

Agenda

- Introduction to Data visualization
- 2. Introduction to Matplotlib
- 3. Introduction to Seaborn
- 4. Types of Data Visualizations
- 5. Which Data Visualization to Choose

Introduction to data visualization

Intro to Data Visualization

- Purpose of Data Visualization:
 - Transforming data into a visual context.
 - Making data accessible, understandable, and actionable.

- Importance in Data Analysis:
 - Identifies trends, patterns, and outliers.
 - Simplifies complex data sets.

Introduction to

matpletlib

- What is Matplotlib?
 - A powerful plotting library in Python.
 - Provides comprehensive control over plot elements.
- Key Features:
 - Highly customizable plots.
 - Large variety of plot types.

Setting up Matplotlib

- Installation: pip install matplotlib
- Import: import matplotlib.pyplot as plt

```
# Importing the necessary libraries
import matplotlib.pyplot as plt
# Sample data
x = [1, 2, 3, 4, 5]
y = [10, 11, 12, 13, 14]
# Creating the line plot
plt.plot(x, y, label='Line 1', color='blue', marker='o')
# Adding title and labels
plt.title('Basic Line Plot with Matplotlib')
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
# Displaying a legend
plt.legend()
# Showing the plot
plt.show()
```


Notebook

See 04.00-Introduction-To-M atplotlib.ipynb

See 04.01-Simple-Line-Plots.i **Exercise Time!**

See 04.00_EX.ipynb

See 04.00_EX.ipynb

Introduction to

Intro to Seaborn

- What is Seaborn?
 - Built on top of Matplotlib, focusing on statistical data visualization.
 - Provides an aesthetically pleasing interface and advanced plots.
- Key Features:
 - Themes for styling plots.
 - Simplified syntax for complex visualizations.

Matplotlib vs. Seaborn

Matplotlib:

- More control,
- detailed customization.

Seaborn:

- Better default aesthetics,
- easier to use for statistical plots.

Intro to Seaborn

Setting up Seaborn:

- Installation: pip install seaborn
- Import: import seaborn as sns

Intro to Seaborn

```
# Importing the necessary libraries
import seaborn as sns
import matplotlib.pyplot as plt
# Sample data
x = [1, 2, 3, 4, 5]
y = [10, 11, 12, 13, 14]
# Creating the line plot using Seaborn
sns.lineplot(x=x, y=y, marker='o', label='line 1')
# Adding title and labels
plt.title('Basic Line Plot with Seaborn')
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
# Showing the plot
plt.show()
```


Types of Data visualizations

- Bar chart/Stacked Barchart
- Histogram
- Line chart
- Pie chart
- Scatter plot
- Boxplot

Types of Data visualizations

seaborn

- Bar chart
- Histogram
- Line chart
- Pie chart
- Scatter plot
- Boxplot

Installing Gallery Tutorial API Releases Citing FAQ

Q () A Y

https://seaborn.pydata.org/examples/index.html

Graphs – Bar Chart

- What is it?
 - Shows data as bars that represent the height of categories
- When to use it?
 - Comparing discrete categories (for example sales per product)
 - Suited for nominal and ordinal data
- Example:
 - Number of sold products per product category.

Graphs – Bar Chart

Graphs – Stacked Bar Chart

Bar Chart - Seaborn

```
# Importing necessary libraries
import seaborn as sns
import matplotlib.pyplot as plt
# Sample data
categories = ['A', 'B', 'C', 'D']
values = [5, 7, 3, 8]
# Creating a bar plot using Seaborn
sns.barplot(x=categories, y=values)
# Adding a title and labels
plt.title('Bar Chart with Seaborn')
plt.xlabel('Category')
plt.ylabel('Values')
# Displaying the plot
plt.show()
```


https://seaborn.pydata.org/examples/part_whole_bars.html

Graphs – Histogram

- What is it?
 - A graph that displays the frequencies of values in certain intervals
- When to use it?:
 - Visualization of the distribution of continuous variables
 - Suitable for interval- or ratio-data
- Visualization = Bar chart
 - But with the bars connected to each other!
- Example:
 - Distribution of ages in a certain population

Graphs – Histogram

Notebook Exercises

See 04.05-Histograms-and-Bi nnings.ipynb

04.01_EX.ipynb

Seaborn Histogram:

https://seaborn.pydata.org/examples/histogram_stacked.html
https://seaborn.pydata.org/examples/faceted-histogram.html

- What is it?
 - A line that shows the relation between two variables, mostly between time and another variable
- When to use it?
 - Showing trends over time (timeseries)
 - Continuously monitoring data (for example: Temperature changes)
- Example:
 - Sales over the months of a year

Correct use:

Correct use:

Incorrect use:

Line Chart with Seaborn

```
# Importing the necessary libraries
import seaborn as sns
import matplotlib.pyplot as plt
# Sample data
x = [1, 2, 3, 4, 5]
y = [10, 11, 12, 13, 14]
# Creating the line plot using Seaborn
sns.lineplot(x=x, y=y, marker='o', label='line 1')
# Adding title and labels
plt.title('Basic Line Plot with Seaborn')
plt.xlabel('X-axis')
plt.vlabel('Y-axis')
# Showing the plot
plt.show()
```


https://seaborn.pydata.org/examples/errorband_lineplots.html

Graphs - Pie Chart

- What is it?
 - Shows parts of a whole in circlesegments.
- When to use it?
 - Showing distributions as part of a whole (100%)
 - Suited for relatively few categories (ideally maximum 5)

Example:

- Marketshare of 3 different companies.
- **Remark**: Not suited for many categories or if the exact differences between categories are important!

Graphs - Pie Chart

Correct use:

Sales per Region

Incorrect use:

Sales per Region

Graphs - Pie Chart

Correct use:

Sales per Region

Incorrect use:

Sales and Regions

Graphs – Scatter Plot

- What is it?:
 - Show relationship between two variables using dots.
- When to us it?
 - Relationship or correlation between two variables
 - Shows patterns like linear or non-linear relationships
- Example:
 - Relationship between length and weight.

Graphs – Scatter Plot

Graphs – Scatter Plot

Notebook Exercises

See 04.02-Simple-Scatter-Plo ts.ipynb

04.00_EX.ipynb

Seaborn Scatter plot: https://seaborn.pydata.org/examples/different scatter variables.html

Graphs – Boxplot

- What is it?
 - Shows dispersion of a dataset using the min,
 Q1, median, Q3, max values.
- When to use it?
 - Visualisation of dispersion and outliers
 - To compare different datasets.
- Example:
 - Compare the dispersion of salaries between different sectors.

Graphs – Boxplot in Seaborn

```
# Importing necessary libraries
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
# Sample dataset in the form of a pandas DataFrame
data = {
    'Category': ['A', 'A', 'A', 'B', 'B', 'C', 'C', 'C'],
    'Values': [7, 8, 9, 12, 10, 14, 6, 5, 8]
df = pd.DataFrame(data)
# Creating a boxplot using Seaborn
sns.boxplot(x='Category', y='Values', data=df, palette='Set3')
# Adding a title and labels
plt.title('Boxplot with Seaborn')
plt.xlabel('Category')
plt.ylabel('Values')
# Displaying the plot
plt.show()
```


https://seaborn.pydata.org/examples/grouped_boxplot.html

Graphs – frequent mistakes

- Too many categories in a pie or line chart.
- Wrongly chosen axes (manipulating the Y-axes)
- Wrong graph for the type of data

Tips to make graphs better and more effective:

- Only show the information that is necessary
- Don't put too much information in 1 graph, it is better to spread the information over multiple graphs instead.

How the data is distributed

Frequency distribution:
Histogram

Statistical dispersion: Boxplot

What do you want to show?

How values relate to each other

Scatterplot

How values compare to each other

Graphs – When to use which one?

- Bar chart vs. Pie chart:
 - Use the bar chart when it is important to see exact differences between categories.
 - Use Piecharts only for up to 5 different categories
- Linechart vs. histogram:
 - use histogram for distributions, linecharts for trends over time (time series).
- Boxplot vs. scatter plot:
 - Use a boxplot for dispersion and a scatterplot for relationships between to variables.

Sales Report - Company X

259,18

Average Sales

3 Nr. of Re

Nr. of Regions

94602,00

Total Sales

Graphs – Conclusion

- Know when to use which graph
- Graphs should make it easier to understand data
- Avoid making graphs with high complexity

Graphs – Conclusion

Notebook Exercises

See 04.06-Customizing-Lege nds.ipynb

See 04.07-Customizing-Color bars.ipynb

See 04.14-Visualization-With-Seaborn.ipynb 04.02_EX.ipynb