8. hét, 2020. május 4.

Analízis I. Előadás

Tartalom

a) Műveletek folytonos függvéyekkel

b) Folytonosság függvények tulajdonságai

Tétel (Alapműveletek folytonos függvényekkel)

Legyen $f \in \mathbb{R} \to \mathbb{R}$ és $g \in \mathbb{R} \to \mathbb{R}$.

- a) Ha $a \in \mathcal{D}_{f+g}$ és $f \in C\{a\}$, $g \in C\{a\}$, akkor $f+g \in C\{a\}$.
- b) Ha $a \in \mathcal{D}_{f \cdot g}$ és $f \in C\{a\}$, $g \in C\{a\}$, akkor $f \cdot g \in C\{a\}$.
- c) Ha $a \in \mathcal{D}_{f/g}$ $g(a) \neq 0$ és $f \in C\{a\}$, $g \in C\{a\}$, akkor $\frac{f}{g} \in C\{a\}$.

Bizonyítás

A bizonyítás az átviteli elv segítségével történik analóg módon, mint a függvény határértéke vonatkozó megfelelő tétel esetén.

A lényeg: a bizonyítást visszavezethetjük sorozatokkal végzett műveletek és a határérték kapcsolatára.

Vázlat:

 $f,g \in C\{a\},(x_n): \mathbb{N} \to \mathcal{D}_{f+a}, \ \operatorname{lim}(x_n) = a.$

Ekkor (átviteli elv) $\lim_{n\to\infty} f(x_n) = f(a)$, $\lim_{n\to\infty} g(x_n) = g(a) \Longrightarrow \lim_{n\to\infty} (f+q)(x_n) = (f+q)(a) \Longrightarrow$ (átviteli elv) $f+q \in C\{a\}$.

Tétel (Az összetett függvény folytonossága)

Legyen $f \in \mathbb{R} \to \mathbb{R}$ és $g \in \mathbb{R} \to \mathbb{R}$ és $a \in \mathcal{D}_{g \circ f}$.

Ha $f \in C\{a\}$ és $g \in c\{f(a)\}$, akkor $g \circ f \in C\{a\}$.

Bizonyítás

Az átviteli elvet alkalmazzuk.

Legyen $(x_n): \mathbb{N} \to \mathcal{D}_{f \circ q}$, $\lim_{n \to \infty} x_n = a$.

Mivel $f \in C\{a\}$, exert $\exists \lim_{n\to\infty} f(x_n) = f(a)$.

Ekkor $(f(x_n)): \mathbb{N} \to \mathcal{D}_g$, $\lim_{n \to \infty} f(x_n) = f(a)$.

Mivel $g \in C\{f(a)\}$, ezért $\exists \lim_{n\to\infty} g(f(x_n)) = g(f(a))$.

Tétel (Bolzano)

Legyen $a,b\in\mathbb{R}$, a< b. Tegyük fel, hogy az $f:[a,b]\to\mathbb{R}$ függvény folytonos, és a két végpontban felvett függvényértékek ellentétes előjelűek, azaz $f(a)>0,\ f(b)<0$ vagy $f(a)<0,\ f(b)>0$.

Ekkor van olyan a < c < b, hogy f(c) = 0.

Bizonyítás

Tegyük fel, hogy f(a) > 0, f(b) < 0.Legyen $x_0 = a$, $y_0 = b$.

Ha $f\left(\frac{x_0+y_0}{2}\right)=0$, akkor $c=\frac{x_0+y_0}{2}$ a tétel állításának megfelelően a függvény zérushelye.

Ha
$$f(\frac{x_0 + y_0}{2}) > 0$$
, akkor legyen $x_1 := \frac{x_0 + y_0}{2}$, $y_1 := y_0$.

Ha $f\left(\frac{x_0 + y_0}{2}\right) < 0$, akkor legyen $x_1 := x_0, y_1 := \frac{x_0 + y_0}{2}$.

Mindkét utóbbi esetben

$$x_0 \le x_1 < y_1 \le y_0$$
, $y_1 - x_1 = 2^{-1}(y_0 - x_0)$, $f(x_1) > 0$, $f(y_1) < 0$.

Ismételjük meg a fenti eljárást az $[x_1, y_1]$ intervallumon.

Ha $f\left(\frac{x_1+y_1}{2}\right)=0$, akkor $c=\frac{x_1+y_1}{2}$ a tétel állításának megfelelően a függvény zérushelye.

Ha
$$f(\frac{x_1+y_1}{2}) > 0$$
, akkor legyen $x_2 := \frac{x_1+y_1}{2}$, $y_2 := y_1$.

Ha
$$f\left(\frac{x_1+y_1}{2}\right) < 0$$
, akkor legyen $x_2 := x_1, y_2 := \frac{x_1+y_1}{2}$.

Mindkét utóbbi esetben

$$x_0 \le x_1 \le x_2 < y_2 \le y_1 \le y_0$$
, $y_2 - x_2 = 2^{-2}(y_0 - x_0)$, $f(x_2) > 0$, $f(y_2) < 0$.

Bizonyítás (folytatás)

Ezt folytatva indukcióval azt kapjuk, hogy

a) vagy van olyan $n \in \mathbb{N}$, hogy $f\left(\frac{x_n+y_n}{2}\right)=0$, és ekkor $c:=\frac{x_n+y_n}{2}$ a függvény zérushelye

b) vagy $(x_n) \nearrow , (y_n) \searrow$ olyan sorozatok, hogy

$$x_0 \le x_n < y_n \le y_0$$
, $(n \in \mathbb{N})$, $y_n - x_n = 2^{-n}(y_0 - x_0)$, $f(x_n) > 0$, $g(x_n) < 0$.

Ez utóbbi esetben (x_n) , (y_n) konvergens,

$$\lim_{n\to\infty}(y_n-x_n)=\lim_{n\to\infty}2^{-n}(y_n-x_0)=0,$$

tehát
$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n =: c \in (a,b).$$

Mivel $f \in C\{c\}$, ezért az átviteli elv miatt egyrészt

$$f(c) = \lim_{n \to \infty} f(x_n), \ f(x_n) > 0 \implies f(c) \ge 0$$

másrészt

$$f(c) = \lim_{n \to \infty} f(y_n), \ f(y_n) < 0 \implies f(c) \le 0.$$

Következésképpen f(c) = 0.

Darboux-tulajdonság

 $g = f_{|[a,b]} - \gamma$ függvényre.

Legyen $I \subset \overline{\mathbb{R}}$ intervallum, és $f: I \to \mathbb{R}$.

Azt mondjuk, hogy az f Darboux-tulajdonságú, ha \forall $a, b \in I$, a < b esetén teszőleges $\gamma \in [f(a), f(b)] \cup [f(b), f(a)]$ számhoz \exists a < c < b olyan, hogy $f(c) = \gamma$.

Következmény

Ha $I \subset \mathbb{R}$ intervallum, és $f: I \to \mathbb{R}$ folytonos, akkor f Darboux-tulajdonságú.

Valóban: $f(a) \neq f(b)$ és $\gamma \in (f(a), f(b) \cup (f(b), f(a))$ esetén alkalmazzuk a Bolzano-tételt az f függvénynek az [a, b] intervallumra való $f_{|[a,b]}$ leszűkítését véve a