2008-MA-69-85

EE24BTECH11001 - ADITYA TRIPATHY

69. The initial value problem $u_x + u_y = 1$, $u(s, s) = \sin s$, $0 \le s \le 1$, has			(2008 - MA)
a) two solutions	b) a unique solution	c) no solution	d) infinitely many solutions
70. Let $u(x,t) = 0$, be the solution of $u_t t - u_x x = 1$, $x \in \mathbb{R}$, $t > 0$ with $u(x,0) = 0$, $u_t(x,0) = 0$, $x \in \mathbb{R}$. Then $u\left(\frac{1}{2}, \frac{1}{2}\right)$ is equal to			
(2, 2) = 4			(2008 - MA)
a) $\frac{1}{8}$	b) $-\frac{1}{8}$	c) $\frac{1}{4}$	d) $-\frac{1}{4}$
I. Common Data Questions			
Common Data for 71, 72, 73 Let $X = C([0,1])$ with sup norm $\ \ _{\infty}$ 71. Let $S = \{x \in X : \ x\ _{\infty} \le 1\}$. Then a) S is convex and compact b) S is not convex but compact c) S is convex but not compact d) S is neither convex nor compact			
72. Which one of the following is true?			
 a) C[∞] ([0,1]) is dense in X b) X is dense L[∞] ([0,1]) c) X has a countable basis d) There is a sequence in X which is uniformly Cauchy on on [0,1] but does not converge uniformly on [0,1] 73. Let I = {x ∈ X : x(0) = 0}. Then 			
73. Let $I = \{x \in X : x\}$	0) – 0 _j . Then		(2008 - MA)
c) <i>I</i> is a prime idead) <i>I</i> is a maximal iCommon Data for	t not a prime ideal of X al, but not a maximal ideal of deal of X r 74, 75		
Let $X = C^1([0, 1])$ and $Y = C([0, 1])$, both with sup norm. Define $F : X \to Y$ by $F(x) = x + x'$ and $f(x) = x(1) + x'(1)$ for $x \in X$.			
74. Thena) F and f are conb) F is continuousc) F is discontinuo	tinuos and f is discontinuous us f is continuous		(2008 - MA)
d) F and f are discontinuous 75. Then $(2008 - MA)$			
a) F and f are close	sed maps		(1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

- b) F is a closed map and f is not a closed map
- c) F is not a closed map f is a closed map
- d) neither F nor f is a closed map

II. Linked Answer Questions: Q76. to Q85 carry two marks each

Statement for Linked Answer Questions 76, 77

Let
$$N = \begin{vmatrix} \frac{3}{5} & -\frac{4}{5} & 0 \\ \frac{4}{5} & \frac{3}{5} & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

76. Then N is

$$(2008 - MA)$$

- a) non-invertible
- b) skew-symmetric
- c) symmetric
- d) orthogonal

77. If M is any 3×3 real matrix, then trace(NMN^{T}) is equal to

$$(2008 - MA)$$

- a) $[\operatorname{trace}(N)]^2 \operatorname{trace}(M)$
- b) $2 \operatorname{trace}(N) + \operatorname{trace}(M)$
- c) trace (M)
- d) $[\operatorname{trace}(N)]^2 + \operatorname{trace}(M)$

Statement for Linked Answer Questions 78, 79

Let $f(z) = \cos z - \frac{\sin z}{z}$ for non-zero $z \in \mathbb{C}$ and f(0) = 0. Also, let $g(z) = \sinh z$ for $z \in \mathbb{C}$.

78. Then f(z) has a zero z = 0 or order

$$(2008 - MA)$$

- a) 0
- b) 1
- c) 2
- d) greater than 2

79. Then $\frac{g(z)}{z(z)}$ has a pole at z = 0 or order

(2008 - MA)

- a) 1
- b) 2
- c) 3
- d) greater than 3

Statement for Linked Answer Questions 80, 81

Let $n \ge 3$ be an integer. Let y be the polynomial solution of $(1 - x^2)y'' - 2xy' + n(n-1)y = 0$ satisfying y(1) = 1

80. Then the degree of y is

$$(2008 - MA)$$

a) *n*

- b) n 1
- c) less than n-1
- d) greater than n + 1

81. If
$$I = \int_{-1}^{1} y(x) x^{n-3} dx$$
 and $J = \int_{-1}^{1} y(x) x^{n} dx$, then

$$(2008 - MA)$$

a)
$$I \neq 0, J \neq 0$$

- b) $I \neq 0, J = 0$
- c) $I = 0, J \neq 0$
- d) I = 0, J = 0

Statement for Linked Answer Questions 82, 83

Consider the boundary value problem

$$u_x x + u_y y = 0, x \in (0, \pi), y \in (0, \pi),$$
 (1)

$$u(x,0) = u(x,\pi) = u(0,y) = 0.$$
(2)

82. Any solution of this boundary value problem is of the form

(2008 - MA)

a) $\sum_{n=1}^{\infty} a_n \sinh nx \sin ny$

- b) $\sum_{n=1}^{\infty} a_n \cosh nx \sin ny$ c) $\sum_{n=1}^{\infty} a_n \sinh nx \cos ny$ d) $\sum_{n=1}^{\infty} a_n \cosh nx \cos ny$
- 83. If an additional boundary condition $u_x(\pi, y) = \sin y$ is satisfied, then $u\left(x, \frac{\pi}{2}\right)$ is equal to (2008 MA)
 - a) $\frac{\pi}{2} (e^x e^{-x}) (e^x + e^{-x})$

 - b) $\frac{\pi(e^{x}-e^{-x})}{(e^{x}+e^{-x})}$ c) $\frac{\pi(e^{x}+e^{-x})}{(e^{x}-e^{-x})}$ d) $\frac{\pi}{2}(e^{\pi}+e^{-\pi})(e^{x}-e^{-x})$

Statement for Linked Answer Questions 84, 85

Let the random variable X follow the exponential distribution with mean 2. Define Y = [X - 2|X > 2]. 84. The value of $Pr(Y \ge t)$ (2008 - MA)

- a) $e^{\frac{-t}{2}}$
- b) e^{2t}
- c) $\frac{1}{2}e^{\frac{-t}{2}}$
- d) $\frac{1}{2}e^{-t}$
- 85. The value of E(Y) is equal to

(2008 - MA)

- a) $\frac{1}{4}$ b) $\frac{1}{2}$
- c) 1
- d) 2