22.09.2004

日本国特許庁 JAPAN PATENT OFFICE

REC'D 1 1 NOV 2004

WIPO

PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 9月25日

出 願 番 号 Application Number: 特願2003-332884

[ST. 10/C]:

[JP2003-332884]

出 願 人 Applicant(s):

カネボウ株式会社 カネボウ合繊株式会社

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年10月28日

【書類名】 特許願
【整理番号】 P2003-0168
【提出日】 平成15年 9月25日
【あて先】 特許庁長官殿
【国際特許分類】 C08J 11/10
【発明者】 山口県防府市鐘紡町 4番 1 号 カネボウ合繊株式会社内 藤 通昭

【特許出願人】

【代表出願人】

【識別番号】 000000952

【氏名又は名称】 カネボウ株式会社

【特許出願人】

【識別番号】 596154239

【氏名又は名称】 カネボウ合繊株式会社

【代表者】 今吉 淳一

【手数料の表示】

【予納台帳番号】 010205 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

【書類名】特許請求の範囲

【請求項1】

ジカルボン酸化合物とジヒドロキシ化合物からなるポリエステル重合体であって、ジカルボン酸化合物が脂環族ジカルボン酸および/またはそのエステル形成性誘導体を含み、ジヒドロキシ化合物が一般式(1)で示される化合物を含むポリエステル重合体とポリカーボネートとをプレンドしてなる樹脂組成物。

【化1】

HOR₁O
$$R_2$$
 R_4 OR₁OH R_5 —(1)

(R1は炭素数2から4のアルキレン基、R2、R3、R4、及びR5は水素または炭素数1から4のアルキル基、アリール基、アラルキル基であり同じであっても異なっていてもよい)

【請求項2】

ジカルボン酸化合物とジヒドロキシ化合物からなるポリエステル重合体であって、ジカルボン酸化合物が脂環族ジカルボン酸および/またはそのエステル形成性誘導体を含み、ジヒドロキシ化合物が一般式(1)で示される化合物を含むポリエステル重合体とポリカーボネートとを重量比5:95から95:5の範囲でブレンドしてなる請求項1記載の樹脂組成物。

【請求項3】

脂環族ジカルボン酸が、シクロヘキサンジカルボン酸、デカリンジカルボン酸、ノルボルナンジカルボン酸、アダマンタンジカルボン酸、またはトリシクロデセンジカルボン酸から選ばれる少なくとも1種の化合物であることを特徴とする請求項1乃至2いずれかに記載の樹脂組成物。

【請求項4】

一般式 (1) で示されるジヒドロキシ化合物が、9,9-ビス [4-(2-ヒドロキシェトキシ) フェニル] フルオレンおよび/または9,9-ビス [4-(2-ヒドロキシェトキシ)-3-メチルフェニル] フルオレンであることを特徴とする請求項1乃至3のいずれかに記載の樹脂組成物。

【請求項5】

ポリカーボネートが芳香族ポリカーボネートであること特徴とする請求項1乃至3のいずれかに記載の樹脂組成物。

【請求項6】

請求項1乃至5いずれかに記載の樹脂組成物を成形してなる光学材料。

【書類名】明細書

【発明の名称】ポリエステル樹脂組成物ならびに光学材料

【技術分野】

[0001]

本発明は、光学材料に好適に用いることのできるポリエステル、ポリカーボネート樹脂 組成物に関する。さらに詳しくは、複屈折が小さく、透明性、機械的強度、寸法安定性に 優れ、屈折率とアッベ数のバランスを良好に有し耐熱性が高く、流動性が良好で、カメラ レンズ、眼鏡レンズ、光ディスク、光ファイバー、光学シートなどの光学材料に好適に用 いるこのとがでる樹脂組成物に関する。

【背景技術】

[0002]

従来、透明で機械特性に優れている樹脂は光学材料として多く用いられている。例えばポリメチルメタクリレート(以下PMMAと略する)やポリカーボネート(以下PCと略する)、アモルファスポリオレフィン(以下APO)などが、コンパクトディスク、レーザーディスク、プロジェクションレンズ、 $f-\theta$ レンズ、撮影系レンズ、ファインダー系レンズ、ピックアップレンズ、デジタルカメラレンズなどの光学材料として、また、自動車の透明部品、反射材料等に使用されている。PMMAは透明性に優れ、光学的異方性も小さいのでよく使われるが、吸湿性が高く、成形後、反り等の変形が起り易く形態安定性が悪い。

[0003]

一方PCは耐熱性が高く、透明性にすぐれているが、流動性が悪く成形品の複屈折が大きくなる等の問題があり、光学材料として十分に満足されたものとはいえない。また、APOは耐熱性が高く、透明性にすぐれているが、流動性が悪く、成形時に着色しやすい。また、蒸着膜やハードコート膜などを接着するには、プラズマ処理などの前工程を経ないと、十分な接着性が得られないず、光学材料として十分に満足されたものとはいえない。

[0004]

さらに近年レーザー光を用いて音声、画像、文字等の情報を記録、再生する光ディスク、デジタルビデオディスクが急速に開発され、より高性能な光学特性を有する基板材料が要望されている。デジタルカメラ、携帯電話に使用される小型カメラの撮影系のレンズは、小型化が進み、さらには、CCDやCMOSなどの画像認識装置小型化、高精細化の方向から、より光学的異方性の少ない樹脂材料が要望されている。

[0005]

ポリエステル重合体やポリエステル共重合体としては、芳香族ジカルボン酸と9,9-ビス [4-(2-ヒドロキシエトキシ)フェニル]フルオレン類を用いた重合体が光学材料として提案されている(たとえば、特許文献1、特許文献2参照。)。脂環族ジカルボン酸と9,9-ビス [4-(2-ヒドロキシエトキシ)フェニル]フルオレン類を用いた重合体が提案されている(たとえば、特許文献3、特許文献4、特許文献5参照。)。これらのポリエステル共重合体は屈折率が高く、複屈折率が小さく、耐熱性に優れ、透明であることから、光学材料として有用であるが、高価な原料を使用したり、耐熱性が不足したりして、必ずしも満足できるものではない。

[0006]

ポリエステル重合体とPCとをプレンドした樹脂組成物としては、例えば、芳香族ジカルボン酸からなるポリエステルと芳香族ジヒドロキシ化合物からなるポリカーボネートのプレンドした樹脂組成物が提案されている(特許文献 6)が、カメラレンズや眼鏡レンズといった光学レンズや、光学フィルムといった光学用途への適用に関する記載はない。

[0007]

芳香族ジカルボン酸と9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン類を用いた重合体とPCとのプレンドした樹脂組成物が光学材料として提案されている。(特許文献7参照。)耐熱性が高く、屈折率が高く、複屈折率が小さく光学材料として有用であるが、耐熱性を維持しつつ、成形時の着色が小さく、屈折率とアッベ数のバ

ランスがよく、複屈折率の小さい材料が望まれている。

[0008]

【特許文献1】特許第2843215号明細書

【特許文献2】特許第2843214号明細書

【特許文献3】特許第3331121号明細書

【特許文献4】特開平11-60706号公報

【特許文献 5】 特開 2 0 0 0 - 3 1 9 3 6 6 号公報

【特許文献6】特開2002-265771号公報

【特許文献7】特許第3023279号明細書

【発明の開示】

【発明が解決しようとする課題】

[0009]

本発明の目的は、上記問題点を解消し、複屈折が小さく、透明性、機械的強度、寸法安定性に優れ、屈折率とアッベ数のバランスを良好に有し、耐熱性が高く、流動性が良好で、カメラレンズ、眼鏡レンズ、光ディスク、光ファイバー、光学シートなどの光学材料に好適に用いるこのとができる樹脂を提供することにある。

【課題を解決するための手段】

[0010]

本発明者は、上記課題を解決するため、種々研究を重ねた結果、ジカルボン酸化合物と ジヒドロキシ化合物からなるポリエステル重合体であって、ジカルボン酸化合物が脂環族 ジカルボン酸および/またはそのエステル形成性誘導体を含み、特定のジヒドロキシ化合 物を含むポリエステル重合体とポリカーボネートとをプレンドしてなる樹脂組成物を用い ることで課題を解決できることを見いだし、本発明に到達した。

即ち本発明は、ジカルボン酸化合物とジヒドロキシ化合物からなるポリエステル重合体であって、ジカルボン酸化合物が脂環族ジカルボン酸および/またはそのエステル形成性誘導体を含み、ジヒドロキシ化合物が一般式(1)で示される化合物を含むポリエステル重合体とポリカーボネートとをブレンドしてなる樹脂組成物であることを特徴とする。

【0011】 【化1】

HOR₁O
$$R_2$$
 R_4 OR₁OH R_5 —(1)

(R1 は炭素数2から4のアルキレン基、R2、R3、R4、及びR5 は水素または炭素数1から4のアルキル基、アリール基、アラルキル基であり同じであっても異なっていてもよい)

[0012]

さらに、ジカルボン酸化合物とジヒドロキシ化合物からなるポリエステル重合体であって、ジカルボン酸化合物が脂環族ジカルボン酸および/またはそのエステル形成性誘導体を含み、ジヒドロキシ化合物が一般式(1)で示される化合物を含むポリエステル重合体とポリカーボネートとを重量比5:95から95:5の範囲でプレンドしてなることを特徴とする。

[0013]

また、脂環族ジカルボン酸が、シクロヘキサンジカルボン酸、デカリンジカルボン酸、 ノルボルナンジカルボン酸、アダマンタンジカルボン酸、またはトリシクロデセンジカル ボン酸から選ばれる少なくとも1種の化合物であることが好ましい。

【発明の効果】

[0014]

本発明により、複屈折が小さく、透明性、機械的強度、寸法安定性に優れ、耐熱性が高く、流動性が良好で、、屈折率とアッベ数のバランスを良好に有し、成形性と光学特性のバランスのとれた材料が提供可能となり、カメラレンズ、眼鏡レンズ、光ディスク、光ファイバー、光学シートなどの光学材料に好適に用いるこのとが出来る樹脂を提供可能となる。

【発明を実施するための最良の形態】

[0015]

本発明を実施するための形態を説明する。

[0016]

本発明のポリエステル樹脂組成物は、ジカルボン酸化合物とジヒドロキシ化合物からなるポリエステル重合体であって、ジカルボン酸化合物が脂環族ジカルボン酸および/またはそのエステル形成性誘導体を含み、ジヒドロキシ化合物が一般式(1)で示される化合物を含むポリエステル重合体とポリカーボネートとをプレンドしてなる樹脂組成物である

【化2】

HOR₁O
$$R_2$$
 R_4 OR₁OH R_5 ---(1)

(R1 は炭素数2から4のアルキレン基、R2、R3、R4、及びR5 は水素または炭素数1から4のアルキル基、アリール基、アラルキル基であり同じであっても異なっていてもよい)

[0017]

本発明のポリエステル重合体に供する脂環族ジカルボン酸としては、下記一般式(2)で表されるシクロヘキサンジカルボン酸等の単環式脂環族ジカルボン酸、または下記一般式(3)、(4)で表されるデカリンジカルボン酸、下記一般式(5)、(6)で表されるノルボルナンジカルボン酸、下記一般式(7)、(8)で表されるアダマンタンジカルボン酸、下記一般式(9)、(10)、(11)で表されるトリシクロデセンジカルボン酸等の多環式脂環族ジカルボン酸等が挙げられる。

[0018]

【化3】

(R6 は水素又は炭素数1から7までのアルキル基、アリール基、アラルキル基であり同じであっても異なっていてもよい。aは1から3の自然数である。)

【0019】 【化4】

(R₇ 及び、R₈ は水素又は炭素数1から7までのアルキル基、アリール基、アラルキル基であり同じであっても異なっていてもよい。b、cは1から7の自然数である。)

【0020】

(R₉ 及び、R₁₀ は水素又は炭素数1から7までのアルキル基、アリール基、アラルキル基であり同じであっても異なっていてもよい。d、eは1から7の自然数である。) 【0021】

【化6】

(R₁1及び、R₁2は水素又は炭素数1から7までのアルキル基、アリール基、アラルキル基であり同じであっても異なっていてもよい。f、gは1から7の自然数である。)

【0022】 【化7】

(R₁ 3 及び、R₁ 4 は水素又は炭素数1から7までのアルキル基、アリール基、アラルキル基であり同じであっても異なっていてもよい。h、iは1から7の自然数である。)

【0023】 【化8】

HOOC
$$(R_{15})j$$
 $(R_{15})j$ $(R_{16})k$ $(R_{16})k$

 $(R_{15}, R_{16}$ 及び、 R_{17} は水素又は炭素数 1 から 7 までのアルキル基、アリール基、アラルキル基であり同じであっても異なっていてもよい。 j 、 k は 1 から 8 の自然数で、 1 は 1 から 9 の自然数である。)

[0024]

【化9】

$$(R_{18})$$
m COOH (R_{19}) n (R_{20}) 0 (R_{20}) 0

 $(R_{18}, R_{19}$ 及び、 R_{20} は水素又は炭素数1から7までのアルキル基、アリール基、アラルキル基であり同じであっても異なっていてもよい。m、nは1から8の自然数で、oは1から9の自然数である。)

【0025】 【化10】

HOOC COOH
$$(R_{22})q \qquad (R_{21})p \qquad --(9)$$

(R21及び、R22は水素又は炭素数1から7までのアルキル基、アリール基、アラルキル基であり同じであっても異なっていてもよい。p、qは1から7の自然数である。

【0026】 【化11】

$$(R_{24})s$$
 COOH ---(10)

(R23 及び、R24 は水素又は炭素数1から7までのアルキル基、アリール基、アラルキル基であり同じであっても異なっていてもよい。r、sは1から7の自然数である。)

[0027]

【化12】

(R25及び、R26は水素又は炭素数1から7までのアルキル基、アリール基、アラルキル基であり同じであっても異なっていてもよい。t、uは1から8の自然数である。)

[0028]

これらの脂環族ジカルボン酸のエステル形成性誘導体としては、通常ポリエステルに用いられるジカルボン酸エステル形成性誘導体が挙げられ、例えばジメチルエステル、ジエチルエステル等のアルキルエステル等が挙げられる。

[0029]

これらの脂環族ジカルボン酸またはそのエステル形成性誘導体は、それぞれ単独で用いても良いし、必要に応じて2種以上併用しても良い。

[0030]

これら脂環族ジカルボン酸の中でも1,4-シクロヘキサンジカルボン酸、2,6-デカリンジカルボン酸が、合成し易さ、成形性、光学特性等の点で好ましいが、これに限定されるものではない。

[0031]

1, 4-シクロジカルボン酸はトランス/シスの異性体があるが、その比率は特に限定されるものではない。トランス異性体の方が融点 3.1.2 ℃程度と高く、シス異性体の融点 1.5.0 ℃程度である。本発明のポリエステルを溶融重合法で重合する場合は、高温(2.3.0 ℃から 3.0.0 ℃)で行う。その間に、トランス/シスの異性体の転移が起こり、最終的に得られる樹脂のトランス/シスの比率は、1.1.0 H-NMRで測定したモノマーでのトランス/シス比が 1.0

[0032]

本発明において用いられる脂環族ジカルボン酸またはそのエステル形成性誘導体は、ジカルボン酸成分全体を100として1~100mol%の間で任意に含有させることができるが、他のジカルボン酸として脂肪族ジカルボン酸とともに用いる場合には、耐熱性をより高めるため、50mol%以下が好ましい。他のジカルボン酸として単環式芳香族ジカルボン酸を用いる場合には、複屈折率を低下させるため80mol%以下が好ましい。多環式芳香族ジカルボン酸、ビフェニルジカルボン酸とともに用いる場合には、複屈折率を低下させるため、各々50mol%以下が好ましい。

[0033]

本発明において用いられる他の成分として用いられるジカルボン酸としては、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スペリン酸、アゼライン酸、メチルマロン酸、エチルマロン酸等の脂肪族ジカルボン酸、テレフタル酸、イソフタル酸等の単環式芳香族ジカルボン酸、2,6-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸等のナフタレンジカルボン酸、アントラセンジカルボン酸、フェナントレンジカルボン酸等の多環式芳香族ジカルボン酸、2,2'ービフェニルジカルボン酸等のビフェニルジカルボン酸等が挙げられる。

本発明において、一般式(1)で表されるジヒドロキシ化合物としては、例えば、9, 9-ビス「4-(2-ヒドロキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ) - 3-メチルフェニル] フルオレン、<math>9,9-ビス[4-(2ーヒドロキシエトキシ)-3.5-ジメチルフェニル] フルオレン、9,9-ビス[4 -(2-ヒドロキシエトキシ) - 3-エチルフェニル] フルオレン、<math>9,9-ビス[4-(2-ヒドロキシエトキシ) -3, 5-ジエチルフェニル] フルオレン、9, 9-ビス[4-(2-ヒドロキシエトキシ)-3-プロピルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3,5-ジプロピルフェニル]フルオレン、9,9-ビス [4-(2-ヒドロキシエトキシ) -3-イソプロピルフェニル] フルオレン、9, 9-ビス[4-(2-ヒドロキシエトキシ)-3,5-ジイソプロピルフェニル]フルオ レン、9、9-ビス[4-(2-ヒドロキシエトキシ)-3-n-ブチルフェニル]フル オレン、9,9ービス[4-(2-ヒドロキシエトキシ)-3,5-ジーnープチルフェ ニル] フルオレン、9、9ービス[4-(2-ヒドロキシエトキシ)-3-イソプチルフ ェニル] フルオレン、9, 9-ビス [4-(2-ヒドロキシエトキシ) <math>-3, 5-ジイソプチルフェニル] フルオレン、9, 9ービス [4-(2-ヒドロキシエトキシ)-3-(1-メチルプロピル)フェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエト キシ) -3, 5-ビス(1-メチルプロピル)フェニル]フルオレン、9, 9-ビス[4] -(2-ヒドロキシエトキシ) - 3 - フェニルフェニル] フルオレン、<math>9,9-ビス[4]- (2-ヒドロキシエトキシ) -3,5-ジフェニルフェニル]フルオレン、9,9ービ ス[4-(2-ヒドロキシエトキシ)-3-ベンジルフェニル]フルオレン、9,9-ビ ス[4-(2-ヒドロキシエトキシ)-3,5-ジベンジルフェニル]フルオレン、<math>9,9-ビス [4-(3-ヒドロキシプロポキシ) フェニル] フルオレン、<math>9,9-ビス [4- (4-ヒドロキシプトキシ)フェニル]フルオレン等が挙げられ、これらは単独でも2 種類以上を組み合わせて使用しても良い。これらの中でも9,9-ビス[4-(2-ヒド ロキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ - 3 メチル) フェニル] フルオレンが光学特性、成形性の面から最も好ましい。

[0035]

9, 9ービス [4-(2-ヒドロキシエトキシ) フェニル] フルオレンは、例えば、9, 9ービス (4-ヒドロキシフェニル) フルオレンにエチレンオキサイド (以下、EOと略する) を付加して得られる。この際、フェノールの両水酸基にエチレンオキサイドが1分子づつ付加した 2EO付加体 (9, 9-ビス[4-(2-ヒドロキシエトキシ)) フェニル] フルオレン) の他に、さらに数分子過剰に付加した、3EO付加体、4EO付加体等の不純物が含まれる事がある。ポリエステル重合体の耐熱性を向上させるためには、2EO付加体の純度が 95%以上で有ることが好ましく、さらに好ましくは 97%以上である

[0036]

9, 9-ビス [4-(2-ヒドロキシエトキシ)フェニル]フルオレンを得る別の方法としては、フルオレノンに直接フェノキシエタノールを付加させて得られる。この場合は、EOが過剰に付加した付加体は含まれにくく、より好適に用いることができる。

[0037]

本発明のポリエステル重合体を溶融重合法のエステル交換法で製造するには、一般式(1)で表わされるジヒドロキシ化合物は、樹脂中のグリコール成分の10から95mol%であることが好ましい。95mol%以下の場合、溶融重合反応が進みやすく、重合時間が短いという利点がある。尚、95mol%より多い場合は、溶液重合法または界面重合法で製造することによって短時間で重合することができる。また、10mol%以上は、樹脂のガラス転移温度が高いという点で好ましい。

[0038]

また、使用する原料の由来によっては、硫黄を含有する酸(例えば、硫酸、pートルエンスルホン酸など)があると、ジエチレングリコールが生成しやすくなる。ポリマー中の

ジエチレングリコールが6mol%を超えると、耐熱性の指標であるガラス転移温度の低下や、屈折率の低下が大きくなり、ポリマーの特性の変化が大きくなり、工業的に安定した品質のポリマーを経済的に提供しにくくなる。

ジエチレングリコールの量は4mol%以下が好ましく、3mol%以下が特に好ましい。

[0039]

本発明で用いるポリカーボネートとしては、とくに、芳香族ポリカーボネートが好適である。ポリカーボネートの重合方法は、酸結合剤の存在下にジヒドロキシ化合物とホスゲンとを反応させる方法(溶液重合法)およびジヒドロキシ化合物をカーボネートエステルとエステル交換反応させる方法(エステル交換法)が好ましく採用される。これらのうち、エステル交換法が有利である。エステル交換法は、その重合の形態や方式は特に制限されない。例えば、溶融重合法または固相重合法いずれも採用することができるが、溶融重合法が工業的に望ましい。

[0040]

芳香族ジヒドロキシ化合物としては、具体的にはビス (4-ヒドロキシフェニル)メタ ン、2、2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ -3-メチルフェニル)プロパン、ビス(4-ヒドロキシフェニル)メタン、1.1-ビ ス (4-ヒドロキシフェニル) -1-フェニルエタン、<math>4, 4, -[1, 3-フェニレンビス (1-メチルエチリデン)] ビスフェノール、4, 4' - [1, 4-フェニレンビス (1ーメチルエチリデン)] ビスフェノール、9, 9ービス (4ーヒドロキシフェニル) フルオレン、9、9ービス(4ーヒドロキシー3ーメチルフェニル)フルオレン、9、9 ービス(4 ーヒドロキシー3,5ージメチルフェニル)フルオレンなどのビス(4 ーヒド ロキシアリール) アルカン、1, 1ービス (4ーヒドロキシフェニル) シクロヘキサン、 -[1-[3-(4-ヒドロキシフェニル)-4-メチルシクロヘキシル]-1-メチルエチル] -フェノール、4,4'- [1-メチル-4-(1-メチルエチル)-1,3-シクロヘキサンジイル〕ビスフェノール、2,2,2',2'ーテトラヒドロー3,3, 3'、3'-テトラメチル-1、1'-スピロビス-[1H-インデン]-6、6'-ジ オールなどのビス (ヒドロキシアリール) シクロアルカン、ビス (4-ヒドロキシフェニ ル) エーテル、4,4'ージヒドロキシー3,3'ージメチルフェニルエーテルなどのジ ヒドロキシアリールエーテル、4,4'ージヒドロキシジフェニルスルフィド、4,4' ージヒドロキシー3,3'ージメチルジフェニルスルフィドなどのジヒドロキシジアリー ルスルフィド類、4,4'ージヒドロキシジフェニルスルホキシド、4,4'ージヒドロ キシー3,3'ージメチルジフェニルスルホキシドなどのジヒドロキシジアリールスルホ キシド、4、4'ージヒドロキシジフェニルスルホン、4、4'ージヒドロキシー3,3 'ージメチルジフェニルスルホン、などのジヒドロキシジアリールスルホン、4,4'ー ジヒドロキシジフェニルー3, 3'ーイサチンなどのジヒドロキシジアリールイサチン類 。3、6-ジヒドロキシー9、9-ジメチルキサンテンなどのジヒドロキシジアリールキ サンテン、レゾルシン、ヒドロキノン、2-t-ブチルヒドロキノン、2-フェニルヒド ロキノン、2-クミルヒドロキノン、4.4-ジヒドロキシジフェニルなどのジヒドロキ シベンゼン等が例示される。

[0041]

中でも2,2-ビス(4-ヒドロキシフェニル)プロパンがモノマーとしての安定性、. 更にはそれに含まれる不純物の量が少ないものの入手が容易である点、等より好ましいも のとしてあげられる。

[0042]

また、その他の芳香族ジヒドキシ化合物として、例えばビスー(4-ヒドロキシフェニル)メタン、1, 1-ビスー(4-ヒドロキシフェニル)エタン、1, 1-ビスー(4-ヒドロキシフェニル)プロパン、2, 2-ビスー(4-ヒドロキシフェニル)プタン、2, 2-ビスー(4-ヒドロキシフェニル)プタン、2

ェニル)イソペンタン、2,2ービスー(4ーヒドロキシフェニル)へキサン、2,2ービスー(4ーヒドロキシフェニル)イソヘキサン、4,4'ージヒドロキシトリフェニルメタン、4,4'ージヒドロキシテトラフェニルメタン、1,1ービスー(4ーヒドロキシフェニル)シクロヘキサン、2,2ービスー(4ーヒドロキシー3ーメチルフェニル)プロパン、2,2ービスー(4'ーヒドロキシー3',5'ージメチルフェニル)プロパン、ジヒドロキシジフェニルエーテル、ジヒドロキシジフェニルスルホン、ジヒドロキシジフェニルスルフィドといった、ビスフェノール類及びハイドロキノン、レゾルシン、oーメチルレゾルシン、oークミルレゾルシンといった二価のフェノール化合物から選択される一種または二種以上を用いても良い。

[0043]

ポリカーボネートとしては、たとえば、2,2-ビスー(4'-ヒドロキシフェニル) プロパンをホスゲンとアルカリ水溶液-塩化メチレン系で界面重合させて得られる芳香族 ポリカーボネートを用いるのが好適である。

[0044]

また、本発明の樹脂組成物には、ポリエステル重合体(第一成分)とポリカーボネート (第二成分)とのエステル交換反応を抑制するためや成形時等における分子量の低下や色 相の悪化を防止するために熱安定剤を配合することができる。

[0045]

かかる熱安定剤としては、亜リン酸、リン酸、亜ホスホン酸、ホスホン酸およびこれら のエステル等が挙げられ、具体的には、トリフェニルホスファイト、トリス(ノニルフェ ニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、 トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、 ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロ ピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェ ニルホスファイト、モノオクチルジフェニルホスファイト、ビス (2, 6ージーtert ープチルー4ーメチルフェニル)ペンタエリスリトールジホスファイト、2,2ーメチレ ンビス(4.6-ジーtert-ブチルフェニル)オクチルホスファイト、ビス(ノニル フェニル) ペンタエリスリトールジホスファイト、ピス (2, 4 - ジー t e r t - プチル フェニル) ペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジ ホスファイト、トリプチルホスフェート、トリエチルホスフェート、トリメチルホスフェ ート、トリフェニルホスフェート、ジフェニルモノオルソキセニルホスフェート、ジブチ ルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェート、4,4'ービ フェニレンジホスフィン酸テトラキス(2,4-ジーtert-ブチルフェニル)、ベン ゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、ベンゼンホスホン酸ジプロピル 等が挙げられる。なかでも、トリスノニルフェニルホスファイト、トリメチルホスフェー ト、トリス (2, 4-ジーtert-プチルフェニル) ホスファイト、ビス (2, 4-ジ -tert-ブチルフェニル) ペンタエリスリトールジホスファイト、およびベンゼンホ スホン酸ジメチルが好ましく使用される。

[0046]

これらの熱安定剤は、単独でもしくは2種以上混合して用いてもよい。かかる熱安定剤の配合量は、、ポリエステル重合体(第一成分)とポリカーボネート(第二成分)との総量を100重量部とした場合、0.0001~1重量部が好ましく、0.0005~0.5重量部がより好ましく、0.001~0.2重量部が更に好ましい。

[0047]

また、本発明の樹脂組成物には、酸化防止の目的で通常知られた酸化防止剤を配合することもできる。かかる酸化防止剤としては、例えばペンタエリスリトールテトラキス(3ーメルカプトプロピオネート)、ペンタエリスリトールテトラキス(3ーラウリルチオプロピオネート)、グリセロールー3ーステアリルチオプロピオネート、トリエチレングリコールービス [3-(3-tert-プチルー5-メチルー4-ヒドロキシフェニル)プロピオネート]、1、6ーヘキサンジオールービス [3-(3,5-ジ-tert-プチ

[0048]

これら酸化防止剤の配合量は、ポリエステル(第一成分)とポリカーボネート(第二成分)との総量を100重量部とした場合、0.001~0.5 重量部が好ましい。

[0049]

また、本発明の樹脂組成物には溶融成形時の金型からの離型性をより向上させるために、本発明の目的を損なわない範囲で離型剤を配合することも可能である。かかる離型剤としては、一価または多価アルコールの高級脂肪酸エステル、高級脂肪酸、パラフィンワックス、蜜蝋、オレフィン系ワックス、カルボキシ基および/またはカルボン酸無水物基を含有するオレフィン系ワックス、シリコーンオイル、オルガノポリシロキサン等が挙げられる。かかる離型剤の配合量は、ポリエステル(第一成分)とポリカーボネート(第二成分)との総量を100重量部とした場合、0.01~5重量部が好ましい。

[0050]

高級脂肪酸エステルとしては、炭素原子数 $1\sim20$ の一価または多価アルコールと炭素原子数 $10\sim30$ の飽和脂肪酸との部分エステルまたは全エステルであるのが好ましい。かかる一価または多価アルコールと飽和脂肪酸との部分エステルまたは全エステルとしては、ステアリン酸モノグリセリド、ステアリン酸ジグリセリド、ステアリン酸トリグリセリド、ステアリン酸モノソルビテート、ステアリン酸ステアリル、ベヘニン酸モノグリセリド、ベヘニン酸ベヘニル、ペンタエリスリトールモノステアレート、ペンタエリスリトールテトラステアレート、ペンタエリスリトールテトラペラルゴネート、プロピレングリコールモノステアレート、ステアリルステアレート、パルミチルパルミテート、ブチルステアレート、メチルラウレート、イソプロピルパルミテート、ビフェニルビフェネート、ソルビタンモノステアレート、2-エチルヘキシルステアレート等が挙げられる。

[0051]

なかでも、ステアリン酸モノグリセリド、ステアリン酸トリグリセリド、ペンタエリスリトールテトラステアレート、ベヘニン酸ベヘニルが好ましく用いられる。

[0052]

本願発明の高級脂肪酸としては、炭素原子数10~30の飽和脂肪酸が好ましい。かかる脂肪酸としては、ミリスチン酸、ラウリン酸、パルミチン酸、ステアリン酸、ベヘニン酸、などが上げられる。

これらの離型剤は、単独でもしくは2種以上混合して用いてもよい。

[0053]

本願発明の熱可塑性樹脂組成物には、本願発明の目的を損なわない範囲で、光安定剤を 配合することができる。

[0054]

かかる光安定剤としては、例えば2-(2'-ヒドロキシ-5'-tert-オクチルフェニル) ベンゾトリアゾール、2-(3-tert-プチル-5-メチル-2-ヒドロキシフェニル) -5-クロロベンゾトリアゾール、2-(5-メチル-2-ヒドロキシフェニル) ベンゾトリアゾール、2-[2-ヒドロキシー3,5-ビス(α , α -ジメチル

ベンジル) フェニル] -2 H-ベンゾトリアゾール、2, 2, -メチレンビス(4-クミル-6-ベンゾトリアゾールフェニル)、2, 2, -p-フェニレンビス(1, 3-ベンゾオキサジン-4-オン)等が挙げられる。かかる光安定剤の配合量は、ポリエステル重合体(第二成分)とポリカーボネート(第二成分)との総量を100重量部とした場合、0.01~2重量部が好ましい。

これらの光安定剤は、単独でもしくは2種以上混合して用いてもよい。

[0055]

本発明の樹脂組成物には、レンズに成形した場合、ポリエステル重合体やポリカーボネートや紫外線吸収剤に基づくレンズの黄色味を打ち消すためにブルーイング剤を配合することができる。ブルーイング剤としては、ポリエステル樹脂、ポリカーボネート樹脂に使用されるものであれば、特に支障なく使用することができる。

[0056]

[0057]

本発明のポリエステル重合体(第一成分)とポリカーボネート(第二成分)のブレンド 方法としては、任意の方法が採用される。例えばタンブラー、V型プレンダー、スーパー ミキサー、ナウターミキサー、バンバリーミキサー、混練ロール、押出機等で混合する方 法、あるいは上記2成分を例えば塩化メチレンなどの共通の良溶媒に溶解させた状態で混 合する溶液プレンド方法などがあるが、これは特に限定されるものではなく、通常用いら れるポリマープレンド方法ならどのような方法を用いてもよい。

[0058]

こうして得られる樹脂組成物は、そのまま、または溶融押出機で一旦ペレット状にして から、射出成形法、押出成形法、圧縮成形法等の通常知られている方法で成形物にするこ とができる。

[0059]

本発明の樹脂組成物は、示差走査熱量測定(DSC)を行ったとき、好ましくは単一の ガラス転移温度を与える。一般的には、ポリエステル重合体(第一成分)と芳香族ポリカ ーボネート(第二成分)に対応する二つのピーク、及び、それ以外のピークやショルダー を与える場合があるが、その多くは、透明性が悪く、熱的に不安定で成形性も悪く、良好 な光学材料とはなり難い。

[0060]

本発明の熱可塑性樹脂組成物の混和性を高めて安定した離型性や各物性を得るためには 、溶融押出において単軸押出機、二軸押出機を使用するのが好ましい。

単軸押出機、二軸押出機を用いる方法は、溶剤等を用いることがなく、環境への負荷が小さく、生産性の点からも好適に用いることができる。押出機の溶融混練温度は200から350℃好ましくは230℃から300℃である。200℃より低い温度であると、樹脂の溶融粘度が高く、押出機への負荷が大きくなり、生産性が低下する。350℃より高いと、樹脂の劣化が起こりやすくなり、樹脂の色が黄変したり、分子量が低下するため強度が劣化したりする。また、必要に応じて、熱安定剤、酸化防止剤、離型剤、光安定剤等を同時に混練してもよい。

[0061]

[0062]

押出機から吐出された樹脂は、押出後の異物混入を防止するために、クリーンルーム中で実施することが望ましい。

[0063]

また、押出された樹脂を冷却しチップ化する際は、空冷、水冷等の冷却方法を使用するのが好ましい。空冷の際に使用する空気はヘパフィルター等で空気中の異物を事前に取り除いた空気を使用し、空気中の異物の再付着を防ぐのが望ましい。水冷を使用する際は、イオン交換樹脂等で金属分を取り除き、さらにフィルターにて、水中の異物を取り除いた水を使用することが望ましい。フィルターの大きさは種々あるが、 $10\sim0$. $45~\mu$ mのフィルターの使用が好ましい。

[0064]

ポリエステル重合体の重合度は、固有粘度(フェノール60重量%、1,1,2,2ーテトラクロロエタン40重量%の混合溶液中、20℃で測定)にして0.3~0.8の範囲内のポリエステル重合体(第一成分)が好ましい。この固有粘度が極端に低い物はレンズ等に成形した時の機械的強度が弱い。また、固有粘度が大きくなると、成形する際の流動性が低下し、サイクル特性を低下させ、成形品の複屈折率が大きくなり易い傾向がある。従って、ポリエステル重合体(第一成分)としては重合度が固有粘度にして0.3~0.8の範囲内のものを用い、さらに好ましくは0.35~0.7の範囲内のものを用いる

[0065]

ポリカーボネートの重合度は固有粘度にして0.2~0.7の範囲内の芳香族ポリカーボネートが好ましい。この固有粘度が極端に低い物はレンズに成形した時の機械的強度が不十分である。また、固有粘度が大きくなると、成形する際の流動性を低下させ、分子配向しやすくなり、射出成形後、複屈折が大きくなる傾向がある。従って、芳香族ポリカーボネートとしては、重合度が固有粘度にして0.2~0.7の範囲内のものを用い、さらに好ましくは0.3~0.55の範囲内のものを用いる。

[0066]

本発明の樹脂組成物のガラス転移温度は100℃以上、好ましくは120℃以上更に好ましくは130℃以上である。ガラス転移温度が100℃以上だと、高温高湿度下での変形が起こりにくく、レンズの面精度のバラツキが少ないので好ましい。

[0067]

本発明の光学材料用樹脂組成物は、上記のそれぞれの重合度を持った2成分を均一にプレンドして構成されるが、そのブレンド率はポリエステル重合体(第一成分)と芳香族ポリカーボネート(第二成分)の重量比で、5:95~95:5の範囲内とすることが好ましいこの範囲にあれば、複屈折率の低減効果が顕著に得られるので好ましい。更には、20:80~80:20の範囲内にすることが好ましい。

[0068]

本発明において、ポリエステル重合体(第一成分)を製造する際に、溶液重合法、界面重合法等を採用する場合には、一般に酸成分の活性種として酸クロライドを用いたり、溶媒としてメチレンクロライド、クロロホルム等が使用するが、ポリマー中には副生成物である塩化物や触媒化合物が残留し、このものは一般的に製品の品質上良くないので、重合工程後に一般に残留異物を除去せねばならない。これらは、シート、フィルム、プレート、繊維等の成形工程での操業性を低下させ、得られる成形体の品質をも低下させる。例えば高温加熱時に熱分解が多量に発生する。

. [0069]

また、光ディスクや光磁気ディスク等の光学材料として本発明の樹脂組成物を使用する

[0070]

光ディスク基板の成形には通常射出圧縮成形機がよく適合し、成形条件では、特に金型表面温度と樹脂温度が重要である。ポリエステル重合体(第一成分)とポリカーボネート(第二成分)の配合量、組成及び重合度などにより一概に規定できないが、金型表面温度は50℃以上160℃以下が好ましく、また、この時の樹脂温度は220℃以上330℃以下となるようにするのが良い。金型表面温度が50℃以下の場合には、樹脂の流動性と転写性が共に悪く、射出成形時に応力歪が残って、複屈折率が大きくなる傾向があり、また、成形サイクルも延びるので経済的でない。金型温度が160℃以上の場合、転写性は良いが、離型時に変形し易い。また、樹脂温度が330℃以上の場合は樹脂の分解が起こり易く、成形品の強度低下、着色の原因となる。

[0071]

本発明の光学材料用樹脂組成物から光学材料を成形する場合には、原料の投入工程を始め、重合反応、共重合体を冷媒中に押し出してペレット状またはシート状にする工程では 塵埃等が入り込まないように留意して行う事が望まれる。このクリーン度は、通常コンパクトディスク用の場合には1000以下であり、更に高度な情報記録用の場合には100 以下である。

[0072]

レンズの成形には、射出成形や射出圧縮成形が一般に用いられている。成形条件では、特に金型表面温度と樹脂温度が重要である。ポリエステル重合体(第一成分)とポリカーボネート(第二成分)の配合量、組成及び重合度などにより一概に規定できないが、金型表面温度は50℃以上160℃以下が好ましく、また、この時の樹脂温度は220℃以上330℃以下となるようにするのが良い。金型表面温度が50℃以下の場合には、樹脂の流動性と転写性が共に悪く、射出成形時に応力歪が残って、複屈折率が大きくなる傾向があり、レンズとしての要求性能が満たされない場合がある。金型温度が160℃以上の場合、離型時に変形し易い。また、樹脂温度が220以下の場合、樹脂の流動性が乏しく、成形機に過大な負荷がかかる場合があり好ましくない。樹脂温度が330℃以上の場合は樹脂の分解が起こり易く、成形品の強度低下、着色の原因となる。

[0073]

以下実施例を用いて説明する。

【実施例】

[0074]

(1) 屈折率及びアッベ数

アタゴ社製アッベ屈折計 DR-M2で、波長589nmの干渉フィルターを用いD線での屈折率ndを測定した。測定試料は樹脂を160~240℃でプレス成形し、厚み $80~150~\mu$ mのフィルムを作製し、得られたフィルムを約 8×20 mmの短冊状に切り出し、測定試験片とした。界面液として1-プロモナフタレンを用い20℃で測定した。

[0075]

(2) ガラス転移温度(Tg)

示差走査熱量計 (セイコー電子 DSC-110) に試料約10mgを用いて、10℃/minの昇温速度で加熱して測定した。 JIS K 7121 (1987) に準拠して、ガラス転移温度Tgを求めた。

[0076]

(3) 分子量

カラムとして東ソー製G―6000、G―4000、G―3000を直列につなぎ、流速1m1、溶離液をクロロホルム、検出器としてUV検出器、温度を40℃にて標準ポリ

出証特2004-3097456

スチレンを用いて作成した検量線を用いて、ポリスチレン換算の重量平均分子量を算出した。 .

[0077]

(4) 光線透過率

分光光度計(島津製作所製 UV-3101PC)を用いて、射出成形機(住友重機製、ミニマット14/7B)を用い金型温度をTg-20℃に設定して成形した30×30×3mm平板成形品の光線透過率を測定した。

[0078]

(5) MFR

JISK7210に準拠して、オリフィス2mm、温度230℃、加重2160gでのMFRを測定した

[0079]

(6) 複屈折

カールツアイス社製偏光顕微鏡にて、セラルモン、ベレック、ブレースケラー式コンペンセーターを装着し、546nmの単色光で測定した。

[0080]

(6-1) フィルムでの評価

樹脂をを260~300℃で溶融、押し出し成形で、直径 $30\,\mathrm{mm}$ 、厚さ $1\,\mathrm{mm}$ の円盤状の試験片を作製し、さらにその成形試験片を160~240℃でプレス成形し、厚み $80~150\,\mu\,\mathrm{m}$ のフィルムを得た。得られたフィルムを $4\times40\,\mathrm{mm}$ の短冊状に切り出し、測定試験片を得た。ガラス転移温度 $+10\,\mathrm{mm}$ の温度で測定試験片を $20\,\mathrm{mm}$ sector $20\,\mathrm{mm}$ sector 20

[0081]

(6-2) 成形品での評価

射出成形機(住友重機製、ミニマット14/7B)を用い金型温度をTg-20Cに設定して成形した $30\times30\times3$ mm平板成形品を得た後、Tg-20Cの温度で3時間アニールした成形品の中心部のレターデーションを測定した。

[0082]

(7) ポリマーの固有粘度

フェノール60重量%、1,1,2,2ーテトラクロロエタン40重量%の混合溶液50mlに共重合体0.15~0.5gを80℃で溶解後、20℃で粘度を測定し決定した

[0083]

(8)耐衝撃特性

JIS K7110に準拠してアイゾット衝撃強度を測定した。

[0084]

(9) ジエチレングリコール (DEG) の定量

試料調製

50mlの1-プロパノールを200mlの共栓フラスコに入れ、2.81gの水酸化カリウム、精秤した2gの樹脂チップをいれ、水冷している玉入冷却管を取り付け、攪拌しながら、2時間加熱還溜した。冷却後、水10mlを加え、7gのテレフタル酸を加え、1時間加熱還溜した。内部標準として、1%のテトラエチレングリコールジメチルエーテルの1-プロパノール溶液を5ml添加し、約5分攪拌。ろ過したサンプルをガスクロマトグラフにより定量し、ジエチレングリコールの含有量を求めた。

[0085]

[実施例1]

1, 4-シクロヘキサンジカルボン酸 1 mol に対して、 9, 9-ビス [4-(2-ヒドロキシェトキシ) フェニル] フルオレン <math>0. 8 mol 、エチレングリコール 2. 2 mol 1 を原料とし、これらを反応槽に投入し、撹拌しながら常法に従って、室温から 230 に徐々に加熱してエステル化反応を行った。所定量の水を系外へ抜き出した後、重合触媒

この樹脂を、200 Cでプレスし、厚さ 100μ mのフィルムを得た。屈折率は1.607、ガラス転移温度は126 C、DEGの含有量は1.8mol%であった。

[0086]

このポリエステル樹脂とポリカーボネート(帝人化成製、パンライト L1250)とを重量比50対50でクリーンルーム内に設置された二軸押出機(東芝機械製 TEM35B)に投入し、熱安定剤として、ピス(2, 4-ジーtert-プチルフェニル)ペンタエリスリトールジホスファイトをポリエステル樹脂とポリカーボネートとの総量を100重量部として0. 1重量部添加し混練を行ったのち、押し出された樹脂を 1μ mのフィルターを通した水を張った水槽で冷却し、カッターにより連続的に裁断してチップを得た。このとき、吐出口金の出口での樹脂温度は280℃であった。

[0087]

[0088]

[実施例2~5]

ポリエステル重合体(第一成分)とポリカーボネート(第二成分)の組成比を表1に示すように変えた他は実施例1と同様な操作でペレットを製造し、同様に評価した。結果を表1に示す。いずれも均一透明なものが得られ、成形性も良好であった。

[0089]

「実施例6]

2,6ーデカリンジカルボン酸ジメチルエステル 1 molに対して、9,9ービス [$4-(2-E)^2$ に $4-(2-E)^2$ に

[0090]

ガラス転移温度は123℃、屈折率1.584、DEGの含有量は2.3mol%であった。

このポリエステル樹脂とポリカーボネート(帝人化成製、パンライト L1250)とを重量50比対50でクリーンルーム内に設置された二軸押出機(東芝機械製 TEM35B)に投入し、熱安定剤として、ビス(2, 4-ジー tert-ブチルフェニル)ペンタエリスリトールジホスファイトをポリエステル樹脂とポリカーボネートとの総量を100重量部として0. 1重量部添加し混練を行ったのち、押し出された樹脂を 1μ mのフィルターを通した水を張った水槽で冷却し、カッターにより連続的に裁断してチップを得た。このとき、吐出口金の出口での樹脂温度は280℃であった。

[0091]

得られた樹脂ペレットを200℃でプレスし、厚さフィルムを得た。100μmのフィ 出証特2004-3097456

[0092]

【表 1】

	Ī	表]										
バー・ナーか	пп			20	30	120	25	180	75	200	15	
複屈	指	× 10-4		46	70	32	83	20	51	92	3	
光線透過率	3mm %	400	nm	82.3	84.2	80.1	86. 1	78.1	82.5	88.0	76.5	
		200	nm	87.2	88.0	86.3	88.9	85. 4	87.4	89. 5	85.3	
		002	шu	89. 2	89. 5	88.3	9.68	88.0	89.3	89.9	88.6	
アッベ	燅			59	53	28	53	28	31	30	27	
屈折率		·		1. 595	1. 591	1.600	1. 587	1.604	1.584	1.585	1.607	ý
循幹	強			3.4	3.8	3.2	4.5	3	3	7	2.9	フルオレ
MFR	8	10分		4	က	2	2	7	4	1	12	エトキン)フェニル] フルオレン
ガラス	整	温度	ပူ	132	136	128	126	137	130	140	125	エトキシ)
沿線時の組成		第二成分の	重量部	20	70	30	06	10	20	100	0	ジヒドロキン化合物:9,9ービス [4ー(2ーヒドロキン:
		ノ第一成分の	重量部	20	30	20	10	06	20	0	100	
成分の組成		ジとドロキシ	化合物		88	08	08	8	55		8	カ:9,9ービ
無		緻	-	⋖	A	A	⋖	⋖	В	1	4	影光
				夹施例1	実施例2	夹施例3	実施例4	実施例5	实施例6	比較例1	比較例2	ジヒドロキ

A:1, 4ーシクロヘキサンジカルボン酸B:2, 6ーデカリンジカルボン酸

比較例1はポリカーネート(帝人化成製、パンライト L1250)単独での測定値を示す。比較例2は実施例1で記載したポリエステル重合体単独での測定値である。

本発明の樹脂組成物は表1から明らかなように、ポリカーボネートの耐衝撃性、透明性がよいが、複屈折の大きいという点とポリエステル重合体の流動性が良く、屈折率が高く、複屈折が小さいが耐衝撃性、耐熱性、透明性が不満足という、ポリカーボネートとポリエステル重合体の両者の長所と欠点を補いあった透明性、耐熱性、耐衝撃性を保持したバランスのとれた樹脂組成物であることがわかる。

【産業上の利用可能性】

[0094]

本発明の樹脂組成物は、カメラレンズ、ファインダーレンズ、CCDやCMOS用レンズなどのレンズ用途、液晶やプラズマディスプレイなどに利用されるフィルム、シート、 光学材料への使用に適している。

【図面の簡単な説明】

[0095]

【図1】実施例1の樹脂組成物のDSC測定チャートである。

【書類名】図面 【図1】

【書類名】要約書

【要約】

【課題】複屈折が小さく、透明性、機械的強度、寸法安定性に優れ、耐熱性が高く、流動性が良好で、光学材料に好適に用いるこのとがでる樹脂を提供する。

【解決手段】ジカルボン酸化合物とジヒドロキシ化合物からなるポリエステル重合体であって、ジカルボン酸化合物が脂環族ジカルボン酸および/またはそのエステル形成性誘導体を含み、フルオレン系ジヒドロキシ化合物を含むポリエステル重合体とポリカーボネートとをプレンドしてなる樹脂組成物。

【効果】本発明により、複屈折が小さく、透明性、機械的強度、寸法安定性に優れ、耐熱性が高く、流動性が良好で、成形性と光学特性のバランスのとれた材料が提供可能となり、カメラレンズ、眼鏡レンズ、光ディスク、光ファイバー、光学シートなどの光学材料に好適に用いるこのとがでる樹脂を提供可能となる。

【選択図】なし

認定・付加情報

特許出願の番号 特願2003-332884

受付番号 50301577297

書類名 特許願

担当官 兼崎 貞雄 6996

作成日 平成15年11月10日

<認定情報・付加情報>

【特許出願人】 申請人

【識別番号】 000000952

【住所又は居所】 東京都墨田区墨田五丁目17番4号

【氏名又は名称】 カネボウ株式会社

【特許出願人】

【識別番号】 596154239

【住所又は居所】 大阪府大阪市北区梅田一丁目2番2号

【氏名又は名称】 カネボウ合繊株式会社

特願2003-332884

出願人履歷情報

識別番号

[000000952]

1. 変更年月日 [変更理由] 住 所

氏 名

2001年 1月 4日

理由] 名称変更

東京都墨田区墨田五丁目17番4号

カネボウ株式会社

特願2003-332884

出願人履歴情報

識別番号

[596154239]

1. 変更年月日 [変更理由]

1996年10月 3日

.发足垤田」 住 所 新規登録 大阪府大阪市北区梅田一丁目2番2号

氏 名 カネボウ合繊株式会社