dix of Schaefer (1966)) to the expansion given in (2.11) one can conclude that R has an extension to the halfplane $\{z \in \mathbb{C} : \text{Re } z > 0\}$. This shows that without loss of generality one can assume that the domain of a positive pseudo-resolvent contains the halfplane $\{z \in \mathbb{C} : \text{Re } z > 0\}$.

Proposition 2.7. Suppose $R: \Delta \to L(E)$ is a positive pseudo-resolvent on a Banach lattice E and $\Delta := \{z \in \mathbb{C} : Re \ z > 0\}$. If for some $\beta \in \mathbb{R}$, $h \in E$ we have $\lambda R(\lambda + i\beta)h = h \text{ and } \lambda R(\lambda)|h| = |h| \quad (\lambda \in \Delta) \text{ , then } \lambda R(\lambda + in\beta)h^{[n]} = h^{[n]} \text{ for all } n \in \mathbb{Z} \text{ , } \lambda \in \Delta \text{ .}$

<u>Proof.</u> At first we prove the following domination property which is the extension of (1.5) to pseudo-resolvents.

(2.13) $|R(\lambda)f| \le R(Re \lambda)|f|$ for every $\lambda \in \Delta$, $f \in E$.

To do this we fix $\lambda \in \Delta$. Then there exists $r_0 > 0$ such that $|r-\lambda| < r$ whenever $r > r_0$. Therefore $R(\lambda) = \sum_{n=0}^{\infty} (r-\lambda)^n R(r)^{n+1}$ for $r > r_0$, which implies for $f \in E$ $|R(\lambda)f| \le \sum_{n=0}^{\infty} |r-\lambda|^n R(r)^{n+1} |f| = \sum_{n=0}^{\infty} \left(r - (r-|r-\lambda|)\right)^n R(r)^{n+1} |f| = R(r-|\lambda-r|)|f|$. Since $\lim_{r \to \infty} (r-|\lambda-r|) = Re \lambda$, we obtain (2.13). As a consequence of (2.13) and the assumption rR(r)|h| = |h| we have that the principal ideal $E_{|h|}$ is $\{R(\lambda)\}_{\lambda \in \Delta}$ -invariant. Identifying, according to the Kakutani-Krein Theorem $E_{|h|}$ with a space C(K), K compact, and by restricting the operators $R(\lambda)$ to $E_{|h|} \cong C(K)$ we obtain a positive pseudo-resolvent $\tilde{R}: \Delta \to L(C(K))$. Then we have for every $\alpha > 0$ and $f \in E: \alpha \tilde{R}(\alpha+i\beta)h = h$, $\alpha \tilde{R}(\alpha)|h| = |h| = 1_K$, $\alpha |\tilde{R}(\alpha+i\beta)f| \le \alpha \tilde{R}(\alpha)|f|$. Applying B-III, Lemma 2.3 we obtain $\tilde{R}(\alpha) = S_{\tilde{h}}^{-1} \tilde{R}(\alpha+i\beta)S_{\tilde{h}}$ for every $\alpha > 0$ and using the uniqueness theorem for holomorphic functions we get $\tilde{R}(z) = S_{\tilde{h}}^{-1} \tilde{R}(z+i\beta)S_{\tilde{h}}$ for every $z \in \Delta$. Iterating this identity we obtain:

(2.14) $\tilde{R}(z) = S_{\tilde{h}}^{-n} \tilde{R}(z + in\beta) S_{\tilde{h}}^{n}$ for all $z \in \Delta$, $n \in \mathbb{Z}$ In particular, $S_{\tilde{h}}^{n} |h| = S_{\tilde{h}}^{-n} z \tilde{R}(z) |h| = z \tilde{R}(z + in\beta) S_{\tilde{h}}^{n} |h|$. In terms of the initial space this means precisely

 $h^{[n]} = zR(z+in\beta)h^{[n]}$, and the propositon is proved.

We will prove cyclicity of the boundary spectrum under a growth condition which is stated in the following definition.