Quantale model of Lambek calculus with subexponentials

Daniel Rogozin^{1,2}

 1 Lomonosov Moscow State University 2 Serokell OÜ

1 Calculus

Definition 1. A subexponential signature is an ordered quintuple: $\Sigma = \langle I, \leq, W, C, E \rangle$,

where $I = \{s_1, \ldots, s_n\}, \langle I, \leq \rangle$ is a preorder. W, C, E are subsets of I and $W \cup C \subseteq E$.

Definition 2. Noncommutative linear logic with subexponentials $(SMALC_{\Sigma})$, where Σ is a subexponential signature.

$$\overline{A \to A} \stackrel{ax}{}$$

$$\frac{\Gamma \to A \quad \Delta, B, \Theta \to C}{\Delta, \Gamma, A \backslash B, \Theta \to C} \backslash \to \qquad \qquad \frac{A, \Pi \to B}{\Pi \to A \backslash B} \to \backslash$$

$$\frac{\Gamma \to A \quad \Delta, B, \Theta \to C}{\Delta, B / A, \Gamma, \Theta \to C} / \to \qquad \qquad \frac{\Pi, A \to B}{\Pi \to B / A} \to /$$

$$\frac{\Gamma, A, B, \Delta \to C}{\Gamma, A \bullet B, \Delta \to C} \bullet \to \qquad \qquad \frac{\Gamma \to A \quad \Delta \to B}{\Gamma, \Delta \to A \bullet B} \to \bullet$$

$$\frac{\Gamma, A_i, \Delta \to B}{\Gamma, A_1 \& A_2, \Delta \to B} \&, i = 1, 2 \to \qquad \qquad \frac{\Gamma \to A \quad \Gamma \to B}{\Gamma \to A \& B} \to \&$$

$$\frac{\Gamma, A, \Delta \to C \quad \Gamma, B, \Delta \to C}{\Gamma, A \lor B, \Delta \to C} \lor \to \qquad \qquad \frac{\Gamma \to A_i}{\Gamma \to A_1 \lor A_2} \to \lor, i = 1, 2$$

$$\frac{\Gamma, A, \Delta \to C}{\Gamma, 1, \Delta \to A} 1 \to \qquad \qquad \frac{\Gamma, A, \Delta \to C}{\Gamma, 1, \Delta \to A} 1 \to \qquad \qquad \frac{\Gamma, A, \Delta \to C}{\Gamma, 1, \Delta \to A} 1 \to \qquad \qquad \frac{\Gamma, A, \Delta \to C}{\Gamma, 1, \Delta \to A} \to 0$$

$$\frac{\Gamma, A, \Delta \to C}{\Gamma, 1, \Delta \to A} \to 0$$

$$\frac{\Gamma, A, \Delta \to C}{\Gamma, 1, \Delta \to A} \to 0$$

$$\frac{\Gamma, A, \Delta \to C}{\Gamma, 1, \Delta \to A} \to 0$$

$$\frac{\Gamma, A, \Delta \to C}{\Gamma, 1, \Delta \to A} \to 0$$

$$\frac{\Gamma, A, \Delta \to C}{\Gamma, 1, \Delta \to A} \to 0$$

$$\frac{\Gamma, A, \Delta \to C}{\Gamma, 1, \Delta \to A} \to 0$$

$$\frac{\Gamma, A, \Delta \to C}{\Gamma, 1, \Delta \to A} \to 0$$

$$\frac{\Gamma, A, \Delta \to C}{\Gamma, 1, \Delta \to A} \to 0$$

$$\frac{\Gamma, A, \Delta \to C}{\Gamma, 1, \Delta \to A} \to 0$$

$$\frac{\Gamma, A, \Delta \to C}{\Gamma, 1, \Delta \to A} \to 0$$

$$\frac{\Gamma, A, \Delta \to C}{\Gamma, 1, \Delta \to A} \to 0$$

$$\frac{\Gamma, A, \Delta \to C}{\Gamma, 1, \Delta \to A} \to 0$$

$$\frac{\Gamma, A, \Delta \to C}{\Gamma, 1, \Delta \to A} \to 0$$

$$\frac{\Gamma, A, \Delta \to C}{\Gamma, 1, \Delta \to A} \to 0$$

$$\frac{\Gamma, A, \Delta \to C}{\Gamma, 1, \Delta \to A} \to 0$$

$$\frac{\Gamma, A, \Delta \to C}{\Gamma, 1, \Delta \to A} \to 0$$

$$\frac{\Gamma, A, \Delta \to C}{\Gamma, 1, \Delta \to A} \to 0$$

$$\frac{\Gamma, A, \Delta \to C}{\Gamma, 1, \Delta \to A} \to 0$$

$$\frac{\Gamma, A, \Delta \to C}{\Gamma, 1, \Delta \to A} \to 0$$

$$\frac{\Gamma, A, \Delta \to C}{\Gamma, 1, \Delta \to A} \to 0$$

$$\frac{\Gamma, A, \Delta \to C}{\Gamma, 1, \Delta \to A} \to 0$$

$$\frac{\Gamma, A, \Delta \to C}{\Gamma, 1, \Delta \to A} \to 0$$

$$\frac{\Gamma, A, \Delta \to C}{\Gamma, 1, \Delta \to A} \to 0$$

$$\begin{split} &\frac{\Gamma, !^s A, \Delta, !^s A, \Theta \to B}{\Gamma, !^s A, \Delta, \Theta \to B} \ \mathbf{ncontr}_1, s \in C \\ &\frac{\Gamma, !^s A, \Delta, !^s A, \Theta \to B}{\Gamma, \Delta, !^s A, \Theta \to B} \ \mathbf{ncontr}_2, s \in C \\ &\frac{\Gamma, \Delta, !^s A, \Theta \to B}{\Gamma, !^s A, \Delta, \Theta \to A} \ \mathbf{ex}_1, s \in E \\ &\frac{\Gamma, !^s A, \Delta, \Theta \to B}{\Gamma, \Delta, !^s A, \Theta \to A} \ \mathbf{ex}_1, s \in E \end{split}$$

Proposition 1. $!_{s_i}A \leftrightarrow !_{s_i}(!_{s_i}A)$

Proof.

$$\frac{A \to A}{\underset{!_{s_i}A \to !_{s_i}A}{!_{s_i}A \to !_{s_i}A}}$$
$$|_{s_i}!_{s_i}A \to !_{s_i}A$$

2 Semantics

Definition 3. Quantale

A quantale is a triple $\langle A, \bigvee, \cdot \rangle$, such that $\langle A, \bigvee \rangle$ is a complete lattice and $\langle A, \cdot \rangle$ is a semi-group. A quantate is called unital, if $\langle A, \cdot \rangle$ is a monoid.

It is easy to see, that any (unital) quantale is a residual (monoid) semigroup. We define divisions as follows:

- 1. $a \setminus b = \bigvee \{c \mid a \cdot c \leq b\}$
- 2. $b/a = \bigvee \{c \mid c \cdot a \leq b\}$

Definition 4.

Let $Q = \langle A, \bigvee, \cdot \rangle$ be a quantale. The center of a quantale is the set $\mathcal{Z}(Q) = \{a \in A \mid \forall b \in A, a \cdot b = b \cdot a\}$

Definition 5. An open modality (or quantic conucleus) on quantale Q is a map $\square : Q \to Q$, such that

- 1. $\Box(x) \leqslant x$;
- 2. $\Box(x) = \Box(\Box(x));$
- 3. $x \leq y \Rightarrow \Box(x) \leq \Box(y);$
- 4. $\Box(x) \cdot \Box(y) = \Box(\Box(x) \cdot \Box(y))$.

Definition 6. We define a partial order on open modalities on Q as $\Box_1 \leqslant \Box_2 \Leftrightarrow \forall a \in Q, \Box_1(a) \leqslant \Box_2(a)$.

Lemma 1. Let Q be a quantale and \square_Q be a set of all open modalities on Q. Then \square_Q is a locally small category. *Proof.* $\langle \Box_{\mathcal{O}}, \leqslant \rangle$ form a partial order, so $\langle \Box_{\mathcal{O}}, \leqslant \rangle$ is a locally small category. Lemma 2. Let $\mathcal{Q} = \langle A, \bigvee, \cdot \rangle$ be a quantale and $\square : \mathcal{Q} \to \mathcal{Q}$ is an open modality on \mathcal{Q} , then $\square(x) \cdot \square(y) \leqslant$ $\Box(x\cdot y)$. Proof. $\Box(x)\cdot\Box(y)\leqslant x\cdot y$, then $\Box(\Box(x)\cdot\Box(y))\leqslant\Box(x\cdot y)$, but $\Box(x)\cdot\Box(y)\leqslant\Box(\Box(x)\cdot\Box(y))$. Thus, $\Box(x) \cdot \Box(y) \leqslant \Box(x \cdot y).$ **Definition 7.** An open modality is called central, if $\forall a, b \in Q, \Box(a) \cdot b = b \cdot \Box(a)$. **Definition 8.** An open modality is called weak idempotent, if $\forall a, b \in Q, \Box(a) \cdot b \cdot \Box(a)$ and $b \cdot \Box(a) \leq \Box(a) \cdot b \cdot \Box(a)$. **Definition 9.** An open modality is called unital, if $\forall a \in Q, \Box(a) \leq e$. **Lemma 3.** Let \square be an open modality on some unital quantale $\mathcal{Q} = \langle A, \bigvee, \cdot, e \rangle$. Then, if \square is unital and weak idempotent, then \square is central. Proof. $b \cdot \Box(a) \leqslant$ Right weak idempotence $\Box(a) \cdot b \cdot \Box(a) \leqslant$ Unitality $\Box(a) \cdot b \cdot e \leqslant$ Identity $\Box(a) \cdot b \leqslant$ Left weak idempotence $\Box(a) \cdot b \cdot \Box(a) \leqslant$ Unitality $e \cdot b \cdot \Box(a) \leqslant$ Identity $b \cdot \Box(a)$ Hence, $b \cdot \Box(a) = \Box(a) \cdot b$, so $\forall a \in A, \Box(a) \in \mathcal{Z}(Q)$. Proposition 2. Let Q be a quantale and $S \subseteq Q$ a subquantale, then $\square : Q \to Q$, such that $\square(a) = \bigvee \{s \in Q \mid s \in Q \}$ $S \mid x \leq a$, is an open modality. Proof. See Proposition 3. Let Q be a quantale and $S_1 \subseteq S_2 \subseteq Q$. Then $\Box_1(a) \leqslant \Box_2(a)$.

Let $a \in Q$, so $\{s \in S_1 \mid s \leqslant a\} \subseteq \{s \in S_2 \mid s \leqslant a\}$, so $\bigvee \{s \in S_1 \mid s \leqslant a\} \subseteq \bigvee \{s \in S_2 \mid s \leqslant a\}$.

Proof.

Thus, $\Box_1(a) \leq \Box_2(a)$.

Proposition 4.

Let Q be a quantale and $S \subseteq Q$ a subquantale, then the following operations are open modalities:

1.
$$\Box_z(a) = \bigvee \{ s \in S \mid s \leqslant a, s \in \mathcal{Z}(\mathcal{Q}) \};$$

2.
$$\Box_{1}(a) = \bigvee \{s \in S \mid s \leq a, s \leq 1\};$$

3.
$$\Box_{idem}(a) = \bigvee \{ s \in S \mid s \leqslant a, \forall b \in Q, b \cdot s \lor s \cdot b \leqslant s \cdot b \cdot s \};$$

4. $\Box_{z,1}, I_{z,idem}, I_{1,idem}, I_{z,1,idem}$.

Proof. Immediatly.

Proposition 5.

1.
$$\forall a \in \mathcal{Q}, \Box_{1,idem}(a) \leq \Box_z(a)$$
.

2.
$$\forall a \in \mathcal{Q}, \Box_{z,1,idem} = \Box_{1,idem}(a)$$

Proof. Follows from Lemma 3.

Proposition 6.

1.
$$\Box_z(a) \vee \Box_1(a) \vee \Box_{idem}(a) \leq \Box(a)$$

2.
$$\Box_{z,1,idem} \leq \Box_{z,1}(a) \wedge \Box_{z,idem}(a)$$

Lemma 4. $\forall a \in Q, \Box_1(a) \leq \Box_2(\Box_1(a)), if \Box_1(a) \leq \Box_2(a).$

Proof.
$$\Box_1(a) \leqslant \Box_1(\Box_1(a)) \leqslant \Box_2(\Box_1(a))$$

Lemma 5. $\Box_1(a_1) \cdot \Box_2(a_2) \leqslant \Box'(\Box_1(a_1) \cdot \Box_2(a_2)), where \Box_i \leqslant \Box', i = 1, 2.$

Proof.

$$\Box_{1}(a_{1}) \cdot \Box_{2}(a_{2}) \leqslant
\Box_{1}(\Box_{1}(a_{1})) \cdot \Box_{2}(\Box_{2}(a_{2})) \leqslant
\Box'(\Box_{1}(a_{1})) \cdot \Box'(\Box_{2}(a_{2})) \leqslant
\Box'(\Box_{1}(a_{1}) \cdot \Box_{2}(a_{2}))$$

Definition 10. Interpretation of subexponential signature

Let $\Sigma = \langle I, \leq, W, C, E \rangle$ be a subexponential signature, where |I| = n and $\square_{\mathcal{Q}}$ is a category of open modalities on a quantale \mathcal{Q} . Subexponential interpretation is a contravariant functor $\sigma: I \to \square_{\mathcal{Q}}$ defined as follows:

$$: I \rightarrow \Box_{\mathcal{Q}} \ defined \ as \ follows:$$

$$= \begin{cases} \Box_i : \mathcal{Q} \rightarrow \mathcal{Q}, \ s.t. \forall a \in \mathcal{Q}, \Box_i(a) = \{s \in S_i \mid s \leqslant a\}, \\ if \ s_i \notin W \cap C \cap E \\ \Box_i : \mathcal{Q} \rightarrow \mathcal{Q}, \ s.t. \forall a \in \mathcal{Q}, \Box_i(a) = \{s \in S_i \mid s \leqslant a, s \leqslant 1\}, \\ if \ s_i \in W \\ \Box_i : \mathcal{Q} \rightarrow \mathcal{Q}, \ s.t. \forall a \in \mathcal{Q}, \Box_i(a) = \{s \in S_i \mid s \leqslant a, s \in \mathcal{Z}(\mathcal{Q})\}, \\ if \ s_i \in E \\ \Box_i : \mathcal{Q} \rightarrow \mathcal{Q}, \ s.t. \forall a \in \mathcal{Q}, \Box_i(a) = \{s \in S_i \mid s \leqslant a, \forall b, b \cdot s \vee s \cdot b \leqslant s \cdot b \cdot s\}, \\ if \ s_i \in E \\ otherwise, \ if \ s_i \ belongs \ to \ some \ intersection \ of \ subsets, \ then \ we \ combine \ the \ relevant \ conditions \end{cases}$$

Definition 11. Let Q be a quantale, $f: Tp \to Q$ a valuation and $\sigma: I \to \square_Q$ a subexponential interpretation, then interpretation is defined inductively:

Definition 12. $\Gamma \models A \Leftrightarrow \forall f, \forall \sigma, \llbracket \Gamma \rrbracket \leqslant \llbracket A \rrbracket$

Theorem 1. $\Gamma \to A \Rightarrow \llbracket \Gamma \rrbracket \leqslant \llbracket A \rrbracket$

Proof. We consider cases with modal rules.

1. Let $!_{s_1}A_1, \ldots, !_{s_n}A_n \to A$ and $\forall i, s \leq s_i$.

Then $\forall a \in Q, \sigma(s_i)(a) \leq \sigma(s)(a)$.

By IH,
$$\sigma(s_1)[\![A_1]\!] \cdot \cdots \cdot \sigma(s_n)[\![A_n]\!] \leq [\![A]\!].$$

Thus,
$$\sigma(s)(\sigma(s_1)[A_1]] \cdot \cdots \cdot \sigma(s_n)[A_n]) \leq \sigma(s)([A]).$$

By Lemma 5,
$$\sigma(s_1) \llbracket A_1 \rrbracket \cdots \sigma(s_n) \llbracket A_n \rrbracket \leqslant \sigma(s) (\sigma(s_1) \llbracket A_1 \rrbracket \cdots \sigma(s_n) \llbracket A_n \rrbracket)$$
.

So,
$$\sigma(s_1)[\![A_1]\!] \cdot \cdots \cdot \sigma(s_n)[\![A_n]\!] \leq \sigma(s)([\![A]\!]).$$

2. Let $\Gamma, A, \Delta \to B$.

By IH,
$$\llbracket \Gamma \rrbracket \cdot \llbracket A \rrbracket \cdot \llbracket \Delta \rrbracket \leqslant \llbracket B \rrbracket$$
.

By the definition,
$$\sigma(s_i)(\llbracket A \rrbracket) \leq \llbracket A \rrbracket$$
.

So,
$$\llbracket \Gamma \rrbracket \cdot \sigma(s_i)(\llbracket A \rrbracket) \cdot \llbracket \Delta \rrbracket \leqslant \llbracket B \rrbracket$$

3. Let $\Gamma, \Delta \to B$, $A \in Fm$, and $s_i \in W$.

So,
$$\llbracket \Gamma \rrbracket \cdot \llbracket \Delta \rrbracket \leqslant \llbracket B \rrbracket$$
, then $\llbracket \Gamma \rrbracket \cdot e \cdot \llbracket \Delta \rrbracket \leqslant \llbracket B \rrbracket$, where $e \in Q$ is unit.

By the definition of unital open modality, $\sigma(s_i)(\llbracket A \rrbracket) \leq e$.

Thus,
$$\llbracket \Gamma \rrbracket \cdot \sigma(s_i)(\llbracket A \rrbracket) \cdot \llbracket \Delta \rrbracket \leqslant \llbracket B \rrbracket$$

4. Let Γ , $!_{s_i}A$, Δ , $!_{s_i}A$, $\Pi \to B$ and $s_i \in C$.

By IH,
$$\llbracket \Gamma \rrbracket \cdot \sigma(s_i)(\llbracket A \rrbracket) \cdot \llbracket \Delta \rrbracket \cdot \sigma(s_i)(\llbracket A \rrbracket) \cdot \llbracket \Pi \rrbracket \leqslant \llbracket B \rrbracket$$
.

By the definition,
$$\sigma(s_i)(\llbracket A \rrbracket) \cdot \llbracket \Delta \rrbracket \leqslant \sigma(s_i)(\llbracket A \rrbracket) \cdot \llbracket \Delta \rrbracket \cdot \sigma(s_i)(\llbracket A \rrbracket)$$
.

Then
$$\llbracket \Gamma \rrbracket \cdot \sigma(s_i)(\llbracket A \rrbracket) \cdot \llbracket \Delta \rrbracket \cdot \llbracket \Pi \rrbracket \leqslant \llbracket B \rrbracket$$

5. Let $\Gamma, !_{s_i} A, \Delta, \Pi \to B$ and $s_i \in E$, so $\sigma(s_i)(a) \in \mathcal{Z}(\mathcal{Q})$ for all $a \in Q$ by the definition.

By IH,
$$\llbracket \Gamma \rrbracket \cdot \sigma(s_i)(\llbracket A \rrbracket) \cdot \llbracket \Delta \rrbracket \cdot \llbracket \Pi \rrbracket \leqslant \llbracket B \rrbracket$$

Hence,
$$\llbracket \Gamma \rrbracket \cdot \llbracket \Delta \rrbracket \cdot \sigma(s_i)(\llbracket A \rrbracket) \cdot \llbracket \Pi \rrbracket \leqslant \llbracket B \rrbracket$$
.

3 Quantale completeness

Definition 13.

Let $\mathcal{F} \subseteq Fm$, an ideal is a subset $\mathcal{I} \subseteq \mathcal{F}$, such that:

- If $B \in \mathcal{I}$ and $A \to B$, then $A \in \mathcal{I}$;
- If $A, B \in \mathcal{I}$, then $A \vee B \in \mathcal{I}$.

Definition 14.

Let
$$S \subseteq \mathcal{F} \subseteq Fm$$
, then $\bigvee S = \bigcap \{ \mathcal{I} \subseteq \mathcal{F} \mid S \subseteq \mathcal{I} \}$

Proposition 7. $\bigvee S$ is an ideal.

Lemma 6. $A \subseteq Fm$, then $\{B \mid B \to A'\} = \bigvee A$.

Proof.

Let $A \subseteq Fm$. Then $\{B \mid B \to A', A' \in A\} \subseteq \bigvee A$, so far as $\bigvee A$ is an ideal.

On the other hand, $\{B \mid B \to A', A' \in A\}$ is an ideal, it is easy to see that this set is closed under \vee . So, $\bigvee A \subseteq \{B \mid B \to A', A' \in A\}$.

Lemma 7. $\bigvee A \subseteq \bigvee B \text{ iff } \forall A' \in A, \forall B' \in B, A' \rightarrow B'.$

Proof. Let $\bigvee A \subseteq \bigvee B$, then $\{C|C \to A', A' \in A\} \subseteq \{D \mid D \to B', B' \in B\}$.

Thus, for all $A' \in A$, $A' \in \{C | C \to A', A' \in A\}$, then $A' \in \{D | D \to B', B' \in B\}$, hence $A' \to B'$, for all $B' \in B$.

On the other hand, let $A' \to B'$ for all $A' \in A$, $B' \in B$ and $C \in \bigvee A$.

Thus, $C \to A'$, then $C \to B'$ by cut, so $C \in B'$.

Lemma 8. Let $Q = \{ \bigvee S \mid S \subseteq Fm \}$ and $\bigvee A \cdot \bigvee B = \bigvee \{ A \bullet B \mid A \in A, B \in B \}$. Then $\langle Q, \subseteq, \cdot, \bigvee 1 \rangle$ is a quantale.

Proof. See \Box

Lemma 9. Let $!_s \in I$, then $\square_s(\bigvee A) = \bigvee \{B \mid B \rightarrow !_s A', A' \in A\}$ is a quantic conucleus.

Proof.

1. $\Box_s(\bigvee A) \subseteq \bigvee A$;

Let $B \in \Box_s(\bigvee A)$, then for all $A' \in A$, $B \to !_s A'$, but $!_s A' \to A'$, then $B \to A'$, so $B \in \bigvee A$.

2. $\Box_s(\Box_s(\bigvee A)) = \bigvee \Box_s(\bigvee A);$

$$\Box_s(\Box_s(\bigvee A)) = \{B \mid B \to !_s !_s A^{'}, A^{'} \in A\} = \quad$$
 , that follows from equivalence $!_s !_s B \leftrightarrow !_s B.$ $\{B \mid B \to !_s A^{'}, A^{'} \in A\}$

3. $\bigvee A \subseteq \bigvee B \Rightarrow \Box_s(\bigvee A) \subseteq \Box_s(\bigvee B);$

Follows from admissiability of K-rule for all $s \in I$.

4. $\Box_s \bigvee A \cdot \Box_s \bigvee B = \Box_s (\Box_s \bigvee A \cdot \Box_s \bigvee B)$.

$$\Box_{s} \bigvee A \cdot \Box_{s} \bigvee B = \\ \bigvee \{C \bullet D \mid C \bullet D \to !_{s} A^{'} \bullet !_{s} B^{'}\} = \\ \bigvee \{C \bullet D \mid C \bullet D \to !_{s} (!_{s} A^{'} \bullet !_{s} B^{'})\} = \\ \Box_{s} (\Box_{s} \bigvee A \cdot \Box_{s} \bigvee B)$$

Lemma 10.

- 1. Let $s \in W$, then for all $A \subseteq Fm$, $\mathbf{1} \in \Box_s(\bigvee A)$;
- 2. Let $s \in E$, then $\Box_s(\bigvee A) \cdot \bigvee B = \bigvee B \cdot \Box_s(\bigvee A)$.
- 3. Let $s \in C$, then $(\Box_s \bigvee A \cdot \bigvee B) \cup (\bigvee B \cdot \Box_s \bigvee A) \subseteq \Box_s \bigvee A \cdot \bigvee B \cdot \Box_s \bigvee A$, for all $B \subseteq Fm$.

Proof. 1. Let $s \in W$, then for all $A \subseteq Fm$, $\Box_s(\bigvee A) = \{!_s B \mid !_s B \to A', A' \in A\}$. But, $!_s B \to \mathbf{1}$, hence, $1 \in \square_s(\bigvee A)$, so far as $\square_s(\bigvee A)$ is an ideal.

2.

$$\Box_{s}(\bigvee A) \cdot \bigvee B = \\ \bigvee \{!_{s}C \bullet D \mid !_{s}C \bullet D \to A^{'} \bullet B^{'}, A^{'} \in A, B^{'} \in B\} = \\ \bigvee \{D \bullet !_{s}C \mid D \bullet !_{s}C \to A^{'} \bullet B^{'}, A^{'} \in A, B^{'} \in B\} = \\ \bigvee B \cdot \Box_{s}(\bigvee A)$$

3.

$$\Box_s \bigvee A \cdot \bigvee B = \bigvee \{!_s C \bullet D | !_s C \bullet D \to A' \bullet B' \}. \ !_s C \bullet D \to !_s C \bullet D \bullet !_s C, \text{ hence } \Box_s \bigvee A \cdot \bigvee B \subseteq \Box_s \bigvee A \cdot \bigvee B \cdot \Box_s \bigvee A.$$

Similarly with $\bigvee B \cdot \square_s \bigvee A$.

Lemma 11.

Let $i, j \in I$ and $i \leq j$, then for all $A \subseteq Fm$, $\Box_i(\bigvee A) \subseteq \Box_i(\bigvee A)$.

Proof. Let
$$i, j \in I$$
 and $i \leq j$. Let $B \in \Box_j(\bigvee A)$, then $\forall A', B \to !_j A'$. But $!_j A \to !_i A$. Then $B \to !_i A$ by hence. So, $B \in \Box_j(\bigvee A)$.

Definition 15. Let Q be a syntactic quantale as proposed above and $\mathcal{I} = \langle I, \leq, W, C, E \rangle$ be a $subexponential\ signature.$

We define a map $\square: \mathcal{I} \to Mod_{\mathcal{Q}}$ as follows:

 $\Box(i)(\bigvee A) = \{B \mid B \to !_i A\}.$

Lemma 12. \square *is a subexponential interpretation.*

Proof. Follows from lemmas 10 and 11.

Lemma 13.

Let Q be a quantale constructed above and $\square_1, \ldots, \square_n$ be a family of quantic conuclei on Q. Then there exist a model $\langle Q, \llbracket . \rrbracket \rangle$, such that $\llbracket A \rrbracket = \bigvee \{A\}, A \in Fm$.

Proof.

We define an interpretation as follows:

- 1. $[p_i] = \bigvee \{p_i\}$
- 2. $[1] = \sqrt{1}$
- 3. $[A \bullet B] = \bigvee \{A \bullet B\}$

4.
$$[A/B] = \bigvee \{A/B\}$$

5.
$$\llbracket B \backslash A \rrbracket = \bigvee \{B \backslash A\}$$

6.
$$[\![A\&B]\!] = \bigvee \{A\&B\}$$

7.
$$\llbracket A \vee B \rrbracket = \bigvee \{A \vee B\}$$

8.
$$\llbracket !_s A \rrbracket = \Box(s)(\bigvee A) = \{B \mid B \rightarrow !_s A\} = \bigvee \{!_s A\}$$

Theorem 2. $\Gamma \models A \Rightarrow \Gamma \rightarrow A$.

Proof. Follows from lemmas 6, 12, 13. \Box