Lecture 2: Probability Distribution Statistical Methods for Data Science

Yinan Yu

Department of Computer Science and Engineering

November 2, 2023

Today

- Probability distribution
 - Why probability distributions?
 - Terminology

2 Summary

Learning outcome

- Be able to explain the following concepts: experiment, event, random variable, probability distribution
- Given the PDF/PMF, be able to describe the probability distribution of a continuous/discrete random variable
- Understand Gaussian distribution and Bernoulli distribution: 1)
 PDF/PMF; 2) what are the parameters? 3) what happens to the shape of the distribution if we change the parameters?

Why probability distributions?

You need to get a good overview (i.e. distribution) of your 1000 ducks' weights without weighing all of them, because, well, data collection is expensive. You weighed 20 ducks and you plotted the histogram of the weights. Your best friend Jack looked at the histogram and suggested that you should use a Gaussian distribution to make a better estimation of the distribution.

 Question 1: Why can't I just use descriptive analysis, like the histogram, to describe the data distribution? Why should I use probability distributions?

To address this question, let's describe the data distribution using a histogram and a Gaussian distribution to see the difference.

Here are the weights of the 20 ducks in kg

duck id	1	2	3	4	 19	20
weight	6.98	5.43	2.97	7.07	 4.63	7.27

Let's try to describe these ducks using a histogram with 5 bins.

- Divide the range of the data into 5 bins
- There are 3 ducks within the first bin [2.965, 4.596]; there are 5 ducks within second bin [4.596, 6.226], etc.

- Now you want to use the histogram to describe the distribution of 1000 ducks
- This allows you to answer questions such as "what is the chance of a duck weighing between 2.965 kg and 4.596 kg?" $\frac{3}{20}$ How about between 3.1 kg and 3.4 kg?

Resolution: how many bins we use to describe one kilogram (the number of bins per kilogram)

$$\frac{\text{number of bins}}{\textit{range}} = \frac{\text{number of bins}}{\text{max}(\textit{weights}) - \text{min}(\textit{weights})} = \frac{5}{11.118 - 2.965} = 0.61$$

- How do we describe the distribution of a duck?
 - The chance of a duck weighing between 3.1 and 3.4: $(3.4-3.1) \times resolution \times \frac{3}{20} = 0.028$
 - The chance of a duck weighing between 4.1 and 4.4: $(4.4-4.1) \times resolution \times \frac{3}{20} = 0.028$

"chance" = $\frac{\text{the area of the red rectangle}}{\text{the total area of the blue rectangles}}$

- We have "low resolution" due to quantization you don't know what's going on within each bin
- And if we increase the number of bins? 5 -> 200

- Descriptive analysis (e.g. histogram) is limited to the existing sample it is not designed for describing unseen data
- Now let's try to use a Gaussian distribution to describe the data
 - First, we assume that data is generated from a Gaussian distribution (e.g. np.random.normal in Python)
 - We can generate as many data points as we like
 - The histogram of these data points will be "bell-shaped"

 A Gaussian distribution is described by a function that looks similar to this "bell-shaped" histogram

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

- This function is sufficiently defined by two parameters μ and σ .
- The shape of the function (e.g. given μ =7 and σ =2):

• We will try to use this function instead of the histogram to describe the data.

- Describe the distribution:
 - Histogram (using 0.61 bins to describe 1 kg):
 - The chance of weight \in [3.1, 3.4]: (3.4 3.1) \times resolution \times $\frac{3}{20}$ = 0.028
 - The chance of weight $\in [4.1, 4.4]$: $(4.4 4.1) \times resolution \times \frac{20}{20} = 0.028$

"chance" =
$$\frac{\text{the area of the red rectangle}}{\text{the total area of the blue rectangles}}$$

- Gaussian distribution (using infinite bins to describe 1 kg):
 - The chance of $weight \in [3.1, 3.4]$: $\int_{3.1}^{3.4} f(t)dt = 0.010$
 - The chance of $weight \in [4.1, 4.4]$: $\int_{4.1}^{4.4} f(t)dt = 0.023$

- Descriptive analysis: a histogram with M bins (e.g. M=5)
- Gaussian distribution: a mathematical function $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$

Comparison

			Gaussian distribution		
Representation	M values		mathematical function f		
Number of parameters	М	-	$2 (\mu \text{ and } \sigma)$	+	
Resolution	$\frac{M}{\max(x)-\min(x)}$	-	infinity	+	
Analytical properties	No	-	Yes	+	
Assumptions	No	+	Yes	-	
Can be directly computed from data	Yes	+	Parameters unknown	-	

- For your use case, you want to estimate the distribution of your 1000 ducks
 without weighing all of them. It is hard to do that from the histogram. The
 histogram describes the data you have seen, but it is not designed for describing
 unseen data.
- Statistical modelling using probability distributions (e.g. a Gaussian distribution) can help you with that!
- This concludes the question why we use probability distributions instead of histograms to describe your ducks.

Disclaimer: we used a continuous distribution to illustrate the comparison between a histogram and a probability distribution. A discrete probability distribution differs from a continuous distribution.

Choosing a probability distribution

- Question 2: How do I know which probability distribution I should use to describe the data? How do I know that it should be a Gaussian distribution?
 - Short answer: if the probability distribution looks like the histogram, go for it!

• Long answer will be given in lecture 3.

Parameter estimation and evaluation

• Question 3: Okay fine, let's say we describe the data with a Gaussian distribution. How do I know what the parameters μ and σ are?

 This is done by parameter estimation. In lecture 3 & 4, we will talk about the maximum likelihood estimation (MLE) and the maximum a posteriori estimation (MAP).

Terminology

Probability distribution

- Experiment: an action that leads to one outcome. For example, we weigh a duck and look at its weight. The outcome is weight = 2 kg.
- Sample space: the set of all possible outcomes from the experiment. The sample space of the previous example is any real value between 0 and ∞ .
- Event: a subset of the sample space, for example, a duck weighs between 5kg and 6kg.
- Probability distribution: the probability of the occurrence of any event in the sample space, e.g. $P(a \text{ duck weighs between } a \text{ kg and } b \text{ kg}) \text{ for any } 0 < a < b < \infty \text{ (not only for } a = 5 \text{ and } b = 6).$
- Random variable X:
 - Heuristically, X assigns a numerical value to each outcome of the experiment:

$$X: \mathsf{weight} o \mathbb{R}$$

- X follows some underlying probability distribution.
- Discrete random variable and continuous random variable: depends on the sample space of the experiment; the underlying distributions are called discrete distribution and continuous distribution, respectively. For example, weights are continuous so X from this example is a continuous random variable.
- Data x: a value drawn from the underlying distribution of X.
 - We use a capital letter (e.g. X) to denote a random variable and the corresponding lower case letter (e.g. x) to denote the data generated from the underlying distribution of X.
 - Discrete random variable: categorical data or discrete numerical data
 - Continuous random variable: continuous numerical data

Probability distribution

A probability distribution describes the probabilities of occurrence of all possible events.

More precisely, a probability distribution is defined by a function f_X (also denoted as f if neglecting X does not cause confusion), where

• for discrete distribution, the probability mass function (PMF) is used, where

$$f_X(x_i) = P(X = x_i)$$

where $0 \le f_X(x_i) \le 1$ for all x_i (discrete).

 for continuous distribution, the probability density function (PDF) is used, where

$$P(a \le X \le b) = \int_a^b f_X(x) dx, \ \forall a, b \in \mathbb{R}, a \le b$$

where $f_X(x) \ge 0$ for all x (continuous).

P(event) is the probability of the **event** occurring.

Example: continuous random variables and PDF

- Experiment: you weigh a duck and look at its weight
- Sample space: $0 < weight < \infty$
- Random variable X : weight $\to \mathbb{R}$
 - X = x if the duck weighs x kg for $0 < x < \infty$
 - X follows a Gaussian distribution with parameters μ and σ ; denoted as $X \sim \mathcal{N}(\mu, \sigma^2)$
- \bullet PDF: $f_X(x)$

$$P(a \le X \le b) = \int_{a}^{b} f_X(x) dx$$
 $\forall a, b \in \mathbb{R}, a \le b$
Integral = area under the PDF curve

Example: discrete random variables and PMF

- Experiment: you measure the color of the duck.
- Sample space: the color can be either red or blue
- Random variable $X : color \rightarrow \mathbb{Z}$
 - $X = \begin{cases} 0, & \text{if a duck is red} \\ 1, & \text{if a duck is blue} \end{cases}$
 - X follows a **Bernoulli distribution** with parameter p; denoted as $X \sim Bernoulli(p)$
- PMF: $f_X(x_i) = P(X = x_i)$

Probability distribution

Differences between PMF and PDF

- Discrete distribution $f_X(x_i) = P(X = x_i)$:
 - · y-axis represents the probability itself
- Continuous distribution:
 - $P(a \le X \le b) = \int_a^b f_X(x) dx$: y-axis f(x) DOES NOT represent the probability itself.
 - For continuous distributions, the probability at any given value is always 0, i.e.
 P(X = a) = P(a ≤ X ≤ a) = ∫_a^a f_X(x)dx ≡ 0. Example: what is the probability of a duck weighing exactly 4.32028374... kg?

So far:

- Data types, data containers, descriptive statistics (e.g. sample mean, sample variance, data quantile), visualization (e.g. histogram)
- Probability distributions, sample space, events, random variables, PMF, PDF, parameters

Not yet:

• How to choose a probability distribution for a given data set?

Next:

Comparing two distributions using a Q-Q plot

Before next lecture:

- Quantile
- PMF and PDF

Stay strong (for your ducks)!

