Movie Popularity Prediction CS_2

Team Members

Name	ID	Department
أحمد حسن حسن خطاب	20201700033	Computer Science(CS).
انس سعيد صبري	20201700159	Computer Science(CS).
عمر رضا عبدالدايم عبدالعزيز	20201701267	Computer Science(CS).
عبدالرحمن هاني خيري الدين	20201700488	Computer Science(CS).
أحمد السيد محمود الباز	20191700863	Computer Science(CS).
أحمد هاني حامد محمد	20191700875	Computer Science(CS).

1. Data Splitting

Using train_test_split() to split the data with the following parameters:

- shuffle = True
- test_size = 0.2
- random_state = 10

X_train [2431 rows x 19 columns]

	Index▼	ıudae	aenres	iomenadi	id	kevwords	inal langı	riginal tit	overview	iewercoun
	0	250	[{"id"	http:/	33870	[{"id": 4	en	Mao's	At the…	1.87681
	1	380	[{"id"	nan	193	[{"id": 1	en	Star T	Captai…	14.779
	2	200	[{"id"	http:/	10139	[{"id": 2	en	Milk	The st…	30.9097
	3	230	[{"id"	nan	11632	[{"id": 2	en	Vanity Fair	Beauti	6.61815
	4	520	[{"id"	http:/	26389	[{"id": 9	en	From P	James	27.9163
	5	280	[{"id"	http:/	277216	[{"id": 3	en	Straig	In 198	61.7623
Ī	6	260	[{"id"	nan	14181	[{"id": 6	en	Boiler Room	A coll	11.2331
	7	0	[{"id"	nan	10413	[{"id": 1	en	Nowhere to Run	Escape	11.6893
	9	120	[{"id"	http:/	101267	[{"id": 1	en	Katy P	Giving	8.41069

X_test [608 rows x 19 columns]

y_train [2431 rows]

Index 🔻	te averai
0	6.8
1	6.4
2	7.1
3	5.5
4	6.1
5	7.7
6	6.5
7	5.5
9	6.5

y_test [608 rows]

Index 🔻	te averai
8	6.1
16	4.7
19	7.2
20	6.7
25	7.1
27	6.7
28	7.3
29	6
37	5.9

2. Preprocessing

2.1. Handling Missing Values

Using print(Movie_Data.isna().sum())

Columns contains missing values:

Training data				
column	Null count			
homepage	1530			
overview	1			
runtime	1			
Tagline	299			

Testing data				
column	Null count			
homepage	380			
Tagline	84			

These nulls were handled as the following:

Training data:

- homepage →

by replacing all null values by

"http://www.+[original title]+.com/"

- overview \rightarrow by dropping the row containing this null value.
- runtime → by replacing the missing value with the mean of the column.
- tagline \rightarrow by dropping the rows containing this null value.

Testing data:

Same as training data.

Note: if 'runtime' columns has null values in testing data they will be replaced with the mean of 'runtime' column in the training data not testing data.

2.2. Handling release-date column

By converting the column to datetime format [using **pd.to_datetime**], then splitting this columns to three columns that are release_day, release_year, release_month, then drop the release_date column in both training & testing.

2.3. Handling 'overview' column [Text Preprocessing]

By using **TextBlob** sentiment polarity analysis in both training & testing data to get either overview is 'Positive', 'Negative' or 'Natural', as the following:

Polarity	Rank	Rank encoded	Rank scaled
> 0.5	Positive	2	1
< 0.5	Negative	1	0.5
= 0.5	Natural	0	0

2.4. Label Encoding

By using *LabelEncoder()* on categorial columns which are:

('status', 'original_language', 'original_title', 'tagline', 'homepage', 'title') + 'Rate' in Classification Dataset.

[fit-transform on training data ,transform only on testing data]

Note: any unseen labels in testing data while transforming will be assigned to label <others>.

Encoding example: 'original_language' column

another example: 'status' column

2.5. handling with List of dictionaries columns

By using MultiLabelBinarizer() on 'list of dictionaries' columns which are:

```
('genres', 'spoken_languages', 'production_countries', 'production_companies', 'keywords')
```

Then removing the columns that contains one counts less than ¼ the training size in both train and test data.

For example: 'genres' column

```
Index
                                        genres
         [{"id": 35, "name": "Comedy"}, {"id": 10749, "name": "Romance"},
0
         {"id": 18, "name": "Drama"}]
         [{"id": 18, "name": "Drama"}, {"id": 10749, "name": "Romance"}]
2
         [{"id": 35, "name": "Comedy"}, {"id": 10749, "name": "Romance"}]
         [{"id": 35, "name": "Comedy"}]
3
         [{"id": 35, "name": "Comedy"}, {"id": 14, "name": "Fantasy"}]
4
         [{"id": 28, "name": "Action"}, {"id": 80, "name": "Crime"}, {"id":
5
         18, "name": "Drama"}, {"id": 53, "name": "Thriller"}]
         [{"id": 35, "name": "Comedy"}, {"id": 10751, "name": "Family"}, {...
6
         [{"id": 27, "name": "Horror"}, {"id": 18, "name": "Drama"}, {"id":
         53, "name": "Thriller"}, {"id": 878, "name": "Science Fiction"}]
         [{"id": 53, "name": "Thriller"}, {"id": 28, "name": "Action"},
         {"id": 80, "name": "Crime"}]
```


(Index	Action	Comedv	Drama	Thriller
	0	0	1	1	0
	1	Ø		1	0
	2	9	1	0	0
	3	0	1		0
	4	9	1	0	0
	5	1		1	1
	6	9	1	0	0
	7	0		1	1
	8	1	0	0	1

2.6.a Features Selection (Regression Phase)

For training data:

By using corr() for all features according to the label column 'vote_average', the selected features will be the features that has corr > 0.15, which are:

Ĺ	Index	viewercount	revenue	runtime	vote count	Comedy	Drama	vote average
ı	0	0.0218388	0.00405086	0.313609	0.0370128	1	1	7.1
I	1	0.0362011	0.00373368	0.286982	0.0594095		1	7.1
I	2	0.0256818	0.0467837	0.319527	0.0295957	1		5.4
I	3	0.0323408	0.0238412	0.263314	0.0313409	1		5.5
I	4	0.00359684	0.00251079	0.245562	0.00145433	1		4.1
I	5	0.0257737	0.0235189	0.322485	0.0263962		1	6.3
I	6	0.00149321	0.00620251	0.254438	0.00239965	1		5.4
I	7	0.00733843		0.369822	0.00734439		1	6.6
I	8	0.110351	0.0689861	0.390533	0.214805			7.1

Number of Selected features: 6

For testing data:

Testing data will be assigned to only the testing data that contains top features selected by corr of training data so it will have the same top features.

2.6.b Features Selection (Classification Phase)

For training data:

By using corr() for all features according to the label column 'vote_average', the selected features will be the features that has corr > 0.04, which are:

Number of Selected features: 16

For testing data:

Testing data will be assigned to only the testing data that contains top features selected by corr of training data so it will have the same top features.

2.7. Features Normalization

By using **MinMaxScaler()** on all columns in the data that already exist and the features that had been extracted.

[fit-transform on training data ,transform only on testing data]

Index	budaet	id	inal langı	riginal tit	overview	iewercoun	revenue
0	12000000	6615	4	868	2	15.8171	11293663
1	6000000	1443	4	1890	1	26.2189	10409377
2	54000000	1819	4	2098	0	18.6004	130431368
3	16000000	11397	4	1050	2	23.4231	66468332
4	20000000	13948	4	122	2	2.60537	7000000
5	20000000	1266	4	1430	1	18.6669	65569869
6	12000000	34549	4	956	1	1.08182	17292381
7	0	16241	4	1528	1	5.31521	0
8	55000000	156022	4	1587	1	79.9221	192330738

Index	budaet	id	inal langı	original title	overview	viewercount	revenue
0	0.0428571	0.0158048	0.25	0.407321	1	0.0218388	0.00405086
1	0.0214286	0.00342708	0.25	0.886908	0.5	0.0362011	0.00373368
2	0.192857	0.00432693	0.25	0.984514		0.0256818	0.0467837
3	0.0571429	0.0272491	0.25	0.492726	1	0.0323408	0.0238412
4	0.0714286	0.0333542	0.25	0.0572501	1	0.00359684	0.00251079
5	0.0714286	0.00300348	0.25	0.671046	0.5	0.0257737	0.0235189
6	0.0428571	0.0826569	0.25	0.448616	0.5	0.00149321	0.00620251
7	0	0.0388419	0.25	0.717034	0.5	0.00733843	0
8	0.196429	0.373368	0.25	0.744721	0.5	0.110351	0.0689861

3. Regression Models

3.1. Linear Regression

From scratch linear regression function with GD algorithm to minimize the error:

- #epochs = 100000
- $\alpha = 0.663$

"Learning Rate"

resulted coefficients:-

θ	value
θ0	4.469857
θ1	1.216461
θ2	-1.784756
θ3	4.195088
θ4	3.638630
θ5	-0.055620
θ6	0.404850

Evaluation:

MSE	R2 Score	
0.47160445037702553	0.28879882778053434	

3.2. Polynomial Regression

Using built-in modules LinearRegression(), PolynomialFeatures() with:

• Degree = 2

MSE	R2 Score	
0.5338504005318015	0.1949290759565221	

3.3. Lasso Regression

Using built-in module Lasso() with:

• Alpha = 0.001

Evaluation:

MSE	R2 Score	
0.47357818006233854	0.285822352760596	

3.4. Ridge Regression

Using built-in module Ridge() with:

• Alpha = 1.0

MSE	R2 Score	
0.4745641855460691	0.2843354112033579	

4. Classification Models

4.1. Logistic Regression

Using built-in model LogisticRegression() with:

- C = 9
- penalty = '11'
- solver = 'saga'

Evaluation:

Accuracy Score	
0.7461832061068703	

	Confusion Matrix		
True	85	76	0
Label	22	304	1
	0	34	2
	Predicted Label		

4.2. Support Vector Machine

Using built-in model SVC() with:

- C = 100
- kernel = 'rbf'
- gamma = 'auto'
- max_iter = 2400

Accuracy Score	
0.7595419847328244	

	Confusion Matrix		
True	90	71	0
Label	19	308	0
	0	36	0
	Predicted Label		

4.3. Decision Tree

Using built-in model DecisionTreeClassifier() with:

- max_depth = **10**
- max_leaf_nodes = 25

Evaluation:

Accuracy Score	
0.7213740458015268	

	Confusion Matrix		
True	93	68	0
Label	42	279	6
	0	30	6
	Predicted Label		

4.4. K Nearest Neighbors

Using built-in model KNeighborsClassifier() with:

• n_neighbors = 9

Accuracy Score	
0.6965648854961832	

	Confusion Matrix		
True	65	96	0
Label	28	299	0
	4	31	1
	Predicted Label		

5. Tuning the hyperparameters for Classifiers

5.1. Logistic Regression

Notice the change of C parameter in Logistic Regression:

1- Ir = LogisticRegression(C=1,penalty='l1',solver='saga')

Accuracy: 0.7385496183206107

2- Ir = LogisticRegression(C=10,penalty='l1',solver='saga')

Accuracy: 0.7461832061068703

3- Ir = LogisticRegression(C=20,penalty='l1',solver='saga')

Accuracy: 0.7442748091603053

With these accuracies we find that C=10 is the best value to get higher accuracy.

Notice the change of **penalty** parameter in Logistic Regression:

1- Ir = LogisticRegression(C=1,penalty='l1',solver='saga')

Accuracy: 0.7461832061068703

2- Ir = LogisticRegression(C=10,penalty='l2',solver='saga')

Accuracy: 0.7442748091603053

3- Ir = LogisticRegression(C=20,penalty='none',solver='saga')

Accuracy: 0.7442748091603053

With these accuracies we find that penalty='l1' is the best value to get higher accuracy.

5.2. Support Vector Machine

Notice the change of **C** parameter in SVM:

With these accuracies we find that C=100 is the best value to get higher accuracy.

Notice the change of **kernel** parameter in SVM:

With these accuracies we find that kernel='rbf' is the best value to get higher accuracy.

5.3. Decision Tree

Notice the change of **max_Depth** parameter in Decision Tree:

With these accuracies we find that max_depth=7 is the best value to get higher accuracy.

Notice the change of max_Leaf_Nodes parameter in Decision Tree:

```
1- clf = DecisionTreeClassifier(max_depth = 6,max_leaf_nodes= 15)
    Accuracy : 0.6755725190839694
2- clf = DecisionTreeClassifier(max_depth = 6,max_leaf_nodes= 20)
    Accuracy : 0.6927480916030534
3- clf = DecisionTreeClassifier(max_depth = 6,max_leaf_nodes= 25)
    Accuracy : 0.7213740458015268
4- clf = DecisionTreeClassifier(max_depth = 6,max_leaf_nodes= 30)
    Accuracy : 0.7118320610687023
```

With these accuracies we find that max_leaf_nodes=25 is the best value to get higher accuracy.

5.4. K Nearest Neighbors

Notice the change of weights parameter in KNN:

1- knn=KNeighborsClassifier(n_neighbors=9, weights='distance')

```
Accuracy: 0.683206106870229
```

2- knn=KNeighborsClassifier(n neighbors=9, weights='uniform')

```
Accuracy: 0.6965648854961832
```

3- knn=KNeighborsClassifier(n_neighbors=9, weights= lambda x : x)

```
Accuracy: 0.6889312977099237
```

With these accuracies we find that weights='uniform' is the best value to get higher accuracy.

Notice the change of **n_neighbors** parameter in KNN:

1- knn=KNeighborsClassifier(n_neighbors=8, weights='uniform')

```
Accuracy: 0.6851145038167938
```

2- knn=KNeighborsClassifier(n_neighbors=9, weights='uniform')

```
Accuracy: 0.6965648854961832
```

3- knn=KNeighborsClassifier(n_neighbors=10, weights='uniform')

```
Accuracy: 0.6908396946564885
```

4- knn=KNeighborsClassifier(n_neighbors=11, weights='uniform')

```
Accuracy: 0.6851145038167938
```

With these accuracies we find that n_neighbors=9 is the best value to get higher accuracy.