UGANDA MARTYRS UNIVERSITY FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND STATISTICS

University Examinations, Semester I 2012/2013

Third Year Examination for the Degree of Bachelor of Science (FM)

MTF 3103 Functional Analysis

Thursday 13 December 2012

Time: 9:00 - 12:00 noon

Instructions

- (i) Answer Five questions
- (ii) Write on both sides of the paper but begin a new question on a fresh page.

- 1. Let X be a nonempty set.
 - (a) (i) Define a metric d on X. (3 Marks)
 - (ii) Define a metric on X by

$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$$

Show that (X, d) is a metric space. (5 Marks)

- (b) Let $f: X \longrightarrow Y$ be a mapping between metric spaces X and Y.
 - (i) What does it mean to say that f is continuous? (2 Marks)
 - (ii) Show that f is continuous if and only if for every open set U in Y, $f^{-1}(U)$ is open in X. (4 Marks)
- (c) Let (x_n) be a sequence in a metric space X.
 - (i) Explain what it means to say that (x_n) converges in X. (2 Marks)
 - (ii) Prove that every convergent sequence in X is a Cauchy sequence. (4 Marks)
- 2. (a) Let X be a metric space.
 - (i) What does it mean to say that X is a complete metric space? (2 Marks)
 - (ii) Prove that if $X = \mathbb{R}^n$ with the usual metric, then X is a complete metric space. (5 Marks)
 - (b) Let X be a linear space.
 - (i) Define a norm $\| . \|$ on X. (3 Marks)
 - (ii) When is X said to be a Banach space? (1 Mark)
 - (iii) Show that a metric d induced by a norm on X satisfies d(x+a,y+a)=d(x,y) and $d(\alpha x,\alpha y)=|\alpha|d(x,y)$, for all x,y,a in X and any scalar α . (4 Marks)
 - (c) Prove that if $\dim X < \infty$, then X is complete normed space. (5 Marks)
- 3. (a) Let X be a normed linear space.
 - (i) What does it mean to say that the two norms $\| \ . \ \|_1$ and $\| \ . \ \|_2$ on X are equivalent? (2 Marks)
 - (ii) Show that if two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ on X are equivalent, then $\|x_n x\|_1 \longrightarrow 0$ implies $\|x_n x\|_2 \longrightarrow 0$. (3 marks)
 - (iii) Prove that any two norms on a finite dimensional linear space X are equivalent. (5 Marks)
 - (b) Let $T:X\longrightarrow Y$ be an operator between normed spaces X and Y. Explain the following phrases:
 - (i) T is a bounded linear operator (2 Marks)
 - (ii) T is continuous (2 Marks)
 - (c) Let $T:X\longrightarrow X$ be a linear operator. Prove that if X is finite dimensional,then T is bounded. (6 Marks)

4. Let X be a linear space.

- (a) (i) Define an inner product on X. (4 Marks)
 - (ii) What does it mean to say that X is a Hilbert space? (1 Mark)
- (b) (i) State and prove the parallelogram equality for a norm on an inner product space X. (5 Marks)
 - (ii) With clear illustrations, show that the space l^p with $p \neq 2$ is not a Hilbert space. (5 Marks)
- (c) State and prove the Cauchy-Schwartz inequality. (5 Marks)
- 5. (a) (i) Explain what it means to say that a set M in a Hilbert space H is orthonormal. (2 Marks)
 - (ii) Show that every orthonormal set is linearly independent. (5 Marks)
 - (iii) Show that if $\langle x, y \rangle = \langle x, z \rangle$ for all x in a Hilbert space H, then y = z. (3 Marks)
 - (b) Let $T: H_1 \longrightarrow H_2$ be a bounded linear operator between Hilbert spaces H_1 and H_2 .
 - (i) Define the Hilbert-adjoint operator T^* of T. (2 Marks)
 - (ii) Show that $\langle T^*y, x \rangle = \langle y, Tx \rangle$. (2 Marks)
 - (c) Let (x_n) be a sequence in a normed space X.
 - (i) Define strong and weak convergence of (x_n) . (2 Marks)
 - (ii) Show that if (x_n) converges strongly to $x \in X$, then it converges weakly to $x \in X$. (4 Marks)
 - 6. Let X be an inner product space.
 - (a) (i) Explain what it means to say that $x, y \in X$ are orthogonal. (1 Mark)
 - (ii) Show that if x is orthogonal to y in X, then $\parallel x+y\parallel^2=\parallel x\parallel^2+\parallel y\parallel^2$. (4 Marks)
 - (b) (i) Show that $||x||^2 = \langle x, x \rangle$ defines a norm on X. (5 Marks)
 - (ii) Let (x_n) and (y_n) be sequences in X such that $x_n \longrightarrow x, y_n \longrightarrow y$ as $n \longrightarrow \infty$ with $x, y \in X$. Show that $\langle x_n, y_n \rangle \longrightarrow \langle x, y \rangle$ as $n \longrightarrow \infty$. (5 Marks)
 - (c) Let $\{e_1, e_2, ..., e_n\}$ be an orthonormal set in X with $y = \sum_{i=1}^{\infty} \langle x, e_i \rangle e_i$. Show that for any $x \in X$ defined by z = x y, then $z \perp y$. (5 Marks)