本节主题

分支指令的 控制信号

北京大学。嘉课

计算机组成

制作人:随後旅

不同维度的指令分类

运算指令	addu rd, rs, rt subu rd, rs, rt	ori rt,rs,imm16	
访存指令		lw rt, imm16(rs) sw rt, imm16(rs)	
分支指令		beq rs,rt,imm16	
	R型指令	I型指令	J型指令

条件分支指令的示例

```
if(i==j)
    f=g+h;
else
f=g-h;
```

C语言代码

```
beq $s3,$s4,True  # branch i==j sub $s0,$s1,$s2  # f=g-h(false) j Next  # goto Next

True: add $s0,$s1,$s2 # f=g+h (true) Next: ...

MIPS汇编语言代码
```

beq指令的操作步骤

- beq rs, rt, imm16
 - ① MEM[PC]

从指令存储器中取回指令

- ② if (R[rs]-R[rt]==0) 判断转移条件是否成立
- 3 then PC = PC + 4 + SignExt[imm16]*4; else PC = PC + 4;

计算下一条指令的地址

6-bit

5-bit

5-bit

16-bit

I	opcode			rs			rt		immediate	
	31	26	25		21	20		16	15	

)

beq指令的操作步骤(2)

if (R[rs]-R[rt]==0) then zero=1; else zero=0

beq指令的操作步骤(2)

if (R[rs]-R[rt]==0) then zero=1; else zero=0

beq指令的操作步骤(2)

if (R[rs]-R[rt]==0) then zero=1; else zero=0

beq指令的操作步骤(3)

nPC_sel	zero	MUX	↑ nPCcol
0 ("+4")	x	0 (PC+4)	nPC sel zero
1 ("branch")	0 (≠)	0 (PC+4)	T T PC+4 Target
1 ("branch")	1 (=)	1 (Target Address)	Address

beq指令的操作步骤(3)

beq指令的操作步骤(3)

```
if(zero==0) then PC=PC+4 + SignExt[imm16]*4;
    else PC=PC+4;
                                                                    nPC_sel
                                         <sup>7</sup>32
                                                                    zero
                                PC
                                                    32 Target Address
                                             32
                      clk
                                                         Adder
                                            Adder
                                32
                                                          SignExt||00
                               Address
                                         Instruction Word
                            Instruction
                              Memory
                                                            IFU
```

本节小结

分支指令的 控制信号

北京大学。嘉渊

计算机组成

制作人:随後都

