Attack Classifications

Jacques CAZIN

Summary

3. Attack Examples

Main attack "classes"

- Sniffing
 - ⇒ Probe
- Spoofing
 - ⇒ Masquerading
- Flooding
 - ⇒ Deny of service
- Scanning
 - ⇒ Probe(services)
- Hijacking
 - ⇒ Intercept
- Virus and Trojan Horse

Packet sniffing (L-a-Probe or R-a-Probe)

Principles

- ⇒ Listening or Intercepting packets transmitted through a local network or through internet to collect "interesting" information:
 - User id, Password (not always encrypted...)
 - Smart card, credit card numbers
 - Type and version of devices
 - ..

Sender

Spoofing

Principle:

⇒ Masquerading: forging packets with false address to cheat the identity of a given machine

Most common spoofing:

- ⇒ ARP Spoofing (also called ARP poisoning)
- ⇒ ICMP Spoofing
- ⇒ UDP Spoofing
- ⇒ TCP Spoofing

ARP Poisoning

Principle of ARP protocol (unconnected protocol):

- ⇒ In the ARP protocol, each "request" is broadcast to the other machines of a given LAN
- ⇒ Each machine keeps in its cache the correspondence @IP/@MAC
- ⇒ The cache is updated when the machine receives an "ARP reply" (even though it did not send an "ARP request")

Principle of the attack:

- ⇒ The intruder sends "ARP reply" messages with @IP that does not correspond to @MAC
- ⇒ Applications:
 - · Deny of service
 - Hijacking

ARP Hijacking (R-m-Intercept)

@IP 192.16.1.2 @IP 192.16.1.1 @MAC 00:00:00:02 @MAC 00:00:00:01 **(1)** ARP cache: ARP cache: **Communication** @IP 192.16.1.1 @IP 192.16.1.2 **→ →** @MAC 00:00:00:01 @MAC 00:00:00:02 **(2) ARP Poisoning ARP Reply: ARP Reply:** 192.16.1.2 is-at 192.16.1.1 is-at ARP cache: ARP cache: @MAC 00:00:00:03 @MAC 00:00:00:03 @IP 192.16.1.1 @IP 192.16.1.2 **→** @MAC 00:00:00:03 @MAC 00:00:00:03 Man In the Middle (MiM) **(3)** @MAC 00:00:00:03 Hijacking ARP cache: ARP cache: @IP 192.16.1.1 @IP 192.16.1.2 **→** @MAC 00:00:00:03 @MAC 00:00:00:03

ICMP Spoofing

Examples of ICMP spoofing:

- ⇒ With ICMP packet "Redirect" → Man in the Middle attack (Hijacking)
- ⇒ With ICMP packet "Echo Request" → Smurfing (see section on DOS attacks)
- ⇒ With ICMP packet "Destination Unreachable" → To close a connection

UDP Spoofing

- Attack simple to make
 - ⇒ Unconnected protocol
- Possible applications:
 - □ DoS attack
 - Example: see the Fraggle attack below
 - ⇒ Hijacking attack
 - Example: Hijacking on the "talk" service (social engineering attack)

TCP Spoofing

Much more complex

- ⇒ Connected protocol
- ⇒ Use an ISN
 - Initial Sequence Number
- ⇒ The ISN is then incremented each time new data are acknowledged

TCP Destination **TCP Source** Syn, ISN = xSyn, ISN = y, Ack = x + 1Time Ack, y + 1

TCP Spoofing (2)

Problem

⇒ What is the ISN sent by the target ?

Solution

- ⇒ Possibility to forecast the ISN
- ⇒ The difficulty depends on the OS
- \Rightarrow Quite easy on Windows (1 \leq ISN \leq 50)

Application of TCP spoofing

⇒ Rlogin on the target (sometimes the system does not ask a password and relies on the IP address of the source)

Flooding

Principle:

- ⇒ Sending a large number of messages so that the receiver cannot handle all of them
- ⇒ Leads to a Deny of Service or a Distributed Deny of Service (DDOS)

Most common flooding

- ⇒ TCP flooding (or Syn flooding)
- □ UDP flooding
- ⇒ Smurfing (example of ICMP flooding with packets "Echo Request")

SYN flooding (R-a-deny(temporary or administrative))

Principle:

- ⇒ Three steps to create a TCP connection:
 - "Syn", "Syn Ack" and "Ack"
- ⇒ "Half open" connection:
 - When a "Syn" is sent but there is no "Ack" sent when message "Syn Ack" is received
- ⇒ Each "half open" connection are stored in the stack
- ⇒ Leads to a deny of service when too many "Half open connection" are open
- ⇒ Administrative Deny of Service when the attack leads to a stack overflow
- ⇒ **Temporary Deny of Service** when there is timer to cancel too long Half Open connection so that the stack does not overflow

UDP flooding: Fraggle attack (R-a-deny(temporary))

Principle:

- ⇒ Use two UDP services:
 - "chargen" (port 19): to create a continuous flow
 - "echo" (port 7): each received packet are resent to the source
- ⇒ Enables the intruder to make a deny of service on two machines

Target 1, @IP=194.98.2.25

Target 2, @IP=192.25.68.254

ICMP flooding: Smurfing (R-a-deny(temporary))

Use the address « broadcast » (corresponding to xxx.xxx.xxx.255)

If a machine sends a message "echo request" at the address "broadcast", each machine of the corresponding local network sends a message « echo reply »

Effect of smurfing: amplifies the effect of flooding
Up to 255 messages received by the victim for one message sent by the intruder

Scanning: examples

- General objective:
 - ⇒ Obtaining a list of open ports of a given system
- TCP SYN scanning (half-open scanning)
 - ⇒ Sending a SYN message, waiting for a SYN-ACK and then RESET
- TCP FIN scanning
 - ⇒ Sending a FIN message and waiting for a RESET (closed port) else open port
- UDP ICMP port unreachable scanning
 - ⇒ To scan UDP service
 - ⇒ Sending a packet and waiting for a message "ICMP_PORT_UNREACH" (open port)

 Else closed port
 - ⇒ See section "Vulnerability assessment scanners" for further details

Virus and Trojan Horses

- There are thousand of virus and Trojan Horses
- Example: Back Orifice 2000 (bo2k)
 - ⇒ Creation of a back door
 - ⇒ To take control of a given system

Back Orifice 2000

Step 1:

⇒ Encapsulating bo2k in to an "attractive" file so that the victim will install bo2k into his system

• Step 2:

⇒ Connection between the intruder and bo2k on a given port (example: 8080)

Step 3:

- ⇒ Take control of the victim
 - Start or stop services
 - Modify or download files
 - Etc.

Other examples

- Winnuke
- Land Attack
- Christmas Tree Attack
- Ping of death

WinNuke (R-b-Deny(Administrative))

Principle:

- ⇒ The attack works on windows95 and windows NT
- ⇒ Sending a packet with "URGENT" flag set to 1
 - On port 139 (NetBios)
 - But also on other ports used by Windows
- ⇒ The "URGENT" flag specifies that there are "urgent" data in the packet
- ⇒ The attack works if there is no "normal" data after the "urgent" data
 - Leads to a deny of service (blue screen)

Other examples of DOS attacks

- Land Attack (R-b-Deny(Administrative))
 - ⇒ Principle:
 - Sending a packet with the IP source address equal to the IP target address
- Christmas tree attack (R-b-Deny(Administrative))
 - ⇒ Principle:
 - Sending a packet with all the TCP flags set to 1
- Ping of death (R-b-Deny(Administrative))
 - ⇒ Principle:
 - Sending packet longer than 65 535 bytes
- Etc.

Example of an attack to get a root access

ShellCode (R-b-S)

- ⇒ Performs a Buffer Overflow
- ⇒ Example: Red Code

Principle :

- ⇒ Bad management of dynamic memory
- ⇒ No separation between the program code and data stored in the stack
- ⇒ The volume of inserted data is larger than the allocated memory size
 - During its execution, a sub-routine overwrites the return address
 - Enables the execution of a shellcode
- ⇒ Classical vulnerabilities exploited:
 - Functions on characters string (sprintf)

ShellCode

Stack management

- ⇒ Function call
 - Start:
 - Context saving
 - Static domain creation
 - Program execution
 - End:
 - Context restoration

• Problem:

⇒ The return address might be overwritten

ShellCode shema

Three parts:

- ⇒ NOP
 - Padding
 - Because, the intruder does not know precisely the shellcode location
 - Problem to set the return address exactly at the beginning of shellcode
- ⇒ Shellcode main instructions
- ⇒ Shellcode address

Beginning of schellcode

Comment:

- ⇒ The NOP part is easily detected
- ⇒ But, existence of polymorphic shellcodes
 - Use libraries of equivalent instructions

Example of an attack scenario: the Mitnick Attack

The Mitnick Attack

Step 1: sniffing the IP address of A and V

The Mitnick Attack

Step 2: SYN flooding of A

The Mitnick Attack (3)

Step 3: TCP spoofing of V

Attack scenario based on the Mitnick Attack

