Engenharia de Serviços em Rede Trabalho Prático Nº2 Streaming de áudio e vídeo a pedido e em tempo real

Ana Luísa Carneiro, Ana Rita Peixoto, and Luís Miguel Pinto

University of Minho, Department of Informatics, 4710-057 Braga, Portugal e-mail: {pg46983,pg46988,pg47428}@alunos.uminho.pt

Questão 1. Capture três pequenas amostras de trágefo no link de saída do servidor, respetivamente com 1 cliente (VLC), com 2 clientes (VLC e Firefox) e com 3 clientes (VLC, Firefox e ffmeg). Identifique a taxa em bps necessária (usando o ffmpeg -i video1.mp4 e/ou o próprio wireshark), o encapsulamento usado e o número total de fluxos gerados. Comente a escalabilidade da solução. Ilustre com evidências da realização prática do exercício (ex: capturas de ecrã).

Relativamente à taxa em bps necessária, podemos observar qual seria a taxa esperada através do comando ffmpeg -i video1.mp4, tal como apresentado na figura 1. A partir da execução deste comando, concluímos que o valor teórico seria de 11 kbps. Contudo, ao analisar pelo wireshark (figura 2), podemos observar que a taxa real necessária para a transmissão do vídeo foi na verdade 17 kbps, para a captura com apenas 1 cliente (VLC). Este valor pode ser justificado devido à ocorrência de perdas na transmissão (malformed packet). Podemos ainda observar a taxa relativa à captura com 2 clientes (VLC e Firefox) e com 3 clientes (VLC, Firefox e ffmeg), nas figuras 3 e 4, respetivamente.

```
coregulation core: $

frequencies of fifting i videol.mp4

for (Wilmutum 3. 1-Debahumit)

configuration: -prefixe/uss --estra-version-lubuntu0.1 -toolchain-hardened --libdir-yusr/lib/206.64-linux-gnu --incidire/usr/include/206

for liguration: -prefixe/uss --estra-version-lubuntu0.1 -toolchain-hardened --libdir-yusr/lib/206.64-linux-gnu --incidire/usr/include/206

for liguration: -prefixe/uss --estable-libase --enable-libdire --e
```

Fig. 1: Taxa bps esperada para transmissão

Protocol -	Percent Packets	Packets	Percent Bytes	Bytes	Bits/s	End Packets	E
▼ Frame	100.0	202	100.0	132640	79 k	0	0
▼ Ethernet	100.0	202	2.1	2828	1694	0	0
 Internet Protocol Version 6 	0.5	1	0.0	40	23	0	0
 Internet Protocol Version 4 	99.5	201	3.0	4020	2408	0	0
 Transmission Control Protocol 	96.0	194	94.5	125408	75 k	172	9
 Hypertext Transfer Protocol 	10.9	22	21.7	28797	17 k	20	2
Malformed Packet	1.0	2	0.0	0	0	2	0
Open Shortest Path First	3.5	7	0.2	308	184	7	3

Fig. 2: Taxa bps real na transmissão com 1 cliente

Fig. 3: Taxa bps real na transmissão com 2 clientes

Fig. 4: Taxa bps real na transmissão com 3 clientes

No que toca ao encapsulamento dos pacotes transmitidos, podemos observar que este processo ocorre em todos os diferentes níveis da pilha protocolar: camada de transporte (TCP), camada de rede (IPv4), camada de aplicação (HTTP) e na camada de ligação de dados que abrange o protocolo *Ethernet*. Podemos tirar estas conclusões a partir da análise de tramas TCP capturadas pelo *wireshark*, tal como apresentado na figura 5. A informação presente nesta figura é relativa à captura com apenas 1 cliente (VLC). Para as capturas com 2 (VLC e Firefox) e 3 (VLC, Firefox e ffmep) o encapsulamento que ocorreu foi o mesmo, tal como é possível observar nas figuras 6 e 7, respetivamente.

Fig. 5: Encapsulamento da trama TCP com 1 cliente

Fig. 6: Encapsulamento da trama TCP com 2 clientes

-	passo9 Q1.pcapnq							
					1 1 5			
File			Statistics Telephony V					
			🧣 🗢 警 🖥	7 👤 📃 [QQQ	1		
	upply a display filter	<ctrl-></ctrl->						
No.	Time	Source	Destination	Protocol	Length Info			
	25 0.249085159	10.0.2.21	10.0.0.10	TCP	66 55696 → 8080	[ACK]	Seg=1 Ack=4570 Win=502 Len=0 TSval=2982170	
	26 0.497997790	10.0.0.10	10.0.0.20	TCP			Seq=4570 Ack=1 Win=509 Len=1448 TSval=1885	
	27 0.497998185	10.0.0.10	10.0.0.20	TCP			Seq=6018 Ack=1 Win=509 Len=1448 TSval=1885	
	28 0.497998262	10.0.0.10	10.0.0.20	TCP			Seq=7466 Ack=1 Win=509 Len=1448 TSval=1885	
	29 0.497998337	10.0.0.10	10.0.0.20	TCP			ACK] Seq=8914 Ack=1 Win=509 Len=132 TSval=	
	30 0.498027036	10.0.0.20	10.0.0.10	TCP			Seq=1 Ack=6018 Win=678 Len=0 TSval=3771724	
	31 0.498028381	10.0.0.20	10.0.0.10	TCP			Seq=1 Ack=7466 Win=672 Len=0 TSval=3771724	
	32 0.498028954	10.0.0.20	10.0.0.10	TCP			Seq=1 Ack=8914 Win=666 Len=0 TSval=3771724	
li -	33 0.498029489	10.0.0.20	10.0.0.10	TCP			Seq=1 Ack=9046 Win=666 Len=0 TSval=3771724	
	34 0.498087249	10.0.0.10	10.0.2.20	TCP			Seq=4570 Ack=1 Win=507 Len=1448 TSval=1058	
	35 0.498087403	10.0.0.10	10.0.2.20	TCP			Seq=6018 Ack=1 Win=507 Len=1448 TSval=1058	
	36 0.498087498	10.0.0.10	10.0.2.20	TCP			Seq=7466 Ack=1 Win=507 Len=1448 TSval=1058	
	37 0.498087575 38 0.498128651	10.0.0.10	10.0.2.20	TCP TCP			ACK] Seq=8914 Ack=1 Win=507 Len=132 TSval=	
	39 0.498128651	10.0.2.20	10.0.0.10	TCP			Seq=1 Ack=6018 Win=573 Len=0 TSval=1011135 Seq=1 Ack=7466 Win=567 Len=0 TSval=1011135	
	40 0.498129912	10.0.2.20	10.0.0.10	TCP	66 54882 → 8080			
	41 0.498130414	10.0.2.20	10.0.0.10	TCP			Seq=1 Ack=9046 Win=561 Len=0 TSval=1011135	
	42 0.498635728	10.0.2.20	10.0.2.21	TCP			Seg=4570 Ack=1 Win=509 Len=1448 TSval=4175	
N .	rame 36: 1514 byt		2 bits), 1514 bytes cap					
			0 (00:00:00:aa:00:00),					
			10.0.0.10, Dst: 10.0.2.				/	
			Port: 8080, Dst Port:		466. Ack: 1. Len: 1	448		
	vpertext Transfer			, oud, .	,,			

Fig. 7: Encapsulamento da trama TCP com 3 clientes

4 Ana Luísa Carneiro, Ana Rita Peixoto, Luís Miguel Pinto

Para calcular o número de fluxos gerados, é necessário observar 5 parâmetros de cada pacote: IP origem, IP destino, Protocolo, porta origem e porta destino, e observar quais as repetições deste conjunto parâmetros.

Para a primeira captura (apenas com 1 cliente, VLC) é possível observar que apenas ocorreu 1 fluxo (figura 8). Para isso, utilizou-se o filtro *tcp.stream eq* e verificou-se que apenas existe a *stream* 0. Logo, existe apenas 1 fluxo para a primeira captura, que corresponde ao cliente a transmitir no VLC.

Fig. 8: Fluxos gerados com 1 cliente

Na segunda captura de fluxo (2 clientes, VLC e Firefox) é possível observar que existiram 2 fluxos gerados. É também possível observar este número de fluxos utilizando, novamente, o filtro *tcp.stream eq*, tal como representado na figura 9. Concluímos que existiram 2 fluxos, correspondentes a cada um dos serviços VLC e Firefox.

Fig. 9: Fluxos gerados com 2 clientes

Na terceira e última captura (3 clientes, VLC, Firefox e ffmeg) podemos concluir que foram gerados 3 fluxos. Podemos observar este facto com recurso novamente ao filtro *tcp.stream eq* e contar o número de

streams, tal como apresentado na figura 10. Podemos concluir que cada *stream* corresponde a cada serviço utilizado: VLC, Firefox e ffmeg.

Fig. 10: Fluxos gerados com 3 clientes

Por último, podemos concluir que esta solução não escala muito bem. Através da observação das capturas efetuadas com diferentes clientes concluímos que o servidor envia a resposta de pedidos individualmente para cada cliente. Deste modo, caso o número de clientes aumente consideravelmente, o servidor terá que enviar as tramas para cada cliente, mesmo que o pedido de cada cliente seja o mesmo.

Questão 2. Diga qual a largura de banda necessária, em bits por segundo, para que o cliente de *streaming* consiga receber o vídeo no *firefox* e qual a pilha protocolar usada neste cenário.

A largura de banda assim como a informação sobre as diversas resoluções do vídeo está descrito no ficheiro "video_manifest.mpd".

Para que o cliente consiga assistir ao vídeo de menor resolução, 180*120, é necessário uma largura de banda de 433870 bps, tal como podemos ver na figura 11. Para assistir ao vídeo de resolução intermédia, 360*240, é necessário um *link* com 1673630 bps de largura de banda, demonstrado na figura 12. Finalmente, para assistir ao vídeo de resolução mais alta, 540*360, é necessário uma largura de banda de 8297710 bps, tal como está na figura 13.

Fig. 11: Informação sobre a resolução 180*120 do vídeo

Fig. 12: Informação sobre a resolução 360*240 do vídeo

```
| SegmentLion id="3" miseType="video/eps" codecs="avc3.64001e" width="540" height="360" frameRate="30" sar="1:1" startWithSAP="0" bandwidth="629771">
| SegmentList timescale="15806" duration="7680">
| SegmentList timescale="15806" duration="76807">
| SegmentList timescale="15806" duration="76806"/>
| SegmentList endiaRang="2082.62016" indexRange="20617-20606"/>
| SegmentList endiaRang="2082.62016" indexRange="2082.72081.5302"/>
| SegmentList endiaRang="13902-139309" indexRange="13902-139063"/>
| SegmentList endiaRang="13902-139309" indexRange="13902-139063"/>
| SegmentList endiaRang="13902-139309" indexRange="13902-139063"/>
| SegmentList endiaRang="13902-139309" indexRange="13909-13906"/>
| SegmentList endiaRang="13903-139309" indexRange="13909-13909"/>
| SegmentList endiaRang="13903-139309" indexRang="13909-13909"/>
| SegmentList endiaRang="80303-448009" indexRang="80305-3803979"/>
| SegmentList endiaRang="650120-95720" indexRang="650120-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55127-55
```

Fig. 13: Informação sobre a resolução 520*360 do vídeo

Os protocolos utilizados para a transmissão do vídeo encontram-se na figura 14. Neste figura podemos ver o protocolo *Ethernet* a ser utilizado na camada de ligação de dados, o protocolo IP na camada de rede, o protocolo TCP para a camada de transporte e o HTTP na camada de aplicação.

Todos estes protocolos estão associados e dão suporte à rede global Internet, uma vez que o vídeo foi transmitido na *WEB* a partir do *firefox*.

No.	Time	Source	Destination	Protocol	Length Info			
1472	2 18.127544	10.0.0.20	10.0.0.10	TCP	66 34302 - 9999 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=41599490			
+ 1472	3 18.127782	10.0.0.20	10.0.0.10	HTTP	402 GET /video2_360_240_500k_dash.mp4 HTTP/1.1			
	18.127790	10.0.0.10	10.0.0.20	TCP	66 9999 → 34302 [ACK] Seq=1 Ack=337 Win=64896 Len=0 TSval=141513			
1472	5 18.127909	10.0.0.10	10.0.0.20	TCP	1514 9999 → 34302 [ACK] Seq=1 Ack=337 Win=64896 Len=1448 TSval=141			
1472	3 18.127910	10.0.0.10	10.0.0.20	TCP	1514 9999 → 34302 [ACK] Seq=1449 Ack=337 Win=64896 Len=1448 TSval=			
1472	7 18.127910	10.0.0.10	10.0.0.20	TCP	1514 9999 → 34302 [ACK] Seg=2897 Ack=337 Win=64896 Len=1448 TSval=			
1472	3 18.127911	10.0.0.10	10.0.0.20	TCP	1514 9999 → 34302 [ACK] Seg=4345 Ack=337 Win=64896 Len=1448 TSval=			
1472	18.127912	10.0.0.10	10.0.0.20	TCP	1514 9999 → 34302 [PSH, ACK] Seq=5793 Ack=337 Win=64896 Len=1448 T			
1473	18.127923	10.0.0.10	10.0.0.20	TCP	1514 9999 → 34302 [ACK] Seq=7241 Ack=337 Win=64896 Len=1448 TSval=			
			216 bits), 402 bytes captu					
					00_aa:00:50 (00:00:00:aa:00:50)			
			10.0.0.20, Dst: 10.0.0.10					
	Transmission Control Protocol, Src Port: 34302, Dst Port: 9999, Seq: 1, Ack: 1, Len: 336							
Hype	Hypertext Transfer Protocol							

Fig. 14: Camada protocolar

Questão 3. Ajuste o débito dos *links* da topologia de modo que o cliente no portátil 2 exiba o vídeo de menor resolução e o cliente no portátil 1 exiba o vídeo com mais resolução. Mostre evidências.

Para que portátil 1 exiba o vídeo de maior resolução é necessário restringir o *link* da topologia para que esta permita a transmissão do vídeo de resolução 540*360. Para isso, verificamos a largura de banda necessária para transmitir o vídeo com essa resolução no ficheiro "video_manifest.mpd" (figura 13).

Como a largura de banda necessário à transmissão do vídeo de resolução alta é 829771 bps basta que o *link* do portátil 1 seja restringido à largura de banda de 9000000 bps, isto é, 900 kbps (figura 15).

Na captura do *wireshark* para o portátil 1 (figura 16), podemos ver na linha 27 que há uma transmissão do vídeo de maior resolução (540*360), tal como era pretendido. Contudo, ao longo da transmissão, devido à funcionalidade do DASH, a resolução do vídeo vai diminuindo para a resolução intermédia (linha 1524) e para a resolução mais baixa (linha 3033).

Fig. 15: Rede com restrição para maior resolução

No		Time	Source	Destination	Protocol	Length Info
		2 4.823208855	10.0.0.20	10.0.0.10	HTTP	379 GET /favicon.ico HTTP/1.1
			10.0.0.10	10.0.0.20	HTTP	741 HTTP/1.1 404 Not Found (text/html) 399 GET /video2 540 360 1000k dash.mp4 HTTP/1.1
l :	151	4 17.249081706	10.0.0.10	10.0.0.20	MP4	268
		4 18.323798235		10.0.0.10	HTTP	400 GET /video2 360 240 500k dash.mp4 HTTP/1.1
		24.616998281 2 24.633708178		10.0.0.20 10.0.0.10	MP4 HTTP	1/3 400 GET /video2_360_240_500k_dash.mp4 HTTP/1.1
		6 30.923517739		10.0.0.20	MP4	173
	303	3 30.986481479	10.0.0.20	10.0.0.10	HTTP	400 GET /video2 180 120 200k dash.mp4 HTTP/1.1

Fig. 16: Captura da transmissão para o Portátil 1

Para que portátil 2 exiba o vídeo de menor resolução é necessário restringir o *link* da topologia para que esta permita a transmissão do vídeo de resolução 180*120. Para isso é necessário verificar a largura de banda dessa resolução no ficheiro "video_manifest.mpd" (figura 11).

Como a largura de banda necessário à transmissão do vídeo de resolução baixa é 1673630 bps basta que o *link* do portátil 2 seja restringido à largura de banda de 2000000 bps, isto é, 200 kbps (figura 17).

Na captura do *wireshark* para o portátil 2 (figura 18), podemos ver na linha 78 que há uma transmissão do vídeo de menor resolução, tal como era pretendido.

Fig. 17: Rede Core com restrição para menor resolução

No.	Time	Source	Destination		
+	8 4.499327	10.0.2.21	10.0.0.10	HTTP	425 GET /video_dash.html HTTP/1.1
+	10 4.562787	10.0.0.10	10.0.2.21	HTTP	666 HTTP/1.1 200 Ok (text/html)
	19 5.210322	10.0.2.21	10.0.0.10	HTTP	426 GET /video_manifest.mpd HTTP/1.1
	35 5.570257	10.0.0.10	10.0.2.21	HTTP/X	198 HTTP/1.1 200 Ok
	43 5.570368	10.0.2.21	10.0.0.10	HTTP	379 GET /favicon.ico HTTP/1.1
	48 5.581356	10.0.2.21	10.0.0.10	HTTP	364 GET /video manifest.mpd HTTP/1.1
	50 5.639159	10.0.0.10	10.0.2.21	HTTP	741 HTTP/1.1 404 Not Found (text/html)
	64 5.941684	10.0.0.10	10.0.2.21	HTTP/X	198 HTTP/1.1 200 Ok
	69 6.051762	10.0.2.21	10.0.0.10	HTTP	369 GET /video_manifest_init.mp4 HTTP/1.1
	71 6.132910	10.0.0.10	10.0.2.21	MP4	1969
	78 6.190417	10.0.2.21	10.0.0.10	HTTP	397 GET /video2_180_120_200k_dash.mp4 HTTP/1.1
	451 17.144409	10.0.0.10	10.0.2.21	MP4	439
	459 18.201689	10.0.2.21	10.0.0.10	HTTP	399 GET /video2_180_120_200k_dash.mp4 HTTP/1.1
	829 29.168387	10.0.0.10	10.0.2.21	MP4	439
	835 29.200942	10.0.2.21	10.0.0.10	HTTP	400 GET /video2_180_120_200k_dash.mp4 HTTP/1.1

Fig. 18: Captura da transmissão para o Portátil 2

Questão 4. Descreva o funcionamento do DASH neste caso concreto, referindo o papel do ficheiro MPD criado.

O DASH (*Dynamic Adaptive Streaming over* HTTP) é uma técnica de *streaming* por HTTP que permite a transmissão dinâmica e adaptativa às condições da rede como por exemplo a largura de banda do *link*. Assim sendo, o DASH vai a verificar a largura de banda do *link* e avaliar qual a melhor resolução do vídeo a ser transmitido nesse *link*, a partir do ficheiro "video_manifest.mpd". É neste ficheiro onde está armazenado as informações sobre cada resolução disponível do vídeo tal como a largura de banda necessária do *link* para transmitir o vídeo nessa resolução específica. Desta forma, durante o *stream* do vídeo, o DASH vai avaliando a qualidade de transmissão e conectividade e alterando a resolução do vídeo conforme essas características.

Um exemplo do funcionamento da DASH ocorreu durante a *stream* do vídeo no *firefox* no portátil 1 e 2. Durante essa transmissão, foi realizada uma captura com o apoio do *Wireshark* de forma a ver os dados recebidos por ambos os clientes, tal como está representado nas figuras 19 e 20.

Em ambos os casos podemos ver que o *streaming* foi inicializado com um vídeo de resolução alta (540*360) tal como está linhas 60 e 52 nas figuras 19 e 20, respetivamente. Contudo, ao longo da *stream* podemos ver o vídeo a mudar a sua resolução para uma mais baixa (360*240) tal como está nas linhas 3036 e 4162 nas figuras 19 e 20, respetivamente, sendo esta a resolução que acaba por ser transmitida até ao fim da *stream*.

Isto aconteceu pois o DASH verificou que a conectividade e/ou a transmissão na rede não foram suficientes para manter a transmissão, na íntegra, da resolução mais alta (540*360) e por isso baixou a resolução do vídeo para que o utilizador conseguisse ver o vídeo completo sem que note perdas de frame ou pausas devido à falta de conexão.

No.	Time	Source	Destination		Length Info
+	14 15.515434	10.0.0.20	10.0.0.10	HTTP	425 GET /video_dash.html HTTP/1.1
+	16 15.515562	10.0.0.10	10.0.0.20	HTTP	666 HTTP/1.1 200 Ok (text/html)
	26 16.166488	10.0.0.20	10.0.0.10	HTTP	379 GET /favicon.ico HTTP/1.1
	28 16.166594	10.0.0.10	10.0.0.20	HTTP	741 HTTP/1.1 404 Not Found (text/html)
	35 16.181031	10.0.0.20	10.0.0.10	HTTP	426 GET /video_manifest.mpd HTTP/1.1
	42 16.181177	10.0.0.10	10.0.0.20	HTTP/X	
	51 16.545664	10.0.0.20	10.0.0.10	HTTP MD/I	369 GET /video_manifest_init.mp4 HTTP/1.1
_	60 16.580601	10.0.0.20	10.0.0.10	HTTP	399 GET /video2 540 360 1000k dash.mp4 HTTP/1.1
_	1022 16.589598	10.0.0.10	10.0.0.10	MP4	268 268 7V10e02_540_360_1000K_dasn.mp4 HTP71.1
	1029 16.647513	10.0.0.20	10.0.0.10	HTTP	401 GET /video2 540 360 1000k dash.mp4 HTTP/1.1
	2046 16.655247	10.0.0.10	10.0.0.20	MP4	268
	2053 16.722394	10.0.0.20	10.0.0.10	HTTP	401 GET /video2_540_360_1000k_dash.mp4 HTTP/1.1
	3029 16.746644	10.0.0.10	10.0.0.20	MP4	268
	3036 17.344293	10.0.0.20	10.0.0.10	HTTP	400 GET /video2 360 240 500k dash.mp4 HTTP/1.1
	3611 17.346162	10.0.0.10	10.0.0.20	MP4	173
	3623 17.390914	10.0.0.20	10.0.0.10	HTTP	400 GET /video2_360_240_500k_dash.mp4 HTTP/1.1
	4129 17.395054	10.0.0.10	10.0.0.20	MP4	173
	4136 17.413867	10.0.0.20	10.0.0.10	HTTP	400 GET /video2 360 240 500k dash.mp4 HTTP/1.1
	4648 17.417759	10.0.0.10	10.0.0.20	MP4	173
	4655 17.432905	10.0.0.20	10.0.0.10	HTTP	401 GET /video2_360_240_500k_dash.mp4 HTTP/1.1
	5174 17.436885	10.0.0.10	10.0.0.20	MP4	173
	5181 17.465650	10.0.0.20	10.0.0.10	HTTP	402 GET /video2 360 240 500k dash.mp4 HTTP/1.1
	5694 17.469303	10.0.0.10	10.0.0.20	MP4	173
	5701 17.496292	10.0.0.20	10.0.0.10	HTTP	402 GET /video2_360_240_500k_dash.mp4 HTTP/1.1
	6214 17.500192	10.0.0.10	10.0.0.20	MP4	173
	6221 17.522432	10.0.0.20	10.0.0.10	HTTP	402 GET /video2_360_240_500k_dash.mp4 HTTP/1.1
	6719 17.525899	10.0.0.10	10.0.0.20	MP4	173
	6726 17.554839	10.0.0.20	10.0.0.10	HTTP	402 GET /video2_360_240_500k_dash.mp4 HTTP/1.1
	7247 17.558725	10.0.0.10	10.0.0.20	MP4	173
	7254 17.577327	10.0.0.20	10.0.0.10	HTTP	402 GET /video2_360_240_500k_dash.mp4 HTTP/1.1
	7777 17.581458	10.0.0.10	10.0.0.20	MP4	173
	7784 17.594344	10.0.0.20	10.0.0.10	HTTP	402 GET /video2_360_240_500k_dash.mp4 HTTP/1.1
	8359 17.598168	10.0.0.10	10.0.0.20	MP4 HTTP	173
	8368 17.616280	10.0.0.20	10.0.0.10	MP4	402 GET /video2_360_240_500k_dash.mp4 HTTP/1.1 173
	8940 17.620688 8952 17.646471	10.0.0.10	10.0.0.20 10.0.0.10	MP4 HTTP	402 GET /video2_360_240_500k_dash.mp4 HTTP/1.1
	9527 17.650265	10.0.0.10	10.0.0.20	MP4	173
	9536 17.667903	10.0.0.10	10.0.0.10	HTTP	402 GET /video2 360 240 500k dash.mp4 HTTP/1.1
	0128 17.670707	10.0.0.10	10.0.0.20	MP4	173
	0135 17.692977	10.0.0.20	10.0.0.10	HTTP	402 GET /video2_360_240_500k_dash.mp4 HTTP/1.1
	0648 17.695851	10.0.0.10	10.0.0.20	MP4	173
	0655 17.723638	10.0.0.20	10.0.0.10	HTTP	402 GET /video2 360 240 500k dash.mp4 HTTP/1.1
	1306 17.728195	10.0.0.10	10.0.0.20	MP4	173
	1330 17.757368	10.0.0.20	10.0.0.10	HTTP	402 GET /video2_360_240_500k_dash.mp4 HTTP/1.1
	1866 17.761343	10.0.0.10	10.0.0.20	MP4	173
	1873 17.777076	10.0.0.20	10.0.0.10	HTTP	402 GET /video2 360 240 500k dash.mp4 HTTP/1.1
-	20.0 2	20.0.0.20	20.0.0120		

Fig. 19: Captura para o Portátil 1

No.	Time	Source	Destination	Protocol	Length Info
+	10 5.592882	10.0.2.21	10.0.0.10	HTTP	425 GET /video_dash.html HTTP/1.1
-	12 5.593022	10.0.0.10	10.0.2.21	HTTP	666 HTTP/1.1 200 Ok (text/html)
	22 6.208920	10.0.2.21	10.0.0.10	HTTP	379 GET /favicon.ico HTTP/1.1
	24 6.209035	10.0.0.10	10.0.2.21	HTTP	741 HTTP/1.1 404 Not Found (text/html)
	31 6.232258	10.0.2.21	10.0.0.10	HTTP	426 GET /video_manifest.mpd HTTP/1.1
	38 6.232427	10.0.0.10	10.0.2.21	HTTP/X	
	47 6.595092	10.0.2.21	10.0.0.10	HTTP	369 GET /video_manifest_init.mp4 HTTP/1.1
	49 6.595241	10.0.0.10	10.0.2.21	MP4	1060
	56 6.675070	10.0.2.21	10.0.0.10	HTTP	399 GET /video2 540 360 1000k dash.mp4 HTTP/1.1
	1115 6.686846 1122 6.740985	10.0.0.10	10.0.2.21	MP4 HTTP	268 401 GET /video2 540 360 1000k dash.mp4 HTTP/1.1
	2110 6.760078	10.0.0.10	10.0.0.10 10.0.2.21	MP4	268
	2117 6.844661	10.0.2.21	10.0.2.21	HTTP	401 GET /video2_540_360_1000k_dash.mp4 HTTP/1.1
	3170 6.867600	10.0.0.10	10.0.2.21	MP4	268
	3177 7.448190	10.0.2.21	10.0.0.10	HTTP	402 GET /video2_540_360_1000k_dash.mp4 HTTP/1.1
	4147 7.461031	10.0.0.10	10.0.2.21	MP4	268
	4154 7.533588	10.0.2.21	10.0.0.10	HTTP	419 GET /video manifest init.mp4 HTTP/1.1
	4156 7.533731	10.0.0.10	10.0.2.21	HTTP	257 HTTP/1.1 304 Not Modified
	4162 7.538982	10.0.2.21	10.0.0.10	HTTP	400 GET /video2 360 240 500k dash.mp4 HTTP/1.1
	4690 /.543920	10.0.0.10	10.0.2.21	MP4	1/3
	4697 7.570351	10.0.2.21	10.0.0.10	HTTP	400 GET /video2_360_240_500k_dash.mp4 HTTP/1.1
	5236 7.575131	10.0.0.10	10.0.2.21	MP4	173
	5243 7.590523	10.0.2.21	10.0.0.10	HTTP	401 GET /video2_360_240_500k_dash.mp4 HTTP/1.1
	5779 7.595302	10.0.0.10	10.0.2.21	MP4	173
	5786 7.612774	10.0.2.21	10.0.0.10	HTTP	402 GET /video2_360_240_500k_dash.mp4 HTTP/1.1
	6322 7.621209	10.0.0.10	10.0.2.21	MP4 HTTP	173
	6329 7.652131 6904 7.657022	10.0.2.21 10.0.0.10	10.0.0.10 10.0.2.21	MP4	402 GET /video2_360_240_500k_dash.mp4 HTTP/1.1 173
	6911 7.687289	10.0.2.21	10.0.0.10	HTTP	402 GET /video2_360_240_500k_dash.mp4 HTTP/1.1
	7481 7.691933	10.0.0.10	10.0.2.21	MP4	173
	7496 7.706212	10.0.2.21	10.0.0.10	HTTP	402 GET /video2_360_240_500k_dash.mp4 HTTP/1.1
	8031 7.724908	10.0.0.10	10.0.2.21	MP4	173
	8039 7.766005	10.0.2.21	10.0.0.10	HTTP	402 GET /video2_360_240_500k_dash.mp4 HTTP/1.1
	8609 7.771852	10.0.0.10	10.0.2.21	MP4	173
	8624 7.816631	10.0.2.21	10.0.0.10	HTTP	402 GET /video2_360_240_500k_dash.mp4 HTTP/1.1
	9187 7.821798	10.0.0.10	10.0.2.21	MP4	173
	9224 7.835324	10.0.2.21	10.0.0.10	HTTP	402 GET /video2_360_240_500k_dash.mp4 HTTP/1.1
	9732 7.839626	10.0.0.10	10.0.2.21	MP4	173
	9739 7.857100	10.0.2.21	10.0.0.10	HTTP	402 GET /video2_360_240_500k_dash.mp4 HTTP/1.1
	0248 7.862718	10.0.0.10	10.0.2.21	MP4	173
	0255 7.886947	10.0.2.21	10.0.0.10	HTTP MP4	402 GET /video2_360_240_500k_dash.mp4 HTTP/1.1 173
	0792 7.892844	10.0.0.10	10.0.2.21	HTTP	
	0799 7.906610 1328 7.927215	10.0.2.21 10.0.0.10	10.0.0.10 10.0.2.21	MP4	402 GET /video2_360_240_500k_dash.mp4 HTTP/1.1 173
	1335 7.997132	10.0.2.21	10.0.0.10	HTTP	402 GET /video2_360_240_500k_dash.mp4 HTTP/1.1
	1908 8.001213	10.0.0.10	10.0.2.21	MP4	173
	1915 8.039718	10.0.2.21	10.0.0.10	HTTP	402 GET /video2 360 240 500k dash.mp4 HTTP/1.1
	2489 8.043426	10.0.0.10	10.0.2.21	MP4	173
	2501 8.142399	10.0.2.21	10.0.0.10	HTTP	402 GET /video2_360_240_500k_dash.mp4 HTTP/1.1
	3075 8.164772	10.0.0.10	10.0.2.21	MP4	173
1	3086 8.228191	10.0.2.21	10.0.0.10	HTTP	402 GET /video2_360_240_500k_dash.mp4 HTTP/1.1
	3652 8.232807	10.0.0.10	10.0.2.21	MP4	173
1	3670 8.303515	10.0.2.21	10.0.0.10	HTTP	402 GET /video2_360_240_500k_dash.mp4 HTTP/1.1

Fig. 20: Captura para o Portátil 2

Questão 5. Compare o cenário unicast aplicado com o cenário multicast. Mostre vantagens e desvantagens na solução multicast ao nível da rede, no que diz respeito a escalabilidade (aumento do nº de clientes) e tráfego na rede. Tire as suas conclusões.

A experiência feita nesta etapa consistiu em testar cenários de rede distintos, tendo em conta *streaming* em *unicast* (transmissão entre apenas um *sender* e um *receiver*) e em *multicast* (envio de pacotes de uma entidade para um grupo de *hosts* na rede).

Para o serviço de *multicast* é possível efetuar uma análise das suas **vantagens** e **desvantagens** em termos de **escalabilidade** e **tráfego de rede**. Em termos de **escalabilidade** (aumento do número de clientes na rede), podemos verificar que o serviço *multicast* é mais escalável do que o *unicast* na medida em que responde de forma mais eficiente quando existem vários clientes na rede, o que conduz ao melhor aproveitamento da largura de banda existente e evitando o envio de pacotes redundantes. Deste modo, o serviço *multicast* é benéfico não só em termos de escalabilidade como também no âmbito do **tráfego na rede**.

A maior **desvantagem** do *streaming* em *multicast* é a sua elevada complexidade relativamente ao *streaming* em *unicast*, o que provoca maiores custos de controlo e *overhead*.

Por fim, através das capturas de tráfego no *wireshark* das transmissões *multicast* e *unicast* efetuadas (figura 21 e 22), é possível observar que a quantidade de dados enviada em cada uma das transmissões é muito semelhante, 131 k e 135 k, respetivamente. No entanto, os 135 k no *unicast* são relativos a 1 só cliente, ao passo que os 131 k do *multicast* são relativos a 3 clientes. Deste modo, tal como esperado, podemos concluir que aproveitamos melhor a largura de banda e que a solução *multicast* é muito mais **escalável**.

Fig. 21: Quantidade de dados transmitida em unicast

Fig. 22: Quantidade de dados transmitida em multicast

Conclusão.

Com a realização deste guião conseguimos explorar um espectro variado dos vários protocolos associados ao *streaming* de áudio e vídeo. Neste guião conseguimos analisar o tráfego e o nível de escalabilidade na transmissão de vídeo em HTTP estático e verificar o funcionamento da técnica DASH (HTTP Dinâmico), ambos sobre o protocolo TCP. Finalmente avaliar e comparar os cenários de *unicast* e *multicast* a partir do protocolo UDP com RTP/RTCP