Méthodes d'apprentissage

IFT603

Régression linéaire

Par Pierre-Marc Jodoin

Hugo Larochelle

Apprentissage supervisé

Deux sortes d'apprentissage supervisé

- ightharpoonup Classification: la cible est un indice de classe $t \in \{1, \dots, K\}$
- Exemple : reconnaissance de caractères
 ✓ x̄ : vecteur des intensités de tous les pixels de l'image
 ✓ t : identité du caractère
- ightharpoonup Régression : la cible est un nombre réel $t\in\mathbb{R}$
- Exemple : prédiction de la valeur d'une action à la bourse $\sqrt{\vec{x}}$: vecteur contenant l'information sur l'activité économique de la journée \sqrt{t} : valeur d'une action à la bourse le lendemain

2

Apprentissage supervisé

Deux sortes d'apprentissage supervisé

- ightharpoonup Classification : la cible est un indice de classe $t \in \{1, \dots, K\}$

 - Exemple : reconnaissance de caractères
 ✓ x̄ : vecteur des intensités de tous les pixels de l'image
 ✓ t : identité du caractère
- ➤ Régression: la cible est un nombre réel t ∈ R
 Exemple: prédiction de la valeur d'une action à la bourse
 ✓ x̄: vecteur contenant l'information sur l'activité économique de la journée
 ✓ t: valeur d'une action à la bourse le lendemain

Régression linéaire

• Le modèle de régression linéaire est le suivant :

$$\begin{aligned} & \mathcal{Y}_{\vec{w}}(\vec{x}) = w_0 + w_1 x_1 + w_2 x_2 + \ldots + w_d x_d \\ & \text{où } \vec{x} = \left(x_1, x_2, \ldots, x_d\right)^{\text{T}} \end{aligned}$$

• La prédiction correspond donc à

➤ Une droite pour d=1
➤ Un plan pour d=2
➤ Un hyperplan pour d>2

Régression linéaire $y_{\vec{w}}(\vec{x}) = w_0 + w_1 x_1 + w_2 x_2 + ... + w_d x_d$ Biais poids

Régression linéaire

8

$$y_{\vec{w}}(\vec{x}) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_d x_d$$
$$y_{\vec{w}}(\vec{x}) = \vec{w}^T \vec{x}'$$
où $\vec{x}' = (1, x_1, x_2, \dots, x_d)^T$

Régression linéaire Produit scalaire

Par simplicité, nous écrirons

$$y_{\vec{w}}(\vec{x}) = \vec{w}^{\mathrm{T}} \vec{x}$$

10

Problème à résoudre

Soit un ensemble d'apprentissage :

$$D = \{(x_1, t_1), (x_2, t_2), \dots, (x_N, t_N)\}$$

Idéalement, on souhaiterait trouver un modèle tel que $y_{\bar{w}}(x_i) = t_i$

11

Problème à résoudre

Malheureusement, dans la vraie vie, les données sont bruitées

Dans ce cas, le but est de trouver un modèle qui **fait le moins** d'erreurs possible.

Problème à résoudre $\vec{w} = \arg\min_{\vec{w}} \sum_{n=1}^{N} (y_{\vec{w}}(x_n) - t_n)^2$ Il est bien connu en technique d'apprentissage que cette solution est optimale lorsque le bruit est gaussien.

Régression et maximum de vraisemblance

16

Formulation probabiliste

Pour entraı̂ner le modèle $\mathcal{Y}_{\vec{w}}(x)$ nous passerons par une formulation probabiliste :

$$p(t \mid x, \vec{w}, \sigma^2) = N(t \mid y_{\vec{w}}(x), \sigma^2)$$

➤ Revient à supposer que les cibles sont des versions bruitées du vrai modèle

$$t_n = y_{\bar{w}}(x_n) + \varepsilon$$
Bruit gaussien de moyenne 0
et de variance σ

17

Maximum de vraisemblance

Soit notre ensemble d'entraînement

$$D = (X,T)$$

où

$$X = \{\vec{x}_1, \dots, \vec{x}_N\} \text{ et } \vec{x}_i \in R^d$$

$$T = \left\{t_1, \dots, t_N\right\}$$

et la fonction de probabilités dont les données sont issues

$$p(T | X, \bar{w}, \sigma^2)$$

Le maximum de vraisemblance s'exprime comme

$$\vec{w} = \arg \max_{\vec{w}} p(T \mid X, \vec{w}, \sigma^2)$$

Maximum de vraisemblance

$$\begin{split} \vec{w} &= \arg\max_{\vec{w}} p \Big(T \mid X, \vec{w}, \sigma^2 \Big) \\ &= \arg\max_{\vec{w}} p \Big(t_1, \dots, t_N \mid \vec{x}_1, \dots, \vec{x}_N, \vec{w}, \sigma^2 \Big) \end{split}$$

En supposant que les données sont i.i.d

$$\vec{w} = \arg\max_{\vec{w}} \prod_{n=1}^{N} p(t_n \mid \vec{x}_n, \vec{w}, \sigma^2)$$

$$= \arg\max_{\vec{w}} \prod_{n=1}^{N} N(t_n \mid y_{\vec{w}}(\vec{x}_n), \sigma^2)$$

$$= \arg\max_{\vec{w}} \prod_{n=1}^{N} \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{(y_{\vec{w}}(\vec{x}_n) - t_n)^2}{2\sigma^2}}$$

19

Maximum de vraisemblance

$$\begin{split} \vec{w} &= \arg\max_{\vec{w}} \ln \left(\prod_{n=1}^{N} \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{\left(y_{\vec{w}}(\vec{x}_{n}) - t_{n}\right)^{2}}{2\sigma^{2}}} \right) \\ &= \arg\max_{\vec{w}} \sum_{n=1}^{N} \ln \left(\frac{1}{\sqrt{2\pi\sigma}} e^{\frac{\left(y_{\vec{w}}(\vec{x}_{n}) - t_{n}\right)^{2}}{2\sigma^{2}}} \right) \\ &= \arg\max_{\vec{w}} N \ln \left(\frac{1}{\sqrt{2\pi\sigma}} e^{\frac{\left(y_{\vec{w}}(\vec{x}_{n}) - t_{n}\right)^{2}}{2\sigma^{2}}} \right) \\ &= \arg\max_{\vec{w}} \sum_{n=1}^{N} \frac{\left(y_{\vec{w}}(\vec{x}_{n}) - t_{n}\right)^{2}}{2\sigma^{2}} \\ &= \arg\max_{\vec{w}} \sum_{n=1}^{N} \frac{\left(y_{\vec{w}}(\vec{x}_{n}) - t_{n}\right)^{2}}{2\sigma^{2}} \end{split}$$

20

Maximum de vraisemblance

$$\vec{w} = \arg\max_{\vec{w}} \sum_{n=1}^{N} -\frac{\left(\mathcal{Y}_{\vec{w}}(\vec{x}_n) - t_n\right)^2}{2}$$

$$\vec{w} = \arg\min_{\vec{w}} \sum_{n=1}^{N} (y_{\vec{w}}(\vec{x}_n) - t_n)^2$$

Et puisque $\mathcal{Y}_{\vec{w}}(\vec{x}) = \vec{w}^{\mathrm{T}}\vec{x}$ (voir quelques pages précédentes)

$$\vec{w} = \arg\min_{\vec{w}} \sum_{n=1}^{N} (\vec{w}^{\mathrm{T}} \vec{x}_n - t_n)^2$$

Maximum de vraisemblance

$$\overline{\vec{w}} = \arg\min_{\vec{w}} \underbrace{\sum_{n=1}^{N} (\vec{w}^{T} \vec{x}_{n} - t_{n})^{2}}_{E_{n}(\vec{w})}$$

Le « meilleur » \vec{w} est celui pour lequel le gradient est nul

$$\nabla_{\vec{w}} E_D(\vec{w}) = \sum_{n=1}^{N} \left(\vec{w}^{\mathrm{T}} \vec{x}_n - t_n \right) \vec{x}_n^{\mathrm{T}} = 0$$

$$\vec{w}^{T} \sum_{n=1}^{N} \vec{x}_{n} \vec{x}_{n}^{T} - \sum_{n=1}^{N} t_{n} \vec{x}_{n}^{T} = 0$$

22

Maximum de vraisemblance

$$\vec{w}^{T} \sum_{n=1}^{N} \vec{x}_{n} \vec{x}_{n}^{T} - \sum_{n=1}^{N} t_{n} \vec{x}_{n}^{T} = 0$$

En **isolant** \vec{W} , on obtient que

$$\vec{w}_{\text{MV}} = (X^{\mathsf{T}} X)^{-1} X^{\mathsf{T}} T$$

où

$$X = \begin{pmatrix} 1 & x_{1,1} & \cdots & x_{1,d} \\ 1 & x_{2,1} & \cdots & x_{2,d} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{N,1} & \cdots & x_{N,d} \end{pmatrix} \qquad T = \begin{pmatrix} t_1 \\ t_2 \\ \vdots \\ t_N \end{pmatrix}$$

23

En résumé

Maximiser la vraisemblance de données gaussiennes

$$\vec{w} = \arg\max_{\vec{w}} \prod_{n=1}^{N} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(y_{\vec{w}}(\vec{x}_n) - t_n)^2}{2\sigma^2}}$$

Très important à

comprendre!

Équivaut à minimiser la somme de l'erreur au carré

$$\vec{w} = \arg\min_{\vec{w}} \sum_{n=1}^{N} (\vec{w}^{\mathrm{T}} \vec{x}_n - t_n)^2$$

Et en forçant à zéro le gradient, on obtient la solution

$$\vec{w}_{\text{MV}} = \left(X^{\mathsf{T}} X\right)^{-1} X^{\mathsf{T}} T$$

25

25

Maximum a posteriori (MAP)

Cherche les meilleurs paramètres \vec{W} en maximisant la probabilité a posteriori

26

Maximum a posteriori (MAP)

On va émettre l'hypothèque que les données X,T ainsi que les paramètres \vec{W} sont iid de **distributions gaussiennes**

$$\vec{w} = \arg \max_{\vec{w}} p(T \mid X, \vec{w}, \sigma^2) p(\vec{w})$$

$$= \arg \max_{\vec{w}} \prod_{n=1}^{N} N(t_n \mid y_{\vec{w}}(\vec{x}_n), \vec{w}, \sigma^2) N(\vec{w} \mid 0, \alpha^2)$$

$$N(t_n \mid y_{\vec{w}}(\vec{x}_n), \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{(y_{\vec{w}}(\vec{x}_n) - t_n)^2}{2\sigma^2}}$$

$$N(\vec{w} \mid 0, \Sigma) = \frac{1}{(2\pi)^{1/d} |\mathbf{y}|} e^{\frac{\vec{w}^T \Sigma^{-1} \vec{w}}{2}}$$

Cherche les meilleurs paramètres \vec{w} en maximisant la probabilité a posteriori

$$\begin{split} \vec{w} &= \arg\max_{\vec{w}} \ln \left[\prod_{n=1}^{N} N(t_n \mid y_{\vec{w}}(x_n), \sigma^2) N(\vec{w} \mid 0, \Sigma) \right] \\ &= \arg\max_{\vec{w}} \sum_{n=1}^{N} \ln \left[N(t_n \mid y_{\vec{w}}(x_n), \sigma^2) N(\vec{w} \mid 0, \Sigma) \right] \\ &= \arg\max_{\vec{w}} \sum_{n=1}^{N} \ln \left[\frac{1}{\sqrt{2\pi}\sigma} e^{\frac{(t_n - y_{\vec{w}}(x_n))^2}{2\sigma^2}} \right] + \ln \left[\frac{1}{(2\pi)^{1/M} |\Sigma|} e^{\frac{\vec{w}^T \Sigma^{-1} \vec{w}}{2}} \right] \\ &= \arg\max_{\vec{w}} \sum_{n=1}^{N} -\frac{(t_n - y_{\vec{w}}(x_n))^2}{2\sigma^2} - \frac{\vec{w}^T \Sigma^{-1} \vec{w}}{2} + \ln \left[\frac{1}{\sqrt{2\pi}\sigma} \right] + \ln \left[\frac{1}{(2\pi)^{1/M} |\Sigma|} \right] \end{split}$$

28

Maximum a posteriori (MAP)

Cherche les meilleurs paramètres \vec{w} en maximisant la probabilité a posteriori

De plus, comme on ne connaît généralement pas Σ , on suppose qu'elle est isotropique

$$\Sigma = \begin{pmatrix} \alpha^2 & 0 & \dots & 0 \\ 0 & \alpha^2 & & \vdots \\ \vdots & & \ddots & \\ 0 & 0 & \dots & \alpha^2 \end{pmatrix} = \alpha^2 I$$

29

Maximum a posteriori (MAP)

Cherche les meilleurs paramètres \vec{w} en maximisant la probabilité a posteriori

$$\vec{w} = \arg\max_{\vec{w}} \sum_{n=1}^{N} -\frac{\left(t_n - y_{\vec{w}}(x_n)\right)^2}{\sigma^2} - \frac{\vec{w}^T \Sigma^{-1} \vec{w}}{\vec{w}}$$

$$= \arg\max_{\vec{w}} \sum_{n=1}^{N} -\frac{\left(t_n - y_{\vec{w}}(x_n)\right)^2}{\sigma^2} - \frac{\vec{w}^T \vec{w}}{\vec{w}}$$

$$= \arg\min_{\vec{w}} \sum_{n=1}^{N} (t_n - y_{\vec{w}}(x_n))^2 + \lambda \vec{w}^{T} \vec{w}$$

où
$$\lambda = \frac{\sigma^2}{\alpha^2}$$

Cherche les meilleurs paramètres \vec{w} en maximisant la probabilité a posteriori

$$\vec{w} = \arg\min_{\vec{w}} \sum_{n=1}^{N} (t_n - y_{\vec{w}}(x_n))^2 + \lambda \vec{w}^{\mathrm{T}} \vec{w}$$

Formule également connue sous le nom de

Voir sklearn pour une implémentation simple scikit-learn pour une implémentation simple scikit-learn projetable/modules/generated/sklearn linear model Ridge hi

31

Maximum a posteriori (MAP)

$$\vec{w} = \arg\min_{\vec{w}} \sum_{n=1}^{N} (t_n - y_{\vec{w}}(x_n))^2 + \lambda \vec{w}^{\mathrm{T}} \vec{w}$$

Les meilleurs paramètres sont ceux qui correspondent au gradient nul

$$\nabla_{\vec{w}} E_D(\vec{w}) = 0$$

32

Maximum a posteriori (MAP)

Puisque $y_{\vec{w}}(\vec{x}) = \vec{w}^{T}\vec{x}$ (voir quelques pages précédentes)

$$E_D(\vec{w}) = \sum_{n=1}^{N} (t_n - \vec{w}^T \vec{x})^2 + \lambda \vec{w}^T \vec{w}$$

En forçant le **gradient à zéro** $\nabla E_D(W) = 0$ on peut démontrer que

$$W_{\text{MAP}} = (X^{\mathsf{T}}X + \lambda I)^{-1}X^{\mathsf{T}}T$$

Cette preuve est sujette à devoir.

$$W_{\text{MAP}} = (X^{\mathsf{T}}X + \lambda I)^{-1}X^{\mathsf{T}}T$$

- Le terme de régularisation $\lambda \frac{W^TW}{2}$ est souvent appelé *weight decay* La régression avec un *weight decay* est souvent appelé *régression de Ridge*
- On retrouve le **maximum de vraisemblance** lorsque $\lambda = 0$
- Permet de réduire le **sur-apprentissage** lorsque $\lambda > 0$

34

35

Régression non-linéaire

Régression linéaire

• Le modèle de régression linéaire est le suivant :

$$y_{\vec{w}}(\vec{x}) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_d x_d$$

où
$$\vec{x} = (x_1, x_2, ..., x_d)$$

• Problème

Un modèle linéaire est souvent <u>pas assez flexible</u> pour bien représenter les données

37

37

38

Fonctions de base

 ${\bf Solution:} \ \, {\bf on} \ \, {\bf va} \ \, {\bf projeter} \ \, {\bf les} \ \, {\bf donn\'ee} \ \, {\bf dans} \ \, {\bf un} \ \, {\bf espace} \ \, {\bf plus} \ \, {\bf grand}, \ \, {\bf l\`a} \ \, {\bf o\`u} \ \, {\bf les} \ \, {\bf donn\'ees} \ \, {\bf sont} \ \, {\bf distribu\'ees} \ \, {\bf lin\'eairement}.$

=> régression sur des données à M dimensions au lieu de d dimensions (M>d)

$$\phi: R^d \to R^M$$

40

40

Fonctions de base

Exemple: au lieu de faire une régression linéaire 1D, => faire une régression linéaire en 4D

$$\phi(x) \rightarrow (x, x^2, x^3, x^4)$$

$$y_{\bar{w}}(x) = w_0 + w_1 x$$

$$= w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x$$

$$= w_0 + \sum_{i=1}^4 w_i \phi_i(x)$$

41

Fonctions de base

De façon plus générale

$$y_{\vec{w}}(\vec{x}) = w_0 + \sum_{i=1}^{M} w_i \phi_i(\vec{x})$$

où les $\phi_i(\vec{x})$ sont des fonctions de base (basis functions)

• Cas particulier : $\phi_i(\vec{x}) = x_i$ et M = d + 1

43

43

Fonctions de base

Pour **simplifier la notation**, on va supposer que $\phi_0(\vec{x}) = 1$ afin d'inclure le **biais** dans la sommation

hyperparamètre

$$y_{\vec{w}}(\vec{x}) = \sum_{i=0}^{M-1} w_i \phi_i(\vec{x})$$
Fonction de base

44

Fonctions de base

Pour simplifier la notation, on va supposer que $\phi_0(\vec{x})=1$ afin d'inclure le biais dans la sommation

$$y_{\vec{w}}(\vec{x}) = \sum_{i=0}^{M-1} w_i \phi_i(\vec{x})$$

$$= \vec{w}^{\mathsf{T}} \vec{\phi}(\vec{x})$$

$$(\phi_0(\vec{x}), \dots, \phi_{M-1}(\vec{x}))$$

Foncti		1.	1
Honeti	ons	de	hase

Une des fonctions de base les plus fréquentes est la fonction polynomiale

$$\phi_i(x) = x^i$$

=> Régression polynomiale

Régression et maximum de vraisemblance

Loi gaussienne conditionnelle

Comme auparavant, on suppose ici que les données sont corrompues par un **bruit gaussien**.

49

Maximum de vraisemblance

Suivant le même processus que précédemment, on obtient que

$$\overrightarrow{w} = \arg\min_{\overrightarrow{w}} \sum_{n=1}^{N} (\overrightarrow{w}^{\mathsf{T}} \overrightarrow{\phi} (\overrightarrow{x}_n) - t_n)^2$$

$$E_{\mathcal{D}}(\overrightarrow{w})$$

Et ici aussi, le « meilleur » \vec{w} est celui pour lequel le **gradient est nul**

$$\nabla_{\vec{w}} E_D(\vec{w}) = \sum_{n=1}^{N} \left(\vec{w}^{\mathsf{T}} \vec{\phi}(\vec{x}_n) - t_n \right) \vec{p}(\vec{x}_n)^{\mathsf{T}} = 0$$

50

Maximum de vraisemblance

$$\vec{w}^{\mathrm{T}} \sum_{n=1}^{N} \vec{\phi}(\vec{x}_{n}) \vec{\phi}(\vec{x}_{n})^{\mathrm{T}} - \sum_{n=1}^{N} t_{n} \vec{\phi}(\vec{x}_{n})^{\mathrm{T}} = 0$$

En **isolant** \vec{w} , on obtient que

$$\vec{w}_{\text{MV}} = (\Phi^{\mathsf{T}} \Phi)^{-1} \Phi^{\mathsf{T}} T$$

où

$$\boldsymbol{\Phi} = \begin{pmatrix} \phi_0(\vec{\mathbf{x}}_1) & \phi_1(\vec{\mathbf{x}}_1) & \cdots & \phi_{M-1}(\vec{\mathbf{x}}_1) \\ \phi_0(\vec{\mathbf{x}}_2) & \phi_1(\vec{\mathbf{x}}_2) & \cdots & \phi_{M-1}(\vec{\mathbf{x}}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\vec{\mathbf{x}}_N) & \phi_1(\vec{\mathbf{x}}_N) & \cdots & \phi_{M-1}(\vec{\mathbf{x}}_N) \end{pmatrix} \qquad \boldsymbol{T} = \begin{pmatrix} \boldsymbol{t}_1 \\ \boldsymbol{t}_2 \\ \vdots \\ \boldsymbol{t}_N \end{pmatrix}$$

Encore une fois, en suivant les mêmes étapes qu'auparavant, la solution au maximum a posteriori s'exprime sous la forme suivante

$$\vec{w} = \arg\min_{\vec{w}} \sum_{n=1}^{N} \frac{\left(t_n - \vec{w}^T \vec{\phi}(\vec{x}_n)\right)^2}{2} + \lambda \frac{\vec{w}^T \vec{w}}{2}$$

 $E_D(W)$

Formule également connue sous le nom de « régression de *Ridge* »

Exemple pour une fonction de base polynomiale

52

Maximum a posteriori (MAP)

Ici aussi on obtient la solution optimale en forçant le **gradient à zéro**

$$\nabla E_D(\vec{w}) = 0$$

Et ainsi obtenir

$$\vec{w}_{\text{MAP}} = (\Phi^{\mathsf{T}} \Phi + \lambda I)^{-1} \Phi^{\mathsf{T}} T$$

Cette preuve est sujette à devoir...

53

Maximum a posteriori (MAP)

$$\vec{w}_{\text{MAP}} = (\Phi^{\mathsf{T}} \Phi + \lambda I)^{-1} \Phi^{\mathsf{T}} T$$

- Le terme de régularisation $\lambda \frac{\vec{w}^{\mathsf{T}} \vec{w}}{2}$ est souvent appelé *weight decay*
- La régression avec un weight decay est souvent appelé régression de Ridge
- On retrouve le maximum de vraisemblance lorsque $\lambda = 0$
- Permet de réduire le **sur-apprentissage** lorsque $\lambda > 0$

Régression avec **prédictions multiples**

55

RAPPEL

55

Régression avec prédiction simple

$$D = (X,T)$$

 $D-(\Lambda,I)$

$$X = \left\{ \vec{x}_1, \dots, \vec{x}_N \right\} \ \text{et} \ \vec{x}_i \in R^d$$

 $T = \{t_1, \dots, t_N\}$

Exemple: prédiction du prix d'une maison (d=1)

x: Surface (pi2)	t: prix maison

250	89,000\$
554	197,000\$
710	261,000\$
2890	681,000\$

56

RAPPEL

56

Régression avec prédiction simple

$$D = (X,T)$$

οij

$$X = \left\{ \vec{x}_1, \dots, \vec{x}_N \right\} \text{ et } \vec{x}_i \in R^d$$

$$T = \left\{ t_1, \dots, t_N \right\}$$

Exemple: prédiction du prix d'une maison (d=2)

 \vec{x} : Surface (pi2); âge de la maison (années) t: prix maison

(250, 45)	89,000\$
(554, 90)	197,000\$
(710, 12)	261,000\$
(2890, 51)	681,000\$

__

Régression avec prédictions multiples

$$D = \begin{pmatrix} X, T \end{pmatrix}$$

оù

$$X = \{\vec{x}_1, \dots, \vec{x}_N\} \text{ et } \vec{x}_i \in R^d$$

$$\mathbf{T} = \{\vec{t}_1, \dots, \vec{t}_N\} \text{ et } \vec{t}_i \in R^K$$

Exemple: prédiction de plusieurs éléments d'une maison (d=2, K=3)

 \vec{x} : Surface (pi2); âge de la maison (années) \vec{t} : prix maison; coût chauffage; taxes

(250, 45)	(89,000\$, 720\$, 1231\$)
(554, 90)	(197,000\$, 1301\$, 1711\$)
(710, 12)	(261,000\$, 1445\$, 1199\$)
(2890, 51)	(681,000\$, 3789\$, 2998\$)

58

58

Régression avec prédictions multiples

Le modèle doit maintenant prédire un vecteur

$$y_{\rm W}(\vec{x}) = {\rm W}^{\rm T} \vec{\phi}(\vec{x})$$

Où W est une matrice $M \times K$

Chaque ligne de ${\bf W}$ peut être vue comme un vecteur W_k du modèle $y_{\vec{w}_k}(\vec{x}) = \vec{w}_k^T \vec{\phi}(\vec{x})$ pour la k' cible

59

59

Régression avec prédictions multiples

Si on suppose encore une fois un modèle de bruit gaussien

$$p(\vec{t} \mid \vec{x}, W, \sigma^2) = N(\vec{t} \mid \vec{y}_W(\vec{x}), \sigma^2)$$

On peut montrer que la solution du maximum de vraisemblance est

$$\mathbf{W}_{\mathbf{ML}} = (\mathbf{\Phi}^{\mathbf{T}} \mathbf{\Phi})^{-1} \mathbf{\Phi}^{\mathbf{T}} \mathbf{T}$$

Et la solution du maximum a posteriori est

$$\mathbf{W}_{\mathbf{MAP}} = (\Phi^{\mathsf{T}}\Phi + \lambda I)^{-1}\Phi^{\mathsf{T}}\mathbf{T}$$

Où T est une matrice $N \times K$

Résumé régression linéaire Paramètre Fonction de base

• Modèle: $y_{\vec{w}}(\vec{x}) = \sum_{i=0}^{M-1} \vec{w}_i \phi_i(\vec{x}) = \vec{w}^{\mathrm{T}} \vec{\phi}(\vec{x})$

• Entraı̂nement par **maximum de vraisemblance**: $\vec{w}_{\mathrm{MV}} = (\Phi^{\mathrm{T}}\Phi)^{-1}\Phi^{\mathrm{T}}T$

- Entraînement par **maximum** *a posteriori*: $\vec{w}_{\text{MAP}} = (\Phi^{T}\Phi + \lambda I)^{-1}\Phi^{T}T$
- Hyper-paramètres : M et λ