Julius-Maximilians-Universität Würzburg Institut für Mathematik Lehrstuhl für Mathematik III Geometrie

Bachelorarbeit

Der Vier-Farben-Satz

Andre Löffler

Abgegeben am DD.month.YYYY

Betreuer:

Dr. Theo Grundhöfer

Inhaltsverzeichnis

1	Einleitung	3
2	Definitionen	
	2.1 Topologische Definitionen	5
	2.2 Kombinatorische Definitionen	7
3	Übergang zwischen Topologie und Kombinatorik	13
4	Vorüberlegungen	14
	4.1 Einschränkungen für minimale Gegenbeispiele	14
5	Der Beweis von Appel und Haken	16
	5.1 Die Konfigurationen	16
	5.2 Reduzierbarkeit	18
6	Der Beweis von Robertson, Sanders, Seymour und Thomas	19
	6.1 Konfigurationen	19
	6.2 Reduzierbarkeit	23
	6.3 Zwangsläufigkeit	29
7	Umformulierungen	31
	Literatur	32

1 Einleitung

Die Formulierung des Vier-Farben Satzes geht auf eine Beobachtung zurück, die Francis Guthrie im Jahr 1852 machte. Francis Guthrie studierte Rechtswissenschaften, war Hobbybotaniker und hatte einen Abschluss als Mathematiker. Er versuchte, eine Landkarte der Grafschaften Englands zu illustrieren, und kam zu einer recht anschaulichen Vermutung, die Mathematiker 150 Jahre lang beschäftigen sollte.

Francis' Bruder Frederick Guthrie wand sich am 23. Oktober 1852 mit diesem Problem an seinen Lehrer Augustus de Morgan, der zu dieser Zeit am University College in London unterrichtet. Fasziniert von dieser Problematik schrieb de Morgan einen Brief an Sir William Rowan Hamilton. Dieser Notiz ist die erste schriftliche Formulierung des Vierfarbenproblems zu entnehmen:

Satz 1.1 (historische Formulierung):

A student of mine asked me to day to give him reason for a fact which I did not know was a fact, and do not yet. He says, that if a figure be any how divided and the compartments differently coloured so that figures with any portion of common boundary <u>line</u> are differently coloured – four colours may be wanted but not more. The following is his care in which four are wanted. [...]

Query cannot a necessity for five or more be invented. As far as I see at this moment, if four <u>ultimate</u> compartments have each boundary line in common with one of the others, three of them inclose the fourth, and prevent any fifth from connexion with it. If this be true, four colours will colour any possible map without any necessity for colour meeting colour except at a point. [Fri94]

Die ursprüngliche Fragestellung lautet also: Kann man eine beliebige Landkarte so einfärben, dass keine zwei Länder, die sich den Abschnitt einer Grenzlinie teilen, die gleiche Farbe haben, wenn man die Farbpalette auf vier Farben beschränkt? Eine Landkarte lässt sich als mathematisches Konstrukt auffassen, jedoch bedarf es dazu einiger Überlegungen. R. und G. Fritsch definieren eine Landkarte \mathcal{L} als "[...] eine endliche Menge von Jordanbögen in der Ebene \mathbb{R}^2 derart, dass der Durchschnitt von je zwei verschiedenen Jordanbögen in \mathcal{L} entweder leer oder ein gemeinsamer Randpunkt dieser Jordanbögen ist." [Fri94] Diese Definition erscheint auf den ersten Blick eigenartig, benutzt sie doch keinen der zu erwartenden Begriffe wie "Land" oder "Grenze".

Die historische Formulierung wirkt nach heutigen Maßstäben etwas geschwollen und ist sprachlich nicht mehr zeitgemäß. Heute werden Aussagen zumeist prägnanter abgefasst. Bei [Fri94] findet

 $^{^1}$ Um alle beteiligten Personen, ihre Lebensläufe und ihr Zusammenwirken besser kennenzulernen empfiehlt sich die Lektüre des ersten Kapitels von [Fri94]

man eine aktuelle Variante auf Seite 87:

Satz 1.2 (topologische Formulierung):

Es seien \mathcal{L} eine Landkarte, $\mathcal{M}_{\mathcal{L}}$ die Menge der Länder von \mathcal{L} und $n \in \mathbb{N}$. Eine n-Färbung von \mathcal{L} ist eine Abbildung $\varphi : \mathcal{M}_{\mathcal{L}} \to \{1, \cdots, n\}$. Eine n-Färbung ist zulässig, wenn benachbarte Länder immer verschiedene Werte ("Farben") haben.

Um dies korrekt erfassen und schließlich auch beweisen zu können, werden topologische Resultate wie der Jordansche Kurvensatz benutzt. Diese wiederum erfordern zahlreiche Vorüberlegungen, die sich sehr umfangreich gestalten und wenig zum eigentlichen Beweis beitragen. Stattdessen werden wir eine andere Formulierung des Vier-Farben-Satzes benutzen, die kombinatorisch motiviert ist.

Satz 1.3 (Graphentheoretische Formulierung):

Jeder planare Graph ohne Schleifen ist 4-färbbar.

Diese Variante wirft einige Fragen nach Begrifflichkeiten auf, welche jedoch bei genauerer Betrachtung leicht verständlich sind. Im nächsten Abschnitt werden wir uns zunächst den allgemeinen Definitionen widmen, die nötig sind, um diese Problematik graphentheoretisch angehen zu können. Danach werfen wir einen Blick auf den älteren Beweis von Appel und Haken, um den Ausgangspunkt für die Arbeit von Robertson, Sanders, Seymour und Thomas darzulegen. Im Anschluss werden wir diese Arbeit nachvollziehen, indem die wesentlichen Schritte, die "Reduktion" und die "Zwangsläufigkeit", genauer beleuchtet werden. Abschließend werden noch einige Umformulierungen und Anwendungen des Vier-Farben-Satzes diskutiert.

2 Definitionen

2.1 Topologische Definitionen

Ohne genauer auf die topologischen Grundlagen einzugehen, wollen wir trotzdem die Äquivalenz zwischen 1.2 und 1.3 zeigen. Dazu bedarf es allerdings eines Mindestmaßes an Begrifflichkeiten, die im folgenden erläutert werden.

Wesentlich für die Frage, ob eine Landkarte färbbar ist, ist die Frage, was eine solche eigentlich ist. Der Vollständigkeit halber ist also hier nochmals die Definition zu nennen, die bereits aus der Einleitung bekannt ist, sowie einige zusätzliche Begriffe.

Definition 1 (Jordanbogen, Endpunkt):

Eine Teilmenge C der Ebene \mathbb{R}^2 ist ein *Jordanbogen*, wenn es eine injektive stetige Abbildung $c:[0,1]\mapsto\mathbb{R}^2$ mit $C=\{c(t)|t\in[0,1]\}$ gibt. Ferner bezeichnet man die Endpunkte eines Jordanbogens mit $c_j(0)$ und $c_j(1)$.

Damit können wir nun eine Landkarte als mathematisches Konstrukt erklären.

Definition 2 (Landkarte, Ecke, neutrale Punkte, Neutralitätsmenge, Land):

- Eine Landkarte \mathcal{L} ist eine endliche Menge von Jordanbögen in der Ebene \mathbb{R}^2 derart, dass der Durchschnitt von je zwei verschiedenen Jordanbögen in \mathcal{L} entweder leer oder ein gemeinsamer Endpunkt dieser Jordanbögen ist.
- \bullet Die Anzahl aller Jordanbögen einer Karte $\mathcal L$ bezeichnen wir mit $k_{\mathcal L}.$
- Ein Punkt in \mathbb{R}^2 ist eine $Ecke\ v_i$ von \mathcal{L} , wenn er Endpunkt eines Jordanbogens von \mathcal{L} ist. Mit $v_{\mathcal{L}}$ bezeichnen wir die Anzahl der Ecken von \mathcal{L} .
- \bullet Ein neutraler Punkt ist ein Punkt der zu einem Jordanbogen von $\mathcal L$ gehört.
- Die Neutralitätsmenge $N_{\mathcal{L}}$ von \mathcal{L} ist die Menge aller ihrer neutralen Punkte, also die Vereinigung aller Jordanbögen von \mathcal{L} .

• Ein Land von \mathcal{L} ist eine Bogenkomponente des Komplements der Neutralitätsmenge von \mathcal{L} , das heißt, von $\mathbb{R}^2 \setminus N_{\mathcal{L}}$. Die Anzahl aller Länder ist mit $f_{\mathcal{L}}$ bezeichnet.

Eine besondere Form von Landkarten wird für unsere späteren Betrachtungen besonders relevant sein:

Definition 3 (Reguläre Landkarte):

Eine Landkarte \mathcal{L} ist regulär, wenn sie die folgenden Eigenschaften besitzt:

- Sie ist nicht leer,
- $N_{\mathcal{L}}$ ist zusammenhängend,
- sie enthält keinen Jordanbogen B, der zwei Komponenten verbindet, die in der Landkarte
 \$\mathcal{L} \ \{B\}\$ nicht verbunden w\(\text{aren}\),
- es gibt keine Ecke, die Endpunkt von nur einem Jordanbogen ist,
- je zwei Länder berühren höchstens einen gemeinsamen Jordanbogen.

Zusätzlich brauchen wir noch ein weiteres Konstrukt, das sich direkt aus Landkarten ableiten lässt.

Definition 4 (duale Landkarte):

Eine Landkarte \mathcal{L}^* heißt dual zu der Landkarte \mathcal{L} , wenn gilt:

- 1. keine Ecke von \mathcal{L}^* ist ein neutraler Punkt von \mathcal{L} ,
- 2. jedes Land von \mathcal{L} enthält genau eine Ecke von \mathcal{L}^* ,
- 3. zwei Ecken von \mathcal{L}^* sind genau dann durch eine Kante in \mathcal{L}^* verbunden, wenn sie in benachbarten Ländern liegen,
- 4. eine Kante von \mathcal{L}^* enthält nur Punkte der beiden Länder von \mathcal{L} , denen ihre Ecken angehören, und genau einen inneren Punkt einer gemeinsamen Grenzlinie dieser Länder.

Das zu jeder Landkarte mit mindestens zwei Ländern stets eine duale Landkarte existiert, lässt sich ebenfalls [Fri94] entnehmen. Bei der dualen Landkarte handelt es sich um ein Konstrukt, das von einem Graphen im kombinatorischen Sinne nicht mehr weit entfernt ist, wie nach der Lektüre der nächsten Abschnitte ersichtlich wird. Anschaulich betrachtet entspricht das Dualisieren einer Karte dem Wählen einer Hauptstadt für jedes Land und dem Verbinden dieser Städte durch Autobahnen, die sich nicht kreuzen.

Eine Besonderheit stellen folgende Landkarten dar.

Definition 5 (Kubische Landkarte):

Eine Landkarte heißt kubisch, wenn sie regulär ist und alle Ecken zwischen genau drei Ländern liegen.

Für nichtleere und zusammenhängende Landkarten gilt die wohl bekannte $Eulersche\ Polyeder formel$

$$v_{\mathcal{L}} - k_{\mathcal{L}} + f_{\mathcal{L}} = 2$$

welche wir hier ohne Beweis angeben. Damit lässt sich die folgende Ungleichung zeigen, welche für den Beweis des Vier-Farben-Satzes von elementarer Bedeutung ist.

Satz 2.1 (Summe der Eckengrade):

Für reguläre Landkarten gilt:

$$\sum_{r=1}^{v_{\mathcal{L}}} (6 - d_{\mathcal{L}}(v_r)) \ge 12$$

Beweis. Mit der Eulerschen Polyederformel gilt:

$$\sum_{r=1}^{\nu_{\mathcal{L}}} (6 - d_{\mathcal{L}}(v_r)) = 6 \cdot v_{\mathcal{L}} - 2 \cdot k_{\mathcal{L}}$$

$$= 6 \cdot v_{\mathcal{L}} - 6 \cdot k_{\mathcal{L}} + 4 \cdot k_{\mathcal{L}}$$

$$\geq 6 \cdot v_{\mathcal{L}} - 6 \cdot k_{\mathcal{L}} + 6 \cdot f_{\mathcal{L}}$$

$$= 6 \cdot (v_{\mathcal{L}} - k_{\mathcal{L}} + f_{\mathcal{L}})$$

$$= 12$$

Diese Resultate lassen sich ebenfalls leicht auf die Strukturen der Kombinatorik übertragen.

2.2 Kombinatorische Definitionen

Um über Graphen und deren Färbbarkeit sinnvoll reden zu können, müssen zuerst einige gebräuchliche Definitionen gemacht werden.

Definition 6 (Graph, Knoten, Kante):

• Ein $Graph\ G$ ist ein Paar G=(V,E), wobei V eine endliche Menge ist, deren Elemente Knoten genannt werden, und E eine endliche Menge bestehend aus Kanten sind.

7

П

- Eine Kante $e \in E$ ist eine zweielementige Teilmenge von V, also $E \subseteq \{\{u,v\}|u,v\in V,u\neq v\}.$
- Die Menge der Knoten eines Graphen G wird auch mit V(G) bezeichnet, die Menge der Kanten mit E(G).

Oft werden wir auch die Bausteine einer Landkarte \mathcal{L} als Knoten- und Kantenmenge verwenden. Die Ecken von \mathcal{L} werden zu den Knoten des Graphen, die Jordanbögen von \mathcal{L} zu den Kanten des Graphen. Im weiteren betrachten wir vorwiegend endliche Graphen, außer es wird explizit anders angegeben. Auch schließt diese Definition Schleifen explizit aus. Schleifen sind Kanten, bei denen u=v gilt. Schleifen müssen bei Färbbarkeitsüberlegungen ausgeschlossen werden, denn könnte ein Knoten zu sich selbst benachbart sein, wäre es nicht möglich, für benachbarte Knoten stets unterschiedliche Farben zu wählen.

Um nun Bedingungen an die Färbbarkeit von Graphen stellen zu können, müssen noch die folgenden Begriffe definiert werden.

Definition 7 (Inzidenz, Adjazenz, Knotengrad, vollständiger Graph):

Sei G = (V, E) ein Graph. Dann sind die folgenden Bezeichnungen gebräuchlich:

- Ein Knoten $v \in V$ heißt inzident zu einer Kante $e \in E$, wenn eines der Elemente von e der Knoten v ist, also $v \in e$.
- Zwei verschiedene Knoten u, v heißen adjazent, wenn sie zur gleichen Kante inzident sind, d.h. $\{u, v\} \in E$.
- Für einen Knoten v ist der Grad von v definiert als die Anzahl der Kanten, die zu v adjazent sind. Es gilt $d_G(v) = \sharp \{\{v,b\} \in E | b \in V\}.$
- Ein Graph G heißt vollständig, wenn gilt: $E = \binom{V}{2} = \{\{u, v\} | u, v \in V, u \neq v\}.$

Für eine interessante Struktur benachbarter Knoten gibt es eine gebräuchliche Bezeichnung, auf die wir später zurückgreifen werden.

Definition 8 (Pfad, einfacher Pfad, disjunkte Pfade, Kreis, Ring, zusammenhängender Graph, k-facher Knotenzusammenhang):

Sei G = (V, E) ein Graph.

- Eine Folge (v_1, \dots, v_r) von mindestens drei Knoten heißt Pfad, wenn die auftretenden Knoten paarweise verschieden, aber je zwei Aufeinanderfolgende benachbart sind. Dann ist r die Länge des Pfades und die Verbindungskanten heißen Glieder.
- Ein Pfad heißt einfach, wenn zwei seiner Knoten nur dann benachbart sind, wenn sie im Pfad aufeinanderfolgenden. Oder genauer: Für die Indizes $j_1, j_2 \in \{1, \dots, r\}$ mit $|j_1 j_2| > 1$ sind die Knoten des Pfades v_{j_1} und v_{j_2} nicht benachbart.

- Zwei Pfade heißen *disjunkt*, wenn sie keine Knoten, die nicht erstes oder letztes Element der jeweiligen Folge sind, gemeinsam haben.
- \bullet Ein Pfad heißt *Kreis*, wenn v_1 und v_r ebenfalls benachbart sind.
- Ein Ring ist ein Kreis, der zusätzlich einfach ist.
- Ein Graph G heißt zusammenhängend, wenn für jedes Paar von Knoten $u, v \in V$ ein Pfad (u, \dots, v) existiert.
- Ein Graph G heißt k-fach knotenzusammenhängend, wenn mindestens k Knoten gelöscht werden müssen, damit der G nicht mehr zusammenhängend ist.

Ringe werden im Allgemeinen als wesentlicher Beitrag von Birkhoff auf dem Weg zur Lösung des 4-Farben-Problems angesehen, zuerst erwähnt in [Bir13].

Einiges Handwerkszeug ist noch nötig, um Strukturen prägnant und kurz beschreiben zu können.

Definition 9 (Teilgraph $G \setminus X$, $G \setminus Y$):

Sei G=(V,E) ein Graph, $X\subseteq V$ eine Teilmenge der Knoten und $Y\subseteq E$ eine Teilmenge der Kanten. Weiter sei F die Menge der Kanten f aus V mit $f\cap X\neq\emptyset$. Der Graph $G\setminus X=(V\setminus X,E\setminus F)$ unterscheidet sich von G derart, dass alle Knoten der Menge X und alle zu diesen Knoten adjazenten Kanten gelöscht werden. Ebenso ist $G\setminus Y=(V,E\setminus Y)$ der Graph, bei dem alle Kanten aus Y entfernt wurden.

Man sagt auch, ein Graph K = (E', V') ist Teilgraph von G = (E, V), falls gilt: $E' \subseteq E$ und $V' \subseteq V$.

Definition 10 (Kontraktion):

Durch Kontraktion erhält man aus einem Graphen einen anderen Graphen, indem man zwei adjazente Knoten v_1 und v_2 zusammenfasst. Man sagt, man kontrahiert v_2 auf v_1 , wenn man v_2 aus dem ursprünglichen Graphen entfernt und alle Kanten, zu denen v_2 inzident ist, zu v_1 führt. Dabei werden jene Kanten zu Knoten entfernt, wenn diese bereits zu v_1 adjazent waren.

Betrachtet man diesen Vorgang aus topologischer Sicht, entspricht eine Kontraktion einer Vereinigung zweier benachbarter Länder in der dualen Landkarte durch Aufheben ihrer gemeinsamen Grenze.

Da das Problem der 4-Färbbarkeit von Graphen von der Geographie motiviert ist, betrachten wir als Raum für unsere Knoten nur den \mathbb{R}^2 , also die Ebene.

Definition 11 (Planarität):

Ein Graph heißt *planar*, wenn seine Kanten so in der Ebene durch Jordanbögen darstellbar sind, dass sich diese höchstens in ihren Endpunkten schneiden.

Damit man sich planare Graphen noch leichter vorstellen kann, fügen wir hier noch folgendes Resultat ein.

Satz 2.2 (Wagner und Fáry):

Jeder Graph kann durch einen Homöomorphismus der Ebene auf sich in einen Streckengraphen überführt werden.

Dieser Satz liefert uns, dass es sich bei diesen Jordanbögen tatsächlich stets um gerade Verbindungsstrecken handeln kann. Für den Beweis dieses Resultats verweisen wir auf [Fri94, Seite 113], da er nur der Darstellung von Graphen nutzt und wenig zum eigentlichen Beweis beiträgt.

Planarität von Graphen wirkt auf den ersten Blick wie ein rein topologischer Begriff, jedoch gelang es Kuratowski, eine rein kombinatorische Charakterisierung von Planarität zu liefern.

Satz 2.3 (Kuratowski):

Ein Graph ist genau dann planar, wenn er zusammenhängend ist und sich durch (möglicherweise) mehrfache Kontraktion nicht in einen der beiden Graphen $K_{3,3}$ oder K_5 überführen lässt.

Auch dieser Beweis findet sich in der gängigen Literatur und wird daher an dieser Stelle nicht geführt. Jedoch wollen wir die beiden genannten Graphen kurz aufzeigen. Auf der linken Seite ist die übliche Darstellung des K_5 zu finden, auf der rechten Seite die des $K_{3,3}$.

Wir werden die Jordanbögen der Darstellung eines Graphen ebenfalls als *Kanten* bezeichnen. In der Ebene ist es leicht, die durch diese Kanten getrennten Flächen zu betrachten. Das führt uns zur folgenden Definitionen.

Definition 12 (Zeichnung):

Sei K = (V, E) ein Graph. Wir bezeichnen eine Zeichnung des Graphen K mit G(K) und meinen damit seine Darstellung durch Jordanbögen in der Ebene.

Hier benennen wir den eigentlichen Graphen mit K, weil wir uns später hauptsächlich für die Darstellung von sogenannten Konfigurationen interessieren.

Definition 13 (Facette, Außenfacette):

Sei G ein in der Ebene \mathbb{R}^2 gezeichneter Graph. Sei J_G die Vereinigung aller Jordanbögen dieser

Darstellung.

- Eine Facette ist eine Zusammenhangskomponente von $\mathbb{R}^2 \setminus J_G$. Alle Punkte der Kanten, die die Facette umfassen heißen ebenfalls inzident zu dieser Facette.
- Die unbeschränkte Facette, die von keiner Menge von Kanten vollständig umschlossen ist, wird Auβenfacette genannt.

Um die Eindeutigkeit der Außenfacette zu beweisen, bedarf es eigentlich des Jordanschen Kurvensatzes. Dieser kann bei [Fri94, Seite 53] nachgelesen werden.

Weiter gibt es einige gebräuchliche Namenskonventionen für Knoten, um deren Lange im Graphen genauer zu charakterisieren.

Definition 14 (Außenknoten, Innenknoten):

Sei G ein in der Ebene gezeichneter Graph.

- Jeder Knoten, der inzident zur Außenfacette von G ist, wird $Au\beta$ enknoten genannt.
- \bullet Jeder Knoten von G, der kein Außenknoten ist, ist ein Innenknoten.

Für unsere Betrachtungen ist eine besondere Form von Facetten interessant.

Definition 15 (Dreieck, Triangulation, Beinahe-Triangulation, Facettenmenge F(T)): Sei G ein in der Ebene gezeichneter Graph.

- Eine Facette ist genau dann ein *Dreieck*, wenn genau drei Knoten zu ihr inzident sind. Ein Ring ist genau dann ein Dreieck, wenn er aus drei Knoten besteht. Auch als Dreieck bezeichnen wir die drei Kanten zwischen je zwei der drei Knoten.
- Ein planarer Graph ist eine Triangulation, wenn jede seiner Facetten ein Dreieck ist.
- Eine Beinahe-Triangulation ist ein nichtleerer, planarer Graph G, bei dem jede beschränkte Facette ein Dreieck ist.
- Ist T eine Triangulation, so bezeichnet F(T) die Menge aller Facetten (innen und außen). Ist hingegen T eine Beinahe-Triangulation, so ist F(T) nur die Menge aller Innenfacetten.

Zeichnet man die Kanten eines planaren Graphen als gerade Linien, so entspricht diese Definition genau dem, was man sich unter einem Dreieck vorstellt. Das dies auch tatsächlich möglich ist, werden wir am Ende des Kapitels kurz diskutieren. Der Unterschied zwischen einer Triangulation und einer Beinahe-Triangulation liegt lediglich in der Form der Außenfacette des Graphen.

Definition 16 (Färbung, Farben, Gültigkeit):

Sei G = (V, E) ein Graph.

- Eine Färbung ist eine Abbildung $f:V\mapsto\mathbb{N}$, die jedem Knoten eines Graphen eine natürliche Zahl zuordnet.
- Die Elemente von C = f(V) nennt man Farben.
- Eine Färbung heißt gültig, wenn sie keinem Paar adjazenter Knoten $u, v \in V$ die gleiche Farbe zuordnet, also $c(u) \neq c(v)$ für $\{u, v\} \in E$.

Definition 17 (k-Färbbarkeit):

Ein Graph G heißt k-färbbar, wenn es eine gültige Färbung von G mit höchstens k Farben gibt.

Aus dieser Definition ergibt sich auch direkt, dass jeder k-färbbare Graph auch (k+1)-färbbar ist. Nun haben wir alle nötigen Definitionen zusammen, um unsere ersten Resultate zu zeigen. Das erste dient vorallem der vereinfachten Veranschaulichung, das zweite werden wir später noch benötigen.

Satz 2.4 (Vollständiger Graph mit fünf Knoten):

Es existiert kein vollständiger planarer Graph mit fünf Knoten.

Beweis. Es seien v_1, \dots, v_5 fünf Ecken in der Ebene. Für jedes Paar $i, j \in \{1, 2, 3, 4, 5\}$ mit i < j sei eine Kante $k_{i,j}$ zwischen v_i und v_j gegeben. Dieser Graph hat 10 Kanten, von denen insgesamt 7 entweder v_1 oder v_5 oder beide als Endpunkt haben. Wir zeigen nun, dass sich mindestens eine der 3 übrigen Kanten eine der anderen Kanten überkreuzen muss.

Durch Zusammensetzen erhält man drei Pfade $P_i = k_{1,i} \cup k_{i,5}$ für i = 2, 3, 4, die die Knoten v_1 und v_5 verbinden, die sich aber weder untereinander noch mit $k_{1,5}$ schneiden. O.B.d.A. sei P_3 der Pfad derart, dass von den beiden anderen einer in der Facette F und der andere außerhalb der Facette F begrenzt von $k_{1,5} \cup P_3$ liegt. Damit muss die Kante $k_{2,4}$ zwischen v_2 und v_4 mindestens einen inneren Punkt y mit dem Rand von F gemeinsam haben, also mit einer der Kanten $k_{1,5}, k_{1,3}, k_{3,5}$. Da $k_{2,4}$ keine der drei beteiligten Ecken trifft, muss y ein innerer Punkt einer dieser Kanten sein.

Dieser Beweis ist ebenfalls in [Fri94, Satz 4.1.2] zu finden, allerdings in einer topologischen Variante mittels Jordanbögen.

Satz 2.5 (Weiske):

Es gibt keine Landkarte \mathcal{L} mit fünf paarweise benachbarten Ländern.

Beweis. Angenommen, es gäbe eine solche Landkarte. Betrachte dazu die zu \mathcal{L} duale Landkarte. Diese ist ein Graph mit 5 Ecken, die paarweise verbunden sind. Einen solchen Graphen kann es aber nach Satz 2.4 nicht geben. Widerspruch.

3 Übergang zwischen Topologie und Kombinatorik

Zunächst müssen wir uns noch davon überzeugen, dass die topologische Formulierung (Satz 1.2) und die kombinatorische Formulierung (Satz 1.3) des 4-Farben-Problems auch tatsächlich äquivalent sind. Dazu hilft uns folgender Satz:

Satz 3.1 (Äquivalenz der Formulierungen):

Der topologische Vier-Farben-Satz ist genau dann wahr, wenn jeder planare Graph eine zulässige 4-Färbung besitzt.

Beweis nach [Fri94]. Das diese Bedingung hinreichend ist, ergibt sich, wenn man die Definition der dualen Landkarte betrachtet. Betrachte dazu eine Landkarte und einen Graphen, dessen Knotenzahl der Anzahl der Länder entspricht. Ordne nun jedem Land eindeutig einen Knoten zu. Füge nun Kanten zwischen den Knoten hinzu, deren Länder in der dualen Landkarte benachbart sind. Jedes Land der dualen Karte kann auf einen Knoten im Graphen abgebildet werden. Ist der Graph 4-färbbar, ist es somit auch die Landkarte.

Die Notwendigkeit zeigen wir, indem wir zeigen, dass es kein minimales Gegenbeispiel geben kann. Angenommen, der topologische Vier-Farben-Satz sei wahr. Betrachte einen Graphen $G=(V,\mathcal{L})$, der ein Gegenbeispiel für die 4-Färbbarkeit ist, derart dass die Anzahl seiner Knoten minimal ist. Nun zeigen wir, dass wir für die Landkarte \mathcal{L} annehmen können, dass sie regulär und vollständig ist. Ist \mathcal{L} nicht vollständig, so können wir endlich viele Kanten hinzunehmen, ohne die Eckenzahl erhöhen zu müssen, und erhalten den vollständigen Graphen $G'=(V,\mathcal{L}')$. Dadurch wird das zu lösende Problem höchstens schwieriger. Wir können also G als vollständig annehmen.

Ein minimales Gegenbeispiel hat nach Satz 2.4 mindestens fünf Knoten, ein vollständiger Graph mit höchstens zwei Gebieten hat höchstens drei Ecken. Also hat G mindestens zwei Facetten und ist somit regulär.

Nun wählen wir eine zu \mathcal{L} duale Landkarte \mathcal{L}^* . Sie besitzt nach Voraussetzung eine gültige 4-Färbung der Länder. Da \mathcal{L} regulär ist, ist \mathcal{L} auch dual zu \mathcal{L}^* und somit erhalten wir aus der 4-Färbung von \mathcal{L}^* eine 4-Färbung der Ecken von G. Somit ist G kein minimales Gegenbeispiel. \square

4 Vorüberlegungen

4.1 Einschränkungen für minimale Gegenbeispiele

Um sich dem Problem zu nähern brauchen wir eine Vorstellung davon, wie ein minimales Gegenbeispiel aussehen muss. Dazu schränken wir zunächst unsere Bemühungen auf eine besondere Klasse von Graphen ein.

Definition 18 (normaler Graph):

Ein planarer Graph heißt *normal*, wenn er ein regulärer, vollständiger Graph mit geraden Jordanbögen ist, bei dem jede Facette außer der Außenfacette ein Dreieck ist.

Ein normaler Graph ist also insbesondere eine Triangulation. Ohne wesentliche Einschränkung kann man sich bei der Untersuchung dieses Problems auf Triangulationen beschränkten, da sich jeder Graph durch Kontraktion und das Entfernen von Kanten aus einer Triangulation bilden lässt, wenn diese nur ausreichend – aber immernoch endlich – viele Knoten besitzt. Durch das Verringern der Knoten- und Kantenanzahl wird dabei das zu lösende Problem nur leichter.

Da wir versuchen, mit möglichst wenig Knoten auszukommen, ist es wenig sinnvoll, eine obere Schranke zu suchen. Daher schließen wir zu kleine oder zu einfache Graphen mit den folgenden Resultaten aus.

Proposition 4.1 (Sechs Knoten):

Ein minimales Gegenbeispiel hat mindestens sechs Knoten.

Beweis. Betrachte einen Graphen mit fünf Ländern. Nach dem Vollständiger Graph mit fünf Knoten gibt es zwei nicht adjazente Knoten. Diese können dann gleich gefärbt werden. Für die übrigen drei Knoten bleiben drei unterschiedliche Farben übrig.

Proposition 4.2 (Adjazente Nachbarn):

Wenn ein Knoten eines beliebigen Graphen mehr als drei Nachbarn hat, so hat dieser Knoten zwei Nachbarn, die nicht adjazent sind.

Beweis. Sei G ein Graph und v_0 ein Knoten mit den Nachbarn v_1, v_2, v_3, v_4 . Nach Satz 2.4 gibt es in v_0, v_1, v_2, v_3, v_4 zwei nicht adjazente Knoten, von denen nach Voraussetzung keiner v_0 seien

kann.

Satz 4.3 (Fünf verschiedene Nachbarn):

Bei einem minimalen Gegenbeispiel hat jeder Knoten mindestens fünf verschiedene Nachbarn.

Beweis. Es sei G ein minimales Gegenbeispiel. Dass es keinen Knoten mit weniger als vier Nachbarn geben kann, erkennt man leicht. Bleiben die Knoten mit genau vier Nachbarn zu untersuchen. Sei v_0 einer dieser Knoten und seine Nachbarn v_1, v_2, v_3, v_4 . Nach Satz 4.2 können wir annehmen, dass v_1 und v_3 nicht adjazent sind. Durch Kontraktion von v_1 und v_3 auf v_0 erhalten wir den Knoten v'. Der so entstehende Graph G' enthält zwei Knoten weniger und besitzt somit eine zulässige 4-Färbung.

Aus dieser lässt sich eine zulässige 4-Färbung für G erzeugen: wir weisen den Knoten v_1 und v_3 die gleiche Farbe wie v' zu. Alle übrigen Knoten übernehmen ihre Färbung aus G'. Dann sind für die Nachbarn von v_0 nur drei Farben verbraucht worden, es bleibt also eine übrig.

Es scheint also lohnenswert, Knoten eines bestimmten Grades genauer zu betrachten. Das führt uns zu folgender Definiton und folgendem Resultat, welches eine weitere Einschränkung für minimale Gegenbeispiele liefert.

Definition 19 (k-Stern):

Ein Teilgraph eines Graphen heißt k-Stern, wenn er aus einem Knoten $v \in V$ mit $d_G(v) = k$ und seinen k Nachbarn sowie den zugehörigen Kanten besteht.

Satz 4.4 (Anzahl der 5-Sterne):

Ein minimales Gegenbeispiel enthält 4-Sterne aber mindestens zwölf 5-Sterne.

Beweis. Enthält ein Graph einen 4-Stern, so besitzt die duale Landkarte ein Land mit vier Nachbarn, kann also nach Satz 4.3 kein minimales Gegenbeispiel sein. Die Anzahl der 5-Sterne ergibt sich aus der Ungleichung in Satz 2.1.

5 Der Beweis von Appel und Haken

5.1 Die Konfigurationen

Eine Klasse von Graphen ist für den Beweis des Vier-Farben-Satzes wesentlich: Die Konfigurationen. Sie treten vor allem als Untergraphen der normalen Graphen auf. Zuerst wollen wir festhalten, was eine Konfiguration eigentlich ist.

Definition 20 (Konfiguration):

Ein planarer Graph C heißt Konfiguration, wenn

- er regulär ist,
- die Außenknoten einen Ring der Ringgröße $k \geq 4$ bilden,
- innere Knoten existieren,
- die beschränkten Gebiete von Dreiecken begrenzt werden,
- jedes Dreieck Grenze eines Gebiets ist.

Um eine bessere Vorstellung für diese Graphen zu bekommen, betrachten wir zunächst einige Beispiele. Ein nicht-triviales Beispiel für eine Konfiguration ist der *Birkhoff*-Diamant mit insgesamt 10 Knoten (linkes Bild).

Andere Beispiele für Konfigurationen sind Sterne. Sie besitzen genau einen inneren Punkt ("Zentrum") und einen Ring von äußeren Punkten, die alle mit dem Zentrum durch eine Kante verbunden sind. Ein Stern heißt k-Stern, wenn er genau k äußere Knoten besitzt. Einen 6-Stern findet man im rechten Bild.

Definition 21 (Äquivalente Konfigurationen):

Zwei Konfigurationen C'=(V',E') und C''=(V'',E'') heißen äquivalent, wenn es eine Bijektion $\varphi:V'\to V''$ gibt, die in beide Richtungen die Adjazenzstruktur erhält.

Nun können wir davon sprechen, dass ein Graph eine Konfiguration enthält, indem wir folgende Definition bemühen:

Definition 22 (enthaltene Konfiguration):

Man sagt, ein Graph G enthält eine Konfiguration C, wenn es einen geschlossenen Pfad K gibt, sodass der von den Knoten von K und den im Innengebiet liegenden Knoten von K Untergraph C_K von G eine zu C äquivalente Konfiguration ist.

5.2 Reduzierbarkeit

Definition 23 (freie Vervollständigung):

Sei K eine Konfiguration. Eine Beinahe-Triangulation S heißt freie Vervollständigung von K mit dem Ring R, wenn

Sei R ein Kreis. Es gibt das Konzept der Kontinuität für eine Menge von 4-Färbungen von R, welches auf Kempe [Kem79] und Birkhoff [Bir13] zurückgeht. Wir benötigen hier nicht das vollständige Konzept, sondern nennen nur die Eigenschaften, die wir brauchen. Sie lauten:

6 Der Beweis von Robertson, Sanders, Seymour und Thomas

Die Grundidee des Beweises besteht darin, eine bestimmte Menge von 633 sogenannten Konfigurationen – welche nicht mit den Konfigurationen von Appel & Haken zu verwechseln sind – aufzustellen und dann zu zeigen, dass kein Element dieser Menge in einem minimalen Gegenbeispiel vorkommen kann – dieser erste Schritt wird Reduzierbarkeit (engl.: reducibility) genannt. Damit folgt der Beweis der Idee seiner Vorgänger, allerdings mit dem Unterschied, dass jedes minimale Gegenbeispiel eine intern 6-fach zusammenhängende Triangulation ist.

Im zweiten Schritt wird gezeigt, dass in jeder intern sechsfach zusammenhängenden Triangulation eine der oben genannten Konfigurationen vorkommen muss – auch Zwangsläufigkeit (eng.: unavoidability) genannt. Zusammen zeigt dies, dass es kein minimales Gegenbeispiel geben kann und der Vierfarbensatz somit wahr ist.

Der wesentliche Unterschied zum vorher vorgestellten Beweis von Appel & Haken liegt darin, auf welche Art die Zwangsläufigkeit hergestellt wird.

6.1 Konfigurationen

Ein minimales Gegenbeispiel ist ein planarer Graph G, der nicht 4-färbbar ist, derart dass aber jeder planare Graph G' mit |V(G')| + |E(G')| < |V(G)| + |E(G)| eine gültige 4-Färbung besitzt. Unser Ziel ist also, zu zeigen, dass es keinen solchen Graphen G geben kann.

Aus den allgemeinen Vorüberlegungen wissen wir, dass jedes minimale Gegenbeispiel nur Knoten mit Grad mindestens fünf hat. So sieht man leicht, dass jedes minimale Gegenbeispiel 5-fach knotenzusammenhängend ist. Wir nennen einen Kreis C in einer Triangulation mit fünf oder weniger Knoten einen Kurzkreis (engl.: short circuit), wenn sowohl Knoten im inneren Bereich I als auch im äußeren Bereich O von C liegen und wenn für genau fünf Knoten sowohl I als auch in O mindestens zwei Knoten liegen. Wir nennen eine 6-fach knotenzusammenhängende Triangulation $intern\ 6$ -fach $intern\ 6$ -

Satz 6.1:

Jedes minimale Gegenbeispiel ist eine intern 6-fach zusammenhängende Triangulation.

Um genauer zu verstehen, warum der Graph 6-fach zusammenhängend sein muss, empfiehlt sich die

Lektüre von [Bir13]. Birkhoff schaffte es bereits 1913 zu zeigen, dass schwächer zusammenhängende Konfigurationen 4-färbbar sind. Dazu bediente er sich der Resultate von A. B. Kempe – Ketten, die mit einer beschränkten Auswahl an Farben färbbar sind, und Ringen, die eine Karte in eine innere und eine äußere Region teilen.

Später werden wir einen Algorithmus kennenlernen, der eine Färbung für eine Triangulation mit Kurzkreis liefert. Daraus lässt sich dann auch der Beweis für Satz 6.1 ableiten.

Als nächstes folgt eine Definition, die fundamental für unseren Beweis ist. Der Begriff der Konfiguration taucht ebenfalls bei Appel & Haken auf, jedoch besitzt eine Konfiguration dort andere Eigenschaften.

Definition 24 (Konfiguration):

Eine Konfiguration K besteht aus einer Beinahe-Triangulation G(K) und einer Zuordnung $\gamma_K : V(G(K)) \mapsto \mathbb{Z}_+$ mit folgenden Eigenschaften:

- i) Für jeden Knoten v besteht $G(K)\setminus\{v\}$ aus höchstens zwei Zusammenhangskomponenten. Gibt es genau zwei, so ist $\gamma_K(v)=d_G(v)+2$.
- ii) Für jeden Knoten v, der nicht zur Außenfacette inzident ist, gilt $\gamma_K(v) = d_G(v)$. Für die anderen Knoten v' gilt $\gamma_K(v') > d_G(v')$. In beiden Fällen gilt zusätzlich $\gamma_K(v) \geq 5$.
- iii) K hat Ringgröße ≥ 2 . Die Ringgröße von K ist definiert als $\sum_{v} (\gamma_K(v) d_G(v) 1)$ für alle Knoten v, die zur Außenfacette inzident sind und für die $G(K) \setminus \{v\}$ zusammenhängend ist.

Um γ_K für jeden Knoten in einer planaren Zeichnung von G darzustellen, gibt es mehrere Möglichkeiten. Die Offensichtliche wäre natürlich, neben jedem Knoten seinen Wert zu notieren, was jedoch sehr schnell unübersichtlich wird. Stattdessen werden wir unseren Knoten verschiedene Formen geben, wie der folgenden Übersicht zu entnehmen ist.

$$\begin{array}{ll}
\bullet & \gamma_K(v) = 5 \\
\cdot & \gamma_K(v) = 6 \\
\circ & \gamma_K(v) = 7 \\
\Box & \gamma_K(v) = 8 \\
\nabla & \gamma_K(v) = 9 \\
\diamond & \gamma_K(v) = 10
\end{array}$$

Später werden wir eine Menge aus 633 Konfigurationen betrachten, die für diesen Beweis essenziell sind. Eine vollständige Abbildungsliste findet sich in [RSST97, Seite 35].

Definition 25 (Isomorphe Konfigurationen, gute Konfigurationen, auftretende Konfigurationen):

- Zwei Konfigurationen K und L heißen isomorph, falls ein Homeomorphismus der Ebene existiert, der G(K) auf G(L) und γ_K auf γ_L abbildet.
- Jede Konfiguration, die zu einer der 633 Konfigurationen aus [RSST97] isomorph ist, bezeichnen wir als *gut*.
- Sei T eine Triangulation. Eine Konfiguration K tritt in T auf, wenn G(K) ein Teilgraph von T ist, jede Innenfacette von G(K) eine Innenfacette von T ist und $\gamma_K(v) = d_T(v)$ für alle Knoten von G(K) gilt.

Um zu zeigen, dass das eigentliche Problem stets lösbar ist, teilen wir die Suche nach einem minimalen Gegenbeispiel weiter auf. Somit ergeben sich diese beiden Aussagen:

Satz 6.2 (Reduktion):

Wenn eine Triangulation T ein minimales Gegenbeispiel ist, enthält T keine gute Konfiguration.

Satz 6.3 (Zwangsläufigkeit):

In jeder intern 6-fach zusammenhängenden Triangulation T lässt sich eine gute Konfiguration finden.

Kombiniert man die Aussagen der Sätze 6.1, 6.2 und 6.3, so sieht man, dass es kein minimales Gegenbeispiel geben kann und damit der Vier-Farben-Satz wahr seien muss. Auf 6.2 werden wir im nächsten Abschnitt genauer eingehen, gefolgt von einem Abschnitt über 6.3.

Ein anderer Ansatz, sich der 4-Färbung von Graphen zu nähern, liegt darin, die Facetten auf Färbbarkeit zu untersuchen. Da in einem minimalen Gegenbeispiel jede Innenfacette ein Dreieck ist, benötigen wir eine neue Definiton:

Definition 26 (Trifärbung):

Sei G eine Triangulation oder Beinahe-Triangulation, $\kappa: E(G) \mapsto \{-1,0,1\}$ eine Funktion und $r = \{r,f,g\} \subset E(G)$ ein Dreieck. Man sagt, r wird von κ trigefärbt (engl.: tri-coloured), wenn $\{\kappa(e),\kappa(f),\kappa(g)\} = \{-1,0,1\}$ gilt. Wir sagen, κ ist eine Trifärbung von G, wenn jede Facette von G trifärbbar ist – oder nur jede Innenfacette, falls G nur eine Beinahe-Triangulation ist.

Statt wie Üblich für die Farben der Facetten 1, 2, 3 zu wählen, benutzen wir hier -1, 0, 1, um möglichst nahe am Algorithmus für 6.1 zu bleiben.

Satz 6.4 (Trifärbung \Leftrightarrow 4-Färbung):

Eine Triangulation T ist genau dann 4-färbbar, wenn eine Trifärbung ihrer Facetten existiert.

Dass dies tatsächlich der Wahrheit entspricht, wurde bereits von Tait gezeigt, der Beweis ist [Tai80] zu entnehmen. Der Grund, auf die Färbung von Facetten zu wechseln liegt tatsächlich auch darin, dass ein Algorithmus, der eine Trifärbung bestimmt, leichter zu implementieren war. [RSST97, Seite 7]

Um 6.2 zu beweisen, werden wir für jede Triangulation T, die ein minimales Gegenbeispiel sein soll, eine nichtleere Teilmenge der Kanten von T wählen und diese kontrahieren um so eine Darstellung T' zu erhalten. Da T' echt kleiner als T ist, ist diese somit 4-färbbar. Diese Färbung werden wir dann dazu benutzen, eine Färbung für T zu konstruieren, sodass T kein minimales Gegenbeispiel gewesen sein kann. Kontrahiert man Kanten in einem Graphen, ergeben sich verschiedene Notationsprobleme, etwa ob nach der Kontraktion eine nichtkontrahierte Kante im ursprünglichen Graphen immernoch die gleiche Kante wie in der Kontraktion ist. Um die Notationsprobleme um umgehen und die wesentlichen Schwierigkeiten nicht aus den Augen zu verlieren, brechen wir den Kontraktionsprozess in zwei Teile auf.

Definition 27 (Zerstreute Menge, Trifärbung modulo X):

Sei G ein Triangulation oder Beinahe-Triangulation.

- Eine Teilmenge $X \subseteq E(G)$ heißt zerstreut (engl.: sparse), wenn jede Innenfacette von G zu höchstens einer Kante aus X inzident und im Falle einer Beinahe-Triangulation die Außenfacette zu keiner Kante inzident ist.
- Wenn $X \subseteq E(G)$ zerstreut ist, ist eine Trifärbung von G modulo X eine Abbildung $\kappa : E(G) \setminus X \mapsto \{-1,0,1\}$ derart, dass für jede Facette von G (außer der Außenfacette bei Beinahe-Triangulationen), die zu den Kanten e, f, g inzident ist, gilt:

(i)
$$\{\kappa(e), \kappa(f), \kappa(g)\} = \{-1, 0, 1\}$$
, falls $e, f, g \notin X$

(ii)
$$\kappa(e) = \kappa(f)$$
, falls $g \in X$.

Dieser Definition folgend ist eine Trifärbung gleichbedeutend mit einer Trifärbung modulo \emptyset .

Satz 6.5 (Existenz einer Trifärbung):

Sei T ein minimales Gegenbeispiel und sei $X \subseteq E(T)$ zerstreut und nicht leer. Gibt es in T keinen Kreis C mit $|E(C) \setminus X| = 1$, so besitzt T eine Trifärbung modulo X.

Beweis. Sei F die Zeichnung der Knoten V(T) und der Kanten aus X. Seien Z_1, \dots, Z_k die Mengen der Knoten, die zu den k Facetten von F inzident sind. Sei nun S ein Graph mit $V(S) = \{Z_1, \dots, Z_k\}$ und $E(S) = E(T) \setminus X$. Eine Kante $e \in E(S)$ ist inzident zu Z_i , wenn $e \cap Z_i \neq \emptyset$. Da in T kein Kreis mit $|E(C) \setminus X| = 1$ gibt, ist hat S keine Schleifen. Da S durch Kontraktion aus T entsteht, ist S auch planar. Da X nicht leer ist, gilt weiter |E(S)| + |V(S)| < |V(T)| + |E(T)| und da T ein minimales Gegenbeispiel war, besitzt S deshalb eine 4-Färbung. Somt existiert eine Abbildung $\phi: V(T) \mapsto \{1, 2, 3, 4\}$ mit folgenden Eigenschaften:

- (i) Für $1 \le i \le k$ ist $\phi(v)$ konstant für $v \in Z_i$ und
- (ii) für jede Kante $e = \{u, v\}$ von $T, e \notin X$, gilt $\phi(u) \neq \phi(v)$.

Für $e = \{u, v\} \in E(S)$ definieren wir

$$\kappa(e) = \begin{cases} -1 & \text{für } \{\phi(u), \phi(v)\} = \{1, 2\} \text{ oder } \{3, 4\} \\ 0 & \text{für } \{\phi(u), \phi(v)\} = \{1, 3\} \text{ oder } \{2, 4\} \\ 1 & \text{für } \{\phi(u), \phi(v)\} = \{1, 4\} \text{ oder } \{2, 3\} \end{cases}$$

Dann ist κ eine Trifärbung von T modulo X, denn: Sei r eine Facette von T, $e = \{u, v\}, f = \{v, w\}, g = \{w, u\}$. Sind $e, f, g \notin X$, so sind $\phi(u), \phi(v), \phi(w)$ alle verschieden, also auch $\{\kappa(e), \kappa(f), \kappa(g)\} = \{-1, 0, 1\}$. Ist andererseits o.B.d.A. $g \in X$, so gilt $\phi(u) = \phi(w)$ und $\kappa(e) = \kappa(f)$. [RSST97]

6.2 Reduzierbarkeit

Wir wollen konsistente Kantenfärbungen definieren. Dazu beginnen diesen Abschnitt mit den dazu nötigen, hinführenden Definitionen:

Definition 28 (Kantenfärbung, Match, signiertes Match, signiertes Matching, θ -Passend): Sei R ein Kreis und $\theta \in \{-1, 0, 1\}$.

- Eine Kantenfärbung von R ist eine Abbildung $\kappa: E(R) \mapsto \{-1,0,1\}.$
- Ein Match m ist eine Menge von verschiedenen Kanten $\{e, f\}$ aus R.
- Ein signiertes Match (engl.: signed match) (m, μ) ist ein Paar aus einem Match m und $\mu = \pm 1$.
- Ein signiertes Matching ist eine Menge M von signierten Matches, sodass für unterschiedliche $(\{e, f\}, \mu), (\{e', f'\}, \mu') \in M$ gilt:
 - (i) $\{e, f\} \cap \{e', f'\} = \emptyset$ und
 - (ii) nach dem Löschen von e' und f' liegen e und f in der gleichen Zusammenhangskomponente von R.

Ist M ein signiertes Matching, so ist $E(M) := \{e \in E(R) | e \in m \text{ für ein } (m, \mu) \in M\}.$

• Eine Kantenfärbung κ von R heißt θ -passend für ein signiertes Matching M in R, wenn gilt:

23

- (i) $E(M) = \{e \in E(R) | \kappa(e) \neq \theta\}$ und
- (ii) für alle $(\{e, f\}, \mu) \in M$ gilt: $\kappa(e) = \kappa(f) \Leftrightarrow \mu = 1$.

Nun können wir die eigentlich gesuchte Definition aufstellen.

Definition 29 (konsistente Kantenfärbung):

Sei K ein Kreis und $\theta \in \{-1, 0, 1\}$. Eine Menge \mathscr{C} von Kantenfärbungen von K heißt konsistent, wenn für jedes $\kappa \in \mathscr{C}$ und jedes mögliche θ ein signiertes Matching M existiert, so dass κ θ -passend für M ist, und \mathscr{C} jede Kantenfärbung, die für M θ -passend ist, enthält.

Für das nächste Teilresultat benötigen wir noch diese Definitionen.

Definition 30 (Verpackung, Aufzug):

Sei H eine Beinahe-Triangulation.

- Dann gibt es einen geschlossenen Pfad (v_0, v_1, \dots, v_k) durch die zur Außenfacette inzidenten Knoten. Dann existiert ein Kreis R der Länge k mit Kanten $e_1, \dots e_k$, nicht notwendigerweise ein Kreis in H. Für $i \leq i \leq k$ definieren wir einen Zeiger $\phi(e_i) := f_i$, wobei f_i die Kante zwischen v_{i-1} und v_i aus H ist. Wir sagen dann, ϕ verpackt H in R.
- Ist κ eine Trifärbung von H, so setzen wir für alle $e \in E(R)$: $\lambda(e) = \kappa(\phi(e))$. Dann ist λ eine Kantenfärbung von R und wir nennen λ einen Aufzug von κ (durch ϕ).

Satz 6.6 (Konsistente Aufzüge):

Sei H eine Beinahe-Triangulation und R ein Kreis, in den H durch ϕ verpackt ist. Sei $\mathscr C$ die Menge aller Aufzüge von ϕ von Trifärbungen von H. Dann ist $\mathscr C$ konsistent.

Beweis. Sei e_1, \dots, e_k die Kanten von R und f_1, \dots, f_k die Kanten des geschlossenen Pfades um die Außenfacette von H. Sei $\lambda \in \mathscr{C}$ nud sei $\rho \in \{-1, 0, 1\}$. Zu zeigen ist, dass ein signiertes Matching M existiert, sodass λ ρ -passend für M ist, und dass \mathscr{C} alle Kantenfärbungen beinhaltet, sodass R für M ρ -passend ist. O.B.d.A. sei $\rho = 0$.

Da $\lambda \in \mathscr{C}$ gilt, ist λ der Aufzug einer Trifärbung κ von H. Eine Rippe ist eine Folge $g_0, r_1, g_1, r_2, \cdots, r_t, g_t$, wobei

- (i) g_0, \dots, g_t verschiedene Kanten von H sind,
- (ii) r_1, \dots, r_t verschiede Facetten von H sind,
- (iii) falls t > 0 gilt, g_0 und g_t beide inzident zur Außenfacette von H sind, oder falls t = 0 gilt, g_0 zu keiner Innenfacette von H inzident ist,
- (iv) für $1 \le i \le t$ gilt, dass r_i inzident zu den Facetten g_{i-1} und g_i ist und

(v) für $0 \le i \le t$ gilt, dass $\kappa(g_i) \ne 0$ gilt.

Für jede Rippe sind die Werte von $\kappa(g_0), \dots, \kappa(g_t)$ abwechselnd ± 1 und für jede Kante e, die nicht zur Rippe gehört aber inzident zu einer ihrer Facetten ist, $\kappa(e) = 0$ gilt. Tauscht man die Vorzeichen von $\kappa(g_0), \dots, \kappa(g_t)$, so erhält man also eine neue Trifärbung von H.

Weiter sind alle Rippen disjunkt, sie teilen sich also weder Kanten noch Facetten. Für $1 \le i \le k$ lässt sich jede Kante f_i entweder eindeutig einer Rippe zuordnen, wenn $\kappa(f_i) = \pm 1$, oder keiner Rippe zuordnen, wenn $\kappa(f_i) = 0$.

Jetzt verknüpfen wir jede Rippe $g_0, r_1, g_1, r_2, \dots, r_t, g_t$ mit einem signierten Match $(\{e_i, e_j\}, \mu)$, wobei $g_0 = f_i$ und $g_t = f_j$ und $\mu = +1$ oder -1, je nachdem ob t gerade oder ungerade ist, gilt. Die Menge aller dieser signierten Matches ist ein signiertes Matching M und λ ist ρ -passend für M.

Sei nun λ' eine beliebige Kantenfärbung von R, die ρ -passend für M ist, und definiere $\kappa''(f_i) := \lambda'(e_i)$ (für $1 \leq i \leq k$). Dreht man die Vorzeichen von κ in einigen Rippen um, so erhält man eine Trifärbung κ' von H, deren Einschränkung auf $\{f_1, \dots, f_k\}$ die Trifärbung κ'' ist. Daraus folgt, dass λ' ein Aufzug von κ' ist, also wie gefordert $\lambda' \in \mathscr{C}$ gilt.

Definition 31 (Freie Vervollständigung):

Sei K eine Konfiguration. Eine Beinahe-Triangulation S heißt freie Vervollständigung von K mit Ring R, wenn

- (i) R ein induzierter Ring von S ist, der die Außenfacette von S begrenzt,
- (ii) G(K) ein induzierter Teilgraph von S ist, $G(K) = S \setminus V(R)$ gilt, jede Facette von G(K) auch eine Facette von S ist, die Außenfacette von G(K) den Ring R und die Außenfacette von S beinhaltet,
- (iii) jeder Knoten v von S, der nicht in V(R) liegt, in S Knotengrad $\gamma_K(v)$ hat.

Man kann leicht überprüfen, dass jede Konfiguration eine freie Vervollständigung besitzt. (Hier wird der Umstand benutzt, dass in der Definition von Konfiguration eine Ringgröße ≥ 2 gefordert ist – die Ringgröße ist dann genau die Länge des Rings in der Freien Vervollständigung. Gibt es zwei freie Vervollständigungen S_1 und S_2 von K, so existiert ein Homeomorphismus, der G(K) punktweise fixiert und S_1 auf S_2 abbildet. Dazu verwendet man Eigenschaft (i) aus der Definition der Konfiguration. Es gibt also – bis auf Isomorphie – nur eine freie Vervollständigung, weswegen wir von der freien Konfiguration sprechen können.

Um die Anschauung des Lesers zu fördern folgt nun die Darstellung einer Konfiguration sowie ihrer freien Vervollständigung. Dabei folgen wir der Notation für die Knoten, wie sie im vorherigen Kapitel dargestellt wurden.

Definition 32 (D-Reduzibilität):

Sei also S die freie Vervollständigung einer Konfiguration K mit Ring R. Sei \mathscr{C}^* die Menge aller Kantenfärbungen von R und sei $\mathscr{C} \subseteq \mathscr{C}^*$ die Menge aller Beschränkungen von E(R) von Trifärbungen von S. Sei weiter \mathscr{C}' die größte konsistente Teilmenge von $\mathscr{C}^* - \mathscr{C}$. Die Konfiguration K heißt D-reduzibel, wenn gilt: $\mathscr{C}' = \emptyset$.

Wir werden später zeigen, dass keine D-reduzible Konfiguration in einem minimalen Gegenbeispiel vorkommen kann. In der gängigen Literatur gibt es noch andere Varianten, zu zeigen dass in einem minimalen Gegenbeispiel keine Konfiguration vorkommen kann – etwa allgemeine C-Reduzibilität oder $block\ count$ -Reduzibilität. Für unsere Zwecke benötigen wir zusätzlich lediglich einen Spezialfall der C-Reduzibilität.

Definition 33 (Zusammenzug):

Sei S die freie Vervollständigung einer Konfiguration K mit Ring R und sei \mathscr{C}' wie für die D-Reduzibilität gewählt. Sei $X\subseteq E(S)-E(R)$. Man sagt, X ist ein Zusammenzug (engl.: contract) von K, wenn X nicht leer ist, X zerstreut in S ist und keine Kantenfärbung aus \mathscr{C}' die Beschränkung von E(R) einer Trifärbung von S modulo X ist.

Eine weitere Bedingung für unsere minimalen Gegenbeispiele ist, dass kein Zusammenzug einer Konfiguration K vorkommen kann. Dies werden wir später weiter ausführen.

Mit Hilfe eines Computers wurde folgendes Resultat von Robertson, Sanders, Seymour und Thomas gezeigt:

Satz 6.7 (Reduzibilität der Konfigurationen):

Für jede der 633 Konfigurationen K, die im Anhang (der Originalveröffentlichung) abgebildet sind, sei X die Menge der Kanten, der freien Vervollständigung von K, die fett gedruckt sind. Gilt $X \neq \emptyset$, so ist K D-reduzibel. Andernfalls gilt $1 \leq \sharp X \leq 4$ und X ist ein Zusammenzug für K.

Aus diesem Ergebnis werden wir später Satz 6.2 herleiten.

Selbst wenn K eine Konfiguration ist, die in der Triangulation T auftritt, heißt das noch nicht, dass es eine Teildarstellung von T geben muss, die die freie Vervollständigung von K ist. Dies kann zu Schwierigkeiten führen, wenn wir versuchen, Erkenntnisse über T auf die freie Vervollständigung zu übertragen.

Definition 34 (Projektion):

Sei T eine Triangulation und S eine Beinahe-Triangulation. Eine Projektion von S auf T ist eine Abbildung ϕ mit Definitionsmenge $D(\phi) = V(S) \cup E(S) \cup F(S)$ derart, dass

- (i) $\phi V(S)$ auf V(T), E(S) auf E(T) und F(S) auf F(T) abbildet,
- (ii) für verschiedene $u, v \in V(S)$ $\phi(u) = \phi(v) \Leftrightarrow u, v$ beide inzident zur Außenfacette von S,
- (iii) für verschiedene $e, f \in E(S)$ $\phi(e) = \phi(f) \Leftrightarrow e, f$ beide inzident zur Außenfacette von S,
- (iv) für verschiedene $r, s \in F(S)$ $\phi(r) \neq \phi(s)$,
- (v) wenn $x, y \in D(\phi)$ inzident in S sind, $\phi(x), \phi(y)$ auch inzident in T sind.

Die folgenden Resultate wollen wir ohne Beweis benutzen, da die Beweise beide langwierig sind und wenig zum Verständnis des eigentlichen Problems beitragen.

Satz 6.8 (Existenz einer Projektion):

Sei T eine Triangulation und K eine Konfiguration, die in T auftritt. Sei weiter S die freie Vervollständigung von K. Dann existiert eine Projektion ϕ von S auf T derart, dass $\phi(x) = x$ für alle $x \in V(G(K)) \cup E(G(K)) \cup F(G(K))$. Die Projektion ϕ heißt dann auch korrespondierende Projekt.

Satz 6.9 (Darstellung als Beinahe-Triangulation):

Sei T eine Triangulation und K eine Konfiguration, die in T auftritt. Sei S die freie Vervollständigung von K mit Ring R. Sei weiter ϕ die korrespondierende Projektion von S auf T. Sei H die planare Darstellung T, die man erhält, wenn man die Knoten aus V(G(K)) entfernt, und bezeichne als Außenfacette die Facette von H, die V(G(K)) enthält. Dann ist H eine Beinahe-Triangulation, und die Einschränkung von ϕ auf E(R) verpackt H in R.

Definition 35 (Sehen):

Sei G eine planare Zeichnung eines Graphen. Sei $v \in V(G)$ und $e \in E(G)$. Man sagt v sieht e, wenn sowohl v als auch e inzident zur gleichen Innenfacette sind, aber v nicht inzident zu e ist.

Definition 36 (Dreibein):

Sei S die freie Vervollständigung einer Konfiguration K und sei $X \subseteq E(S)$ zerstreut in S und $\sharp X = 4$. Ein Knoten v aus S heißt Dreibein von X, wenn gilt:

- (i) $v \in V(G(K))$,
- (ii) es gibt mindestens drei weitere Knoten in S, die zu v adjazent sind und zu Kanten aus X inzident sind und

(iii) wenn $\gamma_K(v) = 5$, dann sieht v nicht jede Kante aus X.

Satz 6.10 (Existenz eines Kurzkreises):

Sei T eine Triangulation und K eine Konfiguration, die in T auftritt. Sei S die freie Vervollständigung von K und sei ϕ die korrespondierende Projektion von S auf T. Sei $X \subseteq E(S)$ zerstreut in S und $\sharp X \leq 4$ und wenn $\sharp X = 4$ gilt, so gibt es ein Dreibein für X. Gibt es einen Kreis C in T mit $|E(C) - \phi(X)| \leq 1$, so gibt es einen Kurzkreis in T.

Beweis. Sei $X' = \phi(X) \cap E(C)$. Da X in S zerstreut ist, ist keine Kante aus X inzident zur Außenfacette von S. Also ist jede Kante aus X inzident zu zwei verschiedenen Innenfacetten von S. Nach Satz 6.8 gilt für jede Facette t von T, die zu einer Kante aus X' inzident ist, $t = \phi(r)$, wobei r eine Innenfacette von S ist. Also ist X' auch zerstreut in T.

Angenommen, C sei kein Kurzkreis in T. Es gilt: $\sharp E(C) \leq \sharp X + 1 \leq 5$. C teilt also den Graphen in ein Äußeres O und ein Inneres I mit $C \subseteq I$, sodass $|I \cap V(T)| \leq 1$ bzw. $I \cap V(T) = \emptyset$, falls $\sharp E(C) \leq 4$. Es ist aber jede Kante aus X' inzident zu einem Dreieck aus T, das in I liegt, und alle diese Dreiecke sind verschieden, da X' zerstreut in T ist. Somit beinhaltet I mindestens $\sharp X' \geq \sharp E(C) - 1$ Dreiecke von T. Falls $\sharp E(C) \leq 4$ gilt, so ist dies jedoch nicht möglich da $E(C) \cap I = \emptyset$ gilt. Also gilt $\sharp E(C) = 5$, $\sharp X = 4$, es existiert eindeutig ein Knoten t aus T in I, $d_T(t) = 5$, und t sieht jede Kante aus C.

Da $\sharp X=4$, gibt es wegen unserer Annahme ein Dreibein $v\in V(S)$ für X. Entweder gilt also $d_K(v)\geq 6$ oder es gibt eine Kante in X, die v in S nicht sieht, da v ein Dreibein ist. In beiden Fällen folgt dann $v=\phi(v)\neq t$. Da aber $v=\phi(v)$ mindestens drei unterschiedliche Nachbarn in C hat, und jeder Knoten aus C adjazent zu t ist, folgt daraus, dass T einen Kurzkreis haben muss. Entweder gibt es also einen weiteren Kreis, der ein Kurzkreis ist, oder C selbst ist der gesuchte Kurzkreis.

Satz 6.11 (Dreibeine in den Konfigurationen):

Sei K eine der 633 Konfiguration der Originalveröffentlichung, sei S deren freie Vervollständigung und sei X die Menge der Kanten der Zeichnung, die dick gedruckt sind. Wenn $\sharp X=4$ gilt, so gibt es ein Dreibein für X.

Die Menge der Konfigurationen ist endlich und für die meisten von ihnen gilt $\sharp X \leq 3$. Somit bleiben nicht viele Konfigurationen übrig, bei denen sich Der Wahrheitsgehalt von Satz 6.11 von Hand überprüfen lässt. Robertson, Sanders, Seymour und Thomasbenutzten hierzu einen Computer-Algorithmus. Dabei stellt sich bei solchen Datensätzen natürlich die Frage nach banalen Tippfehlern und abweichenden Begrifflichkeiten. Tatsächlich wurden di Konfigurationen in einer Datei gespeichert und diese wurde für alle Algorithmen, die im Zuge des gesamten Beweises auftreten, benutzt. Stößt man beim Überprüfen der Konfigurationen aus dem Anhang auf einen Fehler, ist dieser auf einen Fehler in der Darstellung des Graphen zurückzuführen. Um also die Korrektheit zu verifizieren, müsste jeder Verweis auf den Anhang durch einen Verweis auf die Datei ersetzt und der Computeralgorithmus von Hand ausgeführt werden. 1

¹Eine Sammlung aller verwendeten Algorithmen und Dateien findet sich unter http://www.math.gatech.edu/~thomas/FC/ftpinfo.html zum Download.

Nun können wir uns daran machen Satz 6.2 zu beweisen.

Beweis zu Satz 6.2. Sei K eine gute Konfiguration, die in T auftritt. Sei S die freie Vervollständigung von K mit Ring R und sei ϕ die korrespondierende Projektion von S auf T. Sei X die Menge der der Kanten aus K, die im Anhang im fettdruck dargestellt sind. Sei H gewählt gemäß 6.9 und sei ψ die Einschränkung von ϕ auf E(R).

Nach Satz 6.9 ist H somit eine Beinahe-Triangulation und ψ verpackt H in R. Sei weiter \mathscr{C}^* die Menge aller Kantenfärbungen von R und sei $\mathscr{C}_1 \subseteq \mathscr{C}^*$ die Menge aller Aufzüge von Trifärbungen von H durch ψ .

Nach Satz 6.6 ist \mathscr{C}_1 konsistent. Weiter sei $\mathscr{C}_2 \subseteq \mathscr{C}^*$ die Menge aller Einschränkungen von E(R) von Trifärbungen von S. Nach Satz 6.4 besitzt T keine Trifärbung, somit folgt $\mathscr{C}_1 \cap \mathscr{C}_2 = \emptyset$. Sei nun \mathscr{C}_3 die größte konsistente Teilmenge von $\mathscr{C}^* - \mathscr{C}_2$. Da \mathscr{C}_1 konsistent ist und $\mathscr{C}_1 \cap \mathscr{C}_2 = \emptyset$ gilt, folgt $\mathscr{C}_1 \subseteq \mathscr{C}_3$.

Man kann H so durch Kanten erweitern, dass sich eine Triangulation T' ergibt. Da T ein minimales Gegenbeispiel ist, besitzt T' – und somit auch H – eine Trifärbung. Also gilt dass \mathscr{C}_1 nicht leer sein kann und somit ist auch \mathscr{C}_3 nicht leer. Weiterhin ist K auch nicht D-reduzibel.

Nach Satz 6.7 gilt für X sowohl $1 \le \sharp X \le 4$ als auch, dass X ein Zusammenzug von K ist. Somit ist X zerstreut in S.

Nach Satz 6.1 besitzt T keinen Kurzkreis. Kombiniert man 6.11 und 6.10, so sieht man, dass es in T keinen Kreis C mit $|E(C) - \phi(X)| = 1$ geben kann. Aber nach Satz 6.5 besitzt T eine Trifärbung modulo $\phi(X)$, die wir κ nenen. Die Einschränkung von K auf E(H) ist eine Trifärbung von H, da nach Wahl von H gilt: $\phi(X) \cap E(H) = \emptyset$. Sei λ der Aufzug von κ durch ψ . Es gilt $\lambda \in \mathscr{C}_1$ und somit auch $\lambda \in \mathscr{C}_3$. Sei nun $e \in E(S)$ eine Kante und definiere $\kappa'(e) = \kappa(\phi(e))$. Dann ist κ' eine Trifärbung von S modulo S und S ist ihre Einschränkung auf S. Dies Liefert einen Widerspruch dazu, das S ein Zusammenzug von S ist. Dies zeigt das gesuchte Resultat.

6.3 Zwangsläufigkeit

Dieser Abschnitt widmet sich dem Beweis von Satz 6.3.

Definition 37 (Wagenrad, Radnabe):

Eine Konfiguration W heißt Wagenrad (engl.: cartwheel), wenn es einen Knoten w, genannt Radnabe (engl.: hub), und zwei Kreise C_1, C_2 mit folgenden Eigenschaften gibt:

- (i) es gilt $\{w\} \cap C_1 = \emptyset, \{w\} \cap C_2 = \emptyset \text{ und } C_2 \cap C_1 = \emptyset, \text{ aber } \{w\} \cup C_1 \cup C_2 = V(G(W)),$
- (ii) C_1 und C_2 sind Teilgraphen von G(W) und die Außenfacette von C_2 ist die Außenfacette von G(W),
- (iii) w ist adjazent zu allen Knoten von C_1 aber keinem Knoten von C_2 .

Es gibt folglich also vier Sorten von Kanten in einem Wagenrad: Kanten von C_1 , Kanten von C_2 , Kanten zwischen w und und C_1 sowie Kanten zwischen C_1 und C_2 . Zur Veranschaulichung noch eine Darstellung eines Wagenrades.

7 Umformulierungen

Literaturverzeichnis

- [Bir13] BIRKHOFF, George D.: The Reducibility of Maps. In: American Journal of Mathematics $35 \ (1913)$, S. 115-128
- [Fri94] Fritsch, R.: Der Vierfarbensatz. Mannheim: BI Wissenschaftsverlag, 1994
- [Kem79] Kempe, A. B.: On the geographical problem of the four colors. In: *American Journal of Mathematics* 2 (1879), S. 193–200
- [RSST97] ROBERTSON, N.; SANDERS, D.; SEYMOUR, P.; THOMAS, R.: The Four-Colour Theorem. In: Journal of Combinatorial Theory 70 (1997), S. 2–44
- [Tai80] Tait, P. G.: Note on a theorem in geometry of position. In: *Trans. Roy. Soc. Edinburgh* 29 (1880), S. 657–660

,	ende Arbeit selbständig verfasst und keine anderen benutzt habe. Weiterhin versichere ich, die Arbei Prüfungsbehörde vorgelegt zu haben.
Würzburg, den,	(Andre Löffler)