МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Нижегородский государственный университет им. Н. И. Лобачевского»

Радиофизический факультет Кафедра электродинамики

Направление «Радиофизика»

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

Название работы

Выполнил студент гр. ??? ФИО
Научные руководители:
к. ф.-м. н. Еськин В. А.

Содержание

Введение	
Глава 1. Распознавания формул на изображениях глубокой ней-	
ронной сетью, основанной на GRU ячейке	4
1.1. Описание набора данных и подготовки набора данных	4
1.2. Описание модели	4
1.3. Описание процесса обучения и оценки точности модели	4
1.4. Результаты численных экспериментов	4
Глава 2. Распознавания формул на изображениях глубокой ней-	
ронной сетью, основанной на трансформере	Ę
2.1. Описание модели	Ę
2.2. Описание процесса обучения и оценки точности модели	Ę
2.3. Результаты численных экспериментов	
Заключение	6
Литература	7

Введение

На данном этапе развития технологий в современном мире всё чаще появляется необходимость автоматизированного чтения текста с изображений, фото или видео. Под текстом может подразумеваться абсолютно всё: рукописный текст, формулы, требующие переноски из старых учебников и книг в сеть или быстрый перевод текста с бумажных носителей. В любом случае, такие технологии сильно облегают жизнь людей.

Сейчас такую возможность нам предоставляют нейронные сети, которые, по сути, имитируют мышление человека, так как нейронная сеть — это модель, математически созданная на основе биологических нейронных сетей и их функционирования. Первая попытка создания нейронной сети принадлежит Уоррену Мак-Каллоку и Уолтеру Питтсу, которые формируют понятие нейронной сети [1]. А через несколько лет Дональд Хебб предлагает первый алгоритм обучения.

Интерес к нейронным сетям обусловлен их успешным применением в самых разных областях – медицина, бизнес, геология, физика. Их практикуют везде, где нужно находить решения задач управления, классификации или прогнозирования. Так Бернард Уидроу и его студент Хофф создали Адалин, использовавшийся для задач предсказания и адаптивного управления [2].

Актуальность данной работы состоит в сравнении двух нейронных сетей, разработанных на разных основах. Данное решение принято исходя из того, чтоб подсчитать, с каким успехом развиваются нейронные сети и с какой скоростью они будут обучаться, имея одинаковый набор данных.

Данная работа состоит из двух глав. В первой главе рассматривается эксперимент с распознаванием формул на изображениях глубокой нейронной сетью, основанной на GRU ячейке. Во второй исследуется распознавания формул на изображениях глубокой нейронной сетью, основанной на трансформере.

Распознавания формул на изображениях глубокой нейронной сетью, основанной на GRU ячейке

1.1. Описание набора данных и подготовки набора данных

В качестве набора данных используются изображения с формулами, взятых с гарвардского проекта. Для оптимизации работы нейронной сети, предварительно, эти изображения обрезаются. После чего, формулы токенизируются и нормализуются. Создаётся отдельный файл, где каждая из формул прописана в печатном виде и имеет свой номер. Для наибольшего успеха обучения, из пакета данных формулы исключаются те, что имеют большое количество токенов и грамматические ошибки.

1.2. Описание модели

1.3. Описание процесса обучения и оценки точности модели

1.4. Результаты численных экспериментов

Распознавания формул на изображениях глубокой нейронной сетью, основанной на трансформере

- 2.1. Описание модели
- 2.2. Описание процесса обучения и оценки точности модели
- 2.3. Результаты численных экспериментов

Заключение

Литература