

(ONFIZ1-0401) Elemi lineáris algebra

Dr. Facskó Gábor, PhD

tudományos főmunkatárs facskog@gamma.ttk.pte.hu

Pécsi Tudományegyetem, Természettudományi Kar, Matematikai és Informatikai Intézet, 7624 Pécs, Ifjúság útja 6. Wigner Fizikai Kutatóközpont, Orfizikai és Örtechnikai Osztály, 1121 Budapest, Konkoly-Thege Miklós út 29-33. https://facsko.tuk.ntb.

2024. október 17.

Folyó ügyek

- Ma írunk zárthelyi dolgozatot a gyakorlatomon.
- ► Töltöttem fel egy második gyakorló feladatsor a saját csoportjaimnak.

Mátrixok - ismétlés I

- <u>Definíció</u>: Operátornak a lineáris vektor-vektor függvényeket nevezzük.
- Az operátorok reprezentációt nevezzük mátrixnak. Azaz, legyen $\alpha_{ij} \in \mathbb{R}$ minden $i \in \{1, 2, ..., m\}$ és $j \in \{1, 2, ..., n\}$ estén, ahol $m, n \in \mathbb{N}^+$. Az

$$A = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{pmatrix}$$

számtáblázatot $m \times n$ típusú mátrixnak nevezzük. Jelölje az $m \times n$ típusú mátrixok halmazát $M_{m \times n}$.

Mátrixok - ismétlés II

- A mátrix főátlója alatt az $\{\alpha_{11}, \alpha_{22}, \dots, \alpha_{nn}\}$ halmazt értjük.
- Az α_{ij} elem indexei közül az első a sorindex (*i*), a második pedig az oszlopindex (*j*).
- ightharpoonup A mátrix i-edik sorát A_i , j-edik oszlopát pedig A_i jelölésekkel említjük.

Műveletek mátrixokkal, mátrix inverze, a mátrix rangja I

▶ <u>Definíció:</u> Az $A = (\alpha_{ij})_{m \times n}$ mátrix transzponáltja a $A^T = (\alpha_{ji})_{m \times n}$. Ez az oszlopés sorjelleg felcserélését jelenti. Négyzetes mátrix esetén a főátlóra való tükrözés a transzponálás.

$$A_{m\times n} = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{pmatrix} \quad A_{n\times m}^{T} = \begin{pmatrix} \alpha_{11} & \alpha_{21} & \cdots & \alpha_{1m} \\ \alpha_{12} & \alpha_{22} & \cdots & \alpha_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{1n} & \alpha_{2n} & \cdots & \alpha_{mn} \end{pmatrix}$$

Műveletek mátrixokkal, mátrix inverze, a mátrix rangja II

Definíció: Legyen $A = (\alpha_{ij})_{m \times n}$ és $B = (\beta_{ij})_{m \times n}$ két azonos típusú mátrix, $\lambda \in \mathbb{R}$ egy szám. Az A és B mátrixok összege alatt az $A + B = (\alpha_{ij} + \beta_{ij})_{m \times n}$ mátrixot, az A mátrix λ -szorosa alatt a $\lambda A = (\lambda \alpha_{ij})_{m \times n}$ mátrixot értjük.

$$A_{m\times n} = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{pmatrix} B_{m\times n} = \begin{pmatrix} \beta_{11} & \beta_{12} & \cdots & \beta_{1n} \\ \beta_{21} & \beta_{22} & \cdots & \beta_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{m1} & \beta_{m2} & \cdots & \beta_{mn} \end{pmatrix}$$

$$A_{m \times n} + B_{m \times n} = \begin{pmatrix} \alpha_{11} + \beta_{11} & \alpha_{12} + \beta_{12} & \cdots & \alpha_{1n} + \beta_{1n} \\ \alpha_{21} + \beta_{21} & \alpha_{22} + \beta_{22} & \cdots & \alpha_{1n} + \beta_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m1} + \beta_{m1} & \alpha_{m2} + \beta_{m2} & \cdots & \alpha_{mn} + \beta_{mn} \end{pmatrix}$$

Műveletek mátrixokkal, mátrix inverze, a mátrix rangja III

$$\lambda A_{m \times n} = \begin{pmatrix} \lambda \alpha_{11} & \lambda \alpha_{12} & \cdots & \lambda \alpha_{1n} \\ \lambda \alpha_{21} & \lambda \alpha_{22} & \cdots & \lambda \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda \alpha_{m1} & \lambda \alpha_{m2} & \cdots & \lambda \alpha_{mn} \end{pmatrix}$$

Azaz, a mátrixokat tagonként adjuk össze, a skalárral való beszorzás a mátrix minden elemének megszorzását jelenti.

▶ <u>Definíció:</u> Legyen $A = (\alpha_{ij})_{m \times n}$ és $B = (\beta_{ij})_{n \times k}$ két mátrix. Az A és B mátrixok szorzata alatt az $A \cdot B = (\gamma_{ij})_{m \times k}$ mátrixot értjük, ahol

$$\gamma_{ij} = \sum_{l=1}^{n} \alpha_{il} \beta_{lj}.$$

Műveletek mátrixokkal, mátrix inverze, a mátrix rangja IV

Azaz:

$$A_{m \times n} = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{i1} & \alpha_{i2} & \cdots & \alpha_{in} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{pmatrix} \quad B_{n \times k} = \begin{pmatrix} \beta_{11} & \beta_{12} & \cdots & \beta_{1j} & \cdots & \beta_{1k} \\ \beta_{21} & \beta_{22} & \cdots & \beta_{2j} & \cdots & \beta_{2k} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \beta_{n1} & \beta_{n2} & \cdots & \beta_{nj} & \cdots & \beta_{nk} \end{pmatrix}$$

$$A \cdot B_{m \times k} = \begin{pmatrix} \alpha_{11} \beta_{11} + \alpha_{12} \beta_{21} + \dots + \alpha_{1n} \beta_{n1} & \alpha_{11} \beta_{12} + \alpha_{12} \beta_{22} + \dots + \alpha_{1n} \beta_{n2} & \dots & \alpha_{11} \beta_{1k} + \alpha_{12} \beta_{2k} + \dots + \alpha_{1n} \beta_{nk} \\ \alpha_{21} \beta_{11} + \alpha_{22} \beta_{21} + \dots + \alpha_{2n} \beta_{n1} & \alpha_{21} \beta_{12} + \alpha_{22} \beta_{22} + \dots + \alpha_{2n} \beta_{n2} & \dots & \alpha_{21} \beta_{1k} + \alpha_{22} \beta_{2k} + \dots + \alpha_{2n} \beta_{nk} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m1} \beta_{11} + \alpha_{m2} \beta_{21} + \dots + \alpha_{mn} \beta_{n1} & \alpha_{m1} \beta_{12} + \alpha_{m2} \beta_{22} + \dots + \alpha_{mn} \beta_{n2} & \dots & \alpha_{m1} \beta_{1k} + \alpha_{m2} \beta_{2k} + \dots + \alpha_{mn} \beta_{nk} \end{pmatrix}$$

Műveletek mátrixokkal, mátrix inverze, a mátrix rangja V

Definíció: Az n-ed rendű egységmátrix:

$$E_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

Műveletek mátrixokkal, mátrix inverze, a mátrix rangja VI

- Definíció: Az $A \in \mathcal{M}_{n \times n}$ (négyzetes) mátrixnak létezik inverze, ha van olyan $B \in \mathcal{M}_{n \times n}$, hogy $AB = BA = E_n$. Az A mátrix inverzét A^{-1} -gyel jelöljük.
- $ightharpoonup rac{ ext{Allítás:}}{ ext{Az } A \in \mathcal{M}_{n \times n}}$ mátrixnak pontosan akkor létezik inverze, ha det $(A) \neq 0$.
- ▶ $A \in \mathcal{M}_{n \times n}$ mátrixot regulárisnak nevezzük, ha det $(A) \neq 0$.
- ▶ $A \in \mathcal{M}_{n \times n}$ mátrixot szingulárisnak nevezzük, ha det (A) = 0.
- Az inverz mátrix kiszámítható elemi átalakítással
 - Sor szorzása $\lambda \neq 0$ számmal.
 - Egy sor λ-szorosának hozzáadása egy másik sorhoz.
 - Sorok cseréje.

Ha A egy reguláris mátrix, akkor az $(A|E_n)$ kibővített mátrix soraival végzett elemi átalakítások útján $(E_n|B)$ alakúra hozható, ahol B az A inverze.

Szinguláris mátrix esetén az átalakítás nem végezhető el.

Műveletek mátrixokkal, mátrix inverze, a mátrix rangja VII

- Az inverz mátrix kiszámítása algebrai aldeterminánssal
 - Kiszámítjuk a mátrix determinánsát. Ha ez nem nulla, akkor létezik inverz mátrix.
 - ▶ Minden elemhez felírva a hozzá tartozó algebrai aldeterminánst, A_{ij} -t, majd az a kapott mátrixot transzponálva és elosztva det (A)-val, megkapjuk az A mátrix inverzét:

$$\left(A^{-1}\right)_{ij} = \frac{A_{ij}}{\det\left(A\right)}.$$

(Az A mátrix α_{ij} eleméhez tartozó algebrai aldeterminánsa: $A_{ij}=(-1)^{i+j}D_{ij}$, ahol D_{ij} az α_{ij} elemet tartalmazó sor és oszlop elhagyásával keletkező $(n-1)\times (n-1)$ -es mátrix determinánsa.)

Műveletek mátrixokkal, mátrix inverze, a mátrix rangja VIII

- ▶ Állítás: Legyen $A, B \in \mathcal{M}_{n \times n}$.
 - 1. Ha A és B invertálható, akkor AB is és $(AB)^{-1} = B^{-1}A^{-1}$.
 - 2. $(AB)^{T} = B^{T}A^{T}$
 - 3. A invertálható, akkor A^T is és $(A^T)^{-1} = (A^{-1})^T$.
- Azonos típusú négyzetes mátrixok esetén az összeszorozhatóság feltétele teljesül és a szorzat is ugyanolyan típusú lesz. Négyzetes mátrix esetén tehát értelmezhető a hatványozás:

$$A^1 = A$$
 és $A^m = AA^{m-1}$

ahol $(m \ge 2)$ és $A \in \mathcal{M}_{n \times n}$. Definíció szerint legyen $A^0 = E_m$.

Műveletek mátrixokkal, mátrix inverze, a mátrix rangja IX

Állítás: A mátrixhatványozás azonosságai:

$$A^m A^k = A^{m+k}$$

$$(A^m)^k = A^{mk},$$

ahol $m, k \in \mathbb{N}$.

Bizonyítás: A mátrixszorás definíciója alapján triviális.

▶ $\overline{\text{Definició:}}$ Legyenek $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_s \in V$ vektorok. Az $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_s\}$ vektorrendszer rangja alatt az $\mathcal{L}(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_s)$ altér dimenzióját értjük. Jele: $\rho(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_s)$.

Műveletek mátrixokkal, mátrix inverze, a mátrix rangja X

- ▶ <u>Állítás</u>: Az alábbi átalakítások nem változtatják meg az $\{a_1, a_2, \dots, a_s\}$ vektorrendszer rangját:
 - 1. Egy vektor szorzása $\lambda \neq 0$ számmal.
 - 2. Egy vektor λ -szorosának hozzáadása egy másik vektorhoz.
 - 3. Olyan vektor elhagyása, mely előáll a megmaradóak lineáris kombinációjaként.
 - 4. Vektorok sorrendjének felcserélése.
- Definíció: Egy $A \in \mathcal{M}_{m \times n}$ mátrix rangja alatt a sorvektorrendszerének rangját értjük.
- A mátrix rangját úgy határozzuk meg, hogy ranginvariáns átalakításokkal a mátrixot trapéz alakúra hozzuk. Oszlopcsere is megengedett. (Trapéz alakú egy mátrix, ha $\alpha_{ij}=0$, ha i>j és $\alpha_{ii}\neq 0$, ahol $(1\leq i\leq min\{m,n\})$.) A 0 sorok és oszlopok kihúzhatóak. Trapéz alakú mátrix rangja megegyezik a sorai számával.
- A mátrix rangja megegyezik a maximális rendű el nem tűnő aldeterminánsok közös rendjével.

Vége

Köszönöm a figyelmüket!