

# CS/IS F214 Logic in Computer Science

### MODULE: PROPOSITIONAL LOGIC

### **Satisfiability and Disjunctive Normal Form**

11-09-2018 Sundar B. CS&IS, BITS Pilani 0

### **Disjunctive Normal Form (DNF)**

#### **RECALL**

 A propositional logic formula is said to be in **DNF** if the formula is a <u>disjunction of clauses</u>

i.e. it is of the form  $C_1 \vee C_2 \vee ... \vee C_n$ 

where each clause  $C_i$  is <u>a conjunction of literals</u>:

i.e. . it is of the form  $L_{i1} \wedge L_{i2} \wedge ... \wedge L_{im}$ 

where each literal  $L_{ij}$  is either <u>an atomic proposition</u> (p) or the <u>negation of an atomic proposition</u> ( $\neg p$ ).

• In Boolean logic, the DNF is referred to as the *Sum-of-Products* (*SOP*) form.



## Satisfiability and DNF

- Consider a formula φ in DNF:
  - Let  $\phi$  be  $C_1 \vee C_2 \vee ... \vee C_n$ 
    - Then φ is satisfiable <u>if and only if</u> C<sub>i</sub> is satisfiable for some i
  - Let a given clause C<sub>i</sub> be L<sub>i1</sub> \( L\_{i2} \) \( \ldots \) \( L\_{im} \)
    - Then, under what conditions will C<sub>i</sub> be satisfiable?



### **Satisfiability and DNF**

- Consider a formula φ in DNF:
  - Let  $\phi$  be  $C_1 \vee C_2 \vee ... \vee C_n$ 
    - Then φ is satisfiable <u>if and only if</u> C<sub>i</sub> is satisfiable for some i
- Let a given clause  $C_i$  be  $L_{i1} \wedge L_{i2} \wedge ... \wedge L_{im}$ 
  - Question:
    - Then, under what conditions will C<sub>i</sub> be satisfiable?
  - Answer:
    - C<sub>i</sub> will <u>not be satisfiable</u> only if it includes a proposition p and its negation i.e.:
      - there exist  $\mathbf{k}$  and  $\mathbf{l}$  such that  $\mathbf{L}_{ik}$  is  $\mathbf{p}$  and  $\mathbf{L}_{il}$  is  $\neg \mathbf{p}$  for some propositional atom  $\mathbf{p}$



### **Satisfiability and DNF**

• Exercises:

(Use the idea from the previous slide and)

- 1. Write an algorithm to check satisfiability of a given propositional logic formula in DNF
- 2. Calculate the cost of (i.e. time taken by) your algorithm.
- 3. Compare this cost with

the cost of checking satisfiability of a given propositional logic formula

not necessarily in DNF –

using the truth table (or *equivalently by testing a circuit*).



### SAT is not known to be in P

Consider this approach for solving SAT:



- •A2 is a *polynomial-time algorithm for testing satisfiability* of a formula in DNF.
- $\phi_{DNF} = |= \phi$
- What is the implication for conv?



#### Reduction

- A *reduction* from a decision problem  $\pi 1$  to a decision problem  $\pi 2$  is
  - a mapping **f** of the inputs of  $\pi$ **1** to the inputs of  $\pi$ **2** such that
    - $\pi 1(x)$  is TRUE iff  $\pi 2(f(x))$  is TRUE for all inputs x
- In algorithmic terms, if there is an algorithm A2 for solving  $\pi 2$ :



• then one can construct an algorithm A1 for  $\pi 1$ :



- Assumption:
  - There is an algorithm for f.



### **Reductions:**

- Recall the approach used to prove that a problem is undecidable using a known undecidable problem (e.g Halting problem).
- Can you generalize the implication of a reduction?

