Landon Carter 9/22/16 6.111 PS4

1

1.1 A

The smallest clock period is 9 ns. That's the t_{PD} of the two inverters, plus t_{PD} for the first D register, plus the t_S of the second register.

1.2 B

The new circuit would not work correctly, because the t_H of the second register would not be met.

1.3 C

```
S0 = 0, S1 = 0
```

1.4 D

$$S0 = 0, S1 = 1$$

1.5 E

The skew actually helps us - we can now have a clock period of 8 ns.

$\mathbf{2}$

```
module jk
        (input j, k, preset, clear, clk,
         output q, qbar);
        reg state;
        always @(posedge clk or negedge preset or negedge clear) begin
                if (preset && claer) begin // standard operation
                         case (\{j, k\})
                                 2'b00: state <= state;
                                 2'b01: state <= j;
                                 2'b10: state <= j;
                                 2'b11: state <= "state;
                                 default: state <= state;
                         endcase
                end
                else if (~preset) begin // set state
                         state \leq 1;
                end
                else if ("clear) begin // clear state
```

```
state <= 0;
```

 \mathbf{end}

assign q = state;
assign qbar = ~q;

 \mathbf{end}

end module