Patent Application Docket #34647-00411USPT P13255/BR20681

WHAT IS CLAIMED IS:

A method for continuous allocation of real-time
traffic in a communication network, comprising the steps of:
allocating a first unit of real-time data for transmission
during a first interval with a first transmission rate;
allocating non-real-time data for transmission during a
second interval;
allocating a second unit of real-time data for transmission
during a third interval with a second transmission rate; and
allocating a third unit of real-time data for transmission
during said third interval with said second transmission rate.

- 2. The method of Claim 1, wherein said real-time data includes speech data.
- 3. The method of Claim 1, wherein each said first unit, second unit and third unit of real-time data comprises a respective 20 ms signal output from a speech codec.

6

- 1 4. The method of Claim 1, wherein said communication 2 network comprises a TDMA communication network.
- The method of Claim 1, wherein each of said intervalscomprises a block in a timeslot.
 - 6. The method of Claim 1, wherein said first transmission rate comprises a transmission at a full-rate.
- 7. The method of Claim 1, wherein said first transmission rate is a higher rate than said second transmission rate.
- 9 8. The method of Claim 1, wherein said second 10 transmission rate comprises a transmission at a half-rate.
- 9. The method of Claim 1, wherein said non-real-time data comprises control data.

Patent Application Docket #34647-00411USPT P13255/BR20681

1 A method for continuous allocation of real-time traffic in a communication network, comprising the steps of: allocating a first unit of real-time data for transmission during a first interval with a first transmission rate; allocating non-real-time data for transmission during a second interval;

allocating a second unit of real-time data for transmission during said second interval with a second transmission rate; and allocating a third unit of real-time data for transmission during said second interval with said second transmission rate.

11. The method of Claim 10, wherein the step of allocating said non-real-time data further comprises allocating said non-real-time data for a first timeslot, and the steps of allocating said second unit of real-time data and said third unit of real-time data further comprises allocating said second unit of real-time data and said third unit of real-time data for a second timeslot.

5

6

7

8

9

10

1	12. The method of Claim 10, wherein said first and second
2	units of real-time data are allocated to a first user, and said
3	third unit of real-time data is allocated to a second user.

- 13. The method of Claim 10, wherein said real-time data includes speech data.
- 14. The method of Claim 10, wherein each of said first unit, second unit and third unit of real-time data comprises a respective 20 ms signal output from a speech codec.
- 15. The method of Claim 10, wherein said communication network comprises a TDMA communication network.
- 11 16. The method of Claim 10, wherein said communication 12 network comprises a Compact EDGE network.

6

7

8

9

- 1 17. The method of Claim 10, wherein each of said intervals 2 comprises a block in one or more timeslots.
- 3 18. The method of Claim 10, wherein said first 4 transmission rate comprises a transmission at a full-rate.
 - 19. The method of Claim 10, wherein said first transmission rate is a higher rate than said second transmission rate.
 - 20. The method of Claim 10, wherein said second transmission rate comprises a transmission at a half-rate.
- 10 21. The method of Claim 10, wherein said non-real-time 11 data comprises control data.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Patent Application Docket #34647-00411USPT P13255/BR20681

2. A method for continuous allocation of real-time traffic in a communication network, comprising the steps of: allocating a first unit of real-time data for transmission during a first interval with a predetermined transmission rate; allocating a second unit of real-time data for transmission

during said first interval;

allocating non-real-time data for transmission during a second interval;

determining if said second interval is not contiguous with said first interval; and

if said second interval is not contiguous with said first interval, allocating a third unit of real-time data and a fourth unit of real-time data for transmission during a third interval with said predetermined transmission rate, and allocating a fifth unit of real-time data and a sixth unit of real-time data for transmission during a fourth interval with said predetermined transmission rate, said third interval contiguous

6

7

8

9

10

- with said second interval, and said fourth interval contiguous
 with said third interval.
- 3 23. The method of Claim 22, wherein said first unit of 4 real-time data includes speech data.
 - 24. The method of Claim 22, wherein each of said first unit, second unit, third unit, fourth unit, fifth unit and sixth unit of real-time data comprises a 20 ms signal output from a speech codec.
 - 25. The method of Claim 22, wherein said communication network comprises a TDMA communication network.
- 11 26. The method of Claim 22, wherein said communication 12 network comprises a Compact EDGE network.

6

- 1 27. The method of Claim 22, wherein each of said intervals 2 comprises a block in a timeslot.
- 3 28. The method of Claim 22, wherein said predetermined 4 transmission rate comprises a transmission at a half-rate.
 - 29. The method of Claim 22, wherein said non-real-time data comprises control data.

1	\mathfrak{F}_{0} . A system for continuous allocation of real-time
2	traffic, comprising:
3	a network control unit; and
4	a terminal unit coupled to said network control unit by a
5	transmission medium, said network control unit further
6	comprising:
7	means for allocating a first unit of real-time data for
8	transmission during a first interval with a first transmission
9	rate;
10	means for allocating non-real-time data for transmission
11	during a second interval;
12	means for allocating a second unit of real-time data for
13	transmission during a third interval with a second transmission
14	rate; and
15	means for allocating a third unit of real-time data for
16	transmission during said third interval with said second
17	transmission rate.

4

5

6

7

8

9

1	31.	The s	system o	f Claim	30,	wherein	said	first	unit	of
2	real-time	data	include	s speed	h da	ıta.				

- 32. The system of Claim 30, wherein each of said first unit, second unit and third unit of real-time data comprises a 20 ms signal output from a speech codec.
 - 33. The system of Claim 30, wherein said system comprises a TDMA communication system.
- 34. The system of Claim 30, wherein said system comprises a Compact EDGE communication system.
- 10 35. The system of Claim 30, wherein each of said intervals
 11 comprises a block in a timeslot.
- 36. The system of Claim 30, wherein said first transmission rate comprises a transmission at a full-rate.

6

Pa	atent	Application
Docket	#3464	47-00411USP1
	P13	3255/BR20681

1		37.	The	sy	ste	m of	Cla	im 3	30, wh	nerein	said	first
2	trans	smissi	ion r	cate	is l	nigher	than	said	second	trans	mission	rate.

- 3 38. The system of Claim 30, wherein said second transmission rate comprises a transmission at a half-rate.
 - 39. The system of Claim 30, wherein said non-real-time data comprises control data.

Patent Application Docket #34647-00411USPT P13255/BR20681

1	4 A system for continuous allocation of real-time
2	traffic, comprising:
3	a network control unit; and
4	a terminal coupled to said network control unit by a
5	transmission medium, said network control unit further
6	comprising:
7	means for allocating a first unit of real-time data for
8	transmission during a first interval with a first transmission
9	rate;
10	means for allocating non-real-time data for transmission
11	during a second interval;
12	means for allocating a second unit of real-time data for
13	transmission during said second interval with a second
1.4	transmission rate; and
15	means for allocating a third unit of real-time data for

transmission during said second interval.

Patent Application Docket #34647-00411USPT P13255/BR20681

1	A. A system for continuous allocation of real-time
2	traffic, comprising:
3	a network control unit; and
4	a terminal coupled to said network control unit by a
5	transmission medium, said network control unit further
6	comprising:
7	means for allocating a first unit of real-time data for
8	transmission during a first interval with a predetermined
9	transmission rate;
10	means for allocating a second unit of real-time data for
11	transmission during said first interval;
12	means for allocating non-real-time data for transmission
13	during a second interval;
14	means for determining if said second interval is not
15	contiguous with said first interval, and if said second interval
16	is not contiguous with said first interval, allocating a third
17	unit of real-time data and a fourth unit of real-time data for

transmission during a third interval with said predetermined

2

3

4

5

transmission rate, and allocating a fifth unit of real-time data
and a sixth unit of real-time data for transmission during a
fourth interval with said predetermined transmission rate, said
third interval contiguous with said second interval, and said
fourth interval contiguous with said third interval.