Universidade Federal de Campina Grande – UFCG Centro de Engenharia Elétrica e Informática – CEEI Departamento de Sistemas e Computação – DSC

Professor: Reinaldo Gomes

Disciplina: Administração de Sistemas

Prática 10 - Processos no Linux

Essa prática é destinada ao entendimento de alguns dos principais comandos sobre gerenciamento de processos no linux.

- 1. Liste os processos existente no sistema operacional.
 - \$ ps
 - \$ ps -u (exibe mais detalhes sobre os processos)
- 2. Liste os processos existente no sistema operacional que também pertençam a outros usuários (-a):
 - \$ ps -au
- **3.** Liste os processos existente no sistema operacional que também pertençam a outros usuários (-a) e que não estão vinculados a terminais (-x).
 - \$ ps -aux
- **4.** Liste os processos ativos, exibindo apenas as seguintes informações: UID, PID, PPID, COMMAND e STAT.
 - \$ ps -eo uid,pid,ppid,cmd,stat
- **5.** Execute a sequencia de comandos abaixo correspondente ao um script simples e a execução desse script em *backgroud* (segundo plano).
 - \$ echo 'echo ola' > teste.sh
 - \$ echo 'sleep 100' >> teste.sh
 - \$ echo 'echo adeus' >> teste.sh
 - \$ chmod a+x teste.sh
 - \$./teste.sh & (pressione <enter> para retornar ao prompt de comando)
- **6.** Execute o comando abaixo para exibir os processos em *background*. Observa a diferença entre os comandos abaixo.
 - \$ jobs
 - **\$** jobs -1
- 7. Mate o processo que está em executando em backgroud.
 - \$ kill %1
- **8.** O comando kill tem como objetivo enviar sinais para os processos. Há vários sinais diferentes que o kill pode enviar para um processo. Veja a lista de todos os sinais conhecidos.
 - \$ kill -1

A função de cada sinal pode ser obtida consultando a man page: "\$ man 7 signal".

9. Execute os comandos conforme orientação a seguir.

Inicie três comandos ping no mesmo shell, executando-os em backgroud.

- \$ ping 1.1.1.1 &> /dev/null &
- \$ ping 2.2.2.2 &> /dev/null &
- \$ ping 3.3.3.3 &> /dev/null &

Liste os processos em backgroud.

- \$ jobs -1
- Volte a executar um dos processos em *foreground* (primeiro plano).
 - **\$ fg %2** (ou \$ fg 2)

Supondo que seja necessário trocar o estado de Executando (*Running*) do segundo processo para Parado (*Stopped*). No terminal com a segunda tarefa em execução, conforme comando anterior, pressione a combinação de teclas Ctrl+z (referenciada como **^Z**). Veja a ilustração abaixo.

```
analista@debian:~$ fg %2
ping 2.2.2.2 &>/dev/null
^Z
[2]+ Parado ping 2.2.2.2 &>/dev/null
```

Liste novamente os processos em backgroud.

```
$ jobs -1 (ou somente $jobs)
```

Observe que a tarefa 2 está em estado de *Stopped*. Para trazer novamente a tarefa para o estado *Running*, execute os comandos abaixo.

```
$ kill -cont %2 ou ($ kill -sigcont %2) ou ($ kill -cont PID)
$ iobs
```

Outras formas de visualizar informações sobre processos:

- \$ pgrep ping
- \$ pgrep ping -d '' (seleciona um espaço como novo delimitador para o PIDs exibidos)
- \$ pgrep ping -1 -f (exibe o PID e a linha de comando de todos os processos com nome ping)
- \$ pgrep ping -1 -f -o (exibe o processo mais antigo iniciado pelo sistema com o nome ping)
- \$ pgrep ping -1 -f -n (exibe o processo mais novo iniciado pelo sistema com o nome ping)
- \$ pgrep ping -1 -f -v (exibe os processos que não tenham o nome ping)

Temos também a opção de usar o comando pidstat para vermos informações mais detalhadas de algum processo de maneira contínua:

```
$ pidstat -p pid tempo_atualizacao
```

Agora mate todos os processos ping.

```
$ killall ping (ou pkill ping)
```

\$ jobs

Caso os processos ainda persistam em memória, execute o comando: \$ killall -9 ping

10. Para visualizar informações sobre processos em tempo real, execute os comandos a seguir.

```
$ top
```

```
$ top -d 5 (define o período de atualização)
```

```
$ top -p pid1 [-p pid2 ...] (define processos a serem exibidos)
```

Informações de memória RAM e swap são obtidas no inicio do comando top. Digite a tecla **q** para sair do comando top.

11. Outro comando para exibir informações sobre a quantidade de memória disponível e swap.

```
$ free -h
```

12. Para exibir informações sobre a hora atual, quanto tempo o sistema está ativo, a quantidade de usuário conectados no sistema e a carga de trabalho, execute o comando a seguir.

```
$ uptime
```

13. Para exibir informações do comando uptime e quem está conectado ao sistema, execute o comando a seguir.

```
$ w
```

14. Execute os comandos abaixo para manipular com a prioridade de um processo.

Atribuindo o parâmetro nice para um processo. Observe que por padrão o nice é zero e a prioridade é 20. O comando abaixo configura o nice como 10 e altera a prioridade do processo (soma 10 a prioridade do processo).

```
$ nice -n 10 sleep 300 &
```

Observe a prioridade do processo com o comando abaixo e anote o PID do processo.

```
$ ps -lax | grep sleep
```

- **15.** Outra opção que também podemos considerar para o monitoramento de CPU e memória é usar o comando **vmstat.**
 - \$ vmstat [tempo_atualizacao]

A saída se divide em categorias: processos, memória, swap, uso de disco, system para a indicação do número de vezes que o kernel alterna para executar seu código e CPU.

pro	procsmemóriaswap					0	e/ssistemacpu									
Г	Ь	swpd	livre	buff	cache	si	so	bi	bo	in	cs us	sy	id	wa	st	2
1	0	0	14138992	79920	910804	0	0	442	19	123	284	3	1	85	12	0
0	0	0	14143424	79964	911036	0	0	18	184	235	568	0	0	98	2	0
0	0	0	14143432	79964	910908	0	0	0	0	175	382	0	0	100	0	0
0	0	0	14143424	79972	910908	0	0	0	6	172	393	0	0	100	0	0
0	0	0	14143416	79972	910908	0	0	0	0	167	362	0	0	100	0	0
0	0	0	14143804	79972	910908	0	0	0	0	186	411	0	0	100	0	0
0	0	0	14143796	79972	910908	0	0	0	20	168	353	0	0	100	0	0
0	0	0	14143584	79972	911168	0	0	0	0	491	2234	2	1	98	0	0
2	1	0	14044124	80812	986288	0	0	16500	0	1081	3941	2	1	89	7	0
0	0	0	14027252	81664	993092	0	0	7034	0	671	15559	1	1	90	8	0
0	0	0	14046056	81664	973400	0	0	0	0	590	3744	1	0	98	0	0
0	0	0	14050288	81672	968924	0	0	4	252	578	3024	1	0	98	1	0
0	0	0	14060968	81704	978552	0	0	278	90	571	5114	1	0	97	1	0
0	0	0	14079756	81704	959688	0	0	0	0	214	560	0	0	100	0	0
0	0	0	14080004	81704	959992	0	0	0	0	342	1528	0	0	99	0	0

- **16.** Para monitorarmos especificamente as operações em disco ao invés de usarmos apenas as informações apresentadas no vmstat pode usar o **iostat**, que nos fornece uma riqueza maior de informações.
 - \$ iostat [tempo_atualizacao]

Nele são apresentadas informações de transferência de dados por segundo, dados lidos por segundo, dados escritos por segundo, total de dados lidos e total de dados escritos, todos em kilobytes.

Linux 4.1	5.0-118-generi	.c (Thunder)	07/10/202	0 _x86_	64_	(8 CPU)
avg-cpu:		%system %iowai		%idle		
	1,61 0,00	0,75 15,0	5 0,00	82,60		
Device	tps	kB_read/s	kB wrtn/s	kB read	kB wrtn	
Loop0	0,39	8,45	0,00	1061	- 0	
loop1	0,28	0,88		110		
loop2	0,48	8,48	0,00	1064		
loop3	0,31	0,91		114		
loop4	0,14	0,35	0,00	44		
Loop5	0,41	8,41		1055		
Loop6	0,14	0,35	0,00	44		
loop7	0,28	0,88		110		
sda	160,99	4135,90	161,46	519014	20261	
loop8	0,41	8,48		1064		
loop9	0,41	8,37		1050		
loop10	0,33	2,69		337		
loop11	0,41	8,42	0,00	1057		
loop12	0,33	2,69		337		
loop13	0,44	8,48		1064		
loop14	0,14	0,35	0,00	44		
loop15	0,31	2,66	0,00	334		
loop16	0,31	2,64		331		
loop17	0,40	8,46		1062		
loop18	0,32	0,92		115		
loop19	0,41	8,48	0,00	1064		
loop20	0,15	0,37		46		
loop21	0,39	8,46	0,00	1062		
loop22	0,04	0,06		8		