

Constraint Handling — Objective Function

Leandro L. Minku

Traveling Salesman Problem Formulation

- Design variables represent a candidate solution.
 - The design variable is a sequence **x** of *N* cities, where $x_i \in \{1, \dots, N\}$, $\forall i \in \{1, \dots, N\}.$

 - The N cities to be visited are represented by values {1,...,N}.

 The search space is also possible seed to be visited are in $\{1,...,N\}.$ https://powcoder.com
- Objective function defines the wetcher solutionder

minimise totalDistance(
$$\mathbf{x}$$
) = $\left(\sum_{i=1}^{N-1} D_{x_i, x_{i+1}}\right) + D_{x_N, x_1}$

where $D_{i,k}$ is the distance of the path between cities j and k.

[Optional] Solutions must satisfy certain constraints.

$$\forall i \in \{1, \dots, N\}, \ h_i(\mathbf{x}) = \left(\sum_{j=1}^{N} 1(x_j = i)\right) - 1 = 0 \qquad 1(x_j = i) = \begin{cases} 1, & \text{if } x_j = i \\ 0, & \text{if } x_j \neq i \end{cases}$$

Designing Objective Functions to Deal With Constraints

 The original objective function of a problem can be modified to deal with constraints.

Assignment Project Exam Help

• A penalty can be added for infeasible solutions, increasing their cost.

Add WeChat powcoder

Designing Objective Functions to Deal With Constraints

• E.g.: assume that the representation is a list of any size, and that our initialisation procedure is uniformly at random with replacement.

Objetive function:

minimise totalDistance(
$$\mathbf{x}$$
) = $\left(\sum_{i=1}^{\text{Size}(\mathbf{x})-1} D_{x_i,x_{i+1}}\right) + D_{x_{\text{Size}(\mathbf{x})},x_1}$

How to modify the objective function to deal with the constraint that each city must appear once and only once?

Designing Objective Functions to Deal With Constraints

 E.g.: assume that the representation is a list of any size, and that our initialisation procedure is uniformly at random with replacement.

Objetive function:

$$\text{minimise totalDistance}(\mathbf{x}) = \left(\sum_{i=1}^{\text{size}(\mathbf{x})-1} D_{x_i,x_{i+1}}\right) + D_{x_{\text{size}(\mathbf{x})},x_1} + n_m P + n_d P$$

where n_m is the number of cities missing, n_d is the number of duplications of cities and P is a large positive constant.

Generalising The Strategy

Minimise $f(\mathbf{x})$

Subject to
$$g_i(\mathbf{x}) \leq 0$$
, $i = 1, \dots, m$

Assignment; Project \mathbb{Q} xam j \mathbb{H}_{e} \mathbb{I}_{p} , ..., n

https://powcoder.com

Add WeChat powcoder Penalty Minimise $f(\mathbf{x})+Q(\mathbf{x})$

$$Q(\mathbf{x}) = \begin{cases} 0 \text{ if } \mathbf{x} \text{ is feasible} & \text{Only sum here the violated constraints} \\ P \times [g_a(\mathbf{x})^2 + g_b(\mathbf{x})^2 + \dots + h_{a'}(\mathbf{x})^2 + h_{b'}(\mathbf{x})^2 + \dots] & \text{otherwise} \end{cases}$$

where *P* is a large positive constant.

Generalising The Strategy

Minimise
$$f(\mathbf{x})$$

Subject to $g_i(\mathbf{x}) \leq 0$, $i = 1, \dots, m$

Assignments $f(\mathbf{x})$ ject $f(\mathbf{x})$ is $f(\mathbf{x})$. Assignments $f(\mathbf{x})$ is $f(\mathbf{x})$ is $f(\mathbf{x})$. Add WeChat powcoder $f(\mathbf{x})$ is $f(\mathbf{x})$. We have $f(\mathbf{x})$ is $f(\mathbf{x})$ is $f(\mathbf{x})$.

$$Q(\mathbf{x}) = P \times [v_{g1}g_1(\mathbf{x})^2 + v_{g2}g_2(\mathbf{x})^2 + \dots + v_{gm}g_m(\mathbf{x})^2 + \dots + v_{h1}h_1(\mathbf{x})^2 + v_{h2}h_2(\mathbf{x})^2 + \dots + v_{hn}h_n(\mathbf{x})^2]$$

where P is a large positive constant, and v_{gi} and v_{hi} are 1 if the corresponding constraint is violated and 0 otherwise.

Dealing with Constraints Based on Objective Functions

- Advantage:
 - Easier to designsignment Project Exam Help
- Disadvantage: https://powcoder.com
 - Algorithm has to seed the form to as it is a seed of the form to as it is a

Completeness

 If we use a strategy to deal with constraints that never enables any infeasible solution to be generated, algorithms such as Hill Climbing and Simulated Annealing are complete.

Assignment Project Exam Help

- Otherwise:
 - https://powcoder.com

 Hill Climbing: not complete if the objective function has local optima.

 https://powcoder.com
 Add WeChat powcoder
 - Simulated Annealing: not guaranteed to find a feasible solution within a reasonable amount of time.

Summary

- We need to design strategies to deal with the constraints.
- Examples of strategies:
 - Representationsi in the signification of the significant of the significant
 - Objective function https://powcoder.com

Add WeChat powcoder

Next

Example applications.