

In the Claims

The status of claims in the case is as follows:

1 1. [Previously presented] A method for control and
2 management of communication traffic, comprising the steps
3 of:

4 expressing access rules as filters referencing system
5 kernel data;

6 for outbound processing, determining source application
7 indicia;

8 for inbound packet processing, executing a look-ahead
9 function to determine target application indicia; said
10 look-ahead function being executed within a protocol
11 stack including an IP layer, a transport layer, a
12 sockets layer, and an application layer and which, for
13 said inbound packet, said IP layer provides to said
14 transport layer said inbound packet, marked as non-
15 deliverable, and receives back from said transport
16 layer indicia, provided to said transport layer by said

17 sockets layer, identifying the application layer
18 application to which said packet would have been
19 delivered; and

20 responsive to said source or target application
21 indicia, executing filter processing; said filter
22 processing including constructing and evaluating
23 logical expressions of arbitrary length, and
24 selectively using a set of logical operators,
25 alternative filter selector fields, and value set.

1 2. [Currently amended] The method of claim 1, wherein
2 said protocol stack is a TCP/IP protocol stack, and further
3 comprising the steps of executing said determining and
4 executing steps within a kernel filtering function upon
5 encountering a filter selector field referencing kernel data
6 not included in said packet.

1 3. [Currently amended] The method of claim 1, wherein
2 said protocol stack is a TCP/IP protocol stack, and said
3 filter processing including the steps of:

4 determining a task or thread identifier;

5 based on said task or thread identifier, determining a
6 process or job identifier; and

7 based on said process or job identifier, determining
8 job or process attributes for filter processing.

1 4. [Currently amended] The method of claim 1, wherein
2 said protocol stack is a TCP/IP protocol stack, and said
3 filter processing including the steps of:

4 determining a user identifier; and

5 based on said user identifier, determining user
6 attributes for filter processing.

1 5. [Original] The method of claim 3, further comprising
2 the step of determining from said task identifier a work
3 control block containing said process or job identifier.

1 6. [Canceled]

2 7. [Canceled]

1 8. [Currently amended] The method of claim 1, wherein
2 said protocol stack is a TCP/IP protocol stack, and further
3 comprising the steps of:

4 delivering to said filters infrastructure access rules
5 for defining security context.

1 9. [Original] The method of claim 8, said infrastructure
2 including logging, auditing, and filter rule load controls.

1 10. [Previously presented] A method for control and
2 management of aspects of communication traffic within
3 filtering, comprising the steps of:

4 receiving IP packet data into a TCP/IP protocol stack
5 executing within a system kernel;

6 for an inbound IP packet, executing a look-ahead
7 function within a protocol stack including an IP layer,
8 a transport layer, a sockets layer, and an application
9 layer and which, for said IP inbound packet, said IP
10 layer provides to said transport layer said inbound IP
11 packet, marked as non-deliverable, and receives back
12 from said transport layer indicia, provided to said

13 transport layer by said sockets layer, identifying the
14 application layer application to which said packet
15 would have been delivered; and

16 executing filtering code within said system kernel with
17 respect to non-IP packet data accessed within said
18 system kernel outside of said TCP/IP protocol stack;
19 said filtering code constructing and evaluating logical
20 expressions of arbitrary length, and selectively using
21 a set of logical operators, alternative filter selector
22 fields, and value set.

1 11. [Original] The method of claim 10, said non-IP packet
2 data including context data regarding said IP packet.

1 12. [Original] The method of claim 10, said non-IP packet
2 data including data specific to a task generating said non-
3 IP packet data.

1 13. [Original] The method of claim 10, said non-IP packet
2 data including data specific to a task that will receive
3 said IP packet.

1 14. [Original] The method of claim 11, said context data

2 including packet arrival interface indicia.

1 15. [Canceled]

2 16. [Canceled]

3 17. [Original]

4 18. [Previously presented] A method for centralizing
5 system-wide communication management and control within
6 filter rules, comprising the steps of:

7 providing filter statements syntax for accepting
8 parameters in the form of a selector, each selector
9 specifying selector field, operator, and a set of
10 values;

11 for an inbound packet, executing a look-ahead function
12 within a protocol stack including an IP layer, a
13 transport layer, a sockets layer, and an application
14 layer and which, for said inbound packet, said IP layer
15 provides to said transport layer said inbound packet,
16 marked as non-deliverable, and receives back from said
17 transport layer indicia, provided to said transport
18 layer by said sockets layer, identifying the
19 application layer application to which said packet

20 would have been delivered by said sockets layer;

21 said selector referencing data that does not exist in

22 IP packets;

23 processing said filter statements, including

24 constructing and evaluating logical expressions of

25 arbitrary length, and selectively using a set of

26 logical operators, alternative filter selector fields,

27 and value set.

1 19. [Currently amended] The method of claim 18, wherein

2 said protocol stack is a TCP/IP protocol stack, and said

3 parameters selectively including userid, user profile, user

4 class, user group, user group authority, user special

5 authority, job name, process name, job group, job class, job

6 priority, other job or process attributes, and date & time.

1 20. [Currently amended] The method of claim 18, wherein

2 said protocol stack is a TCP/IP protocol stack, and said

3 filters statements being provided within a user interface to

4 said system.

1 21. [Currently amended] The method of claim 18, wherein

2 said protocol stack is a TCP/IP protocol stack, and further
3 comprising the steps of:

4 establishing a tunnel between two IP address limiting
5 traffic to applications bound to ports at each end of
6 said tunnel;

7 said filtering code accessing filtering attributes
8 further limiting traffic selectively to job indicia;
9 and

10 operating said filtering code within a kernel filtering
11 function upon encountering a filter selector field
12 referencing kernel data not included in said traffic.

1 22. [Currently amended] A method for traversing a portion
2 only of a protocol stack to disallow selective IP packet
3 traffic, comprising the steps of:

4 receiving a packet in the kernel of the operating
5 system of a first node from an application, said kernel
6 including a filter processor; said filter processor for
7 constructing and evaluating logical expressions of
8 arbitrary length, said logical expressions selectively

9 including a set of logical operators, alternative
10 filter selector fields, and value set;

11 for inbound packet processing to a first node from a
12 second node, executing a look-ahead function in the
13 system kernel of said first node to determine a target
14 application; said system kernel including a TCP/IP
15 protocol stack including an IP layer, a transport
16 layer, a sockets layer, and an application layer and
17 which, for said inbound packet, said IP layer provides
18 to said transport layer said inbound packet, marked as
19 non-deliverable, and receives back from said transport
20 layer indicia identifying the application layer
21 application to which said packet would have been
22 delivered;

23 for both said inbound packet processing, and for
24 outbound packet processing from said first node to said
25 second node, executing within said kernel the steps of

26 processing said packet by determining a task ID;

27 responsive to said task ID, determining a
28 corresponding work control block;

29 determining a user ID, process or job identifier
30 from said work control block;

31 from the user ID, process or job identifier
32 selectively determining attributes for said user
33 process or job; and

34 passing said attributes to said filter processor
35 for managing and controlling communication
36 traffic.

1 23. [Previously presented] A method for expressing access
2 rules as filters, comprising the steps of:

3 providing a filter statements syntax for accepting
4 parameters in the form of a selector, each selector
5 specifying selector field, operator, and a set of
6 values; and

7 said selector referencing data that does not exist in
8 IP packets for controlling access to an application;

9 for an inbound IP packet, executing a look-ahead
10 function within a protocol stack including an IP layer,

11 a transport layer, a sockets layer, and an application
12 layer and which, for said IP inbound packet, said IP
13 layer provides to said transport layer said inbound IP
14 packet, marked as non-deliverable, and receives back
15 from said transport layer indicia, provided to said
16 transport layer by said sockets layer, identifying the
17 application layer application to which said packet
18 would have been delivered; and

19 processing said filter statements by constructing and
20 evaluating logical expressions of arbitrary length,
21 said logical expressions selectively including a set of
22 logical operators, alternative filter selector fields,
23 and value set referencing said application layer
24 application.

1 24. [Previously presented] A method for managing and
2 controlling communication traffic by centralizing access
3 rules in filters executing within and referencing data
4 available in system kernels, comprising the steps for
5 outbound packet processing from a first node to a second
6 node of:

7 receiving said packet in the kernel of the operating

8 system of said first node from an application or
9 process at said first node;

10 processing said packet by determining a task ID;

11 responsive to said task ID, determining a corresponding
12 work control block;

13 responsive to said work control block, determining a
14 process or job identifier;

15 responsive to said process or job identifier,
16 determining job or process attributes; and

17 executing said filters by constructing and evaluating
18 logical expressions of arbitrary length, said logical
19 expressions selectively including a set of logical
20 operators, alternative filter selector fields, and
21 value set.

1 25. [Previously presented] The method of claim 24, further
2 comprising the steps for inbound packet processing from said
3 second node to said first node of:

4 initially operating said kernel at said first node to
5 determine a target application for said packet at said
6 first node by executing a look-ahead function within a
7 protocol stack including an IP layer, a transport
8 layer, a sockets layer, and an application layer and
9 which, for said inbound packet, said IP layer provides
10 to said transport layer said inbound packet, marked as
11 non-deliverable, and receives back from said transport
12 layer indicia, provided to said transport layer by said
13 sockets layer, identifying the application layer
14 application to which said packet would have been
15 delivered;.

26. [Canceled]

1 27. [Canceled]

2 28. [Canceled]

1 29. [Currently amended] A method for managing and
2 controlling communication traffic by centralizing the access
3 rules, comprising the steps for outbound packet processing
4 from a first node to a second node of:

5 receiving said packet in the kernel of the operating
6 system of said first node from an application or

7 process at said first node, said kernel including a
8 filter processor for constructing and evaluating
9 logical expressions of arbitrary length, said logical
10 expressions selectively including a set of logical
11 operators, alternative filter selector fields, and
12 value set;

13 processing said packet within a TCP/IP stack;
14 by determining a task ID;
15 responsive to said task ID, determining a
16 corresponding work control block;
17 determining a user ID control block from said work
18 control block;
19 from the user ID control block determining
20 attributes for said user; and
21 passing said attributes to said filter processor
22 for managing and controlling communication
23 traffic.

1 30. [Currently amended] The method of claim 29, further
2 comprising the steps for inbound packet processing from said
3 second node to said first node of:

4 initially operating said kernel at said first node to
5 determine a target application for said packet at said
6 first node by executing a look-ahead function within a
7 protocol said TCP/IP protocol stack including an IP
8 layer, a transport layer, a sockets layer, and an
9 application layer and which, for said inbound packet,
10 said IP layer provides to said transport layer said
11 inbound packet, marked as non-deliverable, and receives
12 back from said transport layer indicia, provided to
13 said transport layer by said sockets layer, identifying
14 the application layer application to which said packet
15 would have been delivered.

1 31. [Canceled]
2 32. [Canceled]
3 33. [Canceled]

1 34. [Previously presented] A method for control and
2 management of communication traffic with respect to a system
3 node, comprising the steps of:

4 receiving at said system node an inbound packet; and

5 executing within a protocol stack of the system kernel

6 of said system node a filtering function identifying

7 for said inbound packet a filter referencing non-packet

8 data, and constructing and evaluating logical

9 expressions of arbitrary length, said logical

10 expressions selectively including a set of logical

11 operators, alternative filter selector fields, and

12 value set; and

13 responsive to said filter, executing a look-ahead

14 function for identifying a target application for said

15 inbound packet; said look-ahead function executed

16 within a protocol stack including an IP layer, a

17 transport layer, a sockets layer, and an application

18 layer and which, for said IP inbound packet, said IP

19 layer provides to said transport layer said inbound

20 packet, marked as non-deliverable, and receives back

21 from said transport layer indicia, provided to said

22 transport layer by said sockets layer, identifying the

23 application layer application to which said packet

24 would have been delivered;.

1 35. [Currently amended] The look-ahead function of the
2 method of claim 34 wherein said protocol stack is a TCP/IP
3 protocol stack, and further comprising the steps of:

4 passing to a transport layer function identified by an
5 IP header a packet marked non-deliverable for
6 determining which user-level process or job is to
7 receive said packet;

8 receiving from said transport layer an application
9 layer task identifier for said user-level process or
10 job; and thereafter

11 passing said packet marked by said task identifier to
12 said transport layer for delivery to said application
13 layer task.

1 36. [Currently amended] System for control and management
2 of communication traffic, comprising:

3 a system kernel including a filter function and stack
4 data;

5 said filter function including a filter selectively

6 referencing said stack data for expressing access
7 rules;

8 said filter function being responsive to receipt of an
9 outbound packet for determining a source application;

10 said filter function being responsive to receipt of an
11 inbound packet processing for executing a look-ahead
12 function within a TCP/IP protocol stack to determine a
13 target application; said protocol stack including an IP
14 layer, a transport layer, a sockets layer, and an
15 application layer and which, for said inbound packet,
16 said IP layer provides to said transport layer said
17 inbound packet, marked as non-deliverable, and receives
18 back from said transport layer indicia, provided to
19 said transport layer by said sockets layer, identifying
20 the application layer application to which said packet
21 would have been delivered; and

22 said filter function being responsive to said source or
23 target application for executing filter processing
24 including constructing and evaluating logical
25 expressions of arbitrary length, said logical
26 expressions selectively including a set of logical

27 operators, alternative filter selector fields, and
28 value set.

1 37. [Previously presented] A system for control and
2 management of aspects of communication traffic within
3 filtering, comprising:

4 a system kernel;

5 a protocol stack including an IP layer, a transport
6 layer, a sockets layer, and an application layer for
7 executing within said system kernel, responsive to an
8 inbound IP packet, a look-ahead function by which said
9 IP layer provides to said transport layer said inbound
10 IP packet, marked as non-deliverable, and receives back
11 from said transport layer indicia, provided to said
12 transport layer by said sockets layer, identifying the
13 application layer application to which said packet
14 would have been delivered; and

15 filtering code within said system kernel operable with
16 respect to non-IP packet data accessed within said
17 system kernel outside of said protocol stack for
18 controlling and managing said aspects of communication

19 traffic; said filter code for constructing and
20 evaluating logical expressions of arbitrary length,
21 said logical expressions selectively including a set of
22 logical operators, alternative filter selector fields,
23 and value set.

1 38. [Previously presented] A system for centralizing
2 system-wide communication management and control within
3 filter rules, comprising:

4 filter statements having a syntax for accepting
5 parameters in the form of a selector, each selector
6 specifying selector field, operator, and a set of
7 values;

8 said selector referencing data that does not exist in
9 IP packets;

10 a look-ahead function within a protocol stack including
11 an IP layer, a transport layer, a sockets layer, and an
12 application layer which, for an inbound packet, said IP
13 layer provides to said transport layer said inbound
14 packet, marked as non-deliverable, and receives back
15 from said transport layer indicia, provided to said

16 transport layer by said sockets layer, for identifying
17 the application layer application to which said packet
18 would have been delivered; and

19 a filter processor for constructing and evaluating
20 filter statements including logical expressions of
21 arbitrary length, said logical expressions selectively
22 including a set of logical operators, alternative
23 filter selector fields, and value set.

1 39. [Currently amended] A system for traversing a portion
2 only of a TCP/IP protocol stack to disallow selective IP
3 packet traffic, comprising:

4 a system kernel;

5 a filter processor executing within said system kernel
6 for constructing and evaluating logical expressions of
7 arbitrary length, said logical expressions selectively
8 including a set of logical operators, alternative
9 filter selector fields, and value set;

10 said filter processor responsive to an inbound packet
11 for executing a look-ahead function for determining a

12 target application; said look-ahead function operating
13 within [[a]] said TCP/IP protocol stack including an IP
14 layer, a transport layer, a sockets layer, and an
15 application layer and which, for said IP inbound
16 packet, said IP layer provides to said transport layer
17 said inbound IP packet, marked as non-deliverable, and
18 receives back from said transport layer indicia,
19 provided to said transport layer by said sockets layer,
20 identifying the application layer application to which
21 said packet would have been delivered;

22 said filter processor responsive to both inbound and
23 outbound packets for

24 processing said packet by determining a task ID;

25 responsive to said task ID, determining a
26 corresponding work control block;

27 determining a user ID, process or job identifier
28 from said work control block;

29 from the user ID, process or job identifier
30 selectively determining attributes for said user

31 process or job; and

32 passing said attributes to said filter processor
33 for managing and controlling communication
34 traffic.

1 40. [Previously presented] A system for expressing access
2 rules as filters, comprising:

3 filter statements for accepting parameters in the form
4 of a selector, each selector specifying selector field,
5 operator, and a set of values;

6 said selector referencing data that does not exist in
7 IP packets for controlling access to an application;

8 a look-ahead function executing within a protocol stack
9 including an IP layer, a transport layer, a sockets
10 layer, and an application layer and which, for an
11 inbound packet, said IP layer provides to said
12 transport layer said inbound packet, marked as non-
13 deliverable, and receives back from said transport
14 layer indicia, provided to said transport layer by said
15 sockets layer, identifying the application layer

16 application to which said packet would have been
17 delivered; and

18 a filter processor for constructing and evaluating said
19 filter statements as logical expressions of arbitrary
20 length, each said logical expression selectively
21 including said operator selected from a set of logical
22 operators, alternative filter selector fields, and
23 value set.

1 41. [Currently amended] A system for managing and
2 controlling communication traffic by centralizing access
3 rules in filters executing within and referencing data
4 available in system kernels, comprising:

5 a computer readable medium;

6 first code for receiving a packet in the kernel of the
7 operating system of a first node from an application or
8 process at said first node; said kernel responsive to
9 an inbound packet, for executing a look-ahead function
10 within a TCP/IP protocol stack including an IP layer, a
11 transport layer, a sockets layer, and an application
12 layer and which, for said inbound packet, said IP layer

13 provides to said transport layer said inbound IP
14 packet, marked as non-deliverable, and receives back
15 from said transport layer indicia, provided to said
16 transport layer by said sockets layer, identifying the
17 application layer application to which said packet
18 would have been delivered;

19 second code for processing said packet by determining a
20 task ID;

21 third code responsive to said task ID for determining a
22 corresponding work control block;

23 fourth code responsive to said work control block for
24 determining a process or job identifier;

25 fifth code responsive to said process or job identifier
26 for determining job or process attributes;

27 sixth code for executing said filters by constructing
28 and evaluating logical expressions of arbitrary length,
29 said logical expressions selectively including a set of
30 logical operators, alternative filter selector fields,
31 and value set; and wherein

32 said first, second, third, fourth, fifth, and sixth
33 code is recorded on said computer readable medium.

1 42. [Canceled]

2 43. [Previously presented] A system for control and
3 management of communication traffic with respect to a system
4 node, comprising:

5 a filtering function executing within a protocol stack
6 of the system kernel of said system node identifying
7 for an inbound packet a filter referencing non-packet
8 data; and

9 a look-ahead function responsive to said filter for
10 identifying a target application for said inbound
11 packet; said look-ahead function functioning within a
12 protocol stack including an IP layer, a transport
13 layer, a sockets layer, and an application layer and
14 which, for said inbound packet, said IP layer provides
15 to said transport layer said inbound packet, marked as
16 non-deliverable, and receives back from said transport
17 layer indicia, provided to said transport layer by said
18 sockets layer, identifying the application layer

19 application to which said packet would have been
20 delivered; ; and

21 a filter processor for constructing and evaluating
22 logical expressions of arbitrary length, said logical
23 expressions selectively including a set of logical
24 operators, alternative filter selector fields, and
25 value set.

44. [Canceled]

1 45. [Previously presented] A computer program product for
2 control and management of aspects of communication traffic
3 within filtering, said computer program product comprising:
4 a computer readable medium;
5 first program instructions to receive IP packet data
6 into a TCP/IP protocol stack executing within a system
7 kernel including, for processing an inbound IP packet,
8 a look-ahead function within a protocol stack including
9 an IP layer, a transport layer, a sockets layer, and an
10 application layer and which, for said IP inbound
11 packet, said IP layer provides to said transport layer

12 said inbound IP packet, marked as non-deliverable, and
13 receives back from said transport layer indicia,
14 provided to said transport layer by said sockets layer,
15 identifying the application layer application to which
16 said packet would have been delivered;

17 second program instructions to execute filtering code
18 within said system kernel with respect to non-IP packet
19 data accessed within said system kernel outside of said
20 TCP/IP protocol stack by constructing and evaluating
21 logical expressions of arbitrary length, said logical
22 expressions selectively including a set of logical
23 operators, alternative filter selector fields, and
24 value set; and wherein

25 said first and second program instructions are recorded
26 on said medium.

1 46. [Previously presented] A computer program product for
2 centralizing system-wide communication management and
3 control within filter rules, said computer program product
4 comprising:

5 a computer readable medium;

6 first program instructions to execute filter statements
7 having a syntax for accepting parameters in the form of
8 a selector, each selector specifying selector field, a
9 logical operator selected from a set of a plurality of
10 logical operators, and a set of values; and

11 second program instructions to cause said selector to
12 reference data that does not exist in IP packets, said
13 data including application layer indicia obtained for
14 an incoming packet by a look-ahead function; said look-
15 ahead function executing within a protocol stack
16 including an IP layer, a transport layer, a sockets
17 layer, and an application layer and which, for said IP
18 inbound packet, said IP layer provides to said
19 transport layer said inbound IP packet, marked as non-
20 deliverable, and receives back from said transport
21 layer indicia, provided to said transport layer by said
22 sockets layer, identifying the application layer
23 application to which said packet would have been
24 delivered; and wherein

25 said first and second program instructions are recorded
26 on said medium.

1 47. [Previously presented] A computer program product for
2 managing and controlling communication traffic by
3 centralizing access rules in filters executing within and
4 referencing data available in system kernels, said computer
5 program product comprising:

6 a computer readable medium;

7 first program instructions to receive said packet in
8 the kernel of the operating system of said first node
9 from a process at said first node;

10 second program instructions to process said packet by
11 determining a task ID;

12 third program instructions, responsive to said task ID,
13 to determine a corresponding work control block;

14 fourth program instructions, responsive to said work
15 control block, to determine a process or job
16 identifier;

17 fifth program instructions, responsive to said process
18 or job identifier, to determine job or process

19 attributes; and

20 sixth program instructions to execute a filter
21 processor for constructing and evaluating logical
22 expressions of arbitrary length, said logical
23 expressions selectively including a set of logical
24 operators, alternative filter selector fields, and
25 value set; and wherein

26 said first, second, third, fourth, fifth, and sixth
27 program instructions are recorded on said medium.

1 48. [Currently amended] The computer program product of
2 claim 47, wherein said protocol stack is a TCP/IP protocol
3 stack, and said computer program product further comprising
4 for inbound packet processing from said second node to said
5 first node:

6 sixth program instructions to initially operate said
7 kernel at said first node to determine a target
8 application for said packet at said first node by
9 executing a look-ahead function within a protocol stack
10 including an IP layer, a transport layer, a sockets
11 layer, and an application layer and which, for said IP

12 inbound packet, said IP layer provides to said
13 transport layer said inbound IP packet, marked as non-
14 deliverable, and receives back from said transport
15 layer indicia, provided to said transport layer by said
16 sockets layer, identifying the application layer
17 application to which said packet would have been
18 delivered; ; and wherein

19 said sixth program instructions are recorded on said
20 medium.

1 49. [Previously presented] A computer program product for
2 control and management of communication traffic, comprising:
3 a computer readable medium;
4 first program instructions for expressing access rules
5 as filters referencing system kernel data;
6 second program instructions, for outbound processing,
7 for determining a source application;
8 third program instructions, for inbound packet
9 processing, for executing a look-ahead function to

10 determine a target application; said look-ahead
11 function operating within a protocol stack including an
12 IP layer, a transport layer, a sockets layer, and an
13 application layer and which, for said IP inbound
14 packet, said IP layer provides to said transport layer
15 said inbound IP packet, marked as non-deliverable, and
16 receives back from said transport layer indicia,
17 provided to said transport layer by said sockets layer,
18 identifying the application layer application to which
19 said packet would have been delivered;

20 fourth program instructions, selectively responsive to
21 said source and target application, for executing
22 filter processing including constructing and evaluating
23 logical expressions of arbitrary length, said logical
24 expressions selectively including a set of logical
25 operators, alternative filter selector fields, and
26 value set;; and wherein

27 said first, second, third, and fourth program
28 instructions are recorded on said computer readable
29 medium.

1 50. [Previously presented] A computer program product for

2 control and management of aspects of communication traffic
3 within filtering, comprising:

4 a computer readable medium;

5 first program instructions for receiving IP packet data
6 into a TCP/IP protocol stack executing within a system
7 kernel;

8 second program instructions for executing filtering
9 code within said system kernel with respect to non-IP
10 packet data accessed within said system kernel outside
11 of said TCP/IP protocol stack; said filtering code
12 constructing and evaluating logical expressions of
13 arbitrary length, said logical expressions selectively
14 including a set of logical operators, alternative
15 filter selector fields, and value set; and wherein

16 said first and second program instructions are recorded
17 on said computer readable medium.

1 51. [Previously presented] A computer program element for
2 centralizing system-wide communication management and
3 control within filter rules, comprising:

4 a computer readable medium;

5 first program instructions for providing filter

6 statements syntax for accepting parameters in the form

7 of a selector, each selector specifying selector field,

8 a logical operator, and a set of values,

9 second program instructions for executing filtering by

10 constructing and evaluating logical expressions of

11 arbitrary length, said logical expressions selectively

12 including said logical operator selected from a set of

13 logical operators, at least one said selector field,

14 and at least one said value;

15 said selector referencing data that does not exist in

16 IP packets including data obtained, for an inbound IP

17 packet, by executing a look-ahead function within a

18 protocol stack including an IP layer, a transport

19 layer, a sockets layer, and an application layer and

20 which, for said IP inbound packet, said IP layer

21 provides to said transport layer said inbound IP

22 packet, marked as non-deliverable, and receives back

23 from said transport layer indicia, provided to said

24 transport layer by said sockets layer, identifying the

25 application layer application to which said packet
26 would have been delivered; ; and wherein

27 said first and second program instructions are recorded
28 on said computer readable medium.

1 52. [Previously presented] A computer program product for
2 managing and controlling communication traffic by
3 centralizing access rules in filters executing within, and
4 referencing data available in, system kernels, comprising:

5 a computer readable medium;

6 first program instructions for receiving said packet in
7 the kernel of the operating system of said first node
8 from an application or process at said first node;

9 second program instructions for processing said packet
10 by determining a task ID;

11 third program instructions, responsive to said task ID,
12 for determining a corresponding work control block;

13 fourth program instructions, responsive to said work

14 control block, for determining a process or job
15 identifier;

16 fifth program instructions, responsive to said process
17 or job identifier, for determining job or process
18 attributes;

19 sixth program instructions for executing a filter
20 processor for constructing and evaluating logical
21 expressions of arbitrary length, said logical
22 expressions selectively including a set of logical
23 operators, alternative filter selector fields, and
24 value set; and wherein

25 said first, second, third, fourth, fifth, and sixth
26 program instructions are recorded on said computer
27 readable medium.

1 53. [Previously presented] The computer program product of
2 claim 52, further comprising for inbound packet processing
3 from said second node to said first node:

4 seventh program instructions initially operating said
5 kernel at said first node to determine a target

6 application for said packet at said first node by
7 executing a look-ahead function within a protocol stack
8 including an IP layer, a transport layer, a sockets
9 layer, and an application layer and which, for said IP
10 inbound packet, said IP layer provides to said
11 transport layer said inbound IP packet, marked as non-
12 deliverable, and receives back from said transport
13 layer indicia, provided to said transport layer by said
14 sockets layer, identifying the application layer
15 application to which said packet would have been
16 delivered; and wherein

17 said seventh program instructions are recorded on said
18 computer readable medium.