Operating Systems
Process State:-
=) A program in execution is known as a process.
=) As a process executes, it changes state. The state of a process is defined in part by the current activity of that process.
=) Each process may be in one of the following states:-
DNew:- The process is being created.
1 2 <u>Running</u> : - Instructions are being executed.
13 Maiting: - The process is waiting for some event to occur. (Such as an Input Output completion or reception of a signal).
4) Ready: - The process is waiting to be assigned to a processor.
5) Terminated: - The process has finished execution

state of execution, a new process came with
high profity as so the torner profess who
interrupted and goes back into the ready state.
Once the interrupt has been handled the process
is again dispatched to the running state.
Third, while running the process needs an
input output operation, so it goes to the
waiting state.
J
=> In waiting state, the process is waiting
for input output completion and remains there
for input output completion and remains there to till I/O is done. After the I/O operation
is consolated the occurs manage book to
the reduced the process moves back to the schedular dispatches it to the running state again.
dispatches it to the running state again.
Process Control Block:-
=) Each process is represented in the operating -
system by a process control block.
- An example lieurem elevation process a deal
=) An example diagram showing process control- block:-
block:- Process state
Process number
Program counter.
Registers
Memory limits
List of open files.

=> Following things are present in the process
control block:
1) Process number: - was shows the unique number
or unique ID of a particular process. It helps
in identifying a particular process.
in interest a a
2) Process state: tells us in which state a a
process exists at that particular moment.
and the address of
3) Program counter: indicates the address of the next instruction that has to be executed
for that particular process.
4) CPU Registers: tells us the registers that
are being used by a particular process
contains the priority
5) CPU Scheduling information: - contains the priority of the processes, contains the pointer scheduling
of the processes, contains the porcess has geve (Scheduling determines which process has
to be executed first).
Memory management information: represents the
Memory management informations represers memory that is being used by a particular
process.
Lines beens an account of
Accounting information: recept a seed by a certain things like resources being used by a certain things like resources = ClU, time, memory
certain things like resources being used of a particular process (Resources = Clu, time, memory)
particular

8) I/O status information: - represents the input output
devices that are being assigned to a particular process.
process.
Process Scheduling:-
=) The objective of multiprogramming is to have some process running at all times, to maximize CPU utilization.
some process running at all times, to maximize
Cru wayzaxion.
=) The objective of time sharing is to switch
the CPU among processes so frequently that users can interact with each program while
users can interact with each program while
its running.
=) To meet these objectives, the process scheduler
selects an available process (possibly from a set
selects an available process (possibly from a set of several available processes) for program execution
on the CPU.
=) For a single-processor system, there will never
be more than one running process.
=> If there are more processes, the rest will have to wait untill the CPU is free and
can be restacheduled.
we have the scheduling queries.
we have the scheduling queves.

exFollowing are the types of scheduling queues:
Dob queue: As processes enter the system, they are put into a job queue, which consists of all processes in the system. It contains the list of all the processes that we have in the system.
Deady queue: The processes that are residing in main memory and are ready and uniting to execute are kept on a list called the ready queue.
=> The following diagram is of what happens when a process & gets the CPU in the ready state;
swap in partially executed swap out swapped - out processes
Trendy queue CPU end
I/O k I/O waiting queues

=> From job queue, the processes come into the
ready queue. When a process gets the CPU there are several possibilities that exist.
there are several possibilities that exist.
=> One possibility is the process gets the CPU
and completed its execution and ends.
The state of the
=) Another possibility is when the process gets the
CPU, another process comes with a higher priority,
then the process with low priority get swapped
out and is stored in the swapped-out list which then moves it into ready queue and
then to the CPU for execution.
then to the Cru for execution.
=> Another possibility is when the process gets
the CPU, it requires an I/O operation. So, it is
sent to the I/O queue. If the I/O devices
are available then it will be sent to 8 I/O
a device and after its operation is done then it
will be sent to ready queue and then to
CPU. If I/O devices are not available then
A on the process will be stored in I O waiting
queile.
Context Switch:-
The Harmonian Land
=) Interrupts cause the operating system to change
a CPU from its current task and to run a kernel
routine.
=) Such operations happen frequently on general:
-1 Such operations happen helperical on flerence
purpose systems.

Context = current state, current information

== 2 When an interrupt occus, the system needs to
save the current context of the process currently
Tunning on the CPU so that it can restore that
context when its processing is lone escentially
suspending the process and then resuming it.
soporating the process and dien resummer
=) Switching the Clu to another process requires
performing a state save of the current process
performing a state save of the current process and a state restore of a different process.
This task is known as context switch.
V A L
=) (ontext-switch time is pure overhead (because
the system does no useful work while switching).
When a CPU is switched from one process to
another at that moment only the switching part
is working and no other work useful work
is done.
=> Its speed varies from machine to machine, depend
ing on the memory speed, the no. of registers that
ing on the memory speed, the no. of registers that must be copied, and the existence of special
instructions.
Typical speeds are a few milliseconds.