IIT Jodhpur

Biological Vision and Applications Module 07-01: Knowledge Representation

Hiranmay Ghosh

Knowledge required for visual interpretation

Explicit and implicit knowledge

Domain Knowledge (Ontology)

- Example: What makes a lesion different?
- Declarative: can be stated explicitly
- Exists independent of processing structure
- can be shared

Knowledge about (image) processing

- Example: How to extract the edges from an image?
- Procedural: implicit
- Encoded as algorithms, neural networks, etc.
- Strictly private to the processing structure
- The relation between the two
 - How to use them together in a problem

Dual representation of knowledge

Same knowledge can be represented either in declarative or in procedural way

Declarative Model based approach

Procedural Data driven approach

Representational Theory of Mind (RTM)

- A concept is a mental model of something
 - A real-world thing
 - An internal mental state of the agent
- A name is associated with a concept
 - For reference while manipulation
- Knowledge is
 - A collection of named concepts
 - A set of sentences (propositions) that relate the concepts
 - Named concepts: cat, tail
 - Proposition: A cat has a tail

Symbolic representation

The semiotics triangle

- Objects (things): That exist
- Concepts: Mental representations (models)
- Representation: Symbol to represent a concept (text, icon, speech)

Semantic Network

Compact knowledge representation

- Knowledge is a set of statements
 - A mammal is an animal
 - A cat is a mammal
 - A cat has whiskers
 - A mammal lives on land
 - A fish is an animal
 - A catfish is a fish
 - A catfish has whiskers
 - A fish lives in water
 - Mycat is a cat
 - Mycat has a name "Billi"

 Equivalently, knowledge is a graph (semantic network)

Semantics of "Semantic Network"

- A set of propositions
 - Each describes a property of a concept
- Structure: < subject, predicate, object >
 - Examples:
 - cat has whiskers
 - mycat has-name "Billi"
- A concept can be a class, or an instance
 - Example: cat, mycat
- A value can be a concept, or a literal
 - Example: whiskers, "Billi"

Reasoning with Semantic Network

Axioms lead to semantics

- Requires underlying axioms, e.g.
 - Property inheritance
 - ► If a "is-a" b, then
 a inherits properties of b
 - "is-a" is transitive
 - ► If a is-a b, and b is-a c, then a is a c too
 - These axioms make a semantic network efficient (compact)
 - There can be other domain-specific rules

Flexibility with "Semantic Network"

- No restrictions on properties / values to be associated to a concept
- There can be exceptions. e.g.
 - Whale is a mammal, but lives in water
- Axioms need to be redefined
 - ► If a "is-a" b, then
 a inherits properties of b
 unless overruled

Multiple inheritance

MyDog has a tail

What's about MyDog's attitude?

Properties of Semantic Network

- A semantic network is extremely flexible
 - An informal description of a domain (in it's basic form)
- Semantics is imposed with axioms / constraints
- Many variants have been proposed
 - Definitional network
 - Expresses class-subclass relations
 - ... and properties that distinguish sibling subclasses
 - Cat is-a mammal: cat has whiskers
 - Implication Network
 - Expresses causal relations
 - Banana causes yellow color

 - Hybrid networks combine more than one of paradigms

Sowa. Semantic Networks

Resource Description Framework (RDF)

W3C Recommendation – for representing interconnected data on the web

- Data (resources) can be distributed over the web
 - Knowledge is an interconnection (relations) of this distributed data
- Each resource is identified with a IRI
- Follows semantic network model
 - ► An RDF graph is a set of RDF sentences ⟨ subject, predicate, object ⟩
- A predicate is also a "resource"
 - A predicate in one sentence can be a subject or an object in another
 - \(\text{hasWeightInKg, is-a, healthParameter } \). \(\lambda \text{Ramu, hasWeightInKg, 80 } \)
- Reification: A statement is also a "resource"
 - I said "cat is an animal"
 - ► S1: ⟨ cat, is-a, animal ⟩. S2: ⟨ I, said, S1 ⟩
- Some axioms are inbuilt additional semantics can be defined with RDF Schema
- Notations: XML, N3, Turtle, ...

SPARQL Query Language

- To make guery on RDF Graphs
- Syntactically similar to SQL
- Implemented with "triple-store" databases
 - ► Apache Jena / TDB
 - Optimized for storing triplets
- Query on distributed knowledge
 - Distributed knowledge centrally indexed
 - Distributed query processing (distributed index)
- Resources:
 - W3School tutorials
 - W3C Documents

Quiz

Quiz 07-01

End of Module 07-01