

Institutt for matematiske fag

Eksamensoppgave i TMA4120 Matematikk 4K
Faglig kontakt under eksamen: Katrin Grunert ^a , Eduardo Ortega-Esparza ^b Tlf:
Eksamensdato: 8. august 2016 Eksamenstid (fra-til): 09:00–13:00 Hjelpemiddelkode/Tillatte hjelpemidler: Kode C: Bestemt, enkel kalkulator
Rottmann: Matematisk formelsamling Annen informasjon: Alle svar skal begrunnes. Du må ta med så mye mellomregning at fremgangsmåten fremgår tydelig av besvarelsen.
Målform/språk: bokmål Antall sider: 2
Antall sider vedlegg: 1 Kontrollert av:

Sign

Dato

Oppgave 1 Løs initialverdiproblemet

$$y''(t) + 2y(t) = 2\sin(t), \quad y(0) = y'(0) = 0.$$

Oppgave 2 Fourierrekken til funksjonen $f(x) = \cosh(x)$ på intervallet $[-\pi, \pi]$ er

$$\frac{1}{\pi}\sinh(\pi)\left(1+2\sum_{n=1}^{\infty}\frac{(-1)^n}{1+n^2}\cos(nx)\right).$$

Skisser summen av Fourierrekken til f(x) på intervallet $[-2\pi, 2\pi]$. Bruk Fourierrekken til å regne ut summen av rekken

$$\sum_{n=1}^{\infty} \frac{1}{1+n^2}.$$

Oppgave 3

a) Finn alle løsninger av Laplaceligningen

$$u_{xx}(x,y) + u_{yy}(x,y) = 0, \quad 0 < x < \pi, \quad 0 < y < \frac{\pi}{2}$$
 (1)

på formen u(x,y) = F(x)G(y) som tilfredsstiller randbetingelsene

$$u_x(0,y) = u_x(\pi,y) = 0, \quad 0 < y < \frac{\pi}{2}.$$
 (2)

b) Finn en løsning av (1) som i tillegg til (2) også tilfredsstiller

$$u(x,0) = 0$$
 og $u_y(x, \frac{\pi}{2}) = (1 + \cos(x))^2$, $0 < x < \pi$.

Oppgave 4 Funksjonene f(x) og g(x) er definert ved

$$f(x) = e^{-x^2}$$
 og $g(x) = xe^{-x^2}$.

La $h(x)=(f\star g)(x)=\int_{-\infty}^{\infty}f(x-p)g(p)dp$ være konvolusjonen av f og g. Bruk Fouriertransformen for å vise at

$$h(x) = (f \star g)(x) = -\frac{i}{4} \int_{-\infty}^{\infty} w e^{-\frac{w^2}{2}} e^{iwx} dw.$$

Hint:
$$\mathcal{F}(e^{-ax^2})(w) = \frac{1}{\sqrt{2a}}e^{-\frac{w^2}{4a}} \ (a>0)$$

Oppgave 5 Vis ved hjelp av Cauchy-Riemann ligningene at

$$f(z) = \frac{1}{z}$$

er analytisk på $\mathbb{C} \setminus \{0\}$.

Oppgave 6 La $f(z) = \frac{z}{(z^2+1)^2}$.

a) Vis at

$$\oint_{|z|=2} f(z)dz = 0,$$

der sirkelen er orientert mot klokka.

b) En av Laurentrekkene til f(z) med sentrum i z=i konvergerer i punktet z=2i. Hva er (det største) konvergensområdet til denne rekken?

Oppgave 7 La $f(x) = \frac{x^2}{1+x^4}$. Beregn ved hjelp av residueregning

$$\int_0^\infty f(x)dx.$$

Table of Laplace transforms

f(t)	$\mathcal{L}(f)$
1	$\frac{1}{s}$
t	$\frac{1}{s^2}$
$t^n \ (n=0,1,2,\dots)$	$\frac{n!}{s^{n+1}}$
e^{at}	$\frac{1}{s-a}$
$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$
$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$
$\cosh at$	$\frac{s}{s^2 - a^2}$
$\sinh at$	$\frac{a}{s^2 - a^2}$
$e^{at}\cos\omega t$	$\frac{s-a}{(s-a)^2+\omega^2}$
$e^{at}\sin\omega t$	$\frac{\omega}{(s-a)^2 + \omega^2}$