A functional programming approach to mathematical analysis

Simplifying mathematical analysis

Satrajit Chatterjee

Canadian Undergraduate Mathematics Conference, July 2022

Computer Science and Mathematics University of Ottawa

Why are we here

To learn functional programming!

jk, uOttawa had to make paradigms a part of my sequence to get me to care about that.

But then it got interesting, so who knows, you might like it too.

Why I care about this, and why you might

- I'm a CS Student.
- Real Analysis was hard.
- I want it to be not hard.

So what are paradigms

Programming language classification based on their features.

Some of the popular ones:

- Imperative → Tell a computer how to do something
- Declarative \rightarrow Tell a computer what to do
- Object-oriented
- Logical
- Functional

Object Oriented Programming

```
public class Car {
    String name;
    public static Planet (String s) {
        this.name = s;
public class Main {
    public static void main(String[] args) {
        String s = "Uranus";
        Planet p = new Planet();
        System.out.println(p.name);
```

```
p.name = "Pluto";
```

- You're allowed to do this.
- Pluto is now officially a planet!
- You did what NASA couldn't!!

Logic Programming

Prolog

- Atoms
- Predicates

```
planet(earth).
animal(mars).
planet(venus).
planet(venus).
neighbors(earth, mars).
neighbors(earth, venus).
% Find all neighbors of earth
neighbors(earth, X).
```

Logic Programming

- Propositional Logic
- Discrete Math
- Solving the Knapsack problem if you're familiar with it
- Natural Language Processing somehow, I never managed to get around to trying it out.

Finally, Functional Programming

- The exact opposite of imperative programming (where you change the state of something)
- Everything is a function. And there's some "variables".
- Immutable values.
- And apparently quite useful in math. We'll find out more in a second!

OCaml

```
type planet = {name: string; isplanet: bool} ;;
let pluto : planet = { name = "pluto"; isplanet = false } ;;

(* Will only output false *)
pluto.isplanet = true ;;
```

Cannot save Pluto from it's doom as a non-planet anymore :(

But that's okay! We have more important things to worry about.

So how is Domain Specific Languages different?

- Opposite to General Purpose Languages
- Language specific to a... domain
- We can treat Haskell and OCaml as a DSL for now... even though its not.
- No ideal Domain Specific Language for math at the moment, but that's something worth looking into.

So how is Domain Specific Languages different?

You might've heard of:

- HTML
- CSS
- SQL

Fun Fact

 $\mathsf{HTML} + \mathsf{CSS}$ is Turing complete.

You might be wondering, where is all the math...

Well we're here!

- A lot of functional programming depends on user defined data types.
- Use this to our advantage to apply it to math.
- You must've heard of complex numbers...
- Most regular programming languages haven't heard of them.
- So let's teach it to 'em!

A complex number has the form a + bi or a + ib.

This can have an abstract functional representation as a datatype:

data Complex =
$$Plus_1 \mathbb{R} \mathbb{R} I$$

 $|Plus_2 \mathbb{R} I \mathbb{R}|$

If we account for the fact that complex numbers are isomorphic to pairs of real numbers, we can define it in terms of a new data type:

newtype Complex =
$$C(\mathbb{R}, \mathbb{R})$$

We can define addition and subtraction operations on complex numbers as

$$w + z = (a + x) + (b + y)i$$

 $w - z = (a - x) + (b - y)i$

From a functional perspective,

We can turn this into a functional datatype

Welcome to Pattern Matching

Haskell

```
class Monoid m where
    mempty :: m
    mappend :: m -> m -> m
    mconcat :: [m] -> m
    mconcat = foldr mappend mempty
multi:: Int->Int
multi x = x * 1
add :: Int->Int
add x = x + 0
main = do
    print(multi 9)
    print (add 7)
```

Recap: Monoid $\rightarrow Ia = aI = a$

Closed under an associative binary operation and has an identity element.

Lets bring it back to math

Every natural number is even or odd.

With the base case that 0 is even or 0 is odd, we can use an inductive property where n is even or n is odd, $n \in \mathbb{N}$.

Example in Analysis

Completeness property: if A is a set of real numbers with at least one number in it, there exists a real number y such that $x \le y$ for every $x \in A$ (upper bound) and a smallest such number (least upper bound or **supremum** of A).

Functionally representing sup which is defined only for those subsets of \mathbb{R} which are bounded from above,

$$\textit{sup}: \mathcal{P}^+\mathbb{R} \to \mathbb{R}$$

$$min: \mathcal{P}^+\mathbb{R} \to \mathbb{R}$$

$$min \ A = x \iff (x \in A) \land (\forall a \in A : x \le a)$$

Example in Analysis

Because sup A is similar to max A but is also the smallest element of a set, there is a connection to min. We can introduce the function:

$$\textit{ubs}: \mathcal{P}\mathbb{R} \to \mathcal{P}\mathbb{R}$$

ubs
$$A = \{x | x \in \mathbb{R}, x \text{ upper bound of } A\}$$

Example in Analysis - modularizing the problem

Because sup A is similar to max A but is also the smallest element of a set, there is a connection to min. We can define the function:

ubs :
$$\mathcal{P}\mathbb{R} \to \mathcal{P}\mathbb{R}$$

ubs $A = \{x | x \in \mathbb{R}, \forall a \in A : a \leq x\}$

This function returns the upper bounds on A. The completeness axiom can now be stated as:

Assume an $A : \mathcal{P}^+\mathbb{R}$ with an upper bound $u \in ubs(A)$ Then $s = sup \ A = min(ubs(A))$ exists.

Lambda Functions

Anonymous functions that are either one time use or can be passed as a parameter.

$$(\x y -> x + y) 3 5$$

8 :: Integer

A more practical programming application:

But...

Is this easier to implement than simply writing a proof by hand? no ;-; for the most part

but it does help modularize and simplify problems in analysis.

do you have any questions? Me too! ;-; you can reach me at **satrajit314@gmail.com**