DEPARTMENT OF MATHEMATICS

INDIAN INSTITUTE OF TECHNOLOGY DELHI

MAJOR TEST 2008-2009 FIRST SEMESTER MAL 230 (NUMERICAL METHODS AND COMPUTATION)

Time: 2 hours Max. Marks: 50

- 1a. Find an upper bound for $||A^{-1}||_{\infty}$ where $A = \begin{bmatrix} 7 & 2 & 1 & 1 \\ 2 & 7 & 2 & 1 \\ 1 & 2 & 7 & 2 \\ 1 & 1 & 2 & 7 \end{bmatrix}$. (4)
- 1b. Suppose λ is an eigenvalue of A in the above question (1a) and $\alpha \leq |\lambda| \leq \beta$. Use the upper bound for $||A^{-1}||_{\infty}$ in finding the values of α and β . (2)
- 2. Consider the linear system Ax=b with $\mid A\mid \neq 0$. Let δA be perturbation of A and assume $\|\delta A\|<\frac{1}{\|A^{-1}\|}$. Then examine whether $A+\delta A$ is nonsingular or not. And if we define δx implicitly by $(A+\delta A)(x+\delta x)=b$ then prove or disprove

$$\frac{\|\delta x\|}{\|x\|} \le Cond.(A) \frac{\|\delta A\|}{\|A\|} (1 + O(\|\delta A\|)).$$

(4)

3. Given $A=\left[\begin{array}{cc} \frac{3}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{3}{2} \end{array}\right]$, for which values of α , the vector sequence $\{x^{(k)}\}$ defined by

$$x^{(k+1)} = (I + \alpha A + \alpha^2 A^2) x^{(k)}, \quad k = 0, 1, 2, \dots$$

where $x^{(0)}$ is arbitrary, converge to $\mathbf{0}$ as $k \to \infty$.

(3)

- 4. Using the power method, determine the largest eigenvalue and the corresponding eigenvector of the matrix $A = \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}$, correct to two decimal places. (5)
- 5. Find the number of Given's rotations required in the reduction of an $n \times n$ symmetric matrix to tridiagonal matrix. Using the Given's method and Sturm sequence, find the interval of unit length which contains the largest eigenvalue of the matrix

$$A = \left[\begin{array}{rrr} 1 & 2 & -1 \\ 2 & 1 & 2 \\ -1 & 2 & 1 \end{array} \right].$$

(8)

(2)

- **6a.** Derive two point Gauss-Chebyshev integration rule and hence evaluate $\int_{\frac{1}{2}}^{1} \frac{dx}{1+x}$. (6)
- 6b. Find the error associated with the two-point Gauss-Legendre quadrature formula.

P.T.O.

7. Assume that $f \in C^6[a,b]$ and that $x-2h,x-h,x,x+h,x+2h \in [a,b]$. Find the error E(f,h) in the formula

$$f''(x_0) = \frac{-f_2 + 16f_1 - 30f_0 + 16f_{-1} - f_{-2}}{12h^2} + E(f, h)$$

where $f_k = f(x_0 + kh)$, k = -2, -1, 0, 1, 2. Also find the optimum step size h using the criteria |R.E.| + |T.E.| is minimum. (4)

8. True or false justify the following ststement.

The system

$$x = 0.2\cos(x+y)$$

$$y = 0.3\sin(x - y)$$

has unique solution.

(4)

9. Determine a polynomial p(x) of degree as low as possible such that

$$\max_{-1 \le x \le 1} \left| \frac{1}{3+x} - p(x) \right| \le 0.01$$

(4)

(Use Lanczos Economization).

10. Obtain polynomial approximation to $f(x)=(1+x)^{\frac{1}{2}}$ over $[0,\frac{1}{2}]$ by means of Taylor's expansion about the point x=0. Find the number of terms required in this expansion so that the magnitude of the error is less than 5×10^{-3} . (4)