Computational intelligence

فاز سوم

سروش پسندیده - ۹۹۱۲۷۶۲۱۰۹، سروش فتحی - ۹۹۱۲۷۶۲۷۳۴

در این فاز از ما خواسته شده که با استفاده از ویژگیهای (features) تهیه شده از تصاویر دیتاست الله در این فاز از ما خواسته شده که با استفاده از ویژگیهای (unsupervised) با الگوریتم flower102 دیتاها را به صورت مناسب طبقه بندی کرده و سپس در بخش بعد با شکستن داده ها به گروه های کوچکتر و الگوریتم k-Nearest neighbors بهترین امتیاز را بدست آوریم.

بررسی کد

تحليل نتايج

p(penalty) = -0.2 score = accuracy + (n * p)

اولین چیزی باید بدست بیاریم بهترین مقدار برای score است.

همانطور که در کد توضیح داده شد، به ازای مقادیر مختلف k1 در اولین kNN (kN تعداد کلاسترهای نزدیک به داده تست)، و همچنین مقادیر مختلف k2 در دومین kNN (kN تعداد نزدیک ترین دیتاهای داده ی تست)، الگوریتم را اجرا میکنیم و مقدار score را بدست میاوریم. خروجی کد به صورت زیر است:

k1\k2	2	5	8	11	14
3	81.529	83.004	82.038	80.461	79.251
4	81.724	83.713	82.917	81.511	80.521
5	81.919	83.859	83.259	82	80.96
6	81.968	84.128	83.235	82.073	81.058
7	81.846	84.152	83.308	82.244	81.131
8	81.797	84.079	83.357	82.317	81.253
9	81.822	84.054	83.381	82.415	81.351
10	81.871	84.152	83.601	82.537	81.449
11	81.871	84.201	83.65	82.488	81.473
12	81.919	84.25	83.577	82.513	81.522
13	81.895	84.25	83.577	82.464	81.522
14	81.919	84.25	83.625	82.464	81.497

جدول ۱-۱

هر خانه جدول نشان دهنده مقدار score الگوریتم به ازای مقادیر k1 و k2 متناظر با آن است. همچنین در جدول زیر تغییرات score با تغییر شدت رنگ سبز مشخص شده است.

k1\k2	2	5	8	11	14
3	81.529	83.004	82.038	80.461	79.251
4	81.724	83.713	82.917	81.511	80.521
5	81.919	83.859	83.259	82	80.96
6	81.968	84.128	83.235	82.073	81.058
7	81.846	84.152	83.308	82.244	81.131
8	81.797	84.079	83.357	82.317	81.253
9	81.822	84.054	83.381	82.415	81.351
10	81.871	84.152	83.601	82.537	81.449
11	81.871	84.201	83.65	82.488	81.473
12	81.919	84.25	83.577	82.513	81.522
13	81.895	84.25	83.577	82.464	81.522
14	81.919	84.25	83.625	82.464	81.497

جدول **۲**-۱

طبق این جدول، با افزایش تعداد کلاستر ها (k1) مقدار score اغلب افزایش میابد.

تغییرات k1 بین 17 و k1=12 در حدود ۱.۰ است، پس با توجه به اینکه با انتخاب ۱۲ کلاستر حجم داده ی بسیار بیشتری را نسبت به ۷ کلاستر به عنوان داده train برمیگزینیم (نزدیک به ۲ برابر) و این باعث افزایش زمان train میشود و همچنین نتیجه score آنچنان بهبود نمیابد، انتخاب ۷ کلاستر بهترین گزینه است.

همچنین با افزایش تعداد نزدیکترین همسایه ها (k2) از ۲ تا ۵، مقدار score افزایش میابد و از آن به بعد با افزایش آن score کاهش میابد. پس بهترین مقدار برای k2 در بازه ۳ تا ۷ قرار دارد. برای مشخص شدن آن کد را برای این مقادیر اجرا میکنیم. خروجی به صورت جدول زیر است:

k1\k2	3	4	5	6	7
5	83.404	83.693	83.859	83.537	83.142
6	83.526	83.937	84.128	83.732	83.361
7	83.526	83.913	84.152	83.952	83.557
8	83.429	83.937	84.079	83.879	83.63
9	83.478	84.01	84.054	83.903	83.703
10	83.551	84.059	84.152	83.952	83.874
11	83.526	84.108	84.201	83.952	83.899
12	83.526	84.132	84.25	83.952	83.923
13	83.502	84.132	84.25	83.977	83.923
14	83.478	84.132	84.25	84.025	83.923

جدول ۱-۲

در جدول زیر تغییرات score با تغییر شدت رنگ سبز مشخص شده است.

k1\k2	3	4	5	6	7
5	83.404	83.693	83.859	83.537	83.142
6	83.526	83.937	84.128	83.732	83.361
7	83.526	83.913	84.152	83.952	83.557
8	83.429	83.937	84.079	83.879	83.63
9	83.478	84.01	84.054	83.903	83.703
10	83.551	84.059	84.152	83.952	83.874
11	83.526	84.108	84.201	83.952	83.899
12	83.526	84.132	84.25	83.952	83.923
13	83.502	84.132	84.25	83.977	83.923
14	83.478	84.132	84.25	84.025	83.923

جدول ۲-۲

همانطور که در این جدول مشخص شده است، به ازای k1=7 بهترین مقدار برای score در k2=5 اتفاق میافتد. منظور از بهترین صرفا دقت بیشتر در پیشبینی نیست و بلکه زمان هم در انتخاب ما موثر است. پس بیایید بررسی کنیم به ازای هر k1 و k2 چقدر زمان صرف پیدا کردن لیبل داده تست میشود.

k1\k2	3	4	5	6	7
5	0:00:15	0:00:17	0:00:15	0:00:15	0:00:14
6	0:00:19	0:00:19	0:00:21	0:00:19	0:00:18
7	0:00:20	0:00:20	0:00:21	0:00:20	0:00:18
8	0:00:20	0:00:22	0:00:22	0:00:23	0:00:23
9	0:00:26	0:00:25	0:00:25	0:00:25	0:00:25
10	0:00:28	0:00:29	0:00:25	0:00:25	0:00:25
11	0:00:27	0:00:27	0:00:29	0:00:28	0:00:29
12	0:00:32	0:00:32	0:00:31	0:00:33	0:00:32
13	0:00:34	0:00:34	0:00:33	0:00:33	0:00:36
14	0:00:42	0:00:37	0:00:36	0:00:37	0:00:39

جدول ۳-۲

train و زمان train و ججم داده و k2=5 بهترین نتیجه را براساس مقدار score حجم داده و k2=5 بهترین نتیجه را براساس مقدار درست است که با افزایش k1 به بیشتر از k1 دقت افزایش می یابد اما چون به شدت ناچیز است و برای این دقت ناچیز باید k1 ثانیه بیشتر صبر کنیم در نتیجه صرفه زمانی ندارد.

مقایسه score با دو نمودار زیر:

برای جدول ۱-۱

برای جدول ۱-۲

بررسی دلیل بیشتر شدن مقدار score با افزایش مقدار k1

با توجه به اینکه از الگوریتم k-means با 8-10 برای کلاستر بندی استفاده میکنیم، چون تعداد لیبل ها (۱۲۰) از تعداد کلاستر ها بیشتر است، پس در هر کلاستر قطعا داده هایی با فیچر مشابه و لیبل متفاوت وجود دارد. در نتیجه طبق اصل لانه کبوتری داده هایی با لیبل یکسان با داده ی تست در کلاستر های اطرف وجود دارد که به داده تست نزدیک هستند (به دلیل شباهت) . پس با افزایش تعداد کلاستر های همسایه، این داده ها وارد داده های امتفاد و دقت ما در پیشبینی لیبل تست بالاتر میرود. با این حال افزایش الا از مقدار معینی به بعد تاثیر چندانی بر روی دقت ندارد زیرا داده های مشابه با داده تست که در کلاستر های اطراف بررسی شده اند در کلاستر های دورتر کمتر پیدا میشوند.

ما k2 داده نزدیک را از داخل k1 کلاستر نزدیک برمیگزینیم و هر کلاستر به طور میانگین ۸۰ داده دارد و مقدار k2 بسیار کوچک تر از آن است، در نتیجه افزایش تعداد کلاستر ها که باعث میشود داده های دورتر جهت بررسی در دامنه ما قرار بگیرند، از جایی به بعد تاثیری روی انتخاب داده های نزدیک و لیبل نهایی نمیگذارد.

بررسی حالتی که با افزایش مقدار k1 مقدار score کاهش میابد

اگر از لیبل داده ای که به عنوان تست استفاده می کنیم در داده های train به تعداد کمی وجود داشته باشد، با افزایش k2 در الگوریتم KNN تعداد داده های مشابه ولی با لیبل متفاوت بیشتری در دامنه ما قرار میگیرند. پس در این صورت اگر k2 کوچکتر باشد، داده هایی که لیبل داده تست را دارند و به اندازه کافی به آن نزدیک هستند، نقش مهمتری را در پیش بینی لیبلش ایفا میکنند (مانند شکل زیر، لیبل درست آن بنفش است).

با توجه به اینکه داده های اولیهی ما از نوع unclustered هستند، برای حل مشکل کمبود داده تست برای لیبلی خاص میتوانیم از data augmentation استفاده کنیم.

ارتباط بین لیبل های KNN و لیبل های کلاستر

بعد از رسیدن به بهترین امتیاز میخواهیم بررسی کنیم آیا ارتباطی بین لیبل های KNN و لیبل های کلاستر وجود دارد؟ به عبارت دیگر میخواهیم بررسی کنیم هر کلاستر چقدر مقدار در پیشبینی الگوریتم KNN کمک کننده بوده و توانسته کلاستری با درصد خلوص بیشتر بدست بیاورد. به این منظور از rand index برای ارزیابی خلوص کلاستر های خود استفاده میکنیم.

خروجی تابع ارزیابی به ما دقت 97.96 درصد را نمایش می دهد. این به این معنی است که اغلب دادههای ما در کلاستر درست و مختص به خود هستند. در نتیجه لیبل داده های داخل کلاسترهای ما تا حدود خوبی بیان کننده یک گل هستند و زمانی که میخواهیم با KNN دادهٔ تستی را پیشبینی کنیم، اگر در کنار کلاستر درست قرار بگیرد که در اکثر مواقع همین است میتوانیم به درستی گل را تشخیص بدهیم. مگر آنگه از آن نوع گل دادهٔ زیادی برای تمرین نداده بوده باشیم.

نمایشی از همه کلاسترها را ببینیم:

