.js file .py file .java file .tex file .cpp file .pdf file .c file .lean file

Geometric Maps in Higher Topos Theory

E. Dean Young

Topological Duality			
Open	Closed		
Universally Open	Universally Closed		
Unramified	Separated		
Étale	Proper		

1. Introduction

2. Unicode

Here is a list of the unicode characters I will use:

Symbol	Unicode	VSCode shortcut	Use			
Lean's Kernel						
×	2A2F	\times	Product of types			
\rightarrow	2192	\rightarrow	Hom of types			
⟨, ⟩	27E8,27E9	\langle,\rangle	Product term introduction			
-> sto	21A6	\mapsto	Hom term introduction			
٨	2227	\wedge	Conjunction			
V	2228	\vee	Disjunction			
A	2200	\forall	Universal quantification			
3	2203	\exists	Existential quantification			
_	00AC	\neg	Negation			
		Variables and Co	nstants			
a,b,c,,,z	1D52,1D56		Variables and constants			
0,1,2,3,4,5,6,7,8,9	1D52,1D56		Variables and constants			
-	207B		Variables and constants			
0,1,2,3,4,5,6,7,8,9	2080 - 2089	\0-\9	Variables and constants			
A,,Z	1D538	\bbA,,\bbZ	Variables and constants			
0,,Z	1D552	\bba,,\bbz	Variables and constants			
α - ω ,A- Ω	03B1-03C9		Variables and constants			
Categories and Bicategories						
1	1D7D9	\b1	The identity morphism			
?	2218		Composition			
			Composition			
			Composition			
		Adjunction	s			
	1BC94		Right adjoints			
•	0971		Left adjoints			
-	22A3	\dashv	The condition that two functors are adjoint			
Monads and Comonads						
?,;	003F, 00BF	?,\?	The corresponding (co)monad of an adjunction			
!,;	0021, 00A1	!, \!	The (co)-Eilenberg-(co)-Moore adjunction			
! i	A71D, A71E		The (co)AdjMon maps			
Miscellaneous						
~	2243	\equiv	Equivalences			
~	2245	\cong	Isomorphisms			
1	22A5	\bot	The overobject classifier			
∞	221E	\infty	Infinity categories and infinity groupoids			

Of these, the characters $^{!}$, $^{!}$, and $^{!}$ do not have VSCode shortcuts, and so I provide alternatives for them. Possibly they will have to be changed if this work assimilates into a larger project.

It is not possible to copy the from the pdf to the clipboard while preserving the integrity of the code. To see the official Lean 4 file please click the link on the top right of the front page or this.

Lean 1 import Mathlib.CategoryTheory.Bicategory.Basic import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.DiscreteCategory import Mathlib.Combinatorics.Quiver.Basic import Mathlib.CategoryTheory.Category.Init import Aesop import Init import Mathlib.CategoryTheory.DiscreteCategory import Mathlib.CategoryTheory.Bicategory.Strict ${\tt import\ Mathlib.CategoryTheory.ConcreteCategory.Bundled}$ import Mathlib.CategoryTheory.Functor.Basic import Init.Core import Mathlib.CategoryTheory.Category.Cat import TheWhiteheadTheorem -- #check --

Copyright © June 2023 Elliot Dean Young. All rights reserved.