Time dependent multivariate distributions for piecewise-deterministic models of gene networks

Ovidiu Radulescu, Guilherme D.C.P. Innocentini

University of Montpellier

Stochastic gene expression

Heterogeneity of clone cells populations

Dynamics, individual cell

Dynamics of stochastic gene expression, population

Applications

Adaptation of heterogeneous populations: stochastic switching

Gaines/Poppelbaum stochastic computing

Markovian models of stochastic promoters

Multi-scaleness of stochastic gene expression

Switching and discreteness timescales (a) The partition of species and of the reactions; dotted lines mean that reaction rates depend on the corresponding species. (b) Typical trajectories of continuous and discrete variables: switched processes.

Continuous and hybrid approximations

Continuous and hybrid approximations

Continuous and hybrid approximations

Partial omega expansion

 Ω : size variable, $x_c = X_c/\Omega$.

$$\begin{split} \frac{\partial p}{\partial t}(X_D, x_c, X, t) &= \sum_{i \in \mathscr{R}_D \cup \mathscr{R}_{DC}} \left[V_i(X_D - \gamma_i^D, x_c; \mu) p(X_D - \gamma_i^D, x_c, t) - V_i(X; \mu) p(X_D, x_c, t) \right] + \\ &+ \sum_{i \in \mathscr{R}_C \cup \mathscr{R}_{CD}} \Omega \left[v_i(X_D, x_c - \gamma_i^C/\Omega; \mu) p(X_D, x_c - \gamma_i^C/\Omega, t) - v_i(X; \mu) p(X_D, x_c, t) \right] \end{split}$$

Master equation

$$\begin{array}{lcl} \frac{\partial \rho}{\partial t}(X_D,x_c,t) & = & -\frac{\partial [\Phi(X_D,x_c;\mu)\rho(X_D,x_c,t)]}{\partial x_c} + \sum_{i\in\mathscr{R}_D\cup\mathscr{R}_{DC}} [V_i(X_D-\gamma_i^D,x_c;\mu)\rho(X_D-\gamma_i^D,x_c,t) - \\ & - & V_i(X_D,x_c;\mu)\rho(X_D,x_c,t)], \text{where} \\ \Phi(X_D,x_c;\mu) & = & \sum_{i\in\mathscr{R}_D\cup\mathscr{R}_{DC}} \gamma_i^C v_i(X_D,x_c;\mu) \end{array}$$

Liouville-master equation

Single gene ON/OFF promoter: chemical master equation

$$\begin{array}{ccc}
\alpha & & & \\
h & & & \\
\downarrow & f & & \\
\beta & & & \\
\end{array}$$

$$\begin{array}{ccc}
R & \xrightarrow{b} P \\
\downarrow \rho & a \\
\downarrow \\
\end{array}$$

X:P, Y:R.

$$\frac{\partial p}{\partial t}(1,X,Y,t) = k\Omega(p(1,X,Y-1,t)-p(1,X,Y,t)) + \\
+ p((Y+1)p(1,X,Y+1,t)-Yp(1,X,Y,t)) + bY(p(1,X-1,Y,t)-p(1,X,Y,t)) + \\
+ a((X+1)p(1,X+1,Y,t)-Xp(1,X,Y,t)) + fp(0,X,Y,t) - hp(1,X,Y,t)$$

$$\frac{\partial p}{\partial t}(0,X,Y,t) = p((Y+1)p(0,X,Y+1,t)-Yp(0,X,Y,t)) + bY(p(0,X-1,Y,t)-p(0,X,Y,t)) + \\
+ a((X+1)p(0,X+1,Y,t)-Xp(0,X,Y,t)) + hp(1,X,Y,t) - fp(0,X,Y,t)$$

Single gene ON/OFF promoter: Liouville-master equation

$$\frac{\partial p}{\partial t}(1,x,t) = -\frac{\partial [(by-ax)p(1,x,y,t)]}{\partial x} - \frac{\partial [(k-py)p(1,x,y,t)]}{\partial y} + fp(0,x,y,t) - hp(1,x,y,t)$$

$$\frac{\partial p}{\partial t}(0,x,y,t) = -\frac{\partial [(by-ax)p(0,x,y,t)]}{\partial x} - \frac{\partial [-pyp(0,x,y,t)]}{\partial y} + hp(1,x,y,t) - fp(0,x,y,t)$$

 $x: X/\Omega, y: Y/\Omega.$

Single gene ON/OFF promoter: Monte-Carlo

- (1) Set $s = s^{(0)}$, $x = x^{(0)}$, $y = y^{(0)}$, $t = t_0$, i = 0.
- (2) Generate $u \sim \mathcal{U}[0,1]$,
- (3) Integrate the system of ODEs

$$\begin{cases} \frac{dx}{dt} = by - ax \\ \frac{dy}{dt} = k\delta_{s,1} - \rho y, \\ \frac{dF}{dt} = -(f+h)F, \\ x(t_i) = x^{(i)}, y(t_i) = y^{(i)}, F(t_i) = 1, \end{cases}$$

between t_i and $t_i + \tau_i$ with the stopping condition $F(t_i + \tau_i) = u$.

- (4) Generate $v \sim \mathcal{U}[0,1]$ use it to pick $s^{(i+1)}$. (the decision is made in the same way as in the Gillespie algorithm).
- (5) Change the system state $(s^{(i)}, x, y)$ to $(s^{(i+1)}, x, y)$, and the time t_i to $t_{i+1} = t_i + \tau_i$.
- (6) Reiterate the system from 2) with the new state until a time t_{max} previously defined is reached.

 Montpellier-BIOSS 2017, 12 / 15

Single gene ON/OFF promoter: push forward

- (1) Consider fixed partition $t_0 = 0, t_1, ..., t_N = T$ fine enough such that s is constant on most subintervals.
- (2) For each possible instance s_0, s_1, \dots, s_{N-1} compute its probability

$$\mathbb{P}[s_0, \dots, s_{N-1}] = \sum_{s_0, \dots, s_{N-1}} \mathbb{P}[s_0] \, \mathbb{P}[s_1 | s_0] \dots \mathbb{P}[s_{N-1} | s_{N-2}]$$

where
$$\mathbb{P}[s_{k+1}|s_k]$$
 is the exact solution of $\frac{dp_0}{dt} = -tp_0 + h(1-p_0), \quad p_1 = 1-p_0.$

- (3) Compute x(t) and y(t) as exact solutions of $\frac{dx}{dt} = by ax$, $\frac{dy}{dt} = k\delta_{s,1} \rho y$
- (4) Gather all x(t), y(t) leading to the same distribution bin in (x, y) plane and sum the probabilities.

NB: we use the exact distribution of s to obtain the one of x, y. Possible to use the exact distribution of (s, y) to obtain the one of x

Single gene ON/OFF promoter: illustration of the methods

Dynamical evolution of protein probability density for slow switch $(\epsilon = (h+f)/\rho = 0.1)$ in a) and fast switch $(\epsilon = 5)$ in b).

Innocentini et al, Bull Math Biol (2016) 78:110-131.

Gene networks: work in progress

- The methods can be applied to any combination of promoters with or without feed-back.
- Limitations imposed by the number of distinct genes N_g.
- Push-forward is better than solving the 2^{Ng} Liouville-master PDEs.
- ▶ Push-forward is better than Monte-Carlo for small to medium N_g (circuits).