# T.D. – Algèbre 1

 $Hugo \ Salou$ 



9 avril 2025

# Table des matières

| T | Relations d'equivalence, quotients, premières propriètes |                                                  |    |  |  |
|---|----------------------------------------------------------|--------------------------------------------------|----|--|--|
|   | des                                                      | groupes.                                         | 5  |  |  |
|   | 1.1                                                      | Exercice 1                                       | 5  |  |  |
|   | 1.2                                                      | Exercice 2. Parties génératrices                 | 7  |  |  |
|   | 1.3                                                      | Exercice 3. Ordre des éléments d'un groupe       | 9  |  |  |
|   | 1.4                                                      | Exercice 4                                       | 11 |  |  |
|   | 1.5                                                      | Exercice 5                                       | 11 |  |  |
|   | 1.6                                                      | Exercice 6                                       | 12 |  |  |
|   | 1.7                                                      | Exercice 7                                       | 13 |  |  |
|   | 1.8                                                      | Exercice 8. Classes à gauche et classes à droite | 14 |  |  |
|   | 1.9                                                      | Exercice 9. Normalisateur                        | 14 |  |  |
|   | 1.10                                                     | Exercice 10. Construction de $\mathbb{Q}$        | 15 |  |  |
|   | 1.11                                                     | Exercice 11                                      | 18 |  |  |
|   | 1.12                                                     | Exercice 12                                      | 18 |  |  |
|   | 1.13                                                     | Exercice 13                                      | 18 |  |  |
|   | 1.14                                                     | Exercice 14                                      | 18 |  |  |
|   | 1.15                                                     | Exercice 15                                      | 19 |  |  |
| 2 | Théorèmes d'isomorphismes et actions de groupes.         |                                                  |    |  |  |
|   | 2.1                                                      | Exercice 1. Groupes monogènes                    | 20 |  |  |
|   | 2.2                                                      | Exercice 2                                       | 21 |  |  |
|   | 2.3                                                      | Exercice 3                                       | 22 |  |  |
|   | 2.4                                                      | Exercice 4                                       | 23 |  |  |
|   | 2.5                                                      | Exercice 5                                       | 23 |  |  |
|   | 2.6                                                      | Exercice 6. Troisième théorème d'isomorphisme    | 24 |  |  |
|   | 2.7                                                      | Exercice 7. Sous-groupe d'un quotient            | 26 |  |  |
|   | 2.8                                                      | Exercice 8. Combinatoire algébrique              | 28 |  |  |
|   | 2.9                                                      | Exercice 9. Formule de BURNSIDE                  | 29 |  |  |
|   | 2.10                                                     | Exercice 10. Automorphismes intérieurs           | 30 |  |  |
|   |                                                          | - <i>2/60</i> -                                  |    |  |  |

| Hu | go Salou – <i>L3 ens lyon</i>                                                                                                                                                                                           | T.D. – Algèbre 1 |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|
|    | 2.11 Exercice 11                                                                                                                                                                                                        | 30               |  |  |
| 3  | Actions de groupes et théorèmes de Sylow 3.1 Exercice 1. 3.2 Exercice 2. Nombre de sous-espaces vector 3.3 Exercice 3. 3.4 Exercice 4. Groupes d'ordre pq 3.5 Exercice 5. Théorèmes de Sylow et simplic 3.6 Exercice 6. | riels            |  |  |
| 4  | Groupe symétrique $4.1$ Exercice $1.$                                                                                                                                                                                   | 38               |  |  |
| 5  | Quotient et dualité5.1Exercice 1                                                                                                                                                                                        | 40               |  |  |
| 6  | Transposition, orthogonalité, et formes bilinéaires                                                                                                                                                                     |                  |  |  |
| 7  | Formes quadratiques                                                                                                                                                                                                     | 43               |  |  |
| 8  | Formes quadratiques – épisode 2                                                                                                                                                                                         | 44               |  |  |
| 9  | Produits tensoriels 9.1 Exercice 1                                                                                                                                                                                      |                  |  |  |
| 10 | Représentation de groupes.                                                                                                                                                                                              | 50               |  |  |
| 11 | Théorie des caractères.  11.1 Exercice 1. Rappels de cours                                                                                                                                                              |                  |  |  |
| 12 | Table de caractères.         12.1 Exercice 1. Caractères linéaires                                                                                                                                                      | <b>56</b>        |  |  |

| $\label{eq:hugo-Salou} \text{Hugo Salou} - L3 \ \textit{ens Lyon} \qquad \qquad \text{T.D.} - \text{Algèbre}$ |                 |  |  |  |
|---------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|
| 12.2 Exercice 2. Certaines propriétés des                                                                     | représentations |  |  |  |
| $de \mathfrak{S}_n$                                                                                           | 57              |  |  |  |
| 12.3 Exercice 3. Table de caractères de $\mathfrak{A}_4$ .                                                    | 57              |  |  |  |
| 12.4 Exercice 4. Tables de caractères de $D_8$                                                                | $et H_8$        |  |  |  |

# 1 Relations d'équivalence, quotients, premières propriétés des groupes.

#### Sommaire.

| 1.1        | Exercice 1.                                |
|------------|--------------------------------------------|
| <b>1.2</b> | Exercice 2. Parties génératrices           |
| 1.3        | Exercice 3. Ordre des éléments d'un groupe |
| 1.4        | Exercice 4                                 |
| 1.5        | Exercice 5.                                |
| 1.6        | Exercice 6.                                |
| 1.7        | Exercice 7.                                |
| 1.8        | Exercice 8. Classes à gauche et classes à  |
|            | $droite \dots \dots \dots \dots \dots$     |
| 1.9        | Exercice 9. Normalisateur                  |
| 1.10       | Exercice 10. Construction de $\mathbb{Q}$  |
| 1.1        | Exercice 11                                |
| 1.12       | Exercice 12.                               |
| 1.13       | Exercice 13.                               |
| 1.14       | 1 Exercice 14                              |
|            |                                            |

### 1.1 Exercice 1.

**1.** Donner un isomorphisme  $f: \mathbb{R}/\mathbb{Z} \to \mathbb{S}^1$ , où  $\mathbb{S}^1$  est le cercle unité de  $\mathbb{R}^2$  et  $\mathbb{R}/\mathbb{Z}$  est le groupe quotient de  $\mathbb{R}$  par son sous-groupe distingué  $\mathbb{Z}$ .

Soient E et F deux ensembles et soit  $f: E \to F$  une application.

2. a) Montrer que la relation binaire sur E définie par

$$x \sim y \iff f(x) = f(y)$$

est une relation d'équivalence.

- **b)** On pose  $X := E/\sim$ . Soit  $\pi : E \to X$  l'application canonique. Montrer qu'il existe une unique application  $\bar{f} : X \to F$  telle que  $f = \bar{f} \circ \pi$ .
- c) Montrer que  $\bar{f}$  est une bijection sur son image.
- 1. On commence par considérer l'application

$$g: \mathbb{R}/\mathbb{Z} \longrightarrow u^{-1}(\mathbb{S}^1)$$
  
 $x\mathbb{Z} \longmapsto e^{2\pi i x},$ 

où  $u:\mathbb{C}\to\mathbb{R}^2$  est l'isomorphisme canonique de  $\mathbb{R}^2$  et  $\mathbb{C}.$  Montrons trois propriétés.

- ▷ C'est bien défini. En effet, si  $k \in \mathbb{Z}$ , alors  $e^{2i\pi(x+k)} = e^{2i\pi x}$  par a  $2\pi$ -périodicité de cos et sin.
- ightharpoonup C'est bien un morphisme. En effet, si  $x\mathbb{Z},y\mathbb{Z}\in\mathbb{R}/\mathbb{Z},$  alors on a

$$g(x\mathbb{Z} + y\mathbb{Z}) = g((x+y)\mathbb{Z}) = \exp(2i\pi(x+y))$$
$$= \exp(2i\pi x) \cdot \exp(2i\pi y)$$
$$= g(x\mathbb{Z}) \cdot g(y\mathbb{Z}).$$

 $\triangleright$  C'est une bijection. En effet, l'application réciproque est l'application  $u^{-1}(\mathbb{S}^1) \ni z \mapsto (\arg z)\mathbb{Z}$ .

On en conclut en posant l'isomorphisme  $f := u \circ g : \mathbb{R}/\mathbb{Z} \to \mathbb{S}^1$ .

- 2. a) On a trois propriétés à vérifier.
  - $\triangleright$  Comme f(x) = f(x), on a  $x \sim x$  quel que soit  $x \in E$ .
  - $\triangleright$  Si  $x \sim y$ , alors f(x) = f(y) et donc f(y) = f(x) et on en déduit  $y \sim x$ .

- $\triangleright$  Si  $x \sim y$  et  $y \sim z$ , alors f(x) = f(y) = f(z), et on a donc  $x \sim z$ .
- b) La fonction f est constante sur chaque classe d'équivalence de E par  $\sim$ . On procède par analyse synthèse.
  - ightharpoonup Analyse. Si  $\bar{f}: X \to F$  existe, alors  $\bar{f}(\bar{x}) = f(x)$  quel que soit  $x \in E$ , où  $\bar{x}$  est la classe d'équivalence de x. L'application  $\bar{f}$  est donc unique, car déterminée uniquement par les valeurs de f sur les classes d'équivalences de x.
  - $\triangleright$  Synthèse. On pose  $\bar{f}(\bar{x}) := f(x)$ , qui est bien définie car f est constante sur les classes d'équivalences de  $\sim$ .
- c) Montrons que  $\bar{f}: X \to \text{im } \bar{f}$  est injective et surjective.
  - $\triangleright$  Soient  $\bar{x}$  et  $\bar{y}$  dans X tels que  $\bar{f}(\bar{x}) = \bar{f}(\bar{y})$ . Alors, on a f(x) = f(y) et donc  $x \sim y$  d'où  $\bar{x} = \bar{y}$ .
  - $\triangleright$  On a, par définition, im  $\bar{f} = \bar{f}(X)$ .

D'où,  $\bar{f}$  est une bijection sur son image.

# 1.2 Exercice 2. Parties génératrices

- 1. Soit X une partie non vide d'un groupe G. Montrer que  $\langle X \rangle$ , le sous-groupe de G engendré par X, est exactement l'ensemble des produits finis d'éléments de  $X \cup X^{-1}$ , où  $X^{-1}$  est l'ensemble défini par  $X^{-1} := \{x^{-1} \mid x \in X\}$ .
- **2.** Montrer que le groupe  $(\mathbb{Q}, +)$  n'admet pas de partie génératrice finie.
- **3.** Montrer que  $(\mathbb{Q}^{\times}, \times) = \langle -1, p \in \mathbb{P} \rangle$ , où  $\mathbb{P}$  est l'ensemble des nombres premiers.
- 1. Soit H l'ensemble des produits finis d'éléments de  $X \cup X^{-1}$ .
  - ▷ L'ensemble H contient X. De plus, H est un groupe. En effet, on a  $H \neq \emptyset$  car  $e = xx^{-1} \in H$  où  $x \in X$ . Puis, pour deux produits  $x = x_1 \cdots x_n \in H$  et  $y = y_1 \cdots y_m \in H$  (où les  $x_i$  et les  $y_i$  sont des éléments de  $X \cup X^{-1}$ ) on a

$$xy^{-1} = x_1 \cdots x_n y_m^{-1} \cdots y_1^{-1}, - 7/60 -$$

qui est un produit fini d'éléments de  $X \cup X^{-1}$ , c'est donc un élément de H. On en conclut que H est un sous-groupe de G contenant H. D'où  $H \ge \langle X \rangle$ .

 $\triangleright$  Soit K un sous-groupe de G contenant X. D'une part, on sait que  $X \cup X^{-1} \subseteq K$ . D'autre part, si  $x = x_1 \cdots x_n$  où l'on a  $x_i \in X \cup X^{-1} \subseteq K$ , alors  $x \in K$  car K est un groupe. On en déduit que  $H \subseteq K$ .

Ainsi, H est le plus petit sous-groupe de G contenant X, il est donc égal à  $\langle X \rangle$ .

2. Supposons, par l'absurde, que  $(\mathbb{Q},+) = \langle \frac{p_1}{q_1}, \frac{p_2}{q_2}, \dots, \frac{p_n}{q_n} \rangle$ . On pose  $Q := \prod_{i=1}^n q_i$ , puis on considère  $\frac{1}{Q+1} \in \mathbb{Q}$ .

Montrons que l'on peut écrire tout élément de  $\left\langle \frac{p_1}{q_1}, \dots, \frac{p_n}{q_n} \right\rangle$  sous la forme  $\frac{p}{Q}$ . En effet, par la question 1, on considère

$$x := \sum_{i \in I} \varepsilon_i \frac{p_i}{q_i}$$
 avec  $\varepsilon_i \in \{-1, 1\}$  et  $I$  fini,

un élément quelconque du sous-groupe engendré. Et, en mettant au même dénominateur, on obtient  $p'/\prod_{i\in I}q_i=x$ . On obtient donc bien

$$x = \frac{p' \times \prod_{i \notin I} p_i}{Q},$$

où le produit au numérateur contient un nombre fini de termes.

Or,  $\frac{1}{Q+1} \in \mathbb{Q}$  ne peut pas être écrit sous la forme p/Q car Q+1 et Q sont premiers entre eux. C'est donc absurde! On en conclut que  $(\mathbb{Q}, +)$  n'admet pas de partie génératrice finie.

**3.** Notons  $E := \langle -1, p \in \mathbb{P} \rangle$ . Soit  $\frac{a}{b}$  un rationnel strictement positif. On suppose a et b positifs. On décompose a et b en produit de nombre premiers :

$$a = \prod_{i \in I} p_i$$
 et  $b = \prod_{j \in J} p_j$ .

On a donc  $a \in E$  et  $b \in E$ . On en conclut que  $\frac{a}{b} \in E$ .

Si  $\frac{a}{b} \in \mathbb{Q}^{\times}$  est un rationnel tel que a, b < 0, on a  $\frac{a}{b} = \frac{|a|}{|b|} \in E$  d'après ce qui précède.

Si  $\frac{a}{b} \in \mathbb{Q}^{\times}$  est un rationnel négatif, alors on a  $\left|\frac{a}{b}\right| \in E$ , mais on a donc également  $\frac{a}{b} = (-1) \times \left|\frac{a}{b}\right| \in E$ .

On en conclut que  $\mathbb{Q}^{\times} \subseteq E$  et on a égalité car  $E \subseteq \mathbb{Q}^{\times}$  par définition de E comme sous-groupe de  $\mathbb{Q}^{\times}$ .

# 1.3 Exercice 3. Ordre des éléments d'un groupe

Soient g et h deux éléments d'un groupe G.

- **1.** a) Montrer que g est d'ordre fini si et seulement s'il existe  $n \in \mathbb{N}^*$  tel que  $g^n = e$ .
  - **b)** Montrer que si g est d'ordre fini, alors son ordre est le plus petit entier  $n \in \mathbb{N}^*$  tel que  $g^n = e$ . Montrer, de plus, que pour  $m \in \mathbb{Z}$ ,  $g^m = e$  si et seulement si l'ordre de g divise m.
- **2.** Montrer que les éléments g,  $g^{-1}$  et  $hgh^{-1}$  ont même ordre.
- 3. Montrer que gh et hg ont même ordre.
- **4.** Soit  $n \in \mathbb{N}$ . Exprimer l'ordre de  $g^n$  en fonction de celui de g.
- **5.** On suppose que g et h commutent et sont d'ordre fini m et n respectivement.
  - a) Exprimer l'ordre de gh lorsque  $\langle g \rangle \cap \langle h \rangle = \{e\}.$
  - b) Même question lorsque m et n sont premiers entre eux.
  - c) (Plus difficile) On prend m et n quelconques. Soient  $a := \min\{\ell \in \mathbb{N}^* \mid g^{\ell} \in \langle h \rangle\}$  et  $b \in \mathbb{N}$  tel que  $g^a = h^b$ . Démontrer que l'ordre de gh est an/pgcd(n, (a+b)).
- 6. En considérant

$$A := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \qquad et \qquad B := \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix},$$

montrer que le produit de deux éléments d'ordre fini ne l'est pas forcément.

- 1. On rappelle que l'ordre de g est défini comme  $\#\langle g \rangle$ . On le note naturellement ord g.
  - a) On procède par double implication.

 $\triangleright$  Si g est d'ordre fini, alors  $\langle g \rangle$  est fini et donc l'application

$$\varphi: \mathbb{Z} \longrightarrow \langle g \rangle$$
$$n \longmapsto g^n$$

est un morphisme non injectif. Il existe donc un entier non nul  $n \in \mathbb{Z} \setminus \{0\}$  tel que  $n \in \ker \varphi$ , *i.e.*  $g^n = e$ .

- $\triangleright$  Si  $g^n=e$  alors  $\langle g \rangle = \{g^i \mid i \in [0, n-1]\}$ , qui est fini. Ainsi g est d'ordre fini.
- b) Si g est d'ordre fini, alors le morphisme  $\varphi$  (défini ci-avant) est surjectif et non injectif. Soit  $p = \min(\ker \varphi \cap \mathbb{N}^*)$ . Alors les  $g^i$  pour  $i \in [0, p-1]$  sont distincts et constituent  $\langle g \rangle$ .

Si  $n \in \mathbb{Z}$  est tel que  $g^n = e$ . On écrit  $n = q \times (\operatorname{ord} g) + r$  la division euclidienne de n par ord g, avec  $0 \le r < \operatorname{ord} g$ . Et,

$$e = g^n = (g^{\operatorname{ord} g})^q g^r = g^r,$$

d'où  $g^r = e$ . On en déduit que r = 0 et donc ord g divise n.

**2.** D'une part,  $\langle g \rangle = \langle g^{-1} \rangle$ , d'où ord  $g = \text{ord } g^{-1}$ . D'autre part, pour  $n \in \mathbb{N}$ , on a  $(hgh^{-1})^n = hg^nh^{-1}$ , et donc l'équivalence

$$g^n = e \iff (hgh^{-1})^n = e,$$

d'où ord  $g = \operatorname{ord}(hgh^{-1})$ .

- **3.** On a  $hg = h(gh)h^{-1}$  et par la question précédente, on a que  $\operatorname{ord}(hg) = \operatorname{ord}(gh)$ .
- **4.** On a

$$\operatorname{ord} g^{n} = \min\{k \in \mathbb{N}^{*} \mid g^{nk} = e\}$$

$$= \frac{1}{n} \min\left((\operatorname{ord} g)\mathbb{Z} \cap n\mathbb{Z} \cap \mathbb{N}^{*}\right)$$

$$= \frac{\operatorname{ppcm}(\operatorname{ord} g, n)}{n}$$

$$= \frac{\operatorname{ord} g}{\operatorname{pgcd}(\operatorname{ord} g, n)}.$$

**5.** a) Si  $\langle g \rangle \cap \langle h \rangle = \{e\}$  et  $(gh)^k = e$  alors  $g^k = h^{-k} \in \langle g \rangle \cap \langle h \rangle$ . D'où,  $g^k = h^{-k} = e$ .

#### 1.4 Exercice 4.

Soit G un groupe.

- 1. On suppose que tout élément g de G est d'ordre au plus 2. Montrer que G est commutatif.
- **2.** Montrer que G est commutatif si et seulement si l'application  $g \mapsto g^{-1}$  est un morphisme de groupes.
- 1. Pour tout  $g \in G$ , on a  $g^2 = e$ . Ainsi, pour tout  $g \in G$ , on a g est son propre inverse. Ceci permet de calculer

$$gh = g^{-1}h = g^{-1}h^{-1} = (hg)^{-1} = hg,$$

d'où G est commutatif.

2. On note  $\phi: g \mapsto g^{-1}$ , et on procède par équivalence.

$$G$$
 est commutatif  $\iff \forall g, h \in G, \quad gh = hg$   
 $\iff \forall g, h \in G, \quad (gh)^{-1} = (hg)^{-1}$   
 $\iff \forall g, h \in G, \quad (gh)^{-1} = g^{-1}h^{-1}$   
 $\iff \forall g, h \in G, \quad \phi(gh) = \phi(g) \phi(h)$   
 $\iff \phi \text{ est un morphisme.}$ 

### 1.5 Exercice 5.

Soit  $\phi: G_1 \to G_2$  un morphisme de groupes, et soit  $g \in G_1$  d'ordre fini. Montrer que  $\phi(g)$  est d'ordre fini et que son ordre divise l'ordre de g.

On utilise habilement l'exercice 1.3 : pour tout  $h \in G$ ,  $h^m = e$  si et seulement si l'ordre de h divise m. Soit n l'ordre de g (qui est fini car  $G_1$  d'ordre fini). Ainsi,

$$(\phi(g))^n = \phi(g^n) = \phi(e_1) = e_2.$$

On en déduit donc que  $\phi(g)$  est d'ordre fini et qu'il divise  $n=\operatorname{ord} g$ .

### 1.6 Exercice 6.

Soient  $G_1$  et  $G_2$  des groupes, et  $\phi: G_1 \to G_2$  un morphisme de groupes.

- 1. Soient  $H_1$  (resp.  $H_2$ ) un sous-groupe de  $G_1$  (resp.  $G_2$ ). Montrer que  $\phi(H_1)$  (resp.  $\phi^{-1}(H_2)$ ) est un sous-groupe de  $G_2$  (resp.  $G_1$ ).
- **2.** Montrer que  $H_2$  est un sous-groupe distingué de  $G_2$ , alors  $\phi^{-1}(H_2)$  est un sous-groupe distingué de  $G_1$ .
- 3. Montrer que si  $\phi$  est surjective, l'image d'un sous-groupe distingué de  $G_1$  par  $\phi$  est un sous-groupe distingué de  $G_2$ .
- **4.** Donner un exemple d'un morphisme de groupes  $\phi: G_1 \to G_2$  et de sous-groupe distingué  $H_1 \triangleleft G_1$  tel que  $\phi(H_1)$  n'est pas distingué dans  $G_2$ .
- 1. Remarquons que  $e_2 \in \phi(H_1) \neq \emptyset$  et que  $e_1 \in \phi^{-1}(H_2) \neq \emptyset$  car on a  $\phi(e_1) = e_2$ . Pour  $a, b \in \phi(H_1)$ , on sait qu'il existe  $x, y \in H_1$  tels que  $\phi(x) = a$  et  $\phi(y) = b$ . Alors,

$$ab^{-1} = \phi(x) \phi(y)^{-1} = \phi(\underbrace{xy^{-1}}_{\in H_1}) \in \phi(H_1),$$

d'où  $\phi(H_1)$  est un sous-groupe de  $G_2$ . Pour  $a, b \in \phi^{-1}(H_2)$ , on sait que  $\phi(a), \phi(b) \in H_2$  Alors, on a

$$\phi(ab^{-1}) = \underbrace{\phi(a)}_{\in H_2} \underbrace{\phi(b)^{-1}}_{\in H_2} \in H_2,$$

d'où  $ab^{-1} \in \phi^{-1}(H_2)$  et donc  $\phi(H_1)$  est un sous-groupe de  $G_2$ .

2. Supposons  $H_2 \triangleleft G_2$  et montrons que  $\phi^{-1}(H_2) \triangleleft G_2$ . Soit un élément  $g \in G_1$  quelconque, et soit  $h \in \phi^{-1}(H_2)$ . Alors,

$$\phi(ghg^{-1}) = \phi(g) \ \phi(h) \ \phi(g)^{-1} \in H_2,$$

car  $\phi(h) \in H_2$  et que  $H_2 \triangleleft G_2$ . Ainsi,  $ghg^{-1} \in \phi^{-1}(H_2)$ . On a donc  $g \phi^{-1}(H_2) g^{-1} \subseteq \phi^{-1}(H_2)$ , quel que soit  $g \in G_1$ . On en déduit que  $\phi^{-1}(H_2)$  est distingué dans  $G_1$ .

3. Suppsons  $\phi$  surjective, on a donc l'égalité  $\phi(G_1) = G_2$ . Supposons de plus que  $H_1 \triangleleft G_1$ . Montrons que  $\phi(H_1)$  est un sous-groupe distingué de  $G_2$ . Soit  $g \in G_2 = \phi(G_1)$  quelconque, et soit un élément  $h \in \phi(H_1)$ . Il existe donc  $x \in G_1$  et  $y \in H_1$  deux éléments tels que  $\phi(y) = h$  et  $\phi(x) = g$ . Ainsi

$$ghg^{-1} = \phi(x) \phi(y) \phi(x)^{-1} = \phi(xyx^{-1}) \in \phi(H_1)$$

car  $H_1$  distingué dans  $G_1$  et donc  $xyx^{-1} \in H_1$ . Ainsi  $\phi(H_1) \triangleleft G_2$ .

4. On considère le morphisme

$$f: (\mathbb{R}, +) \longrightarrow (\mathrm{GL}_2(\mathbb{R}), \cdot)$$
  
 $x \longmapsto \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix},$ 

et le sous-groupe distingué  $\mathbb{R} \triangleleft \mathbb{R}$ . On a

$$\forall x \in \mathbb{R} \setminus \{0\}, \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}_{M \in \mathrm{GL}_2(\mathbb{R})} \underbrace{\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}}_{f(x)} \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}_{M^{-1} \in \mathrm{GL}_2(\mathbb{R})} = \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix} \not\in f(\mathbb{R}).$$

Ainsi,  $f(\mathbb{R}) \not \subset GL_2(\mathbb{R})$ .

### **1.7** Exercice **7**.

Soit G un groupe et soient H, K deux sous-groupes de G. Montrer que  $H \cup K$  est un sous-groupe de G si et seulement si on a  $H \subseteq K$  ou  $K \subseteq H$ .

On procède par double implications.

- $\triangleright$  «  $\Longrightarrow$  ». Supposons que  $H \cup K$  soit un sous-groupe de G. Par l'absurde, supposons que  $H \not\subseteq K$  et  $K \not\subseteq H$ . Il existe donc deux éléments  $h \in H \setminus K$  et  $k \in K \setminus H$ . Considérons  $hk \in H \cup K$ .
  - Si  $hk \in H$ , alors  $h^{-1}(hk) \in H$  et donc  $k \in H$ , absurde!
  - Si  $hk \in K$ , alors  $(hk)k^{-1} \in K$  et donc  $h \in K$ , absurde!

On en déduit que  $H \subseteq K$  ou  $K \subseteq H$ .

 $\triangleright$  «  $\iff$  ». Sans perte de généralité, supposons  $H\subseteq K$ . Ainsi, on a  $H\cup K=K$  qui est un sous-groupe de G.

# 1.8 Exercice 8. Classes à gauche et classes à droite

Soit H un sous-groupe d'un groupe G. Montrer que l'on a une bijection canonique  $G/H \to H\backslash G$ .

On note  $S^{-1} = \{s^{-1} \mid s \in S\}$  pour un sous-ensemble S de G. Alors nous avons l'égalité  $(aH)^{-1} = Ha^{-1}$  et  $(Ha)^{-1} = a^{-1}H$ . En effet,

$$(aH)^{-1} = \{ah \mid h \in H\}^{-1} \qquad (Ha)^{-1} = \{ha \mid h \in H\}^{-1}$$

$$= \{(ah)^{-1} \mid h \in H\} \qquad = \{(ha)^{-1} \mid h \in H\}$$

$$= \{ha^{-1} \mid h \in H\} \qquad = \{a^{-1}h^{-1} \mid h \in H\}$$

$$= \{ha^{-1} \mid h \in H\} \qquad = \{a^{-1}h \mid h \in H\}$$

$$= Ha^{-1} \qquad = a^{-1}H.$$

Il existe donc une bijection canonique

$$f: G/H \longrightarrow H\backslash G$$
$$aH \longmapsto (aH)^{-1} = Ha^{-1}.$$

## 1.9 Exercice 9. Normalisateur

Soit  $H \leq G$  un sous-groupe d'un groupe G. On dit que x normalise si  $xHx^{-1} = H$ . On note  $N_G(H)$  l'ensemble des éléments de G qui normalisent H. C'est le normalisateur de H dans G.

- 1. Montrer que  $N_G(H)$  est le plus grand sous-groupe de G contenant H et dans lequel H est distingué.
- **2.** En déduire que H est distingué dans G si et seulement si on a l'égalité  $G = N_G(H)$ .
- 1. Commençons par montrer que  $N_G(H)$  est un sous-groupe de G contenant H.
  - ▷ L'élément neutre normalise H, car  $eHe^{-1} = H$ . D'où, le normalisateur de H est non vide.

 $\triangleright$  Soient x et y deux éléments qui normalisent H. Alors, xy normalise H:

$$(xy)H(xy)^{-1} = xyHy^{-1}x^{-1} = xHx^{-1} = H.$$

 $\triangleright$  Soit  $x \in G$  qui normalise H. Alors  $x^{-1}$  normalise H:

$$x^{-1}Hx = H \iff Hx = xH \iff H = xHx^{-1},$$

et cette dernière condition est vérifiée car x normalise H.

 $\triangleright$  Soit  $h \in H$ . Alors h normalise H. En effet,

$$hHh^{-1} = Hh^{-1} = H$$
.

 $\operatorname{car} h^{-1} \in H$  et puis  $\operatorname{car} h \in H$ .

On en conclut que  $N_G(H)$  est un sous-groupe de G contenant H.

Par définition de  $N_G(H)$ , on a que  $H \triangleleft N_G(H)$ : quel que soit x qui normalise H, on a (par définition)  $xHx^{-1} = H$ .

Il ne reste plus qu'à montrer que tout sous-groupe  $N \supseteq H$  tel que  $H \triangleleft N$  vérifie  $N \subseteq \mathrm{N}_G(H)$ . Soit N un tel sous-groupe, et un élément  $x \in N$ . Ainsi  $xHx^{-1} = H$ , d'où x normalise H. On a donc bien l'inclusion  $N \subseteq \mathrm{N}_G(H)$ .

Ceci démontre bien que  $N_G(H)$  est le plus grand sous-groupe de G contenant H et dans lequel H y est distingué.

2. D'une part, si H est distingué dans G, alors le plus grand sous-groupe de G contenant H et dans lequel H est distingué est G.

D'autre part, si  $G = N_G(H)$ , alors tout élément  $x \in G$  vérifie l'égalité  $xHx^{-1} = H$  et donc  $H \triangleleft G$ .

# 1.10 Exercice 10. Construction de $\mathbb{Q}$

Soit  $E := \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ . On définit  $\sim \sup E \ par \ (a,b) \sim (a',b')$  dès lors que ab' = a'b.

**1.** Montrer que  $\sim$  est un relation d'équivalence sur E. Si  $(a,b) \in E$ , on note  $\frac{a}{b}$  son image dans  $E/\sim$ .

- **2.** Munir  $E/\sim$  d'une structure de corps telle que  $\mathbb Z$  s'injecte dans le corps  $E/\sim$ .
- **3.** Similairement, pour un corps k, construire k(X) à partir de l'ensemble k[X].
- 4. Construire  $\mathbb{Z}$  à partir de  $\mathbb{N}$ .
- 1. On a trois propriétés à vérifier.
  - $\triangleright$  Si  $(a,b) \in E$ , alors ab = ab donc  $(a,b) \sim (a,b)$ .
  - $\triangleright$  Si  $(a,b) \sim (a',b')$ , alors ab' = a'b et donc  $(a',b') \sim (a,b)$ .
  - $\triangleright$  Si  $(a,b) \sim (a',b')$  et  $(a',b') \sim (a'',b'')$ , alors

$$a'ab'b'' = a'a'bb'' = a'ba'b'' = a'ba''b',$$

et donc a'b'(ab'' - a''b) = 0. Par anneau intègre, on a une disjonction de cas :

- $\sin a' = 0$ , alors a = a'' = 0;
- $\operatorname{si} b' = 0$ , alors **absurde** car  $b' \in \mathbb{Z} \setminus \{0\}$ ;
- si ab'' a''b = 0, alors on a ab'' = a''b.

Dans les deux cas, on obtient bien  $(a, b) \sim (a'', b'')$ .

- 2. On munit  $E/\sim$  de deux opérations «  $\oplus$  » et «  $\otimes$  ».
  - $\triangleright$  On pose l'opération  $\frac{a}{b} \oplus \frac{c}{d} := \frac{ad+bc}{bd}$  qui est bien définie car, si l'on a  $(a,b) \sim (a',b')$ , alors

$$(ad + bc, bd) \sim (a'd + b'c, b'd) \iff (ad + bc)b'd = (a'd + b'c)bd$$
  
$$\iff ab'd^2 = a'bd^2.$$

ce qui est vrai car  $(a,b) \sim (a',b')$ . On peut procéder symétriquement pour  $(c',d') \sim (c,d)$ .

 $\triangleright$  On pose l'opération  $\frac{a}{b} \otimes \frac{c}{d} := \frac{ac}{bd}$  qui est bien définie car, si l'on a  $(a,b) \sim (a',b')$ , alors

$$(ac,bd) \sim (a'c,b'd) \iff acb'd = a'cbd,$$

ce qui est vrai car  $(a,b) \sim (a',b')$ . On peut procéder symétriquement pour  $(c',d') \sim (c,d)$ .

Montrons que  $(E/\sim, \oplus, \otimes)$  est un corps.

 $\triangleright$  La loi  $\oplus$  est associative : on a

$$\frac{a}{b} \oplus \left(\frac{c}{d} \oplus \frac{e}{f}\right) = \left(\frac{a}{b} \oplus \frac{c}{d}\right) \oplus \frac{e}{f} = \frac{adf + cbf + ebd}{bdf},$$

par associativité de +.

- ▷ La loi ⊕ est commutative par commutativité de +.
- $\triangleright$  La loi  $\oplus$  possède un élément neutre  $\frac{0}{1} \in E/\sim$ .
- $\triangleright$  Tout élément  $\frac{a}{b}$  possède un symétrique  $\left(\frac{-a}{b}\right)$  pour  $\oplus$  par rapport à  $\frac{0}{1}.$
- $\triangleright$  La loi  $\otimes$  est associative : on a

$$\tfrac{a}{b} \otimes \left( \tfrac{c}{d} \otimes \tfrac{e}{f} \right) = \left( \tfrac{a}{b} \otimes \tfrac{c}{d} \right) \otimes \tfrac{e}{f} = \tfrac{ace}{bdf},$$

par associativité de ×.

- ▷ La loi  $\otimes$  est distributive par rapport à  $\oplus$ , par distributivité de  $\times$  par rapport à +.
- ▷ La loi  $\otimes$  possède un élément neutre  $\frac{1}{1} \in E/\sim$  pour  $\otimes$ .
- ▷ Tout élément non nul  $\frac{a}{b}$  possède un inverse  $\frac{b}{a}$  par rapport à  $\frac{1}{1}$ .

On en conclut que  $(E/\sim, \oplus, \otimes)$  est un corps.

Finalement, on considère l'injection

$$f: \mathbb{Z} \longrightarrow E/\sim$$

$$k \longmapsto \frac{k}{1}.$$

C'est bien une injection car, si  $\frac{k}{1} = \frac{k'}{1}$ , alors  $k \times 1 = k' \times 1$  et donc k = k'. On a, de plus, que f est un morphisme de groupes  $(\mathbb{Z}, +) \to (E/\sim, \oplus)$ :

$$f(k) \oplus f(k') = \frac{k}{1} \oplus \frac{k'}{1} = \frac{k+k'}{1} = f(k+k').$$

**3.** On pose  $F := \mathbb{k}[X] \times (\mathbb{k}[X] \setminus \{0_{\mathbb{k}[X]}\})$ , et la relation

$$(P,Q) \sim (P',Q') \iff PQ' = P'Q.$$

Cette relation est une relation d'équivalences (comme pour la question précédente, et car  $\Bbbk$  est un anneau intègre). On pose

ensuite  $\mathbb{k}(X) := F/\sim$ . Comme dans la question précédente, on peut donner une structure de corps avec les mêmes définitions (en replaçant les entiers par des polynômes de  $\mathbb{k}$ ). Les propriétés découlent toutes du fait que  $(\mathbb{k}, +, \times)$  est un corps.

4. On pose  $Z:=\mathbb{N}^2/\sim$ , où la relation d'équivalence  $\sim$  est définie par

$$(a,b) \sim (a',b') \iff a+b'=b+a'.$$

#### 1.11 Exercice 11.

Soit  $E:=\mathbb{C}[X]$  le  $\mathbb{C}$ -espace vectoriel des polynômes à coefficients dans  $\mathbb{C}$  et  $P\in\mathbb{C}[X]$  un polynôme de degré  $d\in\mathbb{N}^*$ .

- **1.** Montrer que l'ensemble  $(P) := \{QP \mid Q \in \mathbb{C}[X]\}$  est un sous- $\mathbb{C}$ -espace vectoriel de  $\mathbb{C}[X]$ .
- **2.** Déterminer un isomorphisme entre  $\mathbb{C}[X]/(P)$  et le  $\mathbb{C}$ -espace vectoriel  $\mathbb{C}_{d-1}[X]$  des polynômes de degrés inférieurs à d-1 de  $\mathbb{C}[X]$ .
- **3.** Montrer que la multiplication dans  $\mathbb{C}[X]$  induit une structure de  $\mathbb{C}$ -algèbre sur  $\mathbb{C}[X]/(P)$ .

#### 1.12 Exercice 12.

Soit G un groupe et H un sous-groupe strict de G. Montrer que l'on a l'égalité  $\langle G \setminus H \rangle = G$ .

### 1.13 Exercice 13.

Soit G un groupe fini. Montrer que G contient un élément d'ordre 2 si et seulement si son cardinal est pair. Montrer de plus que, dans ce cas là, il en contient un nombre impair.

#### 1.14 Exercice 14.

Soit G un groupe et  $\sim$  une relation d'équivalence sur G. On suppose que  $G/\sim$  est un groupe, et que la projection canonique  $\pi:G\to G/\sim$  est un morphisme de groupes.

Montrer qu'il existe un sous-groupe distingué  $H \triangleleft G$  tel que pour tous éléments  $x, y \in G$ ,  $x \sim y$  si et seulement si  $xy^{-1} \in H$ .

# 1.15 Exercice 15.

Soit G un groupe et  $S_G$  l'ensemble des sous-groupes de G.

- 1. Démontrer que si G est fini, alors  $S_G$  est fini.
- **2.** Supposons  $S_G$  fini. Démontrer que tous les éléments de G sont d'ordre fini, en déduire que G est fini.
- **3.** On ne suppose plus que  $S_G$  est fini. Si tous les éléments de G sont d'ordre fini, est-ce que G est fini?

# 2 Théorèmes d'isomorphismes et actions de groupes.

#### Sommaire.

| 2.1  | Exercice 1. Groupes monogènes            |
|------|------------------------------------------|
| 2.2  | Exercice 2                               |
| 2.3  | Exercice 3.                              |
| 2.4  | Exercice 4.                              |
| 2.5  | Exercice 5.                              |
| 2.6  | Exercice 6. Troisième théorème d'isomor- |
|      | $phisme \dots \dots \dots \dots$         |
| 2.7  | Exercice 7. Sous-groupe d'un quotient    |
| 2.8  | Exercice 8. Combinatoire algébrique      |
| 2.9  | Exercice 9. Formule de Burnside          |
| 2.10 | Exercice 10. Automorphismes intérieurs.  |
| 0 11 | Exercice 11.                             |

# 2.1 Exercice 1. Groupes monogènes

Soit G un groupe monogène. Montrer que soit  $G \cong \mathbb{Z}$ , soit  $G \cong \mathbb{Z}/n\mathbb{Z}$  pour un entier strictement positif n.

Soit  $g \in G$  tel que  $\langle g \rangle = G$ . Considérons le morphisme

$$\phi: \mathbb{Z} \longrightarrow G$$
$$k \longmapsto q^k.$$

On a im  $\phi = \langle g \rangle = G.$  De plus, par le premier théorème d'isomorphisme

$$\mathbb{Z}/\ker\phi\cong\operatorname{im}\phi=G.$$
 $-20/60$ 

- $\triangleright$  Si ker  $\phi$  est le sous-groupe trivial  $\{0\}$ , on a donc  $G \cong \mathbb{Z}$ .
- $\triangleright$  Si ker  $\phi$  est un sous-groupe non trivial de  $\mathbb{Z}$ , alors ker  $\phi = n\mathbb{Z}$ , et on a donc  $G \cong \mathbb{Z}/n\mathbb{Z}$ .

# 2.2 Exercice 2.

Soit n > 0 un entier.

- **1.** Montrer que  $\mathbb{Z}/n\mathbb{Z}$  contient  $\varphi(n)$  éléments d'ordre n, où  $\varphi(n)$  désigne le nombre d'entiers  $k \in [0, n-1]$  premiers à n.
- **2.** Montrer que pour tout d > 0 divisant n,  $\mathbb{Z}/n\mathbb{Z}$  admet un unique sous-groupe d'ordre d formé des multiples de  $\overline{n/d}$ .
- **3.** En déduire que pour tout diviseur d > 0 de n,  $\mathbb{Z}/n\mathbb{Z}$  contient  $\varphi(d)$  éléments d'ordre d et que  $\sum_{0 < d \mid n} \varphi(d) = n$ .
- 1. Soit  $k \in [0, n-1]$ . Montrons que  $\langle \bar{k} \rangle = \mathbb{Z}/n\mathbb{Z}$  si et seulement si  $\operatorname{pgcd}(k, n) = 1$ .
  - $\triangleright$  Si  $\langle \bar{k} \rangle = \mathbb{Z}/n\mathbb{Z}$  alors il existe  $a \in \mathbb{Z}$  tel que

$$a\bar{k} = \underbrace{\bar{k} + \dots + \bar{k}}_{a \text{ fois}} = \bar{1}.$$

Ainsi, il existe  $b \in \mathbb{Z}$  tel que ak-1=bn, soit ak+bn=1. On en conclut, par le théorème de Bézout, que k et n sont premiers entre-eux.

▷ Si pgcd(k, n) = 1 alors il existe  $a, b \in \mathbb{Z}$  tels que ak + bn = 1 et donc  $ak \equiv 1 \pmod{n}$ . Ainsi,  $k + \cdots + k \equiv 1 \pmod{n}$ . Or,  $\langle \bar{1} \rangle = \mathbb{Z}/n\mathbb{Z}$  et donc, comme  $\langle \bar{1} \rangle \subseteq \langle \bar{k} \rangle$  on a que

$$\langle \bar{k} \rangle = \mathbb{Z}/n\mathbb{Z}.$$

Par bijection, on a donc

$$\varphi(n) = \#\{k \in [0, n-1] \mid \operatorname{pgcd}(k, n) = 1\}$$

éléments d'ordre n.

- 2. On sait que  $\langle \overline{n/d} \rangle$  est un groupe, et d  $\overline{n/d} = \overline{n} = \overline{0}$ . Ainsi, on a que  $\#\langle \overline{n/d} \rangle = d$ . Il ne reste qu'à montrer l'unicité. Soit un sousgroupe  $H \leq \mathbb{Z}/n\mathbb{Z}$  d'ordre d. Soit  $\overline{a} \in H$  tel que  $d\overline{a} = 0$ . Ainsi, il existe  $b \in \mathbb{Z}$  tel que da = nb, d'où a = nb/d et donc  $\overline{a} = b$   $\overline{n/d}$ . On en déduit que  $\overline{a} \in \langle \overline{n/d} \rangle$ . On conclut que  $H = \langle \overline{n/d} \rangle$  par inclusion et égalité des cardinaux.
- 3. Soit  $\bar{a}$  un élément d'ordre d, et donc  $\#\langle \bar{a} \rangle = d$ . Par la question 2 et l'exercice 2.1, on a  $\langle \bar{a} \rangle = \langle \overline{n/d} \rangle \cong \mathbb{Z}/d\mathbb{Z}$ . Or, par la question 1, il y a  $\varphi(d)$  éléments d'ordre d dans  $\mathbb{Z}/d\mathbb{Z}$ . Ainsi, il y a  $\varphi(d)$  éléments d'ordre d dans  $\mathbb{Z}/n\mathbb{Z}$ .

Posons  $A_d := \{ \bar{a} \in \mathbb{Z}/n\mathbb{Z} \mid \#\langle \bar{a} \rangle = d \}$ . Si  $d \nmid n$  alors  $A_d = \emptyset$  car l'ordre d'un élément divise n (théorème de LAGRANGE). Si  $d \mid n$  alors  $\#A_d = \varphi(d)$  (question 2). De plus,

$$\mathbb{Z}/n\mathbb{Z} = \bigsqcup_{d|n} A_d,$$

d'où

$$n = \sum_{d|n} \# A_d = \sum_{d|n} \varphi(d).$$

# 2.3 Exercice 3.

- 1. Montrer que le groupe  $\mathbb{Z}/n\mathbb{Z}$  est simple si, et seulement si, n est premier.
- **2.** Soit G un groupe fini abélien. Montrer que G est simple si et seulement si  $G \cong \mathbb{Z}/p\mathbb{Z}$  avec p un nombre premier.
- 1. Le groupe  $\mathbb{Z}/n\mathbb{Z}$  est commutatif. Ainsi, tout sous-groupe de  $\mathbb{Z}/n\mathbb{Z}$  est distingué. On a donc que  $\mathbb{Z}/n\mathbb{Z}$  est simple si, et seulement si,  $\mathbb{Z}/n\mathbb{Z}$  ne possède pas de sous-groupes non triviaux. De plus, un entier n n'a que des diviseurs triviaux (1 ou n) si et seulement si n est premier. Et, avec le théorème de LAGRANGE, on sait que l'ordre de tout sous-groupe de  $\mathbb{Z}/n\mathbb{Z}$  divise n. D'où l'équivalence.

2. Le groupe G est commutatif. Ainsi, tout sous-groupe de G est distingué. On a donc que G est simple si, et seulement si, G ne possède pas de sous-groupes non triviaux. Ainsi, par le théorème de LAGRANGE, l'ordre du groupe G est premier.

### 2.4 Exercice 4.

Soit G un groupe et H un sous-groupe de G d'indice 2. Montrer que H est distingué dans G. Montrer que le résultat n'est pas vrai si on remplace 2 par 3.

Soit  $g \in G \setminus H$ . On a la partition  $G = H \sqcup gH$ . Ainsi gH est le complément de H dans G. Similairement, Hg est le complément de H dans G. Ainsi, on a gH = Hg.

Si  $h \in H$ , alors hH = H = Hh car H est un sous-groupe contenant les éléments h et  $h^{-1}$ .

On en conclut, dans les deux cas, que  $H \triangleleft G$ .

Pour montrer que le résultat est faux en remplaçant 2 par 3, on considère  $G := \mathfrak{S}_3$  et  $H := \{ \mathrm{id}, (1\ 2) \}$  un sous-groupe de G. Le sous-groupe H a pour indice  $[G:H] = |\mathfrak{S}_3|/|H| = 3$ . Cependant, H n'est pas un sous-groupe distingué de G:

$$(1\ 2\ 3)(1\ 2)(1\ 2\ 3)^{-1} = (2\ 3) \not\in H.$$

# 2.5 Exercice 5.

Soit p un nombre premier.

- 1. Rappeler pourquoi le centre d'un p-groupe est non trivial.
- **2.** Montrer que tout groupe d'ordre  $p^2$  est abélien, classifier ces groupes.
- **3.** Soit G un groupe d'ordre  $p^n$ . Montrer que G admet un sousgroupe distingué d'ordre  $p^k$  pour tout  $k \in [0, n]$ .

1. Soit G un p-groupe non trivial. On fait agir G sur G par conjugaison. Ainsi, par la formule des classes, on a

$$p^n = \#G = \#Z(G) + \sum_{g \in \Re} \underbrace{[G : C_G(g)]}_{p^{x_i} > 1},$$

où  $\mathcal{R}$  est un système de représentants des classes de conjugaisons de G contenant plus d'un élément.

On sait donc que  $p \mid \sum_{g \in \mathcal{R}} [G : C_G(g)]$  et  $p \mid \#G$ , ce qui permet d'en déduire que  $p \mid \#Z(G)$ . D'où, Z(G) n'est pas trivial.

- 2. Le centre de G est un sous-groupe, d'où par le théorème de LAGRANGE et par la question 1, on sait que l'ordre de Z(G) est p ou  $p^2$ .
  - Dans le cas où Z(G) est d'ordre  $p^2$ , on a Z(G) = G, d'où G abélien.
  - $\triangleright$  Supposons  $\# \mathbf{Z}(G) = p$ . Soit  $x \in G \setminus \mathbf{Z}(G)$ , et considérons le sous-groupe

$$Z(x) := \{ g \in G \mid gx = xg \} \le G.$$

En deux temps, montrons que  $Z(G) \leq Z(x) \leq G$ .

- On a l'inclusion  $Z(G) \subseteq Z(x)$  mais cette inclusion est stricte car  $x \in Z(x) \setminus Z(G)$ .
- Montrons que  $Z(x) \neq G$ . Par l'absurde, si Z(x) = G, alors x commute avec tout élément de G, et donc  $x \in Z(G)$ , **absurde**.

Quel est l'ordre de Z(x)? C'est nécessairement p ou  $p^2$ , mais dans chacun des cas, on arrive à une contradiction avec les inclusions strictes plus-haut. C'est **absurde**.

# 2.6 Exercice 6. Troisième théorème d'isomorphisme

Soit H un groupe et soient H et K des sous-groupes tels que  $H \triangleleft G$  et  $H \leq K$ . On notera  $\pi_H : G \to G/H$ .

- 1. Montrer que le groupe  $\pi_H(K)$  est distingué dans G/H si et seulement si K est distingué dans G.
- **2.** Justifier que H est distingué dans K et que l'on a un isomorphisme  $\pi_H(K) \cong K/H$ .
- **3.** On suppose K distingué dans G. On note  $\pi_K: G \to G/K$  la projection canonique.
  - a) Montrer que  $\pi_K$  induit un unique morphisme de groupes  $\bar{\pi}_K$ :  $G/H \to G/K$  tel que  $\pi_K = \bar{\pi}_K \circ \pi_H$ .
  - **b)** Montrer que le noyau de  $\bar{\pi}_K$  est  $\pi_H(K) \cong K/H$ .
  - c) En déduire le troisième théorème d'isomorphisme.
- 1. On procède en deux temps.

Dans un premier temps, supposons que  $K \triangleleft G$  et montrons que l'on a  $\pi_H(K) \triangleleft G/H$ . Soit  $\bar{g} \in G/H$  et soit  $g \in G$  un élément tel que  $\pi_H(g) = \bar{g}$  qui existe par surjectivité de  $\pi_H$ . Alors,

$$\pi_H(K) = \pi_H(gHg^{-1}) = \bar{g} \; \pi_H(K) \; \bar{g}^{-1},$$

d'où  $\pi_H(K) \triangleleft G/H$ .

Dans un second temps, supposons

$$\forall \bar{g} \in G/H, \quad \bar{g} \ \pi_H(K) \ \bar{g}^{-1} = \pi_H(K).$$

Soit  $g \in G$  et  $k \in K$ , et montrons que  $gkg^{-1} \in K$ . On sait que l'on a  $\bar{g} = gH$  et  $\pi_H(k) = kH$ . Alors,

$$gkg^{-1}H \subseteq (gH)(kH)(g^{-1}H) = k'H \subseteq K,$$

pour un certain  $k' \in K$  (on applique ici l'hypothèse). Ainsi, comme  $e \in H$ , on a en particulier  $gkg^{-1} \in K$ . On en déduit ainsi que  $K \triangleleft G$ .

2. Pour tout  $k \in K$ , on a que  $kHk^{-1} = H$  car  $k \in G$ , on en déduit  $H \triangleleft K$ . Montrons que  $\pi_H(K) \cong K/H$ . On a même égalité de ces deux ensembles si l'on voit K/H comme l'ensemble des classes à gauches de H. En effet,

$$\pi_H(k) = kH$$
 d'où  $\pi_H(K) = \{kH \mid k \in K\},$   
- 25/60 -

et

$$K/H = \{kH \mid k \in K\}.$$

On a donc l'égalité.

3. a) On factorise par le quotient :



qui est possible car  $K = \ker \pi_K \supseteq H$ . Le morphisme  $\bar{\pi}_K : G/H \to G/K$  est l'unique morphisme faisant commuter le diagramme ci-dessus.

b) Par construction,

$$\ker \bar{\pi}_K = \{ \bar{g} \in G/H \mid \pi_K(g) = K \}$$

$$= \{ \pi_H(g) \mid g \in \ker \pi_K \}$$

$$= \pi_H(\ker \pi_K) = \pi_H(K) \underset{\mathbb{Q}^2}{\cong} K/H.$$

c) Appliquons le premier théorème d'isomorphisme à  $\bar{\pi}_K$ , qui est surjectif :

$$(G/H)/(K/H) = (G/H)/\ker \bar{\pi}_K \cong \operatorname{im} \bar{\pi}_K = G/K,$$

c'est le troisième théorème d'isomorphisme.

# 2.7 Exercice 7. Sous-groupe d'un quotient

Soit G un groupe, et H un sous-groupe distingué de G. On note la projection canonique  $\pi_H: G \to G/H$ .

- 1. a) Soit K un sous-groupe de G. Montrer  $\pi_H^{-1}(\pi_H(K)) = KH$ .
  - **b)** En déduire que  $\pi_H$  induit une bijection croissante entre les sous-groupes de G/H et les sous-groupes de G contenant H.
- **2.** Montrer que les sous-groupes distingués de G/H sont en correspondance avec les sous-groupes distingués de G contenant H.

- **3.** Montrer que la correspondance précédente préserve l'indice : si K est un sous-groupe de G d'indice fini contenant H, alors on a  $[G:K] = [G/H, \pi_H(K)]$ .
- **1. a)** On a

$$\pi_{H}^{-1}(\pi_{H}(K)) = \{ g \in G \mid \pi_{H}(g) \in \pi_{H}(K) \}$$

$$= \{ g \in H \mid gH = kH \text{ avec } k \in K \}$$

$$= \bigcup_{k \in K} kH$$

$$= \{ kh \mid k \in K, h \in H \}$$

$$= KH.$$

- b) L'image directe par  $\pi_H$  envoie un sous-groupe de G contenant H sur sous-groupe de G/H. De plus, l'image réciproque par  $\pi_H$  envoie un sous-groupe de G/H sur un sous-groupe de G contenant H. Montrons la bijection puis la croissance.
  - $\triangleright$  Si  $\pi_H(K_1) = \pi_H(K_2)$  où  $K_1, K_2$  sont deux sousgroupes de G contenant H alors

$$K_1 = K_1 H = \pi_H^{-1}(\pi_H(K_1)) = \pi_H^{-1}(\pi_H(K_2)) = K_2 H = K_2.$$

D'où l'injectivité.

- $\triangleright$  On sait déjà que  $\pi_H: G \to G/H$  est surjective, alors l'image directe  $\tilde{\pi}_H: S_G \to S_{G/H}$  où  $S_G$  est l'ensemble des sous-groupes de G.
- $\triangleright$  L'image directe et l'image réciproque par  $\pi_H$  est une application croissante.
- 2. On procède en deux temps.
  - $\triangleright$  Soit  $L \triangleleft G/H$ . Pour tout  $g \in G$  et tout  $x \in \pi_H^{-1}(L)$ , on a

$$\pi_H(gxg^{-1}) = (gxg^{-1})H = (gH)(xH)(gH)^{-1} \in L,$$

car L est distingué dans G/H. Ainsi  $xgx^{-1} \in \pi_H^{-1}(L)$  et donc  $\pi_H^{-1}(L)$  est distingué dans G.

 $\triangleright$  Soit  $K \triangleleft G$  un sous-groupe distingué contenant H. Pour tout  $xH \in G/H$  et tout  $kH \in \pi_H(K)$  avec  $k \in K$ , on a

$$(xH)(kH)(xH)^{-1} = (xkx^{-1})H.$$

Comme  $K \triangleleft G$ , on a  $xkx^{-1} \in K$  d'où  $(xkx^{-1})H \in \pi_H(K)$ . On en déduit que  $\pi_H(K)$  est distingué dans le groupe quotient G/H.

3.

# 2.8 Exercice 8. Combinatoire algébrique

Soit  $\mathbb{k}$  un corps fini à q éléments et  $n \in \mathbb{N}^*$ . On définit  $\operatorname{PGL}_n(\mathbb{k})$  comme le quotient  $\operatorname{GL}_n(\mathbb{k})/\mathbb{k}^{\times}$ , où  $\mathbb{k}^{\times}$  correspond au sous-groupe distingué formé de la forme  $\lambda I_n$  avec  $\lambda \in \mathbb{k} \setminus \{0\}$ . On considère l'action de  $\operatorname{GL}_n(\mathbb{k})$  sur l'ensemble des droites vectorielles de  $\mathbb{k}^n$ .

- 1. Déterminer le cardinal des groupes finis  $GL_n(\mathbb{k})$ ,  $SL_n(\mathbb{k})$  et  $PGL_n(\mathbb{k})$ . Indication : compter les bases de  $\mathbb{k}^n$ .
- **2.** On prend désormais n=2.
  - a) Montrer que le nombre de droites vectorielles de  $\mathbb{k}^2$  est égal à q+1.
  - b) En déduire qu'il existe un morphisme de groupes injectif

$$\operatorname{PGL}_2(\Bbbk) \hookrightarrow \mathfrak{S}_{q+1}.$$

- 3. Montrer que  $GL_2(\mathbb{F}_2) = SL_2(\mathbb{F}_2) = PGL_2(\mathbb{F}_2) \cong \mathfrak{S}_3$ .
- **4.** Montrer que  $PGL_2(\mathbb{F}_3) \cong \mathfrak{S}_4$ .
- 1. L'application

$$\operatorname{GL}_n(\mathbbm{k}) \longrightarrow \{ \text{bases de } \mathbbm{k}^n \}$$
  
 $(C_1 \ C_2 \ \cdots \ C_n) \longmapsto (C_1, \ldots, C_n)$ 

est une bijection. Construisions une base de  $\mathbb{k}^n$ :

(1) On choisit le premier vecteur  $C_1$  dans  $\mathbb{k}^n \setminus \{0\}$ , on a donc  $q^n - 1$  choix.

- (2) On choisit le second vecteur  $C_2$  dans  $\mathbb{k}^n \setminus \text{vect}(C_1)$ , on a donc  $q^n q$  choix.
- (3) On choisit le troisième vecteur  $C_3$  dans  $\mathbb{k}^n \setminus \text{vect}(C_1, C_2)$ , on a donc  $q^n q^2$  choix.
- (4) Et cetera.

D'où,

$$\#GL_n(\mathbb{k}) = \prod_{i=0}^{n-1} (q^n - q^i).$$

L'application det :  $GL_n(\mathbb{k}) \to \mathbb{k}^{\times}$  est un morphisme de groupes surjectif. De plus, ker det =  $SL_n(\mathbb{k})$ . On a ainsi, par le premier théorème d'isomorphisme,

$$\operatorname{GL}_n(\mathbb{k})/\operatorname{SL}_n(\mathbb{k}) \cong \mathbb{k}^{\times}.$$

Ainsi,

$$\#SL_n(\mathbb{k}) = \frac{\#GL_n(\mathbb{k})}{\#\mathbb{k}^{\times}} = \frac{\prod_{i=0}^{n-1} (q^n - q^i)}{q - 1}.$$

Finalement, on a  $\operatorname{PGL}_n(\mathbb{k}) := \operatorname{GL}_n(\mathbb{k})/\mathbb{k}^{\times}$  d'où

$$\#PGL_n(\mathbb{k}) = \frac{\prod_{i=0}^{n-1} (q^n - q^i)}{q-1}.$$

2. a)

# 2.9 Exercice 9. Formule de Burnside

Soit G un groupe fini agissant sur un ensemble fini X. On note N le nombre d'orbites de l'action.

- **1.** Soit  $Y := \{(g, x) \in G \times X \mid g \cdot x = x\}$ . Interpréter le cardinal de Y comme somme sur les éléments de X d'une part, et de G d'autre part.
- **2.** En décomposant X en union d'orbites, montrer la formule de Burnside:

$$N = \frac{1}{\#G} \sum_{g \in G} \# \text{Fix}(G).$$
- 29/60 -

- **3.** Soit n un entier. Quel est le nombre moyen de points fixes des éléments de  $\mathfrak{S}_n$  pour l'action naturelle sur [1, n].
- **4.** On suppose que G agit transitivement sur X et que X contient au moins deux éléments. Montrer qu'il existe un  $g \in G$  agissant sans point fixe.
- **5.** En déduire qu'un groupe fini n'est jamais l'union des conjugués d'un sous-groupe strict.

# 2.10 Exercice 10. Automorphismes intérieurs.

Soit G un groupe. Pour  $g \in G$ , on note  $\phi_g : G \to G$  la fonction définie par  $h \mapsto ghg^{-1}$ . On note  $\operatorname{Int}(G)$  l'ensemble des  $\phi_g$  pour  $g \in G$ .

- 1. Soit  $g \in G$ , montrer que  $\phi_g$  est un automorphisme de groupes.
- **2.** Montrer que la fonction  $\phi: G \to \operatorname{Int}(G)$  qui à g associe  $\phi_g$  est un morphisme de groupes.
- **3.** Montrer l'isomorphisme  $G/\mathbb{Z}(G)\cong \operatorname{Int}(G)$  où  $\mathbb{Z}(G)$  est le centre du groupe G.
- **4.** (Plus difficile) Montrer que si le groupe des automorphismes Aut(G) de G est cyclique alors G est abélien.
- **5.** (Aussi difficile) Supposons que  $\operatorname{Aut}(G)$  est trivial. Démontrer que tous les éléments de G sont d'ordre au plus 2, puis que G est soit trivial, soit isomorphe à  $\mathbb{Z}/2\mathbb{Z}$ .

# 2.11 Exercice 11.

Soit  $n \in \mathbb{N}$  et  $k \in [0, n]$ . On note  $\wp_k([1, n])$  l'ensemble des parties à k éléments de [1, n].

- **1.** Montrer que  $\mathfrak{S}_n$  agit naturellement sur  $\wp_k(\llbracket 1, n \rrbracket)$ .
- 2. Justifier que cette action est transitive.
- **3.** Calculer le stabilisateur de  $[1, k] \in \wp_k([1, n])$ .
- **4.** En appliquant la formule orbite-stabilisateur, retrouver la valeur de  $\binom{n}{k}$ .

1. Posons l'action de groupes :

$$\forall \sigma \in \mathfrak{S}_n, \forall i \in \wp_k(\llbracket 1, n \rrbracket), \qquad \sigma \cdot I = \sigma(I) = \{\sigma(i) \mid i \in I\}.$$

La partie  $\sigma(I)$  contient k éléments de [1, n]. Et, de plus, l'application  $\sigma \mapsto (I \mapsto \sigma(I))$  est

# 3 Actions de groupes et théorèmes de Sylow

#### Sommaire.

| 3.1 | Exercice 1.                                                   | 32        |
|-----|---------------------------------------------------------------|-----------|
| 3.2 | Exercice 2. Nombre de sous-espaces vectoriels                 | 33        |
| 3.3 | Exercice 3.                                                   | 33        |
| 3.4 | Exercice 4. Groupes d'ordre pq                                | <b>34</b> |
| 3.5 | Exercice 5. Théorèmes de Sylow et simpli-<br>cité des groupes | 35        |
| 3.6 | Exercice 6.                                                   | 36        |

## 3.1 Exercice 1.

Soit G un groupe infini possédant un sous-groupe strict d'indice fini. Montrer que G n'est pas simple.

Soit  $H \leq G$  un groupe tel que [G:H] est fini.

L'idée est que l'on réalise l'action  $G \curvearrowright G/H$  avec  $g \cdot xH := (gx)H$ . On considère le morphisme

$$\varphi: G \longrightarrow \mathfrak{S}(G/H)$$
$$g \longmapsto (xH \mapsto g \cdot xH).$$

On a  $\ker \varphi \triangleleft G$  et  $\ker \varphi \neq \{e\}$  par cardinalité. En effet,  $\#G = +\infty$  et puis  $\#\mathfrak{S}(G/H) = [G:H]!$  qui est fini.

Montrons que  $\ker \varphi \neq G$ . Si  $g \in \ker \varphi$  alors pour tout  $g' \in G$ , on a

$$gg'H = g'H$$
,

ce qui est vrai si et seulement si  $(g')^{-1}gg' \in H$ . En particulier pour g' := e, on a  $g \in H$ . Mais H est un sous-groupe strict de G d'où ker  $\varphi \neq G$ .

On en conclut que G n'est pas simple.

# 3.2 Exercice 2. *Nombre de sous-espaces vecto-riels*

Soient  $\mathbb{k}$  un corps fini de cardinal q et  $m \leq n$  deux entiers. Notons X l'ensemble des sous-espaces vectoriels de dimension m de  $\mathbb{k}^n$ . En étudiant l'action de  $\mathrm{GL}_n(\mathbb{k})$  sur X, calculer le nombre de sous-espaces vectoriels de dimension m de  $\mathbb{k}^n$ .

### 3.3 Exercice 3.

Soit G un groupe fini.

- 1. Soit p un nombre premier qui divise l'ordre de G et soit S un p-Sylow de G. Montrer que les trois conditions suivantes sont équivalentes :
  - a) S est l'unique p-Sylow de G;
  - **b)** S est distingué dans G;
  - c) S est stable par tout automorphisme de G (on dit que S est un sous-groupe caractétistique de G).
- **2.** On va généraliser ce résultat à d'autres groupes que les p-Sylow. Soit k un entier divisant #G et tek que k est premier à  $\frac{\#G}{k}$ . On pose  $X_k$  l'ensemble des sous-groupes  $H \leq G$  d'ordre k.
  - a) Montrer que si  $X_k$  contient un unique sous-groupe G alors G est caractéristique (et donc distingué).
  - **b)** Montrer réciproquement que si  $H \in X_k$  est distingué alors on a  $X_k = \{H\}$ .

On pourra considérer la projection  $\pi: H' \to G/H$  où H' est un élément de  $X_k$ .

- 33/60 -

1.



- $\triangleright$  « 1a  $\Longrightarrow$  1b ». Montrons que S est distingué dans G. Pour tout  $g \in G$ ,  $gSg^{-1}$  est un p-Sylow, donc  $gSg^{-1} = S$ .
- $\triangleright$  « 1b  $\Longrightarrow$  1a ». Soient S et S' deux p-Sylow. Alors, ils sont conjugués : il existe  $g \in G$  tel que  $S' = gSg^{-1}$ . Or, S est distingué donc  $S' = gSg^{-1} = S$ .
- $\triangleright$  « 1a  $\Longrightarrow$  1c ». Soit  $\varphi \in \operatorname{Aut}(G)$ . Alors  $\#\varphi(S) = \#S$  car  $\varphi$  bijectif. D'où  $\varphi(S)$  est un p-Sylow de G et donc  $\varphi(S) = S$ .
- $\triangleright$  « 1c  $\Longrightarrow$  1b ». Soit  $g \in G$  et doit

$$\operatorname{Aut}(G) \ni \varphi_g : G \longrightarrow G$$
  
$$h \longmapsto ghq^{-1}.$$

Alors,  $\varphi_q(S) = gSg^{-1} = S$  par hypothèse et donc  $S \triangleleft G$ .

2.

# 3.4 Exercice 4. *Groupes d'ordre* pq

- 1. Soit G un groupe d'ordre 15.
  - a) Compter le nombre de 3-Sylow et le nombre de 5-Sylow de G.
  - **b)** En déduire que G est forcément cyclique.
- **2.** Plus généralement, soit G un groupe d'ordre pq avec p < q et où p,q sont premiers.
  - a) On suppose que  $q \not\equiv 1 \pmod{p}$ . Démontrer que G est cyclique.
  - **b)** Exhiber des nombres premiers p et q et un groupe d'ordre pq non abélien.
- 1. a) Par les théorèmes de Sylow, on sait que  $n_3$ , le nombre de 3-Sylow dans G vérifie  $n_3 \not\equiv 1 \pmod{3}$  et  $n_3 \mid 5$ , d'où  $n_3 = 1$ . De même, on a que  $n_5 = 1$ .

- b) Soit  $S_3$  et  $S_5$  les uniques 3-Sylow et 5-Sylow de G. On sait que  $S_3$  contient e et deux éléments d'ordre 3. De même, on sait que  $S_5$  contient e et 4 éléments d'ordre 5. De plus,  $\#(G \setminus (S_3 \cup S_5)) = 8$  donc si  $x \in G \setminus (S_3 \cup S_5)$  alors  $x \neq e$  et x n'est pas d'ordre 3 (car sinon  $x \in S_3$ ) et il n'est pas d'ordre 5 pour la même raison. On en déduit que x est d'ordre 15 et  $G = \langle x \rangle$ .
- 2. a) Avec les notations précédentes, on a  $n_q \mid p$  et  $n_q \equiv 1 \pmod{q}$  donc  $n_q \in \{1, p\}$ . De plus, p < q donc  $p \not\equiv 1 \pmod{q}$  d'où  $n_q = 1$ . De même,  $n_p \equiv 1 \pmod{p}$  et  $n_p \mid q$  d'où  $n_p \in \{1, q\}$ . Or,  $q \not\equiv 1 \pmod{p}$  et donc  $n_p = 1$ .

Soient  $S_p$  et  $S_q$  les uniques p- et q-Sylow de G. Ainsi

- $\triangleright S_p$  contient e est (p-1) éléments d'ordre p;
- $\triangleright S_q$  contient e est (q-1) éléments d'ordre q.

Et,

$$\#(G \setminus S_p \cup S_q) = pq - 1 - (p-1) - (q-1) = (p-1)(q-1) > 0.$$

Si  $x \in G \setminus (S_p \cup S_q) \neq \emptyset$  alors x n'est pas d'ordre 1, ni p ni q. D'où ord x = pq (par Lagrange) et donc  $G = \langle x \rangle \cong \mathbb{Z}/pq\mathbb{Z}$ .

b) Avec p = 2 et q = 3 on a  $3 \equiv 1 \pmod{2}$  mais

$$G = \mathfrak{S}_3 \ncong \mathbb{Z}/6\mathbb{Z}$$
.

# 3.5 Exercice 5. Théorèmes de Sylow et simplicité des groupes

Soit G un groupe.

- 1. a) Montrer que si #G = 20 alors G n'est pas simple.
  - **b)** Plus généralement, montrer que si  $\#G = p^a k$  avec p premier et k un entier non divisible par p et 1 < k < p, alors G n'est pas simple.
- **2.** Montrer que si #G = 40 alors G n'est pas simple (fonctionne aussi avec #G = 45).

- **3.** En faisant agir G par conjugaison sur l'ensemble de ses p-Sylow pour un p bien choisi, montrer que si #G = 48 alors G n'est pas simple.
- **4.** (Plus difficile) Montrer que si #G = 30 ou 56, alors G n'est pas simple.
- **5.** Conclure qu'un groupe simple de cardinal non premier est d'ordre au moins 60.
- 1. a) On a  $\#G = 2^2 \times 5$  donc on a  $n_5 = 1$ . Par l'3.3, on sait qu'il existe un unique 5-Sylow et donc qu'il est distingué.
  - b) Pour  $\#G = p^a k$  avec  $p \nmid k$  et 1 < k < p on a  $n_p \mid k$  d'où  $n_p \leq k$ . De plus,  $n_p \equiv 1 \pmod{p}$  donc si  $n_p \neq 1$  alors  $n_p \geq p+1 > k$ , **absurde**. On en déduit que  $n_p = 1$  et donc que l'unique p-Sylow est distingué. On en conclut que G n'est pas simple.
- 2. On a  $n_5 \mid 8$  et  $n_5 \equiv 1 \pmod{5}$  donc  $n_5 = 1$ . On procède comme précédemment.
- **3.** On a  $\#G = 48 = 2^3 \times 3$ . On sait que  $n_2 \in \{1,3\}$  et  $n_3 \in \{1,4,16\}$ . On fait agir G sur  $\mathrm{Syl}_2(G)$  l'ensemble des 2-Sylow de G par :

$$g \cdot S := gSg^{-1}.$$

Ceci induit un morphisme

$$\varphi: G \longrightarrow \mathfrak{S}_{n_2}.$$

On a deux cas:

- $\triangleright$  si  $n_2 = 1$ , alors on a fini;
- ▷ si  $n_2 = 3$  alors  $\ker \varphi \neq \{e\}$  (car #G = 48 et  $\#\mathfrak{S}_3 = 3! = 6$ ) et, de plus, par les théorèmes de Sylow, l'action est transitive, d'où  $\ker \varphi \triangleleft G$  et  $\{e\} \neq \ker \varphi \neq G$  d'où G n'est pas simple.

# 3.6 Exercice 6.

Soit G un groupe fini simple d'ordre supérieur ou égal à 3.

- **1.** Soit  $H \leq G$  un sous-groupe strict de G. Montrer qu'il existe un morphisme injectif  $\varphi: G \hookrightarrow \mathfrak{S}(G/H)$  et donc que  $\#G \mid [G:H]!$ . (Indication: faire agir G sur G/H.)
- **2.** Montrer que  $\varphi(G) \subseteq \mathfrak{A}(G/H)$  et donc que  $\#G \mid \frac{1}{2}[G:H]!$ .
- **3.** Soit p un nombre premier divisant #G. On note  $n_p$  le nombre de p-Sylow de G.
  - a) Montrer qu'il existe un morphisme injectif  $\varphi_p: G \hookrightarrow \mathfrak{A}_{n_p}$  et donc que  $\#G \mid \frac{1}{2}n_p!$ .
  - **b)** En déduire qu'un groupe d'ordre 80 ou 112 n'est pas simple.
- 1. On fait agir G sur G/H en posant  $g \cdot (g'H) := (gg')H$ . Ceci induit un morphisme  $\varphi : G \to \mathfrak{S}(G/H)$ . Il est injectif car ker  $\varphi \triangleleft G$  donc, par simplicité de G,
  - $\triangleright \ker \varphi = \{e\};$
  - $\triangleright$  ker  $\varphi = G$  mais l'ordre de G est supérieur à 3 donc  $\varphi$  est non-nulle.

Enfin, par le premier théorème d'isomorphisme :

$$G/\ker \varphi = G \cong \operatorname{im} \varphi \leq \mathfrak{S}(G/H),$$

d'où  $\#G \mid [G:H]!$  par cardinalité et Lagrange.

2. Montrons que  $\varphi(G) \subseteq \mathfrak{A}(G/H)$  en montrant  $\varphi^{-1}(\mathfrak{A}(G/H)) = G$ . On sait que  $\mathfrak{A}(G/H) \triangleleft \mathfrak{S}(G/H)$  d'où  $\varphi^{-1}(\mathfrak{A}(G/H)) \triangleleft G$ . Par cardinalité, il est impossible que  $\varphi^{-1}(\mathfrak{A}(G/H)) = \{e\}$ . On en conclut que  $\varphi^{-1}(\mathfrak{A}(G/H)) = G$ .

# 4 Groupe symétrique

#### Sommaire.

| 4.1 | Exercice 1.                                 | 38        |
|-----|---------------------------------------------|-----------|
| 4.2 | Exercice 2. Générateurs de $\mathfrak{A}_n$ | 38        |
| 4.3 | Exercice 3.                                 | <b>39</b> |

#### 4.1 Exercice 1.

Soit  $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 6 & 9 & 7 & 2 & 5 & 8 & 1 & 3 \end{pmatrix} \in \mathfrak{S}_9$ . Déterminer sa décomposition canonique en produit de cycles disjoints, son ordre, sa signature, une décomposition en produit de transposition ainsi que  $\sigma^{100}$ .

On a  $\sigma = \begin{pmatrix} 1 & 4 & 7 & 8 \end{pmatrix} \begin{pmatrix} 2 & 6 & 5 \end{pmatrix} \begin{pmatrix} 3 & 9 \end{pmatrix}$ . Son ordre est le PPCM des ordres précédent, c'est donc 12. Sa signature est  $(-1) \times 1 \times (-1) = 1$ . On décompose en produit de transposition chaque cycle et on conclut. On calcule

$$\sigma^{100} = \begin{pmatrix} 1 & 4 & 7 & 8 \end{pmatrix}^{100} \begin{pmatrix} 2 & 6 & 5 \end{pmatrix}^{100} \begin{pmatrix} 3 & 9 \end{pmatrix}^{100},$$

car les cycles à supports disjoints commutent, et donc

$$\sigma^{100} = (2 \ 6 \ 5)$$
.

## 4.2 Exercice 2. Générateurs de $\mathfrak{A}_n$

Soit n > 3.

- 1. Rappeler pourquoi  $\mathfrak{A}_n$  est engendré par les 3-cycles.
- **2.** Démontrer que  $\mathfrak{A}_n$  est engendré par les carrés d'éléments de  $\mathfrak{S}_n$ . Est-ce que tout élément de  $\mathfrak{A}_n$  est un carré dans  $\mathfrak{S}_n$ ?
- **3.** Démontrer que pour  $n \geq 5$ ,  $\mathfrak{A}_n$  est engendré par les bitranspositions.
- **4.** Démontrer que  $\mathfrak{A}_n$  est engendré par les 3-cycles de la forme  $(1\ 2\ i)$  pour  $i\in [3,n]$ .
- **5.** En déduire que si  $n \geq 5$  est impair, alors  $\mathfrak{A}_n$  est engendré par les permutations  $(1\ 2\ 3)$  et  $(3\ 4\ \cdots\ n)$  et que si  $n \geq 4$  est pair, alors  $\mathfrak{A}_n$  est engendré par  $(1\ 2\ 3)$  et  $(1\ 2)(3\ 4\ \cdots\ n)$ .
- 1. On utilise le fait que tout  $\sigma \in \mathfrak{A}_n$  se décompose comme produit d'un nombre pair de transpositions. Puis, on utilise les égalités
  - $\triangleright (i j)(i k) = (i j k),$
  - $\triangleright (i j)(i j) = id,$
  - $\triangleright (i j)(k \ell) = (i \ell k)(i j k),$

pour déterminer un produit de 3-cycles égal à  $\sigma$ .

2. On utilise la question précédente. Soit  $(a \ b \ c)$  un 3-cycle. On a alors  $(a \ b \ c)^4 = (a \ b \ c)$ , et donc  $\sigma = (a \ b \ c)^2$ . Ceci permet d'en déduire que les carrés de permutations engendrent  $\mathfrak{A}_n$ .

#### 4.3 Exercice 3.

Soit  $n \leq 5$ . Démontrer que deux permutations de  $\mathfrak{S}_n$  sont conjuguées si et seulement si elles ont même ordre et même signature. Vérifier que c'est faux si n = 6.

# 5 Quotient et dualité

#### Sommaire.

| 5.1 | Exercice 1. |                                     | 40 |
|-----|-------------|-------------------------------------|----|
| 5.2 | Exercice 2. | Théorèmes d'isomorphismes           | 40 |
| 5.3 | Exercice 3. | ${\it Changement de base duale}  .$ | 41 |

#### **5.1** Exercice **1**.

Donner un exemple de  $\mathbb{k}$ -espace vectoriel E et de sous-espace vectoriel F de E où

- 1. dim F est finie et dim(E/F) est infinie;
- **2.** dim F est infinie et dim(E/F) est finie;
- **3.** dim F est infinie et dim(E/F) est infinie.
- 1. Considérons  $E = \mathbb{R}^2$  et  $F = \{(0,0)\}.$
- 2. Considérons  $E = \mathbb{R}^2$  et  $F = \mathbb{R}^2$ .
- 3. Considérons  $\mathbb{R}^2$  et  $F = \mathbb{R} \times \{0\}$ .

## 5.2 Exercice 2. Théorèmes d'isomorphismes

Soient E un k-espace vectoriel, et F et G deux sous-espaces vectoriels de E. On note  $\pi: E \to E/F$  la projection canonique.

- 1. Montrer que l'application  $G \mapsto \pi(G)$  induit une bijection croissante entre l'ensemble des sous-espaces vectoriels de E contenant F et l'ensemble des sous-espaces vectoriels de E/F. Quelle est sa bijection réciproque?
- **2.** Construire un isomorphisme entre  $F/(F \cap G) = (F+G)/G$ .

**3.** On suppose  $F \subseteq G$ . Montrer que G/F s'identifie à un sousespace vectoriel de E/F et construire un isomorphisme entre (E/F)/(G/F) et E/G.

## 5.3 Exercice 3. Changement de base duale

Soit E un  $\mathbb{k}$ -espace vectoriel de dimension finie. Soient  $\mathbf{e} = (e_i)_{i \in [\![1,n]\!]}$  et  $\mathbf{f} = (f_i)_{i \in [\![1,n]\!]}$  deux bases de E, et  $\mathbf{e}^* = (e_i^*)_{i \in [\![1,n]\!]}$  leurs bases duales respectives. Soit  $A = (a_{i,j})_{i,j}$  la matrice de passage de  $\mathbf{e}$  à  $\mathbf{f}$ .

- **1.** Pour  $j \in [1, n]$ , on écrit  $e_j^* = \sum_{i=1}^n \alpha_{i,j} f_i^*$  avec  $\alpha_{i,j} \in \mathbb{k}$ , pour tout  $1 \le i, j \le n$ . Déterminer  $A' = (\alpha_{i,j})_{i,j}$  en fonction de A.
- **2.** En déduire la matrice de passage de  $e^*$  à  $f^*$  en fonction de A.

1.

# 6 Transposition, orthogonalité, et formes bilinéaires

# 7 Formes quadratiques

# 8 Formes quadratiques – épisode 2

# 9 Produits tensoriels

#### Sommaire.

| 9.1 | Exercice 1.                          | <b>45</b> |
|-----|--------------------------------------|-----------|
| 9.2 | Exercice 2. Isomorphismes canoniques | <b>47</b> |

#### **9.1** Exercice **1**.

Soient E, F et G des espaces vectoriels de dimension finie supérieure à 2.

- 1. Donner un élément de  $E \otimes F$  qui n'est pas un tenseur simple.
- **2.** Donner un exemple d'espaces vectoriels E, F et G et d'application linéaire  $h: E \otimes F \to G$  telle que  $h(x \otimes y) \neq 0$  pour tout  $x \in E \setminus \{0\}$  et  $y \in F \setminus \{0\}$  mais qui n'est pas injective.
- **3.** Que se passe-t-il si E ou F est de dimension 1?
- **4.** Soient  $f: E \to G$  et  $g: F \to G$  des applications linéaires. Existe-t-il une application linéaire  $\varphi: E \otimes F \to G$  telle que pour tout  $x \in E$  et  $y \in F$  on ait

$$\varphi(x \otimes y) = f(x) + f(y).$$

1. Considérons  $(e_1, e_2)$  une famille libre de E et  $(f_1, f_2)$  une famille libre de F. On considère

$$z = e_1 \otimes f_1 + e_2 \otimes f_2 \in E \otimes F.$$

L'élément z n'est pas simple. Par l'absurde, supposons le simple, et on écrit que  $z = x \otimes y$  avec  $x \in E$  et  $y \in F$ . On complète les familles  $(e_1, e_2)$  et  $(f_1, f_2)$  en deux bases  $(e_i)_{i \in [\![1,n]\!]}$  et  $(f_j)_{j \in [\![1,m]\!]}$  de -45/60 –

E et F respectivement. On écrit, avec les bases,  $x = \sum_{i=1}^{n} \lambda_i x_i$  puis  $y = \sum_{j=1}^{m} \mu_j f_j$ . Alors  $x \otimes y = \sum_{i,j} \lambda_i \mu_j (e_i \otimes f_j) = z$ . Ceci permet d'en déduire que

$$\lambda_i \mu_j = \begin{cases} 1 & \text{si } i = j = 1 \text{ ou } i = j = 2\\ 0 & \text{sinon.} \end{cases}$$

D'où,  $\lambda_1\mu_2 = 0$  et donc  $\lambda_1 = 0$  ou  $\mu_2 = 0$ . Cependant,  $\lambda_1\mu_1 = \lambda_2\mu_2 = 1$ , ce qui est **absurde**. Ainsi z n'est pas un tenseur simple.

2. Considérons  $\mathbb{k} = \mathbb{R}$  et  $E = F = \mathbb{C}$  vu comme un  $\mathbb{k}$ -espace vectoriel de dimension 2. On pose l'application

$$\varphi: \mathbb{C} \times \mathbb{C} \longrightarrow \mathbb{C}$$
$$(x, y) \longmapsto xy,$$

qui est bilinéaire. Ainsi, par propriété universelle,  $\varphi$  induit une unique application linéaire

$$h: \mathbb{C} \otimes \mathbb{C} \longrightarrow \mathbb{C}$$
$$x \otimes y \longmapsto xy.$$

Alors, pour tout  $x, y \in \mathbb{C} \setminus \{0\}$ , alors  $h(x \otimes y) = xy \neq 0$ . Or, on a  $h(1 \otimes i) = h(i \otimes i)$  et  $1 \otimes i \neq i \otimes 1$  donne la non injectivité (car  $(1 \otimes 1, i \otimes 1, 1 \otimes i, i \otimes i)$  forme une base de  $\mathbb{C} \otimes \mathbb{C}$ ).

**3.** Si dim E = 1 on écrit E = vect e. Soit  $(f_i)_{i \in [\![1,n]\!]}$  une base de F. Une base de  $E \otimes F$  est  $(e \otimes f_1, \ldots, e \otimes f_n)$ , et

$$\sum_{j=1}^{n} \lambda_j(e \otimes f_j) = e \otimes \Big(\sum_{j=1}^{n} \lambda_j f_j\Big).$$

Tout élément de  $E \otimes F$  est donc un tenseur simple! Ainsi, l'application

$$F \longrightarrow E \otimes F$$
$$y \longmapsto e \otimes y$$

est un isomorphisme.

4. Montrons que l'application  $\varphi$  existe et est nécessairement nulle. On a, pour tout  $x \in E$  et  $y \in F$ 

$$f(x) = f(x) + 0 = \varphi(x \otimes 0) = 0 = \varphi(0 \otimes y) = g(y) = 0.$$

D'où, f = 0 et g = 0.

#### 9.2 Exercice 2. Isomorphismes canoniques

Soient E et F deux espaces vectoriels de dimension finie.

1. a) Montrer que l'application  $E \times F \to F \otimes E$  donnée par  $(x,y) \mapsto y \otimes x$  est bilinéaire. En déduire qu'il existe une unique application linéaire

$$f: E \otimes F \to F \otimes E$$

qui vérifie  $f(x \otimes y) = y \otimes x$ , pour tout  $x \in E$  et tout  $y \in F$ .

On construit de même une application linéaire

$$q: F \otimes E \to E \otimes F$$

telle que  $q(y \otimes x) = x \otimes y$ .

- **b)** Montrer que  $f \circ g = \mathrm{id}_{F \otimes E}$  et  $g \circ f = \mathrm{id}_{E \otimes F}$ . En particulier, f et g réalisent des isomorphismes entre  $E \otimes F$  et  $F \otimes E$ .
- 2.
- 1. a) L'application

$$\varphi: E \times F \longrightarrow F \otimes E$$
$$(x, y) \longmapsto y \otimes x$$

est linéaire à gauche car  $\cdot \otimes \cdot$  est linéaire à droite, et  $\varphi$  est linéaire à droite car  $\cdot \otimes \cdot$  est linéaire à gauche. Par propriété universelle, on sait que  $\varphi$  induit une unique application linéaire  $f: E \otimes F \to F \otimes E$ .

**b)** Soit  $z \in E \otimes F$ . On pose  $z = \sum_{i=1}^{n} (x_i \otimes y_i)$  avec  $x_i \in E$  et  $y_j \in F$ . Alors,

$$g(f(z)) = g\left(f\left(\sum_{i=1}^{n} x_i \otimes y_i\right)\right)$$

$$= \sum_{i=1}^{n} g(f(x_i \otimes y_i))$$

$$= \sum_{i=1}^{n} g(y_i \otimes x_i)$$

$$= \sum_{i=1}^{n} x_i \otimes y_i$$

$$= z.$$

D'où,  $g \circ f = \mathrm{id}_{E \otimes F}$ . De même,  $f \circ g = \mathrm{id}_{F \otimes E}$ .

**2.** Pour  $f \in E^*$  et  $g \in F^*$ , l'application

$$E \times F \longrightarrow \mathbb{k}$$
$$(x,y) \longmapsto f(x) \ g(y)$$

est bilinéaire. Ainsi, par propriété universelle, elle induit une application linéaire

$$P(f,g): E \otimes F \longrightarrow \mathbb{k}$$
  
 $x \otimes y \longmapsto f(x) \ g(y).$ 

L'application

$$P: E^* \times F^* \longrightarrow (E \otimes F)^*$$
$$(f,g) \longmapsto P(f,g)$$

est bilinéaire donc, par propriété universelle, elle induit une unique application linéaire

$$\gamma: E^* \otimes F^* \longrightarrow (E \otimes F)^*$$
$$f \otimes g \longmapsto P(f, g).$$
$$-48/60 -$$

De plus, soit  $(e_i)_i$  une base de E et  $(f_j)_j$  une base de F. Une base de  $(E \otimes F)^*$  est donnée par  $((e_i \otimes f_j)^*)_{i,j}$ . On vérifie que

$$\gamma(e_i^* \otimes f_j^*) = (e_i \otimes f_j)^*$$

par

$$\gamma(e_i^* \otimes f_j^*)(e_k \otimes f_\ell) = P(e_i^*, f_j^*)(e_i \otimes f_\ell) = e_i^*(e_k) \times f_j^*(f_\ell) = \delta_{i,k} \times \delta_{j,\ell}.$$

Ainsi  $\gamma$  est surjective. On conclut par égalité des dimensions :

$$\dim(E^* \otimes F^*) = \dim(E^*) \dim(F^*) = \dim(E) \dim(F) = \dim(E \otimes F) = \dim((E \otimes F)^*).$$

D'où,  $\gamma$  est un isomorphisme.

#### 3. L'application

$$E^* \times F \longrightarrow \operatorname{Hom}(E, F)$$
  
 $(\lambda, y) \longmapsto (x \mapsto \lambda(x)y)$ 

est bilinéaire, donc par propriété universelle, elle induit  $\Phi$ .

Une base de  $\operatorname{Hom}(E, F)$  est donnée par les  $h_{i,j}: x \mapsto e_i^*(x) f_j$ . Or,  $h_{i,j} = \Phi(e_i^*, f_j)$ , donc  $\Phi$  est surjective.

Enfin, on a

$$\dim(E^* \otimes F) = (\dim E^*)(\dim F) = (\dim E)(\dim F) = \dim(\operatorname{Hom}(E, F)).$$

D'où,  $\Phi$  est un isomorphisme.

# 10 Représentation de groupes.

## 11 Théorie des caractères.

#### Sommaire.

| 11.1 Exercice 1. Rappels de cours               | <b>51</b> |
|-------------------------------------------------|-----------|
| 11.2 Exercice 2. Représentation d'une action de |           |
| groupe                                          | $\bf 52$  |

## 11.1 Exercice 1. Rappels de cours

#### Montrer que :

- **1.** une représentation  $(V, \rho)$  est irréductible si, et seulement si on a  $\langle \chi_V, \chi_V \rangle = 1$ ;
- **2.** deux représentations  $(V, \rho)$  et  $(V', \rho')$  sont isomorphes si, et seulement si  $\chi_V = \chi_{V'}$ .
- 1. On procède en deux temps.
  - $\triangleright$  «  $\Longrightarrow$  ». Si V est irréductible alors, par le lemme de Schur, on a  $\dim \operatorname{Hom}_G(V,V)=1$  et donc

$$\langle \chi_V, \chi_V \rangle = \dim \operatorname{Hom}_G(V, V) = 1$$

 $\triangleright$  «  $\iff$  ». Si on écrit  $V = \bigoplus_{k=1}^r W_k^{n_k}$  où  $W_k$  est une représentation irréductible, deux ) deux non isomorphe, et avec  $n_k \ge 1$ . Ainsi,

$$\langle \chi_V, \chi_V \rangle = \left\langle \chi_V, \sum_{k=1}^r n_k \chi_{W_k} \right\rangle = \sum_{k=1}^r n_k \langle \chi_V, \chi_{W_k} \rangle = \sum_{k=1}^r n_k^2.$$

Or,  $\langle \chi_V, \chi_V \rangle = 1$  donc  $\sum_{k=1}^r n_k^2 = 1$  avec  $n_k \geq 1$ . On en déduit que r=1 et  $n_1=1$ . Ainsi V est irréductible.

- 2. Soient  $(V, \rho)$  et  $(V', \rho')$  deux représentations de G. On décompose  $V = \sum_{W_k \in \mathcal{I}_G} W_k^{n_k}$  avec les  $W_k$  irréductibles, et deux à deux non isomorphes. Or,  $\langle \chi_V, \chi_{W_k} \rangle = n_k$ .
  - $\triangleright$  «  $\Longrightarrow$  ». Si  $(V, \rho) \cong (V', \rho')$ , alors il existe  $u \in GL(V, W)$  tel que pour tout  $q \in G$ ,

$$\rho'(g) = u \circ \rho(g) \circ u^{-1}.$$

Ainsi,  $\chi_V(g) = \operatorname{Tr}(\rho(g)) = \operatorname{Tr}(\rho'(g)) = \chi_{V'}(g)$ . On en conclut  $\chi_V = \chi_{V'}$ .

 $\triangleright$  «  $\iff$  ». Si  $\chi_V = \chi_{V'}$  alors  $\langle \chi_{V'}, \chi_{W_k} \rangle = n_k$  et donc

$$V' \cong \bigoplus_{W_k \in \mathcal{I}_G} W_k^{n_k} = V.$$

# 11.2 Exercice 2. Représentation d'une action de groupe

Soit G un groupe fini agissant sur un ensemble fini X. On note également  $\mathfrak{G}_1, \ldots, \mathfrak{G}_k$  les orbites de X sous l'action de G. On définit la représentation associée à cette action de la manière suivante : on pose

$$V_X := \bigoplus_{x \in X} \mathbb{C}e_x,$$

et  $g \in G$  agit sur  $V_X$  par

$$g \cdot \left(\sum_{x \in X} a_x e_x\right) := \sum_{x \in X} a_x e_{g \cdot x}.$$

- 1. Montrer que  $\chi_{V_X}(g) = \#\{x \in X \mid g \cdot x = x\}.$
- **2.** a) Montrer que  $V_X^G$  est engendré par les  $e_{\mathfrak{G}_i} := \sum_{x \in \mathfrak{G}_i} e_x$ .
  - **b)** En déduire que le nombre d'orbite de X est égal à  $\dim(V_X^G)$ .

On suppose que l'action de G est transitive. La représentation se décompose donc en  $\mathbb{1} \oplus H$  où H ne contient pas de sous-représentation isomorphe à la représentation triviale.

- **3.** On fait agir G sur  $X \times X$  de manière diagonale. Montrer que  $\chi_{V_{X\times X}} = \chi_{V_X}$ .
- **4.** On dit que G agit deux fois transitivement si  $\#X \ge 2$  et pour tous couples  $(x_1, y_1), (x_2, y_2) \in X \times X$  avec  $x_1 \ne y_1$  et  $x_2 \ne y_2$  il existe  $g \in G$  tel que  $g \cdot (x_1, y_1) = (x_2, y_2)$ .

Montrer que G agit deux fois transitivement si et seulement si l'action  $G \curvearrowright X \times X$  a deux orbites.

**5.** Montrer que G agit deux fois transitivement si et seulement si  $\langle \chi^2_{V_Y}, \mathbb{1} \rangle = 2$  si et seulement si H est irréductible.

#### Applications:

- **6.** On prend l'action naturelle de  $\mathfrak{S}_n$  sur [1, n].
  - a) Retrouver que  $V_X$  se décompose en une somme de deux représentations irréductibles  $\mathbb{1} \oplus H$ .
  - b) Calculer le caractère de la représentation standard.
- 7. On prend l'action par translation de G sur lui-même. Calculer le caractère de la représentation régulière.
- 1. On considère la base duale  $(e_x^*)_{x\in X}$  de  $(e_x)_{x\in X}$ . Alors, pour tout  $g\in G$ , on a

$$\chi_{V_X}(g) = \operatorname{Tr}(\rho_X(g))$$

$$= \sum_{x \in X} e_x^*(\rho_X(g)(e_x))$$

$$= \sum_{x \in X} e_x^*(e_{g \cdot x})$$

$$= \#\{x \in X \mid g \cdot x = x\}.$$

2. a) On sait que

$$V_X^G = \{ v \in V_X \mid \forall g \in G, g \cdot v = v \}.$$

Or, 
$$g\cdot e_{\mathbb{G}_i}=\sum_{x\in\mathbb{G}_i}e_{g\cdot x}=\sum_{x\in\mathbb{G}_i}e_x=e_{\mathbb{G}_i},$$
 
$$-\ 53/60\ -$$

donc  $e_{\mathbb{G}_i} \in V_X^G$ , et donc  $\operatorname{vect}((e_{\mathbb{G}_i})_i) \subseteq V_X^G$ . Réciproquement, soit  $v \in V_X^G$ . On écrit  $v = \sum_{x \in X} \lambda_x e_x$ . Alors, pour tout élément  $g \in G$ ,  $g \cdot x = x$  donc  $\lambda_{g \cdot x} = \lambda_x$  pour tout  $x \in X$ . Autrement dit, si  $x, y \in \mathbb{G}_i$  alors  $\lambda_x = \lambda_y =: \lambda_{\mathbb{G}_i}$ . Donc

$$v = \sum_{x \in X} \lambda_x e_x = \sum_{i=1}^k \lambda_{\emptyset_i} \sum_{x \in \emptyset_i} e_x = \sum_{i=1}^k \lambda_{\emptyset_i} e_{\emptyset_i} \in \text{vect}((e_{\emptyset_i})_i),$$

d'où l'inclusion réciproque et donc l'égalité.

b) Les  $(e_{\mathfrak{G}_i})$  forment une famille libre car les  $(e_i)$  le sont et car les  $\mathfrak{G}_i$  forment une partition de X. Ainsi,

$$\dim(V_X^G) = \dim \operatorname{vect}((e_{\mathfrak{G}_i})_i) = k.$$

3. On fait agir G sur  $X \times X$  par action diagonale, c'est à dire que

$$g \cdot (x, y) := (g \cdot x, g \cdot y).$$

Ainsi, pour  $g \in G$ , par combinatoire,

$$\chi_{V_{X\times X}}(g) = \#\{(x,y) \in X \times X \mid g \cdot (x,y) = (x,y)\}$$
  
=  $(\#\{x \in X \mid g \cdot x = x\})^2$   
=  $(\chi_{V_X}(g))^2$ .

**4.** Soit  $D := \{(x, x) \mid x \in X\}$ . C'est une orbite de l'action de G sur  $X \times X$  par transitivité de l'action  $G \cap X$ . Ainsi, on a la chaîne d'équivalences suivante :

$$G \curvearrowright X \times X$$
 admet deux orbites



 $(X \times X) \setminus D$  est une orbite



$$\forall x_1 \neq y_1, x_2 \neq y_2, \exists g \in G, g \cdot (x_1, x_2) = (x_2, y_2),$$

d'où l'équivalence.

- 5. On ré-écrit les propriétés étudiées :
  - (i) G agit deux fois transitivement sur X;
  - (ii)  $\langle \chi_{V_X}^2, \mathbb{1} \rangle = 2;$
  - (iii) H irréductible.

$$\triangleright \ll (i) \Longrightarrow (ii) \gg$$

$$\begin{split} \langle \chi_{V_X}^2, \mathbb{1} \rangle &= \langle \chi_{V_{X \times X}}, \mathbb{1} \rangle = \frac{1}{G} \sum_{g \in G} \overline{\chi_{V_X}(g)} \\ &= \overline{\dim(V_{X \times X}^G)} = \dim(V_{X \times X}^G). \end{split}$$

# 12 Table de caractères.

#### Sommaire.

| 12.1 Exercice 1. Caractères linéaires                     | <b>56</b> |
|-----------------------------------------------------------|-----------|
| 12.2 Exercice 2. Certaines propriétés des repré-          |           |
| $sentations  de  \mathfrak{S}_n.$                         | <b>57</b> |
| 12.3 Exercice 3. Table de caractères de $\mathfrak{A}_4$  | <b>57</b> |
| 12.4 Exercice 4. Tables de caractères de $D_8$ et $H_8$ . | <b>59</b> |

#### 12.1 Exercice 1. Caractères linéaires

Soit G un groupe fini.

- 1. Si G est abélien, montrer qu'il admet #G représentations de degré 1 à isomorphisme près.
- **2.** En déduire que, dans le cas général, il en admet [G : D(G)].
- 1. On sait que G est abélien. Alors, toutes les représentations irréductibles de G sont de degré 1. Ainsi,

$$#G = \sum_{V \text{ irréductible}} (\dim V)^2 = #\{\text{représentations irréductibles}\}.$$

Justifions le « toutes les représentations irréductibles de G sont de degré 1 ». Soit  $(V, \rho)$  une représentation irréductible de G. Alors, pour tout  $g, h \in G$  alors  $\rho(g)\rho(h) = \rho(h)\rho(g)$  et ainsi  $\rho(g)$  et  $\rho(h)$  sont diagonalisables. Donc elles sont co-diagonalisable. Alors il existe une base  $\mathcal{B}$  de V qui co-diagonalise  $\rho(g)$  et donc le premier vecteur de  $\mathcal{B}$  engendre une droite propre D pour chaque  $\rho(g)$ . Et, D est donc stable par tous les  $\rho(g)$ , c'est donc

une sous-représentation de V. Par irréductibilité de V, on a D=V et donc  $\dim V=1.$ 

2. Le dual de G, noté  $G^*$ , est l'ensemble des caractères linéaires. On a vu dans le DM n°1 que  $G^* \cong (G^{ab})^*$ , où  $G^{ab} := G/D(G)$ . Ainsi, d'après la question 1, on sait que  $G^{ab}$  admet exactement  $|G^{ab}|$  caractères linéaires. D'où,  $|(G^{ab})^*| = |G^{ab}|$ . On en conclut que

$$|G^{\star}| = [G : D(G)].$$

# 12.2 Exercice 2. Certaines propriétés des représentations de $\mathfrak{S}_n$ .

Soit n > 2 un entier.

- 1. Soit  $\sigma \in \mathfrak{S}_n$ . Justifier que  $\sigma$  et  $\sigma^{-1}$  sont conjuguées dans  $\mathfrak{S}_n$ .
- **2.** En déduire que la table de caractère de  $\mathfrak{S}_n$  est à valeurs réelles.

Remarque : On peut même montrer que la table de caractère de  $\mathfrak{S}_n$  est toujours à valeurs entières, mais cela nécessite des arguments de théorie des corps du cours d'Algèbre 2.

- 1. La classe de conjugaison de  $\sigma$  est déterminée par les longueurs des cycles apparaissant dans la décomposition en cycles à supports disjoints (i.e. le type). L'inverse d'un p-cycle est un p-cycle par tout  $p \in [2, n]$  donc  $\sigma$  et  $\sigma^{-1}$  ont même type. On en conclut que  $\sigma$  et  $\sigma^{-1}$  sont conjugués.
- 2. Pour tout caractère  $\chi$ , pour toute permutation  $\sigma \in \mathfrak{S}_n$ , on a

$$\chi(\sigma) = \overline{\chi(\sigma^{-1})} = \overline{\chi(\sigma)},$$

car  $\chi$  est constant sur les classes de conjugaisons. Ainsi,  $\chi(\sigma) \in \mathbb{R}$  et la table de caractères de  $\mathfrak{S}_n$  est réelle.

## 12.3 Exercice 3. Table de caractères de $\mathfrak{A}_4$ .

1. Montrer que  $\mathfrak{A}_4$  a 4 classes de conjugaison : l'identité, la classe de  $(1\ 2\ 3)$ , la classe de  $(1\ 3\ 2)$ , et les doubles transpositions.

- **2.** Montrer que le groupe dérivé de  $\mathfrak{A}_4$  est le sous-groupe des doubles transpositions, et en déduire 3 caractères linéaires de  $\mathfrak{A}_4$ .
- 3. Déterminer la dimension de la dernière représentation irréductible de  $\mathfrak{A}_4$  grâce aux propriétés de la représentation régulière.
- **4.** En utilisant l'orthogonalité des colonnes, déterminer alors la table de caractère de  $\mathfrak{A}_4$ .
- 1. On connait les classes de conjugaisons dans  $\mathfrak{S}_4$ , et on regardent celles qui sont dans  $\mathfrak{A}_4$ . Il faudra après re-vérifier que ces classes de conjugaisons ne se re-découpent pas dans  $\mathfrak{A}_4$ .

Dans  $\mathfrak{S}_4$ , on a

- $\triangleright$  {id}  $\subseteq \mathfrak{A}_4$ ;
- $\triangleright$  {transpositions}  $\nsubseteq \mathfrak{A}_4$ ;
- $\triangleright$  {3-cycles}  $\subseteq \mathfrak{A}_4$ ;
- $\triangleright$  {bi-transpositions}  $\subseteq \mathfrak{A}_4$ ;
- $\triangleright$  {4-cycles}  $\not\subseteq \mathfrak{A}_4$ .

Les classes  $\{id\}$  et  $\{bi\text{-transpositions}\}$  ne se re-découpent pas. Cependant, pour les 3-cycles, on les décompose en deux classes : celle de  $(1\ 2\ 3)$  et  $(1\ 3\ 2)$ .

 $\triangleright$  Les deux permutions ne sont pas conjuguées car, si elles l'étaient, alors il existerait  $\sigma \in \mathfrak{A}_4$  telle que

$$(\sigma(1) \ \sigma(2) \ \sigma(3)) = \sigma \ (1 \ 2 \ 3) \ \sigma^{-1} = (1 \ 3 \ 2).$$

Et,  $\sigma(4) = 4$  donc  $\sigma$  permute 1, 2, 3. Par  $\mathfrak{A}_3$ , on en déduit que l'on a  $\sigma \in \{id, (1\ 2\ 3), (1\ 3\ 2)\}$ . On en conclut que  $\sigma$  et  $(1\ 2\ 3)$  commutent : **absurde** car

$$\sigma (123) \sigma^{-1} = (123) \neq (132).$$

▷ On sait que  $\#\text{Cl}_{\mathfrak{A}_4}((1\ 2\ 3)) = \#\mathfrak{A}_4/\#\text{C}_{\mathfrak{A}_4}((1\ 2\ 3))$  (par relation orbite-stabilisateur pour la conjugaison). De plus, on sait que  $\#\text{Cl}_{\mathfrak{S}_4}((1\ 2\ 3)) = \#\mathfrak{S}_4/\#\text{C}_{\mathfrak{S}_4}((1\ 2\ 3))$ . Ainsi, on a que  $\#\text{C}_{\mathfrak{S}_4}((1\ 2\ 3)) = 3$ . On a  $\text{C}_{\mathfrak{S}_4}((1\ 2\ 3)) = \langle (1\ 2\ 3) \rangle$ . -58/60

Or, 
$$C_{\mathfrak{A}_4}((123)) = \mathfrak{A}_4 \cap C_{\mathfrak{S}_4}((123))$$
. Ainsi,  $\#Cl_{\mathfrak{S}_4}((132)) = 4$ .

Tous les 3-cycles de  $\mathfrak{A}_4$  sont répartis dans deux classes de conjugaisons : celle de  $(1\ 2\ 3)$  et celle de  $(1\ 3\ 2)$ .

▷ Et  $\mathfrak{A}_4$  est 2-transitif donc (12)(34) est conjugué à (ab)(cd) pour tout a, b, c, d distincts avec  $\sigma: 1 \mapsto a, 2 \mapsto b$  car

$$\sigma(1\ 2)(3\ 4)\sigma^{-1} = \cdots = (a\ b)(c\ d).$$

Donc, les classes de conjugaisons de  $\mathfrak{A}_4$  sont :

 $\{id\}$   $\{classe\ de\ (123)\}$   $\{classe\ de\ (132)\}$  et  $\{bi\text{-transpositions}\}.$ 

- 2. Si H ⊲ G et G/H est abélien alors D(G) ⊆ H. Le sous-groupe distingué V<sub>4</sub> ⊲ A<sub>4</sub> est le sous-groupe contenant l'identité et les bi-transpositions. On a |A<sub>4</sub>/V<sub>4</sub>| = 3 donc A<sub>4</sub>/V<sub>4</sub> est abélien, d'où on a D(A<sub>4</sub>) ⊆ V<sub>4</sub>. Or, D(A<sub>4</sub>) ⊲ A<sub>4</sub> donc c'est une union de classe de conjugaisons. Ainsi D(A<sub>4</sub>) = {id} et D(A<sub>4</sub>) = V<sub>4</sub>. Et, puisque A<sub>4</sub> est non-abélien, alors D(A<sub>4</sub>) ≠ {id}. On en déduit que D(A<sub>4</sub>) = V<sub>4</sub>. On a que A<sub>4</sub> a 3 = [A<sub>4</sub> : V<sub>4</sub>] caractères linéaires (c.f. exercice 12.1). Un caractère linéaire χ de A<sub>4</sub> vérifie donc χ(V<sub>4</sub>) = 1 et est uniquement déterminé par χ(1 2 3) ∈ {1, j, j²} où j = e<sup>2iπ/3</sup>.
- 3. On a que  $\#\mathfrak{A}_4 = 12 = 1^2 + 1^2 + 1^2 + 3^2$ .
- 4. On en déduit la table suivante.

Figure 12.1 | Table de caractères de  $\mathfrak{A}_4$ 

# 12.4 Exercice 4. Tables de caractères de $D_8$ et $H_8$ .

On va calculer les tables de caractères des groupes  $D_8$  et  $H_8$ .

- 1. Soit  $D_8$  le groupe diédral d'ordre 8. Il est engendré par deux éléments r et s tels que l'élément r est d'ordre 4, l'élément s est d'ordre 2 et l'égalité  $srs^{-1} = r^{-1}$  est vérifiée.
  - a) Montrer que les classes de conjugaisons de  $D_8$  sont  $\{1\}$ ,  $\{r, r^3\}$ ,  $\{r^2\}$   $\{s, sr^2\}$  et  $\{sr, sr^3\}$ .
  - **b)** Montrer que le groupe dérivé de  $D_8$  est  $\{1, r^2\}$ .
  - c) En déduire que D<sub>8</sub> a 4 représentations de degré 1, et une irréductible de degré 2, ainsi que la table de caractère de D<sub>8</sub>. À quelle action géométrique correspond la représentation irréductible de degré 2?

1.