

A NEW PARALLEL RESERVOIR SIMULATION TOOL FOR THE PRODUCTION OF FRACTURED GEOTHERMAL RESERVOIRS.

OLIVIER.RICOIS@IFPEN.FR

FROM FRACTURES TO FLOW:

CHALLENGES IN FRACTURED RESERVOIR CHARACTERIZATION, MODELING AND DYNAMIC PREDICTIONS

Renewable energies

IFPEN SOFTWARE SOLUTIONS (1/2): FOR FRACTURED RESERVOIR SIMULATIONS

Renewable energies

- Model and calibrate fractured reservoirs with FracaFlow
 - Static and dynamic data analysis
 - Fracture modeling and DFN generation
 - Dynamic calibration
 - Equivalent fracture properties computation

- Simulate fractured reservoirs, optimal oil field management with PumaFlow^(R)
 - 60 fractured fields studied worldwide including 10 of the world's 50 largest oil fields.
 - Experience in carbonate, sandstone, shale, basement, volcanic

- All-in-one fully interactive platform including model preparation, simulation, post-processing, PVT package, uncertainties and assisted history matching.
- Unrivaled scalability and performances on black-oil and dual medium.
- Versatile simulator including all options (Black Oil, Compositional, Dual Medium, Shale Gas, Chemical and Thermal EOR) in one calculator.
- Excellence in physics

IFPEN SOFTWARE SOLUTIONS (2/2):

FOR FRACTURED RESERVOIR SIMULATIONS

Renewable energies

ARCANE / ArcGeoSimTM

An IFPEN/CEA next generation geoscience development platform for parallel applications

A high level design to speed up development:

- Based on C++ Object Oriented language
- For any developer: physicists, numerical analysts, geoscientists
- With common code services for computational sciences (I/O (XML, HDF5), Checkpoint/Restart, Unit System
- With common concepts for mesh oriented simulations

A high level design for lower level optimizations

- Hardware abstraction and performances: Data partitioning/synchronization/migration, message passing parallelism API with MPI/multi-thread/hybrid implementations
- Multi-platform support (Linux/Windows)
- Tested on CEA supercomputer up to 60,000 cores.

FRACTURE MODELLING TRENDS

Berre et al. (2018)

- Implicit representation of fractures
- continuum models

Weakly connected and small fractures

Low level of complexity

Explicit representation of fractures

Meshing issues and complex modeling Multi-physics couplings

DFM model - conforming mesh

Dense connected networks
Challenging Transfer term

DFM model - non-conforming mesh

Low resolution of fracture-matrix interaction

THE MODEL, CHALLENGES AND INNOVATIONS: A TAILORED DISCRETIZATION

Fractured Media :

- Flow scheme enables multiphase flow simulations preserving calibrated fracture characterization.
- Discretization used limits number of nodes :
 - 1 node per intersection of fracture planes
 - Connected pathways only
 - Quick fractures exchanges steady state pressure gradient estimated via a Voronoi -Sweep Lined Mesh 3 D (SLM3D*).

*Khvoenkova, N., & Delorme, M. (2011). In IAMG conference (pp. 1238-1249).

Renewable energies

THE MODEL, CHALLENGES AND INNOVATIONS: A TAILORED DISCRETIZATION

- Porous matrix media :
 - 3D octree* delineation.
 - Approximating pressure gradient in the matrix, close to each fracture, requires to assess the exchange surfaces, thus using an adapted scale allowing an accurate simulation of the chosen control volume:
 - Space is subdivided according to fracture location: the more fractures, the finer matrix control volume.
 - To smooth porous matrix cell volume variation, the octree is equilibrated of first order.

*Khvoenkova & Delorme (2012). Patent No. 13/644,479.USA.

SYNTHETIC FRACTURED GEOTHERMAL RESERVOIR*

Major faulted zones connected to dense

networks of small fractures

The small-scale fractures are nearly vertical, and the major direction is about N0°E

17 avril 2023

DISCRETIZATIONS

Continuum fracture medium

921 active fracture cells 2 mD < Kf < 8 mD 20 m< Lx,Ly < 50 m, Lz=300m

DDFN discretization

387792 active fracture nodes located at the intersection of natural fracture planes of the DFN

DISCRETIZATIONS

Renewable energies

Continuum fracture medium

921 active fracture cells 3150 active matrix cells

DDFN discretization

387792 active fracture nodes located at the intersection of natural fracture planes of the DFN 14805 matrix nodes

Renewable energies

THE MODEL, CHALLENGES AND INNOVATIONS: A TRANSIENT TRANSFER INFLUENCE FUNCTION*

 A matrix block comprises a number of nested sub-regions (k=1,2,...n), which are logically linked together in a onedimensional sequence

 $\label{eq:transfer Influence Functions} \begin{subarray}{l} \textbf{given for each matrix cell} \\ 0 < Fv\left(x\right) \ = \ V(L_x)/Vm < 1 \end{subarray}$

Flow internal to the matrix block

$$T_k^{k+1} = e_k.K_m \left(\frac{2.F_v(L_k).Vm/(L_{k+1} - L_k)}{L_{k+2} - L_k} \right)$$

ek: Transmissivity multiplier to account for the matrix damage during hydraulic fracturing

Sf: Surface of fractures in the matrix block

Vm: Volume of the matrix block

Km : Permeability (tensor) of the matrix

Lk: Distance from fracture of nested sub-regions.

Rencontres Arcane IFPEN

Water BT after 1 year

Fracture network features are favorable to continuum approach in this example:

- Quasi-homogeneous small block sizes
- High density of fractures
- Homogenous matrix

Initial reservoir temperature : 160°C

Injection temperature : 60°C

Q = 3000 t/d

WR overestimates the production of water coming from the matrix

kinetics of water production are different

COMPARISON OF CPU TIMES AND SPEED-UPS

Runs on ENER220, the IFPEN parallel supercomputer (225 Tflops for 120 nodes with 2x18 compute cores on each node)

Optimal #cores function of degrees of freedom of the model

CONCLUSIONS

- Development of a new parallel reservoir simulation tool for the production of fractured geothermal reservoirs.
- Accounting for "pertinent" scales influenced and inspired the development of a new model (DDFN methodology) using a specific discretization method:
 - Where up-scaling constrains are removed, allowing the integration of several scales (down to the metric one).
 - Well adapted to fractured geothermal reservoirs, given its ability to limit the number of nodes (fracture and matrix).
- Currently it can include up to half a million of natural fractures.
- The problem of the transient effects is solved using an adapted transfer proximity function creating realistic temperature gradients close to the fracture faces.

Innovating for energy

Find us on:

www.ifpenergiesnouvelles.com

y @IFPENinnovation

