Definitions - ILP

Simon Jacquet

August 30, 2022

1

3 3

Contents

1 Predicate logic

• $\neg A$ (or \overline{A}) is a negative literal.

	1.1	Fundamentals	
	1.2	Clauses	
	1.3	Clausal theory	
2	Grammar		
	2.1	Fundamentals	
	2.2	Types of grammar	
	2.3	Properties of language	
1	D	redicate logic	
1	I	redicate logic	
1.	1 I	Fundamentals	
Va	riabl	le: Xxxx	
Fυ	nctio	on: xxxx(<term>,,<term>)</term></term>	
		or that maps inputs to some output. Terms as input, terms as output $(2+3)$.	
Pı	edica	ate: xxxx(<term>,,<term>)</term></term>	
Fu	nctio	a that takes terms as input and outputs either true or false $(2 < 3)$.	
Fυ	nctio	on symbol or predicate symbol: xxxx	
C	onsta	nt: xxxx	
Fu	Function symbol or predicate symbol with arity 0.		
Τe	Term: <constant> <variable> <function symbol=""></function></variable></constant>		
Αt	om ((or atomic formula): Predicate symbol (ntuple of terms).	
Li	teral	: <atom> ¬ <atom></atom></atom>	
A	A literal is either an atom or its negation. Let A be an atom,		
	• <i>A</i> i	s a positive literal;	

1.2 Clauses

Clause: (<Literal>,...,<Literal>)

A clause is a finite set of literals. It is to be taken as the disjunction of the literals. Let A_i, B_i be atoms, the same clause can be written as:

$$(A_1, ..., A_n, \neg B_1, ..., \neg B_m) \iff A_1 \lor ... \lor A_n \lor B_1 \lor ... \lor B_m \iff A_1, ..., A_n \leftarrow B_1, ..., B_m$$

Horn clause: $A \leftarrow B_1, ..., B_m \mid \leftarrow B_1, ..., B_m$

A Horn clause has at most 1 positive literal. A Horn clause is either a goal or a definite clause.

Denial or goal: $\leftarrow B_1, ..., B_m$

A denial or goal is a Horn clause with 0 positive literal.

Definite clause: $A \leftarrow B_1, ..., B_m$

A Horn clause with exactly 1 positive literal. A, the positive literal is called the head. $B_1, ..., B_n$, the negative literals are called the body.

Unit clause: $A \leftarrow \mid \leftarrow B$

A unit clause is a Horn clause composed of a single literal, either a positive literal $(A \leftarrow)$ or a negative literal $(\leftarrow B)$.

1.3 Clausal theory

Clausal theory (aka logic program): (<Clause>,...,<Clause>)

A clausal theory is a set, or conjunction of clauses. Let C_i be clauses, a clausal theory can be written as:

$$\iff \begin{array}{c} (C_1,...,C_n) \\ \Longleftrightarrow \quad C_1 \wedge ... \wedge C_n \end{array}$$

Monoadic (Dyadic) clausal theory: Clausal theory in which all predicates have arity $\leq 1 \leq 2$.

Horn logic program: Clausal theory in which all clauses are Horn clauses.

Definite logic program: Clausal theory in which all clauses are definite clauses.

Datalog program: Logic program in which there are no functions, with the exception of constants.

Higher-order Datalog program: Datalog program in which there is a predicate which has a predicate as argument.

Well-formed-formulaes (wffs): <Literal> | <Clause> | <Clausal theory>

Ground: Let E be a wff or a term, E is ground iff it contains no variable.

Skolemisation: Replacing variables by constants.

Skolem constants: Unique constants.

2 Grammar

 λ

2.1 Fundamentals

- Σ Finite alphabet r Production rule $LHS \to RHS$
- Σ^* Infinite set of strings containing ≥ 0 letters Well-formed when $LHS \in (\nu \cup \Sigma)^*, RHS \in (\nu \cup \Sigma \cup \lambda)^*$
 - from Σ When applied, replaces LHS by RHS in a given string
- uv Concatenation of string u and v G Grammar composed of the pair $\langle s, R \rangle$
- |u| Length of string u s Start symbol, $s \in \nu$
- L Language, a subset of Σ^* R Finite set of production rules
- ν Set of non-terminal symbols disjoint from Σ L(G) Language that follows grammar G

2.2 Types of grammar

Let $a, b \in \Sigma$, let $S, A, B, C \in \nu$.

Regular Chomsky-normal grammar: $S \to \lambda$ | $S \to aB$

Production rules must be of the form above.

Linear Context-Free grammar: $S \to \lambda$ | $S \to aB$ | $S \to Ab$

Production rules must be of the form above.

Context-Free grammar: $S \to \lambda$ | $S \to aB$ | $S \to Ab$ | $S \to AB$

Production rules must be of the form above.

Deterministic Context-Free grammar: Context-Free grammar with no two rules $S \to aB$, $S \to aC$ with $B \neq C$.

2.3 Properties of language

- $\bullet \ \sigma \in \Sigma^* \text{ is in } L(G) \iff \begin{cases} \exists s \in \nu, \\ \exists (r_1, ..., r_n) \in R^n, \\ s \to_{r_1} ... \to_{r_n} \sigma. \end{cases}$
- Language L is Regular/Linear Context-Free/Context-Free iff $\exists G, L = L(G)$, with G, a Regular/Linear Context-Free/Context-Free grammar.