

ලම්පත විශ්වාරතායක විදහලය - අම්පත විශ්වාරතායක විදහලය - සම්පත විශ්වාරතායක Bandaranayake College - Gampaha

General Certificate of (Adv. Level) Examination - 2023

First Term Test - 2022 - July

Grade 12

Combined Maths T

ndaranavake College - Gampaha Bandaranavake College - Gampaha

10	Е	I,

Three hours

 			•	,	
			•	Class:	

Instructions :-

* This question paper comprises Part A (1-10) and Part B (11-17). The time allotted for both parts is three hours.

PART A (page 2-6)

- * Answer all questions on this paper itself.
- * Write your answers in the space provided for each question.

(page 7 - 9) PART B

* Answer five questions only. Use the papers supplied for this purpose. At the end of the time allotted for this paper, tie the two parts together so that Part A is on the top of Part B before handing over to the supervisor.

For Examiner's Use only

Part	Q. No.	Marks			
7.4	1				
•	2				
	3			T. T.	
\cdot A	4			Paper I	
: .	. 5			Paper II	
4	: 6				
	7			Total	
	8				
	9		,		
	10		.,		
	11				,
1	12.				
_	13		* <u>.</u>		
В	14				A Company of the Company
	.15		-	• ,	
İ	16			• ,	
	17				4.6 5.
Total					<i>₩</i>
Percenta	ige				Combined Maths

caswer all questions	Part - A		-
When the polynomial fun 29. Find the value of a.	action $2x^3 + 9x^2 + x$	+a is divided by $(x+2)$, the remai
		and the second s	
W			
			193.jr.
	V 30 20 41		· · · · · · · · · · · · · · · · · · ·
(x ² +2) is a factor of the remaining factors.	e polynomial kx4	+ 17x ² - 2. Find the value	of k and
	e polynomial kx4-	+ $17x^2$ - 2. Find the value	of k and
	e polynomial kx4-	+ 17x ² - 2. Find the value	of k and
	e polynomial kx4	+ $17x^2$ - 2. Find the value	of k and
	e polynomial kx	+ 17x ² - 2. Find the value	of k and
remaining factors.		+ 17x ² - 2. Find the value	of k and
remaining factors.			of k and
remaining factors.			of k and
remaining factors.			of k and
remaining factors.			of k and

Randananata Callan Canada

本社会

Solve $\frac{x+3}{3x+1}$						
					·	
	•	•••••			•	
	•••••					
		•		, î		,
***************************************	••••••••••••••	***************************************		······································	WW.	***************************************
						
•••••						
	•) '		
······································	***************************************	***************************************	************	·····		
	······································			***************************************		
						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
				•		
	***************************************	,				
			······································	·		

$f f(x) = \log ($	$\frac{1+x}{1-x}$) an	$d g(x) = \frac{2}{3}$	$\frac{3x + x^3}{1 + 3x^2}$	then show th	at f[g(x)]	= 3 f(x)
$f f(x) = \log ($	$\frac{1+x}{1-x}$) an	$d g(x) = -\frac{1}{2}$	$\frac{3x + x^3}{1 + 3x^2}$	then show th	at f[g(x)]	= 3 f(x)
$f(x) = \log ($	$\frac{1+x}{1-x}$) an	$d g(x) = \frac{3}{2}$	$3x + x^3$ $1 + 3x^2$	then show th	at f[g(x)]	= 3 f(x)
<u> </u>	$\frac{1+x}{1-x}$) an	$d g(x) = \frac{3}{1}$	$3x + x^3$ $1 + 3x^2$	then show th	at f [g (x)]	= 3 f(x)
	$\frac{1+x}{1-x}$) an	$d g(x) = -\frac{1}{2}$	$3x + x^3$ $1 + 3x^2$	then show th	at f[g(x)]	= 3 f(x)
<u> </u>		d g (x) = -			at f[g(x)]	= 3 f(x)
· · · · · · · · · · · · · · · · · · ·						= 3 f(x)
<u> </u>						= 3 f(x)
<u> </u>						= 3 f(x)
<u> </u>						= 3 f(x)
<u> </u>						=3f(x)
<u> </u>						=3f(x)
· · · · · · · · · · · · · · · · · · ·						=3f(x)
· · · · · · · · · · · · · · · · · · ·						= 3 f(x)
· · · · · · · · · · · · · · · · · · ·						= 3 f(x)
<u> </u>						= 3 f(x)
<u> </u>						= 3 f(x)
<u> </u>						=3f(x)

AT.	120	22/	I۸	E
* ***		122	IV-	· ·

x for y≥0.		2 x+1 +3x. Hence w	
× 101 y ≥ 0.	•		
•	•		
`			

***************************************	·····		***************************************

***************************************		•	

		`	
	***************************************	***************************************	

	· ·		
Solve the equation	ros x + cos 3x = 0	sin 2r + sin 4r	
Solve the equation	$\cos x + \cos 3x = 3$	$\sin 2x + \sin 4x$.	
Solve the equation	$\cos x + \cos 3x = $	$\sin 2x + \sin 4x$.	
Solve the equation	$\cos x + \cos 3x = 3$	$\sin 2x + \sin 4x$.	
Solve the equation	$\cos x + \cos 3x = 3$	$\sin 2x + \sin 4x$.	
Solve the equation	$\cos x + \cos 3x = 3$	$\sin 2x + \sin 4x$.	
Solve the equation	$\cos x + \cos 3x = 3$	$\sin 2x + \sin 4x$.	
Solve the equation	$\cos x + \cos 3x = 3$	$\sin 2x + \sin 4x$.	
Solve the equation	$\cos x + \cos 3x = 3$	$\sin 2x + \sin 4x$.	
Solve the equation	$\cos x + \cos 3x = \frac{1}{2}$	$\sin 2x + \sin 4x$.	
Solve the equation	$\cos x + \cos 3x = 3$	$\sin 2x + \sin 4x$.	
Solve the equation	$\cos x + \cos 3x = \frac{1}{2}$	$\sin 2x + \sin 4x$.	
Solve the equation	$\cos x + \cos 3x = 3$	$\sin 2x + \sin 4x$.	
Solve the equation	$\cos x + \cos 3x =$	$\sin 2x + \sin 4x$.	
Solve the equation	$\cos x + \cos 3x = 3$	$\sin 2x + \sin 4x$.	
Solve the equation		$\sin 2x + \sin 4x$.	
Solve the equation	$\cos x + \cos 3x = $	$\sin 2x + \sin 4x$.	
Solve the equation		$\sin 2x + \sin 4x$.	
Solve the equation		$\sin 2x + \sin 4x$.	
Solve the equation		$\sin 2x + \sin 4x$.	
olve the equation		$\sin 2x + \sin 4x$.	

		***************************************		••••
		······································		••••••
	***************************************		, rec ⁻	
,	***************************************	,		
•	••••••		•••••••••••	•••••
•••••				••••••
***************************************			••••••	
***************************************	***************************************		••••	
***************************************	······································		***************************************	

remaining the same, t	forces P and Q acting ne resultant becomes I	on a particle at O R'.If Rand R'are	. If P is revers	ed and Q to each of
remaining the same, t	forces P and Q acting ne resultant becomes I	on a particle at O	. If P is revers perpendicular	ed and Q to each oth
remaining the same, t	forces P and Q acting ne resultant becomes l	on a particle at O	. If P is revers	to each oth
remaining the same, t	forces P and Q acting ne resultant becomes I	on a particle at O	. If P is revers	to each of
remaining the same, t	forces P and Q acting ne resultant becomes I	R'.If Rand R'are	. If P is revers	to each oth
remaining the same, t	forces P and Q acting ne resultant becomes I	R'.If Rand R'are	perpendicular	to each oth
remaining the same, t	forces P and Q acting ne resultant becomes I	R'.If Rand R'are	perpendicular	to each oth
remaining the same, t	ne resultant becomes l	R'.If Rand R'are	perpendicular	to each oth
remaining the same, t	ne resultant becomes l	R'.If Rand R'are	perpendicular	to each oth
remaining the same, t	ne resultant becomes l	R'.If Rand R'are	perpendicular	to each oth
remaining the same, t	ne resultant becomes l	R'.If Rand R'are	perpendicular	to each oth
R is the resultant of remaining the same, then show that P=Q.	ne resultant becomes l	R'.If Rand R'are	perpendicular	to each oth
R is the resultant of remaining the same, then show that P=Q.	ne resultant becomes l	R'.If Rand R'are	perpendicular	to each oth
remaining the same, t	ne resultant becomes l	R'.If Rand R'are	perpendicular	to each oth
remaining the same, then show that P=Q.	ne resultant becomes l	R'.If Rand R'are	perpendicular	to each oth
remaining the same, then show that P=Q.	ne resultant becomes l	R'.If Rand R'are	perpendicular	to each oth
remaining the same, then show that P=Q.	ne resultant becomes l	R'.If Rand R'are	perpendicular	to each oth
remaining the same, then show that P=Q.	ne resultant becomes l	R' If Rand R' are	perpendicular	to each oth
remaining the same, then show that P=Q.	ne resultant becomes I	R'.If Rand R'are	perpendicular	to each oth

ΑI	12	022	/1	0-	F
			, ,	v-	Ľ

(09)	\underline{a} and \underline{b} are two vectors. If the angle between	n <u>a</u>	and	<u>b</u>	is	α	then	show	that
	$\sin \frac{\alpha}{2} = \frac{1}{2} \underline{a} - \underline{b} $								

•	}

•

Bandaranayake College - Gampaha First Term Test - 2022 - July

10 E I

Grade 12

Combined Maths I

Part - B

* Answer only 5 questions.

(11) (i) Show that
$$\frac{\sqrt{3}-\sqrt{2}}{2\sqrt{3}+3\sqrt{2}} = \frac{5}{\sqrt{6}}-2$$

- (ii) Simplyfy $\sqrt{x+1} \sqrt{1-x} = \sqrt{x-1} + \sqrt{1-x}$ and show that $8x^2 = 12x 5$.
- (iii) Express 1.6741 as fracttion.
- (iv) (a) Express $\leftarrow \oplus$ in set notation.
 - (b) Represent R-{1,2} on the number line.
- (12) (i) Let $f(x) = \sqrt{x^2 64}$. Write the domain and the range of f(x)
 - (ii) Define "Inverse function".

 Write the two conditions to exist the inverse function.
 - Write the two conditions to exist the inverse function of f(x) = 4x 1Sketch the graphs of f(x) and $f^{-1}(x)$ in the same cartisien plane.
 - (iv) Let $f(x) = 3 x^2$; $x \in /R$ and $g(x) = \frac{2}{x+1}$; $x \in /R \{-1\}$ Obtain the composite function $g_0 f$ and $f_0 g$. [f(9(x)) and 9 (f(x))]
- (13) (i) Solve $4.3^{2x+1} = 13(3^x) + 1 = 0$
 - (ii) Prove that, The company of the contract work Off the amount interval
 - (a) $\log_a b \times \log_b c \times \log_c a = 1$
 - (b) $\log_a bc \times \log_b ca \times \log_c ab = 2 + \log_a bc + \log_b ac + \log_c ab$
 - (iii) Solve, $\log_4 x + \log_4 y = 1 + \log_4 9$ and x + y = 20
 - (iv) Show that, $\frac{\log 3\sqrt{3} + \log 2\sqrt{2} \log 5\sqrt{5}}{\log 1.2} = \frac{3}{2}$

AL/2022/10-E

- (14) (i) State and prove the remainder therom.
 - (ii) f(x) is a fourth degree polynomial and f(0) = 6. (x-1) is a repeated factor of f(x).
 When the polynomial f(x) divided by x² x 2, the remainder is 4 (x+3).
 Find f(x). Obtain the remaining factors of f(x).
 - (iii) When the polynomial $g(x) = 2x^3 3ax^2 + ax + b$ divided by (x+2), the remainder is (x-1) is a factor of g(x). Find the values of a and b. And also find the remaining f_{aq}
 - (iv) Resolve $\frac{2x-1}{(x^2-1)(x+1)}$ in to partial fraction.
- (15) (i) Prove that
 - (a) $\frac{\cot \alpha + \csc \alpha 1}{\cot \alpha \csc \alpha + 1} = \frac{1 + \cos \alpha}{\sin \alpha}$
 - (b) $\cos^3 x \sin^2 x = \frac{1}{16} (2 \cos x \cos 3x \cos 5x)$
 - (ii) Prove that $\frac{1-\tan^2\theta}{1+\tan^2\theta} = \cos 2\theta$

Hence deduce that $\tan^2 \frac{\pi}{8} = 3 - 2\sqrt{2}$

- (iii) Given that $\tan (A+B) = 1$ and $\tan (A-B) = \frac{1}{7}$ Find $\tan A$ and $\tan B$. Where $0 \le A$, $B \le \frac{\pi}{2}$
- (i) <u>a</u> and <u>b</u> are the position vectors of A and B relative to O. Find AB.
 C is the point which divides AB internally in the ratio 1: K.
 Find the position vector of C.
 - (ii) \underline{a} and \underline{b} are non zero non parallel vectors and α & β are scalares. Prove that $\alpha \underline{a} + \beta \underline{b} = 0$ if and only if $\alpha = 0$ and $\beta = 0$.
 - (ii) O, A and B are three non colinear points. $\overrightarrow{OA} = \underline{a}$, $\overrightarrow{OB} = \underline{b}$ and $\overrightarrow{OC} = \underline{a} + \underline{b}$. If P is the mid point of BC then show that $\overrightarrow{OP} = \frac{1}{2}(\underline{a} + 2\underline{b})$. The line OP meets AB at R. Show that $\overrightarrow{RB} = \underline{b} \frac{\lambda}{2}(\underline{a} + 2\underline{b})$ where λ is a scalar RB and AB in same direction show that AR: RB = 2:1.
 - (iv) \underline{p} and \underline{q} are non zero vectors. $|\underline{p}| = 2$ and $|\underline{q}| = 3$ and the angle between \underline{p} and \underline{q} is $\frac{2\pi}{3}$. Find \underline{p} and \underline{q} Find also $|\underline{p} + 2\underline{q}|$.

- (17) (a) The resultant of two forces \underline{P} and \underline{Q} is \underline{R}_1 and it is perpendicular to \underline{P} . The resultant of the forces $2\underline{P}$ and \underline{Q} is \underline{R}_2 and it is perpendicular to \underline{Q} .
 - (i) Show that $\underline{R_1} = \underline{P}$ and $\underline{R_2} = \underline{Q}$
 - (ii) Find P:Q.
 - (iii) Find the angle between \underline{P} and Q
 - (b) A particle of mass 5 kg is placed on a smooth fixed plane inclined at an angle 0 to the horizontal, where tan 0 = 3/4
 Find the magnitude of the forces should be applied on the particle,
 - (i) parallel to the plane.
 - (ii) horizontally in order to keep the particle in equilibrium.
 - (c) ABCDEF is a regular hexzgon. The forces with magnitudes $3, \sqrt{3}, 5, 5\sqrt{3}$ and 6.

 Newton act along the sides $\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}, \overrightarrow{AE}, \overrightarrow{AF}$. Find the magnitude and direction of the required force the system to be equilibrium.