

Winning Space Race with Data Science

Irfan Pathan November 26, 2023

Table of Contents

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- SpaceY is a new commercial rocket launch provider who wants to bid against SpaceX.
- SpaceX advertises launch services beginning at \$62 million for missions that reserve some fuel for landing the first-stage rocket booster so that it can be reused.
- According to SpaceX's public claims, a first-stage Falcon 9 booster will cost upwards of \$15 million to produce, not considering R&D cost recoupment or profit margin.
- Given mission data such as payload amount and intended orbit, the models developed in this paper could forecast the successful landing of the first-stage rocket booster with an accuracy level of 83.3%.
- As a result, SpaceY can make more informed bids versus SpaceX by using predicted first-stage landing costs as a proxy for launch costs.

Introduction

- This report has been prepared as part of the Applied Data Science Capstone course.
- In this capstone, I play the role of a data scientist for SpaceY, a new rocket firm.
- SpaceY will be able to make more educated bids for rocket launches versus SpaceX using the data science insights and models in this paper.
- When the first stage of their rockets may be reused, SpaceX promotes Falcon 9 rocket flights for 62 million dollars.
- The first stage is expected to cost more than \$15 million to build, not considering R&D cost recoupment or profit margin.
- Due to mission characteristics such as payload, orbit, and customer, SpaceX will occasionally sacrifice the first stage.
- As a proxy, the goal of this report is to precisely anticipate the possibility of the first-stage rocket landing successfully.

Data Collection

- API
 - Acquired historical launch data from the Open Source REST API for SpaceX
 - Requested and analysed
 SpaceX launch data via the
 GET request
 - Filtered the dataframe to include only Falcon 9 launches Mean values were used to replace missing payload mass values from classified missions.

- Web Scraping
 - Historical launch data was obtained from the Wikipedia page 'List of Falcon 9 and Falcon Heavy Launches'.
 - Extracted all column/variable names from the HTML table header
 - Parsed the table and translated it to a Pandas dataframe

Data Wrangling

- Data was examined in order to determine the label for training supervised models.
 - Determined the number of launches at each location;
 - Determined the number and occurrence of each orbit; and
 - Determined the number and occurrence of mission outcomes per orbit type

- Created a landing outcome training label from 'Outcome' column
 - Training label: 'Class'
 - Class = 0; first stage booster did not land successfully
 - None None; not attempted
 - None ASDS; unable to be attempted due to launch failure
 - False ASDS; drone ship landing failed
 - False Ocean; ocean landing failed
 - False RTLS; ground pad landing failed
 - Class = 1; first stage booster landed successfully
 - True ASDS; drone ship landing succeeded
 - True RTLS; ground pad landing succeeded
 - True Ocean; ocean landing succeeded '

Exploratory Data Analysis (EDA)

- EDA with SQL
 - Loaded data into an IBM DB2 instance
 - Ran SQL queries to display and list information about
 - Launch sites
 - Payload masses
 - Booster versions
 - Mission outcomes
 - Booster landings

EDA with visualization

- Read the dataset into a Pandas dataframe
- Used Matplotlib and Seaborn visualization libraries to plot
 - FlightNumber x PayloadMass †
 - FlightNumber x LaunchSite †
 - Payload x LaunchSite †
 - Orbit type x Success rate †
 - FlightNumber x Orbit type †
 - Payload x Orbit type †
 - Year x Success rate

† = with Class overlayed (1st stage booster landing outcome)

Data Visualization

- Launch Sites Location Analysis
 - Used Python interactive mapping library called Folium
 - Marked all launch sites on a map
 - Marked the successful/failed launches for each site on map
 - Calculated the distances between a launch site to its proximities
 - Railways
 - Highways
 - Coastlines
 - Cities

- Launch Records Dashboard
 - Used Python interactive dashboarding library called Plotly Dash to enable stakeholders to explore and manipulate data in an interactive and real-time way
 - Pie chart showing success rate
 - Color coded by launch site
 - Scatter chart showing payload mass vs. landing outcome
 - Color coded by booster version
 - With range slider for limiting payload amount
 - Drop-down menu to choose between all sites and individual₉ launch sites

<u>Predictive Analysis (Model Development)</u>

- Imported libraries and defined function to create confusion matrix
 - Pandas
 - Numpy
 - Matplotlib
 - Seaborn
 - Sklearn
- Loaded the dataframe created during data collection
- Created a column for our training label 'Class' created during data wrangling
- Standardized the data
- Split the data into training data and test data

- Fit the training data to various model types
 - Logistic Regression
 - Support Vector Machine
 - Decision Tree Classifier
 - K Nearest Neighbors Classifier
- Used a cross-validated grid-search over a variety of hyperparameters to select the best ones for each model
 - Enabled by Scikit-learn library function GridSearchCV
- Evaluated accuracy of each model using test data to select the best model

Results

- What launch sites has SpaceX used?
 - CCAFS LC-40
 - CCAFS SLC-40
 - KSC LC-39A
 - VAFB SLC-4E
- Examine launch site and date records where launch sites begin with the string 'CCA', do they overlap?
 - Last launch from CCAFS LC-40 was 2016-08-14
 - First launch from CCAFS SLC-40 was 2017-12-15
 - Wikipedia confirms Cape Canaveral Space Launch Complex 40 was renamed in 2017
- Display the total payload mass carried by boosters launched by NASA (CRS)
 - 45,596 KG, total
- Display average payload mass carried by booster version F9 v1.1
 - 340 KG, average
- List the date when the first successful landing outcome in ground pad was achieved
 - 2015-12-22, more than 5 years after the first Falcon 9 launch on 2010-06-04

Results

 List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000?

```
    F9 FT B1021.1 F9 FT B1023.1 F9 FT B1029.2 F9 FT B1038.1
    F9 B4 B1042.1 F9 B4 B1045.1 F9 B5 B1046.1
```

• Rank the count of landing outcomes between the date 2010-06- 04 and 2017-03-20, in descending order?

```
    10 - No attempt
    3 - Controlled (ocean)
    2 - Uncontrolled (ocean)
    10 - No attempt
    3 - Failure (drone ship)
    4 - Success (ground pad)
    5 - Success (drone ship)
    2 - Failure (parachute)
    1 - Precluded (drone ship)
```

List the names of the booster versions which have carried the maximum payload mass?

```
    F9 B5 B1048.4
    F9 B5 B1048.5
    F9 B5 B1049.4
    F9 B5 B1049.4
    F9 B5 B1049.5
    F9 B5 B1051.4
    F9 B5 B1051.6
    F9 B5 B1060.2
    F9 B5 B1060.3
```

- List the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015?
 - Failure (drone ship) F9 v1.1 B1012 CCAFS LC-40
 - o Failure (drone ship) F9 v1.1 B1015 CCAFS LC-40
- List the total number of successful and failure mission outcomes?
 - 1 Failure (in flight) 99 Success
 1 Success (payload status unclear)

Launch Site & Payload Mass vs. FlightNumber

FlightNumber x
PayloadMass, 1st stage
landing success positively
correlated with continuous
launch attempts, while
negatively correlated with
payload mass

FlightNumber x LaunchSite, CCAFS SLC 40 appears to have been where most of the early 1st stage landing failures took place

Payload Mass x Launch Site & Success Rate x Orbit Type

PayloadMass x LaunchSite, CCAFS SLC 40 and KSC LC 39A appear to be favored for heavier payloads

Orbit type x Success rate, All orbit types except 'SO' have had successful 1st stage landings

Flight Number & Payload Mass vs. Orbit Type

FlightNumber x Orbit type, flight number positively correlated with 1st stage recovery for all orbit types

PayloadMass x Orbit type, heavier payloads have a negative influence on GTO orbits and positive influence on ISS orbits

Year x Success Rate

Year x Success rate, success rate trending positively on a yearly basis since 2013

Launch Site Location Analysis

 Visualizing the launch sites on a map highlights the importance of launch site proximity to the coast and equator:

Launch Site Location Analysis

- By visualising the railway, highway, coastline, and city proximity for each launch site, we can see how close each is, for example:
 - CCAFS SLC-40 proximity:
 - railway: 1.28 km;
 - transporting heavy cargo;
 - cargo; highway: 0.58 km;
 - transporting personnel and equipment;
 - coastline: 0.86 km;
 - option to abort launch and attempt water landing;
 - minimising risk from falling debris;
 - city: 51.43 Km;
 - minimising danger to population dense areas.

Launch Site Location Analysis

 Visualizing the booster landing outcomes for each launch site highlights which launch sites have relatively high Failure rates, namely CCAF SLC 40

Launch Records Dashboard

- Examine the dashboard for yourself:
 - Allowing stakeholders to interact with and alter data in real time •
 Dashboard observations:
 - FAFB SLC-4E had the heaviest successful booster landing success • KSC LC-39A had the greatest booster landing success rate
 - Payloads weighing less than 5,300 kg had the highest booster landing success rate
 - Payloads weighing more than 5,300 kg had the lowest booster landing success rate

- Drop-down menu to choose between all sites and individual launch sites
- Color coded by launch site
- Pie chart showing booster landing success rate

Launch Records Dashboard

- Range slider for limiting payload amount
- Scatter chart showing payload mass vs. landing outcome
- Color coded by booster version

Classification Accuracy Score

• Except for Decision Tree, all models built had the same accuracy score of 83.33%.

Confusion Matrix

- The best performing models' confusion matrices (4-way tie) are the same.
- The biggest issue is false positives, as indicated by the models inaccurately expecting the first stage booster to land in three of the 18 samples in the test set.

Conclusions

- SpaceY can forecast when SpaceX will successfully land the first stage rocket with 83.3% accuracy using the algorithms from this report.
- According to SpaceX public remarks, the first stage booster costs upwards of \$15 million to produce.
- This will allow SpaceY to make more informed bids against SpaceX, as they will know when the SpaceX bid will include the cost of a sacrificed first stage rocket. With a stated price of \$62 million per launch, excluding the \$15+ million first stage, SpaceX's offer would be in the neighbourhood of \$77 million.
- The following are the most important opportunities for making better informed bids in the future:
 - Freeze the top performing model and hyperparameter combination and re-fit using the entire dataset rather than just the training data.
 - Although this is potentially superior to using only a portion of the data to fit the model, you will no longer be able to measure the accuracy of the final model.
- As new launch data becomes available, add it to the dataset and model.
- Split the current model into two models.
 - Predict whether SpaceX will endeavour to land the first stage;
 - Predict whether SpaceX will SUCCEED in their endeavour; and
- Create a model that predicts whether SpaceX will launch with a previously flown first stage rocket.
 - Would allow SpaceY to consider when the SpaceX bid is likely to contain a discount.

Appendix

- Notebooks to recreate dataset, analysis, and models:
 - https://github.com/irfanp056/Applied-Data-Science-Capstone/blob/main/jupyter-labs-spacex-data-collection-api.ipy
 nb
 - https://github.com/irfanp056/Applied-Data-Science-Capstone/blob/main/jupyter-labs-webscraping.ipynb
 - https://github.com/irfanp056/Applied-Data-Science-Capstone/blob/main/labs-jupyter-spacex-Data%20wrangling.ip vnb
 - https://github.com/irfanp056/Applied-Data-Science-Capstone/blob/main/jupyter-labs-eda-dataviz.ipynb.jupyterlite.ipynb
 - o <u>https://github.com/irfanp056/Applied-Data-Science-Capstone/blob/main/jupyter-labs-eda-sql-coursera_sqllite.ipynb</u>
 - https://github.com/irfanp056/Applied-Data-Science-Capstone/blob/main/lab_jupyter_launch_site_location.jupyterlite.ipvnb
 - https://github.com/irfanp056/Applied-Data-Science-Capstone/blob/main/SpaceX_Machine_Learning_Prediction_P art_5.jupyterlite.ipynb
 - https://github.com/irfanp056/Applied-Data-Science-Capstone/blob/main/spacex_dash_app.py
- Acknowledgments
 - Thank you to Joseph Santarcangelo at IBM for creating the course and materials
 - Thank you to Lakshmi Holla at IBM for assisting me with questions and troubleshooting
- References
 - https://aviationweek.com/defense-space/space/podcast-interview-spacexs-elon-musk
 - Interview with Elon Musk where he discloses the 1st stage booster to cost upwards of \$15 million
 - https://datascience.stackexchange.com/a/33050
 - Explanation of why you would rebuild your model using the full dataset
 - https://www.spacex.com/vehicles/falcon-9/
 - Source of SpaceX's advertised \$62 million launch price

