Learning-Augmented Algorithms

Mario Lavina

London School of Economics

April 1, 2022

1

Machine learning: deals with uncertainty by making predictions of the future using past data.

Machine learning: deals with uncertainty by making predictions of the future using past data.

Online algorithms: are algorithms that do not know the full input in advance but are designed to work under the worst-case scenario.

Machine learning: deals with uncertainty by making predictions of the future using past data.

Adapts to input data

Online algorithms: are algorithms that do not know the full input in advance but are designed to work under the worst-case scenario.

Machine learning: deals with uncertainty by making predictions of the future using past data.

Adapts to input data

Online algorithms: are algorithms that do not know the full input in advance but are designed to work under the worst-case scenario.

Robust to outliers

Measuring Performance

Definition (Competitive Ratio)

The Competitive Ratio is the ratio of the cost of the algorithm we are analysing in the worst-case scenario and the optimal cost of the offline algorithm, over all possible inputs.

Ski Rental Problem

Ski Rental Problem

- A skier wants to ski for the length of the ski season x.
- He can rent the skis for 1 for one day.
- Or he can buy the skis for a cost of **b**.
- The problem is that we do not know **x** in advance.
- Following algorithms try to solve the question: When should the skier the buy the skis?

Section 1

Ski Rental without Prediction

Algorithm 1: A Deterministic Algorithm

Algorithm 1 Deterministic algorithm

1: while current day is not equal to b do

2: Rent skis

3: end while

4: Buy skis

Algorithm 1: A Deterministic Algorithm

Algorithm 1 Deterministic algorithm

1: while current day is not equal to b do

2: Rent skis

3: end while

4: Buy skis

Theorem

Competitive Ratio of Algorithm 1 is 2

Algorithm 2: A Randomised Algorithm

Algorithm 2 Randomised algorithm

- 1: **k** given from randomised function
- 2: Rent for k-1 days
- 3: Buy on kth day

Algorithm 2: A Randomised Algorithm

Algorithm 2 Randomised algorithm

- 1: **k** given from randomised function
- 2: Rent for k-1 days
- 3: Buy on kth day

Theorem

Competitive Ratio of Algorithm 2 is $\frac{e}{e-1} \approx 1.58$

7

Section 2

Ski Rental with Prediction

Ski Rental with Prediction

Ski Rental with Prediction

Notation:

 y = predicted number of days by the machine learning algorithm.

Ski Rental with Prediction

Notation:

- y = predicted number of days by the machine learning algorithm.
- $\eta = |\mathbf{x} \mathbf{y}|$ = prediction error.

1. **Independence:** The algorithm should be independent of the machine-learned prediction and make no assumptions about the prediction's error types and distribution.

- Independence: The algorithm should be independent of the machine-learned prediction and make no assumptions about the prediction's error types and distribution.
- 2. **Consistency:** If the prediction is good, then the algorithm should perform close to the best offline algorithm. We say that an algorithm is β -consistent if when $\eta = \mathbf{0}$ the Competitive Ratio $= \beta$.

- Independence: The algorithm should be independent of the machine-learned prediction and make no assumptions about the prediction's error types and distribution.
- 2. **Consistency:** If the prediction is good, then the algorithm should perform close to the best offline algorithm. We say that an algorithm is β -consistent if when $\eta = \mathbf{0}$ the Competitive Ratio $= \beta$.
- 3. **Robustness:** If the prediction is bad, then the algorithm should perform close to that of an algorithm that does not use predictors. We say that an algorithm is γ -robust if the Competitive Ratio is less than or equal to γ for all possible inputs.

Algorithm 3: A Simple Consistent, Non-Robust Algorithm

Algorithm 3 Simple 1-consistent algorithm

1: if $y \ge b$ then

2: Buy on the first day

3: **else**

4: Keep renting for all the ski season

5: end if

Algorithm 3: A Simple Consistent, Non-Robust Algorithm

Algorithm 3 Simple 1-consistent algorithm

1: if y > b then

2: Buy on the first day

3: **else**

4: Keep renting for all the ski season

5: end if

Theorem

Algorithm 3 is 1-consistent but not robust

Algorithm 4: A Deterministic Robust and Consistent Algorithm

```
Let \lambda \in (\mathbf{0}, \mathbf{1})
```

Algorithm 4 Deterministic robust and consistent algorithm

1: if $y \ge b$ then

2: Buy on day $\lceil \lambda \boldsymbol{b} \rceil$

3: **else**

4: Buy on day $\lceil \frac{b}{\lambda} \rceil$

5: end if

Algorithm 4: A Deterministic Robust and Consistent Algorithm

Let $\lambda \in (\mathbf{0}, \mathbf{1})$

Algorithm 4 Deterministic robust and consistent algorithm

1: if $y \ge b$ then

2: Buy on day $\lceil \lambda \boldsymbol{b} \rceil$

3: **else**

4: Buy on day $\lceil \frac{b}{\lambda} \rceil$

5: **end if**

Theorem

Algorithm 4 is $(1 + \lambda)$ -consistent and $\left(\frac{1+\lambda}{\lambda}\right)$ -robust.

Algorithm 5: A Randomised Robust and Consistent Algorithm

Algorithm 5 Randomised robust and consistent algorithm

```
Let \lambda \in (\frac{1}{h}, 1)
1: if y > b then
         Let \mathbf{k} \leftarrow \lfloor \lambda \mathbf{b} \rfloor
         Define q_i \leftarrow (\frac{b-1}{b})^{k-i} \frac{1}{b(1-(1-1/b)^k)} for all 1 \le i \le k
4:
          Choose j \in \{1, 2, ..., k\} randomly from distribution defined by q_i
5:
          Buy on day i
6: else
7:
         Let I \leftarrow \lceil \frac{b}{\lambda} \rceil
          Define r_i \leftarrow (\frac{b-1}{b})^{l-i} \frac{1}{b(1-(1-1/b)^l)} for all 1 \leq i \leq l
8:
9:
          Choose j \in \{1, 2, ..., I\} randomly from distribution defined by r_i
10:
           Buy on day i
11: end if
```

Algorithm 5: A Randomised Robust and Consistent Algorithm

Algorithm 5 Randomised robust and consistent algorithm

```
Let \lambda \in (\frac{1}{h}, 1)
1: if y > b then
         Let \mathbf{k} \leftarrow \lfloor \lambda \mathbf{b} \rfloor
         Define q_i \leftarrow (\frac{b-1}{b})^{k-i} \frac{1}{b(1-(1-1/b)^k)} for all 1 \le i \le k
4:
          Choose j \in \{1, 2, ..., k\} randomly from distribution defined by q_i
5:
          Buy on day i
6: else
      Let I \leftarrow \lceil \frac{b}{\lambda} \rceil
7:
          Define r_i \leftarrow (\frac{b-1}{b})^{l-i} \frac{1}{b(1-(1-1/b)^l)} for all 1 \le i \le l
8:
9:
          Choose j \in \{1, 2, ..., I\} randomly from distribution defined by r_i
10:
           Buy on day i
```

Theorem

11: end if

Algorithm 5 is
$$\left(\frac{\lambda}{1-e^{-\lambda}}\right)$$
-consistent and $\left(\frac{1}{1-e^{-(\lambda-\frac{1}{b})}}\right)$ -robust.

Section 3

Ski Rental with Multiple Predictions

Ski Rental with Multiple Prediction

Ski Rental with Multiple Prediction

Notation:

- y_1 is the prediction of machine learning algorithm 1.
- y₂ is the prediction of machine learning algorithm 2.

Ski Rental with Multiple Prediction

Assumption

One of the machine learning algorithms has a prediction error of **0** meaning it always outputs the correct length of the season.

There can be different cases:

1. Machine learning algorithms agree: $(y_1 \ge b \text{ and } y_2 \ge b)$ or $(y_1 < b \text{ and } y_2 < b)$

There can be different cases:

- 1. Machine learning algorithms agree: $(y_1 \ge b \text{ and } y_2 \ge b)$ or $(y_1 < b \text{ and } y_2 < b)$
- 2. Machine learning algorithms disagree: $y_1 < b$ and $y_2 \ge b$

There can be different cases:

- 1. Machine learning algorithms agree: $(y_1 \ge b \text{ and } y_2 \ge b)$ or $(y_1 < b \text{ and } y_2 < b)$
- 2. Machine learning algorithms disagree: $y_1 < b$ and $y_2 \ge b$
 - If we trust machine learning algorithm 1, the worst-case scenario occurs when y_1 is close to b but y_2 is correct. Competitive Ratio = $\frac{b+y_1}{b} \approx 2$.

There can be different cases:

- 1. Machine learning algorithms agree: $(y_1 \ge b \text{ and } y_2 \ge b)$ or $(y_1 < b \text{ and } y_2 < b)$
- 2. Machine learning algorithms disagree: $y_1 < b$ and $y_2 \ge b$
 - If we trust machine learning algorithm 1, the worst-case scenario occurs when y₁ is close to b but y₂ is correct.
 Competitive Ratio = b+y₁/b ≈ 2.
 - If trust machine learning algorithm 2, the worst-case scenario occurs when y_1 is close to 0 and y_1 is correct. Competitive Ratio = $\frac{b}{y_1}$.

Algorithm 6: A Deterministic Algorithm with Two Predictions

Hence our strategy for this deterministic algorithm is to balance these two Competitive Ratios so that we are covered in extreme situations:

$$rac{oldsymbol{b}}{oldsymbol{\gamma}} = rac{oldsymbol{b} + oldsymbol{\gamma}}{oldsymbol{b}}$$

If we solve this equation, we get $\gamma = \frac{-b+b\sqrt{5}}{2}$

Algorithm 6: A Deterministic Algorithm with Two Predictions

Algorithm 6 Deterministic algorithm with 2 machine learning models

```
\gamma_0=0, \gamma_1=\frac{-b+b\sqrt{5}}{2}, \gamma_2=b
```

1: for i = 1 to 2 do

2: **if** there is no prediction in $[\gamma_{i-1}, \gamma_i)$ then

3: Rent until γ_{i-1} and buy after γ_{i-1} if the season continues

1: break

5: end if 6: end for

7: Keep renting for all the ski season

Algorithm 6: A Deterministic Algorithm with Two Predictions

Algorithm 6 Deterministic algorithm with 2 machine learning models

```
\gamma_0=0, \gamma_1=rac{-b+b\sqrt{5}}{2}, \gamma_2=b
```

1: for i = 1 to 2 do

break

2: **if** there is no prediction in $[\gamma_{i-1}, \gamma_i)$ then

3: Rent until γ_{i-1} and buy after γ_{i-1} if the season continues

4:

5: end if

6: end for

7: Keep renting for all the ski season

Theorem

Algorithm 6 has a Competitive Ratio of $\frac{1+\sqrt{5}}{2} \approx 1.618$.

Notation:

Let p be the probability that y₂ is correct

Notation:

Let p be the probability that y₂ is correct

As before, we are going to balance the two extreme Competitive Ratios so that we are covered in extreme situations

$$\frac{\boldsymbol{p}\boldsymbol{b} + (\boldsymbol{1} - \boldsymbol{p})\boldsymbol{y}_1}{\boldsymbol{y}_1} = \frac{\boldsymbol{p}\boldsymbol{b} + (\boldsymbol{1} - \boldsymbol{p})(\boldsymbol{b} + \boldsymbol{y}_1)}{\boldsymbol{b}}$$

Notation:

Let p be the probability that y2 is correct

As before, we are going to balance the two extreme Competitive Ratios so that we are covered in extreme situations

$$\frac{\boldsymbol{\rho}\boldsymbol{b} + (\mathbf{1} - \boldsymbol{\rho})\boldsymbol{y_1}}{\boldsymbol{v_1}} = \frac{\boldsymbol{\rho}\boldsymbol{b} + (\mathbf{1} - \boldsymbol{\rho})(\boldsymbol{b} + \boldsymbol{y_1})}{\boldsymbol{b}}$$

If we solve this equation, we get $\boldsymbol{p}=\frac{y_1^2}{y_1^2-y_1+1}$ so the Competitive Ratio for this algorithm is $\frac{b}{y_1^2-y_1+1}$. Therefore the Competitive Ratio in the worst-case scenario occurs when $y_1=\frac{b}{2}$.

Algorithm 7 Randomised Algorithm with Multiple Predictions

```
Let p = \frac{b^2}{b^2 - 2b + 4}

1: if (y_1 \le b \text{ and } y_2 > b) then

2: Buy on the first day with probability p.

3: Buy on day y_1 with probability 1 - p.

4: else if (y_2 \le b \text{ and } y_1 > b) then

5: Buy on the first day with probability 1 - p.

6: Buy on day y_2 with probability p.

7: else if (y_2, y_1 > b) then

8: Buy on the first day.

9: else

10: Keep renting until the ski season ends
```

Algorithm 7 Randomised Algorithm with Multiple Predictions

```
Let p = \frac{b^2}{b^2 - 2b + 4}

1: if (y_1 \le b \text{ and } y_2 > b) then

2: Buy on the first day with probability p.

3: Buy on day y_1 with probability 1 - p.

4: else if (y_2 \le b \text{ and } y_1 > b) then

5: Buy on the first day with probability 1 - p.

6: Buy on day y_2 with probability p.

7: else if (y_2, y_1 > b) then

8: Buy on the first day.

9: else

10: Keep renting until the ski season ends

11: end if
```

Theorem

Algorithm 7 achieves a Competitive Ratio of $\frac{4}{3}$.

Conclusion and Results

Algorithm	Consistency	Robustness	Competitive Ratio
Algorithm 1			2
Algorithm 2			$\frac{e}{e-1} \approx 1.58$
Algorithm 3	1	Unbounded	
Algorithm 4	$1 < (1 + \lambda) < 2$	$2<\frac{1+\lambda}{\lambda}$	
Algorithm 5	$egin{array}{c} 1 < (1 + \lambda) < 2 \ 1 < rac{\lambda}{1 - e^{-\lambda}} < 1.59 \end{array}$	$1.68 < \frac{1}{1-e^{-(\lambda-\frac{1}{b})}}$	
Algorithm 6			$rac{1+\sqrt{5}}{2}pprox 1.62$ $rac{4}{3}pprox 1.33$
Algorithm 7			$\frac{4}{3} \approx 1.33$