МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5 по дисциплине «Параллельные алгоритмы»

Тема: Параллельное умножение матриц

Студент гр. 0303	Бодунов П.А.
Преподаватель	 Сергеева Е.И.

Санкт-Петербург

2023

Цель работы.

Изучить фреймворк OpenCL для написания программ, связанных с параллельными вычислениями на различных графических и центральных процессорах. Реализовать расчёт фрактала Мандельброта на OpenCL.

Задание.

- 1) Реализовать расчет фрактала Мандельброта на OpenCL.
- 2) Визуализировать результат.
- 3) Произвести оценку производительности.

Выполнение работы.

Были реализованы функции для вычисления фрактала Мандельброта на CPU: mandelbrot, to_color_gray, compute_iterations.

Так же были реализованы на OpenCl функции для вычисления фрактала Мандельброта на GPU: mandelbrot, to_color_gray, compute_iterations.

Функция align дополняет размер изображения, чтобы он делился на размер рабочей группы.

Функция save_ppm сохраняет изображение в формате ppm

Функция create_device обнаруживает вычислительное устройство.

Функция build_program считывает из файла mandekbrot.cl исполняемый код и преобразует в программу.

Функция invoke_kernel запускает kernel.

Результаты зависимости времени работы программы на GPU и на CPU от размерности изображения представлены в табл. 1.

Таблица 1 — Зависимость времени работы программы от размерности матрицы

	Время выполнения в млс.	
Размер изображения	GPU	CPU
64x64	1	2
128x128	1	9
256x256	1	36

512x512	2	134
1024x1024	6	537
2048x2048	16	2124
4096x4096	57	8885
8192x8192	241	34159

Исходя из результатов таблицы 1, время выполнения на GPU намного быстрее, чем на CPU, но на маленьких изображениях время вычислений примерно одинаковое.

Результат вычисления фрактала Мандельброта представлен на рисунке 1:

Рисунок 1 – фрактал Мандельброта

Выводы.

В процессе выполнения лабораторной работы был изучен фреймворк OpenCl, а так же была написана программа, которая вычисляет и рисует фрактал Мандельброта на GPU и CPU. Можно сделать вывод о том, что вычисление простых операций на видеокарте происходит намного быстрее, чем на процессоре.