Cyclical Monotonicity and Kantorovich Problem

Date: 01-11-2023

Time: 14:21

Bipin Koirala

Table of Contents

- 1. Continuous Problem in Higher Dimension
 - 1. Example:
- 2. Gradient of Convex Function
- 3. Kantorovich Problem
 - 1. Is there a minimizer?

Continuous Problem in Higher Dimension

Similar to Monge's Formulation in 1-D, in \mathbb{R}^N we have;

Goal: Find T(x) for

$$\min rac{1}{2} \int_{\mathbb{R}} (x-T(x))^2 \ f(x) dx \quad ext{ s.t } \quad \int_{T^{-1}(A)} f(x) dx = \int_A g(y) \ dy \ \ orall \ A \subset \mathbb{R}^N$$

with the change of variables; y = T(x):

$$\int_{T^{-1}(A)}f(x)dx=\int_{T^{-1}(A)}g(T(x))\leftert
abla T(x)
ightert dx$$

Here; $|\nabla T(x)|$ is the determinant of the "Jacobian".

$$\therefore f(x) = g(T(x)) \left| \nabla T(x) \right|$$

At this stage, assume we have an optimal map T already. Choose, some $x_1,x_2,\ldots,x_N\in X$ and let $y_i=T(x_i)$. Let, E_i be a ball centered at x_i s.t. $\int_{E_i}f(x)\ dx=\epsilon$ and let $F_i=T(E_i)$. Below is a visualization of this scenario.

Let's create a new map, $\widetilde{T}(x)$ that is measure-preserving and we want the following:

$$egin{aligned} \widetilde{T}(x_i) &= y_{i+1} \ \widetilde{T}(E_i) &= F_{i+1} \ \widetilde{T}(x) &= T(x) \ ext{if} \ x
otin egin{aligned} V_{i=1}^N E_i \end{aligned}$$

Note: the above transformation is cyclic i.e. $E_1 o F_2$ and $E_3 o F_1$.

Now, if T is optimal, we have:

$$egin{aligned} rac{1}{2} \int_{\mathbb{R}} (x-T(x))^2 \ f(x) dx & \leq rac{1}{2} \int_{\mathbb{R}} (x-\widetilde{T}(x))^2 \ f(x) dx \ \Rightarrow rac{1}{\epsilon} \sum_{i=1}^N \int_{E_i} x (\widetilde{T}(x)-T(x)) \ f(x) \ dx & \leq 0 \end{aligned}$$

Above expression is similar to 1-D case.

As $\epsilon o 0$: $x o x_i, \widetilde{T}(x_i) o y_{i+1}, T(x) o y_i$ and integrating f(x) over E_i gives ϵ , so

$$\sum_{i=1}^N x_i(y_{i+1}-y_i) \leq 0$$

This condition is called #Cyclical-Monotonicity.

Example:

When N=2, from #Cyclical-Monotonicity we have:

$$x_1(y_2-y_1)+x_2(y_1-y_2)\leq 0 \ (x_2-x_1)\cdot (y_2-y_1)\geq 0$$

In other words, upon transformation the vectors when super-imposed, make an acute angle.

This condition holds true for all N and restricts our ability to 'twist' mass. This is a stronger condition than being irrotational.

Gradient of Convex Function

Property (Rockafellar):

A cyclically monotone map can be expressed as the gradient of a convex function.

From the optimality condition; we can write $T(x) = \nabla u(x)$ where u is a convex function. Now, by the conservation of mass we have already established that $f(x) = g(T(x)) |\nabla T(x)|$ Now,

$$ig|
abla T(x)ig| = rac{f(x)}{g(T(x))} \ ig|
abla^2 u(x)ig| = rac{f(x)}{g(T(x))}$$

Above equation is called the # Monge-Ampere equation and $|\nabla^2 u(x)|$ is the determinant of a Hessian.

Kantorovich Problem

We have already seen the objective function in #Kantorovich formulation.

$$\inf \int_{X imes Y} c(x,y) \ d\pi(x,y) ig| \pi \in \Pi(\mu,
u)$$

Here, $\Pi(\mu, \nu)$ is the set of measures whose marginals on X and Y are μ and ν respectively.

#Kantorovich formulation is feasible under the following conditions:

• $\Pi(\mu, \nu)$ is feasible if there is a mass balance

 As long as the cost function is bounded below and X, Y are bounded then there exists an infimum that is finite.

Is there a minimizer?

We need a compactness argument.

Theorem (Weierstrass):

If $f:U\to\mathbb{R}$ is continuous and U is compact then f attains a minimum on U.

So we need to show that c(x,y) $d\pi(x,y)$ is continuous and $\Pi(\mu,\nu)$ is compact in order for the #Kantorovich formula to contain infimum.

Theorem

Suppose $X,Y\subseteq\mathbb{R}^N$ are compact and that c(x,y) is continuous. Under this assumptions #Kantorovich problem contains minimum.

Proof:

Before we talk about compactness we need a notion of convergence. We identify $U = \Pi(\mu, \nu)$ and without loss of generality these are probability measures. Furthermore, a sequence of measures converges $\gamma_n o \gamma$ if

$$\int_{X imes Y} g(x,y) d\gamma_n(x,y)
ightarrow \int_{X imes Y} g(x,y) d\gamma \quad orall \ g \in C^0(X imes Y)$$

Is the set $\Pi(\mu, \nu)$ compact?

Choose any sequence $\pi_n \in \Pi(\mu, \nu)$. We need to extract a convergent sub-sequence. Since, π_n are probability measures, we can extract a sub-sequence.

 $\pi_{n_k} o \pi$, which is also a probability measure.

 $extcolor{l}{ ilde{oldsymbol{\Delta}}}$ Need to check: Does $\pi\in\Pi(\mu,
u)$?

Check marginals Choose any $g \in C(X)$ and

$$egin{aligned} \int_{X imes Y} g(x) \; d\pi(x,y) &= \lim_{k o\infty} \int_{X imes Y} g(x) \; d\pi_{n_k}(x,y) & \because \; \pi_{n_k} o \pi \ &= \int_X g(x) \; d\mu(x) & \because \; \pi_{n_k} \in \Pi(\mu,
u), \; ext{so is the marginal over X is μ} \end{aligned}$$

With the same argument, the marginal of π over Y is ν .

$$\therefore \pi \in \Pi(\mu, \nu)$$
 i.e. Π is compact

Is the value of f continuous?

Let,
$$f(\pi) = \int_{X imes Y} c(x,y) \; d\pi(x,y) \quad orall \pi \in U$$

Choose any $\pi_n \in \Pi(\mu, \nu)$ s.t. $\pi_n \to \pi \in \Pi(\mu, \nu)$. >

Need to show:

$$f(\pi_n) o f(\pi)$$

Here;

$$egin{aligned} f(\pi_n) &= \int_{X imes Y} c(x,y) \; d\pi_n(x,y) \ &= \int_{X imes Y} c(x,y) \; d\pi(x,y) \quad \because \pi_n o \pi \; \& \; c ext{ is continuous} \ &= f(\pi) \end{aligned}$$

 \therefore f is continuous.

Therefore, from Weierstrass theorem we can say that the #Kantorovich problem has a minimizer.

#Kantorovich problem seeks to minimize a real-valued, continuous function over a compact set. It admits a minimizer.