

Introducción a Ciencia de la Computación Práctica Calificada 3 Pregrado 2020-I Profesor Jorge Alvarado Revata

Lab 1.01

Indicaciones específicas:

- Esta evaluación contiene 7 páginas (incluyendo esta página) con 3 preguntas. El total de puntos son 20.
- El tiempo límite para la evaluación es 100 minutos.
- Cada pregunta deberá ser respondida en un solo archivo con el número de la pregunta y tu código de estudiante. Por ejemplo:
 - 1. p1.py
 - 2. p2.py
 - 3. p3.py
- Luego deberás incluir estos archivos en una carpeta con nombre pc3; para que finalmente envíes esta carpeta comprimida pc3.zip a www.gradescope.com

Competencias:

- Para los alumnos de la carrera de Ciencia de la Computación
 - Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Usar)
- Para los alumnos de las carreras de Ingeniería
 - Capacidad de aplicar conocimientos de ingeniería (**nivel 2**).

Calificación:

Tabla de puntos (sólo para uso del professor)

Question	Points	Score
1	6	
2	7	
3	7	
Total:	20	

1. (6 points) Se tiene la información de pasajeros de un bus interprovincial de acuerdo a la siguiente tabla. Solicite los datos de entrada hasta que el valor del dni sea 0. Decida como almacena la información de manera que sea más simple realizar una busqueda de información por *DNI* y apellido *paterno*. Implemente el programa que almacene la información y que permita realizar la consulta por *dni* y apellido *paterno*.

Table 1: Información de pasajeros

rabie 1. imormación de pasajeros			
dni	paterno	nombre	edad
1010	Alva	Gisella	19
2010	Roble	Rosa	23
3020	Salcedo	Manuel	32
4532	Pacheco	Angie	21

- Utilice diccionarios. Decida adecuadamente la forma del diccionario para facilitar la consulta de datos.
- Revise los ejemplos de entrada y salida.

```
ingrese dni:1010
ingrese apellido paterno: Alva
ingrese nomnre: Gisella
ingrese edad: 19
ingrese dni:0
*******************
Realizar busqueda
ingrese dni:1010
ingrese apellido paterno:Alva
Pasajero(a): Gisella Alva con dni: (1010) y edad: 19
```

La rúbrica para esta pregunta es:

Criterio	Logrado	Parcialmente Logrado	No Logrado
Algoritmo	Es preciso, finito y	Es preciso, finito y hace	Hace menos de la mitad
	hace exactamente lo	la mitad o más de lo	de lo que el enunciado
	que el enunciado re-	que el enunciado re-	re- quiere (0pts)
	quiere (4pts)	quiere (1pts)	
Sintáxis	Todas las sentencias	Mas de la mitad de las	Menos de la mitad de
	son correctas y no	sentencias son correc-	las sentencias son cor-
	hay errores de sintáxis	tas y no hay errores de	rectas (0pts)
	(1pts)	sintáxis (0.5pts)	
Legible	El algoritmo es cor-	El algoritmo es correcto	El algoritmo es correcto
	recto y el nombre de to-	y el nombre de la mitad	y el nombre de menos la
	das las variables y fun-	de las variables y fun-	mitad de las variables y
	ciones son descriptivas	ciones son descriptivas	funciones son descripti-
	(1pts)	(0.5 pts)	vas (0 pts)

2. (7 points) Elabore una función en modo imperativo y en modo recursivo que calcule la expresión siguiente:

$$H_{(n)} = n(n-1) + H_{(n-1)}$$

- ullet La función recibe N como parametro de entrada
- Considere que si N=1 la función devuelve 0
- implemente ambas funciones en modo imperativo y en modo recursivo.
- identifique la complejidad del algoritmo solución imperativa. Agregue un comentario o un print indicando la complejidad de la solución.
- Redondear el resultado a 3 decimales.

Algunos ejemplos de diálogo de este programa serían:

Input:2

Output: 1.25

Input:10

Output: 1.55

La rúbrica para esta pregunta es:

Criterio	Logrado	Parcialmente Logrado	No Logrado
Algoritmo	Es preciso, finito y	Es preciso, finito y hace	Hace menos de la mitad
	hace exactamente lo	la mitad o más de lo	de lo que el enunciado
	que el enunciado re-	que el enunciado re-	requiere (0pts)
	quiere (3pts)	quiere (1.5pts)	
Sintáxis	Todas las sentencias	Más de la mitad de las	Menos de la mitad de
	son correctas y no	sentencias son correc-	las sentencias son cor-
	hay errores de sintáxis	tas y no hay errores de	rectas (0pts)
	(1pts)	sintáxis (0.5pts)	
Legible	El algoritmo es cor-	El algoritmo es correcto	El algoritmo es correcto
	recto y el nombre de to-	y el nombre de la mitad	y el nombre de menos la
	das las variables y fun-	de las variables y fun-	mitad de las variables y
	ciones son descriptivas	ciones son descriptivas	funciones son descripti-
	(1pts)	(0.5 pts)	vas (0 pts)
Funciones	Se implementan y		Las funciones no están
	usan correctamente		implementadas o us-
	todas las funciones		adas correctamente
	requeridas (1pts)		(0pts)
	dEs correcta la com-		No describe o es incor-
Algorit-	plejidad algorítmica		recta la complejidad
mica	señalada (1pts)		algorítmica señalada.
			(0pts)

- 3. (7 points) Generar una matriz de tamaño nxn dado 3 valores a b n ingresados en una sola linea y separados por un espacio. Los 3 valores representan lo siguiente: Donde a, b son los limites minimo y maximo de una secuencia y n es el tamaño de la matriz cuadrada.
 - La matriz se imprime considerando los limites minimo y maximo inclusive.
 - si se completa la secuencia, se vuelve desde el inicio hasta terminar en la última posición de la matriz
 - identifique la complejidad del algoritmo solución. Agregue un comentario o un print indicando la complejidad de la solución.

input: 2 7 5

output:

2	3	4	5	6
7	2	3	4	5
6	7	2	3	4
5	6	7	2	3
4	5	6	7	2

La rúbrica para esta pregunta es:

Criterio	Logrado	Parcialmente Logrado	No Logrado
Algoritmo	Es preciso, finito y	Es preciso, finito y hace	Hace menos de la mitad
	hace exactamente lo	la mitad o más de lo	de lo que el enunciado
	que el enunciado re-	que el enunciado re-	requiere (0pts)
	quiere (3pts)	quiere (1pts)	
Sintáxis	Todas las sentencias	Mas de la mitad de las	Menos de la mitad de
	son correctas y no	sentencias son correc-	las sentencias son cor-
	hay errores de sintáxis	tas y no hay errores de	rectas (0pts)
	(1pts)	sintáxis (0.5pts)	
Legible	El algoritmo es cor-	El algoritmo es correcto	El algoritmo es correcto
	recto y el nombre de to-	y el nombre de la mitad	y el nombre de menos la
	das las variables y fun-	de las variables y fun-	mitad de las variables y
	ciones son descriptivas	ciones son descriptivas	funciones son descripti-
	(1pts)	(0.5 pts)	vas (0 pts)
Iteración	Recorre adecuada-		No recorre los elemen-
	mente los elementos de		tos de la matriz de
	la matriz (1pts)		forma programática y
			solo funciona en al-
			gunos casos (0 pts).
Complejida	dEs correcta la com-		No describe o es incor-
Algorit-	plejidad algorítmica		recta la complejidad
mica	señalada (1pts)		algorítmica señalada.
			(0pts)