Funktionen

Funktionen (Grundlagen)

Trigonometrische Funktionen

Polynome

Ein Polynom n-ter Ordnung: $p(x) = a_n x^n + ... + a_2 x^2 + a_1 x + a_0 x \in R, a_n \neq 0$

Eigenschaften:

- Differenzen und Summen von Polynomen sind wieder Polynome.
- Produkte von Polynomen sind wieder Polynome. Bsp: $p(2) \times p(3) = p(5)$
- Die Division von Polynomen ergiebt wieder ein Polynom und ev. einen Rest.

Beispiel für Polynomdivision:

Hornerschema

Auswertung einer Funktion an einer bestimmten Stelle.

Sei die Funktion
$$F(x) = x^3 - 3x^2 - 10x + 24 = (x - 2)(x^2 - x - 12)$$

Diese an x = 2 ausgewertet:

x=2	x^3	$-3x^{2}$	-10x	24
	1	-3	-10	24
		2	-2	-24
	1	-1	-12	0
Rest:	x^2	-x	-12	

Hier wurde die Nullstelle x=2 abgespalten.

Begriffe der Funktionen

Ganz-Rationale Funktion

Eine Ganz-Rationale Funktion lässt sich so schreiben: $f(x) = a_n x^n + ... + a_2 x^2 + a_1 x + a_0$

1

Gebrochen-Rationale Funktion

Eine Gebrochen-Rationale Funktion: $f(x) = \frac{a_n x^n + \dots + a_2 x^2 + a_1 x + a_0}{b_n x^n + \dots + b_2 x^2 + b_1 x + b_0} = \frac{p(m)}{p(n)}$, wobei der Grad der Polynome nicht gleich sein muss.

Definitionslücken

Sie sind Stellen, an denen die Funktion nicht definiert ist. Z.B.: Nenner der gleich 0 ist. Man unterscheidet 2 Arten von Definitionslücken:

- Polstellen: Nach dem vollständigen Kürzen, besteht immernoch die Nullstelle des Nenners.
- hebbare Definitionslücken: Nach vollständigem Kürzen verschwindet die Nullstelle des Nenners.
- Stopfen der Def. Lücke: Wert der hebbaren Lücke in den gekürzten Bruch einsetzen.

Wichtig: Kommt eine Polstelle mehrmals vor: $(x-a)^n$, so ist dies eine n-fache Polstelle. Ist die Vielfachheit gerade, so findet kein Vorzeichenwechsel statt.

Nullstellen

Man kann die Nullstellen bestimmen, indem man:

- bei einer "Ganz-Rationalen Funktion" diese gleich NULL setzt.
- bei einer "Gebrochen-Rationalen Funktion" den Zähler gleich NULL setzt.

Asymptoten

Sind Geraden, denen sich eine Kurve beliebig nahe annähert. Wir unterscheiden 2 Arten:

- bei Polstellen: Die Kurve einer gebrochen-rationalen Funktion schmiegt sich der Gerade bei x=Polstelle an. Es bildet sich eine senkrechte Asymptote.
- für grosse x: $f(x) = \frac{g(x)}{h(x)}$ im Falle:
 - grad(g) < grad(h): x-Achse als wagrechte Asymptote
 - $-\ grad(g)=grad(h)$: Gerade mit der Gleichung: $f(x)=\frac{g(x)}{h(x)}$
 - grad(g) = 1 + grad(h): schiefe Asymptote, durch Polynomdivision

Man beachte beim Zeichnen die Vielfachheit der Polstelle:

- Gerade Anzahl: Vorzeichenwechsel
- Ungerade Anzahl: Kein Vorzeichenwechsel

Beispiele:

Funktion	Definitionslücke	Nullstelle
$f(x) = \frac{(x+2)^2}{(x+4)^3 x^2}$	P:- $4(x3)$, $0(x2)$, H: keine	N:-2(x2)

Betrachten wir die Funktion: $f(x) = \frac{2x^2 + x^2 + x}{1 - x^2}$

Nullstelle: x = 0

Definitionslücken: x=1 (Polstelle, 1fach), x=-1 (Polstelle, 1fach) Asymptoten: x=1, x=-1, x=-2x-1 (durch Poly.division)

Umkehrfunktionen

Begriffe

injektive Funktion	surjektive Funktion	bijektive funktion	
X Y D B C A	X Y D	$ \begin{array}{c} X \\ 1 \\ \\ 2 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	

Monotonie

Die Funktion f(x) ist im Intervall [a, b] injektiv, falls sie:

• streng monoton wachsend: auf $x_1, x_2 \in [a, b] : x_1 < x_2 : f(x_1) < f(x_2)$ ist oder

• streng monoton fallend: auf $x_1, x_2 \in [a, b] : x_1 < x_2 : f(x_1) > f(x_2)$ ist.

Bestimmung der Umkehrung

 \bullet Definitionsbereich so festlegen, dass f auf D injektiv ist

• Funktionsgleichung nach x auflösen: $x = f^{-1}(y)$

• Variabeln x und y vertauschen: $y = f^{-1}(x)$

Grundsätzlich kann man sagen, dass f^{-1} die Spiegelung von f an der Geraden x=y ist. Dabei werden auch der Definitionsbereich und Wertebereich getauscht.

3