Homework Chapter 01

Find_root,刘玖阳,应用物理1301,U201310209

Question Use Newton downhill iteration, post acceleration and Aitken iteration method to find the roots of the equation

and compare their performances (speed and error)

 $f(x) = \frac{x^3}{3} - x = 0$

Used algorithm

1. Newton downhill iteration

Newton x1 = guess_root x2 = x1 - f(x1) / diff(x1)root = x1 f error = f(x1)abs(f(x2)) > f_error $_{error} = abs(x2 - x1)$ Yes q = 1END temp = x2 $abs(f(x1)) \le abs(f(x2))$ x2 = x1 - q * f(x1) / diff(x1)x1 = temp k > k max q == 2**-10 kOverflow qOverflow 2. Post acceleration Post acceleration k = 1x1 = guess_root x2 = f(x1)root = x2 $f_{error} = f(x2) - x2$ abs(x2 - x1) > f_error $x_{error} = x2 - x1$ k = kYes L = diff(x2)x1 = x2**END** x2 = (f(x2) - L * x2)/(1- L) k += 1 $k > k_max$ Yes kOverflow 3. Aitken iteration Post_acceleration k = 1x1 = guess_root temp1 = f(x1)temp2 = f(temp1)x2 = temp2 - (temp2 - temp1) ** 2 / (temp2 -2 * temp1 + x1) root = x2 $f_{error} = f(x2) - x2$ abs(x2 - x1) > f_error $x_{error} = x2 - x1$

k = k

END

L = diff(x2)x1 = x2temp1 = f(x1)

temp2 = f(temp1) x2 = temp2 - (temp2 - temp1) ** 2 / (temp2 -2 * temp1 + x1)

 $k > k_max$

Yes

kOverflow

计算物理非线型方程寻根模块(HUST PHY 2013 第一次作业)

newton(guess_root,root,f_error,x_error,k) 牛顿法

double precision,intent(in) :: left_number, right_number

double precision,intent(inout) :: f_error,x_error

if (f(left_number)*f(right_number).gt.0d0) then

double precision,intent(out) :: root

write(*,*) "fDivergence"

picard(guess_root,root,f_error,x_error,k)

bolzano(left_number, right_number, root, f_error, x_error, k)

newton_downhill(guess_root,root,f_error,x_error,k) 牛顿下山法

post_acceleration(guess_root,root,f_error,x_error,k) post加速法 aitken_acceleration(guess_root,root,f_error,x_error,k) aitken加速法

Source Code

module find_root

author:

Sequencer

description:

contains:

exception:

contains

k0verflow fDivergence

double precision function f(x)

! define function

double precision :: x

double precision function diff(x)

integer,intent(out) :: k double precision temp,x1,x2

integer k_max

 $k_max = 100$

 $k_max = 100$

x2 = f(x1)

x1 = guess_root

x1 = x2x2 = f(x2)

do while(abs(x2-x1).gt.f_error)

k = 1

k = 0

!---implicit none

f = x**3/3end function f

MIT协议

implicit none double precision :: delta,x delta = x/100d0diff = (f(x+delta)-f(x-delta))/(2d0*delta)end function diff subroutine bolzano(left_number,right_number,root,f_error,x_error,k)

call abort() endif $x1 = left_number$ $x2 = right_number$ do while(abs(f(x1)*f(x2)).gt.f_error**2) temp = (x1+x2)/2if (f(x1)*f(temp).gt.0d0) then x1 = tempelse x2 = tempendif k=k+1 if (k.gt.k_max) then write(*,*) "k0verflow" call abort() endif end do if (abs(f(x1)).lt.f_error) then if (abs(f(x2)).lt.f_error) then root = (x1+x2)/2else root = x1endif else root = x2endif ! write(*.*) root f_error = f(root) $x_{error} = abs(x1-x2)$ end subroutine bolzano subroutine picard(guess_root,root,f_error,x_error,k) double precision, intent(in) :: guess_root double precision, intent(out) :: root double precision, intent(inout) :: f_error,x_error integer,intent(out) :: k double precision :: x1,x2 integer k_max

k=k+1 write(*,*) k if (k.gt.k_max) then write(*,*) "k0verflow" call abort() endif enddo root = x2f_error = f(root) $x_{error} = abs(x2-x1)$ end subroutine picard subroutine newton(guess_root,root,f_error,x_error,k) double precision,intent(in) :: guess_root double precision,intent(out) :: root double precision,intent(inout) :: f_error,x_error integer,intent(out) :: k double precision :: x1,x2,delta integer k_max $k_max = 100$ x1 =guess_root k = 1do while(abs(f(x1)).gt.f_error) x2 = x1delta = x1/1000x1 = x1 - f(x1) / diff(x1)k = k + 1if(k.gt.k_max) then write(*,*) "k0verflow" call abort() endif enddo root = x1 $f_{error} = f(x1)$ $x_{error} = abs(x2-x1)$ end subroutine newton subroutine newton_downhill(guess_root,root,f_error,x_error,k) double precision,intent(in) :: guess_root double precision,intent(out) :: root double precision,intent(inout) :: f_error,x_error integer,intent(out) :: k double precision :: x1,x2,delta,temp,q integer k_max $k_max = 100$ k = 1x1 = guess_root x2 = x1 - f(x1)/diff(x1)write(*,*) x2,f(x2) do while (abs(f(x2)) .gt. f_error) q = 1temp = x2do while (abs(f(x1)) .le. abs(f(x2)))x2 = x1 - q * f(x1)/diff(x1)q = q/2**if** (q . lt. 2**(-10)) **then** write(*,*) "q0verflow"

endif

write(*,*) x2,f(x2)

if (k .gt. k_max) then

call abort()

write(*,*) "k0verflow"

subroutine post_acceleration(guess_root, root, f_error, x_error, k)

double precision, intent(inout) :: f_error,x_error

double precision, intent(in) :: guess_root

double precision, intent(out) :: root

do while $(abs(f(x2) - x2) \cdot gt. f_error)$

write(*,*) k,"k0verflow"

double precision, intent(in) :: guess_root double precision, intent(out) :: root

double precision :: x1,x2,temp1,temp2

do while (abs(x2 - x1) .gt. f_error)

write(*,*) x2,f(x2)-x2

if (k .gt. k_max) then

call abort()

write(*,*) "k0verflow"

subroutine aitken_acceleration(guess_root,root,f_error,x_error,k)

x2 = temp2 - (temp2 - temp1) ** 2 / (temp2 - 2 * temp1 + x1)

x2 = temp2 - (temp2 - temp1) ** 2 / (temp2 - 2 * temp1 + x1)

double precision, intent(inout) :: f_error,x_error

x2 = (f(x2)-L*x2)/(1-L)write(*,*) x2,f(x2)-x2

if (k > k_max) then

call abort()

enddo

endif

 $f_{error} = f(x2)$

 $x_{error} = abs(x2-x1)$

end subroutine newton_downhill

integer,intent(out) :: k double precision :: x1,x2,L

write(*,*) x2,f(x2)-x2

L = diff(x2)

x1 = x2

k = k+1

endif

 $f_{error} = f(x2) - x2$ $x_{error} = abs(x2-x1)$

end subroutine post_acceleration

integer,intent(out) :: k

write(*,*) x2,f(x2)-x2

temp1 = f(x1)temp2 = f(temp1)

integer k_max $k_max = 100$

x1 = guess_root temp1 = f(x1)temp2 = f(temp1)

x1 = x2

k = k+1

endif

 $f_{error} = f(x2)-x2$ $x_{error} = abs(x2 - x1)$

enddo root = x2

3. Aitken iteration

can get the answer $x = -\sqrt{3}$

Error analytics

k = 1

enddo root = x2

k = k

integer k_max $k_max = 100$

x1 = guess_root

x2 = f(x1)

k = 1

enddo root = x2

k = k

x1 = tempk = k + 1

end subroutine aitken_acceleration end module program main use find_root implicit none double precision :: guess_root1,root1,f_error1,x_error1,left_number1,rig guess_root1 = ht_number1 integer :: k1 left_number1 = 0 $right_number1 = 1$ $f_{error1} = 1e-8$ $x_error1 = 1e-8$! call bolzano(left_number1, right_number1, root1, f_error1, x_error1, k1) ! call newton_downhill(guess_root1, root1, f_error1, x_error1, k1) call aitken_acceleration(guess_root1, root1, f_error1, x_error1, k1) ! call post_acceleration(guess_root1, root1, f_error1, x_error1, k1) ! write(*,*) "root = ",root1, "f_error =", f_error1, "k=",k1 end program main **Screenshot** 1. Newton downhill iteration 2. Post acceleration

Form this image, we can hardly find the newton downhill algorithm. It shows newton downhill is really fast

I use guess root = 2 , f_error = 1e-8 to to find the root $x=\sqrt{3}$

The screenshot of 0 and $-\sqrt{3}$ are ignored. while set guess_number = 1 can get the answer x = 0, and guess_number = -2