集合及其运算

离散数学一集合论

南京大学计算机科学与技术系

内容提要

- 基本概念
 - 集合及其描述
 - 集合相等、子集关系
 - 幂集、笛卡尔乘积
- 集合运算
 - 交并补、广义交、广义并
 - 集合恒等式
 - 集合相关命题的证明方式
- 自然数的构造

- 直观的定义
 - 一个集合是一组无序的对象,这些对象称为这个集合的 元素或成员。
 - $a \in A$ 表示a是集合A的一个成员, $a \notin A$ 表示a不是A的成员。
- Georg Cantor的描述
 - [English translation] A set is a collection into a whole of definite, distinct objects of our intuition or our thought. The objects are called <u>elements</u> (member) of the set.

Naïve set theory, 朴素集合论

集合的描述

- 罗列、枚举
 - $V = \{a, e, i, o, u\}$
 - {1, 3, 5, 7, 9}
- 集合构造符号
 - $Z^+ = \{x \in Z \mid x > 0\}$
 - $Q = \{ p/q \mid p \in \mathbb{Z}, q \in \mathbb{Z}, q \neq 0 \}$
 - $[a,b]=\{x\in\mathbb{R}\mid a\leq x\leq b\}$

```
{N, Z, Q, R}
```

集合的描述

• 文氏图(Venn diagrams)//John Venn

集合相等、子集关系

- 集合相等当且仅当它们有同样的元素
 - A=B 当且仅当 $\forall x(x \in A \leftrightarrow x \in B)$ //外延原则
- 集合A称为集合B的子集,记作A⊆<math>B
 - $\forall x (x \in A \rightarrow x \in B)$
- 如果A⊆B, 但 $A \neq B$,则A是B的真子集,记作A⊂B
- 对任意集合A和B, A=B 当且仅当:
 - A⊆B, 且B⊆A

子集关系的一个性质

- 证明:如果X⊆Y且Y⊆Z,则X⊆Z
- 要证明: "对任意的 a, 如果 $a \in X$, 则 $a \in Z$ "
- 证明:
 - 对任意的 $a \in X$
 - 根据已知的 " $X \subset Y$ ",可得: $a \in Y$
 - 根据已知的 "Y⊆Z", 可得: $a \in \mathbb{Z}$
 - 所以, $\forall a (a \in X \rightarrow a \in Z)$, 即X $\subseteq Z$

集合的大小

- 有限集合及其基数
 - 若S恰有n个不同的元素,n是自然数,就说S是有限集合,而n是S的基数,记作|S|=n。
- 无限集合
 - 如果一个集合不是有限的,就说它是无限的。

空集

- 存在一个没有任何元素的集合: 空集Ø
- 关于空集的一些性质:
 - 空集是任何集合的子集。
 - $\emptyset \subseteq A$, $\mathbb{P} \ \forall x(x \in \emptyset \to x \in A)$
 - 空集是唯一的,可以用 Ø表示
 - 如果 Ø₁, Ø₂都是空集,则 Ø₁ \subseteq Ø₂和 Ø₂ \subseteq Ø₁均为真

关于空集的讨论

- 空集本身可以是一个对象,可以是某个集合的元素
 - $\emptyset \in \{\emptyset\}, \emptyset \subseteq \{\emptyset\}$
- 事实上,我们从空集开始构造整个集合世界!
 - 自然数
 - 有理数
 - 实数(幂集运算)
 - • •

幂集

- S是一个集合,S的幂集是S的所有子集的集合
 - $\rho(S) = \{x \mid x \subseteq S\}$
- 举例
 - $\rho(\{a,b\}) = \{\emptyset,\{a\},\{b\},\{a,b\}\}$

If $\rho(A) \in \rho(B)$, then $A \in B$

有限集合的所有子集

如果 |A|=n,则 $|\rho(A)|=2^n$ 幂集的另一种记法: 2^A

$$C(4, 0)+C(4, 1)+C(4, 2)+C(4, 3)+C(4, 4)=2^4$$

$$A = \{1, ..., n\}$$

$$\sum_{k=0...n} C(n, k) = 2^n$$

笛卡尔乘积

- 集合A和B的笛卡尔乘积
 - $A \times B = \{(a, b) | a \in A \land b \in B\}$
- 何种情形下,A×B=B×A
- 集合 $A_1, A_2, ..., A_n$ 的笛卡尔乘积
 - $A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) | a_i \in A_i, i=1,2,...n\}$

集合与谓词逻辑

- 在量化逻辑表达式中使用集合符号
 - $\forall x \in S(P(x))$ 代表 $\forall x (x \in S \rightarrow P(x))$
 - $\exists x \in S(P(x))$ 代表 $\exists x (x \in S \land P(x))$
 - 举例
 - $\forall x \in \mathbf{R}(x^2 \ge 0)$: $\forall x (x \in \mathbf{R} \rightarrow (x^2 \ge 0))$
 - $\exists x \in \mathbf{Z}(x^2=1) \colon \exists x(x \in \mathbf{Z} \land x^2=1)$
- 逻辑表达式的真值集合, $\{x \in D \mid P(x)\}$
 - 举例: $\{x \in \mathbb{Z} | |x/=x\}$, $\{x \in \mathbb{Z} | x^2 = 2\}$, $\{x | x \in \mathbb{Z} \land x^2 = 2\}$

集合悖论

- $A=\{x \mid P(x)\},$ 实际上不能保证:对任意的性质 P,这样的定义都有意义。
- 例如:
 - 1)存在不以自己为元素的集合,称它们为"平凡集"
 - 天上的星星、教室里的同学
 - 2)定义包含所有"平凡集"的集合
 - $\bullet \quad \mathbf{A} = \{x | x \not\in x\}$
- Russell 悖论:

定义 $R=\{x \mid x \notin x\}$ 。则如果R存在,定有: $R \in R$ iff. $R \notin R$

• 理发师悖论: "我给所有不给自己理发的人理发"

- 用公理来约束集合世界,以摆脱悖论
 - 集合相等(=)和元素属于集合的关系(∈)
 - 某种集合存在性,亦即给定合法集合构造原则
- Zermelo–Fraenkel set theory with the axiom of Choice (ZFC集合论)参见<u>附录</u>

外延公理 正则公理 分离公理模式 配对公理 并集公理 替代公理模式 无穷公理 幂集公理 选择公理

集合运算的定义

- 运算定义的基本方式:将结果定义为一个新的集合
 - 并: $A \cup B = \{x \mid x \in A \lor x \in B\}$
 - 并集: {1,2,3}
 - \mathfrak{D} : $A \cap B = \{ x \mid x \in A \land x \in B \}$
 - 交集: {3}

相对补(差)

- B对于A的补集
 - A-B= $\{x \mid x \in A \land x \notin B\}$
- 举例,A-B={1}
- 若有一个我们关心的"所有"对象的集合,称为全集,常用U表示,
 U-B称为B的"补集",记为~B
 - $x \in {\sim} \mathbf{B} \leftrightarrow x \notin \mathbf{B}$

对称差

- 对称差
 - $A \oplus B = (A-B) \cup (B-A)$
- 证明: $A \oplus B = (A \cup B) (A \cap B)$
 - $\bullet (A-B) \cup (B-A) \subseteq (A \cup B) (A \cap B)$
 - $\bullet (A \cup B) (A \cap B) \subseteq (A B) \cup (B A)$

广义并和广义交

- 广义并
 - 设A为集合,A的所有元素的并,记为 \cup A; 定义为 \cup A = $\{x | \exists y \in A, x \in y\}$
- 广义交
 - 设A为非空集合,A的所有元素的交,记为 \cap A,定义为: \cap A ={x| $\forall y$ ∈ A $\rightarrow x$ ∈ y}
 - 注意: 限制条件为A非空,∩Ø无意义

运算的重要性质

- 包含关系下两个集合的最小上界和最大下界
 - 最小上界:
 - $\bullet \ A \subseteq A \cup B, B \subseteq A \cup B$

----A和B的上界

- 对任意X, 若A⊆X, B⊆X,则A∪B⊆X
 ----最小上界
- 最大下界:
 - $A \cap B \subseteq A$, $A \cap B \subseteq B$

----A和B的下界

• 对任意X,若 $X \subseteq A$, $X \subseteq B$,则 $X \subseteq A \cap B$ ----最大下界

集合相关命题的基本证明方式

- 直接使用集合包含、相等定义
 - $\bullet \ A \cup B = B \Rightarrow A \subseteq B$
 - 证明:
 - 对任何x, 假设x∈A
 - 由集合并定义: x∈A∪B
 - 由已知条件: A∪B=B
 - $\therefore x \in B$
 - 因此: A⊆B

- 利用运算定义作逻辑等值式推演
 - 例: $A-(B\cup C) = (A-B)\cap (A-C)$

$$A-(B \cup C) = \{x | x \in A \land x \notin B \cup C\}$$

$$= \{x | x \in A \land (x \notin B \land x \notin C)\}$$

$$= \{x | (x \in A \land x \notin B) \land (x \in A \land x \notin C)\}$$

$$= (A-B) \cap (A-C)$$

等价的描述方式:

$$x \in A - (B \cup C) \Leftrightarrow (x \in A) \land (x \notin (B \cup C)) \Leftrightarrow x \in A \land x \notin B \land x \notin C$$
$$\Leftrightarrow (x \in A \land x \notin B) \land (x \in A \land x \notin C)$$
$$\Leftrightarrow (x \in (A - B)) \land (x \in (A - C))$$
$$\Leftrightarrow x \in (A - B) \cap (A - C)$$

- 利用已知恒等式或等式作集合代数推演
 - 例: A∩B=A ⇔ A-B=Ø

- 利用已知恒等式或等式作集合代数推演
 - 例: 已知A⊕B=A⊕C, 证明B=C

```
B = \emptyset \oplus B
= (A \oplus A) \oplus B
= A \oplus (A \oplus B)
= A \oplus (A \oplus C)
= C
```

集合恒等式(1)

等式	名 称
$A \cup \emptyset = A$ $A \cap U = A$	恒等律
$\mathbf{A} \cup \mathbf{U} = \mathbf{U}$ $\mathbf{A} \cap \emptyset = \emptyset$	支配律
$A \cup A = A$ $A \cap A = A$	幂等律
~(~A)=A	补集律
$A \cup B = B \cup A$ $A \cap B = B \cap A$	交换律

集合恒等式(2)

等式	名 称
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	结合律
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	分配律
$\sim (A \cup B) = \sim A \cap \sim B$ $\sim (A \cap B) = \sim A \cup \sim B$	德摩根定律
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	吸收律
$A \cup \sim A = U$ $A \cap \sim A = \emptyset$	补律

- 利用成员表证明集合恒等式
 - $A \cup (A \cap B) = A$

A	В	A∩B	$A \cup (A \cap B)$
1	1	1	1
1	0	0	1
0	1	0	0
0	0	0	0

文氏图的更多例子

~A∩~B

文氏图与数学证明

- 文氏图不能代替数学证明,但可以帮助推测结论
- 例子:
 - $(A-B)\cup(A-C)=A$?

充要条件: $A \cap B \cap C = \emptyset$

用集合定义自然数

- 设a为集合, 称 $a \cup \{a\}$ 为a的后继, 记为或 a^+ , 或s(a)。
- 设A是集合, 若A满足下列条件, 称A为归纳集:
 - Ø∈A
 - $\forall a(a \in A \rightarrow a + \in A)$
- 自然数集合N是所有归纳集的交集。
 - 因此: N = {Ø, {Ø}, {Ø}, {Ø}}, {Ø, {Ø}}, {Ø, {Ø}}, {Ø, {Ø}}}}, ... }
 - N的每一个元素称为一个自然数。
 - Ø记为0,0+记为1,1+记为2,2+记为3,余此类推

再具体一点

- 记号0表示: Ø
- 记号1表示0+: Ø∪{Ø}={Ø}
- 记号2表示1+: {Ø}∪{{Ø}}={Ø,{Ø}}
- 记号3表示2+:{Ø,{Ø}}}∪{{Ø,{Ø}}}}={Ø,{Ø},{Ø},{Ø}}}}
- $3 \cup 2 = ?$ $3 \cap 2 = ?$
- 2∈3? 1∈3?
- 1⊆2? 2⊆5?

自然数上的运算

- 加法(递归定义)
 - m+0=m
 - $m+n^+=(m+n)^+$
- 乘法(递归定义)
 - m*0=0
 - m*n+m*n
- 序关系
 - $a \le b$ iff $\exists c \in \mathbb{N}$. a+c=b

皮亚诺公理 (Peano axioms for natural numbers)

- 零是个自然数.
- 每个自然数都有一个后继(也是个自然数).
- 零不是任何自然数的后继.
- 不同的自然数有不同的后继.
- (归纳公理)设由自然数组成的某个集合含有零, 且每当该集合含有某个自然数时便也同时含有这个 数的后继,那么该集合定含有全部自然数。

• 备注: 另有4个与自然数相等有关的公理

作业

- 教材[2.1, 2.2]
 - P87-89: 22, 30, 33, 37
 - P95-98: 18, 40, 48, 57

Zermelo–Fraenkel set theory with the axiom of choice

- 外延公理
- 正则公理
- 分离公理模式
- 配对公理
- 并集公理
- 替代公理模式
- 无穷公理
- 幂集公理
- 选择公理(或,良序定理)

- 外延公理 (Axiom of extensionality)
 - 如果两个集合含有同样的元素,则它们是相等的。

$$\forall x \forall y [\forall z (z \in x \Leftrightarrow z \in y) \Rightarrow x = y].$$

- 正则/基础公理(Axiom of regularity/foundation)
 - 任意非空集x包含一个成员y, x与集合y是不相交的

$$\forall x [\exists a (a \in x) \Rightarrow \exists y (y \in x \land \neg \exists z (z \in y \land z \in x))].$$

- 分离公理模式(Axiom schema of separation)
 - 对任意集合z和任意对z的元素x有定义的逻辑谓词 $\phi(x)$,存在z的子集y,使x \in y当且仅当x \in z而且 $\phi(x)$ 为真。 $\forall z \forall w_1 \dots w_n \exists y \forall x [x \in y \Leftrightarrow (x \in z \land \phi)].$
- 配对公理 (Axiom of pairing)

$$\forall x \forall y \exists z (x \in z \land y \in z).$$

并集公理(Axiom of union)

$$\forall \mathcal{F} \,\exists A \,\forall Y \,\forall x [(x \in Y \land Y \in \mathcal{F}) \Rightarrow x \in A].$$

• 替代公理模式(Axiom schema of replacement)

$$\forall A \forall w_1, \dots, w_n \big[\forall x (x \in A \Rightarrow \exists ! y \phi) \Rightarrow \exists B \forall x \big(x \in A \Rightarrow \exists y (y \in B \land \phi) \big) \big].$$

- 无穷公理(Axiom of infinity)
 - S(y)是指 y∪{y}

$$\exists X \left[\varnothing \in X \land \forall y (y \in X \Rightarrow S(y) \in X) \right].$$

• 幂集公理 (Axiom of power set)

$$\forall x \exists y \forall z [z \subseteq x \Rightarrow z \in y].$$

- 选择公理(Axiom of choice)
 - 任一非空集合族 $(S_i)_{i \in I}$, 均存在元素族 $(s_i)_{i \in I}$, $\forall i \in I$. $s_i \in S_i$
- 或,良序定理(Well-ordering theorem) $\forall X \exists R (R \text{ well-orders } X).$

参考: Zermelo-Fraenkel set theory @Wiki