Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	29 /04 /2020	Client	LoremIpsum

1 Input Parameters

Mod	ule			Fin Plate
MainModule			Shear Connection	
			Beam-Beam	
	Connectivity			
Shear(l			•	50.0
		pporting Sect	ion	
		ng Section		UB 305 x 127 x 48
T Y		erial *		E 250 (Fe 410 W)A
		ngth, fu (MPa)		410
		th , fy (MPa)	7 (1)	230
$\frac{(B-t)}{t}$	Mass	48.1	Iz(cm4)	95750000.0
ZZ D	Area(cm2) - A	6120.0	Iy(cm4)	4610000.0
	D(mm)	311.0	rz(cm)	125.0
R_1	B(mm)	125.3	ry(cm)	27.0
	t(mm)	9.0	Zz(cm3)	616000.0
В	T(mm)	14.0	Zy(cm3)	74000.0
	FlangeSlope	90	Zpz(cm3)	711000.0
	R1(mm)	8.9	Zpy(cm3)	74000.0
	R2(mm)	0.0		
	Su	ipported Secti	on	
		ed Section		NPB 250x175x43.9
· ·	Material *		E 250 (Fe 410 W)A	
т—	Ultimate strength, fu (MPa)		410	
	Yield Strength , fy (MPa)		230	
$(B-t)$ α	Mass	43.94	Iz(cm4)	60914000.0
4	Area(cm2) -	5600.0	Iy(cm4)	9836100.0
ZZ D	A			
R ₁	D(mm)	244.0	rz(cm)	104.3
-R ₂	B(mm)	175.0	ry(cm)	41.900000000000006
В	t(mm)	7.0	Zz(cm3)	499290.0
Y	T(mm)	11.0	Zy(cm3)	112410.0
	FlangeSlope	90	Zpz(cm3)	555560.0
	R1(mm)	1.5	Zpy(cm3)	112410.0
	R2(mm)	0.0		
Bolt Details			ı	
Diameter(mm)*			[12.0, 16.0, 20.0]	
Grade *			[3.6, 4.6, 4.8	8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9]
Type *			Bearing Bolt	
Bolt hole type			Standard	
Slip facto	r (µ_f)		0.3	
Type of	edges		a -	Sheared or hand flame cut

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	29 /04 /2020	Client	LoremIpsum

Gap between beam and support (mm)	10.0
Are the members exposed to corrosive influences	False
Weld Details	
Weld Type	Fillet
Type of weld fabrication	Shop Weld
Material grade overwrite (MPa) Fu	410.0

2 Design Checks

2.1 Bolt Design Checks

Check	Required	Provided	Remarks
Shear Capacity (kN)		$V_{dsb} = \frac{f_u b \ n_n \ A_{nb}}{\sqrt{3} \ \gamma_{mb}}$ $= \frac{410 * 1 * 245}{\sqrt{3} \ * 1.25}$ $= 56.58$	
Bearing Capacity (kN)		$V_{dpb} = \frac{2.5 \ k_b \ d \ t \ f_u}{\gamma_{mb}}$ $= \frac{2.5 \ *0.51 * 20.0 * 7.0 * 410}{1.25}$ $= 56.58$	
Capacity (KN)		$V_{db} = min (V_{dsb}, V_{dpb})$ = $min (56.58, 56.58)$ = 56.58	
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{50.0^{2} + 50.0^{2}}}{56.58}$ $= 2$	2	
No of Columns		1	
No of Rows		2	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 20.0 = 50.0$	0.0	N/A
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 7.0, \ 300 \ mm)$ = 300	0.0	N/A
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 20.0 = 50.0$	100	Pass
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 7.0, \ 300 \ mm)$ = 300	100	Pass
Min. End Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = $1.7 * 22.0 = 37.4$	40	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	29 /04 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Max. End Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *8.0 * \sqrt{\frac{250}{230}}$ $= 99.84$	40	Pass
Min. Edge Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 22.0 = 37.4	40	Pass
Max. Edge Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *8.0 * \sqrt{\frac{250}{230}}$ $= 99.84$	40	Pass
Capacity (KN)	55901.7	56580.33	Pass

2.2 Plate Design Checks

Check	Required	Provided	Remarks
Min. Plate Height (mm)	$0.6 * d_b = 0.6 * 244.0 = 146.4$	180	Pass
Max. Plate Height (mm)	$d_b - t_{bf} + r_{b1} - notch_h$ $= 244.0 - 11.0 + 1.5 - 30$ $= 194.0$	180	Pass
Min. Plate Length (mm)	$2 * e_{min} + (n c - 1) * p_{min})$ $= 2 * 37.4 + (1 - 1) * 50.0$ $= 84.8$	90.0	Pass
Min.Plate Thickness (mm)	$t_w = 7.0$	8.0	Pass
Shear yielding Capacity (V_dy) (kN)		$V_{dg} = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo}}$ $= \frac{180 * 8.0 * 230}{\sqrt{3} * 1.1}$ $= 104.3$	
Shear Rupture Capacity (V_dn) (kN)		$V_{dn} = \frac{0.75 * A_{vn} * f_u}{\sqrt{3} * \gamma_{mo}}$ $= 1 * (180 - (2 * 22.0)) * 8.0 * 410$ $= 334.56$)
Block Shear Capacity in Shear (V_db) (kN)		213.35	
Shear Capacity (V_d) (kN)	50.0	$V_d = Min(V_{dy}, V_{dn}, V_{db})$ $= Min(104.3, 334.56, 213.35)$ $= 104.3$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	29 /04 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Tension Yielding Capacity (kN)		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{90.0 * 8.0 * 230}{\sqrt{3} * 1.1}$ $= 150.55$	
Tension Rupture Capacity(kN)		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$ $= \frac{0.9 * (90.0 - 2 * 22.0) * 8.0 * 410}{1.25}$ $= 160.59$	
Block Shear Capacity in Tension (T_db) (kN)	Shear Capacity in 213.35		
Tension Capacity (kN)	50.0	$T_d = Min(T_{dg}, T_{dn}, T_{db})$ $= Min(150.55, 160.59, 213.35)$ $= 150.55$	Pass
Moment Capacity (kNm)	2.5	10.84	Pass
Interaction Ratio	≤ 1	$\frac{2.5}{10.84} + \frac{50.0}{150.55} = 0.56$	Pass

2.3 Weld Checks

Check	Required	Provided	Remarks
Min Weld Size (mm)	$Thickness of Thicker part \\ = Max(9.0, 9.0) = 9.0 \\ IS800: 2007 \ cl. 10.5.2.3 \ Table 21, \\ t_{w_{min}} = 3$	3	Pass
Max Weld Size (mm)	Thickness of Thinner part $= Min(9.0, 9.0) = 8.0$ $t_{w_{max}} = 8.0$	3	Pass
Weld Strength (kN/mm)	$R_w = \sqrt{(T_{wh} + A_{wh})^2 + (T_{wv} + V_{wv})^2}$ $T_{wh} = \frac{M * y_{max}}{Ipw} = \frac{2500000.0 * 87.0}{878004.0}$ $T_{wv} = \frac{M * x_{max}}{Ipw} = \frac{2500000.0 * 0.0}{878004.0}$ $V_{wv} = \frac{V}{l_w} = \frac{50000.0}{348}$ $A_{wh} = \frac{A}{l_w} = \frac{50000.0}{348}$ $R_w = \sqrt{(247.72 + 143.68)^2 + (0.0 + 143.68)^2}$ $= 416.94$	$f_w = \frac{t_t * f_u}{\sqrt{3} * \gamma_{mw}}$ $= \frac{3 * 410}{\sqrt{3}} * 1.25$ $= 568.11$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	29 /04 /2020	Client	LoremIpsum

3 3D View

Figure 1: 3D View