

.

: :

: :

7 1

. :

7:

i.

Fig 5 B

· · ·

. :

Bright Pixel Row Central Array

Fig.8

Bright Pixel Grouping Algorithm

Fig 9A

BPG Rang Array

CUTPUT From Fig. 9

BPGIN Row Col 2300

1 12,12,6,6

2 12,15,15,16

3 13,13,6,6

5 13,13,28,28 6 14,14,5,5

8 14,14,28,28 9 15,18,5,6

11 15, 17, 28, 28
12 18, 18, 9, 9.
13 19, 20, 8, 9
14 21, 21, 10, 10

Fig. 10

Hank sterre

DSI

BAG Centroid Alegnik

201

Aldress 1ST
BPC Range

Array

702

Ye = 16Wnin - ninet | Young - burin

Centrois

Array

BEAN

Centrois

Array

Array

DH

Re = Chaint nint (Chang - Coloin)

Re = Change | Chang

TO Group Contre ALG.

Fig 11

ND 6	DUTPUT	From Fig	: 11
210	1 /2	BPG Cei 2, 6	TROID ARRAY
	2 1	3, 15	2
	3. 13	3, 6	1
-	·· 5 /	3, 28	5
-		4,5	1
	85 1	4, 28	5
	9 /		1
	115	16, 28	5
	121		1
	13:4	19,8	1
	14/ic	•	1

Fig. 12

Fig. 138

: :

~

OUTPUT From Fig. 10 WITH Th3 = 5

254

/ (12,21,6,10) | 16,8

2 (13,13,15,15) | 3,15

5 (13,16,28,28) | 4,28

Fig 14

Fig 15

Uldating Algarithm

C 290 EOF RECEIVED 242 INPUT 2010 TO ALL OHISC STATE MRHNES 294. RESET ALE COUNTER. for each smore MOCHINE INDICATION A MATCH For each. STATE MACHINE INDICHATING A NON-MATCH. AKE > Th 302 298 DELETE TAKET INCREMENT TRE COUNTER OF CARH STORE IN RSSOC WITH EUCH STATE INDICATING A MACHINE INDICATED TO NOT THE PORT OF THE P NON- MAJCI+ Fig. 16 WAST FOR NEXT EOF

:

. .