

Finding Communities & Overlapped Communities by Clique Percolation Method (CPM)

#### Prakash C O

Department of Computer Science and Engineering



Finding Communities & Overlapped Communities by Clique Percolation Method (CPM)

#### Prakash C O

Department of Computer Science and Engineering

#### **Finding Overlapped Communities by CPM**

PES UNIVERSITY ONLINE

- Community membership could overlap: a node could be part of more than 1 community.
- A community -- also called a cluster or module -- in a network is a group of nodes more densely connected to each other than to nodes outside the group.
- ➤ In real networks clusters/Communities often overlap.



a) An example of overlapping k-clique-communities at k = 4. The yellow community overlaps with the blue one in a single node, whereas it shares 3 nodes and a link with the green one. These overlapping regions are emphasized in red.

Notice that any k-clique (complete subgraph of size k) can be reached only from the k-cliques of the same community through a series of adjacent k-cliques. Two k-cliques are adjacent if they share k – 1 nodes.

#### **Finding Overlapped Communities by CPM**

### ➤ Nodes can belong to more than 1 social circle!

b) The black dot in the middle represents either of the authors of this Letter, with several of his communities around. Zooming into the scientific community demonstrates the nested and overlapping structure of the communities, while depicting the cascades of communities starting from some members exemplifies the interwoven structure of the network of communities.





#### **Finding Overlapped Communities by CPM**

- ➤ Clique in a graph is a subset of nodes where each pair of node is connected through an edge, that is a complete sub-graph.
- The notation, k-clique indicates size of the clique i.e., the clique consist of k nodes e.g. a 3-clique indicate a complete sub-graphs having 3 nodes.

- **Clique:** Complete graph/sub-graph
- **≻**k-clique: Complete graph/sub-graph with k vertices



### **Finding Overlapped Communities by CPM**



### What is Clique Percolation Method(CPM)?

- >It's a method to find overlapping communities.
- The clique percolation method (CPM) was proposed by Palla et al.

#### **➤** Based on concept:

- Internal edges of community likely to form cliques.
- Intercommunity edges unlikely to form cliques.

# **Finding Overlapped Communities by CPM**

PES UNIVERSITY ONLINE

**>3-clique**: Complete graph with 3 vertices



3-clique

# **Finding Overlapped Communities by CPM**

PES UNIVERSITY ONLINE

**≻4-clique**: Complete graph with 4 vertices



4-clique

# **Finding Overlapped Communities by CPM**

**≻5-clique**: Complete graph with 5 vertices



5-clique



## **Finding Overlapped Communities by CPM**

## **≻**Adjacent k-cliques



# **Finding Overlapped Communities by CPM**

# PES UNIVERSITY ONLINE

## **≻**Adjacent k-cliques



## **Finding Overlapped Communities by CPM**

# PES UNIVERSITY ONLINE

## **≻**Adjacent k-cliques



Clique 1: 3-clique

## **Finding Overlapped Communities by CPM**

# PES UNIVERSITY ONLINE

## **≻**Adjacent k-cliques



## **Finding Overlapped Communities by CPM**

# PES UNIVERSITY ONLINE

## **≻**Adjacent k-cliques



### **Finding Overlapped Communities by CPM**

# PES UNIVERSITY ONLINE

### **≻**Adjacent k-cliques



Clique-1 and Clique-2 are adjacent because they share <u>k-1</u> nodes

## **Finding Overlapped Communities by CPM**

# PES UNIVERSITY ONLINE

### **≻**Adjacent k-cliques



Clique-2 and Clique-3 are not adjacent because they are not sharing <u>k-1</u> nodes

## **Finding Overlapped Communities by CPM**

# PES UNIVERSITY ONLINE

### **k-Clique Community**

### **Finding Overlapped Communities by CPM**

# PES UNIVERSITY ONLINE

## **k-Clique Community**



## **Finding Overlapped Communities by CPM**

# PES UNIVERSITY ONLINE

## **k-Clique Community**



### **Finding Overlapped Communities by CPM**

# PES UNIVERSITY ONLINE

### **k-Clique Community**



## **Finding Overlapped Communities by CPM**

# PES UNIVERSITY ONLINE

#### **k-Clique Community**



Community-1 and Community-2 are overlapped

## **Finding Overlapped Communities by CPM**



## **Algorithm:**

Input: Given graph G, and k (k: find communities of size k or more)

- 1. Locate maximal cliques
- 2. Convert from cliques to k-clique communities

# **Finding Overlapped Communities by CPM**





Note: k indicates finding communities of size k or more.

# **Finding Overlapped Communities by CPM**



## **Algorithm**

- 1. Locate maximal cliques
- 2. Convert from cliques to k-clique communities

## **Finding Overlapped Communities by CPM**



### 1. Locate Maximal Cliques

- a) Largest possible clique size can be determined from degrees of vertices
- b) Starting from this size, find all cliques, then reduce size by 1 and repeat

# **Finding Overlapped Communities by CPM**







# **Finding Overlapped Communities by CPM**

# PES UNIVERSITY ONLINE

# **Locate maximal cliques**



# **Finding Overlapped Communities by CPM**







# **Finding Overlapped Communities by CPM**

# PES UNIVERSITY ONLINE

# **Locate maximal cliques**



Clique 2: 4-clique

# **Finding Overlapped Communities by CPM**







# **Finding Overlapped Communities by CPM**

# Locate maximal cliques





# **Finding Overlapped Communities by CPM**







## **Finding Overlapped Communities by CPM**

## **Locate maximal cliques**





# **Finding Overlapped Communities by CPM**







# **Finding Overlapped Communities by CPM**

# PES UNIVERSITY ONLINE

# **Locate maximal cliques**



Clique 5: 3-clique

# **Finding Overlapped Communities by CPM**







## **Finding Overlapped Communities by CPM**

## **Locate maximal cliques**



Clique 6: 3-clique

## **Finding Overlapped Communities by CPM**



## **Algorithm**

- 1. Locate maximal cliques
- 2. Convert from cliques to k-clique communities

### **Finding Overlapped Communities by CPM**



## 2. Convert from cliques to k-clique communities

- a) Create a square matrix  $CC_{n\times n}$ , where n is the number of cliques found. Each cell CC[i, j] contains number of nodes shared by cliques  $C_i$  and  $C_j$ .
- b) If CC[i,i] is less than k, then delete.
- c) If CC[i,j] is less than k-1, then delete.
- d) Change all non-zeros to 1.
- e) Combine adjacent cliques to form a community.

## **Finding Overlapped Communities by CPM**





## **Finding Overlapped Communities by CPM**

## PES UNIVERSITY ONLINE

## **Cliques to k-Clique Communities**

|                | $C_1$ | <b>C</b> <sub>2</sub> | C <sub>3</sub> | <b>C</b> <sub>4</sub> | C <sub>5</sub> | <b>C</b> <sub>6</sub> |
|----------------|-------|-----------------------|----------------|-----------------------|----------------|-----------------------|
| C <sub>1</sub> | 5     |                       |                |                       |                |                       |
| C <sub>2</sub> |       | 4                     |                |                       |                |                       |
| C <sub>3</sub> |       |                       | 4              |                       |                |                       |
| C <sub>4</sub> |       |                       |                | 4                     |                |                       |
| C <sub>5</sub> |       |                       |                |                       | 3              |                       |
| C <sub>6</sub> |       |                       |                |                       |                | 3                     |



**Step-a:** Construct a matrix  $CC_{n\times n}$ , where n represents the total number of cliques. Each cell CC[i, j] contains number of nodes shared by cliques  $C_i$  and  $C_i$ .

## **Finding Overlapped Communities by CPM**

## PES UNIVERSITY ONLINE

## **Cliques to k-Clique Communities**

|                | C <sub>1</sub> | C <sub>2</sub> | C <sub>3</sub> | C <sub>4</sub> | C <sub>5</sub> | C <sub>6</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| C <sub>1</sub> | 5              | 3              | 1              | 3              | 1              | 2              |
| C <sub>2</sub> | 3              | 4              | 1              | 1              | 1              | 2              |
| C <sub>3</sub> | 1              | 1              | 4              | 2              | 1              | 2              |
| C <sub>4</sub> | 3              | 1              | 2              | 4              | 0              | 1              |
| C <sub>5</sub> | 1              | 1              | 1              | 0              | 3              | 2              |
| C <sub>6</sub> | 2              | 2              | 2              | 1              | 2              | 3              |



**Step-a:** Construct a matrix  $CC_{n\times n}$ , where n represents the total number of cliques. Each cell CC[i, j] contains number of nodes shared by cliques  $C_i$  and  $C_i$ .

## **Finding Overlapped Communities by CPM**

## **Cliques to k-Clique Communities**



**Symmetric Matrix** 



## **Finding Overlapped Communities by CPM**

## PES UNIVERSITY ONLINE

## **Cliques to k-Clique Communities**

Given k=4

|                       |   | C <sub>2</sub> | C <sup>3</sup> | <b>C</b> <sub>4</sub> | C <sub>5</sub> | C <sub>6</sub> |
|-----------------------|---|----------------|----------------|-----------------------|----------------|----------------|
| <u>C</u> 1            | 5 | 3              | 1              | 3                     | 1              | 2              |
| C <sub>2</sub>        | 3 | 4              | 1              | 1                     | 1              | 2              |
| C <sub>3</sub>        | 1 | 1              | 4              | 2                     | 1              | 2              |
| C <sub>4</sub>        | 3 | 1              | 2              | 4                     | 0              | 1              |
| <b>C</b> <sub>5</sub> | 1 | 1              | 1              | 0                     | 3              | 2              |
| C <sub>6</sub>        | 2 | 2              | 2              | 1                     | 2              | 3              |

Note: Given k in problem statement represents Community size (i.e., find communities of size k or more)

## **Finding Overlapped Communities by CPM**

## PES UNIVERSITY ONLINE

## **Cliques to k-Clique Communities**

k=4

|                | $C_1$ | C <sub>2</sub> | C <sub>3</sub> | C <sub>4</sub> | C <sub>5</sub> | C <sub>6</sub> |
|----------------|-------|----------------|----------------|----------------|----------------|----------------|
| C <sub>L</sub> | 5     | 3              | 1              | 3              | 1              | 2              |
| C <sub>2</sub> | 3     | 4              | 1              | 1              | 1              | 2              |
| C <sub>3</sub> | 1     | 1              | 4              | 2              | 1              | 2              |
| C <sub>4</sub> | 3     | 1              | 2              | 4              | 0              | 1              |
| C <sub>5</sub> | 1     | 1              | 1              | 0              | 3              | 2              |
| C <sub>6</sub> | 2     | 2              | 2              | 1              | 2              | 3              |

Step-b: If CC[i,i] is less than k, then delete

## **Finding Overlapped Communities by CPM**

## **Cliques to k-Clique Communities**





## **Finding Overlapped Communities by CPM**

## PES UNIVERSITY ONLINE

## **Cliques to k-Clique Communities**

k=4

|                | $C_1$ | C <sub>2</sub> | C <sub>3</sub> | C <sub>4</sub> | C <sub>5</sub> | C <sub>6</sub> |
|----------------|-------|----------------|----------------|----------------|----------------|----------------|
| C <sub>2</sub> | 5     | 3              | 1              | 3              | 1              | 2              |
| C <sub>2</sub> | 3     | 4              | 1              |                |                | 2              |
| C <sub>3</sub> | 1     | 1              | 4              | 2              |                |                |
| C <sub>4</sub> | 3     | 1              | 2              | 4              | 0              | 1              |
| C <sub>5</sub> | 1     |                |                | 0              | 0              | 2              |
| C <sub>6</sub> | 2     | 2              | 2              | 1              | 2              | 0              |

Step-c: If CC[i,j] is less than k-1, then delete

## **Finding Overlapped Communities by CPM**

## **Cliques to k-Clique Communities**





## **Finding Overlapped Communities by CPM**

## PES UNIVERSITY ONLINE

## **Cliques to k-Clique Communities**

|                       |   | <b>C</b> <sub>2</sub> | C <sub>3</sub> | C <sub>4</sub> | <b>C</b> <sub>5</sub> | C <sub>6</sub> |
|-----------------------|---|-----------------------|----------------|----------------|-----------------------|----------------|
| <b>C</b> <sub>2</sub> | 5 | 3                     | 0              | 3              | 0                     | 0              |
| C <sub>2</sub>        | 3 | 4                     | 0              | 0              | 0                     | 0              |
| C <sub>3</sub>        | 0 | 0                     | 4              | 0              | 0                     | 0              |
| C <sub>4</sub>        | 3 | 0                     | 0              | 4              | 0                     | 0              |
| <b>C</b> <sub>5</sub> | 0 | 0                     | 0              | 0              | 0                     | 0              |
| C <sub>6</sub>        | 0 | 0                     | 0              | 0              | 0                     | 0              |

**Step-d:** Change all non-zeros to 1

## **Finding Overlapped Communities by CPM**

# PES UNIVERSITY

## **Cliques to k-Clique Communities**

|                       |   | C <sub>2</sub> | C <sub>3</sub> | C <sub>4</sub> | <b>C</b> <sub>5</sub> |   |
|-----------------------|---|----------------|----------------|----------------|-----------------------|---|
| C <sub>1</sub>        | 1 | 1              | 0              | 1              | 0                     | 0 |
| C <sub>2</sub>        | 1 | 1              | 0              | 0              | 0                     | 0 |
| C <sub>3</sub>        | 0 | 0              | 1              | 0              | 0                     | 0 |
| C <sub>4</sub>        | 1 | 0              | 0              | 1              | 0                     | 0 |
| <b>C</b> <sub>5</sub> | 0 | 0              | 0              | 0              | 0                     | 0 |
| C <sub>6</sub>        | 0 | 0              | 0              | 0              | 0                     | 0 |



**Step-e:** Combine adjacent cliques to form a community.

## **Finding Overlapped Communities by CPM**

## PES UNIVERSITY ONLINE

## **Cliques to k-Clique Communities**

Clique-clique overlap matrix

|                | C <sub>1</sub> |   | C³ | <b>C</b> <sub>4</sub> | C <sub>5</sub> | C <sub>6</sub> |
|----------------|----------------|---|----|-----------------------|----------------|----------------|
| C <sub>1</sub> | 1              | 1 | 0  | 1                     | 0              | 0              |
| C <sub>2</sub> | 1              | 1 | 0  | 0                     | 0              | 0              |
| C <sub>3</sub> | 0              | 0 | 1  | 0                     | 0              | 0              |
| C <sub>4</sub> | 1              | 0 | 0  | 1                     | 0              | 0              |
| C <sub>5</sub> | 0              | 0 | 0  | 0                     | 0              | 0              |
| C <sub>6</sub> | 0              | 0 | 0  | 0                     | 0              | 0              |



Row 1 indicates clique-1 is adjacent to itself, clique-2 and clique-4.

Row 2 indicates clique-2 is adjacent to clique-1 and itself.

Row 3 indicates clique-3 is adjacent to itself only.

Row 4 indicates clique-4 is adjacent to clique-1 and itself.

## **Finding Overlapped Communities by CPM**

## PES UNIVERSITY ONLINE

## **Cliques to k-Clique Communities**

Clique-clique overlap matrix

|                       | C <sub>1</sub> | C <sub>2</sub> | C <sub>3</sub> | C <sub>4</sub> | C <sub>5</sub> | C <sub>6</sub> |
|-----------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| $c_1$                 | 1              | 1              | 0              | 1              | 0              | 0              |
| C <sub>2</sub>        | 1              | 1              | 0              | 0              | 0              | 0              |
| C <sub>3</sub>        | 0              | 0              | 1              | 0              | 0              | 0              |
| C <sub>4</sub>        | 1              | 0              | 0              | 1              | 0              | 0              |
| <b>C</b> <sub>5</sub> | 0              | 0              | 0              | 0              | 0              | 0              |
| <b>C</b> <sub>6</sub> | 0              | 0              | 0              | 0              | 0              | 0              |



Adjacent Cliques 1,2 and 4 form community-1 and Clique 3 alone form community-2

## **Finding Overlapped Communities by CPM**

## **Cliques to k-Clique Communities**





## **Finding Overlapped Communities by CPM**

## **Cliques to k-Clique Communities**



**Community 2** 



## **Finding Overlapped Communities by CPM**

## PES UNIVERSITY ONLINE

## **Cliques to k-Clique Communities**

Identified communities Community-1 and Community-2 are overlapped.



## **Finding Overlapped Communities by CPM**

PES UNIVERSITY ONLINE

Exercise 1: Find communities and overlapped communities of size greater than or equal to 3 using Clique Percolation Method (CPM). Show matrix computation.



## **Finding Overlapped Communities by CPM**

➤ Exercise 2: Given G and k=3. Find communities and overlapped communities using CPM. Show matrix computation.





## **Finding Overlapped Communities by CPM**

➤ Exercise 3: Given G and k=3. Find communities and overlapped communities using CPM. Show matrix computation.





## **Finding Overlapped Communities by CPM**

➤ Exercise 4: Given G and k=3. Find communities and overlapped communities using CPM. Show matrix computation.





### **Finding Overlapped Communities by CPM**

## PES UNIVERSITY ONLINE

## **CFinder:** (http://www.cfinder.org/)

- ➤ **CFinder** is a free software for finding and visualizing overlapping dense groups of nodes in networks, based on the Clique Percolation Method (CPM) of Palla et. al., *Nature* **435**, 814-818 (2005).
- ➤ CFinder was recently applied to the quantitative description of the evolution of social groups: Palla et. al.
- ➤ CFinder offers a fast and efficient method for clustering data represented by large graphs, such as genetic or social networks and microarray data.
- ➤ CFinder is also very efficient for locating the cliques of large sparse graphs.
- CFinder Manual: http://hal.elte.hu/cfinder/wiki/?n=Main.Manual

## **Finding Overlapped Communities by CPM**

## PES UNIVERSITY ONLINE

#### **CONCLUSION**

- ➤ Widely used algorithm for detecting overlapping communities
- ➤ However:
  - Fail to give meaningful covers for graph with few cliques
  - With too many cliques, might give a trivial community structure
  - Left out vertices?
  - Subgraphs containing many cliques == community?
  - What value of k to choose to give a meaningful structure?

## **Finding Overlapped Communities by CPM**



#### References

- ➤ Palla et al. Uncovering the overlapping community structure of complex networks in nature and society
- ➤ Santo Fortunato Community detection in graphs
- ➤ CPM PPT of Eugene Lim



## **THANK YOU**

### Prakash C O

Department of Computer Science and Engineering

coprakasha@pes.edu

+91 98 8059 1946

### **Finding Overlapped Communities by CPM**



### Algorithm works as follows:

- 1. All cliques are found for different values of *k*.
- 2. A square matrix, where n is the number of cliques found, is created. Each cell [i, j] contains number of nodes shared by cliques i and j.
- 3. All cliques of size equal or greater than *k* are selected and between cliques of the same size connections are found in order to create a *k*-clique chain.