Lecture 08 -Analysis of Sequential Circuits

ECE09: Digital Electronics 1

Engr. Zoren P. Mabunga, M.Sc.

Terms in Sequential Circuits

Characteristic Table

• A characteristic table defines the logical properties of a flip-flop by describing its operation in tabular form.

State Table

• The time sequence of inputs, outputs, and flip-flop states can be enumerated in a state table (sometimes called transition table).

Characteristic Equation

• Algebraic representation of the logical properties of a flip-flop.

State Equation

- Algebraic representation of the behavior of a sequential circuit.
- Specifies the next state as a function of present state and inputs.

State Diagram

• Graphical representation of the information available in a state table.

Flip-Flop Input Equations (Excitation Equation)

 It described algebraically the part of a circuit that generates the inputs to flip-flops

Analysis with D Flip-flops

Analysis with JK Flip-flops

Characteristic Equation: Q(t+1) = JQ'+K'Q

JK Flip-Flop			
J	K	Q(†+1)	Operation
0	0	Q(†)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(†)	Complement

Analysis with T Flip-flops

T Flip-Flop

T Q(t+1) Operation

O Q(t) No change

1 Q'(t) complement

Characteristic Equation: Q(t+1) = T'Q+TQ'

