OPERATING SUMMARY

TIMMINS

LIBRARY COPY JUN 27 1973

MINISTRY OF THE

MINISTRY GE THE ENVIRONMENT

Copyright Provisions and Restrictions on Copying:

This Ontario Ministry of the Environment work is protected by Crown copyright (unless otherwise indicated), which is held by the Queen's Printer for Ontario. It may be reproduced for non-commercial purposes if credit is given and Crown copyright is acknowledged.

It may not be reproduced, in all or in part, for any commercial purpose except under a licence from the Queen's Printer for Ontario.

For information on reproducing Government of Ontario works, please contact ServiceOntario Publications at copyright@ontario.ca

Ministry of the Environment

135 St. Clair Avenue West Toronto 195, Ontario

We are pleased to present you with the 1972 operating summary for the water pollution control plant serving your community.

This summary contains data on the performance of the plant as well as relevant financial information. Of particular interest is the review of the year's activities in which significant items of these data are discussed in some detail by the operations engineer and his staff who, by their day-to-day involvement with the operation, are thoroughly familiar with the plant.

We appreciate your continuing interest in protecting the environment through the efficient operation of this wastewater treatment facility.

D. S. Caverly,

Assistant Deputy Minister.

D.A. McTavish, P. Eng.,

Director,

Project Operations Branch.

MINISTRY OF THE ENVIRONMENT

MINISTER Honourable James A.C. Auld

DEPUTY MINISTER E. Biggs

ASSISTANT DEPUTY MINISTER D.S. Caverly

EXECUTIVE DIRECTOR K. H. Sharpe

PROJECT OPERATIONS BRANCH

DIRECTOR D.A. McTavish

ASSISTANT DIRECTOR C.W. Perry

REGIONAL SUPERVISOR P.J. Osmond

OPERATIONS ENGINEER
J. Wesno

135 St. Clair Avenue West Toronto 195

TIMMINS

WATER POLLUTION CONTROL PLANT

operated for

THE TOWN OF TIMMINS

by the

MINISTRY OF THE ENVIRONMENT

1972 ANNUAL OPERATING SUMMARY

CONTENTS

Title Page	*	*	*	*	*	*	8			*	1
Flow Diagram	*	100	*	10	*	*				¥	4
Design Data		*.	*		*					×	5
'72 Review		×.	×	*	+	*		*			6
Project Costs		*					*	*	16.		9
Process Data											12

DESIGN DATA

PROJECT NO.	2-0071-60	RAW SEWAGE PUMPS	Primary Sedimentation
TREATMENT	Primary	Screening	Type: Jeffrey
DESIGN FLOW	3.0 mgd	Type: Manually Cleaned Size: 2" opening	Size: Two 125' x 20' x 12' (avg) (374, 000 gal) Retention: 3.0 hr
DESIGN POPULATION	30,000	Pumps Pumps	Loading: Surface, 600 gal/ft ² /day Weir, 9900 gal/ft/day
BOD - Raw Sewage - Removal	180 mg/1 35-40%	Type: Worthington Size: One 3650 gpm @ 26' tdh	CHLORINATION
SS - Raw Sewage - Removal	200 mg/1 60-65%	One 3120 gpm @ 26' tdh One 3120 gpm @ 26' tdh (diesel)	Type: F & P Size: One 200 lb/day
		PRIMARY TREATMENT	Chlorine Contact Chamber
		Comminution	Size: Two $47\frac{1}{2}$ ' x 7' x 9'7'' (37, 400 gal)
		Type: Chicago Pump Barminutor Size: One Model C (36')	Retention: 19 min
		Grit Removal	OUTFALL
		Type: Aerated	To Mattagami River
*		Size: One 13' x 18 $3/4$ ' x $12\frac{1}{2}$ ' (19, 000 gal)	SLUDGE HANDLING
		Retention: 9,1 min Air Supply: Two Sutorbilt	Digestion System - single-stage, concrete Type: PFT (gas mixed) Size: One 65' dia x 24' swd (80,000 cu ft or 0.50 mil gal)
			Loading: 1.35 lb/cu ft/mo

72 Review

GENERAL

The Timmins plant is a 4.0 million gallon per day primary treatment plant, consisting of grit removal, coarse screening, sedimentation and chlorination facilities. The plant is staffed by a chief operator and two operators.

During the year terms of reference to expand the plant were prepared outlining various alternatives and stagings. A consulting engineer is to be engaged in 1973 to prepare a design report.

Improved sludge digestion during the past year due to good gas mixing and operation resulted in approximately 33 percent less sludge production from the various year and reduced sludge haulage costs.

Handrails around the clarifiers were installed and a combustible gas sniffer was acquired for plant safety. A tractor complete with rotary mower and snow thrower was purchased during the year.

Major repairs were carried out on both clarifiers, i.e., new shoes on flights, etc.

During the year several breakdowns of the furnace occurred which were due to the incompatibility of the digester gas operation with fuel oil. A conversion from fuel oil to natural gas as the main plant fuel is being seriously considered for 1973 to overcome the breakdown problems.

EXPENDITURES

The operating cost for the year was \$81,849.41, an increase of 21.7 percent over 1971. A large portion of this increase was due to payroll and fuel. Other areas of increased costs were chemicals and equipment. Sludge haulage costs decreased considerably during the year.

PLANT FLOWS AND CHLORINATION

The average daily flow for the year was 3.9 mg which was 97.5 percent of the nominal design capacity of 4.0 mgd. The average daily flow increased by 0.30 million gallons over 1971.

Metering problems were encountered for two months, thus the flow figures for January and May are estimates only.

The daily design flow of 4.0 mgd was exceeded 36 percent of the time. The wet weather design capacity of 9.0 mgd was exceeded once during the month of June (9.1 mgd).

A total of 62,000 pounds of chlorine at an average dosage of 4.4 mg/l was required to provide a residual of 0.5 mg/l in the effluent.

PLANT EFFICIENCY

The average raw sewage BOD and suspended solids concentrations were 119 mg/l and 172 mg/l respectively. The raw sewage BOD was 26 percent less than 1971 and the suspended solids, 6 percent less.

The average BOD and suspended solids reductions were 38 percent and 56 percent respectively. This still represents satisfactory treatment for a primary plant although the suspended solids removal was slightly less than the design criteria fo 60 - 65 percent.

A total of 403.5 tons of BOD and 912 tons of suspended solids was removed during the year. The final effluent concentrations were 74 mg/l BOD and 75 mg/l suspended solids and were respectively 12 percent and 25 percent greater than the previous year.

A total of 11,635 cubic feet of grit was removed from the raw sewage. This represents an average of 8.1 cubic feet of grit per million gallons of sewage and is considered abnormally high.

Twenty-four hour composite sampling on a bi-weekly basis was initiated in 1972 and is a definite factor in the differing raw sewage and effluent BOD and suspended solids strengths from the previous years.

SLUDGE DIGESTION AND DISPOSAL

A total of 11,220,000 gallons of raw sludge was pumped to the digester. The raw sludge averaged 3.5 percent total solids, 71 percent of which was volatile matter. The digested sludge averaged 4.8 percent total solids of which 57 percent was volatile.

A total of 2.1 mg of digested sludge was hauled from the digester by tank truck. This is down from the 1971 figure of 3 million gallons.

CONCLUSIONS

Average daily flows increased by 88 percent over the previous year to 3.9 mg.

It is anticipated that a consulting engineer will be engaged in 1973 to report on expansion of the existing works.

Better sludge digestion during the year resulted in a 33 percent reduction in sludge haulage and is attributed to the gas mixing equipment installed in 1971.

The high grit load experienced at the plant is indicative of either a combined sewer system in which abnormal amounts of storm water are collected and directed to the treatment plant or a sewer system in poor repair. In our opinion the first possibility is more likely. If storm water was not included in the plant flows it is likely that plant expansion could be forestalled by a few years.

PROJECT COSTS NET CAPITAL COST \$785, 370.12 DEDUCT - Portion financed by CMHC (521, 108.36)Long Term Debt to MOE \$264, 261. 76 Debt Retirement Balance at Credit (Sinking Fund) December 31, 1972 \$ 92, 267.42 Net Operating \$ 81,849.41 Debt Retirement 6,566.00 Reserve 3,614.17 Interest Charged 14, 819.52 TOTAL \$106,849.10 RESERVE ACCOUNT Balance @ January 1, 1972 \$ 25,025.33 Deposited by Municipality 3,614.17 Interest Earned _1,654.91

Less Expenditures

Balance @ December 31, 1972

\$ 30, 294.41

\$ 29, 337.59

956.82

OPERATING COSTS **1972 COSTS** PAYROLL 42 % FUEL 11 % POWER CHEMICALS 9 % F GENERAL SUPPLIES TOTAL ANNUAL COST 5 % **●** EQUIPMENT 3 % NET OPERATING REPAIRS & MAINTENANCE 77 % SUNDRY DEBT RETIREMENT 13 % 6 % · WATER NIL % RESERVE 3 % TRAVEL 1 % INTEREST 14 % YEARLY OPERATING COSTS SEWAGE TREATED TOTAL TREATMENT COSTS YEAR in million gallons OPERATING COSTS \$ per million gal & per lb BOD 1020.0 54, 186.55 53.00 6 cents 1968 59, 394, 86 1969 1049.9 56.57 3 cents 1182.5 63, 815, 38 53.97 5 cents 1970 1300. * 67, 240.79 5 cents 52.00 1971 81, 849, 41 1972 1441.0 56,80 10 cents

MONTHLY OPERATING COSTS

МОИТН	TOTAL EXPENDITURE	REGULAR PAYROLL	CASUAL PAYROLL	FUEL	POWER	CHEMICALS	GENERAL SUPPLIES	EQUIPMENT	REPAIRS and	SUNDRY*	WATER	TRAVEL
JAN	4336.77	2182.87		187.20	470.38	1278.00			158.42	59.90		
FEB	6529.02	2123.23		986.28	492.78	1358,00	348.46	13.25	99.13	1089.97		17.92
MAR	4738.80	1985. 48		310.75	411.18		215.66	33.80	660.93	1103,24		17.76
APR	7262.35	2358.99		1456.31	393.18	1358.00	425.64	56.92	135.67	1051.08		26.56
MAY	6678,02	2793.08	65.05	408.72	434.78		96.01	1456.66	450.55	932.53		40.64
JUNE	6952.79	3253,00	157.46	729.88	502.38		256.94	31.93	786.97	1113.05		121.18
JULY	4615.55	55.40		251.68	438.78	824.60	402.88	800.00	980.65	820.12		41.44
AUG	4530.49	2214.95	706.89	303.47			271.56		969.36	(2,06))	12.32
SEPT	8753.16	2196.33	635.58	124.80	889.91	1254.60	399,00		1605.06	1636,20		11.68
ост	4721.58	2601.54	582,40	121.10	416.68		44.36		272.80	682.70		
NOV	2392.89	115.41		673.62			353.39		108.67	1141.80		
DEC	20337.99	8330, 96	1880.12	3270.06	902.56	1509.20	1658.08	392.41	1234.26	829.07		331.27
TOTAL	81849.41	30211.24	4081.50	8823.87	5352.61	7582.40	4471.98	2784.97	7462.47	10457.60		620.77

Brackets indicate credit.

 $[\]star$ Sundry includes sludge haulage costs of \$9,004.94

PROCESS DATA FLOWS

DESIGN CAPACITY _____

PLANT PERFORMANCE

	FLOWS			FLOWS BIOCHEMICAL OXYGEN DEMAND				SU	SPENDED	PHOSPHORUS			
MONTH	TOTAL FLOW	AVERAGE	MAXIMUM	INFLUENT	EFFLUENT	REDU	CTION	INFLUENT	EFFLUENT	RED	UCTION	INFLUENT	EFFLUENT
MONTH	million gallons	DAY mil. gal	DAY mgd	mg/l	mg/l	%	10 ³ pounds	mg/l	mg/l	%	IO ³ .	mg/L P	mg/LP
JAN	75. *	2.4	4.4	155	105	32	38	155	43	72	84	9.3	5.5
FEB	112	3.9	6.7	177	101	43	85	170	83	51	97	9.3	5.6
MAR	97	3.1	4.8	220	113	49	103	205	53	74	147	13.0	5.3
APR	166	5.5	8.3	150	90 -	40	99	390	50	87	564	7.7	4.2
MAY	220 *	7, 1	8.4	108	63	42	99	143	53	63	200	7.2	4.1
JUNE	181	6.0	9,1	85	75	12	18	178	83	53	172	5.4	5.3
JULY	94	3.0	5.4	87	57	34	28	151	66	56	80	6.0	4.6
AUG	108	3.5	5.0	131	63	52	74	175	73	58	111	7.3	6.2
SEPT	113	3, 8	4.9	155	73	53	93	220	70	68	170	11.0	6.0
ОСТ	107	3, 4	4.0	130	70	46	64	162	115	29	50	12.0	5.5
NOV	88	2.9	4,0	105	39	63	58	152	61	60	80	7.8	4.0
DEC	80	2.6	5.1	160	100	38	48	171	83	51	70	9.0	6,3
TOTAL	1441 *	-	-	-	-	-	807	-	_	=	1825	-	-
AVG.	_	3.9	махімим 9,1	119	74	38	67	172	75	56	152	7.1	5.5
No. of Samples	-	-	-	56	36	-	CHINA	135	115	-	-	54	32

^{* -} Estimated

BIOCHEMICAL OXYGEN DEMAND

PLANT	INFLUENT	
PLANT	EFFLUENT	

SUSPENDED SOLIDS

PHOSPHORUS

PLANT INFLUENT -----

DIGESTION SOURCE SOURCE

DIGESTED SLUDGE ___

QUANTITY OF SLUDGE - 10 6 gallons

RAW SLUDGE TO DIGESTER DIGESTED SLUDGE REMOVED

TREATMENT DATA

	GRIT	CHLORINA	CHLORINATION SLUDGE DIGESTION and DISPOSAL								
MONTH	QUANTITY REMOVED cubic feet	CHLORINE USED	AVERAGE DOSAGE mg/l	QUANTITY O 5 ga:lons	V SLUDGE TOTAL SOLIDS %	VOLATILE SOLIDS %		TED SLUDO TOTAL SOLIDS %		SUPERNATANT TOTAL SOLIDS %	SLUDGE HAULED
JAN	1560	5.2	6.9	9.0	1.9	84	2.4	3,8	64	. 8	1429
FEB	1440	5,2	4.7	8.4	1.6	83	2.6	3.4	66	.1	1541
MAR	1380	4.8	5.0	8.9	1.8	85	2.4	2.1	68	.2	1429
APR	1140	5.1	3.1	8.6	2.6	77	2.1	3.9	59	.1	1260
MAY	930	4.5	2.6	6.9	3.3	56	2.6	7.7	49	.1	1506
JUNE	930	5.4	3.0	7.0	5.4	62	1.8	4.8	51	. 2	1051
JULY	660	5.8	6.2	8.4	5,4	66	2.1	6.8	52	. 2	1259
AUG	780	5.8	5.4	7.9	4.1	59	1.5	6.4	56	. 2	\$89
SEPT	750	5.0	4.4	8,2	4.8	76	. 4	5.4	61	. 2	236
ОСТ	810	5.8	5.4	14.3	4.0	69	1.2	5.2	55	,1	706
NOV	720	5.0	5.7	12.1	3,5	68	1.6	4.7	58	.1	956
DEC	535	4.4	5.5	12.5	3,2	70	.7	3,4	56	. 2	445
TOTAL	11635	62.0	-	112.2	-		21.4	-	-	-	12708
AVG.	8, 1 cubic feet/mil gat	5.2	4.4	9.4	3.5	71	1.8	4.8	57	. 2	1059

LABORATORY LIBRARY
MINISTRY OF THE ENVIRONMENT

LABORATORY LIBRARY *96936000119594*