Healthcare Data Exploration Report

Healthcare Data Analysis Using AI

Prepared by: Deepanshu

Branch: CSE-AI

Section: B

Course:

B. Tech - Computer Science and Engineering with Artificial Intelligence

Institution:

KIET Group of Institution

Date: 11 March 2025

Univ. roll no: 202401100300094

1. Introduction

Healthcare data analysis is crucial for understanding patient conditions, identifying trends, and making informed medical decisions. This report explores a dataset containing patient information such as age, blood pressure, sugar levels, and weight. Using AI and machine learning techniques, we analyse this data to identify patterns and predict health outcomes.

2. Methodology

2.1 Data Collection and Preprocessing

- The dataset was obtained from a CSV file and loaded into a Pandas DataFrame.
- Missing values were handled using mean imputation for numerical features.
- Data visualization techniques were applied to understand feature distributions and correlations.

2.2 Machine Learning Model

- The Random Forest Classifier was selected due to its robustness in handling structured healthcare data.
- Features were standardized using the StandardScaler for improved model performance.
- The dataset was split into training (80%) and testing (20%) sets.

2.3 Model Evaluation

- The model's accuracy was measured using the accuracy score.
- Classification reports provided insights into precision, recall, and F1-score.

3. Code Implementation

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report
# Load Healthcare Data from CSV file
df = pd.read_csv("healthcare_data.csv")
# Display basic info and summary
print(df.info())
print(df.describe())
# Check for missing values
print(df.isnull().sum())
# Handle missing values (Simple imputation with mean for numeric columns)
df.fillna(df.mean(), inplace=True)
# Visualize distributions
plt.figure(figsize=(10, 6))
sns.pairplot(df)
plt.show()
# Visualize correlations
```

```
plt.figure(figsize=(10, 6))
sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
plt.title("Feature Correlation Heatmap")
plt.show()
# Histogram for each numerical feature
df.hist(figsize=(12, 8), bins=20)
plt.suptitle("Feature Distributions")
plt.show()
# Boxplot for outlier detection
plt.figure(figsize=(12, 6))
sns.boxplot(data=df)
plt.xticks(rotation=45)
plt.title("Boxplot for Outlier Detection")
plt.show()
# Select features and target variable (Assuming 'Outcome' is the target column)
X = df.drop(columns=['Outcome'])
y = df['Outcome']
# Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Standardize features
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```

```
# Train AI model (Random Forest Classifier)
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)

# Make predictions
y_pred = model.predict(X_test)

# Evaluate model performance
accuracy = accuracy_score(y_test, y_pred)
print(f"Model Accuracy: {accuracy:.2f}")
print(classification_report(y_test, y_pred))
```

4. Output & Visualizations

Feature Distributions

- Pairplot: Shows relationships between different numerical variables.
- **Heatmap:** Displays correlations between features.
- Histograms: Represent feature distributions.
- **Boxplot:** Helps detect outliers in the dataset.

5. Conclusion

This report demonstrates how machine learning techniques can be applied to healthcare data for predictive analysis. The Random Forest model achieved a good accuracy, highlighting its effectiveness in classifying patient health outcomes. Future improvements can involve more advanced deep learning models for even better predictions.