home :: syllabus :: groups :: © 2024, Tim Menzies

# 1 Middle, and Diversity around Middle

Here's the great secret about optimization and data mining

- under the hood, they share a lot of the same structures
- data mining divides up the world
- optimizers comment where to jump between the divisions.

So here we want to talk about the data and operations relevant to columns and rows of data.

|             | $\{{\tt Clndrs}$ | Volume | Нрх | Lbs- | Acc+ | Model | origin | Mpg+} |
|-------------|------------------|--------|-----|------|------|-------|--------|-------|
|             |                  |        |     |      |      |       |        |       |
| t1= {cells= | {4               | 97     | 52  | 2130 | 24.6 | 82    | 2      | 40}}  |
| t2= {cells= | {4               | 97     | 54  | 2254 | 23.5 | 72    | 2      | 20}}  |
| t3= {cells= | {4               | 97     | 78  | 2188 | 15.8 | 80    | 2      | 30}}  |
| t4= {cells= | {4               | 151    | 90  | 2950 | 17.3 | 82    | 1      | 30}}  |
| t5= {cells= | {6               | 200    | ?   | 2875 | 17   | 74    | 1      | 20}}  |
| t6= {cells= | {6               | 146    | 97  | 2815 | 14.5 | 77    | 3      | 20}}  |
| t7= {cells= | 8}               | 267    | 125 | 3605 | 15   | 79    | 1      | 20}}  |
| t9= {cells= | 8}               | 307    | 130 | 4098 | 14   | 72    | 1      | 10}}  |

Things to watch for are

- table, row, column (attribute, feature, goal)
- nominal, ratio, SYM, NUM, SOME
- mid, mean, median, mode
- div, entropy, standard deviation, IQR
- parametric (normal, Gaussian), non-parametric (reservoir sampling)
- multi-goal, many-goal
  - binary, continuous domination (cdom, Ziztler)
- distance: Euclidean, p

### 2 Kinds of of Attributes (aka Columns, Variables, Features)

|                     | Nominal                                 | Ordinal      | Interval                                                 | Ratio              |
|---------------------|-----------------------------------------|--------------|----------------------------------------------------------|--------------------|
| used in this cla    | ss y                                    | n            | n                                                        | У                  |
| aka                 | SYMbolic                                |              |                                                          | NUMeric            |
| e.g.                | eye color, genotype                     | small,medium | temperature                                              | weight,length      |
| compare $\neq$ , =, | Y                                       | Y            | Y                                                        | Y                  |
| order, sort <,      | N                                       | Y            | Y                                                        | Y                  |
| >                   |                                         |              |                                                          |                    |
| + or -              | N                                       | N            | Y                                                        | Y                  |
| * or /              | N                                       | N            | N                                                        | Y                  |
| centrality(mid)     | mode(most common                        | mode         | mean $(\sum_i x_i)/n$ median (50th                       | mean,median        |
|                     | symbol)                                 |              | percentile)                                              |                    |
| diversity(div)      | entropy (effort to                      | entropy      | standard deviation (distances                            | standard deviation |
|                     | recreate signal)                        |              | from the mean)                                           |                    |
|                     | $e = -\sum_{i} (p_i \times log_2(p_i))$ |              | $\sqrt{\sum_i (x_i - \mu)^2}$                            |                    |
|                     |                                         |              | $\sigma = \sqrt{\frac{\sum_{i}(x_i - \mu)^2}{n-1}}$ IQR: |                    |
|                     |                                         |              | inter-quartile                                           |                    |
|                     |                                         |              | range(75th-25th) percentile                              |                    |

### 2.1 Class SYM

Here are some classes to compute the important parts of the above:

```
SYM = obj"SYM"
function SYM.new(i) --> SYM; constructor
  i.n
      = 0
  i.has = {}
  i.most, i.mode = 0,nil end
function SYM.add(i,x) --> nil; update counts of things seen so far
  if x \sim = "?" then
   i.n = i.n + 1
   i.has[x] = 1 + (i.has[x] or 0)
   if i.has[x] > i.most then
     i.most,i.mode = i.has[x], x end end end
function SYM.mid(i,x) return i.mode end --> n; return the mode
function SYM.div(i,x) --> n; return the entropy, calculated via Shannon entropy
  local function fun(p) return p*math.log(p,2) end
  local e=0; for ,n in pairs(i.has) do e = e + fun(n/i.n) end
  return -e end
```



By the way, to understand SYM.div (entropy), think of it as

- the effort required by binary chop to find clumps of a signal hiding in a stream of noise
- e.g. in a vector of size 4,

- nazis have a "1" near one end
- and England are all the other bits
- This means that 1/4% of the time we need to do binary chops to find nazies (i.e.  $p_{nazis} = .25$ )
- and 75% if the time we need to binary chops to find Englad (i.e.  $p_{england}$ =.75)
- Each chop will cost us  $log2(p_i)$  so the total effort is  $e = -\sum_i (p_i \times log_2(p_i))$ 
  - \* By convention, we add a minus sign at the front (else all entropies will be negative).

(Actually, formally entropy has other definition: - The entropy of a discrete random variable is a lower bound on the expected number of bits required to transfer the result of the random variable. - Also, entropy of continuous distributions is defined, but we do not use that in this subject.)

### 2.2 Class NUM

```
NUM = obj"NUM"
function NUM.new(i) --> NUM; constructor;
i.n, i.mu, i.m2 = 0, 0, 0
i.lo, i.hi = math.huge, -math.huge end

function NUM.add(i,n) --> NUM
  if n ~= "?" then
    i.n = i.n + 1
    local d = n - i.mu
    i.mu = i.mu + d/i.n
    i.m2 = i.m2 + d*(n - i.mu)
    i.lo = math.min(n, i.lo)
    i.hi = math.max(n, i.hi) end end

function NUM.mid(i,x) return i.mu end --> n; return mean

function NUM.div(i,x) --> n; return standard deviation using Welford's algorithm http://treturn (i.m2 <0 or i.n < 2) and 0 or (i.m2/(i.n-1))^0.5 end</pre>
```

### 2.2.1 So-called "Normal" Curves

If we are talking standard deviation, then we had better talk about normal curves.

The French mathematician Abraham de Moivre [^deMo1718] notes that probabilities associated with discretely generated random variables (such as are obtained by flipping a coin or rolling a die) can be approximated by the area under the graph of an exponential function.

This function was generalized by Laplace[^Lap1812] into the first central limit theorem, which proved that probabilities for almost all independent and identically distributed random variables converge rapidly (with sample size) to the area under an exponential function—that is, to a normal distribution.

This function was extended, extensively by Gauss. Now its a curve with an area under the curve of one. As standard deviation shrinks, the curve spikes upwards.



To sample from a normal curve from a Gaussian with mean mu and diversity sd

$$mu + sd * sqrt(-2 * log(random)) * cos(2 * pi * random)$$

*Beware:* Not all things are normal Gaussians. If you want to get fancy, you can use Weibull functions to make a variety of shapes (just by adjusting  $\lambda, k$ ):

$$f(x; \lambda, k) = \begin{cases} \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^k}, & x \ge 0, \\ 0, & x < 0, \end{cases}$$



Or you could forget all about parametric assumptions. Many things get improved by going beyond the Gaussian guess  $^1$ : Not everything is best represented by a smooth curve with one peek that is symmetrical around that peek:

 $<sup>^1</sup>$ James Dougherty, Ron Kohavi, Mehran Sahami: Supervised and Unsupervised Discretization of Continuous Features. ICML 1995: 194-202



All that said, Gaussians take up far less space and are very easy to update. So all engineers should know their gaussians.

# 3 Bayes Classifier

A Bayes classifier is a simple statistical-based learning scheme.

### Advantages:

- Tiny memory footprint
- · Fast training, fast learning
- Simplicity
- Often works surprisingly well

### Assumptions

- · Learning is done best via statistical modeling
- Attributes are
  - equally important
  - statistically independent (given the class value)
  - Which means that knowledge about the value of a particular attribute doesn't tell us anything about the value of another attribute (if the class is known)

Although based on assumptions that are almost never correct, this scheme works well in practice  $^2$ .

 $<sup>^2</sup>$ Pedro Domingos and Michael Pazzani. 1997. On the Optimality of the Simple Bayesian Classifier under Zero-One Loss. Mach. Learn. 29, 2-3 (November 1997), 103-130

Table 1. Classification accuracies and sample standard deviations, averaged over 20 random training/test splits. "Bayes" is the Bayesian classifier with discretization and "Gauss" is the Bayesian classifier with Gaussian distributions. Superscripts denote confidence levels for the difference in accuracy between the Bayesian classifier and the corresponding algorithm, using a one-tailed paired t test: 1 is 99.5%, 2 is 99%, 3 is 97.5%, 4 is 95%, 5 is 90%, and 6 is below 90%.

| Data Set         | Bayes           | Gauss                 | C4.5                  | PEBLS                 | CN2                   | Def. |
|------------------|-----------------|-----------------------|-----------------------|-----------------------|-----------------------|------|
| Audiology        | 73.0±6.1        | 73.0±6.1 <sup>6</sup> | 72.5±5.8 <sup>6</sup> | 75.8±5.4 <sup>3</sup> | 71.0±5.1 <sup>5</sup> | 21.3 |
| Annealing        | $95.3 \pm 1.2$  | $84.3 \pm 3.8^{1}$    | $90.5{\pm}2.2^{1}$    | $98.8 \pm 0.8^{1}$    | $81.2\pm5.4^{1}$      | 76.4 |
| Breast cancer    | $71.6 \pm 4.7$  | $71.3\pm4.3^{6}$      | $70.1\pm6.8^{5}$      | $65.6\pm4.7^{1}$      | $67.9 \pm 7.1^{1}$    | 67.6 |
| Credit           | $84.5 \pm 1.8$  | $78.9 \pm 2.5^{1}$    | $85.9\pm2.1^3$        | $82.2\pm1.9^{1}$      | $82.0\pm2.2^{1}$      | 57.4 |
| Chess endgames   | $88.0 \pm 1.4$  | $88.0\pm1.4^{6}$      | $99.2 \pm 0.1^{1}$    | $96.9 \pm 0.7^{1}$    | $98.1 \pm 1.0^{1}$    | 52.0 |
| Diabetes         | $74.5 \pm 2.4$  | $75.2\pm2.1^{6}$      | $73.5\pm3.4^{5}$      | $71.1\pm2.4^{1}$      | $73.8\pm2.7^{6}$      | 66.0 |
| Echocardiogram   | $69.1 \pm 5.4$  | $73.4\pm4.9^{1}$      | $64.7 \pm 6.3^{1}$    | $61.7\pm6.4^{1}$      | $68.2 \pm 7.2^{6}$    | 67.8 |
| Glass            | $61.9 \pm 6.2$  | $50.6 \pm 8.2^{1}$    | $63.9 \pm 8.7^{6}$    | $62.0\pm7.4^{6}$      | $63.8 \pm 5.5^{6}$    | 31.7 |
| Heart disease    | $81.9 \pm 3.4$  | $84.1\pm2.8^{1}$      | $77.5\pm4.3^{1}$      | $78.9 \pm 4.0^{1}$    | $79.7\pm2.9^{3}$      | 55.0 |
| Hepatitis        | $85.3 \pm 3.7$  | $85.2\pm4.0^{6}$      | $79.2 \pm 4.3^{1}$    | $79.0\pm5.1^{1}$      | $80.3\pm4.2^{1}$      | 78.1 |
| Horse colic      | $80.7 \pm 3.7$  | $79.3\pm3.7^{1}$      | $85.1\pm3.8^{1}$      | $75.7\pm5.0^{1}$      | $82.5\pm4.2^{2}$      | 63.6 |
| Hypothyroid      | $97.5 \pm 0.3$  | $97.9\pm0.4^{1}$      | $99.1 \pm 0.2^{1}$    | $95.9\pm0.7^{1}$      | $98.8 \pm 0.4^{1}$    | 95.3 |
| Iris             | $93.2 \pm 3.5$  | $93.9 \pm 1.9^{6}$    | $92.6\pm2.7^{6}$      | $93.5\pm3.0^{6}$      | $93.3\pm3.6^{6}$      | 26.5 |
| Labor            | $91.3 \pm 4.9$  | $88.7 \pm 10.6^6$     | $78.1 \pm 7.9^{1}$    | $89.7 \pm 5.0^{6}$    | $82.1\pm6.9^{1}$      | 65.0 |
| Lung cancer      | $46.8 \pm 13.3$ | $46.8\pm13.3^{6}$     | $40.9\pm16.3^{5}$     | $42.3\pm17.3^{6}$     | $38.6 \pm 13.5^3$     | 26.8 |
| Liver disease    | $63.0 \pm 3.3$  | $54.8\pm5.5^{1}$      | $65.9 \pm 4.4^{1}$    | $61.3\pm4.3^{6}$      | $65.0\pm3.8^{3}$      | 58.1 |
| LED              | $62.9 \pm 6.5$  | $62.9\pm6.5^{6}$      | $61.2\pm8.4^{6}$      | $55.3\pm6.1^{1}$      | $58.6 \pm 8.1^2$      | 8.0  |
| Lymphography     | $81.6 \pm 5.9$  | $81.1 \pm 4.8^{6}$    | $75.0\pm4.2^{1}$      | $82.9\pm5.6^{6}$      | $78.8 \pm 4.9^{3}$    | 57.3 |
| Post-operative   | $64.7 \pm 6.8$  | $67.2\pm5.0^{3}$      | $70.0\pm5.2^{1}$      | $59.2 \pm 8.0^2$      | $60.8 \pm 8.2^4$      | 71.2 |
| Promoters        | $87.9 \pm 7.0$  | $87.9 \pm 7.0^{6}$    | $74.3\pm7.8^{1}$      | $91.7\pm5.9^{3}$      | $75.9 \pm 8.8^{1}$    | 43.1 |
| Primary tumor    | $44.2 \pm 5.5$  | $44.2\pm5.5^{6}$      | $35.9 \pm 5.8^{1}$    | $30.9\pm4.7^{1}$      | $39.8 \pm 5.2^{1}$    | 24.6 |
| Solar flare      | $68.5 \pm 3.0$  | $68.2 \pm 3.7^{6}$    | $70.6\pm2.9^{1}$      | $67.6\pm3.5^{6}$      | $70.4\pm3.0^{2}$      | 25.2 |
| Sonar            | $69.4 \pm 7.6$  | $63.0\pm8.3^{1}$      | $69.1 \pm 7.4^{6}$    | $73.8 \pm 7.4^{1}$    | $66.2 \pm 7.5^{5}$    | 50.8 |
| Soybean          | $100.0 \pm 0.0$ | $100.0\pm0.0^{6}$     | $95.0\pm9.0^{3}$      | $100.0\pm0.0^{6}$     | $96.9\pm5.9^{3}$      | 30.0 |
| Splice junctions | $95.4\pm0.6$    | $95.4\pm0.6^{6}$      | $93.4 \pm 0.8^{1}$    | $94.3\pm0.5^{1}$      | $81.5\pm5.5^{1}$      | 52.4 |
| Voting records   | $91.2 \pm 1.7$  | $91.2 \pm 1.7^{6}$    | $96.3\pm1.3^{1}$      | $94.9 \pm 1.2^{1}$    | $95.8 \pm 1.6^{1}$    | 60.5 |
| Wine             | $96.4 \pm 2.2$  | $97.8\pm1.2^{3}$      | $92.4\pm5.6^{1}$      | $97.2 \pm 1.8^{6}$    | $90.8 \pm 4.7^{1}$    | 36.4 |
| Zoology          | 94.4±4.1        | $94.1 \pm 3.8^{6}$    | $89.6\pm4.7^{1}$      | $94.6\pm4.3^{6}$      | $90.6\pm5.0^{1}$      | 39.4 |

# 4 Example

| outlook  | temperature | humidity | windy | play |
|----------|-------------|----------|-------|------|
|          |             |          |       |      |
| rainy    | cool        | normal   | TRUE  | no   |
| rainy    | mild        | high     | TRUE  | no   |
| sunny    | hot         | high     | FALSE | no   |
| sunny    | hot         | high     | TRUE  | no   |
| sunny    | mild        | high     | FALSE | no   |
| overcast | cool        | normal   | TRUE  | yes  |
| overcast | hot         | high     | FALSE | yes  |
| overcast | hot         | normal   | FALSE | yes  |
| overcast | mild        | high     | TRUE  | yes  |
| rainy    | cool        | normal   | FALSE | yes  |
| rainy    | mild        | high     | FALSE | yes  |
| rainy    | mild        | normal   | FALSE | yes  |
| sunny    | cool        | normal   | FALSE | yes  |
| sunny    | mild        | normal   | TRUE  | yes% |
|          |             |          |       |      |

This data can be summarized as follows:

|                 | Out1  | Look  | Temperature |       |       | Hum    | idity |      |
|-----------------|-------|-------|-------------|-------|-------|--------|-------|------|
| =======         | ===== | ===== | =====       | ===== | ===== | ====== | ===== | ==== |
|                 | Yes   | No    |             | Yes   | No    |        | Yes   | No   |
| Sunny           | 2     | 3     | Hot         | 2     | 2     | High   | 3     | 4    |
| <b>Overcast</b> | 4     | 0     | Mild        | 4     | 2     | Normal | 6     | 1    |
| Rainy           | 3     | 2     | Cool        | 3     | 1     |        |       |      |
|                 |       |       |             |       |       |        |       |      |
| Sunny           | 2/9   | 3/5   | Hot         | 2/9   | 2/5   | High   | 3/9   | 4/5  |
| 0vercast        | 4/9   | 0/5   | Mild        | 4/9   | 2/5   | Normal | 6/9   | 1/5  |
| Rainy           | 3/9   | 2/5   | Cool        | 3/9   | 1/5   |        |       |      |

|            |            | Play           |                                |
|------------|------------|----------------|--------------------------------|
|            | ====       | ====           |                                |
| Yes        | No         | Yes            | No                             |
| 6          | 2          | 9              | 5                              |
| 3          | 3          |                |                                |
|            |            |                |                                |
| 6/9<br>3/9 | 2/5<br>3/5 | 9/14           | 5/14                           |
|            | 6<br>3<br> | 6 2<br>3 3<br> | Yes No Yes<br>6 2 9<br>3 3<br> |

So, what happens on a new day:

Outlook Temp. Humidity Windy Play Sunny Cool High True ?%%

First find the likelihood of the two classes

- For "yes" = 2/9 \* 3/9 \* 3/9 \* 3/9 \* 9/14 = 0.0053
- For "no" = 3/5 \* 1/5 \* 4/5 \* 3/5 \* 5/14 = 0.0206

Conversion into a probability by normalization:

- P("yes") = 0.0053 / (0.0053 + 0.0206) = 0.205
- P("no") = 0.0206 / (0.0053 + 0.0206) = 0.795

So, we aren't playing golf today.

## 5 Bayes' rule

More generally, the above is just an application of Bayes' Theorem.

Probability of event H given evidence E:

$$P(H|E) = \frac{P(H) \times \sum_{x} P(E_x|H)}{P(E)}$$

A priori probability of H is P(H).

· Probability of event before evidence has been seen

A posteriori probability of H is P(H|E)

• Probability of event after evidence has been seen

Classification learning: what's the probability of the class given an instance?

- Evidence E = instance
- Event H = class value for instance

Naive Bayes assumption: evidence can be split into independent parts (i.e. attributes of instance!

$$P(H|E) = \frac{(P(E_1|H) * P(E_2|H) * \dots * P(E_n|H)) \times P(H)}{P(E)}$$

We used this above. Here's our evidence:

Outlook Temp. Humidity Windy Play Sunny Cool High True ?

Here's the probability for "yes":

Return the classification with highest probability

### 6 Pragmatics

### 6.1 Probability of the evidence Pr[E]

- Constant across all possible classifications;
- So, when comparing N classifications, it cancels out

### 6.2 Numerical errors

From multiplication of lots of small numbers

- Safest and slowest: Use a language with arbitrary precision arithmetic e.g. LISP
- Not so safe: use a language with big num support; e.g. Python
- Safest: don't multiply the numbers, add the logs

### 6.3 The "low-frequencies problem"

What if an attribute value doesn't occur with every class value (e.g. "Humidity = high" for class "yes")?

- Probability will be zero!
- Pr[Humidity = High | yes] = 0
- A posteriori probability will also be zero! Pr[ yes | E] = 0 (No matter how likely the other values are!)

So use an estimators for low frequency attribute ranges

• Add a little "m" to the count for every attribute value-class combination + The Laplace estimator + Result: probabilities will never be zero!

And use an estimator for low frequency classes

• Add a little "k" to class counts + The M-estimate

Magic numbers: m=2, k=1

```
function NUM: like(x, ,
                            nom, denom)
  local mu, sd = self:mid(), (self:div() + 1E-30)
       = 2.718^{(-.5*(x - mu)^2/(sd^2))}
  denom = (sd*2.5 + 1E-30)
  return nom/denom end
function SYM:like(x, prior)
  return ((self.has[x] or 0) + the.m*prior)/(self.n +the.m) end
function ROW:like(data,n,nHypotheses,
                                             prior, out, v, inc)
  prior = (#data.rows + the.k) / (n + the.k * nHypotheses)
  out
       = math.log(prior)
  for _,col in pairs(data.cols.x) do
    v= self.cells[col.at]
    if v ~= "?" then
      inc = col:like(v,prior)
      out = out + math.log(inc) end end
  return math.exp(1) out end
```

# 7 Handling numerics

The above assumes that the attributes are discrete. The usual approximation is to assume a "Gaussian" (i.e. a "normal" or "bell-shaped" curve) for the numerics.

The probability density function for the normal distribution is defined by the mean and standardDev (standard deviation)

```
• m = mean
```

- s = standard deviatopm
- x =the value we are trying to score (will be maximum if x is the mean)

### Code:

```
function norm(x,m,s) {
    pi= 3.1415926535
    e = 2.7182818284
    a = 1/sqrt(2*pi*s^2)
    b = (x-m)^2/(2*s^2)
    return a * e ^ (-1*b)
}
```

### For example:

| outlook  | tempera | ture | humidit | y W | indy | play |
|----------|---------|------|---------|-----|------|------|
|          |         |      |         |     |      |      |
| sunny    | 85      | 85   | FA      | LSE | no   |      |
| sunny    | 80      | 90   | TR      | JE  | no   |      |
| overcast | 83      | 86   | FA      | LSE | yes  |      |
| rainy    | 70      | 96   | FA      | LSE | yes  |      |
| rainy    | 68      | 80   | FA      | LSE | yes  |      |
| rainy    | 65      | 70   | TR      | JE  | no   |      |
| overcast | 64      | 65   | TR      | JE  | yes  |      |
| sunny    | 72      | 95   | FA      | LSE | no   |      |
| sunny    | 69      | 70   | FA      | LSE | yes  |      |
| rainy    | 75      | 80   | FA      | LSE | yes  |      |
| sunny    | 75      | 70   | TR      | JE  | yes  |      |
| overcast | 72      | 90   | TR      | JE  | yes  |      |
| overcast | 81      | 75   | FA      | LSE | yes  |      |
| rainy    | 71      | 91   | TR      | JE  | no   |      |
|          |         |      |         |     |      |      |

This generates the following statistics:

|          | Outlook |       | Temperature |       |      | Humidity |        |      |
|----------|---------|-------|-------------|-------|------|----------|--------|------|
| =======  | ======  | ===== | ======      | ===== | ==== | =====    | ====== | ==== |
|          | Yes     | No    |             | Yes   | No   |          | Yes    | No   |
| Sunny    | 2       | 3     |             | 83    | 85   |          | 86     | 85   |
| 0vercast | 4       | 0     |             | 70    | 80   |          | 96     | 90   |
| Rainy    | 3       | 2     |             | 68    | 65   |          | 80     | 70   |
|          |         |       |             |       |      |          |        |      |
| Sunny    | 2/9     | 3/5   | mean        | 73    | 74.6 | mean     | 79.1   | 86.2 |
| 0vercast | 4/9     | 0/5   | std dev     | 6.2   | 7.9  | std dev  | 10.2   | 9.7  |
| Rainv    | 3/9     | 2/5   |             |       |      |          |        |      |

|        | W      | lindy |       | Play  |
|--------|--------|-------|-------|-------|
| ====== | ====== | ====  | ===== | ===== |
|        | Yes    | No    | Yes   | No    |
| False  | 6      | 2     | 9     | 5     |
| True   | 3      | 3     |       |       |
|        |        |       |       |       |
| False  | 6/9    | 2/5   | 9/14  | 5/14  |
| True   | 3/9    | 3/5   | -     | -     |

Example density value:

• f(temperature=66|yes) = norm(66, 73, 6.2) = 0.0340

Classifying a new day:

- Likelihood of "yes" = 2/9 \* 0.0340 \* 0.0221 \* 3/9 \* 9/14 = 0.000036
- Likelihood of "no" = 3/5 \* 0.0291 \* 0.0380 \* 3/5 \* 5/14 = 0.000136
- So:
  - P("yes") = 0.000036 / (0.000036 + 0.000136) = 20.9%
  - P("no") = 0.000136 / (0.000036 + 0.000136) = 79.1%

Note: missing values during training: not included in calculation of mean and standard deviation

BTW, an alternative to the above is apply some discretization policy to the data. Such discretization is good practice since it can dramatically improve the performance of a Naive Bayes classifier (see  $^3$ :

<sup>&</sup>lt;sup>3</sup>James Dougherty, Ron Kohavi, Mehran Sahami: Supervised and Unsupervised Discretization of Continuous Features. ICML 1995: 194-202