## GRADIENT DESCENT

Umarani Jayaraman

#### Gradient Descent - Introduction

- Gradient descent (GD) is an iterative first-order optimization algorithm, used to find a local minimum/maximum of a given function.
- This method is commonly used in machine learning (ML) and deep learning (DL) to minimize a cost/loss function (e.g. in a linear regression).
- This method was proposed long before the era of modern computers by Augustin-Louis Cauchy in 1847.

### Function requirements

- Gradient descent algorithm does not work for all functions. There are two specific requirements. A function has to be:
- differentiable
- □ convex

## First requirement - differentiable

- □ First, what does it mean it has to be **differentiable**?
- If a function is differentiable it has a derivative for each point in its domain
- Not all functions meet these criteria. First, let's see some examples of functions meeting this criterion:



### Typical non-differentiable functions have a step a cusp or a discontinuity



# Next requirement - function has to be convex

- □ Next requirement function has to be convex.
- For a univariate function, this means that the line segment connecting two function's points lays on or above its curve (it does not cross it).
- If it crosses it has a local minimum which is not a global one.
- $\square$  Mathematically, for two points  $x_1$ ,  $x_2$  laying on the function's curve this condition is expressed as:

$$f(\lambda x_1 + (1-\lambda)x_2) \le \lambda f(x_1) + (1-\lambda)f(x_2)$$

- where λ denotes a point's location on a section line and its value has to be between 0 (left point) and 1 (right point),
- $\square$  e.g.  $\lambda$ =0.5 means a location in the middle.
- Below there are two functions with exemplary section lines.





# Caution: First requirement – differentiable, what about second requirement?

- □ First, what does it mean it has to be differentiable?
- If a function is differentiable it has a derivative for each point in its domain
- Second and third function is not convex



Another way to check mathematically if a univariate function is convex is to calculate the second derivative and check if its value is always bigger than 0.

$$\frac{d^2f(x)}{dx^2} > 0$$

# Let's do a simple example

Let's investigate a simple quadratic function given by:

$$f(x) = x^2 - x + 3$$

Its first and second derivative are:

$$\frac{df(x)}{dx} = 2x - 1, \quad \frac{d^2f(x)}{dx^2} = 2$$

Because the second derivative is always bigger than 0, our function is strictly convex.

# saddle points

- It is also possible to use quasi-convex functions with a gradient descent algorithm.
- However, often they have so-called saddle
   points (called also minimax points) where the algorithm can get stuck
- An example of a quasi-convex function is:

#### □ First order derivative

$$f(x) = x^4 - 2x^3 + 2$$

$$\frac{df(x)}{dx} = 4x^3 - 6x^2 = x^2(4x - 6)$$

Let's stop here for a moment. We see that the first derivative equal zero at x=0 and x=1.5. This places are candidates for function's extrema (minimum or maximum )— the slope is zero there. But first we have to check the second derivative first.

#### Second order derivative

$$\frac{d^2 f(x)}{dx^2} = 12x^2 + 12x = 12x(x-1)$$

The value of this expression is zero for x=0 and x=1. These locations are called an inflexion point — a place where the curvature changes sign — meaning it changes from convex to concave or vice-versa. By analysing this equation we conclude that :

- for x<0: function is convex
- for 0<x<1: function is concave (the 2nd derivative < 0)</li>
- for x>1: function is convex again

Now we see that point x=0 has both first and second derivative equal to zero meaning this is a saddle point and point x=1.5 is a global minimum.

Let's look at the graph of this function. As calculated before a saddle point is at x=0 and minimum at x=1.5.



Semi-convex function with a saddle point; Image by author

Example of a saddle point in a bivariate function is show below.

$$z = x^2 - y^2$$



### Gradient

- Intuitively it is a slope of a curve at a given point in a specified direction.
- In the case of a univariate function, it is simply the first derivative at a selected point.
- In the case of a multivariate function, it is a vector of derivatives in each main direction (along variable axes) (i.e) partial derivatives.
- □ A gradient for an n-dimensional function f(x) at a given point 'p' is defined as follows:  $\begin{bmatrix} \frac{\partial f}{\partial x_1}(p) \end{bmatrix}$

$$\nabla f(p) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(p) \\ \vdots \\ \frac{\partial f}{\partial x_n}(p) \end{bmatrix}$$

#### Gradient Descent Procedure

- □ In summary, Gradient Descent method's steps are:
- 1. choose a starting point (initialization)
- 2. calculate gradient at this point
- 3. make a scaled step in the opposite direction to the gradient (objective: minimize)
- 4. repeat points 2 and 3 until one of the criteria is met:
  - maximum number of iterations reached
  - step size is smaller than the tolerance (due to scaling or a small gradient).

# Gradient Descent: sample code

```
import numpy as np
    from typing import Callable
 3
    def gradient descent(start: float, gradient: Callable[[float], float],
                          learn_rate: float, max_iter: int, tol: float = 0.01):
         x = start
         steps = [start] # history tracking
         for _ in range(max_iter):
10
             diff = learn_rate*gradient(x)
11
12
             if np.abs(diff) < tol:</pre>
13
                 break
             x = x - diff
             steps.append(x) # history tracing
15
16
17
         return steps, x
VanillaGD.py hosted with V by GitHub
                                                                                               view raw
```

- □ This function takes 5 parameters:
- 1. starting point [float] in our case, we define it manually but in practice, it is often a random initialisation
- 2. gradient function [object] function calculating gradient which has to be specified before-hand and passed to the GD function
- 3. learning rate [float] scaling factor for step sizes
- 4. maximum number of iterations [int]
- 5. tolerance [float] to conditionally stop the algorithm (in this case a default value is 0.01)

# Effect of different learning rate

The animation below shows steps taken by the GD algorithm for learning rates of 0.1 and 0.8.





# Results of various learning rate



# Gradient - summary

- The gradient is a fundamental concept in calculus and optimization technique
- □ The gradient of a function, denoted by  $\nabla$  (nabla), is a vector that points in the direction of the steepest increase of the function at a given point.
- □ Mathematically, for a function f(x1,x2,...,xn), the gradient is given by:
- $\square$   $\nabla f = (\partial f/\partial x 1, \partial f/\partial x 2, ..., \partial f/\partial x n)$
- Each component of the gradient represents the partial derivative of the function with respect to one of its input variables.

## Significance in Optimization:

- In the context of optimization problems, the goal is often to find the minimum or maximum of a function.
- The gradient provides crucial information about the direction and rate of change of the function.
- The negative gradient points in the direction of the steepest decrease of the function.
- Therefore, moving in the opposite direction of the gradient helps in descending towards the minimum of the function.

# Gradient Descent Algorithm

#### Algorithm

- 1. Initialize weights randomly  $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient,  $\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}}$
- 4. Update weights,  $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 5. Return weights



#### **Batch Gradient Descent**

#### Algorithm

- 1. Initialize weights randomly  $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient,  $\frac{\partial J(w)}{\partial w}$
- 4. Update weights,  $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 5. Return weights



It can be computationally intensive to compute

### Stochastic Gradient Descent

#### Algorithm

- 1. Initialize weights randomly  $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Pick single data point i
- 4. Compute gradient,  $\frac{\partial J_i(w)}{\partial w}$
- 5. Update weights,  $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 6. Return weights



Easy to compute but very noisy

#### Mini-batch Gradient Descent

#### Algorithm

- 1. Initialize weights randomly  $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Pick batch of B data points
- 4. Compute gradient,  $\frac{\partial J(W)}{\partial W} = \frac{1}{B} \sum_{k=1}^{B} \frac{\partial J_k(W)}{\partial W}$
- 5. Update weights,  $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 6. Return weights



Fast to compute and a much better estimate of the true gradient

# Mini-batches while training

- More accurate estimation of gradient
- Smoother convergence
- Allows for larger leaning rates
- Mini-batches lead to fast training

### Error minimization with iterations



### Gradient Descent- Variants

- Batch
- Stochastic
- Mini-batch



# Thank you