Izmir Institute of Technology

CENG 461 – Artificial Intelligence

Probabilistic Inference

Introduction

- In the previous lecture, we have learned how to represent probability distributions with Bayesian Networks.
- Once we have a representation of the joint probability distribution, we would like to ask the following kinds of questions:
 - Given the values of some random variables, what is the probability distribution of a remaining variable?
 - Given the values of some random variables, what are the most likely values of the remaining variables?
- ▶ Answers are obtained by probabilistic inference.

A Sample Network

- ▶ B: Burglary
- ▶ E: Earthquake
- ► A: Alarm
- J: John (neighbor) calls you
- M: Mary (neighbor) calls you

Query, Hidden, and Evidence Variables

- We name the variables either
 - as evidence variables (that have been observed)
 - as query variables (that we want to know about)
 - as hidden variables (that are not in query or evidence sets)
 - Note that any variable can be evidence or query.

Query, Hidden, and Evidence Variables

With the above definitions, the answer to the question 'What is the probability of the query variables when evidence are given?':

$$P(Q_1, Q_2, ... | E_1 = e_1, E_2 = e_2, ...)$$

The answer to the question 'Of all the possible values of query variables which combination has the highest probability?':

$$\operatorname{argmax}_{q}(Q_{1} = q_{1}, Q_{2} = q_{2}, ... | E_{1} = e_{1}, E_{2} = e_{2}, ...)$$

Question:

$$P(+b| + j, +m) = ?$$

Using the definition of conditional prob.

which is:
$$P(X|Y) = P(X,Y)/P(Y)$$

$$P(+b|+j,+m) = \frac{P(+b,+j,+m)}{P(+j,+m)} = \frac{P(+b,+j,+m)}{P(+b,+j,+m)+P(-b,+j,+m)}$$

$$P(+b,+j,+m) = \sum_{e,a} P(+b) \cdot P(e) \cdot P(a|+b,e) \cdot P(+j|a) \cdot P(+m|a)$$

$$P(+b,+j,+m) = P(+b)P(+e)P(+a|+b,+e)P(+j|+a)P(+m|+a) \\ +P(+b)P(+e)P(-a|+b,+e)P(+j|-a)P(+m|-a) \\ +P(+b)P(-e)P(+a|+b,-e)P(+j|+a)P(+m|+a) \\ +P(+b)P(-e)P(-a|+b,-e)P(+j|-a)P(+m|-a) = 0.0005922$$

$$P(-b,+j,+m) = P(-b)P(+e)P(+a|-b,+e)P(+j|+a)P(+m|+a) \\ +P(-b)P(+e)P(-a|-b,+e)P(+j|-a)P(+m|-a) \\ +P(-b)P(-e)P(+a|-b,-e)P(+j|+a)P(+m|+a) \\ +P(-b)P(-e)P(-a|-b,-e)P(+j|-a)P(+m|-a) = 0.0015$$

$$P(+b|+j,+m) = \frac{P(+b,+j,+m)}{P(+b,+j,+m)+P(-b,+j,+m)} = \frac{0.000592}{0.000592+0.0015} = 0.283$$

Speeding Up Enumeration

We can re-order the computations to save some time

$$P(+b, +j, +m) = \sum_{e,a} P(+b)P(e)P(a|+b, e)P(+j|a)P(+m|a)$$

$$P(+b, +j, +m) = P(+b) \sum_{e} P(e) \sum_{a} P(a|+b, e) P(+j|a) P(+m|a)$$

But we still have the same number of variables in the tables, and computation load is still high.

Variable Elimination (by an example)

Variables R: Rain, T:Traffic, L: Late and corresponding probability tables

 $P(+L) = \sum_{R} \sum_{T} P(+L|T)P(T|R)P(R)$ that is enumeration For large problems, variable elimination is more effective than enumeration

Variable Elimination (by an example)

Construct the table of joint probability P(R,T)

Marginalize over R to get P(T)

Variable Elimination (by an example)

Table of joint probability P(T,L)

P(T,L)				
+T	+L	0.051		
+T	-L	0.119		
-T	+L	0.083		
T	-L	0.747		

Marginalize
over T

P(L)		
+L	0.134	
-L	0.866	

Approximate Inference by Sampling

- Estimate the distributions in question by sampling from the distribution.
- By looking at many samples, compute joint probability distributions.
- E.g.: flipping two coins repeatedly counting the occurrence of each joint event.

Out of 1000 flips		
Н	Н	247
Н	Т	251
Т	Н	249
Т	Т	253

$$P(H,H)=?$$

Approximate Inference by Sampling

When we are given the tables, we can simulate the process.

- We randomly generate a sample from the joint distribution by starting from the uppermost nodes.
- We can then sample the lower layer conditioned on the value we have obtained for the upper layers.

Example Network and Question

Example Network and Question

- P(+W | -C) = P(+W,-C) / [P(+W,-C) + P(-W,-C)]
- With joint probabilities

$$P(+W,-C,+S,+R) + P(+W,-C,-S,+R) + P(+W,-C,-S,-R) + P(+W,-C,+S,-R)$$
= \leftarrow P(-W,-C,+S,+R)+P(-W,-C,-S,+R)+P(-W,-C,-S,-R)+P(-W,-C,+S,-R)

With sampling (use a random number generator) we obtain

```
(-C,+S,+R,+W) ... 754 times
(-C,+S,-R,+W) ... 646 times
(-C,-S,+R,+W) ... 672 times
(-C,-S,-R,+W) ... 580 times
(-C,+S,+R,-W) ... 47 times
(-C,+S,-R,-W) ... 122 times
(-C,-S,+R,-W) ... 89 times
(-C,-S,-R,-W) ... 213 times
```

Then, add up and divide corresponding values to get P(+W|-C)

Approximate Inference by Sampling

- ▶ Pay attention that we only used samples with -C for oour computation, however joint distribution contains samples with +C as well.
- We simply discard those samples and use the rest, this is called 'rejection sampling'.
- This is a simple and effective method but you will discard many samples if the observed variables have low probability (remember 0.001 probability of burglary).

Monthy Hall Problem

- A big prize behind one of the doors.
- You select Door 1.
- Door 3 opens and there is goat behind.
- Would you change your selection as Door 2?

