SISTEMAS INTELIGENTES II TRABAJO DE CONTROL DIFUSO CURSO 2020-2021

APELLIDOS, NOMBRE: Camacho Marín, Sergio

GRUPO: 3A

DIRECCIÓN WEB DEL VIDEO

https://drive.google.com/file/d/1Z2l5R8qj96TkRsnPVtYkozZUiLPp0a5q/view?usp=sharing

DESCRIPCIÓN DEL DOMINIO DE APLICACIÓN

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.214.1385&rep=rep1&type=pdf

ENLACE A TODOS LOS DOCUMENTOS

https://drive.google.com/drive/folders/1-9YGL1bExAlFY1Nx85CSNydGIY1jyy5u?usp=sharing

RESOLUCIÓN MANUAL DE LOS DOS CASOS

Segundo (ass)

- · Senson_Luz_Exterion=60 7 Se unligen las
- Senson Luz Interior 14 reglas - Cardinan - visual = 3 J R1, R2, R3, R6, R9
- Intersection -> t-normal del producto
- Unión -> T-conorma dela sima
- Activador de les producto algebraico
- Acembraca Maximo
- + La medon de los valores miximos
 - . Interridud_Illuminación = 194
 - Activador de las = producto algorania
 - " Acumulación = Majomo
 - · La media de los wholes maximos

- R1: 21 U+(i*(AB(60), MAB(14)), (AB(3))2)
- RZ: 22 = U* (i* (MB(60), MB(14)), MB(3))
- R3: 23= Ux (ix (MB(60), MM(14)), MB(3))
- RG: 26: 14 (MA(60), MAG(AU))
- R7. 27= 1x (MM(60), MB (14))
- 21= Ux (ix (0,52,0,766), 0,5625)=0,7367
 - 22 = U×(1×(0,52,0,733),0,75)=0,7803
- 23=U*(i*(0,52,0),0,75)=0,75
- 26 = 1 * (0,48,0,766) = 0,3648
- { 27 = ix (0,48, 0,233) = 0,1484

Se vilorala Myla 18

Sistema de control difuso para iluminación de un edificio con Qfuzzylite

Sergio Camacho Marín

Basado en: Seno D. Panjaitan and Aryanto Hartoyo. A Lighting Control System in Buildings based on Fuzzy Logic.

Contexto

Sistema/Producto: Sistema de control difuso para la iluminación de un edificio.

Objetivo: Optimizar la electricidad requerida para la iluminación de un edificio.

Sistema de inferencia: El sistema de inferencia tendrá en cuenta dos sensores (interno y externo) para determinar la intensidad requerida para la iluminación y una condición visual.

Referencia bibliográfica:

Seno D. Panjaitan and Aryanto Hartoyo. A Lighting Control System in Buildings based on Fuzzy Logic.

URL:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.214.1385&rep=rep1&type=p

Visión general del modelo

El sistema propuesto de Seno D. Panjaitan & Aryanto Hartoyo consta de 2 entradas y una salida, y 15 reglas. Aunque para adaptar el problema será necesario una entrada adicional y una salida adicional para controlar la solución desde otra perspectiva.

- -Entradas: Dos sensores(interno y externo a la vivienda) y el tercero es una condición visual(respectivo a cada persona).
- -Salida: Intensidad de la iluminación y Vida Útil.

R2 if (Sensor_Luz_Exterior is Baja and Sensor_Luz_Interior is Baja) or Condicion_visual is Baja then Intensidad_Iluminacion is Alfa

R3 if (Sensor_Luz_Exterior is Baja and Sensor_Luz_Interior is Media) or Condicion_visual is Baja then Intensidad Iluminacion is Alta

R4.if (Sensor_Luz_Exterior is Baja and Sensor_Luz_Interior is Alta) or Condicion_visual is Media then Intensidad Illuminacion is Alta

R5.if (Sensor_Luz_Exterior is Baja and Sensor_Luz_Interior is Muy_Alta) or Condicion_visual is Media then Intensidad_Iluminacion is Media

R6.if (Sensor_Luz_Exterior is Media and Sensor_Luz_Interior is Muy_Baja) then Intensidad_Iluminacion is Alta

R7 if (Sensor_Luz_Exterior is Media and Sensor_Luz_Interior is Baja) then Intensidad_Iluminacion is Media

R8.if (Sensor Luz Exterior is Media and Sensor Luz Interior is Media) then Intensidad Illuminacion is Media

R9.if (Sensor_Luz_Exterior is Media and Sensor_Luz_Interior is Alta) then Intensidad_Iluminacion is Media

R10.if (Sensor_Luz_Exterior is Media and Sensor_Luz_Interior is Muy_Alta) then Intensidad_Iluminacion is Baja

R11 if (Sensor Luz Exterior is Alta and Sensor Luz Interior is Muy Baja) then Intensidad Iluminacion is Media

R12 if (Sensor_Luz_Exterior is Alta and Sensor_Luz_Interior is Baja) then Intensidad_Iluminacion is Baja

R13 if (Sensor_Luz_Exterior is Alta and Sensor_Luz_Interior is Media) then Intensidad_Iluminacion is Baja

R14.if (Sensor_Luz_Exterior is Alta and Sensor_Luz_Interior is Alta) then Intensidad_Iluminacion is Baja

R15.if (Sensor_Luz_Exterior is Alta and Sensor_Luz_Interior is Muy_Alta) then Intensidad_Iluminacion is Baja

R16.if Intensidad_iluminacion is Baja then Vida_Util is Alta

R17.if Intensidad_iluminacion is Media then Vida_Util is Alta

R18.if Intensidad_iluminacion is Alta then Vida_Util is Media

Inputs

Outputs

Cabe resaltar que se realizará un encadenamiento debido a que los componentes del entorno tendrá una vida útil dependiente de la intensidad de los mismos

Implementación en Qfuzzylite

Primer caso

Los valores son los siguientes:

- Sensor_Luz_Exterior=60
- Sensor_Luz_Interior=14
- Condicion_visual=3

Utilizando para la intersección la t-norma del mínimo y para la unión la t-conorma del máximo, junto con la implicación de Mamdani.

Se ha utilizado el primero de los máximos.

Primer Caso

Mediante Qfuzzylite obtenemos que la Intensidad_Iluminacion es de 175,625 y por lo tanto la Vida_Util es de 4,525.

Primer Caso(Resolución a Mano)

R1.Si (Sensor_Luz_Exterior es Baja y Sensor_Luz_Interior es Muy_Baja) o Condicion_visual es muy Baja, entonces Intensidad_Iluminacion es Alta.

Z1=Valor de verdad=max(min(0.52, 0.766), 05625)=0.5625

R2.Si (Sensor_Luz_Exterior es Baja y Sensor_Luz_Interior es Baja) o Condicion_visual es Baja, entonces Intensidad_Iluminación es Alfa.

Z2=Valor de verdad=max(min(0.52, 0.233),0.75)=0.75

R3.Si (Sensor_Luz_Exterior es Baja y Sensor_Luz_Interior es Media) o Condicion_visual es Baja, entonces Intensidad_Iluminación es Alfa

Z3=Valor de verdad= max(min(0.52, 0), 0.75)=0.75

R6.Si (Sensor_Luz_Exterior es Media y Sensor_Luz_Interior es Muy_Baja), entonces Intensidad_Iluminación es Alta Z6= Valor de verdad = min(0.48, 0.766)=0.48

R7.Si (Sensor_Luz_Exterior es Media y Sensor_Luz_Interior es Baja), entonces Intensidad_Iluminación es Media Z7=Valor de verdad= min(0.48, 0.233)=0.233

Primer Caso(Resolución a Mano)

Como resultado de la acumulación de evidencias, obtenemos esta gráfica.

Y mediante el método primero de los máximos, obtenemos que es 175, mientras que Qfuzzylite es 175,625.

Primer Caso(Resolución a Mano)

Como resultado de la acumulación de evidencias, obtenemos esta gráfica.

Y mediante el método primero de los máximos, obtenemos que es 4,5, mientras que Qfuzzylite es 4,525. Mediante la utilización de las reglas encadenadas: R17.Si Intensidad_iluminación es Media, entonces Vida_Util es Alta Z17=Valor de verdad=0.25

R18.Si Intensidad_iluminación es Alta, entonces Vida_Util es Media Z18=Valor de verdad=0.75

Segundo Caso

Los valores son los siguientes:

- Sensor_Luz_Exterior=60
- Sensor_Luz_Interior=14
- Condicion_visual=3

Utilizando para la intersección la t-norma del producto y para la unión la t-conorma de la suma, junto con la implicación de producto algebraico.

Se ha utilizado la media de los máximos.

Segundo Caso

Mediante Qfuzzylite obtenemos que la Intensidad_lluminacion es de 193,750 y por lo tanto la Vida_Util es de 5.

Segundo Caso(Resolución a mano)

R1.Si (Sensor_Luz_Exterior es Baja y Sensor_Luz_Interior es Muy_Baja) o Condicion_visual es muy Baja, entonces Intensidad_Iluminacion es Alta.

Z1=Valor de verdad=U*(I*(0.52, 0.766), 05625)=0.7367

R2.Si (Sensor_Luz_Exterior es Baja y Sensor_Luz_Interior es Baja) o Condicion_visual es Baja, entonces Intensidad_Iluminación es Alta.

Z2=Valor de verdad=U*(I*(0.52, 0.233),0.75)=0.7803

R3.Si (Sensor_Luz_Exterior es Baja y Sensor_Luz_Interior es Media) o Condicion_visual es Baja, entonces Intensidad_Iluminación es Alta.

Z3=Valor de verdad= U*(I*(0.52, 0), 0.75)=0.75

R6.Si (Sensor_Luz_Exterior es Media y Sensor_Luz_Interior es Muy_Baja), entonces Intensidad_Iluminación es Alta Z6= Valor de verdad = I*(0.48, 0.766)=0.3648

R7.Si (Sensor_Luz_Exterior es Media y Sensor_Luz_Interior es Baja), entonces Intensidad_Iluminación es Media Z7=Valor de verdad= I*(0.48, 0.233)=0.11184

Segundo Caso(Resolución a mano)

Como resultado de la acumulación de evidencias, obtenemos esta gráfica.

Y mediante el método media de los máximos, obtenemos que la Intensidad_lluminacion es de 194, mientras que con Qfuzzylite es de 193,750

Segundo Caso(Resolución a mano)

Como resultado de la acumulación de evidencias, obtenemos esta gráfica.

Y mediante el método media de los máximos, obtenemos que la Vida_Util es de 4,5, mientras que con Qfuzzylite es de 4,525

