

University of New South Wales

SCHOOL OF MATHEMATICS AND STATISTICS

Lecture Notes

Functional Analysis

Author: Adam J. Gray Student Number: 3329798

Spectral Thoery

Spectral theory is analogous to eigen-value theory for matricies. In this case we look at spectral theory on bounded linear operators on a Hilbert space \mathcal{H} . We define the following

For $T \in B(\mathcal{H})$ we define the following

Definition 1 (Resolvent Set). Define $\rho(T) := \{\lambda \in \mathbb{C} : \exists (T - \lambda)^{-1} \in B(\mathcal{H})\}.$

Definition 2 (Resolvent). Define $R_{\lambda}(T) := (T - \lambda)^{-1}$

Definition 3 (Spectrum). *Define* $\sigma(T) := \mathbb{C} \setminus \rho(T)$.

On could heuristically think of λ aas being an eigen-value and we formalize this idea as follows.

If $\mathcal{H} = \mathbb{C}^n$ and $T = T_A$ where $A = (a_{j,k})_{j,k=1}^n$ (a matrix) then if $(T - \lambda I)^{-1}$ does not exist, i.e. $\ker(T - \lambda I) \neq \mathbf{0}$ then λ is an eigen-value.

We would like to formalize and prove the following three ideas;

- $\sigma(T)$ is bounded,
- $\sigma(T)$ is closed, and
- $\sigma(T)$ is non-empty.

Lemma 1 ($\sigma(T)$ is bounded). If $|\lambda| > ||T||$ then $\lambda \in \rho(T)$.

Proof. If we have that $|\lambda| < ||T||$ then

$$\sum_{k=0}^{\infty} \frac{||T||^k}{|\lambda|^k} < \infty$$

and so it makes since to define an operator

$$S_{\lambda} := \sum_{k=0}^{\infty} \frac{T^k}{\lambda^k}$$

where $S_{\lambda} \in B(\mathcal{H})$.

Now clearly we can write

$$(T - \lambda I)S_{\lambda} = \left(T + \frac{T^2}{\lambda} + \frac{T^3}{\lambda^2} + \cdots\right) - \left(\lambda I + T + \frac{T^2}{\lambda} + \frac{T^3}{\lambda^2} + \cdots\right)$$

and therefore $(T - \lambda I)S_{\lambda} = -\lambda I$. Similarly $S_{\lambda}(T - \lambda I) = -\lambda I$. That means that $\lambda \in \rho(T)$, because we have found an inverse of $(T - \lambda I)$, namely

$$R_{\lambda}(T) = \frac{-S_{\lambda}}{\lambda}.$$

Due to the way that $\sigma(T)$ is defined it would be appropriate to prove that $\rho(T)$ is open in order to show that $\sigma(T)$ is closed.

Lemma 2 $(\sigma(T) \text{ is closed})$. If $\lambda_0 \in \rho(T)$ and $a = ||R_{\lambda_0}(T)||^{-1} > 0$ then $\{\lambda \in \mathbb{C} : |\lambda - \lambda_0| < a\} \subseteq \rho(T)$.

What this essentially says is that we can always cook up an open a-ball around any $\lambda_0 \in \rho(T)$.

Proof. Let $\lambda \in \mathbb{C}$ be such that $|\lambda - \lambda_0| < a$. We can see that since

$$|\lambda - \lambda_0| \cdot ||R_{\lambda_0}(T)|| < 1$$

then

$$\sum_{k=0}^{\infty} |\lambda - \lambda_0|^k \cdot ||R_{\lambda_0}(T)||^k < \infty$$

and so it makes since to define an operator

$$S_{\lambda} := \sum_{k=0}^{\infty} (\lambda - \lambda_0)^k R_{\lambda_0}(T)^k$$

where $S_{\lambda} \in B(\mathcal{H})$. Now by writing $\mu = \lambda - \lambda_0$ we have that

$$(T - \lambda)S_{\lambda} = (T - \lambda_0 I - \mu I)S_{\lambda}$$

$$= ((T - \lambda_0 I) + \mu I + \mu^2 R_{\lambda_0}(T) + \mu^3 R_{\lambda_0}(T) + \cdots)$$

$$- (\mu I + \mu^2 R_{\lambda_0}(T) + \mu^3 R_{\lambda_0}(T)^2 + \cdots)$$

$$= (T - \lambda_0 I).$$

In exactly the same manner we see that $S_{\lambda}(T - \lambda I) = (T - \lambda_0 I)$. Now since $(T - \lambda_0 I)$ is invertable, with inverse R_{λ_0} it follows that

$$R_{\lambda_0} S \lambda (T - \lambda I) = I$$

and so $\lambda \in \rho(T)$ and in particular $R_{\lambda} = R_{\lambda_0} S_{\lambda}$. This shows that $\rho(T)$ is open and hence $\sigma(T)$ is closed.

Lemma 3 ($\sigma(T)$ is non-empty).

Proof. We assume $\sigma(T) \neq \emptyset$ and arrive at a contradiction. Define a function

$$f_T(z) := R_z(T).$$

By lemma 2 for any $\lambda_0 \in \mathbb{C}$ we can write

$$\sum_{k=0}^{\infty} (z - \lambda_0)^k R_{\lambda_0}(T)^{k+1}.$$

We can also further say that this series converges for all $z \in \mathbb{C}$. This means f is an entire function. By using the ideas of lemma 1 we can also write

$$f_T(z) = R_z(T) = -\frac{1}{z} \sum_{k=0}^{\infty} \frac{T^k}{z^k}$$

and so f(z) is bounded. Now by Liouville's theorem $f \equiv C$ where C is a constant, but this is clearly a contradiction.

Spectral Radius

In this section we define the spectral radius of an operator and show a result that relates the norm of the operator to the spectral radius. We then go on to show that if T is self adjoint then this relationship can be further simplified.

Definition 4 (Spectral Radius). For any $T \in B(\mathcal{H})$ define

$$r(t) := \sup\{|\lambda| : \lambda \in \sigma(T)\}$$

.

Theorem 1. For any $T \in B(\mathcal{H})$ we have that

$$r(T) = \lim_{n \to \infty} ||T^n||^{\frac{1}{n}}$$

We use several lemmas to prove this result. Define $\alpha(T) = \lim_{n \to \infty} ||T^n||^{\frac{1}{n}}$.

Lemma 4. $\alpha(T)$ is well defined.

Proof. Let $\alpha_n = ||T^n||$ and observe that by Cauchy-Schwartz

$$||T^{n+k}|| \le ||T^n|| \cdot ||T^k||.$$

Let

$$\alpha = \inf_{n \ge 1} \alpha_n^{\frac{1}{n}}$$

and fix any $\epsilon > 0$.

Pick an $m \in \mathbb{N}$ such that $\alpha \leq \alpha_m^{\frac{1}{m}} < \alpha + \epsilon$.

For any $n \in \mathbb{N}$ we can pick $k, b \in \mathbb{N}$ such that n = km + b and b < m.

Then by using the observation from * we can write

$$\alpha \leq \alpha_n^{\frac{1}{n}}$$

$$\leq \alpha_{km}^{\frac{1}{n}} \cdot \alpha_b^{\frac{1}{n}}$$

$$\leq \alpha_m^{\frac{1}{n}} \cdot \alpha_b^{\frac{1}{n}}$$

$$= \left(\alpha_m^{\frac{1}{m}}\right)^{\frac{km}{n}} \cdot \alpha_b^{\frac{1}{n}}$$

$$\leq (\alpha + \epsilon)^{1 - \frac{b}{n}} \cdot \left(\max_{1 \leq b \leq m} a_b\right)^{\frac{1}{n}}.$$

By letting $n \longrightarrow \infty$ then we can pinch $\alpha_n^{\frac{1}{n}}$ between α and $\alpha + \epsilon$, i.e.

$$\alpha \leq \liminf_{n \longrightarrow \infty} \alpha_n^{\frac{1}{n}} \leq \limsup_{n \longrightarrow \infty} \alpha_n^{\frac{1}{n}} \leq \alpha + \epsilon.$$

So we can say that $\alpha(T) = \alpha$.

Lemma 5. If $|\lambda| > \alpha(T)$ then $\lambda \in \rho(T)$

Proof. Note that if $|\lambda| > \alpha(T)$ then there exists some $N \in \mathbb{N}$ such that for any $n \geq N$ we have that

$$||T^n||\frac{1}{n} < \alpha(T).$$

If we let $q = \frac{\alpha(T)}{|\lambda|}$ then we can re-write this as

$$||T^n|| < q^n |\lambda|^n$$

and so $\frac{||T^n||}{|\lambda|^n} < q^n$. By noting that 0 < q < 1 we can say that the operator defined by

$$S_{\lambda} = -\sum_{n=0}^{\infty} \frac{T^n}{\lambda^n}$$

converges absoluetly.

Now since $(T - \lambda I)S_{\lambda} = S_{\lambda}(T - \lambda I) = I$ (by a result similar to that in lemma 1) we can say that $\lambda \in \rho(T)$.

Lemma 6. If $|\lambda| > \alpha(T)$ then $|\lambda| \geq r(T)$.

Proof. If $|\lambda| > \alpha(T)$ and $|\lambda| < r(T)$ then because of the way we define r there must exist a $\lambda_1 \in \rho(T)$ such that $\alpha(T) < |\lambda| < |\lambda_1| < r(T)$. This is a contradition because lemma 5 shows $\lambda_0 \in \rho(T)$.

What 6 says is that $\alpha(T) \geq r(T)$. We can now prove a final result which will amount to a proof of theorem 1

of theorem 1. Assume, for a contradiction that $\alpha(T) > r(T)$. Then we can pick some $\lambda \in \mathbb{C}$ such that

$$\alpha(T) < |\lambda| < r(T).$$

Fix some $x, y \in \mathcal{H}$ and define a function

$$f_T(z) := R_z(T) = -\frac{1}{z} \sum_{k=0}^{\infty} \frac{\langle T^n x, y \rangle}{z^n}.$$

This function is defined if $|z| > \alpha(T)$ (by applying the same idea as in lemma 5).

Since $\sigma(T) \subseteq \{|z| \le r(T)\}$ and so f is holomorphic for all |z| > r(T) so it admits a power series expansion on the whole disc. It follows that the expansion given above for the wider disc

$$\{|z| > r(T)\}$$

This means that the series

$$\sum_{n=0}^{\infty} \frac{\langle T^n x, y \rangle}{\lambda^n}$$

converges.

This means that we must have the tail terms of this series going to zero, i.e.

$$\lim_{n\longrightarrow\infty}\frac{|\langle T^nx,y\rangle|}{|\lambda|^n}=0$$

and so by the uniform boundedness principle we must have a c > 0 such that

$$||T^n|| \le c|\lambda|^n$$

for all n and so

$$||T^n||^{\frac{1}{n}} \le c^{\frac{1}{n}}|\lambda|$$

which leads to a contradiction because it implies that $\alpha(t) = \lim_{n \to \infty} ||T^n||^{\frac{1}{n}} \le$ $|\lambda|$.

We now consider the case of a self-adjoint bounded linear operator. In this case a formula for r(T) is rather much more simple.

Lemma 7. If
$$T \in B(\mathcal{H})$$
 and $T = T^*$ then $r(T) = ||T||$.

Proof. From the C^* identity we have that $||T||^2 = ||T^*T|| = ||T^2||$. We can generalise this to say $||T||^{2n} = ||T^{2n}||$ for all $n \in \mathbb{N}$. By noting that we can write

$$r(T) = \lim_{n \to \infty} ||T^n|| \frac{1}{n} = \lim_{n \to \infty} ||T^{2^n}||^{2^{-n}} = ||T||$$

we have the result.

We now prove a collection of results about the spectrum of various types of operators.

Theorem 2. If $T \in B(\mathcal{H})$ and T is self adjoint then $\sigma(T) \subseteq \mathbb{R}$.

Proof. Let $\lambda \in \mathbb{C}$ be such that $\lambda = \alpha + i\beta$ with $\beta \neq 0$. Then

$$\begin{aligned} ||(T - \lambda I)x||^2 &= ||(T - \alpha I - i\beta I)x||^2 \\ &= \langle (T - \alpha I - i\beta I)x, (T - \alpha I - i\beta I)x \rangle \\ &= \langle (T - \alpha I + i\beta I)(T - \alpha I - i\beta I)x, x \rangle \\ &= \langle ((T - \alpha I)^2 + \beta I)x, x \rangle \\ &= \langle (T - \alpha I)^2 x + \beta Ix, x \rangle \\ &= \langle (T - \alpha I)^2 x, x \rangle + \beta^2 \langle x, x \rangle \\ &= ||(T - \alpha I)x||^2 + \beta^2 ||x||^2. \end{aligned}$$

We can therefore write that $||(T - \lambda I)x|| \ge \Im(\lambda)||x||$ which means that $(T - \lambda I)$ is injective.

We can also see that T is surjective because

$$(\operatorname{Im}(T - \lambda I))^{\perp} = \ker(T - \overline{\lambda}) = \{0\}.$$

This means that

$$||(T - \lambda I)^{-1}|| \le \Im(\lambda)^{-1}$$

which is to say that $\lambda \in \rho(T)$.

This means that $\lambda \notin \sigma(T)$ which means that any $z \in \sigma(T)$ must be such that $\Im(z) = 0$.

Rational Calculus

Here we generalise ideas about functions on the real numbers to functions of bounded linear operators.

Firstly we consider a function

$$f(z) = \frac{(z - \alpha_1)(z - \alpha_2) \cdots (z - \alpha_n)}{(z - \lambda_1)(z - \lambda_2) \cdots (z - \lambda_m)}$$

and call this function a rational function. This is because it can be considered the quotient of two polynomials. (The complete factorization here being permitted by the fundamental theorem of calculus).

From this definition of f is clear to see that the α_j constitute the roots of f and the λ_j constitute the poles of f.

Now for any $T \in B(\mathcal{H})$ and $\lambda_1, \ldots, \lambda_m \notin \sigma(T)$ we define a rational calculus by

$$f(T) := (T - \alpha_1 I)(T - \alpha_2 I) \cdots (T - \alpha_n I) R_{\lambda_1}(T) R_{\lambda_2}(T) \cdots R_{\lambda_m}(T)$$

We now have a simple theorem we wish to consider which relates the spectrum of f(T) to the spectrum of T.

Theorem 3. For $T \in B(\mathcal{H})$ and with f defined as above (i.e. with $\lambda_j \notin \sigma(T)$) then

$$\sigma(f(T)) = f(\sigma(T)).^1$$

Proof. This proof procedes in two parts:

• $f(\sigma(T)) \subseteq \sigma(f(T))$ Fix a $\lambda \in \sigma(T)$ and let $\mu = f(\lambda)$. Define a function g such that

$$g(z) = f(z) - \mu.$$

Now since $g(\lambda)=0,\,g$ admits a factorization $g(z)=(z-\lambda)\frac{p(z)}{q(z)}$ where p,q are polynomials.

¹We define $f(\sigma(T)) := \{f(z) : z \in \sigma(T)\}$. That is to say $f(\sigma(T))$ returns a set with f applied to each element of the set which was supplied as the argument.

Now consider

$$g(T) = f(T) - \mu I = \underbrace{(T - \lambda I)}_{\circledast} p(T) q(T)^{-1}$$

and note that \circledast is not invertable because $\lambda \in \sigma(T)$ and hence

$$f(T) - \mu$$

is not invertable and so $\mu \in \sigma(f(T))$.

• $\sigma(f(T)) \subseteq f(\sigma(T))$

Let $\mu \in \sigma(f(T))$ and define a function

$$g(z) = f(z) - \mu = \frac{(z - \alpha_1)((z - \alpha_2) \cdots (z - \alpha_n)}{(z - \lambda_1)(z - \lambda_2) \cdots (z - \lambda_m)}$$

so we can write

$$f(T) - \mu I = \underbrace{(T - \alpha_1 I)(T - \alpha_2 I) \cdots (T - \alpha_n I)}_{\circledast \circledast} \underbrace{R_{\lambda_1}(T) R_{\lambda_2}(T) \cdots R_{\lambda_m}(T)}_{\circledast \circledast \circledast}.$$

Note $f(T) - \mu I$ is not invertible because $\mu \in \sigma(f(T))$. By definition everything in $\circledast \circledast$ must be intertable so something in $\circledast \circledast$ must not be invertable. This means that one of $\alpha_1, \alpha_2 \dots \alpha_n$ is in $\sigma(T)$.

Now for all $k \in \{1, ..., n\}$ we have that

$$q(\alpha_k) = 0$$

which would force $f(\alpha_k) = \mu$ and so $\mu \in f(\sigma(T))$.

We have an immediate corollary in the case where T is self adjoint.

Corollary 1. If $T = T^*$ then

$$||f(T)|| = \sup_{\lambda \in \sigma(T)} |f(\lambda)|$$

Proof. By the C^* identity we have that

$$||f(T)||^2 = ||f(T)^*f(T)||$$

= $\overline{f}(T^*)f(T)||$.

Letting $g(z) = \overline{f}(z)f(z)$ we have that since T, and hence g(T), is self adjoint that

$$||g(T)|| = r(g(T)) = \sup_{z \in \sigma(T)} |g(z)| = \sup_{z \in \sigma(T)} |f(z)|^2.$$

That is to say

$$||f(T)|| = \sup_{\lambda \in \sigma(T)} |f(\lambda)|.$$