Optimization and Computational Linear Algebra for Data Science Homework 5: Orthogonal matrices, eigenvalues and eigenvectors

Due on October 8, 2019

- Unless otherwise stated, all answers must be mathematically justified.
- Partial answers will be graded.
- You can work in groups but each student must write his/her own solution based on his/her own understanding of the problem. Please list on your submission the students you work with for the homework (his will note affect your grade).
- Problems with a (*) are extra credit, they will not (directly) contribute to your score of this homework. However, for every 4 extra credit questions successfully answered your lowest homework score get replaced by a perfect score.
- If you have any questions, feel free to contact me (lm4271@nyu.edu) or to stop at the office hours.

Problem 5.1 (1 points). Is the following matrix diagonalizable?

$$M = \begin{pmatrix} 1 & \pi^2 \\ 0 & 1 \end{pmatrix}.$$

Problem 5.2 (3 points). Let S be a subspace of \mathbb{R}^n and let P_S be the matrix of the orthogonal projection onto S. Let $M = \mathrm{Id}_n - 2P_S$.

- (a) Show that the matrix M is orthogonal.
- (b) Show that if $\lambda \in \mathbb{R}$ is an eigenvalue of M, then $\lambda = 1$ or $\lambda = -1$.
- (c) Show that M is diagonalizable.

Problem 5.3 (3 points). Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix.

- (a) Show that if $v_1, v_2 \in \mathbb{R}^n$ are two eigenvectors of A associated to some eigenvalues $\lambda_1 \neq \lambda_2$ $(Av_1 = \lambda_1 v_1 \text{ and } Av_2 = \lambda_2 v_2)$, then $v_1 \perp v_2$.
- (b) Show that if A is diagonalizable, then there exists an orthonormal basis (u_1, \ldots, u_n) of eigenvectors of A.

Problem 5.4 (3 points). Let $A \in \mathbb{R}^{n \times n}$ be a diagonalizable matrix. Let (v_1, \ldots, v_n) be a basis of \mathbb{R}^n consisting of eigenvectors of A, and let $(\lambda_1, \ldots, \lambda_n)$ be the associated eigenvalues. Assume that

$$\lambda_1 > |\lambda_i|$$
 for all $i \in \{2, \dots, n\}$.

We consider the following algorithm:

- Initialize $x_0 \in \mathbb{R}^n$.
- Perform the updates: $x_{t+1} = \frac{Ax_t}{\|Ax_t\|}$.
- (a) Show that for all $t \geq 1$,

$$x_t = \frac{A^t x_0}{\|A^t x_0\|}.$$

1

- (b) Assume that x_0 is a unit vector ($||x_0|| = 1$) whose direction is chosen uniformly at random (this basically means that all the possible directions for x_0 are equally likely to be chosen). Let $(\alpha_1, \ldots, \alpha_n)$ be the coordinates of x_0 in the basis (v_1, \ldots, v_n) . Explain why we can be sure that $\alpha_1 \neq 0$. You do not have to do a rigorous proof of that, just give an intuitive argument.
- (c) Show that

$$x_t \xrightarrow[t \to \infty]{} \frac{\alpha_1 v_1}{\|\alpha_1 v_1\|} \quad and \quad \|Ax_t\| \xrightarrow[t \to \infty]{} \lambda_1.$$

Problem 5.5 (\star) . Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Define the function

$$f: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$$
$$x \mapsto \frac{x^\mathsf{T} A x}{x^\mathsf{T} x}.$$

Show that f has a maximum at some $x_{\star} \in \mathbb{R}^n \setminus \{0\}$ and that x_{\star} verifies

$$Ax_{\star} = \lambda x_{\star}, \quad where \quad \lambda = f(x_{\star}).$$

