5.1 Differential equations

1.	A simplistic population model. "The more people there are, the more quickly the population grows." More rigorously: The rate of population growth is proportional to the total population. Translate this into a differential equation.
2.	Newton's Law of Cooling. Consider the following: The rate at which heat is lost is proportional to the difference between the temperature an ambient temperature of 50 degrees.
	(a) Translate this into a differential equation.
	(b) If the temperature of the object after some time is 60 degrees, does your diffy-Q predict it is cooling or heating up?
3.	Diffusion across a membrane. Translate the following into a diffy-Q: The rate of change of the concentration is equal to the difference between the rate at which a chemical enters and which it leaves.

Tips for Euler's Method:

- Euler's method is doing the simplest possible thing: add (rate)×(time) to the current value to get the next one.
- Sometimes organizing your work into a table will make the problem easier to handle.
- 4. Consider the differential equation

$$\frac{df}{dt} = 2t + 5, \quad f(0) = 1$$

- (a) Use Euler's method with $\Delta t = 1$ and two steps to estimate the value of f(2).
- (b) Use Euler's method with $\Delta t = 0.5$ and four steps to estimate the value of f(2).

(c) Using integration, find the exact value of f(2). How do your answers compare?

5. Consider the diffy-Q

$$\frac{dy}{dx} = y^2, \quad y(0) = 0.5.$$

Use Euler's method with $\Delta t = 0.4$ to estimate y(1.2).