Theorem 7.88

Clark Saben Foundations of Mathematics

April 7, 2023

Theorem 7.88. For $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$, $[a]_n = [b]_n$ if and only if a and b have the same remainder when divided by n.

Proof. Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$. Through the usage of the bi-conditional theorem it can be shown that $[a]_n = [b]_n$ if and only if a and b have the same remainder when divided by n.

Let $[a]_n = [b]_n$ and $m \in [a]_n$, which then implies that $m \in [b]_n$. Let $-k \in \mathbb{Z}$, we can re-write m as follows,

$$m - a = (-k)n$$
$$a = m + kn$$
$$a = kn + m$$

By Theorem 6.7 (The Division Algorithm), a has the remainder m when divided by n. Let $-l \in \mathbb{Z}$, it can similarly be shown that,

$$m - b = (-l)n$$
$$b = m + kn$$
$$b = ln + m$$

which by Theorem 6.7, b has the remainder m when divided by n. Therefore, if $[a]_n = [b]_n$, then a and b have the same remainder when divided by n.

 \Leftarrow

Let a and b have the same remainder when divided by n. Additionally, let $-d, -g \in \mathbb{Z}$ and $r \in \mathbb{Z}$ such that a = n(-d) + r and b = n(-g) + r. Then,

$$a = n(-d) + r$$

$$nd = r - a$$

$$r - a = nd$$

$$r - a \in n\mathbb{Z}$$

$$r \equiv_n a$$

$$r \in [a]_n$$

It can be similarly shown that $r \in [b]_n$. Therefore, $[a]_n = [b]_n$. Therefore, if a and b have the same remainder when divided by n, then $[a]_n = [b]_n$.

Thus, for $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$, $[a]_n = [b]_n$ if and only if a and b have the same remainder when divided by n.