GENERATION OF SINGULARITY CATEGORIES AND VANISHING OF COHOMOLOGY ANNIHILATORS

YUKI MIFUNE

This talk is based on joint work with Souvik Dey, Jian Liu, and Yuya Otake [4].

Let R be a commutative noetherian ring. Denote by mod R the category of finitely generated R-modules, and by $D^b(\text{mod }R)$ the bounded derived category of mod R. The singularity category of R, introduced by Buchweitz [2], is defined as the Verdier quotient of $D^b(\text{mod }R)$ by the full subcategory of perfect complexes over R; that is,

$$D_{sg}(R) = D^{b}(\text{mod } R) / \text{thick } R.$$

This category detects the singularities of R in the sense that it is trivial if and only if R is regular.

On the other hand, the notion of (strong) generation in a triangulated category was introduced by Bondal, Rouquier, and Van den Bergh [1, 7]. Let \mathcal{T} be a triangulated category. For an integer $n \geq 0$ and an object $G \in \mathcal{T}$, we define $\langle G \rangle_{n+1}^{\mathcal{T}}$ as the full subcategory of \mathcal{T} consisting of objects M such that M is built out of G by taking finite direct sums, direct summands, shifts, and at most n mapping cones. We say that \mathcal{T} admits a generator if there exists an object $G \in \mathcal{T}$ such that $\mathcal{T} = \text{thick}_{\mathcal{T}} G = \bigcup_{i \geq 0} \langle G \rangle_i^{\mathcal{T}}$. Similarly, \mathcal{T} is said to admit a strong generator if $\mathcal{T} = \langle G \rangle_n^{\mathcal{T}}$ for some $G \in \mathcal{T}$ and $n \geq 0$.

Iyengar and Takahashi [6] characterized the existence of a generator in $D^b(\text{mod } R)$ and $D_{sg}(R)$ in terms of the openness of the regular locus of R.

Theorem (Iyengar–Takahashi [6]). The following conditions are equivalent for a commutative noetherian ring R.

- (1) The regular locus $\operatorname{Reg}(R/\mathfrak{p})$ contains a nonempty open subset for each $\mathfrak{p} \in \operatorname{Spec} R$.
- (2) The regular locus $\operatorname{Reg}(R/\mathfrak{p})$ is open for each $\mathfrak{p} \in \operatorname{Spec} R$.
- (3) The category $D^b(\text{mod } R/\mathfrak{p})$ admits a generator for each $\mathfrak{p} \in \operatorname{Spec} R$.
- (4) The category $D_{sg}(R/\mathfrak{p})$ admits a generator for each $\mathfrak{p} \in \operatorname{Spec} R$.

The cohomology annihilator of R, denoted by $\operatorname{ca}(R)$, is defined as the set of elements $a \in R$ that annihilate $\operatorname{Ext}_R^n(M,N)$ for all $M,N \in \operatorname{mod} R$ and all sufficiently large n. This notion was introduced by Iyengar and Takahashi [5]. Dey, Lank, and Takahashi [3] characterized the existence of a strong generator in $\operatorname{D}^{\operatorname{b}}(\operatorname{mod} R)$ in terms of the nonvanishing of the cohomology annihilator.

Theorem (Dey-Lank-Takahashi [3]). The following conditions are equivalent for a commutative noetherian ring R.

- (1) The category $D^b(\text{mod } R/\mathfrak{p})$ admits a strong generator for each $\mathfrak{p} \in \operatorname{Spec} R$.
- (2) One has $ca(R/\mathfrak{p}) \neq 0$ for each $\mathfrak{p} \in \operatorname{Spec} R$.

In this talk, we introduce a new form of cohomology annihilator and characterize the existence of a generator in the singularity category in terms of its vanishing. This provides a new condition equivalent to those given by Iyengar and Takahashi [6]. Furthermore, by relating this cohomology annihilator to the annihilator of the singularity category,

we obtain another criterion for the existence of a strong generator in the singularity category. As an application, in the case where the Krull dimension is at most one, we obtain a singularity category version of the result of Dey, Lank, and Takahashi [3] for the bounded derived category.

References

- [1] A. BONDAL; M. VAN DEN BERGH, Generators and representability of functors in commutative and noncommutative geometry, *Mosc. Math. J.* **3** (2003), no. 1, 1–36, 258.
- [2] R.-O. Buchweitz, Maximal Cohen-Macaulay modules and Tate cohomology, With appendices and an introduction by L. L. Avramov, B. Briggs, S. B. Iyengar and J. C. Letz, Math. Surveys Monogr. **262**, American Mathematical Society, Providence, RI, 2021.
- [3] S. Dey; P. Lank; R. Takahashi, Strong generation for module categories, *J. Pure Appl. Algebra* **229** (2025), no. 10, Paper No. 108070, 16pp.
- [4] S. Dey; J. Liu; Y. Mifune; Y. Otake, Annihilation of cohomology and (strong) generation of singularity categories, preprint (2025), arXiv:2503.24186v1.
- [5] S. B. IYENGAR; R. TAKAHASHI, Annihilation of cohomology and strong generation of module categories, *Int. Math. Res. Not. IMRN* (2016), no. 2, 499–535.
- [6] S. B. IYENGAR; R. TAKAHASHI, Openness of the regular locus and generators for module categories, *Acta Math. Vietnam.* 44 (2019), no. 1, 207–212.
- [7] R. ROUQUIER, Dimensions of triangulated categories, J. K-Theory 1 (2008), no. 2, 193–256.

Graduate School of Mathematics, Nagoya University, Furocho, Chikusaku, Nagoya 464-8602, Japan

Email address: yuki.mifune.c9@math.nagoya-u.ac.jp