Linear Algebra Theorems and Definitions

Alexander J. Clarke

January 8, 2024

Contents

0	List of Symbols	4		
1	Vector Spaces1.1 Introduction1.2 Vector Spaces1.3 Subspaces1.4 Linear Combinations and Systems of Linear Equations1.5 Linear Dependence and Linear Independence1.6 Bases and Dimension1.7 Maximal Linearly Independent Subsets	. 8 . 8 . 8 . 8		
2	Linear Transformations and Matrices	9		
	2.1 Linear Transformations, Null Spaces, and Ranges	. 9		
	2.2 The Matrix Representation of a Linear Transformation			
	2.3 Compositions of Linear Transformations and Matrix Multiplication	. 9		
	2.4 Invertibility and Isomorphisms	. 9		
	2.5 The Change of Coordinate Matrix			
	2.6 Dual Spaces			
	2.7 Homogeneous Linear Differential Equations with Constant Coefficients	. 9		
3	Elementary Matrix Operations and Systems of Linear Equations			
	3.1 Elementary Matrix Operations and Elementary Matrices	. 10		
	3.2 The Rank of a Matrix and Matrix Inverses	. 10		
	3.3 Systems of Linear Equations – Theoretical Aspects	. 10		
	3.4 Systems of Linear Equations – Computational Aspects	. 10		
4	Determinants 11			
	4.1 Determinants of Order 2	. 11		
	4.2 Determinants of Order n	. 11		
	4.3 Properties of Determinants			
	4.4 Summary – Important Facts about Determinants			
	4.5 A Characterization of the Determinant	. 11		
5	Diagonalization	12		
	5.1 Eigenvalues and Eigenvectors	. 12		
	5.2 Diagonalizability	. 12		

	5.3	Matrix Limits and Markov Chains	12
	5.4	Invariant Subspaces and the Cayley-Hamilton Theorem	12
6	Inne	er Product Spaces	13
	6.1	Inner Products and Norms	13
	6.2	The Gram-Schmidt Orthogonalization Process and Orthogonal Complements	13
	6.3	The Adjoint of a Linear Operator	13
	6.4	Normal and Self-Adjoing Operators	13
	6.5	Unitary and Orthogonal Operators and Their Matrices	13
	6.6	Orthogonal Projections and the Spectral Theorem	13
	6.7	The Singular Value Decomposition and the Pseudoinverse	13
	6.8	Bilinear and Quadratic Forms	13
	6.9	Einstein's Special Theory of Relativity	13
	6.10	Conditioning and the Rayleigh Quotient	13
		The Geometry of Orthogonal Operators	13
7 Canonical Forms		onical Forms	14
	7.1	The Jordan Canonical Form I	14
	7.2	The Jordan Canonical Form II	
	7.3	The Minimal Polynomial	
	7.4	The rational Canonical Form	14

List of Symbols

A_{ij}	the ij -th entry of the matrix A
A^{-1}	the inverse of the matrix A
A^{\dagger}	the pseudoinverse of the matrix A
A^*	the adjoint of the matrix A
A^* \tilde{A}_{ij}	the matrix A with row i and column j deleted
A^t	the transpose of the matrix A
(A B)	the matrix A augmented by the matrix B
$B_1 \bigoplus \cdots \bigoplus B_k$	the direct sum of matrices B_1 through B_k
$\mathcal{B}(V)$	the set of bilinear forms on V
eta^*	the dual basis of β
eta_x $\mathbb C$	the T -cyclic basis generated by x
\mathbb{C}	the field of complex numbers
\mathbb{C}_i	the i th Gerschgorin disk
$\operatorname{cond}\left(A\right)$	the condition number of the matrix A
$C^n(\mathbb{R})$	set of functions f on \mathbb{R} with $f^{(n)}$ continuous
C^{∞}	set of functions with derivatives of every order
$C(\mathbb{R})$	the vector space of continuous functions on $\mathbb R$
C([0, 1])	the vector space of continuous functions on $[0,1]$
C_x	the T -cyclic subspaces generated by x
D	the derivative operator on C^{∞}
$\det\left(A\right)$	the determinant of the matrix A
δ_{ij}	the Kronecker delta
$\dim\left(V\right)$	the dimension of V
e^A	$\lim_{m \to \infty} \left(I + A + \frac{A^2}{2!} + \dots + \frac{A^m}{m!} \right)$
e_i	the <i>i</i> th standard vector of \mathbb{F}^n

E_{λ}	the eigenspace of T corresponding to λ
\mathbb{F}	a field
f(A)	the polynomial $f(x)$ evaluated at the matrix A
F^n	the set of n -tuples with entries in a field \mathbb{F}
f(T)	the polynomial $f(x)$ evaluated at the operator T
$\mathcal{F}(S,\mathbb{F})$	the set of functions from S to a field \mathbb{F}
H	space of continuous complex functions on $[0, 2\pi]$
I_n or I	the $n \times n$ identity matrix
\mathbb{I}_V or \mathbb{I}	the identity operator on V
K_{λ}	generalized eigenspace of T corresponding to λ
K_{ϕ}	$\{x \mid (\phi(T))^p(x) = 0, \text{ for some positive integer } p\}$
L_A	left-multiplication transformation by matrix A
$\lim_{m \to \infty} A_m$	the limit of a sequence of matrices
$\mathcal{L}\left(V\right)$	the space of linear transformations from V to V
$\mathcal{L}\left(V,W\right)$	the space of linear transformations from V to W
$M_{m \times n}(\mathbb{F})$	the set of $m \times n$ matrices with entries in \mathbb{F}
v(A)	the column sum of the matrix A
$v_j(A)$	the j th column sum of the matrix A
N(T)	the null space of T
$\operatorname{nullity}\left(T\right)$	the dimension of the null space of T
O	the zero matrix
per(M)	the permanent of the 2×2 matrix M
$P(\mathbb{F})$	the space of polynomials with coefficients in $\mathbb F$
$P_n(\mathbb{F})$	the polynomials in $P(\mathbb{F})$ of degree at most n
ϕ_eta	the standard representation with respect to basis β
\mathbb{R}	the field of real numbers
$\operatorname{rank}\left(A\right)$	the rank of the matrix A
$\operatorname{rank}\left(T\right)$	the rank of the linear transformation T
$\rho(A)$	the row sum of the matrix A
$\rho_i(A)$	the i th row sum of the matrix A
R(T)	the range of the linear transformation T
$S_1 + S_2$	the sum of sets S_1 and S_2
$\operatorname{span}(S)$	the span of the set S
S^{\perp}	the orthogonal complement of the set S
$[T]_{\beta}$	the matrix representation of T in basis β
$[T]^{\gamma}_{eta}$	the matrix representation of T in bases β and γ
T^{-1}	the inverse of the linear transformation ${\cal T}$

T^{\dagger}	the pseudoinverse of the linear transformation ${\cal T}$
T^*	the adjoint of the linear operator T
T_0	the zero transformation
T^t	the transpose of the linear transformation T
$T_{ heta}$	the rotation transformation by θ
T_W	the restriction of T to a subspace W
$\mathrm{tr}\left(A ight)$	the trace of the matrix A
V^*	the dual space of the vector space V
V/W	the quotient space of V modulo W
$W_1 + \cdots + W_k$	the sum of subspaces W_1 through W_k
$\sum_{i=1}^{k} W_i$	the sum of subspaces W_i through W_k
$W_1 \bigoplus W_2$	the direct sum of subspaces W_1 and W_2
$W_1 \bigoplus \cdots \bigoplus W_k$	the direct sum of subspaces W_1 through W_k
x	the norm of the vector \vec{x}
$[x]_{eta}$	the coordinate vector of x relative to β
$\langle x, y \rangle$	the inner product of \vec{x} and \vec{y}
\mathbb{Z}_2	the field consisting of 0 and 1
$\overline{\vec{z}}$	the complex conjugate of \vec{z}
$\vec{0}$	the zero vector

Vector Spaces

- 1.1 Introduction
- 1.2 Vector Spaces
- 1.3 Subspaces
- 1.4 Linear Combinations and Systems of Linear Equations
- 1.5 Linear Dependence and Linear Independence
- 1.6 Bases and Dimension
- 1.7 Maximal Linearly Independent Subsets

Linear Transformations and Matrices

- 2.1 Linear Transformations, Null Spaces, and Ranges
- 2.2 The Matrix Representation of a Linear Transformation
- 2.3 Compositions of Linear Transformations and Matrix Multiplication
- 2.4 Invertibility and Isomorphisms
- 2.5 The Change of Coordinate Matrix
- 2.6 Dual Spaces
- 2.7 Homogeneous Linear Differential Equations with Constant Coefficients

Elementary Matrix Operations and Systems of Linear Equations

- 3.1 Elementary Matrix Operations and Elementary Matrices
- 3.2 The Rank of a Matrix and Matrix Inverses
- 3.3 Systems of Linear Equations Theoretical Aspects
- 3.4 Systems of Linear Equations Computational Aspects

Determinants

- 4.1 Determinants of Order 2
- 4.2 Determinants of Order n
- 4.3 Properties of Determinants
- 4.4 Summary Important Facts about Determinants
- 4.5 A Characterization of the Determinant

Diagonalization

- 5.1 Eigenvalues and Eigenvectors
- 5.2 Diagonalizability
- 5.3 Matrix Limits and Markov Chains
- 5.4 Invariant Subspaces and the Cayley-Hamilton Theorem

Inner Product Spaces

- 6.1 Inner Products and Norms
- 6.2 The Gram-Schmidt Orthogonalization Process and Orthogonal Complements
- 6.3 The Adjoint of a Linear Operator
- 6.4 Normal and Self-Adjoing Operators
- 6.5 Unitary and Orthogonal Operators and Their Matrices
- 6.6 Orthogonal Projections and the Spectral Theorem
- 6.7 The Singular Value Decomposition and the Pseudoinverse
- 6.8 Bilinear and Quadratic Forms
- 6.9 Einstein's Special Theory of Relativity
- 6.10 Conditioning and the Rayleigh Quotient
- 6.11 The Geometry of Orthogonal Operators

Canonical Forms

- 7.1 The Jordan Canonical Form I
- 7.2 The Jordan Canonical Form II
- 7.3 The Minimal Polynomial
- 7.4 The rational Canonical Form