Local results of several complex variables

darknmt

February 22, 2018

Contents

 Subharmonic and Plurisubharmonic functions 2.1 Subharmonic functions 2.2 Plurisubharmonic functions 2.3 Pluriharmonic functions Resolution of δ̄, Dolbeault-Grothendieck lemma Extension theorems, Domain of holomorphy 4.1 Generalities 4.2 Case Ω ⊂ ℂⁿ 4.2.1 Different notion of pseudoconvexity 4.2.2 Richberg approximation theorem 	1	de l	Rham currents	1
2.2 Plurisubharmonic functions	2	Sub	pharmonic and Plurisubharmonic functions	3
2.3 Pluriharmonic functions		2.1	Subharmonic functions	3
3 Resolution of $\bar{\partial}$, Dolbeault-Grothendieck lemma 4 Extension theorems, Domain of holomorphy 4.1 Generalities		2.2	Plurisubharmonic functions	7
4 Extension theorems, Domain of holomorphy 4.1 Generalities		2.3	Pluriharmonic functions	8
4.1 Generalities	3	Res	solution of $\bar{\partial},$ Dolbeault-Grothendieck lemma	8
4.2 Case $\Omega \subset \mathbb{C}^n$	4	\mathbf{Ext}	ension theorems, Domain of holomorphy	9
4.2.1 Different notion of pseudoconvexity		4.1	Generalities	10
- · · · · · · · · · · · · · · · · · · ·		4.2	Generalities	
4.2.2 Richberg approximation theorem				11
			Case $\Omega \subset \mathbb{C}^n$	

1 de Rham currents

Let M be a differential m-dimensional manifold and $\mathcal{E}^p(M)$ be the vector space of smooth p-forms on M and $\mathcal{D}^p(M)$ be the space of those with compact support. Then $\mathcal{E}^p(M), \mathcal{D}^p(M)$ is a topological vector space with the pseudonorms $p_{K,\Omega}^s(\omega) = \max_{K,|\alpha| \leq s} |D^\alpha u_I|$ where $K \in \Omega$ an coordinated open set. The space of de Rham current with dimension $p / \underline{\text{degree}} \ m - p$ is defined as the dual space of $\mathcal{D}^p(M)$, denoted by $\mathcal{D}'^{m-p}(M)$ or $D'_p(M)$

Remark 1. 1. We are still in \mathbb{R} , but the definition expands to the complex case, denoted by $\mathcal{D}'^{m-p,m-q}(M) = \mathcal{D}'_{p,q}(M)$ where m is the complex dimension of M.

2. The degree is defined such that the current $T_{\omega}: \eta \mapsto \int_{M} \omega \wedge \eta$ is of the same degree as ω . The dimension is defined so that the current $T_{[Z]}: \eta \mapsto \int_{Z} \eta$ is of the same dimension as Z.

Definition 1. One has the following operation on $\mathcal{D}'^{m-p}(M)$:

- 1. **Derivative:** $\langle dT, \omega \rangle = (-1)^{\deg T} \langle T, d\omega \rangle$
- 2. Wedge product with a form: $\langle T \wedge \eta, \omega \rangle = \langle T, \eta \wedge \omega \rangle$
- 3. **Pushforward:** If $F: X \longrightarrow Y$ proper on supp T then $\langle F_*T, \omega \rangle = \langle T, F^*\omega \rangle = \langle T, \chi F_*\omega \rangle$ where $\chi \in C^{\infty}(M)$ identically 1 on supp T. The proper condition is such that the pullback of ω is compactly support in supp T
- 4. **Pullback:** Let $F: X \longrightarrow Y$ submersion then the pushforward of a form on X is well-defined by Fubini. One has $\langle F^*T, \omega \rangle = \langle T, F_*\omega \rangle$

Remark 2. 1. The sign of derivative is chosen so that $dT_{\omega} = T_{d\omega}$.

- 2. Pushforward keeps the dimension, as the arguments are of the same degree.
- 3. Pullback keeps the codimension, meaning the degree (think $F^*T_{[Z]} = T_{[F^{-1}(Z)]}$).
- 4. Locally a current is of form $T = \sum u_I dx^I$ where u_I are distribution. **Note:** Here distribution are indentified as a current of maximal degree and not zero degree as they naturally are. To be exact, the notation of u_I is contravariant and its action is $\varphi dx^1 \wedge \cdots \wedge dx^N \mapsto \langle u_I, \varphi \rangle dx^1 \wedge \cdots \wedge dx^n / vol$ where vol is a canonical volume form.

The last two remarks explain the sign in the following proposition.

Proposition 0.1 (Pushforward and Pullback). Let $F: M_1 \longrightarrow M_2$, submersion if needed, then

- 1. supp $F_*T \subset F(\operatorname{supp} T)$
- 2. $d(F_*T) = F_*dT$ (pushforward of a form is still that form)
- 3. $F_*(T \wedge F^*g) = (F_*T) \wedge g$

and

- 1. $F^*(dT) = (-1)^{m_1 m_2} d(F^*T)$
- 2. $F^*(T \wedge g) = (-1)^{m_1 m_2 \deg g} (F^*T) \wedge F^*g$

2 Subharmonic and Plurisubharmonic functions

Some properties of holomorphic functions that remain in several variables.

- Cauchy formula
- Analyticity: series development. Therefore its zeroes never form an open set (except for constant)
- Maximum modulus
- Cauchy inequality and Montel's theorem

2.1 Subharmonic functions

We are now in the context of \mathbb{R}^n .

Theorem 1 (Green kernel). Let $\Omega \in \mathbb{R}^n$ be a smoothly bounded domain, then there exists uniquely a function $G_{\Omega}: \bar{\Omega} \times \bar{\Omega} \longrightarrow [-\infty, 0]$, called the Green kernel of Ω , with the following properties:

- 1. Regular: G_{Ω} is C^{∞} on $\bar{\Omega} \times \bar{\Omega} \setminus \Delta_{\Omega}$ where Δ_{Ω} denotes the diagonal,
- 2. Symetric: $G_{\Omega}(x,y) = G_{\Omega}(y,x)$,
- 3. Negative: $G_{\Omega}(x,y) < 0$ on $\Omega \times \Omega$ and $G_{\Omega}(x,y) = 0$ on $\partial \Omega \times \Omega$,
- 4. $\Delta_x G_{\Omega}(x,y) = \delta_y$ on Ω for every $y \in \Omega$.

aa

Example 1 (case $\Omega = B(0,r)$). One can take $G_r = N(x-y) - N(\frac{|y|}{r}(x-\frac{r^2}{|y|^2}y))$ where N is the Newton kernel (or Newtonian potential, the gravitational potential). Explicitly, one has

$$G_r(x,y) = \frac{1}{4\pi} \log \frac{|x-y|^2}{r^2 - 2\langle x, y \rangle + \frac{1}{r^2} |x|^2 |y|^2}$$
 if $n = 2$

$$G_r(x,y) = \frac{-1}{(m-2)\operatorname{vol}(S^{m-1})}(|x-y|^{2-m} - (r^2 - 2\langle x,y \rangle + \frac{1}{r^2}|x|^2|y|^2)^{1-m/2}) \quad \text{if } n \ge 3$$
(2)

Proposition 1.1 (Green-Riesz representation). For $u \in C^2(\bar{\Omega}, \mathbb{R})$ one has

$$u(x) = \int_{\Omega} G_{\Omega}(x, y) \Delta u(y) d\lambda(y) + \int_{\partial \Omega} u(y) \frac{\partial G_{\Omega}}{\partial \nu_{y}} d\sigma(y)$$

In particular, for $\Omega = B(0, r)$, one has

$$P_r(x,y) := \frac{\partial G}{\partial \nu_y} = \frac{1}{\text{vol}(S^{m-1})r} \frac{r^2 - |x|^2}{|x - y|^m}$$

called the Poisson kernel.

Proof. Use the Green-Riesz formula: $\int_{\Omega} u \Delta v - v \Delta u = \int_{\partial \Omega} u \frac{\partial v}{\partial \nu} - v \frac{\partial u}{\partial \nu}$.

Definition 2. Let $\Omega \subset \mathbb{R}^n$ be an open subset and $u:\Omega \longrightarrow [-\infty,\infty)$ a upper semi-continuous function:

$$\limsup_{x \to x_0} u(x) \le u(x_0)$$

One notes by $\mu_S(u, a, r)$ and $\mu_B(u, a, r)$ the average of u in the sphere and the disk centered in a of radius r. Then the following properties are equivalent and a function is called subharmonic if they are verified.

- 1) $u(x) \le P_{a,r}[u](x) \quad \forall a, r, x \in B(a,r) \subset \Omega,$
- 2) $u(a) \le \mu_S(u, a, r) \quad \forall B(a, r) \subset \Omega$,
- 2') $u(a) \leq \mu_S(u, a, r)$ for $B(a, r_n) \subset \Omega, r_n \to 0$,
- 3) $u(a) \le \mu_B(u, a, r) \quad \forall B(a, r) \subset \Omega$,
- 3') $u(a) \le \mu_B(u, a, r)$ for $B(a, r_n) \subset \Omega, r_n \to 0$,
- 4) If $u \in C^2$, then $\Delta u > 0$.

The convex cone of subharmonic functions on a domain Ω is denoted by $Sh(\Omega)$.

Proof. It is obvious that $(1) \to (2) \to (3) \to (3') \to (2')$. To prove $(2') \to (1)$ one needs the following 2 facts:

Lemma 2 (u.s.c function as limit of continuous functions). Let u be a u.s.c. function on a compact metric space X, then there exists a sequence u_n continuous function on X that decreases to u pointwise.

Proof. Let $\tilde{u}_k(x) = \max\{u(x), -k\}$ to exclude the $-\infty$ points. Then $v_k(x) = \sup_{y \in X} (u(y) - kd(x, y))$ works.

Lemma 3. (2') implies strict maximum principle (see 3.1).

Proof. By restriction to smaller neighborhood, one can suppose that u attains global maximum at x_0 in Ω . Then $W = \{x \in \Omega : u(x) < u(x_0)\}$ is an open set, and has a point y in its boundary if W nonempty. Then (2') is not satisfied at y since the measure of open arc is nonzero.

Note that if u is continue than $(2') \to (1)$: Let $h = P_{a,r}[u]$ harmonic then u - h satisfies (2'), therefore the maximum principle, hence $u - h \le (u - h)|_{S(a,r)} = 0$.

If u is u.s.c, take a sequence v_k continuous that decreases to u and let $h_k = P_{a,r}[v_k]$ then $h_k \geq v_k \geq u$ and $h_k \to P_{a,r}[u]$ by monotone convergence. \square

Proposition 3.1. Let $u \in Sh(\Omega)$ then

(Strict) maximum principle. u cannot attain local maximum unless it is constant in the corresponding connected component,

Locally integrable. u is L^1_{loc} on each connected component where $u \not\equiv -\infty$,

Pointwise decreasing limit The pointwise limit u of a decreasing sequence u_k of subharmonic functions is also subharmonic.

Regularisation. $\mu_S(u, a, \varepsilon), \mu_B(u, a, \varepsilon), \rho_{\varepsilon} * u \text{ increase in } \varepsilon.$ Moreover, $\rho_{\varepsilon} * u \in Sh(\Omega)$ and decreases to u pointwise as $\varepsilon \to 0$.

Moreover, for $u \in \mathcal{D}'(\Omega)$

Positive measure. $u \in Sh(\Omega)$ iff $\Delta u \geq 0$ is a positive measure.

Proof. Locally integrable. To see that $u \in L^1_{loc}(\Omega)$ if Ω is connected and $u \not\equiv -\infty$, let x be a point in the boundary of $W = \{y \in \Omega : u \text{ integrable in neighborhood of } y\}$, then apply mean value property in $a \in W$ such that $x \in B(a, r)$.

Pointwise decreasing limit. Infimum of a family of u.s.c functions is still u.s.c. The mean value property comes from monotone convergence.

Regularisation. Check first for C^2 functions, then regularise. One uses the following Gauss formula:

$$\mu_S(u, a, r) = u(a) + \frac{1}{n} \int_0^r \mu_B(\Delta u, a, t) t dt$$

to see that μ_S is increasing in r and

$$\mu_B(u, a, r) = m \int_0^1 t^{m-1} \mu_S(u, a, rt) dt$$

to see that μ_B is increasing. For the convolution, use

$$u * \rho_{\varepsilon} = \operatorname{vol}(S^{n-1}) \int_{0}^{1} \mu_{S}(u, a, \varepsilon t) \rho(t) t^{m-1} dt.$$

Positive measure. $\Delta u * \rho_{\varepsilon} \geq 0$ as function, therefore the limit ≥ 0 as measure (dominated convergence).

Proposition 3.2 (new harmonic functions from old ones). Let $u_k \in Sh(\Omega)$ then

1. If $\{u_k\}$ decrease to u then $u \in Sh(\Omega)$.

2. Let χ be a convex function, non-decreasing in each variable then $\chi(u_1, \ldots, u_p) \in Sh(\Omega)$. Therefore, $\sum u_i$ and $\max\{u_i\}$ are subharmonic.

Proposition 3.3 (Upper regularization). 1. Let u be a real function on Ω then $u^*(x) = \lim_{\varepsilon \to 0} \sup_{x+\varepsilon B} u$, called the <u>upper envelope</u> of u is u.s.c and is in fact the smallest u.s.c function greater than u.

- 2. Choquet lemma. Let $\{u_{\alpha}\}$ be a family of real function, one defines the <u>upper regularization</u> of $\{u_{\alpha}\}$ by u^* where $u = \sup_{\alpha} u_{\alpha}$. Then from every such family, on can always find a countable subfamily $\{v_i\}$ such that $u^* = v^*$.
- 3. If $\{u_{\alpha}\} \subset Sh(\Omega)$ then $u^* = u$ a.e. and $u^* \in Sh(\Omega)$.

Proof. 1. Obvious.

- 2. Let B_i be a countable base of the topology and $x_{i,j}$ be a sequence such that $u(x_{ij}) \to \sup_{B_i} u$. Let $\{u_{i,j,k}\}$ be a countable subfamily such that $u_{ijk}(x_i) \to u(x_i)$ then it is a suitable subfamily.
- 3. WLOG, suppose that $\{u_{\alpha}\} = \{u_i\}$ countable then u satisfies the submean value property: $u(z) \leq \mu_B(u,z,r)$. By the continuity of $\mu_B(u,z,r)$ one has $u^*(z) \leq \mu_B(u,z,r) \leq \mu(u^*,z,r)$ therefore $u^* \in Sh(\Omega)$ and $u^*(z) = \lim_{r\to 0} \mu_B(u^*,z,r) = \lim_{r\to 0} \mu_B(u,z,r)$, from which $u=u^*$

2.2 Plurisubharmonic functions

The analog of harmonic functions over \mathbb{C} in multidimensional case $\Omega \subset \mathbb{C}^n$ is in fact *pluriharmonic functions* which is defined through the notion of plurisubharmonic functions

- **Definition 3.** 1. A real function u is said to be <u>plurisubharmonic</u> if and only if its restriction to any complex line is subharmonic. One denotes by $Psh(\Omega)$ the space of plurisubharmonic function on Ω .
 - 2. In case $u \in C^2$ on $\Omega \subset \mathbb{C}^n$, this is equivalent to

$$H(u)(\zeta) = \sum \frac{\partial^2 u}{\partial z^j \partial \bar{z}^k} \zeta^j \bar{\zeta}^k \ge 0 \quad \forall \zeta \in \mathbb{C}^n$$

where the notation $H(u)(\zeta)$ is invariant, i.e. if $f: M_1 \longrightarrow M_2$ is holomorphic then $H(u \circ f)(\zeta) = H(u)df(\zeta)$.

- 3. In the general case, this is equivalent to $H(u)(\zeta) \geq 0 \quad \forall \zeta \in \mathbb{C}^n$ as a measure.
- **Remark 3.** 1. The invariance can be noticed using $\zeta^j = \zeta^j d\zeta^j + \bar{\zeta}^j d\bar{\zeta}^j$ where LHS is interpreted as a vector in $T\mathbb{C}$. This allows us to extend the notion of Psh(M) to any complex manifold M.
 - 2. By consequence, $f^*u \in Psh(M_1)$ for all $u \in Psh(M_2)$ and $f: M_1 \longrightarrow M_2$ holomorphic.

Proposition 3.4 (new Psh functions from old ones). The construction of new plurisubharmonic function is the same as that of subharmonic function. Let $u_k \in Psh(\Omega)$ then

- 1. If $\{u_k\}$ decrease to u then $u \in Psh(\Omega)$.
- 2. Let χ be a convex function, non-decreasing in each variable then $\chi(u_1, \ldots, u_p) \in Psh(\Omega)$. Therefore, $\sum u_i$ and $\max\{u_i\}$ are plurisubharmonic.
- 3. The upper regularization u^* where $u = \sup_{\alpha} u_{\alpha}$ is also plurisubharmonic and $u = u^*$ almost everywhere.

Proof. The only nontrivial proof is the third one where upper envelop in \mathbb{C}^{\times} and in a line can be different. To fix this, use Choquet lemma 3.3 and dominated convergence, $u * \rho_{\varepsilon}$ satisfies the submean property on every complex line and decrease to u a.e.

2.3 Pluriharmonic functions

Definition 4. A function u is said to be <u>pluriharmonic</u> on Ω , denoted $u \in Ph(\Omega)$ if $u \in Psh(\Omega)$ and $u \in Psh(\Omega)$ be where $u \in Psh(\Omega)$.

This is obviously equivalent to H(u)=0, i.e. $\frac{\partial^2 u}{\partial z^j \bar{\partial} z^k}=0 \quad \forall j,k, i.e.$ $\partial \bar{\partial} u=0$.

Remark 4. 1. By mean value property, $Ph(\Omega) \subset Harm(\Omega)$.

2. If
$$f \in \mathcal{O}(M)$$
 then $\Re f, \Im f \in Ph(M)$

Theorem 4 (analog of harmonic function). If M is a complex manifold such that $H^1_{dR}(X,\mathbb{R}) = 0$ then every pluriharmonic function u is a real part of a holomorphic function $f \in \mathcal{O}(M)$

Proof. Since $d(\bar{\partial}u) = 0$, and $H^1_{dR} = 0$, one has $\bar{\partial}u = dg$. Therefore $d(u - 2\Re g) = (\bar{\partial}u - dg) + (\partial u - d\bar{g}) = 0$, hence on chooses f = 2g + C on each connected component.

3 Resolution of $\bar{\partial}$, Dolbeault-Grothendieck lemma

The generalized Cauchy formula for several variables is the following (the formula in wikipedia is $K_{BM}^{0,0}$)

Theorem 5 (Bochner–Martinelli-Koppelman formula). The <u>Bochner-Martinelli</u> kernel is the following (n, n-1)-form on \mathbb{C}^n

$$k_{BM} = (-1)^{n(n-1)/2} \frac{(n-1)!}{(2\pi i)^n} \sum_{1 \le j \le n} (-1)^j \frac{\bar{z}_j dz_1 \wedge \dots \wedge dz_n \wedge d\bar{z}_1 \wedge \dots \wedge \widehat{dz}_j \wedge \dots \wedge d\bar{z}_n}{|z|^{2n}}$$

then $\bar{\partial}k_{BM} = \delta_0$ on \mathbb{C}^n .

Let $K_{BM} = \pi^* k_{BM}$ where $\pi : (z, \zeta) \mapsto z - \zeta$ so that $\bar{\partial} K_{BM} = [\Delta]$, then: For any domain $\Omega \subset \mathbb{C}^n$ bounded with piecewise C^1 boundary and v a (p,q)-form of class C^1 on $\bar{\Omega}$ then

$$v(z) = \int_{\partial\Omega} K_{BM}^{p,q}(z,\zeta) \wedge v(\zeta) + \bar{\partial} \int_{\Omega} K_{BM}^{p,q-1}(z,\zeta) \wedge v(\zeta) + \int_{\Omega} K_{BM}^{p,q}(z,\zeta) \wedge \bar{\partial} v(\zeta)$$

where $K_{BM}^{p,q}$ denotes the component of K_{BM} type (p,q) in z and type (n-p,n-q-1) in ζ

Another consequence of 5 is the *global* resolution of $\bar{\partial}$ in case of compact support.

Corollary 5.1. If v is a (p,q)-form with $q \ge 1$ on \mathbb{C}^n , compactly supported, with regularity of class C^s such that $\bar{\partial}v = 0$ then there exists an (p,q-1)-form u on \mathbb{C}^n with the same regularity as u such that $\bar{\partial}u = v$. In fact one can take

 $u(z) = \int_{\mathbb{C}^n} K_{BM}^{p,q-1}(z,\zeta) \wedge v(\zeta)$

In case (p,q)=(0,1) then u is compactly support. This means that the compact support (0,1)-Dolbeault cohomology $H_c^{0,1}(\mathbb{C}^n)=0$.

Since $K_{BM} = O(|z|^{1-2n})$, one has $|u(z)| = O(|z|^{1-2n})$ at infinity. Therefore the compact support of u in case (p,q) = (0,1) is explained by Liouville theorem.

The Dolbeault-Grothendieck lemma solves the equation $\bar{\partial}u = v$ in a local scale if the compact support condition is dropped and gives regular result if v is a (p,0)-form.

Theorem 6 (Dolbeault-Grothendieck lemma). Let $v \in \mathcal{D}'(p,q)(\Omega)$ such that $\bar{\partial}v = 0$.

- 1. If q = 0 then $v = \sum v_I dz^I$ where $v_I \in \mathcal{O}(\Omega)$.
- 2. If $q \geq 1$ then there exists $\omega \subset \Omega$ and $u \in \mathcal{D}'(p, q-1)(\Omega)$ such that $\bar{\partial}u = v$. Moreover, if $v \in \mathcal{E}^{p,q}(\Omega)$ then $u \in \mathcal{E}^{p,q-1}(\Omega)$

Corollary 6.1 (Hypoellipticity in bidegree (p,0)). $\bar{\partial}$ is hypoellipticity in bidegree (p,0), i.e. if $\bar{\partial}u = v$, v of bidegree (p,1) and v is C^{∞} then u is also C^{∞} on the entire domain Ω .

4 Extension theorems, Domain of holomorphy

Theorem 7 (Hartog extension). Let $\Omega \subset \mathbb{C}^n$ be a domain and $K \subseteq \Omega$ such that $\Omega \setminus K$ is connected. Then $\mathcal{O}(\omega)|_{\Omega \setminus K} = \mathcal{O}(\Omega \setminus K)$ every holomorphic function on $\Omega \setminus K$ extends to Ω

Proof. Let $f \in \mathcal{O}(\Omega \setminus K)$ be the function we want to extend. Let φ be a function with support in a neighborhood of K and is identically 1 on K and $g = (1 - \varphi)f$ which coincides with f outside of supp φ . Then $v = \bar{\partial}g \in \mathcal{D}^{0,1}$ satisfies $\bar{\partial}v = 0$, therefore there exists $u \in C_c^{\infty}(\mathbb{C}^n)$ with supp $u \subset \text{supp }\varphi$ such that $\bar{\partial}u = v = \bar{\partial}g$, the holomorphic function g - u is well-defined on Ω and coincides with f (and g) on $\Omega \setminus \text{supp }\varphi$, therefore coincides with f on $\Omega \setminus K$.

Note that although we do not need Ω to be small, this theorem counts as a local result due to the hypothesis that we are in \mathbb{C}^n .

A global result can be obtained using the Hartog figure, that is the union of an anulus $\{(z_1,z'): r<|z_1|< R\}$ and an open set in other dimension $\{(z_1,z'): z'\in\omega \text{ open}\}$. and use the interpolation $(z_1,z')\mapsto \int_{C_R} \frac{f(\zeta_1,z')}{\zeta_1-z_1}d\zeta_1$ to extend f. The open set in z'-dimension is to show that the interpolation and f coincide on it. With one dimension z_1 to form the annulus an another dimension (says z_2 to form the open set, one can extend any holomorphic function to a submanifold of (complex) codimension at least 2.

Theorem 8 (Riemann extension). Let M be a complex manifold and N a sub-complex manifold of codimension ≥ 2 then any holomorphic function on $M \setminus N$ extends uniquely to M.

4.1 Generalities

An approach to the extension problem on complex manifolds is through the notion of holomorphic hull and holomorphic convexity.

- **Definition 5.** 1. Let K be a compact in a complex manifold M. Then the $\frac{holomorphic\ hull\ \hat{K}_{\mathcal{O}(M)}}{\mathcal{O}(M)}$ is the set $\{z \in M: f(z) \leq \sup_{K} |f| \ \forall f \in \mathcal{O}(M)\}$.
 - 2. A complex manifold M is said to be <u>holomorphically convex</u> if $\hat{K}_{\mathcal{O}(X)}$ is compact for all compact $K \subset M$.

Proposition 8.1 (holomorphic hull). The following statements are obvious

- 1. \hat{K} is a closed subset containing K and $\hat{\hat{K}} = \hat{K}$.
- 2. If $f: M_1 \longrightarrow M_2$ is holomorphic then $f(\hat{K}) \subset \widehat{f(K)}$. (Think inclusion)
- 3. **Hole filling.** In particular, if $f: \bar{B} \longrightarrow X$ and $f(\partial B) \subset K$ then $f(\bar{B}) \subset \hat{K}$.

Proposition 8.2 (holomorphically convex). Let M be a holomorphically convex complex manifold then

- 1. M admits a exhaustive sequence of compact K_{ν} , i.e. $K_{\nu} \in K_{\nu+1}$ and $\widehat{K_{\nu}} = K_{\nu}$.
- 2. M is <u>weakly pseudoconvex</u>, i.e. there exists $\psi \in Psh(M) \cap C^{\infty}(M)$ such that $\{\psi < c\}$ are relatively compact, i.e. $\lim_{K \to M} \psi|_{M \setminus K} = +\infty$

4.2 Case $\Omega \subset \mathbb{C}^n$

Definition 6. Domain of holomorphy

Proposition 8.3. Let $\Omega \subset \mathbb{C}^n$ be a domain then:

- 1. If Ω is a domain of holomorphy then $\hat{K}_{\mathcal{O}(\Omega)}$ is compact and $d(K, \partial \Omega) = d(\hat{K}, \partial \Omega)$.
- 2. THe followings are equivalent:
 - (a) Ω is a domain of holomorphy.
 - (b) Ω is holomorphically convex.
 - (c) Let $\{z_k\}$ be a sequence in Ω without accumulation in Ω and $c_k \in \mathbb{C}$. There exists a function $f \in \mathcal{O}(\Omega)$ such that $f(z_k) = c_k$.
 - (d) There exists a function $F \in \mathcal{O}(\Omega)$ that is unbounded locally in any point on $\partial\Omega$.

 $\#{+}{\rm END_{theorem}}$

4.2.1 Different notion of pseudoconvexity

4.2.2 Richberg approximation theorem

Emacs 25.3.1 (Org mode 9.0.5)