Problem 1

a)

Show that the kernel density estimate

$$\hat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - X_i}{h}\right),\,$$

with kernel K and bandwidth h > 0, is a valid density. What condition(s) did you require on K?

Answer

For \hat{f} to be a valid density, it must be nonnegative and integrate to one.

- Assume $K : \mathbb{R} \to [0, \infty)$ is measurable with $\int_{-\infty}^{\infty} K(u) du = 1$.
- If $K \ge 0$, then clearly $\hat{f}(x) \ge 0$ for all x.

For the integral:

$$\int_{-\infty}^{\infty} \hat{f}(x) dx = \frac{1}{n} \sum_{i=1}^{n} \int_{-\infty}^{\infty} \frac{1}{h} K\left(\frac{x - X_i}{h}\right) dx$$

$$u = (x - X_i)/h \frac{1}{n} \sum_{i=1}^{n} \int_{-\infty}^{\infty} K(u) du$$

$$= \frac{1}{n} \sum_{i=1}^{n} 1 = 1.$$

Hence \hat{f} is a valid probability density function whenever K itself is a density.

b)

Show that the kernel density estimate

$$\hat{f}(x) = \frac{1}{nh(x)} \sum_{i=1}^{n} K\left(\frac{x - X_i}{h(x)}\right),$$

with kernel K and bandwidth function h(x) > 0, $\forall x$, is not a valid density.

Answer

Positivity still holds if $K \ge 0$, so $\hat{f}(x) \ge 0$.

The issue lies in normalization:

$$\int_{-\infty}^{\infty} \hat{f}(x) dx = \frac{1}{n} \sum_{i=1}^{n} \int_{-\infty}^{\infty} \frac{1}{h(x)} K\left(\frac{x - X_i}{h(x)}\right) dx.$$

When h depends on x, the substitution $u = (x - X_i)/h(x)$ is not a simple linear map—its Jacobian involves h(x) and h'(x). Consequently, the integral of each term does not generally equal 1. The estimator is therefore not guaranteed to integrate to one.

Counterexample.

Take $K = \phi$ the standard normal pdf, $X_i = 2$, and

$$h(x) = \begin{cases} 1, & x \le 0, \\ 2, & x > 0. \end{cases}$$

Then

$$\int_{-\infty}^{\infty} \frac{1}{h(x)} \, \phi\!\left(\frac{x-2}{h(x)}\right) \, dx = \int_{-\infty}^{0} \phi(x-2) \, dx + \int_{0}^{\infty} \frac{1}{2} \, \phi\!\left(\frac{x-2}{2}\right) dx.$$

Evaluating,

$$=\Phi(-2)+\Phi(1)\approx 0.0228+0.8413=0.8641\neq 1.$$

Thus the integral can be strictly less (or greater) than one, so \hat{f} is not a valid density in general.

Note. This form is often called the *balloon estimator*, and it is distinct from the fixed-bandwidth KDE in part (a). Only the constant-bandwidth version is guaranteed to be a valid density.

Problem 2

A natural estimator for the rth derivative $f^{(r)}(x)$ of f(x) is

$$\hat{f}^{(r)}(x) = \frac{1}{nh^{r+1}} \sum_{i=1}^{n} K^{(r)} \left(\frac{x - X_i}{h} \right),$$

assuming that K satisfies the necessary differentiability conditions.

a)

Derive an asymptotic expression for the bias of $\hat{f}^{(r)}(x)$. Also mention the assumptions you made to obtain this result.

Answer

We have

$$E \hat{f}^{(r)}(x) = \frac{1}{h^{r+1}} \int K^{(r)} \left(\frac{x-y}{h}\right) f(y) dy.$$

With u = (x - y)/h so y = x - hu, dy = -h du,

$$E \,\hat{f}^{(r)}(x) = \frac{1}{h^r} \int K^{(r)}(u) \, f(x - hu) \, du.$$

Expand f(x - hu) by Taylor expansion around x:

$$f(x - hu) = \sum_{j>0} \frac{(-hu)^j}{j!} f^{(j)}(x).$$

Carrying derivatives inside the convolution (or equivalently integrating by parts r times), the leading bias term is

bias
$$\left[\hat{f}^{(r)}(x)\right] = \frac{\mu_2(K)}{2} f^{(r+2)}(x) h^2 + o(h^2),$$

where $\mu_2(K) = \int u^2 K(u) du$.

Assumptions: f has r+2 continuous derivatives in a neighborhood of x; K has finite second moment; $h \to 0$, $nh \to \infty$.

b)

Derive an asymptotic expression for the variance of $\hat{f}^{(r)}(x)$. Mention the assumptions you made to obtain this result.

Answer

By independence of the sample,

$$\operatorname{Var}[\hat{f}^{(r)}(x)] = \frac{1}{n} \operatorname{Var}\left(\frac{1}{h^{r+1}} K^{(r)}\left(\frac{x-X}{h}\right)\right).$$

As $h \to 0$,

$$\operatorname{Var}[\hat{f}^{(r)}(x)] \approx \frac{f(x)}{nh^{2r+1}} \int \left(K^{(r)}(u)\right)^2 du = \frac{f(x) R(K^{(r)})}{nh^{2r+1}} + o\left(\frac{1}{nh^{2r+1}}\right),$$

where $R(K^{(r)}) = \int (K^{(r)}(u))^2 du$.

c)

Calculate the mean squared error (MSE) of $\hat{f}^{(r)}(x)$.

Answer

Combining squared bias and variance from parts a) and b):

$$MSE(\hat{f}^{(r)}(x)) = \left(\frac{\mu_2(K)}{2} f^{(r+2)}(x) h^2\right)^2 + \frac{f(x) R(K^{(r)})}{n h^{2r+1}} + o\left(h^4 + \frac{1}{n h^{2r+1}}\right).$$

d)

Calculate the mean integrated squared error (MISE) of $\hat{f}^{(r)}$.

Answer

Integrating the MSE over x gives

$$\mathrm{MISE}(\hat{f}^{(r)}) = \frac{\mu_2(K)^2}{4} h^4 \int \left(f^{(r+2)}(x) \right)^2 dx + \frac{R(K^{(r)})}{nh^{2r+1}} + o\left(h^4 + \frac{1}{nh^{2r+1}} \right).$$

This parallels the AMISE expression given for r = 0.

 $\mathbf{e})$

From all your previous results, can you conclude why density derivative estimation is becoming increasingly more difficult for estimating higher order derivatives?

Answer

From b)-d), the variance term scales as $1/(nh^{2r+1})$. As r increases:

- The variance grows more quickly for a fixed h.
- To control variance one must increase h, but that worsens the $O(h^2)$ bias.
- Thus the bias–variance tradeoff deteriorates with r.

This explains why estimating higher derivatives is increasingly difficult.

f)

Find an expression for the asymptotically optimal constant bandwidth.

Answer

Let

$$AMISE(h) = Ah^4 + \frac{B}{nh^{2r+1}},$$

with

$$A = \frac{\mu_2(K)^2}{4} \int (f^{(r+2)}(x))^2 dx, \qquad B = R(K^{(r)}).$$

Differentiate and set to zero:

$$4Ah^3 - \frac{(2r+1)B}{n}h^{-(2r+2)} = 0 \quad \Rightarrow \quad h^{2r+5} = \frac{(2r+1)B}{4An}.$$

Therefore,

$$h_{\text{AMISE}}^* = \left[\frac{(2r+1) R(K^{(r)})}{\mu_2(K)^2 \int (f^{(r+2)}(x))^2 dx} \right]^{\frac{1}{2r+5}} n^{-\frac{1}{2r+5}}.$$

For r = 0, this reduces to the familiar bandwidth expression from the notes.