

ANÁLISIS MATEMÁTICO

GRADO EN CC. MATEMÁTICAS, 2018-2019

Ejercicios 64 a 70

64. Probar que todos los puntos $x \in \mathbb{R}^4$ en los que

$$f(x) = x_1^2 + x_2^2$$

tiene un extremo local sujeto a las condiciones

$$\begin{cases} x_1^2 + x_3^2 + x_4^2 = 4, \\ x_2^2 + 2x_3^2 + 3x_4^2 = 9, \end{cases}$$

se hallan entre

$$(0,0,\pm\sqrt{3},\pm1), (0,\pm1,2,0), (\pm1,0,0,\pm\sqrt{3}), (\pm2,\pm3,0,0).$$

¿ Cuáles de ellos determinan máximos locales y cuáles mínimos locales?

65. Hallar las dimensiones de la caja de mayor volumen que se puede inscribir en el elipsoide

$$\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} + \frac{x_3^2}{c^2} = 1.$$

$$\mathbb{S}^{n-1} = \{ x \in \mathbb{R}^n : ||x||_2 = 1 \}$$

 $\mathfrak{S}^{n-1} = \left\{\, x \in \mathbb{R}^n \,: \right.$ Îa esfera unidad de \mathbb{R}^n y el hiperplano afin

$$H = \left\{ x \in \mathbb{R}^n : \langle x, a \rangle = c \right\},\,$$

donde $a \in \mathbb{S}^{n-1}$ y $c \in \mathbb{R}$, $c \ge 0$.

1. Demostrar que el ínfimo en la distancia entre \mathbb{S}^{n-1} y H,

$$\operatorname{dist}\left(\mathbb{S}^{n-1}\,,H\right)=\inf\,\left\{\,\left\|x-y\right\|_{\scriptscriptstyle 2}\,:\,x\in\mathbb{S}^{n-1}\,,\,y\in H\,\right\}$$

se alcanza en un único par $s_0\in\mathbb{S}^{n-1}\,,\,x_0\in H\,,$ es decir, es un mínimo.

2. Considérense las funciones

$$f: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}, \qquad g: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^2,$$

dadas por

$$f(x,y) = ||x - y||_2^2$$
, $g(x,y) = (||x||_2^2 - 1, \langle x, a \rangle - c)$,

para calcular x_0 y s_0 , utilizando multiplicadores de LAGRANGE.

67. Sean a, b > 0 y p > 1.

1. Calcular el máximo de la función

$$f(x,y) = a x + b y,$$

de los $x>0\,,\,y>0$ sujetos a la condición

$$x^p + y^p = 1$$

2. Demostrar que todos los $x>0\,,\,y>0$ satisfacen

$$ax + by \le (x^p + y^p)^{1/p} (a^q + b^q)^{1/q},$$

donde q viene dado por

$$\frac{1}{p} + \frac{1}{q} = 1$$

3. Utilizar lo anterior para demostrar la desigualdad de HÖLDER

$$\sum_{i=1}^{n} x_i y_i \le \left(\sum_{i=1}^{n} x_i^p\right)^{1/p} \left(\sum_{i=1}^{n} y_i^q\right)^{1/q},$$

válida para reales positivos x_i, y_i .

68. Demostrar que todo $x \in \mathbb{R}^n$ satisface

$$n^n \prod_{j=1}^n x_j^2 \le ||x||_2^{2n}.$$

Obtener como consecuencia la desigualdad geométrico-aritmética

(15)
$$(a_1 a_2 \cdots a_n)^{1/n} \le \frac{a_1 + a_2 + \cdots + a_n}{n},$$

válida para reales positivos a_i .

69. Sean $t_1, t_2, \ldots, t_n \geq 0$ tales que

$$t_1 + t_2 + \dots + t_n = 1$$

y x_1, x_2, \ldots, x_n tales que

$$0 < m \le x_j \le M$$
, $j = 1, 2, \dots, n$.

Para demostrar la $desigualdad\ de\ Kantorovich$

(16)
$$\left(\sum_{j=1}^{n} t_{j} x_{j}\right) \left(\sum_{j=1}^{n} \frac{t_{j}}{x_{j}}\right) \leq \frac{(m+M)^{2}}{4 m M},$$

procedemos como sigue:

- 1. Es suficiente demostrar la desigualdad cuando $m\,M=1$ y, en este caso, 0 < m < 1 .
- 2. Demostrar

$$\sum_{j=1}^{n} t_j x_j + \sum_{j=1}^{n} \frac{t_j}{x_j} \le m + \frac{1}{m},$$

3. Utilizar la desigualdad geométrico-aritmética (15) para llegar a (16).

70. Dada

$$f(x) = x_1^k + x_2^k + \dots + x_n^k$$
,

$$x = (x_1, x_2, \dots, x_n)$$

probar que un extremo local de f sujeto a la condición

$$x_1 + x_2 + \cdots + x_n = \alpha$$

es

$$a^k n^{1-k}$$