Аналитическая геометрия. Модуль 2. Лекции

1 Кривые второго порядка

Общее уравнение кривой второго порядка:

$$x^{2} + 2Bxy + Cy^{2} + Dx + Ey + F = 0$$

где:

$$A, B, C, D, E, F = const$$
$$A^2 + B^2 + C^2 > 0$$

1.1 Эллипс

Определение 1. Эллипсом называется геометрическое место точек, сумма расстояний от каждой из которых до двух фиксированных точек, называемых ϕ окусами, постоянна и равна 2a.

 F_1, F_2 - фокусы эллипса

Расстояние между фокусами называется фокальным расстоянием.

Расстояние от каждой точки эллипса до фокуса называется ϕ окальным радиусом

Прямая, которая проходит через фокусы, и прямая, которая проходит через середину этой прямой и перпендикулярной ей, являются *осями симметрии данного эллипса*. Первая прямая называется *большой осью*, а вторая – *малой осью*.

Точка пересечения осей эллипса называется *центром эллипса*, а точки пересечения эллипса с осями называются *вершинами эллипса*.

Уравнение эллипса

Расположим прямоугольную систему координат так, чтобы её начало совпадало с центром эллипса, а фокусы лежали на оси абцисс.

О – центр эллипса

 F_1, F_2 – фокусы эллипса

 A_1, A_2, A_3, A_4 – вершины эллипса

 $F_1F_2 = 2c$ – фокусное (фокальное) расстояние

Возьмём точку M(x,y), принадлежащей эллипсу, и составим векторы:

$$\overrightarrow{F_1M} = \{x + c, y\}$$

$$\overrightarrow{F_2M} = \{x - c, y\}$$

Тогда:

$$|\overrightarrow{F_1M}| + |\overrightarrow{F_2M}| = 2a$$

$$\sqrt{(x+c)^2 + y^2} + \sqrt{(x-c)^2 + y^2} = 2a$$

$$\sqrt{(x+c)^2 + y^2} = 2a - \sqrt{(x-c)^2 + y^2}$$

$$(x+c)^2 + y^2 = 4a^2 - 4a\sqrt{(x-c)^2 + y^2} + x^2 - 2xc + c^2 + y^2$$

$$4a\sqrt{(x-c)^2 + y^2} = 4a^2 - 4xc$$

$$a\sqrt{(x-c)^2 + y^2} = a^2 - xc$$

$$x^2a^2 - 2a^2xc + a^2y^2 = a^4 - 2a^2xc + x^2c^2$$

$$x^2a^2 + x^2c^2 + a^2y^2 = a^4 - a^2c^2$$

$$x^2(a^2 - c^2) + a^2y^2 = a^2(a^2 - c^2)$$

$$\frac{x^2}{a^2} + \frac{y^2}{a^2 - c^2} = 1$$

Обозначим $b^2 = a^2 - c^2$. Получаем каноническое уравнение эллипса:

$$\boxed{\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1}$$

где a — большая полуось эллипса, а b — большая полуось эллипса.

Отношение фокусного расстояния эллипса к большой оси называется центриситетом эллипса.

$$\frac{F_1 F_2}{A_3 A_1} = \frac{2c}{2a} = \varepsilon$$

$$\varepsilon = \frac{c}{a}$$

Замечание. Т.к. a < c, то $0 < \varepsilon < 1$

Центриситет показывает степень "сжатия"эллипса.

Отношение фокального радиуса точки эллипса к расстоянию до некоторой прямой, называемой директрисой, постоянно и равно $\mathit{эксцентрисите-ту}$.

Уравнение директрис:

$$d_1: x = -\frac{a}{\varepsilon}$$
$$d_2: x = \frac{a}{\varepsilon}$$

Замечание. 1. Уравнение эллипса с центром в точке $O(x_0, y_0)$:

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$$

2. Уравнение мнимого эллипса с центром в точке O(0,0)

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$$

3. Если a = b = R, то это уравнение окружности:

$$\frac{x^2}{R^2} + \frac{y^2}{R^2} = 1$$
$$x^2 + y^2 = R^2$$

Для окружности в точке $O(x_0, y_0)$:

$$(x - x_0)^2 + (y - y_0)^2 = R^2$$

4. Если a < b, то изображение эллипса "переворачивается"на 90:

1.2 Гипербола

Определение 2. Гиперболой называется геометрическое место точек, разность расстояний от каждой их которых до двух фиксированных точек, называемых ϕ окусами, постоянно и равно 2a.

Прямая, на которой лежат фокусы, и прямая, которая проходит через середину отрезка, соединяющего фокусы и перпендикулярная ей, называеются осями симметрии гиперболы. Первая прямая называется действительной осью, а вторая — мнимой осью.

$$F_1, F_2$$
 — фокусы $F_1F_2 = 2c$ — фокусное (фокальное) расстояние

Точки пересечения действительной и мнимой оси гиперболы называется *центром гиперболы*, а точка пересечения с <u>действительной осью</u> называются *вершинами гиперболы*.

Уравнение гиперболы

Расположим декартову систему координат так, чтобы её начало совпадало с центром гипероболы, а фокусы лежали на оси абцисс.

$$F_1(-c,0), F_2(c,0).$$

Возьмём произвольную точку M(x,y), принадлежащей гиперболе.

$$\overrightarrow{F_1M} = \{x+c,y\}$$

$$\overrightarrow{F_2M} = \{x-c,y\}$$

$$|\overrightarrow{F_1M}| - |\overrightarrow{F_2M}| = 2a$$

$$\sqrt{(x+c)^2 + y^2} - \sqrt{(x-c)^2 + y^2} = 2a$$

$$\sqrt{(x+c)^2 + y^2} = 2a + \sqrt{(x-c)^2 + y^2}$$

$$(x+c)^2 + y^2 = 4a^2 + 4a\sqrt{(x-c)^2 + y^2} + (x-c)^2 + y^2$$

$$4a\sqrt{(x-c)^2 + y^2} = 4xc - 4a^2$$

$$a\sqrt{(x-c)^2 + y^2} = xc - a^2$$

$$x^2a^2 - 2a^2xc + a^2y^2 = x^2c^2 - 2a^2xc + a^4$$

$$x^2a^2 + x^2c^2 + a^2y^2 = a^4 - a^2c^2$$

$$x^2(a^2 + c^2) + a^2y^2 = a^2(a^2 - c^2)$$

$$\frac{x^2}{a^2} + \frac{y^2}{a^2 - c^2} = 1$$

Обозначим $b^2 = a^2 - c^2$. Получаем каноническое уравнение эллипса:

$$x^{2} - \frac{y^{2}}{a^{2}} - 1$$

Центриситетом эллипса называется:

$$\varepsilon = \frac{2c}{2a} = \frac{c}{a}$$

Замечание. Т.к. c>a, то $\varepsilon>1$

Замечание. Уравнение сопряжённой гиперболы:

$$\left[-rac{x}{a^2} + rac{y^2}{b^2} = 1
ight]$$
 или $\left[rac{x^2}{b^2} = -1
ight]$

Уравнение гиперболы с центром в точке $M(x_0, y_0)$:

$$\frac{(x-x_0)}{a^2} - \frac{(y-y_0)}{b^2} = 1$$

Если a=b, то гипербола становится равносторонней. Если:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$$

то получается вырожденной уравнение – две пересекающиеся прямые:

$$b^{2}x^{2} - a^{2}y^{2} = 0(bx - ay)(bx + ay) = 0$$

$$\begin{cases}
bx - ay = 0 \\
bx + ay = 0
\end{cases} \Rightarrow \begin{cases}
y = \frac{b}{a}x \\
y = -\frac{b}{a}x
\end{cases}$$

Эти же уравненения и являются уравнениями ассимптот.

Если центр гиперболы $O(x_0, y_0)$, то:

$$y - y_0 = \frac{b}{a}(x - x_0) \Rightarrow y = \frac{b}{a}x + (y_0 - \frac{b}{a}x_0)$$
$$y - y_0 = -\frac{b}{a}(x - x_0) \Rightarrow y = -\frac{b}{a}x + (y_0 + \frac{b}{a}x_0)$$

1.3 Парабола

Определение 3. *Параболой* называется геометрическое место точек, расстояние от каждой из которых до некоторой точки, называмой ϕ о-кусом, и фиксированной прямой, называемой θ иректрисой, равно.

Уравнение параболы

Расположим декартову систему координат так, чтобы начало координат совпадало с вершиной параболы.

$$A(-\frac{p}{2}), \quad F(\frac{p}{2}, 0)$$

$$\overrightarrow{AM} = \{x + \frac{p}{2}, a\}, \quad \overrightarrow{FM} = \{x - \frac{p}{2}, y\}$$

$$|\overrightarrow{AM}| = |\overrightarrow{FM}|$$

$$\sqrt{\left(x + \frac{p}{2}\right)^2} = \sqrt{\left((x - \frac{p}{2}) + y^2\right)}$$

$$x^2 + xp + \frac{p^2}{4} = x^2 - xp + \frac{p^2}{4} + y^2$$

Тогда получаем каноническое уравнение параболы с вершиной в O(0,0):

$$y^2 = 2px$$

Если p>0, то ветви параболы направлены *вправо*, если p<0, то ветви направлены *влево*.

Если вершина в точке Mx_0, y_0), тогда:

$$(y - y_0)^2 = 2p(x - x_0)^2$$

Уравнение директрисы:

$$d: x = -\frac{p}{2}$$

1.4 Примеры

Пример.

$$2x^{2} - 4y^{2} - 6x + 8y - 10 = 0$$

$$2(x^{2} - 3x) - 4(y^{2} - 2y) - 10 = 0$$

$$2(x^{2} - 3x + \frac{9}{4} - \frac{9}{4}) - -4(y^{2} - 2y + 1 - 1) - 10 = 0$$

$$2(x - \frac{3}{2})^{2} - \frac{9}{2} - 4(y - 1)^{2} + 4 - 10$$

$$2\left(x - \frac{3}{2}\right)^{2} - 4(y - 1)^{2} = \frac{21}{2}$$

$$\frac{\left(x - \frac{3}{2}\right)^{2}}{\frac{21}{4}} - \frac{\left(y - 1\right)^{2}}{\frac{21}{8}} = 1$$

Получили yравнение zunepболы с центром в $O\left(\frac{3}{2},1\right)$, действительная полуось $a=\frac{\sqrt{21}}{2}$ и мнимая полуось $b=\sqrt{\frac{21}{8}}.$

2 Матрицы

Определение 4. *Матрицей* называется таблица чисел, в которой элементы расположены по строкам и столбцам.

Обозначаются заглавными латинскими буквами: $A,B,C\dots$ Размерность матрицы определятся кол-вом строк m и кол-вом столбцов n, и обозначается $m\times n$. Элемент матрицы a_{ij} – элемент, который расположен в i-ой строку и j-ом столбце.

Матрицу можно записать таким образом:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_1 m \\ a_{21} & a_{22} & \dots & a_2 m \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_n m \end{pmatrix}$$

Определение 5. Матрица называется $\kappa вадратной$ если кол-во строк равно кол-ву столбцов (m=n).

Определение 6. Квадратная матрица называется *диагональной* если все элементы матрицы, кроме элементов на главной диагонали, равны нулю.

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

Определение 7. *Главной диагональю* называется диагональ матрицы, идущая из левого верхнего в правым нижний.

Определение 8. *Побочной диагональю* называется диагональ матрицы, идущая из левого верхнего в правым нижний.

Определение 9. Квадратная матрица, у которой на главной диагонали все элементы равны единице, а остальные равны нулю, называют *единичной*.

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Определение 10. *Нулевой матрицей* называется матрица, все элементы которой равные нулю.

$$\Theta = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Определение 11. *Верхне-треугольной матрицей* называется квадратная матрица, у которой под главной диагональю равны нулю.

$$C = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix}$$

Определение 12. *Нижене-треугольной матрицей* называется квадратная матрица, у которой под главной диагональю равны нулю.

$$D = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 0 \\ 6 & 0 & 0 \end{pmatrix}$$

Две матрицы *равны*, если они имеют одинаковую размерность, и их соответствующие элементы равны.

2.1 Действия с матрицами

Определение 13. *Суммой матриц* $A_{m \times n}$ и $B_{m \times n}$ называется матрица $C_{m \times n}$, элементы которой являются суммой соответствующих элементов матриц A и B.

$$C = A + B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} -1 & -1 \\ -2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 4 \end{pmatrix}$$

Определение 14. Произведением матрицы $A_{m \times n}$ на число k = const называется матрица $C_{m \times n}$, элементы которой равны произведению соответствующего элемента матрицы на данное число $c_{ij} = ka_{ij}$.

2.1.1 Свойства сложения и произведения матриц на число

1.

$$A + B = B + A$$

2.

$$(A+B) + C = A + (B+C)$$

3. Если Θ – нулевая матрица, то:

$$A + \Theta = A$$

4. Найдётся такая матрица B, что:

$$A + B = 0$$

5.

$$\lambda(A+B) = \lambda A + \lambda B$$

6.

$$(\lambda + \rho)A = \lambda A + \rho A$$

7.

$$(\lambda \rho)A =$$

2.2 Транспонирование матрицы

Определение 15. Транспонированной матрицей A_{mn} называется матрица размерностью $n \times m$, элементы которой:

$$a_{ij}^{\tau} = a_{ji}$$

 $A_{n\times m}^{ au}$ – транспонированная матрица $A_{m\times n}$

$$A_{2\times3} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

$$A_{3\times2}^{\tau} = \begin{pmatrix} 1 & 4\\ 2 & 5\\ 3 & 6 \end{pmatrix}$$

2.2.1 Свойства транспонированния

1.

$$(A+B)^{\tau} = A^{\tau} + B^{\tau}$$

2.

$$(\lambda A)^{\tau} = \lambda A^{\tau}$$

8

2 МАТРИЦЫ

2.3 Произведение матриц

Определение 16. *Произведением матриц* A и B назвается матрица C, элементы которой определяются как:

$$c_{ij} = \sum_{l=1}^{k} a_{il} \cdot b_{lj}$$

Замечание. Две матрицы можно перемножить, если количество столбцов одной матрицы равно количеству строк другой матрицы. Тогда результирующая матрица будет иметь количество строк одной матрицы и количеству столбцов другой матрицы.

$$C_{a \times b} = A_{a \times c} \cdot B_{c \times b}$$

Свойство антикомунитативности произведения матриц.

$$A \cdot B \neq B \cdot A$$

Замечание. *Исключения:* Когда A = B:

 $\mathbf{A} \cdot B = A \cdot A = A^2$ Когда матрица B – нулевая матрица:

$$A\cdot\Theta=\Theta$$

Когда матрица B — единичная матрица:

$$A \cdot E = A$$

Когда матрица B – обратная матрица:

$$A \cdot A^{-1} = E$$

2.3.1 Свойства произведения матриц

1. Произведение матриц антикомунитативно.

$$A \cdot B \neq B \cdot A$$

2.

$$1 \cdot A = A$$

3. Ассоциативность

$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

Доказательство:

$$(A \cdot B) C =$$

$$= \sum_{r=1}^{k} [(A \cdot B)]_{ir} \cdot [C]_{rj} =$$

$$= \sum_{r=1}^{n} \left(\sum_{s=1}^{k} [A]_{is} \cdot [B]_{sn} \right) \cdot [C]_{rj} =$$

$$= \sum_{n=1}^{n} \sum_{k=1}^{k} [A]_{is} \cdot [B]_{sn} \cdot [C]_{rj} =$$

$$= \sum_{s=1}^{k} [A]_{is} \cdot [(B \cdot C)] =$$

$$= A \cdot (B \cdot C)$$

4. Дистрибутивность произведения матриц относительно сложения:

$$(A+B) \cdot C = A \cdot C + B \cdot C$$

Доказательство:

$$(A_{m \times k} + B_{m \times k}) \cdot C_{k \times n} =$$

$$= \sum_{r=1}^{k} [(A+B)]_{ir} \cdot [C]_{ir}$$

$$= \sum_{r=1}^{k} ([A]_{ir} + [B]_{ir}) \cdot [C]_{rj}$$

$$= \sum_{r=1}^{k} ([A]_{ir}[C]_{rj} + [B]_{ir} \cdot [C]_{rj})$$

$$= \sum_{r=1}^{k} [A]_{ir}[C]_{ir} + \sum_{r=1}^{k} [B]_{ir}[C]_{ir}$$

$$= A \cdot C + B \cdot C$$

5. Применение транспорирования к произведению матриц

$$(A \cdot B)^{\tau} = B^{\tau} \cdot A^{\tau}$$

Доказательство:

$$(A \cdot B)^{\tau} =$$

$$= [(A \cdot B)^{\tau}]_{ij}$$

$$= [AB]_{ji} = \sum_{r=1}^{k} [A]_{jr} \cdot [B]_{ri}$$

$$= \sum_{r=1}^{k} [A^{\tau}] \cdot [B^{\tau}]_{ir}$$

$$= \sum_{r=1}^{k} [B^{\tau}]_{ir} [A^{\tau}]_{rj}$$

$$= [B^{\tau} \cdot A^{\tau}]$$

$$= B^{\tau} \cdot A^{\tau}$$

2.4 Элементарные преобразования матриц

- 1. Перестановка строк и столбцов.
- 2. Умножение элементов строк (столбцов) на число.
- 3. Прибавление к элементам одной строки соответствующий элементов другой строки (столбца), умноженного на число.

Используя элементарные преобразования, можно привести любую матрицу к ступенчатому виду.

Пример. Пример ступенчатой матрицы для 3×4 :

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
0 & 3 & 4 & 5 \\
0 & 0 & 6 & 7
\end{pmatrix}$$