Периметр гиперэллипса и гиперэллипса, покрытого слоем

В связи с симметрией, рассматривается ¼ периметра, $t \in [0, \pi/2]$.

Параметрическое уравнение гиперэллипса:

$$x = \cos(t) \left(\frac{\cos^n t}{a^n} + \frac{\sin^n t}{b^n} \right)^{-1/n}, \quad y = \sin(t) \left(\frac{\cos^n t}{a^n} + \frac{\sin^n t}{b^n} \right)^{-1/n}, \quad n \ge 2.$$
 (1)

Параметрическое уравнение гиперэллипса, покрытого слоем толщиной r₁:

$$x = \cos(t) \left(\frac{\cos^n t}{a^n} + \frac{\sin^n t}{b^n} \right)^{-1/n} + r_1 \frac{\cos^{n-1} t}{a^n} \left(\frac{\cos^{2n-2} t}{a^{2n}} + \frac{\sin^{2n-2} t}{b^{2n}} \right)^{-1/2},$$

$$y = \sin(t) \left(\frac{\cos^n t}{a^n} + \frac{\sin^n t}{b^n} \right)^{-1/n} + r_1 \frac{\sin^{n-1} t}{b^n} \left(\frac{\cos^{2n-2} t}{a^{2n}} + \frac{\sin^{2n-2} t}{b^{2n}} \right)^{-1/2}, \quad n \ge 2.$$

<u>Задачи</u>:

- Найти длину ¼ периметра.
- По заданному расстоянию по кривой от пересечения с положительным направлением оси X (X+), построить точку и перпендикуляр в этой точке. Это действие будет выполняться каждый кадр для каждого намотанного участка троса на графическом процессоре (GPU), разработка оптимизирована с целью сокращения вычислений, необходимых для выполнения этого действия.
- Найти расстояние по кривой от заданной точки до пересечения с X+.

Для n=2 (эллипс) есть подробное описание в справочной литературе, в т.ч. действия с эллиптическими интегралами.

Для кривых на плоскости, заданных параметрически, длина отрезка периметра L между двумя точками t=0 и $t=\varphi$ выражается формулой $L(\varphi)=\int\limits_{0}^{\infty}\sqrt{\left(dx/dt\right)^{2}+\left(dy/dt\right)^{2}}\,dt$. При взятии производных

из формулы (1), после упрощения получается формула длины отрезка периметра гиперэллипса:

$$L(\varphi) = \int_{0}^{\varphi} \left(\frac{\cos^{n} t}{a^{n}} + \frac{\sin^{n} t}{b^{n}} \right)^{-1/n - 1} \sqrt{\frac{\cos^{2n - 2} t}{a^{2n}} + \frac{\sin^{2n - 2} t}{b^{2n}}} dt . \tag{3}$$

При взятии производных из (2), после упрощения получается формула длины отрезка гиперэллипса, покрытого слоем:

$$L(\varphi) = \int_{0}^{\varphi} \left(\frac{\cos^{n} t}{a^{n}} + \frac{\sin^{n} t}{b^{n}} \right)^{-1/n-1} \sqrt{\frac{\cos^{2n-2} t}{a^{2n}} + \frac{\sin^{2n-2} t}{b^{2n}}} + r_{1}(n-1) \frac{\cos^{n-2} t}{a^{n}} \frac{\sin^{n-2} t}{b^{n}} \left(\frac{\cos^{2n-2} t}{a^{2n}} + \frac{\sin^{2n-2} t}{b^{2n}} \right)^{-1} dt . \tag{4}$$

Решений этих интегралов в закрытом виде не было найдено.

Функции (3), (4) раскладываются в ряды Тэйлора:

$$L(t) = L(t_0) + \frac{L'(t)}{1!}(t - t_0) + \frac{L''(t)}{2!}(t - t_0)^2 + \dots + \frac{L^{(n)}(t)}{n!}(t - t_0)^n + o(t^{n+1}).$$
 (5)

Здесь $L(t_0)$ - длина кривой от X+ до точки, в которой происхоит разложение в ряд Тэйлора. Производная L'(t) равна интегранду из формулы (3) или (4). При последовательном дифференциировании L'(t) получаются производные следующих порядков.

Нахождение значений первых N производных функции в точке, а также разные методы нахождения верхней границы ошибки на интервале описаны в приложении [].

Для решения задач строится структура данных, состоящая из последовательности интервалов, упорядоченных по возрастанию t. Каждый интервал содержит многочлен Тэйлора порядка N, аппроксимирующий значение функции L(t) с относительной ошибкой не более ϵ .

Алгоритм построения структуры данных.

- 1. Берется интервал $t \in [0, \pi/2]$.
- 2. Вычисляются значения первых N производных функции в точке t_0 в центре интервала, и верхняя граница абсолютной ошибки на интервале.
- 3. Формируется многочлен Тэйлора L(t), по формуле (5) вычисляется длина отрезка периметра, соответствующего интервалу, и верхняя граница относительной ошибки.
- 4. В случае, если верхняя граница относительной ошибки превышает заданную величину ϵ , интервал удаляется. Вместо этого интервала создаются два интервала, равные по параметру t. Для каждого созданного интервала алгоритм переходит к шагу 2.
- 5. На каждом интервале записывается сумма длин на предыдущих интервалах.

Количество получающихся интервалов зависит от параметров (n, a, b, r_1), заданной верхней границы относительной ошибки ϵ и порядка многочлена Тэйлора N.

_	
LITATION	ээллипс
T MHC	<i>J 3/1/11/1111</i> C

n		h	ε=10 ⁻⁶	ε=10-6	ε=10 ⁻¹⁰	ε=10 ⁻¹⁰
n	a	b	N=5	N=10	N=7	N=15
2.5*	1	1	16	8	42	18
2.5*	10	0.1	78	23	133	26
3	1	1	16	6	30	6
3	10	0.1	75	21	132	24
10	1	1	32	8	60	14
10	10	0.1	86	24	160	33
50	1	1	42	14	86	24
_					(0	

^{*} сокращенные многочлены Тэйлора (2 производные) на интервалах, содержащих 0 и π/2.

Гиперэллипс, покрытый слоем r_1 =0.5

n	a	b	ε=10 ⁻⁶ N=5	ε=10 ⁻⁶ N=10	ε=10 ⁻¹⁰ N=7	ε=10 ⁻¹⁰ N=15
2	1	1	1	1	1	1
2	10	0.1	97	26	163	30
3	1	1	20	6	34	6
3	10	0.1	92	24	154	27
10	1	1	46	12	80	18
10	10	0.1	105	27	183	**
15	3	0.3	70	19	135	29
50	1	1	64	22	116	28

^{**} переполнение экспоненты в числах IEEE 754 double

При дробных значениях n функции (3), (4) не являются бесконечно дифференциируемыми на $t \in [0, \pi/2]$.

В случае гиперэллипса в точках t=0 и $t=\pi/2$ не бесконечны только floor(n)+1 производные. Решение – сокращать порядок многочленов Тэйлора на интервалах, содержащих эти точки, что приводит к уменьшению этих интервалов. Также в окрестностях этих точек уменьшаются радиусы конвергенции рядов и соответственно дополнительно сокращаются эти и смежные интервалы. Другой эффект - в окрестностях вышеуказанных точек существенно увеличиваются абсолютные значения коэффициентов и требуют внимания к возможному переполнению в используемых типах чисел.

Для гиперэллипса, покрытого слоем, при $n \notin \mathbb{N}$ в точках 0 и $\pi/2$ не бесконечны только floor(n)-1 производные. В частности, при $n \in (2,3)$ не бесконечна только 1 производная, тогда как требуется не менее 2 производных для формирования многочлена Тэйлора (порядка $\geqslant 1$) и нахождения верхней границы абсолютной ошибки. Подходы к решению этого вопроса были рассмотрены; реализация и описание оставлены до следующих версий.

Построение точки и перпендикуляра в точке по длине L.

Для нахождения интервала, в котором находится точка, выполняется двоичный поиск по упорядоченной последовательности интервалов.

На каждом интервале из многочлена L(t) по формуле обращения рядов формируется многочлен t(L). Координаты точки (x, y) в зависимости от t определяются по формулам (1) или (2).

Компоненты вектора-перпендикуляра (N_X, N_Y) одинаковы для обеих кривых:

$$(N_X, N_Y) = \left[\frac{\cos^{n-1}t}{a^n}, \frac{\sin^{n-1}t}{b^n}\right] / \sqrt{\frac{\cos^{2n-2}t}{a^{2n}} + \frac{\sin^{2n-2}t}{b^{2n}}}.$$
 (6)

Возможен подход – используя t(L), вычислить t, и далее по формулам вычислить x, y, $N_{X_i}N_{Y_i}$.

С целью сократить возведения в произвольную степень и тригонометрические вычисления, на интервале формируются многочлены Тэйлора x(L), y(L), $N_x(L)$, $N_y(L)$.

Для этого вычисляются значения первых N производных функций (1) или (2), и (6) в точке t_0 , в дополнение к t_0 подставляются производные из t(L) по формуле Фаа ди Бруно.

Длина отрезка периметра от точки до X+.

Эта задача может быть решена одним из методов численного интегрирования по формуле (3) или (4). С учетом построенной структуры данных, применяется менее затратный метод.

Четверть периметра разделяется на 2 части ("правая" и "верхняя") точкой, в которой перпендикуляр направлен под углом 45° к X+. Параметр t для этой точки вычисляется по формуле:

$$t = \arctan\left[\left(b^{n}/a^{n} \cdot \tan \theta\right)^{1/(n-1)}\right], \quad \theta = \pi/4. \tag{7}$$

На интервалах в "правой" части создаются многочлены L(y), в "верхней" L(x), по формуле обращения рядов из y(L) и x(L) соответственно, и на каждом интервале записывается точка (x,y) - конец интервала. Для нахождения L, сначала методом двоичного поиска по x или y находится нужный интервал. Далее выполняется вычисление многочлена Тэйлора L(x) или L(y) в точке. Для вычисления требуется примерно 2N умножений и N сложений, где N – количество производных.

Пример трехмерного изображения, для формирования которого были проведены вышеописанные вычисления.

Гиперэллиптический цилиндр n=3, a=1.3, b=2, с частично намотанной цепью $r_1=0.067$.

