RC 360 Detector Power Button Test Cases

Test Writer: Matt Whiteside, T08							
Test Case:		Servo control			Test ID:	RC360-t1	
Description:		This test verifies that the button enables/disables the motor, but leaves the LED and distance sensing active.			Type:	White box	
Objective:		Test type: functionality, acceptance. Button should work as described in state diagram.					
Tester Information							
Name of Tester:		Homer				Date:	
Hardware Ver:		1.0				Time:	
Setup:		the circuit board, assembled up to the point where the motor control and LED control signals are working;					
Resources:		digital multimeter; oscilliscope					
Step	Action	Expected Result	Pass	Fail	N/A	Commer	nts
1	power-up	System motor is off, sensor/LEDs are active					
2	first button press	motor should start spinning, i.e., active state					
3	second button press	system should return to 'INIT' state					
4	3rd button press	system should return to active state					
Overa	Overall Test Result:						

<u>References</u>

Test Version: 1.1

Date of this version: 12/9/2015

Page: 1 of 1

button state machine documentation: https://github.com/RC360Detector/RC360Detector/BC360De