高等代数I

第3次讨论班

2022年11月2日

- 1. (基础题) 证明下述结论(整除、最大公因式、最小公倍式).
 - a) 设 $f, g, h \in \Omega[x]$. 若 f|h, g|h, 且 f, g 互质, 则 fg|h.
 - b) 设 f,g 都是首一多项式,则 $[f,g]=\frac{fg}{(f,g)}$. (考虑两种证法,思考 $[f,g,h]=\frac{fgh}{(f,g,h)}$ 是否成立?)
 - c) $(f^n, g^n) = (f, g)^n$. (思考为什么在某个域上的不可约因式分解可以决定最大公因式?)
- 2. **(基础题)** 证明 Ω 上非常数多项式, 在 Ω 上有有限个根, 且个数至多为多项式的次数.
- 3. (选讲,考虑用两种方法)证明

$$[[f,g],h] = [f,[g,h]], [f,(g,h)] = ([f,g],[f,h]), (f,[g,h]) = [(f,g),(f,h)].$$

- 4. 证明函数 $f(x) = \sin(x)$ 不能表示为实多项式.
- 5. 求 $x^5 + 7x^4 + 18x^3 + 22x^2 + 13x + 3$ 的所有不可约因式
- 6. 设 f(x) 是一个整系数多项式, a,b,c 是三个互异的整数. 证明不可能有

$$f(a) = b, f(b) = c, f(c) = a.$$

- 7. 证明: $x^2 + x + 1 \mid (x^{3m} + x^{3n+1} + x^{3k+2})$, 其中 $m, n, k \in \mathbb{N}$.
- 8. **(提高题)** 设 f 是 Ω 上的 n 次既约多项式, u 是 f 在 \mathbb{C} 中的一个根, $\Omega[u] = \{h(u) \mid h(x) \in \Omega[x]\}$. 证明:
 - (a) $\Omega[u] = \{h(u) \mid h(x) \in \Omega[x], \deg h(x) \le n 1\};$
 - (b) $\Omega[u]$ 是数域.
- 9. 证明: 四点 A, B, C, D 共面的充分必要条件为: 存在不全为 0 的数 $\lambda, \mu, \nu, \omega$, 使得 $\lambda + \mu + \nu + \omega = 0$, 并且 $\lambda \overrightarrow{OA} + \mu \overrightarrow{OB} + \nu \overrightarrow{OC} + \omega \overrightarrow{OD} = 0$. 其中 O 是任意点.

$$\pi_1 : ax + y + z + 1 = 0,$$

$$\pi_2: x + ay + z + 2 = 0,$$

$$\pi_3: x+y-2z+3=0,$$