Import Data & Libraries

Data source: https://www.kaggle.com/datasets/kartik2112/fraud-detection Took a sample of 50,000 from the "test" dataset, using: df_sample, df_sample_95 = train_test_split(df, test_size=0.95, stratify=df['is_fraud'], random_state=42). Our dataset is the 5% sample.

```
#library imports
In [336...
          import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
          import seaborn as sns
          import lightgbm as lgb
          import warnings
          warnings.filterwarnings("ignore", category=FutureWarning)
          from xgboost import XGBClassifier
          from sklearn.metrics import classification_report, confusion_matrix
          from sklearn.model_selection import train_test_split
          from sklearn.ensemble import RandomForestClassifier
          from sklearn.preprocessing import StandardScaler
          from sklearn.linear_model import LogisticRegression
          from imblearn.over_sampling import SMOTE
          from catboost import CatBoostClassifier
```

```
In [337...
#import data
df = pd.read_csv("fraud.csv")
df.head()
```

Out[337		Unnamed: 0	trans_date_trans_time	cc_num	merchant	category	
	0	417308	2020-12-01 05:38:34	348789608637806	fraud_Berge LLC	gas_transport	5
	1	22343	2020-06-29 02:05:06	2291163933867244	fraud_Bins, Balistreri and Beatty	shopping_pos	3
	2	540530	2020-12-28 15:48:07	372509258176510	fraud_Bradtke, Torp and Bahringer	personal_care	i
	3	492286	2020-12-17 23:47:28	571365235126	fraud_Prosacco, Kreiger and Kovacek	home	2
	4	17203	2020-06-27 11:52:35	4225990116481262579	fraud_Bernier, Volkman and Hoeger	misc_net	
	4						•

Exploratory Data Analysis

Basic Data Information

```
In [340... #get shape
df.shape

Out[340... (27785, 23)

In [341... #are there duplicates?
    df.duplicated().sum()

Out[341... 0

In [342... #get datatypes
    df.dtypes
```

```
Out[342...
           Unnamed: 0
                                       int64
           trans_date_trans_time
                                      object
                                       int64
           cc_num
                                      object
           merchant
                                      object
           category
                                     float64
           amt
           first
                                      object
           last
                                      object
           gender
                                      object
                                      object
           street
           city
                                      object
           state
                                      object
                                       int64
           zip
                                     float64
           lat
           long
                                     float64
                                       int64
           city_pop
           job
                                      object
           dob
                                      object
                                      object
           trans_num
           unix_time
                                       int64
           merch_lat
                                     float64
           merch_long
                                     float64
           is_fraud
                                       int64
           dtype: object
In [343...
          # is there class imbalance?
           df['is_fraud'].value_counts()
Out[343...
           is_fraud
                27678
           1
                  107
           Name: count, dtype: int64
           sns.countplot(x='is_fraud', data=df)
In [344...
           plt.title('Target Class Distribution of is_fraud')
           plt.show()
```

Target Class Distribution of is_fraud


```
In [345... #percentage of binary class
    print("percentage of each class", df['is_fraud'].value_counts()/len(df)*100)

    percentage of each class is_fraud
    0 99.615
    1 0.385
    Name: count, dtype: float64
```

Data Quality Report

Continuous Features

```
In [348... # identify continuous features
  conf = df.select_dtypes(include=['float64', 'int64']).columns.tolist()
  conf
```

```
Out[348...
           ['Unnamed: 0',
             'cc_num',
             'amt',
             'zip',
             'lat',
             'long',
             'city_pop',
             'unix_time',
             'merch_lat',
             'merch_long',
             'is_fraud']
In [349...
           #identify any columns to filter out from the "continuous features"
           conf_exclude = ['Unnamed: 0', 'cc_num'] #excluding unamned as that is just the row
           filter_conf = [x for x in conf if x not in conf_exclude]
           filter_conf
Out[349...
           ['amt',
             'zip',
             'lat',
             'long',
             'city_pop',
             'unix_time',
             'merch_lat',
             'merch_long',
             'is_fraud']
In [350...
           #get summary stats on continuous
           pd.set_option('display.float_format', '{:.2f}'.format)
           df[filter_conf].describe()
Out[350...
                                           lat
                                                                          unix time merch lat mercl
                       amt
                                 zip
                                                   long
                                                            city_pop
           count 27785.00 27785.00 27785.00 27785.00
                                                            27785.00
                                                                           27785.00
                                                                                      27785.00
                                                                                                   27
           mean
                      68.28 48733.84
                                         38.53
                                                  -90.17
                                                            86906.27 1380671597.50
                                                                                         38.53
             std
                     136.20 26895.98
                                          5.03
                                                   13.64
                                                           290698.32
                                                                         5194009.36
                                                                                          5.07
             min
                       1.00
                             1257.00
                                         20.03
                                                 -165.67
                                                               23.00 1371816893.00
                                                                                         19.03
            25%
                       9.52 26041.00
                                         34.67
                                                  -96.79
                                                              743.00 1376061884.00
                                                                                         34.78
             50%
                      47.23 48174.00
                                         39.37
                                                  -87.46
                                                             2456.00
                                                                     1380691607.00
                                                                                         39.40
            75%
                     82.90 72011.00
                                         41.89
                                                  -80.16
                                                                      1385862997.00
                                                                                         41.96
                                                            20328.00
                   8517.38 99783.00
                                         65.69
                                                  -67.95
                                                          2906700.00
                                                                     1388534055.00
                                                                                         66.67
             max
In [351...
           pd.options.display.float_format = '{:.3f}'.format
           data_quality_conf = pd.DataFrame({
                'Feature': filter_conf,
               'Count': df[filter_conf].count().values,
                'Missing Values': df[filter_conf].isnull().sum().values,
```

```
'Cardinality': df[filter_conf].nunique().values,
    'Min': df[filter_conf].min().values,
    '1st Quartile': df[filter_conf].quantile(0.25).values,
    'Mean': df[filter_conf].mean().values,
    'Median': df[filter_conf].median().values,
    '3rd Quartile': df[filter_conf].quantile(0.75).values,
    'Max': df[filter_conf].max().values,
    'Standard Deviation': df[filter_conf].std().values,
})
print("Data Quality Report - Continuous Features")
data_quality_conf
```

Data Quality Report - Continuous Features

Out[351...

	Feature	Count	Missing Values	Cardinality	Min	1st Quartile	Mea
0	amt	27785	0	12365	1.000	9.520	68.28
1	zip	27785	0	900	1257.000	26041.000	48733.83
2	lat	27785	0	898	20.027	34.669	38.53
3	long	27785	0	899	-165.672	-96.787	-90.17
4	city_pop	27785	0	825	23.000	743.000	86906.26
5	unix_time	27785	0	27758	1371816893.000	1376061884.000	1380671597.49
6	merch_lat	27785	0	27767	19.027	34.776	38.53
7	merch_long	27785	0	27774	-166.670	-96.856	-90.17
8	is_fraud	27785	0	2	0.000	0.000	0.00
4							•

Categorical Features

```
#identify any categorical features
In [353...
           catf = df.select_dtypes(include=['object']).columns.tolist()
           catf
Out[353...
           ['trans_date_trans_time',
            'merchant',
            'category',
            'first',
            'last',
            'gender',
            'street',
            'city',
            'state',
            'job',
            'dob',
            'trans_num']
In [354...
           #identify any columns to filter out from the "categorical features"
           catf_exclude = ['trans_num'] #excluding transaction number as that is an ID
```

```
filter_catf = [x for x in catf if x not in catf_exclude]
          filter_catf
Out[354...
          ['trans_date_trans_time',
            'merchant',
            'category',
            'first',
            'last',
            'gender',
            'street',
            'city',
            'state',
            'job',
            'dob']
In [355...
          #create lists to store modes & frequencies
          modes = []
          mode_freqs = []
          second modes = []
          second_mode_freqs = []
          mode_percentages = []
          second_mode_percentages = []
          # Calculate mode and frequency for each categorical feature
In [356...
          for feature in filter_catf:
              count = df[feature].count()
              mode = df[feature].mode().iloc[0]
              mode_freq = df[feature].value_counts().iloc[0]
              modes.append(mode)
              mode_freqs.append(mode_freq)
              mode_percentages.append((mode_freq / count) * 100 if count > 0 else 0)
              # Calculate second mode and its frequency
              if len(df[feature].value_counts()) > 1:
                   second_mode = df[feature].value_counts().index[1]
                   second_mode_freq = df[feature].value_counts().iloc[1]
              else:
                   second_mode = None
                   second_mode_freq = 0
               second_modes.append(second_mode)
              second_mode_freqs.append(second_mode_freq)
               second_mode_percentages.append((second_mode_freq / count) * 100 if count > 0 el
In [357...
          #build quality report table
          data_quality_catf = pd.DataFrame({
              'Feature': filter_catf,
               'Count': df[filter_catf].count().values,
               'Missing Values': df[filter_catf].isnull().sum().values,
               'Cardinality': df[filter_catf].nunique().values,
               'Mode':modes,
               'Mode Frequency':mode_freqs,
               'Mode %': mode_percentages,
               '2nd Mode':second_modes,
               '2nd Mode Frequency': second_mode_freqs,
```

```
'2nd Mode %': second_mode_percentages,
})
print("Data Quality Report - Categorical Features")
data_quality_catf
```

Data Quality Report - Categorical Features

Out[357...

	Feature	Count	Missing Values	Cardinality	Mode	Mode Frequency	Mode %	
0	trans_date_trans_time	27785	0	27758	2020-06-21 19:09:47	2	0.007	
1	merchant	27785	0	693	fraud_Dickinson Ltd	84	0.302	fı
2	category	27785	0	14	gas_transport	2820	10.149	
3	first	27785	0	339	Christopher	573	2.062	
4	last	27785	0	465	Smith	638	2.296	
5	gender	27785	0	2	F	15252	54.893	
6	street	27785	0	911	6983 Carrillo Isle	86	0.310	
7	city	27785	0	839	Birmingham	140	0.504	
8	state	27785	0	50	TX	2006	7.220	
9	job	27785	0	476	Film/video editor	206	0.741	I
10	dob	27785	0	897	1977-03-23	124	0.446	
4								•

Univariate Analysis

```
In [359... filter_catf2 = ['merchant','category', 'gender', 'job']

In [360... #plot the categorical variables
plt.style.use('ggplot')

for column in filter_catf2:
    plt.figure(figsize=(20, 6))
    sns.countplot(x=column, data=df)
    plt.title(f'Distribution of {column}')
    plt.xticks(rotation =45)
    plt.show()
```



```
In [361... #plot histograms for numerical variables
plt.style.use('ggplot')
for column in filter_conf:
    plt.figure(figsize=(20, 4))
    plt.subplot(1, 2, 1)
    sns.histplot(df[column], kde = True)
    plt.title(f'Distribution of {column}')
    plt.show()
```



```
In [362... #plot boxplots of all continuous features
    plt.style.use('ggplot')
    for column in filter_conf:
        plt.figure(figsize=(20, 4))
        plt.subplot(1, 2, 1)
        sns.boxplot(x=df[column])
        plt.title(f'Boxplot of {column}')
        plt.show()
```

Boxplot of amt

Boxplot of zip

Boxplot of unix_time

Boxplot of merch_lat

Boxplot of merch_long

0.6

0.8

1.0

is_fraud

0.2

Correlations

0.0

```
In [365... #correlations
    corr_matrix = df[filter_conf].corr()
    corr_matrix
```

0.4

Out[365...

	amt	zip	lat	long	city_pop	unix_time	merch_lat	merch_long	is_1
amt	1.000	0.008	0.006	-0.008	0.003	-0.002	0.007	-0.008	
zip	0.008	1.000	-0.122	-0.912	0.080	-0.003	-0.121	-0.911	-
lat	0.006	-0.122	1.000	-0.007	-0.147	0.002	0.993	-0.006	1
long	-0.008	-0.912	-0.007	1.000	-0.059	0.001	-0.007	0.999	-
city_pop	0.003	0.080	-0.147	-0.059	1.000	-0.007	-0.146	-0.059	-
unix_time	-0.002	-0.003	0.002	0.001	-0.007	1.000	0.001	0.001	-
merch_lat	0.007	-0.121	0.993	-0.007	-0.146	0.001	1.000	-0.007	1
merch_long	-0.008	-0.911	-0.006	0.999	-0.059	0.001	-0.007	1.000	-
is_fraud	0.206	-0.002	0.014	-0.003	-0.010	-0.010	0.015	-0.003	

```
In [366... # Create a heatmap
    plt.figure(figsize=(8, 4))
    heatmap = sns.heatmap(corr_matrix, annot=True, fmt=".2f", cmap='coolwarm', linewidt
    # Rotate the x and y Labels for better readability
```

```
plt.xticks(rotation=45, ha='right')
plt.yticks(rotation=0)

# Show the heatmap
plt.title("Correlation Matrix Across Features")
plt.show()
```



```
In [367... #identify most highly correlated items to the target variable
    target_column = 'is_fraud'
    corr_with_target = corr_matrix[target_column].abs() #get the absolute value of feat
    threshold = .01 #set the threshold for correlation
    high_corr = corr_with_target[corr_with_target > threshold].index.tolist() #gets the
    print(high_corr)
```

['amt', 'lat', 'city_pop', 'merch_lat', 'is_fraud']

```
#plot scatterplots for threshold meeting the correlation
plt.style.use('ggplot')
for column in high_corr:
    plt.figure(figsize=(20, 4))
    plt.subplot(1, 2, 1)
    sns.scatterplot(x=df[column], y=df['is_fraud'])
    plt.title(f'Scatterplot of {column} vs. is_fraud')
    plt.show()
```


In [369...
sns.pairplot(df[high_corr], hue='is_fraud', palette={1: 'red', 0: 'blue'})
plt.suptitle("Pairplot of Highly Correlated Features to is_fraud",y= 1.01) #ensures
plt.show()

Data Pre-Processing

```
In [371... df1 = df.copy()

In [372... df1.head()
```

Out[372...

	Unnamed: 0	trans_date_trans_time	cc_num	merchant	category	
0	417308	2020-12-01 05:38:34	348789608637806	fraud_Berge LLC	gas_transport	5
1	22343	2020-06-29 02:05:06	2291163933867244	fraud_Bins, Balistreri and Beatty	shopping_pos	3
2	540530	2020-12-28 15:48:07	372509258176510	fraud_Bradtke, Torp and Bahringer	personal_care	
3	492286	2020-12-17 23:47:28	571365235126	fraud_Prosacco, Kreiger and Kovacek	home	2
4	17203	2020-06-27 11:52:35	4225990116481262579	fraud_Bernier, Volkman and Hoeger	misc_net	
4						•

Feature Transformation - Distance

```
In [374...
          import math
          #haversine formula calculates the difference between two points. Tutorial here:
          #https://www.geeksforgeeks.org/haversine-formula-to-find-distance-between-two-point
          #create haversine function
          def haversine(lat1, lon1, lat2, lon2):
              # distance between latitudes and longitudes
              dLat = (lat2 - lat1) * math.pi / 180.0
              dLon = (lon2 - lon1) * math.pi / 180.0
              # convert to radians
              lat1 = lat1 * math.pi / 180.0
              lat2 = lat2 * math.pi / 180.0
              # apply formula
              a = (pow(math.sin(dLat / 2), 2) +
                   pow(math.sin(dLon / 2), 2) *
                   math.cos(lat1) * math.cos(lat2))
              rad = 6371 # Earth's radius in kilometers
              c = 2 * math.asin(math.sqrt(a))
              return rad * c
          df1['distance_km'] = df1.apply(lambda row: haversine(row['lat'], row['long'], row['
          # Display the updated dataframe with the distance column
          print(df1[['lat', 'long', 'merch_lat', 'merch_long', 'distance_km']])
```

	lat	long	merch_lat	merch_long	<pre>distance_km</pre>
0	40.454	-98.654	40.000	-99.040	60.200
1	33.966	-80.936	33.547	-80.976	46.722
2	42.915	-83.484	43.651	-84.041	93.483
3	44.599	-86.214	44.948	-85.290	82.612
4	20.083	-155.488	19.658	-156.016	72.611
27780	31.957	-98.966	31.894	-99.870	85.625
27781	39.372	-77.823	40.371	-77.906	111.349
27782	39.935	-86.163	39.986	-86.364	18.056
27783	42.189	-74.923	42.298	-74.987	13.216
27784	39.406	-75.321	40.162	-75.233	84.435

[27785 rows x 5 columns]

In [375...

df1.head()

Out[375...

	category	merchant	cc_num	trans_date_trans_time	Unnamed: 0	
5	gas_transport	fraud_Berge LLC	348789608637806	2020-12-01 05:38:34	417308	0
3	shopping_pos	fraud_Bins, Balistreri and Beatty	2291163933867244	2020-06-29 02:05:06	22343	1
	personal_care	fraud_Bradtke, Torp and Bahringer	372509258176510	2020-12-28 15:48:07	540530	2
2	home	fraud_Prosacco, Kreiger and Kovacek	571365235126	2020-12-17 23:47:28	492286	3
	misc_net	fraud_Bernier, Volkman and Hoeger	4225990116481262579	2020-06-27 11:52:35	17203	4
•						4

DOB Transformation

Transform DOB to be the following generation numbers:

• Silent Generation: Born before 1945: 0

• Baby Boomers: 1946–1964: 1

• Generation X: 1965–1980 : 2

• Millennials (Gen Y): 1981–1996: 3

• Generation Z (Gen Z): 1997–2012 : 4

• Generation Alpha: 2013 and later: 5

```
In [378...
          # Convert 'DOB' column to datetime format
          df1['dob'] = pd.to_datetime(df1['dob'], format='%Y-%m-%d')
           # Function to categorize generations into numerical format
          def categorize_generation(dob):
              if dob < pd.Timestamp('1945-01-01'):</pre>
                   return 0 # Silent Generation
              elif dob < pd.Timestamp('1965-01-01'):</pre>
                   return 1 # Baby Boomers
              elif dob < pd.Timestamp('1981-01-01'):</pre>
                   return 2 # Generation X
              elif dob < pd.Timestamp('1997-01-01'):</pre>
                   return 3 # Millennials
              elif dob < pd.Timestamp('2013-01-01'):</pre>
                   return 4 # Generation Z
              else:
                   return 5 # Generation Alpha
           # Apply the function to create a new column for generations in numerical format
           df1['Generation_Numeric'] = df1['dob'].apply(categorize_generation)
           # Drop the original 'DOB' column
           df1.drop(columns=['dob'], inplace=True)
          # Display the updated DataFrame
          df1.head()
```

Out[378...

	Unnamed: 0	trans_date_trans_time	cc_num	merchant	category	
0	417308	2020-12-01 05:38:34	348789608637806	fraud_Berge LLC	gas_transport	5
1	22343	2020-06-29 02:05:06	2291163933867244	fraud_Bins, Balistreri and Beatty	shopping_pos	3'
2	540530	2020-12-28 15:48:07	372509258176510	fraud_Bradtke, Torp and Bahringer	personal_care	i
3	492286	2020-12-17 23:47:28	571365235126	fraud_Prosacco, Kreiger and Kovacek	home	2
4	17203	2020-06-27 11:52:35	4225990116481262579	fraud_Bernier, Volkman and Hoeger	misc_net	
•						•

City Population Transformation

Transforming city_pop to

https://www.oecd.org/en/data/indicators/urban-population-by-city-size.html?oecdcontrol-38c744bfa4-var1=USA%7COAVG

- large metropolitan areas if they have a population of 1.5 million or more;
- metropolitan areas if their population is between 500 000 and 1.5 million;
- medium-size urban areas if their population is between 200 000 and 500 000;
- small urban areas if their population is between 50 000 and 200 000.

```
# Define a function to categorize city populations based on OECD standards
In [381...
          def categorize_city_pop_oecd(city_pop):
              if city_pop >= 1500000:
                   return 'Large Metropolitan Area'
              elif 500000 <= city_pop < 1500000:</pre>
                   return 'Metropolitan Area'
              elif 200000 <= city pop < 500000:
                   return 'Medium-Size Urban Area'
              elif 50000 <= city_pop < 200000:</pre>
                   return 'Small Urban Area'
              else:
                   return 'Rural Area'
          # Apply the function to the city_pop column in df1
          df1['city_pop_category'] = df1['city_pop'].apply(categorize_city_pop_oecd)
          # Display the updated dataframe with the new column
          print(df1[['city_pop', 'city_pop_category']].head())
            city_pop
                           city_pop_category
         0
                 331
                                   Rural Area
              333497 Medium-Size Urban Area
         1
         2
                6951
                                  Rural Area
```

Rural Area

Rural Area

In [382...

3

4

372

4878

```
df1.head()
```

Out[382...

	Unnamed: 0	trans_date_trans_time	cc_num	merchant	category	
0	417308	2020-12-01 05:38:34	348789608637806	fraud_Berge LLC	gas_transport	5
1	22343	2020-06-29 02:05:06	2291163933867244	fraud_Bins, Balistreri and Beatty	shopping_pos	3
2	540530	2020-12-28 15:48:07	372509258176510	fraud_Bradtke, Torp and Bahringer	personal_care	i
3	492286	2020-12-17 23:47:28	571365235126	fraud_Prosacco, Kreiger and Kovacek	home	2
4	17203	2020-06-27 11:52:35	4225990116481262579	fraud_Bernier, Volkman and Hoeger	misc_net	
4						•

Transforming Date/Time Features

```
In [384...
          df1['trans_date_trans_time'] = pd.to_datetime(df1['trans_date_trans_time'])
          # Extract temporal features
          df1['day_of_week'] = df1['trans_date_trans_time'].dt.dayofweek
          df1['hour_of_day'] = df1['trans_date_trans_time'].dt.hour
          df1['month'] = df1['trans_date_trans_time'].dt.month
          df1['quarter'] = df1['trans_date_trans_time'].dt.quarter
          def categorize_time_of_day(hour):
              if 5 <= hour < 12:
                  return 'morning'
              elif 12 <= hour < 17:</pre>
                   return 'noon'
              elif 17 <= hour < 21:</pre>
                  return 'evening'
              else:
                   return 'night'
          df1['time_of_day'] = df1['hour_of_day'].apply(categorize_time_of_day)
          df1['is_weekend'] = df1['day_of_week'].apply(lambda x: 1 if x >= 5 else 0)
          # Display the updated DataFrame with new features
          features_to_display = ['trans_date_trans_time', 'day_of_week', 'hour_of_day', 'mont
          # Display only the selected features (without rolling_avg)
          df1[features_to_display].head()
```

Out[384...

	trans_date_trans_time	day_of_week	hour_of_day	month	quarter	time_of_day	is_weeke
0	2020-12-01 05:38:34	1	5	12	4	morning	
1	2020-06-29 02:05:06	0	2	6	2	night	
2	2020-12-28 15:48:07	0	15	12	4	noon	
3	2020-12-17 23:47:28	3	23	12	4	night	
4	2020-06-27 11:52:35	5	11	6	2	morning	
4							•

Drop Unnecessary Columns

Dropping the following columns:

- Dropping the following due to being unique identifiers, thus not appropriate for prediction: cc_num, Unnamed: 0, first, last, merchant, trans_num
- Dropping the following due to redundancy after feature transformation: trans_date_trans_time, merch_lat, merch_long, city, state, zip, lat, long, unix_time, street, city_pop
- Dropping the following due to high-cardinality / curse of dimensionality: job. Cardinality is 476.

```
df2 = df1.copy() # Create a copy of df1
In [387...
           # Drop the specified columns
           columns_to_drop = [
               'trans_date_trans_time',
               'merch_lat',
               'merch long',
               'merchant',
               'cc_num',
               'Unnamed: 0',
               'first',
               'last',
               'city',
               'state',
               'zip',
               'lat',
               'long',
               'trans_num',
               'unix_time',
               'job',
               'street',
               'city_pop'
           df2.drop(columns=columns_to_drop, inplace=True, errors='ignore') # Drop columns an
```

```
# Display the updated DataFrame df2
df2.head()
```

\cap		+	Γ	2	0	7	
U	и	L	L	0	0	/	• • •

	category	amt	gender	is_fraud	distance_km	Generation_Numeric	city_pop_cate
0	gas_transport	50.420	F	0	60.200	1	Rural
1	shopping_pos	39.470	М	0	46.722	2	Medium Urban
2	personal_care	8.160	F	0	93.483	3	Rural
3	home	25.480	F	0	82.612	3	Rural
4	misc_net	5.710	М	0	72.611	2	Rural
4							>

Data Analysis - Transformed Data

```
In [389... #fraud only
    df_fraud = df2[df2['is_fraud'] == 1]
    #not fraud only
    df_safe = df2[df2['is_fraud'] == 0]

In [390... df2_cont = df2.select_dtypes(include=['float64', 'int64']).columns.tolist()
    print(f"The continous variables are: {df2_cont}")
    df2_cat = df2.select_dtypes(include=['object']).columns.tolist()
    print(f"The categorical variables are: {df2_cat}")

The continous variables are: ['amt', 'is_fraud', 'distance_km', 'Generation_Numeri
    c', 'is_weekend']
    The categorical variables are: ['category', 'gender', 'city_pop_category', 'time_of_day']
```

Amount

```
In [392...
          df_safe['amt'].describe()
Out[392...
          count
                   27678.000
           mean
                      66.542
           std
                     131.295
           min
                       1.000
           25%
                      9.490
           50%
                      47.070
           75%
                      82.510
                    8517.380
           max
           Name: amt, dtype: float64
In [393...
          plt.figure(figsize=(8, 4))
           sns.histplot(df_safe['amt'], kde=True, color='blue')
           plt.title(f'Distribution of Amount, No Fraud')
           plt.show()
```

Distribution of Amount, No Fraud


```
In [394...
           df_fraud['amt'].describe()
Out[394...
           count
                    107.000
           mean
                    519.221
                    393.892
           std
           min
                       3.150
                    138.295
           25%
           50%
                    378.560
           75%
                    900.815
                   1139.970
           max
           Name: amt, dtype: float64
In [395...
           plt.figure(figsize=(8, 4))
           sns.histplot(df_fraud['amt'], kde=True, color = "orange")
           plt.title(f'Distribution of Amount, Fraud')
           plt.show()
```


Average fraud transaction is 519.22 in comparison to non-fraud average of 66.54. The majority of non-fraud transactions are under \$47 while fraud is higher amounts

Distance_KM

```
In [398...
           df_safe['distance_km'].describe()
Out[398...
           count
                   27678.000
                      76.418
           mean
           std
                      28.925
           min
                       0.148
           25%
                      55.700
           50%
                      78.556
           75%
                      98.668
                     148.395
           Name: distance_km, dtype: float64
In [399...
           plt.figure(figsize=(8, 4))
           sns.histplot(df_safe['distance_km'], kde=True, color='blue')
           plt.title(f'Distribution of Distance between Merchant and Customer, No Fraud')
           plt.show()
```

Distribution of Distance between Merchant and Customer, No Fraud


```
In [400...
           df_fraud['distance_km'].describe()
Out[400...
                   107.000
           count
                    74.704
           mean
                    28.697
           std
           min
                    15.061
           25%
                    54.903
           50%
                    77.960
                    96.390
           75%
                    127.969
           max
           Name: distance_km, dtype: float64
In [401...
           plt.figure(figsize=(8, 4))
           sns.histplot(df_fraud['distance_km'], kde=True, color = "orange")
           plt.title(f'Distribution of Distance between Merchant and Customer, Fraud')
           plt.show()
```

Distribution of Distance between Merchant and Customer, Fraud

The distribution of distance for non-fraud appears to be somewhat normally distributed. Fraud seems concentrated at lower distances and a right-skew with a concentration at the 70-90 range.

Generations

```
plt.figure(figsize=(8, 4))
sns.catplot(data = df2, x = "Generation_Numeric", kind ="count", color = 'grey')
plt.title(f'Distribution of Generations, All')
plt.show()
```

<Figure size 800x400 with 0 Axes>

Distribution of Generations, All


```
plt.figure(figsize=(8, 4))
sns.catplot(data = df_safe, x = "Generation_Numeric", kind ="count", color = 'blue'
plt.title(f'Distribution of Generations, No Fraud')
plt.show()
```

<Figure size 800x400 with 0 Axes>

Distribution of Generations, No Fraud


```
plt.figure(figsize=(8, 4))
sns.catplot(data = df_fraud, x = "Generation_Numeric", kind ="count", color = 'oran
plt.title(f'Distribution of Generations, Fraud')
plt.show()
```

<Figure size 800x400 with 0 Axes>

Distribution of Generations, Fraud


```
In [407...
          #get original generation counts
          o0 = df2[df2['Generation_Numeric'] == 0].shape[0]
          o1 = df2[df2['Generation_Numeric'] == 1].shape[0]
          o2 = df2[df2['Generation_Numeric'] == 2].shape[0]
          o3 = df2[df2['Generation_Numeric'] == 3].shape[0]
          o4 = df2[df2['Generation_Numeric'] == 4].shape[0]
          o5 = df2[df2['Generation_Numeric'] == 5].shape[0]
          #get fraud generation counts
          f0 = df_fraud[df_fraud['Generation_Numeric'] == 0].shape[0]
          f1 = df_fraud[df_fraud['Generation_Numeric'] == 1].shape[0]
          f2 = df_fraud[df_fraud['Generation_Numeric'] == 2].shape[0]
          f3 = df_fraud[df_fraud['Generation_Numeric'] == 3].shape[0]
          f4 = df_fraud[df_fraud['Generation_Numeric'] == 4].shape[0]
          f5 = df_fraud[df_fraud['Generation_Numeric'] == 5].shape[0]
          #get fraud %
          fp0 = (f0 / o0 * 100) if o0 != 0 else 0
          fp1 = (f1 / o1 * 100) if o1 != 0 else 0
          fp2 = (f2 / o2 * 100) if o2 != 0 else 0
          fp3 = (f3 / o3 * 100) if o3 != 0 else 0
          fp4 = (f4 / o4 * 100) if o4 != 0 else 0
          fp5 = (f5 / o5 * 100) if o5 != 0 else 0
          gen_fraud = pd.DataFrame({
               'Generation ID': ['0', '1', '2', '3', '4', '5'],
```

```
'Generation': ["Silent", "Baby Boomer", "Gen X", "Millennial", "Gen Z", "Gen Al 'Total Count': [00, 01, 02, 03, 04, 05],
'Total Fraud': [f0, f1, f2, f3, f4, f5],
'Percent Fraud': [fp0, fp1, fp2, fp3, fp4, fp5]
})
gen_fraud
```

Out[407...

	Generation ID	Generation	Total Count	Total Fraud	Percent Fraud
0	0	Silent	1968	8	0.407
1	1	Baby Boomer	5640	28	0.496
2	2	Gen X	9251	40	0.432
3	3	Millennial	8912	23	0.258
4	4	Gen Z	2014	8	0.397
5	5	Gen Alpha	0	0	0.000

The distribution of generations in the original dataset is 33% Generation X closely followed by 32% millennial generation and 20% baby boomer. Among the fraudulet transactions the generations most hit was Gen X at 37%, followed by baby boomers (26%) and then millennials (28%). However when looking at the likelihood of fraud within the generations themselves you see an interesting story. Millennials are the least likely generation to experience fraud. The Silent Generation, Baby Boomers, Gen X and Gen Z alre are within 40-50%. This points to educational opportunities

Time

Is Weekend

```
In [411... plt.figure(figsize=(8, 4))
    sns.catplot(data = df_safe, x = "is_weekend", kind ="count", color = 'blue')
    plt.title(f'Distribution of Transactions on Weekends, No Fraud')
    plt.show()
```

Distribution of Transactions on Weekends, No Fraud


```
plt.figure(figsize=(8, 4))
sns.catplot(data = df_fraud, x = "is_weekend", kind ="count", color = 'orange')
plt.title(f'Distribution of Transactions on Weekends, is Fraud')
plt.show()
```

Distribution of Transactions on Weekends, is Fraud

Time of Day

```
In [414...
plt.figure(figsize=(8, 4))
sns.catplot(data = df_safe, x = "time_of_day", kind ="count", color = 'blue')
plt.title(f'Distribution of Transactions on Time of Day, No Fraud')
plt.show()
```

Distribution of Transactions on Time of Day, No Fraud


```
In [415...
plt.figure(figsize=(8, 4))
sns.catplot(data = df_fraud, x = "time_of_day", kind ="count", color = 'orange')
plt.title(f'Distribution of Transactions on Time of Day, Fraud')
plt.show()
```

Distribution of Transactions on Time of Day, Fraud

A high distribution of fraud occurs at night.

Spend Category

```
In [418... plt.figure(figsize=(8, 4))
    sns.catplot(data = df_safe, x = "category", kind ="count", color = 'blue')
    plt.title(f'Distribution of Transactions by Spend Category, No Fraud')
    plt.xticks(rotation=90)
    plt.show()
```

Distribution of Transactions by Spend Category, No Fraud

In [419... df_safe['category'].value_counts()

Out[419...

category		
<pre>gas_transport</pre>	2816	
home	2578	
grocery_pos	2577	
kids_pets	2446	
shopping_pos	2441	
shopping_net	2033	
personal_care	2018	
food_dining	2008	
entertainment	1964	
misc_pos	1793	
health_fitnes	s 1766	
misc_net	1335	
grocery_net	1009	
travel	894	
Name: count,	dtype: int	6

```
In [420... plt.figure(figsize=(8, 4))
    sns.catplot(data = df_fraud, x = "category", kind ="count", color = 'orange')
    plt.title(f'Distribution of Transactions by Spend Category, Fraud')
    plt.xticks(rotation = 90)
    plt.show()
```

<Figure size 800x400 with 0 Axes>

Distribution of Transactions by Spend Category, Fraud

In [421... df_fraud['category'].value_counts()

```
Out[421... category
          shopping_net
                           26
          grocery_pos
                           24
          misc_net
                          14
                         8
          shopping_pos
          personal_care
          food_dining
          kids_pets
                           4
          gas_transport
entertainment
                          4
                          4
          health_fitness
                           3
          grocery_net
                           3
                            2
          misc_pos
                            1
          home
          travel
          Name: count, dtype: int64
```

The bigest categories of fraud are online shopping, misc online and grocery.

Gender

```
plt.figure(figsize=(8, 4))
sns.catplot(data = df_fraud, x = "gender", kind ="count", color = 'orange')
plt.title(f'Distribution of Transactions Gender, Fraud')
plt.show()
```

Distribution of Transactions Gender, Fraud


```
In [425...
female_total = df2[df2['gender'] == 'F'].shape[0]
male_total = df2[df2['gender'] == 'M'].shape[0]
female_fraud = df_fraud[df_fraud['gender'] == 'F'].shape[0]
male_fraud = df_fraud[df_fraud['gender'] == 'M'].shape[0]
female_fraud_percent = (female_fraud/female_total)*100 if female_total != 0 else 0
male_fraud_percent = (male_fraud/male_total)*100 if male_total != 0 else 0

mf_fraud = pd.DataFrame({
    'Gender': ["F", "M"],
    'Total Count': [female_total, male_total],
    'Fraud Count': [female_fraud, male_fraud],
    'Fraud %': [female_fraud_percent, male_fraud_percent]
})

mf_fraud
```

Out[425...

	Gender	Iotal Count	Fraud Count	Fraud %
0	F	15252	63	0.413
1	М	12533	44	0.351

There is a slightly higher likelihood of fraud occuring among women vs men.

City Population

```
In [ ]:
In [428...

plt.figure(figsize=(8, 4))
    sns.catplot(data = df_safe, x = "city_pop_category", kind ="count", color = 'blue')
    plt.title(f'Distribution of Transactions City Category, Not Fraud')
    plt.xticks(rotation = 90)
    plt.show()
```

<Figure size 800x400 with 0 Axes>

Distribution of Transactions City Category, Not Fraud


```
In [429... plt.figure(figsize=(8, 4))
sns.catplot(data = df_fraud, x = "city_pop_category", kind ="count", color = 'orang
```

```
plt.title(f'Distribution of Transactions City Category, Fraud')
plt.xticks(rotation = 90)
plt.show()
```

<Figure size 800x400 with 0 Axes>

Distribution of Transactions City Category, Fraud


```
In [430... df_fraud['city_pop_category'].value_counts()

Out[430... city_pop_category
   Rural Area 91
   Small Urban Area 10
   Medium-Size Urban Area 4
   Metropolitan Area 2
   Name: count, dtype: int64

In [431... r_total = df2[df2['city_pop_category'] == 'Rural Area'].shape[0]
   su_total = df2[df2['city_pop_category'] == 'Small Urban Area'].shape[0]
```

```
med_total = df2[df2['city_pop_category'] == 'Medium-Size Urban Area'].shape[0]
metro_total = df2[df2['city_pop_category'] == 'Metropolitan Area'].shape[0]
r_fraud = df_fraud[df_fraud['city_pop_category'] == 'Rural Area'].shape[0]
su_fraud = df_fraud[df_fraud['city_pop_category'] == 'Small Urban Area'].shape[0]
med_fraud = df_fraud[df_fraud['city_pop_category'] == 'Medium-Size Urban Area'].sha
metro_fraud = df_fraud[df_fraud['city_pop_category'] == 'Metropolitan Area'].shape[
r_per = (r_fraud/r_total)*100
su_per = (su_fraud/su_total)*100
med_per = (med_fraud/med_total)*100
metro_per = (metro_fraud/metro_total)*100
city fraud = pd.DataFrame({
    'City Pop Category': ["Rural Area", "Small Urban Area", "Medium-Size Urban Area
    'Total Count': [r_total, su_total, med_total, metro_total],
    'Fraud Count': [r_fraud, su_fraud, med_fraud, metro_fraud],
    'Fraud %': [r_per, su_per,med_per, metro_per]
})
city_fraud
```

Out[431...

	City Pop Category	Total Count	Fraud Count	Fraud %
0	Rural Area	22559	91	0.403
1	Small Urban Area	2626	10	0.381
2	Medium-Size Urban Area	1174	4	0.341
3	Metropolitan Area	1080	2	0.185

Majority of the dataset is in rural areas, but the proportion of fraud seems somewhat evenly distributed between rural, small urban and medium sized urban. There is not much representation of metro.

Prep Data for Modeling

Convert Catagorical to Dummy Variables

https://www.geeksforgeeks.org/python-pandas-get_dummies-method/

```
In [435... # Displaying all columns in the dataset df1 along with their data types
    all_columns_info = df2.dtypes
    print(all_columns_info)
```

```
category
                     object
amt
                    float64
                    object
gender
is_fraud
                     int64
distance_km
                   float64
                     int64
Generation_Numeric
city_pop_category
                   object
day_of_week
                     int32
hour_of_day
                     int32
month
                     int32
                      int32
quarter
time_of_day
                    object
                      int64
is_weekend
dtype: object
```

In [436...

```
# One-hot encoding for the specified categorical column
df3 = pd.get_dummies(df2,
                     columns=['category', 'city_pop_category', 'gender', 'time_of_d
                     prefix=['category', 'city_pop_category', 'gender', 'time_of_da
                     drop_first=True) # Dropping the first category to avoid multi
# Convert any boolean columns in df3 to integers
bool_cols = df3.select_dtypes(include=[bool]).columns # Find any boolean columns
df3[bool_cols] = df3[bool_cols].astype(int) # Convert them to integers
# Verify the data types in the new DataFrame
print(df3.dtypes)
# Display the first few rows of the resulting DataFrame
df3.head()
```

amt	float64
is_fraud	int64
distance_km	float64
Generation_Numeric	int64
day_of_week	int32
hour_of_day	int32
month	int32
quarter	int32
is_weekend	int64
category_food_dining	int32
category_gas_transport	int32
category_grocery_net	int32
category_grocery_pos	int32
category_health_fitness	int32
category_home	int32
category_kids_pets	int32
category_misc_net	int32
category_misc_pos	int32
category_personal_care	int32
category_shopping_net	int32
category_shopping_pos	int32
category_travel	int32
<pre>city_pop_category_Medium-Size Urban Area</pre>	int32
city_pop_category_Metropolitan Area	int32
city_pop_category_Rural Area	int32
city_pop_category_Small Urban Area	int32
gender_M	int32
time_of_day_morning	int32
time_of_day_night	int32
time_of_day_noon	int32
dtype: object	

Out[436...

	amt	is_fraud	distance_km	Generation_Numeric	day_of_week	hour_of_day	month
0	50.420	0	60.200	1	1	5	12
1	39.470	0	46.722	2	0	2	6
2	8.160	0	93.483	3	0	15	12
3	25.480	0	82.612	3	3	23	12
4	5.710	0	72.611	2	5	11	6
4							•

Handling imbalanced dataset (target variable) by using SMOTE library

https://www.geeksforgeeks.org/smote-for-imbalanced-classification-with-python/#smote-synthetic-minority-oversampling-technique

```
In [438... # Separate features and target variable
X = df3.drop('is_fraud', axis=1) # Drop the target variable
y = df3['is_fraud'] # Target variable
```

In [440...

```
# Convert categorical variables to numeric using one-hot encoding
 X = pd.get_dummies(X, drop_first=True)
 # Check for missing values and handle them
 if X.isnull().sum().any():
     print("Missing values detected in features.")
     X.fillna(X.mean(), inplace=True) # Fill NaN values with mean for numeric featu
 # Ensure target variable is of integer type
 y = y.astype(int)
 # Split the data
 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_sta
 # Apply SMOTE
 smote = SMOTE(random_state=42)
 X_resampled, y_resampled = smote.fit_resample(X_train, y_train)
 # Scale the features
 scaler = StandardScaler()
 X_resampled = scaler.fit_transform(X_resampled)
 X_test = scaler.transform(X_test) # Apply the same transformation to the test set
 # Check class distribution
 print("Before SMOTE:")
 print(y_train.value_counts())
 print("\nAfter SMOTE:")
 print(pd.Series(y_resampled).value_counts())
Before SMOTE:
is fraud
    22142
        86
Name: count, dtype: int64
After SMOTE:
is_fraud
    22142
     22142
Name: count, dtype: int64
 Normalization
# Set the option to display all columns
 pd.set_option('display.max_columns', None)
 # Display the first 5 rows of the dataframe with all columns visible
 pd.DataFrame(X_resampled).head()
```

Out[440...

	0	1	2	3	4	5	6	7	8	9	10	11
0	-0.477	1.492	-0.922	1.653	-0.339	-0.657	-0.501	2.011	-0.247	-0.250	-0.137	2.452
1	-0.593	0.626	-0.922	-0.950	-0.087	0.478	1.208	-0.497	-0.247	-0.250	-0.137	-0.408
2	-0.648	1.660	0.110	1.133	-0.718	1.613	1.208	2.011	-0.247	-0.250	7.308	-0.408
3	-0.321	0.455	1.142	1.653	-1.728	1.613	1.208	2.011	-0.247	-0.250	-0.137	2.452
4	-0.649	1.778	0.110	-0.950	0.923	-0.657	-0.501	-0.497	4.056	-0.250	-0.137	-0.408
4												•

Data Modeling

Logistic Regression

```
In [443...
          # Logistic Regression with class_weight='balanced'
          model = LogisticRegression(class_weight='balanced', max_iter=1000, random_state=42)
          model.fit(X_resampled, y_resampled)
          # Predictions on the test set
          y_pred = model.predict(X_test)
          # Confusion Matrix and Classification Report
          print("Confusion Matrix:")
          print(confusion_matrix(y_test, y_pred))
          print("\nClassification Report:")
          print(classification_report(y_test, y_pred))
          # Visualizing the Confusion Matrix
          cm = confusion_matrix(y_test, y_pred)
          sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
          plt.title('Confusion Matrix')
          plt.ylabel('Actual')
          plt.xlabel('Predicted')
          plt.show()
```

Confusion Matrix:

[[5248 288] [8 13]]

Classification Report:

	precision	recall	f1-score	support
0	1.00	0.95	0.97	5536
1	0.04	0.62	0.08	21
accuracy			0.95	5557
macro avg	0.52	0.78	0.53	5557
weighted avg	0.99	0.95	0.97	5557

Confusion Matrix - 5000 - 5248 288 - 4000 - 3000 - 2000 - 1000 Predicted

High Accuracy: The model has a high accuracy (95%) primarily due to the correct prediction of non-fraud cases, which dominate the dataset. However, the model struggles to correctly identify fraud cases, as indicated by the very low precision (0.04) for class 1 (fraud).

Precision vs. Recall for Fraud: The recall for fraud cases (0.62) is better than the precision (0.04), meaning that while the model captures a decent portion of actual fraud cases, it misclassifies many non-fraud cases as fraud, leading to a low precision.

XGBoost

```
# Calculate scale_pos_weight (ratio of negative to positive examples)
In [446...
          neg, pos = np.bincount(y_train) # For X_resampled and y_resampled use for SMOTE
          scale_pos_weight = neg / pos
          # XGBoost Classifier
          xgb_model = XGBClassifier(scale_pos_weight=scale_pos_weight, eval_metric='logloss')
          xgb_model.fit(X_resampled, y_resampled)
          # Predictions
          y_pred = xgb_model.predict(X_test)
          # Evaluation
          print("XGBoost Confusion Matrix:")
          print(confusion_matrix(y_test, y_pred))
          print("\nXGBoost Classification Report:")
          print(classification_report(y_test, y_pred))
         XGBoost Confusion Matrix:
         [[5501 35]
           6 15]]
         [
```

[0 75]]

XGBoost Classification Report:

	precision	recall	f1-score	support
0	1.00	0.99	1.00	5536
1	0.30	0.71	0.42	21
accuracy			0.99	5557
macro avg	0.65	0.85	0.71	5557
weighted avg	1.00	0.99	0.99	5557

High Overall Accuracy: The accuracy is significantly high (99%), indicating that the model performs very well on the dataset.

Improved Fraud Detection: Compared to Logistic Regression, XGBoost shows a significant improvement in fraud detection (class 1). The recall for fraud cases is now 0.71 (71%), meaning the model captures more actual fraud cases than the Logistic Regression model.

Precision for Fraud Cases: Although precision is still relatively low for fraud cases (0.30), it is an improvement over the Logistic Regression model. This shows that while the model predicts more fraud cases, some of the predictions are still incorrect (false positives).

Balanced Performance: XGBoost strikes a good balance between precision and recall for both classes, which is crucial for fraud detection, where false negatives (missed fraud cases) are more costly than false positives.

Fraud Detection using XGBoost and Deep Learning: https://medium.com/@f2005636/fraud-detection-using-xgboost-and-deep-learning-c8e1ce6c5c32

LightGBM

```
In [450...
          # LightGBM Dataset
          lgb_train = lgb.Dataset(X_resampled, label=y_resampled)
          # LightGBM Parameters
          lgb_params = {
              'objective': 'binary',
              'is_unbalance': True, # Handles class imbalance
              'metric': 'binary_logloss',
              'boosting_type': 'gbdt'
          }
          # Train the model
          lgb_model = lgb.train(lgb_params, lgb_train, num_boost_round=100)
          # Predictions
          y_pred = (lgb_model.predict(X_test) > 0.5).astype(int)
          # Evaluation
          print("LightGBM Confusion Matrix:")
          print(confusion_matrix(y_test, y_pred))
          print("\nLightGBM Classification Report:")
          print(classification_report(y_test, y_pred))
         [LightGBM] [Info] Number of positive: 22142, number of negative: 22142
         [LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing wa
        s 0.002841 seconds.
        You can set `force_row_wise=true` to remove the overhead.
        And if memory is not enough, you can set `force_col_wise=true`.
        [LightGBM] [Info] Total Bins 627
        [LightGBM] [Info] Number of data points in the train set: 44284, number of used feat
        ures: 29
        [LightGBM] [Info] [binary:BoostFromScore]: pavg=0.500000 -> initscore=0.000000
        LightGBM Confusion Matrix:
        [[5514
                22]
                 15]]
         [ 6
        LightGBM Classification Report:
                      precision recall f1-score support
                           1.00 1.00
                   a
                                               1.00
                                                         5536
                           0.41
                                     0.71
                                               0.52
                                                           21
            accuracy
                                               0.99
                                                         5557
                         0.70
            macro avg
                                     0.86
                                               0.76
                                                         5557
                          1.00
                                     0.99
                                             1.00
                                                         5557
        weighted avg
```

Fighting Fraud at the Speed of LightGBM: https://feedzai.com/blog/lightgbm/

Strong Non-Fraud Detection: The model performs perfectly on class 0 (non-fraud), achieving a precision, recall, and F1-score of 1.00.

Fraud Detection Performance: LightGBM shows a moderate improvement in fraud detection compared to Logistic Regression and XGBoost. The recall remains consistent with XGBoost (0.71), but the precision has increased to 0.41, meaning more fraud cases are correctly identified as fraud without too many false positives.

Balanced Performance: With a higher F1-score for fraud (0.52) compared to XGBoost (0.42), LightGBM provides better overall balance in fraud detection while maintaining high accuracy across both classes.

CatBoost

1

accuracy

macro avg

weighted avg

```
In [454...
          # CatBoost Classifier
          catboost_model = CatBoostClassifier(iterations=1000, depth=6, learning_rate=0.1, sc
          catboost_model.fit(X_resampled, y_resampled)
          # Predictions
          y_pred = catboost_model.predict(X_test)
          # Evaluation
          print("CatBoost Confusion Matrix:")
          print(confusion_matrix(y_test, y_pred))
          print("\nCatBoost Classification Report:")
          print(classification_report(y_test, y_pred))
        CatBoost Confusion Matrix:
        [[4554 982]
         [ 3 18]]
        CatBoost Classification Report:
                      precision recall f1-score support
                                              0.90
                   0
                          1.00 0.82
                                                        5536
```

CatBoost for Fraud Detection in Financial Transactions https://ieeexplore.ieee.org/document/9342475

0.51 0.84

0.02

1.00

0.86

0.82

High Recall for Fraud Detection: The model performs very well in identifying actual fraud cases, with a recall of 0.86. This means 86% of the actual fraud cases were successfully detected.

0.04

0.82

0.90

0.47

21

5557

5557

5557

Low Precision for Fraud: The precision for fraud is very low (0.02), indicating that the model predicts many non-fraud cases as fraud, resulting in a large number of false positives.

Performance on Non-Fraud Cases: The model achieves perfect precision for non-fraud cases (1.00) but only captures 82% of the actual non-fraud cases (recall of 0.82).

** In this specific fraud detection case, CatBoos is the best-performing model as it has the least amount of false negatives. Prioritizing recall, the model is correctly identifying approximately 86% of actual fraud cases.**