

BIOLOGY **Chapter 1**

SECONDARY

Componentes de los Seres Vivos @ SACO OLIVEROS

DE QUÉ ESTAS HECHO?

Composición del Ser Humano

A) BIOELEMENTOS PRIMARIOS

Son los más abundantes (96% de la materia viva). Se les denomina también : elementos organógenos.

B) BIOELEMENTOS SECUNDARIOS

Su presencia es esencial para el correcto funcionamiento del organismo.
Son: Mg, P, S, Ca, K, Na, Mg, Cl y Fe

Calcio (Ca)

Magnesio (Mg)

Hierro (Fe)

C) Oligoelementos:

Son: Mn, I, Cu, Co, Zn, F, Mo, Se, Cr y otros. Aparecen solo en trozos o en cantidades ínfimas pero son necesarios para el funcionamiento de los organismos vivos.

BIOMOLÉCULAS

- □ Formadas por la unión de varios bioelementos.
- □ También se llaman <u>Principios Inmediatos</u> (se pueden separar por medios físicos sin romper las moléculas)

BIOMOLÉCULAS ORGÁNICAS

GLÚCIDOS

PROTEINAS

LÍPIDOS

ÁCIDO NUCLEICO

EL AGUA

I. Estructura molecular

Molécula de Agua

El agua es una molécula DIPOLAR. POLO POSITIVO: HIDRÓGENOS POLO NEGATIVO: OXÍGENO

PROPIEDADES DEL AGUA

1. ALTO CALOR ESPECÍFICO:

Alto calor específico: el calor especifico es la cantidad de calor que se necesita para aumentar 1°C 1g de agua.

 Ayuda a mantener constante la temperatura en organismos y ambiente.

Por eso el agua se comporta como un TERMORREGULADOR.

2. DENSIDAD:

A los 4°C el agua alcanza su máxima densidad, mientras que a los 0°C densidad del agua disminuye. Por eso el hielo FLOTA.

01

El agua es una sustancia atípica pues su densidad en estado solido es menor al estado liquido:

			ESTADOS DEL AGUA		
			SÓLIDO	LÍQUIDO	GASEOSO
Vapor de agua (100°C)	0.96 g/cm ³	0.96 g/ml			
Agua liquida (4 °C)	1 g/cm³	1 g/ml		900	9 9
Hielo (-30 °C)	0.98 g/cm ³	0.98 g/ml			

3. DISOLVENTE UNIVERSAL

El agua interacciona con otros compuestos, provocando que las partículas se separen y se disuelven

5. CAPILARIDAD:

4. TENSIÓN SUPERFICIAL:

Elevada fuerza de cohesión y de adhesión

La elevada fuerza de cohesión entre las moléculas de agua debido a la formación de puentes de H, y la elevada fuerza de adhesión, que es la capacidad de unirse a otras sutancias,permiten fenómenos como la capilaridad.

5. ELEVADO CALOR DE VAPORIZACIÓN:

6. BAJO GRADO DE IONIZACIÓN:

El agua posee una mínima tendencia a ionizarse o disociarse en ión hidroxilo (OH) e ión hidrogenión (H) ión de hidroxilo agua ión de hidrógeno (H_2O) (OH^{-})

1-Dióxido de Carbono (CO₂). Utilizado por los org. fotosintéticos, como las plantas, para fijar biomasa. 2-Oxígeno (O₂). Utilizado por los org. Aeróbicos principalmente para oxidar hidratos de carbono para obtener energía.

¿Qué es el ozono?

- Compuesto inestable de tres átomos de oxígeno
- Fórmula química: O₃
- Potente filtro solar: evita el paso de una pequeña parte de la radiación ultravioleta (UV).
- El gas ozono tiene un color agudo y permanente. En su estado puro es de color azul.

f. Potencial de hidrógeno (pH):

Es la medida de concentración de iones de hidrógeno (hidrogeniones) que posee una solución biológica (fluido corporal) como la sangre, la saliva, el jugo gástrico, etc.

Los sistemas amortiguadores de pH (Buffers, tampons), mantienen el pH casi constante

Están
Formados
por un

"par conjugado"

(a)
Un ácido débil (HA) y su base ó sal (A')

Ej: (CH₃COOH + CH₃COO')

(b)
Un base débil (B) y su ácido ó sal (BH+)

Ej: (NH₃ + NH₄Cl)

pH del Organismo Humano

- Se mantiene en forma normal entre 7,35 y 7,45.
- El pH se sustenta mediante:
 - Los amortiguadores fisiológicos
 - Eliminación de renal y respiratoria de ácidos y bases

BIOLOGY

Helicopráctica

SECONDARY

4th

Componentes de los Seres Vivos

HELICO | HELICOPRACTICE

1.	Los bioelementos	primarios son C, H, O, N	_ y los
	secundarios son	P, S, K, Fe, Cl, Mg, Ca,	

- Indique qué bioelemento se encuentra como componente.
 - a. Clorofila: Mg
 - b. Hemoglobina: Fe
 - c. Hemocianina: Cu
 - d. Ácidos nucleicos: P
 - e. Contracción muscular: Ca
 - f. Tiroxina:

III levelik

- 3. ¿Qué cantidad de agua, en porcentaje, tienen los siguientes?
 - a. Huesos: 5%
 - b. Célula: 85%
 - c. Medusa: <u>95%</u>
 - d. Humano: 70%

4. Indique la fórmula de la molécula de agua. ¿Qué átomos presenta?

> H2O 3 ÀTOMOS: 2 H, 1 O

 Explique por qué el hielo flota en el agua líquida y qué propiedad se relaciona con ello.

PORQUE ES MENOS DENSO QUE EL AGUA.

TATA GREATING

6. Al sudar se elimina el exceso de calor. ¿Qué propiedad se relaciona con este evento?

ALTO GRADO DE VAPORIZACIÓN

Para la fotosíntesis de las plantas se necesita agua y sales minerales que se absorben por las raíces. ¿Qué propiedad del agua permite el ascenso del agua hacia la hoja?

CAPILARIDAD, COHESIÒN Y ADHESIÒN

El agua es la biomolécula más abundante en cualquier ser vivo, y representa entre el 60 y 90 % de su peso. Cubre la mayor parte de la superficie de la Tierra. Hay organismos que viven en la ínfima cantidad de agua de un grano de arena, algunas bacterias se encuentran en los límites de fusión de los témpanos polares, en las aguas casi hirvientes de los manantiales termales. Para comprender por qué el agua es tan extraordinaria, debemos considerar su estructura molecular. Su molécula es un átomo de oxígeno que se une covalentemente a dos átomos de hidrógeno, los átomos forman un ángulo de 105°. Al ser el átomo de oxígeno más electronegativo, atrae los electrones quedando cargado δ mientras que el exceso de carga positiva δ^+ queda sobre los dos hidrógenos. Como resultado la molécula de agua es polar, con dos zonas débilmente negativas y dos zonas débilmente positivas. En consecuencia, entre sus moléculas se forman enlaces débiles entre un átomo de oxígeno δ con otro de hidrógeno δ⁺ de otra molécula, que se conocen como puentes de hidrógeno. Cada molécula de agua puede formar puentes de hidrógeno con otras cuatro moléculas de agua. Aunque los enlaces individuales son débiles y se rompen continuamente, la fuerza total de los enlaces que mantienen a las moléculas juntas es muy grande.

a. El agua es la biomolécula inorgánica más abundante en cualquier ser vivo dentro de lo conocido. ¿Qué porcentaje representa de su peso?

El agua es la biomolécula más abundante en cualquier ser vivo, y representa entre el 60 y 90 % de su peso.

b. ¿Por qué el agua es una molécula polar?

Porque presenta dos polos: uno positivo constituído por los hidrógenos y otro negativo constituido por el oxígeno.