Publication: June 29th ______ Presentation of solutions: July 7th

Applied Data Analysis

Exercise Sheet 6

Exercise 21

Consider a GLM with stochastically independent, gamma distributed response random variables Y_1, \ldots, Y_n and log-link function, i.e the natural logarithm function \ln . This Exercise aims to show that the GLM described above leads to similar results as applying a normal linear model to $\ln(Y_1), \ldots, \ln(Y_n)$.

For this purpose, in this Exercise we use the class of gamma distributions with the following parametrization. For parameters $\mu > 0$, $\beta > 0$, let the corresponding density function $f(\bullet; \mu, \beta) : \mathbb{R} \longrightarrow [0, \infty)$ be given by

$$f(y;\mu,\beta) := \begin{cases} \frac{1}{\Gamma(\beta)} \left(\frac{\beta}{\mu}\right)^{\beta} y^{\beta-1} \exp\left(-\frac{\beta}{\mu}y\right) &, y > 0 \\ 0 &, y \leq 0 \end{cases}$$

- (a) Show that the class of gamma distributions with parametrization given by (*) is a member of the exponential dispersion family of distributions. Further, determine the corresponding canonical link function.
- (b) Describe a practical situation (in the sense of properties of a data set), where modeling data with gamma distributions could be appropriate.
- (c) Show: If for $i \in \{1, ..., n\}$, Y_i has a standard deviation $\sigma_i = \sqrt{\operatorname{Var}(Y_i)}$ that is proportional to its expectation $\mu_i = \operatorname{E}(Y_i)$, then $X_i := \ln(Y_i)$ has approximately a constant variance for small σ_i .

Hint: For $i \in \{1, ..., n\}$, use a Taylor approximation of $X_i := \ln(Y_i)$ around $\mu_i = \mathrm{E}(Y_i)$.

(d) The Gamma-GLM described above with log-link function $\ln \operatorname{refers}$ to $\ln(\operatorname{E}(Y_i))$, whereas the ordinary linear model for the transformed response variable $X_i := \ln(Y_i)$ refers to $\operatorname{E}(X_i) = \operatorname{E}(\ln(Y_i))$ for $i \in \{1, \ldots, n\}$.

Show that if $X_i := \ln(Y_i) \sim \mathcal{N}(\mu_i, \sigma^2)$ for $i \in \{1, ..., n\}$ with $\mu_1, ..., \mu_n \in \mathbb{R}$ and $\sigma > 0$, then it holds:

$$\ln \left(\mathrm{E}(Y_i) \right) = \mathrm{E}\left(\ln(Y_i) \right) + \frac{\sigma^2}{2} .$$

Exercise 22

(a) Consider a Baseline-Category logit model according to Definition II.4.6 with 3 possible outcome categories and a single explanatory variable $x \in \mathbb{R}$. Then, according to II.4.6, the corresponding response probabilities fulfill the following equations:

$$\pi_j(x) = \frac{\exp(\beta_{j,1} + \beta_{j,2} x)}{1 + \exp(\beta_{1,1} + \beta_{1,2} x) + \exp(\beta_{2,1} + \beta_{2,2} x)}, \quad j \in \{1, 2\},$$

and $\pi_3(x) = 1 - (\pi_1(x) + \pi_2(x))$ for $x \in \mathbb{R}$.

Assume that $\beta_{1,2} \neq 0$, $\beta_{2,2} \neq 0$ and show:

$$\pi_3$$
 is $\begin{cases} \text{stictly decreasing,} & \text{if } \beta_{1,2} > 0 \text{ and } \beta_{2,2} > 0 \text{,} \\ \text{stictly increasing,} & \text{if } \beta_{1,2} < 0 \text{ and } \beta_{2,2} < 0 \text{,} \\ \text{not monotonic,} & \text{else .} \end{cases}$

(b) Now, consider a Baseline-Category logit model for grouped data with $g \in \mathbb{N}$ observed groups and $J \geq 2$ outcome categories. Let n_i denote the number of responses in group $i \in \{1, \ldots, g\}$. Further, for $i \in \{1, \ldots, g\}$ and $j \in \{1, \ldots, J\}$, let y_{ij} denote the corresponding sample proportion of category j in group i (corresponding to the saturated model) and let $\hat{\pi}_{ij}$ denote the estimate of the probability π_{ij} of responding category j belonging to group i corresponding to the considered model.

Show that the deviance given by

$$G^2 = 2 \sum_{i=1}^{g} \sum_{j=1}^{J} n_i y_{ij} \ln \left(\frac{n_i y_{ij}}{n_i \hat{\pi}_{ij}} \right)$$

coincides with the corresponding likelihood-ratio test statistic for testing the considered Baseline-Category logit model against the saturated model.

Exercise 23

For each task of this Exercise, let P denote the probability measure of the underlying probability space.

(a) Suppose Y_1, \ldots, Y_n are stochastically independent counts that satisfy a Poisson GLM with parameters $\mu_1, \ldots, \mu_n > 0$ and log-link function, i.e.:

$$\ln (E(Y_i)) = \ln(\mu_i) = \sum_{j=1}^{p} x_{ij} \beta_j, i \in \{1, \dots, n\}$$

with explanatory variables $x_{1,1}, \ldots, x_{n,p} \in \mathbb{R}$ and model parameters $\beta_1, \ldots, \beta_p \in \mathbb{R}$.

(i) In this part, for $i \in \{1, ..., n\}$, assume that the corresponding observed response merely indicates whether Y_i is positive or not, modeled by the indicator random variable $Z_i := \mathbb{1}_{(0,\infty)}(Y_i)$.

Show that Z_1, \ldots, Z_n satisfy a binary GLM with complementary-log-log link function, i.e.:

$$\ln\left(-\ln\left(1 - P(Z_i = 1)\right)\right) = \sum_{j=1}^{p} x_{ij} \beta_j , i \in \{1, \dots, n\}.$$

(ii) In this part, assume that $x_{i1} = 1$ for $i \in \{1, ..., n\}$, and thus, that the model contains an intercept. For $j \in \{1, ..., p\}$, let $\widehat{\beta}_j$ denote the maximum likelihood estimate of β_j and for $i \in \{1, ..., n\}$, let $\widehat{\mu}_i$ denote the corresponding estimate of μ_i .

Show that the average rates of change in the estimated means satisfy the following equations:

$$\frac{1}{n} \sum_{i=1}^{n} \frac{\partial \widehat{\mu}_{i}}{\partial x_{ij}} (x_{ij}) = \widehat{\beta}_{j} \overline{y} , j \in \{1, \dots, p\} .$$

(b) Let X be a positive random variable with E(X) = 1 and $Var(X) = \tau$ for some $\tau \in (0, \infty)$. (Thus, especially, we assume the existence of the second moment of X.) Further, let $\lambda > 0$ and let Y be a random variable with values in N_0 fulfilling

$$P^{Y|X=x} = \mathcal{P}(\lambda x), x \in (0, \infty),$$

i.e. for $x \in (0, \infty)$, the conditional distribution of Y under the condition X = x is a Poisson distribution with parameter λx .

Show

- (i) $E(Y) = \lambda$,
- (ii) $Var(Y) = \lambda + \tau \lambda^2$.

Hint: Use the following property for dealing with conditional expectations:

$$Var(Y) = E(Var(Y|X)) + Var(E(Y|X))$$

where E(Y|X) denotes the conditional expectation of Y given X and $Var(Y|X) = E(Y^2|X) - (E(Y|X))^2$ denotes the conditional variance of Y given X.

(c) Now, in the situation of part (b), especially, let $\lambda := 1$ and let X have a gamma distribution with parameters $\mu > 0$ and $\beta > 0$ according to the parametrization given by (*) in Exercise 21. Thus, with $\lambda = 1$, we assume:

$$P^{Y|X=x} = \mathcal{P}(x) , x \in (0, \infty) .$$

Show that the marginal distribution of Y is a negative binomial distribution with parameters $p = \frac{\beta}{\mu + \beta}$ and β , i.e. the corresponding probability mass function of Y is given by

$$P(Y = y) = \int_0^\infty P(Y = y \mid X = x) f(y; \mu, \beta) dx = \frac{\Gamma(y + \beta)}{\Gamma(\beta) y!} p^{\beta} (1 - p)^y, y \in \mathbb{N}_0.$$