

CI 2: Algorithmique & Programmation

Chapitre 4 – Introduction à la complexité – Compléments

Savoir

SAVOIRS:

- s'interroger sur l'efficacité algorithmique temporelle.

Exponentiation rapide

Question 1 – Écrire la fonction permettant de calculer a^b avec $b \in \mathbb{N}$ en utilisant un algorithme naïf.

Question 2 – Évaluer la complexité algorithmique de l'algorithme précédent.

Question 3 — Combien faut-il d'opérations pour calculer 2¹6 et 2¹5. Combien d'opérations vous faudrait-il pour le calculer « à la main » ?

On donne les éléments suivants :

 $-x_0=1$;

- si *n* est pair, $x^n = x^{\frac{n}{2}} \cdot x^{\frac{n}{2}}$;
- si *n* est impair $x^n = x^{n-1} \cdot x$.

Question 4 – Réécrire un algorithme permettant l'écriture d'une exponentielle.

Question 5 – Expliquer son fonctionnement.

Question 6 – A quelle famille appartient cet algorithme?

Question 7 – Montrer que sa complexité est en O(n).

Question 8 – Établir le « power tree ».

Références

- [1] Pierre Boudes http://mindsized.org/IMG/pdf/td_02-2.pdf.
- [2] Jean-Marc Vincent http://mescal.imag.fr/membres/jean-marc.vincent/JMV-homepage/ALGO5/ALGO5-Exponentiation.pdf.

1