一、熵权法介绍

熵最先由申农引入信息论,目前已经在工程技术、社会经济等领域得到了非常广泛的应用。

熵权法的基本思路是根据指标变异性的大小来确定客观权重。

一般来说,若某个指标的信息熵 E_j 越小,表明指标值得变异程度越大,提供的信息量越多,在综合评价中所能起到的作用也越大,其权重也就越大。相反,某个指标的信息熵 E_j 越大,表明指标值得变异程度越小,提供的信息量也越少,在综合评价中所起到的作用也越小,其权重也就越小。

二、熵权法赋权步骤

1. 数据标准化

将各个指标的数据进行标准化处理。

假设给定了 k 个指标 $X_1, X_2, ..., X_k$, 其中 $X_i = \{x_1, x_2, ..., x_n\}$ 。假设对各指标数据标准化后的值为 $Y_1, Y_2, ..., Y_k$,那么 $Y_{ij} = \frac{X_{ij} - min(X_i)}{max(X_i) - min(X_i)}$ 。

2. 求各指标的信息熵

根据信息论中信息熵的定义,一组数据的信息熵

$$E_{j} = -ln(n)^{-1} \sum_{i=1}^{n} p_{ij} \ln p_{ij}$$
 $\pm \frac{1}{n} p_{ij} = Y_{ij} / \sum_{i=1}^{n} Y_{ij}$, $\text{max} p_{ij} = 0$, $\text{max} y$

$$\lim_{p_{ij} = 0} p_{ij} \ln p_{ij} = 0$$

3. 确定各指标权重

根据信息熵的计算公式,计算出各个指标的信息熵为 $E_1,E_2,...,E_k \quad \text{。通过信息熵计算各指标的权重:} \quad W_i = \frac{1-E_i}{k-\sum E_i}(i=1,2,...,k) \quad \text{。}$

三、熵权法赋权实例

1. 背景介绍

某医院为了提高自身的护理水平,对拥有的 11 个科室进行了考核,考核标准包括 9 项整体护理,并对护理水平较好的科室进行奖励。下表是对

各个科室指标考核后的评分结果。

科室	\mathbf{X}_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X ₉
A	100	90	100	84	90	100	100	100	100
В	100	100	78.6	100	90	100	100	100	100
C	75	100	85.7	100	90	100	100	100	100
D	100	100	78.6	100	90	100	94.4	100	100
E	100	90	100	100	100	90	100	100	80
F	100	100	100	100	90	100	100	85.7	100
G	100	100	78.6	100	90	100	55.6	100	100
H	87.5	100	85.7	100	100	100	100	100	100
I	100	100	92.9	100	80	100	100	100	100
J	100	90	100	100	100	100	100	100	100
K	100	100	92.9	100	90	100	100	100	100

表 1 11 个科室 9 项整体护理评价指标得分表

但是由于各项护理的难易程度不同,因此需要对9项护理进行赋权,以便能够更加合理的对各个科室的护理水平进行评价。

2. 熵权法进行赋权

1) 数据标准化

根据原始评分表,对数据进行标准化后可以得到下列数据标准化

表

表 2 11 个科室 9 项整体护理评价指标得分表标准化表

科室	X1	X2	Х3	X4	X5	Х6	X7	Х8	Х9
A	1.00	0.00	1.00	0.00	0.50	1.00	1.00	1.00	1.00
В	1.00	1.00	0.00	1.00	0.50	1.00	1.00	1.00	1.00
С	0.00	1.00	0.33	1.00	0.50	1.00	1.00	1.00	1.00
D	1.00	1.00	0.00	1.00	0.50	1.00	0.87	1.00	1.00
Е	1.00	0.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00
F	1.00	1.00	1.00	1.00	0.50	1.00	1.00	0.00	1.00
G	1.00	1.00	0.00	1.00	0.50	1.00	0.00	1.00	1.00
Н	0.50	1.00	0.33	1.00	1.00	1.00	1.00	1.00	1.00
Ι	1.00	1.00	0.67	1.00	0.00	1.00	1.00	1.00	1.00
J	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
K	1.00	1.00	0.67	1.00	0.50	1.00	1.00	1.00	1.00

2) 求各指标的信息熵

根据信息熵的计算公式 $E_j = -ln(n)^{-1}\sum_{i=1}^n p_{ij}lnp_{ij}$,可以计算 出 9 项护理指标各自的信息熵如下:

表 3 9 项指标信息熵表

	X1	X2	Х3	X4	Х5	Х6	Х7	Х8	Х9
信息熵	0.95	0.87	0.84	0. 96	0. 94	0. 96	0. 96	0. 96	0. 96

3) 计算各指标的权重

根据指标权重的计算公式 ,可以得到各个指标的权重如下表

所示:

表 4 9 项指标权重表

	W1	W2	W3	W4	W5	W6	W7	W8	W9
权重	0.08	0. 22	0. 27	0.07	0. 11	0.07	0.07	0.07	0.07

3. 对各个科室进行评分

根据计算出的指标权重,以及对 11 个科室 9 项护理水平的评分。设 21 为第 1 个科室的最终得分,则 $Z_i = \sum_{i=1}^9 X_{ii} W_i$,各个科室最终得分如下表所示

表 5 11 个科室最终得分表

科室	A	В	С	D	Е	F	G	Н	Ι	J	K
得分	95. 71	93. 14	93. 17	92.77	95.84	98.01	90. 21	95. 17	95. 97	97.81	97.02