Област вежби: Linux руковаоци

РУКОВАОЦИ У/И УРЕЂАЈА НА LINUX ОПЕРАТИВНОМ СИСТЕМУ – ЗАДАТАК 2

Предуслови:

- Rpi2 рачунар са додатном плочицом са LE диодама, прекидачима и тастерима,
- Преводиоц *GCC* освежен на верзију 4.7 или новију,
- Преузето и подешено језгро Linux оперативног система на Raspberry Pi уређају, према опису из документа "УВОД Raspberry Pi рачунар",
- Подешен мрежни приступ на један од начина представљених у документу "УВОД Raspberry Pi рачунар" уколико се ради преко мреже. Ако се Rpi2 рачунар корити као самосталан рачунар овај захтев се може занемарити,
- Познавање језика Це и материјала из вежби "УВОД У КОНКУРЕНТНО ПРОГРАМИРАЊЕ, "СИНХРОНИЗАЦИЈА И СИГНАЛИЗАЦИЈА ПРОГРАМСКИХ НИТИ" и "ТУТОРИЈАЛ О РУКОВАОЦИМА У/И УРЕЂАЈА НА LINUX ОПЕРАТИВНОМ СИСТЕМУ".

Увод

У овој вежби приложен је код за Linux модул и пример тестне апликације у препознатљивој структури директоријума са одговарајућим Makefile-овима. Да би се реализовао задатак, неопходно је проширити дати Linux модул и направити одговарајућу тестну апликацију, а приложену користити као полазну тачку. Приложени Linux модул у прекидној рутини за прекид везан на тастер PB0 преузима вредност прекидача SW0 и исписује га у kernel log. Прекид се активира на опадајућу ивицу, односно на отпуштање тастера с обзиром да се притиском тастера добија логичка 1, а отпуштањем логичка 0.

Задатак

Задатак је потребно реализовати по угледу на примере из туторијала о прављењу руковаоца ("ТУТОРИЈАЛ О РУКОВАОЦИМА У/И УРЕЂАЈА НА LINUX ОПЕРАТИВНОМ СИСТЕМУ") и конкуретног програмирања ("УВОД У КОНКУРЕНТНО ПРОГРАМИРАЊЕ" и "СИНХРОНИЗАЦИЈА И СИГНАЛИЗАЦИЈА ПРОГРАМСКИХ НИТИ"). Руковалац *тетогу* представља репрезентативни пример на основу којег треба да се реализује руковалац и његова

тестна апликација која треба да поровери његову функционалност. И овај руковалац треба реализовати као карактерни уређај (chardev).

На основу физичке архитектуре LE диода (LED0~LED3), прекидача (SW0~SW3) и тастера (PB0 и PB1), односно њиховог мапирања на одговарајуће GPIO пролазе дате на слици 1, потребно је:

- 1. Имплементирати руковалац GPIO, који има функционалност штоперице, кроз подршку за руковање улазно/излазним уређајима (GPIO). Руковалац GPIO треба да омогући:
 - У поступку иницијализације модула поставити GPIO пролазе везане на диоде/прекидаче/тастере у одговарајући смер (GPIO за LE диоде као излазне, GPIO за прекидаче и тастере као улазне),
 - Користећи временску контролу, по угледу на претходну вежбу, реализовати штоперицу са прецизношћу од 1s, а тренутно стање у бинарном облику (само најнижа 4 бита) представити на 4 доступне LE диоде. Као и у претходној вежби, користити следеће функције за покретање/заустављање временске контроле:

void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, enum
hrtimer mode mode)

Функција	Опис								
hrtimer_init	иницијализује временску контролу за дати такт								
Параметри	Опис								
timer	временска контрола која се иницијализује. Структура чије је најважније поље function - адреса функције временске контроле која се декларише као: enum hrtimer_restart function(struct hrtimer *param);								
clock_id	такт који се користи								
mode	начин дефинисања времена истека, апсолутно врем (HRTIMER ABS) или релативно (HRTIMER REL)								

int hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum
hrtimer_mode mode)

Функција	Опис (поново) покреће временску контролу процесора									
hrtimer_start										
Параметри	Опис									
timer	временска контрола која се додаје									
tim	време истека временске контроле									
mode	начин дефинисања времена истека, апсолутно време									
	(HRTIMER ABS) или релативно (HRTIMER REL)									
Повратна вредност	Опис Уколико је покретање временске контроле успело повратна									
int										
	вредност је 0. У супротном, уколико је временска контрола већ									
	покренута, повратна вредност је 1.									

static inline ktime_t ktime_set(const s64 secs, const unsigned long
nsecs)

Функција	Опис							
ktime_set	поставља ktime_t променљиву на основу датог броја секунди и							
	наносекунди							
Параметри	ри Опис							
secs	број секунди							
nsecs	број наносекунди							
Повратна вредност	Опис Структура попуњена датим вредностима секунди и наносекунди							
ktime_t								

int hrtimer_cancel(struct hrtimer *timer)

Функција	Опис				
hrtimer_cancel	поништава временску контролу и чека на завршетак				
Параметри	Опис				
timer	адреса временске контроле која се прекида				
Повратна вредност	Опис				
int	0 – временска контрола није била активна				
	1 – временска контрола је била активна				

u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t
interval);

Функција	Опис				
hrtimer_forward	продужава (понавља) истек временске контроле				
Параметри	Опис				
timer	временска контрола која се продужава				
now	продужава се у односу на тренутно време				
interval	интервал за који се продужава				
Повратна вредност	Опис				
и64	број прекорачења времена				

Приликом имплементације водити се примером са слике, односно користити дате идентификаторе пролаза и користити постојеће функције за дефинисање смера пролаза, промену стања излаза (диоде), односно читање вредности са улаза (прекидачи и тастери):

- void SetGpioPinDirection(char pin, char direction)
- void SetGpioPin(char pin)
- void ClearGpioPin(char pin)
- char GetGpioPinValue(char pin)
- 2. Водећи се датим примером подешавања прекида и примером прекидне рутине, подесити прекиде тако да се активирају на опдајућу ивицу тастера РВО и РВ1. Притисак на тастер РВО покреће штоперицу уколико није покренута или је заустављена, а тастер РВ1 зауставља покренуту штоперицу, а ресетује заустављену штоперицу. Као и у примеру, користити следеће функције за иницијализацију/уклањање прекидне рутине:

int gpio_request_one(unsigned gpio, unsigned long flags, const char *label);

Функција	Опис				
gpio_request_one	захтева један GPIO са почетном конфигурацијом				
Параметри	Опис				
gpio	GРІО број				
flags	GPIO конфигурација дефинисана помоћу GPIOF *				
label	описни стринг за GPIO				
Повратна вредност	Опис				
<i>int</i> 0 уколико је успешно, код грешке у супротном					

void gpio_free(unsigned gpio);

Функција	Опис
gpio_free	ослобађа GPIO
Параметри	Опис
gpio	GРІО број

int gpio_to_irq(unsigned gpio);

Функција	икција Опис					
gpio_to_irq	враћа IRQ који одговара датом GPIO					
Параметри	Опис					
gpio	GPIO чији ће IRQ бити прочитан					
Повратна вредност	Опис					
int	IRQ број одговарајући за дати GPIO или код грешке у случају исте.					

int request_irq(unsigned int irq, irq_handler_t handler, unsigned long flags, const char *name, void *dev)

Функција	Опис						
request_irq	заузимање линије прекида						
Параметри	Опис						
irq	линија прекида која се заузима						
handler	функција која ће бити позвана из нити прекидне рутине. Декларише						
	се као:						
	static irqreturn_t function(int irq, void *data)						
flags	IRQF_SHARED - дељени прекид						
	IRQF_TRIGGER_* - дефиниција активне ивице или нивоа						
name	стринг са именом уређаја који заузима прекидну линију						
dev	аргумент који ће бити прослеђен прекидној рутини, најчешћеслужи						
	за прослеђивање адресе структуре која представља физички уређај						
Повратна вредност	Опис						
int	број прекорачења времена						

void disable_irq(unsigned int irq);

Функција	Опис				
disable_irq искључује IRQ и чека на завршетак операције					
Параметри	Опис				
irq	линија прекида која се искључује				

void free_irq(unsigned int irq, void *dev_id);

Функција	Опис				
free_irq	уклања прекидну рутину. Чека на завршетак операције				
Параметри	Опис				
irq	линија прекида за коју се уклаља прекидна рутина				
dev_id идентификатор уређаја који уклања прекидну рутину					

3. Проширити руковалац и тест апликацију тако да се омогући читање времена штоперице из руковаоца и исписује на екран.

LED0	LED1	LED2	LED3	SW0	SW1	SW2	SW3	PB0	PB1
GPIO6	GPIO13	GPIO19	GPIO26	GPIO12	GPIO16	GPIO20	GPIO21	GPIO3	GPIO22

Слика 1 Мапирање LE диода, прекидача и тастера на GPIO пролазе