Lista de Exercícios No.12

Integração Numérica

(1) Calcule o valor aproximado da seguinte integral:

$$\int_0^{0.6} \frac{1}{1+x} dx.$$

- (a) Utilizando o Método dos Trapézios.
- (b) Utilizando o Método de Simpson.

Resp. a) 0.4875. b) 0.470192.

- (2) Calcule as integrais definidas abaixo pelo método dos Trapézios (repetidos) e Simpson (repetidos), usando 7 pontos de integração no intervalo de integração. (Lembre que $x_0 = a, x_n = b$):
 - (a) $\int_1^2 e^x dx$.
 - (b) $\int_1^4 \sqrt{x} dx$.
 - (c) $\int_{2}^{14} \frac{1}{\sqrt{x}} dx$.

Resp.

		5	7
a)	Trapézios	4.6950759	4.6815792
	Simpson	4.670873	4.6707894
b)	Trapézios	4.6550925	4.6614884 .
	Simpson	4.6662207	4.6665612
c)	Trapézios	4.7683868	4.7077771
	Simpson	4.6763744	4.6614894

(4) Determine o número de pontos de integração de modo que a aproximação de

$$\int_0^1 e^{-x^2} dx$$

usando o Método de Simpson (repetidos) tenha erro menor que 10^{-4} . Calcule a aproximação da integral acima. (Observação:e $|E_S| \leq \frac{M}{180}(b-a)h^4$; onde M=

 $\max_{x \in [a,b]} |f^{(4)}(x)|.$ Para este exercício temos M=12 .)

Resp. Ptos. de integração: Número de subintervalos necessários $n \geq 5,081327485$. Para o método de Simpson precisamos sempre de um número par de subintervalos, assim escolhendo n=6, que é um número par, então precisamos de 7 pontos de integração.

1. Uma fábrica produz rolamentos (de forma cilíndrica) que são vendidos como tendo 20 cm. de diâmetro. Na verdade , o diâmetro x tem distribuição normal com média $\mu=20$ cm e desvio-padrão $\sigma=0.3$ cm.

$$P(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}},$$

Determine a probabilidade de que um rolamento escolhido aleatoriamente da linha de produção tenha diâmetro que difira do valor médio em mais que 0.5 cm. Aproxime essa probabilidade usando o método de Simpson repetido com 5 pontos de integração no intervalo devido. (Obs. $\int_{-\infty}^{\infty} P(x) dx = 1$.)