Contents

1	Cont. 1.1 1.2 1.3 1.4	est Setup vimrc bashrc C++ ten Java tem	nplate							: :	:	:		:	 :		:	:	 :	 :	:		 	 $ \begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \end{array} $
2	Remi	nder																						2
3	Useft 3.1 3.2 3.3 3.4 3.5	Fast Exp GCD. Leap yea Extended STL quid 3.5.1 3.5.2	r	idear rence / Set	n Al	lgori	ithn	n	 				 		 				 	 			 	2 2 2 3 3 3 3 3
4	Searce 4.1	Binary S	Find Uppe 列舉	key r / lo	owei	Во	und	l					· ·		 				 	 		 		3 3 3 3 3
5	Basic 5.1 5.2 5.3 5.4	data str 1D BIT 2D BIT Union Fi Segment	nd .							: :	:	:		:	 :	: :			 :	 :	:			3 3 3 3
6	Dyna	mic Pro	gram	ming	S																			3
7	$\mathbf{\overset{Tree}{7.1}}$	LCA																				 		3
8	Grap 8.1 8.2 8.3 8.4 8.5	h Articulat BCC ver BCC edg SCC Shortest 8.5.1 8.5.2 8.5.3 Flow 8.6.1 8.6.2 8.6.3 8.6.4	tex e	tra ian-F Flow Cut	'ord (Di Maz	inic) x Fl	ow																	333333333333333333333333333333333333333
9	Strin 9.1 9.2 9.3 9.4	g KMP Z Algorit Trie Suffix Ar	thm ray																	 		 	 	 3 3 3 3 3
10	Geon 10.1 10.2 10.3	netry Template 10.1.1 10.1.2 Half-plan Convex I	Point Inters ie inte	ections ersect	on cion												٠							 3 3 3 3 3 3

1 Contest Setup

1.1 vimrc

```
set number "Show line numbers set mouse=a "Enable inaction via mouse
```

```
set showmatch
                      " Highlight matching brace
                      " Show underline
  set cursorline
  set cursorcolumn
                      " highlight vertical column
  filetype on "enable file detection
  syntax on "syntax highlight
  set autoindent
                      " Auto-indent new lines
  set shiftwidth=4
                      " Number of auto-indent spaces
  set smartindent
                      " Enable smart-indent
  set smarttab
                      " Enable smart-tabs
  set softtabstop=4
                      " Number of spaces per Tab
    -----Optional-----
  set undolevels=10000
                          " Number of undo levels
  set scrolloff=5
                      " Auto scroll
                  " Highlight all search results
  set hlsearch
                  " Enable smart-case search
  set smartcase
  set ignorecase " Always case-insensitive
  set incsearch
                 " Searches for strings incrementally
  highlight Comment ctermfg=cyan
  set showmode
  set encoding=utf-8
  set fileencoding=utf-8
31 scriptencoding=utf-8
```

1.2 bashrc

```
1 alias g++="g++ -Wall -Wextra -02"
```

1.3 C++ template

```
#include <bits/stdc++.h>

using namespace std;

#define x first
#define y second

typedef long long int l1;
typedef pair<int, int> ii;

int main()
{
    return 0;
}
```

1.4 Java template

```
illimport java.io.*;
  import java.util.*;
  public class Main
       public static void main(String[] args)
           MyScanner sc = new MyScanner();
           out = new PrintWriter(new BufferedOutputStream(System.out));
           // Start writing your solution here.
           // Stop writing your solution here.
           out.close();
       public static PrintWriter out;
       public static class MyScanner
           BufferedReader br;
20
21
           StringTokenizer st;
           public MyScanner()
               br = new BufferedReader(new InputStreamReader(System.in));
           boolean hasNext()
               while (st == null || !st.hasMoreElements()) {
                       st = new StringTokenizer(br.readLine());
                   } catch (Exception e) {
                       return false;
               return true;
           String next()
               if (hasNext())
                   return st.nextToken();
               return null;
           int nextInt()
               return Integer.parseInt(next());
           long nextLong()
               return Long.parseLong(next());
```

```
double nextDouble()
57
58
59
                return Double.parseDouble(next());
60
            String nextLine()
63
                String str = "";
                try {
65
                    str = br.readLine();
66
                } catch (IOException e) {
67
                    e.printStackTrace();
68
69
70
                return str;
71
72
73 }
```

2 Reminder

- 1. Read the problem statements carefully. Input and output specifications are crucial!
- 2. Estimate the **time complexity** and **memory complexity** carefully.
- 3. Time penalty is 20 minutes per WA, don't rush!
- 4. Sample test cases must all be tested and passed before every submission!
- 5. Test the corner cases, such as 0, 1, -1. Test all edge cases of the input specification.

3 Useful code

3.1 Fast Exponentiation

3.2 GCD

| year % 400 == 0 | (year % 4 == 0 && year % 100 != 0)

- 3.4 Extended Euclidean Algorithm
- 3.5 STL quick reference
- 3.5.1 Map / Set
- 3.5.2 String
- 4 Search
- 4.1 Binary Search
- 4.1.1 Find key
- 4.1.2 Upper / lower Bound
- 4.2 折半完全列舉
- 4.3 Two-pointer 爬行法
- 5 Basic data structure
- 5.1 1D BIT
- 5.2 2D BIT
- 5.3 Union Find
- 5.4 Segment Tree

Hehe

- 6 Dynamic Programming
- 7 Tree
- 7.1 LCA
- 8 Graph
- 8.1 Articulation point / edge
- 8.2 BCC vertex
- 8.3 BCC edge
- 8.4 SCC
- 8.5 Shortest Path
- 8.5.1 Dijkatra
- 8.5.2 SPFA
- 8.5.3 Bellman-Ford
- 8.6 Flow
- 8.6.1 Max Flow (Dinic)
- 8.6.2 Min-Cut
- 8.6.3 Min Cost Max Flow
- 8.6.4 Maximum Bipartite Graph
- 9 String
- 9.1 KMP
- 9.2 Z Algorithm
- 9.3 Trie
- 9.4 Suffix Array
- 10 Geometry
- 10.1 Template
- 10.1.1 Point / Line
- 10.1.2 Intersection
- 10.2 Half-plane intersection
- 10.3 Convex Hull