CMSC 510 – L15 Regularization Methods for Machine Learning

Instructor:

Dr. Tom Arodz

Recap: submodularity

- Set function over universe V, ie. Ω : $2^{V} -> R$
- We focus on a family of set functions called submodular set functions

$$\forall S, T, \{c\} \subseteq V, \ S \subseteq T, \\ \Omega(S \cup \{c\}) - \Omega(S) \ge \Omega(T \cup \{c\}) - \Omega(T)$$

f(red+blue) - f(blue) >= f(red+navy) - f(navy)

 Adding the same element {c} to a set T increases Ω less then adding it to a subset S of T

Alternative definitions

• Modular set functions: $\Omega(\{a,b,...,z\}) = \Omega_a + \Omega_b + ... + \Omega_z$

$$\forall A, B \subseteq V \quad \Omega(A \cup B) + \Omega(A \cap B) = \Omega(A) + \Omega(B)$$

■ **Sub**modular set functions: $\Omega(\{a,b,...,z\}) \leq \Omega_a + \Omega_b + ... + \Omega_z$

$$\Omega(A \cup B) + \Omega(A \cap B) \le \Omega(A) + \Omega(B)$$

■ Supermodular set functions: $\Omega(\{a,b,...,z\}) \ge \Omega_a + \Omega_b + ... + \Omega_z$ $\Omega(A \cup P) \cup \Omega(A \cap P) > \Omega(A) \cup \Omega(A)$

$$\Omega(A \cup B) + \Omega(A \cap B) \ge \Omega(A) + \Omega(B)$$

If Ω is modular, it is both submodular and supermodular

4

Recap: submodular regularizers

- Given a set function $\Omega(S) = \Omega(w)$ where $S = 1_w$
- We have a well-defined Lovasz extension Ω^L : $[0,1]^n -> R$

- we'll need proximal descent
 Inctood:
- Instead: argmin_w R_S(w)+Ω([w])

Big picture

- We can solve problems of the form:
 - Differentiable risk
 - + convex extension of a submodular set function Ω
- What are some interesting submodular set functions?
 - What are their extensions?
 - Can we solve proximal operator for them?

Assume w.l.o.g. $\Omega(\emptyset)=0$

Convex closure of Ω: Ω⁻

Pointwise highest convex function that bounds Ω from below

Complicated to evaluate what the function $\Omega^-(w)$ actually is.

Lovasz extension of Ω: Ω^L

$$\Omega^{L}(w) = \sum_{i=0}^{F} \lambda_{i} \Omega(S_{i}) \qquad F = |V|$$

where S_i is a chain of nested sets:

$$\emptyset = S_0 \subset S_1 \subset S_2 \subset ... \subset S_F = V$$
 such that:

$$\sum_{i=0}^{F} \lambda_i 1_{S_i} = w, \sum_{i=0}^{F} \lambda_i = 1, \lambda_i \ge 0$$

$$F = |V|$$

We'll see a condition like this:

$$\emptyset = S_0 \subset S_1 \subset S_2 \subset ... \subset S_F = V$$

$$\sum_{i=0}^{F} \lambda_i 1_{S_i} = w, \sum_{i=0}^{F} \lambda_i = 1, \lambda_i \ge 0$$

S_0				
S_1		λ ₁		
S_2 S_3		λ_2		λ_2
S_3	λ_3	λ_3		λ_3
S_4	λ_4	λ_4	λ_4	λ_4
	\mathbf{W}_1	W_2	W_3	W_4

 λ_0

Assume w.l.o.g. $\Omega(\emptyset)=0$

Convex closure of Ω: Ω⁻

Pointwise highest convex function that bounds Ω from below

Complicated to evaluate what the function $\Omega^-(w)$ actually is.

Lovasz extension of Ω: Ω^L

$$\Omega^{L}(w) = \sum_{i=0}^{F} \lambda_{i} \Omega(S_{i}) \qquad F = |V|$$

where S_i is a chain of nested sets:

$$\emptyset = S_0 \subset S_1 \subset S_2 \subset ... \subset S_F = V$$
 such that:

$$\sum_{i=0}^{F} \lambda_i 1_{S_i} = w, \sum_{i=0}^{F} \lambda_i = 1, \lambda_i \ge 0$$

For any feature i, total weight on \mathbf{v}_i (from sum of $\lambda_i 1_{Si}$) is equal to \mathbf{w}_i

- Lovasz extension may not be convex for arbitrary set functions
- But for submodular set functions, $\Omega^{L}(\mathbf{w}) = \Omega^{-}(\mathbf{w})$, it is convex
 - The converse is also true, if Ω^{L} is convex then Ω is submodular

Lovasz extension of
$$\Omega$$
: Ω^{L} $\Omega^{L}(w) = \sum_{i=0}^{F} \lambda_{i} \Omega(S_{i})$ where: $\emptyset = S_{0} \subset S_{1} \subset S_{2} \subset ... \subset S_{F} = V$ $\sum_{i=0}^{F} \lambda_{i} 1_{S_{i}} = w, \sum_{i=0}^{F} \lambda_{i} = 1, \lambda_{i} \geq 0$

- How to evaluate it for vector w in [0,1]^F?
 - What are the λ_i and S_i
 - Order elements in V in decreasing order of w's:

•
$$V = \{v_1, v_2, ..., v_F\}$$
 such that $w_1 \ge w_2 \ge ... \ge w_F \ge 0$

$$\begin{array}{lll} \bullet & \text{Set:} & S_0 = \emptyset, & \lambda_0 = 1 - w_1 \\ & S_1 = \{v_1\} & \lambda_1 = w_1 - w_2 \\ & S_2 = \{v_1, v_2\}, & \lambda_2 = w_2 - w_3 \\ & \cdots & \\ & S_i = S_{i-1} + \{v_i\} = \{v_1, \dots, v_i\}, & \lambda_i = w_i - w_{i+1} \\ & \cdots & \\ & S_F = V & \lambda_F = w_F \\ \end{array}$$

 W_3

•
$$V = \{v_1, v_2, ..., v_F\}$$
 such that $w_1 \ge w_2 \ge ... \ge w_F \ge 0$

 W_2

■ Set:
$$S_0 = \emptyset$$
,
 $S_1 = \{v_1\}$
 $S_2 = \{v_1, v_2\}$,
 $S_3 = \{v_1, v_2, v_3\}$,
 $S_4 = V$

 W_1

$$\lambda_0 = 1 - w_1$$
 $\lambda_1 = w_1 - w_2$
 $\lambda_2 = w_2 - w_3$
 $\lambda_3 = w_3 - w_4$
 $\lambda_4 = w_4$

 W_4

$$\sum_{i=0}^{F} \lambda_i 1_{S_i} = w, \sum_{i=0}^{F} \lambda_i = 1, \lambda_i \ge 0$$

Lovasz extension of
$$\Omega$$
: Ω^{L} $\Omega^{L}(w) = \sum_{i=0}^{F} \lambda_{i} \Omega(S_{i})$ where: $\emptyset = S_{0} \subset S_{1} \subset S_{2} \subset ... \subset S_{F} = V$ $\sum_{i=0}^{F} \lambda_{i} 1_{S_{i}} = w, \sum_{i=0}^{F} \lambda_{i} = 1, \lambda_{i} \geq 0$

- How to evaluate it for vector w in [0,1]^F?
 - Order elements in V in decreasing order of w's:

•
$$V = \{v_1, v_2, ..., v_F\}$$
 such that $w_1 \ge w_2 \ge ... \ge w_F \ge 0$

■ Set:
$$S_0 = \emptyset$$
, $\lambda_0 = 1 - w_1$
 $S_i = S_{i-1} + \{v_i\} = \{v_1, ..., v_i\}$, $\lambda_i = w_i - w_{i+1}$
 $S_F = V$ $\lambda_F = w_F$

- This set up meets the conditions on S_i , λ_i :
 - S_i are nested, $λ_i \ge 0$ and add up to 1
 - For any feature **i**, total weight on $\mathbf{v_i}$ (from sum of $\lambda_j \mathbf{1}_{Sj}$) is equal to $\mathbf{w_i}$ $\sum_{S_j:v_i \in S_j} \lambda_j = \sum_{S_j:j > i} \lambda_j = \sum_{j=i}^F \lambda_j =$

$$\sum_{S_j:v_i \in S_j} \lambda_j = \sum_{S_j:j \ge i} \lambda_j = \sum_{j=i} \lambda_j = \sum_{j=i} \lambda_j = w_F + \sum_{j=i}^{F-1} w_j - w_{j+1} = w_i + \sum_{j=i+1}^F w_j - w_j = w_i$$

Lovasz extension of
$$\Omega$$
: Ω^{L} $\Omega^{L}(w) = \sum_{i=0}^{F} \lambda_{i} \Omega(S_{i})$ where: $\emptyset = S_{0} \subset S_{1} \subset S_{2} \subset ... \subset S_{F} = V$ $\sum_{i=0}^{F} \lambda_{i} 1_{S_{i}} = w, \sum_{i=0}^{F} \lambda_{i} = 1, \lambda_{i} \geq 0$

- How to evaluate it for vector w in [0,1]^F?
 - Order elements in V in decreasing order of w's:

•
$$V = \{v_1, v_2, ..., v_F\}$$
 such that $w_1 \ge w_2 \ge ... \ge w_F$

• Set:
$$S_0 = \emptyset$$
, $\lambda_0 = 1 - w_1$
 $S_i = S_{i-1} + \{v_i\} = \{v_1, ..., v_i\}$, $\lambda_i = w_i - w_{i+1}$
 $S_F = V$ $\lambda_F = w_F$

- \bullet S_i and λ_i depend fully on vector w
 - For a given w, these are easy to obtain!
- But S_i and λ_i do not depend at all on function Ω
 - No need to consider different sets of λ_i etc.

Lovasz extension $\Omega^L(w) = \sum_{i=0}^F \lambda_i \Omega(S_i)$

$$\Omega^L(w) = \sum_{i=0}^F \lambda_i \Omega(S_i)$$

$$V = \{v_1, v_2, ..., v_F\}$$
 such that $w_1 \ge w_2 \ge ... \ge w_F \ge 0$

$$\begin{split} &S_0 = \emptyset, & \lambda_0 = 1 - w_1 \\ &S_i = S_{i-1} + \{v_i\} = \{v_1, ..., v_i\}, & \lambda_i = w_i - w_{i+1} \\ &S_F = V & \lambda_F = w_F \end{split}$$

It might be easier to work with a restructured formula:

$$\Omega^{L}(w) = \sum_{i=0}^{F} \lambda_{i} \Omega(S_{i}) = \lambda_{0} \Omega(\emptyset) + \lambda_{F} \Omega(S_{F}) + \sum_{i=1}^{F-1} \lambda_{i} \Omega(S_{i})
= (1 - w_{1})\Omega(S_{0}) + w_{F} \Omega(S_{F}) + \sum_{i=1}^{F-1} (w_{i} - w_{i+1})\Omega(S_{i})
= (1\Omega(S_{0}) - w_{1}\Omega(S_{0}) + w_{F}\Omega(S_{F}) + \sum_{i=1}^{F-1} w_{i}\Omega(S_{i}) - \sum_{i=2}^{F} w_{i}\Omega(S_{i-1})
= \Omega(S_{0}) + \sum_{i=1}^{F} w_{i}\Omega(S_{i}) - \sum_{i=1}^{F} w_{i}\Omega(S_{i-1})
= \Omega(S_{0}) + \sum_{i=1}^{F} w_{i} [\Omega(S_{i}) - \Omega(S_{i-1})]$$

Lovasz extension of
$$\Omega$$
: Ω^{L} $\Omega^L(w) = \sum_{i=0}^F \lambda_i \Omega(S_i)$

where:
$$\emptyset = S_0 \subset S_1 \subset S_2 \subset ... \subset S_F = V$$

$$\sum_{i=0}^{F} \lambda_i 1_{S_i} = w, \sum_{i=0}^{F} \lambda_i = 1, \lambda_i \ge 0$$

- How to evaluate it for vector w in [0,1]^F?
 - Order elements in V in decreasing order of w's:

•
$$V = \{v_1, v_2, ..., v_F\}$$
 such that $w_1 \ge w_2 \ge ... \ge w_F$

• Set:
$$S_0 = \emptyset$$
, $\lambda_0 = 1 - w_1$
 $S_i = S_{i-1} + \{v_i\} = \{v_1, ..., v_i\}$, $\lambda_i = w_i - w_{i+1}$
 $S_F = V$ $\lambda_F = w_F$

Two alternative formulas:

$$\Omega^{L}(w) = (1 - w_1)\Omega(S_0) + w_F\Omega(S_F) + \sum_{i=1}^{F-1} (w_i - w_{i+1})\Omega(S_i)$$

$$= \Omega(S_0) + \sum_{i=1}^{F} w_i \left[\Omega(S_i) - \Omega(S_{i-1}) \right]$$

Lovasz extension

$$V = \{v_1, v_2, ..., v_F\} \text{ such that } w_1 \ge w_2 \ge ... \ge w_F \ge 0$$

$$S_0 = \emptyset, \qquad \qquad \lambda_0 = 1 - w_1$$

$$S_i = S_{i-1} + \{v_i\} = \{v_1, ..., v_i\}, \qquad \lambda_i = w_i - w_{i+1}$$

$$S_F = V \qquad \qquad \lambda_F = w_F$$

- How to use it in practice?
- Example: modular function $\Omega(S) = \sum_{v_k \in S} \Omega(v_k)$ e.g. $\Omega(\mathbf{v_k})$ =1

$$\begin{split} \Omega^L(w) &= \Omega(S_0) + \sum_{i=1}^F w_i \left[\Omega(S_i) - \Omega(S_{i-1}) \right] \\ &= \Omega(\emptyset) + \sum_{i=1}^F w_i \Omega(v_i) \end{split}$$
 We now have an analytical formula for Ω^L
$$= \sum_{i=1}^F w_i \Omega(v_i)$$

Lovasz extension

- How to use it in practice? Example: modular function $\Omega(S) = \sum_{v_k \in S} \Omega(v_k)$
 - Special case: $\Omega(v_i) = \frac{1}{C}$
- Lovasz extension (and thus our formula) is defined over unit cube:

$$\Omega^L:[0,1]^F\to\mathbb{R}$$

$$\Omega^{L}(w) = \frac{1}{C} \sum_{i=1}^{F} w_{i} = \frac{1}{C} \sum_{i=1}^{F} |w_{i}| = \frac{1}{C} ||w||_{1}$$

■ Let's define a function defined on the whole range (from – to + infinity)

$$\Omega^{L\infty} : \mathbb{R}^F \to \mathbb{R}$$

$$\Omega^{L\infty}(w) = \frac{1}{C} \sum_{i=1}^F |w_i| = \frac{1}{C} ||w||_1$$

We can use that formula as penalty term:

To simplify notation, often we'll just treat Ω^L as if it was defined over whole R^F

 $\arg\min_{w} \frac{1}{C} \|w\|_{p}^{p} + \sum_{i=1}^{m} \ln(1 + e^{-y_{i}w^{T}x_{i}})$

■ L₁ penalty ⇔ special case of Lovasz extension of modular set function defined over sets of features

Set cardinality

- Set cardinality is a modular (and thus submodular) set function
 - $\Omega(S)=|S|$
- Interpretation of Ω in machine learning:
 - $\Omega([w])$ = number of features in the model represented by vector w
 - Model preferred by $\Omega^{L}(w)$: lost of feature weights w_f are 0
- Lovasz extension on [0,1]^F:
 - $\Omega^{L}(w) = \Sigma_{f} w_{f}$ (we derived it previously)
 - We have derived it from definition of Ω^{L}
- Extension to R^F:

 - L₁ penalty
- Minimum of $prox_{\Omega^L}(v)$:
 - soft thresholding of v

- $[x]_{+} = \max(x,0)$
- Directed graph cut capacity is a submodular set function
 - $\Omega(S)$ = total weights of edges **from S to V-S**

$$\Omega(S) = \sum_{j \in S} \sum_{k \notin S} G_{jk}$$

$$\Omega^{L}(w) = \sum_{j=1}^{F} \sum_{k=1}^{F} G_{j,k} [w_{j} - w_{k}]_{+}$$

- Formula is: $\Omega^L(w) = \sum_{i=1}^F w_i \left[\Omega(S_i) \Omega(S_{i-1}) \right]$
 - Where we ordered the vertices in decreasing order of w_i

$$\Omega(S_i) - \Omega(S_{i-1}) = \underbrace{\sum_{k=i+1}^F G_{i,k}}_{\text{red edges}} - \underbrace{\sum_{k=1}^{i-1} G_{k,i}}_{\text{blue edges}}$$

$$S_{i}=S_{i-1}+\{V_{i}\}$$
 $=\{V_{1},...,V_{i}\}$
 V_{i+1}
 V_{i+2}
 V_{i+2}
 V_{i-1}
 V_{i-1}
 V_{i+2}

Move from S_{i-1} to S_i
Red edges start playing a role
Blue edges stop playing a role
Green edges: no change
Black edges: play no role

Starting point:

$$\Omega^{L}(w) = \sum_{i=1}^{F} w_{i} [\Omega(S_{i}) - \Omega(S_{i-1})]$$

$$\Omega(S_i) - \Omega(S_{i-1}) = \sum_{k=i+1}^{F} G_{i,k} - \sum_{k=1}^{i-1} G_{k,i}$$

So:

$$\Omega^{L}(w) = \sum_{i=1}^{F} w_{i} \sum_{k=i+1}^{F} G_{i,k} - \sum_{i=1}^{F} w_{i} \sum_{k=1}^{i-1} G_{k,i}$$

Formula up to now:

$$\Omega^{L}(w) = \sum_{i=1}^{F} w_{i} \sum_{k=i+1}^{F} G_{i,k} - \sum_{i=1}^{F} w_{i} \sum_{k=1}^{i-1} G_{k,i}$$

Reorder the two sums, change variable names, first change: i->j, k->l then change j->k, l->i :

$$-\sum_{j=1}^{F} w_j \sum_{l=1}^{j-1} G_{l,j} = \sum_{l=1}^{F} \sum_{j=l+1}^{F} -w_j G_{l,j} = \sum_{i=1}^{F} \sum_{k=i+1}^{F} -w_k G_{i,k}$$

$$[x]_{+} = \max(x,0)$$

Formula up to now:

$$\Omega^{L}(w) = \sum_{i=1}^{F} w_i \sum_{k=i+1}^{F} G_{i,k} - \sum_{i=1}^{F} w_i \sum_{k=1}^{i-1} G_{k,i}$$

■ Reorder the 2nd sum, change variable names (i->j->k, k->l->i):

$$-\sum_{j=1}^{F} w_j \sum_{l=1}^{j-1} G_{l,j} = \sum_{l=1}^{F} \sum_{j=l+1}^{F} -w_j G_{l,j} = \sum_{i=1}^{F} \sum_{k=i+1}^{F} -w_k G_{i,k}$$

We get:

$$\Omega^L(w) = \sum_{i=1}^F \sum_{k=i+1}^F G_{i,k}(w_i - w_k)$$
 We ordered our vertices in decreasing way, so:

$$k < i \implies w_i - w_k \le 0$$

We can expand the sum and get the final formula:

$$\Omega^{L}(w) = \sum_{i=1}^{F} \sum_{k=1}^{F} G_{i,k}[w_i - w_k]_{+}$$