Package 'MixedTS'

October 12, 2022

Type Package

Version 1.0.4

Title Mixed Tempered Stable Distribution

Depends methods, stats, graphics, stats4, MASS	
Author Lorenzo Mercuri, Edit Rroji	
Maintainer Lorenzo Mercuri <lorenzo.mercuri@unimi.it></lorenzo.mercuri@unimi.it>	
Description We provide detailed functions for univariate Mixed Tempered Stable distribution.	
License GPL (>= 2)	
Repository CRAN	
Repository/R-Forge/Project mixedts	
Repository/R-Forge/Revision 15	
Repository/R-Forge/DateTimeStamp 2015-10-22 16:15:11	
Date/Publication 2015-10-25 17:21:21	
NeedsCompilation no	
R topics documented:	
MixedTS-package	2 2 3 5 6 7 8 9
MixedTS-package	2 3 5 6 7 8

2 dMixedTS-methods

MixedTS-package

Mixed Tempered Stable Distribution

Description

This package provides detailed functions for univariate Mixed Tempered Stable distribution distribution with Gamma density. This distribution encompasses, Variance Gamma and Symmetric Geo-Stable as special cases. The package contains routine for mle estimation, for the computation of density, probability, quantile and random numbers

Details

Package: MixedTS
Type: Package
License: GPL (>= 2)

Author(s)

Lorenzo Mercuri, Edit Rroji

Maintainer: Lorenzo Mercuri <lorenzo.mercuri@unimi.it>

References

Barndorff-Nielsen, O.E., Kent, J. and Sorensen, M. (1982): Normal variance-mean mixtures and z-distributions, *International Statistical Review*, 50, 145-159.

Kuchler, U. and Tappe, S. (2014): Exponential stockmodels driven by tempered stable processes. *Journal of Econometrics*, 181 (1), 53-63.

Madan, D.B. and Seneta E. (1990): The variance gamma (V.G.) model for share market returns, *Journal of Business*, 63, 511-524

Rroji, E and Mercuri, L.(2014): Mixed Tempered Stable distribution *UNIMI-Research Papers in Economics, Business, and Statistics*, 64.

dMixedTS-methods

Density of Mixed Tempered Stable distribution

Description

This Method returns the density of a Mixed Tempered Stable

MixedTS-class 3

Methods

signature(object = "param.MixedTS", x = numeric(), setSup=NULL, setInf=NULL, N=2^10)

This method returns an object of class MixedTS where the slot dens contains the value of the density evaluated on the x. setSup and setInf are used to choose + infinity and - infinty.

N is the number of point used for discretization in fft algorithm.

Examples

```
# First Example
# Density of MixedTS with Gamma
ParamEx1<-setMixedTS.param(mu0=0, mu=0, sigma=0.4, a=1.5,
                            alpha=0.8, lambda_p=4, lambda_m=1,
                            Mixing="Gamma")
# support
x < -seq(-3,1,length=100)
dens1<-dMixedTS(x=x,object=ParamEx1,setSup=10,setInf=-10,N=2^7)</pre>
plot(dens1)
# Density of MixedTS with IG
Mix<-"User"
logmgf<-("lamb/mu1*(1-sqrt(1-2*mu1^2/lamb*u))")
parMix<-list(lamb=1,mu1=1)</pre>
ParamEx2<-setMixedTS.param(mu0=0, mu=0, sigma=0.4, a=logmgf,
                            alpha=0.8, lambda_p=4, lambda_m=1,
                            Mixing=Mix,paramMixing=parMix)
x < -seq(-3,1,length=100)
dens2<-dMixedTS(x=x,object=ParamEx2,setSup=10,setInf=-10,N=2^7)</pre>
plot(dens2)
```

4 MixedTS-class

Description

Mathematical description of the Mixed Tempered Stable distribution.

This class inherits from the class param. MixedTS and is a superclass for MixedTS. qmle-class.

Objects from the Class

```
This object is built by the following methods:
```

```
dMixedTS, pMixedTS, qMixedTS, rMixedTS.
```

Slots

Data: Object of class "numeric" containing a random number. This slot is filled when the method rMixedTS is used.

dens: Object of class "numeric" that contains the density of the MixedTS. This slot is filled by dMixedTS.

prob: Object of class "numeric" that contains the probability of the MixedTS. This slot is filled by pMixedTS and pMixedTS.

xMixedTS: Object of class "numeric" that contains the support for the density and probability.

quantile: Object of class "logical". If TRUE the object is built by the method qMixedTS. If FALSE the object is built by the method qMixedTS.

```
mu0: Object of class "numeric". See param. MixedTS.
```

mu: Object of class "numeric". See param. MixedTS.

sigma: Object of class "numeric". See param. MixedTS.

a: Object of class "vector". See param. MixedTS.

alpha: Object of class "numeric". See param. MixedTS.

lambda_p: Object of class "numeric". See param.MixedTS.

lambda_m: Object of class "numeric". See param.MixedTS.

Mixing: Object of class "character". See param. MixedTS.

paramMixing: Object of class "list". See param.MixedTS.

MixingLogMGF: Object of class "OptionalFunction". See param.MixedTS.

Extends

```
Class "param.MixedTS", directly.
```

Methods

```
plot signature(x = "MixedTS", ...)
```

MixedTS.qmle-class 5

MixedTS.qmle-class MixedTS.qmle: a class for Maximum Likelihood of Mixed Tempere Stable	MixedTS.qmle-class
---	--------------------

Description

This class is constructed by function MixedTS.qmle. It is a subclass for the MixedTS-class

Objects from the Class

Objects can be created by function MixedTS.qmle.

Slots

```
time: Object of class "numeric". Computational Time.
coef: Object of class "numeric". Estimated parameters.
vcov: Object of class "matrix". Approximate variance-covariance matrix.
min: Object of class "numeric". Minimum value of objective function.
details: Object of class "list". A list as returned from constrOptim
nobs: Object of class "integer". Number of observation.
method: Object of class "character". The optimization method used.
Data: Object of class "numeric". See MixedTS-class.
dens: Object of class "numeric". See MixedTS-class.
prob: Object of class "numeric". See MixedTS-class.
xMixedTS: Object of class "numeric". See MixedTS-class.
quantile: Object of class "logical". See MixedTS-class.
mu0: Object of class "numeric". See MixedTS-class.
mu: Object of class "numeric". See MixedTS-class.
sigma: Object of class "numeric". See MixedTS-class.
a: Object of class "vector". See MixedTS-class.
alpha: Object of class "numeric". See MixedTS-class.
lambda_p: Object of class "numeric". See MixedTS-class.
lambda_m: Object of class "numeric". See MixedTS-class.
Mixing: Object of class "character". See MixedTS-class.
paramMixing: Object of class "list". See MixedTS-class.
MixingLogMGF: Object of class "OptionalFunction". See MixedTS-class.
```

Extends

```
Class "MixedTS", directly. Class "param.MixedTS", by class "MixedTS", distance 2.
```

6 mle.MixedTS

Methods

```
summary signature(.Object = "MixedTS.qmle")
coef signature(.Object = "MixedTS.qmle")
vcov signature(.Object = "MixedTS.qmle")
logLik signature(.Object = "MixedTS.qmle")
BIC signature(.Object = "MixedTS.qmle")
AIC signature(.Object = "MixedTS.qmle")
```

mle.MixedTS

Maximum Likelihood Estimation for MixedTS distribution

Description

Estimate MixedTS parameters using the Maximum Likelihood Estimation procedure.

Usage

Arguments

object an object of class param. MixedTS that contains informations about the model.

start a list of parameter for the mle.

Data a numeric object containing the dataset.

method methods for optimization routine. See optim for more details.

fixed.param a list of the model parameter that must be fix during optimization routine. Choos-

ing alpha=2 the function returns the estimate parameters for the Normal Vari-

ance Mean Mixture distribution.

lower.param a list containing the lower bound for the parameters.

upper.param a list containing the upper bound for the parameters.

setSup Internal parameter. see documentation for dMixedTS for more details.

setInf Internal parameter. see documentation for dMixedTS for more details.

N Internal parameter. see documentation for dMixedTS for more details.

Value

The function returns an object of class MixedTS.qmle.

param.MixedTS-class 7

Examples

param.MixedTS-class

"param.MixedTS": A mathematical Description of the Mixed Tempered Stable

Description

Main class of the package MixedTS.

Objects from the Class

Objects can be created by calls of the form setMixedTS.

Slots

mu0: a numeric object. mu0 parameter belongs to the real axis.

mu: a numeric object. mu parameter belongs to the real axis

sigma a numeric object. sigma parameter assumes value from zero to infinity.

a a vector object. If numeric, the mixing density V is a Gamma and a is the value of the shape parameter. If string, a is the log of the moment generating function of the mixing density V.

alpha a numeric object that takes value from 0 to 2. If alpha is fixed to 2, the Mixed Tempered Stable becomes the Normal Variance Mean mixture.

lambda_p a positive numeric object. It is the right tempering parameter of the random variable X. **lambda_m** a positive numeric object. It is the left tempering parameter of the random variable X

8 pMixedTS-methods

Mixing a string object indicating the nature of the mixing density V. If Mixing="Gamma" (default value), the V randm variable is a Gamma. If Mixing="Gamma", the user have to specify the log of the moment generating function of the V random variable.

paramMixing a list object. It is an empty list when Mixing="Gamma". If Mixing="User", it is used to pass the values of the Mixing density parameters defined by the User through slot a.

MixingLogMGF: This slot contains a function that returns the logarithm of mgf for the Mixing density. The function is built internally using the information contains into the slots a, paramMixing.

Parametrization: String that indicates the parametrization used by user for the MixedTS

Methods

```
dMixedTS signature(object = "param.MixedTS"): Method for computing density of MixedTS. See "dMixedTS-methods" for more details.
```

pMixedTS signature(object = "param.MixedTS"): Method for computing probability of MixedTS.
 See "pMixedTS-methods" for more details.

qMixedTS signature(object = "param.MixedTS"): Method for computing quantile of MixedTS. See "qMixedTS-methods" for more details.

rMixedTS signature(object = "param.MixedTS"): Method for computing random numbers of MixedTS. See "rMixedTS-methods" for more details.

initialize signature(object = "param.MixedTS").

Qparam.MixedTS signature(object = "param.MixedTS").

pMixedTS-methods

Probability of Mixed Tempered Stable distribution

Description

This Method returns the cdf of a Mixed Tempered Stable

Methods

signature(object = "param.MixedTS", x = numeric(), setSup=NULL, setInf=NULL, N=2^10)

This method returns an object of class MixedTS where the slot prob contains the value of the probability evaluated on the x. setSup and setInf are used to choose + infinity and - infinty. N is the number of point used for discretization in fft algorithm.

Examples

qMixedTS-methods 9

```
x<-seq(-3,1,length=100)
prob1<-pMixedTS(x=x,object=ParamEx1,setSup=10,setInf=-10,N=2^7)
plot(prob1)
# Prob of MixedTS with IG
Mix<-"User"
parMix<-list(lamb=1,mu1=1)
logmgf<-("lamb/mu1*(1-sqrt(1-2*mu1^2/lamb*u))")
ParamEx2<-setMixedTS.param(mu0=0, mu=0, sigma=0.4, a=logmgf, alpha=0.8, lambda_p=4, lambda_m=1, Mixing=Mix,paramMixing=parMix)
x<-seq(-3,1,length=100)
prob2<-pMixedTS(x=x,object=ParamEx2,setSup=10,setInf=-10,N=2^7)
plot(prob2)</pre>
```

qMixedTS-methods

Quantile of Mixed Tempered Stable distribution

Description

This Method returns the quantile of a Mixed Tempered Stable.

Methods

signature(object = "param.MixedTS", x = numeric(), setSup=NULL, setInf=NULL, N=2^10)

This method returns an object of class MixedTS where the slot prob contains the value of the quantile evaluated on the x (x is the probability). setSup and setInf are used to choose + infinity and - infinity. N is the number of point used for discretization in fft algorithm.

 ${\tt rMixedTS-methods}$

Random number of Mixed Tempered Stable distribution

Description

This Method returns the quantile of a Mixed Tempered Stable.

10 setMixedTS.param

Methods

signature(object = "param.MixedTS", x = numeric(), setSup=NULL, setInf=NULL, N=2^10)

This method returns an object of class MixedTS where the slot Data contains a set of size x of random numbers. setSup and setInf are used to choose + infinity and - infinity. N is the number of point used for discretization in fft algorithm.

setMixedTS.param

Mixed Tempered Stable distribution

Description

setMixedTS describes the Mixed Tempered Stable distribution introduced in Rroji and Mercuri (2014):

Definition

We say that a continuous random variable Y follows a Mixed Tempered Stable distribution if:

```
Y = mu0 + mu*V + sigma*sqrt{V}*Z
```

The conditional distribution of random variable given V=v is a standardized Tempered Stable with parameters (alpha, lambda_p*sqrt{v}, lambda_m) (see Kuchler, U. and Tappe, S. 2014). The distribution of V is infinitely divisible defined on the positive axis.

Usage

```
setMixedTS.param(mu0 = numeric(), mu = numeric(),
  sigma = numeric(), a, alpha = numeric(),
  lambda_p = numeric(), lambda_m = numeric(),
  param = numeric(), Mixing = "Gamma", paramMixing = list(), Parametrization = "A")
```

Arguments

mu0	a numeric object. mu0 parameter belongs to the real axis.
mu	a numeric object. mu parameter belongs to the real axis
sigma	a numeric object. sigma parameter assumes value from zero to infinity.
a	a vector object. If numeric, the mixing density V is a Gamma and a is the value of the shape parameter. If string, a is the log of the moment generating function of the mixing density V.
alpha	a numeric object that takes value from 0 to 2. If alpha is fixed to 2, the Mixed Tempered Stable becomes the Normal Variance Mean mixture.
lambda_p	a positive numeric object. It is the right tempering parameter of the random variable X.
lambda_m	a positive numeric object. It is the left tempering parameter of the random variable X
param	a numeric object containing the Mixed Tempered Stable parameters. It is not necessary if we use the previous inputs for defining the distribution. See documentation for more details.

setMixedTS.param 11

Mixing a string object indicating the nature of the mixing density V. If Mixing="Gamma"

(default value), the V randm variable is a Gamma. If Mixing="Gamma", the user have to specify the log of the moment generating function of the V random

variable.

paramMixing a list object. It is an empty list when Mixing="Gamma". If Mixing="User", it

is used to pass the values of the Mixing density parameters defined by the User

through slot a.

Parametrization

a character string. If Parametrization="A" the default, we use the following definition for MixedTS with gamma density

 $Y = mu0 + mu*V + sqrt{V}*Z$

where V is distributed as a Gamma(a, sigma^2). Otherwise if Parametrization="B" we have:

Y= mu0+ mu*V + sigma*sqrt{V}*Z where V is distributed as a Gamma(a, 1).

Details

For particular choices of the tempering parameters the tails of the MixedTS distribution can be heavy or semi-heavy. In particular if the Mixing density is a Gamma, we get the Variance Gamma (Madan and Seneta 1990) and the symmetric Geo-Stable distribution as special cases.

Value

This function returns an object of class "param.MixedTS".

Note

This class of distributions has the Normal Variance Mean Mixture (Barndorff-Nielsen et al. 1982) as special case.

References

Barndorff-Nielsen, O.E., Kent, J. and Sorensen, M. (1982): Normal variance-mean mixtures and z-distributions, *International Statistical Review*, 50, 145-159.

Kuchler, U. and Tappe, S. (2014): Exponential stockmodels driven by tempered stable processes. *Journal of Econometrics*,181 (1), 53-63.

Madan, D.B. and Seneta E. (1990): The variance gamma (V.G.) model for share market returns, *Journal of Business*, 63, 511-524

Rroji, E and Mercuri, L.(2014): Mixed Tempered Stable distribution *UNIMI-Research Papers in Economics, Business, and Statistics*, 64.

Examples

```
# Mixed Tempered Stable with Gamma Mixing density.
```

```
\label{eq:paramex1} ParamEx1<-setMixedTS.param(mu0=0, mu=0, sigma=0.4, a=1.5, alpha=0.8, lambda\_p=4, lambda\_m=1)
```

12 setMixedTS.param

Index

```
dMixedTS (dMixedTS-methods), 2
                                                rMixedTS, param.MixedTS-method
dMixedTS,param.MixedTS-method
                                                        (rMixedTS-methods), 9
        (dMixedTS-methods), 2
                                                rMixedTS-methods, 9
dMixedTS-methods, 2
                                                setMixedTS.param, 10
initialize,MixedTS-method
        (MixedTS-class), 3
initialize,MixedTS.qmle-method
        (MixedTS.qmle-class), 5
Mixed Tempered Stable distribution
        (mle.MixedTS), 6
MixedTS, 5
MixedTS (MixedTS-package), 2
MixedTS-class, 3
MixedTS-package, 2
MixedTS-parameters (setMixedTS.param),
MixedTS.qmle-class, 5
mle (mle.MixedTS), 6
mle.MixedTS, 6
Normal Variance Mean Mixture
        (mle.MixedTS), 6
param.MixedTS, 4, 5, 11
param.MixedTS (param.MixedTS-class), 7
param.MixedTS-class, 7
plot,MixedTS,ANY-method
        (MixedTS-class), 3
pMixedTS (pMixedTS-methods), 8
pMixedTS, param. MixedTS-method
        (pMixedTS-methods), 8
pMixedTS-methods, 8
qMixedTS (qMixedTS-methods), 9
qMixedTS,param.MixedTS-method
        (qMixedTS-methods), 9
qMixedTS-methods, 9
rMixedTS (rMixedTS-methods), 9
```