PRÁCTICO 6 LENGUAJES FORMALES: Máquinas de Turing

Mauricio Velasco

- a) Diseñe y escriba una máquina de Turing que escanea hacia la derecha hasta que encuentra dos a's consecutivas y luego se detiene.
 El alfabeto de la máquina debe ser Σ = {a, b, ∪, Δ} y debe dar la descripción de la máquina en completo detalle (como tupla).
 - b) Escriba las configuraciones que ocurren al ejecutar su máquina con input $\cup bbabaa$.
- 2. Construya una máquina de Turing (usando nuestra notación abreviada) que calcule la funcion $f: \{a,b\}^* \to \{a,b\}^*$ dada por $f(w) = ww^R$ donde w^R significa la palabra reversa a w. Muestre la ejecución de la misma en una cadena representativa.
- 3. Describa una máquina de Turing que semidecida el lenguaje a^*ba^*b .
- 4. Utilice máquinas de Turing no deterministas para demostrar que:
 - a) La clase de lenguajes recursivos esta cerrada bajo unión, concatenación y estrella de Kleene.
 - b) La clase de lenguajes recursivamente enumerables esta cerrada bajo unión, concatenación y estrella de Kleene.
- 5. (Autómatas con dos stacks)
 - a) Defina formalmente un automata que sea un pushdown automata con dos stacks, especificando definición, configuraciones y cómputo. Defina formalmente lo que significa que esta máquina acepte un lenguaje.
 - b) Demuestre que un lenguaje es recursivo si y solo si es aceptado por un pushdown automata con dos stacks.
- 6. Encuentre gramáticas que generen los siguientes lenguajes:

- $a) \ L = \{ww : w \in \{a,b\}^*\}$
- b) $L = \{a^{2^n} : n \in \mathbb{N}\}$ c) $L = \{a^{n^2} : n \in \mathbb{N}\}$