Markov Chain Monte Carlo Metropolis-Hastings and related algorithms

I. Holmes

Department of Bioengineering University of California, Berkeley

Spring semester

Outline

- Conjugate prior distributions
 - Gamma distribution
 - Dirichlet distribution
 - Normal-gamma distribution
 - Summary
- MCMC in theory
 - Metropolis-Hastings
 - Gibbs sampling
 - Jacobians
 - MCMC on continuous parameters
- MCMC in bioinformatics
 - Alignments
 - Trees
 - Structures

Motivation

• $P(\theta|x)$ and $P(\theta)$ are conjugate if the posterior $P(\theta|x)$ is of the same family as the prior $P(\theta)$

$$P(\theta|x) = \frac{P(x|\theta)P(\theta)}{P(x)} = \frac{P(x|\theta)P(\theta)}{\int P(x,\theta')d\theta'}$$

- The denominator is P(x), the Bayesian evidence, which does not depend on θ .
- The dependence of $P(\theta|x)$ on θ is same as that of $P(x|\theta)P(\theta)$, but to get a normalized form for $P(\theta|x)$, we need to integrate out θ to find the evidence P(x).
- The parameters of the conjugate prior distribution are called hyperparameters.

Motivation

$$L(\theta) = P(\text{data } D|\text{params } \theta) = \text{likelihood}$$
 $F(\theta, \alpha) = P(\theta|\text{hyperparams } \alpha) = \text{prior}$
 $G(\theta) = P(\theta|\alpha, D) = \text{posterior}$

L and F are conjugate if $G(\theta) = F(\theta, \alpha')$ where $\alpha' \equiv \alpha'(\alpha, D)$

Gamma distribution Dirichlet distribution Normal-gamma distribution Summary

Common conjugacies

Likelihood	Prior
Exponential	Gamma
Binomial	Beta
Multinomial	Dirichlet
Gaussian (fixed precision)	Gaussian
Gaussian (varving precision)	Gaussian + Gamma

Outline

- Conjugate prior distributions
 - Gamma distribution
 - Dirichlet distribution
 - Normal-gamma distribution
 - Summary
- 2 MCMC in theory
 - Metropolis-Hastings
 - Gibbs sampling
 - Jacobians
 - MCMC on continuous parameters
- MCMC in bioinformatics
 - Alignments
 - Trees
 - Structures

- Exponential, Poisson, Gamma distributions
 - Exponential distribution: pdf for time to first event, T, given that mean event rate is μ

$$P(T|\mu) = \mu \exp(-\mu T)$$

• Poisson: probability distribution of number of events, n, in time T, given that mean event rate is μ

$$P(n|\mu) = \frac{(\mu T)^n \exp(-\mu T)}{n!}$$

(NB exponential distribution can be obtained by setting n = 0 and differentiating w.r.t. T)

Poisson

$$P(n|\mu) = \frac{(\mu T)^n \exp(-\mu T)}{n!}$$

• Gamma, conjugate to Poisson. Shape parameter α , rate parameter β .

$$P(\mu|\alpha,\beta) = \frac{\mu^{\alpha-1}\beta^{\alpha}\exp(-\mu\beta)}{\Gamma(\alpha)}$$

where Γ is the gamma function

$$\Gamma(\alpha) = \int_0^\infty (\mu \beta)^{\alpha - 1} \exp(-\mu \beta) d(\mu \beta)$$

Gamma function

Changing variables in the gamma function integral

$$\Gamma(z) = \int_{u=0}^{\infty} u^{z-1} \exp(-u) du$$

Clearly $\Gamma(1) = 1$. Integrating by parts for positive integer z,

$$\Gamma(z+1) = \int_{u=0}^{\infty} u^z \exp(-u) du$$
$$= [-u^z \exp(-u)]_{u=0}^{\infty} + z\Gamma(z)$$
$$= z!$$

$$k = \alpha$$
, $\theta = 1/\beta$

 $\boldsymbol{\theta}$ is called the scale parameter.

- Properties of gamma distribution: mean of μ is α/β and variance is α/β^2 .
- Conjugacy:

$$P(n) = \frac{\Gamma(\alpha')}{\Gamma(n+1)\Gamma(\alpha)} \frac{T^n \beta^{\alpha}}{(\beta')^{(\alpha')}}$$

$$P(\mu|n) = \frac{\mu^{\alpha'-1}(\beta')^{\alpha'} \exp(-\mu\beta')}{\Gamma(\alpha')}$$

i.e. posterior for μ is a gamma distribution with shape $\alpha' = \alpha + n$ and rate $\beta' = \beta + t$.

• α and β are like a *pseudocount* and *pseudotime*.

Lengthier derivation:

$$P(n) = \int_{\mu=0}^{\infty} P(n|\mu)P(\mu)d\mu$$

$$= \int_{\mu=0}^{\infty} \frac{(\mu T)^n \exp(-\mu T)}{\Gamma(n+1)} \frac{\mu^{\alpha-1}\beta^{\alpha} \exp(-\mu\beta)}{\Gamma(\alpha)} d\mu$$

$$= \frac{T^n\beta^{\alpha}}{\Gamma(n+1)\Gamma(\alpha)} \int_{\mu=0}^{\infty} \mu^{n+\alpha-1} \exp(-\mu(T+\beta))d\mu$$

$$= \frac{T^n\beta^{\alpha}}{\Gamma(n+1)\Gamma(\alpha)} \frac{1}{(T+\beta)^{n+\alpha}} \int_{u=0}^{\infty} u^{n+\alpha-1} \exp(-u)du$$

$$= \frac{\Gamma(\alpha')}{\Gamma(n+1)\Gamma(\alpha)} \frac{T^n\beta^{\alpha}}{(\beta')^{(\alpha')}}$$

Outline

- Conjugate prior distributions
 - Gamma distribution
 - Dirichlet distribution
 - Normal-gamma distribution
 - Summary
- 2 MCMC in theory
 - Metropolis-Hastings
 - Gibbs sampling
 - Jacobians
 - MCMC on continuous parameters
- MCMC in bioinformatics
 - Alignments
 - Trees
 - Structures

- Multinomial, Dirichlet distributions
 - Multinomial: K possible outcomes, outcome probabilities \mathbf{p} , outcome frequencies \mathbf{n} in $N = \sum_k n_k$ trials

$$P(\mathbf{n}|\mathbf{p}) = \frac{N!}{\prod_k n_k!} \prod_k p_k^{n_k}$$

• Conjugate prior: let **a** be a vector of pseudocounts, $a_1 \dots a_k$. The Dirichlet distribution for **p** is

$$P(\mathbf{p}|\mathbf{a}) = \frac{\prod_{i} p_i^{a_i-1}}{\mathcal{B}(\mathbf{a})} \delta\left(\sum_{i} p_i - 1\right)$$

where $\mathcal{B}()$ is the type one Dirichlet integral or the multinomial beta function

$$\mathcal{B}(\mathbf{a}) = \int \left(\prod_{i} p_{i}^{a_{i}-1}\right) \delta\left(\sum_{i} p_{i}-1\right) d\mathbf{p} = \frac{\prod_{k} \Gamma(a_{k})}{\Gamma(\sum_{k} a_{k})}$$

- Properties: mean value of p_k is $a_k / \sum_j a_j$. Modal value is $p_k = (a_k 1) / (\sum_j a_j 1)$.
- \bullet Note the relationship between the multinomial coefficient and ${\cal B}$

$$\frac{N!}{\prod_k n_k!} = \frac{1}{\mathcal{B}(\mathbf{n}+\mathbf{1})} \times \frac{\Gamma(N+1)}{\Gamma(N+K)}$$

Conjugacy:

$$P(\mathbf{n}|\mathbf{a}) = \frac{\mathcal{B}(\mathbf{a}')}{\mathcal{B}(\mathbf{a})} \frac{N!}{\prod_{k} n_{k}!}$$

$$P(\mathbf{p}|\mathbf{n},\mathbf{a}) = \frac{\prod_{i} p_{i}^{a'_{i}-1}}{\mathcal{B}(\mathbf{a}')} \delta\left(\sum_{i} p_{i}-1\right)$$

where $\mathbf{a}' = \mathbf{a} + \mathbf{n}$ (hence the name "pseudocount").

- Special case of {Multinomial,Dirichlet} when K = 2 is {Binomial,Beta}, and \mathcal{B} is the beta function.
- The following snippets from Mathworld point to a more rigorous solution of the type one Dirichlet integral
 - The beta integral may be obtained by writing $m! \, n!$ as a product of gamma functions with integrands u, v, transforming to $(x, y) = (\sqrt{u}, \sqrt{v})$ and then to polar co-ordinates $(x, y) = r(\cos \theta, \sin \theta)$. This yields

$$\mathcal{B}(m+1,n+1) = 2 \int_0^{\pi/2} \cos^{2m+1} \theta \sin^{2n+1} \theta d\theta = \frac{m! \, n!}{(m+n+1)!}$$

See mathworld.wolfram.com/BetaFunction.html for details.

 More info on Dirichlet type one integral at mathworld.wolfram.com/DirichletIntegrals.html

Beta distribution

- For K = 3, the probabilities (p_x, p_y, p_z) satisfy $p_x + p_y + p_z = 1$
- Like 3D points lying on the 2D triangle with corners at (0,0,1), (0,1,0) and (1,0,0)

Outline

- Conjugate prior distributions
 - Gamma distribution
 - Dirichlet distribution
 - Normal-gamma distribution
 - Summary
- 2 MCMC in theory
 - Metropolis-Hastings
 - Gibbs sampling
 - Jacobians
 - MCMC on continuous parameters
- MCMC in bioinformatics
 - Alignments
 - Trees
 - Structures

Normal-gamma distribution

- Normal (Gaussian) and Normal-gamma distributions
 - Mean μ , precision τ (precision is reciprocal of variance). Data $\{x_i\}$ with moments $m_k = \sum_i x_i^k$

$$P(\mathbf{x}|\mu,\tau) = \prod_{i} \sqrt{\frac{\tau}{2\pi}} \exp\left(-\frac{\tau}{2}(x_i - \mu)^2\right)$$
$$= \left(\frac{\tau}{2\pi}\right)^{m_0/2} \exp\left(-\frac{\tau}{2}(m_2 - 2\mu m_1 + \mu^2 m_0)\right)$$

Normal-gamma distribution

Normal

$$P(\mathbf{x}|\mu, \tau) = \left(\frac{\tau}{2\pi}\right)^{m_0/2} \exp\left(-\frac{\tau}{2}(m_2 - 2\mu m_1 + \mu^2 m_0)\right)$$

Conjugate prior

$$\begin{array}{lcl} P(\mu,\tau) & = & P(\tau)P(\mu|\tau) \\ P(\tau) & = & \frac{e^{-\beta\tau}\tau^{\alpha-1}\beta^{\alpha}}{\Gamma(\alpha)} \\ P(\mu|\tau) & = & \sqrt{\frac{\lambda\tau}{2\pi}}\exp\left(-\frac{\lambda\tau}{2}(\mu-\epsilon)^2\right) \end{array}$$

- $P(\tau)$ is gamma (shape α , rate β)
- $P(\mu|\tau)$ is Normal (mean ϵ , precision $\lambda \tau$)
- Full set of hyperparameters is $\{\alpha, \beta, \epsilon, \lambda\}$

Normal-gamma distribution

Conjugacy:

$$P(\mathbf{x}) = (2\pi)^{-m_0/2} \frac{\Gamma(\alpha')}{\Gamma(\alpha)} \frac{\beta^{\alpha}}{\beta'^{\alpha'}} \sqrt{\frac{\lambda}{\lambda'}}$$

$$P(\mu, \tau | \mathbf{x}) = \frac{e^{-\beta'\tau} \tau^{\alpha'-1} \beta'^{\alpha'}}{\Gamma(\alpha')} \times \sqrt{\frac{\lambda'\tau}{2\pi}} \exp\left(-\frac{\lambda'\tau}{2} (\mu - \epsilon')^2\right)$$
where $\lambda \in \mathcal{M}_{\tau}$ and

where
$$\epsilon' = \frac{\lambda \epsilon + m_1}{\lambda + m_0}$$
, $\lambda' = \lambda + m_0$, $\alpha' = \alpha + \frac{m_0}{2}$ and $\beta' = \beta + \frac{1}{2} \left(\epsilon^2 + m_2 - \frac{(\lambda \epsilon + m_1)^2}{\lambda + m_0} \right)$.

 NB if we regard τ as fixed, then Gaussian is auto-conjugate.

χ^2 distribution

$$P(\mu, \tau | \mathbf{x}) = \frac{e^{-\beta' \tau} \tau^{\alpha' - 1} \beta'^{\alpha'}}{\Gamma(\alpha')} \times \sqrt{\frac{\lambda' \tau}{2\pi}} \exp\left(-\frac{\lambda' \tau}{2} (\mu - \epsilon')^2\right)$$

- Rescale the posterior distribution for τ : divide by $(m_2/m_0 m_1^2/m_0)^{-1}$ (the posterior mean estimate for τ)
- Resulting gamma distribution with shape $m_0/2$ and scale 1/2 is the " χ^2 distribution".
- Canonical definition of the quantity χ^2 is in the special case where $\mu=0$ and $\tau=1$, in which case $\chi^2=m_2$

Gamma distribution
Dirichlet distribution
Normal-gamma distributior
Summary

Outline

- Conjugate prior distributions
 - Gamma distribution
 - Dirichlet distribution
 - Normal-gamma distribution
 - Summary
- MCMC in theory
 - Metropolis-Hastings
 - Gibbs sampling
 - Jacobians
 - MCMC on continuous parameters
- MCMC in bioinformatics
 - Alignments
 - Trees
 - Structures

Common conjugacies

- Exponential/Poisson ← Gamma
- Binomial → Beta
- Multinomial → Dirichlet
- Normal → Normal-gamma

Outline

- Conjugate prior distributions
 - Gamma distribution
 - Dirichlet distribution
 - Normal-gamma distribution
 - Summary
- MCMC in theory
 - Metropolis-Hastings
 - Gibbs sampling
 - Jacobians
 - MCMC on continuous parameters
- MCMC in bioinformatics
 - Alignments
 - Trees
 - Structures

Motivation

- Suppose we have a model e.g.
 - Observed data X, missing data Y, parameters θ
 - Prior $P(\theta)$, likelihood $P(X, Y|\theta)$
- Want to sample from some related probability distribution, e.g.
 - Posterior for missing data: $P(X|Y,\theta)$
 - Posterior for parameters: $P(\theta|Y)$

Phylogenetic MCMC

Tree-related applications of MCMC

- Sampling from posterior of models, parameters
 - Tree topologies, branch lengths
 - Structures, alignments
 - Phylogeography
- What about ancestral sequence itself?
 - Felsenstein's algorithm works great when state space is small
 - Nucleotides, amino acids
 - What about when state space is large?

Ancestral reconstruction MCMC

$$X_1$$
 $P(X|Y) = \frac{P(X,Y)}{P(Y)} = \frac{P(X,Y)}{\sum_{X'} P(X',Y)}$
 Y_4 Y_5 Y_6 Y_7

- Let A = alphabet size
- Felsenstein's pruning algorithm for P(Y)
 - Time $\mathcal{O}(NA^2)$
 - Memory O(NA)
- Exponentiating an A × A matrix N times
 - Time *O*(*NA*³)
- OK: bases (A = 4), amino acids (A = 20), codons (A = 64)
 - Painful: Gene Ontology (A = 33,587), GO-Slim (A = 127)

MCMC: general idea

- Want to sample from some pdf $P(X) = \frac{f(X)}{Z}$ where $X \in \mathcal{X}$
- Problem: set \mathcal{X} is large; computing $Z = \sum_{X \in \mathcal{X}} f(X)$ is hard
- Construct a stochastic process $X_1, X_2, X_3, X_4, \ldots$ such that the equilibrium distribution is P(X)
- If the process is ergodic, then $X_t \sim P(X)$ for "large" t
 - How large must t be? The burn-in time or mixing time

MCMC: construction

- Want a Markov process X_1, X_2, \dots w/equilibrium P(X)
- Let $Q(i,j) = P(X_{t+1} = j | X_t = i)$ be the transition matrix
- One way to make P(X) the equilibrium distribution is to force Q to satisfy detailed balance

$$P(i)Q(i,j) = P(j)Q(j,i) \quad \forall i,j \in \mathcal{X}$$

• If $P(X) = \frac{f(X)}{Z}$ we can drop the Z

$$f(i)Q(i,j)=f(j)Q(j,i)$$

 Note this process is reversible (MCMC doesn't have to be, but usually is)

Metropolis-Hastings algorithm: the proposal

One way to construct a Q that satisfies detailed balance

$$f(i)Q(i,j) = f(j)Q(j,i)$$

- Start with a proposal distribution $U(i, j) = P(X_{t+1} = j | X_t = i)$
 - Metropolis/Teller (1953): symmetric proposal,
 U(i, i) = U(i, i)
 - Hastings (1970) generalized to reversible proposal

$$g(i)U(i,j) = g(j)U(j,i)$$

- Note $g \neq f$: proposal does **not** have to converge on f
- Now we adapt this U to construct Q

Metropolis-Hastings algorithm: accept/reject

We have a proposal density, U, satisfying (for some g)

$$g(i)U(i,j)=g(j)U(j,i)$$

- Process:
 - Given X_n , propose a move by sampling X' from

$$P(X'=j|X_n=i)=U(i,j)$$

Calculate the Hastings ratio

$$h(X,X') = \frac{f(X')}{f(X)} \frac{g(X)}{g(X')} = \frac{f(X')}{f(X)} \frac{U(X',X)}{U(X,X')}$$

- If $h(X, X') \ge 1$, then accept the move: set $X_{n+1} \leftarrow X'$
- If h(X, X') < 1, then
 - Sample an r.v. α from U(0,1) (uniform distribution)
 - If $\alpha < h(X, X')$, then accept the move
 - If $\alpha \ge h(X, X')$, then reject the move: set $X_{n+1} \leftarrow X_n$

Metropolis-Hastings: proof of detailed balance

$$h(i,j) = \frac{f(j)}{f(i)} \frac{U(j,i)}{U(i,j)}$$

$$Q(i,j) = U(i,j) \times \min(1, h(i,j))$$

• Suppose (with no loss of generality) that $h(i,j) \le 1$

$$Q(i,j) = U(i,j)h(i,j)$$

$$= U(i,j)\frac{f(j)}{f(i)}\frac{U(j,i)}{U(i,j)}$$

$$= \frac{f(j)}{f(i)}U(j,i)$$

• Since $h(j, i) \ge 1$, we must have Q(j, i) = U(j, i), and so

$$f(i)Q(i,j)=f(j)Q(j,i)$$

Outline

- Conjugate prior distributions
 - Gamma distribution
 - Dirichlet distribution
 - Normal-gamma distribution
 - Summary
- MCMC in theory
 - Metropolis-Hastings
 - Gibbs sampling
 - Jacobians
 - MCMC on continuous parameters
- MCMC in bioinformatics
 - Alignments
 - Trees
 - Structures

Gibbs sampling

- The X in P(X) is N-dimensional, $X = (x_1, x_2 ... x_N)$
- Gibbs Sampling proposal distribution is as follows

I. Holmes

- Pick a dimension m, where $1 \le m \le N$
- Conceptually, fix all of the $\{x_n\}$ except for x_m ; sample x_m from its marginal distribution conditional on all the others
- Proposal distribution is

$$U(X, X') = U(\{x_n\}, \{x'_n\})$$

= $P(x'_m | \{x_n : n \neq m\}) \times \prod_{n \neq m} \delta(x'_n = x_m)$

All proposals accepted: Hastings ratio always 1 (prove it!) ≥

MCMC

Gibbs sampling: the marginal distribution

Let
$$X_{\text{other}} = \{x_n : n \neq m\}$$

$$P(x'_{m}|X_{\text{other}}) = \frac{P(x'_{m}, X_{\text{other}})}{P(X_{\text{other}})}$$
$$= \frac{P(x'_{m}, X_{\text{other}})}{\sum_{k} P(x'_{m} = k, X_{\text{other}})}$$

If P(X) is a product of functions of sparse subsets of X (c.f. factor graphs), then many of these functions will cancel in numerator and denominator

Gibbs sampling: factor graph example

$$P(x_2'|X_{\text{other}}) = \frac{f_2(x_1, x_2')f_4(x_2', x_4)f_5(x_2', x_5)}{\sum_k f_2(x_1, k)f_4(k, x_4)f_5(k, x_5)}$$

- Conjugate prior distributions
 - Gamma distribution
 - Dirichlet distribution
 - Normal-gamma distribution
 - Summary
- MCMC in theory
 - Metropolis-Hastings
 - Gibbs sampling
 - Jacobians
 - MCMC on continuous parameters
- MCMC in bioinformatics
 - Alignments
 - Trees
 - Structures

The Jacobian matrix and its determinant

- Function $F: \Re^n \to \Re^m$
- Let $(y_1 ... y_m) = F(x_1 ... x_n)$
- The Jacobian matrix of F is

$$J_{F}(x_{1},...,x_{n}) = \begin{bmatrix} \frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_{m}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}} \end{bmatrix}$$

• For square matrices (m = n), the magnitude of the Jacobian determinant, $|\det(J_F)|$, gives the factor by which the function F expands or shrinks volumes in \mathbf{x}

Multidimensional change of variables

- If p(x) is pdf of x, and y = F(x), what is pdf q(y) of y?
 - Now with multidimensional $x = (x_1 ... x_n)$ and $y = (y_1 ... y_n)$
- Derivation:

$$\begin{array}{rcl} dy_1 dy_2 \dots dy_n & = & |\det(J_F)| \ dx_1 dx_2 \dots dx_n \\ q(y) dy_1 dy_2 \dots dy_n & = & p(x) dx_1 dx_2 \dots dx_n \\ q(y) & = & p(x)/|\det(J_F)| \\ & = & p(F^{-1}(y)) |\det(J_{F^{-1}})| \end{array}$$

where the last line uses the inverse function theorem,

$$J_{F^{-1}} = (J_F)^{-1}$$
 ... c.f. chain rule: $J_{F \circ G}(x) = J_F(G(x))J_G(x)$

- Conjugate prior distributions
 - Gamma distribution
 - Dirichlet distribution
 - Normal-gamma distribution
 - Summary
- MCMC in theory
 - Metropolis-Hastings
 - Gibbs sampling
 - Jacobians
 - MCMC on continuous parameters
- MCMC in bioinformatics
 - Alignments
 - Trees
 - Structures

MCMC on continuous variables

- Let x be a continuous state
- Suppose the proposal generates x' by sampling some parameter u from a p.d.f. g(u), so x' = x'(x, u)
 - Let u' = u'(x, u) be the inverse parameter that takes us back from $x' \to x$
 - For convenience, define the function F(x, u) = (x', u')
- The Hastings ratio then depends on the Jacobian J_F

$$h(x,x') = \frac{P(x')}{P(x)} \frac{g(u')}{g(u)} |\det(J_F)|$$

- Interpretation: we are moving through (x, u)-space rather than just x-space
- Green (1995, 2003)

There's much more

- Summarizing results of an MCMC run
- Diagnosing MCMC convergence
 - Replicates
 - Intra- and inter-chain variance

Not covered in depth here.

- Conjugate prior distributions
 - Gamma distribution
 - Dirichlet distribution
 - Normal-gamma distribution
 - Summary
- 2 MCMC in theory
 - Metropolis-Hastings
 - Gibbs sampling
 - Jacobians
 - MCMC on continuous parameters
- MCMC in bioinformatics
 - Alignments
 - Trees
 - Structures

Sampling ungapped sequence alignments

- Example: ungapped sequence alignments (Lawrence et al)
 - Suppose you have K sequences, $\{S^{(1)} \dots S^{(K)}\}$, and that $S_i^{(k)}$ is the i'th residue of the k'th sequence.
 - Let x_k be the indentation of the k'th sequence. The motif (of length M) runs from x_k to $x_k + M 1$.

Sampling ungapped alignments

 \bullet Let ${\mathcal U}$ denote the null hypothesis that the sequences are unrelated. Then

$$\frac{P(\mathbf{x})}{P(\mathcal{U})} = \prod_{m=0}^{M-1} \frac{f(\mathbf{n}(m))}{\prod_{\omega} q(\omega)^{n_{\omega}(m)}}$$

where $q(\omega)$ is a background distribution over alphabet symbols ω , and $n_{\omega}(m)$ is the number of times symbol ω appears in column m of the motif

$$n_{\omega}(m) = \sum_{k=1}^{K} \delta(S_{x_k+m} = \omega)$$

Sampling ungapped alignments

• The $f(\mathbf{n})$ function should reward conserved columns. Lawrence *et al* use an entropy-like measure

$$f(\mathbf{n}) = \prod_{\omega} p_{\omega}^{n_{\omega}} = \exp(-KS[p])$$

where $p_k = n_k/K$. Note that this is the distribution **p** that maximizes $\prod_{\omega} p_{\omega}^{n_{\omega}}$ for a given **n**. Due to this implicit maximization, the above $f(\mathbf{n})$ is not strictly a probability distribution for **n**.

 Typically a vector of pseudocounts a is added to n. This suggests the Dirichlet evidence as an alternative form for f that does not involve any implicit maximization:

$$f(\mathbf{n}) = \frac{\mathcal{B}(\mathbf{n} + \mathbf{a})}{\mathcal{B}(\mathbf{a})\mathcal{B}(\mathbf{n})}$$

Sampling ungapped alignments

- Another way to formulate this problem is as a chain over $(\mathbf{x}, \{\mathbf{p}(m)\})$ with Gibbs-sampling steps that alternate between resampling one of the x_k 's and resampling all the \mathbf{p} 's.
- For good mixing it's also useful to allow moves that slide the entire motif window, i.e. $\mathbf{x} \leftarrow \mathbf{x} \pm \mathbf{1}$

- Conjugate prior distributions
 - Gamma distribution
 - Dirichlet distribution
 - Normal-gamma distribution
 - Summary
- 2 MCMC in theory
 - Metropolis-Hastings
 - Gibbs sampling
 - Jacobians
 - MCMC on continuous parameters
- MCMC in bioinformatics
 - Alignments
 - Trees
 - Structures

Sampling trees

- Priors: coalescent
- Moves:
 - Topology: prune-and-graft operations, swapping nodes & branches
 - Branch lengths: rescaling, sliding
- Equivalent ML moves:
 - quartet-puzzling (Strimmer & von Haeseler)
 - pplacer's "pendant branch length" (Matsen)

Extensions

- Co-sampling alignment and tree (and secondary/3D structure, ...)
- Models and approximations that sum out alignment, ancestral sequence, tree

- Conjugate prior distributions
 - Gamma distribution
 - Dirichlet distribution
 - Normal-gamma distribution
 - Summary
- 2 MCMC in theory
 - Metropolis-Hastings
 - Gibbs sampling
 - Jacobians
 - MCMC on continuous parameters
- MCMC in bioinformatics
 - Alignments
 - Trees
 - Structures

Molecular dynamics

- Folding
- Docking
- Transport
- Kinetics
- etc.