Определенный интеграл

(все рассматриваемые промежутки числовой оси по умолчанию конечные и непустые)

Разбиения промежутка: узлы разбиения, сетка, с-ва разбиений

Разбиение промежутка Δ - любое конечное мн-во попарно непересекающихся промежутков Δ 1, Δ 2, Δ 3... Δ N , дающих в объединении Δ .

 $T(\Delta)$ - некоторое разбиение Δ

Нумерация разбиений идёт слева направо относительно их положения на числовой оси.

Узлы разбиения $T(\Delta)$ - набор точек x1, x2, x3..., xN на промежутке числовой оси.

Сетка - совокупность узлов разбиения

Введем понятие продолжения разбиения.

Разбиение $T'(\Delta)$ называют продолжением разбиения $T(\Delta)$, если любой промежуток разбиения $T'(\Delta)$ содержится в одном из промежутков разбиения $T(\Delta)$.

С-ва разбиений:

Если Т' - продолжение Т, а Т - продолжение Т", то Т' - продолжение Т"

Лемма. Для любых двух разбиений промежутка Δ существует третье разбиение Δ , которое является продолжением каждого из двух данных разбиений.

Д-во:

Интегральные суммы Дарбу и Римана

Пусть на Δ задана функция f(x). Плюс есть разбиение T(Δ) = { Δ 1, Δ 2, ..., Δ n}. Тогда обозначим m_i = inf f(x), при x ϵ Δi

$$M_i$$
 = sup f(x), при х ε Δi

Длину промежутка Δi обозначим как $|\Delta_i|$

Нижней интегральной суммой Дарбу называется $\sum_{i=1}^n m_i * |\Delta_i|$

Верхней -
$$\sum_{i=1}^n M_i * |\Delta_i|$$

Теперь введем еще обозначения:

При этом справедлива оценка:

Лемма. Если разбиение $T(\Delta)$ является продолжением разбиения $T'(\Delta)$, то справедливы оценки:

Д-во:

DOK-bo, Paz Tuenne T/D), npogomkaroujee
T(A), morkho mongrinto uz T(D) za KoHerHol rucho marob, ka kantegon uz Koropoux poblio ogun uz pacemar pub almono
upomentytkob germite ka gla herefecekaronyuxa npomeneytea.

tygto ka kakom-kuto uz ykazakkork manob uznektrehud uckoghow fajvhehul T(D) hhomenegiok D: pazgeken ka gba Henefeelkakocyuxal npomeneyika Diz 4 Diz. Blegen otojharehul

 m_i = inf f(x), где x $\varepsilon \Delta_i$ m_{i1} = inf f(x), где x $\varepsilon \Delta_{i1}$

$$m_{i2}$$
 = inf f(x), где x ϵ Δ_{i2} Тогда $\Delta_{i1} \subset \Delta_i \Rightarrow m_{i1} \geq m_i$ $\Delta_{i2} \subset \Delta_i \Rightarrow m_{i2} \geq m_i$

А значит,
$$m_{i1}$$
 * $|\Delta_{i1}| \geq m_i$ * $|\Delta_{i1}|$ m_{i2} * $|\Delta_{i2}| \geq m_i$ * $|\Delta_{i2}|$

Если сложим эти неравенства, то получим

$$m_{i1} * |\Delta_{i1}| + m_{i2} * |\Delta_{i2}| \ge m_i * (|\Delta_{i1}| + |\Delta_{i2}|)$$

То бишь,

$$m_{i1} * |\Delta_{i1}| + m_{i2} * |\Delta_{i2}| \geq m_{i} * |\Delta_{i}|$$

Из этого можно сделать вывод, что при делении промежутка разбиения на два непересекающихся промежутка, **нижняя сумма Дарбу** может только увеличиться.

Что доказывает первую из оценок:

$$\bar{s}(4;\tau') > \bar{s}(4,\tau).$$

Вторая доказывается также.

$$M_i$$
 = sup f(x), где x $\varepsilon \Delta_i$
 M_{i1} = sup f(x), где x $\varepsilon \Delta_{i1}$
 M_{i2} = sup f(x), где x $\varepsilon \Delta_{i2}$

Тогда
$$\Delta_{i1} \subset \Delta_i \Rightarrow M_{i1} \leq M_i$$
 $\Delta_{i2} \subset \Delta_i \Rightarrow M_{i2} \leq M_i$

А значит,
$$M_{i1}$$
 * $|\Delta_{i1}| \leq M_{i}$ * $|\Delta_{i1}|$ M_{i2} * $|\Delta_{i2}| \leq M_{i}$ * $|\Delta_{i2}|$

Если сложим эти неравенства, то получим

$$M_{i1} * |\Delta_{i1}| + M_{i2} * |\Delta_{i2}| \leq M_{i} * (|\Delta_{i1}| + |\Delta_{i2}|)$$

То бишь,

$$M_{i1} * |\Delta_{i1}| + M_{i2} * |\Delta_{i2}| \leq M_{i} * |\Delta_{i}|$$

Что доказывает вторую оценку:

$$S(f; t') \leq S(f; \tau)$$

Лемма. Для любой функции f(x), где $x \in \Delta$, и любых двух разбиений $T'(\Delta)$ и $T''(\Delta)$ справедливо неравенство:

$$\bar{S}(f; \tau') \leq \bar{S}(f; \tau').$$

Д-во.

Для разбиений $T'(\Delta)$ и $T''(\Delta)$ найдем третье - $T(\Delta)$, которое будет **продолжением** как для $T'(\Delta)$, так и для $T''(\Delta)$. Тогда будут справедливы следующие н-ва:

Зная, что нижняя сумма Дарбу от одной и той же функции и на одном и том же разбиении

верхней, связываем эти два н-ва в одно большое:

Из которого следует справедливость леммы.

Пусть на Δ задана функция f(x). Плюс есть разбиение $T(\Delta) = {\Delta 1, \Delta 2, ..., \Delta n}$.

Тогда сумма
$$\sigma(f;T) = \sum_{i=1}^n f(\xi_i) * |\Delta_i|$$
,

где ξ_i ϵ Δ_i ,

называется **интегральной суммой Римана** функции f .

Еще обозначается как:

$$\sigma(f; T; \xi)$$
 , где $\xi = \{\xi_1, \xi_2, ..., \xi_n\}$

Справедливы следующие неравенства:

При любом выборе точек $\, \xi_i \, \, \epsilon \, \, \Delta_i \,$

И также:

Определение интеграла Римана

Как уже отмечалось, для любых двух разбиений числовой оси справедливо:

Фиксируя разбиение Т" и заставляя пробегать Т' все допустимые для разбиений значения, получаем оценку:

$$\sup_{\tau} \bar{s}(f;\tau) \leq \sum_{i=1}^{\infty} (f;\tau'').$$

В свою очередь, заставляя пробегать также Т', получаем оценку:

Опр.

J(41 = Sup 3 (4;71)

- нижний интеграл Дарбу

J(f)= inf & (f,4)

- верхний интеграл Дарбу

От функции f по промежутку Δ.

Для любой функции f(x), $x \in \Delta$ справедливо н-во:

Опр. Если интегралы Дарбу конечны и равны между собой, то функция f называется интегрируемой по Риману на промежутке Δ . А число

- интегралом Римана.

Для интеграла Римана исп. обозначение $\int\limits_{\Lambda}f(x)dx$.

Из опр. интеграла Римана ⇒ справедливость неравенств:

Пример: интеграл ступенчатой функции

Функция f(x), $x \in \Delta$ называется ступенчатой, если \exists разбиение $\mathsf{T}(\Delta) = \{\Delta 1, \Delta 2, ..., \Delta n\}$ такое, что $f(x) = c_i \ , \ \text{при} \ \forall x \ \in \Delta_i \ .$

Ступенчатая функция f(x) интегрируема на Δ и при этом

$$\int_{\Lambda} f(x)dx = \sum_{i=1}^{n} c_i * |\Delta_i|$$

Теорема об ограниченности интегрируемой по Риману функции

Если функция f интегрируема по Риману на промежутке Δ , то f ограничена на этом промежутке.

Д-во.

Допустим, что некоторая функция f(x), $x \in \Delta$ интегрируема по Риману Δ и при этом неограничена сверху. Тогда $\sup f(x) = +\infty$, $x \in \Delta$.

Теперь возьмем некоторое разбиение $T(\Delta) = \{\Delta 1, \Delta 2, ..., \Delta n\}$. Из предположения следует, что $\exists \Delta_i$ на котором f(x) неограничена сверху и $|\Delta_i| > 0$.

Следовательно, верхняя интегральная сумма Дарбу будет также неограничена, что противоречит условию интегрируемости по Риману. Несоответствие при неограниченности снизу доказывается также.

Критерий Римана интегрируемости функций

Если f(x) интегрируема по Риману на $\Delta \Leftrightarrow$ выполняется условие:

Д-во(⇒):

Согласно определению интеграла Римана имеем:

$$\exists T_{q}(A): J(f_{1}-\frac{\varepsilon}{2}<\frac{1}{2}(f_{1},T_{q})\leq J(f_{1})$$

 $\exists T_{q}(A): J(f_{1}\leq \frac{\varepsilon}{2}(f_{1},T_{q})\leq J(f_{1})+\frac{\varepsilon}{2}.$

Здесь J(f) - интеграл Римана

Добавим $T_{\,\epsilon}$, явл. продолжением $T^{\, \prime \prime}_{\,\,\epsilon}$ и $T^{\, \prime}_{\,\,\epsilon}$. Тогда:

$$\tilde{\xi}(f_{i}, T_{i}) \leq \tilde{\xi}(f_{i}, T_{i});$$
 $\tilde{\xi}(f_{i}, T_{i}) \leq \tilde{\xi}(f_{i}, T_{i});$
 $\tilde{\xi}(f_{i}, T_{i}) \leq \tilde{\xi}(f_{i}, T_{i});$
 $\tilde{\xi}(f_{i}, T_{i}) \leq \tilde{\xi}(f_{i}, T_{i});$

Теперь объединим неравенства и получим:

Преобразуем полученное н-во:

$$J(f) - \frac{2}{2} \mathbf{Z} \tilde{S}(f_{i} \tilde{v}_{2}) \leq S(f_{i} \tilde{v}_{2}) \leq S$$

Получается, что для разбиения $\,T_{\,\epsilon}\,$ условие выполнено, то бишь, в правую сторону доказано.

Теперь в левую.

Пусть выполняется условие:

Добавим сюда:

И немного переделаем последнее неравенство + соединим с первым и получим:

От этого перейдем к очередному неравенству, добавив 0:

Теперь перейдем к пределу при $\, \epsilon \to 0 \,$ и получим, что:

Из чего следует, что f интегрируется по Риману на Δ.

<u>Колебание функции и критерий интегрируемости по Риману в</u> <u>терминах колебаний. Следствие</u>

Пусть есть $f(x), x \in D_f$ и множество $g \subset D_f$. Тогда разность $\sup f(x) - \inf f(x) \equiv w(f;g)$, $x \in g$ называется колебанием функции f(x) на g .

Теорема (Интегрируемости Римана через колебания)

Если f(x) интегрируема по Риману на $\Delta \Leftrightarrow$

$$\forall \varepsilon > 0 \exists T(\Delta) = \{\Delta_1, \Delta_2, ..., \Delta_n\} : \sum_{i=1}^n w(f, \Delta_i) * |\Delta_i| < \varepsilon$$

Следствие.

Если f(x) интегрируема по Риману на $\Delta \iff$ последовательность $\{T(\Delta)\}$ разбиений Δ :

$$\lim_{k \to \infty} \left[\underline{\mathbf{S}}(f; T_k) - \overline{\overline{\mathbf{S}}}(f; T_k) \right] = 0 \qquad (1)$$

В этом случае:

$$\int_{\Delta} f(x)dx = \lim_{k \to \infty} \underline{S}(f; T_k) = \lim_{k \to \infty} \overline{\overline{S}}(f; T_k)$$
 (2)

(соре за одну черту снизу, хз как две поставить) д-во.

Из условия (1) имеем, что $\ fensuremath{f \forall}\, \epsilon \geq 0 \ \ \ fensuremath{f \exists}\, T_k(\Delta)$:

А это - критерий интегрируемости по Риману. (⇒)

Пусть f(x) интегрируема на Δ . Тогда по критерию Римана для

$$\varepsilon = \frac{1}{k}, k = 1, 2, ..., \exists T_k(\Delta) :$$

Переходя здесь к пределу при $k \to \infty$ получаем условие (1). При этом

 $J(f) \equiv \int\limits_{\Delta} f(x) dx$ удовлетворяет соотношениям:

Переходя в этих неравенствах к пределу при $k \to \infty$ и пользуясь (1), получаем:

<u>Теорема об интеграле Римана как пределе сумм Дарбу со стремящейся к нулю мелкостью</u>

Пусть имеется разбиение $T(\Delta) = \{\Delta_1, \Delta_2, ..., \Delta_n\}$ и $\Delta_i = < x_{i-1}, x_i > 1$. Тогда величины $h_i = x_i - x_{i-1}$ называются шагами сетки $T(\Delta)$. Обозначим максимальный из шагов за $T = \max(\Delta_i)$, i = 1, 2..., n. T называют мелкостью разбиения $T(\Delta)$

Теорема. Пусть f(x) интегрируется на промежутке $\Delta \subset D_f$. Тогда для любой последовательности разбиений $T_k(\Delta), \ k=1,2,..;$, обладающей свойством $|T_k(\Delta)| \to 0$ при $k \to \infty$ имеют место равенства:

Д-во:

Пусть $T_k = \{\Delta_1^k,..,\ \Delta_{n_k}^k\}$ и $\lim_{k \to \infty} |T_k| = \mathbf{0}$.Для интегрируемой функции f(x), $x \subseteq \Delta$, введем обозначение:

Если будет доказано, что

то при

предельном переходе по $k \to \infty$ в неравенствах

получатся искомые соотношения.

Тогда убедимся в этом.

Из интегрируемости f(x) на Δ следует ее ограниченность на Δ . Т.е. :

Кроме того, по критерию Римана интегрируемости,

4220 JE(A): S(f,T)-3(f,T)<E

Пусть разбиение $T_{\, \epsilon}=\{\Delta_1^{\epsilon},..,\ \Delta_{n_{\epsilon}}^{\epsilon}\}$ - и есть это разбиение для каждого Т по критерию.

Разобьем сумму Λ_k на две части =

Заметим, что в сумме Λ_k^* содержится не более чем N_ϵ слагаемых, для каждого из которых справедлива оценка:

no been ocganophola Ak

w(f; A;)| 4; 1 € 2 M 1 Tel.

Из чего следует, что:

105 1 = 2 H 196. N2

Для Λ_k^{**} справедливо:

 $\Lambda_{k}^{k} = \sum_{j=1}^{\infty} \left(\sum_{A_{i}^{k} \subset A_{j}^{k}} \omega(A_{i}^{k} | A_{i}^{k}) \right)$

где вложенная сумма берется по всем промежуткам $\Delta_i^k \subset \Delta_j^{\epsilon}$. Если для j таких вложенных промежутков Δ_i^k нет, то внутренняя сумма равна нулю. И:

При заданном к промежутки Δ_i^k не пересекаются и поэтому:

Последнее н-во справедливо в силу выбора разбиения $\,T_{\,arepsilon}\,(\,\Delta\,)\,$

Далее имеем:

Следствие.

Функция f(x) интегрируется на промежутке $\Delta \subset D_f \Leftrightarrow$

 \exists последовательность $T_k(\Delta),\ k=1,2,..;$, с условием $|T_k(\Delta)| \to 0$ при $k\to \infty$ и при этом:

В этом случае условие типа (1') выполняется для всех послед. разбиений со свойством, что $|T_k(\Delta)| \to 0$ при $k \to \infty$

Эквивалентность двух определений интеграла Римана

Пусть f(x) интегрируема по Риману и послед. $T_k(\Delta), \ k=1,2,..;$ обладает с-вами $|T_k(\Delta)| \to 0$ при $k\to \infty$

и
$$\lim_{k \to \infty} [\, \underline{\underline{S}}\,(f;T_k) - \, \overline{\overline{\overline{S}}}\,(f;T_k) \,] \, = \, 0$$
 . Тогда

Кроме того, в силу:

Справедливо также предельное равенство:

Равенства (4) и (5) справедливы для любой послед. $T_k(\Delta),\ k=1,2,..;$, со стремящейся к нулю мелкостью, $|T_k(\Delta)| \to 0$ при $k\to \infty$. Поэтому вместо этих равенств пишут:

$$\lim_{M \to 0} \frac{1}{5}(f_{1}^{2}) = \lim_{M \to 0} \frac{1}{5}(f_{1}^{2}) = \int_{M} \frac{1}{5}(G_{1}^{2}) dx$$

$$\lim_{M \to 0} \frac{1}{5}(f_{1}^{2}) = \int_{M} \frac{1}{5}(G_{1}^{2}) dx$$

$$\lim_{M \to 0} \frac{1}{5}(f_{1}^{2}) = \int_{M} \frac{1}{5}(G_{1}^{2}) dx$$

Приведенные рассуждения таки доказывают эквивалентность двух определений интеграла Римана.

<u>Сохранение интегрируемости при переходе к меньшему</u> промежутку, а также при объединении промежутков -----

Пусть f(x) интегрируема на Δ и $\Delta' \subseteq \Delta$, Δ' - промежуток. Тогда f(x) интегрируема на Δ' .

Д-во:

 T'_k - посл. разбиений Δ' и $|T'_k|
ightarrow 0$, при $k
ightarrow \infty$.

Дополним T'_k до разбиения T_k промежутка Δ так, чтобы $|T_k| \leq |T'_k|$

Если $|T'_k| \to 0$, при $k \to \infty$, то и $|T_k| \to 0$, при $k \to \infty$.

В силу интегрируемости имеем:

Но $T'_k \subseteq T_k$ и поэтому:

Следовательно:

A значит, f(x) интегрируема на Δ' .

Пусть Δ , Δ' , Δ'' - промежутки и $\Delta = \Delta' \cup \Delta''$. Если функция интегрируема на Δ' и Δ'' , то и на Δ тоже.

Д-во:

Считаем, что множества не равны между собой, иначе д-во очевидно.

Разность $\Delta'''=\Delta'\setminus\Delta''$ - тоже промежуток, при этом $\Delta=\Delta'\cup\Delta'''$ и $\Delta'\cap\Delta'''=\varnothing$.

Возьмем T'_k - разбиение Δ' и T'''_k - разбиение Δ''' $|T'_k| \to 0$ и $|T'''_k| \to 0$, при $k \to \infty$. Тогда $|T_k| = |T'_k| \ \cup |T'''_k|$ - разбиение Δ

Причем:

17/2 = max { 17/6 |, 17/4 | 3 -> only k > 10,

При этом:

По условию, предел правой части равенства = 0(функция интегрируема на Δ' и $\Delta'' \Rightarrow$ и на Δ' и Δ''' тоже)

Таким образом:

Что значит, что f(x) интегрируема на $\,\Delta$

Наследование свойства интегрируемости модулем функции

Если f(x) интегрируема на Δ , то и |f(x)| тоже.

Д-во: