Bernstein components for Whittaker models and branching laws

Kei Yuen Chan

Shanghai Center for Mathematical Sciences, Fudan University

University of Alberta GNRT Seminar February 2021

Outline

- 1 Bernstein components and types
- 2 Gelfand-Graev representations
- Branching laws

Bernstein decomposition

Let G be a p-adic reductive group. Let $\Re(G)$ be the category of smooth representations of G. Bernstein decomposition:

$$\mathfrak{R}(G) = \prod_{\mathfrak{s}} \mathfrak{R}_{\mathfrak{s}}(G)$$

- \mathfrak{s} runs for all inertial equivalence class $[P, \sigma]$
- P runs for all parabolic subgroup and σ is a cuspidal representation of the Levi M of P
- A representation π of M is cuspidal if π is not a composition factor of any proper parabolically induced modules.

Types

Definition (Bushnell-Kutzko)

- 1 K: a compact subgroup of G
- 2 τ : an irreducible repn. of K
- 3 $\mathfrak{R}^{\tau}(G)$ = full subcat. of $\mathfrak{R}(G)$ with objects generated by τ -isotypic components

We say that (K, τ) is a \mathfrak{s} -type for some $\mathfrak{s} \in \mathfrak{B}(G)$ if

$$\mathfrak{R}^{\tau}(G) = \mathfrak{R}_{\mathfrak{s}}(G).$$

Examples of types

Just to name few:

- (1) [B, 1]: unramified principal series (Iwahori component) due to Borel-Casselman. In this case, R^(I,1)(G) is representations generated by I-fixed vectors (I denotes the Iwahori subgroup)
- 2 All Bernstein components of GL: Bushnell-Kutzko (93)
- 3 Depth zero Bernstein component: Morris

From types to Hecke algebras

1 For a type (K, τ) , one associates a Hecke algebra:

$$\mathcal{H}(K,\tau) = \left\{ f : G \to \operatorname{End}(\tau^{\vee}) : \begin{array}{c} f(k_1gk_2) = \tau^{\vee}(k_1)f(g)\tau^{\vee}(k_2) \\ \text{for } k_1, k_2 \in K \end{array} \right\}$$

We have a functor:

$$R^{\tau}(G) o$$
category of $\mathcal{H}(K, \tau)$ -modules

$$\pi \mapsto (\tau^{\vee} \otimes \pi)^K$$

The action is given by:

$$\int_G f(g)(v) \otimes x \ dg$$

with $v \in \tau^{\vee}$ and $x \in \pi$.

Affine Hecke algebras

- 1 Extended affine Weyl group $W_{\text{ex}} = N_G(T)/T(\mathcal{O})$
- **2** Length function $I: W_{ex} \to \mathbb{N}_{\geq 0}$ defined by

$$q^{I(w)} = |IwI/I|$$

3 This gives an affine Hecke algebra:

Definition

The affine Hecke algebra \mathcal{H}_{aff} is generated by T_w ($w \in W_{ex}$) given by

- (Braid relation) $T_{w_1}T_{w_2} = T_{w_1w_2}$ if $I(w_1w_2) = I(w_1) + I(w_2)$
- (Quadratic relation) $(T_s + 1)(T_s q) = 0$ for I(s) = 1
- **4** Example: Iwahori case $H(I, 1) \cong \mathcal{H}_{aff}$

Bernstein-Lusztig relation

Let
$$X^{\vee}=T/T(\mathcal{O})$$
 and $W=N_G(T)/T$ (Weyl group). And,
$$W_{\mathrm{ex}}=X^{\vee}\rtimes W$$

Proposition

 $\mathcal{H}_{\mathrm{aff}}$ admits generators θ_{x} ($x \in X$) and T_{w} ($w \in W$) such that

- 1 (commutative) $\theta_X \theta_{X'} = \theta_{X'} \theta_X$
- ② (Braid relation) $T_w T_{w'} = T_{ww'}$ and (quadratic relation) $(T_s + 1)(T_s q) = 0$
- 3

$$\theta_{x}T_{s}-T_{s}\theta_{s(x)}=(q-1)\frac{\theta_{x}-\theta_{s(x)}}{1-\theta_{-\alpha}}$$

Hecke algebra structure

- One expects that the structure $\mathcal{H}(K,\tau)$ is close to an affine Hecke algebra.
- For example, in GL_n, all the Bernstein component is isomorphic to the module category of a product of affine Hecke algebras of type A.
- For another construction from endomorphism algebras of projective generators, see M. Solleveld last week, and earlier by Heierman for classical groups.

Outline

- Bernstein components and types
- 2 Gelfand-Graev representations
- 3 Branching laws

Gelfand-Graev representations

Let ψ be a non-degenerate character on U i.e. dense B-orbits on ψ . The Gelfand-Graev representation is

$$\operatorname{ind}_{\mathcal{U}}^{\mathcal{G}}\psi,$$

space of compactly supported smooth functions satisfying

$$f(ug) = \psi(u)f(g)$$

Remarkable properties:

- 1 The smooth dual of $\operatorname{ind}_U^G \psi$ is the so-called Whittaker functional space.
- ② (Shalika) Each $\pi \in Irr(G)$ appears with at multiplicity one in the quotient of $ind_{II}^{G}\psi$.
- **3** (C.-Savin) $\operatorname{ind}_{II}^{G} \psi$ is projective

Gelfand-Graev representations

Let ψ be a non-degenerate character on U i.e. dense B-orbits on ψ . The Gelfand-Graev representation is

$$\operatorname{ind}_{\mathcal{U}}^{\mathcal{G}}\psi,$$

space of compactly supported smooth functions satisfying

$$f(ug) = \psi(u)f(g)$$

Remarkable properties:

- 1 The smooth dual of $\operatorname{ind}_U^G \psi$ is the so-called Whittaker functional space.
- ② (Shalika) Each $\pi \in Irr(G)$ appears with at multiplicity one in the quotient of $ind_{IJ}^G \psi$.
- 3 (C.-Savin) $\operatorname{ind}_{IJ}^G \psi$ is projective

Bernstein components of GG

Some remarkable Hecke algebra structure of GG:

- (Bushnell-Henniart 00's) Each Bernstein component of $\operatorname{ind}_U^G \psi$ is finitely-generated.
- (Bushnell-Henniart 00's)

$$\operatorname{End}_{G}((\operatorname{ind}_{U}^{G}\psi)_{\mathfrak{s}})\cong \mathfrak{Z}_{\mathfrak{s}},$$

the Bernstein center of $\mathfrak{R}_{\mathfrak{s}}(G)$.

- ③ The above implies $(\operatorname{ind}_U^G \psi)_{\mathfrak{s}}$ is indecomposable.
- (Barbasch-Moy, Reeder 90's) As \mathcal{H}_W -representation, any generic representation (i.e. with Whittaker model) has sign representation sgn i.e. T_W acts by $(-1)^{l(w)}$.
- (C.-Savin 18,19) Explicit structure..

Bernstein components of GG

Some remarkable Hecke algebra structure of GG:

- (Bushnell-Henniart 00's) Each Bernstein component of $\operatorname{ind}_U^G \psi$ is finitely-generated.
- (Bushnell-Henniart 00's)

$$\operatorname{End}_{G}((\operatorname{ind}_{U}^{G}\psi)_{\mathfrak{s}})\cong \mathfrak{Z}_{\mathfrak{s}},$$

the Bernstein center of $\mathfrak{R}_{\mathfrak{s}}(G)$.

- **3** The above implies $(\operatorname{ind}_U^G \psi)_{\mathfrak{s}}$ is indecomposable.
- 4 (Barbasch-Moy, Reeder 90's) As \mathcal{H}_W -representation, any generic representation (i.e. with Whittaker model) has sign representation sgn i.e. T_W acts by $(-1)^{l(w)}$.
- (C.-Savin 18,19) Explicit structure...

Iwahori component of GG

Theorem (C.-Savin 2019)

Let G be a split p-adic group. Fix a Whittaker character

$$\psi(\prod_{\alpha\in\Pi}X_{\alpha}(t_{\alpha}))=\prod_{\alpha\in\Pi}\bar{\psi}(t_{\alpha}),$$

where $\psi: F \to \mathbb{C}$ non-degenerate and depth zero. Then the Iwahori component of the Gelfand-Graev representation

$$(\operatorname{ind}_U^G \psi)^I$$

is isomorphic to $\mathcal{H}_{aff} \otimes_{\mathcal{H}_W} sgn$.

From different viewpoint, Brubaker-Buciumas-Bump-Friedberg (Selecta Math.) independently obtained similar result.

Related work

- 1 All Bernstein components of GL_n : C.-Savin (19)
- 2 Iwahori component for Bessel model: C.-Savin (00)
- 3 Principal series components (with some conditions): Misrah-Pattanayak
- 4 Bernstein components of SO_n and Sp_n: Bakic-Savin

Outline

- Bernstein components and types
- 2 Gelfand-Graev representations
- 3 Branching laws

Restriction problems

Gan-Gross-Prasad problems: Let (G, H) be pairs of

$$(GL_{n+1}, GL_n), (SO_{n+1}, SO_n), (U_{n+1}, U_n)$$

One determines

$$\operatorname{Hom}_{H}(\pi|_{H}, \tau) = ?$$

for
$$\pi \in Irr(G)$$
 and $\tau \in Irr(H)$.

Many progress due to many people. (Non-tempered GGP conjecture, C. 2020 preprint)

A classical example of restriction

Let $G_n = GL_n$. Let $\pi \in Irr(G_{n+1})$

1 Let π be cuspidal. Then

$$\pi|_{G_n} \cong \operatorname{ind}_{\mathcal{U}}^{G_n} \psi$$

In particular, $\pi|_{G_n}$ is projective.

2 When π is generic,

$$\operatorname{ind}_{\mathcal{U}}^{G_n}\psi \hookrightarrow \pi \hookrightarrow \operatorname{Ind}_{\mathcal{U}}^{G_n}\psi$$

3 When one has $\pi \cong \operatorname{ind}_{U}^{G_n} \psi$ in general?

Projectivity criteria

Theorem (C.-Savin 21, C.21)

Let $\pi \in Irr(G_{n+1})$. Then the following conditions are equivalent:

- $\pi|_{G_n}$ is projective.
- π is generic (as G_{n+1} -representation) and any G_n -quotient of π is generic.
- $\pi \cong \operatorname{ind}_{U}^{G_n} \psi$.

Classification of relatively projective representations

Theorem (C. 21)

Let $\pi \in Irr(G_{n+1})$. Then $\pi|_{G_n}$ is projective if and only if π is isomorphic to one of the followings:

- π is essentially square integrable; or
- (n+1) is even and $\pi \cong \sigma_1 \times \sigma_2$ for cuspidal $\sigma_1, \sigma_2 \in Irr(G_{(n+1)/2})$.

But, what we can talk for Bernstein components of arbitrary $\pi|_{G_0}$?

Bernstein components

Theorem (C. 21)

Let $\pi \in Irr(G_{n+1})$. Then each Bernstein component of $\pi|_{G_n}$ is indecomposable!

1 A main tool of the proof uses left-right derivatives. For example, the Steinberg representation St in G₂ gives two filtrations:

$$0 \to C_c^{\infty}(F^{\times}) \to \operatorname{St}|_{G_1} \to \nu \to 0$$

$$0 \to C_c^{\infty}(F^{\times}) \to \operatorname{St}|_{G_1} \to \nu^{-1} \to 0$$

2 The two filtrations come from restricting to two mirabolic subgroups $M = \left\{ \begin{pmatrix} * & * \\ & 1 \end{pmatrix} \right\}$ and M^t .

Bernstein variety

An inertial equivalence class of G_n takes the form

$$[M = G_{n_1} \times \ldots \times G_{n_k}, \sigma_1 \boxtimes \ldots \boxtimes \sigma_k].$$

When all $G_{n_i} \cong F^{\times}$ and $\sigma_i \cong 1$, it gives the Iwahori component. Let $W_{\mathfrak{s}} = W(\mathfrak{s})/M$. The Bernstein variety is defined as:

$$\mathfrak{X}_{\mathfrak{s}} = (\mathbb{C}^{\times})^k / W_{\mathfrak{s}}$$

and the Bernstein center

$$\mathfrak{Z}_{\mathfrak{s}}\cong \mathbb{C}[\mathfrak{X}_{\mathfrak{s}}].$$

Bernstein spectrum

Via the isomorphism

$$\mathfrak{Z}_{\mathfrak{s}}\cong \mathbb{C}[\mathfrak{X}_{\mathfrak{s}}],$$

each point in $\mathfrak{X}_{\mathfrak{s}}$ corresponds to a maximal idea of $\mathfrak{Z}_{\mathfrak{s}}$.

- 2 The Bernstein spectrum $\mathcal{B}(\pi)$ of a module π in $\mathfrak{R}_{\mathfrak{s}}(G_n)$ is the set of points σ in $\mathfrak{X}_{\mathfrak{s}}$ whose associated maximal ideal \mathcal{J}_{σ} gives $\pi/(\mathcal{J}_{\sigma}^k\pi)\neq 0$ for some large k.
- **3** Example: If π is irreducible, then $\mathcal{B}(\pi)$ is a point.

Geometric interpretation

Roughly, one may think:

 'Irreducibility of a variety' relates to 'indecomposability of a module'

In particular, we have:

Corollary

Let $\pi \in Irr(G_{n+1})$. For each G_n -Bernstein component $\pi_{\mathfrak{s}}$, the Bernstein spectrum of $\pi_{\mathfrak{s}}$ is a closed irreducible subvariety.

Explicit description of Bernstein spectrum

We need Langlands-Zelevinsky classification of irreducible modules:

- Zelevinsky segment $\Delta = [\nu^a \rho, \nu^b \rho]$, where $b a \in \mathbb{Z}_{\geq 0}$ and ρ is cuspidal
- (Zelevinsky) Square-integrable representations $St([\nu^a \rho, \nu^b \rho])$: the unique irreducible quotient of

$$\nu^{a}\rho \times \ldots \times \nu^{b}\rho$$

(Classification) A multisegment is a multiset of segments.

Theorem (Zelevinsky, Langlands)

There is a one-to-one correspondence between collection of multisegments and irreducible G_n -modules.

24/27

Explicit description

We describe the Iwahori component for a representation in a unramified principal series.

- 1 $\mathfrak{m} = \{\Delta_1, \dots, \Delta_k\}$ with each $\Delta_i = [\nu^{a_i}, \nu^{b_i}]$
- 2 Irreducible module $\langle \mathfrak{m} \rangle$
- **3** The highest derivative $\langle \mathfrak{m} \rangle^-$ is a G_{n+1-k} -module

$$\langle \mathfrak{m} \rangle^- = \langle \left\{ \Delta_1^-, \dots, \Delta_k^- \right\} \rangle$$

and

$$\Delta_i^- = [\nu^{a_i}, \nu^{b_i-1}]$$

4 The spectrum of $\pi|_{G_n}$ is given by the S_n orbits on the points:

$$(\nu^{a_1},\ldots,\nu^{b_1-1},\ldots,\nu^{a_k},\ldots,\nu^{b_k-1},\nu^{x_1},\ldots,\nu^{x_r}),$$

where x_1, \ldots, x_r are any points.

References

Bernstein components for Whittaker models:

- (Joint with G. Savin) *Iwahori components for Gelfand-Graev representations*, Math. Z. (2018)
- ② (Joint with G. Savin) Bernstein-Zelevinsky derivatives: a Hecke algebra approach, IMRN (2019)

Bernstein components for branching laws:

- ① (Joint with G. Savin) A vanishing Ext-branching theorem for $(GL_{n+1}(F), GL_n(F))$, to appear in Duke Math. J.
- 2 Homological branching law for $(GL_{+1}(F), GL_n(F))$: projectivity and indecomposability, to appear in Invent. Math.
- Restriction for general linear groups: the local non-tempered Gan-Gross-Prasad conjecture, arXiv

Thank you!