Quiz3

- 一、填空题(每题4分,总计20分)
- 1. 比较二重积分① $\iint_D \ln(x+y) d\sigma$ 与② $\iint_D \left[\ln(x+y)\right]^2 d\sigma$ 的大小,其中 D 是三角型闭区域,三个顶点分别为(1,0)、(1,1)、(2,0). ______。
- 3. 计算曲线积分 $I = \oint_L (x+y)ds$,其中 L 是以 A(1,0,0),B(0,1,0),C(0,0,1) 为顶点的三角形路径____。
- 4. 计算 $\int_L y dx + x dy$, 其中 L 表示沿抛物线 $y = 2x^2$, 从 (0,0) 到 (1,2).______。
- 5. 签到题, 估测此次 quiz 的平均分_______
- 二、解答题(每题10分,总计80分)
- 1. 求 $\iint_{D} x \cos^{2}(x-y) dx dy$, 其中 D 是以点 $(\pi,0)$, $(3\pi,2\pi)$, $(2\pi,3\pi)$, $(0,\pi)$ 为顶点的平行四边形。
- 2. 求 $\iint_V \frac{1}{x^2+y^2} dx dy dz$, 其中V是由平面x=1, x=2, z=0, y=x, z=y 围成的闭区域。
- 3. 求 $\iiint_{V} (x-2y+3z)^2 dxdydz$, 其中 $V: x^2 + y^2 + z^2 \le R^2$ 。
- 4. 求 $\oint_L \sqrt{x^2 + y^2} ds$, 其中 $L: x^2 + y^2 = ax$ 。
- 5. 求曲面积分 $I = \iint_{\Sigma} \left(xy + zx + \frac{az}{\sqrt{a^2 + 4\left(x^2 + y^2\right)}} \right) dS$,其中 Σ 为旋转抛物面 $az = x^2 + y^2$ 被柱面 $x^2 + y^2 = 2ay$ 所割下的部分(a > 0)。
- 6. 求曲线积分 $\int_{L} \frac{(3y-x)dx+(y-3x)dy}{(x+y)^{3}}, 其中 L 是点 A\left(\frac{\pi}{2},0\right)$ 沿曲线 $y = \frac{\pi}{2}\cos x$ 到点 $B\left(0,\frac{\pi}{2}\right)$ 的弧段。
- 7. 求曲线积分 $\oint_L \frac{xdy ydx}{x^2 + y^2}$, 其中 $L: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a, b > 0)$, 取逆时针方向即正向。
- 8. 求曲面积分 $\iint_{\Sigma} (x+1) dy dz + y dz dx + dx dy$, 其中 Σ 是球面 $x^2 + y^2 + z^2 = 1$ 在第一卦限的部分,取外侧。