

OPTIMIZATION PROBLEMS

Why

We are frequently interested in finding minimizers of real functions.¹

Definition

An optimization problem is a pair (\mathcal{X}, f) in which \mathcal{X} is a nonempty set called the *constraint set* and $f : \mathcal{X} \to \mathbf{R}$ is called the *objective* (or *cost function*).

If \mathcal{X} is finite we call the optimization problem *discrete*. If $\mathcal{X} \subset \mathbf{R}^d$ we call the optimization problem *continuous*.

We refer to all elements of the constraint set as *feasible*. We refer to an element $x \in \mathcal{X}$ of the constraint set as *optimal* if $f(x) = \inf_{z \in \mathcal{X}} f(z)$. We also refer to optimal elements as *solutions* of the optimization problem.

It is common for f and \mathcal{X} to depend on some other, known, given objects. In this case, these objects are often called *parameters* or *problem data*.

Notation

We often write optimization problems as

minimize
$$f(x)$$

subject to $x \in \mathcal{X}$.

In this case we call x the decision variable.

Extended reals

It is common to let $f: \mathcal{X} \to \overline{\mathbf{R}}$, and allow there to exist $x \in \mathcal{X}$ for which $f(x) = \infty$. This technique can be used to embed further constraints in the objective. For example, we interpret $f(x) = +\infty$ to mean x is infeasible.

¹Future editions will modify and expand.

Maximization

If we have some function $g: \mathcal{X} \to \bar{\mathbf{R}}$ that we wish to maximize, we can always convert it to an optimization problem by defining $f: \mathcal{X} \to \bar{\mathbf{R}}$ by f(x) = -g(x). In this case g is often called a reward (or utility, profit).

Solvers

A solver (or solution method, solution algorithm) for a family of optimization problems is a function S mapping optimization problems to solutions.

Loosely speaking, the difficulty of "solving" the optimization problem (\mathcal{X}, f) depends on the properties of \mathcal{X} and f and the problem "size". For example, when $\mathcal{X} \subset \mathbf{R}^d$ the difficulty is related to the "dimension" d of $x \in \mathcal{X}$.

