

austriamicrosystems AG

is now

ams AG

The technical content of this austriamicrosystems datasheet is still valid.

Contact information:

Headquarters:

ams AG
Tobelbaderstrasse 30
8141 Unterpremstaetten, Austria

Tel: +43 (0) 3136 500 0

e-Mail: ams_sales@ams.com

Please visit our website at www.ams.com

AS3695C

16 channel white LED controller for LCD backlight

Product Specification, Confidential

General Description

The AS3695C is a 16 channels precision LED controller for driving external FET/BJT in LCD-backlight panels. Dynamic power feedback controls the external power supply to guarantee best efficiency. Build in safety features include thermal shutdown as well as open and short LED detection. The device is programmable via serial interface.

- 16 Channel LED driver
- Output voltage max. 30V
- Output current only limited by external transistor
- Linear current setting using 10-bit DAC
- Current accuracy ±0.5% @ VDAC=250mV
- Channel to Channel current accuracy ±0.2%
- BJT base current compensation
- Output slew rate programmable
- Current programmable with external resistor
- Digital current control with 16 independent PWM generators
- Free programmable 12 bit resolution (period, high time and delay)

- PWM-generator clock
 - Internal RC-oscillator
 - External Clock
 - PLL-synthesized clock from external signal
- H-Sync, V-Sync inputs to synchronize with TV-set
- Direct PWM mode
- Undervoltage detection (open LED)
- Undervoltage auto-turnoff
- Overvoltage detection (short LED)
- Overvoltage auto-turnoff
- Temperature shutdown
- Register lock/unlock function
- Fault interrupt output
- 2 configurable supply regulation feedback outputs
- SPI interface
- 4kV ESD at voltage sense inputs
- 2kV ESD an all other pins
- Package QFN64 9x9mm, 0.5mm pitch LQFP64 14x14mm, 0.8mm pitch

Applications

LED backlighting for LCD – TV sets and

1 Block diagram

2 Typical application

3 Electrical Characteristics

3.1 Absolute Maximum Ratings

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in Section "Electrical Characteristics" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Symbol	Parameter	Min	Max	Unit	Note
Electrical	Parameters				
VDDMAX	Supply voltage	-0.3	7	V	Applicable for pin VDD
VIN_2.5V	Maximum voltage	-0.3	2.8	V	Applicable for 2.5V pins (1)
VIN_5V	Maximum voltage	-0.3	VDD +0.3V	٧	Applicable for 5V pins (2)
VIN_30V	Maximum voltage	-0.3	30	V	Applicable for 30V pins (3)
llatch	Latch-Up immunity	-100	+100	mA	Norm: JEDEC 78
Electrosta	tic Discharge				
VESD_LV	Electrostatic Discharge on all 5V pins ⁽¹⁾	-2000	2000	V	Norm: MIL 883 E Method 3015 Human body model
VESD_HV	Electrostatic Discharge on 30V pins (2) against GND	-4000	4000	V	Norm: MIL 883 E Method 3015 Human body model
Continous	s Power Dissipation (T _A = +70 °C)				
	Continous Power Dissipation		1.5	W	P _T ⁽⁴⁾ for QFN64 Package
	Continous Power Dissipation Derating factor	6	33	mW/°	P _{DERATE} (5)
Temperati	ure Ranges and Storage Conditio	ns			
TJ	Junctions temperature		+150	> °C	
Tstrg	Storage Temperature Range	-55	+150	°C	
TBODY	Package body temperature	C	260	°C	The reflow peak soldering temperature (body temperature) specified is in accordance with IPC/JEDEC J-STD-020 "Moisture/Reflow SensitivityClassification for Non-Hermetic Solid State Surface Mount Devices". The lead finish for Pb-free leaded packages is matte tin (100% Sn).
	Humidity non condensing	5	85	%	
	Moisture Sensitive Level		3		Represents a max. floor life time of 168h

Note: (1) Pins V2 5, Filt1, Filt2

- (2) Pins xRES, SDI, SCLK, SDO, xCS, VSYNC, HSYNC, VDD, xFault, FB1, FB2, G1-G16, S1-D16
- (3) Pins D1 D16
- (4) Depending on actual PCB layout and PCB used
- (5) PDERATE derating factor changes the total continuous power dissipation (PT) if the ambient temperature is not 70°C. Therefore for e.g. TA=85°C calculate PT at 85°C = PT PDERATE x (85°C 70°C)

3.2 Operating Conditions

3.2.1 General

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Rthja	Thermal resistance junction – ambient	See chapter "Thermal characteristics"				∘C/W
Tcase	Case Temperatur		-20		85	∞

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Tj	Junction Temperature		-20		115	°C

3.2.2 Power supply

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VDD	Supply Voltage		4.0		5.5	V
VDD_por	Power on reset level	Circuit stays in power down until VDD_POR is reached. G1-G16 are pulled down with $130 \text{k}\Omega$	2.4		2.9	V
IDD_q	Quiescent current	VDD= 5V, Default setting, PWM = 0		20		mA
IDD_r	Supply current	VDD = 5V, HSYNC = 1MHz, Duty = 50%		30		mA
V2_5	Voltage regulator output			2.5		V

3.2.3 Current outputs

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VDX	Output voltage pins Dx				30	V
RDX	Input resistance in Dx	PWM = 0 PWM = 1	10 0.1			ΜΩ ΜΩ
VGX	Max output voltage pin Gx	lgx = 1mA	S		VDD- 0.6	V
IGX	Max output current pin Gx			2	3	mA
IResx	Input current pin RESx	URESx = 0.5V URESx = 0.8V			10 100	uA
lled_250	Trimmed Current accuracy	Trimmed during production ILED =100mA, Temp = 25 °C, DACref=800mV, VDAC = 250mV ⁽¹⁾ external NMOS-Transistor used, (excluding error of external Rset)	-0.5		+0.5	%
lled_all FET	Current accuracy External FET	Temp = 25 °C, DACref=800mV, VDAC = 200mV to 800mV ⁽²⁾ external NMOS-Transistor used, (excluding error of external Rset)	-1.4		+1.4	%
lch_250	Channel to channel Current accuracy	ILED =100mA, Temp = 25 ℃, DACref=800mV, VDAC = 250mV ⁽¹⁾ external NMOS-Transistor used, (excluding error of external Rset)		0.2		%
lled_all_T FET	Current accuracy External FET	Tjunction = -20 ℃ to +100 ℃, DACref=800mV, VDAC = 200mV to 800mV ⁽²⁾ external NMOS-Transistor used, (excluding error of external Rset)	-1.5		+1.5	%
lled_all_T BJT	Current accuracy External BJT (B=100)	Tjunction = -20 ℃ to +100 ℃ DACref=800mV, VDAC = 200mV to 800mV ⁽²⁾ external BJT-Transistor (B=100) used, (excluding error of external Rset)	-1.5		+1.5	%

Note:

 ⁽¹⁾ It is recommended to use DACref = 800mV in order to achieve specified accuracy
 (2) It is not recommended to use VDAC < 200mV in order to minimize influences from PCB- layout and noise.

3.2.4 Feedback circuit, fault detectors

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
IFBmax	Feedback current maximum			200		uA
RFBmin	Minim output resistance	VDx = 0.2V		200	800	Ω
IFB_g	FB transconductance	$IFB_g = \Delta I_{FB} / \Delta V_{Dx}$		-2		mA/V
VFB	Feedback voltage trip point	Programmable Tolerance ±10%		0.6 0.8 1.0 VDAC +0.35		V
Vshort	Short LED detection voltage at Pin Dx	Programmable Tolerance ±1.2V	S	2 3 4 5 6 7 8 9 10 11		V V V V V V V V
Vopen	Open LED detection Voltage at Pin Sx	Programmable Tolerance ±10%		50 100 200 VDAC /2		mV mV mV
Tovtemp	Over temperature limit		130	140	150	℃
Thyst	Over termperature hysteresis			10		℃

3.2.5 PWM-generators

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
fosc	Internal Clock for PWM		400	500	600	kHz
f _{HSYNC}	HSYNC frequency		100		2000	kHz
f _{VSYNC}	VSYNC frequency		60		480	Hz
f _{PLL}	PLL frequency		125		2000	kHz

3.2.6 Digital pins

Symbol	Parameter	Min	Тур	Max	Unit	Note
VIH	High Level Input voltage	1.3		VDD	V	
VIL	Low Level Input voltage	-0.3		0.8	V	
VoH	High Level output voltage	VDD- 0.3			٧	I=mA
VoL	Low Level output voltage			VDD- 0.3	٧	I=mA
VoL_PD	Low level output voltage open drain outputs			VDD- 0.3	٧	I=mA
R_pu	Input resistance PullUp inputs		300		kΩ	

Symbol	Parameter	Min	Тур	Max	Unit	Note
R_pd	Input resistance PullDown inputs		300		kΩ	

3.2.7 SPI-timings

Symbol	Parameter	Min	Тур	Max	Unit	Note
fsclk	SCLK frequency	0		10	MHz	
t1	xCS setup time				ns	
t2	xCS hold time	100			ns	
t3	xCS disable time	100			ns	
t4	SDI setup time	5			ns	
t5	SDI hold time	5			ns	
t6	SCLK rise time	5			ns	
t7	SCLK fall time	5			ns	
t8	SCLK low time	40			ns	
t9	SCLK high time	40			ns	
t10	output valid from SCLK low	10			ns	

SPI-output timing

3.3 Pins equivalent circuit

4 Detailed Block description

4.1 Current outputs

4.1.1 Precision current sink

All current sinks are built with an internal error amplifier A1 and an external power transistor. The external transistor can either be a NMOS or a NPN bipolar transistor. The driving current capability of the output amplifier is 2mA. For low EMI radiation the slew rate of the amplifier output voltage can be adjusted between 1us and 9us

4.1.2 Power supply feedback

The voltage on the pins "Dx" is monitored to adjust the DCDC output voltage. If this voltage is lower than "FBvoltage" a comparator turns on a NMOS transistor which is able to control the output voltage of the external power supply via pin FB1 or pin FB2. The feedback comparator can be assigned to either FB1 or FB2. The power supply feedback can be turned off for all channels by the flag "FBen". If an output is turned off with the corresponding bit in the CUR_ON_1/2 -registers, the feedback function of this output is also automatically turned off.

4.1.3 Open LED detection

If a LED-string is broken the voltage at the current setting resistor goes below "OPENvoltage". This status is detected by a comparator and if this status lasts longer than 100ms a fault is indicated and optionally the output and the corresponding power feedback function is turned off. This feature can also be used for external resistor short detection during production. For proper detection the PWM high time has to be longer than 50us.

4.1.4 Short LED detection

Shorted LEDs in a LED-string will cause higher voltage at pin "Dx". A higher voltage during PWM=1 is detected by a comparator and will trigger a "short LED detection" fault. The duration of the fault is accumulated and if the time exceeds 100ms a fault is indicated and optionally the output is turned off. If the high-time of the waveform is shorter than 100ms it will take more periods to trigger this fault. For proper detection the PWM high time has to be longer than 50us.

4.1.5 Fault detection

If an Open-LED or Short-LED condition is detected the fault-signal is debounced with an internal 100ms clock. This means that the fault will be indicated in the OPENLED or SHORTLED registers between 100ms and 200ms. In order to clear the bit in these registers a "1" has to be written.

4.1.6 DAC

The reference voltage for the output stage is generated by an internal 10-bit DAC. The DAC reference can be selected between 500mV and 800mV depending on register settings. The DAC is trimmed during production with DACref = 800mV to guarantee an output current accuracy of ±0.5% on every current output.

The DAC output voltage can be calculated with:

$$VDAC = \frac{DACref}{1024} * DAC$$

DAC...10bit data value

DACref...DAC reference voltage 500mV to 800mV

4.1.7 Registers in current output stage

RegAd	dr: 0x01	CUR_ON_1		
			Default	Acc
Bit	Name	Description		ess
7:0	CURR1 - CURR8	Enables or disables current outputs 0output OFF. Pulldown resistor to GND 1output ON.	00000000	r/w

RegAd	ldr: 0x02	CUR_ON_2		
			Default	Acc
Bit	Name	Description		ess
7:0	CURR9 - CURR16	Enables or disables current outputs 0output OFF. Pulldown resistor to GND 1output ON.	00000000	r/w

RegAddr: 0x03		Fault_1				
Bit	Name	Description	Default	Acc ess		
7:3		Not used	00000	r/w		
2	Toff_OverT	Automatic Output turn off at overtemperture 0Do not turn off current outputs on overtemperature 1 Turn off current outputs on overtemperature	1	r/w		
1	Toff_Short	Automatic Output turn off on short LED detection 0Do not turn off current outputs on on short LED detection 1 Turn off current outputs on short LED detection	0	r/w		
0	Toff_Open	Automatic Output turn off on open LED detection 0Do not turn off current outputs on on open LED detection 1 Turn off current outputs on open LED detection	0	r/w		

RegAddr: 0x04 Fault_2				
			Default	Acc
Bit	Name	Description		ess
7:6	OPENvoltage	Trigger voltage for OPEN LED detection 0050mV	00	r/w
		01100mV		

			1	
		10200mV		
		11VDAC/2		
5:2	SHORTvoltage	Trigger voltage for SHORT LED detection 00002V 00013V 00104V 00115V 01006V 01017V 01108V 01119V 100010V 100111V 101012V 1011 to 1111do not use	0000	r/w
1	SHORTen	Enable short LED detection 0SHORT detection OFF 1SHORT detection ON	0	r/w
0	OPENen	Enable open LED detection 0OPEN detection OFF 1OPEN detection ON	0	r/w

RegAd	ldr: 0x05	Feedback		
Bit	Name	Description	Default	Acc ess
7:6		Not used	00	r/w
5:4	FBvoltage	Feedback regulator trip voltage. This voltage has to be adjusted if current is larger than 70mA or VDAC is higher than 0.25V 000.6V 010.8V 101.0V 11V-DAC + 0.35V	00	r/w
3	FBboost	Feedback boost option. FUNCTION DISABLED	0	r/w
2	TrType	Type of external transistor 0external FET. Base current compensation is off 1external BJT. Base current compensation is on.	0	r/w
1		Not used	0	r/w
0	FBen	Enable Feedback function for all current outputs. 1Feedback function enabled 0Feedback function disabled Note: If a current output is disabled its Feedback function is automatically disabled.	0	r/w

RegAddr: 0x06 FE		FB_SEL1		
			Default	Acc
Bit	Name	Description		ess
		Select FB-channel for current outputs 1 to 8		
7:0	FBsel 1 - 8	0select FB channel FB1	00000000	r/w
		1 select FB channel FB2		

RegAddr: 0x07 FB_SEL2				
			Default	Acc
Bit	Name	Description		ess
7:0	FBsel 9 - 16	Select FB-channel for current outputs 9 to 16 0select FB channel FB1 1 select FB channel FB2	00000000	r/w

RegAddr: 0x08		CURRctrl			
Bit	Name	Description	Default	Acc ess	
7:6		Not used.	00	r/w	
5:4	DACref	DAC reference voltage 00500mV 01600mV 10700mV 11800mV this reference is used at factory trimming	00	r/w	
3:2		Not used	00	r/w	
1:0	SLEWrate	Select slew rate of output drivers 009us 016us	00	r/w	

103us	
111us	

RegAd	RegAddr: 0x09 SHORTLED1			
			Default	Acc
Bit	Name	Description		ess
7:0	SHORTLED 1 - 8	Indicates short LED condition on outputs 1 to 8 0no short LED detected 1 short LED detected	00000000	r/w

RegAd	ldr: 0x0A	SHORTLED2		
			Default	Acc
Bit	Name	Description		ess
7:0	SHORTLED 9 - 16	Indicates short LED condition on outputs 9 to 16 0no short LED detected 1 short LED detected	00000000	r/w

RegAddr: 0x0B OPENLED1				
			Default	Acc
Bit	Name	Description		ess
7:0	OPENLED 1 - 8	Indicates open LED condition on outputs 1 to 8 0no open LED detected 1 open LED detected	00000000	r/w

RegA	ddr: 0x0C	OPENLED2		
			Default	Acc
Bit	Name	Description		ess
7:0	OPENLED 9 - 16	Indicates open LED condition on outputs 9 to 16 0no open LED detected 1 open LED detected	00000000	r/w

RegAd	dr:	DAC		
0x0E	0x0D			
Bit	Bit	Description	Default	Access
1:0	7:0	DAC[9:0] defines DADC output voltage DACvoltage = DAC[9:0]* DACref/1024	1000000000	r/w

4.2 PWM-generators

4.2.1 Clock and reset

The clock for the build in PWM-generators can be one of three different sources.

1. Internal RC oscillator with 500KHz +-20%

- 2. External Clock signal. This is usually the HSYNC signal of the TV.
- 3. Internal clock signal that is synchronized to the external VSYNC signal by means of a PLL

The VSYNC input can be used as reference clock for the PLL and also as reset signal for all PWM-generators.

4.2.2 PWM-counter

Each PWM-generator is build with a 12bit counter and digital comparators. The counter is counting up with t_{clk} until the value stored in "PWMper" is reached. This resets the counter and starts the next period. While the counter value is below "PWMxHT" the PWM-singal is "1", the rest of the period the PWM-signal is "0". The output of each PWM-generator can also be inverted by means of the "PWMrev".

4.2.3 SPI data update, UPDATEmode bit

The PWM-settings that are programmed via the SPI-Interface take effect depending on the status of the "UPDATEmode"-bit.

If UPDATEmode =1 new data from the serial interface are stored at the next rising edge of VSYNC If UPDATEmode =0 new data from the serial interface are stored immediately after xCS goes high and will take effect after current PWM cylce is finished. In this mode the values in the PWMxdel registers are ignored. There will be no Delay on the PWM signals.

The PWMxHT-values are double buffered. HighTime values for the next VSYNC can be written even when the current HighTime is not finished.

4.2.4 PWM direct control

The internal signals PWMx can also be direct applied at the VSYNC input if the bit PWMext=1.

4.2.5 VSYNC detect

The VSYNCdet=1 the VSYNC detector monitors the presence of a VSYNC siglnal. If If the VSYNC signal is missing for more than 100ms current outputs are temporary turned off.

4.2.6 VSYNC duration

Since the VSYNC input is connected to an edge detector, there is no restriction on the duration of the VSYNC pulse.

4.2.7 PLL

The PLL frequency synthesizer can be used to generate PWM-clock frequencies fclk between 125kHz and 2MHz derived from input frequencies between 60HZ and 480Hz.

The VCO frequency can be calculated:

$$f_{VCO} = f_{IN}((NCdiv + 4) * 32 + ACdiv)$$

The output frequency can be calculated:

$$f_{CLK} = f_{IN}((NCdiv + 4) * 32 + ACdiv)/ODdiv$$

where:

		Range
f _{in}	Input frequency	60 Hz – 480Hz
f _{clk}	Output frequency	125kHz – 2MHz
f _{VCO}	VCO frequency	1MHz – 2MHz
NCdiv	counter	35 - 2051
ACdiv	counter	0 - 31
ODdiv	Output divider	1,2,3,4,6,8

The main blocks of the PLL are the Phase-Frequency-Detector, the Loop Filter, the VCO and the divider.

4.2.7.1 Phase-Frequency-Detector (PFD)

The block diagram of the phase-frequency-comparator is shown below. The output signal on pin "Filt1" is a switched current source (ICP) which is sinking or sourcing current depending of the frequency and phase difference of f_{in} and f_{VCO}/M .

4.2.7.2 VCO

In VCO has an operating range between 1MHz and 2MHz. If lower clock frequencies are required the output divider (ODdiv) has to be used.

4.2.7.3 Loop filter

The output of the PFD charges a loop filter which is controlling the output frequency of the VCO. The loop filter determines the speed of the frequency lock and the remaining phase noise of the VCO output frequency.

Example of a loop filter:

Calculation process for loop filter:

Terms: f_{VCO}...Desired f_{VCO} frequency

f_{IN}...Reference input frequency

 $I_{cp}...PFC$ output current 0.5uA $K_{VCO}...VCO$ sensitivity 2.5MHz/V

1. Determined dividing ratio:
$$M = \frac{f_{VCO}}{f_{IN}}$$

2. Calculate Bandwidth BW:
$$BW = \frac{f_{ir}}{100}$$

3. Calculate C1:
$$C_1 = \frac{I_{cp} * K_{VCO}}{I_{cp} * FW}$$

4. Calculate R1:
$$R_1 = \frac{1.4*tan(65^{\circ})}{2*\pi*BW*C_1}$$

5. Calculate C0:
$$C_0 = \frac{c_1}{10}$$

4.2.7.4 Calculation Examples:

Vsync	Resolution	Fclk	Reg	Reg	Reg	C0	R1	C1
[Hz]	[bit]	[Hz]	0x61	0x62	0x63	[nF]	[kΩ]	[nF]
50	12	204800	0xFC	0x03	0x05	18,7	510	187
60	12	245760	0xFC	0x02	0x04	17,3	459	173
100	11	204800	0xFC	0x01	0x05	9,3	510	93
100	12	409600	0xFC	0x01	0x03	9,3	510	93
120	10	122880	0xFC	0x00	0x05	13,0	306	130
120	11	245760	0x7C	0x01	0x04	8,7	459	87
120	12	491520	0x7C	0x01	0x02	8,7	459	87
200	10	204800	0xFC	0x00	0x05	4,7	510	47
200	11	409600	0xFC	0x00	0x03	4,7	510	47
200	12	819200	0xFC	0x00	0x01	4,7	510	47
240	10	245760	0xBC	0x00	0x04	4,3	459	43
240	11	491520	0xBC	0x00	0x02	4,3	459	43
240	12	983040	0xFC	0x00	0x01	3,2	612	32
400	10	409600	0x7C	0x00	0x03	2,3	510	23
400	11	819200	0x7C	0x00	0x01	2,3	510	23
400	12	1638400	0x7C	0x00	0x00	2,3	510	23
480	10	491520	0x5C	0x00	0x02	2,2	459	22
480	11	983040	0x7C	0x00	0x01	1,6	612	16
480	12	1966080	0x7C	0x00	0x00	1,6	612	16

4.2.8 Registers in PWM-generators

RegAd	dr: 0x11	PWMREV1			
			Default	Acc	
Bit	Name	Description		ess	
7:0	PWMrev 1 - 8	Selects PWM inverted operation for outputs 1 to 8 0PWM normal 1 PWM inverted	00000000	r/w	

RegAd	ldr: 0x12	PWMREV2		
			Default	Acc
Bit	Name	Description		ess
7:0	PWMrev 9 - 16	Selects PWM inverted operation for outputs 9 to 16 0PWM normal 1 PWM inverted	00000000	r/w

RegAddr: 0x13		PWMCTRL				
Bit	Name	Description	Default	Acc ess		
7	FaultDetDly	Sets delay time between PWM=1 and fault detection start 0120us 160us	0	r/w		
6	DelayStart	Defines when new PWM-Delay value takes effect 0Delay values are updated every VSYNC pulse 1Delay values are updated on the next VSYNC pulse only if HighTime or Delay value has been changed.	0	r/w		
5	ClockSrc1	Clock source for internal PWM-generators 0internal RC oscillator or HSYNC (depending on ClockSrc0) 1PLL output	0	r/w		
4	VSYNCdet	Enable VSYNC detection 0VSYNC-detection OFF 1 VSYNC-detection ON. All current outpts are turned off if VSYNC signal is missing for 100ms	0	r/w		
3	VSYNCedge	Defines VSYNC trigger edge 0VSYNC trigger on rising edge 1VSYNC trigger on falling edge	0	r/w		
2	PWMext	Select external or internal PWM signal 0PWM signal is generated internally 1PWM signal is applied externally at pin VSYNC	0	r/w		
1	UpdateMode	Defines when internal registers are updated 0Registers updated with rising edge of xCS 1Registers updated with next VSYNC-edge	0	r/w		
0	ClockSrc0	Clock source for internal PWM-generators 0internal RC oscillator 1External Pin HSYNC Note: This bit only takes effect when ClockSrc1 = 0	0	r/w		

RegAddr:		PWMperiod		
0x15	0x14			
Bit	Bit	Description	Default	Access

RegAddr:		dr:	PWM1delay		
	0x17	0x16			
	Bit	Bit	Description	Default	Access
	3:0	7:0	PWM1del[11:0] sets PWM1 delay	0x00, 0x00	r/w

RegAd	dr:	PWM2delay		
0x19	0x18			
Bit	Bit	Description	Default	Access
3:0	7:0	PWM2del[11:0] sets PWM2 delay	0x00, 0x00	r/w

RegAd	dr:	PWM3delay	
0x1B	0x1A		

Bit	Bit	Description	Default	Access
3:0	7:0	PWM3del[11:0] sets PWM3 delay	0x00, 0x00	r/w

RegAddr:		PWM4delay		
0x1D	0x1C			
Bit	Bit	Description	Default	Access
Dit	DIL	Description	Delault	70003

RegAddr: PWM5delay				
0x1F	0x1E			
Bit	Bit	Description	Default	Access

RegAddr: PWM6delay				
0x21	0x20			
Bit	Bit	Description	Default	Access

RegAddr: PWM7delay		PWM7delay	4	
0x23	0x22			
Bit	Bit	Description	Default	Access
3:0	7:0	PWM7del[11:0] sets PWM7 delay	0x00, 0x00	r/w

RegAd	dr:	PWM8delay		
0x25	0x24			
Bit	Bit	Description	Default	Access
3:0	7:0	PWM8del[11:0] sets PWM8 delay	0x00, 0x00	r/w

RegAd	dr:	PWM9delay		
0x27	0x26			
Bit	Bit	Description	Default	Access

RegAd	dr:	PWM10delay		
0x29	0x28			
Bit	Bit	Description	Default	Access
3:0	7:0	PWM10del[11:0] sets PWM10 delay	0x00. 0x00	r/w

RegAd	dr:	PWM11delay			
0x2B	0x2A				
Bit	Bit	Description	Default	Access	
3:0	7:0	PWM11del[11:0] sets PWM11 delay	0x00. 0x00	r/w	

RegAddr: PWM12delay				
0x2D	0x2C			
Bit	Bit	Description	Default	Access

RegAddr: PWM13delay				
0x2F	0x2E	· ·		
Bit	Bit	Description	Default	Access
3:0	7:0	PWM13del[11:0] sets PWM13 delay	0x00, 0x00	r/w

	RegAddr: PWM14delay				
	0x31	0x30			
4	Bit	Bit	Description	Default	Access
	3:0	7:0	PWM14del[11:0] sets PWM14 delay	0x00, 0x00	r/w

RegAddr: PWM15delay				
0x33	0x32			
Bit	Bit	Description	Default	Access
		2000		

RegAddr: PWM16delay				
0x35	0x34			
Bit	Bit	Description	Default	Access
3:0	7:0	PWM16del[11:0] sets PWM16 delay	0x00, 0x00	r/w

RegAd	ddr: 0x36	LOCKUNLOCK			
Bit	Name	Description	Default	Acc ess	
7:0	LOCKUNLOCK	MagicByte to lock and unlock writing and reading of registers Writing into register: 0xCXunlock register Group1. Writing enabled 0xXAunlock register Group2. Writing enabled 0xCAunlock register Group1 and Group2. Writing enabled 0xAXlock register Group1. Writing disabled 0xAClock register Group2. Writing disabled 0xAClock register Group1 and Group2. Writing disabled Xdon't care. All other values do not change the status of lockunlock. Reading from register: 0x00 Group1 and Group2 are locked 0x01Group1 is unlocked 0x02Group2 is unlocked 0x03Group1 and Group2 are unlocked	0x00	r/w	

RegAd	dr:	PWM1hightime		
0x38	0x37			
Bit	Bit	Description	Default	Access

RegAddr: PWM2hightime				
0x3A	0x39			
			5	
Bit	Bit	Description	Default	Access

RegAddr: PWM3hightime					
0x3C	0x3B				
Bit	Bit	Description	Default	Access	
3:0	7:0	PWM3HT[11:0] sets PWM3 high time	0x00, 0x00	r/w	

RegAddr: PW		PWM4hightime		
0x3E	0x3D			
Bit	Bit	Description	Default	Access
DIL	DIL	Description	Delault	Access

RegAddr: PWM5hightime				
0x40	0x3F			
Bit	Bit	Description	Default	Access
3:0	7:0	PWM5HT[11:0] sets PWM5 high time	0x00, 0x00	r/w

RegAddr: PWM6hightime				
0x42	0x41			
Bit	Bit	Description	Default	Access
3:0	7:0	PWM6HT[11:0] sets PWM6 high time	0x00, 0x00	r/w

RegAddr: PWM7hightime				
0x44	0x43			
Bit	Bit	Description	Default	Access
		2000		

RegAddr: PWM8hightime				
0x46	0x45			
Bit	Bit	Description	Default	Access
3:0	7:0	PWM8HT[11:0] sets PWM8 high time	0x00, 0x00	r/w

RegAd	RegAddr: PWM9hightime			
0x48	0x47			
Bit	Bit	Description	Default	Access
DIL	DIL	Description	Delault	ACCESS ,

RegAddr: PWM10hightime				
0x4A	0x49			
Bit	Bit	Description	Default	Access
3:0	7:0	PWM10HT[11:0] sets PWM10 high time	0x00, 0x00	r/w

RegAd	dr:	PWM11hightime		
0x4C	0x4B			
Bit	Bit	Description	Default	Access
3:0	7:0	PWM11HT[11:0] sets PWM11 high time	0x00, 0x00	r/w

RegAd	dr:	PWM12hightime		
0x4E	0x4D			
Bit	Bit	Description	Default	Access

RegAd	dr:	PWM13hightime		
0x50	0x4F			
Bit	Bit	Description	Default	Access
3:0	7:0	PWM13HT[11:0] sets PWM13 high time	0x00, 0x00	r/w

RegAd	dr:	PWM14hightime			
0x52	0x51				
Bit	Bit	Description	Default	Access	
3:0	7:0	PWM14HT[11:0] sets PWM14 high time	0x00, 0x00	r/w	

RegAddr: PWM15hightime				
0x54	0x53			
Bit	Bit	Description	Default	Access
3:0	7:0	PWM15HT[11:0] sets PWM15 high time	0x00, 0x00	r/w

RegAd	ldr: PWM16hightime			
0x56	0x55			
Bit	Bit	Description	Default	Access
3:0	7:0	PWM16HT[11:0] sets PWM16 high time	0x00, 0x00	r/w

	RegAddr: 0x61		PLLctrl1		
				Default	Acc
	Bit	Name	Description		ess
9	7:0	NCdiv[7:0]	PLL divider NCdiv low bits 0 - 7	00000000	r/w

RegAddr: 0x62		PLLctrl2		
			Default	Acc
Bit	Name	Description		ess
7:3	ACdiv[4:0]	PLL divider ACdiv	00000	r/w
2:0	NCdiv[10:8]	PLL divider NCdiv high bits 8 - 10	000	r/w

RegAddr: 0x63		PLLctrl3			
Bit	Name	Description	Default	Acc ess	
7:6		·	00	r	
5:3	ICP[2:0]	PLL charge pump output current lcp 0000.5uA 0011uA 0102uA 0114uA 1008uA 1018uA 1118uA	000	r/w	
2:0	ODdiv[2:0]	PLL divider ODdiv 000div 1 001div 2 010div 3 011div 4 100div 6 101div 8 110div 8	000	r/w	

4.2.9 PWM examples

4.3 Power supply

4.4 Safety features

4.4.1 Temperature shutdown

If OTturnoff = 1 the outputs of the device are turned off when the die temperature reaches 140 $^{\circ}$ C. If the die temperature goes below 130 $^{\circ}$ C the outputs are turned on again.

4.4.2 xRES input

In addition to the build in power on reset circuit there is an external reset input "xRES" available. This gives the possibility to keep the outputs turned off until all blocks of the LED-driver circuits are fully working (DCDC, MCU ...)

4.4.3 Register Lock/Unlock

To prevent wrong writing to registers due to noise on the serial interface a lock/unlock mechanism is implemented.

Register 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x13, 0x61, 0x62, 0x63 belong to Group1 and can only be written if Group1 is unlocked by the "LOCKUNLOCK"-byte (Reg: 0x36) Register 0x0D, 0x0E, 0x11, 0x12, 0x14, 0x15 belong to Group2 and can only be written if Group2 is unlocked by the "LOCKUNLOCK"-byte (Reg: 0x36)

The default value of the Groups is locked.

4.5 Reference circuit

The reference circuit generates an internal supply voltage of 2.5V for the digital logic.

RegAc	ddr: 0x58	STATUS			
Bit	Name	Description	Default	Acc ess	
7	STATnosync	Sync detector status 0no sync fault 1sync fault. VSYNC was missed for > 100ms	0	r	
6	STATOT	Overtermperature status 0no overtemperature 1overtemperature	0	r	
5	STATopen	Status open LED detection 0no open LED detected 1opdn LED detected	0	r	
4	STATshort	Status short LED detection 0no short LED detected 1short LED detected	0	r	
3		Not used	0		

2 STATUVLO 0supply 0		Status under voltage lockout detector 0supply OK 1supply voltage is to low	0	R
1:0	STATpower	Status of power supply monitor 00no power supply 01power supply is ramping up 10power supply good	10	r

4.6 Dynamic feedback control

The output of pins "FB1" and "FB2" can be used to control any external power supply for best power efficiency. Every power supply senses its output voltage with a resistive voltage divider. This voltage divider can be modified to set the output voltage between a minimum output voltage VMIN and a maximum output voltage VMAX. The design of the dynamic feedback control is done in 3 steps.

Step 1: Set the resistors R1,R2 in the power supply according to the minimum output voltage

Step 2: Add the Resistors R3 in the power supply according to the maximum output voltage

Step 3: Connect R3 to the feedback pin "FB".

C1 should be chosen according to the speed requirements of the feedback loop.

The characteristic of the feedback function can be seen in the following diagram. The final output voltage Vdcdc is determined by the setting of "FBvoltage" and the current flowing into the FB pin.

5 SPI interface

For the data transfer a serial peripheral interface (SPI) is used. The SPI is configured to work only as SPI slave. If more than one driver is connected to a SPI master, they can be connected in a "Daisy Chain"-structure or a parallel structure.

5.1 SPI daisy-chain structure

All SPI slaves share the same clock (SCLK) and chip select (xCS) signal. In that configuration all devices can be treated as one big shift register. The devices are automatically enumerated as described in the next section.

5.2 SPI parallel structure

All SPI slaves share the same input (SDI) output (SDO) and clock (SCLK) signal. Every single device can be addressed via the chip select (xCS) signal. In this configuration every device has DevAddr = 0x01.

5.3 SPI device address enumeration

The device address of each driver is automatically set by the position of the device in the chain. The first device has DevAddr = 0x01, the second device has DevAddr = 0x02 and so on. Device Addresses 0x00 and 0x3F are used for special broadcast writing commands described below.

5.4 SPI protocol

5.4.1 Data types

When xCS=0 all slaves will be activated. The addressing and data section is organized in byte packages. Each message can be built with the following Bytes:

Device address:

| B | S | DevAddr[5:0]

Addresses a specific driver and defines protocol information

Bit	Meaning	Value	
В	Broadcast	B=1Broadcast message to all devices	
		B=0Normal message to one single device	
S	Singlebyte	S=0Block data read or write	
		S=1Single data transmission (only one byte)	
DevAddr[5:0]	Device Address	0x00 Write same data to same register of all devices (B=1)	
		0x01 to 0x3E. Device addresses for device 1 to 62	
		0x3F Write different data to same register of all devices (B=1)	

Nr_of_data: NrOfdata[7:0]

Defines the number of data bytes in the data frame if S=0

Bit	Meaning	Value	
NrOfdata[7:0]	Number of data	0x00 to 0xFF	
	bytes in frame		

Register_address: RW RegAddr[6:0]

Register address to be read or written

Bit	Meaning	Value
RW	Read/xWrite	RW=0 write to reg address RW=1 read from reg address
RegAddr[6:0]	Select register address	0x00 to 0x60

Data: data[7:0]

Data

Bit	Meaning	Value
data [7:0],	Data	0x00 to 0xFF

5.4.2 Timings

Write single data into single device

Read single data from single device

5.5 SPI protocol examples

5.5.1 Write single data

0x03

0x02

0x01

0x00

0x03

0x02

0x01

0x00

0x03

0x01

0x00

5.5.2 Write N data

5.5.3 Write different data in same register of all devices (single byte)

5.5.4 Write different data in same register of all devices (multiple bytes)

5.5.5 Write same data in same register of all devices (single byte)

Set DevAdd = 0x00

5.5.6 Write same data in same register of all devices (multiple bytes)

Set DevAdd = 0x00

MISO

0x00

0x00

0x00

1 0 0x00

0x03

0x02

0

0x03

0x00

0x04

5.5.7 Read single data

5.5.8 Read N data

Read from Reg0x02-Reg0x04 of Dev0x03

6 Register map

Registers can only be written if Group1 is UNLOCKED. Default = LOCKED
Registers can only be written if Group2 is UNLOCKED. Default = LOCKED

Addr	Name	D7	D6	D5	D4	D3	D2	D1	D0	Def
										ault
0x00	OUD ON 4	0 0	0 7		Used for b			0 0	1 0 4	0.00
0x01	CUR_ON_1	Curr8	Curr7	Curr6	Curr5	Curr4	Curr3	Curr2	Curr1	0x00
0x02	CUR_ON_2	Curr16	Curr15	Curr14	Curr13	Curr12	Curr11 Toff	Curr10	Curr9	0x00
0x03	FAULT_1							Toff short	Toff open	0x04
0x04	FAULT_2	OP volt				ORT age		SHORT en	OPEN en	0x00
0x05	FEEDBACK			F	В	FB	Tr		FB	0x00
					age	boost	Type FBsel3		enable	
0x06	FB_SEL1	FBsel8	FBsel7	FBsel6	FBsel5	FBsel4		FBsel2	FBsel1	0x00
0x07	FB_SEL2	FBsel16	FBsel15	FBsel14	FBsel13	FBsel12	FBsel11	FBsel10	FBsel9	0x00
0x08	CURRctrl			re	AC ef			Sle ra	te	0x00
0x09	SHORTLED1	Short8	Short7	Short6	Short5	Short4	Short3	Short2	Short1	0x00
0x0A	SHORTLED2	Short16	Short15	Short14	Short13	Short12	Shor11	Shor10	Short9	0x00
0x0B	OPENLED1	Open8	Open7	Open6	Open5	Open4	Open3	Open2	Open1	0x00
0x0C	OPENLED2	Open16	Open15	Open14	Open13	Open12	Open11	Open10	Open9	0x00
0x0D	DACLSB	DAC7	DAC6	DAC5	DAC4	DAC3	DAC2	DAC1	DAC0	0x00
0x0E	DACMSB							DAC9	DAC8	0x20
0x0F										0x00
0x10	DWWDEV4	PWM	PWM	PWM	PWM	PWM	PWM	PWM	PWM	0x00
0x11	PWMREV1	Rev8	Rev7	Rev6	Rev5	Rev4	Rev3	Rev2	Rev1	0x00
0x12	PWMREV2	PWM	PWM	PWM	PWM	PWM	PWM	PWM	PWM	0x00
		Rev16	Rev15	Rev14	Rev13	Rev12	Rev11	Rev10	Rev9	
0x13	PWMCTRL	Fault DetDly	Delay Start	Clock Src1	VSYNC det	VSYNC edge	PWM ext	Update Mode	Clock Src0	0x00
0x14	PWMperiodLSB	PWM Per7	PWM Per6	PWM Per5	PWM Per4	PWM Per3	PWM Per2	PWM Per1	PWM Per0	0x00
0x15	PWMperiodMSB	0	0	0	0	PWM	PWM	PWM	PWM	0x00
0x16	PWM1delLSB	PWM1	PWM1	PWM1	PWM1	Per11 PWM1	Per10 PWM1	Per9 PWM1	Per8 PWM1	0x00
UXIO	FWINITUEILSD	Del7	Del6	Del5	Del4	Del3	Del2	Del1	Del0	0,000
0x17	PWM1delMSB	0	0	0	0	PWM1 Del11	PWM1 Del10	PWM1 Del9	PWM1 Del8	0x00
0x18	PWM2delLSB	PWM2	PWM2	PWM2	PWM2	PWM2	PWM2	PWM2	PWM2	0x00
		Del7	Del6	Del5	Del4	Del3	Del2	Del1	Del0	
0x19	PWM2delMSB	0	0	0	0	PWM2 Del11	PWM2 Del10	PWM2 Del9	PWM2 Del8	0x00
0x1A	PWM3delLSB	PWM3 Del7	PWM3 Del6	PWM3 Del5	PWM3 Del4	PWM3 Del3	PWM3 Del2	PWM3 Del1	PWM3 Del0	0x00
0x1B	PWM3delMSB	0	0	0	0	PWM3 Del11	PWM3 Del10	PWM3 Del9	PWM3 Del8	0x00
0x1C	PWM4delLSB	PWM4	PWM4	PWM4	PWM4	PWM4	PWM4	PWM4	PWM4	0x00
OXIO	1 WWW Iddized	Del7	Del6	Del5	Del4	Del3	Del2	Del1	Del0	
0x1D	PWM4delMSB	0	0	0	0	PWM4 Del11	PWM4 Del10	PWM4 Del9	PWM4 Del8	0x00
0x1E	PWM5delLSB	PWM5 Del7	PWM5 Del6	PWM5 Del5	PWM5 Del4	PWM5 Del3	PWM5 Del2	PWM5 Del1	PWM5 Del0	0x00
0x1F	PWM5delMSB	0	0	0	0	PWM5	PWM5	PWM5	PWM5	0x00
0x20	PWM6delLSB	PWM6	PWM6	PWM6	PWM6	Del11 PWM6	Del10 PWM6	Del9 PWM6	Del8 PWM6	0x00
		Del7	Del6	Del5	Del4	Del3	Del2	Del1	Del0	
0x21	PWM6delMSB	0	0	0	0	PWM6 Del11	PWM6 Del10	PWM6 Del9	PWM6 Del8	0x00
0x22	PWM7delLSB	PWM7 Del7	PWM7 Del6	PWM7 Del5	PWM7 Del4	PWM7 Del3	PWM7 Del2	PWM7 Del1	PWM7 Del0	0x00
0x23	PWM7delMSB	0	0	0	0	PWM7 Del11	PWM7 Del10	PWM7 Del9	PWM7 Del8	0x00
0x24	PWM8delLSB	PWM8 Del7	PWM8 Del6	PWM8 Del5	PWM8 Del4	PWM8 Del3	PWM8 Del2	PWM8 Del1	PWM8 Del0	0x00
0x25	PWM8delMSB	0	0	0	0	PWM8	PWM8	PWM8	PWM8	0x00
0x26	PWM9delLSB	PWM9	PWM9	PWM9	PWM9	Del11 PWM9	Del10 PWM9	Del9 PWM9	Del8 PWM9	0x00
		Del7 0	Del6 0	Del5 0	Del4 0	Del3 PWM9	Del2 PWM9	Del1 PWM9	Del0 PWM9	0x00
0x27	PWM9delMSB	U	U	J	U	Del11	Del10	Del9	Del8	0,000

0x28	PWM10delLSB	PWM10	PWM10	PWM10	PWM10	PWM10	PWM10	PWM10	PWM10	0x00
0x29	PWM10delMSB	Del7 0	Del6 0	Del5 0	Del4 0	Del3 PWM10	Del2 PWM10	Del1 PWM10	Del0 PWM10	0x00
0x2A	PWM11delLSB	PWM11	PWM11	PWM11	PWM11	Del11 PWM11	Del10 PWM11	Del9 PWM11	Del8 PWM1	0x00
0x2B	PWM11delMSB	Del7 0	Del6 0	Del5 0	Del4 0	Del3 PWM11	Del2 PWM11	Del1 PWM11	Del0 PWM	0x00
0x2C	PWM12delLSB	PWM12	PWM12	PWM12	PWM12	Del11 PWM12	Del10 PWM12	Del9 PWM12	Del8 PWM12	0x00
0x2D	PWM12delMSB	Del7 0	Del6 0	Del5 0	Del4 0	Del3 PWM12	Del2 PWM12	Del1 PWM12	Del0 PWM12	0x00
0x2E	PWM13delLSB	PWM13	PWM13	PWM13	PWM13	Del11 PWM13	Del10 PWM13	Del9 PWM13	Del8 PWM13	0x00
0x2F	PWM13delMSB	Del7 0	Del6 0	Del5 0	Del4 0	Del3 PWM13	Del2 PWM13	Del1 PWM13	Del0 PWM13	0x00
0x30	PWM14delLSB	PWM14	PWM14	PWM14	PWM14	Del11 PWM14	Del10 PWM14	Del9 PWM14	Del8 PWM14	0x00
0x31	PWM14delMSB	Del7	Del6 0	Del5	Del4 0	Del3 PWM14	Del2 PWM14	Del1 PWM14	Del0 PWM14	0x00
0x32	PWM15delLSB	PWM15	PWM15	PWM15	PWM15	Del11 PWM15	Del10 PWM15	Del9 PWM15	Del8 PWM15	0x00
		Del7	Del6	Del5	Del4	Del3 PWM15	Del2 PWM15	Del1 PWM15	Del0 PWM15	
0x33	PWM15delMSB		·	·	•	Del11	Del10	Del9 PWM16	Del8	0x00
0x34	PWM16delLSB	PWM16 Del7	PWM16 Del6	PWM16 Del5	PWM16 Del4	PWM16 Del3	PWM16 Del2	Del1	PWM16 Del0	0x00
0x35	PWM16delMSB	0	0	0	0	PWM16 Del11	PWM16 Del10	PWM16 Del9	PWM16 Del8	0x00
0x36 0x37	LOCKUNLOC PWM1htLSB	PWM1	PWM1	PWM1	PWM1	cByte PWM1	PWM1	PWM1	PWM1	0x00 0x00
0x38	PWM1htMSB	HT7 0	HT6 0	HT5 0	HT4 0	HT3 PWM1	HT2 PWM1	HT1 PWM1	HT0 PWM1	0x00
0x39	PWM2htLSB	PWM2	PWM2	PWM2	PWM2	HT11 PWM2	HT10 PWM2	HT9 PWM2	HT8 PWM2	0x00
0x3A	PWM2htMSB	HT7 0	HT6 0	HT5	HT4 0	HT3 PWM2	HT2 PWM2	HT1 PWM2	HT0 PWM2	0x00
0x3B	PWM3htLSB	PWM3	PWM3	PWM3	PWM3	HT11 PWM3	HT10 PWM3	HT9 PWM3	HT8 PWM3	0x00
0x3C	PWM3htMSB	HT7	HT6	HT5 0	HT4 0	HT3 PWM3	HT2 PWM3	HT1 PWM3	HT0 PWM3	0x00
0x3D	PWM4htLSB	PWM4	PWM4	PWM4	PWM4	HT11 PWM4	HT10 PWM4	HT9 PWM4	HT8 PWM4	0x00
0x3E	PWM4htMSB	HT7	HT6	HT5	HT4 0	HT3 PWM4	HT2 PWM4	HT1 PWM4	HT0 PWM4	0x00
0x3F	PWM5htLSB	PWM5	PWM5	PWM5	PWM5	HT11 PWM5	HT10 PWM5	HT9 PWM5	HT8 PWM5	0x00
0x40	PWM5htMSB	HT7	HT6	HT5	HT4	HT3 PWM5	HT2 PWM5	HT1 PWM5	HT0 PWM5	0x00
			PWM6	PWM6	PWM6	HT11	HT10 PWM6	HT9	HT8 PWM6	
0x41	PWM6htLSB	PWM6 HT7	HT6	HT5	HT4	PWM6 HT3	HT2	PWM6 HT1	HT0	0x00
0x42	PWM6htMSB	0	0	0	0	PWM6 HT11	PWM6 HT10	PWM6 HT9	PWM6 HT8	0x00
0x43	PWM7htLSB	PWM7 HT7	PWM7 HT6	PWM7 HT5	PWM7 HT4	PWM7 HT3	PWM7 HT2	PWM7 HT1	PWM7 HT0	0x00
0x44	PWM7htMSB	0	0	0	0	PWM7 HT11	PWM7 HT10	PWM7 HT9	PWM7 HT8	0x00
0x45	PWM8htLSB	PWM8 HT7	PWM8 HT6	PWM8 HT5	PWM8 HT4	PWM8 HT3	PWM8 HT2	PWM8 HT1	PWM8 HT0	0x00
0x46	PWM8htMSB	0	0	0	0	PWM8 HT11	PWM8 HT10	PWM8 HT9	PWM8 HT8	0x00
0x47	PWM9htLSB	PWM9 HT7	PWM9 HT6	PWM9 HT5	PWM9 HT4	PWM9 HT3	PWM9 HT2	PWM9 HT1	PWM9 HT0	0x00
0x48	PWM9htMSB	0	0	0	0	PWM9 HT11	PWM9 HT10	PWM9 HT9	PWM9 HT8	0x00
0x49	PWM10htLSB	PWM10 HT7	PWM10 HT6	PWM10 HT5	PWM10 HT4	PWM10 HT3	PWM10 HT2	PWM10 HT1	PWM10 HT0	0x00
0x4A	PWM10htMSB	0	0	0	0	PWM10 HT11	PWM10 HT10	PWM10 HT9	PWM10 HT8	0x00
0x4B	PWM11htLSB	PWM11 HT7	PWM11 HT6	PWM11 HT5	PWM11 HT4	PWM11 HT3	PWM11 HT2	PWM11 HT1	PWM11 HT0	0x00
0x4C	PWM11htMSB	0	0	0	0	PWM11 HT11	PWM11 HT10	PWM11 HT9	PWM11 HT8	0x00
0x4D	PWM12htLSB	PWM12 HT7	PWM12 HT6	PWM12 HT5	PWM12 HT4	PWM12 HT3	PWM12 HT2	PWM12 HT1	PWM12 HT0	0x00
0x4E	PWM12htMSB	0	0	0	0	PWM12 HT11	PWM12 HT10	PWM12 HT9	PWM12 HT8	0x00
0x4F	PWM13htLSB	PWM13	PWM13	PWM13	PWM13	PWM13	PWM13	PWM13	PWM13	0x00
0x50	PWM13htMSB	HT7 0	HT6 0	HT5 0	HT4 0	PWM13	PWM13	PWM13	PWM13	0x00
0x51	PWM14htLSB	PWM14	PWM14	PWM14	PWM14	HT11 PWM14	PWM14	PWM14	PWM14	0x00
		HT7	HT6	HT5	HT4	HT3	HT2	HT1	HT0	

0x52	PWM14htMSB	0	0	0	0	PWM14	PWM14	PWM14	PWM14	0x00
						HT11	HT10	HT9	HT8	
0x53	PWM15htLSB	PWM15	PWM15	PWM15	PWM15	PWM15	PWM15	PWM15	PWM15	0x00
		HT7	HT6	HT5	HT4	HT3	HT2	HT1	HT0	
0x54	PWM15htMSB	0	0	0	0	PWM5	PWM15	PWM15	PWM15	0x00
						HT11	HT10	HT9	HT8	
0x55	PWM16htLSB	PWM16	PWM16	PWM16	PWM16	PWM16	PWM16	PWM16	PWM16	0x00
		HT7	HT6	HT5	HT4	HT3	HT2	HT1	HT0	
0x56	PWM16htMSB	0	0	0	0	PWM16	PWM16	PWM16	PWM16	0x00
						HT11	HT10	HT9	HT8	0xCX
0x57	ASICIDLSB		С				Rev Nr.			
0x58	ASICIDMSB		Ć	9		5				0x95
0x59	Not used									0x00
0x60	STATUS	STAT	STAT	STAT	STAT	0	STAT	ST	AT	
		Nosync	OT	Open	Short		UVLO	pov	wer	
0x61	PLLctrl1	NC	NC	NC	NC	NC	NC	NC	NC	0x00
		div7	div6	div5	div4	div3	div2	div1	div0	,
0x62	PLLctrl2	AC	AC	AC	AC	AC	NC	NC	NC	0x00
		div4	div3	div2	div1	div0	div10	div9	div8	
0x63	PLLctrl3			ICP2	ICP1	ICP0	OD	OD	OD	0x00
							div2	div1	div0	

ADDRESSES ABOVE 0x63 ARE FOR FACTORY TEST ONLY. DO NOT WRITE!

7 Pinout

		•	
Pin	Pin	Pin	Description
Nr	Name	Type	One and the Oate of External Transisters
1	G2	AIO	Connect to Gate of External Transistor
2	G1	AIO	Connect to Gate of External Transistor
3	S1	AIO	Connect to Source of External Transistor and to Resistor RSET
4	D1	AIO	Connect to Drain of external Transistor
5	V2_5	AIO	Digital supply output. Connect 2.2uF bypass capacitor to GND
6	xFAULT	DO- OD	Fault output. Open drain. Connect pullup to VDD
7	xRES	DI	Reset input active low
8	FB1	AIO	Power supply feedback output1
9	FB2	AIO	Power supply feedback output2
10	VSSA	AIO	GND
11	VDD	AIO	Power supply. Connect 4.7uF bypass capacitor to GND
12	VSS_SENSE	AIO	VSS sense input. Keep this node noise free
13	D16	AIO	Connect to Drain of external Transistor
14	S16	AIO	Connect to Source of External Transistor and to Resistor RSET
15	G16	AIO	Connect to Gate of External Transistor
16	G15	AIO	Connect to Gate of External Transistor
17	S15	AIO	Connect to Source of External Transistor and to Resistor RSET
18	D15	AIO	Connect to Drain of external Transistor
19	D14	AIO	Connect to Drain of external Transistor
20	S14	AIO	Connect to Source of External Transistor and to Resistor RSET
21	G14	AIO	Connect to Gate of External Transistor
22	G13	AIO	Connect to Gate of External Transistor
23	S13	AIO	Connect to Source of External Transistor and to Resistor RSET
24	D13	AIO	Connect to Drain of external Transistor
25	D12	AIO	Connect to Drain of external Transistor
26	S12	AIO	Connect to Source of External Transistor and to Resistor RSET
27	G12	AIO	Connect to Gate of External Transistor
28	G11	AIO	Connect to Gate of External Transistor
29	S11	AIO	Connect to Source of External Transistor and to Resistor RSET
30	D11	AIO	Connect to Drain of external Transistor
31	D10	AIO	Connect to Drain of external Transistor
32	S10	AIO	Connect to Source of External Transistor and to Resistor RSET
33	G10	AIO	Connect to Gate of External Transistor
34	G9	AIO	Connect to Gate of External Transistor
35	S9	AIO	Connect to Source of External Transistor and to Resistor RSET
36	D9	AIO	Connect to Drain of external Transistor
	1 -		1

37	Filt2	AIO	PLL loop filter. Connect to GND if PLL is not used			
38	Filt1	AIO	PLL loop filter. Connect to GND if PLL is not used			
39	VSYNC	DI-PD	Vertical sync frequency			
40	HSYNC	DI-PD	Clock input for PWM generators			
41	xCS	DI-PU	SPI interface chip select			
42	SDO	DO	SPI interface data output. Tristate output			
43	SCL	DI-PD	SPI interface clock			
44	SDI	DI-PD	SPI interface data input			
45	D8	AIO	Connect to Drain of external Transistor			
46	S8	AIO	Connect to Source of External Transistor and to Resistor RSET			
47	G8	AIO	Connect to Gate of External Transistor			
48	G7	AIO	Connect to Gate of External Transistor			
49	S7	AIO	Connect to Source of External Transistor and to Resistor RSET			
50	D7	AIO	Connect to Drain of external Transistor			
51	D6	AIO	Connect to Drain of external Transistor			
52	S6	AIO	Connect to Source of External Transistor and to Resistor RSET			
53	G6	AIO	Connect to Gate of External Transistor			
54	G5	AIO	Connect to Gate of External Transistor			
55	S5	AIO	Connect to Source of External Transistor and to Resistor RSET			
56	D5	AIO	Connect to Drain of external Transistor			
57	D4	AIO	Connect to Drain of external Transistor			
58	S4	AIO	Connect to Source of External Transistor and to Resistor RSET			
59	G4	AIO	Connect to Gate of External Transistor			
60	G3	AIO	Connect to Gate of External Transistor			
61	S3	AIO	Connect to Source of External Transistor and to Resistor RSET			
62	D3	AIO	Connect to Drain of external Transistor			
63	D2	AIO	Connect to Drain of external Transistor			
64	S2	AIO	Connect to Source of External Transistor and to Resistor RSET			
EP	VSSA	AIO	Exposed PAD. Connect to VSSA (QFN package only)			

Note: If an output channel X is not used, short Gx and Sx, leave Dx open.

AIO	Analog Pin
DI	Digital input
DI-PU	Digital input with pull up resistor
DI-PD	Digital input with pull down resistor
DO	Digital output
DO-OD	Digital output open drain

8 Package drawings and Markings

Marking

Packaging code

YY	ww		ZZ
Last two digits of the current year	Manufacturing week	Plant identifier	Letters for free choice

8.1 Package Drawing QFN64

REF.	MIN	NOM	MAX
A	0.80	0.90	1.00
A1	0	_	0.05
A2	0	0.65	1.00
A3	-	0.20 REF	_
L	0.35	0.40	0.45
θ	0,	_	14'
b	0.18	0.25	0.30
D		9.00 BSC	
E		9.00 BSC	
е		0.50 BSC	
D2	4.60	4.70	4.80
E2	4.60	4.70	4.80
D1	_	8.75 BSC	
E1	_	8.75 BSC	
gaa	_	0.15	4
bbb	_	0.10	_
ccc	_	0.10	
ddd	-	0.05	
eee	_	0.08	
fff	_	0.10	_
N		64	

NOTE:

- 1. DIMENSIONS & TOLERANCEING CONFIRM TO ASME Y14.5M-1994.
- 2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGELS ARE IN DEGREES.
- COPLANARITY APPLIES TO THE EXPOSED HEAT SLUG AS WELL AS THE TERMINAL.
- 4. RADIUS ON TERMINAL IS OPTIONAL.
- 5. N IS THE TOTAL NUMBER OF TERMINALS.

austriamicrosystems			ASSEMBLY ENGINEERING	
DRAWN RH8	a leap ahead i		TITLE	REFERENCE DOCUMENT JEDEC MO - 220 LATEST REVISION
CHECKER	2010.10.22		DRAVING NO. QRJ	UNCT
APPROVED MKR	2010.10.22	SHEET	DHENSIEN AND TOLORANCE	NOT IN SCALE

8.2 Package Drawing LQFP64

9 Thermal characteristic

The thermal characteristics of the devices were measured at 25 °C ambient temperature. The device was mounted on a double sided FR4 PCB with the bottom layer used as cooling area.

9.1 QFN64

PCB FR4, 1cm distance from ground

10 Ordering information

Part Number	Marking	Package Type	Delivery Form	Description
AS3695C-ZMFT	AS3695C	QFN64	Tape and Reel in Dry Pack	Package size = 9x9mm, Pitch = 0.5mm, Pb-free;
AS3695C-ZLQT	AS3695C	LQFP64	Tape and Reel in Dry Pack	Package size = 14x14mm, Pitch = 0.8mm, Pb-free;

Copyright

Copyright © 1997-2009, austriamicrosystems AG, Schloss Premstaetten, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered ®. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

All products and companies mentioned are trademarks or registered trademarks of their respective companies.

Disclaimer

Devices sold by austriamicrosystems AG are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. austriamicrosystems AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Austriamicrosystems AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with austriamicrosystems AG for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature

range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by austriamicrosystems AG for each application. For shipments of less than 100 parts the manufacturing flow might show deviations from the standard production flow, such as test flow or test location. The information furnished here by austriamicrosystems AG is believed to be correct and accurate. However, austriamicrosystems AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of austriamicrosystems AG rendering of technical or other services.

Contact Information

Headquarters austriamicrosystems AG A-8141 Schloss Premstätten, Austria

T. +43 (0) 3136 500 0 F. +43 (0) 3136 5692

For Sales Offices, Distributors and Representatives, please visit:

http://www.austriamicrosystems.com/contact