Análisis de Componentes Principales Práctica 5

Fuente de datos

Estudios clínicos a partir de imágenes digitalizadas de pacientes con cáncer de mama de Wisconsin (WDBC, Wisconsin Diagnostic Breast Cancer).

Variable	Descripción	Tipo
ID number	Identifica al paciente	Discreto
Diagnosis	Diagnostico (M=maligno, B=benigno)	Booleano
Radius	Media de las distancias del centro y puntos del perímetro	Continuo
Texture	Desviación estándar de la escala de grises	Continuo
Perimeter	Valor del perímetro del cáncer de mama	Continuo
Area	Valor del área del cáncer de mama	Continuo
Smoothness	Variación de la longitud del radio	Continuo
Compactness	Perímetro ^ 2 /Area - 1	Continuo
Concavity	Caída o gravedad de las curvas de nivel	Continuo
Concave points	Número de sectores de contorno cóncavo	Continuo
Symmetry	Simetría de la imagen	Continuo
Fractal dimension	"Aproximación de frontera" - 1	Continuo

Fuente: https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

Importar las bibliotecas y los datos

```
import pandas as pd  # Para la manipulación y análisis de datos  # Para crear vectores y matrices n dimensionales  import matplotlib.pyplot as plt  # Para la generación de gráficas a partir de los datos  import seaborn as sns  # Para la visualización de datos basado en matplotlib  *matplotlib inline
```

Importar las bibliotecas y los datos

BCancer = pd.read_csv("WDBCOriginal.csv")
BCancer

₽		IDNumber	Diagnosis	Radius	Texture	Perimeter	Area	Smoothness	Compactness	Concavity	ConcavePoints	Symmetry	FractalDimension
	0	P-842302	М	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0.14710	0.2419	0.07871
	1	P-842517	M	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	0.07017	0.1812	0.05667
	2	P-84300903	М	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.12790	0.2069	0.05999
	3	P-84348301	М	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	0.10520	0.2597	0.09744
	4	P-84358402	М	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800	0.10430	0.1809	0.05883
	564	P-926424	М	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890	0.1726	0.05623
	565	P-926682	M	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791	0.1752	0.05533
	566	P-926954	M	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302	0.1590	0.05648
	567	P-927241	М	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200	0.2397	0.07016
	568	P-92751	В	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000	0.1587	0.05884

569 rows × 12 columns

Procedimiento (PCA / ACP)

Componentes principales

Procedimiento

PCA implica los siguientes pasos:

- 1. Hay evidencia de variables posiblemente correlacionadas.
- 2. Se hace una estandarización de los datos.
- Con los datos estandarizados, se calcula la matriz de covarianzas o correlaciones.
- 4. Se calculan los componentes (eigen-vectores) y la varianza (eigen-valores) a partir de la matriz anterior.
- 5. Se decide el número de componentes principales.
 - Se calcula el porcentaje de relevancia, es decir, entre el 75 y 90% de varianza total.
 - Se identifica mediante una gráfica el grupo de componentes con mayor varianza.
- 6. Se examina la proporción de relevancias -cargas-

Componentes principales

Procedimiento general

1. Evidencia de datos correlacionados

6. Se examina la proporción de cargas

2. Se estandarizan los datos

5. Se decide el número de componentes principales

3. Se calcula la matriz de covarianzas / correlaciones

4. Se calculan los eigenvectores y eigenvalores

$$\begin{pmatrix}
2.0 & 0.8 \\
0.8 & 0.6
\end{pmatrix} \begin{pmatrix} e_h \\ e_u \end{pmatrix} = \lambda_e \begin{pmatrix} e_h \\ e_u \end{pmatrix}$$

$$\begin{pmatrix}
2.0 & 0.8 \\
0.8 & 0.6
\end{pmatrix} \begin{pmatrix} f_h \\ f_u \end{pmatrix} = \lambda_f \begin{pmatrix} f_h \\ f_u \end{pmatrix}$$

$$eig(cov(data))$$

Paso 1: Hay evidencia de variables posiblemente correlacionadas.

Paso 2: Se hace una estandarización de los datos.

```
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler, MinMaxScaler
Estandarizar = StandardScaler()  # Se instancia el objeto StandardScaler o MinMaxScaler
NuevaMatriz = BCancer.drop(columns=['IDNumber', 'Diagnosis'])  # Se quitan las variables nominales
MEstandarizada = Estandarizar.fit_transform(NuevaMatriz)  # Se calculan la media y desviación para cada variable,
```

pd.DataFrame(MEstandarizada, columns=NuevaMatriz.columns)

 \Box

•		Radius	Texture	Perimeter	Area	Smoothness	Compactness	Concavity	ConcavePoints	Symmetry	FractalDimension
	0	1.097064	-2.073335	1.269934	0.984375	1.568466	3.283515	2.652874	2.532475	2.217515	2.255747
	1	1.829821	-0.353632	1.685955	1.908708	-0.826962	-0.487072	-0.023846	0.548144	0.001392	-0.868652
	2	1.579888	0.456187	1.566503	1.558884	0.942210	1.052926	1.363478	2.037231	0.939685	-0.398008
	3	-0.768909	0.253732	-0.592687	-0.764464	3.283553	3.402909	1.915897	1.451707	2.867383	4.910919
	4	1.750297	-1.151816	1.776573	1.826229	0.280372	0.539340	1.371011	1.428493	-0.009560	-0.562450

Pasos 3 y 4: Se calcula la matriz de covarianzas, y se calculan los componentes (eigen-vectores) y la varianza (eigen-valores).

```
pca = PCA(n components=None)
                                 # pca=PCA(n components=None), pca=PCA(.85)
   pca.fit(MEstandarizada)
                                 # Se obtiene los componentes
   print(pca.components )
2.32480530e-01 3.64442059e-01 3.95748488e-01 4.18038400e-01
      2.15237970e-01 7.18374352e-021
    [-3.13929073e-01 -1.47180910e-01 -2.84657885e-01 -3.04841714e-01
      4.01962323e-01 2.66013147e-01 1.04285969e-01 7.18360466e-03
      3.68300910e-01 5.71767700e-011
    [-1.24427590e-01 9.51056591e-01 -1.14083595e-01 -1.23377856e-01
     -1.66532470e-01 5.82778620e-02 4.11464835e-02 -6.85538259e-02
      3.67236467e-02 1.13583953e-01]
    [ 2.95588570e-02  8.91608121e-03  1.34580681e-02  1.34426810e-02
     -1.07802034e-01 -1.85700414e-01 -1.66653518e-01 -7.29839511e-02
      8.92998475e-01 -3.49331792e-01]
    [-3.10670238e-02 -2.19922759e-01 -5.94508289e-03 -1.93412233e-02
     -8.43745291e-01 2.40182964e-01 3.12533253e-01 -9.18019959e-03
      1.12888066e-01 2.64878075e-01]
```

Paso 5: Se decide el número de componentes principales.

- Se calcula el porcentaje de relevancia, es decir, entre el 75 y 90% de varianza total.
- Se identifica mediante una gráfica el grupo de componentes con mayor varianza.

```
Varianza = pca.explained_variance_ratio_
print('Porporción de varianza:', Varianza)
print('Varianza acumulada:', sum(Varianza[0:3]))
#Con 3 componentes se tiene el 88% de varianza acumulada y con 4 el 93%
Porporción de varianza: [5.47858799e-01 2.51871359e-01 8.80615179e-02 4.99009435e-02 3.72539192e-02 1.24141748e-02 8.00853111e-03 3.48897932e-03 1.11354606e-03 2.82305886e-05]
Varianza acumulada: 0.8877916754778117
```

Paso 5: Se decide el número de componentes principales.

```
# Se grafica la varianza acumulada en las nuevas dimensiones plt.plot(np.cumsum(pca.explained_variance_ratio_)) plt.xlabel('Número de componentes') plt.ylabel('Varianza acumulada') plt.grid() plt.show()
```


Paso 6: Se examina la proporción de relevancias -cargas-

- La importancia de cada variable se refleja en la magnitud de los valores en los componentes (mayor magnitud es sinónimo de mayor importancia).
- Se revisan los valores absolutos de los componentes principales seleccionados. Cuanto mayor sea el valor absoluto, más importante es esa variable en el componente principal.

```
print(pd.DataFrame(abs(pca.components_ )))
Ľ→
      0.363938
                0.154451
                          0.376044
                                        0.418038
                                                  0.215238
                                                            0.071837
                                    ... 0.007184
      0.313929 0.147181 0.284658
                                                  0.368301
                                                            0.571768
      0.124428
               0.951057 0.114084
                                        0.068554
                                                  0.036724
                                                            0.113584
               0.008916
      0.029559
                                        0.072984
                                                            0.349332
                        0.013458
                                                  0.892998
      0.031067 0.219923 0.005945
                                        0.009180 0.112888
                                                            0.264878
                                        0.265613
      0.264180
               0.032207
                          0.237819
                                                  0.061957
                                                            0.567919
      0.044188
               0.020557
                          0.083369
                                        0.141313
                                                  0.047902
                                                            0.345214
                                    ... 0.850919
      0.084834 0.007127 0.089259
                                                            0.065259
                                                  0.016456
      0.474425 0.004213
                          0.380167
                                        0.022025
                                                  0.009068
                                                            0.129667
      0.669071
                0.000250 0.740491
                                        0.003748
                                                  0.001467
                                                            0.007057
```

Paso 6: Se examina la proporción de relevancias -cargas-

Una forma ad hoc es identificar los valores absolutos más altos. Por ejemplo, cargas mayores a 40%.

CargasComponentes = pd.DataFrame(abs(pca.components_), columns=NuevaMatriz.columns)
CargasComponentes

	Radius	Texture	Perimeter	Area	Smoothness	Compactness	Concavity	ConcavePoints	Symmetry	FractalDimension
0	0.363938	0.154451	0.376044	0.364086	0.232481	0.364442	0.395748	0.418038	0.215238	0.071837
1	0.313929	0.147181	0.284658	0.304842	0.401962	0.266013	0.104286	0.007184	0.368301	0.571768
2	0.124428	0.951057	0.114084	0.123378	0.166532	0.058278	0.041146	0.068554	0.036724	0.113584
3	0.029559	0.008916	0.013458	0.013443	0.107802	0.185700	0.166654	0.072984	0.892998	0.349332
4	0.031067	0.219923	0.005945	0.019341	0.843745	0.240183	0.312533	0.009180	0.112888	0.264878
5	0.264180	0.032207	0.237819	0.331707	0.062225	0.005271	0.601467	0.265613	0.061957	0.567919
6	0.044188	0.020557	0.083369	0.261188	0.011292	0.803805	0.367136	0.141313	0.047902	0.345214
7	0.084834	0.007127	0.089259	0.144610	0.170503	0.063980	0.449573	0.850919	0.016456	0.065259
8	0.474425	0.004213	0.380167	0.747347	0.005847	0.218732	0.081171	0.022025	0.009068	0.129667
9	0.669071	0.000250	0.740491	0.032359	0.003690	0.052753	0.010367	0.003748	0.001467	0.007057

Paso 6: Se examina la proporción de relevancias -cargas-

Una forma ad hoc es identificar los valores absolutos más altos. Por ejemplo, cargas mayores a 37%.

CargasComponentes = pd.DataFrame(abs(pca.components_), columns=NuevaMatriz.columns)
CargasComponentes

	Radius	Texture	Perimeter	Area	Smoothness	Compactness	Concavity	ConcavePoints	Symmetry	FractalDimension
0	0.363938	0.154451	0.376044	0.364086	0.232481	0.364442	0.395748	0.418038	0.215238	0.071837
1	0.313929	0.147181	0.284658	0.304842	0.401962	0.266013	0.104286	0.007184	0.368301	0.571768
2	0.124428	0.951057	0.114084	0.123378	0.166532	0.058278	0.041146	0.068554	0.036724	0.113584
3	0.029559	0.008916	0.013458	0.013443	0.107802	0.185700	0.166654	0.072984	0.892998	0.349332
4	0.031067	0.219923	0.005945	0.019341	0.843745	0.240183	0.312533	0.009180	0.112888	0.264878
5	0.264180	0.032207	0.237819	0.331707	0.062225	0.005271	0.601467	0.265613	0.061957	0.567919
6	0.044188	0.020557	0.083369	0.261188	0.011292	0.803805	0.367136	0.141313	0.047902	0.345214
7	0.084834	0.007127	0.089259	0.144610	0.170503	0.063980	0.449573	0.850919	0.016456	0.065259
8	0.474425	0.004213	0.380167	0.747347	0.005847	0.218732	0.081171	0.022025	0.009068	0.129667
9	0.669071	0.000250	0.740491	0.032359	0.003690	0.052753	0.010367	0.003748	0.001467	0.007057

Paso 6: Se examina la proporción de relevancias -cargas-

0		sCancerACP sCancerACP	= BCancer	.drop(colu	mns=['IDNumb	er', 'Radiı	ıs', 'Area', 'C	ompactness', 'Symm	etry'])
₽		Diagnosis	Texture	Perimeter	Smoothness	Concavity	ConcavePoints	FractalDimension	**
	0	М	10.38	122.80	0.11840	0.30010	0.14710	0.07871	
	1	М	17.77	132.90	0.08474	0.08690	0.07017	0.05667	
	2	М	21.25	130.00	0.10960	0.19740	0.12790	0.05999	
	3	М	20.38	77.58	0.14250	0.24140	0.10520	0.09744	
	4	М	14.34	135.10	0.10030	0.19800	0.10430	0.05883	
	564	М	22.39	142.00	0.11100	0.24390	0.13890	0.05623	
	565	М	28.25	131.20	0.09780	0.14400	0.09791	0.05533	
	566	М	28.08	108.30	0.08455	0.09251	0.05302	0.05648	
	567	М	29.33	140.10	0.11780	0.35140	0.15200	0.07016	
	568	В	24.54	47.92	0.05263	0.00000	0.00000	0.05884	

569 rows × 7 columns

Análisis Correlacional de Datos (ACD)

Análisis correlacional de datos

Los valores de correlación, conocidos como coeficiente de correlación de Pearson (su creador, Karl Pearson, 1857-1936), se define como:

Los valores de correlación, en este caso r o R, pueden variar entre -1 y 1.

Análisis correlacional de datos

CorrBCancer = BCancer.corr(method='pearson')
CorrBCancer

₽		Radius	Texture	Perimeter	Area	Smoothness	Compactness	Concavity	ConcavePoints	Symmetry	FractalDimension
	Radius	1.000000	0.323782	0.997855	0.987357	0.170581	0.506124	0.676764	0.822529	0.147741	-0.311631
	Texture	0.323782	1.000000	0.329533	0.321086	-0.023389	0.236702	0.302418	0.293464	0.071401	-0.076437
	Perimeter	0.997855	0.329533	1.000000	0.986507	0.207278	0.556936	0.716136	0.850977	0.183027	-0.261477
	Area	0.987357	0.321086	0.986507	1.000000	0.177028	0.498502	0.685983	0.823269	0.151293	-0.283110
	Smoothness	0.170581	-0.023389	0.207278	0.177028	1.000000	0.659123	0.521984	0.553695	0.557775	0.584792
	Compactness	0.506124	0.236702	0.556936	0.498502	0.659123	1.000000	0.883121	0.831135	0.602641	0.565369
	Concavity	0.676764	0.302418	0.716136	0.685983	0.521984	0.883121	1.000000	0.921391	0.500667	0.336783
	ConcavePoints	0.822529	0.293464	0.850977	0.823269	0.553695	0.831135	0.921391	1.000000	0.462497	0.166917
	Symmetry	0.147741	0.071401	0.183027	0.151293	0.557775	0.602641	0.500667	0.462497	1.000000	0.479921
F	ractalDimension	-0.311631	-0.076437	-0.261477	-0.283110	0.584792	0.565369	0.336783	0.166917	0.479921	1.000000

Análisis correlacional de datos

```
print(CorrBCancer['Radius'].sort_values(ascending=False)[:10], '\n') #Top 10 valores
Radius
                    1.000000
Perimeter
                    0.997855
Area
                    0.987357
ConcavePoints
                    0.822529
Concavity
                    0.676764
Compactness
                    0.506124
Texture
                    0.323782
Smoothness
                    0.170581
Symmetry
                    0.147741
FractalDimension
                   -0.311631
Name: Radius, dtype: float64
```

Análisis correlacional de datos

Varibles seleccionadas:

- 1) FractalDimension
- 2) Symmetry
- 3) Textura
- 4) Smoothness
- 5) Area
- 6) Compactness

Análisis correlacional de datos

DatosCancerACD = BCancer.drop(columns=['IDNumber', 'Radius', 'Perimeter', 'ConcavePoints', 'Concavity'])
DatosCancerACD

	Diagnosis	Texture	Area	Smoothness	Compactness	Symmetry	FractalDimension
0	М	10.38	1001.0	0.11840	0.27760	0.2419	0.07871
1	М	17.77	1326.0	0.08474	0.07864	0.1812	0.05667
2	М	21.25	1203.0	0.10960	0.15990	0.2069	0.05999
3	М	20.38	386.1	0.14250	0.28390	0.2597	0.09744
4	М	14.34	1297.0	0.10030	0.13280	0.1809	0.05883
564	M M	22.39	1479.0	0.11100	0.11590	0.1726	0.05623
565	M	28.25	1261.0	0.09780	0.10340	0.1752	0.05533
566	M	28.08	858.1	0.08455	0.10230	0.1590	0.05648
567	M	29.33	1265.0	0.11780	0.27700	0.2397	0.07016
568	В	24.54	181.0	0.05263	0.04362	0.1587	0.05884

569 rows × 7 columns

С→

22