Please check the examination details below	v before ente	ring your candida	ate information	
Candidate surname		Other names		
	e Number	Ca	andidate Number	
Pearson Edexcel				
International GCSE (9–1)				
Thursday 16 Ma	v 20	19		
				
Morning (Time: 2 hours)	Paper Re	eference 4CH	11/1C 4SD0/1C	
Chemistry Unit: 4CH1 Science (Double Award) 4SD0 Paper: 1C				
You must have: Calculator, ruler			Total Marks	

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Show all the steps in any calculations and state the units.
- Some questions must be answered with a cross in a box ⋈. If you change your mind about an answer, put a line through the box ⋈ and then mark your new answer with a cross ⋈.

Information

- The total mark for this paper is 110.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

P58561A ©2019 Pearson Education Ltd.

The Periodic Table of the Elements

0 4 He helium 2	20 Ne neon 10	40 Ar argon 18	84 Kr krypton 36	131 Xe xenon 54	[222] Rn radon 86	fully
7	19 F fluorine 9	35.5 Cl chlorine 17	80 Br bromine 35	127 	[210] At astatine 85	orted but not
9	16 O oxygen 8	32 S sulfur 16	79 Se selenium 34	128 Te tellurium 52	[209] Po polonium 84	ive been repo
υ	14 N nitrogen 7	31 P phosphorus 15	75 As arsenic 33	Sb antimony 51	209 Bi bismuth 83	rs 112-116 har authenticated
4	12 C carbon 6	28 Si silicon 14	73 Ge germanium 32	119 Sn tin 50	207 Pb lead 82	mic numbers
ო	11 B boron 5	27 Al aluminium 13	70 Ga gallium 31	115 In indium 49	204 TI thallium 81	Elements with atomic numbers 112-116 have been reported but not fully authenticated
·			65 Zn zhe 30	112 Cd cadmium 48	201 Hg mercury 80	Elem
			63.5 Cu opper 29	108 Ag silver 47	197 Au gold 79	Rg roentgenium 111
			59 nideal 28	106 Pd palladium 46	195 Pt platinum 78	Ds demstactium 110
			59 Co cobalt 27	103 Rh modium 45	192 Ir iridium 77	[268] Mt meitnerium 109
1 H hydrogen			56 ron 26	101 Ru ruthenium 44	190 Os osmium 76	[277] Hs hassium 108
			55 Mn manganese 25	Tc technetium 43	186 Re rhenium 75	[264] Bh bohnium 107
	nass ool umber		52 Cr chromium 24	96 Mo molybdenum 42	184 W tungsten 74	
Key	re at ve atom c mass atomic symbol name atom c (proton) number		51 V vanadium 23	93 Nb niobium 41	181 Ta tantalum 73	[262] Db dubnium 105
	reatv ato atom c		48 Ti ttanium 22	91 Zr zirconium 40	178 Hf hafnium 72	Rf nutherfordium 104
			45 Sc scandium 21	89 ¥ 39	139 La* lanthanum 57	[227] Ac* adinium 89
2	9 Be beryllium 4	24 Mg magnesium 12	40 Ca caldum 20	Sr strontium 38	137 Ba barium 56	[226] Ra radium 88
-	7 Li lithium 3	23 Na sodium 11	39 K potassium	85 Rb rubidium 37	133 Cs caesium 55	[223] Fr francium 87

^{*} The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

BLANK PAGE

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Answer ALL questions.

1 Potassium permanganate is a purple solid that is soluble in water.

A crystal of potassium permanganate is placed in a beaker containing water.

(a) After a short time, the crystal becomes smaller and the liquid at the bottom of the beaker becomes purple.

Which statement explains this observation?

(1)

- B the crystal dissolves in the water
- C the crystal evaporates in the water
- D the crystal melts in the water
- (b) The beaker is left until there is no further change in the appearance of the liquid.
 - (i) Which statement describes the final appearance of the liquid?

(1)

- A all of the liquid is purple
- **B** none of the liquid is purple
- C only the bottom half of the liquid is purple
- D only the top half of the liquid is purple
- (ii) Which process causes this change in appearance?

(1)

- **A** condensation
- B crystallisation
- C diffusion
- D evaporation

P 5 8 5 6 1 A 0 4 2 8

BOINOT WRITE IN THIS AREA

BO NOT WRITE IN THIS AREA

(c) The formula of potassium permanganate is KMnO₄

How many different elements are there in potassium permanganate?

(1)

- **▲ A** 3
- **■ B** 4
- **C** 6
- □ 7

(Total for Question 1 = 4 marks)

2	The diagram shows part of the Periodic Table, with elements represented by the
	letters L, M, Q, R and T.

The letters in the diagram represent elements but are **not** their chemical symbols.

1 2

M

(a) Give the letter from the diagram that represents a noble gas.

(1)

(b) Elements L and M are in the same group.

State why they have similar chemical reactions.

(1)

(c) An atom of element Q has 31 protons.

Use this information to explain how you can determine the number of protons in an atom of element R.

(2)

(Total for Question 2 = 4 marks)

- **3** A student does these two tests on a solution made from a white solid.
 - flame test
 - add acidified silver nitrate solution

The table shows his results.

Test	Result
flame test	red flame
add acidified silver nitrate solution	cream precipitate

(a) Give the formula of the ion that produces the red flame.

(1)

(b) Name the cream precipitate.

(1)

(c) Identify the white solid.

(1)

- (d) The student uses a clean metal wire in the flame test.
 - (i) State why the wire should be clean when used in the flame test.

(1)

(ii) The table lists properties of some metals.

Add ticks (\checkmark) to the table to show the two properties needed in a metal wire used in a flame test.

(2)

Property
good conductor of electricity
high density
high melting point
unreactive

(Total for Question 3 = 6 marks)

BO NOT WRITE IN THIS AREA

BO NOT WRITE IN THIS AREA

4 A student uses this apparatus to investigate the colours in four different inks, A, B, C and D.

(a) Explain two mistakes the student made when setting up his experiment.

(4)

2

(b) Another student does the experiment but does not make any mistakes.

The diagram shows her results.

(i) State how many colours ink D contains.

(1)

(ii) State which of the inks tested could be mixed together to make ink D.

(1)

(iii) Explain which of the inks tested is insoluble in water.

(2)

(Total for Question 4 = 8 marks)

5 In 1937 an airship full of hydrogen gas flew from Germany to America.

(Source: © Michael Rosskothen/Shutterstock)

(a)	VVII	nch property of hydrogen makes it a suitable gas to use in an anship:		
			(1	
\vee	Λ	colourloss		

colourless

insoluble in water

□ D no smell

(b)	 Explain why helium is now used in airships instead 	ad of hydrogen.	
		(2)	

(c) Hydrogen is used to manufacture ammonia, NH₃ Hydrogen is reacted with nitrogen using an iron catalyst.

(i) Give a chemical equation for this reaction.

(1)

(ii) State why a catalyst is used in this reaction. (1)

(Total for Question 5 = 5 marks)

6 The reactions of metals with water and with dilute sulfuric acid can be used to determine the order of reactivity of the metals.

The table shows the reactions of four metals, W, X, Y and Z, with water and with dilute sulfuric acid.

Metal	Reaction with water	Reaction with dilute sulfuric acid
W	no reaction	no reaction
X	very slow reaction	reacts quickly
Υ	no reaction	reacts slowly
Z	reacts quickly	reacts violently

(a) What is the order of reactivity of these metals?

(1)

	most reactive		\longrightarrow	least reactive
⊠ A	W	Χ	Υ	Z
⊠ B	Z	Χ	Υ	W
⊠ C	W	Υ	Χ	Z
⊠ D	Z	Υ	Χ	W

(b) (i) State which metal, W, X, Y or Z, could be copper.

(1)

(ii) State which metal, W, X, Y or Z, could be magnesium.

(1)

(c) A displacement reaction can also be used to decide the order of reactivity of two metals.

State two observations made when an excess of magnesium powder is added to an aqueous solution of copper(II) sulfate.

(2)

2		

(Total for Question 6 = 5 marks)

7 Diamond, graphite and silicon dioxide all have giant covalent structures.

The diagram shows the structures of these three substances.

key

diamond

graphite

silicon dioxide

(a) Explain why silicon dioxide has a high melting point.

(2)

(b) Explain why graphite conducts electricity.

(2)

(c) State why diamond is hard but graphite is soft.

(2)

(Total for Question 7 = 6 marks)

8 Ethene (C_2H_4) can be converted into chloroethene (C_2H_3Cl) in a two-stage p	hinces
---	--------

(a) The first stage is to convert ethene into 1,2-dichloroethane, $C_2H_4Cl_2$

Ethene is reacted with hydrogen chloride and oxygen. Complete the chemical equation for this reaction.

(1)

.....
$$C_2H_4$$
 + HCl + H_2O

(b) In the second stage, 1,2-dichloroethane is converted into chloroethene.

$$C_2H_4Cl_2 \rightarrow C_2H_3Cl + HCl$$

This is a thermal decomposition reaction.

State what is meant by the term **thermal decomposition**.

(1)

(c) The diagram shows the displayed formula of chloroethene.

(i) State why chloroethene is described as an unsaturated compound.

(1)

(ii) Describe a test to show that chloroethene is unsaturated.

(2)

(d) Name the polymer formed from chloroethene.

(1)

(Total for Question 8 = 6 marks)

9 Halon 1301 is a compound used in some fire extinguishers.

Halon 1301 has the percentage composition by mass of

C 8.05%

Br 53.69%

F 38.26%

(a) Show, by calculation, that the empirical formula of this compound is CBrF₃

(2)

(b) The diagram shows the displayed formula of a molecule of Halon 1301.

Draw a dot-and-cross diagram to show all the outer electrons in this molecule.

(2)

(c) The boiling point of Halon 1301 is -58 °C.

Explain why Halon 1301 has a low boiling point.

(2)

(Total for Question 9 = 6 marks)

10 (a) There are three isomers with the molecular formula C_5H_{12}

One of these isomers is pentane.

The displayed formula for pentane is

(i) State what is meant by the term **isomers**.

(2)

(ii) Draw the displayed formula for another isomer of C₅H₁₂

(2)

- (b) Pentane reacts with bromine in the presence of ultraviolet radiation.
 - (i) Complete the equation for this reaction.

(2)

$$C_5H_{12} + Br_2 \rightarrow \dots + \dots + \dots$$

(ii) Give the name of this type of reaction.

(1)

(Total for Question 10 = 7 marks)

11 The gas burned in a Bunsen burner is methane.

The equation for the complete combustion of methane is

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$

(a) Calculate the mass of oxygen required to react with 32 g of methane. $[M_r$ of methane = 16]

(2)

mass of oxygen =g

(b) The diagram shows methane burning in air. It also shows how the two gases formed are collected and tested.

(i) Explain why water collects in the U-tube.

(2)

(ii) Describe how anhydrous copper(II) sulfate is used to test for water.

DO NOT WRITE IN THIS AREA

DO NOT WRITEIN THIS AREA

(iii) Explain the change in appearance of the limewater.	(3)
(Total for Question 11 :	= 9 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS ARE

DO NOT WRITE IN THIS AREA

12 A student uses this apparatus to investigate the temperature change that occurs when ammonium nitrate is dissolved in water.

She uses this method.

- put 100 cm³ of water into the polystyrene cup and measure the initial temperature of the water
- add 8.00 g of ammonium nitrate and stir
- record the lowest temperature reached by the solution

The table shows her results.

Initial temperature of water in °C	20.0
Lowest temperature of solution in °C	14.2

(a)	Use the results of the experiment to explain what type of reaction is taking place
	when ammonium nitrate is added to water.

(2)

(b)	Show that the	heat energy	change, Q), is	about 2400 J
-----	---------------	-------------	-----------	-------	--------------

[mass of 1.00 cm^3 of solution = 1.00 g]

[for the solution, $c = 4.18 \,\text{J/g/°C}$]

(3)

(c) Use your answer to part (b) to calculate the enthalpy change, ΔH , in kilojoules per mole of ammonium nitrate.

 $[M_r \text{ of ammonium nitrate} = 80.0]$

Include a sign in your answer.

(4)

$$\Delta H = \dots$$
 kJ/mol

(Total for Question 12 = 9 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

13 A student uses this apparatus to investigate the rate of reaction between magnesium and an **excess** of dilute hydrochloric acid.

She uses this method.

- use a graduated beaker to pour 50 cm³ of dilute hydrochloric acid of concentration 2.00 mol/dm³ into the conical flask
- add a piece of magnesium ribbon of mass 0.086 g to the acid and put the bung into the neck of the flask
- measure the total volume of gas collected every ten seconds until the reaction stops

The table shows the student's results.

Time in s	Volume of hydrogen in cm ³
0	0
10	29
20	52
30	67
40	76
50	81
60	84
70	84
80	84

(a) (i) Plot the student's results on the grid.

(1)

(ii) Draw a curve of best fit.

(1)

- (b) (i) The student repeats the experiment using
 - 0.043 g of magnesium ribbon
 - 50 cm³ of 2.00 mol/dm³ hydrochloric acid

Draw, on the grid in part (a), the curve you would expect in this experiment. Label this curve Y.

(2)

- (ii) The student repeats the experiment again, using
 - 0.086 g of magnesium ribbon
 - 50 cm³ of 2.00 mol/dm³ hydrochloric acid
 - a slightly higher temperature than the first experiment

Draw, on the grid in part (a), the curve you would expect in this experiment. Label this curve Z.

(2)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(c) The expected volume of gas produced in the first experiment is 86 cm ³ . Suggest why the volume collected is less than the expected volume.	(1)
(d) The student uses a graduated beaker to measure the volume of dilute hydrochloric Explain why it is not necessary to use a measuring cylinder in this experiment.	(2)
(e) The ionic equation for the reaction between magnesium and hydrochloric acid is $ Mg(s) \ + \ 2H^+(aq) \ \to \ Mg^{2^+}(aq) \ + \ H_2(g) $ Use the information in this equation, and the particle collision theory, to explain why the rate of reaction decreases during each of the experiments.	(3)
(Total for Question 13 = 12 ma	rks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

14 A salt can be made by reacting an acid with an insoluble base.	
A student has a sample of copper(II) oxide.	
The student uses this method.	
Stage 1 pour 50 cm ³ of dilute sulfuric acid into a beaker	
Stage 2 warm the acid using a Bunsen burner	
Stage 3 add a small amount of copper(II) oxide to the warm acid and stir the mix	ture
Stage 4 add further amounts of copper(II) oxide until copper(II) oxide is in excess	
Stage 5 filter the mixture	
Stage 6 obtain crystals from the filtrate	
(a) State why the acid is warmed in stage 2.	
	(1)
(b) State how the student would know that the copper(II) oxide is in excess in stage 4	
(a) state now the stadent would know that the copper(ii) oxide is in excess in stage.	(1)
() C	
(c) State why the mixture is filtered in stage 5.	(1)
(d) State the colour of the filtrate obtained in stage 5.	(1)
	(")

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

crystals from the f	-		(5)

(f) The overall equation for the formation of hydrated copper(II) sulfate crystals from copper(II) oxide is

$$CuO(s) + H_2SO_4(aq) + 4H_2O(l) \rightarrow CuSO_4.5H_2O(s)$$

(i) In an experiment, a student completely reacts 9.54g copper(II) oxide.

Show that the maximum possible mass of CuSO₄.5H₂O crystals that can be obtained is about 30 g.

$$[M_r \text{ of CuO} = 79.5 \qquad M_r \text{ of CuSO}_4.5H_2O = 249.5]$$

Give your answer to an appropriate number of significant figures.

(3)

(ii) In this experiment, the actual yield of CuSO₄.5H₂O crystals is 23.92 g.

Calculate the percentage yield of CuSO₄.5H₂O

(2)

(Total for Question 14 = 14 marks)

DO NOT WRITE IN THIS AREA

15 Hydrated ammonium iron(III) sulfate is a violet solid that has the formula $(NH_4)_2SO_4.Fe_2(SO_4)_3.xH_2O$

The table shows some tests done on three separate samples of the solid.

Test	Observation
Dissolve the solid in water and add acidified barium chloride solution.	
Dissolve the solid in water and add sodium hydroxide solution.	
Add sodium hydroxide solution to the solid and warm the mixture. Test the gas given off with moist universal indicator paper.	

(a) Complete the table to show the observation made in each test.

(3)

(b) A student needs to find the value of x in the formula $(NH_4)_2SO_4.Fe_2(SO_4)_3.xH_2O$ He uses this apparatus.

hydrated ammonium iron(III) sulfate

The hydrated solid decomposes when heated gently.

The equation for the reaction is

$$(NH_4)_2SO_4.Fe_2(SO_4)_3.xH_2O \rightarrow (NH_4)_2SO_4.Fe_2(SO_4)_3 + xH_2O$$

The table shows the student's results.

mass of empty test tube in g	22.04
mass of test tube and (NH ₄) ₂ SO ₄ .Fe ₂ (SO ₄) ₃ .xH ₂ O in g	34.09
mass of test tube and (NH ₄) ₂ SO ₄ .Fe ₂ (SO ₄) ₃ in g	28.69

(i) Calculate the mass of (NH₄)₂SO₄.Fe₂(SO₄)₃ produced by heating.

(1)

mass of
$$(NH_4)_2SO_4$$
.Fe₂ $(SO_4)_3 = \dots$ g

(ii) Calculate the mass of water produced.

(1)

(iii) Calculate the value of x.

$$[M_r \text{ of } (NH_4)_2SO_4.Fe_2(SO_4)_3 = 532 \text{ and } M_r \text{ of } H_2O = 18]$$

Give your answer to the nearest whole number.

(4)

value of x =

(Total for Question 15 = 9 marks)

TOTAL FOR PAPER = 110 MARKS

BLANK PAGE