Freie Universität Berlin Fachbereich Mathematik und Informatik Takustraße 9, 14195 Berlin

MASTER THESIS

USER POSITION PREDICTION IN 6-DOF MIXED REALITY APPLICATIONS USING RECURRENT NEURAL NETWORKS

Oleksandra Baga

Freie Universität Berlin
Matrikelnummer 5480722
Master Computer Science
E-Mail: oleksandra.baga@gmail.com

Prof. Dr. Daniel Göhring

Fachbereich Mathematik und Informatik Freie Universität Berlin

Prof. Dr. Tim Landgraf
Fachbereich Mathematik und Informatik
Freie Universität Berlin

Statutory Declaration

I herewith formally declare that I have written the submitted master thesis independently. I did not use any outside support except for the quoted literature and other sources mentioned in the paper.

I clearly marked and separately listed all of the literature and all of the other sources which I employed when producing this academic work, either literally or in content.

I am aware that the violation of this regulation will lead to failure of the thesis.

10.10.2022...... Oleksandra Baga

Acknowledgments

This thesis was created in cooperation with the Fraunhofer Heinrich Hertz Institute.

I would like to thank Prof. Dr. Daniel Göhring, who consulted me during the work on a thesis, and Prof. Dr. Tim Landgraf, who taught me machine learning so that I chosen my master thesis topic in the field of ML research.

A special thanks goes to the Serhan Gül, researcher of Fraunhofer Heinrich Hertz Institute, who suggested an exciting topic for a research, which I was allowed to choose for my master thesis.

Contents

Lis	st of	Figures		Ι
Lis	stings	i		II
Lis	st of	Abbrev	iations	III
1	Intro	oductio	n	1
	1.1	Proble	em statement	1
	1.2	Motiva	ation for the research	2
	1.3	Struct	ure of the thesis	2
2	Fund	dament	als	4
	2.1	Mixed	reality with HMD	4
	2.2	Six de	grees of freedom	5
	2.3	Motio	n-to-photon latency	6
	2.4	Cloud	-based volumetric video streaming	7
	2.5	Challe	enges of head motion prediction	9
	2.6	Relate	d works	10
		2.6.1	Traditional prediction algorithms	10
		2.6.2	Recurrent Neuronal Networks	11
3	lmp	lement	ation	13
	3.1	6-DoF	Dataset	13
		3.1.1	Data collection from HMD	13
		3.1.2	Data Exploration	15
		3.1.3	Data preprocessing	17
	3.2	Model		21
		3.2.1	Inputs and outputs	21
		3.2.2	LSTM Model	22
		3.2.3	GRU Model	27
		3.2.4	Bidirectional GRU Model	29
		3.2.5	Development	29
			Unity application	29
			Training and evaluation	30
			Hyperparameter search	30

4	Eval	luation		31
	4.1	Baseli	ne model	31
	4.2	Goal	of evaluation	31
	4.3	Evalua	ation metrics	31
	4.4	Experi	iments	31
		4.4.1	First experiments	31
			Datasets	31
			Batch size	32
			Learning rate	32
		4.4.2	Prediction with LSTM	32
		4.4.3	Prediction with GRU	32
		4.4.4	Prediction with Bidirectional GRU	32
5	Con	clusion		I
	5.1	Analys	sis	I
	5.2	Limita	tions	I
	5.3	Sugge	stions for future work	I
Bi	bliog	raphy		IV

List of Figures

Fig. I	HoloLens 2 maps itself with a mesh	5
Fig. 2	Viewing paradigm in 3- and 6-DoF VR. Source: [21]	6
Fig. 3	M2P latency for a remote rendering system. Source: [13]	7
Fig. 4	High level operation of a cloud-based volumetric streaming system.	
	Source [12]	8
Fig. 5	User position plots from obtained datasets (a, b, c)	15
Fig. 6	Changes in the user's position along the Y axis in the range from	
	400ms to 500ms	16
Fig. 7	Interpolated 6-DoF dataset's user position and orientation in quater-	
	nions	18
Fig. 8	Quaternions from 6-DoF dataset's flipped if their real part is negative.	19
Fig. 9	Enlarged quaternion plot with breaks omitted	20
Fig. 10	Long Short-Term Memory	23
Fig. 11	Gated Recurrent Unit	27

Listings

3.1	One-layered LSTM with sliding window									25
3.2	LSTM3 with Mish activation function									26

List of Abbreviations

ANN Artificial Neural Networks

AR Augmented Reality

CNN Convolutional Neural Network

CPU Central processing unit

DoF Degree of freedome

DL Deep Learning

FFN Feed-forward Neural Network

GRU Gated Recurrent Unit
HMD Head-Mounted-Display

IEEE Institute of Electrical and Electronics Engineers

KF Kalman FilterLAT Look ahead time

LSTM Long-Short-Term Memory

M2P Motion-to-Photon
MAE Mean Absolut Error

MEC Mobile Edge Computing

ML Machine Learning
MR Mixed Reality

NLP Natural Language Processing

ReLu Rectified Linear Unit

RNN Recurrent Neural Network

RTT Round-trip time

SDG Stochastic Gradient Descent

VR Virtual Reality

3-DoF Three degree of freedom6-DoF Six degree of freedom

Introduction

This thesis is focusing on designing and evaluation of the approach for the prediction of human head position in a 6-dimensional degree of freedom (6-DoF) of Extended Reality (XR) applications for a given look-ahead time (LAT) in order to reduce the Motion-to-Photon (M2P) latency of the network and computational delays. At the beginning of the work the existing head motion prediction methods were analysed, and their similarities differences will be taken into account when a proposed Recurrent Neural Network-based predictor will be developed. Main goal is the systematic analysis of the potential of recurrent neural networks for head motion prediction. The proposed approach was evaluated on a real head motion dataset collected from Microsoft HoloLens. Based on a discussion of the obtained results, suggestions for future work are provided.

1.1 Problem statement

The correct and fast head movement prediction is a key to provide a smooth and comfortable user experience in VR environment during head-mounted display (HDM) usage. The recent improvements in computer graphics, connectivity and the computational power of mobile devices simplified the progress in Virtual Reality (VR) technology. The way users can interact with their devices changed dramatically. With new technologies of VR environment user becomes the main driving force in deciding which portion of media content is being displayed to them at any time of interaction with VR Applications [20]. Until recently the high-quality experiences with modern Augmented Reality (AR) and VR systems were not widely presented in home usage and were mainly used in research labs or commercial setups. The hardware for displaying the VR environment was once extremely expensive but recent years became more broadly accessible and the 6-DoF VR headset designed for the end-user were released¹. It is possible now to experience virtual reality scenes and watch new type of volumetric media at home and the market interest for development VR and AR applications expected to be huge next years.

In fact, the existing on this moment virtual environments can be divided into two main groups depending on position of the user and their ability to move inside the VR environment. The user motion and prediction within a 3-DoF environment

¹https://medium.com/@DAQRI/motion-to-photon-latency-in-mobile-ar-and-vr-99f82c480926

has been intensely researched for years. Extending such approaches to a 6-DoF environment is not straightforward, due to the change of the user's viewing point from inward to outward and additional three degrees of freedom [21].

Although all mentioned above improvements, rendering of volumetric content remains very demanding task for existing devices. Thus the improvement of a performance of existing methods, design and implementation of new approaches specially for the 6-DoF environment could be a promising research topic.

1.2 Motivation for the research

Research efforts to reduce the computational load are being already wide attempted. However, these approaches designed for the client side. Recently presented technique of the rendering on a cloud server makes possible to decrease the computational load on the client device by offloading of the task to a server infrastructure and than by sending the rendered 2D content instead of volumetric data [13]. The calculated 2D view must correspond the current position and orientation of a user. However, cloud-based streaming approach adds network latency and processing delays due uploading to a server the user position, rendering a new 2D picture from the 3D data and sending it back to a device. Thus, a rendered 2D image can appear even later on a display than with usage of local rendering system.

The promising research topic is a reducing the Motion-to-Photon (M2P) latency by predicting the future user position and orientation for a look-ahead time (LAT) and sending the corresponding rendered view to a client. The LAT in this approach must be equal or larger to the M2P latency of the network including round-trip time (RTT) and time need for calculation and rendering of a future picture at remote server.

1.3 Structure of the thesis

The organization of this thesis is as follows. The thesis starts from introduction and problem statement, followed by theoretical background related to the research topic. Literature review chapter introduces different approaches and technologies of motion prediction algorithms. The chapters ??nd 4 show the implementation ff the presented models and evaluation of the results that were obtained during experiments. Last, the discussion regarding method limitations and suggestions for the future work are done.

Chapter 1 - Introduction.

The current chapter shortly introduces a state of development on scientific field achieved at a time of master thesis creation in the context on XR applications. The

necessity of timely action to improve the situation with increasing computational and network latency is shown in problem statement section 1.1. Due to the breadth of the research topic, the section 1.2 focuses and motivates the research topic.

Chapter 2 - Background.

The next chapter includes a review of the area being researched. It starts with a short introduction of the concept of MR applications and presents a 6-DoF environment. The presence and influence of a computational and network latency is covered. In section 2.5 the challenges faced in predicting of the viewer's position are discussed. Last section contains an overview of previous research in the field of prediction of user's head position and orientation and places a master thesis's topic in the context of the existing literature.

Chapter 3 - Implementation.

Chapter describes practical implementation of the approach. The dataset including data collection from head mounted display (HDM) and data understanding and preprocessing are described in section 3.1. Model Inputs, Model architecture and the development steps are covered in section 3.2. The implementation of Unity Application, training and evaluation loop with PyTorch and hyperparameter search described in the section 3.2.5.

Chapter 5 - Evaluation.

A Baseline model, used for comparing the obtained results and tuning the hyperparameters is described. The goal of evaluation and metrics used in this research are covered. The conducted experiments with a data obtained from HMD for each analysed RNN Model can be found in section 4.4.

Chapter 5 - Conclusion.

The last chapter presents a discussion about the limitation of proposed method and provides a conclusion about the received results including suggestions for potential types of future research.

Fundamentals 2

This chapter introduces theoretical background of the presented research problem. First, the concept of mixed reality (MR) followed by an introduction of six degree of freedom (6-DoF) environment and the difference to the three degree of freedom (3-DoF) are described. The term motion-to-photon latency (M2P) is covered, followed by a short discussion about an influence of M2P latency on the decreasing of user experience. The new developed cloud-based rendering and streaming approach is shortly discussed in this chapter. The last section of this chapter highlights challenges with the prediction of viewer's head pose that arises in modern XR applications in connection especially with the added network latency due the using of remote cloud server for computational offload. The section 2.6 overviews the existing works done in the research field using traditional algorithms and recurrent neural networks.

2.1 Mixed reality with HMD

Mixed reality makes possible to break down the border between the virtual and real world and provides today an experience that just a short-time ago we could only imagine when watching the sci-fi movies. Terms Virtual Reality (VR), Augmented reality (AR) and Mixed reality (MR) are often used interchangeably. VR creates the virtual environment around user and tricks human's senses into thinking one is in a different environment. AR adds a virtual object to the real world that we can see through the lenses of special developed Head Mounted Display (HMD). Thus realistic images, sounds, and other sensations can be generated by a powerful HMD and projected on transparent holographic lenses giving a user the feeling that virtual objects have size and density. However, AR does not allow interactions between users and the virtual objects added to the real-world scene. MR combines the advantages of the VR and AR and adds an interaction between real and artificial elements. Thus users can directly interact with virtual objects (with operations such as scaling, rotation, or translation) in the real environment using their hands. For example, in MR Application virtual objects can be placed on the real table in the user's room, picked up with a hand and moved to another place.

Volumetric video (VV) is a new content creation approach to be used within AR and MR applications [26]. Volumetric video allows to view recorded information

from a range of different angles, as if an observer was physically presented in the room when video was captured by cameras and could move around the object. This thesis uses volumetric video object placed in the real environment when running developed MR Application for collection the user's position and rotation data. Refer sections 2.4 and 3.2.5 for more details about VV and how it was used in thesis.

Figure 1: HoloLens 2 maps itself with a mesh.

Nowadays different HMD with varying performance levels and prices are available on the market. In this thesis, Microsoft HoloLens 2 was used for MR experience and data collection. It is an updated version of the previous generation HoloLens 1 headset from Microsoft with such improved feature as display resolution, field of view, weight, battery lifetime. By using the AHAT (Articulated HAnd Tracking) depth camera, the HoloLens 2 can capture hand move-

ments to obtain hand tracking data. The build-in tracking systems allows HoloLens to understand the environment around the user and to place stable and accurate holograms on the correct places where they intended to be by the developer of MR Application. The data used to track users is represented in the spatial map¹. When VR Application is starting on HoloLens, HoloLens uses unique environmental landmarks to locate itself in a space. The mesh graphic spreading over the space is seen, as illustrated in Fig. 1, during the Application launch and this means a device is mapping to surroundings. As user moves with HMD on their head, built-in cameras continuously scan the environment and construct virtual world geometry for real-world objects. The primary stereo rendering component attached to HMD can be accessed from Unity and thus the position and orientation can obtained for thesis purposes.

2.2 Six degrees of freedom

Term *degrees of freedom* describes how users interact with a virtual environment and how they can move inside it. Within 3-DoF space user has only three possibilities: look left and right, look up and down and pivot left and right. 3-DoF space does not allow to move throughout the virtual space. Thus only rotational movement can be tracked. In 3-DoF VR Application multimedia content is the omnidirectional or spherical video, which represents an entire 360° environment on a virtual sphere

 $^{^{1}} https://docs.microsoft.com/en-us/hololens/hololens-environment-considerations. \\$

[21]. In 3-DoF space HMD enables to display only a portion of the environment around a user. User is virtually positioned at the centre of a sphere as shown in Fig. 2, media is displayed from an inward position and user can only change the viewing direction (i.e., by looking up/down or left/right or tilting the head side to side) [21] but can not interact with a media by moving closer/further. Wherever user moves with a HMD on their head, they will remain placed in the at the centre of a sphere and distance to a content can not be changed.

The new VR concept 6-DoF means tracking both position and rotation and refers to the freedom of movement of a rigid body in threedimensional space. In 6-DoF VR Application user can also change viewing perspective by moving (e.g., walking, jumping) inside the virtual space [21]. Thus the scene is observed from an outward position in 6-DoF environment and extra degree of freedom transforms the virtual experience to be more natural and reflects to human

Figure 2: Viewing paradigm in 3and 6-DoF VR. Source: [21]

movement in a three-dimensional space. Thus the VV and other volumetric objects such meshes or point clouds are used in MR Applications for 6-DoF scene population. User can freely walks inside the 6-DoF environment with a HMD on a head and observe the placed on scene volumetric objects from all points of view, and if the settings in Unity application allow physical interaction with objects, pick and move them on the new place.

2.3 Motion-to-photon latency

VR Application are deployed to the end-user with a goal to create an immersion of a physical presence in a non-physical world. In the real world there is no time delay between action taken and reaction observed. However, in AR/VR/MR Applications the difference between the user's head movement (action) and its corresponding display output reflections (reaction) is defined as motion-to-photon (M2P) latency. The presence of a delay between the physical movement and the display output worsens HMD user experience. In worst case even sense of physical presence in a virtual world would be lost. MTP latencies of more than 20 ms are experienced and cause spatial disorientation and dizziness, referred to as VR sickness or motion sickness [2, 12]. Display lag can produce a range of other perceptual effects include degraded vision, compromised visuo-motor performance and motion sickness [2]. Different components of the HMD, such as the sensors, SOC, display and software can affect M2P latency. Reducing the M2P latency is the key to proving the best

VR experience. Not only improving the device parameters, such a usage of more powerful HMD processor, need to be taken in account. VR Application developers must consider how to deploy more light-weighted applications. If the VR Application need to pull some data from the network or remote server, the network round-trip time and the added processing delays will increase the M2P latency compared to a system that only performs the processing locally [12].

Figure 3: M2P latency for a remote rendering system. Source: [13]

As this thesis evaluates the reducing the M2P latency for VV streaming from remote cloud server, the Fig. 3 illustrates the different components of the M2P latency for a remote rendering system. Total M2P latency is equal to sum of the time taken by a bit of data to travel across the network from HMD to a server, server delay involved in computing the future user position and render a 2D view and a HMD delay during sensor measurements. If the user's future head pose for a lookahead time (LAT) equal to or larger than

the M2P latency of the system could be predicted, it can eliminate M2P latency and improve the quality of the VR Applications. Studies showed that display lags of greater than 40 ms cause errors in tracking and following a target with the head [2]. This thesis evaluates the performance of RNN Models for LAT 100 ms that is higher than the measured M2P latency of a cloud-based volumetric streaming system described in the next section.

2.4 Cloud-based volumetric video streaming

Volumetric video (VV) is a young technology and is used to build a content for AR and VR Applications. Real-life video from cameras surrounding the 3D object is stored as point clouds or 3D textured mesh sequences and builds a dynamic 3D scene of a real 3D object. In VR Application user can walk through VR environment with a HMD and thus VV can be looked at from any viewpoint. In almost all cases today, the VVs objects stored and rendered locally on a users device. Photo-realistic modelling, real-time rendering and animation of VVs is still computationally difficult. The long sequence VV can even exceed the HMD memory capacity and could not be deployed as a VR Application even on high-cost VR HMD as HoloLens 2. There are still no efficient hardware decoders for point clouds or meshes and software

decoding can be prohibitively expensive in terms of battery usage [12]. Thus in the research field there is a growing interest in VV compression and adaptive streaming, as real-time streaming is necessary for some applications, e.g., telepresence and remote collaboration [26]. The processing and memory load on the user's HMD can be decreased by sending a 2D precomputed rendered view instead of the volumetric 3D content. Some previous studies reveal that participants preferred to stay in front of static point clouds and 1 metre away from them and spent more time looking at the frontal view and faces of human models [26]. VVs are not transparent and provide a feeling of a real 3D object with a mass and a weight thus as a real 3D object they can be looked at only from one viewpoint at on time step. Thus if the sending unneeded information (for example, a back view of a human model when the user looks at model's front view) can be avoided, it decrease the computational load on the user's HMD.

Figure 4: High level operation of a cloud-based volumetric streaming system. Source [12]

A remote rendering system takes complex graphics computational and rendering tasks and delivers the result over a network to a less-powerful client device. Fig. 4 shows an overview of a cloud-based volumetric streaming system proposed by *Gül et al.*, 2020.

This thesis evaluates RNN Models and the trained model with the best performance is intended to be used as a part of prediction system of a remote system. A detailed software architecture of a system is described in [13]. In this system a compressed volumetric video is stored as a single MP4 file containing video and mesh tracks [12]. The game engine (Unity) runs at a server and decodes the compressed mesh and texture data. The tracking system of the HMD measures the user position and orientation and sends over a network to the cloud server. Based on the actual user's spatial attributes, cloud server calculates the future position and orientation and renders the corresponding view from the volumetric content. The rendered view is encoded as a video stream and sent to the client over the network. The time period between the head movement and display of the decoded video frame to the viewer is the M2P latency of the system which can be compensated by applying prediction algorithm [12].

2.5 Challenges of head motion prediction

All modern HMD has a position tracker, a device or a system of devices, that is responsible for reporting the position and orientation of HMD to the computational unit that generates the virtual environment images displayed in the HMD. These images represent the view that a wearer of HMD would have seen if user was present in VR at the position and orientation reported by position tracker [6]. While the task of position tracking is performed by HMD hardware, the task of position prediction of the movement of human body in the virtual reality remains challenging, and it is still complicate to achieve high-precision estimation.

Understanding how users interact and behave in AR or VR is important when working with HMD's sensors. The experiment done by *Zerman et al.*, *2021* found out that users preferred to stay in front of static point clouds and 1-1.5 meter away from them and spent more time looking at the faces of human models [26]. The navigation trajectories of users within a 6-Degrees-of-Freedom (DoF) should be additionally investigated since an extra level of interaction between user and content is available in 6-DoF environment. The user has now the freedom to change the viewing direction (rotating and translating the head as in 3DoF) but also to change position inside the VR environment [20]. In a 6-DoF environment, users are not being positioned at the centre of the spherical content any longer and the distance changes over time when user moves due to the added degrees of freedom. Thus viewport's center position is not sufficient for tracking the trajectories, the additional metrics such the spatial coordinates and user orientation are needed to obtain the point of origin.

Following [20] *Rossi et al, 2021* authored same year another work [21] dedicated 6-DoF metrics. Researchers experimented with different metrics to perform clustering in order to detect group of users with similar behavior in VR. The most promising metric seems to be based on the user position on the virtual floor. Metrics based only on viewport center, as it was used in 3-DoF, and distance failed in detecting the group of similar users [21]. For the trajectory detection best performed a metrics based on user position, orientation on the virtual floor and distance [21]. The analysis above leads to the conclusions that prediction of the user's position and orientation on 6-DoF requires new metrics and approaches to be investigated and implemented.

2.6 Related works

This section presents the overview of previous research in the field of the prediction of user position and focuses on time series methods using different RNN architectures such as LSTM and GRU.

2.6.1 Traditional prediction algorithms

A lot of previous approaches uses basic processing of head movement history to predict the future movement, such as simple average, linear regression, and weighted linear regression [18]. Work of *Corbillon et al.*, *2017* determines the distance to the center of viewpoint with simple average and calculates the region that receives from server the video data with a better quality than the remaining of part the video [9]. The work of *Duanmu et al.*, *2017* proposes prediction of the viewing direction for segment n + 1 through linear regression based on the past view segments [11]. Approach of *Xie et al.*, *2017* uses user's orientation in Euler angle and leverage Linear Regression model to apply Least Square Method and to calculate the trends of head movements [25]. The work [22] proposes to receive from a server only the data of covered by user's viewport. At each point of time, the client requests data which would be played in the future. *Taghavi et al.*, *2017* use Weighted Linear Regression to predict the next viewport based on window with the latest viewport samples. Researchers mentioned that a client can continue playback of at least a low-quality version of the video when the download time of next video portion varies [22].

Analysis done by *Qian et al., 2016* indicates that at least in the short term, viewers' head movement can be predicted with accuracy > 90% by even using simple methods such as linear regression [19]. The different approaches were compared such as computing the average value, using the linear regression with all samples and with weighted linear regression with recent samples. With weighted linear regression the average prediction accuracy for short-term values was higher than 90% across all users. However in the longer term it is more difficult to achieve the good result and the average accuracy drops to about 70% [19].

A method to apply saliency algorithms to VR video viewings was presented by *Aladagli et al., 2017* in work [1]. Cross-correlation analysis used for measuring the relationship between the predicted fixation sequences and the recorded head movements [1]. Based on works mentioned above, *Nguyen et al., 2018* proposed panoramic saliency algorithm in order to learn the dependence of head tracking logs and saliency maps from the past video frames.

2.6.2 Recurrent Neuronal Networks

As was explained above, traditional prediction algorithms can not be used straightforward on a new media content in 6-DoF VR Applications. The user position and rotation data is coming as time series with a sequential order that is crucial to be followed in order to predict correctly the next future step for a look-ahead time. A sequence of inputs can be processed with Artificial Neural Network (ANN) called Recurrent Neural Network (RNN). Moreover, RNN can processes input with remembering its state while processing the next sequence of inputs. It is known that standard RNN has difficulties to learn long-term dependencies with gradient descent [5]. Though RNN can robustly store information, it yields a problem of vanishing gradient that make leaning difficult [5]. In the last decade, RNN algorithms have been adopted for motion prediction of 3D sequences with long-term dependencies taken into account. For example, the work of *Crivellari et al., 2020* targets traces of tourists in a foreign country and tries to predict the motion of people in the environment they never seen before. LSTM-based model is used thus for analyzing the tourists' mobility patterns [10].

The authors *Aykut et al., 2018* claims their research to be first work that applies deep learning for head motion prediction. The authors experimentally confirmed that Feed-forward Neural Network (FFN) indeed had difficulties to learn for different delays. The decision to use LSTM-based architectures *Aykut et al., 2018* reasoned with feedback loop and ability to establish a way of memory and share weights over time [3]. Conducted by researchers experiments showed that the LSTM-based architecture leads to a significant improvement of the MAE and RMSE metrics [3]. The LSTM-based methods were compared also to widely used approaches like the Linear Regression and a Kalman Filter based optimal state estimate. Thus *Aykut et al., 2018* demonstrated a substantial improvement of the deep predictor for latencies in the range of 0.1–0.9 s [3].

Next year *Aykut et al., 2019* experimented in their work [4] with GRU model that belongs to the group of recurrent neural networks (RNN). Authors considered GRU usage because it is computationally more efficient, as it has fewer parameters and states than LSTM units [4]. Proposed in the research GRU-based network is able to improve the MAE and RMSE compared to mentioned above LSTM model, especially for larger delays [4].

Researchers *Karim et al.*, 2018 developed long short term memory fully convolutional network (LSTM-FCN). In the proposed models, LSTM block is augmented by an fully convolutional block [15] identical to the convolution block in the CNN architecture proposed by *Wang et al.*, 2018 in their work [24]. *Karim et al.*, 2018 tried to reduce

the rapid model's overfitting by transformation of input to have N variables with a single time step [15].

In work of *Chang et al., 2020* used in addition to standard LSTM networks also bidirectional LSTM (Bi-LSTM) networks, which is stacked two LSTM networks in forward and backward directions. Standard LSTM networks can only consider the past information and Bi-LSTM networks can capture both past and future information by two opposite temporal order in hidden layers [7]. Experimentally, authors found that the basic LSTM performs the best comparing to Bi-LSTM and Temporal Convolutional Network [7].

GRU Model and additionally a bidirectional LSTM (Bi-LSTM) network are used for action recognition based on sensor signals from HMD in work [16]. Similar as in work [7] the LSTM model performed better compared to Bi-LSTM and a GRU outperformed both models. Authors said that the possible reason could be the short-term correlation of human actions in their dataset and that Bi-LSTM with its complicated model structure is rather suitable for long-term actions [16]. The experiments provided in these works clearly indicate that GRU unit can outperform LSTM unit. However, researches suggested that the choice of the RNN model can depend heavily on the dataset and corresponding task [8].

Implementation 3

This chapter presents the steps of development and implementation of the proposed approach. The Unity Application for HoloLens was deployed on HMD and a raw data with measures and dimension columns was obtained. This data than was analysed and preprocessed to ensure that the captured data can be used in corresponding machine learning models. The model architecture was implemented and experimentally improved during training and evaluation steps.

3.1 6-DoF Dataset

This section describes how the dataset was obtained, analysed and presents the visualization of user's head position and rotation. Almost all machine learning approaches require not only row data collection but also data exploration and preprocessing steps to be done before training begins.

3.1.1 Data collection from HMD

The real 6-DoF dataset must be used as training data from which the model can learn the spacial and time dependences. In this master thesis HoloLens 2, the second iteration of Microsoft's head-mounted mixed reality device, was used for data collection. The user position and orientation were obtained with Unity application developed for this purpose. Main Camera in Unity is automatically configured to track head movements. More details about Unity application can be found in section 3.2.5. Using the Main Camera, a user position (x, y, z) and orientation in quaternion (qx, qy, qz, qw) were logged in a csv-file. Quaternions obtained from HMD will be used to define a rotation by four numbers. Quaternions representations are very convenient for operations such as composition or rotations and coordinate transformation [23]. For these reasons quaternions are chosen for the representation of user head's rotation in three dimensions. Comparing to dataset in [12], the additional parameters were recorded from the Main Camera in order to add more information during training processes. Thus the world-space speed of the camera in meters per second was recorded. Unity velocity has the speed in (x, y, z) defining the direction. The obtained 6-DoF dataset has 10 features used in training process: position (x, y, z), orientation (qx, qy, qz, qw) and velocity (x, y, z).

The datasets were recorded in the laboratory space. HMD was presented to users and the basic functions were explained. During data recording, users freely walked wearing HMD in laboratory space. The Unity application, running on HMD, not only recorded the mentioned before parameters but also had a volumetric animated object placed 3 meters ahead of the user in the Mixed Reality environment. No personal data was recorded during these sessions and all traces are obtained anonymously. Thus, after an Unity application was launched, user could immediately see the animated object. The several traces were recorded at least for 10 minutes each. It allows to have enough data after splitting the dataset into training, test and validation partitions. Table 3.1 show the first 20 rows from raw dataset obtained from HoloLens 2 and used in training. Although dataset has 10 columns, the table 3.1 presents only timestamp and position (x, y, z) columns.

timestamp	X	У	Z
2.649431	0.004954389	0.003402365	0.01010712
2.66943	0.00459053	0.003120769	0.01130438
2.698009	0.003960807	0.002990472	0.01276976
2.719285	0.003730714	0.003037783	0.01305151
2.746641	0.003252693	0.003489003	0.01368421
2.764094	0.003153284	0.003518121	0.01400959
2.780033	0.003087142	0.003409061	0.01435899
2.802086	0.003021815	0.00314023	0.01473305
2.815575	0.002789935	0.003551113	0.01506916
2.832602	0.002527435	0.003542757	0.01534094
2.848514	0.002212256	0.003605011	0.01565307
2.863769	0.001921757	0.003369405	0.01590317
2.879648	0.001668522	0.00348538	0.01607716
2.89686	0.001501704	0.003624826	0.01627397
2.913541	0.001487849	0.00359472	0.01643924
2.930006	0.001501501	0.003769569	0.01669565
2.948201	0.001617525	0.004252479	0.01697758
2.964302	0.001755987	0.004224311	0.01721937
2.97978	0.001838901	0.004487753	0.01747578
2.997117	0.002005509	0.005007531	0.01782864

Table 3.1: Raw data from HoloLens 2.

The first column in dataset is *timestamp*. It is obviously, that timestamp appears in row dataset not linearly and comes with different pauses. Even the high-cost HMD, like used in this research HoloLens 2, is sometimes unstable in frame rate during collecting data. Due to signal processing and propagation delays, distance in time between two consecutive samples was either increased or decreased. In the Unity Application, the frame rate is 60 Hz which means that data is expected to be collected every 0.016(6) seconds. Data on some expected timestamps seemed to be unavailable in HMS for recording. Between two sequences with bigger time gap, some records may be considered to be missed. To deal with above situation, the preprocessing steps must be done. They are described in a section 3.1.3 below.

3.1.2 Data Exploration

The next step after looking at raw data, gathered for machine learning, is a data exploration. The goal of this initial step is, firstly, a data visualization for understanding of dataset characterizations. As already stated in section 3.1.1, a user position (x,y,z), orientation in quaternion (qx,qy,qz,qw) and the world-space speed of the camera for each direction in (x,y,z) was obtained from Main Camera in Unity application launched on HMD.

Figure 5: User position plots from obtained datasets (a, b, c).

First, let's start with the analysis of user position data. The figures 5a, 5b, 5c show dataset named 1556, 1623 and 1703 correspondently. As a matter of fact, plotted dataset were already interpolated on the preprocessing step. Although interpolation was done before data exploration, the details about interpolation can be found in section 3.1.3. The names of datasets means only a timestamp in form HH:MM when a dataset was obtained from HMD in laboratory space. Thus the unique name of csv-files on HMD system was guaranteed for the day of experiment. In this thesis the names will be used to identify each of all three datasets. Fig. 5 shows only 3 chosen datasets from those obtained in laboratory space. All datasets indicates the

same behaviour of VR users with HMD looking on the VV projected in VR space as was found out in works [12, 26]. The MAE and RMSE metric results are tend to be similar for every dataset during training and testing.

All traces were recorded over 10 minutes long on average 12 minutes. All traces were then shortened to a precise length of 10 minutes to ensure equal data length for the purpose of visualization and analysis. The observations based on the sample traces can be made similar as it done by *Gül et al., 2020* in their work [12]. The user rarely moves along the y-axis. The y-axis shows the vertical movement that the users could make if they sit down or stand up. Based on the data obtained, users walked around a volumetric object in virtual reality and did not make particularly noticeable and prolonged attempts to examine the object at the lower point of the projection on a laboratory's floor since vertical movement requires more effort to crouch down and stand up. The laboratory space where the dataset was obtained was not cluttered with furniture thus users could walk around the volumetric object projected into their HMD. The figure 6 shows an enlarged y-axis in the range from 400ms to 500ms and thus proves there is no significant change in the vertical position of the user.

Figure 6: Changes in the user's position along the Y axis in the range from 400ms to 500ms.

Spatial coordinate systems on Windows (HoloLens runs on the Windows Holographic OS) must be right-handed according to the Microsoft documentation. However Unity documentation points that Unity uses a left-handed convention for its coordinate system and experiments performed in Unity with HoloLens 2 during implementation step proved that spacial coordinates in dataset recorded from left-handed system. In both kinds of coordinate systems, the positive X-axis points to the right and the positive Y-axis points up (aligned to gravity). In recorded dataset positive Z-axis points away from a user. Spatial coordinate systems of HoloLens expresses coordinate values in meters. The mean of position for axes are X = -0.71, Y = 0.01, Z = 1.58for dataset 1556. This statistical indicator helps to judge the movement pattern in VR environment projected inside the particular laboratory space. The user's movement along X axis are shifted 0,7 m to the left side in the direction of negative axis. This can be explained by the position of origin of the coordinates when the Unity application was launched. If the application was not launched strictly in the center of the room, but rather closer to the window or wall on one side of the room, then the user had less room space from the side of the window or wall. Y-axis shows no significant change in the movement and thus rather reflects the difference of the HMD position on the head when user made steps walking in the room. Mean of Y-axis of dataset 1556 shows in average user was about 1,58 m back from the origin of coordinate system. The VV object of a real animated human was placed 3 meters ahead of the user. It seem that users required to step back 1-2 meters to be able to see the whole height of placed VV object respecting the limited Field of view (FoV) of HoloLens 2. Microsoft website 1 states the headset's aspect ratio is 3:2, horizontal Field of view (FoV) of 43° and a vertical of 29°. Indeed the standard deviation for axes X=3.23, Z=3.92 shows that user circled the hologram (VV of a human) with a average distance 3-4 meters looking on the volumetric object from all sides. For Y-axis $Y_{std}=0.015$ corresponds to a distance deviation from the measured mean when user was walking in the room without significant movement up (like jumping) or down (sitting down on the floor).

3.1.3 Data preprocessing

As was mentioned in section 3.1.1, the raw sensor data obtained from the HoloLens was unevenly sampled at 60 Hz and had different temporal distances between consecutive samples. The data preprocessing step transforms the data into a format that is more easily and effectively can be processed and visualised. Table 3.2 shows 20 first rows from the resulting dataset after upsampling the positional data with linear interpolation.

timestamp	X	У	Z
0.0	0.004954389	0.003402365	0.01010712
5000000.0	0.0048331026667	0.003308667	0.0105062067
10000000.0	0.00471181633333	0.003214633332	0.01090523
15000000.0	0.00459053	0.003120769	0.01130438
20000000.0	0.004485576166	0.00309903333	0.0115486078
25000000.0	0.00438062233	0.00307733667	0.011792899
30000000.0	0.0042756685	0.0030556205	0.01203707
35000000.0	0.004170714667	0.0030339033	0.0122813
40000000.0	0.00406576084	0.00301218867	0.01252553
45000000.0	0.003960807	0.002990472	0.01276976
50000000.0	0.00390328375	0.00300229975	0.0128401975
55000000.0	0.0038457605	0.0030141275	0.012910635
60000000.0	0.00378823725	0.00302595525	0.0129810725
65000000.0	0.003730714	0.003037783	0.01305151
70000000.0	0.003651043834	0.00311298635	0.01315696
75000000.0	0.003571373667	0.00318818967	0.01326241
80000000.0	0.003491703003	0.003263393	0.01336786
85000000.0	0.003412033332	0.0033385963	0.01347331
90000000.0	0.003332363167	0.003413799667	0.01357876
95000000.0	0.003252693	0.003489003	0.01368421

Table 3.2: Interpolated positional data from HoloLens 2.

¹https://www.microsoft.com/en-us/hololens/hardware

Gül et al., 2020 obtained the similar raw dataset from same HMD and interpolated it to obtain temporally equidistant samples. Same as it was done in work [12], the position and velocity data were upsampled using linear interpolation. Spherical linear interpolation was used to interpolate between rotations represented by quaternions and table 3.3 lists 20 first rows from the resulting dataset after upsampling the rotational data.

qx	qy	qz	qw
0.05225104	-0.0092471	-0.01470939	0.998482825
0.052829134	-0.0094018	-0.01476541	0.9984501
0.053407194	-0.0095559	-0.0148214108	0.99841708
0.053985240	-0.00971031	-0.0148774088	0.9983836
0.054563231	-0.0098646	-0.0149333515	0.99834990
0.054967034	-0.0099280	-0.0147404755	0.99832999
0.055370826	-0.0099914	-0.014547596	0.998309876
0.055774607	-0.0100548	-0.0143547143	0.998289554
0.056178376	-0.0101182	-0.0141618293	0.9982690
0.0565821344	0.0101816	-0.01396894	0.998248298
0.0568467445	-0.0102414	-0.01378002	0.99823527
0.0567612581	-0.01029217	-0.01360108	0.998242075
0.0566757694	-0.01034289	-0.013422148	0.998248830
0.0565902782	-0.01039361	-0.013243212	0.9982555436
0.0565037268	-0.01044992	-0.0130706110	0.998262133
0.0563820024	-0.010691806	-0.01310865	0.998265955
0.0562602738	-0.010933688	-0.01314669	0.998269703
0.0561385409	-0.011175569	-0.013184732	0.9982733762
0.0560168039	-0.011417450	-0.013222770	0.99827697

Table 3.3: Interpolated rotational data from HoloLens 2.

Figure 7: Interpolated 6-DoF dataset's user position and orientation in quaternions.

After the interpolated dataset was plotted as figure 7, the important observations based on the sample trace could be done. While the user position data plots look appropriate for machine learning algorithms, the graph with orientation shows data that is not the perfect case for usage with machine learning technologies and could decrease the prediction rate. The real part qw and the component qy of quaternion have obviously discontinuous (sharp change of sign) making it hard for a predictor to

learn. A orientation on quaternions is used in training, thus this data requires a few additionally preprocessing steps. Usually, when doing calculation with quaternions, quaternions must be normalized to a unit length in order to represent valid rotations [23]. The normalized quaternion can be calculated using formula:

$$U_g = \frac{q}{||q||} = \frac{w}{||q||} + i \cdot \frac{x}{||q||} + j \cdot \frac{y}{||q||} + k \cdot \frac{z}{||q||}$$
(3.1)

where ||q|| is a magnitude and can be found with formula:

$$||q|| = \sqrt{w^2 + x^2 + y^2 + z^2}$$
 (3.2)

During experiments with quaternions in dataset obtained from HoloLens 2, was detected that quaternion magnitudes ||q|| in HoloLens dataset are equal to 1. Thus data came from HMD already normalized, so that a quaternion in dataset kept the orientation as it was during user's movement with a magnitude equal to 1.0.

Next, quaternions between neighboring points in obtained dataset represent the very similar orientation made by user wearing HMD step by step. The orientation plot on figure 8 has discontinuities that can be seen on qw line. As a consequence of the discontinuity (sharp change of line from negative to positive area with the same amplitude) the two neighboring quaternions with similar rotation have significant 4D vector space between them. It makes prediction worse what can be proved by RMSE and MSE rotation metrics. Flipping the sign will not affect the rotation, but it will ensure that there are no large jumps in 4D vector space when the rotation difference in rotation space (SO(3)) is small. If negative component of quaternions will be flipped into positive then the dataset, representing same rotation without creating an artificial discontinuity in the space, will be available for model training.

Figure 8: Quaternions from 6-DoF dataset's flipped if their real part is negative.

The figure 9 represents quaternions of the original interpolated dataset on the upper part of the plot and the normalized flipped quaternions on the lower part of the plot. The quaternion's components were flipped only if the if their real part became negative. Different to figure 8 the limit of y-axis is set to [-1, 1] on figure 9 so that

the result of inverting of quaternion is easy co compare to original data. Figure 8 shows plotted data with length of 20 seconds in range 162 - 182 s from both datasets.

Figure 9: Enlarged quaternion plot with breaks omitted.

Thus the two representations of quaternions were blended into one data set, omitting to discontinuities in the time series as can be seen presented on Figure 8. Indeed, the RMSE and MSE rotation metrics were improved when model was trained with dataset with quaternions without sharp sign changes. More information can be found in section 4.4.

3.2 Model

The section describes the inputs and architecture of evaluated LSTM, GRU and Bidirectional GRU models. A model itself is a mathematical representation that produces expected output based on a given input.

3.2.1 Inputs and outputs

The correct chosen model can discover and learn the patterns in the input dataset while being trained in order to predict a new data after training. In the sections 3.1.2 and 3.1.3 the obtaining and structure of 6-DoF is covered. After data preprocessing step, the interpolated dataset with flipped negative quaternion was used for model training. The dataset itself can not be used with model directly and a sequence data must be prepared to feed as an input into an RNN model. The 6-DoF dataset is a two-dimensional array. The first dimension of 6-DoF dataset represents the number of timesteps of the recorded dataset. The second dimension represents the number of features of input sequence. During data collection a 6-DoF dataset with 10 features was created. Recorded in dataset features are position (x, y, z), orientation (qx, qy, qz, qw) and velocity (x, y, z) data.

However PyTorch's LSTM and GRU models expect all of their inputs to be 3D tensors. Thus 2D data must be converted into 3D data. The meaning of the axes of these tensors is important. The first axis by default is the sequence itself, the second indexes instances in the batches, and the third indexes features of the input. By specifying PyTorch's parameter batchfirst = true the input and output tensors were provided as (batch, seq, feature) instead of (seq, batch, feature). This change does not apply to hidden or cell states and thus tensor containing the initial hidden for each element in the batch must be initialized as (D*layers, batch, hidden). D is 1 for LSTM and GRU Models and equal to 2 for their bidirectional variant.

Usually in machine learning dataset will be split randomly, as there's no dependence from one observation to the other. With time series representing user position and rotation the is not a case and data have to split with respect to time dependencies. The 6-DoF contains a positional data without any seasonal characteristic and there is no obvious way to split data in groups. It is decided to split dataset into three datasets: training, validation and test dataset. The split ratio is 60:20:20 for each corresponding dataset. Thus first 60% of data used for training, next 20% for validation and the rest 20% for testing. No dimensional shuffle was applied to keep the original time dependencies. During training loop on each epoch model trained on training dataset in train() mode that allows the learning process with updating

of model weights. In the end of each epoch model was explicitly set into evaluation mode by calling the eval() function mode to turn off gradients computation and validated on the validation dataset. When model repeatedly trained for 500 epochs, model predicted a new data on never seen before test dataset.

The last step to prepare 6-DoF dataset to be used as model input is using time steps as features. Having a historical data of user position and orientation, the next value, X(t+n) must be predicted by a model from the previous n observations Xt, X+1, ..., and X(t+n-1). Since the future values that must be predicted already recorded in the dataset, a sliding-window approach can use prior time steps to predict the next time step and thus turn a time series dataset into a supervised learning problem. With a simple for-loop lagged observations can be created from input by shifting the values in a column by n times and removing the first n columns. The original dataset was interpolated using linear interpolation for position data and SLERP is used for quaternions. Thus, interpolated dataset is an evenly-sampled dataset with a sampling rate of 200 Hz (5 ms). The LAT of 100 ms is used for evaluation. Thus 20 future values correspond the LAT=100ms must be predicted by LSTM and compared with real data to evaluate the prediction.

Finally, the spit datasets with added sliding window were exported in standard binary npy-files format of NumPy. The format stores all of the shape and dtype information necessary to reconstruct the array correctly even on another machine with a different architecture. Thus the spitting of dataset is not required every time when model trains with different hyperparametes on GPU cluster.

3.2.2 LSTM Model

Recurrent neural networks have recently shown promising results in many machine learning tasks, especially when input and/or output are of variable length and are coming as time series with a sequential order. Unfortunately, the known problem of RNN that was observed many years ago by e.g., *Bengio et al.*, 1994 that it is difficult to train RNNs to capture long-term dependencies because the gradients tend to either vanish (most of the time) or explode (rarely, but with severe effects) [5]. New approaches are needed to be implemented to reduce the negative impacts of this issue. Since traditional recurrent unit overwrites its content at each time-step, a LSTM unit is able to decide whether to keep the existing memory via the introduced gates. The Long Short-Term Memory (LSTM) has a number of minor modifications [8] since it was initially proposed in work [14]. Analysis done by *Qian et al.*, 2016 indicates that in the short term users' head movement can be predicted with accuracy > 90% by even using simple methods such as linear regression [19]. However in the longer term it is more difficult to achieve the good result and the average accuracy

drops to about 70% [19]. Thus LSTM model was chosen to evaluate with the 6-DoF dataset based on long term dependencies of the data.

Since LSTM is a special kind of RNN, the RNN architecture will be briefly introduced first. RNN block consist of single computation layer with tanh activation function that is used to help regulate the values flowing through the network. The tanh function squishes values to always be between -1 and 1. RNN has h_t function of the previous cell state h_{t-1} and current input X_t . The architecture of LSTM is complexer and consists of several computational blocks that control information flow of information through the cell. The key building block behind LSTM is a structure known as gates. They allow LSTM to avoid the weight conflict when making decision which information from the past and current timestamp is important for correct mapping inputs to outputs. In other words, network can decide how to use gates when it is needed to keep or override the information in memory cell or access the current memory cell [14].

Figure 10: Long Short-Term Memory.

The LSTM architecture is illustrated² on Fig. 10. Using first gate f_t model decides which information should be omitted from the cell in that particular time step. The sigmoid function uses the previous state (ht-1) along with the current input xt and computes the cell state using formula:

$$f_t = \sigma(W_{if}x_t + b_{if} + W_{hf}h_{t-1} + b_{hf})$$
(3.3)

where f_t is the forger gate, h_t is the hidden state at time t, h_{t-1} is the hidden state of the layer at time t-1 or the initial hidden state at time 0, σ is the sigmoid function. All LSTM gates have sigmoid activations that is similar to the tanh

²Source: Prof. Dr. Tim Landgraf, Lecture 13: Recurrent Neural Networks, WS 20/21: Machine Learning

activation but squishes values between 0 and 1. This function is useful for forgetting the information since any number getting multiplied by 0 is 0 and thus disappears from cell state.

With i_t cell state c_t will be updated. First, the previous hidden state and current input are passed into a sigmoid function on input gate:

$$i_t = \sigma(W_{ij}x_t + b_{ij} + W_{hi}h_{t-1} + b_{hi})$$
(3.4)

The transformed values between 0 and 1 meaning 0 means not important, and 1 means important will be multiplied on cell gate \tilde{c}_t with the tanh output of the hidden state and current input:

$$\tilde{c}_t = tahn(W_{iq}x_t + b_{iq} + W_{hq}h_{t-1} + b_{hq})$$
(3.5)

New cell state first gets pointwise multiplied by the forget vector and if these values near 0 they will be dropped from the cell state. The result from the input gate is pointwise added und thus new cell state is created with values that the neural network finds relevant.

$$c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t \tag{3.6}$$

The output gate is the last in LSTM calculations and decides what the next hidden state should be. Hidden state is also used to make a prediction because it contains information of previous inputs and thus helps to learn long term dependencies. The sigmoid function gets previous hidden state and the current input and tanh function gets the newly calculated cell state. And similar to previous step tanh output with the sigmoid output are multiplied to decide what information the hidden state should carry. The new cell state and the new hidden is then carried over to the next time step.

$$o_t = \sigma(W_{io}x_t + b_{io} + W_{ho}h_{t-1} + b_{ho})$$
(3.7)

$$h_t = o_t \odot tahn(c_t) \tag{3.8}$$

Model implementation, training loop and evaluation are done in Python using PyTorch. Model has input [batch, sequence, features] with sequence equal to 20 last values what corresponds to 100 ms of historical data and 10 features that contain 3 positional, 4 rotation and 3 velocity columns. The batch size was set to 2^7 . The hidden dimension set experimentally after parameters grid search on GPU Cluster to be equal 512. Adam optimization algorithm is used, the maximum number of epochs was set to 500, early stopping technique (patience = 7, min. delta = 0,05) was used to avoid overfitting. Additionally, the learning rate was decreased by 50% from initial value of 0.0001 every 30 epochs. The learning rate is a parameter that

determines how much an updating step influences the current value of the weights. Adjustable learning rate was proposed in works [3, 4] and implementing this option had improved prediction and allowed model to learn patterns correctly without overfitting. Weight decay of Adam optimiser experimentally is set to a small value of 1e-12. Thus this additional term in the weight update rule less causes the weights to exponentially decay to zero, large weights were less penalizes and model could successfully learn the long term dependencies and thus constantly decrease both training loss and validation loss and stabilize them at a specific point.

The best performance was achieved without additional activation functions with simple one-layered architecture represented below:

```
LSTMModel1(
(lstm): LSTM(10, 512, batch_first=True)
(fc): Linear(in_features=512, out_features=7, bias=True)
______
Layer (type:depth-idx)
                  Output Shape
                               Param #
______
                   [128, 20, 7]
LSTMModel1
    --- LSTM: 1-1
                  [128, 20, 512] 1,073,152
                  [128, 20, 7]
    --- Linear: 1-2
______
Total params: 1,076,743
Trainable params: 1,076,743
Non-trainable params: 0
______
```

Listing 3.1: One-layered LSTM with sliding window

Since only position and rotation data of similar range is used in 6-DoF dataset, no scaler for the features is applied. Experiments showed that normalization of values between [0..1] and between [-1..1] results to higher MSE and RMSE. Already preprocessed interpolated datasets with flipped negative quaternions is loaded in with respect to sequential order as training, validation and test dataset from npy-files. Additional extended LSTM architectures were implemented and tried with HoloLens 2 6-DoF dataset. For example, the non-linear activation functions ReLU and Mish were tried in order to get more sensitivity to the activation sum input and avoid easy saturation. Thus the nodes in model should be only deactivated if the output of is less than 0. Model variant with ReLU experimentally resulted to produce higher MSE and RMSE compared to LSTM1 and therefore was rejected for a final deployment. Since LSTM2 Model has the similar architecture as following afterwards LSTM3, it is not listed separately

LSTM3 uses a new activation function Mish that was presented in machine learning scene in 2019 in work [17] and is a self-regularized non-monotonic activation function which can be mathematically defined as f(x) = xtanh(softplus(x)). Mish

is a smooth, continuous activation function and allows to have better gradient flow compared to ReLU that tends to have a lot of sharp transitions [17]. The LSTM3 model indeed insignificantly improved MSE and RMSE mertics but requires hidden dimension to be increased to 2048 nodes and batch size changed to 2^{10} . Weight decay of Adam optimiser is set to 3e-14 with LSTM3 model.

```
LSTMModel3(
(lstm): LSTM(10, 512, batch_first=True)
(mish_1): Mish()
(fc_1): Linear(in_features=512, out_features=1024, bias=True)
(mish_2): Mish()
(fc_2): Linear(in_features=1024, out_features=7, bias=True)
______
Layer (type:depth-idx)
                            Output Shape
  Param #
______
                   [128, 20, 7]
LSTMModel2
     --- LSTM: 1-1
                   [128, 20, 512]
                                      1,073,152
     --- Mish: 1-2
                   [128, 20, 512]
     --- Linear: 1-3
                   [128, 20, 1024]
                                      525,312
                   [128, 20, 1024]
     --- Mish: 1-4
                   [128, 20, 7]
     --- Linear: 1-5
                                      7,175
______
Total params: 1,605,639
Trainable params: 1,605,639
Non-trainable params: 0
______
```

Listing 3.2: LSTM3 with Mish activation function

LSTM4 Model is a three-layered stacked LSTM with introduced additional dropout added after all but last recurrent layer and Mish activation function. This design decision is made in order to try whether adding more components to the neural network could mean the improvement upon simpler model on 6-DoF dataset. By adding more LSTM layers the model parameters that have to be trained were increased in 5 times from 1,605,639 to 7,901,191 trainable parameters. When the model parameters are getting large in count, the model gets more complex, having hard time fitting on the training instances as it needs to optimize parameters in a way that can optimally fit the training instances. The time need for training increased noticeable even on GPU Cluster. Finally, LSTM4 resulted in significant higher MSE and RMSE metrics and thus this architecture is rejected.

This models LSTM1 and LSTM3 are considered to be the best evaluated LSTM models that can predict the future data based on past 20 values (100 ms) in 6-DoF VR environment using sensor data from HMD for LAT of 100 ms. Although sufficient results for prediction and low MSE and RMSE metrics are already obtained with

LSTM model, the GRU and bidirectional models will be implemented in order to evaluate their performance and potentially to find the better model architecture.

3.2.3 GRU Model

Another approach called a gated recurrent unit (GRU) can adaptively capture dependencies of different time scales without having a separate memory cells [8]. It is similar to an LSTM, but only has two gates - a reset gate and an update gate. Although architecture does not provide an output gate, with fewer parameters it can generally easier and faster be trained than LSTM. GRU Model can catch the long-term dependencies in the data obtained from HMD that are otherwise are hidden by the effect of short-term dependencies from the standard RNN models. This chapter decribes GRU model that implemented to predict future values with 6-DoF dataset obtained from HoloLens 2.

Figure 11: Gated Recurrent Unit.

The GRU architecture is illustrated³ on Fig. 11. GRU avoids the vanishing gradient problem of a standard RNN with only two gates that decide what information should be passed to the final output. The update gate plugs x_t into the network unit and multiplied with its own weight W_{iz} . The same multiplication is done with previous hidden state $h_{i}(t-1)$ that has its own weight W_{hz} . Both results are added together

³Source: Prof. Dr. Tim Landgraf, Lecture 13: Recurrent Neural Networks, WS 20/21: Machine Learning

and a sigmoid activation function is applied to squash the result between 0 and 1. The mathematical expression of this calculation is as following:

$$z_t = \sigma(W_{iz}x_t + b_{iz} + W_{hz}h_{t-1} + b_{hz})$$
(3.9)

where z_t is an update gate, h_t is the hidden state at time t, h_{t-1} is the hidden state of the layer at time t-1 or the initial hidden state at time 0, σ is the sigmoid function. With these matrix multiplications model can determine how much of the past information from previous time steps needs to be passed to the next to predict future values.

The reset gates does what its name means - gate can reset the state of the model and thus model decides how much of the past information to forget. It is an useful option when context changes in the historical data and previous values are not more relevant to produce future values. With powerful update gate the model can decide to copy all the information from the past and eliminate the risk of vanishing gradient. The formula of the reset gate is:

$$r_t = \sigma(W_{ir}x_t + b_{ir} + W_{hr}h_{t-1} + b_{hr})$$
(3.10)

Both gates will affect the final output. A new memory content will use the reset gate to store the relevant information from the past. It is calculated as follows:

$$n_t = tahn(W_{in}x_t + b_{in} + r_t * W_{hn}h_{t-1} + b_{hn})$$
(3.11)

As the last step, the network calculates vector which holds information for the current unit and passes h_t to the network. The formula shows that update gates is used to determine what information from previous steps will be passed into the memory. Additionally, calculated recently new memory gate n_t controls the amount from current data to be added into long memory. That is done as follows:

$$h_t = (1 - z_t) * n_t + z_t * h_{t-1}$$
(3.12)

GRU model implementation, training loop and evaluation are done similar to LSTM in Python using PyTorch. Model has same input [batch, sequence, features] with sequence equal to 20 last values and 10 features (3 positional, 4 rotation and 3 velocity columns). The batch size was increased to 2^9 . The hidden dimension is 512 nodes. Adam optimization algorithm is used, the learning rate was decreased by 60% from initial value of 0.0001 every 50 epochs. Thus parameters of adjustable learning rate are modified. Weight decay of Adam optimiser set to a same value of 1e-12.

The maximum number of epochs was set to 500, early stopping technique with same patience and delta as in LSTM was used to avoid overfitting. Model requires less epochs to learn and can predict better than LSTM. Although the error decreases very slowly after 150-200 epochs, the model converged to a smallest achievable error after 500 epochs. The model is overtrained with 1000 epochs if trained without early stopping technique.

3.2.4 Bidirectional GRU Model

3.2.5 Development

This section presents the developments of the Unity application for obtaining the dataset and development of LSTM and GRU models with Python and PyTorch.

Unity application

An application was developed in Unity with the Mixed Reality Toolkit and deployed on HoloLens 2. The goal of the application is to obtain the user position and orientation during the time a user wears a HMD. As this research aims to find an approach to reduce the M2P latency during rendering and delivering the volumetric content to end-user device, the volumetric animated object was placed three meters ahead of the user in Unity application. Users wearing HMD thus were asked to look on animated volumetric object and to move freely inside the laboratory space. In Unity, the Main Camera is always the primary stereo rendering component attached to HMD and it is rendering everything the user sees 4 . The starting position of the user is set to (0,0,0) during the application launch and the Main Camera tracks movement of the user's head. Although HoloLens allows to build a world-scale application, the room-scale experience was selected for spatial coordinate system. This lets users to walk around within the 10-meter boundary what is quite enough for user's movements inside the laboratory space and simultaneously watching the volumetric video object.

User position and rotation data were logged in csv-file. This raw data has been converted into datasets on the preprocessing step and thus original interpolated dataset, the transformed with flipped negative quaternions and several normalised datasets were used in experiments during model development and hyperparameters search.

⁴https://docs.microsoft.com/en-us/windows/mixed-reality/develop/unity/camera-in-unity

Training and evaluation

The LSTM and GRU models development and implementation are done using Python and PyTorch.

Hyperparameter search

The hyperparameters search is done using VCA GPU cluster which is installed with the SLURM resource manager/scheduler and Singularity container is used to containerize the application.

Evaluation 4

4.1 Baseline model

4.2 Goal of evaluation

The paper of Chung et al., 2014 also provides an interesting comparison and evaluation of the performance of recurrent units LSTM and GRU on sequence modeling. Authors mentioned the ability of LSTM to keep the existing memory via the introduced gates and thus to detect an important feature from an input sequence at early stage, to easily carry this information (the existence of the feature) over a long distance, hence, capturing potential long-distance dependencies [8]. The GRU takes linear sum between the existing state and the newly computed state similar to the LSTM but does not have any mechanism to control the degree to which its state is exposed, but exposes the whole state each time [8]. Chung et al., 2014 emphasize the fact that any important feature, decided by either the forget gate of the LSTM unit or the update gate of the GRU, will not be overwritten but be maintained as it is [8]. LSTM unit controls the amount of the new memory content and does not have any separate control of the amount of information flowing from the previous time step. The GRU differs and controls the information flow from the previous activation when computing the new and does not independently control the amount of the candidate activation being added via update gate [8].

4.3 Evaluation metrics

4.4 Experiments

4.4.1 First experiments

Datasets

As already stated in section ??

Batch size

A high impact on the performance e.g. the prediction accuracy has a batch size used in LSTM or GRU Model. The batch-size helps to learn the common patterns as important features by providing a fixed number of samples at one time. So that the model thus can distinguish the common features by looking at all the introduced samples of the batch. In most cases, an optimal batch size is set to 64. When this batch size was initially used with LSTM model, it gave significant high MSE, RMSE, train and validation errors. Based on the performance observation during experiments with LSTM parameters, batch size fine-tuning was done. The experiments done by $Aykut\ et\ al$ in their works [3] and [4] proved that appropriate batch size can be found in range 2^9 - 2^{11} (512 - 2048). Notice that a power of 2 is used as a batch size. The overall idea is to fit a batch of samples entirely in the the CPU/GPU. Since, all the CPU/GPU comes with a storage capacity in power of two, it is advised to keep a batch size a power of two. Using a number different from a power of 2 could lead to poor performance.

Learning rate

4.4.2 Prediction with LSTM

!!! During preprocessing step Euler angles (yaw, pitch, roll) were calculated from quaternions and these parameters are used for visualization purposes. Although the interpolated csv-file contains additional Euler angles columns, only described in section $\ref{eq:csv}$ parameters were used for training and prediction. !!!!!

4.4.3 Prediction with GRU

4.4.4 Prediction with Bidirectional GRU

Conclusion

The Python application UserPrediction6DOF is a result of this work and can be used for future preprocessing of the new obtained datasets, training routine and prediction of user position and rotation in 6-DoF virtual environment.

- 5.1 Analysis
- 5.2 Limitations
- 5.3 Suggestions for future work

Bibliography

- [1] A. Deniz Aladagli, Erhan Ekmekcioglu, Dmitri Jarnikov, and Ahmet Kondoz. Predicting head trajectories in 360° virtual reality videos. https://ieeexplore.ieee.org/document/8251913. date access on 29.03.22. 2017. DOI: 10.1109/IC3D.2017.8251913.
- [2] R.S. Allison, L.R. Harris, M. Jenkin, U. Jasiobedzka, and J.E. Zacher. *Tolerance of temporal delay in virtual environments*. https://www.researchgate.net/publication/2945506. date access on 17.03.22. 2001. DOI: 10.1109/VR. 2001.913793.
- [3] Tamay Aykut, Christoph Burgmair, Mojtaba Leox Karimi, and Eckehard Steinbach. Delay Compensation for a Telepresence System With 3D 360 Degree Vision Based on Deep Head Motion Prediction and Dynamic FoV Adaptation. https://arxiv.org/abs/2007.14084. date access on 23.02.22. 2018. DOI: 10.1109/WACV.2018.00222.
- [4] Tamay Aykut, Eckehard Steinbach, and Jingyi Xu. Realtime 3D 360-Degree Telepresence With Deep-Learning-Based Head-Motion Prediction. https://www.researchgate.net/publication/330861228. date access on 25.03.22. 2019. DOI: 110.1109/JETCAS.2019.2897220.
- [5] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is difficult. http://www.cs.unc.edu/techreports/93-010/93-010.pdf. date access on 31.03.22. 1994. DOI: 10.1109/72.279181.
- [6] Devesh K Bhatnagar. *Position trackers for Head Mounted Display systems: A survey*. http://www.cs.unc.edu/techreports/93-010/93-010.pdf. date access on 31.03.22. 1993.
- [7] Yun-Kai Chang, Mai-Keh Chen, Yun-Lun Li, Hao-Ting Li, and Chen-Kuo Chiang. 6DoF Tracking in Virtual Reality by Deep RNN Model. https://ieeexplore.ieee.org/document/9394069. date access on 02.04.22. 2020. DOI: 10.1109/IS3C50286.2020.00057.

- [8] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. https://arxiv.org/abs/1412.3555. date access on 30.03.22. 2014. DOI: 10.48550/arXiv.1412.3555.
- [9] Xavier Corbillon, Gwendal Simon, Alisa Devlic, and Jacob Chakareski. *Viewport-adaptive navigable 360-degree video delivery*. https://ieeexplore.ieee.org/document/7996611. date access on 05.04.22. 2017. DOI: 10.1109/ICC. 2017.7996611.
- [10] Alessandro Crivellari and Euro Beinat. LSTM-Based Deep Learning Model for Predicting Individual Mobility Traces of Short-Term Foreign Tourists. https://www.researchgate.net/publication/338377314. date access on 08.04.22. 2020. DOI: 10.3390/su12010349.
- [11] Fanyi Duanmu, Eymen Kurdoğlu, S. Hosseini, Yong Liu, and Yao Wang. Prioritized Buffer Control in Two-tier 360 Video Streaming. https://www.researchgate.net/publication/319048432.date access on 05.04.22. Aug. 2017. DOI: 10.1145/3097895.3097898.
- [12] Serhan Guel, Sebastian Bosse, Dimitri Podborski, Thomas Schierl, and Cornelius Hellge. *Kalman Filter-based Head Motion Prediction for Cloud-based Mixed Reality*. https://arxiv.org/abs/2007.14084. date access on 19.02.22. 2020. DOI: 0.1145/3394171.3413699.
- [13] Serhan Gül, Dimitri Podborski, Thomas Buchholz, Thomas Schierl, and Cornelius Hellge. *Low-latency Cloud-based Volumetric Video Streaming Using Head Motion Prediction*. https://arxiv.org/abs/2001.06466. date access on 19.02.22. 2020. DOI: 0.1145/3394171.3413699.
- [14] Sepp Hochreiter and Jürgen Schmidhuber. *Long Short-term Memory*. https://www.researchgate.net/publication/13853244. date access on 31.03.22. Dec. 1997. DOI: 10.1162/neco.1997.9.8.1735.
- [15] Fazle Karim, Somshubra Majumdar, Houshang Darabi, and Shun Chen. *LSTM Fully Convolutional Networks for Time Series Classification*. https://arxiv.org/abs/1709.05206. date access on 14.04.22. 2017. DOI: 10.48550/arXiv. 1709.05206.
- [16] Hao-Ting Li, Yung-Pin Liu, Yun-Kai Chang, and Chen-Kuo Chiang. *Action recognition and tracking via deep representation extraction and motion bases learning*. https://www.researchgate.net/publication/358012181. date access on 01.04.22. 2022. DOI: 10.1007/s11042-021-11888-8.
- [17] Diganta Misra. Mish: A Self Regularized Non-Monotonic Activation Function. https://doi.org/10.48550/arxiv.1908.08681. date access on 24.09.22. 2019. DOI: 10.48550/ARXIV.1908.08681. URL: https://arxiv.org/abs/1908.08681.

- [18] Anh Nguyen, Zhisheng Yan, and Klara Nahrstedt. Your Attention is Unique: Detecting 360-Degree Video Saliency in Head-Mounted Display for Head Movement Prediction. https://www.researchgate.net/publication/328370817. date access on 15.03.22. 2018. DOI: 10.1145/3240508.3240669.
- [19] Feng Qian, Lusheng Ji, Bo Han, and Vijay Gopalakrishnan. *Optimizing 360 video delivery over cellular networks*. https://dl.acm.org/doi/10.1145/2980055.2980056. date access on 12.03.22. 2016.
- [20] Silvia Rossi, Irene Viola, Laura Toni, and Pablo Cesar. A New Challenge: Behavioural Analysis Of 6-DOF User When Consuming Immersive Media. https://ieeexplore.ieee.org/document/9506525. date access on 03.04.22. 2021. DOI: 10.1109/ICIP42928.2021.9506525.
- [21] Silvia Rossi, Irene Viola, Laura Toni, and Pablo Cesar. From 3-DoF to 6-DoF: New Metrics to Analyse Users Behaviour in Immersive Applications. https://www.researchgate.net/publication/357172010. 1-7. 2021. date access on 13.04.22. 2021.
- [22] Afshin Taghavi, Anahita Mahzari, Joseph Beshay, and Ravi Prakash. *Adaptive 360-Degree Video Streaming using Scalable Video Coding*. https://www.researchgate.net/publication/320542716. date access on 05.04.22. Oct. 2017. DOI: 10.1145/3123266.3123414.
- [23] Howie Choset; Kevin M. Lynch; Seth Hutchinson; George A. Kantor; Wolfram Burgard; Lydia E. Kavraki; Sebastian Thrun. *Principles of Robot Motion: Theory, Algorithms, and Implementations*. The MIT Press, 2005, p. 608. ISBN: 978-0262-03327-5.
- [24] Zhiguang Wang, Weizhong Yan, and Tim Oates. *Time Series Classification from Scratch with DeepNeural Networks: A Strong Baseline*. https://www.researchgate.net/publication/318332658. date access on 25.03.22. 2017. DOI: 10.1109/IJCNN.2017.7966039.
- [25] Lan Xie, Zhimin Xu, Yixuan Ban, Xinggong Zhang, and Zongming Guo. 360ProbDASH: Improving QoE of 360 Video Streaming Using Tile-based HTTP Adaptive Streaming. https://www.researchgate.net/publication/320542716. date access on 05.04.22. Oct. 2017. DOI: 10.1145/3123266.3123291.
- [26] Emin Zerman, Radhika Kulkarni, and Aljosa Smolic. *User Behaviour Analysis of Volumetric Video in Augmented Reality*. https://ieeexplore.ieee.org/document/9465456. date access on 13.04.22. 2021. DOI: 10.1109/QoMEX51781.2021.9465456.