Answer: Assume that Au_1, \ldots, Au_k are LI.

Answer: Assume that Au_1, \ldots, Au_k are LI.

To show: u_1, \ldots, u_k are LI. It is clear that $u_i \neq 0$ for $i = 1, \ldots, k$, otherwise $Au_i = 0$. Suppose that u_1, \cdots, u_k are linearly dependent.

Answer: Assume that Au_1, \ldots, Au_k are LI.

To show: u_1, \ldots, u_k are LI. It is clear that $u_i \neq 0$ for $i = 1, \ldots, k$, otherwise $Au_i = 0$. Suppose that u_1, \dots, u_k are linearly dependent.

Then there exists $\alpha_1, \alpha_2, \ldots, \alpha_k \in \mathbb{R}$ not all zero such that $\sum_{i=1}^{n} \alpha_i u_i = 0$.

Multiplying both side by A.

Answer: Assume that Au_1, \ldots, Au_k are LI.

To show: u_1, \ldots, u_k are LI. It is clear that $u_i \neq 0$ for $i = 1, \ldots, k$, otherwise $Au_i = 0$. Suppose that u_1, \dots, u_k are linearly dependent.

Then there exists $\alpha_1, \alpha_2, \dots, \alpha_k \in \mathbb{R}$ not all zero such that $\sum_{i=1}^{\kappa} \alpha_i u_i = 0$.

Multiplying both side by A.

$$A\sum_{i=1}^k \alpha_i u_i = 0$$

Answer: Assume that Au_1, \ldots, Au_k are LI.

To show: u_1, \ldots, u_k are LI. It is clear that $u_i \neq 0$ for $i = 1, \ldots, k$, otherwise $Au_i = 0$. Suppose that u_1, \cdots, u_k are linearly dependent.

Then there exists $\alpha_1, \alpha_2, \ldots, \alpha_k \in \mathbb{R}$ not all zero such that $\sum_{i=1}^k \alpha_i u_i = 0$. Multiplying both side by A.

$$A\sum_{i=1}^k \alpha_i u_i = 0$$

 $\sum_{i=1}^k \alpha_i A u_i = 0.$ This implies that Au_1, Au_2, \dots, Au_k are LD. A contradiction.

Hence u_1, \ldots, u_k are LI.

Answer: Assume that Au_1, \ldots, Au_k are LI.

To show: u_1, \ldots, u_k are LI. It is clear that $u_i \neq 0$ for $i = 1, \ldots, k$, otherwise $Au_i = 0$. Suppose that u_1, \cdots, u_k are linearly dependent.

Then there exists $\alpha_1, \alpha_2, \dots, \alpha_k \in \mathbb{R}$ not all zero such that $\sum_{i=1}^k \alpha_i u_i = 0$.

 $A\sum_{i=1}^k \alpha_i u_i = 0$

Multiplying both side by A.

 $\overline{i=1}$ $\sum_{i=1}^k \alpha_i A u_i = 0.$ This implies that $A u_1, A u_2, \ldots, A u_k$ are LD. A contradiction.

Hence u_1, \ldots, u_k are LI.

Note: We have not used invertibility of A to show this part. That means if

A u_1, \ldots, Au_k are LI where A is any matrix of size n, then u_1, \ldots, u_k are LI.

To show: Au_1, Au_2, \ldots, Au_k are LI.

To show: Au_1, Au_2, \ldots, Au_k are LI.

Why $Au_i \neq 0$ for i = 1, ..., k? $u_i \neq 0$ for i = 1, ..., k as they are LI. If $Au_i = 0$ for some i, then $u_i = 0$ as A is invertible. So $Au_i \neq 0$ for i = 1, ..., k.

To show: Au_1, Au_2, \ldots, Au_k are LI.

Why $Au_i \neq 0$ for i = 1, ..., k? $u_i \neq 0$ for i = 1, ..., k as they are LI. If $Au_i = 0$ for some i, then $u_i = 0$ as A is invertible. So $Au_i \neq 0$ for i = 1, ..., k.

Suppose that Au_1, Au_2, \ldots, Au_k are LD. Then there exists $\alpha_1, \alpha_2, \ldots, \alpha_k \in \mathbb{R}$

 \mathbb{R} not all zero such that $\sum_{i=1}^{n} \alpha_i A u_i = 0$.

To show: Au_1, Au_2, \ldots, Au_k are LI.

Why $Au_i \neq 0$ for i = 1, ..., k? $u_i \neq 0$ for i = 1, ..., k as they are LI. If $Au_i = 0$ for some i, then $u_i = 0$ as A is invertible. So $Au_i \neq 0$ for i = 1, ..., k.

Suppose that Au_1, Au_2, \ldots, Au_k are LD. Then there exists $\alpha_1, \alpha_2, \ldots, \alpha_k \in \mathbb{R}$ not all zero such that $\sum_{i=1}^k \alpha_i Au_i = 0$.

$$A^{-1} \sum_{i=1}^{k} \alpha_i A u_i = 0$$

To show: Au_1, Au_2, \ldots, Au_k are LI.

Why $Au_i \neq 0$ for i = 1, ..., k? $u_i \neq 0$ for i = 1, ..., k as they are LI. If $Au_i = 0$ for some i, then $u_i = 0$ as A is invertible. So $Au_i \neq 0$ for i = 1, ..., k.

Suppose that Au_1, Au_2, \ldots, Au_k are LD. Then there exists $\alpha_1, \alpha_2, \ldots, \alpha_k \in \mathbb{R}$ not all zero such that $\sum_{i=1}^k \alpha_i Au_i = 0$.

$$A^{-1} \sum_{i=1}^k \alpha_i A u_i = 0$$

 Au_1, Au_2, \ldots, Au_k are LD.

$$\sum_{i=1}^k \alpha_i u_i = 0$$
. This implies u_1, \ldots, u_k are LD. A contradiction. Hence

Problem 0.0.9: Let \mathbb{V} be a vector space over \mathbb{F} . Let A and B be two non-empty subsets of \mathbb{V} . Prove or disprove: $ls(A) \cap ls(B) \neq \{0\} \implies A \cap B \neq \phi$.

 $\{(1,2),(2,1)\}.$

Problem 0.0.9: Let \mathbb{V} be a vector space over \mathbb{F} . Let A and B be two non-

empty subsets of \mathbb{V} . Prove or disprove: $ls(A) \cap ls(B) \neq \{0\} \implies A \cap B \neq \phi$.

Answer: Disprove. Consider \mathbb{R}^2 and $A = \{(1,0),(0,1)\}$ and $B = \{(1,0),(0,1)\}$

 $\{(1,2),(2,1)\}.$

Problem 0.0.9: Let \mathbb{V} be a vector space over \mathbb{F} . Let A and B be two nonempty subsets of \mathbb{V} . Prove or disprove: $ls(A) \cap ls(B) \neq \{0\} \implies A \cap B \neq \phi$.

Answer: Disprove. Consider \mathbb{R}^2 and $A = \{(1,0),(0,1)\}$ and $B = \{(1,0),(0,1)\}$

Notice that $ls(A) = \mathbb{R}^2$ and $ls(B) = \mathbb{R}^2$. Hence $ls(A) \cap ls(B) \neq \{0\}$.

Problem 0.0.9: Let $\mathbb V$ be a vector space over $\mathbb F$. Let A and B be two non-empty subsets of $\mathbb V$. Prove or disprove: $ls(A) \cap ls(B) \neq \{0\} \implies A \cap B \neq \phi$.

Answer: Disprove. Consider \mathbb{R}^2 and $A = \{(1,0),(0,1)\}$ and $B = \{(1,0),(0,1)\}$

Notice that $ls(A) = \mathbb{R}^2$ and $ls(B) = \mathbb{R}^2$. Hence $ls(A) \cap ls(B) \neq \{0\}$.

But $\Lambda \cap R = A$

 $\{(1,2),(2,1)\}.$

But $A \cap B = \phi$

Answer: First assume that $\mathbb{V}(\mathbb{F})$ has a unique basis.

Answer: First assume that $\mathbb{V}(\mathbb{F})$ has a unique basis.

There are two cases. Either $\mathbb V$ is trivial or non-trivial.

Answer: First assume that $\mathbb{V}(\mathbb{F})$ has a unique basis.

There are two cases. Either $\mathbb {V}$ is trivial or non-trivial.

Case I. If $\mathbb V$ is trivial, then we are done.

Answer: First assume that $\mathbb{V}(\mathbb{F})$ has a unique basis.

There are two cases. Either $\mathbb V$ is trivial or non-trivial.

Case I. If V is trivial, then we are done.

Case II. $\mathbb V$ is non-trivial. First we show that dim $\mathbb V=1$.

Answer: First assume that $\mathbb{V}(\mathbb{F})$ has a unique basis.

There are two cases. Either $\mathbb V$ is trivial or non-trivial.

Case I. If $\mathbb V$ is trivial, then we are done.

Case II. $\mathbb V$ is non-trivial. First we show that dim $\mathbb V=1$.

Suppose that dim $\mathbb{V} \geq 2$. There are two cases.

Answer: First assume that $\mathbb{V}(\mathbb{F})$ has a unique basis.

There are two cases. Either V is trivial or non-trivial.

Case I. If $\mathbb V$ is trivial, then we are done.

Case II. $\mathbb V$ is non-trivial. First we show that dim $\mathbb V=1$.

Suppose that $\text{dim}\,\mathbb{V}\geq 2.$ There are two cases.

Case II(a). $\mathbb V$ is finite dimensional. Let $\{x_1,\ldots,x_k\}$ be a basis of $\mathbb V$ where $k\geq 2$.

Answer: First assume that $\mathbb{V}(\mathbb{F})$ has a unique basis.

There are two cases. Either V is trivial or non-trivial.

Case I. If $\mathbb V$ is trivial, then we are done.

Case II. $\mathbb V$ is non-trivial. First we show that dim $\mathbb V=1$.

Suppose that dim $\mathbb{V} > 2$. There are two cases.

Case II(a). $\mathbb V$ is finite dimensional. Let $\{x_1,\ldots,x_k\}$ be a basis of $\mathbb V$ where $k\geq 2$.

Consider $B = \{x_1, x_2, \dots, x_i, \dots, x_{j-1}, x_j + x_i, x_{j+1}, \dots, x_k\}$. To show that B is also a basis of \mathbb{V} .

Answer: First assume that $\mathbb{V}(\mathbb{F})$ has a unique basis.

There are two cases. Either V is trivial or non-trivial.

Case I. If V is trivial, then we are done.

Case II. $\mathbb V$ is non-trivial. First we show that dim $\mathbb V=1$.

Suppose that dim $\mathbb{V} \geq 2$. There are two cases.

Case II(a). $\mathbb V$ is finite dimensional. Let $\{x_1,\ldots,x_k\}$ be a basis of $\mathbb V$ where $k\geq 2$.

Consider $B=\{x_1,x_2,\ldots,x_i,\ldots,x_{j-1},x_j+x_i,x_{j+1},\ldots,x_k\}$. To show that B is also a basis of $\mathbb V$.

Using Problem 0.0.8 in tutorial sheet, you can easily show that B is LI. Since B is LI and $|B| = \dim(\mathbb{V})$. Hence B is basis. A contradiction that \mathbb{V} has unique basis. Hence $\dim \mathbb{V} = 1$.

Case II(b). \mathbb{V} is infinite dimensional.

Case II(b). \mathbb{V} is infinite dimensional.

Let $S = \{x_{\alpha} : \alpha \in I\}$ be a basis of \mathbb{V} where I is an index set.

Case II(b). V is infinite dimensional.

Let $S = \{x_{\alpha} : \alpha \in I\}$ be a basis of \mathbb{V} where I is an index set.

Take $x_{\gamma}, x_{\beta} \in S$. Then $x_{\gamma} + x_{\beta} \in \mathbb{V}$ as \mathbb{V} is a vector space.

Case II(b). \mathbb{V} is infinite dimensional.

Let $S = \{x_{\alpha} : \alpha \in I\}$ be a basis of \mathbb{V} where I is an index set.

Take $x_{\gamma}, x_{\beta} \in S$. Then $x_{\gamma} + x_{\beta} \in \mathbb{V}$ as \mathbb{V} is a vector space.

But $x_{\gamma} + x_{\beta} \notin S$ as S is LI, otherwise there is a vector $x_{\gamma} + x_{\beta}$ which is a linear combination of x_{γ} and x_{β} .

Case II(b). $\mathbb V$ is infinite dimensional.

Let $S = \{x_{\alpha} : \alpha \in I\}$ be a basis of \mathbb{V} where I is an index set.

Take $x_{\gamma}, x_{\beta} \in S$. Then $x_{\gamma} + x_{\beta} \in \mathbb{V}$ as \mathbb{V} is a vector space.

But $x_{\gamma} + x_{\beta} \notin S$ as S is LI, otherwise there is a vector $x_{\gamma} + x_{\beta}$ which is a linear combination of x_{γ} and x_{β} .

Consider
$$B = \left(\{ x_{\alpha} : \alpha \in I \} - \{ x_{\gamma} \right) \cup \{ x_{\gamma} + x_{\beta} \}.$$

Case II(b). \mathbb{V} is infinite dimensional.

Let $S = \{x_{\alpha} : \alpha \in I\}$ be a basis of \mathbb{V} where I is an index set.

Take $x_{\gamma}, x_{\beta} \in S$. Then $x_{\gamma} + x_{\beta} \in \mathbb{V}$ as \mathbb{V} is a vector space.

But $x_{\gamma} + x_{\beta} \notin S$ as S is LI, otherwise there is a vector $x_{\gamma} + x_{\beta}$ which is a linear combination of x_{γ} and x_{β} .

Consider
$$B = \left(\{ x_{\alpha} : \alpha \in I \} - \{ x_{\gamma} \right) \cup \{ x_{\gamma} + x_{\beta} \}.$$

To show that B is a basis of V. Let A be a finite subset of B.

Case II(b). \mathbb{V} is infinite dimensional.

Let $S = \{x_{\alpha} : \alpha \in I\}$ be a basis of \mathbb{V} where I is an index set.

Take $x_{\gamma}, x_{\beta} \in S$. Then $x_{\gamma} + x_{\beta} \in \mathbb{V}$ as \mathbb{V} is a vector space.

But $x_{\gamma} + x_{\beta} \notin S$ as S is LI, otherwise there is a vector $x_{\gamma} + x_{\beta}$ which is a linear combination of x_{γ} and x_{β} .

Consider
$$B = \left(\{ x_{\alpha} : \alpha \in I \} - \{ x_{\gamma} \right) \cup \{ x_{\gamma} + x_{\beta} \}.$$

To show that B is a basis of V. Let A be a finite subset of B.

There are two cases.

Case II(b). $\mathbb V$ is infinite dimensional.

Let $S = \{x_{\alpha} : \alpha \in I\}$ be a basis of \mathbb{V} where I is an index set.

Take $x_{\gamma}, x_{\beta} \in S$. Then $x_{\gamma} + x_{\beta} \in \mathbb{V}$ as \mathbb{V} is a vector space.

But $x_{\gamma} + x_{\beta} \notin S$ as S is LI, otherwise there is a vector $x_{\gamma} + x_{\beta}$ which is a linear combination of x_{γ} and x_{β} .

Consider
$$B = \left(\{ x_{\alpha} : \alpha \in I \} - \{ x_{\gamma} \right) \cup \{ x_{\gamma} + x_{\beta} \}.$$

To show that B is a basis of V. Let A be a finite subset of B.

There are two cases.

Case I. $A = \{x_{\alpha_1}, x_{\alpha_2}, \dots, x_{\alpha_k}\}$ that means $x_{\gamma} + x_{\beta}$ is not in A. Therefore $A \subseteq S$. Since S is LI, then A is LI.

Case II(b). \mathbb{V} is infinite dimensional.

Let $S = \{x_{\alpha} : \alpha \in I\}$ be a basis of \mathbb{V} where I is an index set.

Take $x_{\gamma}, x_{\beta} \in S$. Then $x_{\gamma} + x_{\beta} \in \mathbb{V}$ as \mathbb{V} is a vector space.

But $x_{\gamma} + x_{\beta} \notin S$ as S is LI, otherwise there is a vector $x_{\gamma} + x_{\beta}$ which is a linear combination of x_{γ} and x_{β} .

Consider
$$B = \left(\{ x_{\alpha} : \alpha \in I \} - \{ x_{\gamma} \right) \cup \{ x_{\gamma} + x_{\beta} \}.$$

To show that B is a basis of V. Let A be a finite subset of B.

There are two cases.

Case I. $A = \{x_{\alpha_1}, x_{\alpha_2}, \dots, x_{\alpha_k}\}$ that means $x_{\gamma} + x_{\beta}$ is not in A. Therefore $A \subseteq S$. Since S is LI, then A is LI.

Case II. $A = \{x_{\alpha_1}, x_{\alpha_2}, \dots, x_{\gamma} + x_{\beta}, \dots, x_{\alpha_k}\}$. Then applying the same techniques as of finite case, we have A is LI.

Therefore each finite subset of B is LI. Hence B is LI.

Therefore each finite subset of B is LI. Hence B is LI.

To show $ls(B) = \mathbb{V}$. It is enough to show ls(B) = ls(S). $B - \{x_{\gamma} + x_{\beta}\} = S - \{x_{\gamma}\}$ and you know that $x_{\gamma} + x_{\beta}$ is in B. Using this you can easily show that ls(B) = ls(S).

Therefore each finite subset of B is LI. Hence B is LI.

To show $ls(B) = \mathbb{V}$. It is enough to show ls(B) = ls(S). $B - \{x_{\gamma} + x_{\beta}\} = S - \{x_{\gamma}\}$ and you know that $x_{\gamma} + x_{\beta}$ is in B. Using this you can easily show that ls(B) = ls(S).

Hence B is a basis of \mathbb{V} . A contradiction that \mathbb{V} has two basis.

We now show that $|\mathbb{F}|=2$. Suppose that $|\mathbb{F}|\geq 2$. Then |F| has at least one element which is other than additive identity and multiplicative identity.

We now show that $|\mathbb{F}|=2$. Suppose that $|\mathbb{F}|\geq 2$. Then |F| has at least one element which is other than additive identity and multiplicative identity.

Let $\{x\}$ be a basis of $\mathbb V$ and let $\alpha\in\mathbb F$ such that α is neither 0 nor 1.

We now show that $|\mathbb{F}| = 2$. Suppose that $|\mathbb{F}| \geq 2$. Then |F| has at least

one element which is other than additive identity and multiplicative identity. Let $\{x\}$ be a basis of \mathbb{V} and let $\alpha \in \mathbb{F}$ such that α is neither 0 nor 1.

Then $\{x\}$ and $\{\alpha x\}$ both are basis of \mathbb{V} . A contradiction that \mathbb{V} has unique

basis. Hence $|\mathbb{F}| = 2$.

$$\mathbb{V}_1 = \mathsf{ls}(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix})$$
 is a VS over \mathbb{Z}_2 with unique basis.

Let
$$\mathbb{V} = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \in \mathbb{Z}_2 \right\}.$$

$$\mathbb{V}_1 = \text{ls}(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix})$$
 is a VS over \mathbb{Z}_2 with unique basis.

$$\mathbb{V}_2 = \mathsf{ls}(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix})$$
 is a VS over \mathbb{Z}_2 with unique basis.

$$\mathbb{V}_1 = \text{ls}(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix})$$
 is a VS over \mathbb{Z}_2 with unique basis.

$$\mathbb{V}_2 = \text{ls}(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix})$$
 is a VS over \mathbb{Z}_2 with unique basis.

$$\mathbb{V}_2 = \mathsf{ls}(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix})$$
 is a VS over \mathbb{Z}_2 with unique basis.

$$\mathbb{V}_1 = \mathsf{ls}(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix})$$
 is a VS over \mathbb{Z}_2 with unique basis.

$$\mathbb{V}_2 = \mathsf{ls}(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix})$$
 is a VS over \mathbb{Z}_2 with unique basis.

$$\mathbb{V}_2 = \mathsf{ls}(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix})$$
 is a VS over \mathbb{Z}_2 with unique basis.

$$\mathbb{V}_3 = \mathsf{ls}(\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix})$$
 is a VS over \mathbb{Z}_2 with unique basis.

$$\mathbb{V}_1 = \text{ls}(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix})$$
 is a VS over \mathbb{Z}_2 with unique basis.

$$\mathbb{V}_2 = \mathsf{ls}(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix})$$
 is a VS over \mathbb{Z}_2 with unique basis.

$$\mathbb{V}_2 = \mathsf{ls}(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix})$$
 is a VS over \mathbb{Z}_2 with unique basis.

$$\mathbb{V}_3 = \mathsf{ls}(\left[egin{matrix} 0 & 0 \\ 0 & 1 \end{smallmatrix}
ight])$$
 is a VS over \mathbb{Z}_2 with unique basis.

$$\mathbb{V}_4 = \text{ls}(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix})$$
 is a VS over \mathbb{Z}_2 with unique basis.

Answer: Let $B = \{u_1, u_2, \dots, u_n\}$ be a basis of \mathbb{V} . Any element in \mathbb{V} can be written as a **unique** linear combination of u_1, u_2, \ldots, u_n .

Answer: Let $B = \{u_1, u_2, \dots, u_n\}$ be a basis of \mathbb{V} . Any element in \mathbb{V} can be written as a **unique** linear combination of u_1, u_2, \dots, u_n .

That is $c_1u_1 + c_2u_2 + c_3u_3 + \cdots + c_nu_n$ where $c_i \in \mathbb{F}$.

Answer: Let $B = \{u_1, u_2, \dots, u_n\}$ be a basis of \mathbb{V} . Any element in \mathbb{V} can be written as a **unique** linear combination of u_1, u_2, \dots, u_n .

That is $c_1u_1 + c_2u_2 + c_3u_3 + \cdots + c_nu_n$ where $c_i \in \mathbb{F}$.

For each c_i we have p choices and the choice of c_i does not depend on the choice of c_j for $i \neq j$.

Answer: Let $B = \{u_1, u_2, \dots, u_n\}$ be a basis of \mathbb{V} . Any element in \mathbb{V} can be written as a **unique** linear combination of u_1, u_2, \dots, u_n .

That is $c_1u_1 + c_2u_2 + c_3u_3 + \cdots + c_nu_n$ where $c_i \in \mathbb{F}$.

For each c_i we have p choices and the choice of c_i does not depend on the choice of c_j for $i \neq j$.

Hence $|\mathbb{V}| = p^n$.

Transcendental Number: A real number α is called transcendental number if α is not a root of any non-zero polynomial with rational coefficients.

Transcendental Number: A real number α is called transcendental number if α is not a root of any non-zero polynomial with rational coefficients.

Example: π , e are examples of transcendental number. There are infinite many transcendental number.

Transcendental Number: A real number α is called transcendental number if α is not a root of any non-zero polynomial with rational coefficients.

Example: π , e are examples of transcendental number. There are infinite many transcendental number.

Answer: To show $\mathbb{R}(\mathbb{Q})$ is infinite dimensional.

Transcendental Number: A real number α is called transcendental number if α is not a root of any non-zero polynomial with rational coefficients.

Example: π , e are examples of transcendental number. There are infinite many transcendental number.

Answer: To show $\mathbb{R}(\mathbb{Q})$ is infinite dimensional.

If we are able to show that for each $n \in \mathbb{N}$ there exists a LI subset of $\mathbb{R}(\mathbb{Q})$ containing n+1 elements. Then we are done.

Transcendental Number: A real number α is called transcendental number if α is not a root of any non-zero polynomial with rational coefficients.

Example: π,e are examples of transcendental number. There are infinite many transcendental number.

Answer: To show $\mathbb{R}(\mathbb{Q})$ is infinite dimensional.

If we are able to show that for each $n \in \mathbb{N}$ there exists a LI subset of $\mathbb{R}(\mathbb{Q})$ containing n+1 elements. Then we are done.

Let α be a transcendental number. To show that $\{1,\alpha,\alpha^2,\alpha^3,\dots,\alpha^n\}$ is LI.

We never have non-trivial solution of this equation as α is transcendental.

We never have non-trivial solution of this equation as α is transcendental.

Hence $\{1,\alpha,\alpha^2,\alpha^3,\ldots,\alpha^n\}$ is LI. For each n we have a LI set of n+1 vectors.

We never have non-trivial solution of this equation as α is transcendental.

Hence $\{1, \alpha, \alpha^2, \alpha^3, \dots, \alpha^n\}$ is LI. For each n we have a LI set of n+1 vectors.

Therefore $\mathbb{R}(\mathbb{Q})$ is infinite dimensional.

Answer: No.

Answer: No.

Consider $\mathbb{R}^2(\mathbb{R})$. Take $S = \{(x,0) : x \in R\}$ and $T = \{(0,y) : y \in R\}$.

Answer: No.

Consider W = |s(S(1, 1))| It is easy to check W is complement of S and

Consider $\mathbb{R}^2(\mathbb{R})$. Take $S = \{(x, 0) : x \in R\}$ and $T = \{(0, y) : y \in R\}$.

Consider $W = ls(\{(1,1)\})$. It is easy to check W is complement of S and T. But $S \neq T$.

Problem 0.0.19: Show that a non-trivial subspace S of a finite dimensional vector space \mathbb{V} has two virtually disjoint complements iff $\dim(S) \geq \frac{\dim(\mathbb{V})}{2}$.

Problem 0.0.19: Show that a non-trivial subspace S of a finite dimensional vector space \mathbb{V} has two virtually disjoint complements iff $\dim(S) \geq \frac{\dim(\mathbb{V})}{2}$.

Answer: We first assume that $\dim(S) \ge \frac{\dim(\mathbb{V})}{2}$.

Problem 0.0.19: Show that a non-trivial subspace S of a finite dimensional vector space $\mathbb V$ has two virtually disjoint complements iff $\dim(S) \geq \frac{\dim(\mathbb V)}{2}$.

Answer: We first assume that $\dim(S) \geq \frac{\dim(\mathbb{V})}{2}$.

To show S has two virtually disjoint complements.

Problem 0.0.19: Show that a non-trivial subspace S of a finite dimensional vector space $\mathbb V$ has two virtually disjoint complements iff $\dim(S) \geq \frac{\dim(\mathbb V)}{2}$.

Answer: We first assume that $\dim(S) \geq \frac{\dim(\mathbb{V})}{2}$.

To show S has two virtually disjoint complements.

Let $\dim(\mathbb{V}) = n$ and $\dim(S) = k$. Then $k \ge \frac{n}{2}$.

Problem 0.0.19: Show that a non-trivial subspace S of a finite dimensional vector space $\mathbb V$ has two virtually disjoint complements iff $\dim(S) \geq \frac{\dim(\mathbb V)}{2}$.

Answer: We first assume that $\dim(S) \geq \frac{\dim(\mathbb{V})}{2}$.

To show S has two virtually disjoint complements.

Let $\dim(\mathbb{V}) = n$ and $\dim(S) = k$. Then $k \ge \frac{n}{2}$.

Let $\dim(V) = H$ and $\dim(S) = K$. Then $K \ge \frac{1}{2}$

Let $\{x_1,\ldots,x_k\}$ be a basis of S. We extend it to basis of $\mathbb V$ that is $\{x_1,\ldots,x_k,x_{k+1},\ldots,x_n\}$.

Problem 0.0.19: Show that a non-trivial subspace S of a finite dimensional vector space \mathbb{V} has two virtually disjoint complements iff $\dim(S) \geq \frac{\dim(\mathbb{V})}{2}$.

Answer: We first assume that $\dim(S) \ge \frac{\dim(\mathbb{V})}{2}$.

To show S has two virtually disjoint complements.

Let $\dim(\mathbb{V}) = n$ and $\dim(S) = k$. Then $k \geq \frac{n}{2}$.

Let $\{x_1,\ldots,x_k\}$ be a basis of S. We extend it to basis of $\mathbb V$ that is $\{x_1,\ldots,x_k,x_{k+1},\ldots,x_n\}$.

Take $S_1 = ls(x_{k+1}, ..., x_n)$. Then S_1 is a complement of S.

Problem 0.0.19: Show that a non-trivial subspace S of a finite dimensional vector space \mathbb{V} has two virtually disjoint complements iff $\dim(S) \geq \frac{\dim(\mathbb{V})}{2}$.

Answer: We first assume that $\dim(S) \ge \frac{\dim(\mathbb{V})}{2}$.

To show S has two virtually disjoint complements.

Let $\dim(\mathbb{V}) = n$ and $\dim(S) = k$. Then $k \ge \frac{n}{2}$.

Let $\{x_1,\ldots,x_k\}$ be a basis of S. We extend it to basis of $\mathbb V$ that is $\{x_1,\ldots,x_k,x_{k+1},\ldots,x_n\}$.

Take $S_1 = ls(x_{k+1}, ..., x_n)$. Then S_1 is a complement of S.

Consider $\{x_1, ..., x_k, x_{k+1} + x_1, x_{k+2} + x_2, ..., x_n + x_{n-k}\}$. This is possible as $k \ge \frac{n}{2}$.

Problem 0.0.19: Show that a non-trivial subspace S of a finite dimensional vector space \mathbb{V} has two virtually disjoint complements iff $\dim(S) \geq \frac{\dim(\mathbb{V})}{2}$.

Answer: We first assume that $\dim(S) \ge \frac{\dim(V)}{2}$.

To show S has two virtually disjoint complements.

Let $\dim(\mathbb{V}) = n$ and $\dim(S) = k$. Then $k \geq \frac{n}{2}$.

Let $\{x_1,\ldots,x_k\}$ be a basis of S. We extend it to basis of $\mathbb V$ that is $\{x_1,\ldots,x_k,x_{k+1},\ldots,x_n\}$.

Take $S_1 = ls(x_{k+1}, ..., x_n)$. Then S_1 is a complement of S.

Consider $\{x_1,\ldots,x_k,x_{k+1}+x_1,x_{k+2}+x_2,\ldots,x_n+x_{n-k}\}$. This is possible as $k\geq \frac{n}{2}$.

To show this set is basis of \mathbb{V} .

To show $S_1 \cap S_2 = \{0\}$.

To show $S_1 \cap S_2 = \{0\}.$

Let $x \in S_1 \cap S_2 = \{0\}$. Then $x \in S_1$ and $x \in S_2$.

To show $S_1 \cap S_2 = \{0\}.$

Let $x \in S_1 \cap S_2 = \{0\}$. Then $x \in S_1$ and $x \in S_2$.

$$x = c_1 x_{k+1} + c_2 x_{k+2} + \cdots + c_{n-k} x_n$$
 and

To show $S_1 \cap S_2 = \{0\}.$

Let $x \in S_1 \cap S_2 = \{0\}$. Then $x \in S_1$ and $x \in S_2$.

$$x = c_1 x_{k+1} + c_2 x_{k+2} + \dots + c_{n-k} x_n$$
 and

$$x = c_1 x_{k+1} + c_2 x_{k+2} + \cdots + c_{n-k} x_n$$
 and
$$x = b_1 (x_{k+1} + x_1) + b_2 (x_{k+2} + x_2) + \cdots + b_{n-k} (x_n + x_{n-k})$$

To show $S_1 \cap S_2 = \{0\}$.

Let $x \in S_1 \cap S_2 = \{0\}$. Then $x \in S_1$ and $x \in S_2$.

 $x = c_1 x_{k+1} + c_2 x_{k+2} + \cdots + c_{n-k} x_n$ and

 $x = c_1 x_{k+1} + c_2 x_{k+2} + \cdots + c_{n-k} x_n$ and

$$x = b_1(x_{k+1} + x_1) + b_2(x_{k+2} + x_2) + \cdots + b_{n-k}(x_n + x_{n-k})$$

$$b_1x_1 + \cdots + b_{n-k}x_{n-k} + (b_1 - c_1)x_{k+1} + \cdots + (b_{n-k} - c_{n-k})x_n = 0$$

To show $S_1 \cap S_2 = \{0\}.$

Let $x \in S_1 \cap S_2 = \{0\}$. Then $x \in S_1$ and $x \in S_2$.

$$x = c_1 x_{k+1} + c_2 x_{k+2} + \cdots + c_{n-k} x_n$$
 and

$$x = c_1 x_{k+1} + c_2 x_{k+2} + \cdots + c_{n-k} x_n$$
 and

$$x = b_1(x_{k+1} + x_1) + b_2(x_{k+2} + x_2) + \cdots + b_{n-k}(x_n + x_{n-k})$$

$$X = b_1(X_{k+1} + X_1) + b_2(X_{k+2} + X_2) + \cdots + b_{n-k}(X_n + X_{n-k})$$

 $b_1x_1 + \cdots + b_{n-k}x_{n-k} + (b_1 - c_1)x_{k+1} + \cdots + (b_{n-k} - c_{n-k})x_n = 0$

 $\{x_1, \dots, x_{n-k}, x_{k+1}, \dots, x_n\}$ is LI

$$\{x_n\}$$
 is L

To show $S_1 \cap S_2 = \{0\}$.

Let $x \in S_1 \cap S_2 = \{0\}$. Then $x \in S_1$ and $x \in S_2$.

$$x = c_1 x_{k+1} + c_2 x_{k+2} + \cdots + c_{n-k} x_n$$
 and

$$\chi = c_1 \chi_{k+1} + c_2 \chi_{k+2} + \cdots + c_{n-k} \chi_n$$
 and

$$x = b_1(x_{k+1} + x_1) + b_2(x_{k+2} + x_2) + \cdots + b_{n-k}(x_n + x_{n-k})$$

$$b_1x_1 + \cdots + b_{n-k}x_{n-k} + (b_1 - c_1)x_{k+1} + \cdots + (b_{n-k} - c_{n-k})x_n = 0$$

 $\{x_1, \dots, x_{n-k}, x_{k+1}, \dots, x_n\}$ is LI

Then
$$b_i = c_i = 0$$
 for $i = 1, \ldots, n - k$. Hence $x = 0$.

To show $\dim(S) \geq \frac{\dim(\mathbb{V})}{2}$.

To show $\dim(S) \geq \frac{\dim(\mathbb{V})}{2}$.

Suppose that $\dim(S) < \frac{\dim(\mathbb{V})}{2}$. Let $\dim(\mathbb{V}) = n$ and $\dim(S) = k$.

To show $\dim(S) \geq \frac{\dim(\mathbb{V})}{2}$.

Suppose that $\dim(S) < \frac{\dim(\mathbb{V})}{2}$. Let $\dim(\mathbb{V}) = n$ and $\dim(S) = k$.

Let S_1 and S_2 be two virtually disjoint complements. Then $\dim(S_1) = n - k = \dim(S_2)$.

To show $\dim(S) \geq \frac{\dim(\mathbb{V})}{2}$.

Suppose that $\dim(S) < \frac{\dim(\mathbb{V})}{2}$. Let $\dim(\mathbb{V}) = n$ and $\dim(S) = k$.

Let S_1 and S_2 be two virtually disjoint complements. Then $\dim(S_1) = n - k = \dim(S_2)$.

 $\dim(S_1 + S_2) = \dim(S_1) + \dim(S_2) = 2(n - k) > 2(n - \frac{n}{2}) = n$, a contradiction.

To show $\dim(S) \geq \frac{\dim(\mathbb{V})}{2}$.

Suppose that $\dim(S) < \frac{\dim(\mathbb{V})}{2}$. Let $\dim(\mathbb{V}) = n$ and $\dim(S) = k$.

Let S_1 and S_2 be two virtually disjoint complements. Then $\dim(S_1) = n - k = \dim(S_2)$.

 $\dim(S_1 + S_2) = \dim(S_1) + \dim(S_2) = 2(n - k) > 2(n - \frac{n}{2}) = n$, a contradiction.

Hence $\dim(S) \geq \frac{\dim(\mathbb{V})}{2}$.