"FIBERS OVER INFINITY of LANDAU-GINZBURG MODELS"

Cheltsov - Przyjalkowski (Vania) (Victor)

MIRROR SYMMETRY FOY CALABI- YAU VARIETIES

- phenomenon of duality b/w cy
- various approaches: HMS, SYZ MS, combinatorial/touz
 "topological MS": hp.9 (x) = hn-9,p (x)

MIRROR SYMMETRY for FANO MANIFOLDS

- Mehation blw Fours menifold X & (YIW) Landau- Ginzburg model
- voocious approaches: HMS
- reelate Hodge theoretic data of X to Hodge theoretic data of (Y,v)?

 geometry of X to involutions of (X, w)?

defn: a Landau-Ginzburg (LG) model (/, w) is y smooth quesi-projective vocatety of dim n W: Y -> A1 regular function Ky ~ 0 fibres of N are opt | general fibre: CY of din n-1 Interpretation of "X Fano manifold is mirror to (Y, w) LG model: X Famo of dim (X)=n (n=3) W smooth anticoinonical divisor X \ W Calabi-Yau \ Thinkor CY cpt X \ W to X equip Y with w: Y -> A_C W cpt CY

V Sibre of w of dim n-1
t3 sveface $(\mathcal{F}) H^{PP}(W) \longleftrightarrow H^{n-1}(V, \mathbb{C})$ Setting: X Fano manifold dimx = n Lowrent polynomial del Pezzo Faus 3-folds ; list complete intersec in IPN Guss c.1. in Grass

 $\mathbb{C} = \mathbb{C} \hookrightarrow \mathbb{P}_{\mathbb{C}}^{1}$ defn: (Z,f) lop (Y cpt of P Z smooth proper variety f-1(20) reduced snc divisor f-1(∞) ~ - kx

number of reducible fibres $Y = \{x \in X : x \in X :$ in w (resp f) and number of roceducible components in reducible fibres of w (rasp f) do not depend on choice of (Y,w), (Z,f) $\frac{\text{Conj} \left[\text{katzoxkov-kontsevich-Pautey} \right] : h^{p,q}(x) = \int^{h-p,q}(y,w) = \dim \text{graded}}{\text{preces of MHS}}$ $\frac{\text{Conj} : h^{1,n-1}(x)}{\text{Sec}(\beta_{s-1}) + 1} \quad \text{if } n > 2$ $\int_{\text{Sec}(\beta_{s-1}) + 1}^{\sum (\beta_{s-1}) + 1} \text{if } n = 2$

Conj:
$$\chi(-k_x) = \rho_{\infty} + 1/2$$
 + conj on existence of touc LG (p)

vováety X	ktp conj: hp'9= f9,n-p	$h^{1/n-1}(x) = \{(p_s-1)(+1)\}$	$\chi(-k_{\chi}) = \rho_{\infty} + 1$
del Pezzo surf	/ Lunts-Prez.	→ /	Aυτουχ - κατεαγω Ο clov
Fauothreefold (105 famílies)	Havedor's work: f ^{P,9} can be computed using geometry of log (Y cpt Z	Pzz: rkPic(XI=1 [13] (17 families)	Prz: -kx very ourple [17] (98 families)
	Cheltsov-Prez [18] family by family comp.	\rightarrow	Complete peoof for all Faun threefold
complete int. in IPN		Prez-Shzamov - combinatocual comp of Hodge numbers - reesolution peoceduce	Prez description [18] fibre over infinity complete proof for complete intersection
tous vouety w/ chal tous vouety admitting one pres			

EXAMPLE: CUBIC SURFACE and CUBIC THREEFOLD
$$\chi \in \mathbb{P}^N$$
, $I = N+1-d$ (particular case of complete intersection in \mathbb{P}^N)

Lawrent polynomial:
$$p_{\chi} = \frac{\left(\chi_{1} + \chi_{2} + \ldots + \chi_{d-1} + 1\right)^{d}}{\left[\text{Givental}\right]} + y_{1} + \ldots + y_{I-1} \in \mathbb{C}\left[\chi_{i}^{\pm}, y_{i}^{\pm}\right]$$

Singular LG model:
$$\begin{cases} y_{0}^{I} (x_{1} + ... + x_{d})^{d} = (\lambda y_{0} + y_{1} + ... + y_{I-1}) y_{1} ... y_{I-1} \times_{1} ... \times_{d} \end{cases}$$

$$\subseteq P^{d-1} \times P^{I-1} \times A^{1}_{\lambda} \qquad (d, I)$$

$$\times_{1} ... \times_{d} \times_{d}$$

Let X be a Fano complete intersection in \mathbb{P}^N of hypersurfaces of degrees d_1, \ldots, d_k , let i_X be its Fano index, and let p be the Laurent polynomial

$$\frac{\prod_{i=1}^{k} (x_{i,1} + \ldots + x_{i,d_i-1} + 1)^{d_i}}{\prod_{i=1}^{k} \prod_{j=1}^{d_i-1} x_{i,j} \prod_{j=1}^{i_X-1} y_j} + y_1 + \ldots + y_{i_X-1} \in \mathbb{C}[x_{i,j}^{\pm 1}, y_s^{\pm 1}],$$

which we consider as a regular function on the torus $(\mathbb{C}^*)^n$, where $n = \dim(X)$. Let Δ be

Strategy: orepaut resolution of LGs(X)

$$X_{3} \subseteq \mathbb{P}^{3}$$

$$P = \frac{(x_{1} + v_{2} + 1)^{3}}{v_{1}v_{2}}$$

$$LG_{5}(x) = \{ \mu(v_{1} + v_{2} + v_{3})^{3} = \lambda v_{1}v_{2}v_{3} \} \subseteq \mathbb{P}^{2}_{x} \times \mathbb{A}^{3}_{\lambda}$$

$$Strate: \{ e := v_{1} + v_{2} + v_{3} = v_{1} = 0 \}$$

$$locally: e^{3} = \lambda x_{1} \quad \text{sing of type } A_{2}$$

$$\int_{0}^{2} = 1 + 3 \cdot 2 = 7 = h^{1/2}(x_{3})$$

$$\int_{\infty}^{2} + 1 = \chi(-k_{x}) = 1 + (-k_{x})^{2} = 4$$