Licence de Mécanique UE 3A005 : Méthodes Numériques pour la Mécanique Examen du 7 novembre 2018 (durée 2h)

Numéro		
d'anonymat:		
or our our j		

Sans document, sans calculatrice ni équipement électronique.

Ex. 1 - Racines d'équations (rendre le sujet avec la copie), /6 points.

On souhaite résoudre sur]0,3[l'équation $f(x)=x^2-\ln(x)-2x=0.$

1. Pour faire une localisation grossière des racines, on a tracé sur la Figure 1 la fonction f(x). On appelle r_1 et r_2 les racines, avec $r_1 < r_2$. En déduire un intervalle de recherche pour r_1 et un autre pour r_2 . Mettre ces intervalles en évidence sur la Figure 1.

2. Méthode du point fixe. On introduit deux fonctions ϕ_1 et ϕ_2 définies par :

$$\phi_1(x) = \sqrt{\ln(x) + 2x}$$
 et $\phi_2(x) = e^{(x^2 - 2x)}$

Montrer que la méthode du point fixe appliquée à ϕ_1 , si elle converge, permet de trouver une racine de f(x). Même question pour ϕ_2 . En utilisant la Figure 2, laquelle des fonctions ϕ_1 ou ϕ_2 permet de converger vers r_1 ? Vers r_2 ? Justifier les réponses.

3. Sur la Figure 3, construire, avec 2 couleurs différentes, les 3 premières itérations de la méthode du point fixe x_0 , x_1 , x_2 , x_3 utilisant ϕ_1 d'une part et X_0 , X_1 , X_2 , X_3 utilisant ϕ_2 d'autre part, avec la même condition initiale $x_0 = X_0 = 1$.

4. Relaxation : La Figure 4 montre les résultats de calculs permettant de déterminer la valeur optimale du paramètre θ pour la méthode de point fixe relaxée : $\phi_{\theta}(x) = (1-\theta)x + \theta\phi_{2}(x)$. Plus spécifiquement on a tracé le nombre d'itérations k_{ϵ} nécessaires pour atteindre une précision ϵ , à partir d'une même condition initiale. Expliquer brièvement comment ces résultats ont été obtenus. Selon ces résultats, quelle est la valeur de θ_{opt} ?

Ex. 2 - Algorithme de Thomas, /15 points.

On souhaite mettre en œuvre la factorisation A = LU pour résoudre le système Ax = b, où la matrice $A \in \mathbb{R}^{n,n}$ est tridiagonale.

Dans tout l'exercice, les cases vides correspondent à la valeur "0".

On prendra l'exemple de la matrice $A \in \mathbb{R}^{4,4}$ suivante, et du vecteur $b \in \mathbb{R}^4$ donné ci-après :

$$A = \begin{bmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & \\ \hline & -1 & 2 & -1 & \\ \hline & & -1 & 2 & -1 \\ \hline & & & -1 & 2 \end{bmatrix} \qquad b = \begin{bmatrix} \frac{3}{-2} \\ \hline \frac{2}{0} \end{bmatrix}$$

La matrice A étant tridiagonale, elle est entrée sous la forme de 3 diagonales qui sont les vecteurs d, a, c représentés ci-dessous (la numérotation est telle que l'indice correspond au numéro de la ligne). Le problème est donc déterminé par la donnée des 4 vecteurs d, a, c (pour la matrice) et b (pour le second membre) de \mathbb{R}^n (en pratique on complète le vecteur a en donnant $a_1 = 0$, et le vecteur c en donnant $c_n = 0$).

$$A = \begin{bmatrix} \frac{d_1}{a_2} & c_1 & & & \\ \hline a_2 & d_2 & c_2 & & \\ \hline & a_3 & d_3 & c_3 \\ \hline & & a_4 & d_4 \end{bmatrix} \quad b = \begin{bmatrix} \frac{b_1}{b_2} \\ \hline b_3 \\ \hline & b_4 \end{bmatrix} \quad L = \begin{bmatrix} \frac{l_1}{m_2} & & & \\ \hline m_2 & l_2 & & \\ \hline & & m_3 & l_3 \\ \hline & & & m_4 & l_4 \end{bmatrix} \quad U = \begin{bmatrix} \frac{1}{1} & u_1 & & & \\ \hline & 1 & u_2 & & \\ \hline & & 1 & u_3 \\ \hline & & & 1 \end{bmatrix}$$

Partie A : Factorisation A = LU, avec U à diagonale unité.

Les matrices L et U sont recherchées sous la forme ci-dessus, où L est représentée par les 2 vecteurs l et m de \mathbb{R}^n , et U est représentée par un vecteur u de \mathbb{R}^n .

- 1. Détailler dans le cas n=4 représenté ci-dessus, le calcul des composantes de l, m, u en fonction des données d, a, c. Pour cela, on effectuera le produit LU et on identifiera de façon ordonnée, ligne à ligne, les éléments du produit avec ceux de A.
- 2. Trouver les valeurs numériques de l, m, u (en les laissant sous formes de fractions) pour l'exemple numérique donné de la matrice A.
- 3. A partir du calcul détaillé en (1) pour n=4, donner l'algorithme de factorisation pour n quelconque.
- 4. En déduire le nombre d'opérations élémentaires nécessaires (additions, multiplications, divisions) pour la réalisation de la factorisation sous cette forme, en fonction de n.
- 5. Pour une matrice de $\mathbb{R}^{n,n}$ pleine, le coût de la factorisation A=LU est de l'ordre de $2n^3/3$ opérations élémentaires. En quoi l'exploitation de la forme tridiagonale est-elle intéressante?

3

Partie B : Résolution du système LUx = b.

- 6. Détailler, dans le cas n = 4, le calcul des composantes du vecteur intermédiaire y, puis du vecteur solution x en fonction des données l, m, u et b (on suppose connus les l_i , m_i , u_i , et b_i , pour i = 1 à n = 4).
- 7. Trouver les valeurs numériques de y puis de x (sous formes de fractions) pour l'exemple donné de la matrice A et du vecteur b, en utilisant vos résultats de la Partie A, question (2).
- 8. A partir du calcul détaillé en (6) pour n=4, donner les algorithmes de résolution de y puis de x pour n quelconque.
- 9. En déduire le nombre d'opérations élémentaires nécessaires pour la résolution de y puis de x en fonction de n.
- 10. Pour une matrice de $\mathbb{R}^{n,n}$ pleine, le coût de la résolution (une fois la factorisation effectuée) est de $2n^2$ opérations élémentaires. En quoi l'exploitation de la forme tridiagonale est-elle intéressante?

Ex. 3 - Méthode itérative SSOR, /9 points.

Soit A = D - E - F, la décomposition fixe usuelle d'une matrice A.

On définit les deux splittings suivants, A=M-N=P-Q, où $M=\frac{1}{\omega}D-E$ et $P=\frac{1}{\omega}D-F$, avec ω un paramètre réel donné.

La méthode consiste en 2 étapes :

- (i) $My = Nx^{(k)} + b$
- (ii) $P x^{(k+1)} = Q y + b$
- 1. Exprimer les matrices N et Q en fonction de D, E, F et ω .
- 2. Expliquer brièvement (sans détailler l'algorithme de calcul de chaque composante), comment on calcule par cette méthode la solution $x^{(k+1)}$, à partir de la donnée de $x^{(k)}$.
- 3. Exprimer la matrice d'itération Ω en fonction des matrices M,N,P,Q et en déduire que : $\Omega = (D-\omega F)^{-1}[(1-\omega)D+\omega E](D-\omega E)^{-1}[(1-\omega)D+\omega F].$ (Ce résultat sera utilisé pour traiter les questions 5-6-7.)
- 4. Donner la forme de la matrice $(1-\omega)D+\omega F$ et calculer son déterminant en fonction des composantes de la matrice A et de ω .
- 5. En utilisant det(AB) = det(A)det(B) et en s'appuyant sur la démarche appliquée à la question précédente, montrer que $det(\Omega) = (1 \omega)^{2n}$.
- 6. On rappelle que le produit des valeurs propres d'une matrice est égal à son déterminant. En déduire que l'on peut minorer le rayon spectral de la matrice d'itération : $\rho(\Omega) \geq C$. Exprimer C en fonction de ω .
- 7. Montrer alors que si $\omega \geq 2$ ou $w \leq 0$, la méthode SSOR diverge.