Композиции алгоритмов

Виктор Китов

victorkitov.github.io

Победитель конкурса VK среди курсов по IT

Курс поддержан фондом 'Интеллект'

Содержание

- Разложение на смещение и разброс
- 2 Композиции алгоритмов

Средние потери в зависимости от сложности модели

Комментарии:

- ожидаемые потери на тестовой выборке выше потерь на обучающей.
- слева от А: модель слишком простая, недообучение.
- справа от А: модель слишком сложная, переобучение

Дальнейшее усложнение модели

- Некоторые эмпирические наблюдения свидетельствуют, что для слишком сложных моделей (многослойные нейросети) качество выше ожиданий.
- Феномен double descent risk curve¹.

¹Belkin, M., Hsu, D., Ma, S., & Mandal, S. (2019). Reconciling modern machine-learning practice and the classical bias-variance trade-off.

Разложение на смещение и разброс

- Распределение реальных данных $y = f(x) + \varepsilon$
 - \bullet шум не зависит от x и старых наблюдений
 - хотим оценить f(x)
- Зависимость оценивается по $(X, Y) = \{(x_n, y_n), n = 1, 2...N\}$.
- Восстановленная зависимость $\widehat{f}(x)$.
- х фикс. объект для прогноза.
- ullet Шум arepsilon не зависит от $X,Y,\ \mathbb{E}arepsilon=0$

Разложение на смещение и разброс (bias-variance decomposition)

$$\mathbb{E}_{X,Y,\varepsilon}\{[\widehat{f}(x) - y(x)]^2\} = \left(\mathbb{E}_{X,Y}\{\widehat{f}(x)\} - f(x)\right)^2 + \mathbb{E}_{X,Y}\left\{[\widehat{f}(x) - \mathbb{E}_{X,Y}\widehat{f}(x)]^2\right\} + \mathbb{E}\varepsilon^2$$

Интуиция:
 MSF = смешение² + диспейсия + неснижаемая ошибка

Интуиция разложения

$$\mathbb{E}_{X,Y,\varepsilon}\{[\widehat{f}(x) - y(x)]^2\} = \left(\mathbb{E}_{X,Y}\{\widehat{f}(x)\} - f(x)\right)^2 + \mathbb{E}_{X,Y}\left\{[\widehat{f}(x) - \mathbb{E}_{X,Y}\widehat{f}(x)]^2\right\} + \mathbb{E}\varepsilon^2$$

Средние потери в зависимости от сложности модели

Доказательство разложения

Обозначим для краткости $f=f(x),\,\widehat{f}=\widehat{f}(x),\,\mathbb{E}=\mathbb{E}_{X,Y,arepsilon}$

Доказательство разложения

Обозначим для краткости $f = f(x), \ \widehat{f} = \widehat{f}(x), \ \mathbb{E} = \mathbb{E}_{X,Y,\varepsilon}$.

$$\mathbb{E}\left(\widehat{f} - f\right)^{2} = \mathbb{E}\left(\widehat{f} - \mathbb{E}\widehat{f} + \mathbb{E}\widehat{f} - f\right)^{2} = \mathbb{E}\left(\widehat{f} - \mathbb{E}\widehat{f}\right)^{2} + \left(\mathbb{E}\widehat{f} - f\right)^{2} + 2\mathbb{E}\left[\left(\widehat{f} - \mathbb{E}\widehat{f}\right)(\mathbb{E}\widehat{f} - f)\right]$$
$$= \mathbb{E}\left(\widehat{f} - \mathbb{E}\widehat{f}\right)^{2} + \left(\mathbb{E}\widehat{f} - f\right)^{2}$$

т.к. $(\mathbb{E}\widehat{f} - f)$ - константа относительно X,Y, $\mathbb{E}\left[(\widehat{f} - \mathbb{E}\widehat{f})(\mathbb{E}\widehat{f} - f)\right] = (\mathbb{E}\widehat{f} - f)\mathbb{E}(\widehat{f} - \mathbb{E}\widehat{f}) = 0.$

$$\begin{split} \mathbb{E}\left(\widehat{f} - y\right)^2 &= \mathbb{E}\left(\widehat{f} - f - \varepsilon\right)^2 = \mathbb{E}\left(\widehat{f} - f\right)^2 + \mathbb{E}\varepsilon^2 - 2\mathbb{E}\left[(\widehat{f} - f)\varepsilon\right] \\ &= \mathbb{E}\left(\widehat{f} - \mathbb{E}\widehat{f}\right)^2 + \left(\mathbb{E}\widehat{f} - f\right)^2 + \mathbb{E}\varepsilon^2 \end{split}$$

$$\mathbb{E}\left[(\widehat{f}-f)arepsilon
ight]=\mathbb{E}\left[(\widehat{f}-f)
ight]\mathbb{E}arepsilon=0$$
, поскольку $arepsilon$ не зависит от $X,Y.$

Содержание

- 1 Разложение на смещение и разброс
- 2 Композиции алгоритмов
 - Примеры использования композиций
- Фиксированная агрегирующая функция (против переобучения)

Композиции алгоритмов

• Композиция алгоритмов (ансамбль моделей, ensemble learning):

$$\widehat{y}(x) = G(f_1(x), ...f_M(x))$$

- $f_1(x), ... f_M(x)$ базовые модели=признаки для $G(\cdot)$
- $G(\cdot)$ агрегирующая модель, мета-модель
- Используется в
 - обучении с учителем (регрессия, классификация)
 - без учителя (кластеризация)

Мотивация композиций

Мотивация:

- борьба с переобучением $f_1(x), ... f_M(x)$: простая $G(\cdot)$
- ullet борьба с недообучением $f_1(x), ... f_M(x)$: сложная $G(\cdot)$
- каждая $f_1(x), ... f_M(x)$ отвечает за свою область признакового пространства (mixture of experts)
 - $G(\cdot)$ назначает одного из экспертов
- построение $\widehat{y}(x)$ декомпозируется на решение подзадач $f_1(x),...f_M(x)$
- ускорение обучения
 - например, усреднение ядерных SVM на подвыборках

- 2 Композиции алгоритмов
 - Примеры использования композиций

Многоклассовая классификация

Многоклассовая классификация бинарными классификаторами (один против всех, один против одного, коды, исправляющие ошибки):

Последовательное решение, признаки разной природы

Последовательное решение

- Разделим классы: 1,2,"3+4"
 - если "3+4", применим модель, разделяющую 3 от 4.
- Прогнозирование стоимости квартир:
 - определяем тип покупки: для жилья/для инвестиций
 - для жилья: комфорт, индивидуальные вкусы и т.д.
 - для инвестиций: обменные курсы, процент по вкладам, рост рынка акций и т.д.
- Определение людей по фото:
 - определяем ракурс: фас/профиль
 - одна модель определяет людей по фото в фас
 - другая определяет людей по фото в профиль

Признаки разной природы

 Идентификация человека по разнородной информации: по голосу, по лицу, по поведению, и т.д.

Борьба с переобучением

- Предположим $f_1(x), ... f_M(x)$ слишком простые модели.
- Можем повысить сложность, применяя сложную мета-модель:

$$\widehat{y}(x) = G(f_1(x), ...f_M(x))$$

Выборка

Классификатор 1

Классификатор 2

(Классификатор 1) AND (классификатор 2)

Борьба с переобучением

- $f_1(x), ... f_M(x)$ слишком сложные (переобученные модели)
 - решающие деревья большой глубины на разных подвыборках
 - глубокие нейросети
 - обученные из разных начальных приближений
 - разной архитектуры
- Регрессия: сделаем устойчивый прогноз за счет усреднения

$$\widehat{y}(x) = \frac{1}{M} \sum_{m=1}^{M} f_m(x)$$

• Классификация: прогноз=самый частый класс из $\{f_1(x),...f_M(x)\}.$

Целевая зависимость

Модель 1.

Модель 2.

Среднее модели 1 и 2 дает более точный прогноз.

Усреднение ошибок

• Рассмотрим задачу регрессии с усредняющим ансамблем:

$$\widehat{y}(x) = \frac{1}{M} \sum_{m=1}^{M} f_m(x)$$

- Пусть $\varepsilon_1,...\varepsilon_M$ ошибки прогнозирования базовыми моделями $f_1(x),...f_M(x)$ со средним ноль, дисперсией $\mathbb{D}\varepsilon_i=\sigma^2$ и пусть эти ошибки имеют попарную корреляцию ρ (соответственно, ковариация будет $\mathbb{E}\varepsilon_i\varepsilon_j=\rho\sigma^2$)
- Тогда ожидаемый квадрат ошибки отдельных моделей будет

$$\mathbb{E}\left\{\left(f_i(x) - y(x)\right)^2\right\} = \mathbb{E}\varepsilon_i^2 = \sigma^2$$

Усреднение ошибок

• А ожидаемый квадрат ошибки усредняющего ансамбля:

$$\mathbb{E}\left\{ \left(\widehat{y}(x) - y(x) \right)^2 \right\} = \mathbb{E}\left\{ \left(\frac{\sum_{m=1}^{M} \left(f_m(x) - y(x) \right)}{M} \right)^2 \right\}$$

$$= \frac{1}{M^2} \mathbb{E}\left\{ \left(\sum_{m=1}^{M} \varepsilon_m \right)^2 \right\} = \frac{1}{M^2} \mathbb{E}\left\{ \sum_{m=1}^{M} \varepsilon_m^2 + \sum_{i \neq j} \varepsilon_i \varepsilon_j \right\}$$

$$= \frac{M}{M^2} \sigma^2 + \frac{M^2 - M}{M^2} \rho \sigma^2 = \frac{\sigma^2}{M} + \left(1 - \frac{1}{M} \right) \rho \sigma^2$$

- ullet При ho=0 квадрат ошибки в M раз меньше!
- Может быть еще меньше при $\rho < 0$.

Голосование большинства (против переобучения)

- Рассмотрим M классификаторов $f_1(x), ... f_M(x)$.
- Пусть $p(f_m(x) \neq y) = p < 0.5 \, \forall m$
- Пусть модели ошибаются независимо друг от друга.
- Пусть G(x) выбор самого частого класса.
- ullet Тогда p(G(x)
 eq y) o 0 при $M o \infty^2$

 $^{^{2}}$ Докажите это утверждение.

Взвешенное усреднение (против переобучения)

• Разложение неоднозначности (ambiguity decomposition): пусть (x, y) прогнозируется с помощью регрессии $G(x) = \sum_{m=1}^{M} w_m f_m(x), \ w_m \ge 0, \ \sum_m w_m = 1.$ Тогда

$$\underbrace{(G(x) - y)^{2}}_{\text{ensemble error}} = \underbrace{\sum_{m} w_{m} (f_{m}(x) - y)^{2}}_{\text{base learner error}} - \underbrace{\sum_{m} w_{m} (f_{m}(x) - G(x))^{2}}_{\text{ambiguity}}$$

- Композиция дает точные прогнозы когда:
 - $f_m(x)$ достаточно точны
 - индивидуальные прогнозы $\{f_m(x)\}_m$ сильно различаются
 - поэтому полезно усреднять по разным моделям

Доказательство разложения неоднозначности

Доказательство:

$$\sum_{m} w_{m} (f_{m}(x) - G(x))^{2} = \sum_{m} w_{m} (f_{m}(x) - y + y - G(x))^{2}$$

$$= \sum_{m} w_{m} (f_{m}(x) - y)^{2} + \sum_{m} w_{m} (y - G(x))^{2} + 2 \sum_{m} w_{m} (f_{m}(x) - y) (y - G(x))$$

$$= \sum_{m} w_{m} (f_{m}(x) - y)^{2} + (G(x) - y)^{2} + 2 (y - G(x)) \sum_{m} w_{m} (f_{m}(x) - y)$$

$$= \sum_{m} w_{m} (f_{m}(x) - y)^{2} + (G(x) - y)^{2} + 2 (y - G(x)) (G(x) - y)$$

$$= \sum_{m} w_{m} (f_{m}(x) - y)^{2} + (G(x) - y)^{2} - 2 (G(x) - y)^{2}$$

$$= \sum_{m} w_{m} (f_{m}(x) - y)^{2} - (G(x) - y)^{2}$$

Выпуклые потери

Выпуклые потери поощряют использование взвешенных прогнозов вместо индивидуальных.

- Рассмотрим регрессию с выпуклой ф-цией потерь $\mathcal{L}(\widehat{y}-y)$.
- Учитываем $f_1(x),...f_M(x)$ с весами $w_1,...w_M$.
- Для фикс. х рассмотрим 2 стратегии прогнозирования:
- **①** сэмплировать $m \sim Categorical(w_1, ...w_M), \ \widehat{y}(x) = f_m(x).$
- ② усреднять $\widehat{y}(x) = \sum_{m=1}^{M} w_m f_m(x)$

Какая стратегия в среднем по m будет давать меньшие ожидаемые потери?

Содержание

- Момпозиции алгоритмов
- Фиксированная агрегирующая функция (против переобучения)

Регрессия

$$\widehat{y}(x) = \frac{1}{M} \sum_{m=1}^{M} f_m(x)$$

$$\widehat{y}(x) = \frac{1}{\sum_{m=1}^{M} w_m} \sum_{m=1}^{M} w_m f_m(x)$$

- Взвешенное усреднение лучше, если модели сильно отличаются по точности.
- Веса $w_1 \ge 0, ... w_M \ge 0$ нужно настраивать на отдельной выборке (не той, на которой обучали $f_1(x), ... f_M(x)$)
- Альтернатива: медиана/взвешенная медиана

Классификаторы выдают вероятности

- Пусть $p_y^m(x)$ вероятность класса y по мнению классификатора m.
- Равномерная агрегация:

$$p_c(x) = \frac{1}{M} \sum_{m=1}^{M} p_c^m(x)$$

• Взвешенная агрегация:

$$p_c(x) = \frac{1}{\sum_{m=1}^{M} w_m} \sum_{m=1}^{M} w_m p_c^m(x)$$

- Взвешенное усреднение лучше, если модели сильно отличаются по точности.
- Веса $w_1 \ge 0, ... w_M \ge 0$ нужно настраивать на отдельной выборке (не той, на которой обучали $f_1(x), ... f_M(x)$)

Классификаторы выдают метки классов

- Голосование по большинству (majority vote)
 - возможен взвешенный учет классификаторов
- Бинарная классификация: $\hat{y} = +1 <=>$
 - > k классификаторов выдают +1 (k-out-of-N)
 - возможен взвешенный учет классификаторов
 - \bullet все классификаторы выдают +1 (AND, N-out-of-N)
 - хотя бы один выдает +1 (OR, 1-out-of-N)

Классификаторы выдают рейтинги

- ullet Пусть $g_y^m(x)$ рейтинг класса y в модели m.
- Проблема: рейтинги несравнимы для разных моделей.
- Решение (Brier scores):
 - Отандартизованный рейтинг #классов ниже по рейтингу:

$$s_y^m(x) = \sum_{i \neq y} \mathbb{I}[g_y^m(x) > g_i^m(x)]$$

 $s_y^m(x) \in \{1, 2, ... C - 1\}$

Предскажем класс с максимальным усредненным по моделям рейтингом:

$$\widehat{y}(x) = \underset{y}{\operatorname{arg max}} \frac{1}{M} \sum_{m=1}^{M} s_{y}^{m}(x)$$

Использование голосования (регрессия)

```
from sklearn.neighbors import KNeighborsRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import VotingRegressor
from sklearn.metrics import mean absolute error
X train, X test, Y train, Y test =
   get demo classification data()
knn = KNeighborsRegressor(n neighbors=100)
tree model = DecisionTreeRegressor()
ensemble = VotingRegressor ( # усредняющий ансамбль
   estimators = [('K-NN', knn'), ('DT', tree model)],
   weights = [0.5, 0.5]
ensemble. fit (X train, Y train) # обучение базовых м-лей
Y hat = ensemble.predict(X test) # построение прогнозов
print (f 'Средний модуль ошибки (MAE): {
   mean absolute error (Y test, Y hat):.2 f}')
```

Больше информации. Полный код.

Использование голосования (классификация) 1

```
rom sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import VotingClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import brier_score_loss

X_train, X_test, Y_train, Y_test = get_demo_classification_data()

# инициализация базовых моделей log_model = LogisticRegression()
tree_model = DecisionTreeClassifier()
```

Использование голосования (классификация) 2

Использование голосования (классификация) 3

```
# Ансамбль, усредняющий вероятности классов
ensemble = VotingClassifier (
   estimators = [('logistic regression', log model), ('
    decision tree', tree model),
   voting='soft', weights=[0.5,0.5])
# обучение базовых моделей ансамбля:
ensemble. fit (X train, Y train)
Y hat = ensemble.predict(X test)
print (f 'Точность Voting Classifier: \
\{100*accuracy score(Y test, Y hat):.1 f\}\%
P hat = ensemble.predict proba(X test) # вероятности
    классов
loss = brier score loss (Y test, P hat [:, 1])
print (f'Mepa Бриера отклонения вер-тей: {loss:.2f}')
```

Больше информации. Полный код.