In [1]:

import matplotlib.pyplot as plt #grid control and old style graphs
import seaborn as sns #modern library built on top of matplotlib with great collection of graphs

In [3]:

import pandas as pd
df=pd.read_csv('titanic.csv')

In [3]:

df

Out[3]:

	Passengerld	Survived	Pclass	Name	Gender	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

891 rows × 12 columns

In [129]:

sns.set_context('talk') #select from talk poster notebook paper. Sets fonts and settings accordinly
sns.set_style('dark') #choose from white, dark, darkgrid, whitegrid and ticks. Sets background

In [8]:

sns.scatterplot(x='Age',y='Fare',data=df) #shows relationship between 2 features

Out[8]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fd8eb929790>

In [5]:

sns.set_context('notebook')
sns.set_style('dark')

In [10]:

sns.scatterplot(x='Age',y='Fare',data=df)

Out[10]:

<matplotlib.axes. subplots.AxesSubplot at 0x7fd8e9101430>

In [12]:

sns.scatterplot(x='Age',y='Fare',hue='Gender',data=df) #add a hue. This gives a new dimension to plot.

Out[12]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fd8ebaee760>

In [13]:

sns.scatterplot(x='Age',y='Fare',hue='Pclass',data=df) #hue needs to be categorial

Out[13]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fd8e9089100>

In [14]:

sns.scatterplot(x='Age',y='Fare',hue='Survived',data=df) #hue needs to be categorial

Out[14]:

<matplotlib.axes. subplots.AxesSubplot at 0x7fd8e8ffd8b0>

In [23]:

sns.countplot(df['Gender'], hue=df['Survived'], saturation=0.5) #saturation controls how bright or dull colours are

Out[23]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fd8e8296760>

In [24]:

sns.boxplot(y=df['Age'])

Out[24]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fd8e8296b20>

In [25]:

sns.boxplot(x=df['Age']) #shows quantile representation

Out[25]:

<matplotlib.axes. subplots.AxesSubplot at 0x7fd8e8122c70>

In [35]:

 $sns.boxplot(x=df['Gender'],y=df['Age'],hue=df['Pclass']) \ \textit{\#multiple box plots together}$

Out[35]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fd8e6856f40>

In [31]:

sns.lineplot(x=df['Age'],y=df['Fare']) #suitable for continuous type of data

Out[31]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fd8e8c17670>

In [42]:

sns.swarmplot(x=df['Gender'],y=df['Fare'],hue=df['Pclass'],palette='inferno')

Out[42]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fd8e648bdf0>

In [44]:

sns.pairplot(data=df,palette='magma')

Out[44]:

<seaborn.axisgrid.PairGrid at 0x7fd8e521f580>

In [47]:

sns.heatmap(df['Age'].reshape(1,))

In [57]:

import numpy as np

 $sns.distplot(df['Age'],bins=np.linspace(0,40,10)) \ \textit{\#control the range using bin space}$

Out[57]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fd8db07ca30>

In [58]:

df

Out[58]:

	Passengerld	Survived	Pclass	Name	Gender	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

891 rows × 12 columns

In [89]:

```
#REPRESENT COUNT OF PASSENGERS SURVIVED IN EVERY EMBARKED DESTINATION CATEGORY HUED BY PCLASS

temp=df.groupby('Embarked')
temp.groups
```

Out[89]:

```
9, 19, 26, 30, 31, 34, 36, 39, 42,
{'C': Int64Index([ 1,
               847, 849, 852, 858, 859, 866, 874, 875, 879, 889],
              dtype='int64', length=168),
 'Q': Int64Index([ 5, 16, 22, 28, 32, 44, 46, 47, 82, 109, 116, 126, 156, 171, 186, 188, 196, 198, 208, 214, 241, 245, 260, 264, 274,
                                                                    82, 109, 116, 126, 143,
               278, 280, 289, 300, 301, 303, 322, 330, 358, 359, 364, 368, 388,
               411, 412, 421, 428, 459, 468, 501, 502, 510, 517, 525, 552, 560,
              573, 593, 612, 613, 626, 629, 653, 654, 657, 680, 697, 703, 718, 727, 749, 767, 768, 776, 778, 787, 790, 825, 828, 885, 890],
              dtype='int64'),
 'S': Int64Index([ 0,
                                  3,
                                       4, 6, 7, 8, 10, 11, 12,
                            2,
              877, 878, 880, 881, 882, 883, 884, 886, 887, 888],
              dtype='int64', length=644)}
```

In [97]:

```
df1=temp.get_group('C')[['Survived','Pclass']]
sns.countplot(df1['Survived'],hue=df1['Pclass'])
```

Out[97]:

<matplotlib.axes. subplots.AxesSubplot at 0x7fd8d8dcb2b0>

In [96]:

```
df1=temp.get_group('Q')[['Survived','Pclass']]
sns.countplot(df1['Survived'],hue=df1['Pclass'])
```

Out[96]:

<matplotlib.axes. subplots.AxesSubplot at 0x7fd8d8dcba90>

In [95]:

dfl=temp.get_group('S')[['Survived','Pclass']]
sns.countplot(df1['Survived'],hue=df1['Pclass'])

Out[95]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fd8d8432eb0>

In [101]:

```
grid=sns.FacetGrid(df,row='Gender',col='Pclass',margin_titles=True)
grid.map(sns.countplot,'Survived')
```

/home/harshit/.local/lib/python3.8/site-packages/seaborn/axisgrid.py:723: UserWarning: Using the countplot function without specifying `order` is likely to produce an incorrect plot. warnings.warn(warning)

Out[101]:

<seaborn.axisgrid.FacetGrid at 0x7fd8dae6d850>

In [98]:

grid=sns.FacetGrid(df,row='Gender',col='Pclass',margin_titles=True)
grid.map(sns.scatterplot,'Age','Fare',)

Out[98]:

<seaborn.axisgrid.FacetGrid at 0x7fd8d8dcb580>

In [100]:

grid=sns.FacetGrid(df,row='Gender',col='Pclass',margin_titles=True)
grid.map(plt.scatter,'Age','Fare')

Out[100]:

<seaborn.axisgrid.FacetGrid at 0x7fd8d7e094f0>

In [65]:

grid=sns.FacetGrid(df,row='Gender',col='Survived',margin_titles=True)
grid.map(plt.hist,'Age',bins=np.linspace(0,100,10))

Out[65]:

<seaborn.axisgrid.FacetGrid at 0x7fd8da6a2280>

In [102]:

sns.catplot(x='Embarked',hue='Pclass',col='Survived',data=df,kind="count")

Out[102]:

<seaborn.axisgrid.FacetGrid at 0x7fd8d9b14cd0>

In [107]:

sns.catplot(x='Survived',hue='Pclass',col='Embarked',data=df,kind="count",palette='inferno')

Out[107]:

<seaborn.axisgrid.FacetGrid at 0x7fd8d738d8b0>

In [112]:

sns.catplot(x='Survived',hue='Pclass',col='Embarked',data=df,kind="count",palette='inferno')

Out[112]:

<seaborn.axisgrid.FacetGrid at 0x7fd8dae509d0>

In [118]:

```
g=sns.countplot(df['Gender'])

plt.xlabel('GENDER OF PASSENGERS')
plt.ylabel('COUNT OF PASSENGERS')
plt.yticks([0,500,1000])
plt.title('EXAMPLE')
plt.show(g)
```


In [121]:

```
g=sns.countplot(df['Gender'])

plt.xlabel('GENDER OF PASSENGERS')
plt.ylabel('COUNT OF PASSENGERS')
plt.yticks([0,500,1000])

8779092028

plt.rc('font',size=12)
plt.rc('axes',titlesize=40)
plt.rc('ytick',labelsize=30)

plt.title('EXAMPLE')
plt.show(g)
```

