Automi e Linguaggi Formali

Dai problemi indecidibili a quelli intrattabili, classi P e NP

Lamberto Ballan lamberto.ballan@unipd.it

Esercizi

 Definire una TM che un numero scritto in codifica binaria ad un numero scritto in codifica decimale. In input ci aspettiamo una stringa binaria (i.e. la codifica binaria del numero) e in output dovremo produrre la corrispondente codifica in decimale.

Soluzione vista a lezione:

Definiamo una TM che implementa la seguente strategia:

- utilizziamo un contatore decimale e, di volta in volta, incrementiamo il contatore di una unità e decrementiamo il numero binario di una unità
- appena il numero binario "raggiunge" lo zero vuol dire che abbiamo terminato la conversione; cancelliamo tutti i suoi simboli e terminiamo la computazione

- Un esempio NP-completo è il problema della soddisfacibilità, cioè decidere se una espressione booleana è soddisfacibile
- Le espressioni booleane sono costruite a partire da:
 - variabili a valori booleani, ossia 1 (vero) e 0 (falso)
 - gli operatori binari ∧ (AND logico) e ∨ (OR logico)
 - L'operatore unario ¬ (NOT logico)
 - parentesi per raggruppare operatori e operandi in modo da modificare, se necessario, l'ordine di precedenza

- Un assegnamento di verità per una espressione booleana E assegna i valori 1 (vero) e 0 (falso) a ogni variabile in E
 - Il valore di E rispetto ad un assegnamento di valori di verità T, indicato con E(T), è il risultato della valutazione di E con ogni variabile x sostituita dal valore T(x) (1 o 0) che T assegna a x
- Un assegnamento di valori di verità T alle variabili soddisfa l'espressione booleana E, se il valore di E (cioè E(T)) è 1
- Un'espressione booleana *E* si dice *soddisfacibile* se esiste almeno un *T* tale che *E*(*T*)=1

- Esempio: $E = x \land \neg (y \lor z)$
 - la "sotto-espressione" $y \lor z$ è vera se almeno una tra le variabili y e z è vera, ed è falsa se lo sono entrambe
 - ▶ perciò $\neg(y \lor z)$ è vera solo quando $y \in z$ sono entrambe false
 - l'espressione completa (essendo un AND logico) è vera solo quando entrambe le variabili/sotto-espressioni sono vere; quindi sarà vera solo per x vera, y falsa e z falsa
 - l'espressione è soddisfacibile, abbiamo appena visto che l'assegnamento di valori di verità T definito da T(x)=1, T(y)=0, T(z)=0, è l'unico assegnamento che soddisfa E

- Il *problema della soddisfacibilità (SAT)* è così definito: data un'espressione booleana *E*, è soddisfacibile?
- Enunciato come linguaggio, il problema SAT è quindi l'insieme delle espressioni booleane (codificate) soddisfacibili

Rappresentazione di istanze di SAT

- Un'espressione booleana può contenere un numero infinito di simboli; dobbiamo perciò ideare un codice con alfabeto finito che consenta di rappresentare espressioni booleane
- Codifica: da un problema SAT, ad una stringa su un alfabeto
 - Alfabeto: {∧, ∨, ¬, (,), 0, 1, x_i}
 - la variabile x_i è rappresentata dal simbolo x seguito dalla rappresentazione binaria dell'indice i
- Tutte le istanze di SAT sono stringhe su questo alfabeto finito
 - es. $E = x \land \neg(y \lor z)$ viene codificata con $x1 \land \neg(x10 \lor x11)$
- nota: se E ha m variabili, la codifica ha $O(m \log(m))$ simboli

II teorema di Cook

• Teorema di Cook (10.9): SAT è NP-completo

D: La dimostrazione prevede due parti.

Nella prima parte si dimostra che SAT è in NP. Prendiamo una TM non-deterministica che genera tutti i possibili assegnamenti in parallelo (2ⁿ se abbiamo n variabili). Per ogni assegnamento, la TM controlla se è soddisfacibile (in tempo polinomiale). Quindi esiste una TM non-deterministica polinomiale che risolve SAT.

Nella seconda parte dobbiamo invece dimostrare che dato un qualunque linguaggio L' in NP, esiste una riduzione polinomiale da L' a SAT.

Una versione ristretta di soddisfacibilità

- Intendiamo dimostrare l'NP-completezza di un'ampia gamma di problemi (tra cui il TSP precedentemente introdotto)
- Dovremmo procedere quindi per riduzione polinomiale dal problema SAT al problema in esame
- Esiste però un importante problema "intermedio", detto 3SAT, molto più facile da ridurre ai problemi tipici rispetto a SAT
 - anche 3SAT è un problema di soddisfacibilità di espressioni booleane, così come SAT
 - 3SAT però richiede che le espressioni siano di una forma ben precisa, formate cioè da congiunzione logica di clausole ognuna delle quali è disgiunzione logica di tre variabili (anche negate)

Forme normali di espressioni booleane

- Un *letterale* è una variabile o una variabile negata, ad es. x, $\neg y$
- Una clausola è la disgiunzione logica (OR) di uno o più letterali, ad es. x, x ∨ ¬y
- Un espressione booleana si dice in *forma normale congiuntiva* (CNF), se è la congiunzione logica (AND) di una o più clausole
 - ad es. $(x \lor y) \land (\neg x \lor z)$, e $x \land y$ sono in CNF
 - mentre $(x \lor y \lor z) \land (\neg y \lor \neg z) \land (x \lor y \land z)$ non è in CNF
- Un espressione si dice in *forma normale k-congiuntiva (k-CNF)* se è il prodotto di clausole che hanno *k* letterali distinti
 - A ad es. $(x \lor \neg y) \land (y \lor \neg z) \land (z \lor \neg x)$ è in 2-CNF

Una versione ristretta di soddisfacibilità

- Ogni vincolo sulle espressioni booleane dà luogo ad un problema di soddisfacibilità delle espressioni che lo soddisfano
- CSAT: una data espressione booleana in CNF è soddisfacibile?
- kSAT: una data espressione booleana in k-CNF è soddisfacibile?

- CSAT, 3SAT e kSAT per ogni $k \ge 3$ sono NP-completi
- Esistono invece algoritmi in tempo lineare per 1SAT e 2SAT

Riduzioni

- Possiamo trasformare una espressione booleana "generica" a CNF in tempo polinomiale ⇒ anche CSAT è NP-completo
- Possiamo ridurre CSAT a 3SAT in tempo lineare ⇒ anche 3SAT
 è NP-completo

- Due espressioni booleane sono *equivalenti* se danno lo stesso risultato per ogni assegnazione di valori di verità alle variabili
 - quindi se sue espressioni sono equivalenti, o sono entrambe soddisfacibili o nessuna delle due lo è
 - perciò un modo per ricavare una riduzione polinomiale da SAT a CSAT consiste nel convertire espressioni arbitrarie in CNF
 - questo però non è semplicissimo, possiamo convertire ogni espressione in CNF ma potrebbe richiedere tempo esponenziale
 - "buona notizia": non è necessario convertire una espressione in una CNF equivalente; per ridurre SAT a CSAT basterà convertire un'istanza E di SAT in un'istanza F di CSAT in modo tale che F sia soddisfacibile se e solo se E lo è

- La riduzione di SAT in CSAT si articola in due parti:
 - spostiamo tutti i ¬ verso il fondo dell'albero di espressione (finché i ¬ si applicano a singole variabili); così si genera un'espressione equivalente E formata da ∧ o ∨ di letterali
 - Scriviamo poi l'espressione formata da ∧ o ∨ di letterali come prodotto di clausole, cioè in CNF; ricorrendo a nuove variabili la trasformazione richiede un tempo polinomiale (in generale la nuova espressione F non è equivalente ad E)

- Esempio: consideriamo $E = \neg((\neg(x \lor y)) \land (\neg x \lor y))$
 - ▶ il primo passo consiste nello "spingere" i ¬ sotto ∧ e ∨
 - Per effettuare la trasformazione ci servono le tre regole $\neg(E \lor F) \Rightarrow \neg(E) \land \neg(F)$ $\neg(E \land F) \Rightarrow \neg(E) \lor \neg(F)$ $\neg(\neg(E)) \Rightarrow E$
 - E si trasforma quindi seguendo i passaggi:

$$\neg((\neg(X \lor y)) \land \neg(\neg X \lor y))$$

$$X \lor y \lor \neg(\neg X \lor y)$$

$$X \lor y \lor (\neg(\neg X)) \land (\neg y)$$

$$X \lor y \lor X \land (\neg y)$$

- Teorema (10.12): per ogni espressione booleana *E* esiste un'espressione equivalente *F* in cui le negazioni compaiono solo nei letterali (cioè si applicano alle variabili)
 - ▶ la lunghezza di Fè lineare nel numero di simboli di Fed E si costruisce in tempo polinomiale

NP-completezza di 3SAT

- 3SAT: data un'espressione *E*, prodotto di clausole formate dalla congiunzione di 3 letterali distinti, dire se *E* è soddisfacibile
- Teorema (10.15): 3SAT è NP completo