

Ceramic Components for Semiconductor Processing

TECHNOLOGY

DESIGN & SIMULATION TECHNOLOGY

ANALYSIS TECHNOLOGY

EVALUATION TECHNOLOGY

MATERIAL CHARACTERISTICS

Material Item		Unit	Measuring Method			Sapphire				
Kyocera No.				A-479 A-479SS		A-479M A-479G	A-480S A-601D A-601L		SA-100	
Color				99% White	99.5% Ivory	99.5% Ivory	99.7% Ivory	99.9% Ivory	99.9% Transparent	
Bulk Density		g/cm ³	JIS R1634	3.8	3.9	3.9	3.9	3.9	3.97	
Water Absorption		%	JIS R1634	0	0	0	0	0	0	
Vickers Hardness HV1 (Load=9.807N)		(GPa)	JIS R1610	15.2	16.0	15.7	17.2	17.5	22.5	
Flexural Strength (3PB) R.T.		MPa	JIS R1601	310	360	370	380	400	690	
Young's Modulus of Elas	Young's Modulus of Elasticity		JIS R1602	360	370	370	380	380	470	
Poisson's Ratio	Poisson's Ratio		JIS N 1002	0.23	0.23	0.23	0.23	0.23	-	
Fracture Toughness (Fracture Toughness (SEPB)		JIS R1607	3~4	4	-	-	5 ~ 6	-	
Coefficient of Linear Thermal Expansion	40℃~ 400℃	x10 ⁻⁶ /°C	JIS R1618	7.2	7.2	7.2	7.2	7.2	Parallel to C-axis	7.7
	40℃~800℃	X10 / C		8.0	8.0	8.0	8.0	8.0	Vertical to C-axis	7.0
Thermal Conductivity 20°C		W/(m.K)	JIS R1611	29	32	32	32	34	41	
Specific Heat Capacity		J/(g·K)	JIS R1611	0.79	0.78	0.78	0.79	0.78	0.75	
Heat Shock Resistance		$^{\circ}$	JIS R1648	200	250	-	-	-	-	
Dielectric Strength		KV/mm		15	15	15	15	15	48	
	20℃			>1014	>1014	>1014	>1014	>1014	>10 ¹⁴	
Volume Resistivity	300℃	Ω .cm		10 ¹⁰	10 ¹³	10 ¹³	10 ¹³	10 ¹³	-	
	500℃		JIS	10 ⁸	10 ¹⁰	10 ¹⁰	10 ¹⁰	10 ¹⁰	10 ¹¹	
Dielectric Constant (1MHz)		_	C2141	9.9	9.9	9.9	9.9	9.9	Parallel to C-axis	_
			02141	5.5	5.5				Vertical to C-axis	9.3
Dielectric Loss Angle (1MHz)		(X10 ⁴)		2	1	1	1	1	<1	
Loss Factor		(X10 ⁴)		20	10	10	10	10	-	
Nitric Acid(60%)90°C	WT Loss	JIS	0.10	0.07	-	0.05	0.03	÷ 0.00		
Sulphuric Acid(95%)95°C			0.33	0.25	-	0.22	0.19	÷ 0.00		
Caustic Soda(30%)80℃	mg/cm ²	R1614	0.26	0.05	-	0.04	0.03	÷ 0.00		

Item	Material	Unit	Measuring Method			Nitride ₈ N ₄)			Carbide iC)	Alum Niti (A	ide		lierite L ₂ O ₃ · 5SiO ₂)	Yttria (Y ₂ O ₂)	Zirconia (ZrO ₂)
Kyocera No.				SN-201B	SN-260	SN-240	SN-241	SC-211	SC1000	AN216A	AN2000	CO-220	CO-720	Y0100A	Z-201N
Color				Black	Black	Black	Black	Black	Black	Gray	Ivory	Gray	Gray	White	Ivory
Bulk Density		g/cm ³	JIS R1634	3.2	3.1	3.3	3.2	3.2×10^{3}	3.16	3.4	3.2	2.5	2.5	4.9	6.0
Water Absorption		%	JIS R1634	0	0	0	0	0	0	0	0	0	0	0	0
Vickers Hardness HV1 (I	Load=9.807N)	(GPa)	JIS R1610	13.9	12.7	14.0	13.8	22.0	23.0	10.4	11.2	8	8.5	6.0	12.3
Flexural Strength (3P	B) R.T.	MPa	JIS R1601	580	900	1,020	790	540	450	310	220	190	200	130	1,000
Young's Modulus of Elas	sticity	GPa	JIS R1602	290	270	300	290	430	440	320	310	140	145	160	200
Poisson's Ratio		-	JIS N 1002	0.28	0.28	0.28	0.28	0.16	0.17	0.24	0.24	0.31	0.31	-	0.31
Fracture Toughness (SEPB)	MPam ^{1/2}	JIS R1607	4~5	6 ~ 7	7	6 ~ 7	4~5	2~3	-	-	1 ~ 1.5	1 ~ 1.5	1.1	4~5
Coefficient of Linear	40℃~400℃	x10 ⁻⁶ /°C	JIS R1618	2.4	2.8	2.8	2.9	3.7	3.7	4.6	4.6	l/	1.5(40°C~ 400°C) 2.1(40°C~ 800°C)	7.2	10.5
Thermal Expansion	40℃~800℃	X10 / C	313 111010	3.2	3.4	3.3	3.5	4.4	4.4	5.3	5.2	< 0.05 (23°C) < 0.02 (22°C)	< 0.05 (23°C) < 0.02 (22°C)	7.6	11.0
Thermal Conductivity 20)℃	W/(m·K)	JIS R1611	25	23	27	54	60	200	150	67	4	4	14	3
Specific Heat Capacity		J/(g·K)	JIS R1611	0.64	0.66	0.65	0.66	0.67	0.67	0.71	0.72	0.71	-	0.45	0.46
Heat Shock Resistance		℃	JIS R1648	550	800	800	900	400	-	-	-	-	400	-	300
Dielectric Strength		KV/mm		-	12	13	12	-	-	14	16	19.1	19.3	11	11
	20℃			>1014	>1014	>1014	>1014	10⁵	10 ⁸	>1014	>1014	>1014	>1014	>10 ¹³	10 ¹³
Volume Resistivity	300℃	Ω .cm		10 ¹²	10 ¹³	10 ¹²	10 ¹²	10 ⁴	10 ⁴	10 ¹⁰	10 ¹⁰	10 ¹²	10 ¹²	10 ¹⁰	10 ⁶
	500℃		JIS	10 ¹⁰	10 ¹¹	10 ¹⁰	10 ¹⁰	10 ³	10 ³	10 ⁸	10 ⁹	10 ¹⁰	10 ¹⁰	10 ⁷	10 ³
Dielectric Constant (1M	Hz)	-	C2141	-	8.3	9.6	9.6	-	-	8.6	8.5	4.9	4.9	11.0	33.0
Dielectric Loss Angle (1	IMHz)	(X10 ⁴)		-	5	19	18	-	-	3	2	9	8.5	5	16
Loss Factor		(X10 ⁴)		-	-	-	-	-	-	26	17	-	-	55	520
24, ℃9(%00)Nitric Acid	Н	WT Loss	JIS	-	1.02	1.11	0.18	0.04	⇒ 0.00	-	-	-	-	-	⇒ 0.00
Sulphuric Acid(95%)95°C	,24H		R1614	-	0.01	0	0	0.01	⇒ 0.00	-	-	-	-	-	0.04
Caustic Soda(30%)80℃	,24H	mg/cm ²	n1014	-	0.49	0.22	0.07	⇒ 0.00	⇒ 0.00	-	-	-	-	-	0.08

Unit Conversion Table

Stress

Мра	Kgf/mm ²	Kgf/cm ²			
1	1.0197×10^{-1}	1.0197 × 10			
9.807	1	1 × 10 ²			
9.807×10^{-2}	1 × 10 ⁻²	1			

Thermal Conductivity

W/(m · K)	Cal/cm · Sec · °C
1	2.39×10^{-3}
1.163	2.78 × 10 ⁻³
418.7	1

Notes

- These values are only for reference, showing the measurement results of test pieces specified.
- The values may change dependent on the using conditions and the shape of products.
- For more details, please feel free to contact us.

KYOCERa

WAFER MANUFACTURING PROCESS

Alumina Wafer Polishing Plate / Turn Table

- Material : Al₂O₃

Size : Up to 39" in diameter

Features : •High rigidity

High chemical durability

•Surface shape & roughness control

Silicon Carbide Wafer Polishing Plate

Material : SiC

Size : Up to 30" in diameter

- Features : •High thermal conductivity

•Low thermal expansion

High rigidity

Pad Dresser

- Material : Al₂O₃, SiC, Si₃N₄

- Features : •High wear resistance

Square bumps / pyramid bumps

Sapphire Carrier Plate

Material : Sapphire

Size : Up to 8" in diameter

- Features : • High purity

High chemical durability

No grain boundary

Transparent

DEVICE MANUFACTURING PROCESS

Plasma Proof Dome

- Material : Al₂O₃

- Size : For 200mm / 300mm equipment

Features : •High purity

High plasma durability

Plasma Proof Ring

- Material : Al₂O₃, Y₂O₃

- Size : For 200mm / 300mm equipment

- Features : •High purity

High plasma durability

Electro-Static Chuck

- Material : Al₂O₃, AlN, Sapphire

Size : For 200mm / 300mm equipment

- Features : ●High purity

•High plasma durability

Good chucking / de-chucking response

•High temp. and low temp. application

Heater

Material : AIN

Size: For 200mm / 300mm equipment

- Features : ●High purity

High plasma durability

•Uniform thermal distribution

DEVICE MANUFACTURING PROCESS

Vacuum Chuck

- Material : Al₂O₃, Porous Al₂O₃, SiC

Size: For 200mm / 300mm equipment

- Features : ●High purity

High chemical durabilityVacuum channel inside

Variety surface shape

Nozzle

- Material : Al₂O₃

- Size : Nozzle diameter +/-5μm - Features : •High plasma durability

•Gas flow rate control

End Effector

- Material : Al₂O₃, SiC, Sapphire

Size: For 200mm / 300mm equipment

- Features : ●High purity

•Vacuum channel inside

SiC coating

Mirror polished surface

Chamber Window & Tube

Material : Sapphire

Features : •High purity

•High plasma durability

Transparent

•High transmission factor

EPOCH-MAKING TECHNOLOGIES

USM Stage - Assembly Technology

- Material : Al₂O₃, Al

Non Magnetic Metal, etc.

Features : •Ultrasonic Motor drive

High positioning accuracy

Compact design

Metalized Products - Metal Assembly Technology

- Material : Al₂O₃, Al, Stainless steel, etc.

- Application: •IC Packages

High vacuum componentHigh voltage terminal, etc.

Coating Technology

- Material : SiC, DLC, etc.

Features : •Discharge of static electricity

Soft contact

Large Size Product Manufacturing Technology

- Material : Al₂O₃, Y₂O₃, SiC, Si₃N₄

Application : •LCD manufacturing equipment

Lithography equipment

Material Development Technology

example

├ Material : Low thermal expansion materials

- Application: •Lithography equipment

Wafer Inspection equipment

<JAPAN: Headquarters> KYOCERA Corporation

Corporate Fine Ceramics Group

6 Takeda Tobadono-cho, Fushimi-ku, Kyoto 612-8501, Japan Tel: +81-(0)75-604-3441 Fax: +81-(0)75-604-3438

WEB

global.kyocera.com/prdct/fc/index.html

<U.S.A.>

KYOCERA International, Inc.

San Jose, CA

49070 Milmont Dr. Fremont, CA 94538 Tel:+1-510-257-0200 Fax:+1-510-257-0125

San Diego, CA

8611 Balboa Avenue, San Diego, CA 92123 Tel:+1-858-614-2520 Fax:+1-858-715-0871

Chicago, IL

25 NW Point Blvd., #660 Elk Grove Village, IL 60007 Tel:+1-847-981-9494 Fax:+1-847-981-9495

Boston, MA

24 Superior Dr, Suite 106, Natick, MA 01760 Tel: +1-508-651-8161 Fax: +1-508-655-9139

Mountain Home, NC

100 Industrial Park Rd, Hendersonville, NC 28792 Tel:+1-828-693-8244 Fax:+1-828-692-1340

New Jersey, NJ

220 Davidson Ave., Suite108, Somerset, NJ 08873 Tel:+1-732-563-4336 Fax:+1-732-627-9594

Austin, TX

7801 Capital of Texas Highway, Ste 330 Austin, TX 78731 Tel:+1-512-336-1725 Fax:+1-512-336-8189

Vancouver, WA

5713 East Fourth Plain Blvd., Vancouver , WA 98661 Tel:+1-360-696-8950 Fax:+1-360-696-9804

<EUROPE>

KYOCERA Europe GmbH

Esslingen, Germany

Fritz-Mueller-Strasse 27, 73730 Esslingen, Germany Tel:+49-(0)711-93934-0 Fax:+49-(0)711-93934-950

Neuss, Germany

Hammfelddamm 6 41460 Neuss, Germany Tel:+49-(0)2131-1637-0 Fax:+49-(0)2131-1637-150

KYOCERA Fineceramics Ltd.

U.K.

Prospect House, Archipelago, Lyon Way, Frimley, Surrey GU16 7ER, U.K.

Tel:+44-(0)1276-6934-50 Fax:+44-(0)1276-6934-60

KYOCERA Fineceramics S.A.S.

France

Parc Tertiaire, Silic, 21 Rue De Villeneuve BP 90439 94583 Rungis Cedex, France Tel:+33-(0)141-7373-30 Fax:+33-(0)141-7373-59

<ASIA>

KYOCERA Korea Co., Ltd.

Korea

2F MYUNGIN-TOWER, 267 Hyoryeong-Ro Seocho-Gu, Seoul, 06653, Korea Tel: +82-(2)-3463-3538 Fax: +82-(2)-3463-3539

KYOCERA (China) Sales & Trading Corporation Shanghai

Floor 9, Dushi Headquarters Building, No. 168, Middle Xizang Road, Shanghai, 200001

Tel: +86-(0)21-5877-5366 Fax: +86-(0)21-5888-5096

Shenzen

Unit 06-08,29/F,AVIC Center NO.1018 Huafu Road, Futian District, Shenzhen, Guangdong, 518033 Tel: +86-(0)755-8272-4107 Fax: +86-(0)755-8279-0487

KYOCERA (Hong Kong) Sales & Trading Ltd.

Hong Kong

Room 801-802, Tower 1, South Seas Centre, 75 Mody Road, Tsimshatsui East, Kowloon, Hong Kong Tel: +852-(0)2722-3912 Fax: +852-(0)2724-4501

KYOCERA Asia Pacific,Ltd.

Taiwan

8FL., No.101, Sec.2, Nanjing East Road, Taipei 10457, Taiwan Tel:+886-(0)2-2567-2008 Fax:+886-(0)2-2567-2700

Singapore

298 Tiong Bahru Road, #13-03/05 Central Plaza, 168730, Singapore Tel:+65-6271-0500 Fax:+65-6271-0600

Philippines

11B, Kingston Tower, Block 2, Lot 1, Acacia Avenue, Madrigal Business Park, Alabang, Muntinlupa City 1780, Philippines Tel:+63-(0)2-771-0618 Fax:+63-(0)2-775-0532

KYOCERA Asia Pacific (Thailand) Co., Ltd.

Thailand

1 Capital Work Place, Building 7th Floor, Soi Chamchan, Sukhumvit 55 Road, Klongton Nua, Wattana, Bangkok 10110, Thailand. Tel: +66-(0)2030-6688 Fax: +66-(0)2030-6600

KYOCERA Sdn. Bhd.

Malaysia

Lot 4A, Lower Level 3, Hotel Equatrial, Penang No.1, Jalan Bukit Jambul 11900 Penang, Malaysia Tel: +60-4-641-4190 Fax: +60-4-641-4209

KYOCERA Asia Pacific India Pvt. Ltd.

India

1004A & 1004B, 10th Floor, JMD Regent Square, M.G. Road Gurugram Haryana, India

Tel: +91-124-4714298 Fax: +91-124-4683378

The contents of this catalog are subject to change without prior notice for further improvement. Application and usage conditions should be consulted upon when considering purchase.