

Center for Interface Science: Solar Electric Materials

Molecular Orientation of Phosphonic Acids on Transparent Conductive Oxides

Lingzi Sang¹, Matthew C. Schalnat¹, Jeanne E. Pemberton¹, Matthew Gliboff², Kristina Knesting², David Ginger², Ajaya Sigdel³, Joseph Berry³, Anthony Giordano⁴, Sergio Paniagua⁴, Seth Marder⁴, Hong Li⁴, Jean-Luc Brédas⁴

¹Department of Chemistry and Biochemistry, University of Arizona
²Department of Chemistry, University of Washington
³National Renewable Energy Laboratory
⁴Department of Chemistry and Biochemistry, Georgia Institute of Technology

Organic Photovoltaic Cells (OPVs)

Process of solar energy conversion:

- 1. Light absorbed and exciton generated (Best light absorber molecules?)
- **2. Exciton diffusion** (Exciton diffusion length? How to improve?)
- 3. Charge separation (How to eliminate charge recombination?)
- **4. Charge carrier transport to electrodes** (How to improve charge transfer efficiency?)
- 5. Charge collection at electrodes

Key: Heterogeneity at the interface Interface Chemistry

Organic/Metal Oxide Interface

Orientation of Phosphonic Acids (PAs)

Tune surface work function and match the surface energy by changing interface dipole^[1]

Molecular orientation affects net interface dipole

Phosphonic acid models

[1] Sergio A. Paniagua,Peter J. Hotchkiss,| Simon C. Jones,et.al, J. Phys. Chem. C, Vol. 112, No. 21, 2008

Collaborative Research on Molecular Orientation of PPA

Phosphonic acids synthesis

Marder Group

Substrate preparation

Sputtered (70:30 (wt%) In₂O₃:ZnO)

<u>Polarization Modulation Infrared Reflection</u> Absorption Spectroscopy (PM-IRRAS)

PM-IRRAS instrument at Pemberton Lab (UA)

Near Edge X-ray Absorption Fine Structure (NEXAFS) Spectroscopy

Density Functional Theory (DFT) Calculations

(Image courtesy of the Brédas group)

Beamlines at SLAC (left), and NEXAFS instrument (right) Work with Ginger group

PM-IRRAS Surface Selection Rules

Surface selection rules:

- 1. Only p component of the incident light can interact with surface species
- 2. Only the perpendicular component of transition dipole moment can be detected

PM-IRRAS: Mathematically cancels out isotropic signal; improve surface sensitivity

Quantitatively Determine Molecular Orientation via PM-IRRAS

 $Abs \propto \cos^2 \theta$ Experimentally:

$$\frac{Abs_{monolayer}}{3 \times Abs_{isotropic}} = \cos^2 \theta$$

 θ is tilt angle the angle of a specific transition dipole moment with respect to the surface normal

Quantitatively Determine Molecular Orientation via PM-IRRAS

Transmission IR experiment **PM-IRRAS PA Monolayer KBr Pellet** Accurate concentration of Monolayer of PPA with theoretically PPA²⁻ salt in KBr pellet with calculated surface coverage on IZO/Au measurable thickness substrate Salt concentration **Surface coverage Factors that** Thickness of KBr pellet Monolayer thickness affect Abs No effect of substrate values **Optical constants affect Abs.** on Abs. signal signal of monolayer

Key: Simulate transmission IR spectra for same conditions as monolayer; compare intensity differences due to molecular orientation

Isotropic molecules

Molecules with preferred

specific orientation

PM-IRRAS of Phosphonic Acids (PAs)

PM-IRRAS of PA-modified IZO

Phosphonic acid models

Spectral Interpretation for Aryl-Containing PAs

Four possible binding modes and their vibrational signatures for phosphonic acids on metal oxide surfaces

Monodentate

 $v(P=O_{free}) \sim 1200 \text{ cm}^{-1}$ $v(P-OH) \sim 950 \text{ cm}^{-1}$

Bidentate w/free P=O

 $v(P=O_{free}) \sim 1200 \text{ cm}^{-1}$ $v_{as}(PO_3) \sim 1050 \text{ cm}^{-1}$ $v_{s}(PO_3) \sim 1020 \text{ cm}^{-1}$

Bidentate w/free -OH

 $v(P-OH)^{\sim} 950 \text{ cm}^{-1}$ $v_{as}(PO_3) \sim 1050 \text{ cm}^{-1}$ $v_s(PO_3) \sim 1020 \text{ cm}^{-1}$

Tridentate

 $v_{as}(PO_3) \sim 1050 \text{ cm}^{-1}$ $v_{c}(PO_3) \sim 1020 \text{ cm}^{-1}$ Vibrational modes of phenyl ring and phosphonic acid groups used for molecular orientation determination

Binding and Molecular Orientation of PPA by PM-IRRAS

Binding modes:

- 1. The absence of v(P-OH) at 920 to 950 cm⁻¹ and v(P=O free) at 1200 cm⁻¹ and the appearance of v(P-O-metal) at 1166 cm⁻¹ suggest P=O and two P-OH groups are all bonded to oxide surface
- 2. Significant decrease of $v_{as}(PO^{3-})$ compare to $v_s(PO^{3-})$ suggests the PO^{3-} group is mostly perpendicular to the surface.

Binding and Molecular Orientation of PPA by PM-IRRAS

Phenyl ring orientation:

Significant decrease of V_{19b} (1436cm⁻¹) and V_{20b} (3031cm⁻¹) modes suggest V_{19b} and V_{20b} are in parallel to the substrate.

Increased intensity of $V(C_{ring}-P)$ (1148cm⁻¹), V_{19a} (1491cm⁻¹), V_{8a} (1595cm⁻¹) and V_{2} (3061cm⁻¹) modes indicate their perpendicular position relative to the substrate.

Binding and Molecular Orientation of PPA by PM-IRRAS

Quantitative orientation results:

Molecular tilt angle is calculated using modes that align with molecular long axis ($v(C_{ring}-P)$ at 1148 cm⁻¹, v_{19a} at 1491 cm⁻¹, v_{8a} at 1595 cm⁻¹ and v_2 at 3061 cm⁻¹)

The results suggest PPA tilt at 15.6° ± 0.8° from surface normal

PPA:

- Tridentate binding
- Tilt ca. 16° from surface normal

Collaborative Research on Molecular Orientation of PPA

Model System: PPA on IZO and ITO

<u>Density Functional Theory (DFT)</u> Calculations

Optimized structure for PPA on ITO (Image courtesy of the Brédas group.)

DFT calculation:

PPA tridentate bonded on ITO; ring plane mostly upright (~10° tilt)

NEXAFS at SLAC

Incidence Radiation Energy (eV)

NEXAFS spectra for PPA on an IZO surface with increasing incident angle of x-radiation

NEXAFS Results

Molecular Orientation via Three Independent Techniques

<u>DFT Calculations</u>

Conclusion:

- ❖ PPA is largely tridentate bound to IZO surfaces as indicated by the vibrational signatures of the phosphonic acid modes and DFT calculations
- ❖ DFT calculations, PM-IRRAS, and NEXAFS results all agree that PPA is well-ordered and largely upright on IZO substrates with small tilt angle of molecular axis from surface normal

Acknowledgements

Pemberton Research Group:

Dr. Jeanne Pemberton
Dr. Anoma Mudalige
Dr. Matthew Schalnat
Dr. Hui Wang
All the group members

Collaborators

Dr. David Ginger (UW)
Kristina Knesting (UW)
Matthew Gliboff (UW)
Dr. Joseph Berry (NREL)
Ajay Sigdel (NREL)

Dr. Jean-Luc Bredas (GT)
Dr. Hong Li (GT)
Dr. Seth Marder (GT)
Anthony Giordano (GT)

Family and friends

Research supported as part of the Center for Interface Science: Solar-Electric Materials (CIS:SEM), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Basic Energy Sciences under Award Number DE-SC0001084. Instrumentation supported by the National Science Foundation through Award Number CHE-0848624.

