Data Provided: None.

DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING

Autumn Semester 2010 - 2011 (2 hours)

CIRCUITS AND SIGNALS 1

Answer **THREE** questions. Solutions will be considered in the order in which they are presented in the answer book and **no marks will be awarded for an attempt at a fourth question.** Trial answers will be ignored if they are clearly crossed out. **The numbers given after each section of a question indicate the relative weighting of that section.**

Unit multipliers:
$$p = x10^{-12}$$
, $n = x10^{-9}$, $\mu = x10^{-6}$, $m = x10^{-3}$, $k = x10^{3}$, $M = x10^{6}$ $G = x10^{9}$

- 1 (a) For the circuit of figure 1a, use nodal analysis to find the voltage of node A with respect to the reference node. {5}
 - Hence find the power dissipated in the 2 Ω resistor. $\{2\}$
 - (b) (i) Use the principle of superposition to find the value of V_A in figure 1b. Identify the source that makes the largest contribution to the value of V_A . $\{7\}$
 - (ii) Work out the power delivered by each of the three sources. (If the source is delivering power to the rest of the circuit, take the power as positive; if the source is absorbing power, take the power as negative.) {6}

Figure 1a

Figure 1b

2 (a) Find the Thevenin equivalent parameters V_{Th} and R_{Th} that will make the circuits of figure 2a (i) and figure 2a (ii) indistinguishable from the pont of view of an observer looking into terminals **A** and **B**. $\{6\}$

Figure 2a

- (b) In figure 2b V_1 is a 100V dc source that has been connected for a long time
 - (i) Calculate the magnitude of the current I. $\{2\}$
 - (ii) Evaluate the energy stored in L. $\{2\}$
 - (iii) Evaluate the energy stored in C. $\{2\}$

The energy stored in inductors and capacitors is given by $E = \frac{LI^2}{2}$ and $E = \frac{CV^2}{2}$.

Figure 2b

- (c) The source in figure 2b is changed to the step waveform of figure 2c. This waveform is constant at -10 V from $t = -\infty$ to $t = 0^-$ and constant at +20 V from $t = 0^+$ to $t = +\infty$.
 - (i) What are I, V_L and V_C at $t = 0^-$? {3}
 - (ii) What are *I*, V_L and V_C at $t = 0^+$? {5}

Figure 2c

3 (a) (i) For the circuit of figure 3a, show that the impedance V_{I} is given by

$$Z = R \frac{1+j\omega \frac{L}{R} - \omega^2 LC}{1+j\omega CR}. \quad \{3\}$$

(ii) Using the result of part 3 (a) (i), find the angular frequency, ω , at which the circuit is resonant. $\{5\}$

Figure 3a

Q3 CONTINUED ON THE NEXT PAGE

- **(b)** For the circuit of figure 3b.
 - (i) Find I and V_1 and express each result in complex (a+jb) and polar $(r \angle \theta)$ form. {8}
 - (ii) What is the impedance of the circuit from the source point of view? Give your answer in polar form. {2}
 - (iii) If the capacitor reactance is changed to $-j10 \Omega$, what are the new values of I and V_1 ? {2}

Figure 3b

4 (a) (i) What is meant by the term "low-pass filter"? {2}

Figure 4a

- (ii) Identify which of figures 4a (i), (ii), (iii) and (iv) are low pass circuits. {2}
- (iii) **Sketch** the shape of v_o/v_i response that you would expect from a low pass filter using a vertical axis that expressed v_o/v_i in dB and a horizontal axis that expressed frequency on a logarithmic scale. Identify on your sketch the pass band region and the corner frequency and quantify the the roll off rate in the stop band region. $\{6\}$
- (b) (i) The impedance, Z, in figure 4b consists of two components in series. If $I = 0.532 \angle 57.8^{\circ}$ A when $V_S = 10 \angle 0^{\circ}$ V and f = 1 kHz, find the values of the two components. {6}
 - (ii) An inductance of 2.53 mH is placed in series with Z. What is the voltage across this inductance and the total power dissipation in the circuit if f remains at 1 kHz. $\{4\}$

Figure 4b

4RCT/GWJ END OF PAPER

EEE 101 3