The Pipeline

- We have looked at importing, exploring and transforming data.
- Now it is time to do something with our data: MODELS!
- Here we discuss one of the most straight forward machine learning models:
 the decision tree.

Machine Learning

- What is Machine Learning?
 - Programs that get better with experience given a task and some performance measure.
 - Learning to classify news articles
 - Learning to recognize spoken words
 - Learning to play board games
 - Learning to navigate (e.g. self-driving cars)
- Usually involves some sort of <u>inductive</u> reasoning step.

Inductive Reasoning

- Deductive reasoning (rule based reasoning)
 - From the general to the specific
- Inductive reasoning
 - From the specific to the general

Note: not to be confused with mathematical induction!

Example - Deduction

- Rules:
 - If Betty wears a white dress then it is Sunday.
 - Betty wears a white dress.
- Deductive step:
 - You infer or deduce that today is Sunday.

If Betty wears a white dress then it is Sunday. Betty wears a white dress.

Example - Induction

- Facts: every time you see a swan you notice that the swan is white.
- Inductive step: you infer that all swans are white.

Observation

- Deduction is "truth preserving"
 - If the rules employed in the deductive reasoning process are sound, then, what holds in the theory will hold for the deduced facts.
- Induction is NOT "truth preserving"
 - It is more of a statistical argument
 - The more swans you see that are white, the more probable it is that all swans are white..
 But this does not exclude the existence of black swans

Observation

D ≡ observations X ≡ universe of all swans

This is called the <u>Black Swan Problem</u> and is the classic example posed by the philosopher of science <u>Karl Popper</u> in the early twentieth century. It roughly states that learning/induction is always a probabilistic argument since we can only learn from a limited number of observations (D) and make generalization from those on the universe at large (X). On a more technical level it argues this point based on *falsifiability of a hypothesis*.

Different Styles of Machine Learning

- Supervised Learning
 - The learning needs explicit examples of the concept to be learned (e.g. white swans, playing tennis, etc)
- Unsupervised Learning
 - The learner discovers autonomously any structure in a domain that might represent an interesting concept

Knowledge - Representing what has been learned

- Symbolic Learners (transparent models)
 - If-then-else rules
 - Decision trees
 - Association rules
- <u>Sub-Symbolic</u> Learners (non-transparent models)
 - (Deep) Neural Networks
 - Clustering (Self-Organizing Maps, k-Means)
 - Support Vector Machines

Decision Trees

- Learn from labeled observations supervised learning
- Represent the knowledge learned in form of a tree

Example: learning when to play tennis.

 Examples/observations are days with their observed characteristics and whether we played tennis or not

Play Tennis Example

Outlook	Temperature	Humidity	Windy	PlayTennis
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Decision Tree Learning

Interpreting a DT

DT ≡ Decision Tree

- → A DT uses the <u>features</u> of an observation table as nodes and the <u>feature values</u> as links.
- → <u>All</u> feature values of a particular feature need to be represented as links.
- → The target feature is special its values show up as <u>leaf nodes</u> in the DT.

Interpreting a DT

Each <u>path</u> from the root of the DT to a leaf can be interpreted as a <u>decision rule</u>.

IF Outlook = Sunny AND Humidity = Normal THEN Playtennis = Yes

IF Outlook = Overcast THEN Playtennis = Yes

IF Outlook = Rain AND Wind = Strong THEN Playtennis = No

DT: Explanation & Prediction

Outlook	Temperature	Humidity	Windy	PlayTennis
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Explanation: the DT summarizes (explains) all the observations in the table perfectly \Rightarrow 100% Accuracy

<u>Prediction</u>: once we have a DT (or model) we can use it to make predictions on observations that are not in the original training table, consider:

Outlook = Sunny, Temperature = Mild, Humidity = Normal, Windy = False, Playtennis = ?

Constructing DTs

- How do we choose the attributes and the order in which they appear in a DT?
 - Recursive partitioning of the original data table
 - Heuristic each generated partition has to be "less random" (entropy reduction) than previously generated partitions

Entropy

- □ S is a sample of training examples
- p^+ is the proportion of positive examples in S
- p^{-} is the proportion of negative examples in S
- □ Entropy measures the impurity (randomness) of S

٦		_			
	Outlook	Temperature	Humidity	Windy	PlaxTennis
	Sunny	Hot	High	False	No
	Sunny	Hot	High	True	No
	Overcast	Hot	High	False	Yes
	Rainy	Mild	High	False	Yes
	Rainy	Cool	Normal	False	Yes
	Rainy	Cool	Normal	True	No
; +	Overcast	Cool	Normal	True	Yes
	Sunny	Mild	High	False	No
	Sunny	Cool	Normal	False	Yes
	Rainy	Mild	Normal	False	Yes
	Sunny	Mild	Normal	True	Yes
	Overcast	Mild	High	True	Yes
	Overcast	Hot	Normal	False	Yes
	Rainy	Mild	High	True	No

$$Entropy(S) = Entropy([9+,5-]) = .94$$

$$\Box Entropy(S) \equiv -p^+ \log_2 p^+ - p^- \log_2 p^-$$

Partitioning the Data Set

Partitioning in Action

Outlook	Temperature	Humidity	Windy	PlayTennis
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Recursive Partitioning (ID3)

Partition(Examples, TargetAttribute, Attributes)

Examples are the training examples. TargetAttribute is a binary (+/-) categorical dependent variable and Attributes is the list of independent variables which are available for testing at this point. This function returns a decision tree.

- Create a *Root* node for the tree.
- If all *Examples* are positive then return *Root* as a leaf node with label = +.
- Else if all *Examples* are negative then return *Root* as a leaf node with label = -.
- Else if *Attributes* is empty then return *Root* as a leaf node with label = most common value of TargetAttribute in Examples.
- Otherwise
 - \circ A := the attribute from Attributes that reduces entropy the most on the Examples.
 - $\circ Root := A$
 - \circ F or each $v \in values(A)$
 - Add a new branch below the *Root* node with value A = v
 - L et $Examples_v$ be the subset of Examples where A = v
 - If *Examples*_v is empty then add new leaf node to branch with label = most common value of *TargetAttribute* in *Examples*.
 - Else add new subtree to branch
 Partition(*Examples_v*, *TargetAttribute*, *Attributes* {*A*})
- Return Root

Our data set:

Outlook	Temperature	Humidity	Windy	PlayTennis
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

_				
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Sunny	Mild	Normal	True	Yes

Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Rainy	Mild	Normal	False	Yes
Rainy	Mild	High	True	No

Overcast	Hot	High	False	Yes
Overcast	Cool	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes

Outlook

Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Sunny	Mild	Normal	True	Yes

Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Rainy	Mild	Normal	False	Yes
Rainy	Mild	High	True	No

Overcast	Hot	High	False	Yes
Overcast	Cool	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes

Outlook

Machine Learning in Python - Scikit-Learn

- We will be using the Scikit-Learn module to build decision trees.
 - Scikit-learn or sklearn for short provides all kinds of models
 - Neural networks
 - Support vector machines
 - Clustering algorithms
 - Linear regression
 - etc
- We will be using the treeviz module to visualize decision trees.
 - A simple ASCII based tree visualizer

SKlearn Decision Tree Basics

Training data needs to be structured into a *feature matrix* and a *target vector*.

In the feature matrix one row for each observations.

In the target vector one entry for each observation.

NOTE: rows and vector entries have to be consistent!

