STAT 8020 R Lab 17: Poisson Regression II

Whitney

October 28, 2020

Contents

```
Species Diversity on the Galapagos Islands1Wafer Quality3Poisson Model3Multinomial Model4Binomial Model4
```

Species Diversity on the Galapagos Islands

```
library(faraway)
data(gala)
gala <- gala[, -2] # remove "Endemics"
gala</pre>
```

##		Species	Area	Elevation	Nearest	Scruz	Adjacent
##	Baltra	58	25.09	346	0.6	0.6	1.84
##	Bartolome	31	1.24	109	0.6	26.3	572.33
##	Caldwell	3	0.21	114	2.8	58.7	0.78
##	Champion	25	0.10	46	1.9	47.4	0.18
##	Coamano	2	0.05	77	1.9	1.9	903.82
##	Daphne.Major	18	0.34	119	8.0	8.0	1.84
##	Daphne.Minor	24	0.08	93	6.0	12.0	0.34
##	Darwin	10	2.33	168	34.1	290.2	2.85
##	Eden	8	0.03	71	0.4	0.4	17.95
##	Enderby	2	0.18	112	2.6	50.2	0.10
##	Espanola	97	58.27	198	1.1	88.3	0.57
##	Fernandina	93	634.49	1494	4.3	95.3	4669.32
##	Gardner1	58	0.57	49	1.1	93.1	58.27
##	Gardner2	5	0.78	227	4.6	62.2	0.21
##	Genovesa	40	17.35	76	47.4	92.2	129.49
##	Isabela	347	4669.32	1707	0.7	28.1	634.49
##	Marchena	51	129.49	343	29.1	85.9	59.56
##	Onslow	2	0.01	25	3.3	45.9	0.10
##	Pinta	104	59.56	777	29.1	119.6	129.49
##	Pinzon	108	17.95	458	10.7	10.7	0.03
##	Las.Plazas	12	0.23	94	0.5	0.6	25.09
##	Rabida	70	4.89	367	4.4	24.4	572.33
##	${\tt SanCristobal}$	280	551.62	716	45.2	66.6	0.57
##	SanSalvador	237	572.33	906	0.2	19.8	4.89
##	SantaCruz	444	903.82	864	0.6	0.0	0.52
##	SantaFe	62	24.08	259	16.5	16.5	0.52
##	SantaMaria	285	170.92	640	2.6	49.2	0.10
##	Seymour	44	1.84	147	0.6	9.6	25.09
##	Tortuga	16	1.24	186	6.8	50.9	17.95
##	Wolf	21	2.85	253	34.1	254.7	2.33

```
lmFit \leftarrow lm(Species \sim ., gala)
summary(lmFit)
##
## Call:
## lm(formula = Species ~ ., data = gala)
##
## Residuals:
##
                1Q Median
       Min
                                  3Q
                                         Max
## -111.679 -34.898 -7.862
                              33.460 182.584
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 7.068221 19.154198
                                  0.369 0.715351
## Area
                        0.022422 -1.068 0.296318
             -0.023938
## Elevation
            0.319465
                         0.053663
                                  5.953 3.82e-06 ***
## Nearest
              0.009144
                        1.054136
                                  0.009 0.993151
              ## Scruz
## Adjacent
             -0.074805
                         0.017700 -4.226 0.000297 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 60.98 on 24 degrees of freedom
## Multiple R-squared: 0.7658, Adjusted R-squared: 0.7171
## F-statistic: 15.7 on 5 and 24 DF, p-value: 6.838e-07
PoiFit <- glm(Species ~ ., family = poisson, gala)
summary(PoiFit)
##
## Call:
## glm(formula = Species ~ ., family = poisson, data = gala)
## Deviance Residuals:
##
      Min
               1Q
                    Median
                                 3Q
## -8.2752 -4.4966 -0.9443
                            1.9168 10.1849
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.155e+00 5.175e-02 60.963 < 2e-16 ***
## Area
             -5.799e-04 2.627e-05 -22.074 < 2e-16 ***
## Elevation
            3.541e-03 8.741e-05 40.507 < 2e-16 ***
## Nearest
              8.826e-03 1.821e-03
                                    4.846 1.26e-06 ***
## Scruz
             -5.709e-03 6.256e-04 -9.126 < 2e-16 ***
## Adjacent -6.630e-04 2.933e-05 -22.608 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for poisson family taken to be 1)
##
      Null deviance: 3510.73 on 29 degrees of freedom
## Residual deviance: 716.85 on 24 degrees of freedom
## AIC: 889.68
##
```

```
## Number of Fisher Scoring iterations: 5
step(PoiFit)
## Start: AIC=889.68
## Species ~ Area + Elevation + Nearest + Scruz + Adjacent
##
##
              Df Deviance
                               AIC
                    716.85 889.68
## <none>
## - Nearest
             1 739.41 910.24
                  813.62 984.45
## - Scruz
              1
## - Area
               1 1204.35 1375.18
## - Adjacent 1 1341.45 1512.29
## - Elevation 1 2389.57 2560.40
## Call: glm(formula = Species ~ Area + Elevation + Nearest + Scruz +
##
       Adjacent, family = poisson, data = gala)
##
## Coefficients:
## (Intercept)
                               Elevation
                                              Nearest
                                                             Scruz
                                                                       Adjacent
                       Area
##
    3.1548079 -0.0005799
                               0.0035406
                                            0.0088256 -0.0057094
                                                                     -0.0006630
##
## Degrees of Freedom: 29 Total (i.e. Null); 24 Residual
## Null Deviance:
                        3511
## Residual Deviance: 716.8
                              AIC: 889.7
Wafer Quality
Freq <- c(320, 14, 80, 36)
Particle \leftarrow gl(2, 1, 4, labels = c("No", "Yes"))
Quality \leftarrow gl(2, 2, labels = c("Good", "Bad"))
(wafer <- data.frame(Freq, Particle, Quality))</pre>
##
     Freq Particle Quality
## 1 320
                      Good
               No
## 2
      14
               Yes
                      Good
## 3
               No
                       Bad
      80
      36
              Yes
                       Bad
xtabs(Freq ~ Quality + Particle)
##
         Particle
## Quality No Yes
##
      Good 320 14
##
     Bad
           80 36
Poisson Model
mod1 <- glm(Freq ~ Quality + Particle, family = poisson)</pre>
sumary(mod1)
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.69336
                        0.05720 99.5350 < 2.2e-16
## QualityBad -1.05755
                          0.10777 - 9.8129 < 2.2e-16
## ParticleYes -2.07944
                        0.15000 -13.8630 < 2.2e-16
```

```
##
## n = 4 p = 3
## Deviance = 54.03045 Null Deviance = 474.09877 (Difference = 420.06832)
drop1(mod1, test = "Chi")
## Single term deletions
##
## Model:
## Freq ~ Quality + Particle
                          AIC
                                LRT Pr(>Chi)
          Df Deviance
                 54.03 83.77
## <none>
## Quality 1 164.22 191.96 110.19 < 2.2e-16 ***
## Particle 1 363.91 391.66 309.88 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Multinomial Model
n = 450
(pp <- prop.table(xtabs(Freq ~ Particle)))</pre>
## Particle
##
         No
## 0.8888889 0.1111111
(qp <- prop.table(xtabs(Freq ~ Quality)))</pre>
## Quality
##
       Good
## 0.742222 0.2577778
(exp \leftarrow outer(qp, pp) * n)
         Particle
## Quality No
                        Yes
##
     Good 296.8889 37.11111
##
     Bad 103.1111 12.88889
(obs <- xtabs(Freq ~ Quality + Particle))</pre>
##
         Particle
## Quality No Yes
##
    Good 320 14
     Bad 80 36
(2 * sum(obs * log(obs / exp)))
## [1] 54.03045
Binomial Model
(m <- matrix(Freq, nrow = 2))</pre>
## [,1] [,2]
## [1,] 320 80
## [2,]
        14
```

```
(binFit <- glm(m ~ 1, family = binomial))</pre>
## Call: glm(formula = m ~ 1, family = binomial)
##
## Coefficients:
## (Intercept)
         1.058
##
##
## Degrees of Freedom: 1 Total (i.e. Null); 1 Residual
## Null Deviance:
                      54.03
## Residual Deviance: 54.03
                               AIC: 66.19
predict(binFit, type = "response")
           1
## 0.7422222 0.7422222
Hypergeometric Model
fisher.test(obs)
## Fisher's Exact Test for Count Data
##
## data: obs
## p-value = 2.955e-13
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 5.090628 21.544071
## sample estimates:
## odds ratio
   10.21331
##
```