Evolution of Hybrid Vehicle Electric System and its Support Technologies

Kimimori Hamada
TOYOTA MOTOR
CORPORATION

Contents

- 1. Toyota Hybrid System-II (THS-II)
- 2. Electric Components in Hybrid system
- 3. HV Inverter Simulation
- 4. IGBT development
- 5. Conclusion

1. Toyota Hybrid System-II (THS-II)

Toyota Hybrid System II

Toyota Hybrid System II

With two-stage motor speed reduction device

Motor Efficiency

reduction device

Two-stage motor speed reduction device

2. Electric Components in Hybrid System

Electric Circuits and Energy Flow in THS-II

Progress of Power Density of PCU

by H. Ohashi in the Journal of the Institute of Electrical Engineers of Japan No.122 (3).

Internal Structure of PCU for GS450h

Smoothing capacitor

- Cooling units
- Electric/electronic circuits
- Power semiconductors
- Simulation

3. HV Inverter Simulation

Aims of Simulation Technology

Overall Structure of HV Inverter Simulation

Diagram of electro-thermal-mechanical simulation for HV inverter system

Major Parts of Inverter Simulation

(1) Electrical model

Compact thermal model (CTM) for IGBT module including water-cooling system

Verification of HV Inverter Simulation

Prediction of IGBT temperature at full-throttle acceleration

4. IGBT Development

High-Voltage Electrical System

Improvement of IGBT Breakdown Voltage

General ways to improve breakdown voltage of IGBT

Increase of on-state losses accompanied with improvement in breakdown voltage

Electric

Introduction of Electric Field Dispersion (EFD) Layer

Conventional structure (trench IGBT) Conventional structure (trench IGBT) Novel structure (EFD IGBT)

N⁻ drift layer

N⁺ buffer layer

P⁺ substrate

(Low BV)

N⁻ drift layer

N⁺ buffer layer

P⁺ substrate

(High BV)

P⁺ substrate

(High BV)

Design and Effect of EFD Layer

Breakdown voltage dependence on EFD layer conditions

Effect of EFD layer

Benchmark of Toyota In-House IGBTs

Evolution of In-House IGBTs

Item	'03 Prius	'05 RX	'06 GS
Chip appearance			
Device structure	Planar IGBT	EFD IGBT	EFD IGBT
Chip size (mm²)	13.7×9.7	12.75×9.39	12.75×9.39
Chip thickness (um)	380	375	300
Breakdown voltage (V)	970	1200	1200
On-state losses (W/cm ²)	265	242	232

5. Conclusion

- THS-II realizes dual requirements of fuel efficiency and acceleration performance by employing boost converter and two-stage motor speed reduction device.
- The electrical components of the THS-II are contributing to making the system more compact, and lightweight, and to increasing its power density.
- An HV inverter simulation has been developed as a powerful tool for HV system development.
- Low loss high-breakdown voltage novel IGBTs, named EFD IGBTs, have been successfully developed for the THS-II.

Thank you!