Combinations

6/28/2006

Binomial Coefficients

Definition. The number of distinct subsets with j elements that can be chosen from a set with n elements is denoted by $\binom{n}{j}$. The number $\binom{n}{j}$ is called a binomial coefficient.

Recurrence Relation

Theorem. For integers n and j, with 0 < j < n, the binomial coefficients satisfy:

$$\binom{n}{j} = \binom{n-1}{j} + \binom{n-1}{j-1}.$$

Pascal's triangle

	j = 0	1	2	3	4	5	6	7	8	9	10
n = 0	1										
1	1	1									
2	1	2	1								
3	1	3	3	1							
4	1	4	6	4	1						
5	1	5	10	10	5	1					
6	1	6	15	20	15	6	1				
7	1	7	21	35	35	21	7	1			
8	1	8	28	56	70	56	28	8	1		
9	1	9	36	84	126	126	84	36	9	1	
10	1	10	45	120	210	252	210	120	45	10	1

Theorem. The binomial coefficients are given by the formula

$$\binom{n}{j} = \frac{(n)_j}{j!} = \frac{n!}{j!(n-j)!}.$$

Bernoulli Trials

Definition. A Bernoulli trials process is a sequence of n chance experiments such that

- 1. Each experiment has two possible outcomes, which we may call success and failure.
- 2. The probability p of success on each experiment is the same for each experiment, and this probability is not affected by any knowledge of previous outcomes. The probability q of failure is given by q=1-p.

Tree diagram

Binomial Probabilities

We denote by b(n, p, j) the probability that in n Bernoulli trials there are exactly j successes.

Theorem. Given n Bernoulli trials with probability p of success on each experiment, the probability of exactly j successes is

$$b(n, p, j) = \binom{n}{j} p^j q^{n-j}$$

where q = 1 - p.

Binomial Distributions

Definition. Let n be a positive integer, and let p be a real number between 0 and 1. Let B be the random variable which counts the number of successes in a Bernoulli trials process with parameters n and p. Then the distribution b(n,p,k) of B is called the binomial distribution.

Binomial Expansion

Theorem. The quantity $(a + b)^n$ can be expressed in the form

$$(a+b)^n = \sum_{j=0}^n \binom{n}{j} a^j b^{n-j} .$$

Corollary. The sum of the elements in the nth row of Pascal's triangle is 2^n . If the elements in the nth row of Pascal's triangle are added with alternating signs, the sum is 0.

Inclusion-Exclusion Principle

Theorem. Let P be a probability distribution on a sample space Ω , and let $\{A_1, A_2, \ldots, A_n\}$ be a finite set of events. Then

$$P(A_1 \cup A_2 \cup \dots \cup A_n) = \sum_{i=1}^n P(A_i) - \sum_{1 \le i < j \le n} P(A_i \cap A_j)$$

$$+ \sum_{1 \le i < j < k \le n} P(A_i \cap A_j \cap A_k) - \cdots.$$

That is, to find the probability that at least one of n events A_i occurs, first add the probability of each event, then subtract the probabilities of all possible two-way intersections, add the probability of all three-way intersections, and so forth.

Hat Check Problem (revisited)

Find the probability that a random permutation contains at least one fixed point.

• If A_i is the event that the ith element a_i remains fixed under this map, then

$$P(A_i) = \frac{1}{n}.$$

• If we fix a particular pair (a_i, a_j) , then

$$P(A_i \bigcap A_j) = \frac{1}{n(n-1)}.$$

• The number of terms of the form $P(A_i \cap A_j)$ is $\binom{n}{2}$.

• For any three events A_1, A_2, A_3

$$P(A_i \cap A_j \cap A_k) = \frac{(n-3)!}{n!} = \frac{1}{n(n-1)(n-2)},$$

and the number of such terms is

$$\binom{n}{3} = \frac{n(n-1)(n-2)}{3!} .$$

Hence

$$P(\text{at least one fixed point}) = 1 - \frac{1}{2!} + \frac{1}{3!} - \dots + (-1)^{n-1} \frac{1}{n!}$$

and

$$P(\text{no fixed point}) = \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \frac{1}{n!}$$
.

	Probability that no one
n	gets his own hat back
3	.333333
4	.375
5	.366667
6	.368056
7	.367857
8	.367882
9	.367879
_10	.367879

Problem

Show that the number of ways that one can put n different objects into three boxes with a in the first, b in the second, and c in the third is $n!/(a!\,b!\,c!)$.

Problem

Prove that the probability of exactly n heads in 2n tosses of a fair coin is given by the product of the odd numbers up to 2n-1 divided by the product of the even numbers up to 2n.