Ziel der Aufgabe ist es, mit dem alternierenden Schwarz-Verfahren das zweidimensionale Poissonproblem

$$-\Delta u(x,y) = 1$$
,

auf dem Einheitsquadrat $[0,1]^2$ zu lösen. Dabei soll auf dem Rand u=0 gelten.

Wir betrachten zwei überlappende Gebiete mit jeweils $N_x \times N$ inneren Punkten (das Gesamtgebiet hat N^2 innere Punkte, also $h = \frac{1}{N+1}$). Die Terme des Differenzensterns, die aus den Randbedingungen auf Γ_1 bzw. Γ_2 stammen, sollen auf die rechte Seite des Gleichungssystems geschrieben werden. Das Gleichungssystem hat also die Gestalt $Ax = 1 + b_{\Gamma}$, wobei -A dem Laplace-Operator mit Null-Randbedingungen entspricht. Da A symmetrisch ist, können wir das Problem mit CG-Verfahren lösen.

Verwenden Sie das Programm mit Differenzensternen und iterativem Löser und führen Sie auf den rechteckigen Gebieten Ω_1 und Ω_2 die alternierende Schwarz-Iteration mit Startwert u=0 aus.

Wie sieht eine Version mit verteiltem Speicher, ein Prozessor pro Teilgebiet und Kommunkation über MPI aus?

Parameter

Schwarz-Verfahren: $N=101,\ N_x\in\{51,52,53,55,60\}.$ CG-Verfahren: max. 1000 Iterationen, Residuum $10^{-8}.$

Als Maß für die Genauigkeit soll u in der Mitte des Quadrates ausgewertet werden. Stellen Sie u(1/2,1/2) über der Zahl der Schwarz-Iterationen graphisch dar, möglichst alle fünf Graphen in einem Diagramm. Interpretieren Sie das Ergebnis.

Bemerkung: Aus der analytischen Lösung ergibt sich u(1/2, 1/2) = 0.0736713532815138.

Zusatz

Vergleichen Sie den Aufwand des Schwarz-Verfahrens mit einem einzigen CG-Löser für das Gesamtgebiet. Was ist für eine größere Anzahl von Teilgebieten zu erwarten?