Project Development Phase Model Performance Test

Date	14 November 2023	
Team ID	591606	
Project Name ENVISIONING SUCCESS: Predicting University		
	Scores using Machine Learning	
Maximum Marks	10 Marks	

Model Performance Testing:

S.No.	Parameter	Values	Screenshot
1.	Metrics	Regression Model: MAE - , MSE - , RMSE - , R2 score -	After performing all the Regression Models we found the best model as Random Forest Regression with best MAE, MSE, RMSE, R2 Scores
2.	Tune the Model	Hyperparameter Tuning - Validation Method -	Using GridSearch for random forest model [82] # Get the best hyperparameters best_params = grid_search.best_params_ print("Best Hyperparameters:", best_params) t Hyperparameters: {'bootstrap': False, 'max_depth': 20, 'max_f [83] # Get the best model best_rf_model = grid_search.best_estimator_

	ý _{0s} [7	7] # Evaluate the model on the test set y_pred = best_rf_model.predict(X_test) mse = mean_squared_error(Y_test, Y_pred4) print("Mean Squared Error on Test Set:", mse)
		Mean Squared Error on Test Set: 0.1750542942954527
	vos [7:	<pre>8] y_pred = best_rf_model.predict(X_test) mae = mean_absolute_error(Y_test, Y_pred4) print("Mean absolute error on Test Set:", mae)</pre>
		Mean absolute error on Test Set: 0.1987129545454545
	vos [79	<pre>9] y_pred = best_rf_model.predict(X_test) rmse = np.sqrt(mean_squared_error(Y_test, Y_pred4)) print("Root Mean Squared Error on Test Set:", mae)</pre>
		Root Mean Squared Error on Test Set: 0.1987129545454545
	os O	<pre>y_pred = best_rf_model.predict(X_test) r2 = r2_score (Y_test, Y_pred4) print("r2 score on Test Set:", r2)</pre>
	Œ	? r2 score on Test Set: 0.9967497472077167