МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа физики и исследований им. Ландау

Отчёт о выполнении лабораторной работы №3.7.1

Скин-эффект в полом цилиндре

Автор: Стависский Георгий Леонидович Б02-103

Долгопрудный 13 октября 2022 г.

1 Введение

Цель работы: исследование проникновения переменного магнитного поля в полый медный цилиндр.

В работе используются: генератор звуковой частоты, соленоид, намотанный на полый цилиндрический каркас из диэлектрика, медный экран в виде трубки, измерительная катушка, амперметр, вольтметр, осциллограф.

2 Теоретические сведения

В работе изучается явление скин-эффекта в длинном медном тонкостенном цилиндре, помещенном в соленоид. Будем считать цилиндр достаточно длинным и пренебрегать краевыми эффектами, в этом приближении H всюду направлено по оси симметрии системы, а E - перпендикулярно радиусу. Будем считать, что эти поля колеблются по гармоническому закону с частотой задаваемой током в соленоиде:

Рис. 1. Электрическое и маг-

нитное в тонкостенном цилин-

$$H_z = H(r)e^{iwt} (1)$$

$$E = E(r)e^{iwt} (2)$$

Пусть радиус цилиндра a, толщина стенки h << a, тогда можно ограничиться одномерным решением задачи о скин-эффекте. Внутри цилиндра токи отсутствуют, поэтому поле однородно и $H(r) = H_1 = const$. Воспользуемся интегральным законом электромагнитной индукции и получим связь электрического и магнитных полей на внутренней границе цилиндра:

$$E \cdot 2\pi r = -\mu_0 \pi r^2 \cdot \frac{dH_z}{dt} \tag{3}$$

$$E_1 = -\frac{1}{2}iwa\mu_0 H_1 \tag{4}$$

Поле внутри стенки цилиндра будет описываться одномерным уравнением диффузии поля:

$$\frac{d^2H}{dx^2} = iw\sigma\mu_0H\tag{5}$$

Данное уравнение вместе с краевыми условиями H_0 и H_1 полностью определяет поля в стенке. Стоит отметить, что H_0 зависит только от тока в обмотке соленоида. Тогда:

Рис. 2. Поле в стенке цилиндра

$$H(x) = Ae^{\alpha x} + Be^{-\alpha x} \tag{6}$$

$$\alpha = \sqrt{iw\sigma\mu_0} = \frac{1+i}{\delta} = \frac{\sqrt{2}e^{i\frac{\pi}{4}}}{\delta} \tag{7}$$

 δ здесь - толщина скин слоя, на которой амплитуды полей спадают в e раз. Первое граничное условие дает $A+B=H_0$, используя это можно преобразовать выражение(6):

$$H(x) = H_0 e^{-\alpha x} + 2Bsh(\alpha x) \tag{8}$$

Далее, воспользовавшись законом Ампера в одномерном варианте $E(x) = \frac{1}{\sigma} \frac{\partial H}{\partial x}$, мы можем используя соотношения на E_1 и H_1 , полученное ранее, исключить константу и в итоге получить:

$$H_1 = \frac{H_0}{ch(\alpha h) + \frac{1}{2}\alpha ash(\alpha h)} \tag{9}$$

Далее следует рассмотреть предельные случаи:

1. Частота тока в соленоиде мала, $\delta >> h$, тогда:

$$\frac{|H_1|}{|H_0|} = \frac{1}{\sqrt{1 + \frac{1}{4}(ah\sigma\mu_0 w)^2}}$$
 (10)

$$tg(\psi) = \frac{ah}{\sigma^2} \tag{11}$$

 ψ - разность фаз H_1 и H_0 .

2. Частота тока в соленоиде высока, $\delta << h$, тогда:

$$\frac{H_1}{H_0} = \frac{2\sqrt{2}\delta}{a}e^{-\frac{h}{\delta}}e^{-i(\frac{\pi}{4} + \frac{h}{\delta})} \tag{12}$$

$$\psi = \frac{\pi}{4} + h\sqrt{\frac{w\sigma\mu_0}{2}}\tag{13}$$

Скин эффект также оказывает влияние на индуктивность катушки:

$$\Phi = \Phi_{out} + \Phi_{in} = H_0 S_0 + H_1 S_1 = LI \tag{14}$$

Учитывая независимость внешнего потока от частоты, можем записать:

$$L_{min} = \frac{\Phi_{out}}{I} \tag{15}$$

Найдем соотноошение потоков:

$$\Phi_{in} = H_1 S_1 = \Phi_{out} \frac{S_1}{nS_0} \tag{16}$$

Где n - отношение напряженности поля снаружи и внутри цилиндра. Максимальное поле достигается при $H_0=H_1$, поэтому:

$$\Phi_{max} = H_0(S_0 + S_1) = L_{max}I \tag{17}$$

и тогда:

$$\frac{S_1}{S_0} = \frac{L_{max} - L_{min}}{L_{min}} \tag{18}$$

Используя (14) и (18), а также соотношения ранее:

$$\frac{L_{max} - L}{L - L_{min}} = \pi^2 a^2 h^2 \mu_0^2 \sigma^2 \nu^2 \tag{19}$$

3 Экспериментальная установка

Схема экспериментальной установки для исследования проникновения переменного магнитного поля в медный полый цилиндр изображена на рис. 4. Переменное магнитное поле создаётся с помощью соленоида, намотанного на полый цилиндрический каркас 1 из поливинилхлорида, который подключается к генератору звуковой частоты. Внутри соленоида расположен медный цилиндрический экран

2. Для измерения маг- нитного поля внутри экрана используется измерительная катушка 3. Необходимые параметры соленоида, экрана и измерительной катушки указаны на установке. Действующее значение переменного тока в цепи соленоида измеряется амперметром A, а действующее значение напряжения на измерительной катушке измеряет вольтметр V. Для измерения сдвига фаз между током в цепи соленоида и напряжением на измерительной катушке используется двухканальный осциллограф. На вход одного канала подаётся напряжение с резистора R, которое пропорционально току, а на вход второго канала - напряжение с измерительной катушки.

Заметим некоторые соотношения, которые будет удобно измерять в ходе эксперимента: Для напряжения на измерительной катушке, справедливо:

$$U = -SN\frac{dB_1}{dt} = -iw\mu_0 SNH_1 e^{iwt}$$
(20)

Тогда измереряемая вольтметром величина (усреднение по времени переменного напряжения):

$$U = \frac{SNw}{\sqrt{2}}\mu_0|H_1| \tag{21}$$

То есть:

$$|H_1| \propto \frac{U}{V}$$
 (22)

При этом:

$$|H_0| \propto I \tag{23}$$

Тогда очевидно:

$$\frac{|H_1|}{|H_0|} = const \cdot \frac{U}{\nu I} \tag{24}$$

Константу из соотношения выше далее будем обозначать ξ_0 .

Разность фаз магнитных полей на границе и в полости цилиндра в ходе эксперимента определяется с помощью осциллографа. Деления, за которые ток в обмотках, фиксирующийся через амперметр, проходит половину фазы, обозначается далее за X, а минимальное расстояние между нулями тока и напряжения в измерительной катушке внутри соленоида за X_0 . Тогда очевидно:

$$\psi = \frac{X_0}{X} \cdot \pi - \pi/2 \tag{25}$$

Вычитание $\pi/2$ связанно с тем, что напряжение на катушке - это производная по времени поля внутри, что дает дополнительную прибавку к фазе $\pi/2$.

4 Ход работы

4.1 Определение ξ_0 и σ по низким частотам

Сначала оценим частоту, на которой $\delta = h$, полагая $\sigma = 5 \cdot 10^7$ См/м, используя формулу (7):

$$\nu = \frac{1}{\pi h^2 \sigma \mu_0} \approx 2250 \, \Gamma \mathrm{II} \tag{26}$$

Так как все вычисления в обработке сводятся к использованию одних и тех же данных, представленных в различных частотных диапазонах, будет удобно свести все наблюдения в серию таблиц:

Далее

ν, Гц	22.5	32.5	42.5	50	60	70	80	90	100	110
U, B	0.1555	0.2207	0.2817	0.3246	0.3776	0.4255	0.4686	0.5069	0.5409	0.5708
I, мА	435.4	432.5	427.9	424.0	418.2	412.0	405.8	399.5	393.4	387.4
X	-	-	-	-	-	-	-	-	-	-
X_0	-	-	-	-	-	-	-	-	-	-

Таблица 1: Результаты измерений до 0.5 ν_h - 1

ν, Гц	130	153	176	200	225	300	400	500	600	700	800
U, B	0.6202	0.6634	0.6957	0.7208	0.7402	0.7725	0.7870	0.7871	0.7801	0.7720	0.7581
I, MA	376.0	364.9	355.8	347.8	341.0	326.4	314.3	305.7	298.3	292.5	285.5
X	1.4	2.4	2.2	2.1	1.8	3.9	2.8	1.9	4.4	3.7	3.2
X_0	1.8	3.2	2.8	2.5	2.2	3.3	2.4	2	4.2	3.6	3.1

Таблица 2: Результаты измерений до 0.5 ν_h - 2

ν, Гц	900	950	1000	1120
U, B	0.7439	0.735	0.7271	0.706
I, мА	278.5	275.0	271.5	263.0
X	2.8	2.6	2.5	4.4
X_0	2.7	2.6	2.4	4.4

Таблица 3: Результаты измерений до 0.5 ν_h - 3

Построим по данным первых двух таблиц график $\frac{1}{\xi^2}$ от ν^2 и используем точки от 22.5 до 400 Гц для линейной аппроксимации (далее наблюдаются серьезные отклонения от линейности зависимости). Погрешность для значений была взята как их супремум:

:

$$k = (0.1349 \pm 0.001).$$

 $b = (3926.4 \pm 152).$

По полученному значению элементарно рассчитаем ξ_0 :

$$\xi_0 = \sqrt{b} = 62.7 \pm 1.2 \tag{27}$$

и используя полученный коэффициент k и соотношение (10), получаем для σ :

$$\sigma = \frac{\sqrt{k}}{\xi_0} \cdot \frac{1}{\pi a h \mu_0} \approx 4.71 \pm 0.3 \cdot 10^7 \text{ CM/M}$$
 (28)

4.2 Определение σ фазовым методом, средние частоты

Получим график зависимости $tg(\psi)$ от ν для частот от $0.05\nu_h$ до $0.5\nu_h$:

График 2 График зависимости $tg(\psi)(\nu)$

По разбросу и общему качеству данных можно заключить, что линейная аппроксимация здесь неуместна, но если все же для оценки допустить ее для первых 7 точек, больше всего напоминающих линейную зависимость, получим:

$$k = 0.0038 \pm 0.0031 \tag{29}$$

И тогда из соотношений (7) и (11) получаем σ :

$$\sigma = \frac{k}{ah\pi\mu_0} \approx 3.06 \pm 2.49 \cdot 10^7 \text{Cm/M}$$
 (30)

4.3 Определение σ фазовым методом, высокие частоты

Для данного метода используется диапазон частот от $0.5~\nu_h$ до $15~\nu_h$, данные перечислены в серии таблиц ниже:

ν, Гц	1405	1760	2210	2775	3480	4365	5477	6870	8620	10813
U, B	0.6537	0.5901	0.5175	0.4415	0.3676	0.2991	0.2380	0.1857	0.1417	0.1060
I, мА	243.1	219.6	193.2	166.0	139.7	115.6	94.32	76.2	60.85	47.96
X	3.4	2.7	4.3	3.3	2.5	1.9	3.5	2.6	1.9	2.7
X_0	3.5	2.8	4.6	3.6	2.9	2.3	4.5	3.6	2.8	4.6

Таблица 4: Результаты измерений от 0.5 ν_h до 15 ν_h - 1

ν, Гц	13565	17020	21350	26780	33600
U, B	0.0780	0.057	0.0427	0.0334	0.0280
I, мА	37.05	27.63	19.25	11.4	4.02
X	1.8	1.2	1.1	0.7	0.2
X_0	3.7	2.9	4.6	3.7	2.9

Таблица 5: Результаты измерений от 0.5 ν_h до 15 ν_h - 2

Построим график $\psi - \frac{\pi}{4}$ от $\sqrt{\nu}$:

График зависимости $\psi(\sqrt{\nu})$ 0.75 0.7 0.65 $\frac{\psi - \frac{\pi}{4}}{\pi}$ 0.6 0.55Экспериментальные данные 0.5Аппроксимация данных $100 \ 110 \ 120 \ 130 \ 140 \ 150 \ 160 \ 170 \ 180 \ 190 \ 200$ 30 40 50 60 70 80 90 $\sqrt{\nu}$

График 2

Взяв последние 4 точки для линейной аппроксимации, получим:

$$k = 0.0019 \pm 0.001 \tag{31}$$

Тогда σ (из соотношения (13)):

$$\sigma = (\frac{k\pi}{h\sqrt{\pi\mu_0}})^2 \approx 3.61 \pm 0.44 \cdot 10^7 \text{ Cm/m}$$
 (32)

Получение итоговой σ и проверка теории об ослаблении полей 4.4

Занесем в таблицу полученные коэффициенты проводимости:

σ , 10^7 Cm/m	4.71 ± 0.3	3.06 ± 2.49	3.61 ± 0.44
№, способ	1	2	3

Таблица 6: Результаты рассчета σ

Первый результат, если судить по погрешности и качеству аппроксимации теоретических положений, сразу выделяется на фоне двух других. Используя полученное в первом способе ξ_0 , рассчитаем коэффициент ослабления поля для всех измерений и получим график $\frac{H_1}{H_0}$ от ν :

График 2 — График зависимости $\frac{H_1}{H_0}(\ln \nu)$

5 Обсуждение результатов и выводы

В ходе работы нами было использовано три метода для определения проводимости меди по скин-эффекту, косвенно в ней наблюдающемся: по соотношению амплитуд полей на низких частотах и по фазам на средних и высоких частотах. Первый и третий методы показывали в ходе эксперимента хорошее качественное совпадение с теорией, в отличие от второго, в котором ситуация кардинально противоположная. Проводимость, полученная в первом методе, хорошо совпадает с табличными значениями проводимости меди, учитывая примеси в ней, но построение графиков $\frac{H_1}{H_0}$ показало, что теория описала данные качественно, но не количественно. Результаты опытов, по нашему мнению, могут быть объяснены следующими положениями:

- 1. Использование в качестве теоретической основы упрощенного решения скин-эффекта для одномерного случая это ведет к переоценке второй производной на высоких частотах и вследствии к занижению поля внутри цилинлра.
- 2. Предположение о стационарности полей может быть неккоретно на высоких частотах, когда характерные размеры системы уже не соответствуют характерной скорости распространения колебаний в системе.
- 3. Неточность определения фаз по нулям напряжений на изм. катушке и резисторе, особенно проявляющуюся при приближении разности фаз к $\pi/2$ и следственно совпадению фаз на осциллографе.

4. Качественное расхождение на средних частотах может быть связано с "переходом" решения между областями аппроксимации. Учитывая, что "опорная частота" была вычислена по оценке проводимости, границы перехода могли быть определены неточно.

В таких условиях, мы можем утверждать следущее: теория в одномерном приближении описывает наблюдения качественно, о качестве количественного описания судить сложно.

6 Рекоммендации по установке

Мы считаем нелишними следующие корректировки по данной работе:

- 1. Использовать альтернативный метод определения разности фаз, оправдавший себя в ранних работах по фазовым диаграмам (используя осциллограф в режиме одного из сигналов поданного на временную развертку) для более высокой точности, либо использовать электронный осциллограф, на котором можно крайне точно определять нужные величины.
 - 2. По первым рассчетам σ корректировать "опорную частоту"