

Fonction logarithme népérien (In)

Le logarithme népérien

- Pour tout réel a>0, l'équation $\mathrm{e}^x=a$ admet une unique solution dans \mathbb{R} , appelée logarithme népérien de a et notée $\ln{(a)}$ ou \ln{a} .
- ightharpoonup On définit ainsi sur $]0\ ; \ +\infty[$ la fonction logarithme népérien, notée \ln , qui, à tout x>0, associe le réel $\ln(x)$:

$$egin{aligned} \ln: \left]0
ight. ; \left. + \infty
ight[
ightarrow \mathbb{R} \ x \mapsto \ln\left(x
ight) \end{aligned}$$

• La fonction logarithme népérien et la fonction exponentielle sont des fonctions réciproques l'une de l'autre.

2 Propriétés

Propriétés	Conditions
$\mathrm{e}^{b}=a\Leftrightarrow b=\ln\left(a ight)$	a>0 et b réels
$\mathrm{e}^{\ln{(a)}}=a$	a>0 réel
$\ln\left(\mathrm{e}^{b} ight)=b$	b réel
$\ln{(1)}=0$ et $\ln{(\mathrm{e})}=1$	
$\ln \left(ab ight) =\ln \left(a ight) +\ln \left(b ight)$	a>0 et $b>0$ réels
$\ln\left(\frac{1}{a}\right) = -\ln\left(a\right)$	a>0 réel
	a>0 et $b>0$ réels

SchoolMouv.fr SchoolMouv : Cours en ligne pour le collège et le lycée

$\ln\left(rac{a}{b} ight) = \ln\left(a ight) - \ln\left(b ight)$	
$\ln{(\sqrt{a})} = rac{1}{2}\ln{(a)}$	a>0 réel
$\ln\left(a^{n} ight)=n\ \ln\left(a ight)$	a>0 réel et n entier relatif
$a=b\Leftrightarrow \ln{(a)}=\ln{(b)}$	a>0 et $b>0$ réels
$a < b \Leftrightarrow \ln{(a)} < \ln{(b)}$	a>0 et $b>0$ réels
$a>b\Leftrightarrow \ln{(a)}>\ln{(b)}$	a>0 et $b>0$ réels
$\ln{(x)} < 0 \Leftrightarrow 0 < x < 1$	
$\ln{(x)} > 0 \Leftrightarrow x > 1$	

Résolution d'équations et d'inéquations

- ightharpoonup Pour résoudre une équation du type $\ln \big(u(x)\big) = \ln \big(v(x)\big)$, il faut respecter les étapes suivantes :
- 1 rechercher l'ensemble E des réels tels que u(x)>0 et v(x)>0 ;
- $oxed{2}$ résoudre l'équation u(x)=v(x) ;
- ${\color{red} {f 3}}$ prendre les solutions qui sont dans E et rejeter les autres.
 - ightharpoonup Pour résoudre une inéquation du type $\ln \big(u(x)\big) \geq \ln \big(v(x)\big)$, il faut respecter les étapes suivantes :
- lacksquare rechercher l'ensemble E des réels tels que u(x)>0 et v(x)>0 ;
- $oxed{2}$ résoudre l'équation $u(x) \geq v(x)$;
- ${ exttt{ iny 0}}$ ne garder que les solutions qui sont dans E.
 - 4 Le logarithme décimal

- On appelle fonction logarithme décimal la fonction notée \log définie sur $]0\;;\;+\infty[$ par :

$$\log\left(x\right) = \frac{\ln\left(x\right)}{\ln\left(10\right)}$$

- Pour tous réels a>0 et b>0, et tout nombre entier relatif n :
- $\rightarrow \log(ab) = \log(a) + \log(b)$;
- $\rightarrow \log\left(\frac{a}{b}\right) = \log\left(a\right) \log\left(b\right);$
- \rightarrow $\log(a^n) = n \log(a)$.
- ullet Si a est un réel strictement positif et b un réel, :
- $\rightarrow b = \log a \Leftrightarrow 10^b = a.$