Online Learning and Online Convex Optimization

Nicolò Cesa-Bianchi

Università degli Studi di Milano

Summary

My beautiful regret

- 2 A supposedly fun game I'll play again
- 3 The joy of convex

Summary

My beautiful regret

- 2 A supposedly fun game I'll play again
- 3 The joy of convex

Machine learning

Classification/regression tasks

- Predictive models h mapping data instances X to labels Y (e.g., binary classifier)
- Training data $S_T = ((X_1, Y_1), ..., (X_T, Y_T))$ (e.g., email messages with spam vs. nonspam annotations)
- Learning algorithm A (e.g., Support Vector Machine) maps training data S_T to model $h = A(S_T)$

Evaluate the risk of the trained model h with respect to a given loss function

Two notions of risk

View data as a statistical sample: statistical risk

$$\mathbb{E}\left[\ell(\underbrace{A(S_T)}_{\text{trained model}},\underbrace{(X,Y)}_{\text{test example}})\right]$$

Training set $S_T = ((X_1, Y_1), ..., (X_T, Y_T))$ and test example (X, Y) drawn i.i.d. from the same unknown and fixed distribution

Two notions of risk

View data as a statistical sample: statistical risk

$$\mathbb{E}\left[\ell(A(S_T),\underbrace{(X,Y)}_{\text{trained}})\right]$$
trained model test example

Training set $S_T = ((X_1, Y_1), ..., (X_T, Y_T))$ and test example (X, Y) drawn i.i.d. from the same unknown and fixed distribution

View data as an arbitrary sequence: sequential risk

$$\sum_{t=1}^{T} \ell\big(\underbrace{A(S_{t-1}),\underbrace{(X_t,Y_t)}_{trained}}_{model}\big)$$

Sequence of models trained on growing prefixes $S_t = ((X_1, Y_1), \dots, (X_t, Y_t))$ of the data sequence

Regrets, I had a few

Learning algorithm A maps datasets to models in a given class \mathcal{H}

Variance error in statistical learning

$$\mathbb{E}\Big[\ell\big(A(S_T),(X,Y)\big)\Big] - \inf_{h \in \mathcal{H}} \mathbb{E}\Big[\ell\big(h,(X,Y)\big)\Big]$$

compare to expected loss of best model in the class

Regrets, I had a few

Learning algorithm A maps datasets to models in a given class \mathfrak{H}

Variance error in statistical learning

$$\mathbb{E}\Big[\ell\big(A(S_T),(X,Y)\big)\Big] - \inf_{h \in \mathcal{H}} \mathbb{E}\Big[\ell\big(h,(X,Y)\big)\Big]$$

compare to expected loss of best model in the class

Regret in online learning

$$\sum_{t=1}^T \ell\big(A(S_{t-1}),(X_t,Y_t)\big) - \inf_{h \in \mathcal{H}} \sum_{t=1}^T \ell\big(h,(X_t,Y_t)\big)$$

compare to cumulative loss of best model in the class

Incremental model update

A natural blueprint for online learning algorithms

```
For t = 1, 2, ...
```

- **1** Apply current model h_{t-1} to next data element (X_t, Y_t)
- $\textbf{ 2} \ \ \text{Update current model: } h_{t-1} \rightarrow h_t \in \mathcal{H} \qquad \qquad \textbf{ (local optimization)}$

Incremental model update

A natural blueprint for online learning algorithms

For t = 1, 2, ...

- **1** Apply current model h_{t-1} to next data element (X_t, Y_t)
- $\textbf{ 2} \ \ \text{Update current model: } h_{t-1} \to h_t \in \mathcal{H} \qquad \qquad \text{(local optimization)}$

Goal: control regret

$$\sum_{t=1}^T \ell\big(h_{t-1},(X_t,Y_t)\big) - \inf_{h \in \mathcal{H}} \sum_{t=1}^T \ell\big(h,(X_t,Y_t)\big)$$

Incremental model update

A natural blueprint for online learning algorithms

For t = 1, 2, ...

- **1** Apply current model h_{t-1} to next data element (X_t, Y_t)
- 2 Update current model: $h_{t-1} \to h_t \in \mathcal{H}$ (local optimization)

Goal: control regret

$$\sum_{t=1}^T \ell\big(h_{t-1},(X_t,Y_t)\big) - \inf_{h \in \mathcal{H}} \sum_{t=1}^T \ell\big(h,(X_t,Y_t)\big)$$

View this as a repeated game between a player generating predictors $h_t \in \mathcal{H}$ and an opponent generating data (X_t, Y_t)

Summary

My beautiful regret

- 2 A supposedly fun game I'll play again
- 3 The joy of convex

Theory of repeated games

James Hannan (1922–2010)

David Blackwell (1919–2010)

Learning to play a game (1956)

Play a game repeatedly against a possibly suboptimal opponent

Zero-sum 2-person games played more than once

N × M known loss matrix

- Row player (player) has N actions
- Column player (opponent) has M actions

For each game round t = 1, 2, ...

- ullet Player chooses action i_t and opponent chooses action y_t
- The player suffers loss $\ell(i_t, y_t)$

(= gain of opponent)

Player can learn from opponent's history of past choices y_1, \dots, y_{t-1}

Prediction with expert advice

Manfred Warmuth

$$\begin{array}{c|cccc} & t=1 & t=2 & \dots \\ 1 & \ell_1(1) & \ell_2(1) & \dots \\ 2 & \ell_1(2) & \ell_2(2) & \dots \\ \vdots & \vdots & \vdots & \ddots \\ N & \ell_1(N) & \ell_2(N) & \dots \end{array}$$

Opponent's moves $y_1, y_2, ...$ define a sequential prediction problem with a time-varying loss function $\ell(i_t, y_t) = \ell_t(i_t)$

Playing the experts game

A sequential decision problem

- N actions
- Unknown deterministic assignment of losses to actions $\ell_t = (\ell_t(1), \dots, \ell_t(N)) \in [0, 1]^N$ for $t = 1, 2, \dots$
- ?
- ?
- ?
- ?
- ?
- ?
- ?
- ?
- ?

For $t = 1, 2, \ldots$

Playing the experts game

A sequential decision problem

- N actions
- Unknown deterministic assignment of losses to actions $\ell_t = (\ell_t(1), \dots, \ell_t(N)) \in [0, 1]^N$ for $t = 1, 2, \dots$

For t = 1, 2, ...

• Player picks an action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$

Playing the experts game

A sequential decision problem

- N actions
- Unknown deterministic assignment of losses to actions $\ell_t = (\ell_t(1), \dots, \ell_t(N)) \in [0, 1]^N$ for $t = 1, 2, \dots$

.2

.1

.7

.4

For t = 1, 2, ...

- Player picks an action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$
- ② Player gets feedback information: $\ell_t(1), \dots, \ell_t(N)$

Regret analysis

Regret

$$R_T \stackrel{\text{def}}{=} \mathbb{E} \left[\sum_{t=1}^T \ell_t(I_t) \right] - \min_{i=1,\dots,N} \sum_{t=1}^T \ell_t(i) \stackrel{\text{want}}{=} o(T)$$

Regret analysis

Regret

$$R_{\mathsf{T}} \stackrel{\mathsf{def}}{=} \mathbb{E} \left[\sum_{\mathsf{t}=1}^{\mathsf{T}} \ell_{\mathsf{t}}(\mathsf{I}_{\mathsf{t}}) \right] - \min_{\mathsf{i}=1,\dots,\mathsf{N}} \sum_{\mathsf{t}=1}^{\mathsf{T}} \ell_{\mathsf{t}}(\mathsf{i}) \stackrel{\mathsf{want}}{=} \mathsf{o}(\mathsf{T})$$

Lower bound using random losses

[Experts' paper, 1997]

- $\ell_t(i) \to L_t(i) \in \{0,1\}$ independent random coin flip
- For any player strategy $\mathbb{E}\left[\sum_{t=1}^{T} L_{t}(I_{t})\right] = \frac{T}{2}$
- Then the expected regret is

$$\mathbb{E}\left[\max_{i=1,\dots,N}\sum_{t=1}^{T}\left(\frac{1}{2}-L_{t}(i)\right)\right] = \left(1-o(1)\right)\sqrt{\frac{T\ln N}{2}}$$
 for N, T $\rightarrow \infty$

N. Cesa-Bianchi (UNIMI)

Exponentially weighted forecaster (Hedge)

At time t pick action $I_t = i$ with probability proportional to

$$\exp\left(-\eta\sum_{s=1}^{t-1}\ell_s(\mathfrak{i})\right)$$

the sum at the exponent is the total loss of action i up to now

Regret bound

[Experts' paper, 1997]

- If $\eta = \sqrt{(\ln N)/(8T)}$ then
- $R_{T}\leqslant\sqrt{\frac{T\ln N}{2}}$
- Matching lower bound including constants
- Dynamic choice $\eta_t = \sqrt{(\ln N)/(8t)}$ only loses small constants

0 E1919

 $(?) \quad (?) \quad (?)$

?

For t = 1, 2, ...

• Player picks an action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$

- ?
- .3
- ?
- ?
- ?
- ?
- ?
- ?

For t = 1, 2, ...

- Player picks an action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$
- ② Player gets partial information: Only $\ell_t(I_t)$ is revealed

15/49

For t = 1, 2, ...

- Player picks an action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$
- 2 Player gets partial information: Only $\ell_t(I_t)$ is revealed

Player still competing agaist best offline action

$$R_T = \mathbb{E}\left[\sum_{t=1}^T \ell_t(I_t)\right] - \min_{i=1,\dots,N} \sum_{t=1}^T \ell_t(i)$$

Hedge with estimated losses

•
$$\mathbb{P}_{\mathbf{t}}(\mathbf{I}_{\mathbf{t}} = \mathbf{i}) \propto \exp\left(-\eta \sum_{s=1}^{t-1} \widehat{\ell}_{s}(\mathbf{i})\right)$$
 $\mathbf{i} = 1, \dots, N$

$$\bullet \ \widehat{\boldsymbol{\ell}}_{t}(i) = \left\{ \begin{array}{ll} \frac{\boldsymbol{\ell}_{t}(i)}{\mathbb{P}_{t}\big(\boldsymbol{\ell}_{t}(i) \ observed\big)} & \text{if } \boldsymbol{I}_{t} = i \\ 0 & \text{otherwise} \end{array} \right.$$

Only one non-zero component in $\hat{\ell}_t$

Hedge with estimated losses

•
$$\mathbb{P}_{t}(I_{t} = i) \propto \exp\left(-\eta \sum_{s=1}^{t-1} \widehat{\ell}_{s}(i)\right)$$
 $i = 1, ..., N$

$$\bullet \ \widehat{\boldsymbol{\ell}}_{t}(i) = \left\{ \begin{array}{ll} \frac{\boldsymbol{\ell}_{t}(i)}{\mathbb{P}_{t}\big(\boldsymbol{\ell}_{t}(i) \ observed\big)} & \text{if} \ \boldsymbol{I}_{t} = i \\ 0 & \text{otherwise} \end{array} \right.$$

Only one non-zero component in $\hat{\ell}_t$

Properties of importance weighting estimator

$$\mathbb{E}_t \Big[\widehat{\ell}_t(\mathfrak{i}) \Big] = \ell_t(\mathfrak{i}) \hspace{1cm} \text{unbiasedness}$$

$$\mathbb{E}_{t}\left[\widehat{\ell}_{t}(i)^{2}\right] \leqslant \frac{1}{\mathbb{P}_{t}\left(\ell_{t}(i) \text{ observed}\right)} \qquad \text{variance control}$$

Exp3 regret bound

$$\begin{split} R_T \leqslant & \frac{\ln N}{\eta} + \frac{\eta}{2} \, \mathbb{E} \Bigg[\sum_{t=1}^T \sum_{i=1}^N \mathbb{P}_t(I_t = i) \mathbb{E}_t \Big[\widehat{\ell}_t(i)^2 \Big] \Bigg] \\ \leqslant & \frac{\ln N}{\eta} + \frac{\eta}{2} \, \mathbb{E} \Bigg[\sum_{t=1}^T \sum_{i=1}^N \frac{\mathbb{P}_t(I_t = i)}{\mathbb{P}_t \big(\ell_t(i) \text{ is observed}\big)} \Bigg] \\ = & \frac{\ln N}{\eta} + \frac{\eta}{2} \text{NT} = \boxed{\sqrt{\text{NT} \ln N}} \qquad \text{lower bound} \quad \Omega \big(\sqrt{\text{NT}} \big) \end{split}$$

Exp3 regret bound

$$\begin{split} R_T &\leqslant \frac{\ln N}{\eta} + \frac{\eta}{2} \, \mathbb{E} \Bigg[\sum_{t=1}^T \sum_{i=1}^N \mathbb{P}_t(I_t = i) \mathbb{E}_t \Big[\widehat{\ell}_t(i)^2 \Big] \Bigg] \\ &\leqslant \frac{\ln N}{\eta} + \frac{\eta}{2} \, \mathbb{E} \Bigg[\sum_{t=1}^T \sum_{i=1}^N \frac{\mathbb{P}_t(I_t = i)}{\mathbb{P}_t \big(\ell_t(i) \text{ is observed} \big)} \Bigg] \\ &= \frac{\ln N}{\eta} + \frac{\eta}{2} NT = \frac{\sqrt{NT \ln N}}{\sqrt{NT \ln N}} \qquad \text{lower bound} \quad \frac{\Omega \big(\sqrt{NT} \big)}{\sqrt{NT}} \end{split}$$

Improved matching upper bound by [Audibért and Bubeck, 2009]

Exp3 regret bound

$$\begin{split} R_T &\leqslant \frac{\ln N}{\eta} + \frac{\eta}{2} \, \mathbb{E} \Bigg[\sum_{t=1}^T \sum_{i=1}^N \mathbb{P}_t(I_t = i) \mathbb{E}_t \Big[\widehat{\ell}_t(i)^2 \Big] \Bigg] \\ &\leqslant \frac{\ln N}{\eta} + \frac{\eta}{2} \, \mathbb{E} \Bigg[\sum_{t=1}^T \sum_{i=1}^N \frac{\mathbb{P}_t(I_t = i)}{\mathbb{P}_t \big(\ell_t(i) \text{ is observed} \big)} \Bigg] \\ &= \frac{\ln N}{\eta} + \frac{\eta}{2} NT = \frac{\sqrt{NT \ln N}}{\sqrt{NT \ln N}} \qquad \text{lower bound} \quad \frac{\Omega \big(\sqrt{NT} \big)}{\sqrt{NT}} \end{split}$$

Improved matching upper bound by [Audibért and Bubeck, 2009]

The full information (experts) setting

- ullet Player observes vector of losses ℓ_t after each play
- $\mathbb{P}_{\mathsf{t}}(\ell_{\mathsf{t}}(\mathsf{i}) \text{ is observed}) = 1$
- $R_T \leqslant \sqrt{T \ln N}$

The adaptive adversary

• The loss of action i at time t depends on the player's past m actions $\ell_t(i) \to \ell_t(I_{t-m}, \dots, I_{t-1}, i)$

The adaptive adversary

- The loss of action i at time t depends on the player's past m actions $\ell_t(i) \to \ell_t(I_{t-m}, \dots, I_{t-1}, i)$
- Examples: bandits with switching cost

The adaptive adversary

- The loss of action i at time t depends on the player's past m actions $\ell_t(i) \to \ell_t(I_{t-m}, \dots, I_{t-1}, i)$
- Examples: bandits with switching cost

Nonoblivious regret

$$R_{T}^{non} = \mathbb{E}\left[\sum_{t=1}^{I} \ell_{t}(I_{t-m}, \dots, I_{t-1}, \underbrace{I_{t}}) - \min_{i=1,\dots,N} \sum_{t=1}^{I} \ell_{t}(I_{t-m}, \dots, I_{t-1}, \underbrace{i})\right]$$

The adaptive adversary

- The loss of action i at time t depends on the player's past m actions $\ell_t(i) \to \ell_t(I_{t-m}, \dots, I_{t-1}, i)$
- Examples: bandits with switching cost

Nonoblivious regret

$$R_{T}^{non} = \mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}(I_{t-m}, \dots, I_{t-1}, \frac{\mathbf{I_{t}}}{\mathbf{I_{t}}}) - \min_{i=1,\dots,N} \sum_{t=1}^{T} \ell_{t}(I_{t-m}, \dots, I_{t-1}, \frac{\mathbf{i}}{\mathbf{i}})\right]$$

Policy regret

$$R_T^{pol} = \mathbb{E}\left[\sum_{t=1}^T \ell_t(I_{t-m}, \dots, I_{t-1}, \textcolor{red}{I_t}) - \min_{i=1,\dots,N} \sum_{t=1}^T \ell_t(\textcolor{red}{\underbrace{i,\dots,i,i}})\right]$$

Bandits and reactive opponents

Bounds on the nonoblivious regret (even when m depends on T)

$$R_{\mathsf{T}}^{\mathsf{non}} = \mathcal{O}(\sqrt{\mathsf{TN}\ln\mathsf{N}})$$

- Exp3 with biased loss estimates
- Is the $\sqrt{\ln N}$ factor necessary?

Bandits and reactive opponents

Bounds on the nonoblivious regret (even when m depends on T)

$$R_{T}^{\text{non}} = \mathcal{O}(\sqrt{TN \ln N})$$

- Exp3 with biased loss estimates
- Is the $\sqrt{\ln N}$ factor necessary?

Bounds on the policy regret for any constant $m \geqslant 1$

$$R_T^{\text{pol}} = \mathcal{O}\left((N \ln N)^{1/3} T^{2/3} \right)$$

- Achieved by a very simple player strategy
- Optimal up to log factors!

[Dekel, Koren, and Peres, 2014]

Partial monitoring: not observing any loss

Dynamic pricing: Perform as the best fixed price

- Post a T-shirt price
- Observe if next customer buys or not
- Adjust price

Feedback does not reveal the player's loss

	1	2	3	4	5
1	0	1	2	3	4
2	c	0	1	2	3
3	c	c	0	1	2
4	c	c	c	0	1
5	С	c	2 1 0 c	c	0

Loss matrix

	1	2	3	4	5
1	1	1	1	1	1
2	0	1	1	1	1
2 3 4	0	0	1	1	1
4	0	0	0	1	1
5	0	0	1 1 1 0 0	0	1

Feedback matrix

A characterization of minimax regret

Special case

Multiarmed bandits: loss and feedback matrix are the same

A characterization of minimax regret

Special case

Multiarmed bandits: loss and feedback matrix are the same

A general gap theorem [Bartok, Foster, Pál, Rakhlin and Szepesvári, 2013]

- A constructive characterization of the minimax regret for any pair of loss/feedback matrix
- Only three possible rates for nontrivial games:
 - **1** Easy games (e.g., bandits): $\Theta(\sqrt{T})$
 - 2 Hard games (e.g., revealing action): $\Theta(T^{2/3})$
 - Impossible games: Θ(T)

A game equivalent to prediction with expert advice

Online linear optimization in the simplex

- **1** Play p_t from the N-dimensional simplex Δ_N
- $\textbf{2} \ \text{Incur linear loss} \ \mathbb{E}\big[\ell_t(I_t)\big] = p_t^\top \, \ell_t$
- Observe loss gradient ℓ_t

Regret: compete against the best point in the simplex

$$\begin{split} \sum_{t=1}^{T} \mathbf{p}_{t}^{\top} \, \boldsymbol{\ell}_{t} \; - \; & \underbrace{\min_{\mathbf{q} \in \Delta_{N}} \sum_{t=1}^{T} \mathbf{q}^{\top} \boldsymbol{\ell}_{t}}_{= \min_{i=1,\dots,N} \frac{1}{T} \sum_{t=1}^{T} \ell_{t}(i) \end{split}$$

From game theory to machine learning

- Opponent's moves y_t are viewed as values or labels assigned to observations $x_t \in \mathbb{R}^d$ (e.g., categories of documents)
- A repeated game between the player choosing an element w_t of a linear space and the opponent choosing a label y_t for x_t
- Regret with respect to best element in the linear space

N. Cesa-Bianchi (UNIMI) Online Learning 23/49

Summary

My beautiful regret

- 2 A supposedly fun game I'll play again
- The joy of convex

- Play w_t from a convex and compact subset S of a linear space
- ② Observe convex loss $\ell_t:S \to \mathbb{R}$ and pay $\ell_t(w_t)$
- **3** Update: $w_t \rightarrow w_{t+1} \in S$

- Play w_t from a convex and compact subset S of a linear space
- ② Observe convex loss $\ell_t : S \to \mathbb{R}$ and pay $\ell_t(w_t)$
- **1** Update: $w_t \rightarrow w_{t+1} \in S$

- Regression with square loss: $\ell_t(w) = (w^T x_t y_t)^2$ $y_t \in \mathbb{R}$
- Classification with hinge loss: $\ell_t(w) = [1 y_t w^T x_t]_+$ $y_t \in \{-1, +1\}$

- Play w_t from a convex and compact subset S of a linear space
- ② Observe convex loss $\ell_t : S \to \mathbb{R}$ and pay $\ell_t(w_t)$
- **3** Update: $w_t \rightarrow w_{t+1} \in S$

- Regression with square loss: $\ell_t(w) = (w^T x_t y_t)^2$ $y_t \in \mathbb{R}$
- Classification with hinge loss: $\ell_t(w) = [1 y_t w^{\top} x_t]_+$ $y_t \in \{-1, +1\}$

Regret

$$R_{\mathsf{T}}(\mathbf{u}) = \sum_{t=1}^{\mathsf{T}} \ell_{\mathsf{t}}(w_{\mathsf{t}}) - \sum_{t=1}^{\mathsf{T}} \ell_{\mathsf{t}}(\mathbf{u}) \qquad \mathbf{u} \in \mathsf{S}$$

Finding a good online algorithm

Follow the leader

$$w_{t+1} = \underset{w \in S}{\operatorname{arginf}} \sum_{s=1}^{t} \ell_s(w)$$

Regret can be linear due to lack of stability

$$S = [-1, +1]$$
 $\ell_1(w) = \frac{w}{2}$ $\ell_t(w) = \begin{cases} -w & \text{if t is even} \\ +w & \text{if t is odd} \end{cases}$

Finding a good online algorithm

Follow the leader

$$w_{t+1} = \underset{w \in S}{\operatorname{arginf}} \sum_{s=1}^{t} \ell_s(w)$$

Regret can be linear due to lack of stability

$$S = [-1, +1]$$
 $\ell_1(w) = \frac{w}{2}$ $\ell_t(w) = \begin{cases} -w & \text{if t is even} \\ +w & \text{if t is odd} \end{cases}$

- Note: $\sum_{s=1}^{t} \ell_s(w) = \begin{cases} -\frac{w}{2} & \text{if t is even} \\ +\frac{w}{2} & \text{if t is odd} \end{cases}$
- Hence $\ell_{t+1}(w_{t+1}) = 1$ for all t = 1, 2...

Follow the regularized leader

[Shalev-Shwartz, 2007; Abernethy, Hazan and Rakhlin, 2008]

$$w_{t+1} = \underset{w \in S}{\operatorname{argmin}} \left[\eta \sum_{s=1}^{t} \ell_s(w) + \Phi(w) \right]$$

 Φ is a strongly convex regularizer and $\eta > 0$ is a scale parameter

Strong convexity

 $\Phi: S \to \mathbb{R}$ is β-strongly convex w.r.t. a norm $\|\cdot\|$ if for all $\mathfrak{u}, \mathfrak{v} \in S$

$$\Phi(\mathbf{v}) \geqslant \Phi(\mathbf{u}) + \nabla \Phi(\mathbf{u})^{\top} (\mathbf{v} - \mathbf{u}) + \frac{\beta}{2} \|\mathbf{u} - \mathbf{v}\|^{2}$$

Strong convexity

 $\Phi: S \to \mathbb{R}$ is β -strongly convex w.r.t. a norm $\|\cdot\|$ if for all $u, v \in S$

$$\Phi(\mathbf{v}) \geqslant \Phi(\mathbf{u}) + \nabla \Phi(\mathbf{u})^{\top} (\mathbf{v} - \mathbf{u}) + \frac{\beta}{2} \|\mathbf{u} - \mathbf{v}\|^{2}$$

Smoothness

 $\Phi: S \to \mathbb{R}$ is α -smooth w.r.t. a norm $\|\cdot\|$ if for all $\mathbf{u}, \mathbf{v} \in S$

$$\Phi(\mathbf{v}) \leqslant \Phi(\mathbf{u}) + \nabla \Phi(\mathbf{u})^{\top} (\mathbf{v} - \mathbf{u}) + \frac{\alpha}{2} \|\mathbf{u} - \mathbf{v}\|^{2}$$

Strong convexity

 $\Phi: S \to \mathbb{R}$ is β-strongly convex w.r.t. a norm $\|\cdot\|$ if for all $\mathbf{u}, \mathbf{v} \in S$

$$\Phi(\mathbf{v}) \geqslant \Phi(\mathbf{u}) + \nabla \Phi(\mathbf{u})^{\top} (\mathbf{v} - \mathbf{u}) + \frac{\beta}{2} \|\mathbf{u} - \mathbf{v}\|^{2}$$

Smoothness

 $\Phi: S \to \mathbb{R}$ is α -smooth w.r.t. a norm $\|\cdot\|$ if for all $\mathbf{u}, \mathbf{v} \in S$

$$\Phi(\mathbf{v}) \leqslant \Phi(\mathbf{u}) + \nabla \Phi(\mathbf{u})^{\top} (\mathbf{v} - \mathbf{u}) + \frac{\alpha}{2} \|\mathbf{u} - \mathbf{v}\|^{2}$$

- If Φ is β -strongly convex w.r.t. $\|\cdot\|_2$, then $\nabla^2 \Phi \succeq \beta I$
- If Φ is α -smooth w.r.t. $\|\cdot\|_2$, then $\nabla^2 \Phi \leq \alpha I$

• Euclidean norm: $\Phi = \frac{1}{2} \| \cdot \|_2^2$ is 1-strongly convex w.r.t. $\| \cdot \|_2$

- Euclidean norm: $\Phi = \frac{1}{2} \| \cdot \|_2^2$ is 1-strongly convex w.r.t. $\| \cdot \|_2$
- p-norm: $\Phi = \frac{1}{2} \| \cdot \|_p^2$ is (p-1)-strongly convex w.r.t. $\| \cdot \|_p$ (for 1)

- Euclidean norm: $\Phi = \frac{1}{2} \| \cdot \|_2^2$ is 1-strongly convex w.r.t. $\| \cdot \|_2$
- p-norm: $\Phi = \frac{1}{2} \| \cdot \|_p^2$ is (p-1)-strongly convex w.r.t. $\| \cdot \|_p$ (for 1)
- Entropy: $\Phi(\mathbf{p}) = \sum_{i=1}^{d} p_i \ln p_i$ is 1-strongly convex w.r.t. $\|\cdot\|_1$ (for \mathbf{p} in the probability simplex)

- Euclidean norm: $\Phi = \frac{1}{2} \| \cdot \|_2^2$ is 1-strongly convex w.r.t. $\| \cdot \|_2$
- p-norm: $\Phi = \frac{1}{2} \| \cdot \|_p^2$ is (p-1)-strongly convex w.r.t. $\| \cdot \|_p$ (for 1)
- Entropy: $\Phi(\mathbf{p}) = \sum_{i=1}^{d} p_i \ln p_i$ is 1-strongly convex w.r.t. $\|\cdot\|_1$ (for \mathbf{p} in the probability simplex)
- Power norm: $\Phi(w) = \frac{1}{2}w^{\top}Aw$ is 1-strongly convex w.r.t.

$$\|\mathbf{w}\| = \sqrt{\mathbf{w}^{\mathsf{T}} \mathbf{A} \mathbf{w}}$$

(for A symmetric and positive definite)

Convex duality

Definition

The convex dual of
$$\Phi$$
 is $\Phi^*(\theta) = \max_{w \in S} \left(\theta^\top w - \Phi(w) \right)$

1-dimensional example

- Convex $f : \mathbb{R} \to \mathbb{R}$ such that f(0) = 0
- $f^*(\theta) = \max_{w \in \mathbb{R}} (w \times \theta f(w))$
- The maximizer is w_0 such that $f'(w_0) = \theta$
- This gives $f^*(\theta) = w_0 \times f'(w_0) f(w_0)$
- As f(0) = 0, $f^*(\theta)$ is the error in approximating f(0) with a first-order expansion around $f(w_0)$

Examples

• Euclidean norm: $\Phi = \frac{1}{2} \| \cdot \|_2^2$ and $\Phi^* = \Phi$

- Euclidean norm: $\Phi = \frac{1}{2} \| \cdot \|_2^2$ and $\Phi^* = \Phi$
- p-norm: $\Phi = \frac{1}{2} \|\cdot\|_p^2$ and $\Phi^* = \frac{1}{2} \|\cdot\|_q^2$ where $\frac{1}{p} + \frac{1}{q} = 1$

- Euclidean norm: $\Phi = \frac{1}{2} \| \cdot \|_2^2$ and $\Phi^* = \Phi$
- p-norm: $\Phi = \frac{1}{2} \| \cdot \|_p^2$ and $\Phi^* = \frac{1}{2} \| \cdot \|_q^2$ where $\frac{1}{p} + \frac{1}{q} = 1$
- Entropy: $\Phi(\mathbf{p}) = \sum_{i=1}^{d} p_i \ln p_i$ and $\Phi^*(\theta) = \ln \left(e^{\theta_1} + \dots + e^{\theta_d} \right)$

- Euclidean norm: $\Phi = \frac{1}{2} \| \cdot \|_2^2$ and $\Phi^* = \Phi$
- p-norm: $\Phi = \frac{1}{2} \|\cdot\|_p^2$ and $\Phi^* = \frac{1}{2} \|\cdot\|_q^2$ where $\frac{1}{p} + \frac{1}{q} = 1$
- Entropy: $\Phi(\mathbf{p}) = \sum_{i=1}^{d} p_i \ln p_i$ and $\Phi^*(\theta) = \ln \left(e^{\theta_1} + \dots + e^{\theta_d} \right)$
- Power norm: $\Phi(w) = \frac{1}{2}w^{\top}Aw$ and $\Phi^*(\theta) = \frac{1}{2}\theta^{\top}A^{-1}\theta$

Some useful properties

If $\Phi : S \to \mathbb{R}$ is β -strongly convex w.r.t. $\| \cdot \|$, then

- Its convex dual Φ^* is everywhere differentiable and $\frac{1}{\beta}$ -smooth w.r.t. $\|\cdot\|_*$ (the dual norm of $\|\cdot\|$)
- $\Phi \nabla \Phi^*(\theta) = \underset{w \in S}{\operatorname{argmax}} \left(\theta^\top w \Phi(w) \right)$

Some useful properties

If $\Phi : S \to \mathbb{R}$ is β -strongly convex w.r.t. $\| \cdot \|$, then

- Its convex dual Φ^* is everywhere differentiable and $\frac{1}{\beta}$ -smooth w.r.t. $\|\cdot\|_*$ (the dual norm of $\|\cdot\|$)
- $\Phi \nabla \Phi^*(\theta) = \underset{w \in S}{\operatorname{argmax}} \left(\theta^\top w \Phi(w) \right)$

Recall: Follow the regularized leader (FTRL)

$$w_{t+1} = \underset{w \in S}{\operatorname{argmin}} \left[\eta \sum_{s=1}^{t} \ell_s(w) + \Phi(w) \right]$$

 Φ is a strongly convex regularizer and $\eta > 0$ is a scale parameter

Using the loss gradient

Linearization of convex losses

$$\ell_t(w_t) - \ell_t(u) \leqslant \underbrace{\nabla \ell_t(w_t)}_{\widetilde{\ell}_t}^\top w_t - \underbrace{\nabla \ell_t(w_t)}_{\widetilde{\ell}_t}^\top u$$

FTRL with linearized losses

$$\begin{aligned} \boldsymbol{w}_{t+1} &= \underset{\boldsymbol{w} \in S}{\operatorname{argmin}} \left(\underbrace{\eta \sum_{s=1}^{t} \widetilde{\boldsymbol{\ell}}_{s}}^{\top} \boldsymbol{w} + \Phi(\boldsymbol{w}) \right) = \underset{\boldsymbol{w} \in S}{\operatorname{argmax}} \left(\boldsymbol{\theta}_{t+1}^{\top} \boldsymbol{w} - \Phi(\boldsymbol{w}) \right) \\ &= \nabla \Phi^{*} \left(\boldsymbol{\theta}_{t+1} \right) \end{aligned}$$

Note: $w_{t+1} \in S$ always holds

Recall:
$$\mathbf{w}_{t+1} = \nabla \Phi^* (\mathbf{\theta}_t) = \nabla \Phi^* \left(-\eta \sum_{s=1}^t \nabla \ell_s(\mathbf{w}_s) \right)$$

Online Mirror Descent (FTRL with linearized losses)

Parameters: Strongly convex regularizer Φ with domain S, $\eta > 0$

Initialize: $\theta_1 = 0$ // primal parameter

For t = 1, 2, ...

- Use $w_t = \nabla \Phi^*(\theta_t)$ // dual parameter (via mirror step)
- 2 Suffer loss $\ell_t(w_t)$
- **3** Observe loss gradient $\nabla \ell_t(w_t)$

// gradient step

An equivalent formulation

Under some assumptions on the regularizer Φ , OMD can be equivalently written in terms of projected gradient descent

Online Mirror Descent (alternative version)

Parameters: Strongly convex regularizer Φ and learning rate $\eta > 0$ **Initialize:** $\mathbf{z}_1 = \nabla \Phi^*(\mathbf{0})$ and $\mathbf{w}_1 = \underset{\mathbf{w} \in S}{\operatorname{argmin}} D_{\Phi}(\mathbf{w} \| \mathbf{z}_1)$

For t = 1, 2, ...

- Use w_t and suffer loss $\ell_t(w_t)$
- ② Observe loss gradient $\nabla \ell_{\mathsf{t}}(w_{\mathsf{t}})$
- Update $z_{t+1} =
 abla \Phi^* \left(
 abla \Phi(z_t) \eta
 abla \ell_t(w_t) \right)$ // gradient step

// projection step

An equivalent formulation

Under some assumptions on the regularizer Φ , OMD can be equivalently written in terms of projected gradient descent

Online Mirror Descent (alternative version)

Parameters: Strongly convex regularizer Φ and learning rate $\eta > 0$ **Initialize:** $z_1 = \nabla \Phi^*(\mathbf{0})$ and $w_1 = \operatorname{argmin} D_{\Phi}(w||z_1)$

For t = 1, 2, ...

- Use w_t and suffer loss $\ell_t(w_t)$
- ② Observe loss gradient $\nabla \ell_t(w_t)$
- Update $z_{t+1} = \nabla \Phi^* \Big(\nabla \Phi(z_t) \eta \nabla \ell_t(w_t) \Big)$ // gradient step

// projection step

 D_{Φ} is the Bregman divergence induced by Φ

Some examples

Online Gradient Descent (OGD)

[Zinkevich, 2003; Gentile, 2003]

$$\Phi(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|^2$$

p-norm version:
$$\Phi(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|_{p}^{2}$$

• Update:
$$\mathbf{w}' = \mathbf{w}_{t} - \eta \nabla \ell_{t}(\mathbf{w}_{t})$$

$$\mathbf{w}_{\mathsf{t}+1} = \operatorname*{arginf}_{\mathbf{w} \in \mathsf{S}} \left\| \mathbf{w} - \mathbf{w}' \right\|_2$$

Some examples

Online Gradient Descent (OGD)

[Zinkevich, 2003; Gentile, 2003]

$$\bullet \ \Phi(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|^2$$

p-norm version:
$$\Phi(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|_{p}^{2}$$

• Update:
$$\mathbf{w}' = \mathbf{w}_{t} - \eta \nabla \ell_{t}(\mathbf{w}_{t})$$

$$w_{t+1} = \underset{w \in S}{\operatorname{arginf}} \|w - w'\|_2$$

Exponentiated gradient (EG)

[Kivinen and Warmuth, 1997]

$$\Phi(\mathbf{p}) = \sum_{i=1}^{d} p_i \ln p_i$$

$$p \in S \equiv simplex$$

$$\bullet \ p_{t+1,i} = \frac{p_{t,i}e^{-\eta\nabla\ell_t(p_t)_i}}{\sum_{j=1}^d p_{t,j}e^{-\eta\nabla\ell_t(p_t)_j}}$$

Note: when losses are linear this is Hedge

Regret analysis

Regret bound

[Kakade, Shalev-Shwartz and Tewari, 2012]

$$R_{T}(\mathbf{u}) \leqslant \frac{\Phi(\mathbf{u}) - \min_{\mathbf{w} \in S} \Phi(\mathbf{w})}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \frac{\left\|\nabla \ell_{t}(\mathbf{w}_{t})\right\|_{*}^{2}}{\beta}$$

for all $\mathbf{u} \in S$, where ℓ_1, ℓ_2, \ldots are arbitrary convex losses

• $R_T(u) \leq GD \sqrt{T}$ for all $u \in S$ when η is tuned w.r.t.

$$\sup_{\mathbf{w} \in S} \|\nabla \ell_{t}(\mathbf{w})\|_{*} \leqslant G \qquad \sqrt{\sup_{\mathbf{u}, \mathbf{w} \in S} \left(\Phi(\mathbf{u}) - \Phi(\mathbf{w})\right)} \leqslant D$$

- Boundedness of gradients of ℓ_t w.r.t. $\|\cdot\|_*$ equivalent to Lipschitzess of ℓ_t w.r.t. $\|\cdot\|$
- Regret bound optimal for general convex losses ℓ_t

N. Cesa-Bianchi (UNIMI)

Analysis relies on smoothness of Φ^*

$$\Phi^*(\theta_{t+1}) - \Phi^*(\theta_t) \leqslant \underbrace{\nabla \Phi^*(\theta_t)}_{w_t}^{\top} \left(\underbrace{\theta_{t+1} - \theta_t}_{-\eta \nabla \ell_t(w_t)} \right) + \frac{1}{2\beta} \|\theta_{t+1} - \theta_t\|_*^2$$

Analysis relies on smoothness of Φ^*

$$\Phi^*(\theta_{t+1}) - \Phi^*(\theta_t) \leqslant \underbrace{\nabla \Phi^*(\theta_t)}_{w_t}^{\top} \left(\underbrace{\theta_{t+1} - \theta_t}_{-\eta \nabla \ell_t(w_t)} \right) + \frac{1}{2\beta} \|\theta_{t+1} - \theta_t\|_*^2$$

$$\begin{split} \sum_{t=1}^{T} & - \eta \mathbf{u}^{\top} \nabla \ell_{t}(\mathbf{w}_{t}) - \Phi(\mathbf{u}) = \mathbf{u}^{\top} \boldsymbol{\theta}_{T+1} - \Phi(\mathbf{u}) \\ & \leqslant \Phi^{*} \left(\boldsymbol{\theta}_{T+1} \right) \quad \text{Fenchel-Young inequality} \\ & = \sum_{t=1}^{T} \left(\Phi^{*} \left(\boldsymbol{\theta}_{t+1} \right) - \Phi^{*} \left(\boldsymbol{\theta}_{t} \right) \right) + \Phi^{*} \left(\boldsymbol{\theta}_{1} \right) \\ & \leqslant \sum_{t=1}^{T} \left(- \eta \mathbf{w}_{t}^{\top} \nabla \ell_{t}(\mathbf{w}_{t}) + \frac{\eta^{2}}{2\beta} \left\| \nabla \ell_{t}(\mathbf{w}_{t}) \right\|_{*}^{2} \right) + \Phi^{*}(\mathbf{0}) \end{split}$$

Analysis relies on smoothness of Φ^*

$$\Phi^*(\theta_{t+1}) - \Phi^*(\theta_t) \leqslant \underbrace{\nabla \Phi^*(\theta_t)}_{w_t}^\top \left(\underbrace{\theta_{t+1} - \theta_t}_{-n \nabla \ell_+(w_t)} \right) + \frac{1}{2\beta} \|\theta_{t+1} - \theta_t\|_*^2$$

$$\begin{split} \sum_{t=1}^{T} & - \eta \mathbf{u}^{\top} \nabla \ell_{t}(\mathbf{w}_{t}) - \Phi(\mathbf{u}) = \mathbf{u}^{\top} \boldsymbol{\theta}_{T+1} - \Phi(\mathbf{u}) \\ & \leqslant \Phi^{*} \left(\boldsymbol{\theta}_{T+1} \right) \quad \text{Fenchel-Young inequality} \\ & = \sum_{t=1}^{T} \left(\Phi^{*} \left(\boldsymbol{\theta}_{t+1} \right) - \Phi^{*} \left(\boldsymbol{\theta}_{t} \right) \right) + \Phi^{*} \left(\boldsymbol{\theta}_{1} \right) \\ & \leqslant \sum_{t=1}^{T} \left(- \eta \mathbf{w}_{t}^{\top} \nabla \ell_{t}(\mathbf{w}_{t}) + \frac{\eta^{2}}{2\beta} \left\| \nabla \ell_{t}(\mathbf{w}_{t}) \right\|_{*}^{2} \right) + \Phi^{*}(\mathbf{0}) \end{split}$$

$$\Phi^*(\mathbf{0}) = \max_{\mathbf{w} \in S} \left(\mathbf{w}^{\top} \mathbf{0} - \Phi(\mathbf{w}) \right) = -\min_{\mathbf{w} \in S} \Phi(\mathbf{w})$$

Some examples

$$\ell_{t}(w) \rightarrow \ell_{t} \big(w^{\top} x_{t} \big) \qquad \max_{t} \left| \ell_{t}' \right| \leqslant L \qquad \max_{t} \left\| x_{t} \right\|_{p} \leqslant X_{p}$$

Some examples

$$\ell_t(\boldsymbol{w}) \to \ell_t \big(\boldsymbol{w}^\top \boldsymbol{x}_t \big) \qquad \max_t |\ell_t'| \leqslant L \qquad \max_t \|\boldsymbol{x}_t\|_p \leqslant X_p$$

Bounds for OGD with convex losses

$$R_T(\mathbf{u}) \leqslant BLX_2 \, \sqrt{T} = \mathcal{O}\big(dL \, \sqrt{T}\big)$$

for all \mathbf{u} such that $\|\mathbf{u}\|_2 \leqslant B$

Some examples

$$\ell_{t}(w) \to \ell_{t}(w^{\top}x_{t})$$
 $\max_{t} |\ell'_{t}| \leqslant L$ $\max_{t} ||x_{t}||_{p} \leqslant X_{p}$

Bounds for OGD with convex losses

$$R_{\mathsf{T}}(\mathbf{u}) \leqslant \mathsf{BLX}_2 \sqrt{\mathsf{T}} = \mathcal{O} \big(\mathsf{dL} \sqrt{\mathsf{T}} \big)$$

for all \mathbf{u} such that $\|\mathbf{u}\|_2 \leq \mathbf{B}$

Bounds logarithmic in the dimension

• Regret bound for EG run in the simplex, $S = \Delta_d$

$$R_T(q) \leqslant L X_\infty \, \sqrt{(ln \, d) T} = \mathfrak{O} \big(L \, \sqrt{(ln \, d) T} \big) \qquad p \in \Delta_d$$

- Same bound for p-norm regularizer with $p = \frac{\ln d}{\ln d 1}$
- If losses are linear with [0, 1] coefficients then we recover the bound for Hedge

N. Cesa-Bianchi (UNIMI)

Exploiting curvature: minimization of SVM objective

- Training set $(x_1, y_1), \dots, (x_m, y_m) \in \mathbb{R}^d \times \{-1, +1\}$
- SVM objective $F(w) = \frac{1}{m} \sum_{t=1}^{m} \underbrace{\left[1 y_t w^{\top} x_t\right]_{+}}_{\text{hinge loss } h_t(w)} + \frac{\lambda}{2} \|w\|^2$ over \mathbb{R}^d
- Rewrite $F(w) = \frac{1}{m} \sum_{t=1}^{m} \ell_t(w)$ where $\ell_t(w) = h_t(w) + \frac{\lambda}{2} \|w\|^2$
- Each loss ℓ_t is λ -strongly convex

Exploiting curvature: minimization of SVM objective

- Training set $(x_1, y_1), \dots, (x_m, y_m) \in \mathbb{R}^d \times \{-1, +1\}$
- SVM objective $F(w) = \frac{1}{m} \sum_{t=1}^{m} \underbrace{\left[1 y_t w^\top x_t\right]_+}_{\text{hinge loss } h_t(w)} + \frac{\lambda}{2} \|w\|^2$ over \mathbb{R}^d
- Rewrite $F(w) = \frac{1}{m} \sum_{t=1}^{m} \ell_t(w)$ where $\ell_t(w) = h_t(w) + \frac{\lambda}{2} \|w\|^2$
- Each loss ℓ_t is λ -strongly convex

The Pegasos algorithm

Run OGD on random sequence of T training examples

•
$$\mathbb{E}\left[F\left(\frac{1}{T}\sum_{t=1}^{T}w_{t}\right)\right] \leqslant \min_{w \in \mathbb{R}^{d}}F(w) + \frac{G^{2}}{2\lambda}\frac{\ln T + 1}{T}$$

• O(ln T) rates hold for any sequence of strongly convex losses

Exp-concave losses

Exp-concavity (strong convexity along the gradient direction)

- A convex $\ell: S \to \mathbb{R}$ is α -exp-concave when $g(w) = e^{-\alpha \ell(w)}$ is concave
- For twice-differentiable losses: $\nabla^2 \ell(w) \succeq \alpha \nabla \ell(w) \nabla \ell(w)^{\top} \text{ for all } w \in S$
- $\ell_{t}(\mathbf{w}) = -\ln(\mathbf{w}^{\top}\mathbf{x}_{t})$ is exp-concave

• Update:
$$w' = A_t^{-1} \nabla \ell_t(w_t)$$
 $w_{t+1} = \underset{w \in S}{\operatorname{argmin}} \|w - w'\|_{A_t}$

• Where $A_t = \varepsilon I + \sum_{s=1}^t \nabla \ell_s(\boldsymbol{w}_s) \nabla \ell_s(\boldsymbol{w}_s)^{\top}$

Note: Not an instance of OMD

• Update:
$$w' = A_t^{-1} \nabla \ell_t(w_t)$$
 $w_{t+1} = \underset{w \in S}{\operatorname{argmin}} \|w - w'\|_{A_t}$

• Where
$$A_t = \varepsilon I + \sum_{s=1}^t \nabla \ell_s(\boldsymbol{w}_s) \nabla \ell_s(\boldsymbol{w}_s)^{\top}$$

Note: Not an instance of OMD

Logarithmic regret bound for exp-concave losses

$$R_{T}(\mathbf{u}) \leq 5d\left(\frac{1}{\alpha} + GD\right) \ln(T+1)$$
 $\mathbf{u} \in S$

• Update:
$$w' = A_t^{-1} \nabla \ell_t(w_t)$$
 $w_{t+1} = \underset{w \in S}{\operatorname{argmin}} \|w - w'\|_{A_t}$

• Where
$$A_t = \varepsilon I + \sum_{s=1}^{t} \nabla \ell_s(\boldsymbol{w}_s) \nabla \ell_s(\boldsymbol{w}_s)^{\top}$$

Note: Not an instance of OMD

Logarithmic regret bound for exp-concave losses

$$R_{\mathsf{T}}(\mathbf{u}) \leqslant 5d\left(\frac{1}{\alpha} + \mathsf{GD}\right) \ln(\mathsf{T} + 1) \qquad \mathbf{u} \in \mathsf{S}$$

Extension of ONS to convex losses [Luo, Agarwal, C-B, Langford, 2016]

$$\begin{split} \ell_t(\boldsymbol{w}) &\to \ell_t \big(\boldsymbol{w}^\top \boldsymbol{x}_t \big) \qquad \text{max}_t \, |\ell_t'| \leqslant L \\ R_T(\boldsymbol{u}) &\leqslant \widetilde{\mathfrak{O}} \big(CL \sqrt{dT} \big) \quad \text{for all } \boldsymbol{u} \text{ s.t. } \left| \boldsymbol{u}^\top \boldsymbol{x}_t \right| \leqslant C \end{split}$$

Invariance to linear transformations of the data

Online Ridge Regression [Vovk, 2001; Azoury and Warmuth, 2001]

Logarithmic regret for square loss

$$\ell_t(u) = \left(u^\top x_t - y_t\right)^2 \qquad Y = \max_{t=1,\dots,T} |y_t| \qquad X = \max_{t=1,\dots,T} \|x_t\|$$

- OMD with adaptive regularizer $\Phi_{\mathbf{t}}(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|_{A_{\mathbf{t}}}^2$
- Where $A_t = I + \sum_{s=1}^t x_s x_s^{\top}$ and $\theta_t = \sum_{s=1}^t -y_s x_s^{\top}$
- Regret bound (oracle inequality)

$$\sum_{t=1}^{T} \ell_t(\boldsymbol{w}_t) \leqslant \inf_{\boldsymbol{u} \in \mathbb{R}^d} \left(\sum_{t=1}^{T} \ell_t(\boldsymbol{u}) + \|\boldsymbol{u}\|^2 \right) + dY^2 \, \ln \left(1 + \frac{TX^2}{d} \right)$$

- Parameterless
- Scale-free: unbounded comparison set

N. Cesa-Bianchi (UNIMI)

Scale free algorithm for convex losses [Orabona and Pál, 2015]

Scale free algorithm for convex losses

• OMD with adaptive regularizer

$$\Phi_{\mathsf{t}}(\boldsymbol{w}) = \Phi_{0}(\boldsymbol{w}) \sqrt{\sum_{s=1}^{\mathsf{t}-1} \|\nabla \ell_{s}(\boldsymbol{w}_{s})\|_{*}^{2}}$$

- Φ_0 is a β -strongly convex base regularizer
- ullet Regret bound (oracle inequality) for convex loss functions ℓ_t

$$\sum_{t=1}^{T} \ell_t(\boldsymbol{w}_t) \leqslant \inf_{\boldsymbol{u} \in \mathbb{R}^d} \sum_{t=1}^{T} \ell_t(\boldsymbol{u}) + \left(\Phi_0(\boldsymbol{u}) + \frac{1}{\beta} + \max_{t} \left\| \nabla \ell_t(\boldsymbol{w}_t) \right\|_* \right) \sqrt{T}$$

Regularization via stochastic smoothing

$$w_{t+1} = \mathbb{E}_{Z} \left[\underset{w \in S}{\operatorname{argmin}} \sum_{s=1}^{t} \left(\eta \nabla \ell_{s}(w_{s}) + Z \right)^{\top} w \right]$$

- The distribution of **Z** must be "stable" (small variance and small average sensitivity)
- Regret bound similar to FTRL/OMD
- For some choices of **Z**, FPL becomes equivalent to OMD [Abernethy, Lee, Sinha and Tewari, 2014]
- Linear losses: Follow the Perturbed Leader algorithm [Kalai and Vempala, 2005]

Nonstationarity

- If data source is not fitted well by any model in the class, then comparing to the best model $u \in S$ is trivial
- Compare instead to the best sequence $u_1, u_2, \dots \in S$ of models

Shifting Regret for OMD

[Zinkevich, 2003]

$$\sum_{t=1}^{T} \ell_t(w_t) \leqslant \inf_{u_1, \dots, u_T \in S} \underbrace{\sum_{t=1}^{T} \ell_t(u_t)}_{\text{model fit}} + \underbrace{\sum_{t=1}^{T} \|u_t - u_{t-1}\|}_{\text{shifting model cost}} + \text{diam}(S) + \Box$$

Definition

For all intervals $I = \{r, ..., s\}$ with $1 \le r < s \le T$

$$R_{\mathsf{T},\mathsf{I}}(\mathsf{u}) = \sum_{\mathsf{t}\in\mathsf{I}} \ell_\mathsf{t}(w_\mathsf{t}) - \sum_{\mathsf{t}\in\mathsf{I}} \ell_\mathsf{t}(\mathsf{u})$$

Definition

For all intervals $I = \{r, \dots, s\}$ with $1 \leqslant r < s \leqslant T$

$$R_{\mathsf{T},\mathsf{I}}(\mathsf{u}) = \sum_{\mathsf{t} \in \mathsf{I}} \ell_\mathsf{t}(w_\mathsf{t}) - \sum_{\mathsf{t} \in \mathsf{I}} \ell_\mathsf{t}(\mathsf{u})$$

Regret bound for strongly adaptive OGD

$$R_{T,I}(u) \leqslant \left(BLX_2 + ln(T+1) \right) \sqrt{|I|} \qquad \text{for all } u \text{ such that } \|u\|_2 \leqslant B$$

Definition

For all intervals $I = \{r, ..., s\}$ with $1 \le r < s \le T$

$$R_{\mathsf{T},\mathsf{I}}(u) = \sum_{\mathsf{t} \in \mathsf{I}} \ell_\mathsf{t}(w_\mathsf{t}) - \sum_{\mathsf{t} \in \mathsf{I}} \ell_\mathsf{t}(u)$$

Regret bound for strongly adaptive OGD

$$R_{\mathsf{T},\mathsf{I}}(\mathbf{u}) \leqslant \left(\mathsf{BLX}_2 + \mathsf{ln}(\mathsf{T}+1)\right)\sqrt{|\mathsf{I}|} \qquad \text{for all } \mathbf{u} \text{ such that } \|\mathbf{u}\|_2 \leqslant \mathsf{B}$$

Remarks

- Generic black-box reduction applicable to any online learning algorithm
- It runs a logarithmic number of instances of the base learner

N. Cesa-Bianchi (UNIMI) Online Learning 48/49

- Play w_t from a convex and compact subset S of a linear space
- ② Observe $\ell_t(w_t)$, where $\ell: S \to \mathbb{R}$ is unobserved convex loss

Regret:
$$R_T(\mathbf{u}) = \sum_{t=1}^{I} \ell_t(\mathbf{w}_t) - \sum_{t=1}^{I} \ell_t(\mathbf{u})$$
 $\mathbf{u} \in S$

- Play w_t from a convex and compact subset S of a linear space
- ② Observe $\ell_t(w_t)$, where $\ell: S \to \mathbb{R}$ is unobserved convex loss
- **3** Update: $w_t \rightarrow w_{t+1} \in S$

Regret:
$$R_{T}(u) = \sum_{t=1}^{I} \ell_{t}(w_{t}) - \sum_{t=1}^{I} \ell_{t}(u)$$
 $u \in S$

Results

• Linear losses: $\Omega(d\sqrt{T})$

[Dani, Hayes, and Kakade, 2008]

- Play w_t from a convex and compact subset S of a linear space
- Observe $\ell_t(w_t)$, where $\ell: S \to \mathbb{R}$ is unobserved convex loss
- **3** Update: $\mathbf{w}_t \to \mathbf{w}_{t+1} \in S$

Regret:
$$R_T(\mathbf{u}) = \sum_{t=1}^T \ell_t(\mathbf{w}_t) - \sum_{t=1}^T \ell_t(\mathbf{u})$$
 $\mathbf{u} \in S$

Results

- Linear losses: $\Omega(d\sqrt{T})$
- Linear losses: $\widetilde{O}(d\sqrt{T})$

- [Dani, Hayes, and Kakade, 2008]
- [Bubeck, C-B, and Kakade, 2012]

- Play w_t from a convex and compact subset S of a linear space
- ② Observe $\ell_t(w_t)$, where $\ell: S \to \mathbb{R}$ is unobserved convex loss
- **3** Update: $w_t \rightarrow w_{t+1} \in S$

Regret:
$$R_T(\mathbf{u}) = \sum_{t=1}^T \ell_t(\mathbf{w}_t) - \sum_{t=1}^T \ell_t(\mathbf{u})$$
 $\mathbf{u} \in S$

Results

• Linear losses: $\Omega(d\sqrt{T})$

[Dani, Hayes, and Kakade, 2008]

• Linear losses: $\widetilde{O}(d\sqrt{T})$

- [Bubeck, C-B, and Kakade, 2012]
- Strongly convex and smooth losses: $\widetilde{O}(d^{3/2}\sqrt{T})$

[Hazan and Levy, 2014]

- Play w_t from a convex and compact subset S of a linear space
- ② Observe $\ell_t(w_t)$, where $\ell: S \to \mathbb{R}$ is unobserved convex loss
- **3** Update: $w_t \rightarrow w_{t+1} \in S$

Regret:
$$R_T(\mathbf{u}) = \sum_{t=1}^T \ell_t(\mathbf{w}_t) - \sum_{t=1}^T \ell_t(\mathbf{u})$$
 $\mathbf{u} \in S$

Results

• Linear losses: $\Omega(d\sqrt{T})$

[Dani, Hayes, and Kakade, 2008]

• Linear losses: $\widetilde{O}(d\sqrt{T})$

- [Bubeck, C-B, and Kakade, 2012]
- Strongly convex and smooth losses: $\widetilde{O}(d^{3/2}\sqrt{T})$

[Hazan and Levy, 2014]

• Convex losses: $\widetilde{O}(d^{9.5}\sqrt{T})$

[Bubeck, Eldan, and Lee, 2016]