Introduction to EduQube kit

INNOVA SPACE

Index

1.	Overview
2.	OBC/COMMS
3.	EPS
4.	Payload
5 .	Motherboard
6.	PCBs dimensions
7.	Structures
8	The kit

1.0 - Overview

Hardware

EduQube includes three separated modules containing the OBC/COMMS, EPS and Payload subsystems. All units feature PQ-10-standared connections.

Software and data visualization

The kit features a modular code for both satellite and GND station and a dashboard for data visualization.

Optional features

A 1P pocketqube structure and a CubeSat standard-sized motherboard (*flatsat*) are available as optional features. The motherboard brings the possibility to include an additional payload and to perform specific tests.

1.1 - EduQube block diagram

1.2 - EduQube data processing diagram

2.0 - OBC/COMMS

The OBC-v0X is an on-board computer and communications unit designed for EduQube educational kit. The board has been developed for data processing, telemetry functions and RF communication, hosting these subsystems in a unique board. Its architecture includes a 32-bit SAMD21 G microcontroller and a RFM95W 915MHz LoRa radio module (*OBC-v01*). The *OBC-v02* features a SX1262 1GHz LoRa radio module.

Main features:

- Microchip SAMD21-G 32-bit, 48MHz microcontroller.
- PQ-10 Standard header.
- 4Mb flash memory.
- Texas Instruments current monitor.
- **USB-C 2.0** receptacle.
- SMA and UFL connectors.
- Supports **Arduino** and **Python** programming.

2.1 - OBC/COMMS Pinout (OBC_v01 and OBC_v02)

Pin number	Name	Pin functions
1	SCL	I2C communication SCL pin.
2	SDA	I2C communication SDA pin.
3	TX	UART communication TX pin.
4	RX	UART communication RX pin.
5	BOUT	Current control output.
6	BIN	Current control input.
7	D3	Digital I/O pin.
8	D2	Digital I/O pin.
9	3V3	+3.3v VDD
10	GND	VSS

2.1.1 – OBC/COMMS USB power source

To enable the USB power source, the **USB PWR** jumper has to be connected. This is suggested when the OBC is being programmed, in order to avoid extra connections on the board.

IMPORTANT: DO NOT CONNECT USB PWR JUMPER IF THE BOARD IS BEING POWERED EXTERNALLY (CONNECTED TO EPS OR CONNECTED TO AN EXTERNAL POWER SOURCE)

2.2 - OBC/COMMS block diagram

2.3 – OBC/COMMS schematic design

ATSAMD21G18A

USB / VOLTAGE REGULATOR

3.0 - EPS

The EPS-v01 unit provides the EduQube kit an efficient power management. This module features two ST SPV1040, which includes an embedded MPPT, a high-efficiency solar battery charger and a built-in current control. The EPS-v01 supports up to four solar panels, reaching a maximum output power of 3.3W.

Main features:

- Two ST SPV1040 high-efficiency solar battery chargers and MPPTs.
- **PQ-10** Standard header.
- 1A voltage regulator.
- Current control.
- **3.3W** max. Output power.

3.1 - EPS Pinout

Pin number	Name	Pin functions
1		NC
2		NC
3		NC
4		NC NC
5	BOUT	Current control output.
6	BIN	Current control input.
7	D3	Digital I/O pin.
8	D2	Digital I/O pin.
9	3V3	+3.3v VDD
10	GND	VSS

3.2 – EPS block diagram

3.3 - EPS schematic design

4.0 - Payload

This unit includes a gyroscope, magnetometer and accelerometer and a weather sensor (temperature, humidity, pollution and altitude), as well as an Ublox GPS module. The board is connected to the OBC unit by a PQ-10 standard header, featuring I2C and UART communication, and two I/O digital pins.

Main features:

- Bosch BME680 temperature, humidity, altitude and pollution sensor.
- PQ-10 Standard header.
- **TDK MPU9250** 9-axis accelerometer, gyroscope, magnetometer.
- GPS

4.1 - Payload Pinout

Pin number	Name	Pin functions
1	SCL	I2C communication SCL pin.
2	SDA	I2C communication SDA pin.
3	TX	UART communication TX pin.
4	RX	UART communication RX pin.
5		NC
6		NC
7		NC
8		NC
9	3V3	+3.3v VDD
10	GND	VSS

4.2 – Payload block diagram

4.3 – Payload schematic design

5.0 - Motherboard

As an optional feature for EduQube, the motherboard (flatsat) brings the possibility to perform specific tests and to add a custom payload module. The board is CubeSat-standard-sized, and its purpose is to integrate all the EduQube modules.

Main features:

- **18650** battery holder (battery not included).
- 3.5mm stereo jack **RBF switch housing** (male not included).
- External power source input (with built-in 3.3V regulator).
- Solar panels inputs.
- Additional payload slot.

5.1 - Motherboard Pinout

Pin number	Name	Pin functions
1	SCL	I2C communication SCL pin.
2	SDA	I2C communication SDA pin.
3	TX	UART communication TX pin.
4	RX	UART communication RX pin.
5	D1	Digital I/O pin.
6	D2	Digital I/O pin.
7	SP1	Solar panel input.
8	SP2	Solar panel input.
9	SP3	Solar panel input.
10	SP4	Solar panel input.
11	GND1	VSS
12	GND2	VSS
13	GND3	VSS
14	GND4	VSS
15	GND5	VSS
16	ES	External power source +VCC pin.
17		NC
18		NC

5.2 - Motherboard schematic design

1-826648-0

3.5mm SWITCH (RBF) / BATTERY

6.0 - PCBs dimensions

All dimensions are expressed in mm.

OBC/COMMS, EPS and Payload

Motherboard

7.0 - Structures

1P PocketQube structure

Medium and **advanced** versions of the EduQube kit include a 1P PocketQube structure, which is composed of two individual frames, assembled by four threaded rods (M2.5mm).

Dimensions

Top frame

Base frame

CubeSat structure

Advanced version of the EduQube kit feature a CubeSat-standard-sized structure. Its purpose is to host the Motherboard *(flatsat)* unit.

Dimensions

Chassis

Top piece

8.0 - Kit

Basic version includes:

OBC/COMMS board

EPS board

Payload board

Solar panels 5x5 cm.(X4)

RF antenna (433 MHz)

GPS patch antenna

Software

Structures CAD files (3D-printable)

Medium version adds (over de Basic version):

Motherboard

Ground station (ESP32 OLED)

Solar panels 5x5 cm.(X5) Solar panels 10x10 cm.(X5)

Advanced version adds (over de Medium version):

- Structures (see section 7.0 Structures).
- Exterior PCBs