Permutation groups and security of block ciphers

Marco Calderini

June 7, 2021

Block ciphers

Let $V = (\mathbb{F}_2)^n$ be the set of messages.

Block cipher

A block cipher $\mathcal C$ is a set of (bijective) encryption functions.

$$\{\varphi_k\}_{k\in\mathcal{K}}\subseteq \mathrm{Sym}(V),$$

each of which is individuated by a key k in the space $\mathcal{K} = (\mathbb{F}_2)^{\kappa}$.

Most block ciphers are iterated block ciphers, where φ_k is the composition of many key-dependent permutations, known as round functions

A Block Cipher is considered secure if an attacker cannot understand φ_k (or k) from

$$\{(P,\varphi_k(P))\}_{P\in X}$$

with X small subset of V, even if X is chosen by the attacker.

We would like that the most efficient attack is equivalent to trying all the possible keys (**brute force attack**).

Marco Calderini June 7, 2021

Iterated Block Cipher

Round of Feistel Network

$$\left(\begin{array}{cc}0&1\\1&S\end{array}\right)\sigma_{(0,k_i)}$$

Round of Translation Based (TB) Cipher (more commonly called SPN)

$$\gamma \lambda \sigma_{k_i}$$

Translation Based Cipher

Let $\mathcal{C}=\{\varphi_k\mid k\in\mathcal{K}\}$ be a block cipher acting on $V=V_1\oplus\cdots\oplus V_s$, with $V_i=\mathbb{F}_2^m$ for $i=1,\ldots,s$.

Definition

An element $\gamma \in \operatorname{Sym}(V)$ is called a **parallel S-box** of V if there exist some γ_i 's in $\operatorname{Sym}(V_i)$ (called S-boxes) s.t. for all $v = (v_1 \oplus \cdots \oplus v_s) \in V$

$$v\gamma=v_1\gamma_1\oplus\cdots\oplus v_s\gamma_s,$$

Definition

A block cipher $\mathcal{C} = \{\varphi_k \mid k \in \mathcal{K}\}$ is called **translation based (TB)** if each φ_k is the composition of r round functions $\varphi_{k,h}$, for $k \in \mathcal{K}$, and $h = 1, \ldots, r$, where in turn each round function can be written as a composition $\gamma_h \lambda_h \sigma_{k_h}$ of three permutations of V, with

- $\triangleright \gamma_h$ is a parallel S-box depending on the round
- \triangleright λ_h is a linear permutation depending on the round
- \triangleright σ_{k_h} is the translation by k_h depending on the key k and the round

Marco Calderini June 7, 2021

5 / 34

Weaknesses based on properties of permutation groups

Let $\mathcal C$ be an r-round iterated block cipher acting on V. The group generated by the encryption functions

$$\Gamma(\mathcal{C}) \stackrel{\text{def}}{=} \langle \varphi_k \in \operatorname{Sym}(V) \mid k \in \mathcal{K} \rangle$$

can reveal dangerous weaknesses of the cipher:

- ▶ the group is too small (Kaliski, Rivest and Sherman, 1998)
- the group acts imprimitively on the message space (Paterson, 1999)
- the group is of affine type (Calderini and Sala, 2015)

Marco Calderini June 7, 2021 6 / 3⁴

Weaknesses based on properties of permutation groups

Let C be an r-round iterated block cipher acting on V. The group generated by the encryption functions

$$\Gamma(\mathcal{C}) \stackrel{\text{def}}{=} \langle \varphi_k \in \operatorname{Sym}(V) \mid k \in \mathcal{K} \rangle$$

can reveal dangerous weaknesses of the cipher:

- ▶ the group is too small (Kaliski, Rivest and Sherman, 1998)
- ▶ the group acts imprimitively on the message space (Paterson, 1999)
- ▶ the group is of affine type (Calderini and Sala, 2015)

Since $\Gamma(\mathcal{C})$ depends on the key-schedule algorithm it is hard to study this, in general. So, usually, we study the group generated by the round functions

$$\Gamma_{\infty}(\mathcal{C}) \stackrel{\scriptscriptstyle\mathsf{def}}{=} \langle arphi_{k,h} \in \operatorname{Sym}(V) \mid k \in \mathcal{K}, h = 1, \dots, r \rangle$$

A finite group G is called *imprimitive* in its action on V if there exists a non-trivial partition of V, \mathcal{B} , such that $Bg \in \mathcal{B}$, for every $B \in \mathcal{B}$ and $g \in G$.

If $\Gamma_{\infty}(\mathcal{C})$ acts imprimitively on V then it is possible to introduce a trapdoor on \mathcal{C} . There exists a (non-trivial) partition \mathcal{B} of V such that for any encryption function $\varphi_k \in \Gamma_{\infty}$ $B\varphi_k \in \mathcal{B}$ for all $B \in \mathcal{B}$.

A finite group G is called *imprimitive* in its action on V if there exists a non-trivial partition of V, \mathcal{B} , such that $Bg \in \mathcal{B}$, for every $B \in \mathcal{B}$ and $g \in G$.

If $\Gamma_{\infty}(\mathcal{C})$ acts imprimitively on V then it is possible to introduce a trapdoor on \mathcal{C} . There exists a (non-trivial) partition \mathcal{B} of V such that for any encryption function $\varphi_k \in \Gamma_{\infty}$ $B\varphi_k \in \mathcal{B}$ for all $B \in \mathcal{B}$.

A finite group G is called *imprimitive* in its action on V if there exists a non-trivial partition of V, \mathcal{B} , such that $Bg \in \mathcal{B}$, for every $B \in \mathcal{B}$ and $g \in G$.

If $\Gamma_{\infty}(\mathcal{C})$ acts imprimitively on V then it is possible to introduce a trapdoor on \mathcal{C} . There exists a (non-trivial) partition \mathcal{B} of V such that for any encryption function $\varphi_k \in \Gamma_{\infty}$ $B\varphi_k \in \mathcal{B}$ for all $B \in \mathcal{B}$.

A finite group G is called *imprimitive* in its action on V if there exists a non-trivial partition of V, \mathcal{B} , such that $Bg \in \mathcal{B}$, for every $B \in \mathcal{B}$ and $g \in G$.

If $\Gamma_{\infty}(\mathcal{C})$ acts imprimitively on V then it is possible to introduce a trapdoor on \mathcal{C} . There exists a (non-trivial) partition \mathcal{B} of V such that for any encryption function $\varphi_k \in \Gamma_{\infty}$ $B\varphi_k \in \mathcal{B}$ for all $B \in \mathcal{B}$.

Attack cost

The preprocessing costs ℓ encryptions. For any intercepted ciphertext, the search for the corresponding plaintext is limited to a block, whose size is $\frac{|V|}{\ell}$, requiring at most $\frac{|V|}{\ell}$ encryptions.

Affine type

Cryptographers easily construct a cipher C s.t. $\varphi_k \notin \mathrm{AGL}(V,+)$ for any key k, but there could be a hidden sum \circ s.t.:

 (V,\circ) is a vector space and $arphi_k\in \mathrm{AGL}(V,\circ)$

Affine type

Cryptographers easily construct a cipher C s.t. $\varphi_k \notin AGL(V, +)$ for any key k, but there could be a hidden sum \circ s.t.:

$$(V,\circ)$$
 is a vector space and $arphi_k\in \mathrm{AGL}(V,\circ)$

Let us focus on round functions. Then the question is:

Is there any operation \circ s.t. (V, \circ) is a vector space and

$$\Gamma(\mathcal{C}) \subseteq \Gamma_{\infty}(\mathcal{C}) \subseteq \mathrm{AGL}(V, \circ)$$
?

Let $T_+ \subset \mathrm{Sym}(V)$ be the usual translation group. Let T be an elementary abelian regular group, then T is a translation group with respect to some operation \circ . Indeed,

- ▶ $T = \{\tau_a \mid a \in V\}$ where τ_a is the unique map in T such that $0 \mapsto a$.
- ightharpoonup define $x \circ a := x\tau_a$,

so (V, \circ) is an additive group and it is an \mathbb{F}_2 -vector space.

 $T_{\circ} = T_{+}^{g}$ for some $g \in \text{Sym}(V)$, and $\text{AGL}(V, \circ) = \text{AGL}(V, +)^{g}$.

Properties that o should satisfy

We would like to understand which types of sums \circ could produce an efficient attack.

Remark

$$T_+ < \Gamma_\infty(\mathcal{C})$$
.

- $ightharpoonup T_+ < \mathrm{AGL}(V, \circ)$
- \blacktriangleright we want to compute $x \circ y$ in an efficient way

We focused on $T_{\circ} < AGL(V, +)$.

Let $T_{\circ} < \mathrm{AGL}(V, +)$, then $T_{\circ} \cap T_{+} \neq \{1_{V}\}$. We can define the (non trivial) vector space

$$U(T_{\circ}) = \{ v \mid \sigma_{v} \in T_{\circ} \cap T_{+} \}$$

where $\sigma_{v}: x \mapsto x + v$.

Not all the dimensions are possible for the space U:

Proposition

Let $T_{\circ} \subseteq \mathrm{AGL}(V,+)$. If $T_{\circ} \neq T_{+}$, then $1 \leq \dim(U(T_{\circ})) \leq n-2$.

Wlog, $U(T_{\circ})$ is spanned by the last elements of the canonical basis. In that case we obtain:

Theorem

Let
$$V = \mathbb{F}_2^{n+k}$$
, with $n \ge 2$, $k \ge 1$, and $T_\circ \subseteq \mathrm{AGL}(V,+)$ be such that $U(T_\circ) = \mathrm{Span}\{e_{n+1},\ldots,e_{n+k}\}$. Then,

for all $\tau_v = \kappa_v \cdot \sigma_v \in T_o$ there exists an $n \times k$ matrix B_v s.t.

$$T_+ \subseteq \mathrm{AGL}(V, \circ)$$

$$\kappa_{\mathbf{v}} = \left[\begin{array}{cc} I_{n \times n} & B_{\mathbf{v}} \\ 0 & I_{k \times k} \end{array} \right].$$

Attack with hidden sum

Theorem

If $T_{\circ} \subseteq AGL(V,+)$ and $T_{+} \subseteq \mathrm{AGL}(V,\circ)$, then there exists a procedure of polynomial time complexity that for all $v \in V$ returns

$$[\alpha_1,\ldots,\alpha_n],$$

where $\alpha_i \in \mathbb{F}_2$ s.t. $v = \alpha_1 v_1 \circ \cdots \circ \alpha_n v_n$ for a fixed basis of (V, \circ) .

Remark

We are able to compute efficiently $\phi: (V, \circ) \to (V, +)$ isomorphism of vector spaces.

Suppose $\Gamma_{\infty} \subseteq AGL(V, \circ)$, then for all $k \in \mathcal{K} \varphi_k \in AGL(V, \circ)$.

- \triangleright choose the vector v_1, \ldots, v_n of the basis as in the previous Theorem,
- ightharpoonup compute $[0\varphi_k], [v_1\varphi_k], \ldots, [v_n\varphi_k],$
- lacktriangle consider the affinity $M \cdot \sigma_t$ s.t. $M_i = [v_i \varphi_k]$ and $t = [0 \varphi_k]$
- ▶ for all $v \in V$ we have $[v\varphi_k] = [v]M + t$ and $[v\varphi_k^{-1}] = ([v] + t)M^{-1}$.

We can reconstruct the encryption/decryption function using only n+1 ciphertexts

Suppose $\Gamma_{\infty} \subseteq AGL(V, \circ)$, then for all $k \in \mathcal{K}$ $\varphi_k \in AGL(V, \circ)$.

- ightharpoonup choose the vector v_1, \ldots, v_n of the basis as in the previous Theorem,
- ightharpoonup compute $[0\varphi_k], [v_1\varphi_k], \ldots, [v_n\varphi_k],$
- ▶ consider the affinity $M \cdot \sigma_t$ s.t. $M_i = [v_i \varphi_k]$ and $t = [0 \varphi_k]$
- ▶ for all $v \in V$ we have $[v\varphi_k] = [v]M + t$ and $[v\varphi_k^{-1}] = ([v] + t)M^{-1}$.

We can reconstruct the encryption/decryption function using only n+1 ciphertexts

$$(V, \circ) \xrightarrow{\varphi_k} (V, \circ)$$

$$\phi \downarrow \qquad \qquad \uparrow \phi^{-1}$$

$$(V, +) \xrightarrow{M \cdot \sigma_t} (V, +)$$

Question: Can we identify properties on the components of a cipher so that the groups associated to them is secure with respect to these attacks?

Let $f: (\mathbb{F}_2)^s \to (\mathbb{F}_2)^s$. Given $u, v \in (\mathbb{F}_2)^s$ we define

$$\delta(f)_{u,v} \stackrel{\text{def}}{=} |\{x \in (\mathbb{F}_2)^s \mid x\hat{f}_u = xf + (x+u)f = v\}|$$

Let $f: (\mathbb{F}_2)^s \to (\mathbb{F}_2)^s$. Given $u, v \in (\mathbb{F}_2)^s$ we define

$$\delta(f)_{u,v} \stackrel{\text{def}}{=} |\{x \in (\mathbb{F}_2)^s \mid x\hat{f}_u = xf + (x+u)f = v\}|$$

► The differential uniformity of *f* is

$$\delta(f) \stackrel{\text{def}}{=} \max_{u,v \in (\mathbb{F}_2)^s, u \neq 0} \delta(f)_{u,v},$$

and f is said differentially δ -uniform if $\delta(f) = \delta$ ($\delta = 1$: PN; $\delta = 2$: APN).

Let $f: (\mathbb{F}_2)^s \to (\mathbb{F}_2)^s$. Given $u, v \in (\mathbb{F}_2)^s$ we define

$$\delta(f)_{u,v} \stackrel{\text{def}}{=} |\{x \in (\mathbb{F}_2)^s \mid x \hat{f}_u = xf + (x+u)f = v\}|$$

ightharpoonup The differential uniformity of f is

$$\delta(f) \stackrel{\text{def}}{=} \max_{u,v \in (\mathbb{F}_2)^s, u \neq 0} \delta(f)_{u,v},$$

and f is said differentially δ -uniform if $\delta(f) = \delta$ ($\delta = 1$: PN; $\delta = 2$: APN).

► A function *f* satisfying

$$|\operatorname{Im}(\hat{f}_u)| > \frac{2^{s-1}}{\delta}$$

for each $u \in (\mathbb{F}_2)^s \setminus \{0\}$ is called weakly differentially δ -uniform ($\delta = 2$: weakly-APN).

▶ $f: (\mathbb{F}_2)^s \to (\mathbb{F}_2)^s$ is strongly I-anti-invariant, with $0 \le I \le s-1$, if, for any two subspaces U and W of $(\mathbb{F}_2)^s$ such that Uf = W, then either $\dim(U) = \dim(W) < s-I$ or $U = W = (\mathbb{F}_2)^s$.

Proposition

Let $f: (\mathbb{F}_2)^s \to (\mathbb{F}_2)^s$ be a permutation. f is strongly 1-anti-invariant iff is the nonlinearity of f is not zero.

Properties of the mixing layer

Let $V = V_1 \oplus \cdots \oplus V_b$, $V_i \simeq (\mathbb{F}_2)^s$ called *bricks*.

- ▶ $\lambda \in \operatorname{GL}(V)$ is a proper mixing layer if no direct sum of bricks properly contained in V (called wall) is λ -invariant.
- lacktriangledown λ is a strongly proper mixing layer if there are no walls W and W' such that $W\lambda = W'$.

Avoiding the imprimitive attack

Theorem (Caranti, Dalla Volta, Sala)

Let $\mathcal C$ be a TB cipher over $V=(\mathbb F_2)^n$ such that λ is proper and, for some $1\leq l < s$, each S-Box is

- (i) weakly differentially 2^l-uniform, and
- (ii) strongly I-anti-invariant.

Then $\Gamma_{\infty}(\mathcal{C})$ is primitive.

From the O'Nan-Scott classification of finite primitive groups we have:

If G is a primitive permutation group of degree 2^d , with $d \ge 1$, containing an abelian regular subgroup T, then:

- 1. *G* is of affine type, that is, $G \leq AGL(d, 2)$;
- 2. *G* is a wreath product;
- 3. $G \simeq \text{Alt}(2^d)$ or $\text{Sym}(2^d)$.

Note that $T_+ < \Gamma_{\infty}(\mathcal{C})$.

Avoiding the affine type

 $f: (\mathbb{F}_2)^s \to (\mathbb{F}_2)^s$ is anti-crooked (AC, for short) if, for any $u \in (\mathbb{F}_2)^s \setminus \{0\}$, $\operatorname{Im}(\hat{f}_u)$ is not an affine subspace of $(\mathbb{F}_2)^s$.

Theorem (Caranti, Dalla Volta, Sala)

Let $\mathcal C$ be a TB cipher over $V=(\mathbb F_2)^n$ such that λ is strongly proper and, for some $1\leq l < s$, each S-Box is AC and satisfies (i) and (ii). Then $\Gamma_\infty(\mathcal C)$ is $\mathrm{Alt}(V)$ or $\mathrm{Sym}(V)$.

The S-Boxes of AES and SERPENT satisfy the hypotheses of previous theorems. Hence, $\Gamma_{\infty}({\rm AES})$ and $\Gamma_{\infty}({\rm SERPENT})$ are ${\rm Alt}((\mathbb{F}_2)^{128})$.

Some lightweight ciphers (i.e., ciphers designed to run on devices with very low computing power), such as PRESENT, do not satisfy the hypotheses of previous theorems.

The S-Boxes of AES and SERPENT satisfy the hypotheses of previous theorems. Hence, $\Gamma_{\infty}({\rm AES})$ and $\Gamma_{\infty}({\rm SERPENT})$ are ${\rm Alt}((\mathbb{F}_2)^{128})$.

Some lightweight ciphers (i.e., ciphers designed to run on devices with very low computing power), such as PRESENT, do not satisfy the hypotheses of previous theorems.

Is $\Gamma_{\infty}(PRESENT)$ primitive?

Is $\Gamma_{\infty}(PRESENT)$ the alternating group?

Avoinding the imprimitive attack PRESENT and Lightweight TB Ciphers

Theorem

Let $\mathcal C$ be a TB cipher over $(\mathbb F_2)^{bs}$ with a proper mixing layer. Suppose that, for some 1 < l < s, each S-Box is

- (i) differentially 2^l-uniform, and
- (ii) strongly (I-1)-anti-invariant.

Then $\Gamma_{\infty}(\mathcal{C})$ is primitive.

Corollary

The group generated by the round functions of the lightweight ciphers PRESENT, RECTANGLE and PRINTcipher are primitive.

Theorem

Let $\mathcal C$ be a TB cipher over $V=(\mathbb F_2)^{bs}$, with a strongly proper mixing layer such that the corresponding S-Boxes are AC and satisfy the hypotheses of the previous theorem. Then $\Gamma_\infty(\mathcal C)=\operatorname{Alt}(V)$.

Theorem

Let $\mathcal C$ be a TB cipher over $V=(\mathbb F_2)^{bs}$, with a strongly proper mixing layer such that the corresponding S-Boxes are AC and satisfy the hypotheses of the previous theorem. Then $\Gamma_\infty(\mathcal C)=\operatorname{Alt}(V)$.

The AC condition has been introduced to avoid that $\Gamma_{\infty}(\mathcal{C})$ is affine.

Theorem

Let $\mathcal C$ be a TB cipher over $V=(\mathbb F_2)^{bs}$, with a strongly proper mixing layer such that the corresponding S-Boxes are AC and satisfy the hypotheses of the previous theorem. Then $\Gamma_\infty(\mathcal C)=\operatorname{Alt}(V)$.

The AC condition has been introduced to avoid that $\Gamma_{\infty}(\mathcal{C})$ is affine.

PRESENT S-Box does not satisfy AC condition

Proposition

Let C be a TB cipher over $V=(\mathbb{F}_2)^{bs}$, with $s\geq 3$ and $b\geq 2$. Suppose that there exists an S-Box γ_i such that

$$Alt(V_i) \subseteq \langle T(V_i), \gamma_i T(V_i) \gamma_i^{-1} \rangle.$$

If $\Gamma_{\infty}(\mathcal{C})$ is primitive, then it is not of affine type.

Theorem

Let C be a TB cipher over $V=(\mathbb{F}_2)^{bs}$, with a strongly proper mixing layer such that the corresponding S-Boxes are

- (i) differentially 2^l-uniform, and
- (ii) strongly (I-1)-anti-invariant.

Suppose that there exists an S-Box γ_i such that

$$Alt(V_i) \subseteq \langle T(V_i), \gamma_i T(V_i) \gamma_i^{-1} \rangle.$$

Then
$$\Gamma_{\infty}(\mathcal{C}) = \text{Alt}(V)$$
.

Theorem

Let C be a TB cipher over $V=(\mathbb{F}_2)^{bs}$, with a strongly proper mixing layer such that the corresponding S-Boxes are

- (i) differentially 2^l-uniform, and
- (ii) strongly (I-1)-anti-invariant.

Suppose s = 3, 4 or 5, and $b \ge 2$. Then $\Gamma_{\infty}(\mathcal{C}) = \mathrm{Alt}(V)$.

Corollary

The round functions of PRESENT, RECTANGLE and PRINTcipher generate the alternating group (l = 2).

Starting to consider the key-schedule

We can consider another group associate to a cipher \mathcal{C} , the group of encryption functions with independent round keys (long-key scenario):

$$\Gamma_{ind} = \langle \gamma_1 \lambda_1 \sigma_{k_1} \cdot ... \cdot \gamma_r \lambda_r \sigma_{k_r} \mid k_i \in V \rangle.$$

Note that $\Gamma \subset \Gamma_{ind} \subset \Gamma_{\infty}$.

Why study Γ_{ind} ?

It could happen that Γ_{∞} seems secure but Γ_{ind} is not.

Remark

If $\gamma_i \lambda_i$ are the same for all rounds then $\Gamma_{ind} \lhd \Gamma_{\infty}$. So if $\Gamma_{\infty} \simeq \mathrm{Alt}(V)$ then $\Gamma_{ind} = \Gamma_{\infty}$.

Group generated by encryptions with independent round keys

A partition $\mathcal{L}(U) = \{U + v : v \in V\}$ with U subspace of V is called *linear*

Theorem

If all encryption functions $\gamma_1\lambda_1\sigma_{k_1}\cdot\ldots\cdot\gamma_r\lambda_r\sigma_{k_r}$ map a partition $\mathcal P$ into $\mathcal P'$ (for all round-keys k_i 's), then $\mathcal P$ and $\mathcal P'$ are linear. Moreover $\mathcal A_i=(\mathcal A_{i-1})\gamma_i\lambda_i$ is linear for all i $(\mathcal A_0=\mathcal P)$.

Theorem

Let $\mathcal C$ be a TB and there exists at least two consecutive round h and h+1 with λ_h strongly proper and the parallel S-boxes γ_h and γ_{h+1} are s.t.:

- $ightharpoonup \gamma_i 2^l$ -uniform,
- strongly (I-1)-anti-invariant Where 1 < t < m-1.

There do not exist \mathcal{P} and \mathcal{P}' (non-trivial) partitions such that $\mathcal{P}\varphi_k = \mathcal{P}'$ for all k. In particular, $\Gamma_{ind}(\mathcal{C})$ is primitive.

Group generated by encryptions with independent round keys

Theorem

Let $\mathcal C$ be a TB cipher over V. Suppose that there exists a brick γ_i (S-box) corresponding to the first round (h=1) such that

$$Alt(V_i) = \langle T_+(V_i), \gamma_i (T_+(V_i)) \gamma_i^{-1} \rangle$$

If $\Gamma_{ind}(C)$ is primitive, then it is not of affine type.

Group generated by encryptions with independent round keys

Theorem

Let $\mathcal C$ be a TB cipher over V. Suppose that there exists a brick γ_i (S-box) corresponding to the first round (h=1) such that

$$Alt(V_i) = \langle T_+(V_i), \gamma_i (T_+(V_i)) \gamma_i^{-1} \rangle$$

If $\Gamma_{ind}(C)$ is primitive, then it is not of affine type.

Open question: Is $\Gamma_{ind} \simeq \text{Alt}(V)$?

The Feistel case

Group generated by encryptions with independent round keys

Let
$$\bar{\rho}_i = \begin{pmatrix} 0 & 1 \\ 1 & \rho_i \end{pmatrix}$$
.
$$\Gamma_{ind}(\mathcal{F}) = \langle \bar{\rho}_1 \sigma_{(0,k_1)} \cdot ... \cdot \bar{\rho}_r \sigma_{(0,k_r)} \mid k_i \in V \rangle.$$

Theorem

$$T_+(V \times V) < \Gamma_{ind}(\mathcal{F})$$
. Moreover,
 $\langle \bar{\rho}_1 \sigma_{(k_{1,1},k_{1,2})} \cdot \dots \cdot \bar{\rho}_r \sigma_{(k_{r,1},k_{r,2})} \mid (k_{i,1},k_{i,2}) \in V^2 \rangle < \Gamma_{ind}(\mathcal{F})$.

Corollary

Let $\mathcal F$ be a Feistel network on $V \times V$. If all encryption functions $\bar
ho_1\sigma_{(0,k_1)} \cdot \ldots \cdot \bar
ho_r\sigma_{(0,k_r)}$ map a partition $\mathcal P$ into $\mathcal P'$, then $\mathcal P$ and $\mathcal P'$ are linear. Moreover $\mathcal A_i = (\mathcal A_{i-1})\bar
ho_i$ is linear for all i $(\mathcal A_0 = \mathcal P)$.

Remark (Goursat's Lemma)

Let U be a subspace of $V \times V$. Then, there exist A, D < V and ϕ morphism such that $U = \{(a, a\phi + d) \mid a \in A, d \in D\}$.

Theorem

Let $\rho_1, \rho_2 \in \operatorname{Sym}(V) \setminus \operatorname{AGL}(V)$. If $\langle \bar{\rho}_1 \sigma_{(0,k_1)} \bar{\rho}_2 \sigma_{(0,k_2)} \mid k_1, k_2 \in V \rangle$ is imprimitive, then there exist $U_1, W_1, U_2, W_2 < V$ such that $\mathcal{L}(U_1)\rho_1 = \mathcal{L}(W_1)$ and $\mathcal{L}(U_2)\rho_2 = \mathcal{L}(W_2)$.

Corollary

 $\Gamma_{\infty}(\mathcal{F})$ is primitive iff for some round i, $\langle \rho_i, T_+(V) \rangle$ is primitive.

Excluding some partitions

Theorem

Let \mathcal{F} be a Feistel network, with $\rho_1, \ldots, \rho_r \in \operatorname{Sym}(V)$. Let us assume that $0\rho_i = 0$ and $\rho_i = \gamma_i \lambda_i$, where

- a) γ_i is a parallel map which applies 2^{δ} -differentially uniform and $(\delta-1)$ -strongly anti-invariant S-boxes, for some $\delta < s$, where s denotes the dimension of each brick,
- b) λ_i a linear strongly-proper mixing layer.

Suppose that there exists a sequence of r+1 non-trivial linear partitions $\mathcal{L}(\mathcal{U}_1),\ldots,\mathcal{L}(\mathcal{U}_{r+1})$, where \mathcal{U}_i is a proper and non-trivial subgroup of $V\times V$ and $\mathcal{L}(\mathcal{U}_i)\bar{\rho}_i=\mathcal{L}(\mathcal{U}_{i+1})$ for all $1\leq i\leq r$. Then, none of the following condition is satisfied:

- 1. there exists $1 \leq i \leq r-1$ such that $\mathcal{L}(\mathcal{U}_{i+1})\bar{\rho}_{i+1} = \mathcal{L}(\mathcal{U}_i)$,
- 2. there exists $1 \le i \le r-1$ such that $\mathcal{U}_i = A_i \times D_i$, $\mathcal{U}_{i+1} = A_{i+1} \times D_{i+1}$ and $\mathcal{U}_{i+2} = A_{i+2} \times D_{i+2}$,

32 / 34

- 3. there exists $1 \le i \le r$ such that $D_i = \{0\}$ and $D_{i+1} = \{0\}$,
- 4. there exists $1 \le i \le r$ such that $A_i = \{0\}$ and $A_{i+1} = \{0\}$.

Marco Calderini June 7, 2021

Open questions:

- ▶ Prove that $\Gamma_{ind}(\mathcal{F})$ is primitive.
- ▶ Prove that we can avoid affine type for $\Gamma_{ind}(\mathcal{F})$ or $\Gamma_{\infty}(\mathcal{F})$
- ▶ Prove that $\Gamma_{ind}(\mathcal{F})$ or $\Gamma_{\infty}(\mathcal{F})$ are $\mathrm{Alt}(V \times V)$.

Thanks for your attention!