

ITA OBJETIVO 3

QUÍMICA

Dados

- Constante de Avogadro, $N_{\rm A} = 6.02 \cdot 10^{23}\,{\rm mol}^{-1}$ Constante de Faraday, $F = 96\,500\,{\rm C\,mol}^{-1}$
- Carga elementar, $e = 1.6 \cdot 10^{-19} \,\mathrm{C}$
- Constante de Planck, $h = 6.6 \cdot 10^{-34} \,\mathrm{m^2 \,kg \,s^{-1}}$
- Constante de autoionização da água, $K_{\rm w}=1\cdot 10^{-14}$ Velocidade da luz no vácuo, $c=3\cdot 10^8\,{\rm m\,s^{-1}}$
- Constante dos gases, $R = 8.31 \,\mathrm{J \, K^{-1} \, mol^{-1}}$
- Constante de Rydberg, $\mathcal{R} = 1.1 \cdot 10^7 \,\mathrm{m}^{-1}$

Definições

- Composição do ar atmosférico: 79% N_2 e 21% O_2

Aproximações Numéricas

- $\sqrt{2} = 1.4$
- $\sqrt{3} = 1.7$ $\sqrt{5} = 2.2$ $\log 2 = 0.3$ $\log 3 = 0.5$ $\ln 10 = 2.3$

Tabela Periódica

Elemento Químico	Número Atômico	$\begin{array}{c} {\rm Massa~Molar} \\ {\rm (gmol^{-1})} \end{array}$	Elemento Químico	Número Atômico	$\begin{array}{c} {\rm Massa~Molar} \\ {\rm (gmol^{-1})} \end{array}$
H C N	1 6 7	1,01 12,01 14,01	Mg Al S	12 13 16	$24,31 \\ 26,98 \\ 32,06$
O Na	8 11	16,00 $22,99$	Cl Br	17 35	$35,45 \\ 79,90$

Questão 49. Assinale a alternativa com o número total de isômeros (constitucionais e estereoisômeros) com fórmula molecular C₄H₉N.

- **A**() 11
- **B**() 13
- **C**() 15
- **D**() 17
- **E**() 19

Questão 50. Considere as proposições.

- 1. A configuração eletrônica do sódio é [Ne] 3s1, e não [Ne] 3p1, devido à maior penetrabilidade do orbital 3s, que torna a blindagem dos elétron com número quântico principal n=2 menos efetiva.
- 2. Para elementos de um mesmo período n da tabela periódica, a energia dos orbitais ns e np diminui com o aumento do número atômico, entretanto, a energia dos orbitais ns cai mais rapidamente que a dos orbitais np.
- 3. Para elementos de um mesmo grupo da tabela periódica, é esperado que o número de oxidação mais comum seja maior para os elementos com maior número atômico.
- 4. O raio atômico dos lantanídios é aproximadamente igual, variando apenas em alguns picômetros entre todos os quatorze elementos.

Assinale a alternativa que relaciona as proposições corretas.

 $\mathbf{A}(\)$ $\mathbf{1} \in \mathbf{2}$

B() 1 e 4

C() 2 e 4

D() 1, 2 e 4 E() 1, 2, 3 e 4

Questão 51. oi

Considere as proposições.

1. lá

Questão 52. oi

Questão 53. oi

Questão 54. v

Questão 55. oi

Questão 56. oi

Questão 57. oi

Questão 58. oi

Questão 59. oi

Questão 60. As três primeiras energias de ionização do átomo de alumínio são $6,0\,\mathrm{eV},\,19\,\mathrm{eV}$ e $28\,\mathrm{eV}$ e a afinidade eletrônica do átomo de bromo é $3,4\,\mathrm{eV}.$

${\rm Dados\ em\ 298K}$	Al(g)	$\mathrm{Br}(\mathrm{g})$	$\mathrm{AlBr}_3(s)$
Entalpia padrão de formação, $\Delta H_{ m f}^{\circ}/{{ m kJ}\over m mol}$	+326	+112	-530

Assinale a alternativa que mais se aproxima da entalpia de rede do brometo de alumínio em 298 K.

- $\mathbf{A}(\)\ 1,2\,\mathrm{MJ\,mol}^{-1}$
- $\mathbf{B}(\)\ 2.7\,\mathrm{MJ\,mol}^{-1}$
- $\mathbf{C}()$ 4,1 MJ mol⁻¹

- $\mathbf{D}(\)\ 5.3\,\mathrm{MJ\,mol}^{-1}$
- $\mathbf{E}(\)\ 8,4\,\mathrm{MJ\,mol}^{-1}$