Aprendizagem Aplicada à Segurança

SPAM Dectetion

Mário Antunes September 26, 2025

Universidade de Aveiro

Table of Contents i

SPAM

Fight against SPAM

SPAM Detection

Binary Classification

Text Mining

Natural Language Processing (NLP)

Classification Model

Model Evaluation

SPAM

- The term "spam" is internet slang that refers to unsolicited commercial email (UCE).
- The first reported case of spam occurred in 1898, when the New York Times reported unsolicited messages circulating in association with an old swindle.
- The term "spam" was coined in 1994, based on a now-legendary Monty Python's Flying Circus sketch, where a crowd of Vikings sings progressively louder choruses of "SPAM! SPAM! SPAM!"

SPAM

SPAM

Dear Sir,
I am prince from Nigeria. Your help would be very appreciated.
I want to transfer all of my fortune outside if Nigeria due to a frozen account,
If you could be so kind and transfer small sum of 3 500 USD to my account,
I would be able to unfreeze my account and transfer my money outside of
Nigeria. To repay your kindness, I will send 1 000 000 USD to your account.

Please contact me to proceed

Prince

Fight against SPAM

- Huge list of anti-spam techniques
- From common sense to Bayesian spam filtering
- Unfortunately it is a costly battle

Fight against SPAM

SPAM Detection

Binary Classification

- Binary classification is the task of classifying the elements of a set into two groups (each called class) on the basis of a classification rule.
- For this application one message can either be spam or ham.

Binary classification

Text Mining

- Text mining is the process of deriving high-quality information from text.
- Combines concepts from Machine Learning, Linguistic and statistical analysis.
- In this area we will explore the methods used to rank words/tokens and the BoW model.

Bag of Words (Bow) model

	the	red	dog	cat	eats	food
1. the red dog \rightarrow	1	1	1	0	0	0
2. cat eats dog →	0	0	1	1	1	0
dog eats food→	0	0	1	0	1	1
 red cat eats → 	0	1	0	1	1	0

Natural Language Processing (NLP)

- NLP gives the computers the ability to understand text.
- Combines *Sintax* and *Semantic* into the analysis.
- One famous exemples are the Large Language Models (LLMs) that power OpenAI Chat GPT.

Classification Model

- SPAM detection is "considered" a toy example.
- As such, we will explore two of the simples learning models: Naive Bayes and Logistic Regression.

Model Evaluation

- Classification model can be evaluated using a confusing matrix
- The simplest methods to evaluate a model is through accuracy: $acc=\frac{TP+TN}{TN+TN+FP+FN}$

	Predicted Positive	Predicted Negative	
Actual Positive	TP True Positive	FN False Negative	Sensitivity $\frac{TP}{(TP+FN)}$
Actual Negative	FP False Positive	TN True Negative	Specificity $\frac{TN}{(TN+FP)}$
	Precision $\frac{TP}{(TP+FP)}$	Negative Predictive Value TN $\overline{(TN + FN)}$	$\frac{Accuracy}{TP + TN}$ $\frac{TP + TN}{(TP + TN + FP + FN)}$

Model Evaluation

