DRAWINGS

REPLACEMENT SHEET

R, R ¹	R^2
Н	CH₃
CH ₃	-CH ₂ CH ₃
Alkyl	CH ₂ R
Cycloalkyl	CH ₂ Aryl
Aryl	
CI	
Br	
NH ₂	
-NHAlkyl	
-N(Alkyl) ₂	
-OH	
-SH	

Figure 1. Hydroxyaryl Alkyl Ketone MMP Inhibitors

$$R$$
OH Q

R,R ¹	R^2
Н	Н
CH ₃	CH ₃
Alkyl	CH ₂ R
Cyclo Alkyl	
Aryl	
CI	
Br	
NH ₂	
-NH Alkyl	
-N(Alkyl) ₂	
-OH	
-SH	

Figure 2. Hydroxy Acetophenone and Hydroxy Propiophenone MMP Inhibitors

$$R^{1}$$
 R^{2}
 R^{2}
 R^{3}
 R^{2}
 R^{4}
 R^{4

$$R^1$$
 R^4
 R^3
 R^2
 R_5

$$R_4$$
 R_5
 R_5
 R_7
 R_7
 R_8
 R_8
 R_8

$$R_4$$
 R_5
 R_5
 R_7
 R_7
 R_8
 R_8
 R_8

$$R_4$$
 R_5
 R_5
 R_7
 R_7
 R_8
 R_8
 R_8
 R_8

$R, R^{1}, R^{2}, R^{4}, R^{5}$	R^3
Н	CH ₃
CH ₃	-CH ₂ CH ₃
Alkyl	CH ₂ R
Cycloalkyl	CH ₂ Aryl
Aryl	
CI	
Br	
NH ₂	
-NHAlkyl	
-N(Alkyl) ₂	
-OH	
-SH	

Figure 3. Hydroxyaryl Alkyl Ketone MMP Inhibitors with Additional Cyclic Rings

REPLACEMENT SHEET

2,4 - Dihydroxy Acetophenone

2 - Acetyl - 8 - Hydroxyquinoline

Figure 4. 2,4- Dihydrox Acetophenone and 2-Acetyl-8-Hydroxyquinoline MMP Inhibitors

R,R ¹	R ²	x, x_1, x_2, x_3
Н	CH ₃	CH ₂
CH ₃	-CH ₂ CH ₃	CH
Alkyl	Alkyl	0
Cycloalkyl	Aryl	S
Aryl	Cycloalkyl	N
CI		
Br		
NH ₂		
-NH ⁻ Alkyl		
-N(Alkyl) ₂		
-OH		
-SH		

Figure 5. Five & Six Membered N-Heterocyclic Alkyl Ketone MMP Inhibitors

R,R ¹	R ²	X, X ₁ , X ₂ , X ₃
Н	CH ₃	CH ₂
CH ₃		СН
Alkyl		0
Cycloalkyl		S
Aryl		N
CI		
Br		
NH ₂		
-NH ⁻ Alkyl		
-N(Alkyl) ₂		
-OH		
-SH		

Figure 6. 2-Acetyl Substituted N-Heterocyclic MMP Inhibitors

 R^2 R, \overline{R}^1 CH₂ CH₃ Н -CH₂CH₃ CH₃ СН Alkyl Alkyl 0 Aryl Cycloalkyl S NΗ Cycloalkyl Aryl CI Br NH_2 -NH Alkyl -N(Alkyl)₂ -OH -SH

Figure 7. N-Heterocyclic Alkyl Ketone MMP Inhibitors with Additional Cyclic Rings

Figure 8. Proposed Inhibition of the Active-Site of MMP by Hydroxyaryl Alkyl Ketones