Algèbre avancée

Modules sur un anneau

Question 1/11

Structure isomorphe à $\operatorname{Hom}_A(A^m, A^n)$

Réponse 1/11

$$\mathcal{M}_{n,m}(A)$$
 via l'image de la « base canonique »

Question 2/11

Premier théorème d'isomorphisme

Réponse 2/11

$$\overline{f}: M/\ker(f) \to \operatorname{im}(f)$$
 est un isomorphisme de
 A -modules

Question 3/11

A-module

Réponse 3/11

Groupe abélien (M, +) muni d'une application $A \times M \to M$ telle que a(m+m') = am + am'(a+a')m = am + a'm(aa')m = a(a'm)

 $1_A m = m$

Question 4/11

Sous-module

Réponse 4/11

Sous-groupe stable par l'action de l'anneau

Question 5/11

$$f: M \to N$$

 $\operatorname{coker}(f)$

Réponse 5/11

 $N/\operatorname{im}(f)$

Question 6/11

Structure de $\operatorname{Hom}_A(M,N)$

Réponse 6/11

A-module en posant
$$(f+g)(m) = f(m) + g(m)$$

Question 7/11

Isomorphisme de A-modules

Réponse 7/11

$$f \in \operatorname{Hom}_A(M, N)$$
 pour laquelle il existe $g \in \operatorname{Hom}_A(N, M)$ telle que $f \circ g = \operatorname{id}_M$ et $g \circ f = \operatorname{id}_N$

Question 8/11

PU du quotient

Réponse 8/11

Si M et P sont deux modules, et N est un sous-module de M, soit $f:M\to P$ une application A-linéaire telle que $N\subseteq\ker(f)$ alors il existe une unique application A-linéaire \overline{f} telle que $f=\overline{f}\circ\pi$

Question 9/11

Module M/N

Réponse 9/11

Le groupe quotient d'un A-module par un sous-module peut être muni d'une unique structure de A-module qui rend $\pi:M\to M/N$ A-linéaire

Question 10/11

Application linéaire entre A-modules

Réponse 10/11

$$f: M \to N \text{ telle que}$$

$$f(am) = af(m)$$

$$f(n+m) = f(n) + f(m)$$

Question 11/11

PU de la somme directe de A-modules

Réponse 11/11

Si $(M_i)_{i \in I}$ est une famille de A-modules et N est un A-module et $f_i: M_i \to N$ est une famille de A-modules alors il existe une unique application linéaire $f: \bigoplus M_i \to N$ telle que $f_{|M_i} = f_i$