

COMPONENTES Y CIRCUITOS ELECTRÓNICOS

Grado en Ingeniería de Tecnologías de Telecomunicación

21 de Junio de 2013

APELLIDOS, NOMBRE:	DNI:

- 1. (a) Se dispone de una muestra de Si dopado con átomos de fósforo cuya resistividad es $\rho = 0.11\Omega cm$. Determinar cuál es la concentración de impurezas. (1 punto)
 - (b) Calcular la posición del nivel de Fermi y la probabilidad de ocupación del nivel donador, sabiendo que éste se encuentra 50 meV por debajo de la banda de conducción. (0.5 puntos)
 - (c) Sabiendo que la muestra tiene forma de prisma, calcular la resistencia de la muestra (entre las dos bases). Dimensiones de la muestra: largo igual a 10 cm y base de 2 cm x 3 cm. (0.5 puntos) Datos: $n_i = 1.45 \times 10^{10} cm^{-3}$; $kT = 25.8 \ meV$; T = 300K; $q = 1.6 \times 10^{-19} \ C$; $E_g = 1.12 eV$; $N_C = 2.8 \times 10^{19} cm^{-3}$; $N_V = 1.04 \times 10^{19} cm^{-3}$; $\mu_n = 1200 \ cm^2 (Vs)^{-1}$; $\mu_p = 380 \ cm^2 (Vs)^{-1}$;
- 2. En el siguiente circuito limitador de tensión se ha añadido un led (D2) como indicador luminoso de que el diodo Zéner está actuando.

- (a) Determinar, para valores de $V_i \ge 0$, la tensión de salida V_o . Representela gráficamente. (1.5 puntos)
- (b) Si suponemos que somos capaces de apreciar luminosidad en el led a partir de que por él circulan 5 mA, determinar el rango de tensiones de entrada V_i en el que podemos ver el led encendido. (0.5 puntos) Datos del diodo Zéner: $V_{\gamma 1}=0.65V,\,R_{D1}=10\Omega,\,V_Z=6V,\,R_Z=30\Omega.$ Datos del LED: $V_{\gamma 2}=1.5V,\,R_{D2}=20\Omega.$

3. Dado el siguiente circuito:

- (a) Determine los valores de las resistencias R_D y R_S para que la corriente I_{DS} sea 0.8mA y la tensión en el drenador 6V (1.5 puntos).
- (b) Determine la ganancia de pequeña señal v_o/v_i . (1.5 puntos). **Datos** $\beta_n = 0.2 \text{mA/V}^2$; $V_T = 2 \text{V}$. El efecto Early es despreciable.
- 4. Sea el siguiente circuito para el que $V_{CC}=10V,\,V_{BE(on)}=0.7V,\,V_{CE(sat)}=0.2V,\,V_{T}=25.8mV,\,\beta_{F}=200$ y $R_{B1}=R_{B2}=100~k\Omega$:

- (a) Calcular los valores de R_C y R_E de forma que la tensión entre el colector y el emisor del transistor npn sea de $V_{CE}=3~V$ y la corriente de base $I_B=5\mu A$. (1 punto).
- (b) Si se mantiene R_E constante, ¿cuál es el valor máximo de R_C que permite al transistor seguir operando en la región activa directa? (1 punto).
- (c) Determine la ganancia de pequeña señal v_o/v_i para el circuito del apartado a), suponiendo que $R_L = 10K\Omega$. (1 punto).