

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 ПРОГРАММНАЯ ИНЖЕНЕРИЯ

ОТЧЕТ

по лабораторной работе № 2

Тема: <u>Исследование дешифраторов</u> **Дисциплина:** <u>Архитектура ЭВМ</u>

Студент	_ИУ7-43Б	28.02.20	21 И.А. Цветков
	(Группа)	(Подпись, да	ата) (И.О. Фамилия)
Преподаватель			А.Ю. Попов
•		(Подпись, да	ата) (И.О. Фамилия)

Цель работы: изучение принципов построения и методов синтеза дешифраторов; макетирование и экспериментальное исследование дешифраторов

Дешифратор - комбинационный узел с n входами и N выходами, преобразующий каждый набор двоичных входных сигналов в активный сигнал на выходе, соответствующий этому набору

Количество выходов дешифратора равно числу разрешенных наборов входных сигналов. В дешифраторе с п входами и N выходами п N 2. Дешифратор, имеющий 2n выходов, называется полным, при меньшем числе выходов - неполным. Наборам двоичных входных сигналов дешифратора можно поставить в соответствие n-разрядные двоичные числа.

1) Исследование линейного двухвходового дешифратора с инверсными выходами:

а) собрать линейный стробируемый дешифратор на элементах 3И-НЕ; наборы входных адресных сигналов A(0), A(1), задать в выходов Q(0), Q(1), четырехразрядного счетчика; подключить световые индикаторы к выходам счетчика и дешифратора;

рис 1. Схема линейного стробирующего дешифратора на элементах 3И-НЕ

б) подать на вход счетчика сигнал с выхода ключа (Switch) лог. 0 и 1 как генератора одиночных импульсов; изменяя состояние счетчика с помощью ключа, составить таблицу истинности нестробируемого дешифратора (т.е. при EN=1);

E	A1	A2	F1	F2	F3	F4
0	*	*	1	1	1	1
1	0	0	0	1	1	1
1	0	1	1	0	1	1
1	1	0	1	1	0	1
1	1	1	1	1	1	0

Таблица 1. Таблица истинности для стробирующего дешифратора

в) подать на вход счетчика сигнала генератора — и снять временные диаграммы сигналов дешифратора; временные диаграммы здесь и в дальнейшем наблюдать на логическом анализаторе;

рис 2. Схема линейного стробирующего дешифратора на элементах 3И-НЕ (на вход подаются сигналы с генераторов)

Logic Analyzer-XLA1

рис 3. Временная диаграмма дешифратора с гонкой сигналов

г) определить амплитуду помех, вызванных гонками, на выходах дешифратора;

Logic Analyzer-XLA1 Time (s) 0.000μ 2.600µ 5.200µ 7.800μ 10.400μ 13.000µ 00000000000 Term 9 Term 11 Term 12 Term 13 Term 14 Term 15

рис 4. Длительность помех дешифратора при гонке сигналов

Clock

Clocks/Div 130

+

Qualifier (Q)

External (C)

Trigger

Set...

Qualifier (T)

Как видно, длительность равна 220 наносекундам

02a1

6.237 us 220.915 ns

T2 **←** →

T2-T1

Stop

Reset

Reverse

д) снять временные диаграммы сигналов стробируемого дешифратора; в качестве стробирующего сигнала использовать инверсный сигнал генератора , задержанный линией задержки логических элементов (повторителей и инверторов);

рис 5. Схема дешифратора с исправлением гонок сигналов

рис 6. Временная диаграмма с исправленной гонкой сигналов

е) опередить время задержки, необходимое для исключения помех на выходах дешифратора, вызванных гонками

Поскольку время задержки логического элемента НЕ равно около 2 наносекундам, то нужно не менее 4 наносекунд

2) Исследование дешифратора ИС К155ИД4 (74LS155):

рис 7. Схема дешифратора 74LS155

Logic Analyzer-XLA1

рис 8. Временная диаграмма дешифратора 74LS155

Добавим линию задержки сигнала, тогда получится схема

рис 9. Схема дешифратора с линией задержки сигнала

Logic Analyzer-XLA1

рис 10. Временная диаграмма дешифратора с линией задержки сигнала

б) определить время задержки стробирующего сигнала, необходимое для исключения помех на выходах дешифратора

Для задержки нужно примерно 4 наносекунды, для этого нужно 2 логических элемента HE

в) собрать схему трехвходового дешифратора на основе дешифратора K155 M Д4, задавая входные сигналы 4, 4, 4, 4, с выходов Q, Q, Q, счетчика;

снять временные диаграммы сигналов дешифратора и составить по ней таблицу истинности

рис 11. Схема трехвходного дешифратора

рис 12. Временная диаграмма трехвходного дешифратора

Тогда получим таблицу истинности:

A(0)	A(1)	A(2)	F(0)	F(1)	F(2)	F(3)	F(4)	F(5)	F(6)	F(7)
0	0	0	1	1	1	1	0	1	1	1
0	0	1	1	1	1	1	1	0	1	1
0	1	0	1	1	1	1	1	1	0	1
0	1	1	1	1	1	1	1	1	1	0
1	0	0	0	1	1	1	1	1	1	1
1	0	1	1	0	1	1	1	1	1	1
1	1	0	1	1	0	1	1	1	1	1
1	1	1	1	1	1	0	1	1	1	1

Таблица 2. Таблица истинности трехвходного дешифратора

3) Исследование дешифраторов ИС КР531ИД14 (74LS139) (как в п.2)

ИС 74LS139 содержит два дешифратора DC 2-4 (U1A и U1B, см. рис. ниже) с раздельными адресными входами и разрешения. Входы разрешения — инверсные. Так как каждый дешифратор имеет один вход разрешения, то для образования двух инверсных входов необходимо перед входом разрешения включить двухвходовой ЛЭ. Чтобы на выходе ЛЭ получить функцию конъюнкции $\overline{EN}_1 \cdot \overline{EN}_2$, ЛЭ при наборе 00 входных сигналов должен формировать выходной сигнал 0, а на остальных наборах входных сигналов — 1.

рис 13. Дешифраторы, входящие в ИС 74LS139

рис 14. Схема дешифратора 74LS139

рис 15. Временная диаграмма дешифратора 74LS139

EN	A(0)	A(1)	A(2)	F(0)	F(1)	F(2)	F(3)	F(4)	F(5)	F(6)	F(7)
0	X	X	X	1	1	1	1	1	1	1	1
1	0	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	0	1	1	1	1	1	1
1	0	1	0	1	1	0	1	1	1	1	1
1	0	1	1	1	1	1	0	1	1	1	1
1	1	0	0	1	1	1	1	0	1	1	1
1	1	0	1	1	1	1	1	1	0	1	1
1	1	1	0	1	1	1	1	1	1	0	1
1	1	1	1	1	1	1	1	1	1	1	0

Таблица 3. Таблица истинности дешифратора 74LS139

4) Исследовать работоспособность дешифраторов ИС 533ИД7 (74LS138 – см. U3 на рис. ниже)

рис 16. Дешифратор 74LS138

а) снять временные диаграммы сигналов нестробируемого дешифратора DC 3-8 ИС 533ИД7, подавая на его адресные входы 1, 2, 4 сигналы Q_{\bullet} , Q_{\bullet} , Q_{\bullet} , с выходов счетчика, а на входы разрешения E1, E2, E3 — сигналы лог. 1, 0, 0 соответственно

рис 17. Схема дешифратора DC 3-8 ИС 533ИД7

рис 18. Временная диаграмма дешифратора DC 3-8 ИС 533ИД7

б) собрать схему дешифратора DC 5-32 согласно методике наращивания числа входов и снять временные диаграммы сигналов, подавая на его адресные входы сигналы Q(0), Q(1), Q(2), Q(3), Q(4) с выходов 5-разрядного счетчика, а на входы разрешения – импульсы генератора \Box , задержанные линией задержки макета

рис 19. Схема дешифратора DC 5-32

Тогда имеем такие временные диаграммы

рис 20. Временная диаграмма дешифратора DC 5-32 (первые 8 сигналов)

| Cogic Analyzer-XLA2 | Time (s) | 33,000 μ | 44,000 μ | 55,000 μ | 22,000 μ | 23 | 24 | 25 | 25 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | Cook_Ont

рис 21. Временная диаграмма дешифратора DC 5-32 (сигналы 9-24)

ffff ffff

Stop

Reset

Reverse

T1 ← →

T2 ← →

T2-T1

0.000 s 0.000 s 0.000 s Clock

Clocks/Div

550

External (C)

Qualifier (Q)

Trigger

Set...

Qualifier (T)

× Logic Analyzer-XLA3 Time (s) 49.500μ 60.500μ 71.500µ 82.500μ 93.500μ 104.500μ

рис 22. Временная диаграмма дешифратора DC 5-32 (сигналы 25-32)

Вывод

В ходе выполнения лабораторной работы были изучены принципы построения и методы исследования различных дешифраторов, проведено их экспериментальное исследование