Learning Objectives

- <u>Describe</u> three models/measures of variability
 - Range
 - Standard Deviation
 - Variance
- <u>Calculate</u> variability by hand (& calculator)
- Interpret models of variability

Central Tendency, Skew & Variability

- Central tendency, skew, and variability describe the distribution of observations
 - Variability quantifies how spread out scores are

3 Models of Variability

1. Range Range?

2. Standard Deviation s, σ , std, s.d.

3. Variance s^2 , σ^2 , var

Range

- Range is the absolute difference between the most extreme scores
 - Data = Nutritional values from (N=77) cereals

Density Histogram. Grams sugar per 28g of cereal.

Range

Formula:

Range = Max - Min

$$= X_{\text{Smacks}} - X_{\text{SW}}$$

Cereal	g/Sugar
All Bran	5
Cap'n Crunch	12
Corn Flakes	2
Kix	3
Lucky Charms	12
Shredded Wheat	1
Smacks	15
Special K	3
Trix	12
Wheaties	3

Deviation Score

 Amount an observation deviates from the sample mean

Formula:

$$X_i - \overline{X}$$

What is the deviation score for X_{trix} ?

Hint
$$\bar{X} = \frac{\sum X_i}{N}$$

Cereal	g/Sugar
All Bran	5
Cap'n Crunch	12
Corn Flakes	2
Kix	3
Lucky Charms	12
Shredded Wheat	1
Smacks	15
Special K	3
Trix	12
Wheaties	3

Summed Deviation

Formula:

$$\Sigma(X_{\rm i}-\bar{X})$$

What is the summed deviation?

Remember $\bar{X} = 6.8$

Cereal	g/Sugar
All Bran	5
Cap'n Crunch	12
Corn Flakes	2
Kix	3
Lucky Charms	12
Shredded Wheat	1
Smacks	15
Special K	3
Trix	12
Wheaties	3

Deviations

Problem: Summing or averaging deviation scores will give us 0

Remember the mean is a fulcrum

Solution: Square each deviation score

- All negative deviations become positive
- Then sum these squared deviations together for the sum of squared deviations (or SS)

$$SS = \Sigma (X_i - \overline{X})^2$$

Standard Deviation

- SS is the total **sum** of squared deviations
 - Dividing this by N gives us mean squared deviation (aka, variance)
 - Taking the square root gives us mean deviation or standard deviation
 - But, this needs a slight correction for bias (in samples)*

$$S = \sqrt{\frac{\sum (X_i - \bar{X})^2}{N}}$$

Sample vs. Population

$$s = \sigma_{\text{est}} = \sqrt{\frac{\sum (X_i - \bar{X})^2}{N - 1}}$$

$$\sigma = \sigma_{pop} = \sqrt{\frac{\sum (X_i - \mu)^2}{N}}$$

Statisticians suck

• "What's the deal with skew?"

- "Why no symbol for range?" (3)
- Regular letters = Italicized; Greek = not

Formula Review

$$\Sigma (X_i - \bar{X})^2$$
 = Sum of squares (SS)

$$\frac{\sum (X_i - \bar{X})^2}{N-1}$$

= Standard deviation (sample not pop.)

Formula Review

$$\sum (X_i - \overline{X})^2$$
 = Sum of squares (SS)

$$\frac{\sum (X_i - \bar{X})^2}{N - 1}$$
 = Standard deviation (sample not pop.)

= Variance!

Alternative Formulas

$$\sum X^2 - \frac{(\sum X)^2}{N} = \text{Sum of squares (SS)}$$

$$\frac{SS}{N-1} = \text{Standard deviation } (s)$$

= Variance (s^2)