Continuous Markov Decision Processes with a Probability Theory Introduction COMP 767

Pascale Gourdeau

March 17th, 2017

Definition

A continuous MDP is a tuple (S, Σ, A, P, r) where

• (S, Σ) is a measurable space,

Definition

- (S, Σ) is a measurable space,
- A is a finite state of actions,

Definition

- (S, Σ) is a measurable space,
- A is a finite state of actions,
- ▶ $r: S \times A \rightarrow \mathbb{R}$ is a measurable reward function,

Definition

- \triangleright (S, Σ) is a measurable space,
- A is a finite state of actions,
- ▶ $r: S \times A \rightarrow \mathbb{R}$ is a measurable reward function,
- ▶ $P: S \times A \times \Sigma \rightarrow [0,1]$ is a labelled stochastic transition kernel:

Definition

- \triangleright (S, Σ) is a measurable space,
- A is a finite state of actions,
- $ightharpoonup r: S \times A \to \mathbb{R}$ is a measurable reward function,
- ▶ $P: S \times A \times \Sigma \rightarrow [0,1]$ is a labelled stochastic transition kernel:
 - ▶ $\forall a \in A$, $\forall s \in S$, $P(s, a, \cdot) : \Sigma \to [0, 1]$ is a probability measure,

Definition

- \triangleright (S, Σ) is a measurable space,
- A is a finite state of actions,
- $ightharpoonup r: S \times A \to \mathbb{R}$ is a measurable reward function,
- ▶ $P: S \times A \times \Sigma \rightarrow [0,1]$ is a labelled stochastic transition kernel:
 - ▶ $\forall a \in A, \forall s \in S, P(s, a, \cdot) : \Sigma \rightarrow [0, 1]$ is a probability measure,
 - ▶ $\forall a \in A, \ \forall X \in \Sigma, \ P(\cdot, a, X) : S \rightarrow [0, 1]$ is a measurable function.

Let Σ be a collection of subsets of S. We say that (S, Σ) is a measurable space if Σ is a σ -algebra, namely:

(i) $S \in \Sigma$,

Let Σ be a collection of subsets of S. We say that (S, Σ) is a measurable space if Σ is a σ -algebra, namely:

- (i) $S \in \Sigma$,
- $\text{(ii)} \ A \in \Sigma \implies A^C \in \Sigma \text{,}$

Let Σ be a collection of subsets of S. We say that (S, Σ) is a measurable space if Σ is a σ -algebra, namely:

- (i) $S \in \Sigma$,
- (ii) $A \in \Sigma \implies A^C \in \Sigma$,
- (iii) If $A_n \in \Sigma$ for all $n \in \mathbb{N}$, then $\bigcup_{n=1}^{\infty} A_n \in \Sigma$.

Let Σ be a collection of subsets of S. We say that (S, Σ) is a measurable space if Σ is a σ -algebra, namely:

- (i) $S \in \Sigma$,
- (ii) $A \in \Sigma \implies A^C \in \Sigma$,
- (iii) If $A_n \in \Sigma$ for all $n \in \mathbb{N}$, then $\bigcup_{n=1}^{\infty} A_n \in \Sigma$.

Let Σ be a collection of subsets of S. We say that (S, Σ) is a measurable space if Σ is a σ -algebra, namely:

- (i) $S \in \Sigma$,
- (ii) $A \in \Sigma \implies A^C \in \Sigma$,
- (iii) If $A_n \in \Sigma$ for all $n \in \mathbb{N}$, then $\bigcup_{n=1}^{\infty} A_n \in \Sigma$.

In probability theory,

lacksquare $S=\Omega$, the sample space – the set of all possible outcomes,

Let Σ be a collection of subsets of S. We say that (S, Σ) is a *measurable space* if Σ is a σ -algebra, namely:

- (i) $S \in \Sigma$,
- (ii) $A \in \Sigma \implies A^C \in \Sigma$,
- (iii) If $A_n \in \Sigma$ for all $n \in \mathbb{N}$, then $\bigcup_{n=1}^{\infty} A_n \in \Sigma$.

In probability theory,

- $S = \Omega$, the sample space the set of all possible outcomes,
- $ightharpoonup \Sigma = \mathcal{F}$, the collection of all the events one can study.

Let (S, Σ) be a measurable space.

Definition

A measure is a function $\mu: \Sigma \to [0, \infty+]$ that is countably additive: if $A_n \in \Sigma$ for all $n \in \mathbb{N}$ and $A_n \cap A_m = \emptyset$ for all $n \neq m$, then $\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n)$.

Let (S, Σ) be a measurable space.

Definition

A measure is a function $\mu: \Sigma \to [0,\infty+]$ that is countably additive: if $A_n \in \Sigma$ for all $n \in \mathbb{N}$ and $A_n \cap A_m = \emptyset$ for all $n \neq m$, then $\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n)$.

In probability theory,

• $S = \Omega$, the sample space – the set of all possible outcomes,

Let (S, Σ) be a measurable space.

Definition

A measure is a function $\mu: \Sigma \to [0,\infty+]$ that is countably additive: if $A_n \in \Sigma$ for all $n \in \mathbb{N}$ and $A_n \cap A_m = \emptyset$ for all $n \neq m$, then $\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n)$.

In probability theory,

- $S = \Omega$, the sample space the set of all possible outcomes,
- $ightharpoonup \Sigma = \mathcal{F}$, the collection of all the events one can study,

Let (S, Σ) be a measurable space.

Definition

A measure is a function $\mu: \Sigma \to [0,\infty+]$ that is countably additive: if $A_n \in \Sigma$ for all $n \in \mathbb{N}$ and $A_n \cap A_m = \emptyset$ for all $n \neq m$, then $\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n)$.

In probability theory,

- $S = \Omega$, the sample space the set of all possible outcomes,
- $ightharpoonup \Sigma = \mathcal{F}$, the collection of all the events one can study,
- $\mu = \mathbb{P}$, the probability measure, where $\mathbb{P}(\Omega) = 1$.

Definition

- \triangleright (S, Σ) is a measurable space,
- A is a finite state of actions,
- $ightharpoonup r: S \times A \to \mathbb{R}$ is a measurable reward function,
- ▶ $P: S \times A \times \Sigma \rightarrow [0,1]$ is a labelled stochastic transition kernel:
 - ▶ $\forall a \in A$, $\forall s \in S$, $P(s, a, \cdot) : \Sigma \to [0, 1]$ is a probability measure,
 - ▶ $\forall a \in A, \forall X \in \Sigma, P(\cdot, a, X) : S \rightarrow [0, 1]$ is a measurable function.

Definition

Given (S, Σ) , $f: S \to \mathbb{R}$ is Σ -measurable if for all $A \in \mathcal{B}(\mathbb{R})$, $f^{-1}(A) \in \Sigma$.

Definition

Given (S, Σ) , $f: S \to \mathbb{R}$ is Σ -measurable if for all $A \in \mathcal{B}(\mathbb{R})$, $f^{-1}(A) \in \Sigma$.

Here, $P(\cdot, a, X): S \to [0, 1]$ is a measurable function means that for all $A \in \mathcal{B}([0, 1]), P^{-1}(A) \in \Sigma$.

Definition

Given (S, Σ) , $f: S \to \mathbb{R}$ is Σ -measurable if for all $A \in \mathcal{B}(\mathbb{R})$, $f^{-1}(A) \in \Sigma$.

Here, $P(\cdot, a, X): S \to [0, 1]$ is a measurable function means that for all $A \in \mathcal{B}([0, 1]), P^{-1}(A) \in \Sigma$. What is $\mathcal{B}([0, 1])$?

Definition

Given (S, Σ) , $f: S \to \mathbb{R}$ is Σ -measurable if for all $A \in \mathcal{B}(\mathbb{R})$, $f^{-1}(A) \in \Sigma$.

Here, $P(\cdot, a, X): S \to [0, 1]$ is a measurable function means that for all $A \in \mathcal{B}([0, 1]), \ P^{-1}(A) \in \Sigma$. What is $\mathcal{B}([0, 1])$?

 $\mathcal{B}([0,1])$ is the σ -algebra generated by the open sets of [0,1].

Definition

- \triangleright (S, Σ) is a measurable space,
- A is a finite state of actions,
- $ightharpoonup r: S \times A \to \mathbb{R}$ is a measurable reward function,
- ▶ $P: S \times A \times \Sigma \rightarrow [0,1]$ is a labelled stochastic transition kernel:
 - ▶ $\forall a \in A$, $\forall s \in S$, $P(s, a, \cdot) : \Sigma \to [0, 1]$ is a probability measure,
 - ▶ $\forall a \in A, \forall X \in \Sigma, P(\cdot, a, X) : S \rightarrow [0, 1]$ is a measurable function.

Definition

A partially observable MDP (POMDP) is a tuple $(S, A, P, R, \Omega, \mathcal{O}, \gamma)$ where

▶ S is a (finite) set of states and A is a finite set of actions,

Definition

- S is a (finite) set of states and A is a finite set of actions,
- ▶ $P: S \times A \times S \rightarrow [0,1]$ is a probabilistic transition map between states,

Definition

- ▶ S is a (finite) set of states and A is a finite set of actions,
- ▶ $P: S \times A \times S \rightarrow [0,1]$ is a probabilistic transition map between states,
- ▶ $R: S \times A \rightarrow \mathbb{R}$ is a reward function,

Definition

- ▶ S is a (finite) set of states and A is a finite set of actions,
- ▶ $P: S \times A \times S \rightarrow [0,1]$ is a probabilistic transition map between states,
- ▶ $R: S \times A \rightarrow \mathbb{R}$ is a reward function,
- Ω is a set of observations,

Definition

- ▶ S is a (finite) set of states and A is a finite set of actions,
- ▶ $P: S \times A \times S \rightarrow [0,1]$ is a probabilistic transition map between states,
- ▶ $R: S \times A \rightarrow \mathbb{R}$ is a reward function,
- Ω is a set of observations,
- ullet ${\mathcal O}$ is a set of conditional observation probabilities,

Definition

- S is a (finite) set of states and A is a finite set of actions,
- ▶ $P: S \times A \times S \rightarrow [0,1]$ is a probabilistic transition map between states,
- ▶ $R: S \times A \rightarrow \mathbb{R}$ is a reward function,
- $\triangleright \Omega$ is a set of observations,
- ullet ${\mathcal O}$ is a set of conditional observation probabilities,
- $ightharpoonup \gamma$ is the discount factor.

Definition

- S is a (finite) set of states and A is a finite set of actions,
- ▶ $P: S \times A \times S \rightarrow [0,1]$ is a probabilistic transition map between states,
- ▶ $R: S \times A \rightarrow \mathbb{R}$ is a reward function,
- $\triangleright \Omega$ is a set of observations,
- ullet ${\mathcal O}$ is a set of conditional observation probabilities,
- $ightharpoonup \gamma$ is the discount factor.

Definition

A partially observable MDP (POMDP) is a tuple $(S, A, P, R, \Omega, \mathcal{O}, \gamma)$ where

- S is a (finite) set of states and A is a finite set of actions,
- ▶ $P: S \times A \times S \rightarrow [0,1]$ is a probabilistic transition map between states,
- ▶ $R: S \times A \rightarrow \mathbb{R}$ is a reward function,
- $\triangleright \Omega$ is a set of observations,
- ullet ${\mathcal O}$ is a set of conditional observation probabilities,
- $ightharpoonup \gamma$ is the discount factor.

We can represent a POMDP as a continuous MDP, where S is the simplex representing the *belief* that we are in a state in the corresponding POMDP.

Value function in CMDP

Under an optimal policy π^* , $V^*(s)$, the optimal value function is also defined via the BellIman optimality equation:

$$V^*(s) = \max_{a} \left(R(s, a) + \gamma \int_{S} P(s, a, s') V^*(s') \right) ds'$$

Sources

N. Ferns, P. Panangaden, D. Precup. *Bisimulation Metrics for Continuous Markov Decision Processes*. P.S. Castro, P.

Panangaden, D. Precup. Equivalence Relations in Fully and Partially Observable Markov Decision Processes