$\operatorname{LM-115}$ Suites et intégrales, MIME, deuxième semestre 2010-2011 Université Pierre et Marie Curie

Chapitre 5 : Intégration.

Exercice 1

Calculer les intégrales suivantes à l'aide de l'intégration par parties

- 1. $\int_0^1 \arctan(t) dt$
- 2. $\int_0^1 x \cos(x) dx$
- 3. $\int_{1}^{x}t^{n}\ln(t)dt$ où n est un entier relatif différent de -1.
- 4. $\int_{-\frac{1}{2}}^{\frac{1}{2}} \arcsin(x) dx$
- 5. $\int_0^1 (x^2 + x + 1)e^x dx$
- 6. $\int_0^1 \frac{u}{\sqrt{1+u}} du$.

Exercice 2 [Intégrales de Wallis]

Pour tout entier $n \geq 0$ on pose

$$W_n = \int_0^{\frac{\pi}{2}} \sin^n(t) dt$$

- 1. Calculer W_0 , W_1 , W_2 et W_3 .
- 2. Soit n un entier. En utilisant une intégration par parties montrer que

$$W_{n+2} = (n+1)(W_n - W_{n+2})$$

et exprimer W_{n+2} en fonction de W_n .

- 3. Calculer W_{2k} et W_{2k+1} en fonction de $k \in \mathbb{N}$.
- 4. Montrer que (W_n) est décroissante et strictement positive.
- 5. En exploitant l'inégalité $W_{n+1} \leq W_n \leq W_{n-1}$, montrer que

$$\lim_{n \to +\infty} \frac{W_n}{W_{n+1}} = 1$$

- 6. On pose $u_n=nW_nW_{n+1}$. Montrer par récurrence que pour tout n on a $u_n=\frac{n}{n+1}\pi$.
- 7. En conclure un équivalent simple de (W_n) .[On appelle équivalent d'une suite (u_n) une suite (α_n) telle que $\lim_{n\to+\infty}\frac{u_n}{\alpha_n}=1$]

Exercice 3

Pour tout entier $n \geq 0$ on pose

$$u_n = \int_0^1 \frac{x^n}{1+x} dx$$

- 1. Justifier l'existence de u_n pour tout entier naturel n.
- 2. Montrer que $u_n > 0$ pour tout n.
- 3. Montrer que la suite (u_n) est décroissante et converge vers 0.
- 4. Montrer que pour tout entier n on a

$$u_n = \frac{1}{2(n+1)} + \frac{1}{n+1} \int_0^1 \frac{x^{n+1}}{(1+x)^2}$$

5. Montrer que la suite $(2nu_n)$ converge vers 1. On dit que u_n est équivalent à $\frac{1}{2n}$.

Exercice 4

On pose pour tout entier n

$$I_n = \int_0^1 \frac{dt}{(1+t^2)^n}$$

A l'aide d'une intégration par parties, donner une relation entre I_n et I_{n+1} .

Exercice 5

Calculer, à l'aide d'un ou plusieurs changements variables, les intégrales suivantes :

1.
$$I_1 = \int_e^x \frac{dt}{t \ln^2(t)}$$
 où x est un réel, $x > e$

2.
$$I_2 = \int_{-1}^{\frac{1}{2}} \frac{t^2}{1-t^3} dt$$
 (on posera $u = \frac{1}{t}$).

3.
$$I_3 = \int_2^3 \ln(t^{\frac{1}{3}} - 1) dt$$
 (on posera $u = t^{\frac{1}{3}}$).

4.
$$I_4 = \int_1^x \frac{dt}{t\sqrt{1+t}}$$
 où x est un réel, $x > 1$ (on posera $u = \sqrt{1+t}$).

Exercice 6

Soit $f:[0,1]\to\mathbb{R}$ une fonction continue telle que

$$\int_0^1 f(t)dt = \frac{1}{2}$$

Montrer qu'il existe $\alpha \in]0,1[$ tel que $f(\alpha)=\alpha.$ On pourra introduire la fonction $G(x)=\int_0^x f(t)dt-\frac{x^2}{2}.$

Exercice 7

Réduire en éléments simples et calculer des primitives des fractions rationnelles suivantes :

1.
$$f(x) = \frac{x^2}{x^2 + x - 2}$$

2.
$$g(x) = \frac{x^3 - x^2 - 3x + 4}{x^2 - 2x + 1}$$

3.
$$h(x) = \frac{x+3}{x^2-3x-40}$$

4.
$$k(x) = \frac{10x^2 + 12x + 20}{x^3 - 8}$$

5.
$$l(x) = \frac{1}{x^2 + 2}$$

Exercice 8

Calculer les intégrales de fractions rationnelles suivantes :

1.
$$\int_0^1 \frac{dx}{x^2 + 2}$$

2.
$$\int_0^1 \frac{3x^2 + 10x + 5}{x^3 + 3x^2 - 4} dx$$

Exercice 9

Soit la suite (u_n) définie par

$$u_n = \sum_{k=1}^{n} \frac{1}{\sqrt{n(n+k)}}$$

Montrer que (u_n) converge et calculer sa limite.

Même chose avec la suite (v_n) définie par

$$v_n = \sum_{k=1}^n \frac{1}{n+k}$$

Exercice 10

Soit f dérivable sur [a, b] et M > 0 tels que

$$f(a) = f(b) = 0, \ \forall x \in [a, b], \ |f'(x)| \le M.$$

Montrer que

$$\left| \int_{a}^{b} f(x) dx \right| \le \frac{M \left(b - a \right)^{2}}{4}.$$

Exercice 11

Soit f une fonction continue sur [a,b] telle que pour toute fonction g continue sur [a,b] on ait

$$\int_{a}^{b} f(x)g(x)dx = 0.$$

Montrer que f est nulle sur [a, b].