Implémentation de systèmes de gestion de bases de données

Plan du cours

- introduction aux bases de données relationnelles
- transactions et propriétés ACID
- gestion de la concurrence des transactions
- reprise après une panne système

Déroulement du cours

- enseignant responsable : Maxime Buron
- page Moodle (Implémentation des SGBDs):
 https://ent.uca.fr/moodle/course/view.php?id=6527
- 6 cours magistraux avec des TDs
- 5 séances de TP (essayer de se connecter à sa VM!)
- 1 examen écrit + 1/2 TPs notés

Références

 Database Systems: The Complete Book Héctor García Molina, Jeffrey Ullman et Jennifer Widom

• Database Management Systems Raghu Ramakrishnan, Johannes Gehrke

Introduction aux base de

données relationnelles

Histoire des bases de données

Des employés récupéraient les données physiquement

Figure 1: Base de données des empreintes du FBI en 1944 (23m de fiches, 110K requêtes par mois)

Histoire des bases de données

• 1970 : Edgar F. Codd introduit la notion de modèle relationnel chez IBM

• 1979 : Oracle sort le premier système de gestion de base de données (SGDB)

• 1980 à 2000 : De nombreux SGDBs sont créés et SQL devient un langage standard

Les systèmes de base de données aujourd'hui

Omniprésents

- navigateur
- site d'achat en ligne
- banque

(milliards)

• moteur de recherche (Google Search 50M de page, 3M de requêtes par jours)

Bonnes propriétés

- fiabilité, ils sont très stables
- performance, ils permettent de gérer de larges bases de données
- durabilité, ils assurent la qualité des données

Stable, sécurisé (normalement hum), complexe

Permet de s'assurer que les données insérées ont un sens

6

Les bases de données relationnelles

Une base de données relationnelles comporte :

Il n'y a pas que les bases de données relationnelles (on a aussi graphiques. ...)

- un schéma : la structure des tables/relations (le nom et le type des colonnes/attributs)
- un contenu : les lignes stockées dans chaque table
- des contraintes d'intégrité assurent la cohérence des données

Exemple

schéma

contenu

"La donnée est bien une date"

Contenu(client, produit)

Produit(produit, nom, prix)

Somme(client, total)

table

Liar

		•						
			Panier		Produit			
		Som		client	produit	produit	nom	prix
		client	total	0	0	0	pommes	5
gne	(0	10	0	1	1	٠.	5
		1	2	U	1	1	poires	5
				1	2	2	carottes	2

Une structure pré-définie

Contraintes d'intégrité

Les contraintes d'intégrité permettent de définir des limitations sur le contenu de la base de données. Il y a deux types de contraintes :

Ex : 50 charactères max, un nombre, etc...

- les contraintes d'intégrité, qui sont stockés dans le SGBD et peuvent être vérifiées automatiquement à chaque modification du contenu
- les contraintes implicites, qui sont dans la tête de l'administrateur de la base de données uniquement

 Peut être un calcul complexe

Exemple de contraintes

• une implicite : le total d'un panier est la somme des prix des objects qu'il contient

Contraintes d'intégrité : les clés

Soit K un sous-ensemble des colonnes d'une table T,

- K est une super-clê de T, si le nombre de ligne ayant les mêmes valeurs sur les colonnes de K est au plus 1
 On assure que la ligne est unique sur un/des colonne(s)
- K est une clé candidate de T, c'est une super-clé qui contient un nombre minimale de colonnes
- ullet une clé primaire de T est une clé candidate choisie de T pour identifier chaque ligne de T

Exemple de clé primaire

Par	nier	Produit				
client produit		produit	nom	prix		
0 0		0	pommes	5		
0	1	1	poires	5		
1 2		2	carottes	2		

Panier uitlise la clé primaire de Produit

1. Quelle clé primaire peut on choisir pour la table Panier?

Exemple de clé primaire

Par	nier	Produit			
client produit		produit	nom	prix	
0	0	0	pommes	5	
0	1	1	poires	5	
1	2	2	carottes	2	

- 1. Quelle clé primaire peut on choisir pour la table Panier?
 {client, produit}
- 2. Avec cette clé primaire, un client peut-il avoir plusieurs fois le même produit dans son panier?

3. Comment résoudre ce problème?

Exemple de clé primaire

Pan	nier	Produit			
client produit		produit	nom	prix	
0	0	0	pommes	5	
0	1	1	poires	5	
1	2	2 carottes		2	

Panier utilise la clé qui identifie un Produit

1. Quelle clé primaire peut on choisir pour la table Panier?
{client, produit}

2. Avec cette clé primaire, un client peut-il avoir plusieurs fois le même produit dans son On rajoute une colonne quantité panier?

3. Comment résoudre ce problème?

	Panier	
<u>client</u>	produit	quantité
0	0	2
0	1	1
1	2	4

Contraintes d'intégrité : les clés étrangères

Une clé étrangère est un ensemble de colonnes K d'une table faisant référence à la clé primaire d'une autre table. La clé étrangère est satisfaite si les tuples de valeurs présents sur les colonnes de K sont aussi présents sur les colonnes de la clé primaire.

Un produit a un nombre qui l'identifie,	et panier l'utilise (clé étrangère)	
---	-------------------------------------	--

Panier 🖌		I	Produit	
client	produit	produit	nom	prix
0	0	0	pommes	5
0	1	1	poires	5
1	2	2	carottes	2

Il y a une clé étrangère depuis la colonne produit de la table Panier vers la clé primaire de la table Produit. Cette contrainte assure que chaque produit présent dans un panier a un nom et un prix.

Cohérence d'une base de données

Une base de données est cohérente si son contenu vérifie :

- les contraintes d'intégrité
- les contraintes implicites

Si toutes les contraintes sont respectées, la bdd est cohérente (la SGBD s'occupe des contraintes d'intégrité, le serveur le reste)

On souhaite que tous les modifications apporter à une base de données conversent la cohérente de la base.

Exemple

Q		Panier		Produit			
Som		client	produit	produit	nom	prix	
client	total	0	0	0	pommes	5	$\overline{}$
0	10	0	1	1	poires	5	
1	2	1	2	2	carottes	2	
Con	trainte implic	ite					_

L'unicité c'est le contrainte d'intégrité

Les opérations sur les bases de données

SQL est le langage standard pour accéder et modifier une base de données relationnelle :

• requêtes d'interrogation

```
SELECT client, SUM(prix*quantite)
FROM Panier NATURAL JOIN Contenu
GROUP BY client;

"Récupère le client et la somme de ses dépenses dans Panier (on colle les tables Panier et Contenu en collant les id de clients)"
```

• requêtes de mise à jour ou d'insertion

```
UPDATE Produit SET prix = 1.1*prix WHERE nom = 'pommes';
```

• opérations de modification du schéma ou des contraintes

On augmente de 10% le prix des pommes

La prochaine fois ...

- les transactions ou de petits programmes en SQL, qui définissent des opérations atomiques de gestion de base de données
- les propriétés ACID des transactions