

ESTIMATION GRAPHICAL MODEL 26 OKTOBER, 2021

Contents

1	Intr	roduction	3
2	Rev	view and background	4
3	Met	thods	5
4	The	eoretical properties	6
5	Sim	nulation	7
6	App	plication to TCGA data	8
	6.1	Download Data	8
		6.1.1 TCGA Portal	8
		6.1.2 Gense Metadata	11
		6.1.3 MSigDB Hallmark 50	12
		6.1.4 Pathway Commons	12
	6.2	Cleansing Data	13
	6.3	Compare with Other Methods	14
		6.3.1 Penalized Regression (PenPC)	14
Re	efere	ence	16

Introduction

Review and background

Methods

Theoretical properties

Simulation

Application to TCGA data

For download the RNA-seq breast cancer data from Cancer Genome Atlas (TCGA) database we use TCGAbiolinks package (Silva et al. 2016).

6.1 Download Data

6.1.1 TCGA Portal

TCGAbiolinks' purpose is to make it easier to access GDC data, build preprocessing methods, and provide multiple methods for analysis and visualization. For install package run below commands:

```
if (!requireNamespace("BiocManager", quietly = TRUE))
  install.packages("BiocManager")

BiocManager::install("TCGAbiolinks")
```

Fist we download clinical data related to TCGA-BRCA study

```
library(TCGAbiolinks)

clinical_data <- TCGAbiolinks::getLinkedOmicsData(
   project = "TCGA-BRCA",
   dataset = "Clinical"
)

readr::write_rds(clinical_data, "data/clinical_brca.rds")</pre>
```

Table 6.1: TCGA BRCA Clinical Data Header

attrib_name	TCGA.5L.AAT0	TCGA.5L.AAT1
years_to_birth Tumor_purity pathologic_stage pathology_T_stage pathology_N_stage	42 0.6501 stageii t2 n0	63 0.5553 stageiv t2 n0
pathology_M_stage histological_type number_of_lymph_nodes PAM50 ER.Status	m0 infiltratinglobularcarcinoma 0	m1 infiltratinglobularcarcinoma 0
PR.Status HER2.Status gender radiation_therapy race	female yes white	female no white
ethnicity Median_overall_survival overall_survival status overallsurvival	hispanicorlatino 0 1477 0 1477,0	hispanicorlatino 0 1471 0 1471,0

The above table contains clinical data of patients. The name of each column is related to the patient's id.

The GDC mRNA quantification analysis pipeline measures gene level expression in HT-Seq raw read count, Fragments per Kilobase of transcript per Million mapped reads (FPKM), and FPKM-UQ (upper quartile normalization). For see more information see mRNA Analysis Pipeline GDC document.

Definition 6.1.1: HT Seq Normalization

RNA-Seq expression level read counts produced by HT-Seq are normalized using two similar methods: FPKM and FPKM-UQ. Normalized values should be used only within the context of the entire gene set. Users are encouraged to normalize raw read count values if a subset of genes is investigated.

FPKM:

The Fragments per Kilobase of transcript per Million mapped reads (FPKM) calculation normalizes read count by dividing it by the gene length and the total number of reads mapped to protein-coding genes.

$$FPKM = \frac{RC_g * 10^9}{RC_{pc} * L}$$

0.3

Upper Quartile FPKM

The upper quartile FPKM (FPKM-UQ) is a modified FPKM calculation in which the total protein-coding read count is replaced by the 75th percentile read count value for the sample.

$$FPKM - UQ = \frac{RC_g * 10^9}{RC_{q75} * L}$$

 RC_q : Number of reads mapped to the gene

 RC_{pc} : Number of reads mapped to all protein-coding genes

 RC_{q75} : The 75th percentile read count value for genes in the sample

L: Length of the gene in base pairs; Calculated as the sum of all exons in a gene

The read count is multiplied by a scalar 10^9 during normalization to account for the kilobase and 'million mapped reads' units.

mRNA Expression HT-Seq Normalization

```
measurements = c( "HTSeq - Counts", "HTSeq - FPKM", "HTSeq - FPKM-UQ")
for( m in measurements){
    query <- GDCquery(
        project = "TCGA-BRCA",
        data.category = "Transcriptome Profiling",
        data.type = "Gene Expression Quantification",
        workflow.type = "HTSeq - FPKM-UQ",
        barcode = colnames(clinical_data)[-1] # List of all patients id.
)

GDCdownload(query,files.per.chunk = 100)

GDCprepare(query = query, summarizedExperiment = FALSE) %>%
    readr::write_rds(sprintf("data/TCGA_BRCA_%s.rds",gsub(" - ","_",m)))
}
```

In the below table, the header of the HT-Seg count data can be found:

mRNA HT-Seq Count Data

	•	
ensembl_gene_id	TCGA-3C-AAAU-01A-11R-A41B-07	TCGA-3C-AALI-01A-11R-A41B-07
ENSG00000153786.11	4416	2818
ENSG00000266493.1	0	0
ENSG00000227488.2	0	0

ENSG00000249438.2	0	0
ENSG00000255317.1	0	0
ENSG00000252423.1	0	0
ENSG00000232685.4	0	2
ENSG00000123415.13	1369	1735
ENSG00000200702.1	0	0
ENSG00000181982.16	1812	1510

The HTSeq-Counts contains 60488 genes.

6.1.2 Gense Metadata

To use name and id of genes, we download genes metadata tables with biomaRt package (Durinck et al. 2005).

Some Fields of Genes Meta Data

ensembl_gene_id	chromosome_name	start_position	end_position	strand	band	hgnc_symbol
ENSG00000210049	MT	577	647	1		MT-TF
ENSG00000211459	MT	648	1601	1		MT-RNR1
ENSG00000210077	MT	1602	1670	1		MT-TV
ENSG00000210082	MT	1671	3229	1		MT-RNR2
ENSG00000209082	MT	3230	3304	1		MT-TL1
ENSG00000198888	MT	3307	4262	1		MT-ND1
ENSG00000210100	MT	4263	4331	1		MT-TI
ENSG00000210107	MT	4329	4400	-1		MT-TQ
ENSG00000210112	MT	4402	4469	1		MT-TM
ENSG00000198763	MT	4470	5511	1		MT-ND2

6.1.3 MSigDB Hallmark 50

We envision this collection as the starting point for your exploration of the MSigDB resource and GSEA. Hallmark gene sets summarize and represent specific well-defined biological states or processes and display coherent expression. These gene sets were generated by a computational methodology based on identifying gene set overlaps and retaining genes that display coordinate expression. The hallmarks reduce noise and redundancy and provide a better delineated biological space for GSEA. We refer to the original overlapping gene sets, from which a hallmark is derived, as its 'founder' sets. Hallmark gene set pages provide links to the corresponding founder sets for deeper follow up. This collection is an initial release of 50 hallmarks which condense information from over 4,000 original overlapping gene sets .(Liberzon et al. 2015)

To download MSigDB we use msigdbr package (Dolgalev 2021).

```
if(!require(msigdbr)) install.packages("msigdbr")
library(msigdbr)

# Retrieve human H (hallmark) gene set
msigdb <- msigdbr(species = "Homo sapiens", category = "H")
readr::write_rds(msigdb,"data/msigdb.rds")</pre>
```

Head of Human	ш	(hallmark)	Cana	Co+
nead of numan	п	(Halli Hark)	Gene	Set

gs_name	gene_symbol	entrez_gene	ensembl_gene
HALLMARK_ADIPOGENESIS	ABCA1	19	ENSG00000165029
HALLMARK_ADIPOGENESIS	ABCB8	11194	ENSG00000197150
HALLMARK_ADIPOGENESIS	ACAA2	10449	ENSG00000167315
HALLMARK_ADIPOGENESIS	ACADL	33	ENSG00000115361
HALLMARK_ADIPOGENESIS	ACADM	34	ENSG00000117054
HALLMARK_ADIPOGENESIS	ACADS	35	ENSG00000122971
HALLMARK_ADIPOGENESIS	ACLY	47	ENSG00000131473
HALLMARK_ADIPOGENESIS	ACO2	50	ENSG00000100412
HALLMARK_ADIPOGENESIS	ACOX1	51	ENSG00000161533
HALLMARK_ADIPOGENESIS	ADCY6	112	ENSG00000174233

6.1.4 Pathway Commons

Pathway Commons is a collection of publicly available pathway data from multiple organisms. Pathway Commons provides a web-based interface that enables biologists to browse and search a comprehensive collection of pathways from multiple sources represented in a common language, a download site that provides integrated bulk sets of pathway information in standard or convenient formats and a web service that software developers can use to conveniently query and access all data. Database providers can share their pathway data via a common repository. Pathways include biochemical reactions, complex assembly, transport and catalysis events and physical interactions involving proteins, DNA, RNA, small molecules and complexes. Pathway Commons aims to collect and integrate all public pathway data available in standard formats. (Cerami et al. 2010)

To access Pathway Commons data we download PathwayCommons12.All.hgnc.txt.gz from data page.

```
pc = readr::read_delim("raw-data/PathwayCommons12.All.hgnc.txt",delim = "\t")
pc$MEDIATOR_IDS = NULL
readr::write_rds(pc,"data/pathwaycommons.rds")
```

Sample Data of Pathway Commons

PARTICIPANT_A	INTERACTION_TYPE	PARTICIPANT_B	INTERACTION_DATA_SOURCE
A1BG	controls-expression-of	A2M	pid
A1BG	interacts-with	ABCC6	BioGRID
A1BG	interacts-with	ACE2	BIND
A1BG	interacts-with	ADAM10	BIND
A1BG	interacts-with	ADAM17	BIND
A1BG	interacts-with	ADAM9	BIND
A1BG	interacts-with	AGO1	BIND
A1BG	controls-phosphorylation-of	AKT1	pid
A1BG	controls-state-change-of	AKT1	pid
A1BG	interacts-with	ANXA7	IntAct;BioGRID

6.2 Cleansing Data

To replicate (Yang et al. 2021) paper, we consider only genes in RNA-seq whose read number is more than 20 in at least 25% of the samples. We also use HTSeq-FPKM-UQ, which is more robust than HTSeq-Counts using the total number of reads per sample.

```
# Load gene Table
geneTable = readr::read_rds("data/geneTable.rds") %>%
  select(ensembl_gene_id,hgnc_symbol)
HTSeq Counts = readr::read rds("data/TCGA BRCA HTSeq Counts.rds") %>%
  rename( gene_id = X1)
# Find Most Frequent Genes
SeqMat = HTSeq_Counts %>%
  select(starts_with("TCGA")) %>%
  as.matrix()
GeneList = HTSeq_Counts$gene_id[rowSums(SeqMat>20)/ncol(SeqMat)>0.25]
# Filter HTSeq_FPKM_UQ to Most Frequent Genes
readr::read_rds("data/TCGA_BRCA_HTSeq_FPKM_UQ.rds") %>%
  rename( gene_id = X1) %>%
  mutate(ensembl_gene_id = substr(gene_id,1,15)) %>%
  left_join(geneTable,by = "ensembl_gene_id") %>%
  filter(!is.na(hgnc_symbol)) %>%
  filter(gene_id %in% GeneList) %>%
  select(gene_id,hgnc_symbol,starts_with("TCGA")) %>%
  readr::write_rds("data/RNASeq.rds")
```

After frequent restriction, 19879 genes remained.

6.3 Compare with Other Methods

6.3.1 Penalized Regression (PenPC)

(ha2016penpc?)

First download source of package PenPC and its dependency PEN package from link. We also install BPrimm package related to method uses in (Yang et al. 2021)

```
download.file(url = "https://github.com/Sun-lab/penalized_estimation/archive/refs/heads/master.zip",destfi
unzip(zipfile = "~/Downloads/master.zip",exdir = "~/Downloads")

# Install PEN Package
install.packages("~/Downloads/penalized_estimation-master/PEN/",repos = NULL, type = "source")

# Install PenPC Package
install.packages("~/Downloads/penalized_estimation-master/PenPC/",repos = NULL, type = "source")

install.packages(c("dr", "glmnet", "Hmisc", "gpr"))

# Install PenPC Package
install.packages("~/Downloads/penalized_estimation-master/BPrimm/",repos = NULL, type = "source")
```

After install packages, we read required data.

```
# Read RNA HT-Seq data
RNASeq = readr::read_rds("data/RNASeq.rds")

# Read MSigDB Hallmark 50
msig = readr::read_rds("data/msigdb.rds") %>%
    select(gs_name,gene_symbol)
hallmark_list = unique(msig$gs_name)

# Pathway Commons
pathwayCommons = readr::read_rds("data/pathwaycommons.rds") %>%
    select(PARTICIPANT_A,PARTICIPANT_B,INTERACTION_TYPE)
```

after that, we choose genes candid by Hallmark 50.

```
k = 1

gene_candid = msig %>%
  filter(gs_name == hallmark_list[1]) %>%
  select(gene_symbol) %>%
  unlist()
```

filter data by genes candid:

```
# Filter data to hallmark_list[k]
.data = RNASeq %>%
  filter( hgnc_symbol %in% gene_candid)
# Keep list of genes
RNASeqGenes = .data[["hgnc_symbol"]]
# Convert Data to matrix
inpudData = .data %>%
  select(-gene_id,-hgnc_symbol) %>%
  as.matrix() %>%
  t() %>%
  scale() # standardize data
# True Graph Edges
subPath = pathwayCommons %>%
  filter(PARTICIPANT_A %in% RNASeqGenes & PARTICIPANT_B %in% RNASeqGenes)
trueGraph = matrix(0, nrow = length(RNASeqGenes), ncol = length(RNASeqGenes))
colnames(trueGraph) = rownames(trueGraph) = RNASeqGenes
for (i in 1:nrow(subPath)){
  trueGraph[subPath$PARTICIPANT_A[i], subPath$PARTICIPANT_B[i]] = 1
  trueGraph[subPath$PARTICIPANT_B[i], subPath$PARTICIPANT_A[i]] = 1
}
# PEN log penalty Neighborhood Selection extBIC
p = ncol(inpudData)
estimateGraph = ne.PEN(dat = inpudData, nlambda = 100, ntau = 10, V = 1:p, order = TRUE, verbose = FALSE)
modelPerformance = function(estimateGraph,trueGraph){
  estimateGraph[estimateGraph!=0|t(estimateGraph)!=0] = 1
  diffGraph = estimateGraph - trueGraph
  TP = sum(estimateGraph ==1 & trueGraph==1 & diffGraph == 0)/2 # True Positive
  TN = sum(estimateGraph ==0 & trueGraph==0 & diffGraph == 0)/2 # True Negative
  FP = sum(diffGraph == 1)/2 # False Positive
  FN = sum(diffGraph == -1)/2 # False Negative
 nE = sum(estimateGraph)/2
                              # Estimated Number of Edges
                          # True Number of Edges
  nE0 = sum(trueGraph)/2
  return(list(TP = TP, TN = TN, FP = FP, FN = FN, nE = nE, nEO = nEO))
```

Reference

- Cerami, Ethan G, Benjamin E Gross, Emek Demir, Igor Rodchenkov, Özgün Babur, Nadia Anwar, Nikolaus Schultz, Gary D Bader, and Chris Sander. 2010. "Pathway Commons, a Web Resource for Biological Pathway Data." **Nucleic Acids** Research 39 (suppl_1): D685–90.
- Dolgalev, Igor. 2021. Msigdbr: MSigDB Gene Sets for Multiple Organisms in a Tidy Data Format. https://CRAN.R-project.org/package=msigdbr.
- Durinck, Steffen, Yves Moreau, Arek Kasprzyk, Sean Davis, Bart De Moor, Alvis Brazma, and Wolfgang Huber. 2005. "BioMart and Bioconductor: A Powerful Link Between Biological Databases and Microarray Data Analysis." **Bioinformatics** 21: 3439–40.
- Liberzon, Arthur, Chet Birger, Helga Thorvaldsdóttir, Mahmoud Ghandi, Jill P Mesirov, and Pablo Tamayo. 2015. "The Molecular Signatures Database Hallmark Gene Set Collection." Cell Systems 1 (6): 417–25.
- Silva, Tiago C, Colaprico, Antonio, Olsen, Catharina, D'Angelo, et al. 2016. "TCGA Workflow: Analyze Cancer Genomics and Epigenomics Data Using Bioconductor Packages." F1000Research 5.
- Yang, Jenny, Yang Liu, Yufeng Liu, and Wei Sun. 2021. "Model Free Estimation of Graphical Model Using Gene Expression Data." The Annals of Applied Statistics 15 (1): 194–207.