Lista 8: Logarítmos 1

135. Calcule pela definição os seguintes logaritmos:

e)
$$\log_7 \frac{1}{7}$$

i)
$$\log_9 \frac{1}{27}$$

b)
$$\log_3 \frac{1}{9}$$

d)
$$\log_{\frac{1}{2}} 8$$

136. As indicações R₁ e R₂, na escala Richter, de dois terremotos estão relacionadas pela fórmula

$$R_1 - R_2 = log_{10} \left(\frac{M_1}{M_2} \right)$$

em que M₁ e M₂ medem a energia liberada pelos terremotos sob a forma de ondas que se propagam pela crosta terrestre. Houve dois terremotos: um correspondente a $R_1 = 8$ e outro correspondente a $R_2 = 6$. Calcule a razão $\frac{M_1}{M_2}$.

137. Calcule pela definição os seguintes logaritmos:

a)
$$\log_2 \sqrt{2}$$

d)
$$\log_{\sqrt{8}} \sqrt{32}$$

g)
$$\log_{\frac{1}{\sqrt{2}}} \sqrt{27}$$

e)
$$\log_{\sqrt[3]{5}} \sqrt[4]{5}$$
 h) $\log_{\sqrt[3]{4}} \frac{1}{\sqrt{8}}$

c)
$$\log_{100} \sqrt[3]{10}$$
 f) $\log_{\sqrt{27}} \sqrt[3]{9}$

i)
$$\log_{\sqrt{3}} \frac{1}{\sqrt[3]{3}}$$

138. Determine o conjunto verdade da equação $\log_{\frac{3}{2}} \sqrt[3]{\frac{25}{9}} = x$.

139. Calcule a soma S nos seguintes casos:

a)
$$S = \log_{100} 0,001 + \log_{1,5} \frac{4}{9} - \log_{1,25} 0,64$$

b)
$$S = \log_8 \sqrt{2} + \log_{\sqrt{2}} 8 - \log_{\sqrt{2}} \sqrt{8}$$

c)
$$S = log_{\sqrt[3]{9}} \sqrt{\frac{1}{27}} - log_{\sqrt[3]{0.5}} \sqrt{8} + log_{\sqrt[3]{100}} \sqrt[6]{0.1}$$

140. Calcule o valor de S:

$$S = log_4 (log_3 9) + log_2 (log_{81} 3) + log_{0.8} (log_{16} 32)$$

141. Calcule:

a) antilog₃ 4 b) antilog₁₆
$$\frac{1}{2}$$
 c) antilog₃ -2 d) antilog _{$\frac{1}{2}$} -4

d) antilog_{$$\frac{1}{2}$$} -4

142. Determine o valor de x na equação $y = 2^{\log_3(x+4)}$ para que y seja igual a 8.

144. Calcule o valor de:

a)
$$3^{\log_3 2}$$

e)
$$2^{1+\log_2 5}$$

f) $3^{2-\log_3 6}$

g)
$$8^{1+\log_2 3}$$

h) $9^{2-\log_3 \sqrt{2}}$

145. Calcule:

- **146.** Se $A = 5^{\log_{25} 2}$, determine o valor de A^3 .
- **147.** Determine o valor de A tal que $4^{\log_2 A} + 2A 2 = 0$.
- **149.** O logaritmo de um número na base 16 é $\frac{2}{3}$. Calcule o logaritmo desse número na base $\frac{1}{4}$.
- **150.** Determine o número cujo logaritmo na base $a \in 4$ e na base $\frac{a}{3} \in 8$.
- **151.** Calcule o logaritmo de 144 no sistema de base $2\sqrt{3}$.
- **152.** Determine a base do sistema de logaritmos no qual o logaritmo de $\sqrt{2}$ vale -1.
- **154.** Desenvolva, aplicando as propriedades dos logaritmos (a, b e c são reais positivos):

a)
$$\log_5\left(\frac{5a}{bc}\right)$$

a)
$$\log_5\left(\frac{5a}{bc}\right)$$
 d) $\log_3\left(\frac{a\cdot b^3}{c\cdot \sqrt[3]{a^2}}\right)$ g) $\log_2\sqrt{\frac{4a\sqrt{ab}}{b\sqrt[3]{a^2b}}}$

g)
$$\log_2 \sqrt{\frac{4a\sqrt{ab}}{b\sqrt[3]{a^2b}}}$$

b)
$$\log_3\left(\frac{ab^2}{c}\right)$$

e)
$$\log \sqrt{\frac{ab^3}{c^2}}$$

b)
$$\log_3\left(\frac{ab^2}{c}\right)$$
 e) $\log\sqrt{\frac{ab^3}{c^2}}$ h) $\log\left(\sqrt[3]{\frac{a^4\sqrt{ab}}{b^2\sqrt[3]{bc}}}\right)^2$

c)
$$\log_2\left(\frac{a^2\sqrt{b}}{\sqrt[3]{c}}\right)$$
 f) $\log\sqrt[3]{\frac{a}{b^2\cdot\sqrt{c}}}$

f)
$$\log \sqrt[3]{\frac{a}{b^2 \cdot \sqrt{c}}}$$

- **155.** Se m = $\frac{b \cdot c}{d^2}$, determine log m.
- **156.** Seja $x = \frac{\sqrt{a}}{bc}$. Calcule log x.
- **157.** Desenvolva, aplicando as propriedades dos logaritmos (a > b > c > 0):

a)
$$\log_2 \frac{2a}{a^2 - b^2}$$

c)
$$\log \left(c \cdot \sqrt[3]{\frac{a(a+b)^2}{\sqrt{b}}} \right)$$

b)
$$log_3\left(\frac{a^2\sqrt{bc}}{\sqrt[5]{(a+b)^3}}\right)$$

d)
$$\log \left(\frac{\sqrt[5]{a(a-b)^2}}{\sqrt{a^2+b^2}} \right)$$

158. Qual é a expressão cujo desenvolvimento logarítmico é:

$$1 + \log_2 a - \log_2 b - 2 \log_2 c$$
 (a, b e c são reais positivos)?

- **163.** O pH de uma solução é definido por pH = $log_{10}\left(\frac{1}{H^+}\right)$, em que H⁺ é a concentração de hidrogênio em íons-grama por litro de solução. Determine o pH de uma solução tal que $H^+ = 1.0 \cdot 10^{-8}$.
- **164.** Sabendo que log 2 = 0,3010, determine o valor da expressão log $\frac{125}{\sqrt[5]{2}}$
- **165.** Se $\log_{10} 2 = 0.301$, calcule o valor da expressão $\log_{10} 20 + \log_{10} 40 + \log_{10} 800$.
- 166. Determine a razão entre os logaritmos de 16 e 4 numa base qualquer.
- **167.** Se $\log a + \log b = p$, calcule o valor de $\log \frac{1}{a} + \log \frac{1}{b}$.
- **168.** Se $\log_2 (a b) = m$ e (a + b) = 8, determine $\log_2 (a^2 b^2)$.
- **169.** A soma dos logaritmos de dois números na base 9 é $\frac{1}{2}$. Determine o produto desses números.
- **170.** Se $\log_a x = n$ e $\log_a y = 6n$, calcule $\log_a \sqrt[3]{x^2y}$.

176. Sabendo que $log_{20} 2 = a$ e $log_{20} 3 = b$, calcule $log_6 5$.

177. Se
$$\log_{ab} a = 4$$
, calcule $\log_{ab} \frac{\sqrt[3]{a}}{\sqrt{b}}$.

178. Se
$$\log_{12} 27 = a$$
, calcule $\log_6 16$.

179. Calcule o valor de $log_{0,04}$ 125.

180. Se $log_2 m = k$, determine o valor de $log_8 m$.

181. Dados $log_{10} 2 = a e log_{10} 3 = b$, calcule $log_9 20$.

182. Calcule o valor de $\log_3 5 \cdot \log_{25} 27$.

183. Se m = log_b a, m
$$\neq$$
 0, calcule log _{$\frac{1}{2}$} b².

184. Determine o valor de

$$\log_3 2 \cdot \log_4 3 \cdot \log_5 4 \cdot \log_6 5 \cdot \log_7 6 \cdot \log_8 7 \cdot \log_9 8 \cdot \log_{10} 9$$

185. Se ab = 1, calcule
$$\log_b \sqrt{a}$$
.

186. Sabendo que $\log_{14} 7 = a$ e $\log_{14} 5 = b$, calcule o valor de $\log_{35} 28$.

Sugestão:
$$28 = \frac{14^2}{7}$$
.