LOADING A PROGRAM FROM THE KEYBOARD

- 1. Touch 'NORMAL RESET' key
- 2. ('lear keyboard register-
- 3. Key-in the address of the first instruction
- 4. Touch the 'LOAD ADDR' key
- 5. Key-in the first instruction
- 6. Touch the 'LOAD STORE' key
- 7. Touch the 'INCR ADDR' key
- 8. Key-in the next instruction
- 9. Touch the 'LOAD STORE' key
- 10. If any more instructions, repeat from 7
- Load data stores in the same way (enter negative sign last)

RUNNING A PROGRAM

- I. Touch 'NORMAL RESET' key
- 2. Clear keyboard register
- 3. Key-in the address of the first instruction
- 4. Touch the 'LOAD IAR' key
- 5. Touch the stage keys 'A' 'B' 'C' or 'RUN'
- 6. Machine will stop, if
 - a) 'STOP' key is touched
 - b) An input or display instruction is obeyed
 - c) An overflow occurs or there is an invalid instruction

**REASON FOR STOPPAGE ACTION* STOP' or stage keys touched Input instruction Output instruction Overflow or invalid instruction **RUN' Correct program and start again

OBEYING INSTRUCTIONS FROM THE KEYBOARD

- .1. Touch 'KI RESET' key
- 2. Clear keyboard register
- 3. Key-in one 8-digit or two 4-digit instructions
- 4. Touch 'A', 'B' or 'C' as required

If two 4-digit instructions are entered, they will be obeyed in sequence.

LAYOUT OF TV DISPLAY

IBM UNITED KINGDOM LTD

EXPERIMENTAL

SCHOOLS COMPUTER

INSTRUCTION

CARD

INSTRUCTION CODES

BRIEF OPERATING INSTRUCTIONS

BASIC INSTRUCTIONS (4 digits)

General Form a b

a b is the 2-digit function code

REGISTER INSTRUCTIONS

Reg	Register and digit		2 Registers		
c is a register number d is a decimal digit			c and d are register numbers		
COI	CODES		CODES		
a	b	, .	a	b	
0	0	$(R_c) \leftarrow (R_c) + d$	1	0	$(R_c) \leftarrow (R_c) + (R_d)$
0	2	$(R_c) \leftarrow (R_c) - d$ $(R_c) \leftarrow d - (R_c)$	1	1 2	$ \begin{array}{c} (R_c) \leftarrow (R_c) - (R_d) \\ (R_c) \leftarrow (R_d) - (R_c) \end{array} $
	3	$(R_c) \leftarrow d^-(R_c)$	1	3	$(R_c) \leftarrow (R_d) - (R_c)$ $(R_c) \leftarrow (R_d)$
0	4	INVALID CODE	1	4	$(R_c) \leftarrow R H 6 dig(R_d)$
0	5	Test (R _c) for d	1	5	INVALID CODE
0	6	Left shift (R _c) by d	1	6	Left shift (R _c) by (R _d)
0	7	Right shift (R_c) by d	1	7	Right shift (R _c) by (R _d)
0	8	INVALID CODE	1	8	INVALID CODE
0	9	INVALID CODE	1	9	Display (R _c) & (R _d)

Conditions for code 05

If the condition is fulfilled, then the CONTROL LATCH (CL) is set at 1, otherwise $\mathbf{0}$

Value of d	Condition
0	$(R_c) = 0$
1	$(R_c) > 0$
2	$(R_c) < 0$
. 3	L H dig $(R_c) = 0$
4	$R H dig(R_c) = 0$

SINGLE-ADDRESS INSTRUCTIONS

a determines the type of addressing b determines the function cd gives the 2-digit base address

CODES (For direct addressing)

	a	b	
	2	0	$(R_0,R_1) \leftarrow (cd)$
	2	1	$(cd) \leftarrow (R_0, R_1)$ as data
١	2	2	(cd) \leftarrow (R ₀ ,R ₁) as instruction
	2	3	INVALID CODE
1	2	4	Branch & link to cd unconditionally
	2	5	Branch & link to cd if (CL) = 1
	2	6	Branch & link to cd if (CL) = 0
	. 2	7	$(cd) \leftarrow (R_{LINK})$
	2	8	Input to cd
	2	9	Display (cd)
1			

Digit a	Type of addressing	True address
2	Direct	cd
3) (R ₃)	cd + (R3)
4	\ \by \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	cd + (R4)
5	$\binom{N}{2}$ $\binom{N}{2}$	cd + (R ₅)
6	Indirect	(cd)

THREE-ADDRESS INSTRUCTIONS (8 digits)

General form:

a b is the 2-digit function code cd, ef, and gh are the three 2-digit addresses

CODES (For direct addressing)

1	a	Ь	
	7	0	$(cd) \leftarrow (ef) + (gh)$
١	7	1	$(cd) \leftarrow (ef) - (gh)$
١	7	2	$(cd) \leftarrow (ef) \times (gh)$
	7	3	$(cd) \leftarrow (ef) \div (gh)$
	7	4	Branch to cd if (ef) = (gh)
	7	5	Branch to cd if (ef) > (gh)
	7	6	Branch to cd if $ (ef) > (gh) $
	7	7	If $(gh) \neq 0$ branch to cd & store link address in ef.
	7	8	Input to cd; display (ef) & (gh)
	7	9	Display (cd), (ef), (gh)

The type of addressing is determined by the digit a:

Digit a	Type of addressing	True addresses
7 8	Direct Modified by (R ₃), (R ₄), (R ₅) respectively	cd, ef, gh cd + (R ₃), ef + (R ₄), gh + (R ₅)
9	Indirect	(cd), (ef), (gh)