

Velo & Velo Upgrade Parallel Session

107th LHCb Week

End of Life Radiation damage estimation for Velo

Evangelos –Leonidas Gkougkousis¹

¹University of Zurich

Current condition & Scenarios

Replacement w/wo cooling

2022

Current Status

Luminosity (Nathan)

- 0.793 fb⁻¹ VELO open (31 mm)
- 0.264 fb⁻¹ VELO closed (1 mm)

Annealing budget (TIBER Data)

- -20°C for irradiation
- 3h at -10°C (17th and 22nd of November)

2023

Luminosity

0 fb⁻¹ VELO open (31 mm)

Annealing budget (TIBER Data)

- 21°C since the foil incident (28 days, since 10/2)

Foil Replacement with cooling (120 days at -20°C)

2023

- 1 fb⁻¹ VELO @ 11 mm → -20°C
 (April to November)
- 120 days (November to April 2024) @ -20°C
- 4 days @ 21°C (maintenance)

2024 - 2025 (per year)

- 5.5 fb⁻¹ VELO @ 0 mm → -20°C
- 4 days @ 21°C (maintenance)

2026 – 2028 (per year)

- 0 fb⁻¹ VELO @ 0 mm → -20°C
- 4 days @ 21°C (maintenance)

2029 – 2032 (per year)

- 7 fb⁻¹ VELO @ 0 mm \rightarrow -20°C
- 4 days @ 21°C (maintenance)

Foil Replacement with cooling, high 2023 luminosity (120 days at -20°C)

Same but....

- 4 fb⁻¹ VELO @ 11 mm \rightarrow -20°C (April to November)

Foil Replacement without cooling (120 days at 21°C)

Same but.....

 120 days (November to April 2024) @ 21°C

Foil Replacement without cooling, high 2023 luminosity (120 days at 21°C)

Same but....

- 4 fb⁻¹ VELO @ 11 mm \rightarrow -20°C (April to November)
- 120 days (November to April 2024) @ 21°C

Baseline Scenario: No incident, Shims for 2023, 4fb-1 @ 2023, same afterwards

Velo Coordinate System

Module positions and radial distances

$$\Phi_{\text{mv.}} = \tan^{-1} \frac{|y_0 - y_n|}{|x_0 - x_n|} \stackrel{\Phi_{\text{mv.}} = 45^0}{\longleftrightarrow}$$

$$|y_0 - y_n| = |x_0 - x_n| \stackrel{y \uparrow, x \downarrow}{\Longleftrightarrow}$$

$$y_n = x_0 + y_0 - x_n$$

$$R = \sqrt{|x_0 - x_n|^2 + |y_0 - y_n|^2} \stackrel{y \uparrow, x \downarrow}{\longleftrightarrow}$$

$$R = \sqrt{(x_0 - x_n)^2 + (y_n - y_0)^2} \stackrel{y_n = x_0 + y_0 - x_n}{\longleftrightarrow}$$

$$R = \sqrt{2}(x_0 - x_n) \Leftrightarrow$$

$$x_n = x_0 - \frac{R}{\sqrt{2}}$$

- Rotated cartesian coordinate system
- Assume only lateral movement with respect to the bam axis
- $\Phi_{mv} = 45^{\circ}$
- Distances converted to coordinates for fluence estimation
- Mean per ladder fluence estimation using numerical integration assuming uniform per pixel fluence
- Number of steps equal to number of per module pixels

Fluence Estimation

Velo Upgrade 1 TDR: CERN-LHCC-2013-021; LHCB-TDR-013 (page 10)

k(z)

7th order polynomial fit

$$\Phi(R,z) = (a_0 + a_1 \times z + a_2 \times z^2 + a_3 \times z^3 + a_4 \times z^4 + a_5 \times z^5 + a_6 \times z^6) \times L \times R^{-(k_0 + k_1 \times z + k_2 \times z^2 + k_3 \times z^3 + k_4 \times z^4 + k_5 \times z^5 + k_6 \times z^6)}$$

$A(\mathbf{z})$

- Exponential dependence with radius from beam axis on a dedicated z position (A×R^{-k}
- 7th order approximation through polynomial fit from Fluka simulations
- R in centimeters, luminosity in fb⁻¹
- Fit factors estimated for fluence units of $10^{13} n_{eq}/cm^2$

Α	lpha Factors	Kappa Factors	
α_0	3.63	k _o	2.3
α_1	2.72×10^{-4}	K ₁	-1.22×10^{-4}
α_2	-3.30×10^{-6}	K ₂	-5.11×10^{-6}
α_3	-3.43×10^{-9}	K ₃	6.22×10^{-9}
α_4	6.36×10^{-12}	K ₄	2.79×10^{-11}
α_5	1.94×10^{-15}	K ₅	-6.87×10^{-14}
α_6	1.63×10^{-18}	k ₆	4.18×10^{-17}

Single Pixel
$$\begin{cases} \Phi(z)_{pixel} = A(z) \times L \times \left(\sqrt{x_{< pix.>}^2 + y_{< pix.>}^2}\right)^{-k(z)} \\ x_{< pix.>}, y_{< pix.>} = x_i, y_i + \sqrt{\frac{N_{pixels}}{S_{ladder}}} \\ \delta \Phi(z)_{pixel} = \sqrt{\frac{1}{2} \times \left(\left|\Phi(z)_{pixel} - \Phi(z)_i\right|^2 + \left|\Phi(z)_{pixel} - \Phi(z)_{i+1}\right|^2\right)} \end{cases}$$

Fluence Estimation

2D Trapezoidal model for Ladders

D. Kaffer, Numerical Techniques for the Evaluation of Multi-Dimensional Integral Equations

$$\langle \Phi(z) \rangle = \frac{1}{S_{ladder}} \times \iint_{ladder} A(z) \times L \times \sqrt{x^2 + y^2}^{-k(z)} \, \partial x \partial y$$

$$\frac{h_{x}h_{y}}{4} \times \left(\Phi(x_{0}, y_{0}) + \Phi(x_{f}, y_{0}) + \Phi(x_{f}, y_{f}) + 4 \times \sum_{i=2}^{n_{y}} \sum_{j=2}^{n_{x}} \Phi(x_{j}, y_{i}) + 2 \times \sum_{i=2}^{n_{y}} \left[\Phi(x_{0}, y_{i}) + \Phi(x_{f}, y_{i})\right] + 2 \times \sum_{j=2}^{n_{x}} \left[\Phi(x_{j}, y_{0}) + \Phi(x_{f}, y_{j})\right]\right)$$

2D trapezoidal integration rule (uniform pixel fluence approximation)

- (x_0, y_0) Coordinates of closer pixel to beam
- (x_f, y_f) Coordinates of furthest pixel from beam
- (x_0, y_f) Verticality furthers pixel from beam
- (x_f, y_0) Horizontally furthest pixel from beam
 - n_{ν} Number of pixel rows
 - n_x Number of pixel columns
 - h_{x} Pixel width
 - h_{γ} Pixel height

Fluence uncertainty approximation

$$\delta\langle\Phi(z)\rangle \frac{1}{N_{pix.}} \times \sqrt{\sum_{i} \left(\delta\Phi(z)_{pixel}\right)_{i}^{2}}$$

Single Pixel fluence uncertainty

Fluence Estimation

Hamburg Model

$$I_n(T_{\text{ref}}) \equiv I_n^{\text{exp}} + I_n^{\log} = \sum_{i=1}^n \delta \Phi_i^{\text{eq}} \cdot \alpha_{\text{I}} \cdot \exp\left(-\frac{t_{n,i}^{\text{I}}}{\tau_{\text{I}}(T_{\text{ref}})}\right) + \sum_{i=1}^n \delta \Phi_i^{\text{eq}}(\alpha_0^* - \beta \ln(t_{n,i}^{\log}/t_0)) \qquad \begin{vmatrix} \alpha_I = (1.23 \pm 0.06) \times 10 \\ k_{0I} = 1.2_{-1.0}^{+5.3} \times 10^{13} \text{ s}^{-1} \end{vmatrix}$$

$$t_{n,i}^{\mathrm{I}} = \sum_{j=i}^{n} \delta t_{j} \frac{\tau_{\mathrm{I}}(T_{\mathrm{ref}})}{\tau_{\mathrm{I}}(T_{j})},$$

$$t_{n,i}^{\log} = \sum_{j=i}^{n} \delta t_j \Theta_{\mathcal{A}}(T_j)$$
 (A.2)

$$\frac{1}{\tau_{\rm I}(T)} = k_{\rm 0I} \cdot \exp(-\frac{E_{\rm I}}{k_{\rm B}T})$$

$$\frac{1}{\tau_{\rm I}(T)} = k_{\rm OI} \cdot \exp(-\frac{E_{\rm I}}{k_{\rm B}T}), \qquad \Theta_{\rm A}(T) = \exp\left(-\frac{E_{\rm I}^*}{k_{\rm B}} \left[\frac{1}{T} - \frac{1}{T_{\rm ref}}\right]\right) \qquad (A.3) \qquad \begin{array}{c} \beta = 3.29 \times 10^{\circ} \text{ AVen} \\ E_{\rm I} = 1.30 \pm 0.14 \text{ eV} \\ E_{\rm I} = 1.30 \pm 0.14 \text{ eV} \end{array}$$

$$A = \pi r^2$$

 $\alpha_I = (1.23 \pm 0.06) \times 10^{-17} \,\text{A/cm}$

$$|\mathbf{k}_{0I}| = 1.2^{+5.3}_{-1.0} \times 10^{13} \text{ s}^{-1}$$

(A.1)
$$E_I = 1.11 \pm 0.05 \,\text{eV}$$

$$\alpha_0^* = 7.07 \times 10^{-17} \text{ A/cm}$$

$$\beta = 3.29 \times 10^{-18} \text{ A/cm}$$

$$E_I^* = 1.30 \pm 0.14 \,\mathrm{eV}$$

$$t_0 = 1 \min$$

$$T_{ref} = 21^{\circ}C$$

M. Moll, Thesis, Universität Hamburg (1999), O. Krasel, Thesis, Universität Dortmund (2004)

$$(E_{eff.} = 1.214 \pm 0.014 \, eV)$$

Leakage Current scaling
$$(E_{eff.} = 1.214 \pm 0.014 \ eV)$$

$$I(T) \propto T^2 e^{-\frac{E_{eff.}}{2k_B T}} \rightarrow I(T) = I(T_R) \times \left(\frac{T}{T_R}\right)^2 \times e^{-\frac{E_{eff.}}{2k_B} \left(\frac{1}{T} - \frac{1}{T_R}\right)}$$

Depletion Voltage estimation

Depletion Voltage:
$$V_{FD} = \frac{D^2}{2\varepsilon_{Si}\mu\rho}$$

Bulk Resistivity: $\rho = \frac{1}{e\mu N_{eff}}$ $\rightarrow V_{FD} = \frac{e|N_{eff}|D^2}{2\varepsilon_0\varepsilon_{r,Si}}$

Validation Tests I – Standard Annealing Experiment

- A 3 fb⁻¹ exposure in a 60-minute interval at -20°C was simulated, corresponding to an equivalent fluence of 3.74 x 10^{14} n_{eq}/cm² for the hottest pixel
- Consecutive annealing steps at 60°C are performed and leakage current is evaluated at 21°C (T_{ref})
- Leakage current scaled to 20°C and corresponding α factors estimated
- Results in perfect agreement with ROSE collaboration measurements (material and fluence independent)
- Zero annealing time predictions are non-defined by the model as the original parametrization assumes adiabatic irradiation only valid at an infinitely low-rate irradiation

Rate $(n_{eq}/cm^2 x min^{-1})$	α_0
3.74E+14	1.10E-16
6.23E+12	9.69E-17
3.11E+12	9.40E-17
1.56E+12	9.17E-17
7.79E+11	8.95E-17
3.89E+11	8.72E-17
3.46E+11	8.68E-17
3.11E+11	8.64E-17
2.87E+11	8.62E-17
2.60E+11	8.58E-17
1.30E+11	8.43E-17
6.49E+10	8.13E-17
4.33E+10	7.992E-17
3.24E+10	7.90E-17
2.60E+10	7.82E-17

- Standard fluence of 3.74 x 10^{14} n_{eq}/cm² at -20°C was administered in varied time intervals, ranging from 1 to 14400 minutes
- α_0 estimated for each case, with values converging to model predictions at $t_{\text{irad}} >> t_{\text{anneal}}$
- Behavior justified by the differential nature of annealing estimation performed by the code, both annealing and irradiation are performed simultaneously

Validation Tests II – In vs log base terme

- In several papiers, the logarithmic term of the leakage current model is incorrectly represented with a base-10 logarithm instead of a natural-based logarithm e.g.: <u>JINST 14 (2019) P06012</u> page 5, arXiv:2203.06216v4 [physics.ins-det] 29 Dec 2022 page 11
- Repeating simulation for the standard experiment and comparing with bibliographic data demonstrates the magnitude of the disagreement
- Same exercise can be repeated for the α_0 estimation, where in this case the irradiation rate dependence becomes less pronounced and can even some times be completely neglected

$$\frac{l_n}{V} = \sum_{i=1}^n \delta \Phi_i^{eq} \times \left[a_0^* + a_I \times e^{-\left(\sum_{j=i}^n \frac{\delta t_j}{\tau_I(T_j)}\right)} - \beta \times \ln \sum_{j=i}^n \frac{\delta t_j}{60} \times \Theta_A(T_j) \right]$$

$$\frac{l_n}{V} = \sum_{i=1}^n \delta \Phi_i^{eq} \times \left[a_0^* + a_I \times e^{-\left(\sum_{j=i}^n \frac{\delta t_j}{\tau_I(T_j)}\right)} - \beta \times \log \sum_{j=i}^n \frac{\delta t_j}{60} \times \Theta_A(T_j) \right]$$

$$\frac{l_n}{V} = \sum_{i=1}^n \delta \Phi_i^{eq} \times \left[a_0^* + a_I \times e^{-\left(\sum_{j=i}^n \frac{\delta t_j}{\tau_I(T_j)}\right)} - \beta \times \log \sum_{j=i}^n \frac{\delta t_j}{60} \times \Theta_A(T_j) \right]$$

$$\frac{l_n}{V} = \sum_{i=1}^n \delta \Phi_i^{eq} \times \left[a_0^* + a_I \times e^{-\left(\sum_{j=i}^n \frac{\delta t_j}{\tau_I(T_j)}\right)} - \beta \times \log \sum_{j=i}^n \frac{\delta t_j}{60} \times \Theta_A(T_j) \right]$$

$$\frac{l_n}{V} = \sum_{i=1}^n \delta \Phi_i^{eq} \times \left[a_0^* + a_I \times e^{-\left(\sum_{j=i}^n \frac{\delta t_j}{\tau_I(T_j)}\right)} - \beta \times \log \sum_{j=i}^n \frac{\delta t_j}{60} \times \Theta_A(T_j) \right]$$

$$\frac{l_n}{V} = \sum_{i=1}^n \delta \Phi_i^{eq} \times \left[a_0^* + a_I \times e^{-\left(\sum_{j=i}^n \frac{\delta t_j}{\tau_I(T_j)}\right)} - \beta \times \log \sum_{j=i}^n \frac{\delta t_j}{60} \times \Theta_A(T_j) \right]$$

$$\frac{l_n}{V} = \sum_{i=1}^n \delta \Phi_i^{eq} \times \left[a_0^* + a_I \times e^{-\left(\sum_{j=i}^n \frac{\delta t_j}{\tau_I(T_j)}\right)} - \beta \times \log \sum_{j=i}^n \frac{\delta t_j}{60} \times \Theta_A(T_j) \right]$$

Validation Tests III - Long term annealing

- Since initial α is irradiation rate dependent, so will I_{final}/I_0
- In the standard experiment (3.74 x 10^{14} n_{eq}/cm² @ -20°C), the I_{final}/I₀ is represented for various irradiation rates after an annealing of 80 min at 60 °C
- Although factors seem to change with respect to the initial time of irradiation, this is of low consequence.

- Final leakage current for all cases is the same, no matter of the irradiation rate
 - For all scenarios, independent of the irradiation rate, after 80 min at 60°C we end up at the same value of leakage current. The current just after the irradiation though the starting point is not the same and may vary up to 25%.

27 / 2 / 2023 E. L. Gkougkousis

Hottest pixel (~ $7.4 \times 10^{15} \, n_{eq}/cm^2$)

Leakage Current @ -20.0°C

•N_{eff} - Dynamic Model

Differential equations on Effective dopant

G. Lindstrom et al., NIM A 466(2001) 308-326 "Radiation damage in silicon detectors"

	Radiation damage modeling		
ıted	Constant Damage Terms	Acceptor Introduction	$\frac{dN_{acc.}^{con.}(t)}{dt} = g_{C_A} \times \Phi_{eq}(t)$
ion Rela part		Donor Introduction	$\frac{dN_{don.}^{con.}(t)}{dt} = g_{C_D} \times \Phi_{eq}(t)$
rradiation Related part		Acceptor Removal	$\frac{dN_{acc.}^{rem.}(t)}{dt} = -c_{C_A} \times \Phi_{eq}(t) \times N_{acc.}^{rem.}(t)$
- Irre		Donor Removal	$\frac{dN_{don.}^{rem.}(t)}{dt} = -c_{C_D} \times \Phi_{eq}(t) \times N_{acc.}^{rem.}(t)$
ated 	Short term annealing	Acceptor Reduction	$\frac{dN_{acc.}^{short.}(t)}{dt} = g_A \times \Phi_{eq}(t) - k_A(T) \times N_{acc.}^{short.}(t)$
Annealing Related part	Long term annealing	Max Introducible Acceptors	$\frac{dN_{acc.}^{Max.long.}(t)}{dt} = g_y \times \Phi_{eq}(t) - k_Y(T) \times N_{acc.}^{Max.long.}(t)$
Annea		Acceptor Introduction	$\frac{dN_{acc.}^{long.}(t)}{dt} = k_Y(T) \times N_{acc.}^{Max.long.}(t)$

•N_{eff} – Dynamic Model

Radiation damage modeling			
Terms	Acceptor Introduction	$N_{acc.}^{con.}(t) = g_{C_A} \times \int_0^t \Phi_{eq.}(\tau) \partial \tau$	
Constant Damage Terms	Donor Introduction	$N_{don.}^{con.}(t) = g_{C_D} \times \int_0^t \Phi_{eq.}(\tau) \partial \tau$	
	Acceptor Removal	$N_{acc.}^{rem.}(t) = f_{c_A} \times N_{eff.}(0) \left(1 - e^{-c_{c_A} \int_0^t \Phi_{eq.}(\tau) \partial \tau}\right)$	
Cons	Donor Removal	$N_{don.}^{rem.}(t) = f_{c_D} \times N_{eff.}(0) \left(1 - e^{-c_{c_D} \int_0^t \Phi_{eq.}(\tau) \partial \tau}\right)$	
Short term annealing	Acceptor Reduction	$ N_{acc.}^{short.}(t_i) = g_A \times \int_{t_{i-1}}^{t_i} \Phi_{eq.}(\tau) \partial \tau / \delta t \times \frac{\left(1 - e^{-k_a(T_i) \times \delta t}\right)}{k_a(T_i)} + N_{acc.}^{short.}(t_{i-1}) \times e^{-k_a(T_i) \times \delta t} $	
Long term annealing	Max Introducible Acceptors	$\left N_{acc.}^{\textit{Max.long.}}(t_i) = g_Y \times \int_{t_{i-1}}^{t_i} \Phi_{eq.}(\tau) \partial \tau \middle/ \delta t \times \frac{\left(1 - e^{-k_Y(T_i) \times \delta t}\right)}{k_Y(T_i)} + N_{acc.}^{\textit{Max.long.}}(t_{i-1}) \times e^{-k_Y(T_i) \times \delta t} \right $	
	Acceptor Introduction	$\begin{split} N_{acc.}^{long.}(t_i) &= N_{acc.}^{long.}(t_{i-1}) + \\ & \int_{t_{i-1}}^{t_i} \Phi_{eq.}(\tau) \partial \tau / \\ g_Y(T) \times \frac{\sqrt{\delta t}}{k_Y(T)} \times \left(k_Y(T) \times t + e^{-k_Y(T)t} - 1 \right) + \\ & N_{acc.}^{Max.\ long.}(t_i) \times \left(1 - e^{-k_Y(T)t} \right) \end{split}$	

27 / 2 / 2022 E. L. Gkougkousis

Acceptor Removal Fit

Acceptor Removal Coefficient

Current Velo

200 μ m thick, non-oxygenated, n-in-p, FZ, 3 – 8 k Ω × cm

1	Neff(0) [cm-3]		c _A [cm ⁻²] Sensor Type	Reference	
	Method	Value	CA [CIII]	Selisoi Type	Reference
	SiMS	5 × 10 ¹⁵ (± 20%)	16 × 10 ⁻¹⁶ (± 20%)	LGAD	G. Kramberger et al., JINST Vol. 10 (2015) P07006.
	311V13	$(2.59 \pm 0.54) \times 10^{16}$	$(19.6 \pm 1.6) \times 10^{-16}$		E. – L. Gkougkousis et al. J. Phys.: Conf. Ser. 2374 012175
С	CV Meas.	$(9.44 \pm 0.07) \times 10^{12}$	$(1.35 \pm 0.03) \times 10^{-14}$	Pad Diodes - MCz	K. Kaska, PhD Thesis, Technical University Vienna, 2014
	CV IVIEUS.	$(12.49 \pm 0.74) \times 10^{12}$	$(5.5 \pm 0.04) \times 10^{-14}$	Epi 150 μm pad diodes	K. Kaska, PhD Thesis, Technical Oniversity Vielina, 2014
Resistivity		$1.6 \times 10^{15} (\pm 20\%)$	6.5 × 10 ⁻¹⁵ (± 20%)		P. D. de Almeida, "Measurement of the acceptor removal
		$2.2 \times 10^{14} (\pm 20\%)$	2.3 × 10 ⁻¹⁴ (± 20%)	Fai FO um and diados	rate in silicon
	4.21 × 10 ¹³ (± 20%)	3.9 × 10 ⁻¹⁴ (± 20%)	Epi 50 μm pad diodes	pad diodes," 30th RD50 Workshop,	
		5.25 × 10 ¹² (± 20%)	7.7 × 10 ⁻¹⁴ (± 20%)		https://indico.cern.ch/event/637212/contributions/2608666/

Re-introduction coefficient

•N_{eff} - Dynamic Model

Code Structure

Run Time Interaction

Acceptor removal Fit from bibliography (data in Share\AcceptorRemoval.txt) to establish the equation for calculation he removal coefficient with respect to N_{eff}(0)

Fit using data in Share\VDepVelo1.txt to determine the re-introduction rates to be used for the calculations of the N_{eff}

Folder where scenario files will be searched, all present files will be treated as different scenarios

Processed scenario

Printing final values of the final scenario for control and debug purposes. Not really needed, can be expanded to every included scenario

```
RadDamage *) 0x234a172f150
 FCN=89.5311 FROM MINOS
                           STATUS=SUCCESSFUL
                                                44 CALLS
                                                                 384 TOTAL
                    EDM=1.10201e-07
                                       STRATEGY= 1
                                                       ERROR MATRIX ACCURATE
  EXT PARAMETER
                                                STEP
                                                             FIRST
       NAME
                 VALUE
                                  ERROR
                                                SIZE
                                                          DERIVATIVE
                               7.61792e-08 -8.54537e-06
   1 Factor
                  1.65656e-07
                                                           4.37059e-02
   2 Exponent
                               1.49418e-02
                                             1.49418e-02 -5.01063e-02
 FCN=89.5311 FROM MINOS
                           STATUS=SUCCESSFUL
                                                44 CALLS
                                                                 384 TOTAL
                    EDM=1.10201e-07 STRATEGY= 1
                                                       ERROR MATRIX ACCURATE
  EXT PARAMETER
                                                STEP
                                                             FIRST
       NAME
                 VALUE
                                  ERROR
                                                SIZE
                                                          DERIVATIVE
   1 Factor
                  1.65656e-07
                                7.61792e-08 -8.54537e-06
                                                           4.37059e-02
   2 Exponent
                                1.49418e-02
                                             1.49418e-02
                                                         -5.01063e-02
 FCN=95.3134 FROM MINOS
                           STATUS=SUCCESSFUL
                                                52 CALLS
                                                                 399 TOTAL
                    EDM=1.29973e-08
                                      STRATEGY= 1
                                                       ERROR MATRIX ACCURATE
  EXT PARAMETER
                                                STEP
                                                             FIRST
       NAME
                 VALUE
                                  ERROR
                                                SIZE
                                                          DERIVATIVE
  1 g_{A}
                  2.20738e-02
                                2.02334e-03 -7.98061e-04 -2.29641e-03
                               1.54399e-02 -1.73868e-03 -1.82045e-02
                  1.25261e-12 1.33921e-13 1.33921e-13 -8.72214e-04
1: C:/Users/Vagelis/Desktop/VELOU1Radiation/RadDamage/Backup/Scenarios/*.*
RadDamage::Calculate INFO: Profile succesfully read from file: "Test standard.txt". Profile legnth: 16
0.000421523 8.65308e-05 4.87136
RadDamage::Calculate INFO: Processing finished, writing data...
Final Effective Doping [N_{eff}] is: 2.18777e+13
Final Donors [N_{don.}] is: 0
Final Acceptors [N_{acc.}] is: 2.18777e+13
Final Depletion Voltage is: 677.876
Final #alpha Factors @ 21.0^{o}C is: 1.98917e-17
Final Leakage Current per module @ 21.0^{o}C is: 0.000884688
Final Leakage Current per module @ -20.0^{o}C is: 1.02972e-05
Final Leakage Current @ 21.0^{o}C is: 0.00743435
Final Leakage Current @ -20.0^{o}C is: 8.65308e-05
Final Power Consumption @ 21.0^{o}C is: 5.03957
Final Power Consumption @ -20.0^{o}C is: 0.0586571
Final Temperature is: 333.15
Final Fluence is: 3.73742e+14
```

Conclusions

Outlook and next steps

- Introduction of asymmetric band uncertainties (currently underway)
- Validation against data (mainly α factors and N_{eff})
- Re-optimization of fitting parametrization from data
- Direct link to TIMBER and to luminosity monitor for automatization
- Expand to n-in-p type sensors (intrinsically supported, treated

indifferently in re-introduction rate fit level)

27 / 2 / 2023 E. L. Gkougkousis