

Distributed Stochastic Programming with Applications to Large-Scale Hydropower Operations

Martin Biel

KTH - Royal Institute of Technology

Doctoral thesis, December 3, 2021

• Hydroelectric power production

- Hydroelectric power production
- Spatial dependence

- Hydroelectric power production
- Spatial dependence
- Temporal dependence

Uncertain local inflow

- Uncertain local inflow
- Uncertain electricity price

- Uncertain local inflow
- Uncertain electricity price
- Uncertain renewable production

• Store energy in water reservoirs

• Participate in electricity market

Motivation - Optimization models

Decision support: formulate and solve optimization models

- Decision support: formulate and solve optimization models
- Common: trade-off between accuracy and computation time

- Decision support: formulate and solve optimization models
- Common: trade-off between accuracy and computation time
- Aim: provide reliable decision-support in a short amount of time

Motivation - Optimization models

- Decision support: formulate and solve optimization models
- Common: trade-off between accuracy and computation time
- Aim: provide reliable decision-support in a short amount of time
 - Accurate models: optimal model reductions
 - Fast computations: scalable algorithms on commodity hardware

Figure: Manageable models

Figure: Scalable algorithms

Mathematical framework for decision problems subjected to uncertainty

Mathematical framework for decision problems subjected to uncertainty

Decision

Actions

- Investments
- Schedules
- Orders

Mathematical framework for decision problems subjected to uncertainty

--- Observation Decision

Actions

- Investments
- Schedules
- Orders

Uncertainties

- Demand
- Weather conditions
- Market price

Mathematical framework for decision problems subjected to uncertainty

→ Observation Decision Recourse

Actions

- Investments
- Schedules
- Orders

Uncertainties

- Demand
- Weather conditions
- Market price

Actions

- Restock
 - Reschedule
- Settle imbalances

Stochastic programming for hydropower operations

- Order strategies in deregulated electricity markets
- Maintenance scheduling
- Capacity expansion
- Coordination with renewable production
- Seasonal planning: reservoir contents before spring flood

Stochastic programming for hydropower operations

- Order strategies in deregulated electricity markets
- Maintenance scheduling
- Capacity expansion
- Coordination with renewable production
- Seasonal planning: reservoir contents before spring flood

StochasticPrograms.jl: framework for stochastic programming

- StochasticPrograms.jl: framework for stochastic programming
- Distributed stochastic programming for large-scale models

- StochasticPrograms.jl: framework for stochastic programming
- Distributed stochastic programming for large-scale models
- Efficient implementations of structure-exploiting algorithms

- StochasticPrograms.jl: framework for stochastic programming
- Distributed stochastic programming for large-scale models
- Efficient implementations of structure-exploiting algorithms
- Algorithmic innovations and software patterns

- StochasticPrograms.jl: framework for stochastic programming
- Distributed stochastic programming for large-scale models
- Efficient implementations of structure-exploiting algorithms
- Algorithmic innovations and software patterns
- Detailed consideration of three hydropower problems
 - Large-scale models of power stations in Skellefteälven
 - Distributed and solved on 32 workers using StochasticPrograms.jl
 - Statistically significant gain from stochastic planning

- 1 Introduction
- 2 Preliminaries
- 3 Modeling
- 4 Algorithms
- 6 Applications
- 6 Conclusion

- 1 Introduction
- 2 Preliminaries
- 4 Algorithms
- 6 Applications
- 6 Conclusion

First-stage decision: x

- First-stage decision: x
- Recourse decision: *y*

- First-stage decision: x
- Recourse decision: y
- Uncertainty: $\xi(\omega): \Omega \to \mathbb{R}^M$ random variable on the set of events Ω

- First-stage decision: x
- Recourse decision: y
- Uncertainty: $\xi(\omega): \Omega \to \mathbb{R}^M$ random variable on the set of events Ω

First stage

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{minimize}} & c^T x + \mathbb{E}_{\xi}[Q(x, \xi(\omega))] \\ \text{subject to} & \textit{A} x = b \\ & x \geq 0 \end{array}$$

Second stage

$$Q(x, \xi(\omega)) = \min_{y \in \mathbb{R}^m} \quad q_{\xi}^T y$$
s.t.
$$W y = h_{\xi} - T_{\xi} x$$

$$y \ge 0$$

• Ω finite (N scenarios)

Preliminaries - Finite extensive form

- Ω finite (*N* scenarios)
- ullet ξ discrete random variable

Preliminaries - Finite extensive form

- Ω finite (N scenarios)
- ξ discrete random variable

Preliminaries - Finite extensive form

- Ω finite (N scenarios)
- ξ discrete random variable

Also commonly referred to as the deterministic equivalent problem.

Preliminaries - Sample average approximation

ullet Ω infinite

Preliminaries - Sample average approximation

- Ω infinite
- ξ continuous random variable

- Ω infinite
- ξ continuous random variable
- Sample N scenarios ω_s , $s=1,\ldots,N$ independently from Ω

- Ω infinite
- ξ continuous random variable
- Sample N scenarios $\omega_s,\ s=1,\ldots,N$ independently from Ω

minimize
$$c^T x + \frac{1}{N} \sum_{s=1}^N q_s^T y_s$$

subject to $Ax = b$
 $T_s x + W y_s = h_s, \quad s = 1, ..., N$
 $x > 0, y_s > 0, \quad s = 1, ..., N$

- Ω infinite
- ξ continuous random variable
- Sample N scenarios $\omega_s,\ s=1,\ldots,N$ independently from Ω

Asymptotic convergence as N goes to infinity

- Ω infinite
- ξ continuous random variable
- Sample N scenarios $\omega_s,\ s=1,\ldots,N$ independently from Ω

$$\begin{aligned} & \underset{x \in \mathbb{R}^n, y_s \in \mathbb{R}^m}{\text{minimize}} & c^T x + \frac{1}{N} \sum_{s=1}^N q_s^T y_s \\ & \text{subject to} & Ax = b \\ & & T_s x + W y_s = h_s, \quad s = 1, \dots, N \\ & & x \geq 0, \ y_s \geq 0, \quad s = 1, \dots, N \end{aligned}$$

- Asymptotic convergence as N goes to infinity
- Confidence intervals around optimal solution

Deterministic equivalent

- GLPK
- Gurobi

Stage-decomposition

- L-shaped
- Quasi-gradient

Scenario-decomposition

Progressive-hedging

Outline

- Introduction
- 2 Preliminarie
- 3 Modeling

StochasticPrograms.jl: Stochastic programming in Julia

4 Algorithms

Structure-exploiting stochastic programming algorithms

Dynamic cut aggregation in L-shaped algorithms

A fast smoothing procedure for large-scale stochastic programming

6 Applications

Uncertainty modeling for hydropower operations

Case study 1: Day-ahead planning

Case study 2: Maintenance scheduling

Case study 3: Capacity expansion

6 Conclusion

StochasticPrograms.jl: framework for stochastic programming

Publications

- StochasticPrograms.jl: framework for stochastic programming
- Easy to formulate, solve, and analyze stochastic models

Publications

- StochasticPrograms.jl: framework for stochastic programming
- Easy to formulate, solve, and analyze stochastic models
- Distributed-memory implementation for large-scale models

Publications

- StochasticPrograms.jl: framework for stochastic programming
- Easy to formulate, solve, and analyze stochastic models
- Distributed-memory implementation for large-scale models
- Efficient implementations of structure-exploiting algorithms

Publications

$$\begin{array}{ll} \underset{x_1,x_2 \in \mathbb{R}}{\mathsf{minimize}} & 100x_1 + 150x_2 + \mathbb{E}_{\xi}[\mathit{Q}(x_1,x_2,\xi)] \\ \mathsf{subject to} & x_1 + x_2 \leq 120 \\ & x_1 \geq 40 \\ & x_2 \geq 20 \end{array}$$

where

$$Q(x_1, x_2, \xi) = \max_{y_1, y_2 \in \mathbb{R}} \quad q_1(\xi)y_1 + q_2(\xi)y_2$$
s.t.
$$6y_1 + 10y_2 \le 60x_1$$

$$8y_1 + 5y_2 \le 80x_2$$

$$0 \le y_1 \le d_1(\xi)$$

$$0 \le y_2 \le d_2(\xi)$$

```
Ostochastic model simple begin
    Ostage 1 begin
         Odecision(simple, x_1 >= 40)
         Odecision(simple, x_2 \ge 20)
         Objective(simple, Min, 100*x_1 + 150*x_2)
         Oconstraint(simple, x_1 + x_2 \le 120)
    end
    Ostage 2 begin
         Quncertain q<sub>1</sub> q<sub>2</sub> d<sub>1</sub> d<sub>2</sub>
         Orecourse(simple, 0 \le y_1 \le d_1)
         Orecourse(simple, 0 \le y_2 \le d_2)
         Objective(simple, Max, q_1*y_1 + q_2*y_2)
         @constraint(simple, 6*y_1 + 10*y_2 \le 60*x_1)
         Oconstraint(simple, 8*y_1 + 5*y_2 \le 80*x_2)
    end
end
```

```
Ostochastic_model simple begin
    Ostage 1 begin
         Odecision(simple, x_1 >= 40)
         Odecision(simple, x_2 \ge 20)
         Objective(simple, Min, 100*x_1 + 150*x_2)
         Oconstraint(simple, x_1 + x_2 \le 120)
    end
    Ostage 2 begin
         Quncertain q<sub>1</sub> q<sub>2</sub> d<sub>1</sub> d<sub>2</sub>
         Orecourse(simple, 0 \le y_1 \le d_1)
         Orecourse(simple, 0 \le y_2 \le d_2)
         Objective(simple, Max, q_1*y_1 + q_2*y_2)
         @constraint(simple, 6*y_1 + 10*y_2 \le 60*x_1)
         Oconstraint(simple, 8*y_1 + 5*y_2 \le 80*x_2)
    end
end
```

```
Ostochastic model simple begin
    Ostage 1 begin
         Odecision(simple, x_1 >= 40)
         Odecision(simple, x_2 \ge 20)
         Objective(simple, Min, 100*x_1 + 150*x_2)
         Oconstraint(simple, x_1 + x_2 \le 120)
    end
    Ostage 2 begin
         Quncertain q<sub>1</sub> q<sub>2</sub> d<sub>1</sub> d<sub>2</sub>
         Orecourse(simple, 0 \le y_1 \le d_1)
         Orecourse(simple, 0 \le y_2 \le d_2)
         Objective(simple, Max, q_1*y_1 + q_2*y_2)
         @constraint(simple, 6*y_1 + 10*y_2 \le 60*x_1)
         Oconstraint(simple, 8*y_1 + 5*y_2 \le 80*x_2)
    end
end
```

```
Ostochastic_model simple begin
    Ostage 1 begin
         Odecision(simple, x_1 >= 40)
         Odecision(simple, x_2 \ge 20)
         Qobjective(simple, Min, 100*x_1 + 150*x_2)
         Oconstraint(simple, x_1 + x_2 \le 120)
    end
    Ostage 2 begin
         Quncertain q<sub>1</sub> q<sub>2</sub> d<sub>1</sub> d<sub>2</sub>
         Orecourse(simple, 0 \le y_1 \le d_1)
         Orecourse(simple, 0 \le y_2 \le d_2)
         Objective(simple, Max, q_1*y_1 + q_2*y_2)
         Qconstraint(simple, 6*y_1 + 10*y_2 \le 60*x_1)
         Occonstraint(simple, 8*y_1 + 5*y_2 \le 80*x_2)
    end
end
```

JuMP syntax


```
Ostochastic model simple begin
    Ostage 1 begin
         Odecision(simple, x_1 >= 40)
         Odecision(simple, x_2 \ge 20)
         Objective(simple, Min, 100*x_1 + 150*x_2)
         Oconstraint(simple, x_1 + x_2 \le 120)
    end
    Ostage 2 begin
         Quncertain q<sub>1</sub> q<sub>2</sub> d<sub>1</sub> d<sub>2</sub>
         Orecourse(simple, 0 \le y_1 \le d_1)
         Orecourse(simple, 0 \le y_2 \le d_2)
         Objective(simple, Max, q_1*y_1 + q_2*y_2)
         @constraint(simple, 6*y_1 + 10*y_2 \le 60*x_1)
         Oconstraint(simple, 8*y_1 + 5*y_2 \le 80*x_2)
    end
end
```

```
minimize
               100x_1 + 150x_2
  x_1, x_2 \in \mathbb{R}
subject to x_1 + x_2 \le 120
               x_1 \ge 40
               x_2 > 20
```



```
Ostochastic model simple begin
    Ostage 1 begin
         Odecision(simple, x_1 >= 40)
         Odecision(simple, x_2 \ge 20)
         Objective(simple, Min, 100*x_1 + 150*x_2)
         Oconstraint(simple, x_1 + x_2 \le 120)
    end
    Ostage 2 begin
         Quncertain q<sub>1</sub> q<sub>2</sub> d<sub>1</sub> d<sub>2</sub>
         Orecourse(simple, 0 \le y_1 \le d_1)
         Orecourse(simple, 0 \le y_2 \le d_2)
         Objective(simple, Max, q_1*y_1 + q_2*y_2)
         Qconstraint(simple, 6*y_1 + 10*y_2 \le 60*x_1)
         Occonstraint(simple, 8*y_1 + 5*y_2 \le 80*x_2)
    end
end
```

$$\max_{y_1, y_2 \in \mathbb{R}} q_1(\xi) \ y_1 + \ q_2(\xi) \ y_2$$
s.t.
$$6y_1 + 10y_2 \le 60 \ x_1$$

$$8y_1 + 5y_2 \le 80 \ x_2$$

$$0 \le y_1 \le d_1(\xi)$$

$$0 < y_2 < d_2(\xi)$$

Algorithms


```
Ostochastic model simple begin
    Ostage 1 begin
         Odecision(simple, x_1 >= 40)
         Odecision(simple, x_2 \ge 20)
         Objective(simple, Min, 100*x_1 + 150*x_2)
         Oconstraint(simple, x_1 + x_2 \le 120)
    end
    Ostage 2 begin
         Quncertain q<sub>1</sub> q<sub>2</sub> d<sub>1</sub> d<sub>2</sub>
         Orecourse(simple, 0 \le y_1 \le d_1)
         Orecourse(simple, 0 \le y_2 \le d_2)
         Objective(simple, Max, q_1*y_1 + q_2*y_2)
         Qconstraint(simple, 6*y_1 + 10*y_2 \le 60*x_1)
         Occonstraint(simple, 8*y_1 + 5*y_2 \le 80*x_2)
    end
end
```

```
\max_{y_1, y_2 \in \mathbb{R}} q_1(\xi) \ y_1 + \ q_2(\xi) \ y_2
s.t. 6y_1 + 10y_2 \le 60 \ x_1
8y_1 + 5y_2 \le 80 \ x_2
0 \le y_1 \le d_1(\xi)
0 < y_2 < d_2(\xi)
```



```
Ostochastic model simple begin
    Ostage 1 begin
         Odecision(simple, x_1 >= 40)
         Odecision(simple, x_2 \ge 20)
         Objective(simple, Min, 100*x_1 + 150*x_2)
         Oconstraint(simple, x_1 + x_2 \le 120)
    end
    Ostage 2 begin
         Quncertain q<sub>1</sub> q<sub>2</sub> d<sub>1</sub> d<sub>2</sub>
         Orecourse(simple, 0 \le y_1 \le d_1)
         Orecourse(simple, 0 \le y_2 \le d_2)
         Objective(simple, Max, q_1*y_1 + q_2*y_2)
         @constraint(simple, 6*y_1 + 10*y_2 \le 60*x_1)
         Oconstraint(simple, 8*y_1 + 5*y_2 \le 80*x_2)
    end
end
```

```
\max_{y_1, y_2 \in \mathbb{R}} q_1(\xi) y_1 + q_2(\xi) y_2
s.t. 6y_1 + 10y_2 \le 60 x_1
8y_1 + 5y_2 \le 80 x_2
0 \le y_1 \le d_1(\xi)
0 \le y_2 \le d_2(\xi)
```

```
\xi_1 = @scenario q_1 = 24.0 q_2 = 28.0 d_1 = 500.0 d_2 = 100.0 probability = 0.4; \xi_2 = @scenario q_1 = 28.0 q_2 = 32.0 d_1 = 300.0 d_2 = 300.0 probability = 0.6; sp = instantiate(simple, [\xi_1, \xi_2], optimizer = LShaped.Optimizer)

Stochastic program with:

* 2 decision variables

* 2 recourse variables

* 2 scenarios of type Scenario

Structure: Stage-decomposition

Solver name: L-shaped
```

```
\xi_1 = @scenario q_1 = 24.0 q_2 = 28.0 d_1 = 500.0 d_2 = 100.0 probability = 0.4;
\xi_2 = Oscenario q_1 = 28.0 q_2 = 32.0 d_1 = 300.0 d_2 = 300.0 probability = 0.6;
sp = instantiate(simple, [\xi_1, \xi_2], optimizer = LShaped.Optimizer)
Stochastic program with:
```

- * 2 decision variables
- * 2 recourse variables
- * 2 scenarios of type Scenario

Structure: Stage-decomposition

Solver name: L-shaped

```
\xi_1 = @scenario q_1 = 24.0 q_2 = 28.0 d_1 = 500.0 d_2 = 100.0 probability = 0.4; \xi_2 = @scenario q_1 = 28.0 q_2 = 32.0 d_1 = 300.0 d_2 = 300.0 probability = 0.6; sp = instantiate(simple, [\xi_1, \xi_2], optimizer = LShaped.Optimizer)

Stochastic program with:
```

- * 2 decision variables
- * 2 recourse variables
- * 2 scenarios of type Scenario

Structure: Stage-decomposition

Solver name: L-shaped

```
set_optimizer_attribute(sp, MasterOptimizer(), GLPK.Optimizer)
set_optimizer_attribute(sp, SubProblemOptimizer(), GLPK.Optimizer)
optimize!(sp)

L-Shaped Gap Time: 0:00:00 (6 iterations)
Objective: -855.83333333333333
Gap: 2.1254014452334763e-15
Number of cuts: 7
Iterations: 6
```

StochasticPrograms.il - Features

- Flexible and expressive problem definition
- Discrete models
- Continuous models (through sampling)
- Variety of tools for analyzing models
 - VSS
 - ► FVPI
 - Confidence intervals
- Distributed models
- Interface to structure-exploiting (parallel) solver algorithms
 - L-shaped variants
 - Progressive-hedging variants
 - Quasi-gradient variants

- 90% Confidence intervals around the optimal value
- Stable solution with 6000 scenarios

Unserved requests

StochasticPrograms.jl - Numerical experiments

- Significant improvements with decomposition structures
- Largest problem storm requires distributed decomposition

StochasticPrograms.jl - Numerical experiments

Significant gains with decomposition structures on larger problems

- StochasticPrograms.jl
 - Easy to use
 - Comprehensive
 - Distributed capabilities

- StochasticPrograms.jl
 - Easy to use
 - Comprehensive
 - Distributed capabilities
- Useful for:
 - Researchers
 - Educators
 - Industrial practitioners

StochasticPrograms.il - Summary

- StochasticPrograms.jl
 - Easy to use
 - Comprehensive
 - Distributed capabilities
- Useful for:
 - Researchers
 - Educators
 - Industrial practitioners

Open-source and available as an official Julia package: https://github.com/martinbiel/StochasticPrograms.jl

Outline

- Introduction
- 2 Preliminarie
- 3 Modeling

StochasticPrograms.jl: Stochastic programming in Julia

4 Algorithms

Structure-exploiting stochastic programming algorithms

Dynamic cut aggregation in L-shaped algorithms

A fast smoothing procedure for large-scale stochastic programming

6 Applications

Uncertainty modeling for hydropower operations

Case study 1: Day-ahead planning

Case study 2: Maintenance scheduling

Case study 3: Capacity expansion

6 Conclusion

Outline

- Introduction
- 2 Preliminarie
 - Modeling

StochasticPrograms.jl: Stochastic programming in Julia

4 Algorithms

Structure-exploiting stochastic programming algorithms

Dynamic cut aggregation in L-shaped algorithms

A fast smoothing procedure for large-scale stochastic programming

6 Applications

Uncertainty modeling for hydropower operations

Case study 1: Day-ahead planning

Case study 2: Maintenance scheduling

Case study 3: Capacity expansion

6 Conclusion

- Martin Biel and Mikael Johansson Efficient stochastic programming in Julia. INFORMS Journal on Computing, 2021. in press
- Martin Biel and Mikael Johansson
 - Distributed L-shaped algorithms in Julia. In 2018 IEEE/ACM Parallel Applications Workshop, Alternatives To MPI (PAW-ATM). IEEE, 2018
- Martin Biel, Arda Aytekin, and Mikael
 - Johansson. POLO.jl: Policy-based optimization algorithms in Julia. Advances in Engineering Software, 136:102695. 2019

- The L-shaped algorithm
 - Variations
 - Distributed extension
 - Solver module

- Martin Biel and Mikael Johansson Efficient stochastic programming in Julia. INFORMS Journal on Computing, 2021. in press
- Martin Biel and Mikael Johansson
 - Distributed L-shaped algorithms in Julia. In 2018 IEEE/ACM Parallel Applications Workshop, Alternatives To MPI (PAW-ATM). IEEE, 2018
- Martin Biel, Arda Aytekin, and Mikael
 - Johansson. POLO.jl: Policy-based optimization algorithms in Julia. Advances in Engineering Software, 136:102695. 2019

- The L-shaped algorithm
 - Variations
 - Distributed extension
 - Solver module
- Progressive-hedging
- Quasi-gradient algorithm

- Martin Biel and Mikael Johansson Efficient stochastic programming in Julia. INFORMS Journal on Computing, 2021. in press
- Martin Biel and Mikael Johansson Distributed L-shaped algorithms in Julia.
 - In 2018 IEEE/ACM Parallel Applications Workshop, Alternatives To MPI (PAW-ATM). IEEE, 2018
- Martin Biel, Arda Aytekin, and Mikael Johansson. POLO.jl: Policy-based optimization algorithms in Julia. Advances in Engineering Software, 136:102695. 2019

- The L-shaped algorithm
 - Variations
 - Distributed extension
 - Solver module
- Progressive-hedging
- Quasi-gradient algorithm
- Numerical experiments

Publications

- Martin Biel and Mikael Johansson Efficient stochastic programming in Julia. INFORMS Journal on Computing, 2021. in press
- Distributed L-shaped algorithms in Julia. In 2018 IEEE/ACM Parallel Applications Workshop, Alternatives To MPI

Martin Biel and Mikael Johansson

- (PAW-ATM). IEEE, 2018 Martin Biel, Arda Aytekin, and Mikael
 - Johansson. POLO.jl: Policy-based optimization algorithms in Julia. Advances in Engineering Software, 136:102695. 2019

Structured algorithm - Numerical experiments

The SSN problem

- Optimal bandwidth capacity expansion plan in a network
- Stable solution after sampling 6000 scenarios
- 30 minutes required to build and solve the deterministic equivalent
- Distribute over 32 remote worker nodes
- Laptop master node
- Non-neglible communication delay

Structured algorithms - Numerical experiments

L-shaped strong scaling

Number of cores

- Initial parallel inefficiency with standard multi-cut L-shaped algorithm
- Cut communication considerable part of execution time
- Solving the master becomes bottleneck in final iterations

Structured algorithms - Numerical experiments

L-shaped strong scaling

Number of cores

- Improved parallel efficiency with regularization and aggregation
- Improved load balance between master and workers
- Solved in 30 seconds on 32 cores (30 minutes in deterministic form)

- 1 Introduction
- 2 Preliminarie
- **M**odeling

StochasticPrograms.jl: Stochastic programming in Julia

4 Algorithms

Structure-exploiting stochastic programming algorithms

$\label{eq:cut-aggregation} \mbox{Dynamic cut aggregation in L-shaped algorithms}$

A fast smoothing procedure for large-scale stochastic programming

6 Applications

Uncertainty modeling for hydropower operations

Case study 1: Day-ahead planning

Case study 2: Maintenance scheduling

Case study 3: Capacity expansion

6 Conclusion

Cut aggregation improves distributed performance

- Cut aggregation improves distributed performance
 - ► Reduce communication latency
 - Reduce load imbalance

Motivation

- Cut aggregation improves distributed performance
 - Reduce communication latency
 - ► Reduce load imbalance
- Uniform cut aggregation has been applied in many recent works

- Cut aggregation improves distributed performance
 - Reduce communication latency
 - Reduce load imbalance
- Uniform cut aggregation has been applied in many recent works
- Complexity analysis only covers single-cut and multi-cut L-shaped

Review of the use of cut aggregation in L-shaped algorithms

- Martin Biel and Mikael Johansson. Dynamic cut aggregation in L-shaped algorithms. arXiv preprint arXiv:1910.13752, 2019.
 - Submitted for consideration to the European Journal of Operational Research

- Review of the use of cut aggregation in L-shaped algorithms
- Novel dynamic cut aggregation procedure

 Martin Biel and Mikael Johansson. Dynamic cut aggregation in L-shaped algorithms. arXiv preprint arXiv:1910.13752, 2019.

- Review of the use of cut aggregation in L-shaped algorithms
- Novel dynamic cut aggregation procedure
- Theoretical results
 - Static aggregation complexity
 - Dynamic aggregation convergence/complexity

 Martin Biel and Mikael Johansson. Dynamic cut aggregation in L-shaped algorithms. arXiv preprint arXiv:1910.13752, 2019.

- Review of the use of cut aggregation in L-shaped algorithms
- Novel dynamic cut aggregation procedure
- Theoretical results
 - Static aggregation complexity
 - Dynamic aggregation convergence/complexity
- Dynamic aggregation schemes
 - On-line aggregation
 - Batch aggregation

 Martin Biel and Mikael Johansson. Dynamic cut aggregation in L-shaped algorithms. arXiv preprint arXiv:1910.13752, 2019.

Contribution

- Review of the use of cut aggregation in L-shaped algorithms
- Novel dynamic cut aggregation procedure
- Theoretical results
 - Static aggregation complexity
 - Dynamic aggregation convergence/complexity
- Dynamic aggregation schemes
 - On-line aggregation
 - Batch aggregation
- Granulated aggregation combines static and dynamic aggregation

Publications

 Martin Biel and Mikael Johansson. Dynamic cut aggregation in L-shaped algorithms. arXiv preprint arXiv:1910.13752, 2019.

- Review of the use of cut aggregation in L-shaped algorithms
- Novel dynamic cut aggregation procedure
- Theoretical results
 - Static aggregation complexity
 - Dynamic aggregation convergence/complexity
- Dynamic aggregation schemes
 - On-line aggregation
 - Batch aggregation
- Granulated aggregation combines static and dynamic aggregation
- Performance improvements in large-scale examples

 Martin Biel and Mikael Johansson. Dynamic cut aggregation in L-shaped algorithms. arXiv preprint arXiv:1910.13752, 2019.

$\textbf{Algorithm} \setminus \texttt{Problem}$	LandS	gbd	20term	ssn	storm	dayahead
Deterministic	_	-	11874.99	1544.95	-	1053.2
Multi-cut	719.08	307.24	118.12	81.38	236.12	36.31
Partial	129.21	29.47	101.95	58.61	117.58	19.93
SelectUniform	187.38	128.81	114.22	70.96	111.97	18.96
SelectClosest	256.28	561.38	648.43	109.63	68.89	22.07
Kmedoids	212.07	234.01	714.68	93.66	-	31.97
GranulatedSelectClosest	129.16	24.39	55.99	43.26	68.15	15.87
GranulatedKmedoids	157.73	29.39	91.34	70.69	81.13	20.69

Table: Median computation time, in seconds, required to solve the test problems using level-set regularized L-shaped with different aggregation schemes.

Introduction

Preliminaries

Cut aggregation - Numerical experiments

$\textbf{Algorithm} \setminus \texttt{Problem}$	LandS	gbd	20term	ssn	storm	dayahead
Deterministic	-	-	11874.99	1544.95	-	1053.2
Multi-cut	719.08					
Partial	129.21	29.47	101.95	58.61	117.58	19.93
SelectUniform	187.38					
SelectClosest	256.28					
Kmedoids	212.07				-	
GranulatedSelectClosest	129.16	24.39	55.99	43.26	68.15	15.87
GranulatedKmedoids	157.73	29.39	91.34	70.69	81.13	20.69

Table: Median computation time, in seconds, required to solve the test problems using level-set regularized L-shaped with different aggregation schemes.

Outline

- Introduction
- 2 Preliminarie
- 3 Modeling

StochasticPrograms.jl: Stochastic programming in Julia

4 Algorithms

Structure-exploiting stochastic programming algorithms Dynamic cut aggregation in L-shaped algorithms

A fast smoothing procedure for large-scale stochastic programming

6 Applications

Uncertainty modeling for hydropower operations

Case study 1: Day-ahead planning

Case study 2: Maintenance scheduling

Case study 3: Capacity expansion

6 Conclusion

• L-shaped has scalability issues as master problem grows in size

- L-shaped has scalability issues as master problem grows in size
- Projected subgradient descent avoids scalability problem

- L-shaped has scalability issues as master problem grows in size
- Projected subgradient descent avoids scalability problem
- ... but has poor convergence properties

- L-shaped has scalability issues as master problem grows in size
- Projected subgradient descent avoids scalability problem
- ... but has poor convergence properties
- Recent advances to accelerate gradient descent

• Smoothing procedure for linear two-stage stochastic programming

Publications

 Martin Biel, Vien Van Mai, and Mikael Johansson. A fast smoothing procedure for large-scale stochastic programming.
 In 2021 60th IEEE Conference on Decision and Control (CDC). IEEE, 2021.
 in press

- Smoothing procedure for linear two-stage stochastic programming
- Enables the use of modern acceleration methods

 Martin Biel, Vien Van Mai, and Mikael Johansson. A fast smoothing procedure for large-scale stochastic programming.
 In 2021 60th IEEE Conference on Decision and Control (CDC). IEEE, 2021. in press

- Smoothing procedure for linear two-stage stochastic programming
- Enables the use of modern acceleration methods
- Problem-dependent approximation bounds

 Martin Biel, Vien Van Mai, and Mikael Johansson. A fast smoothing procedure for large-scale stochastic programming.
 In 2021 60th IEEE Conference on Decision and Control (CDC). IEEE, 2021.
 in press

- Smoothing procedure for linear two-stage stochastic programming
- Enables the use of modern acceleration methods
- Problem-dependent approximation bounds
- Convergence result

 Martin Biel, Vien Van Mai, and Mikael Johansson. A fast smoothing procedure for large-scale stochastic programming.
 In 2021 60th IEEE Conference on Decision and Control (CDC). IEEE, 2021. in press

- Smoothing procedure for linear two-stage stochastic programming
- Enables the use of modern acceleration methods
- Problem-dependent approximation bounds
- Convergence result
- Theory suggest trade-off between speed and accuracy

 Martin Biel, Vien Van Mai, and Mikael Johansson. A fast smoothing procedure for large-scale stochastic programming.
 In 2021 60th IEEE Conference on Decision and Control (CDC). IEEE, 2021. in press

- Smoothing procedure for linear two-stage stochastic programming
- Enables the use of modern acceleration methods
- Problem-dependent approximation bounds
- Convergence result
- Theory suggest trade-off between speed and accuracy
- Hybrid scheme that is fast and accurate

Publications

 Martin Biel, Vien Van Mai, and Mikael Johansson. A fast smoothing procedure for large-scale stochastic programming.
 In 2021 60th IEEE Conference on Decision and Control (CDC). IEEE, 2021.
 in press

- Smoothing procedure outperforms regularized L-shaped
- Accurate solution with hybrid procedure

Outline

- Introduction
- Preliminarie
- 3 Modeling

StochasticPrograms.jl: Stochastic programming in Julia

4 Algorithms

Structure-exploiting stochastic programming algorithms Dynamic cut aggregation in L-shaped algorithms A fast smoothing procedure for large-scale stochastic pr

6 Applications

Uncertainty modeling for hydropower operations

Case study 1: Day-ahead planning

Case study 2: Maintenance scheduling

Case study 3: Capacity expansion

6 Conclusion

Large-scale hydropower models

Publications

- Martin Biel. Optimal day-ahead orders using stochastic programming and noise-driven recurrent neural networks.
 In 2021 IEEE Madrid PowerTech, pages 1–6, 2021
- Martin Biel. Large-scale hydropower models in StochasticPrograms.jl. arXiv preprint arXiv:2111.02099, 2021.
 Submitted for consideration to Computational Optimization and Applications. Under review

- Large-scale hydropower models
- Three case studies:
 - Day-ahead planning
 - Maintenance scheduling
 - Capacity expansion

Publications

- Martin Biel. Optimal day-ahead orders using stochastic programming and noise-driven recurrent neural networks.
 In 2021 IEEE Madrid PowerTech, pages 1–6, 2021
- Martin Biel. Large-scale hydropower models in StochasticPrograms.jl. arXiv preprint arXiv:2111.02099, 2021.
 Submitted for consideration to Computational Optimization and Applications. Under review

- Large-scale hydropower models
- Three case studies:
 - Day-ahead planning
 - Maintenance scheduling
 - Capacity expansion
- Complete modeling procedure:
 - Data gathering
 - Forecast generation
 - Model formulation
 - Model implementation
 - Optimization
 - Result visualization

Publications

- Martin Biel. Optimal day-ahead orders using stochastic programming and noise-driven recurrent neural networks.
 In 2021 IEEE Madrid PowerTech, pages 1–6, 2021
- Martin Biel. Large-scale hydropower models in StochasticPrograms.jl. arXiv preprint arXiv:2111.02099, 2021.
 Submitted for consideration to Computational Optimization and Applications. Under review

- Day-ahead planning
 - Optimize orders submitted to market the next day
 - Statistically significant value of stochastic planning

- Day-ahead planning
 - Optimize orders submitted to market the next day
 - Statistically significant value of stochastic planning
- Maintenance scheduling
 - Day-ahead problem with preventive maintenance
 - Value of stochastic planning increases

- Day-ahead planning
 - Optimize orders submitted to market the next day
 - Statistically significant value of stochastic planning
- Maintenance scheduling
 - Day-ahead problem with preventive maintenance
 - Value of stochastic planning increases
- Capacity expansion
 - ▶ 1 year horizon (daily increment)
 - 20 year horizon (5-day increments)

- Day-ahead planning
 - Optimize orders submitted to market the next day
 - Statistically significant value of stochastic planning
- Maintenance scheduling
 - Day-ahead problem with preventive maintenance
 - Value of stochastic planning increases
- Capacity expansion
 - ▶ 1 year horizon (daily increment)
 - 20 year horizon (5-day increments)

All models are formulated in StochasticPrograms.jl, distributed on 32 worker cores, and solved using parallel algorithms

Outline

- Introduction
- 2 Preliminarie
- 3 Modeling

StochasticPrograms.jl: Stochastic programming in Julia

4 Algorithms

Structure-exploiting stochastic programming algorithms

Dynamic cut aggregation in L-shaped algorithms

A fast smoothing procedure for large-scale stochastic p

6 Applications

Uncertainty modeling for hydropower operations

Case study 1: Day-ahead planning

Case study 2: Maintenance scheduling

Case study 3: Capacity expansion

6 Conclusion

Uncertain parameters

Forecast generation

- Noise-driven recurrent neural network
- Trained on price data and inflow data separately
- Seasonality modeled through separate inputs to the network

Figure: Initializer network in the price forecaster.

Figure: Sequence generation network in the price forecaster.

Forecast generation

Figure: Historical electricity price curves in January and electricity price curves generated using the RNN forecaster in the same period.

Figure: Daily electricity price curves predicted by the RNN forecaster in every month of the year.

Outline

- Introduction
- 2 Preliminarie
- 3 Modeling

StochasticPrograms.jl: Stochastic programming in Julia

4 Algorithms

Structure-exploiting stochastic programming algorithms

Dynamic cut aggregation in L-shaped algorithms

A fast smoothing procedure for large-scale stochastic procedure.

6 Applications

Uncertainty modeling for hydropower operations

- Case study 1: Day-ahead planning
- Case study 2: Maintenance scheduling
- Case study 3: Capacity expansion
- 6 Conclusion

Figure: Deregulated electricity market.

Market closes

Figure: Deregulated electricity market.

Figure: Deregulated electricity market.

Figure: Deregulated electricity market.

First stage

Second stage

```
R = \max_{Production} Profit(Price) + Water value - Imbalance penalty
```

s.t. Load balance(Order strategy, Balance trading, Price)
Hydrological balance(Inflow)
Electricity production

Day-ahead confidence intervals

- Stable solution with 2000 scenarios
- Statistically significant gap to deterministic strategy

Day-ahead - Strategies

Day-ahead - Strategies

Deterministic strategy from just considering the average market price

Outline

- Introduction
- 2 Preliminarie
- 3 Modeling

StochasticPrograms.jl: Stochastic programming in Julia

4 Algorithms

Structure-exploiting stochastic programming algorithms Dynamic cut aggregation in L-shaped algorithms A fast smoothing procedure for large-scale stochastic p

6 Applications

Uncertainty modeling for hydropower operations

Case study 1: Day-ahead planning

Case study 2: Maintenance scheduling

Case study 3: Capacity expansion

6 Conclusion

Maintenance scheduling - General description

First stage

```
\mathbb{E}[R(\text{Orders}, \text{Schedule}, \text{Price}, \text{Inflow})]
   maximize
Orders + schedule
  subject to Trade regulations
                   Schedule restrictions
```

Second stage

```
Profit(Price) — Imbalance penalty
R = \max
  Production
           Load balance(Order strategy, Balance trading, Price)
     s.t.
           Hydrological balance(Inflow)
           Electricity production(Maintenance schedule)
```


Maintenance scheduling - Convergence

Maintenance scheduling confidence intervals

- Stable solution with 1000 scenarios
- Gap is larger compared to the day-ahead formulation

Maintenance scheduling - Strategies

Order strategy and maintenance schedule from stochastic planning

Maintenance scheduling - Strategies

Deterministic strategy from just considering the average market price

- Introduction
- 2 Preliminarie
- **M**odeling

StochasticPrograms.jl: Stochastic programming in Julia

4 Algorithms

Structure-exploiting stochastic programming algorithms
Dynamic cut aggregation in L-shaped algorithms
A fast smoothing procedure for large-scale stochastic p

6 Applications

Uncertainty modeling for hydropower operations

Case study 1: Day-ahead planning

Case study 2: Maintenance scheduling

Case study 3: Capacity expansion

6 Conclusion

Capacity expansion - General description

First stage

```
\mathbb{E}[R(\mathsf{Expansion}, \mathsf{Price}, \mathsf{Inflow})] - \mathsf{Cost}(\mathsf{Expansion})
maximize
 Expansion
subject to Maximum expansion
```

Second stage

```
R = \max Profit(Price)
  Production
           Hydrological balance(Inflow)
     s.t.
           Electricity production(Expansion)
           Load balance
```


Capacity expansion confidence intervals

Number of Scenarios N

- 1 year horizon
- Stable solution with 500 scenarios

Capacity expansion confidence intervals

- 20 year horizon
- Exceeds hardware capacity after 100 scenarios

Outline

- 1 Introduction
- 2 Preliminarie
- 3 Modeling

StochasticPrograms.jl: Stochastic programming in Julia

- 4 Algorithms
 - Structure-exploiting stochastic programming algorithms
 - Dynamic cut aggregation in L-shaped algorithms
 - A fast smoothing procedure for large-scale stochastic programming
- 6 Applications
 - Uncertainty modeling for hydropower operations
 - Case study 1: Day-ahead planning
 - Case study 2: Maintenance scheduling
 - Case study 3: Capacity expansion
- 6 Conclusion

• Efficient distributed stochastic programming methods

- Efficient distributed stochastic programming methods
- StochasticPrograms.jl: Julia software framework

- Efficient distributed stochastic programming methods
- StochasticPrograms.jl: Julia software framework
- Performance improvements of structure-exploiting algorithms

- Efficient distributed stochastic programming methods
- StochasticPrograms.jl: Julia software framework
- Performance improvements of structure-exploiting algorithms
- Effectiveness of the framework illustrated with three case studies