EEE Final Lecture

Class-1: Complex numbers

Exercise: 14.15-14.26 | Page: 600

Rectangular : $a \pm jb$

Trigonometrical : $E(\cos\theta \pm \sin\theta)$

Exponential : $E \cdot e^{j\theta}$

Polar : $E \angle \pm \theta$

 $E = \sqrt{a^2 + b^2}$

 $a = E \cos \theta$

 $\theta = \tan^{-1} \frac{b}{a}$

 $b = E \sin \theta$

• Use Rectangular form for : +,-

• Use Polar form for $: \times, \div$

Class-2: Sinusoidal Expression

Exercise: 14.2-14.7 | Page: 584

Pure Resistive

Pure Inductive

Pure Capacitive

 $v = V_m \sin \omega t$

$$v = V_m \sin \omega t$$

$$i = I_m \sin \omega t$$

$$I_m = \frac{V_m}{R}$$

$$v = V_m \sin \omega t$$

$$i = I_m \sin{(\omega t - 90^\circ)}$$

$$I_m = \frac{V_m}{X_L} = \frac{V_m}{\omega L}$$

$$i = I_m \sin{(\omega t + 90^\circ)}$$

$$I_m = \frac{V_m}{X_C} = \frac{V_m}{\frac{1}{\omega C}}$$

Class-3: Impedance

Exercise: 16.1, 16.2, 16.3

Impedance (z): The ratio of the phasor voltage (V) to the phasor current (I) in ohms.

- In pure resistive circuit, volatge (v) and current (i) stay in phase.
- In pure inductive circuit, voltage (v) leads the current (i) by 90°.
- In pure capacitive circuit, current (i) leads the voltage (v) by 90°.

Element	Impedance in Rectangular form	Impedance in Polar form
(Resistor) R	$Z_R = R$	$Z_R \angle 0^\circ$
(Inductor) L	$Z_L = j X_L = j\omega L$	$Z_L \angle 90^\circ$
(Capacitor) C	$Z_C = -j X_C = -j \frac{1}{\omega C}$	$Z_C \angle - 90^\circ$

Class-4: Power Factor

P.f is a measure of how effectively electrical equipment converts electric power into useful power.

1. Pf is the ratio of active power to the total power.

$$P.f = \frac{\text{Active power}}{\text{Total power}} = \frac{P}{S} = \frac{P}{P+Q}$$

2. The cosine angle between the current and the voltage is called pf.

Pf =
$$\cos \theta$$

P = VI $\cos \theta$ (watt)
Q = VI $\sin \theta$ (VAR)

P- Active/True Power (W)