Curs ID3

1/73

Cuprins

- Forma normală conjunctivă și forma clauzală
- 2 Literali, clauze, mulţimi de clauze
- Rezoluţia în calculul propoziţional (recap.)
- 4 Rezoluția în logica de ordinul I
- 5 Clauze Horn
- 6 Sistem de deducție pentru logica Horn
- 7 Rezoluţie SLD

Forma normală conjunctivă și forma clauzală

☐ În calculul propozițional un literal este o variabilă sau negația unei variabile.

 $literal := p \mid \neg p$ unde p este variabilă propozițională

☐ În calculul propozițional un literal este o variabilă sau negația unei variabile.

$$literal := p \mid \neg p$$
 unde p este variabilă propozițională

☐ În logica de ordinul I un literal este o formulă atomică sau negația unei formule atomice.

$$literal := P(t_1, \ldots, t_n) \mid \neg P(t_1, \ldots, t_n)$$

unde $P \in \mathbf{R}$, ari(P) = n, și t_1, \ldots, t_n sunt termeni.

☐ În calculul propozițional un literal este o variabilă sau negația unei variabile.

$$literal := p \mid \neg p$$
 unde p este variabilă propozițională

☐ În logica de ordinul I un literal este o formulă atomică sau negația unei formule atomice.

$$\textit{literal} := P(t_1, \dots, t_n) \mid \neg P(t_1, \dots, t_n)$$
 unde $P \in \mathbf{R}, \textit{ari}(P) = n$, și t_1, \dots, t_n sunt termeni.

 \square Pentru un literal L vom nota cu L^c literalul complement.

De exemplu, dacă $L = \neg P(x)$ atunci $L^c = P(x)$ și invers.

☐ În calculul propozițional un literal este o variabilă sau negația unei variabile.

$$literal := p \mid \neg p$$
 unde p este variabilă propozițională

☐ În logica de ordinul l un literal este o formulă atomică sau negația unei formule atomice.

$$\textit{literal} := P(t_1, \dots, t_n) \mid \neg P(t_1, \dots, t_n)$$

unde
$$P \in \mathbf{R}$$
, $ari(P) = n$, și t_1, \ldots, t_n sunt termeni.

- \square Pentru un literal L vom nota cu L^c literalul complement.
 - De exemplu, dacă $L = \neg P(x)$ atunci $L^c = P(x)$ și invers.
 - O formulă este în formă normală conjunctivă (FNC) dacă este o conjuncție de disjuncții de literali.

 \square Pentru orice formulă α există o FNC α^{fc} astfel încât $\alpha \bowtie \alpha^{\mathit{fc}}$.

- \square Pentru orice formulă α există o FNC $\alpha^{\it fc}$ astfel încât $\alpha \bowtie \alpha^{\it fc}$.
- □ Pentru o formulă din calculul propozițional determinăm FNC corespunzătoare prin următoarele transformări:

- \square Pentru orice formulă α există o FNC α^{fc} astfel încât $\alpha \bowtie \alpha^{fc}$.
- □ Pentru o formulă din calculul propozițional determinăm FNC corespunzătoare prin următoarele transformări:
 - 1 înlocuirea implicațiilor și echivalențelor

$$\begin{array}{cccc} \varphi \rightarrow \psi & \exists & \neg \varphi \lor \psi \\ \varphi \leftrightarrow \psi & \exists & \left(\neg \varphi \lor \psi \right) \land \left(\neg \psi \lor \varphi \right) \end{array}$$

- \square Pentru orice formulă α există o FNC α^{fc} astfel încât $\alpha \bowtie \alpha^{fc}$.
- ☐ Pentru o formulă din calculul propozițional determinăm FNC corespunzătoare prin următoarele transformări:
 - 1 înlocuirea implicațiilor și echivalențelor

$$\varphi \to \psi \quad \exists \quad \neg \varphi \lor \psi$$
$$\varphi \leftrightarrow \psi \quad \exists \quad (\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi)$$

regulile De Morgan

$$\neg(\varphi \lor \psi) \quad \exists \quad \neg\varphi \land \neg\psi$$
$$\neg(\varphi \land \psi) \quad \exists \quad \neg\varphi \lor \neg\psi$$

- \square Pentru orice formulă α există o FNC α^{fc} astfel încât $\alpha \bowtie \alpha^{fc}$.
- ☐ Pentru o formulă din calculul propozițional determinăm FNC corespunzătoare prin următoarele transformări:
 - 1 înlocuirea implicațiilor și echivalențelor

$$\begin{array}{cccc} \varphi \to \psi & \exists & \neg \varphi \lor \psi \\ \varphi \leftrightarrow \psi & \exists & (\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi) \end{array}$$

regulile De Morgan

$$\neg(\varphi \lor \psi) \quad \exists \quad \neg\varphi \land \neg\psi$$
$$\neg(\varphi \land \psi) \quad \exists \quad \neg\varphi \lor \neg\psi$$

3 principiului dublei negații

$$\neg\neg\psi$$
 \exists ψ

- \square Pentru orice formulă α există o FNC α^{fc} astfel încât $\alpha \bowtie \alpha^{fc}$.
- ☐ Pentru o formulă din calculul propozițional determinăm FNC corespunzătoare prin următoarele transformări:
 - 1 înlocuirea implicațiilor și echivalențelor

$$\begin{array}{cccc} \varphi \to \psi & \exists & \neg \varphi \lor \psi \\ \varphi \leftrightarrow \psi & \exists & (\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi) \end{array}$$

regulile De Morgan

$$\neg(\varphi \lor \psi) \quad \exists \quad \neg\varphi \land \neg\psi$$
$$\neg(\varphi \land \psi) \quad \exists \quad \neg\varphi \lor \neg\psi$$

3 principiului dublei negații

$$\neg\neg\psi$$
 \forall \forall

4 distributivitatea

$$\varphi \lor (\psi \land \chi) \quad \exists \quad (\varphi \lor \psi) \land (\varphi \lor \chi)$$
$$(\psi \land \chi) \lor \varphi \quad \exists \quad (\psi \lor \varphi) \land (\chi \lor \varphi)$$

Exemplu

$$(\neg p \to \neg q) \to (p \to q)$$

Exemplu

$$(\neg p \rightarrow \neg q) \rightarrow (p \rightarrow q)$$

$$\exists \neg(\neg p \rightarrow \neg q) \lor (p \rightarrow q)$$

Exemplu

$$(\neg p \rightarrow \neg q) \rightarrow (p \rightarrow q)$$

$$\exists \neg (\neg p \rightarrow \neg q) \lor (p \rightarrow q)$$

$$\boxminus \neg (p \lor \neg q) \lor (\neg p \lor q)$$

Exemplu

$$(\neg p \rightarrow \neg q) \rightarrow (p \rightarrow q)$$

$$\exists \neg (\neg p \rightarrow \neg q) \lor (p \rightarrow q)$$

$$\boxminus \neg (p \lor \neg q) \lor (\neg p \lor q)$$

$$\boxminus (\neg p \land q) \lor (\neg p \lor q)$$

Exemplu

$$(\neg p \rightarrow \neg q) \rightarrow (p \rightarrow q)$$

$$\exists \neg (\neg p \rightarrow \neg q) \lor (p \rightarrow q)$$

$$\boxminus \neg (p \lor \neg q) \lor (\neg p \lor q)$$

$$\exists (\neg p \land q) \lor (\neg p \lor q)$$

$$\exists \; (\neg p \vee \neg p \vee q) \wedge (q \vee \neg p \vee q)$$

Exemplu

$$(\neg p \rightarrow \neg q) \rightarrow (p \rightarrow q)$$

$$\exists \neg (\neg p \rightarrow \neg q) \lor (p \rightarrow q)$$

$$\boxminus \neg (p \lor \neg q) \lor (\neg p \lor q)$$

$$\boxminus (\neg p \land q) \lor (\neg p \lor q)$$

$$\exists \; (\neg p \vee \neg p \vee q) \wedge (q \vee \neg p \vee q)$$

$$\boxminus (\neg p \lor q) \land (q \lor \neg p)$$

□ O formulă este formă normală conjunctivă prenex (FNCP) dacă □ este în formă prenex $Q_1x_1 \dots Q_nx_n\psi$ ($Q_i \in \{\forall, \exists\}$ oricare i) □ ψ este FNC

- □ O formulă este formă normală conjunctivă prenex (FNCP) dacă
 - \square este în formă prenex $Q_1x_1 \dots Q_nx_n\psi$ ($Q_i \in \{\forall, \exists\}$ oricare i)
 - \square ψ este FNC
- □ O formulă este formă clauzală dacă este enunț universal și FNCP:

$$\forall x_1 \dots \forall x_n \psi$$
 unde ψ este FNC

Exemplu

- □ O formulă este formă normală conjunctivă prenex (FNCP) dacă
 - \square este în formă prenex $Q_1x_1\dots Q_nx_n\psi$ $(Q_i\in\{\forall,\exists\})$ oricare i
 - \square ψ este FNC
- □ O formulă este formă clauzală dacă este enunț universal și FNCP:

$$\forall x_1 \dots \forall x_n \psi$$
 unde ψ este FNC

Exemplu

Forma clauzală în logica de ordinul l

 \square Pentru orice formulă φ din logica de ordinul I există o formă clauzală $\varphi^{\rm fc}$ astfel încât

arphi este satisfiabilă dacă și numai dacă $arphi^{\mathit{fc}}$ este satisfiabilă

- \Box Pentru orice formulă φ din logica de ordinul I există o formă clauzală $\varphi^{\it fc}$ astfel încât
 - arphi este satisfiabilă dacă și numai dacă $arphi^{fc}$ este satisfiabilă
- \square Pentru o formulă φ , forma clauzală φ^{fc} se poate calcula astfel:
 - se determină forma rectificată
 - se cuantifică universal variabilele libere
 - se determină forma prenex
 - 4 se determină forma Skolem

- \Box Pentru orice formulă φ din logica de ordinul I există o formă clauzală $\varphi^{\it fc}$ astfel încât
 - arphi este satisfiabilă dacă și numai dacă $arphi^{fc}$ este satisfiabilă
- \square Pentru o formulă φ , forma clauzală φ^{fc} se poate calcula astfel:
 - se determină forma rectificată
 - se cuantifică universal variabilele libere
 - se determină forma prenex
 - 4 se determină forma Skolem

în acest moment am obținut o formă Skolem $\forall x_1 \dots \forall x_n \psi$

Forma clauzală în logica de ordinul l

- \Box Pentru orice formulă φ din logica de ordinul I există o formă clauzală $\varphi^{\it fc}$ astfel încât
 - φ este satisfiabilă dacă și numai dacă φ^{fc} este satisfiabilă
- \square Pentru o formulă φ , forma clauzală φ^{fc} se poate calcula astfel:
 - se determină forma rectificată
 - se cuantifică universal variabilele libere
 - se determină forma prenex
 - 4 se determină forma Skolem

în acest moment am obținut o formă Skolem $\forall x_1 \dots \forall x_n \psi$

5 se determină o FNC ψ' astfel încât $\psi \bowtie \psi'$

- \square Pentru orice formulă φ din logica de ordinul I există o formă clauzală φ^{fc} astfel încât
 - φ este satisfiabilă dacă și numai dacă φ^{fc} este satisfiabilă
- \square Pentru o formulă φ , forma clauzală φ^{fc} se poate calcula astfel:
 - se determină forma rectificată
 - se cuantifică universal variabilele libere
 - 3 se determină forma prenex
 - 4 se determină forma Skolem

în acest moment am obținut o formă Skolem $\forall x_1 \dots \forall x_n \psi$

- **5** se determină o FNC ψ' astfel încât $\psi \vDash \psi'$
- **6** φ^{fc} este $\forall x_1 \dots \forall x_n \psi'$

Literali, clauze, mulțimi de clauze

□ O clauză este o disjuncție de literali.

- □ O clauză este o disjuncție de literali.
- \square Dacă L_1,\ldots,L_n sunt literali atunci clauza $L_1\vee\ldots\vee L_n$ o vom scrie ca mulțimea $\{L_1,\ldots,L_n\}$

- □ O clauză este o disjuncție de literali.
- \square Dacă L_1,\ldots,L_n sunt literali atunci clauza $L_1\vee\ldots\vee L_n$ o vom scrie ca mulțimea $\{L_1,\ldots,L_n\}$

clauză = mulțime de literali

□ Clauza $C = \{L_1, ..., L_n\}$ este satisfiabilă dacă $L_1 \lor ... \lor L_n$ este satisfiabilă.

- □ O clauză este o disjuncție de literali.
- \square Dacă L_1,\ldots,L_n sunt literali atunci clauza $L_1\vee\ldots\vee L_n$ o vom scrie ca mulțimea $\{L_1,\ldots,L_n\}$

- □ Clauza $C = \{L_1, ..., L_n\}$ este satisfiabilă dacă $L_1 \lor ... \lor L_n$ este satisfiabilă.
- □ O clauză *C* este trivială dacă conține un literal și complementul lui.

- □ O clauză este o disjuncție de literali.
- \square Dacă L_1,\ldots,L_n sunt literali atunci clauza $L_1\vee\ldots\vee L_n$ o vom scrie ca mulțimea $\{L_1,\ldots,L_n\}$

- □ Clauza $C = \{L_1, ..., L_n\}$ este satisfiabilă dacă $L_1 \lor ... \lor L_n$ este satisfiabilă.
- □ O clauză *C* este trivială dacă conține un literal și complementul lui.
- \square Când n=0 obținem clauza vidă, care se notează \square

- □ O clauză este o disjuncție de literali.
- \square Dacă L_1,\ldots,L_n sunt literali atunci clauza $L_1\vee\ldots\vee L_n$ o vom scrie ca mulțimea $\{L_1,\ldots,L_n\}$

- □ Clauza $C = \{L_1, ..., L_n\}$ este satisfiabilă dacă $L_1 \lor ... \lor L_n$ este satisfiabilă.
- □ O clauză *C* este trivială dacă conține un literal și complementul lui.
- \square Când n = 0 obținem clauza vidă, care se notează \square
- □ Prin definiție, clauza □ nu este satisfiabilă.

Forma clauzală

☐ Observăm că o FNC este o conjuncție de clauze.

- □ Observăm că o FNC este o conjuncție de clauze.
- □ Dacă C_1, \ldots, C_k sunt clauze atunci $C_1 \wedge \ldots \wedge C_k$ o vom scrie ca mulţimea $\{C_1, \ldots, C_k\}$

- Observăm că o FNC este o conjuncție de clauze.
- □ Dacă C_1, \ldots, C_k sunt clauze atunci $C_1 \wedge \ldots \wedge C_k$ o vom scrie ca mulțimea $\{C_1, \ldots, C_k\}$

FNC = mulțime de clauze

 \square O mulțime de clauze $\mathcal{C} = \{C_1, \dots, C_k\}$ este satisfiabilă dacă $C_1 \wedge \dots \wedge C_k$ este satisfiabilă

- Observăm că o FNC este o conjuncție de clauze.
- □ Dacă C_1, \ldots, C_k sunt clauze atunci $C_1 \wedge \ldots \wedge C_k$ o vom scrie ca mulțimea $\{C_1, \ldots, C_k\}$

- \square O mulțime de clauze $\mathcal{C} = \{C_1, \dots, C_k\}$ este satisfiabilă dacă $C_1 \wedge \dots \wedge C_k$ este satisfiabilă
- \square Când k = 0 obținem mulțimea de clauze vidă, pe care o notăm $\{\}$

- Observăm că o FNC este o conjuncție de clauze.
- □ Dacă C_1, \ldots, C_k sunt clauze atunci $C_1 \wedge \ldots \wedge C_k$ o vom scrie ca mulţimea $\{C_1, \ldots, C_k\}$

- \square O mulțime de clauze $\mathcal{C} = \{C_1, \dots, C_k\}$ este satisfiabilă dacă $C_1 \wedge \dots \wedge C_k$ este satisfiabilă
- \square Când k = 0 obținem mulțimea de clauze vidă, pe care o notăm $\{\}$
- □ Prin definiție, mulțimea de clauze vidă {} este satisfiabilă.

- □ Observăm că o FNC este o conjuncție de clauze.
- □ Dacă C_1, \ldots, C_k sunt clauze atunci $C_1 \wedge \ldots \wedge C_k$ o vom scrie ca mulţimea $\{C_1, \ldots, C_k\}$

- \square O mulțime de clauze $\mathcal{C} = \{C_1, \dots, C_k\}$ este satisfiabilă dacă $C_1 \wedge \dots \wedge C_k$ este satisfiabilă
- \square Când k = 0 obținem mulțimea de clauze vidă, pe care o notăm $\{\}$
- □ Prin definiție, mulțimea de clauze vidă {} este satisfiabilă.
 - $\{\}$ este satisfiabilă, dar $\{\Box\}$ nu este satisfiabilă

 \square Dacă φ este o formulă în calculul propozițional, atunci $\varphi^{\mathit{fc}} = \bigwedge_{i=1}^k \bigvee_{j=1}^{n_i} L_{ij}$ unde L_{ij} sunt literali

- \square Dacă φ este o formulă în calculul propozițional, atunci $\varphi^{fc} = \bigwedge_{i=1}^k \bigvee_{j=1}^{n_i} L_{ij}$ unde L_{ij} sunt literali
- \square Dacă φ o formulă în logica de ordinul I, atunci $\varphi^{fc} = \forall x_1 \dots \forall x_n \left(\bigwedge_{i=1}^k \bigvee_{j=1}^{n_i} L_{ij} \right) \text{ unde } L_{ij} \text{ sunt literali}$

- \square Dacă φ este o formulă în calculul propozițional, atunci $\varphi^{fc} = \bigwedge_{i=1}^k \bigvee_{j=1}^{n_i} L_{ij}$ unde L_{ij} sunt literali
- Dacă φ o formulă în logica de ordinul I, atunci $\varphi^{fc} = \forall x_1 \dots \forall x_n \left(\bigwedge_{i=1}^k \bigvee_{j=1}^{n_i} L_{ij} \right) \text{ unde } L_{ij} \text{ sunt literali}$

arphi este satisfiabilă dacă și numai dacă $arphi^{fc} \text{ este satisfiabilă dacă și numai dacă} \{\{L_{11},\ldots,L_{1n_1}\},\ldots,\{L_{k1},\ldots,L_{kn_k}\}\} \text{ este satisfiabilă}$

Exempli

 \square În calculul propozițional: pentru a verifica satisfiabilitatea lui $\varphi:=(\neg p \to \neg q) \to (p \to q)$

Exemplu

Exempli

Exempli

- ☐ În calculul propozițional:
 - pentru a verifica satisfiabilitatea lui $\varphi:=(\neg p \to \neg q) \to (p \to q)$ determinăm $\varphi^{fc}:=(\neg p \lor q) \land (q \lor \neg p)$ și analizăm mulțimea de clauze $\{\{\neg p,q\},\{q,\neg p\}\}.$
- ☐ În logica de ordinul I:

pentru a verifica satisfiabilitatea formulei $\varphi := \forall y \forall z ((P(f(y)) \lor Q(z)) \land (Q(z) \to (\neg P(g(z)) \lor Q(y))))$

Exempli

- ☐ În calculul propozițional:
 - pentru a verifica satisfiabilitatea lui $\varphi:=(\neg p \to \neg q) \to (p \to q)$ determinăm $\varphi^{fc}:=(\neg p \lor q) \land (q \lor \neg p)$
 - și analizăm mulțimea de clauze $\{\{\neg p, q\}, \{q, \neg p\}\}$.
- ☐ În logica de ordinul I:

pentru a verifica satisfiabilitatea formulei
$$\varphi := \forall y \forall z ((P(f(y)) \lor Q(z)) \land (Q(z) \to (\neg P(g(z)) \lor Q(y))))$$

determinăm

$$\varphi^{fc} := \forall y \forall z ((P(f(y)) \vee Q(z)) \wedge (\neg Q(z) \vee \neg P(g(z)) \vee Q(y)))$$

Exemple

- ☐ În calculul propozițional:
 - pentru a verifica satisfiabilitatea lui $\varphi:=(\neg p \to \neg q) \to (p \to q)$ determinăm $\varphi^{fc}:=(\neg p \lor q) \land (q \lor \neg p)$ și analizăm mulțimea de clauze $\{\{\neg p,q\},\{q,\neg p\}\}.$
- ☐ În logica de ordinul I:

```
pentru a verifica satisfiabilitatea formulei \varphi := \forall y \forall z ((P(f(y)) \lor Q(z)) \land (Q(z) \to (\neg P(g(z)) \lor Q(y)))) determinăm \varphi^{fc} := \forall y \forall z ((P(f(y)) \lor Q(z)) \land (\neg Q(z) \lor \neg P(g(z)) \lor Q(y))) și analizăm mulțimea de clauze \{\{P(f(y)), Q(z)\}, \{\neg Q(z), \neg P(g(z)), Q(y)\}\}
```

Fie $\varphi_1, \ldots, \varphi_n, \varphi$ formule în logica propozițională (enunțuri în calculul cu predicate).

$$\{\varphi_1,\dots,\varphi_n\} \vDash \varphi$$
 este echivalent cu

Fie $\varphi_1, \ldots, \varphi_n, \varphi$ formule în logica propozițională (enunțuri în calculul cu predicate).

$$\{\varphi_1,\ldots,\varphi_n\} \vDash \varphi$$
 este echivalent cu

$$\vDash \varphi_1 \land \ldots \land \varphi_n \rightarrow \varphi$$
 este echivalent cu

Fie $\varphi_1, \ldots, \varphi_n, \varphi$ formule în logica propozițională (enunțuri în calculul cu predicate).

$$\{\varphi_1,\ldots,\varphi_n\} \vDash \varphi$$
 este echivalent cu

$$\vDash \varphi_1 \land \ldots \land \varphi_n \rightarrow \varphi$$
 este echivalent cu

$$\vDash \neg \varphi_1 \lor \ldots \neg \varphi_n \lor \varphi$$
 este echivalent cu

Fie $\varphi_1, \ldots, \varphi_n, \varphi$ formule în logica propozițională (enunțuri în calculul cu predicate).

$$\{\varphi_1,\ldots,\varphi_n\} \vDash \varphi$$
 este echivalent cu

$$\vDash \varphi_1 \land \ldots \land \varphi_n \rightarrow \varphi$$
 este echivalent cu

$$\models \neg \varphi_1 \lor \ldots \neg \varphi_n \lor \varphi$$
 este echivalent cu

$$\varphi_1 \wedge \ldots \wedge \varphi_n \wedge \neg \varphi$$
 este satisfiabilă

Pentru a cerceta satisfiabilitatea este suficient să studiem forme clauzale

$$\{\{L_{11},\ldots,L_{1n_1}\},\ldots,\{L_{k1},\ldots,L_{kn_k}\}\}$$

atât în logica propozițională, cât și în calculul cu predicate.

Rezoluție

Rezoluția este o metodă de verificare a satisfiabilității formelor clauzale.

Rezoluție

Rezoluția este o metodă de verificare a satisfiabilității formelor clauzale.

- □ Rezoluția în calculul propozițional (recap.)
- □ Rezoluția în logica de ordinul I
 - cazul clauzelor fără variabile
 - cazul general

Rezoluția în calculul propozițional (recap.)

$$Rez \ \frac{C_1 \cup \{p\}, C_2 \cup \{\neg p\}}{C_1 \cup C_2}$$

unde C_1, C_2 clauze, iar p este variabila propozițională astfel încât $\{p, \neg p\} \cap C_1 = \emptyset$ și $\{p, \neg p\} \cap C_2 = \emptyset$.

$$Rez \ \frac{C_1 \cup \{p\}, C_2 \cup \{\neg p\}}{C_1 \cup C_2}$$

unde C_1 , C_2 clauze, iar p este variabila propozițională astfel încât $\{p,\neg p\}\cap C_1=\emptyset$ și $\{p,\neg p\}\cap C_2=\emptyset$.

Propoziție

Regula Rez păstrează satisfiabilitatea. Sunt echivalente:

- \square mulțimea de clauze $\{C_1 \cup \{p\}, C_2 \cup \{\neg p\}\}\$ este satisfiabilă,
- \square clauza $C_1 \cup C_2$ este satisfiabilă.

Rez
$$\frac{C_1 \cup \{p\}, C_2 \cup \{\neg p\}}{C_1 \cup C_2}$$

unde C_1 , C_2 clauze, iar p este variabila propozițională astfel încât $\{p,\neg p\}\cap C_1=\emptyset$ și $\{p,\neg p\}\cap C_2=\emptyset$.

Propoziție

Regula Rez păstrează satisfiabilitatea. Sunt echivalente:

- \square mulțimea de clauze $\{C_1 \cup \{p\}, C_2 \cup \{\neg p\}\}$ este satisfiabilă,
- \square clauza $C_1 \cup C_2$ este satisfiabilă.

Exemplu

$$\frac{\{p,\neg q\},\{\neg p,q\}}{\{q,\neg q\}}$$

Rez
$$\frac{C_1 \cup \{p\}, C_2 \cup \{\neg p\}}{C_1 \cup C_2}$$

unde C_1, C_2 clauze, iar p este variabila propozițională astfel încât $\{p, \neg p\} \cap C_1 = \emptyset$ și $\{p, \neg p\} \cap C_2 = \emptyset$.

Propoziție

Regula Rez păstrează satisfiabilitatea. Sunt echivalente:

- \square mulțimea de clauze $\{C_1 \cup \{p\}, C_2 \cup \{\neg p\}\}$ este satisfiabilă,
- \square clauza $C_1 \cup C_2$ este satisfiabilă.

Exemplu

$$\frac{\{p,\neg q\},\{\neg p,q\}}{\{q,\neg q\}}$$

Este mulțimea de clauze $\{\{p, \neg q\}, \{\neg p, q\}\}$ satisfiabilă?

Derivare prin rezoluție

Fie $\mathcal C$ o mulțime de clauze. O derivare prin rezoluție din $\mathcal C$ este o secvență finită de clauze astfel încât fiecare clauză este din $\mathcal C$ sau rezultă din clauzele anterioare prin rezoluție (este rezolvent).

Derivare prin rezoluție

Fie $\mathcal C$ o mulțime de clauze. O derivare prin rezoluție din $\mathcal C$ este o secvență finită de clauze astfel încât fiecare clauză este din $\mathcal C$ sau rezultă din clauzele anterioare prin rezoluție (este rezolvent).

Exemplu

```
Fie \mathcal{C}=\{\{\neg q, \neg p\}, \{q\}, \{p\}\}\} o mulțime de clauze. O derivare prin rezoluție pentru \square din \mathcal{C} este C_1 = \{\neg q, \neg p\} C_2 = \{q\} C_3 = \{\neg p\} \qquad (Rez, C_1, C_2) C_4 = \{p\} C_5 = \square \qquad (Rez, C_3, C_4)
```

Derivare prin rezoluție

Fie $\mathcal C$ o mulțime de clauze. O derivare prin rezoluție din $\mathcal C$ este o secvență finită de clauze astfel încât fiecare clauză este din $\mathcal C$ sau rezultă din clauzele anterioare prin rezoluție (este rezolvent).

Exemplu

 $C_5 = \square$

Fie
$$\mathcal{C}=\{\{\neg q, \neg p\}, \{q\}, \{p\}\}$$
 o mulțime de clauze. O derivare prin rezoluție pentru \square din \mathcal{C} este $C_1=\{\neg q, \neg p\}$ $C_2=\{q\}$ $C_3=\{\neg p\}$ (Rez, C_1, C_2) $C_4=\{p\}$

 (Rez, C_3, C_4)

Teorema de completitudine

 $\models \varphi$ dacă și numai dacă există o derivare prin rezoluție a lui \square din $(\neg \varphi)^{fc}$.

Procedura Davis-Putnam DPP (informal)

$\textbf{Intrare:} \ \ o \ \ mul \\ time \ \mathcal{C} \ \ de \ clauze$
Se repetă următorii pași:
se elimină clauzele triviale
\square se alege o variabilă p
\square se adaugă la mulțimea de clauze toți rezolvenții obținuti prin aplicarea Rez pe variabila p
\square se șterg toate clauzele care conțin p sau $\neg p$
leșire: dacă la un pas s-a obținut \square , mulțimea $\mathcal C$ nu este satisfiabilă altfel $\mathcal C$ este satisfiabilă.

Exemplu

Este $C_0 = \{\{p, \neg r\}, \{q, p\}, \{q, \neg p, r\}, \{q, \neg r\}\}$ satisfiabilă?

Exemplu

```
Este \mathcal{C}_0 = \{\{p, \neg r\}, \{q, p\}, \{q, \neg p, r\}, \{q, \neg r\}\} satisfiabilă? 
Alegem variabila r și selectăm \mathcal{C}_0^r := \{\{q, \neg p, r\}\}, \mathcal{C}_0^{\neg r} := \{\{p, \neg r\}, \{q, \neg r\}\}. 
Mulțimea rezolvenților posibili este \mathcal{R}_0 := \{\{q, \neg p, p\}, \{q, \neg p\}\}; 
Se observă că p, \neg p \in \{q, \neg p, p\} deci \mathcal{R}_0 := \{\{q, \neg p\}\}
```

Exemplu

```
Este \mathcal{C}_0 = \{\{p, \neg r\}, \{q, p\}, \{q, \neg p, r\}, \{q, \neg r\}\} satisfiabilă? Alegem variabila r și selectăm \mathcal{C}_0^r := \{\{q, \neg p, r\}\}, \mathcal{C}_0^{\neg r} := \{\{p, \neg r\}, \{q, \neg r\}\}. Mulțimea rezolvenților posibili este \mathcal{R}_0 := \{\{q, \neg p, p\}, \{q, \neg p\}\}; Se observă că p, \neg p \in \{q, \neg p, p\} deci \mathcal{R}_0 := \{\{q, \neg p\}\} Se elimină clauzele în care apare r și se adaugă noii rezolvenți \mathcal{C}_1 := \{\{q, p\}, \{q, \neg p\}\}
```

Exempli

```
Este \mathcal{C}_0=\{\{p,\neg r\},\{q,p\},\{q,\neg p,r\},\{q,\neg r\}\} satisfiabilă? Alegem variabila r și selectăm \mathcal{C}_0^r:=\{\{q,\neg p,r\}\},\mathcal{C}_0^{\neg r}:=\{\{p,\neg r\},\{q,\neg r\}\}. Mulțimea rezolvenților posibili este \mathcal{R}_0:=\{\{q,\neg p,p\},\{q,\neg p\}\}; Se observă că p,\neg p\in\{q,\neg p,p\} deci \mathcal{R}_0:=\{\{q,\neg p\}\}\} Se elimină clauzele în care apare r și se adaugă noii rezolvenți \mathcal{C}_1:=\{\{q,p\},\{q,\neg p\}\}\} Alegem variabila q și selectăm \mathcal{C}_1^q:=\{\{q,p\},\{q,\neg p\}\},\mathcal{C}_1^{\neg q}:=\emptyset.
```

Mulţimea rezolvenţilor posibili este vidă $\mathcal{R}_1 := \emptyset$.

Exempli

Este
$$C_0 = \{\{p, \neg r\}, \{q, p\}, \{q, \neg p, r\}, \{q, \neg r\}\}$$
 satisfiabilă?
Alegem variabila r și selectăm $C_0^r := \{\{q, \neg p, r\}\}, C_0^{\neg r} := \{\{p, \neg r\}, \{q, \neg r\}\}.$
Mulțimea rezolvenților posibili este $\mathcal{R}_0 := \{\{q, \neg p, p\}, \{q, \neg p\}\};$
Se observă că $p, \neg p \in \{q, \neg p, p\}$ deci $\mathcal{R}_0 := \{\{q, \neg p\}\}$

Se elimină clauzele în care apare r și se adaugă noii rezolvenți $\mathcal{C}_1:=\{\{q,p\},\{q,\neg p\}\}$

Alegem variabila q și selectăm $C_1^q := \{\{q, p\}, \{q, \neg p\}\}, C_1^{\neg q} := \emptyset$. Mulțimea rezolvenților posibili este vidă $\mathcal{R}_1 := \emptyset$.

Se elimină clauzele în care apare q și se adaugă noii rezolvenți $\mathcal{C}_2:=\{\}$ mulțimea de clauze vidă

Exempli

Este
$$\mathcal{C}_0 = \{\{p, \neg r\}, \{q, p\}, \{q, \neg p, r\}, \{q, \neg r\}\}$$
 satisfiabilă?
Alegem variabila r și selectăm $\mathcal{C}_0^r := \{\{q, \neg p, r\}\}, \mathcal{C}_0^{\neg r} := \{\{p, \neg r\}, \{q, \neg r\}\}.$
Mulțimea rezolvenților posibili este $\mathcal{R}_0 := \{\{q, \neg p, p\}, \{q, \neg p\}\};$
Se observă că $p, \neg p \in \{q, \neg p, p\}$ deci $\mathcal{R}_0 := \{\{q, \neg p\}\}$

Se elimină clauzele în care apare r și se adaugă noii rezolvenți $\mathcal{C}_1:=\{\{q,p\},\{q,\neg p\}\}$

Alegem variabila q și selectăm $C_1^q := \{\{q, p\}, \{q, \neg p\}\}, C_1^{\neg q} := \emptyset$. Mulțimea rezolvenților posibili este vidă $\mathcal{R}_1 := \emptyset$.

Se elimină clauzele în care apare q și se adaugă noii rezolvenți $\mathcal{C}_2:=\{\}$ mulțimea de clauze vidă

Deoarece $\{\}$ este satisfiabilă, rezultă că \mathcal{C}_0 este satisfiabilă.

Exemplu

```
Este \mathcal{C}_0 = \{\{p, \neg r\}, \{q, p\}, \{q, \neg p, r\}, \{q, \neg r\}\} satisfiabilă? 
Alegem variabila r și selectăm \mathcal{C}_0^r := \{\{q, \neg p, r\}\}, \mathcal{C}_0^{\neg r} := \{\{p, \neg r\}, \{q, \neg r\}\}. 
Mulțimea rezolvenților posibili este \mathcal{R}_0 := \{\{q, \neg p, p\}, \{q, \neg p\}\}; 
Se observă că p, \neg p \in \{q, \neg p, p\} deci \mathcal{R}_0 := \{\{q, \neg p\}\}
```

Se elimină clauzele în care apare r și se adaugă noii rezolvenți $\mathcal{C}_1:=\{\{q,p\},\{q,\neg p\}\}$

Alegem variabila q și selectăm $C_1^q := \{\{q, p\}, \{q, \neg p\}\}, C_1^{\neg q} := \emptyset$. Mulțimea rezolvenților posibili este vidă $\mathcal{R}_1 := \emptyset$.

Se elimină clauzele în care apare q și se adaugă noii rezolvenți $\mathcal{C}_2:=\{\}$ mulțimea de clauze vidă

Deoarece $\{\}$ este satisfiabilă, rezultă că \mathcal{C}_0 este satisfiabilă.

Atenție! La fiecare pas se alege pentru prelucrare o singură variabilă.

□ Fie C o clauză. Spunem că C' este o instață a lui C dacă există o substituție $\theta: V \to \mathit{Trm}_{\mathcal{L}}$ astfel încât $C' = \theta(C)$.

□ Fie C o clauză. Spunem că C' este o instață a lui C dacă există o substituție $\theta: V \to \mathit{Trm}_{\mathcal{L}}$ astfel încât $C' = \theta(C)$.

Spunem că C' este o instanță închisă a lui C dacă există o substituție $\theta: V \to T_{\mathcal{L}}$ such that $C' = \theta(C)$ (C' se obține din C înlocuind variabilele cu termeni din universul Herbrand)

- □ Fie C o clauză. Spunem că C' este o instață a lui C dacă există o substituție $\theta: V \to \mathit{Trm}_{\mathcal{L}}$ astfel încât $C' = \theta(C)$.
 - Spunem că C' este o instanță închisă a lui C dacă există o substituție $\theta:V\to T_{\mathcal L}$ such that $C'=\theta(C)$ (C' se obține din C înlocuind variabilele cu termeni din universul Herbrand)
- \square Fie $\mathcal C$ o mulțime de clauze. Definim

$$\mathcal{H}(\mathcal{C}) := \{ \theta(C) \mid C \in \mathcal{C}, \theta : V \to T_{\mathcal{L}} \}$$

 $\mathcal{H}(\mathcal{C})$ este mulțimea instanțelor închise ale clauzelor din \mathcal{C} .

- □ Fie C o clauză. Spunem că C' este o instață a lui C dacă există o substituție $\theta: V \to Trm_{\mathcal{L}}$ astfel încât $C' = \theta(C)$.
 - Spunem că C' este o instanță închisă a lui C dacă există o substituție $\theta:V\to T_{\mathcal L}$ such that $C'=\theta(C)$ (C' se obține din C înlocuind variabilele cu termeni din universul Herbrand)
- \square Fie $\mathcal C$ o mulțime de clauze. Definim

$$\mathcal{H}(\mathcal{C}) := \{ \theta(\mathcal{C}) \mid \mathcal{C} \in \mathcal{C}, \theta : \mathcal{V} \to \mathcal{T}_{\mathcal{L}} \}$$

 $\mathcal{H}(\mathcal{C})$ este mulțimea instanțelor închise ale clauzelor din \mathcal{C} .

Teoremă

O mulțime de clauze $\mathcal C$ este satisfiabilă dacă și numai dacă $\mathcal H(\mathcal C)$ este satisfiabilă. O mulțime de clauze $\mathcal C$ este nesatisfiabilă dacă și numai dacă există o submulțime finită a lui $\mathcal H(\mathcal C)$ care este nesatisfiabilă.

Exempli

Cercetați satisfiabilitatea mulțimii de clauze

$$C = \{ \{ \neg P(x), Q(x) \}, \{ P(y) \}, \{ \neg Q(z) \} \}$$

Dacă c este constantă atunci $\{\{\neg P(c), Q(c)\}, \{P(c)\}, \{\neg Q(c)\}\} \subseteq \mathcal{H}(C).$

Exemplu

Cercetați satisfiabilitatea mulțimii de clauze

$$C = \{ \{ \neg P(x), Q(x) \}, \{ P(y) \}, \{ \neg Q(z) \} \}$$

Dacă c este constantă atunci

$$\{\{\neg P(c), Q(c)\}, \{P(c)\}, \{\neg Q(c)\}\} \subseteq \mathcal{H}(C).$$

Considerăm toate valorile de adevăr pentru P(c) și Q(c):

P(c)	Q(c)	$(\neg P(c) \lor Q(c)) \land P(c) \land \neg Q(c)$
0	0	0
0	1	0
1	0	0
1	1	0

Exemple

Cercetați satisfiabilitatea mulțimii de clauze

$$C = \{ \{ \neg P(x), Q(x) \}, \{ P(y) \}, \{ \neg Q(z) \} \}$$

Dacă c este constantă atunci

$$\{\{\neg P(c), Q(c)\}, \{P(c)\}, \{\neg Q(c)\}\} \subseteq \mathcal{H}(C).$$

Considerăm toate valorile de adevăr pentru P(c) și Q(c):

P(c)	Q(c)	$(\neg P(c) \lor Q(c)) \land P(c) \land \neg Q(c)$
0	0	0
0	1	0
1	0	0
1	1	0

$$\{\{\neg P(c), Q(c)\}, \{P(c)\}, \{\neg Q(c)\}\}\$$
 este nesatisfiabilă, deci \mathcal{C} este nesatisfiabilă.

Putem gândi formulele atomice închise ca variabile propoziționale.

$$Rez \ \frac{C_1 \cup \{L\}, \, C_2 \cup \{\neg L\}}{C_1 \cup C_2}$$

unde C_1 , C_2 clauze închise, iar L este o formulă atomică închisă astfel încât $\{L, \neg L\} \cap C_1 = \emptyset$ și $\{L, \neg L\} \cap C_2 = \emptyset$.

$$Rez \ \frac{C_1 \cup \{L\}, C_2 \cup \{\neg L\}}{C_1 \cup C_2}$$

unde C_1 , C_2 clauze închise, iar L este o formulă atomică închisă astfel încât $\{L, \neg L\} \cap C_1 = \emptyset$ și $\{L, \neg L\} \cap C_2 = \emptyset$.

Propoziție

Regula Rez păstrează satisfiabilitatea. Sunt echivalente:

- \square mulțimea de clauze $\{C_1 \cup \{L\}, C_2 \cup \{\neg L\}\}$ este satisfiabilă,
- \square clauza $C_1 \cup C_2$ este satisfiabilă.

$$Rez \ \frac{C_1 \cup \{L\}, C_2 \cup \{\neg L\}}{C_1 \cup C_2}$$

unde C_1 , C_2 clauze închise, iar L este o formulă atomică închisă astfel încât $\{L, \neg L\} \cap C_1 = \emptyset$ și $\{L, \neg L\} \cap C_2 = \emptyset$.

Propoziție

Regula Rez păstrează satisfiabilitatea. Sunt echivalente:

- \square mulțimea de clauze $\{C_1 \cup \{L\}, C_2 \cup \{\neg L\}\}$ este satisfiabilă,
- \square clauza $C_1 \cup C_2$ este satisfiabilă.

Teoremă

Fie φ o formulă arbitrară în logica de ordinul I. Atunci $\vDash \varphi$ dacă și numai dacă există o derivare pentru \Box din $\mathcal{H}(\mathcal{C})$ folosind Rez , unde \mathcal{C} este mulțimea de clauze asociată lui $(\neg \varphi)^{\mathit{fc}}$.

Exemplu

Fie f, g simboluri de funcții unare, P, Q simboluri de predicate unare. Cercetați satisfiabilitatea formulei:

$$\varphi = \forall x ((\neg P(x) \lor Q(f(x))) \land P(g(x)) \land \neg Q(x))$$

Exemplu

Fie f,g simboluri de funcții unare, P,Q simboluri de predicate unare. Cercetați satisfiabilitatea formulei:

$$\varphi = \forall x ((\neg P(x) \lor Q(f(x))) \land P(g(x)) \land \neg Q(x))$$

Determinăm forma clauzală:

$$C = \{ \{ \neg P(x), Q(f(x)) \}, \{ P(g(x)) \}, \{ \neg Q(x) \} \}$$

Exemplu

Fie f,g simboluri de funcții unare, P,Q simboluri de predicate unare. Cercetați satisfiabilitatea formulei:

$$\varphi = \forall x ((\neg P(x) \lor Q(f(x))) \land P(g(x)) \land \neg Q(x))$$

Determinăm forma clauzală:

$$C = \{ \{ \neg P(x), Q(f(x)) \}, \{ P(g(x)) \}, \{ \neg Q(x) \} \}$$

Pentru c o constantă obținem următoarea derivare:

$$\begin{array}{lll} C_1 = & \{\neg P(g(c)), \, Q(f(g(c)))\} \\ C_2 = & \{P(g(c))\} \\ C_3 = & \{Q(f(g(c)))\} & \textit{Rez}, \, C_1, \, C_2 \\ C_4 = & \{\neg Q(f(g(c)))\} \\ C_5 = & \Box & \textit{Rez}, \, C_3, \, C_4 \end{array}$$

Rezoluția pe clauze arbitrare

Observații:

☐ Unificarea literalilor revine la unificarea argumentelor

Dacă $\sigma:V \to \mathit{Trm}_{\mathcal{L}}$ o substituție, atunci sunt echivalente

Rezoluția pe clauze arbitrare

Observații:

☐ Unificarea literalilor revine la unificarea argumentelor

Dacă $\sigma:V o \mathit{Trm}_\mathcal{L}$ o substituție, atunci sunt echivalente

- □ Redenumirea variabilelor în clauze păstrează validitatea

Deoarece
$$\forall x(\varphi \land \psi) \vDash (\forall x \varphi) \land (\forall x \psi)$$
 obtinem

$$\forall x ((P_1(x) \vee P_2(x)) \wedge (Q_1(x) \vee Q_2(x)))$$

$$\exists \ (\forall x (P_1(x) \lor P_2(x))) \land (\forall x (Q_1(x) \lor Q_2(x)))$$

$$\exists \ (\forall x (P_1(x) \vee P_2(x))) \wedge (\forall y (Q_1(y) \vee Q_2(y)))$$

$$\exists \forall x \forall y (P_1(x) \vee P_2(x)) \wedge (Q_1(y) \vee Q_2(y))$$

Rezoluția pe clauze arbitrare

Regula rezoluției pentru clauze arbitrare

$$\textit{Rez } \frac{\textit{C}_{1},\textit{C}_{2}}{\left(\sigma\textit{C}_{1}\setminus\sigma\textit{Lit}_{1}\right)\cup\left(\sigma\textit{C}_{2}\setminus\sigma\textit{Lit}_{2}\right)}$$

dacă următoarele condiții sunt satisfăcute:

- C_1 , C_2 clauze care nu au variabile comune,
- 2 $Lit_1 \subseteq C_1$ și $Lit_2 \subseteq C_2$ sunt mulțimi de literali,
- 3 σ este un unificator pentru Lit_1 și Lit_2^c , adică σ unifică toți literalii din Lit_1 și Lit_2^c .

O clauză C se numește rezolvent pentru C_1 și C_2 dacă există o redenumire de variabile $\theta: V \to V$ astfel încât C_1 și θC_2 nu au variabile comune și C se obține din C_1 și θC_2 prin Rez.

Exemplu

Găsiți un rezolvent pentru clauzele:

$$C_1 = \{ P(f(x), g(y)), Q(x, y) \}$$
 și
 $C_2 = \{ \neg P(f(f(a)), g(y)), Q(f(a), g(y)) \}$

□ redenumim variabilele pentru a satisface condițiile din Rez $\theta C_2 = \{\neg P(f(f(a)), g(z)), Q(f(a), g(z))\}$ unde $\theta = \{y \leftarrow z\}$

Exemplu

Găsiți un rezolvent pentru clauzele:

$$C_1 = \{ P(f(x), g(y)), Q(x, y) \}$$
 și
 $C_2 = \{ \neg P(f(f(a)), g(y)), Q(f(a), g(y)) \}$

- redenumim variabilele pentru a satisface condițiile din *Rez* $\theta C_2 = \{\neg P(f(f(a)), g(z)), Q(f(a), g(z))\}$ unde $\theta = \{y \leftarrow z\}$
- determinăm Lit_1 și Lit_2 $Lit_1 = \{ P(f(x), g(y)) \}$ și $Lit_2 = \{ \neg P(f(f(a)), g(z)) \}$

Exemplu

Găsiți un rezolvent pentru clauzele:

$$C_1 = \{ P(f(x), g(y)), Q(x, y) \}$$
 și
 $C_2 = \{ \neg P(f(f(a)), g(y)), Q(f(a), g(y)) \}$

- redenumim variabilele pentru a satisface condițiile din *Rez* $\theta C_2 = \{\neg P(f(f(a)), g(z)), Q(f(a), g(z))\}$ unde $\theta = \{y \leftarrow z\}$
- \square determinăm Lit_1 și Lit_2

$$Lit_1 = \{ P(f(x), g(y)) \}$$
 și $Lit_2 = \{ \neg P(f(f(a)), g(z)) \}$

 \square găsim un unificator σ care este unificator pentru

$$Lit_1 = \{ P(f(x), g(y)) \}$$
 și $Lit_2^c = \{ P(f(f(a)), g(z)) \}$
 $\sigma = \{ x \leftarrow f(a), y \leftarrow z \}$

Exemplu

Găsiți un rezolvent pentru clauzele:

$$C_1 = \{ P(f(x), g(y)), Q(x, y) \}$$
 și
 $C_2 = \{ \neg P(f(f(a)), g(y)), Q(f(a), g(y)) \}$

- □ redenumim variabilele pentru a satisface condițiile din Rez $\theta C_2 = \{\neg P(f(f(a)), g(z)), Q(f(a), g(z))\}$ unde $\theta = \{y \leftarrow z\}$
- □ determinăm *Lit*₁ și *Lit*₂

$$Lit_1 = \{ P(f(x), g(y)) \}$$
 și $Lit_2 = \{ \neg P(f(f(a)), g(z)) \}$

 \square găsim un unificator σ care este unificator pentru

$$Lit_1 = \{ P(f(x), g(y)) \}$$
 și $Lit_2^c = \{ P(f(f(a)), g(z)) \}$
 $\sigma = \{ x \leftarrow f(a), y \leftarrow z \}$

Rezolventul este $C = (\sigma C_1 \setminus \sigma Lit_1) \cup (\sigma(\theta C_2) \setminus \sigma Lit_2)$ $C = \{Q(f(a), z), Q(f(a), g(z))\}$

□ Fie $\mathcal C$ o mulţime de clauze. O derivare prin rezoluţie din mulţimea $\mathcal C$ pentru o clauză $\mathcal C$ este o secvenţă $\mathcal C_1,\ldots,\mathcal C_n$ astfel încât $\mathcal C_n=\mathcal C$ şi, pentru fiecare $i\in\{1,\ldots,n\},\ \mathcal C_i\in\mathcal C$ sau $\mathcal C_i$ este un rezolvent pentru două cauze $\mathcal C_i,\mathcal C_k$ cu j,k< i.

□ Fie $\mathcal C$ o mulțime de clauze. O derivare prin rezoluție din mulțimea $\mathcal C$ pentru o clauză $\mathcal C$ este o secvență $\mathcal C_1,\ldots,\mathcal C_n$ astfel încât $\mathcal C_n=\mathcal C$ și, pentru fiecare $i\in\{1,\ldots,n\},\ \mathcal C_i\in\mathcal C$ sau $\mathcal C_i$ este un rezolvent pentru două cauze $\mathcal C_i,\ \mathcal C_k$ cu j,k< i.

Teoremă

O mulțime de clauze $\mathcal C$ este nesatisfiabilă dacă și numai dacă există o derivare a clauzei vide \square din $\mathcal C$ prin Rez.

Rezoluția este corectă și completă în calculul cu predicate, dar nu este procedură de decizie.

Exemplu

Găsiți o derivare a \Box din $C = \{C_1, C_2, C_3, C_4\}$ unde: $C_1 = \{ \neg P(x, y), P(y, x) \}$ $C_2 = \{ \neg P(x, y), \neg P(y, z), P(x, z) \}$ $C_3 = \{ P(x, f(x)) \}$ $C_4 = \{ \neg P(x, x) \}$

```
Găsiți o derivare a \square din C = \{C_1, C_2, C_3, C_4\} unde: C_1 = \{\neg P(x, y), P(y, x)\} C_2 = \{\neg P(x, y), \neg P(y, z), P(x, z)\} C_3 = \{P(x, f(x))\} C_4 = \{\neg P(x, x)\} redenumire în C_3 C_5 = \{P(f(x), x)\} C_5 = \{P(f(x), x)\} C_7 = \{x_1 \leftarrow x, y \leftarrow f(x)\}, C_
```

```
Găsiți o derivare a \square din \mathcal{C} = \{C_1, C_2, C_3, C_4\} unde: C_1 = \{\neg P(x,y), P(y,x)\}
C_2 = \{\neg P(x,y), \neg P(y,z), P(x,z)\}
C_3 = \{P(x,f(x))\}
C_4 = \{\neg P(x,x)\}
C_5' = \{P(x_1,f(x_1))\} redenumire în C_3
C_5 = \{P(f(x),x)\} Rez, \sigma = \{x_1 \leftarrow x, y \leftarrow f(x)\}, C_1, C_3'
C_3'' = \{P(x_2,f(x_2))\} redenumire în C_3
C_6 = \{\neg P(f(x),z), P(x,z)\} Rez, \sigma = \{x_2 \leftarrow x, y \leftarrow f(x)\}, C_2, C_3''
```

```
Găsiți o derivare a \square din \mathcal{C} = \{C_1, C_2, C_3, C_4\} unde:
C_1 = \{ \neg P(x, y), P(y, x) \}
C_2 = \{ \neg P(x, y), \neg P(y, z), P(x, z) \}
C_3 = \{ P(x, f(x)) \}
C_4 = \{ \neg P(x, x) \}
  C'_{3} = \{ P(x_{1}, f(x_{1})) \}
                                               redenumire în C_3
  C_5 = \{ P(f(x), x) \}
                                               Rez, \sigma = \{x_1 \leftarrow x, y \leftarrow f(x)\}, C_1, C'_2
  C_2'' = \{ P(x_2, f(x_2)) \}
                                               redenumire în C_3
  C_6 = \{ \neg P(f(x), z), P(x, z) \}
                                               Rez, \sigma = \{x_2 \leftarrow x, y \leftarrow f(x)\}, C_2, C_2''
  C_{\rm E}' = \{ P(f(x_3), x_3) \}
                                               redenumire în C_5
  C_7 = \{ P(x, x) \}
                                               Rez, \sigma = \{x_3 \leftarrow x, z \leftarrow x\}, C_6, C_6'
```

```
Găsiți o derivare a \square din \mathcal{C} = \{C_1, C_2, C_3, C_4\} unde:
C_1 = \{ \neg P(x, y), P(y, x) \}
C_2 = \{ \neg P(x, y), \neg P(y, z), P(x, z) \}
C_3 = \{ P(x, f(x)) \}
C_4 = \{ \neg P(x, x) \}
  C'_{3} = \{ P(x_{1}, f(x_{1})) \}
                                               redenumire în C_3
  C_5 = \{ P(f(x), x) \}
                                                Rez, \sigma = \{x_1 \leftarrow x, y \leftarrow f(x)\}, C_1, C'_2
  C_2'' = \{ P(x_2, f(x_2)) \}
                                               redenumire în C_3
  C_6 = \{ \neg P(f(x), z), P(x, z) \}
                                               Rez, \sigma = \{x_2 \leftarrow x, y \leftarrow f(x)\}, C_2, C_2''
  C_{5}' = \{ P(f(x_3), x_3) \}
                                               redenumire în C_5
  C_7 = \{ P(x, x) \}
                                                Rez, \sigma = \{x_3 \leftarrow x, z \leftarrow x\}, C_6, C_5'
  C_4' = \{ \neg P(x_4, x_4) \}
                                               redenumire în C_4
  C_5 = \square
                                                Rez, \sigma = \{x_4 \leftarrow x\}, C_7, C'_4
```

Exemplu

Cercetați dacă din ipotezele (i1)-(i6) se deduce (c), unde

- (i1) Jack owns a dog.
- (i2) Anyone who owns a dog is a lover of animals.
- (i3) Lovers of animals do not kill animals.
- (i4) Either Jack killed Tuna or curiosity killed Tuna.
- (i5) Tuna is a cat.
- (i6) All cats are animals.
- (c) Curiosity killed Tuna.

Exemplu

Cercetați dacă din ipotezele (i1)-(i6) se deduce (c), unde

- (i1) Jack owns a dog.
- (i2) Anyone who owns a dog is a lover of animals.
- (i3) Lovers of animals do not kill animals.
- (i4) Either Jack killed Tuna or curiosity killed Tuna.
- (i5) Tuna is a cat.
- (i6) All cats are animals.
- (c) Curiosity killed Tuna.

Vom formaliza ipotezele și concluzia în logica de ordinul I si vom face demonstrația folosind rezoluția.

Exemplu

Formalizăm ipotezele și determinăm forma clauzală:

(i1) Jack owns a dog.

$$\exists x (D(x) \land O(jack, x))$$

$$\mathbf{R} = \{D, O\}, \mathbf{C} = \{jack\}$$

$$D(dog) \wedge O(jack, dog)$$

Skolemizare

$$\mathbf{R} = \{D,O\}, \mathbf{C} = \{\textit{jack}, \textit{dog}\}$$

Exemplu

(i2) Anyone who owns a dog is a lover_of_animals.

$$\forall x (\exists y (D(y) \land O(x,y))) \rightarrow L(x)) \qquad \mathbf{R} = \{D, O, L\}, \mathbf{C} = \{jack, dog\}$$

Exemplu

(i2) Anyone who owns a dog is a lover_of_animals.

$$\forall x (\exists y (D(y) \land O(x, y))) \rightarrow L(x)) \qquad \mathbf{R} = \{D, O, L\}, \mathbf{C} = \{jack, dog\}\}$$

$$\forall x ((\neg(\exists y (D(y) \land O(x, y))) \lor L(x))$$

$$\forall x ((\forall y (\neg D(y) \lor \neg O(x, y))) \lor L(x))$$

$$\forall x \forall y (\neg D(y) \lor \neg O(x, y)) \lor L(x)$$

$$\neg D(y) \lor \neg O(x, y)) \lor L(x)$$

Exemplu

(i3) Lovers_of_animals do not kill animals.

$$\forall x (L(x) \to (\forall y A(y) \to \neg K(x, y)))$$

$$\mathbf{R} = \{D, O, L, A, K\}, \mathbf{C} = \{jack, dog\}$$

Exemplu

(i3) Lovers_of_animals do not kill animals.

$$\forall x (L(x) \to (\forall y A(y) \to \neg K(x, y)))$$

$$\mathbf{R} = \{D, O, L, A, K\}, \mathbf{C} = \{jack, dog\}$$

$$\forall x (\neg L(x) \lor (\forall y \neg A(y) \lor \neg K(x, y)))$$

$$\forall x \forall y (\neg L(x) \lor \neg A(y) \lor \neg K(x, y))$$

$$\neg L(x) \lor \neg A(y) \lor \neg K(x, y)$$

Exemplu

(i4) Either Jack killed Tuna or curiosity killed Tuna.

$$K(jack, tuna) \lor K(curiosity, tuna)$$

 $\mathbf{R} = \{D, O, L, A, K\}, \mathbf{C} = \{jack, dog, tuna, curiosity\}$

Exemplu

(i4) Either Jack killed Tuna or curiosity killed Tuna.

$$K(jack, tuna) \lor K(curiosity, tuna)$$

 $R = \{D, O, L, A, K\}, C = \{jack, dog, tuna, curiosity\}$

(i5) Tuna is a cat.

$$\mathbf{R} = \{D, O, L, A, K, C\}, \mathbf{C} = \{jack, dog, tuna, curiosity\}$$

Exemplu

(i4) Either Jack killed Tuna or curiosity killed Tuna.

$$K(jack, tuna) \lor K(curiosity, tuna)$$

 $\mathbf{R} = \{D, O, L, A, K\}, \mathbf{C} = \{jack, dog, tuna, curiosity\}$

(i5) Tuna is a cat.

$$C(tuna)$$

$$\mathbf{R} = \{D, O, L, A, K, C\}, \mathbf{C} = \{jack, dog, tuna, curiosity\}$$

(i6) All cats are animals.

$$\forall x \ C(x) \to A(x)$$
$$\neg C(x) \lor A(x)$$

- (i1) $D(dog) \wedge O(jack, dog)$
- (i2) $\neg D(y) \lor \neg O(x,y) \lor L(x)$
- (i3) $\neg L(x) \lor \neg A(y) \lor \neg K(x,y)$
- (i4) $K(jack, tuna) \vee K(curiosity, tuna)$
- (i5) *C*(tuna)
- (i6) $\neg C(x) \lor A(x)$
- (c) K(curiosity, tuna)

- (i1) D(dog)
- (i1) O(jack, dog)
- (i2) $\neg D(y) \lor \neg O(x,y) \lor L(x)$
- (i3) $\neg L(x) \lor \neg A(y) \lor \neg K(x,y)$
- (i4) $K(jack, tuna) \lor K(curiosity, tuna)$
- (i5) *C*(tuna)
- (i6) $\neg C(x) \lor A(x)$
- $(\neg c) \neg K(curiosity, tuna)$

```
D(dog)
O(jack, dog)
\neg D(y) \lor \neg O(x, y) \lor L(x)
\neg L(x) \lor \neg A(y) \lor \neg K(x, y)
K(jack, tuna) \lor K(curiosity, tuna)
C(tuna)
\neg C(x) \lor A(x)
\neg K(curiosity, tuna)
```

```
D(dog)
O(jack, dog)
\neg D(y) \lor \neg O(x, y) \lor L(x)
\neg L(x) \lor \neg A(y) \lor \neg K(x, y)
K(jack, tuna)
C(tuna)
\neg C(x) \lor A(x)
```

```
D(dog)
O(jack, dog)
\neg D(y) \lor \neg O(x, y) \lor L(x)
\neg L(x) \lor \neg A(y) \lor \neg K(x, y)
K(jack, tuna)
C(tuna)
\neg C(x) \lor A(x) \{x \leftarrow tuna\}
```

```
D(dog)
O(jack, dog)
\neg D(y) \lor \neg O(x, y) \lor L(x)
\neg L(x) \lor \neg A(y) \lor \neg K(x, y)
K(jack, tuna)
A(tuna)
```

```
D(dog)
O(jack, dog)
\neg D(y) \lor \neg O(x, y) \lor L(x)
\neg L(x) \lor \neg A(y) \lor \neg K(x, y) \{y \leftarrow tuna\}
K(jack, tuna)
A(tuna)
```

Exempli

```
D(dog)

O(jack, dog)

\neg D(y) \lor \neg O(x, y) \lor L(x)

\neg L(x) \lor \neg K(x, tuna)

K(jack, tuna)
```

```
D(dog)
O(jack, dog)
\neg D(y) \lor \neg O(x, y) \lor L(x)
\neg L(x) \lor \neg K(x, tuna) \{x \leftarrow jack\}
K(jack, tuna)
```

```
D(dog)

O(jack, dog)

\neg D(y) \lor \neg O(x, y) \lor L(x)

\neg L(jack)
```

```
D(dog)
O(jack, dog)
\neg D(y) \lor \neg O(x, y) \lor L(x) \{x \leftarrow jack\}
\neg L(jack)
```

```
D(dog)

O(jack, dog)

\neg D(y) \lor \neg O(jack, y)
```

```
D(dog)
O(jack, dog)
\neg D(y) \lor \neg O(jack, y) \{y \leftarrow dog\}
```

"Curiosity killed the cat!"

Exemplu

O(jack, dog)

 $\neg O(jack, dog)$

"Curiosity killed the cat!"

Exemplu

O(jack, dog) $\neg O(jack, dog)$

"Curiosity killed the cat!"

Exemplu

$$O(jack, dog)$$

 $\neg O(jack, dog)$

Г

În concluzie, am arătat că

$$\{(i1),(i2),(i3),(i4),(i5),(i6)\} \vDash (c)$$

Clauze Horn

Clauze în logica de ordinul I

$$\{\neg Q_1,\ldots,\neg Q_n,P_1,\ldots,P_k\}$$

unde $n, k \ge 0$ și $Q_1, \dots, Q_n, P_1, \dots, P_k$ sunt formule atomice.

☐ formula corespunzătoare este

$$\forall x_1 \ldots \forall x_m (\neg Q_1 \vee \ldots \vee \neg Q_n \vee P_1 \vee \ldots \vee P_k)$$

unde x_1, \ldots, x_m sunt toate variabilele care apar în clauză

echivalent, putem scrie

$$\forall x_1 \ldots \forall x_m (Q_1 \wedge \ldots \wedge Q_n \to P_1 \vee \ldots \vee P_k)$$

□ cuantificarea universală a clauzelor este implicită

$$Q_1 \wedge \ldots \wedge Q_n \rightarrow P_1 \vee \ldots \vee P_k$$

□ clauză:

$$\{\neg Q_1, \dots, \neg Q_n, P_1, \dots, P_k\}$$
 sau $Q_1 \wedge \dots \wedge Q_n \rightarrow P_1 \vee \dots \vee P_k$
unde $n, k \geq 0$ și $Q_1, \dots, Q_n, P_1, \dots, P_k$ sunt formule atomice.

- \square clauză program definită: k=1
 - \square cazul n > 0: $Q_1 \wedge \ldots \wedge Q_n \rightarrow P$
 - \square cazul n = 0: $\top \rightarrow P$ (clauză unitate, fapt)

Program logic definit = mulțime finită de clauze definite

□ clauză:

$$\{\neg Q_1, \dots, \neg Q_n, P_1, \dots, P_k\}$$
 sau $Q_1 \wedge \dots \wedge Q_n \rightarrow P_1 \vee \dots \vee P_k$ unde $n, k \geq 0$ și $Q_1, \dots, Q_n, P_1, \dots, P_k$ sunt formule atomice.

- \square clauză program definită: k=1
 - \square cazul n > 0: $Q_1 \wedge \ldots \wedge Q_n \rightarrow P$
 - \square cazul n=0: $\top \to P$ (clauză unitate, fapt)

Program logic definit = mulțime finită de clauze definite

- □ scop definit (țintă, întrebare): k=0
 - \square $Q_1 \wedge \ldots \wedge Q_n \rightarrow \bot$

□ clauză:

$$\{\neg Q_1,\ldots,\neg Q_n,P_1,\ldots,P_k\}$$
 sau $Q_1\wedge\ldots\wedge Q_n\to P_1\vee\ldots\vee P_k$ unde $n,k\geq 0$ și $Q_1,\ldots,Q_n,P_1,\ldots,P_k$ sunt formule atomice.

- \square clauză program definită: k=1
 - \square cazul n > 0: $Q_1 \wedge \ldots \wedge Q_n \rightarrow P$
 - □ cazul n = 0: $\top \rightarrow P$ (clauză unitate, fapt)
 - Program logic definit = mulțime finită de clauze definite
- □ scop definit (țintă, întrebare): k=0
 - \square $Q_1 \wedge \ldots \wedge Q_n \rightarrow \bot$
- \square clauza vidă \square : n = k = 0

□ clauză:

$$\{\neg Q_1, \dots, \neg Q_n, P_1, \dots, P_k\}$$
 sau $Q_1 \wedge \dots \wedge Q_n \to P_1 \vee \dots \vee P_k$ unde $n, k \geq 0$ și $Q_1, \dots, Q_n, P_1, \dots, P_k$ sunt formule atomice.

- \square clauză program definită: k=1
 - \square cazul n > 0: $Q_1 \wedge \ldots \wedge Q_n \rightarrow P$
 - \square cazul n=0: $\top \to P$ (clauză unitate, fapt)

Program logic definit = mulțime finită de clauze definite

- □ scop definit (țintă, întrebare): k=0
 - \square $Q_1 \wedge \ldots \wedge Q_n \rightarrow \bot$
- \square clauza vidă \square : n = k = 0

Clauza Horn = clauză program definită sau clauză scop ($k \le 1$)

Clauze Horn ţintă

□ scop definit (țintă, întrebare): $Q_1 \wedge \ldots \wedge Q_n \to \bot$ □ fie x_1, \ldots, x_m toate variabilele care apar în Q_1, \ldots, Q_n $\forall x_1 \ldots \forall x_m (\neg Q_1 \vee \ldots \vee \neg Q_n) \boxminus \neg \exists x_1 \ldots \exists x_m (Q_1 \wedge \ldots \wedge Q_n)$ □ clauza țintă o vom scrie Q_1, \ldots, Q_n

Negația unei "întrebări" în PROLOG este clauză Horn țintă.

□ Logica clauzelor definite/Logica Horn: un fragment al logicii de ordinul I în care singurele formule admise sunt clauze Horn □ formule atomice: $P(t_1, ..., t_n)$ □ $Q_1 \wedge ... \wedge Q_n \rightarrow P$ unde toate Q_i, P sunt formule atomice, \top sau \bot

- □ Logica clauzelor definite/Logica Horn: un fragment al logicii de ordinul I în care singurele formule admise sunt clauze Horn
 - \square formule atomice: $P(t_1,\ldots,t_n)$
 - □ $Q_1 \wedge ... \wedge Q_n \rightarrow P$ unde toate Q_i, P sunt formule atomice. \top sau \bot
- □ Problema programării logice: reprezentăm cunoștințele ca o mulțime de clauze definite KB și suntem interesați să aflăm răspunsul la o întrebare de forma $Q_1 \wedge \ldots \wedge Q_n$, unde toate Q_i sunt formule atomice

$$KB \models Q_1 \wedge \ldots \wedge Q_n$$

- □ Logica clauzelor definite/Logica Horn: un fragment al logicii de ordinul I în care singurele formule admise sunt clauze Horn
 - \square formule atomice: $P(t_1,\ldots,t_n)$
 - □ $Q_1 \wedge ... \wedge Q_n \rightarrow P$ unde toate Q_i , P sunt formule atomice, \top sau \bot
- □ Problema programării logice: reprezentăm cunoștințele ca o mulțime de clauze definite KB și suntem interesați să aflăm răspunsul la o întrebare de forma $Q_1 \wedge \ldots \wedge Q_n$, unde toate Q_i sunt formule atomice

$$KB \models Q_1 \wedge \ldots \wedge Q_n$$

- □ Variabilele din *KB* sunt cuantificate universal.
- □ Variabilele din $Q_1, ..., Q_n$ sunt cuantificate existențial.

- □ Logica clauzelor definite/Logica Horn: un fragment al logicii de ordinul I în care singurele formule admise sunt clauze Horn
 - \square formule atomice: $P(t_1,\ldots,t_n)$
- □ Problema programării logice: reprezentăm cunoștințele ca o mulțime de clauze definite KB și suntem interesați să aflăm răspunsul la o întrebare de forma $Q_1 \wedge \ldots \wedge Q_n$, unde toate Q_i sunt formule atomice
 - $KB \vDash Q_1 \wedge \ldots \wedge Q_n$
 - Variabilele din KB sunt cuantificate universal.
 - □ Variabilele din $Q_1, ..., Q_n$ sunt cuantificate existențial.

Limbajul PROLOG are la bază logica clauzelor Horn.

Logica clauzelor definite

Exemple

```
Fie următoarele clauze definite:
    father(jon, ken).
    father(ken, liz).
    father(X, Y) \rightarrow ancestor(X, Y)
    dauther(X, Y) \rightarrow ancestor(Y, X)
    ancestor(X, Y) \land ancestor(Y, Z) \rightarrow ancestor(X, Z)
Putem întreba:
  □ ancestor(jon, liz)
    dacă există Q astfel încât ancestor (Q, ken)
     (adică \exists Q \ ancestor(Q, ken))
```

Sistem de deducție pentru logica Horn

Sistem de deducție backchain

Sistem de deducție pentru clauze Horn

Pentru un program logic definit KB avem

Sistem de deducție backchain

Sistem de deducție pentru clauze Horn

Pentru un program logic definit KB avem

☐ Axiome: orice clauză din KB

Sistem de deducție backchain

Sistem de deducție pentru clauze Horn

Pentru un program logic definit KB avem

- □ Axiome: orice clauză din KB
- ☐ Regula de deducție: regula backchain

$$\frac{\theta(Q_1) \quad \theta(Q_2) \quad \dots \quad \theta(Q_n) \quad (Q_1 \land Q_2 \land \dots \land Q_n \to P)}{\theta(Q)}$$

unde $Q_1 \wedge Q_2 \wedge \ldots \wedge Q_n \rightarrow P \in KB$, iar θ este unificator pentru Q și P.

Sistem de deducție

Exemplu

KB conține următoarele clauze definite:

```
father(jon, ken).

father(ken, liz).

father(X, Y) \rightarrow ancestor(X, Y)

daugther(X, Y) \rightarrow ancestor(Y, X)

ancestor(X, Y) \wedge ancestor(Y, Z) \rightarrow ancestor(X, Z)
```

$$\frac{\theta(Q_1) \quad \theta(Q_2) \quad \dots \quad \theta(Q_n) \quad (Q_1 \land Q_2 \land \dots \land Q_n \to P)}{\theta(Q)}$$

unde $Q_1 \wedge Q_2 \wedge \ldots \wedge Q_n \rightarrow P \in KB$, iar θ este unificator pentru Q și P

Sistem de deducție

Pentru o țintă Q, trebuie să găsim o clauză din KB

$$Q_1 \wedge \ldots \wedge Q_n \rightarrow P$$
,

și un unificator θ pentru Q și P. În continuare vom verifica $\theta(Q_1), \ldots, \theta(Q_n)$.

Sistem de deducție

Pentru o țintă Q, trebuie să găsim o clauză din KB

$$Q_1 \wedge \ldots \wedge Q_n \rightarrow P$$
,

și un unificator θ pentru Q și P. În continuare vom verifica $\theta(Q_1),\ldots,\theta(Q_n)$.

Exemplu

Pentru ţinta

Sistem de deducție

Pentru o țintă Q, trebuie să găsim o clauză din KB

$$Q_1 \wedge \ldots \wedge Q_n \rightarrow P$$
,

și un unificator θ pentru Q și P. În continuare vom verifica $\theta(Q_1), \ldots, \theta(Q_n)$.

Exemplu

Pentru ţinta

putem folosi o clauză

$$father(Y, X) \rightarrow ancestor(Y, X)$$

cu unificatorul

$$\{Y/ken, X/Z\}$$

pentru a obține o nouă țintă

$$father(ken, Z)$$
.

Sistem de deducție

$$\frac{\theta(\textit{Q}_1) \quad \theta(\textit{Q}_2) \quad \dots \quad \theta(\textit{Q}_n) \quad (\textit{Q}_1 \land \textit{Q}_2 \land \dots \land \textit{Q}_n \rightarrow \textit{P})}{\theta(\textit{Q})}$$

unde $Q_1 \wedge Q_2 \wedge \ldots \wedge Q_n \rightarrow P \in KB$, iar θ este unificator pentru Q și P.

Exemplu

$$\frac{father(ken, liz)}{father(ken, Z)} \frac{father(Y, X) \rightarrow ancestor(Y, X))}{ancestor(ken, Z)}$$

Puncte de decizie în programarea logica

Având doar această regulă, care sunt punctele de decizie în căutare?

Puncte de decizie în programarea logica

Având doar această regulă, care sunt punctele de decizie în căutare?

- ☐ Ce clauză să alegem.
 - Pot fi mai multe clauze a căror parte dreaptă se potrivește cu o țintă.
 - Aceasta este o alegere de tip **SAU**: este suficient ca oricare din variante să reușească.

Puncte de decizie în programarea logica

Având doar această regulă, care sunt punctele de decizie în căutare?
☐ Ce clauză să alegem.
 Pot fi mai multe clauze a căror parte dreaptă se potrivește cu o țintă. Aceasta este o alegere de tip SAU: este suficient ca oricare din variante să reușească.
□ Ordinea în care rezolvăm noile ținte.
 Aceasta este o alegere de tip \$I: trebuie arătate toate țintele noi. Ordinea în care le rezolvăm poate afecta găsirea unei derivări, depinzând de strategia de căutare folosită.

Strategia de căutare din Prolog

☐ Regula *backchain* conduce la un sistem de deducție complet:

Pentru o mulțime de clauze KB și o țintă Q, dacă $KB \models Q$, atunci există o derivare a lui Q folosind regula backchain.

Strategia de căutare din Prolog

Regula backchain conduce la un sistem de deductie complet: Pentru o multime de clauze KB si o tintă Q. dacă $KB \models Q$. atunci există o derivare a lui Q folosind regula backchain. Strategia de căutare din Prolog este de tip *depth-first*, de sus în jos pentru alegerile de tip SAU alege clauzele în ordinea în care apar în program de la stânga la dreapta pentru alegerile de tip ŞI alege noile tinte în ordinea în care apar în clauza aleasă

Sistemul de inferență backchain

Notăm cu $KB \vdash_b Q$ dacă există o derivare a lui Q din KB folosind sistemul de inferență backchain.

Teoremă

Sistemul de inferență backchain este corect și complet pentru formule atomice fără variabile Q.

$$KB \models Q$$
 dacă și numai dacă $KB \vdash_b Q$

Sistemul de inferență backchain

Notăm cu $KB \vdash_b Q$ dacă există o derivare a lui Q din KB folosind sistemul de inferență backchain.

Teoremă

Sistemul de inferență backchain este corect și complet pentru formule atomice fără variabile Q.

$$KB \models Q$$
 dacă și numai dacă $KB \vdash_b Q$

Sistemul de inferență *backchain* este corect și complet și pentru formule atomice cu variabile *Q*:

$$KB \models \exists x Q(x)$$
 dacă și numai dacă $KB \vdash_b \theta(Q)$ pentru o substituție θ .

Corectitudine

Propoziție (Corectitudine)

Dacă $KB \vdash_b Q$, atunci $KB \vDash Q$.

Demonstrație [schiță]

- □ Presupunem că toate clauzele din *KB* sunt adevărate.
- \square Ne uităm, inductiv, la cazurile care pot să apară în derivarea lui Q.

Completitudine

Teoremă (Completitudine)

Dacă KB $\vDash Q$, atunci KB $\vdash_b Q$.

Completitudine

Teoremă (Completitudine)

Dacă KB \models Q, atunci KB \vdash _b Q.

Trebuie să arătăm că

pentru orice structură și orice interpretare, dacă orice clauză din KB este adevărată, atunci și Q este adevărată,

1

există o derivare a lui Q din KB.

Completitudine

Teoremă (Completitudine)

Dacă KB \models Q, atunci KB \vdash _b Q.

Trebuie să arătăm că

pentru orice structură și orice interpretare, dacă orice clauză din KB este adevărată, atunci și Q este adevărată,

11

există o derivare a lui Q din KB.

Demonstrația este mai simplă deoarece

este suficient să ne uităm la modelul Herbrand!

Regula backchain și rezoluția SLD

- □ Regula *backchain* este implementată în programarea logică prin rezoluția SLD (Selected, Linear, Definite).
- □ Prolog are la bază rezoluția SLD.

Fie KB o mulțime de clauze definite.

$$\mathsf{SLD} \boxed{ \frac{\neg Q_1 \lor \cdots \lor \neg Q_i \lor \cdots \lor \neg Q_n}{\theta(\neg Q_1 \lor \cdots \lor \neg P_1 \lor \cdots \lor \neg P_m \lor \cdots \lor \neg Q_n)} }$$

unde

- \square $Q \lor \neg P_1 \lor \cdots \lor \neg P_m$ este o clauză definită din KB (în care toate variabilele au fost redenumite) și
- \square variabilele din $Q \vee \neg P_1 \vee \cdots \vee \neg P_m$ și Q_i se redenumesc
- \square θ este unificator pentru Q_i și Q

Exempli

```
father(eddard,sansa).
father(eddard,jonSnow).

stark(eddard).
stark(catelyn).

stark(X) :- father(Y,X),
stark(Y).
```

$$\mathsf{SLD} \left[\begin{array}{c} \neg Q_1 \lor \cdots \lor \neg Q_i \lor \cdots \lor \neg Q_n \\ \hline \theta(\neg Q_1 \lor \cdots \lor \neg P_1 \lor \cdots \lor \neg P_m \lor \cdots \lor \neg Q_n) \end{array} \right]$$

- \square $Q \lor \neg P_1 \lor \cdots \lor \neg P_m$ este o clauză definită din KB
- \square variabilele din $Q \vee \neg P_1 \vee \cdots \vee \neg P_m$ și Q_i se redenumesc
- \square θ este unificator pentru Q_i și Q.

Exemplu father(eddard, sansa) father(eddard, jonSnow) stark(eddard) stark(catelyn) $\theta(X) = jonSnow$

$$stark(X) \lor \neg father(Y, X) \lor \neg stark(Y)$$

$$\mathsf{SLD} \boxed{ \frac{\neg Q_1 \lor \dots \lor \neg Q_i \lor \dots \lor \neg Q_n}{\theta(\neg Q_1 \lor \dots \lor \neg P_1 \lor \dots \lor \neg P_m \lor \dots \lor \neg Q_n)} }$$

- \square $Q \vee \neg P_1 \vee \cdots \vee \neg P_m$ este o clauză definită din KB
- \square variabilele din $Q \vee \neg P_1 \vee \cdots \vee \neg P_m$ și Q_i se redenumesc
- \square θ este unificator pentru Q_i și Q.

Exemplu

```
father(eddard, sansa) \\ father(eddard, jonSnow) \\ \hline \neg stark(jonSnow) \\ \hline \neg father(Y, jonSnow) \lor \neg stark(Y) \\ stark(eddard) \\ stark(catelyn) \\ \hline \theta(X) = jonSnow
```

$$\mathsf{SLD} \boxed{ \frac{\neg Q_1 \lor \dots \lor \neg Q_i \lor \dots \lor \neg Q_n}{\theta(\neg Q_1 \lor \dots \lor \neg P_1 \lor \dots \lor \neg P_m \lor \dots \lor \neg Q_n)}}$$

- \square $Q \vee \neg P_1 \vee \cdots \vee \neg P_m$ este o clauză definită din KB
- \square variabilele din $Q \vee \neg P_1 \vee \cdots \vee \neg P_m$ și Q_i se redenumesc
- \square θ este unificator pentru Q_i și Q.

 $stark(X) \lor \neg father(Y, X) \lor \neg stark(Y)$

Exempli

```
father(eddard, sansa) \\ father(eddard, jonSnow) \\ stark(eddard) \\ stark(catelyn) \\ stark(X) \lor \neg father(Y, X) \lor \neg stark(Y) \\ \hline \frac{\neg stark(jonSnow)}{\neg father(Y, jonSnow) \lor \neg stark(Y)} \\ \hline
```

Exempli

```
father(eddard, sansa)
father(eddard, jonSnow)
stark(eddard)
stark(catelyn)
stark(X) \lor \neg father(Y, X) \lor \neg stark(Y)
                                \neg stark(jonSnow)
                      \neg father(Y, jonSnow) \lor \neg stark(Y)
                      \neg father(Y, jonSnow) \lor \neg stark(Y)
                                 \negstark(eddard)
```

Exemple

```
father(eddard, sansa)
father(eddard, jonSnow)
stark(eddard)
stark(catelyn)
stark(X) \lor \neg father(Y, X) \lor \neg stark(Y)
                               ¬stark(jonSnow)
                     \neg father(Y, jonSnow) \lor \neg stark(Y)
                      \neg father(Y, jonSnow) \lor \neg stark(Y)
                                \negstark(eddard)
                                ¬stark(eddard)
```

Fie KB o mulțime de clauze definite și $Q_1 \wedge ... \wedge Q_m$ o întrebare, unde Q_i sunt formule atomice.

□ O derivare din KB prin rezoluție SLD este o secvență

$$G_0 := \neg Q_1 \lor \ldots \lor \neg Q_m, \quad G_1, \quad \ldots, \quad G_k, \ldots$$

în care G_{i+1} se obține din G_i prin regula SLD.

□ Dacă există un k cu $G_k = \square$ (clauza vidă), atunci derivarea se numește SLD-respingere.

Teoremă (Completitudinea SLD-rezoluției)

Sunt echivalente:

- \square există o *SLD-respingere* a lui $Q_1 \wedge ... \wedge Q_m$ din KB,
- \square $KB \vdash_b Q_1 \land \ldots \land Q_m$,
- \square $KB \models Q_1 \wedge \cdots \wedge Q_m$.

Teoremă (Completitudinea SLD-rezoluției)

Sunt echivalente:

- \square există o SLD-respingere a lui $Q_1 \wedge \ldots \wedge Q_m$ din KB,
- \square $KB \vdash_b Q_1 \land \ldots \land Q_m$,
- \square $KB \models Q_1 \wedge \cdots \wedge Q_m$.

Demonstrație

Rezultă din completitudinea sistemului de deducție backchain și din faptul că:

există o SLD-respingere a lui
$$Q_1 \wedge \ldots \wedge Q_m$$
 din KB ddacă $KB \vdash_b Q_1 \wedge \ldots \wedge Q_m$

Rezoluția SLD - arbori de căutare

Arbori SLD

- \square Presupunem că avem o mulțime de clauze definite KB și o țintă $G_0 = \neg Q_1 \lor \ldots \lor \neg Q_m$
- □ Construim un arbore de căutare (arbore SLD) astfel:
 - ☐ Fiecare nod al arborelui este o țintă (posibil vidă)
 - \square Rădăcina este G_0
 - Dacă arborele are un nod G_i , iar G_{i+1} se obține din G_i folosind regula SLD folosind o clauză $C_i \in KB$, atunci nodul G_i are copilul G_{i+1} . Muchia dintre G_i și G_{i+1} este etichetată cu C_i .
- □ Dacă un arbore SLD cu rădăcina G_0 are o frunză □ (clauza vidă), atunci există o SLD-respingere a lui G_0 din KB.

Exempli

- ☐ Fie *KB* următoarea mulțime de clauze definite:
 - 1 grandfather(X, Z): -father(X, Y), parent(Y, Z)
 - 2 parent(X, Y) : -father(X, Y)
 - 3 parent(X, Y) : -mother(X, Y)
 - 4 father(ken, diana)
 - 5 mother(diana, brian)
- ☐ Găsiți o respingere din KB pentru

: -grandfather(ken, Y)

Exemple

- ☐ Fie KB următoarea mulțime de clauze definite:
 - 1 grandfather(X, Z) $\vee \neg father(X, Y) \vee \neg parent(Y, Z)$
 - 2 $parent(X, Y) \lor \neg father(X, Y)$
 - 3 $parent(X, Y) \lor \neg mother(X, Y)$
 - 4 father(ken, diana)
 - 5 mother(diana, brian)
- ☐ Găsiți o respingere din KB pentru

 \neg grandfather(ken, Y)

Exemplu

```
grandfather(X, Z) \lor \neg father(X, Y) \lor \neg parent(Y, Z)
parent(X, Y) \lor \neg father(X, Y)
parent(X, Y) \lor \neg mother(X, Y)
father(ken, diana)
mother(diana, brian) \neg grandfather(ken, Y)
                 \neg father(ken, V) \lor \neg parent(V, Y)
                           \neg parent(diana, Y)
           \negfather(diana, Y) \negmother(diana, Y)
```

Exemplu

Aplicarea SLD:

$\neg parent(diana, Y)$ 2 $parent(X, Y) \lor \neg father(X, Y)$ \neg father(diana, Y) Aplicarea SLD: redenumesc variabilele: $parent(X, Y_2) \vee \neg father(X, Y_2)$ determin unificatorul: $\theta = X/diana, Y_2/Y$ \square aplic regula: $\frac{\neg parent(diana, Y)}{\neg father(diana, Y)}$

- Am arătat că sistemul de inferență din spatele Prolog-ului este complet.
 - Dacă o întrebare este consecință logică a unei mulțimi de clauze, atunci există o derivare a întrebării
- ☐ Totuși, strategia de căutate din Prolog este incompletă!
 - Chiar dacă o întrebare este consecință logică a unei mulțimi de clauze, Prolog nu găsește mereu o derivare a întrebării.

Exempli

```
warmerClimate :- albedoDecrease.
warmerClimate :- carbonIncrease.
iceMelts :- warmerClimate.
albedoDecrease :- iceMelts.
carbonIncrease.
?- iceMelts.
! Out of local stack
```

Exempli

```
warmerClimate :- albedoDecrease.
warmerClimate :- carbonIncrease.
iceMelts :- warmerClimate.
albedoDecrease :- iceMelts.
carbonIncrease.
?- iceMelts.
! Out of local stack
```

```
Există o derivare a lui iceMelts în sistemul de deducție din clauzele:
                 albedoDecrease → warmerClimate
                  carbonIncrease \rightarrow warmerClimate
                 warmerClimate \rightarrow iceMelts
                        iceMelts → albedoDecrease
                                   → carbonIncrease
carbonInc.
                carbonInc. \rightarrow warmerClim.
                                                 warmerClim. \rightarrow iceMelts
                warmerClim.
                                 iceMelts
```

Bibliografie

- ☐ M. Ben-Ari, Mathematical Logic for Computer Science, Springer, 2012.
- P. Blackburn, J. Bos, K. Striegnitz, Learn Prolog now, College Publications, 2006.
- M. Huth, M. Ryan, Logic in Computer Science: Modelling and Reasoning about Systems, Cambridge University Press New York, 2004.
- □ J.W. Lloyd, Foundations of Logic Programming, Springer, 1987.
- Logic Programming, The University of Edinburgh, https://www.inf.ed.ac.uk/teaching/courses/lp/

Succes la examen!