CS328 – Autumn 2019 — Assignment 1

Shivji Bhagat, Roll 16110149

Collaborator: None

4.

5. Let X be the random variable denoting the run time of the algorithm.

Then we have, $E[X] = O(n^2)$. i.e., $E[X] \le an^2$, for a > 0.

Now, consider b > a, then by Markov's inequality, $Pr[X \ge bn^2] \le \frac{E[X]}{bn^2}$.

$$\implies Pr[X \ge bn^2] \le \frac{an^2}{bn^2} = \frac{a}{b}$$

Since, $b > a$, let b=ka $(k > 1)$.

Thus we get, $Pr[X \ge bn^2] \le \frac{1}{k}$, i.e., $Pr[X \le bn^2] \ge 1 - \frac{1}{k}$ For sufficiently large k we get $Pr[X \le bn^2] \approx 1$. Thus, Markov's inequality tells us that the probability that the run time of the algorithm is less than bn^2 is almost 100%. Thus, the run time is always less than bn^2 . Thus, the worst case run time is $O(n^2)$. (Ans.)

6. The two topics that I feel I could not understand were: Singular Value Decomposition and Expectation Maximization (EM) algorithm.