Pontifícia Universidade Católica do Paraná

Projeto de Sistemas Microprocessados

Prof.: Vilson Mognon / Afonso Ferreira Miguel - 2° Semestre

ALUNO:	DATA:/
ALUNO:	

LABORATÓRIO A1 – TECLAS, LEDs e FUNÇÕES LÓGICAS

Objetivos: Desenvolver um programa em Assembly para acionar os LEDs conforme as teclas pressionadas.

Arduino UNO R3 Pinouts

1) Montar com o auxílio de um protoboard um arranjo com 3 teclas e 2 LEDs ligados em portas digitais do Atmega328P. Os LEDs devem ter um resistor em série entre 330 ohms e 1k ohms, conforme diagrama abaixo.

2) Identificar os pinos de GPIO utilizados: encontre no diagrama do circuito do Arduino qual a porta de IO, a posição do bit correspondente e preencha a tabela:

Descrição	Porta e Bit (PD5, PD2, etc)	Direção (Entrada ou Saída)
LED D1		
LED D2		
TECLA S1		
TECLA S2		
TECLA S3		

3) O registrador DDRx controla a direção dos IOs da porta "x" (x pode ser A, B, C ou D) conforme a tabela abaixo.

Valor	Direção
1	Saída
0	Entrada

O registrador PORTx tem duas funções, conforme a direção do pino está configurada: se o pino for saído, PORTx configura o nível lógico desse pino; se o pino for entrada, PORTx liga ou desligar o resistor de Pull-UP, conforme a tabela abaixo.

Direção (DDRD)	PORTD.x
Saída	1 – Nível alto na saída
	0 – Nível baixo na saída
Entrada	1 – Ativa resistor de Pull-UP
	0 – Entrada flutuante

Configure os registradores de controle de GPIO para configurar as portas ligadas aos LEDs como saída e ativar os Pull-UP nos pinos ligados as teclas. Os pinos não utilizados devem ser configurados como saída em nível lógico baixo.

BITS	7	6	5	4	3	2	1	0
DDRD								
PORTD								

HEXA

1) Fazer um programa que aciona os LEDs conforme o estado das teclas seguindo as funções lógicas determinadas pela tabela abaixo. Preencher as tabelas verdade e desenhar o fluxograma da lógica identificando os LABELs de desvio no firmware. Lembrar que se a tecla estiver pressionada, seu valor lógico é VERDADEIRO, portanto, 1. Contudo, a nível de hardware, o nível lógico é baixo, pois a tecla aterra o pino do processador.

LED1 = função	lógica entre S1	e S2 (única para	cada aluno)
---------------	-----------------	------------------	-------------

LED1 =	
LED2 =	

S1	S2	PD4	PD3	LED1 PD5
0	0			
0	1			
1	0			
1	1			

LED2 = função lógica mais complexa entre S1, S2 e S3

S3	S2	S1	PD4	PD3	PD2	LED2 PD6
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

Funções lógicas:

1	89331815	LED1 = S1 NAND S2	LED2 = (S1 OR S2) XOR $\overline{S3}$
2	89384175	LED1 = S1 NAND $\overline{S2}$	LED2 = S1 NAND $(\overline{S2} \text{ XOR } \overline{S3})$
3	40016688	LED1 = S1 NOR $\overline{S2}$	LED2 = S1 OR $(\overline{S2} \text{ XOR S3})$
4	89379996	LED1 = $\overline{S1}$ XOR $\overline{S2}$	LED2 = S1 NAND (S2 XOR $\overline{S3}$)
5	89394570	LED1 = $\overline{S1}$ NAND S2	LED2 = (S1 NOR $\overline{S2}$) XOR S3
6	89364662	LED1 = $\overline{S1}$ AND S2	LED2 = (S1 NAND S2) XOR S3
7	89310783	$LED1 = \overline{S1} AND \overline{S2}$	LED2 = S1 NOR (S2 XOR S3)
8	89366233	LED1 = S1 NAND S2	LED2 = (S1 AND $\overline{S2}$) XOR $\overline{S3}$
9	89385401	LED1 = S1 OR S2	LED2 = (S1 AND S2) XOR S3
10	89384098	LED1 = $\overline{S1}$ NAND S2	LED2 = (S1 NAND S2) XOR S3
11	89387160	LED1 = S1 AND $\overline{S2}$	LED2 = S1 AND (S2 XOR $\overline{S3}$)
12	40024389	$LED1 = \overline{S1} AND \overline{S2}$	$LED2 = \overline{S1} OR (\overline{S2} XOR S3)$
13	89271677	LED1 = S1 NOR $\overline{S2}$	LED2 = S1 AND $(\overline{S2} \text{ XOR S3})$
14	89379708	LED1 = $\overline{S1}$ OR S2	LED2 = $(\overline{S1} \text{ OR } S2) \text{ XOR } \overline{S3}$
15	89357162	LED1 = $\overline{S1}$ OR S2	LED2 = (S1 AND $\overline{S2}$) XOR $\overline{S3}$
16	89291906	LED1 = $\overline{S1}$ OR S2	LED2 = (S1 NOR S2) XOR $\overline{S3}$
17	89380474	LED1 = S1 AND S2	LED2 = (S1 NOR $\overline{S2}$) XOR $\overline{S3}$
18	89384713	LED1 = S1 OR $\overline{S2}$	LED2 = S1 NOR ($\overline{S2}$ XOR S3)
19	89380877	LED1 = S1 XOR S2	LED2 = $(\overline{S1} \text{ OR S2}) \text{ XOR S3}$
20	89363960	LED1 = S1 NAND $\overline{S2}$	$LED2 = \overline{S1} OR (S2 XOR \overline{S3})$
21	89385272	LED1 = $\overline{S1}$ NOR S2	LED2 = (S1 AND S2) XOR $\overline{S3}$
22	40000552	LED1 = $\overline{S1}$ NOR S2	LED2 = (S1 NAND S2) XOR $\overline{S3}$
23	89383597	LED1 = S1 XOR S2	LED2 = (S1 NAND $\overline{S2}$) XOR S3
24	89380152	LED1 = $\overline{S1}$ XOR $\overline{S2}$	LED2 = S1 OR $(\overline{S2} \text{ XOR } \overline{S3})$
25	89375714	LED1 = S1 AND \$\overline{S2}\$	LED2 = S1 NAND ($\overline{S2}$ XOR $\overline{S3}$)
26	89383380	LED1 = S1 OR \$\overline{S2}\$	LED2 = S1 OR (S2 XOR S3)
27	89367828	LED1 = S1 NOR $\overline{S2}$	LED2 = S1 NOR (S2 XOR S3)
28	40038091	LED1 = S1 XOR S2	LED2 = (S1 OR S2) XOR S3
29	89381171	LED1 = $\overline{S1}$ AND S2	LED2 = (S1 OR $\overline{S2}$) XOR S3