

FACULTY of SCIENCE and ENGINEERING Department of Computer Science and Information Systems

End-of-Semester Exam

Academic Year:2021/2022Semester: SpringModule Title:Data MiningModule Code: CS4168Exam Duration:2 HoursTotal Marks: 50Lecturer:Dr. N. S. Nikolov(Equal to 50% of the final grade)

Instructions to Candidates:

This exam consists of 2 sections.

Section A:

- Section A consists of 30 multiple-choice questions, each having exactly one correct answer.
- You **must use the bubble sheets** to answer the questions in this section.
- Answer ALL questions. Each question will be marked as follows:
 - Correctly answered: 1 mark
 - Incorrectly answered: -0.25 marks
 - Unanswered: 0 marks

Section B:

- Choose to answer either Q31 or Q32.
- Write your answers in the **answer booklet**.
- If both questions are answered, the one with higher marks will be considered.

- **Q1.** According to Witten and Frank, data mining is the extraction of implicit, _____ and potentially useful information from data.
- **Q2.** The input of a machine learning algorithm typically consists of a large number of examples which are:
- **Q3.** When treating missing values in a dataset, it is recommended to drop a column if more than _____ of the values in it are missing.
- **Q4.** In scikit-learn, _____ results in a distribution with a standard deviation equal to 1 and a mean approximately 0.
- **Q5.** Not removing outliers from a dataset can increase the probability for training a/an _____ predictive model.
- **Q6.** The confidence in the accuracy of a predictive model is higher when the training, validation and test datasets are:
- **Q7.** Cross-validation and repeated holdout are methods used in the evaluation of:
- **Q8.** In k-fold cross validation, the ______ in the training dataset are split into k subsets of equal size.
- **Q9.** In classification, the harmonic mean of the precision and recall is known as:
- **Q10.** The prime use of a validation dataset is for:
- **Q11.** Assume a classification model does not perform well on a well-designed test dataset. Which one of the following actions is inappropriate?
- **Q12.** A regression model can be evaluated by calculating the ______ on a test dataset.
- **Q13.** The plot below contains the ROC curves of four alternative classification models for the same classification problem. Which one of them is the best model?
- **Q14.** You have trained four classifiers that determine if a certain mushroom is edible (positive class) or poisonous (negative class). Which one of the classifiers, represented their confusion matrices, would use to select the mushrooms for your risotto?

Q15. Scikit-learn pipelines help avoid in cross-validation, by ensuring that all steps in the pipeline are applied separately to the training and test datasets.							
Q16. All steps in a scikit-learn pipeline, except the last one, must be							
Q17. If the examples in a training dataset are not linearly separable, it may be possible to make them linearly separable by:							
Q18. The algorithm trains a single-layer neural network.							
Q19. ID3 employs to build a decision tree.							
Q20. One of the parameters of kNN is the							
Q21. Logistic regression and Perceptron work best if the examples are separable.							
Q22. The parameter k in the clustering algorithm k-means is the:							
Q23. The optimal value of the parameter k in the k-means clustering algorithm can be determined with the method.							
Q24. methods learn which features best contribute to the accuracy of the model while the model is being trained.							
Q25. feature selection methods apply a statistical measure to assign a scoring to each feature.							
Q26. methods consider the selection of a set of features as a search problem, where different combinations of features are prepared, evaluated and compared to other combinations.							
Q27. The Hughes effect refers to the observation that with a fixed number of training examples the accuracy of a classifier first:							
Q28. In collaborative filtering, the decomposition of the user-item interaction into the product of two lower dimensionality is known as							
Q29. Content-based filtering and collaborative filtering are approaches.							
Q30. In text mining, the tf-idf weighting scheme is used for reducing the weight of words occurring:							

END OF SECTION A

Q31. (20 marks) Consider the training and test datasets in Tables 1 and 2, respectively.

Education	Income (in thousands)	Property	Loan_Status
Primary	41	Rural	Yes
Primary	20	Rural	Yes
Primary	25	Urban	No
Secondary	50	Rural	No
Secondary	31	Urban	Yes
Secondary	150	Urban	Yes
Tertiary	45	Rural	Yes
Tertiary	30	Urban	Yes

Table 2. Test dataset.

14670 21 1001 04040000							
Education	Income (in thousands)	Property	Loan_Status				
Secondary	58	Urban	Yes				
Secondary	35	Rural	Yes				
Primary	39	Rural	Yes				
Tertiary	80	Urban	Yes				
Tertiary	20	Rural	Yes				
Primary	60	Urban	No				

- a. **(5 marks)** Draw a boxplot for all values in column **Income** in both Table 1 and Table 2, i.e., the array of values [20, 20, 25, 30, 31, 35, 39, 41, 45, 50, 58, 60, 80, 150]. Calculate *Q1*, *Q2*, *Q3* and IQR. Are there any outliers in the array and why?
- b. (12 marks) Replace the values in column Income by two categories:
 High (for Income >= 40) and Normal (for Income < 40). Then apply the ID3 algorithm to the training dataset to build a decision tree for predicting the value of Loan_Status.
- c. (3 marks) Calculate the accuracy of the decision tree you have built on the **test dataset** in Table 2. Also calculate the precision and the recall for class **Yes** on the **test dataset**.

Hints:

Boxplot: The box in a boxplot extends from Q1 to Q3, known as interquartile range (IQR). Any values smaller than Q1 - 1.5 * (Q3-Q1) or larger than Q3 + 1.5 * (Q3-Q1) are considered outliers and are drawn as separate dots. The two whiskers extend from Q1 and Q3 to the smallest and the largest values within 1.5 * (Q3-Q1), respectively.

Info function: Let
$$(a + b + c) = p$$
 and $(d + e) = q$. Then: info $[a, b, c] = -\left(\frac{a}{p}\right) \times \log_2\left(\frac{a}{p}\right) - \left(\frac{b}{p}\right) \times \log_2\left(\frac{b}{p}\right) - \left(\frac{c}{p}\right) \times \log_2\left(\frac{c}{p}\right)$ info $[a, b, c], [d, e]$ $= \left(\frac{p}{p+q}\right)$ info $[a, b, c] + \left(\frac{q}{p+q}\right)$ info $[d, e]$

 $accuracy = (TP + TN)/(TP + FP + TN + FN), \ precision = TP/(TP + FP), \ recall = TP/(TP + FN)$

Q32. (20 marks) Consider the user-movie rating matrix in Table 3, as well as the user-user similarity matrix in Table 4 and the movie-movie similarity matrix in Table 5.

Table 3. User-movie rating matrix.

	Movie1	Movie2	Movie3	Movie4	Movie5	Movie6
User1	4		3	5		
User2			3		5	
User3	5	4		4		
User4		2			5	4
User5			4		4	
User6	4	5		4		3

Table 4. User-user similarity matrix.

	User1	User2	User3	User4	User5	User6
User1	1.00	0.22	0.75	0.00	0.30	0.63
User2	0.22	1.00	0.00	0.64	0.97	0.00
User3	0.75	0.00	1.00	0.16	0.00	0.91
User4	0.00	0.64	0.16	1.00	0.53	0.40
User5	0.30	0.97	0.00	0.53	1.00	0.00
User6	0.63	0.00	0.91	0.40	0.00	1.00

Table 5. Movie-movie similarity matrix.

	Movie1	Movie2	Movie3	Movie4	Movie5	Movie6
Movie1	1.00	0.79	0.27	0.98	0.00	0.32
Movie2	0.79	1.00	0.00	0.71	0.18	0.69
Movie3	0.27	0.00	1.00	0.34	0.65	0.00
Movie4	0.98	0.71	0.34	1.00	0.00	0.32
Movie5	0.00	0.18	0.65	0.00	1.00	0.49
Movie6	0.32	0.69	0.00	0.32	0.49	1.00

In both user-based and item-based neighborhood collaborative filtering below, consider **only the top 2** most similar users to **User1** and the **only top 2** most similar movies to the movies previously rated by **User1**, respectively.

- a. (10 marks) Apply the user-based neighbourhood collaborative filtering method to calculate movie recommendation scores for User1. Which one of the movies not rated by User1 yet would you recommend to User1 first?
- b. (10 marks) Apply the item-based neighbourhood collaborative filtering method to calculate movie recommendation scores for **User1**. Which one of the movies not rated by **User1** yet would you recommend to **User1** first?

END OF EXAM