

| PROJECT: TO CLASSIFY CREDIT CARD CUSTOMER USING WITH K-MEANS ALGORITHM |
|------------------------------------------------------------------------|
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
|                                                                        |
| STUDENT NAME / SURNAME: Emirhan ASLANKARAYİĞI                          |

## Output 1: Analyse the dataset using with the Jupyter Notebook

This dataset whose format is csv file is consisted of **8950 rows** and **18 columns**:

That means it has 8950 Customer ID and 18 features belong to customer:

- What are our dataset's features namely?
  - CUST ID
  - BALANCE
  - BALANCE\_FREQUENCY
  - PURCHASES
  - ONEOFF\_PURCHASES
  - INSTALLMENTS\_PURCHASES
  - CASH\_ADVANCE
  - PURCHASES\_FREQUENCY
  - ONEOFF\_PURCHASES\_FREQUENCY
  - PURCHASES\_INSTALLMENTS\_FREQUENCY
  - CASH\_ADVANCE\_FREQUENCY
  - CASH\_ADVANCE\_TRX
  - PURCHASES\_TRX
  - CREDIT\_LIMIT
  - PAYMENTS
  - MINIMUM\_PAYMENTS
  - PRC\_FULL\_PAYMENT
  - TENURE

### Output1:

| ut[2]: |     | CUST ID | BALANCE     | BALANCE EDECLIENCY | DUDCHASES | ONEOEE DUDCHASES | INSTALLMENTS DUDOHASES | CASH ADVANCE | DUDCHASES ED |
|--------|-----|---------|-------------|--------------------|-----------|------------------|------------------------|--------------|--------------|
| _      |     | CUST_ID | BALANCE     | BALANCE_FREQUENCY  | PURCHASES | UNEUFF_PURCHASES | INSTALLMENTS_PURCHASES | CASH_ADVANCE | PURCHASES_FR |
|        | 0   | C10001  | 40.900749   | 0.818182           | 95.40     | 0.00             | 95.40                  | 0.000000     |              |
|        | 1   | C10002  | 3202.467416 | 0.909091           | 0.00      | 0.00             | 0.00                   | 6442.945483  |              |
|        | 2   | C10003  | 2495.148862 | 1.000000           | 773.17    | 773.17           | 0.00                   | 0.000000     |              |
|        | 3   | C10004  | 1666.670542 | 0.636364           | 1499.00   | 1499.00          | 0.00                   | 205.788017   |              |
|        | 4   | C10005  | 817.714335  | 1.000000           | 16.00     | 16.00            | 0.00                   | 0.000000     |              |
|        |     |         |             |                    |           |                  |                        |              |              |
| 8      | 945 | C19186  | 28.493517   | 1.000000           | 291.12    | 0.00             | 291.12                 | 0.000000     |              |
| 8      | 946 | C19187  | 19.183215   | 1.000000           | 300.00    | 0.00             | 300.00                 | 0.000000     |              |
| 8      | 947 | C19188  | 23.398673   | 0.833333           | 144.40    | 0.00             | 144.40                 | 0.000000     |              |
| 8      | 948 | C19189  | 13.457564   | 0.833333           | 0.00      | 0.00             | 0.00                   | 36.558778    |              |
| 8      | 949 | C19190  | 372.708075  | 0.666667           | 1093.25   | 1093.25          | 0.00                   | 127.040008   |              |

Output 2: Correlation is done to understand the relationship between the features that located on the frame. (Using corr())

#### Output2:



We have detected by taking values greater than 0.7 as a result of corr() method, because the most suitable data to process are found by this way. It is called "very high correlation". By this way, we obtained Boolean data like True, False to realise.



As a result of this operation(correlation):

- PURCHASES / ONEOFF\_PURCHASES
- CASH\_ADVANCE\_TRX / CASH\_ADVANCE\_FREQUENCY
- PURCHASES\_INSTALLMENTS\_FREQUENCY / PURCHASES\_FREQUENCY

Data given above have determined that there is a relation between these features, because their correlation is categorized on this group: "Very High Correlation". Corr() method is easier way to classify the customers.

Output 3: Determination of the number of clusters with the elbow method

If we take the two features belong to dataset,

# 1) PURCHASES ONEOFF\_PURCHASES The elbow method's graph is like that:



The most suitable number of cluster(s) is "4" according to Elbow method.

OUTPUT 4 for this part: To classify the customer using with the K-Means algorithm



According to this scatter graph, we can observe that there are 4 groups of customer segment.

Customers who belong to "Cluster 2" and "Cluster 3" are less than other clusters in terms of numerical.

For "Cluster 2", minimum purchase 5176.62 and maximum purchase 22500.0.

For "Cluster 3", minimum purchase 17945.0 and maximum purchase 49039.57.

For "Cluster 2", minimum one off-purchases 0.0 and maximum one off-purchases 14215.0.

For "Cluster 3", minimum one off-purchases 13007.07 and maximum one off-purchases 40761.25.

2) PURCHASES\_INSTALLMENTS\_FREQUENCY / PURCHASES\_FREQUENCY
The elbow method's graph is like that:



The most suitable number of cluster(s) is "3" according to Elbow method.

OUTPUT 4 for this part: To classify the customer using with the K-Means algorithm



According to this scatter graph, we can observe that there are 3 groups of customer segment.

Customers who belong to "Cluster 2" are more than other clusters in terms of numerical.

For "Cluster 2", "PURCHASES\_FREQUENCY" is changed by this range: (0.0, 0.428571)

## 3) CASH\_ADVANCE\_TRX / CASH\_ADVANCE\_FREQUENCY

The elbow method's graph in this categorization is like that:



The most suitable number of clusters is "5" according to Elbow Method.

**OUTPUT 4** for this part: To classify the customer using with the K-Means algorithm



7 customers are categorized in Cluster 4 that represents by this color: Red

Let's observe the 6 features we found together and do PCA.

If we handle 6 features using with Elbow Method:



The optimum value of number of clusters is "4".

That means "4" is namely the optimum cluster number for:

- 1) PURCHASES / ONEOFF\_PURCHASES (Positive)
- 2) PURCHASES\_FREQUENCY / PURCHASES\_INSTALLMENTS\_FREQUENCY (Positive)
- 3) CASH\_ADVANCE\_FREQUENCY / CASH\_ADVANCE\_TRX (Positive)

(all of these categories)

**PCA (Principal Components Analysis)** 



We have observed that "3" is the official number for these features.

If we visualize it,

