

sulli Prep nui Ton Life set nui

TRIANGLE-3

Eg. In a ΔABC , points D and E are taken on AB & AC in such that DE $|\ |\ BC$.

If $\frac{AD}{DB} = \frac{2}{5}$, find (Area of \triangle ADE : Area of \triangle DEB : Area of \triangle BEC)

area of
$$\triangle ABC = \left(\frac{2}{7}\right) \Rightarrow \frac{4}{49}$$

DDEB 1 DBEC

Eg. In the given figure, \angle BAC = \angle BCD, AB = 32 cm and BD = 18 cm, then the ratio of perimeter of Δ BDC and \triangle ABC is:

(a) 4:3 (b) 8:5

(c)

Done in last class

gradeup

Eg. In \triangle PQR, S and T are points on side PR and PQ respectively such that, \angle PQR = \angle PST. If PT = 5 cm, PS = 3 cm and TQ = 3 cm, then length of SR is (a) 5 cm (b) 6 cm

(c)
$$\frac{31}{3}$$
 cm

(d)
$$\frac{41}{3}$$
 cm

$$\frac{3}{8} = \frac{5}{3+\pi}$$
 $9+3x = 40$
 $x = \frac{31}{3}$

SIMILARITY IN RIGHT ANGLE TRIANGLE

A right angle Δ , right angle at B and BD is perpendicular to AC.

 $\Delta ABC \sim \Delta ADB \sim \Delta BDC$

(1) A right angle Δ , right angle at B and BD is perpendicular to AC.

(2) A right angle Δ , right angle at B and BD is perpendicular to AC.

(3) A right angle Δ , right angle at B and BD is perpendicular to AC.

(4) A right angle Δ , right angle at B and BD is perpendicular to AC.

(5) A right angle Δ , right angle at B and BD is perpendicular to AC.

$$(BC)^{2} \cdot (AB)^{2} = (AC)^{2} \cdot (BD)^{2}$$

$$(BC)^{2} \cdot (AB)^{2} = (AB^{2} + BC)^{2} \cdot (BD)^{2}$$

$$= \frac{AB^{2} + BC^{2}}{(AB)^{2} \cdot (BC)^{2}}$$

(1)
$$AB \times BC = AC \cdot BD$$

(2)
$$BA^2 = AD \cdot AC$$

(3)
$$BC^2 = CD \cdot CA$$

(4)
$$BD^2 = DA \cdot DC$$

(5)
$$\frac{1}{BD^2} = \frac{1}{AB^2} + \frac{1}{BC^2}$$

EXAMPLES ON SIMILARITY IN RIGHT ANGLE Δ

Eg

6

B 8

AB = 6cm BC = 8cm

area of ABD(

= -9-6

Eg. In a \triangle ABC, AD \perp BC & AD² = BD \cdot DC Find \angle BAC = ??

11 let AD = 2 BD = 4

CD=1 AB= 520 AC= 55

AB + AC = BC

MID-POINT THEOREM

If we join mid-points of any 2 sides of a Δ by a line segment then that line segment will be parallel to the third side and half of it.

Eg. Given, D is mid-point of AB. E is mid-point of AC.

$$DE \mid BC$$

$$DE = \frac{1}{2}BC$$

Proof of Mid-point theorem:

Given, D, E are mid-point of AB & AC.

To prove: (i) $DE \mid BC$

(ii)
$$DE = \frac{1}{2}BC$$

Proof: AD: AB = 1:2

AE: AC = 1:2

 \triangle ADE $\sim \triangle$ ABC (SAS similarity)

 $\angle ADE = \angle ABC$ (Corresponding angles)

$$DE \mid \mid BC$$

$$DE = \frac{1}{2}BC$$

CONVERSE OF MID-POINT THEOREM

Given,
D is mid-point of AB.
DE | | BC

E is mid-point of AC.

C<u>ONGRUENC</u>Y

Two figures are said to be congruent, if they are exactly same in every aspect.

- 2 line segments are congruent?
- 2 circles are congruent?
- 2 squares are congruent?

when their length are equal when their radius are equal when sides are equal

Then

 $\triangle ABC \cong \triangle DEF$

Symbol of Congruent

Triangles

3 Angles 13 3 sides

CONDITIONS OF CONGRUENCY

- (1) SSS
- (2) <u>SAS</u>
- (3) <u>ASA</u>
- (4) AAS
- (5) RHS

SSS (Side – Side – Side)

DABC Z DFDE

ASA (Angle - Side - Angle)

DPQR = BCA

AAS (Angle - Angle - Side)

DARC = DDEF

RHS (Right - Hypotenuse - Side)

AAA & SSA does not guarantee congruency.

If D, E & F are midpoints of the sides AB, BC, CA Then,

 $\triangle DFE \cong \triangle FDA \cong \triangle EBD \cong \triangle CEF$

Area of Δ DFE = $\frac{1}{4}$ (Area of Δ ABC)

 If Congruent
 → Similar

 If Similar
 → Congruent

 If Congruent
 → Area same

 If Area same
 → Congruent

 Similar + Area same
 → Congruent

Q. AD is perpendicular to the internal bisector of ∠ABC of ∆ABC. DE is drawn through D parallel to BC to meet AC at E. If the length of AC is 12 cm, then the length of AE (in cm.) is:

Ans. (b)

Centres of Triangles

Orthocentre \rightarrow (15-17) rûn

* Circumcentre \rightarrow (10-12) rûn

* Incentre \rightarrow (38-42) rûn

* Controid \rightarrow (52-56) rûn

ORTHOCENTRE

Def: Meeting point of all altitudes

AD, BE and CF are altitudes of triangle.

O → Orthocentre

B

A

$$\angle A + \angle BOC = 180^{\circ}$$

Reason ??

Quad AFOE

, outhoceaty

J/ (C= 68°

Find (AOB: ?;?

68+ (AOB = 180

LAOB = (12

0 -> outhocentu

 $AO \cdot OD = BO \cdot OE = CO \cdot OF$

Reason??

A0 = 10 cm

BO = 12 cm

Eo: Scm

find Do = ??

10 X DO = 12X5

D0 = 6 cm

POSITION OF ORTHOCENTRE

1. Acute Angle Triangle

lies inside the D

2. Right Angle Triangle

3. Obtuse Angle Triangle

gradeup

In a ΔABC , O is the orthocentre. Which point is the orthocentre of ΔBOC ?

A BOC Def - Meeting pt of all altitudes

Sum of all altitudes of a triangle is less than perimeter of triangle. किसी त्रिभुज के सभी शीर्षलंबों का योग त्रिभुज के परिमाप से कम होता है।

CIRCUMCENTRE

Def: Meeting point of all perpendicular bisector.

