

Assignment 2

1. Time domain - Frequency domain

- Which fundamental relationship exists between the two domains?
- Take a look at figure 1 and try to explain the illustrations.
 - Red dashed line: Range of sampled values
 - Blue lines: Signal
- Draw a basic discrete frequency domain scheme of figure 1 within the range [-3Fs 3Fs].
 - Fs... Sampling frequency
- Why does the discrete frequency domain scheme look like this? What causes the effect?
- The second row shows the filtered signal within the frequency domain using and ideal low pass filter.
- Why is the complete second half of the spectrum not weighted with zeros for the filter operation? (See red dashed line)
- Which cut-off frequency was used?
- Why does the matching time domain look distorted? Which effects are causing this distortion?

Figure 1: Impulse in time and frequency domain (1^{st} row). Filtered impulse signal in frequency and time domain (2^{nd} row).

2. Discrete Convolution

- What is the convolution function?
 - Write down the formula of the discrete one dimensional convolution.
 - Implement a one dimensional convolution function in MATLAB.
 - Function signature [w] = myconv (u, v)
 - Write a MATLAB test script testconv.m which compares your implementation with the MATLAB reference implementation conv in a 1x2 plot.
 (1st plot: reference conv; 2nd plot: myconv)
- What is the fast discrete convolution?
 - Illustrate the basic concept. State the benefits and drawbacks of the fast discrete convolution.
 - Implement your own fast discrete convolution function in MATLAB.
 - Function signature [w] = myfastconv(u, v)
 - Extend your test script testconv.m by adding a third row, plotting the result of your implementation myfastconv.

3. Discrete Cross Correlation

- Revise the fundamental mathematics towards the discrete cross correlation.
 - Which analogies can be seen towards the discrete convolution?
 - Create a MATLAB test script which uses the functions myconv and myfastconv from section 2 to serve as cross correlation functions. Again use a 1x3 plot to compare to the reference MATLAB function xcorr.

4. Applications

Discrete convolution and cross correlation can be used in a variety of applications. The following two applications should give a brief example, what purposes can be fulfilled.

a. Convolution: Reverb effect

- Create a MATLAB program which allows mixing real space models with an arbitrary audio signal.
 - Use your own MATLAB function you implemented in section 2.

b. Correlation: Audio delay estimation

- Extract the left and right channel of a given audio sample and determine the delay between the channels by using cross correlation.
- Determine the distance between the microphone channels.

Lab course Winter Term

Home Assignment: Discrete Autocorrelation

- Create a MATLAB demo script demoautocorr.m which generates the variable Fourier series for a square wave signal and a uniformly distributed noise signal.
 - Fourier series 1 sec period

•
$$f(x) = \frac{4h}{\pi} \sum_{k=1,3,5,\dots}^{n} \frac{1}{k} \sin(2\pi kx)$$

- Be careful: step size is 2 for sum
- Common parameters for both signals
 - Sampling frequency; [1 1000]Hz; default: 1kHz
 - Signal length (Number of periods); [1 10]sec; default: 1 sec.
- Fourier series specific parameters
 - Amplitude (h); [0 10]; default: 1
 - Fourier series length (k); [1 21]
- Noise signal specific parameters
 - Amplitude (h); [0 10]; default: 1
- Design a MATLAB GUI within the test script. Requirements:
 - 2x1 plots for generated signal and ACF.
 - Parameters variation in the defined range (sliders).
 - Option to select ACF function from section 3 (radio button).
 - Plots should be updated automatically on parameter change.
- Analyze the ACF spectrum for different parameter settings.
 - Name the influences of the single parameters on the ACF.
 - Write a technical paper stating your results with the following limitations:
 - One single A4 page two column style (IEEE manuscript style¹)
 - PDF document
 - Maximum of four figures (comprehensively explained in text)
- MATLAB M files must have a header. Plots should be labeled and must have axis labeling.
- Required upload
 - demoautocorr.m
 - autocorr.pdf

¹ http://www.ieee.org/conferences_events/conferences/publishing/templates.html