Relación 3 de problemas

En los ejercicios que siguen (a menos que se indique lo contrario) los estimadores están basados en una muestra X_1, \ldots, X_n de v.a.i.i.d. con las distribuciones indicadas. La abreviatura e.m.v. indicará "estimador de máxima verosimilitud".

1. Sea X una variable aleatoria con distribución de Pareto dada por la función de densidad:

$$f(x;\theta) = \theta x_0^{\theta} x^{-\theta-1}, \quad x \ge x_0, \quad \theta > 1,$$

donde x_0 se supone que es un valor conocido. Sea X_1, \ldots, X_n una muestra de X.

- (a) Calcula la cantidad de información de Fisher.
- (b) Calcula el estimador de θ por el método de los momentos.
- (c) Determina el estimador de máxima verosimilitud de θ , estudia su consistencia y determina completamente su distribución asintótica.
- 2. Supongamos que el error X cometido en la medición de una magnitud es una v.a. con distribución normal de media 0 y varianza θ . Por tanto, la función de densidad de X es

$$f(x;\theta) = \frac{1}{\sqrt{\theta}\sqrt{2\pi}} \exp\left(-\frac{x^2}{2\theta}\right), \ x \in \mathbb{R}.$$

Se desea estimar θ a partir de una muestra X_1, \ldots, X_n de X.

- (a) Calcula el estimador de máxima verosimilitud, T_n .
- (b) Prueba que T_n es insesgado y eficiente.
- (c) Estudia la distribución asintótica de T_n .

Indicación: $E_{\theta}(X^4) = 3\theta^2$.

- ${f 3}$. Se dispone de un gran lote de piezas producidas en una cadena de montaje. Denotemos por p la proporción de piezas defectuosas en ese lote. Supongamos que se seleccionan al azar sucesivamente (con reemplazamiento) piezas del lote hasta que se encuentra una defectuosa. Sea X la variable aleatoria que indica el número de la extracción en la que aparece la primera pieza defectuosa.
 - (a) Calcula P(X = k) para k = 1, 2, ... Obtén el estimador de p por el método de los momentos, a partir de una muestra $X_1, ..., X_n$ de la v.a. X.
 - (b) Calcula el estimador de p por el método de máxima verosimilitud. Calcula su distribución asintótica.
- 4. Estudia si es eficiente el e.m.v. del parámetro λ en una distribución de Poisson.

5. Un modelo probabilístico utilizado en ocasiones para la v.a. "velocidad del viento" es la distribución de Rayleigh cuya función de densidad es

$$f(x;\theta) = \frac{x}{\theta^2} e^{\frac{-x^2}{2\theta^2}} \mathbb{I}_{[0,\infty)}(x), \ \theta > 0.$$

La media y la varianza de esta distribución son, respectivamente, $\mu = \theta \sqrt{\frac{\pi}{2}}$, $\sigma^2 = \frac{4-\pi}{2}\theta^2$.

- (a) Calcula el estimador de θ por el método de los momentos. Estudia si es asintóticamente normal y, en caso afirmativo, calcula su varianza asintótica.
- (b) Calcula el estimador de θ por el método de máxima verosimilitud. ¿Es consistente?
- (c) Estudia si el estimador de máxima verosimilitud es asintóticamente normal y, en caso afirmativo, calcula su varianza asintótica.
- 6. Sea el modelo definido por la densidad

$$f(x; \theta) = \frac{1}{2\theta} \exp\left(-\frac{|x|}{\theta}\right), \quad x \in \mathbb{R}, \ \theta > 0.$$

- (a) Calcula el estimador de máxima verosimilitud, $\hat{\theta}_n$, de θ , basado en una muestra de tamaño n.
- (b) ¿Es insesgado $\hat{\theta}_n$? Calcular su error cuadrático medio.
- (c) ¿Es consistente $\hat{\theta}_n$? ¿Es eficiente?
- (d) Obtener la distribución límite de $\sqrt{n}(\hat{\theta}_n \theta)$.
- 7. El tiempo (en minutos) que una persona espera el autobús cada mañana tiene distribución uniforme sobre el intervalo $(0,\theta)$, $\theta > 0$. La función de densidad a priori sobre $\Theta = (0,\infty)$ es $\pi(\theta) = 192/\theta^4$, si $\theta \ge 4$ y 0 si $\theta < 4$. En tres mañanas, los tiempos de espera observados han sido de 5, 3 y 8 minutos. Calcula el estimador Bayes de θ .
- 8. Sea X una v.a. con distribución normal de media μ y varianza θ . Estamos interesados en la estimación de θ basados en muestras X_1, \ldots, X_n de tamaño n. Calcula la cota de Fréchet-Cramer-Rao para estimadores insesgados de θ .
- 9. Sea X_1, \ldots, X_n una muestra de una v.a. con función de densidad

$$f(x;\theta) = \theta x^{\theta-1}, \ 0 < x < 1, \ \theta > 0.$$

Sea
$$T_n(X_1, ..., X_n) = -(1/n) \sum_{i=1}^n \log X_i$$
.

- (a) Prueba que $E_{\theta}(T_n) = 1/\theta$, $Var_{\theta}(T_n) = 1/(n\theta^2)$.
- (b) ¿Es eficiente T_n como estimador de $1/\theta$?
- 10. El número de fallos que se producen anualmente en cierto mecanismo es una v.a. con distribución de Poisson de parámetro θ . El valor de θ no es conocido exactamente, pero se tiene cierta información a priori que permite considerarlo como una v.a. con distribución $\gamma(\alpha, \beta)$ (α y β son conocidos). Si x_1, \ldots, x_n son observaciones independientes de la variable aleatoria "número de fallos", calcular la distribución a posteriori y obtener, a partir de ella, un estimador puntual para θ .

- 11. Sea X una variable aleatoria absolutamente continua con distribución uniforme en el intervalo $[0, \theta]$, donde $\theta > 0$. Sea X_1, \ldots, X_n una muestra aleatoria de X.
 - (a) Escribe y dibuja las funciones de densidad f_{θ} y distribución F_{θ} de X. Determina y dibuja (aproximadamente) la función de logverosimilitud, $\log L_n$, como función de θ . Prueba entonces que el estimador de máxima verosimilitud de θ es $X_{(n)} = \max_{i=1,\dots,n} X_i$. Indicación: Para calcular el e.m.v. no hay que derivar $\log L_n$, sólo prestar atención al soporte de f_{θ} y al de $\log L_n$.
 - (b) Calcula $\tilde{\theta}_n$, el estimador de θ por el método de los momentos. ¿Es asintóticamente normal? ¿Cuál es su error cuadrático medio?
 - (c) Demuestra que $T_n = \frac{n+1}{n} X_{(n)}$ es un estimador insesgado de θ .
 - (d) Calcula $\mathbb{E}\left(\left(\frac{\partial}{\partial \theta} \log f(X;\theta)\right)^2\right)$. Teniendo en cuenta el valor de $\mathbb{V}(\tilde{\theta}_n)$, ¿es válida la cota de Fréchet-Cramer-Rao en este caso? ¿Por qué crees que es así? Indicación: Prueba a calcular $\frac{\partial}{\partial \theta} \int_{\mathbb{R}} f_{\theta}(x) dx$ metiendo la derivada dentro del signo integral.
 - (e) Se tiene cierta información que permite suponer que θ es una v.a. con distribución de Pareto de densidad

$$\pi(\theta) = \begin{cases} \frac{\alpha \kappa^{\alpha}}{\theta^{\alpha+1}} & \text{si } \theta \ge \kappa, \\ 0 & \text{si } \theta < \kappa, \end{cases}$$

- con $\kappa = 2$. Demuestra que la distribución a posteriori de θ es una Pareto de parámetros $\alpha + n$ y máx $(x_{(n)}, 2)$.
- (f) Escribe un código en R que extraiga una muestra aleatoria de tamaño n=50 de la distribución uniforme en [0,3], calcule los estimadores $\tilde{\theta}_n$ y T_n y dibuje un estimador kernel de la densidad. ¿Qué aspecto tendría este estimador kernel para un parámetro de suavizado h muy pequeño (infrasuavizado) y muy grande (sobresuavizado) comparado con la densidad f_3 original?
- 12. Al tirar una moneda trucada, la probabilidad desconocida de obtener cara es $\theta \in (0,1)$. A priori, pensamos que $E(\theta) = 1/2$ y $Var(\theta) = 1/12$. Queremos estimar θ tirando una vez la moneda. ¿Cuál es el estimador Bayes en función de si ha resultado cara o cruz?