Title

D. Zack Garza

Tuesday 25th August, 2020

Contents

1	Tuesday, August	Tuesday, August 25										1																		
	1.1 Proof of Null	lstellensatz																												3

1 Tuesday, August 25

Let $k = \bar{k}$ and R a ring containing ideals I, J.

Definition 1.0.1 (Radical).

Recall that the radical of I is defined as

$$\sqrt{I} = \left\{ r \in R \ \middle|\ r^k \in I \text{ for some } k \in \mathbb{N} \right\}.$$

Example 1.1.

Let $I = (x_1, x_2^2) \subset \mathbb{C}[x_1, x_2]$, so $I = \{f_1x_1 + f_2x_2 \mid f_1, f_2 \in \mathbb{C}[x_1, x_2]\}$. Then $\sqrt{I} = (x_1, x_2)$, since $x_2^2 \in I \implies x_2 \in \sqrt{I}.$

Given $f \in k[x_1, \dots, x_n]$, take its value at $a = (a_1, \dots, a_n)$ and denote it f(a). Set $\deg(f)$ to be the largest value of $i_1 + \cdots + i_n$ such that the coefficient of $\prod x_j^{i_j}$ is nonzero.

Example 1.2.

 $\deg(x_1 + x_2^2 + x_1 x_2^3 = 4)$

Definition 1.0.2 (Affine Variety).

- 1. Affine *n*-space $\mathbb{A}^n = \mathbb{A}^n_k$ is defined as $\{(a_1, \dots, a_n) \mid a_i \in k\}$.
 - Remark: not k^n , since we won't necessarily use the vector space structure (e.g. adding
- points).

 2. Let $S \subset k[x_1, \dots, x_n]$ to be a set of polynomials. $\{x \in \mathbb{A}^n \mid f(x) = 0\} \subset \mathbb{A}^n$ to be an affine variety. Then define V(S)

Example 1.3.

- $\mathbb{A}^n = V(0)$.
- For any point $(a_1, \dots, a_n) \in \mathbb{A}^n$, then $V(x_1 a_1, \dots, x_n a_n) = \{a_1, \dots, a_n\}$ uniquely determines the point.
- For any finite set $r_1, \dots, r_k \in \mathbb{A}^1$, there exists a polynomial f(x) whose roots are r_i .

Remark 1.

We may as well assume S is an ideal by taking the ideal it generates, $S \subseteq \langle S \rangle = \left\{ \sum g_i f_i \mid g_i \in k[x_1, \cdots, x_n], \ f_i \in S \right\}$. Then $V(\langle S \rangle) \subset V(S)$.

Conversely, if f_1, f_2 vanish at $x \in \mathbb{A}^n$, then $f_1 + f_2, gf_1$ also vanish at x for all $g \in k[x_1, \dots, x_n]$. Thus $V(S) \subset V(\langle S \rangle)$.

Lemma 1.1.

- 1. If $S_1 \subseteq S_2$ then $V(S_1) \subseteq V(S_2)$. 2. $V(S_1 \cup S_2) = V(S_1S_2) = V(S_1) \cap V(S_2)$.

We thus have a map

 $V: \{ \text{Ideals in } k[x_1, \cdots, x_n] \} \longrightarrow \{ \text{Affine varieties in } \mathbb{A}^n \}.$

Definition 1.1.1 (The Ideal of a Set).

Let $X \subset \mathbb{A}^n$ be any set, then the ideal of X is defined as

$$I(X) := \left\{ f \in k[x_1, \cdots, x_n] \mid f(x) = 0 \,\forall x \in X \right\}.$$

Example 1.4.

Let X be the union of the x_1 and x_2 axes in \mathbb{A}^2 , then $I(X) = (x_1x_2) = \{x_1x_2g \mid g \in k[x_1, x_2]\}$.

Note that if $X_1 \subset X_2$ then $I(X_1) \subset I(X_2)$.

Proposition 1.2(The Image of V is Radical).

I(X) is a radical ideal, i.e. $I(X) = \sqrt{I(X)}$.

This is because $f(x)^k = 0 \forall x \in X$ implies f(x) = 0 for all $x \in X$, so $f^k \in I(X)$ and thus $f \in I(X)$.

Our correspondence is thus

$$\left\{ \text{Ideals in } k[x_1, \cdots, x_n] \right\} \xrightarrow{V} \left\{ \text{Affine Varieties} \right\}$$

$$\left\{ \text{Radical Ideals} \right\} \xleftarrow{I} \left\{ ? \right\}.$$

Proposition 1.3(Hilbert Nullstellensatz (Zero Locus Theorem)).

- a. For any affine variety X, V(I(X)) = X.
- b. For any ideal $J \subset k[x_1, \cdots, x_n], I(V(J)) = \sqrt{J}$.

Thus there is a bijection between radical ideals and affine varieties.

1.1 Proof of Nullstellensatz

Remark 2.

Recall the Hilbert Basis Theorem: any ideal in a finitely generated polynomial ring over a field is again finitely generated.

We need to show 4 inclusions, 3 of which are easy.

- a: $X \subset V(I(X))$:
 - If $x \in X$ then f(x) = 0 for all $f \in I(X)$.
 - So $x \in V(I(X))$, since every $f \in I(X)$ vanishes at x.
- b: $\sqrt{J} \subset I(V(J))$:
 - If $f \in \sqrt{J}$ then $f^k \in J$ for some k.
 - Then $f^k(x) = 0$ for all $x \in V(J)$.
 - So f(x) = 0 for all $x \in V(J)$.
 - Thus $f \in I(V(J))$.
- c: $V(I(X)) \subset X$:
 - Need to now use that X is an affine variety.
 - Counterexample: $X = \mathbb{Z}^2 \subset \mathbb{C}^2$, then I(X) = 0. But $V(I(X)) = \mathbb{C}^2$, but $\mathbb{C}^2 \not\subset \mathbb{Z}^2$.
 - By (b), $I(V(J)) \supset \sqrt{J} \supset J$.
 - Since $V(\cdot)$ is order-reversing, taking V of both sides reverses the containment.
 - So $V(I(V(J))) \subset V(J)$, i.e. $V(I(X)) \subset X$.
- d: $I(V(J)) \subset \sqrt{J}$ (hard direction)

Theorem 1.4(1st Version of Nullstellensatz).

Suppose k is algebraically closed and uncountable (still true in countable case by a different proof).

Then the maximal ideals in $k[x_1, \dots, x_n]$ are of the form $(x_1 - a_1, \dots, x_n - a_n)$.

Proof.

Let \mathfrak{m} be a maximal ideal, then by the Hilbert Basis Theorem, $\mathfrak{m} = \langle f_1, \dots, f_r \rangle$ is finitely generated.

Let $L = \mathbb{Q}[\{c\}_i]$ where the c_i are all of the coefficients of the f_i if char (K) = 0, or $\mathbb{F}_p[\{c\}_i]$ if char (k) = p. Then $L \subset k$.

Define $\mathfrak{m}_0 = \mathfrak{m} \cap L[x_1, \dots, x_n]$. Note that by construction, $f_i \in \mathfrak{m}_0$ for all i, and we can write $\mathfrak{m} = \mathfrak{m}_0 \cdot k[x_1, \dots, x_n]$.

 ${\bf Claim} \colon \, {\mathfrak m}_0 \,\, {\rm is \,\, a \,\, maximal \,\, ideal}.$

If it were the case that

$$\mathfrak{m}_0 \subsetneq \mathfrak{m}'_0 \subsetneq L[x_1, \cdots, x_n],$$

then

$$\mathfrak{m}_0 \cdot k[x_1, \cdots, x_n] \subsetneq \mathfrak{m}'_0 \cdot k[x_1, \cdots, x_n] \subsetneq k[x_1, \cdots, x_n].$$

So far: constructed a smaller polynomial ring and a maximal ideal in it.

Thus $L[x_1, \dots, x_n]/\mathfrak{m}_0$ is a field that is finitely generated over either \mathbb{Q} or \mathbb{F}_p .

Noether Normalization: