

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁷ : G01N 33/566, 33/68		A1	(11) International Publication Number: WO 00/26670 (43) International Publication Date: 11 May 2000 (11.05.00)
(21) International Application Number: PCT/US99/19272		(81) Designated States: CA, JP, MX, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(22) International Filing Date: 23 August 1999 (23.08.99)		Published <i>With international search report.</i>	
(30) Priority Data: 09/181,958 29 October 1998 (29.10.98) US			
(71) Applicant: BOEHRINGER INGELHEIM PHARMACEUTICALS, INC. [US/US]; 900 Ridgebury Road, Ridgefield, CT 06877 (US).			
(72) Inventors: KEHRY, Marilyn, R.; 9 Sierra Way, Danbury, CT 06810 (US). PULLEN, Steven, S.; 237 Stadley Rough Road, Danbury, CT 06811 (US). CRUTE, James, J.; 9 Sierra Way, Danbury, CT 06810 (US).			
(74) Agents: RAYMOND, Robert et al.; Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, CT 06877 (US).			

(54) Title: ASSAY FOR RECEPTOR-TRAF INTERACTIONS

(57) Abstract

Disclosed is a high throughput compatible assay that is useful for the identification of specific antagonists of TRAF-receptor interactions. The modular flexibility of the assay makes it possible to introduce simple modifications in order to measure the interaction of any TNF receptor cytoplasmic domain (or TRAF-binding protein) with any of the six TRAF proteins, TRAF1, TRAF2, TRAF3, TRAF4, TRAF5 and TRAF6.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

ASSAY FOR RECEPTOR-TRAF INTERACTIONS

This application claims benefit to US Application No. 09/181,958 filed October 29, 1998.

5

Background of the Invention

1. Field of the Invention

The invention relates to screening assays for compounds effecting TRAF-receptor interactions and is useful for the identification of agonists and antagonists of TRAF-receptor interactions.

2. Description of Related Art

Tumor necrosis factor (TNF) receptor superfamily members regulate cellular proliferation, differentiation, and apoptosis in inflammatory and immune responses. Signaling through TNF receptor superfamily members is initiated by oligomerization of the receptors with trimeric ligands bringing intracellular domains in close proximity. Signal transduction through many of these receptors is mediated in part by a recently identified family of proteins termed TNF receptor-associated factors (TRAFs). Six TRAF family members have been identified. Cao, Z., et al (1996) *Nature* 383, 443-446; Cheng, G. et al 995 *Science* 267, 1494-1498; Rothe, M., et al (1994) *Cell* 78, 681-692; Sato, T., et al (1995) *FEBS Letters* 358, 113-118; Hu, H. M.. et al (1994) *J. Biol. Chem.* 269, 30069-30072; Mosialos, G., et al (1995) *Cell* 80, 389-399; Regnier, C. H., et al (1995) *J. Biol. Chem.* 270, 25715-25721; Nakano, H., et al (1996) *J. Biol. Chem.* 271, 14661-14664. Subsets of TRAF proteins have been shown to interact with the TNF receptor family members TNFR2, CD40, CD30, LT β R, ATAR, OX-40, and 4-1BB. Cheng et al (1995); Rothe et al (1994); Sato et al (1995); Hu et al (1994); Nakano et al (1996); Ishida, T. K., et al (1996) *Proc. Natl. Acad. Sci. U. S. A.* 93, 9437-9442; Ishida, T., et al (1996) *J. Biol. Chem.* 271, 28745-28748; Boucher, L. M.. et al (1997) *Biochem. Biophys. Res. Commun.* 233, 592-600; Lee, S. Y., et al (1996) *Proc. Natl. Acad. Sci. U. S. A.* 93, 9699-9703; Gedrich, R. W., et al (1996) *J. Biol. Chem.* 271, 12852-12858;

Marsters, S. A., et al (1997) *J. Biol. Chem.* 272, 14029-14032; Aizawa, S. et al (1997) *J. Biol. Chem.* 272, 2042-2045; Arch, R. H. et al (1998) *Molec. Cell Biol.* 18, 558-565; Devergne, O., et al (1996) *Molec. Cell Biol.* 16, 7098-7108; VanArsdale, T. L., et al (1997) *Proc. Natl. Acad. Sci. U.S.A.* 94, 2460-2465. The conserved C-terminal region of TRAFs (TRAF(NC), also delineated the TRAF domain) binds to receptor cytoplasmic domains. Cheng et al (1995); Takeuchi, M., et al (1996) *J. Biol. Chem.* 271, 19935-19942; Rothe, M., et al (1995) *Science* 269, 1424-1427. The initial event in signaling is thought to be mediated by a transient recruitment of TRAF proteins following receptor cross-linking. Kuhne, M. R., et al (1997) *J. Exp. Med.* 186, 337-342. The interaction of TRAF proteins with cross-linked receptor cytoplasmic domains is therefore a critical step in TNF receptor family member signaling and determines the specificity of the resulting cellular response.

Thus, it is apparent that there is a clear need for a quantitative binding assay for TRAF-receptor interactions and which has the modular flexibility to make possible the introduction of simple modifications in order to measure the interaction of any TNF receptor cytoplasmic domain (or TRAF-binding protein) with any of the six TRAF proteins. Such an assay would be useful for identification of specific agonists or antagonists of these interactions.

20

Summary of the Invention

All of the above factors provide a strong incentive for the development of an efficient, accurate and reproducible assay capable of quantifying TRAF and TRAF interacting receptor binding. The assays of the present invention are useful in pharmacological studies of these interactions and provide an efficient alternative to the use of receptor - TRAF co-precipitation assays or yeast two hybrid interaction assays. It is therefore an object of the present invention to provide a quantitative assay for measuring the ability of a substance to effect binding of a TRAF protein to a TRAF interacting receptor, the assay performed by providing the receptor having a cytosolic binding domain or fragment thereof, wherein the receptor is bound to a multi-well plate, the multi-well plate being capable of allowing formation of a multimeric receptor and

being capable of allowing detection of a signal; providing a TRAF protein or fragment thereof possessing a terminal tag, the tag having one or more amino acids and being capable of binding a signal-generating antibody or fragment thereof; providing the substance; combining the receptor bound to the well, the TRAF protein and the substance; and detecting the signal-generating antibody.

In certain specific embodiments, there are provided quantitative assays according to the invention with specific TRAF proteins and their respective receptors, and a multi-well plate having a scintillant and a signal-generating antibody which has a radioactive isotope.

10

Description of the Drawings

Figure 1. Two-way titration of biotin-CD40c and TRAF2(NC)-CA21. Streptavidin flashplates were coated with serial dilutions of biotin-CD40c, starting at 1.74 µg/ml. Purified TRAF2(NC)-CA21 was serially diluted starting at 20 µg/ml. Detection was with ^{125}I -CA21 Fab (0.08 µCi/well). Background was not subtracted and is listed as biotin-CD40c at 0 µg/ml. Biotin-CD40c concentrations are indicated. A) linear plot; B) log plot of TRAF2(NC)-CA21 concentration for the same experiment in A).

Figure 2. Peptide antagonists of CD40c-TRAF2 interaction. Streptavidin flashplates were coated with 0.44 µg/ml biotin-CD40c. Stock solutions of peptides were prepared at 1 mg/ml in assay buffer and the pH verified. All peptides were assayed by preincubating with TRAF2(NC)-CA21 at a final peptide concentration of 0.5 mg/ml. Peptides were serially diluted 1.5-fold prior to addition of the TRAF2(NC)-CA21 (5 µg/ml final). Results are means of duplicate points except for the no inhibitor wells (none, closed circles) that are means ± standard deviation of 11 replicates. A) Peptides AcPVQET-NH2 (closed squares), AcNTAAPVQET-NH2 (closed triangles), AcNTAAPVQETLH-NH2 (open triangles), CD30.B (AcDVMLSVEEGKE-NH2, open circles); B) Peptides AcIQET-NH2 (closed squares), AcPIQET-NH2 (closed triangles), AcQEPQEINF-NH2 (open triangles), CD40c (open circles). The maximum signal in B) is less due to a difference in the decay of the ^{125}I -Fab.

Detailed Description of the Invention

The assay according to the invention, is a high throughput compatible assay that is
5 useful for the identification of specific antagonists of TRAF-receptor interactions. The modular flexibility of the assay makes it possible to introduce simple modifications in order to measure the interaction of any TNF receptor cytoplasmic domain (or TRAF-binding protein) with any of the six TRAF proteins, TRAF1, TRAF2, TRAF3, TRAF4, TRAF5 and TRAF6.

10 The multi-well plate according to the invention is any multi-well plate capable of allowing detection of a signal. For example, in a preferred embodiment, a flashplate design was chosen for the assay. In a flashplate design, a scintillant-embedded 96-well plate precoated with a substance capable of multimerizing the receptor such as streptavidin.

15 The assay according to the invention can use a TRAF interacting receptor such as ATAR, LT- β R, TNFR2, CD40, CD30, OX-40 and 4-1BB, preferably CD40. The 62 amino acid CD40 cytoplasmic domain (CD40c) was expressed in *E. coli* and purified as described in Example 2 below. Analytical ultracentrifugation studies showed that the CD40c protein was a monomer. CD40c had a weak ability to compete for GST-CD40-
20 TRAF interaction. Pullen, S. S., et al (1998) *Biochem.*, 37 11836-11845. When coated on standard 96-well plates and used to bind TRAF molecules the CD40c gave a weaker signal than dimeric GST-CD40. Therefore, to design the CD40c-TRAF interaction assay, CD40c was conjugated with biotin. Streptavidin-coated wells were used to multimerize CD40c, each streptavidin tetramer being capable of binding a maximum of four biotin-
25 CD40c molecules. This approach was predicted to mimic the results of receptor cross-linking by trimeric ligands.

To establish a uniform signal for TRAF binding that would not be amplified during detection by artificial (antibody-induced) cross-linking, defined and purified protein components are preferred. Because of the difficulty in purifying recombinant
30 full-length TRAF, the present invention utilizes TRAF(NC) domains, preferably of TRAF2 and TRAF3, possessing a C-terminal tag with a nine amino acid epitope that is

recognized by the CA21 monoclonal antibody. Kahn, J., et al (1994) *J. Cell Biol.* 125, 461-470. The TRAF2(NC)-CA21 and TRAF3(NC)-CA21 proteins as shown in sequence nos. 1 and 2, respectively, were expressed in insect cells and purified by ion exchange chromatography and hydroxyapatite chromatography as described herein. Chemical cross-linking, analytical ultracentrifugation and laser light scattering methods demonstrated that the TRAF(NC) domains of TRAF2 and TRAF3 formed homogeneous noncovalent trimers.

Detection of the bound TRAF(NC) proteins is performed with a signal-generating antibody. A signal-generating antibody is any antibody or fragment thereof possessing specificity for the tag as described herein. The signal-generating antibody is also capable of generating a signal by means known in the art, for example, by possessing a fluorophore or radiolabel. In a preferred embodiment, the signal-generating antibody is a Fab fragment of the CA21 monoclonal antibody. The CA21 Fab can be radiolabeled with, for example, radioactive iodine as described herein, and the specific activity adjusted continuously for radioactive decay according to the half life of the radiolabel. Radioactivity bound to the scintillant-embedded wells indicated TRAF binding and could be detected with minimal background by scintillation counting the plates without removal of the radioactive solution.

To establish and optimize the assay parameters for the detection of signaling inhibitors it was desired to obtain a suboptimal signal while retaining a good signal/noise ratio. Additionally, it was desired to minimize the quantity of TRAF interacting receptor and obtain a good dynamic range of signal. In this design, inhibitors of CD40-TRAF interaction as well as enhancers/stabilizers of the interaction could be readily detected. Since CD40-TRAF interaction is thought to be transient (Kuhne et al (1997)), both inhibitors and enhancers of the interaction would be expected to antagonize cellular signaling.

The assay parameters were established with a two-way titration of biotin-CD40c and TRAF2(NC)-CA21, as shown in Figure 1. The assay showed saturation with increasing concentrations of TRAF2(NC)-CA21, and gave a good dose response for biotin-CD40c. Maximal signal was obtained with approximately 2 µg/ml biotin-CD40c, and the signal did not increase further up to 20 µg/ml. Significant signal was detectable

as low as 0.054 µg/ml biotin-CD40c (Figure 1). Standard conditions for the assay were selected to be 0.44 µg/ml CD40c and 5 µg/ml TRAF2(NC)-CA21. These conditions provided a signal/noise of eight to ten and a good dynamic range for the detection of inhibitors or enhancers. DMSO at concentrations up to 10% (v/v) did not inhibit the
5 assay. As noted by the manufacturer of the plates, low concentrations of detergents were strong inhibitors of the assay because they removed the streptavidin from the wells.
To demonstrate the use and specificity of the assay several N-terminally acetylated and C-terminally amidated peptides derived from the cytoplasmic domains of CD40 and CD30 were assayed for the ability to inhibit CD40c-TRAF2 interaction. The PVQET
10 sequence in the CD40 cytoplasmic domain is essential for signaling through CD40 and is thought to be a core TRAF2 binding sequence. Devergne, O., et al (1996) *Mol. Cell. Biol.* 16, 7098-7108; Innui, W., et al (1990) *Eur. J. Immunol.* 20, 1747-1753. Therefore several peptides around the PVQET sequence were tested for the ability to compete the
15 CD40c-TRAF2 interaction (Figure 2A). Three different peptides containing the PVQET sequence were found to inhibit CD40c-TRAF2 binding. The longest peptide, an 11-mer, was the least potent, and the shortest peptide, PVQET, was the most potent, with an IC₅₀ of approximately 90 µM. The activity of PVQET was comparable to a 12 amino acid residue TRAF2-binding peptide derived from the CD30 cytoplasmic domain (Boucher et al (1997)). Figure 2A. The nonbiotinylated CD40c polypeptide had an IC₅₀ of
20 approximately 50 µM. A CD40-derived peptide non-overlapping with the PVQET peptide that has been demonstrated to bind TRAF6 (26) did not inhibit CD40c-TRAF2 interaction (Figure 2B). Alteration of the PVQET sequence to PIQET resulted in a slightly increased inhibitory activity (IC₅₀ ~70 µM), as predicted by amino acid replacement analyses on the TRAF2 binding peptide derived from CD40. Additionally,
25 removal of the ²⁵⁰Pro residue to produce a four amino acid residue peptide, IQET, resulted in a approximately two-fold decrease of inhibitory activity (IC₅₀ ~140 µM) (Figure 2B).

Similar assay results have also been obtained with the same peptide competitors using 5 µg/ml TRAF3(NC)-CA21 instead of TRAF2(NC)-CA21. Thus, it would be
30 expected that either TRAF1(NC)-CA21 or TRAF6(NC)-CA21 could be also substituted for TRAF2 in binding to biotin-CD40c. Pullen et al (1998). Alternatively, biotin-

conjugated cytoplasmic domains of other TRAF-interacting receptors such as ATAR/HVEM or LT- R could be substituted for biotin-CD40c. The alternative of using a ³H-Fab fragment is also a possibility that would decrease the need for frequent radio-iodinations. These variations on the assay show its adaptability and utility as a specificity assay. For example, in a set of assays measuring CD40c-TRAF2, CD40c-TRAF3, ATARc-TRAF2, or ATARc-TRAF3 interaction, it could readily be determined whether an inhibitor targeted CD40c, ATARc, TRAF2, or TRAF3, or was nonspecific.

As will be appreciated by those skilled in the art, the assay can be used to derive peptide-based as well as non-peptide small molecule antagonists of TRAF-mediated signaling. Targets would include receptor cytoplasmic domains or individual TRAF proteins.

In order that this invention be more fully understood, the following examples are set forth. These examples are for the purpose of illustrating preferred embodiments of this invention, and are not to be construed as limiting the scope of the invention in any way.

All references cited in this application are fully incorporated by reference.

Example 1

Plasmids and viruses

20

The human CD40 cytoplasmic domain, amino acids 216-277, was PCR amplified using oligonucleotides 5'-
CCGGGCCATGGCAAAAAGGTGGCCAAGAAGCCAACC-3' and 5'-
CCCGGGAATTCTCATCACTGTCTCCTGCACTGAGATGCG-3' and ligated into
25 pCR2.1 (InVitrogen) to generate pCD40c. The *Nco*I to *Eco*RI fragment was ligated into pET-23d to generate pCD40c/pET23d.

Full-length human TRAF2 and TRAF3 were PCR amplified from a PHA-stimulated human peripheral blood leukocyte cDNA library (Clontech) using oligonucleotides 5'-
30 AAAAGGAAAAGCGGCCGCTTATTAGAGCCCTGTCAGGTCCA-3' and 5'-
TTGGTTGGATCCTATAAAATATGGCTGCAGCTAGCGTGA-3' for TRAF2 and

oligonucleotides 5'-

TTGGTTGGATCCTATAAATATGGAGTCGAGTAAAAAGATGGACTC-3' and 5'-
GC GGCCGCTCATCAGGGATCGGGCAGATCCGA-3' for TRAF3, and ligated into
pGem-T (Promega) to make pTRAF2/GemT and pTRAF3/GemT, respectively. The

5 TRAF2(NC) domain (amino acids 272-501) and TRAF3(NC) domain (amino acids 354-
568) were PCR amplified from pTRAF2/GemT and pTRAF3/GemT, respectively, using
oligonucleotides 5'-

CCATGGCCTGCGAGAGCCTGGAGAAGAAGACGCCACTTTGA-3' and 5'-
AAAAGGAAAAGCGGCCGCTTATTAGAGCCCTGTCAGGTCCA-3' for

10 TRAF2(NC) and oligonucleotides 5'-

CCATGGTGGAGTCCCTCCAGAACCGCGTGACCGAGCT-3' and 5'-
GC GGCCGCTCATCAGGGATCGGGCAGATCCGA-3' for TRAF3(NC) respectively,
and ligated into pGem-T to create pTRAF2(NC)/GemT and pTRAF3(NC)/GemT,
respectively. An *Nco*I linker (CCCATGGG) (New England Biolabs) was ligated into the
15 transplacement vector pVL1393 (InVitrogen) after digestion with *Sma*I to create

pVL1393/*Nco*I⁺. The *Nco*I to *Not*I TRAF(NC) domain-containing fragments from
pTRAF2(NC)/GemT and pTRAF3(NC)/GemT were ligated into pVL1393/*Nco*I⁺ to
create pTRAF2(NC)/1393 and pTRAF3(NC)/1393, respectively. The TRAF(NC)
domain constructs of TRAF2 and TRAF3 were C-terminally tagged with the nine amino
20 acid epitope (SKRSMNDPY) recognized by the CA21 monoclonal antibody (Kahn et al
(1994)) by PCR methods to generate TRAF2(NC)-CA21 and TRAF3(NC)-CA21 in
pVL1393. Recombinant baculovirus stocks were generated by standard methods from
the transplacement vectors described above. O'Reilly, D. R., Miller, L. K., and Luckow,
V. A. (1992) *Baculovirus expression vectors: a laboratory manual.*, W. H. Freeman &
25 Co., Salt Lake City, UT.

Example 2

Protein expression and purification

30 *Spodoptera frugiperda* (Sf21) cells were maintained and infected by standard
procedures (O'Reilly et al (1992); Dracheva, S., et al (1995) *J. Biol. Chem.* 270, 14148-
14153) using medium supplemented with 5% heat-inactivated fetal bovine serum

(Hyclone) and 50 µg/ml gentamicin sulfate (Life Technologies, Inc.). All purification procedures were performed at 4°C. Cytosolic extracts of TRAF(NC)-CA21 baculovirus-infected Sf21 cells were prepared as described (Dracheva et al (1995)), without the addition of ATP or MgCl₂, frozen under liquid nitrogen, and stored at -80°C. Saturated ammonium sulfate was added to 43% v/v with mixing and incubated at 0°C for 2 hr.

Precipitated proteins were harvested by centrifugation, and the pellet was resuspended in buffer A (20 mM HEPES, pH 7.0, 200 mM NaCl, 1 mM DTT, 10% v/v glycerol, 0.1 mM EDTA, 0.1 mM EGTA, and 1 mM PMSF) with 200 mM NaCl. The NaCl concentration was adjusted to 100 mM by dilution with buffer A, and the sample was applied to coupled Source 15S and Source 15Q columns (Amersham Pharmacia Biotech) equilibrated in buffer A with 80 mM NaCl. The material flowing through both columns was collected and applied to a Ceramic Hydroxyapatite (Type II) column (BioRad) equilibrated in buffer B (50 mM potassium phosphate pH 6.2, 100 mM NaCl, 0.2 mM DTT, 1 mM PMSF). Proteins were eluted with a 0 to 55 % gradient of buffer C (500 mM potassium phosphate pH 6.2, 0.2 mM DTT). Peak fractions were pooled and purified proteins were quantitated as described (Gill, S. C., and von Hippel, P. H. (1989) *Anal. Biochem.* 182, 319-326), frozen in aliquots under liquid nitrogen, and stored at -80°C.

Expression of CD40c in *Escherichia coli* strain BL21 (DE3) was by induction with 1.0 mM IPTG for 3 h at 37°C. Harvested cell paste was resuspended in 2 volumes of lysis buffer (20 mM HEPES, pH 7.5, 200 mM NaCl, 1 mM DTT, 1 mM EDTA, 1 mM EGTA, 10% v/v glycerol, 1 mM PMSF, 4 µg/ml leupeptin, 4 µg/ml pepstatin A), frozen under liquid nitrogen, and stored at -80°C. Thawed cell paste was resuspended in an equal volume of lysis buffer, and cells were disrupted by nitrogen cavitation. Extracts were clarified by ultracentrifugation for 75 min at 100,000 x g. Saturated ammonium sulfate was added to 66% v/v with mixing and incubated at 0°C for 2 hr. Precipitated proteins were harvested by centrifugation, and the pellet was resuspended in buffer A with 200 mM NaCl. After dialysis overnight in buffer A with 100 mM NaCl, the sample was applied to a Source 15S column (Amersham Pharmacia Biotech) equilibrated in buffer A in 80 mM NaCl. Proteins were eluted with a 5 to 55 % gradient of buffer A with 2 M NaCl. Peak fractions were pooled and purified protein was quantitated using a Micro

BCA assay (Pierce Chemical Co.) relative to GST-CD40c (26) as a standard, frozen in aliquots under liquid nitrogen, and stored at -80°C.

Purified CD40c (1.1 mg/ml) was conjugated to biotin in 0.1 M sodium bicarbonate by the addition of D-biotinoyl-¹-aminocaproic acid-N-hydroxysuccinimide ester (Boehringer Mannheim) at a final concentration of 60 µg/ml. Reagent was removed by dialysis against 40 mM HEPES, pH 7.5, 0.1 M NaCl, 1 mM MgCl₂, 0.1 mM DTT. Incorporation of biotin was quantitated by mass spectroscopy and was either one or two mol biotin per mol CD40c. Approximately half of the CD40c remained unconjugated. Biotin-CD40c was titrated in the flashplate assay (below) to empirically determine optimal assay concentrations.

Example 3

CA21 Cell Line

The CA21 cell line producing a mouse IgG1 monoclonal antibody against a peptide epitope was grown and purified as described. Kahn et al (1994); Dracheva et al (1995). Specifically, production of CA21 monoclonal antibody is performed as follows: CA21 hybridoma cell lines producing monoclonal antibodies directed against the cytoplasmic domain of L-selectin were prepared by hyperimmunization of BALB/c mice with a synthetic peptide corresponding to the entire cytoplasmic domain of L-selectin, as described in Kishimoto, T. K., (1990) *Proc. Natl. Acad. Sci. USA* 87, 2244-2248, incorporated herein by reference. Spleen cells were fused with the Sp2/O-Ag14 myeloma fusion partner. Reference in this regard can be made to Shulman, M., et al. (1978) *Nature* 276, 269-270; Mandal, C. et al. (1991) *Hybridoma* 10, 459-466; and Norris, S. H., et al. (1991) *J. Pharm. Biomed. Anal.* 9, 211-217, the entire contents of each are herein incorporated by reference. Hybridoma supernatants were screened for the ability to specifically recognize immobilized cytoplasmic domain peptide. Positive clones were further screened for the ability to immunoprecipitate L-selectin. CA21 (IgG1) monoclonal antibody was purified by protein G affinity chromatography.

Example 4
Fab Fragments

Fab fragments were prepared by protease digestion by standard methods (Peters, J. H., and Baumgarten, H. (1992) *Monoclonal antibodies*, Springer-Verlag, p. 276) and 5 iodinated by the IODO-GEN® method. Millar, W. T., and Smith J. F. B. (1983) *Int. J. Appl. Radiat. Isot.* 34, 639-641. Radiolabeled Fab fragment was purified by gel filtration on Sephadex G50-50 and stored at 4°C in 1% BSA (Sigma) in Dulbecco's phosphate buffered saline (D-PBS), pH 7.4 (GIBCO-BRL).

10

Example 5

Flashplate Assay

Biotin-CD40c (0.5 µg/ml) was bound to streptavidin-coated 96-well scintillant-embedded plates (Flashplates, New England Nuclear, catalog #15112) overnight at 4°C in D-PBS, 0.1 mM DTT, 0.01% BSA (100 µl/well). Plates were blocked for 2 hr at room 15 temperature by the addition of Dulbecco's-PBS, 0.1 mM DTT, 1.0% BSA (100 µl/well). In a separate 96-well round bottom polypropylene plate peptide inhibitors were diluted in 40 mM HEPES, pH 7.5, 0.1 M NaCl, 1.0 mM MgCl₂, 0.1 mM DTT, 0.01% BSA, and TRAF2(NC)-CA21 was added at a final concentration of 5 µg/ml. Plates were preincubated for 30 min at room temperature. After washing the biotin-CD40c-coated 20 flashplate three times with D-PBS, 0.1 mM DTT, inhibitor-TRAF2(NC)-CA21 mixtures were transferred from the preincubation plate to the washed plate (100 µl/well). Alternatively, after washing the biotin-CD40c-coated flashplates, inhibitors were added directly without TRAF preincubation in a final volume of 50 µl 40 mM HEPES, pH 7.5, 0.1 M NaCl, 1.0 mM MgCl₂, 0.1 mM DTT, 0.01% BSA, and 50 µl/well TRAF2(NC)- 25 CA21 (10 µg/ml stock to make a final concentration of 5 µg/ml) was added. Flashplates were incubated for 1 hr at room temperature, washed three times with 40 mM HEPES, pH 7.5, 0.1 M NaCl, 1.0 mM MgCl₂, 0.1 mM DTT, and 100 µl/well of [¹²⁵I]CA21 Fab fragment at an adjusted specific activity of 0.08 µCi/well added in 40 mM HEPES, pH 7.5, 0.1 M NaCl, 1.0 mM MgCl₂, 0.1 mM DTT, 0.1% BSA. After a 1 hr incubation at 30 room temperature plates were sealed and counted in a TopCount scintillation counter (Packard; one minute/well, 2 minute plate delay).

Example 6**Peptide Inhibitors**

Peptides (5 mg each) were purchased from AnaSpec (San Jose, CA) and were synthesized N-terminally acetylated and C-terminally amidated. Peptides were purified to >95% purity as judged by quantitative HPLC analysis and mass spectroscopic analysis.

WE CLAIM:

1. A quantitative assay for measuring the ability of a substance to effect binding of a TRAF protein to a TRAF interacting receptor, the assay comprising:

5

providing the receptor having a cytosolic binding domain or fragment thereof, wherein the receptor is bound to a multi-well plate, the multi-well plate being capable of allowing formation of a multimeric receptor and being capable of allowing detection of a signal; providing a TRAF protein or fragment thereof possessing a terminal tag, the tag comprising one or more amino acids and being capable of binding a signal-generating antibody or fragment thereof; providing the substance; combining the receptor bound to the well, the TRAF protein and the substance; and detecting the signal-generating antibody.

10

- 15 2. The assay according to claim 1 wherein the TRAF protein or fragment thereof is selected from the group consisting of TRAF1, TRAF2, TRAF3, TRAF4, TRAF5 and TRAF 6.

20

3. The assay according to claim 2 wherein the TRAF interacting receptor is selected from the group consisting of ATAR, LT- β R, TNFR2, CD40, CD30, OX-40 and 4-1BB.

4. The assay according to claim 2 wherein the TRAF interacting receptor is conjugated with biotin and the multi-plate well is coated with streptavidin.

25

5. The assay according to claims 3 or 4 wherein the multi-well plate comprises a scintillant and the signal-generating antibody possesses a radioactive isotope.

30

6. The assay according to claim 5 wherein the TRAF protein or fragment thereof is TRAF2 or TRAF3 and the TRAF interacting receptor is CD40.

7. The assay according to claim 1 wherein the TRAF protein fragment consists substantially of Sequence ID# 1 or Sequence ID# 2.
8. The assay according to claim 1 wherein the substance is added directly to the well.
9. The assay according to claim 1 wherein the substance is preincubated with the TRAF protein.

1/2

Figure 1

A**B****Figure 2**

SEQUENCE LISTING

5 <110> Kehry, Marilyn R

 Pullen, Steven S

 Crute, James J

10 <120> A High Throughput Compatible Assay for Receptor-TRAF

 Interactions

15 <130> 9/142 PCT Nucl.Seq

20

 <140>

 <141>

25

 <160> 2

30

 <170> PatentIn Ver. 2.0

35

 <210> 1

 <211> 243

40

 <212> PRT

 <213> human

45

 <400> 1

 Cys Glu Ser Leu Glu Lys Lys Thr Ala Thr Phe Glu Asn Ile Val Cys

50

 1 5 10 15

 Val Leu Asn Arg Glu Val Glu Arg Val Ala Met Thr Ala Glu Ala Cys

55

 20 25 30

Ser Arg Gln His Arg Leu Asp Gln Asp Lys Ile Glu Ala Leu Ser Ser
5 35 40 45

Lys Val Gln Gln Leu Glu Arg Ser Ile Gly Leu Lys Asp Leu Ala Met
10 50 55 60

Ala Asp Leu Glu Gln Lys Val Leu Glu Met Glu Ala Ser Thr Tyr Asp
15 65 70 75 80

Gly Val Phe Ile Trp Lys Ile Ser Asp Phe Ala Arg Lys Arg Gln Glu
20 85 90 95

Ala Val Ala Gly Arg Ile Pro Ala Ile Phe Ser Pro Ala Phe Tyr Thr
25 100 105 110

Ser Arg Tyr Gly Tyr Lys Met Cys Leu Arg Ile Tyr Leu Asn Gly Asp
30 115 120 125

Gly Thr Gly Arg Gly Thr His Leu Ser Leu Phe Phe Val Val Met Lys
35 130 135 140

Gly Pro Asn Asp Ala Leu Leu Arg Trp Pro Phe Asn Gln Lys Val Thr
40 145 150 155 160

Leu Met Leu Leu Asp Gln Asn Asn Arg Glu His Val Ile Asp Ala Phe
45 165 170 175

Arg Pro Asp Val Thr Ser Ser Ser Phe Gln Arg Pro Val Asn Asp Met
180 185 190

5 Asn Ile Ala Ser Gly Cys Pro Leu Phe Cys Pro Val Ser Lys Met Glu
195 200 205

10 Ala Lys Asn Ser Tyr Val Arg Asp Asp Ala Ile Phe Ile Lys Ala Ile
15 210 215 220

20 Val Asp Leu Thr Gly Leu Ala Ser Ala Ser Ser Lys Arg Ser Met Asn
225 230 235 240

25 Asp Pro Tyr

30

<210> 2

35 <211> 228

<212> PRT

<213> human

40

<400> 2

45 Val Glu Ser Leu Gln Asn Arg Val Thr Glu Leu Glu Ser Val Asp Lys
1 5 10 15

50 Ser Ala Gly Gln Val Ala Arg Asn Thr Gly Leu Leu Glu Ser Gln Leu
20 25 30

55

Ser Arg His Asp Gln Met Leu Ser Val His Asp Ile Arg Leu Ala Asp

35 40 45

Met Asp Leu Arg Phe Gln Val Leu Glu Thr Ala Ser Tyr Asn Gly Val
50 55 60

Leu Ile Trp Lys Ile Arg Asp Tyr Lys Arg Arg Lys Gln Glu Ala Val
15 65 70 75 80

Met Gly Lys Thr Leu Ser Leu Tyr Ser Gln Pro Phe Tyr Thr Gly Tyr
20 85 90 95

Phe Gly Tyr Lys Met Cys Ala Arg Val Tyr Leu Asn Gly Asp Gly Met
25 100 105 110

Gly Lys Gly Thr His Leu Ser Leu Phe Phe Val Ile Met Arg Gly Glu
30 115 120 125

Tyr Asp Ala Leu Leu Pro Trp Pro Phe Lys Gln Lys Val Thr Leu Met
35 130 135 140

Leu Met Asp Gln Gly Ser Ser Arg Arg His Leu Gly Asp Ala Phe Lys
40 145 150 155 160

Pro Asp Pro Asn Ser Ser Ser Phe Lys Lys Pro Thr Gly Glu Met Asn
45 165 170 175

Ile Ala Ser Gly Cys Pro Val Phe Val Ala Gln Thr Val Leu Glu Asn
50 180 185 190

Gly Thr Tyr Ile Lys Asp Asp Thr Ile Phe Ile Lys Val Ile Val Asp
5 195 200 205

Thr Ser Asp Leu Pro Asp Pro Ala Ser Ala Ser Ser Lys Arg Ser Met
10 210 215 220

Asn Asp Pro Tyr
15 225

20

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 99/19272

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 G01N33/566 G01N33/68

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	PULLEN SS, MILLER HG, EVERDEEN DS, DANG TTA, CRUTE JJ, KEHRY MR: "CD40-tumor necrosis factor receptor-associated factor (TRAF) interactions: regulation of CD40 signaling through multiple TRAF binding sites and TRAF hetero-oligomerization" BIOCHEMISTRY, vol. 37, no. 34, 25 August 1998 (1998-08-25), pages 11836-18845, XP002129046 cited in the application page 11838 ---	1-9
P, Y	EP 0 915 155 A (MOCHIDA PHARM CO LTD) 12 May 1999 (1999-05-12) paragraph '0058! - paragraph '0063! & WO 97 38099 A (MOCHIDA PHARM) ----	1-9
Y	----- -/-	-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

27 January 2000

11/02/2000

Name and mailing address of the ISA
 European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Authorized officer

Hart-Davis, J

INTERNATIONAL SEARCH REPORT

Int'l. Appl. No.
PCT/US 99/19272

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 5 767 244 A (GOEDDEL DAVID V ET AL) 16 June 1998 (1998-06-16) claim 4 ---	1-9
A	ISHIDA T, MIZUSHIMA SI, AZUMA S, KOBAYASHI N, TOJO T, SUZUKI K, AIZAWA S, WATANABE T, MOSIALOS G, KIEFF E, YAMAMOTO T, INOUE J: "Identification of TRAF6, a novel tumor necrosis factor receptor-associated factor protein that mediates signaling from an amino-terminal domain of the CD40 cytoplasmic region" JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 271, no. 46, 15 November 1996 (1996-11-15), pages 28745-28748, XP002129047 cited in the application the whole document ---	1
A	ISHIDA TK, TOJO T, AOKI T, KOBAYASHI N, OHISHI T, WATANABE T, YAMAMOTO T, INOUE J: "TRAF5, a novel tumor necrosis factor receptor-associated factor family protein, mediates CD40 signaling" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 93, September 1996 (1996-09), pages 9437-9442, XP002129048 cited in the application the whole document ---	1
A	SATO T, IRIE S, REED JC: "A novel member of the TRAF family of putative signal transducing proteins binds to the cytosolic domain of CD40" FEBS LETTERS, vol. 358, no. 2, 23 January 1995 (1995-01-23), pages 113-118, XP002129049 cited in the application the whole document ---	1
A	GEDRICH RW, GILFILLAN MC, DUCKETT CS, VAN DONGEN JL, THOMPSON CB: "CD30 contains two binding sites with different specificities for members of the tumor necrosis factor receptor-associated factor family of signal transducing proteins" JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 271, no. 22, 31 May 1996 (1996-05-31), pages 12852-12858, XP002129050 cited in the application the whole document ---	1
-/--		

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 99/19272

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	HU HM, O'ROURKE K, BOGUSKI MS, DIXIT VM: "A novel RING finger protein interacts with the cytoplasmic domain of CD40" JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 269, no. 48, 2 December 1994 (1994-12-02), pages 30069-30072, XP002129051 cited in the application the whole document -----	1

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 99/19272

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
EP 0915155 A	12-05-1999	AU	2307697 A		29-10-1997
		CA	2251578 A		16-10-1997
		WO	9738099 A		16-10-1997
US 5767244 A	16-06-1998	US	5710013 A		20-01-1998
		AU	706887 B		01-07-1999
		AU	2675197 A		12-11-1997
		CA	2250425 A		30-10-1997
		EP	0895545 A		10-02-1999
		WO	9740192 A		30-10-1997

THIS PAGE BLANK (USPTO)