Project FYS-MENA 4111 β -Ga₂O₃

Vilde Mari Reinertsen

November 8, 2017

Abstract

Contents

1	Introduction
	1.1 Motive
	1.2 To do
2	Theory
3	Method
	3.1 Energy convergence
	3.1.1 Energy cut-off
	3.1.2 k-point density
	3.1.3 CPU time
4	Result
5	Discussion
6	Conclusion

Figure 3.1: This is a plot of the difference between change in energy for Ga_2O_3 with and without a oxygen vacancy. We can see from the plot that a cut-off energy of 600 eV is sufficient. Include the criteria?

1 Introduction

1.1 Motive

1.2 To do

Use primitive unit cell base-centered monoclinic.

Start by checking convergence of the energy cut-off (400 eV).

(Remember to check relative also)

Convergence of k-points - 2, 3, 4, 5, 6, 7 (4 is often good)

Look at band structure.

Look at Si-donor, Sn-donor, H-donor, O-vacancy?

Figure 3.2: This is a plot of the difference between change in both force and pressure for Ga_2O_3 with and without a oxygen vacancy. We can see from the plot that with respect to pressure and force 600 eV is more than sufficient.

Figure 3.3: This is a plot of the difference between change in energy for Ga_2O_3 with and without a oxygen vacancy. We can see from the plot that a k-point density of 5 Å⁻¹ is sufficient.

Figure 3.4: This is a plot of the difference between change in both force and pressure for Ga_2O_3 with and without a oxygen vacancy. Are the same criterias ok?

5 k-point density $[\mathring{A}^{-1}]$

Table 3.1: Caption

k-point density $[\mathring{A}^1]$	Total CPU time [s]
2	6.479
3	11.657
4	18.80
5	27.572
6	50.383
7	65.509
8	94.243

2 Theory

0.01

3 Method

3.1 Energy convergence

3.1.1 Energy cut-off

3.1.2 k-point density

3.1.3 CPU time

Forandret avstandene seg etter relax?

Band gap:

Gap Band# VBM CBM VBM-occ CBM-occ 2.3532 48 1.9458 4.299 2.0 0.0

5 Discussion

6 Conclusion

Appendix

VESTA: K. Momma and F. Izumi, "VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data," J. Appl. Crystallogr., 44, 1272-1276 (2011).