Semestre primavera 2002

Ramo: 525412, Introducción a la matemática discreta.

Profesora: Anahí Gajardo

Plazo de entrega: lunes 22 de octubre

Problema 1 (9 pts)

Para el AFD de la Figura 1 responda:

Figure 1: Diagrama del AFD del Problema 1

- 1. ¿Cuál es su estado de partida?
- 2. ¿Cuál es su conjunto de estados de aceptación?
- 3. ¿Cuál es la secuencia de estados que recorre cuando recibe la palabra "aabb"?
- 4. ¿Acepta la palabra "aabb"?
- 5. ¿Acepta la palabra vacía e?

Problema 2 (10 pts)

Sea M el AFD: $(\{q_1,q_2,q_3,q_4,q_5\},\{u,d\},\delta,q_3,\{q_3\})$, donde δ esta dada por la siguiente tabla:

	u	d
q_1	q_1	q_2
q_2	q_1	q_3
q_3	q_2	q_4
q_4	q_3	q_5
q_5	q_4	q_5

Dibuje el diagrama de este AFD.

Problema 3 (10 pts)

¿Qué lenguage reconoce el AFD de la Figura 2?

Figure 2: Diagrama del AFD del Problema 3

Argumente su respuesta.

Problema 4 (10 pts)

Diseñe AFDs que reconozcan los siguientes lenguages (un AFD para cada lenguage):

- 1. $L_1 = \Sigma^+$
- 2. $L_2 = \{w \in \{0,1\}^* | w \text{ contiene al menos 3 1s } \}$
- 3. $L_3 = \{w \in \{0,1\}^* | w \text{ contiene a lo más 2 1s } \}$

Argumente sus respuestas.

Problema 5 (30 pts)

El complemento de un lenguage L es $L^c = \Sigma^* \setminus L$.

Demuestre que el complemento de un lenguage regular es también regular (Hint.: demuestre que si $(Q, \Sigma, \delta, q_0, F)$ reconoce L, entonces $(Q, \Sigma, \delta, q_0, Q \setminus F)$ reconoce L^c).

Problema 6 (30 pts)

Demuestre que $L_4 = \{w \in \{a\}^* | (\exists n \ge 0)w = a^{2^n}\}$ no es regular.