System of = no.

One sequire solution of the system of simultaneous ODE rather than single equation

$$\frac{dy'}{dx} = f_1(x_1, y_1, y_2, \dots y_m)$$

$$\frac{dy^2}{dx} = f_2(x_1, y_1, y_2, \dots y_m)$$

$$\frac{dy^2}{dx} = f_2(x_1, y_1, y_2, \dots y_m)$$

$$\frac{dy^2}{dx} = f_2(x_1, y_1, y_2, \dots y_m)$$

One need na initial conduction at initial 2 In Euler it is straight for wourd to solve simultaneously

Hotel Anthology (In)

$$y_{1}(x_{n+1}) = y_{1}(x_{n}) + h f_{1}(x_{n}), y_{2}(x_{n}), y_{2}(x_{n}), y_{2}(x_{n}), y_{2}(x_{n})$$

$$y_{2}(x_{n+1}) = y_{2}(x_{n}) + h f_{2}(x_{n}), y_{1}(x_{n}), y_{2}(x_{n}), y_{2}(x_{n}), y_{3}(x_{n})$$

 $y_m(x_{m+1}) = y_m(x_n) + h f_m(x_n, y_1(x_n), y_2(x_n), \dots, y_m(x_n))$

\mathcal{X}_{0}	Y, (x.)	$y_2(x_1)$	y3(20)	 ym (x.)
χ,	y,(x,)	$y_2(x,)$	43(x1)	 4m(x.)
))(n	yn (7(n)	/ yz(2(n)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	 /ym (x.//

$$\frac{dy_{1}}{dx} = -0.5y_{1}$$

$$\frac{dy_{2}}{dx} = 4 - 0.3y_{2} - 0.1y_{1}$$

$$\frac{dy_{2}}{dx} = 4 - 0.3y_{2} - 0.1y_{1}$$

$$0x = 0 \text{ } y_{1} = 4, y_{2} = 6$$

$$4_1(0.5) = 4_1[-0.5 \times 4] 0.5 = 3$$

 $4_2(0.5) = 6_1[4_0.3 \times 6] 0.5 = 6.9$

One can do in same way

Hone has to do use RK method, Then it is a bit similar way

$$\frac{dy_1}{dx} = f_1(x, y_1, y_2)$$

$$\frac{dy_2}{dx} = f_2(x, y_1, y_2)$$

3rdorder (one newion)

$$k_{1} = f(x, y)$$

$$k_{2} = f(x + \frac{1}{3}h, y + \frac{1}{3}hk_{1})$$

$$k_{3} = f(x + \frac{2}{3}h, y + \frac{2}{3}hk_{2})$$

Thousore

$$\begin{aligned}
y_{1}(x_{n+1}) &= y_{1}(x_{n}) + \frac{h}{4}(k_{1} + 3k_{3}) \\
k_{1} &= f_{1}(x_{n}, y_{1}(x_{n}), y_{2}(x_{n})) \\
k_{2} &= f(x_{n} + \frac{1}{3}h, y_{1}(x_{n}) + \frac{1}{3}hk_{1}) \\
y_{2}(x_{n}) &+ \frac{1}{3}h l_{1}) \\
k_{3} &= f(x_{n} + \frac{2}{3}h, y_{1}(x_{n}) + \frac{1}{3}h k_{2}) \\
\vdots &(x_{n}) + 2h l_{2})
\end{aligned}$$

$$y_{2}(x_{n+1}) = y_{1}(x_{n}) + \frac{1}{4}(l_{1} + 3l_{3})$$

$$kl_{1} = f_{1}(x_{n}, y_{1}(x_{n}), y_{2}(x_{n}))$$

$$l_{2} = f_{2}(x_{n} + \frac{1}{3}h, y_{1}(x_{n}) + \frac{1}{3}hk_{1})$$

$$y_{2}(x_{n}) + \frac{1}{3}hl_{1})$$

$$l_{3} = f_{2}(x_{n} + \frac{2}{3}h, y_{1}(x_{n}) + \frac{2}{3}hk_{2}, y_{2}(x_{n}) + 2hl_{1})$$

leg Higher order = ns

One can connect them who system of simultaneous ODE.

Let

$$\frac{d^{n}y}{dx^{n}} = f\left(x, y, \frac{dy}{dx}, \frac{d^{2}xy}{dx^{2}}, \frac{d^{n-1}y}{dx^{n-1}}\right) - 1$$

with indial conditions

$$y(r_0)$$
, $\frac{dy}{dx}(x_0)$, $\frac{d^2y}{dx^2}(x_0)$, $\frac{d^{n-1}y}{dx^{n-1}}(x_0)$ over known

One can do a touck

$$u_1(x_0) = y(x_0)$$

$$u_2(x_0) = y'(x_0)$$

$$u_1(x_0) = y''(x_0)$$

Using them one get

$$\frac{du_1}{dx} = f_1(x, u_1, u_2, \dots u_n)$$

$$\frac{du_2}{dr} = f_2(x,u_1,y_2),\dots,u_m)$$

System of high order equations are treated in the same way. One can connect higher order ODE, into a system of first order ODE. Then one Can solve these system of simultaneous ODE.

Example
$$\frac{d^2y}{dx^2} + 4y\frac{dy}{dx} + x^2y + x = 0$$

$$\frac{d^2y}{dx} + 4y\frac{dy}{dx} + x^2y + x = 0$$

One can do a transferm

$$u_1 = y$$
 $u_1(0) = y(0) = 1$
 $u_2(0) = \frac{dy}{dx}(0) = 2$

$$\frac{du_1}{dx} = \frac{dy}{dx} = u_{-2}$$

$$\frac{du_2}{dx} = \frac{d^2y}{dx^2} = -\frac{4y}{dx} \frac{dy}{dx} - x^2y + x$$

$$= -4u_1u_2 - x^2u_1 - x$$

$$\frac{du_1}{dx} = u_2$$

$$\frac{du_2}{dx} = -\left(4u_1u_2 + x^2u_1 + x\right)$$

$$\frac{du_2}{dx} = -\left(4u_1u_2 + x^2u_1 + x\right)$$

$$\frac{du_2}{dx} = -\left(4u_1u_2 + x^2u_1 + x\right)$$

One can then simply solve these I system of Simultaneous 150 or du

rample

$$\frac{d^3y}{dx^3} \stackrel{4}{=} 2 \frac{d^2y}{dx^2} + 3c = 0$$

$$\frac{dy}{dx}(x_0) = 0$$

$$\frac{dy}{dx}(x_0) = 3$$

$$\frac{d^2y}{dx^2}(x_0) = -2$$

$$u_1 = y$$

$$u_2 = \frac{dy}{dx}$$

$$u_3 = -2$$

$$u_3 = -2$$

$$\frac{du_3}{dx} = \frac{d^3y}{dx^3} = \frac{2d^3y}{dx^2} - x = 2u_3 - x$$

$$\frac{du_3}{dx} = 2u_3 - x$$

$$\frac{du_2}{dx} = u_3$$

$$\frac{du_2}{dx} = u_3$$

$$\frac{du_1}{dx} = u_2$$

$$u_1 = 0$$

Cienaral nonlinear, ODE exact soln is complicated Numerical method can be essed to estimate him
However, it is not straight for ward. Need to use proper method and hisize.

Stiffness is a special problem that may arise in the Stiffness solution of the ODE

A stiff system is one innolving sapidly changing one component together with slowly changing one

Concept v easy to understand. However not Louisial. Stiffness v an bull a property of the system

bet see an example

See an example

$$x \frac{dy}{dx} = -Cxy \quad y(0) = 1 \quad -A$$

example

example

 $y(x) = Cxy \quad y(0) = 1$

example

 $y(x) = Cxy \quad y(0) = 1$

example

 $y(x) = Cxy \quad y(0) = 1$

Seen in most of the decays?

to zero As or gosito oco, soln should goes

Lets by to use

 $\int \frac{2}{c} > h > 0$

y1 = 1 y0 (1+hc) 9 2 = (1+hc) 4, = (1+hc) 40 yn = 1 (1+hc) n yo Anno vyno o $\left(\frac{1}{1+hc}\right)^{\frac{1}{4}}$ < 1 (1+hC) is the and large than 1 1-hc | < 1 always hold Thus suggest un conditionally stable! Implicit method are more stable method. Advantage of 9 mphicit Ly stable, any stepsize fewer steps Disadvantage hone should know the expected Value is the implicit method (not a good thing).

with few direction One simply get a good guess it will converge.

If the system is still , better to use impliced metho d

Explicit -> un stable a fast 9 replicit - 1 Stable & slow

$$\frac{dy}{dx} = -1000y + 3000 - 2000 e^{-x}$$

$$TC \qquad y(0) = 0$$

$$y(x) = 3 - 0.998e^{-1000x} - 2.002e^{-2}$$

Analytid soln.

Soln has different componet, or extra totalion

the short and is major stability constraint.

Onichy this transient form die out and soln. depends on the slow exponential (e-x)

Another method, which is used to solve the ODEs specially the slift one are implicit method (based on the work of George.

They are called Grear's mothod ($\frac{dy}{dy} = f(x,y) \quad y(x_0) = y_0$

Order

$$y_{n+1} = \frac{4}{3}y_n - \frac{1}{3}y_{n-1} + \frac{2}{3}hf(x_{n+1}, y_{n+1})$$

$$y_{n+1} = \frac{18}{11} y_n - \frac{9}{11} y_{n-1} + \frac{2}{11} y_{n-2} + \frac{6}{11} hf(x_{n+1}, y_{n+1})$$

$$y_{n+1} = \frac{48}{25}y_n - \frac{36}{25}y_{n-1} + \frac{16}{25}y_{n-2} - \frac{3}{25}y_{n-3} + \frac{12}{25}hf(x_{n-1})_{6}$$

One can also use them to solve non-linear = ns. Reep reducing the step size till implicit = no can be solved.