How to find the Inverse Function of a One-to-One Function f(x):

- write y = f(x)
- solve for x
- to express f^{-1} as a function of x, interchange x and y.
- 1. Check if the following functions are one-to-one and find $f^{-1}(x)$ for each of them:

2. Without explicitly finding a formula for $f^{-1}(x)$, find $f^{-1}(1)$ for each function below:

(a)	$f(x) = \begin{cases} -1 \\ \end{cases}$	x-2	0 = 2 ^k -val		-volu	e	X=1 X=1	21]=f-1	7)	A (do) f	B W
(b)	X	0	0.25	0.5	0.75	1	1.25	1.5	1.75	2.0	(undo)+	
(b)	f(x)	20	10	5	3	2.5	2	1.5	(1)	0.25		

y=1 and corresponded to value is 1.75=f(1)

3. Evaluate $\cos^{-1}(0)$. \mathbf{z} cost = 0

$$d = \arccos(0) = \lambda = \frac{\pi}{2} = \lambda \cos^{-1}(0) = \frac{\pi}{2}$$
 ct value of each expression.

4. Find the exact value of each expression.

(a)
$$\log_2 16 = \log_2 2^{\frac{1}{4}}$$

= $\frac{1}{4} \log_2 2 = \frac{1}{4}$

(b)
$$e^{\ln 5} = e^{\log 5} = 5$$

5. Solve each equation below for x.

(a)
$$10 = 2e^{x+1}$$

 $5 = e^{x+1}$
 $\ln(5) = \ln(e^{x+1})$
 $\ln 5 = (x+1) \ln e^{x+1}$
(b) $\ln(x) + \ln(x-1) = 2$

 $x(x-7)=6_5$ $e_{1}(x_5-x_1)=6_5$ $e_{1}(x_5-x_1)=9_5$

$$x^{2}-xe-e^{2}=0$$

$$D=1+4e^{2}$$

$$x_{1}=\frac{1+\sqrt{1+4e^{2}}}{2}, x_{2}=\frac{1-\sqrt{1+4e^{2}}}{2}$$

6. Sketch each function. Include domain, range, intercepts and asymptotes.

(b) $f(x) = -\ln x$ Teflect y = f(x)about x - axis[XH] y = 0

 $E(t) = (-\infty, \infty)$

VA: x=0

(1,0) is on x-intercept