Parcours de graphes

Chapitre 15,3

1 Présentation des différents parcours

1.1 Parcours en largeur et en profondeur

Définition. Le parcours d'un graphe consiste à visiter un à un tous ses sommets dans un certain ordre en passant par les arêtes (ou les arcs) depuis un sommet donné.

De nombreux types de parcours sont possibles. Parmi eux, on distingue :

- Le parcours en largeur (BFS en anglais pour breadth first search) : on explore en priorité tous les voisins du premier sommet, puis tous les voisins des voisins du premier sommet, etc.
- Le parcours en profondeur (DFS en anglais pour depth first search) : on explore en priorité les voisins du premier voisin du premier sommet, puis récursivement ses voisins respectifs.

La notion de parcours peut s'appliquer à un graphe orienté ou non.

Les algorithmes de parcours de graphes servent dans la résolution d'un certain nombre de problèmes parmi lesquels :

- la détermination de la **connexité** et **forte connexité** d'un graphe;
- l'existence d'un circuit ou d'un cycle (ce qu'on appelle tri topologique);
- le calcul des plus courts chemins (notamment l'algorithme de Dijkstra);
- etc.

Exercice 1. Quelle particularité doit présenter un graphe (orienté ou non orienté) si on souhaite le parcourir?

Solution. Le graphe non orienté doit être connexe. Si ce n'est pas le cas, il faut considérer une racine pour chaque composante connexe.

Exercice 2. On considère le graphe non orienté $G_0 = (V_0, E_0)$ suivant :

- G_0 admet-il un parcours? Justifier la réponse.

Solution. G_0 n'admet aucun parcours puisqu'il n'est pas connexe.

Exercice 3. On considère le graphe non orienté $G_1 = (V_1, E_1)$ suivant :

- 1. Pour chacun des parcours génériques de G_1 suivants, dire s'ils sont ou non des parcours en largeur : (8,6,9,2,5,7,1,4,3), (6,8,5,7,4,2,3,1,9), (4,2,3,5,1,7,6,8,9), (3,1,4,2,6,5,7,8,9). Justifier les réponses négatives.
- 2. Donner trois parcours en largeur de G_1 , le premier partant du sommet 1, le deuxième du sommet 9 et le dernier du sommet 5.
- 3. Pour chacun des parcours génériques de G_1 suivants, dire s'ils sont ou non des parcours en profondeur : (5,6,8,9,7,3,1,2,4), (8,6,9,7,5,2,4,3,1), (4,2,1,5,3,7,6,8,9), (4,2,6,8,9,5,7,3,1). Justifier les réponses négatives.
- 4. Donner trois parcours en profondeur de G_1 , le premier partant du sommet 1, le deuxième du sommet 9 et le dernier du sommet 5.

Solution.

- 1. Étude des parcours :
 - (8, 6, 9, 2, 5, 7, 1, 4, 3): parcours en largeur;
 - (6, 8, 5, 7, 4, 2, 3, 1, 9): pas parcours en largeur car 2 doit être visité avant 4;
 - (4, 2, 3, 5, 1, 7, 6, 8, 9): parcours en largeur;
 - (3, 1, 4, 2, 6, 5, 7, 8, 9) : pas parcours en largeur car 7 doit être visité avant 2.
- 2. Parcours en largeur (ils ne sont pas uniques):
 - de sommet 1:(1,2,3,4,6,7,5,8,9);
 - de sommet 9:(9,8,6,2,5,7,1,4,3);
 - de sommet 5:(5,4,6,2,3,7,8,1,9).
- 3. Étude des parcours:
 - (5,6,8,9,7,3,1,2,4): parcours en profondeur;
 - (8,6,9,7,5,2,4,3,1): non pas parcours en profondeur, 9 n'est pas voisin du dernier sommet ouvert de (8,6), qui est $6\,;$

- (4,2,1,5,3,7,6,8,9): non pas parcours en profondeur, 5 n'est pas voisin du dernier sommet ouvert de (4,2,1) qui est 1;
- (4, 2, 6, 8, 9, 5, 7, 3, 1): parcours en profondeur.
- 4. Parcours en profondeur (ils ne sont pas uniques) :
 - de sommet 1:(1,2,6,8,9,7,3,4,7);
 - de sommet 9:(9,8,6,2,1,3,4,5,7);
 - de sommet 5:(5,4,2,1,3,7,6,8,9).

Exercice 4. On considère le graphe non orienté $G_2 = (V_2, E_2)$ suivant :

- 1. Pourquoi peut-on parcourir ce graphe?
- 2. Donner le parcours en largeur de sommet de base 0 en prenant les sommets par ordre croissant de leur étiquette.
- 3. Donner le parcours en profondeur de sommet de base 0, en prenant les sommets par ordre croissant de leur étiquette.

Solution.

- 1. G_2 est un graphe connexe, on peut donc le parcourir.
- 2. Parcours en largeur depuis 0:[0,2,3,4,1].
- 3. Parcours en profondeur depuis 0: [0, 2, 1, 3, 4].

Exercice 5. On considère le graphe orienté $G_3 = (V_3, A_3)$ suivant :

1. Le parcours (2,1,6,3,7,8,4,9,5) est-il un parcours en largeur de G_3 ? Même question pour le parcours (2,1,4,6,3,5,7,8,9).

- 2. Pour chaque racine de G_3 donner un parcours en largeur de G_3 .
- 3. Le parcours (2,1,3,4,5,6,8,9,7) est-il un parcours en profondeur de G_3 ?
- 4. Pour chaque racine de G_3 donner un parcours en profondeur de G_3 .

Solution.

- 1. Le parcours (2,1,6,3,7,8,4,9,5) est un parcours en largeur de G_3 contrairement au parcours (2,1,4,6,3,5,7,8,9).
- 2. Depuis le sommet :

```
-1:(1,3,4,7,2,5,6,8,9)
```

- -2:(2,1,6,3,7,8,4,9,5)
- -3:(3,4,7,2,5,1,6,8,9)
- -4:(4,1,2,5,3,6,7,8,9)
- 5 : (5, 6, 7, 8, 9) Ici le graphe n'est pas fortement connexe, il est simplement constitué de composantes fortement connexes. On ne peut donc pas visiter tous les sommets.
- 6 : (6, 7, 8, 9) Même remarque.
- 7: (7) Aucun parcours possible.
- 8: (8,6,9,7) Composante fortement connexe.
- -9:(9)
- 3. Le parcours (2,1,3,4,5,6,8,9,7) est bien un parcours en profondeur de G_3 .
- 4. Depuis le sommet :

```
-1:(1,3,4,2,6,7,8,9,5);
```

- 2: (2,1,3,4,5,6,7,8,9);
- 3: (3,4,1,2,6,7,8,9,5);
- -4:(4,1,3,7,2,6,8,9,5);
- 5: (5,6,7,8,9) On ne peut pas visiter tous les sommets.
- -6:(6,7,8,9) Idem
- -7:(7)
- -8:(8,6,7,9)

-9:(9).

Exercice 6. Soit le graphe orienté $G_4 = (V_4, E_4)$ suivant :

- 1. Donner un parcours en largeur de G_4 de base le sommet A.
- 2. Donner un parcours en profondeur de G_4 depuis le sommet A.

Solution.

- 1. Parcours en largeur possible depuis A: (A,B,C,D,E,F,G,H);
- 2. Parcours en profondeur possible depuis A:(A,B,D,F,G,H,E,C).

1.2 Algorithme de Dijkstra

1.2.1 Illustration du fonctionnement de l'algorithme

On cherche à déterminer les plus courts chemins vers les différents sommets à partir du sommet a.