Notes for master's thesis

Foundations & applications of generalised symmetries

大阪大学大学院理学研究科物理学専攻 大和 寬尚

Contents

T	Fou	ndatio	ns	1
1.1 Higher-form global symmetries		r-form global symmetries	1	
		1.1.1	Symmetry as topological operators	1
		1.1.2	Definition of p - form symmetries	2
		1.1.3	Exmaples of p - form symmetries	2
2	$\mathbf{Ap_I}$	olicatio	ons	2

1 Foundations

1.1 Higher-form global symmetries

1.1.1 Symmetry as topological operators

Statement 1.1. Symmetry generators are topological operators.

We have Ward-Takahashi identity (in differential forms).

$$\langle d * j(x) \mathscr{O}(y) \rangle = -i\delta^{(D)}(x - y) \langle \delta \mathscr{O}(y) \rangle. \tag{1.1}$$

Noether charge is defined as follows.

$$Q_{\Sigma} = \int_{\Sigma} *j(x), \tag{1.2}$$

where Σ is a equal-time hypersurface on the spacetime manifold M.² Integrating the both sides of this equation on the manifold Ω that has the hypersurface Σ as its boundary, we get

$$\langle Q_{\Sigma} \mathcal{O}(x) \rangle = -i \operatorname{Link}(P, \Omega) \langle \delta \mathcal{O}(x) \rangle, \qquad (1.3)$$

where P is defined as $P = \{(y^0, \dots, y^{D-1})\}$. We can see that $\langle Q_{\Sigma} \mathscr{O}(x) \rangle$ is toplological in the sense that it is invariant under the deformation of the manifold Ω that does not cross the point P.

The sections with asterisk " * " are materials that is not directly related to generalised symmetries but supplemental.

This formulation leads us to the following observation.

Observation 1.1. The Ward-Takahashi identity we have derived

$$\langle Q_{\Sigma} \mathcal{O}(x) \rangle = -i \operatorname{Link}(P, \Omega) \langle \delta \mathcal{O}(x) \rangle$$
 (1.4)

provides a new perspective in generalising symmetries. We may put this relation as the starting point of the discussion of symmetries and generalising them by substituting P, Ω with some manifolds X, Y such that $\dim X + \dim Y = D$. And naturally, after the generalisation, the operator $\mathcal{O}(x)$ is not supported at a point anymore but supported on a manifold X.

$$\langle Q_{\Sigma} \mathscr{O}(X) \rangle = -i \operatorname{Link}(X, Y) \langle \delta \mathscr{O}(X) \rangle.$$
 (1.5)

1.1.2 Definition of p - form symmetries

Now, let us put the observation as the definition of symmetries (and we call this symmetry a higher-form symmetry).

Definition^(ph) **1.1.** We define a p - form symmetry as follows. We say that there exists an p - form symmetry in the system in consider if there exists an operator Q_{Σ} that is supported on a D-p-1 dimensional manifold Σ and it satisfies Ward-Takahashi identity

$$\langle Q_{\Sigma} \mathscr{O}(X) \rangle = -i \operatorname{Link}(X, Y) \langle \delta \mathscr{O}(X) \rangle, \quad \Sigma = \partial Y.$$
 (1.6)

We call this operator Q_{Σ} a symmetry operator.

1.1.3 Exmaples of p - form symmetries

D=4 dimensional U(1) gauge theory We consider an action

$$S[a] = -\frac{1}{2e^2} \int_M f \wedge *f, \quad f = \mathrm{d}a, \tag{1.7}$$

where a is the U(1) gauge field. Considering the trivial relation $d^2 = 0$ and the equation of motion, we get

$$d*f = 0, \quad df = 0. \tag{1.8}$$

Now, let us define new operators as follows.

$$Q_{\Sigma}^{(\mathrm{e})} = \int_{\Sigma} *f, \quad Q_{\Sigma}^{(\mathrm{m})} = \int_{\Sigma} f. \tag{1.9}$$

Let us stick to $Q_{\Sigma}^{(\mathrm{e})}$ for a while. We first prove that $Q_{\Sigma}^{(\mathrm{e})}$ is a symmetry operator.

2 Applications