Inteligência Artificial Além da Busca Clássica Parte 3 Algoritmo Genético

Prof. Jefferson Morais

- Fundamentado por John Henry Holland (1975)
- Popularizado por David E. Goldberg (1989)

- É uma estratégia bioinspirada utilizada para encontrar soluções aproximadas (ou ótimas) em problemas de otimização da engenharia e computação
- Baseia-se na biologia evolutiva (Charles Darwin & Gregor Mendel)
 - . Seleção natural
 - . Hereditariedade
 - . Indivíduo, cromossomo, gene e alelo
 - . Codificação
 - . Recombinação
 - . Mutação

Termos chaves do AG

. Codificação

- Significa representar computacionalmente um indivíduo
- De maneira geral, pode ser: binária, inteira ou real

. Indivíduo

É uma solução candidata do problema

. População

É um conjunto de indivíduos

Função fitness

- Avalia a qualidade das soluções candidatas
- É a representação do problema que se quer otimizar

Termos chaves do AG

- . Seleção dos pais
 - Escolha de dois indivíduos da população atual
- Operadores genéticos: gera novas soluções candidatas
 - Cruzamento (crossover)
 - Troca de material genético entre os indivíduos selecionados, gerando filhos mais adaptados
 - Mutação
 - Alteração no gene do indivíduo que permite maior variabilidade genética na população
 - Seleção dos sobreviventes
 - Escolha dos indivíduos mais bem adaptados para a próxima geração

Algoritmo Genético - Pseudocódigo

```
P ← inicializa_população()
FP ← calcula fitness(P)
While(critério de parada não é alcançado)
    P' ← selecao dos pais({P, FP})
    P" ← cruzamento(P')
    P''' \leftarrow mutacao(P'')
    FP"' ← calcula_fitness(P"')
    {P, FP} ← selecao dos sobreviventes({P, FP}, {P''', FP'''})
End While
Retorna melhor_solucao(P)
```

Algoritmo Genético - Fluxograma

- Codificação: cada indivíduo é representado por um vetor de números inteiros com 8 posições
 - . Cada posição do vetor representa uma coluna do tabuleiro
 - Cada <u>valor</u> de cada posição do vetor representa a linha da coluna onde a rainha está posicionada
- Exemplo de indivíduo

- Função fitness: deve retornar valores melhores para indivíduos melhores
- Exemplo de função fitness
 - Número de pares de rainhas não atacantes (maximização)
 - . A solução que representa um ótimo global terá fitness igual a 28

$$X_i = [7 2631405]$$

$$f(X_i) = 27$$

Seleção dos pais

- Existem várias estratégias para selecionar indivíduos para o cruzamento
- . Mais utilizadas

. Roleta

A probabilidade de um indivíduo ser selecionado é proporcional ao seu valor de aptidão (fitness)

. Torneio

Os indivíduos são selecionados aleatoriamente para um "ring".
 O indivíduo com o melhor valor de aptidão é selecionado como pai

- Operador genético: cruzamento
 - Troca de material genético entre dois pais com o objetivo de gerar filhos mais bem adaptados
 - Algumas estratégias

Ponto de corte

Uniforme

Randomiza o ponto de corte ex.: posição 3

Gera um vetor binário ex.: [1 1 0 1 0 0 1 0]

- Operador genético: mutação
 - Altera o material genético de um indivíduo
 - Algumas estratégias
 - Bit flip (apenas para codificação binária)

$$X_{i} = [111, 010, 110, 011, 001, 100, 000, 101]$$

 $X_i' = [111, 010, 110, 001, 001, 100, 000, 101]$

Escolhe aleatoriamente uma posição para modificar o bit

Permutação

$$X_i = [7 2 6 3 1 4 0 5]$$

$$X_i' = [74631205]$$

Escolhe aleatoriamente duas posições e permute

Seleção de sobreviventes

- Escolhe os indivíduos mais bem adaptados, entre a população atual e a população modificada após a mutação, para sobreviver para a próxima geração
- Algumas estratégias
 - Troca de toda a população (geracional)
 - Substitui toda a população atual pela população modificada após o operador de mutação
 - Elitista com substituição total da população
 - Substitui toda a população atual pela população modifica e preserva o melhor indivíduo
 - Steady state
 - Substitui parte da população (elimina os menos adaptados)

- Parâmetros comuns em um AG
 - Tamanho da população: número de soluções candidatas
 - Taxa de cruzamento (TC)
 - Se rand <= TC, então ocorre cruzamento entre pais
 - Caso contrário, os pais se tornam filhos
 - Taxa de mutação (TM)
 - Se rand <= TM, então ocorre mutação no indivíduo
 - Caso contrário, não ocorre
 - Número de gerações: número máximo de iterações

Aula 17

 Em(d), os próprios descendentes são criados por cruzamento das cadeias pais no ponto de crossover

Pai 1: [5 6 1 | 3 5 4 7 7]

Pai 2: [6 4 1 | 4 0 3 3 6]

Filho 1: [5 6 1 | 4 0 3 3 6]

- Os algoritmos genéticos combinam a exploração aleatória e a troca de informações entre os indivíduos
- De maneira geral, o operador de cruzamento realiza exploration e a mutação o exploitation

Exploration vs Exploitation

- Exploration (exploração)
 - Ocorre geralmente no início do algoritmo
 - Capacidade que o algoritmo tem de explorar o espaço de busca
- Exploitation (intensificação)
 - Ocorre do meio para o final do algoritmo
 - Capacidade que o algoritmo tem de realizar um ajuste fino (fine tuning)