Andy's math/science background information

J. Andrew Fingerhut (andy.fingerhut@gmail.com)

June 1, 2025

Contents

3	Gradient	2
_	Notation 2.1 Maxwell's Equations	1 1
1	Introduction	1

1 Introduction

This document is a place to write up notes on background in math that help in learning science.

2 Notation

 \mathbb{R}^3 - The set of all points in 3-dimensional space, i.e. where each point is specified by a sequence of 3 real-valued coordinates.

 ∇ - Called "nabla", and often called "del". Some history of it can be found on the Nabla Symbol page [3].

 ∇f - Gradient of a scalar function $f: \mathbb{R}^3 \to \mathbb{R}$. grad f - another way to write the gradient of f, ∇f

TODO: Any 3Blue1Brown-quality YouTube videos showing examples and definition of gradient, divergence, and curl? If so, give links to them below in appropriate sections.

2.1 Maxwell's Equations

In partial differentiatal form:

where:

- \bullet **E** is the electric field
- \bullet **B** is the magnetic field
- ρ is the electric charge density
- **J** is the current density
- ϵ_0 is the vacuum permittivity
- μ_0 is the vacuum permeability

3 Gradient

Gradient has been generalized to many coordinate systems other than the 3-dimensional Cartesian coordinate system \mathbb{R}^3 , but I will focus on \mathbb{R}^3 . The Wikipedia page on Gradient [2] is not too bad for me, as long as I skim over the parts that generalize it to other coordinate systems.

Griffiths [1] Section 1.2.2 "Gradient" is good at giving the definition and some useful examples and properties of the gradient. He defines ∇T this way, where $\hat{\mathbf{x}}$, $\hat{\mathbf{y}}$, and $\hat{\mathbf{z}}$ are the unit vectors in the direction of the three coordinate axes:

$$\mathbf{\nabla}T \equiv \frac{\partial T}{\partial x}\hat{\mathbf{x}} + \frac{\partial T}{\partial y}\hat{\mathbf{y}} + \frac{\partial T}{\partial z}\hat{\mathbf{z}}$$

where:

• $T: \mathbb{R}^3 \to \mathbb{R}$ is a scalar function that is continuous and differentiable

Some properties of the gradient:

- $\nabla T(x, y, z)$ is the gradient evaluated at a position given by (x, y, z). The vector points in a direction that function T increases most quickly.
- The function T can be approximated at points \mathbf{r} near $\mathbf{r}_0 = (x, y, z)$ by the linear function $T(\mathbf{r}_0) + (\mathbf{r} \mathbf{r}_0) \cdot \nabla T(\mathbf{r}_0)$
- The instantaneous rate of change of T in direction \mathbf{u} (a unit vector) from \mathbf{r}_0 is $\mathbf{u} \cdot \nabla T(\mathbf{r}_0)$. Note that it is always 0 in a direction perpendicular to $\nabla T(\mathbf{r}_0)$, and the negative of the magnitude of $\nabla T(\mathbf{r}_0)$ in the opposite direction.
- Consider a "level set", i.e. a surface defined by all of the points \mathbf{r} where $T(\mathbf{r}) = c$ for some constant c. Then ∇T evaluated at any point on that surface, is normal to the surface.

References

- [1] David J. Griffiths. Introduction to Electrodynamics. Pearson Education, 4th edition, 2013.
- [2] Wikipedia. Gradient, 2025. URL https://en.wikipedia.org/wiki/Gradient.
- [3] Wikipedia. Nabla Symbol, 2025. URL https://en.wikipedia.org/wiki/Nabla_symbol.