PS5841

Data Science in Finance & Insurance

Naïve Bayes

Yubo Wang

Autumn 2022

Bayes Classifier

- Classifies an observation to the most likely class
 - Discrete Y; Continuous & Discrete features X argmax $\Pr\left(Y=k|X=\pmb{x}\right)$
- Has the lowest possible test error rate out of all classifiers
- Bayes error rate at \boldsymbol{x}

$$1 - \max_{k} \Pr\left(Y = k | X = \boldsymbol{x}\right)$$

Overall Bayes error rate

$$1 - E\left(\max_{k} \Pr(Y = k | X = x)\right)$$

Conditional Class Probabilities

Use Bayes Theorem

$$\Pr(Y = k | X = x) = \frac{\Pr(X = x | Y = k) \Pr(Y = k)}{\sum_{l=1}^{K} \Pr(X = x | Y = l) \Pr(Y = l)}$$

$$p_k(\mathbf{x}) = \frac{f_k(\mathbf{x})\pi_k}{\sum_{l=1}^K f_l(\mathbf{x})\pi_l}$$

Bayes Classifier

Assigned class maximizes

$$p_k(\mathbf{x}) = \frac{f_k(\mathbf{x})\pi_k}{\sum_{l=1}^K f_l(\mathbf{x})\pi_l}$$

- Estimation
 - prior

$$\hat{\pi}_k = \frac{n_k}{N}$$

likelihood

$$\hat{f}_k(\mathbf{x}) = ?$$

Naïve Bayes Classifier

Assumption

$$f_k(\mathbf{x}) = \prod_{j=1}^p f_{kj}(x_j), \qquad \mathbf{x} = (x_1, ..., x_p)^T$$

posterior

$$p_k(\mathbf{x}) = \frac{\pi_k \prod_{j=1}^p f_{kj}(x_j)}{\sum_{l=1}^K \pi_l \prod_{j=1}^p f_{lj}(x_j)}$$

Ex: 2 quantitative features & 2 classes

• For a particular observation (x_1, x_2)

$$p_1[(x_1, x_2)] = \frac{\pi_1 f_{11}(x_1) f_{12}(x_2)}{\pi_1 f_{11}(x_1) f_{12}(x_2) + \pi_2 f_{21}(x_1) f_{22}(x_2)}$$

$$p_2[(x_1, x_2)] = \frac{\pi_2 f_{21}(x_1) f_{22}(x_2)}{\pi_1 f_{11}(x_1) f_{12}(x_2) + \pi_2 f_{21}(x_1) f_{22}(x_2)}$$

• Classify the observation to class 1 if $p_1[(x_1, x_2)] > p_2[(x_1, x_2)]$

or

$$p_1[(x_1, x_2)] >$$
custom threshold

Applications

- Insurance
 - Insurable Risk classification
- Finance
 - Credit risk classification
 - Fraud detection
 - Market timing
- Text
 - Document classification
 - Email spam filter
- Healthcare

Gaussian Naïve Bayes

- Quantitative features
- The j-th feature in the k-th class $\sim N(\mu_{kj}, \sigma_{kj}^2)$
- Estimation

$$\hat{\mu}_{kj} = \frac{1}{n_k} \sum_{i: \mathbf{y}_i = k} x_{ij}$$

$$\hat{\sigma}_{kj}^2 = \frac{1}{n_k - 1} \sum_{i: \mathbf{y}_i = k} (x_{ij} - \hat{\mu}_{kj})^2$$

Likelihood

$$\hat{f}_k(x_j) = \frac{1}{\hat{\sigma}_{kj}\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{x_j - \hat{\mu}_{kj}}{\hat{\sigma}_{kj}}\right)^2\right)$$

Example

Category	Value					
Label	Feature 1		A-priori probabilities			
C1	86		Υ	cat_1	cat_2	
C1	15			0.4	0.6	
C1	40					
C1	33		Conditional	probabilities		
C2	25			Value		
C2	38			mean	sd	
C2	73		cat_1	43.50000	30.22692	
C2	79		cat_2	48.83333	22.86846	
C2	28					
C2	50					
		ļ				
Feature 1		likelihood	prior	posterior		
15	cat_1	0.00846	0.4	0.491372		
15	cat_2	0.00584	0.6	0.508628		

Decision Boundary: GaussianNB vs KNN

Coding: Gaussian Naïve Bayes

• R

e1071::naiveBayes()

Python

sklearn.naive_bayes.GaussianNB()

– (version 1.1.2) used population stdev formula for $\hat{\sigma}_{ki}^2$

Population vs Sample SD

Multinomial Naïve Bayes

- Qualitative features
- The *j*-th feature (having L levels) in the *k*-th class

$$\sim MultiN\left(n_k = \sum_{l=1}^L n_{kl}, \boldsymbol{\theta} = (\theta_1, ..., \theta_L)^T\right)$$

Estimation

$$\widehat{\boldsymbol{\theta}} = \left(\frac{n_{k1}}{n_k}, \dots, \frac{n_{kL}}{n_k}\right)$$

Likelihood

$$\hat{f}_k(x_j) = \frac{n_k!}{n_{k1}! \dots n_{kL}!} \hat{\theta}_1^{n_{k1}} \dots \hat{\theta}_L^{n_{kL}}$$

Example

Category	Quality	Temp		A-priori probal	priori probabilities	
Label	Feature 1	Feature 2		Υ	cat_1	cat_2
C1	В	Н			0.4	0.6
C1	G	С				
C1	G	Н		Conditional pro	obabilities	
C1	G	Н			Quality	
C2	В	С			В	G
C2	В	С		cat_1	0.25000	0.75000
C2	G	Н		cat_2	0.33333	0.66667
C2	G	Н				
C2	G	Н		Conditional pro	obabilities	
C2	G	С			Temp	
					С	Н
				cat_1	0.25000	0.75000
				cat_2	0.50000	0.50000
Feature 1	Feature 2		likelihood	prior	posterior	
В	Н	cat_1	0.187500	0.4	0.4285714	
В	Н	cat 2	0.166667	0.6	0.5714286	
		_				
Feature 1	Feature 2		likelihood	prior	posterior	
G	С	cat_1	0.187500	0.4	0.2727273	
G	С	cat 2	0.333333	0.6	0.7272727	

Coding: Multinomial Naïve Bayes

• R

e1071::naiveBayes()

Python

sklearn.naive_bayes.MultinomialNB()

Encode feature using a one-hot (aka 'one-of-K' or 'dummy') encoding scheme.

Coding: Naïve Bayes w/ Q & C Features

• R

e1071::naiveBayes()

Python

use estimates from

sklearn.naive_bayes.GaussianNB()*
sklearn.naive_bayes.MultinomialNB()
to calculation posterior class probabilities

That was

