ASSIGNMENT 2

Write C programs implementing two algorithms of multiplication of two $\mathbf{n} \times \mathbf{n}$ dense matrices based on your variants.

- 1) You need to experiment with the programs and present the speedup of the blocked algorithms over the non-blocked one for several matrix sizes **n**.
- 2) In this task, investigate the influence of block size on cache utilization and the execution time of blocked matrix multiplication. Experimental procedure:
 - Consider a matrix size **n** between 1024 and 4096.
 - Utilize the Linux command lscpu to obtain detailed information about the cache sizes, including L1, L2, and L3 caches.
 - For each cache level, carefully detect the largest block size to enhance the cache
 utilisation in that level. Based on these findings, select a representative range of
 block sizes for experiments.
 - Execute your blocked matrix multiplication application with the selected matrix size n and block sizes and record the execution time.
 - Examine the results obtained from various block sizes and elucidate these results
 in the context of the cache sizes of the machine employed for application
 execution.

Variants of the assignment:

- Multiplication of matrix blocks in the implementation of the blocked ijk algorithm:
 - a. manually written
 - b. BLAS calls
 - c. ATLAS calls
- 2) Comparison with non-blocking BLAS/ATLAS dgemm routine:
 - a. BLAS
 - b. ATLAS
