Aplicaciones de Reconocimiento de Formas

Diseño de una red neuronal para el reescalado de imágenes

Jacobo López Fernández Juan Antonio López Ramírez

Máster en Inteligencia Artificial, Reconocimiento de Formas e Imagen Digital

Índice

- 1. Descripción de la tarea
- 2. Preparación de los datos y las métricas de evaluación
- 3. Redes generativas antagónicas (GAN)
- 4. Diseño e implementación de la GAN
- 5. Resultados obtenidos
- 6. Resumen y conclusiones

Descripción de la tarea

- Aumentar el tamaño de la imagen (+píxeles).
- Perder el menor número posible de información de la imagen original.
- Complejidad alta. Múltiples elementos en las imágenes (color, intensidad, etc.).
- Uso de Redes neuronales convolucionales (CNN).

Preparación de los datos y las métricas de evaluación

CIFAR

- · Clasificación.
- 1600 imágenes.
- 32 x 32 píxeles.

DIV2K

- Reescalado.
- 900 imágenes.
- 255 x 175 píxeles.

Preparación de los datos y las métricas de evaluación

Cargar la imágenes del dataset

Preparación de los datos y las métricas de evaluación

PSNR

SSIM

- Proporción máxima de señal a ruido (Peak Signal-to-Noise Ratio).
- Se expresa en escala logarítmica.
- Unidad: Decibelio (dB).
- Error cuadrático medio (MSE):

$$extit{MSE} = rac{1}{MN} \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} ||I(i,j) - K(i,j)||^2$$

Cálculo del PSNR:

$$PSNR = 20\log_{10}\left(\frac{256 - 1}{\sqrt{MSE}}\right)$$

- Valores típicos entre 30 y 50 dB.
- Cuanto mejor es la codificación, mayor PSNR.

- Índice de similitud estructural (*Structural similarity index metric*).
- Descomponer píxeles en luminancia, contraste y estructura.
- Resultado entre -1 y 1.
- Valores próximos a 1 indican que la imagen es muy similar a la original.

Redes generativas antagónicas (GAN)

- Unión de 2 redes neuronales que aprenden y evolucionan.
- Una de ellas (Discriminadora) evalúa a la otra (Generadora), mejorando los resultados iteración a iteración.
- Partiendo de una imagen en alta resolución, se crea su versión en baja resolución.
- A la GAN se le pasa esta versión, generando una en alta resolución y se compara con la original.

Red extractora de características

Convolution kernel 16x16

Convolution kernel 8x8

Convolution kernel 2x2

Red extractora de características

Imagen en baja resolución

Imagen en alta resolución

Imagen reconstruida

Estructura

Etapa de entrenamiento

Generador

Discriminador

Resultados obtenidos

CIFAR

PSNR : 68.40696327429706 SSIM : 0.787427844568284

PSNR : 72.3131682345178 SSIM : 0.8891737983309694

PSNR : 68.7088087255072 SSIM : 0.777759592227122

Resultados obtenidos

DIV2K

Resumen y conclusiones

- Diseño de una red generativa antagónica en Keras para aumentar la resolución de una imagen.
- Evaluación de recursos necesarios.
- Investigación sobre el funcionamiento de la GAN.
- Uso de Google Colaboratory.