Aula 04

Criptografia Convencional

Técnicas Modernas

Plano de Curso

- DES Simplificado (Prof. Edward Schaefer)
- Princípios dos Cifradores de Bloco
- DES
- Criptanálise Diferencial e Linear
- Projeto dos Cifradores de Bloco
- Modos de Operação
- Funções Bent

DES Simplificado

IP - Permutação Inicial f_k - função complexa SW - permutação simples

Geração das subchaves

Chave $= b_1b_2b_3b_4b_5b_6b_7b_8b_9b_{10}$ P10(Chave) $= b_3b_5b_2b_7b_4b_{10}b_1b_9b_8b_6$

3 5 2 7 4 10 1 9 8 6

637485109

P8

LS-1 2 3 4 5 1

Exemplo:

chave: 1010000010

 K_1 : 10100100

 K_2 : 01000011

Chave de 10 bits

IP IP^{-1} 26314857 41357286 E/P P4 41232341 2 4 3 1 11 10

$$\mathbf{S1} = \begin{bmatrix} 00 & 01 & 10 & 11 \\ 10 & 00 & 01 & 11 \\ 11 & 00 & 01 & 00 \\ 10 & 01 & 00 & 11 \end{bmatrix}$$

Função f_k

Análise do S-DES

2¹⁰=1024 possibilidades Equações não lineares -> Caixas S

Tabela de Substituição n=4

Texto Texto	Texto Texto
Original Cifrado	Cifrado Plano
0000 - 1110	0000 - 1110
0001 - 0100	0001 - 0011
0010 - 1101	0010 - 0100
0011 - 0001	0011 - 1000
0100 - 0010	0100 - 0001
0101 - 1111	0101 - 1100
0110 - 1011	0110 - 1010
0111 - 1000	0111 - 1111
1000 - 0011	1000 - 0111
1001 - 1010	1001 - 1101
1010 - 0110	1010 - 1001
1011 - 1100	1011 - 0110
1100 - 0101	1100 - 1011
1101 - 1001	1101 - 0010
1110 - 0000	1110 - 0000
1111 - 0111	1111 - 0101

Chave = 64 bits

Chave = $n*2^n$ bits

Exemplo: n = 64 bits Chave = $n2^n = 64*2^{64} = 2^{70} = 10^{21}$ bits

Mapeamentos Reversíveis

Mapeamento Linear

$$n = 4$$

 $N^{o.}$ Chaves $n^2 = 16$ bits

$$y_1 = k_{11}x_1 + k_{12}x_2 + k_{13}x_3 + k_{14}x_4$$

$$y_2 = k_{21}x_1 + k_{22}x_2 + k_{23}x_3 + k_{24}x_4$$

$$y_3 = k_{31}x_1 + k_{32}x_2 + k_{33}x_3 + k_{34}x_4$$

$$y_4 = k_{41}x_1 + k_{42}x_2 + k_{43}x_3 + k_{44}x_4$$

Cifrador de Feistel

- Aproximação por cifradores produto
- Uso de substituições e Permutações
- Claude Shannon
 - Confusão
 - Difusão

Estrutura do Cifrador de Feistel

Rodada 1

Caso particular da Rede de Substituição-Permutação de Shannon

Parâmetros e Características de Projeto

- Tamanho do Bloco
- Tamanho da Chave
- Número de Rodadas
- Algoritmo de Geração das Subchaves
- Função Ciclo (F)
- Software Rápido (E e D)
- Fácil Análise

Rodada i

Rodada n

Redes de Feistel

- É um método geral para transformar qualquer função em uma permutação
- Inventada por Horst Feistel para o Lucifer
- Usada por muitos crifradores
 - DES, FEAL, GOST, Khufu e Khafre
 - Loki, Cast, Blowfish, RC5, Mars ...

Encriptação/Depcriptação

inf.ufsc.br>, 2006

Tabelas de Permutação

IP Permutação Inicial

58 50 42 34 26 18 10 02 60 52 44 36 28 20 12 04 62 54 46 38 30 22 14 06 64 56 48 40 32 24 16 08 57 49 41 33 25 17 09 01 59 51 43 35 27 19 11 03 61 53 45 37 29 21 13 05 63 55 47 39 31 23 15 07

IP-1 - Inversa da Permutação Inicial

40 08 48 16 56 24 64 32 39 07 47 15 55 23 63 31 38 06 46 14 54 22 62 30 37 05 45 13 53 21 61 29 36 04 44 12 52 20 60 28 35 03 43 11 51 19 59 27 34 02 42 10 50 18 58 26 33 01 41 09 49 17 57 25

EP Expansão Permutação

```
P Função Permutação
```

16 07 20 21 29 12 28 17 01 15 23 26 05 18 31 10 02 08 24 14 32 27 03 09 19 13 30 06 22 11 04 25

Definição das Caixas S do DES

Tabelas Usadas para o Cálculo da Chave

```
57 49 41 33 25 17 09 01 58 50 42 34 26 18
          10 02 59 51 43 35 27 19 11 03 60 52 44 36
PC-1
          63 55 47 39 31 23 15 07 62 54 46 38 30 22
          14 06 61 53 45 37 29 21 13 05 28 20 12 04
          14 17 11 24 01 05 03 28 15 06 21 10 23 19 12 04
PC-2
          26 08 16 07 27 20 13 02 41 52 31 37 47 55 30 40
          51 45 33 48 44 49 39 56 34 53 46 42 50 36 29 32
         Deslocamentos Circulares à Esquerda por rodada
          Rodada 1
                     2 3 4 5 6 7 8 9 10 11
Bits Rotacionados 1
```

1 2 2 2 2 2 2 1

Efeito Avalanche

Mudança no Texto Plano

Rodada	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Número de	1	6	21	35	39	34	32	31	29	42	44	32	30	30	26	29	34

Bits que Diferem

Mudança na Chave

Rodada	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Número de	1	2	14	28	32	30	32	35	34	40	38	31	33	28	26	34	35

Bits que Diferem

A Força do DES

Custo da Máquina

\$100.000 \$1.000.000 \$10.000.000 Tempo de Busca

6 horas
35 Minutos
210 Segundos

Estimado em 1997

CIs comerciais

Fab.	Chip	Ano	Clock [MHz]	Taxa [Mbyte/s]
AMD	AmZ8068	1982	4	1,7
CE-infosys	CE99C003A	1994	30	20
Newbridge	CA95C68	1993	33	14,67
VLSI Tech	VM007	1993	32	200

Velocidade DES em Software

Processador	Velocidade	Taxa
	[MHz]	[Kbyte/s]
8088	4,7	2,9
68040	40	180
80486	66	336
Pentium III	500	6.700
Sun ELS		203
HP 9000/887		1.530

Boas Caixas S

- Nenhum bit de saída deve ser uma função linear dos bits da entrada
- Toda linha deve incluir todas as 16 possíveis saídas
- Se duas entradas diferem em 1 bit, a saída deve diferir em pelo menos 2 bits
- Se duas entradas diferem nos 2 bits do meio, a saída deve diferir em pelo menos 2 bits
- Se duas entradas diferem nos 2 primeiros bits e são iguais nos 2 últimos, as 2 saídas devem ser diferentes
- Para qualquer diferença em 6 bits na entrada, não mais que 8 dos 32 pares de entradas exibindo essa diferença podem resultar na mesma diferença na saída
- Idem para 3 caixas S

Projeto de P

- 4 bits na fase (i) são distribuídos tal que:
 - 2 afetam bits do meio na fase (i+1)
 - 2 afetam bits terminais
- 4 bits de cada caixa S afetam 6 diferentes caixas S da próxima fase e não 2 afetam a mesma caixa S
- Se 1 bit de saída da caixa S_j afeta 1 bit do meio da caixa S_k na próxima fase, então 1 bit da saída de S_k não pode afetar 1 bit do meio da caixa S_j

Número de Rodadas

• Esforço através da Criptoanálise seja maior que o ataque pela força bruta

Schneier em 1996 -----

Criptoanálise Diferencial de 16 Fases do DES = 2^{55,1} Força Bruta = 2⁵⁵

Projeto da Função F

- Não Linear
- Critério da Avalanche Estrita (SAC)
 - qq bit de saída j deveria trocar com probabilidade 1/2
- Critério da Independência dos bits (BIC)
- Tamanho das Caixas S
- Função Bent
- Critério da Avalanche Garantida (GA)

Projeto das Caixas S

- Randômica
 - Caixas Randômicas dependentes da Chave (Blowfish)
- Randômica com Teste
- Manual
- Princípios Matemáticos (CAST)

Projeto do Algoritmo de Geração das Sub-Chaves

Ainda não foram definidos princípios gerais

Garantir, no mínimo:

- o critério da Avalanche Estrita entre a Chave e o Texto Cifrado
- o critério da independência de bits

Adams, C. Simple and Effective Key Scheduling for Symmetric Ciphers. Proceedings, Workshop in Selected Areas of Crytpgraphy, SAC'94. 1994.

Modos de Operação dos Cifradores de Bloco

(FIPS PUB 74, 81)

- ECB Codebook Eletrônico
- CBC Encadeamento de Blocos Cifrados
- CFB Cifrador Retroalimentado
- OFB Saída Retroalimentada
- CTR Contador

Codebook Eletrônico (ECB)

Nível de Informação

Original

Cifrado com ECB

Cifrado com outros modos de operação

Encadeamento de Blocos Cifrados (CBC)

Modo Retroalimentado de j bits - CFB Cifrar

Transmissão em Cadeia de Propósito Geral Autenticação

Modo Retroalimentado de j bits - CFB Decifrar

Modo de Saída Retroalimentada com j bits - OFB Cifrar

Transmissão em Cadeia sobre Canais Ruidosos

Modo de Saída Retroalimentada com j bits - OFB Decifrar

Funções Bent

$$f: \{0,1\}^n \to \{0,1\}$$

Transformada Walsh

$$W_f(w) = \sum_{x=0}^{2^{n}-1} (-1)^{f(x)+w \cdot x}$$

$$w \bullet x = w_{n-1}x_{n-1} \oplus \ldots \oplus w_0x_0$$

$$-2^n \leq W_f(w) \leq 2^n$$

Conjunto de Funções Bent n par

$$W_f(w) = \pm 2^{\frac{n}{2}}$$

$$\forall w \in \{0,1\}^n$$

Transformada Walsh Inversa

$$f(x) = \frac{1}{2^n} \sum_{w=0}^{2^n - 1} W_f(w) (-1)^{w \cdot x}$$

Ref: ADAMS, C; Tavares, S. Generating and Counting Binary Bent Sequences. IEEE Transactions on Information Theory, 1990.