Activity 3.4.5. A trough is being constructed by bending a 4×24 (measured in feet) rectangular piece of sheet metal.

Two symmetric folds 2 feet apart will be made parallel to the longest side of the rectangle so that the trough has cross-sections in the shape of a trapezoid, as pictured in Figure 3.4.4. At what angle should the folds be made to produce the trough of maximum volume?

Figure 3.4.4: A cross-section of the trough formed by folding to an angle of θ .

Solution. Once we choose the angle θ , the two right triangles in the trapezoid are determined, and each has a horizontal leg of length $\cos(\theta)$ and a vertical leg of length $\sin(\theta)$. Thus, the sum of the areas of the two triangles is $\sin(\theta)\cos(\theta)$, and the area of the rectangle between them is $2\sin(\theta)$. Hence, the area of the trapezoidal cross-section is $A(\theta) = \sin(\theta)\cos(\theta) + 2\sin(\theta)$. Because the length of the trough is constant, the trough's volume will be maximized by maximizing cross-sectional area. Note, too, that the domain for θ is $0 \le \theta \le \frac{\pi}{2}$.

Differentiating, we find that

$$A'(\theta) = \sin(\theta)(-\sin(\theta)) + \cos(\theta)\cos(\theta) + 2\cos(\theta) = -\sin^2(\theta) + \cos^2(\theta) + 2\cos(\theta).$$

Using the identity $\sin^2(\theta) = 1 - \cos^2(\theta)$, it follows that

$$A'(\theta) = \cos^2(\theta) - 1 + \cos^2(\theta) + 2\cos(\theta) = 2\cos^2(\theta) + 2\cos(\theta) - 1.$$

This most recent equation is quadratic in $\cos(\theta)$, so letting $u = \cos(\theta)$, we can start to solve the equation $A'(\theta) = 0$ by solving $2u^2 + 2u - 1 = 0$. Doing so, we find that

$$u = \frac{-1 \pm \sqrt{3}}{2} \approx 0.3660254, -1.3660254,$$

so only $u = \frac{-1+\sqrt{3}}{2}$ will be a potential value of the cosine function from an angle that lies in the interval $[0, \frac{\pi}{2}]$. Now, recalling that $\cos(\theta) = u$, to find the critical number θ , we solve $\cos(\theta) = \frac{-1+\sqrt{3}}{2}$, which implies $\theta = \arccos(\frac{-1+\sqrt{3}}{2}) \approx 1.19606$ radians, or $\theta \approx 68.5292^{\circ}$.

Finally, to confirm that A has an absolute maximum at $\theta = \arccos(\frac{-1+\sqrt{3}}{2}) \approx 1.19606$, we consider this value as well as the endpoints of $[0, \frac{\pi}{2}]$, and evaluate A to find that A(0) = 0, $A(\frac{\pi}{2}) = 2$, and $A(1.19606) \approx 2.2018$, which is the absolute maximum possible cross-sectional area.