

FCC ID: XO9-DSCF-1001 IC: 8906A-DSCF1001

Test Report

Page:

1 of 46

EMC Training 23, Headington Drive, Cambridge. CB1 9HE Tel : 01954 251974 (test site) or : 01223 241140 (accounts) Fax : 01954 251907 web : www.dbtechnology.co.uk email: mail@dbtechnology.co.uk

REPORT ON ELECTROMAGNETIC COMPATIBILITY TESTS

Performed at: TWENTY PENCE TEST SITE

> Twenty Pence Road, Cottenham, Cambridge U.K. **CB24 8PS**

> > on

Sureflap Ltd

DualScan

dated

29th August 2013

Document History

Issue	Date	Affected page(s)	Description of modifications	Revised by	Approved by
1	29/08/13		Initial release		
2	26/09/13	13, 14, 15	Extrapolation, Modulation, Bandwidth & Detector information added	DB	DS

Based on report template: v090319

7	Report No: Issue No:	R3261 2	FCC ID: XO9-DSCF-1001 IC: 8906A-DSCF1001		
(dB)	Test No:	T5083	Test Report	Page:	2 of 46

Equipment Under Test (EUT):	DualScan
Test Commissioned by:	Sureflap Ltd 7 The Irwin Centre Scotland Road Dry Drayton Cambridgeshire CB23 8AR
Representative:	Darren Cawthorne
Test Started:	22nd July 2013
Test Completed:	25th July 2013
Test Engineer:	Dave Smith
Date of Report:	29th August 2013
Written by: Dave Smith	Checked by: Derek Barlow
Signature: D-A-Switt	Signature:
Date: 29th August 2013	Date: 30th August 2013

dB Technology can only report on the specific unit(s) tested at its site. The responsibility for extrapolating this data to a product line lies solely with the manufacturer.

Test Standards Applied

CFR 47	Code of Federal Regulations: Pt 15 Subpart C - Radio Frequency Devices - Intentional Radiators
RSS-210	Licence-exempt Radio Apparatus (All Frequency Bands):
Issue 8	Category I Equipment

Ť	Report No: Issue No:	R3261 2	FCC ID: XO9-DSCF-1001 IC: 8906A-DSCF1001		
(dB)	Test No:	T5083	Test Report	Page:	3 of 46

Emissions Test Results Summary

CFR 47 PASS

Test	Port	Method	Limit	PASS/FAIL	Notes
Conducted Emissions	ac power	ANSI C63.4:2003	15.207	N/A	#1
Radiated Emissions		ANSI C63.4:2003	15.209	PASS	

specs fccv100412

#1 This test was not applicable because the EUT was powered by an internal battery and has no means of connection to an ac power source.

RSS-210 PASS

Test	Port	Method	Limit	PASS/FAIL	Notes
Radiated	enclosure	ANSI C63.4:2003	RSS_GEN	PASS	
Spurious			Tables 5&6		
Emissions					

specs_canadav111211

Report No: R3261 Issue No: 2

T5083

Test No:

FCC ID: XO9-DSCF-1001 IC: 8906A-DSCF1001

Test Report

Page:

4 of 46

Contents

1 EUT Details	
1.1 General	
1.2 Modifications to EUT and Peripherals	. 6
1.3 EUT Operating Modes	
Figure 1 General Arrangement of EUT	
Photograph 1 Radiated Emissions - below 30MHz @10m	
Photograph 2 Radiated Emissions - below 30MHz @10m	
Photograph 3 Radiated Emissions - below 30MHz@ 100m	
Photograph 4 Radiated Emissions - above 30MHz	
Photograph 5 Radiated Emissions - above 30MHz	
2 Test Equipment	
3 Test Methods	
3.1 Radiated Emissions below 30MHz	
3.2 Radiated Emissions above 30MHz	
4 Test Results	
4.1 Extrapolation of Limits to different distances.	
4.2 EUT Modulation and Measuring Bandwidths	
4.3 Radiated Emissions Results - Carrier	
4.4 Radiated Emissions Results - Spurious <30MHz - 80V Units	
4.5 Radiated Emissions Results - Spurious <30MHz - 120V Units	17
4.6 Radiated Emissions Results - Spurious Above 30MHz	
PLOT 1 Radiated Emissions - LF - 80V - 9kHz to 150kHz	
PLOT 2 Radiated Emissions - LF - 80V - 150kHz to 1.705MHz	
PLOT 3 Radiated Emissions - LF - 80V - 1.705MHz to 30MHz	
PLOT 4 Radiated Emissions - HF - 80V - 9kHz to 150kHz	
PLOT 5 Radiated Emissions - HF - 80V - 150kHz to 1.705MHz	
PLOT 6 Radiated Emissions - HF - 80V - 1.705MHz to 30MHz	
PLOT 7 Radiated Emissions - LF - 120V - 9kHz to 150kHz	
PLOT 8 Radiated Emissions - LF - 120V - 150kHz to 1.705MHz	
PLOT 9 Radiated Emissions - LF - 120V - 1.705MHz to 30MHz	
PLOT 10 Radiated Emissions - HF - 120V - 9kHz to 150kHz	
PLOT 11 Radiated Emissions - HF - 120V - 150kHz to 1.705MHz	
PLOT 12 Radiated Emissions - HF - 120V - 1.705MHz to 30MHz	
PLOT 13 Radiated Emissions - Cycling all modes - 9kHz to 150kHz	
PLOT 14 Radiated Emissions - Cycling all modes - 150kHz to 1.705MHz	
PLOT 15 Radiated Emissions - Cycling all modes - 1.705MHz to 30MHz	
PLOT 16 Radiated Emissions - LF - 80V - 25MHz to 275MHz	
PLOT 17 Radiated Emissions - LF - 80V - 250MHz to 1GHz	
PLOT 18 Radiated Emissions - HF - 80V - 25MHz to 275MHz	
PLOT 19 Radiated Emissions - HF - 80V - 250MHz to 1GHz	
PLOT 20 Radiated Emissions - LF - 120V - 25MHz to 275MHz	
PLOT 21 Radiated Emissions - LF - 120V - 250MHz to 1GHz	
PLOT 22 Radiated Emissions - HF - 120V - 25MHz to 275MHz	
PLOT 23 Radiated Emissions - HF - 120V - 250MHz to 1GHz	
PLOT 24 Radiated Emissions - Cycling all Tx Modes - 25MHz to 275MHz	
PLOT 25 Radiated Emissions - Cycling all Tx Modes - 250MHz to 1GHz	
PLOT 26 Radiated Emissions - Bandwidth at 126kHz	
PLOT 27 Radiated Emissions - Bandwidth at 133kHz	
PLOT 28 Radiated Emissions - Timing	46

7	Report No: Issue No:	R3261 2	FCC ID: XO9-DSCF-1001 IC: 8906A-DSCF1001		
(dB)	Test No:	T5083	Test Report	Page:	5 of 46

1 EUT Details

1.1 General

The EUT was pet flap with an RFID detector system. The EUT generates a magnetic field at one of two nominal frequencies: 126kHz or 133kHz. The driver output is set to one of two levels: 80V or 120V. Four samples were provided to constantly generate all four combinations of carrier level and frequency. A fifth sample was provided which continuously performed the normal read cycle which involves sequentially transmitting at all of the frequency / level combinations.

The EUT is powered from an internal battery and has no connecting cables.

The EUT was considered an intentional radiator under the rules of CFR 47 part 15 subpart C. The general limits for intentional radiators (section 15.209) were applied. The carrier frequencies do not fall within restricted bands of section 15.205.

The EUT was found to comply with the general emissions limits of FCC CFR47 Part 15.209.

For Canada the rules of RSS-210 were applied. The general limits for Licence-exempt aparatus were applied (Tables 5 and 6 of RSS-GEN Issue 2). These limits are identical to the limits applied for FCC testing.

The EUT was found to comply with the general emissions limits of RSS-210

Details of the EUT and associated peripherals used during the tests are listed below. Figure 1 shows the interconnections between the EUT and peripherals.

Item	Manufacturer	Model	Description	Serial No:	Notes
1	Sureflap Ltd	DualScan	EUT sample set at 126kHz, 120V		
2	Sureflap Ltd	DualScan	EUT sample set at 126kHz, 80V		
3	Sureflap Ltd	DualScan	EUT sample set at 132.8kHz, 120V		
4	Sureflap Ltd	DualScan	EUT sample set at 132.8kHz, 80V		
5	Sureflap Ltd	DualScan	EUT sample continously cycle through read modes		

7	T	Report No: Issue No:	R3261 2	FCC ID: XO9-DSCF-1001 IC: 8906A-DSCF1001		
	(dB)	Test No:	T5083	Test Report	Page:	6 of 46

1.2 Modifications to EUT and Peripherals

Details of any modifications that were required to achieve compliance are listed below. The modification numbers are referred to in the results sections as appropriate.

Mod No:	Details	Implemented for
0	Original unit	

1.3 EUT Operating Modes

The EUT was tested in the following operating mode or modes. Generally, operating modes are chosen that will exercise the functions of the EUT as fully as possible and in a manner likely to produce maximum emission levels or susceptibility. Individual test result sheets reference the operating mode of the EUT.

Operating Mode	Details
1	Transmitting constantly at a fixed frequency and level. Normally the carrier is only activated when a cat enters the cat flap and so special test firmware was used to provide a constant transmission.
2	Running test firmware which continuously cycles trough the normal read cycle, turning the RF on and off at the normal frequencies and levels. This mode was used to check that no transients occurred when turning the RF on and off.

	Report No: Issue No:	R3261 2	FCC ID: XO9-DSCF-1001 IC: 8906A-DSCF1001		
(dB)	Test No:	T5083	Test Report	Page:	7 of 46

Figure 1 General Arrangement of EUT

Report No: Issue No: R3261 2

Test No:

FCC ID: XO9-DSCF-1001 IC: 8906A-DSCF1001

Test Report T5083

Page:

8 of 46

Photograph 1 Radiated Emissions - below 30MHz @10m

Photograph 2 Radiated Emissions - below 30MHz @10m

Report No: R3261 Issue No: 2

FCC ID: XO9-DSCF-1001 IC: 8906A-DSCF1001

Test No: T5083 Test Report

Page:

9 of 46

Photograph 3 Radiated Emissions - below 30MHz@ 100m

Photograph 4 Radiated Emissions - above 30MHz

Report No: R3261 Issue No: 2

T5083

FCC ID: XO9-DSCF-1001 IC: 8906A-DSCF1001

Test Report

Page:

10 of 46

Photograph 5 Radiated Emissions - above 30MHz

<u> </u>
dB

Report No: R3261 Issue No: 2

T5083

FCC ID: XO9-DSCF-1001 IC: 8906A-DSCF1001

Test Report

Page:

11 of 46

2 Test Equipment

Test No:

The test equipment used during the tests was one or more of the items listed below. Individual test result sheets indicate which items were used.

Ref No:	Details	Serial Number	Cal Date	Cal Period
A12 A24 A9 R10 R4	Chase Bilog CBL6111A Chase X-wing Bilog CBL6144 26MHz-3GHz EMCO 6502 Loop Narda PMM 9010 Receiver (10Hz-30MHz) R&S ESVS10	1012 27590 2139 595WX11003 843744/002	30/01/2013 30/10/2012 14/12/2012 30/01/2013 17/12/2012	1 year 1 year 1 year 1 year 1 year
R8	Agilent E7405A Spectrum Analyser	MY44212494	24/09/2012	1 year 1 year

Ť	Report No: Issue No:	R3261 2	FCC ID: XO9-DSCF-1001 IC: 8906A-DSCF1001		
(dB)	Test No:	T5083	Test Report	Page:	12 of 46

3 Test Methods

3.1 Radiated Emissions below 30MHz

This section describes the general method of performing this test. The specific method used and any deviations from this general method are listed in the appropriate results section.

Initial scans are performed in a semi-anechoic screened room at a distance of 3m. Scans are performed over the frequency range specified in the test standard with a loop antenna both co-axially and orthogonally orientated with respect to the EUT. During these scans the EUT and peripherals are rotated through 360°. Bench top EUTs are placed on a non-conducting bench at a height of 0.8m above the ground plane. Floor standing EUTs are placed 0.1m above the ground plane. The results of the scans are shown in the plots included at the end of the report.

Significant emissions identified by the scans are measured on an open area test site at the appropriate test distance using a CISPR16 quasi-peak receiver. Maximised readings are obtained by rotating the EUT through 360° with the antenna at a height of 1m. Measurements are made with the antenna both coaxially and orthogonally orientated with respect to the EUT and the results tabulated.

Tabulated results are obtained by adding the raw reading from the receiver (in dBuV) to the appropriate correction factors for the antenna and cables to give a reading in dBuV/m. For example:

Frequency Receiver reading Correction Factor Final level 126kHz 75.8 dBuV 8.0 dB/m 83.8 dBuV/m

Final reading = 75.8 + 8.0 = 83.8.

3.2 Radiated Emissions above 30MHz

This section describes the general method of performing this test. The specific method used and any deviations from this general method are listed in the appropriate results section.

Initial scans are performed in a semi-anechoic screened room at a distance of 3m. Scans are performed over the frequency range specified in the test standard with the antenna both horizontally and vertically polarised. During these scans the EUT and peripherals are rotated through 360°. Bench top EUTs are placed on a non-conducting bench at a height of 0.8m above the ground plane. Floor standing EUTs are placed 0.1m above the ground plane. The results of the scans are shown in the plots included at the end of the report.

Significant emissions identified by the scans are measured on an open area test site at the appropriate test distance using a CISPR16 quasi-peak receiver. Maximised readings are obtained by rotating the EUT through 360° and adjusting the height of the antenna from 1m to 4m. Measurements are made with the antenna both horizontally and vertically polarised and the results tabulated.

Tabulated results are obtained by adding the raw reading from the receiver (in dBuV) to the appropriate correction factors for the antenna and cables to give a reading in dBuV/m. For example:

Frequency Receiver reading Correction Factor Final level 160MHz 5.9 dBuV 12.6 dB/m 18.5 dBuV/m

Final reading = 5.9 + 12.6 = 18.5

4 Test Results

The following sections contain tabulated test results. Plots of various scans are included at the back of this section.

FCC ID: XO9-DSCF-1001
IC: 8906A-DSCF1001

Test Report

Page: 13 of 46

4.1 Extrapolation of Limits to different distances.

The limits for emissions at frequencies below 490kHz are specified at a 300m distance and above 490kHz are specified at 30m. These distances are often impractical due to either geographic issues or the signal to be measured being below noise floor.

Extrapolation is permitted at a standard 40dB/decade of distance for these frequencies. The field strength calculations are as follows:

For frequencies below 490kHz: Field Strength (uV/m) at 300m = 2400 / f (kHz)

For frequencies above 490kHz and below 1.705MHz: Field Strength (uV/m) at 30m = 24000 / f (kHz)

Therefore, e.g. for 126kHz, Field Strength = 2400 / 126 = 19.05uV/m at 300m

Taking 20 x log (19.05) we get an equivalent field strength of 25.6 dBuV/m at 300m

Making a 40dB/decade adjustment for distance we have to add 40 x log (300m / Dm)

For a distance of 100m we would therefore add $40 \times \log (300/100) = 19.08 \, dB$

For a distance of 30m we would add $40 \times \log (300/30) = 40 \text{ dB}$ etc....

The table below shows the limit levels at different distances for the two fundamental frequencies and their lower harmonics, using this 40dB/decade extrapolation:

	Frequency kHz	Reference Distance m	Reference Distance Level uV/m	Reference Distance Level dBuV/m	40dB/dec Level at 100m dBuV/m	40dB/dec Level at 30m dBuV/m	40dB/dec Level at 10m dBuV/m	40dB/dec Level at 3m dBuV/m
fund fund 2nd	126 133 252	300 300 300	19.05 18.05 9.52	25.60 25.13 19.58	44.68 44.21 38.66	65.60 65.13 59.58	84.68 84.21 78.66	105.60 105.13 99.58
2nd	266	300	9.02	19.11	38.19	59.11	78.19	99.11
3rd 3rd	378 399	300 300	6.35 6.02	16.05 15.58	35.14 34.67	56.05 55.58	75.14 74.67	96.05 95.58
4th	504	30	47.62	33.56		33.56	52.64	73.56
4th 5th	532 630	30	45.11 38.10	33.09 31.62		33.09 31.62	52.17 50.70	73.09 71.62
5th	665	30	36.09	31.15		31.15	50.23	71.15
6th 6th	756 798	30 30	31.75 30.08	30.03 29.56		30.03 29.56	49.12 48.65	70.03 69.56

NOTE:

Actual measurements showed that the levels at the fundamental frequencies dropped at a rate of 53.1dB per decade between 10m and 100m. This extrapolation factor was therefore used to extrapolate between the 100m limit and the 10m limit for the fundamental frequencies. The 100m limit was calculated from the 300m limit using the 40dB/decade factor.

The 40dB/decade factor was used for the assessment of all of the harmonic measurements.

7	Report No: Issue No:	R3261 2	FCC ID: XO9-DSCF-1001 IC: 8906A-DSCF1001		
(dB)	Test No:	T5083	Test Report	Page:	14 of 46

4.2 EUT Modulation and Measuring Bandwidths

The EUT transmits only unmodulated carriers at 126kHz and 133kHz. The carriers are alternately turned on and off. The on periods are between 80ms and 240ms each time - as shown in plot 28.

For carrier frequency level measurements a linear test receiver was used with a 200Hz bandwidth and a CISPR16 Average detector.

For Open Area Test Site measurements of the harmonics, which were at a much lower level and affected by ambients, it was necessary to use a spectrum analyser with a narrower bandwidth. A 3Hz resolution bandwidth was used with a 30Hz video bandwidth and a peak detector. In view of the characteristics of the signal this was considered to be acceptable, but, in order to confirm that these settings would provide reliable data, comparative tests were performed in the anechoic chamber at a measuring distance of 3m.

Results measured using a 9kHz bandwidth and CISPR16 quasi-peak detector were compared with results measured with the 3Hz / 30Hz / Peak Detector spectrum analyser setup. The results are shown below:

Eroguanav	9kHz BW Quasi-Peak Measurement	3Hz Receiver BW 30Hz Video BW Peak Measurement	Difference in Reading relative to Quasi-peak 9kHz
requency kHz	dBuV/m	dBuV/m	dBuV/m
KITZ	aba v/III	dBdV/III	aba v/III
252	66.65	66.58	-0.07
378	56.79	57.50	0.71
504	48.82	48.86	0.04
630	47.31	46.54	-0.77
756	49.12	48.88	-0.24
266	71.06	71.10	0.04
399	64.29	64.53	0.24
531	56.94	56.94	0.00
664	52.04	52.10	0.06
797	49.62	49.51	-0.11

NOTE: Relative measurements in an anechoic chamber - for comparison purposes only.

The measurement errors incurred by using this bandwidth can be seen to be less than +/- 1dB. The EUT harmonics measured using the 3Hz bandwidth all showed a margin of >= 6.8dB, therefore any errors in measurement due to bandwidth and detector settings are insignificant in comparison with the margin displayed and the result shows a valid pass.

Report No: R3261 Issue No: 2

IC: 8906A-DSCF1001

FCC ID: XO9-DSCF-1001

Page: **Test Report** 15 of 46

Radiated Emissions Results - Carrier

T5083

Factor Set 1: A9_HI_V_13A CBL015_11A --

Factor Set 2: Factor Set 3: Test Equipment: R10 A9

Test No:

Radiated_Emissions

Key:

Con	npany:	Sureflap Ltd Product: DualScan												
Date		22/0						Test	Eng:	ave Smit	h			
Port							_							
Test Port		ANSI		.4:20	03 using	limits	s of	15	.209		=FCC_B			
Test				.4:20	03 using	limits	s of	RSS	GEN					
Plot	Op Mode	Mod State	Dist m	Fact Set	Freq. MHz	Ant Pol	Rec. Level dBuV	Corr'n Factor dB/m	Corr'n Factor dB	Total Level dBuV/m	Limit FCC_B dBuV/m	Margin FCC_B dB	Notes	
			120V systems											
10	1	0	100	1	0.133	F	27.8	9.5		37.3	44.2	6.9	av	
10	1	0	100	1	0.133	E	23.5	9.5		33.0	44.2	11.2	av	
7	1	0	100	1	0.126	F	29.8	9.5		39.3	44.7	5.4	av	
7	1	0	100	1	0.126	E	24.9	9.5		34.4	44.7	10.3	av	
10	1	0	10	1	0.133	F	81.4	9.5		90.9	97.3	6.4	av	
10	1	0	10	1	0.133	E	77.6	9.5		87.1	97.3	10.2	av	
7 7	1 1	0	10 10	1 1	0.126 0.126	F E	82.9 78.6	9.5 9.5		92.4 88.1	97.8 97.8	5.4 9.6	av av	
,			10	'	0.120		78.0	9.5		00.1	97.0	3.0	av .	
	Resul	ts					Minimu PASS/F		gin		5.4 PASS	dB		
No	tes					Comr	ments a	nd Obse	ervation	าร				
			The limit is specified at a distance of 300m. Initially measurements were made at 10m and a default extrapolation figure of 40dB/decade was applied. Under these conditions the units did not comply with the extrapolated limits, but the actual decay with distance was measured at 53.1dB/decade between 10m and 100m. The measurements made at 100m are shown above, with the limit at this distance adjusted using the 40dB/decade extrapolation. Results are also shown at 10m, using a limit adjusted by the 53.1dB factor as measured. Initial 10m measurements showed the emissions from 120V systems to be higher than from 80V systems and therefore final measurements were only performed on 120V units. The magnetic field scans are shown in plots 1 to 15.											

F = loop face on to EUT, E = edge on

qp - quasi-peak, av - average, pk - peak

Report No: R3261 Issue No: 2

FCC ID: XO9-DSCF-1001 IC: 8906A-DSCF1001

Test Report

Page:

16 of 46

Radiated Emissions Results - Spurious <30MHz - 80V Units

Factor Set 1: A9_HI_V_13A CBL015_11A --

T5083

Factor Set 2: Factor Set 3: Test Equipment: R8 A9

Test No:

Radiated Emissions

		Sure	ureflap Ltd Product: DualScan										
Date		22/07	-					Test		ave Smitl			
Ports	s <i>:</i>		,								· -		
Test				.4:200	03 using	limits	s of	15	209		=FCC_B		
Ports Test		enclosure ANSI C63.4:2003 using limits of RSS GEN											
rest		ANSI	<u> </u>	.4:200	J3 using	ilmits	s от	RSS	GEN				
Plot	Op Mode	Mod State	Dist m	Fact Set	Freq. MHz	Ant Pol	Rec. Level dBuV	Corr'n Factor dB/m	Corr'n Factor dB	Total Level dBuV/m	Limit FCC_B dBuV/m	Margin FCC_B dB	Notes
5 5 5	1 1 1	0 0	10 10 10	1 1 1	0.266 0.266 0.399	F E F	46.2 40.9 42.4	9.5 9.5 9.5		55.7 50.4 51.9	78.2 78.2 74.7	22.5 27.8 22.7	
5 5 5	1 1 1	0 0	10 10 10	1 1 1	0.399 0.531 0.531	E F E	37.4 35.9 30.4	9.5 9.5 9.5		46.9 45.4 39.9	74.7 52.2 52.2	27.8 6.8 12.3	
5 5 5	1 1 1	0 0	10 10 10	1 1 1	0.664 0.664 0.797	F E F	22.0 17.5 28.7	9.5 9.5 9.5		31.5 27.0 38.2	50.2 50.2 48.7	18.8 23.3 10.4	
5 2 2	1 1 1 1	0 0	10 10 10	1 1 1	0.797 0.252 0.252	E F E	20.5 39.8 39.9	9.5 9.4 9.4		30.0 49.3 49.3	48.7 78.7 78.7	18.6 29.4 29.4	
2 2	1	0	10 10	1 1	0.378 0.378	F E	38.3 33.9	9.3 9.3		47.6 43.3	75.1 75.1 52.6	27.5 31.9	
2 2 2	1 1 1	0 0 0	10 10 3	1 1 1	0.504 0.504 0.630	F E F	34.0 29.3 54.2	9.5 9.5 9.5		43.5 38.8 63.6	52.6 71.6	9.1 13.9 8.0	#1
2 2 2	1 1 1	0 0 0	10 10 10	1 1 1	0.630 0.756 0.756	F E	21.5 25.4 21.7	9.5 9.5 9.5		31.0 34.9 31.2	50.7 49.1 49.1	19.7 14.2 17.9	
	Resul	ts					Minimu PASS/F	_	jin		6.8 PASS	dB	
No	tes					Comr	ments aı	nd Obse	ervation	าร			
			80V units. Results of scans shown in plots 1 to 6. Limits adjusted for measurement distances using a default extrapolation of 40dB/decade.										
#	1		All measurements made with peak detector. Measured at 3m because of high ambient.										

Report No: R3261 Issue No: 2

Test No: **Test Report**

FCC ID: XO9-DSCF-1001 IC: 8906A-DSCF1001

> Page: 17 of 46

Radiated Emissions Results - Spurious <30MHz - 120V Units 4.5

Factor Set 1: A9_HI_V_13A CBL015_11A --

T5083

Factor Set 2: Factor Set 3: Test Equipment: R8 A9

Radiated Emissions

		Sure		L+d	·			Prod	uct: r	ualScar	`		
Date								Tost					
Ports		22/07	//201	3				1631	Lily.	ave Smit	1		
Test	:	ANSI	C63	.4:200	03 using	limits	s of	15.	209		=FCC_B		
Ports		enclosure											
Test	:	ANSI	C63	.4:200	03 using	limits	s of	RSS	GEN				
Plot	Op	Mod	Dist	Fact	Freq.	Ant	Rec.	Corr'n	Corr'n	Total	Limit	Margin	Notes
		State	m	Set	MHz	Pol	Level	Factor	Factor	Level	FCC_B	FCC_B	
							dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	
8	1	0	10	1	0.252	F	39.1	9.4		48.5	78.7	30.1	
8 8	1 1	0 0	10 10	1 1	0.252 0.378	E F	34.8 32.5	9.4		44.2 41.8	78.7 75.1	34.5 33.4	
8	' 1	0	10	1 1	0.378	E	28.9	9.3		38.2	75.1 75.1	36.9	
8	' 1	0	10	1	0.504	F	26.2	9.5		35.7	52.6	17.0	
8	1	0	10	1	0.504	E	21.1	9.5		30.6	52.6	22.1	
8	1	0	3	1	0.630	F	50.9	9.5		60.4	71.6	11.3	#1
8	1	0	10	1	0.630	E	26.5	9.5		36.0	50.7	14.7	
8	1	0	10	1	0.756	F	24.8	9.5		34.3	49.1	14.8	
8	1	0	10	1	0.756	E	20.7	9.5		30.2	49.1	18.9	
11	1	0	10	1	0.266	F	45.0	9.5		54.5	78.2 78.2	23.7	
11 11	1 1	0 0	10 10	1 1	0.266 0.399	E F	39.9 38.9	9.5 9.5		49.4 48.4	76.2 74.7	28.8 26.2	
11	' 1	0	10		0.399	E	33.8	9.5		43.3	74.7	31.4	
11	1	0	10	1	0.531	F	31.7	9.5		41.2	52.2	11.0	
11	1	0	10	1	0.531	E	26.6	9.5		36.1	52.2	16.1	
11	1	0	10	1	0.664	F	26.6	9.5		36.0	50.2	14.2	
11	1	0	10	1	0.664	E	22.2	9.5		31.7	50.2	18.5	
11	1	0	10	1	0.797	F	31.2	9.5		40.7	48.7	7.9	
11	1	0	10	1	0.797	E	21.4	9.5		30.9	48.7	17.8	
	Resul	ts					Minimu	_	jin		7.9	dB	
							PASS/F	AIL			PASS		
No	tes					Comr	ments aı	nd Obse	ervation	าร			
			120\	/ units	s. Results o	f scar	ns show	n in plo	ts 7 to	12.			
								•					
				-	sted for me ements ma				_	a default	extrapolation	on of 40dB/n	n.
#	1		Measured at 3m because of high ambient.										
			Measured at 3m because of high ambient.										

Report No: R3261 Issue No: 2

FCC ID: XO9-DSCF-1001 IC: 8906A-DSCF1001

Test Report

Page:

18 of 46

4.6 Radiated Emissions Results - Spurious Above 30MHz

Factor Set 1: A12_FS_13B CBL015_11A --

T5083

Radiated_Emissions

Com	pany:	Sure	ureflap Ltd Product: DualScan										
Date	:	24/07						Test	Eng:	ave Smitl	n		
Ports				4 00			,	4-			500 5		
Test Ports		ANSI enclos		.4:200	03 using	limits	S 0f	15.	209		=FCC_B		
Test		ANSI		.4:200	03 using	limits	of	RSS	GEN				
					Ŭ								
Plot	Op	Mod	Dist	Fact	Freq.	Ant	Rec.		Corr'n	Total	Limit	Margin	Notes
	Mode	State	m	Set	MHz	Pol	Level dBuV	Factor	Factor dB	Level	FCC_B	FCC_B	
							ивич	dB/m	ив	dBuV/m	dBuV/m	dB	
24	1		2	1	117 070	\ \ \	0.6	120		12.6	42 F	20.0	an l
24 24	1	0 0	3 3	1 1	117.970 117.970	V H	0.6 4.3	13.0 13.0		13.6 17.3	43.5 43.5	29.9 26.2	qp qp
24	1	0	3	1	137.631	V	0.2	13.0		13.2	43.5	30.3	qp qp
24	1	0	3	1	137.631	Н	2.2	13.0		15.2	43.5	28.3	qp
24	1	0	3	1	157.295	V	0.2	12.1		12.3	43.5	31.2	qp
24	1	0	3	1	157.295	Н	5.7	12.1		17.8	43.5	25.7	qp
	Resul	ts					Minimu	n Marc	ıin		25.7	dB	
							PASS/F		,		PASS		
No	tes					Comr	ments ar	nd Obse	ervation	าร			
			Recul	te of	scans show	ın in r	olote 16	to 25					
			ı ı c sul	is UI	ocario SHUW	/11 III	חטנס וס	ιυ 20.					
			Emiss	sions a	above were	mad	e on the	sample	e which	n cycled th	hrough all m	odes - which	.
			gave	highe	r emissions	durin	ng presc	ans.					
Ke	ey:		ap - d	uasi-ı	oeak, av - a	verac	ae, pk - i	oeak					

7	Report No: Issue No:	R3261 2	FCC ID: XO9-DSCF-1001 IC: 8906A-DSCF1001		
(dB)	Test No:	T5083	Test Report	Page:	19 of 46

Marker 1: 133.8kHz

Ref 150 dBuV/m Atten 40 dB 75.45dBuV/m

Log
10
dB/

V1 V2
S3

Start 9kHz

Stop 150kHz

PLOT 1 Radiated Emissions - LF - 80V - 9kHz to 150kHz

Sureflap Ltd Company: Product: DualScan 25/07/2013 Test Eng: Dave Smith Date: Method: **ANSI C63.4** Method: Limit1:(RED) FCC_subpartC_@3m_40dB/dec Limit2: Limit4: Limit3:

VBW 300 Hz

Sweep 12.69S (401 pts)

Black: face on Blue: perpendicular

126kHz 80V Every 90 degs

*RBW 200 Hz

The red limit is the FCC part 15.209 limit extrapolated to 3m using a default 40dB per decade. In practice an extrapolation of closer to 60dB per decade could be expected which would significantly increase the margins.

Facility:	Anech_2	Height	1m	Mode:	1
Distance	3m	Polarisation		Modification State:	0
Angle	0-360	File:	H36255C3	Analyser:	R8

Ť	Report No: Issue No:	R3261 2	FCC ID: XO9-DSCF-1001 IC: 8906A-DSCF1001		
(dB)	Test No:	T5083	Test Report	Page:	20 of 46

Marker 1: 1.526MHz Atten 20 dB Ref 117 dBuV/m 49.05dBuV/m Log 10 dB/ V1V2 S3Start 150kHz Stop 1.705MHz

VBW 30 kHz

Sweep 43.76mS (401 pts)

*RBW 9 kHz

Distance

Angle

PLOT 2 Radiated Emissions - LF - 80V - 150kHz to 1.705MHz

Height

Polarisation

Sureflap Ltd Company: Product: DualScan Date: 25/07/2013 Test Eng: Dave Smith Method: **ANSI C63.4** Method: Limit1:(RED) FCC_subpartC_@3m_40dB/dec Limit2: Limit4: Limit3: Black: face on Blue: perpendicular 126kHz 80V The red limit is the FCC part 15.209 limit extrapolated to 3m using a default 40dB per decade. In practice, an extrapolation of closer to 60dB per decade could be expected which would significantly increase the margins. Facility: Anech_2 Mode:

Modification State:

0

1m

7	Report No: Issue No:	R3261 2	FCC ID: XO9-DSCF-1001 IC: 8906A-DSCF1001		
(dB)	Test No:	T5083	Test Report	Page:	21 of 46

VBW 30 kHz

Sweep 796.3mS (401 pts)

*RBW 9 kHz

Distance

Angle

0-360

PLOT 3 Radiated Emissions - LF - 80V - 1.705MHz to 30MHz

File:

Polarisation

Company:	Sureflap Ltd	Product:	DualScan
Date:	25/07/2013	Test Eng:	Dave Smith
Method:	ANSI C63.4	Method:	
Limit1:(RED)	FCC_subpartC_@3m_40dB/dec	Limit2:	
Limit3:		Limit4:	
126kHz 80V The red limit is	Blue: perpendicular the FCC part 15.209 limit extrapolate trapolation of closer to 60dB per declargins.		•
Facility:	Anech_2 Height 1	m	Mode: 1

H3625604

Modification State:

Analyser:

0

R8

1	Report No: Issue No:	R3261 2	FCC ID: XO9-DSCF-1001 IC: 8906A-DSCF1001		
(dB)	Test No:	T5083	Test Report	Page:	22 of 46

Marker 1: 133.8kHz Ref 150 dBuV/m Atten 40 dB 74.34dBuV/m Log 10 dB/ V1V2 S3margarand phyprophyland was proposed and the second of the Start 9kHz Stop 150kHz *RBW 200 Hz VBW 300 Hz Sweep 12.69S (401 pts)

PLOT 4 Radiated Emissions - HF - 80V - 9kHz to 150kHz

Sureflap Ltd Company: Product: DualScan Date: 25/07/2013 Test Eng: Dave Smith Method: **ANSI C63.4** Method: Limit1:(RED) FCC_subpartC_@3m_40dB/dec Limit2: Limit3: Limit4: Black: face on Blue: perpendicular

133kHz 80V Every 90 degs

The red limit is the FCC part 15.209 limit extrapolated to 3m using a default 40dB per decade. In practice, an extrapolation of closer to 60dB per decade could be expected which would significantly increase the margins.

Facility:	Anech_2	Height	1m	Mode:	1
Distance	3m	Polarisation		Modification State:	0
Angle	0-360	File:	H36255CF	Analyser:	R8

7	Report No: Issue No:	R3261 2	FCC ID: XO9-DSCF-1001 IC: 8906A-DSCF1001		
(dB)	Test No:	T5083	Test Report	Page:	23 of 46

VBW 30 kHz

Sweep 43.76mS (401 pts)

*RBW 9 kHz

PLOT 5 Radiated Emissions - HF - 80V - 150kHz to 1.705MHz

Company:	Sureflap Ltd		Product:	DualScan	
Date:	25/07/2013		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(RED)	FCC_subpartC	_@3m_40dB/dec	Limit2:		
Limit3:			Limit4:		
133kHz 80V The red limit is	trapolation of clos	209 limit extrapolate		a default 40dB per o spected which would	
Facility:	Anech_2	Height 1	m	Mode:	1
Distance	3m	Polarisation		Modification State:	0
Angle	0-360	File: H	36255FA	Analyser:	R8

7	Report No: Issue No:	R3261 2	FCC ID: XO9-DSCF-1001 IC: 8906A-DSCF1001		
(dB)	Test No:	T5083	Test Report	Page:	24 of 46

*RBW 9 kHz

PLOT 6 Radiated Emissions - HF - 80V - 1.705MHz to 30MHz

Company:	Sureflap Ltd	Product:	DualScan
Date:	25/07/2013	Test Eng:	Dave Smith
Method:	ANSI C63.4	Method:	
Limit1:(RED)	FCC_subpartC_@3m_40dB/dec	Limit2:	
Limit3:		Limit4:	
133kHz 80V The red limit is the	Blue: perpendicular ne FCC part 15.209 limit extrapolate rapolation of closer to 60dB per decargins.		

Sweep 796.3mS (401 pts)

Facility:	Anech_2	Height	1m	Mode:	1
Distance	3m	Polarisation		Modification State:	0
Angle	0-360	File:	H36255F5	Analyser:	R8

1	Report No: Issue No:	R3261 2	FCC ID: XO9-DSCF-1001 IC: 8906A-DSCF1001		
(dB)	Test No:	T5083	Test Report	Page:	25 of 46

Marker 1: 133.8kHz Ref 150 dBuV/m Atten 40 dB 75.73dBuV/m Log 10 dB/ V2 M1 S3assembly and market Start 9kHz Stop 150kHz *RBW 200 Hz VBW 300 Hz Sweep 12.69S (401 pts)

PLOT 7 Radiated Emissions - LF - 120V - 9kHz to 150kHz

Company: Sureflap Itd Product: DualScan Date: 22/07/2013 Test Eng: Dave Smith Method: **ANSI C63.4** Method: Limit1:(RED) FCC_subpartC_@3m_40dB/dec Limit2: Limit3: Limit4:

Black: face onl Blue: perpendicular

126kHz 120V.

The red limit is the FCC part 15.209 limit extrapolated to 3m using a default 40dB per decade. In practice, an extrapolation of closer to 60dB per decade could be expected which would significantly increase the margins.

Facility:	Anech_2	Height	1m	Mode:	1
Distance	3m	Polarisation		Modification State:	0
Angle	0-360	File:	H3622545	Analyser:	R8

1	Report No: Issue No:	R3261 2	FCC ID: XO9-DSCF-1001 IC: 8906A-DSCF1001		
(dB)	Test No:	T5083	Test Report	Page:	26 of 46

Marker 1: 1.526MHz Ref 117 dBuV/m Atten 20 dB 48.07dBuV/m Log 10 dB/ V1V2 S3Start 150kHz Stop 1.705MHz

Radiated Emissions - LF - 120V - 150kHz to 1.705MHz PLOT 8

Company: Sureflap Itd Product: DualScan Date: 22/07/2013 Test Eng: Dave Smith Method: **ANSI C63.4** Method: Limit1:(RED) FCC_subpartC_@3m_40dB/dec Limit2: Limit3: Limit4: Black: face onl Blue: perpendicular

VBW 30 kHz

Sweep 43.76mS (401 pts)

126kHz 120V.

*RBW 9 kHz

The red limit is the FCC part 15.209 limit extrapolated to 3m using a default 40dB per decade. In practice, an extrapolation of closer to 60dB per decade could be expected which would significantly increase the margins.

Facility:	Anech_2	Height	1m	Mode:	1
Distance	3m	Polarisation		Modification State:	0
Angle	0-360	File:	H3622525	Analyser:	R8

/ \	Report No: Issue No:	R3261 2	FCC ID: XO9-DSCF-1001 IC: 8906A-DSCF1001		
(dB)	Test No:	T5083	Test Report	Page:	27 of 46

Marker 1: 26.75MHz Ref 117 dBuV/m Atten 20 dB 46.16 dBuV/mLog 10 dB/ V1V2 S3Start 1.705MHz Stop 30MHz

Radiated Emissions - LF - 120V - 1.705MHz to 30MHz PLOT 9

Company: Sureflap Itd Product: DualScan Date: 22/07/2013 Test Eng: Dave Smith Method: **ANSI C63.4** Method: Limit1:(RED) FCC_subpartC_@3m_40dB/dec Limit2: Limit3: Limit4: Black: face onl Blue: perpendicular

VBW 30 kHz

Sweep 796.3mS (401 pts)

126kHz 120V.

*RBW 9 kHz

The red limit is the FCC part 15.209 limit extrapolated to 3m using a default 40dB per decade. In practice, an extrapolation of closer to 60dB per decade could be expected which would significantly increase the margins.

Facility:	Anech_2	Height	1m	Mode:	1
Distance	3m	Polarisation		Modification State:	0
Angle	0-360	File:	H362252C	Analyser:	R8

PLOT 10 Radiated Emissions - HF - 120V - 9kHz to 150kHz

Company:	Sureflap ltd	Product:	DualScan
Date:	22/07/2013	Test Eng:	Dave Smith
Method:	ANSI C63.4	Method:	
Limit1:(RED)	FCC_subpartC_@3m_40dB/dec	Limit2:	
Limit3:		Limit4:	

VBW 300 Hz

Sweep 12.69S (401 pts)

Black: face onl Blue: perpendicular

133kHz 120V.

*RBW 200 Hz

Measured at 45deg steps

The red limit is the FCC part 15.209 limit extrapolated to 3m using a default 40dB per decade. In practice, an extrapolation of closer to 60dB per decade could be expected which would significantly increase the margins.

ı	Facility:	Anech_2	Height	1m,	Mode:	1
ı	Distance	3m	Polarisation		Modification State:	0
ı	Angle	0-360	File:	H3622505	Analyser:	R8

1	Report No: Issue No:	R3261 2	FCC ID: XO9-DSCF-1001 IC: 8906A-DSCF1001		
(dB)	Test No:	T5083	Test Report	Page:	29 of 46

PLOT 11 Radiated Emissions - HF - 120V - 150kHz to 1.705MHz

Company:	Sureflap Itd		Product:	DualScan				
Date:	22/07/2013		Test Eng:	Dave Smith				
Method:	ANSI C63.4		Method:					
Limit1:(RED)	FCC_subpart	C_@3m_40dB/dec	Limit2:					
Limit3:			Limit4:					
Black: face onl Blue: perpendicular 133kHz 120V. The red limit is the FCC part 15.209 limit extrapolated to 3m using a default 40dB per decade. In practice, an extrapolation of closer to 60dB per decade could be expected which would significantly increase the margins.								
Facility:	Anech_2	Height 1r	n	Mode:	1			
Distance	3m	Polarisation		Modification State:	0			
Angle	0-360	File: H	3622512	Analyser:	R8			

1	Report No: Issue No:	R3261 2	FCC ID: XO9-DSCF-1001 IC: 8906A-DSCF1001		
(dB)	Test No:	T5083	Test Report	Page:	30 of 46

Marker 1: 26.75MHz

Ref 117 dBuV/m Atten 20 dB 45.25dBuV/m

Log
10
dB/

V1 V2
S3

Start 1.705MHz

Stop 30MHz

VBW 30 kHz

Sweep 796.3mS (401 pts)

*RBW 9 kHz

PLOT 12 Radiated Emissions - HF - 120V - 1.705MHz to 30MHz

Company: Sureflap Itd Product: DualScan Date: 22/07/2013 Test Eng: Dave Smith Method: **ANSI C63.4** Method: Limit1:(RED) FCC_subpartC_@3m_40dB/dec Limit2: Limit3: Limit4: Black: face onl Blue: perpendicular Sample A: 133kHz 120V. The red limit is the FCC part 15.209 limit extrapolated to 3m using a default 40dB per decade. In practice, an extrapolation of closer to 60dB per decade could be expected which would significantly increase the margins.

Facility:	Anech_2	Height	1m	Mode:	1
Distance	3m	Polarisation		Modification State:	0
Angle	0-360	File:	H362251B	Analyser:	R8

1	Report No: Issue No:	R3261 2	FCC ID: XO9-DSCF-1001 IC: 8906A-DSCF1001		
(dB)	Test No:	T5083	Test Report	Page:	31 of 46

Marker 1: 133.8kHz
Ref 150 dBuV/m Atten 40 dB 83.05dBuV/m

Log 10 dB/
V1 V2 S3

*RBW 200 Hz VBW 300 Hz Sweep 12.69S (401 pts)

CF1:A9_HI_V_130117 CF2:CBL059_CBL018_CBL065_CBL060_100806

Stop 150kHz

PLOT 13 Radiated Emissions - Cycling all modes - 9kHz to 150kHz

Start 9kHz

Sureflap Ltd Company: Product: DualScan Date: 25/07/2013 Test Eng: Dave Smith Method: **ANSI C63.4** Method: Limit2: Limit1:(RED) FCC_subpartC_@3m_40dB/dec Limit4: Limit3: Black: face on Blue: perpendicular Cycling all modes

The red limit is the FCC part 15.209 limit extrapolated to 3m using a default 40dB per decade. In practice, an extrapolation of closer to 60dB per decade could be expected which would significantly increase the margins.

Facility: Anech_2 Height 1m Mode: 2 Distance Polarisation Modification State: 0 Angle 0-360 File: H36255DC Analyser: R8

7	Report No: Issue No:	R3261 2	FCC ID: XO9-DSCF-1001 IC: 8906A-DSCF1001		
(dB)	Test No:	T5083	Test Report	Page:	32 of 46

#REW 9 kHz

Nef 117 dBuV/m Atten 20 dB 49.68dBuV/m

Atten 20 dB 49.68dB

PLOT 14 Radiated Emissions - Cycling all modes - 150kHz to 1.705MHz

Sureflap Ltd Company: Product: DualScan Date: 25/07/2013 Test Eng: Dave Smith Method: **ANSI C63.4** Method: Limit1:(RED) FCC_subpartC_@3m_40dB/dec Limit2: Limit4: Limit3: Black: face on Blue: perpendicular Cycling all modes The red limit is the FCC part 15.209 limit extrapolated to 3m using a default 40dB per decade. In practice, an extrapolation of closer to 60dB per decade could be expected which would significantly increase the margins. Facility: Anech_2 Height 1m Mode: 2 Distance Polarisation Modification State: 0 Angle 0-360 File: H36255E9 Analyser: R8

1	Report No: Issue No:	R3261 2	FCC ID: XO9-DSCF-1001 IC: 8906A-DSCF1001		
(dB)	Test No:	T5083	Test Report	Page:	33 of 46

PLOT 15 Radiated Emissions - Cycling all modes - 1.705MHz to 30MHz

Company:	Sureflap Ltd		Product:	DualScan	
Date:	25/07/2013		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(RED)	FCC_subpart	C_@3m_40dB/dec	Limit2:		
Limit3:			Limit4:		
	s ne FCC part 15. apolation of clo	.209 limit extrapolate ser to 60dB per dec			
Facility:	Anech_2	Height 1r	n	Mode:	2
Distance	3m	Polarisation		Modification State:	0
Angle	0-360	File: H	36255EF	Analyser:	R8

PLOT 16 Radiated Emissions - LF - 80V - 25MHz to 275MHz

Company:	Sureflap Ltd		Product:	DualScan	
Date:	24/07/2013		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC(B)@3m		Limit2:		
Limit3:			Limit4:		
Black: vertical E 126kHz 80V.	Blue: horizontal				
Facility:	Anech_1	Height	1.5m	Mode:	1
Distance	3m	Polarisation		Modification State:	0
Angle	0-360	File:	H362547F.txt	Analyser:	R8

(dB)	Report No: Issue No:	R3261 2	FCC ID: XO9-DSCF-1001 IC: 8906A-DSCF1001		
(45)	Test No:	T5083	Test Report	Page:	35 of 46

PLOT 17 Radiated Emissions - LF - 80V - 250MHz to 1GHz

Company:	Sureflap Ltd		Product:	DualScan	
Date:	24/07/2013		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC(B)@3m		Limit2:		
Limit3:			Limit4:		
Black: vertical E 126kHz 80V.	Blue: horizontal				
Facility:	Anech_1	Height	1.5m	Mode:	1
Distance	3m	Polarisation		Modification State:	0
Angle	0-360	File:	H3625483.txt	Analyser:	R8

PLOT 18 Radiated Emissions - HF - 80V - 25MHz to 275MHz

Company:	Sureflap Ltd		Product:	DualScan	
Date:	24/07/2013		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC(B)@3m		Limit2:		
Limit3:			Limit4:		
Black: vertical E	Blue: horizontal				
Facility:	Anech_1	Height	1.5m	Mode:	1
Distance	3m	Polarisation		Modification State:	0
Angle	0-360	File:	H362547A.txt	Analyser:	R8

(dB)	Report No: Issue No:	R3261 2	FCC ID: XO9-DSCF-1001 IC: 8906A-DSCF1001		
(28)	Test No:	T5083	Test Report	Page:	37 of 46

PLOT 19 Radiated Emissions - HF - 80V - 250MHz to 1GHz

Company:	Sureflap Ltd		Product:	DualScan	
Date:	24/07/2013		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC(B)@3m		Limit2:		
Limit3:			Limit4:		
Black: vertical II 133kHz 80V.	Blue: horizontal				
Facility:	Anech_1	Height	1.5m	Mode:	1
Distance	3m	Polarisation		Modification State:	0
Angle	0-360	File:	H362547E.txt	Analyser:	R8

PLOT 20 Radiated Emissions - LF - 120V - 25MHz to 275MHz

Company:	Sureflap Ltd		Product:	DualScan	
Date:	24/07/2013		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC(B)@3m		Limit2:		
Limit3:			Limit4:		
Black: vertical E	Blue: horizontal				
Facility:	Anech_1	Height	1.5m	Mode:	1
Distance	3m	Polarisation		Modification State:	0
Angle	0-360	File:	H3625478.txt	Analyser:	R8

PLOT 21 Radiated Emissions - LF - 120V - 250MHz to 1GHz

Company:	Sureflap Ltd		Product:	DualScan	
Date:	24/07/2013		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC(B)@3m		Limit2:		
Limit3:			Limit4:		
Black: vertical I 126kHz 120V.	Blue: horizontal				
Facility:	Anech_1	Height	1.5m	Mode:	1
Distance	3m	Polarisation		Modification State:	0
Angle	0-360	File:	H3625479.txt	Analyser:	R8

PLOT 22 Radiated Emissions - HF - 120V - 25MHz to 275MHz

Company:	Sureflap Ltd		Product:	DualScan	
Date:	22/07/2013		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC(B)@3m		Limit2:		
Limit3:			Limit4:		
Black: vertical E 133kHz 120V.	Blue: horizontal				
Facility:	Anech_2	Height	1m,1.5m,2m	Mode:	1
Distance	3m	Polarisation		Modification State:	0
Angle	0-360	File:	H36224CC	Analyser:	R8

PLOT 23 Radiated Emissions - HF - 120V - 250MHz to 1GHz

Company:	Sureflap Ltd		Product:	DualScan	
Date:	22/07/2013		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC(B)@3m		Limit2:		
Limit3:			Limit4:		
Black: vertical I 133kHz 120V.	Blue: horizontal				
Facility:	Anech_2	Height	1m,1.5m,2m	Mode:	1
Distance	3m	Polarisation		Modification State:	0
Angle	0-360	File:	H36224CA	Analyser:	R8

PLOT 24 Radiated Emissions - Cycling all Tx Modes - 25MHz to 275MHz

Company:	Sureflap Ltd		Product:	DualScan	
Date:	24/07/2013		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC(B)@3m		Limit2:		
Limit3:			Limit4:		
Black: vertical E Cycling all mode					
Facility:	Anech_1	Height	1.5m	Mode:	2
Distance	3m	Polarisation		Modification State:	0
Angle	0-360	File:	H3625485.txt		

(dB)	Report No: Issue No:	R3261 2	FCC ID: XO9-DSCF-1001 IC: 8906A-DSCF1001		
(ab)	Test No:	T5083	Test Report	Page:	43 of 46

PLOT 25 Radiated Emissions - Cycling all Tx Modes - 250MHz to 1GHz

Company:	Sureflap Ltd		Product:	DualScan	
Date:	24/07/2013		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:(VIO)	FCC(B)@3m		Limit2:		
Limit3:			Limit4:		
Black: vertical E Cycling all mode					
Facility:	Anech_1	Height	1.5m	Mode:	2
Distance	3m	Polarisation		Modification State:	0
Angle	0-360	File:	H362548A.txt		

PLOT 26 Radiated Emissions - Bandwidth at 126kHz

Company:	Sureflap Ltd		Product:	DualScan	
Date:	22/07/2013		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:			Limit2:		
Limit3:			Limit4:		
	0dBc points = 29 bandwidth = 25H				
Facility:	Anech_2	Height	1m	Mode:	1
Distance	3m	Polarisation		Modification State:	0
Angle	1 face	File:	H36257A2	Analyser:	R8

PLOT 27 Radiated Emissions - Bandwidth at 133kHz

Company:	Sureflap Ltd		Product:	DualScan	
Date:	22/07/2013		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:			Limit2:		
Limit3:			Limit4:		
	0dBc points = 2 bandwidth = 26				
Facility:	Anech_2	Height	1m	Mode:	1
Distance	3m	Polarisation		Modification State:	0
Angle	1 face	File:	H3625796	Analyser:	R8

PLOT 28 Radiated Emissions - Timing

Company:	Sureflap Ltd		Product:	DualScan	
Date:	22/07/2013		Test Eng:	Dave Smith	
Method:	ANSI C63.4		Method:		
Limit1:			Limit2:		
Limit3:			Limit4:		
Timing					
Facility:	Anech_2	Height	1m	Mode:	2
Distance	3m	Polarisation		Modification State:	0
Angle	1 face	File:	H36257ED	Analyser:	R8