Classification tasks, the Perceptron model

Chris Cornwell

October 21, 2025

Outline

Classification tasks

Perceptron model

Perceptron algorithm

Outline

Classification tasks

Perceptron mode

Perceptron algorithm

Use some model to determine a digit that was (hand)written in an image

 \sim 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9.

Use some model to determine a digit that was (hand)written in an image

```
\sim 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9.
```

- ightharpoonup Convert image to a vector (in some way) ightharpoonup x.
- Your model's output: the (predicted) digit.

Use some model to determine a digit that was (hand)written in an image

- \rightsquigarrow 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9.
 - ► Convert image to a vector (in some way) \rightarrow **x**.
 - Your model's output: the (predicted) digit.

In data provided, $\{(\mathbf{x}_i, y_i)\}$, observed ("correct") label is $y_i \in \{0, 1, ..., 9\}$.

Use some model to determine a digit that was (hand)written in an image

$$\rightsquigarrow$$
 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9.

- ightharpoonup Convert image to a vector (in some way) ightharpoonup x.
- Your model's output: the (predicted) digit.

In data provided, $\{(\mathbf{x}_i, y_i)\}$, observed ("correct") label is $y_i \in \{0, 1, ..., 9\}$.

Value of y is on number line; but, consider it a <u>label</u> (or, one of a few separate "buckets") used to organize different points \mathbf{x} . (When $y_i = 5$, predicting 4 is not any better than 0.)

Close only counts in horseshoes ... Regression

In linear regression, on indpt. variables x_1, x_2, \ldots, x_N , had (affine) linear function $y \approx b + w_1x_1 + w_2x_2 + \ldots + w_Nx_N$; values of function \leftrightarrow prediction \hat{y} ; error term $\varepsilon = y - \hat{y}$.

 $^{^{1}}$ Should consider the output y here to be a random variable, with distribution that depends on \mathbf{x} .

Close only counts in horseshoes ... Regression

In linear regression, on indpt. variables x_1, x_2, \ldots, x_N , had (affine) linear function $y \approx b + w_1x_1 + w_2x_2 + \ldots + w_Nx_N$; values of function \leftrightarrow prediction \hat{y} ; error term $\varepsilon = y - \hat{y}$. In regression, the **linear model x** $\mapsto \hat{y}$ approximates the relationship $\mathbf{x} \mapsto y$.\(^1\) We expect that $|y - \hat{y}|$ is almost never exactly 0; a good model: one where $|y - \hat{y}|$ is small on average (but, still positive).

 $^{^{1}}$ Should consider the output y here to be a random variable, with distribution that depends on \mathbf{x} .

Close only counts in horseshoes ... Regression

In linear regression, on indpt. variables x_1, x_2, \ldots, x_N , had (affine) linear function $y \approx b + w_1x_1 + w_2x_2 + \ldots + w_Nx_N$; values of function \leftrightarrow prediction \hat{y} ; error term $\varepsilon = y - \hat{y}$. In regression, the **linear model x** $\mapsto \hat{y}$ approximates the relationship $\mathbf{x} \mapsto y$.\(^1\) We expect that $|y - \hat{y}|$ is almost never exactly 0; a good model: one where $|y - \hat{y}|$ is small on average (but, still positive). "Classification" tasks: the value y is a label, might not even be a number. The prediction \hat{y} is either wrong, or not wrong; close doesn't count. Good model: when $\hat{y} = y$ as often as possible.

 $^{^{1}}$ Should consider the output y here to be a random variable, with distribution that depends on \mathbf{x} .

Outline

Classification tasks

Perceptron model

Perceptron algorithm

Binary classification: Data from \mathbb{R}^N for some N>0 and only two labels, $\{1,-1\}.$

²Notation here is that x_1, \ldots, x_N are the coordinates of the vector **x**.

Binary classification: Data from \mathbb{R}^N for some N>0 and only two labels, $\{1,-1\}$.

A <u>hyperplane</u> in \mathbb{R}^N is an (affine) linear subspace that separates \mathbb{R}^N in two. Given numbers w_1, w_2, \ldots, w_d , and b, it can be thought of as the set of points $\mathbf{x} \in \mathbb{R}^N$ where the linear function $y = b + w_1x_1 + \ldots + w_Nx_N$ has value zero²:

$$\{(x_1,\ldots,x_N): w_1x_1+w_2x_2\ldots+w_dx_d+b=0\}.$$

²Notation here is that x_1, \ldots, x_N are the coordinates of the vector **x**.

Binary classification: Data from \mathbb{R}^N for some N>0 and only two labels, $\{1,-1\}$.

A <u>hyperplane</u> in \mathbb{R}^N is an (affine) linear subspace that separates \mathbb{R}^N in two. Given numbers w_1, w_2, \ldots, w_d , and b, it can be thought of as the set of points $\mathbf{x} \in \mathbb{R}^N$ where the linear function $y = b + w_1x_1 + \ldots + w_Nx_N$ has value zero²:

$$\{(x_1,\ldots,x_N)\,:\, w_1x_1+w_2x_2\ldots+w_dx_d+b=0\}.$$

Figure: A few hyperplanes in \mathbb{R}^2 .

²Notation here is that x_1, \ldots, x_N are the coordinates of the vector **x**.

Binary classification: Data is from \mathbb{R}^N for some N>0 and we only have two labels, $\{1,-1\}$.

A <u>hyperplane</u> in \mathbb{R}^N is an (affine) linear subspace that separates \mathbb{R}^N in two. Given numbers w_1, w_2, \ldots, w_d , and b, it can be thought of as the set of points $\mathbf{x} \in \mathbb{R}^N$ where the linear function $y = b + w_1x_1 + \ldots + w_Nx_N$ has value zero³:

$$\{(x_1,\ldots,x_N): w_1x_1+w_2x_2\ldots+w_dx_d+b=0\}.$$

▶ Calling the hyperplane H and rewriting this in vector form: if $\mathbf{w} = (w_1, w_2, \dots, w_N)$ and $\tilde{\mathbf{w}} = (b, w_1, \dots, w_N)$, then H is the set of \mathbf{x} so that $\tilde{\mathbf{x}}^\top \tilde{\mathbf{w}} = \mathbf{w} \cdot \mathbf{x} + b = 0$.

³Notation here is that x_1, \ldots, x_N are the coordinates of the vector **x**.

Binary classification: Data is from \mathbb{R}^N for some N>0 and we only have two labels, $\{1,-1\}$.

A <u>hyperplane</u> in \mathbb{R}^N is an (affine) linear subspace that separates \mathbb{R}^N in two. Given numbers w_1, w_2, \ldots, w_d , and b, it can be thought of as the set of points $\mathbf{x} \in \mathbb{R}^N$ where the linear function $y = b + w_1x_1 + \ldots + w_Nx_N$ has value zero³:

$$\{(x_1,\ldots,x_N): w_1x_1+w_2x_2\ldots+w_dx_d+b=0\}.$$

- ► Calling the hyperplane H and rewriting this in vector form: if $\mathbf{w} = (w_1, w_2, \dots, w_N)$ and $\tilde{\mathbf{w}} = (b, w_1, \dots, w_N)$, then H is the set of \mathbf{x} so that $\tilde{\mathbf{x}}^{\top}\tilde{\mathbf{w}} = \mathbf{w} \cdot \mathbf{x} + b = 0$.
- ► *H* separates \mathbb{R}^N into two parts: those **x** where $\mathbf{w} \cdot \mathbf{x} + b$ is positive and those where $\mathbf{w} \cdot \mathbf{x} + b$ is negative.

³Notation here is that x_1, \ldots, x_N are the coordinates of the vector **x**.

Binary classification: Data is from \mathbb{R}^N for some N>0 and we only have two labels, $\{1,-1\}$.

A <u>hyperplane</u> in \mathbb{R}^N is an (affine) linear subspace that separates \mathbb{R}^N in two. Given numbers w_1, w_2, \ldots, w_d , and b, it can be thought of as the set of points $\mathbf{x} \in \mathbb{R}^N$ where the linear function $y = b + w_1x_1 + \ldots + w_Nx_N$ has value zero³:

$$\{(x_1,\ldots,x_N): w_1x_1+w_2x_2\ldots+w_dx_d+b=0\}.$$

- ► Calling the hyperplane H and rewriting this in vector form: if $\mathbf{w} = (w_1, w_2, \dots, w_N)$ and $\tilde{\mathbf{w}} = (b, w_1, \dots, w_N)$, then H is the set of \mathbf{x} so that $\tilde{\mathbf{x}}^{\top}\tilde{\mathbf{w}} = \mathbf{w} \cdot \mathbf{x} + b = 0$.
- ► *H* separates \mathbb{R}^N into two parts: those **x** where $\mathbf{w} \cdot \mathbf{x} + b$ is positive and those where $\mathbf{w} \cdot \mathbf{x} + b$ is negative.
- **w** is a vector that is orthogonal to H (which is (N-1)-dimensional); |b| and $||\mathbf{w}||$ relate to how far H is translated away from the origin.

³Notation here is that x_1, \ldots, x_N are the coordinates of the vector **x**.

Using the notation from last slide: a <u>half-space model</u> in \mathbb{R}^N is determined by $\tilde{\mathbf{w}} = (b, w_1, w_2, \dots, w_N)$, with a corresponding hyperplane H.

Using the notation from last slide: a <u>half-space model</u> in \mathbb{R}^N is determined by $\tilde{\mathbf{w}} = (b, w_1, w_2, \dots, w_N)$, with a corresponding hyperplane H.

Given $\mathbf{x} \in \mathbb{R}^N$, the half-space model can be though of as a function:

 $h: \mathbb{R}^d \setminus H o \{1, -1\}$, with

Using the notation from last slide: a <u>half-space model</u> in \mathbb{R}^N is determined by $\tilde{\mathbf{w}} = (b, w_1, w_2, \dots, w_N)$, with a corresponding hyperplane H.

Given $\mathbf{x} \in \mathbb{R}^{N}$, the half-space model can be though of as a function:

- $h: \mathbb{R}^d \setminus H \rightarrow \{1, -1\}$, with
 - (Positive side) set $h(\mathbf{x}) = 1$ if $\mathbf{w} \cdot \mathbf{x} + b > 0$.
 - ► (Negative side) set $h(\mathbf{x}) = -1$ if $\mathbf{w} \cdot \mathbf{x} + b < 0$.

Using the notation from last slide: a <u>half-space model</u> in \mathbb{R}^N is determined by $\tilde{\mathbf{w}} = (b, w_1, w_2, \dots, w_N)$, with a corresponding hyperplane H.

Given $\mathbf{x} \in \mathbb{R}^{N}$, the half-space model can be though of as a function:

- $h: \mathbb{R}^d \setminus H \rightarrow \{1, -1\}$, with
 - ► (Positive side) set $h(\mathbf{x}) = 1$ if $\mathbf{w} \cdot \mathbf{x} + b > 0$.
 - ► (Negative side) set $h(\mathbf{x}) = -1$ if $\mathbf{w} \cdot \mathbf{x} + b < 0$.

Given data with labels $y_i = \{\pm 1\}$, if there exists a hyperplane H so that, for all i, \mathbf{x}_i has label 1 if and only if it is on the positive side of H, these data are called **linearly separable**.

Linearly separable

Figure: The hyperplane $H=\{(x_1,x_2)\in\mathbb{R}^2:x_1+x_2+1=0\}$, corresponding positive and negative regions, $\mathbf{w}=(1,1), b=1$

Not linearly separable

Figure: A data set in \mathbb{R}^2 that is not linearly separable.

Not linearly separable

Figure: A data set in \mathbb{R}^2 that is not linearly separable.

A criterion (checkable, in theory) that is equivalent to "not linearly separable"?

Outline

Classification tasks

Perceptron mode

Perceptron algorithm

Setup for Perceptron algorithm

Labeled data: $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_P, y_P)$, with $\mathbf{x}_i \in \mathbb{R}^N$ and $y_i \in \{\pm 1\}$ for all i. Assuming labeled data is linearly separable, the Perceptron algorithm is a procedure that is guaranteed to find a hyperplane that separates the data.⁴

⁴Introduced in The perceptron: A probabilistic model for information storage and organization in the brain, F. Rosenblatt, Psychological Review **65** (1958), 386–407.

Setup for Perceptron algorithm

Labeled data: $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_P, y_P)$, with $\mathbf{x}_i \in \mathbb{R}^N$ and $y_i \in \{\pm 1\}$ for all i. Assuming labeled data is linearly separable, the Perceptron algorithm is a procedure that is guaranteed to find a hyperplane that separates the data.⁴

To describe it: for each \mathbf{x}_i , use the notation $\tilde{\mathbf{w}}$ and $\tilde{\mathbf{x}}_i$ as before.

⁴Introduced in *The perceptron: A probabilistic model for information storage and organization in the brain*, F. Rosenblatt, Psychological Review **65** (1958), 386–407.

Setup for Perceptron algorithm

Labeled data: $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_P, y_P)$, with $\mathbf{x}_i \in \mathbb{R}^N$ and $y_i \in \{\pm 1\}$ for all i. Assuming labeled data is linearly separable, the Perceptron algorithm is a procedure that is guaranteed to find a hyperplane that separates the data.⁴

To describe it: for each \mathbf{x}_i , use the notation $\tilde{\mathbf{w}}$ and $\tilde{\mathbf{x}}_i$ as before. Note that $\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}_i = \mathbf{w} \cdot \mathbf{x}_i + b$. For linearly separable data, our goal is to find $\tilde{\mathbf{w}} \in \mathbb{R}^{N+1}$ so that $\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}_i$ and y_i have the same sign (both positive or both negative), for all 1 < i < P.

Equivalently, we need $y_i \tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}_i > 0$ for all $1 \le i \le P$.

⁴Introduced in The perceptron: A probabilistic model for information storage and organization in the brain, F. Rosenblatt, Psychological Review **65** (1958), 386–407.

Perceptron algorithm

Suppose the data is linearly separable. Also, make x be a $P \times N$ array of points, with i^{th} row equal to \mathbf{x}_i , and y an array of the labels. In the pseudocode below, use capitalization for the "tilde" notation: $\overline{\mathbf{w}}$ is $\overline{\mathbf{w}}$ and the i^{th} row of x is $\overline{\mathbf{x}}_i$.

The Perceptron algorithm finds w iteratively as follows.⁵

⁵Recall, in pseudo-code block, left-facing arrow means assign to variable on left.

Perceptron algorithm

Suppose the data is linearly separable. Also, make x be a $P \times N$ array of points, with i^{th} row equal to \mathbf{x}_i , and y an array of the labels. In the pseudocode below, use capitalization for the "tilde" notation: \mathbf{w} is $\tilde{\mathbf{w}}$ and the i^{th} row of \mathbf{x} is $\tilde{\mathbf{x}}_i$.

The Perceptron algorithm finds w iteratively as follows.5

⁵Recall, in pseudo-code block, left-facing arrow means assign to variable on left.

Example

A simple example in \mathbb{R}^2 , with n=4 points.

A simple example in \mathbb{R}^2 , with n=4 points.

$$x: \begin{bmatrix} -1 & 3 \\ -1 & -1 \\ 3 & -1 \\ 0 & 1.5 \end{bmatrix} \qquad y: \begin{bmatrix} -1 \\ -1 \\ 1 \\ 1 \end{bmatrix}$$

Use
$$\tilde{\mathbf{w}}^{(t)}$$
 for value of $\tilde{\mathbf{w}}$ on step t . Start: $\tilde{\mathbf{w}}^{(1)} = (0, 0, 0)$.
Next step: $\tilde{\mathbf{w}}^{(2)} = \vec{0} + y_1 \tilde{\mathbf{x}}_1 = -1 * (1, -1, 3) = (-1, 1, -3)$.

A simple example in \mathbb{R}^2 , with n=4 points.

$$x: \begin{bmatrix} -1 & 3 \\ -1 & -1 \\ 3 & -1 \\ 0 & 1.5 \end{bmatrix} \qquad y: \begin{bmatrix} -1 \\ -1 \\ 1 \\ 1 \end{bmatrix}$$

Use $\tilde{\mathbf{w}}^{(t)}$ for value of $\tilde{\mathbf{w}}$ on step t. Start: $\tilde{\mathbf{w}}^{(1)} = (0, 0, 0)$.

Next step:
$$\tilde{\mathbf{w}}^{(2)} = \vec{0} + y_1 \tilde{\mathbf{x}}_1 = -1 * (1, -1, 3) = (-1, 1, -3)$$
.
Next: since $y_1 \tilde{\mathbf{w}}^{(2)} \cdot \tilde{\mathbf{x}}_1 > 0$, check $y_2 \tilde{\mathbf{w}}^{(2)} \cdot \tilde{\mathbf{x}}_2 = -1 * (-1 - 1 + 3) = -1$.

A simple example in \mathbb{R}^2 , with n=4 points.

$$x: \begin{bmatrix} -1 & 3 \\ -1 & -1 \\ 3 & -1 \\ 0 & 1.5 \end{bmatrix} \qquad y: \begin{bmatrix} -1 \\ -1 \\ 1 \\ 1 \end{bmatrix}$$

Next step: $\tilde{\mathbf{w}}^{(2)} = \vec{0} + y_1 \tilde{\mathbf{x}}_1 = -1 * (1, -1, 3) = (-1, 1, -3).$ Next: since $y_1 \tilde{\mathbf{w}}^{(2)} \cdot \tilde{\mathbf{x}}_1 > 0$, check $y_2 \tilde{\mathbf{w}}^{(2)} \cdot \tilde{\mathbf{x}}_2 = -1 * (-1 - 1 + 3) = -1.$ So,

$$\tilde{\mathbf{w}}^{(3)} = \tilde{\mathbf{w}}^{(2)} + \mathbf{v}_2 \tilde{\mathbf{x}}_2 = (-2, 2, -2).$$

Use $\tilde{\mathbf{w}}^{(t)}$ for value of $\tilde{\mathbf{w}}$ on step t. Start: $\tilde{\mathbf{w}}^{(1)} = (0, 0, 0)$.

A simple example in \mathbb{R}^2 , with n=4 points.

$$x: \begin{bmatrix} -1 & 3 \\ -1 & -1 \\ 3 & -1 \\ 0 & 1.5 \end{bmatrix} \qquad y: \begin{bmatrix} -1 \\ -1 \\ 1 \\ 1 \end{bmatrix}$$

Use $\tilde{\mathbf{w}}^{(t)}$ for value of $\tilde{\mathbf{w}}$ on step t. Start: $\tilde{\mathbf{w}}^{(1)} = (0,0,0)$. Next step: $\tilde{\mathbf{w}}^{(2)} = \vec{0} + y_1 \tilde{\mathbf{x}}_1 = -1 * (1,-1,3) = (-1,1,-3)$. Next: since $y_1 \tilde{\mathbf{w}}^{(2)} \cdot \tilde{\mathbf{x}}_1 > 0$, check $y_2 \tilde{\mathbf{w}}^{(2)} \cdot \tilde{\mathbf{x}}_2 = -1 * (-1-1+3) = -1$. So,

$$\tilde{\mathbf{w}}^{(3)} = \tilde{\mathbf{w}}^{(2)} + y_2 \tilde{\mathbf{x}}_2 = (-2, 2, -2).$$

Continue in this way – on each step check dot products (in order) with $y_1\tilde{\mathbf{x}}_1, y_2\tilde{\mathbf{x}}_2, y_3\tilde{\mathbf{x}}_3, y_4\tilde{\mathbf{x}}_4$. Eventually you return the vector $\tilde{\mathbf{w}}^{(10)} = (1, 4, -0.5)$.

A simple example in \mathbb{R}^2 , with n=4 points.

$$x: \begin{bmatrix} -1 & 3 \\ -1 & -1 \\ 3 & -1 \\ 0 & 1.5 \end{bmatrix} \qquad y: \begin{bmatrix} -1 \\ -1 \\ 1 \\ 1 \end{bmatrix}$$

Use $\tilde{\mathbf{w}}^{(t)}$ for value of $\tilde{\mathbf{w}}$ on step t. Start: $\tilde{\mathbf{w}}^{(1)} = (0,0,0)$. Next step: $\tilde{\mathbf{w}}^{(2)} = \vec{0} + y_1 \tilde{\mathbf{x}}_1 = -1 * (1,-1,3) = (-1,1,-3)$. Next: since $y_1 \tilde{\mathbf{w}}^{(2)} \cdot \tilde{\mathbf{x}}_1 > 0$, check $y_2 \tilde{\mathbf{w}}^{(2)} \cdot \tilde{\mathbf{x}}_2 = -1 * (-1-1+3) = -1$. So,

$$\tilde{\mathbf{w}}^{(3)} = \tilde{\mathbf{w}}^{(2)} + y_2 \tilde{\mathbf{x}}_2 = (-2, 2, -2).$$

Continue in this way – on each step check dot products (in order) with $y_1\tilde{\mathbf{x}}_1,y_2\tilde{\mathbf{x}}_2,y_3\tilde{\mathbf{x}}_3,y_4\tilde{\mathbf{x}}_4$. Eventually you return the vector $\tilde{\mathbf{w}}^{(10)}=(1,4,-0.5)$. i.e., $H=\{(x_1,x_2)\in\mathbb{R}^2:\ 1+4x_1-0.5x_2=0\}$ separates the points.

Under our assumptions for Perceptron algorithm, a guarantee on eventually stopping.

Theorem

Define $R = \max_i \|\tilde{\mathbf{x}}_i\|$ and $B = \min\{\|\mathbf{v}\| : \mathbf{v} \text{ satisfies }, y_i\mathbf{v} \cdot \tilde{\mathbf{x}}_i \geq 1, \forall i\}$. Then, the Perceptron algorithm stops after at most $(RB)^2$ iterations and, when it stops with output $\tilde{\mathbf{w}}$, then $y_i\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}_i > 0$ for all $1 \leq i \leq P$.

Under our assumptions for Perceptron algorithm, a guarantee on eventually stopping.

Theorem

Define $R = \max_i ||\tilde{\mathbf{x}}_i||$ and $B = \min\{||\mathbf{v}|| : \mathbf{v} \text{ satisfies }, y_i\mathbf{v} \cdot \tilde{\mathbf{x}}_i \geq 1, \forall i\}$. Then, the Perceptron algorithm stops after at most $(RB)^2$ iterations and, when it stops with output $\tilde{\mathbf{w}}$, then $y_i\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}_i > 0$ for all $1 \leq i \leq P$.

Idea of proof: Write \mathbf{v}^* for vector that realizes the minimum B. Also, $\tilde{\mathbf{w}}^{(t)}$ is the vector $\tilde{\mathbf{w}}$ on the t^{th} step, $\tilde{\mathbf{w}}^{(1)} = (0, 0, \dots, 0)$.

Under our assumptions for Perceptron algorithm, a guarantee on eventually stopping.

Theorem

Define $R = \max_i ||\tilde{\mathbf{x}}_i||$ and $B = \min\{||\mathbf{v}|| : \mathbf{v} \text{ satisfies }, y_i\mathbf{v} \cdot \tilde{\mathbf{x}}_i \geq 1, \forall i\}$. Then, the Perceptron algorithm stops after at most $(RB)^2$ iterations and, when it stops with output $\tilde{\mathbf{w}}$, then $y_i\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}_i > 0$ for all $1 \leq i \leq P$.

Idea of proof: Write \mathbf{v}^* for vector that realizes the minimum B. Also, $\tilde{\mathbf{w}}^{(t)}$ is the vector $\tilde{\mathbf{w}}$ on the t^{th} step, $\tilde{\mathbf{w}}^{(1)} = (0, 0, \dots, 0)$.

Using how $\tilde{\mathbf{w}}^{(t+1)}$ is obtained from $\tilde{\mathbf{w}}^{(t)}$, can show that $\mathbf{v}^* \cdot \tilde{\mathbf{w}}^{(T+1)} \geq T$ after T+1 iterations. Also, using the condition on $\tilde{\mathbf{w}}^{(T)}$ that necessitates an update, can show that $|\tilde{\mathbf{w}}^{(T+1)}| \leq R\sqrt{T}$. (For both statements, induction proves it.)

Under our assumptions for Perceptron algorithm, a guarantee on eventually stopping.

Theorem

Define $R = \max_i \|\tilde{\mathbf{x}}_i\|$ and $B = \min\{\|\mathbf{v}\| : \mathbf{v} \text{ satisfies }, y_i\mathbf{v} \cdot \tilde{\mathbf{x}}_i \geq 1, \forall i\}$. Then, the Perceptron algorithm stops after at most $(RB)^2$ iterations and, when it stops with output $\tilde{\mathbf{w}}$, then $y_i\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}_i > 0$ for all $1 \leq i \leq P$.

Idea of proof: Write \mathbf{v}^* for vector that realizes the minimum B. Also, $\tilde{\mathbf{w}}^{(t)}$ is the vector $\tilde{\mathbf{w}}$ on the t^{th} step, $\tilde{\mathbf{w}}^{(1)} = (0, 0, \dots, 0)$.

Using how $\tilde{\mathbf{w}}^{(t+1)}$ is obtained from $\tilde{\mathbf{w}}^{(t)}$, can show that $\mathbf{v}^* \cdot \tilde{\mathbf{w}}^{(T+1)} \geq T$ after T+1 iterations. Also, using the condition on $\tilde{\mathbf{w}}^{(T)}$ that necessitates an update, can show that $|\tilde{\mathbf{w}}^{(T+1)}| \leq R\sqrt{T}$. (For both statements, induction proves it.)

With those inequalities and the Cauchy-Schwarz inequality, $T \leq BR\sqrt{T}$, which we can rearrange to $T \leq (BR)^2$ (if an update was needed on step T).

First discussed by R.A. Fisher in a 1936 paper, Iris data set commonly used in explanations. It contains 150 points in \mathbb{R}^4 , each for an individual iris flower from one of 3 species: Iris setosa, Iris virginica, and Iris versicolor.

Figure: Images by G. Robertson, E. Hunt, Radomil ©CC BY-SA 3.0

First discussed by R.A. Fisher in a 1936 paper, Iris data set commonly used in explanations. It contains 150 points in \mathbb{R}^4 , each for an individual iris flower from one of 3 species: Iris setosa, Iris virginica, and Iris versicolor. The 4 coordinates are measurements of sepal length, sepal width, petal length, and petal width (in cm).

Figure: Images by G. Robertson, E. Hunt, Radomil ©CC BY-SA 3.0

First discussed by R.A. Fisher in a 1936 paper, Iris data set commonly used in explanations. It contains 150 points in \mathbb{R}^4 , each for an individual iris flower from one of 3 species: Iris setosa, Iris virginica, and Iris versicolor. The 4 coordinates are measurements of sepal length, sepal width, petal length, and petal width (in cm).

Iris setosa points are linearly separable from the other two.

Labels: Iris setosa \leftarrow 1; Other species \leftarrow -1.

Figure: Images by G. Robertson, E. Hunt, Radomil ©CC BY-SA 3.0

First discussed by R.A. Fisher in a 1936 paper, Iris data set commonly used in explanations. It contains 150 points in \mathbb{R}^4 , each for an individual iris flower from one of 3 species: Iris setosa, Iris virginica, and Iris versicolor. The 4 coordinates are measurements of sepal length, sepal width, petal length, and petal width (in cm).

Iris setosa points are linearly separable from the other two.

Labels: Iris setosa \leftarrow 1; Other species \leftarrow -1.

Begin by opening the notebook

'perceptron-iris-notebook.ipynb' ...After completing the algorithm, should get final $\tilde{\mathbf{w}}=(b,\mathbf{w})$, where $\mathbf{w}=(1.3,4.1,-5.2,-2.2)$ and b=1.

Figure: Images by G. Robertson, E. Hunt, Radomil ©CC BY-SA 3.0