

/TYO YHUBEPCUTET UTMO

«Компьютерные сети»

АЛИЕВ Тауфик Измайлович, д.т.н., профессор Лектор:

Национальный исследовательский университет ИТМО (НИУ ИТМО)

Факультет программной инженерии и компьютерной техники

Разделы дисциплины

Раздел 1. Принципы организации компьютерных сетей

Раздел 2. Глобальная сеть Интернет

Раздел 3. Технологии локальных сетей

Раздел 4. Транспортные технологии глобальных сетей

Раздел 5. Заключительный раздел

Раздел 2 Глобальная сеть Internet

- 2.1. Введение в Internet
- 2.2. Адресация в ІР-сетях
- 2.3. Фрагментация ІР-пакетов
- 2.4. Транспортные протоколы TCP/IP: UDP, TCP
- 2.5. Коммуникационный протокол IPv4
- 2.6. Протоколы маршрутизации: RIP, OSPF
- 2.7. Протокол межсетевых управляющих сообщений ІСМР
- 2.8. Коммуникационный протокол IPv6
- 2.9. Протоколы канального уровня для выделенных линий

Специфические особенности глобальной сети Internet

- 1. Неограниченный территориальный охват.
- 2. Сеть объединяет подсети (в том числе локальные сети) разных технологий и компьютеры разных классов (от персональных до суперкомпьютеров).
- 3. Для передачи данных на большие расстояния используется *annapamypa передачи данных* (модемы, приемопередатчики) и активное сетевое оборудование (маршрутизаторы, коммутаторы).
- 4. Топология глобальных сетей, в общем случае, произвольная многосвязная.
- 5. Одна из важнейших задач организация эффективной маршрутизации передаваемых данных.
- 6. Глобальная сеть содержит *каналы связи разных типов* с пропускными способностями до сотен Гбит/с: кабельные оптические и электрические, в том числе телефонные, беспроводные наземные и спутниковые каналы.

Достоинства сети Internet

- 1. Неограниченный доступ к любым вычислительным и информационным ресурсам, а также множеству специфических услуг (электронная почта, голосовая связь, конференцсвязь, телевидение по запросу и т.д.).
- 2. Возможность доступа к ресурсам сети практически из любой точки Земного шара.
- 3. Возможность передачи любых видов данных, в том числе мультимедийных (аудио, видео).

1969	1972	1983	1983	1984	1989	1990
ARPANET	ARPANET	TCP/IP	Internet/NSFN	DNS	WWW,	INTERNET
4 узла	30 узлов		et		HTTP	

Архитектурная концепция

<u>Сеть Internet</u> - множество компьютеров (*хосты*), подключенных к единой интерсети, представляющей собой совокупность *физических сетей (подсетей)*, объединенных каналами связи с **маршрутизаторами** и

коммутаторами.

Стек протоколов ТСР/ІР

Особенность стека протоколов ТСР/ІР – независимость от среды передачи данных.

Протокол IP (Internet Protocol) обеспечивает:

- ▶дейтаграммную доставку без установления соединения;
- негарантированную доставку информации;
- максимально возможную доставку пакетов.

TCP (Transmission Control Protocol) – протокол

управления передачей данных

UDP (User Datagram Protocol) – протокол пользовательских дейтаграмм

Протоколы TCP и UDP обеспечивают доставку из конца в конец (end to end):

- ▶ с установлением соединения (TCP);
- ▶ без установления соединения (UDP).

Уровни OSI	Уровни ТСР/ІР	Протокол	Блок данных
5 – 7	Application (прикладной)	FTP, BGP, HTTP, DNS, <i>DHCP</i> , SNMP, SMTP, POP3, IMAP, RTP	Сообщение
4	Transport (транспортный)	TCP, UDP	Сегмент, дейтаграмма
3	Internet (межсетевой)	IP , RIP, OSPF, ICMP, IGMP, <i>ARP</i> , <i>RARP</i>	Пакет
1-2	Network Access Layer (уровень сетевого доступа)	SLIP, HDLC, PPP	Кадр

Протоколы прикладного уровня 4

Протоколы прикладного уровня передачи файлов ... почтовые ... контроля и управления сетью ... прочие **SMTP** (Simple Mail Transfer **SNMP** (Simple Network **FTP** (File Transfer Protocol) – Protocol) – простой протокол Management Protocol) – простой протокол передачи файлов передачи почты протокол управления сетью **POP3** (Post Office Protocol **TFTP** (Trivial File Transfer **DHCP** (Dynamic Host Configuration Protocol) – простой протокол Version 3) – протокол Protocol) – протокол динамической передачи файлов почтового отделения конфигурации узла **IMAP** (Internet Message **HTTP** (HyperText Transfer **SIP** (Session Initiation Protocol) – Access Protocol) – протокол Protocol) – протокол протокол установления сеанса доступа к электронной передачи гипертекста почте Интернета **DNS** (Domain Name System) – система доменных имён **TELNET** (TELetype **BGP** (Border Gateway **RTP** (Real-time Transport NETwork) – виртуальный Protocol) – протокол Protocol) – протокол текстовый терминал граничного шлюза реального времени

Протоколы уровней 1-3

Концептуальная модель передачи данных в сетях ТСР/ІР

Функции протокола IP возлагаются на хосты и маршрутизаторы, называемые узлами сети.

Типы адресов

01-00-5e-00-02-1b – групповой МАС-адрес **2a-00-f3-16-cd-01** – локальный МАС-адрес **fc-5a-02-ab-f4-08** – уникальный глобальный

DNIC – Data Network Identification Code: Country (3)+PSN (1)

PSN – Packet-Switched Network

NTN - National Terminal Number

Классовая адресация

Специальные адреса и маскирование

127 — адрес обратной петли (тестовый адрес) — loopback address

<u>Использование масок для IP-адресов</u>

<u>IP-адрес:</u> 126.65.32.5 соответствует адресу узла **0.65.32.5** в сети **126.0.0**.0

<u>Маска:</u> 255.192.0.0 (255.192.0.0/10)

В двоичном виде:

<u>IP-адрес:</u> 01111110.01000001.00100000.00000101 <u>126.65.32.5/10</u>

Маска: 1111111.11000000.00000000.00000000

Тогда **адрес сети: 01111110.01** или

126.64.0.0

адрес узла: 000001.00100000.00000101 или <u>0.1.32.5</u>

<u> Маски для стандартных классов:</u>

класс А:

1111111. 00000000.00000000.00000000 (255.0.0.0)

класс В:

11111111. 11111111.00000000.00000000 (255. 255.0.0)

класс С:

11111111. 111111111.11111111.00000000 (255. 255. 255.0)

Технология бесклассовой междоменной маршрутизации *CIDR (Classless Inter-Domain Routing)*

Первый и		Адр	есов	
последний IP-адрес	Префикс	всего	узлов	Маска
185.68 .0.1/ 28 185.68.0.14/ 28	185.68.0. <mark>0000</mark> 185.68.0.0	16	14	255.255.255.240
185.68.1.1/ <mark>26</mark> 185.68.1.62/ 26	185.68.1. <mark>00</mark> 185.68.1.0	64	62	
185.68.1.65/ <mark>26</mark> 185.68.1.126/ 26	185.68.1. <mark>01</mark> 185.68.1.64	64	62	255.255.255.192
185.68.1.129/ <mark>26</mark> 185.68.1.190/ 26	185.68.1. <u>10</u> 185.68.1.128	64	62	
185.68.1.193/ <mark>26</mark> 185.68.1.254/ 26	185.68.1. <u>11</u> 185.68.1.292	64	62	
185.68.4.1/ <mark>22</mark> 185.68.7.254/ <mark>22</mark>	185.68. <mark>000001 185.68.4.0</mark>	1024	1022	255.255.252.0

<u>0000</u> – двоичные цифры

Технология NAT

<u>NAT (Network Address Translation)</u>

<u>Основное назначение NAT</u> —: решение проблемы ограниченного диапазона IP-адресов в IPv4. Повышение безопасности сети за счет

- ограничения доступа извне к ресурсам внутренней сети при сохранении возможности выхода в публичную (внешнюю) сеть;
 - сокрытия внутренних сервисов, хостов, серверов.

NAT-таблица Мш1						
Локальный	Глобальный					
192.168.1.1	212.29.12.3					
192.168.1.2	212.29.12.4					
192.168.1.3	212.29.12.5					

Локальный адрес	Пор т	Глобальны йадрес	Назн. порт		
192.168.1.1	1125	212.29.12.1	5141		
192.168.1.1	1145	212.29.12.1	5142		
192.168.1.3	1234	212.29.12.1	5143		

ТИПЫ NAT

Статический (Static) NAT: один локальный адрес — один глобальный адрес; Динамический (Dynamic) NAT: локальный адрес — разные глобальные адреса; Port Address Translation (PAT) или NAT Overload — сопоставление локальных и глобальных адресов с использованием портов.

Распределение ІР-адресов

Протокол DHCP

Время аренды (lease time) REQUEST - ACK

Конфигурация маршрутизатора **DHCP Relay**

(2 и более подсети)

Ошибка в ІР-адресе при передаче

DHCP-сообщ.	Назначение	Источн
DISCOVER	Найти DHCP-сервер	Клиент
OFFER	Предложение IP-адреса	Сервер
REQUEST	Запрос IP-адреса	Клиент
ACK	Подтверждение IP-	Сервер
	адреса или доп.	
	параметров	
NACK	Запрет использования	Сервер
	IP-адреса	
RELEASE	Освобождение IP-адреса	Клиент
DECLINE	Отказ от IP-адреса	Клиент
INFORM	Z	Клиент
	K – Ack nowledgemente	Сервер
NAC	CK – Negative ACK	

Протоколы ARP, InARP и RARP

InARP (Inverse ARP)

RARP (Reverse ARP)

ARP-таблица

(FrameRelay, ATM)

Интерфейс: 192.168.93	.11 0xf	
адрес в Интернете	Физический адрес	Тип
192.168.93.104	f6-e2-1a-c1-55-a6	динамический
192.168.93.214	a6-0e-39-94-28-2d	динамический
192.168.93.255	ff-ff-ff-ff-ff	статический
224.0.0.22	01-00-5e-00-00-16	статический

Просмотр ARP-таблицы: arp -a

Добавление записи в ARP-таблицу: arp –s <IP-адрес> <MAC-адрес>

Форматы ARP-запроса (ответа)

Поле	Значение
«Тип сети» канального уровня	1 (для Ethernet)
«Тип протокола» сетевого уровня	2048 (=0800 ₁₆ для IP)
«Длина локального адреса»	<mark>6</mark> (для Ethernet)
«Длина сетевого адреса»	4 (для IP)
«Операция»	1 (2) –запрос (-ответ)
«Локальный адрес отправителя»	00-80-48-EB-6A-15
«Сетевой адрес отправителя»	195.67.8.9
«Локальный адрес получателя»	00000000000
	(для ARP-запроса)
«Сетевой адрес получателя»	195.67.8.12

DNS (Domain

Name System)

com, edu, gov, org, net, ...

Формат DNS-таблицы

Доменное имя	IP-адрес			
sota.park.org	213.45.7.12			

2.3. Фрагментация ІР-пакетов

MTU (Maximum Transfer Unit) – максимальный размер поля данных:

от 48 байт (ATM) до 65515 байт (IP-пакеты)

Параметры фрагментации:

- идентификатор пакета (ИП)
- признак конца пакета (ПК)
- смещение фрагмента (СФ)
- время жизни TTL (Time To
- флаг MF (More Fragments)
- флаг DF (Do not Fragment)

Исходный пакет

ИП	СФ	ПК		Элементарные фрагменты (по 8 Байт)										
32	0	1	A	В	С	D	Е	F	G	Н	I	J	K	L

Фрагменты (по 40 Байт)

32	0	0	A	В	С	D	E
32	5	0	F	G	Н	I	J
32	10	1	K	L			

Общие принципы

TCP (Transmission Control Protocol) UDP (User Datagram Protocol)

RDP (Reliable Data Protocol) – надёжный протокол передачи данных за счет подтверждения доставки пакетов, повторной отправки пакетов, управления потоками данных (среднее между ТСР и UDP)

DCCP (*Datagram Congestion Control Protocol*) – отслеживание перегрузок в сети

<u>SCTP (Stream Control Transmission Protocol)</u> – протокол передачи с «управлением потоком»: **многопоточность, защита от DDoS атак**, поддержка **множественных интерфейсов**

QUIC («быстрый») - для соединения (подключений) веб-браузера Chrome к серверам Google

Способы присвоения порта приложению:

≻Общеизвестные (системные) – номера от 0 до 1023, присвоенные централизованно общедоступным службам (приложениям):

FTP - 21, SMTP - 25, DNS - 53, HTTP - 80, SNMP - 161/162.

- **▶Зарегистрированные** (пользовательские) номера от 1024 до 49151.
- **Динамические** (частные) номера от 49152 до 65535 выделяются по запросу от приложения из списка свободных номеров.

<Сокет>: <<u>IP-адрес>, <номер порта</u>>

Протокол UDP

Формат заголовка UDP-дейтаграммы

Псевдозаголовок протоколов UDP и TCP

Контрольная сумма UDP-дейтаграммы (TCP-сегмента) рассчитывается с учетом псевдозаголовка, который не передается по сети!

Протокол ТСР: принципы реализации

- 1. Надежная передача за счет установления логического соединения (без потерь, ошибок и дублирования).
- 2. Согласование параметров: а) начальный порядковый номер байта ISN; б) максимальный размер сегмента (обычно 1460 байт; максимально 65 495 байт); в) максимальный объем принимаемых данных (байт).
- 3. **Неструктурированный поток байтов** от протоколов более высокого уровня заносится в буфер, из которого для передачи на сетевой уровень **вырезается сегмент**.

Поток байт от приложения	Буфер		Сегмент	Сегмент	Сегмент	Сегмент	Сегмент
		Байт:	S	S+1460	S+2920	S+4380	S+5840

- 4. Дуплексная передача сегментов.
- 5. Скользящее окно переменного размера.
- 6. Механизм тайм-аута.
- 7. Отрицательные квитанции не посылаются.
- 8. Номер подтверждения порядковый номер *ожидаемого байта* (не сегмента!).
- 9. **Контроль ошибок**: контрольная сумма (**заголовок** + **данные** + **псевдозаголовок**) вычисляется в **дополнительном коде** для 16 разрядных слов.

Типы подтверждений:

- *кумулятивное* (по умолчанию в TCP) подтверждение приема **указанного байта** и всех предыдущих;
- **выборочное** подтверждение **диапазона принятых байт** при большом размере окна (используется дополнительное поле заголовка TCP).

<u>S = ISN+1</u>, ISN (Initial Sequence Number) – случайное число в интервале (0; 2^{32}).

Протокол ТСР: проблемы реализации

Возможные проблемы:

- 1. Сегмент или подтверждение могут быть потеряны, искажены, продублированы.
- 2. При фрагментации часть сегмента может быть потеряна.
- 3. Сегменты могут прибывать в узел назначения в **произвольном порядке**, из за чего подтверждение не может быть выслано, так как часть сегментов еще не получена.
- 4. Сегменты могут **задержаться** в сети дольше интервала тайм-аута, переданный повторно сегмент может: а) пройти по другому маршруту; б) быть иначе фрагментирован; в) попасть в перегруженную сеть.
- 5. Скорость отправителя может превышать возможности получателя (управление потоком).
- 6. Сеть (маршрутизэторы, каналы) может быть **перегружена** (контроль и борьба с перегружами).

Отправитель Сегмент Сегмент (повторно) Таймаут Acknowledgemente ACK=1 t

Протокол ТСР: основные функции

Протокол ТСР: формат заголовка ТСР-сегмента

Логическое соединение: <сокет1> < сокет2>

<Сокет>: <<u>IP-адрес>, <номер</u> <u>порта</u>>

Формат заголовка ТСР-сегмента (1460 байт – 64 Кбайт)

	1 2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
	Порт источника (Source Port)								Порт назначения (Destination Port)																							
	Порядковый номер (SN – Sequence Number) – номер первого байта в сегменте																															
	Подтвержденный номер (AN – Acknowledgement Number) – ожидаемый байт																															
) (1	Įл.за Head	гол er l	пов leng	ка gth)	Pe (Res	езері serv	в ed)	NS (CWR	ECE	₫ URG		и (C PSH			1					Pa	змє	ep oi	кна	(Wir	ıdov	v siz	e)				
	Контрольная сумма (Checksum) казатель на срочные данные (Urgent pointer)																															
	Параметры (<i>Options</i>) + Наполнитель (<i>Padding</i>) = 0 или более 32-разрядных слов																															
\sum	Данные (<i>Data</i>) – необязательное поле																															

Флаги или кодовые биты (code bits):

URG = 1 – срочные данные (используется поле «Указатель на срочные данные») (urgent)

ACK = 1 – квитанция (используется поле «Подтвержденный номер ») (acknowledgement)

PSH = 1 – PUSH-флаг – запрос на отправку данных приложению без ожидания заполнения буфера и отправка подтверждения

RST = 1 - cброс соединения / отказ от неверного сегмента / отказ на запрос о создании соединения (<math>reset)

SYN = 1 - установка соединения (syncing)

FIN = 1 – завершение (разрыв) соединения передающей стороной (finish)

FTP (20-дан., 21-ком.), DNS (53), **SMTP (25), POP3 (110), IMAP (143),** TELNET (23), BGP (179), HTTP (80), PPTP

Протокол ТСР: флаги для управления перегрузкой

Длина	Резерв		C .	E							
заголовка		$\begin{array}{cc} N & 1 \\ S & 1 \end{array}$	W R	C E	URG	ACK	PSH	RST	SYN	FIN	Размер окна

Для **управления перегрузкой** в поле «Резерв (*разряды* 8,9,10)» добавлены <u>3 однобитовых флага</u>:

- ECE «ECN-Echo» в зависимости от значения флага SYN:
 - <u>при установлении соединения (SYN=1)</u> указывает, что **отправитель** поддерживает технологию <u>явного уведомления о перегрузке (Explicit Congestion Notification, ECN)</u>;
 - при передаче данных (SYN=0) **получатель** указывает отправителю о перегрузке в сети;
- CWR (Congestion Window Reduced) «окно перегрузки уменьшено» отправитель подтверждает получение сегмента с флажком ECE=1 от узла-получателя и включение механизма управления перегрузкой (Congestion Control);
- NS (Nonce Sum) «одноразовая сумма» для улучшения работы механизма <u>ECN</u>: защиты от ошибок реализации и от преднамеренных злоупотреблений (ECN nonce).

Параметры в заголовке ТСР (необязательные):

- 1. **MSS** (Maximum Segment Size) **максимальный размер сегмента** (для Ethernet 1460 байт), согласовывается отправителем и получателем при установке соединения.
- 2. Масштаб окна позволяет увеличить размер окна до 1 ГБ (вместо 65535 байт).
- 3. **Выборочное подтверждение** подтверждение диапазона принятых байт, а не всех данных, если потерян всего лишь один сегмент или небольшая часть в большом потоке данных.

Протокол ТСР: вычисление контрольной суммы

Алгоритм вычисления контрольной суммы

- 1. Поле данных чётное число байтов (в противном случае дополняется нулевой байт).
- 2. ТСР-сегмент (включая псевдозаголовок) совокупность 16-разрядных двоичных чисел.
- 3. Сложение с переносом, если сумма более 16 разрядов.
- 4. Поразрядное инвертирование контрольная сумма.

Пример. Длина ТСР-сегмента – 4 полубайта (**нибл**): 1110 1001 1000 1011

Сложение в двоичном коде: 1110+1001+1000+1011=101010 1010+0010=1100

Контрольная сумма: <u>0011</u>

<u>На приемной стороне:</u> $1110+1001+1000+1011+{\color{red}0011}=111101$ $1101+0011={\color{red}0000}$

Пусть в процессе передачи в первом полубайте исказился первый бит: 0110.

На приемной стороне: складываются все полубайты, включая контрольную сумму:

0110+1001+1000+1011=**1**00010

0010+0010+ 0011 = 0111 (ошибка).

Протокол ТСР: установление и разрыв соединения

Установление соединения (состояние ESTABLISHED)

Разрыв соединения

Этапы передачи данных в ТСР:

- установление соединения: «трехкратное рукопожатие»:
 К) SYN=1;
 С) SYN=1 и ACK=1;
 К) ACK=1;
- передача данных;
- разрыв соединения (FIN=1 или RST=1).

При установлении соединения:

- необходимо убедиться, что отправитель и получатель готовы передавать данные друг другу;
- договориться о параметрах соединения: **максимальный размер сегмента**; **начальный размер окна**; **начальный порядковый номер байта** (ISN *Initial Sequence Number*) и др.

Разрыв соединения:

- *односторонний* одна сторона прекращает передачу (FIN), но может принимать данные;
- одновременный обе стороны разорвали соединение (FIN / FIN);
- *принудительный* при возникновении нестандартной ситуации (RST).

Протокол ТСР: перегрузка и управление потоком

Признаки перегрузки:

- потеря сегментов;
- увеличенная задержка сегментов;
- сигнал от маршрутизатора о перегрузке.

Причины перегрузки:

- заполнен буфер приёма узла-получателя;
- перегружены маршрутизаторы и каналы связи на пути передачи.

Методы предотвращения перегрузки узла-получателя:

- выбор величины тайм-аута;
- выбор и адаптивное изменение размера окна, диктуемого узлом-получателем сегментов.

Размер окна устанавливается как минимальное значение из размера **окна управления потоком** (получателем) и размера **окна перегрузки** (рассчитанный/уменьшенный при возникновении перегрузки).

Протокол ТСР: управление перегрузкой

Методы управления перегрузкой сети (маршрутизаторов) реализуются путем выбора и адаптивного изменения размера окна с учетом загруженности сети:

- **AIMD** (Additive Increase / Multiplicative Decrease) метод аддитивного увеличения, мультипликативного уменьшения (на медленных каналах);
- «медленный старт» с AIMD в протоколе ТСР.

 Метод AIMD:
 если нет перегрузки;

 $w(t+1) = \begin{cases} w(t) + a, \\ w(t)*b, \end{cases}$ если есть перегрузка,

 где t = 0, 1, 2, ...; w(0) = 0; a = MSS - максимальныйразмер сегмента (по умолчанию MSS=536; MSS=1460 для сети Ethernet); b = 0.5.

Метод «медленный старт» с AIMD:

$$w(t+1)$$
 $= \begin{cases} 2w(t), & \text{если } w(t) < \text{порога медленного старта;} \\ w(t) + a, & \text{если } w(t) \ge \text{порога медленного старта;} \\ w(t) * b, & \text{если есть перегрузка,} \\ \text{где } w(0) = a; \quad a = \text{MSS}; \quad b = 0,5. \end{cases}$

Системный администратор может задать максимальный размер окна и добавляемую константу.

Протокол ТСР: сигналы о перегрузке

<u>Признаки перегрузки</u> (сигналы о перегрузке) :

- 1) потеря сегмента;
- 2) задержка сегмента;
- 3) сигнал о перегрузке от маршрутизатора.

1. Потеря сегмента (из-за перегрузки *сети*, но не каналов связи).

Перегрузка не предотвращается, поскольку уже произошла

Возможность возникновения новой перегрузки когда все отправители после перегрузки и уменьшения размера окна начинают практически одновременно передавать сегменты

2. Задержка сегмента (отслеживание времени RTT - Round Trip Time).

Необъективный показатель - задержка сегментов может быть не связана с перегрузкой сети

Несправедливое распределение пропускной способности каналов связи — другие компьютеры, использующие показатель «потеря сегмента», увеличивают размер окна

Совместное использование двух показателей: **«задержка сегмента»** и **«потеря сегмента»** (реализовано в протоколе Compound TCP фирмы Microsoft).

3. Сигнал о перегрузке от маршрутизатора (маршрутизатор должен поддерживать отправку сигналов).

Неявная передача сигнала - маршрутизатор начинает отбрасывать пакеты до того, как буфер заполнится (технология **RED** – Random Early Detection)

Явная передача сигнала - маршрутизатор сообщает отправителю о перегрузке (технология ECN - Explicit Congestion Notification, встроенная в протоколы TCP и IP)

ECN – технология явного уведомления о перегрузке

ECN (Explicit Congestion Notification)

ECN – явное уведомление о перегрузке: 00 и 11 (перегрузка) – в заголовке IP-пакета.

ECE – «ECN-Echo»: 1) поддерживает ECN (**отправитель** при SYN=1); 2) перегрузка в сети (**получатель** при SYN=0).

CWR (Congestion Window Reduced) – отправитель: подтверждение «окно перегрузки уменьшено».

2.4. Транспортные протоколы ТСР/ІР Сравнение ТСР и UDP

Показатель	ТСР	UDP
Размер заголовка	20 – 60 байт	8 байт
PDU	Сегмент	Дейтаграмма
Соединение	устанавливается дуплексное соединение	передача без установления соединения
Контроль ошибок	ошибочный сегмент посылается повторно	ошибочная дейтаграмма отбрасывается
Последовательность доставки	есть	не контролируется
Упорядоченность доставки	есть	нет
Контроль и управление перегрузками	реализован	нет
Накладные расходы	есть на установление соединения	нет
Приложения	FTP, HTTP, SMTP	DNS, SNMP, TFTP, DHCP

Многопутевой TCP - Multipath TCP (MPTCP)

MPTCP – технология передачи данных по протоколу TCP одновременно по нескольким каналам связи с целью *увеличения пропускной способности* и *надежности* за счет максимальной загрузки ресурсов компьютерной сети и увеличения избыточности (2013 год, спецификация RFC 6824).

При многопутевом ТСР соединение устанавливается между двумя хостами, а не интерфейсами, как в ТСР.

В МРТСР по каждому каналу (пути) создается ТСР-соединение – ТСР-*подпоток* (sub-flow).

Основные операции протокола МРТСР:

- добавление/удаление пути (при перегрузках);
- обеспечение совместимости с устаревшим оборудованием ТСР (например, с брандмауэрами, которые могут автоматически отклонять ТСР-соединения, если порядковый номер не является последовательным);
- *справедливый контроль перегрузки* между разными соединениями и разными хостами (особенно с теми, которые не поддерживают МРТСР).

Новые механизмы:

- 1. Система подпотока для организации нескольких ТСР-соединений путем добавления или удаления подпотоков.
- **2. Опция MPTCP DSS** (Data Sequence Signal сигнал последовательности данных), содержащая порядковый номер данных и номер подтверждения, что позволяет получать данные из нескольких подпотоков в исходном порядке.
- **3. Модифицированный протокол повторной передачи**, обеспечивающий контроль и управление перегрузкой, а также повышенную надежность, не проявляя при этом несправедливости к TCP-соединениям с одним путем, которые могут конкурировать на каком-то пути.

2.5. Коммуникационный протокол IPv4

DS-байт (разряды 14-15) – ECN (*Explicit Congestion Notification*) – явное уведомление о перегрузке: 00 и 11 (перегрузка)

2.6. Протоколы маршрутизации

Методы маршрутизации

2.6. Протоколы маршрутизации

Протоколы внутренней маршрутизации

- 1. Каждые 30 с широковещательное сообщение : (V, D), где V адрес доступной сети (вектор); D расстояние до этой сети (дистанция).
- 2. Метрика RIP длина вектора в *хопах* (ограничение 15 транзитных участков; 16 «бесконечно большая метрика»).

IP-пакет IP-загол. Данные

Формат RIP-пакета

Биты	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
	Ko	маі	нда	(1/2	· () ((Con	ıma	nd)		В	ерс	ия ((Ve	rsio	n)		Н	Іоме	p a	вто	HOM	IHO	й си	істе	МЫ	(0)	(Ro	outi	ng I	Dom	ain))
								3	апи	СЬ	мар	шр	утн	юй	инс	þop	мац	ии (от 1	l до	25)	(R)	IP E	ntry	7)							

- •**Command:** 1 request; 2 response;
- •**Version:** 1 (1969 г.) или 2 (1994 г., дополнительная маршрутная информация для обеспечения высокого уровня безопасности);
- •**Routing Domain:** 0 (не используется);
- •**RIP Entry:** 1) тип адреса (2 IP); 2) IP-адрес назначения (сети или хоста); 3) *маска подсети*; 4) метрика.

Недостатки протокола RIP:

- медленная стабилизация маршрутов;
- большая загрузка сети таблицами «вектор-длина»;
- ❖ для небольших сетей (до 15 хопов).

2.6. Протоколы маршрутизации

Протокол OSPF

OSPF (Open Shortest Path First)

Алгоритм SPF (Shortest Path First - «выбор кратчайшего пути») строит кратчайший путь к каждой сети в виде **дерева**, корнем которого является сам маршрутизатор, а ветвями — пути к доступным сетям (маршрутизаторам). Процесс определения наилучшего маршрута (конвергенция) реализуется с использованием **дейкстры**.

AH	Мш	Мет- рика	Мш альт •	Мет- рика
2	2	4	5	13
3	2	11	4	13
4	4	5	2	19
5	5	7	2	10
6	2	8	5	17
7	5	12	2	15

Hello-пакет - установление и поддержание связей с соседними Мш Пакет Database Description - содержание базы данных состояния каналов Пакет Link State Request - запрос части базы данных соседнего Мш Пакет Link State Update - рассылка объявлений о состоянии каналов Link State Acknowledgment - подтверждение получения пакета Link State Update

2.6. Протоколы маршрутизации

Протокол OSPF

Типы сетей, поддерживаемые протоколом OSPF:

- широковещательные сети с множественным доступом (*Ethernet*, *Token Ring*);
- точка-точка (коммутируемый доступ);
- нешироковещательные сети с множественным доступом (*Frame relay*).

Алгоритм реализации:

- 1. По умолчанию каждые 10 с для широковещательных сетей и сетей точкаточка или 30 с для нешироковещательных сетей с множественным доступом посылается широковещательное сообщение hello-пакет.
- 2. Ожидание ответа.
- 3. Есть ответ «канал активный».
- 4. Нет ответа через 5 с повторный запрос.
- 5. Если нет ответа в течение 4-х кратного интервала посылки (40 с или 120 с) канал считается «неактивным» и маршрутизатор распространяет соответствующую информацию всем остальным маршрутизаторам.

Метрика протокола OSPF

-стоимость (cost) :

$$M_{\text{OSPF}} = K / C_{\text{KC}}$$
,

где $C_{\rm KC}$ – пропускная способность KC;

K – коэффициент, равный максимальной пропускной способности (по умолчанию K= 10^8);

 $M_{\rm OSPF}$ – целое число: $M_{\rm OSPFmin}$ = 1.

Для составного соединения из *n* KC:

$$M_{OSPF} = \sum_{i=1}^{n} M_{i},$$

где M_i - стоимость i-го КС (i = 1,...,n).

Дополнительные возможности:

- маршрутизация в соответствии с типом и классом обслуживания;
- учет приоритетов;
- равномерное распределение нагрузки между альтернативными путями;
- аутентификация маршрутов;
- создание виртуального канала между маршрутизаторами, соединенными через транзитную сеть.

Преимущества OSPF по сравнению с RIP:

- более высокая скорость сходимости;
- поддержка сетевых масок;
- более эффективное использование пропускной способности сети за счет построения дерева кратчайших путей.

2.7. Протокол межсетевых управляющих сообщений ІСМР

<u>Haзнaчение ICMP</u> (Internet Control Message Protocol): формирование *диагностических* сообщений узлуисточнику об ошибках и *информационных* сообщений типа «запрос-ответ» в процессе мониторинга сети.

Формат ІСМР-сообщения

,						U	J	10	TT	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30 3
	T	ип (Т	Гуре	•)				K	од (Koc	 d)					I	Кон	тро	льн	ая	сум	ма	(Cl	ieck	Su	m)		,
Служебная информация (зависит от типа и кода)																												
Поле данных ІСМР (фрагмент пакета с ошибкой)																												
		T	Тип ('.	Тип (Туре	Тип (Туре)	Тип (Туре)	()1 /	Слу	Служе	Служебна	Служебная и	Служебная инфо	Служебная информа	Служебная информаци	Служебная информация (за	Служебная информация (завис	Служебная информация (зависит с	Служебная информация (зависит от ти	Служебная информация (зависит от типа	Служебная информация (зависит от типа и ко	Служебная информация (зависит от типа и кода)							

		ĭ
Tun	Код	Содержание сообщения
3	0	Сеть не достижима
	1	Узел не достижим
	2	Протокол не достижим
	3	Порт не достижим
	4	Ошибка фрагментации
	5	Ошибка в маршруте источника
	6	Сеть назначения не известна
	•••	
11	0	Время жизни пакета (TTL) истекло при передаче
	1	Время жизни пакета истекло при сборке фрагментов
12	1	Отсутствует требуемая опция
	2	Некорректная длина
25	022	25

Особенности протокола ІСМР:

- 1. Используется для передачи данных на **сетевом уровне OSI- модели** *без гарантии доставки*.
- 2. При потере или ошибках в ICMP-сообщении новое сообщение не генерируется.
- 3. ICMP-сообщения не генерируются в ответ на IP-пакеты *с широковещательным или групповым адресом*, чтобы не вызывать перегрузку в сети («широковещательный шторм»).
- 4. При повреждении фрагментов IP-пакета ICMP-сообщение об ошибке формируется и отправляется сразу после получения первого повреждённого фрагмента, при этом отправитель повторит передачу всего IP-пакета.

2.7. Протокол межсетевых управляющих сообщений ІСМР

Применение ІСМР

Утилита **ping:** проверка доступности компьютера или сервера в сети

Tun	Код	ICMP-сообщение
8	0	Эхо-запрос (обычно 64 байт)
0	0	Эхо-ответ

По умолчанию:

- 4 эхо-запроса – 4 эхо-ответа, содержащие некоторую диагностическую информацию.

Утилита tracert (traceroute): определение маршрута от отправителя к получателю

По умолчанию:

- ICMP-пакетов к узлу 3;
- хопов 30;
- интервал ожидания 4 с.

Причины превышения интервала ожидания от узла:

- узел не принимает ІСМР-пакеты;
- нет связи со следующим узлом;
- не указан маршрут к данному узлу на предыдущем маршрутизаторе.

```
C:\Users\ersac>tracert 10.226.8.1

Трассировка маршрута к 10.226.8.1 с максимальным числом прыжков 30

1 * * * Превышен интервал ожидания для запроса.
2 44 ms 141 ms 208 ms 10.255.128.0
3 51 ms 41 ms 29 ms 10.3.246.81
4 61 ms 48 ms 54 ms 10.226.8.1

Трассировка завершена.
```

Цели:

- •создание масштабируемой системы адресации;
- уменьшение размера таблиц маршрутизации и, как следствие, времени обработки пакетов в маршрутизаторах;
- •предоставление гарантий качества транспортных услуг для неоднородного трафика;
- •более надёжное обеспечение безопасности;
- •возможность развития протокола в будущем;
- •возможность сосуществования старого (IPv4) и нового (IPv6) протоколов.

Особенности протокола IPv6:

- 1) длина IP-адреса 16 байт (**10**³⁸ адресов);
- 2) упрощенная *структура заголовка* (8 полей и 13 в IPv4); меньше *размер таблиц маршрутизации*; фрагментация в конечных узлах; маршрутизация от источника;
- 3) улучшена поддержка необязательных параметров (ускоряется обработка пакетов в маршрутизаторах за счёт пропуска не относящихся к ним параметров);
- 4) обязательная поддержка шифрования защищенный протокол IP (IPSec Security Internet Protocol);
- 5) предусмотрена возможность расширения типов (классов) предоставляемых услуг;
- 6) разработаны способы межсетевого взаимодействия, обеспечивающие совместимость протоколов IPv4 и IPv6.

Адресация

Типы адресов IPv6

Индивидуальный адрес (unicast)

Глобальный агрегируемый уникальный адрес:

3	13	8	24	16	64 бит
FP	TLA		NLA	SLA	IdInt
001	01011	00	011101	01	{MAC; IPv4-адрес,}
□ □	рефикс ма — Префи		тизации и (64 бит) —	• • • • • • • • • • • • • • • • • • •	Идентификатор интерфейса

Локальный адрес подсети (SubNet, SN):

8	40	16	64 бит
FP	Random	SNId	IdInt
11111101	0000000000	00 1	

Локальный адрес канала связи (Link Local, LL):

10	54	64 бит
FP	Zeroes	02:a1:2f:ff:ee:35:B4:12
1111111010	00000000000000000	

Групповой адрес (multicast)

Адрес произвольной рассылки (anycast) (для маршрутизаторов)

FP – Format Prefix (префикс формата) **TLA (NLA, SLA)** – Top- (Next-, Site-) Level Aggregation

наименьший: 2001:0000:0001:0001:[8байт] наибольший: 3FFF:00FF:FFFF:[8байт]

2001:00b7:7900:abcd:0500:43f0:1000:e040/48

Адрес обратной петли: 0:0:0:0:0:0:0:0:1 (127.0.0.0) **Неопределенный адрес:** 0:0:0:0:0:0:0:0:0:0

Тип адреса	Первые цифры
Глобальный	2 или 3
Локальный SN	fd
Локальный LL	fe80::/10
Групповой	ff

Адресация

Групповые адреса IPv6:

- идентифицируют группу интерфейсов для получения одного и того же контента;
- начинаются с префикса ff::/8

Базовая структура группового адреса IPv6:

8	4	4	112 бит
FP	Flag	Scope	GroupID
11111111	0000	0010	

Flag – определяет тип адреса:

0000 – фиксированный (Internet Assigned

Numbers Authority, IANA);

0001 – временный (локально выделенный)

Scope – определяет диапазон адресов

Scope	Диапазон
0001	Interface-Local
0010	Link-Local
0100	Admin-Local
0101	Site-Local
1000	Organization
1110	Global

Адресация

Примеры адресов IPv6

Глобальный агрегируемый уникальный адрес:

наименьший: **2**001:**00**00:0001:0001: [8байт]

наибольший: **3FFF:00**FF:FFFF:FFFF: [8байт]

Правила отображения адресов IPv6:

::abcd:189.56.10.1 → 0:0:0:abcd:189.56.10.1

<u>Примеры адресов IPv6</u>

Тип адреса	Первые цифры	2001:0067:89ab:cdff:0b05:0009:0000:c054
Глобальный	2 или 3	2001:67: 89ab:cdff:b05:9:0:c054
Локальный SN	fd	fe80:0:0:0:0:0012:a2c1
Локальный LL	fe80	IPv6-адрес в URL в квадратных скобках:
Групповой	ff02::1 u ff02::2	https://[2001:00b5:31a4:1015:3c45:6abe:700a:981f]/
Специальные адр	реса: ::1 и ::	https://[2001:00b5:31a4:1015:3c45:6abe:700a:981f]:8080/

Преимущества адресации IPv6:

- 1. Ускорение маршрутизации (всего 8192 TLA-сетей сетей верхнего уровня).
- 2. Возможность указать непосредственно физический адрес устройства (МАС- адрес).
- 3. Не нужен ARP-протокол и ручное конфигурирование конечных узлов.
- 4. Не нужно маскирование адресов.

Совместимость протоколов <u>IPv6 и IPv4</u>

Способы межсетевого взаимодействия:

- •трансляция протоколов;
- •мультиплексирование стеков протоколов IPv4/ IPv6 в конечных узлах и во всех маршрутизаторах;
- •инкапсуляция (туннелирование).

Двойной стек (dual stack) протоколов IPv4/ IPv6

Структура пакета и формат заголовка IPv6

Структура пакета IPv6

Формат основного заголовка IPv6 (40 байт)

IPv6 – простой, быстрый, гибкий!

•в сверхскоростных сетях возможна поддержка пакетов до 4 гигабайт (джамбограмм);

•появились метки потоков и классы трафика (приоритет): 0 – обычный трафик; 1 – сетевые новости;

2 –электронная почта; 4 – существенный трафик (FTP, HTTP); 6 – интерактивный трафик; 7 – управляющий трафик (маршрутная информация, SNMP);

•появилось многоадресное вещание.

Сравнение заголовков IPv4 и IPv6

2.9. Протоколы канального уровня для выделенных линий

Протоколы канального уровня:

- •SLIP;
- •протоколы семейства HDLC;
- •PPP (PPTP).

Функции протоколов канального уровней:

- •обеспечение надежной передачи;
- •управление потоком кадров и предотвращения переполнения соседних узлов.

Протокол SLIP (Serial Line IP)

Недостатки:

- нет возможности обмениваться адресной информацией;
- невозможна передача пакетов, отличных от ІР-пакетов;
- нет процедур обнаружения и коррекции ошибок;
- •высокая избыточность из-за передачи полных заголовков верхних уровней и байт-стаффинга.

2.9. Протоколы канального уровня для выделенных линий

Протокол HDLC (High-level Data Link Control Procedure)

<u>HDLC</u> — стандарт ISO для выделенных линий — семейство протоколов LAP (Link Access Procedure):

- LAP-B для сетей X.25 (В Balanced);
- LAP-D для сетей ISDN (D D-channel);
- LAP-M для модемов (M Modem);
- LAP-F для сетей Frame Relay (F Frame Relay).

Типы станций:

- > **Первичная (ведущая)** (PT Primary Terminal)
- > **Вторичная (ведомая)** (ST Secondary Terminal)
- > **Комбинированная** (CT Combined Terminal)

01111110 Кадр 01111110 Кадр 01111110

Режимы логического соединения:

- **1. Режим нормального ответа** (Normal Response Mode, NRM) требует явного разрешения на передачу от первичной станции; круговой опрос вторичных станций в соединениях точка-многоточка.
- **2. Режим асинхронного ответа** (Asynchronous Response Mode, ARM) вторичная станция может сама инициировать передачу в соединениях типа кольцо и многоточечных по типу маркера (token).
- **3. Асинхронный сбалансированный режим** (Asynchronous Balanced Mode, ABM) используется комбинированными станциями в *дуплексном режиме* (оба устройства равноправны и обмениваются командами и ответами).

Типы соединений

синхронные (битстаффинг)

асинхронные (байтстаффинг)

Межкадровое временное заполнение:

0111110 0111110 0111110 (битовая

синхронизация)

2.9. Протоколы канального уровня для выделенных линийФормат кадра HDLC

Особенности протокола HDLC:

- » в HDLC-кадре отсутствует **поле длины кадра**, причем длина поля **Данные** произвольная;
- **флаг** конца одного кадра может служить начальным флагом следующего кадра;
- » в двухточечном соединении **Адрес** служит для обозначения команд и ответов, а также направления передачи кадра: 10000000 или 11000000;
- » в поле данных могут находиться пакеты IP, IPX, AppleTalk, DECnet, X25, Frame Relay,...;
- ▶ контрольная сумма CRC-16 (Cyclic Redundancy Check);
- **механизм окна**: размер окна 7 или 127 кадров, квитанции положительные и отрицательные.

2.9. Протоколы канального уровня для выделенных линий

Протокол PPP (Point-to-Point Protocol)

РРР– байт-ориентированный протокол канального уровня, представляющий собой семейство протоколов:

- LCP (Link Control Protocol) протокол управления соединением (установка, поддержка и завершение соединения);
- NCP (Network Control Protocol) протокол управления сетью для определения настроек сетевого урогни (сетевой адрес и пр.);
- MLPP (Multi Link PPP) многоканальный протокол PPP формирует несколько физических каналов для сдного логического соединения;
- PAP Plassword Authentication Protocol), CHAP (Challenge Handshake Authentication Protocol), <u>EAP</u> (Extensible Authentication Protocol) протоколы аутентификации

PPP осножения на четырех принципах:

- автоматическая настройка интерфейсов за счет согласования параметров соединения (качество ЛС, размер ка, ов, тип протокола аутентификации) на основе переговоров (LCP);
- **многопротокольная поддержка** (IP, IPX, XNS, ...) за счет конфигурирования сетевого протокола (NCP);
- расширяемость протокола;
- независимость от глобальных служб.

Подвиды протокола РРР:

- Point-to-Point Protocol over Ethernet (<u>PPPoE</u>) для подключения по <u>Ethernet</u>;
- Point-to-Point Protocol over <u>ATM (PPPoA)</u>, который используется для подключения по ATM.

2.9. Протоколы канального уровня для выделенных линий

Формат кадра РРР для работы в ненумерованном режиме

Флаг	Адрес	į	Протокол	Данные	KC	Флаг	
01111110	11111111	00000011				01111110	
1	1	1	1/2	1494	2/4	1 ба	- айт

Протокол PPTP (Point-to-Point Tunneling Protocol)

- ➤ туннельный протокол «точка-точка» для создания защищённого соединения в незащищённой сети путем инкапсуляции кадров PPP в IP-пакеты;
- > может использоваться для организации туннеля между двумя компьютерами или между локальными сетями;
- для обслуживания туннеля использует дополнительное ТСР-соединение.

- 1. Основная особенность стека протоколов ТСР/ІР.
- 2. В каком поле заголовка пакета протокола IPv4 указывается контрольная сумма пакета?
- 3. Какие записи не являются корректными глобальными агрегируемыми уникальными адресами IPv6?

A. 21ac:b17:3a:1c7:b00:9876:0:0

B. 40c1:7:a5:17:50b0:91:10:f4

C. 2702:8:88:17k:a50:19:50:14

D. 1234:aa:153a:1f7f:f15:9999:10:51

E. 20f::777:a2:74c:ff

F. 20ab::66:ab:11::d123

G. 2001:0067:89ab:cdff:0b05:0009:0000:c054

H. 20cc:17:33a:17:b050:9:0:c054

I. 3FFF::1A2B:345

J. 3d3d:f:44:ff::1

3	13	8	24	16	64 бит
FP	TLA		NLA	SLA	IdInt
001	01011	00	011101	01	

- 1. Какую длину в битах имеют МАС-адрес и IP-адрес?
- 2. Сколько ІР-адресов имеет: а) маршрутизатор; б) коммутатор; в) концентратор)?
- 3. Сколько МАС-адресов имеет: а) маршрутизатор; б) коммутатор; в) концентратор)?
- 4. Простой протокол передачи почты это ...?
- 5. Поле "Длина заголовка" пакета IPv4 имеет вид: 1001. Чему равна длина заголовка в байтах?
- 6. Какая цель отправки ARP-запроса при назначении IP-адреса компьютеру?
- 7. Как определить размер кадра HDLC, если в заголовке отсутствует поле длины кадра:

01111110	Адрес	y	Данные	KC	01111110	
8	8/16	8/16	_	16	8	- бит

- 1. В чем различие между вычислительной системой и вычислительной машиной?
- 2. Как правильно: вычислительная сеть, компьютерная сеть или сеть ЭВМ?
- 3. В чем разница между данными и информацией?
- 4. Основное достоинство коммутации пакетов.
- 5. На каком уровне OSI-модели решается задача маршрутизации?
- 6. Для чего используется процедура «бит-стаффинг»?
- 7. Простой протокол передачи почты это ...?
- 8. Для чего нужен псевдозаголовок в протоколах TCP и UDP?
- 9. Какую длину в байтах имеют МАС-адрес и IP-адрес?

Специальные групповые адреса Ірv6

Scope	Диапазон	Адрес	
0001	Interface-Local (Node)	ff01::1	Bce IPv6 узлы
0010	Link-Local	ff02::1	Bce IPv6 узлы
0100	Admin-Local	ff01::2	Все маршрутизаторы
0101	Site-Local	ff05::2	Все маршрутизаторы
1000	Organization	ff01::1	
1110	Global	ff01::1	

Групповые адреса

Специальный групповой адрес Solicited-Node:

- используется в процессе разрешения IPv6-адресов для сегмента сети;
- присваивается каждому интерфейсу вместе с индивидуальными адресами;
- используется только на канале связи или в сегментах сети.

Генерация адреса:

младшие 24 бита поля Interface ID индивидуального или альтернативного адреса

+

префикс FF02:0:0:0:1:FF00::/104

Пример: Aдрес IPv6: FE80::0202:B3FF:FE1E:8329

Префикс Solicited-Node: FF02:0000:0000:0000:00001:FF00:0000

Групповой адрес Solicited- FF02:0000:0000:0000:0000:0001:FF1E:8329

Node: или

FF02::1:FF1E:8329

IPv6 Multicast addresses(cont.)

- Special multicast IPv6 address
 - FF01::1
 - Node-local scope all-nodes multicast address
 - FF02::1
 - Link-local scope all-nodes multicast address
 - FF01::2
 - Node-local scope all-routers multicast address
 - FF02::2
 - Link-local scope all-Routers multicast address
 - FF05::2
 - Site-local scope all-routers multicast address
- Use low-order 32 bits, each group ID maps to a unique Ethernet MAC address (RFC 2373)

