easily scaled.

