Pillai, Fall 2021 ECE-GY 6303

ECE-GY 6303, Probability & Stochastic Processes

Homework # 11

Prof. Pillai

Fall 2021

Problem 1

A signal s(t) is contaminated by white noise n(t) with spectral height σ^2 .

a.) Find the best filter h(t) that maximizes the output SNR at t=T and sketch it for the following case:

b.) Find the best filter h(t) that maximizes the output SNR at t=T and sketch it for the following case:

c.) Find the maximum value of output SNR for those two cases.

Pillai, Fall 2021 ECE-GY 6303

Problem 2

Consider the dataset:

$$Y_1 = s + n, \quad Y_2 = sn,$$

Here s and n are independent with $E[n] = \mu \neq 0$, E[s] = 0, $Var(s) = \sigma_s^2$ and $Var(n) = \sigma_n^2$.

- a.) Find the best linear estimator \hat{s} for s based on Y_1 and Y_2 .
- b.) Find the minimum mean square error for \hat{s} .

Problem 3

Let $X_n = X(nT)$ represent a discrete-time W.S.S real stochastic process with auto-correlation function $r_k = E[X_{n+k}X_n]$. Suppose X_0 is known, and X_1 and X_2 are unknown.

- a.) Determine the best estimator for the unknown X_1 . Find the associated minimum mean square error σ_1^2 .
- b.) Determine the best estimator for the unknown X_2 . Find the associated minimum mean square error σ_2^2 .
- c.) Show that $\sigma_1^2 \ge \sigma_2^2$ in some cases and $\sigma_1^2 < \sigma_2^2$ in other cases. Show an example where σ_2^2 is smaller than σ_1^2 .

Problem 4

Consider different versions of data

$$\begin{cases} Y_1 = X + n, \\ Y_2 = X + w, \end{cases} \text{ versus } \begin{cases} Y_1 = X + n, \\ Y_2 = n + w. \end{cases}$$

Here, X, n, w are zero mean uncorrelated random variables with variances σ_X^2 , σ_n^2 and σ_w^2 respectively. X is the desired unknown.

- a.) Find the best estimator for X using Y_1 and Y_2 in the both versions of data.
- b.) Find the mean square error in the both cases above. Which set of data is preferable for estimating X?

Problem 5

Let X, Y, Z be zero mean correlated random variables with common correlation coefficient equal to -1/2 and all of the variances are equal to 1.

- a.) Find the best linear estimate for Z in terms of X and Y.
- b.) Find the best linear estimate for X in terms of Y and Z.
- c.) What are the minimum mean square estimation errors in the above cases?

Pillai, Fall 2021 ECE-GY 6303

Problem 6

Given the datasets

$$Y_1 = s + n$$
, and $Y_2 = s + w$,

where s, n, w are zero mean independent random variables with variances $\sigma_s^2, \, \sigma_n^2$ and σ_w^2 .

- a.) Find the best estimator \hat{s}_1 for s using Y_1 and find the corresponding minimum mean square error σ_1^2 .
- b.) Find the best estimator \hat{s}_2 for s using Y_1 and Y_2 , and find the corresponding minimum mean square σ_2^2 .
- c.) Which one is smaller, σ_1^2 or σ_2^2 ?