# ELEC 533: Homework 2

Due on: Please check the Course Timetable

Professor Behnaam Aazhang MWF 11:00 AM - 11:50 AM

## Problem 1

Suppose X is a uniform random variable defined on [0,1]. Prove that

$$\int_{-\infty}^{\infty} x dF_X = \int_{-\infty}^{\infty} x f_X(x) dx$$

### Problem 2

Let X be a discrete random variable with  $P(\{X=n\})=\left(\frac{1}{2}\right)^n,\ n=1,2,...$  Let Y=g(X) where  $g(n)=(-1)^{n+1}\left(\frac{2^n}{n}\right)$ . Show that  $\mathrm{E}[Y]$  does not exist.

### Problem 3

- a) Show that  $E[X] = n\theta$  and  $Var(X) = n\theta(1-\theta)$  when X is a binomial random variable.
- b) Find the mean and variance of a Poisson random variable.
- c) Show that if X is constant then E[X] is equal to that constant.

### Problem 4

- a) Show that  $X \sim \mathcal{N}(\mu, \sigma^2)$  has mean equal to  $\mu$  and variance equal to  $\sigma^2$ .
- b) Let X be a random variable with cdf from Figure 1. Compute  $\mathrm{E}[X^2]$



Figure 1:  $F_X(x)$