Mathematics of Reinforcement Learning

Exercise Class 2

Exercise 1.

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a finite probability space, i.e. $\Omega = \{\omega_1, \dots, \omega_n\}$. Show that there exists no sequence $\{Z_n\}_{n\in\mathbb{N}}$ of independent, almost surely non-constant random variables.

Exercise 2.

Let (Ω, \mathcal{F}) be a measurable space with $\Omega = \{\omega_1, \dots, \omega_n\}$ finite. Show that there exists exactly one partition \mathcal{P} of Ω which generates \mathcal{F} .

Exercise 3.

Let (Ω, \mathcal{F}) be a measurable space with $\Omega = \{\omega_1, \dots, \omega_n\}$ finite. Let moreover $X \colon \Omega \to \mathbb{R}$ and denote by $\mathcal{P} = \{P_1, \dots, P_j\}$ the unique partition of Ω which generates \mathcal{F} . Show that X is \mathcal{F} -measurable if and only if X is constant on each $P \in \mathcal{P}$.

Hint: Use Exercise 2. ♦

Definition 1 (CRR Model). Let $T \in \mathbb{N}$ be a finite time horizon, $q \in (0,1)$ and u, d > -1 with d < u. We fix a sequence of independent Bernoulli random variables R_1, \ldots, R_T taking values in $\{d, u\}$ such that

$$\mathbb{P}[R_t = u] = q$$
 and $\mathbb{P}[R_t = d] = 1 - q$, $t = 1, ..., T$.

The process $P = \{P_t\}_{t=0,1,\dots,T}$ with $P_0 \in \mathbb{R}$ and

$$P_t := (1 + R_t)P_{t-1}, \qquad t = 1, \dots, T$$

models the price of a financial asset in the *Cox-Ross-Rubinstein* (CRR) model. The following figure shows the evolution of the risky asset in the CRR model.

Figure 1: Evolution of P in the CRR model.

Exercise 4.

Let P be the price of a financial asset in the CRR model with time horizon T=3, $P_0=8$, d=-0.5, u=2, and q=0.5. Define a Markov decision model that allows trading of the asset P.

For that, assume that the agent starts out with an initial wealth of $w_0 := 100$ and they are only allowed to hold integer amounts of P. Negative positions (short-selling) and positions exceeding the total wealth (borrowing) are not allowed. The objective of the agent is to maximize expected log-utility of terminal wealth, that is, the expectation of $\log(W_T)$ with W_T denoting the wealth at time T. Hint: States should be three-dimensional and contain the current time, the financial asset price, and the agent's wealth. Actions can be modeled as the amount of wealth invested into financial asset.