Data Mining W4240 Sections 001, 003/004

Lauren A. Hannah

Columbia University, Department of Statistics

September 25, 2014

Outline

Announcements

Basic Linear Regression

Accuracy of Linear Regression

Multiple Linear Regression

Connecting Linear Regression to PCA

Linear Regression Examples

Video for Sections 003/004

There have been some issues with the technology for hybrid:

- frequent crashes of Adobe Connect
- unfamiliar systems for instructor
- non-functioning smart boards
- etc

We will be moving from Adobe Connect to passive video capture for this course.

Implications:

- remote students cannot connect during lecture (but do not need to be awake)
- more online office hours will be offered (AM EST as per Doodle poll)
- tests will still be administered at standard time

Outline

Announcements

Basic Linear Regression

Accuracy of Linear Regression

Multiple Linear Regression

Connecting Linear Regression to PCA

Linear Regression Examples

Advertising Data

Recall from before:

$$\mathtt{sales} = f(\mathtt{TV}, \mathtt{radio}, \mathtt{newspaper}) + \epsilon$$

Advertising Data

Questions:

- 1. Is there a relationship between the advertising budget and sales?
- 2. How strong is the relationship between advertising budget and sales?
- 3. Which media contribute to sales?
- 4. How accurately can we estimate the effects of each medium on sales?
- 5. How accurately can we predict future sales?
- 6. Is the relationship linear?
- 7. Is there synergy between media? (Synergy means f(a and b) > f(a) + f(b))

Can we use kNN to answer these questions? What type of model can answer these questions?

Training data are the set of inputs and outputs, $\mathcal{T} = \{(x_i, y_i)\}_{i=1}^n$

In $\mathit{linear\ regression},$ the goal is to predict Y from X using a linear function

Why am I now showing β and not \mathbf{w} (a notational apology)?

Model:

$$f(X) \approx \beta_0 + \beta_1 X$$

...but we don't know β_0 and β_1 . How can we estimate them from the data?

Let's begin by looking at the residual sum of squares (RSS):

$$RSS(\beta_0, \beta_1) = \sum_{i=1}^{n} \epsilon_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
$$= \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

The i^{th} residual is the difference between the observed value and the predicted value, $y_i - \beta_0 - \beta_1 x_i$. (Compare to MSE...)

Notice that RSS is a *function* of (β_0, β_1) . Let's pick the pair that **minimizes RSS**:

$$(\hat{\beta}_0, \hat{\beta}_1) = \arg\min \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$$

- Hold on! Last lecture you told us that picking a model that minimizes training MSE can lead to overfitting!
- ▶ Does this *model* minimize training MSE?

Let's take the derivative of $RSS(\beta_0, \beta_1)$ with respect to β_0 and set it equal to 0:

$$\frac{\partial}{\partial \beta_0} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2 = -2 \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) \ (=0)$$

$$n\beta_0 = -\beta_1 \sum_{i=1}^n x_i + \sum_{i=1}^n y_i$$

$$\beta_0 = \bar{y} - \beta_1 \bar{x}$$

What does this last line mean?

Now let's take the derivative of $RSS(\beta_0, \beta_1)$ with respect to β_1 and set it equal to 0:

$$\frac{\partial}{\partial \beta_1} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2 = -2 \sum_{i=1}^n x_i (y_i - \beta_0 - \beta_1 x_i) \quad (=0)$$

$$\beta_1 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n y_i x_i - \beta_0 \sum_{i=1}^n x_i$$

$$\beta_1 = \frac{\sum_{i=1}^n y_i x_i - n\beta_0 \bar{x}}{\sum_{i=1}^n x_i^2}$$

Now we have two equations and two unknowns, so let's solve for β_0 and β_1 :

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x}$$

$$\hat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2} = \sum_{i=1}^{n} y_{i}x_{i} - \hat{\beta}_{0} \sum_{i=1}^{n} x_{i}$$

$$\hat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2} = \sum_{i=1}^{n} y_{i}x_{i} - \left(\bar{y} - \hat{\beta}_{1}\bar{x}\right) \sum_{i=1}^{n} x_{i}$$

$$\hat{\beta}_{1} \left(\sum_{i=1}^{n} x_{i}^{2} - n\bar{x}^{2}\right) = \sum_{i=1}^{n} x_{i}y_{i} - n\bar{x}\bar{y}$$

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

Outline

Announcements

Basic Linear Regression

Accuracy of Linear Regression

Multiple Linear Regression

Connecting Linear Regression to PCA

Linear Regression Examples

We can approximate

$$Y = f(X) + \epsilon_1$$

by a linear model

$$Y = \beta_0 + \beta_1 X + \epsilon_2.$$

This is called the population regression line.

However, \hat{eta}_0 and \hat{eta}_1 produce a **least squares line**,

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$$

How different are these?

Different data produce different $(\hat{eta}_0,\hat{eta}_1).^1$

¹Some images are taken from *An Introduction to Statistical Learning* by James, Witten, Hastie and Tibshirani.

Population regression line:

$$Y = \beta_0 + \beta_1 X + \epsilon_2$$

Least squares line:

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$$

What can we say about $\hat{\beta}_0$ vs β_0 and $\hat{\beta}_1$ vs β_1 :

 $ightharpoonup \hat{eta}_0$ and \hat{eta}_1 are *unbiased* estimators of eta_0 and eta_1

$$\mathbb{E}\left[\hat{\beta}_{0}\right] = \beta_{0}, \quad \mathbb{E}\left[\hat{\beta}_{1}\right] = \beta_{1}$$

- (prove that for at least one of these)
- ▶ What about $Var(\hat{\beta}_0)$? (Read James 3.1 or take W4315)
- This allows us to do hypothesis testing... why?

We can use these ideas for **hypothesis testing**. Suppose that we would like to know whether there is a relationship between X and Y. We can have the null hypothesis

$$H_0$$
: there is no relationship between X and Y

and the alternative hypothesis

$$H_1$$
: there is a relationship between X and Y

In terms of our model,

$$H_0: \beta_1 = 0$$

$$H_1: \beta_1 \neq 0$$

(Can you think of a situation where there is a relationship but $\beta_1=0$?)

We can use a t-statistic to determine whether we should reject the null hypothesis:

$$t = \frac{\hat{\beta}_1 - 0}{SE(\hat{\beta}_1)}$$

If there is no relationship, we would expect $\hat{\beta}_1$ to have a t distribution with n-2 degrees of freedom.

- if the t-statistic has really large or really small values, it is unlikely that the observed value came from a t-distribution with mean 0, spread $SE(\hat{\beta}_1)$ and n-2 degrees of freedom
- ightharpoonup if it is not that large, it could have come from that distribution and we cannot reject H_0
- we use p-values and a rejection threshold to determine whether we should reject H₀

If you want to know more, take W4315: Linear Regression Models.

Assessing Model Accuracy

So how well does this model represent the data?

- let's try to see how much of the data spread this model captures
- ▶ $RSS(\hat{\beta}_0, \hat{\beta}_1) = \sum_{i=1}^n (y_i \hat{y}_i)^2$ is the total amount of error left in the model
- ▶ ...but there is some noise to begin with, measured by the *total* sum of squares $TSS = \sum_{i=1}^{n} (y_i \bar{y})^2$
- ▶ the R² statistic is the proportion of error reduced by the model,

$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

Outline

Announcements

Basic Linear Regression

Accuracy of Linear Regression

Multiple Linear Regression

Connecting Linear Regression to PCA

Linear Regression Examples

So what happens if we have more than one predictor? Well, we can just include those in the model as well,

$$\mathbf{Y} = \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} \quad \mathbf{X} = \begin{bmatrix} 1 & X_{11} & \dots & X_{1p} \\ \vdots & & & \\ 1 & X_{n1} & \dots & X_{np} \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} w_0 \\ \vdots \\ w_p \end{bmatrix}$$

$$\mathbf{Y} = \mathbf{X}\mathbf{w} + \epsilon$$

$$Y_i = w_0 + w_1 X_{i1} + \dots + w_p X_{ip}$$

How do we find the least squares coefficients? Same as always...

- Find $RSS(\mathbf{w})$
- ► Take the gradient with respect to w, set equal to 0
- ▶ Do some algebra (p+1 equations, p+1 unknowns)

To find the best weights w:

$$\hat{\mathbf{w}} = \arg\min \sum_{i=1}^{n} \left(y_i - \mathbf{w}^{\top} \mathbf{x}_i \right)^2$$

$$= \arg\min \sum_{i=1}^{n} y_i^2 - 2y_i \mathbf{w}^{\top} \mathbf{x}_i + \left(\mathbf{w}^{\top} \mathbf{x}_i \right)^2$$

$$= \arg\min \sum_{i=1}^{n} y_i^2 - 2\mathbf{w}^{\top} \left(\sum_{i=1}^{n} y_i \mathbf{x}_i \right) + \mathbf{w}^{\top} \left(\sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^{\top} \right) \mathbf{w}$$

$$= \arg\min \sum_{i=1}^{n} y_i^2 - 2\mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{Y} + \mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{w}$$

Now take the gradient in w, set to 0, and...

$$\hat{\mathbf{w}} = \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\mathbf{Y}$$

Is Multivariate Linear Regression Linear Regression?

- lacktriangle What happens when $\mathbf{X} \in \mathbb{R}^{n imes 2}$? (Remember the ones!)
- Important crosscheck (and mechanics practice)

Some caveats:

- we only have a solution if $(\mathbf{X}^T\mathbf{X})^{-1}$ exists
- ▶ this happens when $\mathbf{X}^T\mathbf{X}$ has full rank (here, p+1):
 - $ightharpoonup {f X}$ has rank p+1 (p+1 linearly independent covariate observations)
 - happens with random sampling from a noisy continuous distribution
- if $(\mathbf{X}^T\mathbf{X})^{-1}$ does not exist, there are infinitely many solutions that are optimal

► Example:
$$\mathbf{X} = \begin{bmatrix} 1 & 1 \end{bmatrix}$$
, $\mathbf{Y} = \begin{bmatrix} 1 \end{bmatrix}$ vs $\mathbf{X} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

Multivariate Linear Regression

So what about hypothesis tests with multiple β 's?

$$H_0: \beta_1 = \beta_2 = \dots = \beta_p = 0$$

 $H_1:$ at least one $\beta_j \neq 0$

We can perform this hypothesis test by computing the F-statistic:

$$F = \frac{(TSS - RSS)/p}{RSS/(n - p - 1)}$$

- ▶ if linear assumption is true, $\mathbb{E}[RSS/(n-p-1)] = \sigma^2$
- if H_0 is true, $\mathbb{E}[(TSS RSS)/p] = \sigma^2$
- \blacktriangleright so if H_0 is true, F-statistic should be close to 1, otherwise it should be greater
- ightharpoonup rejection threshold depends on n and p (again, W4315)

Linear Regression: (Almost) All You Need To Know

$$\hat{\mathbf{w}} = \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\mathbf{Y}$$

Outline

Announcements

Basic Linear Regression

Accuracy of Linear Regression

Multiple Linear Regression

Connecting Linear Regression to PCA

Linear Regression Examples

Big Picture: Supervised vs Unsupervised

- Unsupervised learning seeks explanatory factors
- Supervised learning asserts explanatory factors

To find the best weights w:

$$\hat{\mathbf{w}} = \arg\min \sum_{i=1}^{n} \left(y_i - \mathbf{w}^{\top} \mathbf{x}_i \right)^2$$

$$= \arg\min \sum_{i=1}^{n} y_i^2 - 2y_i \mathbf{w}^{\top} \mathbf{x}_i + \left(\mathbf{w}^{\top} \mathbf{x}_i \right)^2$$

$$= \arg\min \sum_{i=1}^{n} y_i^2 - 2\mathbf{w}^{\top} \left(\sum_{i=1}^{n} y_i \mathbf{x}_i \right) + \mathbf{w}^{\top} \left(\sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^{\top} \right) \mathbf{w}$$

$$= \arg\min \sum_{i=1}^{n} y_i^2 - 2\mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{Y} + \mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{w}$$

Now take the gradient in w, set to 0, and...

$$\hat{\mathbf{w}} = \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\mathbf{Y}$$

Principal Component Analysis

To find the best weights w:

$$\hat{\mathbf{w}} = \arg\min \sum_{i=1}^{n} ||\mathbf{x}_{i} - \mathbf{w}\mathbf{w}^{\top}\mathbf{x}_{i}||^{2}$$

$$= \arg\min \sum_{i=1}^{n} (\mathbf{x}_{i} - \mathbf{w}\mathbf{w}^{\top}\mathbf{x}_{i})^{\top} (\mathbf{x}_{i} - \mathbf{w}\mathbf{w}^{\top}\mathbf{x}_{i})$$

$$= \arg\min \sum_{i=1}^{n} \mathbf{x}_{i}^{\top}\mathbf{x}_{i} - 2(\mathbf{w}^{\top}\mathbf{x}_{i})^{2} + (\mathbf{w}^{\top}\mathbf{x}_{i})^{2}$$

$$= \arg\min \sum_{i=1}^{n} \mathbf{x}_{i}^{\top}\mathbf{x}_{i} - \mathbf{w}^{\top}\mathbf{X}^{\top}\mathbf{X}\mathbf{w}$$

Now take the gradient in ${\bf w}$ (with the constraint $||{\bf w}||=1$), set to 0, and...

$$\hat{\mathbf{w}} = \operatorname{svd}\left(\mathbf{X}^{\top}\mathbf{X}\right)$$

Big Picture: Supervised vs Unsupervised

- Unsupervised learning seeks explanatory factors
- Supervised learning asserts explanatory factors

Outline

Announcements

Basic Linear Regression

Accuracy of Linear Regression

Multiple Linear Regression

Connecting Linear Regression to PCA

Linear Regression Examples

Advertising Data

Questions:

- 1. Is there a relationship between the advertising budget and sales?
- 2. How strong is the relationship between advertising budget and sales?
- 3. Which media contribute to sales?
- 4. How accurately can we estimate the effects of each medium on sales?
- 5. How accurately can we predict future sales?
- 6. Is the relationship linear?
- 7. Is there synergy between media?

Advertising Data

Is there a relationship between the advertising budget and sales?

Use hypothesis testing!

Regress sales on TV + newspaper + radio = advertising; sales = $\beta_0 + \beta_1$ advertising

$$H_0: \beta_1 = 0$$
 (1)
 $H_1: \beta_1 \neq 0$

How strong is the relationship between advertising budget and sales?

Use a confidence interval!

Regress sales on TV + newspaper + radio = advertising; sales = $\beta_0 + \beta_1$ advertising

- \blacktriangleright eta_1 tells us the relationship between advertising budget and sales
- ▶ a confidence interval gives us more certainty about where the true parameter lies

Which media contribute to sales?

Use coefficient p-values!

- ▶ from hypothesis testing against coefficient being equal to 0
- ▶ it is highly likely that coefficients with high *p*-values have a linear relationship with the output

How accurately can we estimate the effects of each medium on sales?

Use a coefficient confidence interval!

How accurately can we predict future sales?

Use R^2 !

More questions:

- 1. Is the relationship linear?
- 2. Is there synergy between media?

Well, we can't answer these yet...

We will predict the time that we will have to wait to see the next eruption given the duration of the current eruption

```
> library(datasets)
> names(faithful)
[1] "eruptions" "waiting"
> attach(faithful)
> plot(eruptions, waiting, xlab="Current Eruption Time (min)", + ylab="Waiting Time (min)", pch=16)
```


To fit a linear model in R, use the lm() function, which stands for "linear model"

```
> fit.lm <- lm(waiting ~ eruptions)</pre>
  fit.lm
Call:
lm(formula = waiting ~ eruptions)
Coefficients:
(Intercept) eruptions
      33.47
                   10.73
> names(fit.lm)
 [1] "coefficients"
                     "residuals"
                                      "effects"
                     "fitted.values" "assign"
 [4] "rank"
 [7] "qr"
                     "df.residual"
                                      "xlevels"
[10] "call"
                     "terms"
                                      "model"
```

We can plot our data and make a function for new predictions

```
# Plot a line on the data
  abline(fit.lm,col="red",lwd=3)
>
  # Make a function for prediction
  fit.lm$coefficients[1]
(Intercept)
     33.4744
> fit.lm$coefficients[2]
eruptions
  10.72964
> faithful.fit <- function(x) fit.lm$coefficients[1] +</pre>
fit.lm$coefficients[2]*x
> x.pred <- c(2.0, 2.7, 3.8, 4.9)
> faithful.fit(x.pred)
[1] 54.93368 62.44443 74.24703 86.04964
```


Example: Prostate Data

Data in Prostate.txt (also available on ESL website)

```
Predictors (columns 1–8): Icavol (log cancer volume), Iweight (log
weight), age, lbph (log amount of benign prostatic hyperplasia),
svi (seminal vesicle inversion), lcp (log capsular penetration),
gleason, pgg45 (percentage of Gleason scores 4 or 5)
outcome (column 9): Ipsa (level of prostate-specific antigen)
train/test indicator (column 10)
> prostate <- read.table("Prostate.txt",header=TRUE, sep="\t")</pre>
> names(prostate)
 [1] "X" "lcavol" "lweight" "age"
 [5] "lbph" "svi" "lcp" "gleason"
 [9] "pgg45" "lpsa" "train"
> prostate.train <- prostate[prostate$train==T,2:10]</pre>
> prostate.test <- prostate[prostate$train==F,2:10]</pre>
```

Example: Prostate Data

[1] 0.521274

Note: the data in ESL was scaled before use, so $\hat{\beta}$ differs