MA-106 Linear Algebra

M.K. Keshari

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 15th January, 2015 D1 - Lecture 6

Recall: We have seen row reduced form R of a matrix A.

We saw how to find the null space N(A)=N(R) which is the solution space of Ax=0.

We defined rank of A which is the number of pivots of A.

Now we will see how to find the solution space of Ax = b.

Caution: If $b \neq 0$, then solving Ax = b is Not the same as solving Ux = b or Rx = b.

Solving Ax = b

Example:
$$Ax = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 6 & 7 & 13 \end{pmatrix} \begin{pmatrix} t \\ u \\ v \\ w \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = b.$$

Convert Ax = b to Ux = c and then to Rx = d.

$$\begin{pmatrix} 1 & 2 & 3 & 5 & | & b_1 \\ 2 & 4 & 8 & 12 & | & b_2 \\ 3 & 6 & 7 & 13 & | & b_3 \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{1} & 2 & 3 & 5 & | & b_1 \\ 0 & 0 & 2 & 2 & | & b_2 - 2b_1 \\ 0 & 0 & -2 & -2 & | & b_3 - 3b_1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} \mathbf{1} & 2 & 3 & 5 & | & b_1 \\ 0 & 0 & \mathbf{2} & 2 & | & b_2 - 2b_1 \\ 0 & 0 & 0 & | & b_3 + b_2 - 5b_1 \end{pmatrix}$$

System is consistent $\Leftrightarrow b_3 + b_2 - 5b_1 = 0$ i.e. $b_3 = 5b_1 - b_2$

Solving Ax = b or Ux = c or Rx = d

Ax = b has a solution $\Leftrightarrow b_3 = 5b_1 - b_2$.

Example. There is no solution when $b = \begin{pmatrix} 1 & 0 & 4 \end{pmatrix}^T$.

Suppose
$$b = \begin{pmatrix} 1 & 0 & 5 \end{pmatrix}^T$$
. Then $(A \mid b) \rightarrow (U \mid c) =$

$$\begin{pmatrix} \mathbf{1} & 2 & 3 & 5 \mid & b_1 \\ 0 & 0 & \mathbf{2} & 2 \mid & b_2 - 2b_1 \\ 0 & 0 & 0 \mid b_3 + b_2 - 5b_1 \end{pmatrix} = \begin{pmatrix} \mathbf{1} & 2 & 3 & 5 \mid 1 \\ 0 & 0 & \mathbf{2} & 2 \mid -2 \\ 0 & 0 & 0 \mid 0 \mid 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} \mathbf{1} & 2 & 3 & 5 \mid 1 \\ 0 & 0 & \mathbf{1} & 1 \mid -1 \\ 0 & 0 & 0 \mid 0 \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{1} & 2 & 0 & 2 & | & 4 \\ 0 & 0 & \mathbf{1} & 1 & | & -1 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} = (R \mid d)$$

Ax = b is reduced to solving $Ux = c = \begin{pmatrix} 1 & -2 & 0 \end{pmatrix}^T$, which is further reduced to solving $Rx = d = \begin{pmatrix} 4 & -1 & 0 \end{pmatrix}^T$.

Solving $Ax = b \dots$ continued

Solving Ax = b is reduced to solving Rx = d, i.e., we want to solve

$$\begin{pmatrix} \mathbf{1} & 2 & 0 & 2 \\ 0 & 0 & \mathbf{1} & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} t \\ u \\ v \\ w \end{pmatrix} = \begin{pmatrix} 4 \\ -1 \\ 0 \end{pmatrix}$$

i.e., t = 4 - 2u - 2w and v = -1 - w

Set the free variables u=w=0 to get t=4 and v=-1.

A particular solution: $x_P = \begin{pmatrix} 4 & 0 & -1 & 0 \end{pmatrix}^T$.

Ex: Check it is a solution! i.e. check Ax = b.

Observe: In Rx = d, the vector d gives values for the pivot variables, when the free variables are 0.

Solving $Ax = b \dots$ continued

From R x = d, we get t = 4 - 2u - 2w and v = -1 - w, where u and w are free.

Complete set of solutions to A x = b is

$$\begin{pmatrix} t \\ u \\ v \\ w \end{pmatrix} = \begin{pmatrix} 4 - 2u - 2w \\ u \\ -1 - w \\ w \end{pmatrix}$$

$$= \begin{pmatrix} 4 \\ 0 \\ -1 \\ 0 \end{pmatrix} + u \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + w \begin{pmatrix} -2 \\ 0 \\ -1 \\ 1 \end{pmatrix}$$

 $=x_{\mathsf{particular}}+x_{\mathsf{NullSpace}}$

General Solution of Ax = b

To solve Ax = b completely, reduce to Rx = d. Then:

- 1. Find $x_{\text{NullSpace}}$, i.e., N(A), by solving Rx = 0.
- 2. Set free variables =0 and solve Rx=d for pivot variables.

This is a particular solution: $x_{particular}$.

3. Complete solutions: $x_{\text{complete}} = x_{\text{particular}} + x_{\text{NullSpace}}$

Ex: Verify geometrically for a 1×2 matrix, say $A = \begin{pmatrix} 1 & 2 \end{pmatrix}$.

The Column Space of A

Main Q2: When does Ax = b have a solution?

If Ax = b has a solution, then there exist $x_1, \ldots, x_n \in \mathbb{R}$ such

that
$$(A_1 \cdots A_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x_1 A_1 + \cdots + x_n A_n = b$$
, i.e.,

b can be written as a linear combination of the columns of A.

The column space of A, denoted by C(A)

is the set of all linear combinations of the columns of \boldsymbol{A}

 $= \{b \text{ in } \mathbb{R}^m \text{ such that } Ax = b \text{ is consistent}\}.$

Finding C(A): Consistency of Ax = b

Example: Let
$$A = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 6 & 7 & 13 \end{pmatrix}$$
 . Then

 $Ax = \begin{pmatrix} b_1 & b_2 & b_3 \end{pmatrix}^T$ has a solution if and only if $\boxed{-5b_1 + b_2 + b_3 = 0}$. Therefore C(A) is a plane in \mathbb{R}^3 passing through the origin with normal vector $\begin{pmatrix} -5 & 1 & 1 \end{pmatrix}^T$.

- $a = \begin{pmatrix} 1 & 0 & 4 \end{pmatrix}^T$ is not in C(A) as Ax = a is inconsistent.
- $b = \begin{pmatrix} 1 & 0 & 5 \end{pmatrix}^T$ is in C(A) as Ax = b is consistent.

To write b as a linear combination of columns of A, solve Ax = b.

Linear Combinations in C(A)

We have $(1 \ 0 \ 5)^T = 4A_1 + (-1)A_3$.

Q: Can we write b as a different combination of A_1,\ldots,A_4 ? Yes. Since $\begin{pmatrix} -2 & 1 & 0 & 0 \end{pmatrix}^T$ is in N(A), $-2A_1+A_2=0$. Hence for any scalar c

$$(1 \quad 0 \quad 5)^T = 4A_1 + (-1)A_3 + c(-2A_1 + A_2)$$

- If b is in C(A), b can be written as a linear combination of the columns of A in as many ways as the solutions of Ax = b.
- If $b_1, b_2 \in C(A)$, then for any scalars c_1, c_2 ,

$$c_1b_1 + c_2b_2 \in C(A)$$

Thus, C(A) is *closed under* linear combinations.

Vector Spaces: \mathbb{R}^n

We begin with \mathbb{R}^1 , \mathbb{R}^2 ,..., \mathbb{R}^n , etc., where \mathbb{R}^n consists of all column vectors of length n, i.e.,

$$\mathbb{R}^n = \{ \overline{x} = (x_1 \cdots x_n)^T, \text{ where } x_1, \dots, x_n \text{ are in } \mathbb{R} \}.$$

We can add two vectors, and we can multiply vectors by real numbers, i.e., we can take linear combinations in \mathbb{R}^n .

Examples:

 \mathbb{R}^1 is the real line, \mathbb{R}^3 is the usual 3-dimensional space, and \mathbb{R}^2 is represented by the x-y plane; the x and y co-ordinates are given by the two components of the vector.

Vector Spaces: Definition

Defn. A non-empty set V is a vector space if it is *closed* under vector addition (i.e., if \overline{x} , \overline{y} are in V, then $\overline{x} + \overline{y}$ must be in V) and scalar multiplication, (i.e., if \overline{x} is in V, u is in \mathbb{R} , then $u \cdot \overline{x}$ must be in V).

Equivalently,

$$\overline{x},\overline{y} \text{ in } V,\ u,v \text{ in } \mathbb{R}, \Longrightarrow u\cdot\overline{x}+v\cdot\overline{y} \text{ must be in } V.$$

- ullet A vector space is a triple $(V,+,\cdot)$ with vector addition + and scalar multiplication \cdot
- ullet The elements of V are called vectors and the scalars are chosen to be real numbers (for now).
- \bullet If the scalars are allowed to be complex numbers, then V is a $\it complex$ vector space.

Vector Spaces: Properties

Let \overline{x} , \overline{y} and \overline{z} be vectors, u and v be scalars. The vector addition and scalar multiplication are also required to satisfy:

- $\overline{x} + \overline{y} = \overline{y} + \overline{x}$ Commutativity of addition
- $(\overline{x} + \overline{y}) + \overline{z} = \overline{x} + (\overline{y} + \overline{z})$ | Associativity of addition
- There is a unique vector 0, such that $\overline{x} + 0 = \overline{x}$ Existence of additive identity
- For each \overline{x} , there is a unique $-\overline{x}$ such that $\overline{x} + (-\overline{x}) = 0$ Existence of additive inverse
- $1 \cdot \overline{x} = \overline{x}$ Existence of unity
- $\bullet \ (uv) \cdot \overline{x} = u \cdot (v \cdot \overline{x}) \ \ \text{Associativity of scalar multiplication}$
- $\begin{array}{c} \bullet \ \, (u+v) \cdot \overline{x} = u \cdot \overline{x} + v \cdot \overline{x}, \quad u \cdot (\overline{x} + \overline{y}) = u \cdot \overline{x} + u \cdot \overline{y} \\ \hline \text{Distributivity} \end{array}$

Vector Spaces: Examples

- $\mathbf{0}$ V=0, the space consisting of only the zero vector.
- $V = \mathbb{R}^n$, the *n*-dimensional space.
- ① $V=\mathbb{R}^{\infty}$, vectors with infinite number of components, e.g., $\overline{x}=(1,1,2,3,5,8,\ldots)$
- V=M, the set of 2×2 matrices. Q: Is this the same as \mathbb{R}^4 ?
- $V=C([0,1],\mathbb{R})$, the set of continuous real-valued functions from closed interval [0,1]. e.g., x^2 , e^x . Is $\frac{1}{x}$ a vector in V? N0. How about $\frac{1}{x-2}$? Yes.

vector addition and scalar multiplication are pointwise: (f+q)(x) = f(x) + q(x) and $(u \cdot f)(x) = u f(x)$.

New frame added for clarification

- ① Let $V = C([0,1],\mathbb{R})$. Then V is a vector space. Any element in a vector space is called a vector. In V, vectors are continuous functions $f:[0,1]\to\mathbb{R}$. The zero element of V is the zero function.
- ② The set P of all polynomial functions from $\mathbb{R} \to \mathbb{R}$ is a vector space. A typical element of P is a polynomial function $a_0 + a_1 x + \ldots + a_n x^n : \mathbb{R} \to \mathbb{R}$ with $a_i \in \mathbb{R}$. The zero element of P is zero polynomial.
- **3** Let M, V and P be vector spaces considered above. Let W be the set consisting of ordered tuple (m,v,p), where $m \in M, v \in V, p \in P$. Define addition and scalar multiplication componentwise. Then W is a vector space.