NOIP2023模拟赛

题目名称	初始之路	星锚	辉辉咖啡	疯癫兄弟
题目类型	传统型	传统型	传统型	传统型
可执行文件名	path	gaze	envelope	crazy
输入文件名	path .in	gaze.in	envelope	crazy.in
输出文件名	path.out	gaze.out	envelope.out	crazy.out
每个测试点时限	1.0 秒	1.0 秒	2.0 秒	1.0 秒
内存限	512 MiB	512 MiB	2048 MiB	512 MiB
子任务/测试点数目	10	3	50	20
是否等分	是	否	是	是

提交源文件程序名

编译选项

对于C++语言	-lm -O2 -std=c++17

注意事项(请仔细阅读)

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++中函数main()的返回类型必须是int,程序正常结束时返回值必须是0。
- 3. 选手提交的程序代码文件请在个人目录下以及子文件夹内各放一份。
- 4. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 5. 选手提交的程序源文件必须不大于100KB。
- 6. 程序可使用的栈空间内存限制于题目的内存限制一直。
- 7. 使用std::deque等STL容器时,请注意其内存空间消耗。
- 8. 评测时采用的机器配置为 AMD Ryzen 7 5800H with Radeon Graphics,内存16GiB。上述时限以此配置为准。
- 9. 评测在Windows 10下进行,使用LemonLine进行评测。

初始之路 (path)

【题目描述】

勇者小A拔出了村子门口的石中剑,成为了钦定的勇者。开始踏上了讨伐魔王的漫长道路。

走出村子,就是一段初始之路,路上有 N 只史莱姆,这 N 只史莱姆排成了一行,每一支史莱姆有一个战斗力指数 a_i ,小 A 必须依次讨伐他们。刚刚拔出石中剑的小 A 对于石中剑的使用并不熟练,因此每一次小 A 只能以一个额定功率 P 催动这把剑,此时,小 A 可以击败任何战斗力小于等于 P 的史莱姆。

如果小 A 以额定功率 P 击败了一只战斗力为 S 的史莱姆,我们称小 A 浪费了 P-S 的能量。由于小 A 对于石中剑的使用不太熟练,小 A 一天最多只能更改 K 次剑的功率,请问,小 A 如果要在一天之内通过初始之路,他最少会浪费多少能量。(最开始的时候,小 A 可以免费设置一次石中剑功率并开始使用)

【输入格式】

第一行输入两个正整数 N, K,含义见题面。

第二行包括 N 个正整数, 第 i 个正整数即为 a_i 。

【输出格式】

输出一行一个整数,表示小 A 通过初始之路浪费的最低能量。

【输入输出样例1】

path.in	path.out
62 798232	3

【输入输出样例2】

path.in	path.out
20 4 39524 958937 259688 832496 222561 360806 394792 291334 524923 681754 570969 502688 814973 467235 158907 919239 519917 559138 639223 892817	3964510

【数据规模与约定】

对于所有测试数据,满足 $1 \leq K \leq N \leq 400, 0 \leq a_i \leq 10^6$ 。

测试点编号	₩	¥
1	50	10
2	100	70
3	200	30
4	400	5

测试点编号	N =	K =
5	400	10
6	400	20
7	400	50
8	400	100
9	400	200
10	400	300

星锚 (gaze)

【题目描述】

虚数之树的一截树枝落入了量子之海中,这一截树枝中有 n 个相互连通的世界泡,世界泡以链的方式连接(即 1 号世界泡与 2 号世界泡之间有双向通道, 2 号世界泡与 3 号世界泡之间有双向通道,依次类推,n-1 号世界泡与 n 号世界泡有双向通道连接)

作为有能力穿梭于量子之海的大善人组织,你们需要前往营救这些落入量子之海的世界泡,你们可以使用星锚技术将世界泡重新带回虚数之树上,每一次使用星锚,你可以将**尚可通过双向通道与其联通的所有世界泡同时锚定回**虚数之树。

量子之海有一个随时可能变化的侵蚀力 X,所有稳定性低于 X 的世界泡都无法完整地在量子之海中表征,这也就意味着**这个世界泡与其他世界泡之双向通道无法使用**。当然世界泡内的人们也会采取行动,因此每一个世界泡的稳定性也是会变化的。

你只是组织里的一个观测员,你的任务是观测所有的变化,并在量子之海的**侵蚀力发生变化时**,告诉我们拯救所有当前**还能完整表征的世界泡**需要进行多少次锚定。

【输入格式】

第一行两个整数 n, m,表示世界泡的数量以及观测到的变化的次数。

接下来 n 行,第 i 行给出每个世界泡的初始稳定性 h_i 。

接下来 m 行,每行表示一次变化:

- 1 x:表示观测到量子之海的侵蚀力变为了 x, 你需要回答该侵蚀力下的锚定次数。
- 2 a b: 表示观测到第 a 个世界泡的稳定性变为了 b。

【输出格式】

对于每次侵蚀力观测到的侵蚀力变化,输出一行一个整数表示答案。

【输入输出样例1】

gaze.in	gaze.out
5 4	
8	
6	
3	2
5	1
4	2
15	2
2 4 1	
15	
13	

【数据规模与约定】

对于所有的测试数据,保证 $1 \leq n, m \leq 2 imes 10^5, 1 \leq h_i, x, b \leq 10^9, 1 \leq a \leq n$ 。

子任务编号	限制条件	分值
1	$n,m \leq 2000$	20
2	世界泡的稳定性不会改变	30
3		50

辉辉咖啡 (envelope)

【题目描述】

辉辉咖啡是一个新零售咖啡连锁品牌,采用无人零售、实体店及外卖的运营方式,通过APP线上下单、 扫码自取等方式售卖,引进瑞士进口咖啡机,并采用阿拉比卡咖啡豆制作,为用户提供美式咖啡、拿 铁、澳瑞白等产品。

作为 辉辉咖啡 最亲民的代言人,HHZ为了让顾客不用到店就能喝到她亲手调配的咖啡,每天会亲自配送 加浓美式给 CQYC 喜爱咖啡的 Oier 们。

CQYC 的门口有 n 个 Oier 准备领取加浓美式,编号从 1 到 n,由于某些原因,第 i 名 Oier 点的咖啡只可以让 $[i,p_i]$ 之间的 Oier 代取(包括 i 和 p_i 且 $i \leq p_i$)。

HHZ 有 n 个要求,在第 i 个要求里,她希望第 i 个 Oier 点的咖啡可能不少于 b_i 杯,即如果设第 i 个 Oier 代取了 a_i 杯咖啡(即使在现实中不可能,但咖啡的神 HHZ 说 a_i 可以是任何整数),她希望 $\sum_{i=i}^{p_i} a_i \geq b_i$,如果第 i 个要求不满足,则 HHZ 会增加 t_i 的怨气值。

存在另外 m 条限制,每一条限制形如 $\sum_{j=x_i}^{y_i}a_j\leq c_i$,即编号在 x_i 和 y_i 之间的 Oier 代取的咖啡杯数 不超过 c_i 。并且聪明的 HHZ 事先保证了存在一个正整数 ,使得 $[x_i,y_i]$ 这个区间可以恰好被分成 k 个形如 $[s_i,p_{s_i}](i=1,2\dots k)$ 的区间。

当然,这 n+m 条限制可能不能同时满足。 HHZ 每天送咖啡太忙了,不屑处理这么简单的问题,所以请你告诉 HHZ,在满足后 m 条限制的前提下,最小的怨气值是多少。

简要题面:给定三个长度为 n 的数 p,b,t。你需要确定一个长度为 n 的整数数组 a,有如下 n+m 个条件。

- 前n个条件 $\sum_{i=1}^{p_i} a_i \geq b_i$,权值为 t_i 。
- 后 m 个条件, $\sum_{j=x_i}^{y_i} a_j \leq c_i$ 。保证 $[x_i,y_i]$ 可以分解为 若干个形如 $[i,p_i]$ 的区间。

后m个条件必须满足,前n个条件不做要求,询问不满足的条件的最小的权值和。

【输入格式】

输入文件共n+m+1行,第一行为两个用一个空格分开的整数n,m,表示两种限制的条数。

第 2 行至第 n+1 行,每行包含三个用一个空格分开的正整数 p_i,b_i,t_i 。

第 n+2 行至第 n+m+1 行,每行包含三个用一个空格分开的正整数 x_i,y_i,c_i 。

【输出格式】

输出 HHZ 的最小怨气值。

【输入输出样例1】

envelope.in	envelope.out
5 2	
111	
221	
331	1
441	1
5 5 1	
4510	
121	

【输入输出样例2】

envelope.in	envelope.out
5 3	
321	
371	
5 5 1	
5 4 4	3
533	
155	
257	
3 5 4	

【数据规模与约定】

测试点	n	m	b_i , c_i	t_i	特殊性质
1-5	≤ 2	≤ 2	≤ 10	≤ 10	无
6-10	≤ 10	≤ 10	≤ 10	= 1	无
11-14	≤ 2000	≤ 2000	$\leq 10^9$	= 1	$i=p_i$
15-20	$\leq 10^5$	$\leq 10^5$	$\leq 10^9$	= 1	$i=p_i$
21-26	$\leq 10^5$	$\leq 10^5$	$\leq 10^9$	$\leq 10^9$	$i=p_i$
27-30	$\leq 10^5$	≤ 10	$\leq 10^9$	$\leq 10^9$	无
31-35	≤ 200	≤ 200	$\leq 10^9$	= 1	无
36-41	$\leq 10^5$	$\leq 10^5$	$\leq 10^9$	= 1	无
42-46	$\leq 10^5$	$\leq 10^5$	$\leq 10^9$	$\leq 10^9$	无
47-50	$\leq 5 imes 10^5$	$\leq 5 imes 10^5$	$\leq 10^9$	$\leq 10^9$	无

疯癫兄弟 (crazy)

【题目描述】

疯癫兄弟的绕口令变化无穷!

疯癫兄弟有个绕口令题库,里面有 1145141919810 个位置用于存放绕口令,其中有 k 个位置 X_1, X_2, \cdots, X_k 的绕口令被偷走了!

为了找回绕口令, 疯癫兄弟可以发动技能:

- 选择连续 x 个位置(x 必须为一个奇质数)。
- 对于每个位置,若该位置有绕口令,疯癫兄弟会吃掉这个绕口令,否则会创作一个新的绕口令放入 (即状态取反)

疯癫兄弟是一个精益求精的人,他需要使得所有位置都有绕口令,但是疯癫兄弟急着去踢乌龙球,他想求助你,最少要发动几次技能才能满足条件

【输入格式】

第一行一个正整数 k ,表示一开始被偷走的绕口令的位置的数量

第二行,包含k个数字 X_i ,表示一开始被偷走的绕口令的位置

【输出格式】

输出一行一个正整数表示答案。

【输入输出样例1】

crazy.in	crazy.out
2 45	2

【输入输出样例2】

crazy.in	crazy.out
9 1 2 3 4 5 6 7 8 9	3

【输入输出样例3】

crazy.in	crazy.out
2 1 10000000	4

【数据规模与约定】

对于 20% 的数据,保证存在一种最优方案,使得所有操作区间均在 [1,20] 内

另有 10% 的数据,保证存在一种最优方案,使得所有操作区间互不相交

另有 10% 的数据,保证 k 为质数,且 $\forall i \geq 2, X_i = X_{i-1} + 2$

另有 10% 的数据,保证 k 为偶数, $X_{2i}=X_{2i-1}+1$,所有 X_{2i-1} 奇偶性相同

另有 20% 的数据, $k \leq 8$

对于 100% 的数据, $1 \le k \le 10^3, 0 \le X_i \le 10^7$,保证有解。