Exercice 7 (Projecteurs)

Soit E un \mathbb{K} -espace vectoriel.

- 1. Soient p et q deux endomorphismes de E tels que $p \circ q = q \circ p$.
 - (a) Montrons que $\operatorname{Ker} p + \operatorname{Ker} q \subset \operatorname{Ker}(p \circ q)$. Soit $\vec{x} \in \operatorname{Ker} p + \operatorname{Ker} q$. Soient $\vec{\alpha} \in \operatorname{Ker} p$ et $\vec{\beta} \in \operatorname{Ker} q$ deux vecteurs tels que $\vec{x} = \vec{\alpha} + \vec{\beta}$. On a donc

$$(p \circ q)(\vec{\alpha} + \vec{\beta}) = (p \circ q)(\vec{\alpha}) + (p \circ q)(\vec{\beta}) = q(p(\vec{\alpha})) + p(q(\vec{\beta})) = q(\vec{0}) + p(\vec{0}) = \vec{0}.$$

- (b) On sait que $\operatorname{Im}(p\circ q)\subset \operatorname{Im}(p)$ et $\operatorname{Im}(q\circ p)\subset \operatorname{Im}(q)$. Or, comme $p\circ q=q\circ p$, on a $\operatorname{Im}(p\circ q)=\operatorname{Im}(q\circ p)$ et donc $\operatorname{Im}(p\circ q)\subset \operatorname{Im} p\cap \operatorname{Im} q$.
- 2. (a) On montre que $(p \circ q) \circ (p \circ q) = p \circ q$.

$$\begin{split} (p \circ q) \circ (p \circ q) &= (p \circ q) \circ (q \circ p) \\ &= p \circ q \circ p \\ &= q \circ p \circ p \\ &= q \circ p \\ &= p \circ q. \end{split}$$

(b) On veut montrer que $\operatorname{Im}(p \circ q) = \operatorname{Im} p \cap \operatorname{Im} q$. Soit $\vec{x} \in \operatorname{Im} p \cap \operatorname{Im} q$. Soient $\vec{a}, \vec{b} \in E$ tels que $p(\vec{a}) = \vec{x}$ et $q(\vec{b}) = \vec{x}$. On a donc

$$\operatorname{Im} p \cap \operatorname{Im} q \ni \vec{x} = p(\vec{x}) = p(p(\vec{a})) = p(q(\vec{b})) = p(\vec{a}) = (p \circ q)(\vec{b}) \in \operatorname{Im}(p \circ q).$$

On a donc $\operatorname{Im} p \cap \operatorname{Im} q = \operatorname{Im}(p \circ q)$.

On veut maintenant montrer $\operatorname{Ker} p + \operatorname{Ker} q \supset \operatorname{Ker} (p \circ q)$. Soit $\vec{x} \in \operatorname{Ker} (q \circ p)$. On sait que $\vec{x} = p(\vec{x}) - (\vec{x} - p(\vec{x}))$. Mais, comme $\vec{x} \in \operatorname{Ker} (q \circ p)$, alors $p(\vec{x}) \in \operatorname{Ker} (q)$. Également, comme $p(\vec{x} - p(\vec{x})) = p(\vec{x}) - p \circ p(\vec{x}) = 0_E$, on en déduit que $\vec{x} - p(\vec{x}) \in \operatorname{Ker} (p)$. On a donc $\operatorname{Ker} p + \operatorname{Ker} q = \operatorname{Ker} (p \circ q)$ par double inclusion.

On en déduit que $p\circ q$ est un projecteur sur $\operatorname{Im} p\cap \operatorname{Im} q$ parallèlement à $\operatorname{Ker} p+\operatorname{Ker} q.$