ALGORITMI - Complessità

Anno Accademico 2014-15

Appello - 2 Febbraio 2015

Nome e Cognome:

Matricola:

Importante: Usare solo i fogli forniti dal docente. Scrivere in modo leggibile. Risposte non giustificate saranno valutate 0. Per ogni algoritmo proposto vanno provate correttezza e complessità.

Esercizio 1 - 10 punti

Si supponga di aver provato che un certo problema \mathbb{A} è \mathcal{NP} -completo mediante una riduzione polinomiale che mappa istanze di taglia n di SAT in istanze di taglia n^3 per il problema \mathbb{A} .

Supponiamo poi di esser venuti a conoscenza che il Professor Iknowitall ha dimostrato, per una qualche costante c > 1, un bound $\Omega(c^n)$ alla complessità di tempo di ogni algoritmo per SAT. Cosa possiamo ora concludere circa la complessità del problema \mathbb{A} ?

(a) $\mathbb{A} \in \mathcal{P}$? (b) $\mathbb{A} \notin \mathcal{P}$? (c) Possiamo fornire un upper bound o un lower bound alla complessità di un qualsiasi algoritmo per \mathbb{A} ?

Esercizio 2 - 20 punti

Si dimostri che se P=NP allora per ogni problema $\mathbb{A}\in\mathcal{NP}$ esiste un algoritmo A che data un'istanza x non solo riesce a dire in tempo polinomiale se x è un'istanza yes o no ma, nel caso si tratti di un'istanza yes allora l'algoritmo riesce in tempo polinomiale a fornire una qualche prova del fatto che x è yes per \mathbb{A} . Tale prova può essere verificata in tempo polinomiale.

Esercizio 3 - 20 punti

Definiamo il seguente problema

HALFCLIQUE

Input: Un grafo non diretto G = (V, E)

Output: yes se e solo se esiste un insieme di vertici $V' \subseteq V$ tale che:

 $|V| \ge |V|/2$ e per ogni $x, y \in V'$ vale $(x, y) \in V'$.

Si provi che HalfClique è NP-completo.

Esercizio 4 - 20 punti

- (i) Si forniscano le definizioni delle classi di complessità randomizzata $\mathcal{ZPP}, \mathcal{RP},$ co- \mathcal{RP} e $\mathcal{BPP}.$
- (ii) Si dimostri che $\mathcal{ZPP} = \mathcal{RP} \cap \text{co-}\mathcal{RP}$.
- (iii) Si dimostri che vale la seguente implicazione: $\mathcal{NP} \subseteq \mathcal{BPP} \Rightarrow \mathcal{NP} = \mathcal{RP}$.