

DATASHEET

Серия MDV

MDV60, MDV80

Универсальные компактные DC/DC преобразователи

Описание

Сверхминиатюрные изолированные DC/DC модули электропитания

MDV для промышленной аппаратуры. При небольших габаритах $(75,5 \times 52,7 \times 12,85 \text{ мм})$ максимальная выходная мощность модулей достигает 80 Вт. При этом модули способны работать в широком диапазоне температур корпуса (до -60...+125°C).

Модули могут включаться и выключаться по команде, имеют полный комплекс защит от перегрузки по току, короткого замыкания, перегрева, могут включаться последовательно по выходам. Отсутствие в схеме преобразователя оптронов позволяет модулю надежно функционировать в условиях воздействия ионизирующих излучений и высокой температуры в течение всего срока эксплуатации изделий.

Полимерная герметизирующая заливка обеспечивает надежную защиту от внешних воздействующих факторов и исключает повреждения преобразователя, вызванные вибрацией или попаданием грязи, влаги или соляного тумана.

Модули проходят специальные виды температурных и предельных испытаний, в том числе электротермотренировку с экстремальными режимами включения и выключения.

Особенности

- Гарантия 5 лет
- Выходной ток до 16 А
- Низкопрофильная 12,85 мм конструкция с цилиндрическими выводами
- Рабочая температура корпуса –60...+125°C
- Магнитная обратная связь без оптронов
- Защита от КЗ и перенапряжения, тепловая защита
- Дистанционное вкл/выкл
- Подстройка выходного напряжения
- Типовой КПД 88% при Ивых.=24 В
- Полимерная герметизирующая заливка

Соответствие стандартам

• Климатическое исполнение «В» по ГОСТ 15150

• Электромагнитная совместимость EN / ГОСТ 55022 / CISPR 22

Стойкость к ВВФ 3У по ГОСТ 15150Прочность изоляции ГОСТ 12997

• Сопротивление изоляции ГОСТ 12997

Контроль стойкости к ВВФ
 ГОСТ 20.57.406, ГОСТ 20.57.416

Надежность ГОСТ 25359

Описание серии MDV на сайте производителя: www.aedon.ru/catalog/dcdc/series/22

Отдел продаж 8 800 333 81 43

Техническая поддержка <u>techsup@aedon.ru</u>

3D модели

www.aedon.ru/content/catalog/docs/203/MDM80V.zip

Информация для заказа

Для получения дополнительной информации обратитесь в отдел продаж

8 800 333 81 43 mail@aedon.ru

Выходная мощность и ток

Мощность, Вт	60				80							
Выходное напряжение, В	5	9	12	15	24	28	5	9	12	15	24	28
Макс. выходной ток, А	12	6,66	5	4	2,5	2,14	16	8,88	6,7	5,3	3,33	2,85

По заказу могут поставляться модули с нестандартными выходными напряжениями от 3 до 70 В.

Индекс номинального входного напряжения*

Параметр	Индекс «А»	Индекс «V»	Индекс «D»	Индекс «W»**
Номинальное входное напряжение, В	12	28	48	24
Диапазон входного напряжения, В	10,518	1736	3675	1875
Переходное напряжение (1 с), В	-	1780	3684	1784
Типовой КПД для Uвых.=24 B	85%	88%	86%	N/A

^{*} Пульсации входного тока (10-10000 Гц) -8% Uвх. ном.

^{**} Входная сеть с индексом «W» доступна для модели мощностью 80 Вт.

Основные характеристики

Все характеристики приведены для НКУ, Uвх.ном., Івых.ном., если не указано иначе. Обращаем внимание, что информация в настоящем документе не является полной. Более подробная информация (дополнительные требования, типовые схемы включения, правила эксплуатации и т. п.) приведена в технических условиях, а также в руководящих технических материалах на сайте www.aedon.ru в разделе «Документация».

Выходные характеристики

Параметр	Значение			
Подстройка выходного напряжения в одноканал	5% Ивых. ном.			
Нестабильность выходного напряжения	При изменении входного напряжения (Uвх.минUвх.макс.)	макс ±2% Ивых. ном.		
	При изменении тока нагрузки (0,11номІном.)			
	Суммарная нестабильность	±6% Uвых, ном.		
Размах пульсаций (пик-пик)		<2% Ивых. ном.		
Максимальная ёмкость нагрузки	5 B 12 B 24 B	5100 мкФ 400 мкФ 75 мкФ		
Время включения (по команде)		<0,1 c		
Уровень срабатывания защиты от перегрузки* 60 Вт 80 Вт		<3 Рмакс. <2,2 Рмакс.		
Защита от короткого замыкания*	автоматическое восстановление			
Защита от перенапряжения на выходе	1,5 Uном. для всех MDV			
Переходное отклонение выходного напряжения	см. рисунок 8 (г)			

^{*} Параметры являются справочными и не могут быть использованы при долговременной работе, превышении максимального выходного тока, при работе вне диапазона рабочих температур, при работе модуля с выходными напряжениями сверх диапазона регулировки.

Общие характеристики

Параметр		Значение	
Температура корпуса	Рабочая (естественная конвекция) — снижение мощности (естественная конвекция) — без снижения мощности с радиатором	-60+125 °C смотри график снижения мощности (пунктирная, штрихпунктирная кривая) смотри график снижения мощности (сплошная кривая)	
	Хранения	−60+125 °C	
Частота преобразования		130–150 κΓιμ	
Ёмкость изоляции (10 кГц)	вход/выход	1500 пФ	
Прочность изоляции (60 с)	вход/выход, вход/корпус, выход/корпус	~500 B	
Сопротивление изоляции @ =500 B	вход/выход, вход/корпус, выход/корпус	20 Мом	
Тепловое сопротивление корпуса	5,3 °С/Вт		
Температура срабатывания тепловой защиты	118125 °C, защелкивание с автовосстановлением		
Дистанционное вкл/выкл	Выкл.: соединение выводов ВКЛ и −ВХ, I≤5 мА		
Устойчивость к вибрации, пыли и соляному туману	+		
Устойчивость к влаге (Токр.=25°C)	98%		
Типовой MTBF	2 000 000 ч		
Норма отказов	<0,05%		
Срок гарантии	5 лет		

Основные характеристики (продолжение)

Конструктивные параметры

Параметр	Значение
Материал корпуса	алюминий
Материал компаунда	эпоксидный
Материал выводов	оловянная бронза
Macca	не более 110 г
Температура пайки	260 °C @ 5 c

Топология

Рис. 1. Топология MDV80.

Сервисные функции

Схемы подключения

Рис. 2. Типовая схема подключения для одноканального модуля.

ГОСТ 30429-96 кривая «3»	L1	синфазный дроссель			0,7 мГн	
	С3 керамический конденсатор		Входное =12 В напряжение =28 В =48 В		220470 мкФ 68150 мкФ 1533 мкФ	
ГОСТ 30429-96 кривая «2»	10 7 7		Максимальный ток до 20 A, защита от перенапряжения и выбросов, вносимое затухание до 60 дБ.			
C1, C2, C6, C7		керамический конденсатор			1004700 пФ =500 В мин.	
C4		танталовый конденсатор	Входное напряжение	=12 B =28 B =48 B	220470 мкФ 68150 мкФ 1533 мкФ	
C5		танталовый конденсатор	Выходное напряжение	=5 B =12 B =24 B	1275 мкФ 100 мкФ 25 мкФ	

Сервисные функции (продолжение)

Дистанционное управление

Функция дистанционного ВКЛ/ВЫКЛ по команде позволяет управлять работой модуля с использованием механического реле (а), транзистора типа «разомкнутый коллектор» (б) или оптрона (в).

Выключение модуля электропитания должно осуществляться соединением вывода «ВКЛ» с выводом «–ВХ». При этом через ключ может протекать ток до 5 мА, а максимальное падение напряжения на ключе должно быть не более 1,1 В.

Включение модуля электропитания осуществляется размыканием ключа за время не более 5 мкс. В разомкнутом состоянии к ключу приложено напряжение около 5 В, допустимая утечка тока через ключ не должна превышать 50 мкА.

При организации дистанционного включения-выключения одновременно нескольких модулей электропитания не допускается установка дополнительных элементов в цепи, соединяющие выводы «ВКЛ», «–ВХ» и коммутирующий ключ.

Если функция дистанционного ВКЛ/ВЫКЛ не используется, вывод «ВКЛ» допускается оставить неподключенным или выкусить.

Рис. 3 (а). ВКЛ/ВЫКЛ с помощью реле.

Рис. 3 (б). ВКЛ/ВЫКЛ с помощью биполярного транзистора.

Рис. 3 (в). ВКЛ/ВЫКЛ с помощью оптрона.

Регулировка

Регулировка выходного напряжения модулей электропитания в диапазоне не менее $\pm 5\%$, имеющим вывод «РЕГ», может осуществляться, например, путем подключения вывода «РЕГ» через резистор к выводу «-ВЫХ» для увеличения выходного напряжения (а) или к выводу «+ВЫХ» для уменьшения выходного напряжения (б).

При использовании потенциометра R2 и внешних ограничивающих резисторов (R1, R3) возможно реализовать регулировку как в сторону увеличения, так и в сторону уменьшения (в).

В случае необходимости управления выходным напряжением модуля электропитания сигналом внешнего источника тока или напряжения, например, в микроконтроллерных автоматизированных системах управления с помощью сигнала ЦАП, внешний сигнал тока или напряжения необходимо подавать на вывод регулировки относительно вывод «-ВЫХ», в соответствии с рисунками (г) и (д).

Номинал элементов цепи (а, б, в), величины тока (г) и напряжения (д) определяются эмпирически или расчетным способом, указанным в руководящих технических материалах на сайте www.aedon.ru.

Преобразователь

Рис 4 (а). Регулировка увеличением Ивых.

Преобразователь

Рис 4 (б). Регулировка снижением Ивых.

Преобразователь

Рис 4 (в). Регулировка потенциометром.

Преобразователь

Рис 4 (г). Регулировка источником тока.

Преобразователь

Рис 4 (д). Регулировка источником напряжения.

Сервисные функции (продолжение)

Графики зависимости выходного напряжения от номинала регулировочного резистора

Поможения помож

Рис. 5 (а). График зависимости для Ивых.=5 В.

Рис. 5 (б). График зависимости для Uвых.=12 В.

Рис. 5 (в). График зависимости для Uвых.=15 В.

Рис. 5 (г). График зависимости для Uвых.=24 В.

Рис. 5 (д). График зависимости для Uвых.=28 В.

КПД

Зависимость КПД от нагрузки

Рис. 6 (а). КПД MDV80-1V27.

Рис. 6 (6). КПД MDV80-1D27.

Снижение мощности в зависимости от температуры окружающей среды

Спадающие участки пунктирной и штрихпунктирной кривых соответствуют максимальной температуре корпуса. Выходная мощность модуля не должна превышать значений, ограниченных соответствующей кривой при заданной температуре окружающей среды.

Рис. 7. Тепловая кривая MDV80.

Осциллограммы

Режимы и условия испытаний: UBx.=28 B, Iвыx.=6,6 A, Uвыx.=12 B, Свыx.=100 мкФ, Токр.=25°C

Рис. 8 (а). Осциллограмма установления выходного напряжения с момента подачи команды дистанционного управления.

Луч 1 (синий) — напряжение на выводе «ВКЛ». Масштаб 2 В/дел. Луч 2 (красный) — выходное напряжение. Масштаб 10 В/дел. Развертка t=5 мс/дел.

Рис. 8 (6). Осциллограмма установления выходного напряжения с момента подачи входного напряжения.

Луч 1 (синий) — входное напряжение. Масштаб 20 В/дел. Луч 2 (красный) — выходное напряжение. Масштаб 10 В/дел. Развертка t=50 мс/дел.

Рис. 8 (в). Осциллограмма пульсаций выходного напряжения.

Масштаб 50 мВ/дел. Развертка 2 мкс/дел.

Метод измерения: см. БКЯЮ.436630.002 ЭВ ТУ.

Рис. 8 (г). Осцилограмма переходного отклонения выходного напряжения при изменении выходного тока.

Масштаб 2 В/дел.

Развертка t=5 мс/дел.

Диапазон изменения тока (10...100%) Іном.

Длительность фронта 500 мкс.

Спектрограмма радиопомех

Методика измерения в соответствии с EN55022 / ГОСТ 55022-2012 / CISPR 22-2012.

Токр. = 25 °C Uвх. = 28 В Івых. = 16 А (Імакс.)

Рис. 8. Спектрограмма радиопомех MDV80-1V05 с типовой схемой подключения.

Габаритные схемы

Исполнение в усиленном корпусе с фланцами

Рис. 9. Модель с одним выходом.

Назначение выводов

Вывод #	1	2	3	4	5	6	7
Назначение	+BX	-BX	ВКЛ	КОРПУС	+ВЫХ	-ВЫХ	УПР

Аксессуары

Радиатор охлаждения

Рис. 10. Радиатор охлаждения с продольными ребрами (A×B×H×D, мм):

- для индекса «i» 84,5×52×14×4 мм; для индекса «m» 84,5×52×24×4 мм.

www.aedon.ru

mail@aedon.ru

Компания «АЕДОН» — ведущий российский разработчик и производитель DC/DC преобразователей и систем электропитания для ответственных сфер применения.

Россия, 394026, Воронеж, ул. Дружинников, 56 8 800 333 81 43 Россия, 129626, Москва, пр-т Мира, 104 +7 499 450 29 05

Даташит распространяется на следующие модели: MDV60-1A05; MDV60-1A09; MDV60-1A12; MDV60-1A12; MDV60-1A12; MDV60-1A12; MDV60-1A12; MDV60-1A12; MDV60-1A12; MDV60-1A12; MDV60-1V09; MDV60-1V09; MDV60-1V12; MDV60-1V15; MDV60-1V24; MDV60-1D15; MDV60-1D15; MDV60-1D15; MDV80-1A12; MDV80-1