Survivor's Manual for CIS 3200

JEFFREY SAITO (HITMAN7128)

August 27, 2024

How do you optimally encode a text file? How do you find shortest paths in a map? How do you design a communication network? How do you route data in a network? What are the limits of efficient computation? This course gives a comprehensive introduction to design and analysis of algorithms, and answers along the way to these and many other interesting computational questions. You will learn about problem-solving; advanced data structures such as universal hashing and red-black trees; advanced design and analysis techniques such as dynamic programming and amortized analysis; graph algorithms such as minimum spanning trees and network flows; NP-completeness theory; and approximation algorithms.

— Description of CIS 3200 in course catalog

Contents			17 Dijkstra's	3
1	Introduction	3	18 Bellman-Ford	3
2	Insertion Sort	3	19 All-pairs Shortest Paths	3
3	Merge Sort	3	20 Flow Problems	3
4	Lower Bounds for Sorting	3	21 Ford-Fulkerson	3
5	Sorting in Linear Time	3	22 Max-Flow	3
6	Median and Selection	3	23 Min-Cut Theorem	3
7	Recurrences and Substitution Method	3	24 Capacity-Scaling Algorithms	3
8	Master Theorem	3	25 Bipartite Matching	3
9	Convex Hull	3	26 Min-cost Bipartite Matching	3
10	FFT or Matrix Multiplication	3	27 Computational Hard Problems	3
11	Dynamic Programming	3	28 Polynomial Time Reductions	3
12	Greedy Algorithms	3	29 Cook-Levin Theorem	3
13	BFS	3	30 Reductions	3
14	DFS	3	31 Test Section and Review Sheets 31.1 Good Sources to Review, In General	3
15	Minimum Spanning Tree	3	31.2 Midterm 1	3
16	Union Find	3	31.3 Midterm 2	3

- §1 Introduction
- §2 Insertion Sort
- §3 Merge Sort
- §4 Lower Bounds for Sorting
- §5 Sorting in Linear Time
- §6 Median and Selection
- §7 Recurrences and Substitution Method
- §8 Master Theorem
- §9 Convex Hull
- §10 FFT or Matrix Multiplication
- §11 Dynamic Programming
- §12 Greedy Algorithms
- §13 BFS
- §14 DFS
- §15 Minimum Spanning Tree
- §16 Union Find
- §17 Dijkstra's
- §18 Bellman-Ford
- §19 All-pairs Shortest Paths
- §20 Flow Problems
- §21 Ford-Fulkerson
- §22 Max-Flow
- §23 Min-Cut Theorem
- §24 Capacity-Scaling Algorithms
- §25 Bipartite Matching
- §26 Min-cost Bipartite Matching
- §27 Computational Hard Problems
- §28 Polynomial Time Reductions