ÀMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

1. (original): A compound represented by formula (I):

wherein ring A represents a cyclic group;

ring B represents a cyclic group which may further have a substituent(s);

X represents a bond or a spacer having 1 to 8 atoms in its main chain in which one atom in the spacer may be taken together with a substituent on ring B to form a ring group which may have a substituent(s);

Y represents a bond or a spacer having 1 to 10 atoms in its main chain in which one atom in the spacer may be taken together with a substituent on ring B to form a ring group which may have a substituent(s);

n represents 0 or 1, wherein when n is 0, m is 1 and R¹ represents a hydrogen atom or a substituent, and when n is 1, m is 0 or an integer of 1 to 7 and R¹ represents a substituent in which when m is 2 or more, plural R¹s are the same or different,

a salt thereof, a solvate thereof or a prodrug thereof.

2. (original): The compound according to claim 1, which is a compound represented by formula (I):

wherein all symbols have the same meanings as in claim 1, and wherein a compound represented by formula (Ia) is excluded:

$$(R^{1a})_p$$
 A^a $(CH_2)_q$ E^a R^{4a} G^a Q^a $COOH$ (Ia)

wherein R^{1a} represents C1-8 alkyl, C1-8 alkoxy, a halogen atom, nitro or trifluoromethyl;

ring A^a represents a C5-7 monocyclic carbocyclic group or a 5- to 7-membered monocyclic heterocyclic group containing one or two nitrogen atoms, one oxygen atom and/or one sulfur atom;

 E^a represents -CH₂-, -O-, -S- or -NR^{6a}-, in which R^{6a} represents a hydrogen atom or C1-8 alkyl;

R^{2a} represents C1-8 alkyl, C1-8 alkoxy, a halogen atom, nitro or trifluoromethyl;

R^{3a} represents a hydrogen atom or C1-8 alkyl;

R^{4a} represents a hydrogen atom or C1-8 alkyl, or

R^{2a} and R^{4a} may be taken together to form -CH₂CH₂- or -CH=CH-;

 $G^a \ represents \ \text{-CONR}^{7a} \text{-, -NR}^{7a} \text{CO-, -SO}_2 \text{NR}^{7a} \text{-, -NR}^{7a} \text{SO}_2 \text{-, -CH}_2 \text{NR}^{7a} \text{- or }$

-NR^{7a}CH₂-, in which R^{7a} represents a hydrogen atom, C1-8 alkyl; Cyc1 or C1-8 alkyl substituted with Cyc1, and Cyc1 represents a C5-7 monocyclic carbocyclic group or a 5- to 7-membered monocyclic heterocyclic group containing one or two nitrogen atoms, one oxygen atom and/or one sulfur atom;

Q^a represents C1-4 alkylene or

$$\int_{J^{2}}^{J^{2}} \int_{J^{4}}^{J^{4}} (R^{5a})_{s}$$

wherein J^1 , J^2 , J^3 and J^4 each independently represents a carbon atom or a nitrogen atom in which the number of the nitrogen atom(s) is 2 or less; R^{5a} represents (1) C1-8 alkyl, (2) a halogen atom, (3) nitro, (4) cyano, (5) trifluoromethyl, (6) trifluoromethoxy, (7) phenyl, (8) tetrazolyl, (9) -OR^{9a}, (10) -SR^{10a}, (11) -COOR^{11a}, (12) -NR^{12a}R^{13a}, (13) -CONR^{14a}R^{15a}, (14) -SO₂NR^{16a}R^{17a}, (15) -NR^{18a}COR^{19a}, (16) -NR^{20a}SO₂R^{21a}, (17) -SO₂R^{22a}, or (18) -OP(O)(OR^{23a})₂, in which R^{9a} to R^{18a} , R^{20a} and R^{23a} each independently represents a hydrogen atom, C1-8 alkyl, Cyc2 or C1-8 alkyl substituted with Cyc2, or R^{12a} and R^{13a} , R^{14a} and R^{15a} , or R^{16a} and R^{17a} may

be taken together with a nitrogen atom to which they are bound, to form a 5- to 7-membered monocyclic heterocyclic group containing one or two nitrogen atoms, one oxygen atom and/or one sulfur atom, in which the heterocyclic group may be substituted with C1-8 alkyl, hydroxy or amino; R^{19a} and R^{21a} each independently represents C1-8 alkyl, Cyc2 or C1-8 alkyl substituted with Cyc2; R^{22a} represents hydroxy, C1-8 alkyl, Cyc2 or C1-8 alkyl substituted with Cyc2; and Cyc2 represents a C5-7 monocyclic carbocyclic group or a 5- to 7-membered monocyclic heterocyclic group containing one or two nitrogen atoms, one oxygen atom and/or one sulfur atom;

p represents 0 or an integer of 1 to 5; q represents an integer of 4 to 6; r represents 0 or an integer of 1 to 4; s represents 0 or an integer of 1 to 4; and ---- represents a single bond or a double bond.

3. (original): The compound according to claim 2, which is represented by formula (IA):

$$\left(\begin{array}{c} R^1 \xrightarrow{}_{m} & \left(\begin{array}{c} A \end{array}\right) \xrightarrow{}_{n} X \xrightarrow{}_{m} & \left(\begin{array}{c} A \end{array}\right) \xrightarrow{}_{m} & \left(\begin{array}{c} A \end{array}\right)$$

wherein Y^1 and Y^2 each independently represents a bond or a spacer having 1 to 9 atoms in its main chain in which the total atom number of the main chains of Y^1 and Y^2 is 9 or less;

R⁷ represents a hydrogen atom or a substituent, or may be taken together with one atom in the spacer represented by Y¹ and/or Y² to form a nitrogen-containing heterocyclic group which may have a substituent(s); and

other symbols have the same meanings as described in claim 1.

4. (original): The compound according to claim 2, which is represented by formula (IB):

wherein ring B¹ represents a nitrogen-containing heterocyclic group which may have a substituent(s) in which a nitrogen atom in the spacer represented by Y is taken together with a substituent on ring B and Y¹; and

other symbols have the same meanings as described in any one of claims 1 and 3.

- 5. (original): The compound according to claim 2, wherein ring A is a benzene, indene or naphthalene ring.
- 6. (original): The compound according to claim 2, wherein ring B is a C5-12 monocyclic or bicyclic carbocyclic group which may have a substituent(s).
- 7. (original): The compound according to claim 6, wherein ring B is a benzene or naphthalene ring which may have a substituent(s).
- 8. (original): The compound according to claim 2, wherein ring B is a 5- to 12-membered monocyclic or bicyclic heterocyclic group which contains 1 to 3 hetero atoms selected from an oxygen atom, a nitrogen atom and a sulfur atom and may be partially or fully saturated.
- 9. (original): The compound according to claim 2, wherein ring B is a dihydronaphthalene, indene, 6,7-dihydro-5H-benzo[7]annulene, pyridine, indole, chromene, benzofuran, benzothiophene, benzoxazole, dihydrobenzoxepine, tetrahydroisoquinoline, isoindoline or tetrahydrobenzazepine ring which may have a substituent(s).
- 10. (original): The compound according to claim 4, wherein the nitrogen-containing heterocyclic group represented by ring B¹ is a pyrrole, tetrahydropyridine, dihydropyrrole or tetrahydroazepine ring.
- 11. (original): The compound according to claim 2, wherein X is a divalent group having 1 to 8 atoms in its main chain which is 1 to 4 combinations selected from the group consisting of C1-8 alkylene which may be substituted, C2-8 alkenylene which may be substituted, a nitrogen atom which may be substituted, -CO-, -O-, C3-6 cycloalkylene which may be substituted and phenylene which may be substituted.

- 12. (original): The compound according to claim 11, wherein X is $-CH_2$ -, $-(CH_2)_2$ -, $-(CH_2)_3$ -, $-(CH_2)_4$ -, $-(CH_2)_5$ -, $-(CH_2)_6$ -, $-(CH_2)_7$ -, $-(CH_2)_8$ -, $-(CH_2)_2$ -O-, $-(CH_2)_2$ -O-, $-(CH_2)_3$ -O-, $-(CH_2)_4$ -O-, $-(CH_2)_5$ -O-, $-(CH_2)_5$ -O-, $-(CH_2)_6$ or $-(CH_2)_6$ or $-(CH_2)_6$ -, which each may be substituted, in which the right side of each group is bound to ring B.
- 13. (original): The compound according to claim 2, wherein Y is a divalent group having 1 to 10 atoms in its main chain which is 1 to 4 combinations selected from the group consisting of C1-10 alkylene which may be substituted, C2-10 alkenylene which may be substituted, C2-10 alkynylene which may be substituted, a nitrogen atom which may be substituted, -(aziridine which may be substituted)-, -(azeridine which may be substituted)-, -(pyrrolidine which may be substituted)-, -(piperidine which may be substituted)- and (tetrahydropyridine which may be substituted)-.
- 14. (original): The compound according to claim 13, wherein Y is -(CH₂)₃-NHCH₂-, -(CH₂)₃-NCH₃-CH₂-, -(CH₂)₃-NH-(CH₂)₂-, -(CH₂)₂-NH-(CH₂)₂-, -(CH₂)₂-CONHCH₂-, -(CH₂)₂-CONH-(m-phenylene)-, -CR^{Y1}=CH-CH₂-NH-(CH₂)₄-, -CR^{Y1}=CH-CH₂-NH-(CH₂)₅-, -CR^{Y1}=CH-CH₂-NH-(CH₂)₂-, -CH=CR^{Y1}-CH₂-NH-(CH₂)₂-, -CR^{Y1}=CH-CH₂-NH-CH₂-, -CH₂-(azetidine)-, -(CH₂)₃-(azetidine)-, -CR^{Y1}=CH-CH₂-(azetidine)-, -CH=CR^{Y1}-CH₂-(azetidine)-, -(CH₂)₃-(piperidine)- or -CR^{Y1}=CH-CH₂-(piperidine)-, which each may be substituted, in which R^{Y1} represents a hydrogen atom, a halogen atom or C1-4 alkyl which may be substituted with 1 to 3 halogen atoms, and the right side of each group is bound to ring B.
- 15. (original): The compound according to claim 3, wherein Y¹ is a divalent group having 1 to 4 atoms in its main chain which is 1 to 4 combinations selected from the group consisting of C1-3 alkylene and -CO-.
- 16. (original): The compound according to claim 15, wherein Y^1 is $-CH_2$ -, $-(CH_2)_2$ -, $-(CH_2)_2$ -CO-, $-CO-(CH_2)_2$ or $-(CH_2)_3$ -, which each may be substituted.

- 17. (original): The compound according to claim 3, wherein Y² is a divalent group having 1 to 5 atoms in its main chain which is 1 to 4 combinations selected from the group consisting of C1-3 alkylene which may be substituted and phenylene which may be substituted.
- 18. (original): The compound according to claim 17, wherein Y^2 is $-CH_2$ -, $-(CH_2)_2$ or -(m-phenylene)-, which each may be substituted.
- 19. (original): The compound according to claim 2, wherein the substituent represented by R¹ is a halogen atom, C1-20 alkyl which may be substituted, or C1-20 alkyloxy which may be substituted.
- 20. (original): The compound according to claim 19, wherein the substituent represented by R¹ is fluoro, chloro, bromo, methyl, trifluoromethyl or methoxy.
- 21. (original): The compound according to claim 3, wherein \mathbb{R}^7 is a hydrogen atom or C1-20 alkyl which may be substituted.
- 22. (original): The compound according to claim 2, which is a compound represented by formula (I-S-3a):

wherein X^S has the same meaning as X described in claim 1, in which X^S is not - $(CH_2)_q$ - E^a -; R^{S0} , R^{S1} , R^{S2} , R^{S3} , R^{S4} , R^{S5} , R^{S6} , R^{S7} , R^{S8} , R^{S9} , R^{S10} and R^{S11} each independently represents a hydrogen atom, a halogen atom, or C1-4 alkyl which may be substituted with 1 to 3 halogen atoms; E^a , q and other symbols have the same meanings as described in any one of claims 1 and 2, or

formula (I-S-7a):

wherein R^{S0}, R^{S1}, R^{S2}, R^{S3}, R^{S4}, R^{S5} and R^{S6} each has the same meaning as described above; R^{S12}, R^{S13}, R^{S14} and R^{S15} each independently represents a hydrogen atom, a halogen atom, or C1-4 alkyl which may be substituted with 1 to 3 halogen atoms; E^a, q and other symbols have the same meanings as described in any one of claims 1 and 2.

23. (original): The compound according to claim 2, which is a compound represented by formula (I-T):

$$\begin{array}{c} R^{S16} R^{S17} \\ R^{S18} \\ R^{S19} R^{S9} \\ R^{S10} \\ R^{S0} R^{S20} \\ R^{S7} \\ R^{S8} \end{array}$$

wherein R^{S16}, R^{S17}, R^{S18}, R^{S19} and R^{S20} each independently represents a hydrogen atom, a halogen atom, or C1-4 alkyl which may be substituted with 1 to 3 halogen atoms; and other symbols have the same meanings as described in any one of claims 1, 2 and 22.

24. (original): The compound according to claim 2, which is a compound represented by formula (I-U):

wherein R^{S21}, R^{S22}, R^{S23}, R^{S24}, R^{S25} and R^{S26} each independently represents a hydrogen atom, a halogen atom, or C1-4 alkyl which may be substituted with 1 to 3 halogen atoms; and other symbols have the same meanings as described in any one of claims 1, 2 and 22.

- 25. (original): The compound according to claim 2, which is
- (1) N- $\{(2E)-3-[4-(3-phenylpropoxy)phenyl]prop-2-enyl\}-\beta-alanine,$
- (2) N- $\{[6-(3-phenylpropoxy)-2-naphthyl]methyl\}-\beta-alanine,$
- (3) 1-{[6-(3-phenylpropoxy)-2-naphthyl]methyl}azetidine-3-carboxylic acid,
- (4) 1-{[6-(3-phenylpropoxy)-2-naphthyl]methyl}piperidine-4-carboxylic acid,
- (5) N- $\{(2E)-3-[2-methyl-4-(3-phenylpropoxy)phenyl]prop-2-enyl\}-\beta-alanine,$
- (6) 1-{(2E)-3-[4-(3-phenylpropoxy)phenyl]-2-propenyl}piperidine-4-carboxylic acid,
- (7) 1-{(2E)-3-[4-(3-phenylpropoxy)phenyl]-2-propenyl} azetidine-3-carboxylic acid,
- (8) N- $\{3-[4-(3-phenylpropoxy)phenyl]propyl\}-\beta-alanine,$
- (9) 3-({(2E)-3-[4-(3-phenylpropyl)phenyl]-2-butenyl}amino)propanoic acid,
- (10) 3-({(2E)-3-[4-(3-cyclohexylpropoxy)-2-methylphenyl]-2-propenyl} amino)propanoic acid,
- (11) 1-{[1-methyl-6-(4-phenylbutoxy)-3,4-dihydro-2-naphthalenyl]methyl}-3-azetidinecarboxylic acid,
- (12) N- $\{[1-(5-phenylpentyl)-1H-indol-5-yl]methyl\}-\beta-alanine,$
- (13) 3-[4-[4-(3-phenylpropoxy)phenyl]-3,6-dihydropyridin-1(2H)-yl]propanoic acid,
- (14) 1-(6-[3-(4-chlorophenyl)propoxy]-1-methyl-3,4-dihydro-2-naphthalenylmethyl)-3-azetidinecarboxylic acid, or
- (15) 1-(6-[3-(4-fluorophenyl)propoxy]-1-methyl-3,4-dihydro-2-naphthalenylmethyl)-3-azetidinecarboxylic acid.
 - 26. (original): The compound according to claim 1, which is
- (1) N-((2E)-3- $\{2\text{-methyl-4-}[(5\text{-phenylpentyl})\text{oxy}]\text{phenyl}\}\text{prop-2-enyl}-\beta\text{-alanine},$
- (2) N-((2E)-3- $\{4-[(5-phenylpentyl)oxy]phenyl\}$ -2-propenyl)- β -alanine, or
- (3) 3-({[1-methyl-6-(4-phenylbutoxy)-3,4-dihydro-2-naphthalenyl]methyl}amino)propanoic acid.
- 27. (original): A pharmaceutical composition which comprises a compound represented by formula (I) in claim 1, a salt thereof, a solvate thereof or a prodrug thereof.
- 28. (original): The pharmaceutical composition according to claim 27, which is an S1P receptor binding agent.

- 29. (original): The pharmaceutical composition according to claim 28, which is an EDG-6 binding agent which may have an ability to bind to EDG-1.
- 30. (original): The pharmaceutical composition according to claim 29, wherein the EDG-6 binding agent which may have an ability to bind to EDG-1 is an EDG-6 agonist which may have an agonistic activity against EDG-1.
- 31. (original): The pharmaceutical composition according to claim 27, which is an agent for preventing and/or treating a disease related to EDG-1 and/or EDG-6.
- 32. (original): The pharmaceutical composition according to claim 31, wherein the disease related to EDG-1 and/or EDG-6 is rejection in transplantation, autoimmune disease and/or allergic disease.
- 33. (original): The pharmaceutical composition according to claim 31, wherein the disease related to EDG-1 and/or EDG-6 is rejection in transplantation of kidney, liver, heart, lung, dermal graft, cornea, bone, bone marrow cells and/or pancreatic islet cells, collagen disease, systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, psoriasis, inflammatory bowel disease, Crohn's disease, autoimmune diabetes, lung fibrosis, atopic dermatitis and/or asthma.
- 34. (original): The pharmaceutical composition according to claim 27, which is an immunosuppressant agent.
- 35. (original): The pharmaceutical composition according to claim 27, which is an agent causing lymphopenia.
- 36. (original): The pharmaceutical composition according to any one of claims 28, 31, 34 and 35, which comprises
- (1) 2-[3-(4-(5-phenylpentyloxy)phenyl)propanoylamino]acetic acid,
- (2) 3-[3-(4-(5-phenylpentyloxy)phenyl)propylamino]propanoic acid,
- (3) 3-[2-(4-(5-phenylpentyloxy)phenyl)ethylamino]propanoic acid,
- (4) 2-[3-(4-(5-phenylpentyloxy)phenyl)propylamino]acetic acid,

- (5) 2-[N-methyl-3-(4-(5-phenylpentyloxy)phenyl)propylamino]acetic acid,
- (6) N-((2E)-3-{2-methyl-4-[(5-phenylpentyl)oxy]phenyl}prop-2-enyl)- β -alanine,
- (7) N-((2E)-3- $\{4-[(5-phenylpentyl)oxy]phenyl\}-2-propenyl)-\beta-alanine,$
- (8) 3-({[1-methyl-6-(4-phenylbutoxy)-3,4-dihydro-2-naphthalenyl]methyl}amino)propanoic acid,
- (9) 3-carboxyl-5-[3-(4-(5-phenylpentyloxy)phenyl)propanoylamino]benzoic acid, or
- (10) 2-chloro-5-[3-(2-fluoro-4-(5-phenylpentyloxy)phenyl)propanoylamino]benzoic acid, a salt thereof, a solvate thereof or a prodrug thereof.
- 37. (original): A medicament comprising the compound represented by formula (I) according to claim 1, a salt thereof, a solvate thereof or a prodrug thereof in combination with one or at least two selected from the group consisting of an antimetabolite, an alkylating agent, a T cell activation inhibitor, a calcineurin inhibitor, a proliferation signal inhibitor, a steroid, an immunosuppressant agent, an antibody used in immune suppression, an agent for treating rejection, an antibiotic, an antiviral agent and an antifungal agent.
- 38. (original): An immunosuppressant agent and/or an agent causing lymphopenia, which comprises a compound which has an ability to bind to EDG-6 and may have an ability to bind to EDG-1.
- 39. (original): The immunosuppressant agent and/or the agent causing lymphopenia according to claim 38, which is an agent for preventing and/or treating rejection in transplantation, autoimmune disease and/or allergic disease.
- 40. (original): A method for preventing and/or treating a disease related to EDG-1 and/or EDG-6 in a mammal, which comprises administering to a mammal an effective amount of the compound represented by formula (I) according to claim 1, a salt thereof, a solvate thereof or a prodrug thereof.
- 41. (original): A method for immune suppression and/or lymphopenia in a mammal, which comprises administering to a mammal an effective amount of the compound represented by formula (I) according to claim 1, a salt thereof, a solvate thereof or a prodrug thereof.

- 42. (canceled).
- 43. (canceled).