Übung zur Vorlesung Berechenbarkeit und Komplexität

Blatt 4

Tutoriumsaufgabe 4.1

Zeigen oder widerlegen Sie, dass folgende Probleme entscheidbar sind. Sie können gegebenenfalls den Satz von Rice verwenden.

- (a) Eingabe: Eine TM M; ein Wort w; ein Zustand q.
 - Frage: Erreicht M jemals den Zustand q, wenn M auf dem Eingabewort w gestartet wird?
- (b) Eingabe: Eine TM M; ein Buchstabe $a \in \Gamma$.
 - Frage: Schreibt M jemals den Buchstaben a aufs Band, wenn M mit dem leeren Eingabewort gestartet wird?
- (c) Eingabe: Eine TM M.
 - Frage: Schreibt M jemals einen Buchstaben $a \in \Gamma$ mit $a \neq B$ aufs Band, wenn M mit dem leeren Eingabewort gestartet wird?
- (d) Eingabe: Eine TM M.

Frage: Ist L(M) endlich?

Tutoriumsaufgabe 4.2

Seien L_1, L_2, L_3 drei Sprachen über dem Alphabet $\{0, 1\}$.

- (a) Zeigen Sie, dass das Reduktionskonzept " \leq " transitiv ist. Zeigen Sie also: Aus $L_1 \leq L_2$ und $L_2 \leq L_3$ folgt $L_1 \leq L_3$.
- (b) Zeigen Sie die Aussage: $(L_1 \leq L_2 \Rightarrow \overline{L_1} \leq \overline{L_2})$.

Hausaufgabe 4.1 (5 Punkte)

Zeigen oder widerlegen Sie, dass folgende Probleme entscheidbar sind. Sie können gegebenenfalls den Satz von Rice verwenden.

- (a) Eingabe: Eine TM M; ein Wort w.
 - Frage: Bewegt M jemals den Kopf einen Schritt nach links, wenn M auf dem Eingabewort w gestartet wird?
- (b) Eingabe: eine TM M.

Frage: Gilt L(M) = M? Hierbei sei $M = \{\langle M' \rangle \mid M' \text{ ist Turingmaschine} \}$ die Menge aller Gödelnummern.

Hausaufgabe 4.2 (5 Punkte)

Eine Konfiguration $\alpha q\beta$ für eine TM M mit $q \in Q$ und $\alpha, \beta \in \Gamma^*$ ist in Standardform falls gilt: $\alpha \in B\Gamma^*$ impliziert $\alpha = B$, und $\beta \in \Gamma^*B$ impliziert $\beta = B$. (Die Standardform vermeidet also irrelevante Blanks am Anfang von α und am Ende von β).

Welche der folgenden Probleme sind entscheidbar?

- (a) Eingabe: Eine TM M; ein Wort w; eine natürliche Zahl k.
 - Frage: Falls die TM M auf dem Eingabewort w gestartet wird, erreicht sie dann jemals eine Konfiguration $\alpha q \beta$ in Standardform mit $|\alpha \beta| \ge k$?
- (b) Eingabe: Eine TM M; ein Wort w.

Frage: Gibt es eine Zahl k mit folgender Eigenschaft: Falls die TM M auf dem Eingabewort w gestartet wird, so erfüllen alle erreichbaren Konfigurationen $\alpha q\beta$ in Standardform $|\alpha\beta| \leq k$?

Hausaufgabe 4.3 (5 Punkte)

Für eine Sprache L über dem Alphabet {0,1} definieren wir die Sprache

$$L^* = \{w_1 w_2 \dots w_n \mid n \ge 0, w_1, \dots, w_n \in L\}.$$

Beweisen oder widerlegen Sie:

- (a) Wenn L rekursiv ist, dann ist auch L^* rekursiv.
- (b) Wenn L^* rekursiv ist, dann ist auch L rekursiv.