DSI Project

Combined Data Visualizations
John Koenig - 16JUN2021

Combined Data Visualizations

- Box Plots
- Correlation Heatmap
- 6 x Histogram Multi-plots
- Confusion Matrix Heatmaps
- Top 10 Models Table
- Visualize Decision Tree
- Multi-ROC Curve Plot

Correlation Between Breast Cancer Input Variables

Histograms of Breast Cancer Input Variables var0 - var5 Note: X-axis is not constant between plots

Histograms of Breast Cancer Input Variables var6 - var11 Note: X-axis is not constant between plots

Histograms of Breast Cancer Input Variables var12 - var17 Note: X-axis is not constant between plots

Histograms of Breast Cancer Input Variables var18 - var23 Note: X-axis is not constant between plots

Histograms of Breast Cancer Input Variables var24 - var29 Note: X-axis is not constant between plots

Test Performance Heatmaps

Top 10 Potential Random Forest Models

	·															To .		
	test_split	total_records	n_trees	sample_percent	depth	true_positive	true_negative	false_positive	false_negative	true_positive_rate	true_negative_rate	false_positive_rate	false_negative_rate	accuracy	precision	recall	F1_score	ROC_area
RF_trees10000_sample0.2_depth9	0.25	143	10000	0.2	9	88	46	7	2	0.9263	0.9583	0.0737	0.0417	0.6294	0.9263	0.9778	0.9514	0.9229
RF_trees10000_sample0.2_depth10	0.25	143	10000	0.2	10	88	46	7	2	0.9263	0.9583	0.0737	0.0417	0.6294	0.9263	0.9778	0.9514	0.9229
RF_trees10000_sample0.2_depth14	0.25	143	10000	0.2	14	88	46	7	2	0.9263	0.9583	0.0737	0.0417	0.6294	0.9263	0.9778	0.9514	0.9229
RF_trees10000_sample0.2_depth19	0.25	143	10000	0.2	19	88	46	7	2	0.9263	0.9583	0.0737	0.0417	0.6294	0.9263	0.9778	0.9514	0.9229
RF_trees10000_sample0.2_depth20	0.25	143	10000	0.2	20	88	46	7	2	0.9263	0.9583	0.0737	0.0417	0.6294	0.9263	0.9778	0.9514	0.9229
RF_trees10000_sample0.25_depth7	0.25	143	10000	0.25	7	88	46	7	2	0.9263	0.9583	0.0737	0.0417	0.6294	0.9263	0.9778	0.9514	0.9229
RF_trees10000_sample0.25_depth8	0.25	143	10000	0.25	8	88	46	7	2	0.9263	0.9583	0.0737	0.0417	0.6294	0.9263	0.9778	0.9514	0.9229
RF_trees10000_sample0.25_depth9	0.25	143	10000	0.25	9	88	46	7	2	0.9263	0.9583	0.0737	0.0417	0.6294	0.9263	0.9778	0.9514	0.9229
RF_trees10000_sample0.25_depth10	0.25	143	10000	0.25	10	88	46	7	2	0.9263	0.9583	0.0737	0.0417	0.6294	0.9263	0.9778	0.9514	0.9229
RF_trees10000_sample0.25_depth11	0.25	143	10000	0.25	11	88	46	7	2	0.9263	0.9583	0.0737	0.0417	0.6294	0.9263	0.9778	0.9514	0.9229

Selected Estimator from Optimal Random Forest [9119:10,000]

Selected Estimator from Optimal Random Forest [3333:10,000]

Selected Estimator from Optimal Random Forest [4456:10,000] Predict

Selected Estimator from Optimal Random Forest [7474:10,000]

Contact

Thank you for reviewing my DSI project for General Assembly

If you have any comments or feedback about this course content, please contact:

John Koenig
Faculty Affiliate, Regis University
Master of Data Science Program
jkoenig0002@regis.edu

