Computational learning theory

CE-477: Machine Learning - CS-828: Theory of Machine Learning Sharif University of Technology Fall 2024

Fatemeh Seyyedsalehi

Feasibility of learning

- ▶ Does the training set \mathcal{D} tell us anything out of \mathcal{D} ?
 - $\blacktriangleright \ \mathcal{D}$ does not tells us something certain about f outside of \mathcal{D}
 - \blacktriangleright However, it can <u>tell</u> us something <u>likely</u> about f outside of $\mathcal D$
- Probability helps us to find learning theory

Generalizability of Learning

- Generalization error is important to us
- Why should doing well on the training set tell us anything about generalization error?
 - Can we relate error on training set to generalization error?
- Which are conditions under which we can actually prove that learning algorithms will work well?

Two lemma from the probability

- Considering i.i.d. random variables $Z_1, Z_2, ..., Z_n$ from a Bernoulli distribution with parameter μ .
 - We can estimate μ as follows

Two lemma from the probability

- Considering i.i.d. random variables $Z_1, Z_2, ..., Z_n$ from a Bernoulli distribution with parameter μ .
 - We can estimate μ as follows

$$\hat{\mu} = \frac{1}{n} \; \Sigma_{i=1}^n \; Z_i$$

- Hoeffding's Inequality
 - In a big sample (large N), $\hat{\mu}$ is probably close to μ (within ϵ):

$$\Pr[|\hat{\mu} - \mu| > \epsilon] \le 2e^{-2\epsilon^2 N}$$

Two lemma from the probability

- The union bound
 - An axiom in probability theory

$$P(A_1 \cup A_2 \cup \dots A_n) \le P(A_1) + P(A_2) + \dots + P(A_n)$$

Using just these two lemmas, we will be able to prove some of the deepest and most important results in learning theory.

PAC framework

- Probably approximately correct
- A framework and set of assumptions under which numerous results on learning theory were proved.
 - Training and testing data are on the same distribution
 - independently drawn training examples
- ▶ To simplify our exposition, let's restrict our attention to binary classification. Everything we'll say here generalizes to other problems, including regression and multi-class classification.

Given a training set as follows,

$$S = \{(\mathbf{x}^{(n)}, \mathbf{y}^{(n)})\}_{i=1}^n$$

The training error

$$\bar{\varepsilon}(h) = \frac{1}{|S|} \sum_{i=1}^{n} I(h(x^{i}) \neq y^{i})$$

▶ The true (generalization, test) error

$$\varepsilon(h) = E_{x \sim P(X)}[I(h(x) \neq y)]$$

 Our learning algorithm is based on the minimization of the empirical risk (training error)

$$\hat{h} = \underset{h \in H}{\operatorname{argmin}} \, \bar{\varepsilon} \, (h)$$

- We would like give guarantees on the generalization error of \hat{h} .
 - First we show that $\bar{\varepsilon}(h)$ is a good approximate of $\varepsilon(h)$
 - Second we find an upper bound for the generalization error of \hat{h}

• Consider a specific hypothesis h_i and training set S, we define the following Bernoulli random variable,

$$Z = 1\{h_i(x) \neq y\}$$

- lacktriangleright Real mean of this Bernoulli distribution $arepsilon(h_i)$
- Now consider following random samples,

$$Z_j = 1\{h_i(x^{(j)}) \neq y^{(j)}\}\$$

The training error for this specific hypothesis

$$\hat{\varepsilon}(h_i) = \frac{1}{n} \sum_{j=1}^n Z_j.$$

Now, we can apply the Hoeffding inequality

$$P(|\varepsilon(h_i) - \hat{\varepsilon}(h_i)| > \gamma) \le 2\exp(-2\gamma^2 n).$$

This shows that, for our particular h_i , training error will be close to generalization error with high probability, assuming n is large.

- We show that the generalization error is close to the training error for a particular hypothesis h_i ,
- \blacktriangleright Considering A_i as,

$$|\varepsilon(h_i) - \hat{\varepsilon}(h_i)| > \gamma$$

We have

$$P(A_i) \le 2\exp(-2\gamma^2 n)$$

Using the union bound,

$$P(\exists h \in \mathcal{H}. | \varepsilon(h_i) - \hat{\varepsilon}(h_i) | > \gamma) = P(A_1 \cup \dots \cup A_k)$$

$$\leq \sum_{i=1}^k P(A_i)$$

$$\leq \sum_{i=1}^k 2 \exp(-2\gamma^2 n)$$

$$= 2k \exp(-2\gamma^2 n)$$

Subtract both sides from 1,

$$P(\neg \exists h \in \mathcal{H}. |\varepsilon(h_i) - \hat{\varepsilon}(h_i)| > \gamma) = P(\forall h \in \mathcal{H}. |\varepsilon(h_i) - \hat{\varepsilon}(h_i)| \le \gamma)$$

$$\ge 1 - 2k \exp(-2\gamma^2 n)$$

▶ This is called a uniform convergence result, because this is a bound that holds simultaneously for all h

In the discussion above, what we did was, for particular values of n and γ give a bound on the probability of

$$h \in \mathcal{H}, |\varepsilon(h) - \hat{\varepsilon}(h)| > \gamma.$$

Three quantities of interest: n, γ and the probability of error

For instance, we can ask the following question: Given γ and some $\delta > 0$, how large must n be before we can guarantee that with probability at least $1 - \delta$, training error will be within γ of generalization error? By setting $\delta = 2k \exp(-2\gamma^2 n)$ and solving for n, [you should convince yourself this is the right thing to do!], we find that if

$$n \ge \frac{1}{2\gamma^2} \log \frac{2k}{\delta},$$

Similarly, we can also hold n and δ fixed and solve for γ in the previous equation, and show [again, convince yourself that this is right!] that with probability $1 - \delta$, we have that for all $h \in \mathcal{H}$,

$$|\hat{\varepsilon}(h) - \varepsilon(h)| \le \sqrt{\frac{1}{2n} \log \frac{2k}{\delta}}.$$

Define $h^* = \arg \min_{h \in \mathcal{H}} \varepsilon(h)$ to be the best possible hypothesis in \mathcal{H} . Note that h^* is the best that we could possibly do given that we are using \mathcal{H} , so it makes sense to compare our performance to that of h^* . We have:

$$\begin{array}{rcl}
\varepsilon(\hat{h}) & \leq & \hat{\varepsilon}(\hat{h}) + \gamma \\
& \leq & \hat{\varepsilon}(h^*) + \gamma \\
& \leq & \varepsilon(h^*) + 2\gamma
\end{array}$$

Theorem. Let $|\mathcal{H}| = k$, and let any n, δ be fixed. Then with probability at least $1 - \delta$, we have that

$$\varepsilon(\hat{h}) \le \left(\min_{h \in \mathcal{H}} \varepsilon(h)\right) + 2\sqrt{\frac{1}{2n}\log\frac{2k}{\delta}}.$$

The sample complexity bound

Corollary. Let $|\mathcal{H}| = k$, and let any δ, γ be fixed. Then for $\varepsilon(\hat{h}) \leq \min_{h \in \mathcal{H}} \varepsilon(h) + 2\gamma$ to hold with probability at least $1 - \delta$, it suffices that

$$n \geq \frac{1}{2\gamma^2} \log \frac{2k}{\delta}$$
$$= O\left(\frac{1}{\gamma^2} \log \frac{k}{\delta}\right),$$

Optional reading

- When the hypothesis space is infinite
 - We can not use the size of hypothesis space in our bounds directly.
 - Instead, we can use the Vapnik-Chervonenkis VC dimension of a hypothesis space that measures the size (capacity, complexity, expressive power, ...) of it.
 - New bounds can be constructed based on the VC dimension.

References

Andrew NG., Stafnord CS229 main_notes.pdf