UNIVERSIDAD DE EL SALVADOR EDUCACIÓN A DISTANCIA

SISTEMAS DIGITALES I SDU115

UNIDAD I

CONCEPTOS BÁSICOS Y SIMPLIFICACIÓN ALGEBRAICA DE SISTEMAS DIGITALES COMBINACIONALES.

SISTEMAS DIGITALES I SDU115

Códigos numéricos, y especiales

Agenda

 Códigos numéricos, alfanuméricos, y detectores y correctores de error.

Objetivo

Seleccionar la representación codificada de la información, según su uso, para la aplicación adecuada en los diferentes sistemas digitales.

Códigos Numéricos

Los códigos BCD son conjuntos de 4 o mas bits, (Decimal Codificado directamente en Binario) codificar directamente, por sustitución, cada Dígito decimal del 0 al 9.

El código BCD mas fácil de construir se llama Código 8421, se forma con las representaciones en binario natural de 4 bits de los dígitos del 0 al 9.

15 $_{10}$ se escribe sustituyendo directamente el 1 y el 5 por su equivalente en binario de 4 bits.

1					5	10	
0	0	0	1	0	1	0	1
							8421

Hay 6 combinaciones de 4 bits que no se usan en el código 8421. Lo mismo ocurre con los códigos mostrados a continuación.

5

Decimales Codificados directamente en Binario

Dígito Decimal	8421	Aiken (2421)	7421	5421	Exceso 3	Biquinario
0	0000	0000	0000	0000	0011	0100001
1	0001	0001	0001	0001	0100	0100010
2	0010	0010	0010	0010	0101	0100100
3	0011	0011	0011	0011	0110	0101000
4	0100	0100	0100	0100	0111	0110000
5	0101	1011	0101	1000	1000	1000001
6	0110	1100	0110	1001	1001	1000010
7	0111	1101	1000	1010	1010	1000100
8	1000	1110	1001	1011	1011	1001000
9	1001	1111	1010	1100	1100	1010000

Decimales Codificados directamente en Binario

Como se forman los códigos BCD

- El 8421: Se escriben los dígitos decimales igual al binario de 4 bits. No valen del 1010₂ al 1111₂
- El 7421: Igual al 8421 del 0 al 6, no vale el 0111_2 y sigue igual al Binario de 4 bits del 1000_2 (7) al 1010_2 (9); no valen del 1011_2 al 1111_2
- El <u>5421</u>: Igual al 8421 del 0 al 4, no valen del 0101_2 al 0111_2 y sigue igual al Binario de 4 bits del 1000_2 (5) al 1100_2 (9), no valen del 1101_2 al 1111_2
- El 2421: Igual al 8421 del 0 al 4, no valen del 0101_2 al 1010_2 y sigue igual al Binario de 4 bits del 1011_2 (5) al 1111_2 (9).
- El Exceso 3: Igual al 8421 del 0 al 9, solo que se le suman 3, no valen del 0000_2 al 0010_2 , ni del 1101_2 al 1111_2 .

Códigos BCD a decimal y viceversa.

Para convertir Decimal a BCD y Viceversa se sustituye c/dígito por su equivalente en el código. Se suman los pesos de cada 1 y se obtiene el decimal.

Peso	8	4	2	1	8	4	2	1	8	4	2	1
257 ₁₀	0	0	1	0	0	1	0	1	0	1	1	1 8421
		2	2			4 + 1	1 = 5	<u> </u>	4	4 + 2	2 + 1	. = 7
Peso	5	4	2	1	5	4	2	1	5	4	2	1
257 ₁₀	0	0	1	0	1	0	0	0	1	0	1	0 5421
		2	2			5			5 + 2 = 7			
Peso	2	4	2	1	2	4	2	1	2	4	2	1
257 ₁₀	0	0	1	0	1	0	1	1	1	1	0	1 2421
		2	2		2	2 + 2 + 1 = 5			2 + 4 + 1 = 7			
Peso	8	4	2	1	8	4	2	1	8	4	2	1
257 ₁₀	0	1	0	1	1	0	0	0	1	0	1	O _{Exce3}
	4+1	l= 5	; 5-3	3=2		8-3	= 5		8+	-2=1	0; 1	0-3=7

Sumas en 8421

Los dígitos en 8421 se suman igual a la suma binaria, siempre que la suma pase de 1001₂ debe sumarse 0110₂ para corregir el resultado.

	3 ₁₀		0011 ₂
+	6 ₁₀	+	01102
	9 ₁₀		1001

	9 ₁₀		0001	1001
+	8 ₁₀	+	0000	1000
	17		0001	0001
			+	0110
			0001	0111
			1	7

	5 ₁₀		0101 ₂	
+	9 ₁₀	+	1001 ₂	
	14		1110	
		+	0110	→ Corrección
0	001		0100	
	1		4	

Código Biquinario

Dec	05-01234
0	10-10000
1	10-01000
2	10-00100
3	10-00010
4	10-00001
5	01-10000
6	01-01000
7	01-00100
8	01-00010
9	01-00001

Código BiQuinario : Bi = 2 y Quin = 5, Código de 7 bits, con peso 05-01234.

La tabla muestra una forma de asignar.

Note en la tabla la suma de los pesos que tienen un 1.

Para que una palabra sea correcta exige que haya un solo bit en los dos primeros de la izquierda y también en los cinco restantes de la derecha.

Eso facilita la detección de errores en la transmisión de datos.

Código Gray o Gray Reflejado

Es un código binario sin peso, se conoce también como código de cambio mínimo porque de conteo en conteo, cambia un solo bit. También se conoce como reflejado por la forma en que se construye.

1 bit		2 bi	its	_		,	3 bits	
0	0	0	0	0)	0	00	Ī
1	1	0	1	1		0	01	
	2	1	1	2		0	11	
	3	1	0	3	,	0	10	
				4		1	10	
				5	,	1	11	
				6		1	10	

Para hacer el de 3 bits se refleja el de 2, arriba se llena con 0s y abajo con 1s. Para el de 4 se refleja el de 3.

Binario a Código Gray

La única forma de llegar al Gray es a través del Binario y la única forma de salir del Gray es hacia el Binario.

Convertir Binario a Gray.

El MSB se copia igual en el gray, en el binario se suman en pareja los bits desde el MSB, el resultado de la suma, despreciando el acarreo si existiera, es el bit en el gray.

Como se escribe 38₁₀ en Gray?. Primero a Binario

$$100110_2 = 110101_{\text{Grav}}$$

Código Gray a Binario

Convertir Gray a Binario.

El MSB se copia igual en el Binario, el bit bajado se suma al segundo bit del gray y el resultado de la suma (despreciando el acarreo si existe), es el segundo bit binario, asi siguen las sumas de la misma forma...

Cuanto es 110101_{gray} en decimal?. Primero gray a Binario y después binario a base 10.

1		1		0		1		0		1 gray
\downarrow	+7	\downarrow								
1		0		0		1		1		0 2

110101
$$_{\text{Gray}} = 100110_{2}$$

Códigos Alfanuméricos

Cualquier número, letra o carácter de los teclados en las computadoras, se guardan en la circuitería interna como unos y ceros, en alguna implementación hardware del binario.

A cada símbolo le corresponde un código en binario de 8 bits llamado ASCII (léase Asquí) de American Standard Code for Information Interchange.

	Binario	B ₁₀		Binario	B ₁₀		Binario	B ₁₀
Α	01000001	65	0	00110000	48	5	00110101	53
Е	01000101	69	1	00110001	49	6	00110110	54
I	01001001	73	2	00110010	50	7	00110111	55
0	01001111	79	3	00110011	51	8	00111000	56
U	01010101	85	4	00110100	52	9	00111001	57

Códigos de Caracteres o Alfanuméricos (cont.)

Escriba con su teclado, cualquier numero teniendo presionada la tecla Alt y le saldrá un carácter.

Si pone Alt 73 le saldrá la I. Alt 30 será el 0

SDU 115 se escribe así:

Códigos de Detección de Errores en Transmisión

La computadora de mi escritorio y la del registro académico se programan para comunicarse en 8421.

Envío la nota de Karen = 1001_{8421} , por un error, el registro recibe 0001_{8421} , acepta el registro esa nota? Si por que 0001_{8421} es válido.

El método mas simple para detectar errores se llama "Metodo de Paridad. " Y puede ser Par o Impar.

Consiste en agregar un Bit en la posición mas significativa de forma que, la cantidad de unos contenidos en lo enviado sea Par o Impar según el tipo de paridad acordado.

Solo es efectivo si falla un número impar de bits.

Códigos de Detección y Corrección de Errores

BIT DE PARIDAD PARA EL CODIGO 8421.

PAR	IMPAR
<u>0</u> 0000	<u>1</u> 0000
<u>1</u> 0001	<u>0</u> 0001
<u>1</u> 0010	<u>0</u> 0010
<u>0</u> 0011	<u>1</u> 0011
<u>1</u> 0100	<u>0</u> 0100
<u>0</u> 0101	<u>1</u> 0101
<u>0</u> 0110	<u>1</u> 0110
<u>1</u> 0111	<u>0</u> 0111
<u>1</u> 1000	<u>0</u> 1000
<u>0</u> 1001	<u>1</u> 1001

Detección y Corrección de Errores

Un Código que detecta y corrige el error en un bit es el CODIGO HAMMING.

En su forma más básica es un código de 7 bits.

P1 P2 X3 P4 X5 X6 X7

X3, X5,X6 y X7 Es el dato de 4 bits a codificar (X3 MSB)

P1, P2 y P4 son bits de PARIDAD PAR, calculados con las siguientes tramas:

P1 con	хз,	X5	у	X7
P2 con	Х3,	X6	У	X7
P4 con	X5,	X6	У	X7

Detección y Corrección de Errores

Codificaremos el 0100; X3=0, X5=1, X6=0 y X7=0 En su forma más básica es un código de 7 bits. Según la trama anterior:

P1 = 1	0	1	0
P2 = 0	0	0	0
P4 = 1	1	0	0

0100 codificado en Hamming quedará

Detección y Corrección de Errores

Que pasa si en lugar de recibir

Esto

|--|

Se recibe

El análisis de la trama de probabilidades deja:

P1 = 1	0	0	0	Malo
P1	X3	X5	X7	
P2 = 0	0	0	0	Bueno
P2	X3	X6	X7	
P4 = 1	0	0	0	Malo
P4	X5	X6	X7	

Cual es el bit que al cambiarse se reparan las tramas malas = X5, vale 0 y está malo, se cambia a 1 y error corregido.

20

HASTA LA PRÓXIMA