5.229 lex_greater

DESCRIPTION	LINKS	GRAPH	AUTOMATON

Origin CHIP

Purpose

Typical

Arg. properties

Remark

Algorithm

Constraint lex_greater(VECTOR1, VECTOR2)

Synonyms lex, lex_chain, rel, greater, gt.

Restrictions required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| = |VECTOR2|

VECTOR1 is lexicographically strictly greater than VECTOR2. Given two vectors, \vec{X} and \vec{Y} of n components, $\langle X_0, \dots, X_{n-1} \rangle$ and $\langle Y_0, \dots, Y_{n-1} \rangle$, \vec{X} is lexicographically strictly greater than \vec{Y} if and only if $X_0 > Y_0$ or $X_0 = Y_0$ and $\langle X_1, \dots, X_{n-1} \rangle$ is lexicographically strictly greater than $\langle Y_1, \dots, Y_{n-1} \rangle$.

Example $(\langle 5, 2, 7, 1 \rangle, \langle 5, 2, 6, 2 \rangle)$

The lex_greater constraint holds since VECTOR1 = $\langle 5, 2, 7, 1 \rangle$ is lexicographically strictly greater than VECTOR2 = $\langle 5, 2, 6, 2 \rangle$.

|VECTOR1| > 1 $V \left(\begin{array}{c} |VECTOR1| < 5, \\ |VECTOR1| < 0, \\ |VECTOR1| < 0. \end{array} \right)$

 $\begin{array}{l} & \\ \forall \left(\begin{array}{l} | \mathtt{VECTOR1}| < 5, \\ \mathtt{nval}([\mathtt{VECTOR1.var}, \mathtt{VECTOR2.var}]) < 2 * | \mathtt{VECTOR1}| \end{array} \right) \\ \forall \left(\begin{array}{l} \mathsf{maxval}([\mathtt{VECTOR1.var}, \mathtt{VECTOR2.var}]) \leq 1, \\ 2 * | \mathtt{VECTOR1}| - \mathsf{max_nvalue}([\mathtt{VECTOR1.var}, \mathtt{VECTOR2.var}]) > 2 \end{array} \right) \end{array}$

Symmetries • VECTOR1.var can be increased.

• VECTOR2.var can be decreased.

Suffix-extensible wrt. VECTOR1 and VECTOR2 (add items at same position).

A multiset ordering constraint and its corresponding filtering algorithm are described in [174].

The first filtering algorithm maintaining arc-consistency for this constraint was presented in [173]. A second filtering algorithm maintaining arc-consistency and detecting entailment in a more eager way, was given in [96]. This second algorithm was derived from a deterministic finite automata. A third filtering algorithm extending the algorithm presented in [173] detecting entailment is given in the PhD thesis of Z. Kızıltan [239, page 95]. The

20030820 1553

previous thesis [239, pages 105–109] presents also a filtering algorithm handling the fact that a given variable has more than one occurrence. Finally, T. Frühwirth shows how to encode lexicographic ordering constraints within the context of CHR [175] in [176].

Reformulation

The following reformulations in term of arithmetic and/or logical expressions exist for enforcing the *lexicographically strictly greater than* constraint. The first one converts \vec{X} and \vec{Y} into numbers and post an inequality constraint. It assumes all components of \vec{X} and \vec{Y} to be within [0,a-1]:

$$a^{n-1}Y_0 + a^{n-2}Y_1 + \dots + a^0Y_{n-1} < a^{n-1}X_0 + a^{n-2}X_1 + \dots + a^0X_{n-1}$$

Since the previous reformulation can only be used with small values of n and a, W. Harvey came up with the following alternative model that maintains arc-consistency:

$$(Y_0 < X_0 + (Y_1 < X_1 + (\cdots + (Y_{n-1} < X_{n-1} + 0) \dots))) = 1$$

Finally, the *lexicographically strictly greater than* constraint can be expressed as a conjunction or a disjunction of constraints:

$$(Y_{0} = X_{0}) \Rightarrow Y_{1} \leq X_{1} \quad \land \\ (Y_{0} = X_{0}) \Rightarrow Y_{1} \leq X_{1} \quad \land \\ (Y_{0} = X_{0} \land Y_{1} = X_{1}) \Rightarrow Y_{2} \leq X_{2} \quad \land \\ \vdots \\ (Y_{0} = X_{0} \land Y_{1} = X_{1} \land \cdots \land Y_{n-2} = X_{n-2}) \Rightarrow Y_{n-1} < X_{n-1}$$

$$Y_{0} < X_{0} \quad \lor \\ Y_{0} = X_{0} \land Y_{1} < X_{1} \quad \lor \\ Y_{0} = X_{0} \land Y_{1} = X_{1} \land Y_{2} < X_{2} \quad \lor \\ \vdots \\ Y_{0} = X_{0} \land Y_{1} = X_{1} \land \cdots \land Y_{n-2} = X_{n-2} \land Y_{n-1} < X_{n-1}$$

When used separately, the two previous logical decompositions do not maintain arc-consistency.

Systems

lex in Choco, rel in Gecode, lex-greater in MiniZinc, lex-chain in SICStus.

Used in

lex_chain_greater.

See also

common keyword: cond_lex_greater, lex_between, lex_chain_greatereq,
lex_chain_less, lex_chain_lesseq (lexicographic order).

implies: lex_different, lex_greatereq.

implies (if swap arguments): lex_less.

negation: lex_lesseq.

system of constraints: lex_chain_greater.

Keywords

characteristic of a constraint: vector, automaton, automaton without counters, reified automaton constraint, derived collection.

constraint network structure: Berge-acyclic constraint network.

constraint type: order constraint.

filtering: duplicated variables, arc-consistency.

heuristics: heuristics and lexicographical ordering.

symmetry: symmetry, matrix symmetry, lexicographic order, multiset ordering.

Derived Collections

```
 \begin{aligned} & \operatorname{col} \left( \begin{array}{l} \operatorname{DESTINATION-collection}(\operatorname{index-int}, \operatorname{x-int}, \operatorname{y-int}), \\ [\operatorname{item}(\operatorname{index} - 0, \operatorname{x} - 0, \operatorname{y} - 0)] \\ & \operatorname{col} \left( \begin{array}{l} \operatorname{COMPONENTS-collection}(\operatorname{index-int}, \operatorname{x-dvar}, \operatorname{y-dvar}), \\ [\operatorname{item} \left( \begin{array}{l} \operatorname{index-VECTOR1.key}, \\ \operatorname{x-VECTOR2.var} \end{array} \right) \end{array} \right) \\ & \operatorname{COMPONENTS} \operatorname{DESTINATION} \\ & \operatorname{PRODUCT}(\operatorname{PATH}, \operatorname{VOID}) \mapsto \operatorname{collection}(\operatorname{item1}, \operatorname{item2}) \\ & 2 \end{aligned}
```

Arc arity

Arc constraint(s)

Arc input(s)

Arc generator

 $\bigvee \left(\begin{array}{l} \mathtt{item2.index} > 0 \land \mathtt{item1.x} = \mathtt{item1.y}, \\ \mathtt{item2.index} = 0 \land \mathtt{item1.x} > \mathtt{item1.y} \end{array} \right.$

Graph property(ies)

PATH_FROM_TO(index, 1, 0) = 1

Graph model

Parts (A) and (B) of Figure 5.488 respectively show the initial and final graph associated with the **Example** slot. Since we use the **PATH_FROM_TO** graph property we show the following information on the final graph:

- The vertices, which respectively correspond to the start and the end of the required path, are stressed in bold.
- The arcs on the required path are also stressed in bold.

Figure 5.488: Initial and final graph of the lex_greater constraint

The vertices of the initial graph are generated in the following way:

• We create a vertex c_i for each pair of components that both have the same index i.

20030820 1555

 \bullet We create an additional dummy vertex called d.

The arcs of the initial graph are generated in the following way:

- We create an arc between c_i and d. We associate to this arc the arc constraint $\mathtt{item}_1.x > \mathtt{item}_2.y$.
- We create an arc between c_i and c_{i+1}. We associate to this arc the arc constraint item₁.x = item₂.y.

The lex_greater constraint holds when there exist a path from c_1 to d. This path can be interpreted as a sequence of *equality* constraints on the prefix of both vectors, immediately followed by a *greater than* constraint.

Signature

Since the maximum value returned by the graph property **PATH_FROM_TO** is equal to 1 we can rewrite **PATH_FROM_TO**(index, 1, 0) = 1 to **PATH_FROM_TO**(index, 1, 0) \geq 1. Therefore we simplify **PATH_FROM_TO** to **PATH_FROM_TO**.

Automaton

Figure 5.489 depicts the automaton associated with the lex_greater constraint. Let VAR1 $_i$ and VAR2 $_i$ respectively be the var attributes of the i^{th} items of the VECTOR1 and the VECTOR2 collections. To each pair (VAR1 $_i$, VAR2 $_i$) corresponds a signature variable S_i as well as the following signature constraint: (VAR1 $_i$ < VAR2 $_i$ \Leftrightarrow $S_i = 1) \land$ (VAR1 $_i$ = VAR2 $_i$ \Leftrightarrow $S_i = 2) \land$ (VAR1 $_i$ > VAR2 $_i$ \Leftrightarrow $S_i = 3$).

Figure 5.489: Automaton of the lex_greater constraint

Figure 5.490: Hypergraph of the reformulation corresponding to the automaton of the $lex_greater$ constraint

20030820 1557