Ariane Lefebvre Sina Miladi Pablo Coves

Plan

- Description du projet
 - Missler
 - Emboutissage
 - Mots clés
- 2 Description du logiciel
- Organisation
- 4 Conclusion

TopSolid

Missler

- Première apparition avec le logiciel TopCAD en 1987.
- Ensemble de logiciels dédiés à la CFAO et ERP.
- Solution pour la conception et la fabrication de pièces ou outils.
- Permet le pilotage de machine outils et le suivi des produits.

Figure: TopSolid Galaxy

Figure : Etape 1 : poinçon et serre-flan relevés.

Figure : Etape 2 : le serre-flan descend et applique une pression pour maintenir la tôle sans l'empêcher de fluer.

Emboutissage

Figure: Etape 3: le poinçon descend ce qui provoque la déformation plastique de la tôle en l'appliquant contre la matrice.

Figure : Etape 4 : le poinçon et le serre-flan se relèvent : la pièce conserve la forme acquise puisque la limite d'élasticité est dépassée.

Une scène

Une scène est composée de :

- Une matrice : Définie par un polygone, fixe au cours du temps.
- Un dévêtisseur : Défini par un polygone, il vient fixer une partie de la tôle à la matrice durant le pliage.
- Un poinçon : Défini par un polygone dont on connait le mouvement au cours du temps.
- Une tôle : Considérée d'épaisseur fixe, elle est décrite par sa fibre neutre.

Figure: Fibre neutre

Une étape

Chaque position du poinçon correspond à une étape d'une scène.

Il faut prendre en compte :

- Les forces appliquées sur la tôle.
- Le déplacement induit par ces forces.
- Le retour élastique lors du retrait du poinçon.

Figure : Étapes

Fichier de scène Aperçu

- Utilisation du XML : facile à lire et à faire évoluer.
- Utilisation d'une DTD pour vérifier la cohérence des fichers.
- Un fichier de scène est utilisé pour décrire les différents éléments d'une scène.
 - Forme et position de la matrice.
 - Forme, position et déplacements restants du poinçon.
 - Forme et épaisseur de la tôle.
- Format aussi utilisé pour sauvegarder l'état du système à chaque étape.

Organisation

- 1 Description du projet
- 2 Description du logiciel
 - Open fem
 - Interface utilisateur
- Organisation
- 4 Conclusion

Gestion de la déformation

Un logiciel de résolution d'équations différentielles par élément finis.

Il est utilisé pour :

- Générer un maillage pour la représentation.
- Calculer le déformation de la tôle selon les forces appliquées.

Figure : Exemple de maillage

Interface utilisateur

La fenêtre _{Aperçu}

- Une zone centrale de visualisation.
 - Scène en mouvement.
 - Barre d'actions.
- Une zone latérale d'options.
 - Pas de déplacement.
 - Temps de visualisation.

Figure : Interface de test

Description du projet

La fenêtre Zone de rendu

- QGLWidget.
- Interaction à la souris : sélection des points à suivre.
- Affichage en transparence de l'aire couverte par la tôle durant la scène complète.

Pour un rendu réaliste Calcul de la position du poinçon

$$P(t) = \frac{-D max}{2} * \cos(\frac{2}{T max} * \pi * t) + \frac{D max}{2}$$

Figure : Position du poinçon

Pour un rendu réaliste Calcul de la vitesse du poinçon

$$V(t) = \frac{\pi*Dmax}{Tmax} * \sin(\frac{2*\pi}{Tmax} * t)$$

Figure: Vitesse du poinçon

Description du projet Interface utilisateur

Pour un rendu réaliste Calcul de l'accélération du poinçon

$$A(t) = \frac{2*\pi^2*Dmax}{Tmax^2} * \cos(\frac{2*\pi}{Tmax} * t)$$

Figure : Accélération du poinçon

Pour un rendu réaliste Calcul des forces sur la tôle

La courbe d'écrouissage relie l'évolution de la limite élastique à la variable interne d'écrouissage σ_0 (c.a.d. la déformation équivalente plastique $\bar{\epsilon}$).

- Loi d'écrouissage d'Hollomon : $\bar{\sigma} = K\bar{\epsilon}^n$ Efficacité limitée pour les petites déformations.
- Loi d'écrouissage de Krupkowski : $\bar{\sigma} = K(\epsilon_0 + \bar{\epsilon})^n$ Avec ϵ_0 une déformation seuil.
- Loi d'écrouissage de Ludwick : $\bar{\sigma} = \sigma_0 + K\bar{\epsilon}^n$
- Loi d'écrouissage de Voce : $\bar{\sigma} = \sigma_0 + \sigma_s [1 \exp(-\frac{\bar{\epsilon}}{\epsilon_0})]$ Avec σ_0 une contrainte seuil.

- Description du proje
- 2 Description du logicie
- Organisation
 - Diagramme de Gantt
 - Répartition des tâches
 - Complétion des tâches
- 4 Conclusion

Diagramme de Gantt

Figure : Diagramme de Gantt

- MCS: utilisation de Open fem. Gestion de la déformation de la tôle à chaque étape.
- ICAO : rendu graphique des scènes. Interface utilisateur et intéractions souris.
- ICAO : gestion des fichiers et parseurs XML. Communication avec Open fem.

Répartition des tâches

Figure : Répartition des tâches

Complétion des tâches

WBS	Name	Start	Finish	Work	Duration	Slack	Cost	Assigned to	% Complete
1	Mise au point des objectifs	Oct 3	Dec 14	52d	52d 3h	70d 3h	0	Pablo, Ariane, Sina	100
2	Présentation des objectifs	Dec 17	Dec 21	4d	4d	70d 6h	0	Pablo, Ariane, Sina	80
3	Interface utilisateur: intégration visualisation	Dec 10	Dec 17	6d	6d	50d	0	Ariane	80
4	Rendu graphique: QGL tutos	Dec 19	Dec 21	3d	3d	49d	0	Ariane	0
5	Rendu graphique: Implémentation	Jan 9	Feb 6	21d	21d	37d	0	Ariane	0
6	Interface utilisateur: intégration interactions souris	Feb 7	Mar 7	21d	21d		0	Pablo, Ariane	0
7	Interactions souris: implémentation	Mar 8	Mar 29	16d	16d		0	Pablo, Ariane	0
8	Parseur: XML tutos	Dec 19	Dec 21	3d	3d	49d	0	Pablo	0
9	Parseur: implémentation	Jan 9	Feb 6	21d	21d	37d	0	Pablo	0
10	Freefem++: tutos	Dec 19	Dec 21	3d	3d	12d	0	Sina	0
11	Freefem++: implémentation	Jan 9	Mar 29	58d	58d		0	Sina	0

Figure : Complétion des tâches

Plan

- 1 Description du projet
- 2 Description du logicie
- 3 Organisation
- 4 Conclusion
 - Perspectives
 - Questions

- Intégration au logiciel TopSolid.
- Modification de l'épaisseur de la tôle.
- Modification du poinçon et de la matrice par l'utilisateur.

Description du projet

Merci de votre écoute.

Des questions?

