

LIPS Kravspecifikation

Version 1.0

Status

Granskad	Fredrik Olsson	2016-02-01
Godkänd	Mattias Krysander	2016-02-01

PROJEKTIDENTITET

2016/VT, Grupp 1 Linköpings Tekniska Högskola, ISY

Gruppdeltagare

Namn	Ansvar	Telefon	E-post
Albin Detterfelt		070-655 25 99	albde282@student.liu.se
Klas Gudmundsson		072-714 06 66	klagu863@student.liu.se
Martin Haugsbakk		070-270 63 36	marha996@student.liu.se
Milton Johansson		073-037 01 64	miljo274@student.liu.se
Sandy Klaff	Dokumentansvarig	070-293 77 49	sankl660@student.liu.se
Fredrik Olsson	Projektledare	072-315 38 68	freol454@student.liu.se
Martin Prage		073-694 95 24	marpr146@student.liu.se

Kund: ISY, Linköpings universitet, 581 83 Linköping Kontaktperson hos kund: Mattias Krysander, 013-282198, matkr@isy.liu.se Kursansvarig: Tomas Svensson, 013-281368, tomas.svensson@liu.se

Innehåll

Dokumenthistorik

1	Inle	dning 1
	1.1	Parter
	1.2	Syfte och mål
	1.3	Användning
	1.4	Bakgrundsinformation
	1.5	Definitioner
2	Öve	rsikt av systemet 2
	2.1	Grov beskrivning av produkten
	2.2	Produktkomponenter
	2.3	Beroenden till andra system
	2.4	Ingående delsystem
	2.5	Avgränsningar
	2.6	Designfilosofi
	2.7	Generella krav på hela systemet
3	Styr	modul 4
	3.1	Inledande beskrivning av styrsystemet
	3.2	Gränssnitt
	3.3	Designkrav
	3.4	Funktionella krav för styrmodulen
4	Kon	nmunikationsmodul 5
	4.1	Inledande beskrivning av kommunikationsmodulen 5
	4.2	Gränssnitt
5	Sens	sormodul 6
	5.1	Inledande beskrivning av sensormodulen 6
	5.2	Gränssnitt
	5.3	Designkrav
	5.4	Funktionella krav
6	Pers	ondator 7
	6.1	Inledande beskrivning av persondatormodulen
	6.2	Gränssnitt
	6.3	Designkrav
	6.4	Funktionella krav

Undsättningsrobot

2016-02-01

7	Prestandakrav	8
8	Krav på möjlighet att uppgradera	8
9	Tillförlitlighet	8
10	Ekonomi	8
11	Krav på säkerhet	8
12	Leveranskrav och delleveranser	9
13	Dokumentation	10
14	Utbildning	11
15	Kvalitetskrav	12
16	Underhållsbarhet	12
A	Appendix A.1 Tävlingsregler	12 12
Re	ferenser	12

Undsättningsrobot

2016-02-01

Dokumenthistorik

Version	Datum	Utförda förändringar	Utförda av	Granskad
0.1	2016-01-26	Första utkast.	AD, FO, KG, MH, MJ, MP, SK	SK
0.2	2016-01-26	Andra utkast.	AD, FO, KG, MH, MJ, MP, SK	FO
1.0	2016-02-01	Första version.	SK	FO

1 Inledning

Systemet som ska levereras är en undsättningsrobot som ska klara av att söka av en fysisk miljö, hitta nödställda i denna miljö samt klara av att leverera förnödenheter till dessa. Detta system är en del av examinationen i kursen TSEA56 vid Linköpings Universitet, kandidatarbete i elektronik.

Detta dokument fungerar som kravspecifikation för detta system och beskriver i mer detalj vilka krav leverabeln (systemet) ska klara av samt en allmän beskrivning av projektet som ska resultera i denna leverabel.

I dokumentet beskrivs kraven med en tabellrad enligt nedan. Kravnummer är löpande genom hela dokumentet. Den andra kolumnen beskriver huruvida kravet är orginal eller blivit reviderat. Kolumn tre innehåller själva kravet och kolumn fyra vilken prioritet kravet har.

Krav nr x Förändring	Kravtext för krav x	Prioritet
----------------------	---------------------	-----------

1.1 Parter

Denna kravspecifikation är en överenskommelse mellan beställaren och projektmedlemmarna om vad som ska uppnås. Dessa två parter består av följande personer:

Beställare: Mattias Krysander (Institutionen för systemteknik, ISY, vid Linköpings Universitet).

Projektmedlemmar: Albin Detterfelt, Klas Gudmundsson, Martin Haugsbakk, Milton Johansson, Sandy Klaff, Fredrik Olsson (Projektledare), Martin Prage.

1.2 Syfte och mål

Syftet och målet med projektet är att leverera ett robotsystem som möter de krav som parterna ovan kommit överens om, samt att implementera LIPS-modellen i praktiken under detta projekt.

1.3 Användning

Systemet kommer att användas i en simulerad nödsituation, där uppgiften är att lokalisera nödställda och förse dessa med förnödenheter på kortast möjliga tid. Att detta uppfylls kommer att verifieras i slutet av projektet med en demonstration för beställaren.

1.4 Bakgrundsinformation

Beställaren vill producera en robot som kan förse nödställda i till exempel en grotta med förnödenheter. Projektets uppdrag är således att producera en prototyp för att undersöka hur det problemet kan lösas.

1.5 Definitioner

Med huvudenhet avses kommunikationsmodulen.

Krav av prioritet 1 skall uppnås till leverans. Krav av prioritet 2 och 3 skall uppfyllas om det finns tid efter att krav av prioritet 1 är uppfyllt. Krav av prioritet 2 prioriteras då före krav av prioritet 3.

2 Översikt av systemet

Systemet ska bestå utav fyra delsystem; en styrmodul, en sensormodul, en persondatormodul samt en kommunikationsmodul som utgör huvudenhet.

Figur 1: Denna bild visar en översikt av systemet.

2.1 Grov beskrivning av produkten

Produkten kommer att ta sig framåt med hjälp av fyra hjul. Olika sensorer ska kunna skicka mätdata till användaren via kommunikationsmodulen och vidare genom

blåtand till persondatorn. Produkten ska kunna ställas in i två lägen; autonom- och manuellkörning.

2.2 Produktkomponenter

Systemet kommer att bestå av minst tre stycken processorer som styr alla elektroniska komponenter. Ljus- och avståndssensorer ska användas för att roboten ska kunna detektera väggar och hinder samt navigera genom labyrinten.

2.3 Beroenden till andra system

Produkten är beroende av att det finns en fungerande persondator som roboten kan kommunicera med. Däremellan ska det även upprättas en fungerande blåtandlänk.

2.4 Ingående delsystem

Systemet kommer att bestå av fyra delsystem, dessa är de fyra modulerna som visas i Figur 1. Alla dessa delsystem beskrivs djupare i avsnitt 3-6.

2.5 Avgränsningar

Projektet är begränsat till att endast omfatta ett förutbestämt antal timmar, dessa finns i detalj i avsnitt 10.

Antagande har gjorts att marken som roboten ska köra på är helt plan, i verkligheten är detta dock inte möjligt utan blir istället en begränsning.

2.6 Designfilosofi

De desingbeslut som tas ska dokumenteras i vår tekniska dokumentation. Inga tidigare verisioner utav projektet finns att tillgå utan allt ska skapas från grunden.

2.7 Generella krav på hela systemet

Krav nr 1	Original	Systemet ska autonomt kunna kartlägga bana enligt	1
		Appendix A.	
Krav nr 2	Original	Systemet ska hitta en nödställd i en okänd miljö	
Krav nr 3	Original	Systemet ska kunna identifiera en nödställd som in-	1
		dikeras enligt Appendix A.	
Krav nr 4	Original	Systemet ska kunna beräkna och köra den kortaste	1
		vägen mellan den nödställde och startpositionen.	
Krav nr 5	Original	Gränssnitten ska vara dokumenterade i den tekniska	1
		dokumentationen.	
Krav nr 6	Original	En karta med robotens aktuella position ska visas på	1
		persondatorn. Målet ska markeras när det identifie-	
		ras.	
Krav nr 7	Original	Systemet ska ha en gripklo.	1
Krav nr 8	Original	Systemet ska ha en brytare som väljer mellan auto-	1
		nomt och fjärrstyrningsläge	
Krav nr 9	Original	Systemet ska ha en knapp för att starta i tävlingen.	1
Krav nr 10	Original	Systemet ska kunna läsa av en svart markering.	1
Krav nr 11	Original	Systemet ska innehålla en styrmodul.	1
Krav nr 12	Original	Systemet ska innehålla en sensormodul.	1
Krav nr 13	Original	Systemet ska innehålla en kommunikationsmodul	1
Krav nr 14	Original	Varje modul ska ha en egen processor.	1
Krav nr 15	Original	Systemet ska vara uppbyggt av moduler som enkelt	1
		kan ersättas med nya.	

3 Styrmodul

Styrmodulen är robotens styrsystem. Detta delsystem har som syfte att föra roboten framåt eller bakåt i hjulens riktning, samt att rotera roboten i syfte att få roboten att kunna åka i en annan riktning.

Styrsystemet ska kunna föra roboten rakt fram genom labyrinten och med reglersystem kunna undvika att roboten åker för nära, eller in i, labyrintens sidoväggar. Delsystemet ska även kunna greppa, hålla fast i, och släppa ett objekt.

3.1 Inledande beskrivning av styrsystemet

Systemet består av en mikrodator som får kommandon om hur hjulen och gripklon ska röra sig från huvudenheten. Enheten har som uppgift att omtolka dessa kommandon till olika spänningar för gripklon samt motorerna och som driver de

två hjulparen. Hjulparen består av de två hjulen på vänster respektive höger sida av roboten.

3.2 Gränssnitt

Krav nr 16	Original	Styrenheten ska ta kunna ta emot komandon från	1
		huvudenheten.	
Krav nr 17	Original	Styrenheten ska skicka styrdata till huvudenheten.	1

3.3 Designkrav

Krav nr 18	Original	Styrenheten ska få plats på roboten.	1

3.4 Funktionella krav för styrmodulen

Krav nr 19	Original	Styrenheten ska kunna reagera på följande kom-	1
		mandon gällande förflyttning: fram, vänster fram,	
		höger fram, back, stop, rotera vänster, rotera höger	
		och kalibrering	
Krav nr 20	Original	Styrenheten ska kunna reagera på följande kom-	1
		mandon gällande gripklon: grip, släpp	
Krav nr 21	Original	Styrenheten ska reagera på kommandot diagonalt	2
Krav nr 22	Original	Styrenheten ska kunna visa robotposition på dis-	2
		play, detta i form av siffror. Detta är endast för test-	
		ningens skull.	

4 Kommunikationsmodul

Kommunikationsmodulen sköter kommunikationen mellan alla robotens moduler och ska därför agera som en huvudenhet. Syftet med delsystemet är att ta in data från både sensor- och styrmodulen samt skicka och ta emot data från användaren genom persondatorn.

4.1 Inledande beskrivning av kommunikationsmodulen

Modulen består av minst en processor. Denna modul kommer vara huvudenheten, här ska alltså mycket av beräkningarna utarbetas.

Mätdata från sensormodulen ska översättas till en karta som användaren sedan kan använda för att styra roboten. Kartan kommer också användas för att roboten ska kunna hitta en snabbaste väg. Kommandona som användaren ger ska skickas tillbaka till kommunikationsmodulen där dessa översätts till spänningar som får motorerna i styrmodulen att agera.

4.2 Gränssnitt

Krav nr 23	Original	Kommunikationsmodulen ska kunna skicka och ta emot data från styrmodulen.	1
Krav nr 24	Original	Kommunikationsmodulen ska kunna skicka och ta emot data från sensormodulen.	1
Krav nr 25	Original	Kommunikationsmodulen ska kunna ta emot och skicka data via blåtand till och från användaren.	1

5 Sensormodul

Sensormodulen har som syfte att ta in mätvärden från sensorerna och översätta dessa till, för andra moduler användbara, storheter.

5.1 Inledande beskrivning av sensormodulen

Modulen utgörs av utbytbara sensorer som kopplas mot en mikroprocessor i vilken utsignalerna (spänningsnivåer) från sensorerna översätts till uppmätt storhet, exempelvis meter. Dessa skickas sedan vidare till huvudenheten i syfte att utgöra beslutsunderlag.

5.2 Gränssnitt

Krav nr 26	Original	Sensormodulen ska skicka mätvärden från senso-	1
		rer omvandlade till uppmätt storhet till kommuni-	
		kationsmodulen.	

5.3 Designkrav

Krav nr 27	Original	Sensormodulen ska få plats på roboten.	1
Krav nr 28	Original	Mikrodatorn skall programmeras i C.	1
Krav nr 29	Original	Alla sensorerna skall kopplas till sensormodulen	1
Krav nr 30	Original	Sensorerna skall kopplas in till en grindmatris pro-	2
		grammerad i VHDL.	

5.4 Funktionella krav

Krav nr 31	Original	Sensormodulen skall översätta spänningsnivåerna	1
		från sensorerna till korrekt enhet för uppmätt stor-	
		het.	

6 Persondator

Persondatorn har till uppgift att sköta kommunikationen mellan robotens kommunikationsmodul och användaren.

6.1 Inledande beskrivning av persondatormodulen

Delsystemet består av en dator som ska kunna ta emot input från användaren och översätta detta till kommandon som skickas över till roboten samt kunna ta emot både mätvärden och den karta som roboten tagit fram. Datorn skall även kunna rita ut denna karta samt visa mätvärden på skärmen.

6.2 Gränssnitt

Krav nr 32	Original	Persondatorn ska kunna ta emot mätvärden och kar-	1
		ta från kommunikationsmodulen	
Krav nr 33	Original	Persondatorn ska kunna skicka kommandon till	1
		kommunikationsmodulen	

6.3 Designkrav

Krav nr 34	Original	Mätdata och styrkommandon ska presenteras an-	1
		vändarvänligt på persondatorn.	

6.4 Funktionella krav

Krav nr 35	Original	Persondatorn skall kunna skicka de kommandon	1]
		som anges i avsnitt 3.4		

7 Prestandakrav

Krav nr 36	Original	Roboten ska kunna greppa tag i ett objekt motsva-	1
		rande en tom festisförpackning.	
Krav nr 37	Original	Roboten ska kunna transportera ett objekt motsvarande en tom festisförpackning från startpunkten till	1
		den nödställde.	
Krav nr 38	Original	Roboten ska ha en på och av-knapp.	1
Krav nr 39	Original	Roboten ska kunna manövrera genom en labyrint	1
		utan att kollidera med labyrintens väggar.	

8 Krav på möjlighet att uppgradera

Roboten ska kunna uppgraderas till en mer energisnål enhet som ska kunna klara av längre och större undsättningsuppdrag. Ska även kunnas uppgraderas så den kan ta sig förbi möjliga hinder.

9 Tillförlitlighet

Krav nr 40	Original	Roboten ska klara uppdraget 3 av 3 gånger	1

10 Ekonomi

Krav nr 41	Original	Projektet ska maximalt ta 230 arbetstimmar per per-	1	
		son att slutföra efter BP02.		

11 Krav på säkerhet

Roboten är konstruerad på så vis att den inte är farlig för de som använder den, ska till exempel inte avge hög spänning som kan skada folk som hanterar roboten.

12 Leveranskrav och delleveranser

Krav nr 42	Original	Projektmedlemmarna ska kontinuerligt utföra tids- redovisning som skickas till beställaren en gång i	1
		veckan.	
Krav nr 43	Original	Projektmedlemmarna ska skicka in statusrapport på begäran av beställaren.	1
Krav nr 44	Original	Kravspecifikationen ska vara klar, reviderad och inlämnad till beställaren senast den 2016-02-02.	1
Krav nr 45	Original	Första version av projektplan, systemskiss och tidsplan ska vara inlämnade till beställaren senast 2016-02-15.	1
Krav nr 46	Original	Slutgiltig version av projektplan, systemskiss och tidsplan ska vara inlämnade till beställaren senast 2016-02-19.	1
Krav nr 47	Original	Första versionen av gruppens förstudier ska vara inne till beställaren senast 2016-03-03.	1
Krav nr 48	Original	Första versionen av designspecifikationen ska vara inlämnad till beställaren och handledaren senast 2016-03-11.	1
Krav nr 49	Original	Slutgiltig version av designspecifikation ska vara inlämnad till beställaren och handledaren senast 2016-04-05.	1
Krav nr 50	Original	Version 1.0 av förstudierna ska vara vara inlämnade till beställaren senast 2016-04-08.	1
Krav nr 51	Original	2016-04-15 ska dåvarande design vara presenterad för handledaren och bli godkänd.	1
Krav nr 52	Original	Kappan version 1.0 ska vara inlämnad till beställaren senast 2016-05-19.	1
Krav nr 53	Original	Verifiering av beslutspunkt 5 ska ske innan redovisning av robot som sker 2016-05-25.	1
Krav nr 54	Original	Version 1.0 av teknisk dokumentation och användarhandledning ska vara lämnade till beställaren som senare skickar vidare till de som ska opponera på projektet senast 2016-05-26.	1
Krav nr 55	Original	Efterstudien ska vara inlämnad till beställaren senast 2016-06-03-06.	1
Krav nr 56	Original	All utrustning ska vara tillbakalämnad till handledaren senast 2016-06-10.	1

Krav nr 57	Original	En tidsrapport ska även vara inne till beställaren in-	1
		nan kl 16.00 för följande datum: 2016-02-03 (tid på	
		kravspecen), 2016-02-22 (tid på planeringsarbetet),	
		2016-03-07, 2016-03-14, 2016-04-04, 2016-04-11,	
		2016-04-18, 2016-04-25, 2016-05-02, 2016-05-09,	
		2016-05-16, 2016-05-23, 2016-05-30 och 2016-06-	
		07.	

13 Dokumentation

De officiella dokumenten i projektet skall vara i PDF-format i syfte att göra läsning plattformsoberoende. Dokumentationsspråket är svenska. Enskilda brödtexter skrivs i det dokumentationsverktyg som författaren behagar men dessa skall sammanställas i LaTeX.

Dokument	Syfte
Kravspecifikation	Entydlig beskrivning av vad som ska produceras. Utgör grund
	för systemskiss samt övriga spefikationer och konstruktionsdoku-
	ment
Projektplan	Möjliggöra för projektdeltagarna att få en enhetlig bild av projek-
	tets genomförande samt hur projektdirektivet samt kravspecifika-
	tionen skall realiseras
Systemskiss	Utgöra underlag för uppdelning av delsystem och arbetsuppgifter
	genom att samla idéer på lösningar till specifika detaljer i desig-
	nen
Tidsplan	Möjliggöra kontroll av använd tid mot planerad tid i syfte att hålla
	projektet inom dess ekonomiska ramar
Förstudier	Fördjupa projektmedlemmarnas kunskaper inom områden som är
	relevanta och nödvändiga i projektet
Designspecifikation	I detalj beskriva hur roboten skall konstrueras
Kappa	Sammanfatta och sammanfoga dokumentationens olika delar
Teknisk dokumentation	Utgöra konstruktionsunderlag för annan part som vill bygga ro-
	boten samt utgöra dokumentation för underhåll och felsökning av
	både hård- och mjukvara.
Användarhandledning	Utgöra beskrivning av hur roboten används
Efterstudie	Sammanställa erfarenheter och utgöra underlag inför kommande
	projekt
Tidsrapport	Möjliggöra kontroll av använd tid mot planerad tid i syfte att hålla
	projektet inom dess ekonomiska ramar
Mötesprotokoll	Utgöra underlag för projektuppföljning

14 Utbildning

Under läsperiod ett kommer tre obligatoriska laborationstillfällen hållas där målet är att utbilda gruppen i VHDL, göra gruppen förtrogen med utvecklingshjälpmedel och hårdvara och ge övning att arbeta praktisk i en projektgrupp.

- Laboration 1: Asynkron seriell överföring via optisk länk (4 tim)
- Laboration 2: AVR-lab. (2 tim)
- Laboration 3: Mätteknik (2 tim)

15 Kvalitetskrav

Krav nr 58	Original	Projektet ska bedrivas enligt LIPS-modellen.	1
Krav nr 59	Original	I projektet ska samtliga mallar utgå från LIPS-	1
		mallar.	

16 Underhållsbarhet

Roboten ska under perioden underhållas för att alltid kunna prestera på sin högsta nivå genom att utföra regelbundna kontroller av roboten och dess delar se till att alla kopplingar sitter som de ska och att allt är rent och se till att batteriet alltid är fulladdat innan tester.

A Appendix

A.1 Tävlingsregler

Referenser

[1] *Projektmodellen LIPS* (2011), Tomas Svensson och Christian Krysander, uppl. 1:1, Studentlitteratur AB, Lund. ISBN 978-91-44-07525-9.