Problem Solving Microprocessor Systems

- There is an array (ARY1) consisting unsigned, 8-bit integers in the memory that starts from memory address \$0100. The size of ARY1 is stored in \$000A
- Another array (ARY2) starting from \$0200, should be created using the elements of ARY1, which are lower than the number in the memory address \$000F.
- The size of ARY2 is stored in \$000B.
- Write this program using the instruction set of Motorola 6800. Write brief comments next to your code.

SOLUTION 1 - INITIAL VALUES

Values in ARY1 is set. Size of array is stored.

.ORG \$0000

LDAA #4

STAA \$000A

LDAA #8

STAA \$000F

LDAA #0

STAA \$000B

.ORG \$0100

ARY1 .byte 3,9,2,4

.end

Memory Address	Content (Hexadecimal)
\$000A	\$04
\$000F	\$08
\$000B	\$00
\$0100 (start of ARY1)	\$03
\$0101	\$09
\$0102	\$02
\$0103 (end of ARY1)	\$04

MAIN PR	OGRAM	\boldsymbol{A}	B	IX	SP	\$000B
START	LDX #\$0100	00	00	0100	Fooo	00
	CLRB	00	00	0100	Fooo	00
BACK	LDAA ,x	03	00	0100	Fooo	00
	CMPA \$000F	03	00	0100	Fooo	00
	BHI FORWARD	03	00	0100	Fooo	00
	PSHA	03	00	0100	EFFF	00
	INC \$000B	03	00	0100	EFFF	01
FORWARD	INCB	03	01	0100	EFFF	01
	CMPB \$000A	03	01	0100	EFFF	01
	BEQ STOP	03	01	0100	EFFF	01
	INX	03	01	0101	EFFF	01
	BRA BACK	03	01	0101	EFFF	01

Memory Address	Content (hexadecimal)
\$000A	\$04
\$000F	\$08
\$Fooo (STACK)	\$03

MAIN PR	OGRAM	\boldsymbol{A}	\boldsymbol{B}	IX	SP	\$000B
START	LDX #\$0100					
	CLRB					
BACK	LDAA ,x	09	01	0101	EFFF	01
	CMPA \$000F	09	01	0101	EFFF	01
	BHI FORWARD	09	01	0101	EFFF	01
	PSHA					
	INC \$000B					
FORWARD	INCB	09	02	0101	EFFF	O1
	CMPB \$000A	09	02	0101	EFFF	O1
	BEQ STOP	09	02	0101	EFFF	O1
	INX	09	02	0102	EFFF	01
	BRA BACK	09	02	0102	EFFF	01

Memory Address	Content (hexadecimal)
\$000A	\$04
\$000F	\$08
\$Fooo (STACK)	\$03

MAIN PR	OGRAM	\boldsymbol{A}	B	IX	SP	<i>\$000B</i>
START	LDX #\$1000					
	CLRB					
BACK	LDAA ,x	02	02	0102	EFFF	01
	CMPA \$000F	02	02	0102	EFFF	01
	BHI FORWARD	02	02	0102	EFFF	01
	PSHA	02	02	0102	EFFE	01
	INC \$000B	02	02	0102	EFFE	02
FORWARD	INCB	02	03	0102	EFFE	02
	CMPB \$000A	02	03	0102	EFFE	02
	BEQ STOP	02	03	0102	EFFE	02
	INX	02	03	0102	EFFE	02
	BRA BACK	02	03	0102	EFFE	02

Memory Address	Content (hexadecimal)
\$000A	\$04
\$000F	\$08
\$EFFF(STACK)	\$02
\$Fooo (STACK)	\$03

MAIN PRO	OGRAM	\boldsymbol{A}	\boldsymbol{B}	IX	SP	\$000B
START	LDX #\$1000					
	CLRB					
BACK	LDAA ,x					
	CMPA \$000F					
	BHI FORWARD					
	PSHA					
	INC \$000B					
FORWARD	INCB					
	CMPB \$000A					
	BEQ STOP					
	INX					
	BRA BACK					
WRITE	CLRB	00	00	0103	EFFD	03
	LDX #\$0200	00	00	0200	EFFD	03
BACK2	PULA	04	00	0200	EFFE	03
	INCB	04	01	0200	EFFE	03
	STAA ,x	04	01	0200	EFFE	03
	INX	04	01	0201	EFFE	03
	CMPB \$000B	04	01	0201	EFFE	03
	BNE WRITE	04	01	0201	EFFE	03
	.end					

MAIN PRO	OGRAM	\boldsymbol{A}	\boldsymbol{B}	IX	SP	\$000B
START	LDX #\$1000					
	CLRB					
BACK	LDAA ,x					
	CMPA \$000F					
	BHI FORWARD					
	PSHA					
	INC \$000B					
FORWARD	INCB					
	CMPB \$000A					
	BEQ STOP					
	INX					
	BRA BACK					
STOP	CLRB					
	LDX #\$0200					
BACK2	PULA	02	01	0201	EFFF	03
	INCB	02	02	0201	EFFF	03
	STAA ,x	02	02	0201	EFFF	03
	INX	02	02	0202	EFFF	03
	CMPB \$000B	02	02	0202	EFFF	03
	BNE BACK2	02	02	0202	EFFF	03
	.end					

.ORG \$0010

START LDX #\$0100 ;starting address of ARY1

CLRB

BACK LDAA,x ; load elements of ARY1 to A

CMPA \$000F; compare with the value in \$000F

BHI FORWARD ; if higher branch

PSHA ; for adding ARY2, push STACK

INC \$000B ;increase size of ARY2

FORWARD INCB ; end of ARY1 or not?

CMPB \$000A

BEQ WRITE

INX

BRA BACK

WRITE CLRB

LDX #\$0200 ;starting address of ARY2

BACK2 PULA ; pull elements of ARY2

INCB

STAA ,x ; store elements of ARY2

INX

CMPB \$000B ; end of ARY2 or not?

BNE BACK2

Memory Address	Contents
\$EFFE	\$04
\$EFFF	\$02
\$Fooo	\$03

- There is an array (ARY1) consisting of unsigned, 8-bit integers in the memory. Its starting address is the content of \$000A-\$000B and its size is the content of \$000C memory addresses. There are same number of even integers and odd integers in the ARY1
- A new array (ARY2) is created according to
 - → First odd integer in ARY1 is the nTH member of ARY2. First event integer in ARY1 is the (n-1)th member of ARY2
 - →Second odd integer in ARY1 is (n-2)thmember of ARY2. Second event integer in ARY1 is the (n-3)th member of ARY2
 - \rightarrow So on..

STACK

ARY1
E1
01
O2
О3
E2
04
E3
E4

ARY2
E4
O4
E3
O3
E2
O2
E1
01

SOLUTION- Initial values

BASE .equ \$000A ; Starting address of ARY 1

NEW .equ \$000D ; Starting address of ARY2

LENGTH .equ \$000C; Length of ARY1

ODD .equ \$0006 ; Keep IX for odd integers

EVEN .equ \$0008 ;Keep IX for even integers

TEMP .rmb 1 ; Temporary variable

Memory address	Contents
\$000A	\$12
\$000B	\$00
\$000C	\$13
\$000D	\$00

ARY1	Content
\$1200	\$32
\$1201	\$33
\$1202	\$22
\$1203	\$87

	ARY2	Content
	\$1300	\$22
•	\$1301	\$87
	\$1302	\$32
	\$1303	\$33

Main P	rogram	A	В	IX	SP	ODD	EVEN
START	LDX BASE	00	00	1200	Fooo	0000	0000
	STX ODD	00	00	1200	Fooo	1200	0000
	STX EVEN	00	00	1200	Fooo	1200	1200
	CLRB	00	00	1200	Fooo	1200	1200
BACK	LDAA ,x	32	00	1200	Fooo	1200	1200
	STAA TEMP	32	00	1200	Fooo	1200	1200
	ANDA #\$01	00	00	1200	Fooo	1200	1200
	BNE ODDBRA	00	00	1200	Fooo	1200	1200
	INX	00	00	1201	Fooo	1200	1200
	BRA BACK	00	00	1201	Fooo	1200	1200
BACK2	LDAA ,x						
	STAA TEMP						
	ANDA #\$01						
	BEQ EVENBRA						
	INX						
	BRA BACK2						

Main P	rogram	A	В	IX	SP	ODD	EVEN
START	LDX BASE						
	STX ODD						
	STX EVEN						
	CLRB						
	LDX ODD						
BACK	LDAA ,x	33	00	1201	Fooo	1200	1200
	STAA TEMP	33	00	1201	Fooo	1200	1200
	ANDA #\$01	01	00	1201	Fooo	1200	1200
	BNE ODDBRA	01	00	1201	Fooo	1200	1200
	INX						
	BRA BACK						
	LDX EVEN						
BACK2	LDAA ,x						
	STAA TEMP						
	ANDA #\$01						
	BEQ EVENBRA						
	INX						
	BRA BACK2						

Main Prog	ram	A	В	IX	SP	ODD	EVEN
ODDBRA	LDAA TEMP PSHA INX STX ODD INCB CMPB LENGTH BEQ STOP LDX EVEN BRA BACK2 LDAA TEMP PSHA INX STX EVEN INCB CMPB LENGTH BEQ STOP LDX ODD	33 33 33 33 33 33 33		1201 1202 1202 1202 1202 1202 1200 1200	FOOO EFFF EFFF EFFF EFFF EFFF EFFF TEFFF EFFF	1200 1200 1200 1202 1202 1202 1202 1202	1200 1200 1200 1200 1200 1200 1200

BRA BACK

Main P	rogram	A	B	IX	SP	ODD	EVEN
START	LDX BASE						
	STX ODD						
	STX EVEN						
	CLRB						
	LDX ODD						
BACK	LDAA ,x						
	STAA TEMP						
	ANDA #\$01						
	BNE ODDBRA						
	INX						
	BRA BACK						
	LDX EVEN						
BACK2	LDAA ,x	32	01	1200	EFFF	1202	1200
	STAA TEMP	32	01	1200	EFFF	1202	1200
	ANDA #\$01	00	01	1200	EFFF	1202	1200
	BEQ EVENBRA	00	01	1200	EFFF	1202	1200
	INX						
	BRA BACK2						

Main Progr	am	A	В	IX	SP	ODD	EVEN
ODDBRA	LDAA TEMP PSHA INX			emory ldress		Content	
	STX ODD		\$E	FFF		32	
	INCB		\$F	000		33	
	CMPB LENGTH BEQ STOP LDX EVEN BRA BACK2						
EVENBRA	LDAA TEMP	32	01	1200	EFFF	1202	1200
	PSHA	32	01	1200	EFFE	1202	1200
	INX	32	01	1201	EFFE	1202	1200
	STX EVEN	32	01	1201	EFFE		1201
	INCB	32	01	1201	EFFE	_	1201
	CMPB LENGTH	32	01	1201	EFFE		1201
	BEQ STOP	32	01	1201	EFFE	1202	1201
	LDX ODD	32	01	1202	EFFE	1202	1201
	BRA BACK	32	01	1201	EFFE	1202	1201

Main Pr	ogram	A	В	\mathbf{IX}	SP	ODD	EVEN
STOP	CLRB	00	04	1203	EFFC	1204	1203
	LDX NEW	00	00	1300	EFFC	1204	1203
BACK3	PULA	22	00	1300	EFFD	1204	1203
	STAA ,x	22	00	1300	EFFD	1204	1203
	INX	22	00	1301	EFFD	1204	1203
	INCB	22	01	1301	EFFD	1204	1203
	CMPB LENGTH	22	01	1301	EFFD	1204	1203
	BNE BACK3	22	01	1301	EFFD	1204	1203
	.end						

Stack	Content
\$EFFD	\$22
\$EFFE	\$87
\$EFFF	\$32
\$Fooo	\$33

Start of ARY2	Content
\$1300	\$22
\$1301	\$87
\$1302	\$32
\$1303	\$33

- VAR 1 is in \$0000-\$0001 memory addresses. VAR2 is in \$0002-\$0003 memory addresses
- VAR 1 and VAR2 is 16 bit integers that is in two complements arithmetic
- If the content in \$0004 is higher than \$A4, sum of VAR1 and VAR 2 is stored in \$000B-\$000D. Otherwise VAR2 is subtracted from VAR1 and result is stored in \$000B-\$000D

- Main program checks the content of \$0004 and branch the SUM subprogram or SUB subprogram
- Main program sends VAR1, VAR2 and the starting address that contains result (\$000B) to STACK.
- Two subprograms

SUM: Sum up two 16 bit integers.

SUB: Substract VAR2 from VAR 1.

If carry flag set after operations, \$000D (result address) must updated.

.ORG \$0000

VALUE .byte \$83,\$14,\$84,\$12,\$0B,\$00

CHECK .byte \$A6

.ORG \$0010

LDX #VALUE

LDAA o,x

LDAB 1,x

PSHA

PSHB

LDAA 2,x

LDAB 3,x

PSHA

PSHB

LDAA 4,x

LDAB 5,x

PSHA

PSHB

LDAA CHECK

CMPA #\$A4

BLT SUBST

BSR SUM

SUBST BSR SUB

Memory Address	Content
\$0000 (VAR1 high)	\$83
\$0001 (VAR1 low)	\$14
\$0002 (VAR2 high)	\$84
\$0003 (VAR2 low)	\$12
\$0004 (Result high)	\$00
\$0005 (Result low)	\$oB

Main program	A	\boldsymbol{B}	SP
.ORG \$0010	21	D	D1
•	0.0	00	Eooo
LDX #VALUE	00	00	Fooo
LDAA o,x	83	00	Fooo
LDAB 1,x	83	14	Fooo
PSHA	83	14	EFFF
PSHB	83	14	EFFE
LDAA 2,x	84	14	EFFE
LDAB 3,x	84	12	EFFE
PSHA	84	12	EFFD
PSHB	84	12	EFFC
LDAA 4,x	00	12	EFFC
LDAB 5,x	00	oB	EFFC
PSHA	00	oB	EFFB
PSHB	00	oB	EFFA
LDAA CHECK	A6	oB	EFFA
CMPA #\$A4	A6	oB	EFFA
BLT SUBST	A6	oB	EFFA
BSR SUM	A6	oВ	EFFA

Memory contents
00
оВ
12
84
14
83

SUBST BSR SUB

SUM CLC

TSX

LDAA 5,x

LDAB 7,x

STAA \$4000

ADCB \$4000

BCS SETC

BACK STAB o,x

TSX

LDAA 4,x

LDAB 6,x

ABA

LDX 2,x

STAA 1,x

RTS

SETC LDAA #\$01

LDX 2,x

STAA 2,x

BRA BACK

Memory Address	Content	Explain
EFF9	00	Sub Prog. return address high
EFFA	2D	Sub Prog. return address low
EFFB	00	Result high
EFFC	оВ	Result low
EFFD	12	VAR2 low
EFFE	84	VAR2 high
EFFE	14	VAR1 low
Fooo	83	VAR1 high

SUM CLC
TSX
LDAA 5,x
LDAB 7,x
STAA \$4000
ADCB \$4000

BACK STAB o,x

TSX

LDAA 4,x

BCS SETC

LDAB 6,x

ABA

LDX 2,x

STAA 1,x

RTS

SETC LDAA #\$01

LDX 2,x

STAA 2,x

BRA BACK

IX	SP
EFF9	EFF8

Memory Address	Content	Explain
EFF9	00	Sub Prog. return address high
EFFA	2D	Sub Prog. return address low
EFFB	00	Result high
EFFC	оВ	Result low
EFFD	12	VAR2 low
EFFE	84	VAR2 high
EFFE	14	VAR1 low
Fooo	83	VAR1 high

		A	В	IX	COMMENT
SUM	CLC				;clear carry
	TSX			EFF9	transfer SP to IX;
	LDAA 5,x	84	00		
	LDAB 7,x	84	83		
	STAA \$4000				
	ADCB \$4000				;high bits, add with carry
	BCS SETC				
BACK	STAB o,x				stored \$000B HIGH;
	TSX			EFF9	transfer SP to IX;
	LDAA 4,x	14	83		
	LDAB 6,x	14	12		
	ABA				; low bits, add A and B
	LDX 2,x			oooB	;address contains result
	STAA 1,x				; stored \$000C LOW
	RTS				
SETC	LDAA #\$01				
	LDX 2,x			oooB	; contents of \$EFFB-\$EFFC
	STAA 2,x				;stored \$000D,if carry set
	BRA BACK				

SUM CLC
TSX
LDAA 5,x
LDAB 7,x
STAA \$4000
ADCB \$4000

IX	SP
EFF9	EFF8

	LDAB 7,x
	STAA \$4000
	ADCB \$4000
	BCS SETC
BACK	STAB o,x
	TSX
	LDAA 4,x
	LDAB 6,x
	ABA
	LDX 2,x
	STAA 1,x
	RTS
SETC	LDAA #\$01
	LDX 2,x
	STAA 2,x
	BRA BACK

IX (EFF9)	Content	Explain
IX+o	00	Sub Prog. return address high
IX+1	2D	Sub Prog. return address low
IX+2	00	Result high
IX+3	оВ	Result low
IX+4	12	VAR2 low
IX+5	84	VAR2 high
IX+6	14	VAR1 low
IX+7	83	VAR1 high

Main _I	program	\boldsymbol{A}	\boldsymbol{B}	SP		
	.ORG \$0010					
	LDX #VALUE	00	00	Fooo		
	LDAA o,x	83	00	Fooo		
	LDAB 1,x	83	14	Fooo	SP	Memory
	PSHA	83	14	EFFF		contents
	PSHB	83	14	EFFE	EFFB	04
	LDAA 2,x	84	14	EFFE	EFFC	00
	LDAB 3,x	84	12	EFFE	EFFD	
	PSHA	84	12	EFFD		12
	PSHB	84	12	EFFC	EFFE	83
	LDAA 4,x	00	12	EFFC	EFFF	14
	LDAB 5,x	00	04	EFFC	Fooo	83
	PSHA	00	04	EFFB		
	PSHB	00	04	EFFA		
	LDAA CHECK	A3	04	EFFA		
	CMPA #\$A4	A3	04	EFFA		
	BLT SUBST	A3	04	EFFA		
	BSR SUM					
SUBST	BSR SUB	A3	04	EFFA		

```
SUB
        CLC
                            ;clear carry
                            ; transfer SP to IX
        TSX
        LDAA 5,x
        LDAB 7,x
        LDX 2,x
                            ; load $000B to IX
        STAB $4000
                           ;substract with carry VAR1-VAR2
        SBCA $4000
        BCS SETC2
                           ;High level bits to $000B
BACK2 STAB o,x
        TSX
                           transfer SP to IX
        LDAA 6,x
        LDAB 4,x
        SBA
                           ; substract VAR1-VAR2
        LDX 2,x
                           ; IX has $000B
                           ; Low level bits is stored in $000C
        STAA 1,x
        RTS
        LDAB #$FE
SETC2
                           ;if carry flag set BORROW
        STAB 2,x
                          ;set $FE to 3th part of result ($000D address)
        BRA BACK2
STOP
        .end
```

QUESTIONS?

