TÉMA – RELACE

Množina

Teorie množin – samostatný obor, přístup intuitivní (G. Cantor), axiomatický (např.
 Zermelova-Fraenkelova teorie množin, ZF - základ pro většinu oborů matematiky)

Intuitivní přístup

- Množina soubor rozlišitelných objektů prvků (intuitivní přístup neříká co je objekt)
- Značení: $a \in A$, $a \notin A$
- Množina konečná, nekonečná, počet prvků konečné množiny A označíme např. |A|
- Zadání množiny:
 - výčtem prvků $A = \{a_1, a_2, ..., a_k\}, B = \{b_1, b_2, ...\},$
 - charakteristickou vlastností $C = \{x \in N, x = 2k, k \in N \}$
- A = B množina A se rovná množině B, když $(\forall a)a \in A \Leftrightarrow a \in B$
- $A \subset B$ množina A je podmnožinou B, když $(\forall a)a \in A \Rightarrow a \in B$ (množiny A, B mohou být shodné), A je vlastní podmnožinou B, když navíc $A \neq B$ Pozor: Je-li např. $A = \{1, \{2\}\}$, pak platí, že $1 \in A$, ale nemá smysl zápis $1 \subset A$. Podobně platí, že $\{1\} \subset A$, ale nemá smysl psát $\{1\} \in A$.

Platí, že $\{2\} \in A$, ale neplatí, že $\{2\} \subset A$. Naopak platí, že $\{\{2\}\} \subset A$.

- Prázdná množina Ø nebo {} neobsahuje žádné prvky a je podmnožinou každé množiny.
 Platí, že Ø ⊂ Ø, ale neplatí, že Ø ∈ Ø (protože prázdná množina neobsahuje žádné prvky).
- Potenční množina množiny A je množina P_A , která obsahuje všechny podmnožiny mn. A.
- Pro grafické znázornění se používají Vennovy diagramy
- Operace s množinami:
 - průnik $A \cap B$ je množina, která obsahuje všechny společné prvky množin A, B a neobsahuje žádné jiné prvky
 - sjednocení $A \cup B$ je množina, která obsahuje všechny prvky alespoň jedné z množin A, B a neobsahuje žádné jiné prvky
 - rozdíl množin $A \setminus B$ nebo také A B je množina, která obsahuje všechny prvky množiny A, které nejsou obsaženy v B a neobsahuje žádné jiné prvky
 - symetrický rozdíl množin A, B je množina $(A B) \cup (B A)$
- Doplněk množiny A v množině B je množina $A_B = B \setminus A$ za předpokladu, že $A \subset B$
- Platí de Morganovy zákony
- (princip inkluze a ekluze)

Příklady:

- 1. Určete počet *k* prvkových podmnožin *n* prvkové množiny.
- 2. Určete počet všech podmnožin *n* prvkové množiny.
- 3. Vypište všechny podmnožiny množiny {1,2,3}.
- 4. Určete doplněk množiny racionálních čísel v množině reálných čísel.
- 5. Vypište všechny prvky množiny $A = \{1, \{2\}, \{1,2\}\}.$
- 6. Napište potenční množinu množiny $A = \{1, \{2\}, \{1,2\}\}.$

Kartézský součin množin

• Kartézský součin množin A, B je množina $A \times B = \{ \forall [a, b], a \in A \land b \in B \}$

Příklady:

- 1. Vytvořte kartézský součin množin $A = \{1,2\}, B = \{3,4\}$. Načrtněte kartézský graf.
- 2. Načrtněte kartézský graf kartézského součinu $A \times B$, kde A = (-1, 3), $B = \{3, 4\}$.
- 3. Načrtněte kartézský graf kartézského součinu $A \times B$, kde A = [2, 5), B = [-1, 7).
- 4. Načrtněte kartézský graf kartézského součinu $R \times N$.
- 5. Načrtněte kartézský graf kartézského součinu $Z \times N$.

Binární relace

- Binární (protože určuje vztah mezi dvojicemi objektů) relace z množiny X do množiny Y je libovolná podmnožina T kartézského součinu $X \times Y$ $T = \{[x, y], x \in X \land y \in Y\}$
- Levý (první) obor relace T tvoří všechny prvky $x \in X$, ke kterým existuje nějaké $y \in Y$
- Pravý (druhý) obor T tvoří všechny prvky $y \in Y$, ke kterým existuje nějaké $x \in X$
- Znázornění relací kartézské a grafové
- Inverzní relace k relaci $T \subset X \times Y$ je relace $T^{-1} \subset Y \times X$, kde $T^{-1} = \{[y, x], y \in Y \land x \in X\}$
- V grafovém znázornění se inverzní relace zobrazí v osové souměrnosti podle svislé osy, v kartézském znázornění v osové souměrnosti podle vedlejší úhlopříčky (přímka *y=x*).
- (skládání relací)
- Vlastnosti relací: reflexivní, symetrická, tranzitivní, antisymetrická

Příklady:

- 1. Znázorněte relaci $T = \{[2,4], [2,10], [5,10]\}$. Určete první a druhý obor relace.
- 2. Kolik je všech binárních relací z X do Y, kde X je m prvková a Y je n prvková množina?
- 3. Jak z grafového a z kartézského znázornění poznáte levá a pravý obor relace?
- 4. Jsou dány množiny $A = \{1,2,3,4\}, B = \{3,4,5,6\}$. Zapište výčtem relaci T, která je dána charakteristickou vlastností $T = \{[x,y], x \ge y, \ x \in X, \ y \in Y\}$. Relaci pak znázorněte grafově i kartézsky.

Řešení:

1. kartézské znázornění

grafové znázornění

První obor relace je množina $X = \{2,5\}$, druhý obor relace je množina $Y = \{4,10\}$.

- 2. |X|=m, |Y|=n
 - počet prvků kartézského součinu je $m \cdot n$
 - počet všech podmnožin k prvkové množiny je 2^k ,

(protože podle binomické věty je $\binom{k}{0}+\binom{k}{1}+\binom{k}{2}+\cdots+\binom{k}{k}=(1+1)^k$)

Počet všech binárních relací je tedy $2^{m \cdot n}$.

4. $T = \{ [3,3], [4,3], [4,4] \}$

Zobrazení

• Zobrazení Z množiny X do množiny Y je nějaká relace $X \times Y$. Pro Z platí, že pro každý prvek $x \in X$ existuje **právě jeden** prvek $y \in Y$ a $[x,y] \in Z$.

Tedy: $Z = \{[x, y], x \in X \land y \in Y \land (\forall x)(\exists! y)\}$

- Funkce je zobrazení v oboru reálných čísel
- Vlastnosti zobrazení: prosté (injekce), na množinu (surjekce), vzájemně jednoznačné (bijekce)
 - Zobrazení: $\{[x,y], x \in A, y \in B, (\forall x)(\exists !y)\}$
 - Prosté zobrazení, INJEKCE: $(\forall x_1, x_2)(x_1 \neq x_2 \Rightarrow y_1 \neq y_2)$
 - různým vzorům přiřazuje různé obrazy
 - ize vytvořit inverzní zobrazení
 - Zobrazení množiny A na množinu B, SURJEKCE: (∀y)(∃x)
 - Vzájemně jednoznačné zobrazení, BIJEKCE: injekce a surjekce zároveň (zobrazení prosté i na)
 - existuje-li mezi množinami A, B bijekce, pak A,B mají stejnou kardinalitu (tj. stejný počet prvků)

Příklady:

Rozhodněte, zda relace představuje zobrazení, injekci, surjekci, bijekci.

