МІНІСТЕРСТВО ОСВІТИ ТА НАУКИ УКРАЇНИ

Національний технічний університет «Харківський політехнічний інститут» Кафедра ГМКГ

Лабораторна работа №2

3 дисципліни «Інтелектуальний аналіз даних»

Виконав:

Студент групи ІКМ-220 г.

Ульянов Кирило Юрійович

Перевірив:

Доц. Дашкевич А.О.

Мета роботи: вивчення застосувань дерев прийняття рішень та їх ансамблю для класифікації.

Завдання на роботу: завантаження набору даних, формування навчальної та тестової вибірок, визначення функціоналу якості класифікатору, візуалізація результатів.

Значення параметру train size = 0.7

Таблиця результатів дерева прийняття рішень

	1		
Критерій	max_depth	Точність на	Точність на
розбиття		навчальній	тестовій вибірці
		вибірці	
gini	3	0.992	0.944
gini	4	1.000	0.944
gini	5	1.000	0.944
gini	6	1.000	0.944
gini	7	1.000	0.944
gini	8	1.000	0.944
gini	9	1.000	0.944
gini	10	1.000	0.944
_			
entropy	3	0.992	0.963
entropy	4	1.000	0.944
entropy	5	1.000	0.944
entropy	6	1.000	0.944
entropy	7	1.000	0.944
entropy	8	1.000	0.944
entropy	9	1.000	0.944
entropy	10	1.000	0.944
1.5		1	
log loss	3	0.992	0.963
log loss	4	1.000	0.944
log loss	5	1.000	0.944
log loss	6	1.000	0.944
log loss	7	1.000	0.944
log loss	8	1.000	0.944
log loss	9	1.000	0.944
log loss	10	1.000	0.944

Таблиця результатів методу випадкового лісу

Критерій розбиття	n_estimators	Точність на навчальній вибірці	Точність на тестовій вибірці
gini	2	0.935	0.870
gini	3	0.984	0.926
gini	4	1.000	0.963
gini	5	1.000	0.981
gini	6	1.000	1.000
gini	7	1.000	1.000
gini	8	1.000	0.981
gini	9	1.000	1.000
gini	10	1.000	1.000
gini	11	1.000	1.000
gini	12	1.000	1.000
gini gini gini	13	1.000	1.000
gini	14	1.000	1.000
gini	15	1.000	1.000
gini	16	1.000	1.000
gini	17	1.000	1.000
gini	18	1.000	1.000
gini	19	1.000	1.000
gini	20	1.000	1.000
entropy	2 3	0.935	0.889
entropy		1.000	0.981
entropy	4	1.000	0.963
entropy	5	1.000	1.000
entropy	6	1.000	0.981
entropy	7	1.000	1.000
entropy	8	1.000	1.000
entropy	9	1.000	1.000
entropy	10	1.000	1.000
entropy	11	1.000	1.000
entropy	12	1.000	1.000
entropy	13	1.000	1.000
entropy	14	1.000	1.000
entropy	15	1.000	0.981
entropy	16	1.000	1.000
entropy	17	1.000	1.000
entropy	18	1.000	1.000
entropy	19	1.000	1.000
entropy	20	1.000	1.000

2	0.025	0.000
	0.935	0.889
3	1.000	0.981
4	1.000	0.963
5	1.000	1.000
6	1.000	0.981
7	1.000	1.000
8	1.000	1.000
9	1.000	1.000
10	1.000	1.000
11	1.000	1.000
12	1.000	1.000
13	1.000	1.000
14	1.000	1.000
15	1.000	0.981
16	1.000	1.000
17	1.000	1.000
18	1.000	1.000
19	1.000	1.000
20	1.000	1.000
	5 6 7 8 9 10 11 12 13 14 15 16 17 18	3 1.000 4 1.000 5 1.000 6 1.000 7 1.000 8 1.000 10 1.000 11 1.000 12 1.000 13 1.000 14 1.000 15 1.000 16 1.000 17 1.000 18 1.000 19 1.000

Код програми:

```
import matplotlib.pyplot as plt
from sklearn.model selection import train test split
from sklearn.datasets import load wine
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
dataset = load wine()
X = dataset.data
y = dataset.target
X train, X test, y train, y test = train test split(X, y,
train size=0.7, random state=0)
\max depth values = range(3, 11)
criterion values = ['gini', 'entropy', 'log loss']
train scores = {criterion: [] for criterion in criterion values}
test scores = {criterion: [] for criterion in criterion values}
for criterion in criterion values:
    # Перебір різних значень глибини дерева
    for max depth in max depth values:
        # Створення моделі дерева рішень з поточними значеннями
критерію та глибини
        dtc = DecisionTreeClassifier(criterion=criterion,
max_depth=max_depth, random state=0)
         # Навчання моделі на навчальній вибірці
       dtc.fit(X train, y train)
```

```
train accuracy = dtc.score(X train, y train)
        test accuracy = dtc.score(X test, y test)
        train scores[criterion].append(train accuracy)
        test scores[criterion].append(test accuracy)
        # Вивід інформації про поточну комбінацію
гіперпараметрів та точність моделі на навчальній та тестовій
вибірках
       print(f'{criterion} | {max depth} | {train accuracy:.3f}
| {test accuracy:.3f}')
print(train scores)
print(test scores)
for criterion in criterion values:
    plt.figure(figsize=(10, 6))
    plt.plot(max depth values, train scores[criterion],
marker='o', label='Навчальна вибірка', color='deepskyblue')
    plt.plot(max depth values, test scores[criterion],
marker='s', label='Тестова вибірка', color='darkorange')
    plt.xlabel('max depth')
    plt.ylabel('TouhicTb')
    plt.title(f'Залежність точності від max depth
(criterion={criterion})')
   plt.legend()
   plt.grid(True)
    plt.savefig(f"./plots/lab2 decisiontree {criterion}")
    plt.show()
n estimator values = range(2, 21)
train scores rf = {criterion: [] for criterion in
criterion values}
test scores rf = {criterion: [] for criterion in
criterion values}
```

```
for criterion in criterion values:
    for n_estimator in n estimator values:
        rfc = RandomForestClassifier(n estimators=n estimator,
criterion=criterion, random state=0)
        rfc.fit(X train, y train)
        train accuracy = rfc.score(X train, y train)
        test accuracy = rfc.score(X test, y test)
        train scores rf[criterion].append(train accuracy)
        test scores rf[criterion].append(test accuracy)
        print(f'{criterion} | {n estimator} |
{train accuracy:.3f} | {test accuracy:.3f}')
print(train scores rf)
print(test scores rf)
for criterion in criterion values:
    plt.figure(figsize=(10, 6))
    plt.plot(n estimator values, train scores rf[criterion],
marker='o', label='Навчальна вибірка')
    plt.plot(n estimator values, test scores rf[criterion],
marker='s', label='Тестова вибірка')
    plt.xlabel('n_estimators')
    plt.ylabel('TouhicTb')
    plt.title(f'Залежність точності від n estimators
(criterion={criterion})')
    plt.legend()
    plt.grid(True)
    plt.savefig(f"./plots/lab2 randomforest {criterion}")
    plt.show()
```