INTEGRAÇÃO DE DADOS I:

DATA LAKE

BIBLIOGRAFIA

- SIMON, Alan. Data Lakes For Dummies. 1st edition. 2021 (livro eletrônico)
- GORELIK, Alex. What Is a Data Lake? 1st edition. 2020 (livro eletrônico)
- material da Profa. Sheila Dias
- material do Prof. Claudiney Ramos

 conceito relativamente recente (2010), criado por James Dixon, então CTO (Chief Technical Officer) do Pentaho.

 a ideia é ter um único repositório dentro da empresa, para que todos os dados brutos estejam disponíveis a qualquer pessoa que precise fazer análise sobre eles.

• é como um reservatório.

- primeiro você cria a estrutura (um cluster) e depois enche de água (dados);
- depois que o lago estiver pronto, você começa a usar a água (dados) para várias finalidades, como geração de energia e consumo (análises preditivas, etc.)

"pode ser definido como armazenamento centralizado, consolidado e persistente de dados brutos, não modelados e não transformados, de múltiplas fontes, sem um esquema pré-definido explícito e sem metadados definidos externamente."

- Características:
 - "suporta aquisição de dados de forma ágil;
 - modelo de armazenamento natural para dados complexos e multi estruturados;
 - suporte para computação não relacional eficiente; e
 - fornecimento de armazenamento econômico de grandes e variados conjuntos de dados."

DATA LAKE, ETL, ELT E ELTL

ELT - Data Lakehouse

 envolve a carga de dados imediatamente em um mecanismo de armazenamento escalável e de baixo custo.

 em seguida, os dados são transformados e novamente carregados em uma camada de apresentação mais avançada.

• é útil quando há uma variedade de fontes de dados que serão utilizadas para uma série de propósitos.

LIII

 é particularmente útil ao implementar uma solução de integração de dados em uma plataforma de nuvem.

 um Data Lake pode ser estabelecido para propósitos de data science e data discovery, com diferentes segmentos dos dados sendo processados.

Abordagem de Integração	Como funciona	Quando utilizar
ETL	DWs pequenos/médios – as transformações ocorrem "on the flight" dentro da ferramenta ETL	 Volumes tipicamente < 1 TB
ELT (com data warehouse)	As transformações ocorrem em um DW em nuvem, usando SQL e processamento paralelo	 Processamento no DW corporativo, sem o uso de data lakes
ELTL (com data warehouse + data lake)	Carrega os dados brutos no data lake, usa um motor de processamento para fazer as transformações	 Suporte a reporting, ML, e analytics avançado – volumes de TB, PB e EB

Modern Data Warehouse

DATA WAREHOUSE X DATA LAKE

Data Warehouse	Data Lake
Dados Estruturados	Dados não estruturados, semiestruturados, e estruturados.
Esquema definido na escrita	Esquema definido na leitura
BI baseado em SQL	Ciência de dados, análise preditiva, BI
Armazenamento de dados frequentemente acessados, assim como dados agregados e sumarizados	Armazenamento de dados detalhados, brutos e, também, processados
Acoplamento entre o armazenamento e o processamento	Separação entre o armazenamento e o processamento

Governança de Dados

Qualidade de dados

Pântano de Dados

DATA WAREHOUSE

Vantagens:

- **1. Alta performance:** Estrutura otimizada para consultas complexas e análises rápidas.
- Qualidade dos dados: Dados estruturados e bem organizados garantem consistência e integridade.
- 3. Ferramentas de BI: Integração com diversas ferramentas de Business Intelligence, facilitando a análise e visualização.

Desvantagens

- **1. Custo elevado:** Implementação e manutenção podem ser caras.
- 2. Flexibilidade limitada: Difícil de escalar para novos tipos de dados ou grandes volumes não estruturados.
- **3. Tempo de preparação:** Processo de ETL (Extract, Transform, Load) pode ser demorado e complexo.

Vantagens:

- Flexibilidade: Capaz de armazenar grandes volumes de dados estruturados e não estruturados.
- **2. Custo-benefício:** Geralmente mais barato de implementar e escalar.
- 3. Agilidade: Permite o armazenamento de dados na sua forma bruta, possibilitando diferentes formas de análise posterior.

Desvantagens

- 1. Complexidade na gestão de dados: Sem uma gestão adequada, pode se transformar em um "lago de dados sujos" (pântano de dados).
- 2. Performance de consultas: Consultas podem ser mais lentas em comparação aos Data Warehouses.
- Governança de dados: Dificuldade em garantir a qualidade e consistência dos dados.

DATA LAKEHOUSE

Vantagens:

- União de benefícios: Combina a performance analítica dos DW com a flexibilidade dos Data Lakes.
- Economia de custos: Redução de custos ao consolidar infraestrutura de DW e Data Lake.
- 3. Escalabilidade: Facilmente escalável para grandes volumes de dados estruturados e não estruturados.

Desvantagens

- Complexidade de implementação: Requer um planejamento detalhado e expertise técnica para configurar corretamente.
- **2. Tecnologia emergente:** Ainda em evolução, podendo apresentar desafios de maturidade e suporte.
- 3. Custo inicial: Investimento inicial pode ser alto devido à complexidade e necessidade de novas ferramentas.

Dúvidas, Perguntas ou Sugestões?

