

Guillermo Molero-Castillo

Cátedras CONACYT Facultad de Estadística e Informática, UV

ggmoleroca@conacyt.mx g.moleroc@gmail.com

Áreas de interés

Ciencia y minería de datos, Inteligencia artificial, interacción humano computadora.

Áreas relacionadas

Tema de actualidad.

Tema complejo de tratar por la gran dispersión de tecnologías y enfoques.

Enfoque actual

Tendencia (tecnologías emergentes)

2018

Fuente: www.gartner.com

Temas de tesis

Contexto del trabajo de investigación

Se busca

Contribuir en la construcción de una infraestructura para agilizar el desarrollo de sistemas interactivos centrados en el usuario.

Etapas de trabajo alineadas a las LGAC

Etapa 1

Es de tipo exploratoria e incremental.

LGAC 1

Tecnología Computacional y de Comunicaciones para los Sistemas Interactivos Centrados en el Usuario

Etapa 2

Es de tipo aplicada con base en los conocimientos previamente adquiridos en la fase anterior.

LGAC 2

Cómputo Centrado en el Usuario

Investigación actual (temas de tesis)

Tema 1: Gestión de bioseñales como apoyo en el análisis de patrones de usuario

1. Contexto

Las bioseñales son señales eléctricas variables en el tiempo, observados en los seres vivos, que pueden ser monitoreados continuamente.

Utilidad

A través del análisis de las bioseñales se pueden descubrir determinados sucesos inherentes al usuario y su entorno.

Tema 1: Gestión de bioseñales como apoyo en el análisis de patrones de usuario

2. Problemática

Las bioseñales en datos crudos son insuficientes para una correcta interpretación fisiológica del usuario, por lo que, se necesita de mecanismos de extracción, preparación y análisis de las bioseñales.

3. Objetivo

Desarrollar un mecanismo de gestión de bioseñales para el análisis de patrones de usuario en la construcción de software.

Tema 1: Gestión de bioseñales como apoyo en el análisis de patrones de usuario

4. Resultados esperados (Global)

Análisis de bioseñales, mediciones físicas y lógicas aplicado en la construcción de software.

Tema 2: Mecanismos de fusión de flujos de datos para el razonamiento basado en un contexto

1. Contexto

Se busca integrar flujos de datos mediante estimaciones probabilísticas, y otros métodos, con el propósito de tener una fuente de datos global, unificada y coherente sobre las variables observadas.

Utilidad

La fuente de datos fusionada puede servir de base para el análisis e identificación de patrones de comportamiento del usuario y del ambiente para definir acciones como apoyo para la inferencia de contextos.

Tema 2: Mecanismos de fusión de flujos de datos para el razonamiento basado en un contexto

2. Problemática

Existen retos en la fusión de datos que surgen debido al variado formato, tipo y velocidad de muestreo de los sensores. A esto se conoce como clasificación de acuerdo a la naturaleza de los datos.

Tema 2: Mecanismos de fusión de flujos de datos para el razonamiento basado en un contexto

4. Resultados esperados (Global)

Tema 3: Detección de anomalías en el flujo de datos de la interacción humano computadora a través de grafos

1. Contexto

Las grafos han alcanzado cierto éxito. Pudieran ser útiles para descubrir anomalías, patrones y tendencias en un amplio conjunto de datos, como apoyo en la toma de decisiones estratégicas.

Utilidad

Tema 3: Detección de anomalías en el flujo de datos de la interacción humano computadora a través de grafos

2. Problemática

En la HCI dar sentido al flujo de datos es un reto fundamental para mejorar la interacción humana, la representación y visualización de nuevos patrones de datos.

3. Objetivo

Desarrollar un método de aproximación, basado en grafos, para inferir la presencia de anomalías en los nodos (eventos) sobre un determinado contexto.

Tema 3: Detección de anomalías en el flujo de datos de la interacción humano computadora a través de grafos

4. Resultados esperados (Global)

Guillermo Molero-Castillo

Cátedras CONACYT Facultad de Estadística e Informática, UV

ggmoleroca@conacyt.mx g.moleroc@gmail.com WhatsApp: 5537516951