Skriftlig eksamen i Dynamiske Modeller Vinteren 2013 - 2014

VALGFAG

Torsdag den 21. februar 2014

Dette sæt omfatter 3 sider med 4 opgaver ud over denne forside

Alle sædvanlige hjælpemidler må medbringes og anvendes, dog må man ikke medbringe eller anvende lommeregnere eller andre elektroniske hjælpemidler

Københavns Universitet. Økonomisk Institut

2. årsprøve 2014 S-2DM rx

Skriftlig eksamen i Dynamiske Modeller

Torsdag den 21. februar 2014

Opgavesæt bestående af 3 sider med i alt 4 opgaver.

Løsningstid: 3 timer

Alle sædvanlige hjælpemidler må benyttes, dog ikke medbragte lommeregnere eller nogen form for cas-værktøjer.

Opgave 1. Vi betragter fjerdegradspolynomiet $P: \mathbf{C} \to \mathbf{C}$, som er givet ved forskriften

$$\forall z \in \mathbf{C} : P(z) = z^4 + 5z^3 + 10z^2 + 10z + 4.$$

Desuden betragter vi differentialligningerne

$$\frac{d^4x}{dt^4} + 5\frac{d^3x}{dt^3} + 10\frac{d^2x}{dt^2} + 10\frac{dx}{dt} + 4x = 0$$

og

$$(**) \frac{d^4x}{dt^4} + 5\frac{d^3x}{dt^3} + 10\frac{d^2x}{dt^2} + 10\frac{dx}{dt} + 4x = 90e^t.$$

- (1) Vis, at tallene $\rho_1 = -1$ og $\rho_2 = -2$ er rødder i polynomiet P.
- (2) Bestem samtlige rødder i polynomiet P.
- (3) Bestem den fuldstændige løsning til differentialligningen (*).
- (4) Godtgør, at differentialligningen (*) er globalt asymptotisk stabil.
- (5) Bestem den fuldstændige løsning til differentialligningen (**).

Vi betragter nu tredjegradspolynomiet $Q: \mathbf{C} \to \mathbf{C}$, som er givet ved forskriften

$$\forall z \in \mathbf{C} : Q(z) = z^3 - z^2 + 25z - 25,$$

og differentialligningen

$$(***) \frac{d^3y}{dt^3} - \frac{d^2y}{dt^2} + 25\frac{dx}{dt} - 25y = 0.$$

- (6) Vis, at tallet $\sigma_1=1$ er rod i polynomiet Q, og bestem dernæst de øvrige rødder i Q.
- (7) Bestem den fuldstændige løsning til differentialligningen (* * *).
- (8) Bestem den maksimale løsning til differentialligningen (***), som også er løsning til differentialligningen (**).

Opgave 2. Vi betragter 3×3 matricen

$$A = \left(\begin{array}{ccc} 2 & 1 & 1\\ 2 & 3 & 4\\ -1 & -1 & -2 \end{array}\right)$$

og vektordifferentialligningen

(§)
$$\frac{d\mathbf{z}}{dt} = A\mathbf{z}.$$

- (1) Bestem egenværdierne og egenrummene for matricen A.
- (2) Bestem den fuldstændige løsning for vektordifferentialligningen (§).
- (3) Bestem den specielle løsning $\tilde{\mathbf{z}} = \tilde{\mathbf{z}}(t)$ til vektordifferentialligningen (§), så betingelsen $\tilde{\mathbf{z}}(0) = (2, 1, 5)$ er opfyldt.

Opgave 3.

(1) Idet

$$\cos(4v) + i\sin(4v) = (\cos v + i\sin v)^4$$

(De Moivres formel for n=4), skal man bestemme $\cos(4v)$ og $\sin(4v)$ udtrykt ved $\cos v$ og $\sin v$.

Lad tallet $z \in \mathbf{T} = \{t \in \mathbf{C} \mid |t| = 1\}$ være vilkårligt valgt, og betragt følgen (z_k) , hvor $z_k = z^k$ for ethvert $k \in \mathbf{N}$.

(2) Vis, at følgen (z_k) har en konvergent delfølge med grænsepunkt $z_0 \in \mathbf{T}$.

Opgave 4. I spilteori betragter man et spil, som kaldes "Battle of the Sexes", og i dette spil indgår de to korrespondancer $F, G : [0, 1] \to [0, 1]$, som er givet ved forskrifterne

$$F(x) = \begin{cases} \{0\}, & \text{for } 0 \le x < \frac{2}{3} \\ [0, 1], & \text{for } x = \frac{2}{3} \\ \{1\}, & \text{for } \frac{2}{3} < x \le 1 \end{cases}$$

og

$$G(y) = \begin{cases} \{0\}, & \text{for } 0 \le y < \frac{1}{3} \\ [0,1], & \text{for } y = \frac{1}{3} \\ \{1\}, & \text{for } \frac{1}{3} < y \le 1 \end{cases}.$$

- (1) Vis, at korrespondancerne F og G begge har afsluttet graf egenskaben.
- (2) Vis, at ingen af korrespondancerne F og G er nedad hemikontinuerte.
- (3) Bestem en forskrift for den sammensatte korrespondance $H = G \circ F$: $[0,1] \to [0,1].$

Et punkt $(x^*, y^*) \in [0, 1] \times [0, 1]$ kaldes et ligevægtspunkt for parret (F, G), hvis og kun hvis $x^* \in G(y^*)$ og $y^* \in F(x^*)$.

(4) Bestem ligevægtspunkterne for parret (F, G).