1.	Which	of the	following	can	address	overfitting?
----	-------	--------	-----------	-----	---------	--------------

0.75 / 1 point

- Select a subset of the more relevant features.

If the model trains on the more relevant features, and not on the less useful features, it may generalize better to new examples.

- Remove a random set of training examples
- Apply regularization

Regularization is used to reduce overfitting.

Collect more training data

You didn't select all the correct answers

2. You fit logistic regression with polynomial features to a dataset, and your model looks like this.

1 / 1 point

What would you conclude? (Pick one)

- The model has high variance (overfit). Thus, adding data is likely to help
- The model has high bias (underfit). Thus, adding data is likely to help
- The model has high bias (underfit). Thus, adding data is, by itself, unlikely to help much.
- The model has high variance (overfit). Thus, adding data is, by itself, unlikely to help much.
 - Correct

The model has high variance (it overfits the training data). Adding data (more training examples) can help.

Regularization

1 / 1 point

- 3. Suppose you have a regularized linear regression model. If you increase the regularization parameter λ , what do you expect to happen to the parameters $w_1, w_2, ..., w_n$?
 - This will reduce the size of the parameters $w_1, w_2, ..., w_n$
 - This will increase the size of the parameters $w_1, w_2, ..., w_n$

Regularization reduces overfitting by reducing the size of the parameters $w_1, w_2, ... w_n$.