k-means clustering to segment participants in to distinct clusters

Loading necessary packages

```
#Load packages
if(!require(pastecs)){install.packages("pastecs")}

## Loading required package: pastecs
library("pastecs")

if(!require(lattice)){install.packages("lattice")}

## Loading required package: lattice
library("lattice")

if(!require(tinytex)){install.packages("tinytex")}

## Loading required package: tinytex
library("tinytex")
```

Part 1 - Data Transformation

1. Appending initials to all column names

```
getwd() #verify working directory
```

[1] "E:/Big Data Solution Architecture/PROG8430 - Data Analysis Mathematics, Algorithms and Modeling

```
#Read the text data file into a Data Frame
IncomeEx_MS <- read.table("PROG8430-23W-Assign03.txt", sep=',', header = TRUE)
#concatenating initial 'MS' to all column names
colnames(IncomeEx_MS) <- paste(colnames(IncomeEx_MS), "MS", sep = "_")
#Display first 5 rows of the dataset just to verify loaded and name transformation is successful
head(IncomeEx_MS, 5)</pre>
```

```
Food_MS Enter_MS Edu_MS Trans_MS Work_MS House_MS Oth_MS
##
## 1
                               0.180
      0.043
               0.085 0.525
                                        0.005
                                                 0.150 0.012
## 2
      0.123
               0.055 0.002
                                0.169
                                        0.121
                                                 0.266 0.265
## 3
      0.043
               0.085 0.506
                               0.193
                                        0.006
                                                 0.155 0.012
## 4
      0.119
               0.038 0.002
                               0.301
                                        0.139
                                                 0.228 0.172
## 5
      0.122
               0.038 0.002
                               0.225
                                       0.095
                                                 0.354 0.164
```

```
#Checking Data Structure
str(IncomeEx_MS)
```

Following 2 functions are for data normalization Ref: PROG8430-K-Means-Example.Rmd, David Marsh, 12/01/2022

```
#Min-Max standardization function
norm01 <- function(x) {
  return ((x - min(x)) / (max(x) - min(x)))
}

#SD standardization function
normn <- function(x) {
  return ((x-mean(x))/sd(x))
}</pre>
```

list of expenses to be used for chart labeling

```
expenses <- list("Food", "Entertainment", "Education", "Transpotation", "Work", "Housing", "Other")</pre>
```

2. Standarizing all of the variables to have similar scaling

Exploring data to determine which standardization method to use.

If data contain Outlier in a variable, I will use standard deviation standardization If data is tightly clustered in a variable, I will use min-max standardization A small box with short whisker indicates tight cluster.

Box Plot of Food Expense

Box Plot of Entertainment Expense

Box Plot of Education Expense

Box Plot of Transpotation Expense

par(mfrow=c(1,1)) # resetting to 1 by 1 chart

Box Plot of Work Expense

0.00 0.05 0.10 0.15 0.20 0.25 Work Expense

Box Plot of Housing Expense

Box Plot of Other Expense

Variables Entr_MS(Entertainment expense) and Trans_MS(Transportation expense) has outliars, so I am going to use standard deviation standardization method. For other variables I will use mim-max standardization

```
#applying standard deviation standardization method to following variables
IncomeEx_MS$EnterNorm_MS <- norm01(IncomeEx_MS$Enter_MS)
IncomeEx_MS$TransNorm_MS <- norm01(IncomeEx_MS$Trans_MS)
IncomeEx_MS$FoodNorm_MS <- norm01(IncomeEx_MS$Food_MS)
IncomeEx_MS$EduNorm_MS <- norm01(IncomeEx_MS$Edu_MS)
IncomeEx_MS$WorkNorm_MS <- norm01(IncomeEx_MS$Work_MS)
IncomeEx_MS$HouseNorm_MS <- norm01(IncomeEx_MS$House_MS)
IncomeEx_MS$OthNorm_MS <- norm01(IncomeEx_MS$House_MS)
IncomeEx_MS$OthNorm_MS <- norm01(IncomeEx_MS$Oth_MS)</pre>
```

```
Food_MS Enter_MS Edu_MS Trans_MS Work_MS House_MS Oth_MS EnterNorm_MS
##
## 1
       0.043
                0.085
                       0.525
                                 0.180
                                         0.005
                                                   0.150
                                                         0.012
                                                                   0.7431193
                0.055
                                 0.169
## 2
       0.123
                       0.002
                                         0.121
                                                   0.266
                                                         0.265
                                                                   0.4678899
## 3
       0.043
                0.085
                       0.506
                                 0.193
                                         0.006
                                                   0.155
                                                         0.012
                                                                   0.7431193
## 4
       0.119
                0.038
                       0.002
                                 0.301
                                         0.139
                                                   0.228
                                                          0.172
                                                                   0.3119266
                0.038 0.002
                                 0.225
                                         0.095
                                                   0.354
## 5
       0.122
                                                         0.164
                                                                   0.3119266
## 6
       0.084
                0.050 0.002
                                 0.285
                                         0.079
                                                   0.264
                                                          0.237
                                                                   0.4220183
##
     TransNorm_MS FoodNorm_MS EduNorm_MS WorkNorm_MS HouseNorm_MS OthNorm_MS
## 1
        0.4573864
                    0.0862069 0.727777778
                                            0.01181102
                                                           0.2410148 0.02657807
## 2
        0.4261364
                    0.3620690 0.001388889
                                            0.46850394
                                                           0.4862579 0.86710963
## 3
        0.4943182
                    0.0862069 0.701388889
                                            0.01574803
                                                           0.2515856 0.02657807
## 4
                    0.3482759 0.001388889
                                            0.53937008
                                                           0.4059197 0.55813953
        0.8011364
```

```
## 5 0.5852273 0.3586207 0.001388889 0.36614173 0.6723044 0.53156146
## 6 0.7556818 0.2275862 0.001388889 0.30314961 0.4820296 0.77408638
```

Part 2 - Descriptive Data Analysis

1. Creating graphical summaries of the data

Creating histograms for data observation

Histogram of Food Expense

Histogram of Entertainment Expense

Histogram of Education Expense

Histogram of Transpotation Expense


```
par(mfrow=c(1,1)) # resetting to 1 by 1 chart
```

Histogram of Work Expense

Histogram of Housing Expense

Histogram of Other Expense

Interpretation: From histogram of different variables, we can interpret that data is not normally distributed.

Part 3 - Clustering

1. Creating segmentation/cluster schemes for k=2,3,4,5,6,7

Clusters Setup

```
# Elbow Chart variables
# Trying for 2 to 7 Clusters
maxk_MS <- 7 #setting maximum k to d
nk_MS <- c(2:maxk_MS) # vector from 2 to 7
wss_MS <- rep(0,maxk_MS-1) # Vector of Os initially. It will hold within sum of square(WSS) values in</pre>
```

Creating Clusters

```
#for loop to create clusters for all k values 2-7
for(kval in 2:7){
    #Setting Number of Clusters
    k=kval
    # max iteration is 10.
    # Column 10 and 13
    # Considering 10 different starting centroids - nstart
```

```
# Output one with highest percentage
  ClusterExp_MS <- kmeans(IncomeEx_MS[,c(10,13)], iter.max=10, centers=k, nstart=10)</pre>
  print(ClusterExp_MS$size)
  print(ClusterExp_MS$centers)
  print(ClusterExp_MS$betweenss/ClusterExp_MS$totss)
  IncomeEx_MS$cluster <- factor(ClusterExp_MS$cluster) # Preparing clusters for summary</pre>
  centers_MS <- data.frame(cluster=factor(1:k), ClusterExp_MS$centers)</pre>
  wss_MS[k-1] <- ClusterExp_MS$tot.withinss # using sum of square value. Set value in WSS vector(replace
  #Creating a scatter plot showing the clusters and color-coded datapoints.
  plot(IncomeEx_MS$FoodNorm_MS, IncomeEx_MS$HouseNorm_MS, # plotting Food and Housing
       col=IncomeEx_MS$cluster, pch=as.numeric(IncomeEx_MS$cluster), #using cluster number for color an
       main = "Expenditure Clusters",
       xlab = "Food expense",
       ylab = "Housing expense")
  points(centers_MS$FoodNorm_MS, centers_MS$HouseNorm_MS, # superimposing points on plot
         col=centers_MS$cluster, pch=as.numeric(centers_MS$cluster), #using cluster number for color an
         cex=3, lwd=3) # marker size
}
## [1] 417 642
```

```
## [1] 417 642

## FoodNorm_MS HouseNorm_MS

## 1 0.08833209 0.2114216

## 2 0.47218283 0.5681802

## [1] 0.6967588
```



```
## [1] 464 186 409

## FoodNorm_MS HouseNorm_MS

## 1 0.41252229 0.5016585

## 2 0.61166110 0.7267499

## 3 0.08507714 0.2077981

## [1] 0.8161152
```



```
## [1] 228 262 165 404

## FoodNorm_MS HouseNorm_MS

## 1 0.4941168 0.4409054

## 2 0.3427086 0.5665155

## 3 0.6252038 0.7368057

## 4 0.0850717 0.2039803

## [1] 0.8609939
```



```
## [1] 91 156 171 61 402 178
     FoodNorm_MS HouseNorm_MS
## 1 0.56411520
                    0.8033362
                    0.4835475
     0.31279841
     0.40619076
                   0.6183623
## 3
     0.75353307
                    0.6476623
## 4
                   0.2034121
## 5
     0.08413965
## 6 0.50896939
                    0.4347103
## [1] 0.8993687
```



```
## [1] 180 163 151 59 99 233 174
     FoodNorm_MS HouseNorm_MS
## 1 0.36865900
                    0.6141179
                    0.4536764
     0.35895917
     0.53231331
                   0.4473069
## 3
     0.75797779
                    0.6484395
## 4
## 5 0.56318356
                   0.7908045
## 6 0.08052390
                   0.1521927
                    0.2809895
## 7 0.08902101
## [1] 0.9141005
```


head(IncomeEx_MS)

```
##
     Food_MS Enter_MS Edu_MS Trans_MS Work_MS House_MS Oth_MS EnterNorm_MS
## 1
       0.043
                 0.085
                        0.525
                                  0.180
                                          0.005
                                                    0.150
                                                           0.012
                                                                     0.7431193
       0.123
                 0.055
                                                                     0.4678899
## 2
                        0.002
                                  0.169
                                          0.121
                                                    0.266
                                                           0.265
       0.043
                 0.085
                                  0.193
                                                                     0.7431193
##
  3
                        0.506
                                          0.006
                                                    0.155
                                                            0.012
##
  4
       0.119
                 0.038
                        0.002
                                  0.301
                                          0.139
                                                    0.228
                                                                     0.3119266
                                                            0.172
## 5
       0.122
                 0.038
                        0.002
                                  0.225
                                          0.095
                                                    0.354
                                                            0.164
                                                                     0.3119266
##
  6
       0.084
                 0.050
                        0.002
                                  0.285
                                          0.079
                                                    0.264
                                                           0.237
                                                                     0.4220183
##
     TransNorm_MS FoodNorm_MS
                                 EduNorm_MS WorkNorm_MS HouseNorm_MS OthNorm_MS
                                             0.01181102
## 1
        0.4573864
                     0.0862069 0.72777778
                                                            0.2410148 0.02657807
## 2
        0.4261364
                     0.3620690 0.001388889
                                             0.46850394
                                                             0.4862579 0.86710963
        0.4943182
## 3
                     0.0862069 0.701388889
                                             0.01574803
                                                            0.2515856 0.02657807
##
        0.8011364
                     0.3482759 0.001388889
                                             0.53937008
                                                            0.4059197 0.55813953
## 5
        0.5852273
                     0.3586207 0.001388889
                                                            0.6723044 0.53156146
                                             0.36614173
## 6
        0.7556818
                     0.2275862 0.001388889
                                             0.30314961
                                                            0.4820296 0.77408638
##
     cluster
           7
## 1
## 2
           2
## 3
           7
           2
## 4
           1
## 5
           2
## 6
```

2. Creating the WSS plots to select a suitable k value based on the "elbow".

```
plot(2:maxk_MS, wss_MS, # 2 to max of cluster
    type="b", pch = 19, frame = FALSE,
    main="Elbow Chart for Clusters",
    xlab="Values of K",
    ylab="Total Within-Clusters SS",
    ylim=c(0,max(wss_MS)))
```

Elbow Chart for Clusters

Interpretation: Selecting k value of 3 based on the elbow.

Part 4 - Cluster Evaluation

1. Creating a scatter plot showing the clusters and color-coded datapoints. Clusters for all K values created in loop above.

Interpretation: 2. Based on the WSS plot and the charts I can conclude that the Red cluster best describes the data.

3. Summarize the Clusters

```
#Naming cluster
#grouping by cluster
SummClusters_MS <- aggregate(cbind(Food_MS, Enter_MS, Edu_MS, Trans_MS, Work_MS, House_MS, Oth_MS) ~ cl
SummClusters_MS</pre>
```

```
##
     cluster
                Food MS
                          Enter_MS
                                        Edu_MS Trans_MS
                                                              Work MS House MS
## 1
           1 0.12491111 0.03348889 0.008227778 0.2232667 0.134561111 0.3264778
## 2
           2 0.12209816 0.04163804 0.004564417 0.2448712 0.148656442 0.2505890
## 3
           3 0.17237086 0.03735762 0.004788079 0.2308675 0.139516556 0.2475762
## 4
           4 0.23781356 0.01766102 0.081101695 0.1034068 0.094779661 0.3427119
## 5
           5 0.18132323 0.01850505 0.077020202 0.0999596 0.087686869 0.4100505
           6 0.04135193 0.06372532 0.585012876 0.1881030 0.004665236 0.1079871
           7 0.04381609 0.06908046 0.510563218 0.1864195 0.007379310 0.1689080
## 7
##
          Oth_MS
## 1 0.149122222
## 2 0.187711656
## 3 0.167635762
## 4 0.122525424
## 5 0.125424242
## 6 0.009081545
## 7 0.013879310
```

- 4. Naming Clusters
- a) Black Cluster Minimalist
- b) Red Cluster Middle Class
- C) Green Beverly Hills
- 5. Possible use of this Clustering scheme
- a) This clustering scheme can be used to distribute public funding to areas mostly needed
- b) Can be used for target marketing
- c) Realtor can use this scheme to channel their clients