## Data Analytics Fall 2019 Oleg Yakovets

K-Means Analysis of Pollutants and Geographic Influence: Southern Albany

| Abstract                                                       | 1  |
|----------------------------------------------------------------|----|
| Introduction                                                   | 2  |
| Data Description                                               | 5  |
| Analysis                                                       | 5  |
| Model Development and Application                              | 8  |
| Analysis of PC, BC, and PM 2.5 without vector-based adjustment | 10 |
| Analysis of PC, BC, and PM 2.5 with vector-based adjustment    | 13 |
| Nanoparticles                                                  | 13 |
| Black Carbon                                                   | 15 |
| PM 2.5                                                         | 17 |
| Conclusions and Discussion                                     | 19 |
| Acknowledgements                                               | 21 |
| References                                                     | 21 |
| Appendix 1: Industrial Overview of the Area                    | 22 |
| Appendix 2: Wind Speed Plotting versus Pollutants              | 23 |
| Appendix 3: Clustering Results Compared to Wind Speed          | 26 |
| Appendix 4: Clustering Data Table Results                      | 28 |
| Black Carbon                                                   | 28 |
| PM 2.5                                                         | 30 |
| Nanoparticle                                                   | 32 |

### Abstract

In order to study the influence of topography coupled with wind speed and direction on pollution rates, a PEJA located in the South End of Albany, NY was chosen for study due to a moderately large hill and measuring station in the neighborhood. The data for the clustering study was collected from a year-long, hourly-averaged data set provided by the New York State Department of Environmental Conservation on a public access website, with the date interval

ranging from 24 Sept. 2018 to 24 Sept 2019. The data comes from the measuring station located in the Ezra Prentice neighborhood as part of a network of statewide measuring stations. The main method of processing the directional correlation was K-Means Clustering. While the Nanoparticle distributions proved there is good mixing in the region, the K-Means clustering algorithm, using 15 clusters per chart, pointed towards a Northeastern correlation for origin of PM 2.5 and Black Carbon particles. However, further study is required in order to test for topography with a hillside with multiple measuring stations.

#### Introduction

Air pollution is a major concern for human health and environmental quality. The burning of fossil fuels releases not only  $\mathrm{CO}_2$  and  $\mathrm{SO}_{\mathrm{X}}$ , but also particles of various sizes. These particles are classified from the perspective of how far they go into the human lung, as well as how easily they are absorbed into the bloodstream. Their formation is often tied to incomplete combustion, especially Black Carbon, or soot[1]. Nanoparticles are linked quite closely to pulmonary diseases[2], while larger particles on the scale of  $10\mu\mathrm{m}$  will only get trapped in the oropharynx. Particles that are smaller than  $5\mu\mathrm{m}$  start to invade alveoli[3].

While the EPA currently regulates particles on the scale of 2.5µm [4], regulations have been increasing over the years and it is important for government agencies to begin collecting data on health effects and sources of these pollutants before legislation is passed in order to prepare for setting regulation standards, as well as what to expect for emissions from different sources.

A particular neighborhood in the South End of Albany was investigated as a Potential Environmental Justice Area(PEJA). A PEJA is an area where lower socioeconomic groups may experience disproportionately more pollution, and are investigated for possible sources of pollutants. The particular community, named Erza Prentice, is located on South Pearl St between Mt. Hope Drive and the Center for Disabilities Services bussing parking lot, and goes up Mount Hope Ave towards the West(Figure 1)(Appendix 1). The investigation would be conducted, at least in part, to see if emissions of the area were up to State and Federal regulations, but also compared to surrounding areas with much more green space and less traffic.

The surrounding area has a lot of industry, including waste management, shipping, oil distribution, and metals recycling. The main roadway through the neighborhood is a designated highway access for trucks onto Interstate 787, which can be classified as High Emitting Vehicles. The combination of industry and major road access makes for high traffic of multi-axle vehicles, as well as high traffic of cars, is cause for concern. There is a fixed monitoring station that is close to S. Pearl St, as well as most of the neighborhood being located on a hillside. There is already work being conducted on urban environments, and looking at how buildings and wind have an impact on pollution dissipation[5]. The work presented in this report will focus on exploring if there is any correlation between wind direction at the fixed monitoring station in the Ezra Prentice neighborhood and the measured pollutants, as well as any possible influence on the measurements from the hill in the neighborhood.



The measuring station.



**Figure 1:** Image of the fixed monitoring station and outline of the target area. North is denoted by the black arrow, and the majority of the pollutant origin direction is denoted by the pink arrow.

# Data Description

The data set used for the project was eventually decided upon using a public, 1-hr averaged data set the DEC provides on a website associated with fixed monitoring stations throughout the state of New York[7]. Common practices of analyzing include time-based averages to get rid of noise, so the data set was deemed acceptable. The date interval selected was from September 24th, 2018 to September 24th 2019. While data was collected since 2015, most year-long files were sparsely populated until 2018.

### Analysis

The data was cleaned only to keep a few key columns. Wind Speed, Wind Direction, 2.5 micron particle concentration of µg/m³(PM 2.5), Nanoparticle #/cm³(Particle Count, PC), and Black Carbon Particle concentration of µg/m³(BC). The munging of the data set revolved around removing any observations that were missing values with na.omit() and any dates of reported instrument failure. The removed dates were from July 20th, 2019 to August 18th, 2019. The NO<sub>2</sub> column was removed entirely as it was never populated. The data set ended up being 5.2k observations.

It should be noted that wind direction references where the wind is coming from. 0 degrees is a wind coming from North, and going South, and the total range of collected wind directions is [0,360). Flavors of linear regression and multiple regression do not do the dataset justice due to the fixed range of the X-axis of the collected data. Larger grouping systems are required and Kmeans clustering was most-fitting as done by other researchers(P. Govender and

S. Sivakumar). Wind Direction data was not deemed suitable for analysis due to data points appearing to be highly quantized, but appear in Appendix 2.







Figure 2: Initial data plots of the 3 pollutants vs. wind direction.

Initial plotting shows a dead-zone of pollution readings around 250 degrees from North, which could have something to do with the previously-mentioned hill, as shown above in Figure 2. Traveling West up Mt. Hope Drive 0.2 miles yields a rise in 105ft in elevation, which relates back to the main question for this study if topography has any influence of where pollutants come from.

The sample function in R was used to pick 5000 random data points in order to run Shapiro Testing. The results of the Shapiro test for normality and lognormality of the 3 pollutants have p-values of less than 2e(-16), so it is assumed that none of the data are normal or lognormal.

The nature of the data set does not lend itself to easy isolation of variables. While pollution dissipation increases with higher wind speeds[1], car traffic is also a hidden variable as no traffic counter data was used. Because of the time-averaged data set, the downside is that there is no way to see any localized peaks that may occur for further exploration in the data set.

# Model Development and Application

The Kmeans clustering was created using RStudio 3.6. The data was split into dataframes of pairs containing each of the 3 pollutants measured compared to wind speed and the vectorized X and Y values of the wind speed(WS) and wind direction(WD). The vectors were acquired using basic trigonometry by multiplying the wind speed by the sine or cosine of the angle and are displayed below.

| X-Vector Adjustment | WS * cos(WD/180*pi) | EQN 1 |
|---------------------|---------------------|-------|
| Y-Vector Adjustment | WS * sin(WD/180*pi) | EQN 2 |

The purpose of getting the X and Y vectors is an attempt to normalize the data and isolate the North/South winds from the East/West winds and compare them to the data that weren't normalized. Comparing centers of these clusters is important for figuring out if there is any target direction that can be drawn to associate higher and lower readings, and if that wind vector has anything to do with the large hill in the neighborhood.

15 clusters were chosen as the result of initial testing based on Black Carbon results, and were capped off when cluster centers started to stop moving, but also keep some reasonable wind angle for a range if there were to be a wind rose for comparison. At 15 clusters, there would theoretically be 24 degrees per slice. The full cluster data is in Appendix 4, and the wind-speed-only clustering data set is located in Appendix 3.

# Analysis of PC, BC, and PM 2.5 without vector-based adjustment







The most noticeable result of the Kmeans clustering was that of the Nanoparticle counts, and various levels of pollutants were present at every coordinate. The cluster centers were also centered around 90 degrees. While this means an east-bound reading was favored, the lack of isolated groupings along the X-axis implies the data cannot be pointed at having any directional correlation. This means there is an even distribution of fine nanoparticles in the air, and therefore will most likely need a different model to predict if wind direction has an impact on readings. It is also possible that nanoparticles are already evenly-mixed in the atmosphere from a larger scope of sources beyond the neighborhood that a more remote location is required to test this theory.

The PM 2.5 and Black Carbon results show much better clustering, with 13 out of 15 clusters being within 10 degrees of each other if sorted in ascending order. 7 out of the 15 clusters for BC are within 0-90 degrees, and no clusters occur after 286 degrees. Black Carbon emissions are based off of unburned fuel[1], so this would make sense as some Northeastern wind was blowing pollutants from the road.

### Analysis of PC, BC, and PM 2.5 with vector-based adjustment

The vector based adjustment uses equations one and two in order to normalize the wind speed and direction of wind. As such, positive Y-values are winds coming from the North, while positive X-values are coming from the East. Due to the varying results, they will be analyzed individually.

Nanoparticles





Due to the even spread along the Y- axis for both plots, the only conclusion that can be drawn is that most nanoparticle pollutants come from the North. While technically a reasonable statement coming from a roadway intersection that is North of the measuring station, this information is not enough to conclude anything.

### Black Carbon





Upon initial inspection, the clustering appears to be similar to the nanoparticle analysis, with Northbound clustering in the Y Vector and a roughly even distribution in the X-Vector. However, most X-Vector clusters are in the positive end of the axis, implying a stronger Northeastern correlation than a purely Northern correlation.

### PM 2.5





The PM 2.5 clustering is the least reliable telling of the data set as there is little recorded between 125p/cm³ and 200p/cm³. However, the clustering centers of the X-Vector point to having more negative centers, implying a stronger Northwestern correlation, which contradicts the BC readings.

### Conclusions and Discussion

Depending on the data organization chosen, as well as visual inspection of the direct plots of data, it is reasonable to conclude there is some form of Northeastern influence in the pollution levels for all types analyzed. This makes sense due to how the roadway runs past the neighborhood and how there are very few measurements in the Southern and Western directions.

Because of the even distribution of nanoparticles from the of the non-vectorized data, there is reason to believe the mixing of nanoparticles is quite uniform. If anything, this analysis proved that they are everywhere, at least when averaged out on an hourly basis.

Comparisons of K-Means for wind speed were not considered at all as the speeds were quantized to whole values and there is missing data between 16 and 25 MPH. Sustained winds over 30MPH for an hour-long average, and an average wind speed of 23.34MPH are also reasons to be skeptical of the data. It is therefore difficult to create some sort of correlation factor in order to compensate for wind direction and create a "feels like" rating similar to wind chill due to a huge doubt in wind speed distribution.

A source of comparison for this work is a report published by the New York State

Department of Environmental Conservation: Division of Air in October of 2019 with regards to
emissions in the Ezra Prentice neighborhood that started the PEJA investigation[6].

From the work conducted by Frank et. al, the wind roses point to a Southern-favoring wind, which is contrary to the dataset presented. The DEC report also claims a minute-based average wind speed of 8.8 miles per hour overall during the experiment when conducted from June 1st, 2018 to July 31st, 2018. When exporting the hour-based data from the public DEC data set on the same time interval, the average was 4.4MPH. Regardless of how the DEC data set was time averaged, versus how the public data set is recorded and averaged automatically, 20+MPH is, by these comparisons, appears to be quite off.

With all of the sources of error considered, the fact that most clustering occurred with Northeastern tendencies implies that there is a directional correlation with pollution. With the road being East and an intersection Northeast of the measuring station, the overall directionality

of the data makes sense. It is recommended, however, that a hill that is surrounded by residential areas with multiple measuring stations and sources of pollutants would probably be best to test the theory of if topography has any impact on pollution distributions.

## Acknowledgements

The author of this study would like to thank Dr. Brian Frank, Marilyn Wurth, Gil LaDuke, Tom Giorgio, Temple Bailey, and the rest of the Mobile Sources group for the experience over the Summer of 2019, as well as the ability to further contribute to the public for the Fall 2019 term. The author has learned much on the subject of data analysis of the real world, as well as experimental design.

### References

- Neeldip Barman and Sharad Gokhale, "Urban black carbon source apportionment, emissions and long-range transport over the Brahmaputra River Valley", Science of The Total Environment, Volume 693, 2019
- 2) Lu, X., Zhu, T., Chen, C., & Liu, Y. (2014). Right or left: the role of nanoparticles in pulmonary diseases. *International journal of molecular sciences*, *15*(10), 17577–17600. doi:10.3390/ijms151017577
- 3) Ana Fernández Tena, Pere Casan Clarà, "Deposition of Inhaled Particles in the Lungs", Archivos de Bronconeumología (English Edition), Volume 48, Issue 7, 2012.
- 4) "What are the Air Quality Standards for PM?" Retrieved November 27, 2019, from https://www3.epa.gov/region1/airquality/pm-aq-standards.html.

- 5) Junyan Yang, Beixiang Shi, Yi Shi, Simon Marvin, Yi Zheng, Geyang Xia, "Air pollution dispersal in high density urban areas: Research on the triadic relation of wind, air pollution, and urban form", *Sustainable Cities and Society*, 2019.
- 6) New York State Department of Environmental Conservation (NYS DEC), Division of Air Resources. *Albany South End Community Air Quality Study*. October 2019.
- 7) nyaqinow.net. [Online]. Available: http://www.nyaqinow.net/. [Accessed: 15-Oct-2019].

# Appendix 1: Industrial Overview of the Area



# Appendix 2: Wind Speed Plotting versus Pollutants

#### **Black Carbon Concentration vs Wind Speed**



#### Nanoparticle Concentration vs Wind Speed



PM 2.5 Concentration vs Wind Speed



Appendix 3: Clustering Results Compared to Wind Speed

#### K Means of Black Carbon Concentration vs. Wind Speed



#### K Means of Nanoparticle Concentration vs. Wind Speed



#### K Means of PM 2.5 Concentration vs. Wind Speed



# Appendix 4: Clustering Data Table Results

# Black Carbon

| WD(deg)   | BC(ug/cu.m.) |
|-----------|--------------|
| 113.84007 | 17.99081     |
| 30.18127  | 22.18725     |
| 151.73592 | 16.35146     |
| 27.41991  | 63.1342      |
| 61.4386   | 186.2807     |
| 285.58182 | 33.41364     |
| 193.37288 | 26.5678      |
| 44.97041  | 119.04142    |
| 61.09318  | 42.125       |
| 82.07036  | 79.80597     |
| 278.26    | 110.02       |
| 111.07772 | 121.42487    |

| 79.5928     | 17.75485     |
|-------------|--------------|
| 95.98065    | 45.72258     |
| 142.46302   | 62.08039     |
| WS(MPH)     | BC(ug/cu.m.) |
| 30.55298    | 28.703642    |
| 30.613226   | 40.589178    |
| 15.870307   | 30.515358    |
| 26.029197   | 96.678832    |
| 21.415842   | 120.450495   |
| 10.302949   | 51.927614    |
| 8.982833    | 76.51073     |
| 31.030534   | 18.058015    |
| 21.969697   | 205.606061   |
| 22.960784   | 153.196078   |
| 32.475285   | 8.847909     |
| 7.131579    | 10.892713    |
| 30.007634   | 54.664122    |
| 4.514523    | 30.435685    |
| 29.621849   | 72.885154    |
| Xvec(MPH)   | BC(ug/cu.m.) |
| -12.263542  | 13.57792     |
| 9.6677934   | 196.63043    |
| 18.8880325  | 73.2619      |
| 6.4661164   | 139.48571    |
| 4.3869083   | 105.51768    |
| 22.8289904  | 17.22654     |
| -2.1343988  | 79.07365     |
| 0.2629168   | 10.49502     |
| 22.4293624  | 39.73892     |
| 2.6455581   | 25.15556     |
| 1.1734674   | 39.64403     |
| -27.0783315 | 12.96321     |
| -14.7485727 | 54.87013     |
| 2.6524      | 56.98186     |
|             |              |

| -16.1127814 | 32.24784     |
|-------------|--------------|
| Yvec(MPH)   | BC(ug/cu.m.) |
| 28.83326    | 12.75516     |
| 24.375806   | 95.8502      |
| 15.379802   | 119.90521    |
| 14.413437   | 206.40625    |
| 14.302888   | 18.63457     |
| 6.918774    | 53.86937     |
| 28.021073   | 29.50181     |
| 26.413078   | 47.04555     |
| 6.984848    | 33.47115     |
| 26.200043   | 69.55645     |
| -24.896906  | 86.30769     |
| -28.41037   | 30.98964     |
| 12.805632   | 154.12121    |
| 6.314175    | 78.93333     |
| 3.064273    | 11.02353     |
|             |              |

# PM 2.5

| WD(deg)   | PC(#/cu.cm.) |
|-----------|--------------|
| 98.6034   | 3648.847     |
| 117.85    | 1673.6765    |
| 106.81341 | 929.6647     |
| 98.35     | 3329.6553    |
| 99.11176  | 3950.4029    |
| 98.47895  | 180.7974     |
| 97.89031  | 2672.6964    |
| 107.78655 | 1304.9766    |
| 102.4345  | 4229.4121    |
| 105.59683 | 4522.9429    |
| 102.04023 | 558.8736     |
| 102.2252  | 3008.9464    |

| 400 50000                                                                                                                                  | 0047 4500                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 100.59838                                                                                                                                  | 2347.4528                                                                                                                                  |
| 109.00949                                                                                                                                  | 4811.693                                                                                                                                   |
| 99.60054                                                                                                                                   | 2026.3164                                                                                                                                  |
| WS(MPH)                                                                                                                                    | PC(#/cu.cm.)                                                                                                                               |
| 23.45133                                                                                                                                   | 107.5796                                                                                                                                   |
| 23.89815                                                                                                                                   | 559.7778                                                                                                                                   |
| 23.39545                                                                                                                                   | 323.65                                                                                                                                     |
| 22.60087                                                                                                                                   | 3216.4252                                                                                                                                  |
| 22.35443                                                                                                                                   | 798.2954                                                                                                                                   |
| 22.44358                                                                                                                                   | 1072.3541                                                                                                                                  |
| 23.61384                                                                                                                                   | 3996.0848                                                                                                                                  |
| 22.40811                                                                                                                                   | 4764.6563                                                                                                                                  |
| 23.82589                                                                                                                                   | 3607.1295                                                                                                                                  |
| 22.48355                                                                                                                                   | 1376.2533                                                                                                                                  |
| 24.32266                                                                                                                                   | 2061.3448                                                                                                                                  |
| 23.43987                                                                                                                                   | 1711.0222                                                                                                                                  |
| 24.90646                                                                                                                                   | 2430.1269                                                                                                                                  |
|                                                                                                                                            |                                                                                                                                            |
| 24.43421                                                                                                                                   | 2816.2346                                                                                                                                  |
| 24.43421<br>21.7524                                                                                                                        | 2816.2346<br>4379.1538                                                                                                                     |
|                                                                                                                                            |                                                                                                                                            |
| 21.7524                                                                                                                                    | 4379.1538                                                                                                                                  |
| 21.7524<br>Xvec(MPH)                                                                                                                       | 4379.1538<br>PC(#/cu.cm.)                                                                                                                  |
| 21.7524<br>Xvec(MPH)<br>-0.3256587                                                                                                         | 4379.1538<br>PC(#/cu.cm.)<br>4813.0671                                                                                                     |
| 21.7524<br>Xvec(MPH)<br>-0.3256587<br>0.8869697                                                                                            | 4379.1538<br>PC(#/cu.cm.)<br>4813.0671<br>2340.4553                                                                                        |
| 21.7524<br>Xvec(MPH)<br>-0.3256587<br>0.8869697<br>2.703353                                                                                | 4379.1538<br>PC(#/cu.cm.)<br>4813.0671<br>2340.4553<br>178.3147                                                                            |
| 21.7524<br>Xvec(MPH)<br>-0.3256587<br>0.8869697<br>2.703353<br>1.1326431                                                                   | 4379.1538 PC(#/cu.cm.) 4813.0671 2340.4553 178.3147 2665.967                                                                               |
| 21.7524<br>Xvec(MPH)<br>-0.3256587<br>0.8869697<br>2.703353<br>1.1326431<br>1.2718114                                                      | 4379.1538 PC(#/cu.cm.) 4813.0671 2340.4553 178.3147 2665.967 1662.5274                                                                     |
| 21.7524  Xvec(MPH) -0.3256587 0.8869697 2.703353 1.1326431 1.2718114 2.4501071                                                             | 4379.1538 PC(#/cu.cm.) 4813.0671 2340.4553 178.3147 2665.967 1662.5274 3951.2588                                                           |
| 21.7524  Xvec(MPH)  -0.3256587  0.8869697  2.703353  1.1326431  1.2718114  2.4501071  0.7160519                                            | 4379.1538 PC(#/cu.cm.) 4813.0671 2340.4553 178.3147 2665.967 1662.5274 3951.2588 3005.3799                                                 |
| 21.7524  Xvec(MPH)  -0.3256587  0.8869697  2.703353  1.1326431  1.2718114  2.4501071  0.7160519  2.7435585                                 | 4379.1538 PC(#/cu.cm.) 4813.0671 2340.4553 178.3147 2665.967 1662.5274 3951.2588 3005.3799 2019.9812                                       |
| 21.7524  Xvec(MPH)  -0.3256587  0.8869697  2.703353  1.1326431  1.2718114  2.4501071  0.7160519  2.7435585  0.8577805                      | 4379.1538 PC(#/cu.cm.) 4813.0671 2340.4553 178.3147 2665.967 1662.5274 3951.2588 3005.3799 2019.9812 4231.2603                             |
| 21.7524  Xvec(MPH)  -0.3256587  0.8869697  2.703353  1.1326431  1.2718114  2.4501071  0.7160519  2.7435585  0.8577805  2.8539083           | 4379.1538 PC(#/cu.cm.) 4813.0671 2340.4553 178.3147 2665.967 1662.5274 3951.2588 3005.3799 2019.9812 4231.2603 549.2059                    |
| 21.7524  Xvec(MPH) -0.3256587 0.8869697 2.703353 1.1326431 1.2718114 2.4501071 0.7160519 2.7435585 0.8577805 2.8539083 4.4880096           | 4379.1538 PC(#/cu.cm.) 4813.0671 2340.4553 178.3147 2665.967 1662.5274 3951.2588 3005.3799 2019.9812 4231.2603 549.2059 1288.0754          |
| 21.7524  Xvec(MPH) -0.3256587 0.8869697 2.703353 1.1326431 1.2718114 2.4501071 0.7160519 2.7435585 0.8577805 2.8539083 4.4880096 0.9932328 | 4379.1538 PC(#/cu.cm.) 4813.0671 2340.4553 178.3147 2665.967 1662.5274 3951.2588 3005.3799 2019.9812 4231.2603 549.2059 1288.0754 3329.231 |

| 2.0105096 | 913.3127     |
|-----------|--------------|
| Yvec(MPH) | PC(#/cu.cm.) |
| 16.44396  | 2340.0136    |
| 16.95842  | 3329.231     |
| 16.15902  | 3951.2588    |
| 16.57693  | 3005.3799    |
| 10.89043  | 1296.2412    |
| 13.9294   | 4525.7143    |
| 15.78277  | 4231.2603    |
| 15.0056   | 180.7974     |
| 11.6399   | 1666.2471    |
| 15.2279   | 2020.938     |
| 13.24334  | 557.8121     |
| 14.8098   | 4813.0671    |
| 17.06209  | 3649.274     |
| 17.08459  | 2665.5544    |
| 12.81057  | 924.7396     |
|           |              |

# Nanoparticle

|           | PM25(ug/cu.m. |
|-----------|---------------|
| WD(deg)   | )             |
| 153.64527 | 217.26351     |
| 86.7619   | 241.75198     |
| 116.46246 | 239.48949     |
| 58.34921  | 269.64762     |
| 58.9434   | 239.10782     |
| 31.52119  | 211.77966     |
| 93.49378  | 271.02282     |
| 93.34828  | 203.47586     |
| 193.66839 | 247.74093     |
| 101.48214 | 112.6199      |
| 145.48328 | 262.18237     |
| 286.37619 | 235.96667     |

| 199.75385                               | 40.3641       |
|-----------------------------------------|---------------|
| 77.62909                                | 37.45818      |
| 23.24026                                | 255.09416     |
| WS(MPH)                                 | PM25(ug/cu.m. |
| 10.760684                               | 277.25214     |
| 29.910603                               | 29.97297      |
| 7.496933                                | 243.95706     |
| 23.503145                               | 122.80503     |
| 7.983871                                | 201.30108     |
| 5.21374                                 | 226.06107     |
| 31.616022                               | 202.90331     |
| 10.450704                               | 28.39085      |
| 31.105096                               | 242.64809     |
| 30.534247                               | 258.02226     |
| 31.47619                                | 225.04989     |
| 17.983146                               | 231.3427      |
| 10.146758                               | 259.68601     |
| 29.717213                               | 275.82992     |
| 22.898551                               | 68.56232      |
| ., ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | PM25(ug/cu.m. |
| Xvec(MPH)                               | )             |
| -18.3345156                             | 259.84906     |
| -6.65437404                             | 26.1179       |
| 21.9826325                              | 247.15493     |
| -0.54008192                             | 242.41391     |
| -1.56601137                             | 124.34333     |
| -20.0589343                             | 203.50806     |
| 0.58298088                              | 225.32764     |
| -2.93545398                             | 277.69596     |
| 2.66741386                              | 259.32072     |
| 1.64318195                              | 201.31845     |
| 04 00000770                             | 004 005 40    |
| -21.03222776                            | 231.93548     |
| 19.56378967                             | 272.96679     |

| 24.29910323 | 217.95161     |
|-------------|---------------|
| -0.02621354 | 75.16727      |
| Yvec(MPH)   | PM25(ug/cu.m. |
| 17.157298   | 125.32982     |
| 27.090113   | 228.21077     |
| 6.237059    | 229.60677     |
| 12.810003   | 83.51759      |
| 6.787989    | 249.5129      |
| 27.998403   | 202.94024     |
| 27.234635   | 249.26917     |
| 13.904945   | 24.66608      |
| -24.951654  | 275.13462     |
| -28.165756  | 249.13333     |
| 18.775821   | 49.86898      |
| -29.35017   | 215.16667     |
| 8.625958    | 272.56504     |
| 27.123577   | 272.47107     |
| 6.234962    | 201.61423     |
|             |               |