USN:	1	D	S	1		Е	С			
------	---	---	---	---	--	---	---	--	--	--

Dayananda Sagar College of Engineering
Shavige Malleshwara Hills, Kumaraswamy Layout, Banashankari, Bangalore-560078, Karnataka
Tel:+91 80 26662226 26661104 Extn: 2731 Fax:+90 80 2666 0789
Web-http://www.dayanandasagar.edu Email: hod-ece@dayanandasagar.edu
(An Autonomous Institute Affiliated to VTU, Approved by AICTE & ISO 9001:2008 Certified)
(Accredited by National Assessment & Accreditation Council (NAAC) with 'A' grade)

Department of Electronics & Communication Engg. **Continuous Internal Evaluation – II**

Course Name : POWER ELECTRONICS & APPLICATIONS	Date:	10/07/2021
Course Code: 18EC6DECPE	Day:	Saturday
Semester: 6	Timings :	11:15 A.M – 12:45 P.M
Max Marks: 50 M	Duration :	1½ Hrs.

111021		ks: 50 M Durauon:	1	72 HIS.
No.		Question Description	Mks	CO & Levels
Q1	(a)	Assertion (A): Single phase half-wave converter introduces a dc component into the supply line. Reason (R): The supply current taken from the source is unidirectional and is in the form of dc pulses (i) Both A and R are true and R is the correct explanation of A, (ii)Both A and R are true but R is not the correct explanation of A, (iii)A is true but R is false, (iv) A is false but R is true.	1	
	(b)	A single-phase full converter is connected across 230 V ac. Its average output voltage when firing angle is 30° is approximately equal to (i) 230 V (ii) 193 V (iii) 89.5 V (iv) 179 V	1	
	(c)	A chopper uses high speed to from a source load. (i) connect (ii) disconnect (iii) terminate (iv) connect and disconnect	1	
	(d)	In which chopper average voltage output (Vo) in a step up chopper is greater than the voltage input (Vs)? (i) Step Down Chopper (ii) Step Up chopper (iii) Step Up/Down Chopper (iv) All of the above	1	
	(e)	A single phase voltage controller has input of 230 V and a load of 15 Ω resistive. For 6 cycles on and 4 cycles off, determine the power delivered to the load. (i) 2.1W (ii) 2.1kW (iii)516 W (iv) 5.16kW	1	
	(f)	In the principle of phase control (i) the load is on for some cycles and off for some cycles (ii) control is achieved by adjusting the firing angle of the devices (iii) control is achieved by adjusting the number of on off cycles (iv) control cannot be achieved	1	
	(g)	If k is the duty cycles of the controller, then the rms value of the output voltage in case of a integral cycle control circuit will be? Consider the input to be sinusoidal with peak value Vm and rms value Vs. (i) $V_s X \ K$	1	

	<u> </u>	(**\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		<u> </u>
		(ii) V _s /K		
		(iii) $V_s X K^{1/2}$ (iv) V_s		
		Pulse gating is suitable for		
		(i) R loads only		
	(h)	(ii)R and RL loads	1	
	()	(iii)RL loads only	•	
		(iv)All types of loads		
		In AC voltage controllers the		
		(i)variable dc with fixed frequency is obtained		
	(i)	(ii)variable ac with variable frequency is obtained	1	
		(iii)variable ac with fixed frequency is obtained		
		(iv)variable dc with fixed frequency is obtained		
		Choppers converter		
		(i)AC to DC		
	(j)	(ii) DC to AC	1	
		(iii) DC to DC		
		(iv) AC to AC		
		Enlist the gating sequence for the phase controlled converter & Single Phase	4	CO3,
Q2	a	Full converter with RL Load.	4	L2
		Find the performance of a single phase purely resistive load Thyristor converter		CO3,
	b	with delay angle $\alpha = \frac{\pi}{2}$, determine (a) the rectification efficiency, (b) the form	6	L4
		factor, (c) Ripple Factor (d) TUF (e) PIV		
		A step down chopper has a resistive load of $R = 15$ ohm and input voltage $E_{dc} =$		CO3,
		200V. When the chopper remains ON, its voltage drop is 2.5 V. The chopper		L3
Q3		frequency is 1Khz. If te duty cycle is 50%, determine : (a) Average output voltage	10	
		(b) RMS output voltage (c) Chopper efficiency (d) Efficient input resistence of	10	
		chopper		
		Discover the performance parameters of a single phase Full – wave ac controller		CO4,
		with Resistive loads of R = 10Ω & the input voltage is $V_s = 120V$ (rms), 60 Hz.		L4
Q4		The delay angles of thyristors T_1 & T_2 are equal : $\alpha_1 = \alpha_2 = \frac{\pi}{2}$. Determine (a) the	10	
		RMS output voltage V _o , (b) the input PF, (c) The average current of the thyristors		
		I_A , and (d) The RMS current of the thyristors I_R .		
		OR		00.1
		Observe the performance of a single phase Full wave Controller with an RL		CO4,
		load, with input RMS voltage is $V_S = 120V$, 60Hz. The load is such that $L = \frac{\pi}{1000}$		L4
Q5		6.5mH and R = 2.5 Ω . The delay angles of the thyristors are equal : $\alpha_1 = \alpha_2 = \frac{\pi}{2}$.	10	
		Determine (a) the conduction angle of the thyristor T_1 , δ ; (b) The RMS output		
		voltage V_o , (c) The RMS thyristor current I_R ; (d) The RMS output current I_o ; (e)		
		The average current of a Thyristor I _A ; & (f) the input PF.		002
Q6		Explain the basic Chopper classifications with neat diagrams & list the various	10	CO3,
		applications of the same.		L2
		OR		COA
Q7		Reveal the principle of ON – OFF control & hence elaborate the operation of	10	CO4, L4
		Single phase full – wave controller with RL load.		L/ 1