Solution for HW 11

- **1.** Define $N := \inf\{n; X_n > M\}$ for M > 0. According to Theorem 5.2.6, $(X_{n \wedge N})_{n \in \mathbb{N}}$ is also submartingale. Observe that $X_{n \wedge N}^+ \leq M + \sup_n (X_n X_{n-1})^+$ and thus $\sup_n \mathbb{E} X_{n \wedge N}^+ \leq M + \mathbb{E} \sup_n (X_n X_{n-1})^+ < \infty$. By Theorem 5.2.8 (martingale convergence theorem), $X_{n \wedge N}$ converges a.s. Let $M \to \infty$, since $\sup_n X_n < \infty$ a.s., we have X_n converges a.s.
- **2.** Denote $p_1 := \mathbb{P}(A_1)$ and $p_n := \mathbb{P}(A_n | \cap_{m=1}^{n-1} A_m^c)$ for $n \geq 2$. Note that $\prod_{n=1}^{\infty} (1 p_n) = \mathbb{P}(\cap_{n=1}^{\infty} A_m^c)$. It is well-known that for $p_n \in [0,1)$, $\prod_{n=1}^{\infty} (1 p_n) = 0 \Leftrightarrow \sum_{n=1}^{\infty} p_n = \infty$ (*). According to the assumption, $\mathbb{P}(\cap_{n=1}^{\infty} A_m^c) = 0$ and thus $\mathbb{P}(\cup_{n=1}^{\infty} A_m) = 1$.

Remark: we provide an probabilistic argument to (*). Consider $(X_n)_{n\in\mathbb{N}}$ i.i.d. with $\mathbb{P}(X_n = 1) = 1 - \mathbb{P}(X_n = 0) = p_n$. Then $\prod_{n=1}^{\infty} (1 - p_n) = \mathbb{P}(X_n = 0 \text{ for all } n \geq 1)$. If $\sum_n p_n = \infty$, $\mathbb{P}(X_n = 1 \text{ i.o.}) = 1$ by Borel-Cantelli lemma and $\prod_{n=1}^{\infty} (1 - p_n) = 0$. If $\sum_n p_n < \infty$, $\sum_{n>N} p_n < 1$ for N large enough. Thus $\mathbb{P}(X_n = 0 \text{ for } n > N) > 0$ and $\mathbb{P}(X_n = 0 \text{ for } n \geq 1) = \prod_{n=1}^{N} (1 - p_n) \times \mathbb{P}(X_n = 0 \text{ for } n > N) > 0$.

- **3.** Consider the martingale $Y_n := \sum_{m=1}^n \frac{\Delta_m}{b_m}$. According to **Q3** in **HW10**, $\mathbb{E}Y_n^2 = \mathbb{E}Y_0^2 + \sum_{m=1}^n \frac{\mathbb{E}\Delta_m^2}{b_m^2}$. By assumption, $\sup_n \mathbb{E}Y_n^2 < \infty$. According to Theorem 5.4.5, Y_n converges a.s. and in L^2 . Finally, by Kronecker's lemma (Theorem 2.5.5), $\frac{X_n}{b_n} = \frac{\sum_{m=1}^n \Delta_m}{b_n} \to 0$ a.s.
- **4.** Since X_n is martingale with $\sup_n \mathbb{E}|X_n| < \infty$, $X_n \to X_\infty$ a.s. by martingale convergence theorem. Define $Y_n := \mathbb{E}(X_\infty^+|\mathcal{F}_n)$ and $Z_n := \mathbb{E}(X_\infty^-|\mathcal{F}_n)$, which obvious y satisfy the conditions in the question.

Remark: The result is known as Krickeberg's decomposition for martingales. In fact, the martingale $(X_n)_{n\in\mathbb{N}}$ has such decomposition if and only if $\lim_{n\to\infty} \mathbb{E}|X_n| < \infty$.

- **5.** Observe that $\mathbb{E}(X_{n+1}|\mathcal{F}_n) = X_n(\alpha + \beta X_n) + (1 X_n)\beta X_n = X_n$. Thus $(X_n)_{n \in \mathbb{N}}$ is martingale taking values in [0,1]. By martingale convergence theorem, $X_n \to X_\infty$ a.s. Note that given $X_n = x$, $X_{n+1} = \alpha + \beta x$ or βx for $\alpha, \beta > 0$. This implies that $X_\infty \in \{0,1\}$. In addition, $\mathbb{E}X_\infty = EX_0 = x_0$, which permits to conclude.
- **6.** By triangle inequality, $\mathbb{E}|\mathbb{E}(Y_n|\mathcal{F}_n) \mathbb{E}(Y_{\infty}|\mathcal{F}_{\infty})| \leq \mathbb{E}|\mathbb{E}(Y_n|\mathcal{F}_n) \mathbb{E}(Y_{\infty}|\mathcal{F}_n)| + \mathbb{E}|\mathbb{E}(Y_{\infty}|\mathcal{F}_n) \mathbb{E}(Y_{\infty}|\mathcal{F}_n)| \leq \mathbb{E}|(|Y_n Y_{\infty}| |\mathcal{F}_n) + \mathbb{E}|\mathbb{E}(Y_{\infty}|\mathcal{F}_n) \mathbb{E}(Y_{\infty}|\mathcal{F}_\infty)| = \mathbb{E}|Y_n Y_{\infty}| + \mathbb{E}|\mathbb{E}(Y_{\infty}|\mathcal{F}_n) \mathbb{E}(Y_{\infty}|\mathcal{F}_\infty)|$ (**), where (*) follows Jensen's inequality for conditional expectation. The first term in (**) converges to 0 since $Y_n \to Y_\infty$ in L^1 and the second one in (**) goes to 0 by Theorem 5.5.7.
- 7. Write $S_n S_0 = \sum_{i=1}^n \zeta_i$, where $\zeta_i := c \xi_i$ are i.i.d $\mathcal{N}(c \mu, \sigma^2)$. Denote $\theta := \frac{2(\mu c)}{\sigma^2}$ and it is easy to check that $\mathbb{E}e^{\theta\zeta_1} = 1$. Thus, $X_n := e^{\theta(S_n S_0)}$ is martingale. Define $T := \inf\{n; S_n \leq 0\}$. Then $X_{n \wedge T}$ is also martingale and monotone convergence theorem leads to $\mathbb{E}X_T = 1$. By Chebyshev inequality, $\mathbb{P}(\text{ruin}) \leq e^{-\theta S_0} \mathbb{E}X_T = \exp(-2(c \mu)S_0/\sigma^2)$.