FEATURES

- ► Industrial Standard DIP-16 Package
- ► Wide 2:1 Input Voltage Range
- ► Fully Regulated Output Voltage
- ► I/O Isolation 1500 VDC
- ▶ Operating Ambient Temp. Range -40°C to +80°C
- ► Short Circuit Protection
- ► UL/cUL/IEC/EN 60950-1 Safety Approval

PRODUCT OVERVIEW

The MINMAX MDW1000 series is a range of isolated 2W DC-DC converter modules featuring fully regulated output voltages and wide 2:1 input voltage ranges. The products come in a compact DIP-16 package with a low height of just 8.0 mm (0.31 inch). An excellent efficiency allows an operating temperature range of -40°C to +80°C.

These DC-DC converters offer an ideal solution for many space critical applications in battery-powered equipment and instrumentation.

Model Selec	tion Guide									
Model	Input	Output	Output		Input		Reflected	Max. capacitive Load	Efficiency	
Number	Voltage	Voltage	Current		Curr	Current			(typ.)	
	(Range)		Max.	Min.	@Max. Load	@No Load	Current		@Max. Load	
	VDC	VDC	mA	mA	mA(typ.)	mA(typ.)	mA(typ.)	μF	%	
MDW1011	_	3.3	500	125	471			2200	70	
MDW1012		5	400	100	548			1000	73	
MDW1013		12	167	42	534			170	75	
MDW1014	5	15	134	33	582	40	100	110	73	
MDW1015	(4.5 ~ 9)	±5	±200	±50	667			470#	64	
MDW1016		±12	±83	±21	615			100#	69	
MDW1017		±15	±67	±17	598			47#	71	
MDW1021		3.3	500	125	184				2200	73
MDW1022		5	400	100	217	20 25		1000	77	
MDW1023	10	12	167	42	209			170	80	
MDW1024	12 (9 ~ 18)	15	134	33	220		25	110	80	
MDW1025		±5	±200	±50	242			470#	73	
MDW1026		±12	±83	±21	224			100#	78	
MDW1027		±15	±67	±17	226			47#	78	
MDW1031		3.3	500	125	96			2200	72	
MDW1032		5	400	100	109			1000	77	
MDW1033	24	12	167	42	109			170	80	
MDW1034	(18 ~ 36)	15	134	33	108	10	15	110	81	
MDW1035	(10 ~ 30)	±5	±200	±50	119			470#	74	
MDW1036		±12	±83	±21	112			100#	78	
MDW1037		±15	±67	±17	110			47#	80	
MDW1041		3.3	500	125	49			2200	71	
MDW1042		5	400	100	57			1000	73	
MDW1043	48 (36 ~ 75)	12	167	42	53			170	79	
MDW1044		15	134	33	55	8	10	110	79	
MDW1045		±5	±200	±50	62			470#	71	
MDW1046		±12	±83	±21	57			100#	77	
MDW1047		±15	±67	±17	57			47#	77	

For each output

Page 1 of 4

Input Specifications			_		11.7	
Parameter	Model	Min.	Тур.	Max.	Unit	
	5V Input Models	-0.7		11		
nout Curro Valtara (4 ana may)	12V Input Models	-0.7		25		
nput Surge Voltage (1 sec. max.)	24V Input Models	-0.7		50		
	48V Input Models	-0.7		100		
	5V Input Models	3.5	4	4.5		
Chart I In Maltana	12V Input Models	4.5	7	9	VDC	
Start-Up Voltage	24V Input Models	8	12	18		
	48V Input Models	16	24	36		
	5V Input Models		3.5	4		
Index Veltage Chutdour	12V Input Models		6.5	8.5		
Under Voltage Shutdown	24V Input Models		11	17		
	48V Input Models		22	34		
Short Circuit Input Power				1500	mW	
nput Filter	All Models		Internal Pi Type			
Conducted EMI			Compliance to EN 55022, class A			

Output Specifications						
Parameter	Conditions	Min.	Typ.	Max.	Unit	
Output Voltage Setting Accuracy				±2.0	%Vnom.	
Output Voltage Balance	Dual Output, Balanced Loads		±1.0	±2.0	%	
Line Regulation	Vin=Min. to Max. @Full Load		±0.3	±0.5	%	
Load Regulation	lo=25% to 100%		±0.5	±0.75	%	
Ripple & Noise	0-20 MHz Bandwidth		30	50	mV _{P-P}	
Transient Recovery Time	OFO/ Land Ctan Change		100	300	μsec	
Transient Response Deviation	25% Load Step Change		±3	±5	%	
Temperature Coefficient			±0.01	±0.02	%/°C	
Short Circuit Protection	Continuous, Automatic Recovery					

General Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
I/O loolotion Voltage	60 Seconds	1500			VDC
I/O Isolation Voltage	1 Second	1800			VDC
I/O Isolation Resistance	500 VDC	1000			MΩ
I/O Isolation Capacitance	100kHz, 1V		250	420	pF
Switching Frequency		150	300	550	kHz
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	1,000,000 Hour		Hours	
Safety Approvals	UL/cUL 60950-1 recognition(CSA certificate), IEC/EN 60950-1(CB-report)				

Environmental Specifications					
Parameter	Min.	Max.	Unit		
Operating Ambient Temperature Range (See Power Derating Curve)	-40	+80	°C		
Case Temperature		+100	°C		
Storage Temperature Range	-55	+105	°C		
Humidity (non condensing)		95	% rel. H		
Lead Temperature (1.5mm from case for 10Sec.)		260	°C		

Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 These power converters require a minimum output loading to maintain specified regulation, operation under no-load conditions will not damage these
- 4 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 5 Other input and output voltage may be available, please contact MINMAX.
- 6 Specifications are subject to change without notice.

Pin Connections						
Pin	Single Output	Dual Output	Diameter mm (inches)			
1	-Vin	-Vin	Ø 0.5 [0.02]			
7	NC	NC	Ø 0.5 [0.02]			
8	NC	Common	Ø 0.5 [0.02]			
9	+Vout	+Vout	Ø 0.5 [0.02]			
10	-Vout	-Vout	Ø 0.5 [0.02]			
16	+Vin	+Vin	Ø 0.5 [0.02]			

NC: No Connection

- ► All dimensions in mm (inches)
- ► Tolerance: X.X±0.25 (X.XX±0.01)

X.XX±0.13 (X.XXX±0.005)

► Pin diameter tolerance: X.X±0.05 (X.XX±0.002)

Physical Characteristics

Case Size : 23.8x13.7x8.0 mm (0.94x0.54x0.31 inches)

Case Material : Plastic resin (flammability to UL 94V-0 rated)

Pin Material : Phosphor bronze

Weight : 5.1g

Test Setup

Input Reflected-Ripple Current Test Setup

Input reflected-ripple current is measured with a inductor Lin $(4.7 \mu H)$ and Cin $(220 \mu F, ESR < 1.0 \Omega)$ at 100 kHz) to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 kHz.

Peak-to-Peak Output Noise Measurement Test

Use a Cout $0.47\,\mu\text{F}$ ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

Technical Notes

Maximum Capacitive Load

The MDW1000 series has limitation of maximum connected capacitance on the output. The power module may operate in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Overcurrent Protection

To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor on the input to insure startup. By using a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a 8.2uF for the 5V input devices, a $3.3\mu\text{F}$ for the 12V input devices and a $1.5\mu\text{F}$ for the 24V and 48V devices, capacitor mounted close to the power module helps ensure stability of the unit.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3μ F capacitors at the output.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 100°C. The derating curves are determined from measurements obtained in a test setup.

