Indy R2000 模块系列规格书

Indy R2000 Module Series specification

表 1: 模块概览

模块型号	M-2600	M-2800	M-2900
实物照片		Ant I	Ant 1
射频通道	单通道	四通道	八通道
射频连接器	MMCX	SMA	SMA
天线连接模式	单天线	四天线	八天线
接口连接器	Molex 53261-1571		
射频连接器材质	黄铜 镀金		
PCB 材质	Rogers FR4 镀金		
屏蔽罩材质	铸铝		

表 2: 连接器 PIN 脚定义

	农 2:足按箱 FIN 脚足入			
PIN 1				
PIN	定义	说明		
1	GND	同时接地		
2	GND			
3	3.7V – 5V DC	同时接电源		
4	3.7V – 5V DC			
5	GPIO 3	输出		
6	GPIO 4	输出		
7	GPIO 1	输入		
8	蜂鸣器	己驱动,可输出电流 > 50mA		
9	UART_RXD	TTL 电平		
10	UART_TXD			
11	USB_DM	仅供测试		
12	USB_DP			
13	GPIO 2	输入		
14	EN	高电平使能		
15	GPIO 5	RS-485 方向控制		

表 3: 模块特性一览表

		描述
1	射频芯片采用 INDY R2000	◆ 射频通道基于 Impinj 性能优异的专用 UHF RFID 芯片。
2	高性能多标签识别算法	◆ 独一无二的 I-Serch 多标签识别算法,提供业内最高识别效率。
2	为读取少量标签优化的算法	◆ 专为读取少量标签的应用设计的算法。
3		◆ 超高的标签反应速度。
4	双 CPU 架构设计	◆ 主 CPU 负责轮询标签,副 CPU 负责数据管理。轮询标签和发送数据并行,互不占用对方的时间。极大的提高了整体性能。◆ 副 CPU 负责产生真正的随机数。◆ 副 CPU 负责监控系统的运行状态。
5	快速 4/8 天线轮询功能	◆ 高速轮询 4/8 天线。每个天线最短轮询时间约 25mS。 ◆ 可单独配置各天线的轮询时间。
6	两种标签盘存模式	◆ 缓存模式和实时模式。◆ 缓存模式读到标签后先放入缓存并过滤重复数据,数据无冗余。◆ 实时模式读到标签后立即上传,用户可第一时间得到标签数据。
7	硬件死机监测	◆ 硬件监测 CPU 运行状态。◆ 24 小时 X 365 天常年运行不死机。
8	低电压设计	◆ 可在 3.7V 电压下运行。◆ 可用锂电池供电。
9	低功耗设计	◆ 低功耗模式,少量标签功耗低至 600mA +/-10%(5V DC 输入)。 ◆ 满功率输出时峰值电流最大 1.2A +/-10% (5V DC 输入)。
10	射频放大器状态监测	◆ 监测射频功率放大器的工作状态。◆ 确保功放不出现饱和状态。保证功放长久稳定工作。
11	实现 18000-6B/C 全协议功能	◆ 实现 18000-6B 协议规定的全部读写功能。 ◆ 可快速在双协议间切换,实现同时读双协议标签。
12	18000-6B 大数据一次性读写	◆ 一次性读 216 字节时间<500mS。◆ 一次性写 216 字节时间 < 3.5 秒。◆ 任意数据长度一次性读写。◆ 读写稳定可靠,成功率接近 100%。体现了 R2000 的数据传输质量。
13	天线连接状态监测	◆ 判断天线连接状态,灵敏度可设置。◆ 可保护接收机。◆ 可通过命令关闭。
14	大功率 LED 驱动	◆ 模块可以提供 50mA 的稳定输出电流驱动大功率 LED。
15	优异的板载电源系统	◆ 板载 8 颗独立的电源。每个部件都由独立的电源供电。 ◆ 所有的电源全部具有软启动功能,确保任何时候电压稳定。
16	多点板载温度传感器	◆ 多点监测,精确的监控系统的运行温度。
17	双备份输出功率校正	◆ 保证射频输出功率精确可控。 ◆ 两个互相备份的功率校验模块。除非同时损坏,系统均可正常运行。
18	简洁高效的指令系统	◆ 基于串口的指令系统。 ◆ 简洁,高效,方便,快速集成。
19	杰出的散热设计	◆ 发热器件全部具有导热结构。◆ 大面积的散热片接触面。◆ 热耦合界面采用高热导率的固体材料,高温下不挥发。

图 1: M-2600 评估板

图 2: M-2600 评估板

图 3: M-2800 评估板

图 4: M-2800 评估板

图 5: M-2900 评估板

图 6: M-2900 评估板

图 5: 不同的算法对多标签识别性能的影响

说明

- ◆ 图 5 是实测的性能对比图 (以英频杰动态 Q 防冲突算法作为比较的标准)。
- ◆ 图 5 体现的是首轮盘存的性能对比。
- ◆ 在同一硬件平台上更换不同的算法进行的测试。

表 4: 防冲突算法说明

	算法名称	算法说明		
		◆ 18000-6C 协议的标准算法。		
	标准固定 Q 防冲突算法	◆ 标签数量多的时候性能显著下降。		
		◆ 标签数量少的时候效率不高。		
		◆ 美国 IMPINJ 公司的算法。		
	英频杰动态 Q 防冲突算法	◆ 标签数量多或者少的时候都有良好的效率。		
		◆ 为了兼容的需要牺牲了一部分性能。		
		◆ 基于美国 IMPINJ 公司的动态 Q 算法。		
	I-Search 动态 Q 防冲突算法 V1.0	◆ 经过优化后性能略有提高。		
		◆ 固件版本 6.6 及以下均采用此算法。		
		◆ 基于美国 IMPINJ 公司的动态 Q 算法。		
		◆ 全新的数据模型,性能得到大幅提升。		
	I-Search 动态 Q 防冲突算法 V2.0	◆ 固件版本 6.7 及以上均采用此算法。		
		◆ 可明显感受到与传统算法的差异。		
		◆ 标签数量多的时候性能差异更明显。		

表 5: 电气参数

	77.7	
工作电压	3.7V – 5 V	
待机状态电流	<50mA (EN 脚高电平)	
睡眠状态电流	<100uA (EN 脚低电平)	
工作电流	1.2A +/-10%	
工作温度	- 20 °C - + 55 °C	
存储温度	- 20 °C - + 85 °C	
工作湿度	<95% (+25 °C)	
空中接口协议	EPCglobal UHF Class 1 Gen 2 / ISO 18000-6C	
	ISO 18000-6B	
工作频谱范围	860Mhz – 960Mhz	
工作区域支持	US, Canada and other regions following U.S. FCC	
	Europe and other regions following ETSI EN 302 208 with & without LBT	
	regulations	
	Mainland China	
	Japan	
	Korea	
	Malaysia	
	Taiwan	
输出功率	0 – 33dBm	
输出功率精度	+/- 1dB	
输出功率平坦度	+/- 0.2dB	
接收灵敏度	<-85 dBm	
盘存标签峰值速度	> 700 张/秒	
标签缓存区	1000 张标签 @ 96 bit EPC	
标签 RSSI	支持	
天线连接保护	支持	
环境温度监测	支持	
工作模式	单机/密集型	
通讯接口	TTL Uart 接口	
GPIO	2 路输入 2 路输出 (3.3V 电平)	
最高通讯波特率	115200 bps	
散热方式	外置散热片空气冷却	

注意事项

- ◆环境温度测量功能测得温度超过 60° C 时,不宜满负荷工作。
- ◆满负荷连续工作时请接散热片。
- ◆电源电压不可超过 5V, 否则可能造成内部保护电路损坏。
- ◆设置射频输出功率大于 30dBm 时需谨慎,峰值电流和温升将大幅增大。

M-2600 结构尺寸

图6:轮廓及孔位置

图7:安装孔直径和屏蔽罩位置

图8: 最高点与最低点

图9: 散热器安装位置

M-2800 结构尺寸

图10:轮廓与孔位置

图11:安装孔直径和屏蔽罩位置

图12: 最高点与射频连接器间距

图13: 最低点与PCB 厚度

图14: 散热器安装位置

M-2900 结构尺寸

图15:轮廓与孔位置

图16:安装孔直径和屏蔽罩位置

图17: 最高点与射频连接器间距

图18: 最低点与PCB 厚度

图19: 散热器安装位置

注意事项

- ◆ 图 6一图 19 均为三维效果图,非实物。
- ◆ 图 6一图 19 尺寸若与实物有偏差则以实物为准。