TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT THÀNH PHỐ HỒ CHÍ MINH

KHOA ĐÀO TẠO CHẤT LƯỢNG CAO NGÀNH CN KT ĐTTT

ĐÁP ÁN CUỐI KỲ HỌC KỲ 1 NĂM HỌC 2017-2018

Đề số/Mã đề:1Đề thi có 1 trang.

Thời gian: 09. phút.

Được phép sử dụng một tờ giấy A4 viết tay.

Câu 1: Cho một ảnh xám f như hình 1, ảnh có 3 bit mức xám. (4đ)

$$f = \begin{pmatrix} 1 & 4 & 2 \\ 5 & 1 & 3 \\ 1 & 2 & 4 \end{pmatrix}$$

Hình 1

a. Bảng thống kê (0.5đ)

k	1	2	3	4	5
nk	3	2	1	2	1

Lược đồ mức xám. (0.5đ)

b. Tính mật độ xuất hiện của những pixel tương ứng với mỗi mức xám. (1đ)

 $P(k)=n_k/n$, trong đó n=9

k	1	2	3	4	5
n_k	3	2	1	2	1
P(k)	3/9=0.33	2/9=0.22	1/9=0.11	2/9=0.22	1/9=0.11

c. Xác định các giá trị ảnh ngõ ra tương ứng với những mức xám và vẽ lược đồ ảnh đã được tăng cường g sử dụng phương pháp cân bằng mức xám (histogram equalization). (2đ)

Giá trị gk ngõ ra tương ứng (1đ)

K (mức xám)	0	1	2	3	4	5	6	7
n _k (số pixel ngõ vào tương ứng)	0	3	2	1	2	1	0	0
Kg(số mức xám ngõ ra tương ứng)	0	2	4	5	6	7	0	0

Lược đồ sau khi cân bằng (0.5đ)

Ånh ngõ ra tương ứng (0.5đ)

$$g = \begin{pmatrix} 2 & 6 & 4 \\ 7 & 2 & 5 \\ 2 & 4 & 6 \end{pmatrix}$$

Câu 2: Cho ảnh f như hình 2 và bộ lọc Sobel, với mặt nạ hàng và cột, Gx và Gy (5đ)

$$f = \begin{pmatrix} 1 & 2 & 2 & 1 \\ 1 & 1 & 0 & 3 \\ 2 & 4 & 1 & 5 \\ 2 & 1 & 2 & 0 \end{pmatrix}$$

Hình 2

Mặt nả Sobel

$$G_{x} = \begin{pmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{pmatrix} \qquad G_{y} = \begin{pmatrix} +1 & 0 & -1 \\ +2 & 0 & -2 \\ +1 & 0 & -1 \end{pmatrix}$$

xác định độ lớn của điểm ảnh, không tính các biên ảnh. (2đ)
Mỗi cặp Gx và Gy (0.5đ)

và Gy	Gy(1,1) = 2	Gy(1,2) = -3		Gx(2,2) = -1 Gy(2,2) = -3
Độ lớn ảnh G (làm tròn)	G(1,1)=4	G(1,2)=5	G(2,1)=4	G(2,2)=3

$$G(i,j)=sqrt(Gx.^2+Gy.^2)$$

- Làm tròn: lớn hơn 0.5 là 1 và ngược lai là 0
- b. Giả sử ngưỡng T là giá trị trung bình của ngưỡng độ lớn nhất và nhỏ nhất đã xác định ở câu a, tính ngưỡng T. (1đ)

Trong câu a, độ lớn lớn nhất là 5 và nhỏ nhất là 3, do vậ T=[(5+3)/2]=4, vậy T=4

c. Xác định ảnh nhị phân với ngưỡng T của câu b. (2đ)

Ånh ngõ ra sau khi dùng mặt na Sobel là:

	1	2	2	1
	1	4	5	3
G=	2	4	3	5
	2	1	2	0

(0.5a)

Công thức xác định ảnh nhị phân:

$$G= 1 \quad \text{if T}>=4 \\ 0 \quad \text{if T}<4$$

(0.5a)

Vậy theo công thức xác định ảnh nhị phân

	0	0	0	0
	0	1	1	0
G=	0	1	0	1
	0	0	0	0

(1d)

Câu 3: Explain steps of the Otsu method for image segmentation? (1đ)

The image segmentation using the Otsu method includes the following steps:

- Divide an image into the background pixel group and the object/foreground based on threshold T
- Calculate weight, Mean, Variance for both the background and foreground corresponding to that T threshold.
- Calculate "within class variance"
- Choose the minimum value of the "within class variance" value with the corresponding T threshold.