1MAE701 Exercices to be done/started in class

C1: Complete a simple FEA code

Fill the comments with above pictures wordles, specify the units

Copy paste part of the code in the ?? at the right place

B*u [-1/h 1	/h] inv(Kred)*fred	(A*E/h)*[[1 -1];[-1 1]]	E*eps
-------------	--------------------	-------------------------	-------

```
function AxialBarFEM
                                                                 p0 = plotStress(E, A, L, R, a);
                                                                 for i=1:e
%Material and Length
                                                                   node1 = node(elem(i,1));
                                                                   node2 = node(elem(i,2));
                                                          p1 = plot([node1 node2], [sig(i)
sig(i)], 'r-','LineWidth',3); hold on;
      A = 1.0; %cross section mm2
      L = 1.0; %length mm2
                                                                 end
      E = 1.0; %Young's modulus MPa (N/mm2)
%loads
                                                                 legend([p0 p1], 'Exact', 'FEM');
      a = 1.0; %distributed force N.m
      R = 1.0; %Force (N)
                                                               function [p] = plotDisp(E, A, L, R, a)
                                                                 dx = 0.01:
%Prepostfem mesh
                                                                 nseg = L/dx;
                                                                 for i=1:nseg+1
                                                                   x(i) = (i-1)*dx;
      h = L/e;
                                                                   u(i) = (1/6*A*E)*(-a*x(i)^3 + (6*R +
      n = e+1;
                                                          3*a*L^2)*x(i));
                                                                 end
                                                                 p = plot(x, u, 'LineWidth', 3); hold
      for i=1:n
       node(i) = (i-1)*h;
                                                                 xlabel('x', 'FontName', 'palatino',
      end
      for i=1:e
                                                           'FontSize', 18);
        elem(i,:) = [i i+1];
                                                                ylabel('u(x)', 'FontName', 'palatino',
                                                          'FontSize', 18);
set(gca, 'LineWidth', 3, 'FontName',
'palatino', 'FontSize', 18);
%Assembly
      K = zeros(n);
                                                               function [p] = plotStress(E, A, L, R, a)
      f = zeros(n,1);
                                                                 dx = 0.01;
      for i=1:e
                                                                 nseg = L/dx;
        node1 = elem(i,1);
                                                                 for i=1:nseg+1
        node2 = elem(i,2);
                                                                  x(i) = (i-1)*dx;
        Ke = elementStiffness(A, E, h);
                                                                   sig(i) = (1/2*A*E)*(-a*x(i)^2 + (2*R)
        fe =
                                                          + a*L^2));
elementLoad(node(node1), node(node2), a, h);
                                                                 end
        K(node1:node2,node1:node2) =
                                                                 p = plot(x, sig, 'LineWidth', 3); hold
K(node1:node2,node1:node2) + Ke;
                                                          on;
                                                                 xlabel('x', 'FontName', 'palatino',
        f(node1:node2) = f(node1:node2) + fe;
      end
                                                          'FontSize', 18);
                                                                ylabel('\sigma(x)', 'FontName',
                                                           'palatino', 'FontSize', 18);
set(gca, 'LineWidth', 3, 'FontName',
%BCs &Loads
                                                           'palatino', 'FontSize', 18);
용
      f(n) = f(n) + 1.0;
      Kred = K(2:n,2:n);
                                                              function [Ke] = elementStiffness(A, E, h)
      fred = f(2:n);
                                                                 Ke = ??:
%Solvers
                                                               function [fe] = elementLoad(node1, node2,
                                                          a, h)
      dsol = [0 d']; %known solution at x=0
fsol = K*dsol';
                                                                 x1 = node1;
                                                                 x2 = node2;
                                                                 fe1 = a*x2/(2*h)*(x2^2-x1^2) -
      sum(fsol)
                                                          a/(3*h)*(x2^3-x1^3);
%Postprocessing
                                                                fe2 = -a*x1/(2*h)*(x2^2-x1^2) +
                                                          a/(3*h)*(x2^3-x1^3);
                                                                 fe = [fe1;fe2];
      figure;
p0 = plotDisp(E, A, L, R, a);
p1 = plot(node, dsol, 'ro--',
'LineWidth', 3); hold on;
                                                              function [eps, sig] =
                                                          elementStrainStress(u1, u2, E, h)
      legend([p0 p1], 'Exact', 'FEM');
                                                                 B = ??
      for i=1:e
                                                                 u = [u1; u2];
                                                                 eps = ??
        node1 = elem(i,1);
                                                                 sig = ??;
        node2 = elem(i,2);
        u1 = dsol(node1);
        u2 = dsol(node2);
        [eps(i), sig(i)] =
elementStrainStress(u1, u2, E, h);
      end
      figure;
```

Please also comment some lines %? And the results under Play with e. Conclude

C2: Fill up a more "complex" FEA code* publish needed on LMS by pair

A cantilever beam of length Lp = 3 m and define by a squared section of aera Ap = 30×30 cm². The BCs are C-F, and the vertical load is imposed at the free boundary conditions such as F_o = 75 KN. The materials used is concrete of Young's modulus Eb = 32000 MPa.

Matlab will help you A LOT to accelerate learning and deepen understanding. The prof wants that you zip your publish or livescript with m files and upload on LMS.

FIGURE 1: STRUCTURE TO BE DISCRETIZED USING 1 BEAM AND 1 BAR ELEMENT

Part 1: Cantilever ONLY with Load case Fo

- 1) You can then compute the analytical beam deflection (to check)
- 2) Compute the rigidity matrix Kp and handwrite the system of equations respecting the nodes of figure above
- 3) Apply the BC Cantilver and solve the reduced system. Check using Matlab the solution and the resultant forces at the BC using the file "assignement2_student.m" on LMS

Part 2: Cantilever beam+ inclined bar with the 2 load cases

The free end of the beam is connected to an inclined steel bar as shown in the figure 1.

The section of the bar is Ab = 25 cm2 and the modulus of elasticity of the steel is Es = 200000 MPa.

- O) Compute first the equivalent load for q_0 with max(q_0)=10kN
- 1) Calculate the stiffness matrix Kb of the inclined bar, taking into account the degrees of freedom of transverse displacement and rotation.
- 2) Introduce the axial displacement into the stiffness matrix Kp of the beam.
- 3) Assemble the two matrices Kb and Kp according to the numbering of the nodes given in the fligure and write the global force vector (for all nodes of the structure).
- 4) Apply the boundary conditions and write the system of equations to solve.
- 5) Solve the system and give the displacements and rotations of the nodes. Check reactions
- 6) Calculate the axial force in the bar and the beam.

A SMALL HELP

CONCEPTS OF GAUSSIAN INTEGRATION

In Gaussian integration, also called Gaussian quadrature, the integral of a function in natural coordinates is substituted by an equivalent sum of this function evaluated at special points multiplied by a corresponding weight. Commonly, these special points are referred to as sampling points ξ_i .

$$\int_{-1}^{1} F(\xi) d\xi = \sum_{i=1}^{NG} w_i F(\xi_i)$$

Although there is usually an error term associated with numerical integration, Gaussian quadrature has been shown to yield exact results for polynomials of degree 2m-1 or lower, where m is equal to the amount of weights / sampling points. This case directly applied to the common shape functions and their associated derivatives. Below is a table summarizing the position of the sampling points for Gaussian quadrature and their associated weights.

rule	point	coordinate	numerical value	weight	numerical value	order
1 point	1	0	0.0000000000	2	2.00000000000	1
2 points	1	$-\sqrt{\frac{1}{3}}$	-0.5773502692	1	1.0000000000	3
	2	$\sqrt{\frac{1}{3}}$	0.5773502692	1	1.0000000000	
3 points	1	$-\sqrt{\frac{3}{5}}$	-0.7745966692	$\frac{5}{9}$	0.555555556	5
	2	0	0.0000000000	5 9 8 9	0.888888889	
	3	$\sqrt{\frac{3}{5}}$	0.7745966692	$\frac{5}{9}$	0.555555556	
4 points	1	$-\sqrt{\frac{3+2\sqrt{\frac{6}{5}}}{7}}$	-0.8611363116	$\tfrac{18-\sqrt{30}}{36}$	0.3478548452	7
	2	$-\sqrt{\frac{3-2\sqrt{\frac{6}{5}}}{7}}$	-0.3399810436	$\tfrac{18+\sqrt{30}}{36}$	0.6521451548	
	3	$\sqrt{\frac{3-2\sqrt{\frac{6}{5}}}{7}}$	0.3399810436	$\tfrac{18+\sqrt{30}}{36}$	0.6521451548	
	4	$\sqrt{\frac{3+2\sqrt{\frac{6}{5}}}{7}}$	0.8611363116	$\frac{18 - \sqrt{30}}{36}$	0.3478548452	

SAMPLING POINTS AND CORRESPONDING WEIGHTS FOR GAUSSIAN QUADRATURE

PSEUDO CODE FOR IMPLEMENTATION IN A FINITE ELEMENT SOFTWARE

PSEUDO CODE FOR NUMERICAL INTEGRATION WITHIN A FINITE ELEMENT SOFTWARE

After first summation

After second summation

K_local X 4x4 double						F_local 4x1 doub
	1	2	3	4		1
1	27.6000	43.5349	-27.6000	11.6651	1	8.8490
2	43.5349	68.6697	-43.5349	18.4000	2	2.6289
3	-27.6000	-43.5349	27.6000	-11.6651	3	1.1510
4	11.6651	18.4000	-11.6651	4.9303	4	-0.7044

K_local X 4x4 double					-	F_local 4x1 doub
	1	2	3	4		1
1	55.2000	55.2000	-55.2000	55.2000	1	10
2	55.2000	73.6000	-55.2000	36.8000	2	3.3333
3	-55.2000	-55.2000	55.2000	-55.2000	3	10
4	55.2000	36.8000	-55.2000	73.6000	4	-3.3333

SOLVING A SAMPLE PROBLEM

Given the following sample beam, find the displacements, moments and shear forces across the beam. Modify your numerical integration method slightly to work within a skeletal finite element program provided, for both the integration of the stiffness matrix as well as the force vector.

Take a look at the skeletal finite element code provided and complete the sections marked with comments in the code. Some intermediate results are provided below.

Some intermediate results are the following:

K_local = (Beam 1)

K_local = (Beam 2)

	K_local ×	K_system X	F_local X	F_system_eleme
#	4x4 double	2	3	4
1	1.8750e+03	3.7500e+03	-1.8750e+03	3.7500e+03
2	3.7500e+03	1.0000e+04	-3.7500e+03	5.0000e+03
3	-1.8750e+03	-3.7500e+03	1.8750e+03	-3.7500e+03
4	3.7500e+03	5.0000e+03	-3.7500e+03	1.0000e+04

K_system =

	and the same of the same of	K_local >	F_local ×	F_system_elen	nent × F_sy	stem_nodal >
	6x6 double	2	3	4	5	6
1	234.3750	937.5000	-234.3750	937.5000	0	0
2	937.5000	5.0000e+03	-937.5000	2.5000e+03	0	0
3	-234.3750	-937.5000	2.1094e+03	2.8125e+03	-1.8750e+03	3.7500e+03
4	937.5000	2.5000e+03	2.8125e+03	1.5000e+04	-3.7500e+03	5.0000e+03
5	0	0	-1.8750e+03	-3.7500e+03	1.8750e+03	-3.7500e+03
6	0	0	3.7500e+03	5.0000e+03	-3.7500e+03	1.0000e+04

F_local = (distributed load) F_local = (point load)

F_local

4x1 doubl

1
1
1
-4
2 -5.3333
3 -4
4 5.3333

F_local

F_local

4x1 doubl

1
1
1
3
-5
2
-10
3
-5
4
10

F_system_element = F_system_nodal (point and distributed load) (all nodal loads)

F_system =

d_system =

