TD Nº 7: LOI DE POISSON

Exercice 1: Utilisation des tables

1. Soit X une variable aléatoire suivant une loi de Poisson de paramètre $\lambda = 4$. Avec la précision permise par les tables, déterminer les probabilités suivantes :

$$p(X = 0), \quad p(X \ge 1), \quad p(X \le 4), \quad p(X < 4), \quad p(X \ge 4), \quad p(7 \le X \le 9)$$

2. Soit X une variable aléatoire suivant une loi de Poisson de paramètre $\lambda = 7$. Déterminer le plus petit entier k vérifiant $p(X \le k) \ge 0, 8$.

	$\lambda = 1$	$\lambda = 2$	$\lambda = 3$	$\lambda = 4$	$\lambda = 5$	$\lambda = 6$	$\lambda = 7$	$\lambda = 8$	$\lambda = 9$
0	0,3679	0,1353	0,0498	0,0183	0,0067	0,0025	0,0009	0,0003	0,0001
1	0,3679	0,2707	0,1494	0,0733	0,0337	0,0149	0,0064	0,0027	0,0011
2	0,1839	0,2707	0,2240	0,1465	0,0842	0,0446	0,0223	0,0107	0,0050
3	0,0613	0,1804	0,2240	0,1954	0,1404	0,0892	0,0521	0,0286	0,0150
4	0,0153	0,0902	0,1680	0,1954	0,1755	0,1339	0,0912	0,0573	0,0337
5	0,0031	0,0361	0,1008	0,1563	$0,\!1755$	0,1606	0,1277	0,0916	0,0607
6	0,0005	0,0120	0,0504	0,1042	0,1462	0,1606	0,1490	0,1221	0,0911
7	0,0001	0,0034	0,0216	0,0595	0,1044	0,1377	0,1490	0,1396	0,1171
8	0,0000	0,0009	0,0081	0,0298	0,0653	0,1033	0,1304	0,1396	0,1318
9		0,0002	0,0027	0,0132	0,0363	0,0688	0,1014	0,1241	0,1318
10		0,0000	0,0008	0,0053	0,0181	0,0413	0,0710	0,0993	0,1186
11			0,0002	0,0019	0,0082	0,0225	0,0452	0,0722	0,0970
12			0,0001	0,0006	0,0034	0,0113	0,0263	0,0481	0,0728
13			0,0000	0,0002	0,0013	0,0052	0,0142	0,0296	0,0504
14				0,0001	0,0005	0,0022	0,0071	0,0169	0,0324
15				0,0000	0,0002	0,0009	0,0033	0,0090	0,0194
16					0,0000	0,0003	0,0014	0,0045	0,0109
17						0,0001	0,0006	0,0021	0,0058
18						0,0000	0,0002	0,0009	0,0029
19							0,0001	0,0004	0,0014
20							0,0000	0,0002	0,0006
21								0,0001	0,0003

Exercice 2: Seuil

- 1. Soit X une variable aléatoire suivant une loi de Poisson de paramètre λ . Exprimer $p(X \ge 1)$ en fonction de λ .
- 2. Dans une population de n personnes (n entier supérieur ou égal à 100), on admet que le nombre de personnes atteintes d'une certaine maladie définit une variable aléatoire qui suit une loi de Poisson de paramètre $\lambda = 0,01n$. Quelle doit être la valeur minimale de n pour que la probabilité de trouver au moins une personne malade dans cette population soit supérieure à 0,90?

Exercice 3: Allergie

Il apparaı̂t chaque année en moyenne vingt cas d'allergie à un certain médicament pour $100\,000$ habitants. En admettant que le nombre de cas suit une loi de Poisson, déterminer la probabilité qu'il apparaisse en un an au plus quatre cas d'allergie dans une ville de $25\,000$ habitants.

Exercice 4: Transport

Une entreprise de transport routier utilise 100 camions. On suppose que la variable aléatoire X égale au nombre de camions en panne un jour donné suit une loi de Poisson de paramètre $\lambda = 5$.

- 1. Calculer la probabilité d'avoir au moins 95 camions en service ce jour.
- 2. Calculer le nombre minimum de ses camions dont on peut disposer un jour donné avec une probabilité de 98%.

```
Extrait de la table de P(X \leqslant k) pour \lambda = 5 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0,0067 0,0404 0,1247 0,2650 0,4405 0,6160 0,7622 0,8666 0,9319 0,9682 0,9863 0,9945 0,9980 0,9993 0,9998 0,9999
```

Exercice 5 : Sinistres électriques

Une étude statistique montre que, dans une certain région, il y a en moyenne 8 sinistres électriques accidentels par an pour 1 000 villas résidentielles. Une compagnie d'assurances assure un parc de 500 villas et on admet que, durant une année donnée, le nombre X de ces villas qui subissent un sinistre électrique accidentel suit une loi de Poisson de paramètre λ .

Frais de gestion déduits, chaque prime annuelle souscrite rapporte un bénéfice de $160 \in à$ la compagnie, qui verse $10\ 000 \in$ pour chaque sinistre de ce type.

- 1. Quelle est la valeur de λ ?
- 2. On note B la variable aléatoire égale au bénéfice annuel de la compagnie (pour ce parc de 500 villas et pour les sinistres électriques accidentels). Exprimer B en fonction de X.
- 3. Quelle est la probabilité que la compagnie fasse un bénéfice positif durant l'année étudiée?

Exercice 6: Approximation binomiale-Poisson

Soit X une variable aléatoire qui suit la loi B(200; 0,03).

- 1. Calculer p(X = 4) (valeur décimale approchée à 10^{-3} près).
- 2. Dans cette question, on suppose qu'on peut approcher la loi de X par une loi de Poisson de paramètre λ .
 - a) Donner la valeur de λ .
 - b) A l'aide de cette loi de Poisson, donner p(X=4) (valeur décimale approchée à 10^{-3} près) et comparer avec le résultat de la question 1.

Exercice 7: Approximation binomiale-Poisson

On a observé que 2% des micro-ordinateurs d'un type donné tombaient en panne par mois d'utilisation. On suppose que les pannes sont indépendantes d'un ordinateur é l'autre et on appelle X la variable aléatoire égale au nombre mensuel de pannes dans un parc de 150 machines (on assimilera le choix des 150 machines à un tirage avec remise).

- 1. Déterminer la loi de probabilité de X et calculer la probabilité (valeurs décimales approchées à 10^{-3} près) que le nombre mensuel de pannes :
 - soit égal à 5.
 - ne dépasse pas 3.
- 2. On admet que la loi de X peut être approchée par une loi de Poisson.
 - a) Donner le paramètre de cette loi.
 - b) A l'aide de la table cette loi, refaire les calculs de la question 1.
 - c) Pour tout entier n non nul, on note E_n l'événement : « le nombre de pannes ne dépasse pas n ». Déterminer la valeur minimale de n pour qu'on ait $p(E_n) \ge 0,99$.