

Data Analysis I

Graph Representation

Graph representation

• By image (drawing) ☺

Implementing a Graph

- To program a graph data structure, what information would we need to store?
 - For each vertex?
 - For each edge?

Implementing a Graph

- What kinds of questions would we want to be able to answer (quickly?) about a graph G?
 - Where is vertex v?
 - Which vertices are adjacent to vertex v?
 - What edges touch vertex v?
 - What are the edges of G?
 - What are the vertices of G?
 - What is the degree of vertex v?

Representation

- There are different ways to represent a graph
 - List of edges
 - List of lists: Node list and list of neighbors
 - Adjacency matrix

Adjacency matrix

$$A_{ij} = \begin{cases} w_{ij} & \text{if } i \text{ and } j \text{ are connected} \\ 0 & \text{otherwise} \end{cases}$$

If A represents an unweighted network, then $w_{ij} = 1$ for all i, j.

$$A =$$

Adjacency matrix

- Adjacency is chosen on the ordering of vertices.
 Hence, there as are as many as n! such matrices.
- The adjacency matrix of undirected graphs are symmetric (a_{ij} = a_{ji}) (why?) → redundant information for undirected graphs
- When there are relatively few edges in the graph the adjacency matrix is a sparse matrix
- Directed multigraphs can be represented by using a_{ij} = number of edges from v_i to v_j , undirected similarly

Modifications of adjacency matrix

- Weighted adjacency matrix
- Distance matrix (e.g. result of Floyd's algorithm (later))
- Similarity matrix (later)

Directed

$$A = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right)$$

Directed Weighted

$$A = \left(\begin{array}{ccc} 0 & 1 & 2 \\ 0 & 0 & 0 \\ 1 & 4 & 3 \end{array}\right)$$

Incidence matrix

• Let G = (V, E) be an unditected graph. Then the incidence matrix with respect to this ordering of V and E is the n x m matrix $B = [b_{ij}]$, where

$$b_{ij} = \begin{cases} 1 \text{ when edge } e_j \text{ is incident with } v_i \\ 0 \text{ otherwise} \end{cases} \quad B = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 \\ -1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & -1 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 & 1 & 0 \end{bmatrix}$$

List of lists: Node list and list of neighbors (Adjacency list)

https://en.wikipedia.org/wiki/Adjacency_list

Undirected graph

v_1	\rightarrow	v_2 .	v_4
_			

$v_2 \rightarrow v_1, v_3$

$$v_3 \rightarrow v_2, v_4, v_5$$

$$v_4 \rightarrow v_1, v_3, v_5$$

$$v_5 \rightarrow v_3, v_4$$

Directed graph

$$v_1 \rightarrow v_2, v_4$$

$$v_2
ightarrow$$

$$v_3
ightarrow v_2, v_5$$

$$v_4
ightarrow v_3$$

$$v_5
ightarrow v_4$$

Node list and list of neighbors: Pros and Cons

- Adjacency list stores edges as individual linked lists of references to each vertex's neighbors
- advantages:
 - new nodes can be added easily
 - new nodes can be connected with existing nodes easily
 - "who are my neighbors" easily answered
- disadvantages:
 - determining whether an edge exists between two nodes: O(average degree)

List of edges

Undirected graph	Directed graph
(v_1,v_2)	(v_1,v_2)
(v_1,v_4)	(v_1,v_4)
(v_2, v_3)	(v_3, v_2)
(v_3,v_4)	(v_3, v_5)
(v_3, v_5)	(v_4,v_3)
(v_4, v_5)	(v5, v4)

Runtime table

2 L	(G)	C CGDIC			
 n vertices, m edges no parallel edges no self-loops 	Edge List	Adjacency List	Adjacency Matrix		
Space	n + m	n + m	n ²		

•			
Space	n + m	n + m	n ²
Finding all adjacent	m	deg(v)	n

vertices to **v** Determining if **v** is $deg(\mathbf{v})$ m adjacent to w

 n^2 adding a vertex

adding an edge to ${m v}$ $deg(\mathbf{v})$ n^2 removing vertex v m removing an edge from **v**

 $deg(\mathbf{v})$ m

Data Analysis I

Measures and Metrics

References

- Newman, M. (2010). Networks: an introduction.
 Oxford University Press. [168-193]
- Zaki, M. J., Meira Jr, W. (2014). Data Mining and Analysis: Fundamental Concepts and Algorithms.
 Cambridge University Press. [97-102]
- Aaron Clauset. Network Analysis and Modeling http://tuvalu.santafe.edu/~aaronc/courses/5352/csci5352/2017 L2.pdf
- Albert-László Barabási. Network Science <u>http://barabasi.com/networksciencebook/</u>
 Chapter 2

Structural (topological) properties

- Degree
- Local degree d of a node v_i (as the number of its neighbors) $d_i = \sum_i A(i,j)$
- Global mean (average) degree $\mu_d = \frac{\sum_i d_i}{n}$
- indegree / outdegree (by taking the summation over the incoming / outgoing edges) as follows:

$$id(v_i) = \sum_{j} A(j, i)$$
$$od(v_i) = \sum_{i} A(i, j)$$

Degree centrality

- Degree centrality
- Social network the higher the degree, e.g., a more influential person

 The citation network - the higher the degree (more references), the "greater the impact of the publication on scientific research,"

Zachary's carate club

Degree centrality

Zachary's carate club

group 1	1	2	3	4	5	6	7	8	11	12	13	14	17	18	20	22		
k	16	9	10	6	3	4	4	4	3	1	2	5	2	2	3	2		
k/m	0.10	0.06	0.06	0.04	0.02	0.03	0.03	0.03	0.02	0.01	0.01	0.03	0.01	0.01	0.02	0.01		
group 2	9	10	15	16	19	21	23	24	25	26	27	28	29	30	31	32	33	34
\overline{k}	5	2	2	2	2	2	2	5	3	3	2	4	3	4	4	6	12	17
k/m	0.03	0.01	0.01	0.01	0.01	0.01	0.01	0.03	0.02	0.02	0.01	0.03	0.02	0.03	0.03	0.04	0.08	0.11

Path

- A path in a graph is a finite or infinite sequence of edges which joins a sequence of vertices which, by most definitions, are all distinct (and since the vertices are distinct, so are the edges).
- The shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.
- The distance between two vertices in a graph is the number of edges in a shortest path (also called a graph geodesic) connecting them. This is also known as the geodesic distance.

Shortest Path Problem

- Given a weighted graph and two vertices u and v, we want to find a path of minimum total weight between u and v.
 - Length of a path is the sum of the weights of its edges.
 - In unweighted graph the weights od edges are = 1.
- Example:
 - Shortest path between Providence and Honolulu
- Applications
 - Internet packet routing
 - Flight reservations

Structural properties

- Path
- Local
 - The eccentricity $e(v_i)$ of a node v_i is the maximum distance from v_i to any other node in the graph $e(v_i) = \max_i \{d(v_i, v_j)\}$
- Global
 - The diameter d(G), is the maximum eccentricity of any vertex in the graph $d(G) = \max_{i} \{e(v_i)\} = \max_{i} \{d(v_i, v_j)\}$
 - Mean distance (Average Path Length) of a connected graph is given as $\sum_{i} \sum_{i=j} d(v_i, v_i) = 2$

$$\mu_{L} = \frac{\sum_{i} \sum_{j>i} d(v_{i}, v_{j})}{\binom{n}{2}} = \frac{2}{n(n-1)} \sum_{i} \sum_{j>i} d(v_{i}, v_{j})$$

- where n is the number of nodes in the graph, and $d(v_i, v_j)$ is the distance between v_i and v_j .

All-Pairs Shortest Paths

- Find the distance between every pair of vertices in a weighted directed graph G.
- Floyd-Warshall algorithm
- https://en.wikipedia.o rg/wiki/Floyd%E2%80 %93Warshall algorith m
- https://www.youtube. com/watch?v=40QeC uLYj-4

```
Algorithm AllPair(G) {assumes vertices 1,...,n}
for all vertex pairs (i,j)
   if i = j
      C_0[i,i] \leftarrow 0
   else if (i,j) is an edge in G
      C_0[i,j] \leftarrow weight of edge(i,j)
   else
      C_0[i,j] \leftarrow + \infty
for k \leftarrow 1 to n do
   for i \leftarrow 1 to n do
     for j \leftarrow 1 to n do
        C_k[i,j] \leftarrow \min\{C_{k-1}[i,j], C_{k-1}[i,k] + C_{k-1}[k,j]\}
return C_n
```

Uses only vertices numbered 1,...,k-1 (compute weight of this edge)

Uses only vertices k=2 numbered 1,...,k-1

Uses only vertices numbered 1,...,k

Example: Floyd-Warshall

$$C^{0} = \begin{bmatrix} 0 & 3 & 5 & x & x \\ x & 0 & 1 & 2 & x \\ x & x & 0 & x & x \\ x & x & 9 & 0 & 1 \\ 2 & x & 8 & x & 0 \end{bmatrix} C^{1} = \begin{bmatrix} 0 & 3 & 5 & x & x \\ x & 0 & 1 & 2 & x \\ x & x & 0 & x & x \\ x & x & 9 & 0 & 1 \\ 2 & 5 & 7 & x & 0 \end{bmatrix}$$

$$C^{1} = \begin{vmatrix} 0 & 3 & 3 & x & x \\ \hline x & 0 & 1 & 2 & x \\ \hline x & x & 0 & x & x \\ \hline x & x & 9 & 0 & 1 \\ 2 & 5 & 7 & x & 0 \end{vmatrix}$$

$$v_1 \longrightarrow (v_2, 3), (v_3, 5)$$

$$v_2 \longrightarrow (v_3, 1), (v_4, 2), (v_5, 4)$$

$$v_3 \longrightarrow$$

$$v_4 \longrightarrow (v_3, 9), (v_5, 1)$$

$$v_5 \longrightarrow (v_1, 2), (v_3, 8)$$

$$C^2$$

$$C^{2} = \begin{bmatrix} 0 & 3 & 4 & 5 & x \\ x & 0 & 1 & 2 & x \\ \hline x & x & 0 & x & x \\ \hline x & x & 9 & 0 & 1 \\ 2 & 5 & 6 & 7 & 0 \end{bmatrix}$$

$$C^{2} = \begin{bmatrix} 0 & 3 & 4 & 5 & x \\ x & 0 & 1 & 2 & x \\ \hline x & x & 0 & x & x \\ \hline x & x & 9 & 0 & 1 \\ 2 & 5 & 6 & 7 & 0 \end{bmatrix} \quad C^{3} = \begin{bmatrix} 0 & 3 & 4 & 5 & x \\ x & 0 & 1 & 2 & x \\ \hline x & x & 0 & x & x \\ \hline x & x & 9 & 0 & 1 \\ \hline 2 & 5 & 6 & 7 & 0 \end{bmatrix}$$

$$C^{4} = \begin{bmatrix} 0 & 3 & 4 & 5 & 6 \\ x & 0 & 1 & 2 & 3 \\ x & x & 0 & x & x \\ x & x & 9 & 0 & 1 \\ \hline 2 & 5 & 6 & 7 & 0 \end{bmatrix} \qquad C^{5} = \begin{bmatrix} 0 & 3 & 4 & 5 & 6 \\ 5 & 0 & 1 & 2 & 3 \\ x & x & 0 & x & x \\ 3 & 6 & 7 & 0 & 1 \\ 2 & 5 & 6 & 7 & 0 \end{bmatrix}$$

$$C^{5} = \begin{bmatrix} 5 & 5 & 4 & 5 & 5 \\ 5 & 0 & 1 & 2 & 3 \\ x & x & 0 & x & x \\ 3 & 6 & 7 & 0 & 1 \\ 2 & 5 & 6 & 7 & 0 \end{bmatrix}$$

Structural properties

- Degree sequence of the graph on the figure is (4,4,4,3,2,2,1) and therefore its degree frequency distribution is given as $(N_0,N_1,N_2,N_3,N_4) = (0,1,3,1,3)$
- Mean degree is 2.75
- The degree distribution is given as $f(k) = P(X = k) = N_k/n$ (f(0), f(1), f(2), f(3), f(4))=(0,0.125,0.375,0.125,0.375)
- The eccentricity of node v_4 is 3, because the node farthest from it is v_6 and $d(v_4,v_6)=3$.

• The diameter of the graph is d(G) = 4, as the largest distance over all the pairs is $d(v_6, v_7) = 4$.

References

- Newman, M. (2010). Networks: an introduction.
 Oxford University Press. [168-193]
- Zaki, M. J., Meira Jr, W. (2014). Data Mining and Analysis: Fundamental Concepts and Algorithms.
 Cambridge University Press. [97-102]
- Aaron Clauset. Network Analysis and Modeling http://tuvalu.santafe.edu/~aaronc/courses/5352/csci5352/2017 L2.pdf
- Albert-László Barabási. Network Science <u>http://barabasi.com/networksciencebook/</u>
 Chapter 2

Structural properties (global)

- Network dimension networks are usually large, i.e. the number of vertices is large
- Network density Networks are usually sparse
 - Sparse vs. dense graph (net)
 - The resolution is often vague, depending on the context
 - Most often
 - Sparse graph $n \approx km$, m = O(n)
 - Dense graph $m = \Theta(n^2)$
 - Density H:
 - mean degree <d> = 2m/n → after the of division by highest degree (n-1) →
 - 2m/n*(n-1) →
 - $H = m / 0.5*n*(n-1), H \in <0,1>$

