Math 1152 Lecture Notes

July 22, 2022

1 Last time

Parametric equations parametrize an equation in variables x, y, \cdots by making explicit the parameter(s) t, s, \cdots on which the variables depend. This makes it easy to see, for instance, that a curve like

$$\gamma(t) = \begin{cases} x(t) = t^2 + \sin(t) \\ y(t) = t^3 + \cos(t) \end{cases}$$

is one-dimensional.

The idea of making explicit some hidden parameters which underly relationships between multiple variables is also a thing which shows up, in a different form, in statistics.

2 Calculus and parametric equations

Suppose that $\gamma(t)=(x(t),y(t))$. To talk about limits, we want to be able to talk about how close $\gamma(t)$ and $\gamma(s)$ are. Given two points in the plane, their distance is given by the distance formula, so we define

$$|\gamma(t) - \gamma(s)| = \sqrt{|x(t) - x(s)|^2 + |y(t) - y(s)|^2}.$$

Then we can say

$$\lim_{t \to s} \gamma(t) = \left(\lim_{t \to s} x(t), \lim_{t \to s} y(t)\right)$$

not as a definition, but as a theorem, with our definition of limit being that

 $\lim_{t\to s} \gamma(t) = L$ if for every $\epsilon > 0$, there is a $\delta = \delta(\epsilon) > 0$ so that

$$|\gamma(t) - L| < \epsilon$$

whenever

$$|t-s| < \delta$$
.

Theorem 1. If $\lim_{t\to s} x(t) = a$ and $\lim_{t\to s} y(t) = b$, then

$$\lim_{t\to s}\gamma(t)=(a,b).$$

${\bf Continuity}$

We define continuity as usual: γ is continuous at s if $\lim_{t\to s} \gamma(t) = \gamma(s)$.

Exercise 1. Explain why $\gamma=(x,y)$ is continuous if and only if x and y are continuous.

 ${\bf Question} \ {\bf 1.} \ {\bf Are \ there \ so-called}$ "space-filling" curves?

Derivatives

Here's an attempt at a definition of derivative for a parametrized curve γ :

$$\gamma'(t) = \lim_{h \to 0} \frac{\gamma(t+h) - \gamma(t)}{h}.$$

In order for this to work, we have just one problem : we need to know about operations of addition (or subtraction) between curves and multiplying (or rather, dividing) them by real numbers.

Vectors

A Vector Space is a set, X, endowed with a binary operation, +, and an identity element, 0, such that for any $u, v, w \in V$

- 1. 0 + v = v
- 2. u + v = v + u
- 3. (u+v) + w = u + (v+w)

together with an operation $\cdot : \mathbb{R} \cdot V \to V$ satisfying that for any real numbers (called **scalars**), a, b,

- 4. $1 \cdot v = v$
- 5. $a \cdot (b \cdot v) = (ab) \cdot v$
- 6. $v + (-1) \cdot v = 0$
- 7. $a \cdot v + b \cdot v = (a+b) \cdot v$.

Elements of a vector space are called **vectors**.

Exercise 2. \mathbb{R}^2 is a vector space. So is \mathbb{R} . So are the polynomials of degree less than any fixed d. So is the space of all continuous functions.

So lets reinterpret our parametrized curve γ as mapping $\mathbb R$ into the vector space $\mathbb R^2.$ Then

$$\gamma'(t) = \lim_{h \to 0} \frac{\gamma(t+h) - \gamma(t)}{h}$$

makes sense, and we can see that it is just

$$\gamma'(t) = \lim_{h \to 0} \frac{(x(t+h) - x(t), y(t+h) - y(t))}{h}$$

$$= \lim_{h \to 0} \left(\frac{x(t+h) - x(t)}{h}, \frac{y(t+h) - y(t)}{h} \right)$$

$$= (x'(t), y'(t)).$$

Geometrically, this also matches what we want from the derivative:

Exercise 3. Find the equation for the tangent lines to the curve $\gamma(t) = (\cos(t), \sin(t))$.

3 Lengths of curves, revisited