Basic Algorithms & Scoring Schemes for Searching Protein Spectra

Department of Life Sciences, SBASSE, LUMS

Out of Experiment and into Algorithms

Format of Tandem MS Data

3

Things to watch out for in MS data

- 1. Intact Protein/Peptide Mass
- 2. Charge States
- 3. Relative Abundances
- 4. Technique-specific fragmentation patterns
- 5. Mass Shifts (PTMs, neutral losses)

Estimating Intact Mass

Intuitively Scoring Tuned Masses

- As a first step in protein search, protein database is filtered for proteins matching the MW reported in the experimental data
- What to do incase multiple proteins fall in the mass range?
- Scoring Philosophy: The closer the better!

$$M_{Score} = \frac{1}{\sqrt{(M_{Exp} - M_{Thr})^2}}$$

7 **SSE**

7

What we do in SPECTRUM?

$$Mass_{diff} = |Mass_{experimental} - Mass_{theoretical}|$$

$$\begin{cases} 1, Mass_{diff} = 0 \\ \frac{1}{2^{Mass_{diff}}}, 0 < Mass_{diff} \leq Thr \\ 0, Mass_{diff} > Thr \end{cases}$$

2. Peptide Sequence Tags

- Upon obtaining scores of all proteins in the protein database, we filter the database for "candidate proteins"
- Sequence tags are extracted from spectral data
- These sequence tags are then searched in the candidate proteins and a re-scoring is performed
- Upon obtaining the new scores, the "candidate proteins" are further shortlisted and sorted as per the newer scores.

Extracting Peptide Sequence Tags

Scoring Sequence Tags - I

- Sequence Tag Examples: 'M', 'MQ', and 'QV' etc
- What can we consider to be "scorable" attributes of these tags?
 - 1. Length
 - 2. RMSE
 - 3. Abundance
- Scoring Philosophy:
 - The lengthier the tag, the better,
 - The smaller the RMSE, the better,
 - The more abundant the better!

Scoring Sequence Tags - II

• If a candidate protein matches 'n' PSTs, then its score can be given by:

$$PST_{Score} = \sum_{i=0}^{n} Length \ (PST_i)^2$$
 Of a single PST

 Additionally, if we include RMSE to the scoring system, then it can highlight better PST matches.

13

Scoring Sequence Tags - III

• So, what is the RMSE for a specific sequence tag 'i' of length 'n'?

$$RMSE_{i} = \sum_{i=0}^{n} \sqrt{(M_{Hop} - M_{AA})^{2}}$$
of a single PST $\underline{i} = 0$

So, the updated relationship is:

$$PST_{Score} = \sum_{i=0}^{n} (\frac{Length(PSTi)}{RMSE_i})$$
in a protein

14

Cookie Point: How to cater for abundance? (0.25)

3. Post-translational Modifications

Lahore University of Management Sciences (LUMS), Pakistan

					-,-,-,	,(-,	,,					-3-()			,	,,			.,,,,,	
Acetylation	1040	8	-	36	11	64	20	-	-	-		7732	616	-	15	676	132	-	6	29
ADP-ribosylation	_ ·	126	1	-	18	-	-	-	-	-		-	-	-	-	-	-	-	-	-
Allysine	·	-	-	-	-	-	-	-	-	-		37	-	-	-	-		-	-	-
Amidation	41	119	104	5	85	142	15	29	16	97	443	68	89	637	47	52	89	71	62	332
Biotin	<u> </u>	-	-	-	-	-	-	-	-	-		10	-	-	-	-	-	-	-	-
Bromination	_	-	-	-	-	-	-	-	1	-		-	-	-	-	-	_	32	-	-
C-linked Glycosylation	<u> </u>	-	_		-	_	-	-		-		-	-		_	_		156		-
Chromophore		-	-	-	4	-	-	-	-	-		-	-	-	-	-	-	-	-	-
Citrullination	_	32	_		-	_	-	-		-		-	-	_	_	-		_		-
Covalent protein-DNA linkage and Phosphorylation		-	-	_	_	-	-	-		-		_	-	-	-	4		_	4	-
CTQ	_										_			\vdash	Н		_	Н		
	_				2						<u> </u>			نط	\vdash		_			\vdash
Cyclopeptide	3	8	1	1	8	106			2	1	2	2		نـــــا	2	7		تسا		نب
D-amino acid	15	-	1	-	1	-	-	_	-	5	4	-	3	13	-	5	1	7	-	2
D-amino acid and Hydroxylation	Ŀ	_	_		_	_		_	_	-			-	_	_					2
D-amino acid and Thioether bond		-	-	-	2	-	-	-	-	-		-	-	-	-	5	1	-	-	-
Deamidation		-	37	_	-	-	-	15	-	-		-	-	_	-	-		-	-	-
Decarboxylation		-	-	-	-	-	-	-	-	-		-	-	-	-	-	3	-	-	-
Dehydroxylation		-	-	-	2	-	-	-	-	-		-	-	-	-	28	41	-	6	-
Diphthamide		-		_	-	_	-	-	5	-			-	<u> </u>	_					-
Disulfide bond		_	_		1137	_				_					_				_	-
FAD	<u> </u>	-	-		6		_	-	12	-			-						1	-
FMN	_	-	-		9	-	_		1	-		-	-	-		-	2	-	-	-
F 1 1 11																				

Predict Phosphorylation

Pos.	-6	-5	-4	-3	-2	-1	0	+1	+2	+3	+4	+5	+6
A	0.07	0.07	0.07	0.06	0.07	0.07	0	0.04	0.06	0.06	0.06	0.07	0.07
R	0.08	0.09	0.08	0.15	0.09	0.07	0	0.04	0.05	0.06	0.06	0.07	0.07
N	0.03	0.03	0.04	0.03	0.04	0.04	0	0.02	0.03	0.03	0.03	0.03	0.03
D	0.05	0.06	0.05	0.06	0.06	0.08	0	0.08	0.08	0.08	0.07	0.07	0.06
C	0.01	0.01	0.01	0.01	0.01	0.01	0	0.01	0.01	0.01	0.01	0.01	0.01
G	0.07	0.07	0.07	0.07	0.06	0.09	0	0.05	0.08	0.07	0.07	0.06	0.07
Ε	0.08	0.08	0.08	0.07	0.07	0.06	0	0.07	0.11	0.13	0.1	0.09	0.09
Q	0.04	0.04	0.05	0.04	0.04	0.04	0	0.05	0.04	0.04	0.04	0.04	0.04
Η	0.02	0.02	0.02	0.02	0.02	0.02	0	0.01	0.02	0.02	0.02	0.02	0.02
I	0.03	0.03	0.03	0.03	0.03	0.03	0	0.03	0.03	0.02	0.03	0.03	0.03
L	0.07	0.09	0.07	0.07	0.07	0.09	0	0.08	0.06	0.06	0.08	0.07	0.07
K	0.07	0.07	0.07	0.07	0.05	0.05	0	0.03	0.05	0.06	0.05	0.06	0.07
M	0.02	0.02	0.01	0.01	0.01	0.01	0	0.01	0.01	0.01	0.02	0.01	0.02
F	0.02	0.02	0.02	0.02	0.02	0.02	0	0.03	0.02	0.02	0.02	0.02	0.02
P	0.08	0.08	0.08	0.07	0.09	0.08	0	0.27	0.09	0.08	0.08	0.09	0.08
S	0.12	0.12	0.14	0.13	0.16	0.12	0	0.1	0.15	0.14	0.14	0.12	0.12
T	0.06	0.05	0.06	0.05	0.06	0.05	0	0.04	0.06	0.05	0.06	0.05	0.06
W	0	0	0	0	0	0	0	0.01	0	0	0	0.01	0.01
Y	0.02	0.02	0.02	0.01	0.01	0.02	0	0.01	0.01	0.01	0.01	0.02	0.02
V	0.05	0.05	0.05	0.04	0.04	0.04	0	0.04	0.05	0.04	0.05	0.05	0.05

				3.5	411			-17					
Methylation [Lysine] "Modification willoccur at Ki.e. pe												position.	
Pos.	-6	-5	-4	-3	-2	-1	0	+1	+2	+3	+4	+5	+6
Α	0.14	0.12	0.09	0.14	0.22	0.09	0	0.09	0.16	80.0	0.1	0.08	0.16
R	0.08	0.03	0.05	0.08	0.03	0.24	0	0.03	0.03	0.1	0.12	0.05	0.09
N	0.03		0.02	0.03	0.03	0.01	0	0.02	0.02	0.02	0.01	0.04	0.02
D	0.01		0.04	0.03	0.06	0.02	0	0.05	0.06	0.04	0.06	0.05	0.04
С	0.01	0.01	0.01	0	0	0.01	0	0	0	0.01	0	0	0
G	0.1	0.06	80.0	0.12	0.12	0.04	0	0.05	0.04	0.15	0.09	0.05	0.17
E	80.0	0.05	0.04	80.0	0.04	0.05	0	0.03	0.05	0.05	0.07	0.1	0.03
Q	0.02	0.02	0.1	0.04	0.02	0.03	0	80.0	0.01	0.05	0.02	0.03	0.05
Н	0.01	0.01	0.01	0.01	0.05	0	0	0.03	0.03	0.09	0.01	0.02	0.01
I	0.02	0.06	0.02	0.04	0.03	0.01	0	0.01	0.05	0.03	0.04	0.02	0.06
L	0.07	0.04	0.03	0.11	80.0	80.0	0	0.05	0.12	0.07	0.06	0.05	0.05
K	0.05	0.15	0.18	0.07	0.06	0.06	0	0.13	0.06	0.07	0.09	0.15	0.08
M	0.04	0.01	0.01	0	0.02	0.01	0	0.01	0.02	0	0	0	0
F P	0.01	0.01	0.01	0.01	0.06	0.08	0	0.01	0.02	0.04	0.03	0.06	0.01
S	0.06	0.06	0.04	0.03	0.04	0.05	0	0.19	0.04	0.03	0.04	0.01	0.03
T T	0.06	0.06	0.07	0.04	0.04	0.05	n	0.19	0.04	0.03	0.08	0.07	0.04
W	0.1	0.14	0.09	0.09	0.04	0.00	0	0.06	0.13	0.02	0.01	0.09	0.06
Ÿ	0.04	0.02	0.05	0.03	0.02	0.01	0	0.02	0.01	0.01	0.03	0.07	0.02
Ā	0.04	0.07	0.07	0.04	0.07	0.07	0	0.02	0.06	0.08	0.04	0.04	0.05
0.2		0.07	0.07	0.04	0.07	0.07	- 0	0.00	0.00	0.08	0.04	0.04	0.00
0.			1	/	\bigvee		1					=	A R N D C G
0.1 200g 0.										X			Q H I L K

Post-translational Modifications

Lahore University of Management Sciences (LUMS), Pakistan

19 5 5 6

19

4. In silico Fragment Generation & Comparison

Lahore University of Management Sciences (LUMS), Pakistan

Spectral Comparison - Flowchart

Lahore University of Management Sciences (LUMS), Pakistan

Scoring Exp. & Thr. Peaks - I

- Upon computing the PST scores, the candidate list is further filtered for the highest scoring proteins.
- Finally, for each protein in this yet newer candidate list, we compute the theoretical fragments.
- Each proteins theoretical fragments is compared with the experimental fragments.
- Now, the question is, how to score?

Scoring Exp. & Thr. Peaks - II

1. Count the matches between thr. and exp. Peaks and give an equivalent score to the candidate protein

$$Score_{insilico} = \frac{Matches_{num}}{Frag_{exp}}$$

2. Weigh each of the aforementioned match by the mass error and abundance, and then accumulate the score

Lahore University of Management Sciences (LUMS), Pakistan

23

Computing Cumulative Scores - I

- So now we have obtained three individual scores
 - 1. Scores from MW Matches
 - 2. Scores from PST Matches
 - 3. Scores from Exp<>Thr Peak Matches
- It is necessary to compute an overall cumulative score (Why?)
- What are the options that we have? (Discussion!)

Scoring Scheme in SPECTRUM

$$\textit{Score_MW} = \begin{cases} 1, & \textit{MWP}_{Diff} = 0 \\ \\ \frac{1}{2^{\textit{MWP}_{Diff}}}, & 0 < \textit{ABS}(\textit{MWP}_{Diff}) \leq Thr \\ \\ 0, & \textit{MWP}_{Diff} > Thr \end{cases}$$

$$Score_PST = \sum_{i=0}^{M} PSTMatches_i \times (ErrorScore_i + FrequencyScore_i)$$

$$FrequencyScore = Intensity \times LengthScore$$

$$LengthScore = N^2$$

$$Intensity = \frac{\sum_{i=1}^{N} Int_AA_i}{N}$$

$$ErrorScore = e^{-RMSE \times 2}$$

$$\textbf{Insilico Score} = \frac{\textit{No of matches}}{\textit{Number of Experimental Fragments}}$$

$$Score_Final = (Score_MW \times W1) + (Score_PST \times W2) + (Score_Insilico \times W3)$$

25

Computing Cumulative Scores - II

• Simply sum the scores up (a linear function)

$$Score_{MW} + Score_{PST} + Score_{Exp} > Thr = Score$$

 Weigh each scoring component up by respective RMSE before summing them up

$$Score_{final} = (Score_{mass} * W_1) + (Score_{PST} * W_2) + (Score_{insilico} * W_3)$$

- Develop a non-linear function to integrate the scoring components (e.g. Mascot etc)
 - Highly proprietary for commercial proteomics software

Overall Search Flowchart

27

27

Home Task

Read

SPECTRUM – A MATLAB Toolbox for Proteoform Identification from Top-Down Proteomics Data

https://www.nature.com/articles/s41598-019-47724-1

