개별 운전자 선호도 분석 기반 경로추천 알고리즘

박준석

1. 작품 배경	작 품을 시작하게 된 배경

- 2. 작품 목표 목표 설정 및 방안수립
- 3. 작품 수행 내용 전반적인 알고리즘 개발 과정 및 내용
- 4. 작품 결과 알고리즘시연 및목표 달성 여부확인
- 5. 작품 성과 및 추가 연구 방안 이번작품성과와추가연구방안제시

1. 작품 배경

〈현행 내비게이션〉

경로 탐색에 운전자 선호도로 특성을 반영하지 못하여 운전자에게 만족을 주지 못하고 있음

(예시 사례) 연비를 중시하는 운전자에게 언덕이 많은 길로 안내해줌

〈미래형 내비게이션〉

경로 탐색에 운전자가 선호하는 도로 환경을 반영하여 운전자에게 만족과 신뢰를 가져다줌

알고리즘 개발 & 성능 확인

- 1. 개별 운전자 선호도를 반영한 경로 추천 가능성 확인
- 2. Trade-off(선호도로 이득과 소요시간 손실) 수준 확인
 - 3. 알고리즘 연산 성능 확인을 통한 양산 가능성 확인

연구방안

1.데이터 구축 및 알고리즘 개발 수행 2.시뮬레이터 구현을 통한 알고리즘 시각화

3. 연구목표달성내용확인및개선방안도출

3. 작품 수행 내용 (1-1)

데이터구축

지도데이터 작성

- Daum Map API를 활용하여 지도 데이터 생성
- 육안으로확인하여 얻을 수 있는 도로 환경 요소 데이터 수집 (어린이 보호 구역, 신호등, 교차로, 단속 카메라, 차선 수)

※ 양산형 지도 데이터 파싱 툴을 제작하는 과정에 많은 공수가 소요되므로 이번 작품에서는 단시간에 직접 수집 가능한 데이터를 활용하여 알고리즘 구현 가능성 확인에 초점을 맞춤

개별 운전자 주행패턴 분석을 통한 선호 도로 특성 데이터 추출

• 가상 운전자의 실주행 경로와 미주행 경로를 비교 분석하여 개별 운전자 선호도로 특성을 도로 환경 요소별 계수 데이터로 변환 (다음페이지 설명참조)

개별 운전자 주행패턴 분석 방법

실주행 경로 (운전자가 내비게이션 경로 안내를 받지 않고 주행한 경로)

미주행 경로 (운전자가 내비게이션의 안내를 받았을 경우의 경로)

각 도로 환경 요소마다 두 경로의 출몰 횟수 차이를 분석하여 알고리즘에 사용할 수 있는 계수를 선정

(다음 페이지 예시 및 부록(1) 참조)

개별 운전자 주행패턴 분석 예시

$$=\frac{3-1}{3}\times 100=67$$

3. 작품 수행 내용 (2-1)

알고리즘구현

운전자 선호도 반영 경로 추천

- 이전 단계에서 얻은 데이터들을 경로탐색 알고리즘에 반영하여 운전자 선호도가 반영된 경로를 추천해줌
- 개별 운전자 선호도가 반영된 A* 알고리즘과 다익스트라 알고리즘으로 경로탐색 알고리즘 구현

시뮬레이터 구현

• 개별 운전자 주행패턴 분석 & 운전자 선호도 반영 경로추천 알고리즘 시뮬레이터 구현

3. 작품 수행 내용 (2-2)

기본적인구현원리

개별 운전자 선호도가 반영된 에이스타(A*) 알고리즘

다익스트라 알고리즘

개별 운전자 선호도 분석 기반 경로추천 알고리즘

개별 운전자 선호도 반영 경로 추천 방법

도로 환경 요인 계수들을 이용하여 **개인별 휴리스틱 함수** *F(n)* 생성

(부록 (2) 참조)

'후보 노드 - 도착 노드'의 최적 경로 상 도로환경 요인 출몰 횟수를 파악하여 **휴리스틱 함수 결괏값 산출 및 탐색 수행**

(다익스트라 알고리즘 활용, 부록 (3) 예시 참조)

※ 휴리스틱 함수(heuristic function)란?

가용한 정보를 기반으로 각 분기 단계에서 어느 한 분기를 선택하기 위해 사용하는 다양한 탐색 알고리즘의 대안 함수이다.

4. 작품 결과 (1) - 경로 (A)

- 경로 (A)는 최소 시간 경로 상 어린이 보호구역이 2개, 신호등이 5개 존재하는 경로
- 가상 운전자 A는 어린이 보호구역 회피와 신호등 회피를 선호하므로 2개 요인을 동시에 고려한 어린이 보호구역이 1개, 신호등이 3개 적은 경로를 추천받음
- 두 경로의 소요시간 차이가 1분으로 수용할 수 있는 trade-off라고 판단

- 경로 (B)는 최소 시간 경로 상 단속 카메라가 3개 존재하는 경로
- 가상 운전자 B는 단속 카메라 회피를 선호하므로 **단속 카메라가 2개 적은 경로를 추천받음**
- 최소 시간 경로와 소요시간 차이가 1분으로 수용할 수 있는 trade-off라고 판단

• 같은 여정이더라도 개별 운전자의 선호도를 반영하여 각 운전자에게 알맞은 경로를 추천해줌

어린이보호구역 1개 감소

단속카메라 1개 감소

※ 경로상의 단속카메라는 진행 반대 방향에 있는 것이 표시된 것임

운전자 선호도 반영 경로 추천 시뮬레이터

개별 운전자 주행경로 생성/분석 모드 개별 운전자 추천 경로 탐색 모드

작품 성과

- 신규 알고리즘으로 개별운전자의 선호도를 반영하면서 소요시간이 많이 늘어나지 않는 경로를 추천해줄 수 있음을 확인
- 내비게이션 구동 성능을 저하하지 않고서도 개별 운전자의 선호도를 경로 안내에 반영할 수 있음을 확인

- 내비게이션 데이터로부터 여러 도로 환경 요인을 도출 & 알고리즘에 반영하여 다양한 운전자 선호도 고려
- 실시간 패턴 교통 정보 데이터를 통해 지역행사, 교통사고, 날씨와 같은 특수한 상황을 고려

- 개별 운전자 선호 도로 특성 분석
 - 지속적으로 실주행 경로와 미주행 최단 경로 간의 차이를 분석하여 개별 운전자의 선호 도로 특성을 파악하여 계수를 갱신
- 개별 운전자 선호 도로 특성을 계수로 표현
 - 아래의 어린이 보호구역, 신호등, 교차로, 단속카메라를 선호하는 운전자는 없기 때문에 max 함수로 계수가 음수가 되는 경우를 방지하였음
 - 계수a,b,c,d는 값이 클수록 더 회피하고,계수e는 값이 클수록 더 경로에 반영

 - $b: \frac{max($ 미주행경로신호등수 $_{-}$ 실주행경로신호등수 $_{,0)}$ $imes 100 (0 \le b \le 100)$ 미주행경로신호등수
 - $c: \frac{max($ 미주행경로교차로수 $_{-}$ 실주행경로교차로수 $_{,0)}$ \times $100 (0 \le c \le 100)$
 - $d: \frac{\max(\Box \land \forall d)}{\Box \land \forall d} \times 100 \ (0 \le d \le 100)$ 이주행경로 단속카메라수
 - $e: \frac{max(실주행경로평균도로너비_미주행경로평균도로너비_0)}{미주행경로평균도로너비} imes 100 (0 \le e \le 100)$
- 현실성반영방법적용
 - '누적 계수 주행거리: 신규 계수 주행거리'의 비율로 계수를 갱신하여 계수가 크게 변화하는 문제를 방지
 - 각미주행, 실주행 경로 도로특성 출몰횟수 합계가 0일 경우는 해당 도로특성의 계수를 갱신하지 않음

부록 (2) - 휴리스틱 함수

- 휴리스틱 알고리즘을 이용해 예상 주행 거리 및 도로 환경 요인 출몰 횟수를 경로 선정에 반영
- $F(n) = G(n) + (T(n) + a \cdot A(n) + b \cdot B(n) + c \cdot C(n) + d \cdot D(n) e \cdot E(n))$
 - -G(n): 출발지부터 노드n까지의 소요시간
 - -T(n): 노드n 부터 도착지까지의 최적 경로 소요시간
 - -A(n): 노드n 부터 도착지까지의 최단경로 상 어린이 보호 구역 출몰 횟수
 - -B(n): 노드n 부터 도착지까지의 최단경로 상 신호등 출몰 횟수
 - -C(n): 노드n 부터 도착지까지의 최단경로 상 교차로 출몰 횟수
 - -D(n): 노드n 부터 도착지까지의 최단경로 상 단속카메라 출몰 횟수
 - -E(n): 노드n부터 도착지까지의 최단경로의 평균 도로 너비

부록 (3) - 휴리스틱 함수 예시 (1)

어린이 보호구역과 신호등을 회피하는 운전자 예시 (a=100, b=70, c=0, d=0, e=0)

어린이 보호구역과 신호등을 회피하는 운전자 예시 (a =100, b=70, c=0, d=0, e=0)

