# Item Response Model from scratch with Rcpp

vkyo23

February 14, 2022

### **Preface**

In the repository, I have published the code to implement the Bayesian two parameter logistic item response model (2PL IRT) from scratch using Rcpp and RcppArmadillo.

In this RMarkdown file, I will describe the model and show an example of analysis using those codes<sup>1</sup>.

**IMPORTANT NOTE:** As this is a transcription by a student who is still studying IRT for his own notes, there will be errors in various parts. Please let me know if there are any mistakes.

## Likelihood and posteriors

Suppose there are  $i=1,\ldots,N$  individuals and  $j=1,\ldots,J$  items (or exams). The probability of an individual i's correct answer  $(y_{ij}=1,$  otherwise 0) to an item j is given by

$$p_{ij} = \Pr(y_{ij} = 1 \mid \alpha_i, \beta_i, \theta_i) = \operatorname{logit}^{-1}(\beta_i \theta_i - \alpha_i).$$

where  $alpha_j$ ,  $\beta_j$  is the **difficulty** and **discrimination** of an item j, and  $\theta_i$  is the ability of i. It is straightforward to show the likelihood f:

$$f(y \mid \alpha, \beta, \theta) = \prod_{i=1}^{N} \prod_{j=1}^{J} p_{ij}^{y_{ij}} (1 - p_{ij})^{1 - y_{ij}}. \tag{1}$$

For the above generative model, Bayesian estimation is used to estimate the latent variables, the parameters  $\alpha_i$ ,  $\beta_i$  and  $\theta_i$ . From the Bayes rule, we can write the posterior distribution as

$$\pi(\Theta \mid y) \propto f(y \mid \Theta)\pi(\Theta),$$
 (2)

where  $\pi(\Theta)$  is **prior distribution**,  $f(y \mid \Theta)$  is likelihood function and  $\pi(\Theta \mid y)$  is **posterior distribution**.

Applying these to the above example, we will derive the posterior distribution of the item response theory model. First, we set prior distributions for  $\alpha, \beta, \theta$ 

$$\alpha_i \sim N(a_0, A_0) \tag{3}$$

$$\beta_i \sim N(b_0, B_0) \tag{4}$$

$$\theta_i \sim N(0, 1). \tag{5}$$

<sup>&</sup>lt;sup>1</sup>The description and implementation of model is relied on *Handbook of Item Response Theory Volume 2: Statistical Tools* by Wim J. van der Linden (2016). https://www.routledge.com/Handbook-of-Item-Response-Theory-Volume-2-Statistical-Tools/Linden/p/book/9780367221041

Then, we can write the conditional posterior distribution for  $\alpha, \beta, \theta$  from equation (1) ~ (5), given the rest parameters:

$$\begin{split} \pi(\alpha_j \mid y, \beta, \theta) &\propto f(y \mid \alpha, \beta, \theta) \pi(\alpha_j) \\ &= f(y \mid \alpha, \beta, \theta) \times N(\alpha_j \mid a_0, A_0) \\ &= \prod_{i=1}^N \left[ p_{ij}^{y_{ij}} (1 - p_{ij})^{1 - y_{ij}} \right] N(\alpha_j \mid a_0, A_0) \quad \forall j = 1, \dots J. \end{split} \tag{6}$$

$$\begin{split} \pi(\beta_j \mid \boldsymbol{y}, \boldsymbol{\alpha}, \boldsymbol{\theta}) &\propto f(\boldsymbol{y} \mid \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\theta}) \pi(\beta_j) \\ &= f(\boldsymbol{y} \mid \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\theta}) \times N(\beta_j \mid b_0, B_0) \\ &= \prod_{i=1}^N \left[ p_{ij}^{y_{ij}} (1 - p_{ij})^{1 - y_{ij}} \right] N(\beta_j \mid b_0, B_0) \quad \forall j = 1, \dots J. \end{split} \tag{7}$$

$$\begin{split} \pi(\theta_i \mid y, \alpha, \beta) &\propto f(y \mid \alpha, \beta, \theta) \pi(\theta_i) \\ &= f(y \mid \alpha, \beta, \theta) \times N(\theta_i \mid 0, 1) \\ &= \prod_{j=1}^J \left[ p_{ij}^{y_{ij}} (1 - p_{ij})^{1 - y_{ij}} \right] N(\theta_i \mid 0, 1) \quad \forall i = 1, \dots N. \end{split} \tag{8}$$

Normally, we would use a Gibbs sampler to sample parameters from the posterior distribution, but since the conditional posteriors in  $(6) \sim (8)$  above are not in the form of the standard normal or gamma distributions, we cannot simply sample parameters using a Gibbs sampler. Therefore, we adopt the Metropolis-Hastings Algorithm, which allows us to perform MCMC even in such a case.

## Metropolis-Hastings Algorithm

Here, for simplicity of notation, I define an arbitrary parameter as  $\delta_k$ . First, we sample the **candidate**  $\delta_k^*$  from a random walk distribution as follows

$$\delta_k^* \sim N(\delta_k^{(t-1)}, \tau_\delta),$$

where  $\delta_k^{(t-1)}$  is a sample from previous iteration and  $\tau$  is a so-called tuning parameter. Next, we must calculate **the acceptance probability** which determines whether we accept the candidate  $\delta_k^*$  or previous  $\delta_k^{(t-1)}$  as a current sample. Following the discussion of Junker, Patz and VanHoudnos (2016, p.277)<sup>2</sup>, the acceptance probability is given by:

$$ap = \min \left\{ \frac{\pi(\delta_k^* \mid \boldsymbol{y}, \boldsymbol{\eta}) \cdot g(\delta_k^{(t-1)} \mid \delta_k^*)}{\pi(\delta_k^{(t-1)} \mid \boldsymbol{y}, \boldsymbol{\eta}) \cdot g(\delta_k^* \mid \delta_k^{(t-1)}, 1} \right\}$$

where  $\pi(\cdot \mid y, \eta)$  is the posterior density,  $g(\cdot \mid \cdot)$  is proposal density and  $\eta$  indicates rest parameters other than  $\delta_k$ . If u < ap, we accept  $\delta_k^*$  as a current sample, otherwise  $\delta_k^{(t-1)}$  where  $u \sim U(0,1)$ .

To calculate the acceptance probability, we first calculate the posterior density of the candidate sample,  $\pi(\delta_k^* \mid y, \eta)$ , and the previous sample,  $\pi(\delta_k^{(t-1)} \mid y, \eta)$ , respectively. For example, the case of  $\alpha_j$ :

<sup>&</sup>lt;sup>2</sup>From the same book as in footnote 1.

$$\begin{split} \text{Candidate} & \dots & \pi(\alpha_j^* \mid y, \beta, \theta) \propto f(y \mid \alpha^*, \beta, \theta) \pi(\alpha_j^*) \\ & = f(y \mid \alpha^*, \beta, \theta) \times N(\alpha_j^* \mid a_0, A_0) \\ & = \prod_{i=1}^N \left[ p_{ij} (\alpha_j^*)^{y_{ij}} \{1 - p_{ij} (\alpha_j^*)\}^{1-y_{ij}} \right] N(\alpha_j^* \mid a_0, A_0) \quad \forall j = 1, \dots J. \end{split}$$

$$\begin{split} \text{Previous} \quad & \dots \quad \pi(\alpha_{j}^{(t-1)} \mid y, \beta, \theta) \propto f(y \mid \alpha^{(t-1)}, \beta, \theta) \pi(\alpha_{j}^{(t-1)}) \\ & = f(y \mid \alpha^{(t-1)}, \beta, \theta) \times N(\alpha_{j}^{(t-1)} \mid a_{0}, A_{0}) \\ & = \prod_{i=1}^{N} \left[ p_{ij} (\alpha_{j}^{(t-1)})^{y_{ij}} \{1 - p_{ij} (\alpha_{j}^{(t-1)})\}^{1-y_{ij}} \right] N(\alpha_{j}^{(t-1)} \mid a_{0}, A_{0}) \quad \forall j = 1, \dots J. \end{split}$$

Next, we calculate the proposal density  $g(\alpha_j^* \mid \alpha_j^{(t-1)})$  and  $g(\alpha_j^{(t-1)} \mid \alpha_j^*)$ 

$$\begin{split} \text{Candidate} & \;\; \cdots \;\;\; g(\alpha_j^* \mid \alpha_j^{(t-1)}) = N(\alpha_j^* \mid \alpha_j^{(t-1)}, \tau_\alpha) \;\; \forall \quad j=1,\dots,J \\ \text{Previous} & \;\; \cdots \;\;\; g(\alpha_j^{(t-1)} \mid \alpha_j^*) = N(\alpha_j^{(t-1)} \mid \alpha_j^*, \tau_\alpha) \;\; \forall \quad j=1,\dots,J. \end{split}$$

The same steps are applied to the case of other parameters  $\beta_i$  and  $\theta_i$ .

Here, we convert the acceptance probability into natural logarithm for the convenience of computation, that is:

$$\log(ap) = \min\left\{\log[\pi(\delta_k^*\mid y,\eta)] + \log[g(\delta_k^{(t-1)}\mid \delta_k^*)] - \log[\pi(\delta_k^{(t-1)}\mid y,\eta)] - \log[g(\delta_k^*\mid \delta_k^{(t-1)}],0\right\},$$
 and if  $\log(u) < \log(ap)$ , we accept  $\delta_k^*$  otherwise  $\delta_k^{(t-1)}$ .

## Coding the sampler

In this section, I write down the code for parameter sampling.

#### Log-liklihood calculator loglik.cpp

First, I introduce helper function loglik which is enable us to calculate log-likelihood. The log-likelihood function is written as

$$l(y \mid \alpha, \beta, \theta) = \sum_{i=1}^{N} \sum_{j=1}^{J} [y_{ij} \log(p_{ij}) + (1 - y_{ij}) \log(1 - p_{ij})].$$

```
// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>
using namespace arma;
using namespace Rcpp;
// Log-likelihood function
```

### Sampling $\alpha_i$ alpha\_sample.cpp

```
// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>
#include "loglik.h"
using namespace arma;
using namespace Rcpp;
// SAMPLING ALPHA
NumericVector alpha_sample(arma::mat Y, arma::vec alpha_old, arma::vec beta_old,
                           arma::vec theta_old, double a0, double A0, double MH_alpha) {
  // NOTE:
  // _star -> candidate
  // _old -> previous
  int J = Y.n_cols; //# of alpha
  arma::vec alpha_star(J); //candidate sample for alpha
  arma::vec log_prop_star(J); //log proposal density for alpha_star
  arma::vec log_prop_old(J); //log proposal density for alpha_old
  //Sample theta_star and log proposal density.
  for (int j = 0; j < J; j++) {
    alpha_star[j] = R::rnorm(alpha_old[j], MH_alpha);
   log_prop_star[j] = R::dnorm(alpha_star[j], alpha_old[j], MH_alpha, true);
   log_prop_old[j] = R::dnorm(alpha_old[j], alpha_star[j], MH_alpha, true);
  //log-likelihood
  arma::rowvec loglik_star = colSums(as<NumericMatrix>(wrap(loglik(Y, alpha_star, beta_old, theta_old))
                                     true);
  arma::rowvec loglik_old = colSums(as<NumericMatrix>(wrap(loglik(Y, alpha_old, beta_old, theta_old))),
```

```
true);

//log prior density
arma::rowvec log_dnorm_star = dnorm(as<NumericVector>(wrap(alpha_star)), a0, A0, true);
arma::rowvec log_dnorm_old = dnorm(as<NumericVector>(wrap(alpha_old)), a0, A0, true);

//log posterior density
arma::rowvec log_pd_star = loglik_star + log_dnorm_star;
arma::rowvec log_pd_old = loglik_old + log_dnorm_old;

//log acceptance probability
arma::vec log_densfrac = log_pd_star.t() + log_prop_old - log_pd_old.t() - log_prop_star;
NumericVector log_ap = pmin(as<NumericVector>(wrap(log_densfrac)), 0);
NumericVector log_u = log(runif(J, 0, 1));

//save samples
NumericVector sample = ifelse(log_u < log_ap, as<NumericVector>(wrap(alpha_old)));
return(sample);
}
```

## Sampling $\beta_i$ beta\_sample.cpp

```
// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>
#include "loglik.h"
using namespace arma;
using namespace Rcpp;
// SAMPLING BETA
NumericVector beta_sample(arma::mat Y, arma::vec alpha_old, arma::vec beta_old,
                           arma::vec theta_old, double b0, double B0, double MH_beta) {
  // NOTE:
  // _star -> candidate
  // _old -> previous
  int J = Y.n_cols; //# of beta
  arma::vec beta star(J); //candidate sample for beta
  arma::vec log_prop_star(J); //log proposal density for beta_star
  arma::vec log_prop_old(J); //log proposal density for beta_old
  //Sample theta_star and log proposal density.
  for (int j = 0; j < J; j++) {
   beta_star[j] = R::rnorm(beta_old[j], MH_beta);
   log_prop_star[j] = R::dnorm(beta_star[j], beta_old[j], MH_beta, true);
   log_prop_old[j] = R::dnorm(beta_old[j], beta_star[j], MH_beta, true);
  //log-likelihood
```

```
arma::rowvec loglik_star = colSums(as<NumericMatrix>(wrap(loglik(Y, alpha_old, beta_star, theta_old))
                                   true);
arma::rowvec loglik_old = colSums(as<NumericMatrix>(wrap(loglik(Y, alpha_old, beta_old, theta_old))),
                                  true);
//log prior density
arma::rowvec log_dnorm_star = dnorm(as<NumericVector>(wrap(beta_star)), b0, B0, true);
arma::rowvec log_dnorm_old = dnorm(as<NumericVector>(wrap(beta_old)), b0, B0, true);
//log posterior density
arma::rowvec log_pd_star = loglik_star + log_dnorm_star;
arma::rowvec log_pd_old = loglik_old + log_dnorm_old;
//log acceptance probability
arma::vec log_densfrac = log_pd_star.t() + log_prop_old - log_pd_old.t() - log_prop_star;
NumericVector log_ap = pmin(as<NumericVector>(wrap(log_densfrac)), 0);
NumericVector log_u = log(runif(J, 0, 1));
//save samples
NumericVector sample = ifelse(log_u < log_ap, as<NumericVector>(wrap(beta_star)),
                              as<NumericVector>(wrap(beta_old)));
return(sample);
```

## Sampling $\theta_i$ theta\_sample.cpp

```
// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>
#include "loglik.h"
using namespace arma;
using namespace Rcpp;
// SAMPLING THETA
NumericVector theta_sample(arma::mat Y, arma::vec alpha_old, arma::vec beta_old,
                           arma::vec theta_old, double MH_theta) {
 // NOTE:
  // _star -> candidate
  // _old -> previous
  int I = Y.n_rows; //# of theta
  arma::vec theta_star(I); //candidate sample for theta
  arma::vec log_prop_star(I); //log proposal density for theta_star
  arma::vec log_prop_old(I); //log proposal density for theta_old
  //Sample theta_star and log proposal density.
  for (int i = 0; i < I; i++) {
   theta_star[i] = R::rnorm(theta_old[i], MH_theta);
   log_prop_star[i] = R::dnorm(theta_star[i], theta_old[i], MH_theta, true);
   log_prop_old[i] = R::dnorm(theta_old[i], theta_star[i], MH_theta, true);
```

```
//log-likelihood
arma::vec loglik_star = rowSums(as<NumericMatrix>(wrap(loglik(Y, alpha_old, beta_old, theta_star))),
                                true);
arma::vec loglik_old = rowSums(as<NumericMatrix>(wrap(loglik(Y, alpha_old, beta_old, theta_old))),
                               true);
//log prior density
arma::vec log_dnorm_star = dnorm(as<NumericVector>(wrap(theta_star)), 0, 1, true);
arma::vec log_dnorm_old = dnorm(as<NumericVector>(wrap(theta_old)), 0, 1, true);
//log posterior density
arma::vec log_pd_star = loglik_star + log_dnorm_star;
arma::vec log_pd_old = loglik_old + log_dnorm_old;
//log acceptance probability
arma::vec log_densfrac = log_pd_star + log_prop_old - log_pd_old - log_prop_star;
NumericVector log_ap = pmin(as<NumericVector>(wrap(log_densfrac)), 0);
NumericVector log_u = log(runif(I, 0, 1));
//save samples
NumericVector sample = ifelse(log_u < log_ap, as<NumericVector>(wrap(theta_star)),
                              as<NumericVector>(wrap(theta_old)));
return(sample);
```

#### Sampler sampler\_irt.cpp

In MCMCpack, reparameterization of estimated parameters is done. Specifically,  $\theta_i$  is standardized with mean 0 and sd 1, and  $\alpha_i$ ,  $\beta_i$  are also adjusted accordingly. Specifically, this is.

$$\begin{split} \theta_i^{adj} &= \frac{\theta_i - \overline{\theta}}{s_\theta} \\ \alpha_j^{adj} &= \beta_j \overline{\theta} - \alpha_j \\ \beta_j^{adj} &= \beta_j s_\theta, \end{split}$$

where  $s_{\theta}$  is standard deviation of  $\theta$  and  $\bar{\theta}$  is the mean. In my sampler, I have also incorporated these processes properly.

```
// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>
#include "alpha_sample.h"
#include "beta_sample.h"
#include "theta_sample.h"
using namespace Rcpp;
using namespace arma;
// SAMPLER
```

```
// [[Rcpp::export]]
List sampler_irt(arma::mat datamatrix, arma::vec alpha, arma::vec beta,
                 arma::vec theta, double a0, double A0,
                 double b0, double B0,
                 double MH_alpha, double MH_beta, double MH_theta,
                 int iter, int warmup, int thin, int refresh) {
  int total iter = iter + warmup; // total iteration
  int sample_iter = iter / thin; // # of samples to save
  arma::mat Y = datamatrix; // rename datamatrix to Y
  int I = Y.n_rows; // # of individuals
  int J = Y.n_cols; // # of items
  // rename
  arma::vec alpha_old = alpha;
  arma::vec beta_old = beta;
  arma::vec theta_old = theta;
  // create storages for parameters
  NumericMatrix theta_store(I, sample_iter);
  NumericMatrix alpha_store(J, sample_iter);
  NumericMatrix beta_store(J, sample_iter);
  // WARMUP
  Rcout << "Warmup: " << 1 << " / " << total iter << " [ " << 0 << "% ]\n";
  for (int g = 0; g < warmup; g++) {
   if ((g + 1) % refresh == 0) {
     double gg = g + 1;
     double ti2 = total_iter;
      double per = std::round((gg / ti2) * 100);
      Rcout << "Warmup: " << (g + 1) << " / " << total_iter << " [ " << per << "% ]\n";
   theta = theta_sample(Y, alpha_old, beta_old, theta_old, MH_theta);
   theta_old = theta;
   alpha = alpha_sample(Y, alpha_old, beta_old, theta_old, a0, A0, MH_alpha);
   alpha_old = alpha;
   beta = beta_sample(Y, alpha_old, beta_old, theta_old, b0, B0, MH_beta);
   beta_old = beta;
  // SAMPLING
  double gg = warmup + 1;
  double ti2 = total_iter;
  double per = std::round((gg / ti2) * 100);
  Rcout << "Sampling: " << gg << " / " << total_iter << " [ " << per << "% ]\n";</pre>
  for (int g = warmup; g < total_iter; g++) {</pre>
   if ((g + 1) \% \text{ refresh} == 0) {
      double gg = g + 1;
      double ti2 = total_iter;
      double per = std::round((gg / ti2) * 100);
      Rcout << "Sampling: " << (g + 1) << " / " << total_iter << " [ " << per << " % ]\n";
```

```
theta = theta_sample(Y, alpha_old, beta_old, theta_old, MH_theta);
  theta_old = theta;
  alpha = alpha_sample(Y, alpha_old, beta_old, theta_old, a0, A0, MH_alpha);
  alpha_old = alpha;
  beta = beta_sample(Y, alpha_old, beta_old, theta_old, b0, B0, MH_beta);
  beta_old = beta;
  if (g \% thin == 0) {
    double th = thin;
    double wu = warmup;
    double gg = g;
    double ggg = (g - warmup) / thin;
    // Reparameterization (fix theta with mean 0 and sd 1)
    NumericVector theta_nv = as<NumericVector>(wrap(theta_old));
    NumericVector alpha_nv = as<NumericVector>(wrap(alpha_old));
    NumericVector beta_nv = as<NumericVector>(wrap(beta_old));
    NumericVector theta_std = (theta_nv - mean(theta_nv)) / sd(theta_nv);
    NumericVector alpha_std = beta_nv * mean(theta_nv) - alpha_nv;
    NumericVector beta_std = beta_nv * sd(theta_nv);
    theta_store(_, ggg) = theta_std;
    alpha_store(_, ggg) = alpha_std;
    beta_store(_, ggg) = beta_std;
List L = List::create(Named("alpha") = alpha_store,
                      Named("beta") = beta_store,
                      Named("theta") = theta_store);
return(L);
```

### R wrapper function

I also write a wrapper function irt cpp for the sampler.

```
-> beta: init for beta
         -> theta: init for theta
# tuning_par -> tuning parameter (list, please name correctly as below!)
              -> alpha: tau for alpha
#
              -> beta: tau for beta
#
               -> theta: tau for theta
# prior -> priors (list, please name correctly as below!)
        -> a0: prior means for alpha
         -> AO: prior sd for alpha
#
         -> b0: prior means for beta
         -> BO: prior sd for beta
cat("\n=======\n")
cat("Run Metropolis-Hasting Sampler for 2PL item response model...\n\n")
cat(" Observations:", nrow(datamatrix) * ncol(datamatrix),"\n")
cat("
        Number of individuals:", nrow(datamatrix), "\n")
cat("
        Number of items:", ncol(datamatrix), "\n")
cat("
        Total correct response: ", sum(as.numeric(datamatrix), na.rm = TRUE), "/",
   nrow(datamatrix) * ncol(datamatrix),
   "[", round(sum(as.numeric(datamatrix), na.rm = TRUE) / (nrow(datamatrix) *
                                                          ncol(datamatrix)), 2) * 100, "%]","\n\n
cat(" Priors: \n")
cat(" alpha ~", pasteO("N(", prior$a0, ", ", prior$A0, "),"),
   "beta ~", paste0("N(", prior$b0, ", ", prior$B0, "),"),
   "theta ~ N(0, 1).\n")
cat("=======\n\n")
# Preparation
## Measure starting time
stime <- proc.time()[3]</pre>
## Set seed
set.seed(seed)
# Run sampler
mcmc <- sampler_irt(datamatrix = Y,</pre>
                  alpha = init$alpha,
                  beta = init$beta,
                  theta = init$theta,
                  a0 = prior$a0,
                  AO = prior$AO,
                  b0 = prior $b0,
                  BO = prior\$BO,
                  MH_alpha = tuning_par$alpha,
                  MH_beta = tuning_par$beta,
                  MH_theta = tuning_par$theta,
                  iter = iter,
                  warmup = warmup,
                  thin = thin,
                  refresh = refresh)
# Generate variable labels
label_iter <- paste0("iter_", 1:(iter/thin))</pre>
```

```
alpha_lab <- paste0("alpha_", colnames(datamatrix))</pre>
  beta_lab <- paste0("beta_", colnames(datamatrix))</pre>
  theta_lab <- paste0("theta_", rownames(datamatrix))</pre>
  colnames(mcmc$alpha) <- colnames(mcmc$beta) <- colnames(mcmc$theta) <- label_iter</pre>
  rownames(mcmc$alpha) <- alpha_lab
  rownames(mcmc$beta) <- beta_lab</pre>
  rownames(mcmc$theta) <- theta_lab
  # Redefine quantile function
  lwr <- function(x) quantile(x, probs = 0.025, na.rm = TRUE)</pre>
  upr <- function(x) quantile(x, probs = 0.975, na.rm = TRUE)
  mean_ <- function(x) mean(x, na.rm = TRUE)</pre>
  median_ <- function(x) median(x, na.rm = TRUE)</pre>
  # Calculate statistics
  alpha_post <- data.frame(parameter = alpha_lab,</pre>
                             mean = apply(mcmc$alpha, 1, mean_),
                             median = apply(mcmc$alpha, 1, median_),
                             lwr = apply(mcmc$alpha, 1, lwr),
                             upr = apply(mcmc$alpha, 1, upr))
  beta_post <- data.frame(parameter = beta_lab,</pre>
                           mean = apply(mcmc$beta, 1, mean_),
                           median = apply(mcmc$beta, 1, median_),
                            lwr = apply(mcmc$beta, 1, lwr),
                            upr = apply(mcmc$beta, 1, upr))
  theta_post <- data.frame(parameter = theta_lab,</pre>
                            mean = apply(mcmc$theta, 1, mean_),
                             median = apply(mcmc$theta, 1, median_),
                             lwr = apply(mcmc$theta, 1, lwr),
                             upr = apply(mcmc$theta, 1, upr))
  # Aggregate
  result <- list(summary = list(alpha = alpha_post,</pre>
                                  beta = beta_post,
                                  theta = theta_post),
                  sample = list(alpha = mcmc$alpha,
                                 beta = mcmc$beta,
                                 theta = mcmc$theta))
  etime <- proc.time()[3]</pre>
  cat(crayon::yellow("Done: Total time", round(etime - stime, 1), "sec\n"))
  return(result)
}
```

## Example: 106th US Senate roll-call vote analysis

As an example, I will apply item response theory using data of the 106th US Senate roll-call vote. The data is from the {MCMCpack} package<sup>3</sup>. In the field of political science, IRT is frequently used to measure the policy positions (a.k.a. ideal points) of political actors using roll call voting and judgment data. For a discussion of the relevance of spatial voting models to IRT, see Clinton, Jackman & Rivers (2004, APSR)<sup>4</sup>.

 $<sup>^3 \</sup>rm See$ more detail: https://cran.r-project.org/web/packages/MCMCpack/MCMCpack.pdf

<sup>&</sup>lt;sup>4</sup>Clinton, J., Jackman, S., & Rivers, D. (2004). The statistical analysis of roll call data. American Political Science Review, 98(2), 355-370.

First, load {Rcpp} package, compile sampler\_irt.cpp and data.

```
library(Rcpp)
sourceCpp("cpp/sampler_irt.cpp")
data(Senate, package = "MCMCpack")
```

To run the sampler, we must convert the data into roll-call matrix (individual \* item matrix).

```
# Check data (data frame)
Senate[1:10, 1:10]
```

```
id statecode
                                           member rc1 rc2 rc3 rc4 rc5
                            state party
SESSIONS
                       41 ALABAMA
                                          SESSIONS
          49700
                                                    1
                       41 ALABAMA
                                                            0
                                                                    1
SHELBY
          94659
                                      1
                                            SHELBY
                                                     1
                                                         0
                                                                Ω
                                    1 MURKOWSKI
MURKOWSKI
          14907
                       81 ALASKA
                                                    1
                                                        0
                                                            0
                                                                0
                                                                    1
STEVENS
                       81 ALASKA
                                     1
                                           STEVENS
                                                        0
                                                           0
                                                               0
                                                                    1
          12109
                                                    1
KYL
          15429
                       61 ARIZONA
                                     1
                                               KYL
MCCAIN
          15039
                       61 ARIZONA
                                                            0
                                      1
                                           MCCAIN
                                                         0
                                                                0
                                                                    1
                                                     1
HUTCHINSON 29306
                       42 ARKANSA
                                      1 HUTCHINSON
                                                    1
                                                        0
                                                                0
                                                                    1
[ reached 'max' / getOption("max.print") -- omitted 3 rows ]
```

```
# → unnecessary variables are recorded, so drop

# Drop some variables and convert into matrix
Y <- as.matrix(Senate[, 6:ncol(Senate)])</pre>
```

Also, we set **initial values** for sampling, **tuning parameters** and **priors**. In this analysis, I set the priors as follows:

$$\alpha_i \sim N(0, 10), \quad \beta_i \sim N(1, 0.2).$$

Then,  $a_0 = 0, A_0 = 10, b_0 = 1, B_0 = 0.2$ . And I supply very flat initial values – all inits are set 0.1.

Yes! We are ready to run MCMC!

Run Metropolis-Hasting Sampler for 2PL item response model...

```
Observations: 68544
Number of individuals: 102
Number of items: 672
Total correct response: 42458 / 68544 [ 62 %]

Priors:
alpha ~ N(0, 10), beta ~ N(1, 0.2), theta ~ N(0, 1).
```

```
Warmup: 1 / 8000 [ 0% ]
Warmup: 1000 / 8000 [ 13% ]
Warmup: 2000 / 8000 [ 25% ]
Warmup: 3000 / 8000 [ 38% ]
Sampling: 3001 / 8000 [ 38% ]
Sampling: 4000 / 8000 [ 50 % ]
Sampling: 5000 / 8000 [ 63 % ]
Sampling: 6000 / 8000 [ 75 % ]
Sampling: 7000 / 8000 [ 88 % ]
Sampling: 8000 / 8000 [ 100 % ]
Done: Total time 191.7 sec
```

Foo! Sampler finished. Next, we extract the result and plot the senators' ideal point.

### 106th US Senate Roll-Call Vote



We have clear estimate of the policy positions of each senator, well divided by party. Just to be sure, let's use MCMCpack::MCMCirtld to see if our estimates is similar to it.

MCMCirt1d iteration 1 of 8000

 ${\tt MCMCirt1d\ iteration\ 1001\ of\ 8000}$ 

MCMCirt1d iteration 2001 of 8000

```
MCMCirt1d iteration 3001 of 8000

MCMCirt1d iteration 4001 of 8000

MCMCirt1d iteration 5001 of 8000

MCMCirt1d iteration 6001 of 8000

MCMCirt1d iteration 7001 of 8000
```

```
proc.time()[3] - stime
```

elapsed 55.007

Very unfortunately, it is much faster to do IRT with MCMCpack. Also, it seems that MCMCpack uses probit execution instead of logit. I don't know if that affects the execution time, but it does seem very fast. Let's check the result.

```
theta_mcmc <- summary(fit_mcmc)$quantiles</pre>
theta_mcmc %>%
  as_tibble() %>%
  mutate(name = rownames(Y),
         party = Senate$party,
         mean = 50\%,
        lwr = ^2.5\%,
         upr = `97.5%`) %>%
  ggplot(aes(y = reorder(name, mean), x = mean, color = factor(party))) +
  geom_pointrange(aes(xmin = lwr, xmax = upr)) +
  theme_light() +
  xlab("Estimated Ideal Point") +
  ylab("") +
  ggtitle("106th US Senate Roll-Call Vote: Estimated with MCMCpack") +
  scale_color_discrete(limits = c("1", "0"),
                       label = c("Republican", "Democrat")) +
  theme(legend.position = "bottom",
        legend.direction = "horizontal",
        legend.title = element_blank(),
        axis.text.y = element_text(size = 4))
```

106th US Senate Roll-Call Vote: Estimated with MCMCpack



The sign of  $\theta_i$  is reversed, but both estimates are similar!

So, my sampler works well!!!!!!!!