Assignment/Tutorial 7 ME-30602, 2016-17 Spring Semester

March 31, 2017

- **1.** Problems 13.2, 13.3, 13.6, 13.7, 13.8, 13.10, 13.11, 13.12, 13.14, 13.15 From Chapter 13 of Shigley's Mechanical Engineering Design book. (On Gears General).
- **2.** Problems 14.1, 14.3, 14.6, 14.10, 14.11, 14.19, 14.20, 14.32, 14.38, 14.39 From Chapter 14 of Shigley's Mechanical Engineering Design book. (Spur and Helical Gear Design).

Note: The problems are picked from 10th edition of the book. In case you have a different edition the problem numbers may change. You should check this.

Tutorial 7 ME-30602, 2016-17 Spring Semester

Problem: Desired parameters for a spur gear set to be designed are given in the table below.

Pressure Angle, φ	20°
Gear Ratio, m_G	4
Center to center distance, c	200mm
Pinion Material	2.5% Chrome Steel Grade 2 with Hardness HB 250
Gear Material	2.5% Chrome Steel Grade 2 with Hardness HB 200
Quality Number Q_{ν}	10 (precession gearing)
Mounting	Accurate mounting, at the midspan between two bearings, with low bearing clearance, enclosed.
Power source	Light Shock (see fig 14-17, page 766)
Driven Machine	Heavy Shock (see fig 14-17, page 766)
Desired Reliability on life	0.99
Desired Pinion Life, N	10 ⁸ cycles
Power Rating, H	25kW
Pinion Speed, n	2000rpm
Face width, b	50mm
Ratio of rim thickness to tooth depth	1.5

- (a) For the above gear set first decide on the number of pinion teeth and module.
- (b) Determine the factors of safety against bending (S_F) and pitting failure (S_H) of the pinion tooth and gear tooth (you should determine four such factors).
- (c) Compare S_F with $(S_H)^2$ and determine which failure mode is likely to occur and which component (gear or pinion) is likely to fail first.
- (d) Calculate the power rating at which the set will fail.

Notes:

- 1. Assume the strength against pitting resistance S_c=1350 MPa (for both gear and pinion).
- 2. For surface factor use $K_s = 1$.
- 3. Obtain the load distribution factor K_H from table given.
- 4. Obtain elasticity coefficient Z_E from table 14-8.
- 5. Obtain bending-strength geometry factor Y_J from figure 14-6 and pitting-resistance geometry factor Z_I using Eq. (14-23).