Assignment 4

Assignment Date	19 October 2022
Student Name	SANDIYA S
Student Roll Number	737819ECR154
Maximum Marks	2 Marks

Question-1:

Write code and connections in wokwi for the ultrasonic sensor. Whenever the distance is less than 100 cms send an "alert" to the IBM cloud and display in the device recent events.

Solution:

```
#include <WiFi.h>//library for wifi
#include <PubSubClient.h>//library for MQtt
const int trigPin = 19;
const int echoPin = 18;
//----credentials of IBM Accounts-----
#define ORG "uue9b6"//IBM ORGANIZATION ID
#define DEVICE_TYPE "NodeMCU"//Device type mentioned in ibm watson IOT
Platform #define DEVICE_ID "12345"//Device ID mentioned in ibm watson IOT
Platform #define TOKEN "12345678"
                                      //Token
#define SOUND_SPEED 0.034
long duration;
float dist;
//----- Customize the above values ------
char server[] = ORG ".messaging.internetofthings.ibmcloud.com";
char publishTopic[] = "iot-2/evt/Data/fmt/json";
char subscribetopic[] = "iot-2/cmd/command/fmt/String";
char authMethod[] = "use-token-auth";// authentication method
char token[] = TOKEN;
char clientId[] = "d:" ORG ":" DEVICE TYPE ":" DEVICE ID;//client id
WiFiClient wifiClient; // creating the instance for wificlient
PubSubClient client(server, 1883, wifiClient); //calling the predefined
client id by passing parameter like server id, portand wificredential
```

```
void setup()// configuring the ESP32
  Serial.begin(115200);
  pinMode(trigPin,
  OUTPUT);
  pinMode(echoPin, INPUT);
  delay(10);
  Serial.println();
  wificonnect();
  mqttconnect();
}
void loop()// Recursive Function
{
  digitalWrite(trigPin, LOW);
  delayMicroseconds(2);
  digitalWrite(trigPin, HIGH);
  delayMicroseconds(10);
  digitalWrite(trigPin, LOW);
  duration = pulseIn(echoPin, HIGH);
  dist = duration * SOUND SPEED/2;
  // Prints the distance in the Serial Monitor
  Serial.print("Distance: ");
  Serial.print(dist);
  Serial.println(" cm");
  delay(1000);
  PublishData(dist)
  ; delay(1000);
  if (!client.loop())
   { mqttconnect();
  }
}
/*....retrieving to
Cloud.
void PublishData(float dist) {
  mqttconnect();//function call for connecting to ibm
  /*
     creating the String in form JSon to update the data to ibm cloud
  */
  if(dist<100)</pre>
  String payload = "{\"Alert! Distance is less than
  100\":"; payload += dist;
  payload += "}";
  Serial.print("Sending payload: ");
  Serial.println(payload);
  if (client.publish(publishTopic, (char*) payload.c_str())) {
    Serial.println("Publish ok");
  }
```

```
else {
    Serial.println("Publish failed");
  }
   }
  else{
     String payload = "{\"Distance\":";
     payload += dist;
     payload += "}";
     Serial.print("Sending payload: ");
     Serial.println(payload);
     if (client.publish(publishTopic, (char*) payload.c_str())) {
    Serial.println("Publish ok");
  } else {
    Serial.println("Publish failed");
  }
   }
}
void mqttconnect() {
  if (!client.connected()) {
    Serial.print("Reconnecting client to ");
    Serial.println(server);
    while (!!!client.connect(clientId, authMethod, token)) {
      Serial.print(".")
      ; delay(500);
    }
     Serial.println();
  }
}
void wificonnect() //function defination for wificonnect
  Serial.println();
  Serial.print("Connecting to ");
  WiFi.begin("Wokwi-GUEST", "", 6);//passing the wifi credentials to
establish the connection
  while (WiFi.status() != WL_CONNECTED) {
    delay(500);
    Serial.print(".");
  }
  Serial.println("");
  Serial.println("WiFi connected");
  Serial.println("IP address: ");
  Serial.println(WiFi.localIP());
}
```

OUTPUT IN WOKWI:

Wokwi link: https://wokwi.com/projects/348370628511793747