RESTANTA LA ANALIZA MATEMATICA II

I. Consideram functia $f: \mathbb{R}^3 \to \mathbb{R}$

$$f(x, y, z) = x^6 - 6xz + 3z^2 + y^2 - 2y$$

Determinati punctele de extrem local ale functiei f si precizati natura lor.

II. Fie functia $f: \mathbb{R}^2 \to \mathbb{R}$

$$f(x,y) = \begin{cases} \frac{xy(y^2 - x^2)}{x^2 + y^2}, & \text{daca } (x,y) \neq (0,0) \\ 0 & \text{daca } (x,y) = (0,0) \end{cases}$$

- (1) Sa se calculeze derivatele partiale de ordinul intai ale functiei f. Sa se studieze diferentiabilitatea lui f pe \mathbb{R}^2 .
- (2) Aratati ca

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) \neq \frac{\partial^2 f}{\partial y \partial x}(0,0)$$

si explicati de ce in acest caz Teorema lui Schwarz nu se aplica.

III. 1) Calculati integrala

$$\iint_{D} (1+x)dxdy$$

unde D este multimea marginita de laturile triunghiului ABC cu A(1,2), B(4,3) si C(3,5).

2) Fie $I=[0,1]\times [0,1]$ si $A\subset I$ cu proprietatea ca $\lambda^*(A)=0.$ Fie $f:I\to \mathbb{R},$

$$f(x,y) = \begin{cases} x & \text{daca } (x,y) \in A \\ 0 & \text{daca } (x,y) \notin A. \end{cases}$$

Demonstrati ca $\int_I f(x,y) dx dy = 0$.

 ${f IV.}$ Calculati integrala

$$\iiint_V (z-1)dxdydz$$

unde V este multimea marginita de planele $z=1,\,z=2,\,y-x=0$ si paraboloidul

$$x^2 + y^2 = z.$$

Nota Timpul de lucru este 2 ore. Solutiile trebuie sa fie scrise clar si detaliat. Telefoanele mobile si orice alte echipamente de comunicatii vor fi inchise pe parcursul examenului. Incalcarea acestei reguli atrage eliminarea din examen!