Escalonamento de características e escolha do α

Onde estamos e para onde vamos

Nas aulas anteriores, mostramos como o Método do Gradiente pode ser usado para resolver diversos tipos de problemas

Nesta aula, aprenderemos como aprimorar esse método por meio do **Escalonamento de Características** e de uma escolha apropriada para a **taxa de aprendizado** α .

Vamos começar com a técnica de **Escalonamento de Características**. Tal técnica faz com que o Método do Gradiente torne-se significativamente mais rápido.

Relação entre características e valores dos parâmetros

Suponha que você deseja obter um modelo que seja capaz de estimar o preço de uma casa:

$$\widehat{\text{preço}} = w_1 x_1 + w_2 x_2 + b$$

onde

- x_1 denota o tamanho em feet² (um valor tipicamente entre 300 e 2000)
- x_2 denota o número de quartos (um valor tipicamente entre 0 e 5)

Relação entre características e valores dos parâmetros

Suponha que você deseja obter um modelo que seja capaz de estimar o preço de uma casa:

$$\widehat{\text{preço}} = w_1 x_1 + w_2 x_2 + b$$

onde

- x_1 denota o tamanho em feet² (um valor tipicamente entre 300 e 2000)
- x2 denota o número de quartos (um valor tipicamente entre 0 e 5)

Observações:

• Para que ambos os termos w_1x_1 e w_2x_2 tenham impacto significativo no cálculo do preço da casa, note que w_1 tenderá a ser pequeno em comparação com w_2 , já que x_1 é um valor tipicamente maior que x_2 .

Relação entre características e valores dos parâmetros

Suponha que você deseja obter um modelo que seja capaz de estimar o preco de uma casa:

$$\widehat{\text{preço}} = w_1 x_1 + w_2 x_2 + b$$

onde

- x_1 denota o tamanho em feet² (um valor tipicamente entre 300 e 2000)
- x₂ denota o número de quartos (um valor tipicamente entre 0 e 5)

- $lack Para que ambos os termos <math>w_1x_1$ e w_2x_2 tenham impacto significativo no cálculo do preço da casa, note que w_1 tenderá a ser pequeno em comparação com w_2 , já que x_1 é um valor tipicamente maior que x_2 .
- Isso significa que, enquanto o Método do Gradiente estiver buscando valores apropriados para w₁ e w₂, o valor da função custo J será muito mais sensível a um incremento unitário em w₁ em comparação com um incremento unitário em w₂.

Relação entre características e valores dos parâmetros

Suponha que você deseja obter um modelo que seja capaz de estimar o preço de uma casa:

$$\widehat{\text{preço}} = w_1 x_1 + w_2 x_2 + b$$

onde

- x_1 denota o tamanho em feet² (um valor tipicamente entre 300 e 2000)
- x₂ denota o número de quartos (um valor tipicamente entre 0 e 5)

- lack P Para que ambos os termos w_1x_1 e w_2x_2 tenham impacto significativo no cálculo do preço da casa, note que w_1 tenderá a ser pequeno em comparação com w_2 , já que x_1 é um valor tipicamente maior que x_2 .
- lsso significa que, enquanto o Método do Gradiente estiver buscando valores apropriados para w_1 e w_2 , o valor da função custo J será muito mais sensível a um incremento unitário em w_1 em comparação com um incremento unitário em w_2 .
- Se o Método do Gradiente "erra" um pouco na escolha de w1, a performance do modelo deteriora consideravelmente.

Relação entre características e valores dos parâmetros

Suponha que você deseja obter um modelo que seja capaz de estimar o preço de uma casa:

$$\widehat{\text{preço}} = w_1 x_1 + w_2 x_2 + b$$

onde

- x_1 denota o tamanho em feet² (um valor tipicamente entre 300 e 2000)
- x_2 denota o número de quartos (um valor tipicamente entre 0 e 5)

- lack P Para que ambos os termos w_1x_1 e w_2x_2 tenham impacto significativo no cálculo do preço da casa, note que w_1 tenderá a ser pequeno em comparação com w_2 , já que x_1 é um valor tipicamente maior que x_2 .
- Isso significa que, enquanto o Método do Gradiente estiver buscando valores apropriados para w₁ e w₂, o valor da função custo J será muito mais sensível a um incremento unitário em w₁ em comparação com um incremento unitário em w₂.
- lacktriangle Se o Método do Gradiente "erra" um pouco na escolha de w_1 , a performance do modelo deteriora consideravelmente.
- Por outro lado, se escalonarmos os dados antes de aplicar o método do gradiente, criando duas características escalonadas entre 0 e 1 (por exemplo), o Método do Gradiente torna-se mais rápido para encontrar valores apropriados para w1 e w2.

Observação

O escalonamento das características desempenha um papel fundamental no aumento de velocidade de convergência do método do gradiente, especialmente quando as características do problema possuem valores com ordens de grandeza diversas.

OPÇÃO 1: Dividindo pelo máximo

Se $300 \le x_1 \le 2000$, podemos escalonar x_1 da seguinte maneira:

$$x_{1,escalonado} = \frac{x_1}{2000}$$

Assim, teremos $0.15 \le x_{1,escalonado} \le 1$

Similarmente, se $0 \le x_2 \le 5$, podemos escalonar x_2 da seguinte maneira:

$$x_{2,escalonado} = \frac{x_2}{5}$$

Assim, teremos $0 \le x_{2,escalonado} \le 1$

OPÇÃO 2: Normalização pela média

Se $300 \le x_1 \le 2000$, podemos escalonar x_1 da seguinte maneira:

$$x_{1,escalonado} = rac{x_1 - \mu_1}{2000 - 300}
ightarrow ext{onde } \mu_1 ext{ \'e a m\'edia de } x_1$$

Supondo $\mu_1=600~{\rm feet}^2$, teremos $-0.18 \le x_{1,escalonado} \le 0.82$

Similarmente, se $0 \le x_2 \le 5$, podemos escalonar x_2 da seguinte maneira:

$$x_{2,escalonado} = \frac{x_2 - \mu_2}{5 - 0} \quad \rightarrow \quad \text{onde μ_2 \'e a m\'edia de x_2}$$

Supondo $\mu_2=2.3$ quartos, teremos $-0.46 \leq x_{2,escalonado} \leq 0.54$

OPÇÃO 2: Normalização pela média

Se $300 \le x_1 \le 2000$, podemos escalonar x_1 da seguinte maneira:

$$x_{1,escalonado} = rac{x_1 - \mu_1}{2000 - 300}
ightarrow ext{onde } \mu_1 ext{ \'e a m\'edia de } x_1$$

Supondo $\mu_1 = 600 \text{ feet}^2$, teremos $-0.18 \le x_{1.escalonado} \le 0.82$

Similarmente, se $0 \le x_2 \le 5$, podemos escalonar x_2 da seguinte maneira:

$$x_{2,escalonado} = \frac{x_2 - \mu_2}{5 - 0} \quad \rightarrow \quad \text{onde μ_2 \'e a m\'edia de x_2}$$

Supondo $\mu_2=2.3$ quartos, teremos $-0.46 \leq x_{2,escalonado} \leq 0.54$

Observação:

Ao subtrair a média de uma sequência de números, a sequência resultante acaba ficando com média 0.

$\mathsf{OP}\mathsf{C}\mathsf{A}\mathsf{O}$ 3: Normalização Z-score \to Também chamada de Padronização

Se $300 \le x_1 \le 2000$, podemos escalonar x_1 da seguinte maneira:

$$x_{1,escalonado} = \frac{x_1 - \mu_1}{\sigma_1} \quad \to \quad \text{onde σ_1 \'e o desvio padr\~ao de x_1}$$

Supondo $\mu_1=600~{\rm feet}^2~{\rm e}~\sigma_1=450$, teremos $-0.67\leq x_{1,escalonado}\leq 3.1$

Similarmente, se $0 \le x_2 \le 5$, podemos escalonar x_2 da seguinte maneira:

$$x_{2,escalonado} = rac{x_2 - \mu_2}{\sigma_2} \quad o \quad ext{onde } \sigma_2 ext{ \'e o desvio padr\~ao de } x_2$$

Supondo $\mu_2=2.3$ quartos e $\sigma_2=1.4$, teremos $-1.6 \leq x_{2,escalonado} \leq 1.9$

OPÇÃO 3: Normalização Z-score → Também chamada de Padronização

Se $300 \le x_1 \le 2000$, podemos escalonar x_1 da seguinte maneira:

$$x_{1,escalonado} = rac{x_1 - \mu_1}{\sigma_1} \quad o \quad ext{onde } \sigma_1 ext{ \'e o desvio padr\~ao de } x_1$$

Supondo $\mu_1=600~{\rm feet}^2~{\rm e}~\sigma_1=450$, teremos $-0.67\leq x_{1.escalonado}\leq 3.1$

Similarmente, se $0 \le x_2 \le 5$, podemos escalonar x_2 da seguinte maneira:

$$x_{2,escalonado} = rac{x_2 - \mu_2}{\sigma_2} \quad o \quad ext{onde } \sigma_2 ext{ \'e o desvio padr\~ao de } x_2$$

Supondo $\mu_2=2.3$ quartos e $\sigma_2=1.4$, teremos $-1.6 \leq x_{2,escalonado} \leq 1.9$

Observação:

 Ao dividir uma sequência de números pelo seu desvio padrão, a sequência resultante acaba ficando com desvio unitário.

Intervalos aceitáveis onde não é necessário reescalonar:

- $-3 < x_2 < 3$
- $0 < x_4 < 3$
- $-2 < x_5 < 0.5$

Intervalos não aceitáveis onde pode ser importante reescalonar:

- $-100 < x_1 < 100$
- $-0.001 < x_2 < 0.001$
- $98.6 < x_3 < 105$

Observação:

Reescalonar quase sempre irá melhorar o desempenho do Método do Gradiente. Raramente irá prejudicar.

Perguntas

- Ao rodar o Método do Gradiente, como saber se ele já convergiu?
- Qual a relação entre convergência e a taxa de aprendizado α ?

Observação

É importante que consigamos olhar para uma implementação do Método do Gradiente e reconhecer se ela está rodando corretamente ou não.

Apenas relembrando que o método do gradiente consiste em repetir até convergir:

$$w_j = w_j - \alpha \frac{d}{dw_j} J(\overrightarrow{w}, b)$$

$$b = b - \alpha \frac{d}{db} J(\overrightarrow{w}, b)$$

Onde o objetivo dessas atualizações é encontrar os valores de \overrightarrow{w} e b que minimizam $J(\overrightarrow{w},b)$.

Portanto, é útil observarmos, ao longo das iterações:

- Após 300 iterações, o Método do Gradiente ainda está refinando significativamente os valores de w_i e b.
- Após 900 iterações, parece que o método já convergiu.
- O número de iterações que o Método do Gradiente leva para convergir pode variar bastante dependendo da aplicação (30 ou 100000).

Observações:

- lacktriangle Após 300 iterações, o Método do Gradiente ainda está refinando significativamente os valores de w_j e b.
- Após 900 iterações, parece que o método já convergiu.
- O número de iterações que o Método do Gradiente leva para convergir pode variar bastante dependendo da aplicação (30 ou 100000).

Observação final:

Após cada iteração, $J(\overrightarrow{w},b)$ deve sempre decrescer. Se isso não ocorrer, então:

- Ou α não foi escolhido apropriadamente (geralmente α muito grande)
- Ou o Método do Gradiente não encontra-se implementado corretamente no código (bug)

Teste para detecção automática de convergência

Seja ε um valor pequeno, por exemplo, $\varepsilon=10^{-3}$.

"Se $J(\overrightarrow{w},b)$ decresce menos que arepsilon entre duas iterações consecutivas, então declarar convergência."

Observação

Encontrar um valor adequado para ε pode ser bastante desafiador. Portanto, na dúvida, olhe atentamente o gráfico!

Observações iniciais

- lacktriangle Se lpha é muito pequeno, o aprendizado será lento
- lacktriangle Se lpha é muito grande, o método pode não convergir

Pergunta

Como escolher um valor adequado para α ?

Supondo α muito grande, pode acontecer o seguinte:

Supondo um problema de código, por exemplo, $w_j = w_j + \alpha d_j$ pode ocorrer o seguinte:

Dica para debugar o código:

Escolha um valor suficientemente pequeno para α (valor bem pequeno), e verifique se $J(\overrightarrow{w},b)$ está sempre decrescendo iteração após iteração.

Se $J(\overrightarrow{w},b)$ cresce em algum momento, então provavelmente tem-se um bug no código.

Importante:

Usar um valor bem pequeno para α consiste numa boa estratégia para debugar, entretanto fará com que o aprendizado do seu modelo seja lento.

Um método eficiente:

Teste diferentes valores para α

 \dots 0.001 0.01 0.1 1 \dots

Para cada valor de lpha acima, rodar o método do gradiente por um certo número de iterações e:

• verificar para qual escolha de α a função $J(\overrightarrow{w},b)$ decai rapidamente, porém mantendo consistência no seu decaimento.

Observações finais (nível hard)

- A função custo leva em conta todos os parâmetros do modelo simultaneamente. Como todos os parâmetros são atualizados a partir do mesmo α, pode acontecer de um determinado α ser adequado para um parâmetro e não para outro.
- $lackbox{lack}$ Em alguns raros casos, um determinado valor menor para lpha pode fazer a função custo decair mais rapidamente a cada iteração em comparação com um lpha ligeiramente maior. Isso pode acontecer justamente quando esse lpha não é um valor adequado para certos parâmetros do modelo (o parâmetro encontra-se saltando o seu valor ótimo, por exemplo), ainda que a função custo decaia como um todo a cada iteração.

De olho no código!

De olho no código!

Vamos agora ver como realizar na prática o escalonamento de características e a escolha do α .

Acesse o Python Notebook usando o QR code ou o link abaixo:

 $\label{lem:https://colab.research.google.com/github/xaximpvp2/master/blob/main/codigo_aula7_escalonamento_de_caracteristicas_e_escolha_do_alpha.ipynb$

Acesse os dados necessários para rodar o código usando o QR code ou o link abaixo:

 $\verb|https://ufprbr0-my.sharepoint.com/:t:|\\$

 $/g/personal/ricardo_schumacher_ufpr_br/EVqPY86T5kdAqVvBxfft6EYBM8ppr0_MR5aU6d2l1tT-Wg?e=nL0a7II-Reference for the control of the control of$

OBS: Para adicionar os dados ao ambiente do Colab Notebook, no menu do canto esquerdo da tela do Colab clique em "Arquivos" e depois "Fazer upload para o armazenamento da sessão". Então carregue os arquivos baixados.

Atividade de aula

Parte 1

Rode todo o código. Certifique-se que você o compreendeu.

Parte 2

- \bigcirc Explique, com as suas próprias palavras, como a escolha do α afeta a convergência do Método do Gradiente.
- Explique, com as suas próprias palavras, o que é o Escalonamento de Características e qual o seu impacto no Método do Gradiente.

23/23