MULT32 DESIGN

DATAPATH DESIGN

CONTROL UNIT DESIGN

- > The Followings are the screenshots(6) of Multiplication process on logisim.
- > (from mult32.circ)

TEST-1 →

TEST-2 →

==> PRESS MULT AFTER ENTERING THE MULTIPLICAND-MULTIPLIER NUMBERS! <==

BEGIN = Contstant 1 ==> provides used to process multiple time

TEST-3 →

TEST-4 →

==> PRESS MULT AFTER ENTERING THE MULTIPLICAND-MULTIPLIER NUMBERS! <==

BEGIN = Contstant 1 ==> provides used to process multiple time

TEST-5 →

TEST-6 →

This is the first state diagram from ASM in PDF.

This is the second state diagram from after create the Datapath. This diagram has the datapath and control unit signals.

STATE TABLE DESIGN

- L_P → Load Product Register
- L_M → Load Multiplier Register
- L_Q → Load Multiplicand Register
- clr → Clear all registers
- sM → Select Multiplier Reg MUX
- Res_Clr → Resets the counter.
- **ALU** → ALU operation Add-Shift
- **Count \rightarrow** count signal for counter

LSB → Least Significant Bit of Product-M.lier Reg.

RESTART -> Controlled by MULT button to process

END → Check END with counter component in Datapath

BEGIN — Const 1: controlled by XOR with MULT Button

This is the last diagram with signals.

STATE TABLE

PRESENT INPUTS

NEXT

P2	P1	P0	START	RESTART	END	LSB	N2	N1	N0
0	0	0	0	_	0	-	0	0	0
0	0	0	1	-	0	-	0	0	1
0	0	1	-	-	-	-	0	1	0
0	1	0	-	-	-	1	0	1	1
0	1	0	-	-	-	0	1	0	0
0	1	1	-	-	-	-	1	0	0
1	0	0	-	-	0	-	0	1	0
1	0	0	-	-	1	-	1	0	1
1	0	1	-	0	-	-	1	0	1

No = P2P, Po. BEGIN. END + P2P, Po. LSB. END + P2P, Po. END N1 = P2P, Po + P2P, Po. LSB + P2P, Po. END N2 = P2P, Po. LSB + P2P, Po + P2P, Po. END

OUTPUTS

Shales	clr	SM	L-P	1 4-1	n/ L-a	ALU	1 (040)
0	1	0	0	0	0	0	0
1	0	0	1	1	11	10	0
2	0	0	0	0	10	101	0
3	0	0	1	0	0	0	0
4	0	1	1		0	1	1

