# In [1]:

```
import pandas as pd
import seaborn as sns
```

## In [2]:

```
df1 = pd.read_csv("sample inventory table.csv")
```

# In [3]:

```
df1.head()
```

# Out[3]:

|   | timestamp | type    | status | box  |
|---|-----------|---------|--------|------|
| 0 | 23/4/2021 | moderna | in     | 1000 |
| 1 | 23/4/2021 | moderna | in     | 1001 |
| 2 | 23/4/2021 | moderna | in     | 1002 |
| 3 | 23/4/2021 | moderna | in     | 1003 |
| 4 | 23/4/2021 | moderna | in     | 1004 |

# In [4]:

# df1.tail()

# Out[4]:

|    | timestamp | type   | status | box  |
|----|-----------|--------|--------|------|
| 55 | 7/5/2021  | pfizer | in     | 1501 |
| 56 | 7/5/2021  | pfizer | in     | 1502 |
| 57 | 7/5/2021  | pfizer | in     | 1503 |
| 58 | 7/5/2021  | pfizer | in     | 1504 |
| 59 | 7/5/2021  | pfizer | in     | 1505 |

# In [5]:

```
# Distribution of the Two Vaccine Types
df1.groupby('type').count()
```

# Out[5]:

|         | timestamp | status | box |
|---------|-----------|--------|-----|
| type    |           |        |     |
| moderna | 47        | 47     | 47  |
| pfizer  | 13        | 13     | 13  |

### In [6]:

```
sns.histplot(data=df1,x='type',stat='count')
```

## Out[6]:

<AxesSubplot:xlabel='type', ylabel='Count'>



# In [7]:

```
df1.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 60 entries, 0 to 59
Data columns (total 4 columns):
 #
     Column
               Non-Null Count Dtype
               -----
 0
    timestamp 60 non-null
                               object
 1
    type
               60 non-null
                               object
    status
               60 non-null
                               object
                               int64
 3
    box
               60 non-null
dtypes: int64(1), object(3)
memory usage: 2.0+ KB
```

# In [8]:

```
df1['timestamp'] = pd.to_datetime(df1['timestamp'], format='%d/%m/%Y')
```

#### In [9]:

```
# drop duplicates in case boxes were scanned more than once
# for either in or out by mistake

df1.drop_duplicates(subset=['status','type','box'],keep='first',inplace=True)
```

#### In [10]:

```
# Remove those boxes which have been checked out
# Methodogy is convert all the status 'out' entries into 'in' which forces
# the corresponding in to become duplicate entries. Then we do a
# remove duplicate with keep=False to drop all duplicates
# Hence, whatever remains in the dataframe df1 represents boxes that are checked
# into the fridge and not yet checked out, ie real physical inventory

df1.loc[df1['status']=='out','status']='in'
df1.drop_duplicates(subset=['status','type','box'],keep=False,inplace=True)
```

# **Processing & Visualisation for Moderna Vaccine**

Moderna vaccine can be stored at 2 to 8 degrees for up to 30 days

# In [11]:

```
# Filtering out the Moderna Vaccine into dataframe df2
# df2 = df1[df1['type']=='moderna']

df2 = df1.loc[df1['type']=='moderna',:]
```

# In [12]:

df2

# Out[12]:

|    | timestamp  | type    | status | box  |
|----|------------|---------|--------|------|
| 10 | 2021-04-23 | moderna | in     | 1010 |
| 11 | 2021-04-23 | moderna | in     | 1011 |
| 12 | 2021-04-23 | moderna | in     | 1012 |
| 13 | 2021-04-23 | moderna | in     | 1013 |
| 14 | 2021-04-23 | moderna | in     | 1014 |
| 15 | 2021-04-23 | moderna | in     | 1015 |
| 16 | 2021-04-23 | moderna | in     | 1016 |
| 17 | 2021-04-23 | moderna | in     | 1017 |
| 18 | 2021-04-23 | moderna | in     | 1018 |
| 19 | 2021-04-23 | moderna | in     | 1019 |
| 20 | 2021-04-23 | moderna | in     | 1020 |
| 26 | 2021-04-24 | moderna | in     | 1100 |
| 27 | 2021-04-24 | moderna | in     | 1101 |
| 28 | 2021-04-24 | moderna | in     | 1102 |
| 29 | 2021-04-24 | moderna | in     | 1103 |
| 30 | 2021-04-24 | moderna | in     | 1104 |
| 34 | 2021-04-28 | moderna | in     | 1200 |
| 35 | 2021-04-29 | moderna | in     | 1300 |
| 36 | 2021-04-30 | moderna | in     | 1310 |
| 37 | 2021-05-01 | moderna | in     | 1320 |
| 38 | 2021-05-02 | moderna | in     | 1330 |
| 41 | 2021-05-07 | moderna | in     | 1500 |
| 42 | 2021-05-07 | moderna | in     | 1501 |
| 43 | 2021-05-07 | moderna | in     | 1502 |
| 44 | 2021-05-07 | moderna | in     | 1503 |
| 45 | 2021-05-07 | moderna | in     | 1504 |
| 46 | 2021-05-07 | moderna | in     | 1505 |

# In [13]:

```
currentDate = pd.to_datetime("28/5/2021", format='%d/%m/%Y')
```

```
In [14]:
```

```
df2['ElapsedDays'] = currentDate - df2['timestamp']
<ipython-input-14-535364ac3e3e>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/
stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pand
as.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-v
ersus-a-copy)
  df2['ElapsedDays'] = currentDate - df2['timestamp']
In [15]:
df2.head()
Out[15]:
    timestamp
                             box ElapsedDays
                 type status
    2021-04-23
                            1010
                                      35 days
              moderna
                          in
    2021-04-23
                            1011
              moderna
                                      35 days
                          in
12
    2021-04-23
              moderna
                            1012
                                      35 days
                          in
13
    2021-04-23
              moderna
                            1013
                                      35 days
    2021-04-23
              moderna
                          in 1014
                                      35 days
In [16]:
df2['ElapsedDays'] = df2['ElapsedDays'].dt.days.astype('int16')
<ipython-input-16-90c6ce392f52>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/
stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pand
as.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-v
ersus-a-copy)
  df2['ElapsedDays'] = df2['ElapsedDays'].dt.days.astype('int16')
In [17]:
df2['RemainDays'] = 30 - df2['ElapsedDays']
<ipython-input-17-92bb5608371e>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/
stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pand
as.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-v
ersus-a-copy)
  df2['RemainDays'] = 30 - df2['ElapsedDays']
```

#### In [18]:

```
# checking on the overall statistics
df2.describe()
```

#### Out[18]:

|       | box         | ElapsedDays | RemainDays |
|-------|-------------|-------------|------------|
| count | 27.000000   | 27.000000   | 27.000000  |
| mean  | 1190.740741 | 30.407407   | -0.407407  |
| std   | 198.528741  | 5.773009    | 5.773009   |
| min   | 1010.000000 | 21.000000   | -5.000000  |
| 25%   | 1016.500000 | 26.500000   | -5.000000  |
| 50%   | 1102.000000 | 34.000000   | -4.000000  |
| 75%   | 1325.000000 | 35.000000   | 3.500000   |
| max   | 1505.000000 | 35.000000   | 9.000000   |

#### In [19]:

```
# Displaying the inventory stock level
# total number of boxes in stock

total_stock = df2['box'].count()
print("Total number of boxes in stock:",total_stock)
# check for expired stock ie ElapsedDays >30
expired=df2.loc[df2['ElapsedDays']>30, 'box'].count()
print('Number of Expired boxes:',expired)
# check for number of unexpired inventory
valid_stock = total_stock - expired
print('Total number of unexpired valid stock:',valid_stock)
# mean and median of inventory
ElapsedDays_mean = df2['ElapsedDays'].mean()
ElapsedDays_median = df2['ElapsedDays'].median()
print(f'The mean and median of Elapsed Days are {ElapsedDays_mean:.2f} and {ElapsedDays_median}
```

```
Total number of boxes in stock: 27
Number of Expired boxes: 16
Total number of unexpired valid stock: 11
The mean and median of Elapsed Days are 30.41 and 34.00 respectively
```

# In [20]:

```
# Tabulate breakdown of inventory according to ElapsedDays

df2.groupby('ElapsedDays').agg({'ElapsedDays':'count'})
```

## Out[20]:

#### **ElapsedDays**

| ElapsedDays |    |  |
|-------------|----|--|
| 21          | 6  |  |
| 26          | 1  |  |
| 27          | 1  |  |
| 28          | 1  |  |
| 29          | 1  |  |
| 30          | 1  |  |
| 34          | 5  |  |
| 35          | 11 |  |

# In [21]:

```
# Visualising the breakdown in Days Remaining vs box count
# Negative values mean vaccine expired
sns.histplot(data=df2,x='RemainDays',stat='count')
```

## Out[21]:

<AxesSubplot:xlabel='RemainDays', ylabel='Count'>



# **Processing & Visualisation for Pfizer Vaccine**

Pfizer vaccine can be stored at 2 to 8 degrees for up to 5 days

```
In [22]:
```

```
# Filtering out the Pfizer Vaccine into dataframe df3

df3 = df1[df1['type']=='pfizer']
```

#### In [23]:

```
currentDate = pd.to_datetime("7/5/2021", format='%d/%m/%Y')
```

#### In [24]:

```
df3['ElapsedDays'] = currentDate - df3['timestamp']
```

```
<ipython-input-24-a66c9cadef46>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user\_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user\_guide/indexing.html#returning-a-view-versus-a-copy)

df3['ElapsedDays'] = currentDate - df3['timestamp']

#### In [25]:

# df3.head()

#### Out[25]:

|    | timestamp  | type   | status | box  | ElapsedDays |
|----|------------|--------|--------|------|-------------|
| 49 | 2021-04-30 | pfizer | in     | 1310 | 7 days      |
| 50 | 2021-05-01 | pfizer | in     | 1320 | 6 days      |
| 51 | 2021-05-02 | pfizer | in     | 1330 | 5 days      |
| 54 | 2021-05-07 | pfizer | in     | 1500 | 0 days      |
| 55 | 2021-05-07 | pfizer | in     | 1501 | 0 days      |

#### In [26]:

```
df3['ElapsedDays'] = df3['ElapsedDays'].dt.days.astype('int16')
```

```
<ipython-input-26-3163159dd63b>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user\_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user\_guide/indexing.html#returning-a-view-versus-a-copy)

```
df3['ElapsedDays'] = df3['ElapsedDays'].dt.days.astype('int16')
```

### In [27]:

```
df3['RemainDays'] = 5 - df3['ElapsedDays']
```

<ipython-input-27-9895a1eaaa99>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row\_indexer,col\_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user\_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user\_guide/indexing.html#returning-a-view-versus-a-copy)

df3['RemainDays'] = 5 - df3['ElapsedDays']

## In [28]:

# checking on the overall statistics
df3.describe()

## Out[28]:

|       | box         | ElapsedDays | RemainDays |
|-------|-------------|-------------|------------|
| count | 9.000000    | 9.000000    | 9.000000   |
| mean  | 1441.666667 | 2.000000    | 3.000000   |
| std   | 91.398851   | 3.041381    | 3.041381   |
| min   | 1310.000000 | 0.000000    | -2.000000  |
| 25%   | 1330.000000 | 0.000000    | 0.000000   |
| 50%   | 1501.000000 | 0.000000    | 5.000000   |
| 75%   | 1503.000000 | 5.000000    | 5.000000   |
| max   | 1505.000000 | 7.000000    | 5.000000   |

### In [29]:

```
# Displaying the inventory stock level
# total number of boxes in stock

total_stock = df3['box'].count()
print("Total number of boxes in stock:",total_stock)
# check for expired stock ie ElapsedDays >5

expired=df3.loc[df3['ElapsedDays']>5, 'box'].count()
print('Number of Expired boxes:',expired)
# check for number of unexpired inventory

valid_stock = total_stock - expired
print('Total number of unexpired valid stock:',valid_stock)
# mean and median of inventory

ElapsedDays_mean = df3['ElapsedDays'].mean()
ElapsedDays_median = df3['ElapsedDays'].median()
print(f'The mean and median of Elapsed Days are {ElapsedDays_mean:.2f} and {ElapsedDays_meda_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stock_stoc
```

```
Total number of boxes in stock: 9
Number of Expired boxes: 2
Total number of unexpired valid stock: 7
The mean and median of Elapsed Days are 2.00 and 0.00 respectively
```

#### In [30]:

```
# Tabulate breakdown of inventory according to ElapsedDays
df3.groupby('ElapsedDays').agg({'ElapsedDays':'count'})
```

### Out[30]:

#### **ElapsedDays**

| ElapsedDays |   |  |  |
|-------------|---|--|--|
| 0           | 6 |  |  |
| 5           | 1 |  |  |
| 6           | 1 |  |  |
| 7           | 1 |  |  |

# In [31]:

```
# Visualising the breakdown in Days Remaining vs box count
# Negative values mean vaccine expired
sns.histplot(data=df3,x='RemainDays',stat='count')
```

## Out[31]:

<AxesSubplot:xlabel='RemainDays', ylabel='Count'>



# In [ ]: