```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

url = "http://bit.ly/w-data"
s_data = pd.read_csv(url)
print("Data imported successfully")

s_data.head(10)
```

Data imported successfully

	Hours	Scores	1
0	2.5	21	
1	5.1	47	
2	3.2	27	
3	8.5	75	
4	3.5	30	
5	1.5	20	
6	9.2	88	
7	5.5	60	
8	8.3	81	
9	2.7	25	

```
s_data.plot(x='Hours', y='Scores', style='o')
plt.title('Hours vs Percentage')
plt.xlabel('Hours Studied')
plt.ylabel('Percentage Score')
plt.show()
```

```
Hours vs Percentage
                Scores
X = s_data.iloc[:, :-1].values
y = s_data.iloc[:, 1].values
      ē <sup>20</sup> ]
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y,
                             test_size=0.2, random_state=0)
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)
print("Training complete.")
     Training complete.
line = regressor.coef_*X+regressor.intercept_
plt.scatter(X, y)
plt.plot(X, line);
plt.show()
      80
      60
```

```
print(X_test) # Testing data - In Hours
y_pred = regressor.predict(X_test) # Predicting the scores
```

[[1.5] [3.2]

40

20

[7.4]

9

```
[2.5]
[5.9]]
```

```
df = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
df
```

	Actual	Predicted	
0	20	16.884145	
1	27	33.732261	
2	69	75.357018	
3	30	26.794801	
4	62	60.491033	

Mean Absolute Error: 4.183859899002982