$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

$\Upsilon(2S)$ MASS

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
10023.26±0.31 OUR AVERAGE			
10023.5 ± 0.5	¹ ARTAMONOV 00	MD1	$e^+e^- o$ hadrons
10023.1 ± 0.4	BARBER 84	REDE	$e^+e^- o$ hadrons
• • • We do not use the following	g data for averages, fits	s, limits, o	etc. • • •
10023.6 ± 0.5	^{2,3} BARU 86B	REDE	$e^+e^- ightarrow $ hadrons
¹ Reanalysis of BARU 86B using	g new electron mass (C	OHEN 87	7).

² Reanalysis of ARTAMONOV 84.

$m_{\Upsilon(3S)}-m_{\Upsilon(2S)}$

VALUE (MeV) DOCUMENT ID TECN COMMENT 11C BABR $e^+e^- \rightarrow \pi^+\pi^- X$ $331.50 \pm 0.02 \pm 0.13$ **LEES**

$\Upsilon(2S)$ WIDTH

VALUE (keV) DOCUMENT ID

31.98±2.63 OUR EVALUATION See the Note on "Width Determinations of the \varUpsilon States"

$\Upsilon(2S)$ DECAY MODES

	Mode		Fraction $(\Gamma_i/\Gamma$		Scale factor/ fidence level
Γ ₁	Υ (1S) $\pi^+\pi^-$		(17.85± 0.2	26) %	
Γ_2	$\Upsilon(1S)\pi^0\pi^0$		(8.6 ± 0.4		
Γ ₃	$\tau^+\tau^-$		(2.00± 0.2	21) %	
Γ ₄	$\mu^+\mu^-$		(1.93± 0.1	17) %	S=2.2
Γ_5	e^+e^-		($1.91\pm~0.1$	16) %	
Γ_6	$\Upsilon(1S)\pi^0$		< 4	$\times 10^{-5}$	CL=90%
Γ_7	$\Upsilon(1S)\eta$		(2.9 ± 0.4)	$1) \times 10^{-4}$	S=2.0
Γ ₈	$J/\psi(1S)$ anything		< 6	$\times 10^{-3}$	CL=90%
Γ ₉	$J/\psi(1S)\eta_c$		< 5.4	\times 10 ⁻⁶	CL=90%
Γ_{10}	$J/\psi(1S)\chi_{c0}$		< 3.4	$\times 10^{-6}$	CL=90%
Γ_{11}	$J/\psi(1S)\chi_{c1}$		< 1.2	\times 10 ⁻⁶	CL=90%
Γ_{12}	$J/\psi(1S)\chi_{c2}$		< 2.0	\times 10 ⁻⁶	CL=90%
Γ_{13}	$J/\psi(1S)\eta_{m c}(2S)$		< 2.5	$\times 10^{-6}$	CL=90%
Γ_{14}	$J/\psi(1S)X(3940)$		< 2.0	\times 10 ⁻⁶	CL=90%
Γ_{15}	$J/\psi(1S)X(4160)$		< 2.0	\times 10 ⁻⁶	CL=90%
Γ ₁₆	χ_{c1} anything		(2.2 ± 0.5)	$5) \times 10^{-4}$	
нтт	P://PDG.LBL.GOV	Page 1	Create	ed: 5/30/2	2017 17:21

 $^{^3\,\}mathrm{Superseded}$ by ARTAMONOV 00.

г	av anything	(2 2 0 0) \	10-4
Γ ₁₇	χ_{c2} anything	(2.3 ± 0.8) \times	_
Γ ₁₈	$\psi(2S)\eta_c$		10^{-6} CL=90%
Γ_{19}	$\psi(2S)\chi_{c0}$		10^{-6} CL=90%
	$\psi(2S)\chi_{c1}$		10^{-6} CL=90%
	$\psi(2S)\chi_{c2}$		10^{-6} CL=90%
	$\psi(2S)\eta_c(2S)$	< 3.3 ×	10^{-6} CL=90%
Γ ₂₃	$\psi(2S)X(3940)$		10^{-6} CL=90%
Γ_{24}	$\psi(2S)X(4160)$	< 3.9 ×	10^{-6} CL=90%
Γ ₂₅	$\overline{^2H}$ anything	$(2.78^{+}_{-}0.30_{-}) \times$	10 ⁻⁵ S=1.2
Γ ₂₆	hadrons	(94 ± 11) %	
Γ ₂₇	ggg	$(58.8 \pm 1.2)\%$	
Γ ₂₈	$\gamma g g$	$(1.87 \pm 0.28) \%$	
Γ ₂₉	$\phi K^+ K^-$	$(1.6 \pm 0.4) \times$	
	$\omega \pi^+ \pi^-$		10^{-6} CL=90%
	$K^*(892)^0 K^- \pi^+ + \text{c.c.}$	$(2.3 \pm 0.7) \times$	
	$\phi f_2'(1525)$		10^{-6} CL=90%
			_
	$\omega f_2(1270)$		
Γ ₃₄	$\rho(770) a_2(1320)$		10^{-7} CL=90%
	$K^*(892)^0 \overline{K}_2^*(1430)^0 + \text{c.c.}$	(1.5 \pm 0.6) \times	_
I 36	$K_1(1270)^{\pm}K^{\mp}$		10^{-6} CL=90%
	$K_1(1400)^{\pm} K^{\mp}$		10^{-7} CL=90%
Γ ₃₈	$b_1(1235)^{\pm}\pi^{\mp}$		10^{-7} CL=90%
Γ ₃₉	$ ho\pi$		10^{-6} CL=90%
Γ_{40}	$\pi^{+}\pi^{-}\pi^{0}$		10^{-7} CL=90%
	$\omega \pi^0$		10^{-6} CL=90%
Γ_{42}	$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	($1.30\pm~0.28$) $ imes$	
	$K_S^0 K^+ \pi^- + \text{c.c.}$	($1.14\pm~0.33$) $ imes$	10^{-6}
	$K^{*}(892)^{0}\overline{K}^{0}+\text{c.c.}$		10^{-6} CL=90%
Γ_{45}	$K^*(892)^-K^+ + \text{c.c.}$	< 1.45 ×	10^{-6} CL=90%
Γ_{46}	Sum of 100 exclusive modes	($2.90\pm~0.30) \times$	10^{-3}
	Radiative dec		
Γ ₄₇	$\gamma \chi_{b1}(1P)$	(6.9 ± 0.4) %	
	$\gamma \chi_{b2}(1P)$	$(7.15\pm 0.35)\%$	
	$\gamma \chi_{b0}(1P)$	$(3.8 \pm 0.4)\%$	
	$\gamma f_0(1710)$,	10 ⁻⁴ CL=90%
Γ ₅₁	$\gamma f_2'(1525)$		10^{-4} CL=90%
			10^{-4} CL=90%
	$\gamma f_2(1270)$	< 2.41 X	10 CL=90/6
	$\gamma f_J(2220)$	~ 0.7 ···	10^{-5} CL=90%
_	$\gamma \eta_c(1S)$		_
Г ₅₅	$\gamma \chi_{c0}$		10^{-4} CL=90%
_	$\gamma \chi_{c1}$		10^{-6} CL=90%
Γ ₅₇	$\gamma \chi_{c2}$	< 1.5 ×	10^{-5} CL=90%

Lepton Family number (LF) violating modes

[a] 1.5 GeV
$$< m_X < 5.0$$
 GeV

CONSTRAINED FIT INFORMATION

An overall fit to 3 branching ratios uses 13 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi^2=11.8$ for 11 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta x_i \delta x_j \right\rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

$\Upsilon(2S) \Gamma(i)\Gamma(e^+e^-)/\Gamma(total)$

$$\Gamma(\mu^+\mu^-)$$
 × $\Gamma(e^+e^-)/\Gamma_{total}$
 $\Gamma_{4}\Gamma_{5}/\Gamma_{total}$
 $\Gamma_{4}\Gamma_{5}/\Gamma_{total}$
 $\Gamma_{4}\Gamma_{5}/\Gamma_{total}$
 $\Gamma_{4}\Gamma_{5}/\Gamma_{total}$
 $\Gamma_{5}\Gamma_{5}/\Gamma_{total}$
 $\Gamma_{5}\Gamma_{5}/\Gamma_{total}$
 $\Gamma_{5}\Gamma_{5}/\Gamma_{total}$
 $\Gamma_{5}\Gamma_{5}/\Gamma_{total}$
 $\Gamma_{5}\Gamma_{5}/\Gamma_{total}$
 $\Gamma_{5}\Gamma_{5}/\Gamma_{total}$
 $\Gamma_{5}\Gamma_{5}/\Gamma_{5}$
 $\Gamma_{5}\Gamma_{5}/\Gamma_{5}$
 $\Gamma_{5}\Gamma_{5}/\Gamma_{5}$
 $\Gamma_{5}\Gamma_{5}/\Gamma_{5}/\Gamma_{5}$
 $\Gamma_{5}\Gamma_{5}/\Gamma_{$

$\Gamma(\text{hadrons}) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$

 $\Gamma_{26}\Gamma_{5}/\Gamma$

VALUE (keV)	DOCUMENT ID		TECN	COMMENT
0.577±0.009 OUR AVERAGE				
$0.581 \pm 0.004 \pm 0.009$				10.0 $e^+e^- \rightarrow \text{ hadrons}$
$0.552 \pm 0.031 \pm 0.017$				$e^+e^- ightarrow $ hadrons
$0.54 \pm 0.04 \pm 0.02$				$e^+e^- ightarrow hadrons$
$0.58 \pm 0.03 \pm 0.04$				$e^+e^- ightarrow hadrons$
$0.60\ \pm0.12\ \pm0.07$	² ALBRECHT	82	DASP	$e^+e^- o$ hadrons
$0.54\ \pm0.07\ {+0.09\atop -0.05}$	² NICZYPORUK	81 C	LENA	$e^+e^- ightarrow $ hadrons
0.41 ± 0.18	² BOCK	80	CNTR	$e^+e^- ightarrow $ hadrons

¹Radiative corrections evaluated following KURAEV 85.

$\Upsilon(2S)$ PARTIAL WIDTHS

 $\Gamma(e^+e^-)$ VALUE (keV)
DOCUMENT ID

0.612±0.011 OUR EVALUATION

$\Upsilon(2S)$ BRANCHING RATIOS

 $\Gamma(\Upsilon(1S)\pi^+\pi^-)/\Gamma_{\text{total}}$

 Γ_1/Γ

Created: 5/30/2017 17:21

Abbreviation MM in the COMMENT field below stands for missing mass.

$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
17.85±0.26 OUR	FIT				
17.92±0.26 OUR	AVERAGE				
$16.8 \pm 1.1 \pm 1.3$	906k	¹ LEES	11 C	BABR	$e^+e^- \rightarrow \pi^+\pi^- X$
$17.80 \pm 0.05 \pm 0.37$	170k	² LEES			$\Upsilon(2S) ightarrow \pi^+\pi^-\mu^+\mu^-$
$18.02\!\pm\!0.02\!\pm\!0.61$	851k	³ BHARI		_	$e^+e^- ightarrow~\pi^+\pi^-$ MM
$17.22 \pm 0.17 \pm 0.75$	11.8K	⁴ AUBERT			$e^+e^- o \gamma \pi^+\pi^-\ell^+\ell^-$
$19.2 \pm 0.2 \pm 1.0$	52.6k	⁵ ALEXANDER	98	CLE2	$\pi^{+}\pi^{-}\ell^{+}\ell^{-}$, $\pi^{+}\pi^{-}$ MM
$18.1 \pm 0.5 \pm 1.0$	11.6k	ALBRECHT	87	_	$e^+e^- ightarrow \ \pi^+\pi^- {\sf MM}$
16.9 ± 4.0		GELPHMAN	85	CBAL	$e^+e^- ightarrow e^+e^-\pi^+\pi^-$
$19.1 \pm 1.2 \pm 0.6$		BESSON	84	CLEO	$\pi^+\pi^-$ MM
18.9 ± 2.6		FONSECA			$e^+e^- \rightarrow \ell^+\ell^-\pi^+\pi^-$
21 ± 7	7	NICZYPORUK	81 B	LENA	$e^+e^- \rightarrow \ell^+\ell^-\pi^+\pi^-$

 $^{^1\}text{LEES}$ 11C reports $[\Gamma\big(\varUpsilon(2S)\to \varUpsilon(1S)\pi^+\pi^-\big)/\Gamma_{\text{total}}]\times [\mathsf{B}(\varUpsilon(3S)\to \varUpsilon(2S)\,\mathsf{anything})]=(1.78\pm0.02\pm0.11)\times10^{-2}$ which we divide by our best value $\mathsf{B}(\varUpsilon(3S)\to \varUpsilon(2S)\,\mathsf{anything})=(10.6\pm0.8)\times10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

²Radiative corrections reevaluated by BUCHMUELLER 88 following KURAEV 85.

² Using B($\Upsilon(1S) \rightarrow \mu^{+}\mu^{-}$) = (2.48 ± 0.05)%.

³ A weighted average of the inclusive and exclusive results.

⁴ Using B($\Upsilon(2S) \rightarrow e^+e^-$) = (1.91 ± 0.16)%, B($\Upsilon(2S) \rightarrow \mu^+\mu^-$) = (1.93 ± 0.17)% and, Γ_{ee}($\Upsilon(2S)$) = 0.612 ± 0.011 keV.

⁵ Using B($\Upsilon(1S) \rightarrow e^+e^-$) = (2.52 \pm 0.17)% and B($\Upsilon(1S) \rightarrow \mu^+\mu^-$) = (2.48 \pm 0.07)%.

$\Gamma(\Upsilon(1S)\pi^0\pi^0)/\Gamma$	total					Γ ₂ /Γ
$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT	
8.6 ±0.4 OUR AV	/ERAGE			,		
$8.43 \pm 0.16 \pm 0.42$	38k	¹ BHARI	09	CLEO		$_{\pi}$ 0 $_{\pi}$ 0 $_{\ell}$ + $_{\ell}$ -
$9.2\ \pm0.6\ \pm0.8$	275	² ALEXANDER	98	CLE2		$_{\pi}^{0}_{\pi}^{0}_{\ell}^{+}_{\ell}^{-}$
$9.5\ \pm 1.9\ \pm 1.9$	25	ALBRECHT	87	ARG		$_{\pi}$ 0 $_{\pi}$ 0 $_{\ell}$ + $_{\ell}$ -
8.0 ± 1.5		GELPHMAN		CBAL		$_{\pi}^{0}_{\pi}^{0}_{\ell}^{+}_{\ell}^{-}$
$10.3\ \pm2.3$		FONSECA	84	CUSB	$e^+e^- \rightarrow$	$_{\pi}^{0}_{\pi}^{0}_{\ell}^{+}_{\ell}^{-}$
¹ Authors assume 1 2 Using B($\Upsilon(1S)$ 0.07)%.	$\rightarrow e^+e^-)$	$= (2.52 \pm 0.17)\%$				
$\Gamma(\varUpsilon(1S)\pi^0\pi^0)/\Gamma$	$\Gamma(arUaingle (1S)\pi$	$^{+}\pi^{-})$				Γ_2/Γ_1
<u>VALUE</u>		DOCUMENT ID		TECN	COMMENT	
● ● We do not use	e the followin	ng data for average	es, fits, l	limits, e	etc. • • •	
0.462 ± 0.037		¹ BHARI	09	CLEO	$e^+e^- \rightarrow$	$\Upsilon(2S)$
¹ Not independent	of other val	ues reported by BI	HARI 09)		
				·•		
$\Gamma(au^+ au^-)/\Gamma_{ ext{total}}$.		Г ₃ /Г
$\Gamma(au^+ au^-)/\Gamma_{ ext{total}}$ VALUE (units 10^{-2})	EVTS D	OCUMENT ID		. <u></u>	MENT	Γ ₃ /Γ
$\Gamma(\tau^+\tau^-)/\Gamma_{ ext{total}}$ $VALUE ext{ (units } 10^{-2})$ 2.00±0.21 OUR AVI	EVTS D	OCUMENT ID	TECN	<u>COMN</u>		
$\Gamma(\tau^+\tau^-)/\Gamma_{\text{total}}$ $\frac{VALUE \text{ (units } 10^{-2})}{2.00\pm0.21 \text{ OUR AVI}}$ $2.00\pm0.12\pm0.18$	<u>EVTS</u> <u>D</u> ERAGE 22k ¹ B	OCUMENT ID ESSON 07	TECN CLEO	<u>COMN</u> e ⁺ e	- → γ(2S	σ $\tau^+\tau^-$
$\Gamma(\tau^+\tau^-)/\Gamma_{ ext{total}}$ $VALUE ext{ (units } 10^{-2})$ 2.00±0.21 OUR AVI	<u>EVTS</u> <u>D</u> ERAGE 22k ¹ B	OCUMENT ID ESSON 07	TECN CLEO	<u>COMN</u> e ⁺ e		σ $\tau^+\tau^-$
$\Gamma(\tau^+\tau^-)/\Gamma_{\text{total}}$ $\frac{VALUE \text{ (units } 10^{-2})}{2.00\pm0.21 \text{ OUR AVI}}$ $2.00\pm0.12\pm0.18$	EVTS <u>D</u> ERAGE 22k ¹ B H	OCUMENT ID ESSON 07 AAS 84B	CLEO CLEO	<u>COMN</u> e ⁺ e ⁻ e ⁺ e	$\stackrel{-}{\rightarrow} \gamma (2S)$ $\stackrel{-}{\rightarrow} \tau^{+} \tau^{-}$	$\frac{S}{T} \rightarrow \tau^+ \tau^-$
$\Gamma(\tau^+\tau^-)/\Gamma_{ ext{total}}$ $VALUE ext{ (units } 10^{-2})$ $2.00\pm0.21 ext{ OUR AVI}$ $2.00\pm0.12\pm0.18$ $1.7 \pm1.5 \pm0.6$ $1 ext{ BESSON } 07 ext{ repo}$ $0.04\pm0.05 ext{ which}$	EVTS DEFINED BY THE PROPERTY OF THE PROPERTY	ESSON 07 AAS 84B $5) \rightarrow \tau^+ \tau^-)/\Gamma_{tc}$ y by our best value r experiment's error	CLEO CLEO CLEO otal] / [E	$e^+e^ e^+e^ e^+e^ e^+e^ e^ e^-$	$ \begin{array}{ccc} - & \gamma(25) \\ - & \tau^+ \tau^- \\ 5) & \mu^+ \mu \\ \iota^+ \mu^-) = (25) \end{array} $	
$\Gamma(\tau^+\tau^-)/\Gamma_{ ext{total}}$ $VALUE \ (units \ 10^{-2})$ 2.00±0.21 OUR AVI 2.00±0.12±0.18 1.7 ±1.5 ±0.6 ¹ BESSON 07 report 0.04±0.05 which 10 ⁻² . Our first error from using	EVTS DEFINED BY THE PROPERTY OF THE PROPERTY	ESSON 07 AAS 84B $5) \rightarrow \tau^+ \tau^-)/\Gamma_{tc}$ y by our best value r experiment's error	CLEO CLEO CLEO otal] / [E	$e^+e^ e^+e^ e^+e^ e^+e^ e^ e^-$	$ \begin{array}{ccc} - & \gamma(25) \\ - & \tau^+ \tau^- \\ 5) & \mu^+ \mu \\ \iota^+ \mu^-) = (25) \end{array} $	$(5) ightarrow au^+ au^ (5) ightarrow au^+ au^ (7) ightarrow (7) igh$
$\Gamma(\tau^+\tau^-)/\Gamma_{ ext{total}}$ $VALUE ext{ (units } 10^{-2})$ $2.00\pm0.21 ext{ OUR AVI}$ $2.00\pm0.12\pm0.18$ $1.7 ext{ } \pm1.5 ext{ } \pm0.6$ $^1 ext{ BESSON } 07 ext{ repo}$ $0.04\pm0.05 ext{ which}$ 10^{-2} . Our first	EVTS DEFINED BY THE PROPERTY OF THE PROPERTY	ESSON 07 AAS 84B $5) \rightarrow \tau^+ \tau^-)/\Gamma_{tc}$ by by our best value r experiment's errouse.	CLEO CLEO CLEO B(Υ (25 or and or	$e^+e^-e^+e^-$ B(Υ (25 $) ightarrow ho$ ur seco	$ \begin{array}{ccc} - & \gamma(25) \\ - & \tau^+ \tau^- \\ 5) & \mu^+ \mu \\ \iota^+ \mu^-) = (25) \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\Gamma(\tau^+\tau^-)/\Gamma_{ ext{total}}$ VALUE (units 10 ⁻²) 2.00±0.21 OUR AVI 2.00±0.12±0.18 1.7 ±1.5 ±0.6 ¹ BESSON 07 report 0.04±0.05 which 10 ⁻² . Our first error from using $\Gamma(\mu^+\mu^-)/\Gamma_{ ext{total}}$	EVTS DEFINED BY THE PROPERTY OF THE PROPERTY	ESSON 07 AAS 84B $5) \rightarrow \tau^+ \tau^-)/\Gamma_{tc}$ by by our best value or experiment's error ue. EVTS DOCUME	CLEO CLEO CLEO B(Υ (25 or and or	$e^+e^-e^+e^-$ B(Υ (25 e^-) $ o \mu$ ur seco	$\begin{array}{ccc} - & \Upsilon(2S) \\ - & \tau^+ \tau^- \\ S) \rightarrow & \mu^+ \mu \\ \iota^+ \mu^-) = (100) \\ \text{Ind error is to} \end{array}$	$(5) ightarrow au^+ au^ (5) ightarrow au^+ au^ (7) ightarrow au^+ au^-$
$\Gamma(\tau^+\tau^-)/\Gamma_{ ext{total}}$ VALUE (units 10^{-2}) 2.00±0.21 OUR AVI 2.00±0.12±0.18 1.7 ±1.5 ±0.6 ¹ BESSON 07 report 0.04±0.05 which 10 ⁻² . Our first error from using $\Gamma(\mu^+\mu^-)/\Gamma_{ ext{total}}$ VALUE 0.0193±0.0017 OUR	EVTS DEFINE EVTS Γ B H Dorts Γ Γ Γ Γ Γ Γ Γ EVTS Γ	ESSON 07 AAS 84B $5) \rightarrow \tau^+ \tau^-)/\Gamma_{tc}$ by by our best value or experiment's error ue. EVTS DOCUME	CLEO CLEO CLEO B(Υ (25 or and or	$e^+e^ e^+e^ e^+e^ e^+e^ e^+e^ e^ e$	$\begin{array}{ccc} - & \gamma(2S \\ - & \tau^+ \tau^- \\ S) \rightarrow & \mu^+ \mu \\ \iota^+ \mu^-) = (1000 \text{ mod error is to}) \end{array}$ $\frac{ECN}{2} \frac{COMI}{2}$	$(5) ightarrow au^+ au^ (5) ightarrow au^+ au^ (7) ightarrow au^+ au^-$
$\Gamma(\tau^+\tau^-)/\Gamma_{ ext{total}}$ $VALUE ext{ (units } 10^{-2})$ 2.00±0.21 OUR AVI 2.00±0.12±0.18 1.7 ±1.5 ±0.6 ¹ BESSON 07 report 0.04±0.05 which 10 ⁻² . Our first error from using $\Gamma(\mu^+\mu^-)/\Gamma_{ ext{total}}$ $VALUE$ 0.0193±0.0017 OUF below.	EVTS DEFRACE 22k 1 B Horts $[\Gamma(\Upsilon(2S))]$ h we multiply error is their our best val CL% R AVERAGE	ESSON 07 AAS 84B $S \rightarrow \tau^+ \tau^-)/\Gamma_{tc}$ by by our best value or experiment's error ue. EVTS DOCUME Error includes so	CLEO CLEO CLEO (A) $($	$e^+e^ e^+e^ B(\Upsilon(2S)) o \mu$ μ μ μ μ μ μ μ μ μ	$\begin{array}{ccc} - & \gamma(2S \\ - & \tau^+ \tau^- \\ S) \rightarrow & \mu^+ \mu \\ \mu^+ \mu^-) = (2S \\ \text{Ind error is to} \\ \frac{ECN}{2} & \frac{COMI}{2} \\ 2. & \text{See the} \\ \text{LEO} & e^+ e^- \\ \end{array}$	$(5) ightarrow au^+ au^ (5) ightarrow au^+ au^ (7) ightarrow 1 = 1.04 \pm 1.93 \pm 0.17) imes 1.93 \pm 0.17$
$\Gamma(\tau^+\tau^-)/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-2})$ 2.00±0.21 OUR AVI 2.00±0.12±0.18 1.7 ±1.5 ±0.6 ¹ BESSON 07 report 0.04±0.05 which 10 ⁻² . Our first error from using $\Gamma(\mu^+\mu^-)/\Gamma_{\text{total}}$ $VALUE$ 0.0193±0.0017 OUR below. 0.0203±0.0003±0.00	EVTS DEFINED BY THE PROPERTY OF THE PROPERTY	ESSON 07 AAS 84B $S \rightarrow \tau^+ \tau^-)/\Gamma_{tc}$ by by our best value of experiment's error ue. EVTS DOCUME Error includes so	CLEO CLEO CLEO B(Υ (25) or and or	$e^+e^ e^+e^ (7(25)) \rightarrow \mu$ $(35) \rightarrow \mu$ $(45) \rightarrow \mu$	$rac{-}{\rightarrow} r(2S)$ $rac{-}{\rightarrow} r^{+}r^{-}$ $rac{-}{\rightarrow} rac{-}{\rightarrow} rac{-} rac{-}{\rightarrow} rac{-}{\rightarrow} rac{-}{\rightarrow} rac{-}{\rightarrow} rac{-} rac{-}{\rightarrow} rac{-} ra$	$(5) ightarrow au^+ au^ (5) ightarrow au^+ au^ (7) ightarrow 1 = 1.04 \pm 1.93 \pm 0.17) imes 1.93 \pm 0.17$ $(74/\Gamma) = 1.93 \pm$
$\Gamma(\tau^+\tau^-)/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-2})$ 2.00±0.21 OUR AVI 2.00±0.12±0.18 1.7 ±1.5 ±0.6 ¹ BESSON 07 report 0.04±0.05 which 10 ⁻² . Our first error from using $\Gamma(\mu^+\mu^-)/\Gamma_{\text{total}}$ $VALUE$ 0.0193±0.0017 OUF below. 0.0203±0.0003±0.000000000000000000000000	EVTS DEFINATION DEPTH SERVING PROPERTY OF THE	ESSON 07 AAS 84B $5) \rightarrow \tau^+ \tau^-)/\Gamma_{tc}$ by by our best value of experiment's error ue. EVTS DOCUME Error includes so 120k ADAMS 1 KOBEL	CLEO CLEO CLEO B(Υ (25 or and or an	$\begin{array}{c} \underline{COMN} \\ e^+e^-\\ e^+e^-\end{array}$ $B(\varUpsilon(2S) \rightarrow \mu$ $\text{or of } 2$ $05 C$ $92 C$ $89 C$	$ \begin{array}{ccc} - & & & & & \\ - & & & & \\ - & & & & & \\ - & & & & & \\ - & & & & & \\ - & & & & & \\ - & & & & & \\ - & & & & & \\ - & & & & & \\ - & & & & & \\ - & & & & & \\ - & & & & & \\ - & & & & & \\ - & & & & & \\ - & & & & \\ - & & & & \\ - & & & & \\ - & & & & \\ - & & & & \\ - & & & & \\ - & & $	$5) ightarrow au^+ au^ 5) ightarrow au^+ au^ 6) ightarrow au^+ au^ 6) ightarrow au^+ au^ 6) ightarrow au^+ au^ 6) ightarrow au^+ au^-$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

HAAS

84B CLEO $e^{+}e^{-} \rightarrow \mu^{+}\mu^{-}$

Created: 5/30/2017 17:21

NICZYPORUK 81C LENA $e^+e^ightarrow \mu^+\mu^-$

 $0.018\ \pm0.008\ \pm0.005$

 $^{^1}$ Taking into account interference between the resonance and continuum. 2 Re-evaluated using B($\Upsilon(1S) \to \ \mu^+ \, \mu^-) = 0.026.$

$(\mu \mu)/1$	total				
$\Gamma(au^+ au^-)/\Gamma(\mu^+\mu^-$)				Γ_3/Γ_4
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
$1.04\pm0.04\pm0.05$	22k	BESSON	07	CLEO	$e^+e^- ightarrow \ \varUpsilon(2S)$
$\Gamma(\Upsilon(1S)\pi^0)/\Gamma_{ m total}$					Γ ₆ /Γ
VALUE (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	ne following	g data for averages	s, fits,	limits,	etc. • • •
< 4		$^{ m 1}$ TAMPONI			$e^+e^- ightarrow ~ $
< 18	90	² HE	08A	CLEO	$e^+e^- ightarrow \ \ell^+\ell^-\gamma\gamma$
<110	90	ALEXANDER	98	CLE2	$e^+e^- ightarrow \ell^+\ell^-\gamma\gamma$
<800	90	LURZ	87	CBAL	$e^+e^- \rightarrow \ell^+\ell^-\gamma\gamma$
	ich we mu	Itiply by our best	value	B(γ(2	$\Upsilon(2S) \rightarrow \Upsilon(1S)\pi^{+}\pi^{-})$ $\Upsilon(1S)\pi^{+}\pi^{-}) = 0$
•	` ,	, , , ,	5) →	μ ' μ) = 4.90%.
$\Gamma(\Upsilon(1S)\pi^0)/\Gamma(\Upsilon(1S)\pi^0)$	$(S)\pi^+\pi^-$	-)			Γ_6/Γ_1

 $\frac{VALUE \text{ (units }10^{-4})}{\text{<2.3}}$ $\frac{CL\%}{90}$ $\frac{DOCUMENT ID}{TAMPONI}$ $\frac{TECN}{13}$ $\frac{COMMENT}{EELL}$ $e^+e^- \rightarrow \Upsilon(1S)\pi^0$

VALUE (units 10^{-4}) CL% EVTS DOCUMENT ID TECN COMMENT

2.9 \pm **0.4 OUR FIT** Error includes scale factor of 2.0.

2.9 ±0.4 OUR AVERAGE Error includes scale factor of 1.9. See the ideogram below.

ullet ullet We use the following data for averages but not for fits. ullet ullet

 $3.55\pm0.32\pm0.05$ 241 ³ TAMPONI 13 BELL $e^+e^- \rightarrow \Upsilon(1S)\eta$

• • • We do not use the following data for averages, fits, limits, etc. • • •

< 9	90	1,4 AUBERT 08B	P BABR	$e^+e^- \rightarrow \gamma \pi^+\pi^-\pi^0 \ell^+\ell^-$
< 28	90	ALEXANDER 98	CLE2	$e^+e^- ightarrow \ \ell^+\ell^-\eta$
< 50	90	ALBRECHT 87	ARG	$e^+e^- \rightarrow \pi^+\pi^-\ell^+\ell^-MM$
< 70	90	LURZ 87	CBAL	$e^+e^- ightarrow \ell^+\ell^-(\gamma\gamma, 3\pi^0)$
< 100	90	BESSON 84	CLEO	$e^+e^- \rightarrow \pi^+\pi^-\ell^+\ell^-MM$
< 20	90	FONSECA 84	CUSB	$e^+e^- \rightarrow$
				$\ell^{+}\ell^{-}(\gamma\gamma,\pi^{+}\pi^{-}\pi^{0})$

¹ Using B($\Upsilon(1S) \rightarrow e^+e^-) = (2.38 \pm 0.11)\%$ and B($\Upsilon(1S) \rightarrow \mu^+\mu^-) = (2.48 \pm 0.05)\%$.

WEIGHTED AVERAGE 2.9±0.4 (Error scaled by 1.9)

HTTP://PDG.LBL.GOV

Page 7

² Authors assume B($\Upsilon(1S) \rightarrow e^+e^-$) + B($\Upsilon(1S) \rightarrow \mu^+\mu^-$) = 4.96%.

³ TAMPONI 13 reports $[\Gamma(\Upsilon(2S) \to \Upsilon(1S)\eta)/\Gamma_{\text{total}}]$ / $[B(\Upsilon(2S) \to \Upsilon(1S)\pi^+\pi^-)]$ = $(1.99 \pm 0.14 \pm 0.11) \times 10^{-3}$ which we multiply by our best value $B(\Upsilon(2S) \to \Upsilon(1S)\pi^+\pi^-)$ = $(17.85 \pm 0.26) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

⁴ Using $\Gamma_{ee}(\varUpsilon(2S))=0.612\pm0.011$ keV.

$\Gamma(\Upsilon(1S)\eta)/\Gamma(\Upsilon(1S)\eta)$	$(5)\pi^{+}\pi^{-})$						Γ_7/Γ_1
VALUE (units 10^{-3}) CL%	EVTS DO	CUMENT I	D TI	ECN	СОММЕ	NT	
1.64 ± 0.25 OUR FIT	Error includ	es scale f	actor of	2.0.			
						$\rightarrow \Upsilon(1S) \tau$	7
• • • We do not use th	e following	data for	average	s, fits,	limits, e	etc. • • •	
$1.35 \pm 0.17 \pm 0.08$ < 5.2 90	¹ LE ² AU	ES BERT	11L B. 08BP B.	ABR ABR	$\gamma(2S)$ e^+e^-	$ \rightarrow (\pi^+ \pi^-) $ $ \rightarrow \gamma \pi^+ \pi^- $	$(\gamma \gamma) \mu^{+} \mu^{-}$ $(\pi^{0}) \ell^{+} \ell^{-}$
¹ Not independent of							,
² Not independent of							
		•	,				
$\Gamma(\Upsilon(1S)\pi^0)/\Gamma(\Upsilon(1S)\pi^0)$	•						Γ_6/Γ_7
VALUE						<u>COMMENT</u>	
• • • We do not use th	e following	data for	average	s, fits,	limits, e	etc. • • •	
< 0.13	90	TAMP	INC	13	BELL	$e^+e^- \rightarrow$	$\Upsilon(1S)\pi^0$
$\Gamma ig(J/\psi(1S) ig)$ anything							Γ ₈ /Γ
VALUE		<u>DOCUM</u>				COMMENT	
<0.006	90	MASCI	IMANI	1 90	CBAL	$e^+e^- \rightarrow$	hadrons
$\Gamma(J/\psi(1S)\eta_c)/\Gamma_{tota}$	al						Γ ₉ /Γ
<u>VALUE</u> <5.4 × 10 ^{−6}	CL%	<u>DOCUM</u>	ENT ID		TECN	COMMENT	
$< 5.4 \times 10^{-6}$	90	YANG		14	BELL	$e^+e^- \rightarrow$	$J/\psi X$
$\Gamma(J/\psi(1S)\chi_{c0})/\Gamma_{to}$	tal						Γ ₁₀ /Γ
VALUE	CL%	<u>DOCUM</u>	ENT ID		TECN	<u>COMMENT</u>	
$< 3.4 \times 10^{-6}$	90	YANG		14	BELL	$e^+e^- \rightarrow$	$J/\psi X$
F(- /-
$\Gamma(J/\psi(1S)\chi_{c1})/\Gamma_{to}$	tal						Γ_{11}/Γ
$\frac{\text{VALUE}}{<1.2\times10^{-6}}$	<u>CL%</u>						
$<1.2 \times 10^{-6}$	90	YANG		14	BELL	$e^+e^- \rightarrow$	$J/\psi X$
$\Gamma(J/\psi(1S)\chi_{c2})/\Gamma_{to}$	tal						Γ ₁₂ /Γ
VALUE	CL%	<u>DOCUM</u>	ENT ID		TECN	COMMENT	
$< 2.0 \times 10^{-6}$	90	YANG		14	BELL	$e^+e^ \rightarrow$	$J/\psi X$
$\Gamma(J/\psi(1S)\eta_c(2S))/$	/Γ _{total}						Γ ₁₃ /Γ
VALUE	CL%	<u>DOCUM</u>	ENT ID		TECN	COMMENT	
$<2.5 \times 10^{-6}$	90	YANG		14	BELL	$e^+e^- \rightarrow$	$J/\psi X$
$\Gamma(J/\psi(1S)X(3940))$	•						Γ_{14}/Γ
VALUE						COMMENT	
$< 2.0 \times 10^{-6}$	90	YANG		14	BELL	$e^+e^- \rightarrow$	$J/\psi X$
$\Gamma(J/\psi(1S)X(4160))$)/Γ _{total}						Γ ₁₅ /Γ
		<u>DOCUM</u>	ENT ID		TECN	COMMENT	
<u>∨ALUE</u> <2.0 × 10 ⁻⁶	90	YANG				e^+e^-	

$\Gamma(\chi_{c1} \text{ anything})/\Gamma_{tc}$	otal				Γ ₁₆ /Γ
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
2.24±0.44±0.20	376	JIA	17	BELL	$\Upsilon(2S) \rightarrow \gamma J/\psi(1S)$
$\Gamma(\chi_{c2} \text{ anything})/\Gamma_{tc}$	otal				Γ ₁₇ /Γ
VALUE (units 10^{-4})		DOCUMENT ID		TECN	COMMENT
$2.28\pm0.73\pm0.34$		JIA	17	BELL	$\Upsilon(2S) ightarrow \gamma J/\psi(1S)$
$\Gamma(\psi(2S)\eta_c)/\Gamma_{total}$					Γ ₁₈ /Γ
	CL%	DOCUMENT ID		TECN	COMMENT
$< 5.1 \times 10^{-6}$	90	YANG	14	BELL	$e^+e^- \rightarrow \psi(2S)X$
$\Gamma(\psi(2S)\chi_{c0})/\Gamma_{\text{total}}$	l				Γ ₁₉ /Γ
` '	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
$<4.7 \times 10^{-6}$	90	YANG	14	BELL	$e^+e^- \rightarrow \psi(2S)X$
$\Gamma(\psi(2S)\chi_{c1})/\Gamma_{\text{total}}$	1				Γ ₂₀ /Γ
VALUE	CL%	DOCUMENT ID		TECN	,
<2.5 × 10 ⁻⁶	90	YANG	14	BELL	$e^+e^- \rightarrow \psi(2S)X$
$\Gamma(\psi(2S)\chi_{c2})/\Gamma_{\text{total}}$	1				Γ ₂₁ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
$<1.9 \times 10^{-6}$	90	YANG	14	BELL	$e^+e^- \rightarrow \psi(2S)X$
$\Gamma(\psi(2S)\eta_c(2S))/\Gamma_t$	rotal				Γ ₂₂ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
$<3.3 \times 10^{-6}$	90	YANG	14	BELL	$e^+e^- \rightarrow \psi(2S)X$
$\Gamma(\psi(2S)X(3940))/$	Γ _{total}				Γ ₂₃ /Γ
*	CL%	DOCUMENT ID		TECN	COMMENT
$< 3.9 \times 10^{-6}$	90	YANG	14	BELL	$e^+e^- \rightarrow \psi(2S)X$
$\Gamma(\psi(2S)X(4160))/$	Γ _{total}				Γ ₂₄ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
$< 3.9 \times 10^{-6}$	90	YANG	14	BELL	$e^+e^- \rightarrow \psi(2S)X$
$\Gamma(\overline{^2H} \text{ anything})/\Gamma_{to}$	otal				Γ ₂₅ /Γ
VALUE (units 10^{-5})		DOCUMENT ID		TECN	COMMENT
2.78 ^{+0.30} _{-0.26} OUR AVER	AGE Erro	or includes scale fa	ctor c	of 1.2.	
$2.64 \pm 0.11 + 0.26$		LEES			$e^+e^- ightarrow \overline{^2H}$ X
$3.37 \pm 0.50 \pm 0.25$	58	ASNER	07	CLEO	$e^+e^- ightarrow \overline{^2H} X$
$\Gamma(ggg)/\Gamma_{\text{total}}$					Γ ₂₇ /Γ
VALUE (units 10 ⁻²)	F\/T\$	DOCUMENT ID		TECN	,
58.8±1.2	6M	DOCUMENT ID 1 RESSON	06^	CLEO	$\Upsilon(2S) o hadrons$
JJ.U ± 1.4	JIVI	DESSON	UUA	CLEO	$I(20) \rightarrow \text{Haurons}$

 $^{^1}$ Calculated using the value $\Gamma(\gamma g \, g)/\Gamma(g \, g \, g)=(3.18\pm0.04\pm0.22\pm0.41)\%$ from BESSON 06A and PDG 08 values of B($\pi^+\pi^ \Upsilon(1S)$) = (18.1 \pm 0.4)%, B(π^0 π^0 $\Upsilon(1S)$) = (8.6 \pm 0.4)%, B(μ^+ μ^-) = (1.93 \pm 0.17)%, and R_{hadrons} = 3.51. The statistical error is negligible and the systematic error is partially correlated with that of $\Gamma(\gamma g \, g)/\Gamma_{total}$ measurement of BESSON 06A.

$\Gamma(\gamma g g)/\Gamma(g g g)$						Γ_{28}/Γ_{27}
$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMEN	Γ
$3.18\pm0.04\pm0.47$	6M	BESSON	06	A CLEC	$\gamma(2S)$ –	\rightarrow $(\gamma$ $+)$ hadrons
$\Gamma(\phi K^+ K^-)/\Gamma_{\rm tot}$	tal					Γ ₂₉ /Γ
$VALUE$ (units 10^{-6})	EVTS	DOCUMENT II	D	TECN	COMMEN	IT
$1.58 \pm 0.33 \pm 0.18$	58	SHEN	12	2A BEL	L $\gamma(1S)$ -	\rightarrow 2(K ⁺ K ⁻)
$\Gamma(\omega\pi^+\pi^-)/\Gamma_{ m tota}$	al					Γ ₃₀ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	-
<2.58	90	SHEN	12A	BELL	$\Upsilon(1S)$ —	$2(\pi^{+}\pi^{-})\pi^{0}$
$\Gamma(K^*(892)^0 K^- \pi$	·++c.c.)/	$\Gamma_{ ext{total}}$				Γ ₃₁ /Γ
VALUE (units 10^{-6})	EVTS	DOCUMENT ID		TECN	COMMENT	
$2.32 \pm 0.40 \pm 0.54$		SHEN	12A	BELL	$\Upsilon(1S) ightarrow$	$\kappa^+ \kappa^- \pi^+ \pi^-$
$\Gamma(\phi f_2'(1525))/\Gamma_t$						Γ ₃₂ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT II	0	TECN	COMMEN	IT
<1.33	90	SHEN	12	2A BEL	L $\Upsilon(1S)$ -	\rightarrow 2(K ⁺ K ⁻)
$\Gamma(\omega f_2(1270))/\Gamma_{\rm to}$						Γ ₃₃ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID				
<0.57	90	SHEN	12A	BELL	$\Upsilon(1S)$ —	$2(\pi^{+}\pi^{-})\pi^{0}$
$\Gamma(\rho(770) a_2(1320)$	$))/\Gamma_{total}$					Γ ₃₄ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	-
<0.88	90	SHEN	12A	BELL	$\Upsilon(1S)$ —	$2(\pi^{+}\pi^{-})\pi^{0}$
$\Gamma(K^*(892)^0\overline{K}_2^*(1$	$(430)^0 + c.$	c.)/Γ _{total}				Γ ₃₅ /Γ
$VALUE$ (units 10^{-6})	EVTS	DOCUMENT ID		TECN	COMMENT	
$1.53\pm0.52\pm0.19$	32	SHEN	12A	BELL	$\Upsilon(1S) ightarrow$	$K^+K^-\pi^+\pi^-$
$\Gamma(K_1(1270)^{\pm}K^{\mp}$	$)/\Gamma_{ ext{total}}$					Γ ₃₆ /Γ
$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
<3.22	90	SHEN	12A	BELL	$\Upsilon(1S) ightarrow$	$K^+K^-\pi^+\pi^-$
$\Gamma(K_1(1400)^{\pm}K^{\mp}$	$)/\Gamma_{ ext{total}}$					Γ ₃₇ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
<0.83	90	SHEN	12A	BELL	$\Upsilon(1S) ightarrow$	$K^+K^-\pi^+\pi^-$

. 6	$)/\Gamma_{ ext{total}}$					Γ ₃₈ /Γ
$VALUE$ (units 10^{-6})	CL%	DOCUMENT I	D	TECN	COMMENT	
<0.40	90	SHEN	12A	BELL	$\Upsilon(1S) ightarrow$	$2(\pi^{+}\pi^{-})\pi^{0}$
$\Gamma(ho\pi)/\Gamma_{total}$						Г ₃₉ /Г
VALUE (units 10^{-6})	CL%	DOCUMENT	ID	TECN	COMMENT	
<1.16	90	SHEN	13	BELL	$\Upsilon(2S) ightarrow$	$\pi^+\pi^-\pi^0$
$\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{to}$	tal					Γ ₄₀ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT	ID			
<0.80	90	SHEN	13	BELL	$\Upsilon(2S) ightarrow$	$\pi^+\pi^-\pi^0$
$\Gamma(\omega\pi^0)/\Gamma_{ m total}$						Γ ₄₁ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT I	D			
<1.63	90	SHEN	13	BELL	$\Upsilon(2S) ightarrow$	$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$
$\Gamma \big(\pi^+\pi^-\pi^0\pi^0\big)/$	$\Gamma_{ ext{total}}$					Γ ₄₂ /Γ
VALUE (units 10^{-6})	EVTS	DOCUMENT	- ID		COMMENT	
$13.0 \pm 1.9 \pm 2.1$	261 ± 37	SHEN	13	BELL	$\Upsilon(2S) ightarrow$	$\pi^+\pi^-\pi^0\pi^0$
$\Gamma(K_S^0K^+\pi^-+c)$.c.)/Γ _{total}					Γ ₄₃ /Γ
VALUE (units 10^{-6})	CL% EV7	<u>DOCUME</u>	NT ID	TECN	COMMENT	
$1.14 \pm 0.30 \pm 0.13$	40 ± 1	.0 SHEN	13	BELL	$_{-}$ $\Upsilon(2S) ightarrow$	$K_S^0 K^- \pi^+$
	o the followin	g data for aver	ages, fits	, limits,	etc. • • •	
• • • We do not us	be the followin	6 aata a.c.				
• • • We do not us <3.2	90	¹ DOBBS		A	$\Upsilon(2S) ightarrow$	$\kappa_S^0 \kappa^- \pi^+$
	90	¹ DOBBS	12	A		9
<3.2	90 alyzing CLEO	¹ DOBBS	12	A		9
<3.2 ¹ Obtained by ana \(\text{K*(892)}^0 \overline{K}^0 + \)	90 alyzing CLEO	¹ DOBBS III data but no	12.	A ed by the		aboration.
<3.2 ¹ Obtained by ana \Gamma(K*(892)^0 \overline{K}^0 + \overline{K}	90 alyzing CLEO - c.c.)/Г_{tota}	¹ DOBBS III data but no	12.	A ed by the <u>TECN</u>	e CLEO Coll	aboration.
<3.2 ¹ Obtained by ana $\Gamma(K^*(892)^0 \overline{K}^0 + \frac{VALUE \text{ (units } 10^{-6}\text{)}}{}$	90 alyzing CLEO - c.c.)/F_{tota} - <u>CL%</u> 90	1 DOBBS III data but no II DOCUMENT SHEN	12. t authore	A ed by the <u>TECN</u>	e CLEO Coll	aboration.
<3.2 ¹ Obtained by ana $\Gamma(K^*(892)^0 \overline{K}^0 + \frac{VALUE \text{ (units } 10^{-6})}{4.22}$	90 alyzing CLEO - c.c.)/F_{tota} - <u>CL%</u> 90	1 DOBBS III data but no II DOCUMENT SHEN	12. t authore	A ed by the <u>TECN</u> BELL	e CLEO Coll	aboration.
<3.2 ¹ Obtained by ana $\Gamma(K^*(892)^0 \overline{K}^0 + \frac{VALUE \text{ (units } 10^{-6})}{4.22}$ $\Gamma(K^*(892)^- K^+ + \frac{VK^-(892)^-}{4.20} K^+ + \frac{1}{2} K^+ + \frac{1}{2} K^-(892)^- K^$	90 Alyzing CLEO - c.c.)/ Γ_{tota} $\frac{CL\%}{90}$ + c.c.)/ Γ_{tot}	1 DOBBS III data but no II DOCUMENT SHEN	12. t authore	A ed by the TECN BELL	e CLEO Coll $\frac{COMMENT}{\Upsilon(2S)} ightarrow$	aboration.
<3.2 ¹ Obtained by ana $\Gamma(K^*(892)^0 \overline{K}^0 + \frac{VALUE \text{ (units } 10^{-6})}{4.22}$ $\Gamma(K^*(892)^- K^+ + \frac{VALUE \text{ (units } 10^{-6})}{4.22}$	90 alyzing CLEO - c.c.)/\(\Gamma_{\text{tota}}\) - c.c.)/\(\Gamma_{\text{tota}}\) - c.c.)/\(\Gamma_{\text{tot}}\) - c.c.)/\(\Gamma_{\text{tot}}\) - g0	1 DOBBS III data but no II DOCUMENT SHEN DOCUMENT SHEN	12. t authore ID 13	A ed by the TECN BELL	e CLEO Coll $\frac{COMMENT}{\Upsilon(2S)} ightarrow$	aboration.
<3.2 ¹ Obtained by ana $\Gamma(K^*(892)^0 \overline{K}^0 + \frac{VALUE \text{ (units } 10^{-6})}{4.22}$ <4.22 $\Gamma(K^*(892)^- K^+ + \frac{VALUE \text{ (units } 10^{-6})}{4.22}$ <1.45	90 alyzing CLEO - c.c.)/\(\Gamma_{\text{tota}}\) - c.c.)/\(\Gamma_{\text{tota}}\) - c.c.)/\(\Gamma_{\text{tot}}\) - c.c.)/\(\Gamma_{\text{tot}}\) - g0	1 DOBBS III data but no II DOCUMENT SHEN DOCUMENT SHEN	12. ID 13	A ed by the EELL TECN BELL TECN BELL	e CLEO Coll $ ag{COMMENT} ag{COMMENT} ag{COMMENT} ag{T}(2S) ightarrow$	aboration.

 $^{^1\, \}text{DOBBS}\,$ 12A presents individual exclusive branching fractions or upper limits for 100 modes of four to ten pions, kaons, or protons. $^2\, \text{Obtained}$ by analyzing CLEO III data but not authored by the CLEO Collaboration.

$\Gamma(\gamma \chi_{b1}(1P))/\Gamma_{total}$	DOCUMENT ID		<u>TECN</u>	<u>COMMENT</u>	Γ ₄₇ /Γ
0.069 ±0.004 OUR AVERAGE 0.0693±0.0012±0.0041 407k 0.069 ±0.005 ±0.009 0.091 ±0.018 ±0.022 0.065 ±0.007 ±0.012 0.080 ±0.017 ±0.016 0.059 ±0.014	ARTUSO EDWARDS ALBRECHT NERNST HAAS KLOPFEN	05 99 85E 85 84 83	CLE2 ARG CBAL CLEO	$e^{+}e^{-} \rightarrow \Upsilon(2S) \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow$	$\gamma \chi(1P)$ γ conv. X γ X γ conv. X
$\Gamma(\gamma\chi_{b2}(1P))/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	CO. 4145147	Γ ₄₈ /Γ
<u>VALUE</u> <u>EVTS</u> 0.0715±0.0035 OUR AVERAGE	<u>DOCUMENT ID</u>		<u>TECN</u>	<u>COMMENT</u>	
$0.0724\pm0.0011\pm0.0040$ 410k 0.074 ±0.005 ±0.008 0.098 ±0.021 ±0.024 0.058 ±0.007 ±0.010 0.102 ±0.018 ±0.021 0.061 ±0.014	ARTUSO EDWARDS ALBRECHT NERNST HAAS KLOPFEN	05 99 85E 85 84 83	CLE2 ARG CBAL CLEO	$e^{+}e^{-} \rightarrow \Upsilon(2S) \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow$	$\gamma \chi(1P)$ γ conv. X γ X γ conv. X
$\Gamma(\gamma\chi_{b0}(1P))/\Gamma_{ ext{total}}$					Γ ₄₉ /Γ
<u>VALUE</u> <u>EVTS</u> 0.038 ±0.004 OUR AVERAGE	DOCUMENT ID		TECN	COMMENT	
$0.0375\pm0.0012\pm0.0047$ 198k 0.034 ±0.005 ±0.006 0.064 ±0.014 ±0.016 0.036 ±0.008 ±0.009 0.044 ±0.023 ±0.009 • • • We do not use the following	ARTUSO EDWARDS ALBRECHT NERNST HAAS E data for averages.	99 85E 85 84	CLE2 ARG CBAL CLEO	$e^{+}e^{-} \rightarrow \Upsilon(2S) \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{-}e^{-}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{-}e^{-}e$	$\gamma \chi(1P)$ $\gamma \text{ conv. X}$ $\gamma \text{ X}$
0.035 ±0.014	KLOPFEN			e^+e^-	γX
$\Gamma(\gamma f_0(1710))/\Gamma_{\text{total}}$					Γ ₅₀ /Γ
VALUE (units 10 ⁻⁵) CL%	DOCUMENT ID		TECN	COMMENT	
<59 90			ARG	$\Upsilon(2S) \rightarrow$	$\gamma K^+ K^-$
• • • We do not use the following					1
< 5.9 90	² ALBRECHT			$\Upsilon(2S) \rightarrow$	$\gamma \pi^+ \pi^-$
1 Re-evaluated assuming B($f_{0}(1$ 2 Includes unknown branching ra					
$\Gamma(\gamma f_2'(1525))/\Gamma_{\text{total}}$					Γ ₅₁ /Γ
	DOCUMENT ID		TECN	COMMENT	
<i>VALUE</i> (units 10 ^{−5}) <i>CL%</i> <53 90	¹ ALBRECHT	89	ARG	$\gamma(2S) \rightarrow$	$\gamma K^+ K^-$
1 Re-evaluated assuming B(f_{2}^{\prime} (1				(-)	,
$\Gamma(\gamma f_2(1270))/\Gamma_{\text{total}}$					Γ ₅₂ /Γ
<i>VALUE</i> (units 10 ^{−5}) <i>CL%</i> <24.1 90	DOCUMENT ID		TECN	COMMENT	
<24.1 90	$^{ m 1}$ ALBRECHT	89	ARG	$\Upsilon(2S) ightarrow 1$	$\gamma \pi^+ \pi^-$
¹ Using B($f_2(1270) \to \pi\pi$) = 0	0.84.				
HTTP://PDG.LBL.GOV	Page 12		Create	ed: 5/30/2	2017 17:21

$VALUE$ (units 10^{-5}) • • • We do not use the <6.8 ¹ Includes unknown brown $\Gamma(\gamma\eta_c(1S))/\Gamma_{total}$	e following o	lata for averages LALBRECHT	, fits,			
$^{<6.8}$ 1 Includes unknown br $\Gamma(\gamma\eta_{c}(1S))/\Gamma_{ ext{total}}$	90	ALBRECHT		limits, e	etc. • • •	
1 Includes unknown br $\Gamma(\gamma\eta_c(1S))/\Gamma_{ ext{total}}$			00			
$\Gamma(\gamma\eta_c(1S))/\Gamma_{total}$	anching rati	o of $f_{1}(2220) =$	09	ARG	$\Upsilon(2S) \rightarrow \gamma K^{+}$	- K-
` '		0 01 13(2220)	<i>K</i> +	K ⁻ .		
` '						Г ₅₄ /Г
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
$< 2.7 \times 10^{-5}$	90	WANG	11 B	BELL	$\Upsilon(2S) \rightarrow \gamma X$	
$\Gamma(\gamma \chi_{c0})/\Gamma_{total}$	5. 0.					Γ ₅₅ /Γ
<u>VALUE</u> <1.0 × 10 ^{−4}	<u>CL%</u>	DOCUMENT ID				
$<1.0 \times 10^{-4}$	90	WANG	11 B	BELL	$\Upsilon(2S) \rightarrow \gamma X$	
$\Gamma(\gamma \chi_{c1})/\Gamma_{\text{total}}$	CL 0/	DOCUMENT ID		TECN	COMMENT	Γ ₅₆ /Γ
<u>VALUE</u> <3.6 × 10 ^{−6}	<u>CL%</u>	DOCUMENT ID			·	
<3.6 × 10 °	90	WANG	118	RELL	$\Upsilon(2S) \rightarrow \gamma X$	
$\Gamma(\gamma \chi_{c2})/\Gamma_{\text{total}}$	CL 0/	DOCUMENT ID		TECN	COMMENT	Γ ₅₇ /Γ
<u>VALUE</u> <1.5 × 10 ^{−5}	_ <i>CL%</i> 90	DOCUMENT ID			$\Upsilon(2S) ightarrow \gamma X$	
<1.5 X 10	90	WANG	118	DELL	$I(23) \rightarrow \gamma \lambda$	
$\Gamma(\gamma X(3872) \rightarrow \pi^+\pi$	$\Gamma^- J/\psi ig)/\Gamma$	total				Γ_{58}/Γ
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
$< 0.8 \times 10^{-6}$	90	WANG	11 B	BELL	$\Upsilon(2S) \rightarrow \gamma X$	
$\Gamma(\gamma X(3872) \rightarrow \pi^+\pi$	$\pi^-\pi^0J/\psi)$	$/\Gamma_{ ext{total}}$				Γ ₅₉ /Γ
VALUE		DOCUMENT ID			COMMENT	
$<2.4 \times 10^{-6}$	90	WANG	11 B	BELL	$\Upsilon(2S) \rightarrow \gamma X$	
$\Gamma(\gamma X(3915) \rightarrow \omega J/c$	$\psi)/\Gamma_{total}$					Γ ₆₀ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
$< 2.8 \times 10^{-6}$	90	WANG	11 B	BELL	$\Upsilon(2S) \rightarrow \gamma X$	
$\Gamma(\gamma X(4140) \rightarrow \phi J/c$	у/) /Г _{аааа}					Γ ₆₁ /Γ
		DOCUMENT ID		TECN	COMMENT	
<u>VALUE</u> <1.2 × 10 ^{−6}	90				$\gamma(2S) \rightarrow \gamma X$	
						- /-
$\Gamma(\gamma X(4350) \rightarrow \phi J/\gamma)$	ψ)/I total					Γ_{62}/Γ
VALUE <1.3 × 10 ^{−6}	<u>CL%</u>	MANG	11 _D	RELI	$\frac{COMMENT}{\Upsilon(2S)} \sim \chi X$	
	90	WANG	110	DLLL	$I(23) \rightarrow \gamma \chi$	
$\Gamma(\gamma\eta_b(1S))/\Gamma_{\text{total}}$	E1 (TC	DOC: 11515		T E 2	U COMMENT	Γ ₆₃ /Γ
VALUE (units 10 ⁻⁴) CL%						
$3.9 \pm 1.1 {+1.1 \atop -0.9}$	$13\pm5k$	$^{ m 1}$ AUBERT	09	AQ BAE	BR $\gamma(2S) ightarrow \gamma \lambda$	Χ

• • • We do not use the following data for averages, fits, limits, etc. • • •

<21	90	LEES	11 J	BABR	$\Upsilon(2S) \rightarrow X \gamma$
< 8.4	90	¹ BONVICINI	10	CLEO	$\Upsilon(2S) \rightarrow \gamma X$
< 5.1	90	² ARTUSO	05	CLFO	$e^+e^- \rightarrow \gamma X$

¹ Assuming $\Gamma_{\eta_h(1S)} = 10$ MeV.

$\Gamma(\gamma \eta_b(1S) \rightarrow \gamma \text{Sum of 26 exclusive modes})/\Gamma_{\text{total}}$

 Γ_{64}/Γ

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$< 3.7 \times 10^{-6}$	90	SANDILYA	13	BELL	$\gamma(2S) ightarrow \gamma$ hadrons

$\Gamma(\gamma X_{b\overline{b}} \to \gamma \text{Sum of 26 exclusive modes})/\Gamma_{\text{total}}$

 Γ_{65}/Γ

<i>VALUE</i> (units 10^{-6})	CL% EVTS	DOCUMENT ID	TECN	COMMENT
< 4.9	90	SANDILYA 13	BELL	$\gamma(2S) \rightarrow \gamma$ hadrons
14/ 1 .		C C	•	

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$46.2^{+29.7}_{-14.2}\pm10.6$$

10 ¹ DOBBS

12

 $\Upsilon(2S)
ightarrow \ \gamma$ hadron

$\Gamma(\gamma X \rightarrow \gamma + \ge 4 \text{ prongs})/\Gamma_{\text{total}}$ (1.5 GeV < m_X < 5.0 GeV)

 Γ_{66}/Γ

<u>VALUE (units 10^{−4})</u> <u>CL%</u>
<1.95 95

DOCUMENT IDTECNCOMMENTROSNER07ACLEO $e^+e^- \rightarrow \gamma X$

$\Gamma(\gamma A^0 \rightarrow \gamma \text{ hadrons})/\Gamma_{\text{total}}$ (0.3 GeV < m_{A^0} < 7 GeV)

 Γ_{67}/Γ

$\Gamma \big(\gamma \, a_1^0 \to \, \gamma \, \mu^+ \, \mu^- \big) / \Gamma_{\text{total}}$

 Γ_{68}/Γ

LEPTON FAMILY NUMBER (LF) VIOLATING MODES

$\Gamma(e^{\pm}\tau^{\mp})/\Gamma_{\rm total}$

 Γ_{69}/Γ

<i>VALUE</i> (units 10 ⁻⁶)	CL%	DOCUMENT ID		TECN	COMMENT
<3.2	90	LEES	10 B	BABR	$e^+e^- ightarrow e^{\pm} au^{\mp}$

² Superseded by BONVICINI 10.

¹Obtained by analyzing CLEO III data but not authored by the CLEO Collaboration.

 $^{^1}$ For a narrow scalar or pseudoscalar A^0 , excluding known resonances, with mass in the range 0.3–7 GeV. Measured 90% CL limits as a function of m_{A^0} range from 1×10^{-6} to 8×10^{-5} .

 $^{^1}$ For a narrow scalar or pseudoscalar a_1^0 with mass in the range 212–9300 MeV, excluding J/ψ and $\psi(2S)$. Measured 90% CL limits as a function of $m_{a_1^0}$ range from 0.26–8.3 \times 10 $^{-6}$.

Γ(μ $^{\pm}\tau^{\mp}$)/Γ_{total} VALUE (units $^{10^{-6}}$) CL% DOCUMENT ID TECN COMMENT COMMENT TECN COMMENT SOLUTION TECN COMMENT FOR TECN COMMENT TECN TECN COMMENT TECN TECN COMMENT TECN TECN COMMENT TECN COMMENT TECN TECN TECN COMMENT TECN TEC

$\Upsilon(2S)$ Cross-Particle Branching Ratios

$B(\Upsilon(2S) \rightarrow \pi^+\pi^-) \times B(\Upsilon(3S) \rightarrow \Upsilon(2S)X)$

$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
1.78±0.02±0.11	906k	LEES	11 C	BABR	$e^+e^- \rightarrow \pi^+\pi^- X$

$\Upsilon(2S)$ REFERENCES

		•	•	
JIA	17	PR D95 012001	S. Jia et al.	(BELLE Collab.)
LEES	14G	PR D89 111102	J.P. Lees <i>et al.</i>	(BABAR Collab.)
YANG	14	PR D90 112008	S.D. Yang et al.	(BELLE Collab.)
SANDILYA	13	PRL 111 112001	S. Sandilya et al.	(BELLE Collab.)
SHEN	13	PR D88 011102	C.P. Shen et al.	(BELLE Collab.)
TAMPONI	13	PR D87 011104	U. Tamponi <i>et al.</i>	(BELLE Collab.)
DOBBS	12	PRL 109 082001	S. Dobbs et al.	
DOBBS	12A	PR D86 052003	S. Dobbs et al.	
SHEN	12A	PR D86 031102	C.P. Shen et al.	(BELLE Collab.)
LEES	11C	PR D84 011104	J.P. Lees et al.	(BABAR Collab.)
LEES	11H	PRL 107 221803	J.P. Lees et al.	(BABAR Collab.)
LEES	11J	PR D84 072002	J.P. Lees et al.	(BABAR Collab.)
LEES	11L	PR D84 092003	J.P. Lees et al.	(BABAR Collab.)
WANG	11B	PR D84 071107	X.L. Wang et al.	(BELLE Collab.)
BONVICINI	10	PR D81 031104	G. Bonvicini et al.	(CLEO Collab.)
LEES	10B	PRL 104 151802	J.P. Lees et al.	(BABAR Collab.)
AUBERT	09AQ	PRL 103 161801	B. Aubert et al.	(BABAR Collab.)
AUBERT	09Z	PRL 103 081803	B. Aubert <i>et al.</i>	(BABAR Collab.)
BHARI	09	PR D79 011103	S.R. Bhari <i>et al.</i>	(CLEO Collab.)
AUBERT	08BP	PR D78 112002	B. Aubert <i>et al.</i>	(BABAR Collab.)
HE	A80	PRL 101 192001	Q. He <i>et al.</i>	(CLEO Collab.)
LOVE	A80	PRL 101 201601	W. Love <i>et al.</i>	(CLEO Collab.)
PDG	80	PL B667 1	C. Amsler <i>et al.</i>	(PDG Collab.)
ASNER	07	PR D75 012009	D.M. Asner et al.	(CLEO Collab.)
BESSON	07	PRL 98 052002	D. Besson et al.	(CLEO Collab.)
ROSNER	07A	PR D76 117102	J.L. Rosner <i>et al.</i>	(CLEO Collab.)
BESSON	06A	PR D74 012003	D. Besson et al.	(CLEO Collab.)
ROSNER	06	PRL 96 092003	J.L. Rosner et al.	(CLEO Collab.)
ADAMS	05	PRL 94 012001	G.S. Adams et al.	(CLEO Collab.)
ARTUSO	05	PRL 94 032001	M. Artuso et al.	(CLEO Collab.)
ARTAMONOV	00	PL B474 427	A.S. Artamonov et al.	(6) 50 6 11 1)
EDWARDS	99	PR D59 032003	K.W. Edwards et al.	(CLEO Collab.)
ALEXANDER	98	PR D58 052004	J.P. Alexander et al.	(CLEO Collab.)
BARU	96	PRPL 267 71	S.E. Baru <i>et al.</i>	(NOVO)
KOBEL	92	ZPHY C53 193	M. Kobel <i>et al.</i>	(Crystal Ball Collab.)
MASCHMANN	90	ZPHY C46 555	W.S. Maschmann et al.	(Crystal Ball Collab.)
ALBRECHT	89	ZPHY C42 349	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
KAARSBERG	89	PRL 62 2077	T.M. Kaarsberg <i>et al.</i>	(CUSB Collab.)
BUCHMUEL	88 Δli ar	HE e^+e^- Physics 412 and P. Soeding, World Scie	W. Buchmueller, S. Cooper	(HANN, DESY, MIT)
JAKUBOWSKI		ZPHY C40 49	Z. Jakubowski <i>et al.</i>	(Crystal Ball Collab.) IGJPC
ALBRECHT	87	ZPHY C35 283	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
COHEN	87	RMP 59 1121	E.R. Cohen, B.N. Taylor	(RISC, NBS)
LURZ	87	ZPHY C36 383	B. Lurz et al.	(Crystal Ball Collab.)
BARU	86B	ZPHY C32 622 (erratum		(NOVO)
ALBRECHT	85	ZPHY C28 45	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ALBRECHT	85E	PL 160B 331	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
GELPHMAN	85	PR D32 2893	D. Gelphman <i>et al.</i>	(Crystal Ball Collab.)
KURAEV	85	SJNP 41 466	E.A. Kuraev, V.S. Fadin	(NOVO)
		Translated from YAF 41		()

NERNST ARTAMONOV BARBER	85 84 84	PRL 54 2195 PL 137B 272 PL 135B 498	R. Nernst <i>et al.</i> A.S. Artamonov <i>et al.</i> D.P. Barber <i>et al.</i>	(Crystal Ball Collab.) (NOVO) (DESY, ARGUS Collab.+)
BESSON	84	PR D30 1433	D. Besson et al.	(CLEO Collab.)
FONSECA	84	NP B242 31	V. Fonseca et al.	(CUSB Collab.)
GILES HAAS	84B 84	PR D29 1285 PRL 52 799	R. Giles <i>et al.</i> J. Haas <i>et al.</i>	(CLEO Collab.) (CLEO Collab.)
HAAS	84B	PR D30 1996	J. Haas et al.	(CLEO Collab.)
KLOPFEN	83	PRL 51 160	C. Klopfenstein et al.	(CUSB Collab.)
ALBRECHT	82	PL 116B 383	H. Albrecht <i>et al.</i>	(DESY, DORT, HEIDH $+$)
NICZYPORUK	-	PL 100B 95	B. Niczyporuk <i>et al.</i>	(LENA Collab.)
NICZYPORUK	81C	PL 99B 169	B. Niczyporuk <i>et al.</i>	(LENA Collab.)
BOCK	80	ZPHY C6 125	P. Bock et al.	(HEIDP, MPIM, DESY, HAMB)