This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Data recording and reproducing apparatus having a plurality of operating modes

Patent Number:

US5237553

Publication date:

1993-08-17

G11B7/00

Inventor(s):

AZUMATANI YASUSHI (JP); FUKUSHIMA YOSHIHISA (JP); TAKAGI YUJI (JP); SATOH ISAO (JP);

HAMASAKA HIROSHI (JP)

Applicant(s)::

MATSUSHITA ELECTRIC IND CO LTD (JP)

Requested Patent:

JP4028061

Application Number: US19910705540 19910524

Priority Number(s):

JP19900135021 19900524

IPC Classification: EC Classification:

G11B7/00, G11B19/02, G11B20/18D, G11B20/18S2, G11B27/32D2, G11B20/12D8

Equivalents:

Abstract

In data recording medium used with the apparatus of the present invention, there are allocated a sequential access zone consisting of a data area for recording real time data such as sounds or video images, a C list area for recording a C defect list managing defective sectors detected in the formatting process, and a G list area for recording a G defect list managing defective sectors detected in the recording process of data, and a random access zone consisting of a data area for recording random access data such as code data, a spare area for replacing defective sectors detected in the recording process, and an R list area for recording an R defect list managing the relation between defective sectors and corresponding spare sectors. In the recording process of data in the sequential access zone, data is recorded while defective sectors registered in the C defect list and G defect list are skipped, thereby achieving recording of both the random access data and the real time data. Moreover, sequential reproduction of real time data is realized.

Data supplied from the esp@cenet database - 12

⑩日本国特許庁(JP)

⑩ 特 許 出 願 公 閉

⑫ 公 開 特 許 公 報 (A) 平4-28061

Mint. Cl. 3 G 11 B 20/12 識別記号 庁内整理番号 ❸公開 平成4年(1992)1月30日

G 06 F 3/06 G 11 B 20/10

9074-5D KC 306

7232 - 5B7923-5D

> 審杳請求 未請求 請求項の数 6 (全13頁)

会発明の名称 情報記録媒体と情報記録再生装置

②特 頤 平2-135021

❷出 願 平2(1990)5月24日

@発 明 者 島 福 能久 大阪府門真市大字門真1006番地 松下電器産業株式会社内 79発 明 者 佐 藤 動 大阪府門真市大字門真1006番地 松下電器産業株式会社内 @発 明 者 木 哥 大阪府門真市大字門真1006番地 松下電器産業株式会社内 髙 裕 @発 眀 者 東 谷 易 大阪府門真市大字門真1006番地 松下電器産業株式会社内 @発 明 者 濱 坂 浩 史 大阪府門真市大字門真1006番地 松下電器産業株式会社内 砂出 願人 松下電器産業株式会社 大阪府門真市大字門真1006番地

個代 理 人 弁理士 栗野 外1名 重孝

i. 発明の名称

情報記録媒体と情報記録再生装置

2. 特許請求の範囲

(1) セクタ単位でデータが記録再生されるディ スク状の情報記録媒体内に 一次欠陥リスト領域 とユーザ領域から構成されてセクタスリッピング アルゴリズムに基づいて欠陥セクタを管理する違 銃アクセスゾーンと

二次欠陥リスト領域と代替セクタ領域とユーザ 領域から構成されてリニアリプレースメントアル ゴリズムに基づいて欠陥セクタを管理するランダ ムアクセスゾーンと

ディスク上に割り当てられた前記連続アクセス ゾーンと前記ランダムアクセスゾーンの管理情報 を保持したポリューム制御プロックを記録するた めのポリューム制御領域が形成されたことを特徴 とする情報記録媒体。

(2)セクタ単位でデータが記録再生されるディ スク状の情報記録媒体内に

一次欠陥リスト領域とユーザ領域から機成される 連続アクセスゾーンと 二次欠陥リスト領域と代 替セクタ領域とユーザ領域から構成されるランダ ムアクセスゾーンと ポリューム制御領域とを刺 り当てる領域割当手段と

前記連続アクセスゾーンのユーザ領域に刺り当 てられた全セクタ に対してテストデータの記録動 作とベリファイ動作を実行して欠陥セクタを検出 する初期不良検出手段と

前記初期不良検出手段が検出した欠陥セクタの アドレスを保存する一次欠陥リストを作成して前 記一次欠陥リスト領域に記録する一次欠陥セクタ 登録手段と

前記連続アクセスソーンと前記ランダムアクセ スソーンの管理情報を保持したポリューム制御プ ロックを前記ポリューム制御領域に記録する領域 管理手段と

前記ポリューム制御プロックを読み出し デー タの記録再生領域が前記連続アクセスゾーンと前 記ランダムアクセスゾーンのどちらに含まれるか を判別する領域判別手段と

前記領域判別手段による判別結果からデータ記録再生領域が前記連続アクセスゾーンに含まれると
あ セクタスリッピングアルゴリズムに基づいて欠陥セクタを処理する連続アクセスゾーン制御手段と

前記領域判別手段による判別結果からデータ記録再生領域が前記ランダムアクセスゾーンに含まれるとあ、リニアリブレースメントアルゴリズムに基づいて欠陥セクタを代替処理するランダムアクセスゾーン制御手段と

を備えたことを特徴とする情報記録再生装置。

(3) 初期不良検出手段は ベリファイ動作におけるエラー訂正処理において許容範囲を超えるエラーが検出されときにベリファイエラーが検出されたと判定することを特徴とした請求項2記載の情報記録再生装置。

(4)初期不良検出手段は、ベリファイ動作において読み出された再生データをテストデータとバイト単位で比較して、許容範囲を超えるエラーが

検出されたときにベリファイエラーが検出された と判定することを特徴とした請求項2記載の情報 記録再生装置。

(5) ランダムアクセスゾーン制御手段は、ベリファイ動作におけるエラー訂正処理において許容範囲を超えるエラーが検出されたときにベリファイエラーが検出されたと判定することを特徴とした請求項2記載の情報記録再生装置。

(6) ランダムアクセスゾーン制御手段は ベリファイ動作において読み出された再生データを記録データとバイト単位で比較し 許容範囲を超えるエラーが検出されたときにベリファイエラーが検出されたと判定することを特徴とした請求項 2 記載の情報記録再生装置。

3. 発明の詳細な説明

産業上の利用分野

本発明は セクタ単位で情報の記録再生を行なう情報記録媒体と この情報記録媒体を用いたデータの記録再生動作を実行する情報記録再生装置に関するものである。

従来の技術

磁気ディスクなどに比較して多数の欠陥セクタ が検出される光ディスクでは 効率的な欠陥セク タの管理方法をインブリメントすることが必要と なる。 このような欠陥セクタの管理方法に関して 光ディスク標準化委員会は130mm書換型光デ ィスクを対象とした規格化を進めており、 その内 容はドラフト提案書 (DP 10088) に記載されて いる。 第8図は、この提案書で述べられたディス ク上に形成される領域の構成を概略的に示した領 域構成図である 第6図では まずデータ記録領 域の一端からディスク上に形成された各領域の管 理情報を一括して保存するDDS(Disk Defini tion Structure) を記録するためのディスク定義 領域と ディスクのフォーマット処理などにおい て初期不良として検出された欠陥セクタの物理ア ドレスを一括して保存している一次欠陥リスト(PDL: Primary Defect List) を記録するための一 次欠陥リスト領域と ユーザデータの記録動作に おいて検出された欠陥セクタとデータを代替記録

する代替セクタの物理アドレスを一括して保存す る二次欠陥リスト (SDL: Secondary Defect List) を記録するための二次欠陥リスト領域とが形成さ れる。 第6図では説明の簡略化にためこれらの領 域はディスク上に一カ所だけ設けられているが、 ドラフト提案書では高信頼性を確保するために内 外周に各二カ所ずつ記録される。 また これらの 管理情報が記録される領域は固定長で与えられ 他の領域は1つ以上のグループと呼ばれる部分領 域に等分割される。 第 8 図では、一例としてn個 のグループに分割されている このグループと呼 ばれる部分領域には ユーザデータが記録される ユーザ領域とユーザデータの記録動作において検 出された欠陥セクタを代替するための代替セクタ 領域から構成される。 ユーザ領域や代替セクタ領 域の容量は各グループに共通しており、 グループ 数とともにDDS内部に保存される

次に、欠陥セクタ管理に使用する一次欠陥リストと二次欠陥リストの内部構成に関して第7図を 参照しながら以下に説明する。第7図(a)は

これらの欠陥リストに共通した内部構成図であり、 第7図(b) は欠陥リストを構成する名パラメー 夕の比較表である。 一次欠陥リストでは その先 頭に欠陥リスト識別子として (0001) h が記 録されるとともに 各欠陥セクタを管理するため の欠陥セクタエントリには1パイト長で表現され る欠陥セクタの物理アドレスが保存される。 また この欠陥セクタエントリの個数をnとしたとあ 欠陥リスト長4mが2パイト長で表現される。 一 大 二次欠陥リストの場合には 欠陥リスト識別 子として(0002)hが記録されるとともに 欠陥セクタエントリは4パイト長の欠陥セクタア ドレスと代替セクタアドレスが一緒に記録される ことから 欠陥リスト長は8mとして与えられる。 これらの欠陥リストは 次のような処理の中で 作成・更新される。 まず、 ディスクのフォーマッ ト処理では テストデータの記録動作とベリファ イ動作の実行によるセクタ検査処理がユーザデー 夕領域と代替セクタ領域に割り当てれれた全セク タを対象として実行され、初期不良が検出された

欠陥セクタは 一括して一次欠陥リストに登録さ れる また ユーザデータの記録動作では デー 夕記録動作とこれに続くベリファイ動作において 検出した欠陥セクタが 一括して二次欠陥リスト に登録される ところで ユーザデータの記録再 生動作では これらの欠陥リストを参照すること によってホストコンピュータが指定した目標セク タの論理アドレスをディスク上の物理アドレスへ 変換する必要がある。 第8図は 論理アドレスと 物理アドレスとの対応関係図である。いま、 トラ ック0上のセクタlとセクタ5が初期不良セクタ として一次欠陥リストに登録されるとともに、二 次欠陥リストにはトラック0上のセクタ2が登録 され代替セクタとしてトラック1000上のセク タリが割り当てられているものとして説明する アドレス変換の第1ステップでは 一次欠陥リス トに登録された2つの欠陥セクタアドレスから 目標セクタの論理アドレスが中間アドレスへ変換 される このとき中間アドレスは 昇順でソーテ ィングされた一次欠陥リストの中で中間アドレス

よりも大きくないアドレスをもつ欠陥セクタエン トリの個数を論理アドレスに加算したものに対応 する。次に アドレス変換の第2ステップでは、 リニアリプレースメント (Linear Replacement) アルゴリズムに基づいて目標セクタの中間アドレ スが物理アドレスへ変換される。 つまり、 昇順で ソーティングされた二次欠陥リストの中から二分 探索法などを用いて欠陥セクタアドレスとして登 録された中間アドレスを検索する。 そして、二次 欠陥リストに登録されたセクタ(トラック: 0、 セクタ: 2) の物理アドレスは、対応する欠陥セ クタエントイに記録された代替セクタアドレスに 置き換えられる しかし二次欠陥リストに登録さ れていないセクタについては、中間アドレスがそ のまま物理アドレスとして使用される。 以上のよ うな2段階のアドレス変換手順によって目標セク タの物理アドレスが与えられ データの記録再生 動作が実行される。

発明が解決しようとする課題

しかしながら 光ディスクのような可換媒体は

フォーマット処理において初期不良を持つ欠陥セ クタを検出したとしても 保存環境や書換回数の 増加にともなう劣化によってフォーマット後に新 たな欠陥セクタが発生することは避けられない したがって、 記録データの十分な信頼性を確保す るためには データ記録直後にペリファイ動作を 実行することが必要となる。 このときUNIXや MS-DOSなどの汎用OSの下で管理されるコ ードデータが記録される場合 コードデータはデ ィスク上に分散して記録されることから欠陥セク 夕の代替管理にはリニアリプレースメントアルゴ リズムのみの適用で十分である。 コードデータの 欠陥管理にセクタスリッピングアルゴリズムを併 用すると フォーマット処理におけるセクタ検査 処理や2段階のアドレス変換処理が必要となって 処理手順が複雑化してオーバーヘッドが増加する。 一方 面像や音声データのように大容量で連続性 を要求するデータを記録する場合 リニアリプレ ースメントアルゴリズムによる欠陥セクタの代替 管理が行われると 欠陥セクタに代わって代替セ

クタをアクセスするためにユーザ領域と代替セクタ領域の間のシーク動作が発生して連続的なデータの記録再生動作が実行できなくなることがある。 したがって、このような状況の下では、 画像・音声データを連続的に記録・再生することができなくなる。

本発明はかかる点に鑑み コードデータと画像・音声データの両者に対して効率的なデータ構造を再生動作を実行可能とするようなデータ構造を持つことを特徴とした情報記録媒体と このような情報記録媒体を用いてコードデータや画像・音声データの記録再生動作を実行することを目的とする。

課題を解決するための手段

本発明は、セクタ単位でデータが記録再生されるディスク状の情報記録媒体内に、一次欠陥リスト領域とユーザ領域から構成されてセクタスリッピング (Sector Slipping) アルゴリズムに基づいて欠陥セクタを管理する連続アクセスゾーンと

初期不良検出手段が検出した欠陥セクタのアドレスを保存する一次欠陥リストを作成して一次欠陥リスト領域に記録する一次欠陥セクタ登録手段 と

連続アクセスソーンと前記ランダムアクセスソーンの管理情報を保持したポリューム制御でロックをポリューム制御領域に記録する領域管理手段と

ポリューム制御ブロックを読み出し、データの 記録再生領域が連続アクセスゾーンとランダムア クセスゾーンのどちらに含まれるかを判別する領 域判別手段と

領域制別手段による判別結果からデータ記録再 生領域が連続アクセスゾーンに含まれるとき、セ クタスリッピング (Sector Slipping) アルゴリ ズムに基づいて欠陥セクタを処理する連続アクセ スソーン制御手段と

領域判別手段による判別結果からデータ記録再 生領域がランダムアクセスゾーンに含まれるとあ リニアリブレースメント (Linear Replacement) 二次欠陥リスト領域と代替セクタ領域とユーザ 領域から構成されてリニアリプレースメント (Li near Replacement) アルゴリズムに基づいて欠陥 セクタを管理するランダムアクセスゾーンと

ディスク上に割り当てられた連続アクセスゾーンとランダムアクセスゾーンの管理情報を保持したポリューム制御プロックを記録するためのポリューム制御領域が形成されたことを特徴とする情報記録媒体である。

本発明は、セクタ単位でデータが記録再生されるディスク状の情報記録媒体内に、一次欠陥リスト領域とユーザ領域から構成される連続アクタ領域と一つと、エリューム制御領域とを割り当てる領域制当手段と

連続アクセスソーンのユーザ領域に割り当てられた全セクタに対してテストデータの記録動作とベリファイ動作を実行して欠陥セクタを検出する初期不良検出手段と

アルゴリズムに基づいて欠陥セクタを代替処理す るランダムアクセスゾーン制御手段と

を備えたことを特徴とする情報記録再生装置で ある。

作用

実施例

本発明の情報記録媒体とその情報記録媒体を用いる情報記録再生装置について、図面を参照しながら以下に説明する。第1図は、本発明の情報記録媒体の一実施例における領域構成図である。第

1 図では セクタ単位に分割されたディスク状の 情報記録媒体のデータ記録領域内の先頭にポリュ ーム制御領域が割り当てられる。 ポリューム制御 領域の後には 画像や音声などの連続性を必要と するデータを記録するための連続アクセスソーン セ コードデータを記録するためのランダムアク セスソーンが割り当てられる。 これらのソーンの 配置はフォーマットパラメータの設定によって与 えれれるので、任意の場所に多数のソーンを配置 することが可能である。 連続アクセスソーンは ユーザデータを記録するためのユーザ領域とユー ザ領域から検出された欠陥セクタを管理する一次 欠陥リストを記録するための一次欠陥リスト領域 とから構成される。一方 ランダムアクセスソー ンは ユーザデータを記録するためのユーザ領域 とユーザ領域から検出された欠陥セクタを代替す るための代替セクタ領域と欠陥セクタと代替セク タとの対応関係が登録される二次欠陥リストを記 ほするための二次欠陥リスト領域から構成される。 これらの領域の容量は ユーザの使用環境やディ

スク品質に依存して与えられるパラメータであり、フォーマットパラメータを用いて設定される。また。これらのゾーンに関する領域管理情報が保存されたポリューム制御プロックは、ポリューム制御領域に記録される。

をででして、 のに、や容へく情のるのさ合に設って、 のに、や容へく情でして、 のに、や容へく情でして、 ののでは、 ののでは、 ののでで、 のので、 ののでで、 のので、 ののでで、 のので、 ののでで、 のので、 の

構成は、第7図で示した従来例と問じであるものとする。

第3図は 本発明の情報記録再生装置の一構成 例を示すプロック図である。 第5図において マ イクロプロセッサ1はその内部に格納された制御 手順にしたがってドライブ制御装置?全体を制御 する。 目標セクタ検出回路3は ドライブ装置4 から送出される再生信号100からセクタID部 に記録されたアドレス信号を弁別・復開してマイ クロプロセッサーが設定する目標セクタアドレス 101との一致検出を行う。 データ再生回路 5 は 目種セクター致検出回路が送出する検出信号10 2によって起動されるど再生信号100からデー 夕信号を復篇・弁別した後エラー訂正処理を行い 生成した再生データをデータパス8を介して管理 データパッファ?あるいは転送データパッファ 8 へ送出する。 データ記録回路 9 も検出信号 1 0 2 によって起動されると 管理データパッファ7あ るいは転送データパッファ8からデータパス6を 介して読み出した記録データにエラー質正符号を

以上のように構成されたドライブ制御装置 2 が実行するフォーマット処理の制御手順を 第 4 図のフローチャートにしたがって説明する なお説明の簡単化のためにポリューム制御プロック、一次欠陥リスト、二次欠陥リストの容量は全て 1 セクタ相当であるものとする。

(A) ホストコンピュータ12が フォーマット

処理の制御条件を設定するためにデパイスコマン ド (例えば MODE SWLECT コマンド) を送出する と、ホストインタフェース制御回路10はデータ バス 6 を介してデバイスコマンドをマイクロプロ セッサ1へ転送する マイクロプロセッサーはデ パイスコマンドを解釈すると デパイスコマンド に続いてホストコンピュータ12が送出するフォ ーマットパラメータを受け取る。 このフォーマッ トパラメータには フォーマット処理の制御情報 として、例えば割り当てられるソーンのフォーマ ットモード (セクタスリッピングアルゴリズムに よる連続アクセスソーンか リニアリプレイスメ ントアルゴリズムによるランダムアクセスゾーン) やゾーン内に割り当てられる名領域の管理情報が 合まれている 転送されたフォーマットパラメー タは フォーマット処理手順を制御するためにマ イクロプロセッサ1の内部に保存される

(B) 次に フォーマット処理を起動するために ホストコンピュータ 1 2 が送出したデバイスコマ ンド (例えば FORMAT UNIT コマンド) を受け取 (C) 目標セクタが記録済である場合 起動されたデータ再生回路 5 はドライブ装置 4 から送出される再生信号を復願してエラー訂正処理を行って再生データを生成 し これを管理データバッファ 7 ヘボリューム制御ブロックとして転送する

(E) マイクロプロセッサ 1 は、管理データバッファ 7 内に保存されたポリューム制御プロックの内容を参照しながら処理手順(A) において転送されたフォーマットパラメータに対応したゾーンエントリを内部に作成する。 そして、このフォーマットパラメータによりランダムアクセスゾーンが割り当てられる場合、処理手順(F) から(G)

までをスキップする

(F) フォーマットモードにしたがって連続アク セスゾーンが割り当てられる場合 マイクロブロ セッサーは処理手順(F)から(G)で説明する ようなセクタ検査処理をユーザ領域全域に対して 実行する。 まず最初にユーザ領域内の各セクタに 記録するためのテストデータを転送データバッフ ァ 8 の内部に生成する。 次に マイクロプロセッ サーは処理手順(B)と同様にしてユーザ領域へ のシーク動作を実行した後 指定されたユーザ領 域の先頭セクタのアドレスを目標セクタ検出回路 3に設定してデータ記録動作を起動する。 目標セ クタ検出回路3から検出信号102が送出される と、データ記録回路9は転送データパッファ8か ら焼み出したテストデータにエラー訂正符号を付 加した後に変調し ドライブ装置4へ送出して目 摂セクタ内に記録する。 以上のようなテストデー 夕の記録動作は ユーザ領域として割り当てられ た全セクタに対して実行される このようなテス トデータの記録動作において欠陥セクタが検出さ

特開平4-28061 (ア)

 する。 最後に マイクロプロセッサ 1 は インタフェース制御回路 1 0 を介してフォーマット処理の終了を意味するコマンドステータスをホストコンピュータ 1 2 へ送出して処理を完了する。

次に、フォーマット処理によって割り当てられたゾーンにおいて欠陥セクタの検出とその代替記録をともなうようなデータの記録動作について、第5回のフローチャートにしたがって説明するなお、ディスク上に記録されたポリューム制御ブ

ロックは ディスク装着時や電源投入などによる リセット時において フォーマット処理において 説明した制御手順 (B) と (C) と同様にして予 め読みだされ 管理データバッファ 7 の内部に保 存されているものとする。

(L)目標セクタが記録済である場合 起動されたデータ再生回路 5 はドライブ装置 4 から送出される再生信号を復願して再生データを生成してれた管理データバッファ 7 へ欠陥リストとして転送する なお 上記の動作から読み出される欠陥リストは 管理データバッファ 7 内において先に読み出されたボリューム制御プロックとは異なる

領域に保存される。次に、マイクロプロセッサ 1 は欠陥リストからデータ記録領域に含まれる欠陥 セクタを検索し、検出された欠陥セクタエントリ を内部に保持する。

(N) マイクロプロセッサ 1 は、まず管理データ パッファ 7 に保存された欠陥リストを用いてデバ イスコマンドにより指定された目標セクタの論理 アドレスをディスク上の物理アドレスへ変換する このときのアドレス変換手順は代替管理モードに よって異なる。 つまり、ランダムアクセスソーン では 二次欠陥リストの中から目標セクタと同一 の欠陥セクタアドレスをもつ欠陥セクタエントリ を二分探索法などで検出し、 該当する欠陥セクタ エントリが存在すれば目標セクタアドレスを対応 する代替セクタアドレスに置き換える。 一次 連 読アクセスゾーンでは 一次欠陥リストの中から 目標セクタよりも大きくないアドレスを持つ欠陥 セクタエントリの個数をカウント しこれをアド レスオフセットとする 次に このアドレスオフ セットを論理アドレスに加算して物理アドレスを 生成する。 なお この変換処理の後で論理アドレ スよりも大きくて物理アドレスよりも大きくない ようなアドレスを持つ欠陥セクタエントリが登録 されている場合 再びその個数をカウントしてア ドレスオフセットを補正することが必要となる このようなアドレス変換によって目標セクタの物 理アドレスが与えられると マイクロプロセッサ 1 は処理手順 (B) と同様にして目標セクタへの シーク動作を実行する シーク動作が完了すると ホストインタフェース制御回路10を起動してホ

(O)マイクロプロセッサーは、データ記録領域で10日標セクタの論理アドレスをディスク上の物理アドレスを使した後、処理手順(B)と同様にして目標セクタへのシーク動作を実行する。シーク動作が完了すると、マイクロプロセッサーは欠陥セクタのでは出すれると、マイクロプロセッサーは欠陥セクタのに保存する。

(T) 処理手順(O) において目標セクタに対するデータ記録動作が正常終了するか、ランダムア

(P) 処理手順(O) のペリファイ動作において 欠陥セクタが検出されると、マイクロプロセッサ 1 は、処理手順(J) において判別された代替管 理モードにしたがって以下に述べる欠陥セクタの 処理手順を実行する。

(R) さらに、データ記録動作が完了すると、マイクロプロセッサ 1 は処理手順 (O) と同様にして代替セクタに対するペリファイ動作を実行する
そして、代替セクタに対するペリファイ動作が正常終了すると、マイクロプロセッサ 1 は新たな欠陥セクタエントリを管理データバッファ 7 に保存

クセスゾーンに含まれる欠陥セクタに対して処理 手順(Q)および(R)で述べた代替記録動作が 終了することによって、1セクタのデータ記録動作が完了する。マイクロプロセッサ1は、このようなデータ記録動作をデータ記録領域に割り当て られた全てのセクタについて実行する

(U) データ記録領域がクロングローク記録領域がクロングロークに表示を関係がクロングロークである。 ファッケ (1) リカングロークである。 ファッケ (1) リカングロークである。 ファッケ (1) リカングロークである。 ファッケ (1) リカングロークである。 ファッケ (1) は、カーカンでは、カーカンのでは、カーカンでは、カーカンのでは、カーカーカンのでは、カーカンのでは、カーカンのでは、カーカンのでは、カーカンのでは、カーカーカンのでは、カーカンのでは、カーカーカーカーカーカーカーカーのでは、カーカーカーのでは、カーカーカーのでは、カーカーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカンのでは、カーカンのでは、カーカンのでは、カーカンのでは、カーカンのでは、カーカンのでは、カーカンのでは、カーカンのでは、

以上のような手順にしたがって、 欠陥セクタの

また、以上で説明した処理手順(O)や処理手順(R)における記録データのペリファイ動作では、既に説明した処理手順(G)と同様にデータ再生回路 5 がエラー訂正処理の中で再生データに許容範囲を越えるエラーが含まれることを検出してペリファイエラーを検出するものとした。しか

し、マイクロプロセッサ 1 は、転送データパッファ 8 へ転送された再生データを処理手順 (N) あるいは処理手順 (Q) で使用した記録データとバイト単位で比較して、許容範囲を超えるエラーが検出されたときにベリファイエラーが検出されたと判定することも可能である。

さらに 上記の動作説明では 検出された欠陥

次に、フォーマット処理によって割り当てられたゾーンにおけるデータの再生動作について以下に説明する。ホストコンピュータ12からディスク上でのデータ再生領域が指定されたデバイスコマンド(READコマンド)が送出されると、マイク

ロコンピュータ1は データ記録動作の中で説明 した処理手順 (J) から (M) と同様にして、デ ータ再生領域が含まれるソーンの代替管理モード を内部に保存するとともに対応する欠陥リストを 管理データ7へ読み出す。 このあと、 マイクロコ ンピュータ1は処理手順(N)で説明したような アドレス変換手順に基づいて、 目標セクタの論理 アドレスをディスク上の物理アドレスへ変換する 次に マイクロプロセッサ 1 は処理手順 (B) と 同様にして目標セクタへのシーク動作を実行した 後 データ再生領域の先頭セクタのアドレスを目 種セクタ検出回路 3 に設定してデータ再生動作を 記動する。 目標セクタ検出回路 3 から検出信号 1 02 が送出されると、データ再生回路 8 は再生信 号100からデータ信号を復興・弁別した後にエ ラー訂正処理を行い 再生データを転送データバ ッファ8へ送出する そして再生データは ホス トインタフェース制御回路10を介してホストコ ンピュータ12へ転送される。 以上のようなセク タ単位のデータ再生動作は データ記録領域とし

特別平4-28061 (11)

て割り当てられた全セクタに対して実行される。 発明の効果

4. 図面の簡単な説明

蛟

第1図は本発明の一実施例における情報記録媒体の領域構成図 第2図はポリューム制御プロックの構成図 第3図は本発明の一実施例における情報記録再生装置のプロック図 第4図はフォーマット処理における制御動作を説明するフローチ

ャート 第5 図はデータ記録動作を説明するフローチャート 第6 図は従来例の情報記録媒体の領域構成図 第7 図は欠陥リストの内部構成図 第8 図は論理アドレスと物理アドレスの対応関係図である。

1 … マイクロプロセッサ、 2 … ドライブ制御回路 3 … 目標セクタ検出回路 4 … ドライブ装置 5 … データ再生回路 6 … データバス 7 … 管理データバッファ、 8 … 転送データバッファ、 9 … データ記録回路 10 … ホストインタフェース 12 … ホストコンピュータ。

代理人の氏名 弁理士 栗野重孝 ほか1名

⊠ ≈

峵

第 4 図

第 5 🖾

第 6 図

特開平4-28061 (13)

	(g		(9)	
			一次欠階リスト	ニボギ語リスト
	欠回リスト 龍野子	文階リスト制列子	¥(1000)	(0005)A
	欠陥リスト長	大阪リスト長	4n(K4F)	8n (1(1))
	欠雨 むつタ エントリ (1)	不確むラスントリ	女間 むつタ アドレス	**************************************
	太陽 こうタエントリ(2)			
	文面につタエントリ(n)			
	非政治 章 斯			
⊠				
		1922.0	0 = 0 + 4 + 0 = 0	6 4
ĝ	毎日アドレス	1.0		
ê	中間フドレス	 	F3-7=0 F5-7=0 E79 = 3 E79 = 4	19-7=0 19-7=0 279=6 279=7
		*		
(C	物理 アドレス	1777 = 0 17-7 = 1000 17 079 = 0 17.7 = 0 E	13>2=0 h3>2=0 e79=3 e79=4	+3-7=0 +9-7=0 E29=6 E79=7

CHARACTERISTIC	ENVI 101R4/R6	Burton Correspondence
Invention	Bio-supportive matrix	Antifouling marine composition and laminate
Consumption of Matrix	Biodegredation at a controlled rate	Elution and release
Specific Target	algae, diatoms, bacteria	NOT AVAILABLE
Source of Nutritional components	Polymers of matrix, phosphates and complex amines. For phosphorus: natural synthetics polymers componetns, catalysts and additives such as phosphates. For nitrogen: occluded compounds (nitrogen and ammonia salts).	NOT AVAILABLE
Nutrient Additives	Se, Zn at 1-500 ppm	NOT AVAILABLE
Bio limiting agent	Cu preferred. Others are heavy metals (Pb, V, Mo, Ni, Sn, Cu, Hg, etc.) and alloys, organo-metallics. Biocides (isothiazolone, phenol compounds (coal, tars, thiadiazoles, thiocarbamates, etc)). Inorganic/organic compounds (tri-butyl-tin).	Cu flakes
Preferred Biolimiting Agent and details	Cu, 20 mM to 41mM particles. Ratio of dimensions are 0.7 to 1.0. Dissolution at appoximately 20 mg/day.	NOT AVAILABLE
Amounts of Bio-limiting Agent	2-80%, 5-70%, 10-60%	A tapped density of 2 g/ cubic cm are superior for elution rates. Claim a denisty of up to 3 gm/cubic cm or larger. 40-66% of total coating by weight.
Matrix	natural or synthetic polymer, cementitious aggregates, or any that will sustain biological process	hydrophobic resin: a blend of an aliphatic polyglycol diepoxy resin and a bisphenol A resin. 40-60% polyamino to 60-40% hydrophilic resin (possibly a blend of hyrdophobic and philic)

CHARACTERISTIC	ENVI 101R4/R6	Burton Correspondence
Polymers	Polyepoxides, polyurethanes, polyesters, rubbers, Latex, styrene, elastomers, acrylics, acetoacetates, acetoacetamides, and bio-engineered polymers. Polymers of acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, vinyl choloride, cinyl acetate, acrylates or methacrylates, styeren, vinyl-isobutyl ether, benzaldimine, aldimine, araldimine, acetoacetoxytheymethacrylate, adimine, t-butylaminoethyl methacrylate, carboxyl groups, vinyltoluene-acrylate copolymers, epoxy- or coal tar epoxy systems. Blends of any.	A polyamine curing agent in an amount such that the ratio of equivalent functional amine hydrogens to equivalent functional epoxy groups is between 1:1 and 3:1.
Polymerizing agent	triethylenetetramine	can be selected from amines, amides, anhydrides. The amine includes triethylenetetramine.
Substrate	concrete, wood, fiberglass, aluminum, steel, rubber-coated materials.	NOT AVAILABLE, assumed to be the same
Latitude of Invention	10-20 years of service life, accomplished by varying the density of the matrix, consumption rate of nutrients, stoichiometric ration of polymer system.	NOT AVAILABLE
Targets of Invention	marine sturcture: vessles, pilings, floats, buoys, pipes. Pharmceuticals.	NOT AVAILABLE, assumed to be the same