Teoria da Informação

Licenciatura em Engenharia Informática

Miguel Barão

Resumo

Nestes slides estudam-se canais discretos sem memória. Estes canais permitem o envio de símbolos de um alfabeto discreto ${\mathscr X}$ sendo recebidos símbolos de um alfabeto ${\mathscr Y}$. A transmissão está sujeita a erros aleatórios. É definida a capacidade do canal segundo Shannon e são apresentados vários casos particulares para os quais a capacidade pode ser determinada explicitamente.

Finalmente é apresentado o teorema da codificação de canal de Shannon, um resultado central em teoria da informação.

Conteúdo

Canais de comunicação

Transmissão de informação por um canal ruidoso Definição de canal discreto sem memória

Capacidade do canal

Definição

Propriedades

Casos particulares com solução explícita

Algoritmos iterativos para calcular a capacidade

Concatenação de canais

Teorema da codificação de canal

Funções de codificação e descodificação

Probabilidades de erro

Ritmo de transmissão

Teorema da codificação de canal

1 A fonte gera uma mensagem.

- 1 A fonte gera uma mensagem.
- 2 O codificador transforma a mensagem para a adaptar ao canal usado.

- 1 A fonte gera uma mensagem.
- 2 O codificador transforma a mensagem para a adaptar ao canal usado.
- 3 A mensagem codificada é enviada pelo canal. O canal não é fiável e pode corromper a mensagem.

- 1 A fonte gera uma mensagem.
- 2 O codificador transforma a mensagem para a adaptar ao canal usado.
- 3 A mensagem codificada é enviada pelo canal. O canal não é fiável e pode corromper a mensagem.
- 4 O descodificador recebe a mensagem do canal e tenta
 - 4.1 detectar erros de transmissão;
 - 4.2 corrigir os erros.

- 1 A fonte gera uma mensagem.
- 2 O codificador transforma a mensagem para a adaptar ao canal usado.
- 3 A mensagem codificada é enviada pelo canal. O canal não é fiável e pode corromper a mensagem.
- 4 O descodificador recebe a mensagem do canal e tenta
 - 4.1 detectar erros de transmissão;
 - 4.2 corrigir os erros.
- 5 A mensagem descodificada é entregue ao receptor.

Canal discreto sem memória

Definição (Canal discreto sem memória)

Consiste em:

- \blacksquare alfabeto de entrada ${\mathscr X}$
- alfabeto de saída 🎱
- lacktriangle probabilidades de transição p(y|x)

Canal discreto sem memória

Definição (Canal discreto sem memória)

Consiste em:

- \blacksquare alfabeto de entrada ${\mathscr X}$
- alfabeto de saída 狄
- \blacksquare probabilidades de transição p(y|x)

O canal é sem memória se a distribuição de probabilidade da saída depende da entrada e é condicionalmente independente das entradas e saídas passadas: $p(y_t|x_t,x_{t-1},...,y_{t-1},...) = p(y_t|x_t)$.

Exemplo

Este canal é caracterizado por:

- alfabeto de entrada $\mathcal{X} = \{0, 1\}$
- alfabeto de saída $\mathcal{Y} = \{0, 1, 2\}$
- probabilidades de transição:

p(y x)	x = 0	<i>x</i> = 1
y = 0	0.9	0.0
y = 1	0.1	0.1
y = 2	0.0	0.9

Exemplo

Este canal é caracterizado por:

- alfabeto de entrada $\mathcal{X} = \{0, 1\}$
- alfabeto de saída $\mathcal{Y} = \{0, 1, 2\}$
- probabilidades de transição:

$$\begin{array}{c|ccc} p(y|x) & x = 0 & x = 1 \\ \hline y = 0 & 0.9 & 0.0 \\ y = 1 & 0.1 & 0.1 \\ y = 2 & 0.0 & 0.9 \end{array}$$

Note que os alfabetos de entrada e saída podem ser diferentes!

Capacidade de um canal discreto sem memória

Definição (Capacidade de um canal discreto sem memória)

$$C = \max_{p(x)} I(X; Y)$$

Observações:

- Um canal em que a saída Y é independente de X não permite transmitir informação.
- Se é possível tornar X e Y mais dependentes, então a capacidade do canal aumenta.
- A capacidade é calculada como um problema de optimização: encontrar p(x) que maximiza a informação mútua I(X;Y).

■ $C \ge 0$ uma vez que $I(X; Y) \ge 0$.

- $C \ge 0$ uma vez que $I(X; Y) \ge 0$.
- $C \le \log |\mathcal{X}|$ uma vez que $C = \max I(X; Y) \le \max H(X) \le \log |\mathcal{X}|$.

- $C \ge 0$ uma vez que $I(X; Y) \ge 0$.
- $C \le \log |\mathcal{X}|$ uma vez que $C = \max I(X; Y) \le \max H(X) \le \log |\mathcal{X}|$.
- $C \le \log |\mathcal{Y}|$ pelo mesmo motivo.

- $C \ge 0$ uma vez que $I(X; Y) \ge 0$.
- $C \le \log |\mathcal{X}|$ uma vez que $C = \max I(X; Y) \le \max H(X) \le \log |\mathcal{X}|$.
- $C \le \log |\mathcal{Y}|$ pelo mesmo motivo.
- I(X; Y) é uma função contínua de p(x).

- $C \ge 0$ uma vez que $I(X; Y) \ge 0$.
- $C \le \log |\mathcal{X}|$ uma vez que $C = \max I(X; Y) \le \max H(X) \le \log |\mathcal{X}|$.
- $C \le \log |\mathcal{Y}|$ pelo mesmo motivo.
- I(X;Y) é uma função contínua de p(x).
- I(X; Y) é uma função concava de p(x).

- $C \ge 0$ uma vez que $I(X; Y) \ge 0$.
- $C \le \log |\mathcal{X}|$ uma vez que $C = \max I(X; Y) \le \max H(X) \le \log |\mathcal{X}|$.
- $C \le \log |\mathcal{Y}|$ pelo mesmo motivo.
- I(X; Y) é uma função contínua de p(x).
- I(X;Y) é uma função concava de p(x).

Canal binário sem erros

A capacidade do canal é:

$$C = \max_{p(x)} I(X; Y)$$

$$= \max_{p(x)} \left(H(Y) - \underbrace{H(Y|X)}_{=0} \right)$$

$$= 1 \text{ bit.}$$

O máximo é atingido com $p(x) = \frac{1}{2}$.

Canal binário inversor

A capacidade do canal é:

$$\bigcup_{1}^{0} \bigcup_{1}^{0}$$

$$C = \max_{p(x)} I(X; Y)$$

$$= \max_{p(x)} \left(H(Y) - \underbrace{H(Y|X)}_{=0} \right)$$

$$= 1 \text{ bit.}$$

O máximo é atingido com $p(x) = \frac{1}{2}$.

- Este exemplo é análogo ao canal binário sem erros.
- O símbolo transmitido pode ser obtido invertendo o símbolo recebido.

Canal com saídas não sobrepostas

A capacidade do canal é:

$$C = \max_{p(x)} I(X; Y) = 1 \text{ bit.}$$

O máximo é atingido com distribuição uniforme $p(x) = \frac{1}{2}$.

Na realidade este problema é semelhante ao canal binário sem erros, uma vez que observando um dos símbolos $\{A, B, C, D\}$ é possível saber inequivocamente qual o símbolo emitido.

Exemplos

Canal binário com perdas

A capacidade do canal é:

$$C = \max_{p(x)} I(X; Y) = 1 - p_e$$

O máximo é atingido com $p(x) = \frac{1}{2}$.

Máquina de escrever ruidosa

A capacidade do canal é:

$$C = \max_{p(x)} I(X; Y) = \log 13$$

O máximo é atingido com distribuição uniforme $p(x) = \frac{1}{26}$.

Canal binário simétrico

A capacidade do canal é:

$$C = \max_{p(x)} I(X; Y) = 1 - H(p_e)$$

onde $H(p_e) \triangleq -p_e \log p_e - (1-p_e) \log (1-p_e)$. O máximo é atingido com $p(x) = \frac{1}{2}$.

Canal simétrico

É um canal em que todas as linhas e colunas são permutações umas das outras, por exemplo

$$\mathbf{P} = \begin{bmatrix} p_1 & p_2 & p_3 \\ p_2 & p_3 & p_1 \\ p_3 & p_1 & p_2 \end{bmatrix}.$$

A capacidade neste caso é

$$C = \log |\mathcal{Y}| - H(\text{"uma linha da matriz"}).$$

O máximo é atingido com distribuição uniforme.

Canal simétrico

É um canal em que todas as linhas e colunas são permutações umas das outras, por exemplo

$$\mathbf{P} = \begin{bmatrix} p_1 & p_2 & p_3 \\ p_2 & p_3 & p_1 \\ p_3 & p_1 & p_2 \end{bmatrix}.$$

A capacidade neste caso é

$$C = \log |\mathcal{Y}| - H(\text{"uma linha da matriz"}).$$

O máximo é atingido com distribuição uniforme.

O canal binário simétrico é um caso particular deste.

Canal fracamente simétrico

É um canal em que todas as linhas são permutações umas das outras e as colunas têm a mesma soma

$$\sum_{x} p(y|x).$$

A capacidade é também

$$C = \log |\mathcal{Y}| - H(\text{"uma linha da matriz"}).$$

O máximo é atingido com distribuição uniforme.

Algoritmos para a determinação da capacidade

Atenção:

Não existe, em geral, uma fórmula explícita para a determinação da capacidade \mathcal{C} , sendo necessário usar um método iterativo para estimar a capacidade.

Algoritmos para a determinação da capacidade

Atenção:

Não existe, em geral, uma fórmula explícita para a determinação da capacidade \mathcal{C} , sendo necessário usar um método iterativo para estimar a capacidade.

Algoritmos iterativos "clássicos" para determinar a capacidade:

- S. Arimoto, "An algorithm for computing the capacity of arbitrary discrete memoryless channels", IEEE Transactions on Information Theory, vol. 18 (1) pp. 14–20, 1972.
- R. Blahut, "Computation of channel capacity and rate-distortion functions", IEEE Transactions on Information Theory, vol. 18 (4) pp. 460–473, 1972.

O que acontece quando se concatenam vários canais? Por exemplo:

O que acontece quando se concatenam vários canais? Por exemplo:

O que acontece quando se concatenam vários canais? Por exemplo:

Concatenação dos dois canais

O que acontece quando se concatenam vários canais? Por exemplo:

Concatenação dos dois canais

A concatenação destes dois canais é equivalente a um canal binário

É necessário calcular as probabilidades de transição do canal equivalente.

Se as matrizes de transição são

$$\mathbf{P}_1 = \begin{bmatrix} 0.9 & 0.1 \\ 0.05 & 0.7 \\ 0.05 & 0.2 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{P}_2 = \begin{bmatrix} 0.9 & 0.2 & 0.5 \\ 0.1 & 0.8 & 0.5 \end{bmatrix}$$

então as probabilidades de transição do canal equivalente são

$$\mathbf{P}_{eq} = \mathbf{P}_2 \mathbf{P}_1 = \begin{bmatrix} 0.9 & 0.2 & 0.5 \\ 0.1 & 0.8 & 0.5 \end{bmatrix} \begin{bmatrix} 0.9 & 0.1 \\ 0.05 & 0.7 \\ 0.05 & 0.2 \end{bmatrix} = \begin{bmatrix} 0.845 & 0.33 \\ 0.155 & 0.67 \end{bmatrix}$$

Neste exemplo, o canal equivalente é binário, mas não é simétrico. A capacidade tem de ser calculada iterativamente.

Concatenação de canais idênticos

O que acontece quando se concatenam vários canais idênticos, cada um com matriz de transição P?

Concatenação de canais idênticos

O que acontece quando se concatenam vários canais idênticos, cada um com matriz de transição **P**?

O canal equivalente é um canal binário com matriz de transição

$$P_{eq} = P^n$$

Concatenação de canais idênticos

O que acontece quando se concatenam vários canais idênticos, cada um com matriz de transição **P**?

O canal equivalente é um canal binário com matriz de transição

$$P_{eq} = P^n$$

A concatenação de canais forma uma cadeia de Markov!

■ A transmissão de informação por um canal ruidoso está geralmente sujeita a erros.

- A transmissão de informação por um canal ruidoso está geralmente sujeita a erros.
- É possível construir códigos que permitam a detecção e eventual correcção de erros. Esses códigos requerem a transmissão de informação adicional.

- A transmissão de informação por um canal ruidoso está geralmente sujeita a erros.
- É possível construir códigos que permitam a detecção e eventual correcção de erros. Esses códigos requerem a transmissão de informação adicional.
- A redundância adicionada no código permite baixar a probabilidade de erro, mas faz baixar o ritmo de transmissão pois é necessário transmitir mais símbolos pelo canal por cada símbolo da fonte.

- A transmissão de informação por um canal ruidoso está geralmente sujeita a erros.
- É possível construir códigos que permitam a detecção e eventual correcção de erros. Esses códigos requerem a transmissão de informação adicional.
- A redundância adicionada no código permite baixar a probabilidade de erro, mas faz baixar o ritmo de transmissão pois é necessário transmitir mais símbolos pelo canal por cada símbolo da fonte.
- Shannon mostrou em 1948 que é possível construir códigos com probabilidade de erro arbitrariamente baixa apenas se o ritmo de transmissão estiver abaixo da capacidade do canal.

- A transmissão de informação por um canal ruidoso está geralmente sujeita a erros.
- É possível construir códigos que permitam a detecção e eventual correcção de erros. Esses códigos requerem a transmissão de informação adicional.
- A redundância adicionada no código permite baixar a probabilidade de erro, mas faz baixar o ritmo de transmissão pois é necessário transmitir mais símbolos pelo canal por cada símbolo da fonte.
- Shannon mostrou em 1948 que é possível construir códigos com probabilidade de erro arbitrariamente baixa apenas se o ritmo de transmissão estiver abaixo da capacidade do canal.
- Este resultado é conhecido como *Teorema da codificação de canal*. Shannon mostrou que era possível a construção destes códigos mas não mostrou como se poderiam construir.

Definição (Código para o canal)

Um código para o canal $(\mathcal{X}, p(y|x), \mathcal{Y})$ consiste no seguinte:

Definição (Código para o canal)

Um código para o canal $(\mathcal{X}, p(y|x), \mathcal{Y})$ consiste no seguinte:

I Um conjunto de índices $\{1, 2, ..., M\}$. Os índices correspondem às M possíveis mensagens que se podem transmitir.

Definição (Código para o canal)

Um código para o canal $(\mathcal{X}, p(y|x), \mathcal{Y})$ consiste no seguinte:

- I Um conjunto de índices $\{1, 2, ..., M\}$. Os índices correspondem às M possíveis mensagens que se podem transmitir.
- 2 Uma função de codificação Xⁿ: {1,2,...,M} → Xⁿ que fornece as palavras de código Xⁿ(1),Xⁿ(2),...,Xⁿ(M).
 O índice (mensagem) a transmitir é codificado como uma sequência de n símbolos do alfabeto X.

Definição (Código para o canal)

Um código para o canal $(\mathcal{X}, p(y|x), \mathcal{Y})$ consiste no seguinte:

- I Um conjunto de índices $\{1,2,...,M\}$. Os índices correspondem às M possíveis mensagens que se podem transmitir.
- 2 Uma função de codificação Xⁿ: {1,2,...,M} → Xⁿ que fornece as palavras de código Xⁿ(1),Xⁿ(2),...,Xⁿ(M).
 O índice (mensagem) a transmitir é codificado como uma sequência de n símbolos do alfabeto X.
- 3 Uma função de descodificação g: Yⁿ → {1,2,...,M}, que é uma regra determinística que "adivinha" o índice a partir da sequência de símbolos recebida Yⁿ.
 A sequência Yⁿ formada por n símbolos do alfabeto Y é descodificada pela função g que devolve um índice de {1,...,M} correspondente à mensagem que se julga ter sido enviada.

Exemplo (Código para o canal)

Canal

Descod.

Compra	Índice	$X^n(\cdot)$
pão	1	000
ovos	2	010
carne	3	101
cerveja	4	111

y n	$g(\mathcal{Y}^n)$	Compra
000	1	pão
001	1	pão
010	2	ovos
011	2	ovos
100	3	carne
101	3	carne
110	4	cerveja
111	4	cerveja

Exemplo (Código para o canal)

Canal

Descod.

Co	ompra	Indice	$X^n(\cdot)$
pã	io	1	000
ov	os	2	010
ca	rne	3	101
ce	rveja	4	111

Ƴ ⁿ	$g(\mathcal{Y}^n)$	Compra
000	1	pão
001	1	pão
010	2	ovos
011	2	ovos
100	3	carne
101	3	carne
110	4	cerveja
111	4	cerveja

Indice	$X^n(\cdot)$
1	000
2	010
3	101
4	111
	1 2 3

y n	$g(\mathcal{Y}^n)$	Compra
000	1	pão
001	1	pão
010	2	ovos
011	2	ovos
100	3	carne
101	3	carne
110	4	cerveja
111	4	cerveja

Compra	Indice	$X^n(\cdot)$
pão	1	000
ovos	2	010
carne	3	101
cerveja	4	111

\mathcal{Y}^{n}	$g(\mathcal{Y}^n)$	Compra
000	1	pão
001	1	pão
010	2	ovos
011	2	ovos
100	3	carne
101	3	carne
110	4	cerveja
111	4	cerveja

Compra	Indice	$X''(\cdot)$
pão	1	000
ovos	2	010
carne	3	101
cerveja	4	111

y n	$g(\mathcal{Y}^n)$	Compra
000	1	pão
001	1	pão
010	2	ovos
011	2	ovos
100	3	carne
101	3	carne
110	4	cerveja
111	4	cerveja

Compra	Índice	$X^n(\cdot)$
pão	1	000
ovos	2	010
carne	3	101
cerveja	4	111

\mathcal{Y}^{n}	$g(\mathcal{Y}^n)$	Compra
000	1	pão
001	1	pão
010	2	ovos
011	2	ovos
100	3	carne
101	3	carne
110	4	cerveja
111	4	cerveja

Probabilidades de erro

Definição (Probabilidade de erro)

A probabilidade condicional de erro dado que foi transmitido o símbolo i é

$$\lambda_i \stackrel{\triangle}{=} \Pr \{ g(Y^n) \neq i \mid X^n = X^n(i) \}$$

Definição (Probabilidade de erro)

A probabilidade condicional de erro dado que foi transmitido o símbolo i é

$$\lambda_i \stackrel{\triangle}{=} \Pr\{g(Y^n) \neq i \mid X^n = X^n(i)\}$$

Definição (Probabilidade de erro máxima)

A probabilidade de erro máxima para um código de comprimento n é dada por

$$\lambda^{(n)} \triangleq \max_{i \in \{1,...,M\}} \lambda_i.$$

Probabilidades de erro

Exemplo

Considere o código e o canal binário (não simétrico) seguinte:

Quais as probabilidades de erro quando são transmitidas as mensagens 1 e 2?

Exemplo

Considere o código e o canal binário (não simétrico) seguinte:

Quais as probabilidades de erro quando são transmitidas as mensagens 1 e 2?

$$\lambda_1 = \Pr\{g(Y^n) \neq 1 \mid X^n = X^n(1) = 000\} = 0.1^3 + 3 \times 0.1^2 \times 0.9 = 0.028$$

$$\lambda_2 = \Pr\{g(Y^n) \neq 2 \mid X^n = X^n(1) = 111\} = 0.2^3 + 3 \times 0.2^2 \times 0.8 = 0.104$$

A probabilidade de erro máxima é $\max_i \lambda_i = 0.104$.

Ritmo de transmissão

Definição (Ritmo de um código)

O ritmo de um código de comprimento n para M índices é definido por

$$R = \frac{\log M}{n}$$

Definição (Ritmo de um código)

O ritmo de um código de comprimento n para M índices é definido por

$$R = \frac{\log M}{n}$$

Exemplo

Compra	Índice	$X^n(\cdot)$
pão	1	000
ovos	2	010
carne	3	101
cerveja	4	111

Este código tem ritmo

$$R = \frac{\log 4}{3} = \frac{2}{3} \approx 0.667.$$

Teorema da codificação de canal

Definição (Ritmo atingível)

Um ritmo R diz-se atingível se for possível construir uma sequência de códigos progressivamente maiores tal que a probabilidade de erro máxima $\lambda^{(n)}$ tende para 0 quando $n \to \infty$.

Teorema da codificação de canal

Definição (Ritmo atingível)

Um ritmo R diz-se atingível se for possível construir uma sequência de códigos progressivamente maiores tal que a probabilidade de erro máxima $\lambda^{(n)}$ tende para 0 quando $n \to \infty$.

Teorema (Codificação de canal, Shannon 1948)

Todos os ritmos abaixo da capacidade do canal são atingíveis. Isto é, para todos os ritmos R < C, é possível construir uma sequência de códigos progressivamente maiores tais que a probabilidade de erro máxima $\lambda^{(n)} \rightarrow 0$.

Teorema da codificação de canal

Exemplo

Suponhamos que um canal binário simétrico tem capacidade C = 0.5 bits. Pretende-se construir um código que permita obter uma probabilidade de erro arbitrariamente baixa. Qual o tamanho mínimo que as palavras de código têm de ter, em média?

Probabilidade de erro arbitrariamente baixa implica R < C. Portanto

$$R = \frac{\log M}{n} < 0.5$$

ou seja,

$$n > \frac{\log M}{0.5} = 2\log M$$

Considerando M = 2, conclui-se que são necessários mais de 2 bits por cada bit a transmitir.

(Note que este resultado não nos diz como construir o código...)