Name of the Intern: SHAHNAWAZ ALAM

Data Science Internship

Oasis Infobyte

Task 1: Iris Flower Classification using Machine Learning

Batch-April Phase 1 OIBSIP

Steps to build a ML Model:

```
1.Import dataset
```

- 2. Visualizing the dataset
- 3.Data preparation
- 4. Training the algorithms
- 5.Making Prediction
- 6.Model Evolution

Importing Libraries

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import accuracy_score
```

1. Importing Dataset

In [34]:

```
#Loading data
print("Importing data...")
df=pd.read_csv(r"C:\Users\md naiyer azam\Desktop\OIBSIP_Internship\Data Science\Iris.csv")
print("Sucessfully imported.")
```

```
Importing data...
Sucessfully imported.
```

In [35]:

df.head() # #to check sucessful importation of dataset.

Out[35]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

In [4]:

df.head(10)

Out[4]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
5	6	5.4	3.9	1.7	0.4	Iris-setosa
6	7	4.6	3.4	1.4	0.3	Iris-setosa
7	8	5.0	3.4	1.5	0.2	Iris-setosa
8	9	4.4	2.9	1.4	0.2	Iris-setosa
9	10	4.9	3.1	1.5	0.1	Iris-setosa

In [5]:

df.tail()

Out[5]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

```
In [6]:
```

```
df.shape ##to get no. of rows and column(rows,column)
```

Out[6]:

(150, 6)

In [36]:

```
#info of data
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype			
0	Id	150 non-null	int64			
1	SepalLengthCm	150 non-null	float64			
2	SepalWidthCm	150 non-null	float64			
3	PetalLengthCm	150 non-null	float64			
4	PetalWidthCm	150 non-null	float64			
5	Species	150 non-null	object			
dtypes: float64(4), int64(1), object(1)						
memory usage: 7.2+ KB						

In [37]:

```
#description of data
df.describe()
```

Out[37]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

From the above discription count tells that all the 4 features have 150 rows and from Mean we can say that sepal is larger than petal.

In [38]:

```
df['Species'].value_counts()
```

Out[38]:

Iris-setosa 50 Iris-versicolor 50 Iris-virginica 50

Name: Species, dtype: int64

we can observe all three classes are equally distributed in terms of the number of counts of each class.

In [41]:

```
#Create 3 DataFrame for each Species
setosa=df[df['Species']=='Iris-setosa']
versicolor =df[df['Species']=='Iris-versicolor']
virginica =df[df['Species']=='Iris-virginica']

print("SETOSA:\n",setosa.describe())
print("\nVERSICOLOR:\n",versicolor.describe())
print("\nVIRGINICA:\n",virginica.describe())
```

SETOSA:

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	50.00000	50.00000	50.000000	50.000000	50.00000
mean	25.50000	5.00600	3.418000	1.464000	0.24400
std	14.57738	0.35249	0.381024	0.173511	0.10721
min	1.00000	4.30000	2.300000	1.000000	0.10000
25%	13.25000	4.80000	3.125000	1.400000	0.20000
50%	25.50000	5.00000	3.400000	1.500000	0.20000
75%	37.75000	5.20000	3.675000	1.575000	0.30000
max	50.00000	5.80000	4.400000	1.900000	0.60000

VERSICOLOR:

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	50.00000	50.000000	50.000000	50.000000	50.000000
mean	75.50000	5.936000	2.770000	4.260000	1.326000
std	14.57738	0.516171	0.313798	0.469911	0.197753
min	51.00000	4.900000	2.000000	3.000000	1.000000
25%	63.25000	5.600000	2.525000	4.000000	1.200000
50%	75.50000	5.900000	2.800000	4.350000	1.300000
75%	87.75000	6.300000	3.000000	4.600000	1.500000
max	100.00000	7.000000	3.400000	5.100000	1.800000

VIRGINICA:

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	50.00000	50.00000	50.000000	50.000000	50.00000
mean	125.50000	6.58800	2.974000	5.552000	2.02600
std	14.57738	0.63588	0.322497	0.551895	0.27465
min	101.00000	4.90000	2.200000	4.500000	1.40000
25%	113.25000	6.22500	2.800000	5.100000	1.80000
50%	125.50000	6.50000	3.000000	5.550000	2.00000
75%	137.75000	6.90000	3.175000	5.875000	2.30000
max	150.00000	7.90000	3.800000	6.900000	2.50000

In [7]:

```
df.isnull().sum()
```

Out[7]:

Id 0
SepalLengthCm 0
SepalWidthCm 0
PetalLengthCm 0
PetalWidthCm 0
Species 0
dtype: int64

In [8]:

df.dtypes

Out[8]:

Id int64
SepalLengthCm float64
SepalWidthCm float64
PetalLengthCm float64
PetalWidthCm float64
Species object

dtype: object

In [9]:

data=df.groupby('Species')

In [10]:

```
data.head()
```

Out[10]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
50	51	7.0	3.2	4.7	1.4	Iris-versicolor
51	52	6.4	3.2	4.5	1.5	Iris-versicolor
52	53	6.9	3.1	4.9	1.5	Iris-versicolor
53	54	5.5	2.3	4.0	1.3	Iris-versicolor
54	55	6.5	2.8	4.6	1.5	Iris-versicolor
100	101	6.3	3.3	6.0	2.5	Iris-virginica
101	102	5.8	2.7	5.1	1.9	Iris-virginica
102	103	7.1	3.0	5.9	2.1	Iris-virginica
103	104	6.3	2.9	5.6	1.8	Iris-virginica
104	105	6.5	3.0	5.8	2.2	Iris-virginica

In [11]:

```
df['Species'].unique()
```

Out[11]:

array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object)

In [12]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149

Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Id	150 non-null	int64
1	SepalLengthCm	150 non-null	float64
2	SepalWidthCm	150 non-null	float64
3	PetalLengthCm	150 non-null	float64
4	PetalWidthCm	150 non-null	float64
5	Species	150 non-null	object
dtyp	es: float64(4),	int64(1), objec	t(1)

memory usage: 7.2+ KB

2. visualizing the dataset

```
In [13]:
```

```
plt.boxplot(df['SepalLengthCm'])
```

Out[13]:

In [14]:

```
plt.boxplot(df['SepalWidthCm'])
```

Out[14]:

In [15]:

```
plt.boxplot(df['PetalLengthCm'])
```

Out[15]:

In [16]:

```
plt.boxplot(df['PetalWidthCm'])
```

Out[16]:

In [42]:

```
#ploting graph usning seaborn
sns.set_style('whitegrid')
sns.pairplot(data = df, hue='Species')
```

Out[42]:

<seaborn.axisgrid.PairGrid at 0x222dad1d270>

Scatter Plot - Sepal_Length_Width Vs Species.

In [43]:

```
pet_len_wid = df[df.Species == 'Iris-setosa'].plot(kind = 'scatter', x = 'SepalLengthCm', y =
,color = 'blue', label = 'setosa')
df[df.Species == 'Iris-versicolor'].plot(kind = 'scatter', x = 'SepalLengthCm', y = 'SepalWid', label = 'versicolor', ax = pet_len_wid)
df[df.Species == 'Iris-virginica'].plot(kind = 'scatter', x = 'SepalLengthCm', y = 'SepalWidt', label = 'virginica', ax = pet_len_wid)
pet_len_wid.set_xlabel('Sepal Length')
pet_len_wid.set_ylabel('Sepal Width')
pet_len_wid.set_title('Sepal-Length-Width Vs Species')
pet_len_wid = plt.gcf()
pet_len_wid.set_size_inches(10, 5)
plt.show()
```


Scatter Plot - Petal_Length_Width Vs Species.

In [44]:

```
pet_len_wid = df[df.Species == 'Iris-setosa'].plot(kind = 'scatter', x = 'PetalLengthCm', y =
,color = 'blue', label = 'setosa')
df[df.Species == 'Iris-versicolor'].plot(kind = 'scatter', x = 'PetalLengthCm', y = 'PetalWid', label = 'versicolor', ax = pet_len_wid)
df[df.Species == 'Iris-virginica'].plot(kind = 'scatter', x = 'PetalLengthCm', y = 'PetalWidt', label = 'virginica', ax = pet_len_wid)
pet_len_wid.set_xlabel('Petal Length')
pet_len_wid.set_ylabel('Petal Width')
pet_len_wid.set_title('Petal-Length-Width Vs Species')
pet_len_wid = plt.gcf()
pet_len_wid.set_size_inches(10, 5)
plt.show()
```


3. Data Preparation

```
In [18]:
```

```
df.drop('Id',axis=1,inplace=True)
```

```
In [19]:
```

```
sp={'Iris-setosa':1,'Iris-versicolor':2,'Iris-virginica':3}
```

In [20]:

```
df.Species=[sp[i] for i in df.Species]
```

In [21]:

df

Out[21]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	5.1	3.5	1.4	0.2	1
1	4.9	3.0	1.4	0.2	1
2	4.7	3.2	1.3	0.2	1
3	4.6	3.1	1.5	0.2	1
4	5.0	3.6	1.4	0.2	1
145	6.7	3.0	5.2	2.3	3
146	6.3	2.5	5.0	1.9	3
147	6.5	3.0	5.2	2.0	3
148	6.2	3.4	5.4	2.3	3
149	5.9	3.0	5.1	1.8	3

150 rows × 5 columns

In [22]:

```
X=df.iloc[:,0:4]
```

In [23]:

Χ

Out[23]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8

150 rows × 4 columns

```
In [24]:
y=df.iloc[:,4]
In [25]:
У
Out[25]:
0
       1
       1
2
       1
3
       1
       1
145
       3
       3
146
       3
147
       3
148
149
Name: Species, Length: 150, dtype: int64
In [26]:
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.33,random_state=42)
```

4. Traning Model (Machine Learning Algorithm)

In [46]:

```
#importing required modules
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn import svm
from sklearn import metrics #for checking the model accuracy
from sklearn.tree import DecisionTreeClassifier
```

Corelation Matrix

In [47]:

```
plt.figure(figsize=(7,4))
sns.heatmap(df.corr(),annot=True,cmap='cubehelix_r')
plt.show()
```

C:\Users\md naiyer azam\AppData\Local\Temp\ipykernel_18796\3227061104.py:2: Fut
ureWarning: The default value of numeric_only in DataFrame.corr is deprecated.
In a future version, it will default to False. Select only valid columns or spe
cify the value of numeric_only to silence this warning.
 sns.heatmap(df.corr(),annot=True,cmap='cubehelix_r')

The Sepal Width and Length are not correlated The Petal Width and Length are highly correlated

In [49]:

```
sns.heatmap(df.corr())
```

C:\Users\md naiyer azam\AppData\Local\Temp\ipykernel_18796\58359773.py:1: Futur
eWarning: The default value of numeric_only in DataFrame.corr is deprecated. In
a future version, it will default to False. Select only valid columns or specif
y the value of numeric_only to silence this warning.
 sns.heatmap(df.corr())

Out[49]:

<AxesSubplot: >

Logistic Regression

In [51]:

model=LinearRegression()

In [52]:

model.fit(X,y)

Out[52]:

▼ LinearRegression

LinearRegression()

```
In [53]:
```

```
model.score(X,y) #coef of prediction
```

Out[53]:

0.9304223675331595

```
In [54]:
```

```
model.coef_
```

Out[54]:

```
array([-0.10974146, -0.04424045, 0.22700138, 0.60989412])
```

In [55]:

```
model.intercept
```

Out[55]:

1.1920839948281392

In [57]:

```
lR = LogisticRegression()
lR.fit(X_train, y_train)
prediction=lR.predict(X_test)
#score method to get accuracy of model
score = lR.score(X_test, y_test)
print(score,"\n\n")
#Confussion Matrix: used to describe the performance of a classification model
metrics.confusion_matrix(y_test,prediction)
```

1.0

Out[57]:

SVM

In [59]:

```
model = svm.SVC()
model.fit(X_train,y_train)
prediction=model.predict(X_test)
score = model.score(X_test, y_test)
print(score,"\n\n")
#Confussion Matrix: used to describe the performance of a classification model
metrics.confusion_matrix(y_test,prediction)
```

1.0

Out[59]:

KNN(K-Nearest Neighbours)

In [60]:

```
model=KNeighborsClassifier(n_neighbors=3)#this examines 3 neighbours for putting the new data
model.fit(X_train,y_train)
prediction=model.predict(X_test)
score = model.score(X_test, y_test)
print(score,"\n\n")
#Confussion Matrix: used to describe the performance of a classification model
metrics.confusion_matrix(y_test,prediction)
```

0.98

Out[60]:

Decission Tree

```
In [61]:
```

```
model=DecisionTreeClassifier()
model.fit(X_train,y_train)
prediction=model.predict(X_test)
score = model.score(X_test, y_test)
print(score,"\n\n")
#Confussion Matrix: used to describe the performance of a classification model
metrics.confusion_matrix(y_test,prediction)
```

0.98

5. Making Predictions

```
In [32]:
```

```
y_pred=model.predict(X_test)
```

6.Model Evolution

```
In [33]:
```

```
print("Mean squared error: %.2f" % np.mean((y_pred - y_test) ** 2))
```

Mean squared error: 0.04