第7章 存储管理

- 7.1内存管理功能
- 7.2物理内存管理
- 7.3虚拟内存管理
- **■** 7.4 Intel CPU与Linux内存管理

华中科技大学.苏曙光老帅.《操作系统原理》MOOC课程组版权所有

7.4 Intel CPU与Linux内存管理

- 7.4.1 Intel CPU物理结构
- 7.4.2 Intel CPU段机制
- _____ 7.4.3 Linux页面机制
- 7.4.4 Linux对段的支持

《操作系统原理》

7.4.4 Linux对段的支持

教师: 苏曙光

华中科技大学软件学院

华中科技大学.苏曙光老帅.《操作系统原理》MOOC课程组版权所有

- ◆ Linux将4G虚拟空间划分为两个部分
 - 用户空间与内核空间
 - 用户空间3G:从0到0xBFFFFFF
 - 内核空间1G:从0xC0000000到0xFFFFFFFF

Linux段机制

- ◆ 进程建立时,段机制对寄存器的初始化:start_thread()
- include/asm-i386/processor.h

 #define_start_thread(regs, new_eip, new_esp) do{
 __asm__("movl %0, %%fs; movl %0, %%gs" ::" r" (0));
 set_fs(USER_DS);
 regs->xds = __USER_DS;
 regs->xes = __USER_DS;
 regs->xss = __USER_DS;
 regs->xcs = __USER_DS;

regs->eip = new_eip;

regs->esp = new_esp;

} while(0)

♦ include/asm-i386/segment.h

宏	值	INDEX	T	DPL	
KERNEL_CS	0x10	0000 0000 0001 0	70	000	
KERNEL_DS	0x18	0000 0000 0001	0	00/	
_USER_CS	0x23	0000 0000 0010.0	0	11 /	
_USER_DS	0x2B	0000 0000 0010 1	o/	11/	

INDEX: 2,3,4,5; TI = 0; DPL: 0,3. 华中科技大学.苏曙光老师.《操作系统原理》MOOC课程组版权所有

arch/i386/kernel/head.S

```
//GDT定义
ENTRY(gdt_table)
 quad 0x 0000 0000 0000 0000 //NULL
 quad 0x 0000 0000 0000 0000 // not used
 quad 0x 00cf 9a00 0000 ffff // Index=2
 quad 0x 00cf 9200 0000 ffff // Index=3
 quad 0x 00cf fa00_0000 ffff // Index=4
 quad 0x 00cf f200 0000 ffff // Index=5
 quad 0x 0000 0000 0000 0000 // not used
 quad 0x 0000 0000 0000 0000 // not used
```

◆ 描述符 (Descriptor)

■ 段基址:32位(段基址1+段基址2)

■ 段界限:20位(段界限1+段界限2)

3124	属性	1916 段界限2	230	150		
段基址1	禹江		段基址2	段界限1		

7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
G	D/B	0	AVL		段界限2			Р	DI	PL	. S TYP			PE	

arch/i386/kernel/head.S

```
//GDT定义
ENTRY(gdt_table)
 quad 0x 0000 0000 0000 0000 //NULL
 quad 0x 0000 0000 0000 0000 // not used
 quad 0x 00cf 9a00 0000 ffff // Index=2
 quad 0x 00cf 9200 0000 ffff // Index=3
 quad 0x 00cf fa00 0000 ffff // Index=4
 quad 0x 00cf f200 0000 ffff // Index=5
 quad 0x 0000 0000 0000 0000 // not used
 quad 0x 0000 0000 0000 0000 // not used
```

网址: www.icourses.cn ,主页搜索 "苏曙光" 即可进入MOOC课堂 ◆ 4个全局描述符

- XXXX:基地址; hhhh: 段界限
- G位都是1(段长单位4KB);P位都是1(段在内存)
- K_CS(Index=2), kernel 4GB code at 0x0
- K_DS(Index=3), kernel 4GB data at 0x0
- U CS(Index=4), USER 4GB code at 0x0
- U_DS(Index=5), USER 4GB data at 0x0

华中科技大学.苏曙光老师.《操作系统原理》MOOC课程组版权所有

Linux的段机制

- ◆ Linux四个范围一样的段: 0 ~ 0xFFFFFFFF (4G)
 - 内核数据段 | 内核代码段 | 用户数据段 | 用户代码段
- ◆ 各段属性不同
 - 内核段特权级为0
 - 用户段特权级为3
- ◆ 作用
 - 利用段机制隔离用户数据和系统数据
 - 保留段的等级保护机制
 - 简化(避免)逻辑地址到线性地址转换
 - 可以直接将虚拟地址当做线性地址, 二者完全一致。

华中科技大学.苏曙光老师.《操作系统原理》MOOC课程组版权所有