

CsFire: Browser-Enforced Mitigation Against CSRF

23/06/2010

<u>Lieven Desmet</u> and Philippe De Ryck DistriNet Research Group Katholieke Universiteit Leuven, BE

Lieven.Desmet@cs.kuleuven.be

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation http://www.owasp.org

About myself

- **■** Lieven Desmet
- Research manager of the DistriNet Research Group (K.U.Leuven, Belgium)
- Active participation in OWASP:
 - ▶ Board member of the OWASP Belgium Chapter
 - ▶ Co-organizer of the academic track on past OWASP AppSec Europe Conferences

Outline

- **■** Introduction
- Quantification of cross-domain traffic
- Client-side mitigation against CSRF
- CsFire
- **■** Evaluation
- **■** Conclusion

Cross-Site Request Forgery (CSRF)

■ Synonyms: one click attack, session riding, confused deputy, XSRF, ...

■ Description:

- External server (or HTML feed) is under control of the attacker
- ▶ Attacker triggers requests from the victim's browser to targeted website:
 - Unauthorised by the victim
 - Legitimate from the perspective of the server
- Victim typically has an account of the targeted server (and is logged in)

CSRF (+XSS) example

Implicit authentication

- HTTP authentication: basic, digest, NTLM, ...
- **■** Cookies containing session identifiers
- Client-side SSL authentication
- IP-address based authentication
- **I** ...
- Notice that some mechanisms are even completely transparent to the end user!
 - ▶ NTLM, IP-address based, ...

Risk considerations

- Threat agent:
 - ▶ Any website or HTML feed that your users access
- Impact:
 - Sending unauthorized requests
 - ▶ Login CSRF
 - ▶ Attacking the Intranet

[BJM08]

CSRF in practice

■ W. Zeller and W. Felten, Cross-site Request Forgeries: Exploitation and Prevention, Technical Report 2008

- CSRF in the 'real' world
 - ▶ New York Times (nytimes.com)
 - ▶ ING Direct (ingdirect.com)
 - Metafilter (metafilter.com)
 - YouTube (youtube.com)

Outline

- **■** Introduction
- Quantification of cross-domain traffic
- Client-side mitigation against CSRF
- CsFire
- **■** Evaluation
- **■** Conclusion

Quantification of cross-domain traffic

- Need for better insights
 - ▶ To identify the nature of nowadays web interactions
 - ▶ To find an appropriate balance between usability and security
- Analysis of real-life traffic
 - ▶ 50 grad students
 - ▶ 10 week period
 - ▶ Total: 4.7M requests

Data collection

- Via custom-made browser extension
 - ▶ Fully transparent for the end-user
 - ▶ Extension installed as part of lab exercise
- Logs relevant information for each outgoing request
 - ▶ Originator:
 - Domain, scheme, DOM element, ...
 - ▶ Request:
 - Target domain, scheme, method, URL path, input parameter keys, cookie keys, HTTP auth?, user interaction?, redirect?, ...

Privacy considerations

- Only keys were recorded, no values or credentials
 - Cookies
 - ▶ Input parameters
 - ▶ HTTP authentication
- Full URLs were not recorded
 - ▶ Only filename + extension
- No client information was recorded
 - ▶ No browser information (except for logger version)
 - ▶ No IP information
 - No usernames

Quantification of cross-domain requests

	GET	POST	Total
cross-domain requests (strict SOP)	1,985,052	59,415	2,044,756
	(41.97%)	(1.26%)	(43.24%)
cross-domain requests (relaxed SOP)	1,503,990	56,260	1,560,519
	(31.80%)	(1.19%)	(33.00%)
All requests	4,426,826	302,041	4,729,217
	(93.61%)	(6.39%)	(100.00%)

Cross-domain requests characteristics (under relaxed SOP)

	Input parameters	User initiated	Cookies	HTTP auth	Total
GET requests	533,612 (35.47%)	6,837 (0.45%)	528,940 (35.17%)	1,357 (0.11%)	1,503,990
POST requests	41 (0.07%)	26,914 (47.84%)	12,442 (24.36%)	269 (0.01%)	1,560,519

Interesting conclusions

- Large number of requests has
 - ▶ Input parameters (+-35%)
 - ▶ Cookies (+-35%)
- Use of HTTP authentication is very limited
- Additional information:
 - ▶ Total number of requests: 4,729,217
 - ▶ Total number of domains: 23,592
 - 3338 domains use redirects (14.15%)
 - 5606 domains use cookies(23.76%)
 - Only 2 domains use HTTP authentication

Need for more benchmarks and data sets

- Interesting data set to study and compare CSRF mitigation techniques
- It would be interesting to have more similar data sets available for web application security
 - ▶ To understand nature of nowadays web applications and interactions
 - ▶ To have benchmarks to compare different solutions

Outline

- **■** Introduction
- Quantification of cross-domain traffic
- Client-side mitigation against CSRF
- CsFire
- **■** Evaluation
- **■** Conclusion

Mitigation against CSRF

- Same-Origin Policy
 - ▶ No protection against CSRF ⊗
 - ▶ Enabler for token-based approaches
- Token-based approaches
 - ▶ Most promising techniques against CSRF ©
 - Not widely adopted yet ⊗

■ Client-side mitigation !?!

RequestRodeo (Martin Johns, 2006)

- Token-based approach, run as client-side proxy
 - ▶ Intercepts requests and responses
 - Adds and verifies tokens
 - ▶ Strips cookies and HTTP authentication credentials
 - ▶ Also protects the intranet via external proxy
- Works well on classical web applications
- Behaves badly in web 2.0 applications

Browser Add-ons

- Browser add-ons can use full context
 - ▶ CSRF protector, BEAP (antiCSRF), RequestPolicy, NoScript, CsFire, ...
- Mitigation: blocking or stripping request
- Hard to find right balance:
 - Security
 - Usability

Requirements for client-side mitigation

- R1. Independent of user input
 - Substantial fraction of cross-domain traffic
 - ▶ Most users don't know necessary/safe interactions
- R2. Usable in a web 2.0 environment
 - Mashups, AJAX, Single-Sign On, ...
- R3. Secure by default
 - ▶ Minimal false positives in default operation mode

Outline

- **■** Introduction
- Quantification of cross-domain traffic
- Client-side mitigation against CSRF
- CsFire
- **■** Evaluation
- **■** Conclusion

CsFire

- Client-side mitigation technique developed by DistriNet, K.U.Leuven
- Builds on RequestRodeo's concept of stripping
- Main purpose:
 - ▶ Finding a better balance between security and usability
- Full paper available:
 - ▶ Ph. De Ryck, L. Desmet, T. Heyman, F.Piessens, W. Joosen. CsFire: Transparent client-side mitigation of malicious cross-domain requests, LNCS volume 5965, pages 18-34, Pisa, Italy, 3-4 February 2010

Client-side Policy Enforcement

Client-side Protection

- Collect Information
 - Origin and Destination
 - HTTP Method
 - ▶ Cookies or HTTP authentication present
 - User initiated
 - **)**

Client-side Policy Enforcement

Client-side Protection

- Determine action using policy
 - Accept
 - ▶ Block
 - Strip cookies
 - Strip authentication headers

Client-side Policy Enforcement

Cross-domain Client Policy

Prototyped as CsFire

http://distrinet.cs.kuleuven.be/software/CsFire

Comparison: Request Policy

Comparison: BEAP (AntiCSRF)

Outline

- **■** Introduction
- Quantification of cross-domain traffic
- Client-side mitigation against CSRF
- CsFire
- **■** Evaluation
- **■** Conclusion

Prototype Evaluation

- CSRF Scenarios
 - ▶ 59 scenarios
 - ▶ Test prevention capabilities
 - Contains attacks launched from ...
 - CSS Attributes
 - HTML attributes
 - JavaScript
 - Redirects

Prototype Evaluation

- Real-life test users
 - ▶ 60 test users, several weeks
 - Detect issues in security usability balance
 - Option to provide feedback
- Feedback via Mozilla Add-On users
 - ▶ About 6300 downloads since release
 - ▶ 1850+ daily users
 - Positive feedback
 - Some suggestions for additional server policies

Evaluation Results

- CSRF scenarios passed successfully
- Test users: very positive
 - Only a few minor inconveniences detected
 - Re-authentication after cross-domain request
 - Works well with Web 2.0
 - Works well popular SSO mechanisms
- Issues with sites spanning multiple domains
 - ► Example: Google, Microsoft (Live, MSN, ...)

Evaluation Results

- Sites spanning multiple domains
 - Traffic resembles a CSRF attack
 - Client cannot distinguish legitimate traffic
- Additional information needed
 - Specify intended cross-domain requests
 - Server policy identifies desired cross-domain requests
- In CsFire prototype
 - Server policies via policy server
 - Local policies

Outline

- **■** Introduction
- Quantification of cross-domain traffic
- Client-side mitigation against CSRF
- CsFire
- **■** Evaluation
- **■** Conclusion

Conclusion

- Traffic analysis reveals cross-domain traffic patterns
- Requirements for a client-side solution
 - Security
 - Usability
- Balanced client-side solution
 - Secure by default
 - User-independent
- Implementation as Firefox add-on
 - Technical evaluation with CSRF scenarios
 - Real-life evaluation with test users

References

- W. Zeller and W. Felten, Cross-site Request Forgeries: Exploitation and Prevention, TR 2008
- M. Johns, J. Winter, RequestRodeo: client side protection against session riding, OWASP AppSec 2006
- Ph. De Ryck et al., CsFire: Transparent clientside mitigation of malicious cross-domain requests, ESSoS 2010
- A. Barth, C. Jackson, and J. Mitchell, Robust Defenses for Cross-Site Request Forgery, CCS 2008

CsFire – Available now!

http://distrinet.cs.kuleuven.be/software/CsFire

