

Contents

- 1. What are Algorithms
- 2. Analyzing Algorithms
- 3. Order of Growth
- 4. Calculations of Big-O, Big Omega, & Theta

Some Definitions

- ◆ An ALGORITHM is a well-defined computational procedure that transforms inputs into outputs, achieving a desired input-output relationship.
- ◆ A computational PROBLEM is a specification of the desired input-output relationship.
- ◆ An INSTANCE of a Problem is an example (or set of inputs and outputs that adhere to the computational specification of the problem.)
- ◆ A CORRECT algorithm halts with the correct output for every input instance.

Algorithm

- ◆ Example:
 - Sorting a common operation.
 - Many sorting algorithms available.
 - Best choice depends on application.
- **♦** Problem
- ► INPUT: Sequence of n objects $(a_1, a_2, ..., a_n)$.
- **OUTPUT:** Permutation (reordering) (a, a, ..., a) of the input sequence such that $a \le a \le ... \le a$, by a certain key.
- **♦** Instance
 - $-(7,4,3,1,5,4) \rightarrow (1,3,4,4,5,7)$

Insertion Sort Algorithm

- Uses only a fixed amount of storage that needed for the data:
- Pseudocode:

```
Algorithm: Insertion-Sort(A)
for j = 2 to A.length
   key = A[j]
   i = j - 1
   while i > 0 and A[i] > key
      A[i + 1] = A[i]
      i = i - 1
   A[i + 1] = key
```


Analyzing Algorithm

- ◆ Predict resource utilization
 - Memory
 - Running time
- Depend on architecture
 - Running Time could depend on
 - Problem Size
 - Input Size
 - Number of primitive operations used to solve the problem

Analyzing Algorithm

- ◆ Input Size:
 - Sorting: number of items
 - Graphs: number of vertices and edges
- Operations
 - Examples: additions, multiplications, comparisons
 - Constant time: C_i per *i*th line of pseudocode

lacktriangle Best Case B(n):

 constraints on the input, other than size, resulting in the fastest possible running time.

lacktriangle Worst Case W(n):

 constraints on the input, other than size, resulting in the slowest possible running time.

lacktriangle Average Case A(n):

 average running time over every possible type of input (usually involves the probabilities of different types of input).

Some examples – what's the total operations?

$$x = x + 1;$$

For
$$(i = 1; i \le n; i + +)$$

 $x = x + 1;$

Linear Loop

For
$$(i = 1; i \le n; i + +)$$

for $(j = 1; j \le n; j + +)$
 $x = x + 1;$

Nested Loop (Quadratic)

Some examples – what's the total operations?

For
$$(i = 1; i \le n; i *=2)$$

 $x = x + 1;$

For
$$(i = n; i >= 1; i /=2)$$

 $x = x + 1;$

Logarithmic Loops

Exercise—what's the total operations?

for
$$(i = 1; i \le n; i + +)$$

for $(j = 1; j \le n; j*=2)$
statement block;

- ◆ The ORDER of a running-time function $\theta(n)$ is the fastest growing term, discarding constant factors.
- Insertion Sort
 - Best Case: an + b → $\theta(n)$
 - Worst Case: $an^2 + bn + c$ → $\theta(n^2)$

- Most programs are modularized, and use functions.
- ♦ How does one determine the complexity of a program containing module $A \theta(n^2)$ followed by module $B \theta(2^n)$?

$$-n^2 + 2n = O(?)$$

Sub-linear, Linear, Polynomial and Exponential

$\theta(1)$	(constant time)
$\theta(\log n)$	(sub-linear)
$\theta(n)$	(linear)
$\theta(n \log n)$	(linear)
$\theta(n^2)$	(quadratic)
$\theta(n^3)$	(cubic)
$\theta(2^n)$	(exponential)
$\theta(n!)$	(factorial)

 Sub-linear, Linear, Polynomial and Exponential

 $1 < \log n < n < n \log n < n^2 < n^3 < 2n < n!$

- ◆ We are more interested in knowing the generic order of the magnitude of the algorithm instead of the exact operations.
 - 10 v.s. 20, not much difference
 - 10 v.s. 1000, a matter of concern
- ♦ Number of data n, executions can be defined as f(n)
- Dominant factor of f(n) is sufficient to determine the order of the magnitude
 - $\rightarrow O(n)$

Definition

If f(n) and g(n) are the functions defined on a positive integer number n, then

f(n) = O(g(n)) (read: f is Big-"O" of g)

or written as $f(n) \in O(g(n))$

if and only if positive constants c and n exist, such that

$$f(n) \leq cg(n)$$
.

- Constant c could depend on
 - the programming language used,
 - the quality of the compiler or interpreter,
 - the CPU speed,
 - the size of the main memory and the access time to it,
 - the knowledge of the programmer,
 - the algorithm itself, which may require simple but also time-consuming machine instructions

- How to understand the definition?
 - -a strict upper bound for f(n) ---> worst case
 - -f is (asymptotically) ≤ g
 - Big-O is actually Omicron, but it suffices to write "O"
- **◆** Examples
 - $-g(n)=O(n^3)$ and f(n) can include: n^3 , $n^3 + n$, $5n^3 + 10$.

◆ Another (more mathematical) **Definition**

Let f and g be two functions $f, g : N \rightarrow R^+$.

We say that $f(n) \in O(g(n))$

if $\exists c \in R^+$ and $n_0 \in N$ such that for every integer $n \geq n_0$, $f(n) \leq cg(n)$.

Big-O Example

♦ Show that $2n = O(n^2)$

By definition, we need to find a constant *c* such that

$$f(n) \le cg(n)$$

$$2n \leq c n^2$$

$$\frac{2}{n} \le c$$

$$c = 2; n_0 = 1$$

Can we do better on big-O?

Big-O Exercise

• Show that 2n = O(n)

By definition, we need to find a constant c such that

$$f(n) \le cg(n)$$

$$2n \leq cn$$

$$c = 2$$
; $n_0 = 1$

Omega Notation (Ω)

- lacktriangle A tight lower bound for f(n).
 - The function can never do better than the specified value, but it may do worse
- Definition

Let f and g be two functions $f, g: N \rightarrow R^+$.

We say that $or f(n) \in \Omega(g(n))$

if $\exists c \in R^+$ and $n_0 \in N$ such that for every integer $n \geq n_0$, $f(n) \geq cg(n)$.

Omega Notation (Ω)

- How to understand the definition?
 - a strict lower bound for f(n) --> best case
 - -f is (asymptotically) ≥ g
- **◆** Examples
 - $-g(n)=\Omega(n^2)$ and f(n) can include: n^2 , n^3+n^2 .

Omega Notation (Ω) Example

• Show that $2n \neq \Omega(n^2)$.

By definition, we need to find a constant *c* such that

$$f(n) \ge cg(n)$$

Assume that there is such c

$$2n \ge cn2$$

$$c \leq \frac{2}{n}$$

Omega Notation (Ω) Example

• Show that $2n \neq \Omega(n^2)$.

$$c \le \frac{2}{n}$$

c depends on n. With n increases,

$$\lim_{n\to\infty}\frac{2}{n}=0.$$

But $c \in R^+$

Omega Notation (\O) Exercise

♦ Show that $2n = \Omega(n)$

By definition, we need to find a constant *c* such that

$$f(n) \ge cg(n)$$

$$2n \ge cn$$

$$c = 1$$
; $n_0 = 1$

Theta Notation (Θ)

 \bullet A tight bound for f(n).

Definition

Let f and g be two functions $f, g : N \rightarrow R^+$.

We say that $f(n) \in \Theta(g(n))$

if $f \in \Omega(g)$ and $f \in O(g)$

Theta Notation (Θ)

- How to understand the definition?
 - $-\exists c_1, c_2 \in R^+ \text{ and } n_0 \in \mathbb{N}, f(n) \text{ is between}$ $c_1 g(n) \text{ and } c_2 g(n), \forall n \geq n_0$
 - -f is (asymptotically) = g

- Examples
 - $-g(n)=\Theta(n^2)$ and f(n) can include: n^2 , $n+n^2$.

Theta Notation (0) Example

♦ Show that $2n = \Theta(n)$

By definition, we need to find a constant c_1 and c_2 such that

$$c_1 g(n) \le f(n) \le c_2 g(n),$$

$$c_1 n \le 2n \le c_2 n,$$

$$c_1 = 1$$
; $c_2 = 2$; $n_0 = 1$

Theta Notation (O) Exercise

♦ Show that $n + n^2 = \Theta(n^2)$

By definition, we need to find a constant c_1 and c_2 such that

$$c_1 g(n) \le f(n) \le c_2 g(n),$$

$$c_1 n^2 \le n + n^2 \le c_2 n^2$$
,

$$c_1 = 1/2$$
; $c_2 = 2$; $n_0 = 2$ Are

Are c_1 , c_2 unique?

Other Notions

- ◆ Little o Notation
 - a non-asymptotically tight upper bond
- lacktriangle Little Omega Notation (ϖ)
 - a non-asymptotically tight lower bond

Little-o

Definition

Let f and g be two functions $f, g: N \rightarrow R^+$.

We say that $f(n) \in o(g(n))$

if $\exists c \in R^+$ and $n_0 \in N$ such that for any c

 $> 0, n_0 > 0,$

 $f(n) \le cg(n)$, for every integer $n \ge n_0$

Little-o

Examples

$$5 n^3 = O(n^3)$$

$$5 n^3 \neq o(n^3)$$

$$5 n^2 = o(n^3)$$

Little Omega Notation (ω)

Definition

Let f and g be two functions $f, g : N \rightarrow R^+$.

We say that $or f(n) \in \varpi(g(n))$

if $\exists c \in R^+$ and $n_0 \in N$ such that for any c > 0, $n_0 > 0$,

 $f(n) \ge cg(n)$, for every integer $n \ge n_0$

Little Omega (ω)

Examples

$$5 n^3 = \Omega(n^3)$$

$$5 n^3 \neq \varpi(n^3)$$

$$5 n^3 = \varpi(n^2)$$

References and Useful Resources

- ◆ Video "Asymptotic Notations 101: Big O, Big Omega, & Theta" https://www.youtube.com/watch? v=0oDAlMwTrLo
- ◆ Insertion sort https://www.geeksforgeeks.org/insertion-sort-algorithm/

