Année : $2024/2025$	Série n°: 2	pc/tech/svt
ouikrim	TVI	fkih ben salah

Résumé

1. •
$$\begin{cases} f \text{ continue sur } [a, b] \\ k \text{ compris entre } f(a) \text{ et } f(b) \end{cases} \Rightarrow \exists \alpha \in [a, b] : f(\alpha) = k$$

2. •
$$\begin{cases} f \text{ continue sur } [a, b] \\ k \text{ strictement comprisentre } f(a) \text{ et } f(b) \end{cases} \Rightarrow \exists \alpha \in]a, b[: f(\alpha) = k]$$

3. •
$$\begin{cases} f \text{ continue sur } [a,b] \\ k \text{ strictement compris entre } f(a) \text{ et } f(b) \end{cases} \Rightarrow \exists ! \alpha \in]a,b[:f(\alpha)=k]$$
f strictement monotone sur $[a,b]$

4.
$$\bullet$$

$$\begin{cases} f \text{ continue sur } [a, b] \\ f(a) \cdot f(b) \leq 0 \end{cases} \Rightarrow \exists \alpha \in [a, b] : f(\alpha) = 0$$

5.
$$\bullet$$
 $\begin{cases} f \text{ continue sur } [a, b] \\ f(a) \cdot f(b) < 0 \end{cases} \Rightarrow \exists \alpha \in]a, b[: f(\alpha) = 0$

6. •
$$\begin{cases} f \text{ continue sur } [a, b] \\ f(a) \cdot f(b) < 0 \\ f \text{ strictement monotone sur } [a, b] \end{cases} \Rightarrow \exists! \alpha \in]a, b[: f(\alpha) = 0$$

s'entraîner

correction en classe

Exercice 1

• montrer que :

$$\exists c \in \left[0, \frac{\pi}{2}\right] \quad \cos(c) = \frac{c}{1+c} + \frac{1}{2}$$

- montrer que l'équation $x^3 + x \sqrt{x+1} = 1$ admet une solution α dans]1,2[
- montrer que l'équation $(x-2)^5 + (x-1)^3 = 0$ admet une solution unique dans l'intervalle]1, 2[.
- montrer que :

$$\exists ! \alpha \in \left] 0, \frac{\pi}{2} \right[\sqrt{1+\alpha} = \sqrt{\alpha} + \sin(\alpha)$$

Exercice 2

- 1. montrer que l'équation $\frac{1}{x-1} = \sqrt{x}$ admet une seule solution β dans]1,2[
- 2. montrer que $\beta^2 (\beta 2) = 1 \beta$

Exercice 3

soit la fonction f definie par $f(x) = x^3 - 2x\sqrt{x} - 1$

- 1. etudier les variations de f sur \mathbb{R}^+
- 2. determiner $f([1, +\infty[)$
- 3. montrer que l'equation f(x) = 0 admet une unique solution α dans $[0, +\infty[$

correction sur la chaîne youtube : ouikrimath

Exercice 1

• montrer que l'equation $\tan(x) = \frac{1}{x}$ admet une solution dans $\left[\frac{\pi}{4}, \frac{\pi}{3}\right]$

Exercice 2

soit la fonction f définie par $f(x) = x \sin(x) + \cos(x)$

- 1. étudier les variations de f sur $[0, 2\pi]$
- 2. montrer que l'équation f(x) = 0 admet une solution unique α dans $\left| \frac{\pi}{2}, \frac{3\pi}{2} \right|$
- 3. montrer que $\frac{5\pi}{6} < \alpha < \pi$

Exercice 3

- 1. montrer que l'équation $4x^3 12x + 1 = 0$ admet une solution unique α dans]-1,1[
- 2. deduire que l'équation $x^4 6x^2 + x = -1$ admet exactement deux solutions dans]-1,1[

correction en classe

Exercice 4

soit f une fonction continue sur [-5,5] .son tableau de variation est le suivant:

• déterminer le nombre de solution des equations f(x) = 0 et f(x) = -1 dans [-5, 5]

Exercice 5

- 1. étudier les variations de la fonction g définie par $g(x) = 5x^5 + 3x^3 1$
- 2. montrer que l'équation g(x)=0 admet une solution unique α dans $\mathbb R$ et comparer α et 1
- 3. résoudre l'inéquation g(x) < 0

Exercice 6

- 1. montrer que l'equation $x^3 + x = 1$ admet une unique solution α dans $\mathbb R$
- 2. soit la fonction f definie par

$$\begin{cases} g(x) = \frac{1}{x} &, x \ge \alpha \\ g(x) = x^2 + 1 &, x < \alpha \end{cases}$$

• montrer que g est continue en α

Exercice 7

1. soit la fonction g définie sur \mathbb{R} par

$$g(x) = 4x^3 - 3x - 8$$

a - étudier les variations de g sur \mathbb{R}

b - montrer que l'équation g(x) = 0 admet dans

 $\mathbb R$ une solution unique que l'on notera α puis déterminer un encadrement de α d'amplitude 10^{-2}

c - déterminer le signe de g(x) sur \mathbb{R}

2. soit la fonction f définie sur $[1, +\infty[$ par

$$f(x) = \frac{x^3 + 1}{4x^2 - 1}$$

a - étudier les variations de f sur $[1, +\infty[$

b - montrer que $f(\alpha) = \frac{3}{8}\alpha$ puis déduire un encadrement de $f(\alpha)$

correction sur la chaîne youtube : ouikrimath

Exercice 4

- 1. etudier les variations de la fonction $x \ \longmapsto \ 2x^3-3x^2-1$ puis déduire le signe de $2x^3-3x^2-1 \ \text{sur} \ \mathbb{R}$
- 2. déduire les variations de la fonction définie par $f(x) = \frac{1-x}{1+x^3}$

Exercice 5

soit f continue sur $\left[\frac{1}{2},2\right]$ et soit g definie sur $\left[\frac{1}{2},2\right]$ par $g(x)=f(x)-xf(\frac{1}{x})$

- 1. montrer que g est continue sur $\left[\frac{1}{2}, 2\right]$
- 2. montrer que C_g coupe l'axe (OX) en au moins un point dont l'abscisse est dans $\left[\frac{1}{2},2\right]$
- 3. deduire que $f(a) = af(\frac{1}{a})$