Контрольна Робота з Рівнянь Математичної Фізики

Захаров Дмитро

26 травня, 2025

Зміст

1	Контрольна Робота			
	1.1	Задача 1	2	
	1.2	Задача 2	3	
	1.3	Задача 3	5	

1 Контрольна Робота

1.1 Задача 1

Умова Задачі 1.1. Розв'язати рівняння $u_t = u_{xx} - \cos 2t$ для $x \in \mathbb{R}$ за крайової умови $u(x,0) \equiv 1.$

Розв'язання. Скористаємось формулою Пуассона-Дюамеля. А саме, нехай рівняння має вигляд $\partial_t u = \alpha^2 \Delta u + f(\mathbf{x},t)$ для $\mathbf{x} \in \mathbb{R}^n$, t>0 та крайовою умовою $u(0,\mathbf{x}) = u_0(\mathbf{x})$. Тоді,

$$u(\mathbf{x},t) = \frac{1}{(2\alpha\sqrt{t\pi})^n} \int_{\mathbb{R}^n} e^{-\frac{\|\mathbf{x}-\boldsymbol{\xi}\|^2}{4\alpha^2t}} u_0(\boldsymbol{\xi}) d\boldsymbol{\xi} + \int_0^t \int_{\mathbb{R}^n} \frac{1}{(2\alpha\sqrt{\pi(t-\tau)})^n} e^{-\frac{\|\mathbf{x}-\boldsymbol{\xi}\|^2}{4\alpha^2(t-\tau)}} f(\boldsymbol{\xi},\tau) d\boldsymbol{\xi} d\tau.$$

Правий інтеграл рахувати не дуже хочеться, тому приберемо неоднорідність. Для цього зробимо заміну $u(x,t)=w(x,t)-\frac{1}{2}\sin 2t$. Тоді, підставляючи це у початкове рівняння, маємо:

$$w_t - \cos 2t = w_{xx} - \cos 2t \Rightarrow \overline{w_t = w_{xx}}$$
.

Крайова умова w(x,0)=1. В нашому конкретному випадку маємо одну змінну, тому рівняння дещо спрощується:

$$w(x,t) = \frac{1}{2\alpha\sqrt{t\pi}} \int_{-\infty}^{+\infty} e^{-\frac{(x-\xi)^2}{4\alpha^2t}} w_0(\xi) d\xi$$

Зокрема, маємо $\alpha = 1, w_0 \equiv 1$, тому:

$$w(x,t) = \frac{1}{2\sqrt{t\pi}} \int_{-\infty}^{+\infty} e^{-\frac{(x-\xi)^2}{4t}} d\xi$$

Зробимо заміну $\eta:=rac{\xi-x}{2\sqrt{t}}$, тоді $d\xi=2\sqrt{t}d\eta$ і тому

$$w(x,t) = \frac{1}{2\sqrt{t\pi}} \cdot 2\sqrt{t} \int_{-\infty}^{+\infty} e^{-\eta^2} d\eta = \frac{1}{\sqrt{\pi}} \cdot \sqrt{\pi} = 1.$$

Таким чином, остаточно, початковий розв'язок: $u(x,t)=1-\frac{1}{2}\sin 2t$. Відповідь. $u(x,t)=1-\frac{1}{2}\sin 2t$.

1.2 Задача 2

Умова Задачі 1.2. Розв'язати рівняння $u_t = u_{xx} + x^2 - 2t + \sin 2x$ для $x \in (0,\pi)$ за умов $u_x(0,t) \equiv 1, u_x(\pi,t) = 2\pi t + 1, u(x,0) = 2x.$

Розв'язання. Зробимо граничні умови однорідними. Зробимо заміну змінних u(x,t)=w(x,t)+v(x,t), де покладемо у якості v(x,t) функцію $v(x,t)=x+tx^2$. В такому разі маємо $u_x(x,t)=w_x(x,t)+1+2xt$ і тому граничні умови перетворюються на $w_x(0,t)\equiv 0$, $w_x(\pi,t)\equiv 0$, а також w(x,0)=u(x,0)-v(x,0)=x. Підставимо це у рівняння:

$$w_t + x^2 = w_{xx} + 2t + x^2 - 2t + \sin 2x \Rightarrow w_t = w_{xx} + \sin 2x$$

Розв'язок будемо шукати у вигляді розкладу Фур'є: нехай шукана функція $w(x,t) = \sum_{n=0}^{\infty} w_n(t) \cos nx$ (було б зручно взяти $\sin nx$, проте тоді не виконувалися б граничні умови). Тоді, підставляючи у рівняння, маємо:

$$\sum_{n=0}^{\infty} \dot{w}_n(t) \cos nx = \sum_{n=0}^{\infty} -n^2 w_n(t) \cos nx + \sum_{n=0}^{\infty} f_n \cos nx, \quad \sin 2x = \sum_{n=0}^{\infty} f_n \cos nx$$

Розкладемо $\sin 2x$ у ряд Фур'є: $\sin 2x = \sum_{n=0}^{\infty} f_n \cos nx$. В такому разі коефіцієнти $f_n = \frac{2}{\pi} \int_0^{\pi} \sin 2x \cos nx dx$. Користаємося тим, що $\sin 2x \cos nx = \frac{1}{2} \sin((2+n)x) + \frac{1}{2} \sin((2-n)x)$, тоді $f_n = \frac{1}{\pi} \int_0^{\pi} \sin((2+n)x) + \frac{1}{\pi} \int_0^{\pi} \sin((2-n)x)$. Проінтегрувавши ці вирази, маємо

$$f_n = \frac{1}{\pi} \left(-\frac{(-1)^n - 1}{2+n} - \frac{(-1)^n - 1}{2-n} \right) = \frac{4(1 - (-1)^n)}{\pi(4-n^2)}.$$

Таким чином, для кожного $w_n(t)$ маємо рівняння:

$$\dot{w}_n(t) + n^2 w_n(t) = \frac{4(1 - (-1)^n)}{\pi (4 - n^2)}.$$

Розберемося з початковою умовою w(x,0)=x. Розкладемо $\phi(x)=x$ у ряд Фур'є: $\phi(x)=\sum_{n=0}^\infty \phi_n\cos nx$. Тоді формула для коефіцієнтів:

$$\phi_n = \frac{2}{\pi} \int_0^{\pi} x \cos nx dx = \frac{2}{\pi} \left[\left(x \frac{\sin nx}{n} \right) \Big|_0^{\pi} - \int_0^{\pi} \frac{\sin nx}{n} dx \right] = \frac{2}{\pi n^2} ((-1)^n - 1),$$

а також $\phi_0 = \frac{\pi}{2}$. Таким чином, маємо

$$w(x,0) = \sum_{n=0}^{\infty} w_n(0) \cos nx = \frac{\pi}{2} + \sum_{n=1}^{\infty} \frac{1}{n^2} ((-1)^n - 1) \cos nx$$
$$\Rightarrow w_0(0) = \frac{\pi}{2}, \ w_n(0) = \frac{2}{\pi n^2} ((-1)^n - 1).$$

Отже, остаточно:

$$\dot{w}_n(t) + n^2 w_n(t) = \frac{4(1 - (-1)^n)}{\pi (4 - n^2)}, \quad w_n(0) = \frac{2((-1)^n - 1)}{\pi n^2}, \quad w_0 = \frac{\pi}{2}.$$

Розглянемо $n \neq 0$. Видно, що для парних в нас $f_{2k} = \phi_{2k} = 0$, тому рівняння набуває вигляду $\dot{w}_{2k} + 4k^2w_{2k} = 0$ з умовою $w_{2k}(0) = 0$, а отже $w_{2k}(t) \equiv 0$. Для непарних n = 2k+1 маємо:

$$\dot{w}_n + n^2 w_n = \frac{8}{\pi (4 - n^2)} =: f_n, \quad w_{2k+1}(0) = -\frac{4}{\pi n^2} =: \phi_n.$$

Розв'язок однорідної частини рівняння має вигляд $w_n(t) = A_n e^{-n^2 t}$, а частковий однорідний розв'язок просто $\widetilde{w}_n(t) = \frac{1}{n^2} f_n$. Таким чином, розв'язок $w_n(t) = \frac{1}{n^2} f_n + A_n e^{-n^2 t}$. Початкова умова $w_n(0) = \frac{1}{n^2} f_n + A_n = \phi_n$, в такому разі $A_n = \phi_n - \frac{1}{n^2} f_n$. Отже, остаточно маємо:

$$w_n(t) = \frac{1}{n^2} f_n + \left(\phi_n - \frac{1}{n^2} f_n\right) e^{-n^2 t}$$

$$= \frac{8}{\pi n^2 (4 - n^2)} + \left(-\frac{4}{\pi n^2} - \frac{8}{\pi n^2 (4 - n^2)}\right) e^{-n^2 t}$$

$$= \frac{8}{\pi n^2 (4 - n^2)} + \frac{4(n^2 - 6)}{\pi n^2 (4 - n^2)} e^{-n^2 t}.$$

Також очевидно $w_0(t)=\frac{\pi}{2}.$ Отже, остаточний вигляд w(x,t):

$$w(x,t) = \frac{\pi}{2} + \frac{4}{\pi} \sum_{n \text{ Heliaphe}} \left(\frac{2}{n^2(4-n^2)} + \frac{n^2-6}{n^2(4-n^2)} e^{-n^2t} \right) \cos nx.$$

Остаточний розв'язок $u(x,t) = w(x,t) + x + tx^2$.

Відповідь.
$$u(x,t) = \frac{\pi}{2} + x + tx^2 + \frac{4}{\pi} \sum_{n \text{ непарне}} \left(\frac{2}{n^2(4-n^2)} + \frac{n^2-6}{n^2(4-n^2)} e^{-n^2t} \right) \cos nx.$$

1.3 Задача 3

Умова Задачі 1.3. Розв'язати рівняння $u_{tt}=4u_{xx}+1$ за $x\in\mathbb{R}$ з умовами $u(x,0)=\sin x,\,u_t(x,0)\equiv 2.$

Розв'язання. Позначимо $\varphi(x)=\sin x$ та $\psi(x)\equiv 2$. Тоді, розв'язок рівняння $\frac{1}{a^2}u_{tt}=u_{xx}+f(x,t)$ можна знайти у вигляді:

$$u(x,t) = \frac{1}{2} \left(\varphi(x+at) + \varphi(x-at) \right) + \frac{1}{2a} \int_{x-at}^{x+at} \psi(\zeta) d\zeta + \frac{a}{2} \int_0^t d\tau \int_{x-a(t-\tau)}^{x+a(t-\tau)} f(\zeta,\tau) d\zeta.$$

В нашому випадку a=2 та $f(x,t)\equiv \frac{1}{4}$. Знайдемо інтеграли. Маємо:

$$\frac{1}{2a} \int_{x-at}^{x+at} \psi(\zeta) d\zeta = \frac{1}{4} \int_{x-2t}^{x+2t} 2d\zeta = 2t$$

Другий інтеграл:

$$\frac{a}{2} \int_0^t d\tau \int_{x-a(t-\tau)}^{x+a(t-\tau)} f(\zeta,\tau) d\zeta = \frac{1}{4} \int_0^t d\tau \int_{x-2(t-\tau)}^{x+2(t-\tau)} d\zeta = \int_0^t d\tau (t-\tau) = \frac{t^2}{2}.$$

Таким чином, остаточно:

$$u(x,t) = \frac{1}{2}(\sin(x+2t) + \sin(x-2t)) + 2t + \frac{t^2}{2}.$$

Відповідь. $u(x,t) = \frac{1}{2} \left(\sin(x+2t) + \sin(x-2t) \right) + 2t + \frac{t^2}{2}.$