### **Statics on Deformable Bodies**

Wojciech Matusik

# Computational Design Stack



### Statics vs. Dynamics

We call this time varying motion Dynamics

Statics is concerned with the case when net forces are balanced, acceleration is zero.



### **Statics on Deformable Bodies**

• What can this help us measure?

#### Statics on Deformable Bodies

What can this help us measure?



Where objects are likely to break

### Statics on Deformable Bodies (Plan)

- Continuum Mechanics Intro
  - Spring Systems
  - Continuum Mechanics in 1D
- Continuum Mechanics in 3D
  - Strain
  - Stress
  - Material model (linear case)
- Discretization (3D)
  - Finite Elements
  - Solving for Static Equilibrium
- More material models

### Statics on Deformable Bodies (Plan)

- Continuum Mechanics Intro
  - Spring Systems
  - Continuum Mechanics in 1D
- Continuum Mechanics in 3D
  - Strain
  - Stress
  - Material model (linear case)
- Discretization (3D)
  - Finite Elements
  - Solving for Static Equilibrium
- More material models

# Model Problem - Coat Hanger





### **Modeling Elasticity**



#### How to model elastic materials?

- Atomic or molecular mechanics
- Continuum mechanics
- Spring network abstraction

## **Spring Networks**



Representation: 2D triangle mesh

- Vertices  $\mathbf{x}_i \in \mathbf{R}^2$
- Edges  $E_{ij}$  connecting vertices  $\mathbf{x}_i$  and  $\mathbf{x}_j$

## **Hookean Springs**



Elasticity: Ability of a spring to return to its initial length when the deforming force is removed.

#### **Spring Force**:

→ Force is linear w.r.t. extension!

$$f^{ext} = k(l - L)$$
 Hooke's Law

Length of undeformed spring Length of deformed spring Spring stiffness

## **Hookean Springs**



For elastic springs, forces are conservative, i.e., no energy is lost during deformation.

Work done by forces
$$W = \int_{L}^{l} f^{ext}(x) dx = \int_{L}^{l} k(x - L) dx$$

Stored energy of the spring is  $E = W = \frac{1}{2}k(l-L)^2$ 

Force  $f^{int}$  exerted by spring follows as negative gradient of E,

$$f^{int} = -\frac{dE}{dx} = -k(l-L)$$

Length of undeformed spring Length of deformed spring Spring stiffness

L

l

k

# Hookean Springs in $\mathbb{R}^n$



The configuration of a spring is determined by the position of its two endpoints.

We distinguish between

- Deformed positions  $x_1, x_2 \in \mathbb{R}^n$
- Undeformed positions  $\overline{x}_1$ ,  $\overline{x}_2 \in \mathbb{R}^n$

Lengths are functions of positions, i.e.,  $l = |x_2 - x_1|_2$  and  $L = |\overline{x}_2 - \overline{x}_1|_2$ 

$$l = |e|_2 = (e^T e)^{\frac{1}{2}}$$
 with  $e = x_2 - x_1$ .

Length of undeformed spring

Length of deformed spring

Spring stiffness

# Hookean Springs in $\mathbb{R}^n$



The configuration of a spring is determined by the position of its two endpoints.

We distinguish between

- Deformed positions  $x_1, x_2 \in \mathbb{R}^n$
- Undeformed positions  $\overline{x}_1$ ,  $\overline{x}_2 \in \mathbb{R}^n$

Lengths are functions of positions, i.e.,  $l = |x_2 - x_1|_2$  and  $L = |\overline{x}_2 - \overline{x}_1|_2$ 

$$l = |e|_2 = (e^T e)^{\frac{1}{2}}$$
 with  $e = x_2 - x_1$ .

Length of undeformed spring

Length of deformed spring

Spring stiffness

# Hookean Springs in $\mathbb{R}^n$



Recall 
$$E = \frac{1}{2}k(l-L)^2$$
 and Force on  $x_1$  is:

$$f_{1} = -\frac{\partial E(x_{1}, x_{2})}{\partial x_{1}} = -\frac{\partial E(x_{1}, x_{2})}{\partial l} \frac{\partial l}{\partial x_{1}}$$

$$\frac{\partial E}{\partial l} = k(l - L)$$

$$\frac{\partial l}{\partial x_{1}} = \frac{1}{2} (e^{T} e)^{-\frac{1}{2}} \frac{\partial (e^{T} e)}{\partial x_{1}} = -\frac{x_{2} - x_{1}}{|x_{2} - x_{1}|}$$

$$f_1 = k(l-L)\frac{x_2-x_1}{|x_2-x_1|}$$
  $f_2 = -f_1$ 

# Hookean Springs - Generalization

• Inconvenience: springs with same material but different lengths will have different stiffness coefficients k:

Rest length  $L_1 = L$  subject to f deforms to  $l_1 = l$ . Rest length  $L_2 = 2L$  subject to f deforms to  $l_2 = 2l$ . so  $k_2 = \frac{1}{2}k_1$ .

• Idea: use relative deformation  $\varepsilon = \frac{l-L}{L}$  and stiffness  $\tilde{k} = kL$ . Then

$$f^{int} = -k(l-L) = -\tilde{k}\varepsilon$$
 and  $E = \frac{1}{2}\tilde{k}\varepsilon^2 L$ 

• Advantage:  $\tilde{k}$  is a material constant valid for all spring lengths L.

## **Spring Networks - Summation**

Energy of spring network

$$E = \sum_{k} E_{k}$$

Total spring force at given node

$$f_i^{int} = -\frac{\partial E}{\partial x_i} = -\sum_k \frac{\partial E_k}{\partial x_i}$$

Total force at given node

$$\boldsymbol{f}_i = \boldsymbol{f}_i^{int} + \boldsymbol{f}_i^{ext}$$



### **Equilibrium Conditions - Forces**

We can compute the total forces f(x) for a given configuration x.

Given applied forces  $f^{ext}$ , how to compute resulting configuration x?



For static equilibrium, the acceleration has to be zero for all nodes,

$$a_i(x) = 0 \ \forall i$$

From Newton's second law, we know that

$$f_i(x) = m_i a_i(x) = \mathbf{0}$$

**Static Equilibrium Conditions** 

$$\boldsymbol{f}_{i}^{int}(\boldsymbol{x}) + \boldsymbol{f}_{i}^{ext} = \boldsymbol{0} \ \forall i$$

### **Equilibrium Conditions - Energy**

Internal forces are negative gradient of internal energy  $E^{int}$ . Assume that external forces derive from potential  $E^{ext}$ .

$$f_i^{int} = -\frac{\partial E^{int}}{\partial x_i}$$
  $f_i^{ext} = -\frac{\partial E^{ext}}{\partial x_i}$ 

Then, static equilibrium conditions

$$\boldsymbol{f}_{i}^{int}(\boldsymbol{x}) + \boldsymbol{f}_{i}^{ext} = \boldsymbol{0} \ \forall i$$

are equivalent to x being a stationary point for the total energy

$$E(x) = E^{int}(x) + E^{ext}(x)$$
, i.e.,  $\frac{\partial E(x)}{\partial x} = \mathbf{0}$ 

### **Mass Spring Systems**

- Mass spring model
  - Mass points & spring forces
  - Easy to understand and implement
- Limited accuracy
  - Behavior depends on mesh
  - Finding spring stiffness coefficients to best approximate a given real material is difficult
  - No volume and area preservation



### **Continuum Mechanics and FEM**

- Start from continuous model
  - Continuum mechanics
  - Equilibrium conditions
- Discretize with Finite Elements
  - Decompose model into elements (e.g., tetrahedra)
  - Formulate energy and derivatives per element
  - Minimize sum of per-element energies
- Advantages
  - Accurate material behavior
  - Largely independent of mesh structure





### Statics on Deformable Bodies (Plan)

- Continuum Mechanics Intro
  - Spring Systems
  - Continuum Mechanics in 1D
- Continuum Mechanics in 3D
  - Strain
  - Stress
  - Material model (linear case)
- Discretization (3D)
  - Finite Elements
  - Solving for Static Equilibrium
- More material models



Given t, how to determine deformed configuration?

#### Principle of minimum potential energy

A mechanical system in static equilibrium will assume a state of minimum potential energy.



• Strain: 
$$\varepsilon = \frac{\Delta l}{l} \qquad (relative stretch)$$

• Stress: 
$$\sigma = \frac{f_{int}}{A}$$
 (internal force density)

• Hooke's law: 
$$\sigma = k\varepsilon$$
 (k material constant)

• Strain energy density: 
$$\Psi = \frac{1}{2}k\varepsilon^2$$
 (postulate via  $\sigma = \frac{\partial \Psi}{\partial \varepsilon}$ )



- Discretize domain into elements
- Element strain:  $\varepsilon_i = \frac{x'_{i+1} x'_i L_i}{L_i}$  with  $L_i = x_{i+1} x_i$
- Element strain energy:  $W_i = \Psi_i \cdot L_i = \frac{1}{2}k\varepsilon_i^2 \cdot L_i$
- Total strain energy:  $W = \sum W_i$



Minimum energy principle: at equilibrium

- system assumes a state of minimum total energy
- total forces vanish for all nodes

• 
$$W_i = \frac{1}{2}k\varepsilon_i^2 \cdot L_i$$
 and  $\varepsilon_i = \frac{x'_{i+1} - x'_i - L_i}{L_i} \rightarrow \frac{\partial W_i}{\partial x'_i} = \frac{\partial W_i}{\partial \varepsilon_i} \frac{\partial \varepsilon_i}{\partial x'_i} = -k\varepsilon_i$ 

• 
$$f_i = -\frac{\partial W}{\partial x_i'} = -\frac{\partial W_{i-1}}{\partial x_i'} - \frac{\partial W_i}{\partial x_i'} = -k(\varepsilon_{i-1} - \varepsilon_i)$$
 for  $i = 2 \dots n - 1$ 

• 
$$f_1 = k\varepsilon_1$$
 and  $f_n = -k\varepsilon_{n-1}$ 



Equilibrium conditions 
$$f_i = \begin{cases} 0 & \forall i \in 2 \dots n-1 \\ t & i=1 \\ -t & i=n \end{cases}$$

- $\rightarrow$  *n-2* linear equations for *n-2* unknowns  $x_i'$
- → solve linear system of equations to obtain deformed configuration.

In this case (constant material, no body forces), deformation is constant.

### Statics on Deformable Bodies (Plan)

- Continuum Mechanics Intro
  - Spring Systems
  - Continuum Mechanics in 1D
- Continuum Mechanics in 3D
  - Strain
  - Stress
  - Material model (linear case)
- Discretization (3D)
  - Finite Elements
  - Solving for Static Equilibrium
- More material models

# **Recap 1D Continuous Elasticity**



• Strain:

$$\varepsilon = \frac{\Delta l}{L}$$

(relative stretch)

(no unit)

• Stress:

$$\sigma = \frac{f_{int}}{\Delta}$$

(internal force density)

(force per area)

Hooke's law:

$$\sigma = k\varepsilon$$

(k material constant - how stiff is it!)

• Strain energy density:

$$\Psi = \frac{1}{2}k\varepsilon^2 \qquad (postulate \ via \ \sigma = \frac{\partial \Psi}{\partial \varepsilon})$$

### 3D Deformations

- For a deformable body, identify the
  - undeformed state  $\overline{\Omega} \subset \mathbf{R}^3$  described by positions  $\overline{\mathbf{x}}$
  - deformed state  $\Omega \subset \mathbb{R}^3$  described by positions x
- Displacement field  ${\pmb u}$  describes  $\overline{\Omega}$  in terms of  $\Omega$

$$u(\overline{x}): \overline{\Omega} \to \Omega$$
 ,  $x(\overline{x}) = \overline{x} + u(\overline{x})$ 



$$\mathbf{u}\left(\mathbf{x}
ight) = \left(egin{array}{c} u\left(x,y,z
ight) \\ v\left(x,y,z
ight) \\ w\left(x,y,z
ight) \end{array}
ight)$$

u is displacement in x direction v is displacement in y direction w is displacement in z direction

### 3D Deformations



- Consider material points  $\overline{x}_1$  and  $\overline{x}_2$  and  $\overline{d}=\overline{x}_2-\overline{x}_1$  such that  $\left|\bar{d}\right|$  is infinitesimal
- Now consider deformed vector d

$$d = x_2 - x_1 =$$

### 3D Deformations



- Consider material points  $\overline{x}_1$  and  $\overline{x}_2$  and  $\overline{d}=\overline{x}_2-\overline{x}_1$  such that  $|\bar{d}|$  is infinitesimal
- Now consider deformed vector d

$$d = x_2 - x_1 = \overline{x}_2 + u(\overline{x}_2) - \overline{x}_1 - u(\overline{x}_1)$$

$$= \overline{d} + u(\overline{x}_1 + \overline{d}) - u(\overline{x}_1)$$

$$\approx \overline{d} + u(\overline{x}_1) + \nabla u \overline{d} - u(\overline{x}_1) = (\overline{I} + \nabla u) \overline{d}$$

$$Deformation gradient F$$

### 3D Nonlinear Strain

• Deformation gradient  $\mathbf{F} = (\mathbf{I} + \nabla \mathbf{u})$  maps undeformed vectors to deformed vectors,  $\mathbf{d} = \mathbf{F} \overline{\mathbf{d}}$ .

How can we quantify deformation at a given point?

• Measure change in length (squared) in all directions

$$|d|^2 - |\overline{d}|^2 = d^T d - \overline{d}^T \overline{d}$$



Green strain 
$$\mathbf{E} = \frac{1}{2} (\mathbf{F}^T \mathbf{F} - \mathbf{I})$$

### 3D Linear Strain

Green strain is quadratic in displacements

$$\mathbf{E} = \frac{1}{2} (\mathbf{F}^T \mathbf{F} - \mathbf{I}) = \frac{1}{2} (\nabla \mathbf{u} + \nabla \mathbf{u}^T + \nabla \mathbf{u}^T \nabla \mathbf{u})$$

Neglecting quadratic terms leads to the linear

Cauchy strain 
$$\varepsilon = \frac{1}{2}(\nabla \mathbf{u} + \nabla \mathbf{u}^{\mathrm{t}}) = \frac{1}{2}(\mathbf{F} + \mathbf{F}^{t}) - \mathbf{I}$$

Written out:

$$\mathcal{E} = \frac{1}{2} \begin{pmatrix} 2\partial_{x}u & \partial_{y}u + \partial_{x}v & \partial_{z}u + \partial_{x}w \\ \partial_{x}v + \partial_{y}u & 2\partial_{y}v & \partial_{z}v + \partial_{y}w \\ \partial_{x}w + \partial_{z}u & \partial_{y}w + \partial_{z}v & 2\partial_{z}w \end{pmatrix}$$
Notation
$$\mathbf{u}(\mathbf{x}) = \begin{pmatrix} u(x, y, z) \\ v(x, y, z) \\ w(x, y, z) \end{pmatrix}$$

Notation 
$$\mathbf{u}\left(\mathbf{x}\right)=\left(\begin{array}{c}u\left(x,y,z\right)\\v\left(x,y,z\right)\\w\left(x,y,z\right)\end{array}\right)$$

### 3D Linear Strain

#### Linear Cauchy strain

$$\mathcal{E} = \frac{1}{2} \begin{pmatrix} 2\partial_{x}u & \partial_{y}u + \partial_{x}v & \partial_{z}u + \partial_{x}w \\ \partial_{x}v + \partial_{y}u & 2\partial_{y}v & \partial_{z}v + \partial_{y}w \\ \partial_{x}w + \partial_{z}u & \partial_{y}w + \partial_{z}v & 2\partial_{z}w \end{pmatrix} =: \begin{pmatrix} \varepsilon_{x} & \gamma_{xy} & \gamma_{xz} \\ \gamma_{xy} & \varepsilon_{y} & \gamma_{yz} \\ \gamma_{xz} & \gamma_{yz} & \varepsilon_{z} \end{pmatrix}$$

 $\mathcal{E}_i$  : normal strains

 $\gamma_i$ : shear strains

#### • Geometric interpretation



### Cauchy vs. Green strain

- Nonlinear Green strain is rotation-invariant
  - Apply incremental rotation R to given deformation F
     to obtain F' = RF
  - Then  $\mathbf{E}' = \frac{1}{2} (\mathbf{F}'^T \mathbf{F}' \mathbf{I}) = \frac{1}{2} (\mathbf{F}^T \mathbf{R}^T \mathbf{R} \mathbf{F} \mathbf{I}) = \frac{1}{2} (\mathbf{F}^T \mathbf{F} \mathbf{I}) = \mathbf{E}$
- Linear Cauchy strain is not rotation-invariant

$$\varepsilon' = \frac{1}{2} (\mathbf{F}' + \mathbf{F}'^t) \neq \frac{1}{2} (\mathbf{F} + \mathbf{F}^t) = \varepsilon \rightarrow \text{artifacts for larger rotations}$$

# **Stiffness Warping**



Mueller and Gross, Interactive Virtual Materials, Graphics Interface '04 http://matthias-mueller-fischer.ch/publications/Gl2004.pdf

# Cauchy vs. Green strain: Summary

Green strain is quadratic in displacements

$$E = \frac{1}{2} (\mathbf{F}^T \mathbf{F} - \mathbf{I}) = \frac{1}{2} (\nabla \mathbf{u} + \nabla \mathbf{u}^T + \nabla \mathbf{u}^T \nabla \mathbf{u})$$

Neglecting quadratic terms leads to the linear Cauchy strain

$$\varepsilon = \frac{1}{2}(\nabla \mathbf{u} + \nabla \mathbf{u}^{\mathsf{t}}) = \frac{1}{2}(\mathbf{F} + \mathbf{F}^{\mathsf{t}}) - \mathbf{I}$$

#### Note:

- both Cauchy and Green strain are invariant under translation
- Green strain is invariant under rotation, but Cauchy strain is not



- $\bar{x}_1 = (-1, -1)$
- $\overline{x}_2 = (1, -1)$   $\overline{x}_3 = (1, 1)$   $\overline{x}_4 = (-1, 1)$

- Undeformed configuration  $\bar{x} = (\bar{x}, \bar{y})^T$
- Deformed configuration  $x(\overline{x}) = (x(\overline{x}, \overline{y}), y(\overline{x}, \overline{y}))^T$

• Displacement field 
$$u(\overline{x}) = (u(\overline{x}, \overline{y}), v(\overline{x}, \overline{y}))^T$$

$$\mathbf{u}_1 = \mathbf{u}(\overline{\mathbf{x}}_1) = \mathbf{x}(\overline{\mathbf{x}}_1) - \overline{\mathbf{x}}(\overline{\mathbf{x}}_1) = (3,3)^T$$

$$u_2 = (3,3)^T$$

$$u_3 = (6,4)^T$$

$$u_4 = (6,4)^T$$

• Compute displacement as  $\frac{\partial u}{\partial \bar{x}} = \frac{u_{2x} - u_{1x}}{\bar{x}_{2x} - \bar{x}_{1x}}$  etc.

$$\mathbf{F} = \nabla \mathbf{u} + \mathbf{I} = \begin{bmatrix} \frac{\partial u}{\partial \bar{x}} & \frac{\partial u}{\partial \bar{y}} \\ \frac{\partial v}{\partial \bar{x}} & \frac{\partial v}{\partial \bar{y}} \end{bmatrix} + \mathbf{I} = \frac{1}{2} \begin{bmatrix} \\ \end{bmatrix} + \mathbf{I} = \frac{1}{2} \begin{bmatrix} \\ \end{bmatrix}$$



- $\bar{x}_1 = (-1, -1)$
- $\overline{x}_2 = (1, -1)$   $\overline{x}_3 = (1, 1)$
- $\overline{x}_4 = (-1,1)$

- Undeformed configuration  $\bar{x} = (\bar{x}, \bar{y})^T$
- Deformed configuration  $x(\overline{x}) = (x(\overline{x}, \overline{y}), y(\overline{x}, \overline{y}))^T$
- Displacement field  $u(\bar{x}) = (u(\bar{x}, \bar{y}), v(\bar{x}, \bar{y}))^T$

$$\mathbf{u}_1 = \mathbf{u}(\overline{\mathbf{x}}_1) = \mathbf{x}(\overline{\mathbf{x}}_1) - \overline{\mathbf{x}}(\overline{\mathbf{x}}_1) = (3,3)^T$$
  
$$\mathbf{u}_2 = (3,3)^T$$
  
$$\mathbf{u}_3 = (6,4)^T$$

$$\mathbf{u}_3 = (6,4)^T$$

$$\boldsymbol{u}_4 = (6,4)^T$$

• Compute displacement as  $\frac{\partial u}{\partial \bar{x}} = \frac{u_{2x} - u_{1x}}{\bar{x}_{2x} - \bar{x}_{4x}}$  etc.

$$\mathbf{F} = \nabla \mathbf{u} + \mathbf{I} = \begin{bmatrix} \frac{\partial u}{\partial \bar{x}} & \frac{\partial u}{\partial \bar{y}} \\ \frac{\partial v}{\partial \bar{x}} & \frac{\partial v}{\partial \bar{y}} \end{bmatrix} + \mathbf{I} = \frac{1}{2} \begin{bmatrix} 0 & 3 \\ 0 & 1 \end{bmatrix} + \mathbf{I} = \frac{1}{2} \begin{bmatrix} 2 & 3 \\ 0 & 3 \end{bmatrix}$$



$$\mathbf{F} = \frac{1}{2} \begin{bmatrix} 2 & 3 \\ 0 & 3 \end{bmatrix}$$

$$\mathbf{F} \cdot (1,0)^T = (1,0)^T$$

$$\mathbf{F} \cdot (0,1)^T = (1.5,1.5)^T$$

$$\mathbf{F} \cdot (1,1)^T = (2.5,1.5)^T$$

$$E = ?$$

- $\bar{x}_1 = (-1, -1)$
- $\overline{x}_2 = (1, -1)$   $\overline{x}_3 = (1, 1)$
- $\bar{x}_4 = (-1,1)$

## 3D Stress

- Virtual experiment on deformed solid
  - Insert cut plane with normal n through p
  - Observe traction force  $\mathbf{f}_n(\mathbf{n}, \mathbf{p})$  on area dA
  - Traction force density  $\mathbf{t}_n(\mathbf{n}, \mathbf{p}) = \frac{d\mathbf{f}_n}{dA}$  as  $dA \to 0$

How does  $t_n$  change with n?



• Cauchy's stress theorem:  $\mathbf{t}_n$  depends linearly on  $\mathbf{n}$ 

$$\mathbf{t}(\mathbf{x}, \mathbf{n}) = \sigma(\mathbf{x}) \cdot \mathbf{n}$$
 $\uparrow$ 

Cauchy stress tensor

# **Cauchy Stress**

Cauchy stress tensor written out

$$\mathbf{t}(\mathbf{x},\mathbf{n}) = \boldsymbol{\sigma}(\mathbf{x}) \cdot \mathbf{n} = \begin{pmatrix} \sigma_x & \tau_{xy} & \tau_{xz} \\ \tau_{xy} & \sigma_y & \tau_{yz} \\ \tau_{xz} & \tau_{yz} & \sigma_z \end{pmatrix} \cdot \mathbf{n}$$

- Normal stress components  $\sigma_i$
- Shear stress components  $\sigma_{ij}$

• Entries of  $\sigma$  are force components on unit cube



### What's a tensor?



The second-order Cauchy stress tensor in the basis (e1, e2, e3):

$$\mathbf{T} = \left[ \left. \mathbf{T}^{(\mathbf{e}_1)} \mathbf{T}^{(\mathbf{e}_2)} \mathbf{T}^{(\mathbf{e}_3)} \right. \right]$$

$$\mathbf{T} = egin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \ \sigma_{21} & \sigma_{22} & \sigma_{23} \ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}$$

Still confused: watch this cute video: https://www.youtube.com/watch?v=f5liqUk0ZTw

## Statics on Deformable Bodies (Plan)

- Continuum Mechanics Intro
  - Spring Systems
  - Continuum Mechanics in 1D
- Continuum Mechanics in 3D
  - Strain
  - Stress
  - Material model (linear case)
- Discretization (3D)
  - Finite Elements
  - Solving for Static Equilibrium
- More material models

### **Constitutive Laws**

Material model links strain to energy (and stress)

Hookean materials  $\sigma = \mathbf{E}\varepsilon$ .

How big is **E**?

Stress and strain are symmetric tensors

## **Linear Isotropic Materials**

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \sigma_{xy} \\ \sigma_{yz} \\ \sigma_{zx} \end{bmatrix} = \frac{E}{(1+v)(1-2v)} \begin{bmatrix} 1-v & v & v & 0 & 0 & 0 & 0 \\ v & 1-v & v & 0 & 0 & 0 & 0 \\ v & v & 1-v & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1-2v & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1-2v & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1-2v & 0 \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \varepsilon_{xy} \\ \varepsilon_{yz} \\ \varepsilon_{zx} \end{bmatrix},$$

- The scalar E is Young's modulus describing the elastic stiffness and
- the scalar  $\nu \in \left[0 \dots \frac{1}{2}\right)$  Poisson's ratio, a material parameter that describes to which amount volume is conserved within the material

## **Material Model**

Linear isotropic material (generalized Hooke's law)

- Energy density 
$$\Psi = \frac{1}{2}\lambda tr(\boldsymbol{\varepsilon})^2 + \mu tr(\boldsymbol{\varepsilon}^2)$$
  $tr(\boldsymbol{\varepsilon}) = \sum \varepsilon_{ii}$ 

- Cauchy stress  $\sigma = \frac{\partial \Psi}{\partial \varepsilon} = \lambda tr(\varepsilon) \mathbf{I} + 2\mu \varepsilon$
- Lame parameters  $\lambda$  and  $\mu$  are material constants

## **Material Parameters**

| V-T-E Elastic moduli for homogeneous isotropic materials                                                                                                                                                                            |                               |                                             |                                |                                       |                                |                                    |                                                                                                                                     |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------|--------------------------------|---------------------------------------|--------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|
| $Bulk \ modulus \ (K) \cdot Young's \ modulus \ (E) \cdot Lamé's \ first \ parameter \ (\lambda) \cdot Shear \ modulus \ (G,  \mu) \cdot Poisson's \ ratio \ (\nu) \cdot P-wave \ modulus \ (M)$                                    |                               |                                             |                                |                                       |                                |                                    |                                                                                                                                     |  |  |
| Conversion formulas [hide]                                                                                                                                                                                                          |                               |                                             |                                |                                       |                                |                                    |                                                                                                                                     |  |  |
| Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas. |                               |                                             |                                |                                       |                                |                                    |                                                                                                                                     |  |  |
|                                                                                                                                                                                                                                     | K =                           | E =                                         | $\lambda =$                    | G =                                   | $\nu =$                        | M =                                | Notes                                                                                                                               |  |  |
| (K, E)                                                                                                                                                                                                                              | K                             | E                                           | $\frac{3K(3K-E)}{9K-E}$        | $\frac{3KE}{9K-E}$                    | $\frac{3K-E}{6K}$              | $\frac{3K(3K+E)}{9K-E}$            |                                                                                                                                     |  |  |
| $(K, \lambda)$                                                                                                                                                                                                                      | K                             | $\frac{9K(K-\lambda)}{3K-\lambda}$          | λ                              | $\frac{3(K-\lambda)}{2}$              | $\frac{\lambda}{3K-\lambda}$   | $3K - 2\lambda$                    |                                                                                                                                     |  |  |
| (K, G)                                                                                                                                                                                                                              | K                             | $\frac{9KG}{3K+G}$                          | $K - \frac{2G}{3}$             | G                                     | $\frac{3K-2G}{2(3K+G)}$        | $K + \frac{4G}{3}$                 |                                                                                                                                     |  |  |
| $(K, \nu)$                                                                                                                                                                                                                          | K                             | $3K(1-2\nu)$                                | $\frac{3K\nu}{1+\nu}$          | $\frac{3K(1-2\nu)}{2(1+\nu)}$         | ν                              | $\frac{3K(1-\nu)}{1+\nu}$          |                                                                                                                                     |  |  |
| (K, M)                                                                                                                                                                                                                              | K                             | $\frac{9K(M-K)}{3K+M}$                      | $\frac{3K-M}{2}$               | $\frac{3(M-K)}{4}$                    | $\frac{3K-M}{3K+M}$            | M                                  |                                                                                                                                     |  |  |
| $(E, \lambda)$                                                                                                                                                                                                                      | $\frac{E+3\lambda+R}{6}$      | E                                           | λ                              | $\frac{E-3\lambda+R}{4}$              | $\frac{2\lambda}{E+\lambda+R}$ | $\frac{E-\lambda+R}{2}$            | $R = \sqrt{E^2 + 9\lambda^2 + 2E\lambda}$                                                                                           |  |  |
| (E, G)                                                                                                                                                                                                                              | $\frac{EG}{3(3G-E)}$          | E                                           | $\frac{G(E-2G)}{3G-E}$         | G                                     | $\frac{E}{2G} - 1$             | $\frac{G(4G-E)}{3G-E}$             |                                                                                                                                     |  |  |
| $(E, \nu)$                                                                                                                                                                                                                          | $\frac{E}{3(1-2\nu)}$         | E                                           | $\frac{E\nu}{(1+\nu)(1-2\nu)}$ | $\frac{E}{2(1+\nu)}$                  | ν                              | $\frac{E(1-\nu)}{(1+\nu)(1-2\nu)}$ |                                                                                                                                     |  |  |
| (E, M)                                                                                                                                                                                                                              | $\frac{3M-E+S}{6}$            | E                                           | $\frac{M-E+S}{4}$              | 3 <i>M</i> + <i>E</i> - <i>S</i><br>8 | $\frac{E-M+S}{4M}$             | М                                  | $S=\pm\sqrt{E^2+9M^2-10EM}$ There are two valid solutions. The plus sign leads to $\nu\geq0$ . The minus sign leads to $\nu\leq0$ . |  |  |
| $(\lambda,G)$                                                                                                                                                                                                                       | $\lambda + \frac{2G}{3}$      | $\frac{G(3\lambda+2G)}{\lambda+G}$          | $\lambda$                      | G                                     | $\frac{\lambda}{2(\lambda+G)}$ | $\lambda + 2G$                     |                                                                                                                                     |  |  |
| $(\lambda, \nu)$                                                                                                                                                                                                                    | $\frac{\lambda(1+\nu)}{3\nu}$ | $\frac{\lambda(1+\nu)(1-2\nu)}{\nu}$        | λ                              | $\frac{\lambda(1-2\nu)}{2\nu}$        | ν                              | $\frac{\lambda(1-\nu)}{\nu}$       | Cannot be used when $ u=0 \Leftrightarrow \lambda=0$                                                                                |  |  |
| $(\lambda, M)$                                                                                                                                                                                                                      | $\frac{M+2\lambda}{3}$        | $\frac{(M-\lambda)(M+2\lambda)}{M+\lambda}$ | λ                              | $\frac{M-\lambda}{2}$                 | $\frac{\lambda}{M+\lambda}$    | M                                  |                                                                                                                                     |  |  |
| (G,  u)                                                                                                                                                                                                                             | $\frac{2G(1+\nu)}{3(1-2\nu)}$ | $2G(1+\nu)$                                 | $\frac{2G\nu}{1-2\nu}$         | G                                     | ν                              | $\frac{2G(1-\nu)}{1-2\nu}$         |                                                                                                                                     |  |  |
| (G, M)                                                                                                                                                                                                                              | $M - \frac{4G}{3}$            | $\frac{G(3M-4G)}{M-G}$                      | M-2G                           | G                                     | $\frac{M-2G}{2M-2G}$           | M                                  |                                                                                                                                     |  |  |
| $(\nu, M)$                                                                                                                                                                                                                          | $\frac{M(1+\nu)}{3(1-\nu)}$   | $\frac{M(1+\nu)(1-2\nu)}{1-\nu}$            | $\frac{M\nu}{1-\nu}$           | $\frac{M(1-2\nu)}{2(1-\nu)}$          | ν                              | M                                  |                                                                                                                                     |  |  |

## **Material Model**

- Material model links strain to energy (and stress)
- Linear isotropic material (generalized Hooke's law)
  - Energy density  $\Psi = \frac{1}{2}\lambda tr(\boldsymbol{\varepsilon})^2 + \mu tr(\boldsymbol{\varepsilon}^2)$   $tr(\boldsymbol{\varepsilon}) = \sum \varepsilon_{ii}$
  - Cauchy stress  $\sigma = \frac{\partial \Psi}{\partial \varepsilon} = \lambda \operatorname{tr}(\boldsymbol{\varepsilon})\mathbf{I} + 2\mu \boldsymbol{\varepsilon}$
  - Lame parameters  $\lambda$  and  $\mu$  are material constants
- Interpretation
  - $\operatorname{tr}(\boldsymbol{\varepsilon}^2) = \operatorname{tr}(\boldsymbol{\varepsilon}^T \boldsymbol{\varepsilon}) = \|\boldsymbol{\varepsilon}\|_F^2$  penalizes all strain components equally
  - $\lambda tr(\varepsilon)^2$  penalizes dilatations, i.e., volume changes

## Statics on Deformable Bodies (Plan)

- Continuum Mechanics Intro
  - Spring Systems
  - Continuum Mechanics in 1D
- Continuum Mechanics in 3D
  - Strain
  - Stress
  - Material model (linear case)
- Discretization (3D)
  - Finite Elements
  - Solving for Static Equilibrium
- More material models

## Finite Element Discretization

• Divide input model into elements (e.g., triangles in 2D, tetrahedra in 3D)



- For each element, evaluate its energy, the energy gradient, and the energy Hessian
- All quantities depend (only) on the deformation gradient F

## **Finite Elements**

#### What is a finite element?

A finite element consists of

- a closed subset  $\Omega_e \subset \mathbf{R}^d$  (in d dimensions)
- n nodal basis functions,  $N_i: \Omega_e \to \mathbf{R}$
- n vectors of nodal variables  $\overline{x}_i \in \mathbf{R}^d$  describing the reference geometry
- n vectors of degrees of freedom (e.g., deformed positions  $x_i$ )



# **Linear Simplicial Elements**



- Simplicial elements admit linear basis functions
- Basis functions are uniquely defined through
- reference geometry  $\overline{x}_i$  and
- interpolation requirement  $N_i(\overline{x}_i) = \delta_{ij}$

| $\overline{x}_i = \bar{x}_i$                                      | in 1D |
|-------------------------------------------------------------------|-------|
| $\overline{\mathbf{x}}_i = (\bar{x}_i, \bar{y}_i)$                | in 2D |
| $\overline{\boldsymbol{x}}_i = (\bar{x}_i, \bar{y}_i, \bar{z}_i)$ | in 3D |

# **Computing Basis Functions - 2D**



- Basis functions are linear:  $N_i(x, y) = a_i x + b_i y + c$
- Due to  $N_i(\mathbf{x}_i) = \delta_{ii}$  , we have

$$\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix} \cdot \begin{bmatrix} a_i \\ b_i \\ c_i \end{bmatrix} = \begin{bmatrix} \delta_{1i} \\ \delta_{2i} \\ \delta_{3i} \end{bmatrix} \longrightarrow \begin{bmatrix} a_i \\ b_i \\ c_i \end{bmatrix} = \begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix}^{-1} \cdot \begin{bmatrix} \delta_{1i} \\ \delta_{2i} \\ \delta_{3i} \end{bmatrix}$$

# Computing Basis Functions - 3D



- Basis functions are linear,  $N_i(\bar{x}, \bar{y}, \bar{z}) = a_i \bar{x} + b_i \bar{y} + c_i \bar{z} + d_i$
- From  $N_i(\overline{x}_j) = \delta_{ij}$  we obtain

$$N_{i}(\bar{x}, \bar{y}, \bar{z}) = a_{i}\bar{x} + b_{i}\bar{y} + c_{i}\bar{z} + d_{i}$$

$$\begin{pmatrix} x_{1} & y_{1} & z_{1} & 1 \\ x_{2} & y_{2} & z_{2} & 1 \\ x_{3} & y_{3} & z_{3} & 1 \\ x_{4} & y_{4} & z_{4} & 1 \end{pmatrix} \begin{pmatrix} a_{i} \\ b_{i} \\ c_{i} \\ d_{i} \end{pmatrix} = \begin{pmatrix} \delta_{1i} \\ \delta_{2i} \\ \delta_{3i} \\ \delta_{4i} \end{pmatrix}$$



## **Deformation Gradient**

 Use basis functions to define continuous geometry of element as

$$\bar{\mathbf{x}}(\bar{x}, \bar{y}, \bar{z}) = \sum N_i(\bar{x}, \bar{y}, \bar{z})\bar{\mathbf{x}}_i$$
 and  $\mathbf{x}(\bar{x}, \bar{y}, \bar{z}) = \sum N_i(\bar{x}, \bar{y}, \bar{z})\mathbf{x}_i$ 

Deformation gradient

$$\mathbf{F} = \frac{\partial \mathbf{x}(\bar{\mathbf{x}})}{\partial \bar{\mathbf{x}}} = \sum_{i} \mathbf{x}_{i} \left( \frac{\partial N_{i}}{\partial \bar{\mathbf{x}}} \right)^{T}$$

- Note:
  - $-\mathbf{F} \in \mathbf{R}^{3\times3}$  and  $\mathbf{F}$  is linear in  $\mathbf{x}_i$
  - $-N_i$  are linear on element, **F** is constant
  - Hence,  $W^e = \int_{\Omega_e} \Psi = \Psi(\mathbf{F}) \cdot \overline{V}^e$



- $\overline{x}_1 = (-2, -1)$   $\overline{x}_2 = (2, 0)$   $\overline{x}_2 = (-1, 2)$ 

  - $\bar{x}_3 = (-1,3)$





- $x_1 = (3,0)$   $x_2 = (4,5)$   $x_3 = (1,2)$

- Compute basis functions  $N_i$
- Compute basis function derivatives  $\frac{\partial N_i}{\partial \bar{x}} = \nabla_{\bar{x}} N_i$ 
  - Compute **F** via  $F_{kl} = \sum_i \mathbf{x}_{i,k} \nabla_{\bar{x}_l} N_{\underline{i}}$
  - Compute **F** via  $\mathbf{F} = \sum_{i} \mathbf{x}_{i} (\nabla_{\overline{\mathbf{x}}} N_{i})^{T}$

Hint (the inverse)

$$\frac{1}{15} \begin{bmatrix} -3 & 4 & -1 \\ -3 & -1 & 4 \\ 6 & 7 & 2 \end{bmatrix}$$

## **Notation**

#### Continuous case:

- Undeformed configuration  $\overline{x}(\bar{x}, \bar{y}) = (\bar{x}, \bar{y})^T$
- Deformed configuration  $x(\bar{x}, \bar{y}) = (x(\bar{x}, \bar{y}), y(\bar{x}, \bar{y}))^T$

#### Discretized:

- Undeformed configuration  $\overline{x}(\bar{x}, \bar{y}) = \sum_{i} N_i(\bar{x}, \bar{y}) \overline{x}_i$
- Deformed configuration  $x(\bar{x}, \bar{y}) = \sum_{i} N_i(\bar{x}, \bar{y}) x_i$

# Interpreting F

- Polar decomposition F = RU, with R orthonormal (i.e. a rotation) and U positive definite
- If F is non-singular, i.e.,  $\det F \neq 0$ , then its PD exists and is unique.

Green strain: 
$$E = \frac{1}{2} (\mathbf{F}^T \mathbf{F} - \mathbf{I})$$

Cauchy strain: 
$$\frac{1}{2}(\mathbf{F} + \mathbf{F}^t) - \mathbf{I}$$

Green strain:  $E = \frac{1}{2}(U^tU - I)$ 

## Statics on Deformable Bodies (Plan)

- Continuum Mechanics Intro
  - Spring Systems
  - Continuum Mechanics in 1D
- Continuum Mechanics in 3D
  - Strain
  - Stress
  - Material model (linear case)
- Discretization (3D)
  - Finite Elements
  - Solving for Static Equilibrium
- More material models

# Solving The Static Equilibrium Problem

Necessary condition for static equilibrium

$$\mathbf{f}_{i}(\mathbf{x}) = \mathbf{f}_{i}^{ext} + \mathbf{f}_{i}^{el}(\mathbf{x}) = 0 \ \forall i$$

- Given x with  $f(x) \neq 0$ , find  $\Delta x$  such that  $f(x + \Delta x) = 0$
- First order approximation  $\rightarrow \mathbf{f}(\mathbf{x} + \Delta \mathbf{x}) \approx \mathbf{f}(\mathbf{x}) + \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \Delta \mathbf{x}$
- Therefore: we should solve for  $-\mathbf{f}(\mathbf{x}) = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \Delta \mathbf{x}$

# Newton's method While not converged Compute $\mathbf{f}(\mathbf{x}), \mathbf{K}(\mathbf{x})$ Solve $\mathbf{K}(\mathbf{x})\Delta\mathbf{x} = -\mathbf{f}(\mathbf{x})$ line search $\alpha = \mathrm{linesearch}(\mathbf{x}, \Delta\mathbf{x})$ Update $\mathbf{x} += \alpha \Delta\mathbf{x}$ end

#### **Stiffness matrix**

$$\mathbf{K} = \frac{\partial \mathbf{f}^{el}}{\partial \mathbf{x}}$$

$$\mathbf{f}_{i}^{el} = -\frac{\partial W}{\partial \mathbf{x}_{i}}$$

# Solving The Static Equilibrium Problem

Necessary condition for static equilibrium

$$\mathbf{f}_{i}(\mathbf{x}) = \mathbf{f}_{i}^{ext} + \mathbf{f}_{i}^{el}(\mathbf{x}) = 0 \ \forall i$$

- Given x with  $f(x) \neq 0$ , find  $\Delta x$  such that  $f(x + \Delta x) = 0$
- First order approximation  $\rightarrow K(x)\Delta x = -f(x)$

# Newton's method While not converged Compute $\mathbf{f}(\mathbf{x}), \mathbf{K}(\mathbf{x})$ Solve $\mathbf{K}(\mathbf{x})\Delta\mathbf{x} = -\mathbf{f}(\mathbf{x})$ line search $\alpha = \mathrm{linesearch}(\mathbf{x}, \Delta\mathbf{x})$ Update $\mathbf{x} += \alpha \Delta\mathbf{x}$ end

#### **Stiffness matrix**

$$\mathbf{K} = rac{\partial \mathbf{f}^{el}}{\partial \mathbf{x}}$$

$$\mathbf{f}_{i}^{el} = -\frac{\partial W}{\partial \mathbf{x}_{i}}$$

## **Linear Elasticity - Derivatives**

Computing the derivatives (per element)

• 
$$\mathbf{f}_{mx}^e = -\frac{\partial W^e}{\partial \mathbf{x}_{mx}} = \sum_{ij} \frac{\partial W^e}{\partial \varepsilon_{ij}^e} \frac{\partial \varepsilon_{ij}^e}{\partial \mathbf{x}_{mx}}$$

$$\begin{split} \bullet \ \frac{\partial \mathbf{f}_{mx}^{e}}{\partial \mathbf{x}_{ny}} \ &= -\frac{\partial^{2} W^{e}}{\partial \mathbf{x}_{mx} \partial \mathbf{x}_{ny}} \\ &= -\sum_{ijkl} \frac{\partial^{2} W^{e}}{\partial \boldsymbol{\varepsilon}_{ij}^{e} \boldsymbol{\varepsilon}_{kl}^{e}} \frac{\partial \boldsymbol{\varepsilon}_{ij}^{e}}{\partial \mathbf{x}_{mx}} \frac{\partial \boldsymbol{\varepsilon}_{kl}^{e}}{\partial \mathbf{x}_{ny}} \end{split}$$

• 
$$\frac{\partial \varepsilon_{ij}^e}{\partial \mathbf{x}_{mx}} = const.$$
,  $\frac{\partial W^e}{\partial \varepsilon_{ij}} = \sigma_{ij}$ ,  $\frac{\partial^2 W^e}{\partial \varepsilon_{ij} \partial \varepsilon_{kl}} = const.$ 

## **Stiffness matrix**

$$\mathbf{K} = \frac{\partial \mathbf{f}^{el}}{\partial \mathbf{x}}$$

$$\mathbf{f}_{i}^{el} = -\frac{\partial W}{\partial \mathbf{x}_{i}}$$



$$m, n = 1 \dots 4$$
  
 $i, j, k, l = 1 \dots 3$ 

## **Linear Elasticity - Assembly**

Assemble element contributions into global vector and matrix





## Statics on Deformable Bodies (Plan)

- Continuum Mechanics Intro
  - Spring Systems
  - Continuum Mechanics in 1D
- Continuum Mechanics in 3D
  - Strain
  - Stress
  - Material model (linear case)
- Discretization (3D)
  - Finite Elements
  - Solving for Static Equilibrium
- More material models

# **Linear Elasticity - Material Model**

- Material model links strain to energy (and stress)
- Linear isotropic material (generalized Hooke's law)

- Energy density 
$$\Psi = \frac{1}{2}\lambda tr(\boldsymbol{\varepsilon})^2 + \mu tr(\boldsymbol{\varepsilon}^2)$$
  $tr(\boldsymbol{\varepsilon}) = \sum \varepsilon_{ii}$ 

- Cauchy stress 
$$\sigma = \frac{\partial \Psi}{\partial \varepsilon} = \lambda \text{tr}(\varepsilon)\mathbf{I} + 2\mu \varepsilon$$

- Lame parameters  $\lambda$  and  $\mu$  are material constants

# **Linear Elasticity - Behavior**

- For linear elements,  ${\bf \it F}$  is constant and  $W=\int_{\overline{\Omega}_e} \Psi({\bf \it F}) = \Psi({\bf \it F}) \cdot \overline{V}$
- For linear elasticity, W is quadratic in  $\mathbf{x}$ ,  $\mathbf{f}$  is linear in  $\mathbf{x}$ , and  $\frac{\partial^2 W}{\partial x^2}$  is constant  $\rightarrow$  only solve one linear system for static equilibrium
- Problem: Cauchy strain is not invariant under rotations → inaccuracies for large rotations deformations
- Solution: use nonlinear deformation measure → nonlinear continuum mechanics



# **Nonlinear Elasticity**

• Idea: replace Cauchy strain with Green strain

# **Nonlinear Elasticity**

- Idea: replace Cauchy strain with Green strain
  - → St. Venant-Kirchhoff material (StVK)
- Energy  $\Psi_{StVK} = \frac{1}{2}\lambda tr(\mathbf{E})^2 + \mu tr(\mathbf{E}^2)$
- Component l of force on node k is  $\mathbf{f}_{kl}^e = -\frac{\partial W^e}{\partial \mathbf{x}_k} = -\sum_{ij} \frac{\partial W^e}{\partial \mathbf{F}_{ij}^e} \frac{\partial \mathbf{F}_{ij}^e}{\partial \mathbf{x}_{kl}}$
- Note:
  - Energy is quartic in x, forces are cubic
  - Solve system of nonlinear equations

## **StVK Limitations**

Problem: StVK softens under compression





- Reason: Green strain  $\mathbf{E} = \frac{1}{2} (\mathbf{F}^t \mathbf{F} \mathbf{I}) \rightarrow -\frac{1}{2} \mathbf{I}$  for  $\mathbf{F} \rightarrow \mathbf{0}$
- Work around: add volume term

$$\Psi_{StVK} = \frac{\lambda}{2} \operatorname{tr}(\mathbf{E})^2 + \mu \operatorname{tr}(\mathbf{E}^2) \qquad \rightarrow \qquad \qquad \Psi_{Mod} = \eta (\det(\mathbf{F}) - 1)^2 + \mu \operatorname{tr}(\mathbf{E}^2)$$

# Isotropic Hyperelasticity

- **Hyperelasticity**: the stress-strain relationship derives from a strain energy density function Ψ; Ψ is a potential, i.e., only depends on state of deformation, not on the path travelled, and not on the rate of deformation.
- Isotropy: the material behavior is the same in any material direction, i.e.,  $\Psi(\mathbf{F}) = \Psi(\mathbf{Q}\mathbf{F}\mathbf{Q}^T)$  for all orthogonal matrices  $\mathbf{Q}$ .
- For example, a uniaxial strain of given magnitude will lead to same energy, regardless of the axis.
- Rubbers and many biological materials are isotropic and (nearly)
  hyperelastic.

# Isotropic Hyperelasticity

- If the material is isotropic, then the relationship between  $\Psi$  and C = FTF must be independent of the choice of material axes.
- Consequently,  $\Psi$  can only depend on the invariants of  $\boldsymbol{C}$ , i.e.,

$$\Psi(\mathbf{C}) = \Psi(I_1(\mathbf{C}), I_2(\mathbf{C}), I_3(\mathbf{C}))$$

where the three invariants of C are

$$I_1 = \lambda_1^2 + \lambda_2^2 + \lambda_3^2$$
  $I_2 = \lambda_1^2 \lambda_2^2 + \lambda_2^2 \lambda_3^2 + \lambda_3^2 \lambda_1^2$   $I_3 = J^2 = \det(\mathbf{C})$ 

# Incompressibility

- Many materials such as biological tissue and rubbers strongly resist volumetric deformation
- To model (nearly) incompressible materials, decompose deformation
   C into volumetric and deviatoric (volume-preserving) parts,

volumetric: 
$$J = \det(\mathbf{F})$$
 deviatoric:  $\overline{\mathbf{C}} = \det(\mathbf{F})^{-2/3} \mathbf{C}$ 

• Introduce deviatoric invariants, i.e., invariants of  $\overline{\mathbf{C}}$  as

$$\bar{I}_1 = J^{-2/3}I_1$$
 and  $\bar{I}_2 = J^{-4/3}I_2$ 

## Neo-Hookean Material

 The strain energy density for a compressible Neo-Hookean material is defined as

$$\Psi_{NH} = \frac{\mu}{2} (\text{tr}(\mathbf{C}) - 3) - \mu \ln J + \frac{\lambda}{2} \ln(J)^2$$

#### **Observations:**

- the first term penalizes all deformations equally (since  $tr(\mathbf{C}) = |\mathbf{F}|_F^2$ )
- the third term goes to infinity for increasing compression (faster than the second)
- the stress-strain behavior is initially linear, but goes into plateau for larger deformations
- Rule of thumb: NH is good for deformations of up to 20%





## **Model Comparison**



St. Venant-Kirchhoff

Neo Hookean

Linear

## **Model Comparison**



St. Venant-Kirchhoff

Neo Hookean

Linear

Choosing the wrong material model leads to artifacts!!!!

## **Hyperelastic Models: Differences**



St. Venant-Kirchhoff

Neo Hookean

# Material Measurement & Fitting

- Fit material coefficients to experimental stress-strain data
- Design experiments that lead to simple homogeneous states of deformation
- Multiple experiments are needed to extract all material coefficients
  - Uniaxial extension
  - Planar extension
  - Equibiaxial extension
  - ...
- Collect data (stress-strain curves), fit material coefficients
  - by solving analytical equations for stress-strain behavior (numerically)
  - by minimizing the difference between simulated and measured strains/stresses

## **Materials - Measurements**



**Uniaxial extension** 



Planar extension

Simple tension

- 
$$\lambda_1 = \lambda$$
,  $\lambda_2 = \lambda_3 = 1/\sqrt{\lambda}$   
-  $\sigma_{11} = \sigma$ ,  $\sigma_{22} = \sigma_{33} = 0$ 

• Pure shear

$$-\lambda_1 = \lambda, \quad \lambda_2 = \frac{1}{\lambda}, \quad \lambda_3 = 1$$
$$-I_1 = I_2$$

http://www.axelproducts.com/downloads/TestingForHyperelastic.pdf

# The Limits of Hyperelasticity

- Real-world materials are not perfectly hyperelastic
  - Viscosity (stress relaxation, creep)
  - Plasticity (irreversible deformation)
  - Mullins effect (stiffness depends on strain history)
  - Fatigue, damage, ...



Figure 11, 1st Loading of a Thermoplastic Elastomer



Figure 12, Multiple Strain Cycles of a Thermoplastic Elastomer



Levels

# **Further Reading**

## **Textbook**

• Bonet and Wood, Nonlinear Continuum Mechanics