IIT Jodhpur

Biological Vision and Applications Module 03-06: Occam's razor

Hiranmay Ghosh

Occam's Razor

Human mind tends to choose the simplest explanation

• Intuitively, which of the possibilities will you choose ?

Occam's razor

... the observations should be explained

- Which of the possibilities do you choose now ?
- Inference is a tradeoff between complexity of model and goodness of fit
 - Goodness of fit: How well does the model explain the data

EdPuzzle - Occam's razor

Complexity of hypothesis & Goodness of fit

Complexity of hypothesis: C(p) = No. of parameters required to define the curve

Complexity and belief

- Let c(M) denote the complexity for a proposition M
- Prior belief in model M monotonically decreases with complexity
 - We assume an exponential model: $P(M) = 2^{-c(M)}$, $c(M) = -log_2 P(M)$
 - $c(h_i) = -log_2P(h_i)$: complexity of the hypothesis (prior)
 - $c(d \mid h_i) = -log_2P(d \mid h_i)$: complexity of evidence given the hypothesis (inverse of goodness of fit)
 - $c(h_i \mid d) = -log_2 P(h_i \mid d)$: complexity of the inference

- Substituting in Baye's theorem $P(h_i \mid d) = \kappa . P(h_i) . P(d \mid h_i)$
 - $c(h_i \mid d) = k + c(h_i) + c(d \mid h_i)$

Belief maximization \equiv complexity minimization

- Bayesian inference: $h^* = \operatorname{argmax}_i P(h_i \mid d) = \operatorname{argmax}_i P(h_i) . P(d \mid h_i)$
- Equivalently: $h^* = \operatorname{argmin}_i c(h_i \mid d) = \operatorname{argmin}_i [c(h_i) + c(d \mid h_i)]$
 - Human mind chooses the inference with least complexity
 - Inference is a tradeoff between simplicity of the prior and goodness of fit

Taxonomy

Organizing concepts in a hierarchy

• Learned top-down, or bottom-up?

Taxonomy Learning

 Taxonomy is a tradeoff between complexity of hypothesis (number of classes) and goodness of fit

Example

Sparse data

Feature space

• Intuitively, which one is more acceptable ?

Hypothesis 1: One class Simple hypothesis

Poor goodness of fit

Hypothesis 2: Three classes

Complex hypothesis Better goodness of fit

Example

Dense data

Feature space

Footune anges

Hypothesis 1: One class Simple hypothesis Poor goodness of fit

Hypothesis 2: Three classes Complex hypothesis Better goodness of fit

• Intuitively, which one is more acceptable?

Bayesian approach to taxonomy learning

- To minimize: $c(h_i \mid d) = c(h_i) + c(d \mid h_i)$
- A hypothesis h_i is characterized by
 - \triangleright N_i : Number of classes proposed in the hypothesis
 - where each class is characterized by (n_i, A_i)
 - \triangleright n_i : number of data points
 - ► A_i: area (tightest fit to all data points)
- Complexity of hypothesis (prior): $c(h_i) = k_1.N_i$

Bayesian approach to taxonomy learning

... cont'd.

- There are N_i classes in hypothesis h_i , each characterized by (n_i, A_i)
 - ► Complexity of evidence: $c(d \mid h_i) = k_2 + \sum_{i=1}^{N_i} n_i . log A_i$

Bayesian approach to taxonomy learning

... cont'd.

- Complexity of the posterior belief for hypothesis h_i :

 - Complexity of prior + Complexity of evidence $c(h_i \mid d) = k_1.N + k_2 + \sum_{i=1}^{N} n_i.logA_i$
 - Inference: $h^* = \operatorname{argmin}_i c(h_i \mid d) = \operatorname{argmin}_i (k_1.N + k_2 + \sum_{i=1}^{N} n_i.logA_i)$

Let us work out one numerical example for better understanding (quiz)

You can refer to this slide while attending the quiz

Quiz 03-06

End of Module 03-06