CONTENTS

	Preface pag	e xiii
	I INTRODUCTION AND PRELIMINARIES	I
ı.ı	The topics to be discussed	1
1.2	Equilibrium and departures from it	3
1.3	The equations of motion and various approximations	6
1.4	Basic parameters of heterogeneous flows	11
	2 LINEAR INTERNAL WAVES	14
2. I	Waves at a boundary between homogeneous layers	14
	Progressive waves in deep water, 15; Waves between layers of finite thickness, 18; Standing waves, 19	
2.2	Waves in a continuously stratified fluid Description in terms of modes, 22; Description in terms of rays, 24; Laboratory experiments on waves in bounded regions, 29	21
2.3	Waves in a moving stratified fluid Velocity constant with height, 31; Lee waves with varying properties in the vertical, 34; Reversals of velocity and critical layers, 37	31
2.4	Weak non-linearities: interactions between waves The mechanism of resonant interaction, 39; Interactions of interfacial waves, 41; Interactions with continuous stratification, 44	39
	3 FINITE AMPLITUDE MOTIONS IN STABLY STRATIFIED FLUIDS	48
3.1	Internal waves of finite amplitude Interfacial waves, 48; Cnoidal and solitary waves, 52;	48 48
	Waves and flows in a density gradient, 55; Finite amplitude lee waves 58	

3.2	Internal hydraulics and related problems page Steady frictionless flow of a thin layer, 64; Internal	e 64
	hydraulic jumps, 66; Flow down a slope, 68; The 'lock exchange' problem, 70; Gravity currents and noses, 72	
3.3	Slow motions in a stratified fluid The problem of selective withdrawal, 76; Blocking ahead of an obstacle, 79; Upstream wakes and boundary layers, 82; Viscous diffusive flows, 86	76
4	INSTABILITY AND THE PRODUCTION OF TURBULENCE	91
4.1	The stability of a free shear layer The various types of instability, 92; The Kelvin-Helmholtz mechanism, 94; Interfaces of finite thickness, 97; Observa- tions of the breakdown of parallel stratified flows, 102	92
4.2	The combined effects of viscosity and stratification Viscous effects at an interface, 107; Thermally stratified plane Poiseuille flow, 108; Flows along a sloping boundary, 111; Transition to turbulence, 114	107
4.3	Mechanisms for the generation of turbulence Classification of the various mechanisms, 116; Flows near boundaries, 118; Shear instabilities produced by inter- facial waves, 120; The interaction between wave modes, 123; Internal instabilities with continuous stratification, 124	116
5	TURBULENT SHEAR FLOWS IN A STRATIFIED FLUID	127
5.1	Velocity and density profiles near a horizontal boundary The logarithmic boundary layer, 128; The effect of a buoyancy flux, 130; Forced and free convection, 133; Constant-flux layers in stable stratification, 136	127
5.2	Theories of turbulence in a stratified shear flow Similarity theories of turbulence and diffusion, 139; The spectrum of nearly inertial turbulence, 140; Arguments based on the governing equations, 145	138
5.3	Observations and experiments on stratified shear flows The generation and collapse of turbulent wakes, 151; The suppression of turbulence at an interior shear layer, 154; Stratified flows in pipes, channels and estuaries, 157; Longitudinal mixing and advection, 161	151

	6 BUOYANT CONVECTION FROM	
	ISOLATED SOURCES page	165
6. 1	Plumes in a uniform environment Axisymmetric turbulent plumes, 167; The entrainment assumption, 170; Forced plumes, 173; Vertical two-dimensional plumes, 176	167
6.2	Inclined plumes and turbulent gravity currents A modified entrainment assumption, 178; Slowly varying flows, 180; Laboratory experiments and their applications, 181; Detailed profile measurements, 186	178
6.3	Thermals in a uniform environment Dimensional arguments and laboratory experiments, 186; Buoyant vortex rings, 189; 'Starting plumes', 191; Line thermals and bent-over plumes, 192	186
6.4	The non-uniform environment Motions in an unstable environment, 194; Plumes in a stable environment, 196; Forced plumes and vortex rings in a stable environment, 200; Environmental turbulence, 203	194
	7 CONVECTION FROM HEATED SURFACES	207
7.1	The theory of convection between horizontal plates The governing parameters, 208; Linear stability theory, 210; Finite amplitude convection, 211	208
7.2	Laboratory and numerical experiments on parallel plate convection Observations of laminar convection, 216; Measurements at larger Rayleigh numbers, 219; Numerical experiments, 222	215
7.3	The interaction between convective elements and their environment The formation of plumes or thermals near a horizontal boundary, 226; The environment as an ensemble of convection elements, 230; Convection from small sources in a confined region, 231; Penetrative convection, 234	226

7.4	Convection with other shapes of boundary	bage 239
	A heated vertical wall, 241; Buoyancy layers at vertical an	d
	sloping boundaries, 243; Convection in a slot, 246	
	8 DOUBLE-DIFFUSIVE CONVECTION	251
8.1	The stability problem The mechanism of instability, 251; Linear stabilit analysis, 253; The form of the convection cells, 257 Finite amplitude calculations, 259	
8.2	The formation of layers: experiments and observations The 'diffusive' regime, 262; The 'finger' regime, 266; Sid boundaries and horizontal gradients, 267; Related observations in the ocean, 270	
8.3	The fluxes across an interface Measurements in the 'diffusive' regime, 274; The time history of several convecting layers, 278; Fluxes and structure at a 'finger' interface, 280; The thickness of 'finger' interface, 283; Convection in a region of variable depth, 285	d a
	9 MIXING ACROSS DENSITY INTERFACES	288
9.1	Laboratory experiments Stirring with oscillating grids, 288; Mixing driven by a surface stress, 292; The influence of molecular processes 295; Comparison of various methods of stirring, 297	
9.2	Geophysical applications The wind-mixed surface layer, 299; Seasonal changes of thermocline, 301; Mixing at an atmospheric inversion 306; Other factors limiting the depth of a mixed layer 310	١,
	10 INTERNAL MIXING PROCESSES	313
10.1	The observational data	313
10.2	Critical Richardson number criteria Examples of equilibrium conditions, 318; Non-equilibrium conditions: step formation, 319; Energetics of a layered system, 322	

CONTENTS xi

10.3	Wave-induced mixing page	325
	Mixing at existing interfaces, 325; Formation of layers	
	from a smooth gradient, 327; Statistical aspects of wave	
	generation and breaking, 330; Waves and turbulence in	
	large scale flows, 334	
	Bibliography and Author Index	338
	Recent Publications	359
	Subject Index	362