Package 'MultivarTV'

April 28, 2018

Title Mesh Based Solutions to Multivariate Total Variation Problems

Type Package

Version 1.0
Date 2018-04-05
Author Brayan Ortiz
Maintainer Brayan Ortiz <brayan@uw.edu></brayan@uw.edu>
Description Efficient procedures written in C++ for fitting approximate solutions to multivariate total variation denoising problems. The algorithm uses the alternating direction method of multipliers (ADMM), as described by Boyd et al. (2011).
License GPL (>= 2)
Imports Rcpp (>= 0.12.16), plot3D
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 6.0.1
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation yes
_
R topics documented:
MultivarTV-package gen_mesh mvtv mvtv.default mvtv_default plot.mvtv plotResiduals predict.mvtv predict_mvtv
Index

MultivarTV-package

2

MultivarTV-package Mesh Based Solutions to Multivariate Total Variation Problems

Description

Efficient procedures written in C++ for fitting approximate solutions to multivariate total variation denoising problems. The algorithm uses the alternating direction method of multipliers (ADMM), as described by Boyd et al. (2011).

Details

The DESCRIPTION file:

Package: MultivarTV Type: Package

Title: Mesh Based Solutions to Multivariate Total Variation Problems

Version: 1.0

Date: 2018-04-05 Author: Brayan Ortiz

Maintainer: Brayan Ortiz
 brayan@uw.edu>

Description: Efficient procedures written in C++ for fitting approximate solutions to multivariate total variation denoising

License: GPL (>= 2)

Imports: Rcpp (>= 0.12.16), plot3D LinkingTo: Rcpp, RcppArmadillo

RoxygenNote: 6.0.1

Suggests: knitr, rmarkdown

VignetteBuilder: knitr

Index of help topics:

MultivarTV-package Mesh Based Solutions to Multivariate Total

Variation Problems

gen_mesh Generate a mesh mvtv MVTV Generic Class

mvtv.default Default Multivariate Total Variation Denoising

Solver

mvtv_default Default Multivariate Total Variation Denoising

Solver for use by S3 Generic

plot.mvtv Plotting Fitted Surface, p=1

plotResiduals Plotting Residuals

predict.mvtv MVTV Predict for Fitting Observed/New Data predict_mvtv MVTV Predict for use by S3 Generic Function

This section should provide a more detailed overview of how to use the package, including the most important functions.

gen_mesh 3

Author(s)

Brayan Ortiz

References

This optional section can contain literature or other references for background information.

See Also

Optional links to other man pages

Examples

```
## Optional simple examples of the most important functions
## Use \dontrun{} around code to be shown but not executed
```

gen_mesh	Generate a mesh	

Description

Single function to handle creating a mesh regularly across domain of predictors. Mesh created is a convex hull of predictor space.

Usage

```
gen_mesh(data, m, mesh)
```

Arguments

data n by p matrix of inputs

wector of length p with number of knots desired for each predictor

mesh NULL; otherwise, takes user defined mesh.

4 mvtv.default

mvtv MVTV Generic Class

Description

Defining MVTV Generic Class

Usage

```
mvtv(data, ...)
```

Arguments

data n by p matrix of data

... ignore

mvtv.default

Default Multivariate Total Variation Denoising Solver

Description

Create a mesh and find cross-validated best approximation to total variation denoising problem.

Usage

```
## Default S3 method:
mvtv(data, y, m = NULL, ..., mesh = NULL,
    n_lambda = 100, ftrue = NULL, lambdas = NULL, folds = 5,
    verbose = TRUE)
```

Arguments

data	n by p matrix of inputs	
у	response column vector	

m vector of number of mesh points per predictor

... ignore

mesh user can supply or NULL for regularly spaced mesh, which will be returned

n_lambda number of logarithmically spaced tuning parameters ftrue prediction target. If NULL, use observed data.

lambdas user can supply vector of lambdas to be solved over. If NULL, function gen-

erates n_lambda logarithmically spaced lambdas from 0.00001*lambda_max and lambda_max, where lambda_max is our approximation of smallest lambda

where regularization ends.

folds number of folds for cross-validation

verbose Default: true, prints out current working penalty and number of iters to solve.

mvtv_default 5

Examples

```
# Approximating Bivariate Fused Lasso for Uniform Data
## Generate Data
set.seed(117)
x <- matrix(runif(100),ncol = 2)
y <- matrix(runif(50),ncol=1)
m <- matrix(c(3,3),ncol=1)

## Find Total Variation Solution over range of lambdas and whole data set
mvtv_fold1 <- mvtv(x,y,m,folds=1, verbose = FALSE)

## Find 5-fold validated MVTV Model over range of lambdas
mvtv_fold5 <- mvtv(x,y,m,folds=5, verbose = FALSE)</pre>
```

mvtv_default Default Multivariate Total Variation Denoising Solver for use by S3
Generic

Description

Create a mesh and find cross-validated best approximation to total variation denoising problem.

Usage

```
mvtv_default(data, y, m, mesh = NULL, n_lambda = 100L, ftrue = NULL,
  lambdas = NULL, folds = 5L, verbose = TRUE)
```

Arguments

data	n by p matrix of inputs
У	response column vector
m	vector of number of mesh points per predictor
mesh	user can supply or NULL for regularly spaced mesh, which will be returned
n_lambda	number of logarithmically spaced tuning parameters
ftrue	prediction target. If NULL, use observed data.
lambdas	user can supply vector of lambdas to be solved over. If NULL, function generates n_lambda logarithmically spaced lambdas from 0.00001*lambda_max and lambda_max, where lambda_max is our approximation of smallest lambda where regularization ends.
folds	number of folds for cross-validation
verbose	Default: true, prints out current working penalty and number of iters to solve.

6 plotResiduals

plot.mvtv

Plotting Fitted Surface, p=1

Description

Plotting fitted values for an 'mvtv' Object

Usage

```
## S3 method for class 'mvtv'
plot(x, ..., addmesh = FALSE, adddata = TRUE,
  lambda = NULL)
```

Arguments

x object of class 'mvtv.'

... ignore.

addmesh If TRUE, vertical grey lines plotted along x-axis value of mesh.

adddata If TRUE, observed data is plotted.

lambda Plot at specified lambda. If NULL, plot fit at lambda with smalled cross-validated

MSE.

plotResiduals

Plotting Residuals

Description

Plotting residuals for an 'mvtv' Object

Usage

```
plotResiduals(mvtvmodel)
```

Arguments

mvtvmodel object of class 'mvtv'

predict.mvtv 7

predict.mvtv

MVTV Predict for Fitting Observed/New Data

Description

Use fitted 'mvtv' object to predict new data.

Usage

```
## S3 method for class 'mvtv'
predict(object, data = NULL, mesh = NULL, ...)
```

Arguments

object produced by mvtv.default

data n by p matrix of inputs

mesh m by p mesh used by fitting function mvtv

... ignore

Examples

```
# Approximating Bivariate Fused Lasso for Uniform Data
## Generate Data
set.seed(117)
x <- matrix(runif(100),ncol = 2)
y <- matrix(runif(50),ncol=1)
m <- matrix(c(3,3))

## Find 5-fold validated MBS Model over range of lambdas
mbs_fold5 <- mvtv(x,y,m,folds=5,verbose=FALSE)

# Access fitted values of training data; equivalent to mbs_fold5$fitted
fitted.values <- predict(mbs_fold5)
newdata <- matrix( runif(50), ncol = 2) # Generate new data
newfits <- predict(mbs_fold5, newdata) # Fit new data</pre>
```

predict_mvtv

MVTV Predict for use by S3 Generic Function

Description

Use fitted 'mvtv' object to predict new data.

Usage

```
predict_mvtv(mvtvobject, data = NULL, mesh = NULL)
```

8 predict_mvtv

Arguments

mvtvobject object produced by mbtv.default

data n by p matrix of inputs

mesh m by p mesh used by fitting function mvtv

Index

```
*Topic package
MultivarTV-package, 2

gen_mesh, 3

MultivarTV (MultivarTV-package), 2
MultivarTV-package, 2
mvtv, 4
mvtv.default, 4
mvtv_default, 5

plot.mvtv, 6
plotResiduals, 6
predict_mvtv, 7
predict_mvtv, 7
```