

Migrating Classical Enterprise Campus Networks to VXLAN EVPN Based Networks

Nazim Khan, Customer Success Specialist

Cisco Webex App

Questions?

Use Cisco Webex App to chat with the speaker after the session

How

- 1 Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated until February 24, 2023.

Agenda

- Introduction
- VXLAN EVPN Architecture overview
- Migration Strategies
- Planning & Pre-requisites
- Migration Considerations
- Migration Walkthrough
- Post-Migration
- Automation Tools
- Key Take Away

Typical Campus Network

Traditional 3-Tier Networks

Challenges

- Broadcast Domain –
 Spanning-Tree
- Flood & Learn Mechanism
- Mobility- Roaming
- VI AN Scale
- Load Balancing
- Resiliency
- Scalability

VXLAN EVPN Architecture

Benefits

- Any Subnet, Anywhere
- Layer-3 ECMP links endto-end
- No Flooding with BGP Control Plane
- Extensible Scale & Resiliency
- Distributed Gateway on all Edge nodes (Leaf)
- Segmentation

BRKENS-3096

What is ...?

VXLAN

- Standards based Encapsulation
 - RFC 7348
 - Uses UDP-Encapsulation
- Transport Independent
 - Layer-3 Transport (Underlay)
- Flexible Namespace
 - 24-bit field (VNID) provides ~16M unique identifier
 - Allows Segmentations

EVPN

- Standards based Control-Plane
 - RFC 8365 (and RFC 7432)
 - Uses Multiprotocol BGP
- Uses Various Data-Planes
- VXLAN (EVPN-Overlay), MPLS, Provider Backbone (PBB)
- Many Use-Cases Covered
- Bridging, MAC Mobility, First-Hop & Prefix Routing, Multi-Tenancy (VPN)

Why BGP EVPN for Enterprise Campus?

- Industry-standard
- One Fabric Architecture
- Proven & Scalable
- Hierarchical Fabric Domain
- Flexible Overlay

Migration Strategies

Migration Strategy -1: Build and Move

Deployment
Design & deploy new VXLAN
BGP EVPN fabric

Integration
Connect VXLAN BGP EVPN to classical 3-tier network

Migration
Migrate end-points to use
new VXLAN BGP EVPN fabric

Migration Strategy -2: Phased Migration

EVPN Island Deployment
Design & deploy new
minimalistic VXLAN BGP
EVPN fabric

Integration
Connect VXLAN BGP
EVPN to classical 3-tier
network

Phased Migration -1
Migrate few end-points
to use new VXLAN BGP
EVPN fabric

Migration Strategy -2: Phased Migration

EVPN Island Deployment
Design & deploy new
minimalistic VXLAN BGP
EVPN fabric

Integration
Connect VXLAN BGP
EVPN to classical 3-tier
network

Phased Migration -1
Migrate few end-points
to use new VXLAN BGP
EVPN fabric

Phased Migration -2
Migrate switches and scale the EVPN fabric

Migration Strategy -3: Flag Day

Backup Existing Network
Backup configuration,
device states of existing
classic 3-tier network

Prepare Gracefully shutdown the classic 3-tier network and associated services

Migration Strategy -3: Flag Day

Backup Existing Network
Backup configuration,
device states of existing
classic 3-tier network

Prepare
Gracefully shutdown the classic 3-tier network and associated services

Bring Up
Upgrade Software,
reconnect devices as per
VXLAN EVPN Architecture

Migration Strategies Comparison

Build & Move

- > Seamless Migration
- Additional Hardware and resources required
- Opportunity to test & familiarize VXLAN EVPN
- Low Change Management Risks
- Moderate change window

Phased Migration

- > Seamless Migration in phases
- Minimal additional hardware and resources required
- > Opportunity to test & familiarize VXLAN EVPN
- Lowest Change Management Risks
- > Long change window

Flag Day

- > Migration with downtime
- No Additional hardware and resources required*
- No opportunity to test & Familiarize VXLAN EVPN
- > High Change Management Risks
- Minimal change window

^{*} If existing devices can support VXLAN / EVPN and other required features

Planning & Pre-requisites

MTU and VXLAN

- VXLAN adds 50 Bytes (or 54 Bytes)
- Network switches support MTU up to 9216* bytes
- Accommodates jumbo MTU plus overlay overhead (50/54bytes)
- Avoid Fragmentation
 - Adjust the Transport Network with appropriate MTU

*Cisco Catalyst 9k switches only support 9198 Byte for Layer-3 Traffic

Interface Principles

- Routed Ports and Interfaces
 - Layer-3 Interfaces between Access and Core (no switchport) Or SVI
 - For each Point-to-Point (P2P) connection, minimum /31 required (IPv4)
 - Alternatively, use IP Unnumbered /32
- Loopback as Source-Interface for VTEP

IP Addressing Principles

- Prepare an IP addressing Plan
- Separate Interface functions through IP addressing (aggregates)
 - Unicast Routing Routing Protocol
 Peering (p2p)
 - Unicast Routing Routing Identifier (RID)
 - VTEP (NVE) Loopback
 - Multicast Routing Loopback (RP)

IP Addressing Principles

P2p Agg : 10.1.1.0/24

10.1.1.0/30

10.1.1.4/30

10.1.1.8/30

RID Agg : 10.10.10.0/24

10.10.10.1/32

10.10.10.2/32

10.10.10.3/32

VTEP Agg: 10.200.200.0/24

10.200.200.1/32

10.200.200.2/32

10.200.200.3/32

RP Agg : 10.254.254.0/24

10.254.254.1/32

Unicast Routing - OSPF

- OSPF watch your Network type!
 - Network Type Point-2-Point (P2P)
 - Preferred (only LSA type-1)
 - No DR/BDR election
- Suits well for routed interfaces/ports
- Full SPF calculation on Link Change

Unicast Routing - IS-IS

- IS-IS what was this CLNS?
- Independent of IP (CLNS)
- Well suited for routed interfaces/ports
- No SPF calculation on Link change
- Fast Re-convergence
- Not everyone is familiar with it

Unicast Routing - eBGP

- eBGP Underlay Routing Service Provider style
 - Two Different Models
 - Two-AS
 - Multi-AS
- BGP is a Distance Vector Protocol
 - AS* are used to calculate the Path (AS_Path)

Unicast Routing - eBGP

- eBGP TWO-AS, yes it works!
- eBGP peering for Underlay
 - Spine is not a Route-Reflector (eBGP)
 - Retain Route-targets
 - Disable BGP AS-Path check
- Underlay is Reachability!
 - Advertise all loopbacks
- Special Overlay Control-Plane treatment
 - Next-Hop needs to be unchanged
 - Disable BGP AS-path check

Unicast Routing - eBGP

- eBGP Multi-AS, rebuild the Internet
- eBGP peering for Underlay
 - Spine is not a Route-Reflector(eBGP)
 - Retain Route-Targets
 - Next-Hop needs to be unchanged
- Underlay is Reachability!
 - Advertise all loopbacks
- Special Overlay Control-Plane treatment
 - Next-Hop needs to be unchanged

Overlay Broadcast, Unknown Unicast, Multicast (BUM) Forwarding

Two mechanics to handle Broadcast, Unknown Unicast and Link-Local Multicast (BUM):

- Ingress-Replication Convert each BUM packet to multiple Unicast packets and transmit to each remote VTEP
- Multicast-Replication Convert each BUM packet to single Multicast packets and transmit in Underlay network

Multicast Enabled Underlay for BUM

- Only PIM ASM is supported on Catalyst 9k
- Multi-Destination Traffic (Broadcast, Unknown Unicast, etc.) needs to be replicated to ALL VTEPs serving a given VNI
- Each VTEP is Multicast Source & Receiver
- For a given VNI, all VTEPs act as a Sender and a Receiver
- Aggregation Switches make good Rendezvous-Point (RP) Locations in Topologies
- Reserve a range of Multicast Groups (Destination Groups/DGroups) to service the Overlay and optimize for diverse VNIs

Migration Considerations

Layer 2 Interconnect

Layer 2 Interconnection

Spanning-Tree Considerations

VLAN Mapping

1:1 VLAN Mapping

Mapping between different VLANs

Layer 3 Interconnect

BRKENS-3096

Layer 3 Interconnection : Direct

Layer 3 Interconnection: WAN

Layer-3 Interconnection: Routing Protcol

- Routing Protocol considerations
 - ✓ Greenfield network with VXLAN BGP EVPN
 - ✓ Routing domain separation
 - ✓ Extensive routing policy capability
 - ✓ VRF awareness
- BGP meets these requirements & capabilities

VRF Mapping

Migration Walkthrough

Build & Move

- > Build EVPN Fabric
- > Layer 3 Interconnect
- > Layer 2 Interconnect
- > Default GW Migration
- > Workload Migration
- > Decommission

Phased Migration

- > Build EVPN Fabric prototype
- > Acclimate to VXLAN EVPN
- Layer 3 & 2 Interconnect
- Plan & Migrate in phases
- > Scale EVPN fabric
- Default GW Migration
- > Complete Migration
- > Decommission

Flag Day

- > Plan a shutdown window
- Backup Existing Network
- > Rewire or add connections
- > Gracefully shutdown
- > Upgrade to support software
- > Bring up EVPN fabric
- ▶ Integrate & Test

Pre-Migration Checklist

- ✓ Validate Design & Hardware
- ✓ Validate Supported Software
- ✓ Validate required Licensing
- ✓ Verify Supported Scale
- ✓ Layer 2 & Layer 3 Interconnect Point
- ✓ Select VLAN Mapping strategy
- ✓ Select Routing Protocol
- ✓ Select VRF mapping strategy
- Default gateway migration strategy
- ✓ Method of Procedure (MOP)

Migration Step-by-Step

Building EVPN Fabric

VXLAN EVPN - Configuration Constructs

- 1. Underlay Configuration
- 2. Underlay Configuration for BUM Ingress replication / Multicast
- 3. EVPN Control Plane Configuration
- 4. EVPN Multitenancy Configuration
- 5. Overlay Configuration- Vxlan Data Plane
- 6. Distributed Anycast Gateway Configuration

Underlay Configuration for BUM - PIM ASM

Underlay Configuration for BUM - PIM ASM

Underlay Configuration for BUM - PIM ASM

Overlay Configuration - BGP EVPN Control Plane

Overlay Configuration - BGP EVPN Control Plane

Overlay Configuration - Multitenancy

Overlay Configuration - VXLAN Data Plane

Access - 1 / Access - 2 - VTEP Access - 1 / Access - 2 - VTEP 12vpn evpn **NVE Interface Configuration** replication-type static **NVE (VTEP)** interface nve1 router-id Loopback1 Interface no ip address Replication default-gateway advertise source-interface Loopback1 for BUM host-reachability protocol bgp 12vpn evpn instance 10 vlan-based member vni 10010 mcast-group 239.0.0.1 ion -1 Vlan to VNI encapsulation vxlan member vni 10020 mcast-group 239.0.0.1 mapping member vni 50901 vrf ABC (Bridging) 12vpn evpn instance 20 vlan-based encapsulation vxlan Access-9K Catalyst\9K Vlan to VNI vlan configuration 10 mapping member evpn-instance 10 vni 10010 (Routing) vlan configuration 20 member evpn-instance 20 vni 10020 vlan configuration 901 member vni 50901

BRKENS-3096

Distributed Anycast Gateway Configuration

Layer 2 Interconnection

Layer 3 Interconnection : Direct

Classic 3-Tier Network

Stackwise-Virtual Core / Agg interface GigabitEthernet1/0/10 description "connected to VXLAN EVPN" ip address 192.168.1.1 255.255.255.0 interface vlan 100 ip address 100.100.100.1 255.255.255.0 interface TwentyFiveGigE1/0/10 ip address 192.168.1.1 255.255.255.252 router bgp 64502 neighbor 192.168.1.2 remote-as 64500 neighbor 192.168.1.2 update-source GigabitEthernet1/0/10 address-family ipv4 redistribute connected network 100.100.100.0

Ethernet

Layer 3

VXLAN EVPN Network

Border

Access-1/Access-2 (VTEP)

```
interface GigabitEthernet1/0/10
description "connected to classical network"
vrf forwarding ABC
ip address 192.168.1.2 255.255.255.0
!
router bgp 64500
!
address-family ipv4 vrf ABC
advertise I2vpn evpn
redistribute connected
neighbor 192.168.1.1 remote-as 64502
neighbor 192.168.1.1 update-source
GigabitEthernet1/0/10
neighbor 192.168.1.1 activate
```

Migration workflow

Automation Tools

- DIY
- Ansible Playbook
- Intent Based Networking

61

Key Takeaways

VXLAN EVPN Overview

EVPN Fabric Considerations

Migration

Automation Tools

Complete your Session Survey

- Please complete your session survey after each session. Your feedback is important.
- Complete a minimum of 4 session surveys and the Overall Conference survey (open from Thursday) to receive your Cisco Live t-shirt.

https://www.ciscolive.com/emea/learn/sessions/session-catalog.html

Continue Your Education

Visit the Cisco Showcase for related demos.

Book your one-on-one Meet the Engineer meeting.

Attend any of the related sessions at the DevNet, Capture the Flag, and Walk-in Labs zones.

Visit the On-Demand Library for more sessions at <u>ciscolive.com/on-demand</u>.

Thank you

cisco live!

