

AMENDMENTS TO THE CLAIMS

1. (Currently Amended) A molten-salt catalyst for purifying particulate materials, which are contained in an exhaust gas emitted from an internal combustion engine of an automobile and contain carbon, and said catalyst comprising:
 - a solid support; and
 - a catalytic ingredient loaded on the solid support including at least one member selected from the group consisting of silver nitrate, alkali metal nitrate, alkaline-earth metal nitrate and rare-earth nitrate.
2. (Previously Presented) The molten-salt catalyst according to claim 1, wherein said solid support is a basic support.
3. (Previously Presented) The molten-salt catalyst according to claim 1, wherein said catalytic ingredient includes alkali metal nitrate.
4. (Previously Presented) The molten-salt catalyst according to claim 1, wherein said catalytic ingredient further includes an oxidation facilitating ingredient.
5. (Previously Presented) The molten-salt catalyst according to claim 1, wherein said solid support includes at least one member selected from the group consisting of alumina, zirconia, titania, silica and zeolite.
6. (Previously Presented) The molten-salt catalyst according to claim 2, wherein said basic support includes at least one member selected from the group consisting of magnesia spinel, zirconia, alkali metal oxide, alkaline-earth metal oxide and rare-earth oxide.
7. (Previously Presented) The molten-salt catalyst according to claim 6, wherein said alkaline-earth metal oxide is magnesia.
8. (Previously Presented) The molten-salt catalyst according to claim 6, wherein said rare-earth metal oxide is at least one member selected from the group consisting of lanthanum

oxide and neodymium oxide.

9. (Previously Presented) The molten-salt catalyst according to claim 1, wherein said alkali metal nitrate is at least one member selected from the group consisting of KNO_3 , CsNO_3 , NaNO_3 and LiNO_3 .

10. (Previously Presented) The molten-salt catalyst according to claim 1, wherein said alkaline-earth metal nitrate is at least one member selected from the group consisting of $\text{Ba}(\text{NO}_3)_2$, $\text{Sr}(\text{NO}_3)_2$, $\text{Ca}(\text{NO}_3)_2$ and $\text{Mg}(\text{NO}_3)_2$.

11. (Previously Presented) The molten-salt catalyst according to claim 1, wherein said rare-earth nitrate is at least one member selected from the group consisting of $\text{Y}_2(\text{NO}_3)_3$, $\text{La}_2(\text{NO}_3)_3$, $\text{Nd}_2(\text{NO}_3)_3$ and $\text{Pr}_2(\text{NO}_3)_3$.

12. (Previously Presented) The molten-salt catalyst according to claim 1, wherein said catalytic ingredient is composite nitrate.

13. (Previously Presented) The molten-salt catalyst according to claim 12, wherein said composite nitrate is at least one member selected from the group consisting of AgNO_3 - CsNO_3 , $\text{CsNO}_3\text{-KNO}_3$, $\text{CsNO}_3\text{-NaNO}_3$, $\text{CsNO}_3\text{-LiNO}_3$, $\text{KNO}_3\text{-Mg}(\text{NO}_3)_2$, $\text{LiNO}_3\text{-NaNO}_3$, $\text{NaNO}_3\text{-Ca}(\text{NO}_3)_2$, $\text{NaNO}_3\text{-Mg}(\text{NO}_3)_2$, $\text{AgNO}_3\text{-KNO}_3\text{-NaNO}_3$, $\text{AgNO}_3\text{-NaNO}_3\text{-Ba}(\text{NO}_3)_2$, $\text{KNO}_3\text{-LiNO}_3\text{-NaNO}_3$, $\text{KNO}_3\text{-NaNO}_3\text{-Mg}(\text{NO}_3)_2$, $\text{KNO}_3\text{-Ba}(\text{NO}_3)_2\text{-Ca}(\text{NO}_3)_2$, $\text{KNO}_3\text{-Ba}(\text{NO}_3)_2\text{-Sr}(\text{NO}_3)_2$, $\text{KNO}_3\text{-Ca}(\text{NO}_3)_2\text{-Sr}(\text{NO}_3)_2$, $\text{LiNO}_3\text{-NaNO}_3\text{-Ca}(\text{NO}_3)_2$, $\text{NaNO}_3\text{-Ca}(\text{NO}_3)_2\text{-Mg}(\text{NO}_3)_2$, $\text{NaNO}_3\text{-Ca}(\text{NO}_3)_2\text{-Sr}(\text{NO}_3)_2$ and $\text{KNO}_3\text{-NaNO}_3\text{-Ca}(\text{NO}_3)_2\text{-Mg}(\text{NO}_3)_2$.

14. (Previously Presented) The molten-salt catalyst according to claim 1, wherein said catalytic ingredient includes alkali metal nitrate.

15. (Previously Presented) The molten-salt catalyst according to claim 14, wherein said alkali metal includes LiNO_3 at least.

16. (Previously Presented) The molten-salt catalyst according to claim 1, wherein a

loading amount of said catalytic ingredient falls in a range of from 1 to less than 120 parts by weight with respect to 100 parts by weight of said solid support.

17. (Previously Presented) The molten-salt catalyst according to claim 4, wherein said oxidation facilitating ingredient is at least one member selected from the group consisting of noble metal and oxide.

18. (Previously Presented) The molten-salt catalyst according to claim 17, wherein said noble metal is at least one member selected from the group consisting of Pt, Pd and Rh.

19. (Previously Presented) The molten-salt catalyst according to claim 17, wherein said oxide is at least one member selected from the group consisting of CeO₂, ZrO₂, CeO₂-ZrO₂ solid solutions, BaO, CaO, V₂O₅, ZnO, WO₃, MoO₃, NiO, FeO, Fe₃O₄, Fe₂O₃, MnO₂, Cr₂O₃, CuO, CoO and Co₃O₄.

20. (Previously Presented) The molten-salt catalyst according to claim 17, wherein a loading amount of said noble metal falls in a range of from 0.1 to 10 parts by weight with respect to 100 parts by weight of said solid support.

21. (Previously Presented) The molten-salt catalyst according to claim 17, wherein a loading amount of said metal oxide falls in a range of from 1 to 50 parts by weight with respect to 100 parts by weight of said solid support.

SUPPORT FOR THE AMENDMENTS

Claim 1 has been amended.

The amendment of Claim 1 is supported by the specification as filed, for example in paragraph [0009] appearing on page 3.

No new matter is believed to have been entered by the present amendment.