Graphes et optimisation

Présenté par: Dr. Marwa thabet

Maître assistante

thabetmarwa2@gmail.com

Institut Supérieur d'Informatique et de Mathématiques de Monastir

Partie 1 : Programmation linéaire

Cours 1 : Programmes linéaires, modélisation et résolution graphique

Présenté par: **Dr. Marwa thabet**

Maître assistante

thabetmarwa2@gmail.com

Plan du cours

Partie I. Programmation Linéaire

- 1. Programmes linéaires, modélisation et résolution graphique
- 2. Algorithme du Simplexe
- 3. Dualité

Partie II. Graphes et algorithmes

- 4. Vocabulaires et Notions de bases
- 5. Arbres et arborescences
- **6.** Cheminement

Qu'est ce que la programmation linéaire?

- <u>Définition</u>: C'est l'une des plus importantes techniques <u>d'optimisation</u> utilisées en recherche opérationnelle.
- Objectif: est de déterminer de façon optimale l'utilisation des ressources c.à.d
 allocation des ressource limitées d'une manière optimale
- Principe: est la maximisation ou la minimisation d'une fonction linéaire à plusieurs variables sachant que ces dernières sont liées par des relations appelées contraintes.

4

Formulation et notions de base

• Un programme linéaire (PL) sous sa forme canonique, s'écrit sous la forme:

$$(PL) \begin{cases} \mathit{Max} \ \mathit{ou} \ \mathit{Min} \ Z = \sum_{i=1}^n f_i x_i & \qquad \text{Fonction objectif} \\ s.c & \qquad \qquad \\ \forall j = 1, \dots, m \colon \sum_{i=1}^n a_{ij} x_i \leq, = \ \mathit{ou} \geq b_j & \qquad \qquad \\ \forall i = 1, \dots, n \colon x_i \geq 0 & \qquad \qquad \\ & \qquad \qquad \text{Contraintes de positivité} \end{cases}$$

- La programmation linéaire (PL) est basée sur:
 - **1.** La fonction objectif : la fonction à optimiser pour une expression linéaire
 - **2.** La variable de décision : est toute quantité utile à la résolution du problème, et dont on doit déterminer sa valeur.
 - **3.** Les contraintes : des relations limitant le choix des valeurs possibles pour une variable.

Modélisation

- La modélisation consiste à transformer un problème réel en un ensemble de relations.
- Pour modéliser un problème linéaire, il faut suivre les étapes suivantes:

- 1. Identifier les variables principales ou les variables de décision du problème
- **2.** Exprimer la fonction objectif en fonction des variables identifiées en précisant s'il s'agit d'un problème à maximiser (un bénéfice, un rendement,...) ou à minimiser (la charge, le coût de production, la consommation,...)
- 3. Formuler les contraintes sous forme d'équations et/ou d'inéquations linéaires

Modélisation

Formulation d'un problème de maximisation

Enoncé du problème 0:

Un petit producteur fabrique deux types de jus :

Jus A: lui rapporte 5 unités de profit par litre.

Jus B : lui rapporte 3 unités de profit par litre.

Il dispose au maximum de 30 litres de fruits.

Chaque litre de Jus A consomme 3 litres de fruits,

et chaque litre de Jus B consomme 2 litres de fruits.

- Combien de litres de chaque jus doit-il produire pour maximiser son profit ?

Modélisation

Formulation d'un problème de maximisation

Enoncé du problème 1:

Une usine (U) fabrique deux produits **A** et **B**, le produit **A** coûte **400D/Tonne** et le produit **B** coûte **500D/Tonne**

On suppose que :

- Un tonne de A nécessite 40 minutes sur la machine M1 et 20 minutes sur la machine M2
- Un tonne de B nécessite 30 minutes sur la machine M1 et 30 minutes sur la machine M2
- 3. La machine M1 est disponible que 6 H/jour
- 4. La machine M2 est disponible 8 H/jour

L'objectif de l'entreprise est de maximiser le profit qu'elle pourra tirer, par jour, de ces deux produits (A et B) en utilisant au mieux ses ressources.

☐ Formuler ce problème en PL

7

Modélisation

Modélisation

Formulation d'un problème de maximisation

La construction du modèle linéaire (1/3)

☐ Etape 1: identification des variables de décision

Quelles sont les informations dont doit disposer le directeur de l'entreprise pour considérer que son problème est résolu?

Modélisation

Formulation d'un problème de maximisation

La construction du modèle linéaire (1/3)

☐ Etape 1: identification des variables de décision

Quelles sont les informations dont doit disposer le directeur de l'entreprise pour considérer que son problème est résolu?

On note:

 x_1 : la quantité du produit A à produire

x₂: la quantité du produit B à produire

Les variables sont dites variables de décision

Modélisation

Formulation d'un problème de maximisation La construction du modèle linéaire (2/3)

☐ Etape 2: Exprimer la fonction objectif (Z)

Quel profit l'usine retire-t-il de la vente de ces deux produits?

Formulation d'un problème de maximisation

La construction du modèle linéaire (2/3)

☐ Etape 2: Exprimer la fonction objectif (Z)

Quel profit l'usine retire-t-il de la vente de ces deux produits?

- Pour le produit A, le bénéfice est de 400D/Tonne, et on fabrique x₁ unités → on a un bénéfice de (400 * x₁)D
- Pour le produit B, le bénéfice est de 500D/Tonne, et on fabrique x₂ unités → on a un bénéfice de (500 * x₂)D

 $Max(Z) = 400x_1 + 500x_2$

Modélisation

Modélisation

Formulation d'un problème de maximisation

La construction du modèle linéaire (3/3)

☐ Étape 3: Formuler les contraintes

Contrainte relative à la machine M1

Le temps d'utilisation de la machine M1 pour fabriquer les produits A et B <u>ne peut excéder</u> les 6 heures \rightarrow temps d'utilisation de $M_1 \le 6$ (H)

- Pour le produit A, on nécessite 40 minute pour fabriquer la quantité $x_1 \rightarrow (40 * x_1)$ min
- Pour le produit **B**, on nécessite 30 minute pour fabriquer la quantité $x_2 \rightarrow (30 * x_2)$ min
- La contrainte relative à la machine M1 s'écrit donc:

 $40x_1 + 30x_2 \le 6 * 60 \text{(min)}$ (M1)

Formulation d'un problème de maximisation

La construction du modèle linéaire (3/3)

☐ Etape3: Formuler les contraintes

Contrainte relative à la machine M2

Le temps d'utilisation de la machine M2 pour fabriquer les produits A et B <u>ne peut excéder</u> les 8 heures \rightarrow temps d'utilisation de $M_1 \leq 8$ (H)

- Pour le produit **A**, on nécessite 20 minute pour fabriquer la quantité $x_1 \rightarrow (20 * x_1)$ min
- Pour le produit **B**, on nécessite 30 minute pour fabriquer la quantité $x_2 \rightarrow (30 * x_2)$ min
- La contrainte relative à la machine M1 s'écrit donc:

 $20x_1 + 30x_2 \le 8 * 60 \text{(min)}$ (M2)

Contrainte relative à la positivité

Elles assurent que la solution ne comporte pas des valeurs négatives (inacceptables)

 $x_1, x_2 \ge 0$

Modélisation

Formulation d'un problème de maximisation

La construction du modèle linéaire (3/3)

Le modèle se résume ainsi,

PL:
$$\begin{cases} \mathit{Max}(Z) = 400x_1 + 500x_2 \\ \mathit{S.C} \\ 40x_1 + 30x_2 \le 6*60 \text{(min)} \text{ (M1)} \\ 20x_1 + 30x_2 \le 8*60 \text{(min)} \text{ (M2)} \\ x_1, x_2 \ge 0 \end{cases}$$

Modélisation

Formulation d'un problème de minimisation

Enoncé du problème 2:

Un athlète suit un régime et souhaite consommer la plus faible ration quotidienne de trois éléments nutritifs protéines, vitamines et calcium. Les exigences quotidiennes sont de **16g** de protéines, **12g** de vitamines et **18g** de calcium. L'athlète achète deux types d'aliments P et Q.

- Une unité de P comprend 2g de protéines, 1g de vitamines et 1g de calcium; et elle coûte 20D.
- Une unité de Q comprend 1g de protéines, 1g de vitamines et 3g de calcium;.
 Et elle coûte 40D.

L'athlète cherche la combinaison la moins coûteuse des quantités de P et Q qui respectera l'exigence de consommation minimale d'éléments nutritifs.

☐ Formuler ce problème en PL

Modélisation

Formulation d'un problème de maximisation

La construction du modèle linéaire

Identifier

Appelons x_1 et x_2 les quantités des aliments P et Q qu'il faut acheter

Exprimer

L'objectif de l'athlète est évidemment de minimiser le coût total d'aliments qu'il faut acheter:

$$Min(Z) = 20x_1 + 40x_2$$

Formuler

Chacun des 3 éléments nutritifs donne lieu à une contrainte. On obtient

$$2x_1 + x_2 \ge 16$$
 (Protéines)
 $x_1 + x_2 \ge 12$ (Vitamines)
 $x_1 + 3x_2 \ge 18$ (Calcium)

Enfin, il ne faut pas oublier qu'on ne peut pas acheter des quantités négatives de P et Q

$$\rightarrow x_1, x_2 \geq 0$$

Variables d'écart

- <u>Définition</u>: C'est la différence entre ce qui est disponible et ce qui est utilisé.
- Objectif: Ramener les contraintes à des égalités, qui sont plus faciles à traiter que les inégalités.

Modélisation

Formulation d'un problème de minimisation

La construction du modèle linéaire

Le modèle se résume ainsi,

PL:
$$\begin{cases} Min(Z) = 20x_1 + 40x_2 \\ S.C \\ 2x_1 + x_2 \ge 16 \quad \text{(P)} \\ x_1 + x_2 \ge 12 \quad \text{(V)} \\ x_1 + 3x_2 \ge 18 \quad \text{(C)} \\ x_1, x_2 \ge 0 \end{cases}$$

Variables d'écart

Formulation d'un problème en utilisant les variables d'écart

Problème:

Une entreprise fabrique deux produits A et B en utilisant une machine m et deux matières premières p et q. On dispose chaque jour de 8 heures de m, de 10 Kg de p et de 36 Kg de q. On suppose que :

- 1. La production d'une unité de A nécessite 2Kg de p et 9 Kg de q, et utilise la machine m durant 1 heure;
- 2. La production d'une unité de B nécessite 2 Kg de p et 4 kg de q, et utilise la machine m durant 2 heure;
- 3. Les profits réalisés sont de 50 D par unité de A et de 60 D par unité de B L'objectif de l'entreprise est de maximiser le profit qu'elle pourra tirer, par jour, de ces deux produits en utilisant au mieux ses ressources.
- ☐ Formuler ce problème en PL sous la forme standard

Variables d'écart

Formulation d'un problème en forme standard

La construction du modèle linéaire en forme standard

Le modèle en forme canonique se résume ainsi,

PL en forme canonique:

$$\begin{cases} Max(Z) = 50x_1 + 60x_2 \\ S.C \\ x_1 + 2x_2 \le 8 \text{ (m)} \\ 2x_1 + 2x_2 \le 10 \text{ (p)} \\ 9x_1 + 4x_2 \le 36 \text{ (q)} \\ x_1, x_2 \ge 0 \end{cases}$$

On pose:

$$e_1 = 8 - (x_1 + 2x_2)$$

 $e_2 = 10 - (2x_1 + 2x_2)$
 $e_3 = 36 - (9x_1 + 4x_2)$

Où e_i est appelée variable d'écart associée à la $i^{\grave{e}me}$ contrainte.

Variables d'écart

Formulation d'un problème

La construction du modèle linéaire en forme standard

On peut renommer les variables d'écart (e_1, e_2, e_3) comme les variables de décision (x_3, x_4, x_5)

$$\begin{cases} Max(Z) = 50x_1 + 60x_2 + 0e_1 + 0e_2 + 0e_3 \\ S.C \\ x_1 + 2x_2 + e_1 = 8 \text{ (m)} \\ 2x_1 + 2x_2 + e_2 = 10 \text{ (p)} \\ 9x_1 + 4x_2 + e_3 = 36 \text{ (q)} \\ x_1, x_2, e_1, e_2, e_3 \ge 0 \end{cases}$$

$$\begin{cases} Max(Z) = 50x_1 + 60x_2 \\ S.C \\ x_1 + 2x_2 + x_3 = 8 \text{ (m)} \\ 2x_1 + 2x_2 + x_4 = 10 \text{ (p)} \\ 9x_1 + 4x_2 + x_5 = 36 \text{ (q)} \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

Forme standard

Résolution graphique

- * On dispose d'un outil (la PL) pour modéliser des problèmes
- * Comment résoudre les problèmes à l'aide de la PL ?
 - Plusieurs algorithmes existent, dont le simplexe (prochain cours)
 - *Pour des problèmes avec deux variables, on peut résoudre graphiquement (aide à comprendre la structure du problème)

Résolution graphique

 Un problème linéaire est résolu graphiquement en procédant comme suit:

1

Représentation graphique de la région réalisable.

2

Représentation graphique de la fonction objectif

3

Détermination de la solution optimale

2

Résolution graphique

- La résolution d'un programme linéaire en utilisant la méthode graphique pour déterminer la solution optimale se déroule comme suit:
 - 1. Réaliser un repère orthonormé (ox_1x_2)
 - 2. Tracer la région réalisable (admissible) (D)
 - 3. Si (D) est borné, alors la solution optimale existe. Sinon, on distingue les deux cas suivants.
 - > Si le problème est à maximiser, aucune solution.
 - Si le problème est à minimiser, une solution optimale existe.
 - 4. Chercher tous les points sommets de (D) et parmi ceux-ci, choisir le point qui rend l'objectif optimal par deux méthodes:
 - Méthode de recensement des sommets.
 - Méthode des droites parallèles (repérage géométrique)

Résolution graphique

- Une des condition de la réussite d'une représentation graphique est le choix d'un système d'axes □ un mauvais choix peut rendre notre représentation non claire et imprécise.
- Dans la plupart des PL, les variables de décision sont positives, dans ce cas le quadrant positif s'appelle régions des solutions possibles.

Résolution graphique

- <u>Définition</u>: on appelle région réalisable ou région des solution admissible, l'ensemble des valeurs de variables de décision qui satisfont toutes les contraintes.
- <u>Méthode:</u> une représentation graphique des inégalités (Contraintes) nous permet de déterminer <u>l'ensemble des solutions</u> réalisables
- Exemple: on considère le PL suivant

$$\begin{cases} Max(Z) = 300x_1 + 200x_2\\ S.C\\ x_1 + 2x_2 \le 20 \quad (1)\\ 2x_1 + x_2 \le 22 \quad (2)\\ x_1 + x_2 \le 12 \quad (3)\\ x_1, x_2 \ge 0 \end{cases}$$

La région réalisable est l'ensemble des points (x_1, x_2) satisfaisant les inégalités de notre PL

$$x_1 + 2x_2 \le 20
2x_1 + x_2 \le 22
x_1 + x_2 \le 12
x_1, x_2 \ge 0$$

Résolution graphique

Région réalisable

Résolution graphique

Chercher la solution optimale dans l'ensemble infini de solutions réalisable.

Méthode de recensement des sommets:

- 1. Déterminer les valeurs de l'objectif correspondantes à chacun des points sommets.
- 2. Remplacer ces valeurs dans la fonction objectif: la plus grande valeur réalise le maximum et la plus petite valeur réalise le minimum.

Méthode des droites parallèles

- 1. Tracer la droite relative à la fonction objectif (Δ).
- 2. <u>Déplacer parallèlement</u> (Δ) vers le point de la région réalisable le plus éloigné de l'origine en cas de maximisation ou vers le point le plus proche de l'origine en cas de minimisation.

Résolution graphique

Méthode de recensement des sommets

$$\begin{cases} Max(Z) = 300x_1 + 200x_2\\ S.C\\ x_1 + 2x_2 \le 20 \quad (1)\\ 2x_1 + x_2 \le 22 \quad (2)\\ x_1 + x_2 \le 12 \quad (3)\\ x_1, x_2 \ge 0 \end{cases}$$

A=(0,10), D=(11,0), B=?, C=?

Résolution graphique

Méthode de recensement des sommets

$$(Max(Z) = 300x_1 + 200x_2)$$

 $S.C$
 $x_1 + 2x_2 \le 20$ (1)
 $2x_1 + x_2 \le 22$ (2)
 $x_1 + x_2 \le 12$ (3)

Pour déterminer B et C, on peut les repérer graphiquement ou mathématiquement.

• <u>Détermination de B et C mathématiquement:</u>

Les coordonnées de B sont la solution du système composé des deux inéquation des droites (1) et (3)

$$\begin{cases} x_1 + 2x_2 \le 20 & (1) \\ x_1 + x_2 \le 12 & (3) \end{cases} \Rightarrow x_1 = 4, x_2 = 8 \Rightarrow \mathbf{B} = (4,8)$$

➢ les coordonnées de C sont la solution du système composé des deux inéquation des droites (2) et (3)

$$\begin{cases} 2x_1 + x_2 \le 22 & (2) \\ x_1 + x_2 \le 12 & (3) \end{cases} \Rightarrow x_1 = 10, x_2 = 2 \Rightarrow C = (10,2)$$

Résolution graphique

Méthode de recensement des sommets

$$Z = 300x_1 + 200x_2$$

Les points sommets de la région réalisable sont les couples (x_1, x_2) suivants:

$$A=(0,10) \rightarrow 300*0+200*10=2000$$

$$B=(4,8) \rightarrow 300*4+200*8=2800$$

→ Le point sommet qui maximise la fonction est (10,2)