

Cosmic Muon Reconstruction and Analysis

Chang Liu
Purdue University

Outline

- Motivation and Introduction
- · Algorithm
 - Seeding
 - Navigation
 - Trajectory Building
 - Global Trajectory Building
- · Performance
 - Barrel-endcap overlapping tracks from MTCC data
 - Traversing muons from cosmic MC data
- · Conclusions

Motivation

- · MTCC
 - Reconstruct muon trajectories using MTCC data
- Distinguish between muons from
 - collisions
 - cosmic rays
 - beam-halo
 - etc.
- Provide a tool to
 - debug software
 - align detector
 - understand trigger and reconstruction

Introduction

- · Not an alternative standalone/global reconstruction
 - The current implementation is optimized and efficient for muons from collisions
- Algorithm dedicated for the reconstruction of cosmic muons
 - Cosmic muons are different:
 - less constraint than muon tracks from collisions
 - · Can have signals in 2 hemispheres
 - Try to use the same algorithm to reconstruct beam halo muons
- · Main idea:
 - Focus on trajectories from outside

Use Cases

· Standard:

· Cosmic:

Beam-halo

Algorithm

- Muon reconstruction:
 - Local reconstruction
 - DT need different tTrig Mode
 - wrong bunch crossing id
 - · Not discussed here
 - For DT experts
 - Standalone reconstruction
 - Seeding (cosmic seed generator)
 - Navigation (direct muon navigation)
 - Trajectory Building (cosmic muon trajectory builder)
 - Global reconstruction
 - Matching with tk tracks
 - · Combined fit
- Demonstrated with MTCC data

Seeding

- Trajectory Seed
 - Starting point of a trajectory
- Get 4D segments on top (global y) from DT and CSC
 - Direction of seed given by direction of segment
 - rescale momentum
 - Set direction downward

Navigation

- Navigation determines the relations among layers for a given trajectory state
- All layers that intersect the possible path of a trajectory are defined as compatible layers

· No requirement that the trajectory is compatible with the IP **Interaction Point** Direct Method used in Cosmic Reconstruction **Muon Layers Standard Method** Ćhang Liu, Purdue Univ., Feb 27, 2007

Trajectory Building

- Start from the Trajectory Seed, loop over compatible layers, grow trajectory by including measurements in detector
 - Using MuonBestMeasurementFinder
- Propagation Direction: (energy flow)
 - along momentum or opposite to momentum
- Navigation Direction: (put hits into trajectory)
 - outside-in or inside-out
 - By radii in barrel and |z| values in endcap
 - Constant for standard muons from collisions
 - along momentum ←→ inside-out
 - opposite to momentum ←→ outside-in
 - Not true for cosmic muons
 - need to check and may change (see next slide)

Trajectory Building

- Forward fit (along momentum)
- Backward fit (opposite to momentum)

 Navigation direction changes Forward fit Backward refit

Chang Liu, Purdue Univ., Feb 27, 2007

Traversing Muons

- Cosmic muons can traverse the whole detector and shows up as 2 pieces in 2 hemispheres
- Compatible layers provided by Navigation are not enough
- Activate "Traversing" mechanism if
 - One end of the trajectory is inside
 - There are enough hits not yet used during trajectory building

Traversing Muons in Barrel

- Trajectory building <u>layer by layer</u> does NOT work
 - Layers are cylinders in barrel
- Propagate a trajectory state to a cylinder
 - 2 possible predicted states
 - Usually the one on the same side chosen
- · Use Det Surface instead
- · Propagate into "center" first

Building Strategy I

- Build two parts in opposite hemispheres first
- · Collect all trajectories in the event
- Match them
- · Refit
 - Navigation direction flips
- · Pro
 - Fast and straight-forward
- · Con
 - Need 2 trajectory cleaners
 - break current structure
- Studied but aborted

Building Strategy II

- Build a part in one hemisphere first
- · Collect all hits from chambers not yet used
- Select and sort unused hits
- Update trajectory with hits
 - Navigation direction flips
- · Pro
 - Fits with reco structure
- · Con
 - Can not work with bkgd
- Committed in CMSSW
 - Not good enough
 - May improve selection step

Building Strategy III

- Build a part in one hemisphere first
- · Make it outside-in and propagate to inside
- Starting from the trajectory state inside
- Specify propagation direction
 - Avoid getting back
- Continue pattern recognition
 - Navigation direction flips
- · Pro
 - Robust
 - Fits with current reco structure
- · Con
 - Specify propagation direction
- Will be committed soon

Propagation inside

- The propagation from a starting state to the next hit as indicated is done with virtual planes
 - they may be not necessary by improving implementation of propagator

Traversing Muons in Endcap

- · Trajectory Building layer by layer can work
 - If the trajectory is parallel to beam line, reconstruct it as Beam-halo muons
 - Collect all layers from opposite endcap
 - Skip all barrel layers

Direction Determination

- From left or right?
- · Time of flight
 - Need time resolution <~ 10 ns
 - RPC can not be used for time-of-flight

- · Energy loss
 - Track refit
 - Refit the track from left and right
 - The one with smaller chi2 is supposed to be correct
 - Works for most of muon tracks
 - But beam-halo may be different
- Under investigation

Global Cosmic Muons

- Match track in muon system with track in tracker
- Only studied for MTCC
 - Probably not needed after LHC start-up
 - · Possibility for cosmic muons passing tk is too small
- Difference from standard global reco:
 - for muons from collisions
 - There are many tracker tracks
 - · Need to find the matched one
 - for cosmic muons
 - Tk track may not come from the same muon
- Apply a looser cut
- Use standard combined fit

Global Cosmic Muons

- Track in muon (2 pieces in opposite hemispheres)
- + Track in tracker
- Divide the muon track into 2 pieces according to the radii & φ values of hits
- Sandwich the tracker hits
- Standard combined fit

Global Cosmic Muon in MTCC

MTCC Data

- · Run 2621
 - Aug. 2006
 - Trigger:
 - DT(HW0) .or. CSC(HW1) .or. RBC1(HW2) .or. RBC2(HW3) .or. RPCTB(HW4)
 - Total number of events:
 - · 868771
 - Magnetic Field:
 - · 3.8T
- Run 4045
 - Oct. 2006
 - Trigger:
 - DT (B1, 2, 3, all sectors) CSC (ME 1, 2, 3 singles)
 - Total number of events:
 - 3.1 M
 - Magnetic Field
 - · 3.8T

Cosmic MC Data

- Total number of events
 - 997500
- Muons generated from outside of detector
- Two sets
 - MTCC Geometry
 - · Compare with real data
 - Pseudo-trigger filter applied
 - to mimic MTCC trigger
 - Full Geometry
 - More use cases than MTCC
 - Traversing muons

P. Biallass

MTCC data

- · Simulated and Real data are in agreement
- p_T spectrum at innermost state
 - Compare the first state with its closest SimHit

Performance on MTCC Data

- Selection: (>=1) DT segment + (>=1) CSC segment
- · Reconstructing barrel-endcap overlaping tracks with:
 - Cosmic reco
 - Standard STA reco
- Largely improves efficiency!
- Overall p_T resolution
 - 26% at innermost state

Histogram of number of hits included in reconstructed tracks

Performance on Traversing Muons

Efficiency

Event Description	Efficiency Definition	Efficiency (%)
MTCC	# evts w tracks/	93 (Data)
	# evts w 2 segments	90 (MC)
MTCC barrel-endcap overlapping tracks	# evts w tracks/	90 (Data)
	# evts w 2 segments	85 (MC)
MTCC global cosmic muon tracks	# evts w tracks/	(> 50) (Data)
	# evts w m&t tracks	
Traversing muons in full detector	# evts w tracks/	(>50) (MC)
	# evts w 2 subtracks	Difficult to estimate
Global cosmic muons in full detector	# evts w tracks/	(> 50) Magninal code
	# evts w m&t tracks	neriment

DT local reco with 106, rest reco with 110. Better results expected with later releases.

Proposal for Offline Processing

- Cosmic & Beam-Halo Trigger
- Collisions Trigger
 - Process with standard STA and GLB first
 - Select events that look like containing cosmic or beam-halo muons
 - Muon segments unused by STA
 - · STA Trajectory not from IP
 - Correlated STA Trajectories

Conclusions

- Cosmic reconstruction works in different scenarios
 - Tested with MTCC & MC data
 - High efficiency
 - Good resolution with "double sides" of muon system
- Most of the code committed and released
- · Under development
 - Need to optimize
 - Seed generator
 - Traversing tracks
- Need to test with beam-halo muons
 - First version of MC generator committed 3 weeks ago
 - Generating a big sample
- Ultimate goal
 - Have a well-tested cosmic reco with high performance ready for pilot run
- CMS note in preparation
 - First version expected in 2 weeks

Backup

backup

Barrel-endcap Overlap Tracks

- Reconstruct MTCC barrel-endcap overlap tracks with 4 methods:
 - Standard reco (MuonSeed + STAMuon)
 - CosmicMuonSeed + STAMuon
 - CosmicMuonSeed + STA with NavigationType as "Direct"
 - Cosmic reco

Fake Di-muon Events

Possible for both Opposite Sign and Same Sign Di-Mu

Dangerous bkgd

