Analyzing the International Collegiate Programming Contest (ICPC) from 1999 to Present

Brayan Duran Medina

Bachelor of Computer Science

icpc.foundation

advancing the art and sport of competitive programming

What is the International Collegiate Programming Contest (ICPC)?

- Global competitive programming contest for university students.
- Founded in 1970 at Texas A&M University.
- Teams of three solve complex problems in five hours.
- Languages used: C, C++, Java, Ada, Python, Kotlin.
- Regional contests lead to the annual World Finals.
- Participants from over 3,000 universities in 111 countries.

Motivation for Choosing This Project:

- Competitive programmer since 2016.
- Passionate about problem-solving and programming contests.
- Achievements: 16th place in 2022 ICPC SWERC, Italy; Gold Medal in 2020
 ICPC Latin American Regional Contest.
- Participation: IOI 2019 in Azerbaijan; IOI 2018 in Japan.
- Multiple medals in national and regional programming contests since 2017.

 Analyze the growth in the number of participating teams and countries over the years.

- 1. Analyze the growth in the number of participating teams and countries over the years.
- 2. Rank the performance of universities, countries, and continents in the ICPC.

- 1. Analyze the growth in the number of participating teams and countries over the years.
- 2. Rank the performance of universities, countries, and continents in the ICPC.
- 3. Use linear regression to examine performance trends of countries.

- 1. Analyze the growth in the number of participating teams and countries over the years.
- 2. Rank the performance of universities, countries, and continents in the ICPC.
- 3. Use linear regression to examine performance trends of countries.
- Analyze the correlation between competition hosting countries and the average ranking of participating countries.

Data Source:

Dataset Origin:

- Kaggle: "ICPC World Finals Ranking Since 1999"
- Kaggle Dataset Link:

https://www.kaggle.com/datasets/justinianus/icpc-world-finals-ranking-sin

<u>ce-1999</u>

Data Quality:

Missing Data:

- Some missing values in earlier years.
- Missing fields: team members' names, scores, percentages, penalties.

Coverage:

- Data from 1999 to present.
- Comprehensive coverage for available years.

Country Name Mismatches:

 Some country names did not match plotting library conventions, requiring manual correction.

Handling Data Quality Issues:

Data Handling and Exclusion Strategy:

- Excluded records with missing scores and non-essential fields.
- Standardized formats; focused on essential metrics.
- Grouped by universities, countries, continents.
- Corrected mismatched country names.

Assessment:

- Data is robust and suitable for trend and performance analysis.
- Provides a substantial view of ICPC World Finals history.
- Despite some missing data, offers meaningful insights.

Results

Growth of teams and countries over the years

Growth in Number of Participating Countries from 1999 to present

Ranking of universities, countries and continents by medals

Top 10 Universities with Most Medals

Top 10 Countries with Most Medals

Performance trends of countries by medals

Top 10 Countries by Linear Regression Slope Indicating the Performance Trend Over Years

Medals Over Years for Top 4 Countries with Highest Slopes

Performance trends of countries by ranking average in %

Top 10 Countries by Linear Regression Slope Indicating the Performance Trend Over Years

Average Ranking (%) Over Years for Top 4 Countries with Lowest Slopes

Correlation between competition hosting and average country ranking in %

Correlation Analysis Between Competition Hosting and Average Country Ranking in %:

Correlation Coefficient:

0 -0.4647881

Interpretation:

- Indicates a moderate negative correlation.
- Countries with better average rankings tend to host more competitions.

• Implications:

- Countries with good rankings are more likely to be selected or have the resources to host competitions.
- There is a noticeable inverse relationship, suggesting that better-ranked countries tend to host more often.

Conclusion

Conclusion:

Growth in Participation:

- Increasing number of countries and teams over time, with minor declines.
- Significant drop in participation post-COVID-19.

Medal Analysis:

- Top 10 universities from top 10 countries.
- Leading countries are in Europe, Asia, and North America.
- Europe has the most medals, with Russia leading.

Conclusion:

Performance Analysis:

- South Korea showed the best improvement in medals.
- Switzerland had the greatest improvement in rankings.

Hosting Correlation:

 Moderate negative correlation (-0.46) between hosting frequency and average ranking.

Next Steps:

Expand Data Coverage:

 Gather and integrate data from earlier years (1970-1998) to provide a more comprehensive analysis.

Deeper Regional Analysis:

 Conduct detailed studies on performance trends in underrepresented regions.

Advanced Statistical Methods:

 Use more sophisticated models to explore performance factors and predict future trends.

icpc.foundation

advancing the art and sport of competitive programming