MAA355 - Lista 1

Entrega 22/04/2021

Questão 1.: Seja V um K-espaço vetorial, $W_1, W_2 \subset V$ subespaços tais que $W_1 + W_2 = V$ e $W_1 \cap W_2 = \emptyset$. Mostre que $\forall \alpha \in V$ α se escreve de forma única $\alpha = \alpha_1 + \alpha_2, \alpha_1 \in W_1, \alpha_2 \in W_2$.

Questão 2.: Seja V um K-espaço vetorial. Mostre que se $\exists \alpha_1, \ldots, \alpha_n \in V$ tais que $\langle \alpha_1, \ldots, \alpha_n \rangle = V$ então $\dim_K V < \infty$.

Questão 3.: Seja V um K-espaço vetorial, $\mathbf{T} \in \operatorname{End}_K V$. Prove que a) e b) são equivalentes.

- a) Im $\mathbf{T} \cap \ker \mathbf{T} = \emptyset$
- b) Se $\mathbf{T}^2 \alpha = 0$ então $\mathbf{T} \alpha = 0$

Questão 4.: Seja V um K-espaço vetorial com $\dim_K V < \infty$ e $T \in \operatorname{End}_K V$. Suponha que o posto de \mathbf{T}^2 é o mesmo que o posto de \mathbf{T} . Mostre que

$$\operatorname{Im} \mathbf{T} \cap \ker \mathbf{T} = \emptyset$$

Questão 5.: Sejam $m, n \ge 1$ inteiros, K um corpo e $f_1, \ldots, f_m \in (K^n)^*$. Para $\alpha \in K^n$ definimos

$$\mathbf{T}\alpha = (f_1\alpha, \dots, f_m\alpha)$$

Mostre que $\mathbf{T}:K^n\to K^m$ é uma transformação K-linear. Mostre também que $\forall \mathbf{T}\in \mathrm{Hom}_K\,(K^n,K^n)$ é desta forma.