

The Lab

- Learning outcomes:
 - Conduct mechanical tests to inform your understanding of bending theory
 - Understand experimental design to select the most appropriate solution
 - >Analyse data and compare it to theoretical models

Context

- Beam bending theory is fundamental in Civil Eng.
- A solid understanding will serve you well in future!

 Elastic bending stresses form when a moment is applied

 Bending stress reduces for larger Second Moment of Area, I

$$\sigma_{bend} = \frac{My}{I}$$

Second Moment of Area, I

$$I = \iint y^2 . \, dx . \, dy$$

Second Moment of Area, I

$$I = \iint y^2 . \, dx . \, dy$$

$$I_{Rectangle} = \frac{x.y^3}{12}$$

 Bending stress reduces for larger Second Moment of Area,

$$\sigma_{bend} = \frac{My}{I}$$

• Bending deflections also reduce for larger Second Moment of Area,

$$\delta = \frac{P.L^3}{48.E.I}$$

The Lab

- Plan:
 - Step 1 − Calculate predictions (xlsx file > I, deflection)
 - ➤ Step 2 Load tests (and comparison)
 - >Step 3 Discussion Questions

The Lab

- Plan:
 - Step 1 − Calculate predictions (xlsx file > I, deflection)
 - ➤ Step 2 Load tests
 (and comparison)
 - ➤ Step 3 Discussion Questions

Keep it safe! > Goggles

