# PCT

#### WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



# INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: (11) International Publication Number: WO 95/26206 A1 A61K 51/08, 51/10 . (43) International Publication Date: 5 October 1995 (05.10.95) (81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, (21) International Application Number: PCT/US95/03722 CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN, (22) International Filing Date: 23 March 1995 (23.03.95) MW, MX, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TT, UA, UG, UZ, VN. European patent (AT, BE, (30) Priority Data: CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT. SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, 08/218,591 28 March 1994 (28.03.94) US MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ, UG). (71) Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA [US/US]; 22nd floor, 300 Lakeside Drive, **Published** Oakland, CA 94612-3550 (US). With international search report. (72) Inventors: MEARES, Claude, F.; 421 Encina Avenue, Davis, CA 95616 (US). LI, Min; F-A Solano Park, Davis, CA 95616 (US). DeNARDO, Sally, J.; 44336 Clubhouse Drive, El Macero, CA 95618 (US). (74) Agent: BERLINER, Robert; Robbins, Berliner & Carson, 5th floor, 201 N. Figueroa Street, Los Angeles, CA 90012 (US).

#### (54) Title: METHOD FOR PREPARING RADIONUCLIDE-LABELED CHELATING AGENT-LIGAND COMPLEXES

#### (57) Abstract

Radionuclide-labeled chelating agent-ligand complexes that are useful in medical diagnosis or therapy are prepared by reacting a radionuclide, such as 90Y or 111In, with a polyfunctional chelating agent to form a radionuclide chelate that is electrically neutral; purifying the chelate by union exchange chromatography; and reacting the purified chelate with a targeting molecule, such as a monoclonal antibody, to form the complex.

BEST AVAILABLE COPY

# INTERNATIONAL SEARCH REPORT

International application No. PCT/US95/03722

| Category*  | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                            | Relevant to claim N: .            |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|
| Y          | Cancer Research, Volume 51, issued 01 June 1991, Schlom et al., "Monoclonal Antibody-based Therapy of a Human Tumor Xenograft with a 177 Lutetium-labeled Immunoconjugate," pages 2889-2896, especially page 2890.            |                                   |  |
| ζ<br><br>? | Analytical Biochemistry, Volume 148, issued 1985, Moi et al., "Copper Chelates as Probes of Biological Systems: Stable Copper Complexes with a Macrocyclic Bifunctional Chelating Agent," pages 249-253, especially page 251. | 1, 5-7, 9-10<br><br>2-4, 8, 11-14 |  |
| ,<br>!     | Chemical Society Reviews, Volume 19, issued 1990, Parker, "Tumour Targeting with Radiolabelled Macrocycle-Antibody Conjugates," pages 271-291, especially pages 271-273.                                                      | 1-14                              |  |
|            |                                                                                                                                                                                                                               |                                   |  |
|            |                                                                                                                                                                                                                               |                                   |  |
|            |                                                                                                                                                                                                                               |                                   |  |
| •          |                                                                                                                                                                                                                               |                                   |  |
|            |                                                                                                                                                                                                                               |                                   |  |
|            |                                                                                                                                                                                                                               |                                   |  |
| ,          |                                                                                                                                                                                                                               |                                   |  |
|            |                                                                                                                                                                                                                               |                                   |  |
| v.         |                                                                                                                                                                                                                               |                                   |  |
|            |                                                                                                                                                                                                                               |                                   |  |

Form PCT/ISA/210 (continuation of second sheet)(July 1992)\*

1/2

# **SUBSTITUTE SHEET (RULE 26)**

FIG. 2



**SUBSTITUTE SHEET (RULE 26)** 

## INTERNATIONAL SEARCH REPORT

International application No. PCT/US95/03722

| A. CLASSIFICATION OF SUBJECT MATTER  IPC(6) :A61K 51/08, 51/10                                                                                                                       |                                                                                                                                                                                                                                                                       |                                   |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|--|
| US CL :424/1.53                                                                                                                                                                      |                                                                                                                                                                                                                                                                       |                                   |  |  |
| According to International Patent Classification (IPC) or to both national classification and IPC  B. FIELDS SEARCHED                                                                |                                                                                                                                                                                                                                                                       |                                   |  |  |
|                                                                                                                                                                                      | ocumentation searched (classification system followed by classification symbols)                                                                                                                                                                                      |                                   |  |  |
| U.S. :                                                                                                                                                                               |                                                                                                                                                                                                                                                                       |                                   |  |  |
| <u> </u>                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                   |  |  |
|                                                                                                                                                                                      | ion searched other than minimum documentation to the extent that such documents are included                                                                                                                                                                          | in the fields searched            |  |  |
| none                                                                                                                                                                                 |                                                                                                                                                                                                                                                                       |                                   |  |  |
| Electronic d                                                                                                                                                                         | ata base consulted during the international search (name of data base and, where practicable                                                                                                                                                                          | , search terms used)              |  |  |
| none                                                                                                                                                                                 |                                                                                                                                                                                                                                                                       |                                   |  |  |
|                                                                                                                                                                                      |                                                                                                                                                                                                                                                                       |                                   |  |  |
| C. DOC                                                                                                                                                                               | UMENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                      | 1                                 |  |  |
| Category*                                                                                                                                                                            | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                    | Relevant to claim No.             |  |  |
| ×                                                                                                                                                                                    | WO, A, 89/12631 (Cheng et al.) 28 December 1989, see                                                                                                                                                                                                                  | 1-14                              |  |  |
|                                                                                                                                                                                      | page 7, lines 5-24, page 39, lines 25-29 and pages 42-43 as                                                                                                                                                                                                           |                                   |  |  |
|                                                                                                                                                                                      | well as page 45, lines 1-10; see also Examples IX-XII on pages 128-131.                                                                                                                                                                                               |                                   |  |  |
|                                                                                                                                                                                      | P0300 120 107.                                                                                                                                                                                                                                                        |                                   |  |  |
| ×                                                                                                                                                                                    | US, A, 5,284,644 (Kruper, Jr., et al.) 08 February 1994,                                                                                                                                                                                                              | 1-3, 5-7, 9-10                    |  |  |
| Y                                                                                                                                                                                    | see Examples 20-21 in columns 21-22.                                                                                                                                                                                                                                  | 4 0 11 14                         |  |  |
|                                                                                                                                                                                      |                                                                                                                                                                                                                                                                       | 4, 8, 11-14                       |  |  |
| Υ                                                                                                                                                                                    | US, A, 5,217,704 (Johnson et al.) 08 June 1993, see                                                                                                                                                                                                                   | 1-14                              |  |  |
|                                                                                                                                                                                      | background in columns 1-8.                                                                                                                                                                                                                                            |                                   |  |  |
| Υ                                                                                                                                                                                    | US, A, 5,006,643 (Fazio et al.) 09 April 1991, see columns                                                                                                                                                                                                            | 1-14                              |  |  |
|                                                                                                                                                                                      | 1-2.                                                                                                                                                                                                                                                                  |                                   |  |  |
|                                                                                                                                                                                      |                                                                                                                                                                                                                                                                       |                                   |  |  |
|                                                                                                                                                                                      |                                                                                                                                                                                                                                                                       |                                   |  |  |
|                                                                                                                                                                                      |                                                                                                                                                                                                                                                                       |                                   |  |  |
|                                                                                                                                                                                      | er documents are listed in the continuation of Box C. See patent family annex.                                                                                                                                                                                        |                                   |  |  |
|                                                                                                                                                                                      | cal categories of cited documents:  "T" later document published after the integration of the art which is not considered  cament defining the general state of the art which is not considered  cament defining the general state of the art which is not considered | ation but cited to understand the |  |  |
| to !                                                                                                                                                                                 | be of particular relevance                                                                                                                                                                                                                                            | •                                 |  |  |
| "L" document which may throw doubts on priority claim(s) or which is considered novel or cannot be considered to involve an inventive step                                           |                                                                                                                                                                                                                                                                       |                                   |  |  |
| cited to establish the publication date of another citation or other special reason (as specified)  Y*  document of particular relevance; the claimed invention cannot be            |                                                                                                                                                                                                                                                                       |                                   |  |  |
| O'. document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination being obvious to a person skilled in the art |                                                                                                                                                                                                                                                                       |                                   |  |  |
| *P* document published prior to the international filing date but later than *&* document member of the same patent family the priority date claimed                                 |                                                                                                                                                                                                                                                                       |                                   |  |  |
| Date of the actual completion of the international search  Date of mailing of the international search report                                                                        |                                                                                                                                                                                                                                                                       |                                   |  |  |
| 19 JUNE 1995 ZZ JUL 1995                                                                                                                                                             |                                                                                                                                                                                                                                                                       |                                   |  |  |
| Name and mailing address of the ISA/US  Commissioner of Patents and Trademarks  Authorized fficer                                                                                    |                                                                                                                                                                                                                                                                       |                                   |  |  |
| Box PCT<br>Washington, D.C. 20231                                                                                                                                                    |                                                                                                                                                                                                                                                                       |                                   |  |  |
| Facsimile N                                                                                                                                                                          |                                                                                                                                                                                                                                                                       | 700                               |  |  |
| rom PCI/I                                                                                                                                                                            | SA/210 (second sheet)(July 1992)*                                                                                                                                                                                                                                     | l                                 |  |  |

# FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| AT   | Austria                  | GB        | United Kingdom               | MR   | Mauritania               |
|------|--------------------------|-----------|------------------------------|------|--------------------------|
| AU   | Australia                | GE        | Georgia                      | MW   | Malawi                   |
| BB   | Barbados                 | GN        | Guinea                       | NE   | Niger                    |
| BE   | Belgium                  | GR        | Greece                       | NL   | Netherlands              |
| BF   | Burkina Faso             | HU        | Hungary                      | . NO | Norway                   |
| BG   | Bulgaria                 | ΙE        | Ireland                      | NZ   | New Zealand              |
| BJ   | Benin                    | <b>IT</b> | Italy                        | PL   | Poland                   |
| BR . | Brazil                   | JP        | Japan                        | PT   | Portugal                 |
| BY   | Belarus                  | KE        | Kenya                        | RO   | Romania                  |
| CA   | Canada                   | KG        | Kyrgystan                    | RU   | Russian Federation       |
| CF   | Central African Republic | KP        | Democratic People's Republic | SD   | · Sudan                  |
| CG   | Congo                    |           | of Korea                     | SE   | Sweden                   |
| CH   | Switzerland              | KR        | Republic of Korea            | SI   | Slovenia                 |
| CI   | Côte d'Ivoire            | KZ        | . Kazakhstan                 | sk   | Slovakia                 |
| CM   | Cameroon                 | LI        | Liechtenstein                | SN   | Senegal                  |
| CN   | China                    | LK        | Sri Lanka                    | TD   | Chad                     |
| CS   | Czechoslovakia           | LU        | Luxembourg                   | TG   | Togo                     |
| CZ   | Czech Republic           | LV        | Larvia                       | TJ   | Tajikistan               |
| DE   | Germany                  | MC        | Monaco                       | TT   | Trinidad and Tobago      |
| DK   | Denmark                  | MD        | Republic of Moldova          | UA   | Ukraine                  |
| ES   | Spain .                  | MG        | Madagascar                   | US   | United States of America |
| FI   | Finland                  | ML        | Mali                         | UZ   | Uzbekistan               |
| FR   | France                   | MN        | Mongolia                     | VN   | Viet Nam                 |
| GA   | Gabon                    |           | -                            |      |                          |
|      |                          |           |                              |      |                          |

1

# METHOD FOR PREPARING RADIONUCLIDE-LABELED CHELATING AGENT-LIGAND COMPLEXES

#### Reference to Government Support

This invention was made in part with Government support under contract number CA16861 and CA47829 awarded by the Department of Health and Human Services and contract number DE FG03-84ER60233 awarded by the Department of Energy. The Government has certain rights in this invention.

#### Description

#### Technical Field

This invention relates to a method for preparing radionuclide-containing compounds that are useful for medical diagnosis and therapy.

#### Background Art

Macrocyclic bifunctional chelating agents have been 20 developed to tag monoclonal antibodies (mAbs) with radiometals for in vivo diagnosis and therapy [Moi et al., 1985, Anal. Biochem., 148:249-253; Moi et al., 1988, J. Am. Chem. Soc., 110:6266-6267; Cox et al., 1990, J. Chem. Soc. Perkins Trans. 1, 2567-2576; Parker, 1990, 25 <u>Chem. Soc. Rev.</u>, 19:271-291; Meares et al., 1990, <u>British</u> J. Cancer, Suppl., 10:21-26; Gansow, 1991, Nucl. Med. Biol., 18:369-381; Li et al., 1993, Bioconjugate Chem., 4:275-283]. In particular, mAbs labeled with DOTA (1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic 30 acid) derivatives incorporating yttrium-90 (90Y) indium-111 (111In) have shown excellent kinetic stability under physiological conditions [Moi et al., 1988; Meares et al., 1990; Li et al., 1993; Deshpande et al., 1990, J. Nucl. Med., 31:473-479]. However, the slow formation of 35 yttrium-DOTA complexes [Kapryzyk et al., 1982, Inorg. Chem., 21:3349-3352; Kodama et al., 1991, <u>Inorg. Chem.</u>, 30:1270-1273; Wang et al., 1992, Inorg. Chem., 31:1095-

2

1099] presents a technical problem that can lead to low radiolabeling yields unless conditions are carefully controlled.

These chelating agent-mAb-radionuclide conjugates have been synthesized using two methods. In one, the chelating agent is first conjugated to the antibody and then the resulting conjugate is labeled radionuclide. In the other, called "prelabeling", the chelating agent is first labeled with the radionuclide, 10 the labeled chelating agent is purified, and the purified labeled chelating agent is conjugated to the antibody. Prelabeling has several potential advantages over the other method. In the labeling step, metal chelate formation is easier to control because there is no 15 competition from metal binding sites on the mAb and there is no danger of denaturing the antibody during labeling. removal of unreacted chelating agent purification step avoids the production of multiply labeled immunoconjugates with unfavorable biological Finally, prelabeling minimizes chemical 20 properties. manipulation of the antibody and reduces loss of antibody activity.

Prelabeling has been used to label mAbs with 99Tc [Fritzberg et al., 1987, Proc. Natl. Acad. Sci. U.S.A., 25 85:4025-4029; Franz et al., 1987, Nucl. Med. Biol., 14:569-572; Linder et al., 1991, Bioconjugate Chem., 2:160-170],  $^{67}$ Cu [Moi et al., 1985, supra] and  $^{177}$ Lu [Schlom et al., 1991, Cancer Res., 51:2889-2896]. It has not heretofore been used to label mAbs with 90Y or 111In.

In these prior instances of prelabeling, the metal chelate has either not been purified prior to conjugation [Moi et al., 1985, supra] or has been purified by HPLC [Fritzberg et al., 1987; Schlom et al., 1991, supra]. It noted that Moi et al. use anion exchange 35 chromatography to characterize their chelate (as a divalent anion) but not to purify it. The use of HPLC is

30

3

not desirable because it employs mixed aqueous/organic solvents for elutions.

# Disclosure of the Invention

The present invention applies the prelabeling process to 90Y and 111 indium labeling and provides a prelabeling process that employs anion exchange chromatography to purify the radionuclide chelate.

Accordingly, one aspect of the invention is a method 10 for preparing a yttrium- or indium-labeled chelating agent-ligand complex comprising:

- (a) reacting a chelating agent that has a trivalent chelating group and at least one pendant linker group that is capable of covalently binding to a ligand, with yttrium-90 or indium-111 to form an electrically neutral yttrium-90 or indium-111 chelate;
  - (b) purifying the chelate from the reaction mixture of step (a); and
- (c) reacting the purified chelate of step (b) with 20 the ligand to form said complex.

Another aspect of the invention is a method for preparing a radionuclide-labeled chelating agent-ligand complex comprising:

- 25 (a) reacting a chelating agent that has a chelating group and at least one pendant linker group that is capable of covalently binding a ligand, with a radionuclide to form a radionuclide chelate;
- (b) purifying the radionuclide chelate from the 30 reaction mixture of step (a) by anion exchange chromatography; and
  - (c) reacting the purified radionuclide chelate of step (b) with the ligand to form said complex.

## Brief Description of the Drawings

Figure 1 is a flow chart that illustrates the synthetic route used for the preparation of radionuclide-labeled chelating ligand complexes.

Figure 2 is a graph depicting the biodistribution of <sup>90</sup>Y-DOTA-Gly<sub>3</sub>-L-Phe-amide-thiourea-chimeric mAb L6 (compound (3) of Figure 1) in HBT tumor-bearing nude mice at day 1, day 3, and day 5. For each time point, data were acquired from 7 animals. The values are given as average percent of injected dose per gram of tissue. Error bars represent 1 standard deviation.

# Detailed Description of the Invention

A. The novel prelabeling method

Prelabeling involves three steps: (1) formation of a radiolabeled chelate (in the absence of ligand(s)), (2) purification of the radiolabeled chelate, and (3) conjugation of the purified radiolabeled chelate with ligand(s) to form a radiolabeled chelating agent-ligand complex.

The medically useful radiometals which are important for practical applications have short half-lives [Wessels et al., 1984, Med. Phys., 11:638-645]

and high efficiencies of both labeling and conjugation.

The prelabeling approach permits use of a large excess of chelating agent to achieve a high chelation yield quickly in step (1), but requires a rapid purification method to remove unlabeled reagent in step (2). The present invention provides an easy and efficient method for prelabeling a chelating agent (for example, a peptidelinked DOTA derivative) with a radiometal (for example, or ""In) and subsequently conjugating it to a targeting molecule (for example, a mAb).

In the conventional labeling method, the number of radionuclide chelating moieties attached to each targeting molecule is usually >1 in order to provide enough chelating groups for a good radiolabeling yield.

25

However, the chelating groups that actually chelate radionuclides comprise less than 5% of the total attached chelating groups on the targeting molecule. The excess chelating groups may affect the biological properties of the targeting molecule, e.g. by inducing an immune response [Kosmas et al., 1992, supra], and impure metal solutions may require large amounts of the targeting molecule.

With prelabeling, a far smaller number of chelates are attached to the targeting moiety, but practically all are radiolabeled; thus the number of modified targeting molecules is significantly reduced, and the number of multiply-modified targeting molecules is essentially zero. For example, when the targeting molecule is a mAb, the radiolabeled mAbs are fully immunoreactive and are expected to have more favorable biological properties, including reduced immunogenicity.

## B. Formation of the radiolabeled chelate

The first step of prelabeling involves the formation of a radiolabeled-chelating agent (also referred to as a radiolabeled chelate) from a chelating agent and an appropriate radionuclide.

Synthetic methods for the preparation of chelating agents useful in the practice of the invention are known in art [see, for example Li et al., 1993, supra].

Methods for the preparation of radiolabeled chelates by reaction of a radionuclide with a chelating agent are known in the art [see, for example, Moi et al., 1985, Typically, the chelating agent is dissolved in supra]. a buffered aqueous medium and the purified radionuclide added. The pH may be selected to optimize conditions for chelate formation. For example, when chelation is achieved by acetate groups binding to the metal ion (as is the case for various acetic acid compounds), the pH adjusted (using, for example, tetramethylammonium acetate, to obtain of pH of about 3

to about 6, more preferably about 5) to provide a preponderance of ionized carboxylate (-COO<sup>-</sup>) groups, and thereby yield a chelating species which is anionic. Furthermore, the reaction mixture temperature may be adjusted, for example to 37°C for 30 min, to accelerate the reaction (chelation). After a period of time or upon completion of reaction, an excess of an appropriate quenching agent, such as DTPA may be added. The quenching agent acts to form anionic quenching chelates with any radionuclide not yet chelated by the chelating agent. The resulting reaction mixture may then be purified by the second step of prelabeling.

The term "radionuclide", as used herein, relates to medically useful radionuclides, including, for example, positively charged ions of radiometals such as Y, In, Cu, Lu, Tc, Re, Co, Fe and the like, such as 90Y, 111In, 67Cu, 177Lu, 99Tc and the like, preferably trivalent cations, such as 90Y and 111In.

The term "chelating agent", as used herein, relates

to polyfunctional compounds have a chelating group and at
least one pendant linker group, wherein the chelating
group is capable of chelating with a radionuclide, and
the pendant linker group(s) is capable of covalently
binding to one or more targeting molecules which may be

the same or different. Chelating agents may be
represented by the formula A(L), wherein A represents the
chelating moiety, L represents a pendant linking group,
and n is an integer from 1 to 3, preferably 1. The
pendant linker group includes one or more functional
group(s) which are capable of covalently binding to
targeting molecule(s).

Chelating groups capable of chelating radionuclides include macrocycles, linear, or branched moieties. Examples of macrocyclic chelating moieties include polyaza- and polyoxamacrocycles. Examples of polyazamacrocyclic moieties include those derived from compounds such at 1,4,7,10-tetraazacyclododecane-

7

N, N', N'', N'''-tetraacetic acid (herein abbreviated as 1,4,7,10-tetraazacyclotridecane-N,N',N'',N'''tetraacetic acid (herein abbreviated as TRITA): 1.4.8.11tetraazacyclotetradecane-N,N',N'',N'''-tetraacetic acid abbreviated as 5 (herein TETA); and tetraazacyclohexadecane-N, N', N'', N'''-tetraacetic (abbreviated herein abbreviated as HETA). Examples of linear or branched chelating moieties include those derived from compounds such as ethylenediaminetetraacetic 10 acid (herein abbreviated as diethylenetriaminepentaacetic acid (herein abbreviated as DTPA).

Chelating moieties having carboxylic acid groups, such as DOTA, TRITA, HETA, HEXA, EDTA, and DTPA, may be derivatized to convert one or more carboxylic acid groups to amide groups.

The term "pendant linker group", as used herein, relates to moieties which are attached to the chelating group, and which have at least one functional group which 20 is capable of covalently binding to targeting molecules. Where pendant linkers or chelating agents have a plurality of such functional groups, they may be the same or different. When the chelating moiety is macrocyclic, the pendant moiety may be attached to any annular atom. example, chelating when the moiety polyazamacrocycle, the pendant group may be attached to an annular carbon atom or an annular nitrogen atom. When the pendant group is attached to an annular nitrogen atom, the compound may be referred to as an N-substituted 30 polyazamacrocycle.

The term "functional groups capable of covalently binding to targeting molecules", as used herein, includes those functional groups which can be activated by known methods, so as to be capable of covalently binding to targeting molecule(s); for example, the formation of active esters (-C(=O)OR, wherein R is, for example, succinimidyl) from carboxylic acids, the formation of

PCT/US95/03722 WO 95/26206

8

acid halides (-C(=O)X, wherein X is typically Cl or Br) from carboxylic acids.

The functional group(s) present on the pendant linker group which are capable of covalently binding to 5 targeting molecules may be chosen according to the targeting molecule(s) to which the chelating agent will ultimately be bound. Reactive pairs of functional groups permit conjugation of the chelating agent with the targeting molecule, via the linker group, wherein one 10 member of the pair is present on the chelating agent and the other member of the pair is present on the targeting molecule. For example, when the targeting molecule is a protein possessing a free amino (-NH<sub>2</sub>) group, a functional group such as isothiocyanate (-NCS) present on the 15 chelating agent permits reaction to form a joining linkage (in this case, a thiourea linkage), forming a chelating agent-targeting molecule complex. Other examples of appropriate reactive pairs functional groups include, for example, -NH2 with -C(=0)OR (active ester) or with -C(=0)OC(=0)R (anhydride) or with -C(=O)X (acid halide) to yield an amide linkage; -NH, with -NCO (isocyanate) to yield a urea linkage. Other reactive pairs involving -NH2 include -NH2 and -S(=0)2X (sulfonyl halide); -NH2 and -C(=NR)OR (imidate ester); and -NH, and -OC(=0)X (haloformate). Examples of reactive pairs of functional groups include -SH and -C(=O)CH2X (haloacetyl) to yield a -SCH2C(=0) - linkage; -SH and -alkyl-X (alkyl halide) or -SH and -S(=0)O-alkyl (alkyl sulfonate) to yield a thioether; and -SH and -SH (sulfhydryl) to yield a -SS- (disulfide) linkage.

25

Li et al. [Li et al., 1993, supra] have shown that the introduction of a cleavable linker between the chelate and the mAb results in a reduction of accumulated radioactivity in the liver [Li et al., 1993, supra]. 35 Preferably, radionuclide-labeled chelating agent-ligand complexes will be cleavable in vivo. This may be achieved by introducing a cleavable linkage within the

pendant group, wherein the cleavable linkage is cleaved in vivo, for example, by enzymatic action within the liver. Examples of such cleavable linkages include peptide, disulfide, and ester linkages.

Examples of pendant linker groups include peptidebased linkers, such as polypeptide groups which have been derivatized to possess at least one functional group capable of covalently binding to targeting molecule(s). The number of peptide linkages present in the pendant 10 linker group may be varied to optimize radionuclide chelation, conjugation with targeting molecule(s), in vivo cleavability, or other factors. Examples of suitable pendant linker groups include -CH2-C(=0)(AA) (AA-FG), herein denoted as substituted acetyls, wherein the 15 -CH<sub>2</sub>-C(=0)- fragment may be derived from an acetate moiety, AA represents an amino acid diradical, more preferably the glycine diradical  $-NH-CH_2-C(=0)-$ , and m is an integer, preferably between 1 and 10, more preferably between 3 and 7, most preferably 3. AA-FG represents an 20 amino acid N-radical (that is, the free bond is situated on the amino group of the amino acid) which has been derivatized to possess a functional group (FG) capable of covalently binding to targeting molecule(s). Preferably, the carboxylic acid group of the amino acid of AA-FG has 25 been derivatized, for example, to form an Examples of AA-FG radicals include p-isothioscyanatophenylalanine-N-yl amide (-NHCH[C(=0)NH<sub>2</sub>][CH<sub>2</sub>-(p-NCS-C<sub>6</sub>H<sub>4</sub>)] denoted herein as p-NCS-Phe-amide, or p-NCS-L-Phe-amide). Examples οf pendant groups include  $30 - CH<sub>2</sub> - C(=0) (Gly)_m (p-NCS-Phe-amide),$ denoted herein Glym(p-NCS-Phe-amide)acetyl. Further examples of pendant groups include disulfides, such as disulfides including  $-CH_2-C(=0)-(CH_2)_pSS(CH_2)_qNS$  and the like, and esters, such as  $-CH_2-C(=0)-(CH_2)_pC(=0)O(CH_2)_pNSC$ 35 and the like, wherein p and q are integers from about 1 to about 8.

#### Examples of chelating agents include:

```
1,4,7,10-tetraazacyclododecane-N-(Gly,(p-NCS-Phe-
 5 amide) acetyl) -N', N'', N''' -triacetic acid;
    1,4,7,10-tetraazacyclotridecane-N-(Gly,(p-NCS-Phe-
    amide) acetyl) -N', N'', N''' -triacetic acid;
    1,4,8,11-tetraazacyclotetradecane-N-(Gly,(p-NCS-Phe-
    amide) acetyl) -N', N'', N'''-triacetic acid;
10 1,5,9,13-tetraazacyclohexadecane-N-(Gly3(p-NCS-Phe-
    amide) acetyl) -N', N'', N''' -triacetic acid;
    ethylenediamine-N-(Gly3(p-NCS-Phe-amide)acetyl)triacetic
    acid;
    diethylenetriamine-N-(Gly3(p-NCS-Phe-amide)acetyl)-N'-
15 acetamide-N'', N''', N''''-triacetic acid;
    1,4,7,10-tetraazacyclododecane-N-(Gly2(p-NCS-Phe-
    amide) acetyl) -N', N'', N'''-triacetic acid;
    1,4,7,10-tetraazacyclododecane-N-(Gly4(p-NCS-Phe-
20 amide) acetyl) -N', N'', N''' -triacetic acid:
    1,4,7,10-tetraazacyclododecane-N-(Glys(p-NCS-Phe-
    amide) acetyl) -N', N'', N'''-triacetic acid;
    1,4,7,10-tetraazacyclododecane-N-(Gly6(p-NCS-Phe-
    amide) acetyl) -N', N'', N'''-triacetic acid;
25
    1,4,7,10-tetraazacyclododecane-N, N'-di (Gly, (p-NCS-Phe-
    amide) acetyl) -N'', N''' -diacetic acid;
    1,4,7,10-tetraazacyclotridecane-N,N'-di(Gly3(p-NCS-Phe-
    amide) acetyl) -N'', N''' -diacetic acid:
30 1,4,8,11-tetraazacyclotetradecane-N,N'-di(Gly3(p-NCS-Phe-
   amide) acetyl) -N'', N'''-diacetic acid;
    1,5,9,13-tetraazacyclohexadecane-N,N'-di(Gly,(p-NCS-Phe-
   amide) acetyl) -N'', N''' -diacetic acid;
   ethylenediamine-N, N'-di(Gly3(p-NCS-Phe-amide)acetyl)-
35 N'', N'''-diacetic acid;
   diethylenetriamine-N, N'-di(Gly3(p-NCS-Phe-amide)acetyl)-
   N''-acetamide-N''', N''''-diacetic acid:
```

WO 95/26206

1,4,7,10-tetraazacyclododecane-N-(Gly<sub>3</sub>(p-NCS-Phe-amide)acetyl)-N'-acetamide-N'',N'''-diacetic acid;
1,4,7,10-tetraazacyclotridecane-N-(Gly<sub>3</sub>(p-NCS-Phe-amide)acetyl)-N'-acetamide-,N'',N'''-diacetic acid;

11

1,4,8,11-tetraazacyclotetradecane-N-(Gly3(p-NCS-Phe-amide)acetyl)-N'-acetamide-N'',N'''-diacetic acid;
1,5,9,13-tetraazacyclohexadecane-N-(Gly3(p-NCS-Phe-amide)acetyl)-N'-acetamide-N'',N'''-diacetic acid;
ethylenediamine-N-(Gly3(p-NCS-Phe-amide)acetyl)-N'acetamide-N'',N'''-diacetic acid;
diethylenetriamine-N-(Gly3(p-NCS-Phe-amide)acetyl)-N',N''-

diacetamide-N''', N''''-diacetic acid;

1,4,7,10-tetraazacyclododecane-N-(Gly3(p-SH-Pheamide)acetyl)-N',N'',N'''-triacetic acid;
1,4,7,10-tetraazacyclododecane-N-(Gly3(p-succinimidyl
ester-Phe-amide)acetyl)-N',N'',N'''-triacetic acid;
1,4,7,10-tetraazacyclododecane-N-(Gly3(p-chloroformyl-Pheamide)acetyl)-N',N'',N'''-triacetic acid; and
20 1,4,7,10-tetraazacyclododecane-N-(Gly3(p-chloroacetyl-Pheamide)acetyl)-N',N'',N'''-triacetic acid.

#### Examples of radiolabeled chelates include:

- 90YIII-1,4,7,10-tetraazacyclododecane-N-(Gly3(p-NCS-Phe-amide)acetyl)-N',N'',N''-triacetate;
  90YIII-1,4,7,10-tetraazacyclotridecane-N-(Gly3(p-NCS-Phe-amide)acetyl)-N',N'',N'''-triacetate;
  90YIII-1,4,8,11-tetraazacyclotetradecane-N-(Gly3(p-NCS-Phe-amide)acetyl)-N',N'',N'''-triacetate;
  90YIII-1,5,9,13-tetraazacyclohexadecane-N-(Gly3(p-NCS-Phe-amide)acetyl)-N',N'',N'''-triacetate;
  90YIII-ethylenediamine-N-(Gly3(p-NCS-Phe-amide)acetyl)-triacetate;
- 35 %YIII-diethylenetriamine-N-(Gly3(p-NCS-Phe-amide)acetyl)-N'-acetamide-N'',N''',N'''-triacetate;

12

111 In III - 1, 4, 7, 10 - tetraazacyclododecane - N - (Gly, (p-NCS-Pheamide) acetyl) -N', N'', N'''-triacetate; ""In"In, 4,7,10-tetraazacyclotridecane-N-(Gly-(p-NCS-Pheamide) acetyl) -N', N'', N''' -triacetate; 5 111 In III - 1, 4, 8, 11 - tetraazacyclotetradecane - N -(Gly, (p-NCS-Phe-amide) acetyl) -N', N'', N'''-triacetate; 111 In III - 1,5,9,13-tetraazacyclohexadecane-N-(Gly,(p-NCS-Pheamide) acetyl) -N', N'', N'''-triacetate; 111 In III - ethylenediamine-N- (Gly, (p-NCS-Phe-amide) acetyl) 10 triacetate; 111 In III - diethylenetriamine-N-(Gly, (p-NCS-Phe-amide) acetyl) -N'-acetamide-N'',N''',N'''-triacetate; 67Cu<sup>II</sup>-1,4,7,10-tetraazacyclododecane-N,N'-15 di(Gly<sub>3</sub>(p-NCS-Phe-amide)acetyl)-N'',N'''-diacetate; <sup>67</sup>Cu<sup>II</sup>-1,4,7,10-tetraazacyclotridecane-N,N'di(Gly<sub>3</sub>(p-NCS-Phe-amide)acetyl)-N'',N'''-diacetate; 67Cu<sup>II</sup>-1,4,8,11-tetraazacyclotetradecane-N,N'di(Gly<sub>3</sub>(p-NCS-Phe-amide)acetyl)-N'',N'''-diacetate; 20 67CuII-1,5,9,13-tetraazacyclohexadecane-N,N'di(Gly<sub>3</sub>(p-NCS-Phe-amide)acetyl)-N'',N'''-diacetate; 67Cu<sup>II</sup>-ethylenediamine-N, N'-di(Gly<sub>3</sub>(p-NCS-Pheamide) acetyl) -N'', N''' -diacetate; 67Cu<sup>II</sup>-diethylenetriamine-N, N'-di(Gly<sub>3</sub>(p-NCS-Phe-25 amide)acetyl)-N''-acetamide-N''',N''''-diacetate; 67CuII-1,4,7,10-tetraazacyclododecane-N-(Gly3(p-NCS-Pheamide)acetyl)-N'-acetamide-N'',N'''-diacetate; 67Cu<sup>II</sup>-1,4,7,10-tetraazacyclotridecane-N-(Gly<sub>3</sub>(p-NCS-Phe-30 amide) acetyl) -N'-acetamide-,N'',N'''-diacetate; 67Cu<sup>II</sup>-1,4,8,11-tetraazacyclotetradecane-N-(Gly<sub>3</sub>(p-NCS-Pheamide)acetyl) -N'-acetamide-N'',N'''-diacetate; 67Cu<sup>II</sup>-1,5,9,13-tetraazacyclohexadecane-N-(Gly<sub>3</sub>(p-NCS-Pheamide)acetyl) -N'-acetamide-N'',N'''-diacetate; 67Cu<sup>II</sup>-ethylenediamine-N-(Gly<sub>3</sub>(p-NCS-Phe-amide)acetyl)-N'acetamide-N'', N'''-diacetate; and

13

67Cu<sup>II</sup>-diethylenetriamine-N-(Gly<sub>3</sub>(p-NCS-Phe-amide)acetyl)-N', N''-diacetamide-N''', N''''-diacetate.

#### Purification of the radiolabeled chelate

5

The second step of prelabeling involves purification of the radiolabeled chelate. The aqueous chelating agent-radionuclide reaction mixture obtained in the first step of prelabeling may be purified by preparing an appropriate anion exchange medium, eluting the aqueous 10 mixture through the medium, and collecting the eluent. Methods for preparing and using anion exchange media are well established and known to those skilled in the art. If necessary or desired, the eluent may be further concentrated by known methods.

15 The use of the well established technique of anion exchange chromatography to purify the radiolabeled chelate offers a number of practical advantages over other known methods of purification.

For example, the aqueous reaction mixture obtained 20 in the first step of prelabeling may be purified simply and quickly by anion exchange chromatography to provide the purified compound in aqueous solution and in the absence of organic solvents. Consequently, there is no need to remove organic solvents from the purified 25 material before proceeding with formation of radiolabeled-chelating agent-ligand complex, as required by the existing prelabeling methods [see, for example, Linder et al., 1991; Schlom et al., 1991, supra]. anion exchange chromatography purification step of the 30 present invention saves time and thereby reduces the loss of radioactive potency and minimizes autoradiolysis.

Purification of the chelate by anion exchange chromatography can be significantly improved by selecting chelating agents and radionuclides with equal 35 opposite electrical charges. The resulting radiolabeled chelate is electrically neutral. The other important species in the chelation reaction mixture, such as excess

chelating agent, complexes containing differently charged metal ions, and quenching agent complexes, are negatively Thus, the electrically neutral radiolabeled charged. chelate of interest can be filtered quickly through an 5 appropriately designed anion-exchange column in H<sub>2</sub>O to separate them from anionic species. Purification can be improved by selecting chelating further radionuclide charges of -3/+3, so that chelates formed from adventitious cations, such as Ca<sup>+2</sup> and Mg<sup>+2</sup> are anionic.

Any appropriately prepared anion exchange material may be used to effect purification of the radiolabeled chelate. Commercially available (Sigma Chemical Company) anion exchange media include, for example, dextran-based 15 anion exchange media such as DEAE Sephadex and QAE Sephadex, agarose-based anion exchange media such as DEAE Sepharose and Q Sepharose, cellulose-based anion exchange media, such as DEAE Sephacel, DEAE Cellulose, ECTEOLA Cellulose, PEI Cellulose, QAE Cellulose, and polystyrene-20 based anion exchange media, such as Amberlite and Dowex. Criteria for choosing and methods of preparation of anion exchange media are well established and known to those of At present, the preferred anion skill in the art. exchange medium is DEAE Cellulose prepared in acetate 25 form.

#### D. Formation of the complex

10

The third step of prelabeling, conjugation, involves the formation of a radiolabeled-chelating agent-ligand 30 complex (denoted herein variously as the chelate-ligand complex or the complex).

The term "ligand", as used herein, relates to compounds which may perform the role of targeting molecules, including, for example, targeting biomolecules 35 such as antibodies, serum proteins, cell . receptors, and tumor-specific targeting agents, such as bleomycin. The term "antibody" as used herein is generic

15

to polyclonal antibodies, monoclonal antibodies, chimeric antibodies, antibody fragments (particularly antibody binding fragments), recombinant single chain antibody fragments, and the like. Methods for the preparation of appropriate ligands, such as mAbs, are well established and known to those of skill in the art [See, for example, Fell et al., 1992, supra].

Reaction conditions useful for the formation of the complex from the radiolabeled chelate and liqand, such as 10 pH, temperature, salt concentration, and the like, will reflect the reactive pair of functional groups involved. In particular, reaction conditions useful formation of conjugates via functional groups present on proteins are well established and known to those of skill 15 in the art. Typically, aqueous solutions or suspensions of the radiolabeled chelate and the ligand are mixed. The pH may be adjusted to optimize conditions for conjugation. For example, for reaction of the amino (-NH<sub>2</sub>) group of a protein (for example, a mAb) with an 20 isothiocyanato (-NCS) group, the pH may be adjusted to about 8 to 11, more preferably about 9.5, using, for buffer example, a such aqueous triethylamine. Furthermore, the temperature of the reaction mixture may be adjusted, for example, to 37°C for 1 hr, to accelerate The reaction (incubation) time may be 25 conjugation. varied to optimize conjugation. Longer reaction times would lead to higher conjugation yields; however, for radioactivity levels appropriate for clinical use (=100 millicuries, mCi), radiolysis will become important at 30 longer times.

In the conjugation step, a high concentration of ligand (for example, mAb) is desired, so that each reactive functional group present on the radiolabeled-chelate (for example, isothiocyanate groups) will frequently encounter reactive functional groups on the ligand (for example, amino groups) with which to react. It may be desirable to concentrate the radiolabeled

chelate prior to the conjugation step to avoid dilution of the conjugation mixture, particularly when small amounts of radioactivity are used. Optimally, ligand concentrations as high as are practical are desired, for exmaple, about 10 to 500 mg/mL (the reaction mixture concentration of the chimeric mAb 16 ligand of Example 3 was about 20 mg/mL).

After conjugation, the complex may be separated from the reaction mixture and purified using known methods, for example, using a centrifuged gel-filtration column [Penefsky et al., 1979, Methods Enzymol., 56, Part G:527-"530; Meares et al., 1984, Anal. Biochem., 142:68-78].

#### E. Use

application of the radionuclide-labeled 15 chelating agent-ligand complexes of the invention is for use in radioimaging. A variety of metal chelates, when with proteins, target-specific conjugated serum antibodies, or bleomycin can be localized in tumor or 20 other target tissue to provide useful radioimaging images used in localizing tumors [Meares et al., 1984; Goodwin et al., 1979, Radiopharmaceuticals II, Proceedings of the Second International Symposium on Radiopharmaceuticals (V.J. Sodd, ed), New York, pp.275-284; De Reimer et al., 25 J. Lab. Comps. and Radiopharm., 18(10):1517; Meares et al., 1976, Proc. Natl. Acad. Sci. U.S.A., 73(11):3803; Leung et al., 1978, Int. J. Appl. Rad. Isot., 29:687; Goodwin et al., 1981, <u>J. Nucl. Med.</u>, 22(9):787]. example, a composition comprising the radionuclideagent-ligand complex 30 labelled chelating pharmaceutically acceptable carrier is injected in a patient and allowed to localize, for example, in a tumor region(s). These regions are imaged using radioimaging equipment such as  $\gamma$  photon emission tomograph or a 35 position emission computed tomograph. Various stratagems may be used to employed to enhance the image contrast which is achievable. For example, with a complex formed

17

with a serum protein, the image contrast can be improved by administering an anti-complex antibody following tumor uptake of the complex, to increase the rate of clearance of the complex from the bloodstream [Goodwin et al., 5 1981, supra].

The radionuclide-labeled chelating agent-ligand complexes of the invention are also suitable for use as agents based, for therapeutic example, the radiotherapeutic action the radionuclide when 10 localized in tumor tissue. a composition Again, comprising the radionuclide-labelled chelating agentligand complex and a pharmaceutically acceptable carrier is injected in a patient and allowed to localize, for example, in a tumor region(s).

15

18

#### F. Examples

The following examples further illustrate the invention. These examples are not intended to limit the invention in any manner.

5

#### Example 1

#### Preparation of the 90Y-labeled chelating agent (2)

The prelabeling procedure is shown in Figure 1. (Bold letters in parentheses refer to the compounds shown in the figures). The bifunctional chelating agent (1) herein variously (denoted as DOTA-Gly,-L-(p-isothiocyanato) - Phe-amide and 1,4,7,10tetraazacyclododecane-N-(Gly3(L-p-NCS-Phe-amide)acetyl)-N', N'', N'''-triacetic acid) was prepared by the method 15 described by Li et al., 1993, Bioconjugate Chem., 4:275-Carrier-free 90Y (DuPont NEN) in 0.05 M HCl was dried in a heating block under  $N_2(g)$ , and 100  $\mu L$  of 20 mM (1) in 0.2 M (CH<sub>3</sub>)<sub>4</sub>N acetate, pH 5.0, was added. mixture was incubated at 37°C for 30 min, followed by the addition of 25  $\mu$ L of 50 Mm DTPA in 0.1 M (CH<sub>3</sub>)<sub>4</sub>N<sup>+</sup> acetate, pH 6.0, for 15 min at room temperature (quenching; to complex any remaining free yttrium).

An anion-exchange column was prepared by filling a disposable 1 mL tuberculin syringe with 500 μL of DEAE (diethylaminoethyl) Cellulose anion-exchange resin (1 milliequivalent per dry gram; Sigma Chemical Company) and pre-spun for 3 min at ~2000 g. The resin was converted to acetate form prior to use.

The solution was loaded onto the anion-exchange column, and the column was spun for 2 min at  $\approx 2000$  g. followed by elution with four 125  $\mu$ L aliquots of H<sub>2</sub>O by centrifugation at  $\approx 2000$  g for 2 min each. Most of the radioactive compound (2) (denoted herein variously as  $^{90}$ Y<sup>III</sup>-DOTA-Gly<sub>3</sub>-L-(p-isothiocyanato)-Phe-amide and  $^{90}$ Y<sup>III</sup>-35 1,4,7,10-tetraazacyclododecane-N-(Gly<sub>3</sub>(L-p-NCS-Phe-

1,4,7,10-tetraazacyclododecane-N-( $Gly_3(L-p-NCS-Phe-amide)$ acetyl)-N',N'',N'''-triacetate) was recovered in the first four fractions (see Table 1). One-step elution

19

with 0.5 mL of  $H_2O$  was performed for comparison, but it gave 18% lower recovery than stepwise elution with 0.5 mL of  $H_2O$  was performed for comparison, but it gave 18% lower recovery then stepwise elution.

All the eluted fractions were collected and concentrated to  $\approx 15~\mu L$  with a speed-vac concentrator (Savant Instruments) without heating. It should be possible to avoid this step when larger amounts of radioactivity are used.

In the chelation step, the yield after anion-10 typically >70% exchange was of the radioactivity. Particularly for 90Y solutions, the levels of metal impurities appear to vary with each batch of carrier-free radiometal. The identity of 15 impurities is difficult to determine, but most common metal contaminants are divalent ions. Pre-labeling deals with the impurity problem by using a large excess of chelating agent, and then removing the excess. preferable to using a large excess of chelate-tagged mAb 20 conjugate, which cannot be fractionated later to remove unwanted contaminants. Obviously, pre-labeling does not eliminate trivalent metal complexes from the product.

#### Example 2

25 Preparation of the "In-labeled chelating agent(2)

111In-labeled chelate (2) was prepared by the general
procedure of Example 1.

#### Example 3

# Preparation of the radionuclide-labeled chelating agenttargeting molecule complex (3)

Concentrated solutions of the labeled chelating agent of Example 1 (and alternatively of Example 2) were mixed with 1 mg of chimeric mAb 16 (18 μL, 56 mg/mL; Oncogen/Bristol-Myers) [Fell et al., 1992, J. Biol. Chem., 267:15552-15558] in 0.1 M (CH<sub>3</sub>)<sub>4</sub>N<sup>+</sup> phosphate, pH 9.0. The pH was adjusted to 9.5 using aqueous 2.0 M triethylamine. The mixture was incubated at 37°C for 1 hr and compound (3) was isolated using a centrifuged gel-filtration column [Penefsky et al., 1979; Meares et al. 1984, supra]. Yields are listed in Table 1.

Table 1

Results for DOTA-Peptide Radiolabeling and Conjugation

|    | Radio-<br>nuclide | Starting<br>Radioactivity<br>(volume) | Recovery<br>for<br>Step 2†<br>(radio-<br>labeling) | Recovery<br>for<br>Step 3†<br>(conju-<br>gation) | Overall<br>Recovery<br>† |
|----|-------------------|---------------------------------------|----------------------------------------------------|--------------------------------------------------|--------------------------|
|    | <sup>90</sup> Y   | 2.1-3.9 mCi<br>(2-5μL)                | 80%±5%                                             | 40%±2%                                           | 30%±4%                   |
| 20 | <sup>111</sup> In | 4.9-6.2 mCi<br>(12-30μL)              | 70%±9%                                             | 73±3%                                            | 42%±4%                   |

† Average recovered radioactivity ± standard deviation, for ≥3 runs.

The radiochemical purity of both <sup>90</sup>Y-and <sup>111</sup>In-labeled immunoconjugates (3) was determined to be >95% by gel filtration HPLC cellulose acetate electrophoresis, and silica gel TLC [Meares et al., 1984, supra]. A solid-phase radioimmunoassay [DeNardo et al., 1986, Nucl. 30 Med. Biol., 13:303-310] was performed using <sup>125</sup>I-labeled chimeric L6 as a standard. The immunoreactivity of <sup>90</sup>Y-DOTA-Gly<sub>3</sub>-L-Phe-amide-thiourea-chimeric L6 was 107 ± 5% relative to <sup>125</sup>I-labeled antibody.

21

#### Example 4

Biodistribution of the radionuclide-labeled chelating agent-targeting molecule complex

To examine the properties of the conjugate in vivo, 90Y-labeled compound (3) was injected into HBT tumorbearing nude mice [Hellström et al., 1986, Cancer Res., 46:3917-3923] for organ distribution and tumor uptake studies. The results of these animal studies (summarized 10 in Figure 2) showed that the radioactivity level in the liver varied from  $6.4\pm1.5$ % I.D./g on the first day to  $5.4\pm1.5$ % I.D./g on the third day to  $4.6\pm1.9$ % I.D./g on the fifth day. The units I.D./g indicate percent of injected dose per gram of tissue. The tumor uptake was 15 17.5 $\pm$ 8.0% I.D./g on day 1, 18.0 $\pm$  8.0%I.D./g on day 3 and 13.8%±5.2%I.D./g on day 5. The bone uptake was  $2.1\pm0.3$ %I.D./g,  $2.0\pm0.5\pm$ %I.D./g, and  $1.8\pm0.2$ %I.D./g on days 1, 3, and 5. The levels of radioactivity in liver and bone are satisfactorily low [Deshpande et al., 1990, 20 supra], and the tumor uptake is good.

All publications, patents, and patent applications cited in this specification are herein incorporated by reference as if each individual publication, patent, or patent application were specifically and individually indicated to be incorporated by reference.

22

#### Claims

- 1. A method for preparing a radionuclide-labeled chelating agent-ligand complex comprising:
- (a) reacting a chelating agent that has a chelating group and at least one pendant linker group that is capable of covalently binding a ligand with a radionuclide to form a radionuclide chelate:
- (b) purifying the radionuclide chelate from the 10 reaction mixture of step (a) by anion exchange chromatography; and
  - (c) reacting the purified radionuclide chelate of step (b) with the ligand to form said complex.
- 15 2. The method of claim 1 wherein the electrical charges of the chelating agent and the radionuclide are equal and opposite.
- 3. The method of claim 2 wherein the electrical charge 20 of the radionuclide is +3 and the electrical charge of the chelating agent is -3.
  - 4. The method of claim 3 wherein the radionuclide is  $^{90}\mathrm{Y}$  or  $^{111}\mathrm{In}$ .
- 5. The method of claim 1 wherein the chelating group is a macrocyclic group.
- 6. The method of claim 1 wherein in the chelating group 30 is a polyazamacrocyclic group or a polyoxamacrocyclic group.

25

- 7. The method of claim 1 wherein the chelating group is derived from 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid; 1,4,7,10-tetraazacyclotridecane-N,N',N'',N'''-tetraacetic acid; 1,4,8,11-tetraazacyclotetradecane-N,N',N'',N'''-tetraacetic acid; or 1,5,9,13-tetraazacyclohexadecane-N,N',N'',N'''-tetraacetic acid.
- 8. The method of claim 1 wherein the chelating agent is
  10 N-substituted 1,4,7,10-tetraazacyclododecaneN,N',N'',N'''-tetraacetic acid wherein the substituent is
  (Gly)<sub>3</sub>-L-(p-isothiocyanato)-Phe-amide and the radionuclide is <sup>90</sup>Y or <sup>111</sup>In.
- 15 9. The method of claim 1 wherein the ligand is an antibody.
  - 10. The method of claim 1 wherein the ligand is a monoclonal antibody.

20

- 11. The method of claim 4 wherein the ligand is an antibody.
- 12. The method of claim 4 wherein the ligand is a 25 monoclonal antibody.
  - 13. The method of claim 8 wherein the ligand is an antibody.
- 30 14. The method of claim 8 wherein the ligand is a monoclonal antibody.

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

| Defects in the images include but are not limited to the items checked: |
|-------------------------------------------------------------------------|
| ☐ BLACK BORDERS                                                         |
| ☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES                                 |
| ☐ FADED TEXT OR DRAWING                                                 |
| ☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING                                  |
| ☐ SKEWED/SLANTED IMAGES                                                 |
| COLOR OR BLACK AND WHITE PHOTOGRAPHS                                    |
| GRAY SCALE DOCUMENTS                                                    |
| ☐ LINES OR MARKS ON ORIGINAL DOCUMENT                                   |
| ☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY                 |
|                                                                         |

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.