

# LAPORAN AKHIR PROGRAM KREATIVITAS MAHASISWA

### JUDUL PROGRAM:

PENGENDALIAN KURSI RODA ELEKTRIK MENGGUNAKAN SINYAL OTOT DENGAN METODE FFT DAN SENSOR JARAK SEBAGAI PENGHINDAR HALANGAN SECARA OTOMATIS

# BIDANG KEGIATAN: PKM KARSA CIPTA

### Diusulkan oleh:

| Farida Herning Tyastuti | (2214030078) | Angkatan 2014 |
|-------------------------|--------------|---------------|
| Darul Muslimin          | (2214030084) | Angkatan 2014 |
| Ega Hasbi Rizqullah     | (2215030016) | Angkatan 2015 |
| Gerry Hendria Negara    | (2215030046) | Angkatan 2015 |
| Hendra Wahyu Budianto   | (2215030058) | Angkatan 2015 |

INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2017

# PENGESAHAN LAPORAN AKHIR PKM KARSA CIPTA

1. Judul Kegiatan

Pengendalian Kursi Roda Elektrik Menggunakan Sinyal Otot dengan Metode FFT dan Sensor Jarak sebagai Penghindar Halangan Secara Otomatis.

2. Bidang Kegiatan

3. Ketua Pelakasana Kegiatan

a. Nama Lengkap

b. NRP

c. Jurusan

d. Universitas/Institut/Politeknik

e. Alamat Rumah dan No. Tel./HP

f. Alamat email

4. Anggota Pelaksana Kegiatan/Penulis

5. Dosen Pendamping

a. Nama Lengkap dan Gelar

b. NIDN

c. Alamat Rumah dan No. Tel./HP

6. Biaya Kegiatan Total

a. Kemenristek dikti

b. Sumber lain

7. Jangka Waktu Pelaksanaan

: Farida Herning Tyastuti

: 2214030078

: PKM-KC

: Departemen Teknik Elektro Otomasi

: Institut Teknologi Sepuluh Nopember

: Jalan Thawang Bahkti 37 Madiun / 085736867755

: faridaherningt@gmail.com

: 4 orang

: Yunafi'atul Aniroh, S.T., M.Sc.

: 9900981143

: Jalan Klampis Semolo Timur X/19 Blok AB-224

Surabaya/085707594977

: Rp.10.000.000,00

: -

: 5 bulan

Surabaya, 18 Juli 2017

Menyetujui

Kepala Departemen Teknik Elektro

tomas

Vir. Joko Suštla, MT.) Nir. 196808061991021001

Wakil Rektor Bidang

Akademik dan Kemahasiswaan

(Prof. Dr. Ir Hern Setyawan, M.Eng.)

NIP. 196702031991021001

Surabaya, 18 Juli 2017

Ketua Pelaksana Kegiatan

(Farida Herning Tyastuti)

NRP. 2214030078

**Dosen Pendamping** 

(Yunafi'atul Aniroh, S.T., M.Sc.)

NIDN. 9900981143

# **DAFTAR ISI**

|                                                               | HALAMAN |
|---------------------------------------------------------------|---------|
| HALAMAN SAMPUL                                                | i       |
| HALAMAN PENGESAHAN                                            | ii      |
| DAFTAR ISI                                                    | iii     |
| DAFTAR TABEL                                                  | iv      |
| DAFTAR GAMBAR                                                 | iv      |
| DAFTAR LAMPIRAN                                               | iv      |
| BAB I PENDAHULUAN                                             | 1       |
| 1.1 Latar Belakang                                            | 1       |
| 1.2 Perumusan Masalah                                         |         |
| 1.3 Tujuan                                                    | 2       |
| 1.4 Luaran yang Diharapkan                                    | 2       |
| 1.5 Manfaat                                                   |         |
| BAB II TINJAUAN PUSTAKA                                       | 2       |
| 2.1 Penempatan Elektroda                                      | 2       |
| 2.2 Sensor Jarak                                              |         |
| BAB III METODE PELAKSANAAN                                    | 3       |
| 3.1 Penentuan Metode                                          | 3       |
| 3.2 Pemodelan Sistem                                          | 4       |
| 3.3 Pembuatan Alat                                            | 4       |
| 3.3.1 Pembuatan Rangkaian Pengkondisi Sinyal                  | 4       |
| 3.3.2 Penempatan Sensor Jarak                                 |         |
| BAB IV HASIL YANG DICAPAI DAN POTENSI KHUSUS                  | 5       |
| 4.1 Hasil Rangkaian Pengkondisi Sinyal                        | 5       |
| 4.2 Mekanik Kursi Roda                                        |         |
| 4.3 Hasil Spektrum Sinyal Otot                                | 7       |
| 4.4 Nilai Matriks Konstan mengguanakan Fast Fourier Transform | 8       |
| 4.5 Pengujian Gerak Kursi Roda                                | 8       |
| 4.6 Pengujian Sensor Jarak                                    | 9       |
| 4.7 Potensi Khusus                                            | 9       |
| 4.7.1 Publikasi Artikel Ilmiah                                | 9       |
| 4.7.2 PATEN                                                   | 10      |
| 4.7.3 Publikasi ICAMIMIA                                      | 10      |
| BAB V PENUTUP                                                 | 10      |
| 5.1 Kesimpulan                                                | 10      |
| 5.2 Saran                                                     | 10      |
| DAFTAR PUSTAKA                                                | 10      |
| LAMPIRAN                                                      | v       |

# DAFTAR GAMBAR

|                                                        | HALAMAN     |
|--------------------------------------------------------|-------------|
| Gambar 2.1 Otot Lengan Manusia                         | 3           |
| Gambar 2.2 Cara Kerja Sensor Jarak                     | 3           |
| Gambar 3.1 Skema perancangan sistem                    | 4           |
| Gambar 3.2 Rangkaian Pengkondisi Sinyal                | 5           |
| Gambar 3.3 Perancangan Tempat sensor depan dan samping | 5           |
| Gambar 4.1 Rangkaian Pengkondisi Sinyal                | 6           |
| Gambar 4.2 Tampak Belakang                             | 6           |
| Gambar 4.3 Spektrum Otot Laki-laki                     |             |
| Gambar 4.4 Spektrum Otot Perempuan                     |             |
| Gambar 4.5 Pengujian Sensor Jarak Kursi Roda           |             |
| DAETAD TADEI                                           |             |
| DAFTAR TABEL                                           | TIAI ANGANI |
| T 1 1 2 1 T                                            | HALAMAN     |
| Tabel 3.1 Torsi Motor Kursi Roda                       |             |
| Tabel 4.1 Skala Kekuatan Otot                          |             |
| Tabel 4.2 Matriks Konstan Kolom 1-8                    |             |
| Tabel 4.3 Matriks Konstan Kolom 9-15                   |             |
| Tabel 4.4 Pengujian Gerak Kursi Roda                   | 8           |
| DAFTAR LAMPIRAN                                        |             |
|                                                        | HALAMAN     |
| Lampiran 1 Laporan Penggunaan Dana                     | v           |
| Lampiran 2 Bukti-Bukti Pendukung Kegiatan              | ix          |
| Lampiran 3 Nota Pembelian                              | xi          |

#### **BAB I PENDAHULUAN**

### 1.1 Latar Belakang

Berdasarkan data dari Badan Pusat Statistik (BPS) Republik Indonesia, pada tahun 2010 sebanyak 3088 jiwa merupakan penyandang disabilitas tidak bisa berjalan. Mereka harus menggunakan kursi roda untuk alat bantu berjalan. Model kursi roda konvensional adalah pilihan utama pemakai kursi roda di Kota Surabaya. Hampir 90% dari responden (pemakai kursi roda) memakai kursi roda konvensional atau kursi roda standar. Penggunaan kursi roda konvensional masih menggunakan daya dorong dari pengguna tersebut. Hal ini kurang efektif bagi penyandang disabilitas dalam menggerakkan kursi roda karena membutuhkan tenaga yang cukup besar untuk mengayuh. Sehingga pada penelitian ini dibuat kursi roda dengan penggerak elektrik.

Dalam penelitian Iksal dan Darmo pada tahun 2012 telah dibuat kursi roda elektrik menggunakan kontrol gerakan joystick. Penelitian tersebut memiliki kelemahan bagi sebagian orang yang menderita cacat pada jari tangan untuk mengoperasikannya. Pada tahun 2015 Rozi Roslinda telah membuat kontrol kursi roda menggunakan sensor Electroencephalogram (EEG) dengan metode Brain Computer Interface (BCI). Penelitian tersebut memiliki kelemahan pada harga BCI invasif yang mahal dan memerlukan operasi kompleks untuk implan. Oleh karena itu pada penelitian ini dibuat kontrol kursi roda elektrik menggunakan sensor EMG yang memerlukan pada permukaan kulit sehingga tidak mengaplikasikannya. Penggunaan EMG sebagai sensor untuk mengontrol kursi roda terdapat pada penelitian Choi dkk di tahun 2006. Pada penelitian tersebut kursi roda elektrik hanya dapat bergerak dua arah, yaitu ke depan dan ke belakang sehingga kurang efektif untuk digunakan.

Pada tahun 2016, Yunafi'atul Aniroh dkk telah membuat kontrol kursi roda elektrik dengan sensor EMG yang dapat bergerak ke empat arah, yaitu ke depan, belakang, kanan, dan kiri. Pada penelitian tersebut menggunakan *tracehold* sebagai kontrol dari kursi roda elektrik, sedangkan penggunaan *tracehold* tidak bisa digunakan oleh semua orang.

Pada Program Kreativitas Mahasiswa ini akan dibuat kursi roda elektrik dengan kendali sensor electromyograph (EMG) menggunakan metode fast fourier transform (FFT) dan dilengkapi sensor jarak sebagai pengaman. Penggunaan metode FFT ditujukan agar tegangan yang keluar dari sensor EMG dapat diolah untuk diklasfikasikan sehingga dapat dijadikan sinyal kontrol gerak kursi roda elektrik tanpa banyak filter. Dengan adanya klasifikasi tersebut, memudahkan pengolahahan sinyal dalam kontroler.

Kursi roda elektrik ini menggunakan pergerakan otot lengan yang akan terbaca oleh sensor electromyograph. Otot lengan yang digunakan adalah bisep, trisep, wrist fleksor, dan wrist ekstensor. Kemudian dari pergerakan otot lengan akan menghasilkan sinyal analog yang akan dikonversi menjadi data digital dan digunakan sebagai kendali arah gerak kursi roda. Pada kursi roda elektrik ini dilengkapi sensor jarak yang dihubungkan ke kontroler. Apabila kursi roda akan menabrak suatu halangan maka kursi roda dapat berhenti secara otomatis. Sensor jarak yang digunakan adalah sensor ultrasonik. Cara kerja sensor ini didasarkan pada prinsip dari pantulan suatu gelombang suara sehingga dapat dipakai untuk menafsirkan eksistensi (jarak) suatu benda.

#### 1.2 Perumusan Masalah

Permasalahan yang dibahas dalam Program Kreativitas Mahasiswa ini adalah sebagai berikut:

- 1. Bagaimana klasifikasi tegangan dari sensor EMG agar dapat dijadikan sinyal kontrol kursi roda elektrik?
- 2. Bagaimana gerakan otot yang efektif untuk mendapatkan tegangan yang akan diklasifikasikan?
- 3. Dimana tempat penempelan elektroda sensor EMG yang tepat?

4. Bagaimana membuat kursi roda elektrik agar dapat berhenti secara otomatis apabila akan menabrak sesuatu?

#### 1.3 Tujuan

Tujuan yang akan dicapai dari Program Kreativitas Mahasiswa ini adalah sebagai berikut:

- 1. Dapat mengklasifikasikan tegangan dari sensor EMG agar dapat dijadikan sinyal kontrol kursi roda elektrik.
- 2. Menemukan gerakan otot yang efektif untuk mendapatkan tegangan yang akan diklasifikasikan.
- 3. Menemukan tempat penempelan sensor EMG yang tepat.
- 4. Membuat pengaman kursi roda elektrik agar dapat berhenti secara oto-matis apabila akan menabrak sesuatu.

### 1.4 Luaran yang Diharapkan

Dalam membuat Program Kreativitas Mahasiswa ini kami mengharapkan luaran berupa:

- 1. Menghasilkan *hardware* kursi roda elektrik *user friendly* yang dapat dikontrol dengan sensor EMG dengan menggunakan metode *fast fourier transform* (FFT).
- 2. Menghasilkan *software* yang dapat memonitor serta mengontrol kursi roda elektrik sehingga dapat bergerak ke empat arah sesuai dengan keinginan pengguna.
- 3. Menghasilkan artikel ilmiah yang dapat dijadikan sebagai literatur dalam penilitian selanjutnya.
- 4. Menghasilkan paten terhadap penelitian ini.
- 5. Penelitian ini dapat dipublikasikan dalam *International Conference on Advanced Mechatronics, Intelligent Manufacture And Industrial Automation.*

#### 1.5 Manfaat

Manfaat yang didapat dari Program Kreativitas Mahasiswa ini sebagai berikut:

- 1. Manfaat bagi kelompok kami
  - a. Kelompok kami dapat belajar merancang dan mendesain *hardware* kursi roda elektrik yang berguna untuk membantu penyandang disabilitas.
  - b. Kelompok kami dapat membuat *software* untuk memonitor dan mengontrol sinyal dari sensor EMG sehingga kursi roda elektrik dapat berjalan empat arah.
- 2. Manfaat bagi penyandang disabilitas
  - a. Membantu mengendalikan kursi roda elektrik dengan mudah.
  - b. Meningkatkan kemandirian penyandang disabilitas dalam mengemudikan kursi roda.
- 3. Manfaat bagi pemerintah
  - a. Membantu pemerintah untuk memberikan fasilitas kepada masya-rakat penyandang disabilitas dengan menyalurkan kursi roda elektrik ini kepada yayasan sosial.

#### **BAB II TINJAUAN PUSTAKA**

## 2.1 Penempatan Elektroda

Otot adalah sebuah jaringan dalam tubuh manusia dan hewan yang berfungsi sebagai alat gerak aktif yang menggerakkan tulang seperti pada gambar 2.1. Penggunaan otot pada alat ini sebagai kontrol dari kursi roda elektrik dengan penempatan elektroda meggunakan *Electromyograph* (EMG). EMG adalah sebuah peralatan untuk mengukur dan mengevaluasi potensial listrik ekstraseluler yang dihasilkan oleh otot. Setiap saat otot berkontraksi, sensor EMG mengukur sebuah sinyal saraf. Sinyal *electromyograph* (EMG) dihasilkan oleh aktifitas elektrik oleh serat otot yang aktif selama mengalami kontraksi. Peletakan EMG berada pada otot lengan yaitu, otot bisep untuk *channel* A, otot *flexor carpi ulnaris* untuk *channel* B otot, dan *ulna* untuk *channel* C.



Gambar 2.1 Otot Lengan Manusia

#### 2.2 Sensor Jarak

Sensor ultrasonik adalah sebuah sensor yang berfungsi untuk mengubah besaran fisis (bunyi) menjadi besaran listrik dan sebaliknya. Cara kerja sensor ini didasarkan pada prinsip dari pantulan suatu gelombang suara sehingga dapat dipakai untuk menafsirkan eksistensi (jarak) suatu benda dengan frekuensi sangat tinggi yaitu 20.000 Hz. Disebut sebagai sensor ultrasonik karena sensor ini menggunakan gelombang ultrasonik (bunyi ultrasonik). Cara kerja dari sensor ultrasonik ditunjukkan pada Gambar 2.2.



Gambar 2.2 Cara Kerja Sensor Jarak

#### **BAB III METODE**

#### 3.1 Penentuan Metode

Kegiatan ini dilakukan dengan melakukan analisis sinyal berdasarkan beda potensial listrik yang terbaca oleh sensor. Pemahaman tentang kendali sinyal otot, kendali sensor jarak, dan pengkondisan sinyal juga dilakukan dalam kegiatan ini untuk menunjang langkah selanjutnya pada penelitian. Metode yang digunakan utuk mengolah sinyal kontrol adalah *fast fourier transform*. Rumus penghitungan *fast fourier transform* secara umum adalah sebagai berikut:

 $\alpha = a_i \cos 2\pi f T K$ 

 $\beta = b_i \sin 2\pi f T K$ 

Keterangan:

Ø = Matriks Konstan

P = Parameter

Y = Data ADC

#### 3.2 Pemodelan Sistem

Pemodelan sistem dilakukan untuk mendapatkan pemodelan elektronik dalam perancangan kursi roda elektrik. Dalam perancangan alat ini terdiri dari beberapa sistem seperti ditunjukkan pada gambar 3.1. Pertama adalah sistem pengambilan data sinyal otot berupa tegangan dengan *electromyograph*. Selanjutnya data tersebut akan masuk ke rangkaian pengondisi sinyal. Sinyal akan dikuatkan sebesar 1000 kali menggunakan *amplifier* lalu masuk ke *filter* untuk mengurangi *noise*.

Sistem kedua adalah konversi sinyal analog menjadi digital dan sebaliknya oleh Aduino Due. Arduino Due digunakan untuk mengolah sinyal otot menggunakan FFT, sedangkan Arduino Mega 2560 digunakan untuk mengonversi data digital dari arduino Due untuk dihubungkan ke *driver* motor agar kursi roda dapat berjalan. Selain itu arduino Mega 2560 juga mengolah *input* dari sensor jarak. Mikrokontroler ini dipilih karena mempunyai jumlah *port input* dan *output* (*I/O*) yang banyak. Tegangan yang keluar dari sensor EMG di masing-masig channel sangat kecil, yaitu 0,4 mV sampai 5 mV dan memiliki *magnitude* yang relatif sama, maka dalam sistem ketiga diperlukan analisa sinyal secara digital menggunakan metode *fast fourier transform*. Metode ini dapat menentukan perbedaan level tegangan yang selanjutnya diklasifikasikan sehingga sinyal dapat digunakan sebagai kontrol. Sistem keempat adalah *driver* motor pada kursi roda. Pada kursi roda ini akan ditempatkan dua buah motor DC 24 volt 12 A di kedua roda yang memiliki torsi yang cukup. Driver motor ini bertindak sebagai aktuator yang menjalankan kursi roda.



**Gambar 3.1** Skema perancangan sistem

Sensor ultrasonik dan HCSR04 ditambahkan untuk mendeteksi jarak aman kursi roda dengan benda di sekitarnya. Jika pengguna lalai dan kursi roda melewati batas jarak aman maka kontroler akan mengintervensi dengan menghentikan kursi roda secara otomatis.

#### 3.3 Pembuatan Alat

#### 3.3.1 Pembuatan Rangkaian Pengkondisi Sinyal

Pada rangkaian penguat instrumentasi, digunakan penguat AD620. IC ini mempunyai kualitas yang bagus dengan harga relatif murah dan mudah di dapatkan di pasaran. AD620 mempunyai konsumsi daya yang rendah, impedansi tinggi dan *common mode rejection ratio* (CMMR) yang tinggi. Rangkian pengkondisi sinyal ini terdiri dari *high pass filter, low pass filter, notch filter, rectifier, dan penguat inverting*. Rangkaian pengkondisi sinyal yang telah dirancang seperti pada Gambar 3.2, kemudian diduplikasi sebanyak 3 kali.



Gambar 3.2 Rangkaian Pengkondisi Sinyal

#### 3.3.2 Penempatan Sensor Jarak

Sistem pengaman kursi roda elektrik ini menggunakan sensor 6 buah sensor jarak dengan dua tipe yang berbeda. Desain dapat di lihat pada Gambar 3.3. Tipe pertama adalah sensor yang memiliki jarak pengambilan yang lebih jauh dan sudut lebih lebar, tujuannya adalah untuk fleksibilitas kursi roda agar dapat meminimalkan area *blind-spot*. Tipe pertama ini diletakkan di depan dan belakang kursi roda. Tipe kedua adalah dengan spesifikasi dibawahnya, yaitu memiliki jarak pengambilan yang lebih dekat dan sudut yang lebih sempit ditempatkan pada sisi kanan dan kiri kursi roda.



Gambar 3.3 Perancangan Tempat sensor depan dan samping

#### BAB IV HASIL YANG DICAPAI DAN POTENSI KHUSUS

#### 4.1 Hasil Rangkaian Pengkondisi Sinyal

Pada rangkaian penguat instrumentasi, digunakan penguat AD620. IC ini mempunyai kualitas yang bagus dengan harga relatif murah dan mudah di dapatkan di pasaran. AD620 mempunyai konsumsi daya yang rendah, impedansi tinggi dan *common mode rejection ratio* (CMMR) yang tinggi. Rangkian pengkondisi sinyal ini terdiri dari *high pass filter, low pass filter, notch filter, rectifier, dan penguat inverting*. Rangkaian pengkondisi sinyal yang telah dirancang seperti pada Gambar 4.1, kemudian diduplikasi sebanyak 3 kali.



Gambar 4.1 Rangkaian Pengkondisi Sinyal

#### 4.2 Mekanik Kursi Roda



Gambar 4.2 Tampak Belakang

Gambar 4.2 merupakan mekanik kursi roda elektrik dengan peletakan sensor jarak pada bagian belakang serta peletakan Arduino Mega 2690 yang akan menggerakan Motor DC MY105 melalui Driver Motor BTS7960B. Peletakan 2 buah aki 12V 18 AH yang terpasang secara pararel di bagian depan. Dengan tujuan sebagai sumber daya motor DC MY1025 yang membutuhkan *supply* arus sebesar 14A untuk masing-masing perangkat. Sensor jarak pengaman bagian kiri, kanan, dan depan dipasang pada masing-masing samping kursi roda. Rantai dan *gear* berguna sebagai penggerak roda dari kursi roda elektrik, sehingga dapat bergerak maju, mundur, kanan dan kiri sesuai dengan kontrol sinyal otot pengguna. Dalam perancangan kursi roda elektrik juga dibutuhkan perhitungan torsi yang digunakan kursi roda untuk bergerak. Tujuan dari perhitungan torsi ini yaitu agar didapatkan motor DC dengan torsi yang tepat supaya dapat menggerakkan kursi roda dengan spesifikasi yang telah ditentukan. Perhitungan torsi ini sangat dibutuhkan agar kursi roda dapat berjalan dengan baik dan tidak merusak komponen lain seperti motor DC

Tabel 3.1 Torsi Motor Kursi Roda

| Perhitungan Torsi       |                     |                        |  |  |  |
|-------------------------|---------------------|------------------------|--|--|--|
| Berat kursi roda        | 40 kg               |                        |  |  |  |
| Berat maksimum orang    | 80 kg               |                        |  |  |  |
| Kemiringan maksimum     | 15°                 |                        |  |  |  |
| Kecepatan maksimum      | 10 km/jam           |                        |  |  |  |
| Waktu start hingga      | 12s                 | Spesifikasi kursi roda |  |  |  |
| kecepatan maksimum      | 128                 |                        |  |  |  |
| Gaya gravitasi (g)      | $9.8 \text{ m/s}^2$ |                        |  |  |  |
| Koefisien Gesekan aspal | 0,022               |                        |  |  |  |
| Kofisien Bahan roda     | 0.4                 |                        |  |  |  |
| (plastik)               | 0,4                 |                        |  |  |  |

| Perhitungan Torsi           |            |                      |  |  |
|-----------------------------|------------|----------------------|--|--|
| Rolling Resistance          | 30,18 N    |                      |  |  |
| Grade Resistance            | 355,10 N   | Cava yang dibutuhkan |  |  |
| Acceleration Force          | 32,41 N    | Gaya yang dibutuhkan |  |  |
| TTE                         | 417,69 N   |                      |  |  |
| To                          | orsi :     |                      |  |  |
| TW (Torque Wheel) 275,68 Nm |            |                      |  |  |
| Reality                     | Check:     |                      |  |  |
| MTT (Maximum Tractive       | 83,32 Nm   |                      |  |  |
| Force) 1 Wheel              | 83,32 NIII |                      |  |  |
| Total                       | 329,28 Nm  |                      |  |  |
| MTT                         |            |                      |  |  |

Pada tabel 3.1 merupakan spesifikasi untuk mengggerakkan kursi roda telah ditetukan, sehingga dapat diperoleh nilai-nilai *resistance* atau gaya yang dibutuhkan pada roda untuk dapat bergerak atau berputar pada kondisi yang ditentukan dengan beban orang maksimum.

## 4.3 Hasil Spektrum Sinyal Otot

Otot *flexor carpi ulnaris* digerakkan secara supinasi dan pronasi, otot *ulna* digerakkan secara palmar fleksi dan dorso fleksi, otot *bicep* digerakkan secara fleksi dan ekstensi. Untuk mendapatkan nilai spektrum pada analisa ini menggunakan metode grafis, yaitu dengan memberikan skala pada *range* frekuensi dan menarik frekuensi dominan pada *range* frekuensi tersebut. Berdasarkan Gambar 4.3 dan Gambar 4.4 yang menunjukkan spektrum otot laki-laki dan perempuan memiliki *range* frekuensi yang mirip. Sehingga kursi roda elektrik ini dapat digunakan baik laki-laki maupun perempuan. Skala kekuatan otot dibagi menjadi enam seperti penjelasan tabel 4.1 (Rhamadhan Putra, 2013).

Tabel 4.1 Skala Kekuatan Otot

| Skala     | Nilai | Keterangan                                                                                                              |
|-----------|-------|-------------------------------------------------------------------------------------------------------------------------|
| Normal    | 5     | Mampu menggerakkan persendian dalam lingkup gerak penuh, mampu melawan gaya gravitasi, mampu melawan dengan tahan penuh |
| Baik      | 4     | Mampu menggerakkan persendian dengan gaya gravitasi, mampu melawan dengan tahan sedang                                  |
| Sedang    | 3     | Hanya mampu melawan gaya gravitasi                                                                                      |
| Buruk     | 2     | Tidak mampu melawan gaya gravitas (gerakkan pasif)                                                                      |
| Sedikit   | 1     | Kontraksi otot dapat di palpasi tampa gerakkan persendian                                                               |
| Tidak ada | 0     | Tidak ada kontraksi otot                                                                                                |

Berdasarkan tabel 4.1 maka dapat di tarik kesimpulan bahwa skala otot yang digunakan untuk kursi roda elektrik ini berada di antara skala 3-5 yang dapat di operasikan oleh pengguna *difabel* yang tidak memiliki jari tangan dan menggunakan kursi roda.



Gambar 4.3 Spektrum Otot Laki-laki



Gambar 4.4 Spektrum Otot Perempuan

#### 4.4 Nilai Matriks Konstan mengguanakan Fast Fourier Transform

Terdapat lima frekuensi *input* yang telah ditentukan. Frekuensi tersebut dihitung menggunakan FFT dengan rumus  $P = (\phi^T \phi)^{-1} \phi^T Y$ . Nilai matriks konstan adalah nilai konstanta pengali yang pada rumus tersebut dinotasikan dalam  $(\phi^T \phi)^{-1} \phi^T$ . Terdapat lima frekuensi *input*, sehingga jumlah matriks konstannya adalah 10x15. Untuk mempermudah perhitungan, digunakan *software* MATLAB. Hasil dari matriks konstan tersebut terlihat pada Tabel 4.2 dan Tabel 4.3. Nilai matriks kontan ini ditulis dalam mikrokontroler arduino due sebagai pengali pada perhitungan FFT.

**Tabel 4.2.** Matriks Konstan Kolom 1-8

| Kolom 1  | Kolom 2  | Kolom 3  | Kolom 4  | Kolom 5  | Kolom 6  | Kolom 7  | Kolom 8  |
|----------|----------|----------|----------|----------|----------|----------|----------|
| -20,9583 | -11,2016 | 7,017761 | 15,83249 | 0,366744 | 1,570953 | -7,32297 | 8,205902 |
| 5,15625  | -10,1875 | -9,09375 | 3,125    | 1,105539 | 1,625    | -0,1875  | -7,96875 |
| 5,595703 | 3,087891 | -3,75586 | -2,25781 | -2,51666 | 4,320313 | 2,217773 | 0,875    |
| -2,75    | 7,71875  | 3,59375  | -2,75    | -7,73445 | 0,28125  | 4,28125  | 5,5625   |
| -1,26611 | 0,106689 | 2,187988 | -0,15234 | -0,70164 | -4,15381 | 1,682861 | -0,35156 |
| -6,78125 | 11       | 10,4375  | -1,71875 | -8,96113 | -2,4375  | 2,84375  | 2,65625  |
| 18,59766 | 9,613281 | -7,3125  | -14,5664 | -0,7262  | 2,628906 | 4,410156 | -7,29297 |
| 1,9375   | -11,5625 | -6,25    | 5,1875   | -2,73624 | 0,25     | -4,625   | -4,625   |
| -1,87109 | -1,90234 | 1,705078 | 1,140625 | 3,718385 | -4,26172 | -0,97266 | -1,65625 |
| 2,375    | 3        | 1,28125  | -3,71875 | 18,38    | 0,4375   | -2,3125  | 4,3125   |

**Tabel 4.3.** Matriks Konstan Kolom 9-15

| Kolom 9  | Kolom 10 | Kolom 11 | Kolom 12 | Kolom 13 | Kolom 14 | Kolom 15 |
|----------|----------|----------|----------|----------|----------|----------|
| -18,4224 | 1,608488 | 21,22467 | 18,62122 | -11,5374 | 2,017212 | 0,865198 |
| -1,875   | -12,2342 | -9,5625  | -3,21875 | 2,5      | -3,4375  | -9,97512 |
| 9,849609 | -4,36145 | -1,58984 | -2,91895 | 3,378906 | 1,958984 | 3,906901 |
| 4,78125  | -5,42202 | 4,78125  | -9,78125 | -5,8125  | -0,46875 | 16,2159  |
| 5,123535 | -0,71578 | 5,841309 | -3,75098 | -3,00391 | -5,10742 | -1,02462 |
| 5,875    | 1,060155 | 7,90625  | -7,6875  | -21,875  | 3,34375  | 3,895789 |
| 17,06641 | -2,57741 | -20,6953 | -9,38281 | 6,726563 | 5,65625  | -1,55746 |
| -7,8125  | -19,9881 | -4       | 6,4375   | 3,8125   | -0,5     | 10,75916 |
| -13,4297 | 6,374271 | -4,57422 | -2,72461 | 4        | -4,5     | -2,03377 |
| -1,125   | 36,59202 | 0,90625  | 14,25    | 21,46875 | 0,90625  | -20,886  |

#### 4.5 Pengujian Gerak Kursi Roda

Pengujian kursi roda elektrik dilakukan dengan membuat lintasan berbentuk plus (+) kemudian lengan melakukan gerakan tertentu untuk menggerakkan kursi roda seperti pada Tabel 4.4.

Tabel 4.4 Pengujian Gerak Kursi Roda

| Gerak | Komponen Fourier                               | Keterangan                                                                                                 |
|-------|------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|       | 0.2764<br>0.1139<br>0.0279<br>0.1737<br>0.4082 | Pergelangan tangan kanan<br>melakukan gerakan dorso<br>fleksi untuk menggerakan<br>kursi roda ke arah maju |

| Gerak | Komponen Fourier                               | Keterangan                                                                                                                                               |
|-------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | 0.2826<br>0.0934<br>0.1630<br>0.2614<br>0.2624 | Pergelangan tangan kanan melakukan gerakan dorso fleksi dan pergelangan tangan kiri melakukan palmar fleksi untuk menggerakkan kursi roda ke arah mundur |
|       | 0.2806<br>0.1065<br>0.0294<br>0.1739<br>0.4098 | Pergelangan tangan kiri<br>melakukan gerakan dorso<br>fleksi untuk<br>menggerakkan kursi roda<br>ke arah kanan                                           |
|       | 0.2103<br>0.0791<br>0.1025<br>0.1998<br>0.4111 | Pergelangan tangan kanan melakukan gerakan dorso fleksi dan lengan kanan melakukan gerakan fleksi untuk menggerakkan gerak kursi roda ke arah kiri       |

### 4.6 Pengujian Sensor Jarak

Pengujian sensor jarak kursi roda elektrik dilakukan dengan membuat penghalang di depan, belakang, kanan dan kiri dari gerakan kursi roda hasil pengujian dapat di lihat pada Gambar 4.5. Sistem pengaman yang di ujikan adalah sistem pengaman menggunakan sensor jarak pada bagian depan dan belakang kursi roda. Respon ketika adanya halangan kurang lebih 40 cm dari halangan, maka kursi roda akan berhenti secara otomatis. Sistem pengaman pada bagian kanan dan kiri kursi roda untuk menghindari halangan dengan jarak kurang lebih 30 cm dari halangan, maka kursi roda akan berhenti secara otomatis.



Gambar 4.5 Pengujian Sensor Jarak Kursi Roda

#### 4.7 Potensi Khusus

Penjabaran mengenai potensi khusus yang telah terlaksana pada program ini adalah sebagai berikut :

#### 4.7.1 Publikasi Artikel Ilmiah

Pada tanggal 5 Juli 2017 PKM ini telah didaftarkan dalam seminar nasional yaitu Seminar Nasional Sistem Instrumentasi dan Kontrol yang diadakan oleh Teknik Fisika ITB. Pada tanggal 15 Juli 2017 telah diterima dalam seminar tersebut, dan pelaksanaan seminar pada tanggal 9-10 Agustus 2017 di Yogyakarta.

#### **4.7.2 PATEN**

Pada tanggal 10 Juli 2017 PKM ini telah didaftarkan PATEN dengan judul "Pengendali Kursi Roda Elektrik dengan Sinyal Otot Metode FFT dan Sensor Penghindar Halangan".

#### 4.7.3 Publikasi ICAMIMIA

Pada tanggal 11 Juli 2017 PKM ini telah didaftarkan dalam seminar Internasional yaitu International Conference on Advanced Mechatronics, Intelligent Manufacture And Industrial Automation. Pengumuman seminar tersebut pada tanggal 8 September 2017, sedangkan pelaksanaannya pada tanggal 12-14 Oktober 2017 di Institut Sepuluh Nopember, Surabaya.

#### **BAB V PENUTUP**

#### **5.1 KESIMPULAN**

Hasil dari perancangan alat serta pengukuran dari Pengendalian Kursi Roda Elektrik Menggunakan Sinyal Otot dengan Metode FFT dan Sensor Jarak sebagai Penghindar Halangan Secara Otomatis dapat diambil kesimpulan bahwa spektrum sinyal otot laki-laki dan perempuan tidak jauh berbeda. Perbandingan nilai eror setiap komponen fourier pada perhitungan MATLAB dengan perhitungan setiap saat pergerakan otot dijadikan sebagai data kontrol gerak kursi roda elektrik. Kontrol gerak maju kursi roda elektrik didapatkan dengan melakukan gerakan fleksi-ekstensi pada lengan dengan data eror dua pada *channel* C < 25%. Gerak mundur kursi roda elektrik didapatkan dengan melakukan gerakan adduksi pada lengan dengan data eror lima pada *channel* BC < 12%. Gerak belok kiri kursi roda elektrik didapatkan dengan melakukan gerakan palmar fleksi – dorso fleksi ke kiri pada lengan dengan data eror empat pada *channel* AC < 20%. Gerak belok kanan kursi roda elektrik didapatkan dengan melakukan gerakan palmar fleksi – dorso fleksi ke kanan pada lengan dengan data eror satu pada channel B antara 30% - 32%. Gerak berhenti kursi roda elektrik didapatkan dengan melakukan gerakan pronasi-supinasi pada lengan dengan data eror tida pada channel ABC antara 33% - 35%. Penggunaan pengaman sensor jarak sebagai penghindar halangan bagian depan dan belakang adalah kurang 40 cm dari halangan, maka kursi roda akan berhenti otomatis. Pengaman bagian kanan dan kiri adalah 30 cm dari halangan, maka kursi roda akan berhenti secara otomatis.

#### **5.2 SARAN**

Untuk pengembangan dan penyempurnaan pembuatan Pengendalian Kursi Roda Elektrik Menggunakan Sinyal Otot dengan Metode FFT dan Sensor Jarak sebagai Penghindar Halangan Secara Otomatis memberikan saran dengan membuat desain pelindung rangkian elektronik agar tidak terpengaruh gelombang elektromagnetik dan di kemas serapi mungkin agar penyandang disabilitas merasa nyaman dalam menggunakan peralatan tersebut (*user friendly*).

#### **DAFTAR PUSTAKA**

Akay M., et al, Electromyography, IEEE Press Editorial Board, New York, 2004.

Aniroh, Yunafi'atul, dkk, *The Electric Wheelchair Control Using Electromyography Sensor Of Arm Muscle*, proceedings International Conference on Information and Communication Technology and Systems, pp. 129-134, Surabaya, Oktober 2016.

Banzi, Massimo. Getting Started with Arduino, O'Reilly, California, 2008.

Bekka, R. E., dkk, *Analysis of The Compression of The Spectral Density of a Surface EMG Signal by Methods Based on the FFT*, proceedings Canadian Conference on Electrical and Computer Engineering, Kanada, Mei 2001.

Choi, dkk, *A New, Human-Centered Wheelchair System Controlled By The EMG Signal*, proceedings Seminar International Joint on Neural Network, pp.1, Vancouver, Juli, 2006.

## **LAMPIRAN**

Lampiran 1. Laporan Penggunaan Dana

Terdanai : Rp. 10.000.000,00 Dana Cair : Rp. 10.000.000,00

Jumlah Pengeluaran : Rp. 9.978.380,00

Saldo: Rp. 21.620,00 1. Bahan Habis Pakai

| Uraian                  | Jumlah | Satuan | Harga satuan | Harga Total  |
|-------------------------|--------|--------|--------------|--------------|
| Kabel 1x1               | 1      | Meter  | Rp1,000.00   | Rp1,000.00   |
| Tang Hitam Capit Kuning | 2      | Buah   | Rp9,000.00   | Rp18,000.00  |
| Skun y                  | 30     | Buah   | Rp300.00     | Rp9,000.00   |
| Kabel 2,5               | 10     | Meter  | Rp3,000.00   | Rp30,000.00  |
| Stockable 6p            | 1      | Buah   | Rp4,000.00   | Rp4,000.00   |
| Stockable 8P            | 9      | Buah   | Rp4,500.00   | Rp40,500.00  |
| Stockable 10p           | 4      | Buah   | Rp5,000.00   | Rp20,000.00  |
| Header                  | 1      | Buah   | Rp2,000.00   | Rp2,000.00   |
| Pasta Solder            | 1      | Buah   | Rp3,500.00   | Rp3,500.00   |
| Terminal Big Hitam 4p   | 2      | Buah   | Rp7,000.00   | Rp14,000.00  |
| Terminal Hitam 2p       | 1      | Buah   | Rp4,000.00   | Rp4,000.00   |
| Terminal 3p Hitam       | 1      | Buah   | Rp5,000.00   | Rp5,000.00   |
| Fuse 3A                 | 7      | Buah   | Rp500.00     | Rp3,500.00   |
| Kes Fuse                | 2      | Buah   | Rp1,500.00   | Rp3,000.00   |
| Skun                    | 14     | Buah   | Rp1,000.00   | Rp14,000.00  |
| Diskwint                | 1      | Buah   | Rp2,500.00   | Rp2,500.00   |
| T.Lipo                  | 1      | Buah   | Rp7,500.00   | Rp7,500.00   |
| Connector 5645          | 2      | Buah   | Rp750.00     | Rp1,500.00   |
| Kabel LAN               | 3      | Meter  | Rp400.00     | Rp1,200.00   |
| Jumper F-F              | 10     | Buah   | Rp1,000.00   | Rp10,000.00  |
| Jack DC                 | 2      | Buah   | Rp2,500.00   | Rp5,000.00   |
| Socket DC PCB           | 2      | Buah   | Rp1,000.00   | Rp2,000.00   |
| Atmega 328              | 1      | Buah   | Rp35,000.00  | Rp35,000.00  |
| Arduino UNO             | 1      | Buah   | Rp120,000.00 | Rp120,000.00 |
| Header Male             | 1      | Buah   | Rp2,000.00   | Rp2,000.00   |
| Header Female           | 3      | Buah   | Rp3,000.00   | Rp9,000.00   |
| Kabel JST               | 1      | Buah   | Rp5,000.00   | Rp5,000.00   |
| Socket Mini Stereo      | 1      | Buah   | Rp3,000.00   | Rp3,000.00   |
| Kabel Olor              | 10     | Meter  | Rp1,500.00   | Rp15,000.00  |
| Kabel jumper            | 1      | Meter  | Rp1,000.00   | Rp1,000.00   |

| Uraian                  | Jumlah | Satuan | Harga satuan | Harga Total    |
|-------------------------|--------|--------|--------------|----------------|
| Kabel Serabut           | 3      | Meter  | Rp2,000.00   | Rp6,000.00     |
| Kabel Pelangi           | 1      | Meter  | Rp5,000.00   | Rp5,000.00     |
| Kabel Pita              | 2      | Buah   | Rp3,500.00   | Rp7,000.00     |
| Wastring 1mm            | 1      | Buah   | Rp1,000.00   | Rp1,000.00     |
| Toggle                  | 1      | Buah   | Rp4,000.00   | Rp4,000.00     |
| Spacer 1cm              | 14     | Buah   | Rp700.00     | Rp9,800.00     |
| White House 2p          | 7      | Buah   | Rp500.00     | Rp3,500.00     |
| White House 3p          | 4      | Buah   | Rp750.00     | Rp3,000.00     |
| Regulator               | 2      | Buah   | Rp25,000.00  | Rp50,000.00    |
| Mata Bor                | 1      | Buah   | Rp1,000.00   | Rp1,000.00     |
| Kabel Belden            | 5      | Meter  | Rp4,000.00   | Rp20,000.00    |
| Adaptor Sun Ace         | 1      | Buah   | Rp40,000.00  | Rp40,000.00    |
| White House 6p          | 3      | Buah   | Rp1,500.00   | Rp4,500.00     |
| Black House 6p          | 1      | Buah   | Rp1,500.00   | Rp1,500.00     |
| Spacer 4cm              | 12     | Buah   | Rp2,000.00   | Rp24,000.00    |
| Spacer 2cm              | 4      | Buah   | Rp750.00     | Rp3,000.00     |
| Spacer 0,6              | 10     | Buah   | Rp600.00     | Rp6,000.00     |
| Fuse 4A                 | 5      | Buah   | Rp500.00     | Rp2,500.00     |
| Solder Deko             | 1      | Buah   | Rp40,000.00  | Rp40,000.00    |
| Obeng -+                | 1      | Buah   | Rp12,500.00  | Rp12,500.00    |
| Toggle 6p               | 1      | Buah   | Rp6,000.00   | Rp6,000.00     |
| PCB DOT                 | 2      | Buah   | Rp5,000.00   | Rp10,000.00    |
| Header 1x40             | 1      | Buah   | Rp1,500.00   | Rp1,500.00     |
| Jumper hardisk          | 5      | Buah   | Rp300.00     | Rp1,500.00     |
| Mata solder             | 1      | Buah   | Rp11,000.00  | Rp11,000.00    |
| Header double male      | 1      | Buah   | Rp4,000.00   | Rp4,000.00     |
| Header double female    | 1      | Buah   | Rp6,000.00   | Rp6,000.00     |
| Baterai Lipo            | 1      | Buah   | Rp240,000.00 | Rp240,000.00   |
| Ultrasonik              | 3      | Buah   | Rp36,500.00  | Rp109,500.00   |
| Kabel Jumper M-F        | 1      | Buah   | Rp15,000.00  | Rp15,000.00    |
| DC Buck Converter       | 1      | Buah   | Rp13,800.00  | Rp13,800.00    |
| Tang Potong,kabel isi 3 | 1      | Buah   | Rp18,000.00  | Rp18,000.00    |
| Obeng Set               | 1      | Set    | Rp33,000.00  | Rp33,000.00    |
| SD Card                 | 1      | Buah   | Rp71,600.00  | Rp71,600.00    |
| Materai                 | 1      | Buah   | Rp14,000.00  | Rp14,000.00    |
| Sensor Sonar            | 4      | Buah   | Rp303,500.00 | Rp1,214,000.00 |
| Kabel Tres              | 1      | Buah   | Rp10,500.00  | Rp10,500.00    |
| Kunci L                 | 1      | Buah   | Rp17,000.00  | Rp17,000.00    |

| Uraian              | Jumlah       | Satuan | Harga satuan | Harga Total    |
|---------------------|--------------|--------|--------------|----------------|
| Header jumper       | 1            | Buah   | Rp10,000.00  | Rp10,000.00    |
| NRF24L01            | 2            | Buah   | Rp12,500.00  | Rp25,000.00    |
| Akrilik             | 4            | Paket  | Rp27,250.00  | Rp109,000.00   |
| Cetak PCB           | 6            | Paket  | Rp23,417.00  | Rp140,500.00   |
| Besi sudut baut     | 1            | Buah   | Rp33,800.00  | Rp33,800.00    |
| Pasang Baut         | 4            | Buah   | Rp8,750.00   | Rp35,000.00    |
| Log Book            | 1            | Buah   | Rp110,000.00 | Rp110,000.00   |
| Foto Copy           | 3            | Buah   | Rp41,067.00  | Rp123,200.00   |
| Kabel Stimulator    | 2            | Buah   | Rp25,000.00  | Rp50,000.00    |
| Kertas Label        | 1            | Buah   | Rp3,500.00   | Rp3,500.00     |
| H2 Cutting          | 1            | Buah   | Rp10,000.00  | Rp10,000.00    |
| Jack Mini Stereo    | 6            | Buah   | Rp3,000.00   | Rp18,000.00    |
| Kapasitor           | 4            | Buah   | Rp300.00     | Rp1,200.00     |
| Dioda               | 4            | Buah   | Rp100.00     | Rp400.00       |
| Driver Segway       | 2            | Buah   | Rp230,000.00 | Rp460,000.00   |
| Sensor              | 1            | Buah   | Rp407,000.00 | Rp407,000.00   |
| Kertas              | 4            | Lembar | Rp500.00     | Rp2,000.00     |
| Jilid               | 2            | Buah   | Rp7,750.00   | Rp15,500.00    |
| Print               | 8            | Buah   | Rp8,735.00   | Rp69,880.00    |
| Las                 | 1            | Buah   | Rp20,000.00  | Rp20,000.00    |
| Pointer             | 1            | Buah   | Rp70,000.00  | Rp70,000.00    |
| Sticky Note         | 1            | Buah   | Rp8,500.00   | Rp8,500.00     |
| Arm Warmer          | 1            | Buah   | Rp80,000.00  | Rp80,000.00    |
| Arduino Due KW      | 1            | Buah   | Rp291,200.00 | Rp291,200.00   |
| Step Down           | 1            | Buah   | Rp24,000.00  | Rp24,000.00    |
| Logic Converter     | 1            | Buah   | Rp40,000.00  | Rp40,000.00    |
| White House         | 1            | Buah   | Rp6,000.00   | Rp6,000.00     |
| Arduino Due Ori     | 1            | Buah   | Rp469,000.00 | Rp469,000.00   |
| Klip Hitam          | 1            | Buah   | Rp4,000.00   | Rp4,000.00     |
| Kertas A4           | 1            | Rim    | Rp31,500.00  | Rp31,500.00    |
| Kabel & Kapasitor   | 1            | Buah   | Rp134,000.00 | Rp134,000.00   |
| Karton              | 1            | Buah   | Rp15,000.00  | Rp15,000.00    |
| Tas Alat            | 1            | Buah   | Rp102,000.00 | Rp102,000.00   |
| Buck Converter Adj. | 1            | Buah   | Rp31,400.00  | Rp31,400.00    |
| Lem Silikon         | 1            | Buah   | Rp22,000.00  | Rp22,000.00    |
| Sablon              | 1            | Buah   | Rp15,300.00  | Rp15,300.00    |
| Lakban              | 1            | Buah   | Rp15,000.00  | Rp15,000.00    |
|                     | SUB TOTAL (R | o)     |              | Rp5,434,780.00 |

# 2. Peralatan Penunjang

| Uraian        | Jumlah       | Satuan  | Harga Satuan   | Harga Total    |
|---------------|--------------|---------|----------------|----------------|
| EMG Electrode | 14           | Bungkus | Rp62,000.00    | Rp868,000.00   |
| Solasi Bakar  | 3            | Buah    | Rp10,200.00    | Rp30,600.00    |
| Kertas Gesek  | 1            | Buah    | Rp5,000.00     | Rp5,000.00     |
| Printer       | 1            | Buah    | Rp746,000.00   | Rp746,000.00   |
| Harddisk 1 TB | 1            | Buah    | Rp712,000.00   | Rp712,000.00   |
| SIK ITB       | 1            | Paper   | Rp550,000.00   | Rp550,000.00   |
| ICAMIMIA      | 1            | Paper   | Rp1,500,000.00 | Rp1,500,000.00 |
| Alkohol       | 2            | Buah    | Rp9,000.00     | Rp18,000.00    |
|               | SUB TOTAL(RP | ')      |                | Rp4,429,600.00 |

# 3.Transportasi

| Material | Jumlah        | Satuan | Harga Satuan | Harga Total |  |  |
|----------|---------------|--------|--------------|-------------|--|--|
| Parkir   | 8             | Tempat | Rp3,000.00   | Rp24,000.00 |  |  |
| Bensin   | 9             | Liter  | Rp10,000.00  | Rp90,000.00 |  |  |
| S        | SUB TOTAL(RP) |        |              |             |  |  |

#### Lampiran 2. Bukti-Bukti Pendukung Kegiatan



Bandung, 22 Juli 2017

#### Yth Penulis,

26 Sistem Pengaman Kursi Roda Elektrik dari Benturan Berbasis Sensor

Jarak : Yunafi'Atul Aniroh, Darul Muslimin, Farida Herning Tyastuti dan Rusdhianto Effendi

Selamat! Melalui surel ini kami infor masikan bahwa makalah yang tertera di atas

Setamatt Metatus surer ini kami informasikan bariwa makatan yang tertera di atas 

DITERIMA (dengan revisi minor) 
pada Seminar Nasional Sistem, Instrumentasi, dan Kontrol (SIK) 2017. Anda diundang untuk 
mempresentasikan makalah tersebut pada Seminar Nasional SIK 2017 yang akan 
dilaksanakan pada tanggal 9-10 Agustus 2017 di Sheraton Mustika Hotel, Yogyakarta. 
Untuk kebutuhan penerbitan Prosiding SIK 2017, mohon untuk mengikuti tahapan-tahapan di

- Kelengkapan registrasi
   Silakan lakukan pembayaran sesuai dengan kategori dan jumlah yang tertera pada tautan berikut : <a href="https://disk-th.org/registrasi/">https://disk-th.org/registrasi/</a>
   Pembayaran diakukan melalut transfer bank ke akun di bawah ini :
   Bank CIMB NIAGA, Cab. BDG IBC Dago E. Juliastuti Mustafa 026.01.41730.13.4

  - uze.ur.41730.13.4 Mengisi formulir registrasi pada tautan berikut : <u>bit.ly/reqistrasiSIK2017</u> Setelah mengisi formulir registrasi dan melakukan pembayaran, mohon melakukan konfirmasi dengan mencantumkan :

  - meiakukan konirmasi dengan mencaniumkan:

    1. Nomor makalah

    2. Scan Bukti pembayaran

    3. Kartu Tanda Mahasiswa (bila peserta berstatus mahasiswa)
    dengan mengirimkan email ke <u>sekretariat sik2017@aik-ith.org</u> dengan subjek :

    "SIK 2017 REGISTRASI MAKALAH ID #[NOMOR\_MAKALAH]".
    Batas registrasi awal s.d tanggal 27 Juli 2017 dan batas registrasi regular s.d tanggal 10 Agustus 2017.

- Pengumpulan Makalah Final
   Pengumpulan makalah final yang telah direvisi dengan format PDF (.pdf)
   dilakukan melalui paper submission site yang dilampirkan pada tautan berikut:
   https://easychair.org/conference/?confessixConf?
   Mengirimkan makalah final dengan format Microsoft Word (.doc, .docx) atau
   Latex ke email sekretariat sik2017 @sik-tib.org dengan subjek:
   "SIK 2017 MAKALAH FINAL ID #[NOMOR\_PAPER]".
   Batas pengumpulan makalah final adalah tanggal 29 Juli 2017.

Mohon untuk memperhatikan tanggal-langgal penting tersebut demi kelancaran SIK 2017 ini. Terima kasih atas perhatian Anda. Kami menantikan kehadiran Anda di Yogyakarta, tanggal 9-10 Agustus 2017 kelak. Bila ada pertanyaan, silakan hubungi kami pada emali sekretariat sik 2017 @sik-itb.org.

Dr. Suprijanto, ST., MT. NIP. 19700902 199701 1 001

Bukti Pendaftaran SIK 2017



Bukti Pendaftaran PATEN



Bukti Pendaftaran ICAMIMIA 2017

# Lampiran 3. Nota Pembelian



| electro  | nics and robotics store<br>eerobot.com                                    |                |               |
|----------|---------------------------------------------------------------------------|----------------|---------------|
| Sebang W | letan 2a ( sebelah barat kampus ITS<br>1169, 031-314 23 488, Telp. 031-58 | )<br>12 01 269 |               |
| nyaknya  | NAMA BARANG                                                               | HARGA          | JUMLAH<br>Rp. |
| 91       | Stockable. 9                                                              | 4000           | 9-00          |
| 9        | (D)D                                                                      | 400            | 40.500        |
| 4        | 107                                                                       | 5000           | 20-00         |
| (0)      | Clour                                                                     |                | 3,000         |
| 1        | Sloun<br>Header                                                           |                | 2-00          |
| 1        | 1 (22.5                                                                   |                |               |
|          | Hormat Kan                                                                | Total          | 69.500        |

|               | Tu<br>To         | an<br>ko   |        |
|---------------|------------------|------------|--------|
| NOT/          | NO               |            | 10     |
| Banyak<br>nya | NAMA BARANG      | Harga      | Jumlah |
| 2             | MRF24101         | 25.000     | 2      |
|               |                  |            |        |
|               |                  |            |        |
| 76            |                  |            |        |
|               |                  |            | 473/6  |
|               |                  |            | 6      |
| Tanda ter     | rima Perhatian : | Jumlah Rp. | 25.ou  |

Gambar 1. Nota 1

Gambar 2. Nota 2

Gambar 3. Nota 3

| Canopy    | BINTANG JAYA  Bengkel Las Relling Tangga, Tangga Putar Steinlies Steel, Tralis, Rolling Dor Pagar, Pintu, Harmonika, Almunium. Dll ambak 43A Pakuwon City Surabaya Flexi 031 716 | Nota :                   | Surabaya, 3 L-<br>Kepa     | da Yth. |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------|---------|
| Banyaknya | Jenis Pesanan                                                                                                                                                                    |                          | Harga                      | Jumlah  |
| 9         | Pasang haw                                                                                                                                                                       |                          |                            | 3s.on   |
| Penerima, | lm.                                                                                                                                                                              | Pemesan, ) par 4. Nota 4 | TOTAL<br>UANG MUKA<br>SISA | 35.00   |







Gambar 5. Nota 5

Gambar 6. Nota 6

Tgl. :

JUMLAH

3.000

3000

(8000

**Gambar 7.** Nota 7





Gambar 8. Nota 8

Gambar 9. Nota 9

Gambar 10. Nota 10



| electronics<br>www.iseer     | and robotics store<br>obot.com                              |               |               |
|------------------------------|-------------------------------------------------------------|---------------|---------------|
| Gebang Lor 2<br>0856 353 116 | 29 ( sebelah barat kampus ITS )<br>19, Telp. 031-582 01 269 |               |               |
| Banyak<br>nya                | NAMA BARANG                                                 | Harga<br>@Rp. | Jumlah<br>Rp. |
| 1                            | Leader Male B.                                              |               | 3.000         |
| 7                            | finzer                                                      | CHECK I       | 7,00          |
| -                            |                                                             |               |               |
|                              |                                                             |               | /             |
|                              |                                                             |               |               |
|                              |                                                             |               |               |
|                              |                                                             |               |               |
|                              |                                                             |               |               |
|                              | -                                                           |               |               |
|                              |                                                             |               |               |
|                              |                                                             |               |               |
|                              |                                                             |               |               |
|                              |                                                             |               |               |
|                              |                                                             |               |               |
| O ED AL                      |                                                             |               |               |
| 100000                       | 1                                                           | eret entre le |               |

| A<br>Kejawan Putih Tambak No 91, Mulyo<br>SMS/WA : 081231456999, Pill<br>Emali : beta_orio<br>Website : tokopedia | BB : D18FF1<br>nid@ymail.co | aya<br>129<br>om omotic and | ELECTRONIC SOLUTION |
|-------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|---------------------|
| Product Name                                                                                                      | Qty                         | Price                       | Sub Total           |
| Tiger Lipo 2200 MAH                                                                                               |                             |                             | 240.000             |
| Mendetahui                                                                                                        | Gran                        | nd Total Rp                 | 240.00              |

Gambar 11. Nota 11

MEDICOM Jalan ir Sukarno (Merr) Telp. 03199005026 - 7 NPWP 31.804.818.8.618.000 Tgl Pengukuhan: 05 Desember 2013 www.tokoalatkesehatannomort.com 27.12.2016.03.26438 Umum : INNIN Tanggal: 27-12-2016 10:49 1 x @ 62,000 ONE DOT ECG ELCTRDE ANAK ISI 5 62,000 Total barang dibeli 1 SUBTOTAL 62,000 DISKON BIAYA TAMBAHAN BIAYA CC PEMBULATAN TOTAL 62,000 TUNAI NON TUNAI 100,000 KEMBALI 38,000 TERIMA KASIH FERIMA KASIH #Untuk BKP, harga termasuk PPN #Barang yang sudah di beli tidak dapat DITUKAR / DIKEMBALIKAN

Gambar 14. Nota 14

Gambar 12. Nota 12

| Email mgr_eas                      |          |          |           |
|------------------------------------|----------|----------|-----------|
| 100949 - Zelvia<br>Receipt No: 45. |          |          | 6:01      |
| 272089 CORNER E                    |          |          |           |
|                                    | 5,900    |          | 15, 900   |
| 236435 BOLT-NUT                    |          |          |           |
| 1 x 1<br>* 1 x SHOPPIN             |          |          | 17, 900   |
| 10026535 SH0PP1                    |          |          |           |
| 1 x                                | 1        | HUL UK   | 1         |
|                                    | Saving   | en       | 2 7 51    |
|                                    |          |          |           |
| Total                              |          | :        | 33, 801   |
| Total saving                       |          | -        | -1        |
| Total sales                        |          | . Lad    | 33, 800   |
| iotal sales                        |          | VEAT     | 33, 000   |
| Cash (                             | RP)      | THURSDAY | 50,000    |
| Total payment                      | /        | :        | 50,000    |
| Change                             |          | JO BAIST | 16, 200   |
| Item : 3                           | Qty      | : 3      | 300       |
|                                    |          |          |           |
| BKP - harga sud                    | lah term | asuk PP  | N         |
| No. 45. 3. 2017033                 | 0.54     |          |           |
| 30/03/2017 - 16                    |          | 949 - 7  | elvia     |
|                                    |          |          |           |
| DAPATKAN DISKON                    | 10% UN   | TUK SEM  | UA PRODUK |
| ACE, INFORMA &                     |          |          |           |
| WWW. RUPARUPA. CO                  | M CHNA   | KAN KUDI |           |

**Gambar 13.** Nota 13



Gambar 15. Nota 15

**Gambar 16.** Nota 16



| JI  | . Gebang<br>eputih - S | PHOTOCOPY & (031) 77864                              |                            | Tol [6-3 -                |
|-----|------------------------|------------------------------------------------------|----------------------------|---------------------------|
| - F | Banyak                 | Kuterangan                                           | Harga                      | Jumiah                    |
|     |                        | Photocopy                                            |                            |                           |
|     |                        | @ 60 gr                                              |                            | -                         |
|     |                        | @ 70 gr                                              |                            |                           |
|     |                        | @ 80 gr                                              |                            | -                         |
|     |                        | @ A3                                                 |                            |                           |
|     |                        |                                                      |                            |                           |
|     | 1                      | @ Slide/Transparan                                   |                            |                           |
|     | 7                      | PRINT                                                |                            | -                         |
|     |                        | @ lext                                               | - ;                        |                           |
|     |                        | @ Text & Image                                       | 1                          | 17                        |
|     |                        | @ Full Colour                                        |                            |                           |
|     |                        | JILID                                                |                            |                           |
|     |                        | @ Biasa(Mika/Bufallo)                                |                            |                           |
|     |                        | (9 Spiral                                            |                            |                           |
| 3.  |                        | (# Soft Cover                                        |                            |                           |
|     |                        | @ Hard Cover                                         |                            |                           |
| _   |                        | Laminating                                           |                            |                           |
|     | 2_                     | ma teral bood                                        | 2000                       | ाप.ळ                      |
| _   |                        | <u> </u>                                             |                            | i                         |
| -   |                        |                                                      |                            |                           |
|     |                        |                                                      | TOTAL                      | 14.00                     |
| AD  | A KERUS                | EMBALI BERKAS-BERKAS YA<br>BAKAN / KEHILANGAN KAMI ' | NG DI PHOTO<br>FIDAK BERTA | OCOPY BILA<br>ANGGUNG JAW |
|     | Tanda                  | Tangan                                               |                            |                           |
|     |                        |                                                      |                            |                           |
|     | Terim                  | a kanih                                              | Dp:                        |                           |

| <b>Gambar 18.</b> Nota 18                                                                                                |  |  |
|--------------------------------------------------------------------------------------------------------------------------|--|--|
| Faktur  27 December 2016  Customer: CASH No Faktur: 441511271216                                                         |  |  |
| Diskon (%)         Jumlah         HargaBarang         HargaTotal           0         1         Rp15.000         Rp15.000 |  |  |
| Grand Total Rp15.000,00                                                                                                  |  |  |
|                                                                                                                          |  |  |
| MIN                                                                                                                      |  |  |
|                                                                                                                          |  |  |

**Gambar 19.** Nota 19

| Medokan<br>Surabaya<br>Telp.: 08 | YA SABLON Semampir H-10 a 57 4942 3038 57 0721 8480 | Kej       | 8 - 4 - 20.4<br>pada Yth. |
|----------------------------------|-----------------------------------------------------|-----------|---------------------------|
| Banyak nya                       | NAMA BARANG                                         | Harga     | Jumlah                    |
|                                  | 13×4=52                                             |           | US - 1600 1-              |
| 17                               | 13×9= 25 = 19×61                                    |           | 14.0000                   |
|                                  |                                                     |           |                           |
|                                  |                                                     |           |                           |
| Hor                              | rnat Kami,                                          | Total Rp. | 89.600,                   |
|                                  |                                                     |           |                           |

D'GAYA SABLON Surabaya 4-5- 2017 Medokan Semampir H-10 D13 Kepada Yth. Surabaya HENDRA Telp.: 0857 4942 3038 0857 0721 8480 8 5260 0009 NOTA No. Banyak nya NAMA BARANG : 275 X5X5.5 8.300 2×3×6 10.800 9 Hormat Kami, Total Rp

Gambar 21. Nota 21

Gambar 20. Nota 20



Keputih Gg I/20
Surabaya

Oty Nama Barang / Satuan Harga
Jasa (Rp) (Rp)

HUS A 4 500

Hopmat kami,

Gambar 21. Nota 21

**Gambar 22.** Nota 22







Gambar 24. Nota 24



Gambar 25. Nota 25