Lecture 5 DES

Modern Symmetric
Ciphers--Data
Encryption
Standard (DES)

Encryption Technique Overview

- Classic encryption and modern encryption
 - Classic encryption
 - or classic cipher
 - dated back to Greek and Roman times
 - Modern encryption
 - mainly relies on Number Theory
 - was developed in 70s
- Symmetric encryption and asymmetric encryption
 - if the sender and receiver use the same key

M

- What kind of cryptosystem we are using now?
 - Symmetric
 - DES, AES, etc.
 - Asymmetric
 - RSA, Diffie-Hellman, etc.

Model of Symmetric Encryption

Symmetric Encryption

- Stream ciphers
 - e.g. Vernam cipher, One-time-pad, etc.
- Block ciphers
 - e.g. DES, etc.

Data Encryption Standard (DES)

Combination of substitution and permutation

- Provides diffusion and confusion
 - <u>Confusion:</u> Relationship between plain & ciphertext is obscured.
 Ex. Substitution table (look-up table)
 - <u>Diffusion:</u> The influence of one of each plaintext bit is spread over many ciphertext bits. Ex. Permutation

Product cipher

Confusion and diffusion applied multiple times to have a strong cipher

A High Level Description of DES

M

Key Summary

A High Level Description of DES

Detailed DES Example

Plain text message M (64 bits)

M = 0123456789ABCDEF (hexadecimal format)

M in binary format:

Key

Original Key K (64 bits)

K = 133457799BBCDFF1 (hexadecimal format)

K in binary format:

 $\mathbf{K} = 00010011\ 00110100\ 01010111\ 01111001$ $10011011\ 10111100\ 11011111\ 11110001$

Step 1: Create 16 sub-keys (48-bits)

 1.1 The 64-bit key is permuted according to table PC-1.

Step 1: Create 16 sub-keys (48-bits)

1.1 The 64-bit key is permuted according to table
 PC-1.

57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

The first bit of the output is taken from the 57th bit of the input

Step 1: Create 16 sub-keys (48-bits)

• 1.1 The 64-bit key is permuted according to table PC-1.

From the original 64-bit key

Using PC-1, we get the 56-bit permutation

 \mathbf{K} + = 1111000 0110011 0010101 0101111 0101010 1011001 1001111 0001111

Split this Key

1.2 Split this key into left and right halves, C_0 and D_0 , where each half has 28 bits

Split this key

1.2 Split this key into left and right halves, C_0 and D_0 , where each half has 28 bits

$$\mathbf{K}$$
+ = 1111000 0110011 0010101 0101111 0101010 1011001 1001111 0001111

From the permuted key **K**+, we get

 $C_0 = 1111000 0110011 0010101 0101111$

 $D_0 = 0101010 \ 1011001 \ 1001111 \ 0001111$

Create 16 Blocks

1.3 Create 16 blocks C_n and D_n , 1<=n<=16.

 Shift

 C1 28 bits
 C2 28 bits
 C16 28 bits

 D1 28 bits
 D2 28 bits
 D16 28 bits

Create 16 blocks

1.3 Create 16 blocks C_n and D_n , 1<=n<=16.

 C_n and D_n are obtained from C_{n-1} and D_{n-1} using the following schedule of "left shifts".

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
shift	1	1	2	2	2	2	2	2	1	2	2	2	2	2	2	1

C1 and D1 are obtained by left shifting C0 and D0 1 bit...

```
C_o = 1111000 0110011 0010101 0101111
D_o = 0101010 1011001 1001111 0001111
C_1 = 11100001100110010101011111
D_1 = 1010101011001100111100011110
```

 C_2 = 11000011001100101010111111 D_2 = 0101010110011001111000111101

```
C_{\Delta} = 001100110010101011111111100
```

$$D_{\Delta} = 0101100110011110001111010101$$

$$C_5 = 1100110010101011111111110000$$

$$D_5 = 0110011001111000111101010101$$

$$C_6 = 001100101010101111111111000011$$

$$D_6 = 1001100111100011110101010101$$

$$C_7 = 11001010101011111111100001100$$

$$D_7 = 0110011110001111010101010101$$

```
C_8 = 00101010101111111110000110011
```

$$D_8 = 1001111000111101010101011001$$

$$C_{q} = 01010101011111111100001100110$$

$$D_{q} = 00111100011110101010101110011$$

$$C_{10} = 010101011111111110000110011001$$

$$D_{10} = 1111000111101010101011001100$$

$$C_{11} = 010101111111111000011001100101$$

$$D_{11} = 1100011110101010101100110011$$

```
C_{12} = 010111111111100001100110010101
D_{12} = 0001111010101010110011001111
```

$$C_{13} = 011111111100001100110010101$$

$$D_{13} = 0111101010101011001100111100$$

```
C_{14} = 11111111000011001100101010101
```

$$D_{14} = 1110101010101100110011110001$$

$$C_{15} = 111110000110011001010101111$$

$$D_{15} = 1010101010110011001111000111$$

M

Form the keys K_n

Form the keys K_n

- 1.4 Form the keys K_n , for each 1 <= n <= 16, by applying the following permutation table to each of the concatenated pairs $C_n D_n$.
- Each pair has 56 bits, but PC-2 only uses 48 of these.

14	17	11	24	1	5
3	28	15	6	21	10
23	19	12	4	26	8
16	7	27	20	13	2
41	52	31	37	47	55
30	40	51	45	33	48
44	49	39	56	34	53
46	42	50	36	29	32

The first bit of the output is taken from the 14th bit of the input...

Form the keys K_n

- 1.4 Form the keys K_n , for each 1 <= n <= 16, by applying the following permutation table to each of the concatenated pairs $C_n D_n$.
- Each pair has 56 bits, but PC-2 only uses 48 of these.

For the first key we have

$$C_1D_1$$
 = 1110000 1100110 0101010 1011111 1010101 0110101 0011110

which, after we apply the permutation PC-2, becomes

 $K_1 = 000110 \ 110000 \ 001011 \ 101111$ $111111 \ 000111 \ 000001 \ 110010$

```
K_2 = 011110\ 011010\ 111011\ 011001\ 110110\ 111100\ 100111\ 100101
K_{3} = 010101\ 011111\ 110010\ 001010\ 010000\ 101100\ 111110\ 011001
K_A = 011100\ 101010\ 110111\ 010110\ 110110\ 110011\ 010100\ 011101
K_5 = 011111 \ 001110 \ 110000 \ 000111 \ 111010 \ 110101 \ 001110 \ 101000
K_c = 011000 \ 111010 \ 010100 \ 111110 \ 010100 \ 000111 \ 101100 \ 101111
```

 $K_7 = 111011\ 001000\ 010010\ 110111\ 111101\ 100001\ 100010\ 111100$

 K_8 = 111101 111000 101000 111010 110000 010011 101111 111011

 $K_q = 111000\ 001101\ 101111\ 101011\ 111011\ 011110\ 011110\ 000001$

 $K_{10} = 101100\ 011111\ 001101\ 000111\ 101110\ 100100\ 011001\ 001111$

 $K_{11} = 001000 \ 010101 \ 111111 \ 010011 \ 110111 \ 101101 \ 001110 \ 000110$

 $K_{12} = 011101\ 010111\ 000111\ 110101\ 100101\ 000110\ 011111\ 101001$

```
K_{13} = 100101 \ 111100 \ 010111 \ 010001 \ 111110 \ 101011 \ 101001 \ 000001
```

 $K_{14} = 010111 \ 110100 \ 001110 \ 110111 \ 111100 \ 101110 \ 011100 \ 111010$

 $K_{15} = 101111 \ 111001 \ 000110 \ 001101 \ 001111 \ 010011 \ 111100 \ 001010$

 K_{16} = 110010 110011 110110 001011 000011 100001 011111 110101

C1 28 bits

D1 28 bits

Key Summary

A High Level Description of DES

A High Level Description of DES

Step 2: Encode each 64-bit block of data

2.1 Do *initial permutation* (IP) of M to the following IP table.

Step 2: Encode each 64-bit block of data

2.1 Do *initial permutation* IP of M to the following IP table.

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

The first bit of the output is taken from the 58th bit of the input...

Step 2: Encode each 64-bit block of data

2.1 Do *initial permutation* IP of M to the following IP table.

The first bit of the output is taken from the 58th bit of the input...

Example (Cont.)

Applying the initial permutation to the block of text M, we get

```
M = 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
```

```
IP = 1100 1100 0000 0000 1100 1100 1111 1111 1111 1111 0000 1010 1010 1111 0000 1010 1010
```

Proceed through 16 iterations of *f*

A Cycle in DES

Divide the permuted block IP

2.2 Divide the permuted block IP into a left half L_0 of 32 bits, and a right half R_0 of 32 bits

IP = 1100 1100 0000 0000 1100 1100 1111 1111 1111 0000 1010 1010 1010 1111 0000 1010 1010

From IP we get

 $L_o = 1100 \ 1100 \ 0000 \ 0000 \ 1100 \ 1100 \ 1111 \ 1111$

 $R_o = 1111\ 0000\ 1010\ 1010\ 1111\ 0000\ 1010\ 1010$

Expand each block R_{n-1}

• 2.4 Expand each block R_{n-1} from 32 bits to 48 bits using a permuation table that repeats some of the bits in R_{n-1} .

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

Example (Cont.)

We calculate $E(R_o)$ from R_o as follows:

 $R_o = 1111\ 0000\ 1010\ 1010\ 1111\ 0000\ 1010\ 1010$

 $E(R_o) = 011110\ 100001\ 010101\ 010101$ $011110\ 100001\ 010101\ 010101$

Note that each block of 4 original bits has been expanded to a block of 6 output bits.

XOR Operation

• In the f calculation, we XOR the output $\mathbf{E}(R_{n-1})$ with the key K_n :

$$K_n + E(R_{n-1})$$

```
K_1 = 000110 \ 110000 \ 001011 \ 101111
111111 \ 000111 \ 000001 \ 110010
\mathbf{E}(R_o) = 011110 \ 100001 \ 010101 \ 010101
011110 \ 100001 \ 010101 \ 010101
K_1 + \mathbf{E}(R_o) = 011000 \ 010001 \ 010100 \ 100111
```


Substitution – S-Boxes (Cont.)

$$K_1 + E(R_0) = 011000 \ 010001 \ 011110 \ 111010 \ 100001 \ 100110 \ 010100 \ 100111$$

• $K_n + E(R_{n-1}) = B_1 B_2 B_3 B_4 B_5 B_6 B_7 B_8$ where each B_i is a group of six bits.

We now calculate

 $S_1(B_1)S_2(B_2)S_3(B_3)S_4(B_4)S_5(B_5)S_6(B_6)S_7(B_7)S_8(B_8)$ where $S_i(B_i)$ referrers to the output of the *i*-th **S** box.

Substitution – S-Boxes (Cont.)

Box S1

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	9
2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

Finding S1(B1)

- The first and last bits of B represent in base 2
 a number in the decimal range 0 to 3.
 - Let that number be i.
- The middle 4 bits of B represent in base 2 a number in the decimal range 0 to 15.
 - Let that number be j.
- Look up in the table the number in the i-th row and j-th column.

\mathbb{M}

Example (Cont.)

- For input block B = 011011 the first bit is "0" and the last bit "1" giving 01 as the row.
 - This is row 1.
- The middle four bits are "1101".
 - This is the binary equivalent of decimal 13, so the column is column number 13.
- In row 1, column 13 appears 5. This determines the output;
 - 5 is binary 0101, so that the output is 0101.
- Hence S1(011011) = 0101.

Example (Cont.)

For the first round, we obtain as the output of the eight **S** boxes:

$$K_1 + E(R_0) = 011000\ 010001\ 011110\ 111010$$

$$100001\ 100110\ 010100\ 100111$$

$$S_1(B_1)S_2(B_2)S_3(B_3)S_4(B_4)S_5(B_5)S_6(B_6)S_7(B_7)S_8(B_8) = 0101\ 1100\ 1000\ 0010\ 1011\ 0101\ 1001\ 0111$$

Permutation P of the S-box output

Permutation P of the S-box output

• $f = P(S_1(B_1)S_2(B_2)...S_8(B_8))$

16	7	20	21
29	12	28	17
1	15	23	26
5	18	31	10
2	8	24	14
32	27	3	9
19	13	30	6
22	11	4	25

Example (Cont.)

From the output of the eight S boxes: $S_1(B_1)S_2(B_2)S_3(B_3)S_4(B_4)S_5(B_5)S_6(B_6)S_7(B_7)S_8(B_8) =$

0101 1100 1000 0010 1011 0101 1001 0111

we get

f = 0010 0011 0100 1010 1010 1001 1011 1011

Final Phase

• At the end of the sixteenth round we have L_{16} and R_{16} . We then *reverse* the order of the two blocks into $R_{16}L_{16}$ and apply a final permutation IP⁻¹

Example (cont.)

 If we process all 16 blocks using the method defined previously, we get, on the 16th round,

 $L_{16} = 0100\ 0011\ 0100\ 0010\ 0011\ 0010\ 0011\ 0100$

 $R_{16} = 0000 \ 1010 \ 0100 \ 1100 \ 1101 \ 1001 \ 1001 \ 0101$

 $R_{16}L_{16} = 00001010 \ 01001100 \ 11011001 \ 100101$

Final Phase

• At the end of the sixteenth round we have L_{16} and R_{16} . We then *reverse* the order of the two blocks into $R_{16}L_{16}$ and apply a final permutation IP^{-1} as defined by the following table

40	8	48	16	56	24	64	31
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

Example (cont.)

 We reverse the order of these two blocks and apply the final permutation to

85E813540F0AB405

The End

M = 0123456789ABCDEF **C** = 85E813540F0AB405

 Decryption is simply the inverse of encryption, following the same steps as above, but reversing the order in which the sub-keys are applied

Overview

