Section 4.1

Solution (Problem 4): Evaluating with the initial conditions, we get

$$c_1 - c_2 = 0$$

$$-c_3 = 2$$

$$c_2 = -1$$
.

We see that $c_1 = -1$, $c_2 = -1$, and $c_3 = -2$. This yields the particular solution of

$$y = -1 - \cos x - 2\sin x.$$

Solution (Problem 10): The interval $(-\pi, \pi)$ contains a unique solution to the initial value problem.

Solution (Problem 14):

(a) We have

$$c_1 + c_2 + 3 = 0$$

$$c_1 + c_2 + 3 = 4$$
,

which is not possible.

(b) We have

$$3 = 0$$

$$c_1 + c_2 + 3 = 2$$

which is yet again not possible.

(c) We have

$$3 = 3$$

$$c_1 + c_2 + 3 = 0$$
,

meaning that the solution set is all pairs (c_1, c_2) such that $c_1 + c_2 = -3$.

(d) We have

$$c_1 + c_2 + 3 = 3$$

$$4c_1 + 16c_2 + 3 = 15$$
,

or

$$c_1 + c_2 = 0$$

$$4c_1 + 16c_2 = 12$$

meaning

$$c_1 = -1$$

$$c_2 = 1$$
.

Solution (Problem 22): Since

$$\sinh(x) = \frac{1}{2}(e^x + e^{-x}),$$

the functions are not linearly independent anywhere on $(-\infty, \infty)$.

Solution (Problem 28): First, we verify that both solutions work.

$$x^2 \frac{d^2}{dx^2} (\cos(\ln(x))) + x \frac{d}{dx} (\cos(\ln(x))) + \cos(\ln(x)) = x^2 \left(-\frac{\cos(\ln(x))}{x^2} + \frac{\sin(\ln(x))}{x^2} \right) + x \left(-\frac{\sin(\ln(x))}{x} \right) + \cos(\ln(x))$$

$$= 0$$

$$x^{2} \frac{d^{2}}{dx^{2}} (\sin(\ln(x))) + x \frac{d}{dx} (\sin(\ln(x))) + \sin(\ln(x))) = x^{2} \left(-\frac{\cos(\ln(x))}{x^{2}} - \frac{\sin(\ln(x))}{x^{2}} \right) + x \left(\frac{\cos(\ln(x))}{x} \right) + \sin(\ln(x))$$

$$= 0.$$

Additionally, we find that

$$\det\begin{pmatrix} \cos(\ln(x)) & \sin(\ln(x)) \\ \frac{-\sin(\ln(x))}{x} & \frac{\cos(\ln(x))}{x} \end{pmatrix} = \frac{1}{x}$$

$$\neq 0.$$

so the solutions are linearly independent. Since the differential equation $x^2y'' + xy' + y' = 0$ is a second order equation, there are no other linearly independent solutions. Thus, we have the general solution of

$$y = \alpha \cos(\ln(x)) + \beta \sin(\ln(x))$$
.

Solution (Problem 30): I'm not checking the Wronskian on this one, they're clearly linearly independent. However, I will be doing the derivatives.

$$\frac{d^4}{dx^4}(1) + \frac{d^2}{dx^2}(1) = 0$$

$$\frac{d^4}{dx^4}(x) + \frac{d^2}{dx^2}(x) = 0$$

$$\frac{d^4}{dx^4}(\cos(x)) + \frac{d^2}{dx^2}(\cos(x)) = \cos(x) - \cos(x)$$

$$= 0$$

$$\frac{d^4}{dx^4}(\sin(x)) + \frac{d^2}{dx^2}(\sin(x)) = \sin(x) - \sin(x)$$

$$= 0.$$

Thus, since the solutions are linearly independent and have dimension 4, they form a basis for the general solution of $y^{(4)} + y'' = 0$. The general solution is

$$y(x) = c_1 + c_2 x + c_3 \cos(x) + c_4 \sin(x).$$

Solution (Problem 36):

- (a) We have y = 5 is a particular solution to y'' + 2y = 10.
- (b) We have y = -2x is a particular solution to y'' + 2y = 10.
- (c) Using linearity, we get that y = -2x + 5 is a particular solution to y'' + 2y = -4x + 10.
- (d) Using a similar process, we have a particular solution of $y = 4x + \frac{5}{2}$.
- (e) Neither of these linear combinations are general solutions of the differential equation, as the linearity principle only applies to solutions of the corresponding homogeneous equation.

Section 4.2

- | **Solution** (Problem 2):
- | **Solution** (Problem 8):
- | **Solution** (Problem 16):
- | **Solution** (Problem 20):
- | Solution (Problem 22):

Section 4.3

- | **Solution** (Problem 4):
- | **Solution** (Problem 6):
- | **Solution** (Problem 12):
- | **Solution** (Problem 16):
- | **Solution** (Problem 22):
- | **Solution** (Problem 36):
- | Solution (Problem 38):
- | **Solution** (Problem 50):