Literature-Based Discovery and Imperfect Knowledge In Biomedicine

First International Workshop on Representing and Reasoning with Imperfect knowledge – KGC 2022

Ali Daowd (ali.daowd@dal.ca)
NICHE Research Group
Dalhousie University

Undiscovered Public Knowledge

- Exponential growth in volume of scientific literature:
 - PubMed > 800,000 new articles/year in last 10 years (1)
 - Nature Portfolio > 100 new articles/year in 156 specialized journals (2)
- Fragmentation of evidence-based knowledge
- Wealth of undiscovered <u>complementary</u> and <u>dynamic</u> knowledge in published literature

⁽¹⁾ Landhuis, E. (2016). Scientific literature: Information overload. Nature, 535(7612), 457-458.

⁽²⁾ Springer Nature, Nature portfolio, accessed 30 April 2022, https://www.nature.com/siteindex

Literature-Based Discovery (LBD)

- Aims to discover and synthesize knowledge by connecting and reasoning over fragmented literature
- Pioneered by Don Swanson's ABC model in 1985 (1)
 - {A, B} and {B, C} are complementary but disjoint
 - Implicit relationship between A and C
- Knowledge triples (s, p, o) represented as a knowledge graph

ABC discovery model

(1) Swanson, D. R. (1986). Undiscovered public knowledge. The Library Quarterly, 56(2), 103-118.

Literature-Based Discovery Applications

- 1. Drug repurposing (1, 2)
- 2. Identifying adverse drug events (3, 4)
- 3. Explaining underlying molecular mechanisms of diseases (5,6)
- 4. Hypothesis generation

- (1) Yang, H. T., Ju, J. H., Wong, Y. T., Shmulevich, I., & Chiang, J. H. (2017). Literature-based discovery of new candidates for drug repurposin
- (2) Daowd, A., Abidi, S., & Abidi, S. S. R.(2022). A Knowledge Graph Completion Method Applied to Literature-Based Discovery for Predicting Missing Links Targeting Cancer Drug Repurposing. *Artificial Intelligence in Medicine (forthcoming)*.
- (3) Hristovski, D., Kastrin, A., Dinevski, D., Burgun, A., Žiberna, L., & Rindflesch, T. C. (2016). Using literature-based discovery to explain adverse drug effects. Journal of medical systems, 40(8), 1-5.
- (4) Rastegar-Mojarad, M., Elayavilli, R. K., Wang, L., Prasad, R., & Liu, H. (2016, October). Prioritizing adverse drug reaction and drug repositioning candidates generated by literature-based discovery. In Proceedings of the 7th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics (pp. 289-296).
- (5) Henry, S., Wijesinghe, D. S., Myers, A., & McInnes, B. T. (2021). Using Literature Based Discovery to Gain Insights Into the Metabolomic Processes of Cardiac Arrest. Frontiers in Research Metrics and Analytics, 6, 32.
- (6) Daowd, A., Barrett, M., Abidi, S., & Abidi, S. S. R. (2021, August). A Framework To Build A Causal Knowledge Graph for Chronic Diseases and Cancers By Discovering Semantic Associations from Biomedical Literature. In 2021 IEEE 9th International Conference on Healthcare Informatics (ICHI) (pp. 13-22).

Literature-Based Discovery Challenges

- Accuracy of knowledge extraction
 - Co-occurrence based models: high recall, low precision
 - Semantic based models: low recall, high precision
- Missing facts in the literature
 - E.g., tacit knowledge

I. Incomplete knowledge

Knowledge graph completion (KGC)

II. Imperfect knowledge

Language models to classify meaningful semantic triples

- Knowledge Graph Completion (KGC) for literature-based KGs:
 - Infer missing knowledge based on existing triples
 - Knowledge graph embeddings TransE, ComplEx, DistMult, HolE, ConvE
 - Entity prediction (head, relation,?)
 - Relation prediction (head,?,tail)

- Knowledge Graph Completion for literature-based KGs:
 - Completing large KGs is unrealistic
 - Computationally expensive, dense 'completed' KG
 - Need to focus KGC on a subset of knowledge:
 - MeSH descriptors provide conceptlevel implicit summary of biomedical literature

Daowd, A., Abidi, S., & Abidi, S. S. R.(2022). A Knowledge Graph Completion Method Applied to Literature-Based Discovery for Predicting Missing Links Targeting Cancer Drug Repurposing. *Artificial Intelligence in Medicine* (forthcoming)

> Cell Signal. 2020 Feb;66:109488. doi: 10.1016/j.cellsig.2019.109488. Epub 2019 Nov 27.

CXCL12-CXCL4 heterodimerization prevents CXCL12-driven breast cancer cell migration

Khanh T P Nguyen ¹, Lawrence J Druhan ², Belinda R Avalos ², Li Zhai ³, Lubica Rauova ⁴, Irina V Nesmelova ⁵, Didier Dréau ⁶

Affiliations + expand

PMID: 31785332 DOI: 10.1016/j.cellsig.2019.109488

MeSH terms

- > Adenocarcinoma / metabolism*
- > Adenocarcinoma / pathology
- > Cell Line, Tumor
- > Cell Movement
- > Chemokine CXCL12 / metabolism*
- > Female
- > Humans
- > Platelet Factor 4 / metabolism*
- > Protein Multimerization
- > Triple Negative Breast Neoplasms / metabolism*
- > Triple Negative Breast Neoplasms / pathology

- Language models to identify meaningful semantic triples
 - Word2Vec, BioBERT
 - Vector-oriented reasoning

Daowd, A., Barrett, M., Abidi, S., & Abidi, S. S. R. (2021, August). A Framework To Build A Causal Knowledge Graph for Chronic Diseases and Cancers By Discovering Semantic Associations from Biomedical Literature. In 2021 IEEE 9th International Conference on Healthcare Informatics (ICHI) (pp. 13-22).

Remaining Challenges

- Incompleteness is still a problem in almost all biomedical KGs including literature-based ones
 - Complexity of biomedical language
 - Contradictory knowledge
 - Biased research and invalid findings "streetlight effect"