$$\frac{\xi - 0^{3}/2x^{2}}{5}$$

$$1a) f(x|0) = x e$$

$$0^{2}$$

$$l(o|x) = p(x|o) = \frac{p}{11} \frac{x_i}{o^2} e^{-\frac{3}{2}(x_i^2)}$$

$$-2n - 1 = 1 - 30^{2} = 0$$

$$\Rightarrow -2n - 3 \cdot 0^3 = 0$$

$$=7 -30^3 \sum_{X_i^2} 1 = 2n$$

$$\Rightarrow \qquad 0^3 \frac{1}{2} = -4 n$$

$$\Rightarrow \qquad \bigcirc 3 = -4 \qquad 1$$

$$3 \qquad \bigcirc \frac{1}{x_i^2}$$

$$\Rightarrow 0^3 = -4n$$

$$3 \frac{\pi}{2} \frac{1}{\sqrt{2}}$$

$$\Rightarrow 0 = \frac{3}{-4n}$$

$$\sqrt{3 \sum_{i=1}^{n} \frac{1}{x_i}}$$

1.c Find MLE for f(x10) = 2X 0=x=0 Then = 2º TIXi to constant! = \(2^n \) \(\tau \) 0 otherwise Thus, if any Xie [O, O] then the likelihood would equal O. That is look) = 0 if 0 < max(X, - Xn) l(0|x) = 2" 11 Xi if 0 > max (x, ... x) Therefore taking c = 2°TIXi and looking at the graph of l(0) = c/027, when 0 = x: = 0 holds we find [8 = max (X, ... Xn) is the MLE

2. a) Bayes Rule prior likelihood P(CIX)= P(C)P(X/C) posterior Fridence We are given P(XIC) = 5 18 if 1 = x < 9 and P(XIC2) = (1/9 (x-2) if 2 < x < 5 1/9 (8-x) ; = 5 ± x < 8 a) Assuming equal priors, P(C1) = P(C2) = 0.5 Classify an object with the attribute value X=7. Well, P(C,1x) = P(C,)P(x/C,) Can ignore P(C,)P(X(C)) + P(C2)P(X(C2)) P(X) For the classification P(C2)X) = P(C2)P(X/C2) (since both divide P(C)P(XIC)+P(C2)P(XIC2) by P(X): = (x) = When X = 7 P(XIC,) = 1/8 = 0.125 P(X(c2) = 1/9(8-7) = 1/9(1) = 1/9 = 0.11) Since P(Ci) = P(Cz) and denominator in both formulas is p(x) we simply compare P(x/c,) and P(x/c,) Since 0.125 70.111, X is classified as Ci

2.6)

when X # 4

 $P(X|C_1) = 1/8 = 0.125$ $P(X|C_2) = 1/9(4-2) = 2/9 = 0.222$

But we need to take priors into account since $P(C_1) \neq P(C_2)!$

P(C,) P(x1C,) = (0.6)(0.125)=0.075

P((2) P(x |C2) = (0.40)(0.222) = 0.0888

Since 0.0888>0.075 we classify this object as C2.

2.c) p(motake) = p(X ∈ P2, C2) + p(X ∈ P2, C1) = Sap(x, Cz) dx + Sap(x, c,) dx Regions are symmetrical at X=5 so find probability and multiply by 2 to get prob. of misclusification at Also, From [0,2] the class C2 has O probability so limits of integration for Cz in R1 Start at 2 not I. Thus p(mistake) = Sp(x, C2) P(C2) dx + Sp(x, C1) P(C1) dx $= \int \frac{1}{9(x-2)(1/2)} dx + \int \frac{1}{8} (1/2) dx$ = 1/18 [\frac{1}{2} \chi^2 - 2\chi] \frac{1}{2} + 1/16 \chi = 1/18 [(1/2 x2 - 5x + 25/2) - 10+2x - [-2] + 0/16 = 1/18 [1/2 x2-3 x+9/2] + 0/16 = 1/36 x2 - 1/6 x + 1/4 + 0/16 = 1/36 x2-5/48d+1/4

2.c Want to minize, so take the derivative and cont'd set it equal to Zero.

 $\frac{d}{dx} \left[\frac{1}{36} \right] = 0$ $\frac{d}{dx} \left[\frac{1}{36} \right] = 0$

=7 1 × -5 = 0 min should be at vertex

18 48 but derivative also works.

So x = 15/8 = 1.875

Can Find

Lound to Found Es

To find probability put & in # Equation and multiply by 2:

p (mistake) = 2 [/36 (1.875) 2-5 (1.875) + 1/4]

=0,305

3a)	If you replace the discriment function of	
	Cz + Cz with the discriminant function of Ci	
	the results will not change. The reason is	
	that the discriminant function parameters	
	change, not the discriminant. Actually	
	this is the way I coded mine up.	
	The same discriminant function for	
	C, C, and C3 with different variances passed	
	in	
14	Precision	Recall
CI	608.0	0.929
Cz	0.915	0.929
Cz	0.937	0.843
J.		
	Precision gives us a measure of relevent data points	
	while recall gives us a measure of how accurate	
	our model measures relevant data.	
	Ideally we would like both values to be high.	
	Therefore I would choose model 2. Model 3	
	has low recall comparitively and model 2 is a Simpler model than model I-	
	Simpler model than model 1-	