MA571 Problem Set 7

Carlos Salinas

October 18, 2015

Problem 7.1 (Munkres §26, Ex. 8)

Theorem. Let $f: X \to Y$; let Y be compact Hausdorff. Then f is continuous if and only if the graph of f,

$$G_f = \{ (x, f(x)) \mid x \in X \},\$$

is closed in $X \times Y$.

[Hint: If G_f is closed and V is a neighborhood of $f(x_0)$, then the intersection of G_f and $X \times (Y - V)$ is closed. Apply Exercise 7.]

Proof. As we demonstrated in Problem 2.7 (Munkres §18, Ex. 17) Y is Hausdorff if and only if the diagonal, $\Delta_Y = \{ (y, y) \mid y \in Y \}$, is a closed subset of $Y \times Y$. Consider the map $F: X \times Y \to Y \times Y$ defined by $(x,y) \mapsto (f(x),y)$. This map is continuous by Theorem 18.4 as f is, by assumption, continuous and id_Y is continuous by 18.2(b) (since it is the inclusion $Y \hookrightarrow Y$). Then

$$F^{-1}(\Delta_Y) = \{ (x,y) \mid F(x,y) \in \Delta_Y, x \in X, y \in Y \}$$

$$= \{ (x,y) \mid (f(x),y) \in \Delta_Y, x \in X, y \in Y \}$$

$$= \{ (x,y) \mid f(x) = y, x \in X, y \in Y \}$$

$$= \{ (x,f(x)) \mid x \in X, y \in Y \}$$

$$= G_f$$

is closed by Theorem 18.1(3).

Conversely, suppose G_f is closed in $X \times Y$. Fix a point $x_0 \in X$ and let $V \subset Y$ be an arbitrary neighborhood of $f(x_0)$. Then Y-V is a closed subset of Y so, by Problem 2.1 (Munkres §17, Ex. 3), the product $X \times (Y - V)$ is closed in $Y \times Y$. In particular, by Theorem 17.1(2), the intersection $B = G_f \cap X \times (Y - V)$ is closed in $X \times Y$. Thus, by Problem 6.5 (Munkres §26, Ex. 7), since Y is a compact Hausdorff space, the projection $\pi_1(B)$ onto X is a closed subset of X. But

$$B = \{ (x,y) \mid (x,y) \in G_f \text{ and } (x,y) \in X \times (Y - V) \}$$

= \{ (x,y) \| y = f(x) \text{ and } (x,y) \in X \times (Y - V) \}
= \{ (x, f(x)) \| f(x) \in Y - V \}

so we have that $\pi_1(B) = f^{-1}(Y - V) = X - f^{-1}(V)$. One containment is easy to see, namely " \subset ": if $x \in B$ then $x = \pi_1(x, f(x))$ for at least one $f(x) \in Y - V$. To see the reverse inclusion, take $x \in f^{-1}(Y - V)$, then $f(x) \in Y - V$ so $(x, f(x)) \in B$, hence $x \in \pi_1(B)$. Thus, $X - \pi_1(B) = f^{-1}(V)$ is open so f is continuous.

Problem 7.2 (Munkres §26, Ex. 9)

Generalize the tube lemma as follows:

Theorem. Let A and B be subspaces of X and Y, respectively; let N be an open set in $X \times Y$ containing $A \times B$. If A and B are compact, then there exist open sets U and V in X and Y, respectively, such that

$$A \times B \subset U \times V \subset N$$
.

Proof. We first prove the theorem for the case in which $A = \{a\}$. Since $a \times B$ is canonically homeomorphic to B, by Theorem 26.5, $a \times B$ is compact. Therefore, for every covering by open subsets $\{U_{\alpha}\}$ of $a \times B$, $U_{\alpha} \subset X \times Y$, there exists a finite subcollection, say $\{U_i\}_{i=1}^n$ covering $a \times B$.

PROBLEM 7.3 (MUNKRES §26, Ex. 12)

Let $p \colon X \to Y$ be a closed continuous surjective map such that $p^{-1}(y)$ is compact, for each $y \in Y$. (Such a map is called a *perfect map*.) Show that if Y is compact, then X is compact. [*Hint*: If U is an open set containing $p^{-1}(y)$, there is a neighborhood W of y such that $p^{-1}(W)$

is contained in U.

Proof.

PROBLEM 7.4 (MUNKRES §27, Ex. 2(B,D))

Let X be a metric space with metric d; let $A \subset X$ be nonempty.

- (b) Show that if A is compact, d(x, A) = d(x, a) for some $a \in A$.
- (d) Assume that A is compact; let U be an open set containing A. Show that some ε -neighborhood of A is contained in U.

Proof.

PROBLEM 7.5 (MUNKRES §27, Ex. 5)

Let X be a compact Hausdorff space; let $\{A_n\}$ be a countable collection of closed sets of X. Show that if each set A_n has empty interior in X, then the union $\bigcup A_n$ has empty interior in X. [Hint: Imitate the proof of Theorem 27.7.]

This is a special case of the Baire category theorem, which we shall study in Chapter 8.

Proof.

Problem 7.6 (Munkres $\S28$, Ex. 2(A))

Let $\{X_{\alpha}\}$ be a nindexed family of nonempty spaces.

(a) Show that if $\prod X_{\alpha}$ is locally compact, then each X_{α} is locally compact and X_{α} is compact for all but finitely many values of α .

Proof.

PROBLEM 7.7 (MUNKRES §28, Ex. 10)

Show that if X is a Hausdorff space that is locally compact at the point x, then for each neighborhood U of x, there is a neighborhood V of x such that V is compact and $\overline{V} \subset U$.

Proof.

CARLOS SALINAS PROBLEM 7.8

PROBLEM 7.8

Proof.

CARLOS SALINAS PROBLEM 7.9(A)

PROBLEM 7.9 (A)

Let S^1 denote the circle

$$S^1 = \{ (x, y) \in \mathbf{R}^2 \mid x^2 + y^2 = 1 \}$$

and let B^2 denote the closed disk

$$B^2 = \{ (x, y) \in \mathbf{R}^2 \mid x^2 + y^2 \le 1 \}.$$

Prove that the quotient space $(S^1 \times [0,1])/(S^1 \times 0)$ (see HW #4 for the notation) is homeomorphic to B^2 .

Proof.