A LATEX and ZSL Input Notations

A.1 Paragraphs

A.1.1 Axiom Box

```
LATEX input:
                                 \begin{axdef}
                                    D_1; ...; D_m
                                 \where
                                    P_1; ...; P_n
                                 \end{axdef}
                                 ZSL input – text style:
                                 global
                                    D1; ...; Dm
                                 axiom
                                    P1; ...; Pn
                                 end axiom
                                 ZSL input – box style:
                                   D1; ...; Dm
                                   P1; ...; Pn
                                 LATEX input:
D_1; \ldots; D_m
                                 \begin{axdef}
                                    D_1; ...; D_m
                                 \end{axdef}
                                 ZSL input – text style:
                                 global
                                    D1; ...; Dm
                                 end global
                                 ZSL input – box style:
```

ZTC 2.01 User's Guide May 1995

D1; ...; Dm

$$P_1; \; \dots; \; P_n$$

$$| \text{LMEX input:} \\ | \text{begin} \{ \text{zed} \} \\ | P_1; \; \dots \; ; \; P_n \\ | \text{end} \{ \text{zed} \}$$

$$| \text{ZSL input} | \\ | \text{axiom} \\ | P_1; \; \dots \; ; \; P_n \\ | \text{end axiom} | \\$$

A.1.2 Schema Box

ZSL input – text style:

\end{schema}

```
schema S
D1; ...; Dm
where
P1; ...; Pn
end schema
```

ZSL input – box style:

```
--- S ------
| D1; ...; Dm
|-----
| P1; ...; Pn
```

A.1.3 Generic Schema Box

```
 \begin{array}{c|c} S[X_1,\ldots,X_k] & \text{LMEX input:} \\ \hline D_1;\ldots;D_m & \text{begin}\{\text{schema}\}\{\text{S}[\text{X}\_1,\ldots,\text{X}\_k]\} \\ \hline P_1;\ldots;P_n & \text{begin}\{\text{schema}\} \\ \hline P_1;\ldots;P_n & \text{where} \\ \hline P_1;\ldots;P_n & \text{end}\{\text{schema}\} \end{array}
```

```
ZSL input – text style:
```

```
schema S [X1, ..., Xk]
    D1; ...; Dm
where
    P1; ...; Pn
end schema
```

ZSL input – box style:

```
--- S [X1, ..., Xk] -----
| D1; ...; Dm
|-----
| P1; ...; Pn
```

A.1.4 Generic Box

LATEX input zed:

```
begin{gendef}[X_1,...,X_k]
    D_1; ...; D_m

where
    P_1; ...; P_n

end{gendef}
```

LATEX input oz:

```
begin{gendef}{X_1,...,X_k}
    D_1; ...; D_m
where
    P_1; ...; P_n
end{gendef}
```

ZSL input – text style:

```
generic [X1, ..., Xk]
   D1; ...; Dm
where
   P1; ...; Pn
end generic
```

ZSL input – box style:

A.1.5 Schema Definition

$$S = [D \mid P]$$

$$S = [D \mid P]$$

A.1.6 Given Set

A.1.7 Equivalence Definition

$$id == Exp \qquad \qquad \begin{aligned} & ZSL \\ & id == Exp \qquad \qquad id == Exp \end{aligned}$$

$$& IMEX \ oz \\ & id \ \backslash defs \ Exp \end{aligned}$$

A.1.8 Free Type Definition

LATEX input zed:

$$\begin{array}{lll} T ::= c_1 \mid \ldots \mid c_m & & \texttt{begin}\{\texttt{syntax}\} \\ \mid \ d_1 \langle\!\langle E_1[T] \rangle\!\rangle & & \texttt{T \& ::= \& c_1 \mid \ldots \mid c_m \setminus \setminus \\ \mid \ \ldots & \mid \& \mid \& d_1 \mid \texttt{data E_1[T] \setminus rdata \setminus \setminus } \\ \mid \ d_n \langle\!\langle E_n[T] \rangle\!\rangle & & \& \mid \& \ldots \setminus \setminus \\ \mid \& \mid \& d_n \mid \texttt{data E_n[T] \setminus rdata \setminus end}\{\texttt{syntax}\} \end{array}$$

LATEX input oz:

```
\begin{syntax}
T & \ddef & c_1 | ... | c_m \\
    & | & d_1 \lang E_1[T] \rang \\
    & | & d... \\
    & | & d_n \lang E_n[T] \rang \end{syntax}

ZSL input:

T ::= c1 | ... | cm
    | d1 << E1[T] >>
    | ...
    | dn << En[T] >>
```

A.1.9 Schema Expressions

```
ZSL
                           LATEX
\forall D \mid P \bullet S
                           \forall D | P @ S
                                                                forall D | P @ S
                  ozonly ▶ \all D | P \dot S
\exists D \mid P \bullet S
                           \exists D | P @ S
                                                                exists D | P @ S
                  ozonly ▶ \exi D | P \dot S
\exists_1 D \mid P \bullet S
                           \exists_1 D | P @ S
                                                                exists1 D | P @ S
                  ozonly \blacktriangleright \exione D | P \dot S
[D \mid P]
                           [ D | P ]
                                                                [ D | P ]
\Delta S
                            \Delta S
                                                                Delta S
\Xi S
                                                                Xi S
                           \Xi S
S[T_1,\ldots,T_n]
                           S[T_1, \ldots, T_n]
                                                                S[T1,...,Tn]
S[x_1/y_1,...,x_n/y_n]
                           S[x_1/y_1,...,x_n/y_n]
                                                               S[x1/y1,...,xn/yn]
pre S
                           \pre S
                                                                pre S
\neg S
                           \lnot S
                                                                not S
S_1 \wedge S_2
                           S_1 \setminus land S_2
                                                                S1 and S2
                                                                S1 /\ S2
S_1 \vee S_2
                           S_1 \setminus S_2
                                                                S1 or S2
                                                                S1 \/ S2
S_1 \Rightarrow S_2
                           S_1 \in S_2
                                                                S1 implies S2
                  oz only \triangleright S_1 \imp S_2
                                                                S1 => S2
S_1 \Leftrightarrow S_2
                           S_1 \setminus iff S_2
                                                                S1 iff S2
                                                                S1 <=> S2
S_1 \upharpoonright S_2
                           S_1 \project S_2
                                                                S1 project S2
                                                                S1 |\ S2
S \setminus (v_1, \ldots, v_n)
                           S \setminus hide(v_1, \ldots, v_n)
                                                               S hide (v1, \ldots, vn)
                  oz only \triangleright S \zhide (v_1,...,v_n)
                                                                S \setminus (v1, \ldots, vn)
S_1 \stackrel{\circ}{_9} S_2
                           S_1 \setminus S_2
                                                                S1 semi S2
                  ozonly \blacktriangleright S_1 \zcmp S_2
                                                                S1 // S2
                           S_1 \neq S_2
                                                                S1 pipe S2
S_1 \gg S_2
                  oz only \triangleright S_1 \zpipe S_2
```

A.1.10 Predicates

		LATEX	ZSL
$\forall D \mid P \bullet Q$	07 only	\forall D P @ Q -\all D P \dot S	forall D P @ Q
$\exists D \mid P \bullet Q$	-	\exists D P @ Q	exists D P @ Q
$\exists_1 D \mid P \bullet Q$	-	\exi D P \dot S \exists_1 D P @ Q	exists1 D P @ Q
$\mathbf{let}\ v == e \bullet P$	-	\exione D P \dot S \zlet v==e @ P	let v==e @ P
	oz only ▶	\zlet v==e \dot P	
$p \wedge q$		p \land q	p and q
			p // q
$p \lor q$		p \lor q	p or q
			p // q
$p \Rightarrow q$		p \implies q	p implies q
	oz only ▶	p \imp q	p => q
$p \Leftrightarrow q$		p \iff q	p iff q
			p <=> q
$\neg p$		\lnot p	not p
true		true	true
			TRUE
false		false	false
			FALSE

A.2 Expressions

A.2.1 Lambda Expression

A.2.2 Definite Description

$$\mu \, D \mid P \bullet E \qquad \qquad \text{Mu D} \mid \text{P @ E} \qquad \qquad \text{mu D} \mid \text{P @ E} \qquad \qquad \text{unique D} \mid \text{P @ E}$$

$$\text{oz only} \blacktriangleright \text{ mu D} \mid \text{P } \text{dot E}$$

A.2.3 Conditional expression

A.2.4 Local definition

A.2.5 Sets

		LATEX	ZSL
$\{x_1,\ldots,x_n\}$		\{ x_1,, x_n \}	{ x1,, xn }
$\{D \mid P \bullet E\}$		\{ D P @ E \}	{ D P @ E }
C C	oz only ▶	. \{ D P \dot E \}	Q1 c Q2
$egin{array}{l} S_1 imes S_2\ S_1=S_2 \end{array}$		S_1 \cross S_2 S_1 = S_2	S1 & S2 S1 = S2
$S_1 \equiv S_2$ $S_1 \neq S_2$		$S_1 = S_2$ $S_1 \neq S_2$	S1 = S2 S1 /= S2
$x \in S$		x \in S	x in S
х С Б	Oz only	x \mem S	X III D
$x \notin S$	02 omy P	x \notin S	x notin S
	oz only	x \nem S	
Ø	•	\empty	{}
$S_1 \subset S_2$		S_1 \subset S_2	S1 subset S2
	oz only ▶	S_1 \psubs S_2	
$S_1\subseteq S_2$		S_1 \subseteq S_2	S1 subseteq S2
	oz only ▶	S_1 \subs S_2	
$\mathbb{P} S$		\power S	P S
TD C	oz only ▶	·\pset S	D1 G
$\mathbb{P}_1 S$		\power_1 S	P1 S
$\mathbb{F} S$	oz only ▶	· \psetone S	т О
II 3	07 only b	\finset S \fset S	F S
$\mathbb{F}_1 S$	OZ OIIIy	\finset_1 S	F1 S
± 1 5	Oz only	·\fsetone S	11 0
$S_1 \cup S_2$, ,	S_1 \cup S_2	S1 setunion S2
1 2	oz only ▶	S_1 \uni S_2	S1 S2
$S_1\cap S_2$	-	S_1 \cap S_2	S1 setint S2
	oz only ▶	S_1 \int S_2	S1 && S2
$\pmb{S}_1 \setminus \pmb{S}_2$		$S_1 \setminus S_2$	S1 setminus S2
			S1 \ S2
$\bigcup SS$		\bigcup SS	Union SS

 $\bigcap SS$ \bigcap SS Intersection SS

A.2.6 Ordered Pairs

	IATEX	ZSL
$x \mapsto y$	x \mapsto y	x mapsto y
	ozonly ▶ x \map y	x -> y
first P	first P	first P
second P	second P	second P

A.2.7 Relations

	IATEX	ZSL
$A \leftrightarrow B$	A \rel B	A <-> B
		A rel B
<i>x</i> <u><i>R</i></u> <i>y</i>	x \inrel{R} y	x _R_ y
$\operatorname{dom} R$	\dom R	dom R
ran R	\ran R	ran R
idS	\id S	id S
$R_1{}_{9}^{\circ}R_2$	$R_1 \setminus comp R_2$	R1 comp R2
OZ only	r► R_1 \fcmp R_2	R1 :> R2
$R_1 \circ R_2$	$R_1 \setminus circ R_2$	R1 backcomp R2
oz only	√ ► R_1 \cmp R_2	R1 <: R2
$R_1 \triangleleft R_2$	$R_1 \setminus R_2$	R1 dres R2
		R1 < R2
$R_1 \triangleleft R_2$	$R_1 \setminus R_2$	R1 dsub R2
oz only	√ ► R_1 \dsub R_2	R1 <+ R2
$R_1 \triangleright R_2$	R_1 \rres R_2	R1 rres R2
		R1 > R2
$R_1 \Rightarrow R_2$	R_1 \nrres R_2	R1 rsub R2
· · · · · · · · · · · · · · · · · · ·	√► R_1 \rsub R_2	R1 +> R2
$ extbf{\emph{R}}_1 \oplus extbf{\emph{R}}_2$	R_1 \oplus R_2	R1 oplus R2
	/▶ R_1 \fovr R_2	R1 += R2
$R(\mid S\mid)$	R \limg S \rimg	R (S)
R^{-1}	R \inv	R~
		R inversion
R^*	R \star	R^*
	R \rtcl	R rtclosure
R^+	R \plus	R^+
	r▶ R \tcl	R tclosure
R^k	R \bsup k \esup	R^(k)

A.2.8 Functions

	IATEX	ZSL
A o B	A \pfun B	A +-> B
		A pfun B
A o B	A \fun B	A> B
	ozonly ▶ A \tfun B	A fun B
$A \rightarrowtail B$	A \pinj B	A >+> B
		A pinj B
$A \rightarrowtail B$	A \inj B	A >-> B
	ozonly▶ A \tinj B	A inj B
$A \twoheadrightarrow B$	A \psurj B	A +>> B
	ozonly▶ A \psur B	A psurj B
$A \rightarrow\!$	A \surj B	A ->> B
	ozonly▶ A \tsur B	A surj B
$A \rightarrowtail B$	A \bij B	A >->> B
		A bij B
A ightharpoonup B	A \ffun B	A ++> B
		A ffun B
$A \ggg B$	A \finj B	A >++> B
		A finj B

A.2.9 Numbers

	ĿAT _E X	ZSL
N	\nat	N
	·	Nat
\mathbb{N}_1	\nat_1	N1
	oz only ▶ \natone	Nat1
\mathbb{Z}	\num	Z
	ozonly▶ \integer	Int
$n \dots m$	n \upto m	n upto m
		n m
x + y	x + y	x + y
x - y	х - у	х - у
x * y	х * у	x * y
x = y	x = y	x = y
$x \neq y$	x \neq y	x /= y
$x \operatorname{div} y$	x \div y	x div y
$x \mod y$	x \mod y	x mod y
x < y	x < y	x < y
$x \le y$	x \leq y	x <= y
x > y	x > y	$x > \lambda$
$x \ge y$	x /geq y	x >= A
succ x	succ x	succ x

#S	\# S	# S
min S	min~S	min S
max S	max~S	max S

A.2.10 Sequences

sn >>
S
s
on S
s2
s2
s2

A.2.11 Bags

	LATEX	ZSL
bag X	\bag X	bag X
$\llbracket a_1,\ldots,a_n bracket$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	[[a1,,an]]
$x \sqsubseteq B$	x \inbag B	x inbag B
count B	count B	count B
$B_1 \sqsubseteq B_2$	B_1 \subbag B_2	B1 subbag B2
$B_1 dash B_2$	B_1 \bagdiff B_2	B1 bagdiff B2

		B1 B2
$n \otimes B$	n \bagscale B	n bagscale B
$B \sharp x$	B \bagcount x	B bagcount x
$B_1 \uplus B_2$	B $_1 \setminus B_2$	B1 bagunion B2
	ozonly ▶ B_1 \buni B_2	B1 ++ B2
items s	items s	items s

A.2.12 Binding

	IATEX	ZSL
θS	\theta S	theta S

A.2.13 Selection

	LATEX	ZSL
S.x	S.x	S.x

A.2.14 Operators

	ETEX	ZSL
PreSym_	PreSym _	PreSym _
InSym	_ InSym _	_ InSym _
_PostSym	_ PostSym	_ PostSym
_(_)	$\ \ \ \ \ \ \ \ \ \ \ \ \ $	_ (_)