Расчёт усилительных каскадов на транзисторах

Электронным усилителем называют устройство, преобразующее энергию источника питания в энергию выходного сигнала, который по форме аналогичен входному сигналу, но превосходит его по мощности. Этот процесс преобразования осуществляется при помощи управляемых нелинейных элементов. В настоящее время в каскадах электронных усилителей различного назначения в качестве управляемого элемента широко используются биполярные и полевые транзисторы, поэтому электронные усилители с такими элементами называют транзисторными.

Исходными данными для расчёта могут являться различные параметры, например, выходная мощность P_{BblX} , сопротивление нагрузки R_{H} , максимальное напряжение на нагрузке $U_{\mathit{H}\,\mathit{m}}$, максимальный ток в нагрузке $I_{\mathit{H}\,\mathit{m}}$. Зная какую-либо пару заданных параметров, при необходимости можно найти остальные из следующих соотношений:

$$P_{BbIX} = U_{Hm} I_{Hm} / 2 = U_{Hm}^2 / (2R_H) = I_{Hm}^2 R_H / 2;$$
 $I_{Hm} = U_{Hm} / R_H.$ (0.1)

Для нормальной работы любого усилительного каскада необходимо установить определённые токи и напряжения во входной и выходной цепях транзистора при отсутствии входного сигнала. Такой режим называют режимом покоя.

Точка, координаты которой на вольт-амперных характеристиках транзистора определяют напряжения и токи в его электродах, называется рабочей. При отсутствии входного сигнала эта точка называется исходной рабочей точкой (И.Р.Т.). Исходная рабочая точка определяет режим работы транзистора по постоянному току. Напряжения и токи, а также внешние по отношению к усилительному прибору электрические цепи, обеспечивающие заданное положение исходной рабочей точки, называются соответственно напряжениями покоя, токами покоя и цепями смещения.

Расчёт по постоянному току УК на биполярных транзисторах

На рис. 1.1 – 1.6 представлены усилительные каскады (УК) на биполярных транзисторах (БТ) с различными способами включения транзистора: рис. 1.1 – 1.4 – с общим эмиттером (ОЭ), рис. 1.5 – с общей базой (ОБ), рис. 1.6 – с общим коллектором (ОК).

Рис. 1.1 Схема УК с ОЭ с фиксированным током базы

Рис. 1.2 Схема УК с ОЭ с фиксированным напряжением база—эмиттер

Рис. 1.3 Схема УК с ОЭ с фиксированным потенциалом базы с эмиттерной стабилизацией

В этих каскадах транзистор VT совместно с резистором R_K (или R_9 в схеме на рис.1.6) образуют управляемый делитель напряжения. С помощью остальных резисторов реализуют цепи, обеспечивающие начальный режим работы транзистора. Разделительные конденсаторы C_1 и C_2 служат для предотвращения попадания постоянного тока по цепи от источника питания в цепь источника сигнала и в нагрузку.

В усилительных каскадах на биполярных транзисторах сопротивление резистора R_K (или R_{\ni} для схемы с ОК (рис. 1.6)) выбирают таким, чтобы максимальный ток коллектора не превышал допустимого значения для используемого транзистора.

Для обеспечения малых нелинейных искажений выходного сигнала в схемах усилительных каскадов с ОЭ и ОБ (рисунки 1.1 – 1.5) следует принимать

$$R_{K} = (0, 2...0, 5) R_{H}; (0.2)$$

для схемы с ОК (рис. 1.6)

$$R_9 = (0,5...0,8)R_H. ag{0.3}$$

Так как по переменному току резисторы R_K и R_H ($R_{\mathfrak{I}}$ и R_H (рис. 1.6)) оказываются включёнными параллельно, то

$$I_{Km} = \frac{U_{Hm}}{R_K \parallel R_H}$$
 (или $I_{\Im m} = \frac{U_{Hm}}{R_{\Im} \parallel R_H}$ для схемы (рис. 1.6)), (0.4)

где «||» обозначает параллельное соединение резисторов, т.е.

$$R_K \parallel R_H = \frac{R_K R_H}{R_K + R_H}.$$

Поскольку $I_{\ni} = I_K + I_{ {\cal B}} \approx I_K$ (т.к. $I_{ {\cal B}} << I_K$), то для схемы с ОК (рис.1.6) тоже можно пользоваться соотношением (0.4), но в этом случае вместо значения сопротивления резистора R_K надо подставлять значение сопротивления резистора $R_{ {\cal B}}$.

После определения максимального амплитудного значения тока коллектора задают:

– ток коллектора покоя
$$I_{K0} = (1, 2...1, 4)I_{Km};$$
 (0.5)

– напряжение коллектор-эмиттер покоя
$$U_{K90} = (1, 2... 1, 5)U_{Hm} + U_{K9 \min};$$
 (0.6)

— напряжение источника питания $U_{II} \geq U_{K\ni 0} + I_{K0}R_{K}$ (или R_{\ni} (рис.1.6)). (0.7) Здесь $U_{K\ni \min}$ — напряжение, соответствующее работе транзистора в режиме насыщения, для маломощных транзисторов $U_{K\ni \min} = (0,5...1,0)\,\mathrm{B}$ и $(1...2)\,\mathrm{B}$ для мощных. При задании напряжения питания следует округлять полученное значение до бо́льшего целого значения. В схемах УК с ОЭ с эмиттерной стабилизацией (рис. 1.3) и с ОБ (рис. 1.5) из-за дополнительного падения напряжения на резисторе R_{\ni} значение напряжения питания принимают несколько выше, чем в других схемах.

Задавшись напряжением питания, уточняют напряжение покоя (рис.1.1., 1.2, 1.4, 1.6)

$$U_{K\ni 0} = U_{\Pi} - I_{K0}R_{K} > U_{Hm}$$
 (или R_{\ni} вместо R_{K} (рис.1.6)); (0.8)

а для схем на рис. 1.3, 1.5 используют формулу

$$U_{K\ni 0} = U_{II} - I_{K0} (R_K + R_{\ni}) > U_{Hm} + U_{K\ni \min},$$
 (0.9)

где принимают

$$R_{2} = (0,05...0,1)R_{K} \tag{0.10}$$

Далее на семействе выходных вольт-амперных характеристик (BAX) транзистора отмечают исходную рабочую точку (И.Р.Т.) с координатами $(U_{K\ni 0};I_{K0})$ и находят ток базы покоя I_{E0} (рис. 1.7, δ). Если И.Р.Т. не попадает ни на одну из показанных на графике выходных характеристик, применяют метод интерполяции, используя две ближайшие к И.Р.Т. характеристики. На входной ВАХ отмечают И.Р.Т. в соответствии с найденным значением I_{E0} и определяют напряжение база-эмиттер покоя $U_{E\ni 0}$ (рис. 1.7, a). Затем определяют максимальный ток коллектора $I_{K\max}$, для этого на выходных ВАХ по двум точкам $(U_{II};0)$ и $(U_{K\ni 0};I_{K0})$ строят статическую линию нагрузки (СЛН) до пересечения её с осью токов (рис. 1.7, δ).

Рис. 1.7 Входные (a) и выходные (b) вольт-амперные характеристики транзистора

После выбора режима покоя необходимо проверить выполнение условий

$$U_{K\Im \max \text{ доп.}} > U_{\Pi}; \quad I_{K \max \text{ доп.}} > I_{K \max}; \quad P_{K \max \text{ доп.}} > I_{K0} U_{K\Im 0}.$$
 (0.11)

Если условия (0.11) не выполняются, то следует либо увеличить сопротивление резистора R_K (или R_9 в схеме (рис.1.6)), либо уменьшить напряжение питания, напряжение покоя между коллектором и эмиттером транзистора, либо выбрать другой транзистор.

Требуемые значения токов покоя I_{K0} , I_{B0} и напряжений U_{K90} , U_{B90} обеспечивают с помощью источника питания и резисторов цепей смещения. На практике получили распространение два способа обеспечения заданного положения рабочей точки биполярного транзистора по постоянному току независимо от схемы включения транзистора по переменному току: схема с фиксированным током базы (рис.1.1, 1.4) и схема с фиксированным потенциалом базы (рис.1.2, 1.3, 1.5, 1.6).

В схеме на рис. 1.1 режим по постоянному току задаётся с помощью резисторов $R_{\rm E}$, $R_{\rm K}$ и источника питания $U_{\rm II}$. Смещение эмиттерного перехода осуществляется за счёт протекания тока базы $I_{\rm E0}$ от источника питания $U_{\rm II}$ через резистор $R_{\rm E}$, номинальное значение сопротивления которого рассчитывают по формуле

$$R_{E} = \frac{U_{II} - U_{E30}}{I_{E0}}. (0.12)$$

 пряжения из резисторов R1, R2. Номинальные значения сопротивлений резисторов R1 и R2 определяют по формулам:

$$R1 = \frac{U_{II} - U_{E30}}{I_{II} + I_{E0}}; \quad R2 = \frac{U_{E30}}{I_{II}}, \quad (0.13)$$

где $I_{\scriptscriptstyle \Pi}$ – ток делителя, который обычно принимают

$$I_{\pi} = (1...3)I_{E0}$$
. (0.14)

Недостатками схем (рис.1.1 и 1.2) является сильная зависимость положения исходной рабочей точки от различных дестабилизирующих факторов (например, изменения температуры, напряжения питания и т.п.), поэтому на практике для стабилизации положения И.Р.Т. часто используют отрицательную обратную связь (ООС).

В схеме с ОЭ с эмиттерной стабилизацией (рис. 1.3, 1.5) обеспечивают последовательную ООС по току путём включения резистора R_9 между эмиттером транзистора VT и общим проводом. В схеме с коллекторной стабилизацией (рис. 1.4) осуществляют параллельную ООС по напряжению, подключая последовательно соединённые резисторы R1, R2 к коллектору транзистора VT. Для устранения ООС по переменному току резистор R_9 шунтируют конденсатором C_9 , а резисторы R1, R2 – конденсатором C_9 .

В схеме с эмиттерной стабилизацией (рис. 1.3) номинальные значения резисторов рассчитывают по формулам:

$$R_{2} = (0.05...0.1)R_{K}$$
 (cm. (0.10)); (0.15)

$$R1 = \frac{U_{II} - U_{E}}{I_{II} + I_{E0}}; \qquad R2 = \frac{U_{E}}{I_{II}},$$
 (0.16)

где потенциал базы

$$U_{E} = U_{E90} + (I_{K0} + I_{E0})R_{9}; (0.17)$$

 $I_{\rm Д}$ — ток делителя, который выбирается из условия обеспечения необходимой стабильности режима работы. Обычно принимают $I_{\rm Д}=(2...10)I_{\rm E0}$. (0.18)

Желательно также, чтобы ток делителя не превышал 10...15% тока коллектора, т.е.

$$I_{\mathcal{I}} \le (0,1...0,15)I_{K0}.$$
 (0.19)

В схеме с коллекторной стабилизацией (рис.1.4) номинальные значения резисторов R1, R2 рассчитывают по формулам:

$$R1+R2 = (U_{K30} - U_{E30})/I_{E0}; R2 = (0,9...1,5)R1.$$
 (0.20)

В схеме с ОБ (рис. 1.5) по постоянному току реализована последовательная ООС по току (эмиттерная стабилизация), поэтому номинальные значения сопротивлений резисторов R1, R2, R_{\odot} рассчитывают по формулам (0.15)–(0.19).

В схеме с ОК (рис. 1.6) по постоянному току также реализована последовательная ООС по току, поэтому для расчёта номинальных значений сопротивлений резисторов R1, R2 используют формулы (0.16) – (0.19).

<u>Замечание:</u> для транзисторов p-n-p-типа полярности напряжений и направления протекания токов меняются на противоположные. В расчётные формулы значения соответствующих величин должны подставляться без учёта их знаков.

Расчёт параметров УК на БТ по переменному току

На рис. 1.8 приведены малосигнальные схемы замещения усилительных каскадов с различными включениями биполярных транзисторов для переменного сигнала.

Рис. 1.8 Малосигнальные схемы замещения УК на БТ для переменного сигнала с ОЭ (α), с ОБ (δ), с ОК (α)

Представленная на рис. 1.8, а малосигнальная схема является обобщённой схемой замещения по переменному сигналу схем УК с ОЭ, показанных на рис. 1.1 – 1.4. При рассмотрении же конкретного каскада необходимо учесть, что в схемах на рис. 1.2–1.3 рабочая точка задаётся с помощью делителя напряжения R_1-R_2 и по переменному сигналу эти резисторы оказываются включенными параллельно, поэтому в малосигнальных схемах этих каскадов резистор $R_{\scriptscriptstyle B}$ следует заменять на параллельно соединённые резисторы R_1 , R_2 (как показано на рис. 1.8, ϵ).

$$R_{\mathcal{B}} = R_1 \parallel R_2 = \frac{R_1 R_2}{R_1 + R_2}. \tag{0.21}$$

В схеме на рис. 1.4 используется коллекторная стабилизация положения рабочей точки с помощью резисторов R_1 , R_2 . Поскольку конденсатор $C_{\it B}$ на рабочей частоте шунтирует эти резисторы, устраняя ООС на переменном токе, то в малосигнальной схеме данного каскада резистор $R_{\it B}$ следует заменить резистором R_1

$$R_{\scriptscriptstyle E} = R_{\scriptscriptstyle 1} \,, \tag{0.22}$$

а резистор $R_{\scriptscriptstyle K}$ – на параллельно соединённые резисторы $R_{\scriptscriptstyle K}$ и $R_{\scriptscriptstyle 2}$:

$$R_K = R_K || R_2. {(0.23)}$$

<u>Для схемы с ОЭ</u> в соответствии с малосигнальной схемой замещения (рис.1.8, *a*): входное сопротивление $R_{BX} = R_{E} \mid\mid h_{112};$ (0.24)

выходное сопротивление
$$R_{BblX} = R_K \parallel (1/h_{22}) = \frac{R_K}{1 + R_K h_{22}};$$
 (0.25)

коэффициент усиления по напряжению
$$K_U = -\frac{h_{219}}{h_{119}} \frac{R_K}{1 + R_K h_{229} + (R_K/R_H)}$$
. (0.26)

При расчёте параметров какой-либо из схем усилительных каскадов с общим эмиттером, показанных на рис. 1.2 – 1.4 (соответственно Задачи 1.2 – 1.4), необходимо принимать во внимание соответствующие замечания (0.21) – (0.23).

<u>Для схемы с ОБ</u> в соответствии с малосигнальной схемой замещения (рис.1.8, δ):

входное сопротивление
$$R_{BX} = R_{9} \parallel h_{116}$$
; (0.27)

выходное сопротивление
$$R_{BLIX} = R_K \parallel (1/h_{22\delta}) = \frac{R_K}{1 + R_K h_{22\delta}};$$
 (0.28)

коэффициент усиления по напряжению
$$K_U = \frac{h_{21\delta}}{h_{11\delta}} \frac{R_K}{1 + R_K h_{22\delta} + \frac{R_K}{R_H}}$$
. (0.29)

Для схемы с ОК в соответствии с малосигнальной схемой замещения (рис.1.8, в):

входное сопротивление

$$R_{BX} = R_1 || R_2 || (h_{119} + (1 + h_{219}) R_{9KB}); \quad (0.30)$$

выходное сопротивление

$$R_{BLIX} = R_{9} \left\| \left(\frac{R_{1} \| R_{2} \| R_{\Gamma} + h_{119}}{1 + h_{219}} \right) \| \left(\frac{1}{h_{229}} \right); \quad (0.31)$$

коэффициент усиления по напряжению $K_U = (1 + h_{219}) \frac{R_{_{9\text{KB.}}}}{h_{_{119}} + (1 + h_{_{219}})R_{_{9\text{KB.}}}},$ (0.32)

где $R_{_{\!\!\! ext{\tiny ЭКВ.}}}=R_{_{\!\!\! ext{\tiny 9}}}\parallel R_{_{\!\!H}}\parallel \left(1/h_{_{22}}\right);\; R_{_{\!\!arGeta}}$ – внутреннее сопротивление источника сигнала.

Для всех схем усилительных каскадов:

коэффициент усиления по току
$$K_I = K_U \frac{R_{BX}}{R_H}$$
. (0.33)

коэффициент усиления по мощности $K_P = K_U K_I$. (0.34)

к.п.д.
$$\eta = \frac{P_H}{P_\Pi} = \frac{U_{H\,m}^2/(2R_H)}{U_\Pi \left(I_{K0} + I_{E0} + I_{\mathcal{I}}\right)} \qquad \text{(для схем на рис.1.1 и 1.4 } I_{\mathcal{I}} = 0\text{).} \tag{0.35}$$

Здесь h_{11} – дифференциальное входное сопротивление, h_{21} – коэффициент прямой передачи по току, h_{22} – дифференциальная выходная проводимость транзистора. Дифференциальные h -параметры для различных схем включения обозначаются соответствующими буквами: «б» – для схемы с ОБ, «э» – с ОЭ, «к» – с ОК. Значения h -параметров приводятся в справочниках (см., например, Приложение 1 или [9]), либо приближённо определяются графоаналитическим методом по статическим вольтамперным характеристикам транзисторов. Параметры рассчитываются по конечным приращениям вблизи рабочей точки транзистора.

Рассмотрим определение h-параметров для транзистора, включённого по схеме с ОЭ с помощью представленных на рис. 1.7 соответствующих входных (a) и выходных (δ) вольт-амперных характеристик.

Для определения параметров h_{219} и h_{229} используют семейство выходных ВАХ (рис. 1.7, δ). Через рабочую точку (И.Р.Т) проводят касательную MN (на рис. 1.7, δ она совпадает с прямолинейным участком ВАХ, соответствующей входному току $I_{E0} = I_{E2}$), строят треугольник FMN и находят

$$h_{229} = \frac{\Delta I_K}{\Delta U_{K9}} = \frac{MF}{FN} = \frac{I_{K_M} - I_{K_F}}{U_{K9_F} - U_{K9_N}}.$$
 (0.36)

Чтобы найти коэффициент передачи тока h_{219} , используют значения токов коллектора в точках C , D и соответствующих значений токов базы I_{B3} , I_{B1} :

$$h_{219} = \frac{\Delta I_K}{\Delta I_E} = \frac{I_{K_C} - I_{K_D}}{I_{E3} - I_{E1}}.$$
 (0.37)

Для определения параметра h_{11} , через рабочую точку (И.Р.Т.) проводят касательную AB к входной вольт-амперной характеристике (рис. 1.7, a). После этого строят треугольник ABC и находят

$$h_{119} = \frac{\Delta U_{B9}}{\Delta I_{B}} = \frac{CA}{BA} = \frac{U_{B9_{C}} - U_{B9_{A}}}{I_{B_{R}} - I_{B_{A}}}.$$
 (0.38)

Если известны h-параметры транзистора при включении его по схеме с общим эмиттером (h_{11} , h_{21} , h_{22}), то можно найти h-параметры транзистора при включении его по схеме с общей базой по следующим приближённым формулам:

$$h_{11\delta} \approx \frac{h_{119}}{1 + h_{219}}; \qquad h_{21\delta} \approx \frac{h_{219}}{1 + h_{219}}; \qquad h_{22\delta} \approx \frac{h_{229}}{1 + h_{219}}.$$
 (0.39)

Расчёт по постоянному току УК на полевых транзисторах

На рис. 1.9, 1.10 представлены УК на полевых транзисторах (ПТ): рис. 1.9, a-c общим истоком (ОИ) на ПТ с управляющим p-n-переходом (ПТУП), рис. 1.9, $\delta-c$ ОИ на ПТ с изолированным затвором (ПТИЗ), рис. 1.10 – с общим стоком (ОС).

В этих каскадах транзистор VT совместно с резистором R_C (или R_M в схеме с общим стоком рис.1.10) образуют управляемый делитель напряжения. С помощью остальных резисторов реализуют цепи, обеспечивающие начальный режим работы транзистора. Разделительные конденсаторы C_1 и C_2 служат соответственно для предотвращения проникновения постоянной составляющей сигнала на затвор транзистора и на выход усилительного каскада.

Для схемы УК с общим истоком на полевом транзисторе с управляющим переходом (рис.1.9,a) сопротивление резистора R_{C} выбирают таким, чтобы максимальный ток стока не превышал начальный ток $I_{C\,_{\mbox{\scriptsize нач.}}}$, а для схемы на полевом транзисторе с изолированным затвором ((рис.1.9, δ)) — максимально допустимого значения тока стока $I_{C\,_{\mbox{\scriptsize max}\,_{\mbox{\scriptsize доп.}}}}$ для данного транзистора. Такое же требование должно выполняться и для УК

на ПТ с общим стоком (рис. 1.10), но по отношению к сопротивлению резистора $R_{_{\! H}}$.

В целях получения максимального усиления по напряжению в схемах усилительных каскадов с общим истоком (рис. 1.9) следует принимать

$$R_C = (0, 2...0, 5)R_H; (0.40)$$

для схемы с ОС (рис. 1.10)

$$R_H = (0,5...0,8)R_H. (0.41)$$

Так как по переменному току резисторы R_{C} и R_{H} (R_{H} и R_{H} (рис. 1.9)) оказываются включёнными параллельно, то

$$I_{Cm} = \frac{U_{Hm}}{R_C \parallel R_H}$$
 (или $I_{Cm} = \frac{U_{Hm}}{R_H \parallel R_H}$ для схемы на рис. 1.10), (0.42)

где «||» обозначает параллельное соединение резисторов, т.е.

$$R_C \parallel R_H = \frac{R_C R_H}{R_C + R_H}.$$

После определения максимального амплитудного значения тока стока задают:

– ток стока покоя
$$I_{C0} = (1, 2...1, 8)I_{Cm};$$
 (0.43)

– напряжение сток–исток покоя
$$U_{CH0} = (1, 2...1, 5)U_{Hm} + |U_{3H \min}|,$$
 (0.44)

где $U_{\it 3M min}$ равно напряжению отсечки $U_{\it 3M orc.}$ полевого транзистора с управляющим переходом (с $\it p-n$ -затвором) (рис. 1.9, $\it a$) или пороговому напряжению $U_{\it 3M nop.}$ полевого транзистора с изолированным затвором и индуцированным каналом (рис. 1.9, $\it \delta$).

Напряжение источника питания для схемы УК с ОИ на ПТУП (рис. 1.9, а):

$$U_{II} \ge U_{CU0} + I_{C0}R_C + |U_{3U0}|, \tag{0.45}$$

где

$$U_{3H0} = U_{3H \text{ orc.}} \left(1 - \sqrt{\frac{I_{C0}}{I_{C \text{ Ha4.}}}} \right),$$
 (0.46)

а для схем усилительных каскадов на ПТИЗ (а также на ПТУП в схеме с ОС (рис. 1.10))

$$U_{II} \ge U_{CH0} + I_{C0}R_{C}$$
 (или R_{H} вместо R_{C} для УК с ОС). (0.47)

При задании напряжения питания следует округлять полученное значение до большего целого значения.

После задания напряжения питания, уточняют напряжение сток-исток покоя для схемы УК с ОИ на ПТУП

$$U_{CH0} = U_{II} - I_{C0}R_{C} - |U_{3H0}| > U_{Hm} + |U_{3H \min}|,$$
 (0.48)

для схем УК на ПТИЗ (а также на ПТУП в схеме с ОС)

$$U_{CH0} = U_H - I_{C0} R_C > U_{Hm} + \left| U_{3H \text{ min}} \right|$$
 (или R_H вместо R_C для УК с ОС). (0.49)

Далее на семействе выходных вольт-амперных характеристиках (BAX) транзистора отмечают исходную рабочую точку (И.Р.Т.) с координатами $\left(U_{C\!H^0};I_{C^0}\right)$ и находят напряжение затвор-исток покоя $U_{3\!H^0}$ (рис. 1.11). Если И.Р.Т. не попадает ни на одну из показанных на графике выходных характеристик, применяют метод интерполяции, используя две ближайшие к И.Р.Т. характеристики (рис. 1.11). Затем определяют максимальный ток стока $I_{C\,\mathrm{max}}$, для этого на выходных BAX по двум точкам $\left(U_{I\!I};0\right)$ и

 $\left(U_{CH0};I_{CK0}\right)$ строят статическую линию нагрузки (СЛН) до пересечения её с осью токов (рис. 1.11).

После выбора режима покоя необходимо проверить выполнение условий

Рис. 1.11 Выходные вольт-амперные характеристики полевого транзистора

$$U_{CH \max \text{ доп.}} > U_{\Pi}; \quad I_{C \max \text{ доп.}} > I_{C \max}; \quad P_{C \max \text{ доп.}} > I_{C0}U_{CH0}.$$
 (0.50)

Если условия (0.50) не выполняются, то следует либо увеличить сопротивление резистора R_C (или R_M для схемы УК с ОС), либо уменьшить напряжение питания, напряжение покоя между стоком и истоком транзистора, либо выбрать другой транзистор.

Требуемые значения тока стока покоя I_{C0} и напряжений U_{CU0} , U_{3U0} обеспечивают с помощью источника питания и резисторов цепей смещения. При этом необходимо помнить, что при использовании ПТ с каналом n-типа для управления током стока в УК на ПТУП необходимо задавать напряжение затвор-исток $|U_{3U0}| < |U_{3U\, {\rm orc.}}|$, в УК на ПТИЗ с индуцированным каналом $U_{3U0} > U_{3U\, {\rm nop.}}$, а в УК на ПТИЗ с встроенным каналом U_{3H0} может быть либо больше, либо меньше, либо равняться нулю. В последнем случае схема УК может иметь вид, представленный на рис.1.9, a или b0, причём, если $U_{3H0} = 0$ 0, то резистор R_H 0 в цепи истока может отсутствовать.

В схеме на рис. 1.9, a режим по постоянному току задаётся с помощью резисторов $R_{\rm I}$, $R_{\rm II}$ и источника питания $U_{\rm II}$. В этой схеме, называемой схемой с автоматическим смещением, за счёт протекания через резистор $R_{\rm II}$ тока стока автоматически создаётся обратное смещение p-n-перехода ПТ:

$$U_{3H0} = U_3 - U_H = U_3 - I_{C0}R_H, (0.51)$$

где $U_{I\!I}=I_{C0}R_{I\!I}$ – потенциал истока; U_3 – потенциал затвора. Так как резистор R_1 обеспечивает связь затвора с общим проводом, то при бесконечно малом входном токе I_3 можно считать $U_3\!pprox\!0$. Поэтому

$$U_{3H0} \approx -I_{C0}R_{H}. \tag{0.52}$$

Помимо функции автоматического смещения потенциала истока резистор $R_{\scriptscriptstyle H}$ выполняет также функцию термостабилизации режима работы усилителя по постоянному току

(аналогично схеме с эмиттерной стабилизацией на БТ). Для исключения влияния отрицательной обратной связи по переменному сигналу резистор $R_{\scriptscriptstyle H}$ шунтируют конденсатором $C_{\scriptscriptstyle H}$, в диапазоне рабочих частот сопротивление которого $X_{\scriptscriptstyle C_{\scriptscriptstyle H}} << R_{\scriptscriptstyle H}$.

Таким образом, из выражения (0.52) следует, что

$$R_{H} = \frac{\left| U_{3H0} \right|}{I_{C0}}. (0.53)$$

Сопротивление резистора R_1 принимают $R_1 = (10...100)$ кОм. (0.54)

В схеме на рис. 1.9, δ режим по постоянному току задаётся с помощью резисторов R_1 , R_2 и источника питания U_{II} . Эта схема аналогична схеме УК на БТ с фиксированным потенциалом базы (рис.1.2). Напряжение между затвором и истоком

$$U_{3H0} = U_3 - U_H = U_3 > U_{3H \text{ nop.}} \tag{0.55}$$

равно потенциалу затвора (потенциал истока равен нулю), который определяется по формуле

$$U_3 = U_{II} \frac{R_2}{R_1 + R_2}. ag{0.56}$$

Задаваясь значением

$$R_1 || R_2 = (0,1...10) \text{ MOM},$$
 (0.57)

из выражений (0.55) - (0.57) находим

$$R_1 = \frac{U_{II}}{U_{3H0}} \times (0,1...10) \text{ MOm};$$
 (0.58)

$$R_2 = \frac{U_{3U0}}{U_{II} - U_{3U0}} R_1. \tag{0.59}$$

В схеме с общим стоком (рис. 1.10) напряжение между затвором и истоком

$$U_{3H0} = U_3 - U_H = U_3 - I_{C0}R_H. (0.60)$$

Потенциал затвора определяется выражением (0.56). При расчёте сопротивлений делителя напряжения R_1-R_2 в зависимости от применяемого транзистора следует руководствоваться соотношением (0.54) или (0.57). Тогда для УК на ПТУП

$$R_{1} = \frac{U_{II}}{I_{C0}R_{II} - |U_{3II0}|} \times (10...100) \text{ KOM};$$
 (0.61)

$$R_2 = \frac{U_3}{U_{II} - U_3} R_1$$
, где $U_3 = I_{C0} R_{II} - |U_{3II0}|$; (0.62)

для УК на ПТИЗ

$$R_{1} = \frac{U_{II}}{I_{C0}R_{II} + U_{3II0}} \times (0,1...10) \text{ MOm};$$
 (0.63)

$$R_2 = \frac{U_3}{U_H - U_3} R_1$$
, где $U_3 = I_{C0} R_H + U_{3H0}$. (0.64)

<u>Замечание:</u> для полевых транзисторов с проводящим каналом p-типа полярности напряжений и направления протекания токов меняются на противоположные. В расчётные формулы значения соответствующих величин подставляются без учёта их знаков.

Расчёт параметров УК на ПТ по переменному току

На рис. 1.12 приведены малосигнальные схемы замещения усилительных каскадов с различными включениями полевых транзисторов для переменного сигнала на средней частоте.

Рис. 1.12 Малосигнальные схемы замещения УК на ПТ для переменного сигнала с ΟИ (a), с ОС (б)

На рис. 1.12, а представлена обобщённая малосигнальная схема замещения по переменному сигналу схем УК с ОИ, показанных на рис. 1.9. Для схемы на ПТУП (рис. 1.9, а) резистор R_3 следует заменить резистором R_1 , а в схеме на ПТИЗ (рис. 1.9, б) резистор R_3 следует заменить параллельно соединёнными резисторами R_1 , R_2 (как показано на рис. 1.12, б). Соответственно для схем с ПТУП и ПТИЗ

$$R_3 = R_1;$$
 (0.65)

$$R_3 = R_1 \parallel R_2 = \frac{R_1 R_2}{R_1 + R_2}. \tag{0.66}$$

<u>Для схемы с ОИ</u> в соответствии с малосигнальной схемой замещения (рис.1.12, a) и выражениями (0.65), (0.66):

входное сопротивление
$$R_{RX} = R_3;$$
 (0.67)

выходное сопротивление
$$R_{BMX} = R_C || r_{CM};$$
 (0.68)

коэффициент усиления по напряжению
$$K_U = S(R_C || r_{CU} || R_H).$$
 (0.69)

<u>Для схемы с ОС</u> в соответствии с малосигнальной схемой замещения (рис.1.12, δ): входное сопротивление $R_{BX} = R_1 \mid\mid R_2$; (0.70)

выходное сопротивление
$$R_{BblX} = R_{II} \parallel \left(\frac{1}{S}\right) = \frac{R_{II}}{1 + SR_{II}};$$
 (0.71)

коэффициент усиления по напряжению
$$K_{U} = \frac{S(R_{H} \parallel r_{CH} \parallel R_{H})}{1 + S(R_{H} \parallel r_{CH} \parallel R_{H})}.$$
 (0.72)

Для всех схем усилительных каскадов:

коэффициент усиления по току
$$K_I = K_U \frac{R_{BX}}{R_H}$$
. (0.73)

коэффициент усиления по мощности
$$K_P = K_U K_I$$
. (0.74)

к.п.д.
$$\eta = \frac{P_H}{P_\Pi} = \frac{\frac{U_{H\ m}^2}{2R_H}}{U_\Pi I_{C0}}. \tag{0.75}$$

Здесь S — крутизна полевого транзистора, $r_{C\!M}$ — дифференциальное сопротивление проводящего канала. Значения крутизны S и сопротивления $r_{C\!M}$ приводятся в справочниках (см., например, Приложение 2 или [9]) либо приближённо определяются графоаналитическим методом по статическим вольт-амперным характеристикам транзисторов. Параметры рассчитываются по конечным приращениям вблизи рабочей точки транзистора.

Рассмотрим определение дифференциальных параметров полевого транзистора с помощью семейства выходных вольт-амперных характеристик (рис. 1.11).

Для определения сопротивления r_{CH} через рабочую точку (И.Р.Т.) проводят касательную MN (на рис. 1.11 она совпадает с прямолинейным участком ВАХ, соответствующей напряжению покоя U_{2H0}), строят треугольник FNM и находят

$$r_{CH} = \frac{\Delta U_{CH}}{\Delta I_C} = \frac{FN}{MF} = \frac{U_{CH_F} - U_{CH_N}}{I_{C_M} - I_{C_F}}.$$
 (0.76)

Чтобы найти крутизну S используют значения токов стока в точках A , B и соответствующих значений напряжений затвор – исток $U_{\it 3H4}$ и $U_{\it 3H3}$:

$$S = \frac{\Delta I_C}{\Delta U_{3H}} = \frac{I_{C_A} - I_{C_B}}{U_{3H4} - U_{3H3}}.$$
 (0.77)

Расчёт ёмкостей конденсаторов

Так как разделительные конденсаторы C_1 и C_2 не должны существенно ослаблять переменную составляющую (полезный сигнал), значения их ёмкостей для всех типов усилительных каскадов:

$$C_{1} = \frac{10...50}{2\pi f_{\text{H. rp.}} R_{BX}};$$

$$C_{2} = \frac{10...50}{2\pi f_{\text{H. rp.}} (R_{BbIX} + R_{H})},$$
(0.78)

где $f_{_{\mathrm{H.\, PP.}}}$ – нижняя граничная частота усиливаемого сигнала.

Ёмкостные сопротивления шунтирующих конденсаторов $C_{\mathfrak{I}}$, $C_{\mathfrak{I}}$, $C_{\mathfrak{I}}$ на низшей частоте $f_{\text{н. гр.}}$ усиливаемого сигнала должны быть на порядок меньше сопротивлений резисторов, которые они шунтируют, поэтому для схемы УК с ОЭ с эмиттерной стабилизацией (рис. 1.3)

$$C_{\mathcal{P}} = \frac{10...50}{2\pi f_{\text{H. PD.}} R_{\mathcal{P}}}; \tag{0.79}$$

для схем УК с ОЭ с коллекторной стабилизацией (рис. 1.4) и с ОБ (рис. 1.5)

$$C_{E} = \frac{10...50}{2\pi f_{H, \text{rp.}}(R_{1} || R_{2})};$$
 (0.80)

для схемы УК на ПТУП с общим истоком (рис. 1.9, а)

$$C_{II} = \frac{10...50}{2\pi f_{\text{H, EP}} R_{II}}.$$
 (0.81)

Приложение 1. Параметры некоторых биполярных транзисторов

Транзи-	h	$U_{\mathit{K}\mathfrak{I}\mathrm{max}}^{\scriptscriptstyle{\mathrm{Д}\mathrm{O}\Pi.}}$,	$I_{K\mathrm{max}}^{{\scriptscriptstyle { m ДОП.}}}$,	$P_{K\mathrm{max}}^{{\scriptscriptstyle { m JOH.}}}$,	I_{KBO} ,	$C_{\mathfrak{I}}$,	C_K ,	f_{α} ,	Тип тран-
стор	h_{219}	В	мА	мВт	мкА	пΦ	пΦ	МГц	зистора
KT104A	936	- 30	50	150	≤ 1	10	50	5	p-n-p
КТ104Б	2080	– 15	50	150	≤ 1	10	50	5	p-n-p
KT104B	40160	– 15	50	150	≤1	10	50	5	p-n-p
KT201A	2060	+ 20	100	150	≤1	20	20	10	n-p-n
КТ201Б	3090	+ 20	100	150	≤1	20	20	10	n-p-n
KT201B	3090	+ 10	100	150	≤1	20	20	10	n-p-n
КТ201Г	70210	+ 10	100	150	≤1	20	20	10	n-p-n
KT203A	≥ 9	- 60	10	150	≤1	10	10	5	p-n-p
КТ203Б	30150	- 30	10	150	≤1	10	10	5	p-n-p
KT203B	30200	– 15	10	150	≤1	10	10	5	p-n-p
KT208A	2060	– 15	300	200	≤1	100	50	5	p-n-p
КТ208Б	40120	– 15	300	200	≤1	100	50	5	p-n-p
KT208B	80210	– 15	300	200	≤1	100	50	5	p-n-p
KT312A	10100	+ 20	30	225	≤ 10	20	500	80	n-p-n
КТ312Б	25100	+ 35	30	225	≤ 10	20	500	80	n-p-n
KT312B	50280	+ 20	30	225	≤ 10	20	500	80	n-p-n
KT315A	2090	+ 25	100	150	≤1	7	7	100	n-p-n
КТ315Б	50350	+ 20	100	150	≤1	7	7	100	n-p-n
KT315B	2090	+ 40	100	150	≤1	7	7	100	n-p-n
КТ315Г	50350	+ 35	100	150	≤1	7	7	100	n-p-n
KT316B	40120	+ 10	30	150	≤ 0,5	2,5	3	100	n-p-n
КТ316Д	60300	+ 10	30	150	≤ 0,5	2,5	3	100	n-p-n
KT325A	3090	+ 10	30	225	≤ 0,5	2,5	2,5	100	n-p-n
KT349A	2080	– 15	40	200	≤1	8	6	100	p-n-p
КТ349Б	40160	– 15	40	200	≥1	8	6	100	p-n-p
KT349B	120300	– 15	40	200	≤1	8	6	100	p-n-p
KT355A	80300	+ 15	30	225	≤ 0,5	2	2	100	n-p-n
KT361A	2090	– 25	100	150	≤1	9	9	300	p-n-p
КТ361Б	50350	– 20	100	150	≤1	9	9	300	p-n-p
KT361B	40160	- 40	100	150	≤1	7	7	300	p-n-p
КТ361Г	50350	– 35	100	150	≤1	7	7	300	p-n-p

Приложение 2. Параметры некоторых полевых транзисторов

	I	I		ı	ı	
Транзи- стор	<i>S</i> , мА/В	$U_{\mathit{3H}\;\mathrm{orc.}} \ U_{\mathit{3H}\;\mathrm{nop.}},$ B	$U_{\it CU ext{max доп.}}$,	$I_{C{ m max}{ m доп.}}$, MA	$P_{C{ m max}{ m доп.}}$, мВт	Тип транзистора
КП103Е	0,42,4	+ (0,41,5)	- 10	0,32,5	120	ПТУП с каналом p -типа
КП103Ж	0,52,8	+ (0,52,2)	– 10	0,353,8	120	ПТУП с каналом p -типа
КП103И	0,82,6	+ (0,83)	– 10	0,81,8	120	ПТУП с каналом p -типа
КП103К	1,03,0	+ (1,44)	– 10	1,05,5	120	ПТУП с каналом p -типа
КП103Л	1,83,8	+ (26)	– 10	1,86,6	120	ПТУП с каналом p -типа
КП103М	1,34,4	+ (2.87,0)	– 10	3,012	120	ПТУП с каналом p -типа
КП301Б	12,6	<u> </u>	- 20	15	200	ПТИЗ с индуцированным каналом p -типа
КП302А	512	- <u>(15)</u>	+ 20	324	300	ПТУП с каналом <i>n</i> -типа
КП302Б	714	- <u>(2,57)</u>	+ 20	1843	300	ПТУП с каналом n -типа
КП302В	512	- <u>(310)</u>	+ 20	3343	300	ПТУП с каналом n -типа
КП304А	≥ 4	<u>- (45)</u>	– 25	30	300	ПТИЗ с индуцированным каналом p -типа
КП305Ж	5,210,5	<u>≤-6</u>	+ 15	15	150	ПТИЗ с встроенным каналом n -типа
КП312А	45,8	<u>– (2…8)</u>	+ 25	≤ 8	100	ПТУП с каналом n -типа
КП312Б	25	<u>– (0,86)</u>	+ 25	≤ 1,5	100	ПТУП с каналом n -типа

Приложение 3. Параметры некоторых операционных усилителей

		D	. T T may	7.7	7	A T	ν	I / max	I^{OY}
Тип ОУ	K_{U0}	$R_{_{ m BX}0}$,	$\pm U_{\scriptscriptstyle m BMX}^{ m max}$	$U_{\scriptscriptstyle \mathrm{cm.}}$	$I_{_{\mathrm{BX.cp.}}}$,	$\Delta I_{_{ m BX}}$,	$K_{ m oc. c\phi}$	$U_{\mathrm{c}\Phi}^{\mathrm{max}}$,	$I_{\scriptscriptstyle m BMX.\; ДОП}^{ m OJ}$,
		МОм	В	мВ	нА	нА	дБ	В	мА
140УД1А	900	0,004	3,5	7	5 000	1 500	60	3	2
140УД1Б	2 000	0,004	8	7	8 000	1 500	60	3	2
К140УД1А	500	0,004	2,8	9	7 000	2 500	60	3	2
К140УД1Б	1 350	0,004	5,7	9	9 000	2 500	60	3	2
К140УД1В	8 000	0,004	5,7	9	9 000	2 300	60	3	2
140УД2	35 000	0,3	10	5	700	200	70	5	13
К140УД2А	35 000	0,3	10	5	700	200	60	6	13
К140УД2Б	3 000	0,3	3	7	700	200	60	3	6
140УД5А	1 500	0,06	6	8	1 100	300	50	6	3
140УД5Б	2 500	0,004	6	5	6 000	1 800	60	6	3
К140УД5А	500	0,05	6,5	10	5 000	1 000	50	6	
К140УД5Б	1 000	0,003	6,5	5	10 000	5 000	60	6	3
140УД6А	70 000	2	12	5	30	10	70	15	15
140УД6Б	50 000	1	12	8	50	15	70	15	15
К140УД6	30 000	1	11	10	100	25	70	15	15
140УД7	50 000	0,4	11,5	4	200	50	70	15	6
К140УД7	30 000	0,4	10,5	9	400	200	70	15	6
140УД8А	50 000	20	10	20	0,2	0,15	80	10	5
140УД8Б	50 000	20	10	100	0,2	0,15	80	10	5
К140УД8А	50 000	10	10	50	0,2	0,15	70	10	5
К140УД8Б	20 000	10	10	100	1	0,15	70	10	5
К140УД8В	10 000	10	10	100	1,2	0,15	60	10	5
140УД9	35 000	0,3	10	5	350	100	80	7	10
140УД10	50 000	0,4	12	4	500	150	70	6	5
140УД11	50 000	0,4	12	4	50	10	70	6	10
К140УД11	25 000	0,4	12	10	500	200	70	6	10
140УД14А	50 000	30	10	2	2	0,2	85	6	10
140УД14Б	50 000	30	10	2	2	0,2	85	6	10
140УД14В	20 000	30	10	2	2	0,2	85	6	10
К140УД17А	200 000	1 000	10	0,08	4	3	100	15	6
К140УД17Б	120 000	1 000	10	0,15	12	5	100	15	6
КР140УД18	25 000	1 000	11	10	1	0,2	80	16	5
153УД1	20 000	0,2	10	5	600	250	70	8	5
К153УД1А	15 000	0,2	10	7,5	1 500	500	70	8	5
К153УД1Б	10 000	0,2	9	7,5	2 000	600	70	8	5
153УД2	50 000	0,3	11	5	500	200	70	12	6
К153УД2	25 000	0,3	10	7,5	1 500	500	70	12	5
153УДЗ	25 000	0,4	11	2	200	50	80	8	5
153УД4	5 000	0,2	4	5	400	150	70	5	1

Тип ОУ	K	$R_{\text{Bx}0}$,	$\pm U_{\scriptscriptstyle m BMX}^{ m max}$	$U_{\scriptscriptstyle{\mathrm{cm.}}}$	$I_{_{ m BX.\ cp.}}$,	$\Delta I_{_{ m BX}}$,	$K_{ m oc. c\phi}$	$U_{ m c\phi.}^{ m max}$,	$I_{\scriptscriptstyle{ ext{BMX. ДОП}}}^{OY}$,
IMITO	K_{U0}	МОм	В	мВ	нÁ	нА	дБ	В	мА
153УД5А	125 000	1	15	2,5	100	20	100	13,5	7
153УД5Б	100 000	1	15	2,5	100	20	100	13,5	7
153УД6	50 000	0,3	10	2	75	10	80	12	5
154УД1	200 000	1	12	3	20	10	80	10	5
154УД2	10 000	0,5	12	2	100	20	70	10	5
154УДЗ	8 000	1	9,5	9	225	30	90	10	4
154УД4	10 000	1	10	5	1 500	500	70	10	5
К157УД1	50 000	1	15	5	500	150	70	20	300
К157УД2	50 000	0,5	15	10	500	150	70	18	8
544УД1А	50 000	10	10	15	0,15	0,05	80	10	5
544УД1Б	20 000	10	10	50	1	0,5	80	10	5
К544УД1А	50 000	10	10	30	0,15	0,02	64	10	5
К544УД1Б	20 000	10	10	50	1	0,5	64	10	5
544УД2А	20 000	10	10	30	0,1	0,1	70	10	5
544УД2Б	10 000	10	10	50	0,5	0,5	70	10	5
К544УД2А	20 000	10	10	30	0,1	0,1	70	10	5
К544УД2Б	10 000	10	10	50	0,5	0,5	70	10	5
К544УД2В	20 000	10	10	50	1	1	70	10	5
К551УД1А	500 000	1	10	1,5	100	20	60	13,5	5
К551УД1Б	250 000	1	10	2,5	125	35	60	13,5	5
КМ551УД2А	5 000	0,5	11,5	5	400	200	60	4	6
КМ551УД2Б	5 000	0,5	11,5	5	400	200	60	8	6
К553УД1А	15 000	0,5	10	7,5	1,5	0,5	65	8	5
К553УД1Б	25 000	0,5	10	2	0,2	0,05	80	8	5
К553УД2	20 000	0,3	10	7,5	1,5	0,5	70	12	5
574УД1А	50 000	10 000	10	50	0,5	0,2	80	30	5
574УД1Б	50 000	10 000	10	25	0,5	0,2	80	30	5
К574УД1А	20 000	10 000	10	50	0,5	0,2	80	30	5
К574УД1Б	50 000	10 000	10	50	0,5	0,2	80	30	5
К574УД1В	10 000	10 000	10	100	1	0,2	80	30	5
К574УД2А	100 000	1 000	10	25	0,3	0,1	80	10	1
К574УД2Б	100 000	1 000	10	25	0,3	0,1	80	10	1
К574УДЗ	100 000	1 000	13,5	8	0,3	0,05	80	10	1
КР1408УД1	70 000	1	19	8	40	10	70	21	100
1408УД1	100 000	1	21	5	20	3	80	23	100
1408УД2	50 000	0,4	11,5	5	200	50	70	15	6

Приложение 4. Ряд Е24 номинальных значений сопротивлений резисторов и ёмкостей конденсаторов

E24	1,0	1,1	1,2	1,3	1,5	1,6	1,8	2,0	2,2	2,4	2,7	3,0
CZ4	3,3	3,6	3,9	4,3	4,7	5,1	5,6	6,2	6,8	7,5	8,2	9,1

Номинальные значения сопротивлений (ёмкостей) соответствуют числам в приведённой таблице или числам, полученным умножением или делением этих чисел на 10^n , где n – целое положительное или отрицательное число.

Например, если в результате расчётов получены следующие значения:

```
R=315~{
m Om}~ — принимаем R=300~{
m Om}~({
m E24}), либо R=330~{
m Om}~({
m E24}); R=9685~{
m Om}~ — принимаем R=9,1~{
m KOm}~({
m E24}), либо R=10~{
m KOm}~({
m E24}); C=0,487~{
m MK\Phi}~ — принимаем C=0,47~{
m MK\Phi}~({
m E24}), либо C=0,51~{
m MK\Phi}~({
m E24}).
```

Выбор того или иного номинального значения обусловлен местом включения резистора или конденсатора в схему электронного устройства. Как правило, если резисторы включены последовательно (например, в делителе напряжения), то значения их сопротивлений принимают либо большими, либо меньшими одновременно. Значения ёмкостей конденсаторов в усилительных каскадах чаще всего выбирают большими.

Приложение 5. Условные графические обозначения в схемах

СОДЕРЖАНИЕ

Расчёт усилительных каскадов на транзисторах	1
Расчёт по постоянному току УК на биполярных транзисторах	
Расчёт параметров УК на БТ по переменному току	
Расчёт по постоянному току УК на полевых транзисторах	
Расчёт параметров УК на ПТ по переменному току	
Расчёт ёмкостей конденсаторов	
Приложение 1. Параметры некоторых биполярных транзисторов	
Приложение 2. Параметры некоторых полевых транзисторов	
Приложение 3. Параметры некоторых операционных усилителей	
Приложение 4. Ряд Е24 номинальных значений сопротивлений	
ёмкостей конденсаторов	•
Приложение 5. Условные графические обозначения в схемах	