НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники

Информатика

Лабораторная работа № 2 " Синтез помехоустойчивого кода" Вариант 21

Выполнил студент:

Маликов Глеб Игоревич

Группа № Р3124

Преподаватель: Болдырева Елена Александровна

г. Санкт-Петербург

Оглавление

Задание	
Дополнительное задание	
Решение	
Код Хэмминга (7,4)	4
Первое сообщение	4
Второе сообщение	5
Третье сообщение	5
Четвёртое сообщение	5
Код Хэмминга (15,11)	6
Пятое сообщение	7
Минимальное число проверочных разрядов	7
Исходный код	9
Вывод программы	9
Вывод	
Список литературы	11

Задание

Построить схему декодирования классического кода Хэмминга (7;4). Показать, исходя из выбранных вариантов сообщений, имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.

Построить схему декодирования классического кода Хэмминга (15;11). Показать, исходя из выбранных вариантов сообщений, имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.

Сложить номера всех 5 вариантов заданий. Умножить полученное число на 4. Принять данное число как число информационных разрядов в передаваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэффициент избыточности.

Дополнительное задание

Написать программу на любом языке программирования, которая на вход из командной строки получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии.

Решение

Код Хэмминга (7,4)

Ниже приведена схема декодирования кода Хэмминга (7,4).

Рисунок 1 - Схема кода Хэмминга (7,4)

Первое сообщение

Делится первое сообщение (34 = 0110010) в соответствии с таблицей кода Хэмминга (7,4):

	1	2	3	4	5	6	7	
2 ^k	\mathbf{r}_1	\mathbf{r}_2	i_1	r_3	i_2	i_3	i_4	S
1	X		X		X		X	s_1
2		X	X			X	X	s_2
4				X	X	X	X	S 3

Таблица 1 - Таблица кода Хэмминга (7,4)

$$r_1 = 0$$
; $r_2 = 1$; $i_1 = 1$; $r_3 = 0$; $i_2 = 0$; $i_3 = 1$; $i_4 = 0$;

Вычисляются значения контрольных бит результата:

$$r_1$$
 pes = $i_1 \oplus i_2 \oplus i_4 = 1 \oplus 0 \oplus 0 = 1$;

$$r_2$$
 pes = $i_1 \oplus i_3 \oplus i_4 = 1 \oplus 1 \oplus 0 = 0$;

$$r_3$$
 pes = $i_2 \oplus i_3 \oplus i_4 = 0 \oplus 1 \oplus 0 = 1$;

Рассчитываются синдромы:

$$s_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 = r_1 \text{ pes } \oplus r_1 \text{ ucx } = 1 \oplus 0 = 1;$$

$$s_2 = r_2 \bigoplus i_1 \bigoplus i_3 \bigoplus i_4 = r_2$$
 рез $\bigoplus r_2$ исх $= 0 \bigoplus 1 = 1$;

$$s_3=r_3 \oplus i_2 \oplus i_3 \oplus i_4=r_3$$
 рез $\oplus r_3$ исх $=1 \oplus 0=1$;

Полученный синдром: S (1, 1, 1). Ошибочный бит седьмой (i₄). Исправляется ошибочный бит и правильная последовательность равна 0110011.

Второе сообщение

Делится второе сообщение (56 = 1111011) в соответствии с таблицей 1.

$$r_1 = 1$$
; $r_2 = 1$; $i_1 = 1$; $r_3 = 1$; $i_2 = 0$; $i_3 = 1$; $i_4 = 1$;

Вычисляются значения контрольных бит результата:

$$r_1$$
 pes = $i_1 \oplus i_2 \oplus i_4 = 1 \oplus 0 \oplus 1 = 0$;

$$r_2$$
 pes = $i_1 \oplus i_3 \oplus i_4 = 1 \oplus 1 \oplus 1 = 1$;

$$r_3 pe3 = i_2 \oplus i_3 \oplus i_4 = 0 \oplus 1 \oplus 1 = 0;$$

Рассчитываются синдромы:

$$s_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 = r_1 \text{ pes } \oplus r_1 \text{ ucx } = 0 \oplus 1 = 1;$$

$$s_2=r_2 \oplus i_1 \oplus i_3 \oplus i_4=r_2$$
 рез $\oplus r_2$ исх $=1 \oplus 1=0$;

$$s_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 = r_3 \text{ pes } \oplus r_3 \text{ ucx } = 0 \oplus 1 = 1;$$

Полученный синдром: S(1, 0, 1). Ошибочный бит пятый (i_2). Исправляется ошибочный бит и правильная последовательность равна 1111111.

Третье сообщение

Делится третье сообщение (78 = 1000101) в соответствии с таблицей 1.

$$r_1 = 1$$
; $r_2 = 0$; $i_1 = 0$; $r_3 = 0$; $i_2 = 1$; $i_3 = 0$; $i_4 = 1$;

Вычисляются значения контрольных бит результата:

$$r_1$$
 pes = $i_1 \oplus i_2 \oplus i_4 = 0 \oplus 1 \oplus 1 = 0$;

$$r_2$$
 pes = $i_1 \oplus i_3 \oplus i_4 = 0 \oplus 0 \oplus 1 = 1$;

$$r_3$$
 pes = $i_2 \oplus i_3 \oplus i_4 = 1 \oplus 0 \oplus 1 = 0$;

Рассчитываются синдромы:

$$s_1 = r_1 \bigoplus i_1 \bigoplus i_2 \bigoplus i_4 = r_1 \text{ pes} \bigoplus r_1 \text{ ucx} = 0 \bigoplus 1 = 1;$$

$$s_2=r_2 \oplus i_1 \oplus i_3 \oplus i_4=r_2$$
 рез $\oplus r_2$ исх $=1 \oplus 0=1$;

$$s_3=r_3 \oplus i_2 \oplus i_3 \oplus i_4=r_3$$
 рез $\oplus r_3$ исх $=0 \oplus 0=0$;

Полученный синдром: S(1, 1, 0). Ошибочный бит третий (i_1) . Исправляется ошибочный бит и правильная последовательность равна 1010101.

Четвёртое сообщение

Делится четвёртое сообщение (63 = 0110100) в соответствии с таблицей 1.

$$r_1 = 0$$
; $r_2 = 1$; $i_1 = 1$; $r_3 = 0$; $i_2 = 1$; $i_3 = 0$; $i_4 = 0$;

Вычисляются значения контрольных бит результата:

$$r_1$$
 pes = $i_1 \oplus i_2 \oplus i_4 = 1 \oplus 1 \oplus 0 = 0$;

$$r_2$$
 pes = $i_1 \oplus i_3 \oplus i_4 = 1 \oplus 0 \oplus 0 = 1$;

$$r_3 pe3 = i_2 \oplus i_3 \oplus i_4 = 1 \oplus 0 \oplus 0 = 1;$$

Рассчитываются синдромы:

$$s_1 = r_1 \bigoplus i_1 \bigoplus i_2 \bigoplus i_4 = r_1$$
 рез $\bigoplus r_1$ исх $= 0 \bigoplus 0 = 0$;

$$s_2 = r_2 \bigoplus i_1 \bigoplus i_3 \bigoplus i_4 = r_2$$
 рез $\bigoplus r_2$ исх $= 1 \bigoplus 1 = 0$;

$$s_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 = r_3 \text{ pes } \oplus r_3 \text{ ucx } = 1 \oplus 0 = 1;$$

Полученный синдром: S(0,0,1). Ошибочный бит четвёртый (r_3) . Исправляется ошибочный бит и правильная последовательность равна 0111100.

Код Хэмминга (15,11)

Ниже приведена схема декодирования кода Хэмминга (15,11).

Рисунок 2 - Схема кода Хэмминга (15,11)

Пятое сообщение

Полученное сообщение 22 = 011000101100001.

Делится сообщение в соответствии с таблицей кода Хэмминга (15,11):

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
2 ^k	\mathbf{r}_1	\mathbf{r}_2	i_1	\mathbf{r}_3	i_2	i ₃	i_4	r_4	i ₅	i_6	i ₇	i_8	i 9	i ₁₀	i ₁₁	S
1	X		X		X		X		X		X		X		X	\mathbf{s}_1
2		X	X			X	X			X	X			X	X	s_2
4				X	X	X	X					X	X	X	X	S 3
8								X	X	X	X	X	X	X	X	S ₄

Таблица 2 - Таблица кода Хэмминга (15,11)

$$r_1 = 0$$
; $r_2 = 1$; $i_1 = 1$; $r_3 = 0$; $i_2 = 0$; $i_3 = 0$; $i_4 = 1$; $r_4 = 0$; $i_5 = 1$; $i_6 = 1$; $i_7 = 0$; $i_8 = 0$; $i_9 = 0$; $i_{10} = 0$; $i_{11} = 1$;

Вычисляются значения контрольных бит результата:

$$r_1$$
 pes = $i_1 \oplus i_2 \oplus i_4 \oplus i_5 \oplus i_7 \oplus i_9 \oplus i_{11} = 1 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 = 0$;

$$r_2$$
 pes = $i_1 \oplus i_3 \oplus i_4 \oplus i_6 \oplus i_7 \oplus i_{10} \oplus i_{11} = 1 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 = 0$;

$$r_3$$
 pes = $i_2 \oplus i_3 \oplus i_4 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11} = 0 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 = 0$;

$$r_4$$
 pes = $i_5 \oplus i_6 \oplus i_7 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11} = 1 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 1 = 1$;

Рассчитываются синдромы:

$$s_1=r_1 \oplus i_1 \oplus i_2 \oplus i_4 \oplus i_5 \oplus i_7 \oplus i_9 \oplus i_{11}=r_1$$
 рез $\oplus r_1$ исх $=0 \oplus 0=0$;

$$s_2=r_2 \oplus i_1 \oplus i_3 \oplus i_4 \oplus i_6 \oplus i_7 \oplus i_{10} \oplus i_{11}=r_2$$
 рез \oplus r_2 исх $=0 \oplus 1=1$;

$$s_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11} = r_3 \text{ pes} \oplus r_3 \text{ исх} = 0 \oplus 0 = 0;$$

$$s_4 = r_4 \oplus i_5 \oplus i_6 \oplus i_7 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11} = r_4$$
 рез \oplus r_4 исх $= 1 \oplus 0 = 1$;

Полученный синдром: S (0, 1, 0, 1). Ошибочный бит десятый, то есть i_6 . Исправляется ошибочный бит и правильная последовательность равна 011000101000001.

Минимальное число проверочных разрядов

Сложение пяти вариантов:

$$34 + 56 + 78 + 63 + 22 = 253$$

Умножение на 4:

$$253 \times 4 = 1012$$

Для кодового слова с 1012 информационными разрядами, необходимо иметь такое количество проверочных разрядов (r) которое удовлетворяет неравенство $2^r \ge r + 1012 + 1$. Такое неравенство верно при:

$$r = 10$$
, t.e. $2^{10} \ge 10 + 1012 + 1$; $1024 \ge 1023$

Коэффициент избыточности рассчитывается с помощью деления числа проверочных разрядов (r), на общее число разрядов (n), которое соответствует сумме проверочных разрядов с информационными (i). В данном случае, r=10 а n=r+i=10+1012=1022. Соответственно, коэффициент избыточности = 10/1022=0.0097847358

Исходный код

Для выполнения дополнительного задания был использован язык программирования Python.

```
1 import re
2
3 binary 7: str = input("Введите семизначный бинарный код: ")
4 while bool(re.search(r'[^10]', binary 7)) or (len(binary_7) != 7):
       print ("Вы ввели недопустимое значение")
       binary 7 = input ("Введите семизначный бинарный код: ")
6
7
8 lst = []
9 for letter in binary 7:
       lst.append(int(letter))
11 print("Введённый бинарный код: ", lst)
12 print("Введённые информационные биты: ", lst[2], lst[4], lst[5], lst[6])
13
14 r1 source, r2 source, r3 source = lst[0], lst[1], lst[3]
15 \text{ r1 res} = (1\text{st}[2] + 1\text{st}[4] + 1\text{st}[6]) \% 2
16 r2 res = (1st[2] + 1st[5] + 1st[6]) % 2
17 \text{ r3 res} = (1\text{st}[4] + 1\text{st}[5] + 1\text{st}[6]) % 2
18 \, s1 = (r1 \, res + r1 \, source) \% 2
19 s2 = (r2 res + r2 source) % 2
20 s3 = (r3 res + r3 source) % 2
21 err bit: int = (s1 + s2 * 2 + s3 * 4) - 1
22 print ("Неправильный бит: ", err bit + 1)
23 \operatorname{lst}[\operatorname{err} \operatorname{bit}] = (\operatorname{lst}[\operatorname{err} \operatorname{bit}] + 1) % 2
24
25 print("Правильный бинарный код: ", lst)
26 print("Правильные информационные биты: ", lst[2], lst[4], lst[5], lst[6])
```

Доступно в https://github.com/glebmavi/HammingCode7-4.git

Вывод программы

Программа была запущена с значением: 0110010. Ожидаемая правильная последовательность: 0110011.

```
Введите семизначный бинарный код: 0110010
Введённый бинарный код: [0, 1, 1, 0, 0, 1, 0]
Введённые информационные биты: 1 0 1 0
Неправильный бит: 7
Правильный бинарный код: [0, 1, 1, 0, 0, 1, 1]
Правильные информационные биты: 1 0 1 1

Process finished with exit code 0
```

Вывод

В данной работе рассматривались два вида классического кода Хэмминга (7,4) и (15,11) и были использованы для декодирования пяти сообщении. Код Хэмминга, имеет самокорректировку и является помехоустойчивым, часто применяется для корректировки сообщении имеющих не более одной ошибки, и проверочные биты занимают значительную часть сообщения, что увеличивает его коэффициент избыточности.

Список литературы

Балакшин П.В., Соснин В.В., Машина Е.А. (2020) Информатика. — СПб: Университет ИТМО. — 122 с.

Питерсон У., Уэлдон Э. (1972) Коды, исправляющие ошибки: Пер. с англ. М.: Мир, 1976, 594 с.