Sistemi a classificatori

Sistemi a classificatori

Corso di laurea in Informatica

(anno accademico 2024/2025)

- ☐ Insegnamento: Apprendimento ed evoluzione in sistemi artificiali
- Docente: Marco Villani

E' vietata la copia e la riproduzione dei contenuti e immagini in qualsiasi forma. E' inoltre vietata la redistribuzione e la pubblicazione dei contenuti e immagini non autorizzata espressamente dall'autore o dall'Università di Modena e Reggio Emilia

Ispirazione biologica

- Nelle reti neurali l'ispirazione proviene dalla biologia
 - neuroni simili ai neuroni biologici
 - □ metodi di apprendimento ispirati anch'essi (a volte) dalla biologia, p.es. regola di Hebb, mexican hat ...
- un altro filone di sistemi capaci di apprendere è anch'esso ispirato dalla biologia: evoluzione biologica
- □ vi sono altre possibili fonti di ispirazione:
 - □ sistema immunitario
 - □ colonie di insetti
 - □ ...

Introduzione ai sistemi a classificatori

- Motivazioni e cenni storici
- Architettura dei CS
- Le componenti: messaggi e classificatori
- Apprendimento a breve termine : bucket brigade
- Apprendimento a lungo termine: algoritmi genetici

- All'inizio dell'IA si era enfatizzata la capacità di risolvere problemi generali
 - ragionamento, euristiche generali, etc.
- In seguito la ricerca si è orientata verso un uso sempre maggiore di conoscenza specifica del dominio
 - per ridurre il numero di alternative ad ogni passo

I primi sistemi esperti

- L'importanza della conoscenza specifica
 - rispetto ai metodi generali di ragionamento
- quindi l'importanza della rappresentazione della conoscenza
- la comparsa (e il successo) dei primi sistemi esperti alla fine degli anni 70
 - Mycin
- Prospector
- Dendral
- R1

 Rappresentazione della conoscenza mediante regole del tipo

SE condizione ALLORA azione

- SE canta e vola ALLORA è un uccello
- Quando la base dei fatti contiene informazioni che soddisfano la condizione, la regola può essere applicata

canta e vola

■ la parte "azione" può aggiungere nuova conoscenza alla base dei fatti

è un uccello

- La conoscenza è composta da
 - regole
 - fatti specifici relativi al caso in questione
- il motore inferenziale determina quale regola applicare ad ogni passo
- la base di conoscenza e il motore inferenziale costituiscono il cuore (o la mente) del sistema
- Vi è separazione fra la conoscenza ed il suo uso
 - l'ingegnere della conoscenza può concentrarsi sul primo aspetto
 - il concatenamento delle inferenze è lasciato alla macchina inferenziale
- è necessaria una interfaccia che acquisisca le informazioni necessarie
 - ed eventualmente le richieda

Mycin

- Diagnosi di malattie infettive
- la conoscenza è rappresentata mediante regole
- Esempio:
 - SE
 - L'organismo è gram-positivo e
 - la morfologia dell'organismo è cocco e
 - la conformazione di crescita dell'organismo è "a blocchi"
 - ALLORA
 - L'organismo potrebbe essere uno staffilococco

- Mycin si basa sui dati di culture dei microorganismi e su informazioni sullo stato del paziente (febbre, etc.)
- lavora ipotizzando una possibile diagnosi e, mediante backward chaining in profondità, cerca le informazioni a supporto della ipotesi
- utilizza un meccanismo basato su fattori di certezza per dare un peso alle varie catene di inferenze
- confronta i pesi complessivi e propone la diagnosi che ha maggiore supporto
- buoni risultati nel confronto coi medici dell'università di Stanford

I primi sistemi esperti

- Mycin
 - buoni risultati nel confronto con medici esperti
- Prospector
 - scoperta di un nuovo giacimento
- Dendral
 - analisi di composti mediante spettrometria di massa
- R1
 - usato per la configurazione dei computer DEC-Vax

Le speranze

- I programmi tradizionali sono rigidi e difficili da mantenere
- i sistemi esperti sono molto più efficaci e "naturali" da comprendere
 - forniscono prestazioni umane, non sovrumane
- Grande interesse applicativo: il computer avrebbe risolto il problema della gestione delle conoscenze come aveva risolto quelli del calcolo numerico, della contabilità e della gestione dei magazzini
 - standardizzazione delle conoscenze in una azienda
 - disponibilità ubiquitaria di competenze di alto livello
 - sopravvivenza delle conoscenze al trasferimento o pensionamento dell'esperto

I primi entusiasmi (prima metà anni '80)

- I primi successi crearono grandi attese
- Nacquero le "shell" o gusci, costituiti da interfacce veramente avanzate per l'epoca e da motori inferenziali
- Si diffuse la convinzione (erronea!) che sviluppare sistemi esperti potesse essere semplice e veloce
- Sarebbe stato sufficiente "riempire" una base di conoscenze mediante un insieme di regole ottenute da un "ingegnere della conoscenza" attraverso un dialogo con un esperto umano
 - le conoscenze avrebbero tenuto conto anche delle euristiche esperienziali

L'inverno dell'AI (fine anni '80 - metà anni 90)

- Sottovalutazione dei problemi legati alla acquisizione e alla rappresentazione formale delle conoscenze
 - formalismi innaturali
 - natura sfumata di alcuni tipi di conoscenze
- Tempo necessario per sviluppare un sistema esperto
- Dinamicità delle conoscenze
 - difficoltà di manutenzione
- Necessità di integrazione col resto del sistema informativo
- Assenza di prestazioni sovrumane
- Improvvisazione (dei programmatori)
- Overselling (dei venditori)

La ripresa

- Le aziende che hanno saputo investire su alcune applicazioni ben meditate hanno ottenuto risultati dimostrabili
- Si è capito che i sistemi esperti possono funzionare egregiamente, ma che non ci sono scorciatoie
- L'enfasi crescente sull'aumento di efficienza fornisce stimoli importanti alla adozione estesa di sistemi di questo genere
 - time to market
 - riduzione del personale
- Tendenza allo sviluppo di sistemi per la gestione delle conoscenze aziendali

I nuovi entusiasmi

- Le reti neurali, come vedremo in breve, rappresentano un approccio alternativo a quello simbolico
 - O complementare?
- La crescita esplosiva
 - Delle capacità computazionali (schede grafiche, calcolo parallelo)
 - Degli esempi disponibili (Internet)
- Consente oggi di ottenere prestazioni eccellenti in molti settori
- Le reti neurali rimangono tuttavia "oscure", non adatte a "spiegare" i motivi delle loro conclusioni

Apprendimento automatico

- Esistono anche metodi di apprendimento simbolico che "ragionano" esplicitamente sugli esempi
 - vulnerabili alla presenza di difetti, rumore e contraddizioni nell'insieme di esempi
- Può essere interessante combinare le proprietà di autoorganizzazione di metodi dinamici con le capacità di spiegazione e di concatenazione di inferenze dei metodi simbolici
 - Sistemi a classificatori

Cosa sono i sistemi a classificatori (CS)

- Sistemi che apprendono a svolgere un compito interagendo con un ambiente parzialmente ignoto, utilizzando meccanismi di feedback per guidare un processo evolutivo interno che modifica il proprio modello del mondo (basato su regole)
- Apprendimento da esempi (come NN)
- I sistemi a classificatori sono particolarmente interessanti perché combinano aspetti simbolici e meccanismi di auto-organizzazione dinamica

Caratteristiche dei CS

- Aspetti simbolici: rappresentazione esplicita della conoscenza
 - √ basata su regole
- Aspetti sub-simbolici:
- le regole esistenti vengono valutate in funzione del loro apporto al funzionamento del sistema
 - √ non sono oggetto di ragionamento esplicito
- le nuove regole vengono generate mediante variazione e ricombinazione casuale di regole esistenti
 - ✓ mediante algoritmi genetici
- La compresenza di questi due aspetti rende i CS estremamente interessanti dal punto di vista teorico

Cenni storici

- Introdotti da John Holland negli anni '80
- Simulazione dei processi di apprendimento induttivo mediante metodi ispirati dalle scienze biologiche (algoritmi genetici)
- Fanno inoltre ricorso ad un meccanismo di valutazione dell'apporto delle regole al funzionamento del sistema basato su una metafora economica
- Hanno destato un notevole interesse teorico
- Inizialmente, modesti successi applicativi
- Alcune applicazioni di successo di sistemi ispirati ai CS negli ultimi anni hanno riacceso l'interesse anche dal punto di vista applicativo per questo filone di ricerca

Compiti che possono essere affrontati da un CS

- Classificare una serie di casi
 - diagnosi
- Controllare un apparato tecnologico
 - p.es. gasdotto
- Imparare a muoversi in un ambiente (robot autonomi)
- Inventare manovre di combattimento fra aerei
- Sistemi multiagente: i CS sono alla base di modelli di agenti autonomi interagenti, p.es. nella simulazione di sistemi economici
 - capacità di sviluppare autonomamente "regole di comportamento" che cambiano nel tempo

Schema dell'architettura di un CS

Schema dell' architettura di un CS (Michigan approach)

Classificatori

- SE UN MESSAGGIO PRESENTE NELLA LISTA DEI MESSAGGI SODDISFA LA condizione
- ALLORA CERCA DI IMPOSTARE IL MESSAGGIO azione
 - SE allatta i piccoli ALLORA è un mammifero
 - allatta i piccoli
- La parte "azione" può consistere
 - in nuova conoscenza che viene aggiunta alla lista dei messaggi
 - oppure in un messaggio per gli effettori
- Più classificatori possono agire simultaneamente, impostando diversi messaggi
 - è ammessa la presenza di messaggi contraddittori nella ML, ma nel caso di messaggi contraddittori per gli effettori uno solo viene scelto

Evoluzione dei sistemi a classificatori

- Dinamica rapida: un sistema di apprendimento con rinforzo, che assegna un valore alle diverse regole, sulla base del loro contributo al buon funzionamento del sistema.
- Dinamica lenta: un sistema di generazione di nuove regole, basato su algoritmi genetici, che elimina le regole meno utili e le sostituisce con combinazioni e variazioni di quelle più utili

Il ciclo dei CS (a regole fisse) (1)

Numero_di_iterazioni = 1

WHILE (Numero_di_iterazioni <= Massimo)

{ alla lista dei messaggi (impostati al passo precedente) si aggiungono eventuali messaggi di input dai detettori;

si confrontano i messaggi con le condizioni di tutti i classificatori;

i classificatori le cui condizioni sono soddisfatte competono per poter impostare i loro messaggi;

i classificatori vittoriosi impostano e "ripagano" quelli che hanno impostato i messaggi che hanno consentito loro di attivarsi;

Il ciclo dei CS (a regole fisse) (2)

la vecchia lista dei messaggi viene cancellata e sostituita dai messaggi impostati dai classificatori vincenti;

gli effettori verificano se vi sono messaggi di output sulla lista; in caso affermativo, effettuano l'azione corrispondente (dopo aver risolto eventuali conflitti);

i classificatori che hanno impostato i messaggi di output vengono ripagati dall'esterno (premio/punizione);

```
Numero_di_iterazioni = Numero_di_iterazioni + 1;
```

}

Messaggi e classificatori

• i messaggi sono stringhe binarie, composte da un numero fisso L di elementi appartenenti all'alfabeto {0,1}

```
|1|0|0|1|1|
```

- i classificatori sono definiti da
- una parte "condizione": una stringa di L simboli $\in \{0,1,\#\}$: |1|0|#|#|1|
- una parte "azione": una stringa di L simboli $\in \{0,1,*\}$: |0|0|0|*|1|

```
|1|0|#|#|1| |0|0|0|*|1|
```

■ una variabile reale s (la "forza")

Condizioni di match e nuovi messaggi

- Un classificatore fa match con un messaggio se la sua parte condizione coincide col messaggio in tutte le posizioni in cui non c' è il simbolo # (don' t care)
 - p.es. unico messaggio presente nella lista dei messaggi : |1|0|0|1|1|
- |1|0|1|1|1 |0|0|0|1|1 \rightarrow no match, nessun nuovo messaggio
- - il simbolo * significa "pass through" (lascia filtrare il valore)

Competizione fra classificatori attivabili

- La specificità di un classificatore è definita come la frazione di elementi della condizione diversi da "#"
 - sia λ il numero di # nella parte di condizione
- La competizione è basata su una funzione (bid) della specificità e della forza del classificatore: $b_i=b_i(s_i)$

$$b_i = \gamma_i s_i$$

- lacktriangle dove γ_i è la specificità del classificatore i-esimo ed s_i la sua forza
- La scelta dei vincitori viene effettuata in maniera probabilistica
 - la probabilità di selezione è una funzione crescente del bid (tipicamente, direttamente proporzionale al bid)
 - nel caso di messaggi contraddittori per gli effettori, la scelta è anch'essa dipendente dal bid

Pagamenti

- La forza di un classificatore è una misura della sua utilità dimostrata per il funzionamento del sistema
 - forza elevata -> bid elevato -> elevata possibilità di impostare
- La forza dei classificatori che impostano messaggi di output viene modificata direttamente dall'esterno
 - ricompensa (aumento della forza) o punizione
- è necessario ricompensare anche le regole a monte di quella che ha fornito un output corretto
 - mantenere memoria di tutte le concatenazioni di regole sarebbe proibitivo
 - si introduce un meccanismo "locale", che coinvolge solo i classificatori che si attivano in due istanti successivi
- L'algoritmo di "bucket brigade" definisce l'evoluzione delle forze

Dinamica delle ricompense

Bucket brigade

```
Aggiornamento dei valori della forza s[i] {
p[i]=αs[i];
new_s[i] = s[i]*(1-β);
IF (i ha impostato Q messaggi)
    new_s[i] = new_s[i] - Qp[i];
IF (C<sub>i</sub> ha impostato un messaggio all'istante precedente AND i classificatori i<sub>1</sub>, i<sub>2</sub> ... hanno impostato usando quel messaggio)
    new_s[i] = new_s[i] + p[i<sub>1</sub>]+p[i<sub>2</sub>]+...};
IF (C<sub>i</sub> ha impostato un messaggio di output)
    new_s[i] = new_s[i] + reward;
s[i] = new_s[i]
```

Gerarchie di default

- E' utile far coesistere, nello stesso sistema, regole più generali e regole più specifiche ("gerarchie di default")
- In assenza di informazioni specifiche le regole più generali possono fornire utili indicazioni di default, mentre in presenza di informazioni ulteriori si applicheranno le regole più specifiche
 - SE nuota nel mare ALLORA è un pesce
 - SE nuota nel mare e viene a galla per respirare ALLORA è un mammifero
- La dipendenza del bid dalla specificità consente appunto di privilegiare, a parità di forza, i classificatori più specifici, conservando regole generali anche se contraddette in casi particolari
 - la regola generale tende a soccombere nei casi in cui fornirebbe indicazioni erronee, e non viene quindi penalizzata

Una visione astratta della evoluzione di una specie

- Una popolazione è composta da individui differenti
 - ad ogni individuo è associato un genotipo ereditabile
- Esiste un meccanismo per generare nuovi genomi a partire da quelli di uno o di alcuni individui (riproduzione)
 - consente l'introduzione di novità, in larga misura casuali (ricombinazione di materiale genetico, mutazioni)
 - i figli assomigliano ai genitori più di quanto non assomiglino in media ad altri individui
- Una competizione fra individui simili per riprodursi
 - è l'ambiente stesso, composto da fattori naturali e umani, altre specie, membri della stessa specie, a privilegiare alcuni individui

Algoritmi genetici

- Una popolazione composta da "individui" differenti
 - ogni individuo può rappresentare una possibile soluzione al problema in esame
 - ad ogni individuo è associata una sua descrizione che può essere trasmessa
- Esistono meccanismi per generare nuovi individui a partire da individui esistenti (operatori genetici)
 - consentono di introdurre novità, in larga misura casuali
 - i figli assomigliano ai genitori più di quanto non assomiglino in media ad altri individui
- Esiste un sistema di valutazione della fitness di ogni individuo, e la selezione dei genitori è fatta in maniera probabilistica, privilegiando quelli a fitness elevata
- Ad ogni passo si genera una nuova popolazione, finché non si raggiunge una opportuna condizione di terminazione

Apprendimento a lungo termine: algoritmi genetici

Con una certa frequenza si modificano le regole

è necessario "lasciare tempo" al bucket brigade per fornire una stima attendibile dell'utilità delle regole

- 1 si scelgono i "genitori" delle nuove regole
 - selezione probabilistica basata sulla forza
 - sulla popolazione completa di C classificatori
- 2 si applicano "operatori genetici" ai genitori per ottenere un numero G<C di nuove regole
 - Elitismo (si lasciano nella popolazione le regole migliori)
- 3 si eliminano dalla popolazione G classificatori
 - eliminazione probabilistica basata sulla forza
 - vengono preservati i classificatori con forza maggiore
- 4 i nuovi classificatori vengono aggiunti alla base di regole

Mutazione e crossover

■ Mutazione (singolo genitore)

- figlio
- oppure
- **1** | 1 | 0 | 0 | 1 | # | | | | 0 | 0 | 0 | 1 | 1 |
- esplorazione "locale" di varianti

- Crossover a punto unico (due genitori)
- **1** | 1 | 1 | 0 | 0 | 0 | | | | 1 | 1 | 0 | 1 | 0 |
- incrocio (due figli)

- varianti: crossover a due punti, crossover omogeneo
- esplorazione "a distanza"

Il ciclo della genetica

Numero_generazioni = 1

WHILE (Numero_generazioni <= Max_gen){

- Valuta la forza di tutti i classificatori della popolazione attuale P , col ciclo a regole fisse;
- valutane la fitness;
- P' = \varnothing ;
- Scegli fra i classificatori G/2 coppie di genitori, in maniera proporzionale alla fitness;
- Incrociali con crossover a un punto, ottenendo G figli, e inseriscili in P';
- Ad ognuno degli elementi di P' applica l'operatore di mutazione puntuale (con una piccola probabilità);
- Aggiungi a P' le C-G regole con la fitness più alta;
- P = P';
- Numero_generazioni = Numero_generazioni + 1;

j

Alcuni vantaggi degli algoritmi genetici

- Il sistema è stocastico, quindi non è vincolato a cadere in un estremo locale
 - il crossover consente di esplorare regioni distanti nello spazio degli stati
 - mentre la mutazione consente esplorazioni "a corto raggio"
- Non vi sono richieste di alcun genere da imporre a priori alla funzione da ottimizzare
 - funzionano particolarmente bene quando vi è una certa struttura nell'insieme dei valori estremi, per cui massimi locali forniscono indicazioni sulla localizzazione del massimo assoluto
- Rappresentano una buona alternativa quando non si hanno informazioni a priori sulla funzione di fitness

Fitness dipendente dall'interazione

- Nelle "classiche" applicazioni di GA a problemi di ottimizzazione, esiste una regola per determinare la fitness di ogni individuo
 - l'unica interazione fra individui diversi è il confronto delle rispettive fitness, ed eventualmente la riproduzione
- Nei sistemi a classificatori "alla Michigan" non è possibile in generale assegnare una fitness direttamente all'"individuo" su cui agisce l'algoritmo genetico
- La fitness (forza) dipende dalle interazioni
 - è una proprietà collettiva, non individuale
- I classificatori co-evolvono
 - i cambiamenti di uno di essi possono influenzare la fitness degli altri

Operatori genetici specifici

- Partendo da una popolazione limitata di classificatori completamente random, può accadere con elevata probabilità che
 - i messaggi provenienti dai detettori non facciano match con alcun classificatore
 - non vi sia nessun messaggio di output
 - ad esempio, i messaggi interpretati dagli effettori come segnali di output possono essere quelli che iniziano con 5 "0"
- Cover detector: se nessun classificatore fa match con un messaggio di input, crea un classificatore che faccia match, con una parte di azione casuale
- Cover effector: se non ci sono messaggi di output (in una situazione in cui si richiede una azione o un segnale) genera un classificatore che fa match nella situazione attuale e che imposta un messaggio di output (casuale)

Aspetti suggestivi dei sistemi a classificatori

- Il sistema elabora in parallelo molte informazioni e conoscenze
- L'apprendimento combina una metafora economica (per l'apprendimento a breve termine) e una metafora biologica (per la scoperta di nuove regole)
- Si basano sulla interazione fra metodi genetici e sistemi dinamici
 - che determinano l'evoluzione delle forze

Aspetti suggestivi dei sistemi a classificatori

- Le regole sono "agenti in un mercato"
 - con regole definite dal bucket brigade
- Gli agenti sono semplici
 - stringhe di simboli tratti da un alfabeto molto semplice
- Nascita spontanea di catene di regole che si affermano
 - ricca dinamica di interazione
- Gerarchie di default

Elementi importanti dei sistemi a classificatori

- Co-evoluzione: il valore di una porzione di stringa (classificatore) dipende dal resto della stringa (alleli coadattati)
- Ancora co-evoluzione: il valore di una regola dipende dalla presenza di altre regole
 - il significato di una regola nel sistema è definito dalle interazioni con le altre regole
- Le relazioni fra regole (mediate dai messaggi) si creano nel corso dell'evoluzione, non sono prescritte
- Base per la modellistica di agenti economici

Alcuni aspetti problematici

- Possibile "convergenza prematura" verso soluzioni poco soddisfacenti
- Individui di uguale lunghezza
 - introdurre lunghezze variabili
 - numero variabile di regioni codificanti
- Mancanza di previsioni
 - introdurre le previsioni
 - misurare la fitness sulla accuratezza delle previsioni
- Limitata efficacia nella formazione di catene lunghe
- Struttura piatta
 - le gerarchie dovrebbero formarsi spontaneamente

Applicazioni

- Modelli ad agenti di sistemi socio-economici
- Animazione, figure in movimento
- Simulazione e scoperta di manovre aeree
- Knowledge discovery in medicina: stime del rischio
- Robot autonomi