

<u>Course</u> > <u>Unit 8:</u> ... > <u>Lec. 19:</u>... > 8. Exer...

8. Exercise: CLT practice

Exercises due May 1, 2020 05:29 IST Completed

Exercise: CLT practice

6.0/6.0 points (graded)

The random variables X_i are i.i.d. with mean 2 and standard deviation equal to 3. Assume that the X_i are nonnegative. Let $S_n = X_1 + \cdots + X_n$.

Use the CLT to find good approximations to the following quantities. You may want to refer to the <u>normal table</u>. In parts (a) and (b), give answers with 4 decimal digits.

Normal Table

The entries in this table provide the numerical values of $\Phi\left(z\right)=\mathbf{P}\left(Z\leq z\right),$ where Z is a standard normal random variable, for z between 0 and 3.49. For example, to find $\Phi\left(1.71\right),$ we look at the row corresponding to 1.7 and the column corresponding to 0.01, so that $\Phi\left(1.71\right)=.9564.$ When z is negative, the value of $\Phi\left(z\right)$ can be found using the formula $\Phi\left(z\right)=1-\Phi\left(-z\right).$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.859	

1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

 * For $z \geq 3.50$, the probability is greater than or equal to .9998.

<u>Hide</u>

a)
$$\mathbf{P}\left(S_{100} \leq 245
ight) pprox egin{pmatrix} ext{0.9332} \ & igspace ext{Answer: 0.9332} \ \end{pmatrix}$$

b) We let N (a random variable) be the first value of n for which S_n exceeds 119.

$$\mathbf{P}\left(N>49
ight)pprox egin{array}{c} ext{0.8413} \end{array}$$

c) What is the largest possible value of n for which we have $\mathbf{P}\left(S_{n} \leq 128\right) pprox 0.5$?

$$n = \boxed{64}$$
 Answer: 64

Solution:

We will use Z_n to refer to the standardized random variable $\left(S_n-2n\right)/\left(3\sqrt{n}\right)$.

a) We have

$$\mathbf{P}\left(S_{100} \leq 245
ight) = \mathbf{P}\left(rac{S_{100} - 2 \cdot 100}{3 \cdot \sqrt{100}} \leq rac{245 - 2 \cdot 100}{3 \cdot \sqrt{100}}
ight) = \mathbf{P}\left(Z_n \leq 1.5
ight) pprox 0.9332.$$

b) The event N>49 is the same as the event $S_{49}\leq 119$. Its probability is

$$\mathbf{P}\left(S_{49} \leq 119
ight) = \mathbf{P}\left(rac{S_{49} - 2 \cdot 49}{3 \cdot \sqrt{49}} \leq rac{119 - 2 \cdot 49}{3 \cdot \sqrt{49}}
ight) = \mathbf{P}\left(Z_n \leq 1
ight) pprox 0.8413.$$

c) We want n such that

$$0.5pprox \mathbf{P}\left(S_n\leq 128
ight)=\mathbf{P}\left(rac{S_n-2n}{3\sqrt{n}}\leq rac{128-2n}{3\sqrt{n}}
ight)=\Phi\left(rac{128-2n}{3\sqrt{n}}
ight).$$

But since $0.5=\Phi\left(0
ight)$, we must have $\left(128-2n
ight)/\left(3\sqrt{n}
ight)=0$, so that n=128/2=64.

A faster way to see the answer is to note that since the normal is symmetric around its mean, the relation $\mathbf{P}(S_n \leq 128) \approx 0.50$ tells us that 128 should be equal to the mean, 2n, of S_n .

Submit

You have used 3 of 3 attempts

1 Answers are displayed within the problem

Topic: Unit 8: Limit theorems and classical statistics:Lec. 19: The Central Limit Theorem (CLT) / 8. Exercise: CLT practice

Hide Discussion

Sho	ow all posts 💙	by recent acti	vity 🗸
$ \mathbf{Z} $	Ex CLT Practice Hi, Kindly explain the comment on solution of (c): 'A faster way to see the answer is to note that since the n	ormal is s	3
Q	CDF of a positive RV I have gotten all three correct. But as the question states that X is a oi\\positive RV, should we not be subtra	cting Nor	6
2	Point c) On this problem should I add 4 decimal digits or just simply the integer that fits the best?		2
?	confusion in problem 8(b) Isn't P(N>49) is the probability that number of Xis exceed 49 whose sum is less than or equal to 119. which is	must be e	6
Q	Any hints for c For C I did almost the same as in example 3, but it does not look like I got close to the answer. Anything I sh	ould cons	2
?	Typo in b)? Because the mean is 2, b) seems to contradict itself. Per the example with the containers in the preceding v	deo (unle	6
Q	Hint - Q(2b) The entire exercise is just as explained in the lecture "CLT example" however note that in the lecture ***n	*** did n	1
?	Q(c): Why "the largest possible value" of n?		4

© All Rights Reserved

