- 1. If the sum of zeroes of the polynomial $p(x) = 2x^2 k\sqrt{2}x + 1$ is $\sqrt{2}$, then value of k is:
 - (a) $\sqrt{2}$
 - (b) 2
 - (c) $2\sqrt{2}$
 - (d) $\frac{1}{2}$
- 2. If the probability of a player winning a game is 0.79, then the probability of his losing the same game is:
 - (a) 1.79
 - (b) 0.31
 - (c) 0.21
 - (d) 0.21
- 3. If the roots of the equation $ax^2 + bx + c = 0$, $a \ne 0$ are real and equal, then which of the following relations is true?
 - (a) $a = \frac{b^2}{c}$
 - (b) $b^2 = ac$
 - (c) $ac = \frac{b^2}{4}$
 - (d) $c = \frac{b^2}{a}$
- 4. In an A.P., if the first term a = 7, nth term $a_n = 84$, and the sum of the first n terms $s_n = \frac{2093}{2}$, then n is equal to:
 - (a) 22
 - (b) 24
 - (c) 23
 - (d) 26

5.	If two positive integers p and q can be expressed as $p = 18a^2b^4$ and $q = 18a^2b^4$
	$20a^3b^2$ where a and b are prime numbers, then LCM (p,q) is:

(a)
$$2a^2b^2$$

(b)
$$180a^2b^2$$

(c)
$$12a^2b^2$$

(d)
$$180a^3b^4$$

6. AD is a median of $\triangle ABC$ with vertices A(5, -6), B(6, 4), and C(0, 0). The length of AD is equal to:

(a)
$$\sqrt{68}$$
 units

(b)
$$2\sqrt{15}$$
 units

(c)
$$\sqrt{101}$$
 units

7. If $\sec \theta - \tan \theta = m$, then the value of $\sec \theta + \tan \theta$ is:

(a)
$$1 - \frac{1}{m}$$

(b)
$$m^2 - 1$$

(c)
$$\frac{1}{m}$$

8. From the data 1, 4, 7, 9, 16, 21, 25, if all the even numbers are removed, then the probability of getting at random a prime number from the remaining is:

- (a) $\frac{2}{5}$
- (b) $\frac{1}{5}$
- (c) $\frac{1}{7}$
- (d) $\frac{2}{7}$

9. For some data $x_1, x_2,, x_n$ with respective frequencies $f_1, f_2,, f_n$, the value of $\sum_{i=1}^{n} f_i(x_i - \overline{x})$ is equal to:
(a) $n\bar{x}$
(b) 1

10. The zeroes of a polynomial x^2+px+q are twice the zeroes of the polynomial $4x^2-5x-6$. The value of p is:

(c) -5 (d) 10

(c) Σf_i (d) 0

11. If the distance between the points (3, -5) and (x, -5) is 15 units, then the values of x are:

(c) 18,5

(d) -9, -12

12. If $\cos(\alpha + \beta) = 0$ then the value of $\cos(\frac{\alpha + \beta}{2})$ is equal to:

(a) $\frac{1}{\sqrt{2}}$

(b) $\frac{1}{2}$

(c) 0

(d) $\sqrt{2}$

13.	A solid sphere is cut into two hemispheres. The ratio of the surface areas of the sphere to that of the two hemispheres taken together is:
	(a) 1:1
	(b) 1:4
	(c) 2:3
	(d) 3:2
14.	The middle-most observation of every data arranged in order is called:
	(a) mode
	(b) median
	(c) mean
	(d) deviation
15.	The volume of the largest right circular cone that can be carved out from a solid cube of edge 2 cm is:
	(a) $\frac{4\pi}{3}$ cucm
	(b) $\frac{5\pi}{3}$ cucm
	(c) $\frac{8\pi}{3}$ cucm
	(d) $\frac{2\pi}{3}$ cucm
16.	Two dice are rolled together. The probability of getting a sum of numbers on the two dice as 2, 3, or 5 is:
	(a) $\frac{7}{36}$ (b) $\frac{11}{36}$
	(c) $\frac{5}{36}$
	(d) $\frac{4}{9}$

- 17. The center of a circle is at (2,0). If one end of a diameter is at (6,0), then the other end is at:
 - (a) (0,0)
 - (b) (4,0)
 - (c) (-2,0)
 - (d) (-6,0)
- 18. In the given figure, graphs of two linear equations are shown. The pair of these linear equations is:

Figure 1

- (a) consistent with a unique solution.
- (b) consistent with infinitely many solutions.
- (c) inconsistent.
- (d) inconsistent but can be made consistent.

Directions:

In Q. No. 19, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct option.

19. **Assertion** (A): The tangents drawn at the end points of a diameter of a circle are parallel.

Reason (**R**): The diameter of a circle is the longest chord.

- (a) Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct explanation of Assertion (A).
- (b) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation for Assertion (A).
- (c) Assertion (A) is true, but Reason (R) is false.
- (d) Assertion (A) is false, but Reason (R) is true.