ASD-TDR-62-996

RESEARCH ON THE BINARY IRON-NICKEL ALLOYS WITH 20 TO 25 PERCENT NICKEL

AIR FORCE MATERIALS LABORATORY
RESEARCH AND TECHNOLOGY DIVISION
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO

Project No. 1(8-7381), Task No. 738103

(Frepared under Contract No. AF 33(616)-8018 by Wright Aeronautical Division, Curtiss-Wright Corporation, Wood-Ridge, New Jersey, E. P. Gilewicz, W. A. Fragetta, V. Mehra and R. Krohn, authors)

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related therero.

Qualified requesters may obtain copies of this report from the Defense Documentation Center (DDC), (formerly ASTIA), Cameron Station, Bldg. 5, 5010 Duke Street, Alexandria, Virginia, 22314.

This report has been released to the Office of Technical Services, U.S. Department of Commerce, Washington 25, D. C., in stock quantities for sale to the general public.

Copies of this report should not be returned to the Research and Technology Division, Wright-Patterson Air Force Base, Ohio, unless return is required by security considerations, contractual obligations, or notice on a specific document.

distribution of the second state of the second seco

FOREWORD

This report was prepared by Wright Aeronautical Division, Curtiss-Wright Corporation under U.S.A.F. Contract No. AF 33(616)-8018. This contract was initiated under Project No. 1(8-7381), Task No. 73812. The work was administered under the direction of the Directorate of Materials and Processes, Deputy for Technology, Aeronautical Systems Division, with Mr. H. Zoeller acting as Project Engineer.

This report covers work conducted from March 1, 1961 to September 30, 1962.

The scope of the program required the efforts and support of a team of engineers and technicians not only involving the Wright Aeronautical Division but also the staff of the Directorate of Materials and Processes, numerous steel suppliers and the International Nickel Company, who developed the alloys evaluated.

Specifically, the authors wish to acknowledge the interest, technical aid and recommendations offered by Mr. H. Zoeller and Lt. W. Payne of the Directorate of Materials and Processes. The technical information and background given by Messrs. R. Decker, C. Bieber and C. C. Clark, all of the International Nickel Company, were invaluable in the collection of data.

Many personnel at the Wright Aeronautical Division were involved in the scheduling, testing and collation of data. Specifically, the authors are indebted to Messrs. W. Taylor, O. A. Siede, M. Klein and M. Schwartz for their work in the above areas.

The fight of the state of the s

ABSTRACT

The physical metallurgy, mechanical properties and weld properties of the binary iron-nickel hase alloys designated as Maraging Steels are presented, in this final engineering report. This work was performed under U.S.A.F. Contract No. AF 33(616)-8018, *Research on Binary Iron-Nickel Base Alloys.*

The primary data obtained during the program consisted of sheet and bar tensile properties as a function of various heat treatments and mill processing variables. Also determined were the fracture toughness parameters corresponding to strength levels produced by the various conditions mentioned above.

Secondary data generated included obvated temperature tensile properties, billet and forging properties, room temperature fatigue properties and Charpy impact strengths at cryogenic temperatures.

Included as a portion of the work was the selection of the most promising alloy for evaluation of biaxial strength. The biaxial strengths of burst tested 18% nickel (300 KSI) alloy using 6-inch diameter test cylinders ranged from 310 to 349 KSI. Biaxial gains as high as 17.5% were measured.

The results of the mechanical properties evaluation indicated that the best combination of fracture toughness and yield strength were offered by the 18% nickel alloys at both the 250 and 300 KSI strength levels.

A comparison of the alloys on the basis of weld tensils and fracture toughness properties indicate the 18% nickel alloys as exhibiting superior weldability. The 20 and 25% nickel alloys demonstrated heat affected zone embrittlement, The 25% nickel alloy exhibited the poorest weldability. Maximum weld yield strength joint efficiency and coughness were obtained in the 18% nickel (250 ISI) alloy.

This technical documentary report has been reviewed and is approved.

W. P. CONRARDY, Chief

dr. p. Coma

Materials Engineering Branch Materials Applications Division

AF Waterials Laboratory

TABLE OF CONTENTS

Volu	olume I		Page No	
1.0	INI	RODUCTIO	ON CONTRACTOR OF THE PROPERTY	1
2.0	SUM	ARY		2
3.0	18%	NICKEL	ALLOY	
	3.1	Experi	mental Procedures	8
		3.1.1	Materials	8
		3.1.2	Processing History	9
			Specimen Testing	11
			Preliminary Evaluation on Chemistry Variance	12
		3.1.5	Experimental Procedures - Welding	13
			Preliminary Evaluations - Welding	16
	3.2	18% Ni	ckel Alloy (250 KSI)	
		3.2.1	Solution Annealed Condition	19
		3.2.2	Cold Worked Condition	22
		3.2.3	Warm Worked Condition	25
		3.2.4	Miscellaneous Mechanical Properties	26
		3.2.5	Summary Discussion	28
		3.2.6	Weld Properties	30
	3.3	18% Ni	ckel Alloy (300 KSI)	
		3.3.1	Solution Annealed Condition	153
		3.3.2	Cold Worked Condition	155
		3.3.3	Warm Worked Condition	156
		3.3.4	Miscellaneous Mechanical Properties	157
		3.3.5	Summary Discussion	163
		3.3.6	Weld Properties	164
Volu	me II	:		
1.0	PHYSICAL METALLURGY			
	1.1	Trans f	ormation and Hardening Mechanism	241
		1.1.1	Solid State Equilibrium in the Binary Iron-Nickel System	242

TABLE OF CONTENTS (Cont'a)

lo.

Volume II				Page No
ormations and decimal artists and of later and	1.1.2		tic Transformation in the ron-Nickel System	243
				2/2
			Athermal Characteristics	243
		1.1.2.2	Isothermal Characteristics	245
	1.1.3	Strength	ening of Martensite	246
1.2		of Preci Developme	pitation Hardemed Iron-Nickel nt	256
	1.2.1	Classifi Alloys	cation of Commercial Iron-Nickel	256
	1.2.2	•	e of Composition on the Mg and	257
			al Properties of Iron-Nickel Alloys	-27,
		1.2.2.1	Effect of Hardening and Strengthen- ing Elements in Group I (18% Nickel) Alloys	257
		1.2.2.2	Effect of Residual Elements in Group I (18% Nickel) Alloys	258
		1.2.2.3	•	259
		1.2.2.4	Effect of Hardening and Strength- ening Elements in Group II (20 and 25% Nickel) Alloys	259
		1.2.2.5	Effect of Residual Elements in Group II (20% and 25% Ni) Alloys	260
		1.2.2.6	Effect of Toughness Improving Elements on Group II (20% and 25% Ni) Alloys	261
		1.2.2.7	Effect of Nickel and Other Elements on the $M_{\rm S}$ Temperature	262
	1.2.3	Composit	ion Specifications	263
	1.2.4	Condition	n and Heat Treatment	264
	1.2.5	Melting	Mathods	265
	1.2.6	Primary	Working	265
	1.2.7	Corrosio	n Resistance	265
		1.2.7.1	Corrosion Resistance of Group I (18% Ni) Alloys	265
		1.2.7.2	Corrosion Resistance of Group II (20 and 25% Ni) Alloys	266

TABLE OF CONTENTS (Cont'd)

<u>Volu</u>	me II	•		Page No
		1.2.8	Welding	267
			1.2.8.1 Group I Alloys (18% Nickel)	267
			1.2.8.2 Group II Alloys (20 and 25% Nickel)	271
	1.3		rison Between Properties of Laboratory and stion Heats	308
		1.3.1	18% Nickel Alloy (250 KSI)	308
			18% Nickel Alloy (300 KSI)	308
			20% Nickel Alloy	309
			25% Nickel Alloy	309
2.0	20%	NICKEL	ALLOY	
	2.1	Soluti	on Annealed Condition	331
	2,2	Cold W	Vork Condition	332
	2.3	Warm W	Orked Condition	333
			laneous Properties	334
	2.5	Summar	y Discussion	336
	2.6	Weld F	roperties	337
3.0	25%	NICKEL	ALLOY	
			on Annealed Condition	400
	3.2	Cold W	Jorked Condition	401
	3.3	Miscel	laneous Properties	403
	3.4	Summar	y Discussion	404
	3.5	Weld P	roperties	405
4.0	CURR	ENT AND	FUTURE WORK	
	4.1	Constr	ruction and Test of Full Scale Motor Cases	469
	4.2	Solid	Rocket Booster Motor Casings	469
			s Development of Maraging Steel Forgings	470
5.0	REFE	RENCES		471

LIST OF ILLUSTRATIONS

Figure		Page No.
1	Comparison of Fracture Toughness of Annealed Maraging Alleys at Various Yield Strength Levels	5
2	Comparison of Fracture Toughness of Cold Worked, Maraging Alloys at Various Yield Strength Levels	6
3	Comparison of Transverse Weld and Fracture Toughness Properties 18, 20, and 25% Nickel Alloys	7
4	Standard Sheet Tensile Specimens	3 5
5	Fatigue Cracked Specimen (Center Notch)	36
6	Joint Design and Weld Settings for 18, 20, and 25% Ni Alloys	37
7	Weld Zone Hardness Traverses	38
8	Weld Bend Test Specimen	39
9	Longitudinal Sheet Weld Tensile Specimen	40
10	Effect of Current on Penetration	41
11	Effect of Voltage on Penetration	42
12	Effect of Travel Speed on Penetration (No Filler Wire Added)	43
13	Effect of Travel Speed on Penetration (Filter Wire Added)	44
14	Effect of Filler Wire Feed Rate on Penetration	45
15	Effect of Voltage and Current on Penetration (25% Nickel Alloy)	46
16	Effect of Travel Speed and Voltage on Penetration (25% Nickel Alloy)	47
17	Effect of Filler Wire Speed on Penetration (25% Nickel Alloy)	48

Figure		Page No.	Pig
18	Transverse Weld Cross Section	49	3
19	18% Nickel Alloy Welds - Maraged: 900°F/3 Hours	50	3
20	18% Nickel Alloy (250 KSI) - Solution Heat Treated	51	
21	Nickel Alloy (250 KSI) - 40% Cold Worked	52	3
22	18% Nickel Alloy (300 KSI) - Solution Heat Treated - Weld Heat Affected Zone	53	
23	18% Nickel Alloy (300 KSI) - 50% Cold Worked - Weld Heat Afrected Zone	54	3 1
24	20% Nickel Alloy Weld (Fusion Pass)	55	38
25	20% Nickel Alloy Welds - Maraged: 850°F/4 Hours	56	3 9
26	20% Nickel Alloy - Solution Heat Treated - Weld Heat Affected Zone - Maraged: 850°F/4 Hours	57	40
27	20% Nickel Alloy - 50% Cold Worked - Weld Heat Affected Zone	58	
28	25% Nickel Alloy Weld (Fusion Pass)	59	41
29	25% Nickel Alloy Welds - Aged: 1300°F/4 Hours and Ref110°F/16 Hours + 850°F/4 Hours	60	42
30	25% Nickel Alloy - Solution Heat Treated - Weld Heat Affected Zone - Aged: 1300°F/4 Hours and Ref110°F/16 Hours + 850°F/4 Hours	61	43
31	25% Nickel Alloy - 30% Cold Worked - Weld Heat Affected Zone	62	44
32	Hardness Response Contours of Solution Annealed 18% Nickel Alloy	76	45
33	Effect of Maraging Parameters on the Hardness of Solution Treated 187 Nickel Allow	77	46

Figure		Page No.	F
47	Effect of Cold Work and Maraging Parameters on Fracture Toughness of 18% Nickel Alloy	51	
48	Effect of Warm Work Temperature, Maraging Time and Maraging Temperature on the Longitudinal Yield Strength of 18% Nickel Alloy	92	
49	Effect of Warm Work Temperature, Maraging Time and Maraging Temperature on the Transverse Yield Strength of 18% Nickel Alloy	93	
30	Optimization of Longitudinal Yield Strength Response of Warm Worked 18% Nickel Alloy	94	
51	Comparison of Fracture Toughness of Warm Worked 18% Nickel Alloy	95	
52	Elevated Temperature Tensile Properties of Solution Armaaled 18% Nickel Alloy	96	
53	Elevated Temperature Properties of Gold Worked 18% Nickel Alloy	97	
54	Effect of Solution Time on the Elevated Temperature Tensile Properties of 18% Nickel Alloy	58	
55	Rest Treat Response of a Thick Section (18% Nickel Alloy)	98	
56	Effect of Forging Reduction on Strength	1.00	
57	Effect of Forging Reduction on Strength	101	
58	Effect of Forging Reduction on Strength	102	
59	Effect of Forging Reduction on Strength	103	
60	Comparison of Sheet and Bar Tensile Properties of 18% Nickel Alloy	104	
61	S-N Curves (R.R. Moore Rotating Beam) for Sclution Annealed 18% Nickel Alley	105	

Figure		Page No
62	S-N Curves (R.K. Moore Rotating Beam) for Cold Worked 18% Nickel Alloy	106
63	Charpy Impact Strength of Solution Armealed 18% Nickei Alloy	107
64	Charpy Impact Strength of Cold Worked 18% Nickel Alloy	108
65	Comparison of Fracture Toughness of 18% Nickel Alloy (250 KSI)	109
66	Electron Micrograph - Solution Annealed Condition	110
67	Electron Micrograph - Solutioned and Aged Condition	111
68	18% Nickel Alloy (250 KSI) Weld Hardness Data - Vertical Traverse Along Weld Centerline	112
69	Weld Zone Hardness Survey - 18% Nickel Alloy (250 KSI) - Solution Heat Treated	113
70	Weld Zone Hardness Survey - 18% Nickel Alloy (250 KSI) " 40% Cold Worked	114
71	Comparison of Filler Wires - Transverse Weld Tensile Properties - 18% Nickel Alloy (250 KSI) - Solution Heat Treated Sheet	115
72	Comparison of Filler Wires - Transverse Weld Tensile Properties - 18% Nickel Alloy - Solution Heat Treated (0.070" Sheet)	116
73	Comparison of Filler Wires - Transverse Weld Tensile Properties - 18% Nickel Alloy (250 KSI) - 40% Cold Worked Sheet	117
74	Comparison of Filler Wires - Longitudinal Weld Tensile Properties - 18% Nickel Alloy - Solution Heat Treated Sheet	118

Figure		Page No.
75	Comparison of Filler Wires - Transverse Weld Fracture Toughness Properties - 18% Nickel Alloy (250 KSI) - 0.140" Sheet	119
76	Comparison of Filler Wires - Transverse Weld Tensile and Fracture Toughness Properties - 18% Nickel Alloy (250 KSI) - 0.140" Sheet	120
77	Hardness Response Contours of Solution Annealed 18% Nickel Alloy (300 KSI)	169
78	Effect of Maraging Parameters on the Hardness of Solution Treated 18% Nickel Alloy (300 KSI)	170
79	Effect of Solution Treating Temperature on Longitudinal Tensile Properties of 18% Nickel Alloy (300 KSI)	171
80	Effect of Solution Treating Temperature on Transverse Tensile Properties of 18% Nickel Alloy (300 KSI)	e 172
81	Effect of Solution Treating Time on Longitudinal Tensile Properties of 18% Nickel Alloy (300 KSI)	173
82	Effect of Solution Treating Time on the Transverse Tensile Properties of 18% Nickel Alloy (300 KSI)	174
83	Effect of Solution Treating Temperature on Microstructure of 18% Nickel Alloy (300 KSI)	175
84	Effect of Maraging Treatment on the Longitudinal Tensile Properties of Solution Annealed 18% Nickel Alloy (300 KSI)	176
85	Effect of Maraging Treatment on the Transverse Tensile Properties of Solution Annealed 18% Nickel Alloy (300 KSI)	177
86	Optimization of Longitudinal Yield Strength Response of Solution Annealed 18% Nickel Alloy (300 KSI)	178
87	Optimization of Transverse Yield Strength Response	179

Figure		Page No.
88	Effect of Maraging Treatment on Fracture Toughness of Solution Treated 18% Nickel Alloy (300 KSI)	180
89	Effect of Cold Work, Maraging Time, and Maraging Temperature on the Longitudinal Yield Strength of 18% Nickel Alloy (300 KSI)	181
90	Effect of Cold Work, Maraging Time, and Maraging Temperature on the Transverse Yield Strength of 18% Nickel Alloy (300 KSI)	182
91	Optimization of Longitudinal Yield Strength Response of Cold Worked 18% Nickel Alloy (300 KSI)	183
92	Effect of Cold Work and Maraging Parameters on the Fracture Toughness of 18% Nickel Alloy (300 KSI)	184
93	Effect of Warm Work Temperature, Maraging Time, and Maraging Temperature on the Longitudinal Yield Strength of 18% Nickel Alloy (300 KSI)	185
94	Effect of Warm Work Temperature, Maraging Time, and Maraging Temperature on the Transverse Yield Strength of 18% Nickel Alloy (300 KSI)	186
95	Optimization of Longitudinal Yield Strength Response of Warm Worked 18% Nickel Alloy (300 KSI)	187
96	Shear Spun 18% Nickel Cylinder	188
9 7	6" Diameter 18% Ni (300 KSI) Monolithic Cylinder Which Burst at 345,000 PSI Section Stress	189
98	6" Diameter 18% Ni (300 KSI) Girth Welded Cylinder Which Burst at PR/t = 335 KSI	190
99	Elevated Temperature Tensile Properties of Solution Annealed 18% Nickel Alloy (300 KSI)	191
100	Effect of Solution Time on the Elevated Temperature Tensile Properties of 18% Nickel Alloy (300 KSI)	192

Figure		Page No.
101	Heat Treat Response of a Thick Section (18% Nickel Alloy - 300 KSI)	193
102	Effect of Forging Reduction on the Properties of 18% (300 KSI) Maraging Nickel Steel - Location: Vertical - Center	194
103	Effect of Forging Reduction on the Properties of 18% (300 KSI) Maraging Nickel Steel - Location: Vertical - Edge	195
104	Effect of Forging Reduction on the Properties of 18% (300 KSI) Maraging Nickel Steel - Location: Horizontal - Center	196
105	Effect of Forging Reduction on the Properties of 18% (300 KSI) Maraging Nickel Steel - Location: Horizontal - Edge	197
106	Comparison of Sheet and Bar Tensile Properties of 18% Nickel Alloy (300 KSI)	198
107	S-N Curves (R.R. Moore Rotating Beam) for Solution Annealed 18% Nickel Alloy (300 KSI)	199
108	Charpy Impact Strength of Solution Annealed 18% Nickel Alloy (300 KSI)	200
109	Charpy Impact Strength of Cold Worked 18% Nickel Alloy (300 KSI)	201
110	Comparison of Fracture Toughness of 18% Nickel Alloy (300 KSI) in Various Conditions	202
111	Microstructure of Solution Treated 18% Nickel (300 KSI) Alloy	203
112	Microstructure of Solution and Maraged, and Cold Work and Maraged 18% Nickel (300 KSI) Alloy	204
113	18% Nickel Alloy (300 KSI) Weld Hardness Data Vertical Traverse Along Weld Centerline	205

<u>Figure</u>		Page No.
114	Weld Zone Hardness Survey - 18% Nickel Alloy (300 KSI) - Solution Heat Treated	206
115	Weld Zone Hardness Survey - 18% Nickel Alloy - 50% Cold Worked	207
116	Comparison of Filler Wires - Transverse Weld Tensile Properties - 18% Nickel Alloy (300 KSI) - Solution Heat Treated Sheet	208
117	Comparison of Filler Wires - Transverse Weld Tensile Properties - 18% Nickel Alloy (300 KSI) - 50% Cold Worked Sheet	209
118	Comparison of Filler Wires - Transverse Weld Fracture Toughness Properties - 18% Nickel Alloy (300 KSI) - 0.140" Sheet	e 21C
119	Comparison of Filler Wires - Transverse Weld Tensile and Fracture Toughness Properties - 18% Nickel Alloy (300 KSI) - 0.140" Sheet	
126	Composite Resistance, Temperature Curves for Iron- Nickel Alloys Showing Hysteresis Effect	248
121	Iron-Nickel Equilibrium Diagram	249
122	Transformation Diagram for Continuous Heating and Cooling of Iron-Nickel Alloy	250
123	Electrical Resistance Changes During the Cooling and Heating of Iron-Nickel and a Gold-Cadmium Alloy, Illustrating the Hysteresis Between the Martensitic Reaction on Cooling and the Reverse Transformation on Heating	251
124	Effect of Plastic Deformation on Transformation in Iron-Nickel Alloys	252
125	Change in Resistivity with Aging Temperature for Several Iron-Nickel-Carbon Alloys (109)	253

Figure		Page No
126	Rockwell C Hardness vs. Aging Temperature for Several Iron-Nickel-Carbon Alloys (109)	254
127	Contributions of Solid Solution Strengthening and Precipitation Hardening to the Yield Strength of Martensite (109)	255
128	Effect of Molybdenum and Molybdenum and Cobalt on Hardness of 18.5 - 20.1 Ni, Bal. Fe Alloys	274
129	Effect of Cobalt x Molybdenum Product on Hardness of 18.5 - 20.1 Ni, Bal. Fe Alloys	275
130	Effect of Molybdenum on Yield Strength and NTS/TS of 18.5 Ni, 7.5 Co, 0.4 Ti, Bal. Fe, 30 Lbs. Air Melta	276 s
131	Effect of Cobalt and Molybdenum on Yield Strength and Notch Tensile Strength (0.5" Maj. Dia. Round) of 18.5 Ni, Bal. Fe, 30 Lbs. Air Melts. Annealed + 3 Hours at 900°F	277
132	Effect of Titanium on the Properties of the 18 Ni - 7 Co - 5 Mo Steel	278
133	Effect of Titanium on Yield Strength and NTS/TS of 18.5 Ni, 7-7.5 Co, 5 Mo, Bal. Fe, 30 Lbs. Melts Annealed 1 Hour at 1500°F Plus Marage	279
134	Effect of Carbon Content on Strength and Toughness of the 18.5 Ni, 7-7.5 Co, 5 Mo Alloy	280
135	Graphic Representation of Mechanical Properties of Air and Vacuum Melted 20% Nickel Alloy	281
136	Room Temperature Yield Strength and Notched Tensile Strength for 20% Nickel Steel Air and Vacuum Melts Various Heat Treatments	2 82
137	Effect of Titanium Content on the Strength, Ductility and Notch Properties of the 25% Nickel Alloy	283
138	The Effect of Boron and Zirconium on the Notch Strength of the 25% Nickel Alloy	284

Figure		Page No.
139	The Isothermal Transformation of Austenite to Martensite in an Alloy Containing 24.9 Ni, 1.54 Ti, .26 Al, .15 Cb in the Annealed and Aged Conditions	285
140	Effect of Varying Nickel Content on Ms Temperature in Udimet A (Titanium - 1.51%)	286
141	Effect of Varying Nickel Content on Mf Temperature in Udimet A (Titanium - 1.51%)	287
142	Effect of Varying Titanium Content on Ms Temperature in Udimet A (Nickel - 25.70%)	288
143	Effect of Varying Titanium Content on M _f Temperature in Udimet A (Nickel - 25.70%)	289
144	Effect of Nickel on Transverse Weld Properties 18% Ni Steel (250 KSI) - Coated Electrode Deposits Maraged: 900°F/3 Hours	290
1.45	Effect of Molybdenum on Transverse Weld Properties 18% Nickel (250 KSI) - Coated Electrode Deposits Maraged: 900°F/3 Hours	291
146	Effect of Composition on Transverse Weld Properties 18% Nickel (250 KSI) - Coated Electrode Deposits Maraged: 900°F/3 Hours	292
147	Effect of Cobalt on Transverse Weld Properties 18% Nickel (250 KSI) - Coated Electrode Deposits Maraged: 900°F/3 Hours	293
148	Effects of Heat Treatment on Yield Strength of Coated Electrode Welds (18% Nickel - 200 KSI)	294
149	Effect of Local Post Weld Induction Heating on Aging Response of 18% Ni Steel Weld Deposit (250 KSI)	2 95
150	Across-the-Weld Hardness Surveys on 25% Nickel Alley	296
151	Across-the-Weld Hardness Surveys on 25% Nickel Alloy	297
152	Across-the-Weld Hardness Surveys on 25% Nickel Alloy	298

Figure		Page No
153	Comparison of Large Heat Properties with Laboratory Heat Results - 250 KSI Nominal Yield Strength 18% Nickel Alloy	310
154	Comparison of Large Heat Properties with Laboratory Heat Results - 20% Nickel Alloy	311
155	Comparison of Large Heat Properties with Laboratory Heat Results - 25% Nickel Alloy	312
156	Effect of Solution Time and Temperature on the Hardness of 20% Nickel Alloy	341
157	Effect of Maraging Parameters on the Hardness of Sclution Treated 20% Nickel Alloy	342
158	Effect of Solution Temperature on the Longitudinal Tensile Properties of 20% Nickel Alloy	343
159	Effect of Solution Temperature on the Transverse Tensile Properties of 20% Nickel Alloy	344
160	Effect of Solution Treatment on the Fracture Toughness of 20% Nickel Alloy	345
161	Effect of Cold Work and Maraging Parameters on the Longitudinal Yield Strength of 20% Nickel Alloy	346
162	Optimization of Longitudinal Yield Strength Response of Cold Worked 20% Nickel Alloy	347
163	Effect of Cold Work and Maraging Parameters on the Fracture Toughness of 20% Nickel Alloy	348
164	Effect of Maraging Parameters (Represented by Larson-Miller Parameter) on the Longitudinal Yield Strength of Warm Worked 20% Nickel Alloy	349
165	Effect of Maraging Parameters (Represented by Larson-Miller) on the Transverse Yield Strength of Warm Worked 20% Nickel Alloy	350

Figure		Page No.
166	Optimization of Longitudinal Yield Strength Response of Warm Worked 20% Nickel Alloy	351
167	Effect of Warm Working Temperature on the Fracture Toughness of 20% Nickel Alloy	352
168	Elevated Temperature Tensile Properties of Solution Annealed 20% Nickel Alloy	353
169	Heat Treat Response of a Thick Section (20% Nickel Alloy)	354
170	Effect of Forging Reduction on the Properties of 20% Nickel Alloy - Location: Vertical-Center	355
171	Effect of Forging Reduction on the Properties of 20% Nickel Alloy ~ Location: Vertical-Edge	356
172	Effect of Forging Reduction on the Properties of 20% Nickel Alloy - Location: Horizontal-Center	357
173	Effect of Forging Reduction on the Properties of 20% Nickel Alloy - Location: Horizontal-Edge	358
174	S-N Curves (R.R. Moore Rotating Beam) for Solution Annealed 20% Nickel Alloy	359
175	S-N Curves (R.R. Moore Rotating Beam) for 30% Cold Worked 20% Nickel Alloy	360
176	Charpy Impact Strength of Solution Annealed 20% Nickel Alloy	361
177	Charpy Impact Strength of Cold Worked 20% Nickel Alloy	362
178	Comparison of Fracture Toughness of 20% Nickel Alloy in Cold Worked and Annealed Conditions	363
179	Microstructure of Solution Treated and Sclution Treated and Maraged 20% Nickel Alloy	364

Figure		Page No
180	20% Nickel Alloy Weld Hardness Data - Vertical Traverse Along Weld Centerline	3 65
181	Weld Zone Hardness Survey - 20% Nickel Alloy - Solution Heat Treated	366
182	Weld Zore Hardness Survey - 20% Nickel Alloy - 50% Cold Worked	367
183	Comparison of Filler Wires - Transverse Weld Tensile Properties - 20% Nickel Alloy - Solution Heat Treated	368
184	Transverse Weld Tensile Properties - 20% and 25% Ni Alloy - Solution Heat Treated (0.070" Sheet)	369
185	Comparison of Filler Wires - Transverse Weld Tensile Properties - 20% Nickel Alloy - 50% Cold Worked	370
186	Comparison of Filler Wires - Transverse Weld Fracture Toughness Properties - 20% Nickel Alloy - 0.140" Sheet	371
187	Comparison of Filler Wirer - Transverse Weld Tensile and Fracture Toughness Properties - 20% Nickel Alloy 0.140" Sheet	372
188	Effect of Solutioning Parameters on the Hardness of Solution Annealed 25% Nickel Alloy	409
189	Effect of Solution Temperature and Time on the "As-Quenched" (Air Cooled) Hardness of 25% Nickel Alloy	410
190	Effect of Ausaging Parameters on the Hardness of Solution Annealed 25% Nickel Alloy	411
191	Effect of Maraging Parameters on the Hardness of Solution Annealed 25% Nickel Alloy	412
192	Effect of Solution Temperature on the Longitudinal Yield Strength of 25% Nickel Alloy	413

Figure		Page No.
193	Effect of Solution Temperature on the Transverse Yield Strength of 25% Nickel Alloy	414
194	Effect of Solutioning Temperature on the Fracture Toughness of 25% Nickel Alloy	415
195	Effect of Cold Work and Maraging Parameters on the Longitudinal Y.eld Strength of Unrefrig. 25% Ni Alloy	416
196	Effect of Cold Work on the Transverse Yield Strength of Unrefrig. 25% Ni Alloy	4 17
197	Isochronal Transformations of Retained Austenite in the Cold Worked 25% Nickel Alloy	418
198	Effect of Cold Work and Maraging Time on the Longitudinal Yield Strength of 25% Nickel Alloy	419
199	Effect of Cold Work and Maraging Palameters on the Transverse Yield Strength of Refrigerated 25% Ni Alloy	420
200	Effect of Cold Work and Maraging Parameters on the Longitudinal Yield Strength of 25% Nickel Alloy	421
201	Effect of Cold Work and Maraging Parameters on the Fracture Toughness of 25% Ni Alloy	422
202	Elevated Temperature Tensile Properties of Solution Annealed 25% Nickel Alloy	423
203	Effect of Forging Reduction on the Properties of 25% Nickel Alloy - Location: Vertical-Center	424
204	Effect of Forging Reduction on the Properties of 25% Nickel Alloy - Location: Vertical - Edge	425
205	Effect of Forging Reduction on the Properties of 25% Nickel Alloy - Location: Horizontal-Center	426
206	Effect of Forging Reduction on the Properties of 25% Nickel Alloy - Location: Horizontal-Edge	427

Figure		Page No.
207	S-N Curves (R.R. Moore Rotating Beam) for Solution Annealed 25% Nickel Alloy	428
20&	S-N Curves (R.R. Moore Rotating Beam) for 30% Cold Worked 25% Nickel Alloy	429
269	Charpy Impact Strength of Solution Annealed 25% Nickel Alloy	430
210	Charpy Impact Strength of Cold Worked 25% Nickel Alloy	431
211	Comparison of Fracture Toughness of 25% Nickel Alloy in Cold Worked and Annealed Conditions	432
212	Microstructure of 25% Nickel Alloy	433
213	25% Nickel Alloy Weld Hardness Data - Vertical Traverses Along Weld Centerline	434
214	Weld Zone Hardness Survey - 25% Nickel Alloy - Solution Heat Treated (Composite of 4 Surveys)	435
215	Weld Zone Hardness Survey - 25% Nickel Alloy - 30% Cold Worked	436
216	Comparison of Filler Wires - Transverse Weld Tensile Properties - 25% Nickel Alloy - Solution Heat Treated Sheet	437
217	Comparison of Filler Wires - Transverse Weld Tensile Properties - 25% Nickel Alloy - 30% Cold Worked - G.140" Sheet	438
218	Comparison of Filler Wires - Transverse Weld Fracture Toughness Properties - 25% Nickel Alloy - 0.140" Sheet	439
219	Comparison of Filler Wires - Transverse Weld Tensile and Fracture Toughness Properties - 25% Nickel Alloy 0.140" Sheet	

LIST OF TABLES

<u>Table</u>		Page No.
1	Chemical Composition of Alloys Evaluated Under Contract AF 33(816)-8018	63
2	Composition Specifications and Chemical Analyses of Heats for Determining Property Variations from Upper to Lower Limits of Composition Specification of the 300 KSI Nominal Yield Strength 18% Nickel Allo	64 o y
3	Processing of High and Low Chemical Composition Heats of 18% Nickel (300 KSI) Alloy	65
4	Preliminary Mechanical Properties Data on 60 Pound Low Chemistry 300 KSI Nominal Yield Strength 18% Nickel Alloy Heat No. 7C-056	66
5	Preliminary Mechanical Properties Data on 60 Pound High Chemistry 300 KSI Nominal Yield Strength 18% Nickel Alloy Heat No. 7C-057	67
6	Composition Specifications and Chemical Analyses of Weld Wire Heats	68
7	Composition of Weld Wire Heat No. 33179	69
8	Composition Specifications and Chemical Analyses of Weld Wire Heats	70
9	Sheet Tensile Properties - Basis for Calculation of Weld Joint Efficiencies	71
10	Transverse Weld Bend Test Data ~ 18% Ni Steel (250 KSI)	72
11	Transverse Weld Bend Test Data - 18% Ni Steel (300 KSI)	73
12	Transverse Weld Bend Test Data - 20% Ni Steel	74
13	Transverse Weld Bend Test Data - 25% Ní Steel	75
14	Effect of Solutioning Time and Temperature on the Hardness of 18% Nickel Alloy	121

Table		Page No.
15	Effect of Maraging Parameters on the Hardness of Solution Annealed 18% Nickel Alloy	123
16	Effect of Solution Time and Temperature on the Longitudinal Tensile Properties of 18% Nickel Alloy	124
17	Effect of Solution Time and Temperature on the Transverse Tensile Properties of 18% Nickel Alloy	1 2 5
18	Effect of Solution Treatment on Fracture Toughness Parameters of 18% Nickel Alloy	126
19	Effect of Maraging Treatment on the Longitudinal Tensile Properties of Solution Annealed 18% Nickel Alloy	127
20	Effect of Maraging Treatment on the Transverse Tensile Properties of Solution Annealed 18% Nickel Alloy	128
21	Effect of Maraging Treatment on Fracture Toughness of Solution Treated 18% Nickel Alloy	129
22	Longitudinal Tensile Properties of Cold Worked 18% Nickel Alloy	130
23	Transverse Tensile Properties of Cold Worked 18% Nickel Alloy	132
24	Effect of Cold Work and Maraging Parameters on Fracture Toughness of 18% Nickel Alloy	134
25	Longitudinal Tensile Properties of Warm Worked 18% Nickel Alloy	135
26	Transverse Tensile Properties of Warm Worked 18% Nickel Alloy	136
27	Effect of Maraging Treatment on Fracture Toughness of Warm Worked 18% Nickel Alloy	137
28	Heat Treat Response of a Thick Section of 18% Nickel Alloy	138

<u>LĪŜT OF TABLES</u> (Cont'd)

Table		Page No.
29	Effect of Forging Reduction on the Properties of 18% Nickel Alloy	139
30	Comparison of Sheet and Bar Stock Tensile Properties of 18% Nickel Alloy	141
31	Critical Fracture Toughness Parameters of 18% Nickel Alloy	142
32	Weld Hardness Data - 18% Nickel Alloy (250 and 300 KSI) - Vertical Traverse	143
3 3	Weld Hardness Data - 18% Nickel Alloy (250 and 300 KSI) - Horizontal Traverse	144
34	Weld Heat Affected Zone Hardness Data - 18% Nickel Alloy (250 KSI) - Horizontal Traverse	145
35	Transverse Weld Tensile Properties - 18% Nickel Alloy (250 KSI) - Solution Heat Treated 0.140" Sheet	146
36	Transverse Weld Tensile Properties - 18% Nickel Alloy (250 and 300 KSI) - Solution Heat Treated 0.070" Sheet	147
37	Transverse Weld Tensile Properties - 18% Nickel Alloy (250 KSI) - 40% Cold Worked 0.140" Sheet	148
38	Transverse Weld Tensile Properties - 18% Nickel Alloy (250 and 300 KSI) - 0.140" Sheet - Sheet Rolling Direction Normal to Orientation of Specimen Axis	149
39	Longitudinal Weld Tensile Properties - 18% Nickel Alloy (250 and 300 KSI) - Solution Heat Treated 0.140" Sheet	150
40	Transverse Weld Fracture Toughness Properties - 18% Nickel Alloy (250 KSI) - 0.140" Sheet	151
41	Comparison of Filler Wires - Transverse Weld Tensile and Fracture Toughness Properties - 18% Nickel Alloy (250 KSI)	

Table		Page No
42	Effect of Solutioning Time and Temperature on the Hardness of 18% Ni Alloy (300 KSI)	212
43	Effect of Maraging Parameters on the Hardness of Solution Annealed 18% Ni Alloy (300 KSI)	214
44	Effect of Solution Time and Temperature on the Longitudinal Tensile Properties of 18% Nickel Alloy (300 KSI)	215
45	Effect of Solution Time and Temperature on the Transverse Tensile Properties of 18% Nickel Alloy (300 KSI)	216
46	Effect of Solution Treatment on Fracture Toughness of 18% Ni Alloy (300 KSI)	217
47	Effect of Maraging Treatment on the Longitudinal Tensile Properties of Solution Annealed 18% Nickel Alloy (300 KSI)	218
48	Effect of Maraging Treatment on the Transverse Tensile Properties of Solution Annealed 18% Nickel Alloy (300 KSI)	219
49	Effect of Maraging Treatment on Fracture Toughness of Solution Treated 18% Nickel Alloy (300 KSI)	220
50	Longitudinal Tensile Properties of Cold Worked 18% Nickel Alloy (300 KSI)	221
43	Transverse Tensile Properties of Cold Worked 18% Nickel Alloy (300 KSI)	223
52	Effect of Cold Work and Maraging Parameters on Fracture Toughness of 18% Nickel Alloy (300 KSI)	225
53	Longitudinal Tensile Properties of Warm Worked 18% Nickel Alloy (300 KSI)	226
54	Transverse Tensile Properties of Warm Worked 187 Nickel Alloy (300 KSI)	227

<u>Table</u>		Page No.
55	Effect of Maraging Treatment on Fracture Toughness of Warm Worked 18% Nickel Alloy (300 KSI)	228
56	Shearspinning Procedures for 18% Nickel	229
57	Weld Settings - 18% Ni Subscale Bottles	230
58	Repair Welding Procedure - Defect Routed and Dye Penetrant Inspected	231
59	18% Nickel Maraging Steel - Hydroburst Tests	232
60	Effect of Forging Reduction on the Properties of 18% (300 KSI) Maraging Nickel Steel	233
61	Critical Fracture Toughness Parameters of 18% Nickel Alloy (300 KSI)	235
62	Weld Heat Affected Zone Hardness Data - 18% Nickel Alloy (300 KSI) - Horizontal Traverse	236
63	Transverse Weld Tensile Properties - 18% Nickel Alloy (300 KSI) - Solution Heat Treated 0.140" Sheet	237
64	Transverse Weld Tensile Properties - 18% Nickel Alloy (300 KSI) - 50% Cold Worked 0.140" Sheet	238
65	Transverse Weld Fracture Toughness Properties - 18% Nickel Alloy (300 KSI) - 0.140" Sheet	239
66	Comparison of Filler Wires - Transverse Weld Tensile and Fracture Toughness Properties - 18% Nickel Alloy (300 KSI)	240
67	Composition Specification for Group I Alloys	299
68	Composition Specification for Group II Alloys	300
69	Corrosion Resistance of the 18 Ni-7.5 Co-5 Mo Iron Alloys in Artificial Sea Water	301
70	Effect of Alloy Composition on Weld Cracking	302

Table		Pa-e No
71	Sheet Weld Tensile and Fracture Toughness Properties 18% Nickel Alloy (250 KSI)	303
72	Transverse Weld Tensile Properties in 18% Nickel Steel Plate (250 KSI)	304
73	Composition Specification for Group I Filler Wires (18% Nickel Alloy)	305
74	Sheet Weld Tensile and Fracture Toughness Properties (20% and 25% Nickel Alloy)	306
75	Composition Specification for Group II Filler Wires (20% and 25% Nickel Alloy)	307
76	Composition of Recent Production 250 KSI Nominal Yield Strength 18% Nickel Alloy Heats	313
77	Properties of Recent Production 250 KSI Nominal Yield 18% Nickel Alloy Heats	314
78	Composition and Properties of Recent Production 300 KSI Nominal Yield Strength 18% Nickel Alloy Heats	315
79	Composition and Properties of Laboratory 300 KSI Nominal Yield Strength 18% Nickel Alloy Heats	316
80	Composition of Production 20% Nickel Alloy Heats	317
81	Composition of Recent Production 20% Nickel Heats	318
82	Tensile Properties of Large 20% Nickel Heats Melted by the Allegheny Ludlum Steel Corporation	319
83	Tensile Properties of Large 20% Nickel Heats Melted by the Carpenter Steel Corporation	321
84	Properties of Recent Production 20% Nickel Alloy Heats	324
85	Composition of Production 25% Nickel Alloy Heats	325

Table		Page No.
86	Tensile Properties of Large 25% Nickel Heats Melted by Allegheny Ludlum Steel Corporation	327
87	Tensile Properties of Large 25% Nickel Heats Melted by Special Metals Incorporated	330
88	Effect of Solutioning Time and Temperature on the Hardness of 20% Ni Alloy	373
89	Effect of Maraging Parameters on the Hardness of Solution Annealed 20% Ni Alloy	375
90	Effect of Solutioning and Maraging Parameters on Longitudinal Tensile Properties of 20% Nickel Alloy	376
91	Effect of Solutioning and Maraging Parameters on Transverse Tensile Properties of 20% Nickel Alloy	378
92	Effect of Solution Treatment on Longitudinal Fracture Toughness of 20% Nickel Alloy	379
93	Effect of Solution Treatment on Transverse Fracture Toughness of 20% Nickel Alloy	380
94	Effect of Maraging Parameters on Longitudinal Tensile Properties of 20% Nickel Alloy	381
95	Effect of Cold Work and Maraging Parameters on the Transverse Tensile Properties of 20% Nickel Alloy	383
96	Effect of Cold Work and Maraging Parameters on Longitudinal Fracture Toughness of 20% Nickel Alloy	384
97	Effect of Cold Work and Maraging Parameters on Transverse Fracture Toughness of 20% Nickel Alloy	385
98	Longitudinal Tensile Properties of Warm Worked 20% Nickel Alloy	386
99	Transverse Tensile Properties of Warm Worked 20% Nickel Alloy	387

Table		Page No.
100	Effect of Maraging Treatment on Fracture Toughness of Warm Worked 20% Nickel Alloy	388
101	Heat Treat Response of a Thick Section of 20% Nickel Alloy	389
102	Effect of Forging Reduction on the Properties of 20% Nickel Alloy	390
103	Critical Fracture Toughness Parameters of 20% Nickel Alloy	391
104	Weld Hardness Data - 20% Nickel Alloy - Vertical Traverses	392
105	Weld Hardness Data - 20% and 25% Nickel Alloy - Horizontal Traverse	393
106	Weld Reat Affected Zone Hardness Data - 20% Nickel Alloy - Horizontal Traverse	394
107	Transverse Weld Tensile Properties ~ 20% Nickel Alloy - Solution Heat Treated 0.140" Sheet	395
108	Transverse Weld Tensile Properties - 20% and 25% Nickel Alloy - Solution Heat Treated 0.070" Sheet	396
109	Transverse Weld Tensile Properties - 20% Nickel Alloy - 50% Cold Worked 0.140" Sheet	397
110	Transverse Weld Fracture Toughness Properties - 20% Nickel Alloy - 0.140" Sheet	398
111	Comparison of Filler Wires - Transverse Weld Tensile and Fracture Toughness Properties - 20% Nickel Alley	
112	Effect of Solution Time and Temperature on the Hardness of 25% Ni Alloy	441
113	Effect of Ausaging Time and Temperature on the	443

<u>Table</u>		Page No.
114	Effect of Refrigeration Time and Temperature on the Hardness of 25% Ni Alloy	444
115	Effect of Maraging Parameters on the Hardness of Solution Annealed 25% Ni Alloy	445
116	Effect of Solutioning, Ausaging, and Maraging Parameters on Longitudinal Tensile Properties of 25% Ni Alloy	446
117	Effect of Solutioning, Ausaging, and Maraging Parameters on Transverse Tensile Properties of 25% Ni Alloy	448
118	Effect of Solutioning and Ausaging Parameters on Longitudinal Fracture Toughness of 25% Nickel Alloy	450
119	Effect of Solutioning and Ausaging Parameters on Transverse Fracture Toughness of 25% Nickel Alloy	451
120	Effect of Small Amounts of Retained Austenite on the Longitudinal Tensile Properties of 25% Nickel Alloy	452
121	Effect of Small Amounts of Retained Austenite on Transverse Tensile Properties of 25% Nickel Alloy	453
122	Isochronal Transformation of Retained Austenite in the Cold Worked 25% Nickel Alloy	454
123	Effect of Cold Work and Maraging Parameters on Longitudinal Tensile Properties of 25% Nickel Alloy	455
124	Effect of Cold Work and Maraging Parameters on Transverse Tensile Properties of 25% Nickel Alloy	457
125	Effect of Cold Work and Maraging Parameters on Longitudinal Fracture Toughness of 25% Nickel Alloy	458
126	Effect of Cold Work and Maraging Parameters on Transverse Fracture Toughness of 25% Nickel Alloy	459

Table		Page No.
127	Heat Treat Response of a Thick Section of 25% Nickel Alloy	460
128	Effect of Forging Reduction on the Properties of 25% Nickel Alloy	461
129	Critical Fracture Toughness Parameters of 25% Nickel Alloy	462
130	Weld Hardness Data - 25% Nickel Alloy - Vertical Traverse	463
131	Weld Heat Affected Zone Hardness Data - 25% Nickel Alloy - Horizontal Traverse	464
132	Transverse Weld Tensile Properties - 25% Nickel Alloy - Solution Heat Treated 0.140" Sheet	465
133	Transverse Weld Tensile Properties - 25% Nickel Alloy - 30% Cold Worked 0.140" Sheet	456
134	Transverse Weld Fracture Toughness Properties - 25% Nickel Alloy - 0.140" Sheet	467
135	Comparison of Filler Wires - Transverse Weld Tensile and Fracture Toughness Properties - 25% Nickel Alloy	

1.0 INTRODUCTION

Aerospace design requirements demand the utilization of the highest practical strength-to-weight ratio. The strength level at which materials are applied with confidence is, however, restricted by an additional requirement. This requirement is one of tolerance for small crack-like defects which can occur during fabrication, testing, storage or service. The implication is that, for greater reliability, a material must possess adequate resistance to further extension of defect size.

The stringent strength-to-weight ratio requirements imposed by the aerospace designer have provided impetus for the research and development of high strength and high toughness alloys. One of the most promising class of alloys developed by this effort is the precipitation hardened 18-25% nickel steels, designated "Maraging Alloys". These alloys, which resulted from the work of C. Bieber and R. Decker of the International Nickel Company were announced in late 1959. Extensive and rapid development has resulted since their release. The alloys are presently capable of developing very high strengths with correspondingly high fracture toughness or crack propagation resistance.

Aware of the potential of the Maraging Alloys, the Metallic Materials Section of the Applications Laboratory, Wright-Patterson Air Force Base initiated and promoted further development of the alloys for aerospace use.

This final report, under Contract AF 33(616)-8018 reviews the development and strengthening mechanism of precipitation hardened iron-nickel alloys. The effects of various heat treating parameters on the mechanical properties and fracture toughness have been studied in detail. Heat treating cycles have been thoroughly evaluated. Essentially, the program conducted by this Contractor under the auspices of the Air Force has verified and proved the aerospace capabilities of the Maraging Alloys.

authors

1. Manuscript Released by authors March 1963 for Publication as an ASD Technical Documentary Report.

2.0 SUMMAKY

The properties generated under AF 33(616)-8018, "Research on Binary Iron-Nickel Base Alloys", are presented in this final engineering report.

One neat of each composition, for the following alloys, 18% Nickel (250 KSI), 18% Nickel (300 KSI), 20% Nickel and 25% Nickel were evaluated. All heats were vacuum arc melted.

A discussion of the physical metallurgy of the alloys and development of the four compositions studied in this program are presented in detail.

The primary data obtained during the program consisted of sheet and bar tensile properties as a function of various heat treatments and mill processing variables such as cold working and warm working. Also determined were the fracture toughness parameters corresponding to strength levels produced by the various conditions mentioned above. The primary data was supplemented by the concurrent evaluation of alloy weldability and weld properties.

Secondary data generated included elevated temperature tensile properties, billet and forging properties, room temperature fatigue properties and Charpy impact strength at cryogenic temperatures.

Included as a portion of the work was the selection of the most promising alloy for evaluation of biaxial strength. This work was performed on the 18% Nickel (300 KSI) alloy using small burst test cylinders. Both forged and machined, as well as shear spun cylinders were evaluated in the welded and unwelded condition.

The biaxial strengths of burst tested, 18% Nickel (300 KSI) alloy cylinders were considered excellent. Burst strengths ranging from 310 KSI to 349 KSI representing biaxial gains as high as 17.5% were measured.

The major interest in the binary iron-nickel alloys was for critical aerospace applications such as solid rocket motor cases. The high tensile strengths in combination with excellent fracture toughness are extremely desirable for high strength-to-weight ratio applications. The results of this program have enabled the catagorization of the binary iron-nickel alloys on the basis of strength level and accompanying fracture toughness level. The catagorization was accomplished by graphically illustrating the above relationship for annealed material in Figure 1 and cold worked material in Figure 2. The graphic illustrations show that the order of alloy performance based upon strength and toughness is as follows.

The 25% Nickel produced the lowest strength levels for comparable fracture toughness. Consequently, the 20% Nickel alloy was superior to the 25% Nickel alloy. The 18% Nickel alloys (250 and 300 KSI) were vastly superior to either the 20% or 25% Nickel alloys relative to strength and toughness. A choice between the two 18% Nickel alloys was difficult to make since, the major difference between the alloys is the expected strength level differential. Both exhibit excellent strength and high toughness. Any choice between the two can only be made based upon the required design strength for a particular application.

The work scope of the welding phase of the binary iron-nickel alloy program was limited to evaluation of gas, tungsten-arc (TIG) welded sheet. Weldability studies made in this investigation were directed toward determination of weld and heat affected zone soundness, and tensile strength properties for the four alloys of interest. Also, the potential of several available filler wires were compared on the basis of weld strength and fracture toughness. Each alloy was tested in two material conditions, solution heat treated and cold worked, in 0.146" thick sheet. In addition, for each alloy testing was also done on 0.070" thick solution heat treated material.

Final weld evaluations were made using heat treatments found to provide unwelded sheet with the best combinations of strength and toughness preperties. Selection was determined on the basis of test results obtained for each alloy in the concurrent base material investigation.

Suitable, conventional TIG welding procedures were established in preliminary weld studies which consistently produced sound, ductile welds in all combinations of alloy, material condition and filler wire investigated. In all cases examined, welds and hear-affected-zones were free cf defects and embrittlement as determined by inspection and bend testing. This level of quality was achieved without benefit of any "preheat-interpass-postheat" weld thermal cycle.

A comparison of the four nickel alloys on the basis of wald tensile and fracture toughness properties is presented in Figure 3. The results illustrate the relative performance of the 18%, 20% and 25% nickel alloys. Using heat treatments required to obtain maximum balance of strength and toughness in unwelded sheet, these materials exhibited superior weldsbility as determined by both strength and soundness. The 20% nickel alloy demonstrated a sensitivity to heat affected zone in embrittlement in welded 0.076" sheet after aging, whereas the welded 25% nickel alloy exhibited a similar behavior in both sheet thickness.

The 25% nickel alloy exhibited the lowest level of weldability of the four alloys invastigated. Exclusive of tests on 0.070" sheet, weldability of the 20% nickel alloy compared favorably with that of the 18% nickel alloys. Maximum weld yield strength joint efficiency and toughness was obtained in the 18% nickel (250 KSI) alloy.

COMPARISON OF FRACTURE TOUGHNESS OF COLD WURKED, MARAGING ALLOYS AT VARIOUS YIELD STRENGTH LEVELS*

Figure 3

L

COMPANISON OF TRANSVERSE WELD AND FRACTUER TOWNHIESS FROPERTIES
18, 20 and 25% nickel alloys

3.0 18% NICKEL ALLOY

The main objectives of the development program on the binary ironnickel base alloys were to:

- 1. Review the development of commercial, precipitation strengthened iron-nickel alloys.
- 2. Study the effects of various heat treating parameters on mechanical properties and fracture toughness.
- 3. Develop maximum response heat treating cycles for the compositions studied in the program.
- 4. Compare the studied heats of the various alloys on the basis of crack propagation resistance at comparable yield strength levels.
- 5. Evaluate TIG Welding techniques.
- 6. Evaluate stress corrosion and general corrosion properties of the alloys.
- 7. Evaluate the biaxial strength of the most promising alloy by conducting subscale burst tests.

The compositions, processing history, test procedure and preliminary results of the alloys studied under this contract are discussed in the following section.

3.1 Experimental Procedures

3.1.1 Materials

The material requirements necessitated the melting of a 5000 pound heat of each of the four compositions (104). Because of the relatively small size of the heats, the melting was accomplished in an air induction furnace. High priority raw materials such as electrolytic iron, electrolytic nickel, and vacuum melted ferro-titanium were used in order to keep residual elements within the desired limits. The air melt of each heat was cast in the form of electrodes (16" diameter x 2200 lb) for consumable vacuum melting.

The compositions of the four heats, the number of which are given below, are shown in Table 1.

- (a) 18% nickel alloy (250 KSI) Heat No. 23832
- (b) 18% nickel alloy (300 KSI) Heat No. 23831
- (c) 20% nickel alloy = Heat No. 23826
- (c) 25% nickel alloy Heat No. 23825

It should be noted from the presented table that the compositions of the hardening elements in the respective heats are toward the high side of the specification range.

3.1.2 Processing History

The consumable vacuum melted ingots of all the heats were soaked for 2 hours at 2300°F for homogenization prior to any further working. The homogenized ingots were, then, processed into thick sections, bar, and sheet stock in the various conditions as per the steps shown below.

3.1.2.1 Sheet Stock

The homogenized ingots were hot forged at $2100^{\circ}F$ into slabs which were approximately $2\frac{1}{2}$ " x 16" x 100". The slabs were hot stripped on a 6-stand tandem mill, rolling to a nominal .375" gage by the slab width which was nominally 18". The sheet bars produced (.375" x 18" x length) were processed into the various conditions as follows:

1. Warm Work

Sheet bars were heated at 1850°F for 1 hour. The sheet bars were rolled to .145" gage. The 20% nickel alloy was rolled in one direction only and the two 10% nickel-cobalt-molybdenum steels were rolled to 36" in length, turned and rolled to .145" gage. Six to eight passes were required to reduce to gage. Sheets were pickled and spot conditioned as necessary. Reheating was done as specified using 1600°F, 1400°F, and 1200°F as starting temperatures. The sheets were brought to temperature in one hour and rolled to .115" gage (20% reduction) in one or two passes only. Rolling was done in the length direction only. All sheets were acid pickled prior to shipment.

2. Cold Work

Individual sheet bars were cut from the .375" gage hot rolled strip. The sheet bars were muffle annealed at 1500°F for 40 minutes and air cooled. All sheet bars were conditioned by grinding the entire surface in preparation for the following cold rolling steps:

- (a) The "as-rolled" material was cold rolled in one direction only to the final, required gage (0.115" thick) followed by some shearing and inspection.
- (b) The respective cold worked materials (20,30,40,50 and 70% reduction) were cold rolled to the intermediate stages and annealed at 1500°F for 15 minutes, air cooled, and acid pickled. This was followed by cold rolling to finish gage (0,115" thick) and by shearing and inspection.

3.1.2.2 Bar Stock

As in sheet stock, the bar stock was fabricated from the homogenized ingots into the $5/8^{\circ}$ diameter bar stock in the various conditions as per the following steps:

(a) Warm Worked

12" diameter stock was soaked at 2000°F for 1 hour and subjected to an initial swaging operation. The bars were then swaged to 5/8" diameter bar stock (with approximately 20% reduction of the original area) at warm working temperatures of 1200°F, 1400°F, and 1600°F respectively.

(b) "As Swaged"

The bar stock was initially swaged after scaking for 1 hour at 2000°F and was then finished between 1200°F and 1500°F.

(c) Cold Worked

The bar stock was soaked at 1500°F for 1 hour and swaged from 1½" diameter to 1.17" diameter. It was then cold drawn in approximately 8% increments to size with total reductions of 70%, 50%, 40%, 30% and 20% respectively.

3.1.2.3 Thick sections

The thick sections were annealed at 1700°F and upset to the following heights and ratios.

Upset Height	Corresponding Reduction Ratio
5 1/3"	1½:1
4"	2:1
2 2/3"	3:1
2"	4 : 1
1 1/3"	6:1

3.1.3 Specimen Testing

:C=

d

ur

F.

ng

Hardness tests were used as a preliminary tool for the selection of various levels of the heat-treating parameters. Duplicate hardness blocks, (½" x ½"), sheared from the sheet stock of four heats, were heat treated at several solutioning and maraging temperatures and times. The hardness data was analyzed and, from the analysis, promising levels of heat-treating were selected for further evaluation by tensile and fracture toughness tests.

Sheet stock (0.115" thickness) was used for studying the effect of various heat treating parameters on the mechanical properties and fracture toughness of the various alloys in different conditions. Longitudinal (parallel to the direction of rolling) and transverse (normal to the direction of rolling) tensile and crack propagation (G_C) specimen blanks were sheared from the different sheet stocks.

Standard sheet tensile specimens (Figure 4) were machined from the blanks and the specimens tested in the various heat treated conditions using standard ASIM testing procedures on a 2" gage length.

The fracture toughness of the various materials were evaluated by using a centrally notched, fatigue cracked specimen. The design of the crack propagation specimen is shown in Figure 3. The transverse slot in the specimen, with a small root radius, was machined and hairline cracks (root radius less than .001 in) were formed at the end of the slot by fatigue stressing the specimen in a sheet bending fatigue machine. All the test procedures recommended by the ASTM committee (Ref. 116) based on the Irwin criterion, were followed with one excep-Ink staining to estimate the extent of slow crack growth was abandoned because of the splashing of the ink on the fracture surface. Moreover, it was found in the early stages that the estimation of the slow crack growth from the triangular "porous torque" on the fracture surface corresponded closely to the estimate using ink staining. fracture toughness parameters were calculated by an IBM 704 program.

The exceptional ductility of the maraging steels after certain heat treatments produced not section stress values higher than the materials yield strength. The K_C values calculated for these tests are, in the strict sense of fracture toughness theory, not valid. However, they do provide uniformity in data reporting as well as a rough measure of the materials toughness for comparative purposes.

Smooth bar data and high temperature data was collected on 0.252' diameter x 1" gage length tensiles. The critical fracture toughness parameters, K1C, were estimated from round circumferentially-notched

tensile bars having a major diameter of .252" and a minor diameter of 0.178" and a notch radius of less than .001" ($K_t > 10$). The critical fracture parameters were estimated from the formula proposed by Irwin (117):

 $\kappa_1 c = 0.233 \sqrt{\pi} \sigma_n \sqrt{D}$

where σ_n is the net-section stress

D is the diameter of the round bar

Instances were encountered where the notch to smooth tensile yield strength ratio exceeded 1.10. In reality, the results of tests exceeding the 1.10 ratio are invalid in interpreting the K_{10} value accurately.

The K_{1c} values are reported only for data comparison, since they offer a reasonable method for evaluating the entire set of results.

Impact, smooth, and notched fatigue properties were evaluated by machining Charpy and R.R. Moore (rotating bear) specimens from the bar stock and testing them under the standard testing procedures. The 90% probability of survival curves were drawn for the endurance limit for various materials by estimating the standard deviation in the endurance region.

3.1.4 Preliminary Evaluation on Chemistry Variance

Before starting the detailed work of the program, a preliminary evaluation was made to study the effect of chemistry variance, from the upper to the lower limits, on the mechanical properties of an 18% nickel alloy (300 KSI).

Two sixty (60) pound laboratory heats (Heat Nos. 7C-056 & 7C-057) were made by Allegheny-Ludlum for this investigation. Table 5.1.2 gives the target compositions and the actual heat analyses for the two heats. The melting methods, processing history, and the type of specimens used in this preliminary evaluation are summarized in Table 3. It should be noted that an edge notch $G_{\rm C}$ specimen was only used in this preliminary evaluation and that, in the remainder of this program, centrally notched, fatigue cracked specimens were used for evaluating crack propagation resistance. The preliminary mechanical properties data and bar and sheet stock made from heats 7C056 and 7C057 are presented in Tables ? and 8 respectively.

Inspection of the data on the low alloy heat, 70056, revealed that, on sheet material, although a slight drop in strength occurred when the sheet was annealed at 1500°F, the resultant ductility was unaffected while toughness was substantially increased. Essentially, eliminating the annealing cycle in order to increase strength apparently resulted in a loss of toughness for this heat. The toughness properties on cold worked material revealed that 30% cold work and 50% cold work appear to bracket a peak reduction value.

The bar data on Heat 70056 revealed little, if any, difference in strength or toughness properties as a function of annealing prior to aging. Specimen size and geometry may be insensitive to minor structural changes induced by the anneal.

Table 5 reports the data obtained on the high chemistry heat, 70057. The data on this heat indicated that the increased cobalt, molybdenum and titanium raised the strength by approximately 40,000 psi. A check of this value, made by ascertaining the relative strengthening effects caused by the increased amount of the three elements verified this approximate increase. The degree of cold work appears to effect a similar behavior on toughness as experienced with the low alloy heat. The toughness of the 30% cold worked material is noticeably higher as was the 30% cold worked material for heat 70056.

Bar data obtained on this hear showed strength and toughness behavior similar to the sheet material. Again the annealed material exhibited a lower toughness.

This preliminary evaluation indicates that alloy composition, although within the range of the specification, has a very significant effect on the mechanical and fracture properties of the alloy.

3.1.5 Experimental Procedures - Welding

Wherever possible the welding test program was made to parallel that of the base material. Specimen types, testing procedures, heat treatments, etc. were duplicated where feasible in order to make meaningful comparisons between weld and base material data.

3.1.5.1 Materials Studied

Base Materials

All four iron-nickel alloys were evaluated in the welding investigation of this program. The materials used were from the same heats described in Section 3 and listed in Table 1. Each alloy was welded in both the solution heat treated (1500°F/1 hr.) and cold worked conditions in 0.140" thick sheet. A limited amount of work was also done on solution heat treated 0.070" thick sheet.

Filler Materials

All filler materials used were prepared from vacuum-melted heats and drawn to 0.062" diameter for welding. The filler wires originally selected for evaluation on the group I alloys (18% nickel) are given in Table 6. At an advanced stage of the program, an additional

filler wire was obtained from International Nickel Co., Inc. for evaluation. This wire, Table 7, is within compositional limits for their current cast alloy. It should be noted that this alloy, unlike the early cast version (Table 6), is copper-free alloy with increased cobalt and is reported to have improved notched toughness. All four of the filler wires were tested on the 250 KSI alloy, while all but the lower strength 250 KSI filler wire were tested on the 300 KSI alloy. The matching 250 and 300 KSI base metal fillers were also tested on the 20 and 25% nickel alloys.

Filler wire compositions of modified 20% nickel alloy selected for evaluation and tested on Group II alloys are given on Table 8. These compositions, low nickel (18%) with and without molybdenum, and 20% nickel with molybdenum, are representative of those previously evaluated and recommended by INCO.

3.1.5.2 Welding Conditions and Procedures

General

The gas, tungsten-arc (TIG) welding process was used exclusively in this investigation. Weld settings and joint design which served as standards for the preparation of weld test panels are listed in Figure 6. Suitable weld settings capable of producing sound welds in each alloy were established primarily on the basis of penetration studies in which several weld variables were examined. Wherever possible, consideration was also given to developin an overall procedure which would be representative of current state of the art rocket motor case fabrication, without sacrifice to weld quality, particularly in the selection of certain set variables.

Welding Conditions

Selection of welding current, voltage, travel speed and wire travel speed was based primarily on the results of penetration studies, discussed in section 3.1.6. These settings are listed in Figure 6.

Set process variables selected for the welding program are also included in Figure 6. A joint design of 70° included angle with a land of 50% of wall thickness was used exclusively for both material thicknesses tested. This joint design was selected as being both simple and representative of current rocket motor case fabrication. A standard wire diameter of 0.062" wa used in all tests. Helium and Argon gases were used for the fusion and filler passes respectively. A "preheat-interpass-postheat" weld thernal cycle was not employed in this program. All welds were made using a 5/32" diameter thoriated tungsten electrode and copper back-up material.

Weld Panel Preparation

:h

Weld test panels, approximately 12" wide x 9" length, were prepared to provide the required test specimens. Weld wire and sheet were both thoroughly cleaned prior to welding. The 0.140" thick material was welded in two passes, the second with filler wire. A single pass with filler wire added was used to weld the 0.070" material.

3.1.5.3 Specimen Testing

Hardness tests were used to determine the relative response of weld deposits to heat treatment. In addition, hardness was used to detect changes experienced in base material heat-affected zones due to welding.

Vertical hardness surveys taken along the weld centerline, Figure 7, were used to evaluate weld deposits of all of the filler wires investigated. Weld heat-affected-zones of each alloy in both solution heat treated and cold worked conditions were evaluated on the basis of horizontal weld surveys (Figure 7). All surveys taken compared aswelded versus aged hardness properties.

Transverse weld guided-face bend tests were made to compare the relative as-welded ductility of the various filler materials evaluated. They also served to determine whether any embrittled areas were present in the weld heat affected zone prior to aging. The standard test specimen used is shown in Figure 8. Specimens were tested to obtain a full bend using standard ASTM testing procedures. Test wata were analyzed on the basis of minimum bend die radius.

The various combinations of filler wires, alloys, and material conditions were evaluated by transverse tensile tests. In these tests, sheet rolling direction was parallel to the test direction and normal to the direction of the weld. The 18% nickel alloys (250 and 300 KSI) were tested more extensively because of the greater interest in these materials. Additional transverse tensile tests were made on welds with the sheet rolling direction normal to the test direction (parallel to the weld). Longitudinal weld tests were also made on the 18% nickel alloys.

The same standard sheet tensile specimen (Figure 4) and testing procedures Jescribed for base material testing in Section 3 were used in transverse weld tests. The longitudinal weld test specimen used is shown on Figure 9.

The various combinations of filier materials and base materials investigated in the weld program were tested in two heat treatment conditions. Preliminary weld tensile tests were made using a heat treatment which was selected on the basis of the best available data for each of the four alloys. Additional weld tensile tests were made using heat treatments developed for the alloy heats investigated in this program. These heat trearments provided what appeared to the best balance of properties as indicated by analysis of yield strength and fracture toughness test data obtained for each alloy. lists all of the heat treatments used in weld tests. The heat Treatments used in preliminary tests are listed first for each combination of alloy and condition. The base material tensile strengths obtained with these treatments are also included in Table 9. These data were used to calculate weld joint efficiencies presented in later sections.

Fracture toughness of welds was evaluated using the same specimen used for base materials. As shown in Figure 5 the fatigue cracked notch was centered in the weld. Notch initiation method and test procedure were previously described for base materials in Section 3. Weld fracture toughness properties were determined using only the final heat treatment listed in Table 9.

3.1.6 Preliminary Evaluations-Welding

3.1.6.1 Penetration Studies

Psnetration studies were made on each of the three basic iron-nickel alloys prior to the fabrication of welded test panels. The effects of current, voltage, travel speed and filler wire speed on penetration were examined.

The results of penetration studies on the 18 and 20% nickel alloys (0.140" sheet) are illustrated in Figures 10 to 14. As indicated, these two alloy types demonstrated similar behavior for all variables examined. Tests made on the 25% nickel alloy on 0.070" sheet are shown in Figures 15 to 17.

3.1.6.2 Weld Quality

The test welds produced in the various combinations of base and filler materials were inspected by both dye penetrant and X-ray methods. All were found to be of excellent quality - free of cracking in both weld and heat-affected zone. Welds also demonstrated freedom from porosity. A slight sensitivity to edge porosity was noted in several preliminary 18% nickel alloy welds; however, this was eliminated by reducing weld travel speed.

3.1.6.3 Metallographic Evaluation

Welds and base material heat-affected-zones were evaluated metallographically. Examination was made to determine what heat affected zone structural changes occurred as well as to study the nature of weld microstructures. All examinations were made at 500%. A photomicrograph of a typical transverse weld microspecimen used in this investigation is shown in Figure 18.

Group I Alloys

The 18% nickel alloy welds exhibit a duplex structure of predominantly martensite with small amounts of retained austenite after aging. Little difference was observed between the microstructures of the three filler wires deposits examined, Figure 10. The duplex structure is typical of the filler wire pass. The fusion pass is almost completely martensitic and any retained austenite islands are distributed randomly as opposed to the directional segregation exhibited in filler passes, Figure 19. This variation is associated with the rather gross columnar structure observed in the filler pass as compared to the equiaxed grain structure of the fusion pass as seen in Figure 18.

In Figure 20 and 21, the microstructure of the weld heat-affected-zone closest to the weld fusion line is compared against that of unaffected base material for 250 KSI material in solution heat treated and cold worked conditions. Severe grain growth characteristic of this zone was experienced in both material conditions.

A more extensive examination of the 18% nickel alloy heat-affectedzone is presented in Figures 22 and 23 for solution heat. treated and cold worked 300 KSI alloy respectively. In these figures the weld heat-affected-zone is divided into several areas for purposes of clarification. Zone 1 represents that area subjected to maximum temperatures, e.g. 1600°F to fusion, accompanied by excessive grain growth. That portion of Zone I subjected to the highest *superatures are shown in the photomicrograph of the weld-base metal interface, The structure shown in Zone 2 is representative of Figure 22. that area exposed to an approximate temperature range of (00)°F to 1600°F. This area is subjected to partial resolution but no aging at the lower temperatures, and complete resolution but little or no grain growth at the higher temperatures. The area of the heat-affected zone subjected to aging temperatures is shown in Zone 3. Little or no difference is observed between the solution heat treated and cold worked materials wherever solution temperatures were exceeded (Zones 1 and 2), since the latter reverts to a solution treated structure.

Group II Alloys

The 20% nickel alloy weld microstructures, fusion pass, shown in Figure 24 and Figure 25, shows deposits made using different filler wires. Like the 18% nickel alloy welds, the fusion pass appears to be almost completely martensitic, while the filler wire deposits exhibit a duplex structure of predominantly martensite surrounding interdendritic, discontinuous stringers of austenite.

Weld-heat-affected-zone microstructures, Figures 26 and 27, experienced changes similar to those previously described for the 18% nickel alloys. Definition of various zones is very nearly identical since solution and aging temperature are similar for the two alloys.

Figures 28 and 29 show weld microstructures for the 25% nickel alloy. The fusion pass, Figure 28, appears to contain greater amounts of retained austenite than similar areas in either the 18 or 20% nickel alloys. Filler wire deposits, Figure 29, all of which are basically 18 and 20% nickel compositions, are similar in structure to those previously shown in the 20% nickel alloy welds, Figure 25.

The heat-affected zones for 25% nickel alloy are shown in Figures 30, solution heat treated, and 31, cold worked. As discussed in a previous section, the heat treatment of the 25% nickel alloy differs from that of the lower nickel types. It does not transform directly to martensite from solution temperature, but requires an intermediate ausaging treatment at 1200 to 1300°F to allow transformation. The solution heat treatment temperature is basically the same in all three alloys.

In Figures 30 and 31, only zone 1 is similar to that previously shown for the lower nickel alloy types in that it experienced excessive grain growth. It is, however, austenitic in structure rather than martensitic in the as-welded condition. Zone 2 represents the area which undergoes solution but does not experience grain growth. The heat-affected-zone area which is exposed to ausaging temperatures during welding is shown in Zone 3.

3.1.6.4 Bend Tests

Group I Alloys

The results of weld bend tests made on Group I Alloys are listed in Tables 10 and 11 for 250 and 300 KSI types respectively. All fillers evaluated on both alloys possessed good ductility as evidenced by the test data. On the basis of both sets of data on 0.140" sheet, no single filler wire demonstrated any outstanding superiority in the

bend tests. The best results were obtained with 300 KSI wire on 250 KSI sheet, which passed at minimum bend radius of 1 T. In general, all of the filler wires demonstrated superior bend properties in tests made on the 0.070" thick sheet. No evidence of weld heat affected zone embrittlement was observed in the bend specimens of either Group I Alloy.

Group II Alloys

Group II Alloy bend test results are given in Tables 12 and 13. Bend specimens from both 20 and 25% nickel alloy (0.140" thick sheet) made using the same filler wires exhibited a wide difference in bend ductility. Two of the filler wires (7C-058 and 7C-060) performed substantially better on the 25% nickel alloy. This variation was not evident in bend tests made on similar welds in 0.070" thick sheet. The filler wires evaluated exhibited equally good ductility on both alloys in 0.070"sheet. Heat affected zones in Group II alloy bend specimens were free of any embrittled areas.

3.2 18% Nickel Alloy (250 KSI)

The results of the effect of the various heat-treating parameters on the hardness, mechanical properties, and fracture toughness of 18% nickel alloy (250 KSI) in the various conditions are discussed in this section. In addition, the fracture toughness of the various conditions are compared in the final portion of the section.

3.2.1 Solution Annealed Condition

3.2.1.1 Effect of Solution and Maraging Parameters on Hardness

The "as-quenched" hardness response after solution annealing at various conditions is plotted in Figure 32 and the hardness results reported in Table 14. The solutioning parameters have a more pronounced effect on the "as-quenched" hardness and the hardness drops significantly at solutioning temperatures above 1700°F. The hardness impressions show very small variations after the alloy is maraged for 3 hours at 900°F subsequent to solutioning and the maraged hardness did not indicate any consistent patterns. Solution temperature selections were made from the "as-quenched" hardness data. Temperatures of 1400, 1500, 1600 and 1700°F were selected for more extensive evaluation of sheet tensile data.

- 3. It correlates better with yield strength. Crack propagation resistance for a given material and condition, as measured by the Kc criterion, tended to decrease at higher strength levels.
- 4. In contrast to the critical driving force (G_C) criterion, Kc, is independent of modulus of elasticity. The calculated Kc values can be slightly more reliable since the modulus of elasticity for the iron-nickel alloys vary significantly among different specimens. The modulus of elasticity in these alloys is dependent upon the composition and to some extent on the heat treat condition.
- 5. Kc could be used as a yardstick for comparing the iron-nickel alloys with other high strength steels. Present indications, based on a large amount of data, suggest that a high strength steel for a rocket motor casing can be heat-treated to a yield strength level of 220 Ksi √in. if it possesses a Kc value of 150 Ksi √in. at the yield strength and if the undetectable flaws in the final inspection are less than .030 in.

Based on the above arguments, emphasis in this report is placed in evaluating the fracture toughness parameter Kc, at the different levels. However, other fracture toughness parameters have also been calculated and presented in the various tables.

The longitudinal and transverse toughness are compared at two solutioning temperature and time levels in Figures 37 and 38 respectively. The effect of solutioning on the fracture toughness is presented in Table 18. The longitudinal Kc value shows a sharp drop from 251.7 KSI $\sqrt{\text{In.}}$ to 157.5 KSI $\sqrt{\text{In.}}$ when the solutioning temperature is changed from 1500°F to 1400°F. Changing the holding time from hour to 1 hour at 1500°F does not have any significant effect on the Kc value. The alloy exhibits excellent crack propagation resistance at both solutioning times.

3.2.1.4 Effect of Solution Annealing Temperature on Microstructure

The effect of the solution annealing temperature on the microstructure is shown in Figure 39. Solution treating at 1400°F does not completely homogenize the structure, and the effects of previous working are still apparent. At 1500°F the alloy is essentially homogeneous and the microstructure becomes progressively coarser with increasing temperature.

The heterogeneity and the indication of residual effects of working in the structure can probably explain the observed high strength and low fracture toughness of specimens which are solution annealed at 1400°F.

3.2.1.5 Effect of Maraging Parameters on the Tensile Properties of Solution Annealed Alloy

From the solution anneal tensile and fracture toughness data, solution treating temperature and time for 1 hour and 1500°F were selected as the optimum parameters and were held constant in the determination of the effect of maraging conditions on the mechanical properties of solution annealed alloy.

Several longitudinal and transverse sheet tensile specimens were solution annealed at 1500°F for 1 hour, air quenched, and maraged under the following conditions which were selected from the hardness data:

- (i) 850°, 900°, and 950°F respectively
- (ii) one (1), three (3), and ten (10) hours at the respective maraging temperatures.

The longitudinal and transverse tensile properties of both the 18% nickel alloys are presented in Tables 19 and 20. The longitudinal and transverse yield strengths are plotted as a function of maraging temperatures in Figures 40 and 41.

The longitudinal and transverse yield strength response surfaces are plotted as a function of maraging time and temperature in Figures 42 and 43. It is clear from the presented surfaces that the yield strength responses are maximum when the alloy is maraged at 900°F for 10 hours.

3.2.1.5 Effect of Maraging on Fracture Toughness

The effect of the maraging parameters on the fracture toughness are shown in Table 21. Changing the maraging time from 3 to 10 hours at 900°F results in a slight drop of fracture toughness. However, the alloy still exhibits good fracture toughness in both the longitudinal ($K_C = 213 \text{ KSI Vin.}$) and transverse ($K_C = 175 \text{ KSI Vin.}$) directions. The higher yield strength response at the higher maraging level suggests that, whenever economic and other fracture mechanics considerations permit, the solution annealed 18% nickel alloy would be maraged at 900°F for 10 hours.

3.2.2 Cold Worked Condition

3.2.2.1 Effect of Cold Work on the Tensile Properties

In order to study the effect of the degree of cold working, longitudinal (parallel to the direction of rolling) and transverse (normal to the direction of rolling) specimens were machined from sneets cold worked 20, 30, 40, 50, and 70% reduction. All the specimens were maraged at 850°F and 900°F in order to evaluate the effect of maraging on the tensile properties of cold worked material. The time at the respective maraging temperatures was varied from 1 to 10 hours.

The results of effect of the cold work on the longitudinal and transverse tensile properties are given in Tables 22 and 23. The yield strengths in the two rolling directions are plotted as a function of percent cold work, at constant maraging temperatures in Figures 44 and 45. By plastically deforming the structure or, in other words, by increasing the dislocation density, the strength of martensite is increased significantly.

Due to the dislocation blocking mechanisms, the movement of dislocation seems to be greatly impeded in the cold worked structure and the alloy exhibits higher yield strength responses. It should be noted that the longitudinal yield strength of 324,000 psi, observed in 50% cold worked material, is significantly higher than the longitudinal yield strength (264,000 psi) of solution annealed condition.

3.2.2.2 Determination of Optimum Maraging Parameter and Cold Work

In order to analyze the data effectively and visualize the geometrical relations between the yield strength response and the various factors, the collected yield strength data is plotted as a function of percent cold work and Larson-Miller parameter in Figure 46. The maraging time and temperature were expressed in the form of the empirical Larson-Miller parameter,

$$P = {}^{\circ}R (20 + \log hours) \times 10^{-3}$$
, since:

- (a) The mechanical properties of maraging steels seems to correlate well with the Larson-Miller parameter (110).
- (b) Various combinations of time and temperature factor levels give corresponding values of yield strength.
- (z) The model of response surface gives a vivid and accurate representation of all the factors of interest, namely, maraging time, maraging temperature, and cold work.

(d) It focuses attention on the levels of the factors without the distraction of representing the response in a further dimension.

The longitudinal yield strength response surface of 18% mickel alloy (250 KSI), as represented in Figure 46 shows several interesting features. The surface indicates that the optimum yield strength response is at the 50% cold work level and at 27.5 Larson-Miller parameter level (see the shaded area).

With increasing cold work, the slope of the yield strength surface is constant until the 40% cold work level. There is a slight increase in slope between the 40% and 50% cold work level and, then, the yield strength begins to drop slowly at the higher cold work levels.

As expected, the response surface shows a very sharp rise between a "P" of 26.2 to 27.2. The rise in response is gradual from a "P" of 27.2 and the maximum ridge is reached at the Larson-Miller parameter level of 27.5, i.e., equivalent to 10 hours at 850°F, or to 1.75 hours at 900°F; or to 0.32 hours at 950°F. At levels greater than a "P" of 27.5, the alloy's structure overages and/or reverts to austenite and there is a slight drop in the mechanical properties (110).

3.2.2.3 Effect of cold work on the fracture toughness

之后,我们们的一个人,我们们们们的一个人,我们们们们的一个人,我们们们的一个人,我们们们们们的一个人,我们们们们们们的一个人,我们们们们们们的一个人,我们们们们

The effect of cold work on the longitudinal and transverse fracture toughness parameter, K_c , is shown in Figure 47. Table 24 gives the results of the other fracture toughness parameters. From the collected data, it is evident that:

- (a) The K_c value drops quite sharply at the higher cold work levels. For instance, the longitudinal value drops from an average of 235 Ksi Vin at the 20% cold work level to about 145 at the 70% cold work level.
- (b) At the same cold work level and heat treat condition, the transverse K_c is sharply lower than the longitudinal K_c value. For example, the transverse K_c for 50% cold work is only 90 Ksi Vin. and is considerably less than the longitudinal K_c (900°F/3 hrs) value of 1/0 Ksi Vin.
- (c) At a given cold work level, the variation of maraging heat treatment has relatively little effect on the fracture toughness. The decrease in the fracture toughness is proportional to the increase in strength level. The relationship between the tracture toughness and the yield strength has been estimated by the linear regression techniques and are discussed in the last part of this section.

It is obvious that small amounts of cold work, i.e., amounts less than 30% reduction, do not have any radical effect on the longitudinal or transverse K_c value. However, the heavily cold worked material should only be used after giving careful consideration to the fracture mechanics of the system. The transverse K_c value of a 50% cold worked alloy is only about 90 Ksi \sqrt{in} . at the 320,000 psi yield strength level.

3.2.3 Warm Worked Condition

3.2.3.1 Effect of Warm Work on the Tensile Properties

Longitudinal and transverse specimens were machined from sheets warm worked at 1200, 1400, and 1600°F. All the specimens were maraged at 850°F and 900°F in order to determine the effect of maraging on the tensile properties of warm worked material. The time at the respective maraging temperatures was again varied from 1 to 10 hours.

The tensile properties of warm worked 18% nickel alloys are given in Tables 25 and 26. The longitudinal yield strength properties are presented as a function of warm working temperature in Figures 48 and 49. In addition, the yield strength response surface is plotted as a function of warm working temperature and Larson-Miller parameter in Figure 50.

The yield strength surface response of the alloy in the warm worked condition, has the following distinct features:

- 1. The optimum yield strength responses are around the 1400°F warm working temperature level and at 28.56 Larson-Miller parameter level.
- 2. The yield strength increases very sharply between warm working temperatures of 1200°F and 1400°F. A maximum is reached around 1400°F and the strength drop at higher warm working temperatures.
- 3. Relatively, the increase in surface response is small at the Larson-Miller parameter level of 28.56, i.e., equivalent to 10 hours at 900°F, or to 1.75 hours at 950°F.

Material warm worked at 1200°F exhibited exceptionally low yield strengths. This may be due to the stable, retained austenite that may have formed at the low warm working temperature. The mechanical properties of the specimens which are maraged directly from the warm working temperature of 1400°F compare with those of the solution annealed specimens. Hence, there is no loss in the yield strength if

the 18% nickel alloy (250 Ksi) is maraged directly from the hot-rolled condition.

3.2.3.2 Effect of Warm Work on the Fracture Toughness

The fracture toughness exhibits an approximate drop of 13% when the maraging time at 900°F is changed from 3 to 10 hours for the specimens warm worked at 1400°F. In contrast, it should be noted that the yield strength response of the warm worked material at the two maraging times shows very little change (Figure 51, Table 27).

The longitudinal K_c value for specimens warm worked at 1600°F (900°F/10 hrs) is slightly higher than that of the specimens warm worked at 1400°F. Hence, by interpolation and by taking the tensile data into consideration, it can be deduced that a warm working temperature of 1500°F should give appreciably better properties.

Compared to the fracture toughness of solution annealed specimens, the K_c value of warm worked material is significantly lower. Direct maraging from the hot rolled condition should, therefore, be used only if this simplified treatment offers any distinct advantages in the engineering application under consideration. It should be remembered that the structural and chemical heterogeneities are more pronounced in the "as warm-worked" condition.

3.2.4 Miscellaneous Mechanical Properties

3.2.4.1 Elevated Temperature Properties

Figure 52 and Figure 53 give the mechanical properties of solution annealed and 30% cold worked alloy as a function of testing temperature. The strength properties show a sharp drop at temperatures above 750°F and at 1000°F, the yield strength is about 40-50% the room temperature value.

The effect of solutioning time at 1500°F on the tensile properties is shown in Figure 54. There are no significant effects of the solutioning time and the observed scatter is within the expected experimental error in the tensile properties of sheet specimens when tested at 1000°F.

3.2.4.2 Heat Treat Response of a Thick Section

HER CONTROL OF THE SECOND OF T

A 4-1/2" x 4-1/2" x 5-1/4" billet was solution annealed at 1500° F for 1 hour and then aged at 900° F for 3 hours. One hour per inch of thickness was allowed at the respective temperature. Specimens were cut (parallel to the flow lines) at the center and surface of the cube

the 18% nickel alloy (250 Ksi) is maraged directly from the hot-rolled condition.

3.2.3.2 Effect of Warm Work on the Fracture Toughness

The fracture toughness exhibits an approximate drop of 13% when the maraging time at 900°F is changed from 3 to 10 hours for the specimens warm worked at 1400°F. In contrast, it should be noted that the yield scrength response of the warm worked material at the two maraging times shows very little change (Figure 51. Table 27).

The longitudinal K_c value for specimens warm worked at 1600°F (900°F/10 hrs) is slightly higher than that of the specimens warm worked at 1400°F. Hence, by interpolation and by taking the tensile data into consideration, it can be deduced that a warm working temperature of 1500°F should give appreciably better properties.

Compared to the fracture toughness of solution annealed specimens, the K_c value of warm worked material is significantly lower. Direct maraging from the hot rolled condition should, therefore, be used only if this simplified treatment offers any distinct advantages in the engineering application under consideration. It should be remembered that the structural and chemical heterogeneities are more pronounced in the "as warm-worked" condition.

3.2.4 Miscellaneous Mechanical Properties

3.2.4.1 Elevated Temperature Properties

Figure 52 and Figure 53 give the mechanical properties of solution annealed and 30% cold worked alloy as a function of testing temperature. The strength properties show a sharp drop at temperatures above 750°F and at 1000°F, the yield strength is about 40-50% the room temperature value.

The effect of solutioning time at 1500°F on the tensile properties is shown in Figure 54. There are no significant effects of the solutioning time and the observed scatter is within the expected experimental error in the tensile properties of sheet specimens when tested at 1000°F.

3.2.4.2 Heat Treat Response of a Thick Section

The strength of the strength o

A 4-1/2" x 4-1/2" x 5-1/4" billet was solution annealed at 1500°F for 1 hour and then aged at 900°F for 3 hours. One hour per inch of thickness was allowed at the respective temperature. Specimens were cut (parallel to the flow lines) at the center and surface of the cube

in order to compare the tensile properties at the two locations.

The tensile properties at the center and surface of the cube are compared in Figure 55 and the results are given in Table 28. The properties at the two locations compare with each other remarkably well and the section size effects are negligible for the billet. The results confirm that the martensite reaction is insensitive to the cooling rate.

3.2.4.3 The Effect of Forging Reduction on Properties

The effect of forging reduction on the properties of the 18% Nickel Alloy (250 KSI) were determined by removing specimens from different locations and directions within the forging. Starting with the conditioned billet, pancake forgings representing 33.8, 50, 66.2, 75 and 84 percent reduction were evaluated. Smooth and notched bar specimens representing the edge and center, in the vertical and horizontal directions defined by the upset, were tested after receiving the following heat treatment:

Solution 1500°F - 1 hr - air cool Marage 900°F - 10 hrs - air cool

The results of this study are tabulated in Table 29. tensile data are plotted by the respective position from which specimens were removed in Figures 56 through 59. Inspection of the plotted data indicates that variation in properties exists between the various locations in the forgings. However, the trend could not be conclusively established because of the small number of specimens tested. Of significant importance is the fact that the billet specimens yielded similar strength and ductility regardless of location or direction. This behavior indicates excellent billet conditioning by the mill supplier. Ultimate strengths ranged from 268 KSI to 278 KSI. Reductions in area ranged from 47 to 60 percent. Considering the mass of the billet studied, these results infer excellent homogenization. In general, the results after upset are uniform in that no great degradation in properties were observed. This is corroborated by inspection of the limited notch tensile and fracture toughness data in Table The results show that the initial billet data are surprisingly similar to the data exhibited by a pancake forging of 50 percent reduction.

3.2.4.4 Comparison of Sheet and Bar Properties

The sheet and bar stock properties were compared in three solutioning conditions. The tensile properties are compared in Figure 60 and the results are given in Table 30. At higher solutioning temperature,

(i.e., @ 1500°F), the strength of the sheet and bar stock are comparable.

3.2.4.5 Fatigue Properties

The smooth and notched fatigue (R.R. Moore rotating beam) properties for the solution annealed material are given in Figure 61. The smooth bar fatigue properties for the 30% cold worked material are given in Figure 62.

The fatigue endurance limits for the various conditions are:

Solution annealed (smooth): 89,000 psi Solution annealed (notched) 46,000 psi 30% cold worked (smooth): 70,000 psi

3.2.4.6 Impact Properties

Charpy V-notch impact strength of solution annealed and cold worked materials were determined at various testing temperatures. The impact values are plotted as a function of testing temperature for the various conditions in Figures 63 and 64. The Charpy impact values at room temperature for the various conditions of the material are:

Solution Annealed: 55 ft-lbs 30% cold work: 27 ft-lbs 40% cold work: 19 ft-lbs

3.2.4.7 Critical Fracture Toughness Calculations

The critical fracture toughness for the various conditions were calculated using the circumferentially-notched ($K_t > 10$) tensile bars. The results are given in Table 31. As seen from the N.T.S./T.S. ratios, no pertinent conclusions can be drawn from the results since there are no marked differences in the calculated values.

3.2.5 Summary Discussion

The crack propagation resistance in the various conditions are compared in Figure 65 by plotting the $K_{\rm C}$ values as a function of yield strength in the respective conditions. The data is analyzed by assuming a linear relationship between the two variables and the regression line is approximated by statistical analysis. It is interesting to note that, between the $K_{\rm C}$ level of 180 Ksi $\sqrt{\rm in}$. to 235 Ksi $\sqrt{\rm in}$, the cold worked condition is decidedly better because of the substantial improvement in the yield strength. This observation implies that for a design fracture toughness criterion between 180 Ksi $\sqrt{\rm in}$. to 230 Ksi $\sqrt{\rm in}$ it is better to design a part, whenever

feasible, with small amounts of cold work. The morphology of martensite is altered for small amounts of plastic deformation and the change in morphology can probably account for the excellent fracture characteristics, even at the high strength levels of cold worked material.

It seems from the limited data that, at the same yield strength level, the fracture toughness of warm worked material is lower than the solution annealed condition. As mentioned before, the structural and chemical heterogeneities in warm worked structures can probably account for the differences in fracture morphology of the two conditions.

Examination of fracture surfaces revealed that the alloy generally exhibited an oblique shear mode of fracture in most conditions. There was generally considerable plastic deformation during the initial extension of the crack.

Electron and optical micrographs in the various conditions are shown in Figures 66 to Figure 67. Electron micrographs were taken by the two stage carbon replica techniques. The electron micrographs in Figure 66 (2 pictures) reveal that the residual effects of working are still apparent when the specimens are solution annealed at 1400°F. The electron micrographs prepared on a solution annealed (1500°F/1 hr) and maraged (900°F/10 hrs) specimens reveals acciular precipitate which may contribute to the hardening of the alloy. The precipitate is not clearly visible in cold worked (40% reduction) specimen which is maraged at 900°F for 1-3/4 hours.

In conclusion, the heat treatments for the various conditions, which give good yield strength and fracture toughness responses, are summarized as follows:

Condition	"Heat Treatment"		
"Solution Annealed"	Solution: Air Cool	1500°F/1 hr	
	Marage:	900°F/10 hrs	
"Cold Worked" (30% C.W.)	Direct Marage: from C.W. condition	900°F/2 hrs	
"As hot-rolled" (warm working temperature, 1500°F) found optimum by interpolation of results	Direct marage: from hot-rolled condition	900°F/3 hrs	

3.2.6 Weld Properties

Hardness, and tensile properties for the 18% nickel alloy (250 KSI) welded in two material conditions are presented in the following sections. In addition, the various filler materials investigated are also compared on the basis of fracture toughness.

3.2.6.1 Hardness Properties

Weld Zone

Vertical hardness traverses taken along the weld centerline for two of the filler wires are listed in Table 32, and are represented graphically in Figure 68. As-welded and aged hardness are compared. The vertical traverses, as shown in Figure 68, represent surveys through both the filler pass (left side) and the fusion pass. Note the comparative uniformity between passes after aging. Little or no difference was observed between the hardness of 250 and 300 KSI filler wire deposits, both of which aged to about 51 Rc. Longitudinal weld hardnesses taken between the weld centerline and the weld-base metal interface showed a similar behavior. Table 33.

Heat-Affected-Zone

Longitudinal hardness surveys in weld-heat-affected zones were taken between the weld-base metal interface and a point in the unaffected base material. Test results are given in Table 34 and are plotted in Figures 69 and 70. The heat-affected zone of the solution heat treated material experienced aging from 35 to 42 Rc in an area approximately 0.250 inches from the weld interface. This effect is clearly defined in the as-welded plot shown in Figure 69. Maraging at 900°F equalized hardness at about 50 Rc in the heat-affected-zone, Figure 69.

A similar behavior was noted in the heat-affected-zone of cold worked material, Figure 70. Aging response was of the same order of magnitude, 41 to 51 Rc, and in approximately the same location as experienced in the solution heat-treated material. Peak hardnesses attained were higher, since they were superimposed on the initial higher hardness (41 Rc) of cold worked material (Figures 69 and 70).

The area of cold worked material adjacent to weld interface, approximately 0.100" wide was completely resolutioned. This was indicated by a loss in hardness from 41 to 33 Rc as shown in the as-welded plot in Figure 69. As anticipated, maraging did not equalize hardness between heat-affected-zone and unaffected base material. The

resolutioned area was lower in hardness, 51 as compared to 55 Rc, Figure 70, but approximately the same as that obtained on solution heat treated material, Figure 69.

The presence of a retained austenite band in the weld hear feeted-zone after aging was not definitely established. This are would have been subjected to peak temperatures of 1200-1300°F which are known to promote austenite stabilization. Although not clearly defined in the plotted hardness surveys, a suspected low point was observed after aging in solution heat treated material at a distance of 0.225" from the weld interface, and in the cold worked material at a distance of 0.180" (Table 34). The low points were not excessive and represented a decrease in hardness of about 2 Rc.

3.2.6.2 Tensile Properties

Evaluation of welding filler materials presented in this section are based primarily upon transverse weld tensile tests made with the sheet rolling direction parallel to the test direction. Weld joint efficiencies used for comparison purposes were calculated on the basis of average unwelded sheet tensile properties listed in Table 9. These baseline data are given for each material in each combination of heat treatment and rolling direction evaluated in weld tests.

Solution Heat Treated Base Material (0.140" sheet)

The results of transverse weld tests comparing various filler wire compositions are shown in Table 34 and Figure 71. In preliminary tests made using a maraging treatment of 900°F for 3 hours, the 300 KSI filler wire welds attained 100% yield strength joint efficiency at the 253 KSI level. They exhibited a definite superiority of approximately 20 KSI over the other wires tested, Figure 70. Increasing 900°F maraging time to 10 hours resulted in approximately 100% weld yield strength joint efficiency at about the 265 KSI level in all cases as shown in Figure 70. Maximum average properties (268 KSI) were attained with the high cobalt "cast" filler wire. The matching 250 KSI base material composition welds showed the lowest results (97% yield strength joint efficiency) as based on a 256 KSI yield strength. The excellent performance of the 300 KSI filler wire was further demonstrated by two tensile failures located in parent metal (Table 35).

As previously discussed in section 3.2.1.5 and shown in Figure 42. The maximum yield strength response for the 250 KSI alloy are attained after 10 hours at 900°F. The general improvement in weld properties with increased maraging time is then attributed to the combined effects of increased base material and weld fusion pass hardening response,

as well as improved filler pass hardening response.

Solution Heat Treated Base Material (0.070" sheet)

Transverse weld tensile properties obtained on 0.070" thick sheet, maraged 900°F/10 hours, are presented in Table 36 and Figure 72. Welds made using the 300 KSI filler wire closely matched base material yield strength (269 KSI), as previously obtained on 0.140" sheet (Table 35), while the two other filler wires evaluated exhibited a reduction in properties to 250 KSI (Figures 71 and 72).

40% Cold Worked Base Material (0.140" sheet)

Results of transverse tensile tests made on welds produced in cold worked sheet are given in Table 37, and Figure 73. The lower weld yield strengths obtained in these tests, as reflected by decreases of 10 to 15 KS1, are believed to be associated with the shorter 900°F maraging time of 1.75 hours. This treatment is preferred for cold worked material on the basis of studies described in section 3.2.2. The 300 KSI filler material exhibited the highest yield strength properties (256 KSI) of any of the filler wires evaluated. Weld yield strength joint efficiencies were appreciably lower, 88 as compared to 100%, than those reported for welds made in solution heat treated material (Table 35) using the same wires.

Miscellaneous Weld Tensile Properties

Transverse weld tensile tests were made in both solution heat treated and cold worked 0.140" sheet with the rolling direction normal to the direction of test. In these tests only welds produced with the 300 KSI filler wire were evaluated. Test results are given in Table The strength of welds made in solution heat treated sheet and maraged 900°F/10 hours showed no change from the 265 KSI yield strength previously reported in Table 35, Welds made in the cold worked material, however, showed a marked reduction to 231 KSI yield strength with change in rolling direction (Tables 37 and 38). Longitudinal weld tensile test results are presented in Table Yield strengths ranging from 240 to 249 KSI were and Figure 74. obtained in welds made with three different wires and maraged 900°F/ 3 hours. In case of the 250 KSI and cast-type filler wires, longitudinal weld yield strength was increased over transverse weld yield for the same maraging treatment (Tables 39 and 35). Longitudinal properties of 300 KSI filler welds were equal in ultimate but lower in vield strength than corresponding transverse properties (Tables 39 and 35).

3.2.6.3 Fracture Toughness

Fracture toughness properties of welds made using the various filler materials are given in Table 40. The results are compared graphically on the basis of Kc values in Figure 75. All welded specimens were maraged at 900°F for 10 hours. It should be noted that in preparation, both 300 KSI filler wire specimens were only partially fatigue notched in the weld. The notch was located in the weld filler wire pass and in the heat affected zone in the fusion pass area. results obtained on these specimens were somewhat higher due to influence of the base material and do not represent a true evaluation of the 300 KSI weld fracture toughness. The fracture toughness of 250 KSI filler wire welds compared favorably with that of the base material on the basis of Kc(KSI VIn.) values, 150 (KSI VIn.) for weld metal versus 175-216 (KSI Vin.) for base material as reported in Of the two cast-type filler wires evaluated, the high cobalt, copper-free version (Heat No. 33179) exhibited higher toughness properties. Some measure of the fracture toughness of the 300 KSI filler wire can be obtained by considering test results on welds made using the wire on 300 KSI material shown in Table 66. this combination of wire and base material exhibited average Kc value of 137 (KSI Vin.). The fracture toughness of welds combining 300 KSI filler and 250 KSI sheet should lie somewhere between this value, Kc of 137, and that obtained for the 250 KSI wire and sheet combination (Kc of 150).

3.2.6.4 Summary

The results of welding studies conducted in this investigation revealed that the 18% nickel alloy (250 KSI) possesses a high degree of weldability. This was demonstrated by evaluations based upon the major considerations of weld quality, strength and toughness.

Sound defect-free welds were consistently produced using all filler wires tested by conventional TiG welding procedures without benefit of a "preheat-interpass-postheat" weld thermal cycle. Weld heat-affected-zones in both solution heat treated and cold worked sheet were found to be free of any defects and/or embrittled areas.

A general comparison of filler materials based on weld strength, ductility and toughness as represented by the most significant parameters of yield strength joint efficiency, reduction and Ko respectively are shown in Figure 76. A more detailed evaluation of weld properties is presented in Table 41 where a comparison against base material is also made.

A CONTRACTOR OF THE STATE OF TH

Ductile welds of 100% yield strength joint efficiency can be produced in solution heat treated 250 KSI sheet provided selected filler wires are used, (Figure 76). On the basis of weld test data, the 300 KSI filler wire is preferred, particularly where economic considerations dictate use of a short maraging time of 3 hours (Table 53). Welds made using this wire are equivalent to or higher in strength. and somewhat higher in fracture toughness than welds made with "cast" composition wires, Figure 76. Whenever fracture toughness considerations are paramount, use of the 250 KSI filler wire may be desirable. However, improved fracture toughness is gained only at the sacrifice of yield strength (Figure 76 and Table 59). Cold worked 250 KSI sheet is resolutioned in the weld-heat-affected zone as a result of welding. Transverse weld properties are essentially the same as those of welds in solution heat treated alloy. thus lower weld joint efficiences are experienced in cold worked material (Figure 76). Since, preferred maraging times for cold worked sheet are relatively short to obtain the best balance of strength and toughness, use of the 300 KSI filler wire appears advisable. Test data showed that weld deposits made with this wire responded to aging more rapidly than the others tested, and attained maximum weld joint efficiency (Figure 76).

SHEET SPECIMEN TENSILE TEST

Figure 4

FATIGUE CRACKED SPECIMEN (CENTER NOTCH)

.075 0.8 1.0 4.0 ±0005 ±.010

25. DIA.

> -0.000 -0.000

α α

A 0.2

ပ

SPECIMEN TYPE

Ø

G

Figure 5

JOINT DESIGN AND WELD SETTINGS FOR 18, 20, AND 25% N1 ALLOYS

THICKNESS	-	<u>+0"</u>	.070"	
JOINT DESIGN		.070"	.03	5"
WELD SETTINGS	FUSION	FILLER	FILLER PA	LSS
Current	150	190	70	Amps
Arc Voltage	10	10.5	15	Volts
Travel Speed	5	5.5	10	in/min
Wire Dia.	-	.062	.062	in
Wire Feed	~	32	32	in/min
Inert Gas	Helium	Argon	Helium	ŕ
Nozzle	30	30	30	C.F.H.
Back-Up	2 _‡	4	14	C.F.H.
Preheat, Postheat	None	None	None	
Electrode	5/32" Dia	a 2% Tho	riated W	
Back Up Material	Copper			

Figure 6

Distance Between Hardness Measurements:

Weld .020" HAZ .015" B.M. .025"

WELD BEND TEST SPECIMEN

Note: Weld Area Machined Flush With Parent Sheet (Both Sides)

Figure 8

537%

Note: Weld Machined Flush With Parent Sheet (Both Sides)

Rase Waterial

EPPECT OF VULTAGE ON PENETRATION

		3 10 12 14 16		8 10 12 14 16	Set Conditions: Current - 120 amps Travel Speed - 5 1pm Gas Flow Nozzle - 30 cfh Argon Back-Up - 4 cfh Hellum No Filler Added
		æ		80	
Base Material	18% N1	Volts	20% N1	Volts	

Figure 11

EPPECT OF TRAVEL SPEED ON PENETRATION (NO PILLER WIRE ADDED)

Base Material

7 H Set Conditions:
Currenc - 120 amps
Voltage - 10 volts
Gas Flow
Nozzle - 30 cfn
Back-Up - 4 cfn
No Filler Added Travel Speed (1pm) 3 Travel Speed (1pm) 20% N1 18% N1

Figure 12

EPPECT OF TRAVEL SPEED ON PENETRATION

(PILLER WIRE ADDED)

Base Material

Set Conditions:
Current - 120 amps
Voltage - 10 volts
Filler Wire Feed Rate - 32 1pm
Gas Flow Travel Speed (1pm) 3 Travel Speed (1pm) 18% N1 20% N1

Nozzle - 30 ofh Argon Back-Up - 4 ofh Hellum

דו

Figure 13

44

EPPECT OF PILLER WIRE FEED RATE ON PENETRATION

Base Material

42

ž

20% N1

Filler Wire Feed (1pm) 24

42

36

32

58

Current - 120 amps
Voltage - 10 volts
Travel Speed - 5 1pm
Gas Plow
Nozzle - 30 cfh Argon
Back-Up - 4 cfh Hellum Set Conditions:

Figure 14 45

. 411

EFFECT OF VOLTAGE AND AMPERAGE ON PENETRATION (25% NICKEL ALLOY)

Set Conditions

Travel Speed 10 ipm

Gas Flow
Nozele - 30 ofh Helium
Back Up - 4 ofh Ergon

Figure 15

45

4155

rate producting

A = -25

4,56

Tra

EFFECT OF TRAVEL SPEED AND VOLTAGE ON PENETRATION (25% NICKEL ALLOY)

Figure 16

.55

EFFECT OF FILLER WIRE SPEED ON PENETRATION (25% NICKEL ALLOY)

Wire Feed in/min

Set Conditions

Current - 55 amps Voltage - 16 volts Travel Speed - 10 ipm

Gas Flow Nozzle - 30 cfh Helium Back Up - 4 cfh Argon

Figure 17

THE THE PARTY OF T

Figure 18

18% NICKEL ALLOY WELDS

Maraged: 900°F/3 Hrs

250 KSI (7C-055)

Cast (70-053)

Piller Pass

300 KSI (7C-054)

Pusion Pass (300 KSI)

Figure 19

Figure 20

Heat Affected Zone

As Welded

Maraged: 900°P/3 Hrs.

Maraged: 9000P/3 Hre.

Heat Affected Zone 2 Heat Affected Zone l Base Metal Weld Interface

Unaffected Base Metal

Heat Affected Zone 3

18% NICKEL ALLOY (300 KSI) - SOLUTION HEAT TREATED WELD HEAT AFFECTED ZONE

Maraged: 9000R/3 Hrs

Figure 22

18% NICKEL ALLOY (300 KSI) - 50% COLD WORKED WELD HEAT AFFECTED ZONE

Figure 23

20% NICKEL ALLOY WELD (FUSION PASS)

As Welded

Maraged: 8500F/4 Hrs.

Figure 24 55

20% NICKEL ALLOY WELDS Maraged: 8500F/4 Hrs

Mod. 20% N1+No (7C-059)

20% N1+No (7C-060)

Figure 25 56

Unaffected Base Metal

Maraged: 8500F/4 Hrs

20% NICKEL ALLOY - SOLUTION HEAT TREATED WELD HEAT APPECTED ZONE

Heat Affected Zone 2 Heat Affected Zone 1 Base Metal Weld Interface Weld

Heat Affected Zone 3

Figure 26

Unaffected Base Metal Unaffected Base Metal Heat Affected Zone 3 Heat Affected Zone 2 Heat Affected Zone 1 Heat Affected Zone 1

Figure 27

As Welded

8500P/4 Hrs.

Aged

20% NICKEL ALLOY - 50% COLD WORNED WELD HEAT APPECTED ZONE

25% NICKEL ALLOY WELL (PUSION PASS)

Ausaged: 13000F/4 Hrs. + Ref, -1100F/16 Hrs. Maraged: 8500F/4 Hrs.

As Welder

25% NICKEL ALLOY WELDS

Aged: 13000F/4 frs + Ref. -1100F/16 Hrs + 8500F/4 Hrs

20% N1+Mo (7C-06C)

Mod. 20% N1+No (70-059)

Figure 29

25% NICKEL ALLOY - SOLUTION HEAT TREATED WELD HEAT AFFECTED ZONE

Aged: 13000F/4 Hrs + Ref. -1100P/16 Hrs + 8500P/4 Hrs

Unaffected Base Metal

30 **Figure**

Figure 31

TABLE 1

CHEMICAL COMPOSITION OF ALLOYS EVALUATED UNDER CONTRACT AF 33 (616) - 8018

			,	
ELEMENT	18% NICKEL ALLOY	18% NICKEL ALLOY	20% NICKEL ALLOY	25% NICKEL ALLOY
	HEAT NO. 23832	(500 KSI) HEAT NO. 23831	HEAT NO. 23826	HEAT NO. 23825
Carbon	0.010	0.008	0.007	900.0
Manganese	0.014	0.015	0.035	0.035
Phosphorus	0.003	0.001	0.001	0.001
Sulphur	0.002	0.003	0.003	0.002
Silicon	0.04	0.05	0.04	90.0
Nickel	18.60	18.61	20.19	25.75
Molybdenum	5.04	5.00	ŝ	1.42
Fitanium	0.42	0.71	1.56	
Aluminum	0.08	0.13	0.30	0.31
Cobalt	7.74	9.05	ı	1
Zirconium	0.003	0.005	0.006	0.007
Calcium	0.001	0.001	1	0.001
Columbium	1	1	0.44	0.467
Boron	0.002	0.002	0.005	0.003

TABLE 2

COMPOSITION SPECIFICATIONS AND CHEMICAL ANALYSES OF HEATS FOR DETERMINING PROPERTY VARIATIONS FROM UPPER TO LOWER LIMITS OF COMPOSITION SPECIFICATION OF THE 300 KS: NOMINAL YIELD STRENGTH 18% NICKEL ALLOY

	Heat #700	56	Heat #700	57
Element	Spec.	Analysis	Spec.	Analysis
Carbon	0.01/0.03	0.026	0.01/0.03	0.023
Manganese	0.10 max	0.002	0.10 max	0.002
Phosphorus	0.010 max	0.008	0.010 max	0.006
Sulphur	0.010 max	0.006	0.010 max	0.007
Silicon	0.10 max	0.01	0.10 max	0.01
Nickel	18.0/19.0	18.13	18.6/19.0	18.28
Molybdenum	4.62/4.78	4.67	5.12/5.28	5.17
Titanium	0.42/0.58	0.50	0.72/0.88	0.81
Aluminum	0.10 added	0.12	0.10 added	0.071
Cobalt	8.40/8.60	8.57	9.40/9.60	9.40
Boron	0.003 added	NA	0.003 added	NA
Zirconium	0.02 added	NA	0.02 added	NA
Calcium	0.05 added	NA	0.05 added	NA

NA = Not Analyzed

TABLE 3

PROCESSING OF HIGH AND LOW CHEMICAL COMPOSITION HEATS OF 18% NICKEL (300 KSI) ALLOY

1. Heat Size - 60#

2. Melting Method - Vacuum Induction - vacuum arc remelt

3. Yield - 60# Low chemistry, designated 7C056 60# High chemistry, designated 7C057

4. Mill Products - 30# in form of 3/4" bar stock hot rolled from 1800°F, finish at 1500°F.

30# in form of 0.115" sheet
30% and 50% cold rolled sheets finished from start gages of 0.164" and 0.230", respectively.

- 5. Specimens Removed a. Rd bar tensile, 0.252"Dx1" gage length
 - b. Rd bar sharp notch tensile, notch radius less than 0.001'' ($K_t = 12$).
 - c. Edge notch G specimen (ASTM Type)

PRELIMINARY MECHANICAL PROPERTIES DATA ON 60 POUND LOW CHEMISTRY	KSI NOMINAL YIELD STRENGTH 18% NICKEL ALLOY	HEAL NO. /COSO	'S .2% YS Elong. R.A. **N.T.S ***N.F.S. *K
MECHA	KSI		UTS
PREL IMI NARY	300		ment

Heat Treatment and Cold Work	UTS	.2% YS KSI	Elong.	R.A.	R.A. **N.T.S % KS1	***N.F.S.	. *Kc KSI/1n	*G
Sheet 3 hrs/900°F 3 hrs/900°F	272	264	6.0	39.0	217 198. 5	231 218.5		1280 1250
15 min/1500°F+ 3 hrs/900°F	268	266	5.5	37.	209	229	230	1835
15 min/1500°F+ 3 hrs/900°F	564	258	6.0	38.				**
30% CW + 3 hrs/900 F 30% CW + 3 hrs/900°F	291	287	7.5	38	215	244.5	198	1310
++	303	302	144	34 52	167.5	187	150	800
Bar	UTS	.2% YS KST	Elong	R.A.	****	•	X.T.S.)) !
30 mtn/1500°F+3 hrs/900°F	OF 273	265	6	59	41		1.50	
min/1500°F+3 min/1500°F+3	OF 275	271	12 11	61	411			
hrs/9000F	263	261	ន	23	4 4	• ~	53	·
3 hrs/900°F	271	268	10	62	414	•)	
	273	270	11	19	41(
* 2" W x .115" B ASTM edge ** Notch Tensile Ultimate -	B ASTM edge Ultimate -	e notch spe $-P/(W-2a_0)$	specimen	values	•			
	Fracture St	Strength -	10)(B)				,
**** 0.300 Major Diameter,		Kt = 12		•				

PRELIMINARY MECHANICAL PROPERTIES DATA ON 60 POUND HIGH CHEMISTRY 300 KSI NOMINAL YIELD STRENGTH 187 NICKEL ALLOY HEAT NO. 70057

Heat Treatment	UTS	.2% Y.S.	Elong.	R.A.	NS	NFS	X	ڮ
and Cold Work	KSI	KSI	2	82	~	KSI	KSI / In	In Lb/In ²
Sheet	. ••							
3 hrs/900E	314	306	5.0	34	157	175	140	700
3 hrs/900°F	311	305	5.0	25	161.5	194	155	006
15 min/1500°F+3 hr/900°F	- 1	308	5.0	28	138	148.5	119	200
15 min/1500°F+3 hr/900°F	314	309	2.0	29)
$30\% \text{ cW} + 3 \text{ hr}/900^{\circ}\text{F}$	335	333	•	45	131	186.5	135	625
$30\% \text{ cW} + 3 \text{ hr}/900^{\circ}\text{F}$	329	323	2	747	132	197	140	700
$50\% \text{ cW} + 3 \text{ hr}/900^{\circ} \text{F}$	339	337	7	41	113.5	136	104	400
+ ≥ CE	340	338	4	38	132.8		130	009
	UTS	.2% Y.S.	Elong.	4 D	R.A.	N.T.S	•	T,S.
Bar	KSI	KSI .	2		%	KSI		U.T.S.
30 min/1500°F+3 hr/900°F		316	11		57	405		.26
30 min/1500°F+3 hr/900°F		312	11		2 6	385	•	•
30 min/1500°F+3 hr/900°F		313	11		99	412		
3 hrs/900°F	316	311	10		57	429		1.37
3 hrs/900°F	317	314	10		26	875		
3 hrs/900°F	318	314	11		55	426		

TABLE 6

COMPOSITION SPECIFICATIONS AND CHEMICAL ANALYSES OF WELD WIRE HEATS

:	Analysis	0	0.026	0.002	0.006	0.006	0.014	18.13	70 7	, ,	7/.0	0.089	;	8.96	•	1 :	N.A.	N.A.	Y.Y
300 KSI	Spec	Camo	Same	Same	Seme	ogno-	Same	18.0/19.0	4.7/5.1	60 / 80	00./00.	o.10 added	:	8.5/9.5			Same	Same	Same
KSI	Analysis	0.023	0.002	200.0	900		\$10.0 10.0	18.61	5.02	75.0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	***	;	7.66		7		N.A.	N.A.
250 KSI	Spec	Same	Same	Same	Same	Spino	10 0/10 0	0.41/0.01	4.7/5.1	0.40/0.60	0.10 94494		0 0/0 1	0.8/0./	: 1	Same		Same	Same
0 KSI C-053	Analysis	0.028	0.003	0.008	0.007	0.014	15 90	7007	76.4	07.0	0.15		30.00	07.01	1.54	N.A.	2		N.A.
Cast-250 KSI Heat 7C-053	Spec	0.01/0.03	0.10 max.	0.010 max.	0.010 max.	0.10 max.	15.5/16.5	7/5 1	T:0//-	0.30/0.50	0.10 added	:	9.5/10 5		1.0/2.0	0.003 added	0.02 added		U.UJ added
	Element	Carbon	Manganese	Phosphorus	Sulphur	Silicon	Nickel	Mol wholenum		llcanium	Aluminum	Columbium	Cobalt		raddoo	Boron	Zirconium	10101	מדכדת

N.A. - Not Analyzed

Table 7

COMPOSITION OF WELD WIRE HEAT NO. 33179 (1)

Element	Nominal Analysis
Nickel	17
Cobalt	11
Molybdenum	4.6
Titanium	0.4
Aluminum	0.1

(1) International Nickel Co., Inc. experimental six-melted "Gast" composition, 0.003 borcm, 0.02 zirconium, and 0.05 calcium added.

TABLE 8

COMPUSITION SPECIFICATIONS AND CHEMICAL ANALYSES OF WELD WIRE HEATS

Mod. $20\% N_1 + M_0$	Analysis	0.024	0.002	0.00	900 0	7600 0	17 51	16.11	1 76	7.7	7.0	70.0	1	1 2			
Mod.	Spec	Same	Same	Same	Same	Same	17.5/18.5	09 1/07 1	1.60/1.80	0.15/0.30	0.30/0.50		: (Samo	Same	Same	-
0% N ₁ 0-058	Analysis	0.023	0.002	0.006	0.006	0.088	17.74		1.78	0.18	0.48		:	Y Z	V	Y Z	•
Mod. 20% N ₁ Heat 7C-058	Spec	Same	Same	Same	Same	Same	17.5/18.5	. !	1.60/1.80	0.15/0.30	0.30/0.50		:	Same	Same	Same	
$0.7 \text{ N}_1 + M_0$	Analysis	0.018	0.002	0.004	0.009	0.033	19.73	1.45	1.78	0.21	0.50	;	:	N.A.	N.A.	N.A.	
20% N ₁ Heat	Spec	0.01/0.03	0.10 max.	0.010 max.	0.010 max.	0.10 max.	19.5/20.5	1.40/1.60	1.60/1.80	0.15/0.30	0.30/0.50	;	:	0.003 added	0.02 added	0.05 added	
	Element	Carbon	Manganese	Phosphorus	Sulphur	Silicon	Nickel	Molybdenum	Titanium	Aluminum	Columbium	Cobalt	Copper	Boron	Zirconium	Calcium	

N.A. = Not Analyzed

Table 9

SHEET TENSILE PROPERTIES
BASIS FOR CALCULATION OF WELD JOINT EFFICIENCIES

ALLOY			ļ					
	Condition(1)	die.	Time Hours	or i	p Time Hours	Orientation of Specimen Axis to Rolling Direction	urs rsi	0.21 YS KSI
300 KSI	SHT 50% CW			006 800 800	6 6 6 7 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Paralle1	293 338(2) 342(2)	284 337(2) 341(2)
250 KSI	SHT SHT 40% CW			00000	3 10 3 1.75	Perallel	266 275 297 295	255 296 296 296
25 Z M£(3)	SHT SHT(4) 30% CW	1300	44	850 900 900	461	Pereilel	273 288 266	262 267 230
207 N1	SHT SHT(4) 501 CV			850 900 900	7 10 10	Parallel	269 255 295	264 250 293
300 KSI	SHT 507 CW 507 CW			0000		Normal	298(2) 361(2) 325(2)	295(2) 358(2) 320(2)
250 KSI	SHT CW 40,7 CW 40,7 CW			006	3 10 3 1.75	Normal	264(2) 281 320 309	262(2) 271 316 306

(1) SHT - Solution Heat Treated, 1500°F/1 hr. Air Cool

(2) No data points, figures represent estimates based on best available data

(3) 25% Nickel Alloy refrigerated after ausaging: 16 hours at - $110^{\rm O}{
m F}$

(4) Solution Heat Treated: 1450/1 hr., Air Cool

Table 10

TRANSVERSE WELD BEND TEST DATA 18% NI STEEL (250 KSI) (1) (2)

Type Filler Wire Head 250 KSI 7C Cast 7C 250 KSI 7C 250 KSI 7C 7C	Wire Heat No. 7C-055 7C-054 7C-053	Material Thickness-in 0.140 0.140 0.70	Minimum Bend Radius-T 2 1 3
300 KSI	7C-054	0.70	, -
Cast	7C-053	0.70	

Base material solution heat treated

All tests represent face bends on as-welded specimens 3 3

YU

Table 11

TRANSVERSE WELD BEND TEST DATA 18% Ni STEEL (300 KSI) (1) (2)

Minimum Bend Radius-T	5 B B	1
Material Thickness-in	0.140 0.140 0.140	0.070
Filler Wire Heat No.	7C-054 7C-053 33179	7C-054 7C-053
Type Type	300 KSI Cast Cast	300 KSI Cast

(1) Base material solution heat treated

All tests represent face bends on as-welded specimens (5)

K

TABLE 12
TRANSVERSE WELD BEND TEST DATA
20% Ni STEEL (1) (2)

Filler Wire		Material	Minimum
Type	Heat No.	Thickness-in	Bend Radius-T
300 KSI	7C-054	0.140	3
Mod. 20% Ni	7C-058	0.140	>3
Mod. 20% Ni + Mo	7C-059	0.140	3
20% Ni + Mo	7C - 060	0.140	>3
300 KSI	7C-054	0.070	2
Mod. 20% Ni + Mo	7C-059	0.070	2
20% Ni + Mo	7C-060	0.070	1

- (1) Base material solution heat treated
- (2) All tests represent face bends on as-welded specimens

Table 13

TRANSVERSE WELD BEND TEST DATA 25% Ni STEEL (1) (2)

Type Type 0 KSI	Heat No. 7C-054 7C-055	Material Thickness 0.140	Minimum Bend (adius-T 2
Mod. 20% Ni Mod. 20% Ni + Mo 20% Ni + Mo	7C-058 7C-059 7C-060	0.140 0.140 0.140	217
300 KSI Mod. 20% Ni + Mo	7C-054 7C-059	.070	C1 C2

- (1) Base material solution heat treated
- (2) All tests represent face bends on as-welded specimens

HARDNESS RESPONSE CONTOURS OF SOLUTION ANNEALED 18% NICKEL ALLOY (250 KSI)

Figure 32

. 260.

EFFECT OF MARAGING PARAMETERS ON THE HARDNESS OF SOLUTION TREATED 18% NICKEL ALLOY (250 KSI)

Figure 33

EFFECT OF SOLUTION TREATING TEMPERATURE ON THE LONGITUDINAL PROPERTIES OF 18% NICKEL ALLOY (250 KSI)

Solution Treating Temperature - °F

Figure 34

EFFECT OF SOLUTION TREATING TIME ON LONGITUDINAL TENSILE PROPERTIES OF 18% NICKEL ALLOY (250 KSI)

Solution Treating Time - Hours

Figure 35

EFFECT OF SOLUTION TREATING TIME ON TRANSVERSE TENSILE PROPERTIES OF SOLUTION ANNEALED 18% NICKEL ALLOY (250 KSI)

Solution Treating Time - Hours

Figure 36

Figure 37

COMPARISON OF FRACTURE TOUGHNESS OF 18% NICKEL ALLOYS AT TWO SOLUTION TIME LEVELS

Tail

Figure 38

EFFECT OF SOLUTION ANNEALING TEMPERATURE ON MICROSTRUCTURE OF 18% NICKEL ALLOY (250 KSI)

SOLUTION TREATING TEMPERATURE -°F

1400

1500

1700

1900

EPFECT OF MARAGING TREATMENT ON THE LONGITUDINAL TENSILE PROPERTIES OF SOLN. ANNEALED 181 NICKEL ALLOY (250 KSI)

MARAGE TEMPERATURE F

24

F16-40

Pigure 40

علق

EFFECT OF MARAGING TREATMENT ON THE TRANSVERSE TENSILE PROPERTIES OF SOLN, ANNEALED 18% NICKEL ALLOY (250 KSI)

MARAGE TEMPERATURE F

Figure 41

OPTIMIZATION OF LONGITUDINAL YIELD STRENGTH RESPONSE OF SOLUTION ANNEALED 18% NICKEL ALLOY (250 KSI)

All Specimens Soln. Annealed: 1500°F / 1 hr. (argon)
Allegheny Heat No. 23832

Figure 42

OPTIMIZATION OF TRANSVERSE YIELD STRENGTH RESPONSE OF SOLUTION ANNEALED 18% NICKEL ALLCY (250 KSI)

Allegheny Heat No. 23832

Figure 43

Figure 44

2958

the state of the second state of the second second

Pigure 45

OPTIMIZATION OF LONGITUDINAL YIELD STRENGTH RESPONSE OF COLD WORKED 18% NICKEL ALLOY (250 KSI)

Figure 46

Figure 4?

KAMPANIKAN PUNKAN KANTAKAN PARENTAKAN PARENTAKAN MA

EFFECT OF WARM WORK TEMPERATURE, MARAGING TIME, AND MARAGING TEMPERATURE ON THE LONGITUSINAL YIELD STRENGTH OF 18% NICKEL ALLOY (250 KSI)

Figure 48

おいないなんとうとうとう こうこう

KALIO SA NIKALIA KATANIKA NIKATANIKA MATAKANA MATAKANA MATAKANA MATAKANA MATAKANA MATAKANA MATAKANA MATAKANA M

EFFECT OF WARM WORK TEMPERATURE, MARAGING TIME, AND MARAGING TEMPERATURE ON THE TRANSVERSE YIELD STRENGTH OF 18% NICKEL ALLOY (250 KSI)

Figure 49

OPTIMIZATION OF LONGITUDINAL YIELD STRENGTH RESPONSE OF WARM WORKED 18% NICKEL ALLOY (250KSI)

Figure 50

94

5352

* CONTROL OF THE PROPERTY OF T

Figure 51

Figure 52

Spirit State of Control of Control

ELEVATED TEMPERATURE PROPERTIES OF COLD WORKED 18% NICKEL ALLOY (250 KSI)

Figure 53

Figure 54

3467

Allegheny Heat No. 7332

LOCATION: VERTICAL-GENTER

PERCENT REDUCTION

Figure 56

LOCATION: VERTICAL-EDGE

PERCENT REDUCTION

Pigure 57

LOCATION: HORIZONTAL-CENTER

PERCENT REDUCTION

Figure 58

LOCATION: HORIZONTAL- EDGE

Figure 59

Pigure 60

7 1 **9** 5

Figure 61

Figure 62

CHARPY IMPACT STRENGTH OF SOLUTION ANNEALED 18% NUCKEL ALLOY (250 KSI)

Charpy Impact Value - ft.1bs.

Figure 63

CHARPY IMPACT STRENGTH OF COLD WORKED 18% NICKEL ALLOY (250 KSI)

Andrew Control of the Control of the

Charpy Impact Value - Ft-Lbs

Figure 64

Figure 65

Solutioned 1400°F/1 hr.

Solutioned 1400°F/1 hr.

Two Stage Carbon Replica

Mag. 500 X

Etchant: Marble's + Modified Fry's

Mag. 18000 X

Solutioned 1500°F/1 hr.

Two Stage Carbon Replica

Solutioned 1500°F/1 hr.

Etchant: Marble's + Modified Fry's

Mag. 500 X

Mag. 500 X

66 Figure

MICROSTRUCTURE OF SOLUTION AND MARAGED, AND COLD WORKED AND MARAGED 18% NICKEL (250 KSI) ALLOY

Solutioned 1500°F/1 hr., Maraged 900°F/10 hrs.

Solutioned 1500°F/1 hr. Marazed 900cF/10 hrs.

Mag. 18000 X Etchant: Marble's +

Modified Fry's

Two Stage Carbon Replica

Maraged 9000F/1.75 hrs. Cold Worked 40%,

Maraged 900°F/1.75 hrs.

一人一代 一

Cold Worked 40%,

Mag. 500 X

Etchant: Marble's + Modified Fry's

Mag. 18000 X

いたとうできる。

Two Stage Carbon Replica

Mag. 500 X

Figure 68

Figure 69

Figure 70

Figure 71

Figure 72 116

ti e \$

COMPARISON OF FILLER WIRES
TRANSVERSE WELD TENSILE PROPERTIES
18% NICKEL ALLOY (250 KSI) - 40% COLD WORKED SHEET

Figure 73

COMPARISON OF FILLER WIRES
LONGITUDINAL WELD TENSILE PROPERTIES
18% NICKEL ALLOY - SOLUTION HEAT TREATED SHEET

Figure 74

COMPARISON OF FILLER WIRES TRANSVERSE WELD FRACTURE TOUGHNESS PROPERTIES 18% NICKEL ALLOY (250 KSI)-0.140" SHEET

Figure 75 119

CAST 33179 2 2 40% COLD WORKED MARAGED: 900°F - 1,75 HRS. CAST 7C-063 WELD PROPERTIES r ž COMPARISON OF FILLER WIRES
TRANSVERSE WELD TENSILE AND FRACTURE TOUGHNESS PROPERTIES
18% NICKEL ALLOY (250 KSI)-0.140° SHEET 300 PS r y UNWELDED SHEET (LONGITUDINAL) PROPS. YS JOINT EFFICIENCY - % REDUCTION IN AREA-% Ke RANGE - KSI VIN 2 2 33179 2 3 CAST 70-063 28 3 SOLUTION HEAT TREATED MARAGING 900°F - 10 HRS. 250 KSI 70-055 WELD PROPERTIES 23 300 KS! 7C-054 2 3 UNWELDED SHEET (LONGITUDINAL) PROPS 222 2 % % (AR) YTIJITOUO 8 80 0 20 -003 <u>189</u> ٦ Š g 8 7 ႙ွ် VIELD STRENGTH JOINT EFFICIENCY-

Figure 76

Table 14

EFFECT OF SOLUTIONING TIME AND TEMPERATURE ON THE HARDNESS OF 18% NICKEL ALLOY* (250 KSI)

^{*} Allegheny Heat No. 23832 ** Average of 6 Readings *** All specimens maraged @ 900°F for 3 hours after solutioning

Table 14 (Bont.)
Iffect of Schriffening Line and Temperature on the Hardness of 183 (1936)

Maraged Hardness (R _C)	50.0 48.5 49.0 50.0 50.0 49.0 49.4 49.4 49.2
As Quenched Hardness (R _C)	29.0 29.0 28.0 28.0 27.5 27.8 27.0 26.5 26.5 26.5 27.0
Solution Time-Hrs.	サフェをきれてこれを
Solution Temp. OF	1900° 1900° 1900° 1900° 2000° 2000° 2000° 2000° 2100° 2100° 2100° 2100°

*** All specimens maraged @ 900°F for 3 hours after solutioning * Allegheny Heat No. 23832 ** Average of 6 Readings

Table 15

EFFECT OF MARAGING PARAMETERS ON THE HARDNESS
OF SOLUTION ANNEALED 18% NICKEL ALLOY* (250 KSI)

Maraging *** Temp. OF	Maraging Time-Hrs.	Hardness** R _c
700°	1	36.8
700°	\frac{1}{2}	
700°		38.8
700°	2 E	43.5
700°	2 5 9	42.0 44.0
800°	₹.	44 Ġ
800°	1	44.5
800°	2	47.7
800°	5	48.4
800°	2 2 5 9	48.2
900°	}	46.5
900°	Ž.	48.5
900°	2	49.8
acto _o	5	50.4
900°	2 2 5 9	50.5
1000°	3 ,	48.6
1000	ž	49.7
1000 ^o	2 ~	50.0
1000°	5	49.0
1000°	1/4 1/2 2 5 9	48.8

^{*} Allegheny Heat No. 23832

^{**} Average of 6 Readings

^{***} Solution treated 1500°F/1 hr

Table 16

Effect of Solution Time and Temperature

on the

Longitudinal Tensile Properties of 18% Nickel Alloy *(250 KSI)

		Ult.	0.2%		%
Solution	Solution	Tensile	Yield		Red.
Temp **	Time	Strength	Strength	%	in

Solution Temp **	Solution Time	Tensile Strength	Yield Strength	% Flana	Red. in
	Hrs.	<u>KSI</u>	KSI	Elong.	Area
1400	1	272	267	1.5	44
1400	1	288	276	4.0	46
1400	1	279	274	4.0	46
1400		275	266	2.0	47
. 00	15	267	257	5.7	60
1500	ī	255	243	5.0	57
1500	î } 1 } 1	275	263	5.5	51
1500	ī	258	247	5.0	58
1500	ī	257	249	3.9	55
1500	1	258	251	5.0	57
1500	1.5	268	253	6.0	56
1500	1.5	258	248	7.0	52
1500	.2	263	251	6.0	45
1500	2	260	251	6.0	45
1600	1.	258	247	5.0	54
1600	1	255	243	5.0	54
1600	1	255	248	6.0	47
1600	1	257	247	4.0	47
1700	1	249	235	7.0	50
1700	1	251	236	6.0	44
1700	$\overline{1}$	248	238	6.0	38
1700		247	231	6.0	55

^{**} All specimens solution annealed (argon atmosphere) under the above conditions, air quenched and then, maraged at 900°F for 3 hours.

1 表现的现在分词 医克尔特氏病

on the mental description of the property of t

^{*} Allegheny Ludlum Heat No. 23832.

Table 17

Effect of Solution Time and Temperature

on the

Transverse Tensile Properties of 18% Nickel Alloy *(250 KSI)

Solution Temp **	Solution Time Hrs.	Ult. Tensile Strength KSI	0.2% Yield Strength KSI	% Elong.	% Red. in Area
1500	12	272	264	4.0	55
1500	<u>}</u>	273	267	6.0	52
1500	1.5	267	261	7.0	56
1500	1.5	269	262	4.9	53
1500	2	283	273	6.0	37
1500	2	260	247	6.0	44

^{**} All specimens solution annealed (argon atmosphere) under the above conditions, air quenched and then, managed at 900°F for 3 hours.

^{*} Allegheny Ludlum Heat No. 23832.

ON FRACTURE	(250 KSI)
TREATMENT	
EFFECT OF SOLUTION	TOUGHNESS OF 187

Orientation of Specimen Axis to Rolling Direction	Solution** Temp.	Solution Time Hrs.	0.21 Yield Str. KSI	Net Fracture Stress(1) KSI	Notch Strength KSI (2)	Øĝ	Critical Crack Index(4)	Kc (5) KS1/In	Gc (6) + In-lbs/in ²
Parallel	1400	-	271 271	211 199	161 161	3.07	0.12	163	1030
Normal.	1400	-	278	161	125	1.58	0.06	122 115	577 513
Parallel	1500	. Nysia	260 260	275 291	222 226	7.53	0.28	245	2327
Normal	1500	-Nr.	266 266	238 262	203	4.42	0.17	196 226	1489 1980
Parallei	1500	F4	250 250 248		236***			222 227	1910****
			248	298	237	12.69	0.45	306	3625
Normal	1500	,	263 263	328	269	11.50	0.45	314	3822
			256	263	224	6.79	0.26	231	2068

Allegheny Ludlum Heat No. 23832
All specimens maraged at 900°F for 3 hrs.
Specimens tore through pinhole
Gc minimum calculated on hasis of compliance gage data
Centrally notched, fatigue cracked specimens

EFFECT OF HARAGING TREATMENT ON THE LONGITUDINAL TENSILE PROPERTIES
SOL . ANNEALED 182 NICKEL ALLOY* (250 KSI)

Marage Temp	Marage Time Hrs.	Ult. Ten. Str. KSI	0.2% Yield Str. KSI	Z Elong.	7 R.A.
900	1	240	220	_	
**		242	230	6	52
11	â		235	7	51
11	1 3 3	264	254	6 6	50
It		267	252	6	40
**	10	275	263	6	57
	10	274	264	7.	62
850	1	222	03 A	_	
It			212	7	53
ft	1 3 3	22 5	210	7	53
11	3	241	232	7	50
#t		247	234	6	47
f1	10	273	261	6	52
	10	268	259	6	46
950	1	253	0/5	_	
11		256	245	7	56
71	3		249	6	54
11	1 3 3	262	248	7	43
11		267	255	6	55
21	10	261	254	6	46
5.	10	266	245	7	50

^{*} All specimens solution annealed at 1500°F for 1 hour, air quenched, and, them, maraged under the above conditions

TABLE 20

EFFECT OF MARAGING TREATMENT ON THE TRANSVERSE TENSILE PROPERTIES

OF SOL . ANNEALED 187 NICKEL ALLOY* (250 KSI)

the state of the s

9.0			0.2%	7.	7.
Marage	Marage	Ult. Ten.	Yield	Elong.	R.A.
Temp	Time	Str.	Str.	•	
	Hrs.	KSI	KSI	pantalay yakhing ayalay yaya	-
900	1	251	238	6	43
**	1	250	243	5	
11	3	271	266	5	54 42
11	3	264	257	5 5	42 51
850	10	280	266	4	45
11	10	272	261	5	48
**	1	231	218	7	48
11		234	230	5 7 7	
**	1 3 3	250	235	,	47
11	3	248	238	6	48 49
900	10	281	271	5	52
11	10	281	271	5	52 44
950	1	264	251	5	41
11	1	260	252	6	41
**	3	271	257	6	45 43
11	3	273	258	6	43
***	10	274	261		42
11	10	270	267	6 6	42 45

^{*} All specimens solution annealed at 1500°F for 1 hour, air quenched and, then, maraged under the above conditions

Table 21

EFFECT OF MARAGING TREATMENT ON FRACTURE TOUGHNESS OF SOLUTION TREATED 18% NICKEL ALLOY* (250 KSI)

. •						•			
Orienta- tion of Specimen Axis to Rolling Direction	Maraging** Temp. OF	Maraging Time Hrs.	0.2% Yield Str. KSI	Net Frac- ture Stress KSI	Notch Str. KSI	(3)	Crit- ical Crack Index (4)	Kc (5) KSI In	Gc (6) 1n.lb/in ²
						1			
Parallel Parallel	006	-	240		232*** 210***				
Norma1			240		234*** 238***				
Parallel Parallel		m	260 260		221*** 240***				
Normal Normal	·		260 260	254 266	211 244	5.37	0.21	212	1750 2110
Parallel	· · · · · · · · · · · · · · · · · · ·	10	270	248	232	5.27	0.19	210	1700
Normal			270	256	236	5.50	0.20	216	1820
Normal			270	$\frac{218}{\hat{\epsilon}$	188	3.27	0.14	176	1210
T Brill TON	-		270	219	187	3.45	0.13	175	1210

All Specimens Solution Treated At 1500°F For 1 Hour Centrally Notched, Fatigue Cracked Specimens Specimens Tore Through Pin Hole Allegheny Ludlum Heat No. 23832 *** * ×

TABLE 22

LONGITUDINAL TENSILE PROPERTIES OF COLD WORKED 18% NICKEL ALLOY (250 KSI)

%				0.2%	%	%
Reduction	Marage	Marage	Ult. Tens.	Yield	Elong.	R.A.
	Temp	Time	Str.	Str.	J	
	°F	Hours	KSI	KSI		
20	850	1	246	244	4.9	46
11	11	ī	247	247	4.5	41
11	900	ī	263	263	4.3	52
11	11	1	267	266	3.6	54
†1	850	3	268	268	4.6	45
**	11	3	259	257	4.3	50
11	900	3 3 3 3	275	273	4.3	56
11	11	3	284	282	4.8	52
*1	850	10	292	289	4.6	49
11	11	10	292	287	4.9	55
11	900	10	288	283	3.5	47
11	11	10	280	274	4.8	48
30	850	1	278	277	3.7	50
11	11	1	277	277	4.5	53
11	900	1	291	291	4.3	54
11	17	1	293	291	4.4	47
15	850	1 3 3 3 3	297	295	4.2	37
11	11	3	289	288	4.2	53
11	900	3	294	290	4.0	49
**	11		300	297	4.7	54
11	850	10	306	302	4.1	42
11	11	10	306	299	4.4	47
11	900	10	294	289	5.0	49
11	11	10	293	290	4.9	54
40	850	1	293	290	2.5	43
11	11	1	294	294	4.3	47
11	900	1	308	306	4.0	49
11	11	1	284	284	1.9	47
11	850	3	295	295	4.2	47
11	11	3	309	302	4.2	49
11	900	3 3 3 3	307	303	3.3	47
11	***		317	315	4.4	57
11	850	10	319	319	3.0	48
11	**	10	327	326	3.4	43
11	900	10	305	300	4.1	51
11	11	10	307	297	4.5	53

TABLE 22 (Continued)

7.				0.2%	%	7.
Reduction	Marage	Marage	Ult. Tens.	Yield	Elong.	Ř. Á.
	Temp	Time	Str.	Str.		
	<u> </u>	Hours	<u>KSI</u>	ksi		********
40	850	1	287	284	4.3	46
11	11	1	282	280	4.6	52
**	900	$\bar{1}$	300	298	3.9	
11	11		295	292		49
**	850	1 3 3 3	29 9	299	4.0	48
81	11	3	298		3.4	43
11	900	3	293	297	4.1	50
11	11	3		289	4.3	52
11	850	10	300	298	4.5	56
11	11		309	309	4.7	5 3
11	000	10	312	308	4.6	52
11	900	10	302	295	3.5	53
	•••	10	300	295	4.8	52
50	850	1	297	293	4.0	43
ŶĬ	11	1	298	296	4.9	43 47
**	900	1	312	309	4.3	
11	11	ī	308	305		50
11	850		316		4.3	51
11	11	3 3 3 3	310	314	4.3	45
11	900	3		309	4.2	52
11	11	3	313	309	4.2	54
11	850	10	315	313	4.4	45
11	11		324	324	4.0	52
11		10	FAILED AT			
11	900	10	311	305	4.4	47
	••	10	311	303	4.3	53

TABLE 23

TRANSVERSE TENSILE PROPERTIES OF COLD WORKED 187. NICKE. ALLOY (250 KSI)

%				0.2%	%	%
Reduction	Marage	Marage	Ult. Tens.	Yield	Elong.	R.A.
	Temp	Time	Str.	Str.	2101161	100 210
	°F	Hours	KSI	KSI		
••						
20	850	1	264	262	4.4	54
11	11	1	259	257	4.7	51
**	900	1	285	285	3.2	46
	11	1 3 3 3 3	274	274	3.1	45
11	850	3	289	289	2.8	49
11	11	3	285	281	4.5	48
11	900	3	291	287	4.1	47
11	ti					
11	850	10	301	297	4.2	41
**	11	10	305	304	2.8	43
	900	10	301	295	4.5	42.
11	11	10	303	302	3.9	41
30	850	1	283	282	4.2	44
11	11	1	291	289	3.4	45
11	900	1	306	301	4.0	44
##	1.	1	306	302	3.2	49
11	850	3	272	272	1.2	41
f f	ti	1 3 3 3	302	301	3.8	39
11	900	3	317	310	4.1	42
**	ŧ1	3	305	302	4.1	43
11	850	10	324	319	3.8	44
11	11	10	321	316	3.8	42
17	900	10	316	308	3.8	47
ff	19	10	315	306	4.0	44
40	850	1	294	294	4.0	35
11	11	1.	286	283	3.7	43
11	900	1	306	301	3.6	43
11	**	1	304	302	3.4	44
11	850	1 3 3 3 3	303	303	3.8	44
11	**	3	310	306	4.0	42
11	900	3	316	311	2.6	39
11	**		313	311	3.3	40
11	850	10	327	320	3.8	38
11	11	10	329	324	3.8	36
F1	900	10	315	308	4.3	38
11	*1	10	314	309	4.0	41

TABLE 23 (Continued)

% Reduction	Marage Temp °F	Marage Time	Ult. Tens. Str.	0.2% Yield Str.	% Elong.	% R.A.
	<u> </u>	Hours	<u>KSI</u>	_KSI		
50	850	1	318	311	/. 7	
**	* *	1	319	316	4.1	44
11	900	1	330	327	2.8 2.7	35
••	11	1	333	330	3.6	40
11	850	3		AT PINHO	3. 0	32
11	11	3 3	322	318	3.9	27
11	900	3	331	327	3.3	37
11	"	3	327	324	4.0	38
11	850	10		AT PINHO	4•U	45
11	-	10	FAILED	AT PINHO	TE TE	-
11	900	10	323	318	3.6	2.5
	- 11	10	323	318	2.7	35
70 ''	850	1	301	301	2.4	39
	- 11	1	309	309	1.3	37
11	900	1	322	322	2.5	23
11	11	1 3 3 3 3	320	318	2.5	17
	850	3	FAILED	AT PINHOI	 `ਜ	18
11	f t	3	FAILED	AT PINHOL	. E.	-
11	900	3	323	320	2.0	~
11	11	3	327	325	2.0	6
11	850	10		AT PINHOL	Z• U	12
11	11	10	FAILED A	AT PINHOL	,E F	-
"	900	10	326	314	3.1	1.0
11	11	10	317	315		18
			·- •-• •		2.2	18

TABLE 24

EFFECT OF COLD WORK & MARAGING PARAMETERS ON FRACTURE TOUGHNESS OF 18% NICKEL ALLOY* (250 KSI)

	Orientation of Specimen				37 - A					
	Axis to	Managina	Maraging	0, 2%	Net Fracture	W	_	Critical Crack		
2	Rolling	Temp	Time	Yield Str.	Stress(1)	Notch Strength(2)	P	Index(4)	Kc(5)	Ge(6)
Raduction	Direction		Hrs	KSI	KSI	KSI	(3)	in	KSI /in	$in-1b/in^2$
	<u> </u>									
20	Parallel	900	3	278	276	236	6.06	0.23	236	2150
	Normal			287	206	167	2.48	0.10	158	970
30	Parallel	850	10	300	289	255	5.60	0.21	246	2340
				300	248	209	3.88	0.14	197	1500
	Normal			317	170	132	1.27	0.05	124	600
			_	317	186	145	1.61	0.06	139	750
	Perallel	900	3	294	250	210	3.85	0.15	200	1550
	Normal			305	178	139	1.36	0.06	132	675
	Parallel		5.5	292	221	187	2.96	0.11	174	1173
				292	252	223	4.18	0.16	207	1661
	Hormal			306	162	129	1.26	0.05	119	549
				306	236	136	2.10	0.08	154	910
40	Parallel	850	1.0	309	262	216	3.87	0.15	209	1700
				309	248	212	3.52	0.13	199	1530
	Normal			322	158	118	1.06	0.04	114	505
				322	166	125	1.19	0.05	121	567
	Parallel	900	3	294	232	191	3.35	0.13	186	1335
				294	274	234	5.26	0.20	232	2085
			10	295	228	200	3.28	0.12	181	1260
				295	221	194	2.96	0.11	175	1190
	ro mal	900	3	311	136	113	0.88	0.03	101	392
				311	139	116	0.88	0.03	103	414
			10	309	171	116	1.32	0.05	122	577
				309	164	113	1.22	0.05	118	535
50	Parallel	850	10	324	211	179	4.08	0.16	161	1005
				324	206	176	1.92	0.07	156	940
	Morrial			323	136	98	0.73	0.03	96	360
				323	124	98	0.63	0.03	90	314
	Parallel	900	3	311	203	175	2.11	0.08	157	944
				311	235	200	2.85	0.11	184	1310
			10	304	216	173	2.47	0.10	166	1070
				304	237	196	3.16	0.12	187	1360
	Normal		3	326	127	102	0.67	0.03	94	338
				326	118	95	0.58	0.02	87	293
			10	318	128	102	0.69	0.03	92	325
				318	120	96	0.61	0.02	86	290
70	Parallel	900	3	309	196	159	1.99	0.08	150	873
			-	309	189	155	1.77	2.07	143	790
	Mormal			323	123	100	0.53	0.02	90	314
				323	144	108	0.76	0.03	99	370

TABLE 25

LONGITUDINAL TENSILE PROPERTIES OF WARM WORKED 18% NICKEL ALLOY (250 KSI)

Warm Work Temp. °F	Marage Temp. °F	Marage Time Hours	Ult. Tens. Str. KSI	0.2% Yield Str. KSI	% Elong	% R.A.
1200	გ 50	1	175	171	15	49
ti		1	182	176	18	50
11	900	1	171	160	19	33
**		1	183	168	17	44
11	850	3 3	186	174	17	34
n	900		177	171	16	43
11	11	3 3	181	171	17	68
11	850	10	180	178	17	62
11	"	10	177	173	18	54
11	900	10	187	189	12	53
11	11	10	182	174	16	63
		10	178	170	16	51
1400	850	1	233	320	,	
11	11	1	241	228	6	44
t t	900	ī	270	231 262	6	40
11	11	ī	267	255	6	44
F f	850	3	269	261	5 6	57
11	tt	3	260	252		43
11	900	3 3 3	273	267	6 5	48
11	13	3	269	266	4	57 57
17	850	10	272	270	6	57 50
11	**	10	273	275	5	50 40
fi	900	10	275	268	4	49 50
11	!	10	274	270	5	50 50
1/00				_, ,	J	JV
1600	850	1	207	196	6	46
ff	11	1 1 3 3 3 3	214	200	7	41
11	900	1	239	221	8	38
1:	11	1	240	220	8	44
ti .	850	3	239	224	6	40
31		3	232	218	9	43
17	900	3	253	244	6	55
f:			254	231	6	55
11	850	10	249	240	6	43
11		10	248	237	6	55
11	900	10	264	253	4	50
		10	262	256	4	51

TABLE 26

TRANSVERSE TENSILE PROPERTIES OF WARM WORKED 18% NICKEL ALLOY (250 KSI)

Warm Work Temp.	Marage Temp	Marage Time Hours	Ult. Tens. Str. KSI	0.2% Yield Str. KSI	% Elong	% R.A.
1200	850	1	182	175	10	45
ft	11	1	174	174	13	43
11	900	1	188	177	15	51
f 1	9 8	1	183	163	18	59
11	850	1 3 3 3 3	188	171	16	56
t1	tt.	3	180	165	12	58
11	900	3	184	175	17	70
11	?1		182	161	17	65
11	850	10	171	160	16	45
11	11	10	157	136	17	57
11	900	10	172	159	11	46
† 1	11	10	174	159	17	51
1400	850	1	240	231	7	36
11	ti	1 1 1	238	221	6	33
11	900	1	256	251	6	47
11	**	1	258	246	6	47
11	850	1 3 3 3 3	26 5	260	7 6	46
ff	**	3	263	250	6	32
11	900	3	286	270	5	49
15	11	3	267	264	5 5	56
11	850	10	273	267	6	44
11	**	10	270	262	6	48
11	900	10	271	269	4	46
f \$	11	10	273	268	4	47
1600	850	1	242	237	б	42
11	4.0	1	213	197	8	41
11	900	1	240	222	7	39
15	11	1	233	216	9	48
11	850	3	243	236	4	29
11	11	3	228	207	6	42
tt	900	3	254	244	5	55
¥ť	75	1 3 3 3 3	245	235		51
ŧŧ	850	10	281	266	5 5 7	4.5
§ ?	11	10	250	245	7	22
11	900	10	264	257	5	48

Table 27

EFFECT OF MARAGING TREATMENT ON FRACTURE TOUGHNESS OF WARM WORKED 18% NICKEL ALLOY * (250KSI)

G _c (6) [†] in.1b/in ²		1611 1589 1808 1535 1234 1190 1103 1256
Kc (5)		204 202 216 199 178 175 169 180
Crit- ical Crack Index (4)		1.16 1.13 2.08 1.05 0.67 0.54 0.54 0.50
e E		3.13 2.84 3.83 2.76 1.77 1.39 1.82 5.45
Notch Str. (2) KSI	169**	205 213 203 199 179 182 169 194
Net Frac- ture Stress (1)		246 244 257 237 223 262 262 242 242
0.2% Yield Str. KSI	172	267 267 267 269 269 269 269 255
Maraging Time Hrs.	10	3
Maraging Maraging Temp. Time OF Hrs.	006	
Orienta- tion of Specimen Axis to Rolling Direction	Parallel	Parallel Normal Normal Normal "
Warm Working Temp.	1200	1400

^{*} Allegheny Heat No. 23832

t Centrally notched, fatigue cracked specimens

^{**} Specimens tore through pin hole

Table 28

HEAT TREAT RESPONSE OF A THICK SECTION**

OF 18% Ni ALLOY (250 KSI)*

Specimen Location in Cube***	U.T.S. KSI	0.2% Yield Str. KSI	Z Elong.	Red. in Area***
Surface	279	272	8.5	38.6
	277	268	8.0	31.2
Center	274	266	9.0	36.8
	278	270	8.0	30.3

* Allegheny Heat No. 23832

** Cube dimensions: $4\frac{1}{2}$ " x $4\frac{1}{2}$ " x $5\frac{1}{2}$ "

*** Specimen machined parallel to flow lines at both ends

**** H.T.: Soln: 1500°F/1 hr. Marage: 900°F/3 hrs.

.

(1 hr./in. thickness allowed at respective temperatures)

TABLE 29

EFFECT OF FORGING REDUCTION ON THE PROPERTIES OF 18% (250 KSI) MARAGING NICKEL STEEL

Smooth Bar Tensile Data

TABLE 29 (

(Cont'd.)

EFFECT OF FORGING REDUCTION ON THE PROPERTIES OF 18% (250 KSI) MARAGING NICKEL STEEL

	Notch Bar	Notch Bar Tensile Data			
Location	% Reduction	Heat Treatment	U.T.S. (KSI)	Klc (KSI In)	
First Upset Vertical-Center	33,8	1500°F/1 hr.	385.2	7 67	
Vertical-Edge	33.8	900°F/10 hrs.	380,8	78.9	
Horizontal-Center	33.8		379	78.5	
Horizontal-Edge	33.8		349.8	72.6	
Second Upset			•	•	
Vertical-Center	20		378.4	7 82	
Vertical-Edge	20		379.6	78.6	
Horizontal-Center	20		371.4	9 9 2	
Horizontal-Edge	. 50		369.4	76.5	

Gle

 Table 30

COMPARISON OF SHEET AND BAR STOCK TENSILE PROPERTIES OF 18% NICKEL ALLOY* (250 KSI)

		Ten	sile Propertie	is of Bar St	tock	Ten	ille Propertie	s of Sheet	Stock
Sol'n** Temp.	Sol'n Time Hrs.	U.T.S. KSI	0.27 Y.S. Elong. Re KSI 7 A1	Elong.	Red. In Area Z	U.T.S. KSI	i. 0.2% Y.S. Elong. Rec	Elong.	Red. In Area Z
1400	1 hr.	251 251	229 235	15 15	59 52	272 288 279 275	267 276 274 266	2000	97 97 77
1500	** hr: hr:	267 279	251 265	11	3 3	267 275	257 263	5.7	51
1500	1 hr.	259 257 267 261	245 245 251 244	11 16 14 12	56 56 56 56	255 258 257 258	243 247 249 251	0000	57 58 55 55
		i i							

Allegheny Ludlum Heat No. 23832

** All specimens maraged @ 900°F for 3 hours

TABLE 31

Critical Fracture Toughness**

Parameters of 18% Nickel Alloy* (250 KSI)

Condition	Heat Treat	N.T.S. KSI	K ₁ C KSI /In	G ₁ C in-lb/in ²	N.T.S.
Annealed	Sol'n.: 1500°F/1 Hr. Marage: 900°F/3 Hrs.	340 335 344	65.1 63.4 65.8	164.1 155.9 168.0	1.50 1.30 1.34
30% Cold Work	Marage: 900°F/1.75 H.	398 379	82.5 78.6	263.9 239.3	1.38
40% Cold Work		391 392	81.1 81.3	254.6 255.9	1.29 1.30
50% Cold Work		409 398	84.8 82.5	278.6 263.9	1.33 1.30

^{*} Allegheny Heat No. 23832.

^{**} Critical fracture toughness calculated from circumferentially-notched tensile bars (Kt = 10).

Table 32

- VERTICAL TRAVERSES (2) WELD HARDNESS DATA - DPH (1) 18% NICKEL ALLOY (250 AND 300 KSI) - VERTIC

7C-055) Maraged		529	513	710	000	217	521	542	551	517	200	517	525.4
KSI 250KSI (7C-055) As-Welded Maraged		312	330	336	000	334	314	1	328	316	318	320	323.1
250 (7C-054) Maraged		521	533	000	7	575	529	521	505	521	525	529	521.8 50.5
250 300 KSI (7C-054) As-Welded Maraged		322	326	378	333	700	341	:	326	318	326	324	328.9 33.5
		246	551	513	269) u	222	609	593	603	603	603	574.55
KSI Cast (7C-053) As-Welded Maraged		326	330	334	361	37.1	7+7	354	345	336	334	336	339.7 34.7
300 KSI (7C-054) C d Maraged As-		546	269	579	551	56.5	ָרְיבְי	7/4	260	593	260	583	568 53
300KSI (347	357	336	322	316	010	220	330	343	334	334	333.9 34
Base Material Filler Wire Conditions (3)	Distance From Top of Weld In.	.020	.040	090.	.080	001.	120	071.	.140	160	.180	. 200	Average-DPH Rc Converted

(1) Diamond Pyramid Hardness - 10 KG load, 136° apex angle.

Vertical traverse - top to bottom along weld centerline. (5)

(3) Marage: 900°F/3 hrs.

Table 33

18% NICKEL ALLOY (300 and 250 KSI) - HORIZONTAL TRAVERSE (1) WELD HARDNESS DATA

8 8 8	Filler	Condition	Dista	Hardness - DPH (2) Distance from Weld Centerline - In.	iness and Welc	Hardness - DPH (2) from Weld Center1	(2) erline	- In.		Average
Material	Wire	(3)	0	.020	.040	.060	.080	100	DPH	(Converted)
300 KSI	7C-054(4)	As-Welded	330	328	335	333	341	332	333	34
		Aged	565	584	589	579	574	:	578	54
	70-053	As-Welded	341	328	334	324	330	330	331	33.6
		Aged	269	555	579	583	583	i	574	53.7
250 KSI	7C-054(4)	As-Welded	335	323	314	312	323	i i	321	32.5
		Aged	534	523	519	534	534	1	529	21
	7C-055	As-Welded	328	314	312	326	326	ł	321	32.5
		Aged	521	538	529	533	529	i i	530	51.1

⁽¹⁾ Traverse taken along weld midpoint line

Diamond Pyramid Hardness, 10 KG load, 136° apex angle (5)

⁽³⁾ Aged: 900°F/3 hours, Air Cool

⁽⁴⁾ Average of two surveys

Table 34

WELD MAJ AFFICIED TONG EARDMESS DAIA - DUT (1) 18% BICHIL MINT (250 ESI) - HORIZOWTAL TRAVELE (2)

										•				:									
bass beistist	Condition(3) ,915	787	R	3	3	1	8	297	켝	7	3	13	14 14 14 14 14 14 14 14 14 14 14 14 14 1	Distance From Wold Interface - In.		a	, 9 97	7	2	7 8	ar.		2017
belution lest Treated de-Veldad	do-Welded	ĝ	ĝ	ã	77	ź	77	ä	ž	ĝ	77	ů	314	310	2		1117						
	1	ã	**	ă	ã	88	33	125	ž	ž	3	ă ;	188		188	Š	3211	ž	23 53	529 539	3	88	ž
40% Cold Derived	46 - Va [da-d	â	· n	314	ã	ă	ā	3	\$3	ã	â	*	3	8	ŝ	3	3	*	7 8	114	3	•	•
	ļ	ã	ž	3	•	â	122	22	331	ž	ž		8		32	3 3	ĭ	•	4		*	3	

(1) Diamond Pyramid Hardmann, 1865 lead, 136° apen anglo (2) Treverse taken slong about contestine (3) Agod: 900*F/3 hrs., air cost

Table 35

TRANSVERSE WELD TENSILE PROPERTIES
18% NICKEL ALLOY (250 KSI) - SOLUTION HEAT TREATED 0.140" SHEET (1)

	Eff7	Y.S.	96 100		101			93		90		92		97		102	
•	Joint	T.S.	96		98			93		98		16		96		66	
ropertie	R.A.	12	2.9 14		21.6			18		17.8		21.5		18.4		16.1	
erage P	Llong	7	2.9		3.3			3.1		2.5		3.6		2.8		2.8	
Ν	0.27 TS	KSI	253		766			235		265	•	232		256		268	
	UTS	KSI	256		269			246		269		241		265		273	-
	R.A.	14						20									
	Llong	P4	2.8	2.9	3.0	3.5	3.5	3.0	3.2	2.5	2.5	3.7	3.5	2.5	3.0	2.5	3.0
	0.2% YS	KSI	250	256	264	3 66	267	233	237	265	792	231	232	249	262	267	269
	UTS	KSI	253	259	268	270(2)	270(2)	246	246	268	270	238	243	266	797	273	273
951	Ties	Hre,	er)	•	20			m		91		m		2		91	
Har			0		006	•		8		8		8		8		006	
Willer Dire	Heat No		70-054					70-053	! !			70-055	1			33179	
741164	Type		300 FCT					Cast))			250 KSI				Cast	

(1) Sheet rolling direction parallel to orientation of specimen axis

(2) Specimens failed in base metal, all others failed in weld

Table 36

TRANSVERSE WILD TENSILE PROFERRIES
18% NICKEL ALLOY (250 AND 300 KSI) - SOLUTION MEAT TREATED 0.070" SHEET (1) (2)

			, and	•						•	America Properties	•		
Pass Material Type Heat No.	ALL PARTY	F Vire	g r	2 2	5 E3	0.21 Y.S. KSI	Elong.	P. A.	25 E	0.21 Y.S. ESI	Elong.	R.A.	Joint T, S,	111
		;		•	;	;			;		ļ	;	1	:
151 00c	3000	300KS1 7C-034	Ş	n	£ 3	262 262	s: ::	23.0	197	2 2.		3 0.8	ŝ	ž
					257	282	1.5 2.5	22.3 10.6						
	š	70-053	Ş	•	256 258	257 259	2.5	15.7	257	5 2	1.5	16.2	2	
250 KSI	3000.51	300KS1 7C-054	8	01	269 271	268 269	0.0	13.1	2	59.	0.1	13.2	2	701
	5	Cast 7C-053	8	91	250	250	2.0	12.9	54.9	249	0.2	14.5	5	*
	2500.51	250KSI 7C-055	8	2	250	252	0.5 5.5	35.0	25	152	•: •:	8.00	3	\$

(1) Sheet rolling direction parallel to orientation of specimen axis.
(2) All specimens failed to weld.

Table 37

18% NICKEL ALLOY (250 KSI) - 40% COLD WORKED 0.140" SHEET (1) (2) TRANSVERSE WELD TENSILE PROPERTIES

Average Properties	YS Elong R.A. UTS	KSI KSI 7 7 KSI KSI	236 3.5 20 242 235 3.5 22 82 233 3.5 24	249 250 4.0 26.4 255 256 3.5 22 86 88 261 261 261 3.0 17.5	247 246 4.0 27.2 248 248 3.8 22.9 84 85 249 250 3.5 18.5	245 246 4.0 22.8 246 247 3.8 22 83 85 247 247 3.5 21.2
			1		248	246
			20	26.4 17.5	27.2 18.5	22.8 21.2
			3.5	3.0	4.0	4.0 3.5
0 27	YS	KSI	236	250	246 250	246 247
	UTS	KSI	242	249	247 249	245 247
Marage	Time	Hours	ო	1.75	1.75	1.75
Man	Temp	Œ,	006	006	006	006
	Wire	Heat No.	7C-054	·	7C-053	33179
	Filler Wire	Type	300 KSI		Cast	Cast

Sheet rolling direction parallel to orientation of specimen axis. 3

(2) All specimens failed in weld.

Table 38

TRANSVERSE WELD TENSILE PROPERTIES (1)
18% NICKEL ALLOY (250 AND 300 KSI) - 0.140" SHEET
SHEET ROLLING DIRECTION NORMAL TO ORIENTATION OF SPECIMEN AXIS

41000	L Elong R.A. Joint Eff-T.	1 92 91	7.5 76 76	21.5 82 82	17.5 96 97		1 82 81	37 6 76
Versee Dr.	Elong R	2.3 11	2.2	2,3 21		2.3 14	25.5	3.7 33
	7.S	269	272	262	253	265	256	231
	UTS KS1	274	275	266	254	268	261	234
	R.A.	12 8 9.7 14.1	60 ~	25 18	18	18 10.6	21 51	12 F
	Elong 1	2002	2.2	2.6	22.0	1.0	2.7	4 4
	0.2% Y.S.	278 263 266 266	275 269	257 267	255	764 766	254	231
	57 S	282 269 272	272	262 270	257	267	259	234
486	Time	e	m :	5.5	М	10	m	1.75
Y.	Temp Time	0%	006	8	8	900	006	8
	26	7C-054	7C-054		70-054		7C-054	
	Type Heat	300 KSI	300 KSI		300 KSI	ţ	300 KSI	
	Base Material be Condition(2)	SHT	50% CM		SKT		40% CW	
i	Type	300 KSI	300 KSI		250 KSI		250 KSI	

(1) All specimens failed in weld

(2) SHT - Solution Heat Treated 1500*F/1 hr, Air Cool CW - Cold Worked

Allegheny Heat No. 23826

Table 39

LONGITUDINAL WELD TENSILE PROPERTIES 18% MICKEL ALLOY (250 AND 300 KSI) - SOLUTION HEAT TREATED 0.140" SPERT (1)

	7-333	95 93	~	~4		~ i	•
	19	&	8	8	•	6	8
							97
	Z.A.	្ន	23	26.5	33.5	32.5	
	0.2% Elong R.A. Y.S. % % %	٠	'n	5.5	5.5	6.5	5.5
Awar	0.27 Y.S. KSI	27.4	270	272	75	240	249
	EST	283	278	7	256	255	256
	1	23	22	ងដ	32	36	ងដ
	Elong	8, 8	n n	v ve	win	٧.	N.A
	0.27 1.5. KSI	277	267 273	276 268	243 245	242	245
	UTS ISI	285 280	271 284	287	257 260	255 255	257 257
	Temp Time	n	m	m	m	m	m
Ž	<u>.</u> .	8	8	8	8	8	00
	Wire Heat No	70-054	7C-053	33179	7C-054	7C-053	76-055
	Material Type Hea	300 KSI 7C-054	Cast	Cast	300 KSI	Cast	250 KSI
	Bass Material	300 KSI			250 KSI		

(1) Sheet rolling direction normal to orientation of specimen axis

TABLE 40

ž

TRANSVERSE WELD PRACTURE TOCHNESS PROPERTIES 18# NICKEL ALLOY (250 KSI) - 0,140" SHEET

PILLER WINE	WIRE HEAT NO.	15년 19년 -	HARAGE TIME (hrs.)	YIELD STR. (KSI)	NET PRACTURE STRESS (RSI)	NOTCH STRENGTH (KSI)	•	CRITICAL CRACK INDEX (1n)	rsi Yn	1n-1b/1n ²
Cast	70-053	8	ox	265	15.8	167.2	1.49	960.	111.2	479.4
				592	131.9	4.86	1.17	₹6.	8.3	361.1
300 K3I	(1) 450-22	86	13	464	243.5	184.6	3.8		191.5	1450
				264	239.6	193.2	3.87		193.5	1452
250 K3I	70-045	006	10	755	192.4	149.2	8.	201.	148.1	849.7
				. 257	212.3	124.8	5.3	. c11.	151.2	. ₹.9 8
Cast	33179	8	10	. 568	185.3	143.6	2.31	.087	140.5	764.8
				368	164.2	98.03	1.59	950.	112.0	0 . 10 4

(1) Roth specimens notubed partially in weld heat affected zone.

Table 41

	Breildes Best, fronttion	0.11 11040 12 1 Leagitedisal Transverse 11.1 1 1 Leagitedisal Transverse 12.1 1 00 122-306 231-314				190-130								
	ļ	Ē	ı	2				£						
	.			144-131	(2)6274	111-4	113-141		. •	•	•	•	•	
_		:		•	ē	8	ă	=	2	~	2	3	1	
yerti.	•	-	ı	*	*	2	2	2	1	=	=	1 2	=	
Vald Pr	1	,,,	١	÷:	#		=	22.0	2.5	22.0	Ř	13.2	11.5	
APPLIANT				::	3.3	5.	7.	2.5	7	2	231 231 1.4 30.8 91 93	1.0		
	6.23	į	1	**	*	S	Į,	. #	Z	*	22	ž	ž	
ļ	E	ä	l	ž	2	583		\$	Z	ž	ន្ត	2	ž	
	i i		Î	2	:	:	2	r. 3	1.7	1.73	2		:	
	į	F		3	8	8	8	ž	8	8	2	8	ž	
3	Mar Will Boat Bo.			£-63	¥.0%	X-633	r id	¥9-2	2.0°%	22.22	2 -6 2	X-4X	×-5	
1				<u> </u>	10 9X	ž	ž	8	j	3	138 ES	00X	ž	
•		Ė		3				3.0			8.03			
	Condition			Seletion Beat 0.140 250 KSI Treated (1)				AST Cold Worked			Selecton Bear Treated (1)			

(1) Demolded about evlotion hast tracted 1960*7/1 hour (2) Estimated on basis of fractory temphons lovel of the utro depos

3.3 <u>18% Nickel Alloy (300 KSI)</u>

The results of the effect of the various heat treating parameters on the hardness, mechanical properties, and fracture toughness of 18% nickel alloy (300 KSI) in the various conditions are presented in the next few sections. Before discussing the results, it is mentioned that the responses for this alloy are very similar to the 18% nickel alloy (250 KSI) with one big exception: the yield response is higher and the fracture toughness is, in general, lower at the high yield strength levels due to the higher titanium and cobalt contents.

3.3.1 Solution Annealed Condition

3.3.1.1 Effect of Solution and Maraging Parameters on Hardness

The "as-quenched" hardness response data after solution annealing at various conditions are plotted in Figure 77 and the individual hardness values are given in Table 42. The effect of maraging temperature and time on the hardness of solution annealed (1500°F/1 hr) are given in Figure 78 and Table 43.

Both the hardness curves show striking similarities to the hardness of 250 KSI nominal yield strength alloy. The maximum for the hardness again seemed to be between solutioning temperature of 1400°-1700°F and between the maraging temperatures of 850°F and 950°F. These temperatures were selected for more extensive evaluation of the sheet tensile data.

3.3.1.2 Effect of Solution Treating Parameters on the Sheet Tensile Properties

Figures 79, 80, and Tables 44 and 45 present the longitudinal and transverse tensile properties as a function of solution temperature. The strength values dropped about 20,000 psi when the solution annealing was increased from 1400°F to 1500°F.

The longitudinal and transverse tensile properties are plotted as a function of solutioning time in Figures 81 and 82. The results are also given in Tables 44 and 45. From the data, it was concluded that a solution treatment of 1500°F for 1 hour was sufficient to dissolve all the chemical heterogeneities and still give a fine, uniform grain size.

3.3.1.3 Effect of Solution Parameters on the Fracture Toughness

The longitudinal and transverse toughness are compared at two solutioning temperature and time levels in Figure 38. The effect of solu-

tioning on the fracture toughness is presented in Table 46. The average longitudinal K_c value shows a very sharp drop from 220 KSI (in. to 83 KSI (in. when the solutioning temperature is changed from 1500°F to 1400°F. Changing the holding time from 1 hour to ½ hour further reduces the longitudinal value to 185 KSI (vin. Since the crack propagation resistance is very critical at these high strength levels, it is suggested that the solution temperature of 1500°F and 1 hour should be maintained for annealing.

3.3.1.4 Effect of Solution Annealing Temperature on Microstructure

The effect of solution annealing temperature on the microstructure is shown in Figure 83. The heterogeneity and the indication of residual effects of working in the structure were much more pronounced in specimens solution annealed at 1400°F. There appeared to be considerable grain growth at the higher solutioning temperatures.

3.3.1.5 Effect of Maraging Parameter on the Tensile Properties of Solution Annealed Alloy

The longitudinal and transverse tensile properties are given in Tables 47 and 48. The longituding and transverse yield strengths are plotted as a function of maraging temperature in Figures 84 and 85. As discussed in Section 3.2.1.5, the maraging parameters were selected from the hardness data.

The longitudinal and transverse yield strength response surfaces are plotted as a function of maraging time and temperature in Figures 86 and 87. The yield strength surface responses are very similar to the 18% nickel (250 KSI nominal yield strength) alloy and the maximum response (297 KSI) occurred when the alloy was maraged at 900°F for 10 hours.

3.3.1.6 Effect of Maraging on Fracture Toughness

The fracture toughness data is reported in Table 49 and is plotted as a function of maraging time at 900°F in Figure 88 for both the longitudinal and transverse rolling direction. It is shown that as maraging time increases, toughness decreases in both directions. For a 10 hour marage, the K_C values in the longitudinal and transverse directions were reduced to 160 KSI Vin and 103 KSI Vin, respectively. The K_C values were maximum for a 1 hour marage, being 220 KSI Vin in the longitudinal direction and 183 KSI VIn in the transverse direction. The 3 hour marage produced a longitudinal value of 183 KSI Vin and transverse value of 157 KSI Vin.

3.3.2 Cold Worked Condition

3.3.2.1 Effect of Cold Work on the Tensile Properties

The effects of cold work on strength were determined for five (5) levels of reduction namely, 20, 30, 40, 50 and 70 percent. Tables 50 and 51 report the effects of maraging temperature and time on the tensile properties of the 18% nickel alloy (300 KSI). The data are plotted in Figure 89 (longitudinal properties) and Figure 90 (transverse properties) for two maraging temperatures, 850°F and 900°F. It is shown that 850°F does not produce equivalent response to 900°F maraging in the longitudinal properties. For both maraging temperatures, maximum response is achieved at the 50% cold work level. However, the 900°F - 10 hour marage exhibits an ultimate tensile strength of 347 KSI versus 338 KSI for the 850°F marage. With lesser degrees of cold work and shorter maraging times the margin in strength between the two temperatures increases to approximately 25 KSI.

An important observation was made relative to maraging time at $900^{\circ} F$. Little difference between one (1), three (3) and ten (10) hours was observed. Conversely, the $850^{\circ}F$ marage was highly dependent on time since differences as great as 50 KSI were obtained between a one hour marage and 10 hour marage for 20% cold worked material.

Transverse strengths are higher than longitudinal strengths. However, ductility is markedly decreased at all cold work levels and for both maraging temperatures. In general, the transverse properties are less responsive to cold work degree. Similar behavior to longitudinal strengths were observed for both maraging temperatures and also times studied.

Cold working produced significant increases in strength compared to solution and maraged strengths. However, the increased strength was balanced by a perceptible loss of ductility where high strength increases were achieved.

3.3.2.2 Optimization of Yield Strength Response of Cold Worked 18% Nickel Alloy (300 KSI)

Longitudinal yield strength response as a function of degree of cold work and the Larson-Miller parameter is plotted three dimensionally in Figure 91. This method of data presentation was used to analyze the data effectively and aid in visualizing the geometrical relations between yield strength response and the various parameters which govern response. Maragin tire and temperature were expressed in the form of the empirical Larson-Miller parameter, $P = {}^{\circ}R$ (20 + log hours) x 10^{-3} and protted against cold work percent to provide a

yield strength response surface shown in Figure 91. The surface indicates that the optimum yield strength response is at the 50% cold work level and a 28.2 Larson-Miller parameter level (see shaded area). With increasing cold work, the yield strength increases at a constant rate until it reaches a maximum at the 50% cold work level. Yield strength then declines at the higher cold work levels. As expected, the response surface reveals a very sharp rise between a "P" of 26.2 to 27.2. The rise in response is gradual from a "P" of 27.2 reaching the maximum ridge at the parameter level of 28.2, i.e., equivalent to 14.2 hours at 850°F; or to 5.4 hours at 900°F; or to 1 hour at 950°F. At higher levels of "P", the alloy structure overages and/or reverts to austenite. This occurrence is detected by a slight drop in strength.

3.3.2.3 Effect of Cold Work on Fracture Toughness Parameters

The effect of cold work degree and maraging parameters on longitudinal and transverse fracture toughness parameters are reported in Table 52. The fracture toughness parameter K_C as a function of cold work percent is plotted in Figure 92. Inspection of the accumulated data revealed that as cold work degree increased, fracture toughness decreased. For material cold reduced 20% the longitudinal K_C value averaged 204 KSI √In. for a 900°F - 3 hour marage. At a 50% cold work level and comparable direction and heat treatment, the K_C value dropped to 101.5 KSI √In. The curve in Figure 92 shows that fracture toughness increases from a cold work level of 50% to 70% (101.5 KSI √In. to 123 KSI √In). It is believed that the increase is a result of data scatter rather than true behavior since transverse behavior does not show a similar trend.

Cold work levels above 30% exhibited a pronounced reduction in fracture toughness levels. At this stage of the alloy's development, greater definition of high cold work levels is required before the strengths produced could be used for aerospace applications where toughness is critical.

3.3.3 Warm Worked Condition

3.3.3.1 Effect of Warm Work on the Tensile Properties

Longitudinal and transverse specimens were machined from sheets warm worked at 1200°F, 1400°F and 1600°F. Specimens were maraged at 850°F and 900°F in order to determine the effect of maraging on tensile properties. Times at the respective maraging temperatures were varied from 1 to 10 hours.

The tensile properties of warm worked 18% nickel alloy (300 KSI) are presented in Tables 53 and 54. The longitudinal and trans-

verse data are plotted in Figures 93 and 94. It is shown that maximum strength is exhibited by material warm worked at 1400°F regardless of maraging temperature and rolling direction. Optimum response is achieved by 10 hour maraging times for both 850°F and 900°F temperatures. Figure 95 shows the three dimensional response surface for yield strength as a function of the Larson-Miller parameter and warm working temperature. The yield strength response surface indicates the optimum response to be at the 28.56 parameter level. The yield strength increases sharply between 1200°F and 1400°F warm working temperatures. A maximum is attained at 1400°F followed by a decline as warm working temperature decreases. The increase in surface response is small with Larson-Miller parameter changes. The maximum parameter level of 28.56 is equivalent to 10 hours at 900°F.

3.3.3.2 Effect of Warm Work on Fracture Toughness

The effect of warm work temperature on fracture toughness parameters in the longitudinal and transverse rolling directions are tabulated in Table 55. The data are graphically illustrated in Figure of the preceeding Section 3.2 - 18 % Nickel Alloy (250 KSI) for the maximum warm work response temperature of 1400°F. The results of this study indicate that the fracture toughness parameter K_C is low for all conditions of warm work and 900°F maraging times with the exception of a 900°F - 3 hour treatment for 1400°F warm work material. An average toughness level of $K_C = 153$ KSI $\sqrt{10}$, was achieved by longitudinal specimens. Transverse specimens attained a K_C level of 138 KSI $\sqrt{10}$. Consequently, it is concluded that the optimum warm work temperature studied was 1400°F when the material was subsequently maraged at 900°F for 3 hours.

3.3.4 Miscellaneous Mechanical Properties

3.3.4.1 Biaxial Strength

The purpose of the work presented in this section was specifically aimed at the development of shear spinning process parameters for 18% nickel, rocket motor case cylinder fabrication. In addition, the spun sub-scale cylinders were burst tested to obtain the ultimate burst strength and consequently, the degree of biaxial improvement over uniaxial strength.

The original purpose for initiating the program was further implemented by the Curtiss-Wright Corporation's decision to fabricate two full scale 18% nickel Pershing motor cases. The cylinder sections of these cases have been shearspun from forged and machined preforms.

a. Preform Preparation

Billet stock of the 300 KSI composition was procured from the Allegheny Ludlum Steel Corporation. Billets were shipped to the Taylor Forge and Pipe Works for forming into cylindrical forgings. All forgings were produced by back extrusion techniques. The starting temperature was 2200°F. Finishing temperature was 1700°F. Forgings were rough machined by Taylor Forge prior to shipment.

Rough machined forgings were solution treated at 1500°F for one hour. Base metal vessels were machined to the desired configuration. Two shearspinning preforms were obtained from one forging by sectioning the forging in half radially.

b. Shearspinning Procedure and Results

A total of four, six-inch diameter subscale vessels were spun on the Cincinnati Horizontal Hydro Spin Machine Figure 96. Two of the four vessels spun were of the 250 KSI, 18% nickel composition. The remaining vessels were of the 300 KSI, 18% nickel composition. Only 300 KSI vessels were burst tested.

Preform walls were machined to a 0.375" thickness. The final vessel wall thickness desired was 0.070". A four pass spinning operation, similar to the production Pershing process was chosen for the initial trials. Table 56 reports the settings subsequently used for spinning all vessels. R.P.M., roller mose radius and front roller lead were held constant for the four passes. An intermediate stress relief was incorporated after the second pass. The stress relief consisted of a 1500°F soak for one hour.

Each pass served an additional purpose other than reducing wall thickness. The first pass, at a feed rate of 7"/minute, served to break down the hot worked structure. The second pass, at 4"/minute, ring rolled the partially formed vessel to loosen it on the mandrel for ease in removal. The part was then stress relieved prior to the third pass. Tightening the part back on the mandrel was accomplished during the third pass by using a feed rate of 12"/minute. The final pass was conducted at 6"/minute to control the final part diameter. The total combined reduction of passes three and four was 68%.

c. Weld Procedure

The weld procedures used for vessels is reported in Table 57. In two instances repair welds were required. The repair weld procedures are reported in Table 58. Welds subsequently inspected were found sound.

d. Heat Treat Procedure

All solution treated vessels were maraged at 900°F for three hours after final machining.

Uniaxial tensile specimens representative of the same heat of material accompanied the vessels through the heat treat cycle. These uniaxial data are reported in Table 59 along with burst data.

e. Burst Test Procedure

The following facilities were required for the hydrotest of 6" diameter vessels:

- 1. High pressure pump capable of attaining and holding pressures up to 10,000 psig. Oil reservoir with a minimum capacity of 10 gallons located within test building.
- 2. One 0-10,000 psig Heisse Gage with follow-on, needle-transducer located as close to case as possible. Gage calibrated less than twenty-four hours before each test.
- 3. Test area which will safeguard personnel against flying shrapnel from burst cases and which can be closed off in order to keep out unauthorized personnel.

f. Pre-Test Procedure

- 1. The vessel was tested in a horizontal position; care was taken not to damage gages while installing the vessel in the cell. The two end closures were assembled to the vessel prior to installation of the vessel on the test stand.
- 2. The test medium for hydroburst was oil.
- 3. After installation of the vessel on the test stand, the vessel was filled with oil, insuring that all air pockets were purged. The test medium was at room temperature before filling the vessel.
- 4. The instrumentation was set up and checked.
- 5. Prior to starting the test the area was cleared of all unauthorized personnel and the area checked to insure that all test personnel were removed from the immediate vessel area and out of the line of fire.

- 6. The vessel was checked for leaks by pressurizing slowly to 1000 psig and holding for five minutes. If leaks were detected, pressure was released to zero psig and the leakage corrected. The procedure was repeated until the vessel was sealed.
- 7. After the pressure was released to 100 psig the vessel was cycled three times between 100 psig and 1000 psig in a slow and continuous manner in order to condition the strain gages. The pressure was released slowly to zero psig following the third 1000 psig point:

g. Hydroburst Procedure

- 1. All gages were balanced: The CEC was checked for maximum span. A zero and a calibration reading were taken.
- 2. After insuring that all air pockets were purge pressurized slowly to 1000 psig and that all gages recorded on the CEC, the pressure was slowly released to 50 psig.
- 3. The vessel was pressurized to maximum psig (burst) by increasing the pressure from 50 psig to burst in a continuous manner. A Sprague air-operated pump (model S-216C-150) was used to deliver maximum volumetric capacity (approximately .21 G.P.M. at 4000 psig).
- 4. Pressure was recorded on the CEC as well as the Heisse gage mentioned in e.-2.

h. Test Results

The state of the s

Burst test results are presented in Table 59. Uniaxial ultimate and yield strengths obtained from specimens of the same heat, heat treated with their respective vessels are included.

The two forged and machined, unwelded vessels burst at 345 and 348 KSI based upon PR/t (Figure 97). Strain gage analysis indicated unwelded biaxial ultimate tensile strengths of 332 to 342 KSI and 0.2% biaxial yield strengths of 326 to 330 KSI dependent upon the particular strain gage location. Biaxial gain, based upon burst (PR/t) ranged from 14.1 to 17.5% for ultimate strength and 16.2 to 17.6% for .2% yield strength. These values agree favorably with the theoretical biaxial improvement factor of 15%.

The two forged and machined girth welded vessels burst at 310.3 and 335 KSI based on PR/t (Figure 98). Strain gage analyses indicated

that the biaxial ultimate strength of the vessels ranged from 322.8 to 338 KSI, and biaxial 0.2% yield strengths from 327.5 to 328 KSI. These values represent a biaxial improvement in ultimate strength of from 16.7 to 16.9% and 0.2% yield strength of 15.8 to 17.5%.

A shear spun (68% reduction), maraged only (900°F-3 hrs.) vessel burst at 349 KSI. This vessel failed before reaching 0.2% yield as indicated by strain gage analysis. The degree of cold reduction produced a high burst but lowered ductility substantially. 4 similar burst was encountered with the shear spun (68% reduction, maraged 900°F-3 hrs.), girth welded vessel which burst at 302.7 KSI. The strain gage trace indicated that this vessel also failed to achieve 0.2% biaxial yield.

The results of subscale burst tests proved the capabilities of the 18% nickel alloy (300 KSI) in thin walled, ultra high strength rocket motor cases. Examination of the fracture surfaces of forged and machined vessels as well as shear spun vessels exhibited a shear mode of fracture indicative of high toughness. The exact cause of premature failure of the shear spun vessels is not known at this time. Interestingly, the fracture surfaces of the burst spun vessel exhibited shear failure indicative of good ductility and toughness.

3.3.4.2 Elevated Temperature Properties

The effect of test temperature on the tensile properties of the 18% nickel alloy (300 KSI) is presented in Figure 99. It is shown that ultimate and yield strength dropped sharply at a test temperature of 250°F. The decrease in strength continues as test temperature increases, but at a less drastic rate from 250°F (yield of 224.5 KSI) to 750°F (yield of 200 KSI). The rapid degradation in properties is encountered from 750°F to 1000°F (yield of 127 KSI). Surprisingly, ductility does not show a continuous increase, but rather, a relatively stable range of values from 250°F to 1000°F. It appears that reduction of area, which increased from 45% to 60% from room temperature to 250°F counters any increase in elongation caused by increased ductility with higher test temperatures.

The effect of solution time on the elevated temperature propertic is shown in Figure 100 for test temperature of 1000°F. It appeared that 1500°F for 2 hours produced a better combination of yield to ultimate strength because of slightly increased grain coarsening imparting greater high strength stability. However, the data was considered insufficient for any firm conclusions to be made.

3.3.4.3 Heat Treat Response of a Thick Section

A 4.5-inch square by 5.25-inch long billet of the 18% nickel (300 KSI)

alloy was helt treated by solutioning at 1500°F/l hour per inch of section plus maraging at 900°F. The hardenability of the alloy was measured by removing specimens from the surface and the center of the billet. The results are graphically reported in Figure 101. The strengths at both locations are comparable, indicating excellent hardenability. However, the ductility exhibited by the center specimens was drastically inferior to the surface. This is probably attributable to the lack of material conditioning by hot working in the interior of the billet.

3.3.4.4 Effect of Forging Reduction on the Properties of 18% Nickel (300 KSI) Alloy

A similar series of billet and pancake forgings as reported in Section 3.2.4.3 were evaluated for the 300 KSI composition. The results are tabulated in Table 60. Figures 102 through 105 show the effect of forging reduction on directional properties.

The 300 KSI composition exhibits similar strength consistency as a function of forging reduction. Also, a similar consistency of billet properties regardless of location or direction was obtained (approx. 280 KSI) indicating good billet conditioning. As was the case with the 250 KSI composition, insufficient data were available to establish firm trends in properties.

Notch bar properties $(K_t > 10)$ shown in Table 60 indicate good toughness in all but the horizontal-center specimens representing a 33.8% reduction. Similar location specimens for a 50% reduction did not repeat the poor notch behavior. No definite conclusion as to the validity of the former data was possible since the data was limited.

3.3.4.5 Comparison of Sheet and Bar Properties

f- -

A comparison of sheet and bar properties was conducted to ascertain the validity of data interpretation between the two types of specimens. Figure 106 compares the sheet and bar properties for three different heat treat conditions.

The 1500°F solution treatment followed by 900°F-3 hour marage produced excellent correlation between sheet and bar strengths. Reduction in area values were comparable, however, elongation for the sheet specimens was perceptably lower. A 1400°F solution treatment (900°F-3 hr. marage) exhibited higher strengths in sheet form but substantially lower ductility. Incomplete homogenization of the structure is encountered with the low solution temperature.

3.3.4.6 Fatigue Properties

The smooth and notched R.R. Moore rotating beam fatigue, S-N curves are shown in Figure 107. The smooth endurance strength (10^8 cycles) was found to be 95.000 psi. For material solutioned at 1500° F/1 hour and maraged at 900° F/3 hours, the notched bar endurance strength (10^8 cycles) was found to be 65,000 psi for a notch % = 2.

Estimated 90% probability of survival curves indicate a level of 90,000 psi for smooth bar and 60,000 psi for notch bar data.

3.3.4.7 Impact Properties

Charpy impact strength as a function of cryogenic test temperature for solution treated and maraged material (1500°F-1 hour + 900°F-3 hours) is pletted in Figure 108. It is shown that impact strength falls rapidly from 74 ft.-1bs. at room temperature to 22 ft.-1bs. at -100°F. Impact strength then levels off, exhibiting 17.5 ft.-1bs. at -300°F.

Impact strengths of cold worked material (30 and 40% C.W.) are plotted as a function of cryogenic test temperature in Figure 109. Room temperature impact strength for 30 and 40% cold worked material were 23 and 20 ft.-lbs., respectively. Consequently, the fall in impact strength for cold worked material with decreasing test temperature shows a moderate slope. At -300°F however, impact strength for both cold work levels is below 5 ft.-lbs.

3.3.5 Summary Discussion

The combination of strength and fracture toughness exhibited by the 18% nickel (300 KSI) alloy evaluated during this program can be summarized by the data in Table 61. A comparison of fracture toughness and strength parameters as effected by various material conditions is offered. The data presented indicates that the 300 KSI composition solution and maraged material did not exhibit the greatest fracture toughness based on sharp notch round bar specimens. Material cold worked 30% and maraged at 900°F for 5.5 hours produced the best average Kic value (85.3 KSI Vin) and average notch ultimate to smooth ultimate ratio (1.27). Again, as with the 250 KSI composition, small amounts of cold work appear beneficial for improvement of the strength/toughness combination. A comparison of fracture toughness of the 300 KSI alloy in various conditions is presented in Figure to justify this conclusion. It is shown that K for cold worked material is quite comparable to both annealed and warm worked material although at substantially higher yield strength levels.

The microstructure of the 300 KSI composition is presented in two conditions: solution annealed, solution annealed and maraged (Figures 111 and 112). Two magnifications are shown for each condition; 500 X and 18000 X.

The solution treated condition (Figure 111 exhibits a completely martensitic structure. The comparison between a 1500°F solution treatment and 1800°F solution treatment reveals the greater extent of grain coarsening produced by the higher temperature. Both structures show a high degree of solutioning by the absence of large amounts of precipitate structure.

The solutioned and maraged, and 30% cold worked and maraged structures are shown in Figure 112. The most perceptible distinction between the two structures is the finer structure exhibited by the cold worked material. The solutioned and maraged structure exhibits the previous structural effects of solutioning.

3.3.6 Weld Properties

Hardness and tensile properties for the 18% nickel alloy (300 KSI) welded in two material conditions (solution heat treated and cold worked) are presented in the following sections. The various filler materials investigated are also compared on the basis of fracture toughness.

3.3.6.1 Hardness Properties

Weld Zone

Vertical hardness traverses taken along the weld centerline for both the as-welded and maraged conditions are presented in Table 32. As shown in Figure 113, hardness after maraging is quite uniform across both weld passes. In addition, little difference in aged hardness was observed between the two filler wire deposits. Longitudinal weld hardnesses behaved similarly as shown in Table 33.

Heat-Affected-Zone

The results of longitudinal hardness surveys made on both solution heat treated and cold worked welded sheet are given in Table 62 and Figures 114 and 115. Examination of the plotted data reveal d that the weld heat-affected zone of the 300 KSI alloy experienced changes which closely paralleled those previously reported for the 250 KSI alloy. Aging was experienced in the heat-affected zone in both material conditions at a point approximately 0.175 inches from the weld interface. In these areas hardness increased from 36

to $49~R_{\odot}$ in the solution heat treated sheet (Figure 114), and from 42 to $52~R_{\odot}$ in the cold worked material (Figure 115). The increase noted in the solution heat treated 300 KSI alloy was greater than previously observed in the 250 KSI alloy (Figure 69), probably because of the more rapid aging response of the former. Response in the cold worked material heat-affected-zone was about the same in both 18% nickel alloys.

Maraging at $900^{\circ}F$ equalized hardness in the weld heat-affected-zone in solution heat treated sheet at about 55 R_C (Figure 114). The heat-affected zone in cold worked material did not behave similarly, since the area closest to the weld interface was resolutioned. This area hardened to 55 to 56 R_C as compared to 59 R_C in the area of unaffected base metal (Figure 115).

As was the case in the 250 KSI alloy, the presence of a retained austenia band in the weld heat-affected-zone of the 300 KSI alloy was not estable ed on the basis of the hardness surveys. No evidence of such an area was observed in the solution heat treated 300 KSI material. A suspected low point, approximately 0.200" from the weld interface was observed in the traverse on cold worked aged sheet (Table 97). However, this location would appear to have been subjected to peak maraging temperatures rather than the 1200-1300°F temperatures known to promote austenite stabilization.

3.3.6.2 Tensile Properties

:d

The evaluation of welding filler materials on the 18% nickel (300 KSI) alloy was similar to that followed in Section 3.2.5.2 for the 250 KSI alloy.

Solution Heat Treated Base Material (0.140" Sheet)

Transverse weld tensile test data comparing various filler wire compositions are listed in Table 63 and represented graphically in Figure 116. In the case of the solution heat treated 300 KSI alloy, the final heat treatment of 900°F for 3 hours determined on the basis of base material studies, proved to be identical to that selected for the preliminary weld evaluations.

None of the filler wires tested deposited welds in solution heat treated sheet which achieved 100% weld yield strength joint efficiency. A maximum of 95% joint efficiency at a level of 269 KSI average yield strength was attained using the high cobalt cast composition wire (Figure 116). The matching 300 KSI filler wire composition exhibited the lowest tensile properties: 259 KSI yield strength and 91% joint efficiency. It should be noted, however that the superiority

of the cast composition wire is based only on average properties, since in some individual tests the 300 KSI filler wire welds showed greater strength (Table 63). Little or no difference in weld ducillity was observed between welds made using the various filler wires.

Solution Heat Treated Base Material (0.070" Sheet)

Tensile properties of welds made in 0.070" thick sheet are given in Table 36 and Figure 72. In these thin sheet welds, the 360 KSI filler wire exhibited an average yield strength of 262 KSI slightly better than that attained in the 0.140" sheet (Table 63). Welds made using the cast copper-containing composition wire, however, showed a slight reduction in yield strength from 264 KSI in 0.140" sheet to 258 KSI. (Tables 63 and 36).

50% Cold Worked Base Material (0.140" Sheet)

Welds made in cold worked sheet and maraged at 900°F for 5.5 hours were evaluated on the basis of transverse weld tensile tests. The results of these tests are included in Table 64 and Figure 117. The performance of the various filler materials as based on yield strength was in the same order as observed in welds in solution heat treated sheet. Yield strengths ranged from 288 KSI (85% joint efficiency) for the high cobalt "cast" composition welds to 275 KSI (81% joint efficiency) for the matching base metal composition filler wires. Although tensile properties were increased in welds made in cold worked as compared to solution heat treated sheet, joint efficiencies were lower due to the accompanying greater increase in the baseline parent metal tensile properties (Tables 63 and 64).

Miscellaneous Weld Tensile Properties

The results of transverse tensile tests on welds made in both material conditions in 0.140" sheet with the direction of testing normal to the rolling direction are included in Table 38. Only welds produced using the 300 KSI filler wire were evaluated.

Comparison against data reported in Table 63 (sheet rolling direction parallel to test direction) showed an increase in yield strength from 259 to 269 KSI for welds made in solution heat treated material with rolling direction normal to test direction. Welds in cold worked sheet maraged 900°F/5.5 hours showed a drop in yield strength from 275 to 262 KSI similar to that noted in corresponding tests made on cold worked 250 KSI sheet (Table 38). Preliminary tests on a similar set of specimens in cold worked sheet which were maraged 3 hours at 900°F showed only a slight change in yield strength for

different rolling directions (Tables 64 and 38).

Longitudinal weld tensile test results are presented in Table 39 and Figure 74. Differences which existed in transverse yield strengths between welds produced with the various filler wires were not apparent in longitudinal tests. Longitudinal weld yield strengths varied only from 270 to 274 KSI, a level of approximately 92% joint efficiency (Table 39). These results represented an improvement over transverse weld properties particularly for the 300 KSI filler wire welds which increased from 259 KSI to 274 KSI.

3.3.6.3 Fracture Toughness

A comparison of weld filler materials on the basis of transverse weld fracture toughness properties is presented in Table 65. Figure 118 compares weld toughness on the basis of Kc values only. All test specimens were maraged at 900°F for 3 hours.

Maximum fracture toughness properties were obtained in welds made with the matching 300 KSI composition filler wire, which attained average $K_{\rm C}$ values of 137 KSI $\sqrt{\rm in}$ Figure 118. This level of toughness compared reasonably well with base material fracture toughness reported in Table 49 of about 157 KSI $\sqrt{\rm in}$ for the transverse rolling direction and 184 KSI $\sqrt{\rm in}$ for the longitudinal rolling direction. Of the two cast-type filler wire compositions evaluated, the high cobalt, copper-free version (Heat No. 33179) exhibited slightly better toughness (Table 65). These results were consistent with those obtained in similar tests made on welds in 250 KSI sheet (Table 40).

3.3.6.4 Summary

In general, weldability of the 18% nicker alloy (300 KSI) was found to be equal to that reported for the 250 KSI alloy in Section 3.2.6.

Weld and heat-affected-zone soundness equal to that demonstrated by the 250 KSI alloy was consistently attained in all combinations of filler wire and base material conditions evaluated. This level of quality was achieved using conventional TIG welding procedures without benefit of a "preheat-interpass-postheat" weld thermal cycle.

A comparison of filler materials similar to that described for the 250 KSI alloy welds in Section 3.2.6.4 is presented in Figure 119 and Table 102.

On the basis of average transverse tensile data, the high cobalt, cast composition filler wire welds achieved the highest levels of

yield strength joint efficiency in both material conditions tested (Figure 119). The 300 KSI filler wire welds exhibited lower average strength, accompanied by some improvement in fracture toughness (Figure 119). For welding solution heat treated material the essentially matching composition filler wire appears to offer the best available combination of weld properties.

Welds made in cold worked materials using the cast composition wires demonstrated a definite superiority over the 300 KSI wire on the basis of transverse tensile results (Figure 119 and Talle 66). In this case, the high cobalt wire may be preferred on the basis of its greater weld strength properties.

HARDNESS RESPONSE CONTOURS OF SOLUTION ANNEALED 18% NICKEL ALLOY (300 KSI)

Figure ??

Figure 78

Notes that the property of the second second

EFFECT OF SOLUTION TREATING TEMPERATURE ON LONGITUDINAL TENSILE PROPERTIES OF 18% NICKEL ALLOY (300 KSI)

Solution Treating Temperature - °F

Figure 79

Solution Treating Temperature - °F

Figure 80

Solution Treating Time - Hours

Figure 81

Figure 82

or a sea was reasonable as an analysis and a second of the season of the

EFFECT OF SOLUTION TREATING TEMPERATURE ON MICROSTRUCTURE OF 18% NICKEL ALLOY (300 KSI)

SOLUTION TREATING TEMPERATURE-F 1400 1500 1700 1900 2100

W. 17

EFFECT OF MARAGING TREATMENT ON THE LONGITUDINAL TENSILE PROPERTIES OF SOLN. ANNEALED 18% NICKEL ALLOY (300 KSI)

176

F14-84

LIEFD STRENGTH - KSI

176-

EFFECT OF MARAGING TREATMENT ON THE TRANSVERSE TENSILE PROPERTIES OF SOLN. ANNEALED 18% NICKEL ALLOY (300 KSI)

Figure 85 177

OPTIMIZATION OF LONGITUDINAL YIELD STRENGTH RESPONSE OF SOLUTION ANNEALED 18% NICKEL ALLOY (300 KSI)

All Specimens Soln. Annealed: 1500°F / 1 hr. (argon)
Allegheny Heat No. 23831

Figure 86

OPTIMIZATION OF TRANSVERSE YIELD STRENGTH RESPONSE OF SCLUTION ANNEALED 18% NICKEL ALLOY (300 KST)

All Specimens Soln. Annealed: 1500°F / 1 hr. (argon)
Allegheny Heat Mo. 23831

Figure 87

EFFECT OF MARAGING TREATMENT ON FRACTURUS TOUGHNESS OF SOLUTION TREATED 18% NICKEL ALLOY (300 KSI)

Figure 88

13

Figure 89 181

Figure 90 182

5346

OPTIMIZATION OF LONGITUDINAL YIELD STRENGTH RESPONSE OF COLD WORKED 18% NICKEL ALLOY (300KS) Y.S. - KG! TOLD WORK

Figure 91

Figure 92

EFFECT OF WARM WORK TEMPERATURE, MARAGING TIME, AND MARAGING TEMPERATURE ON THE LONGITUDINAL YIELD STRENGTH OF 18% NICKEL ALLOY (300 KSI)

Figure 93 185

۴ hr .

Figure 94

The second secon

OPTIMIZATION OF LONGITUDINAL YIELD STRENGTH RESPONSE OF WARM WORKED 18% NICKEL ALLOY (300KSI)

Figure 95187

Pigure 96188

Figure 97

6" Diameter 18% N1 (300 ks1) Girth Welded Cylinder which burst at PR/T = 335 ks1 (Note underout in weld adjacent to fracture)

Figure 98

ELEVATED TEMPERATURE TENSILE PROPERTIES OF SOLUTION ANNEALED 18% NICKEL ALLOY (300 KSI)

Figure 99

Figure 100

Figure 101

OF 18% (300 KSI) MARAGING NICKEL STEEL

LOCATION: VERTICAL-CENTER

PERCENT REDUCTION

Figure 102

EFFECT OF FORGING REDUCTION ON THE PROPERTIES OF 18% (300 KSI) MARAGING NICKEL STEEL

LOCATION: VERTICAL-EDGE

PERCENT REDUCTION

Figure 103

OF 18% (300 KSI) MARAGING NICKEL STEEL

LOCATION: HORIZONTAL - CENTER

PERCENT REDUCTION

Figure 104

5339

OF 18% (300 KSI) MARAGING NICKEL STEEL

LOCATION: HORIZONTAL - EDGE

PERCENT REDUCTION

Figure 105 197

Figure 106

Figure 107

٠,,

CHARPY IMPACT STRENGTH OF SOLUTION ANNEALED 18% NICKEL ALLOY (300 KSI)

Pigure 108

Figure 109

Figure 110

Solutioned 15000F/1 hr.

Solutioned 1500°F/1 hr.

Two Stage Carbon Replica

Mag. 18000 x

Etchant: Marble's + Modified Fry's

Solutioned 1800°F/1 hr.

Solutioned 18000F/1 hr.

Mag. 18000 X

Two Stage Carbon Replica

Etchant: Marble's + Modified Fry's

Mag. 500 X

Figure 111

Mag. 500 X

MICROSTRUCTURE UP SOLUTIONED AND MAPAGED, AND COLD WORK AND MACAGED 18% NICKEL (300 KSI) ALLOY

5583

Solutioned 1500°F/1 hr. Maraged 9000 110 hrs.

Solutioned 1500°F/1 hr. Maraged 900°E/10 hrs.

Two Stage Carbon Replica

Mag. 500 X

Etchant: Marble's + Modified Pry's

Mag. 1800 X

Cold Worked 30%, Maraged 900°F/5,4 hrs.

Erchant: Marble's + Rodified Pry's

Mag. 500 X

Mag. 18,000 X

Two Stage Carbon Replica

Figure 112

Maraged 9000F/5,4 hrs.

Cold Worked 30%,

18% NICKEL ALLOY (300 KSI) WELD HARDNESS DATA VERTICAL TRAVERSE ALONG WELD CENTERLINE

Figure 113

Figure 114
206

Figure 115 207

Figure 116

the state of the s

COMPARISON OF FILLER WIRES TRANSVERSE WELD TENSILE PROPERTIES 18% NICKEL ALLOY (300 KSI) - 50% COLD WORKED SHFET

Figure 117 209

COMPARISON OF FILLER WIRES TRANSVERSE WELD FRACTURE TOUGHNESS PROPERTIES 18% NICKEL ALLOY (300 KSI)-0.140" SHEET

Figure 118

CAST 7 S 286 WELD PROPERTIES 50% COLD WORKED MARAGED 900*-55 CAST COMPARISON OF FILLER WIRES
TRANSVERSE WELD TENSILE AND FRACTURE TOUGHNESS PROPERTIES 300-KSI 7 27.5 UNWELDED SHEET (LONGITUDINAL.) PROPS YS JOINT EFFICIENCY - % REDUCTION IN AREA - % 18% NICKEL ALLOY (300 KSI) -0.140" SHEET Ke RANGE - KSI VIN <u>کے ک</u> CAST 33179 7S 269 SOLUTION HEAT TREATED MARAGED 900 F - 3 HRS CAST 70-053 WELD PROPERTIES ₹5 264 300-KS 7S 289 UNWELDED SHEET (LONGITUDINAL) PROPS 75 234 8 8 60 ç 20 M-(AR) YTLITOUG 7 404 200 0 YIELD STRENGTH JOINT EFFICIENCY- % 7 8

Fig we 119 211

Table 42

EFFECT OF SOLUTIONING TIME AND TEMPERATURE
ON THE HARDNESS OF 18% NI ALLOY (300 KSI)*

Solution** Temp. *F	Solution Time Hrs.	As Quenched Hardness Rc	Maraged*** Hardness Rc
1400	1 1 2 4	39.0 37.5	53.4 54.4
	1	37.0	55.0
	2	36.0	53.3
	4	35.5	54.3
1500	支	34.1	53.8
	ኒ ኒ 1 2	32.8	54.9
	1	33.0	55.0
		33.0	54.8
	4	33.0	54.2
1600	ž	32.5	54.4
	<u>1</u>	32.5	53.7
	ት 1 2	32.0	54.0
		31.9	54.0
	4	32.0	53.8
1700	}	31.0	53.2
	1/2	30.1	53.1
	ት ት 1 2	30.0	53.0
		30.0	54.0
	4	30.0	52.3
1800		30.0	53.3
	1/2	29.0	53.2
	1 2 4	27.5	53.0
	2	29.0	53.0
	4	28.6	53.0
1900	\	30.0	53.4
	1/2	30.0	53.1
	ት ት 1 2	29.0	53.0
		29.0	52.0
	4	28.3	52.2

Table 42 (Cont)

EFFECT OF SOLUTIONING TIME AND TEMPERATURE ON THE HARDNESS OF 18% NI ALLOY (300 KSI)* (cont'd)

Solution** Temp. °F	Solution Time Hrs.	As Quenched Hardness Rc	Maraged*** Hardness Rc
2000	¥	34.8	52.8
	ž	33.8	5 2. 0
	ī	35.0	53.0
	2	34.0	52.0
	4	34.0	52.7
2100	1 24	28.0	
	14 12	28.5	
	ī	29.0	
	2	28.4	
	4	28.0	

Allegheny Heat No. 23831

All specimens maraged @ 900°F for 3 hrs. **

^{***} Average of 6 readings

Table 43

EFFECT OF MARAGING PARAMETERS ON THE HARDNESS OF SOLUTION ANNEALED** 18% NI ALLOY (300 KSI)*

Marage Temp.	Marage <u>Time</u>	Hardness***Rc
700	½	39.5
	1/2	41.0
	$ar{\mathbf{z}}$	47.6
	ት ት 2 5 9	45.0
	9	45.4
800	1/2	48.0
	1/2	48.1
	ት ት 2 5 9	50.8
	5	52.1
	9	52.9
900	1/2	50.6
	<u>,</u>	52.4
	1/2 2 2 5 9	54.0
	5	54,5
	9	54.7
1000	\	51.2
	ž	52.0
	ર્ષ કુ 2 5 9	52.2
	5	52.5
	9	53.3
	•	

^{*} Allegheny Heat No. 23831

^{**} Solution Anneal: 1500°F/1 hr.

^{***} Average of 6 readings

Effect of Solution Time and Temperature

on the

Longitudinal Tensile Properties of 18% Nickel Alloy *(300 KSI)

Table 44

Solution Temp **	Solution Time Hrs.	Ult. Tensile Strength KSI	0.2% Yield Strength KSI	% Elong.	% Red. in <u>Area</u>
1400	1	307	295	2.8	21
1400	1	318	313	3.6	35
1500	12	297	290	6.0	53
1500	<u>1</u>	300	290	4.5	33
1500	1	291	281	4.7	42
1500	1	291	282	5.0	46
1500	1-1/2	294	287	6.0	53
1500	1-1/2	295	281	6.0	41
1500	2	298	286	5.0	38
1500	2	290	279	5.0	51
1600	1	284	269	5.0	49
1600	1	287	275	5.0	44;
1700	1	279	267	5.0	45
1700	1	289	275	6.0	44

^{**} All specimens solution annealed (argon atmosphere) under the above conditions, air quenched and, then, maraged at 900°F for 3 hours.

^{*} Allegheny Ludlum Heat No. 23831.

Table 45

Effect of Solution Time and Temperature

on the

Transverse Tensile Properties of 18% Nickel Alloy *(300 KSI)

Solution Temp ** OF	Soluti Time		Ult. Tensile Strength KSI	0.2% Yield Strength KSI	% Elong.	% Red. in <u>Area</u>
1400	1	Hr.	322	315	1.4	32
1400	1	Hr.	323	320	2.8	32
1400	3	Hr.	321	312	2.9	32
1400	1	lir.	328	315	3.0	34
1500	1	Hr.	304	289	4.0	40
1590	1	Hr.	297	282	2.2	41
1500	30	Min.	311	304	4.0	41
1500	30	Min.	312	307	5.0	41
1500	1	Hr.	302	284	4.0	42
1500	1	Hr.	310	298	3.0	41
1500	1.5	Hrs.	398	293	4.9	41
1500	1.5	Hrs.	319	305	5.0	29
1500	2	Hrs.	303	289	4.0	38
1500	2	Hrs.	293	283	5.0	31
1600	1	Hr.	309	296	4.0	40
1600	1	Hc.	297	286	1.9	41
1600	1	Hr.	297	292	5.0	33
1600	1	Hr.	29 5	286	3.6	42
1700	1	Hr,	293	279	4.0	37
1700	1	Hr.	293	276	5.0	36
1700	1	ltr.	299	281	5.0	40
1700	1	Br.	296	280	4.0	40

^{**} All specimens solution annealed (argon atmosphere) under the above conditions, air querched and, then, maraged at 900°F for 3 hours.

^{*} A egheny Ludlum Heat No. 23831.

Table 46

	Gc (6) ' In-1bs/in ²	270	270 132 165	1380	685 809	1630	1760 980 1100
	Ke (5) KS1/Tn	83	8 83 5 83	187	131 143	203 207 298	208 158 167
	Critical Crack Index (4)	0.02	0.02	0.13	0.06	0.17	0.17 0.10 0.11
	ФЭ	16.6	6.29 0.36	3.05	1.56	4.75	4.60 2.67 3.05
RACTURE KSI)	Notch Strangth KSI (.)	76	. 83	202	144	191 189 242	216 146 :32
EFFECT OF SOLUTION TREATHENT ON FRACTURE TOUGHNESS OF 18% NI ALLOY* (360 KSI)	Not Fracture States(1)	170	79	233 228	176 199	249 254 297	253 268 216
OF SOLUTION THESS OF 18% N	0.2% Yield Ser. KSI	30%	3).5 31.5	290 290	305 305	201 281 282	285 285
EFFECT	Solution Time Hrs.	-	~	,apr	alt.	-	
	Solution** Temp.	1400	1400	1500	1500	1500	1500
	Orientation of Specimen Axis to Rolling Direction	Porallal	Norma l	Parallel	Normal	raralle)	Normal

* Allegheny Ludlum Heat No. 23631
** All specimens maraged at 900°F for 3 hrs.
+ Centrally notched, fatigue cracked specimens

TABLE 47

EFFECT OF MARAGING TREATMENT ON THE LONGITUDINAL TENSILE PROPERTIES
OF SOLN. ANNEALED 187 NICKEL ALLOY* (300 KSI)

Marage Temp	Marage Time Hrs.	Ult. Ten. Str. KS1	0.2% Yield Str. KSl	Z Elong.	7 R. A.
850	1	257	243	7	47
**		256	246	7	49
11	3	275	269	5	47
13	1 3 3	279	265	6	49
! 1	10	397	293	6 5	49
28	10	302	292	4	60
900	1	273	263	5	50
11		279	267	7	48
17	1 3 3	287	281	6	51
13	3	298	286	6	47
2 2	16	302	297	4	42
ff	10	308	296	4	48
950	1	291	282	5	44
11	1	290	287	4.5	50
\$5	3	296	284	5	44
11	3 3	300	288	4	48
£1	10	299	287	6	54
11	10	296	281	5	48

^{*} All specimens solution ammealed at 1500°F for 1 hour, air quenched, and, then, maraged under the above conditions

TABLE 48

EFFECT OF MARAGING TREATMENT ON THE TRANSVERSE TENSILE PROPERTIES

OF SOLN. ANNEALED 18% NICKEL ALLOY* (300 KSI)

Marage Temp °F	Marage Time Hrs.	Ult. Ten. Str. KSI	0.2% Yield Str. KSI	Z Elong.	% R.A.
900	1	279	271	6	52
11	1	281	267	5.5	50
f f	1 3 3	306	294	4	47
# #	3	305	296	4	50
850	10	312	299	4.5	39
tr	10	311	293	5	43
11	1	256	246	6	43
tt		262	247	6	42
FF	1 3 3	281	269	5.5	35
51	3	280	271	5	43
900	10	312	297	4	34
11	10	310	298	4	34
950	1	295	288	4	47
* *		302	286	4.5	37
11	1 3 3	309	295	5	47
ęt	3	304	290	4	35
it	10	307	295	5	40

^{*} All Specimens solution annealed at 1500°F for 1 hour, air quenched, and, then, maraged under the above conditions

Table 49

APPECT OF MARACING TREATHERY ON FRACTURE TOUGHNESS OF SOLUTION TREATED 18% NICKEL ALLOY* (300 KSI)

on or I tag	Mareginger Temp.	Neraging Time Are.	0.22 Vield Str.	:3	Norch Streagth(2) KSI	8 (3)	Critical Crack Index(4)	K _C (5) KSI in	Gc (6) t in-lb/in2
Paralla; ii Normal	90: : :	m		252 261 234 217	234 246 200 187	6.38	0.21	215 225 192	1830 2000 1450
Parallel Normal	====	tr)	283 283 295 295	232 225 208 198	201 206 154 163		0.14 0.13 0.09	181 181 189 189 189	1310 1350 1290 1000
Parallal Hormal		10	295 295 295 295	208 201 733 145	182 174 116 139	2,72 2,58 1,62 1,19	00000	163 157 109	1050 980 387 472

* Allegheny Ludlum Heat No. 23831

** All specimens solution treated @ 1500°F for 1 hour

f Centrally notched, fatigue cracked specimens

TABLE 50

LONGITUDINAL TENSILE PROPERTIES OF COLD WORKED 18% NICKEL ALLOY (300 KSI)

% Reduction	Marage Temp	Marage Time Hours	Ult. Tens. Str. KS1	0.2% Yield Str. KSI	% Elong.	% R.A.
20	850	1	275	268	5.4	32
, t	11	1	286	285	5	42
15	900	1	309	307	4.8	47
1‡	71	1	316	316	4.3	49
t	850	3 3 3 3	284	284	4.5	49
11	*1	3	290	286	4.4	44
1 f	900	3	313	311	4.6	49
11	11	-	323	320	4.0	49
(1	850	10	331	330	4.2	48
# 3	ţţ	10	330	326	4.3	47
ŧ1	900	10	327	326	3.7	50
11	řŤ	10	325	324	4.8	49
30	850	1	294	283	4.5	47
11	11	1	299	299	4	20
* *	900	1	317	315	4.7	52
£ \$	11	1	324	324	3.7	49
11	850	3	309	308	4.5	48
f1	ŧt	3 3 3	306	306	4.0	49
) i	900	3	330	329	4.5	49
13	\$ \$	3	326	325	1.7	46
8.9	850	10	333	332	4.0	70
11	15	10	333	3 31	4.4	42
† †	900	10	332	329	4.3	49
11	# \$	10	332	327	4.2	51
40	850	1	302	294	3.7	37
	15	1	315	311	4	46
11	900	1	335	334	2.1	48
11	**	1	328	326	4.5	51
11	850	3	316	316	4.5	49
##	11	3	317	315	4.0	45
11	900	1 3 3 3 3	317	317	3.9	47
**	11		338	333	4.5	49
15	850	10	338	333	4.2	51
**	11	10	342	342	3.9	46
† † † † † † † † † † † † † † † † † † †	900	13 10	342 338	340 333	4.0 3.7	47 43

TABLE 50 (continued)

% Reduction	Marage Temp	Marage Time Hours	Ult. Tens. Str. KSI	0.2% Yield Str. KSI	% Elong.	% R.A.
50	850	1	330	328	3	23
11	11	ī	328	327	3	44
#	900	î	340	FAILED	-	
ŧŧ	1,1			FAILED		
11	350	÷ 3				
11	"	1 3 3 3 3	327	327	AT PINHO	
**	900	3	321		3.7	46
11	11	ว ว			AT PINHO	
ft	850	10	338	FAILED		
11	5: 30	10	220	333	4.2	51
ŧr	900	10	27.7	FAILED	AT PINHO	
11	11	10	347	346 FAILED	4.4 AT PINHO	46
				* *************************************	MINI I I	Lie
70	850	1	317	308	3.9	30
f t	11	1	310	308	4	36
11	900	ī	328	325	4.0	41
11	11	ī	324	323	4.1	41 45
\$1	850	1 3 3 3	316	313	4.0	40 40
# 5	11	3	313	313	3.4	
? ?	900	3	344	342		25
f 1	H	3	334	332	4.5	42
11	850	10	336	334	4.0	46
11	11	10	337		3.1	34
11	900	10		336	4.2	33
11	11	10	337	333	4.0	44
		A. 41		FAILED	AT PINHO	LL

TABLE 51

TRANSVERSE TENSILE PROPERTIES OF COLD WORKED 18% NICKEL ALLOY (300 KSI)

% Reduction	Marage remp °F	Marage Time Hours	Ult. Tens. Str. KSI	0.2% Yield Str. KSI	% Elong.	% R.A.
20	850	1	301	298	2.1	31
11	##	1	313	310	1.8	40
11	900	1	323	317	4.3	38
11	11	1 3 3 3 3	342	342	2.5	41
**	850	3	317	313	3.8	36
11	11	3	313	305	3.0	41
**	900	3	332	329	2.8	40
ti	11		351	349	4.2	37
ff	850 ''	10	343	340	4.0	36
11		10	348	346	3.8	36
11	900	10	354	351	2.6	15
		10	340	337	3.5	40
40	850	1	312	309	2 0	
11	11	ì	325	322	3.2	12
,,	900	ī	FAILED		2.6	24
11	11	ī	346	344	2.8	20
11	850	3	327	325	3.0	29
11	11	3 3 3 3	334	330	3.5	29 29
13	900	3	275	FAILED	AT PINHO	
1	11	3	341	FAILED		
*1	850	10	248	FAILED		
11	11	10	304	FAILED	AT PINHO	
**	900	10	328	11	H H	<u> نابا</u>
11	11	10	315	f 3	11 11	
50	850	1	316		AT PINHO	Le
4.7	900	1		11	11 17	
11	900	1		11	11 11	
• •	850	<i>y</i> .		11	ti ti	
11	יו	ر 2		f1 11	H 11	
11	900	1. 3 3 3 3		11	11 11	
ff	11	ر 2		11	## ## ##	
**	850	3 10		11	ji je	
11	11	10		11	11 .1 51 :1	
		10		1.	, , , , ,	

TABLE 51 (Gontinued)

% Reduction	Marage Temp °F	Marage Time Hours	Ult. Tens. Str. KSI	0.2% Yield Str. KSI	% Elong.	% R.A.
50	900	10		FAILED	AT PINH	OLE
		10				
70	850	1	308	301	2.1	2
*1	11	1	320	319	3.	25
t t	900	1	353	350	2.2	5
11	11	1		FAILED		OLE
11	850	3	326	323	2.0	16
11	ti	3	328	324	2.4	14
ŧĉ	900	3		FAILED		
*1	11	3		11	11 11	
11	850	10		11	tt ti	
11	11	10		11	11 11	
11	900	10		13	11 11	
11	H	10		11	11 11	

Table 52

EFFECT OF COLD WORK & HARAGING PARAMETERS ON FRACTURE TOUGHRESS OF 187 NICKEL ALLOY* (300 KSI)

	Orientation									
	of Specimen			A 88	Net			Critical Crack		
•	Axis to		Maraging		Fracture Stress(1)	Notch Strangth(3)	P	Index(4)	Kc(5)	Gc (6)
7	Rolling	Temp	Time	Tield Str.		KSI.	(3)	in	KSI An	in-lb/in2
Reduction	Direction		_Bre_	<u>ksi</u>	<u>KSI</u>				201777	111-10/111
20	Parallal	900	3	311	284	214	4.26	0.17	226	2020
***		16	ű	320	235	193	2.65	0.10	182	1310
30	Parallel	850	10	332	296	157	1.61	0.07	152	910
11	••	**		331	205	171	1.71	0.07	157	980
		900	3	329	234	187	2.42	0.09	179	1260
		••	**	325	233	193	2.42	0.10	179	1270
			5.5	328	226	179	2.30	0.09	174	1196
				328	221	182	2.18	0.08	169	1107
	Normal			334	153	113	0.89	0.04	111	480
				334	165	201	0.92	0.04	114	514
• •		040	••	202		100		2 21	122	585
40	Parallel	850	10	333	167	128	1.06	0.04		
	49			342	166	125	1.05	0.04	122 80	585 252
	Normal			349	109	94 92	0.42	0.02	91	330
	Parallel	900	3	349 325	129 169	142	0.56 1.29	0.02 0.05	126	652
	rarailel	900	3	325		_ • • • •			124	615
			10	340	165 168	140 127	1.18	0.05 0.04	122	595
			10	333	161	124	0.97	0.04	117	540
	Normal		3	353 341	111	96	0.46	0.02	\$1	360
	MODMET		3	341	97	94	0.34	0.01	70	199
			10	347	97 98	88	0.32	0.01	72	205
			LU	347 347	96 99	86	0.32	0.01	72 72	207
				J#/	"	50	0.32	0.01	/-	207
50	Perallel	850	10	333	135	110	0.75	0.03	99	382
				333	146	117	0.89	0.03	107	433
	Mormal			353	87	78	0.25	0.01	63	1.56
				353	83	68	0.23	0.01	60	140
	Parallel	900	3	341	138	114	0.76	0.03	102	4.05
			_	341	138	113	0.76	0.03	101	402
			10	346	142	110	0.76	0.03	192	410
				346	150	105	0.79	9.03	106	445
	Normal		3	356	100	79	0.35	0.01	73	208
				356	111	83	0.42	0.02	80	235
			10	351	88	80	0.28	0.01	64	163
				351	86	80	0.25	0.01	62	156
		200	•	202	1.53	100		~ 01	114	***
70	Parallel	900	3	337	157	129	1.04	Ŭ. 04 ○ . 05	118	550 435
	w •			337 352	169	134	1.26	0.05	127	635
	Normei			352	106	83	0.41	0.02	77 70	235
				352	97	78	0.34	0.01	70	193

TABLE 53

LONGITUDINAL TENSILE PROPERTIES OF WARM WORKED 18% NICKEL ALLOY (300 KSI)

Warm Work Temp. F	Marage Temp. °F	Marage Time Hours	Ult. Tens. Str. KSI	0.2% Yield Str. KSI	% Elong	% R.A.
1200	850	1.	194	192	12.5	46
!!	11	1	191	184	12	50
11	900	1	199	190	8	43
t f	ff	1	194	185	8	41
11	850	3 3 3 3	207	200	8	49
11	11	3	198	186	9	40
!!	900	3	202	192	10	44
11	}1		204	185	9	63
19	850	10	186	180	7	40
\$\$ ₹9	11	10	205	201	9	47 40
21	900	10	193	177	<i>:</i> 7	40 41
¥ !	••	10	198	188	,	41
1400	850	1	273	266	6	34
11	11	1.	274	266	5	36
11	900		292	283	5 5 5 5•5	51
f:	11	1 1 3 3 3 3	293	284	5	51
ff.	850	3	298	288	5	42
51	11	3	290	284	5.5	35
? #	900	3	307	297	5 5 5	58
11	14		301	296	5	49
11	\$50	10	294	289		45
11	11	10	308	305	6	45
ti 	900	10	304	301	4	43
11	11	10	304	303	4	46
1600	850	1	240	225	7	36
11	11	1	335	226	6	41
11	900	1	254	243	ઈ	40
11	tr	1 3 3 3 3	248	233	б	45
11	850	3	267	251	5	40
11	**	3	256	242	6	31
11	900	3	281	266	6	52
#1	**		276	267	5	54
11	850	10	263	259	5	36
11	11	10	280	273	5	33
11	900	10	292	281	4	45
11	11	10	297	288	3	39

TABLE 54

TRANSVERSE TENSILE PROPERTIES OF WARM WORKED 18% NICKEL ALLOY (300 KSI)

Warm Work Temp. F	Marage Temp.	Marage Time Hours	Ult. Tens. Str. KSI	0.2% Yield Str. KSI	% Elong	% R.A.
1200	850	1	209	199	16	58
17	11	1	193	172	10	51
11 11	900	1	192	176	16	30
††		1	188	169	12	41
11	850	1 3 3 3 3	233	226	16	46
F1		3	202	178	14	55 43
11	900	3	186	172	14	47 50
11	850	10	196 176	180 167	17 13	59 58
18	וו טכס	10	177	169	15 15	57
11	900	10	189	169	10	37 47
11	11	10	191	182	12	56
		10	17%	LUL	<i>i</i> ., 6.	20
1400	850	1	275	265	4	44
11	11	ī	279	269	5	42
11	900	1	294	284	4	45
11	15	1	291	280	5	39
11	850	3	280	270	4	40
11	11	3 3 3 3	306	298	3.5	33
11	900	3	308	304	4	39
11	11		306	303	5	45
11	850	10	293	290	4	33
11	11	10	317	314	4	27
11	900	10	305	299	3	33
f f	† i	10	308	305	3	34
1600	850	1	238	224	6	38
††	11	ì	242	220	6.5	27
n	900	1	266	252	6	41
11	† !	1	265	243	7	53
11	850	3	248	232	4	43
13	11	3	273	259	-	34
11	900	1 1 1 3 3 3	292	277	5	39
14	#	3	294	283	5	41
**	850	10	268	262	6	35
11	11	10	294	283	6	43
11	900	10	297	283	5	41
11	11	10	295	291	4	45

Table 55

EFFECT OF MARAGING TREATMENT ON FRACTURE TOUGHNESS OF WARM WORKED 18% NICKEL ALLOY * (300 KSI)

6, (6) in.lb/in ²				
6° (6) fn.1}	WOT TRANSMITTER TO THE PARTY OF	987 1130 712	761 457 470	790
K. (5.)		158 169 134	138 108 110	141
Crit- ical Crack Index (4)	177	0.09	0.66 0.40 0.42	0.08
9 (3)		2.34 2.87 1.53	1.74	2.25
Notch Str. (2) KSI	189	159 170 122	138 115 107	1.40 1.26
Net Frac- ture Stress (1)		210 219 253	139 146 152	190 204
0.2% Yield Str. KSI	183**	297 297 302	304 302	285 285
Maraging Time hrs.	10	3	m 0:	01 s
Maraging Maraging 0.2% Temp. Time Yield OF hrs. Str.	006	00= =	00= =	006
Orienta- tion of Specimen Axis to Rolling Direction	Farallel n	Parallel "	Normal "	Parallel "
Working Temp.	1200	1400	1400	1600

^{*} Allegheny Heat No. 23831

t Centrally notched, fatigue cracked specimens

^{**} Specimens tore through pin holes

Table 56
Shearspinning Procedures For 187 Nickel

	Koller			-1006.001	er for 187 Nicke	Į
Pass No.	Setting Front	Rear	Peed Bate	RPM	Roller Nose Radius	Front Roller
1	. 310	.260	7"/min.	280	0.750"	
2	.250	.180	4"/min.	280	0.750"	0.375"
*3	.115	.080	12"/min.	280		0.375"
4	.064	.046			0.750"	0.375 .
		• 540	6"/mim,	280	0,750"	0.375"

^{*} Solution annealed before third pass at 1500° F-1 hours.

TABLE 57

WELD SETTINGS

18% NI SUBSCALE BOTTLES

Process: Gas Tungsten-Arc (Single Pass)

Wire: 18% Ni-309 KSI (7C-054)

Wire Dia: .062"

Electrode: 2% Thoristed W, 5/32" Dia.

Electrode .250" off center table rotation; clockwise Location: weld direction; counterclockwise off center

Current: 80-90 Amps

Voltage: 15.5 volts

Travel: 9 ipm

Wire Feed: 21 ipm

Gas Flow-

Nozzle: 30 cfh He

Back Up: 4 cfh He

Trial: 14 cfh He

Back Up: Copper

REPAIR WELDING PROCEDURE

DEFECT ROUTED AND DYE PENETRANT INSPECTED

Preheat: 300-400° 7

Post Hest: None

Gas Flow:

Nozzle: 15 CFR Argon

Back Up: 10 CFB Helium

Electrode: 27 Thoristed W

Electrode Dia: 3/32"

Gurrent: 60 amps

Back Up: Copper

Filler Wire: 183 Ni-300 KSI (7Gð54)

TABLE 59

The second secon

181 FICHT. MALKING STREET

j							AND LANGE BEEN	There						
#FECIPIC: DOES	PHESSURE (PSIG)	CACRES	CAGES PROPORTIONAL MATERIAL	SECATAL	DIATE.	0.21 TIELD STRENGTE		BYANIAL Cont		P. TUNATE	BIAKIA.	Ä		
Period on Lacking	730	3 4 6	75 55			MINIT	MINNIAL	- 1	112211	MINITER	34	i		티
				419,400	. j	327,000	280,090	16.3	223, 000	311,400	÷		10.00	
		7 4 8	231,000	719,400	¥.	327,000	286,600	16.3	335,000	281,030	13.10	2,176	Tree of Party	345,300
Persied and medition		1 63	232,000	219.670	:								Part Treat Of	
	3					*** DA	2	16.2	333,000	291,066	14.14		1	
	*		254,000	219,40	5.5	330,000	280, 600	***	1 2 24					ME, 800
To Paryod and Machines,	11920	1 6.2	534,988	210,400	:					26.147	2.5	1.9300	Fage 8 414	
						328,000	8	16.9	327,800	251,010	10.9	1.1030		
LITTH TRI Sect Control	2	7 7 .	238,000	22.5,400	17.5	527, 500	28. 685			1				316, 360
Shear ages.		1	344			ĺ		<u>.</u>	339,060	201,000	16.2v	•	Reading at	100
	780	197							24,980	17,690	18.3	1110	PER ZONE:	
,		7 2 8				-			132.00 AP. CO.	375.50	16.4	2.0143	Park Server	
State open girth	9723	40 %			1				737.890	179.400	2.01	1.0143	O. 21 yeald	98
Principles Committee of Committee of the Committee of Com									247,500**	270, 600	•	0.M10	Tellium before	
- Actual native mails with by chinates and	7 7 7.4 .	Pathet 6		-									Trucklys 6.33	200

Actual native could put be obtained from tast

Tausel failled prematurely

こうとうないはないのできないというないからないからないからないないのできない

TABLE 60

EFFECT OF FORGING REDUCTION ON THE PROPERTIES OF 18% (300 KSI) MARAGING NICKEL STGEL

	187 (300 KSI Smooch B	18% (300 KSI) MARKGING NICKEL STEEL Smooth Mar Tensile Data	STEEL			
Lecation		iloat Teopra	U.T.S.	0.2%	% Elone.	* * *
	אפסחבר זמני	וופמוי		(KSI)	C	
Billet	,		, 0	,		30 5
Vertical-Center	0 (1500-F/1 at.	7.00.7	207.00	9. %) v
Vertical-Edge	0 0	SOUTI TO UTS.	285.0	275.0	5.0	41.5
for trongal-Center	> C		297.4	288.	, v	14.3
Torizontal ruge	>		•	•	•	
Very in all Contain	33.8		286.2	274.5	0.6	41.3
Verricalando	33,68		286.5	274,3	0.6	39.6
Horizona and	33.8		283.5	274.5	3.0	14.7
Horizoncal-Sdge	33.8		288.6	278.3	5.0	17.1
Second Upset	Ç		6 086	9 02 6	0.6	43.1
Vertical-Center	3 3	-	200.7	2,0,7	0.01	44. 2
Vertical-Edge	25		0.062	0.672	4	2 9 1
For tzantal "Center	0,1		7.67.	2,02,0	0	2 4
Horizontal-Edge	20		0.607	2.	÷ .) • •
Third Upset	;		0 0	2 170	œ G	9 9 9
Vertical-Conter	66.2		27.0	2027	9 0	. 5
Verrical-Edge	66.2		286.0	7.707	2.4	, , ,
Horizontal-Center	66.2		2/8.8	£ 107	3,5	
Porizontal-Edge	66.2		782.4	0. (17	2	•
Fourth Upset	j		0.36.0	ר ארנ	3	0.8
Vertical-Center	?		2 6		, ,	C 7.7
Vercical-Edge	75		283.8	1.707	,	20
Hor Loontal -Center	75		285.8	272.4) (0 0 0
Horizoncel-Edge	75		289.8	278.9	ဘ ဆ	40.4
*Afth Upset						c u
Vertical-Center	5 8		274.4		× •	2.63
Radial	78		285.0	2.7.7	2.5	
Circumference	9 ¢		289.4	280.6	2.61	41.3

TABLE 60

(Cont'd.)

A Section of the sect

EFFECT OF FORGING REDUCTION ON THE PROPERTIES OF 18% (300 KSI) MARAGING NICKEL STEEL

Notch Bar Tensile Data

Location	% Reduction	Heat Treatment	U.T.S. (KSI)	Klc (KSI In)	Gle
First Upset Vertical-Center	33.8	1500°E/1 hr,	347.9	72.0	205
Vertical-Edge	33.8	900°F/3 hrs.	347.4	77.6	238
Horizontal-Center	33.8		226.5	46.9	87
Horizontal-Edge	33.8		292.9	60 . 6	146
Second Upset				•	i
Vertical-Center	50		337,1	69.7	193
Vertical-Edge	20		354.7	73.5	214
Horizontal-Center	20		351.6	72.7	209
Horizontal-Edge	20		333.1	0.69	189

Table 61

Critical Fracture Toughness Parameters of 18% Nickel Alloy (300 KSI)*

n2 U.T.S. 1.10 1.10 1.14	1.25	1.18 1.20 1.25
03.C** PS1 in-1b/in ² 155.0 144.6 149.3	281.3 289.6 292.5	265.4 280.0 302.5
KSI Am 62.6 60.5 61.5	88 88.00 80.00 80.00	82.1 84.2 87.5
N.T.S. X.S.I. 320 333	404 414 4115 70114	396 406 422
Heat Treat Sol'n: 1500°F/1 Hr. Marage: 900°F/3 Hre.	Marage: 900°F/5.5Hr.	
Condition Annealed	30% Cold Work	40% Cold Work 50% Cold Work

Allegheny Heat No. 23831.

** Critical fracture toughness calculated from circumferentially-notched tensile bars ($K_{t_2}=10$).

Table 62

ē	
3	
٠	ŗ
414	N.
HAADes 51	· BOLLLOSTAY.
ğ	3
AFFICIAL	3
VEL.D MEAT	N CENT
5	Ë

Makeridal Solution Beat Tree ,	Generation (1)	त्र इ	8787 2007	श्च द	졁	7	8	87 SE	, 21 ;	7		Distance From Weld Interface - in. Also also also also also also also also a	9	7	au.	a	ä	ą	Ŋ	727	7
	į	ĭ	ŝ	5	;	:			Ş	ŝ	3	ŝ	ž.	Ī	â	ĭ	8	ž	ž	ž	ž
			;	ţ	:	į	Ì	ŝ	3	ĝ	;	ş	÷	ž	8	113	ž	ŝ	ĝ	ž	2
301 Cald herhad	As-Velded	361	88	98	333	â	376	3%	203	**	3	333		180	3	7,	77	5	,		
	74.00	3	;	9	614	8	ž	•	ì	3	8	ī		3				3	. , , ,	, ,	

(1) Diamond Pyranis Bredness, 1005 losd, 136° apex angle (2) Frances taken along about contexiins (3) Aged: 900°F/3 hrs., air cool

Table 63

TRANSVERSE WELD TENSILE PROPERTIES 18% NICKEL ALLOY (300 KSI) - SOLUTION MEAT TREATED 0,140" SHEET (1) (2)

# 54 54 54 54 54 54 54 54 54 54 54 54 54 5	88 91	8	95
Joint T.S.	8 8	16	6
opertie R.A.	15.1	13.2	14.5
Elong.	2.5	2.5	2.2
O.2% YS Elong. R.A. Jo KSI % T. T.	259	797	269
UTS	260	267	271
× 24	14.3 16.5 14.7	9.0 13.0 17.8 12.9	17 11 18.2 11.8
		23.00	
0.27 YS KSI	263 259 255	262 267 265 262	277 261 261 277
UTS	265 260 256	265 268 268 265	281 266 261 276
Marage to Time	en en	ώ.	m
He.	006	006	006
Filler Wire Type Hear No	300 KSI 7C-054	7C-053	33179
Filler Type	300 KS1	0 0 0	ದ ಕ ೧

(1) Sheet rolling direction parallel to orientation of specimen axis

(2) All spectmens failed in weld

Table 64

TRANSVERSE WELD TENSILE PROPERTIES
18% NICKEL ALLOY (300 KSI) - 50% COLD WORKED 0.140" SHEZT (1) (2)

	2. 2. 2	ă	83	& E	10
2	John 2, 2, 2, 5,	ri P	ę,	80	**
ropert 1	R.A.	15,3	13.5	11.0	89
erage P	Llong	2,3 15,3 31	2.1	1,73	1.75
NV .	0.2% YS KSI	271	275	284	288
	KSI	272	276	284	258
	7. Y	18.6	20	8.4 13.6	11.5 8.2
	•		2.3		
1	N. ZZ. YS.	271 272	280 269	283 284	286 289
			283 269	283 285	286 289
98e	Hrs.	m	5.5	5.5	5.5
Mar	- Le	006	006	006	006
	YPE Heat No	70-054	7C-054	70-053	33179
	Type	300 KS1		Case t	Cast

(1) Sheet rolling direction parallel to orientation of specimen axis

(2) All specimens failed in weld

Table 65

TRANSVERSE WELD FRACTURE TOUGHNESS PROPERTIES 18% NICKEL ALLOY (300 KSI)- 0.140" SHEET

S	in-16/164	₹. 899	917.3	ŏ <u></u> ₹₹.3	685	666,1
M.	115.6	132.7	*843.8	129.0	131.6	129.8
CRITICAL CRACK INDEX	.061	080.	860.	640.	940.	n 20°
•	1.67	2.17	2.33	1.85	1.714	1.65
NOTCH STRENOTH (KSI)	121.8	137.6	129.9	132,1	130.9	121.4
NET PRACTURE STRESS (KSI)	154	186.7	199.5	174.3	175.4	195.3
0.2% YIELD STR. (MSI)	264	797	65?	259	569	569
MARAGE TIME (hrs.)	~		m		m	
	8		8		8	
TLLER WIRE HEAT NO.	76-053	٠	¥0-01		33179	
PILLER	Cast		300 K3I		بر ج د د	

TRAINTAIS WILD THREEL ALL TAINT TOUCHESS PLEATINGS (1901) 100 to (1901)

		U.Z. C. N. R. S. A. Longitudian Transverse	-		291-961			61-10(3)				
	est Properties	Lorgicutia			203-268			101-101(3)				
	144. 1kg	4 			3			•				
	Ä	Elong.			;							
		16.0	KSI		1			M(3) M(3)				
				1	Ê			X C				
		وا کو کا	i		129-146		27-071	1				•
7	tat	Total	:	Į Į	5	и 13	22	=	2	2	7	=
1351483		3	•	;	3	=	2	=	*		=	3
7		<u>.</u> .	•		13.1	13.2		13.5	21.0		10.4	14.2
AVSEN		O. 17 Tiene. B. t. Malabast. B. xa.	•		3	:	7	1.1	1.73	1.73	1,4	7:
		, , ,	:	1	383	ž	37		ž	=	7	3
	ļ	5	3	ļ	*	787	17	*	35	2	ž	337
	ļ	Track.			•	-	^	3.5	3.5	\$.3	-	~
			ì		8	8	\$	\$	8	\$	904	8
				-	¥0-92	rc-033	131 19	10.2	70.033	33,79	¥9-56	76-033
	;	1		ļ	25 0X	Cent	Cast (2)	300 131	ž	(5) 1883	300 131	į
		risis and a second	÷		7.140			0,140			0.030	
		Candi Lion Malacidi			Solution Heat Frequence (1)			35. Cold Berned 0.140			Schutster Heet	

1) Desided that salution best tracted 1350°7/1 bour

(:) Aigh accels, copper-free Aype
(!) Thase values "syveent settmates based on best available date

AND THE PROPERTY OF THE PROPER

是一个人,我们是一个人,我们是有什么,我们是一个人,我们就是一个人,我们是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们还是一个人,我们就是

1.0 PHYSICAL METALLURGY

1.1 Transformation and Hardening Mechanisms

The "martensite transformation" in iron-nickel alloys has been the subject of many investigations. The review in this report is limited to only a few aspects of the martensite transformation which are likely to enter into a discussion of the strengthening mechanisms of the iron-nickel alloys. This presentation does not include any discussion on the crystallography, thermodynamics and kinetics of the martensite transformation. The reader is referred to Wechsler, Lieberman, and Read (1), Bowles and Mackenzie (2, 3, 4), Bilby and Christian (5), Christian (6), Bullough and Bilby (7), Lieberman (8), Wechsler (9), and Bilby and Frank (10) for a discussion of the crystallography and Kaufman and Cohen (11, 12), Cohen (13, 14), Kurdjumov (15), and Holomon and Turnbull (16) for an analysis of the thermodynamic and kinetics of the martensitic transformation.

Martensite transformations have been discussed in considerable detail in a number of articles. The term has been used to designate a type of solid state, diffusionless, and shear-type phase transformation in metallic systems which is basically different from the familiar nucleation-and-growth type of transformation (17). The martensite transformation in iron-nickel systems in particular, has several interesting features which can be summarized as follows:

- 1. The transformation is attended by shear-like macroscopic displacements that results in surface tilts (5).
- The transformation can proceed both athermally and isothermally (18).
- 3. The transformation usually proceeds by the nucleation of new plates rather than by the growth of pre-existing plates (17).
- 4. The isothermal nucleation is activated by thermal fluctuations superimposed on localized regions of very high strain (3).
- 5. No diffusion of alloying elements occurs during the transformation.
- 6. The composition of the martensite is identical with that of the austenite and any distribution of solute atoms (interstitial or substitutional) that exists in the parent phase is inherited by the martensitic product.
- 7. Section-size effects are small due to an insensitivity of the martensite reaction to cooling rate and the lack of higher

temperature - diffusion controlled austenite decomposition to carbide phases (18).

- 8. The martensite structure is body-centered cubic and does not exhibit any tetragonality (18).
- 9. Martensite is only moderately hard (R_c 25) and very tough (18).
- 10. Mg temperature is primarily determined by the chemical composition and it may be influenced to some extent by previous thermal and mechanical history and by grain size (17).
- 11. No tempering occurs when the martensite is reheated (18).
- 12. The hysteresis of the transformation (Figure 120) allows considerable reheating of the martensite for aging before reversion to austenite occurs (18).

The above features have been drawn from the indicated review papers in order to point out the unique characteristics of the iron-nickel system. As seen from the above summary, the nature of the martensite transformation is complex and the information accumulated to date suggests that the strengthening in iron-nickel alloys is a composite of several strengthening mechanisms. Some of the important features of the martensitic transformation will now be considered in more detail.

1.1.1 Solid State Equilibrium in the Binary Iron-Nickel System

The equilibrium phase transformations have been studied by several investigators, i.e., Hansen (19), Desch (20), Marsh (21), and Benedicks (22). The last two reviews are the most recent.

The exact placing of the alpha and gamma phase boundaries was difficult because of the (a) formation of a body-centered cubic metastable martensitic phase which varies with composition and heat treatment and (b) low diffusion rates at temperatures below 500°C (23-26). As a result of these experimental problems, a number of proposed diagrams (23, 24, 27-30) are considered unreliable since they do not represent the equilibrium state.

The boundaries established by Owen and Sully (25) and Owen and Liu (26), utilizing long time annealing and X-ray diffraction techniques, are considered the most reliable. The results of both investigations agree closely except for (a) the gamma phase boundary in the 500-700°C temperature range and (b) the alpha boundary below 400°C. The

boundaries presented in Figure 121 are those determined by Owen and Liu (26).

Boundaries calculated from free-energy relationships of the alpha and gamma phases (24, 31, 32) are in good agreement with those shown in Figure 121.

1.1.2 Martensitic Transformation in the Binary Iron-Nickel System

The martensitic transformation can occur both athermally and isothermally in iron-nickel alloys as in several other metallic systems. The athermal and isothermal characteristics which are of interest for the discussion of iron-nickel systems are reviewed in the following two sections.

1.1.2.1 Athermal Characteristics

The continuous cooling and heating curve is presented in Figure 122. This diagram, which was developed by Jones and Pumphrey (24) by dilatometric techniques is considered to be the most precise diagram available at present. Transformation temperatures found by other investigators (33-58) using thermal, dilatometric, thermoresistometric, thermomagnetic, and x-ray methods agree, in general, with those in Figure 122. There is appreciable controversy over the beginning and ending transformation temperatures as well as the width of the transformation temperature range. These discrepancies are attributed to experimental imperfections, i.e., lack of purity, homogeneity, etc.

It should be noted that the solid lines presented in Figure 122 are the temperatures corresponding to 10% and 90% transformation. The transformation temperature range is, therefore, slightly broader than shown.

The existence of the athermal characteristics of the martensitic transformation is evidenced by the temperature hysteresis effect indicated in Figure 122. This hysteresis for iron-nickel alloys (60) is shown in Figure 120 and is compared to that observed in gold-cadmium alloys (60) in Figure 123. In both systems, the athermal transformations are not suppressed by rapid cooling or heating (24, 61) and proceed while the temperature is changing. The athermal transformation, per se, is halted if cooling or heating is stopped. Transformation may continue, however, in instances where isothermal transformation occurs.

If the phenomenon of stabilization is operative, the athermal transformation may not start immediately after heating or cooling is resumed. Stabilization may also impede the isothermal reaction. The quantita-

tive and theoretical details of this phenomenon have been the subject of many investigations (59, 62-76). The latest theories suggest that carbon diffuses to the martensitic embryo-austenite interface. As a result, the interstitial atoms build up at the interface and render it immobile. Much controversy exists as to (a) the source of carbon, (b) the austenite or the martensite embryos and (c) what causes the concentration or activity gradient for the diffusion of carbon to the interface. The theories, however, do lend support to the hypotheses of Frank (77) and Cohen (78) which postulate a dislocation interface between the martensitic embryo and the surrounding phase.

expected of the table the desidence to deside the not the term of the term

The two hysteresis effects illustrated in Figure 121 represent two different reaction behaviors. According to Kaufman and Cohen (12), the iron-nickel martensite plates form successively with each plateiet propagating rapidly until it encounters a structural barrier or its machanism becomes jammed. No additional growth of the plate occurs on further cooling. Further transformation only occurs by nucleation elsewhere in the parent phase. As a result, the athermal transformation is dependent upon the nucleation rate and the final platelet size obtained and not on the rate of platelet growth. Microstructural investigations (79, 80) have shown this to be the case in both iron-nickel alloys and steels. Reactions of this type are characterized by a high degree of supercooling and, consequently, a relatively high degree of instability below the $M_{\rm g}$.

Gold-cadmium martensite platelets, on the other hand, nucleate, appear suddenly, and propagate in length and thickness with decreasing temperature until collision or jamming occurs. This observation is in direct contrast to that which occurs in martensitic reactions of the iron-nickel type (12). Transformation in the gold-cadmium system takes place with relatively little supercooling and the driving force is insufficient to supply the requirements to form fully grown platelets. Since the available driving force is limited and a state of thermoelastic equilibrium is approached, the growth of a platelet may be stopped at a given temperature. A decrease in temperature increases the driving force and allows growth to proceed. Additional nucleation also takes place as the temperature decreases. From this, it may be stated that the rate of thermal transformation is dependent on the rate of propagation which is controlled by the rate of cooling.

Corresponding differences are also noted in the martensite-to-austenite transformations. Investigations by Edmondson and Ko (81) and Kaufman (82) on iron-nickel martensites have found that appreciable superheating is required to start reversion. The plates transform piecewise into smaller platelets rather than snap back out of existence. Gold-cadmium-type martensites revert with relatively little superheat-

ing. The plates shrink progressively and disappear in a manner approximating their formation (12). The reader is referred to other investigations (83-92) for discussions of reversion in other alloy systems.

Kaufman and Cohen (59) and Patel and Cohen (93) have shown the effect of plastic and elastic deformation on the transformation temperatures of iron-nickel alloys. The effect of plastic deformation on the $M_{\rm S}$ and $A_{\rm S}$ temperatures of 28-31 a/o nickel-iron alloys is presented in Figure 124. It can be noted that the hy, teresis between the $M_{\rm S}$ and $A_{\rm S}$ is narrowed by plastic deformation. The $M_{\rm S}$ is raised, becoming the $M_{\rm d}$, and the $A_{\rm S}$ is lowered, becoming the $A_{\rm d}$. The midpoint between the $M_{\rm d}$ and $A_{\rm d}$ temperatures is the temperature at which martensite is in equilibrium with austenite or, in other words, the temperature at which the free energy of martensite is equal to the free energy of austenite. A similar effect on the $M_{\rm S}$ can be caused by elastic straining (93). The role of stress in shifting the transformation temperatures is a kinetic one. The nucleation process is stimulated by the stress so that the more stable phase, at a particular temperature, is formed (12).

1.1.2.2 Isothermal Characteristics

For many years, it was generally accepted that the progress of the martensitic transformation was not dependent on time but only on a decrease in temperature. It is interesting to note that Wever and Lange (94), as early as 1933, observed an isothermal mode in steels. This finding, however, was explained in conjunction with processes that involved secondary diffusion (80).

In recent years, isothermal transformations have been observed in some alloy systems. Enough information is available to rule out the necessity of athermal kinetics for a martensitic reaction. The isothermal mode in most systems, however, is either inoperative or obscured by the predominant athermal transformation.

In most instances where the isothermal reaction has been detected, it occurs below the M_s . Several cases of isothermal transformation above the M_s have been found (95-99) in various alloy systems including the iron-nickel system (73). Hence, it may be stated that athermal martensite is not required for isothermal transformation. Because martensite reactions are strain sensitive and autocatalytic in nature, the presence of athermal martensite may stimulate the nucleation of isothermal martensite when cooling is halted below the M_s (12).

The isothermal kinetics reveal a C-curve behavior, regardless of whether athermal martensite is present or not. In many instances, the

active temperature range extends well below room temperature with the maximum transformation rate found in the vicinity of 100-150°K (100).

In almost all cases, the formation of the martensite plates by the isothermal reaction is physically similar to that of the athermal transformation in iron-nickel alloys, i.e., nucleating of new plates rather than growth of existing ones. Such isothermal reactions are obviously controlled by the rate of nucleation (12). Only two cases have been reported in which the isothermal growth is analogous to the gold-cadmium type of progressive athermal growth, i.e., the isothermal bainite transformation in steels (101) and the uranium-chromium martensitic transformation (96, 102).

1.1.3 Strengthening of Martensite

٠٠. يُ

Winchell and Cohen (17) have classified the possible sources of the strength of martensite. Their work has categorized the strengthening of martensite in two general groups:

- a. Those that require preferential distribution of solute atoms before or during straining.
- b. Those that apply when the solute atoms are randomly dispersed.

Specific mechanisms were considered and in the first group precipitation phenomena, dislocation - atmosphere interactions, interactions of solute atoms with faulted areas between partial dislocations, and clustering and short range order were postulated as possible strengthening mechanisms. In the second group, hardening by random solutes and by increase of elastic moduli were proposed.

Winchell and Cohen evaluated the relative contribution of each of the above mentioned mechanisms on a series of iron-nickel-carbon alloys whose nickel-to-carbon ratio was varied such that the Ms temperature was kept constant at about -40°C over a range of 0.01 to 1.0%C. contribution of nickel to the strength of the alloys by substitutional solid solution strengthening was shown to be small and could therefore be neglected. Electrical resistivity and hardness measurements were first made at liquid-nitrogen temperatures immediately after quenching, before any decomposition of the martensite occurred. Measurements were then taken at successively higher temperatures up to 100°C, allowing 3 hrs for aging at each temperature. The electrical resistivity results are shown in Figure 125. The shape of the curves for electrical resistivity versus temperature clearly indicates the existence of aging phenomena. Measurements taken in a similar manner remaled the characteristic increase, then decrease, of hardness with aging temperature of a precipitation hardening phenomenon, as shown in Figure 126. It is evident that the process is carbon dependent; hardening is practically absent at 0.0%C. The principal increase in hardness is between 0.0 and 0.2%C.

From tension and compression tests and the data presented above, Winchell and Cohen estimated the relative contributions of interstital solid solution hardening and precipitation hardening for the range of carbon contents investigated. The results are reproduced in Figure 127 (17). Although the lower curve is approximate, it is evident that intense solid solution hardening is confined to carbon contents below about 0.3%. Practically no additional strengthening of this kind is observed from 0.4 to 0.8%C. The relative contribution of precipitation hardening to the total strength of martensite may vary with alloy composition other than carbon content.

Since the temperature dependence of the flow stress of martensite is low at temperatures below which aging can occur, Winchell and Cohen concluded that elastic interaction of carbon atmospheres and dislocations is not the likely solid solution strengthening mechanism. Short-range order, clustering, and interaction of solute atoms with stacking faults require prior segregation and are also considered inprobable, since the hardening observed is present in as-formed martensite. Elastic modulus measurements showed that the modulus of carbon-containing iron-nickel alloys was less than that of the carbon-free alloys. Accordingly, the authors deduced that strengthening by carbon is not likely to be due to an increase in elastic constants. From this and other evidence, Winchell and Cohen concluded that the primary strengthening mechanisms of iron-nickel-carbon martensites are random solute strengthening in unaged specimens and precipitation hardening in aged martensites of higher carbon contents.

To summarize, the strengthening mechanism of iron-nickel alloys cannot be postulated as yet. The relative contribution of precipitation hardening to the total strength of martensite and the complex precipitates, which contribute to the hardening mechanism during maraging, have not been clearly defined. However, some evidence has been accumulated and this will be discussed in the next section when reviewing the precipitation hardened iron-nickel alloy development.

COMPOSITE RESISTANCE, TEMPERATURE CURVES FOR IRON-NICKEL ALLOYS SHOWING HYSTERES'S EFFECT

Figure 120

Temperature

°C

IRON - NICKEL EQUILIBRIUM DIAGRAM

Figure 121

TRANSFORMATION DIAGRAM FOR CONTINUOUS HEATING AND COOLING OF IRON-NICKEL ALLOY

Figure 122

ELECTRICAL RESISTANCE CHANGES DURING THE COOLING AND HEATING OF IRON-NICKEL. AND A GOLD-CADMIUM ALLOY, ILLUSTRATING THE HYSTERESIS BETWEEN THE MARTENSITIC REACTION ON COOLING AND THE REVERSE TRANSFORMATION ON HEATING 8 8 0 4s = 390°C 8 8 76. 30 Fe - N. 52.5: 47.5 **Temperature** 200 58°C 8 = 74° (Ms II =-30°C 0 00 M_S 00: 0.25 0.50 Resistance ratio

Figure 123

EFFECT OF PLASTIC DEFORMATION ON TRANSFORMATION IN IRON-NICKEL ALLOYS

Figure 124

CHANGE IN RESISTIVITY WITH AGING TEMPERATURE FOR SEVERAL IRON-NICKEL-CARBON ALLOYS (109)

Figure 125

ROCKWELL C HARDNESS AT -196°C VS. AGING TEMPERATURE FOR SEVERAL IRON-NICKEL-CARBON ALLOYS (109)

Figure 126

Figure 127 255

3909

1.2 Review of Precipitation Hardened Iron-Nickel Alloy Development

A unique property of the carbon-free, iron-nickel martensite is its extreme toughness. In contrast, the strength and hardness of these alloys are relatively low.

With the above two important facts in mind, the International Nickel Company, Inc. initiated a research program to strengthen the ironnickel martensite to a level of engineering interest with a minimum loss of toughness. Emphasis was placed on studying the effect of various elements on the solid solution strengthening and precipitation hardening of the iron-nickel martensite. The development of the new class of promising alloys was a major accomplishment since Messrs. C. Bieber, R. Decker and associates had to overcome several complex obstacles. It is well known that the martensite transformation in even the simplest iron-base alloys is a composite of strengthening mechanisms and that the occurrence of any one of the solid state phenomena can either have a beneficial or an adverse effect on the mechanical properties and fracture characteristics of the alloy. is pointed out that minor differences in the mechanical properties and fracture toughness responses can generally be explained by reviewing the chemical composition, grain size, thermal and mechanical history of the different heats. On this basis, the review in this section will be limited to a few important subjects.

1.2.1 Classification of Commercial Iron-Nickel Alloys

The research program initiated by INCO has produced, to date, four important alloys which can be classified into the following groups and sub-groups:

- Group I: Alloys precipitation hardened with cobalt, molybdenum, and titanium. In this alloy class, two compositions have been developed.
 - a. 18% Nickel Alloy 250 KSI nominal yield strength.
 - b. 18% Nickel Alloy 300 KSI nominal yield strength.

The 300 KSI alloy is similar to the 250 KSI alloy, but uses higher cobalt and titanium levels for developing higher yield strength level.

Group II: Alloys precipitation hardened with aluminum and titanium.

These alloy groups, in contrast to the Group I alloys, are free of any additions of cobalt and molybdenum. Two main compositions have been developed in this class.

- a. 20% nickel alloy which is, essentially, martensite at room temperature in all conditions.
- b. 25% nickel alloy which is largely austenibic at room temperature after solution annealing around 1500°F.

1.2.2 Influence of Composition on the Ms and Mechanical Properties of Iron-Nickel Alloys

The effect of various alloying elements on the M_S and mechanical properties of iron-nickel alloys are discussed below. It should be noted that the discussions and results have been summarized primarily from the alloy development conducted by INCO.

1.2.2.1 Effect of Hardening and Strengthening Elements in Group I (18% Nickel) Alloys

The hardening and strengthening in the Group I alloys is mainly due to the contribution of four principal elements, namely, cobalt, molybdenum, aluminum, and titanium. The strengthening mechanism in these alloys has not been clearly defined as yet. However, recent work indicates that a fine, complex, hexagonal Co, Mo, Ti precipitate contributes very significantly to the hardening reaction. Some of INCO's investigators believe that the precipitation of the complex phase during maraging may be accompanied by an order-disorder reaction. Extraction-replica techniques with electron-diffraction gave evidence of an ordered phase based on Fe₂CoNi. This evidence ties in with the remarkable rate of initial hardening which is not consistent with normal diffusion reactions (19).

Molybdenum, by itself, or in combination with cobalt, slightly increases the annealed hardness of an 18-20% iron-nickel alloy (Figures 128 and 129%. This effect of molybdenum becomes more pronounced after maraging and is greater in the presence of cobalt. It should be noted that the aged hardness does not increase appreciably on increasing the molybdenum content above 8% or the percent cobalt times percent molybdenum value above 50. Cobalt, on the other hand, has a negligible effect on the annealed and aged hardness in the absence of molybdenum.

The yield strength of the alloy, as expected from the hardness relationships, increases with the cobalt and molybdenum contents. At the titanium contents indicated in Figures 130 and 131, there is a considerable range over which a yield strength of 250,000 psi can be obtained. The effect of cobalt and molybdenum on the notch properties of the material, however, imposes a definite restriction on the composition. While there is considerable flexibility in the cobalt content, the molybdenum should be less than 5.1% for good notch

properties (NTS/YS = 1.4 - 1.5). The notch strength decreases considerably for molybdenum contents above 5.1%. It is believed that this may be related to the solubility of molybdenum in austenite at the annealing temperature. These empirical data suggest that raising the yield strength from 250,000 psi level, with minimum loss of fracture toughness, can best be obtained by increases in cobalt content.

Additions of titanium proved to be a desirable supplemental hardener for cobalt and molybdenum - containing alloys. The annealed hardness, aged hardness and strength of the 18% Ni, 7% Co, 5% Mo alloy increases with increasing titanium content (Figures 132 and 133). Data in Figure 133 illustrates that as titanium was increased from 0.1 to 0.7%, the yield strength increased from 220,000 to 280,000 psi. This increase was about 10,000 psi for each .1% of titanium. The NTS/TS ratio decreased in air melts containing more than 0.4% Ti. This drop-off was very sharp for maraging at 900°F, dropping to a NTS/TS of 1 at 0.6 to 0.7% Ti. Maraging at 950°F gave higher notch tersile strength in the air melts at 0.5% Ti and above. A titanium content of 0.7% was found to be the upper limit to preserve the excellent air melting characteristics of these alloys. Above this level, dross and films developed. Titanium also neutralizes residual carbon and nitrogen by removing them from solution in the martensite.

The effects of aluminum additions were also studied. Aluminum, in amounts of approximately 0.5%, caused supplementary hardening but was detrimental to the notch properties. An addition of approximately 0.1%, however, is made to the alloy for deoxidation purposes. A slight strengthening effect is noted from this addition (103).

1.2.2.2 Effect of Residual Elements in Group I (18% Nickel) Alloys

Carbon, silicon, manganese, phosphorous, sulphur, and calcium are the residual elements in these alloys. Carbon is usually present in the range of 0.01 to .03%. There are some indications that increasing the carbon content from 0.01% to 0.04% causes an increase in yield strength of approximately 20,000 psi. Carbon up to .03% was not detrimental to notch-tensile strength at the 250,000 yield strength level. However, at a carbon level of .05%, there is an indication that the yield and notch strength is decreased (Figure 134).

From the collected data to date, it appears that maintaining a carbon content of .01 - .03% is desirable in these alloys. Carbon contents in excess of 0.03% have an adverse effect on the strength and toughness of the alloy. The effective titanium content is reduced by the formation of TiC thereby decreasing the strength of the material. Toughness is reduced by the solid solution strengthening effect of the carbon on the martensite.

The silicon and manganese contents of all the laboratory heats referred to in the above discussions were below 0.15 and 0.10%, respectively. When these elements are individually increased to 0.25% and above, the strength increases, but the ductility and notch strength are drastically affected. This is probably caused by the solution hardening and strengthening effects of these elements on the martensite.

High phosphorus and sulphur contents are believed to have the same effects on these materials as they do in carbon steels. Therefore, a 0.010% maximum has been placed on these elements.

Approximately 0.05% carcium is added to the heats to aid in deoxidation (104). The effect of calcium on toughness is unknown.

1.2.2.3 Effect of Boron and Zirconium on Group I (18% Nickel) Alloys

Additions of small amounts of boron (0.003%) and zirconium (0.01%) are made to enhance the toughness of the alloys. These elements are added since the earlier work by INCO on titanium hardened alloys proved that these elements retarded grain-boundary precipitation and, hence, enhanced toughness and stress corrosion resistance. The beneficial effect could be due to the grain boundary segregation of these elements which have atomic radii incompatible with intersitial or substitutional solution (19).

1.2.2.4 Effect of Hardening and Strengthening Elements in Group II (20 and 25% Nickel) Alloys

The hardening and strengthening in the Group II alloys is, essentially, due to only two elements, namely aluminum and titanium. Most of the strengthening in these groups of alloys is derived from the precipitation of titanium compounds namely, Ni3 (Al Ti) and Fe2Ti. Activation energies calculated from the hardness data indicate that the activation energy for the 20% nickel and 25% nickel alloys are between 30,000 and 39,000 cal/mole. The agreement in the activation energies indicate that the precipitates in both alloys in this group are identical or closely related in composition. However, the calculated values are considerably below the activation energy required for the diffusion of major elements in the nickel alloys. This discrepancy has not been completely explained but it is thought that the low activation energies may be caused by an abnormally high number of vacancies induced during warm working (103).

Most of the strengthening in this group of alloys is derived from titanium. The effect of titanium content on the mechanical and notch properties of 20% and 25% nickel alloys are presented in Figures 135, 136 and 137 (25% Ni) respectively. It can be noted from these

figures that in order to keep the notched tensile strength-to-ultimate tensile strength ratio above 1.0, the titanium content must not exceed 1.6%. As found in the Group I alloys, the yield strength decreases approximately 10,000 psi per 0.1% Ti. Hence, the heat to heat variation of titanium should be kept to a minimum.

Investigations have shown that the strength of titanium strengthened materials is increased with increasing aluminum content. Additions up to 0.35% aluminum may be utilized without adversely affecting the notch strength. Aluminum contents above 0.35% drastically reduce the toughness of the alloy to a point where the notched tensile strength to ultimate tensile strength ratio is substantially below unity (103).

The alloys used in obtaining the data in Figure 137 contained small amounts of aluminum and columbium. Without the addition of the aluminum, the yield strength curves would be displaced downward approximately 20,000 to 30,000 psi.

1.2.2.5 Effec of Residual Elements in Group II (20% & 25% Ni) Alloys

Carbon, silicon, manganese, phosphorous, sulphur and calcium are the residual elements in these alloys. The effects of carbon content on the properties of the material are not well established. Certain indications, however, have been noted. Carbon contents up to 0.03% seem to have a beneficial effect on the nouch properties of the material. This is attributed to the reduction in precipitation of Fe2Ti in the grain boundaries. The exact mechanism which is operative is unknown but it is speculated that the carbon atoms are preferentially located in grain boundaries. This would obstruct the short circuit diffusion paths in the grain boundaries and, hence, inhibit the precipitation of Fe2Ti in these boundaries.

Carbon contents in excess of 0.03% have an adverse effect on the strength and toughness of the alloy. The effective titanium content is reduced by the formation of TiC thereby decreasing the strength of the material. Poughness is reduced by the solid solution strengthening effects of the carbon on the martensite.

Manganese and silicon contents in excess of 0.100 have a drastic effect on the notch toughness of 25% Nickel alloy. High manganese contents, 0.5% and greater, increase the tendency to retain austenite after solution annealing. To overcome this effect, a longer ausaging treatment or refrigeration treatment is required. If these added precautions are not taken, lower yield strengths result because of the weakening effect of the retained austenite. Silicon, in general, increases the strength and lowers the ductility of the alloy by solic solution strengthening.

The effects of increasing manganese and silicon contents above 0.15% in 20% Nickel alloy have not been well established. Hence, a maximum content of 0.10% of these elements are recommended until it is proved from statistical data of production heats that the higher additions of manganese and silicon have no detrimental effects on the notch properties of 20% nickel alloys.

High phosphorus and sulphur contents have approximately the same general effects in the iron-nickel alloys as those in carbon steels. Therefore, a 0.010% maximum is placed on these elements (104).

Approximately 0.05% Ca is added to the heat to aid in deoxidation. The effect of calcium on toughness is unknown.

1.2.2.6 Effect of Toughness Improving Elements on Group II (20% & 25% Ni) Alloys

Columbium additions increase the notch properties of the 25% nickel alloy. INCO found that the amount of the continuous Fe₂Ti phase, generally found in the grain boundaries of 25% nickel alloy, was reduced by increasing the columbium content from 0% to 0.25%. The cleanest grain boundaries were found at the 0.15 to 0.25% level. Additions of columbium causes the formation of a discontinuous globular-shaped phase in the grain boundaries which is believed to be an iron-columbium compound.

The effects of boron and zirconium on the notch toughness is illustrated in Figure 137. This phenomena is further demonstrated graphically in Figure 138. It can be seen that the optimum boron and zirconium contents are 0.003% and 0.02%, respectively (103).

No systematic variations in columbium, boron, and zirconium contents have been made to determine the effects of these elements on the 20% nickel alloys. Some indications, however, have been noted. Analysis of strength data obtained on production melted heats has indicated that columbium has a definite strengthening effect. A change in properties has been noted in heats with columbium contents which vary from the high to low side of the 0.33-0.50% specification. The optimum columbium content for this alloy is considered to be similar to that of the 25% nickel alloy.

Contrary to the results of the 25% nickel, no beneficial effects of boron and zirconium on notch toughness were noticed. Boron and zirconium additions should still be made until this phenomenon is further substantiated.

1.2.2.7 Effect of Nickel and Other Elements on the $M_{\rm S}$ Temperature

The balance of nickel and the various elements is very critical in order to ensure a martensitic structure in the 18% and 26% nickel alloys and an austenitic structure in the 25% Nickel alloy after air cooling from the solutioning temperature.

The approximate effect of the major constituents on the $\rm M_{\rm S}$ temperature of the iron-nickel alloys can be summarized as follows:

Element	Effect on Ms	Extent of Effect
Nickel	Lowers	50°F/1% of element
Titanium	Lowers	100°F/1% of element
Aluminum	None	0°F/1% of element
Columbium	Lowers	90-100°F/1% of element
Molybdenum	Lowers	40°F/1% of element
Cobalt	Raises	10°F/1% of element

The transformation temperatures, M_S and M_f , of an 18.1% Ni, 7.0 Co, 5.0 Mo, 0.4 Ti were found to be 310°F and 210°F. The isothermal transformation temperatures of a 25% nickel alloy after annealing and ausaging stages are presented in Figure 139.

Special Metals, Inc., formerly the Metals Division of the Kelsey-Hayes Corporation, has performed an investigation on the effect of nickel and titanium on the M_S temperature of the 25% Nickel alloy. Transformation temperatures of the alloys were determined by dialatometric techniques. The effect of nickel content and heat treatment on the M_S and M_f temperatures of 1.51% titanium material is presented in Figures 140 and 141. The M_S temperature of annealed (1 hour at 1500°F) material and ausaged (4 hours at 1300°F) material decreases linearly with increasing nickel content by approximately 60 - 65°F per 1% of nickel.

Ausaging at 1300°F for 4 hours lowers the Ms temperature by approximately 170°F. The effect of nickel content on the Mf temperature is similar to that on the Ms with the exception that the relationship is not as linear. Ausaging, as above, lowers the Mf by approximately 170°F. The temperature difference between the Ms and Mf temperature is 145 - 155°F.

The effect of titanium content and heat treatment on the $M_{\rm S}$ and $M_{\rm f}$ temperatures of 25.70% nickel material is presented in Figures 142 and 143. The $M_{\rm S}$ temperature of annealed material decreases approximately 100°F for an addition of 1% of titanium. The addition of 1% of titanium increases the $M_{\rm S}$ temperature of ausaged material approxi-

mately 140°F. The effect of titanium content on the Mf temperature of annealed material is less pronounced while that on the Mf temperature of ausaged stock is more pronounced.

1.2.3 Composition Specifications

From the brief discussion presented in the above sections, it is evident that the composition of the various iron-nickel alloys should be carefully controlled in order to ensure the desired properties and structure. The critical elements in the 18% and 20% nickel alloys should be balanced so as to raise the M_S above room temperature. Attention is drawn to the fact that:

- a. 18% and 20% nickel alloys should transform completely to 100% martensite after air cooling from the annealing temperature. If the elements in these alloys are balanced, any small amounts of retained austenite would transform isothermally within a short period of time.
- b. 25% nickel alloy should have an austenitic structure after air cooling from the annealing temperature in order to facilitate forming in some severe fabrication processes.

After considering all the facts and the approximate ranges that can be met by various melting practices, the recommended composition specifications for the two groups of alloys are as presented in Tables 671 and 681.

1.2.4 Condition and Heat Treatment

18% Nickel (250 and 300 KSI) alloys, and 20% nickel alloys are essentially martensitic at room temperature. As mentioned previously, the 25% nickel alloy is largely austenitic at room temperature after solution annealing around 1500°F.

The martensitic alloys can be hardened by maraging the alloys in three different conditions as shown below. In contrast, the 25% nickel alloy can only be heat treated in two conditions and, in order to achieve high strength levels, the alloy must be completely transformed to martensite by a combination of heat treatment before hardening (ausaging) and by maraging. The effect of various heat treating parameters on the mechanical properties and fracture toughness of the various alloys in different conditions are discussed in detail in Section 5.0 of this report. The general summary of the appropriate heat treatment for the various conditions are as follows:

Alloys	Condition	Heat Treatment	Purpose
18% Ni (250)		a. Solution anneal at 1400°F-1600°F	Austenitizes, re- crystallizes, and solution precipitates
18% Ni (300)	Annealed	b. Air Cool	Transforms to martensite
20% Ni		c. Marage @ 800°F to 950°F	Precipitation hard- ens and strengthens martensite
18% Mi (250); 18% Ni (300); 20% Ni	"As warm worked"	Marage @ (850°F to 950°F) directly on "hot-rolled" material	Precipitation hardens ens and a rengthens martensite (note simplicity of H.T.)
18% Ni (250) 18% Ni (300) 20% Ni	Cold Worked (moderate percentages)	Marage @ (850°F to 950°F) directly on cold worked material	Precipitation hard- ens and strengthens martensite
25% Ni	Annealed {	a. Solution anneal at 1450°-1600°F	Austenitizes, re- crystallizes, and solution precipitates
		b. Ausage @ 1200°F-1300°F	Raises M _S , hardens austenite

Alloys	Condit Lun	Heat Treatment	Purpose
		c. Refrigerate @ -100°F	Transforms to martensite
		d. Marage @ 800°F- 950°F	Precipitation hard- ens and strengthens martensite
25% Ní	Cold Worked	a. Refrigerate @ -100°F	Transforms to martensite
		b. Marage @ 800°F-950°F	Precipitation hard- ens and strengthens martensite

1.2.5 Melting Methods

Generally, the four alloys should be vacuum-arc-melted to ensure good toughness at high strength levels. The 250 KSI composition has yielded excellent properties from large air melt heats. Extensive work is in progress for the further air melt development of this composition for large solid propellant rocket motor cases.

1.2.6 Primary Working

Ingots should be soaked at 2200°F-2300°F, given an initial breakdown and resoaked for 1½ hours. Subsequent forging should be conducted between 2200°F to 1850°F and hot rolling between 1900°F and 1500°F. A low finishing temperature is recommended for obtaining optimum properties after heat treatment. No problems of cracking at these low temperatures have been encountered.

1.2.7 Corrosion Resistance

1.2.7.1 Corrosion Resistance of Group I (18% Ni) Alloys

Stress corrosion tests conducted in aerated artificial sea water by the International Nickel Company (103) indicate that this group of alloys has good resistance to stress corrosion considering the high strengths involved. The alloys are, however, attacked to some degree.

U-bend test specimens were prepared in the following manner. Strips measuring $1/2 \times 1/4$ inch were machined in the as-rolled condition and bent through an angle of 150° . Specimens were then maraged in tank argon, cleaned with 300 grit paper, and bent to the final 30° . A total of eight specimens from seven heats, representing yield strengths

ranging from 232,000 to 272,000 psi, have been tested. Results to date are presented in Table 69. As reported, one specimen of 232,000 psi yield strength developed a crack between 92 and 99 days. Two accompanying specimens of 232,000 psi yield strength are unbroken after 120 and 140 days, respectively, although the former, when examined microscopically, exhibited intergranular surface attack.

Four specimens of higher yield strength have shown cracking between 35 and 42 days. Two specimens of this group are unbroken after 82 days.

Microexamination of the broken specimens revealed that the cracks were intergranular in nature. However, the cracks were not of the common hairline type but were rather in the form of a band of some width. A small amount of an intergranular precipitate has been observed; consequently, it is quite likely that the precipitate could contribute to the failure. If the precipitate is directly involved, it is highly possible that stress corrosion resistance can be improved by an adjustment of composition or heat treatment.

Since U-bend specimens obtain a considerable amount of plastic deformation, a complicated stress pattern exists. A simplified stress pattern was studied to more closely approximate loading conditions in structural applications. Two test specimens, 1/16 x 3/16 x 3 inches, were tested under conditions of three-point loading. The load applied was equal to the 0.2 percent yield strength. Simultaneously, for comparative purposes, specimens of quenched and tempered 300-M at a 250,000 psi strength level were also exposed to similar loading. The nickel-cobalt-molybdenum steel specimens have passed 70 days without cracking while the 300-M specimens failed in 2-3 days.

1.2.7.2 Corrosion Resistance of Group 2 (20 & 25% Ni) Alloys

ckel alloy by INCO. Three-point loaded stress corrosion tests on material were performed with various boron and zirconium contents. The results are shown below:

Boron and Zirconium Content	OB-OZn	.00201B and/or .02- .05 Zr	.00201B and/or .02- .05 Zr
0.2% Yield Strength	220,000 psi	220,000 psi	250,000 psi
Time of Failure	5 heats 1-18 days	5 heats 60 days*	7 heats 60 days*

* Termination of Test

3 4

The effect of boron and zirconium additions are self-evident.

U-bend tests in the same environment, however, resulted in failures in less than one day and were independent of boron and zirconium additions. Tests in a salt atmosphere have shown that the general corrosion rate of 25% nickel steels is approximately 0.0005" per year which is approximately one-tenth that of conventional missile steels of the SAE 4130 or 4340 types.

The corrosion resistance of 20% nickel alloy is comparable to that of the 25% nickel alloy.

1.2.8 Welding

Metallurgical behavior of iron-nickel alloy weldments is similar to that of the base material particularly in the Group I Alloys (18% Nickel). The effect of various metallurgical factors on the weld properties of iron-nickel alloys is presented in this section.

International Nickel Co., Inc., introduced welding developments at an early stage of their iron-nickel alloy research program. It was directed for the most part toward welding heavy plate sections, particularly of the 18% nickel type. The results of this work, supplemented by data since obtained by several fabricators, will be reviewed.

1.2.8.1 Group I Alloys (18% Nickel)

Weldability studies conducted on the 18% nickel alloy (250 KSI) demonstrated that weld deposits of essentially matching base metal composition possess both soundness and ability to respond favorably to direct aging treatments specified for base materials (105). This alloy is weldable in both sheet and plate using conventional welding processes. More recent work has demonstrated that the 300 KSI alloy exhibits similar properties in gas, tungsten-arc welded sheet (106).

1.2.8.1.1 Weld and Heat Affected Zone Soundness

Sound, crack-free welds have been obtained in 18% nickel alloy (250 KSI) weldments, in heavy plate sections under conditions of severe restraint (105). Weld deposits in both sheet and plate are relatively free of porosity (105)(107). No evidence of underbead cracking has been observed in the 18% nickel alloy in highly restrained butt welds in fully hardened plate up to 4 inches thick (107). Weldment quality is attained without benefit of a "preheat-interpass-postheat" weld thermal cycle even under the most demanding conditions where heavy sections are welded in the hardened condition (105)(108). To

date, successful plate welding has been achieved using three processes: coated electrode, submerged-arc, and gas metal-arc. In thin sheet sections sound gas, tungsten-arc (TIC) welds have been produced (109).

1.2.8.1.2 Effect of Major Alloying Elements on Weld Strengt and Soundness

The hardening and transformation mechanisms, and the effect of the various hardening elements on strength, toughness and aging response previously described for base materials in Sections 2.0 and 3.2.1 are essentially the same for weld deposits. Differences which exist are primarily associated with the segregated structure of the cast weld deposit, and to a lesser degree, recovery rates of individual elements.

Early investigations on the effect of various alloying elements on weld strength and toughness were made using coated electrodes (105). The results of this work, were later translated successfully to inert-gas welding, and are believed to be representative of most 18% nickel alloy weldments.

Nickel content, as is the case in base materials, must be controlled within compositional limits. Increasing nickel above 19% in weld deposits results in a sharp decline in notched tensile properties, as well as strength as indicated by hardness, (Figure 144) (105). This effect is attributed to austenite retention, a condition which exists even in 18% nickel weld deposits due to segregation of austenite forming elements. Only limited data is available on the effect of lower nickel contents on weld properties. Work to date has shown that lower nickel levels (16%) enhance notched properties in heavy section weldments, however, only at the expense of weld soundness (105). This improvement is attributed to a more completely martensitic as-welded structure. A loss in weld soundness was not observed in gas tungsten-arc welds in 0.070" sheet made using lower nickel content wires (109). However, it has not been determined that a similar improvement in notched properties over 18% nickel wires is achieved in sheet welds.

Cobalt, molybdenum and titanium are the three basic elements which are varied to obtain the different maraging steel classes (18). Figure 145 shows that increasing molybdenum in a weld deposit first increases strength only at the expense of notched toughness, but with additional amounts the strength also falls off rapidly due to austenite retention (105). This loss in toughness is also observed in base material (Figure 131). A similar effect noted for titanium in the base material (Figure 132) is not as clearly defined in the weld data (Figure 146). However, it would seem that increasing titanium in weld deposits should be controlled to avoid possible adverse retained

austenite effects. Increasing cobalt content increases weld strength (Figure 147) as is the case in base material (Figure 129). Of the three hardening elements, cobalt increases strength with minimum sacrifice to notched strength and danger of retained austenite (105).

As shown in Table 70 (105) 18% nickel weld deposits are prone to severe weld porosity in the absence of titanium and/or aluminum. Titanium and aluminum in addition to any beneficial hardening effects act as gas fixing agents in the weld deposit. In coated electrode core wires titanium is also necessary to control weld cracking (Table 70). When added in sufficient amounts, titanium eliminates weld cracking.

1.2.8.1.3 Effect of Residual Elements

2s:

) .

9

:s.

te

Control of residual elements known to have adverse effects on the base material properties is particularly critical in welds because of inherent segregation. Carbon, manganese, phosphorus, and sulfur should be controlled within limits specified for base materials in Section 3.2.2 (110). Data on the effect of increasing manganese content in weld deposits is shown in Figure 146 (105). Weld strength is reduced considerably due to austenite retention.

Insufficient data is available to evaluate the effect of silicon on weld properties. Data obtained on coated electrode deposits indicate that the deleterious effect of silicon in base materials is not as pronounced in welds (105).

Aluminum in the amounts added in the base material for deoxidation purposes is not detrimental to weld properties. Residual aluminum supplements titanium in controlling weld porosity (105).

Boron and Zirconium. The effects of small additions of boron and zirconium on weld properties are not well established. To date, no detrimental effect has been noted in welds made in thin sheet using filler wires containing boron and zirconium (Table 71) (109) (111).

1.2.8.1.4 Heat Treatment

The weld and heat-affected-zone of the 18% nickel alloy responds to normal base material maraging treatments (105) (107).

The effect of maraging temperature on the hardening response of a 200 KSI weld deposit is shown in Figure 148 (105). A similar behavior would be expected in 250 and 300 KSI welds. Initial weld hardening begins at about 700°F, as is the case with base materials.

The heat affected zone of solution heat treated material is hardened somewhat in the area exposed to maraging temperatures, but aging at 900°F equalizes hardness between heat-affected-zone and unaffected base metal (105) (107). The heat-affected-zone of fully neat treated material is softened during welding to its annealed hardness. Rehardening of this zone is accomplished by reheating at about 900°F as shown in Figure 149 (110) which demonstrates the ability of 18% nickel steel weldments to respond to local post weld heat treatment.

It is known that exposure of the 18% nickel alloys to temperatures in the 1200 to 1300°F range results in austenite stabilization and incomplete maraging response (112). This effect is experienced in weld heat-affected-zones exposed to stabilization temperatures, but does not appear to be pronounced. It is reflected as a slight loss in hardness after aging in a narrow band of the heat-affected-zone. To date, this behavior has not been found to be detrimental to weld tensile properties, Table 71 (109) (111).

As shown in Tables 71 and 72 welds made using various welding processes are hardened by normal base material maraging treatments at 900°F (105) (105). Sheet welds which were solution heat treated at 1500°F prior to maraging failed to show any superiority in tensile properties over directly maraged welds (Table 69).

1.2.8.1.5 Composition Specifications

Filler wires for inert-gas welding should be of essentially matching base metal composition. Present coated electrode core wires and submerged-arc filler wire compositions are titanium-modified versions which deposit matching base metal compositions. Currently INCO recommends that boron, zirconium and calcium additions be excluded from weld wires since it has not been shown that these additions are essential to fracture toughness.

On the basis of data available to date, the recommended composition specifications for inert-gas filler wires are as given in Table 73 (105) (110). Coated electrode core wire and wire for submerged-arc welding are essentially the same except for titanium which is increased to 2.0-2.5 percent (105) (110).

1.2.8.1.6 Melting Method

THE REPORT OF THE PROPERTY OF THE PARTY OF T

Filler wires for inert-gas welding must be vacuum-melted, and it is advisable to use the purest melting stock obtainable (110). Vacuum-melting is desirable not only to insure maximum weld notched toughness but also to obtain adequate weld soundness particularly in welding heavy sections. Instances of transverse weld cracking have been

experienced in gas metal-arc welds made in heavy plate using air melted wires (105). Vacuum-melting is also recommended for coated electrode and submerged-arc welding wires (110).

1.2.8.2 Group II Alloys (20 and 25% Nickel)

The 20 and 25% nickel alloys are weldable in sheet form using the gas tungsten-arc process (107 (108) (109). Work completed to date indicates that use of modified matching base material filler wires is preferred for welding to obtain a maximum balance of weld strength and toughness (110) (111). Welding of the 20 and 25% nickel alloys in plate form has been relatively limited. Currently, a filler wire of 18% nickel alloy is recommended for welding these alloys in plate sections (109).

1.2.8.2.1 Weld and Heat Affected Zone Soundness

sed

S

No evidence of underbead cracking has been observed in the 20 and 25% nickel alloys even in butt welds made in heavy plate sections (114) (115). It has also been reported that sound, crack-free welds could be produced in 20 and 25% nickel butt welds in plate sections (115). Welds demonstrated freedom from porosity and were made without a "preheat-interpass-post heat" weld thermal cycle. Plate welds in 20% and 25% nickel alloy have been made using gas tungsten-arc, gas metal arc and coated electrode processes (115).

1.2.8.2.2 Effect of Major Alloying Elements on Weld Strength and Soundness

The hardening and strengthening mechanism in the Group II alloys welds is essentially the same as that described for the base materials in previous Sections 1.1 and 1.2.2.4.

No published data is available on the effect of the major alloying elements, titanium and aluminum, on weld properties. However, the effects noted for the base materials in Section 1.2.2.4 are expected to be reflected in welds of similar composition. Weld segregation and hardness recovery rates should be considered in any translation of these data to welds.

Early work suggested that modifying the 20% nickel filler wires by lowering the nickel content and adding molybdenum would be useful in improving weld norched toughness (109) (111).

The lower nickel content was intended to insure a more completely martensitic structure as-deposited. Molybdenum was added to improve ductility and toughness. Additions of molybdenum, a potent austenite

former, are limited to about 1.5 to 1.7% in order to maintain a proper balance of composition without upsetting the transformation characteristics of the alloy system (111).

Titanium and aluminum, the major alloy hardeners, also act as gas fixing elements which control porosity.

1.2.8.2.3 Effect of Residual Elements

The Group II Alloy residual elements listed in Section 1.2.2.5 should be controlled in welds within the limits specified for base materials.

Specific data on the effect of residual elements on properties of 20 and 25% nickel alloy welds is not available. However, similar if not more adverse behavior than is experienced in base materials is expected in high strength weld deposits due to segregation tendencies. This is particularly true of elements such as manganese, silicon, phosphorus and sulfur which are known to either promote austenite retention or lower ductility and notched toughness in 20 and 25% nickel alloys.

Boron and Zirconium. The need for boron and zirconium in weld deposits is not well established. To date, no detrimental effects have been observed in sheet welds made using filler wires containing boron and zirconium (114).

1.2.8.2.4 Heat Treatment

The weld and heat-affected-zone of the 20% nickel steel alloys respond to direct maraging treatments normally used for base materials, (109) (110) (115).

Like the 18% nickel steel the heat-affected-zone is hardened in the area exposed to maraging temperatures. Maraging at 850°F equalizes hardness between heat-affected-zone and unaffected base metal. Preliminary tensile data obtained on welded 20% nickel alloy sheet indicated that weld deposits respond to direct maraging treatments, Table 74 (107) (109).

Solution heat treated 25% nickel alloy is hardened slightly in the area of the weld heat-affected-zone exposed to ausaging temperatures (110). A complete heat treatment cycle; i.e., ausage, refrigerate, and marage, equalizes hardness between heat-affected-zone and unaffected base metal. (Figure 150). The weld heat-affected-zone also responds to refrigeration and marage treatments to about the same degree as does uraffected base material as shown in Figures 151 and 152. These hardness surveys also illustrate the need for ausaging and refrigeration of weld deposits to obtain comparable base

metal hardness. A complete heat treatment cycle was found necessary even when 20% nickel alloy filler wires were deposited on 25% nickel base metal (Figure 151).

Recent work (114) has shown that aged 20% nickel alloy sheet weld tensiles often experience premature failure accompanied by a loss in ductility. Failure is localized in the weld heat-affected-zone. The nature of this embrittlement is not known. Preliminary weld tests conducted by INCO (109) did not reveal this behavior.

Tensiles from welds in 2-inch thick 20% nickel alloy plate were found free of any heat-affected-zone embrittlement after heat treatment (114).

1.2.8.2.5 Composition Specifications

Welding of 20 and 25% nickel alloys has been limited for the most part to inert-gas welding. Filler wire compositions are not as yet set. Currently, INCO recommends that molybdenum-modified filler wires of essentially matching base metal composition be used (110). As in the case of the 18% nickel filler wires, exclusion of boron, zirconium and calcium additions is advised at this time (110).

On the basis of data available to date, the recommended composition specification for inert-gas filler wires are given in Table 75. It should be noted that the 18% nickel alloy filler wires are also suggested for welding 20 and 25% nickel (109).

1.2.8.2.6 Melting Method

Filler wires for inert-gas welding must be vacuum-melted, and it is advisable to use the purest melting stock available (110).

EFFECT OF MOLYBDENUM & MOLYBDENUM + COBALT ON HARDNESS OF 18.5-20.1 NI, BAL. FE ALLOYS.

Figure 128

EFFECT OF COBALT X MOLYBDENUM PRODUCT ON HARDNESS OF 18 5-20.1 NI, BAL. FE ALLOYS

Figure 129

EFFECT OF MOLYBOENUM ON YIELD STRENGTH AND NTS/TS OF 18.5 Ni., 7.5 CO, 0.4 TI, BAL. FE, 30 LBS. AIR MELTS

Figure 130

EFFECT OF COBALT & MOLYBDENUM ON YIELD STRENGTH & NOTCHED TENSILE STRENGTH (0.5" MAJ. DIA. ROUND) OF 18.5 NI., BAL. FE, 30LBS AIR MELTS. ANNEALED + 3 HRS AT 900° F

Figure 131.

EFFECT OF TITANIUM ON THE PROPERTIES OF THE 18 NI-7 CO-5 MO STEEL

Figure 132

EFFECT OF TITANUM ON YIELD STRENGTH & NTS/TS O. 18.5 NI, 7-7.5 CO, 5 MO, BAL. FE, 30 LBS MELTS. ANNEALED IHR. AT 1500°F PLUS MARAGE

δ AIR MELT-950°F MARAGE Δ VAC MELT-900°F MARAGE

Figure 133

Figure 134 280

GRAPHIC REPRESENTATION OF NECHANICAL PROPERTIES OF AIR AND VACUUM MELTED 20% NICKEL ALLOY.

Figure 135

ROOM (EMPERATURE YELD STRENGTH AND NOTCHED TENSILE STRENGTH FOR .3% NICKEL STEEL AIR AND VACUUM MELTS AFTER VARIOUS HEAT TREATMENTS

EFFECT OF TITANIUM CONTENT ON THE STRENGTH, DUCTILITY AND NOTCH PROPERTIES OF THE 25% NICKEL ALLOY

Figure 137

THE EFFECT OF BORON AND ZIRCONIUM ON THE NOTCH STPENGTH OF THE 25% NICKEL ALLOY

Figure 138

THE ISOTHERMAL TRANSFORMATION OF AUSTENITE TO MARTENSITE IN AN ALLOY CONTAINING 24.9 Ni, 1.54 Ti, .26 AI, .15Ch IN THE ANNEALED AND AGED CONDITIONS

Figure 139 285

EFFECT OF VARYING NICKEL CONTENT ON MS TEMPERATURE IN UDIMET A (TITANIUM - 1.51%)

Figure 140

Figure 141

The State of the S

EFFECT OF VARYING TITANIUM CONTENT ON MS TEMPERATURE IN UDIMET A (NICKEL - 25.70 %)

Figure 142

3441

EFFECT OF VARYING TITANIUM CONTENT ON MF TEMPERATURE IN UDIMET A (NICKEL - 25.70 %)

Figure 143

EFFECT OF NICKEL ON TRANSVERSE WELD PROPERTIES 18% Ni STEEL (250 KSI) - COATED ELECTRODE DEPOSITS

MARAGED: 900°F/3 Hrs.

Figure 144

MARAGED: 900°F/3 Hrs.

Figure 145

MARAGED: 900°F/3 Hrs.

Figure 146

EFFECT OF COBALT ON TRANSVERSE WELD PROPERTIES 18% NICKEL (250 KSI) - COATED ELECTRODE DEPOSITS

MARAGED: 900°F/3 Hrs.

Figur 147

Figure 148 294

EFFECT OF LOCAL POST WELD INDUCTION HEATING ON AGING RESPONSE OF 18% N1 STEEL WELD DEPOSIT (250 KSI)

HARDNESS TRAVERSE - Rc (1)

TRANSVERSE CROSS SECTION THROUGH GIRTH WELD

TRANSVERSE WELD JOINT MECHANICAL PROPERTIES (1)

Н	ARUNE	SS - Rc	TE	NSILE	PROP. (2)	NOTCHED	TENSILE	PROP. (3)
WELD	HAZ	BASE METAL	YS KSI	TS KSI	ELONG.	R.A.	N.T.S.		
46	46	47	220	234	8.33	37.2	268	1.21	1.14

(1) Plate: 13 Ni Co Mo - 250 KSI steel (Le Ti content - 0.24%) aged prior to welding to 235 KSI YS (960°F/3 hrs)

Filler: 18 Ni Co Mo - 250 KSI coated electrode

Heat Treatment: 800°F/I hr (on heating) + 875°F/I hr (at temp.)

- (2) Round Bar Tensiles: Avg. of 3 tests
- (3) Notched Round Bars

Figure 149

400 ACROSS-THE-WELD HARDNESS SURVEYS OF WELDS ON 25% NICKEL ALLOY 1500°F AND 1300°F+REF. + AGED ISOO F AND REFRIGAND AGED WIRE 380 REFRIG. AND AGED 25% NI BASE METAL FILLER 300 80 200 .150 HAZ <u>8</u> INTERFACE METD WELD S S 46-55 54 53 52 50. 49-Š 450 HARDNESS - BOCKMETT C

DISTANCE - IN.

Figure 150

Figure 151 297

Figure 1.52

TABLE 57

COMPOSITION SPECIFICATION FOR GROUP I ALLOYS

	18% Nickel Alloy (250 K31 Nominal	18% Nickel Alloy (300 KSI Nominal
	Yield Strength)	Yield Strength)
Nickel	18.0 - 19.0%	18.0 - 19.0%
Cobalt	7.0 - 8.0	8.5 - 9.5
Molybdenum	4.6 - 5.1	4,6 - 5.2
Titanium	0,25 - 0,55	0.5 - 0.8
Aluminum	0.10 added	0.10 edded
Carbon	0.01 - 0.03	0.01 - 0.03
Silicon	0.10 max.	0.10 max.
Manganese	0.10 max.	0.10 max.
Phosphorous	0.01 max.	0.01 max.
Sulphur	0.01 max.	C.01 max,
Calcium	0.05 added	0.05 added
Eoron	0.003 added	0.00% addad
Zircenium	0.02 added	0.02 added

TABLE 68

COMPOSITION SPECIFICATIONS FOR GROUP II ALLOYS

	20% Nickel Alloy	25% Nickel Alloy
Nickel	19.6 - 20%	25.0 - 26.0%
Titanium	1.30 - 1.60	1,30 - 1.60
Aluminum	Q ₀ 15 - 0.30	0.15 - 0.30
Columbium	0.30 - 0.50	0.30 - 0.50
Carbon	0.03 max,	0.03 max.
Silicon	9.10 max.	0,10 max.
Manganese	0.10 max.	0.10 max.
Phosphorus	0.10 max.	0.01 max.
Sulphur	0.01 max.	0.01 max.
Calcium	0.05 added	0.05 added
Boron	0.003 added	0.003 added
Zirconium	0.02 added	0.02 added

It is suggested that the above composition specifications should be rigidly followed until enough statistical data is accumulated from production heats to warrant appropriate changes.

CONTROL CONTROL SERVICE SERVIC

TABLE 69

	3.Point Load Days*	Unbroken, 140 Unbroken, 140						
o IRON	U-Send Days	Unbroken, 120 Broke, 92-99 Unbroken, 140	Broke, 35-45	Broke, 35-45	Unbroken, 82	Broke, 35-45	Unbroken, 82	Broke, 35-45
CORROSION RESISTANCE OF THE 18 N1 - 7.5 G2 - 5 MO IRON ALLOYS IN ARTIFICIAL SEA WATER (INCO LATA)	Yield Srrength PSI	232,000 252,000 232,000 246,000 246,000	237,000	266,000	272,000	245,000	246,000	248,000
B NI - L SEA 7	* ±	ലപ്പണന	m	ы	ъ	m	က	m
NTIFICIAL S NTIFICIAL S (INCO DATA)	Marage	900 900 900 900	006	006	900	606	900	006
IN AR	Ege RT	r i	, -1	,-4	-4	-	,	· -
N RESIST ALLOYS	Marage Ry	1500	1500	1530	1500	1500	1500	1500
CORROS IC	11	4.	4.	4.	4.	7.	4.	4.
Ξ,	٥ <u>ا</u>	\$	4.9	5.1	5,1	5.0	5.2	5,2
	္ပ	7.0	8.9	7.0	7.0	7.2	6.8	7.6
	펻	18.3	18.2	18.4	18.4	18,1	18.3	18.4

* Stress - Yield Strength

Table 70

EFFECT OF ALLOY COMPOSITION ON WELD CRACKING (1)

Weld Gracking (Gracks Pet	X-Weld Section)	>40.	>40.	>40.	21.4	4.0	0.0	> 40.	>40.	>40.	8.5	8.0	0.0	>40.	29.0	1,0	સ. સ.	3.0	2.0
	Weld Porosity	Gross	Slight	None	None	None	None	Gross	None	None	None	None	None	None	None	None	None	None	None
Weld Metal Hardness (Rc) After 900°F,	3 Hr. Marage	36.	35.	38.	41,	.07	47.	41.	42.	42.	47.	٠,7	50.	40.	37.	35.	35.	17.	2,
Weld Metal	As-Welded	30.	30.	31.	36.	, in	33,	30.	29.	33.	36.	32.	37,	26.	32,	27.	24.	14.	4.0
overy nt)	돛	•	1	,	t	i		\$	•	,	•	1	1	< .005	64.	1.07	1,73	2.15	3.05
Weld Metal Recovery (Per Cent)	A1	ı		•	•	1	1	\ .1	<.1 <.1	.14	.24	64.	98.		1	ı	ŧ	,	
Weld	TI	<.1		1,7	1.9	,22	.81	*	•	:	•	ı	8		•	•	£	1	•
Wire r Cent)	¥	•	:	,	•	ı	,	•	•	•	1	3		.095	1.02	2.05	3.00	4.05	5.00
Jectrode Core Wire ariable (2) (Per Ce	T1 A1 Ma	1	:		,	•	,	< .03	.50	66	1.55	2.15	3.43	-	•	•	•	1	
.lectr	11		07	1.00	1.39	1.84	2.96		,	,	•	•	•		•		ŧ	,	,

(1) All coated-electrode welds on aged Ni-Co-Mo steel (46 Rc) having the following composition (2):

Nal. 18.5 6.5 7.5 .3 .7.7

(2) In a base composition (%) of:

Pe. N1 Co Nº T1 C A1 Hn S1 Bal. 18.5 3.5 5. 74 .05 .2 .1 .1

TABLE 71
SHEET WELL TENSILE AND FRACTURE TOUCHNESS PROPERTIES (1)(2)
187 NICKEL ALLOY (250 KSI)

Crit. Creck Length	In.		•	61.04	1
		,	: 0	: ·	•
Gc In-1b/1n ²		,	05717		
Ke Ks1 in.		•	>178	•	ı
Notched Strength KSI	167	171	215	185	207
Net Practure Stress KSI	195	201	246	242	237
# H	30	29	26	22	1.5
Elong.	3,5	4.0	2.0	2.5	2.5
UTS	154	155	330	124	226
0.27 Y.S. KSI	131	132	227	519	219
Condition (3)	Au-Welded	Raf (-110°F/16 hrs.)	900°F/5 hrs.	950*F/3 hrs.	1500*F/1 hr. + 50 900*F/3 hrs.

(1) Filler wire composition: 16 Mi, 8 Co, 4.5 Mo, .4 r.

(2) .06...08" thick sheat, NASA - 1" edge notched specimen, .0005" root radius, Kr > 20

(3) Single test specimens per condition

TABLE 72

TRANSVERSE WELD TENSILE PROPERTIES
IN 18% Ni STEEL PLATE (250 KSI) (1) (2)

(Aged: 900°F/3 hrs.)

Welding Process	Y.S. (KSI)	T.S. (KSI)	Elong. (%)	RA (Z)	NTS	NTS:UTS Ratio
Gas, Metal-Arc (MIG)	232	240	5	35	281	1,17
Goated Electrode (3)	226	235	5	20	276	1.17
Submerged (3) Arc	226	233	9	47	232	1.0

- (1) Heat low in Ti content (0.24% Ti)
- (2) Filler materials 250 KSI compositions
- (3) Failure in plate

Table 73

Composition Specification For Group I Filler Wires (18% Nickel Alloy)

WEIGHT - PERCENT

ELEMENT	250 KSI	300 KSI
Nickel	17.5 - 18.5	17.5 - 18.5
Cobalt	7.5 - 8.5	8.5 - 9.5
Molybdenum	4.0 - 5.0	4.0 - 5.0
Titanium	0.35- 0.50	0.5 - 0.8
Aluminum	0.1 Added	0.1 Added
Carbon	0.03 max.	0.03 max.
Silicon	0.1 max.	0.1 max.
Manganese	0.1 max.	0.1 max.
Phosphorus	0.01 max.	0.01 max.
Sulfer	0.01 max.	0.01 max.
Calcium	None Added	None Added
Boron	None Added	None Added
Zirconium	None Added	None Added
Iron	Balance	Balance

TABLE 74

SHEET WELD TENSILE AND FRACTURE TOUGHNESS PROPERTIES (1)(2) (20% AND 25% NICKEL ALLOYS)

Critical Crack Length in,	089- ₹-680.	2,612 111960.
в	4.6->8.2	6.7-6.9
oc in-1b/in ²	, -oo	>785 557-630
Kgi Vin.	21.50)144 122-129
Notched Strength KSI	180-203	148 176-178
Net Fracture Stress KSI	204-240	196 193-203
E.W.	12.3	22 24-33
Elong.	0.	×.0
U.T.S. KSI	137	157 228-232
0.2% Y.S. KSI	126 210-21 <i>f</i>	104 217-220
Condition	8500P/1-2 hrs (3)	As-Welded 13009/1 hr. / Ref. -1109/16 hrs. / 8509/2 hrs. (4)
Alloy	20% N1	2% K1

(1) Filler Wire Compositions 20% N1 - 20 N1, 1.7 T1, .22 A1, 1.6 No 25% N1 - 25 N1, 1.7 T1, .3 A1, 1.6 No

(2) .06-.08" Thick Sheet, MASA-1" Edge Notched Specimen, .0005" Root Radius, Kt>20

(3) Four Test Specimens (4) Two Test Specimens

TABLE 75

Composition Specification For Group II Filler Wires (20 and 25% Nickel Alloys)

WEIGHT PERCENT ELEMENT 20% NICKEL ALLOY 25% NICKEL ALLOY 19 - 20 Nickel 25 - 26 Titanium 1.6-1.8 1.6-1.8 Aluminum 0.15-0.30 0.15-0.30 Columbium None Added None Added 1.40-1.60 1.40-1.60 Molybdenum Carbon 0.03 max. 0.03 max. 0.10 max. Silicon 0.10 max. Manganese Q.10 max. 0.10 max. Phosphorus 0.10 max. 0.01 max. Sulfer 0.01 max. 0.01 max. Calcium None Added None Added Boron None Added None Added Zirconium None Added None Added Iron

Balance

Balance

1.3 Comparison Between Properties of Laboratory and Production Heats

One of the most important questions which arises during the course of new alloy development is whether or not large heats will yield properties equivalent to the small laboratory development heats. Before a new alloy makes the transition to a recognized engineering material, several important, practical questions should be answered, such as:

- a. The relative effect of the various melting methods on the mechanical and toughness properties of the material.
- b. The effect of heat size on properties.
- c. The effect of the extremes in chemical composition limits on properties.
- d. The relative effect of the various elements in production heats on propercies.
- e. The effect of section size on properties.
- f. The effect of mill processing variables on properties.

This section of the report presents a comparison of properties between the development heats and available production heats.

1.3.1 18% Nickel Alloy (250 KSI)

The properties of nine (9) production heats of the 18% nickel alloy (250 KSI) were collated and evaluated. The producers, compositions, heat sizes and melting methods are reported in Tables 76 and 77. Yield strengths and notched bar ultimate versus smooth bar ultimate ratios are reported as a function of titanium content in Figure 76. Inspection of Figure 76 indicates that the production heats produced higher yield strengths and notched-to-smooth ratios than laboratory heats at comparable titanium levels.

Consequently it is deduced that no difficulty should be experienced in achieving anticipated strength and toughness in production heats.

1.3.2 18% Nickel Alloy (300 KSI)

Properties of eight (8) production heats of the 18% Nickel alloy (300 KSI) were available for comparison. However, five (5) heats were out of the recommended composition range and consequently, are not reported.

The three remaining heats which were within the recommended chemistry are reported in Table 78. These heats meet the expected strength and toughness when compared to the laboratory heat data reported in Table 79. No difficulties in achieving the desired properties with production size heats is anticipated based upon these results.

1.3.3 <u>20% Nickel Alloy</u>

The available data on seven (7) production size heats of the 20% nickel alloy, ranging in size from 1000 to 28,000 pounds, were compared with the laboratory development heats. The producers, compositions, melting methods and heat sizes are tabulated in Tables 80 and 81. Mechanical properties of bar stock fabricated from these heats are reported in Tables 82, 83, and 84. A comparison of properties with the laboratory heats is shown in Figure 77.

All production heats exhibited comparable strength. Heat K51888 exhibited low ductility. The low ductility was attributed to the presence of sulphide forms. This problem has been subsequently overcome by the addition of calcium to the heats. In general, the properties of production heats are above those of the laboratory heats at low titanium contents. The production heat properties approach laboratory heat properties at higher titanium contents. The above comparison shows that adequate strength in commercial size heats can readily be achieved by proper composition and process control.

1.3.4 <u>25% Nickel Alloy</u>

The representative properties of seven large heats of the 25% nickel alloy have been accumulated. Of the seven heats, four were melted by the Allegheny Ludlum Steel Corporation and the remaining three by Special Metals, Incorporated. The chemical compositions of these heats are presented in Table 85. Tensile properties as a function of heat treatment are presented in Tables 86 and 87.

A graphic presentation comparing the properties of large heats against small laboratory heats is made in Figure 155. It is evident that all large heats, with the exception of Heat No. 23315, more than matched the properties of the laboratory heats. Heat No. 23315 contained high nickel and titanium contents, drastically lowering 'Ms temperature. As a result, large amounts of retained austenite were present, thereby lowering the strength values substantially below those reported for the other large heats.

COMPARISON OF LARGE HEAT PROPERTIES WITH LABORATORY HEAT RESULTS - 250 KSI NOMINAL YIELD STRENGTH 18%

Figure 153 310

HILLY COURT HAIN HIN HAR HEN SAND SEX COMPANIED OF AN

5332

COMPARISON OF LARGE HEAT PROPERTIES WITH LABORATORY HEAT RESULTS - 20% NICKEL ALLOY

Figure 154 311

COMPARISON OF LARGE HEAT PROPERTIES WITH LABORATORY HEAT RESULTS - 25% NICKEL ALLOY

Figure 155

THE REAL PROPERTY STATES OF THE PARTY OF

TARE 76

CHECKITION OF RECENT PRODUCTION 250 KSI NAL YIELD STRENCTH 18% NICKEL ALLOY HEATS

Toducer	i	Size of Reat	Melting Practice	v	£	•	**	**	H.	E	Ā	2	8	40	£	8
Arpenter Iteel	x-51623	28000	Alr Arc	0.086	9.9	0.003	0.000	6.0	18.34	0.47	0.15	2.62	7.61			
Carpenter Steel	X-51742	28000	A1r Arc	0.022	8	0.003	900.0	0.10	17.63	0.42	0.079	8	2			
Carpenter Bteel	x-51860	28000	Air Arc- Consumeble Electrode	0.089	8.	9.000.0	0.00	8	17.63	8	90.0	1.11	×.:	0.0038		0.01
Mandium 11103 Iteel	A6624	1000	Air In- duction	9.0	0.33	0.007	0.007	6°.9	18.54	, 4	80.0	5.34	7.38	0.003	0.01	90.0
Alloy Steel	26137	900	Air In- duction Consumeble Blectrode Remeit	0.01	0.11	0.001	8.	0.01	69.2	0.42	8.	€0. -#	7.6	90.00	•	8
Vansdium Alloy Steel	6€69¥	1000	Air In-	0.03	6.15	90.0	0.013	6.0	18.2	0.35	ş.	F.7	?:	0.002	•	0.05
Bnbn lloy _teel	A7035	1000	Air In-	8	0.10	9.00	0.011	0.07	18.7	0.50	ä	a) (a)	7.5	0.003	0.01	9.9
La trobe Steel	66001	000 ∓	Consumeble Electrode Remeit	0.03	0.03	0.83	90.00	0.0381	19.1	0.40	ş		£. 2	0.003	9.0	8.
Allegheny - Ludlum Steel	23664	807	Air In- duction Consumeble Electrode	0.016	8	0.303	0.007	8	18.2	0.37	°.9	6 0	0.0	8.0	0.01	· 8

TABLE 77

PROPEKTIES OF RECENT PRODUCTION 250 KSI NOMINAL YIELD 18% NICKEL ALLOY HEATS

ا,									1350	1343.		
ď												
									2 28	161		
K. F. S.									32	295		
(37eet)									ž	3		
Motoh Tenesile				¥							10	416
S R.A.	######################################	33.7	85.46 85.46	\$2000 \$2000 \$2000	222	255 E	48885	454	,	•	5	
# Elong.	9-99-6 0000-60	10.0	orest.	2232	222	wa wa	******	6 00	•	N	22	
0.2% 7.5.	200 200 200 200 200 200 200 200 200 200	243.0	262.0	66.68 66.68 66.68 66.68	5006 6006	255.50	23222	265.2 261.5 263.3	412	310	251	
U 7.3.	**************************************	252.1	2726.3 269.1 270.0	265.16 265.1 263.8 263.8	353	25.25.25 33.25.25 33.25.25	823528 8333838	271.5	279	312	898	
Specimen Porm	Wer, Trans-	Bar, Trens- verse from 9' RCS	ž	Bar from 5/8" tar	Ber from 1-1/7 RCS	0.195 Sheet Transverse	0.195 Bheat Transverse	Mar, Trans- verse from 10" RGS	0.067" Bheet	0.050 Sheet	ž	28.
Dete Squre	Gerpenter Steel	Carpinter	Cartenter Steel	Vanadius Alloy Steel	Vanadiua Alloy Steel	Vanedium Alloy Sroei	Venadium Alloy Steel	Venudius Alloy Sees) tuo			
Heat Treatment	1500 F-30 min -950 F-2 nre	1500°F-30 min -900°F- 2 nrm	1500°P-30 mir •950°P- 2 hra	1500°P- 1 hr +900°P- 3 hre	1500°P- 1 hr -900°P- 3 hre	1500°F 1 hr	1500%- 1 hr	1500°P- 1 hr	1500°F-30 min	1500% 1 hr	1500°P- 1 hr -900°P- 3 hr	900°r. 3 nre
Me 1 c 1 ng Me 5 hod	AIF AFG	A15 A70	Alf Arc- Consumble Elscirode Ramelt	Alf In- cuction- Consumable Electrode Remeit	Air 17- duction- Consumable Rieserce	Fire Induction	Air Induction	Air Arn. Cursumsble Bisctrode Remeit	Air			
5:20 of Boot (490)	PHAL.	28000	00047	3001	1000	000:	38.	00	1000			
ž.	X-53023	X-51744	×-51662	хбёга	75 100	A6939	44345	65054	23604			

	3
	ğ
92	IT PLEMETTON 300 KS
Tare 7	
	8
	CONFOSTITION OF MICH

							M. T. S.	i			374.7	7.7	861.9		\$72.0	376.8	3.7	3/6.0		
	3 §			- **			₹	1	#	22	47.1	?	£ 5.1	. 53	70.7	47.9	65.3	 }	; 7	aa
	# 1 °																			
	e : e.					,	j	3	•	••	11.0			10.0	3.0	3.9	4.5	91	2.	•
	812	9.03	6 .39			;	1 : E	4	ne ne		261.6		128.4	274.7	1.	276.6	280.7	4.	277.3	. s.
	213	3	8 .		4		i pi i	4	# #	**	X 73	*	.	2	7	**	2.5	28	72	2 2
	318	\$	6.11			7.8.	ä		312 315	* 1	273.6 272.0	9.8	271.6	284.0		24.e	284.9 287.3	293.4	290.5 201.5	13.0
	۲ ۱ 3	6.57	3.		E TY			•		••		•		~-			~ ~	7	~ ~	~
THE REAL PROPERTY.	# 1 5	18.87	19.08		PROPRIETS OF RECENT PRODUCTION NO EST ROGGIAL TIELD STRENGT 141 HICKE, ALLOY MAYS	Specials	£		D		ij							ř.		
	# 10 8	0.10	8		2017 PROCE	-		•	.	•								4		
	0.013	98.	60.00		TES OF REC	3		Legrape		1	1001							Letrobe		
	* 1 8	6.91	6,003		PROPERTY TO			-1	1	•	Ä							3		
	1 2	0.03	\$			P	i I	F	3 km	; ;	- 3 bri.						. Pre-			
	0 1 0	0.025	0.026			1		1500°r - 1 hr.	+ 900*+	1500 F - 1 hr.	+ 85004	1500*7 - 1 hr.	1 Cooper	+ 900°7 - 3 hrs.	1500e7 - 1 hr.	150097 - 1 hr.	+ 95007 - 3 hrs.	70007 - 3 hr		
		<u></u> <u></u>				Malting Method	I	wenner.	ĭĭ		# Ĭ							1ke	Ĭ	
	100c	3000	20000	4*		**	•	> ;	X A	•	24						**	* *	3	
	Part B.	E-3637	5 7107-0			Sine of	740	1000		30000							2000			
		Standard Ston	Left ob	1 او	શ્ •	Post 16.	1 30			E-3637							6-40148			

Table 79

CONTRETTION OF LABORATORY AND PROPERTION 300 KS1 MONTHAL TIMES STRENGTH 181 HINDER ALLOT BEATS .01/.03 Allegeny Lallegeny Lallege

			-	PORCHAL VIELD STRENGTH 181 HIGHE, SILOT REATS	181 HICKER 4:1.09	KZATS				
ijļ	fire of	Majering Machael	Meat Treatment	Data Source	iţ	.4.2	. 23. T.S. ESI	El ongation	4 ,,,	Frs/73 Lette
Al i ophony	я	Var. Male Compatrada Lemalt	1300°7/1 hr + 900°7/3 hrs.	All aglony	ij	174.0	348.0	3.5	;	8.8
4.1 opheny	2	Vec. Male Committeds Reselt	130007/1 hr. + 9009/3 hrs.	Allogherry	Ĭ	283.0	277.0	ţ	45.3	0.83
Lingham	a	Vec. Pult Compart de Lomalt	1300*7/1 hr. + 800*7/3 hrs.	Allogheny	1	297.0	27.0	ø. 6	7	9.73
ullegbaer.	R	Fac. Malt Consecreda Americ	1500*7/1 hr. + 900*7/3 hrs.	Al legheny	ž	900	804.0	;	43.1	
Verdie II	a	Cantral	1500°F/1 br. 4 900°P/3 bre.	Alloghe sy	200	310.0	XX .0	;	33.0	9.67
Magheny	4	Ves. Melt Consutrode Remeit),500°7/3 hr. + 500°7/3 hrs.	All ogheny	Zibo t	334.0	32.0	;	Ř.,	6.51

CCHPOSITION OF PROPUCTION 202 NICKEL ALLOY HEATS

Fe Bal.	Ba 1 .	Ba 1 .	Ra 1	Ra 1	1.Ba !	Ba 1 .
3 ×	м. А.	× ×	N.A.	х. А.	04 N./	A. R. A.
2r N.A.	۲. ۲.	۲. ع	×. ×	9 N.	2 0.0	31 N.
N. A.	Α.Α.	Z.A.	¥.	.002	0.00	0.00
0.47	6, 19	2 0.4	2 0.52	0.32	0.51	0.44
0.26	0.26	0.043	7 0.23	3 0.22	0.46	0.23
1.24	1.20	1.73	1.2	1.48	1.94	1.70
NT 19.88	19.96	20.42	20.04	19.81	20.07	20.29
0.02	0.03	0.12	0.15	0.06	0.11	0.09
0.003	0.005	0.003	0.002	0.004	0.005	0.004
0.00°	0.001	0.008 0.003 0.12 20.42 1.73 0.042 0.43 N.A. N.A. Bal.	0.007	0.005	0.002	0.005 0.004 0.09 20.29 1.70 0.23 0.44 0.0031 N.A.N.A.Ball.
0.007 0.17 0.000 0.003 0.02 19.88 1.24 0.26 0.47 N.A. N.A. Bal.	0.008 0.15 0.001 0.005 0.03 19.96 1.20 0.26 0.49 M.A. N.A. Ball.		0.11	0.01	0.075	0.01
0.007	0.008	9.000	5.0n7	0.006 0.01 0.005 0.004 0.06 19.81 1.48 0.22 0.32 .0029 N.A.N.A. Ral	0.013 0.075 0.002 0.005 0.11 20.07 1.94 0.46 0.51 0.002 0.004 N.A.Bal	0 000 0.01
MELTING T METHOD Air induction, Consurrode Remelt	Air induction Consutrode, Remeit	Air induction, 9.008 0.11 Consutrode Remeir	Air induction, 6.0n7 0.11 0.007 0.002 0.15 20.04 1.27 0.22 0.52 N.A. N.A. Ral Consucrode Remeit	Air induction, Consurrode Remeit	Air induction, Consutrode Remeit	Vacuum Induction
SIZE OF HEA 5000	2000	2000	2000	2000	1000	1500
SIZE HEATO OF HEAT 23310 5000 A	23311	23221	23222	K15382	10393	V11929
PRODUCER 1)Allegheny- Ludlum Steel Corp.	2)Allegheny- Ludium Steel Corp.	<pre>3)Allegheny- Ludlum Steel Corp.</pre>	4)Allegheny- Ludlum Steel Corp.	5)Carpenter Steel Co.	6)Allegheny- Ludlum Steel Corp.	<pre>7)Carpenter Steel Co.</pre>

TABLE 81

COMPOSITION OF RECENT PRODUCTION 207 NICKEL ALLOY HEATS

Preducer	New C	Sire of Heat	Melting Practice	U	£	•	•	81	Si Hi Ti Al Co B	Ţ	A1	e		ä	8
Carpenter Steel	к-51888	28000	Air Arc - Consumeble Electrode Remelt	0.029	0.0	0.008	0.010	0.12	80.08	1.46	0.27	0.19	0.029 0.09 0.008 0.010 0.12 20.05 1.46 0.27 0.19 0.0030 0.01	0.01	,
Alleghery Ludlum Rteel	23710	1000	Air In- duction -Consumm ble Electrode Remelt	0.011	.0 .0	0.003	0.054 0.003 0.004 0.057 20.11 1.55 0.27 0.50 0.006	0.057	20.11	1.55	0.27	0.50	98.0	0.01	o.05•
Latrobe Steel	#005B	0004	Air Are-Consumable Electrode	0.083	0.01	90.00	0.004 0.010 0.08 21.2	8	21.2	1.51	1.51 0.33 0.48 0.005	0.48	0.005	0.015	0.015 0.05

TABLE 92

TENSILE PROPERTIUS OF LARGE 201 NICKEL HEATS MELTED BY THE ALLEGHENY LUDLIM STREL CORPORATION

	4															XVII
R. A.																XVI,
Flong.	4.5	3.0	3.0	6.0	4.0	4.0	5.0	7.0	4 4 4 5	0.00	 	2,0	: · ·	5.0	0.5	tables XIII, XIV, XV, XVI, XVII
.22 YS KS1	284.7 300.6	279.2 298 4	250.0	256.2 260.9	274.6 283.1	274.7 276.9	237.9 254.0	246.2	254.4 212.7 269.6	264.7 278.6 284.4	283.6 286.9	305.5	300.0	292.6	303.9	
UTS E. KSI	302.9	282.0 302.5	284 4	203.6 269.2	274.6 290.4	275.5 285.0	254.9	255.9	256.8 213.2 269.7	273.8 281.4 284.7	285.6 289.6	305.5	301.7	294.9	305.9	eported in
Z Cold Reduc	88	50 50	50 50	00	88	50	00	9	25 25 25	20 S	22	2 1	75	75 80	80	usly r
% Cold Direction Reduct.	Long. Trans.	Long. Trans.	Long. Trans.	Long Trans.	Long. Trans.	Long. Trans.	Long. Trans.	Long.	Trans. Irans. Long.	Long. Trans. Trans.	Long. Long.	Trans.	Long.	Long.	Trans.	een previo
Specimen Form	Sheet	Sheet	Sheet	Sheet	Sheet	Sheet	Sheet	Alleg- Sheet, heny Ludlum	Sheet							cat has t
Data Source	Alleg- heny Ludlum			င နှ	Alleg- heny Ludlum		c <u>ú</u>		. eģ .							on this h
Heat Treatment	CW + 850°F.	CW : Refrig. * 850°F . 4 Hrs.	CW + Refrig. + 9000F . 4 Hrs.	1500°F-10 Min : Refrig. + 850°F - 4 Hrs.	Cil : 550°F . 4 Hrs.	CW Refrig. + 850°F. 4	1550°F·10 min ! Refrig. ' 850°F-4 Hrs.	1500°F-10 min Regrig + 850°F-4 Hrs.	1500°F-10 min : C.W ! Refrig. + 850°F-4 Hrs.							our cas wingin the poration data on this heat has been previously reported in of Progress Report No. 1.
Melting Method	Air in- duction Consu- trode Remeit				Air in- duction Consu- trode	Remel C		Air in- duction Consu- trode Remeit							440	of Progress Report No. 1.
Size of Hear (1bs)	\$000				\$000°			2000							11 00 12	Progr
Heat No.	23310				2,311)			23222*							*	

TABLE 82

TENSILE PROPERTIES OF LARGE 202 NICKEL HEATS HELTED BY THE ALLECHENY LUBLIN STEEL CORPORATION

R. A.		51.2 48.3	48.3	20.8 *	13.6 25.1	27.7
Elong.	1.0	111	12	œ	ထ ဟ	∞
.2% YS KSI	294.8 302.1	289.2 277.1	280.1	172	265 283.1	283.1
UTS	295.9 304.4	301.2 296.2	293.1	292.2	289.2	301.2
% Cold Reduct,	8 8 8			1	ě	
Direction	Long. Long.		•		÷	
Specimen Form		Ber	Bar	Bar	Bar	
Data		900°F-4 Hrs. Allegheny heny Ludlum		+ <u>e</u>	Fi +	. 20
Heat		900°F-4 H	Refrig. + 9000F-4 Hrs 15000F-1 Hr	+ Kerrig. 900°F-4 Hr	1500°F-1 Hr. + Refrig. +	9000F-4 HE
Melting Method		Air in- duction Consu- trode	Rema) t			
Size of Heat (1bs)		1000				

* Largo Grain Size

The second residence of the significant second seco

10393

Heat Number

IABLE 83
THE PROPERTIES OF LARGE 20% NICKEL HEATS WELTED
BY THE CARPENTER STREE CORPORATION

Heat Number K15382

Hear Treatment Source Porm Direction Reduction KS1 KS1 KS1 KS2	Notch Tens ile KSI								231	318	
Hear Treatment Source Porm Jiroction Reduction KS1 VS VS 13 1500°P - 30 Hin. Carpenter Bar Steel Steel Steel Steel Steel Bar Steel S	•	9.5	7.7	7.7	9.9	2.8	4.8	Ľ.,		·	
Hear Treatment Source Porm Otto UTS VS 1500°F - 30 Min. Carpenter Bar 271.5 263.5 1500°F - 2 Hra. Steel Bar 271.5 264.0 1500°F - 2 Hra. Bar 271.9 260.2 1500°F - 2 Hra. Bar 271.9 260.2 1500°F - 2 Hra. Bar 272.2 258.7 1500°F - 2 Hra. Bar 272.2 258.7 1500°F - 2 Hra. Bar 272.2 258.7 1500°F - 2 Hra. Bar 270.5 269.4 1500°F - 30 Min. Hra. Bar 270.5 258 1500°F - 1 Hr. Hra. Bar 270.5 15	18 E								57	57	09
Hear Treaument Source Porm Direction Reduction KSI 1500° Porm Direction Restarcation Reduction Restarcation Restarc	E10		7.6	9 9		5.6	5.0	1.2	12	12	13
Hear Treatment Data Specimen % Cold 1500° P - 30 Min. Carpenter 1500° P - 2 Min. Bar 1700° P - 2 Min. Bar 1800° P - 2 Min. Bar 1800° P - 2 Min. Bar 1800° P - 1 Min. Bar 1800°	. 27 YS KSI				260.2 261.3	258.7	255.7	258	255	261	251
Hear Treatment Data Specimen % Cold 1500° P - 30 Min. Carpenter 1500° P - 2 Min. Bar 1700° P - 2 Min. Bar 1800° P - 2 Min. Bar 1800° P - 2 Min. Bar 1800° P - 1 Min. Bar 1800°	UTS KS1	265.5 263	271.5	285.4	271.9	272.2	4.69.4	70.5	29	20	75
Heat Treatment Source Form 1500°P - 30 Min. Carpenter Bar + 900°P - 2 Hrs. Steel 1500°P - 2 Hrs. Steel 1500°P - 2 Hrs. 2 Hrs. 1700°P - 2 Hrs. 30 Min. + 900°P - 2 Hrs. 30 min. + 900°P - 2 Hrs. 1800°P - 1 Hrs. 1800°P - 1 Hrs. 1500°P - 1 Hrs. 1500°P - 1 Hr.	% Cold Reduction						NN	44	7	7	Ž,
Heat Treatment Source 1500° F - 30 Min. Carpenter + 900° F - 2 Hrs. Steel 1500° F - 2 Hrs. 1500° F - 2 Hrs AC + 1500° F - 4 Hrs. 1500° F - 2 Hrs 1 Hr. + 100° F - 1 Hr. + 100° F - 1 Hr 1500° F - 1 Hr. + 100° F - 1 Hr 1500° F - 1 Hr. + 100° F - 1 Hr 1500° F - 1 Hr. + 100° F - 1 Hr 1500° F - 1 Hr. + 100° F - 1 Hr 1500° F - 1 Hr. + 100° F - 1 Hr 1500° F - 1 Hr. + 100° F - 1 Hr 1500° F - 1 Hr. + 100° F - 1 Hr 1500° F - 1 Hr. + 100° F - 1 Hr 1500° F - 1 Hr. + 100° F - 1 Hr 1500° F - 1 Hr. + 100° F - 1 Hr 1500° F - 1 Hr. + 100° F - 1 Hr 1500° F - 1 Hr. + 100° F - 1 Hr.											
Hear Treatment 1500°F - 30 Min. + 900°F - 2 Hrs. 1500°F - 2 Hrs. 1500°F - 2 Hrs. 1500°F - 2 Hrs. - AC + 1500°F - 2 30 Min. + 900°F - 2 1700°F - 2 Hrs. - AC + 1500°F - 2 30 Min. + 900°F - 2 1700°F - 2 Hrs. - AC + 1500°F - 2 1800°F - 2 Hrs. - AC + 1500°F - 2 1800°F - 2 Hrs. - AC + 1500°F - 30 Min. 1800°F - 2 Hrs. - AC + 1500°F - 30 Min. 1800°F - 1 Hr. + 850°F - 1800°F - 1 Hr. 1800°F - 1 Hr. + 850°F - 1 Hr. 1800°F - 1 Hr. + 860°F - 1 Hr. 1800°F - 1 Hr. + 860°F - 1 Hr. 1800°F - 1 Hr. + 860°F - 1 Hr. 1800°F - 1 Hr. + 860°F - 1 Hr. 1800°F - 1 Hr. + 860°F - 1 Hr. 1800°F - 1 Hr. + 860°F - 1 Hr. 1800°F - 1 Hr. + 860°F - 1 Hr.	Specimen Form	Bar	Bar	Вал	Bar	Bar	Bar	Bar	Bar	88 71	Bar
Hear Trearment 1500°F - 30 Hin. + 900°F - 2 Hrs. 1500°F - 2 Hrs. 1500°F - 2 Hrs 4 900°F - 2 Hrs. 1500°F - 2 Hrs AC + 1500°F - 30 Min. + 900°F - 1700°F - 2 Hrs AC + 1500°F - 30 min. + 900°F - 1700°F - 2 Hrs AC + 1500°F - 1700°F - 1 Hr. + Refrig. + 850°F - 1500°F - 1 Hr. + Refrig. + 850°F - 1500°F - 1 Hr. + Refrig. + 850°F - 1500°F - 1 Hr. + Refrig. + 850°F - 1500°F - 1 Hr. + Refrig. + 850°F - 1500°F - 1 Hr. + Refrig. + 850°F - 1500°F - 1 Hr. + Refrig. + 850°F - 1500°F - 1 Hr. + Refrig. + 850°F -	Data Source	Carpenter Steel					4 C	4 Hrs.	INCO		
2 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2	Hear Treatment	1500°F - 30 Min. + 900°F - 2 Hrs.	1500°F - 5 Min. + 900°F - 2 Hrs.	1500°F - 15 Min. + 900°F - 2 Hrs.	1500°F - 2 Hrs. - AC + 1500°F - 30 Min, + 900°F - 2 Hrs.	1700°F - 2 Hrs. - AC + 1500°F - 30 min, + 900°F - 2 Hrs.	1900°F - 2 Hrs + 1500°F - 30 Min. 900°F - 2 Hrs.	1500°F - 15 Min. + Refrig. + 850°F -	1500°F - 1 Hr. + Refrig. + 850°F - 1 Hr.	b.	1500°F - 1 Hr, 4 Refrig, + 900°F - 1 Hr,
Melting Method Air Induction Consutrod Remelt	Melting Method	Air Induction Consutrode					, ••	pag	~ 16	L 43	- Z
Size of Heat (1ba.) 2000	Size of Hear (158.)	2000									

IABLE 83 TENSILE PROPERTIES OF LARGE 20% NICKEL HEATS MELTED BY THE CARPENTER STEEL CORPORATION

Heat Number K15382

L 15 th											
Notch Tensile KSI	318	353		320	361	366	320	361	349	359	339
Z H	57	57	29	59	. 24	m v.	59	35	98	*	24
Elong.	12	12	14	14	11	13	14	ជ	77	11	11
. 27 YS KS I	254	258	251	254	270	260	254	270	272	276	268
UTS	270	270	265	266	281	27.1	266	281	281	281	273
% Cold Direction Reduction											
Directio											
Specimen Form	Bar	Bar	3. 1.	Bar	ii s s	H B	Bar	Bar	Mer	N N	n ag
Data Source	INCO										
Data Heat Treatment Source	500°F - 1 Hr. + 50°F - 1 Kr.	1500°F - 1 Hr. + 350°F - 4 Hrs.	1500°F - 1 Hr. + 900°F - 1 Hr.	1500°F - 15 Min. + Refrig. + 850°F - 1 Hr.	1500°F - 15 Mún. + Refrig. + 850°F - 4 Hrs.	1500°F = 15 'In. + Refrig. + 900°F - 1 Hr.	1500°F - 15 Min. + 850°F - 1 Hr.	1500 ⁰ g - 15 Hin. + 850 ⁰ g - 4 Hrs.	1500°F - 15 Min. + 900°F - 1 Hr.	1500°F - 15 Min, + Refrig. + 850°F - 1 Hr.	1500°g - 15 Min. + Refrig. + 850°g - 4 Hrs.
	1500°F - 1 Hr. + 850°F - 1 Hr.	Remelt 1500°F - 1 Hr. + 350°F - 4 Hrs.	1500°F - 1 Hr. + 900°F - 1 Hr.	L/A		500°F - 15 Refrig. + 1 Mr.	1500°F - 15 Min. + 850°F - 1 Hr.	27.4	1500°F - 15 Min. + 900°F - 1 Hr.	1500°F - 15 Min, + Refrig. + 850°F - 1 Hr.	1500° = 15 Min. + Refrig. + 850° = - 4 Hrs.

TAME 83 TENSILE PROPERTIES OF LARGE 201 NICKEL HEATS HELIED BY THE CARPENTER STEEL CORPORATION

TARZ 84

PROPERTIES OF RECENT PRODUCTION 201, NICHEL, ULOY HEATS

Kest Ro.	Sire of Heat (lus)	Melting Method	Meat Treatment	De ta Source	Spectmen	u.r.s. o	0.25 7.8.	# #10ng, 1n #D	2 B.A.
-51888	28000	Air Arc. Consumble Sleetrode	1500°P-15 ain +900°P- 2 hrs	Carpenter Steel Company	Ban from Panoaka	258.5 259.6	248.2	6.2 7.1	23.6
		Nome I t	1500°P- 1 hr +930°P- 2 hrs			257.5	240.5		22.3
23710	1000	Air Induction -Consumeble	1500°#-15 min +850°#- 4 hre	Inco	L SE	268	283	90	\$0.5
		Electrode Remelt	8500- 4 hrs			388	279	\$1	ន
850v4	0000	Air Arc- Cunsumebie Kiectrode Remelt	1500°F- 1 hr +900°F- 3 hr	Latrobs	Hers, Transverse from 10°	262.4	251.2 254.2 256.1	MR & MAA	ಕ್ಷೀಹ್ಮಣ್ಣ ಪ್ರಹ್ನ

CONTROLLING OF PRODUCTION 255 NEXEL ALLOY HEATS

e u	. E	Ra l	78. [8.8]	8a 1
Zr Ca Fe	4	¥	₹ Ž	₹ X
7.	Y	ž	NA NA NA	Y Z
æ	a Z	N N	A A	¥ X
6	9.39	. 38		0.42
- N	22	0.22 °.38 NA NA NA	i. 514 -	0.26
, L	1.70	46.1 24.60 1.73	1.72	1.46
Chenistry	24.92	24.60	25.18	25.40
S. Ch.		£ 6.1	0.14	c.02
U.	1 1	í	0.002	0.602
	. 1	í	0.007	0.001
Min	¥ 0 · {	70.1	0.10	6.13
ا	0.03	0.03	0.015	0.008
Melting Method	Vacuum 0.03 £0.8 Induc-	1600 Vacuum 0.03 Induc-	5000 Air In 0.015 0.10 0.007 0.092 0.14 25.18 1.72 duction Gonsu-trode remelt	5000 Air In 0.008 6.13 0.001 0.602 0.07 25,40 1.44 0.26 0.42 NA NA Bal duction Consu- trode remelt
Size Of Hear	1000	1600	2000	2000
Heat	52593	52594	23220	23314
Heat Mat) Producer No	25% Special Nickel Metals, Inc. (former-) y Kelsey- Hayes, Corp., Metals	25% Special Nickel Metals, Inc.	25% Alle- Nickel gheny Ludlum Corp.	25% Alle- Nickel gheny Ludium Corp.
Mat	25% Níckel	25% Nicke)	25% Nickel	25% Nickel
	a .	(2)	3	3

NA - Not Analysed

325

TABLE 85

COMPOSITION OF THE PROPERTY NICKEL ALLOX MEATS

	Fe	Bal	B&1.	Bal.
	Sa	₹	A	A V
	Zr Ca	NA A	A N	Y Z
		₹	Y	₹ Z
	Al Cb B	.43	. 54	. 50
	၁	9	0	in C
	A1	0.2	0.5	0.5
	TÍ	99	37	12
<u></u>	F	٠ ٠	ri 6	بر ب
Chemistry	ŦZ	5.6	ν. Έ	5.7
hem	Z	7	7	
0	Si	0.05	0.17	9.
	03) 3 C)2 C	7
	S	0.0	30.3	0.0
	S d	90	80	9
	<u>م</u>	0.0	0.0	0.0
		18	12	7 50
	Æ	ö	0	707
		016	900	03
nr.	ပ			. 0 7
t 1 nj	poq	Air In- duction Consu- trode	Air In- duction Consu- trode	Vacuum Induc- rion Consu- trode
Melting	Method	Air Ir ductic Consu- trode remelt	Alr Irductic Consu- trode remelt	Vacuum Induc- rion Consu- trode remelt
Size	Heat	23315 5000 Air In- 0.010 0.18 0.006 0.003 0.02 25.65).65 0.26 0.43 NA NA NA duction Consutrode trode remelt	23223 5000 Air In- 0.006 0.12 0.008 0.002 0.17 25.33 1.37 0.20 0.54 NA NA NA duction Consutrode trode	52 5000 Vacuum 40.03 40.05 40.05 40.01 40.01 25.75 1.51 0.25 0.50 NA NA NA Induction Consutrode remelt
		15 9	23	10 C4
Hea	Mat i. Producer No.	233	232	75.
	cer	E	E	.∺ ಪ ග
	npo.	Alle-gheny Ludium Corp.	Alle- gheny Ludlum Corp.	Special Metals Inc.
	ă.	2 42 3 S	. A 23.0	S. Ke
	1	25% ANICKel &	25% ANICKEL B	*
	E		25 A <u>1</u>	25%
		\$	9	5
		,		

The second secon

TABLE 86

TENSILE PROPERTIES OF LARCE 25% MICKEL HEATS HELIED BY ALLECHENY LUDLUM STEEL CORPORATION

Norch Strength KS) (Kt 1(-12																									
																			306	279	283	296	,	284	316
₹		21 6	23.7	21 6	21 b	21.4	23 3	23 4	22 6	25 6	24 8	24 7		24 4	27 4	27 1	27 8	,	53	52	25	53	55	24	533
E Jong	9.6	Ø. Ø	0.4	5.0	.; S	<u>د</u>	1 (0.4) 7	5 C	٠	0		7	. .s	<u>،</u>	5.0	1.5	12	12	-	=	12	12	
₹	ν.		4	و و	0	۽	1	7	-	9	₽	æ		~	9	8.	÷	4							
.27, KS1	257.5	236.1	227.4	250.6	248.0	250	255	261	262	286.0	28℃	280		285	36.1	305	243	300	249.5	265	252	253	258	251	248 252
U.T.S.	265.9	7.88.7	264.4	264.5	262.6	264.6	275 3	270 0	275 4	294.8	281.5	201 8		284.6	301 6	305 2	293.9	302.1	265	279	266	267	270	768	268 265
7. Cold U.T Reduction KSI	0	25	25	25	25	20	\$0	20	20	25	75	3,5		75	83	83	83	83	:	;	;	;	:	;	::
Direction	Long.	? ans.	Trans.	l ong.	l ong .	Trans.	Trans	Long	Long	Trans	Trans	900	¢	Long	Trans	Trans	Long	Long	;	;	;	;	;	;	; ;
Specimen Form	. 125	Sheet Sheet 116	Sheet 116	Sheet	4.4		Sheet .076	Sheet 074		Sheet	.039 Sheat	.035 Sheet	.037	Sheet	Sheet	Sheet		ш	Bar	Bar				:	Bar
Data Source	Alle-	Sheny Lud-																	INCO	INCO					INCO
Hear Trestment	1500°F-1' Min AC, Cold rolled	to indicated amount, 16 hrs. (a - 100°F, Aged 850°F -4 hrs.																	_	+ Refrig + 800°F = 1 Hr.	+ 8500F - 1 Hr				1500 ⁹ F - 1 Hr ± 1300 - 4 Hrs + Refrig + 850 ⁵ F - 1 Hr + 300 ⁹ F - 16 Hrs
Size Of Heat Melting (lbs) Method	Air In- 1500°	dur Conse	Reme I t																						
Size Of Heat (1bs)	2 005																								
4. 3t	23223* 5000																								

TAME 36

TENSILE PROPERTIES OF LARGE 25% NICKEL HEATS MELTED BY ALLEGHENY LUDIUM STEEL CORPORATION

Notch Strength KS1 (Kt lC-13																		
	238	216	183	366	361													
5	51	28	28		89	57	of	4	,									
Elong 7	12	6 0	80		13	12		3.0	3.0	4.5	4. 4.	4 5	بر در	3.5	~ ·	4.5		4 W
.2% YS KSI	268	284	268		270	276	V, VI And IX	240	267.9		209.4 209.4	217 3	8 872	253.2	264.8	210.1	216.7	206./ 271.0
U.T.S KSI	279	319	321		279	286		248	278		247.5				280.3			251.5
" Cold U.T.S Reduction KSI	•		•	•	99	90	es II, II	٥	20		<u> </u>					S		
Direction	:	:	ţ	i	*	;	ted in Tabl	Long.	Trans.	Long	Long	Trans	long	Long	Trans.	Long	Trans	Trans
Specimen Form	Bar	Bat	Bar	Bar	Bar	Bar	ısly repor	Sheet	Sheet	Shaet			Sheet			Sheet	40043	
Data	1000	INCO	INCO	INCO	INCO	1NCO	previa	Alle- gheny Lud- lum			Kud-	1 cm						
Heat Treatment	1500°F - 1 Hr + 1303°F - 4 Hrs + Refrig + 500°F - 1 Hr	1500°F - 1 Hr + 1150°F -16 Hrs INCO ' Refrig + 80°F - 1 Hr 1500°F - 1 Hr + 1150°F -16 Hrs	* Refrig + 850°F - 1 Hr	1600°F - 1 Hr + 50% CW + Refrix + 850°F - 1 Hr	1600°F - 1 Nr + 60% CW + Refrig. + 900°F - 1 Hr.	1600°F - 1 Hr + 80% CW + Refrig. + 900°F - 1 Hr.	ght data on this heat has been previously reported in Tables II, III, IV, port No. 1	1500°F - 10 min + Nefrig. + 850°F - 4 Hrs.	1560°F - 10 min + CV + Refrig. + 850°F - 4 hrs.	CW + 9000F - 4 ht	20		CM + Refrig. + 900°F - 4 Hrs			CW + 960°F - 4 Hra.	CW + Refrie + 9000F . A Hys	
Size Of Hear Melting (1bs) Method					Air In- duc. Consu- trode	Reme I t	*Curciss-Wright Progress Report	Air Induction Consu- trode Remait		Air In-	Consu-	trode Temelt						
Size Of Heat (1bs)					Socr		*Cur	2000		2000								
Heat No					23223* 50GC			2322C		23314								

IAME 30 Tensile properties of large 23% nickel Hea Kelted by Allecheny ludlum steel conporati

Notch Strength KS1	RA Z (Kt 16-12																					
E.long	1 2	9 0	o •	4.5	O 7	0 5	0.4	7	0 7	3 6	. 7	3 \$	3 C	ر د	~ ~		3 8	3.5	2 4	ŧ.	3.8	; ;
Š)	~ 0	æ	~	c	7	~	~	2	^	. ~	_	~		7		, .		c	5	* 3	2
22	KSI	247	è	241 2		178	7:	175	181	717	238	247	343	202	183		254	7.857	275	729	264 4	
) H	KS1	257 8	5 6/7	7 197	263 5	219 4	223.9	220 3	232 1	251.	259 2	267	267.9	219.3	220 1		274. 5	281.0	243 7	246 9	264 4	
7 Cold	Reduction KS1	<u>0</u>	2	ā	=	20	2 0	20	20	ŝ	20,5	20	90	3	\$0		20	20	c	0	88	3
	Direction	Long	Trans	Long	Trans	Long	Long	Trans	Trans	9001	Long	Trans	Trans	Long	Trans		Long	Trans	1.ong	Trans	Long	7.41.2
Spectmen	Form	Sheet		Sheet		Sheet				Shoot				Sheet			Sheet		Sheet		Sheet	
Data						A11e-	pheny	-pu'i	lum mo					Alie-	, heny	Lud- ì un			90			
	Heat Treatment	CW + 1300°F + 4 Hrs + 2efrig	+ 900°F = 4 Hrs	1550°F - 10 MIr + '300°F - 4	Hrs + Refrig 4 9000F - 4 4rs	CW + 900°F - 4 Hrs				10 + Refrie + 9:00 - 4 Hrs				CH , 9000F - 4 Hrs			CW + Refrig + 9000F - 4 Hrs		15000F - 10 Min + 13000F - 4 Hr	+ Refr18. + 2000F - 4 Hrs	CW + 1300°F - 4 Hrs + Refrig.	200 T + 1 200 F
Me I c Inc	(1bs) Method				,	Aic In-	duc tion	Consu-	trode	Rome I t				Air In-	duction	Consu- trode	urine 11					
Size Of Heat	(168)					2000																
Kear	CX					23315								23315 56(6								

IABLE 87

TENSILE PROPERTIES OF LARGE 25% NICKEL HEATS HELTED BY SPECIAL METALS INCORPORATED

	25	•	•	77	36	34	11	•
Elong. R. A.	3.5	•	. 2. 2.5	11	01	3 -	And V	1
.2% YS KSI	268	275	243	264	291	262	les VIX,	259
UTS KS1	282	280	269	279	301	280	in Tab	275
Direction	Long	Long	Long Trans				ly reported	
Specimen Form	. 100 Sheet	.040 Sheet	.060 Sheet	3/4" D Bar	3/4" D Bar	3/4" D Bar	prævious	រ. ទ ព
Data Source	Curting Wright	Spc- cial Metals	Spo- cial Metals	Spe- ciai Metals	Spe- cial Metals	Spercia)	has been	Spe: cial Metals
Heat Treatment	1600°F - 1 hr., 50% CW Refrig - 100°F - 14 hrs. age 850°F - 1 hr.	1500°F - 1 hr., 50% CW Refrig - 100°F 16 hrs. age 850°F - 1 hr.	1500°F - 1 hr 1300°F - 4 hrs. 950°F - 1 hr.	1500 ^o F - 1 hr 1300 ^o F 4 hrs - Refrig 100 ^o F 16 Hrs age 850 ^o F - 1 hr.	1500°F - 1 hr 50% CW Refrig - 100°F 16 hrs. age 850°F - 1 hr.	1500°F - 1 hr 1300°F 4 hrs Refrig 100°F - 16 hrs Age 850°F - 1 hr.	*Curtiss-Wright Corporation data on this heat has been præviously reported in Tables VII, and VIII of Progress Report No. 1	1500°F - 1 hr 1300°F 4 hrs. Reffig 100 16 Hrs. Age 900°F 1 hr.
Melting Method	Vacuum Induc- tion				Vacuum Induc- tion		tiss-Wrig Progress	Vacuum Induc- rion Consu- rrode Remelr
Size Of Heat Lbs	1000				1000		*Cur	2000
Heat Number	52593				52594* 1000			7552*

*Relatively new heat, not fully evaluated.

2.0 20% NICKEL ALLOY

The effects of heat treating parameters on solution annealed, cold worked and warm worked 20% nickel were evaluated in detail. Results of this work are discussed in the following sections.

2.1 Solution Annealed Condition

2.1.1 Effect of Solution, Refrigeration and Maraging Parameters on Hardness

The effects of various solution temperatures and times on hardness are presented in Figure 156 and tabulated in Table 88. Figure 156 illustrates that temperatures below 1500°F and even 1500°F for ½ hour are insufficient for attaining adequate solutioning based upon solution treated hardness. However, the fine grained microstructure of the alloy remaining after the 1400°F solution treatment appeared promising. Further study of solution temperature and time was performed by evaluating temperatures ranging from 1400°F to 1600°F at 50°F increments.

The effects of maraging temperature and time were determined by holding solution temperature and time fixed at 1500°F for 1 hour. Maraging temperatures between 800°F and 950°F were evaluated. Times from hour to 10 hours for each temperature were studied. The hardness response curves are reported in Table 89 and Figure 157. Basically, the curves indicate little variation in hardness regardless of maraging temperature and time. Rockwell hardness is not sensitive enough to accurately indicate peak response. It does, however, bracket the general maraging range.

2.1.2 Effect of Solution Parameters on Sheet Tensile Properties

The effects of solution parameters on the longitudinal and transverse tensile properties are reported in Tables 90 and 91. Longitudinal data are plotted in Figure 90 and transverse data in Figure 91. both longitudinal and transverse strengths peak out for solution temperature between 1550°F and 1600°F. The longitudinal yield strength peaks at 270 KSI for a 1550°F solution temperature. Ductility peaks for a 1600°F solution temperature with a corresponding slight decrease in longitudinal yield strength to 265 KSI. Consequently, the trade off in yield strength for the gain in ductility is preferable.

2.1.3 Effect of Solution Parameters on the Fracture Toughness

The effect of solution treatment on the longitudinal and transverse

fracture toughness is reported in Tables 92 and 93. Figure 160 presents the fracture toughness parameter K_C as a function of solution temperature and time. It is evident from the preceding section that as solution temperature increases, strength increases but fracture toughness decreases. For 1400°F, an average longitudinal K_C value of 185 KSI in was obtained, representing a yield strength of 227 KSI. For 1600°F the average K_C value dropped to 90 KSI in for a corresponding yield strength of 265 KSI.

2.1.4 <u>Effect of Maraging Parameters on the Tensile Properties of Solution Treated 20% Nickel Alloy</u>

Tables 90 and 91 report the effect of maraging parameters on the longitudinal and transverse tensile properties in combination with various solution temperatures and times. A review of tensile data versus fracture toughness as a function of solution temperature, time and maraging temperature and time revealed that the best combination of strength, ductility and toughness was obtained by a $1450^{\circ}F/1$ hour solution treatment and $900^{\circ}F/10$ hours marage. This treatment produced an average longitudinal yield strength of 255 KSI and $K_{\rm C}$ value of 136.5 KSI \sqrt{in} .

2.1.5 Effect of Maraging on Fracture Toughness

As reported in Tables 92 and 93, a solution temperature of $1450^{\circ}F/1$ hour and maraging temperature of $900^{\circ}F/10$ hours produced the best combination of strength and toughness. A $1400^{\circ}F/1$ hour solution treatment followed by a $900^{\circ}F/10$ hour marage yielded average longitudinal K_C values of 153 KSI $\sqrt{\text{in}}$. However, yield strength was low, averaging 227 KSI.

2.2 <u>Cold Work Condition</u>

The state of the property of the state of th

2.2.1 Effect of Cold Work on Tensile Properties

Effect of cold work and maraging parameters on the 20% nickel alloy in the longitudinal and transverse rolling directions are presented in Tables 94 and 95. Figure 161 illustrates yield strength of cold worked 20% nickel alloy as a function of the Larson-Miller parameter "P". The maximum yield strength response is obtained at a parameter level of 28 (900°F/3 hours) for 30% cold worked material. However, examination of Table 94 indicates that the best combination of strength and ductility is achieved by a 900°F/10 hour marage regardless of cold work levels.

2.2.2 Determination of Optimum Maraging Parameters and Cold Work

Optimization of longitudinal yield strength response was performed by construction of the three dimensional graph shown in Figure 162. The optimum yield strength response surface is shown to lie between parameter boundaries of 27.7 and 28.5. The strength peak for 30% cold worked material is at 307 KSI for a parameter level of 28 (900°F-3 hours). Material cold worked 50% peaks at 305 KSI.

2.2.3 Effect of Cold Work on the Fracture Toughness

Longitudinal and transverse fracture toughness parameters as a function of cold work level and maraging parameters are reported in Tables 196 and 197. The data have been interpreted in terms of average $K_{\rm C}$ values and plotted in Figure 163.

Fracture toughness K_C values are all below the 150 KSI $\sqrt{1}$ n. level regardless of cold work level or heat treatment since only treatments which produced good yield strength were evaluated. Fracture toughness for cold worked material falls with increasing degree of work. At the 20% cold work level, longitudinal K_C values range from 138 to 147 KSI $\sqrt{1}$ n. At 50% cold work level, the K_C values have dropped to the range of 105 to 128 KSI $\sqrt{1}$ n. The span of K_C values follows the trend established by tensile properties of cold worked material. Increasing cold work level did not drastically affect strength as shown in Figure 161.

2.3 Warm Worked Condition

2.3.1 Effect of Warm Work on the Tensile Properties

The longitudinal and transverse tensile properties of 20% nickel alloy warm worked at 1200°F, 1400°F and 1600°F and maraged at 900°F for various times are reported in Tables 98 and 99. The data are plotted in Figures 164 and 165 as a function of the Larson-Miller parameter. As shown in the figures, maximum response was exhibited by material warm worked at 1400°F and maraged at 900°F for 3 to 10 hours for both the longitudinal and transverse directions. Yield strength averaged from 268 to 277 KSI for the above maraging treatments.

Optimization of longitudinal yield strength response was performed by plotting warm working temperature against Larson-Miller parameter in three dimensional form, shown in Figure 166. The yield strength response surface developed between the 1400°F and 1600°F warm working temperatures indicates a peak yield strength of 277 KSI for the 1400°F warm working at a Larson-Miller parameter of 27.8 (900°F/3 hours).

The yield strength response boundary lies between a "P" of 27.5 and 28.56.

2.3.2 Effect of Warm Work on Fracture Toughness

Table 100 reports the effect of warm working temperature and maraging parameters on fracture toughness parameters for longitudinal and transverse rolling directions. Figure 167 illustrates the behavior of the fracture toughness parameter $K_{\rm C}$ as a function of warm working temperature for a maraging treatment of 900°F/10 hours. It is shown that warm working at 1200°F produced the greatest $K_{\rm C}$ value, 215 KSI \in to accompany the low yield strength of 206 KSI. Toughness falls rapidly with increased warm working temperature. The $K_{\rm C}$ value for a warm working temperature of 1400°F was 114 KSI \in for a yield strength value of 262 KSI. As warm working temperature was increased to 1600°F, $K_{\rm C}$ increased to 143 KSI \in for a corresponding yield strength of 255 KSI. Consequently, although yield strength is lowered, the 1600°F warm working temperature exhibited a 30 KSI \in improvement in Kc value.

2.4 Miscellaneous Properties

2.4.1 Elevated Temperature Properties

The elevated temperature tensile properties of the 20% nickel alloy are presented in Figure 168. Tensile strengths fall rather abruptly with increasing test temperature. At 250°F, yield strength was 242 KSI. At 750°F, the yield strength had fallen to 205 KSI. A more rapid drop occurred when the temperature increased from 750°F to 1000°F where a yield strength of 123 KSI was determined.

Ductility remained relatively constant at approximately 10% elongation and 50% reduction of area until test temperatures exceeded 750°F. At 1000°F, elongation measured 20% and reduction of area 70%.

2.4.2 at Treat Response of a Thick Section

A 4½" x 4½" x 5½" long billet was solution treated at 1450°F/1 hour/ inch of section and subsequently maraged at 900°F/10 hours/inch of section to determine heat treat response as a function of thickness. Table 101 reports the results obtained from specimens removed from the surface versus the center of the billet. As indicated, all but one specimen which was removed from the surface, failed in a brittle manner. Figure 169 presents the comparison of ultimate strengths and ductility between surface and center billet specimens. It is quite apparent that although center billet heat treat response was indicative of excellent hardenability (as shown by hardness and the ultimate

strength of 227 KSI) ductility for both areas was indicative of insufficient billet conditioning. Unlike the 18% nickel alloys, the 20% nickel alloy appears to require increased conditioning in order to produce a homogeneous structure in heavy sections.

2.4.3 Effect of Forging Reduction on Tensile Properties

Similarly to the manner described for both 18% nickel alloys, the effect of forging reduction on bar tensile properties as a function of direction and location within the forging was evaluated. mens removed were heat treated at 1450°F/1 hour and 900°F/10 hours. presents a tabulation of the results obtained. Figures present tensile properties for each location 170 through 173 and direction from which specimens were removed as a function of forging reduction. Inspection of the figures reveals that vertical edge specimens exhibited superior strength when compared with vertical center specimens. Ductility was also superior for all reductions. The indications are again that the billet did not receive thorough conditioning. As degree of forging reduction increased, the vertical center specimens became increasingly less ductile although additional hot working and consequently homogenization was accomplished. Evidently, the lack of internal billet conditioning and lack of center material breakdown encountered in the direction normal to applied forging force, produced the poor ductility.

A similar condition to that described above was determined to exist with horizontal specimens removed from the center of the disc, but to a greater extent. Except for specimens from a forging representing 33.8% reduction, no yield strength or ductility measurements were possible since brittle failures occurred.

The results of this work have indicated the necessity of very thorough conditioning of the 20% nickel alloy billets to achieve the desired mechanical properties.

2.4.4 Fatigue Properties

The R. R. Moore Rotating Beam, fatigue endurance strengths of solution and maraged (1450°F/1 hour - maraged at 900°F/10 hours) and 30% cold worked (maraged 900°F/10 hours) were determined by generating the S-N curves shown in Figures 174 and 175, respectively. The specimen "run outs" indicate both solution treated and 30% cold worked 20% nickel alloy to have similar endurance strengths of 86,000 and 80,000 psi, respectively. Apparently, the ductility of the alloy in the studied conditions, affects the fatigue properties similarly to low alloy steels at high hardness levels which are past the peak endurance strength. However, this opinion is an assumption, at best, consider-

ing the amount of existent data.

2.4.5 Impact Properties

Charpy impact strength at room and cryogenic temperatures for solution annealed (1450°F/1 hour, maraged at 900°F/10 hours) and cold worked (30 and 40% cold work, maraged at 900°F/10 hours) are reported in Figures 176 and 177, respectively. Room temperature impact strengths for all conditions lie between 10 to 15 ft-1bs. As test temperature decreases, impact strength decreases moderately. At -300°F, solutioned material exhibits 7 ft-1bs and both cold work levels 4.5 ft-1bs. Generally, the moderate ductility shown by the alloy was again witnessed in the form of disappointing impact values.

2.5 Summary Discussion

A comparison of fracture toughness parameters representing various 20% nickel alloy conditions is presented in Table 103. It is shown that all barstock conditions produced surprisingly similar toughness properties. The notch tensile to ultimate strength ratio for solutioned bar stocks is 1.27 to 1.43 versus 1.11 to 1.17 for cold worked bar stock. However, the similarity of notch tensile strength immediately reveals that the variation in the ratio is caused by lower ultimate strength of solutioned material.

Figure 178 presents a comparison of K_C values of annealed and cold worked material as a function of yield strength level. Cold worked material, although at a higher yield strength level (300 KSI) produced, in general, higher K_C values (100 to 148 KSI $\sqrt{\text{in}}$). Solutioned specimens at yield strengths of approximately 265 KSI produced K_C values of 83 to 120 KSI $\sqrt{\text{in}}$.

The strengths, ductility and toughness values determined for the 20% nickel heat studied were disappointingly low. It is deduced that the low results are applicable only to this heat since data generated by other sources on various heats has been excellent.

The structures of 20% nickel in the solutioned and solutioned and aged conditions are presented in Figure 179. The martensitic structure after a 1500°F/1 hour solution treatment is obscured by the precipitation of %, Ni3 (A1, Ti) and the grain boundary precipitate of Fe2Ti produced by a 900°F/10 hr. marage. Also detected in the electron micrographs are small voids left after removal of spherical particles, probably oxides or nitrides formed from the additions of deoxidizing elements.

2.6 Weld Properties

Hardress and tensile properties for the 20% nickel alloy welded in both the solution heat treated and cold worked conditions using various filler materials are presented in the following sections. A comparison of filler materials based on weld fracture toughness is also included.

2.6.1 - Hardness Properties

Weld Zone

Vertical hardness traverses taken along the vertical weld centerline for four different filler wires, the 18% nickel (250 KSI) and three modified 20% nickel compositions, are given in Table 104 and Figure 180. After maraging at 850°F/4 hours, the fusion pass area of the weld was about 3 Rc higher in hardness than the filler wire deposit area in all cases examined (Figure 180). A similar aged hardness of 46 to 48 Rc was noted for all filler wire deposits tested (Figure 180). Longitudinal weld hardnesses taken between the weld centerline and the weld-base metal interface showed a similar hardening response, Table 104.

Heat-Affected-Zone

Longitudinal hardness surveys taken in weld heat-affected-zones between the weld-base metal interface and a point in the unaffected base material are presented in Table 105 and Figures 181 and 182.

As shown in the as-welded plot in Figure 181, the heat-affected-zone of solution heat treated material experienced rather vigorous aging in an area approximately 0.175" from the weld interface. Hardness was increased from 36 to 51 R_c in this area. This aging behavior was similar to that reported for the 18% nickel alloys. Hardness across the heat-affected-zone of the 20% nickel alloy after aging was not as uniform (Figure 181), as was the solution heat treated 18% nickel alloys. After maraging, hardness was approximately 50 R_c in the area resolutioned during welding, as compared to 53 to 54 R_c in the area aged initially during welding.

The heat-affected zone of cold worked material was aged to about 55 $R_{\rm C}$ during welding in approximately the same area as solution heat treated sheet. (Figure 182). The area adjacent to the weld interface was softened by resolutioning to a hardness of about 30 $R_{\rm C}$ from a level of 45 $R_{\rm C}$ in unaffected base material. As previously observed in the 18% nickel alloys, this area hardened to about 52 $R_{\rm C}$ as compared to 55 $R_{\rm C}$ in unaffected base material after aging (Figure 182).

2.6.2 Tensile Properties

In this section the evaluation of welding filler materials is based upon the results of transverse weld tensile tests made with the sheet relling direction parallel to the test direction. Weld joint efficiencies used for comparison purposes were calculated on the same basis as previously described for the 18% nickel alloy in Section 5.2.6.2. They are included in Table 9.

Solution Heat Treated Base Material (0.140" Sheet)

The results of transverse weld tensile tests comparing various filler wire compositions are shown in Table 107 and Figure 183. Preliminary tests were made using a maraging treatment of 850°F for 4 hours. Test results revealed that welds made with three of the four wires evaluated (the 18% nickel (250 KSI) wire and both molybdenum containing 20% nickel wires) all exhibited yield strengths of approximately 222 KSI. (Figure 183). However, the level of weld yield strength joint efficiency (84%) attained was rather low.

Welds made using the molybdenum-free modified 20% nickel steel filler wire demonstrated extremely poor tensile properties, as shown in Table 107. These welds failed in a brittle fashion as evidenced by a yield strength joint efficiency of 67% and reduction in area of only 3% (Table 107). On the basis of the preliminary test results, this filler wire was not evaluated further.

Transverse weld tensile properties were vastly improved when a maraging treatment of 10 hours at 900°F was used (Table 107 and Figure 183). Yield strength joint efficiencies were increased to 98-102%, and a maximum average yield strength of 256 KSI was attained in welds made with the modified 20% nickel + Mo wire.

In these tests, weld dustility was also substantially improved, which suggested that the 850°F treatment might have a slightly embrittling effect on weld deposits. The marked increase in weld strength did not follow the same behavior demonstrated by unwelded solution heat treated and aged 20% nickel alloy sheet. As shown in Table 90, unwelded sheet yield strength is lower for the 900°F/10 hour marage as compared to 850°F/4 hours.

Solution Heat Treated Base Material (0.070" Sheet)

Transverse tensile properties of welds in 0.070" thick sheet maraged 900°F/10 hours are presented in Table 108 and Figure 184. The majority of tensile specimens from these walds failed in a brittle fashion. Examination revealed that fracture paths traversed both

weld and heat-affected-zone in the area adjacent to the weld fusion line (Table 108). This behavior was found to be independent of the filler wire used. As a result, average weld strength and ductility were generally lower than reported for corresponding welds in 0.140" sheet (Tables 107 and 108).

50% Cold Worked Base Material (0.140" Sheet)

Results of transverse tensile tests made on welds produced in cold worked sheet are given in Table 109 and Figure 185. Preliminary tests using a maraging treatment of 850°F for 4 hours were made only on welds produced with the 20% nickel, molybdenum containing wire. The relatively low yield strength of 221 KSN which resulted, was about the same as obtained for a corresponding weld in solution heat treated sheet (Table 107). After maraging at 900°F for 10 hours, a maximum average yield strength of 260 KSI (89% joint efficiency) was attained in the weld made with the 18% nickel (300 KSI) wire.

Little change in yield strength was observed between welds produced in cold worked as compared to solution heat treated sheet using either molybdenum containing 20% nickel wires (7C-059 and 7C-060). Average yield strengths for a marage of 900°F/10 hours varied between 245 and 248 KSI for the 7C-060 wire welds and 250 and 256 KSI for the 7C-059 wire welds (Tables 109 and 107).

2.6.3 Fracture Toughness

Fracture toughness of welds made using the various filler materials are given in Table 110. The results are compared graphically on the basis of K_C values in Figure 186. All specimens were maraged at $900^{\circ}F$ for 10 hours.

As shown in Figure 186, a high level of fracture toughness was achieved in welds made with four different filler wires, particularly the 18% nickel (250 KSI) and the 20% nickel, molybdenum containing alloys. Average weld fracture toughness values (K_C) varied from 128 to 174 KSI \(\sqrt{in} \). It is of particular significance that the majority of these toughness values exceeded even longitudinal fracture toughness (137 KSI \(\sqrt{in} \)) reported for unwelded base material (solution treated 1450°F and maraged 900°F/10 hours) in Table 92. They far exceeded transverse sheet fracture toughness K_C values of 75 KSI \(\sqrt{in} \) in given in Table 93. Maximum K_C weld toughness values of 162-185 KSI \(\sqrt{in} \). Were obtained using the 18% nickel (250 KSI) filler wire. The excellent weld fracture toughness of this filler wire was previously demonstrated in welds in the 250 KSI alloy (Table 40).

2.6.4 Summary

On the basis of welding studies made in this investigation, the 20 percent nickel alloy was found to possess good weldability, but only in the 0.140" thick sheet.

Transverse tensile test results indicated that welded and aged 0.070" thick 20% nickel sheet exhibits a sensitivity to heat-affected-zone embrittlement. This behavior, encountered in previous work on 0.072" sheet, was discussed in Section 1.2. Evidence obtained to date, suggests that the formation of the embrittled heat-affected zone is limited to relatively thin sheet. It should be noted that no sign of an embrittled zone was detected in bend tests made on 0.070" sheet welds in the as-welded condition.

Sound, ductile welds were produced in both the solution heat treated and cold worked 0.140" thick sheet using conventional TIG welding procedures. In this sheet thickness, weld heat affected zones were free of both defects and embrittlement, as determined by inspection and transverse tensile tests.

Welds made using various filler wires are compared on the basis of strength, toughness and ductility in Figure 187 and Table 111.

For welding solution heat treated sheet, the 18% nickel (250 KSI) and the 20% nickel, molybdenum containing wires, appear to offer the best balance of weld strength and toughness properties (Figure 187). Wherever maximum yield strength properties are desirable, the modified 20% nickel, molybdenum containing wire should definitely be considered (Figure 187). Weld fracture toughness values exhibited by this wire compared favorably with base material toughness (Table 111).

The relative performance of filler wires in welds in cold worked sheet did not parallel that observed in corresponding welds in solution heat treated material using the same heat treatment. This would be expected since the same maraging heat treatment was used for both material conditions (Figure 187). The test data indicated that the 18% nickel (300 KSI) filler wire is preferred on the basis of yield strength joint efficiency.

EFFECT OF SOLUTIONING TIME AND TEMPERATURE ON THE HARDNESS OF 20% NICKEL ALLOY

Figure 156 341

EFFECT OM MARAGING PARAMETERS ON THE HARDNESS OF SOLUTION TREATED 20% NICKEL ALLOY

Figure 157 342

Solution Temperature - °F

Figure 158 343

Figure 159

A the second of the photostopic and the second of the seco

EFFECT OF SOLUTION TREATMENT ON THE FRACTURE TOUGHNESS OF 20% NICKEL ALLOY

Solution Temperature - *F

Figure 160

Figure 161

346

THE PARTY OF THE P

OPTIMIZATION OF LONGITUDINAL YIELD STRENGTH RESPONSE OF COLD WORKED 20% NICKEL ALLOY

Figure 162 347

* 3F -

Figure 163

4160

348

EFFECT OF MARAGING PARAMETERS (REPRESENTED BY LARSON-MILLER PARAMETER)
ON THE LONGITUDINAL YIELD STRENGTH OF WARM WORKED 20% NICKEL ALLOY

Figure 164 349

Figure 165 350

Figure 166

EFFECT OF WARM WORKING TEMPERATURE ON THE FRACTURE TOUGHNESS OF 20% NI ALLOY

Wara Working Temp. - *F

Figure 167

ELEVATED TEMPERATURE TENSILE PROPERTIES OF SOLUTION ANNEALED 20% NICKEL ALLOY

Testing Temp. - 7

Figure 168

Figure 169 354

EFFECT OF FORGING REDUCTION ON THE PROPERTIES 20% NICKEL ALLOY

LOCATION: VERTICAL CENTER

Figure 170

EFFECT OF FORGING REDUCTION ON THE PROPERTIES 20% NICKEL ALLOY

LOCATION: VERTICAL-EDGE

Figure 171

EFFECT OF FORGING REDUCTION ON THE PROPERTIES OF 20% NICKEL ALLOY

LOCATION: HORIZONTAL CENTER

Figure 172

EFFECT OF FORGING REDUCTION ON THE PROPERTIES OF 20% NICKEL ALLOY

LOCATION: HORIZONTAL EDGE

PERCENT REDUCTION

Figure 173 358

\$125

Figure 174

Figure 175 360

CHARPY IMPACT STRENGTH OF SOLUTION ANNEALED 20% NICKEL ALLOY

Test Temperature - °F

Charpy Impact Value - Ft-Lbs.

Figure 176 361

Charpy Impact Value - Ft-Lbs.

Figure 177

Figure 178

MICROSTEUCTURE OF SOLUTION TREATED AND SOLUTION TREATED AND AND MARAGED 20% NICKEL ALLOY

Solutioned 1500°F/1 hr.

Two Stage Carbon Regiltea

Mag. 500 X

Etchant: Marble's + FiodLfled Fry's

Mag. 18000 X

Solutioned 1500°F/1 hr., Maraged 900°F/10 hrs.

Solutioned 15000g/l hr.,

Maraged 9000F/10 hrs.

Mag. 1800C X

Two Stage Carbon Replica

Mag. 500 X

Etchant: Marble's + Modified Fry's

Figure 179

20% NICKEL ALLOY WELD HARDNESS DATA VERTICAL TRAVERSE ALONG WELD CENTERLINE

Figure 180

3-1.

Pigure 181

Figure 182

Figure 183 368

20% AND 25% NI ALLOY - SOLUTION HEAT TREATED (0.076" SHEET)

Figure 184

20% N£ + Mo 7C-060 H.T.-Marage: 900°F/8 Hrs. Y.S. 243 UTS, Red. In Area UTS 245 R.A. 8.5 E1. ž H.T.-Marage: 850°F/4 Hrs. 7C-060 Y. S. 20% N£ COMPARISON OF FILLER WIRES TRANSVERSE WELD TENSILE PROPERTIES 20% NICKEL ALLOY - 50% COLD WORKED UTS 223 8.8 5.9 1.0 20% N1 + Mo 75-060 UTS Y.S. 249 7 248 H.T. - Marage: 900°F/10 Hours R.A. 12.8 E. 5 Mod. 20% N1 + Mo 7C-059 Y. S. R.A. 16.4 UTS 252 E1. 7.S. 300 KSI 7C-059 UTS 260 ۇ م ढू ट् 201 Filler Wire Ductility 300 -250 200 150 100 20 0

R.A. 5.9

E1.

0.2% Yield Strength

% Elongation

4.

Figure 185 370

Strength - KSI

A Transfer San Marie

COMPARISON OF FILLER WIRES TRANSVERSE WELD FRACTURE TOUGHNESS PROPERTIES 20% NICKEL ALLOY - 0.140" SHEET

Figure 186

Figure 187

Table 88

EFFECT OF SOLUTIONING TIME AND TEMPERATURE
ON THE HARDNESS OF 20% NI ALLOY*

Solution** Temp. *F	Solution Time Hrs.	As Quenched Hardness Rc	Maraged*** Hardness Rc
1400	1 1 2 4	39.7 38.5 36.5 35.7 35.1	52.0 51.8 51.4 51.3 51.3
1500	1 1 2 4	34.2 30.3 32.3 31.2 31.3	51.4 50.0 51.3 51.2 51.1
1600	ैं 1 2 4	29.8 30.9 30.6 29.7 29.2	50.0 51.2 51.2 50.1 50.0
3.700	\frac{1}{2} 1 2 4	29.2 28.8 28.6 30.1 29.1	50.1 49.8 50.0 50.1 50.0
1800	\frac{1}{2} 1 2 4	28.4 28.5 27.4 28.6 28.1	49.9 49.9 49.8 50.0 50.1
1900	፟፟ 1 2 4	28.9 28.5 29.4 29.1 27.8	50.0 49.8 49.5 49.8 49.0
2000	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	28.6 28.4 28.4	49.6 49.9 50.0

Table 88

EFFECT OF SOLUTIONING TIME AND TEMPERATURE
ON THE HARDNESS OF 20% NI ALLOY* (cont'd)

Solution** Temp. *F	Solution Time Hrs.	As Quenched Hardness Rc	Maraged*** Hardness Rc
2000	2	28.1	49.8
	4	27.2	48.8
2100	ት ት 1 2 4	27.7 28.1 29.5	48.7 49.5 50.1
	2	nc	50.0
	4	on	49.7
2200	1 2 4	27.8 28.2 27.8 29.3 29.6	48.9 49.8 49.6 50.2 50.0
2300	ት	29.5	50.1
	ት	27.7	48.9
	1	28.6	49.5
	2	27.8	49.2
	4	28.4	50.2

^{*} Allegheny Heat No. 23826

726 KAN 125 95 97 9

^{**} All specimens maraged @ 900°F for 3 hrs.

^{***} Average of 6 readings

Table 89

EFFECT OF MARAGING PARAMETERS ON THE HARDNESS OF SOLUTION ANNEALED** 20% NI ALLOY*

Marage Temp.	Marage Time	Hardness***
800	1. 4. 10	51.4 52.4 51.3 51.3
850	1 4 10	50.9 52.0 52.3 52.3
909	1 1 10	51.5 50.5
950	ት 1 4 10	51.8 51.6 52.2 51.0

^{*} Allegheny Heat No. 23826

^{**} Solution Anneal: 1500°F/1 hr.

^{***} Average of 6 readings

Table 90

EFFECT OF SOLUTIONING AND MARAGING PARAMETERS ON LONGITUDINAL TENSILE PROPERTIES OF 20% NICKEL ALLOY *

% Red.In Area	31 29 37 39	43 34 35 32 32 32 32 32 32 32 32 32 32 32 32 32	35 35 39 35 36
% Elong.	6488 6669	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
0.2% Y.S. K.S.I.	259 269 220 226	226 228 246 281 281 281 281 281 281	277 254 271 273
U.T.S.	264 274 237 239	235 235 255 241 286 287 286 287	281 258 275 275
Maraging Time Hrs.	44 40 CC	55 m m 5 5 5 5 m m m m m	0 0 0 0 0 0 0 0
Maraging Temp.	850 850 800 900 900	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	006 006 006 006 006 006 006
Sol'n. Time Hrs.	 	러 더 더 이 기원의 이 더 더 더 다 .	rd rd rd rd
Sol'n.** Femp.	1400 1400 1400 1400 1400	1400 1400 1400 1450 1450 1450 1450	1450 1450 1450 1450 1450

* Allegheny Heat No. 23826

** Levels of interest for solutioning and maraging parameters established rrom hardness data

in the control of the state of

the section of the se

Address of the following a contract of the following of the

ላሪ ቀርፈብ

Taile 90 (30at.)

% Red.In Area	18	26	61	62	31	29	58	79	24	28	36	33	27	32	87	43	26	51
Elong.	3.0	4.0	10.0	11.0	3.0	4.0	0.8	8.0	4.0	3,5	3.0	3.5	6.1	7.5	6.5	0.9	7.5	7.5
0.2% Y.S. K.S.I.	569	267	198	186	244	253	258	254	264	269	270	270	165	180	268	262	259	261
U.T.S.	276	272	206	204	248	257	265	266	273	272	272	271	191	202	275	271	264	564
Maraging Time Hrs.	10	3.6	ን የባ	, Th	10	10	ო	ო	10	10	10	10	⊣ 64	· 76	10	10	ന	ന
Maraging Temp.	006	006	800	800	006	006	950	950	006	006	006	900	800	800	006	006	950	950
Sol'n. Time Hrs.	*	ıHr	·	-		٦,	~	H	46	1,46	, 1	r -	-	-	H	႕		7
Sol'n.** Temp.	1500	1500	1500	1500	1500	1500	1500	1500	1550	1550	1550	1550	1600	1600	1600	1600	1600	1600

4/ 44/4

EFFECT OF SOLUTIONING AND MARAGING PARAMETERS ON TRANSVERSE TENSILE PROPERTIES OF 20% NICKEL ALLOY *

% Red.In Area	18	26	29		29	16	16	25	24	27	57	23	20	30	34	11	54	25	19	22	25	22	54	41	70	
% Elong.	4.1	4.0	0.4		4.0	4.0	3,0		3.0	•	٠	•	•	•	•	•	•	•	•	3.0		3,3		•	S. S.	
0.2% Y.S. K.S.I.	271 285	240	238		. 240	254	257	29.3	295	293	292	268	273	285	282	281	275	569	275	280	280	275	290	270	283	
U.T.S.	278	250	248		250	263	264	301	300	299	297	273	277	299	287	283	282	274	277	284	281	280	295	275	285	
Maraging Time Hrs.	4 4	2,0	10	10	10	10	70	ო	לים	9	Ģ	10	10	Ŋ	Ŋ	10	10	10	10	10	10	10	10	10	10	, ,
Maraging Temp. oF	8550 028	906	006	006	006	906	006	906	006	900	006	906	006	950	950	006	006	006	006	206	006	005	006	006	006	
Sol'n. Time Hrs.	તમન	7 1	H	႕	,I	-Hr	1-150	` , -	<u>,</u>	بس	r-d	_F -4	, - 1	н	~	44	146		~	ነፋ.	-144	- ~	æ	7	rui	•
Sol'n.** Temp. OF	1450	1400	1400	1400	1400	1450	1.450	1450	1450	1450	1450	1450	1450	1450	1450	1500	1500	1500	1500	1550	1550	1550	1550	1600	1600	•

* Allegheny Heat No. 23826 ** Levels of interest for solutioning and maraging parameters established from hardness data The state of the s

Table 92

EPPECT OF SOLUTION TREATHENT ON LONGITIONAL PHACTURE TOUGHNESS OF 205 NICKEL ALLIY *

0c(6) 1n-1b/1n ²	262	323 187	1260 955 1530 1240	7,2	583 671	663 409	663	471 360	303	333
K _C (5) KSI tn	8-8	3.2	186 162 205 185 185	127	137 136	135	135 135	114	95	98 8
Critical Crack Index (4)	ð. ð.	40°.	15. 25. 15.	3.21.	60.	88	60.	83	70.	<u>oʻ</u>
©	1.11	1.18	74.7 74.9 74.18	3.35	83	2.21	2.15	1.60	1.16	0.79
Notch (2) Strength KSI	8-8	12.	13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	112	126 123	98	117	107	18 .88	83 97
Net Fracture Stress (1) KSI	125 115	136	228 238 238 258 258 258	208 199	86. 86.	184 150	187	155	131	11.5 13.5
0.2% Yield Str.	251	264 264	227 227 227 227	2 4 5 5 4 5 5 5	255 255	268 268	8989 1747 1848 1848	267	270	265 265
Maraging Time Hrs.	m	æ	2							
Maraging Temp.	8	850	& 							
Solution Time lirs.		1/2	prist at St	2/2	~=	1/2		Ç.	~ :	ris .
Solution femp.	1450	1400	1400	1450	1450	1500	1500	1550	1550	1600

Allegheny Heat No. 23826
 Centrally notched, fatigue oracked specimen.

Table 93

EPPECT OF SOLUTION TREATMENT ON TRANSVERSE PRACTURE TOUGHNESS OF 20% NICKEL ALLAY **

0, (f.) 10-16/1112		3 2	105	755	211	180 154	2860 358	126 120	33
K, T 40	1	2	28	8.3 2.3	6 2	25	చేచే	8. K	609
Crittonl Grack Index (b)	t1	<u>.</u>	9.6.	.10	88	sisi	<u>8</u> 6	22	88
60	Ì	ુંલું	7.89	3.76	.70 .65	siz.	9 <u>.</u> 98	25.8	3,3
Notch (2) Strength #31		8%	፠፨	129	%2	929 949	88	3 0	62
Net Fracture Stress (1)		e e e	76 83	173	106 104	108	123	88	88
0.24 Yield	K31	270	9.75 80 K.	239	271	278 278	272	283 283	277
Maraging Time		m	3	10					
Maraging Temp. Op		006	850	8					
Solution Tras			1/2	-	m	1/2		٦	~
Solution Trap.		1450	1400	1400	1450	1500	1500	2550	1600

* Allegheny Heat No. 23826 Centrally notabed, fatigue oranked specimens

Table 94

EFFECT OF MARAGING PARAMETERS ON LONGITUDINAL TENSILE PROPERTIES OF 20% NICKEL ALLOY*

Tamp. *F Time-Hrs. StrKSI StrKSI Elong. R.A.					THE OF	ZUA MICKEL	<u>ALILUY</u> *
1 291 287 5.0 55 1 900 1 2990 287 5.0 55 1 1 295 272 5.0 51 1 1 294 291 5.0 59 1 1 294 291 5.0 59 1 1 303 299 5.0 38 1 1 10 301 298 5.2 47 1 10 301 294 289 6.0 52 1 1 309 306 4.5 47 1 1 305 300 4.8 56 1 1 297 295 5.0 56 1 297 295 5.0 56 1 297 295 5.0 56 1 296 296 5.0 56 1 297 293 5.0 36 1 1 30 30 30 30 30 30 30 30 30 30 30 30 30			Marage Time-Hrs.	Ult. Ten. StrKSI	0.2% Yield StrKSI		
1			1	201	P. 44-		
		11					55
1		900	ĵ	290	287	5.0	
		11					
		n	3			5.0	
10 301 298 7.0 45 10 294 289 7.0 45 11 309 306 4.5 47 12 305 300 4.8 56 13 4 297 295 5.0 56 14 294 289 5.1 52 30 800 1 297 293 5.0 49 18 850 1.75 299 296 5.0 54 19 10 301 306 4.4 36 10 1 311 309 306 4.4 36 11 311 309 300 4.0 60 11 311 309 300 300 300 12 300 300 300 300 18 300 300 300 300 300 19 300 300 300 300 300 19 300 300 300 300 10 305 309 300 4.0 44 10 306 301 308 1.0 45 11 310 308 1.0 45 12 300 297 4.7 50 14 300 297 4.7 50 15 300 297 4.7 50 16 300 297 4.7 50 17 300 298 295 4.9 48 10 305 302 4.2 50 10 305 302 4.2 50 10 305 302 4.2 50 10 305 302 4.2 50 10 305 302 4.2 50 10 305 302 300 7.0 46 10 300 297 4.7 50 40 800 1 285 283 4.0 34 10 1.75 310 308 4.1 27 11 310 308 4.1 27 12 310 308 4.1 27 13 306 302 4.4 31 14 310 308 4.1 27 15 310 308 4.1 27 17 314 309 4.4 31 18 300 295 4.4 31 19 1 310 308 4.1 27 10 1.75 314 309 4.4 37 11 310 308 4.1 27 11 310 308 4.1 27 11 310 308 4.1 27 11 310 308 4.1 27 11 310 308 4.1 27 11 310 308 4.1 27 11 310 308 4.1 309 4.4 31 11 311 311 304 5.0 39 11 313 304 5.0 39 11 313 304 5.0 39 11 313 304 5.0 39 11 313 304 5.0 39 11 313 304 5.0 39 11 313 304 5.0 39 11 313 304 5.0 39 11 315 316 316 318 11 317 318 303 6.0 38 11 310 310 310 310 11 310 310 310 310 11 310 310 310 310 12 310 310 310 310		17	3			5.0	
	11	11			298		
	Ħ	11			298		
1 309 306 4.5 47 1 305 300 4.8 56 1 305 300 4.8 56 1 4 297 295 5.0 56 294 289 5.1 52 30 800 1 297 293 5.0 49 1 296 296 5.0 54 1 175 299 296 5.0 54 1 306 4.4 36 1 1 307 308 301 3.0 56 1 1 308 301 3.0 56 1 1 311 309 4.0 60 1 1 311 309 4.0 60 1 1 311 309 4.0 60 1 3 3 307 5.0 39 1 3 3 307 5.0 39 1 3 3 307 5.0 39 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	11	950			289		
1	1t						
	tt		1	305			
30 800 1 297 293 5.0 49 1 296 296 5.0 54 1 296 296 5.0 54 1 296 296 5.0 54 1 306 301 3.0 56 1 308 301 3.0 56 1 308 301 3.0 56 1 308 301 3.0 56 1 308 301 3.0 56 1 308 301 3.0 56 1 308 301 3.0 56 1 308 301 3.0 56 1 308 301 3.0 56 1 308 301 3.0 56 1 309 307 6.0 39 1 309 307 6.0 39 1 309 307 6.0 39 1 309 307 6.0 39 1 307 309 307 5.0 39 1 309 307 6.0 39 1 309 307 6.0 39 1 309 307 6.0 39 1 309 307 6.0 39 1 309 307 6.0 44 1 300 305 299 6.0 44 1 31 310 308 1.0 45 1 310 308 1.0 45 1 310 308 1.0 45 1 310 308 1.0 45 1 310 308 1 300 47 1 310 308 300 7.0 46 1 300 297 4.7 50 1 300 297 4.7 50 1 300 297 4.7 50 1 300 297 4.7 50 1 300 308 4.0 35 1 300 297 4.7 50 1 310 308 4.1 27 300 308 300 300 300 300 300 300 300 300	11			297			
30 800 1 297 293 5.0 49 1 850 1.75 296 296 5.0 54 1 1.75 311 306 4.0 37 1 308 301 3.0 56 1 1.75 309 307 6.0 39 1 1.75 315 307 5.0 39 1 10 298 295 4.9 48 1 950 1 305 299 6.0 44 1 310 305 299 6.0 44 1 310 305 299 6.0 44 1 310 305 299 6.0 44 1 310 305 299 6.0 44 1 310 305 299 6.0 44 1 310 305 299 6.0 44 1 310 305 299 6.0 44 1 310 305 299 6.0 44 1 310 305 299 6.0 44 1 310 305 299 6.0 44 1 310 305 299 6.0 44 1 310 305 299 6.0 44 1 310 305 302 4.2 50 1 310 308 1.0 45 1 310 308 1.0 45 1 310 308 1.0 45 1 305 302 300 7.0 46 1 4 299 293 4.4 52 1 4 299 293 4.4 52 1 306 302 4.7 50 40 800 1 285 283 4.0 34 1 306 302 4.0 35 1 313 306 302 4.0 35 1 313 308 4.1 27 1 310 308 4.1 27 1 310 308 4.1 27 1 310 308 4.1 27 1 310 308 4.1 27 1 310 308 4.1 27 1 310 308 4.1 27 1 310 308 4.1 27 1 310 308 4.1 27 1 310 308 4.1 37 1 310 308 4.1 37 1 310 308 4.1 37 1 310 308 4.1 37 1 310 308 4.1 37 1 310 308 4.1 37 1 310 308 4.1 37 1 313 304 5.0 39 1 313 304 5.0 39 1 313 306 5.0 38			4	294			
1 296 296 5.0 49 1 296 296 5.0 54 1 299 296 4.0 37 1 1.75 299 296 4.0 37 1 308 201 3.0 56 1 311 309 4.0 60 1 1.75 309 307 6.0 39 1 1.75 315 307 5.0 39 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	30	200			207	3.1	52
1 296 296 5.0 44 1.75 299 296 4.0 37 1.75 311 306 4.4 36 1.75 311 306 4.4 36 1.75 301 300 301 3.0 56 1.75 309 307 6.0 39 1.75 315 307 5.0 39 1.75 315 307 5.0 39 1.75 315 307 5.0 39 1.75 315 307 5.0 39 1.75 315 307 5.0 39 1.75 315 307 5.0 39 1.75 315 307 5.0 39 1.75 315 307 5.0 39 1.75 315 307 5.0 39 1.75 315 307 5.0 39 1.75 315 307 5.0 39 1.75 315 307 5.0 39 1.75 307 5.0 39 1.75 307 308 1.0 44 1.0 45 308 1.0 45 1.0 45 308 1.0 45 1.0 45 308 1.0 45 1.0 45 308 1.0 45 1.0 45 308 1.0 45 1.0 45 308 1.0 45 1.0 45 308 1.0 45 1.0 45 308 1.0 45 1.0 45 308 1.0 45 1.0 45 308 1.0 45 1.0 46 300 297 6.0 47 1.0 46 300 297 6.0 47 1.0 47 50 1.0 800 1 285 283 4.0 34 1.0 300 297 4.7 50 1.0 306 302 4.0 35 1.0 308 4.1 27 1.0 306 302 4.0 35 1.0 308 4.1 27 1.0 310 308 308 308 1.0 308 300 300 300 300 300 300 300 300 30				297	203	~ A	
1.75 299 296 4.0 37 900			1				
1.75 311 306 4.4 36 1 308 301 3.0 56 1 311 309 4.0 60 1 1.75 319 307 6.0 39 1 1.75 315 307 5.0 39 1 1 3 308 295 4.9 48 1 1 3 10 298 295 4.9 48 1 10 298 299 6.0 44 1 310 305 299 6.0 44 1 310 305 299 6.0 44 1 310 308 1.0 45 1 310 308 1.0 45 1 310 308 1.0 45 1 310 308 297 6.0 47 1 310 308 297 6.0 47 1 310 308 297 6.0 47 1 4 299 293 4.4 52 1 4 300 297 4.7 50 40 800 1 285 283 4.0 34 1 310 308 4.1 52 40 800 1 285 283 4.0 34 1 310 308 4.1 27 1 310 308 4.1 27 1 310 308 302 4.2 52 40 800 1 306 302 4.0 35 1 310 308 4.1 27 1 310 308 4.1 27 1 310 308 4.1 27 1 310 308 4.1 27 1 310 308 4.1 27 1 310 308 4.1 27 1 310 308 4.1 27 1 310 308 4.1 27 1 310 308 4.1 27 1 310 308 4.1 27 1 310 308 4.1 27 1 310 308 4.1 37 1 310 308 4.1 37 1 310 308 4.1 37 1 310 308 4.1 37 1 310 308 4.1 37 1 310 308 4.1 37 1 310 308 4.1 37 1 310 308 4.1 37 1 310 308 4.1 37 1 310 308 4.1 37 1 310 308 4.1 37 1 310 308 4.1 37 1 310 308 4.1 37 1 310 308 4.1 37 1 310 308 4.1 37 1 310 308 4.1 37 1 310 308 4.1 37 1 310 308 4.1 31 1 310 308 4.1 31 1 310 308 4.1 31 1 310 308 4.1 31 1 310 308 4.1 31 1 310 308 4.1 31 1 310 308 4.1 31 1 310 308 4.1 31 1 310 308 308 4.1 31 1 310 308 308 4.1 31 1 310 308 308 4.1 31 1 310 308 308 4.1 31 1 310 308 308 4.1 31 1 310 308 308 4.1 31 1 310 308 308 4.1 31 1 310 308 308 308 1 31 313 304 5.0 39 1 31 313 304 5.0 39 1 31 313 304 5.0 39 1 31 313 304 5.0 38			1.75				
900 1 308 301 3.0 56 1 1 308 301 3.0 56 1 1 311 309 4.0 60 1 1.75 309 307 6.0 39 1 1 30 307 5.0 39 1 1 30 307 5.0 39 1 1 30 307 5.0 39 1 1 30 307 5.0 39 1 1 30 307 5.0 39 1 1 30 307 5.0 39 1 1 30 307 5.0 39 1 1 30 308 1.0 45 1 1 30 308 1.0 45 1 1 30 308 1.0 45 1 1 30 308 1.0 45 1 1 30 308 1.0 45 1 1 30 308 1.0 45 1 1 30 308 1.0 45 1 1 30 308 1.0 45 1 1 30 308 1.0 45 1 1 30 308 1.0 45 1 1 30 308 1.0 47 1 1 30 308 1.0 47 1 1 30 308 1.0 47 1 1 30 30 30 7.0 46 1 4 299 293 4.4 52 1 4 300 297 4.7 50 1 4 300 297 4.7 50 1 1 306 302 4.0 35 1 1 285 283 4.0 34 1 285 284 3.7 38 1 1 306 302 4.0 35 1 1 306 302 4.0 35 1 1 306 302 4.0 35 1 1 306 302 4.0 35 1 1 306 302 4.0 35 1 1 31 300 308 4.1 27 1 1 31 300 308 4.1 27 1 1 31 300 308 4.1 27 1 1 31 300 308 4.1 27 1 1 31 300 308 4.1 27 1 1 31 300 308 4.1 27 1 1 31 300 308 4.1 27 1 1 31 300 308 4.1 27 1 1 31 300 308 4.1 27 1 1 31 300 308 4.1 27 1 1 31 300 308 4.1 37 1 1 300 308 4.1 37 1 1 300 308 4.1 37 1 1 31 300 308 4.1 37 1 1 31 300 308 4.1 37 1 1 31 300 308 4.1 37 1 1 31 300 308 4.1 37 1 1 31 300 308 4.1 37 1 1 31 300 308 4.1 37 1 1 31 300 308 4.1 37 1 1 31 300 308 4.1 37 1 1 31 300 308 4.1 37 1 1 31 300 308 4.1 37 1 1 31 300 308 4.1 37 1 1 31 300 308 4.4 31 1 31 300 308 4.4 31 1 31 300 308 4.4 31 1 31 300 308 4.4 31 1 31 300 308 4.4 31 1 31 300 308 4.4 31 1 31 300 308 4.4 31 1 31 300 308 4.4 31 1 31 300 308 4.4 31 1 31 300 308 4.4 31 1 31 300 308 4.4 31 1 31 300 308 4.4 31 1 31 300 308 4.4 31 1 31 300 308 4.4 31 1 31 300 308 4.4 31 1 31 300 308 4.4 31 1 31 300 308 4.4 31 1 31 300 308 308 1 300 308 1 300 308 1 300 308 1 300 308 1 300 308 1 300 308 1 300 308 1 300 308 1 300 308 1 300 308 1 300 308 1 300 308 1 300 308 1 300 308 1 300 308 1 300 308 1 300 308 1 300 308 1 300 308							
1 1 311 309 4.0 60 1 1.75 309 307 6.0 39 1 1.75 315 307 5.0 39 1 1 3 1 30 307 5.0 39 1 1 3 1 30 308 295 1 1 310 308 1.0 45 1 1 305 302 4.2 50 1 1 305 302 4.2 50 1 1 305 302 4.2 50 1 1 305 302 4.2 50 1 1 305 302 4.2 50 1 1 305 302 4.2 50 1 1 305 302 4.2 50 1 1 305 302 4.2 50 1 1 305 302 4.2 50 1 1 305 302 4.2 50 1 1 305 302 4.2 50 1 1 305 302 4.2 50 1 1 305 302 4.2 50 1 1 305 302 4.2 50 1 1 305 302 4.2 50 1 1 305 302 4.2 50 1 1 306 300 7.0 46 1 1 285 283 4.0 34 1 285 284 3.7 38 1 1 306 302 4.0 35 1 1 306 302 4.0 35 1 1 306 302 4.0 35 1 1 306 302 4.0 35 1 1 306 302 4.0 35 1 1 306 302 4.0 35 1 1 306 302 4.0 35 1 1 306 302 4.0 35 1 1 306 308 4.1 27 1 1 306 308 4.1 27 1 1 306 308 4.1 27 1 1 306 308 4.1 27 1 1 306 308 4.1 27 1 1 306 308 4.1 27 1 1 306 308 4.1 27 1 1 306 308 4.1 27 1 1 306 308 4.1 27 1 1 306 308 4.1 27 1 1 306 308 4.1 27 1 1 306 296 4.6 38 1 1 175 310 308 5.0 39 1 1 306 306 306 4.6 38 1 1 175 310 308 303 6.0 38							36
1.75 309 307 6.0 39 1.75 315 307 5.0 39 1.75 315 307 5.0 39 1.75 315 307 5.0 39 1.75 315 307 5.0 39 1.75 315 307 5.0 39 1.75 315 307 5.0 39 1.75 309 307 6.0 39 1.75 309 307 5.0 39 1.75 309 307 5.0 39 1.75 309 307 5.0 39 1.75 309 307 5.0 39 1.75 300 308 1.0 45 1.75 301 297 6.0 47 1.75 302 300 7.0 46 1.75 302 300 7.0 46 1.75 300 297 4.7 50 1.75 300 297 4.7 50 1.75 300 308 4.1 27 1.75 300 308 4.1 27 1.75 300 308 4.1 27 1.75 300 308 4.1 27 1.75 300 308 4.1 27 1.75 300 308 4.1 27 1.75 300 308 4.1 27 1.75 300 308 4.1 27 1.75 300 308 4.1 27 1.75 300 308 4.1 27 1.75 300 308 4.1 27 1.75 300 308 4.1 27 1.75 300 308 4.1 27 1.75 300 308 4.1 27 1.75 300 308 4.1 27 1.75 300 308 4.1 27 1.75 310 308 4.1 27 1.75 310 308 4.1 309 4.4 31 31 306 296 4.6 38 38 307 308 38 308 308 309 4.4 31 309 4.4				211	301		56
1.75 315 307 6.0 39 1.75 315 307 5.0 39 1.75 315 307 5.0 39 1.75 315 307 5.0 39 1.75 315 307 5.0 39 1.75 315 307 5.0 39 1.75 307 5.0 39 1.75 308 295 4.9 48 1.75 310 308 1.0 45 1.75 301 297 6.0 47 1.75 302 300 7.0 46 1.75 302 300 7.0 46 1.75 302 300 7.0 46 1.75 302 300 7.0 46 1.75 302 300 300 300 1.70 46 1.75 300 297 4.7 50 40 800 1 285 283 4.0 34 1.75 310 308 4.1 27 1.75 310 308 4.1 27 1.75 310 308 4.1 27 1.75 310 308 4.1 27 1.75 314 309 4.4 31 1.75 314 309 4.4 31 1.75 314 309 4.4 31 1.75 315 316 306 396 4.6 38 1.75 313 306 296 4.6 38 1.75 313 306 396 4.6 38 1.75 313 306 396 4.6 38 1.75 313 306 396 4.6 38 1.75 313 306 396 4.6 38							
		1)				6.0	
		16	3	212	307	5.0	
10 298 295 4.9 48 10 305 299 6.0 44 11 310 308 1.0 45 11 305 302 4.2 50 11 305 302 4.2 50 11 305 302 4.2 50 11 305 302 4.2 50 11 305 302 4.2 50 11 305 302 4.2 50 11 306 302 4.4 52 11 306 308 1.0 34 11 285 283 4.0 34 11 285 284 3.7 38 11 306 302 4.0 35 11 306 302 4.0 35 11 310 308 4.1 27 11 310 308 4.1 27 11 310 308 4.1 27 11 310 308 4.1 27 11 310 308 4.1 27 11 310 308 4.1 27 11 310 308 4.1 27 11 310 308 4.1 27 11 310 308 4.1 27 11 310 308 4.1 37 11 310 308 4.1 37 11 310 308 4.1 37 11 310 308 4.1 37 11 310 308 4.1 37 11 310 308 4.1 37 11 310 308 4.1 37 11 310 308 4.1 37 11 310 308 4.1 37 11 310 308 4.1 37 11 310 308 4.1 37 11 310 308 4.1 37 11 310 308 4.4 31 11 310 308 4.4 31 11 310 308 4.4 31 11 310 308 4.4 31 11 310 308 4.4 31 11 310 308 4.4 31 11 310 308 4.4 31 11 310 309 4.4 31 11 310 309 4.4 31 11 310 309 4.4 31 11 310 309 4.4 31 11 310 309 4.4 31 11 310 309 4.4 31 11 310 313 304 5.0 39 11 313 303 6.0 38		11					
10 305 299 6.0 44 950 1 310 308 1.0 45 11 305 302 4.2 50 11 1.75 301 297 6.0 47 11 1.75 302 300 7.0 46 11 1.75 302 299 293 4.4 52 11 1 285 283 4.0 34 11 285 284 3.7 50 11 310 308 4.1 27 11 310 308 4.1 37 11 310 308 4.4 31 11 313 304 5.0 39 11 313 304 5.0 39 12 313 303 6.0 38	(1	11					
""" 950 1 310 308 1.0 44 """ 1 305 302 4.2 50 """ 1.75 301 297 6.0 47 """ 1.75 302 300 7.0 46 """ 4 299 293 4.4 52 """ 1 285 283 4.0 34 """ 1 285 284 3.7 38 """ 1 306 302 4.0 35 """ 1 310 308 4.1 27 """ 1.75 300 295 4.4 31 """ 1 306 296 4.6 38 """ 1 306 296 4.6 38 """ 1 306 296 4.6 38 """ 1 306 296 4.6 38 """ 1 306 296 4.6 38 """ 1 3	H	11				4.9	ፊዩ
1 305 308 1.0 45 1 305 302 4.2 50 1 1.75 301 297 6.0 47 1 1.75 302 300 7.0 46 1 299 293 4.4 52 4 299 293 4.4 52 4 300 297 4.7 50 40 800 1 285 283 4.0 34 1 285 284 3.7 38 1 1 306 302 4.0 35 1 310 308 4.1 27 1 1.75 300 295 4.4 31 1 313 304 5.0 39 1 1 306 38 1 1 306 399 4.4 37 1 1 310 308 4.1 27 1 1 310 308 4.1 27 1 1 310 308 4.1 27 1 1 310 308 4.1 27 1 1 310 308 4.1 37 1 1 310 308 4.1 37 1 1 310 308 4.1 37 1 1 310 308 4.1 37 1 1 310 308 4.1 37 1 1 310 308 4.1 37 1 1 310 308 4.1 37 1 1 310 308 4.1 37 1 1 310 308 4.1 37 1 1 310 308 4.1 37 1 1 310 308 4.1 37 1 1 310 308 4.1 37 1 1 310 308 4.1 37 1 1 310 308 4.1 37 1 1 310 308 4.1 37 1 1 310 308 4.1 37 1 1 310 308 4.1 37 1 1 310 308 4.1 37 1 1 310 308 4.1 37 1 1 310 308 4.4 31 1 1 310 308 4.4 31 1 1 310 308 4.4 31 1 1 310 308 4.6 38 1 1 75 313 303 6.0 38	f t	950			299		
1	l t				308	1.0	
11.75 301 297 6.0 47 11.75 302 300 7.0 46 11.75 302 293 4.4 52 11.75 300 297 4.7 50 40 800 1 285 283 4.0 34 11 285 284 3.7 38 11 306 302 4.0 35 11 310 308 4.1 27 11.75 300 295 4.4 31 11.75 314 309 4.4 37 11.75 314 309 4.4 37 11.75 314 309 4.4 37 11.75 314 309 4.4 37 11.75 313 304 5.0 39 11.75 313 306 296 4.6 38 11.75 313 303 6.0 38	11	11				4.2	
""" 1.75 302 300 7.0 46 """ 4 299 293 4.4 52 40 800 1 285 283 4.0 34 """ 1 285 284 3.7 38 """ 1 306 302 4.0 35 """ 1 310 308 4.1 27 """ 1.75 300 295 4.4 31 """ 1 306 295 4.4 37 """ 1 306 296 4.6 38 """ 1.75 313 303 6.0 38 """ 1.75 310 303 6.0 38	11	23					
" 4 299 293 4.4 52 40 800 1 285 283 4.0 34 " 1 285 284 3.7 38 " 1 306 302 4.0 35 " 1 310 308 4.1 27 " 1.75 300 295 4.4 31 " 1.75 314 309 4.4 37 " 1 306 296 4.6 38 " 1.75 313 303 6.0 38	*1						
4 300 297 4.7 50 40 800 1 285 283 4.0 34 1 1 285 284 3.7 38 1 1 306 302 4.0 35 1 1 310 308 4.1 27 1 1.75 300 295 4.4 31 1 1.75 314 309 4.4 37 1 1 306 296 4.6 38 1 1.75 313 303 6.0 38	11		4	299			
40 800 1 285 283 4.0 34 " 1 285 284 3.7 38 " 1 306 302 4.0 35 " 1 310 308 4.1 27 " 1.75 300 295 4.4 31 " 1.75 314 309 4.4 31 " 1.75 313 304 5.0 39 " 1.75 313 306 296 4.6 38 " 1.75 310 303 6.0 38			4	300			
1 285 283 4.0 34 1 285 284 3.7 38 1 306 302 4.0 35 1 310 308 4.1 27 1 1.75 300 295 4.4 31 1 1.75 314 309 4.4 37 1 313 304 5.0 39 1 1.75 313 303 6.0 38 1 1.75 310 303 6.0 38	40	000			~) (4.7	50
1 285 284 3.7 38 1 306 302 4.0 35 1 310 308 4.1 27 1 1.75 300 295 4.4 31 1 313 304 5.0 39 1 1.75 313 306 296 4.6 38 1 1.75 310 308 1 1.75 313 303 6.0 38			1	285	283	/ 0	
1 306 302 4.0 35 1 310 308 4.1 27 1.75 300 295 4.4 31 1.75 314 309 4.4 37 1 313 304 5.0 39 1 1 306 296 4.6 38 1.75 310 303 6.0 38			1				
1 310 308 4.1 27 1.75 300 295 4.4 31 1.75 314 309 4.4 37 1 313 304 5.0 39 1 1 306 296 4.6 38 1.75 310 303 6.0 38			1	306			
1.75 300 295 4.4 31 1.75 314 309 4.4 37 1 313 304 5.0 39 1 306 296 4.6 38 1.75 310 303 6.0 38							
1.75 314 309 4.4 31 900 1 313 304 5.0 39 1 1 306 296 4.6 38 1.75 313 303 6.0 38							
900 1 313 304 4.4 37 1 1 313 304 5.0 39 1 1 306 296 4.6 38 1 1.75 310 303 6.0 38			1.75				
1 306 296 4.6 38 1.75 313 303 6.0 38							
" 1.75 313 303 6.0 38 " 1.75 310 296 4.6 38		11					
" " 1.75 313 303 6.0 38		11				4.6	
40/2 111 202	**	11					
			Le fj	310	303	6.0	41

Table 94 (Cont.)

EFFECT OF MARAGING PARAMETERS ON LONGITUDINAL TENSILE PROPERTIES OF 20% NICKEL ALLOY*

% Reduction	Marage Temp. *F	Marage Time-Hrs.	Ult. Ten. StrKSI	0.2% Yield StrKSI	Z Elong.	7. <u>R. A</u> .
40	900	10	300	295	5.0	43
11	11	10	200	000	5.0	21
**	950 ''	1	302	292	5.0	31 38
	11	1	298	293	6.0 6.0	36 49
11	11	1.75	300	291 294	6.0	49 42
11		1.75	301		5.0	40
95	41	4	292	283		40 41
.,	••	4	296	287	5.0	41
50	800	1	295	293	5.0	52
)V !I	17	1	297	295	5.0	64
11	850	1.75	309	306	4.5	31
11	1)	1.75	310	303	5.0	28
11	900	1.73	303	302	5.0	48
91	906 11	1	304	303	5.0	47 47
11	17	1.75	303	296	7.0	38
11	at .	1.75	291	289	5.0	31
**	11	3	311	308	J. U	31
11	##	3	211	306		
11	31	10	295	293	4.0	40
11	31	10	293	273	4.0	40
11	950	1.75	298	295	9.0	48
11	73U	1.75	300	295 295	6. 0	37
11	§ ?	4	300	295	6.0	58
11	ŧı	4	303	298	4.9	49
		**	303	270	7. 7	47
70	800	1	274	272	5.0	30
, ŭ	11	ī	281	279	5.0	29
11	850	ĩ	304	299	4.6	31
11	11	ī	291	288	4.8	34
11	900	ĩ	300	293	4.5	37
11	•••	1	296	289	4.8	36
17		3	297	284	3.0	22
14		3	311	304	5.0	34
11		10	294	293	5.0	42
11		10	300	292	4.9	36
† \$	950	1	296	286	5.0	42
11	11	ī	298	293	5.0	39
ž1	17	4	290	281	6.0	40
11	31	4	276	273	5.0	25

^{*} Allegheny Heat No. 23826

STATES OF THE PROPERTY OF THE

Table 95
EFFECT OF COLD WORK AND MARAGING PARAMETERS ON THE TRANSVERSE TENSILE PROPERTIES OF 20% NICKEL ALLOY

% Reduction	Marage Temp. °F	Marage Time Hrs.	Ultimate Tensile Strength KSI	0.2% Yield Strength KSI	% Elong.	% R.A.
20	900	3 10 10	319 310 311 300	316 310 298 300	5.0 5.0 5.0 4.0	36 27 34 31
30	850 " 950	1.75	326 327 317	320 319 315	5.0 4.0 3.1	24 23 26
	900	3 " 10	322 324 324 320 310	312 323 324 296 310	2.2 3.0 4.0 3.0 4.0	17 2 23 12 19
40	850 " 950	1.75	338 323 329 314	337 316 326 309	3.0 3.0 2.5 1.7	17 17 15 27
	900 "	3 " 10	320 319 311 329	315 319 300 321	3.0 2.0 4.0 4.0	12 9 16 18
50	850 11 900 11 11	1.75 3 10	324 325 327 302 304 329 315	317 320 319 294 304 329 302	3.0 5.0 3.0 3.0 3.0 4.0 3.0	17 24 23 7 6 8 6
70	900	3 10	316 312 320 325	316 312 308 315	3.0 3.0 3.0 3.0	6 5 14 14

^{*} Allegheny Heat No. 23826

Table 96

REFECT OF COLD HORK AND MARAGING PARAMETERS ON LONGITUDINAL PRACTURE TOUGHNESS OF 20% NICKEL ALLCY*

						?		į	+
Par-cont Reduction	Maraging Temp.	Maraging Time Hrs.	0.2% Vield Str. KSI	Net Fracture Stress(1)	Notch Strength(2) (SI	ξ Θ	Cricical Grack Index(4)	Ke (5)	Gc (6) In-1bs/in ²
20	006	10	294	194	151	2.05	0.080	148 148	791
	950	-4	294 303	161	136	1,65	0.066	138	687
8	506	1 3/4	307	171	115	1.73	0,048	119	518
	006	10	297	150	123	1,17	0.044	111	571
	950	1	305	191	125	1.67	0.062	134	9 29
07	006	1 3/4	303	1.73	104	1.14	0.044	11.2 99	458 361
	950	-	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	190 186 197 183	109 127 126 129	1.39 1.69 1.91	0.084 0.064 0.069	119 131 136	516 628 674 621
20	900	1 3/4	292 312 312 312	155 185 207 212 207	102 111 123 120	1.07 1.22 1.50 1.58	0.043 0.059 0.064	107 121 134 140 136	420 533 651 712 674
70	900	1 3/4 10 1	289 293 293 289	151 151 172 202	98 96 97 111	1,13	0.042 0.052 0.048 0.065	105 118 114 129	398 507 469 694

* Allegheny Heat No. 23826

+ Centrally notched, fatigue cracked specimens

College of the transmitted of the College of the Co

Table 97

EFFECT GF COLD WORK AND MARAGING PARAMETERS ON TRANSVERSE FRACTURE TOUGHNESS OF 2CZ NICKEL ALLOY*

7. Reduction	Maraging Temp.	Maraging Tine Hrs.	9.27 Yield Str. KSI	Net Fracture Stress(1) KSI	Nocch Str. (2) KSI	ण्€	Critical Crack ludex In. (4)	KSI / In	Gc (6) [†] In-1bs/in ²
20	00	r: 01:	313 313 239 299	121 106 127 109	78 76 87.7 82.5	0.56 0.47 0.68	0.023 0.019 0.027 0.022	83.5 75.5 78.0	253 207 274 223
30		30	324 324 303 303	90.4 83.3 99.2 116	67.8 63.5 74.0 77.:	0.33 0.28 0.45	0.013 0.011 0.018 0.023	65.0 60.3 71.2 60.0	154 132 184 236
07		r: 0:	317 317 311 510	75.0 75.0 97.0 86.0	58.0 56.8 62.3 67.0	0.24 0.24 0.37 0.34	0.009 0.009 0.014 0.013	54.2 54.2 66.0 62.4	107 107 158 141
80		e: 0:	299 299 316	91.3 85.6 106 90.0	53.0 62.0 65.0 70.0	0.29 0.33 0.38	0.011 0.013 0.015 0.014	56.0 60.8 68.3 65.2	115 135 169 155
70		e: 0:	314 314 310 310	59.5 66.2 73.0 71.8	46.8 52.0 58.0 58.9	0.15 0.19 0.21 0.20	0.006 0.007 0.008 0.008	47.3 47.3 52.0	66 81 97.6

* Allegheny Heat No. 23826

+ Centrally notched, fatigue cracked specimens

Teble 98 LUNGITUDINAL TENSILE PROPERTIES OF WARM WORKED 20% NICKEL ALLOY*

R.A.	24 4 2 2 4 4 0	25 8 8 13 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	97 97	24 4 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	9 57 4 9	32 33 30 27 27 43 49
Elong	11.0 10.0 11.0 10.0	9.0 12.0 9.0 9.0 13.0	00.0	7.7.0.8.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	*******	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
0.2% Yield Str. KSI	225 219 214 220	212 216 221 227 215.4 215.5	261 250 245 260	262 271 269 284 278,6 272,4 257	229 228 210 211	254 252 265 255 255 262.7 251.7
Ult. Ten. Str. KSI	233 233 228 235	228 231 227 242 232.3 233.2 224.2	271 264 260 262	275 283 281 290 287 278 265	237 241 210 214	261 264 264 271 271.6 273 263
Marage Time Howrs	3/4 3/4	1 3/4 1 3/4 1 3/4 10 10 1 3/4 1 3/4	44 33/4 44	1 3/4 1 3/4 3 3 10 10 10 1 3/4 1 3/4	1 3/4 1 3/4	1 3/4 1 3/4 3 3 10 10 10 1 3/4 1 3/4
Marage Temp.	850 850 850 850	900 900 900 900 900 900 900 900	850 850 850 850	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	850 850 850 850	900 900 900 900 950 950
Warm Hork Temp.	1200		1403		1,600	* * * * * * * * * * * * * * * * * * *

Table 99

TRANSVERSE TENSILE PROPERTIES OF WARM WORKED 20% NICKEL ALLOY

				THE WAY WAS A THE	ייים אייים איים אייים אייים אייים אייים אייים אייים אייים אייים אי	
Warm Work Temp. OF	Marage Temp. OF	Marage Time-Hrs.	Ult. Ten. StrKS1	0.2% Yield SerKS1	% Elong.	% R.A.
1200	850	m		~	٧.	, o
1200	850	(1)	ואו	۱) r t =	3.C C.C
1200	006	m	(1)	10	20.00) a
1200	006	1. 3/4	t, (\sim	1 0) ()
1200	006		38	ای	: c	7 -
1200	006	10	1 <1	I C	, c	۲ ن ۲ ن
1200	950		20.		יר יר	200
1200	950	1 3/4	222	212	100	42
1500	0		`			
0000	920		D.	יעי		禁
1200	850	1 3/4	,	3	•	38
1500	850		σ	സ	•	60
1500	850	10	294	, ~	•	67
1500	006	1 3/4	·œ	^	•	2 6
1500	900	1 3/4) CC		•	י היי
1500	006				•	0 .
000.	200	2 6	rs c	ન : ૧ :	c	ري: دري:
3 C	0 0	•	ğ,	\sim	~	58
SOCT.	950	1	ന	\sim		78
1530	950	1 3/4	\mathbf{c}	.286	5,0	3
1800	850		- 1	٤-		ď
7.800	850		٦.	. :~	•	٠ ٧
1806	005		- 6		٠	ۍ ن '
1800	800	1/C -	ባ ኒ	J 1	•	32
	000	٦.	1)	4,5		37
1800	006	10	75.	S	•	28
1800	006	10	~	യ		3.5
1800	950		30) v	•	n (
1800	950	1 3/4	267	258	0.9	20
Allegheny Heat	t No. 23826					
)						

Table 100

EPPECT OF MARADING TREATMENT ON PRACTURE TOUGHNESS OF MARM MORKED 205 NICKEL ALLOY *

0 _e (6) ⁺ .in-1b/iin ²	1350	888 888 888 888 888 888 888 888 888 88	£253	04 25
KSI 4.1n (5)	193	128 127 109	2220	143
Critical Grack (4) Index	0.28	0000	6.03 6.03 7.04 7.04	0.93
(3)	11.11	0.00.0 0.13 0.15	0.0.c.o.	 \$.4
Notoh (2) Strength K31	196	111110	K 3 5 2	137
Net Fracture Stress (1) KSI	236	176 174 147 155	1127 120 116	192 188
0.2% Yield Str. K3I	20e 206	7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2222	265 265
Maraging Time, Hrs.	0:	^: <u>9</u> :	n: g:	9:
Maraging Temp. Op	206			
Orientation Of Specifien Axis To Rolling Direction	Farallal		Morrel	Parallel
سر ^ا ا				

* Alleghery Beat No. 22526

99

+ Centrelly netated, Yatipus wrathed specimen

;

1200

Table 101

HEAT TREAT RESPONSE OF A THICK SECTION**
OF 20% NICKEL ALLOY*

Red. Int Area	3.2	9.0
% Elong.	0.0	0.5
0.2% Yield Str.	****	****
U.T.S. KSI	221 276	252 202
Specimen Location in Cube***	Surface	Center

Allegheny Heat No. 23826

Cube dimensions: 4岁" x 4岁" x 5첫"

**

Specimens machined parallel to flow lines at both locations ***

H.T.: Soln: 1450°F/1 hr. Marage: 900°F/10 hrs. (l hr/in. thickness allowed at respective temperatures)

**** Brittle failure

TABLE 102

EFFECT OF FORGING REDUCTION ON THE PROPERTIES OF 20% NICKEL ALLOY

7. R.A.		0 07	N 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.0	•	4.5		37.6	40.6	7.6	13	,	16	38.9		13.6		2.7			70.7	r	n :	70		3.5		٠ • •	48.7
7. Elong.		30.5	2	at Cape Mark		7.7		89 °	6.1	1.4	1,7	•	FT (at Gage Mark	1.3				•	r.4	-	4 6	Deco Moult	S S S S	1.0	1 3	10.	10
0.2% Y.S.		247.9	257.5			*************	1 676	7.747	256.4	228.9	244.1		123.1			257.7	6	248.0	251.5	2	4.75		260 8	40.40 40.40		7.4.7		266 7	261.6
U.T.S. (KSI)		257.9	266.8	189.5	272.6		1 856	1000	7.177	9.0/7	2/4.3	0 030	6,007	6.7/7	183.0	259.9	260.0	200,00	2/1.3	170		234.9	272	161.3	271 5	•	226.3		272
Heat Treatment		1450°F/1 hr.	900°F/10 hrs.																									4	SE CONTRACTOR CONTRACT
% Reduction		0	0	0	0		33.8	33,8	33.8	, c		20	20	S 52	? 5	3	66.2	66.2	66.2	66.3	•	75	75	75	75		84	9 7	7 78
Location	Billet	Vertical-Center	Vertical-Edge	Horizontal-Center	Rorizontal-Edge	First Upset	Vertical-Center	Vertical-Edge	Horizontal-Center	Horizontal-Edge	Second Upset	Vertical-Center	Vertical-Edge	Horizontal-Center	Horizontal - Edon	Third weet	Vertical-Center	Vertical-Edge	Horizontal-Center	Horizontal-Edge	Fourth Upset	Vertical-Center	Vertical-Edge	Horizontal-Center	Horizontal-Edge	Fifth Upset	Vertical-Center	Redial	Circimference

Table 103

Critical Fracture Toughness Parameters of 20% Nickel Alloy

UTS UTS 1.43 1.35	1.13	1.14	1.17
G1C** 207.3 207.3 186.0 164.5	183.4	181.7	186.0 185.3
KSI Am 75.5 71.5 67.3	70.6 69.6	70.6	71.5
N.T.S. KSI 364.4 345.7 324.7	340.8 336.1	341.3 340.2	345.5 344.9
Heat Treat Sol'n.: 1450 ^{OF} /1 Hr. Marage: 900 ^P F/10 Hrs.	Marage: 900 ⁰ F/10 Hrs.		
Condition Ammealed	30% Cold Work	40% Cold Work	50% Cold Work

* Allegheny Heat No. 23826

** Critical fracture toughness estimated from circum-ferentially-notched tensile bars (Kt = 10).

*** N.T.S. ratio estimated from U.T.S. of sheet stock.

Table 104

20% NICKEL ALLOY - VERTICAL TRAVERSES (2)

Filler Wire Condition (3)	250 KSI (As-Welded	I (7C-055) ed Maraged	Mod. 20% Ni (7C-058) As-Welded Maraged		20% N1 + 7C-059)		20% NI + N (7C-060) As-Welded Ma	Maraged
Distance from Top of Weld In.								
.020	332	997				ထ	338	479
040	329	451	322 482			•	320	453
090.	316	760				7	312	460
.080	316	494	316 451		307 468	ဆ	319	955
.100	318	454				3	312	490
.120	310	438				7	327	507
.140	336	507				_	330	475
.160	341	483				7	323	497
.180	347	505				9	340	481
. 200	341	488	357 490			a	357	453
.220	8 1	997	1 1	•	: :		:	;
Average-DPH R: (Converted)	328.6	471.5	328.7 484 33.4 47	æ 0.	327.9 479 33.3 47	9.6	327.8	474.1

(1) Diamond Pyramid Hardness - 10 KG load, 1360 apex angle

Vertical traverse - top to bottom along weld centerline 3

⁽³⁾ Maraged: 850°F/4 hrs.

Table 105

20 and 25% NICKEL ALLOY - HORIZONTAL TRAVERSE (1)

,	,				Har	Hardness -	HAQ -	7			Av	Average
Base Material	Filler Wire	Filler Condition Wire (3)	0	Dista .020	.020 .040 .060 .	.060	cent 080	Centerline 080 .100	- In.	.140) HAO	Kc (Converted)
20%	70-035	As-Welded	310	315	316	318	326	314	320	322	31.8	
N1ckel		Aged	507	492	467	482	479	665	503		486	48.7
	7C-058	As-Welded	318	322	312	316	318	332	330	;	321	
		Aged	787	482	484	451	461	488	517	1 1	481	
	70-059	As-Welded	345	336	334	335	332	339	341	£	337	
		4ged	497	515	513	490	207	513	525	;	508.5	
	70-060	hs-Welded	338	320	312	319	312	327	ŧ	:	321	32.5
		Aged	479	453	799	944	490	507	!	;	472.5	47
i 1	1	;	(•	,	1	0	6	,	6	6	
25%	7C-055	As-Welded	737	306	310	312	299	202	311	282	303.0	
Nickel			527	551	540	551	542	555	574	551	249	
	7C-058	As-Welded	332	314	310	307	313	279	265	į	303	
		Aged	540	525	525	521	533	562	562	÷	538	
	7C-059	As-Welded	258	261	268	265	261	255	ļ	\$	261	24.5
		Aged	533	525	551	546	528	544	!	:	538	
	7C-060	As-Welded	304	29 1	291	286	251	256	258	:	277	
		Aged	515	511	511	507	538	260	565	i I	529.5	51.

(1) Traverse taken along weld midpoint line

(2) Diamond Pyramid Hardness, 10 KG load, 136° apex angle

(3) Aged: 20% Nickel, 850°F/4 hrs.

25% Nickel, 1300°F/4 hrs., Air Cool & Ref. - 110°F/16 hours + 850°F/4 hours

WILD MAIN AFFICIED ZONE MAIDMESS DATA - DFW (1) 20% BICKEL ALLOT - MORIDDHTAL TRAVARSE (2)

115 742 711 715 715 716 715 715 715 715 715 715 715 715 715 715	Maturial Cond	t ton (3)	8	8	. 9	5.0						Distance From	. 7res	41 414	terface	= = =			:	3	;	;	;	:	:	;
133 340 357 327 328 342 331 329 327 327 327 328 349 343 331 340 441 453 369 442 475 477 444 347 473 449 441 452 349 311 329 441 452 349 311 329 441 452 349 311 329 441 452 349 311 329 441 417 397 481 411 412 340 411 412 340 411 412 340 411 412 340 411 412 340 411 412 340 411 412 341 41	2										-	4	1	3	9	4		3	7	4	ą	ij	ą	ş	ì	Ŋ
187 481 453 307 482 676 648 678 677 648 307 319 459 517 326 515 516 515 519 518 519 519 519 519 519 519 540 540 540 540 540 540 540 540 540 540			323														Ŷ.	1Xt	**	6	23.7	77	ž	5	*	
315 306 301 322 315 332 315 345 411 432 540 614 543 · 484 · 451 · 436 · 436 414 417 397 404 543 543 543 619 383 540 435 557 · 588 · 579 · 567 · 589 · 579 · 567 · 589 · 579 · 587 ·	_		161	;			-											\$\$\$	369	558	3	*	3	ž	1	3
edb 343 343 343 619 383 560 495 367 · 388 · 579 ·	- 2		313	Ž									ï		4		8		*		\$1	‡	÷	38	403	•
	-								3	•	2	•	573	•	÷											

(1) Dissend Fyrmid Barbase, 1955 lead, 136° spux angle (2) Traverse taken along about contextion (3) Aged: 950*74 bre.

Table 107

20% NICKEL ALLOY - SOLUTION HEAT TREATED 0.140" SHEET (1) (2)

ĺ	- 1	YS	84	100	86	67		84	102	•	84	86	
TIES	Joint %	72	83	86	97	99	•	83	101		84	16	
PROPER	R. A.	ę	7	15.7	;	ო	,	4.5	12.1		7	13.2	
AVERAGE PROPERTIES	Elong %		1.0	2.25	1.3	0.7	Ċ.	. v.	2.0	ת	٠	1.5	
AVI	YS KSI	3	223	249	244	178	222	1 1	256	222	! !	245	
	UTS	200	773	2.50	247	178	222	i	258	225		248	
	Elong R.A. %	7	10	13.8	16.7) г	4,	11./ 12.4	10		14.1 12.2	
~9	Elong	1.0	1.0	2.0	1.5	0.7	1.0	٠. و ر	2.0	٥.	0,1	1.5	
	YS	219	227	249 248	243 245	182 173	226	217 255	257	222	222	247	
	KSI	219	227	252 248	245 248	182 173	226	21 <i>7</i> 256	259	222	יי ער	5 0	
₹.	Hrs.	4	5)	10	4	4	70		4	10	}	
MAR	OF	850	006	8	900	850	850	006		850	900		
WIRE	Heat No.	7C-055			7C-054	7C-058	7C-059			7C-060			
FILLER WIRE	Туре	250 KSI			300 KSI	MOD. 20% Ni	MOD. 20% 7		,	20% Ni + Mo			100

Sheet rolling direction parallel to orientation of specimen axis. (1)

(2) All specimens failed in weld.

Table 108

TRANSVERSE WELD TENSILE PPI-FERTIES
20: AND 212 HICKEL ALLOY SOLUTION HEAT THEATED 0.0.00" SHEET (1)

			Anna		Mera							Ř	Average froperties	t 1		
Pass Naterial	Type Heal No.	}	Temp, Time	1	0 2	Hre.	u.T.S. XSI	J 22 Y.S. Elong.	Klong.	, k	U.T.6. rsl	6,2% Y.S. K51	Elong 1	₹ 22	3 34.16 8.77	
20% Michel	300 KS1	/C-05**		•	906	21	235 (3) 242 (3)	241	0.1	17.2	147	340	0.1	12.3	2	2
	Mod. 20IN1+No 7C-059	70-059			40b	ć	25 (3)	245	0.1	3.2	241	345	o •,		82	29
	20% HI HAO	70.000			906	9	234 (3)	23,	1.0	3. 8	র	133	6.	.	ę	90
25% Micrel	300 KSI	76-054	1200		90	r	21. (6)	205 198	0.5	9.9	21.7	707	<u>.</u>	•	z	9/
	Nod. 20181+No 7C-059	7C-059	1200	4	90	n	232 (4)	215	0.1.	6.1	228	707	2	12.5	23	*
	20781.+Mo)C- 0 6 0	1200	•	8	•	203 (4)	661 961	2.0	13.5	Ξ.	193	8.	2	2	\$

(i) Sheet rolling direction parallo; to ortantation of ap ...n axis (2) All 2X Michel alloy apecians refigurated effer auxi, ... 16 hrs. at .110°P. (3) Speciason falled its weld and most affected sone. (4) Speciason falled its heat affected sone only.

Table 109

TRANSVERSE WELD TENSILE PROFERIES
201 MICKEL ALLOY - SOT COLD WORKED 0.140" SHEET (1) (2)

		Mare	Harage						Av	Average Propert	•		
Type Filler Me	Meat No.	Temp.	Time	U.T.S. RSI	U.T.S. 0.21 Y.S. KSI KSI	Elong.	P.A.	U.T.S. KSI	0.22 Y.S. KSI	Elong.	R. A.	Joint E T. S.	1:31
300 KSI	70-0%	006	01	259 261	259 261	2.5	20.0	98	360	2.5	16.4	6	•
Mod. 20% H1+No 7C-059	70-059	000	01	252	250	1.5	12.8	252	250	1.5	12.8	5	ŝ
20% MI+Mo	70-040	3	~ \$	222	220	6.0	0.0	223	122	1.0	8.5	22	2
		950	40	261	17.7	7.7	19.0	\$\$\$	573	2.9	21.5	69	3
		8	10	252 246	250 245	1.0	7,7	349	248	1.0	5.9	1	\$

(1) Sheet relling direction parallel to orientation specimen axis.

⁽²⁾ All specimens failed in weld.

TABLE 110

TRANSVERSE WELD PRACTURE TOUGHNESS PROPERTIES 20% NICKEL ALLOY - 0.1%c" SHEET

		,		HARADE	0.2%	NET FRACTURE	NOTCH		CRITICAL		
	TIPE TIPE	HEAT NO.	12K?	TDG (hrs.)	TIELD STR. (K31)	STRESS (KSI)	STRENOTH (KSI)	Q2	CRACK DIDEX (1n)	rsı Yfn	1n-1b/1n ²
	300 KSI	10-054	8	00	244	198.3	116.6	2.41	690"	129.1	606.2
	۰	-3			244	213.6	139.1	3.71	.135	158.7	915.8
	250 KSI	70-055	8	10	642	203.5	164	3.8	.135	162.1	955.5
					549	235.9	164.6	88.	711.	185.7	1254
398	MOD.20% N1 / Ho 7C-059	650-02	8	10	256	187.7	133.7	2.36	160.	141.2	724.8
					35°	152.9	125.5	8.8	5%0.	115.5	485.4
	20% N1 / NO	70-060	8	01	245	185.4	133.4	3.01	.108	143	743.3
					245	191.6	133.7	2.91	. 109	143.5	749.3

COMPARISON OF FILLER WIRES
TRANSVERSE WELD TENSILE AND PRACTURE TOLCHARESS PROPERTIES
20% NICKEL ALLOT

•		;						Average	Average Weld Properties	perties								
Condition Thickness in.	Thickness In ich	Type	Willer Wire No. Reat No.	Marage Temp. Time of Hours	Time Hours	2 5 2 5	0.21 Y.S.	Elang.	F. A.	Joint Efficiency-7 TS Y.S.		ي جرد 13	STO	7.5	Unwit.	R. A.	Univelded Sheet Properties Llong. R.A. R KSI VAR.	V. 10.
					-	1	181			ı					.	•		IL BORNET BE
Solution Near Treated (1)	0,140	250 451	70-055	8	01	250	549	2.25	15.7	001 86		162-186	235	250	3.5	0.0	135-136	1
		300 KS1	X-054	8	91	147	74.2	3	16.7	7.6	8	129-159						
		Nod. 201 Ht + No	70-039	00,	9	258	256	5.0	13.1	101 105		113-141						
		20% NI + MJ	70-060	8	01	248	345	1.5	13.2	97 98		143-144						
30% Cold Morked	0.140	300 KS1	70-054	00.	01	3	260	2.5	16.4	•	•		295	293	0.4	0.04		65-64
		Mod. 201 NI + Mo	76-059	8	10	252	250	1.5	12.8	85 85	~	,						:
		20 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	70-000	8	10	349	248	1.0	5.9	\$\$ 78	~	•						
Solution Heat Treated ([)	0.070	300 KSI	¥:0-2	8	10	241 (2) 240	240	1.0	12.3	82 82	*	,						
		Mod. 20% Hi + Mo	70-059	§	91	177 (2) 177	172	1.0	÷.	82 62	**	•						
		262 N£ + No	990.02	30	01	25-(2) 233	233	0.1	÷.	79 8(0							

(i) Unwelded sheet solution hear treated 1500°F/1 hour

(2) Specimens insled in weld and heat-affected-sone

3.0 25% NICKEL ALLOY

3.1 Solution Annealed Condition

The effects of solution, ausage, refrigeration and marage temperature and time combinations on the hardness, strength and toughness of the 25% nickel alloy were evaluated. The results of this work are described in the following sections.

3.1.1 Effect of Solution, Ausage, Refrigeration and Maraging Parameters on Hardness

The effects of solution time and temperature on both "as-quenched" and fully heat treated hardness are reported in Table 112. Fully heat treated hardness was obtained by ausaging 1300°F/4 hours, refrigerating -110°F/16 hours and maraging 900°F/3 hours. As-quenched hardness was obtained by the treatments indicated. It is shown in Figures and 113 that as-quenched hardness drops significantly from 112 1300°F (Ra 68.4 to 69.9) to 1700°F (Ra 42 to 45.5). Short times (2 hour) at 1800°F and 1900°F also produced minimum hardness. temperatures above 1700°F and times of 1 to 4 hours, hardness increases. The probable cause for this occurrence is that the high temperatures allow greater grain growth, increasing the Mg temperature and dwell time on cooling through the precipitation range of Fe? Ti type com-It is shown that the hardness response of specimens solutioned at the high temperatures is slightly lower than the response of specimens solutioned from 1300°F to 1700°F. The preferred solution temperature range lies between 1500°F to 1700°F as shown in Figure 112.

The effect of ausaging temperature and time on as-quenched hardness and fully heat treated hardness is reported in Table 113. Asquenched hardness after ausaging is plotted in Figure 190. Fully heat treated hardness reported in Table 113 was obtained by sometioning at 1500°F/1 hour, ausaging as indicated, refrigerating at -110°F/16 hours and maraging at 900°F/3 hours. The maximum maraged hardness was obtained by 1300°F and 1400°F maraging treatments. Asquenched 1400°F hardness indicates for less transformation to martensite than the 1300°F treatment.

Refrigeration temperature and its effects on hardness were determined on specimens solutioned at 1500°F/1 hour, ausaged 1300°F/4 hours, refrigerated as indicated in Table 114 and maraged at 900°/3 hours. All three temperatures produced the desired hardness response after maraging. Retained austenite studies conducted on the refrigerated specimens indicated less than 1% retained austenite.

The effects of maraging temperature and time on hardness after solutioning at 1500°F/1 hour, ausaging at 1300°F/4 hours, refrigerating at 110°F/16 hours and maraging as indicated are reported in Table 5.5.4. As illustrated in Figure 5.5.4, the maximum hardness response was obtained from 800°F and 900°F maraging temperatures. The response obtained by the 900°F treatment was considered slightly superior.

3.1.2 - Effect of Solutioning, Ausaging and Maraging Parameters on Tensile Properties

Longitudinal and transverse tensile properties, as produced by various combinations of solution, ausage and marage temperatures and times are tabulated in Tables 116 and 117. The yield strength results of this study are plotted in Figures 192 and 193. Peak longitudinal yield strength was achieved for a solution temperature of 1500°F/l hour, ausage at 1200°F/l hour and 900°F/3 hour marage. The longitudinal yield strength reached an average of 268 KSI. Transverse specimens heat treated similarly, produced the average value of 276 KSI. The corresponding ductility values were low, averaging 4% elongation, 20% R.A. for longitudinal specimens and 3.5% elongation, 12.5% R.A. for transverse specimens. Solutioning at 1600°F and ausaging at 1300°F/4 hours reduced yield strengths by approximately 5 KSI but improved ductility substantially (30% RA).

3.1.3 Effect of Solutioning and Ausaging Parameters on Fracture Toughness

The effects of solution and ausaging temperature on the fracture toughness parameters for the longitudinal and transverse directions are reported in Tables 118 and 119. The longitudinal and transverse fracture toughness parameter $K_{\rm C}$, as a function of solution and ausaging temperature is plotted in Figure 194. The nighest average longitudinal $K_{\rm C}$ value (185 KSI $\sqrt{\rm in}$) was obtained for a 1450°F/½ hour solution treatment, 1200°F/4 hour ausage -110°F refrigeration and 900°F/3 hour marage. The yield strength for this heat treatment was 225 KSI.

3.2 Cold Worked Condition

ed

3.2.1 Effect of Cold Work on Tensile Properties

The effects of cold work on tensile properties were determined initially by eliminating the refrigeration treatment and maraging directly. The longitudinal and transverse tensile properties and percentage of retained austenite are reported in Tables 120 and 121. Figures 195 and 196 represent the longitudinal and transverse yield strengths as a function of cold work level and maraging

temperature. It is shown that as cold work level increases, yield strength increases, since the transformation to martensite becomes more complete. Table 120 shows that at 30% cold work, the amount of retained austenite detected was 17.3%. At 40% cold work, the amount of retained austenite had dropped to 9.2%. The 50% cold work level produced a low of 3.7% retained austenite. Table 122 and Figure 121 report the isochronal transformations of retained austenite in the 25% nickel alloy. It is shown that a refrigeration treatment of -110°F/15 minutes almost completely transforms any retained austenite after ausaging.

The effects of cold work and maraging parameters including an intermediate refrigeration treatment of -110°F/16 hours, on longitudinal and transverse tensile properties are presented in Table 123 Figures 198 and 199 present the longitudinal and trans-124. verse yield strengths as a function of cold work level and maraging time at 900°F. The maximum longitudinal yield strength of 242 KSI was achieved for the 50% cold work material maraged at 900°F/3 hours. corresponding transverse yield strength was 266 KSI. These values compare to the solution annealed and aged yield strength value of 268 KSI. Consequently, the cold work tensile data were quite disappointing. No explanation can be offered at this time as to why the properties were low, considering the amount of cold work induced. The reasons for this behavior are now under study. As shown in 200 where longitudinal yield strength as a function of cold work and the Larson-Miller Parameter "P" are plotted, the maximum yield strength was achieved by a 40% cold work level at a Larson-Miller Parameter equivalent to 900°F/1 hour.

3.2.2 Effect of Cold Work on Fracture Toughness Parameters

The effects of cold work level and maraging parameters on longitudinal and transverse fracture toughness are presented in Tables 125 and 126. The longitudinal and transverse fracture toughness parameter plotted as a function of cold work and maraging time at 900°F, . Figure 201.

Longitudinal K_C values are excellent regardless of cold work level and maraging time. Values range from 158 KSI $\sqrt{\text{in}}$ to 198 KSI $\sqrt{\text{in}}$. Both the peak and the lowest K_C values were obtained from the 50% cold worked material.

Transverse K_C properties are half the longitudinal K_C values, ranging from 70 KSI Vin. to 86 KSI Vin. The 900°F/10 hour marage produced slightly higher transverse K_C values than the 900°F/3 hour marage. Transverse properties were rather consistent with increasing cold work.

3.3 Miscellaneous Properties

3.2.1 Elevated Temperature Properties

Figure 202 presents the plot of tensile strength as a function of test temperatures from room temperature to 1000°F. Specimens were heat treated as follows:

Soln: 1450°F/½ hour Ausage: 1200°F/4 hours Refrigerate: -110°F/16 hours Marage: 900°F/3 hours

Ultimate and yield strength fell sharply from 250°F (276 KSI and 249 KSI, respectively) to 1000°F (143 KSI and 90 KSI, respectively). Ductility increased correspondingly from an R.A. of 40% to 61%.

3.3.2 Heat Treat Response of a Thick Section

The heat treat response of a $4\frac{1}{2}$ " x $4\frac{1}{2}$ " x $5\frac{1}{2}$ " billet was measured by removing surface and center bar specimens after heat treating as follows:

Solution: 1450°F/1 hr/inch section 1200°F/4 hr/inch section

Refrig: -110°F/16 hrs/inch section Marage: 900°F/3 hrs/inch section

Table 127 reports the results of this study. Very poor ductility caused by incomplete billet homogenization was the probable cause of poor specimen performance. In the same manner as the 20% nickel alloy, the 25% nickel appears to require very thorough conditioning in order to reach anticipated strength and ductility in heavy section sizes.

3.3.3 Effect of Forging Reduction on Tensile Properties

The effects of forging reduction on the properties of forgings were determined similarly to the studies previously discussed for the preceding alloys. The results on the 25% nickel alloy are reported in Table 128. Figures 203 through 206 present the tensile properties as a function of forging reduction and specimen location and direction.

Forging properties are, in general, poor. The initial billet properties are superior to those representing all forging reductions. Ductility values were quite poor also.

The spread in yield to ultimate tensile strength (approx. 50 KSI) indicates that the billet and subsequent forgings did not possess homogeneous structures.

3.3.4 <u>Fatigue Properties</u>

The smooth and notched bar fatigue endurance strengths for solutioned and aged, 25% nickel alloy were determined from the S-N curves shown in Figure 207. The smooth bar endurance strength (108 cycles) was determined to be 65,000 psi. Notched bar endurance strength was 50,000 psi.

Figure 208 presents the smooth bar S-N curve for 30% cold worked 25% nickel alloy. The endurance strength of 30% cold worked material was 77,000 psi.

3.3.5 Impact Properties

The room temperature and cryogenic Charpy impact strengths for solution and aged and cold worked and maraged 25% nickel alloy are presented in Figures 209 and 210, respectively. Impact strength of material solutioned at 1450°F/½ hr, ausaged 1200°F/4 hrs, refrigerated -110°F/16 hrs. and maraged 900°F/3 hrs was a meager 5 ft-1bs at room temperature and a relatively comparable 3 ft-1bs at -300°F.

Cold worked 30%, refrigerated -110°F/16 hr, maraged 900°F/1 hr material yielded room temperature impact strength of 19 ft-1bs. At -300°F a value of 12.5 ft-1bs was obtained. Cold worked 40%, refrigerated -110°F/16 hours, maraged 900°F/1 hr material exhibited a room temperature impact strength of 15 ft-1bs which fell to 10 ft-1bs at -300°F.

3.4 Summary Discussion

A general comparison of fracture toughness parameters (Table 129). for solutioned and maraged versus cold worked and maraged 25% nickel alloy, reveals the cold worked material to exhibit superior K_C values (approx. 180 versus 120 KSI $\sqrt{1}$ n) at approximately the same yield strength level (235 to 250 KSI) as shown in Figure 211.

The results obtained for the 25% nickel heat were considered poor since, (as concluded for the 20% nickel heat) the 25% nickel alloy is known to be capable of superior properties than those obtained.

The microstructure of the 25% nickel alloy produced by the various heat treat cycles is shown in Figure 212. The structure after solutioning at 1500°F/l hr is equally divided between austenite and martensite. After the 1300°F ausage, the photomicrographs show excellent

definition of a duplex structure with the granular structure of Ni₃(Al,Ti). Theoretically, the ausaging treatment should cause nearly complete transformation to martensite on cooling. However, as shown in the electron micrographs, substantial amounts of austenite were retained. After refrigeration at -110°F/16 hours and maraging 900°F/3 hours, a complete transformation to martensite occurred.

3.5 Weld Properties

Presented in the following sections are hardness, and tensile properties for the 25% nickel alloy welded in both solution heat treated and cold worked conditions. The welding filler materials investigated are also evaluated on the basis of fracture toughness.

3.5.1 <u>Hardness Properties</u>

Weld Zone

Presented in Table 130 are vertical hardness traverses taken along the weld centerlines. Welds produced using the 18% nickel (250 KSI) and all three modified 20% nickel wires were evaluated.

The data plotted in Figure 213 show that after refrigeration and maraging the fusion pass area of welds and the filler wire deposit areas are almost equal in hardness (51-53 Rc) in all cases examined. The various filler wire deposits showed no appreciable difference in aged hardness (Figure 213). A similar behavior was observed in longitudinal weld hardnesses taken between the weld centerline and the weld-base metal interface, Table 129.

Heat-Affected Zone

Longitudinal hardness surveys taken in weld heat-affected zones between the weld-base metal interface and unaffected base material are presented in Table 131. These data are represented graphically in Figures 214 and 215.

Wide scatter was observed in hardness data taken in four surveys in the heat-affected zone of solution heat treated sheet (Table 131). This scatter, indicated by a hardness band in Figure 214, is probably associated with a variation in the location of the area subjected to ausaging temperatures (1200-1400°F). In general, the maximum degree of ausaging experienced was in the area about 0.200" from the weld heat affected zone, as indicated by the as-welded band in Figure 214. Since hardness increased only 5 to 10 $R_{\rm C}$, it appeared that only partial ausaging was experienced during welding. Normal ausaging response for unvelded sheet results in a hardness increase of

approximately 20-25 $R_{\rm c}$. Refrigeration and maraging at $850^{\circ} \, {\rm F}/4$ hours equalized hardness across the heat-affected zone at a level of about 52 to 53 $R_{\rm c}$ (Figure 214). The wide scatter observed in the aswelded condition was not apparent after maraging.

A typical hardness survey across a weld heat affected zone in cold worked sheet is shown in Figure 215. The area adjacent to the weld interface was completely resolutioned to a hardness of less than 15 $R_{\rm C}$ An ausaging effect similar to that noted in solution heat treated sheet was also observed in the cold worked sheet. (Figure 215). Hardness in this area was about 40 $R_{\rm C}$ as compared to 35 $R_{\rm C}$ in unaffected material. Refrigeration and maraging increased hardness in the resolutioned zone to 52 $R_{\rm C}$ and to 55 $R_{\rm C}$ in unaffected base material. (Figure 215).

3.5.2 <u>Tensile Properties</u>

The same procedures used for evaluation of welding filler materials on 20% nickel alloy (Section 2.6.2) were followed in this section.

Solution Heat Treated Base Material (0.140" sheet)

Transverse weld tensile test results comparing various filler compositions are shown in Table 132 and Figure 216. Preliminary evaluations were made on welds subjected to the following heat treatment cycle: 1300°F/4 hrs + Refrigeration at -110°F/16 hrs + 850°F/4 hrs. In these tests, welds made using the modified 20% nickel (7C-059) and 20% nickel (7C-060) filler wires demonstrated the highest yield strength joint efficiencies, 101% (264 KSI) and 98% (256 KSI), respectively. (Table 132). A high level of yield strength (251 KSI) was also noted in welds made with the 18% nickel (250 KSI) alloy, despite lengthy exposure to 1300°F in ausaging, a creatment reported to be damaging to maraging response of the 18% nickel Group I Alloys.

Subsequent thats were made using a heat treatment known to provide a good balance of strength and toughness in unwelded sheet. This treatment, 1200°F/4 hrs + Refrigeration + 900°F/3 hrs proved damaging to weld properties. (Table 132 and Figure 216). Failures located partially in the heat affected zone were experienced in some specimens, and resulted in reduced weld strength and reduction in area. (Table 132). This behavior was independent of filler wire used. In all cases, weld yield strengths were at least 25 KSI lower than those obtained in preliminary tensile tests (Figure 216). As shown in Table 132, only welds made with the 20% nickel molybdenum containing wire (7C-060) failed to show a loss in ductility.

Transverse tensile properties of welds in 0.070" sheet are presented in Table 108 and Figure 216. All test specimens were heat treated as follows: 1200°F/4 hrs + Refrigeration + 900°F/3 hrs. Brittle heat-affected zone failures were experienced in practically all specimens tested, which resulted in extremely poor tensile strengths of 183 to 207 KSI (Table 108). Unlike similar behavior noted in 20% nickel welds in 0.070" thick sheet (Table 108) and 25% nickel welds in 0.140 sheet (Table 108), fractures in these specimens were located entirely in the weld heat-affected zone.

30% Cold Worked Base Material (0.140" sheet)

Results of transverse tensile tests made on welds produced in cold worked sheet are presented in Table 133 and Figure 217. All specimens were refrigerated at -110°F for 16 hrs and maraged at 900°F for 1 hour. Only the 18% nickel (300 KSI) and the two molybdenum containing 20% nickel alloys were evaluated. None of these wires deposited welds which responded favorably to refrigeration and maraging heat treatment only. In general, yield strength properties were exceedingly low, varying from 183 KSI (80% joint efficiency) to 197 KSI (86% joint efficiency). (Table 133). Maximum properties were obtained in welds made with both the 18% nickel (300 KSI) and the modified 20% nickel, molybdenum containing (7C-059) wire.

3.5.3 Fracture Toughness

Weld fracture toughness properties for the filler materials evaluated are presented in Table 134 and Figure 218. All specimens were given a heat treatment of 1200°F/4 hrs + Refrigeration at -110°F/16 hrs + 900°F/3 hrs. Using this heat treatment, all welds tested exhibited reasonably good average fracture toughness properties with the exception of that made with the molybdenum-free, modified 20% nickel wire (Table 134). It should be noted that calculation of weld fracture toughness values were based on weld joint yield strengths obtained for the same heat treatment used in fracture toughness tests. Although partial heat affected zone tensile failures were experienced using these heat treatments (Table 134), these data represented the best available baseline for calculation of weld fracture toughness.

As shown in Figure 218, maximum toughness (K_c) of 136 to 190 KSI $\sqrt{10}$ was exhibited by the 29% nickel, molybdenum containing wire (7C-060). Welds made with both 18% nickel alloy wires showed comparable toughness. (Figure 218). This was based, however, on a lower yield strength level of 216 KSI as opposed to 228 KSI for the 20% nickel wire weld (Table 134). Weld fracture toughness compared favorably with that reported for similarly heat treated 25% nickel sheet in

in Tables 118 and 119 (Ke longitudinal -160 to 216 KSI \sqrt{i} n, Ketransverse -102 to 140 KSI \sqrt{i} n).

3.5.4 Summary

On the basis of weld tests made in this investigation, the 25% nickel alloy exhibited lowest level of weldability of the four nickel-iron alloys evaluated.

A sensitivity to heat-affected-zone embrittlement was observed in welds made in both 0.070" and 0.140" thick solution heat treated sheet using certain heat treatments. Test results demonstrated that of the two heat treatments evaluated, that which is known to give the best balance of properties in base materials caused embrittlement in the weld-heat-affected zone.

All of the filler wires investigated were found to deposit sound, defect-free welds and heat affected zones in 25% nickel alloy sheet in both solution heat treated and cold worked conditions. Welds were produced using conventional welding procedures without benefit of a "preheac-interpass-postheat" weld thermal cycle. Both weld and heat-affected zone demonstrated freedom from embrittlement prior to heat treatment as determined by bend tests.

Welding filler materials are compared on the basis of strength, duct ility, and toughness in Table 135 and Figure 219. Tensile data obtained in preliminary tests are also included in this summary table and figure for comparison purposes, since the heat treatment preferred for base material and used in final tests caused deterioration in weld properties.

As shown in Figure 219, the molybdenum containing 20% nickel wires (7C-059 and 7C-060) deposited welds of maximum strength in solution heat treated sheet using either heat treatment. Where maximum weld fracture toughness is desired, the 7C-060 wire is superior, but at a slightly reduced yield strength level (Table 135).

Exposure of 12% nickel alloy weld deposits to a 1300°F treatment did not cause a pronounced loss in maraging response due to austenite stabilization, which might be expected (Table 135). The effect of the 1200°F treatment on stabilization was not determined since tensile failures occurred in the weld heat-affected zone (Table 132).

Welded cold worked material exhibited prohibitively low yield strength joint efficiencies (Figure 219). This behavior is believed to be associated with the exclusion of an ausaging step, which was dictated by unwelded sheet fracture toughness considerations.

EFFECT OF SOLUTIONING PARAMETERS ON THE HARDNESS OF SOLUTION ANNEALED 25% NICKEL ALLOY

Figure 188 409

kigura 189

EFFECT OF AUSAGING PARAMETERS ON THE HARDNESS OF SOLUTION ANNEALED 25% NICKEL ALLOY

Ausaging Temperature - °F

Figure 190

EFFECT OF MARAGING PARAMETERS ON THE HARDNESS OF SOLUTION ANNEALED 25% NICKEL ALLOY

Maraging Temperature - °F

Figure 191

Figure 192

EFFECT OF SOLUTION TEMPERATURE ON THE TRANSVERSE YIELD STRENGTH OF 25% NI ALLOY

	LEGEND	
All specimens refrigerated	Solution	Marage
(-110°F/16 hrs.) after	∎ ½ hr.	1200°F/4 hrs.
ausaging and maraged (900°P/3 hrs.)	□ 1 hr.	1300°F/4 hrs.
Allegheny Heat No. 23825	O ½ hr.	1300°F/4 hrs.
	1 hr	1200°F/4 hrs.

Figure 193 414

EFFECT OF SOLUTIONING TEMPERATURE ON THE FRACTURE TOUGHNESS OF 25% NI ALLOY

Solution Temperature - °F

Figure 194

EFFECT OF COLD WORK AND MARAGING PARAMETERS ON THE LONGITUDINAL YIELD STRENGTH OF UNREFRIG. 25% N1 ALLOY

Figure 195 416

EFFECT OF COLD WORK ON THE TRANSVERSE YIELD STRENGTH OF UNREFRIG. 25% NJ ALLOY

% Cold Work

Figure 196 417

Figure 197 418

Figure 198 419

FFECT OF COLD WORK AND MARAGING PARAMETERS ON THE TRANSVERSE YIELD STRENGTH OF REFRIGERATED 25% N1 ALLOY

Pigne 199

Larson - Miller Parameter

Figure 200 421

4158

EFFECT OF COLD WORK AND MARAGING PARAMETERS ON THE FRACTURE TOUGHNESS OF 25% NI ALLOY*

Figure 201

ELEVATED TEMPERATURE TENSILE PROPERTIES OF SOLUTION ANNEALED 25% NICKEL ALLOY

Testing Temperature - °F

Figure 202

EFFECT OF FORGING REDUCTION ON THE PROPERTIES OF 25% NICKEL ALLOY

LOCATION VERTICAL-CENTER

Figure 203

EFFECT OF FORGING REDUCTION ON THE PROPERTIES OF 25% NICKEL ALLOY

LOCATION: VERTICAL - EDGE

Figure 204

EFFECT OF FORGING REDUCING ON THE PROPERTIES OF 25% NICKEL ALLOY

LOCATION: HORIZONIAL-CENTER

Figure 205 426

EFFECT OF FORGING REDUCTION ON THE PROPERTIES OF 25% NICKEL ALLOY

LOCATION: HORIZONTAL - EDGE

Figure 206 427

Figure 207 428

1.1

Figure 208 429

Charpy Impact Value - Ft-Lbs.

Figure 209

Charpy Impact Value - Ft-Lbs

Pigure 270

COMPARISON OF FRACTURE TOUGHNESS OF 25% NICKEL ALLCY IN COLD WORK AND AMNEALED CONDITIONS

Figure 211

MICROSTRUCTURE OF 25% NICKEL ALLGY

Solutioned 1500°F/1 hr.

Solutioned 1500°F/1 hr.

Mag, 500 X

Etchant: Marble's + Modified Fry's

Solutioned 15000F/1 hr., Ausaged 13000F/4 hrs.

Mag. 18000 X

Two Stage Carbon Replica

Solution Louve/1 hr., Ausaged 13000F/4 hrs.

Mag. 500 X

Etchant: Marble's + Modified Fry's

Mag. 18000 X

Two Stage Carbon Replica

Sol'n. 15000F/1 hr., Aus. 13000F/4 hrs. P. -1190F/16 hrs., Mer. 9000F/3 hrs.

Sol'n. 1500°F/1 hr., Aus. 1300°F/4 hrs. R. -110°F/16 hrs., Mar. 900°F/3 hrs.

Mag. 500 X

53...

Etchant: Marble's + Modified Fry's

Mag. 18000 X

Two Stage Carbon Replica

Figure 212

25% NICKEL ALLOY WELD HARDNESS DATA VERTICAL TRAVERSES ALONG WELD CENTERLINE

- 52*

A THE PROPERTY OF THE PERSON O

Distance - In.

Hardness - Rockell C

Figure 213 434

Figure 214 435

Figure 215 406

Figure 216

A STATE OF S

X Elongation

Figure 21? 438

5254

COMPARISON OF FILLER WIRES
TRAVERSE WELD FRACTURE TOUGHNESS PROPERTIES
25% NICKEL ALLOY - 0.140" SHEET

Figure 218 439

COMPARISON OF FILLER WIRES
TRANSVERSE WELD TENSILE AND FRACTURE TOUGHNESS PROPERTIES
25% NICKEL ALLOY - 0.140° SHEET

Figure 219

Table 112

EFFECT OF SOLUTION TIME AND TEMPERATURE ON THE HARDNESS OF 25% Ni ALLOY*

Solution Temp. •F	Solution Time Hrs.	As Quenched Hardness <u>Ra</u>	Maraged** Hardness <u>Rc</u>		
1300	રે	68.4	51.8		
	રે	68.4	51.6		
	૧	69.8	51.8		
	2	69.9	51.7		
	4	69.9	51.8		
1400	ኒ	64.5	51.4		
	ኒ	64.8	51.3		
	1	63.9	51.5		
	2	63.6	51.0		
	4	63.0	51.0		
1500	रे	61.6	50.9		
	रे	61.0	51.2		
	1	59.4	50.8		
	2	49.6	50.9		
	4	46.4	50.2		
1600	ें 1 2 4	56.0 48.5 46.3 46.1 45.7	50.2 51.1 51.0 51.0 50.0		
1700	1 2 4	45.5 44.0 43.2 42.4 42.0	49.9 51.2 50.8 50.8 50.6		
1800	1 1 2 4	43.3 43.9 45.8 57.7 60.0	49.8 49.9 50.0 49.9 49.8		
1900	1	42.0	49.0		
	1	46.1	48.9		
	1	59.4	49.1		
	2	60.3	50.0		
	4	61.1	49.8		

Table 112 (Jost.)

EFFECT OF SOLUTION TIME AND TEMPERATURE ON THE HARDNESS OF 25% NI ALLOY*

Solution Temp. F	Solution Time Hrs.	As Quenched Hardness Ra	Maraged** Hardness Rc	
2000	ż	61.3	50.1	
	1/2	61.0	49.7	
	ĩ	61.6	50.0	
	2	62.0	50.1	
	4	61.8	49.6	

^{*} Allegheny Heat No. 23825

^{**} Based on an average of 6 readings

Table 113

EFFECT OF AUSAGING TIME AND TEMPERATURE ON THE HARDNESS OF 25% Ni ALLOY*

Ausaging Temp °F	Ausaging Time Hrs.	As Quenched Hardness Rc	Maraged Hardness Rc
1100	1	40.1	51.0
	2	41.1	51.2
	1 2 3	41.0	51.5
	4	39.8	51.5
	8	43.3	52.1
	12	43.8	51.8
	16	43.8	51.6
1200	1	41.7	52.3
	2	42,3	52.2
	1 2 3 4 8	42.9	52,1
	4	42.3	52.1
	8	42.7	52.1
	12	42.6	51.8
1300	1	40.2	52.7
	2	40.1	52.4
	1 2 3 4	39.9	52.3
	4	40.2	52.5
	8	38.9	52.6
1400	1	29.4	52.9
	1 2 3	28.5	52.8
	3	27.4	52.8
	4	28.2	51.6

^{*} Allegheny Heat No. 23825

Table 1.4

EFFECT OF REFRIGERATION TIME AND TEMPERATURE
ON THE HARDNESS OF 25% NI ALLOY*

Refrig. Temp. F	Refrig. Time Hrs.	Hardness After Estab. Of Equil. (24 Hrs.)	Maraged Hardness
-115	1 2 3	34,4 32.4 35.1	51.0 50.9 51.1
- 50	1	36.4 36.5	51.1
	1 2 3 4	37.5 39.0 39.2	50.7 51.0 51.0
	8 12 16	38.8 37.4 37.2	51.1 49.9 50.0
0		38.1 34.6	50.0 50.1 49,8
	1 2 3 4 8	37.8 35.6	49.8 50.2
	1 2 16	39.8 38.5 37.1	51.0 50.4 50.1

^{*} Allegheny Heat No. 23825

THE STATE OF THE PROPERTY OF T

Table 115

EFFECT OF MARAGING PARAMETERS ON THE HARDNESS OF SOLUTION ANNEALED** 25% NI ALLOY*

Maraging Temp. °F	Maraging Time Hrs.	Hardness Rc
700	1 1 2 5	46.3 45.3 45.9 48.1 49.4
800	1 1 2 5	47.9 50.2 50.2 51.4 51.5
900	1 1 2 5	50.7 51.6 51.8 51.1 49.7
1000	1 1 2 5	47.5 48.2 48.9 46.1 48.0

^{*} Allegheny Heat No. 23825

^{**} All specimens solution annealed: 1500°F/1 hr.

Table 116

EFFECT OF SOLUTIONING, AUSACING, AND MAKAGING PARAMETERS ON LONGITUDINAL TENSILE PROPERTIES OF 25% MICKEL ALLOY *

R.A.	25,88,45	33 34 25	28 29 33 33	33 33 25	17 33 27 26	25 2 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	77 77 77 77 77 77 77 77 77 77 77 77 77
Elong.	827267	ocon	44.7 3.9	∞ ∞ ∿	N D 4 N	v o 4 4 4 .	, 2 L L B
.2% Yield Strength KSI	270 276 276 276 219 219	252 244 251 246	251 255 256 268	∵25 225 250	2.29 220 260 264	232 228 254 254 252	262 268 273 265
Ult. Tensile Str. ngth	297 289 280 232 244	275 277 262 260	266 264 262 270	244 244 270	2+6 248 271 267	248 252 285 275 267	273 267 276 278 276
Marage Time Hrs.	н "	❖	m	т			m
Marage Temp OF	0006	950	0006	006			006
Ausage Time Hrs.	44444	4 4	4	444	4444	ববববৰ	* 4 4 4 4
Ausage Temp ** OF	1200 1300 1400	1,100	1300	1200	1200	1200	1300
Solution Time Hrs.	وبهد		7	-4P-	14.	-1¢11	1
Solution Temp.	1,400		1400	1450	1500	1500	1500

EFFECT OF SOLUTIONING, AUSACING, AND MARACING PARAMETERS ON LONGITUDINAL TENSILE PROPERTIES OF 25% NICKE: ALLOY * (Cont'd.)

R.A.	20 27 33 33	20 20 10 10 10 10 10 10 10 10 10 10 10 10 10	22 34 40 17	51 48 46
% Elong.	8.44.0 9.50.0		6.0 6.0 6.3	6.1 5.8 5.7 5.5
.27 Yield Streng h	238 259 266 257	246 260 291 231 231 271 282 241	261 265 255 259	231 236 237 234
Ult. Tensile Strengtin	269 267 272 266	272 287 243 243 272 272 273 249	278 231 266 273	244 253 253
Marage Tine Hrs.	ო	ননননগ্ৰেপ্ৰক	നനന	ത്തത്ത
Marage Temp OF	006	960	006	006
Ausage Time Hrs.	4444	434444444	444 4	4444
Ausage Temp** or	1200	1200 1300 3200 1200 1300	1300	1300
Solution Time Hrs.	יאָב	. .	, ~	1
Solution Temp. Cp	1550	1660	1600	1700

* Allegheny Heat No. 23825

** All specimens refrigerated (-110 $^{\circ}F/16$ hrs) after the ausaging treatment.

Table 117

EFFECT OF SOLUTIONING, AUSAGING, AND MARAGING PARAMETERS ON TRANSVERSE TENSILE PROPERTIES OF 25% NICKEL ALLOY **

R A A	25 21	22 22 23 23	23 20 24 24	222222	10 115 115 29 27	13 14 18	23 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25
- '		4 3.6 4.2	4.0 3.0 4.4	4.0.4.4.4.0.4.0.4.0.4.0.4.0.4.0.4.0.4.0	0.0.4 0.0.4 7.4 7.4	0 4 0 0 °	2004494 004494
.2% Yield Strength KS1	236 217	276 283 278 279	237 229 267 270	237 237 273 276 237 244	275 278 286 278 265 285	250 272 263	216 228 272 275 265 265
		282 286 284 287	252 253 280 281	260 254 286 290 258 266	293 291 296 287 279 293	279 286 286 270	283 283 283 283 284 284
Marage Time Hrs.	ጣጠ	നനന	ଳଳ କ କ	'ପ୍ରମଣ୍ଡ ମଣ୍ଡ	ମ ମ ନ ମ ମ ନ ନ	๓๓๓๓	നിനിനിന്നുന
Marage Temp OF	006	006	= = = =				:::::
Ausage Time Hrs.	44	4444	বববর	<i>পৰবৰৰ</i>	ববববব	444	44444
Ausage Temp **	1200	1300	1200	1200 1300 1200	1200	1200	1200
Solution Time Hrs.	-Hr	erd.	nk	ەيلى كىخد	r T	Je	-Ar
Solution Temp.	1400	1400	1450	1500	1500	1550	1600

Table 117 (Sont.)

EFFECT OF SOLUTIONING, AUSACING, AND MAKAGING PARAMETERS ON TRANSVERSE TENSILE PROPERTIES OF 25% NICKEL ALLOY

R.A.		29 37 36 43
% Elong.		4.7 5.1 5.2 5.7
.2% Yield Strength	KSI	245 233 235 240
Ult. Tensile Strength	KSI	259 260 264 263
Marage Time Hrs.		m
Marage Temp or		006
Ausage Time		4444
Ausage Temp **	4	1300
Solution	ur o	1
Solution Tel .	I.	1700

* Allegheny Heat No. 23825

** All specimens refrigerated (-110 $^{0}F/1^{\circ}$ hrs) after the ausaging treatment.

Table 118

EFFECT OF SOLUTIONING AND AUSAGING PARAMETERS ON LONGITUDINAL FRACTURE TOUGHNESS OF 25% NICKEL ALLOY*

Gc (6) + In-1b/in ²											
Ko (5)	181.7 186.8	215.8 159.3	104.6	99.3	33.0	54.2 57.6	42.1	95.2	99.8 86.1	9.76	108.2
Critteal Crack Index(4)											
ŝø									1.26		
Notch Strength(2) KSI	124.2	127.5	103.1 105	104	37.1	57.9	42.8	99.1 102.9	78.3 66.8	71.4	85.5
Net Fracture Stress(1) KSI	284.9 315	534 243.1	1,44,4	134.7	46.2	76.6 91.5	60.1 72.4	130.5	222.3 187.4	191.5	204.2
0.27 Yield Str. KSI	208 208	225	225 225	230	261 261	249	235 235	250 250	262 262	262 262	262 262
Solution Time Hrs.	.m=	-¥*≈	₩=	ביאנ	- 4 ±	-#r=	.#* :	ars	الله عابد	: ~ :	ar:
Solution Temp.	1400	1450	1500	1500	1500	1550	1600	1450	1500	1500	1550
Ausaging Time Hrs.	4 _			····	**************************************			4			
Ausaging Temp.	1290							1300			

Allegheny Heat No. 23825

Centrally notched fatigue cracked specimen All specimens refrigerated @ - 110°F/16 hrs. and maraged 900°F/3 hrs.

Table 119

	Gc (6) ⁺ In-1b/in ²	884.8	8.99 8.03	144.0	101.8 138.6	245.5	49.8
	Kc (5) KS1/In	139.5	38,3	56.3 52.0	47.3 55.2	73.5 61.9	33.1
	Critical Crack Index (4)	0.120	0.006	0.015	0.015	0.024	0.004
NO *YO		3.002	0.15	0.39 6.33	0.38	0.61	0.11
SOLUTIONING AND AUSAGING PARAMETERS ON PRACTINE TOUGHNESS OF 25% NICKEL ALLOY**	Noten Strength (2) KSI	122.3	41.2 37.1	55.4 52.0	49.3 57.8	82.2 63.1	36.1 45.1
VING AND AUSAG TOUGHNESS OF	Net Fracture Stress (1)	199.5	54.3 53.6	80.7	65.8	100.1 88.5	49.9 62.7
SOLUTION PRACTIME	0.2% Yiela Str. KSI	227	275 275	257 257	222	269 269	286 286
EFFECT OF TRANSVERSE	Solution Time Hre.	مهد	-1	-ife	AP.	nje	~
	Sclution Temp.	1400	1500	1556	1600	1450	1500
	Ausaging Time Hrs.	4				۷	-
	Ausaging A Temp.	1200				1300	····

Allegheny Hear No. 23825

+ Centrally notched Latigue cracked specimen ** All specimens refrigerated @ - 110°F/16 hrs, and maraged 900°F/3 hrs,

Table 120

EFFECT OF SMALL AMOUNTS OF RETAINED AUSTENITE ON THE LONGITUDINAL TENSILE PROPERTIES OF 25% NICKEL ALLOY*

* A	65 67 66 67 54	4 4 6 6 8 6 5 8 6 1 5 8	887888 887888
Elong.	100 100 122 123	800r80	60 Or 60 Or 60 60
0.27 Y.S. KGI	142 170 139 123 152	152 165 174 156 158	159 162 162 162
Ultimate Tensile Strength KSI	181 179 182 151 176	216 211 194 213 210	202 202 202 200 200 200
Marage Time Hrs.	1,75	:::::	
Marage Temp.	850 900 950 051	850 90: 92: 93:	850 900 950 950
Approximate** Amts. of Retained Austenite	17.3	9:::: 2	w:::::
T Reduction	30	07	99

* Allegheny Heat No. 23825

公式の大学のようなななると、なるはなるながらなっちんないのからない とないるのであると

No refrigeration. Hence, indicated % retained austenite represent the amounts determined in the as cold worked condition. ţ

Table 121

EFFECT OF SMALL AMOUNTS OF RETAINED AUSTENITE ON TRANSVERSC TENSILE PROPERTIES OF 25% NICKEL ALLOY*

7. R.A.	12.5	75 767	\$2	77	2 7 7 7 7	47	8 5 4 5	42	41
, grong,	12	8 92	10	۲ ر	٥٢	111	9	φ'n	r 00
0.2% Y.S.	142	137	129	164	178 167	165 175	173 163	185 155	174 150
Ul cinace Tansile Strength	156 166	163 170	151	194 204	209 203	193 192	204 201	214 203	206 195
Maraga Time Hra,	1.75	= =	=	= =	= =	= =	2 3	::	: :
Harage Temp	850	006:	950	850	006	950	\$50	006	950
Approximate Ants, of Retained Austenite**	17.3			5.2			3.7		
Reduction	0,1			07			80		

* Allegheny Heat No. 23825

No refrigeration. Hence, indicated % retained austenite represents the amounts determined in the as cold wurked, ¥

Table 122
ISOCHRONAL TRANSFORMATIONS OF RETAINED AUSTENITE
IN THE COLD WORKED 25% NICKEL ALLOY*

7 Reduction	Refrig. Time Hrs.	Refrig. Temp.	% Retained Austenite
20	As C.W. (No R	efrig.)	18.13
	‡ 11	0 - 50 -110	4.0 1.6 ≪1
	<u>1</u> 11	0 - 50 -110	1.9 <1 ≪1
30	As C.W. (No R	efrig.)	17.29
	12 11 11	9 - 50 -110	3.1 < 1 No Trace
	18 18	0 - 50 -110	1.4 <<1 No Trace
40	As C.W. (No R	efrig.)	9.17
	3 !!	0 - 50 -110	<1 <1 No Trace
	1 11	0 - 50 -110	<1 ≪1 No Trace
50	As C.W. (No F	tefrig.)	3,69
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	0 - 50 -110 0	1.2 <1 «1
	1 11	- 50 -110	1. <1 ≪1

^{*} Allegheny Heat No. 23825

Table 123

EFFECT OF COLD WORK AND MARAGING PARAMETERS ON LONGITUDINAL.

TENSILE PROPERTIES OF 25% NICKEL ALLOY *

% Reduction	Marage** Temp OF	Marage Time Hrs.	U.T.S. KSI	0.2% Yield Strength KSI	% Elong.	% R.A.
20	800	1 1	230 233	216 218	5.0 7.0	50 52
	850	1 1	236 245	227 239	7.0 5.0	55 55
	900 "" "" "" 950	1 1 3 3 10 10 10 1 4 4	255 266 256 250 252 249 249 255 236 234	198 236 209 207 216 211 230 235 215 213	5.0 5.0 6.0 7.0 6.0 7.0 6.0 7.0	62 68 49 50 52 53 61 61 60
30	800 " 850 " 900 " " " 950	1 1 1 1 3 10 10 10 1 4 4	242 243 250 251 273 259 264 258 261 263 259 253 287	235 231 238 237 233 226 230 217 242 231 340 236 258	3.0 6.0 7.0 6.0 5.0 6.0 6.0 6.0 6.0	48 55 55 60 63 61 53 52 55 65 61 62 58
40	800 " 850 "	1 1 1	252 252 262 277	231 234 244 250	5.0 0.0 5.0 5.0	41 49 51 49

EFFECT OF COLD WORK AND MARAGING TARAMETERS ON LONGITUDINAL TENSILE PROPERTIES OF 25% NICKEL ALLOY * (Cont'd.)

% Reduction	Marage Temp. OF	Marage Time Hrs.	U.T.S. KSI	2.0% Yield Strength KSI	% Elong.	% R.A.
40	900	1	275	249	7.0	53
	31	1	274	259	6.0	52
	11	$\bar{3}$	256	209	6.0	49
	11	1 1 3 3	279	249	5.4	56
	ti	10	266	213	5.0	49
	11	10	268	246	5.7	52
	950	1	285	246	5.0	49
	11	ĩ	258	247	7.0	58
	11	4	260	247	7,0	51
	11	4	263	242	7.0	56
50	800	1	247	236	6.0	52
	\$1	1	248	236	5.0	59
	850	1	258	242	5.0	57
	tį	1 1 1 1	259	245	5.0	55
	900	1	267	234	5.0	59
	11	$\overline{1}$	266	252	6.0	59
	**	1 1 3	265	242	5.0	55
	11	10	265	243	5.6	52
	91	10	240	233	5.0	53
	950		262	244	5.0	60
	li .	1 1	265	239	5.1	64
	11	4	250	224	6.0	59
	11	4	252	234	6.0	57

WE SHALL SEE THE STATE OF THE S

^{*} Allegheny Heat No. 23825

^{**} Refrigerated - 110°F/16 hrs. Negligible amounts of retained austenite found after refrigeration.

Table 124

EFFECT OF COLD WORK AND MARAGING PARAMETERS ON
TRANSVERSE TENSILE PROPERTIES OF 25% NICKEL ALLOY*

% Reduction	Marage Temp OF	Marage Time Hrs.	U.T.S. KSI	0.2% Yield Strength KSI	% Elong.	% R.A.
20	900	3 10	266 255 262 253	258 227 233 245	5 5 6 6	42 33 40 37
30 11 11	900	3 " 16	281 279 270 271	244 238 230 253	5 5 5 6	38 39 34 40
40 11 11	900	3 11 10	279 289 280 276	267 257 243 232	4 5 5 5	36 38 39 39
50 '' ''	900 '' ''	3 10	282 290 276 279	262 270 249 248	5 5 5 5	38 40 40 37

^{*} Allegheny Heat No. 23825

^{**} All specimens refrigerated @ - 110°F/16 hrs.

Table 125

EFFECT OF COLD WORK AND MARAGING PARAMETERS ON LONGITUDINAL PRACTURE TOUGHNESS OF 25% NICKEL ALLOY*

226 233 233 233 253 253 260 260 260 260 260 260 260 260 260 260	254 254 254 253 253 253 253 253 253 253 253 253 253

Allegheny Heat No. 23825 Centrally notched, fatigus cracked specimen All apacimens refrigerated at - 110°F/16 Hrs. + # \$

Specimens tore through pinhole

Went in the State State of the State of State of

Table 126

	Gc (6) ⁺ In-1bs/in ²		271	252	422		281	317	307	į	231	246	700	319	277	279
	Ke (5) KS1 (1n		77.3	74.5	77.8	: ;	73.0	83.5	82.2	í	66.99	73.6	70.7	83.8	78.0	78.3
	Critical Crack Index (4)	In.	0.032	0.030	0.034	0 037	0.029	0.3/9	0.037	0 036	0.021	0.030	0.022	0.032	0.031	****
ERS ON L ALLOY*	$\widehat{\mathscr{D}}$		0.82	1.7	0.85	10.0	0.80	1.03	0.99	0.64	0.57	0.82	0.59	0.85	28.0	;
ELFECT OF COLD WORK AND MARACING PARAMETERS ON TRANSVERSE FRACTURE TOUGHNESS OF 25% NICKEL ALLOY*	Notch Strength (2) KSI		7.47	101.4	86.2	73.8	9.99	1.88	01.0	75.4	7.69	69.5	73.1	9.68	83.0	
OLD WORK AND ACTURE TOUCHN	Net Fracture Stress (1)		112	129	105	112	109	114	, !	97	93	2	101	110	107	
FECT OF CISVERSE FR	0.2% Yield Str. KSI		243 243	239	239	241	241	242		262	797 238)	266	243	546	
TRAN	Maraging Time Hrs.		า:	01	;	m:	01	;=		m:	10		m =	10	=	
	Maraging** Temp.	000	€			·						•	·		-	
	Reduction	20	;		•	or P			67	7		4	2			

* Allegheny Hear No. 23825

+ Centrally notched, fatigue cracked spectmen

** All specimens refrigarated - 110°F/16 hrs.

TABLE 127

HEAT TREAT RESPONSE OF A THICK SECTION** OF 25% NICKEL ALLCY*

Specimen Location In Cube***	UTS KSI	0.2% Yield Str. KSI	Elong. %	Red. In **** Area %
Surface	165 235	+ +	+ +	- - -
Center	261 195	246 +	0 1- }	3.4 ⁺⁺

- * Allegheny Heat No. 23825
- ** Cube Dimensions: $4\frac{1}{2}$ " x $4\frac{1}{2}$ " x $5\frac{1}{4}$ "
- *** Specimens machined parallel to flow lines at both locations.

*** H.T.: Soln.: 1450°F/1 hr.

Ausage: 1200°F/4 hrs.

Refrig.: -110°F/16 hrs.

Marage: 900°F/3 hrs.

(1 hr/in. thickness allowed at respective temperatures)

- + Broke in threads
- ++ Broke outside gage length

TABLE 128

EFFECT OF FORGING REDUCTION ON THE PROPERTIES OF 25% NICKEL ALLOY

7, R.A.	8 29.3 6.5 5.2 Threads 2	10.9 29.2 21.1 32.4	25.3 27.4 22.3 41.7	4 4.1. 5 6.3 23.1	3 4.4 50.3 27.8
Z Elong.	tn	N ~ N O	8692	u w &	14.7
0.2% Y.S. (KSI)	256.6 261.6 Broke 238.2	189.9 182.9 185.9 205.8	182,4 188.6 200.8 218.7	246.5 245.1 204.8 Machined	187.9
U.T.S. (KSI)	304.6 303.8 257.5 296.2	235.4 248.5 233 251.5	231.3 239.2 243.3 254.9	247.7 277.6 240.2 Not Mac	147.2 235.9 232.2
Heat Treatment	1450°F/½ hr. 1200°F/4 hrs. -110°P/16 hrs. 900°F/3 hrs.				
% Reduction	0000	& & & & & & & & & & & & & & & & & & &	50 50 50 50 50 50	75 75 75 75	78 78 8
Location	Billet Vertical-Center Vertical-Edge Horizontal-Center	First Unset Vertical-Center Vertical-Edge Horizontal-Center Horizontal-Edge	Second Upser Vertical-Center Vertical-Edge Horizontal-Center	Fourch Upser Vertical-Center Vertical-Edge Horlzontal-Center Horlzontal-Edge	Fifth Upset Vertical-Center Circumference Horizontal-Center

Table 129

:

the contraction of deposits a statement of the contraction of

Oritical Fracture Toughness Parameters of 25% Nickel Alloy*

N T O	98.	4.5.48 4.6.5 4.6.5	1.33
G1C **	112.0 98.7 87.5	264.2 239.7 210.1	230.3 242.1 203.5
K1C KSI An	49.6 46.6 43.8	76.3 72.6 68.0	71.2 73.0 66.9
N.T.S. KSI	240 225 212	369 351 329	344
Heat Treat	Sol'n: 1450°F/½ Hr. Ausage: 1200°F/4 H. Refrig: -100°F/16 H. Marage: 900°F/3 Hrs.	Refrig: -100 ⁰ F/16 Hrs Maragd 900 ^P /1 Hr.	
Неа	Sol'n: Ausage: Refrig: Marage:	Befrig: Maragd	
Condition	Amaeleď	40% Cold Work	50% Colà Work

* Allegheny Heat No. 23825

** Oritical fracture toughness calculated from circumferentially-notched tensile bars ($K_{\rm f}=10$)

Table 130

25% NICKEL ALLOY - VERTICAL TRAVERSES (2)

Mo 2) Aged		521	529	531	519	533	533	553	565	54.8	54.2	1 	537.4
20% N1 + Mo (7C-059) (7C-060) As-Welded Aged As-Welded Ag		304											275.0
+ No (70 Aged		515	511	511	507	538	560	565	571	574	555	562	542.6 51.9
Mod 20% N1 As-Welded		324	331	321	324	271.	258	258	276	264	270	276	288.4 28.6
(7C-058) Aged		540	223	525	521	533	562	562	565	260	555	558	546.0
Mod 20% Ni (7C-058) As-Welded Aged		332	4 5	202	700	313	6/7	265	261	256	274	273	289.4 29.7
(7C-055) id		517	5.50	513	7.77	523	777		551	565	538	;	533.4 51.3
250 KSI (7 As-Welded		321	3:17	325	20%	270	25.7	107	707	/97	<u> </u>	j I	293.3 29.1
Filler Wire Conditions (3)	Distance from Top of Weld In.	.020	990.	080	100	120	071	04.5	.100	001.	200	077.	Average-DPH Rc (Converted)

(1) Diamond Pyranid Hardness - 10 KG load, 1360 apex angle

Vertical traverse - top to bottom along weld centerline (5)

(3) Aged: $i300^{\circ}$ F/4 hrs., air cool, refrigerated 16 hrs. at - 110° F, 850° F/4 hrs.

Table 131

:

WILD MEAT APPECTED TONE MADRESS DATA - GW. (I)
232 HICKEL ALL! : BORIZONTAL TRAWKER (2)

:	i								ż	
5	j								ź	
ž	1 5								ŝ	
95									181	
Ã	•			ż			I		, 8	~
320				- 1			ž		377	2 22
	•		ź	1 141	353				7 7	
9.7		•						•		*
557		* **			351	ŝ	,	•	3	**
7			200	2	•	•	\$\$	•	•	£
		742		•	388	3	•	3	ž	•
. ia.	32	152	ş	***	•		ž	•	ž	9
1 -face .	3.5	33	•	10.	555	391	š	28	ž	•
11	ž	35	195		Ş	٠	533	•	309	*
31	=	2	210	203	22	*	527	3	3	•
Oforesce from Wold lati-face . in, 1822 - 183 - 180 - 183 - 1310 - 13	77	128	ã	:	537	*	ž	•	280	ž
호착	213	22	22	52	23	3,	×	25	#	
7	×	3	22	133	ž	125	ä	3	₹	ş
엄	423	2,0	8	5	33	329	329	*	ž	
3	23.6	12	\$2	1	335	3	¥	ĩ	ż	\$3
2	216	11	212	*	32	33.1	ĩ	3	222	ž
7,07	ž	212	210	ő	3	333	323		183	9
**	\$4.	***	212	z.	33.	23	×	3	ş	ž
	950	8	Ê	CQ2	3	ž	533	3	770	×
8	Š	×	112	243	355	3	35.	333	ä	3
व	3	147	32	8	231	*	ĩ	34	ä	3
Condition	Ca-Walded				1 3				As-141644	1
Natarial	Solution	rested							301 Celd Breked	-

(1) Dismond Pyranti Berbases, 1005 imad, 130° open angla (2) Trurverse taken along about contestion (3) Apoul 1300°P/4 hrs. + kef. -110°P/16 hrs. + 830°P/4 hrs.

A STATE SHE SHE SE SE SENT STATE SO

Table 132

THANSVERSE UKL.; TEASILE PROPERTIES
23% NICKEL ALLOY SCLITTON HEAT TREATED 6..40" SHEET (1)

71116	Filler Wire	Temp. Tim	201	Teap.		S 1.	, ,		•		¥	Average Properties	•		
	Heet No.	\$	Nr.	٥	1	KSI	KSI	1		V. 7. S K\$1	0 22 1.5 KSI	Elong.	F. A.	Jeine E	1.1
15X 057	\$6-05	1 300	•	\$ 50	4	253	972	4	2	ž	;				
		1300	•	ç Ş	-	? ??	756	~	:=	ž.	3	<u>ب</u>	-	5	\$
					•	(C or	* 17 T	. 0	4 .1 20 3-	£2	716	2	y B	ž	19
25 23	7C-054	1200	4	8	-	2% 227 (3)	\$? ? ?	3.0	0.4	117	216	80 ~	æ	9	=
Nod. 202M	X-058	*	•	6 30	4	333	(77	0.		. 71	;				
		1200	•	ş	n	256	24.5	9.0			3	٠ •	\$?	ş	\$
						10 CZ	207	0.7	r ~	06.7	. 17	0 7	•	90	£
Nod. 20 TMI-No 7C-059)C-059	1 300	4	850	4	7,0	0,7	1.2	3	764	7		:		
		1200	•	ş	-	2) 24 (3)	, se .	4.0	0.11		.	-	5.5	ŝ	<u>.</u>
201N1+Mo	30-040	1300	J	350	4	258	.		•	1	ŝ	9 ~	1 1	7	96
		1200	4	ğ	-	264	. 9	<u>:</u> :		361	255	٥	•	8	7
			,	}	•	252 (3)	530 530 530	. o.	, B. 2	24.7	827	~	, ,	•	÷

Sheet reliing direction parallel to orientation of specimen atta.
 All specimens refrigereed after designs: 16 hours at -113°s.
 Palled to weld through cover pees and heat affected zone of fusion pass.

All other specimens failed to weld.

Table 134

TRANSVERSE WELD FRACTURE FOUGHNESS PROPERTIES 25% NICKEL ALLOY - 0.140" SHEET

	Gc in-1b/fn ²		1488	876.9	876.9	1322	380.4	1066	658	1658 843
	Ksi Vin		186.9	138.9	138.9	1/0.5	91.5	153.2	120.3	191.0 136.2
	Critical Crack	Index In.	. 22	.13	.13	07.	.059	.14		.223
		0	6.05	٠, ٧٤ د .	3.94	•	1.55	3.48) ·	2.9
:	Notch Strength	2	142.7		135.3	. !	117.6	122.7	16.2.0	109
2	Net Fracture Srrace	KSI	252.7		178 202.3	, 961	4.021	216.4 177.1	7 7 7	213.1
•	Yield Str. KSI		216 216		216 216	213	1	235 235	228	228
Ze (1)	hrs.	- The state of the	т	~	ר	~	, ,	m	ო	
Temp	e e		006	000	2	900		Š	900	
Hear No.			70-054	70-055		7C-058	050	6000	70-060	
Filler Wire Type He		•	300 KS1	250 KSI		Mod 20% N1	Mod 202 N1 + Mc		20% N1 + Mo	

(l) Preceded by ausage 1200°F/4 hrs + refrigeration -110°F/16 hrs.

7

Table 135

COPATION OF PILLER WIRE PROPERTIES TAMBONIES PROPERTIES 231 RICKEL ALLOY

•	•		;		;					Average Wald Properties	Vold Pre	20110								
300 0000			711191 VICe	200	4	7	,					Joint					hwided.	Sheet P	reperties	
Confiction Thichhead			Post No.	į		įr	ļį	U. T. S. KSI			 	78 1.5.		, i	55	1.1		2	flong. LA Roughtudinel Transv	Transverse
***************************************					I	į		1	1		1	,		I	- 	٠	1	1		
Solution Bast Tranted (2)	6.1.9	250 655	X-035	1760	4 4	28	4.0	234 233(4)	ន្ទះ	22	 •	2 =	**	. 140-171	22	22	٠.	, 2	93-130 160-316	41-73
		300 ES.	X0-0X	238	•	8	•	(*) (ст	\$11	:	;	2	-	140-141						
		Mod. 201	7C-05	1300	••	2 g	40	24.7	*#	2.0	33	22	8.5	. 5.						
		Med. 201 M. + No.	3G-039	200	**	\$ \$	47	£ £	12	 	33	- 	- -	120-153						
		20; # + 16	9 9 9	1300	44	38	••	24. 24.7(8)	228 228	2:5 2:5	32	22	22	134-191						
Northead (1)	00	300 8.51	¥0-5	٠		6		223	197	:	10.4	1	2		366	8	5.5	2	180-199	20-BS
		K 201	X-05	•		§	-	c zz	1.1	2.3	11.	1	•							
		201. HI + No.	26-940			8	-	318	35	9.0	13.1	2	2	•						
Solution Boat	0.030	300 451	X-05	1300	•	8	-	217(5)	202	:	.	2	*	F						
		Kee. 201	X-05	128	•	ğ	•	228(5)	30,		12.3	2	2							
		207 81 + 70	20-0%	1700	•	\$	•	(C) 111	3	:	14.3	2	*							

(1) All opacions refrigarated after anauging; 10 bours at -110°P (2) Boundad seen solution hast treated 14,0°P/1 hour (3) Refrigated -110°P/16 hours prior to markging (4) Specimons failed in weld and heat effected sees (5) Specimons failed in weld and heat effected sees (5) Specimons failed in heat affected sees

< •

Application of the Application of the selection of the se

4.0 CURRENT AND FUTURE WORK

The work accomplished under this contract has verified the exceptional capabilities of the maraging steels. This section of the report is concerned with the objectives that future efforts should be directed toward. The proven performance of the maraging steels, and in particular, the 18% Nickel alloys, make the material readily programmed for development. The following paragraphs are development areas which the Curtiss-Wright Corporation believes are imminently the most important for advancing the maraging steel "state-of-the-art".

4.1 Construction and Test of Full Scale Motor Cases

To date, numerous evaluation programs on material representative of commercial size heats have been performed by industry. The 18% Nickel alloys have been proven to possess the outstanding strength and toughness sought for solid rocket motor casings. The Curtiss-Wright Corporation has conducted subscale evaluation of casings with excellent results. Bursts as high as 349 KSI have been achieved with 6" I.D. subscale vessels. At present, the Corporation has constructed two full scale, Pershing type (40" I.D.) motor cases. These cases are currently undergoing test. Preliminary data from the testing of two 6" I.D. subscale vessels representing the same heats of material in the Pershing cases are partially analyzed. The results, based on PR/t show both subscale vessels to have burst at approximately 345 KSI. If, as all current and past data indicates, the proof and burst tests of the full scale Pershing reproduce subscale performance, maraging steels will have passed into the production phase of application.

4.2 Solid Rocket Booster Motor Casings

Large NOVA type booster cases demand extremely dependable material performance. Unfortunately, the associated problems are compounded by the material mass and mill product sizes involved in construction. Depending on the case diameter under development, plate gages of 0.300" to 1.0" must be fabricated to the same stringent strength and toughness requirements as missile motor casings.

Realizing the urgent need for material development in the booster case area and being aware of the potential of maraging steels for this application, the Aeronautical Systems Division, Wright-Patterson AFB has initiated further development.

A contract for the evaluation of maraging steels for large diameter booster case application has been awarded to the Aerojet General Corporation. The work performed under this contract will be directed toward the evaluation of maraging steel plate in base metal and welded

form. Strength and toughness capabilities will be established to gage the performance of the alloys in thick plate sizes representative of large heats. This work will serve as the initial step in the development of the alloys for booster case construction.

4.3 Process Development of Maraging Steel Forgings.

The area of raw material consistency and forging reproducibility from heat to heat of material would remain intangible unless a program were specifically initiated to develop statistically sound data. The Aeronautical Systems Division, Wright-Patterson AFB has requested contractor comments regarding interest and proposed program plan. This contractor has replied affirmatively as follows:

The scope of this program should be inclusive of all factors in fabrication since forging operations are dependent upon numerous parameters. Forging properties, including strength and toughness, as a function of directionality, should be determined by a systematic analysis of alloy melting method, chemical composition, billet conditioning, degree of forging reduction, start and figish forge temperature and die preheat temperature. Because of the large number of variables involved in such a program and the cost of the large size heats which must be used to produce meaningful data, a statistical approach should be used in data collection and generation in order to obtain maximum information at minimum cost. By means of an initial approach to obtain the relative significance of each variable and variable interactions, a more efficient study of pre-forging and forging variables will be possible. After the relative significance of variables is determined, the important preforging parameters should be initially set apart from forging parameters thereby reducing the number of dependent variables. forging parameters should be evaluated in detail regarding the reproducibility of properties within heats, between heats and as a function of heat size. The effect of billet conditioning must also be included since final forging properties are known to be highly dependent upon this factor. The evaluation should be made on as large a sample size as Different material suppliers should be surveyed for the collation of anyllable data to supplement this program and complement the data generated. Having established preforging parameters, a second phase of the program would evaluate forging parameters still using a statistical approach. Forging parameters can be evaluated by combining the findings from preforging studies. The design of this phase must be inclusive of all forging variables since individually, they do affect the forged product. Generally, the program must evaluate on an all inclusive scale the variation in forgings as a function of heat size, composition, and melt method as well as billet conditioning and subsequent degree of reduction and forging schedule employed.

5.0 REFERENCES

- 1. Wechsler, M. S., Lieberman, D. S., and Read, T. A., <u>Trans.</u>, AIME, 197, 1953, 1503.
- 2. Bowles, J. S., and Mackenzie, J. K., Acta Met., 2, 1954, 129.
- 3. Mackenzie, J. K. and Bowles, J. S., Acta Met., 2, 1954, 138.
- 4. Bowles, J. S. and Mackenzie, J. K., Acta Met., 2, 1954, 224.
- 5. Bilby, B. A., and Christian, J. W., The Mechanism of Phase Transformations in Metals, Institute of Metals, London, 1955.
- 6. Christian, J. W., J. Inst. Met., 84, 1956, 386, 394.
- 7. Bullough, R., and Bilby, B. A., Proc. Phys. Soc., Lond., B89, 1956, 1276.
- 8. Lieberman, D. S., Acta Met., 6, 1958, 680.
- 9. Wechsler, M. S., Acta Met., 7, 1959, 793.
- 10. Bilby, B. A., and Frank, F. C., Acta Met., 8, 1960, 239.
- 11. Kaufman, L., and Cohen, M., Trans., AIME, 206, 1956, 1393.
- 12. Kaufman, L. and Cohen, M., "Thermodynamics and Kinetics of Martensitic Transformations", <u>Progress in Metal Physics</u>, Vol. 7, Permagon Press, New York, 1958.
- 13. Cohen, M., Trans., AIME, 212, 1958, 171.
- 14. Cohen, M., "The Martensitic Transformation", Phase Transformation in Solids, John Wiley and Sons, Inc., New York.
- 15. Kurdjumov, G. V., J. Iron Steel Inst., 195, 1960, Part I.
- 16. Hollomon, J. H., and Turnbull, D., "Nucleation", <u>Progress in Metal Physics</u>, Vol. 4, Permagon Press, New York, 1953.
- 17. "Strengthening Mechanisms in Solids" Papers presented at seminar, October 1960, American Society for Metals.
- 18. Decker, R. F., Eash, J. T., and Goldman, A. J., "18% Nickel Maraging Steels", Trans. ASM, Vol. 1962, p. 1962.

- 19. Hansen, M., Der <u>Aufbau der Zwerstoffiegierungen</u>, Springer Verlag OHG, Berlin, 1936.
- 20. Desch, C. H., Iron Steel Inst. Spec. Rept. 14, 1936, 63.
- 21. Marsh, J. S., The Alloys of Iron and Nickel, Vol. 1, McGraw-Hill Co., Inc., New York, 1938.
- 22. Benedicks, C., Arkir. Mat. Astron. Fysik, A28, 1942.
- 23. Bradley, A. J., and Goldschmidt, H. J., J. Iron Steel Inst. 140, 1939, 11.
- 24. Jones, F. W., and Pumphrey, W. I., J. Iron and Steel Inst., 163, 1949, 121.
- 25. Owen, E. A., and Sully, A. H., Phil. Mag., 27, 1939, 614.
- 26. Owen, E. A., and Liu, Y. H., J. Iron Steel Inst., 163, 1949, 132.
- 27. Pickles, A. T., and Sucksmith, W., Proc. Roy. Soc., Lond., A175, 1940, 331.
- 28. Sachs, G., and Spretnak, J. W., Trans., AIME, 145, 1941, 340.
- 29. Hoselitz, K., and Sucksmith, W., Proc. Roy. Soc., Lond., A181, 1943. 303.
- 30. Hoselitz, K., J. Iron Steel Inst., 149, 1944, 193.
- 31. Kubaschewski, O., and Goldbeck, O. V., <u>Trans.</u>, <u>Faraday Soc.</u>, 45, 1949, 948.
- 32. Rostoker, W., Trans., AIME, 191, 1951, 1203.
- 33. Osmond, F., Compt. Rend., 110, 1890, 242; 118, 1894, 532; 128, 1899, 304, 1395.
- 34. Guillaume, C. E., Compt. Rend., 124, 1897, 176; 125, 1897, 235; 126, 1898, 738; 136, 1903, 303.
- 35. Dumas, L., Compt. Rend., 130, 1900, 1311.
- 36. Osmond, F., and Cartaud, G., Rev. Met., 1, 1904, 69.
- 37. Guertler, W., and Tammann, G., Z. Anorg. Chem., 45, 1905, 205.

- 38. Ruer, R., and Schuz, E., Metallurgie, 7, 1910, 415.
- 39. Hegg, F., Arch. Sci. Phys. Nat. Geneve, 30, 1910, 15.
- 40. Merica, P. D., Chem. and Met. Eng., 24, 1921, 377.
- 41. Chevenard, P., Compt. Rend., 159, 1914, 175.
- 42. Chevenard, P., Compt. Rend., 182, 1926, 1388.
- 43. Chevenard, P., <u>Tran. Mem. Bur. Internat. Poidset Mesures</u>, 12, 1927.
- 44. Honda, K., and Takagi, H., Science Repts. Tohoku Univ., 6, 1918, 321.
- 45. Hanson, D, and Hanson, H. E., J. Iron Steel Inst., 102, 1920, 39.
- 46. Kase, T., Science Repts. Tohoku Univ., 14, 1925, 173.
- 47. Peschard, M., Rev. Met., 22, 1925, 490, 581, 663.
- 48. Honda, K., and Miura, S., Science Repts. Tohoku Univ., 16, 1927, 745.
- 49. Honda, K. and Miura, S., Trans., ASST, 13, 1928, 270.
- 50. Gossels, G., Z. Anorg. Chem., 182, 1929, 19.
- 51. Merz, A., Arch Eisenhuttenu., 3, 1929 1930, 587.
- 52. Wever, F. and Lange, H., <u>Mitt. Kaiser-Wilhelm Inst. Eisenforsch.</u> 18, 1936, 217.
- 53. Smith, S. D., <u>Trans.</u>, ASM, 26, 1938, 255.
- 54. Grigoriev, A. T., and Kudryantsev, D. L., Zhur. Priklad, Khim., 15, 1942, 204.
- 55. Takenchi, S., Science Repts. Research Inst. Tohoku Univ., Al, 1948, 43.
- 56. Turo, Y., J. Phys. Soc. Japan, 4, 1949, 24.
- 57. Turo, Y., J. Sci. Research Inst. Tokye, 46, 1952, 47.
- 58. Masing, G., and Nickel, O., Arch. Eisenhuttenu., 24, 1953, 143.

- 59. Kaufman, L., and Cohen, M., Trans., AIME, 206, 1958, 1393.
- 60. Lieberman, D. S., The Mechanism of Phase Transformations in Metals, Institute of Metals Monograph and Report Series No. 18, 1955.
- 61. Kaufman, L., and Cohen, M., "Thermodynamics and Kinetics of Martensitic Transformations", <u>Progress in Metal Physics</u>, Vol. 7, Permagon Press, New York, 1958.
- 62. Harris, W. J., and Cohen, M., Trans., AIME, 185, 1949, 447.
- 63. Hollomon, J. H., Jaffe, C. D., and Buffum, D. C., <u>J. Appl. Phys.</u>, 18, 1947, 780.
- 64. Cohen, M., Machlin, E. S., and Paranjpe, V. G., <u>Thermodynamics</u> in <u>Physical Metallurgy</u>, ASM, Cleveland, 1949.
- 65. Machlin, E. S., and Cohen, M., Trans., AIME, 194, 1952, 489.
- 66. Chang, L. C., J. Appl. Phys., 23, 1952, 727.
- 67. Das Grupta, S. C., and Lement, B. S., <u>Trans.</u>, AIME, 197, 1953, 530.
- 68. Morgan, E. R., and Ko, T., Acta Met., 1, 1953, 36.
- 69. Crussard, C., The Mechanism of Phase Transformations in Metals, Institute of Metals Monograph and Report Series No. 18, 1955.
- 70. Glover, S. G., and Smith, T. B., <u>The Mechanism of Phase Transformations in Metals</u>, Institute of Metals Monograph and Report Series, 1958.
- 71. Crussard, C., and Philibert, J., Discussion of Reference 70.
- 72. Edmondson, B., Acta Met., 5, 1957, 208.

ことのおしかなられ かなが かなとし りょり

- 73. Woodila, J., Winchell, P. G., Cohen, M., <u>Trans.</u>, AIME, 215, 1959, 849.
- 74. Ramachandran, E. S. and Dasarathy, C., Acta Met., 8, 1960, 274.
- 75. Ramachandran, E. G. and Dasarathy, C., Acta Met., 8, 1960, 666.
- 76. Ramachandran, E. G. and Dasarathy, C., Acta Met., 8, 1960, 729.

- 77. Frank, F. C., Acta Met., 1, 1953, 15.
- 78. Cohen, M., Trans., AIME, 212, 1958, 171.
- 79. Golouchiner, Z. M., and Kurdjumov, G. V., <u>Problems of Mettalog.</u> and <u>Metal Physics.</u>, 2, 1951, 98.
- 80. Kurdjumov, G. V., J. Metals, 11, 1959, 449.
- 81. Edmondson, R., and Ko, T., Acta Met., 2, 1954, 235.
- 82. Kaufman, L., Thesis, M.I.T., 1955.
- 83. Barrett, C. S., and Trantz, O. R., Trans., AIME, 175, 1948. 579.
- 84. Hess, J. B., and Barrett, C. S., Trans., AIME, 194, 1952, 645.
- 85. Masson, D. B., and Barrett, C. S., Trans., AIME, 212, 1958, 260.
- 86. Sebillean, F., and Brbring, H., The Mechanism of Phase Transformations in Metals, Institute of Metals Monograph and Report Series No. 18, 1955.
- 87. Morley, J. J., Iron and Steel, 28, 1955, 183.
- 88. Barrett, C. S., Acta Cryst. Camb., 9, 1956, 671.
- 89. Massalski, T. B., and Barrett, C. S., <u>Trans.</u>, AIME, 209, 1957, 455.
- 90. Krauss, G., and Averbach, B. L., Trans., ASM, 52, 1960, 434.
- 91. Masson, D. B., Acta Met., 8, 1960, 71.
- 92. Masson, D. B., Trans., AIME, 218, 1960, 94.
- 93. Patel, J. R., and Cohen, M., Acta Met., 1, 1953, 531.
- 94. Wever, F., and Lange, H., Stahl n Eisen, 1933, 1067.
- 95. Kulin, S. A., and Sperch, G. R., Trans., AIME, 194, 1952, 258.
- 96. Holden, A.N., Acta Met., 1, 1952, 617.
- 97. Shih, C. H., Averbach, B. L., and Cohen, M., <u>Trans.</u>, AIME, 203, 1955, 183.

- 98. Kurdjumov, G. V., and Maximova, O. P., <u>Dokl. Akad. Nauk SSSR</u>, 61, 1948, 83.
- 99. Kurdjumov, G. V., and Maximova, O. P., <u>Dokl. Akad. Nauk SSSR</u>, 81, 1951, 565.
- 100. Cech, R. E., and Hollomon, J. H., Trans., AIME, 197, 1953, 685.
- 101. Ko, T., and Cottrell, S. A., J. Iron Steel Inst., 192, 1952, 307.
- 102. Mott, B. W. and Haines, H. R., Rev. Met., 1954 Ll No. 9.
- 103. Discussions with Messrs. Bieber, C.; Clark, C.; Fragetta, W. and Doctors Raudebaugh, R.; Eash, J.; Decker, R. and Yeo, R. of the International Nickel Company.
- 104. Discussions with Doctors Reynolds, E.; Lula, R.; Hammond, C. and Aggen, G. and Messrs. Miller, J.; Sachs, B.; Thorpe, J. and DeVries, R. of the Allegheny Ludlum Steel Corp.
- 105. Witherell, E. E., and Fragetta, W. A., "Weldability of 18% Nickel Steel", Presented at AWS Annual Meeting, Cleveland, Ohio, April 1962.
- 106. Siede, A., "A Review of Developments on Mar-Aging Steels, Presented at Wright-Patterson Air Force Base, Dayton, Ohio, May, 1962.
- 107. Fragetta, W. A., "Welding of Precipitation Hardening High Nickel Steels", Research Seminar on Improved Materials for Critical Applications, Washington, D. C., April 4, 1961.
- 108. "Maraging Nickel Steels", International Nickel Company, Inc., June, 1962.
- 109. Clark, C. C., "Maraging Steels and Their Suitability for Pressure Vessel Fabrication", Presented at the American Rocket Society's "Solid Propellant Conference", Waco, Texas, January 24-26, 1962.
- 110. Discussions with Petryck, L. M., of the International Nickel Company, Inc.
- 111. Discussions with Fragetta, W. A., of the International Nickel Company, Inc.
- 112. Discussions with Decker, R. F., of the International Nickel Company, Inc.

- 113. Marder, A. R., "Heat Treatment of 18% Nickel Maraging Steel Weldments", B. Met. E. Thesis, Polytechnic Institute of Brooklyn, June, 1962.
- 114. "Summary Report on Evaluation of High Nickel Maraging Alloy Steels", Aerojet General Corp., May 14, 1962.
- 115. Preliminary Data Sheets, 18, 20 and 25% Nickel Maraging Steels, International Nickel Company, Inc.
- 116. "Fracture Testing of High-Strength Sheet Materials", ASTM Bulletin, February, 1960.
- 117. Irwin, G. R., "Dimensional and Geometric Aspects of Fracture", Troy Conference on Fracture of Engineering Materials, August, 1959.
- 118. Larsen, D. P., "Heat Treatment of 18% Nickel Maraging Steel Weldments", B. Met. E. Thesis, Polytechnic Institute of Brooklyn, June, 1962.