Name: D Yoan L Mekontchou Yomba

Class: CS 260 - Data Structures and Algorithms

Date: Friday, January 12th 2018

Problem 1.10

Indicating for each distinct pair i and j whether $f_i(n)$ is $O(f_i(n))$ and whether $f_i(n)$ is $O(f_i(n))$

Case 1 – pair
$$i = 1$$
, $j = 2$

 $f_2(n)$ is $O(f_1(n))$ or $O(n^2)$ since there exists a constant c and n_0 such that $f_2(n) \le cf_1(n)$ whenever $n > n_0$

$$f_2(n) = n^2 + 1000n$$
 and $f_1(n) = n^2$

Proof

assuming c is equal to 6,

⇒
$$6n^2 \ge n^2 + 1000n → 6\left(\frac{n^2}{n}\right) \ge \left(\frac{n^2}{n}\right) + 1000\left(\frac{n}{n}\right) → 6n - n \ge 1000$$

⇒ $5n \ge 1000 → n \ge 200$

thus when $n \geq \frac{1000}{c-1}$ or in this case $n \geq 200$, $f_2(n)$ is $O(f_1(n))$. The inverse relationship is present when $n \leq \frac{1000}{c-1}$ or $n < n_0 \approx n \leq 200$ when c=6 in this case, thus defining the lower bound of $f_2(n)$ modelled as $f_2(n)$ is $\Omega(f_1(n))$

Case 2 - pair I = 1 and j = 3

 $f_1(n)$ is equally dominated by $f_3(n)$ and dominates $f_3(n)$ over all ranges of operation or infinity due to $f_3(n)$'s piecewise behavior.

$$f_3(n) = \begin{cases} n & \text{if } n \text{ is odd} \\ n^3 & \text{if } n \text{ is even} \end{cases} \text{ and } f_1(n) = n^2$$

Proof

Case A – even values in the range [0, inf).

 $f_1(n)$ is $O(f_{(3,odd)}(n))$ or $O(n^3)$ since there exists a constant c and n_0 such that $f_1(n) \le cf_3(n)$ whenever $n > n_0$. $f_3(n)$ dominates $f_1(n)$.

Case A Proof

Assuming c is some arbitrary constant c, $cn^3 \geq n^2$

 \rightarrow thus, n must be greater than or equal to some constant c and there exists a constant c and n_0 such that $f_1(n)$ is $O(n^3)$ whenever n >

 n_0 which in this specific case is $n \ge 1/c$ which is always true as c is the inverse of the magnitude of n.

Case B – odd values in the range [0, inf).

 $f_{(3,even)}(n)$ is $O(f_1(n))$ or $O(n^2)$ since there exists a constant c and n_0 such that $f_3(n) \le cf_1(n)$ whenever $n > n_0$. Thus $f_1(n)$ dominates $f_3(n)$.

Case B Proof

Assuming c is some arbitrary constant c, $cn^2 \ge n$

thus, n must be greater than or equal to some constant c whose magnitude must be greater than a maximal magnitude of 1 obtained from the inverse of n and there exists a constant c and n_0 such that $f_3(n)$ is $O(n^2)$ whenever $n > n_0$ which in this specific case is n > 1/c which is always true as c is the inverse of the magnitude of n.

Now because both piecewise behaviors displayed above fluctuate equally over all values residing in the range $[0, \inf)$, $f_1(n)$ is equally dominated by $f_3(n)$ and dominates $f_3(n)$ over all ranges of operation.

Case 3 – pair i = 1, j = 4

 $f_1(n)$ is $O(f_4(n))$ or $O(n^3)$ since there exists a constant c and n_0 such that $f_1(n) \le cf_4(n)$ whenever n >100.

$$f_4(n) = \begin{cases} n & \text{if } n \le 100 \\ n^3 & \text{if } n > 100 \end{cases}$$
 and $f_1(n) = n^2$

Proof

The inverse relationship is present when $n \leq \frac{1*n^2}{c*n^2}$ or $n < n_0 \approx n < 100$, thus defining the lower bound of $f_1(n)$ modelled as $f_1(n)$ is $\Omega(f_4(n))$ or $\Omega(n)$ since there exists a constant c and n_0 such that $f_1(n) \geq cf_4(n)$

Proof

Assuming c is some arbitrary constant, cn
$$\leq n^2 \to c \left(\frac{n}{n}\right) \leq \left(\frac{n^2}{n}\right)$$

$$\to c \leq n \approx 50$$
 assuming c is equal to 50,
$$\to 50n \leq n^2 \to 50 \leq n$$
 thus when $n \geq 50$ and $c \leq n$, $f_1(n)$ is $\Omega \big(f_4(n)\big)$ or $\Omega(n)$.

 $f_4(n)$ is $O(f_1(n))$ or $O(n^2)$ since there exists a constant c and n_0 such that $f_4(n) \le c f_1(n)$ whenever $n \le 100$.

Proof

Assuming c is some arbitrary constant
$$cn^2 \geq n \rightarrow c\left(\frac{n^2}{n}\right) \geq \left(\frac{n}{n}\right) \rightarrow cn \geq 1$$
 $\rightarrow c \geq \frac{1}{n} \approx \frac{1}{5}$ assuming c is equal to $\frac{1}{5}$, $\rightarrow \frac{1}{5}n^2 \geq n \rightarrow n \geq 5$ thus, when $n \geq 5$ and $c \geq \frac{1}{n} \approx \frac{1}{5}$, $f_4(n)$ is $O(f_1(n))$ or $O(n^2)$

Case 4 – pair I = 2 and j = 3

$$f_3(n) = \begin{cases} n & \text{if } n \text{ is odd} \\ n^3 & \text{if } n \text{ is even} \end{cases} \text{ and } f_2(n) = n^2 + 1000n$$

This case is similar to case 2 in that the piecewise behavior of $f_3(n)$ allows $f_2(n)$ to dominate $f_3(n)$ for odd values residing in the range [0, inf) and $f_2(n)$ to be dominated by $f_3(n)$ for even values residing in the range [0, inf). Hence, there is an equal level of domination between both function as n approaches infinity. The proof follows the exact form of case 2's.

Case 5 – pair i = 2 and j = 4

 $f_2(n)$ is $O(f_4(n))$ or $O(n^3)$ since there exists a constant c and n_0 such that $f_2(n) \le cf_4(n)$ whenever n > 100.

$$f_4(n) = \begin{cases} n & \text{if } n \le 100 \\ n^3 & \text{if } n > 100 \end{cases}$$
 and $f_2(n) = n^2 + 1000n$

Proof

Assuming c is some arbitrary constant,
$$cn^3 \geq n^2 + 100n \rightarrow c\left(\frac{n^3}{n^3}\right) \geq \left(\frac{n^2}{n^3}\right) + \frac{1000n}{n^3}$$

$$\Rightarrow c \geq \left(\frac{1}{n} + \frac{1000}{n^2}\right) \approx \left(\frac{1}{101}\right)$$
 assuming c is equal to $\frac{1}{101}$,

The inverse relationship is present when $n<\frac{1}{c}+\frac{1}{cn}$ or $n< n_0\approx n\leq 100$, thus defining the lower bound of $f_1(n)$ modelled as $f_2(n)$ is $\Omega(f_4(n))$ or $\Omega(n)$ since there exists a constant c and n_0 such that $f_2(n)\geq cf_4(n)$ by lower bound I am insinuating loosely lower bounded by n.

Proof

Assuming c is some arbitrary constant,
$$cn \leq n^2 + 1000n \rightarrow c\left(\frac{n}{n}\right) \leq \left(\frac{n^2}{n}\right) + 1000$$

$$\Rightarrow c \leq n + 1000 \approx 100$$
assuming c is equal to 100,
$$\Rightarrow 100n \leq n^2 + 1000n \rightarrow n \geq -900$$

thus when $n \ge -900$ and $c \le n + 1000$ or c = 100 in this case, $f_2(n)$ is $\Omega(f_4(n))$ or $\Omega(n)$ or loosely lower bounded by n.

 $f_4(n)$ is $O(f_2(n))$ or $O(n^2)$ since there exists a constant c and n_0 such that $f_4(n) \le c f_2(n)$ whenever $n \le 100$.

Proof

Assuming c is some arbitrary constant
$$cn^2 \geq n \rightarrow c\left(\frac{n^2}{n}\right) \geq \left(\frac{n}{n}\right) \rightarrow cn \geq 1$$
 $\rightarrow c \geq \frac{1}{n} \approx \frac{1}{5}$ assuming c is equal to $\frac{1}{5}$, $\rightarrow \frac{1}{5}n^2 \geq n \rightarrow n \geq 5$ thus, when $n \geq 5$ and $c \geq \frac{1}{n} \approx \frac{1}{5}$ $f_4(n)$ is $O(f_2(n))$ or $O(n^2)$

Case 6 – pair I = 3 and j = 4

$$f_4(n) = \begin{cases} n & \text{if } n \le 100 \\ n^3 & \text{if } n > 100 \end{cases}$$
 and $f_3(n) = \begin{cases} n & \text{if } n \text{ is odd} \\ n^3 & \text{if } n \text{ is even} \end{cases}$

 $f_3(n)$ is significantly dominated by $f_4(n)$ due to the fact that for values greater than n_0 = 100, $f_3(n)$ grows significantly slower than $f_4(n)$ resulting in an upper bound of $O(f_4(n))$ or $O(n^3)$. This can be seen in the function definitions as the functions dominate each other equally until the point when n reaches 100 at which point the function have the same complexity for even values but $f_4(n)$ defines an upper bound of $O(n^3)$ for odd values.

Problem 1.12

- a. Procedure matmy 3 loops with each loop embedded in the other results in a worst case complexity of $O(n^3)$ as for each iteration in loop 1, loop 2 runs n times and for each iteration in loop 2, loop 3 runs n times resulting in n*n*n which is (n^3) .
- **b.** Procedure mystery- loop 1 runs n-1 times, loop 2 run n-1 times, and loop 3 runs in proportion to the magnitude of the point of iteration of loop 2 which is n, thus the algorithmic run time complexity is $(n-1)^2 * n \rightarrow O(n^3)$

c. Procedure very odd- The first loop runs n times, if an odd is conditioned upon, 2 inner loops execute resulting in an inner worst case complexity of O(cn). The total worst case complexity in the case where an odd value is operated on is $O(cn^2)$. While, for an even value, it is O(n).

$$F(n) = \begin{cases} even \ O(n) \\ odd \ O(n^2) \end{cases}$$

d. Procedure recursive

Case N = 4

15 function calls performed.

Case N = 3

7 function calls performed.

15 function calls for input n = 4 7 function calls for input n =3 3 function calls for input n =2

From the above expressions, we can see that the number of function calls performed is dependent on the size of the input n and can be modelled by the following expression $2^n - 1$ therefore, this recursive procedure is is upper bound by 2^n function calls