1. The Basics

a) Given vectors **A** and **B** as shown, draw the following:

- \circ A + B
- \circ A B
- o −½ A
- b) Write two equations for calculating the dot product $\mathbf{A} \cdot \mathbf{B}$, where $\mathbf{A} = [A_x A_y A_z]$ and $\mathbf{B} = [B_x B_y B_z]$.
 - \circ $\mathbf{A} \cdot \mathbf{B} =$
 - \circ $\mathbf{A} \cdot \mathbf{B} =$
- c) Draw $\mathbf{A} \cdot \mathbf{U}$ on the diagram, given that $|\mathbf{U}| = 1$.

d) For each pair of vectors **A** and **B**, or **U** and **V**, write an inequality indicating the sign of the dot product... or if possible, write the exact value of the dot product. Note that $|\mathbf{U}| = |\mathbf{V}| = 1$, while $|\mathbf{A}| \neq 1$ and $|\mathbf{B}| \neq 1$.

2. Can you see me?

Two characters are standing on a roughly horizontal planar surface. The position of character A is \mathbf{P}_A and its forward-facing unit vector is \mathbf{F}_A . Likewise the position and forward vector of character B are \mathbf{P}_B and \mathbf{F}_B respectively.

a) Use the sign of a dot product to determine whether character B is in front of or behind character A.

- b) Assume both characters have a vision cone extending θ_{max} radians to either side of their **F** vectors. Write an expression (using a dot product) indicating whether or not character A can "see" character B.
 - BONUS: How can we avoid finding the inverse cosine, $\cos^{-1}(\theta_{max})$?

3. Wind Tunnel

The designers want to implement a shaft of wind that will affect any character or object that enters its cylindrical boundary.

a) You are given an arbitrary point \mathbf{Q} in 3D space, and an infinite line represented by the locus of points $\mathbf{P}(t)$ defined as follows:

$$\mathbf{P}(t) = \mathbf{P}_0 + t\mathbf{D},$$

where P_0 is a fixed point on the line, and D is a unit vector defining the line's direction. Find the perpendicular distance d from Q to the line.

b) The cylindrical wind tunnel can be defined by adding a radius *r* and length *L* to the infinite line from part (a). Assuming the position of our object or character is **Q**, write an expression that can be used to determine whether it will be affected by the wind or not.

