Proba sup. lanning & MLE EDERM
FRME R(O)
[2RM= R(a)= Predloss(A) + Regul(B)
$\lambda \ \theta\ ^2$
Ordo. Mterp as Bayesfoon learning
MLE JS. (max)- Bayesian Ostim. Lik(Θ) Z, Θ Θ MLE = avgmax $P(Z \Theta)$ Θ MLE = Θ Θ MLE = Θ Θ Θ Θ Θ Θ Θ Θ
Borperon estim. I find hyporgram.
prior distrib P(O/I) = prov lenouloge III
Joint distrib: $p(Z, \theta A) = p(Z \theta, X) p(\theta A)$
Posteror distrib. of θ $P(2 \theta) P(0 A)$ $P(2 A)$

$$P(\theta \mid z, \lambda) = \frac{1}{P(z|\theta)} P(z|\theta) P(\theta|\lambda)$$

$$P(z|\theta) R(\theta|\lambda) \quad \text{(Unnorm. Rate of } \theta \text{ (i)}$$

MAP = Mayaman a posteriori

If P(O17) = conot, => ÎNAP = ÎNAP

Prob. Post-por for O: More street

- = 95% CS

12-Reg. Linkog as Generative Model

A o2: fixed & J: RV. X-front () For j= 1.0: P(0;/A) = N(0, A) => 0, ~ N(0, A) $(2) \text{ for } i=1. N : P(y_i/x_i, 0, 8^2) = N(0 x_i, 0^2)$ Joint Prob. Orshib $P(\theta, Y|X, \sigma^2, \lambda)$ $= P(Y|X,\theta,\delta^2X) P(\theta|X,X_S)$ Div. Grotheal Model Observed/Fixed/conditioned=on $\frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac$

Like
$$P(Y|X,\theta,\sigma^2) = TT_i P(y_i|X_i,\theta,\sigma^2)$$

 $P(Y|X,\theta,\sigma^2) = P(Y|X,\theta,\sigma^2) = P(Y|X_i,\sigma^2)$
 $P(Y|X,\theta,\sigma^2) = P(Y|X_i,\sigma^2) = P(Y_i,\sigma^2)$
 $P(Y|X_i,\sigma^2) = P(Y_i,\sigma^2) = P(Y_i,\sigma^2)$
 $P(Y|X_i,\sigma^2) = P(Y_i,\sigma^2) = P(Y_i,\sigma^2)$
 $P(Y_i,\sigma^2) = P(Y_i$

My normal? - Common - conventent. L2 nom is CVX My pavam. prob, modely? L) Malles assimps lear OV: be assump. - free ?? $\left(\sum_{i} x_{i} \times \left(X_{i} \times X_{i}\right)\right) = 5^{2}$