# 计算机组成 (2022**秋**)



# 计算机组成课程组

(刘旭东、高小鹏、肖利民、栾钟治、万寒)

北京航空航天大学计算机学院中德所 栾钟治

2 北京航空航天大学

**≻1** 

# 第六讲 MIPS处理器设计 -. 处理器设计概述 -. MIPS模型机 -. MIPS单周期处理器设计 四. MIPS多周期处理器设计 五. MIPS流水线处理器设计 1. 流水线及其冒险 2. 流水线设计的工程化方法

习题5——单周期处理器

- ❖已发布
  - ➤Spoc平台
- ❖11月18日截止
  - >23:55
- ❖在sopc提交
  - >电子版,可手写

(3) 北京航空航天大

**≻2** 

# 流水线设计的一般方法

- ❖单周期数据通路和控制信号为基础
  - ▶先不考虑转发、暂停和分支等
- ❖考虑转发
  - ▶增加转发控制单元,处理ALU和MEM转发
- ❖考虑因Load导致的数据冒险
  - ▶增加冒险检测单元
- ❖考虑分支
  - >缩短分支延迟,分支比较前移

00 北京航空航天大学

4.47

# 流水线设计的工程化方法

- ❖集中式译码与分布式译码
- ❖基础指令集与流水线设计规划
- ❖无转发数据通路构造方法
- ❖功能部件控制信号构造方法
- ❖数据冒险的一般性分析方法
- **❖**暂停机制生成方法
- ❖转发机制生成方法
- ❖控制冒险处理机制

2 北京航空航天大学

**>**5



# 流水线设计的工程化方法

- ❖集中式译码与分布式译码
- ❖基础指令集与流水线设计规划
- ❖无转发数据通路构造方法
- ❖功能部件控制信号构造方法
- ❖数据冒险的一般性分析方法
- **❖**暂停机制生成方法
- ❖转发机制生成方法
- ❖控制冒险处理机制

O 北京航空航天大学

**≻**6





**>**9

# 基础指令集与标准流水线 SW ADDU ❖指令集 SUBU ORI >lw, sw, addu, subu, ori, lui, beq, j, jal, jalr LUI ❖典型指令;可以支持大多数程序需求 BEQ ❖jal, jalr: 涉及2个写入操作, PC写入, RF写入 >比较特殊的指令 JAL JALR 11 00. 北京航空航天大学

流水线设计的工程化方法

- ❖集中式译码与分布式译码
- ❖基础指令集与流水线设计规划
- \*无转发数据通路构造方法
- ❖功能部件控制信号构造方法
- ❖数据冒险的一般性分析方法
- **❖**暂停机制生成方法
- ❖转发机制生成方法
- ❖控制冒险处理机制

O. 北京航空航天大学

10



# 三控制器架构

- ❖功能部件控制器: 就是书中的控制器
  - >译码指令,控制各个功能部件
  - ▶属于功能性设计范畴:即与指令的功能相关,与性能无关
    - 无论单周期还是流水线,设计思路相同
- ❖暂停控制器
  - >将IF/ID指令与前序指令(位于后序流水段)分析,决定是否暂停
  - >属于性能设计范畴
- ❖转发控制器
  - ▶分析各级指令的相关性,决定如何转发
  - >属于性能设计范畴
- ❖三控制器架构特点
  - ▶结构清晰,易于理解
  - ▶ 暂停控制器、转发控制器: 独立, 相互不干扰

00 北京航空航天大学

13

**≻13** 

# 流水线寄存器

- ❖需要设置4级流水线寄存器
  - ▶5级流水线的最后一级寄存器为RF
- ❖标记X: 代表对应流水级需要设置相应寄存器
  - ▶IR: 4个流水级均需要
  - ▶AO: 仅M级和W级需要

| 名称        | 功能            | D级<br>IF/ID | E级<br>ID/EX | M级<br>EX/MEM | W级<br>MEM/WB |
|-----------|---------------|-------------|-------------|--------------|--------------|
| IR        | 传递指令          | X           | X           | Χ            | X            |
| PC4       | 下一条指令地址       | Х           | Х           | Χ            | Х            |
| RS        | RF的RS值(RD1输出) |             | Х           |              |              |
| RT        | RF的RT值(RD2输出) |             | Х           | Χ            |              |
| EXT       | 扩展后的32位立即数    |             | X           |              |              |
| AO        | ALU计算结果       |             |             | Χ            | Х            |
| DR        | DM读出结果        |             |             |              | Х            |
| 00 北京航空航天 | k#            |             |             |              | 15           |

# 流水线功能部件

- ❖延用单周期数据通路功能部件
- ❖按流水段分类,便于理解和记忆
- ❖RF在2个阶段均被使用
  - ▶译码/读操作数阶段;结果回写寄存器阶段

| 阶段    | 部件   | 输入             | 输出       | 描述          |
|-------|------|----------------|----------|-------------|
|       | PC   | D              | Q        | 程序计数器       |
| 取指令   | ADD4 | PC, +4         | PC4      | 完成PC+4      |
|       | IM   | A              | D        | 指令存储器       |
|       | RF   | A1, A2, A3, WD | RD1, RD2 | 寄存器堆        |
| 译码/读  | EXT  | 116            | IMM32    | 立即数扩展       |
| 操作数   | NPC  | PC, 126        | NextPC   | 为B类/J计算下条地址 |
|       | CMP  | D1, D2         | Result   | 比较2个数       |
| 计算    | ALU  | A, B           | ALU      | 算数/逻辑运算     |
| 访存    | DM   | A, WD          | RD       | 数据存储器       |
| 回写    | RF   |                |          |             |
| 1.关大学 |      |                |          |             |

>14

# 流水线设计的工程化方法

- ❖集中式译码与分布式译码
- ❖基础指令集与流水线设计规划
- ❖无转发数据通路构造方法
- ❖功能部件控制信号构造方法
- ❖数据冒险的一般性分析方法
- **❖**暂停机制生成方法
- ❖转发机制生成方法
- ❖控制冒险处理机制

00 北京航空航天大学



**≻17** 

>19

| 部件     | 输入  | LW        | SW        | ADDU     | SUBU     | ORI       | BEO       | 1         | IAL       | IALR    |
|--------|-----|-----------|-----------|----------|----------|-----------|-----------|-----------|-----------|---------|
| PC     |     | ±741      |           |          |          |           |           | , i       | ,         | ,       |
| S ADD4 | Ť   |           | 令的        | 12.0     |          | PC        | PC        | PC        | PC        | PC      |
| IM     | _   | PC        | I PC      | 数据       | PC       | PC        | PC        | PC        | PC        | PC      |
| PC     |     | ADD4      | ADD4      | ADD4     | ADD4     | ADD4      | ADD4      | ADD4      | ADD4      | ADD4    |
| IR@D   |     | IM        | IM        | IM       | IM       | IM        | IM        | IM        | IM        | IM      |
| PC4@D  |     |           |           |          |          |           | ADD4      | ADD4      | ADD4      | ADD4    |
|        | A1  | IR@D[rs]  | IR@D[rs]  | IR@D[rs] | IR@D[rs] | IR@D[rs]  | IR@D[rs]  | IR@D[rs]  |           | IR@D[rs |
| RF     | A2  | ` '       |           | IR@D[rt] | IR@D[rt] |           | IR@D[rt]  | IR@D[rt]  |           |         |
| EXT    |     | IR@D[i16] | IR@D[i16] |          |          | IR@D[i16] |           |           |           |         |
| CMD    | D1  |           |           |          |          |           | RF.RD1    |           |           |         |
| CMP    | D2  |           |           |          |          |           | RF.RD2    |           |           |         |
| NPC    | PC4 |           |           |          |          |           | PC4@D     | PC4@D     | PC4@D     |         |
| NPC    | I26 |           |           |          |          |           | IR@D[i16] | IR@D[i26] | IR@D[i26] |         |
| PC     |     |           |           |          |          |           | NPC       | NPC       | NPC       | RF.RD1  |
| IR@E   |     | IR@D      | IR@D      | IR@D     | IR@D     | IR@D      |           |           | IR@D      | IR@D    |
| PC4@E  |     |           |           |          |          |           |           |           | PC4@D     | PC4@D   |
| RS@E   |     | RF.RD1    | RF.RD1    | RF.RD1   | RF.RD1   | RF.RD1    |           |           |           |         |
| RT@E   |     |           | RF.RD2    | RF.RD2   | RF.RD2   |           |           |           |           |         |
| EXT@E  |     | EXT       | EXT       |          |          | EXT       |           |           |           |         |
| ALU    | Α   | RS@E      | RS@E      | RS@E     | RS@E     | RS@E      |           |           |           |         |
| ALU    | В   | EXT@E     | EXT@E     | RT@E     | RT@E     | EXT@E     |           |           |           |         |
| IR@M   |     | IR@E      | IR@E      | IR@E     | IR@E     | IR@E      |           |           | IR@E      | IR@E    |
| PC4@M  |     |           |           |          |          |           |           |           | PC4@E     | PC4@E   |
| AO@M   |     | ALU       | ALU       | ALU      | ALU      | ALU       |           |           |           |         |
| RT@M   |     |           | RT@E      |          |          |           |           |           |           |         |
| DM     | Α   | AO@M      | AO@M      |          |          |           |           |           |           |         |
| DM     | WD  |           | RT@M      |          |          |           |           |           |           |         |
| IR@W   |     | IR@M      |           | IR@M     | IR@M     | IR@M      |           |           | IR@M      | IR@M    |
| PC4@W  |     |           |           |          |          |           |           |           | PC4@M     | PC4@M   |
| AO@W   |     |           |           | AO@M     | AO@M     | AO@M      |           |           |           |         |
| DR@W   |     | DM        |           |          |          |           |           |           |           |         |
| RF     | A3  | IR@W[rt]  |           | IR@W[rd] |          | IR@W[rt]  |           |           | 0x1F      | IR@W[rd |
| Kr     | WD  | DR@W      |           | AO@W     | AO@W     | AO@W      |           |           | PC4@W     | PC4@W   |

|                                | 部件           | 输入  | LW        |
|--------------------------------|--------------|-----|-----------|
| S1: LW的数据通路                    | PC<br>ADD4   |     | D.C.      |
|                                | ADD4<br>IM   |     | PC<br>PC  |
|                                | PC.          |     | ADD4      |
| ❖根据RTL描述建立各级流水线寄存器、功能部件        | IR@D         |     | IM        |
|                                | PC4@D        |     |           |
| 间连接关系                          | RF           | A1  | IR@D[rs]  |
| ▶LW: 5级                        |              | A2  |           |
|                                | EXT          | PC4 | IR@D[i16] |
| ❖IR必填                          | NPC          | I26 |           |
| > 采用分布式译码                      | PC           | 120 |           |
|                                | IR@E         |     | IR@D      |
| ❖指令不涉及的不需要填:如PC4               | PC4@E        |     |           |
|                                | RS@E<br>RT@E |     | RF.RD1    |
| ❖X[y]: 代表X部件的y域                | EXT@E        |     | EXT       |
| *ID@DE4C1 DAID#4C件字即卷          |              | A   | RS@E      |
| <b>❖IR@D[i16]:D级IR的16</b> 位立即数 | ALU          | В   | EXT@E     |
|                                | IR@M         |     | IR@E      |
|                                | PC4@M        |     |           |
|                                | AO@M<br>RT@M |     | ALU       |
|                                |              | Α   | AO@M      |
|                                | DM           | WD  | 110 (2.11 |
|                                | IR@W         |     | IR@M      |
|                                | PC4@W        |     |           |
|                                | A0@W<br>DR@W |     | DM        |
|                                |              | A3  | IR@W[rt]  |
| (c) 北京航空航天大学                   | RF           | WD  | DR@W      |

| S2:综合全部指令的数据通路                                    | 部件            | 输入        |                 | 渝入来源 |        | MUX  | 控制       |
|---------------------------------------------------|---------------|-----------|-----------------|------|--------|------|----------|
| 04.尔口土即旧マ的奴据通婚                                    |               |           |                 |      |        |      |          |
| ❖水平方向归并                                           | ADD4          |           | PC<br>PC        |      |        |      |          |
|                                                   | IM<br>PC      |           | ADD4            | NPC  | RERD1  | M1   | PCSe     |
| >去除冗余输入来源                                         | IR@D          |           | IM              | IVIC | KI-KD1 | IVII | 1 030    |
| ❖在每个输入来源个数大于1的输                                   | PC4@D         |           | ADD4            |      |        |      |          |
|                                                   | RF            | A1        | IR@D[rs]        |      |        |      |          |
| 入端前增加1个MUX                                        |               | A2        | IR@D[rt]        |      |        |      |          |
|                                                   | EXT           |           | IR@D[i16]       |      |        |      |          |
| ▶注意: 同时需要产生相应的控制信号                                | CMP           | D1        | RF.RD1          |      |        |      | -        |
| · 性例 NDOM:4ctricolt 光头                            |               | D2<br>PC4 | RF.RD2<br>PC4@D |      |        |      |          |
| ❖特例:NPC的i16和i26归并为                                | NPC           | 126       | IR@D[i26]       |      |        |      | $\vdash$ |
| i26                                               | IR@E          | 120       | IR@D            |      |        |      | _        |
| 120                                               | PC4@E         |           | PC4@D           |      |        |      | -        |
|                                                   | RS@E          |           | RF.RD1          |      |        |      |          |
|                                                   | RT@E          |           | RF.RD2          |      |        |      |          |
|                                                   | EXT@E         |           | EXT             |      |        |      |          |
|                                                   | ALU           | A<br>B    | RS@E            | DMOR |        | 140  | D.C.     |
|                                                   | IR@M          | В         | EXT@E<br>IR@E   | RT@E |        | M2   | BSe      |
|                                                   | PC4@M         |           | PC4@E           |      |        |      |          |
|                                                   | AO@M          |           | ALU             |      |        |      | -        |
|                                                   | RT@M          |           | RT@E            |      |        |      |          |
|                                                   | DM            | Α         | AO@M            |      |        |      |          |
|                                                   |               | WD        | RT@M            |      |        |      |          |
|                                                   | IR@W          |           | IR@M            |      |        |      | _        |
|                                                   | PC4@W<br>AO@W |           | PC4@M<br>AO@M   |      |        |      | -        |
|                                                   | DR@W          | -         | AU@M<br>DM      |      |        |      | $\vdash$ |
| 北京航空航天大学                                          | RF            | А3        | IR@W[rt]        |      | 0x1F   | М3   | WRS      |
| # \$ # \$ # \$ # \$ # \$ # \$ # \$ # \$ # \$ # \$ | KI            | WD        | DR@W            | AO@W | PC4@W  | M4   | WDS      |

# 流水线设计的工程化方法

- ❖集中式译码与分布式译码
- ❖基础指令集与流水线设计规划
- ❖无转发数据通路构造方法
- ❖功能部件控制信号构造方法
- ❖数据冒险的一般性分析方法
- **❖**暂停机制生成方法
- ❖转发机制生成方法
- ❖控制冒险处理机制

Ox 北京航空航天大学

>21

# 流水线设计的工程化方法

- ❖集中式译码与分布式译码
- ❖基础指令集与流水线设计规划
- ❖无转发数据通路构造方法
- ❖功能部件控制信号构造方法
- ❖数据冒险的一般性分析方法
- ❖暂停机制生成方法
- ❖转发机制生成方法
- ❖控制冒险处理机制

O. 北京航空航天大学

23

21

# 功能部件控制信号构造方法

- ❖控制信号产生基本原理: 与单周期相同
- ❖分歧点:集中式译码?分布式译码?
  - ▶集中式:
    - 与单周期控制器设计完全相同
    - 流水控制信号
  - >分布式: 多个小控制器
    - 每个小控制器的设计思路与单周期相同
    - 流水指令

00 北京航空航天大学

22

>22

# 数据冒险:需求与供给能否匹配?

- ❖需求者:需要引用reg值的组件
  - ▶由于reg值最终被某个组件使用,因此那个组件才是需求者
  - ▶例如: 所有运算类指令的需求在E级的ALU
  - ▶例如:j指令不需要读取任何GPR,因此j指令没有需求
- ❖供给者:保存有req新结果的流水线寄存器
  - ▶例如:所有运算类指令的供给者是EX/MEM、MEM/WB
  - ▶例如: load类指令的供给者是MEM/WB
- ❖数据冒险可以转化为:需求与供给的匹配
  - ▶无法匹配: 暂停
  - ▶可以匹配: 转发

ca 北京教堂教天大学

# 需求者的最晚时间模型

- **❖ T**<sub>use</sub>(time-to-use): 指令进入IF/ID寄存器后,其后的某个功能 部件再经过多少cycle就必须要使用相应的寄存器值
  - ▶特点1: 是读取操作数的时间上限
  - ▶特点2: 同一条指令可以有2个不同的Tue
  - ▶例如,R型计算类指令的T<sub>usa</sub>为1
    - rs/rt值: 最晚被ID/EX寄存器驱动
  - ▶例如,store类指令的T<sub>uss</sub>分别为1和2
    - rs值: 最晚被ID/EX寄存器驱动
    - rt值: 最晚被EX/MEM寄存器驱动

n 北京航空航天大

25

>25

# 数据冒险的策略分析

- □ T<sub>new</sub> = 0: 表明结果已经产生
  - 指令位于MEM/WB:那么虽然结果尚未最终写入RF,但RF设计使得W结果可以被正确的读出,因此无需任何操作
  - 指令位于其他位置:通过转发解决数据相关
- □ Tnew ≠ 0: 表明结果尚未产生
  - ◆ Tnew>Tuse: 不可能及时供给数据,只能暂停流水线
  - T<sub>new</sub>≤T<sub>use</sub>: 由于结果产生时间短于读取时间,因此当结果产生后可以通过 转发解决数据冒险
- □ 暂停: Tnew > Tuse
- □ 转发: T<sub>new</sub> = 0&指令不在MEM/WB 或 T<sub>new</sub> ≤ T<sub>use</sub>

O. 北京航空航天大学

27

# 供给者的最早时间模型

- **❖ T<sub>new</sub>(time-to-new)**: 位于ID/EX及其后各流水段的指令,再经过多少周期能够产生要写入寄存器的结果
  - >特点1: 动态值,随着指令的流动,该值在不断减小,直至0
  - ▶特点2: 一条指令可以有多个不同的Tnew
  - ▶例如,R型计算类指令的Tnaw为1或0
    - 1: 指令位于ID/EX, ALU正在计算。
    - 0: 指令位于EX/MEM和MEM/WB
  - ▶例如,load类指令的T<sub>new</sub>为2,1,0
    - 2: 指令位于ID/EX,尚未读取存储器。
    - 1: 指令位于EX/MEM,正在读取存储器
    - 0: 指令位于MEM/WB,包含了结果

O. 北京航空航天大学

26

>26

# 数据冒险的策略分析

- ❖暂停:由于在IF/ID就能决定是否需要暂停,因此分析量少
  - ▶只需将指令的Tusa与各级的Tnaw进行对比即可决定是否需要暂停
- ❖转发:由于在ID级、EX级、MEM级均涉及操作数读取,因此分析量大
  - ▶需要将各级指令与其后的各级指令进行对比
- ❖思路: 先解决暂停, 再解决转发
  - ▶先易后难
  - >去除暂停部分后,有助于减少转发的分析量

CA 北京教皇教天大学

# 流水线设计的工程化方法

- ❖集中式译码与分布式译码
- ❖形式建模综合方法概述
- ❖基础指令集与流水线设计规划
- ❖无转发数据通路构造方法
- ❖功能部件控制信号构造方法
- ❖数据冒险的一般性分析方法
- **❖**暂停机制生成方法
- **❖**转发机制生成方法
- ❖控制冒险处理机制

**,北京航空航天大学** 

29

>29

# 构造Tuse表和Tnew表

- ❖Tuse表:以指令位于IF/ID来分析
  - ▶流水线在指令被存储在IF/ID后就决定是否需要暂停
- ❖Tnew表:只需分析处于ID/EX和EX/MEM这2种情况
  - ▶IF/ID: 无任何结果
  - ▶MEM/WB: 如果结果到达该阶段,则通过RF设计可以消除数据冒险

| IF/      | ID当f     | <b>竹指令</b> |
|----------|----------|------------|
| 指令<br>类型 | 源寄<br>存器 | Tuse       |
| beq      | rs/rt    | 0          |
| cal_r    | rs/rt    | 1          |
| cal_i    | rs       | 1          |
| load     | rs       | 1          |
| store    | rs       | 1          |
| store    | rt       | 2          |

|               | ID/EX |   | _             | X/ME |   | MEM/WB |  |  |  |
|---------------|-------|---|---------------|------|---|--------|--|--|--|
| (             | Tnew  | ) | (             | Tnew | ) | (Tnew) |  |  |  |
| cal_r<br>1/rd |       |   | cal_r<br>0/rd |      |   |        |  |  |  |

00 北京航空航天大学

31

# 构造Tuse表和Tnew表

❖示例指令集

- ▶add, sub: cal\_r类,即R型计算类指令
- ▶andi,ori: cal\_i类,即I型计算类指令
- ➤beq: b\_type类
- ▶lw: ld类
- ▶sw: st类
- ❖会产生结果的指令: cal r类, cal i类, load类
- ❖用指令分类可以大幅度简化分析工作量

00 北京航空航天大学

30

ADD

SUB andi

ori

LW

SW

BEQ

>30

# 构造阻塞矩阵

- ❖凡是T<sub>new</sub>> T<sub>use</sub> 的指令序列,都需要阻塞
- ❖示例
  - ▶序列1 cal\_r beq:由于cal\_r需要1个cycle后才能得到结果,而beq现在就需要读取寄存器,因此只能暂停
  - ▶序列2 load store: store要读取的rs将在1个cycle后必须使用,而位于ID/EX的load必须经过2个cycle后才能读出DM的数据,因此只能暂停

| IF/ID    | 当前       | 旨令               |               |               | EX/MEM<br>(T <sub>new</sub> ) |              |
|----------|----------|------------------|---------------|---------------|-------------------------------|--------------|
| 指令<br>类型 | 源寄<br>存器 | T <sub>use</sub> | cal_r<br>1/rd | cal_i<br>1/rt | load<br>2/rt                  | load<br>1/rt |
| beq      | rs/rt    | 0                | 暂停            | 暂停            | 暂停                            | 暂停           |
| cal_r    | rs/rt    | 1                |               |               | 暂停                            |              |
| cal_i    | rs       | 1                |               |               | 暂停                            |              |
| load     | rs       | 1                |               |               | 暂停                            |              |
| store    | rs       | 1                |               |               | 暂停                            |              |
|          |          |                  |               |               |                               |              |

O 北京航空航天大学

# 暂停控制信号

❖建立分类指令的暂停条件

❖建立最终的暂停条件

```
stall = stall_beq + ...
```

□ 建立控制信号

| IF/IC    | 当前排          | 旨令               |               | EX/MEM<br>(T <sub>new</sub> ) |              |              |
|----------|--------------|------------------|---------------|-------------------------------|--------------|--------------|
| 指令<br>类型 | 源寄<br>存器     | T <sub>use</sub> | cal_r<br>1/rd | cal_i<br>1/rt                 | load<br>2/rt | load<br>1/rt |
| beq      | rs/rt        | 0                | 暂停            | 暂停                            | 暂停           | 暂停           |
| cal_r    | <u>rs/rt</u> | 1                |               |                               | 暫停           |              |
| cal_i    | rs           | 1                |               |                               | 暂停           |              |
| load     | rs           | 1                |               |                               | 暂停           |              |
| store    | rs           | 1                |               |                               | 暂停           |              |

O. 北京航空航天大学

>33

# 流水线设计的工程化方法

- ❖集中式译码与分布式译码
- ❖基础指令集与流水线设计规划
- ❖无转发数据通路构造方法
- ❖功能部件控制信号构造方法
- ❖数据冒险的一般性分析方法
- **❖**暂停机制生成方法
- ❖转发机制生成方法
- ❖控制冒险处理机制

**60** 共享教育教表表于

# 暂停控制信号

- ❖执行动作:
  - ▶①冻结IF/ID: 后续指令继续被保存
  - ▶②清除ID/EX: 指令全为0,等价于插入NOP
  - ▶③禁止PC:防止PC继续计数,PC应保持为PC+4

IR\_D.en = !stall

IR\_E.clr = stall

PC.en = !stall

>34

00 北京航空航天大学

# 转发机制生成方法

❖S1: 根据Tuse和Tnew构造每个转发MUX

❖S2: 构造每个转发MUX的控制信号表达式

→ 36

# 根据Tuse和Tnew构造每个转发MUX

- ❖按照指令分类,梳理指令在各级流水线的rs或rt读需求
- ❖每个读需求对应1个转发MUX
- ❖转发MUX的输入0:必然是本级流水线寄存器
  - ▶对于IF/ID级来说,输入0则来自是RF的输出
- ❖【建议】命名应遵循一定的规则

| 流水级  | 源寄<br>存器 | 涉及指令                 |       |            |        |
|------|----------|----------------------|-------|------------|--------|
| IR@D | rs       | beq                  | MFRSD | ForwardRSD | RF.RD1 |
|      | rt       | beq                  | MFRTD | ForwardRTD | RF.RD2 |
| IR@E | rs       | cal_r, cal_i, ld, st | MFRSE | ForwardRSE | RS@E   |
|      | rt       | cal_r, st            | MFRTE | ForwardRTE | RT@E   |
| IR@M | rt       | st                   | MFRTM | ForwardRTM | RT@M   |
|      |          |                      | 转发MUX | 控制信号       | 输入0    |

00 北京航空航天大学

37

>37

# 根据Tuse和Tnew构造每个转发MUX

- ❖构造每个转发MUX的后续输入
- ❖示例: MFRSD
  - ➤ EX/MEM: cal\_r和cal\_i指令都是计算类,结果必然由ALU产生,因此均填入AO。即代表MFRSD的输入来自EX/MEM中的AO寄存器
    - AO: 代表ALUOut
  - ▶ MEM/WB:由于这是最后一级,即所有指令的结果都通过M4(MUX)回写,因此均填入M4。

|          |            |                      |       |            |        |               | иЕМ<br>ew)    | MEM/W<br>(Tnew) |               | - 1          |
|----------|------------|----------------------|-------|------------|--------|---------------|---------------|-----------------|---------------|--------------|
| 流水级      | 源寄<br>存器   | 涉及指令                 |       |            |        | cal_r<br>0/rd | cal_i<br>0/rt | cal_r<br>0/rd   | cal_i<br>0/rt | load<br>0/rt |
| IF/ID    | rs         | beq                  | MFRSD | ForwardRSD | RF.RD1 | AO            | AO            | M4              | M4            | M4           |
|          | rt         | beq                  | MFRTD | ForwardRTD | RF.RD2 |               |               |                 |               |              |
| ID/EX    | rs         | cal_r, cal_i, ld, st | MFRSE | ForwardRSE | RS@E   |               |               |                 |               |              |
|          | rt         | cal_r, st            | MFRTE | ForwardRTE | RT@E   |               |               |                 |               |              |
| EX/MEM   | rt         | st                   | MFRTM | ForwardRTM | RT@M   |               |               |                 |               |              |
|          |            |                      | 转发MUX | 控制信号       | 输入0    |               |               |                 |               |              |
| 2. 北京航空航 | <b>人大学</b> |                      |       |            |        |               |               |                 |               | 39           |

根据Tuse和Tnew构造每个转发MUX

❖用Tnew中剔除非0后的表项,来分析转发MUX的后续输入

▶注意:并非有N个0项就有N个后续输入

|          | EX<br>ew) |             | EX/MEM<br>(Tnew) |               |              | MEM/WB<br>(Tnew) |                   |              |        |                      |               |               |               |              |
|----------|-----------|-------------|------------------|---------------|--------------|------------------|-------------------|--------------|--------|----------------------|---------------|---------------|---------------|--------------|
|          | _         | oad<br>2/rt | cal_r<br>0/rd    | cal_i<br>0/rt | load<br>1/rt | cal_<br>0/rd     | r cal_i<br>d 0/rt | load<br>0/rt |        | EX/MEM MEM/WB (Tnew) |               |               |               |              |
| 流水级      | 源寄        |             | 涉及指              | 令             |              |                  |                   |              |        | cal_r<br>0/rd        | cal_i<br>0/rt | cal_r<br>0/rd | cal_i<br>0/rt | load<br>0/rt |
| IF/ID    | rs        |             | beq              |               | MFR          | SD               | SD ForwardRSD     |              | RF.RD1 |                      |               |               |               |              |
|          | rt        |             | beq              |               | MFR          | TD               | TD ForwardRTD     |              | RF.RD2 |                      |               |               |               |              |
| ID/EX    | rs        | cal         | _r, cal_         | i, ld, st     | MFR          | SE               | SE ForwardRSE     |              | RS@E   |                      |               |               |               |              |
|          | rt        |             | cal_r,           | st            | MFR          | TE               | Forward           | RTE          | RT@E   |                      |               |               |               |              |
| EX/MEM   | rt        |             | st               |               | MFR          | ТМ               | Forward           | RTM          | RT@M   |                      |               |               |               |              |
|          |           |             |                  |               | 转发M          | 1UX              | 控制信               | 묵            | 输入0    |                      |               |               |               |              |
| n. 北京航空新 |           |             |                  |               |              |                  |                   |              |        | -                    |               |               |               | 38           |

>38

# 根据Tuse和Tnew构造每个转发MUX

- ❖根据前例,可以构造出全部的转发MUX
  - ▶当store类指令位于EX/MEM时,不可能再有同级的指令了
  - ▶因此有2项空白
- ❖构造更大指令集时,需求项及供给项可能均需要调整
  - ▶但由于MIPS的指令功能到格式映射的相对统一,因此调整不会剧烈
  - ▶再次从一个侧面反映出MIPS指令集设计的水平!

|         |            |                      |       |            |        | EX/MEM<br>(Tnew) |               | MEM/W<br>(Tnew) |               | _          |
|---------|------------|----------------------|-------|------------|--------|------------------|---------------|-----------------|---------------|------------|
| 流水级     | 源寄<br>存器   | 涉及指令                 |       |            |        | cal_r<br>0/rd    | cal_i<br>0/rt | cal_r<br>0/rd   | cal_i<br>0/rt | ld<br>0/rt |
| IF/ID   | rs         | beq                  | MFRSD | ForwardRSD | RF.RD1 | AO               | AO            | M4              | M4            | M4         |
|         | rt         | beq                  | MFRTD | ForwardRTD | RF.RD2 | AO               | AO            | M4              | M4            | M4         |
| ID/EX   | rs         | cal_r, cal_i, ld, st | MFRSE | ForwardRSE | RS@E   | AO               | AO            | M4              | M4            | M4         |
|         | rt         | cal_r, st            | MFRTE | ForwardRTE | RT@E   | AO               | AO            | M4              | M4            | M4         |
| EX/MEM  | rt         | st                   | MFRTM | ForwardRTM | RT@M   |                  |               | M4              | M4            | M4         |
|         |            | •                    | 转发MUX | 控制信号       | 输入0    |                  |               |                 |               |            |
| e acuen | <b>美大學</b> |                      |       |            |        |                  |               |                 | •             | 40         |

# 根据Tuse和Tnew构造每个转发MUX

- ❖对于MFRSD来说,其最终有效输入为3个
  - ▶输入0~RF.RD1; 输入1~AO; 输入2~M4
- ❖实现转发MUX时,需要剔除每级中的重复项
- ❖在表格中保留重复项的目的: 有利于建立后续的控制信号方程

| MFRSD | ForwardRSD | RF.RD1 | AO | AO | M4 | M4 | M4 |
|-------|------------|--------|----|----|----|----|----|
| MFRTD | ForwardRTD | RF.RD2 | AO | AO | M4 | M4 | M4 |
| MFRSE | ForwardRSE | RS@E   | AO | AO | M4 | M4 | M4 |
| MFRTE | ForwardRTE | RT@E   | AO | AO | M4 | M4 | M4 |
| MFRTM | ForwardRTM | RT@M   |    |    | M4 | M4 | M4 |
| 转发MUX | 控制信号       | 输入0    |    |    |    |    |    |

| 14 2  | 17.051H 2  | 1097 40 |      |     |
|-------|------------|---------|------|-----|
|       |            |         |      |     |
| MFRSD | ForwardRSD | RF.RD1  | AO@M | M4  |
| MFRTD | ForwardRTD | RF.RD2  | AO@M | M4  |
| MFRSE | ForwardRSE | RS@E    | AO@M | M4  |
| MFRTE | ForwardRTE | RT@E    | AO@M | M4  |
| MFRTM | ForwardRTM | RT@M    | M4   |     |
| 转发MUX | 控制信号       | 输入0     | 输入1  | 输入2 |



>41

>43

### 部件 PC 数据通路增加转发MUX ADD4 ❖遍历数据通路的功能部件, 找 IR@D IM 到所有出现rs和rt的需求点 ADD4 ❖将对应的输入替换为转发MUX IR@D[rs] IR@D[i16] 的输出 CMP-MFRTD ▶注意ALU.B和RT@M,这两个rt需求 NPC PC4 PC4@D 是相同的,因此应该用同一个转发 IR@D[i26 IR@E PC4@D ▶注意:对于PC,由于构造转发MUX MFRTD RT@E 的示例指令集中没有jal/jalr指令,因 EXT@E EXT 此缺乏相应的转发MUX与之对应 M2 BSel EXT@E IR@M PC4@E AO@M RT@M ALU MFRTE MFRSD RF.RD1 AO@M MFRTD RF.RD2 AO@M AO@M DM MFRSE RS@E AO@M M4 IR@W MFRTE RT@E AO@M M4 PC4@W PC4@M AO@M AO@W MFRTM RT@M DR@W 转发MUX 输入0 输入1 输入2

| 280                                 |                |          |            |      | 部件    | 输入       |                  | 输入来源     |        | MUX | 控制       |
|-------------------------------------|----------------|----------|------------|------|-------|----------|------------------|----------|--------|-----|----------|
| 委                                   | 双居通路           | 增加较      | 麦灰MU       | Χ    | PC    |          |                  |          |        |     |          |
|                                     |                |          | _          |      | ADD4  |          | PC               |          |        |     |          |
| ★ 治 日                               | <del>:14</del> | IM<br>PC |            | PC   |       |          |                  |          |        |     |          |
| │❖遍历数据通路的功能部件,找<br>│ 到所有出现rs和rt的需求点 |                |          |            |      |       |          | ADD4             | NPC      | RF.RD1 | M1  | PCSel    |
|                                     |                |          |            |      |       |          | IM               |          |        |     |          |
|                                     |                | PC4@D    |            | ADD4 |       |          |                  |          |        |     |          |
| ❖ 注音                                | ÎΔIIIR         | 和RT@I    | M. 汝两      | 个    | RF    | A1       | IR@D[rs]         |          |        |     | _        |
|                                     |                | _        | 11, X2 1/3 | ,    | num   | A2       | IR@D[rt]         |          |        |     | -        |
| l rt需求是相同的!                         |                |          |            |      | EXT   |          | IR@D[i16]        |          |        |     | -        |
| =                                   |                |          |            |      | CMP   | D1<br>D2 | RF.RD1<br>RF.RD2 |          |        |     | -        |
| ≻iž                                 | 这意味着它          | 们应该来自    | 同一个转发      | ₹    |       | PC4      | PC4@D            |          |        |     | _        |
| N                                   | IUX            |          |            |      | NPC   | 126      | IR@D[i26]        |          |        |     | -        |
|                                     | .07.           |          |            |      | IR@E  | 120      | IR@D[126]        |          |        |     | -        |
|                                     |                |          |            |      | PC4@E |          | PC4@D            |          |        |     | _        |
|                                     |                |          |            |      | RS@E  |          | RERD1            |          |        |     | _        |
|                                     |                |          |            |      | RT@E  |          | RF.RD2           |          |        |     | -        |
|                                     |                |          |            |      | EXT@E |          | EXT              |          |        |     | <b>—</b> |
|                                     |                |          |            |      |       | Α        | RS@E             |          |        |     |          |
|                                     |                |          |            |      | ALU   | В        | EXT@E            | RT@E     |        | M2  | BSel     |
|                                     |                |          |            |      | IR@M  |          | IR@E             |          |        |     |          |
|                                     |                |          |            |      | PC4@M |          | PC4@E            |          |        |     |          |
| MFRSD                               | RF.RD1         | AO@M     | M4         |      | AO@M  |          | ALU              |          |        |     |          |
|                                     |                |          |            | 1    | RT@M  |          | RT@E             |          |        |     |          |
| MFRTD                               | RF.RD2         | AO@M     | M4         |      | DM    | Α        | AO@M             |          |        |     |          |
| MFRSE                               | RS@E           | AO@M     | M4         |      |       | WD       | RT@M             |          |        |     |          |
|                                     |                |          |            | -    | IR@W  |          | IR@M             |          |        |     |          |
| MFRTE                               | RT@E           | AO@M     | M4         |      | PC4@W |          | PC4@M            |          |        |     | ⊢        |
| MFRTM                               | RT@M           | M4       |            | 1    | AO@W  |          | AO@M             |          |        |     | -        |
|                                     |                | ****     |            | -    | DR@W  | 4.2      | DM<br>IR@W[rt]   | ID GMI-1 | 0x1F   | М3  | WRSel    |
| 转发MUX                               | 输入0            | 输入1      | 输入2        |      | RF    | A3       | IR@W[rt]         |          | DC4@W  | M4  | WRSel    |

>42

# 转发机制生成方法

- ❖S1: 根据Tuse和Tnew构造每个转发MUX
- ❖S2: 构造每个转发MUX的控制信号表达式

# S2: 构造每个转发MUX的控制信号表达式

- ❖控制信号表达式构造的基本思路
  - >精确控制每个转发选择
  - >所有非转发的条件都用于选择输入0

| 输入 | 来源     |
|----|--------|
| 0  | RF.RD1 |
| 1  | AO@M   |
| 2  | M4@W   |

47

|        |          |                      |       |            |          | EX/       | MEM           | М             | EM/W          | В          |
|--------|----------|----------------------|-------|------------|----------|-----------|---------------|---------------|---------------|------------|
|        |          |                      |       |            |          | (Tr       | iew)          | (             | Tnew          | )          |
| 流水级    | 源寄<br>存器 | 涉及指令                 |       |            |          | cal_<br>r | cal_i<br>0/rt | cal_r<br>0/rd | cal_i<br>0/rt | ld<br>0/rt |
| IF/ID  | rs       | beq                  | MFRSD | ForwardRSD | RF.RD1   | AO        | AO            | M4            | M4            | M4         |
|        | rt       | beq                  | MFRTD | ForwardRTD | RF.RD2   | AO        | AO            | M4            | M4            | M4         |
| ID/EX  | rs       | cal_r, cal_i, ld, st | MFRSE | ForwardRSE | ID/EX.RS | АО        | AO            | M4            | M4            | M4         |
|        | rt       | cal_r, st            | MFRTE | ForwardRTE | ID/EX.RT | AO        | AO            | M4            | M4            | M4         |
| EX/MEM | rt       | st                   | MFRTM | ForwardRTM | EX/MEM.R |           |               | M4            | M4            | M4         |
|        |          | •                    |       |            | T        |           |               |               |               |            |
|        |          |                      | 转发MUX | 控制信号       | 输入0      |           |               |               |               |            |
| 000    |          |                      |       |            |          |           |               |               |               | 45         |

>45

# 流水线设计的工程化方法

- ❖集中式译码与分布式译码
- ❖形式建模综合方法概述
- ❖基础指令集与流水线设计规划
- ❖无转发数据通路构造方法
- ❖功能部件控制信号构造方法
- ❖数据冒险的一般性分析方法
- **❖**暂停机制生成方法
- ❖转发机制生成方法
- ❖控制冒险处理机制

O. 北京航空航天大学

R 空歌美大學



>46

# 控制冒险处理机制

- ❖分歧点1:是否实现延迟槽
  - ▶如果实现,需要注意jal及jalr指令应保存PC+8(或者更多,取决于是否前移)
- ❖分歧点2: 执行是否前移至ID阶段
- ❖课程要求:实现延迟槽,并且前移至ID阶段

| 延迟槽 前移 | 是      | 否                                                     |
|--------|--------|-------------------------------------------------------|
| 是      | 硬件无需处理 | B类:有条件清除IF/ID<br>J类:无条件清除IF/ID                        |
| 否      | 编译调度指令 | B类:有条件清除IF/ID、ID/EX<br>J类:无条件清除IF/ID、ID/EX、<br>EX/MEM |

- O: JAL、JALR的回写寄存器怎么处理呢?
- A: 视同普通的回写

00 北京航空航天大学

# 总结

- ❖流水线设计的复杂性在于对冲突的覆盖性分析
  - >覆盖性分析使得设计与测试均具备了完整的正向设计的理论基础
  - ▶分析避免了频繁的、无谓的试错
  - ▶提高开发效率,确保开发正确性
- ❖教科书中存在的不足
  - ▶没有覆盖性分析,难以满足大规模指令集的流水线设计与测试需求
  - ▶没有覆盖性分析,必然遗漏部分数据相关
    - 如lw~sw指令,必须暂停。但事实上可以通过增加转发MUX实现不停顿
    - 如cal~sw指令,未明确指出处理机制
  - ▶RF内部的数据转发语焉不详
    - 内部转发: 当读和写同一个寄存器时,读出的数据应该为要写入的数据

O. 北京航空航天大学

>49

输入/输出(I/O)

- ❖人类与计算机通过I/O交互
- ❖计算机需要通过I/O获得持久化的存储能力
- ❖计算机还可以通过I/O展现各种令人惊异的能力



MIT Media Lab "Sixth Sense"

51

中断与异常的处理

00 北京教堂教关夫学

>50

# I/O 设备及其速度

• I/O 的速度: 从鼠标到局域网可以跨越7个数量级

| 设备    | 行为    | 交互对象 | 数据率 (KB/s) |
|-------|-------|------|------------|
| 键盘    | 输入    | 人类   | 0.01       |
| 鼠标    | 输入    | 人类   | 0.02       |
| 音频输出  | 输出    | 人类   | 5.00       |
| 软盘    | 存储    | 机器   | 50.00      |
| 激光打印机 | 输出    | 人类   | 100.00     |
| 磁盘    | 存储    | 机器   | 10,000.00  |
| 无线网络  | 输入或输出 | 机器   | 10,000.00  |
| 图形化显示 | 输出    | 人类   | 30,000.00  |
| 有线局域网 | 输入或输出 | 机器   | 125,000.00 |

O. 北京航空航天大学

00 北京航空航天大学



>53

# 

指令集体系结构(ISA)与I/O

❖处理器要为I/O做什么?

>输入: 读字节序列

▶输出: 写字节序列

❖有些处理器有专门的输入输出指令

❖另外的模式(MIPS):

▶用load实现输入,用store实现输出(小规模)

➤ Memory Mapped Input/Output

▶贡献出一部分地址空间作为输入输出设备的通信通路

00 北京航空航天大学

54

>54

# 处理器-I/O的速度不匹配

- ❖1 GHz 的微处理器每秒可以执行10亿条load或store指令 (4,000,000 KB/s 数据率)
  - I/O设备的数据率范围从 0.01 KB/s到125,000 KB/s
- ❖输入:设备无法及时准备好数据供处理器load
  - 可能还需要等待人类响应
- ❖ 输出: 设备无法及时准备好接收处理器store的数据
- ❖ 怎么办?

C. 北京航空航天大学

# 处理器执行动作前先查询状态

- ❖通向设备的通信通路上通常有2个寄存器:
  - 控制寄存器 用来确认是否允许读/写 (I/O ready)
  - 数据寄存器 暂存数据
- ◆处理器周期性查询(循环)控制寄存器,等待设备置位 Ready bit (0 → 1)
- ❖接着处理器load(输入)或者store(输出)数据寄存器
  - 重置控制寄存器 Ready bit (1 → 0)
- ❖这一过程称为"Polling"(轮询)

2 北京航空航天大学

## >57

# 轮询的开销

- ❖处理器规格: 1 GHz 时钟频率, 完成一个轮询操作需要400个时钟周期(轮询程序, 读写设备, 返回)
- ❖轮询对CPU资源的占用:
  - ▶鼠标:每秒30次查询,确保不会遗漏用户的动作
  - ▶软盘: 以2字节为一个单元,50 KB/秒的数据率传输,没有遗漏
  - ▶硬盘:以16字节大小的块为单位,16 MB/秒的数据传输率,没有遗漏

0. 北京航空航天大学

50

# I/O 示例 (MIPS中的轮询)

❖输入: 从键盘读入\$v0

lui \$t0, 0xffff # ffff0000
Waitloop: lw \$t1, 0(\$t0) # control reg
andi \$t1,\$t1,0x1

beq \$t1,\$zero, Waitloop
lw \$v0, 4(\$t0) # data reg

❖输出:从\$a0写到显示器

lui \$t0, 0xffff # ffff0000
Waitloop: lw \$t1, 8 (\$t0) # control reg
andi \$t1,\$t1,0x1

beq \$t1,\$zero, Waitloop sw \$a0,12(\$t0) # data req

❖ "Ready" —处理器的视角!

00 北京航空航天大学

E0

### >58

# 轮询的处理器时间占比

- ❖鼠标轮询:
  - *▶ 占用时间*: 30 [轮询/秒] × 400 [时钟周期/轮询] = 12K [时钟周期/秒]
  - ▶ 时间百分比: 1.2×10⁴ [时钟周期/秒] / 109 [时钟周期/秒] = 0.0012%
  - ▶鼠标轮询对处理器影响很小
- ❖磁盘轮询:
  - *▶ 频率:* 16 [MB/秒] / 16 [B/轮询] = 2<sup>20</sup> [轮询/秒]
  - 》占用时间: 2<sup>20</sup> [轮询/秒] × 400 [时钟周期/轮询] ≈ 419M [时钟周期/秒]
  - ▶时间百分比: 4.19×108 [时钟周期/秒] / 109 [时钟周期/秒] = 41.9%
  - >不可接受!
- ❖问题:轮询,读写较小的块

00 北京航空航天大学

# 替代方案?

- ❖浪费太多处理器时间用于"自旋等待"(spin-waiting)I/O 就绪
- ❖当I/O设备就绪时调用相关的过程
- ❖方案: 使用*异常*机制触发I/O, 然后在I/O进行数据传输的时候 中断程序

00 北京航空航天大学

61

**≻61** 

# 处理异常

- ❖ MIPS中异常由系统控制协处理器 (CPO) 处理
- ❖ 保存出问题(或者被中断)的指令的PC内容
  - ➤ MIPS: 保存在特殊的寄存器中 Exception Program Counter (EPC)
- ❖ 保存问题的描述
  - ▶MIPS: 保存在特殊的寄存器中,Cause 寄存器
  - ▶最简单的实现只需要1bit (0:未定义的opcode, 1:溢出)
- ❖ 转跳到异常处理代码 (exception handler code), 起始地址: 0x80000180
- ❖ 通知操作系统
  - ▶可以"杀"程序
  - ▶对于 I/O 设备请求或系统调用,通常同时切换到另一个进程
    - 比如当发生 TLB 缺失和页失效时

00 北京航空航天大学

63

# 异常和中断

- ❖ "突发的"事件需要改变控制流
  - ▶不同的指令集体系结构会使用不同的术语
- ❖ 异常
  - ▶ CPU内部产生 (例如未定义的opcode, 溢出, 系统调用, TLB 缺失)
- ❖ 中断
  - >来自外部I/O控制器
- ❖需要牺牲性能

00 北京航空航天大学

62

**≻62**