

PRODUCT DESIGN GUIDE NVIDIA Jetson Nano

(Preliminary – Subject to Change)

Abstract

This document contains recommendations and guidelines for Engineers to follow to create a product that is optimized to achieve the best performance from the common interfaces supported by the NVIDIA[®] Jetson Nano™ System-on-Module (SoM).

This document provides detailed information on the capabilities of the hardware module, which may differ from supported configurations by provided software. Refer to software release documentation for information on supported capabilities.

Notes: Most of the interface usage noted in this document is based on the NVIDIA Developer Kit carrier board design.

Document Change History

Date	Description
JUN 7, 2019	Initial Release

Table of Contents

(PRELIMINARY – SUBJECT TO CHANGE)	1
1.0 INTRODUCTION	4
1.1 References	4
1.2 Abbreviations and Definitions	4
2.0 JETSON NANO	5
2.1 Overview	5
3.0 POWER	7
3.1 Power Supply and Sequencing	8
4.0 USB AND PCIE	10
4.1 USB	11
4.2 PCle	14
4.3 Gigabit Ethernet	17
5.0 DISPLAY	19
5.1 MIPI DSI	19
5.2 eDP / DP	
5.3 HDMI / DP	24
6.0 MIPI CSI (VIDEO INPUT)	32
7.0 SD CARD / SDIO	36
8.0 AUDIO	38
9.0 MISCELLANEOUS INTERFACES	40
9.1 I2C	40
9.2 SPI	41
9.3 UART	43
9.4 Fan	
9.5 Debug	
10.0 PADS	47
10.1 Internal Pull-ups for Dual-Voltage Block Pins Powered @ 1.8V	
10.2 Schmitt Trigger Usage	
10.3 Pins Pulled/Driven High During Power-ON	47
11.0 UNUSED INTERFACE TERMINATIONS	49
11.1 Unused MPIO (Multi-purpose Standard CMOS Pad) Interfaces	49
12.0 DESIGN CHECKLIST	50
13.0 JETSON NANO PIN DESCRIPTIONS	54
14.0 APPENDIX A: GENERAL ROUTING GUIDELINES	59
14.1 Common High-Speed Interface Requirements	60

1.0 INTRODUCTION

1.1 References

Refer to the documents or models listed in Table 1 for more information. Use the latest revision of all documents at all times.

Table 1. List of Related Documents

Document
Jetson Nano Module Data Sheet
Tegra X1 (SoC) Technical Reference Manual
Jetson Nano Developer Kit Carrier Board Specification
Jetson Nano Module Pinmux
Jetson Nano Thermal Design Guide
Jetson Nano Developer Kit Carrier Board Design Files
Jetson Nano Developer Kit Carrier Board BOM
Jetson Nano SCL (Supported Component List)

1.2 Abbreviations and Definitions

Table 2 lists abbreviations that may be used throughout this document and their definitions.

Table 2. Abbreviations and Definitions

Abbreviation	Definition
CEC	Consumer Electronic Control
CSI	Camera Serial Interface
Diff	Differential
DP	Display Port
DSI	Display Serial Interface
eDP	Embedded Display Port
ESD	Electrostatic Discharge
eMMC	Embedded MMC
EMI	Electromagnetic Interference
FET	Field Effect Transistor
GPIO	General Purpose Input Output
HDCP	High-bandwidth Digital Content Protection
HDMI	High Definition Multimedia Interface
I2C	Inter IC Interface
12S	Inter IC Sound Interface
LCD	Liquid Crystal Display
LDO	Low Dropout (voltage regulator)
LPDDR4	Low Power Double Data Rate DRAM, Fourth-generation
MDI	Medium-Dependent Interface
MIL	1/1000 th of an inch
MIPI	Mobile Industry Processor Interface
mm	Millimeter
PCle	Peripheral Component Interconnect Express interface
PCM	Pulse Code Modulation
PHY	Physical Interface (i.e. USB PHY)
ps	Pico-Seconds
PMU	Power Management Unit
RJ45	8P8C modular connector used in Ethernet and other data links
RTC	Real Time Clock
SD Card	Secure Digital Card
SDIO	Secure Digital I/O Interface
SE	Single-Ended
SPI	Serial Peripheral Interface
TMDS	Transition-minimized differential signaling
UART	Universal Asynchronous Receiver-Transmitter
USB	Universal Serial Bus

2.1 Overview

The Jetson Nano resides at the center of the embedded system solution and includes:

- Power (PMIC/Regulators, etc.)

- Gigabit Ethernet Controller

- DRAM (LPDDR4)

Power Monitor

- eMMC

In addition, a wide range of interfaces are available at the main connector for use on the carrier board as shown below.

Table 3. Jetson Nano Interfaces

Category	Function	Category	Function
LICD	USB 2.0 Interface (3x)	LAN	Gigabit Ethernet
USB	USB 3.0 (1x)	12C	4x
PCIe	PCIe (x1/2/4)	UART	3x
Camera	CSI (3 x4 or 2 x4 + 2 x2 or 1 x4 + 3 x2), Control, Clock	SPI	2x
	eDP/DP (see note 1)	Wi-Fi/BT/Modem	PCIe/UART/I2S, Control/handshake
Display	HDMI/DP Interface (w/CEC)	Fan	FAN PWM and Tach Input
	DSI (1 x2), Display/Backlight Control	Debug	JTAG test points on module and UART
Audio	I2S Interface (2x) and Clock	System	Power Control, Reset, alerts
SD Card/SDIO	SD Card or SDIO Interface (1x)	Power	Main Input and battery back-up for RTC

Notes: 1. DP on eDP interface does not support HDCP or Audio.

Figure 1. Jetson Nano Block Diagram

Notes: 1. DP on eDP interface does not support HDCP or Audio.

DVIDIA

Table 4. Jetson Nano Connector (260-Pin SO-DIMM) Pin Out Matrix

Module Signal Name	Pin#	Pin#	Module Signal Name
GND	1	2	GND
CSI1 DO N	3	4	CSIO DO N
CSI1 D0 P	5	6	CSIO DO P
GND	7	8	GND
RSVD	9	10	CSIO CLK N
RSVD	11	12	CSIO CLK P
GND	13	14	GND
CSI1 D1 N	15	16	CSIO D1 N
CSI1 D1 P	17	18	CSIO D1 P
GND	19	20	GND
CSI3 DO N	21	22	CSI2 DO N
CSI3 DO P	23	24	CSI2 DO P
GND CSI3 CLK N	25 27	26 28	GND CSI2 CLK N
CSI3 CLK P	29	30	CSI2 CLK N
GND	31	32	GND
CSI3 D1 N	33	34	CSI2 D1 N
CSI3 D1 P	35	36	CSI2 D1 P
GND	37	38	GND
DPO TXDO N	39	40	CSI4 D2 N
DPO TXDO P	41	42	CSI4 D2 P
GND	43	44	GND
DPO TXD1 N	45	46	CSI4 D0 N
DPO TXD1 P	47	48	CSI4 D0 P
GND	49	50	GND
DPO TXD2 N	51	52	CSI4 CLK N
DPO TXD2 P	53	54	CSI4 CLK P
GND	55	56	GND
DP0 TXD3 N	57	58	CSI4 D1 N
DPO TXD3 P	59	60	CSI4 D1 P
GND	61	62	GND
DP1 TXD0 N	63	64	CSI4 D3 N
DP1 TXD0 P	65	66	CSI4 D3 P
GND	67	68	GND
DP1 TXD1 N	69	70	DSI DO N
DP1 TXD1 P	71	72	DSI DO P
GND DD1 TVD2 N	73	74	GND
DP1 TXD2 N DP1 TXD2 P	75 77	76 78	DSI CLK N DSI CLK P
GND	77	78 80	GND
DP1 TXD3 N	81	82	DSI D1 N
DP1 TXD3 N	83	84	DSI D1 P
GND	85	86	GND
GPIO00	87	88	DPO HPD
SPIO MOSI	89	90	DPO AUX N
SPIO SCK	91	92	DPO AUX P
SPI0 MISO	93	94	HDMI CEC
SPIO CSO*	95	96	DP1 HPD
SPIO CS1*	97	98	DP1 AUX N
UARTO TXD	99	100	DP1 AUX P
UARTO RXD	101	102	GND
UARTO RTS*	103	104	SPI1 MOSI
UARTO CTS*	105	106	SPI1 SCK
GND	107	108	SPI1 MISO
USBO D N	109	110	SPI1 CSO*
USBO D P	111	112	SPI1 CS1*
GND	113	114	CAMO PWDN
USB1 D N	115	116	CAMO MCLK
USB1 D P	117	118	GPIO01
GND USD2 D N	119	120	CAM1 PWDN
USB2 D N	121	122	CAM1 MCLK
USB2 D P	123 125	124	GPI002
GND GRIOO4	125	126	GPI003
GPIO04 GND	127	128 130	GPIO05 GPIO06
PCIEO RXO N	131	132	GND
I CILO IXXO IV	131	132	GND

M 11 C' 1N	D: #	p: #	
Module Signal Name	Pin#	Pin#	Module Signal Name
PCIEO RXO P	133	134	PCIEO TXO N
GND BCIEG BV4 N	135	136	PCIEO TXO P
PCIEO RX1 N	137 139	138 140	GND POIES TV1 N
PCIEO RX1 P			PCIEO TX1 N
GND	141	142	PCIEO TX1 P
RSVD KEY	143	144	GND
	KEY	KEY	KEY
RSVD	145	146	GND POIES TV3 N
GND DOISE DV2 N	147	148	PCIEO TX2 N
PCIEO RX2 N	149	150	PCIEO TX2 P
PCIEO RX2 P	151	152	GND DOUGO TVO N
GND DCIEG DV2 N	153	154	PCIEO TX3 N
PCIEO RX3 N PCIEO RX3 P	155	156	PCIEO TX3 P
	157	158	GND
GND	159	160	PCIEO CLK N
USBSS RX N	161	162	PCIEO CLK P
USBSS RX P	163	164	GND
GND	165	166	USBSS TX N
RSVD	167	168	USBSS TX P
RSVD	169	170	GND
GND	171	172	RSVD
RSVD	173	174	RSVD
RSVD	175	176	GND
GND	177	178	MOD SLEEP*
PCIE WAKE*	179	180	PCIEO CLKREQ*
PCIEO RST*	181	182	RSVD
RSVD	183	184	GBE MDIO N
I2CO SCL	185	186	GBE MDIO P
I2CO SDA	187	188	GBE LED LINK
I2C1 SCL	189	190	GBE MDI1 N
I2C1 SDA	191	192	GBE MDI1 P
I2SO DOUT	193	194	GBE LED ACT
I2SO DIN	195	196	GBE MDI2 N
12S0 FS	197	198	GBE MDI2 P
I2SO SCLK	199	200	GND
GND	201	202	GBE MDI3 N
UART1 TXD	203	204	GBE MDI3 P
UART1 RXD	205	206	GPIO07
UART1 RTS*	207	208	GPIO08
UART1 CTS*	209	210	CLK 32K OUT
GPIO09	211	212	GPIO10
CAM I2C SCL	213	214	FORCE RECOVERY*
CAM I2C SDA	215	216	GPIO11
GND	217	218	GPIO12
SDMMC DATO	219	220	I2S1 DOUT
SDMMC DAT1	221	222	I2S1 DIN
SDMMC DAT2	223	224	I2S1 FS
SDMMC DAT3	225	226	I2S1 SCLK
SDMMC CMD	227	228	GPIO13
SDMMC CLK	229	230	GPIO14
GND	231	232	I2C2 SCL
SHUTDOWN REQ*	233	234	I2C2 SDA
PMIC BBAT	235	236	UART2 TXD
POWER EN	237	238	UART2 RXD
SYS RESET*	239	240	SLEEP/WAKE*
GND	241	242	GND
GND	243	244	GND
GND	245	246	GND
GND	247	248	GND
GND	249	250	GND
VDD IN	251	252	VDD IN
VDD IN	253	254	VDD IN
VDD IN	255	256	VDD IN
VDD IN	257	258	VDD IN
	259	260	VDD IN

Legend	Ground	Power	Reserved - must be left unconnected
--------	--------	-------	-------------------------------------

Caution

Jetson Nano is not hot-pluggable. Before installing or removing the module, the main power supply (to VDD_IN pins) must be disconnected and adequate time (recommended > 1 minute) allowed for the various power rails to fully discharge.

Power for the module is supplied on the VDD_IN pins and is nominally 5.0V (see the Jetson Nano Data Sheet for supply tolerance and maximum current).

Table 5. Jetson Nano Power and System Pin Descriptions

Pin#	Module Pin Name	Tegra X1 Signal	Usage/Description	Usage on DevKit Carrier Board	Direction	Pin Type
251 ↓ 260	VDD_IN	-	Main power – Supplies PMIC and other regulators	Main DC input	Input	5.0V
235	PMIC_BBAT	-	PMIC Battery Back-up. Optionally used to provide back-up power for the Real-Time-Clock (RTC). Connects to Lithium Cell or super capacitor on Carrier Board. PMIC is source when charging cap or coin cell. Super cap or coin cell is source when system is disconnected from power.	Battery Back-up using Super- capacitor	Bidir	1.65V-5.5V
214	FORCE_RECOVERY*	BUTTON_VOL_UP	Force Recovery strap pin	System	Input	CMOS - 1.8V
240	SLEEP/WAKE*	BUTTON_PWR_ON	Sleep/Wake. Configured as GPIO for optional use to indicate the system should enter or exit sleep mode.	System	Input	CMOS – 5.0V
233	SHUTDOWN_REQ*	-	Used by the module to request the carrier board to shut down. $^{\sim}$ 5k Ω pull-up to VDD_IN (5V) on the module.	System	Output	Open Drain, 5.0V
237	POWER_EN	(PMIC EN0 through converter logic)	Signal for module on/off: high level on, low level off. Connects to module PMIC EN0 through converter logic. 100k Ω pulldown on the module.	System	Input	Analog 5.0V
239	SYS_RESET*	SYS_RESET_IN_N	Module Reset. Reset to the module when driven low by the carrier board. Used as carrier board supply enable when driven high by the module when module power sequence is complete. Used to ensure proper power on/off sequencing between module and carrier board supplies. $4.7k\Omega$ pull-up to $1.8V$ on the module.	System	Bidir	Open Drain, 1.8V
178	MOD_SLEEP*	GPIO_PA6	Indicates the module sleep status. Low is in sleep mode, high is normal operation. This pin is controlled by system software and should not be modified.	HDMI termination pull- down FET control disable	Output	CMOS – 1.8V

Legend Ground Power Reserved

Notes: In the Type/Dir column, Output is from Jetson Nano. Input is to Jetson Nano. Bidir is for Bidirectional signals.

Figure 2. Jetson Nano Power and Control Block Diagram

3.1 Power Supply and Sequencing

The carrier board receives the main power source and uses this to generate the enable to Jetson Nano (POWER_EN) after the carrier board has ensured the main supply is stable and the associated decoupling capacitors have charged. The carrier board supplies are not enabled at this time. Once POWER_EN is driven active (high), Jetson Nano begins to Power-ON. When the module Power-ON sequence has completed, the SYS_RESET* signal is driven inactive (high) and this is used by the carrier board to enable its various supplies. SYS_RESET* is bidirectional and can be driven by the carrier board to reset Jetson Nano, which results in a full system power cycle. The SHUTDOWN_REQ* signal from Jetson Nano can be driven active (low) if the system must be shut down, due to a critical thermal issue, etc. The power control logic on the carrier board should drive POWER_EN inactive (low) if SHUTDOWN_REQ* is asserted.

Figure 3. System Power and Control Block Diagram

Figure 4. Power Up Sequence

Power-up Sequence (No Power Button – Auto-Power-On Enabled)

Figure 5. Power Down (Initiated by SHUTDOWN_REQ* Assertion)

Figure 6. Power Down (Sudden Power Loss)

Note: - SHUTDOWN_REQ* must always be serviced by the carrier board to toggle POWER_EN from high to low, even in cases of sudden power loss.

4.0 USB AND PCIE

Jetson Nano allows multiple USB 2.0, USB 3.0 and PCIe interfaces to be brought out of the module.

Table 6. Jetson Nano USB 2.0 Pin Descriptions

Pin#	Module Pin Name	Tegra X1 Signal	Usage/Description	Usage on NVIDIA DevKit Carrier Board	Direction	Pin Type
87	GPIO00	USB_VBUS_EN0	GPIO #0 (USB 0 VBUS Detect)	USB 2.0 Micro B	Input	Open Drain, 1.8V
109	USB0_D_N	USB0_DN	LICE 2 O Bart O Bata	USB 2.0 Micro B	Bidir	USB PHY
111	USB0_D_P	USB0_DP	USB 2.0 Port 0 Data			
115	USB1_D_N	USB1_DN	1150 2 0 0 1 1 0 1	1100 11 1	D: 1:	LICE DIN
117	USB1_D_P	USB1_DP	USB 2.0 Port 1 Data	USB Hub	Bidir	USB PHY
121	USB2_D_N	USB2_DN	LICE 2.0. Port 2.Doto	M 2 K F	Distin	LICD DLIV
123	USB2_D_P	USB2_DP	USB 2.0, Port 2 Data	M.2 Key E	Bidir	USB PHY

Notes: In the Type/Dir column, Output is from Jetson Nano. Input is to Jetson Nano. Bidir is for Bidirectional signals.

Table 7. Jetson Nano USB 3.0 and PCIe Pin Descriptions

Pin #	Module Pin Name	Tegra X1 Signal	Usage/Description	Usage on NVIDIA DevKit Carrier Board	Direction	Pin Type	
131	PCIEO_RXO_N	PEX_RX4N	DCIa #0 Passive 1 (DCIa Ctrl #0 Lana 0)	MakeyF			
133	PCIEO_RXO_P	PEX_RX4P	PCIe #0 Receive 1 (PCIe Ctrl #0 Lane 0)	M.2 Key E			
137	PCIEO_RX1_N	PEX_RX3N	PCIe #0 Receive 1 (PCIe Ctrl #0 Lane 1)				
139	PCIEO_RX1_P	PEX_RX3P	PCIE #0 Receive 1 (PCIe Ctri #0 Lane 1)		Innut	PCIe PHY, AC-Coupled on	
149	PCIEO_RX2_N	PEX_RX2N	DCI - #0 Di:- 2 /DCI Ctrl #0 I 2)	Net Assissed	Input	carrier board only if direct connect to device	
151	PCIEO_RX2_P	PEX_RX2P	PCIe #0 Receive 2 (PCIe Ctrl #0 Lane 2)	Not Assigned		connect to device	
155	PCIEO_RX3_N	PEX_RX1N	DCI #0.D : 2/DCI CI #0.L 2)				
157	PCIEO_RX3_P	PEX_RX1P	PCIe #0 Receive 3 (PCIe Ctrl #0 Lane 3)				
179	PCIE_WAKE*	PEX_WAKE_N	PCIe Wake. $100k\Omega$ pull-up to $3.3V$ on the module.	M.2 Key E	Input	Open Drain 3.3V, Pull-up on the module	
181	PCIE0_RST*	PEX_LO_RST_N	PCIe #0 Reset (PCIe Ctrl #0). $4.7k\Omega$ pull-up to $3.3V$ on the module.	Not Assigned	Output	Open Drain 3.3V, Pull-up on the module	
134	PCIEO_TXO_N	PEX_TX4N				PCIe PHY, AC-Coupled on carrier board	
136	PCIEO_TXO_P	PEX_TX4P	PCIe #0 Transmit 0 (PCIe Ctrl #0 Lane 0)	M.2 Key E			
140	PCIEO_TX1_N	PEX_TX3N	DCI NOT (14DCI C) LNO. (1)		Output		
142	PCIEO_TX1_P	PEX_TX3P	PCIe #0 Transmit 1PCIe Ctrl #0 Lane 1)				
148	PCIE0_TX2_N	PEX_TX2N	DCI = #0 T	Net Assissed			
150	PCIEO_TX2_P	PEX_TX2P	PCIe #0 Transmit 2 (PCIe Ctrl #0 Lane 2)	Not Assigned			
154	PCIEO_TX3_N	PEX_TX1N	DCI - #0 T				
156	PCIEO_TX3_P	PEX_TX1P	PCIe #0 Transmit 3 (PCIe Ctrl #0 Lane 3)				
160	PCIEO_CLK_N	PEX_CLK1N				BCL BUY	
162	PCIEO_CLK_P	PEX_CLK1P	PCIe #0 Reference Clock (PCIe Ctrl #0)	M.2 Key E	Output	PCIe PHY	
180	PCIE0_CLKREQ*	PEX_LO_CLKREQ_N	PCIE #0 Clock Request (PCIe Ctrl #0). $47k\Omega$ pull-up to 3.3V on the module.			Open Drain 3.3V, Pull-up on the module	
161	USBSS_RX_N	PEX_RX6N				USB SS PHY, AC-Coupled	
163	USBSS_RX_P	PEX_RX6P	USB SS Receive (USB 3.0 Ctrl #0)	USB 3.0 Type A	Input	only if direct connect to device	
166	USBSS_TX_N	PEX_TX6N	LICE CC Transmit /LICE 2 O Ctrl #0\] "	Output	USB SS PHY, AC-Coupled on	
168	USBSS_TX_P	PEX_TX6P	USB SS Transmit (USB 3.0 Ctrl #0)		Output	carrier board	

Notes: In the Type/Dir column, Output is from Jetson Nano. Input is to Jetson Nano. Bidir is for Bidirectional signals.

The table below the mapping options for Jetson Nano.

Table 8. Jetson Nano USB 3.0 and PCIe Lane Mapping Configurations

Module Pin Names		na	PCIe3	PCIe 2	PCle 1	PCIe 0	USBSS
Tegra X1 Lanes		Lane 0	Lane 1	Lane 2	Lane 3	Lane 4	Lane 6
USB 3.0	PCle						
1	1x4	PCIe#1_0 - Used for	PCIe#0_3	PCIe#0_2	PCIe#0_1	PCIe#0_0	USB_SS#0
		Ethernet on Module					
Usage on NVIDIA		N/A		Unused		M.2 Key E	USB Type A
DevKit Carrier Board							

Figure 7 USB Connection Example

Note:

- 1. AC capacitors should be located close to either the USB connector, or the Jetson Nano pins.
- 2. For USB 3.0 IF shown above (USBSS_TX/RX), AC caps are required on the TX lines. If routed directly to a peripheral, AC caps are needed on the peripheral TX lines as well. The AC caps are recommended to be located near the Jetson Nano connector pins, although locating the caps near the peripheral RX pins is acceptable.
- 3. USBO must be available to use as USB Device for USB Recovery Mode.
- 4. Load switch can be enabled by SYS_RESET* or an available GPIO.
- 5. Connector used must be USB Implementers Forum certified if USB 3.0 implemented.

USB 2.0 Design Guidelines

These requirements apply to the USB 2.0 controller PHY interfaces: USB[2:0]_D_N/P

Table 9. USB 2.0 Interface Signal Routing Requirements

Parameter		Requirement	Units	Notes
Max frequency (high speed)	Bit Rate/UI period/Frequency	480/2.083/240	Mbps/ns/MHz	
Max loading	High Speed / Full Speed / Low Speed	10 / 150 / 600	pF	
Reference plane		GND		
Trace impedance	Diff pair / SE	90 / 50	Ω	±15%
Via proximity (signal to referenc	e)	< 3.8 (24)	mm (ps)	See Note 1
Max trace length/delay	Microstrip / Stripline	6 (960)	In (ps)	
Max intra-pair skew between US	BBx_D_P and USBx_D_N	7.5	ps	

Note:

- 1. Up to four signal vias can share a single **GND** return via.
- 2. Adjustments to the USB drive strength, slew rate, termination value settings should not be necessary, but if any are made, they MUST be done as an offset to default values instead of overwriting those values.

The requirements following apply to the USB 3.0 port #0 PHY interface: USBSS_TX_N/P, USBSS_RX_N/P.

Table 10. USB 3.0 Interface Signal Routing Requirements

Parameter		Requirement	Units	Notes
Specification			1 0 11100	
Data rate / UI period		5.0 / 200	Gbps / ps	
Max number of loads		1	load	
Termination		90 differential	Ω	On-die termination at TX and RX
Electrical Specification		30 unicicitat		On the termination at 1% and 1%
Insertion loss @ 2.5GHz	Type-C	<=2	dB	Only PCB with add-on components (connector
111301 (1011 1033 & 2.30112	Type A	<=7	dB	excluded) is considered
Res	sonance dip frequency	>8	GHz	excluded/ is considered
TDR dip	ionance dip frequency	>= 75	Ω	Using TDR pulse with Tr (10%-90%) = 200ps
Near-end crosstalk (NEXT) @ DC to	5GHz	<=-45	dB	For each TX-RX NEXT
IL/NEXT plot	30112	See USB 3.0 Guide		TOT EBOTT TX-NX INEXT
Impedance		366 03D 3.0 Guid	ellile rigure 1	
•		CND	1	
Reference plane	D:ff:- / CF	GND	-	1450/
Trace impedance	Diff pair / SE	85-90 / 45-55	Ω	±15%
Trace Spacing – for TX/RX non-inte				
TX-RX Xtalk is very critical in PCB tr				merent layers.
If routing on the same layer, strong				
If it is necessary to have interleave			_	ow the rule of inter-SNEXT
The breakout trace width is sugges		•		
Do not perform serpentine routing	for intra-pair skew comp	pensation in the bre	eakout region	
See USB 3.0 Guideline Figure 2				
Min inter-S _{NEXT}	Breakout	4.85x	Dielectric	- This is the recommended dimension for meeting
(between TX/RX)	Main-route	3x	height	NEXT requirement
Min inter-S _{FEXT}	Breakout	1x	Inter-pair	 Stripline structure in a GSSG structure is assumed
(between TX/TX or RX/RX)	Main-route	1x	spacing	it holds in broadside-coupled stripline structure
Max length	Breakout	11	mm	- All values are in terms of minimum dielectric
	Main-route	Max trace		height
		length - LBRK		
Trace Spacing				
Pair-Pair (inter-pair)	Microstrip / Stripline	4x / 3x	dielectric	
To plane and capacitor pad	Microstrip / Stripline	4x / 3x		
To unrelated high-speed signals	Microstrip / Stripline	4x / 3x		
Trace Length/Skew			•	
Trace loss characteristic @ 2.5GHz		< 0.7	dB/in	The following max length is derived based on this
			,	characteristic. See Note 1.
Breakout region	Max trace delay	11	mm	Minimum width and spacing
Max trace length/delay	Wax trace aciay	152.3 (1014)	mm (ps)	William Width and Spacing
Max PCB via distance/delay from p	nin .	6.29 (41.9)	mm (ps)	
Max within pair (intra-pair) skew	/III	0.15 (1)	mm (ps)	
<u> </u>	/dolov			
Differential pair uncoupled length,	delay	6.29 (41.9)	mm (ps)	
AC Cap				I a
Value		0.1	uF	Smallest size preferred (i.e. 0201). See note under USI
				Connection Diagrams for details on when AC capacitor
Leading for all the second	1. dr 12 - 12 - 1	0 (52 22)		are required
Location (max distance to adjacen	alscontinuities)	8 (53.22)	mm (ps)	The AC cap location should be located as close as
			1	possible to nearby discontinuities
Via		Г		T n
via structure		Y-pattern is stron		Xtalk suppression is best when using Y-pattern. Can also
		recommended (k	eep	reduce the limit of pair-pair distance. See figure 3.
	symmetry)			
GND via	- Place GND		GND via is used to maintain return path, while its Xtall	
		symmetricall		suppression is limited.
		possible to the vias.	ne data pair	
			al viae (2 diff	
		- Up to 4 signal pairs) can sh		
		GND return		

AC cap pad voiding	,	R) void under / p is preferred	Voiding is required if cap size is 0603 or large.		
Max via stub length	0.4	mm	long via stub requires review (IL and resonance dip check).		
ESD	<u>.</u>				
Preferred device			Type: Texas Instruments TPD4I05U06. Optional. Place		
			ESD component near connector		
Max junction capacitance (IO to GND)	0.8	pF			
Location (max distance to connector)	8 (53)	mm (ps)			
Layout recommendations			See USB 3.0 Guideline Figure 4		
Common-mode choke (not recommended – only See Appendix A for details on CMC if implemente		ed for EMI issues)			
Component Order					
Component order			Chip – AC capacitor (TX only) – common mode choke –		
			ESD – Connector: See USB 3.0 Guideline Figure 5.		

Note:

- 1. Longer trace lengths may be possible if the total trace loss is equal to or better than the target. If the loss is greater, the max trace lengths will need to be reduced.
- 2. Recommend trace length matching to <1ps before vias or any discontinuity to minimize common mode conversion.
- 3. Place **GND** vias as symmetrically as possible to data pair vias.

Table 11. USB 3.0 Interface Signal Routing Requirements Figures

Common USB Routing Guidelines

Guideline

If routing to USB device or USB connector includes a flex or 2nd PCB, the total routing including all PCBs/flexes must be used for the max trace and skew calculations.

Keep critical USB related traces away from other signal traces or unrelated power traces/areas or power supply components

Table 12. Tegra USB 2.0 Signal Connections

Jetson Nano Ball Type		Termination	Description
Name			
USB[2:0]_D_P DIFF		90Ω common-mode chokes close to	USB Differential Data Pair: Connect to USB connector, Mini-Card
USB[2:0]_D_N I/O		connector. ESD Protection between choke	socket, hub or another device on the PCB.
		and connector on each line to GND	

Table 13. Miscellaneous USB 2.0 Signal Connections

Module Pin Name	Туре	Termination	Description
GPIO00	Α	5V to 1.8V level shifter	USBO VBUS Enable: Connect to VBUS pin of USB connector receiving
			USBO_+/- interface through level shifter. Also connects to VBUS power
			supply if host mode supported.

Table 14. Tegra USB 3.0 Signal Connections

Module Pin Name		Type Termination		Description		
USBSS_TX_N/P (USB 3.0 Port #0)		DIFF	Series 0.1uF caps. ESD	USB 3.0 Differential Transmit Data Pairs: Connect to USB 3.0		
		Out	Protection near connector if	connectors, hubs or other devices on the PCB.		
			required.			
USBSS_RX_N/P (USB 3.0 Port #0)		DIFF	If routed directly to a peripheral	USB 3.0 Differential Receive Data Pairs: Connect to USB 3.0		
			on the board, AC caps are	connectors, hubs or other devices on the PCB.		
			needed for the peripheral TX			
			lines. ESD protection near			
			connector if required.			

4.2 PCle

Tegra contains a PCIe controller that brings one interface up to four lanes to the module pins for use on the carrier board. A second single-lane PCIe interface is used on-module for Ethernet.

Figure 8. Example PCle Connections

Table 15. PCIe Interface Signal Routing Requirements

Parameter	Requirement	Units	Notes
Specification			
Data rate / UI period	5.0 / 200	Gbps / ps	2.5GHz, half-rate architecture
Configuration / device organization	1	Load	
Topology	Point-point		Unidirectional, differential
Termination	50	Ω	To GND Single Ended for P and N
Impedance	•	•	-
Trace Impedance diff / SE	85 / 50	Ω	±15%. See note 1
Reference plane	GND		
Spacing	_	I .	1
Trace Spacing (Stripline/Microstrip) pair – pair	3x / 4x	Dielectric	
To plane and capacitor pad	3x / 4x		
To unrelated high-speed signals	3x / 4x		
Length/Skew		I.	
Trace loss characteristic @ 2.5GHz	< 0.7	dB/in	The following max length is derived based on this characteristic. See note 3
Breakout region (max length)	41.9	ps	Minimum width and spacing. 4x or wider dielectric height spacing is preferred
Max trace length/delay	5.5 (880)	in (ps)	
Max PCB via distance from the BGA	41.9	ps	Max distance from BGA ball to first PCB via.
PCB within pair (intra-pair) skew	0.15 (0.5)	mm (ps)	Do trace length matching before hitting discontinuities
Within pair (intra-pair) matching between subsequent discontinuities	0.15 (0.5)	mm (ps)	
Differential pair uncoupled length	41.9	ps	
Via			
Via placement Max # of vias PTH vias	less than 1x the diff pa 2 for TX traces and 2 for	ir via pitch	data pair vias. GND via distance should be placed
Micro-vias	No requirement		T
Max via stub length	0.4	mm	Longer via stubs would require review
Routing signals over antipads	Not allowed		
AC Cap	10075 /00		Out and the TV and the provided to accomplete
Value Min/Max	0.075 / 0.2	uF	Only required for TX pair when routed to connector
Location (max length to adjacent discontinuity)	8	mm	Discontinuity such as edge finger, component pad
Voiding	Voiding the plane directly under the pad 3-4 mils larger than the pad size is recommended.		See PCIe Guideline Figure 3
General: See Appendix A for guidelines related to	serpentine routing, rout	ing over voids and noise	coupling

Note:

- 1. The PCIe spec. has $40-60\Omega$ absolute min/max trace impedance, which can be used instead of the 50Ω , \pm 15%.
- 2. If routing in the same layer is necessary, route group TX and RX separately without mixing RX/TX routes and keep distance between nearest TX/RX trace and RX to other signals 3x RX-RX separation.
- 3. Longer trace lengths may be possible if the total trace loss is equal to or better than the target. If the loss is greater, the max trace lengths will need to be reduced.
- 4. Do length matching before via transitions to different layers or any discontinuity to minimize common mode conversion.

Table 16. PCle Interface Signal Routing Requirements Figure

Table 17. PCle Signal Connections

Module Pin Name		Туре	Termination	Description
PCIe Interface #0 (x4	1)			
PCIE0_TX3_N/P (Lane 3)		DIFF OUT	Series 0.1uF Capacitor	Differential Transmit Data Pairs: Connect to TX_N/P pins of PCIe
PCIE0_TX2_N/P	(Lane 2)			connector or RX_N/P pin of PCIe device through AC cap according to
PCIEO_TX1_N/P	(Lane 1)			supported configuration.
PCIEO_TXO_N/P	(Lane 0)			
PCIEO_RX3_N/P	(Lane 3)	DIFF IN	Series 0.1uF capacitors near	Differential Receive Data Pairs: Connect to RX_N/P pins of PCIe
PCIEO_RX2_N/P	(Lane 2)		Jetson Nano pins or device if	connector or TX_N/P pin of PCIe device through AC cap according to
PCIE0_RX1_N/P (Lane 1)			device on main PCB.	supported configuration.
PCIEO_RXO_N/P	(Lane 0)			
PCIEO_CLK_N/P		DIFF OUT		Differential Reference Clock Output: Connect to REFCLK_N/P pins of
				PCIe device/connector
PCIE0_CLKREQ*		I/O	47kΩ pull-up to	PCIe Clock Request for PCIEO_CLK: Connect to CLKREQ pins on
			VDD_3V3_SYS on module	device/connector(s)
PCIE0_RST*		0	4.7kΩ pull-up to	PCIe Reset: Connect to PERST pins on device/connector(s)
			VDD_3V3_SYS on module	
PCIE_WAKE*		I	100kΩ pull-up to	PCIe Wake: Connect to WAKE pins on device or connector
			VDD_3V3_SYS on module	

4.3 Gigabit Ethernet

Jetson Nano integrates a Realtek RTL9119I Gigabit Ethernet controller. The magnetics and RJ45 connector would be implemented on the carrier board. Contact Realtek for carrier board placement/routing guidelines.

Table 18. Jetson Nano Gigabit Ethernet Pin Descriptions

Pin#	Module Pin Name	Tegra X1 Signal	Usage/Description	Usage on DevKit Carrier Board	Direction	Pin Type
194	GBE_LED_ACT	-	Ethernet Activity LED (Yellow)		Output	
188	GBE_LED_LINK	-	Ethernet Link LED (Green)		Output	
184	GBE_MDI0_N	-	GbE Transformer Data 0			
186	GBE_MDI0_P	-	GDE Transformer Data 0			
190	GBE_MDI1_N	-	Che Transferred Data 1			
192	GBE_MDI1_P	-	GbE Transformer Data 1	LAN	Bidir	MDI
196	GBE_MDI2_N	-	Che Transferred Data 2		Biair	MDI
198	GBE_MDI2_P	-	GbE Transformer Data 2			
202	GBE_MDI3_N	-	Che Transferred Data 2			
204	GBE MDI3 P	-	GbE Transformer Data 3			

Notes: In the Type/Dir column, Output is from Jetson Nano. Input is to Jetson Nano. Bidir is for Bidirectional signals.

Figure 9. Jetson Nano Ethernet Connections

Figure 10. Gigabit Ethernet Magnetics and RJ45 Connections

Table 19. Ethernet MDI Interface Signal Routing Requirements

Parameter		Requirement	Units	Notes
Reference plane		GND		
Trace impedance	Diff pair / Single Ended	100 / 50	Ω	±15%. Differential impedance target is 100 Ω . 90 Ω can be used if 100 Ω
				is not achievable
Min trace spacing (pai	Min trace spacing (pair-pair)		mm	
Max trace length/delay		109 (690)	mm (ps)	
Max within pair (intra-pair) skew		0.15 (1)	mm (ps)	
Number of vias	Number of vias			Ideally there should be no vias, but if required for breakout to Ethernet
				controller or magnetics, keep very close to either device.

Table 20. Ethernet Signal Connections

Module Pin Name	Туре	Termination	Description		
GBE_MDI[3:0]_N/P	DIFF		Gigabit Ethernet MDI IF Pairs: Connect to Magnetics -/+ pins		
	I/O				
GBE_LED_LINK	0	110Ω series resistor	Gigabit Ethernet Link LED: Connect to green LED on RJ45 connector		
GBE LED ACT	0	110Q series resistor	Gigabit Ethernet Activity LED: Connect to yellow LED on RJ45 connector		

Tegra X1 Embedded designs can select from several display options including MIPI DSI and eDP for embedded displays, and HDMI or DP for external displays. The maximum number of simultaneous displays supported by Jetson Nano is two.

Table 21. Jetson Nano Display General Pin Descriptions

Pin#	Module Pin Name	Tegra X1 Signal	Usage/Description	Usage on DevKit Carrier Board	Direction	Pin Type
206	GPIO07	LCD_BL_PWM	GPIO or Pulse Width Modulation signal	Expansion header	Output	CMOS – 1.8V

Notes: In the Type/Dir column, Output is from Jetson Nano. Input is to Jetson Nano. Bidir is for Bidirectional signals.

5.1 MIPI DSI

Tegra supports two total MIPI DSI data lanes and a single clock lane. Each data lane has a peak bandwidth up to 1.5Gbps.

Table 22. Jetson Nano DSI Pin Descriptions

Pin#	Module Pin Name	Tegra X1 Signal	Usage/Description	Usage on DevKit Carrier Board	Direction	Pin Type
76	DSI_CLK_N	DSI_A_CLK_N	Display, DSI clock		Output	
78	DSI_CLK_P	DSI_A_CLK_P	Display, DSI Clock		Output	
70	DSI_D0_N	DSI_A_D0_N	Disales DCI data lara 0	Natariana	Bidir	MIPI D-PHY
72	DSI_D0_P	DSI_A_D0_P	Display, DSI data lane 0	Not assigned	biuii	MIPI D-PHY
82	DSI_D1_N	DSI_A_D1_N	Display DCI data lane 1		Cutaut	
84	DSI_D1_P	DSI_A_D1_P	Display, DSI data lane 1		Output	

Notes: In the Type/Dir column, Output is from Jetson Nano. Input is to Jetson Nano. Bidir is for Bidirectional signals.

Figure 11: DSI 1 x 2-Lane Connection Example

Note: If EMI/ESD devices are necessary, they must be tuned to minimize impact to signal quality, which must meet the DSI spec. requirements for the frequencies supported by the design.

Table 23. MIPI DSI and CSI Interface Signal Routing Requirements

Parameter	Requirement	Units	Notes
Max frequency/data rate (per data lane)	750 / 1500	MHz/Mbps	
Number of loads	1	load	
Reference plane	GND		
Trace impedance Diff pair / SE	90-100 / 45-50	Ω	±10%
Via proximity (signal to reference)	< 0.65 (3.8)	mm (ps)	
Intra-pair trace spacing	0.15mm	mm	Can be adjusted to meet Differential Impedance.
			Loosely Coupled Diff. Pair recommended by Spec.
Inter-pair trace spacing Microstrip / Stripline	4x / 3x	dielectric	
Max PCB breakout length	5	mm	
Max trace delay 1 Gbps	1100	ps	
1.5 Gbps	800		
Max intra-pair skew	1	ps	
Max trace delay skew between DQ and CLK	5	ps	DQ includes all the data lines associated with a single
			clock. This may be 2 differential data lanes for a x2
			interface, or 4 differential data lanes for a x4
			interface.
Keep critical traces away from other signal traces or u	nrelated power traces/are	eas or power sup	oply components

MIPI DSI / CSI Connection Guidelines

Table 24. MIPI DSI Signal Connections

Module Pin Name	Туре	Termination	Description
DSI_CLK_N/P	DIFF OUT		DSI Differential Clock: Connect to CLKn and CLKp pins of the primary DSI display
DSI_D[1:0]_N/P	DIFF OUT		DSI Differential Data Lanes 1:0: Connect to corresponding data lanes of DSI display.
GPIO07	0		Optional LCD Backlight Pulse Width Modulation: Connect to LCD backlight solution
			PWM input if supported

5.2 eDP/DP

Table 25. Jetson Nano eDP / DP Pin Descriptions

Pin #	Module Pin Name	Tegra X1 Signal	Usage/Description	Usage on DevKit Carrier Board	Direction	Pin Type
90	DP0_AUX_N	DP_AUX_CH0_N	Display Port 0 auxiliary channel		Bidir	AC-Coupled on Carrier
92	DP0_AUX_P	DP_AUX_CH0_P	Display Port o auxiliary chariller		Biuli	Board (eDP/DP)
39	DP0_TXD0_N	EDP_TXDN0	Display and O data lane O		Outrout	AC-Coupled on carrier
41	DP0_TXD0_P	EDP_TXDP0	Display port 0 data lane 0	splay port 0 data lane 1 DP connector splay port 0 data lane 2		
45	DP0_TXD1_N	EDP_TXDN1	Display part 0 data lane 1			
47	DP0_TXD1_P	EDP_TXDP1	Display port 0 data lane 1			
51	DP0_TXD2_N	EDP_TXDN2	Display work 0 data laws 2		Output	board
53	DP0_TXD2_P	EDP_TXDP2	Display port 0 data lane 2			
57	DP0_TXD3_N	EDP_TXDN3	D: 1			
59	DP0_TXD3_P	EDP_TXDP3	Display port 0 data lane 3			
88	DP0_HPD	DP_HPD0	Display port 0 hot-plug detect		Input	CMOS – 1.8V

Notes: In the Type/Dir column, Output is from Jetson Nano. Input is to Jetson Nano. Bidir is for Bidirectional signals.

Tegra supports an eDP interface. The eDP interface can also be used for DP. DP support on these pins does not include HDCP or Audio.

Figure 12: DP/eDP Connection Example (on DP0 pins)

Note: - Level shifter required on DPO_HPD to avoid the pin from being driven when Jetson Nano is off. The level shifter must be non-inverting (preserve the polarity of the HPD signal from the display).

- Load Switch enable is from powergood pin of main 3.3V supply.
- If eDP interface used for DP, note that HDCP is not supported.

eDP Routing Guidelines

Figure 13: eDP (Differential Main Link) Topology

Table 26. eDP/DP Main Link Signal Routing Requirements (Including DP_AUX)

Parameter		Requirement	Units	Notes
Specification				
Max data rate / Min UI	R BR	1.62 / 617	Gbps / ps	Per data lane
	HBR	2.7 / 370		
	HBR2	5.4 / 185		
Number of loads / topology		1	load	Point-Point, differential, unidirectional
Termination		100	Ω	On die at TX/RX
Electrical Spec				
IL	RBR	0.7	dB @ 0.81GHz	
	HBR	1.2	dB @ 1.35GHz	
	HBR2	2.4	dB @ 2.7GHz	
Resonance dip frequency		>8	GHz	
TDR dip		>85	Ω	@ Tr-200ps (10%-90%)
FEXT		<= -40dB @ DC	See eDP/DP Guideline Figure 1	

Parameter	Requirement	Units	Notes
	<= -30dB @ 2.7GHz		
Impedance			
Trace impedance Diff pai	r 90-100 85	Ω (±15%)	 90Ω–100Ω is the spec. target. 85Ω is an implementation option (Zdiff does not account for trace coupling) 85Ω is preferable as it can provide better trace loss characteristic performance. See Note 1.
Reference plane	GND		
Trace Length, Spacing and Skew			
Trace loss characteristic:	< 0.81	dB/in	@ 2.7GHz. The following max length is derived based on this characteristic. See note 2.
Max PCB via dist. from connector RBR/HBI HBR:	•	mm (in)	
Max trace length/delay from Jetson Nano TX to connector			175ps/inch assumption for stripline, 150ps/inch for microstrip.
RBR/HBR (Stripline / Microstrip HBR2 (Stripline HBR2 (Microstrip, 5x / 7x	102 (700)	mm (ps)	
Trace spacing (pair-pair) Stripline	, , , , , ,	dielectric	
Microstrip (HBR/RBR Microstrip (HBR2) 4x		
Trace spacing Stripline/Microstrip (Main link to AUX)	3x / 5x	dielectric	
Max intra-pair (within pair) skew	0.15 (1)	mm (ps)	See note 2
Maxinter-pair (pair-pair) skew	150	ps	See note 3
Via		-	
Max GND transition via distance	< 1x	diff pair pitch	For signals switching reference layers, add symmetrical GND stitching via near signal vias.
Via Structure			
Impedance dip	≥97 ≥92	Ω @ 200ps Ω @ 35ps	The via dimension is required for HDMI-DP colayout.
Recommended via dimension Drill/Pact for impedance control Antipact Via pitch	>840	um um um	
Topology	- Y-pattern is recom - keep symmetry	mended	Y-pattern helps with Xtalk suppression. It can also reduce the limit of pair-pair distance. Need review (NEXT/FEXT check) if via placement is not Y-pattern. See eDP/DP guideline figure 2
	For in-line via, the distar lane to the adjacent via 1.2mm center-center.		See eDP/DP guideline figure 3
GND via	Place GND via as symme data pair vias. Up to fou pairs) can share a single	ır signal vias (2 diff	GND via is used to maintain a return path, while its Xtalk suppression is limited.
Max # of vias PTH via Micro via		tal channel loss	
Max via stub length	0.4	mm	
AC Cap	T		
Value	0.1	uF	Discrete 0402
Max distance from AC cap RBR/HBI	•		
to connector HBR		in	LIDDS: Valding the class discount of the class of the cla
Voiding RBR/HBI HBR:	· ·		HBR2: Voiding the plane directly under the pad 3 4 mils larger than the pad size is recommended.
Connector	- Polania required	L	Thins larger than the pad size is recommended.
Voiding RBR/HBI	R No requirement		HBR2: Standard DP connector: Voiding
HBR:	· ·		requirement is stack-up dependent. For typical stack-ups, voiding on the layer under the connector pad is required to be 5.7mil larger tha
			the connector pad.

Notes: 1.

- 1. For eDP/DP, the spec puts a higher priority on the trace loss characteristic than on the impedance. However, before selecting 85Ω for impedance, it is important to make sure the selected stack-up, material and trace dimension can achieve the needed low loss characteristic.
- 2. Longer trace lengths may be possible if the total trace loss is equal to or better than the target. If the loss is greater, the max trace lengths will need to be reduced.
- 3. Do not perform length matching within breakout region. Recommend doing trace length matching to <1ps before vias or any discontinuity to minimize common mode conversion.
- 4. The average of the differential signals is used for length matching.

Table 27. eDP/DP Interface Signal Routing Requirements Figures

Table 28. eDP Signal Connections

Module Pin Name	Type	Termination	Description
DP0_TXD[3:0]_N/P	0	Series 0.1uF capacitors and ESD to GND on all.	eDP/DP Differential CLK/Data Lanes: Connect to matching
			pins on display connector.
DP0_AUX_N/P	I/OD	Series 0.1uF capacitors. 100kΩ pulldown on DPO_AUX_P and 100kΩ pull-up to VDD_3V3_SYS on DPO_AUX_N. ESD to GND on both.	eDP/DP: Auxiliary Channels: Connect to AUX_CH-/+ on display connector.
DP0_HPD	I	From module pin: $10k\Omega$ pull-up to $1.8V$, level shifter and $100k\Omega$ pulldown on connector side of shifter and ESD to GND .	eDP/DP: Hot Plug Detect: Connect to HPD pin on display connector through level shifter.

A standard DP 1.2a or HDMI V2.0 interface is supported. These share the same set of interface pins, so either Display Port or HDMI can be supported natively.

Table 29. Jetson Nano HDMI / DP Pin Descriptions

Pin#	Module Pin Name	Tegra X1 Signal	Usage/Description	Usage on DevKit Carrier Board	Direction	Pin Type
98	DP1_AUX_N	DP_AUX_CH1_N	DisplayPort 1 Aux- or HDMI DDC SDA			AC-Coupled on Carrier
100	DP1_AUX_P	DP_AUX_CH1_P	DisplayPort 1 Aux+ or HDMI DDC SCL		Bidir	Board (eDP/DP) or Open- Drain, 1.8V (3.3V tolerant - DDC)
63	DP1_TXD0_N	HDMI_DP_TXDN0	DisplayPort 1 Lane 0 or HDMH and 2			
65	DP1_TXD0_P	HDMI_DP_TXDP0	DisplayPort 1 Lane 0 or HDMI Lane 2			
69	DP1_TXD1_N	HDMI_DP_TXDN1	DisplayPort or UDALLand 1	isplayPort or HDMI Lane 1 HDMI Conn. Out	Output	AC-Coupled on carrier
71	DP1_TXD1_P	HDMI_DP_TXDP1	DisplayPort or HDMI Lane 1			
75	DP1_TXD2_N	HDMI_DP_TXDN2	DisplayPort 1 Lane 2 or LIDMIL and 0		Output	board
77	DP1_TXD2_P	HDMI_DP_TXDP2	DisplayPort 1 Lane 2 of ADMI Lane 0			
81	DP1_TXD3_N	HDMI_DP_TXDN3	Disales Port 1 Lana 2 an UDAN Clisters			
83	DP1_TXD3_P	HDMI_DP_TXDP3	DisplayPort 1 Lane 3– or HDMI Clk Lane			
96	DP1_TXD0_N	HDMI_INT_DP_HPD	HDMI or Display Port Hot Plug Detect		Input	CMOS – 1.8V
94	HDMI_CEC	HDMI_CEC	HDMI CEC		Bidir	Open Drain, 1.8V (3.3V tolerant)

Notes: In the Type/Dir column, Output is from Jetson Nano. Input is to Jetson Nano. Bidir is for Bidirectional signals.

Table 30. DP/HDMI Pin Mapping

Module Pin Name	Module Pin #s	HDMI	DP
DP1_TXD3_P	83	TXC+	TX3+
DP1_TXD3_N	81	TXC -	TX3-
DP1_TXD2_P	77	TX0+	TX2+
DP1_TXD2_N	75	TX0-	TX2-
DP1_TXD1_P	71	TX1+	TX1+
DP1_TXD1_N	69	TX1-	TX1-
DP1_TXD0_P	65	TX2+	TX0+
DP1_TXD0_N	63	TX2-	TXO-

Figure 14: HDMI Connection Example

Note: 1. Level shifters required on DDC/HPD. Tegra pads are not 5V tolerant and cannot directly meet HDMI V_{IL}/V_{IH} requirements. HPD level shifter can be non-inverting or inverting. HPD level shifter on the Jetson Nano Developer Kit is inverting.

- If EMI/ESD devices are necessary, they must be tuned to minimize the impact to signal quality, which must meet the
 timing and electrical requirements of the HDMI specification for the modes to be supported. See requirements and
 recommendations in the related sections of the HDMI Interface Signal Routing Requirements table.
- 3. The DP1_TXx pads are native DP pads and require series AC capacitors (AC_{CAP}) and pull-downs (R_{PD}) to be HDMI compliant. The 499Ω , 1% pull-downs must be disabled when Jetson Nano is off or in sleep mode to meet the HDMI V_{OFF} requirement. The enable to the FET, enables the pull-downs when the HDMI interface is to be used. Chokes between pull-downs and FET are optional improvements for HDMI 2.0 operation.
- 4. Series resistors R_S are required. See the R_S section of the HDMI Interface Signal Routing Requirements table for details.
- 5. See reference design for CEC level shifting/blocking circuit.

Figure 15: HDMI Clk/Data Topology

- Note:
- 1. R_{PD} pad must be on the main trace. R_{PD} and AC_{CAP} must be on same layer.
- 2. Chokes ($600\Omega@100MHz$) or narrow traces (1uH@DC-100MHz) between pull-downs and FET are chokes between pull-downs and FET are optional improvements for HDMI 2.0 operation.
- 3. The trace after the main-route via should be routed on the top or bottom layer of the PCB, and either with 100ohm differential impedance, or as uncoupled 50ohm SE traces.
- 4. Rs series resistor is required. See the Rs section of the HDMI Interface Signal Routing Requirements table for details.

Table 31. HDMI Interface Signal Routing Requirements

Parameter	Requirement	Units	Notes
Specification			
Max frequency / UI	5.94 / 168	Gbps / ps	Per lane – not total link bandwidth
Topology	Point to point		Unidirectional, differential
Termination At receiver	100	Ω	Differential To 3.3V at receiver
On-board	500		To GND near connector
Electrical Specification			
IL	<= 1.7	dB @ 1GHz	
	<= 2	dB @ 1.5GHz	
	<= 3	dB @ 3GHz	
	< 6	dB @ 6GHz	
resonance dip frequency	> 12	GHz	
TDR dip	>= 85	Ω @ Tr=200ps	10%-90%. If TDR dip is 75~85ohm that dip width
			should < 250ps
FEXT (PSFEXT)	<= -50	dB at DC	PSNEXT is derived from an algebraic summation of the
	<= -40	dB at 3GHz	individual NEXT effects on each pair by the other pairs
	<= -40	dB at 6GHz	
	IL/FEXT plot: See HDMI Guid	deline Figure 1	TDR plot: See HDMI Guideline Figure 2
Impedance			·
Trace impedance Diff pair	100	Ω	$\pm 10\%$. Target is 100Ω . 95Ω for the breakout and main
			route is an implementation option.
Reference plane	GND		
Trace spacing/Length/Skew			
Trace loss characteristic:	< 0.8	dB/in. @ 3GHz	The max length is derived based on this characteristic.
	< 0.4	dB/in. @ 1.5GHz	See note 1.
Trace spacing (pair-pair)			For Stripline, this is 3x of the thinner of above and
Stripline	3x	dielectric	below.
Microstrip: pre 1.4b	4x		
Microstrip: 1.4b/2.0	5x to 7x		
Trace spacing Stripline	3x	dielectric	For Stripline, this is 3x of the thinner of above and
(Main link to DDC) Microstrip	5x		below.
Max total length/delay (1.4b/2.0 -			Propagation delay: 175ps/in. for stripline, 150ps/in. for
up to 5.94Gbps)			microstrip).
Stripline	63.5/2.5 (437)	mm/in (ps)	
Microstrip (5x spacing)			
Microstrip (7x spacing)	63.5/2.5 (375)		

NVIDIA.			T
Parameter	Requirement	Units	Notes
Max Total Length/Delay (Pre-1.4b)	254/42/4500	mm/in (ps)	Propagation delay: 175ps/in. for stripline, 150ps/in. for
(up to 165Mhz) Microstrip	254/10 (1500)		microstrip).
	225/8.5 (1500)	, ,	
Max intra-pair (within pair) skew	0.15 (1)	mm (ps)	See notes 1, 2, and 3
Max inter-pair (pair to pair) skew	150	ps	See notes 1, 2, and 3
Max GND transition via distance	1x	Diff pair via pitch	For signals switching reference layers, add one or two
			ground stitching vias. It is recommended they be
			symmetrical to signal vias.
Via			
Topology	 Y-pattern is recommend 	ed	Xtalk suppression is the best by Y-pattern. Also it can
	 keep symmetry 		reduce the limit of pair-pair distance. Need review
Minimum impedance dip	97	Ω@200ps	(NEXT/FEXT check) if via placement is not Y-pattern.
	92	Ω@35ps	See HDMI Guideline Figure 3
Recommended via dimension			
drill/pad	200/400	uM	
Antipad	840		
via pitch	880		
GND via	Place GND via as symmetric	ally as possible to data pair	GND via is used to maintain return path, while its Xtalk
	vias. Up to four signal vias (suppression is limited
	single GND return via	p,	
Max # of vias PTH via	4 if all vias are PTH via		
u-via	Not limited as long as total	channel loss meets II spec.	
Max via stub length	0.4	mm	long via stub requires review (IL and resonance dip
Wax via stab length	0.1		check)
Topology			CHECKY
The main-route via dimensions should	comply with the via structure	o rulos (Soo via soction)	See topology figure above this table
			See topology ligure above this table
For the connector pin vias, follow the			-
The traces after main-route via should	be routed as 1000 differenti	al or as uncoupled 500hm	
SE traces on PCB top or bottom.	Γ.	T	
Max distance from R _{PD} to main	1	mm	
trace (seg B)			
Max distance from AC cap to RPD	~0	mm	
stubbing point (seg A)			
Max distance between ESD and	3	mm	
signal via			
Add-on Components			
Example of a case where space is	Top: See HDMI Guideline Fig	gure 4	Bottom: See HDMI Guideline Figure 5
limited for placing components.			
AC Cap	•		
Value	0.1	uF	
Max via distance from BGA	7.62 (52.5)	mm (ps)	
Location	must be placed before pull-		The distance between the AC cap and the HDMI
Location	must be placed serore pair	down resistor	connector is not restricted.
Placement PTH design	Place cap on bottom layer if	main-route above core	Connector is not restricted.
rideement rin design	Place cap on top layer if mai		
Micro-via design	Not Restricted	III TOUTE DETOW COTE	
	GND (or PWR) void under/a	have the can is needed	Soo HDMI Guidalina Figura 6
Void	' '	•	See HDMI Guideline Figure 6
	Void size = SMT area + 1x di	erecurc neight keepout	
Dull down Dociston ID 3 stort street	distance		
Pull-down Resistor (R _{PD}), choke/FET	500		T
Value	500	Ω	
Location.	Must be placed after AC ca		Placement: See HDMI Guideline Figure 7
Layer of placement		ET and choke can be placed	
	on the opposite layer thru a		
Choke between R _{PD} and FET choke	600 or	Ω@100MHz	Can be choke or Trace. Recommended option for
	1	uH@DC-100MHz	HDMI2.0 HF1-9 improvement.
Max trace Rdc	≤20	mΩ	
Max trace length	4	mm	
Void	GND/PWR void under/abov	e cap is preferred	
Common-mode Choke (Not recommer			
See Appendix A for details on CMC if i	· · · · · · · · · · · · · · · · · · ·		
	•	SD is optional. Designs should	l include ESD footprint as a stuffing option)
Max junction capacitance	0.35	pF	e.g. Texas Instruments TPD4E02B04DQAR
		μ ν'	TOO . CAGO MOCIGINO IT D IEOEDOTDQAIN

Parameter	Requirement	Units	Notes
(IO to GND)			
Footprint	Pad right on the net instead	d of trace stub	See HDMI Guideline Figure 8
Location	After pull-down resistor/CM	1C and before Rs	
Void	GND/PWR void under/abov	e the cap is needed. Void	See HDMI Guideline Figure 9
	size = 1mm x 2mm for 1 pai	r	
Series Resistor (Rs) - Series resisto	or on N/P path for HDMI 2.0 (man	datory)	
Value	≤ 6	Ω	$\pm10\%.$ 0ohm is acceptable if the design passes the HDMI2.0 HF1-9 test. Otherwise, adjust the Rs value to ensure the HDMI2.0 tests pass: Eye diagram, Vlow test and HF1-9 TDR test
Location	After all components and be	efore HDMI connector	
Void	GND/PWR void under/abov distance.	ve the R_S device is needed. $\$	oid size = SMT area + 1x dielectric height keepout
Trace at Component Region	•		
Value	100	Ω	± 10%
Location	At component region (Micro	ostrip)	
Trace entering the SMT pad	One 45°		See HDMI Guideline Figure 10
Trace between components	Uncoupled structure		See HDMI Guideline Figure 11
HDMI connector			
Connector voiding	Voiding the ground below t 0.1448(5.7mil) larger than	the pin itself	See HDMI Guideline Figure 12
General: See Appendix A for guide	elines related to Serpentine rout	ing, routing over voids and	noise coupling

Note:

- 1. Longer trace lengths may be possible if the total trace loss is equal to or better than the target. If the loss is greater, the max trace lengths will need to be reduced.
- 2. The average of the differential signals is used for length matching.
- 3. Do not perform length matching within breakout region. Recommend doing trace length matching to <1ps before vias or any discontinuity to minimize common mode conversion
- 4. If routing includes a flex or 2nd PCB, the max trace delay and skew calculations must include all the PCBs/flex routing. Solutions with flex/2nd PCB may not achieve maximum frequency operation.

Table 32. HDMI Interface Signal Routing Requirements Figures

DVIDIA

Table 33. HDMI Signal Connections

Module Pin Name	Туре	Termination (see note on ESD)	Description
DP1_TXD3_N/P DIFF		0.1uF series AC _{CAP} \rightarrow 500 Ω R _{PD} (controlled by FET) \rightarrow	HDMI Differential Clock: Connect to C-/C+
	OUT	ESD to GND \rightarrow . \leq 6 Ω R _s (series resistor)	and pins on HDMI connector
DP1_TXD[2:0]_N/P	DIFF		HDMI Differential Data: Connect to HDMI
	OUT		Data pins (See DP/HDMI pin mapping table)
DP1_HPD	1	From module pin: $10k\Omega$ PU to $1.8V \rightarrow$ level shifter \rightarrow	HDMI Hot Plug Detect: Connect to HPD pin
		100kΩ series resistor. 100kΩ to GND on connector side	on HDMI connector
		\rightarrow 100pF/12pF caps to GND \rightarrow ESD to GND .	
HDMI_CEC	I/OD	Gating circuitry, See connection figure for details.	HDMI Consumer Electronics Control:
			Connect to CEC on HDMI connector through
			circuitry.
DP1_AUX_N/P	I/OD	From module pins: $10k\Omega$ PU to $3.3V \rightarrow$ level shifter \rightarrow	HDMI: DDC Interface – Clock and Data:
		1.8kΩ PU to 5V \rightarrow ESD to GND	Connect DP1_AUX_N to SDA and
			DP1_AUX_P to SCL on HDMI connector
HDMI 5V Supply	Р	Adequate decoupling (0.1uF and 10uF recommended)	HDMI 5V supply to connector: Connect to
		on supply near connector and ESD to GND .	+5V on HDMI connector.

Note: Any ESD and/or EMI solutions must support targeted modes (frequencies).

Figure 16: DP Connection Example

Note:

- 1. Level shifter required on DP1_HPD to avoid the pin from being driven when Jetson Nano is off. The level shifter must be non-inverting (preserve the polarity of the HPD signal from the display).
- 2. Any EMI/ESD included on the HDMI_DP pins must be suitable for the highest frequency modes supported (<1pf capacitive load recommended).

DP Interface Signal Routing Requirements

See eDP/DP Signal Routing Requirements.

Table 34. DP Signal Connections

Module Pin Name	Туре	Termination (see note on ESD)	Description
DP1_TXD3_N/P DP1_TXD[2:0]_N/P	0	Series 0.1uF capacitors → ESD on all.	DP Differential Lanes: Connect to D[3:0] – /+. See DP/HDMI pin mapping table for correct connections of data pins.
DP1_HPD	I	From Module pin: $10k\Omega$ pull-up to $1.8V \rightarrow$ level shifter and $100k\Omega$ pulldown on connector side of shifter \rightarrow ESD to GND .	DP Interrupt (Hot Plug Detect): Connect to HPD pin on DP connector w/termination described.
DP1_AUX_N/P	I/OD	From module pins: series 0.1uF caps \rightarrow then 100K Ω PD on AUX_P and 100K Ω PU to 3.3V on AUX_N \rightarrow ESD.	DP: Auxiliary Channels: Connect to AUX_CH-/+ on DP connector
DP 3.3V Supply	Р	Adequate decoupling (0.1uF and 10uF recommended) on supply near connector.	DP supply to connector: Connect 3.3V supply pin on DP connector to VDD_3V3_SYS.

Note: Any ESD and/or EMI solutions must support targeted modes (frequencies).

6.0 MIPI CSI (VIDEO INPUT)

Jetson Nano brings twelve MIPI CSI lanes to the connector. Three quad-lane camera streams or two quad-lane plus two dual-lane camera streams or one quad-lane plus three dual-lane camera streams are supported. Each data lane has a peak bandwidth of up to 1.5Gbps.

Table 35. Jetson Nano CSI Pin Descriptions

Pin#	Module Pin Name	Tegra X1 Signal	Usage/Description	Usage on DevKit Carrier Board	Direction	Pin Type
10	CSIO_CLK_N	CSI_A_CLK_N	Camara CCI O Clask			
12	CSIO_CLK_P	CSI_A_CLK_P	Camera, CSI 0 Clock			
4	CSI0_D0_N	CSI_A_D0_N	Camera, CSI 0 Data 0	Camera Connector		
6	CSI0_D0_P	CSI_A_D0_P	Carriera, CSI O Data O	Carriera Connector		
16	CSIO_D1_N	CSI_A_D1_N	Camera, CSI 0 Data 1			
18	CSIO_D1_P	CSI_A_D1_P	Camera, CSI O Data 1			
3	CSI1_D0_N	CSI_B_D0_N	Camera, CSI 1 Data 0			
5	CSI1_D0_P	CSI_B_D0_P	Carriera, CSI 1 Data 0	Not Assigned		
15	CSI1_D1_N	CSI_B_D1_N	Camera, CSI 1 Data 1	Not Assigned		
17	CSI1_D1_P	CSI_B_D1_P	Camera, CSI 1 Data 1			
28	CSI2_CLK_N	CSI_E_CLK_N	Camera, CSI 2 Clock			МІРІ D-РНУ
30	CSI2_CLK_P	CSI_E_CLK_P	Carriera, CSI 2 Clock			
22	CSI2_D0_N	CSI_E_D0_N	Camera, CSI 2 Data 0		Input	
24	CSI2_D0_P	CSI_E_D0_P	Carriera, CSI 2 Data 0			
34	CSI2_D1_N	CSI_E_D1_N	Camara CCI 3 Data 1			
36	CSI2_D1_P	CSI_E_D1_P	Camera, CSI 2 Data 1			
27	CSI3_CLK_N	CSI_F_CLK_N	Camera, CSI 3 Clock			
29	CSI3_CLK_P	CSI_F_CLK_P	Carriera, CSI 3 Clock			
21	CSI3_D0_N	CSI_F_D0_N	Camera, CSI 3 Data 0			
23	CSI3_D0_P	CSI_F_D0_P	Carriera, CSI 3 Data 0	-		
33	CSI3_D1_N	CSI_F_D1_N	Camera, CSI 3 Data 1			
35	CSI3_D1_P	CSI_F_D1_P	Carriera, CSi S Data 1			
52	CSI4_CLK_N	CSI_C_CLK_N	Camera, CSI 4 Clock			
54	CSI4_CLK_P	CSI_C_CLK_P	Carriera, CSI 4 Clock	Not Assigned		
46	CSI4_D0_N	CSI_C_D0_N	Company CSLA Data 0	Not Assigned		
48	CSI4_D0_P	CSI_C_D0_P	Camera, CSI 4 Data 0			
58	CSI4_D1_N	CSI_C_D1_N	Camara CCI 4 Data 1			
60	CSI4_D1_P	CSI_C_D1_P	Camera, CSI 4 Data 1			
40	CSI4_D2_N	CSI_D_D0_N	Camara CSI 4 Data 2			
42	CSI4_D2_P	CSI_D_D0_P	Camera, CSI 4 Data 2			
64	CSI4_D3_N	CSI_D_D1_N	Camara CCI 4 Data 2			
66	CSI4_D3_P	CSI_D_D1_P	Camera, CSI 4 Data 3			

Notes: In the Type/Dir column, Output is from Jetson Nano. Input is to Jetson Nano. Bidir is for Bidirectional signals.

Table 36. Jetson Nano Camera Miscellaneous Pin Descriptions

Pin#	Module Pin Name	Tegra X1 Signal	Usage/Description	Usage on DevKit Carrier Board	Direction	Pin Type
213	CAM_I2C_SCL	CAM_I2C_SCL	Camera I2C Clock. $2.2k\Omega$ pull-up to $3.3V$ on the module.	C	Bidir	Open Drain – 3.3V
215	CAM_I2C_SDA	CAM_I2C_SDA	Camera I2C Data. 2.2kΩ pull-up to 3.3V on the module.	Camera Connector		
114	CAM0_PWDN	CAM1_PWDN	Camera 0 Powerdown or GPIO	C		
116	CAM0_MCLK	CAM1_MCLK	Camera 0 Reference Clock	Camera Connector	Output	CMOS – 1.8V
120	CAM1_PWDN	CAM2_PWDN	Camera 1 Powerdown or GPIO		Output	CIVIUS - 1.8V
122	CAM1_MCLK	CAM2_MCLK	Camera 1 Reference Clock			

Notes: In the Type/Dir column, Output is from Jetson Nano. Input is to Jetson Nano. Bidir is for Bidirectional signals.

Figure 17: 4-Lane CSI Camera Connection Example

Table 37. CSI Configurations

Cameras	CSI_0 CLK/Data[1:0]	CSI_1 Data[1:0]	CSI_2 CLK/Data[1:0]	CSI_3 CLK	CSI_3 Data[1:0]	CSI_4 CLK/Data[1:0]
2-Lanes Each		-				
1 of 4 camera	s √					
2 of 4 camera	s		٧			
3 of 4 camera	s			٧	٧	
4 of 4 camera	S					٧
4-Lanes Each						
1 of 3 camera	s V	٧				
2 of 3 camera	S		√		√	
3 of 3 camera	S					٧

Note: 1. CSI 4 can be used as as a x1, x2, or x4 CSI interface.

- 2. If CSI 0/1 and CSI 4 are used for 4-lane interfaces each, CSI 2 and CSI 2 can be used for two 1 or 2-lane interfaces.
- 3. Each 2-lane options shown above can also be used for one single lane camera.

Figure 18: Available Camera Control Pins

Note: The CAM I2C interface is connected to the power monitor device on the module which uses I2C address 7'h40.

Figure 19: CSI Connection Options

Note: Any EMI/ESD devices must be tuned to minimize impact to signal quality and meet the timing and Vil/Vih requirements at the receiver and maintain signal quality and meet requirements for the frequencies supported by the design.

CSI Design Guidelines

CSI and DSI use the MIPI D-PHY for the physical interface. The routing and connection requirements are found in the DSI section.

Table 38. MIPI CSI Signal Connections

Module Pin Name	Type	Termination	Description
CSI[4:2,0]_CLK_N/P	- 1	See note	CSI Differential Clocks: Connect to clock pins of camera. See the CSI Configurations table for
			details
CSI[3:0]_D[1:0]_N/P	1/0	See note	CSI Differential Data Lanes: Connect to data pins of camera. See the CSI Configurations table
CSI4_D[3:0]_N/P			for details

Note: Depending on the mechanical design of the platform and camera modules, ESD protection may be necessary. In addition, EMI control may be needed. Both are shown in the Camera Connection Example diagram. Any EMI/ESD solution must be compatible with the frequency required by the design.

Table 39. Miscellaneous Camera Connections

Module Pin Name	Туре	Termination	Description
CAM_I2C_CLK	0	2.2kΩ pull-ups VDD_3V3_SYS (on Jetson	Camera I2C Interface: Connect to I2C SCL and SDA pins of imager.
CAM_I2C_DAT	1/0	Nano). See note related to EMI/ESD under	The CAM_I2C interface is connected to the power monitor device on
		MIPI CSI Signal Connections table.	the module which uses I2C address 7'h40.
CAM[1:0]_MCLK	0	120Ω bead in series (on Jetson Nano) See note related to EMI/ESD under MIPI CSI Signal Connections table.	Camera Master Clocks: Connect to camera reference clock inputs.
CAM[1:0]_PWDN	0		Camera Power Control signals (or GPIOs [1:0]): Connect to power
			down pins on camera(s).

7.0 SD CARD / SDIO

Jetson Nano uses one SDMMC interface for on-module eMMC (SDMMC4 on Tegra) and brings one to the connector pins for SD Card or SDIO use.

Table 40. Jetson Nano SDIO Pin Descriptions

Pin#	Module Pin Name	Tegra X1 Signal	Usage/Description	Usage on DevKit Carrier Board	Direction	Pin Type
229	SDMMC_CLK	SDMMC3_CLK	SD Card or SDIO Clock		Output	
227	SDMMC_CMD	SDMMC3_CMD	SD Card or SDIO Command			CMOS 1.0V
219	SDMMC_DAT0	SDMMC3_DAT0	SD Card or SDIO Data 0	Net Assissed		
221	SDMMC_DAT1	SDMMC3_DAT1	SD Card or SDIO Data 1	Not Assigned	Bidir	CMOS – 1.8V
223	SDMMC_DAT2	SDMMC3_DAT2	SD Card or SDIO Data 2]		
225	SDMMC_DAT3	SDMMC3_DAT3	SD Card or SDIO Data 3			
208	GPIO08	GPIO_PZ2	GPIO #8 or SD Card Detect	Fan	Input	CMOS – 1.8V

Notes: In the Type/Dir column, Output is from Jetson Nano. Input is to Jetson Nano. Bidir is for Bidirectional signals.

Figure 20: SD Card Connection Example

Notes: Having 0Ω , 0402 resistor is recommended in case of issues with EMI where it can be replaced with an appropriate device.

Table 41. SD Card / SDIO Interface Signal Routing Requirements

Parameter			Requirement	Units	Notes
Max frequency	3.3V Signaling	DS	25 (12.5)	MHz (MB/s)	See note 1
		HS	50 (25)		
	1.8V Signaling	SDR12	25 (12.5)		
		SDR25	50 (25)		
		SDR50	100 (50)		
		SDR104	208 (104)		
		DDR50	50 (50)		
Topology			Point to point		
Reference plane			GND or PWR		See note 2
Trace impedance			50	Ω	±15%. 45Ω optional depending on stack-up
Max via count		PTH	4		Independent of stack-up layers.
		HDI	10		Depends on stack-up layers.
Via proximity (Signal to reference)			< 3.8 (24)	mm (ps)	Up to four signal vias can share 1 GND return
					via
Trace spacing	Micro	strip / Stripline	4x / 3x	dielectric	
Trace length					

SDR50 / SDR25 / SDR12 / HS / DS	Min	16 (100)	mm (ps)				
	Max	139 (876)					
SDR104 / DDR50	Min	16 (100)					
	Max	83 (521)					
Max trace length/delay skew in/between CLK ar			See note 3				
SDR50 / SDR25 / SDR12 / HS / DS		14 (87.5)	mm (ps)				
S	DR104 / DDR50	2 (12.5)					
Keep CLK, CMD and DATA traces away from other	Keep CLK, CMD and DATA traces away from other signal traces or unrelated power traces/areas or power supply components						

Note:

- 1. Actual frequencies may be lower due to clock source/divider limitations.
- 2. If PWR, 0.01uF decoupling cap required for return current

Table 42. SD Card / SDIO Signal Connections

Function Signal Name	Туре	Termination	Description	
SDMMC_CLK	0		SD Card / SDIO Clock: Connect to CLK pin of device.	
SDMMC_CMD	I/O		SD Card / SDIO Command: Connect to CMD pin of device	
SDMMC_D[3:0]	1/0		SD Card / SDIO Data: Connect to Data pins of device	
GPIO08	ı		SD Card Detect (Optional): Connect to CD pin of SD Card socket.	

Tegra supports multiple PCM/I2S audio interfaces and includes a flexible audio-port switching architecture.

Table 43. Jetson Nano Audio Pin Descriptions

Pin#	Module Pin Name	Tegra X1 Signal	Usage/Description	Usage on DevKit Carrier Board	Direction	Pin Type
193	I2SO_DOUT	DAP4_DOUT	I2S Audio Port 0 Data Out		Output	CMOS – 1.8V
195	12S0_DIN	DAP4_DIN	I2S Audio Port 0 Data In	Formanian Handan	Input	CMOS – 1.8V
197	12S0_FS	DAP4_FS	I2S Audio Port 0 Left/Right Clock	Expansion Header	Bidir	CMOS – 1.8V
199	I2SO_SCLK	DAP4_SCLK	I2S Audio Port 0 Clock		Bidir	CMOS – 1.8V
220	I2S1_DOUT	DMIC2_CLK	I2S Audio Port 1 Data Out		Bidir	CMOS – 1.8V
222	12S1_DIN	DMIC1_DAT	I2S Audio Port 1 Data In	M 2 K F	Input	CMOS – 1.8V
224	I2S1_FS	DMIC1_CLK	I2S Audio Port 1 Left/Right Clock	M.2 Key E	Bidir	CMOS – 1.8V
226	I2S1_SCLK	DMIC2_DAT	I2S Audio Port 1 Clock		Bidir	CMOS – 1.8V
211	GPIO09	AUD_MCLK	GPIO #9 or Audio Codec Master Clock	Expansion Header	Output	CMOS – 1.8V

Notes: In the Type/Dir column, Output is from Jetson Nano. Input is to Jetson Nano. Bidir is for Bidirectional signals.

Figure 21. Audio Codec Connection Example

Note: 1. The Interrupt pin from the audio codec can connect to any available Jetson Nano GPIO. If the pin must be wake-capable, choose one of the GPIOs that supports this function.

2. I2C2 supports 1.8V operation since the interface is pulled to 1.8V through $4.7k\Omega$ resistors on the module. If another I2C interface on Jetson Nano is used, a level shifter will be required as all the others are 3.3V.

Table 44. I2S Interface Signal Routing Requirements

Parameter		Requirement	Units	Notes
Configuration / device organiz	zation	1	load	
Max loading		8	pF	
Reference plane		GND		
Breakout region impedance		Min width/spacing		
Trace impedance		50	Ω	±20%
Via proximity (signal to refere	nce)	< 3.8 (24)	mm (ps)	See note 1
Trace spacing	Microstrip or Stripline	2x	dielectric	
Max trace length/delay		~22 (3600)	In (ps)	See note 2
Max trace length/delay skew between SCLK and SDATA OUT/IN		~1.6 (250)	In (ps)	See note 2

Note: Up to four signal vias can share a single **GND** return via

Table 45. Audio Signal Connections

Module Pin Name	Туре	Termination	Description
12S[1:0]_SCLK	1/0		12S Serial Clock: Connect to I2S/PCM CLK pin of audio device.
I2S[1:0]_FS	1/0		12S Frame Select (Left/Right Clock): Connect to corresponding pin of audio device.
I2S[1:0]_DOUT	1/0		I2S Data Output: Connect to data input pin of audio device.
I2S[1:0]_DIN	I		12S Data Input: Connect to data output pin of audio device.
GPIO09	0		Audio Codec Master Clock: Connect to clock pin of audio codec.

9.0 MISCELLANEOUS INTERFACES

9.1 I2C

Jetson Nano brings four I2C interfaces to the connector pins. CAM_I2C is included in the camera pin description table earlier in this document. The assignments in the I2C Interface Mapping table should be used where applicable for the I2C interfaces

Table 46. Jetson Nano I2C Pin Descriptions

Pin#	Module Pin Name	Tegra X1 Signal	Usage/Description	Usage on DevKit Carrier Board	Direction	Pin Type
185	I2CO_SCL	GEN1_I2C_SCL	General I2C 0 Clock. 2.2kΩ pull-up to 3.3V on module.		Bidir	Open Drain – 3.3V
187	I2CO_SDA	GEN1_I2C_SDA	General I2C 0 Data. 2.2kΩ pull-up to 3.3V on the module.			Open Drain – 3.3V
189	I2C1_SCL	GEN2_I2C_SCL	General I2C 1 Clock. 2.2kΩ pull-up to 3.3V on the module.	1267		Open Drain – 3.3V
191	I2C1_SDA	GEN2_I2C_SDA	General I2C 1 Data. 2.2kΩ pull-up to 3.3V on the module.	I2C (general)		Open Drain – 3.3V
232	I2C2_SCL	GEN3_I2C_SCL	General I2C 2 Clock. 2.2kΩ pull-up to 1.8V on the module.			Open Drain – 1.8V
234	I2C2_SDA	GEN3_I2C_SDA	General I2C 2 Data. 2.2kΩ pull-up to 1.8V on the module.			Open Drain – 1.8V

Notes: In the Type/Dir column, Output is from Jetson Nano. Input is to Jetson Nano. Bidir is for Bidirectional signals.

Figure 22. I2C Connections

I2C Design Guidelines

Care must be taken to ensure I2C peripherals on same I2C bus connected to Jetson Nano do not have duplicate addresses. Addresses can be in two forms: 7-bit, with the read/write bit removed or 8-bit including the read/write bit. Be sure to compare I2C device addresses using the same form (all 7-bit or all 8-bit format). The I2C2 interface is connected to an EEPROM on the module which uses I2C address 7'h50. The CAM_I2C interface is connected to the power monitor device on the module which uses I2C address 7'h40.

Notes: The Jetson Nano I2C interfaces have $2.2k\Omega$ pull-ups on the module. Pads for additional pull-ups are recommended in case a stronger pull-up is required due to additional loading on the interfaces.

Table 47. I2C Interface Signal Routing Requirements

Parameter		Requirement	Units	Notes
Max frequency	Standard-mode / Fm / Fm+	100 / 400 / 1000	kHz	See Note 1
Topology		Single ended, bi-directional, mu	ıltiple masters/s	slaves
Max loading	Standard-mode / Fm / Fm+	400	pF	Total of all loads
Reference plane		GND or PWR		
Trace impedance		50 – 60	Ω	±15%
Trace spacing		1x	dielectric	
Max trace length/delay	Standard Mode	3400 (~20)	ps (in)	
	Fm, Fm+ Modes	1700 (~10)		

Note: 1. Fm = Fast-mode, Fm+ = Fast-mode Plus

- 2. Avoid routing I2C signals near noisy traces, supplies or components such as a switching power regulator.
- 3. No requirement for decoupling caps for PWR reference

Table 48. I2C Signal Connections

Module Pin Name	Туре	Termination	Description
I2CO_SCL/SDA	I/OD	2.2kΩ pull-ups to VDD_3V3_SYS on	I2C #0 Clock and Data. Connect to CLK and Data pins of any 3.3V
		Jetson Nano	devices
I2C1_SCL/SDA	I/OD	2.2kΩ pull-ups to VDD_3V3_SYS on	I2C #1 Clock and Data. Connect to CLK and Data pins of 3.3V devices.
		Jetson Nano	
I2C2_SCL/SDA	I/OD	2.2kΩ pull-ups to VDD_1V8 on Jetson	I2C #2 Clock and Data. Connect to CLK and Data pins of any 1.8V
		Nano	devices
CAM_I2C_SCL/SDA	I/OD	2.2kΩ pull-ups to VDD_3V3_SYS on	Camera I2C Clock and Data. Connect to CLK and Data pins of any 3.3V
		Jetson Nano	devices

Note:

- 1. If some devices require a different voltage level than others connected to the same I2C bus, level shifters are required.
- 2. For I2C interfaces that are pulled up to 1.8V, disable the E_IO_HV option for these pads. For I2C interfaces that are pulled up to 3.3V, enable the E_IO_HV option. The E_IO_HV option is selected in the Pinmux registers.

9.2 SPI

The Jetson Nano brings out two of the Tegra SPI interfaces. See the Figure below the Pin Descriptions table.

Table 49. Jetson Nano SPI Pin Descriptions

Pin#	Module Pin Name	Tegra X1 Signal	Usage/Description	Usage on DevKit Carrier Board	Direction	Pin Type
89	SPI0_MOSI	SPI1_MOSI	SPI 0 Master Out / Slave In			
91	SPIO_SCK	SPI1_SCK	SPI 0 Clock			
93	SPI0_MISO	SPI1_MISO	SPI 0 Master In / Slave Out			
95	SPIO_CSO*	SPI1_CS0	SPI 0 Chip Select 0			
97	SPIO_CS1*	SPI1_CS1	SPI 0 Chip Select 1	Consultant bandan	Distr.	CNAOC 4.0V
104	SPI1_MOSI	SPI2_MOSI	SPI 1 Master Out / Slave In	Expansion header	Bidir	CMOS – 1.8V
106	SPI1_SCK	SPI2_SCK	SPI 1 Clock			
108	SPI1_MISO	SPI2_MISO	SPI 1 Master In / Slave Out			
110	SPI1_CS0*	SPI2_CS0	SPI 1 Chip Select 0			
112	SPI1 CS1*	SPI2 CS1	SPI 1 Chip Select 1			

Notes: In the Type/Dir column, Output is from Jetson Nano. Input is to Jetson Nano. Bidir is for Bidirectional signals.

Figure 23. SPI Connections

The figure below shows the basic connections used.

Figure 24. Basic SPI Master/Slave Connections

SPI Design Guidelines

Figure 25. SPI Topologies

Table 50. SPI Interface Signal Routing Requirements

Parameter		Requirement	Units	Notes
Max frequency		65	MHz	
Configuration / device organization		4	load	
Max loading (total of all loads)		15	pF	
Reference plane		GND		
Breakout region impedance		Minimum width and spacing		
Max PCB breakout delay		75	ps	
Trace impedance		50 – 60	Ω	±15%
Via proximity (signal to reference)		< 3.8 (24)	mm (ps)	See note 1
Trace spacing	Microstrip / Stripline	4x / 3x	dielectric	
Max trace length/delay (PCB main trunk)	Point-point	195 (1228)	mm (ps)	
For MOSI, MISO, SCK and CS	2x-load star/daisy	120 (756)		
Max trace length/delay (Branch-A)	2x-load star/daisy	75 (472)	mm (ps)	
for MOSI, MISO, SCK and CS				
Max trace length/delay skew from MOSI, MISO a	nd CS to SCK	16 (100)	mm (ps)	At any point

Note: Up to four signal vias can share a single **GND** return via

Table 51. SPI Signal Connections

Module Pin Names	Туре	Termination	Description	
SPI[1:0]_CLK	I/O		SPI Clock.: Connect to peripheral CLK pin(s)	
SPI[1:0]_MOSI	I/O		SPI Data Output: Connect to slave peripheral MOSI pin(s)	
SPI[1:0]_MISO	1/0		SPI Data Input: Connect to slave peripheral MISO pin(s)	
SPI[1:0]_CS[1:0]*	1/0		SPI Chip Selects.: Connect one CSx* pin per SPI interface to each slave	
			peripheral CS pin on the interface	

9.3 UART

The Jetson Nano brings three UARTs out to the main connector. See figure below for typical assignments of the three available UARTs.

Table 52. Jetson Nano UART Pin Descriptions

Pin#	Module Pin Name	Tegra X1 Signal	Usage/Description	Usage on DevKit Carrier Board	Direction	Pin Type
99	UARTO_TXD	UART3_TXD	UART #0 Transmit	M.2 Key E	Output	
101	UARTO_RXD	UART3_RXD	UART #0 Receive	M.2 Key E	Input	
103	UARTO_RTS*	UART3_RTS	UART #0 Request to Send	M.2 Key E	Output	
105	UARTO_CTS*	UART3_CTS	UART #0 Clear to Send	M.2 Key E	Input	
203	UART1_TXD	UART2_TXD	UART #1 Transmit	Expansion Header	Output	CN405 1 0V
205	UART1_RXD	UART2_RXD	UART #1 Receive	Expansion Header	Input	CMOS – 1.8V
207	UART1_RTS*	UART2_RTS	UART #1 Request to Send	Expansion Header	Output	
209	UART1_CTS*	UART2_CTS	UART #1 Clear to Send	Expansion Header	Input	
236	UART2_TXD	UART1_TXD	UART #2 Transmit.	Serial Port	Output	
238	UART2_RXD	UART1_RXD	UART #2 Receive	Serial Port	Input	

Notes: In the Type/Dir column, Output is from Jetson Nano. Input is to Jetson Nano. Bidir is for Bidirectional signals.

Figure 26. Jetson Nano UART Connections

Table 53. UART Signal Connections

Ball Name	Туре	Termination	Description
UART[2:0]_TXD	0		UART Transmit: Connect to peripheral RXD pin of device
UART[2:0]_RXD	I		UART Receive: Connect to peripheral TXD pin of device
UART[1:0]_CTS*	1		UART Clear to Send: Connect to peripheral RTS pin of device
UART[1:0]_RTS*	0		UART Request to Send: Connect to peripheral CTS pin of device

Jetson Nano provides PWM and Tachometer functionality for controlling a fan as part of the thermal solution. Information on the PWM and Tachometer pins/functions can be found in the following locations:

Jetson Nano Module Pin Mux:

• This is used to configure GPIO14 (PWM) for FAN_PWM and GPIO08 (SDMMC_CD) for FAN_TACH. The pin used for FAN_PWM is configured as PM3_PWM3. The pin used for FAN_TACH is configured as a GPIO.

Tegra X1 (SoC) Technical Reference Manual (TRM):

Functional descriptions and related registers can be found in the TRM for the FAN_PWM (PWM chapter).

Table 54. Jetson Nano Fan Pin Descriptions

Pin #	Module Pin Name	Tegra X1 Signal	Usage/Description	Usage on the Carrier Board	Direction	Pin Type
230	GPIO14	GPIO_PE7	Fan PWM	Fan	Output	CMOS – 1.8V
208	GPIO08	GPIO_PX2	Fan tachometer	Fan	Input	CMOS – 1.8V

Notes: In the Type/Dir column, Output is from Jetson Nano. Input is to Jetson Nano. Bidir is for Bidirectional signals.

Figure 27. Jetson Nano Fan Connections

9.5 Debug

Jetson Nano supports JTAG and a UART for debugging purposes. JTAG is not brought to the module pins, however, but to test points on the module. The UART intended for debug is UART1 with is routed to a level shifter then to a 6-pin UART header on the Developer Kit Carrier Board.

Table 55. Jetson Nano JTAG and Debug UART Pin Descriptions

Pin #	Module Pin Name (see note)	Tegra X1 Signal	Usage/Description	Usage on NVIDIA DevKit Carrier Board	Direction	Pin Type
	JTAG_GP0	JTAG_TRST_N	JTAG test reset		Input	CMOS – 1.8V
	JTAG_RTCK	JTAG_RTCK	JTAG return clock		Input	CMOS – 1.8V
	JTAG_TCK	JTAG_TCK	JTAG test clock	None – JTAG not	Input	CMOS – 1.8V
	JTAG_TDI	JTAG_TDI	JTAG test data In	brought to the module pins on Jetson Nano	Input	CMOS – 1.8V
	JTAG_TDO	JTAG_TDO	JTAG test data Out	pins on secson Nano	Output	CMOS – 1.8V
	JTAG_TMS	JTAG_TMS	JTAG test mode select		Input	CMOS – 1.8V
238	UART2_RXD	UART1_RX	UART 1 receive	Carial nart	Input	CMOS – 1.8V
236	UART2_TXD	UART1_TX	UART 1 transmit	Serial port	Output	

Notes: - In the Type/Dir column, Output is from Jetson Nano. Input is to Jetson Nano. Bidir is for Bidirectional signals.

- JTAG is brought to on-module test points only

Jetson Nano provides access to JTAG via test points on the module.

Figure 28. JTAG and Debug UART Connections (Based on Jetson Nano DevKit Design)

Note:

- 1. Pull-ups or Pull-downs are present on the UART TX and RTS lines for RAM Code strapping.
- 2. If level shifter is implemented, pull-up is required on the RXD line on the non-Jetson Nano side of the level shifter. This is required to keep the input from floating and toggling when no device is connected to the debug UART.

Figure 29. JTAG Test Point Detail

Jetson Nano Bottom Side View

Table 56. JTAG Connections

Jetson Nano Test	Туре	Termination	Description		
Point Signal Name					
(See note)					
JTAG_TMS	- 1		JTAG Mode Select: Connect to TMS pin of connector		
JTAG_TCK	I	$100k\Omega$ to GND (on module)	JTAG Clock: Connect to TCK pin of connector		
JTAG_TDO	0		JTAG Data Out: Connect to TDO pin of connector		
JTAG_TDI	- 1		JTAG Data In: Connect to TDI pin of connector		
JTAG_RTCLK	I		JTAG Return Clock: Connect to RTCK pin of connector		
JTAG_TRST_N	I	100k Ω to GND (on module)	JTAG Test Reset: This signal is used to select normal operation or scan test mode operation.		
			- Normal operation: Leave pulldown resistor on module installed.		
			- Boundary Scan test mode: Connect JTAG_TRST_N to VDD_1V8 (install 100kΩ		
			resistor to VDD_1V8 and remove 100kΩ resistor to GND (see figure). Or, install		
			strong enough resistor connected to VDD_1V8 to overcome weak 100kΩ pulldown		
			$(1\Omega\Omega$ to $4.7k\Omega$.		

9.5.2 Debug UART

The UART2 interface is intended to be used for debug purposes.

Table 57. Debug UART Connections

Module Pin Name	Type	Termination	Description
UART2_TXD	0		UART #2 Transmit: Connect to RX pin of serial device
UART2_RXD	- 1	If level shifter implemented, 100kΩ to supply on	UART #2 Receive: Connect to TX pin of serial device
		the non-Jetson Nano side of the device.	

Note:

Jetson Nano signals that come from Tegra X1 may glitch when the associated power rail is enabled. This may affect pins that are used as GPIO outputs. Designers should take this into account. GPIO outputs that must maintain a low state even while the power rail is being ramped up may require special handling.

10.1 Internal Pull-ups for Dual-Voltage Block Pins Powered @ 1.8V

Several of the MPIO pads are on blocks designed to be powered at either 1.8V or 3.3V. These blocks are powered at 1.8V on Jetson Nano, and the internal pull-up at initial Power-ON is not effective. The signal may only be pulled up a fraction of the 1.8V rail. Once the system boots, software can configure the pins for 1.8V operation and the internal pull-ups will work correctly. If these signals need the pull-ups during Power-ON, external pull-up resistors should be added. The affected pins are listed below. These are the Jetson Nano pins on the dual-voltage blocks powered at 1.8V with Power-ON reset default of Internal pull-up enabled.

- SDMMC_DAT0 - SDMMC_CMD
- SDMMC_DAT1 - SPI1_CS0*
- SDMMC_DAT2 - SPI1_CS1*

SDMMC_DAT3

10.2 Schmitt Trigger Usage

The MPIO pins have an option to enable or disable Schmitt-trigger mode on a per-pin basis. This mode is recommended for pins used for edge-sensitive functions such as input clocks, or other functions where each edge detected will affect the operation of a device. Schmitt-trigger mode provides better noise immunity and can help avoid extra edges from being "seen" by the Tegra inputs. Input clocks include the I2S and SPI clocks (I2Sx_SCLK and SPIx_SCK) when Tegra is in slave mode. The FAN_TACH pin [GPIO8] is another input that could be affected by noise on the signal edges. The SDMMC_CLK pin, while used to output the clock, also sample the clock at the input to help with read timing. Therefore, the SDMMC_CLK pin may benefit from enabling Schmitt-trigger mode. Care should be taken if the Schmitt-trigger mode setting is changed from the default initialization mode as this can influence interface timing.

10.3 Pins Pulled/Driven High During Power-ON

The Jetson Nano is powered up before the carrier board (See Power Sequencing section). The table below lists the pins on Jetson Nano that default to being pulled or driven high. Care must be taken on the carrier board design to ensure that any of these pins that connect to devices on the carrier board (or devices connected to the carrier board) do not cause damage or excessive leakage to those devices. Some of the ways to avoid issues with sensitive devices are:

- External pull-downs on the carrier board that are strong enough to keep the signals low are one solution, given that this does not affect the function of the pin.
- Buffers or level shifters can be used to separate the signals from devices that may be affected. The buffer/shifter should be disabled until the device power is enabled.

Table 58. Jetson Nano Pins Pulled/Driven High by Tegra Prior to SYS_RESET* Inactive

Jetson Nano Pin	Power-ON reset Default	Pull-up Strength (kΩ)	Jetson Nano Pin	Power-ON reset Default	Pull-up Strength (kΩ)
SYS_RESET*	Driven high	na	SPIO_CSO*	Internal pull-up	~15
SLEEP/WAKE*	Internal pull-up	~100	SPIO_CS1*	Internal pull-up	~15
FORCE_RECOVERY*	Internal pull-up	~100	SPI1_CSO*	Internal pull-up	~18
UART1_RXD	Internal pull-up	~100	SPI1_CS1*	Internal pull-up	~18

DVIDIA

Table 59. Jetson Nano Pins Pulled High on the Module with External Resistors to Supply that is on Prior to SYS_RESET_IN* Inactive

Jetson Nano Pin	Pull-up Supply Voltage (V)	External Pull-up (kΩ)	Jetson Nano Pin	Pull-up Supply Voltage (V)	External Pull-up (kΩ)
I2CO_SCL/SDA	3.3	2.2	SPI1_CS0*	1.8	100
I2C1_SCL/SDA	3.3	2.2	SPI1_CS1*	1.8	100
I2C2_SCL/SDA	1.8	2.2	PCIE0_CLKREQ*	3.3	47
CAM_I2C_SCL/SDA	3.3	2.2	PCIEO_RST*	3.3	4.7
			PCIE WAKE*	3.3	100

11.0 UNUSED INTERFACE TERMINATIONS

11.1 Unused MPIO (Multi-purpose Standard CMOS Pad) Interfaces

The following Jetson Nano pins (and groups of pins) are Tegra MPIO pins that support either special function IOs (SFIO) and/or GPIO capabilities. Any unused pins or portions of pin groups listed below that are not used can be left unconnected.

Table 60. Unused MPIO pins / Pin Groups

Jetson Nano Pins / Pin Groups	Jetson Nano Pins / Pin Groups
FORCE_RECOVERY*	SDMMC
GPIO00	12S
PCIEO_CLK/RST/CLKREQ/WAKE	UART
GPI007, GPI013, GPI014	I2C
DPO_HPD, DP1_HPD, HDMI_CEC	SPI
CAM Control, Clock	

12.0 DESIGN CHECKLIST

The checklist below is intended to help ensure that the correct connections have been made in a design. The check items describe connections for the various interfaces and the "Same/Diff/NA" column is intended to be used to indicate whether the design matches the check item description, is different, or is not applicable to the design.

Table 61. Checklist

Check Item Descrip	otion						Same/Diff/N/
Carrier Board S	gnal Termina	itions					
To be impleme	nted on the	carrier bo	oard for	interfaces t	that are used)		
<u> </u>		Parallel To	erminatio	on	Series Termina	tion	
USB/PCIe							
JSBSS_TX_N/P (USB 3.	0)	_			0.1uF capacitors		
JSBSS_RX_N/P (USB 3.		_			·	directly connected to device	
PCIE0_TX[3:0]_N/P	-,	_			0.1uF capacitors	,	
PCIE0_RX[3:0]_N/P		_				directly connected to device	
thernet						•	
GBE MDIO N/P		_			Magnetics near or	in RJ45 connector	
GBE_MDI1_N/P		_			Magnetics near or		
GBE MDI2 N/P		_			Magnetics near or		
GBE MDI3 N/P		_			Magnetics near or		
GBE ACT		0.1uF capaci	tor to GND			lue depends on LED used.	1
GBE LINK		0.1uF capaci			Max current limit n	•	
<u>-</u>		capaci					
DP0 for eDP/DP							
DP0_TXD3_N/P		ESD to GND			0.1uF capacitors		
DP0_TXD2_N/P		ESD to GND			0.1uF capacitors	1	
DP0_TXD1_N/P		ESD to GND			0.1uF capacitors		
DP0_TXD0_N/P		ESD to GND			0.1uF capacitors		
DP0_AUX_P		100kΩ pull-down to GND near connector			0.1uF capacitor		
		and ESD to GND		·			
DP0_AUX_N		$100k\Omega$ pull-up to 3.3V near connector and			0.1uF capacitor		
		ESD to GND					
DP0_HPD		10kΩ pull-up to 1.8V near module and			Level Shifter (w/ou	tput toward module) and	
		100k Ω pull-down to GND on DP side of			100k Ω resistor to DP connector. Level shifter		
		level shifter.	ESD to GN	ID	must be non-invert	ing.	
DP1 for HDMI (See	above if impler			•	T		
DP1_TXD3_N/P				0Ω bead to GND.	· ·	en series resistors (see	
		ł	•	series resistors.	HDMI section abou		
DP1_TX[2:0]_N/P		499Ω , 1% resistor to 600Ω bead to GND		0.1uF capacitors then series resistors (see			
				HDMI section about value)			
DP1_AUX_N/P				ear module and	Bidirectional level shifter between Pull-ups in		1
				r HDMI conn.	Parallel Termination column Level shifter (w/output toward module)		
DP1_HPD				ear module and I D near HDMI coni	, ,		
		ESD to GND .		near HDIVII CON	•	between Pull-up and Pull-down in Parallel Termination column. Level shifter can be	
		ESD to GND.				verting. 100kΩ series	
					_	ull-down and HDMI	
					connector.	uli-down and fibivii	
					connector.		
Power		<u> </u>			<u> </u>		
	nlies						
Module Power Sup			(\(\(\) \)	Supply Type	Source	Enable	
Supply (Carrier Board) VDD_IN	Usage Main Supply from A	Adaptor	(V) 5V	Supply Type	Source	Enable	
			1.65-5.5	Adapter	na Super sep er sein	na	
PMIC_BBAT	Real-time clock sup	phià	1.05-5.5	PMIC is supply when charging	Super-cap or coin-	na	1
				cap or coin-cell	cell is source when system power		
				cap or contreel	removed		İ

NVIDIA.						
Carrier Board Su	pplies					
Main Input	Main power input from DC	5		Main Input	Connect power source	
•	Adapter				·	
Main 3.3V Supply	Main 3.3V supply	3.3		Main Input	SYS_RESET*	
Main 1.8V Supply	Main 1.8V supply	1.8		Main Input	SYS_RESET*	
Power Control						
	as enable for carrier board supplie	es (can also b	e driven low to for	ce module reset)		
_	when active, causes the carrier b	•				
	nected to supplies/devices to be o			ep (LPO)		
	ional signal to wake system from		.gouu.c uccp sic	CP (2. 0)		-
•===: , :::: ::: ::: ::: ::: ::: ::: ::: :::	ional signal to trace system from	отеер точет				
HCD/DCIa/CA	TA Connections					
	TA Connections					
USB 2.0						
USB0_D_N/P availab	le to be used as device for USB re	covery at a r	minimum			
VBUS from connecto	r connects to load switch (if host	supported) a	and through level s	nifter to GPIO00 (USB0_VBUS_EN0) on the	
module.						
	nnected to D-/D+ pins on USB 2.0		evice.			
Any EMI/ESD devices	s used are suitable for USB High-s	peed				
USB 3.0						
USBSS RX N/P conr	nected to RX-/+ pins on USB 3.0 co	onnector. (Se	ee Signal Terminati	ons section)		
	ected to TX-/+ pins on USB 3.0 co				ection)	
	for device TX pins (those connec				,	
Terminations section					, , , , , , , , , , , , , , , , , , , ,	
If external ESD prote	ction needed, Texas Instruments	TPD4E05U06	device is recomm	ended		
PCle						
PCIe Controller #0 (s	unnorts un to v/l					
	for 3.3V single-lane device/conn	ector				
	0] used for 3.3V 2-lane device/co					
	0] used for 3.3V 4-lane device/co					
	o corresponding pins on connector		on device on the	arriar hoard (Sac	Signal Terminations section)	
	o corresponding pins on connecto					
	I for device TX_N/P pins (those co					
Terminations section	_ : : : : : : : : : : : : : : : : : : :	infected to t	.ne module KA_N/I) ii device is oii t	ne carrier board (See Signal	
	for PCIe is PCIE0_CLK1_N/P					
	eset for PCIe PCIEO_CLKREQ* and	PCIFO RST*	Pull-uns are nrow	ided on the modu	ıle	
	cted to WAKE pins on devices/con				aic .	
PCIL_WARE CONNEC	tted to WARE pins on devices/con	inectors. Tur	ii-up is provided on	the module.		
Ethernet						
	connected to equivalent size and	nognotice di	vice (Coe Ciaral T	mination -\		
	connected to equivalent pins on n	_		•		
	ected to Link LED (green) pins on					_
GBE_LED_ACT conne	ected to Activity LED (yellow) pins	on connecto	or (See Signal Termi	nations)		_
SDMMC Conn	ections					
SDMMC_CLK connec	ted to CLK pin of device/socket					
SDMMC_CMD conne	ected to CMD pin of device/socke	t. (See Signal	Terminations)			
_	nected to DATA[3:0] pins of devic		•	ons)		
GPIO08 connected to	SD Card card-detect pin if imple	mented.	-	-		
	s used are suitable for highest free		ported (low capaci	tive load: <1pf red	commended).	
, , , = ====		,	. ,	_p.70	,	
Display Conn	actions					
Display Conne	ECTIONS					
DSI						
DSI Dual Link Config	urations					
DSI_CLK_N/P connect	cted to CLKn/p pins of the DSI into	erface of disp	olay			
	nected to data lanes of x2 DSI inte					
A EN AL /ECD. decises	DCI sisuala sua suitalala i	Carabana Ca				

Any EMI/ESD devices used on DSI signals are suitable for highest frequencies supported (low capacitive load: <1pf recommended)

DP0 for eDP / DP

DPO_TXD[3:0]_N/P connected to D[3:0]-/+ pins on eDP/DP connector (See DP/HDMI Pin Mapping table and Signal Terminations)

DPO_AUX_N/P connected to Aux Lane of panel/connector (See Signal Terminations)

DPO_HPD connected to **HPD** pin of panel/connector (See Signal Terminations)

Any EMI/ESD devices used are suitable for highest frequencies supported (Texas Instruments TPD4E05U06 recommended)

DP1 for HDMI

DP1_TXD3_N/P connected to C-/C+ pins on HDMI connector (See Signal Terminations)

DP1_TXD[2:0]_N/P connected to D[0:2]_-/+ pins (See DP/HDMI Pin Mapping table) (See Signal Terminations)

DP1_HPD connected to **HPD** pin on HDMI connector (See Signal Terminations)

HDMI CEC connected to CEC on HDMI connector through gating circuitry (see HDMI connection figure for details).

DP1 AUX P connected to SCL and DP1 AUX N to SDA on HDMI connector (See Signal Terminations)

HDMI 5V Supply connected to +5V on HDMI connector.

See Common High-Speed Interface Requirements section for common-mode choke requirements if this is needed (not recommended unless EMI issues seen)

See HDMI section for ESD requirements. Texas Instruments TPD4E02B04 recommended

Video Input

Camera (CSI)

CSI[4:2,0]_CLK_N/P connected to clock pins of camera. See CSI Configurations table for details

CSI[3:0]_D[1:0]_N/P & CSI4_D[3:0]_N/P connected to data pins of camera. See CSI Configurations table for details

Any EMI/ESD devices used are suitable for highest frequencies supported (low capacitive load: <1pf recommended)

Control

CAM_I2C_SCL/SDA connected to I2C SCL and SDA pins of imager (See Signal Terminations).

CAM[1:0]_MCLK connected to Camera reference clock inputs.

CAM[1:0] PWDN connected to power-down pins on camera(s) or used as GPIO for other purposes.

Audio

Codec/I2S/DMIC/DSPK

Either I2SO or I2S1 are used for audio codec if present in design

Either I2SO or I2S1 are used for Bluetooth if present in design

I2Sx_SCLK Connect to I2S/PCM CLK pin of audio device.

I2Sx_FS Connect to left/right clock pin of audio device.

I2Sx_DOUT Connect to data input pin of audio device.

I2Sx_DIN Connect to data output pin of audio device.
GPIO09 Connect to clock pin of audio codec.

Available GPIO connected to interrupt pin of audio codec (wake capable GPIO used if this is required).

12C/SPI/UART

I2C

I2C devices on same I2C interface do not have address conflicts (comparisons are done 7-bit to 7-bit format or 8-bit to 8-bit format)

I2CO_SCL/SDA, I2C1_SCL/SDA and CAM_I2C_SCL/SDA are used for 3.3V devices (or level shifters employed) and do not have pull-ups on the carrier board since the devices are pulled to 3.3V on the module with $2.2k\Omega$ resistors.

I2C2_SCL/SDA is used for 1.8V devices (or level shifters employed) and does not have pull-ups on the carrier board since the devices are pulled to 1.8V on the module with $2.2k\Omega$ resistors.

Pull-up resistors are provided on the non-module side of any level shifters.

Pull-up resistor values after any level shifters are based on frequency/load (check I2C Spec)

I2C[2:0]_SCL/SDA and CAM_I2C_SCL/SDA pins connect to SCL/SDA pins of devices

SPI

SPI[1:0] CLK connected to peripheral CLK pin(s)

SPI[1:0]_MOSI connected to slave peripheral MOSI pin(s)

SPI[1:0]_MISO connected to slave peripheral MISO pin(s)

SPI[1:0]_CS[1:0]* connected one CS pin per SPI IF to each slave peripheral CS pin on the interface

UART

UARTx_TX connects to peripheral RX pin of device

UARTx_RX connects to peripheral TX pin of device

UARTx_CTS* connects to peripheral RTS# pin of device

IIVIDIA.							
UARTx_RTS* connects to peripheral CTS# pin	of device						
Strapping							
FORCE_RECOVERY*: To enter Forced Recovery mode, pin is connected to GND when system is powered on.							
Unused Dedicated Special Function Interface Pins							
Ball Name	Termination						
USB 2.0							
USB[2:1]_D_N/P	Leave NC any unused pins						
USB 3.0 / PCIe							
PCIEO_TXx_N/P, USBSS_TX_N/P	Leave NC any unused TX lines						
PCIEO_RXx_N/P, USBSS_RX_N/P	Leave NC any unused RX lanes						
PCIEO_CLKx_N/P	Leave NC if not used						
Ethernet							
GBE_MDIx	Leave NC if not used						
GBE_LED_LINK, GBE_LED_ACT	Leave NC any not used						
DSI							
DSI_CLK_N/P	Leave NC any clock lane not used.						
DSI_Dx_N/P	Leave NC any unused DSI data lanes						
CSI							
CSIx_CLK_N/P	Leave NC any unused CSI clock lanes						
CSIx_Dx_N/P	Leave NC any unused CSI data lanes						
eDP							
DP0_TXDx_N/P	Leave NC any unused lanes						
DP0_AUX_N/P	Leave NC if not used						
DP0_HPD	Leave NC if not used						
HDMI/DP							
DP1_TXDx_N/P	Leave NC if lanes not used for HDMI or DP						
DP1_AUX_N/P	Leave NC if not used						
DP1_HPD	Leave NC if not used						
HDMI_CEC	Leave NC if not used						

13.0 JETSON NANO PIN DESCRIPTIONS

Table 62. Jetson Nano Connector (260-Pin SO-DIMM) Pin Descriptions (Odd Side)

				Usage on NVIDIA DevKit		
Pin#	Jetson Nano Signal Name	Tegra X1 Pin Name	Usage/Description	Carrier Board	Direction	Pin Type
1	GND	-	GND	GND	-	GND
3	CSI1_D0_N	CSI_B_D0_N	Camera, CSI 1 Data 0	Not assigned	Input	MIPI D-PHY
5	CSI1_D0_P	CSI_B_D0_P	•			
7	GND	-	GND	GND	-	GND
9	RSVD RSVD		Not used	-	-	-
13	GND	_	GND	GND	_	GND
15	CSI1 D1 N	CSI B D1 N				
17	CSI1_D1_P	CSI_B_D1_P	Camera, CSI 1 Data 1	Not assigned	Input	MIPI D-PHY
19	GND	-	GND	GND	-	GND
21	CSI3_D0_N	CSI_F_D0_N	Camera, CSI 3 Data 0	Not assigned	Input	MIPI D-PHY
23	CSI3_D0_P	CSI_F_D0_P	•	-	put	
25	GND	-	GND	GND	-	GND
27	CSI3_CLK_N	CSI_F_CLK_N	Camera, CSI 3 Clock	Not assigned	Input	MIPI D-PHY
29 31	CSI3_CLK_P GND	CSI_F_CLK_P	GND	GND	_	GND
33	CSI3_D1_N	CSI_F_D1_N				
35	CSI3 D1 P	CSI F D1 P	Camera, CSI 3 Data 1	Not assigned	Input	MIPI D-PHY
37	GND	-	GND	GND	-	GND
39	DP0_TXD0_N	EDP_TXDN0	Display Port 0 Data Lane 0	DP connector	Output	AC-Coupled on carrier board
41	DP0_TXD0_P	EDP_TXDP0			·	•
43	GND	-	GND	GND	-	GND
45	DP0_TXD1_N	EDP_TXDN1	Display Port 0 Data Lane 1	DP connector	Output	AC-Coupled on carrier board
47 49	DP0_TXD1_P GND	EDP_TXDP1	GND	GND	_	GND
51	DP0_TXD2_N	EDP_TXDN2		GIVD		GND
53	DP0 TXD2 P	EDP TXDP2	Display Port 0 Data Lane 2	DP connector	Output	AC-Coupled on carrier board
55	GND	-	GND	GND	-	GND
57	DP0_TXD3_N	EDP_TXDN3	Display Port 0 Data Lane 3	DP connector	Output	AC Coupled on carrier board
59	DP0_TXD3_P	EDP_TXDP3	Display Port o Data Larie 5	DP connector	•	AC-Coupled on carrier board
61	GND	-	GND	GND	-	GND
63	DP1_TXD0_N	HDMI_DP_TXDN0	DisplayPort 1 Lane 0 or HDMI Lane 2	HDMI connector	Output	AC-Coupled on carrier board
65 67	DP1_TXD0_P GND	HDMI_DP_TXDP0	GND	GND	_	GND
69	DP1_TXD1_N	HDMI DP TXDN1	GND	GND	_	GIND
71	DP1_TXD1_P	HDMI_DP_TXDP1	DisplayPort or HDMI Lane 1	HDMI connector	Output	AC-Coupled on carrier board
73	GND	-	GND	GND	-	GND
75	DP1_TXD2_N	HDMI_DP_TXDN2	DisplayPort 1 Lane 2 or HDMI Lane 0	HDMI connector	Output	AC-Coupled on carrier board
77	DP1_TXD2_P	HDMI_DP_TXDP2	Displayi of CE Lane 2 of Fibivit Lane 0	TIBIVII COTTILECTO	Output	·
79	GND	-	GND	GND	-	GND
81	DP1_TXD3_N	HDMI_DP_TXDN3 HDMI_DP_TXDP3	DisplayPort 1 Lane 3 or HDMI Clk Lane	HDMI connector	Output	AC-Coupled on carrier board
83 85	DP1_TXD3_P GND	HDIVII_DP_TXDP3	GND	GND	_	GND
87	GPIO00	USB_VBUS_EN0	GPIO #0 or USB 0 VBUS Detect	USB 2.0 Micro AB	Input	USB VBUS, 5V
89	SPI0_MOSI	SPI1_MOSI	SPI 0 Master Out / Slave In			
91	SPIO_SCK	SPI1_SCK	SPI 0 Clock			
93	SPI0_MISO	SPI1_MISO	SPI 0 Master In / Slave Out	Expansion Header	Bidir	CMOS – 1.8V
95	SPIO_CSO*	SPI1_CS0	SPI 0 Chip Select 0			
97	SPIO_CS1*	SPI1_CS1	SPI 0 Chip Select 1			
99	UARTO_TXD	UART3_TXD UART3_RXD	UART #0 Proceive	-	Output	
101	UARTO_RXD UARTO_RTS*	UART3_RXD UART3_RTS	UART #0 Receive UART #0 Request to Send	M.2 Key E	Output Input	CMOS – 1.8V
105	UARTO CTS*	UART3_KT3	UART #0 Clear to Send	7	Input	
107	GND	-	GND	GND	-	GND
109	USB0_D_N	USB0_DN	LISP 2 0 Port 0 Data			
111	USB0_D_P	USB0_DP	USB 2.0 Port 0 Data	USB 2.0 Micro AB	Bidir	USB PHY
113	GND	-	GND	GND	-	GND
115	USB1_D_N	USB1_DN	USB 2.0 Port 1 Data	USB 3.0 Type A	Bidir	USB PHY
117	USB1_D_P	USB1_DP			_	CND
119 121	GND USB2 D N	USB2 DN	GND	GND	-	GND
123	USB2_D_N	USB2_DP	USB 2.0, Port 2 Data	M.2 Key E	Bidir	USB PHY
123	0302_D_I	0302_DI	1	1	l	I

Usage on NVIDIA DevKit Jetson Nano Signal Name Tegra X1 Pin Name Usage/Description Direction Pin Type Carrier Board GND GND GND 127 NFC INT GPIO #04 M 2 Key F CMOS - 1 8V GPIO04 Input 129 GND GND GND GND 131 PCIEO RXO N PEX RX4N PCIe PHY, AC-Coupled on PCIe #0 Receive 1 (PCIe Ctrl #0 Lane 0) M.2 Kev E Input PCIEO RXO P PEX RX4P carrier board 133 GND GND GND PCIEO RX1 N 137 PEX RX3N PCIe PHY, AC-Coupled on PCIe #0 Receive 1 (PCIe Ctrl #0 Lane 1) Not assigned Input PCIEO_RX1_P PEX_RX3P carrier board 139 GND GND GND GND 141 143 RSVD Not used 145 RSVD 147 GND GND GND GND 149 PEX_RX2N PCIE0_RX2_N PCIe PHY, AC-Coupled on PCIe #0 Receive 2 (PCIe Ctrl #0 Lane 2) Not assigned Input PEX RX2P carrier board 151 PCIEO RX2 P GND 153 GND PCIEO RX3 N PEX RX1N 155 PCIe PHY, AC-Coupled on PCIe #0 Receive 3 (PCIe Ctrl #0 Lane 3) Not assigned Input 157 PCIEO_RX3_P PEX_RX1P carrier board GND 159 GND GND GND PEX RX6N 161 USBSS RX N USB SS PHY, AC-Coupled (off USB SS Receive (USB 3.0 Ctrl #0) USB 3.0 Type A Input 163 USBSS_RX_P PEX_RX6P the module) GND GND GND 165 GND 167 **RSVD** Not used 169 RSVD GND GND GND GND 171 173 **RSVD** Not used 175 **RSVD** 177 GND GND GND GND PCIe Wake, 100kΩ pull-up to 3.3V on the Open Drain 3.3V, Pull-up on 179 PCIE_WAKE* PEX_WAKE_N Input module the module M.2 Kev E PCIe #0 Reset (PCIe Ctrl #0). 4.7kΩ pull-up Open Drain 3.3V, Pull-up on 181 PCIEO RST* PEX LO RST N Output to 3.3V on the module the module RSVD 183 Not used General I2C 0 Clock. 2.2kΩ pull-up to 3.3V I2CO_SCL 185 GEN1 I2C SCL Ridir Open Drain - 3.3V on module General I2C 0 Data. 2.2kΩ pull-up to 3.3V 187 I2CO SDA GEN1 I2C SDA Bidir Open Drain - 3.3V on the module. I2C (General) General I2C 1 Clock. 2.2kΩ pull-up to 3.3V 189 I2C1_SCL GEN2_I2C_SCL Bidir Open Drain - 3.3V on the module General I2C 1 Data. $2.2k\Omega$ pull-up to 3.3V191 I2C1 SDA GEN2_I2C_SDA Ridir Open Drain - 3 3V on the module. DAP4 DOUT 193 I2S0_DOUT I2S Audio Port 0 Data Out CMOS - 1.8V Input DAP4 DIN CMOS - 1.8V 195 I2SO_DIN I2S Audio Port 0 Data In Bidir **Expansion Header** 197 I2SO_FS DAP4_FS I2S Audio Port 0 Left/Right Clock Output CMOS - 1.8V I2S Audio Port 0 Clock DAP4_SCLK CMOS - 1.8V 12SO SCLK Bidir 199 201 GND GND GND GND UART1 TXD UART2 TXD UART #1 Transmit Output CMOS - 1.8V 203 205 UART1 RXD UART2 RXD UART #1 Receive Input CMOS - 1.8V UART1 RTS* UART2_RTS UART #1 Request to Send CMOS - 1.8V 207 **Expansion Header** Output UART2_CTS UART #1 Clear to Send CMOS - 1.8V 209 UART1_CTS* Input 211 GPIO09 AUD MCLK GPIO #9 or Audio Codec Master Clock CMOS - 1.8V Output Camera I2C Clock. 2.2kΩ pull-up to 3.3V on 213 CAM_I2C_SCL CAM_I2C_SCL Bidir Open Drain - 3.3V the module. Camera connector Camera I2C Data. 2.2kΩ pull-up to 3.3V on 215 CAM_I2C_SDA CAM_I2C_SDA Bidir Open Drain - 3.3V the module. 217 GND GND GND GND 219 SDMMC_DATO SDMMC3_DAT0 SD Card or SDIO Data 0 Bidir CMOS - 1.8V SDMMC DAT1 CMOS - 1.8V 221 SDMMC3 DAT1 SD Card or SDIO Data 1 Ridir 223 SDMMC_DAT2 SDMMC3_DAT2 SD Card or SDIO Data 2 Bidir CMOS - 1.8V Not assigned 225 SDMMC DAT3 SDMMC3_DAT3 SD Card or SDIO Data 3 Bidir CMOS - 1.8V SDMMC_CMD SDMMC3_CMD SD Card or SDIO Command Bidir CMOS - 1.8V 227 229 SDMMC_CLK SDMMC3_CLK SD Card or SDIO Clock CMOS - 1.8V Output GND GND GND GND 231 Used by the module to request a shutdown SHUTDOWN_REQ* from the carrier board. $^{\sim}5k\Omega$ pull-up to 233 System Output Analog 5.0V VDD_IN (5V) on the module. PMIC Battery Back-up. Optionally used to Battery Back-up using

provide back-up power for the Real-Time-

Clock (RTC). Connects to Lithium Cell or

(PMIC BBATT)

235

PMIC_BBAT

1.65V-5.5V

Bidir

Super-capacitor

Pin#	Jetson Nano Signal Name	Tegra X1 Pin Name	Usage/Description	Usage on NVIDIA DevKit Carrier Board	Direction	Pin Type
			super capacitor on Carrier Board. PMIC is source when charging cap or coin cell. Super cap or coin cell is source when system is disconnected from power.			
237	POWER_EN	(PMIC EN0 through converter logic)	Signal for module on/off: high level on, low level off. Connects to module PMIC EN0 through converter logic. $100 \text{k}\Omega$ pulldown on the module.	System	Input	CMOS- 5.0V
239	SYS_RESET*	SYS_RESET_IN_N	Module Reset. Reset to the module when driven low by the carrier board. Used as carrier board supply enable when driven high by the module when module power sequence is complete. Used to ensure proper power on/off sequencing between module and carrier board supplies. $4.7k\Omega$ pull-up to $1.8V$ on the module.	System	Bidir	Open Drain, 1.8V
241	GND					
243	GND		GND	GND		GND
245	GND	-			-	
247	GND					
249	GND					
251	VDD_IN					
253	VDD_IN			Main DC input	Input	5.0V
255	VDD_IN	-	Main power – Supplies PMIC & other regs			
257	VDD_IN					
259	VDD_IN					

Table 63. Jetson Nano Connector (260-Pin SO-DIMM) Pin Descriptions (Even Side)

Pin#	Jetson Nano Signal Name	Tegra X1 Pin Name	Usage/Description	Usage on NVIDIA DevKit Carrier Board	Direction	Pin Type
2	GND	-	GND	GND	-	GND
4	CSIO_DO_N	CSI A DO N			Input	MIPI D-PHY
6	CSIO_DO_P	CSI_A_D0_P	Camera, CSI 0 Data 0	Camera connector		
8	GND	-	GND	GND	-	GND
10	CSIO_CLK_N	CSI_A_CLK_N	Comora CSI O Clork	Comoro connector	lan.uk	MIDLD DLIV
12	CSIO_CLK_P	CSI_A_CLK_P	Camera, CSI 0 Clock	Camera connector	Input	MIPI D-PHY
14	GND	-	GND	GND	-	GND
16	CSIO_D1_N	CSI_A_D1_N	Camera, CSI 0 Data 1	Camera connector	Input	MIPI D-PHY
18	CSIO_D1_P	CSI_A_D1_P	Carriera, CSI O Data 1	Camera connector	IIIput	WIIPI D-PH1
20	GND	-	GND	GND	-	GND
22	CSI2_D0_N	CSI_E_D0_N	Camera, CSI 2 Data 0		Input	MIPI D-PHY
24	CSI2_D0_P	CSI_E_D0_P	Carriera, CSI 2 Data 0		IIIput	WIIFT D-FTTT
26	GND	-	GND	GND	-	GND
28	CSI2_CLK_N	CSI_E_CLK_N	Camera, CSI 2 Clock		Input	MIPI D-PHY
30	CSI2_CLK_P	CSI_E_CLK_P	Carriera, CSI 2 CIOCK		•	WIII T D-1 111
32	GND	-	GND	GND	-	GND
34	CSI2_D1_N	CSI_E_D1_N	Camera, CSI 2 Data 1		Input	MIPI D-PHY
36	CSI2_D1_P	CSI_E_D1_P	Cumera, est 2 bata 1		•	WIII 1 2 1 1 1 1
38	GND	-	GND	GND	-	GND
40	CSI4_D2_N	CSI_D_D0_N	Camera, CSI 4 Data 0	Not assigned	Output	MIPI D-PHY
42	CSI4_D2_P	CSI_D_D0_P	,			
44	GND	-	GND	GND	-	GND
46	CSI4_DO_N	CSI_C_D0_N	Camera, CSI 4 Data 0	Not assigned	Output	MIPI D-PHY
48	CSI4_D0_P	CSI_C_D0_P	·	_	0	
50	GND	-	GND	GND	-	GND
52	CSI4_CLK_N	CSI_C_CLK_N	Camera, CSI 4 Clock	Not assigned	Output	MIPI D-PHY
54	CSI4_CLK_P	CSI_C_CLK_P		_	· ·	
56	GND	-	GND	GND	-	GND
58	CSI4_D1_N	CSI_C_D1_N	Camera, CSI 4 Data 1	Not assigned	Output	MIPI D-PHY
60	CSI4_D1_P	CSI_C_D1_P	·	-	•	
62	GND	-	GND	GND	-	GND
64	CSI4_D3_N	CSI_D_D1_N	Camera, CSI 4 Data 1	Not assigned	Input	MIPI D-PHY
66	CSI4_D3_P	CSI_D_D1_P	Louis	aun .		OND
68	GND DSI DO N	- DCI A DO N	GND	GND	-	GND
70	DSI_DO_N	DSI_A_DO_N	Display, DSI Data 0	Not assigned	Bidir	MIPI D-PHY
72	DSI_DO_P	DSI_A_D0_P	CND	CNID		CNID
74	GND	-	GND	GND	-	GND

76	DSI CLK N	DSI A CLK N				
			Display, DSI Clock 0	Not assigned	Output	MIPI D-PHY
78	DSI_CLK_P	DSI_A_CLK_P				-
80	GND	-	GND	GND	-	GND
82	DSI_D1_N	DSI_A_D1_N	Display, DSI Data 1	Not assigned	Output	MIPI D-PHY
84	DSI_D1_P	DSI_A_D1_P	Display, D3i Data 1		Catput	2
86	GND	-	GND	GND	-	GND
88	DPO_HPD	DP_HPD0	Display Port 0 Hot Plug Detect		Input	CMOS – 1.8V
90	DP0_AUX_N	DP_AUX_CH0_N		DP connector	Bidir	Open Drain, 1.8V
92	DPO AUX P	DP AUX CHO P	Display Port 0 Auxiliary Channel		Input	CMOS – 1.8V
94	HDMI CEC	HDMI CEC	HDMI CEC		,	AC-Coupled on Carrier Board
34	TIDINI_CEC	TIDIVII_CEC	TIDIVII CEC		Bidir	(eDP/DP) or Open-Drain, 1.8V
96	DP1_HPD	HDMI_INT_DP_HPD	Display Port 1 or HDMI Hot Plug Detect			(3.3V tolerant - I2C)
98	DP1_AUX_N	DP_AUX_CH1_N	Display Port 1 Aux- or HDMI DDC SDA	HDMI connector		AC-Coupled on Carrier Board
					Bidir	(eDP/DP) or Open-Drain, 1.8V
100	DP1_AUX_P	DP_AUX_CH1_P	Display Port 1 Aux+ or HDMI DDC SCL			(3.3V tolerant - DDC/I2C)
102	GND	-	GND	GND	-	GND
104	SPI1_MOSI	SPI2 MOSI	SPI 1 Master Out / Slave In			
106	SPI1_SCK	SPI2_SCK	SPI 1 Clock			
108	SPI1_MISO	SPI2 MISO	SPI 1 Master In / Slave Out	Evnancian haadar	Bidir	CMOS – 1.8V
		_		Expansion header	Bluii	CIVIO3 – 1.8V
110	SPI1_CSO*	SPI2_CS0	SPI 1 Chip Select 0			
112	SPI1_CS1*	SPI2_CS1	SPI 1 Chip Select 1			
114	CAMO_PWDN	CAM1_PWDN	Camera 0 Powerdown or GPIO	Camera connector		
116	CAM0_MCLK	CAM1_MCLK	Camera 0 Reference Clock		Output	CMOS – 1.8V
118	GPIO01	CAM_AF_EN	GPIO #1 or Camera MCLK #2	Not assigned		
120	CAM1_PWDN	CAM2_PWDN	Camera 1 Powerdown or GPIO			01406 4 014
122	CAM1_MCLK	CAM2 MCLK	Camera 1 Reference Clock		Output	CMOS – 1.8V
124	GPIO02	GPIO PH6	GPIO #2			
126	GPIO03	GPS EN	GPIO #3		Input	CMOS – 1.8V
128	GPIO05	AP WAKE NFC	GPIO #5	M.2 Key E		
					Output	CMOS – 1.8V
130	GPIO06	NFC_EN	GPIO #6	CNID		ON D
132	GND	-	GND	GND	-	GND
134	PCIEO_TXO_N	PEX_TX4N	PCIe #0 Transmit 0 (PCIe Ctrl #0 Lane 0)	M.2 Key E	Output	PCIe PHY, AC-Coupled on
136	PCIE0_TX0_P	PEX_TX4P	(carrier board
138	GND	-	GND	GND	-	GND
140	PCIE0_TX1_N	PEX_TX3N	DCI - HO Torroscata ADCI - Chal HO Lorro A)	Makasalanad	0	PCIe PHY, AC-Coupled on
142	PCIEO_TX1_P	PEX_TX3P	PCIe #0 Transmit 1PCIe Ctrl #0 Lane 1)	Not assigned	Output	carrier board
144	GND					
146	GND	-	GND	GND	-	GND
148	PCIEO_TX2_N	PEX TX2N				PCIe PHY, AC-Coupled on
150	PCIE0_TX2_N	PEX TX2P	PCIe #0 Transmit 2 (PCIe Ctrl #0 Lane 2)	Not assigned	Output	carrier board
		FLA_IAZF	CND	CND		
152	GND	- 	GND	GND	-	GND
154	PCIEO_TX3_N	PEX_TX1N	PCIe #0 Transmit 3 (PCIe Ctrl #0 Lane 3)	Not assigned	Output	PCIe PHY
156	PCIEO_TX3_P	PEX_TX1P		-		
158	GND	-	GND	GND	-	GND
160	PCIEO_CLK_N	PEX_CLK1N	PCIe #0 Reference Clock (PCIe Ctrl #0)	M.2 Key E	Output	PCIe PHY, AC-Coupled on
162	PCIEO_CLK_P	PEX_CLK1P	. S.S O NETER CHOCK (I CIE CUI #O)	KCy L	Julput	carrier board
164	GND	-	GND	GND	-	GND
166	USBSS_TX_N	PEX_TX6N				USB SS PHY, AC-Coupled on
168	USBSS TX P	PEX TX6P	USB SS Transmit (USB 3.0 Ctrl #0)	USB 3.0 Type A	Output	carrier board
170	GND	-	GND	GND	-	GND
172	RSVD	_	Not used			J.1.5
174	RSVD			-	-	-
			CND	CND	_	CND
176	GND	_	GND	GND	-	GND
178	MOD_SLEEP*	GPIO_PA6	Module Sleep. When active (low), indicates module has gone to Deep Sleep (LP0) mode.	System control. Used to disable HDMI termination pull-down	Output	CMOS – 1.8V
			mode.	FET control.		
180	PCIE0 CLKREQ*	PEX LO CLKREQ N	PCIE #0 Clock Request (PCIe Ctrl #0). 47kΩ	Not assigned	Bidir	Open Drain 3.3V, Pull-up on
100	PCIED_CERREQ	FLX_LO_CLKKLQ_N	pull-up to 3.3V on the module.	Not assigned	Biuli	the module
182	RSVD	-	Not used	-	-	-
184	GBE_MDI0_N		Chr. Turneforms 2 : 2		5. I.	
186	GBE MDIO P] -	GbE Transformer Data 0		Bidir	MDI
188	GBE_LED_LINK	_	Ethernet Link LED (Green)	1	Output	
190	GBE_MDI1_N			1	Julpul	
		-	GbE Transformer Data 1	LAN	Bidir	MDI
192	GBE_MDI1_P		Ethornet Astista LED 64 H		0	
194	GBE_LED_ACT	-	Ethernet Activity LED (Yellow)		Output	
196	GBE_MDI2_N	_	GbE Transformer Data 2		Bidir	MDI
198	GBE_MDI2_P				2.0.1	5.
200	GND	-	GND	GND	-	GND

GBE MDI3 N GbE Transformer Data 3 Bidir MDI GBE_MDI3_P LCD_BL_PWM Expansion Header 206 GPIO07 GPIO #7 or Pulse Width Modulator Output ${\sf CMOS-1.8V}$ GPIO_PZ2 GPIO #8 or SD Card Detect CMOS - 1.8V 208 GPIO08 Fan Input (PMIC GPIO4 32K CLK 210 CLK 32K OUT Sleep/Suspend clock M.2 Key E Output CMOS - 1.8V Out) 212 GPIO10 LCD BL EN GPIO #10 M.2 Key E CMOS - 1.8V Output 214 FORCE_RECOVERY* BUTTON_VOL_UP Force Recovery strap pin System Input CMOS - 1.8V GPIO PZ0 216 GPIO11 GPIO #11 or Camera MCLK #3 Bidir **Expansion Header** 218 GPIO12 LCD_TE GPIO #12 CMOS - 1.8V Input DMIC2 CLK I2S Audio Port 1 Data Out 220 I2S1 DOUT Output CMOS - 1.8V 222 I2S1_DIN DMIC1_DAT I2S Audio Port 1 Data In Input CMOS - 1.8V M.2 Key E 224 I2S1_FS DMIC1_CLK I2S Audio Port 1 Left/Right Clock Bidir CMOS - 1.8V 226 I2S1 SCLK DMIC2 DAT Bidir I2S Audio Port 1 Clock CMOS - 1.8V 228 GPIO13 GPIO_PE6 GPIO #13 or Pulse Width Modulator Expansion Header Bidir CMOS - 1.8V GPIO PE7 GPIO #14 or Pulse Width Modulator CMOS - 1.8V 230 GPIO14 Fan Output General I2C 2 Clock. 2.2kΩ pull-up to 1.8V 232 I2C2_SCL GEN3_I2C_SCL Bidir Open Drain - 1.8V on the module. I2C (General) General I2C 2 Data. 2.2kΩ pull-up to 1.8V 234 I2C2_SDA GEN3_I2C_SDA Open Drain – 1.8V on the module. 236 UART2 TXD UART1 TXD UART #2 Transmit. Output CMOS - 1.8V Serial Port 238 UART2_RXD UART1_RXD UART #2 Receive Input CMOS - 1.8V Sleep/Wake. Configured as GPIO for SLEEP/WAKE* BUTTON PWR ON optional use to indicate the system should CMOS - 5.0V 240 System Input enter or exit sleep mode. 242 GND GND 244 GND GND GND 246 GND 248 GND 250 GND 252 VDD_IN 254 VDD IN 256 VDD_IN Main power - Supplies PMIC & other regs Main DC input Input 5.0V 258 VDD_IN 260 VDD_IN

Legend	Ground	Power	Reserved
--------	--------	-------	----------

Notes: In the Type/Dir column, Output is from Jetson Nano. Input is to Jetson Nano. Bidir is for Bidirectional signals.

14.0 APPENDIX A: GENERAL ROUTING GUIDELINES

Signal Name Conventions

The following conventions are used in describing the signals for Tegra:

- Signal names use a mnemonic to represent the function of the signal. For example, Secure Digital Interface #3 Command signal is represented as SDMMC_CMD, written in bold to distinguish it from other text. All active-low signals are identified by an asterisk (*) after the signal name. For example, SYS_RESET* indicates an active-low signal. Active-high signals do not have the underscore-N (_N) after the signal names. For example, SDMMC_CMD indicates an active-high signal. Differential signals are identified as a pair with the same names that end with _P and _N or for USB 2.0, DP and DN (for positive and negative, respectively). For example, CSI_0_D0_P and CSI_0_D0_N indicate a differential signal pair.
- The signal I/O type is represented as a code to indicate the operational characteristics of the signal. The table below lists the I/O codes used in the signal description tables.

Table 64. Signal Type Codes

Code	Definition	
Α	Analog	
DIFF I/O	Bidirectional Differential Input/Output	
DIFF IN	Differential Input	
DIFF OUT	Differential Output	
I/O	Bidirectional Input/Output	
I	Input	
0	Output	
OD	Open Drain Output	
I/OD	Bidirectional Input / Open Drain Output	
P	Power	

Routing Guideline Format

The routing guidelines have the following format to specify how a signal should be routed.

- Breakout traces are traces routed from BGA ball either to a point beyond the ball array, or to another layer where full normal spacing guidelines can be met. Breakout trace delay limited to 500 mils (1/1000 of an inch) unless otherwise specified.
- After breakout, signal should be routed according to specified impedance for differential, single-ended, or both (for example: HDMI). Trace spacing to other signals also specified.
- Follow max and min trace delays where specified. Trace delays are typically shown in "mm" (millimeter) or "in" (inch) or in terms of signal delay in "ps" (pico-seconds) or both.
 - For differential signals, trace spacing to other signals must be larger of specified x dielectric height or interpair spacing
 - Spacing to other signals/pairs cannot be smaller than spacing between complementary signals (intra-pair).
 - Total trace delay depends on signal velocity which is different between outer (microstrip) and inner (stripline) layers of a PCB.

Signal Routing Conventions

Throughout this document, the following signal routing conventions are used:

SE Impedance (/ Diff Impedance) at x Dielectric Height Spacing

SE impedance of trace (along with diff impedance for diff pairs) is achieved by spacing requirement. Spacing is
multiple of dielectric height. Dielectric height is typically different for microstrip and stripline. Note: 1 mil = 1/1000th
of an inch.

Note: Trace spacing requirement applies to SE traces or differential pairs to other SE traces or differential pairs. It does not apply to traces making up a differential pair. For this case, spacing/trace widths are chosen to meet differential impedance requirement.

General Routing Guidelines

Pay close attention when routing high speed interfaces, such as HDMI/DP, USB 3.0, PCIe or DSI/CSI. Each of these interfaces has strict routing rules for the trace impedance, width, spacing, total delay, and delay/flight time matching. The following guidelines provide an overview of the routing guidelines and notations used in this document.

Controlled Impedance

Each interface has different trace impedance requirements and spacing to other traces. It is up to designer to calculate trace width and spacing required to achieve specified SE and Diff impedances. Unless otherwise noted, trace impedance values are ±15%.

Max Trace Lengths/Delays

Trace lengths/delays should include the carrier board PCB routing (where the Jetson Nano mating connector resides) and any additional routing on a Flex/ secondary PCB segment connected to main PCB. The max length/delay should be from Jetson Nano to the actual connector (i.e. USB, HDMI, etc.) or device (i.e. onboard USB device, Display driver IC, camera imager IC, etc.)

Trace Delay/Flight Time Matching

Signal flight time is the time it takes for a signal to propagate from one end (driver) to other end (receiver). One way to get same flight time for signal within signal group is to match trace lengths within specified delay in the signal group.

- Total trace delay = Carrier PCB trace delay only. Do not exceed maximum trace delay specified.
- For six layers or more, it is recommended to match trace delays based on flight time of signals. For example, outer-layer signal velocity could be 150psi (ps/inch) and inner-layer 180psi. If one signal is routed 10 inches on outer layer and second signal is routed 10 inches in inner layer, difference in flight time between two signals will be 300ps! That is a big difference if required matching is 15ps (trace delay matching). To fix this, inner trace needs to be 1.7 inches shorter or outer trace needs to be 2 inches longer.
- In this design guide, terms such as intra-pair and inter-pair are used when describing differential pair delays. Intra-pair refers to matching traces within differential pair (for example, true to complement trace matching). Inter-pair matching refers to matching differential pairs average delays to other differential pair average delays.

General PCB Routing Guidelines

Note: The requirements detailed in the Interface Signal Routing Requirements tables must be met for all interfaces implemented or proper operation cannot be guaranteed.

14.1 Common High-Speed Interface Requirements

Table 65. Common High-Speed Interface Requirements

Parameter	Requirement	Units	Notes			
Common-mode Choke (Not recommended – only used if absolutely required for EMI issues)						
Preferred device			Type: TDK ACM2012D-900-2P. Only if needed. Place near connector. Refer to Common Mode Choke Requirement section.			
Location - Max distance from to adjacent discontinuities – ex, connector, AC cap)	8 (53)	mm (ps)	TDK ACM2012D-900-2P See USB 3.0 Guideline Figure 1			
Common-mode impedance @ 100MHz Min/Max	65/90	Ω				
Max Rdc	0.3	Ω				
Differential TDR impedance	90	Ω	@T _R -200ps (10%-90%)			
Min Sdd21 @ 2.5GHz	2.22	dB				
Max Scc21 @ 2.5GHz	19.2	dB				
Serpentine						
Min bend angle	135	deg (α)				

Dimension	Min A Spacing	4x	Trace	S1 must be taken care in order to consider Xtalk to adjacent	
	Min B, C Length	1.5x	width	pair. See USB 3.0 Guideline Figure 2	
	Min Jog Width	3x			
General					
Routing over Voids	Routing over voids not allowed except void around device ball/pin the signal is routed to.				
Noise Coupling	Keep critical high-speed traces away from other signal traces or unrelated power				
		traces/areas or power supply components			

Table 66. Common High-Speed Interface Signal Routing Requirements Figures

Notice

The information provided in this specification is believed to be accurate and reliable as of the date provided. However, NVIDIA Corporation ("NVIDIA") does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This publication supersedes and replaces all other specifications for the product that may have been previously supplied.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and other changes to this specification, at any time and/or to discontinue any product or service without notice. Customer should obtain the latest relevant specification before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer. NVIDIA hereby expressly objects to applying any customer general terms and conditions with regard to the purchase of the NVIDIA product referenced in this specification.

Unless specifically agreed in writing by NVIDIA, NVIDIA products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer's own risk.

NVIDIA makes no representation or warranty that products based on these specifications will be suitable for any specified use without further testing or modification. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer's sole responsibility to ensure the product is suitable and fit for the application planned by customer and to do the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer's product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this specification. NVIDIA does not accept any liability related to any default, damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this specification, or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this specification. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA. Reproduction of information in this specification is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without alteration, and is accompanied by all associated conditions, limitations, and notices.

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the NVIDIA terms and conditions of sale for the product.

VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo for Active Cables are trademarks owned by the Video Electronics Standards Association in the United States and other countries.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

Trademarks

NVIDIA, the NVIDIA logo, Jetson, and Tegra are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2017, 2018 NVIDIA Corporation. All rights reserved.

