Exercício 02 - MC886

Victor Seixas Souza - ra118896

5 de outubro de 2016

- 1) Qual a accuracia media (na validação de fora).
- 2) Quais os valores de C e gamma a serem usados no classificador final (fazer o 3-fold no conjunto todo).

1. Qual a acurácia media?

A acurácia média encontrada foi 0.920 ± 0.027 .

2. Quais os valores de C e γ a serem usados no classificador final?

O valor de C usado foi 2^5 e o de γ foi 2^{-5} .

	$C = 2^{-5}$	$C = 2^{-2}$	$C=2^0$	$C=2^2$	$C=2^5$
$\gamma = 2^{-15}$	0.565 ± 0.001	0.565 ± 0.001	0.565 ± 0.001	0.565 ± 0.001	0.789 ± 0.029
$\gamma = 2^{-10}$	0.565 ± 0.001	0.621 ± 0.049	0.813 ± 0.033	0.850 ± 0.025	0.892 ± 0.008
$\gamma = 2^{-5}$	0.565 ± 0.001	0.636 ± 0.008	0.903 ± 0.007	0.913 ± 0.007	0.913 ± 0.007
$\gamma = 2^0$	0.565 ± 0.001	0.565 ± 0.001	0.569 ± 0.004	0.569 ± 0.004	0.569 ± 0.004
$\gamma = 2^5$	0.565 ± 0.001				

Tabela 1: Acurácia variando parametros C e γ

victor @ randomgraph> python proj2.py

Best C = 32

Best gamma = 0.03125

Accuracy: 0.920 (+/- 0.027)

Listing 1: Saidas geradas pelo programa

```
from numpy import genfromtxt
    from sklearn.cross_validation import StratifiedKFold, cross_val_score
2
    from sklearn.svm import SVC
3
4
    X = genfromtxt('data1.csv', delimiter=',', skip_header=1, usecols=range(166))
5
    Y = genfromtxt('data1.csv', delimiter=',', skip_header=1, usecols=(166))
6
7
    # Generate indexes for Cross Validation
8
    skf3 = StratifiedKFold(Y, 3)
9
    skf5 = StratifiedKFold(Y, 5)
10
11
    # Searching parameters
12
    C_{range} = [2**-5, 2**-2, 2**0, 2**2, 2**5]
13
    gamma_range = [2**-15, 2**-10, 2**-5, 2**0, 2**5]
14
    C_best = C_range[0]
15
    gamma_best = gamma_range[0]
16
    current_score = 0
17
    # Grid Search
18
    for C in C_range:
19
        for gamma in gamma_range:
20
            clf = SVC(kernel='rbf', C=C, gamma=gamma)
21
            scores = cross_val_score(clf, X, Y, cv=skf3)
22
            scores_mean = scores.mean()
23
             #print("C", C, "qamma", qamma, "acc", scores.mean(), "+-", scores.std())
24
            if scores_mean >= current_score:
25
                 current_score = scores_mean
26
                 C_best = C
27
                 gamma_best = gamma
28
    print("Best C =", C_best)
29
    print("Best gamma =",gamma_best)
30
31
    # SVC with best parameters
32
    clf = SVC(kernel='rbf', C=C_best, gamma=gamma_best)
33
    scores = cross_val_score(clf, X, Y, cv=skf5)
34
    print("Accuracy: %0.3f (+/- %0.3f)" % (scores.mean(), scores.std() * 2))
```