Predicting User Churn

Anoosh Moutafian 2024

Waze provides satellite navigation software on smartphones

- Revenue generated via ad sales
- App relies on crowdsourced information
- 150 million monthly active users

Dataset: Synthetic dataset constructed by Waze

- 14,299 complete rows
- 13 features (most cover one-month time period)
- Data labeled churn/retain (reflects user behavior behavior during one-month period)

https://github.com/amoutafian/waze_capstone/blob/main/data/waze_dataset.csv

Problem Statement

User churn during dataset month

- 18%
- 2536 users churn /14299 total

Goal: Reduce user churn by 10%

- 18% → 16.2%
- 2536 → 2316 users churn
- 220 users retained/14299 total

Questions:

How can we predict user churn?

Which features contribute most strongly?

Results of successful retentions:

- Increased ad impressions at \$.002 each
- Increased app quality with additional crowdsourced info

Data Cleaning, Exploration, Wrangling and Preprocessing

Of the original 14,999 observations (each representing a Waze user), 700 were removed due to missing churn information

Features were explored individually and in relationship to other features

The imbalanced churn/retain feature was balanced using random oversampling 18% → 33% churn rate

The data was split into 80% train and 20% test sets

Dummies were made from the single independent categorical feature

Numerical features were standardized

Relative feature importance as identified by Random Forest

activity_days: Number of days the user opens the app during the month

driving_days: Number of
days the user drives >= 1 km
during the month

n_days_after_onboarding:
Number of days since user
onboarding

Random Forest

Accuracy: 81% Recall 19%

	precision	recall	f1-score	support
0 1	0.84 0.48	0.95 0.19	0.89 0.27	2337 523
accuracy macro avg weighted avg	0.66 0.77	0.57 0.81	0.81 0.58 0.78	2860 2860 2860

Logistic Regression

Accuracy: 74% Recall: 58%

support	f1-score	recall	precision	
2337 523	0.83 0.45	0.77 0.58	0.89 0.36	0 1
2860 2860 2860	0.74 0.64 0.76	0.68 0.74	0.63 0.80	y g

Conclusion:

Random Forest had 81% accuracy and 19% recall meaning it often predicted correctly, but scored poorly in predicting which users would churn. Its high accuracy is likely due to the imbalance in classes.

Logistic Regression had 74% accuracy and 58% recall, making the model of choice for this use case. Although it's overall accuracy is lower, it is the best of all attempted methods at successfully predicting user churn, our business objective.

Next Steps:

Tune gradient boost model hyperparameters

Convert data to DMatrix (XGBoost proprietary data structure)

Experiment with class balancing techniques