Topological analysis of neural network

Michele Alessi

Università degli studi di Trieste: Advanced Topics in Machine Learning A.A. 2022-23

Goal of the project

- Study the manifolds of weights and activations of a neural network using different techniques
- Adopt a new methodology to cluster data and infer some properties of the network using a new methodology based on mapper algorithm
- Recover neurons importance to classify a particular label

Train a FCNN with one hidden layer
 to classify MNIST dataset, using
 different configurations of the network.

 100 hidden neurons
 Regularized regime
 Not regularized regime

- After training, extract weights
- Use the model on the testset (10 000 images) and store neurons activations for each test image.

- Cluster outputs activations manifold, using different methods
- For each method, for each cluster:
 - For each point in the cluster:

 Consider 5 neurons in the hidden layer with highest activations

We end up with information about which neurons in the hidden layer tend to be activated the most for each cluster.

Mapper Algorithm

Mapper Algorithm output for regularized regime with 100 neurons

Mapper Heatmap for hidden-layer neurons activations - Regularized regime with 1024 neurons

Mapper Heatmap for hidden-layer neurons activations - **Non** regularized regime with 1024 neurons

Mapper Heatmap for hidden-layer neurons activations - **Non** regularized regime with 100 neurons

Mapper Heatmap for hidden-layer neurons activations - Regularized regime with 100 neurons

Note: clusters 0, 2 and 5 have same neurons activated: 92, 44, 29

Corresponding manifold for activations of points in clusters 0, 2, 5

Barplot for mapper - Non regularized regime with 100 neurons

Barplot for mapper - Regularized regime with 100 neurons Note: cluster 7 has noise and bad accuracy, clusters 8 and 9 are the more *localized*

Corresponding manifold for activations of points in clusters 7, 8, 9

Knowing most activated neurons for each cluster, consider weights associated with those neurons.

Knowing most activated neurons for each cluster, consider weights associated with those neurons.

- Plot the weights associated with a particular neurons
- Combine together
 weights associated with
 most important neurons
 with respect to a cluster

Not reg. regime with 1024 neurons

Weights for 5 best neurons in the hidden layer for cluster 0, mapper

Neuron 840

Reg. regime with 1024 neurons

g. 10g......

Neuron 59

Weights for 5 best neurons in the hidden layer for cluster 0, mapper

- How neurons associated with a certain cluster see an image?
- What happen with neurons belonging to other clusters or with randomly selected neurons?

Reshape of input images (64x64) - this is how new weights plots look like: (just to give an insight)

Further work

- Add hidden layers, study how informations flow through the layers using topological techniques
- Try other types of regularization (for ex. L1 regularization to manage the sparsity of neurons activations)
- Study correlations and statistics coming from our data
- Try other dataset (for ex. FashionMNIST)
- Try other architectures (for ex. CNN)
- Apply this analysis to other frameworks (for ex. PINA, from SISSA-MatLab)