Comparison of high-order Eulerian methods for electron hybrid model

A. Crestetto ¹ N. Crouseilles ^{2,3} Y. Li ⁴ J. Massot ^{3,2}

¹LMJL, Université de Nantes

²Inria Rennes – Bretagne Atlantique

³IRMAR. Université de Rennes

⁴Max Planck Institute for Plasma Physics, Garching, Germany

November 9, 2021

Outline

- 1 Introduction
- 2 Numerical methods
- Application for hybrid Vlasov-Maxwell model
 - With splitting method
 - With Lawson method
- 4 Numerical results
- 5 Conclusion

Outline

- 1 Introduction
- 2 Numerical methods
- Application for hybrid Vlasov-Maxwell model
 - With splitting method
 - With Lawson method
- 4 Numerical results
- 5 Conclusion

Vlasov-Maxwell 1dz - 3dv model

Transport of electron density distribution
$$f = f(t, z, \mathbf{v})$$
, $\mathbf{B}(t, z) = (B_x, B_y, 0)(t, z)$, $\mathbf{E}(t, z) = (E_x, E_y, 0)(t, z) \in \mathbb{R}^2$, $z \in [0, 2\pi]$, $\mathbf{B}_0 = (0, 0, B_0)^\top$, $\mathbf{v} \in \mathbb{R}^3$, $v_\perp = (v_x, v_y)^\top \in \mathbb{R}^2$:

$$\begin{cases} \partial_t f + v_z \partial_z f - (\boldsymbol{E} + \boldsymbol{v} \times (\boldsymbol{B} + \boldsymbol{B}_0)) \cdot \nabla_{\boldsymbol{v}} f = 0 \\ \partial_t \boldsymbol{B} = -\partial_z \boldsymbol{E} \\ \partial_t \boldsymbol{E} = \partial_z \boldsymbol{B} + \int_{\mathbb{R}^3} v_\perp f \, \mathrm{d} \boldsymbol{v} \end{cases}$$

Motivation:

- We consider an initial condition of the form $f = f_c + f_h$ with: $f_c(t = 0, z, \mathbf{v}) = \rho_c(t, z)\delta_{\mathbf{v} = \mathbf{u}_c(t, z)}(\mathbf{v})$
- We want high order methods in (z, \mathbf{v})
 - FFT in z + WENO in v
- We want high order methods in time t
 - splitting method vs exponential integrator

The idea

Grid methods can't have an initial condition like:

$$f_0(z, \mathbf{v}) = \rho_{c,0}(z) \delta_{\mathbf{v} - \mathbf{u}_c}(\mathbf{v}) + f_{h,0}(z, \mathbf{v})$$

- Idea is to derive an hybrid model:
 - Cold plasma approximation: $\frac{T_c}{T_h} \ll 1 \rightarrow f_c(t, z, v) \rightarrow j_c(t, z)$
 - Fluid dynamic for cold particles (no velocity grid)
 - Hypothesis on hot particles: $\int_{\mathbb{R}^3} f_h(t,z,m{v}) \, \mathrm{d}m{v} \ll
 ho_c(t,z)$
 - Kinetic dynamic for hot particles
- → Split $f = f_c + f_h$ + Compute momentum of f_c with cold plasma approximation + Linearize the model
- Holderied et al. 2020, Journal of Computational Physics

Linearized hybrid Vlasov-Maxwell 1dz - 3dv model

The new model: a nonlinear transport in $(z, v_x, v_y, v_z) \in \Omega \times \mathbb{R}^3$ of:

- a cold (fluid) electron density distribution, reconstruction from current variable $\mathbf{j}_c(t,z) = q_e \rho_c(t,z) \mathbf{u}_c(t,z) = (j_{c,x},j_{c,y},0)(t,z)$
- a hot (kinetic) electron density distribution $f_h(t, z, \mathbf{v})$

$$\begin{cases} \partial_{t} \mathbf{j}_{c} = \Omega_{pe}^{2} \mathbf{E} - J \mathbf{j}_{c} B_{0} \\ \partial_{t} \mathbf{B} = J \partial_{z} \mathbf{E} \\ \partial_{t} \mathbf{E} = -J \partial_{z} \mathbf{B} - \mathbf{j}_{c} + \int_{\mathbb{R}^{3}} \mathbf{v}_{\perp} f_{h} \, \mathrm{d} \mathbf{v} \\ \partial_{t} f_{h} + \mathbf{v}_{z} \partial_{z} f_{h} - (\mathbf{E} + \mathbf{v} \times (\mathbf{B} + \mathbf{B}_{0})) \cdot \nabla_{\mathbf{v}} f_{h} = 0 \end{cases}$$

with:

$$J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Convergence when $T_c \rightarrow 0$

Figure: Simulation of initial condition (left) with kinetic model with $T_c=0.05$ (middle) and hybrid model (right) to the time $T_f=200$

 \checkmark Good agreement between kinetic (f) model and hybrid model $(f_h + u_c)$

Outline

- 1 Introduction
- 2 Numerical methods
- Application for hybrid Vlasov-Maxwell model
 - With splitting method
 - With Lawson method
- 4 Numerical results
- 5 Conclusion

Numerical methods

Two time integrators to compute a numerical solution of:

$$\dot{u} = L(t, u) + N(t, u), \quad u(0) = u_0$$

 $u \in \mathbb{R}^d$, L and N functions $(t, u) \in \mathbb{R}_+ \times \mathbb{R}^d \mapsto \mathbb{R}^d$, $d \in \mathbb{N}$.

- Splitting method (Lie, Strang, Suzuki)
- Lawson method (LRK(4,4), LDP4(3))

In space z: we use a Fourier transform (FFT). In velocity \mathbf{v} : we use WENO5 or Lagrange 5.

Splitting method

Successive resolution of:

$$\dot{u} = L(t, u)$$
 $\rightarrow \tilde{u}_t = \varphi_t^{[L]}(u_0)$
 $\dot{u} = N(t, u)$ $\rightarrow \tilde{u}_t = \varphi_t^{[N]}(u_0)$

Solution at time t:

Lie: order 1 method, composition of sub-steps:

$$\varphi_t(u_0) \approx \varphi_t^{[L]} \circ \varphi_t^{[N]}(u_0)$$

Strang: order 2 method: $\varphi_t(u_0) \approx \mathcal{S}_t(u_0) = \varphi_{t/2}^{[L]} \circ \varphi_t^{[N]} \circ \varphi_{t/2}^{[L]}(u_0)$

Strang 1968, SIAM Journal on Numerical Analysis

Suzuki: order 4 method, composition of 5 Strang methods:

$$\varphi_t(u_0) \approx \mathcal{S}_{\alpha_1 t} \circ \mathcal{S}_{\alpha_2 t} \circ \mathcal{S}_{\alpha_3 t} \circ \mathcal{S}_{\alpha_2 t} \circ \mathcal{S}_{\alpha_1 t}(u_0)$$

with:
$$\alpha_1 = \alpha_2 = \frac{1}{4 - \sqrt[3]{4}}$$
 and $\alpha_3 = \frac{1}{1 - 4^{\frac{2}{3}}}$

Casas and Escorihuela-Tomàs 2020, *Mathematics* (for some higher order methods)

- ✓ Good behavior in long time
- Error in time only depends on splitting method
- ✓ Split a difficult problem into small easier sub-problems
- Numerical cost for high order method
- \sim Needs to find a way to solve exactly in time each step

Lawson method

$$\partial_t u = Lu + N(t, u)$$

Change of variable: $v = e^{-tL}u$, we obtain:

$$\dot{v}(t) = -Le^{-tL}u(t) + e^{-tL}\underbrace{\left(Lu(t) + N(t, u)\right)}_{\dot{u}(t)}$$
$$= e^{-tL}N(t, e^{tL}v)$$

which can be solved with a Runge-Kutta method in v, that can be rewritten in u, for example with Euler method:

$$v(t^n + \Delta t) \approx v^{n+1} = v^n + \Delta t e^{-t^n L} N(t^n, e^{t^n L} v^n)$$

or as an expression of u:

$$u^{n+1} = e^{\Delta tL}u^n + \Delta t e^{\Delta tL}N(t^n, u^n)$$

Lawson 1967, SIAM Journal on Numerical Analysis

Hochbruck, Leibold, and Ostermann 2020, Numerische Mathematik

Josselin Massot (IRMAR)

- ✓ Numerically efficient (order increases linearly-ish with the number of stages)
- ✓ Literature on Runge-Kutta method (embedded-RK, IMEX methods, low storage methods, . . .)
- ✓ Linear part is solved exactly
- ✗ Stability constraint (not from the linear part ✔)
- Behavior in long time
- \sim Needs to compute (efficiently) $e^{ au L}$ for any $au = c_j \Delta t$ and L

Main idea of adaptive time step methods (error estimate)

For a generic ODE $\dot{u} = f(t, u)$, adaptive time step method needs 2 numerical estimations of solution $u(t^{n+1})$ of different order, p and p+1:

$$u_{[p]}^{n+1} = u(t^{n+1}) + \mathcal{O}(\Delta t^{p+1}), \qquad u_{[p+1]}^{n+1} = u(t^{n+1}) + \mathcal{O}(\Delta t^{p+2})$$

Estimate of local error:
$$L_{[p]}^{n+1} = \left|u_{[p+1]}^{n+1} - u_{[p]}^{n+1}\right|$$

If $L_{[n]}^{n+1} > to/$: we reject the step and start again from time t^n . Else we accept the step. In both cases, the optimal new time step is:

$$\Delta t_{
m opt} = \sqrt[p]{rac{tol}{L_{[p]}^{n+1}}} \Delta t^n$$

In practice $u_{[n]}^{n+1}$ is computed from sub-steps of $u_{[n+1]}^{n+1}$.

Dormand and Prince 1978, Celestial mechanics (for RK method)

Blanes, Casas, and Thalhammer 2019, Applied Numerical Mathematics (for splitting method)

Outline

- 1 Introduction
- 2 Numerical methods
- 3 Application for hybrid Vlasov-Maxwell model
 - With splitting method
 - With Lawson method
- 4 Numerical results
- 5 Conclusion

Linearized hybrid Vlasov-Maxwell model

$$U = (\mathbf{j}_{c}, \mathbf{B}, \mathbf{E}, f_{h})^{\top}, \mathbf{j}_{c}(t, z), \mathbf{B}(t, z), \mathbf{E}(t, z) \in \mathbb{R}^{2}$$

$$\begin{cases} \partial_{t} \mathbf{j}_{c} = \Omega_{pe}^{2} \mathbf{E} - J \mathbf{j}_{c} B_{0} \\ \partial_{t} \mathbf{B} = J \partial_{z} \mathbf{E} \\ \partial_{t} \mathbf{E} = -J \partial_{z} \mathbf{B} - \mathbf{j}_{c} + \int v_{\perp} f_{h} \, \mathrm{d}v_{\perp} \\ \partial_{t} f_{h} + v_{z} \partial_{z} f_{h} - (\mathbf{E} + \mathbf{v} \times (\mathbf{B} + \mathbf{B}_{0})) \cdot \nabla_{\mathbf{v}} f_{h} = 0 \end{cases}$$

we define the Hamiltonian as:

$$\mathcal{H} = \underbrace{\frac{1}{2} \int \|\boldsymbol{E}\|^2 \, \mathrm{d}z}_{\mathcal{H}_E} + \underbrace{\frac{1}{2} \int \|\boldsymbol{B}\|^2 \, \mathrm{d}z}_{\mathcal{H}_B} + \underbrace{\frac{1}{2} \int \frac{1}{\Omega_{pe}^2} \|\boldsymbol{j}_c\|^2 \, \mathrm{d}z}_{\mathcal{H}_{jc}}$$
$$+ \underbrace{\frac{1}{2} \int \int \|\boldsymbol{v}\|^2 f_h \, \mathrm{d}\boldsymbol{v} \, \mathrm{d}z}_{\mathcal{H}_{fc}}$$

16 / 41

Following the Hamiltonian we built a Hamiltonian splitting.

Josselin Massot (IRMAR) LMJL November 9, 2021

Splitting method

5 subsystems $\varphi^{[E]}$, $\varphi^{[B]}$, $\varphi^{[j_c]}$, $\varphi^{[f_h]}$

• Solution with Lie splitting method:

$$U^{n+1} = \varphi_{\Delta t}^{[E]} \circ \varphi_{\Delta t}^{[B]} \circ \varphi_{\Delta t}^{[j_c]} \circ \varphi_{\Delta t}^{[f_h]}(U^n)$$

or Strang method:

$$U^{n+1} = \varphi_{\Delta t/2}^{[E]} \circ \varphi_{\Delta t/2}^{[B]} \circ \varphi_{\Delta t/2}^{[j_c]} \circ \varphi_{\Delta t}^{[f_h]} \circ \varphi_{\Delta t/2}^{[j_c]} \circ \varphi_{\Delta t/2}^{[B]} \circ \varphi_{\Delta t/2}^{[E]} (U^n)$$

One of sub-steps of Hamiltonian splitting:

$$\varphi^{[E]}(U) = \begin{cases} \partial_t \mathbf{j}_c = \Omega_{pe}^2 \mathbf{E} \\ \partial_t \mathbf{B} = J \partial_z \mathbf{E} \\ \partial_t \mathbf{E} = 0 \\ \partial_t f_h = \mathbf{E} \cdot \nabla_{v_\perp} f_h \end{cases} \rightarrow \varphi_t^{[E]}(U^0) = \begin{pmatrix} \mathbf{j}_c(0) + t \Omega_{pe}^2 \mathbf{E}(0) \\ \mathbf{B}(0) + t J \partial_z \mathbf{E}(0) \\ \mathbf{E}(0) \\ f_h(0, z, v_\perp + t \mathbf{E}(0), v_z) \end{pmatrix}$$

Numerical tools:

• 2D interpolation with 2 Lagrange 5 interpolations to approximate $f_h(0, z, v_{\perp} + t\mathbf{E}(0), v_z)$

$$\partial_t U = LU + N(t, U)$$

with:

$$L = \begin{pmatrix} 0 & -B_0 & 0 & 0 & \Omega_{pe}^2 & 0 & 0 \\ B_0 & 0 & 0 & 0 & \Omega_{pe}^2 & 0 \\ 0 & 0 & 0 & 0 & 0 & \partial_z & 0 \\ 0 & 0 & 0 & 0 & -\partial_z & 0 & 0 \\ -1 & 0 & 0 & -\partial_z & 0 & 0 & 0 \\ 0 & -1 & \partial_z & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -v_z \partial_z \end{pmatrix}, \quad N:t, U \mapsto \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \int v_x f_h \, \mathrm{d} \mathbf{v} \\ \int v_y f_h \, \mathrm{d} \mathbf{v} \\ (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \cdot \nabla_{\mathbf{v}} f_h \end{pmatrix}$$

But $e^{\tau L}$ can't be computed with symbolic computation software.

How to compute $e^{\tau L}$?

2 solutions are proposed:

- Remove some terms of the linear part L and put them in nonlinear part N.
 - ✓ symbolic computation to write efficient code
 - add CFL stability condition
- 2 Approximate $e^{\tau L}$ with Taylor series or Padé approximant.
 - ✓ no CFL stability from all (local) linear terms
 - add error of approximation

Remove Maxwell equations from linear part L, and add them in nonlinear term N:

- \checkmark $e^{\tau L}$ is exactly computed with symbolic computation
- ✗ Add a CFL stability condition in z (coming from explicit resolution of Maxwell equations) which can be estimated.

Approximation of $e^{\tau L}$

Complete linear part L, after Fourier transform in $z: \partial_z \mapsto i\kappa$

We have:

$$\forall \kappa, \sigma(L(\kappa)) \subset i \, \mathbb{R}$$

Taylor series

Simplest approximation:

$$T_p(\tau L) = \sum_{k=0}^p \frac{\tau^k}{k!} L^k = e^{\tau L} + \mathcal{O}(\tau^{p+1})$$

Theorem

 $sp(L) \subset i\mathbb{R} \setminus i[-1,1]$ implies eigenvalues diverge

Proof: compute Taylor series outside of its convergence radius **Conclusion:**

- Bad behavior of eigenvalues
- X Numerical instability in scheme

Eigenvalues of Taylor series

Figure: $T_5(ix)$, $x \in [0, 9]$

Padé approximant

Best rational approximation of exponential function.

Defined (for order (p, q)) as:

$$h_{p,q}(M) = \sum_{i=0}^{p} \frac{\frac{p!}{(p-i)!}}{\frac{(p+q)!}{(p+q-i)!}} \frac{M^{i}}{i!} \quad , \quad k_{p,q}(M) = \sum_{j=0}^{q} (-1)^{j} \frac{\frac{q!}{(q-j)!}}{\frac{(p+q)!}{(p+q-j)!}} \frac{M^{j}}{j!}$$

Finally Padé approximant is:

$$P_{p,q}(\tau L) = h_{p,q}(\tau L) (k_{p,q}(\tau L))^{-1} = e^{\tau L} + \mathcal{O}(\tau^{p+q+1})$$

Theorem

$$sp(L) \subset i\mathbb{R} \implies sp(P_{p,p}(tL)) \subset \mathcal{C}(0,1)$$

Conclusion:

Needs matrix inversion, or some tricks:

✓ Best approximation for this numerical cost

Preserves eigenvalues

Proof

L diagonalizable → study only on diagonal terms

$$\begin{split} P_{\rho,\rho}(iy) &= \left(\sum_{k=0}^{p} \frac{1}{k!} (iy)^{k}\right) \cdot \left(\sum_{\ell=0}^{p} (-1)^{\ell} \frac{1}{\ell!} (iy)^{\ell}\right)^{-1} \\ & \sum_{k=0}^{p} \frac{1}{k!} (iy)^{k} = \sum_{k=0}^{\lfloor \frac{p}{2} \rfloor} (-1)^{k} \frac{y^{2k}}{2k!} + i \sum_{k=0}^{\lfloor \frac{p}{2} \rfloor - 1} (-1)^{k} \frac{y^{2k+1}}{(2k+1)!} \\ & \sum_{\ell=0}^{p} (-1)^{\ell} \frac{1}{\ell!} (iy)^{\ell} = \sum_{\ell=0}^{\lfloor \frac{p}{2} \rfloor} (-1)^{\ell} \frac{y^{2\ell}}{2\ell!} - i \sum_{\ell=0}^{\lfloor \frac{p}{2} \rfloor - 1} (-1)^{\ell} \frac{y^{2\ell+1}}{(2\ell+1)!} \\ \lambda^{-} &= \overline{\lambda^{+}} \text{ so } \left| \frac{\lambda^{+}}{\lambda^{-}} \right| = 1. \end{split}$$

Josselin Massot (IRMAR)

Eigenvalues of Padé approximant

Figure: $P_{2,2}(ix)$, $x \in [-5, 5]$

Eigenvalues of assymetric Padé approximants

Figure: $P_{2,1}(ix) x \in [-5, 5]$

Figure: $P_{1,2}(ix) \ x \in [-5, 5]$

Error on approximate Lawson method

We note $exp(L) = P_{p,q}(L)$ or $T_p(L)$, generic approximation.

$$\exp(L) = e^L + \mathcal{O}(L^{r+1})$$

Lawson RK(3,3) method:

$$\begin{split} u^{(1)} &= e^{\Delta t L} u^n + \Delta t e^{\Delta t L} N(t^n, u^n) \\ u^{(2)} &= \frac{3}{4} e^{\frac{\Delta t}{2} L} u^n + \frac{1}{4} e^{-\frac{\Delta t}{2} L} u^{(1)} + \frac{\Delta t}{4} e^{-\frac{\Delta t}{2} L} N(t^n + \Delta t, u^{(1)}) \\ u^{n+1} &= \frac{1}{3} e^{\Delta t L} u^n + \frac{2}{3} e^{\frac{\Delta t}{2} L} u^{(2)} + \frac{2}{3} \Delta t e^{\frac{\Delta t}{2} L} N(t^n + \frac{\Delta t}{2}, u^{(2)}) \end{split}$$

If L and N commute: $u^{n+1} = e^{\Delta tL} \left(I + N + \frac{N^2}{2} + \frac{N^3}{6} \right) u^n$, stability is same as RK(3,3). Else...

Error on approximate Lawson method

If *L* and *N* don't commute:

$$\begin{split} u^{n+1} &= \left[e^{\Delta t L} + \Delta t \left(\frac{2}{3} e^{\frac{\Delta t}{2} L} N e^{\frac{\Delta t}{2} L} + \frac{1}{6} e^{\Delta t L} N + \frac{1}{6} N e^{\Delta t L} \right) \leadsto e^{\Delta L} \Delta t N \\ &\quad + \frac{\Delta t^2}{2} \left(\frac{1}{3} N e^{\Delta t L} N + \frac{1}{3} e^{\frac{\Delta t}{2} L} N e^{\frac{\Delta t}{2} L} N + \frac{1}{3} e^{\frac{\Delta t}{2} L} N e^{-\frac{\Delta t}{2} L} N e^{\Delta t L} \right) \\ &\quad \leadsto e^{\Delta L} \frac{(\Delta t N)^2}{2} \\ &\quad + \frac{\Delta t^3}{6} e^{\frac{\Delta t}{2} L} N e^{-\frac{\Delta t}{2} L} N e^{\Delta t L} N \right] u^n \leadsto e^{\Delta L} \frac{(\Delta t N)^3}{6} \end{split}$$

Same results if $e^{\Delta tL}\mapsto \mathfrak{exp}(\Delta tL)=e^{\Delta tL}+\mathcal{O}(\Delta t^{r+1})$

Lemma

Error for Lawson RK(s,m) is always in $\mathcal{O}(\Delta t^{m+1}) + \mathcal{O}(\Delta t^{r+1})$

Test 1

Simulation of $\partial_t u + a \partial_x u + b \partial_y u = 0$ (2D translation test case) and measure order.

Figure: Order of Lawson RK(3,3) method, and Lawson RK(3,3), P(2,2) approximant method and Lawson RK(3,3) T(4) series method.

Test 1

Simulation of $\partial_t u + a \partial_x u + b \partial_y u = 0$ (2D translation test case) and measure order.

Figure: Order of Lawson RK(3,3) T(n) series method, n = 1, ..., 4.

Figure: Order of Lawson RK(3,3) P(p,q) approximant, p=1,2, q=1,2

Test 2

Simulation of $\partial_t u - y \partial_x u + x \partial_y u = 0$ (2D rotation) and test instability

Figure: Initial condition (left), solution with Lawson RK(3,3) T(3) series (middle) and Lawson RK(3,3) P(1,1) approximant (right)

Outline

- Introduction
- 2 Numerical methods
- Application for hybrid Vlasov-Maxwell model
 - With splitting method
 - With Lawson method
- 4 Numerical results
- 5 Conclusion

Numerical results

We compare:

- Splitting method:
 - Strang (order 2)
 - Suzuki (order 4)
- Lawson method:
 - LRK(4,4) (order 4)
 - LDP4(3) (adaptive time step method)
- Lawson method with approximation of linear part:
 - LRK(4,4) with Padé (2,2) (order 4 + approximation of order <math>2 + 2 = 4)
 - LDP4(3) with Padé (2,2) (adaptive time step method)

But: Padé approximant implies a huge rational function (with invert of matrix), high order Lawson methods have a lot of coefficients, with 7 variables problem. . . → bug source !!!

The main idea of code generator:

- Write with SymPy the Lawson method with a vector $U \in \mathbb{C}^7$, an abstract matrix $L \in \mathcal{M}_7(\mathbb{C})$ and an abstract nonlinear part $N: t, U \mapsto N(t, U) \in \mathbb{C}^7$
- 2 Compute $e^{\tau L}$ with our L matrix, and given approximation of exp
- Loop for each stage of Lawson method into a code template (Jinja2)
- Save the file, compile and run with a given configuration file

Figure: Energies evolution, $\Delta t = 0.05$

Figure: Relative error on total energy, $\Delta t = 0.05$

Figure: Energies evolution, Lawson with Taylor or Padé approximation, $\Delta t = 0.12$

Figure: Energies evolution, Lawson with Taylor or Padé approximation, Δt^n

 $N_z \times N_{v_x} \times N_{v_y} \times N_{v_z} = 27 \times 32 \times 32 \times 41$

Figure: Time step evolution and estimate of local error, Lawson with Taylor or Padé approximation, Δt^n

time integrator	simulation time
Lie splitting	13 h 25 min 10 s
Strang splitting	17 h 09 min 54 s
Suzuki splitting	3j 03h 05 min 24 s
LRK(3,3)	11 h 29 min 09 s
$LRK(3,3) - T_4$	10 h 53 min 40 s
$LRK(3,3) - P_{1,1}$	10 h 54 min 11 s
$LRK(3,3) - P_{2,2}$	10 h 55 min 26 s
LRK(4,4)	14 h 06 min 15 s
$LRK(4,4) - T_5$	14 h 00 min 03 s
$LRK(4,4) - P_{2,2}$	13 h 59 min 59 s
LDP4(3)	11 h 44 min 04 s
LDP4(3) - P _{2,2}	04 h 09 min 44 s

Table: Simulation time for some simulation, on mesh $N_z \times N_{v_x} \times N_{v_y} \times N_{v_z} = 27 \times 32 \times 32 \times 41$ and time step $\Delta t = 0.05$ (initial time step for adaptive time step strategy).

Outline

- 1 Introduction
- 2 Numerical methods
- Application for hybrid Vlasov-Maxwell model
 - With splitting method
 - With Lawson method
- 4 Numerical results
- **5** Conclusion

Conclusion

- ✔ First simulations of this system using Hamiltonian splitting
- Numerical cost of splitting methods (not bad in 1dz 1dv but very bad in 1dz 3dv, must be very very bad in 3dx 3dv)
- ✓ Numerical cost of Lawson methods
- Behavior of total energy of Lawson method (but we can use high order method easily)
- Error of approximation with Padé approximant can be lower than time integrator

Future works

- Compare Lawson method with Padé approximant with a PIC simulation
- Add $\int \mathbf{v} f_h \, d\mathbf{v}$ in linear part (for 1dx 1dv model)

Thank you for your attention

backup Adaptive time step method for splitting method

Blanes, Casas, and Thalhammer 2019, Applied Numerical Mathematics for Suzuki splitting method

$$u_{[4]}^{n+1} = \mathcal{S}_{\Delta t}(u^n) = S_{\alpha_1 \Delta t} \circ S_{\alpha_2 \Delta t} \circ S_{\alpha_3 \Delta t} \circ S_{\alpha_2 \Delta t} \circ \underbrace{S_{\alpha_1 \Delta t}(u^n)}_{u^{(1)}}.$$

We compute an order 3 approximation from U^n and $U^{(s)}$, s=1,2,3,4 :

$$u_{[3]}^{n+1} = -u^n + w_1(u^{(1)} + u^{(4)}) + w_2(u^{(2)} + u^{(3)})$$

with:

$$w_1 = rac{g_2(1-g_2)}{g_1(g_1-1)-g_2(g_2-1)}, \quad w_2 = 1-w_1, \quad egin{matrix} g_1 = lpha_1 \ g_2 = lpha_1 + lpha_2 \end{matrix}$$

and
$$L_{[3]}^n = \left\| u_{[4]}^{n+1} - u_{[3]}^{n+1} \right\|_2$$

backup Adaptive time step method for Lawson method

Lawson methods are built on Runge-Kutta method, embedded Lawson method are written with an underlying embedded Runge-Kutta method.

Dormand and Prince 1978, Celestial mechanics

With DP4(3) (Dormand-Prince method of order 4, with embedded 3 method):

We compute a 3rd order approximation from u^n , $u^{(s)}$, s=1,2,3,4 done by the last line of Butcher tableau.

the last line of Butcher tableau. And
$$L_{[3]}^n=\left\|u_{[4]}^{n+1}-u_{[3]}^{n+1}\right\|_2$$

For two given functionals \mathcal{F} , \mathcal{G} of \mathbf{j}_c , \mathbf{B} , \mathbf{E} , f_h , the Poisson bracket is given by

$$\begin{split} \{\mathcal{F},\mathcal{G}\}[\pmb{j}_c,\pmb{B},\pmb{E},f_h] &= \frac{1}{m_e} \int_{\Omega} \int_{\mathbb{R}^3} f_h \Big[\frac{\delta \mathcal{F}}{\delta f_h}, \frac{\delta \mathcal{G}}{\delta f_h} \Big]_{\pmb{x}\pmb{\nu}} \, \mathrm{d}\pmb{\nu} \, \mathrm{d}\pmb{x} \\ &+ \frac{q_e}{m_e \varepsilon_0} \int_{\Omega} \int_{\mathbb{R}^3} f_h \left(\nabla_{\pmb{\nu}} \frac{\delta \mathcal{F}}{\delta f_h} \cdot \frac{\delta \mathcal{G}}{\delta \pmb{E}} - \nabla_{\pmb{\nu}} \frac{\delta \mathcal{G}}{\delta f_h} \cdot \frac{\delta \mathcal{F}}{\delta \pmb{E}} \right) \mathrm{d}\pmb{\nu} \, \mathrm{d}\pmb{x} \\ &+ \frac{q_e}{m_e^2} \int_{\Omega} \int_{\mathbb{R}^3} f_h(\pmb{B} + \pmb{B}_0) \cdot \left(\nabla_{\pmb{\nu}} \frac{\delta \mathcal{F}}{\delta f_h} \times \nabla_{\pmb{\nu}} \frac{\delta \mathcal{G}}{\delta f_h} \right) \mathrm{d}\pmb{\nu} \, \mathrm{d}\pmb{x} \\ &+ \frac{1}{\varepsilon_0} \int_{\Omega} \left(\nabla \times \frac{\delta \mathcal{F}}{\delta \pmb{E}} \cdot \frac{\delta \mathcal{G}}{\delta \pmb{B}} - \nabla \times \frac{\delta \mathcal{G}}{\delta \pmb{E}} \cdot \frac{\delta \mathcal{F}}{\delta \pmb{B}} \right) \mathrm{d}\pmb{x} \\ &+ \int_{\Omega} \Omega_{pe}^2 \left(\frac{\delta \mathcal{F}}{\delta \pmb{j}_c} \cdot \frac{\delta \mathcal{G}}{\delta \pmb{E}} - \frac{\delta \mathcal{G}}{\delta \pmb{j}_c} \cdot \frac{\delta \mathcal{F}}{\delta \pmb{E}} \right) \mathrm{d}\pmb{x} \\ &+ \frac{q_e \varepsilon_0}{m_e} \int_{\Omega} \Omega_{pe}^2 \pmb{B}_0 \cdot \left(\frac{\delta \mathcal{F}}{\delta \pmb{j}_c} \times \frac{\delta \mathcal{G}}{\delta \pmb{j}_c} \right) \mathrm{d}\pmb{x} \, . \end{split}$$

$$\varphi^{[j_c]}(U) = \begin{cases} \partial_t \mathbf{j}_c = -J\mathbf{j}B_0 \\ \partial_t \mathbf{B} = 0 \\ \partial_t \mathbf{E} = -\mathbf{j}_c \\ \partial_t f_h = 0 \end{cases} \rightarrow \varphi_t^{[j_c]}(U^0) = \begin{pmatrix} e^{-tJ}\mathbf{j}_c(0)B_0 \\ \mathbf{B}(0) \\ \mathbf{E}(0) - J(e^{-tJ} - I)\mathbf{j}_c(0) \end{pmatrix}$$

Obtain because: $\int_0^t \exp(-sJ) \boldsymbol{j}_c(0) ds = J(\exp(-tJ) - I) \boldsymbol{j}_c(0)$, with:

$$\exp(-tJ) = \begin{pmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{pmatrix}$$

$$\varphi^{[B]}(U) = \begin{cases} \partial_t \mathbf{j}_c = 0 \\ \partial_t \mathbf{B} = 0 \\ \partial_t \mathbf{E} = -J \partial_z \mathbf{B} \\ \partial_t f_h = 0 \end{cases} \rightarrow \varphi_t^{[B]}(U^0) = \begin{pmatrix} \mathbf{j}_c(0) \\ \mathbf{B}(0) \\ \mathbf{E}(0) - tJ \partial_z \mathbf{B}(0) \\ f_h(0) \end{cases}$$

• Solve in Fourier space

$$\varphi^{[E]}(U) = \begin{cases} \partial_t \mathbf{j}_c = \Omega_{pe}^2 \mathbf{E} \\ \partial_t \mathbf{B} = J \partial_z \mathbf{E} \\ \partial_t \mathbf{E} = 0 \\ \partial_t f_h = \mathbf{E} \cdot \nabla_{\mathbf{v}} f_h \end{cases} \rightarrow \varphi_t^{[E]}(U^0) = \begin{pmatrix} \mathbf{j}_c(0) + t \Omega_{pe}^2 \mathbf{E}(0) \\ \mathbf{B}(0) + t J \partial_z \mathbf{E}(0) \\ \mathbf{E}(0) \\ f_h(0, z, \mathbf{v} + t \mathbf{E}(0), v_z) \end{pmatrix}$$

• 2D interpolation with 2 Lagrange 5 interpolations to approximate $f_h(0, z, \mathbf{v} + t\mathbf{E}(0), v_z)$

$$\varphi^{[f_h]}(U) = \begin{cases} \partial_t \mathbf{j}_c = 0 \\ \partial_t \mathbf{B} = 0 \\ \partial_t \mathbf{E} = \int \mathbf{v} f_h \, \mathrm{d} \mathbf{v} \\ \partial_t f_h = -v_z \partial_z f_h + (\mathbf{v} \times (\mathbf{B} + \mathbf{B}_0)) \cdot \nabla_{\mathbf{v}} f_h \end{cases}$$

This step is split again onto 3 parts.

$$\varphi^{[f_{h,x}]}(U) = \begin{cases} \partial_t \mathbf{j}_c = 0 \\ \partial_t \mathbf{B} = 0 \\ \partial_t E_x = \int v_x f_h \, \mathrm{d} \mathbf{v} & \to \varphi_t^{[f_{h,x}]}(U^0) = \begin{pmatrix} \mathbf{j}_c(0) \\ \mathbf{B}(0) \\ E_x(0) + t \int v_x f_h(0) \, \mathrm{d} \mathbf{v} \\ E_y(0) \\ \partial_t f_h = -v_x B_0 \partial_{v_y} f_h + v_x B_y \partial_{v_z} f_h \end{pmatrix}$$

• 2D interpolation with Lagrange 5 interpolation to approximate $f_h(0, z, v_x, v_y - tv_x B_0, v_z + tB_y v_x)$

Same thing for $\varphi^{[f_{h,y}]}$ in v_y direction.

$$\varphi^{[f_{h,z}]}(U) = \begin{cases} \partial_t \mathbf{j}_c = 0 \\ \partial_t \mathbf{B} = 0 \\ \partial_t \mathbf{E} = 0 \\ \partial_t f_h = -v_z \partial_z f_h + (-v_z B_y \partial_{v_x} f_h + v_z B_x \partial_{v_y} f_h) \end{cases}$$

- Split again onto 3 parts, with change of variable $g(t, z, \mathbf{v}) := f(t, z + tv_z, \mathbf{v})$
- 2D interpolation with Lagrange 5 interpolation to approximate $g(0, z, v_x \sum_k \hat{B}_y(0, k) \frac{1}{ik} e^{ikz} (e^{iktv_z} 1), v_y + \sum_k \hat{B}_x(0, k) \frac{1}{ik} e^{ikz} (e^{iktv_z} 1), v_z)$
- Revert change of variable with Fourier transform

For Lie method:
$$U^{n+1} = \varphi_{\Delta t}^{[j_c]} \circ \varphi_{\Delta t}^{[B]} \circ \varphi_{\Delta t}^{[E_{v_x}]} \circ \varphi_{\Delta t}^{[E_{v_y}]} \circ \varphi_{\Delta t}^{[f_{h,x,v_x}]} \circ \varphi_{\Delta t}^{[f_{h,x,v_z}]} \circ \varphi_{\Delta t}^{[f_{h,x$$