System Model (Sequence Diagram) Document

Project Name	중고등학교 컴퓨팅 사고력 기반 정보 교육 학습 도구 개발
-----------------	---------------------------------

2 조

202203559 김주하 202203581 강서현

지도교수: 박정희 교수님 (서명)

Document Revision History

Rev#	DATE	AFFECIED SECTION	AUTHOR
1	2023/05/01	시퀀스 다이어그램 작성	김주하

Table of Contents

1.	INTRODUCTION	5
_,		
1.1.	OBJECTIVE	5
2.	USE CASE DIAGRAM	6
3.	SEQUENCE DIAGRAM	7
3.1.	AMSM_REQ_MONITORING_N001 (SUBSCRIBEESESTATUS)오류! 책갈피가 정의되어 있지 않습니	나
4.	AI 도구 활용 정보	18

List of Figure

그림 1. 유스케이스 다이어그램6

1. Introduction

1.1. Objective

이 문서는 중·고등학교 학생들의 컴퓨팅 사고력 함양을 지원하는 학습 도구의 시스템 동작호름을 시퀀스 다이어그램으로 모델링한 내용을 기술한다. 본 시스템은 학생이 로그인을 통해 플랫폼에 진입한 뒤, 문제 해결의 주요 과정인 문제 분해, 패턴 인식, 추상화, 알고리즘 설계 단계를 순차적으로 수행하며, 각 단계에서 AI의 도움을 받을 수 있도록 설계되어 있다. 시퀀스다이어그램은 사용자(학생 또는 교사), AI지원시스템, 데이터저장소, UI 등의 컴포넌트 간 상호작용을 시각적으로 표현함으로써, 시스템의 구체적인 기능 흐름과 사용자 경험을 명확히 이해할 수 있도록 한다. 또한, 교사는 학생이 작성한 내용을 기반으로 피드백을 제공할 수 있으며,이 과정 또한 시퀀스 다이어그램에 포함되어 있다. 본 문서는 이러한 일련의 학습 과정과 시스템 동작을 직관적으로 설명하기 위한 목적을 가진다.

2. Use Case Diagram

그림 1. 유스케이스 다이어그램

3. Sequence Diagram

3.1. 로그인 시퀀스 다이어그램

이름	로그인 Sequence Diagram
----	----------------------

- 2. 로그인UI는 구글 로그인 옵션을 표시한다.
- 3. 사용자는 구글 로그인을 선택한다.
- 4. 로그인UI는 인증시스템에 구글 OAuth 인증을 요청한다.
- 5. 인증시스템은 구글 로그인 창을 띄운다.
- 6. 사용자는 계정 정보를 입력한다.
- 7. 인증시스템은 사용자 인증 처리를 수행하고, 인증 토큰을 반환한다.
- 8. 로그인UI는 인증 토큰을 이용해 사용자 정보를 인증시스템에 요청한다.
- 9. 인증시스템은 사용자DB에 사용자 정보 조회를 요청한다.
- 10. 사용자DB는 조회된 사용자 정보를 반환한다.
- 11. 신규 사용자일 경우:
- 11.1. 로그인UI는 사용자에게 사용자 유형(교사/학생) 선택을 요청한다.
- 11.2. 사용자는 사용자 유형을 선택한다.
- 11.3. 선택한 유형에 따라:
 - 11.3.1. 학생인 경우 학년/반 정보를 요청 및 입력받는다.
 - 11.3.2. 교사인 경우 담당 학년/반 정보를 요청 및 입력받는다.
- 11.4. 로그인UI는 입력된 사용자 정보를 인증시스템에 전달하여 저장 요청한다.
- 11.5. 인증시스템은 사용자 정보를 사용자DB에 저장한다.
- 12. 기존 사용자일 경우:
- 12.1. 사용자DB는 저장된 사용자 정보(유형, 학년/반)를 반환한다.
- 13. 인증시스템은 사용자 세션 생성을 요청한다.
- 14. 학습플랫폼은 세션을 생성하고 완료 응답을 보낸다.
- 15. 로그인UI는 사용자 유형에 따라 대시보드로 리다이렉트한다.
- 15.1. 학생 → 학생용 대시보드로 이동
- 15.2. 교사 → 교사용 대시보드로 이동

3.2. 문제분해 시퀀스 다이어그램

이름 문제분해 Sequence Diagram	
--------------------------	--

- 2. 학생은 '새 문제 시작' 또는 '기존 문제 불러오기'를 선택한다.
- (alt) 새 문제 시작 시: 문제 설명을 입력한다.
- (alt) 기존 문제 불러오기 시: 문제분해도구가 AI지원시스템에 문제 데이터를 요청하고, AI지원시스템은 데이터저장소에서 데이터를 받아와 문제분해도구에 반환한다.
- 3. 문제 데이터가 로드되면, 마인드맵/메모장 등의 도구가 제공된다.
 - 3.1. 학생은 문제를 하위 요소로 작성한다.
- 4. AI 도움을 요청하는 경우
- (alt) [AI 도움 요청]
 - 4.1. 문제분해도구는 문제 컨텍스트를 AI지원시스템에 전달한다.
 - 4.2. AI지원시스템은 분석 제안을 반환하고, 이를 문제분해도구가 화면에 표시한다.
- 5. 학생은 작업을 저장한다.
 - 5.1. 문제분해도구는 저장 요청을 데이터저장소에 보낸다.
 - 5.2. 데이터저장소는 저장을 완료하고 문제분해도구에 결과를 반환한다.
 - 5.3. 문제분해도구는 학생에게 저장 완료를 알린다.
- 6. 학생은 피드백을 요청할 수 있다.
- (alt) [피드백 확인]
- 6.1. 문제분해도구는 데이터저장소에 피드백을 요청하고, 교사 피드백이 반환되면 화면에 표시한다.
- 7. 교사는 별도로 피드백을 작성하고 저장할 수 있다.
- (alt) [교사 피드백 별도 등록]
 - 7.1. 교사는 학생의 항목 작업을 조회한다.
 - 7.2. 문제분해 결과를 확인하고 피드백을 작성한다.
 - 7.3. 피드백을 저장하면 데이터저장소가 저장을 완료하고 알림을 보낸다.

3.3. 패턴인식 시퀀스 다이어그램

이름	패턴인식 Sequence Diagram
----	-----------------------

- (alt) 새 데이터 입력/선택
- (alt) 기존 작업 불러오기
- 2.1. 패턴인식도구는 AI지원시스템에 데이터 요청을 보낸다.
- 2.2. AI지원시스템은 데이터저장소에서 데이터를 받아 반환한다.
- 3. 저장된 작업이 로드되면, 패턴 정의 도구가 제공된다.
- 3.1. 학생은 패턴 정의 작업을 수행한다.
- 4. AI 도움을 요청하는 경우
- (alt) [AI 도움 요청]
- 4.1. 패턴인식도구는 컨텍스트를 AI지원시스템에 전달한다.
- 4.2. AI지원시스템은 패턴 제안을 반환한다.
- 4.3. 학생은 제안을 확인하고 수락하거나 거부한다.
- 5. 학생은 작업 결과를 저장한다.
- 5.1. 저장 요청이 데이터저장소로 전달된다.
- 5.2. 데이터저장소는 저장을 완료하고 결과를 반환한다.
- 5.3. 저장 완료 알림이 사용자에게 전달된다.
- 6. 학생은 피드백을 확인할 수 있다.
- (alt) [피드백 확인]
- 6.1. 피드백 확인 요청이 전송되며, 교사 피드백이 조회되어 표시된다.
- 7. 교사는 별도로 피드백을 등록할 수 있다.
- (alt) [교사 피드백 별도 등록]
- 7.1. 교사는 학생의 작업을 조회한다.
- 7.2. 패턴인식 결과를 확인하고 피드백을 저장한다.
- 7.3. 데이터저장소는 피드백 저장 결과를 반환한다.

3.4. 추상화 시퀀스 다이어그램

이름	추상화 Sequence Diagram
----	----------------------

- 2. 이전 데이터를 불러올 수 있다.
- (alt) [이전 데이터 불러오기]
- 2.1. 추상화도구는 AI지원시스템에 이전 단계 데이터 요청을 보낸다.
- 2.2. AI지원시스템은 데이터저장소에서 데이터를 받아 결과를 반환한다.
- 2.3. 추상화도구는 이전 작업 기반 인터페이스를 표시한다.
- 3. 학생은 핵심 요소 추출 도구를 활용해 필요 없는 요소 제거 및 핵심 요소를 지정한다.
- 3.1. 추상화 모델이 업데이트된다.
- 4. AI의 도움을 요청할 수 있다.
- (alt) [AI 도움 요청]
- 4.1. 추상화도구는 AI지원시스템에 컨텍스트를 전달한다.
- 4.2. AI지원시스템은 추상화 제안을 반환한다.
- 4.3. 학생은 제안을 확인하고 수락하거나 거부한다.
- 5. 지정 결과를 저장한다.
- 5.1. 저장 요청이 데이터저장소로 전송된다.
- 5.2. 데이터저장소는 저장을 완료하고 결과를 반환한다.
- 5.3. 저장 완료 알림이 사용자에게 전달된다.
- 6. 피드백을 확인할 수 있다.
- (alt) [피드백 확인]
- 6.1. 피드백 요청이 전송되며, 교사 피드백이 조회되어 표시된다.
- 7. 교사는 별도로 피드백을 등록할 수 있다.
- (alt) [교사 피드백 별도 등록]
- 7.1. 교사는 학생 작업을 조회한다.
- 7.2. 추상화 결과를 확인하고 피드백을 저장한다.
- 7.3. 저장이 완료되면 시스템이 결과를 반환한다.

3.5. 알고리즘 설계 시퀀스 다이어그램

이름	알고리즘 Sequence Diagram
이름	알고리즘 Sequence Diagram

- 2. 이전 단계의 데이터를 불러올 수 있다.
- (alt) [이전 데이터 불러오기]
- 2.1. 알고리즘도구는 AI지원시스템에 '추상화 결과' 데이터를 요청한다.
- 2.2. AI지원시스템은 데이터저장소로부터 데이터를 받아 결과를 반환한다.
- 2.3. 알고리즘도구는 이전 작업 기반 인터페이스를 표시한다.
- 3. 학생은 알고리즘 작성을 진행한다.
- 3.1. 알고리즘 작성 도구를 통해 순서도 및 블록 조작
- 3.2. 알고리즘 시각화가 표시된다.
- 4. AI의 도움을 요청할 수 있다.
- (alt) [AI 도움 요청]
- 4.1. 알고리즘도구는 AI지원시스템에 컨텍스트를 전달한다.
- 4.2. AI지원시스템은 알고리즘 제안을 반환한다.
- 4.3. 학생은 제안을 확인하고 수락 또는 거부한다.
- 5. 작성한 알고리즘을 검증 요청한다.
- 5.1. 검증 결과가 표시된다.
- 6. 저장을 요청한다.
- 6.1. 데이터저장소에 저장 요청
- 6.2. 저장 완료 결과를 수신
- 6.3. 학생에게 저장 완료 알림 제공
- 7. 피드백 확인이 가능하다.
- (alt) [피드백 확인]
- 7.1. 피드백 확인 요청
- 7.2. AI지원시스템이 데이터저장소에 피드백을 조회하고 결과를 반환
- 7.3. 피드백이 인터페이스에 표시됨
- 8. 교사의 피드백 등록 프로세스 (별도 흐름)
- (alt) [교사 피드백 별도 흐름]
- 8.1. 교사는 학생 작업을 조회하고 알고리즘 결과를 확인
- 8.2. 피드백 작성 후 저장 요청

8.3. 저장 완료 후 시스템 응답

4. AI 도구 활용 정보

사용	도구	Claude 3.7	

사용 목적 다이어그램 제작

프롬프트 ● 내가 보낸 동작순서를 시퀀스 다이어그램으로 그려줘

- 반영 위치 1. 로그인 시퀀스 다이어그램 (p.8)
 - 2. 문제분해 시퀀스 다이어그램 (p.10)
 - 3. 패턴인식 시퀀스 다이어그램 (p.12)
 - 4. 추상화 시퀀스 다이어그램 (p.14)
 - 5. 알고리즘 설계 시퀀스 다이어그램 (p.16)