

ÉTUDE D'UN RESPIRATEUR ARTIFICIEL: LE MAKAIR

I - Introduction II - Etude Théorique III - Etude Expérimentale IV - Conclusion

MOTIVATION

Thème: Santé, Prévention

Apnée du sommeil : 3 millions de français concernés

Sources:

https://www.meteo-covid.com/graphique-reanimation-covid-et-soins-critiques

https://www.medisite.fr/files/styles/pano_xxxl/public/images/article/7/7/5/3582577/4938024-inline.jpg?itok=6Hxq5jPs

PRÉSENTATION DU SYSTÈME : LE PROJET MAKAIR

- Open Source;
- + 250 bénévoles dont notre contact Moneyron Gabriel;
- Facilement transportable;
- Faible coût;

- Faire face au manque de respirateurs suite au Covid-19.

PRÉSENTATION DU SYSTÈME: SON FONCTIONNEMENT

DIFFICULTÉ RENCONTRÉE:

Ventilation en pression : détermine la pression qui doit être appliquée dans les poumons du patient volume d'air non contrôlé

Schéma de principe du système à asservir :

MODÉLISATION ÉLECTRIQUE D'UN PATIENT

Analogie électrique - mécanique :

MODÉLISATION ÉLECTRIQUE {PATIENT + SONDE + TUBE}

$$Q = \frac{P_s p \left(C_t + C_p + p C_t C_p (R_t + R_p)\right)}{1 + p C_p (R_t + R_p)}$$

Étant en série, peut-on réellement négliger R_t devant R_p ?

PROBLÉMATIQUE

EST-IL POSSIBLE DE NÉGLIGER LA RÉSISTANCE DU TUBE ENDOTRACHÉAL CHEZ UN PATIENT ?

SOMMAIRE:

I - INTRODUCTION

II - APPROCHE THÉORIQUE:

- Modélisation des voies respiratoires d'un patient
- Calcul de la résistance associée
- Comparaison avec celle du tube endotrachéal

III - APPROCHE EXPÉRIMENTALE

- Résistance du tube endotrachéal
- Résistance d'un individu

IV – ANALYSE DES ÉCARTS /CONCLUSION

MODÉLISATION DU SYSTÈME RESPIRATOIRE D'UN INDIVIDU

Arbre bronchique

Hypothèses:

- A chaque génération la résistance de chaque branche est égale;
- Toute bronche d'une même génération dispose des mêmes caractéristiques géométriques.

Pour les 23 générations :

$$r_g = \sum_{i=0}^{22} \frac{r_i}{2^i}$$

CALCUL DE LA RÉSISTANCE DE L'ARBRE BRONCHIQUE

Nombre de Reynolds dans chaque génération de l'arbre bronchique :

$$R_e = \frac{\rho v D}{\eta}$$

- ρ la masse volumique de l'air supposée constante
- v la vitesse de l'air $\approx 1 m \cdot s^{-1}$ en entrée de la trachée
- η la viscosité de l'air $\approx 1.9 \cdot 10^{-5}$ Pa · s
- D le diamètre de la trachée $\approx 18 \cdot 10^{-3}$ m

Résistance écoulement de Poiseuille :

$$r_h = \frac{8\eta L}{\pi R^4}$$

1

Résistance arbre respiratoire :

$$r_g = \frac{8\eta}{\pi} \sum_{i=1}^{22} \frac{L_i}{2^i R_i^4}$$

Ι_	Intro	duc	tion
1 –	$\mathbf{H}\mathbf{H}\mathbf{U}\mathbf{U}$	uuc	uou

II - Etude Théorique

III - Etude Expérimentale IV

IV - Conclusion

Génération Longueur Rayon (mm) (mm) n 0 94 1 40,5 6,1 2 10,8 4,15 3 9,18 2,8 7,8 2,225 5 6,6 1,75 6 5,6 1,4 4,8 1,15 8 0,93 4,1 9 3,5 0,77 10 2,9 0,65 11 2,5 0,54 12 2,1 0,47 13 1,8 0,41 14 0,37 1,5 15 0,25 1,4 16 1,33 0,24 17 1,2 0,2 18 0,93 0,19 19 0,83 0,18 20 0,7 0,17 21 0,7 0,15

0,7

0,14

22

Avec ces valeurs :

* $(1 \text{ cmH}_2 0 = 98 \text{ Pa})$

	Adulte
Résistance (cm $H_20 \cdot s \cdot L^{-1}$)*	0,12

• Extrapolation pour la géométrie des voies d'un enfant :

Pour un adulte, on avait : $\frac{R_{tube}}{L_{tube}} \sim 0.2$ $R_{tube,adulte} \approx 3R_{tube,nouveau-n\acute{e}}$ $R_{tube,adulte} \approx 2R_{tube,enfant}$

	Nouveau-né	Enfant
Longueur trachée (mm)	33	60
Rayon trachée (mm)	3,4	5,3
Longueur bronche souche (mm)	25	35
Rayon bronche souche (mm)	2,1	3,4

CALCUL DE LA RÉSISTANCE DE {TUBE + SONDE}

Mise en série de ces 2 résistances sous les mêmes hypothèses que pour l'arbre bronchique :

$$r_g' = r_{sonde} + r_{tube}$$

	Nouveau-né	Enfant	Adulte
Résistance {tube + sonde} (cm H_2 0 · s · L ⁻¹)	9,84	5,13	0,3 - 0,65
Résistance arbre (cmH ₂ 0 · s · L ⁻¹)	7,9	2,6	0,13
Rapport {tube + sonde}/arbre	1,2	2,0	2,3 - 5

- Résistance du tube loin d'être négligeable puisque majoritaire.
- Critique du modèle :
 - Tenir compte de l'élastance pulmonaire, variation de viscosité entre T_{ambiant} et T_{corps};
 - R_e >> 1. Effets inertiels dus au déplacement du fluide ;
 - Modélisation symétrique du poumon. Fréquent d'avoir un poumon gauche plus petit que le droit;
 - Masse volumique de l'air variable.

DÉTERMINATION EXPÉRIMENTALE DE LA RÉSISTANCE

Objectifs:

I - Introduction

- Tracer expérimentalement Pression(Débit) => résistance {tube + sonde};
- Déterminer la résistance de l'individu (poumon artificiel) grâce à l'interface MakAir.

DÉTERMINATION EXPÉRIMENTALE DE LA RÉSISTANCE

- Résistance Valve 94
- Résistance_Valve_63
- A Résistance_Valve_94_Noeud
- \times Résistance_Valve_63_Noeud

RÉSISTANCE DE L'INDIVIDU

Donnée par :
$$R = \frac{P_{peak} - P_{plat}}{D_v}$$

III - Etude Expérimentale

COMPARAISON THÉORIQUE / RÉEL

Rappel valeurs théoriques:

	Nouveau-né	Enfant	Adulte
Résistance {tube + sonde} (cm H_2 0 · s · L ⁻¹)	9,84	5,13	0,3 - 0,65
Résistance arbre (cmH ₂ 0 · s · L ⁻¹)	7,9	2,6	0,13
Rapport {tube + sonde}/arbre	1,2	2,0	2,3 - 5

Valeurs expérimentales (sur un poumon artificiel):

	Adulte	
Résistance {tube + sonde } (cm $H_20 \cdot s \cdot L^{-1}$)	0,75 - 8	
Résistance arbre (cmH ₂ 0 · s · L ⁻¹)	6 - 18	
Rapport {tube + sonde} /arbre	0,04 - 1,23	

IV - Conclusion

CONCLUSION

	Adulte
Résistance {tube + sonde} (cm H_2 0 · s · L^{-1})	0,75 - 8
Résistance arbre (cmH ₂ 0 · s · L ⁻¹)	6 - 18
Rapport {tube + sonde}/arbre	0,04 – 1,23

	Nouveau-né	Enfant	Adulte
Résistance {tube + sonde} (cm H_2 0 · s · L^{-1})	9,84	5,13	0,3 - 0,65
Résistance arbre (cmH ₂ 0 · s · L ⁻¹)	7,9	2,6	0,13

MERCI

COMPLIANCE DU TUBE : DÉBIT

Expérience : - Fermeture de la valve de sortie

- Envoi d'un débit d'air constant

- Mesure du volume et de la pression

Détermination de la variation de volume en fonction de la pression

Etat de la turbine (débit)	Dérivé du volume en fonction de la pression (ml/cmh2o)		
180	0,10		
200	0,094		
360	0,095		
400	0,094		
500	0,096		
720	0,062		
800	0,049		
1080	0,031		

1 cmH2O = 98 Pa

MESURE DE LA COMPLIANCE DU TUBE : TEMPÉRATURE

Expérience pour un tube standard :

- A différentes températures
- Envoi d'un volume dans le tuyau de manière quasi-statique
- Mesure de la pression et du volume

Variation de la température négligeable sur la plage de température étudiée

Variation constatée des valeurs sûrement due à une incertitude sur les mesures

Degrés (°C)	Compliance (ml/cmH20)	
5,4	0,49147442	
11,5	0,51148225	
11,7	0,50619835	
3,4	0,4637736	
14	0,44283778	
14	0,51524711	
17	0,47388781	
18	0,49923586	
20	0,49720954	
20,7	0,45794393	
23,3	0,51470588	
25	0,50909091	
28	0,50567595	

Température "C

Valeur de la compliance du tube (ml/cmH20)

Plage	[0,44283778; 0,51524711]
Moyenne	0,49144334
Ecart type	0,02396792

IMPACT DE LA COMPLIANCE DU TUBE

Modèle représentant le patient et le tube

Le tube implique un écart relatif de débit négligeable sauf pour les nourrissons

Le débit entrant dans les poumons

$$Qp = \frac{Cp}{Cp + Ct} * \frac{1}{1 + s * \tau} * Qr$$

$$\tau = \frac{R * Ct * Cp}{Cp + Ct}$$

Type de patient	Compliance pulmonaire (Cp) (ml/cmH2O)	Résistance du tube et poumon (R) (cmH20/(L.s^(-1)))	Valeur de τ (s)	Ecart $\frac{Qr - Qp}{Qr}$
Adulte	[100; 200]	2,3	6,9*10^(-4)	[2,4;4,9]*10^(-3)
Enfant	[40; 70]	8	2,4*10^(-3)	[4,3;7,44]*10^(-3)
Nouveau-né	1,72	102	2,6*10^(-2)	0,15

COMPLIANCE DU POUMON

La compliance du poumon est due à divers paramètres physiologiques

Evolution temporelle de la pression d'un patient sous respiration artificielle

Calcul de la compliance dans le domaine médical

$$C = \frac{Vcourant}{Pplateau - Pexpiration}$$

COURBE PRESSION-VOLUME

La compliance n'est pas constante mais dépend de la pression pulmonaire

$$V = a + \frac{b}{1 + exp(-\frac{P-c}{d})}$$

$$C = \frac{b}{d} \frac{exp(-\frac{P-c}{d})}{(1 + exp(-\frac{P-c}{d}))^2}$$

L'évolution du volume en fonction de la pression est une hystérésis

CONCLUSION

La compliance du tube n'est pas négligeable pour les nourrissons

	$\begin{array}{cc} \text{Ecart} & \frac{Qr-Qp}{Qr} \\ \text{relatif} & \frac{Qr}{Qr} \end{array}$
Adulte	[2,4 ; 4,9] *10^(-3)
Enfant	[4,3 ; 7,44] *10^(-3)
Nouveau-né	0,15

La simulation numérique ne permet pas de donner des conclusions satisfaisantes

La non-linéarité de la compliance du poumon fait varier l'évolution de la pression pulmonaire et donc le débit pulmonaire