Please note that there are tow EXCEL files. One is the main file which has the calculations for 8 questions and the other one is Q4.1) which is used for the next 7 questions.

Q4.1)

In this question, Gaussian Elimination and Back substitution is the method which should be used. The objective is to convert the coefficient matrix to a diagonal matrix. So, the following is 10 steps to make the diagonal matrix. Please note that the results are verified using MMULT function:

_													
	30	-4	0	0	0	40		30					
	-4	30	-4	0	0	20		0	29.4667	-4	o'	0	25.3333
	0	-4	30	-4	0	20		0	-4	30	-4	0	20
	0	0	-4	30	-4	20		0	0	-4	30	-4	20
	0	0	0	-4	30	40		0	0	0	-4	30	40
	1							2					
Г													
	30	-4	0	0	0	40		30	-4	0	0	0	40
		29.4667	-4	0	0	25.3333		0	29.4667	-4	0	0	25.3333
	o'	0	29.457	-4	0	23.4389		0	0	29.457	-4	0	23.4389
	0	0	-4	30	-4	20		0	0	0	29.4568	-4	23.1828
	0	0	0	-4	30	40		0	0	0	-4	30	40
	3							4					
	30	-4	0	0	0	40		1	-0.1333	0	0	0	1.33333
		29.4667	-4	0	_	25.3333		0	1	-0.1357	0		0.85973
	0	0	29.457	-4		23.4389		0	0	1	-0.1358	0	0.7957
	0	0		29.4568		23.1828		0	0	0	1	_	0.78701
	0	0	0		29.4568	43.148		0	0	0	0		1.46479
	5							6					
	3							·					
	1	-0.1333	0	0	0	1.33333		1	-0.1333	0	0	0	1.33333
	0	1	-0.1357	0		0.85973		0	1	-0.1357	0		0.85973
	0	0	0.1337	-0.1358		0.7957		0	0	0.1557	0		0.92958
	0	0	0	1		0.98592		0	0	0	1		0.98592
	0	0	0	0		1.46479		0	0	0	0		1.46479
	7	Ŭ			-	2.10175		8	J		J	_	2.40475
	,							0					
	1	-0.1333	0	0	0	1.33333		1	0	0	0	0	1.46479
	0	1	0	0		0.98592		0	1	0	0		0.98592
	0	0	1	0		0.92958		0	0	1	0		0.92958
	0	0	0	1		0.98592		0	0	0	1		0.98592
	0	0	0	0		1.46479		0	0	0	0		1.46479
	9	Ŭ	J	J	_	2.10175		10	Ū	Ŭ		-	2.10175
	9							10					
\vdash							ouble chec	de.					
\vdash						U	ouble chec	.к		MMULT			
\vdash				30	-4	0	0	0	1.46479	40			
				-4	30	-4	0	0	0.98592	20			
				-4	-4	30	-4	0	0.92958	20			
				0	0	-4	30	-4	0.98592	20			
				0	0	-4	-4	30	1.46479	40			
				U	U	- 0	-4	30	1.404/3	40			

In addition, no source was used since I knew how to do It.

$$x_1 = 1.46479, x_2 = 0.98592, x_3 = 0.92958, x_4 = 0.98592, x_5 = 1.46479$$

Q4.2)

LU decomposition is a method which also can be used to solve system of linear equation. The following is a summery of LU composition method:

A = LU and substitute into AX = B

 $sOLVE\ LUX = B\ for\ X\ to\ solve\ the\ system.$

Let UX = Y

LY = B and UX = Y

First Solve LY = B for Y and then dolve UX = Y for X

So, L and U matrices have been generated:

										i
		U	J					L		
1	-4				40		0	0	_	0
0	29.46667	-4	0	_	25.33333		1		_	0
0		30	-4		20	0				0
0	0	-4	30	-4	20		0			
0	0	0	-4	30	40	0	0	0	-0.13579	1
1										
30	-4	0	0	0	40					
0	29.46667	-4	0	0	25.33333					
0	0	29.45701	-4	0	23.43891					
0	0	-4	30	-4	20					
0	0	0	-4	30	40					
2										
_										
30	-4	0	0	0	40					
	29.46667				25.33333					
-	0									
0		0								
0			-4		40					
3			-	50	40					
3										
20		0	0		40					
	-4									
_	29.46667		0	_	25.33333					
0		29.45701								
0		0								
0	0	0	0	29,43083	43.14804					
4										

L and U matrices were verified and the original coefficient matrix was resulted. Next, Y and X matrices are calculated:

	Y Matrix										
1	0	0	0	0	40	40					
-0.13333	1	0	0	0	25.33333	20					
0	-0.13575	1	0	0	23.43891	20					
0	0	-0.13579	1	0	23.1828	20					
0	0	0	-0.13579	1	43.14804	40					
			X Matrix								
30	-4	0	0	0	1.464789	40					
0	29.46667	-4	0	0	0.985915	25.33333					
0	0	29.45701	-4	0	0.929577	23.43891					
0	0	0	29.45684	-4	0.985915	23.1828					
0	0	0	0	29.45683	1.464789	43.14804					

The results are very similar to what calculated in Q4,1

$$(x_1 = 1.46479, x_2 = 0.98592, x_3 = 0.92958, x_4 = 0.98592, x_5 = 1.46479)$$

Source: https://www.youtube.com/watch?v=UIWcofkUDDU

Q4.3)

In this question, Cholesky decomposition is the method which has been used. Here is a summary for this method:

$$A = LL^T$$

Where L is a lower triangular matrix and L^T is the conjugate transpose of L.

		LT				
5.477226	-0.7303	0	0	0		
0	5.428321	-0.73688	0	0		
0	0	5.427432	-0.737	0		
0	0	0	5.427415	-0.737		
0	0	0	0	5.427415		
L						
		L				
5.477226	0	0	0	0		
5.477226 -0.7303	0 5.428321	0 0	0	0		
	•	•	•	•		
-0.7303	5.428321	0	0	0		

This is calculated which has verified by $A = LL^T$

The similar to LU decomposition method, Y and X matrices are calculated:

			Matrix Y					
5.4772256	0	0	0	0	7.302967	40		
-0.7302967	5.428321	0	0	0	4.666882	20		
0	-0.73688	5.427432	0	0	4.318601	20		
0	0	-0.737	5.427415	0	4.271425	20		
0	0	0	-0.737	5.427415	7.950016	40		
			Matrix X					
5.4772256	-0.7303	0	0	0	1.464789	7.302967		
0	5.428321	-0.73688	0	0	0.985915	4.666882		
0	0	5.427432	-0.737	0	0.929577	4.318601		
0	0	0	5.427415	-0.737	0.985915	4.271425		
0	0	0	0	5.427415	1.464789	7.950016		
					The result	s are correc		

As you can see, the obtained results are correct!

Source: https://en.wikipedia.org/wiki/Cholesky_decomposition

Q4.4)

Gauss-Jordan method is used in this question which is summarized as:

$$[A|I] => [I|B]$$

Inversion matrix was calculated through 9 steps (please go to excel file)

30	-4	0	0	0	1	0	0	0	0
-4	30	-4	0	0	0	1	0	0	0
0	-4	30	-4	0	0	0	1	0	0
0	0	-4	30	-4	0	0	0	1	0
0	0	0	-4	30	0	0	0	0	1
-									-
1	0	0	0	0	0.03395	0.00461	0.00063	0.00008	0.00001
0	1	0	0	0	0.00461	0.03458	0.00470	0.00064	0.00008
0	0	1	0	0	0.00063	0.00469	0.03459	0.00469	0.00063
0	0	0	1	0	0.00008	0.00064	0.00469	0.03457	0.00461
0	0	0	0	1	0.00001	0.00008	0.00063	0.00461	0.03395

The inversion matrix was used to calculate the X-matrix and results were correctly calculated.

Q4.5)

Jacobi Iterative method was used which is summarized as:

$$x_i^{(k+1)} = rac{1}{a_{ii}} \left(b_i - \sum_{j
eq i} a_{ij} x_j^{(k)}
ight), \quad i = 1, 2, \dots, n.$$

While x_j^k is the parameters from previous iteration. The following figure is iterations of Jacobi Iterative method:

x1	1	First Iteration	x1	1.466667	Fourth Iteration Second Iteration
x2	1		x2	0.933333	erat
x3	1	era	х3	0.933333	± B
x4	1	按	x4	0.933333	r o
x5	1	E :	x5	1.466667	Sec
x1	1.457778	n	x1	1.464889	ion
x2	0.986667	atio	x2	0.983111	rat
x3	0.915556	ter	х3	0.929778	j te
x4	0.986667	Third Iteration	x4	0.983111	늍
x5	1.457778		x5	1.464889	For
x1	1.464415	٦	x1	1.464794	ב
x2	0.985956	tio	x2	0.985766	itio
x3	0.92883	era	х3	0.929588	ter
x4	0.985956	Fifth Iteration	x4	0.985766	Sixth Iteration
x5	1.464415	Fift	x5	1.464794	Six
		1.464789			
		0.985915	ē		
		0.929577	Answer		
		0.985915	Ar		
		1.464789			

Source: https://en.wikipedia.org/wiki/Jacobi_method

Q,4.6)

This method is also very similar to Jacobi Iterative method. The inly difference is that, it uses updated value for those parameters which have already been recalculated in the same iteration.

$$x_i^{(k+1)} = rac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)}
ight), \quad i = 1, 2, \dots, n.$$

Slight modification was applied to the Jacboi Iterative method for this method. The results show better accuracy:

x1 x2	1.466074 0.986509	ation	x1 x2	1.464868 0.984842	Fourth Iteration Second Iteration
x3	0.92145	tera	x3	0.929144	<u>t</u> e
x4	0.983738	Third Iteration	x4	0.985819	뒾
x5	1.464498		x5	1.464776	For
x1	1.464646	n	x1	1.464778	ב
x2	0.985839	atio	x2	0.985911	atio
x3	0.929554	tera	x3	0.929576	ter
		<u>-</u>		0.005045	_
x4	0.985911	Æ	x4	0.985915	÷
x4 x5	0.985911 1.464788	Fifth Iteration	x4 x5	0.985915 1.464789	Sixth Iteration
		1.464789			Sixth
			x5		Sixth
		1.464789	x5		Sixth
		1.464789 0.985915			Sixth

The results were compared with results obtained in Q4.1).

Source: https://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel method

Q,4.7)

In this method, ω term was added to the formula of Q,4.6 in this form:

$$x_i^{(k+1)} = (1-\omega)x_i^{(k)} + rac{\omega}{a_{ii}}\left(b_i - \sum_{j < i} a_{ij}x_j^{(k+1)} - \sum_{j > i} a_{ij}x_j^{(k)}
ight), \quad i = 1, 2, \dots, n.$$

And all calculations are dependent on the term ω .

It was concluded that $\omega=1.02$ results in more accuracy. In this report, the last two iterations are shown:

x1	1.464629		
x2	0.985922		
x3	0.929578		
x4	0.985916	W	1.02
x5	1.464789	Answer	Error
x1	1.464793	1.464789	4.13933E-06
x2	0.985916	0.985915	5.04399E-07
x3	0.929578	0.929577	6.27667E-08
x4	0.985916	0.985915	7.99754E-09
x5	1.464789	1.464789	1.03823E-09
		Sum	4.71553E-06

Source: https://en.wikipedia.org/wiki/Successive over-relaxation

Q,4.8)

The following formula is for Thomas algorithm:

$$c_i' = \left\{ egin{array}{ll} rac{c_i}{b_i} & ; & i = 1 \ & & \ rac{c_i}{b_i - a_i c_{i-1}'} & ; & i = 2, 3, \ldots, n-1 \end{array}
ight.$$

and

$$d_i' = \left\{ egin{array}{ll} rac{d_i}{b_i} & ; & i=1 \ & & \ rac{d_i - a_i d_{i-1}'}{b_i - a_i c_{i-1}'} & ; & i=2,3,\ldots,n. \end{array}
ight.$$

The solution is then obtained by back substitution:

$$x_n = d'_n$$
 $x_i = d'_i - c'_i x_{i+1}$; $i = n-1, n-2, \dots, 1$.

For:

$$egin{bmatrix} b_1 & c_1 & & & 0 \ a_2 & b_2 & c_2 & & \ & a_3 & b_3 & \ddots & \ & & \ddots & \ddots & c_{n-1} \ 0 & & & a_n & b_n \end{bmatrix} egin{bmatrix} x_1 \ x_2 \ x_3 \ dots \ x_n \end{bmatrix} = egin{bmatrix} d_1 \ d_2 \ d_3 \ dots \ d_n \end{bmatrix}.$$

The formulas were applied for our case and the following was resulted:

30	-4	0	0	0	40
-4	30	-4	0	0	20
0	-4	30	-4	0	20
0	0	-4	30	-4	20
0	0	0	-4	30	40
i	Ci'	di'			
1	-0.13333	1.333333			
2	-0.13575	0.859729			
3	-0.13579	0.795699			
4	-0.13579	0.787009			
5		1.464789			
x1	1.464789	1.464789			
x2	0.985915	0.985915			
x3	0.929577	0.929577			
x4	0.985915	0.985915			
x5	1.464789	1.464789			
	Correct!				

 $Source: https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm$