CMOS 模拟集成电路原理 第二周作业

范云潜 18373486

微电子学院 184111 班

日期: 2020年9月20日

作业内容:作业1:利用仿真结果,找到我们所使用工艺的 μ , C_{ox} , V_{th}

作业 2: 通过公式描述 V_B 的取值范围(提示:晶体管 M1-M4 均需要工作在饱和区);在 Cascode 电流镜中,假设有寄生电容 C_{par} ,利用公式估算并用仿真验证该电流镜的频率特性。(可以自由设置偏置、晶体管的尺寸以及寄生电容)

图 1: 题目 2

本次作业使用 $W/L = 1\mu m/0.18\mu m$

Problem 作业 1

仿真的思路:

仿真,得到 nMOS $V_{th}=456.44mV, C_{gs}=1.32fF$,如图 2;得到 pMOS $V_{th}=319.17mV, C_{gs}=888.9aF$ 如图 3。

为了得到 C_{ox}

$$C_{GS} \approx \frac{2}{3} W L C_{ox}$$

$$C_{ox} = \frac{3}{2} \frac{C_{gs}}{W L}$$

计算得到 $C_{ox,n}=0.0110F/m^2,\ C_{ox,p}=0.0074F/m^2$ 之后即可通过电流公式进行计算 μ

$$I_{d} = \frac{1}{2}\mu_{n}C_{ox}\frac{W}{L}(V_{gs} - V_{th})^{2}$$

图 2: nMOS 参数

图 3: pMOS 参数

$$\mu_n = \frac{2I_d}{C_{ox}\frac{W}{L}(V_{od})^2}$$

计算得到 $\mu_n = 0.0240 m^2 V^{-1} s^{-1}$, $\mu_p = 1.3934 e - 04 V^{-1} s^{-1}$

Problem 作业 2

对 1, 3 管列式,记 V_x 为 M3 漏极电压, V_y 为 M3 源极电压:

$$V_B - V_x < V_{th}$$

$$V_B - V_y > V_{th}$$

$$V_x - V_y < V_{th}$$

$$V_x > V_{th}$$

那么

$$V_x < V_{th} + V_y < V_B < V_{th} + V_x < V_y + 2V_{th}$$

以 $V_th=0.45V$ 为基准,设置 $V_x=1.5V$, $(W/L)_1=20$,偏置电流为 $I_d=3mA$,设 $V_y=1.2V$, $V_B=2.2V$,得到 $(W/L)_3=75$ 以此为估计进行仿真。

Problem 作业 3

SubProblem 1

搭建电路,如图 m 4 ,对 V_{in} 扫描,结果如图 m 5 。 $g_m=0.94m$,得到 $0.99g_m=0.93$,图中结果为 $V_{in}=2*8.5=17mV$,如图 m 6 。

SubProblem 2

 $I = 198u \text{ ft}, \ V_{in} = 2 * 1.3 = 2.6V.$

SubProblem 3

此时可以认为,几乎是 ΔV_{in} 为最大值的时候,将其扩大为 2 倍,那么根据公式 $\Delta V_{in}=\sqrt{2I_{SS}/(\mu_nC_{ox}W/L)}$ 得到,W/L 变为 4 倍,即 $W=80\mu m$ 。

图 4: 差动电路

图 5: 差动电路结果

图 6: 区间

图 7: 差分电压