T0-Theorie:

Rotverschiebungs-Mechanismus

Wellenlaengen-abhaengige Rotverschiebung ohne Distanzannahmen

Basierend auf dem T0-Theorie-Framework Spektroskopische Tests mit kosmischen Objektmassen

25. Juli 2025

Zusammenfassung

Das T0-Modell erklaert kosmische Rotverschiebung durch ξ -Feld-Energieverlust wachrend der Photonenpropagation, ohne Raumexpansion oder Distanzmessungen zu benoetigen. Dieser Mechanismus sagt wellenlaengen-abhaengige Rotverschiebung $z \propto \lambda$ voraus, die mit spektroskopischen Beobachtungen kosmischer Objekte getestet werden kann. Unter Verwendung der universellen Konstante $\xi = \frac{4}{3} \times 10^{-4}$ und gemessener Massen astronomischer Objekte bietet die Theorie modell-unabhaengige Tests, die sich von der Standard-Kosmologie unterscheiden lassen.

Inhaltsverzeichnis

1	Fundamentaler ξ -Feld-Energieverlust		
	1.1 Grundlegender Mechanismus	2	
	1.2 Energie-zu-Wellenlaenge-Umwandlung	2	
2	Herleitung der Rotverschiebungsformel	2	
	2.1 Integration fuer kleine ξ -Effekte	2	
	2.2 Rotverschiebungs-Definition und Formel	3	
3	1	3	
	3.1 Frequenz-Energieverlust	3	
	3.2 Frequenz-Rotverschiebungsformel	3	
4	Beobachtbare Vorhersagen ohne Distanzannahmen	4	
	4.1 Spektrallinien-Verhaeltnisse	4	
	4.2 Frequenz-abhaengige Effekte	4	
5		5	
	5.1 Verwendung bekannter kosmischer Objektmassen	5	
	5.2 Masse-Energie-Beziehung im ξ -Feld	5	

6	Exp 6.1 6.2 6.3	Multi-Wellenlaengen-Beobachtungen Radio- vs. optische Rotverschiebung Erwartete Signalstaerke	6			
7	Vorteile gegenueber Standard-Kosmologie					
	7.1	Modell-unabhaengiger Ansatz	6			
	7.2	Testbare Vorhersagen				
8	Beobachtungsstrategie					
	8.1	Zielobjekt-Auswahl	7			
	8.2	Datenanalyse-Protokoll	7			
	8.3	Erforderliche Praezision	7			
9	Schlussfolgerung					
	9.1	Zusammenfassung des T0-Rotverschiebungs-Mechanismus	8			
	9.2	Experimentelle Zugaenglichkeit				
	9.3	Revolutionaere Implikationen				

1 Fundamentaler ξ -Feld-Energieverlust

1.1 Grundlegender Mechanismus

Prinzip 1 (ξ -Feld-Photon-Wechselwirkung). Photonen verlieren Energie durch Wechselwirkung mit dem universellen ξ -Feld waehrend der Propagation:

$$\frac{dE}{dx} = -\xi \cdot f\left(\frac{E}{E_{\varepsilon}}\right) \cdot E \tag{1}$$

wobei $\xi = \frac{4}{3} \times 10^{-4}$ die universelle geometrische Konstante ist und $E_{\xi} = \frac{1}{\xi} = 7500$ (natuerliche Einheiten).

Die Kopplungsfunktion $f(E/E_{\xi})$ ist dimensionslos und beschreibt die energie-abhaengige Wechselwirkungsstaerke. Fuer den linearen Kopplungsfall:

$$f\left(\frac{E}{E_{\xi}}\right) = \frac{E}{E_{\xi}} \tag{2}$$

Dies ergibt die vereinfachte Energieverlust-Gleichung:

$$\frac{dE}{dx} = -\frac{\xi E^2}{E_{\xi}} \tag{3}$$

1.2 Energie-zu-Wellenlaenge-Umwandlung

Da $E = \frac{hc}{\lambda}$ (oder $E = \frac{1}{\lambda}$ in natuerlichen Einheiten), koennen wir den Energieverlust in Wellenlaenge ausdrucken. Einsetzen von $E = \frac{1}{\lambda}$:

$$\frac{d(1/\lambda)}{dx} = -\frac{\xi}{E_{\mathcal{E}}} \cdot \frac{1}{\lambda^2} \tag{4}$$

Umformen zur Wellenlaengen-Evolution:

$$\frac{d\lambda}{dx} = \frac{\xi \lambda^2}{E_{\xi}} \tag{5}$$

2 Herleitung der Rotverschiebungsformel

2.1 Integration fuer kleine ξ -Effekte

Fuer die Wellenlaengen-Evolutionsgleichung:

$$\frac{d\lambda}{dx} = \frac{\xi \lambda^2}{E_{\varepsilon}} \tag{6}$$

Trennung der Variablen und Integration:

$$\int_{\lambda_0}^{\lambda} \frac{d\lambda'}{\lambda'^2} = \frac{\xi}{E_{\xi}} \int_0^x dx' \tag{7}$$

Dies ergibt:

$$\frac{1}{\lambda_0} - \frac{1}{\lambda} = \frac{\xi x}{E_{\mathcal{E}}} \tag{8}$$

Aufloesen nach der beobachteten Wellenlaenge:

$$\lambda = \frac{\lambda_0}{1 - \frac{\xi x \lambda_0}{E_\varepsilon}} \tag{9}$$

2.2 Rotverschiebungs-Definition und Formel

T0-Vorhersage

Rotverschiebungs-Definition:

$$z = \frac{\lambda_{\text{beobachtet}} - \lambda_{\text{emittiert}}}{\lambda_{\text{emittiert}}} = \frac{\lambda}{\lambda_0} - 1 \tag{10}$$

Fuer kleine $\xi\text{-Effekte}$ mit $\frac{\xi x \lambda_0}{E_\xi} \ll 1$ koennen wir entwickeln:

$$z \approx \frac{\xi x \lambda_0}{E_{\xi}} = \frac{\xi x}{E_{\xi}} \cdot \lambda_0 \tag{11}$$

Zentrale Erkenntnis

Zentrale T0-Vorhersage: Wellenlaengen-abhaengige Rotverschiebung

$$z(\lambda_0) = \frac{\xi x}{E_{\xi}} \cdot \lambda_0$$
 (12)

Dies ist die fundamentale Vorhersage der T0-Theorie: Rotverschiebung ist proportional zur emittierten Wellenlaenge!

3 Frequenz-basierte Formulierung

3.1 Frequenz-Energieverlust

Da $E = h\nu$, wird die Energieverlust-Gleichung zu:

$$\frac{d(h\nu)}{dx} = -\frac{\xi(h\nu)^2}{E_{\varepsilon}} \tag{13}$$

Vereinfachung:

$$\frac{d\nu}{dx} = -\frac{\xi h\nu^2}{E_{\xi}} \tag{14}$$

3.2 Frequenz-Rotverschiebungsformel

Integration der Frequenz-Evolution:

$$\int_{\nu_0}^{\nu} \frac{d\nu'}{\nu'^2} = -\frac{\xi h}{E_{\xi}} \int_0^x dx' \tag{15}$$

Dies ergibt:

$$\frac{1}{\nu} - \frac{1}{\nu_0} = \frac{\xi hx}{E_{\varepsilon}} \tag{16}$$

Daher:

$$\nu = \frac{\nu_0}{1 + \frac{\xi h x \nu_0}{E_{\mathcal{E}}}} \tag{17}$$

T0-Vorhersage

Frequenz-Rotverschiebung:

$$z = \frac{\nu_0}{\nu} - 1 \approx \frac{\xi h x \nu_0}{E_{\xi}} \tag{18}$$

Zentrale Erkenntnis

Da $\nu = \frac{c}{\lambda}$, haben wir $h\nu = \frac{hc}{\lambda}$, was bestaetigt:

$$z \propto \nu \propto \frac{1}{\lambda}$$
 (19)

Photonen hoeherer Frequenz zeigen groessere Rotverschiebung!

4 Beobachtbare Vorhersagen ohne Distanzannahmen

4.1 Spektrallinien-Verhaeltnisse

Verschiedene atomare Uebergaenge sollten unterschiedliche Rotverschiebungen entsprechend ihrer Wellenlaengen zeigen:

$$\frac{z(\lambda_1)}{z(\lambda_2)} = \frac{\lambda_1}{\lambda_2} \tag{20}$$

Experimenteller Test

Wasserstofflinien-Test:

- Lyman- α (121,6 nm) vs. H α (656,3 nm)
- Vorhergesagtes Verhaeltnis: $\frac{z_{\rm Ly\alpha}}{z_{\rm H\alpha}} = \frac{121.6}{656.3} = 0,185$
- Standard-Kosmologie sagt vorher: 1,000

4.2 Frequenz-abhaengige Effekte

Fuer Radio- vs. optische Beobachtungen desselben Objekts:

$$\frac{z_{\text{Radio}}}{z_{\text{optisch}}} = \frac{\nu_{\text{Radio}}}{\nu_{\text{optisch}}} \tag{21}$$

Experimenteller Test

21cm vs. $H\alpha$ -Test:

- 21cm Wasserstofflinie: $\nu = 1420 \text{ MHz}$
- Optische H α -Linie: $\nu = 457 \text{ THz}$
- Vorhergesagtes Verhaeltnis: $\frac{z_{21\text{cm}}}{z_{\text{H}\alpha}} = \frac{1,42\times10^9}{4,57\times10^{14}} = 3,1\times10^{-6}$

5 Massen-basierte Energieskalen-Kalibrierung

5.1 Verwendung bekannter kosmischer Objektmassen

Anstatt Distanzen anzunehmen, verwenden wir gemessene Massen kosmischer Objekte zur Kalibrierung der Energieskala:

Tabelle 1: Gut bestimmte kosmische Massen

Objekttyp	Beispiel	Masse		
Stellare Massen (Praezise)				
Sonne	Sol	$1,989 \times 10^{30} \text{ kg}$		
Sirius A	α CMa A	$2,02M_{\odot}$		
Alpha Centauri A	α Cen A	$1,1M_{\odot}$		
Galaxienmassen (Aus Dynamik)				
Milchstrasse	Unsere Galaxie	$10^{12}M_{\odot}$		
Andromeda	M31	$1,5 \times 10^{12} M_{\odot}$		
Lokale Gruppe	Gesamt	$pprox 3 imes 10^{12} M_{\odot}$		

5.2 Masse-Energie-Beziehung im ξ -Feld

Die charakteristische Energieskala ist:

$$E_{\xi} = \xi^{-1} = \frac{3}{4 \times 10^{-4}} = 7500 \text{ (naturaliche Einheiten)}$$
 (22)

Umwandlung in konventionelle Einheiten:

$$E_{\xi} = 7500 \times (\hbar c) \approx 1,5 \text{ GeV}$$
 (23)

Diese Energieskala ist vergleichbar mit Kernbindungsenergien und deutet darauf hin, dass das ξ -Feld an fundamentale Massenskalen in kosmischen Strukturen koppelt.

6 Experimentelle Tests mittels Spektroskopie

6.1 Multi-Wellenlaengen-Beobachtungen

Experimenteller Test

Simultane Multi-Band-Spektroskopie:

- 1. Beobachte Quasar/Galaxie simultan in UV, optisch, IR
- 2. Messe Rotverschiebung von verschiedenen Spektrallinien
- 3. Teste ob $z \propto \lambda$ -Beziehung gilt
- 4. Vergleiche mit Standard-Kosmologie-Vorhersage (z = konstant)

6.2 Radio- vs. optische Rotverschiebung

Experimenteller Test

21cm vs. optische Linien-Vergleich:

- Radio-Durchmusterungen: ALFALFA, HIPASS (21cm-Rotverschiebungen)
- Optische Durchmusterungen: SDSS, 2dF (H α -, H β -Rotverschiebungen)
- Methode: Vergleiche Objekte, die in beiden Surveys beobachtet wurden
- Vorhersage: $z_{21\text{cm}} \neq z_{\text{optisch}}$ (T0) vs. $z_{21\text{cm}} = z_{\text{optisch}}$ (Standard)

6.3 Erwartete Signalstaerke

Fuer typische kosmische Objekte mit $\xi = \frac{4}{3} \times 10^{-4}$:

$$\frac{\Delta z}{z} = \frac{\lambda_1 - \lambda_2}{\lambda_{\text{mittel}}} \times \xi \approx 10^{-4} \text{ bis } 10^{-5}$$
 (24)

Zentrale Erkenntnis

Dieser Wellenlaengen-Effekt liegt an der Grenze aktueller spektroskopischer Praezision, ist aber potenziell nachweisbar mit Instrumenten der naechsten Generation wie:

- Extremely Large Telescope (ELT)
- James Webb Space Telescope (JWST)
- Square Kilometre Array (SKA)

7 Vorteile gegenueber Standard-Kosmologie

7.1 Modell-unabhaengiger Ansatz

Tabelle 2: T0-Theorie vs. Standard-Kosmologie

Aspekt	Standard-Kosmologie	T0-Theorie
Distanz-Erfordernis	$z \to d$ (via Hubble)	Direkter spektroskopischer Test
Wellenlaengen-Abhaengigkeit	$\frac{dz}{d\lambda} = 0$	$rac{dz}{d\lambda} \propto \xi$
Freie Parameter	$\Omega_m, \widetilde{\Omega}_\Lambda, H_0, \dots$	Einzelner Parameter ξ
Exotische Komponenten	Dunkle Energie (69%)	Nur ξ -Feld
Testbarkeit	Indirekt (via Distanzleiter)	Direkt (Spektroskopie)

7.2 Testbare Vorhersagen

T0-Vorhersage

Unterscheidender Test:

Standard:
$$z_{\text{blau}} = z_{\text{rot}}$$
 (25)

T0:
$$\frac{z_{\text{blau}}}{z_{\text{rot}}} = \frac{\lambda_{\text{blau}}}{\lambda_{\text{rot}}} < 1$$
 (26)

8 Beobachtungsstrategie

8.1 Zielobjekt-Auswahl

Fokus auf Objekte mit:

- 1. Starken Spektrallinien ueber breiten Wellenlaengenbereich
- 2. Gut bestimmten Massen aus stellarer/galaktischer Dynamik
- 3. **Hohem Signal-zu-Rausch-Verhaeltnis** verfuegbare Spektren **Ideale Ziele:**
- Helle Quasare mit breiter spektraler Abdeckung
- Nahe Galaxien mit mehreren Emissionslinien
- Doppelsternsysteme mit praezisen Massenbestimmungen

8.2 Datenanalyse-Protokoll

Experimenteller Test

Analyse-Schritte:

- 1. Messe Rotverschiebungen von mehreren Spektrallinien
- 2. Trage z vs. λ fuer jedes Objekt auf
- 3. Fitte lineare Beziehung: $z = \alpha \cdot \lambda + \beta$
- 4. Vergleiche Steigung α mit T0-Vorhersage: $\alpha = \frac{\xi x}{E_{\varepsilon}}$
- 5. Teste gegen Standard-Kosmologie: $\alpha = 0$

8.3 Erforderliche Praezision

Zum Nachweis von T0-Effekten mit $\xi = \frac{4}{3} \times 10^{-4}$:

- Mindest-Praezision erforderlich: $\frac{\Delta z}{z} \approx 10^{-5}$
- Aktuell beste Praezision: $\frac{\Delta z}{z} \approx 10^{-4}$ (knapp ausreichend)
- Naechste Generation Instrumente: $\frac{\Delta z}{z} \approx 10^{-6}$ (klar nachweisbar)

9 Schlussfolgerung

9.1 Zusammenfassung des T0-Rotverschiebungs-Mechanismus

Die T0-Theorie bietet einen **distanz-unabhaengigen** Mechanismus fuer kosmische Rotverschiebung durch ξ -Feld-Energieverlust. Die Schluesseleigenschaften sind:

- 1. Universelle Konstante: $\xi = \frac{4}{3} \times 10^{-4}$ bestimmt alle Rotverschiebungseffekte
- 2. Wellenlaengen-Abhaengigkeit: $z \propto \lambda$ (fundamentale Vorhersage)
- 3. Massen-basierte Kalibrierung: Verwendet gemessene kosmische Objektmassen
- 4. Modell-unabhaengige Tests: Direkte spektroskopische Verifikation

9.2 Experimentelle Zugaenglichkeit

Die Theorie liefert konkrete, testbare Vorhersagen:

T0-Vorhersage

Zentrale experimentelle Signatur:

$$\left| \frac{z_{\text{blau}}}{z_{\text{rot}}} = \frac{\lambda_{\text{blau}}}{\lambda_{\text{rot}}} \neq 1 \right| \tag{27}$$

Diese Vorhersage kann getestet werden mit:

- Multi-Wellenlaengen-Spektroskopie derselben Objekte
- Radio- vs. optische Rotverschiebungs-Vergleiche
- Hochpraezisions-Messungen von Spektrallinien-Verhaeltnissen

9.3 Revolutionaere Implikationen

Zentrale Erkenntnis

Falls bestaetigt, wuerde wellenlaengen-abhaengige Rotverschiebung unser Verstaendnis revolutionieren von:

- Kosmischer Rotverschiebungs-Ursprung: Energieverlust vs. Raumexpansion
- Distanzmessungen: Modell-unabhaengige spektroskopische Distanzen
- **Dunkler Energie**: Nicht mehr erforderlich zur Erklaerung kosmischer Beschleunigung
- Fundamentaler Physik: Neue Feldwechselwirkungen auf kosmischen Skalen

Der T0-Rotverschiebungs-Mechanismus bietet eine **testbare Alternative** zur Standard-Kosmologie, die durch spektroskopische Beobachtungen verifiziert werden kann, wodurch sie experimentell zugaenglich wird mit aktuellen oder zukuenftigen astronomischen Instrumenten.

Literatur

- [1] Pascher, J. (2024). To-Theorie: Mathematische Aequivalenz-Formulierung. HTL Leonding, Abteilung Nachrichtentechnik.
- [2] Planck Collaboration (2020). Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6.
- [3] SDSS Collaboration (2020). The Sloan Digital Sky Survey: Technical Summary. Astron. J. 120, 1579.
- [4] ALFALFA Team (2018). The Arecibo Legacy Fast ALFA Survey. Astrophys. J. Suppl. 232, 21.