Harjoitus 9

1. Määritellään funktiot $f \colon \mathbb{R} \to \mathbb{R}, f(x) = 5 - (x-3)^2$ ja $h \colon \mathbb{R} \to \mathbb{R},$

$$h(x) = \begin{cases} 2 - x, & \text{kun } x < 2\\ \frac{1}{2}x, & \text{kun } x \ge 2. \end{cases}$$

a)
$$U = [1, 4], f^{\leftarrow}U = [1, 5].$$

b)
$$V = [1, 3], h \leftarrow V = [-1, 1] \cup [2, 6].$$

2. Oletetaan, että $f: X \to Y$ on kuvaus.

- a) Osoitetaan, että $f[A \cap B] \subset fA \cap fB$ kaikilla joukoilla $A, B \subset X$. Oletetaan siis, että $A, B \subset X$. Oletetaan lisäksi, että $y \in f[A \cap B]$. Kuvan määritelmän mukaan tällöin $y \in Y$ ja y = f(x) jollakin $x \in A \cap B$. Koska $x \in A \cap B$, niin leikkauksen määritelmän mukaan $x \in A$ ja $x \in B$. Siten myös kuvan määritelmän mukaan $f(x) \in fA$ ja $f(x) \in fB$. Ja koska y = f(x), niin $y \in fA \cap fB$. Siis $f[A \cap B] \subset fA \cap fB$.
- b) Osoitetaan vastaesimerkillä, että edellisen väitteen toinen suunta ei päde yleisesti. Oletetaan ensin, että $y \in fA \cap fB$. Leikkauksen määritelmän nojalla siis $y \in fA$ ja $y \in fB$. Kuvan määritelmän mukaan tällöin $y \in Y$ ja y = f(a) jollakin $a \in A$. Oletetaan nyt, että $a \in A$ mutta $a \notin B$. Tällöin $a \notin A \cap B$. Jos $a \notin A \cap B$, niin $f(a) \notin f[A \cap B]$. Siten $fA \cap fB \not\subset f[A \cap B]$ kaikilla joukoilla $A, B \subset X$.
- 3. Kontrapositiotodistus. Osoitetaan kontrapositiolla seuraava väite joukoille A ja B: jos $(A \cup B) \setminus B = A$, niin $A \cap B = \emptyset$.

Muodostetaan kontrapositio: jos $A \cap B \neq \emptyset$, niin $(A \cup B) \setminus B \neq A$. Oletetaan, että $A \cap B \neq \emptyset$. Tällöin on olemassa $x \in A \cap B$, ja leikkauksen määritelmän nojalla siis $x \in A$ ja $x \in B$. Tällöin myös $x \in A \cup B$. Toisaalta koska $x \in B$, niin erotuksen määritelmän nojalla $x \notin (A \cup B) \setminus B$. Koska $x \in A$ ja $x \notin (A \cup B) \setminus B$, niin $(A \cup B) \setminus B \neq A$. Tämä on alkuperäisen väitteen kontrapositio, joten myös alkuperäinen väite on todistettu.