Formulaire

Pense-bête : analyse

21 mai 2013

Sommaire

1 Formulaire	. 1	$ ab \leqslant \frac{1}{2} \left(\left a \right ^2 + \left b \right ^2 \right)$	${f C}^2$
2 Séries numériques	. 2	☐ Proposition [Trigonométrie] – Toutes les	formules suivantes son
3 Espaces vectoriels normés	. 3	domaine où les fonctions en jeu sont définies	, et on pose $u = \tan\left(\frac{1}{2}\right)$
4 Intégrales impropres	. 3	$\cos(a+b) = \cos a \cos b - \sin a \sin b$	$\sin(a+b) = \cos a \sin$
5 Suites et séries d'intégrales	. 4	$\cos^2 a = \frac{1 + \cos(2a)}{2}$	$\sin^2 a = \frac{1 - \cos(2a)}{2}$
6 Suites et séries de fonctions	. 4	$\cos a \cos b = \frac{1}{2}(\cos(a+b) + \cos(a-b))$	$\sin a \sin b = \frac{1}{2}(\cos(a - a))$
7 Intégrales à paramètre	. 5	$\sin a \cos b = \frac{1}{2}(\sin(a+b) + \sin(a-b))$	$\cos p + \cos q = 2\cos \left(\frac{1}{2}\cos \frac{1}{2}\right)$
8 Séries entières	. 6	$\cos p - \cos q = -2\sin\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$	$\sin p + \sin q = 2\sin\left(\frac{1}{2}\sin$
9 Séries de Fourier	. 7		\
10 Équations différentielles linéaires	. 8	$\sin p - \sin q = 2\sin\left(\frac{p-q}{2}\right)\cos\left(\frac{p+q}{2}\right)$	$\tan(a+b) = \frac{\tan a + \tan a}{1 - \tan a}$
11 Calcul différentiel	. 9	$\sin a = \frac{2u}{1+u^2}$	$\cos a = \frac{1 - u^2}{1 + u^2}$
12 Équations différentielles ordinaires			$: [a,b] \subset \mathbf{R} \longrightarrow \mathbf{C} \text{ de } \mathbf{c}$

Dans toute la suite, $\mathbf{K} = \mathbf{R}$ ou \mathbf{C} et sans plus de précisions, I est un intervalle de \mathbf{R} .

$$\hfill \square$$
 Proposition $[Relations\ usuelles]$ — On a les relations de convexité suivantes :

Formule	Domaine de validité
$\sin x \leqslant x$	${f R}_+$
$\sin x \geqslant \frac{2}{\pi}x$	$\left[0, \frac{\pi}{2}\right]$
$e^x \geqslant x + 1$	\mathbf{R}
$\ln x \leqslant x - 1$	\mathbf{R}_{+}^{*}
$\tan x \leqslant x$	$\left[0, \frac{\pi}{2}\right]$
$\left \sqrt{x} - \sqrt{y}\right \leqslant \sqrt{ x - y }$	$(\mathbf{R}_+)^2$
$ ab \leqslant \frac{1}{2} \left(a ^2 + b ^2 \right)$	${f C}^2$

sont valables sur tout $\left(\frac{a}{2}\right)$

 $\sin b + \cos b \sin a$

 $(a-b) - \cos(a+b)$

 $\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$

e classe \mathcal{C}^n . Alors on

$$f(b) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (b-a)^k + \int_a^b \frac{(b-t)^{n-1}}{(n-1)!} f^{(n)}(t) dt$$
 Taylor reste intégral

$$\left| f(b) - \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (b-a)^k \right| \leqslant \frac{|b-a|^n}{n!} \left\| f^{(n)} \right\|_{\infty}$$
 Taylor-Lagrange

$$f(x) - \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (x-a)^k \underset{x \to a}{=} o((x-a)^n)$$
 Taylor-Young

 \square Proposition [*Primitives usuelles*] – Voici quelques primitives usuelles dont l'usage est courant, en particulier chez nos amis de Centrale. I est un intervalle de \mathbf{R} .

Primitive Domaine de validité $\int_{-\infty}^{\infty} \frac{\mathrm{d}t}{t - a - ib} = \ln|x - a - ib| + i \operatorname{Arctan}\left(\frac{x - a}{b}\right)$ \mathbf{R} , avec $(a,b) \in \mathbf{R} \times \mathbf{R}^*$ $\int_{-\infty}^{x} \frac{\mathrm{d}t}{\cos t} = \ln\left|\tan\left(\frac{x}{2} + \frac{\pi}{4}\right)\right|$ $\left[-\frac{\pi}{2}+n\pi,\frac{\pi}{2}+n\pi\right]$ $\int_{-\infty}^{\infty} \tan t \, \mathrm{d}t = -\ln|\cos x|$ $\left[-\frac{\pi}{2}+n\pi,\frac{\pi}{2}+n\pi\right]$ $\int_{-\infty}^{\infty} \frac{\mathrm{d}t}{t^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x+a}{x-a} \right|$ I ne contenant pas $\pm a$ $\int_{0}^{x} \frac{\mathrm{d}t}{t^{2} + a^{2}} = \frac{1}{a} \operatorname{Arctan}\left(\frac{x}{a}\right)$ \mathbf{R} $\int_{-\sqrt{t^2+a^2}}^{x} = \operatorname{Argsh}\left(\frac{x}{a}\right) = \ln\left(x+\sqrt{x^2+a^2}\right)$ \mathbf{R} $\int_{-\pi/a^2 - t^2}^{x} = Arcsin\left(\frac{x}{a}\right)$]-|a|,|a|[$\int_{-\infty}^{x} \frac{\mathrm{d}t}{\sqrt{t^2 - a^2}} = \operatorname{Argch} \left| \frac{x}{a} \right|$ I ne contenant pas |a|

2 Séries numériques

- \square **Définition** [Connvergences] Soit (u_n) une suite réelle ou complexe.
- (1) On dit que la série de terme général (u_n) converge si la suite de terme général $\left(\sum_{k=0}^n u_k\right)$ admet une limite quand $n\to +\infty$. Dans le cas contraire, on dit que la série diverge.
- (2) On dit que la série de terme général (u_n) converge absolument si la série de terme général $(|u_n|)$ converge.
- □ Théorème [Comparaison avec une intégrale] Soit $f:[1,+\infty] \longrightarrow \mathbf{R}_+$ continue par morceaux décroissante. Alors la série de terme général $(f(n))_{n \in \mathbf{N}^*}$ converge si et seulement si $\int_{1}^{+\infty} f(t) dt$ converge.
- ☐ Théorème [Séries de Riemann] Soit $\alpha \in \mathbf{R}$, la série de terme général $\left(\frac{1}{n^{\alpha}}\right)_{n \in \mathbf{N}}$ converge si et seulement si $\alpha > 1$.

 \square Théorème [Séries de Bertrand] – Soient $\alpha, \beta \in \mathbb{R}$, la série de terme général

$$\left(\frac{1}{n^{\alpha}\ln(n)^{\beta}}\right)_{n\geqslant 2}$$
 converge si et seulement si $\alpha>1$ ou $(\alpha=1$ et $\beta>1)$.

- \square Proposition [Règles de convergence] Soient (u_n) et (v_n) des suites de réels positifs.
 - Si $u_n = O(v_n)$, alors la série de terme général (u_n) converge si la série de terme général (v_n) converge et la série de terme général (v_n) diverge si la série de terme général (u_n) diverge.
- Si $u_n \sim v_n$, alors les deux séries ont même nature (convergence ou divergence).
- \square Théorème [Règle de d'Alembert] Soit (u_n) une suite de réels strictement positifs tels que

$$\frac{u_{n+1}}{u_n} \xrightarrow[n \to +\infty]{} \ell \in [0, +\infty].$$

- Si $\ell < 1$, la série de terme général (u_n) converge.
- Si $\ell > 1$, $u_n \xrightarrow[n \to +\infty]{} +\infty$ et la série diverge grossièrement.
- Si $\ell = 1$, on ne peut rien dire.
- \square Théorème [Règle de Riemmann] Soit (u_n) une suite de réels positifs.
- (1) Si la suite (nu_n) admet une limite non nulle en $+\infty$, alors la série de terme général u_n diverge.
- (2) Si il existe $\alpha > 1$ tel que $(n^{\alpha}u_n)$ admet une limite finie en $+\infty$, alors la série de terme général (u_n) converge.
- □ Théorème [Critère de Leibniz] Soit (a_n) une suite de réels positifs qui décroît vers 0. Alors la série de terme général $((-1)^n a_n)$ converge, et pour tout $N \in \mathbb{N}$, le reste $R_N = \sum_{n=N}^{+\infty} (-1)^n a_n$ est du signe de son premier terme et vérifie

$$0 \leqslant (-1)^N R_N \leqslant a_N.$$

- ☐ Théorème [Fubini et suites doubles] Soit $(u_{n,m})_{n,m\in\mathbb{N}^2}$ une suite double telle que :
- (1) $\forall n \in \mathbb{N}$, la série de terme général $(|u_{n,m}|)_{m \in \mathbb{N}}$ converge;
- (2) la série de terme général $\left(\sum_{m=0}^{+\infty} |u_{n,m}|\right)_{n\in\mathbb{N}}$ converge.

Alors toutes les séries qui suivent sont absolument convergentes et on peut intervertir les sommations :

$$\sum_{n=0}^{+\infty} \sum_{m=0}^{+\infty} u_{n,m} = \sum_{m=0}^{+\infty} \sum_{n=0}^{+\infty} u_{n,m}.$$

Théorème [Produit de Cauchy de séries] – Si les séries réelles ou complexes (u_n) et (v_n) sont absolument convergentes, alors la série produit de terme général $\left(c_n = \sum_{k=0}^n u_k v_{n-k}\right)$ est aussi absolument convergente et

$$\sum_{n=0}^{+\infty} c_n = \left(\sum_{i=0}^{+\infty} u_i\right) \left(\sum_{j=0}^{+\infty} v_j\right).$$

□ Proposition^{HP} [Raabe-Duhamel] – Soit (a_n) une suite de réels strictement positifs. On suppose avoir le développement asymptotique suivant :

$$\frac{a_{n+1}}{a_n} = 1 + \frac{\alpha}{n} + \varepsilon_n,$$

où ε_n est le terme général d'une série convergente. Alors il existe c>0 tel que $a_n \underset{+\infty}{\sim} cn^{\alpha}$.

[Indication: on veut montrer que la suite $(u_n = a_n n^{-\alpha})$ converge. Pour cela, passer au logarithme et étudier la série de terme général $(u_n - u_{n-1})$.]

3 Espaces vectoriels normés

- \square **Définition** [Norme] Soit E un **K**-espace vectoriel, une norme est une application $N: E \longrightarrow \mathbf{R}_+$ telle que :
- (1) (positivité) $\forall x \in E, N(x) \ge 0$;
- (2) (séparation) $\forall x \in E, N(x) = 0 \Rightarrow x = 0$;
- (3) (homogénéité) $\forall \alpha \in \mathbf{K}, \forall x \in E, N(\alpha x) = |\alpha| N(x);$
- (4) (inégalité triangulaire) $\forall x, y \in E, N(x+y) \leq N(x) + N(y)$.
- □ Lemme [Construction de normes] Si N est une norme et f une application linéaire injective, alors $N \circ f$ est une norme.
- \square **Définition**^{HP} [Distance] On appelle distance sur un ensemble X non-vide une application $d: X^2 \longrightarrow \mathbf{R}_+$ telle que :
- (1) (positivité) $\forall x \in X, d(x, x) \ge 0$;
- (2) (séparation) $\forall x, y \in X, d(x, y) = 0 \Rightarrow x = y$;
- (3) (symétrie) $\forall x, y \in X, d(x, y) = d(y, x)$;
- (4) (inégalité triangulaire) $\forall x, y, z \in X, d(x, y) \leq d(x, z) + d(z, y)$.
- □ Théorème [Continuité des applications linéaires] Soit $(E, |||_E)$ et $(F, |||_F)$ deux K-espaces vectoriels normés, $f \in \mathcal{L}_{\mathbf{K}}(E)$. Les assertions suivantes sont équivalentes :
- (1) f est continue sur E;

- (2) f est continue en 0_E ;
- (3) f est lipschitzienne;
- (4) $\exists C > 0$ telle que $\forall x \in E$, $||f(x)||_F \leqslant C ||x||_E$.
- ☐ Théorème^{HP} [Point fixe contractant] Soit (X, d) un espace métrique complet non-vide, $f: X \longrightarrow X$ contractante, c'est-à-dire k-lipschitzienne avec $k \in]0,1[$. Alors:
- (1) il existe un unique $x_0 \in X$ tel que $f(x_0) = x_0$;
- (2) $\forall a \in X$, la suite (u_n) définie par $u_0 = a$ et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$ converge vers x_0

[Indication: montrer que (u_n) est de Cauchy.]

□ Proposition [Exponentielle] – Soit A une K-algèbre de Banach. $\forall a \in A$, la série de terme général $\left(\frac{a^n}{n!}\right)$ converge absolument (d'Alembert) et on définit l'exponentielle par

$$\exp(a) = \sum_{n=0}^{+\infty} \frac{a^n}{n!}.$$

On a aussi les propriétés suivantes :

- (1) si a et b commutent, alors $\exp(a+b) = \exp(a) \exp(b) = \exp(b) \exp(a)$;
- (2) pour $a \in A$, $\varphi : t \in (\mathbf{K}, +) \longmapsto \exp(ta) \in (A^*, \times)$ est un morphisme de groupes \mathscr{C}^{∞} et $\forall t \in \mathbf{K}$, $\varphi'(t) = a \exp(ta) = \exp(ta)a$.
- ☐ Théorème [Équivalence de normes en dimension finie] Toutes les normes d'un K-espace vectoriel de dimension finie sont équivalentes.
- □ Définition [Connexité par arcs] Soit (X,d) un espace métrique. On dit que X est connexe par arcs si $\forall a,b \in X, \exists \varphi : [0,1] \longrightarrow X$ continue telle que $\varphi(0) = a$ et $\varphi(1) = b$. □ Proposition^{HP} [Composantes connexes] Soit (X,d) un espace métrique, on munit X de la relation binaire $\forall (a,b) \in X^2, a\mathcal{R}b \Leftrightarrow \exists \varphi : [0,1] \longrightarrow X$ continue telle que $\varphi(0) = a, \varphi(1) = b$. Alors \mathcal{R} est une relation d'équivalence et les classes d'équivalence de \mathcal{R} sont les composantes connexes de X.

4 Intégrales impropres

- \square Définition [Convergence, intégrabilité, semi-convergence] Soit $f:[a,b[\longrightarrow \mathbf{C}$ continue par morceaux.
- (1) On dit que l'intégrale $\int_a^{\leftarrow b} f$ est convergente si l'expression $\int_a^x f$ admet une limite lorsque x tend vers b par valeurs inférieures.
- (2) On dit que f est intégrable en b si $\int_{a}^{\leftarrow b} |f|$ est convergente.

- (3) On dit que $\int_a^{\leftarrow b} f$ est semi-convergente si l'intégrale converge et si f n'est pas intégrable en b.
- □ Théorème [Règle de Riemmann] Soit $f:[a,+\infty] \longrightarrow \mathbf{R}_+$ continue par morceaux positive.
- (1) Si $xf(x) \xrightarrow[x \to +\infty]{} \ell \in]0, +\infty]$ non-nulle, alors f n'est pas intégrable en $+\infty$ et

$$\int_{a}^{x} f(t) dt \xrightarrow[x \to +\infty]{} +\infty.$$

- (2) Si il existe $\alpha > 1$ tel que $x^{\alpha} f(x) \xrightarrow[x \to +\infty]{} \mu \in [0, +\infty[$ finie, alors f est intégrable en $+\infty$.
- □ Proposition [Convergence de l'intégrale et limite] Soit $f: \mathbf{R}_+ \longrightarrow \mathbf{R}$ continue par morceaux telle que $\int_0^{+\infty} f$ converge. Si f admet une limite $\ell \in \overline{\mathbf{R}}$ en $+\infty$, alors $\ell = 0$.
- **Théorème** [Changement de variable] Un changement de variable \mathscr{C}^1 difféomorhpisme ne change ni la nature ni la valeur d'une intégrale impropre.

5 Suites et séries d'intégrales

- □ Théorème [Convergence dominée] Soit I un intervalle de \mathbf{R} , (f_n) une suite d'applications de I dans \mathbf{C} et $g: I \longrightarrow \mathbf{C}$. On suppose que :
- (1) les f_n et g sont continues par morceaux sur I;
- (2) (f_n) converge simplement vers g sur I;
- (3) $\exists \varphi: I \longrightarrow \mathbf{R}_+$ continue par morceaux et intégrable sur I telle que

$$\forall n \in \mathbb{N}, \ \forall t \in I, \ |f_n(t)| \leq \varphi(t).$$

Alors g et les f_n sont intégrables sur I et

$$\lim_{n \to +\infty} \int_{I} f_n(t) dt = \int_{I} g(t) dt.$$

- □ Théorème [Sommation L^1] Soit (u_n) une suite de fonctions de I vers \mathbb{C} continues par morceaux. On suppose que :
- (1) $\sum_{n=0}^{+\infty} u_n$ converge simplement vers $g: I \longrightarrow \mathbf{C}$ continue par morceaux;
- (2) $\forall n \in \mathbf{N}, u_n \text{ est intégrable sur } I;$

(3) la série de terme général $\int_I |u_n(t)| dt$ converge.

Alors g est intégrable et

$$\int_{I} g(t)dt = \sum_{n=0}^{+\infty} \int_{I} u_n(t)dt.$$

- **Théorème** [Convergence dominée des sommes partielles] Soit (u_n) une suite de fonctions de I vers \mathbb{C} continues par morceaux. On suppose que :
- (1) $\sum_{n=0}^{+\infty} u_n$ converge simplement vers $g: I \longrightarrow \mathbf{C}$ continue par morceaux;
- (2) $\exists \varphi: I \longrightarrow \mathbf{R}_+$ continue par morceaux intégrable telle que

$$\forall n \in \mathbf{N}, \, \forall t \in I, \, \left| \sum_{k=0}^{n} u_k(t) \right| \leqslant \varphi(t).$$

Alors, $\forall n \in \mathbb{N}$, u_n est intégrable, g est intégrable et

$$\int_{I} g(t)dt = \sum_{n=0}^{+\infty} \int_{I} u_n(t)dt.$$

6 Suites et séries de fonctions

- \square Théorème [Approximations de fonctions] Soit [a,b] un intervalle de \mathbf{R} .
- (1) Toute fonction $f:[a,b] \longrightarrow \mathbf{C}$ continue par morceaux est limite uniforme d'une suite de fonctions en escalier.
- (2) Toute fonction $f:[a,b] \longrightarrow \mathbf{C}$ continue est limite uniforme d'une suite de fonctions continues par morceaux.
- \square **Théorème** [Approximation de Weierstrass] Toute fonction continue sur un segment de $\mathbf R$ à valeurs dans $\mathbf C$ est limite uniforme d'une suite de fonctions polynômiales.
- □ Théorème [Bernstein] Soit $f:[0,1] \longrightarrow \mathbf{C}$ continue, pour $n \in \mathbf{N}$ et $x \in [0,1]$ on pose

$$B_n(f)(x) = \sum_{k=0}^n \binom{n}{k} f\left(\frac{k}{n}\right) x^k (1-x)^{n-k}.$$

Alors la suite $(B_n(f))_{n \in \mathbb{N}^*}$ converge uniformément vers f sur [0,1].

[Indication: On utilisera l'uniforme continuité de f, la positivité de $x \in [0,1] \mapsto$

$$\binom{n}{k}x^k(1-x)^{n-k}$$
 et le fait que $\sum_{k=0}^n \binom{n}{k}x^k(1-x)^{n-k}=1$. Majorer les différents

termes selon la position de $\left|x - \frac{k}{n}\right|$ par rapport $\delta > 0$ fixé.]

général (u_n) , applications de $A \subset \mathbf{R}$ dans E complet est uniformément convergente tie de \mathbf{R} dans E espace vectoriel normé, $(x_n) \in A^{\mathbf{N}}$. On suppose que (f_n) converge sur A si et seulement si

- (1) la série converge simplement;
- (2) la suite de restes $\left(\sum_{n=1}^{+\infty} u_n\right)$ converge uniformément vers 0.

Théorème [Interversion des limites] – Soit (X,d) un espace métrique, $A \subset X$, $x_0 \in \overline{A}$, (f_n) une suite d'applications de A vers E, espace de Banach. On suppose que :

- (1) (f_n) converge uniformément sur A vers $q:A\longrightarrow E$;
- (2) $\forall n \in \mathbf{N}, f_n(x) \xrightarrow[x \to x_0]{} \ell_n \in E.$

Alors la suite (ℓ_n) admet une limite finie $\lambda \in E$ et

$$g(x) \xrightarrow[x \to x_0]{} \lambda \Leftrightarrow \lim_{n \to +\infty} \lim_{x \to x_0} f_n(x) = \lim_{x \to x_0} \lim_{n \to +\infty} f_n(x).$$

- ☐ Théorème [Continuité des limites uniformes] Une limite uniforme de fonctions continues est continue. C'est toujours vrai si la convergence est uniforme uniquement sur tout compact inclus dans l'ensemble de départ.
- \square Théorème [Caractère \mathscr{C}^1 d'une limite uniforme] Soit A un intervalle de \mathbf{R} , E un espace de Banach, (f_n) une suite d'applications \mathscr{C}^1 de A dans E. On suppose que :
- (1) il y a convergence simple en au moins un point : $\exists a \in A/f_n(a) \xrightarrow[n \to +\infty]{} \ell \in E$.
- (2) il v a convergence uniforme de (f'_n) vers $h:A\longrightarrow E$.

Alors h est continue sur A, la suite (f_n) converge simplement sur A vers la fonction

$$g: x \in A \longmapsto \ell + \int_{a}^{x} h(t) dt.$$

De plus, la convergence de (f_n) vers q est uniforme sur tout compact de A.

Théorème [Caractère \mathscr{C}^p d'une limite uniforme] – Soit A un intervalle de \mathbf{R} , (f_n) une suite de fonctions de classe \mathscr{C}^p de A vers E, espace de Banach. On suppose que $\forall k \leqslant p$, la suite $(f_n^{(k)})$ converge uniformément sur tout compact vers une fonction $h_k: A \longrightarrow E$.

Alors $h_0 = \lim_{n \to +\infty} f_n$ est de classe \mathscr{C}^p et $\forall x \in A, \forall k \leq p$,

$$h_0^{(k)}(x) = \lim_{n \to +\infty} f_n^{(k)}(x) = h_k(x).$$

Lemme [Convergence uniforme et adhérence] - Soit (f_n) une suite d'applications de **R** dans E espace vectoriel normé qui converge uniformément sur $A \subset \mathbf{R}$. Alors elle converge uniformément sur \overline{A} .

[Indication : passer par le critère de Cauchy uniforme.]

 \square Proposition [Séries uniformément convergentes] - La série de fonctions de terme \square Proposition^{HP} [Limite diagonale] - Soit (f_n) une suite d'applications de A paruniformément sur A vers g, que $x_n \xrightarrow[n \to +\infty]{} \alpha$ et que les (f_n) sont continus en α . Alors

$$f_n(x_n) \xrightarrow[n \to +\infty]{} g(\alpha).$$

[Indication: astuce taupinale avec $q(x_n)$.]

Intégrales à paramètre

- \square Proposition [Intégrale dépendant d'une borne] Soit I un intervalle de $\mathbf{R}, f: I \longrightarrow$ C continue et $a \in I$. Alors $F : x \in I \longrightarrow \int_{-\infty}^{x} f(t) dt$ est \mathscr{C}^{1} et F' = f.
- \Box Théorème [Continuité des intégrales à paramètre] Soit (A, d) un espace métrique, I un intervalle de $\mathbf{R}, f: A \times I \longrightarrow \mathbf{C}$ telle que :
- (1) $\forall x \in A, t \in I \longmapsto f(x,t)$ est continue par morceaux;
- (2) $\forall t \in A, x \in A \longmapsto f(x,t)$ est continue:
- (3) $\exists \varphi : I \longrightarrow \mathbf{R}_+$ continue par morceaux intégrable telle que

$$\forall (x,t) \in A \times I, |f(x,t)| \leq \varphi(t).$$

Alors $F: x \in A \longmapsto \int_{\mathbb{R}} f(x,t) dt$ est définie et continue sur A.

- **Théorème** [Caractère \mathcal{C}^1 des intégrales à paramètre] Soient A, I deux intervalles de **R**, $f: A \times I \longrightarrow \mathbf{C}$ telle que :
- (1) f est continue par morceaux par rapport t et $F: x \in A \longmapsto \int_{T} f(x,t) dt$ existe;
- (2) f admet une dérivée partielle $\frac{\partial f}{\partial x}: A \times I \longrightarrow \mathbf{C}$;
- (3) pour $x \in A$, $t \in I \longrightarrow \frac{\partial f}{\partial x}(x,t)$ est continue par morceaux;
- (4) pour $t \in I$, $x \in A \longrightarrow \frac{\partial f}{\partial x}(x,t)$ est continue;
- (5) pour tout compact $K \subset A$, il existe $\varphi_K : I \longrightarrow \mathbf{R}_+$ continue par morceaux intégrable telle que

$$\forall (x,t) \in K \times I, \ \left| \frac{\partial f}{\partial x}(x,t) \right| \leqslant \varphi_K(t).$$

Alors F est de classe \mathscr{C}^1 sur A et $\forall x \in A$,

$$F'(x) = \int_{I} \frac{\partial f}{\partial x}(x, t) dt.$$

☐ Théorème [Caractère \mathscr{C}^k des intégrales à paramètre] — Soient A, I deux intervalles de \mathbf{R} , $f: A \times I \longrightarrow \mathbf{C}$, $k \in \mathbf{N}^* \cup \{+\infty\}$. On suppose que :

- (1) $\forall i \leq k, f$ admet une dérivée partielle *i*-ième par rapport à $x \frac{\partial^i f}{\partial x} : A \times I \longrightarrow \mathbf{C}$ avec
 - (i) pour $x \in A$ fixé, $t \in I \longrightarrow \frac{\partial^i f}{\partial x}(x,t)$ est continue par morceaux,
 - (ii) pour $t \in I$, $x \in A \longrightarrow \frac{\partial^i f}{\partial x}(x,t)$ est continue;
- (2) pour tout compact $K \subset A$ et pour tout $i \leq k$ il existe $\varphi_{i,K} : I \longrightarrow \mathbf{R}_+$ continue par morceaux intégrable telle que

$$\forall (x,t) \in K \times I, \ \left| \frac{\partial^i f}{\partial x}(x,t) \right| \leqslant \varphi_{i,K}(t).$$

Alors $F: x \in A \longmapsto \int_I f(x,t) dt$ est de classe \mathscr{C}^k et $\forall i \leqslant k, \, \forall x \in A,$

$$F^{(i)}(x) = \int_{I} \frac{\partial^{i} f}{\partial x}(x, t) dt.$$

□ Théorème [Fubini et intégrales doubles : cas de compacts] – Soit $f:[a,b]\times[c,d]$ — C globalement continue. Alors

$$\iint_{[a,b]\times[c,d]} f(x,y) \mathrm{d}x \mathrm{d}y = \int_I \left(\int_J f(x,y) \mathrm{d}x \right) \mathrm{d}y = \int_J \left(\int_I f(x,y) \mathrm{d}y \right) \mathrm{d}x.$$

Le résultat est aussi valable dans le cas où $I \times J = \{(x,y) \in \mathbf{R}^2 \mid x \in [a,b] \text{ et } y \in [h(x),g(x)]\}, \ h,g \text{ continues et } g \geqslant h.$

☐ Théorème [Fubini et intégrales doubles : cas général] – Soient I et J deux intervalles de \mathbb{R} , $f: I \times J \longrightarrow \mathbb{C}$. On suppose que :

(1)
$$\int_{I} \left(\int_{J} |f(x,y)| \, \mathrm{d}y \right) \mathrm{d}x$$
 existe;

(2) toutes les fonctions apparaissant dans les calculs sont continues par morceaux 1 . Alors

$$\int_{I} \left(\int_{I} f(x, y) dx \right) dy = \int_{I} \left(\int_{I} f(x, y) dy \right) dx.$$

□ Proposition [Formule de Gauss] – Pour $z \in \mathbb{C}$, on pose $\Gamma(z) = \int_0^{+\infty} t^{z-1} e^{-t} dt$. Alors Γ est définie sur $\Lambda = \{z \in \mathbb{C} \mid \Re(z) > 0\}, \forall z \in \Lambda, \Gamma(z+1) = z\Gamma(z)$. Comme $\Gamma(1) = 1, \forall n \in \mathbb{N}^*, \Gamma(n) = (n-1)!$. On a de plus la formule de Gauss : $\forall z \in \Lambda$,

$$\Gamma(z) = \lim_{n \to +\infty} \frac{n^z n!}{z(z+1)\cdots(z+n)}.$$

[Indication : on applique le théorème de convergence dominée 2 à $f_n(t) = t^{z-1} \left(1-\frac{t}{n}\right)^n$ pour t < n et 0 sinon. On retrouve $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$ grâce à la formule de Stirling.]

8 Séries entières

□ Théorème [Règle de d'Alembert] – Soit $(a_n) \in \mathbf{C}^{\mathbf{N}}$ telle que $\exists n_0 \in \mathbf{N}/\forall n \geqslant n_0, a_n \neq 0$. On suppose que

$$\left| \frac{a_{n+1}}{a_n} \right| \xrightarrow[n \to +\infty]{} \ell \in [0, +\infty].$$

Alors le rayon de convergence de $\sum_{n=0}^{+\infty} a_n x^n$ est $\frac{1}{\ell}$.

□ Proposition [Séries entières usuelles] – On a les développements en série entière suivants :

$$\frac{1}{1-z} = \sum_{n=0}^{+\infty} z^n = 1 + z + z^2 + \dots \qquad z \in \mathbf{C}, \ |z| < 1$$

$$\frac{1}{(1-z)^{p+1}} = \sum_{n=0}^{+\infty} \binom{n+p}{n} z^n \qquad z \in \mathbf{C}, |z| < 1$$

$$(1+x)^{\alpha} = \sum_{n=0}^{+\infty} {\alpha \choose n} x^n = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2} x^2 + \cdots$$
 $x \in \mathbf{R}, |x| < 1$

$$\exp(z) = \sum_{n=0}^{+\infty} \frac{z^n}{n!} = 1 + z + \frac{z^2}{2} + \cdots$$
 $z \in \mathbf{C}$

$$\operatorname{ch}(z) = \sum_{n=0}^{+\infty} \frac{z^{2n}}{(2n)!} = 1 + \frac{z^2}{2} + \frac{z^4}{24} \cdots \qquad z \in \mathbf{C}$$

$$sh(z) = \sum_{n=0}^{+\infty} \frac{z^{2n+1}}{(2n+1)!} = z + \frac{z^3}{6} + \cdots$$
 $z \in \mathbf{C}$

^{1.} Ceci implique en théorie d'étudier 6 fonctions différentes.

^{2.} Voir page 4.

$$\cos(z) = \sum_{n=0}^{+\infty} (-1)^n \frac{z^{2n}}{(2n)!} = 1 - \frac{z^2}{2} + \frac{z^4}{24} + \dots \qquad z \in \mathbf{C}$$

$$\sin(z) = \sum_{n=0}^{+\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} = z - \frac{z^3}{6} + \frac{z^5}{120} + \dots \qquad z \in \mathbf{C}$$

$$\ln(1+x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{n+1}}{n+1} = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots \qquad x \in \mathbf{R}, \ |x| < 1$$

$$\operatorname{Arctan}(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots \qquad x \in \mathbf{R}, \ |x| < 1$$

□ Proposition^{HP} [Formule de Cauchy] – On suppose que $f(z) = \sum_{n=0}^{+\infty} a_n z^n$ est la somme d'une série entière de rayon de convergence R > 0. Alors $\forall r \in]-R, R[, \forall n \in \mathbb{N},$

$$a_n r^n = \frac{1}{2\pi} \int_0^{2\pi} f\left(r e^{it}\right) e^{-int}.$$

[Indication : intervetir somme et intégrale grâce au théorème de sommation $L^{1\,1}$.]

□ Lemme^{HP} [Convergence radiale d'Abel] – Soit $\sum_{n=0}^{+\infty} a_n z^n$ une série entière et $z_0 \in \mathbf{C}^*$

telque $\sum_{n=0}^{+\infty} a_n z^n$ converge. Alors le rayon de convergence de la série est plus grand que

 $|z_0|$ et la série converge uniformément sur $[0, z_0] = \{tz_0 \mid t \in [0, 1]\}.$

[Indication: utiliser la transformation d'Abel.]

□ Définition^{HP} [Caractère analytique] – Soit Ω un ouvert de **R** ou **C**, $f: Ω \longrightarrow \mathbf{C}$ est dite analytique sur Ω si $\forall x_0 \in Ω$, $\exists \rho > 0$ tel que $D_f(x_0, \rho) \subset Ω$ et $\exists (a_n) \in \mathbf{C}^{\mathbf{N}}$ telle que $\forall z \in D_f(x_0, \rho)$,

$$f(z) = \sum_{n=0}^{+\infty} a_n (z - x_0)^n,$$

série entière de rayon de convergence au moins égal à ρ .

☐ Théorème [Caractérisation des sommes de séries entières] – Soit $R \in]0, +\infty]$, une application $f :]-R, R[\longrightarrow \mathbf{C}$ est la somme d'une série entière de rayon de convergence supérieur à R si et seulement si f est \mathscr{C}^{∞} et si $\forall x \in]-R, R[$,

$$\int_0^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt \xrightarrow[n \to +\infty]{} 0.$$

Dans ce cas, f est somme d'une unique série entière de rayon de convergence strictement positif, sa série de Taylor : $\forall x \in \mathbf{C}$ tel que |x| < R, $f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n$.

9 Séries de Fourier

- \square Définition [Coefficients et série de Fourier] Soit $f: \mathbf{R} \longrightarrow \mathbf{C}$ 2π -périodique continue par morceaux.
- (1) On pose pour $n \in \mathbf{Z}$ les coefficients de Fourier complexes de f:

$$c_n(f) = \frac{1}{2\pi} \int_a^{a+2\pi} f(t) e^{-int} dt.$$

(2) Les coefficients de Fourier sont les suites $(a_n)_{n \in \mathbb{N}}$ et $(b_n)_{n \in \mathbb{N}^*}$ définies par $a_0 = c_0$ et pour $n \in \mathbb{N}^*$,

$$a_n(f) = \frac{1}{\pi} \int_a^{a+2\pi} f(t) \cos(nt) dt \quad \text{et} \quad b_n(f) = \frac{1}{\pi} \int_a^{a+2\pi} f(t) \sin(nt) dt.$$

(3) La n-ième somme partielle de la série de Fourier de f est la fonction notée $S_n(f)$ définie par $\forall x \in \mathbf{R}$,

$$S_n(f)(x) = \sum_{k=-n}^{n} c_k(f)e^{ikx} = a_0(f) + \sum_{k=1}^{n} a_k(f)\cos(kx) + b_k(f)\sin(kx).$$

□ Théorème [Parseval et convergence quadratique] – Soit $f : \mathbf{R} \to \mathbf{C}$ continue par morceaux 2π -périodique. Alors la série de terme général $\left(\left|c_n(f)\right|^2 + \left|c_{-n}(f)\right|^2\right)_{n \in \mathbf{N}}$ converge et on a l'égalité de Parseval :

$$\sum_{n \in \mathbf{Z}} |c_n(f)|^2 = |a_0(f)|^2 + \frac{1}{2} \sum_{n=1}^{+\infty} |a_n(f)|^2 + |b_n(f)|^2 = \frac{1}{2\pi} \int_0^{2\pi} |f(t)|^2 dt.$$

De plus, si f est partout continue, on a $S_n(f) \xrightarrow[n \to +\infty]{\|\|\|_2} f$.

□ Proposition [Parseval sesquilinéaire] – Soit $f, g : \mathbf{R} \longrightarrow \mathbf{C}$ 2π -périodiques continues par morceaux. Alors la série de terme général $\left(\left|\overline{c_n(f)}c_n(g)\right| + \left|\overline{c_{-n}(f)}c_{-n}(g)\right|\right)$ converge et

$$\sum_{n \in \mathbf{Z}} \overline{c_n(f)} c_n(g) = \frac{1}{2\pi} \int_0^{2\pi} \overline{f(t)} g(t) dt.$$

[Indication : dans le cas continu, cette formule découle de l'identité de polarisation associée au produit scalaire $f, g \in \mathscr{C}^0([0, 2\pi], \mathbf{C}) \longmapsto \frac{1}{2\pi} \int_0^{2\pi} \overline{f}g.$]

^{1.} Voir page 4.

□ Théorème [Convergence normale de Dirichlet] – Si $f : \mathbf{R} \longrightarrow \mathbf{C}$ est 2π -périodique, \mathscr{C}^1 par morceaux et partout continue, alors la série de Fourier de f converge normalement vers f sur \mathbf{R} .

□ Théorème [Convergence simple de Dirichlet] – Si $f: \mathbf{R} \longrightarrow \mathbf{C}$ est 2π -périodique et \mathscr{C}^1 par morceaux, alors la série de Fourier de f converge simplement vers sur \mathbf{R} vers la fonction $x \in \mathbf{R} \longmapsto \frac{1}{2}(f(x^+) + f(x^-))$.

 \square **Définition** [Fourier en période T] – Soit $f: \mathbf{R} \longrightarrow \mathbf{C}$ T-périodique continue par morceaux, $\omega = \frac{2\pi}{T}$.

(1) On pose pour $n \in \mathbf{Z}$ les coefficients de Fourier complexes de f:

$$c_n(f) = \frac{1}{T} \int_a^{a+T} f(t) e^{-in\omega t} dt.$$

(2) Les coefficients de Fourier sont les suites $(a_n)_{n \in \mathbb{N}}$ et $(b_n)_{n \in \mathbb{N}^*}$ définies par $a_0 = c_0$ et pour $n \in \mathbb{N}^*$,

$$a_n(f) = \frac{2}{T} \int_a^{a+T} f(t) \cos(n\omega t) dt$$
 et $b_n(f) = \frac{2}{T} \int_a^{a+T} f(t) \sin(n\omega t) dt$.

(3) La n-ième somme partielle de la série de Fourier de f est la fonction notée $S_n(f)$ définie par $\forall x \in \mathbf{R}$,

$$S_n(f)(x) = \sum_{k=-n}^{n} c_k(f) e^{ik\omega x} = a_0(f) + \frac{1}{2} \sum_{k=1}^{n} a_k(f) \cos(k\omega x) + b_k(f) \sin(k\omega x).$$

10 Équations différentielles linéaires

□ Définition [Équation résolue d'ordre 1] – Soit E un espace de Banach, I un intervalle de \mathbf{R} , $a:I\longrightarrow \mathscr{L}_c(E): \forall t\in I,\, a(t)$ est un endormorphisme continu de E et on suppose a continue de I dans $(\mathscr{L}_c(E), \|\|\|)$. On se donne aussi $b:I\longrightarrow E$ continue. On a alors l'équation différentielle résolue du premier ordre

$$x'(t) = a(t).x(t) + b(t)$$
 d'équation homogène associée $x'(t) = a(t).x'(t)$

□ Théorème [Solution générale de X' = aX + b] – Si $a, b : I \longrightarrow \mathbf{K}$ sont continues, la solution général de l'équation différentielle X' = aX + b est

$$X(t) = \left[C + \int_{t_0}^t \exp(-A(s)) b(s) ds \right] \exp(A(t)) \quad A(t) = \int_{t_0}^t A(s) ds, \ t_0 \in I, \ C \in \mathbf{K}$$

□ **Théorème** [Cauchy pour les EDL] – Soit E un espace de Banach, I un intervalle de \mathbf{R} , $(t_0, x_0) \in I \times E$ et (E) X(t) = a(t).X(t) + b(t). Alors le problème de Cauchy $((E), (t_0, x_0))$ admet une unique solution $\varphi : I \longrightarrow E \mathscr{C}^1$.

□ Lemme^{HP} [Gronwall] – Soit I = [a, b[ou I = [a, b] un intervalle de \mathbf{R} fermé à gauche, $u, v : I \longrightarrow \mathbf{R}_+$ continues positives et telles que $\forall t \in I, \ u(t) \leqslant C + \int_a^t u(s)v(s)\mathrm{d}s.$ Alors $\forall t \in I,$

$$u(t) \leqslant C \exp\left(\int_a^t v(s) ds\right).$$

[Indication : on majore la quantité de droite, pour cela on pose pour $t \in I$

$$\varphi(t) = \left(C + \int_a^t u(s)v(s)\mathrm{d}s\right) \exp\left(-\int_a^t v(s)\mathrm{d}s\right).$$

On montre ensuite que φ est décroissante par le calcul de φ' .

□ Proposition [Variation des deux constantes] – Soient $a,b \in \mathbf{K}$, (φ_1,φ_2) une base de solutions de l'équation différentielle $(e): X''(t) = a'X(t) + bX, t \in I$. Pour résoudre (E): X''(t) = a'X(t) + bX + c(t) où $c: I \longrightarrow \mathbf{K}$, si $X \in \mathscr{C}^2(I, \mathbf{K})$ on pose $\lambda, \mu: I \longrightarrow \mathbf{K}$ telles que

$$\begin{pmatrix} X(t) \\ X'(t) \end{pmatrix} = \underbrace{\begin{pmatrix} \varphi_1(t) & \varphi_2(t) \\ \varphi_1'(t) & \varphi_2'(t) \end{pmatrix}}_{R(t)} \begin{pmatrix} \lambda(t) \\ \mu(t) \end{pmatrix}.$$

 λ et μ sont uniques et de classe \mathscr{C}^1 car R(t) est inversible $\forall t \in I$. Alors X est solution de (E) si et seulement si

$$R(t) \begin{pmatrix} \lambda'(t) \\ \mu'(t) \end{pmatrix} = \begin{pmatrix} 0 \\ c(t) \end{pmatrix} \Leftrightarrow \begin{cases} \lambda'(t) = -\frac{c(t)\varphi_2(t)}{\det(R(t))} \\ \mu'(t) = \frac{c(t)\varphi_1(t)}{\det(R(t))} \end{cases}$$

☐ Théorème [Équations d'Euler] – Soient $a_0, \ldots, a_r \in \mathbf{C}$, $I = \mathbf{R}_+^*$ ou $I = \mathbf{R}_-^*$, $b: I \longrightarrow \mathbf{C}$ continue et l'équation différentielle

$$(E_r) \quad x^r y^{(r)}(x) + a_{r-1} x^{r-1} y^{(r-1)}(x) + \dots + a_0 y(x) = b(x).$$

On peut lui associer le polynôme caractéristique d'inconnue α :

(*)
$$\alpha(\alpha-1)\cdots(\alpha-r+1)+a_{r-1}\alpha(\alpha-1)\cdots(\alpha-r+2)+\cdots+a_1\alpha+a_0.$$

Si (*) se scinde en $\prod_{j=1}^{N} (\alpha - \alpha_j)$ avec $\forall (i,j) \in [[1,N]]^2$, $m_j \in \mathbb{N}^*$ et $i \neq j \Rightarrow \alpha_i \neq \alpha_j$, alors la famille des

$$\left(x \in I \longmapsto \left(\ln|x|\right)^k |x|^{\alpha_j}\right)_{k \in \llbracket 0, m_j - 1 \rrbracket, \ j \in \llbracket 1, N \rrbracket}$$

est un système fondamental de solutions de (E_r) .

 \square Proposition $[Z\acute{e}ros\ isol\acute{e}s]$ - Soit $f:I\longrightarrow \mathbf{K}$ non nulle de classe \mathscr{C}^2 solution de \square Théorème $[Formule\ de\ la\ cha\^{i}ne]$ - Soit E un espace vectoriel normé de dimension y''(x) + a(x)y'(x) + b(x)y(x) = 0, $a, b: I \longrightarrow K$ continues. Alors $\{t \in I \mid f(t) = 0\}$ est—finie $n \in \mathbb{N}^*$, \mathscr{B}_E une base de E, F, G des espaces de Banach, U un ouvert de E, V un une partie discrète de I, c'est-à-dire que $\forall [a, b] \subset I$, $\{t \in [a, b] \mid f(t) = 0\}$ est fini. Indication : démontrer la deuxième caractérisation en utilisant une suite de zéros distincts à laquelle on appliquera la propriété de Bolzanno-Weierstrass. f et f' ne peuvent s'annuler en même temps (Cauchy).]

Calcul différentiel 11

 \square **Définition** [Différentiabilité] – Soient E, F deux K-espace de Banach, U un ouvert de $E, f: U \longrightarrow F$. f est dite différentiable en $M_0 \in U$ si $\exists \varphi \in \mathscr{L}_c(E, F)$ telle que l'on ait le développement limité suivant pour h voisin de 0_E :

$$f(M_0 + h) = \int_{h \to 0_E} f(M_0) + \varphi(h) + o(\|h\|_E).$$

On note alors $\varphi = (\mathrm{d}f)(M_0)$, et cette application est en fait unique.

 \square Définition [Dérivées partielles] – Soient E, F deux K-espace vectoriels normés de dimensions finies, U un ouvert de E, $f:U\longrightarrow F$, $\mathscr{B}_E=(e_1,\ldots,e_n)$ une base de E. Pour $j \in [1, n]$, la j-ième dérivée partielle de f par rapport à \mathcal{B}_E est l'application, lorsqu'elle est définie,

$$\partial_{j,\mathscr{B}_{E}}f \colon E \longrightarrow F$$

$$M_{0} \longmapsto \lim_{\substack{t \to 0 \\ t \neq 0}} \frac{f(M_{0} + te_{j}) - f(M_{0})}{t}$$

☐ Théorème [Condition de différentiabilité] – Soient E, F deux K-espaces vectoriels normés de dimension finie, U un ouvert de E, $f: U \longrightarrow F$, $M_0 \in U$, $\mathscr{B}_E = (e_1, \ldots, e_n)$ une base de E. On suppose que f admet une dérivée partielle $(\partial_{j,\mathscr{B}_E}f)_{j\in\mathbb{I}_1,n\mathbb{I}}$ définies et continues au voisinage de M_0 . Alors f est différentiable et

$$(\mathrm{d}f)(M_0) \colon E \longrightarrow F$$

$$\sum_{j=1}^n x_j e_j \longmapsto \sum_{j=1}^n x_j \left(\partial_{j,\mathscr{B}_E} f\right) \left(e_j\right)$$

 \square Proposition [Matrice jacobienne] – Soient E, F deux K-espaces vectoriels normés de dimensions finies, $\mathscr{B}_E = (e_1, \ldots, e_p)$ une **R**-base de $E, \mathscr{B}_F = (\varepsilon_1, \ldots, \varepsilon_n)$ une base de F, U un ouvert de $E, M_0 \in U, f: U \longrightarrow F$ différentiable en M_0 . Si on note $(f_i)_{i\in \mathbb{I}_1,n\mathbb{I}}$ les fonctions coordonnées de f relativement à \mathscr{B}_F , alors l'application linéaire $(df)(M_0)$ peut être représentée par la matrice :

$$\operatorname{Mat}_{\mathscr{B}_{E},\mathscr{B}_{F}}((\operatorname{d} f)(M_{0})) = \operatorname{Jac}_{\mathscr{B}_{E},\mathscr{B}_{F}}(f)(M_{0}) = \left(\left(\partial_{j,\mathscr{B}_{E}}f_{i}\right)(M_{0})\right)_{(i,j)\in \llbracket 1,n\rrbracket \times \llbracket 1,p\rrbracket}.$$

ouvert de $F, f: U \longrightarrow F, q: V \longrightarrow G$ telles que $f(U) \subset V, M_0 \in U, N_0 = f(M_0) \in V$. Si f et q sont respectivement différentiables en M_0 et N_0 , alors $q \circ f$ a des dérivées partielles selon \mathscr{B}_E en M_0 et $\forall i \in [1, n]$,

$$(\partial_{i,\mathscr{B}_{E}}g \circ f)(M_{0}) = [(\mathrm{d}g)(N_{0})]((\partial_{i,\mathscr{B}_{E}}f)(M_{0})).$$

Théorème [Schwarz] – Soit E un espace vectoriel normé de dimension finie, Uun ouvert de $E, f: U \longrightarrow E, \mathscr{B}_E = (e_1, \ldots, e_n)$ une base de E. On suppose que f admet des dérivées partielles d'ordre 2 continue, c'est à dire que $\forall (i,j) \in [1,n]^2$, $(\partial_{i,\mathscr{B}_{E}}(\partial_{j,\mathscr{B}_{E}}f)):U\longrightarrow E$ est définie et continue sur U. Alors $\forall M\in U, \forall (i,j)\in$ $[1, n]^2$

$$\left(\partial_{i,\mathscr{B}_{E}}\left(\partial_{j,\mathscr{B}_{E}}f\right)\right)(M) = \left(\partial_{j,\mathscr{B}_{E}}\left(\partial_{i,\mathscr{B}_{E}}f\right)\right)(M).$$

 \square Théorème^{HP} [Inversion locale] – Soient E, F deux espaces de Banach, U un ouvert de $E, f: U \longrightarrow F$ de classe \mathscr{C}^k avec $k \geq 1, A \in U$. On suppose que $(\mathrm{d}f)(A) \in$ $\mathcal{L}_c(E,F)$ est inversible et bicontinue ¹. Alors il existe deux ouverts ω et ω' voisinages respectivement de A et f(A) tels que $f_{|\omega}:\omega\longrightarrow\omega'$ est un \mathscr{C}^k -difféomorphisme. [Indication: on peut réduire la problème en supposant $E = F = \mathbb{R}^n$, A = 0 et $(\mathrm{d}f)(A) = \mathrm{I}_n$ quitte à composer par $((\mathrm{d}f)(A))^{-1}$. Pour trouver un voisinage sur lequel f est injective, on considère une boule dans laquelle la différentielle de f ne s'éloigne pas trop de I_n puis on montrer que h(t) = f(t) - t est $\frac{1}{2}$ -lipschitzienne en dérivant $\varphi(t) = f(ty + (1-t)x).$

- \square Théorème [Inversion globale] Soient E, F deux espaces vectoriels normés de dimension finie, U un ouvert de E, V un ouvert de F, $f:U\longrightarrow V$, $k\in \mathbb{N}^*\cup\{+\infty\}$. f est un \mathscr{C}^k -difféomorphisme de U sur V si et seulement si :
- (1) f est \mathscr{C}^k :
- (2) $\forall A \in U$, $\det(\operatorname{Jac}(f)(A))$ ne s'annule pas:
- (3) f est bijective de U dans V.
- ☐ Proposition [Égalité de la moyenne] Soit U un ouvert de E espace vectoriel complet de dimension finie (ou Banach), $f:U\longrightarrow E$ de classe \mathscr{C}^1 , $A,B\in U$ tels que $[AB] \in U$. Alors

$$f(B) = f(A) + \int_0^1 [(df)(tB + (1-t)A)](B - A)dt,$$

et si $E = \mathbf{R}^n$ alors

$$f(b_1,...,b_n) = f(a_1,...,a_n) + \int_0^1 \sum_{i=1}^n (b_i - a_i) \frac{\partial f}{\partial x_i} (tB + (1-t)A) dt.$$

^{1.} Continue de réciproque continue

□ Définition [Gradient] – Soit E un espace euclidien, U un ouvert de E, $f: U \longrightarrow \mathbf{R}$. Si f est différentiable en $M_0 \in U$, l'unique vecteur noté $\nabla f(M_0)$ tel que $\forall H \in E$ $(\mathrm{d}f)(M_0)(H) = (H|\nabla f(M_0))$ s'appelle gradient de f en M_0 .

□ Théorème [Inégalité des accroissements finis] – Soit U un ouvert de E espace vectoriel normé de dimension finie (ou Banach), $f: U \longrightarrow F$ de classe \mathscr{C}^1 . Alors pour tous points $A, B \in U$ tels que $[AB] \in U$,

$$||f(B) - f(A)|| \le ||B - A|| \sup_{M \in |AB|} |||(df)(M)|||,$$

et si E est euclidient et $F = \mathbf{R}$,

$$|f(B) - f(A)| \le ||B - A|| \sup_{M \in [AB]} ||\nabla f(M)||.$$

 \square Définition [Hessienne] – Soit U un ouvert de \mathbb{R}^n , $f:U\longrightarrow \mathbb{R}$ de classe \mathscr{C}^2 . On appelle matrice hessienne de f en $A\in \mathbb{R}^n$ la matrice symétrique réelle

$$\mathscr{H}(f)(A) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)_{(i,j) \in [\![1,n]\!]^2}.$$

La forme quadratique hessienne de \mathbb{R}^n canoniquement associée à $\mathcal{H}(f)(A)$ est alors

$$\mathcal{H}(f)(A): (h_1, \dots, h_n) \in \mathbf{R}^n \longmapsto \sum_{i=1}^n \sum_{j=1}^n h_i h_j \frac{\partial^2 f}{\partial x_i \partial x_j}.$$

□ Théorème [Taylor-Young à l'ordre 2] – Soit U un ouvert de \mathbf{R}^n , $f:U\longrightarrow F$ de classe \mathscr{C}^2 . Alors $\forall A\in U, f$ admet le développement limité suivant pour H voisin de 0:

$$f(A + H) = f(A) + (df)(A)(H)\frac{1}{2}\mathcal{H}(f)(A)(H) + o(||H||^2).$$

Théorème^{HP} [Extrema et hessienne] – Soit U un ouvert de \mathbb{R}^n , $f: U \longrightarrow \mathbb{R}$ de classe \mathscr{C}^2 , A un point critique de f ((df)(A) = 0) et $q = \mathscr{H}(f)(A)$ la forme quadratique hessienne de f en A.

- (1) Si f présente un minimum (respectivement maximum) local en A, alors q est positive (respectivement négative).
- (2) Si q est définie négative (respectivement positive), alors f admet un maximum (respectivement minimum) local en A.

□ Théorème [Étude locale d'un point critique] – Soit U un ouvert de \mathbf{R}^2 , $f:U\longrightarrow \mathbf{R}$ de classe \mathscr{C}^2 , $A\in U$, on pose les notations de Monge suivantes :

$$p = \frac{\partial f}{\partial x}(A), \ q = \frac{\partial f}{\partial y}(A), \ r = \frac{\partial^2 f}{\partial x^2}, \ s = \frac{\partial^2 f}{\partial x \partial y}, \ t = \frac{\partial^2 f}{\partial y^2}.$$

- (1) Si f présente un extremum local en A, alors p = q = 0;
- (2) si p=q=0 et $rt-s^2>0$, alors f présente en A un extremum local strict :
 - (i) minimum si $r \ge 0$ ou $r + t \ge 0$,
 - (ii) maximum si $r \leq 0$ ou $r + t \leq 0$;
- (3) si p = q = 0 et $rt s^2 < 0$, alors f présente un col en A: pour tout voisinage V de A, il existe $M, N \in V$ tels que $f(M \le f(A) \le f(N))$;
- (4) si p = q = 0 et $rt s^2 = 0$, on ne peut rien dire.
- □ Proposition^{HP} [Convexité et maximum] Soit K un ouvert de \mathbf{R}^n convexe, $f: K \longrightarrow \mathbf{R}$ est dite convexe si $\forall t \in [0,1], \forall M, N \in K, f(tM+(1-t)N) \leqslant tf(M)+(1-t)f(N)$. Si de plus K est compact et f continue, le maximum de f sur K est atteint en un point de $\partial K = K \setminus K$, en un point A tel que $K \setminus A$ reste convexe.

12 Équations différentielles ordinaires

 \square **Définition** [Équation différentielle d'ordre 1] – Soit E un espace vectoriel normé de dimension finie ou un Banach, U un ouvert de $\mathbf{R} \times E$, $f: U \longrightarrow E$ continue. L'équation d'ordre 1 résolue associée à f est

$$(E) \quad x'(t) = f(t, x(t)).$$

Une solution de (E) est un couple (I, φ) où I est un intervalle de \mathbf{R} et $\varphi : I \longrightarrow E$ de classe \mathscr{C}^1 telle que $\forall t \in I$, $(t, \varphi(t)) \in U$ et $\varphi'(t) = f(t, \varphi(t))$. La donnée d'une condition initiale $x(t_0) = x_0$ pour (E) constitue un problème de Cauchy.

- □ Lemme [Prolongement en une borne] Soit I = [a, b[ou I =]a, b[, avec $a \in \overline{\mathbf{R}}$ et $b \in \mathbf{R}$, (I, φ) une solution de (E) x'(t) = f(t, x(t)) où $f : U \subset \mathbf{R} \times E \longrightarrow E$ continue. On suppose que $\varphi(t) \xrightarrow[t \to b]{} \ell \in E$ avec $(b, l) \in U$. Alors si $J = I \cup \{b\}$ et ψ définie par $\psi_{|I} = \varphi$ et $\psi(b) = \ell$, (J, ψ) est une solution de (E) qui prolonge strictement (I, φ) . [Indication : c'est le théorème du relèvement \mathscr{C}^1]
- □ Théorème [Cauchy-Lipschitz] Soit E un espace vectoriel normé de dimension finie, U un ouvert de $\mathbf{R} \times E$, $f: U \longrightarrow E$ de classe \mathscr{C}^1 et (E) x'(t) = f(t, x(t)). Alors tout problème de Cauchy $((E), (t_0, x_0))$ où $(t_0, x_0) \in U$ admet une unique solution maximale (I, φ) . De plus, I est un intervalle ouvert de \mathbf{R} et tout autre solution du même problème de Cauchy est restriction de cette solution maximale.
- □ Proposition^{HP} [Solution maximale sur \mathbf{R}] Soit E un espace vectoriel normé de dimension finie, $f: \mathbf{R} \times E \longrightarrow E$ de classe \mathscr{C}^1 bornée. Alors toute solution de (E) x'(t) = f(t, x(t)) est bornée sur \mathbf{R} .

[Indication : Cauchy-Lipschitz s'applique, prendre une solution maximale définie sur un intervalle ouvert et supposer par l'absurde qu'une borne est finie. Utiliser le prolongement en une borne.]

Proposition [Système autonome] – Soit U un ouvert de \mathbf{R}^n , $f: U \longrightarrow \mathbf{R}^n$ \mathscr{C}^1 , (E) x'(t) = f(x(t)) l'équation autonome associée à f.

- (1) Pour toute fonction $\varphi: I \longrightarrow \mathbf{R}^n \mathscr{C}^1$, (I, φ) est solution (respectivement solution maximale) de (E) si et seulement si $\forall a \in \mathbf{R}$, $(I a, t \in I a \longmapsto \varphi(t + a))$ est solution (respectivement solution maximale) de (E).
- (2) Une solution maximale de (E) est soit injective soit définie sur \mathbf{R} et périodique.
- □ Proposition [Trajectoires] Soit (E) x'(t) = f(x(t)) une équation autonome d'ordre 1 avec $f: U \subset \mathbf{R}^n \longrightarrow \mathbf{R}^n$ \mathscr{C}^1 et $(I\varphi)$ une solution maximale de (E). La trajectoire associée à la fonction (I,φ) est le support de la courbe paramétrée $t \in I \longmapsto \varphi(t)$. De plus, deux trajectoires associées à des solutions maximales sont soit disjointes, soit confondues.

13 Lemmes et résultats divers

Lemme Exo [Césaro] – Soit (u_n) une suite d'un espace vectoriel normé E. Si $u_n \xrightarrow[n \to +\infty]{} \ell$, alors

$$\frac{1}{n+1} \sum_{k=0}^{n} u_n \xrightarrow[n \to +\infty]{} \ell.$$

[Indication : revenir à la définition de la limite.]

Proposition [Dérivée d'une quantité bilinéaire] – Soient A une partie de \mathbf{R} , E_1 , E_2 , F des espaces vectoriels normés, $f:A\longrightarrow E_1$, $g:A\longrightarrow E_2$ dérivables en a et $B:E_1\times E_2\longrightarrow F$ bilinéaire continue. Alors $h:x\in A\longmapsto B(f(x),g(x))$ est dérivable en a et

$$h'(a) = B(f'(a), q(a)) + B(f(a), q'(a)).$$

□ Proposition^{EXO} [Suites sous-additives] – Une suite $(u_n) \in \mathbf{R}^{\mathbf{N}^*}$ est sous-additive si $\forall m, n \in \mathbf{N}^*, u_{n+m} \leq u_n + u_m$. Si $(u_n)_{n \in \mathbf{N}^*}$ est sous-additive, alors

$$\frac{u_n}{n} \xrightarrow[n \to +\infty]{} \ell = \inf_{p \geqslant 1} \frac{u_p}{p} \in \mathbf{R} \cup \{-\infty\}.$$

[Indication: montrer que $\forall k > \ell$, $\exists n_0 \in \mathbf{N} \text{ tel que } \forall n \geqslant n_0, \frac{u_n}{n} < k.$]

☐ Théorème^{HP} [Sous-groupes de (\mathbf{R} , +)] – Les sous-groupes de (\mathbf{R} , +) sont soit denses dans \mathbf{R} , soit de la forme $a\mathbf{Z}$ avec $a \in \mathbf{R}_{\perp}^*$

[Indication: $si\ G$ est le sous-groupe, introduire $\inf G \cap \mathbb{R}_+^*$ et discuter son appartenance à G.]

□ Proposition^{EXO} [Wallis] – Pour $n \in \mathbb{N}$ on pose $W_n = \int_0^{\frac{\pi}{2}} \sin^n(t) dt = \int_0^{\frac{\pi}{2}} \cos^n(t) dt$. On a alors les propriétés suivantes :

(1) $\forall n \ge 1, (n+1)Wn + 1 = nW_{n-1} \text{ et } \forall n \in \mathbf{N}, (n+1)W_{n+1}W_n = \frac{\pi}{2};$

(2) W_n est décroissante positive;

(3)
$$W_n \sim \sqrt{\frac{\pi}{2n}}$$
.

[Indication: tout part d'une intégration par parties.]

Proposition^{EXO} [Polynômes de Tchebycheff] – Pour $n \in \mathbb{N}$, il existe un unique polynôme T_n tel que $\forall \theta \in \mathbb{R}$, $T_n(\cos \theta) = \cos(n\theta)$. De plus, T_n est de degré n, de coefficient dominant 2^{n-1} , ses racines sont les $\left(\cos\left(\frac{(2k+1)\pi}{2n}\right)\right)_{k \in [0,n-1]}$ et on a une expression de T_n :

$$T_n = \sum_{p=0}^{E(\frac{n}{2})} (-1)^p {2p \choose n} (1 - X^2)^p X^{n-2p}.$$

□ Théorème^{HP} [Baire] – Soit $(\Theta_n)_{n \in \mathbb{N}}$ une suite d'ouverts denses dans \mathbb{R} . Alors $\bigcap_{n \in \mathbb{N}} \Theta_n$ est dense dans \mathbb{R} .

[Indication : utiliser le théorème des segments emboîtés.]

- □ Théorème^{HP} [Borel-Lebesgue] Soit (E,d) un espace métrique. On dit que E vérifie la propriété de Borel-Lebesgue si de tout recouvrement de E par des ouverts on peut en extraire un sous-recouvrement fini. Alors E vérifie la propriété de Borel-Lebesgue si et seulement si on peut lui appliquer le théorème de Bolzanno-Weierstrass; c'est-à-dire si toute suite de E admet une valeur d'adhérence.
- □ Proposition [Série harmonique] On a le développement limité de la série harmonique $H_n = \sum_{k=1}^n \frac{1}{k}$ suivant, avec γ la constante d'Euler :

$$H_n = \ln n + \gamma + O\left(\frac{1}{n}\right).$$

[Indication: utiliser des suites adjacentes.]

- Proposition [Ensemble des valeurs d'adhérences] L'ensemble des valeurs d'adhérence de la suite (u_n) est le fermé $\bigcap \overline{\{u_n \mid n \geqslant p\}}$.
- □ Proposition [Stirling] On a l'équivalent suivant :

$$n! \underset{+\infty}{\sim} \sqrt{2\pi n} \left(\frac{n}{\mathrm{e}}\right)^n$$
.

□ Définition^{HP} [Module de continuité] – Soit $f: I \longrightarrow E$ où I est un intervalle non-vide de \mathbf{R} , E un espace vectoriel normé. Pour $\delta \geq 0$ on pose

$$\omega(\delta) = \sup \{ \|f(x) - f(y)\| \mid (x, y) \in I^2, |x - y| \le \delta \}.$$

Si f est uniformément continue sur I, alors $\omega(\delta) \xrightarrow[\delta \to 0]{} 0$.

- □ Proposition [Moments] Si $f:[a,b] \longrightarrow \mathbf{C}$ continue vérifie $\forall n \in \mathbf{N}, \int_a^b f(t)t^n dt = 0$, alors f est nulle.
- [Indication : Par linéarité pour toute fonction polynômiale. Conclure en construisant $P \in \mathbf{C}[X]$ tel que Pf est de signe constant ou appliquer le théorème d'approximation de Weierstrass.]
- **Théorème** [Relèvement \mathscr{C}^1] Soit I un intervalle de \mathbf{R} , $f: I \longrightarrow \mathbf{U}^1$ de classe \mathscr{C}^1 . Alors il existe $\theta \in \mathscr{C}^1(I, \mathbf{R})$ telle que $\forall t \in I$, $f(t) = e^{i\theta(t)}$.

[Indication : procéder par analyse et synthèse. Il existe aussi un théorème de relèvement continu mais plus difficile à démontrer.]

 \square Lemme [Riemann-Lebesgue] – Soit $f:[a,b]\longrightarrow \mathbf{R}$ continue par morceaux. Alors

$$\int_{a}^{b} f(t) e^{i\lambda t} dt \xrightarrow[\lambda \to \pm \infty]{} 0.$$

[Indication : suivre la méthode de construction de l'intégrale.]

Théorème EXO [Critère de Weyl] – On dit que la suite $(u_n)_{n \in \mathbb{N}^*}$ d'éléments de [0,1] est équirépartie si $\forall [a,b] \subset [0,1], \frac{1}{n} \operatorname{Card} \{k \in [1,n] \mid u_k \in [a,b]\} \xrightarrow[n \to +\infty]{} b-a$. Alors cette condition est équivalente au fait que $\forall p \in \mathbb{N}^*$,

$$\frac{1}{n} \sum_{k=1}^{n} e^{2ip\pi u_k} \xrightarrow[n \to +\infty]{} 0.$$

[Indication: montrer d'abord (u_n) est équirépartie si et seulement si pour toute fonction $f:[0,1] \longrightarrow \mathbb{C}$ continue par morceaux,

$$\frac{1}{n} \sum_{k=1}^{n} f(u_k) \xrightarrow[n \to +\infty]{} \int_{0}^{1} f(t) dt.$$

Conclure en appliquant le théorème de Weirstrass trigonométrique.]

- □ Lemme^{EXO} [Dini] Soit (X, d) un espace métrique compact, E un **K**-espace vectoriel normé, (f_n) , g des applications de X dans E continues. On suppose que $\forall x \in X$, $||f_n(x) g(x)||_E \xrightarrow[n \to +\infty]{} 0$ en décroissant. Alors (f_n) converge uniformément vers g sur X.
- Cette fiche comporte 106 entrées dont 52 théorèmes, 31 propositions, 15 définitions et 8 lemmes.
 - 1. On rappelle que U est l'ensemble des nombres complexes de module 1.

MP*2 Pense-bête: analyse

Index

Égalité de la movenne, 9 Équation différentielle d'ordre 1, 10 Équation résolue d'ordre 1. 8 Équations d'Euler, 8 Équivalence de normes en dimension finie, 3 Étude locale d'un point critique, 10

Approximation de Weierstrass, 4 Approximations de fonctions, 4

(HP) Baire, 11 Bernstein, 4 (HP) Borel-Lebesgue, 11

(exo) Césaro, 11

Caractérisation des sommes de séries entières, 7 Caractère \mathcal{C}^1 d'une limite uniforme, 5 Caractère \mathcal{C}^1 des intégrales à paramètre, 5 Caractère \mathcal{C}^k des intégrales à paramètre, 6 Caractère \mathscr{C}^p d'une limite uniforme, 5 (HP) Caractère analytique, 7

Cauchy pour les EDL, 8

Cauchy-Lipschitz, 10

Changement de variable, 4

Coefficients et série de Fourier, 7

Comparaison avec une intégrale, 2

(HP) Composantes connexes, 3

Condition de différentiabilité, 9

Connexité par arcs, 3

Connvergences, 2

Construction de normes, 3

Continuité des applications linéaires, 3

Continuité des intégrales à paramètre, 5

Continuité des limites uniformes. 5

Convergence de l'intégrale et limite, 4

Convergence dominée, 4

Convergence dominée des sommes partielles, 4

Convergence normale de Dirichlet, 8

(HP) Convergence radiale d'Abel, 7

Convergence simple de Dirichlet, 8

Convergence uniforme et adhérence, 5

Convergence, intégrabilité, semi-convergence, 3

(HP) Convexité et maximum, 10

Critère de Leibniz. 2

(EXO) Critère de Weyl, 12

Dérivée d'une quantité bilinéaire, 11

Dérivées partielles, 9 Différentiabilité, 9

(EXO) Dini, 12

(HP) Distance, 3

(EXO) Ensemble des valeurs d'adhérences, 11

Exponentielle, 3

(HP) Extrema et hessienne, 10

(HP) Formule de Cauchy, 7

Formule de Gauss, 6

Formule de la chaîne, 9

Formules de Taylor, 1

Fourier en période T, 8

Fubini et intégrales doubles : cas de compacts, 6 Fubini et intégrales doubles : cas général, 6

Fubini et suites doubles, 2

Gradient, 10

(HP) Gronwall, 8

Hessienne, 10

Inégalité des accroissements finis, 10 Intégrale dépendant d'une borne, 5

Interversion des limites, 5

Inversion globale, 9

(HP) Inversion locale, 9

(HP) Limite diagonale, 5

Matrice jacobienne, 9

(HP) Module de continuité, 11

Moments, 12

Norme, 3

Parseval et convergence quadratique, 7

Parseval sesquilinéaire, 7

(HP) Point fixe contractant, 3

(EXO) Polynômes de Tchebycheff, 11

Primitives usuelles, 2

Produit de Cauchy de séries, 3

Prolongement en une borne, 10

Règle de d'Alembert, 2, 6

Règle de Riemmann, 2, 4

Règles de convergence, 2

(HP) Raabe-Duhamel, 3

Relèvement \mathcal{C}^1 , 12

Relations usuelles, 1

Riemann-Lebesgue, 12

Série harmonique, 11

Séries de Bertrand, 2

Séries de Riemann, 2

Séries entières usuelles, 6

Séries uniformément convergentes, 5

Schwarz, 9

Solution générale de X' = aX + b. 8

(HP) Solution maximale sur R, 10

Sommation L^1 , 4

(HP) Sous-groupes de $(\mathbf{R}, +)$, 11

Stirling, 11

(Exo) Suites sous-additives, 11

Système autonome, 10

Taylor-Young à l'ordre 2, 10

Trajectoires, 11 Trigonométrie, 1

Variation des deux constantes, 8

(EXO) Wallis, 11

Zéros isolés, 9