Page No.
Date: / /

2020 Phy1216

2 X-my			-this	is	called	-backwar	1
integra	tion.						
After (important	doing the	rese	łwo .	integratio	ns we	do	two
(E) Matik	the v	aluez egxativns	of w	ox wave	function caling	on Kos technique	Boinl
9 Muth Jon bo	the dintegeor	tions.	of.	the	wavefunct	tion at	Kl
After in soluti	Bertonming Can	these be	nemove	hing s.	lafs,	the inst	a birlity
				-			
							<u> </u>

1 Discussion

1. This is the table of the Eigen values across the corresponding states for $x_{max} = 10$

	Eigen	Value	Numerically	Analytically				
0			0.500000	0.5				
1			1.500024	1.5				
2			2.500085	2.5				
3			3.500090	3.5				
4			4.500000	4.5				
5			5.500121	5.5				
[Done] exited with code=0 in 3.96 seconds								

Figure 1:

2. These are the waveform that we are geeting across the corresponding states for $x_{max} = 10$

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

3. This is the table of the Eigen values across the corresponding states for $x_{max} = 2$. Here we will get only the values for the ground and first excited state as for higher excited states with $x_{max} = 2$ we are not getting the classical turning point.

Figure 8:

B.Sc.(Hons.) Physics 32221501 Teacher: Mamta

S.G.T.B. Khalsa College Quantum Mechanics (2022-23) Lab Assignment # 7 Harmonic Oscillator - III (matching)

Due Date and Time: 08.09.2022, 11:59PM Max. Marks : 20

1. (7 marks) Theory

- (a) Explain why correct asymptotic solutions are not obtained when you integrate the Schrödinger Equation from x_{min} to x_{max} .
- (b) Discuss how the instability discussed above may be controlled by matching the solution at a point in the allowed region.

2. (10 marks) **Programming**

- (a) Modify the program in assignment 6 to determine the energy eigenvalues and eigenfunctions with correct asmptotic behaviour for an electron subjected to the harmonic oscillator potential. The code should
 - i. Determine the left and right wavefunctions by integrating forward from x=0 to $x=x_{cl}$ and backward from $x=x_{max}$ to $x=x_{cl}$, x_{cl} being the right classical turning point. The code should obtain the first six energy eigenvalues e_n for an electron subjected to harmonic potential.
 - ii. match the left and right wavefunctions and the derivatives
 - iii. print numerical and analytical energy eigenvalues (in units of $\hbar\omega$) in tabulated form for the ground state and first five excited states.
 - iv. Print the values of the wavefunction and its derivative at $x = x_{cl}$.
- (b) Repeat for $x_{\text{max}} = 2$ and $x_{\text{max}} = 10$..

3. (3 marks) Discussion

Interpret and discuss your results.