

DT and CSC Alignments for 2nd CRAFT-09 Reprocessing

Jim Pivarski

Texas A&M University

30 October, 2009

- ▶ DT Alignment
 - parameters
 - ▶ global adjustment
 - differences with respect to hardware + link
 - segment difference plots
 - distribution of medians
 - map plots
 - fit plots
- CSC Alignment
 - parameters
 - ring adjustments
 - table of ring corrections
- Location of files

- Sequence:
 - 1. Barrel_Opt210-56.db: Hardware + Link-to-AR + internal layer alignment
 - 2. adjust whole barrel global δ_x , δ_y , δ_{ϕ_z} by hand
 - 3. track-based chamber alignment (keeping $\delta_{\phi_{x}}$ fixed)
- Where each final aligned position/orientation comes from:
 - ▶ all layers/superlayers relative to chamber center: (1) survey + tracks
 - chambers poorly illuminated by cosmic rays, all parameters:
 - (1) Hardware with (2) global adjustment
 - ▶ all chambers local $\delta_{\phi_{\nu}}$, station 4 δ_{ν} , δ_{z} , $\delta_{\phi_{\nu}}$: (1) and (2)
 - well-illuminated chambers, other params: (3) track-based chamber alignment
- Track-based chamber alignment parameters
 - Dataset: /Cosmics/CRAFT09-StreamMuAlGlobalCosmics-CRAFT09_R_V4_CosmicsSeq_v1/ALCARECO
 - Run range: 109011–109624 (tracker "peak mode")
 - Release: CMSSW 3 2 7
 - GlobalTag: CRAFT09_R_V4::All
 - ▶ Aligned parameters: stations 1–3 δ_x , δ_y , δ_z , δ_{ϕ_y} , δ_{ϕ_z} station 4 δ_x , δ_{ϕ_y} , δ_{ϕ_z}
 - ▶ Tracks: $100 < p_T < 200$ GeV, #tracker hits ≥ 15 , tracker $\chi^2/\text{ndf} < 10$, no rejection of TID/TEC
 - No special correction for $\vec{B}(\vec{x})$, dE/dx
 - Criterion for alignment: at least 30 hits and no Minuit fit failure
 - 5 iterations (2 are necessary for most chambers)

Global adjustment

-1.5

Jim Pivarski 4/29

φ (rad)

- Plotting differences between hardware + link geometry and track-based geometry
- ▶ Global adjustment: $\delta_x = 0.6$ mm, $\delta_y = 3.8$ mm, $\delta_{\phi_z} = 0.6$ mrad
- ▶ Almost perfect in δ_{x}
- $ightharpoonup \delta_y$ and δ_{ϕ_z} are:

Compared to photogrammetry... Jim Pivarski

- Plotting differences between PG + cavern survey and track-based geometry
- Global adjustment: $\delta_{\rm x}=2.2$ mm, $\delta_{\rm v} = 5.1$ mm, $\delta_{\phi_{\tau}} = 0.6 \text{ mrad}$
- Not apples-to-apples:
 - cavern global coords, not tracker coords
 - different internal geometry? (Luca?)
 - track sample
- But PG vs. tracks is narrower than HW vs. tracks

Hardware vs. track-based

Jim Pivarski 6/29

- Plotting differences between globally-adjusted hardware and track-based geometry
- Local x', y', and z' vs. φ
 (prime indicates consistent sign)
 - x': anti-clockwise $r\phi$
 - y': parallel to beamline, pointing west
 - ▶ z': radial, pointing inward
- Semi-regular patterns emerge from the differences: could indicate discrepancies in chamber center assumptions
 - especially sectors 8, 9, 10 $(-2.8 < \phi < -1.4)$

► Standard segment-extrapolation test was unavailable this week, so I implemented a version with more realistic track-propagation

 Local angle difference is difference of residuals with respect to the propagated tracker track

Jim Pivarski

$$\Delta \frac{dx}{dz}^{\mathsf{local}} = \Delta \frac{dx}{dz}_{\mathsf{st.2}} - \Delta \frac{dx}{dz}_{\mathsf{st.1}}$$

Local position difference also needs to correct for segment direction by a linear transformation (see left)

$$\Delta x^{\mathsf{local}} = \Delta x_{\mathsf{st.2}} - \Delta x_{\mathsf{st.1}} - L \cdot \Delta \frac{dx}{dz}_{\mathsf{st.1}}$$

- In the limit of linear track propagation, this is exactly a linear segment extrapolation
- ► This is how Millepede applies track corrections to realistically-modelled tracks (small linear transforms)

Segment differences (2)

Average ϕ of pair (rad)

► Two fits: linear $q/p_T \rightarrow 0$ and Gaussian of positive and negative separately

8/29

- ▶ linear q/p_T → 0 results are filled circles, squares, and triangles
- average of Gaussian fits are hollow
- ► 1.7–2.5× higher resolution in raw distributions and final results: RMS of stations 1–3 is 0.3 mm rather than 0.7 mm
- ▶ Reveals non-zero biases in alignment: $\mathcal{O}(0.2 \text{ mm})$

Segment differences: wheel -2 Jim Pivarski

- A complete set of linear and Gaussian fits is in SegmentDifferences.pdf
- Careful of difference in vertical scales

Globally-adjusted hardware geometry

Segment differences: wheel -1 Jim Pivarski

- A complete set of linear and Gaussian fits is in SegmentDifferences.pdf
- Careful of difference in vertical scales

Globally-adjusted hardware geometry

Segment differences: wheel 0

- A complete set of linear and Gaussian fits is in SegmentDifferences.pdf
- Careful of difference in vertical scales

Globally-adjusted hardware geometry

Segment differences: wheel +1 Jim Pivarski 12/29

- A complete set of linear and Gaussian fits is in SegmentDifferences.pdf
- ► Careful of difference in vertical scales

Globally-adjusted hardware geometry

Segment differences: wheel +2 Jim Pivarski 13/29

Careful of difference in vertical scales

Globally-adjusted hardware geometry

Distribution of medians (1)

Jim Pivarski 14/29

- ► Each histogram entry is one chamber's median of residuals
 - ► tests self-consistency; median is a different way to be insensitive to residuals tails than the fitting method
- ► CRAFT-08 RMS Δx : 0.190 mm $\Delta \frac{dx}{dz}$: 0.085 mrad Δy : 0.166 mm $\Delta \frac{dy}{dz}$: 0.885 mrad; now we don't align $\Delta \frac{dy}{dz}$, which feeds into Δy

Distribution of medians (2)

Jim Pivarski 15/29

- ► CRAFT-08 RMS Δx : 0.190 mm $\Delta \frac{dx}{dz}$: 0.085 mrad Δy : 0.166 mm $\Delta \frac{dy}{dz}$: 0.885 mrad; now we don't align $\Delta \frac{dy}{dz}$, which feeds into Δy
- Now also restricting to the set of CRAFT-08 chambers (wheel -1, 0, +1, all sectors except 1 and 7)

- Residuals as a function of ϕ , z with chamber boundaries as dashed lines, color scale is 2-D plot, points are profile
- Top: globally-adjusted hardware geometry, bottom: track-based
- If the discrepancy were due to distortions in the track source or propagation, it wouldn't change abruptly at chamber boundaries
- Complete set in MapPlots.pdf

Fit plots

Jim Pivarski

- Overlay of fit function on residuals projections (after alignment)
- Bell-curves are Gaussians + tails, should be centered (except unaligned $\Delta \frac{dy}{dz}$)
- Scatter plots are position-angle correlations, should not be flat (propagation)
- Points with error bars are residuals versus everything, should be flat (geometric)
- Complete set in FitFunctions.pdf

Sawtooth effect?

Jim Pivarski 18/29

- Sawtooth effect is not very evident, scanning through map and fit plots
- ▶ Below is an old example plot showing the sawtooth:

- \sim 5 mm difference in Δx residuals from x=-100 to +100 cm
- How much is it now? $9_{10-8-6}^{\text{L...}}$ Fit all Δx vs. x distributions, evaluate at ± 100 cm (new histogram on right)

- Less than half as large, and not all in the same direction
- ► Maybe due to calibration, and that was improved? (a guess)

- Sequence:
 - 1. 2009 hardware alignment (δ_z and δ_{ϕ_x})
 - 2. adjust each ring's global δ_x , δ_y , δ_{ϕ_z} by hand
- ▶ Where each final aligned position/orientation comes from:
 - ▶ all internal layers relative to chamber center: ideal
 - ▶ all chambers δ_{ϕ_x} and δ_z : (1) hardware
 - ▶ all chambers δ_x , δ_y , δ_{ϕ_z} : (2) ring adjustment
- Track-based alignment parameters
 - Dataset: /Cosmics/CRAFT09-CSCSkim_BFieldStudies-CRAFT09_R_V4_CosmicsSeq_v1/RAW-REC0
 - Run range: 109011–109624 (tracker "peak mode")
 - Release: CMSSW_3_2_7
 - ▶ GlobalTag: CRAFT09_R_V4::All
 - ▶ Tracks: $100 < p_T < 200$ GeV, #tracker hits ≥ 15 , tracker $\chi^2/{\rm ndf} < 10$, no rejection of TID/TEC
 - No special correction for $\vec{B}(\vec{x})$, dE/dx
 - Alignment performed by fitting map plots
- Note: statistical errors in individual-chamber alignments are unacceptably high: 1 mrad in ϕ_y ; that's why they were only collectively aligned
- This procedure compliments the beam-halo procedure well (which aligns individual chambers, but not the rings relative to the tracker)

Ring fits (1/8)

Jim Pivarski

20/29

Global o position (rad)

Ring fits (2/8)

Jim Pivarski

ME+1/2 before ring alignment

ME+1/2 after ring alignment

Ring fits (3/8)

Jim Pivarski

ME+1/3 before ring alignment

ME+1/3 after ring alignment

Ring fits (4/8)

Jim Pivarski 23/29

ME+2/1 before ring alignment ropresidual (mm)

Global o position (rad)

Ring fits (5/8)

Jim Pivarski

Global o position (rad)

Ring fits (6/8)

Jim Pivarski 25/29

ME+3/1 before ring alignment

ME+3/1 after ring alignment

Ring fits (7/8)

Jim Pivarski

ME+3/2 before ring alignment

Ring fits (8/8)

Jim Pivarski 27/29

Global o position (rad)

Table of ring corrections

Jim Pivarski 28/29

- ► Grouped items are physically connected to the same disk; values are correlated but not exactly equal within fitting errors
- ightharpoonup Large χ^2/ndf expected from incomplete chamber alignment

ring	$\delta_{\scriptscriptstyle X}$ (mm)	δ_y (mm)	$\delta_{\phi_{z}}$ (mrad)	χ^2/ndf
ME-4/1	3.20 ± 0.17	-3.85 ± 0.29	1.78 ± 0.05	12.7426
ME-3/2	2.03 ± 0.05	-1.86 ± 0.08	1.95 ± 0.01	52.4465
ME-3/1	2.77 ± 0.13	-4.75 ± 0.21	2.61 ± 0.04	24.2564
ME-2/2	1.87 ± 0.05	-0.82 ± 0.07	1.55 ± 0.01	41.8597
ME-2/1	2.54 ± 0.10	-3.12 ± 0.17	2.37 ± 0.04	27.4691
ME-1/3	1.93 ± 0.08	1.01 ± 0.12	0.41 ± 0.01	45.7221
ME-1/2	3.86 ± 0.06	-2.00 ± 0.09	0.83 ± 0.01	17.4924
$ME{-}1/1$	2.97 ± 0.11	-4.13 ± 0.17	0.64 ± 0.05	9.08853
ME+1/1	5.06 ± 0.11	-0.86 ± 0.16	0.19 ± 0.05	3.48464
ME+1/2	5.20 ± 0.06	0.92 ± 0.09	0.22 ± 0.01	17.3722
ME+1/3	4.66 ± 0.07	2.37 ± 0.11	0.05 ± 0.01	32.8144
ME+2/1	4.94 ± 0.10	3.10 ± 0.16	0.03 ± 0.04	20.9203
ME+2/2	4.65 ± 0.04	3.41 ± 0.07	-0.05 ± 0.01	43.0836
ME+3/1	4.42 ± 0.14	5.72 ± 0.24	-0.32 ± 0.05	55.0455
ME+3/2	4.86 ± 0.05	2.98 ± 0.08	-0.27 ± 0.01	46.2096
ME+4/1	$\sim 5.13\pm0.25$	$\sim 8.27\pm0.30$	$\sim 0.55\pm0.08$	78.0725

Jim Pivarski 29/29

▶ DT alignment constructed from hardware, link, and tracks:

/afs/cern.ch/user/p/pivarski/public/DTAlignmentRcd_CRAFT09_segments-hardware-globalMuons_3XY_v8_offline.db
.../DTAlignmentRcd_CRAFT09_segments-hardware-globalMuons_3XY_v8_offline_RELT0IDEAL.xml
.../DTAlignmentRcd_CRAFT09_segments-hardware-globalMuons_3XY_v8_offline_RELT0NONE.xml

- tags: DTAlignmentRcd and DTAlignmentErrorRcd (infinite for unaligned chambers)
- CSC alignment constructed from hardware and tracks:

```
/afs/cern.ch/user/p/pivarski/public/CSCAlignmentRcd_CRAFT09_hardware-globalMuons_3XY_v4_offline.db
.../CSCAlignmentRcd_CRAFT09_hardware-globalMuons_3XY_v4_offline_RELTOIDEAL.xml
.../CSCAlignmentRcd_CRAFT09_hardware-globalMuons_3XY_v4_offline_RELTONONE.xml
```

- tags: only CSCAlignmentRcd
- Corresponding tracker geometry: MergedCenteredObject.db
- ▶ If tracker alignment group choses their other geometry, we have an alignment for that too: it differs from the one presented here by 0.25 mm, 0.05 mrad (similarly for CSCs)