IN THE SPECIFICATION

Please replace the paragraph at page 24, lines 1-8, with the following rewritten paragraph:

The emulsion obtained according to the production method of the invention has good film strength, film transparency and mechanical stability and has good alkali resistance, and it is favorably used in the field of paints, additives to hydraulic substances, joint materials, various types of adhesives, binders for paper and nonwoven fabric products, paints, paper processing and fiber processing materials, coating agents, etc.

Please replace the paragraph at page 24, line 9 to page 25, line 1, with the following rewritten paragraph:

When the aqueous emulsion of the invention is dried, especially spray-dried, then it gives a synthetic resin powder that is resistant to blocking and does not redisperse redisperses in water. The aqueous emulsion prepared by redispersing the powder in water also has good film strength, alkali resistance and film transparency like the original aqueous emulsion.

Spray-drying the emulsion may be effected in any ordinary manner of spraying and drying a liquid. Regarding the spraying mode for it, the emulsion may be sprayed with any of discs, nozzles or shock waves. For the heat, source, employable is any of hot air or hot steam. The drying condition may be suitably determined depending on the size and the type of the spraying drier used, and on the concentration, the viscosity and the flow rate of the synthetic resin emulsion to be spray-dried. The drying temperature range suitably falls between 100°C and 150°C, within which it is desirable that the other drying conditions are determined so as to obtain well dried powder.

277030US0PCT

Preliminary Amendment

Please replace the paragraph at page 32, lines 7-14, with the following rewritten paragraph:

The emulsion is tested with a Maron-type mechanical stability tester at 20°C under a load of 0.5 kg/cm² at 1500 rpm for 10 minutes, and filtered through a 60-mesh stainless steel sieve (ASTM standard sieve), and the proportion (%) of the filtration residue to the solid weight of the aqueous emulsion is determined. The sample that leaves a smaller filtration residue has better mechanical stability.

0040

Please replace the paragraph at page 50, lines 21-25, with the following rewritten paragraph:

An emulsion was prepared in the same manner as in Comparative Example 10 except that PVA-14 PVA-14' (having a degree of polymerization of 200 and a degree of saponification of 97.4 mold) was used in place of PVA-10. The emulsion was evaluated, and its results are given in Table 2.

Please delete Table 2 at pages 57-58 and replace with the following new Table 2.

Г							_													Τ			Τ		[
	Reducing	Agent	(all at the	beginning)	Rongalit		Rongalit	(successive	addition)		Rongalit	(successive	addition)		Rongalit	(successive	addition)	•	Rongalit	Rongalit	0	ı			Rongalit	ı	Rongalit		TAS	
	Peroxide	(continuous	addition)		t-butyl	hydroperoxide	t-butyl	hydroperoxide	(all at the	beginning)	t-butyl	hydroperoxide	(all at the	beginning)	t-butyl	hydroperoxide	(all at the	beginning)	t-butyl hvdroperoxide	cumene	hydroperoxide	KPS	KPS	•	t-butyl	hydroperoxide	t-butyl	hydroperoxide	HPO	
	Iron	Compound	(all at the	beginning)	yes		səƙ				yes				yes				ou	ves		ou	ou		yes		yes		yes	
ation	Chain	Transfer	Agent		n-dodecyl-	mercaptan	n-dodecyl-	mercaptan			n-dodecyl-	mercaptan			n-dodecyl-	mercaptan	1								n-dodecyl-	mercaptan	n-dodecyl-	mercaptan	ı	
ion Polymeriz	mer	method of	monomer	addition	continuous		all at the	beginning			all at the	beginning			all at the	beginning	1		continuous	continuous		continuous	continuous		continuous		continuous		all at the	beginning
Condition of Emulsion Polymerization	Monomer		BA/MMA		45/55	(by weight)	47/53	(by weight)			47/53	(by weight)			47/53	(by weight)			2-EHA97/ MAA3	BA.EA. etc.	((BA	BA		45/55	(by weight)	45/55	(by weight)	05/05	(by weight)
Con		method of	addition		all at the	beginning	all at the	beginning			all at the	beginning			all at the	beginning	ı		continuous	continuous		continuous	continuous		all at the	beginning	all at the	beginning	all at the	beginning
		旺	(wloun)				•				•								-						1				•	
	PVA	НΩ	(wlom)		97.4		86				88				86				88	88		96	88		97.4		97.4		88	
			DP		150		200				200				200				200	200		1000	200		200		800		100	
					PVA-10		PVA-11				PVA-12				PVA-13				PVA-1	PVA-1		PVA-14/	PVA-1/	emulsifier	PVA-14	PVA-14'	PVA-15		PVA-16	
					Co.Ex.10		Co.Ex.11				Co.Ex.12				Co.Ex.13				Co.Ex.14	Co.Ex.15		Co.Ex.16	Co.Ex.17		Co.Ex.18		Co.Ex.19		Co.Ex.20	

277030US0PCT Preliminary Amendment

					Con	Condition of Emulsion Polymerization	sion Polymeriz.	ation			
			PVA			Monomer	ımer	Chain	Iron	Peroxide	Reducing
			HQ	亞	method of		method of	Transfer	Compound	(continuous	Agent
		DP	(mol%)	(mol%)	addition	BA/MMA	monomer	Agent	(all at the	addition)	(all at the
							addition		beginning)		beginning)
Co.Ex.21	PVA-13	200	86	ı	all at the	05/05	all at the	•	yes	HPO	TAS
					beginning	(by weight)	beginning				
Co.Ex.22	PVA-17	2400	88		all at the	05/05	all at the	•	yes	HPO	TAS
					beginning	(by weight)	beginning				
Co.Ex.23	PVA-18	1500	86	5.5	continuous	continuous	continuous	n-dodecyl-	ou	KPS	•
								mercaptan			

HPO: hydrogen peroxide, KPS: potassium persulfate, APS: ammonium persulfate, SHS: sodium

hydrogensulfite, BA: butyl acrylate, MMA: methyl methacrylate, 2-EHA: 2-ethylhexyl acrylate,

MAA: methacrylic acid, EA: ethyl acrylate