Positive Properties of Context-Free languages

Union

Context-free languages are closed under: Union

$$L_1$$
 is context free
$$L_1 \cup L_2$$

$$L_2$$
 is context free is context-free

Example

Language

$$L_1 = \{a^n b^n\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$L_2 = \{ww^R\}$$

$$S_2 \rightarrow aS_2 a \mid bS_2 b \mid \lambda$$

Union

$$L = \{a^n b^n\} \cup \{ww^R\} = S \rightarrow S_1 \mid S_2$$

In general:

For context-free languages L_1 , L_2 with context-free grammars G_1 , G_2 and start variables S_1 , S_2

The grammar of the union $L_1 \cup L_2$ has new start variable S and additional production $S \to S_1 \mid S_2$

Concatenation

Context-free languages are closed under: Concatenation

 L_1 is context free L_1L_2 is context free is context-free

Example

Language

$$L_1 = \{a^n b^n\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$L_2 = \{ww^R\}$$

$$S_2 \rightarrow aS_2a \mid bS_2b \mid \lambda$$

Concatenation

$$L = \{a^n b^n\} \{ww^R\}$$

$$S \rightarrow S_1 S_2$$

สูบกัป

For context-free languages L_1 , L_2 with context-free grammars G_1 , G_2 and start variables S_1 , S_2

The grammar of the concatenation L_1L_2 has new start variable S and additional production $S \to S_1S_2$

Star Operation

Context-free languages are closed under: Star-operation

L is context free $\stackrel{*}{\bigsqcup}$ is context-free

Example

Language

Grammar

$$L = \{a^n b^n\}$$

$$S \rightarrow aSb \mid \lambda$$

Star Operation

$$L = \{a^n b^n\}^*$$

$$S_1 \rightarrow SS_1 \mid \lambda$$

In general:

For context-free language L with context-free grammar G and start variable S

The grammar of the star operation L^* has new start variable S_1 and additional production $S_1 \to SS_1 \mid \lambda$

Mutangalu 10 and CEL O Reg L.

Negative Properties of Context-Free Languages

Intersection

Context-free languages are **not** closed under:

intersection

 $L_{
m 1}$ is context free

 L_2 is context free

Example

$$L_1 = \{a^n b^n c^m\}$$

$$L_2 = \{a^n b^m c^m\}$$

Context-free:

Context-free:

$$S \rightarrow AC$$

$$S \rightarrow AB$$

$$A \rightarrow aAb \mid \lambda$$

$$A \rightarrow aA \mid \lambda$$

$$C \rightarrow cC \mid \lambda$$

$$B \rightarrow bBc \mid \lambda$$

Intersection

$$L_1 \cap L_2 = \{a^n b^n c^n\}$$
 NOT context-free

Complement

Context-free languages are <u>not</u> closed under:

complement

L is context free \longrightarrow L

not necessarily
context-free

Example

$$L_1 = \{a^n b^n c^m\}$$

$$L_2 = \{a^n b^m c^m\}$$

Context-free:

Context-free:

$$S \rightarrow AC$$

$$S \rightarrow AB$$

$$A \rightarrow aAb \mid \lambda$$

$$A \rightarrow aA \mid \lambda$$

$$C \rightarrow cC \mid \lambda$$

$$B \rightarrow bBc \mid \lambda$$

Complement

$$\overline{L_1 \cup L_2} = L_1 \cap L_2 = \{a^n b^n c^n\}$$

NOT context-free

ชีกยกเล้า CFL 1 Reg L. Intersection Context-free languages and Regular Languages

$$L_1$$
 context free
$$L_1 \cap L_2$$

$$L_2$$
 regular context-free

Example:

context-free

$$L_1 = \{w_1 w_2 : |w_1| = |w_2|, w_1 \in \{a,b\}^*, w_2 \in \{c,d\}^*\}$$

NPDA M_1

regular
$$L_2 = \{a, c\}^*$$

DFA M_2

context-free

Automaton for: $L_1 \cap L_2 = \{a^n c^n : n \ge 0\}$

Applications of Regular Closure

An Application of Regular Closure

Prove that:
$$L = \{a^n b^n : n \neq 100, n \geq 0\}$$

We know:

$$\{a^nb^n:n\geq 0\}$$
 is context-free

We also know:

$$L_1 = \{a^{100}b^{100}\}$$

is regular

$$\overline{L_1} = \{(a+b)^*\} - \{a^{100}b^{100}\}$$

is regular

emanum an

$$\{a^nb^n\} \qquad \overline{L_1} = \{(a+b)^*\} - \{a^{100}b^{100}\}$$

$$\text{context-free} \qquad \text{regular}$$

$$(\text{regular closure}) \quad \{a^nb^n\} \cap \overline{L_1} \quad \text{context-free}$$

$$\{a^nb^n\} \cap \overline{L_1} = \{a^nb^n: \ n \neq 100, n \geq 0\} = L$$

is context-free

Another Application of Regular Closure

Prove that:
$$L = \{w: n_a = n_b = n_c\}$$

is not context-free

If
$$L = \{w: n_a = n_b = n_c\}$$
 is context-free

(regular closure)

Then
$$L \cap \{a*b*c*\} = \{a^nb^nc^n\}$$
 context-free regular context-free

Therefore, L is not context free