#### ГУАП

## КАФЕДРА № 24

| ОТЧЕТ<br>ЗАЩИЩЕН С ОЦЕ                      | НКОЙ       |                                               |                                       |
|---------------------------------------------|------------|-----------------------------------------------|---------------------------------------|
| ПРЕПОДАВАТЕЛЬ                               |            |                                               |                                       |
| ассистент                                   |            |                                               | А.А. Сафронова                        |
| должность, уч. степе                        | нь, звание | подпись, дата                                 | инициалы, фамилия                     |
|                                             | ОТЧЕТ О ЛА | АБОРАТОРНОЙ РАБО                              | OTE №1                                |
|                                             | -          | цеформированного и к<br>ца с бляшкой ранней с | критического состояний тадии развития |
| по курсу: Информационные основы биомеханики |            |                                               |                                       |
|                                             |            |                                               |                                       |
|                                             |            |                                               |                                       |
| РАБОТУ ВЫПОЛН                               | ИЛ         |                                               |                                       |
| СТУДЕНТ гр. №                               | 2247       | подпись, дата                                 | Я.С. Верещагин<br>инициалы, фамилия   |

#### Вариант 2. Венечная артерия правая

Цель работы: определить давление в гибком баллоне, необходимое для дилатации кровеносного сосуда с бляшкой поздней стадии развития в зависимости от отношения модуля нормальной упругости капсулы бляшки  $E_{\kappa\delta}$  к модулю нормальной упругости бляшки  $E_{\delta}$ .



Параметры:

Внешний диаметр - 4 мм

Толщина стенки - 1,1 мм

Длина бляшки - 3 мм

Отношение радиуса бляшки  $R_6$  к радиусу сосуда  $R_{BC}$  - 0.6

Отношение модуля нормальной упругости бляшки  $E_6$  к модулянормальной упругости  $E_{BC}$  - 0,6

Длина бляшки - 3 мм

Модуль упругости сосуда Е - 2 Мпа

Отношение толщины капсулы бляшки  $h_{\kappa\delta}$  к длине бляшки  $l_{\delta}$  - 0,1

Отношение модуля нормальной упругости капсулы бляшки к модулю нормальной упругости бляшки  $E_{\kappa 6}/$   $E_{\delta}=2$  ... 10.

Длина выделенного в модели сегмента сосуда  $l_c = 5\ l_6$ 

Сделали эскиз и вытянутую бобышку сосуда, бляшки и капсулы бляшки.



После выставления материалов и их физических свойств приступили к симуляции.Подбираем давление в сосуде, чтобы после дилатации внутренний радиус R сегмента сосуда в зоне расположения бляшки должен находиться в пределах 5-10% внутреннего радиуса сосуда Rвс.

# 1) Модуль упругости капсулы 2,4 МПа:



Давление 3 МПа

# 2) Модуль упругости капсулы 3,6 МПа:



## Давление 4 МПа

## 3) Модуль упругости капсулы 4,8 МПа:



Давление 5 МПа

## 4) Модуль упругости капсулы 6 МПа:



## Давление 6 МПа

#### 5) Модуль упругости капсулы 7,2 МПа:



Давление 7 МПа

## 6) Модуль упругости капсулы 8,4 МПа:



## Давление 8 МПа:

#### 7) Модуль упругости капсулы 9,6 МПа:



Давление 9 МПа

## 8) Модуль упругости капсулы 10,8 МПа:



## Давление 10 МПа

#### 9) Модуль упругости капсулы 12 МПа:



Давление 11 МПа

Вывад: рассчитали допустимое давление в зависимости от отношения модуля нормальной упругости капсулы бляшки  $E_{\kappa 6}$  к модулю нормальной упругости бляшки  $E_{6}$ , при которых изменение внутреннего радиуса не превышает 10% и составляет не меньше 5%.