Universidade Federal Fluminense

Instituto de Matemática e Estatística

Lista 05

1. Considere uma amostra aleatória simples X_1, \ldots, X_n obtidas de uma população normal com média μ e variância conhecida $\sigma^2 = 25$. Faça o que se pede:

(a) Crie uma função que executa o procedimento de teste de hipóteses unilateral a esquerda para a média da população e toma a decisão com base em \bar{x} . Ao receber os argumentos cabíveis, a função deverá retornar a seguinte mensagem (apenas um exemplo ilustrativo)

Estimativa pontual: 27.5 Região Crítica: [-Inf,30]

Decisão: Rejeita-se H0 a um nível de significância alfa

- (b) Suponha somente para este item, que σ^2 seja desconhecido. Crie uma função que executa o procedimento de teste de hipóteses unilateral a direita para a variância da população. A saída deve ser semelhante a do item anterior.
- (c) Suponha que deseja-se investigar a proporção dos valores observados na amostra que são superiores a um certo valor h, ou seja, $Y_i = 0$, se $X_i \le h$ ou $Y_i = 1$, se $X_i > h$. Crie uma função que executa o procedimento de teste de hipóteses bilateral para a proporção da população Y. A saída deve ser semelhante a do item anterior.
- (d) Refaça o item (a) tomando a decisão com base na estatística de teste $Z=\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}$
- (e) Crie uma função que calcula o erro tipo II para o teste realizado no item (a). Use como argumentos nesta função o tamanho da amostra, o nível de significância, a variância populacional, o valor da média populacional em H_0 (μ_0) e o valor verdadeiro da média populacional (μ).
- (f) Assuma que n=20, $\alpha=0,05$ e $\mu_0=30$ e plote a gráfico do item anterior para $0<\mu<60$. Comente o comportamento do gráfico.
- (g) Refaça o item anterior assumindo diferentes valores de n=20,30,50,100 e os demais argumentos se mantem como anteriormente. Plote todas as funções num mesmo gráfico. Comparando as curvas o que você pode afirmar?
- (h) Crie uma função que calcula o poder do teste de hipóteses de média bilaterial. Use como argumentos nesta função o tamanho da amostra, o nível de significância, a variância populacional, o valor da média populacional em H_0 (μ_0) e o valor verdadeiro da média populacional (μ).
- (i) Assuma que n=20, $\alpha=0,05$ e $\mu_0=30$ e plote a gráfico do item anterior para $0<\mu<60$. Comente o comportamento do gráfico.
- (j) Refaça o item anterior assumindo diferentes valores de n=20,30,50,100 e os demais argumentos se mantem como anteriormente. Plote todas as funções num mesmo gráfico. Comparando as curvas o que você pode afirmar?
- 2. Considere uma amostra aleatória simples X_1, \ldots, X_n obtidas de uma população normal com média μ e variância σ^2 desconhecida. Suponha que n é grande.
 - (a) Crie uma função que executa o procedimento de teste de hipóteses unilateral a direita para a média da população e toma a decisão baseado em \bar{x} . Ao receber os argumentos cabíveis, a função deverá retornar a seguinte mensagem (apenas um exemplo ilustrativo)

Estimativa pontual: 27.5 Região Crítica: [30,Inf]

Decisão: Não rejeita-se H0 a um nível de significância alfa.

- (b) Refaça o item (a) tomando a decisão com base na estatística de teste $T = \frac{\bar{X} \mu}{S/\sqrt{n}}$
- (c) Crie uma função que calcula o erro tipo II para o teste realizado no item (a). Use como argumentos nesta função o tamanho da amostra, o nível de significância, o valor da média populacional em H_0 (μ_0) e o valor verdadeiro da média populacional (μ).
- (d) Assuma que n=20, $\alpha=0,05$ e $\mu_0=10$ e plote a gráfico do item anterior para $0<\mu<20$. Comente o comportamento do gráfico.
- (e) Refaça o item anterior assumindo diferentes valores de n=20,30,50,100 e os demais argumentos se mantem como anteriormente. Plote todas as funções num mesmo gráfico. Comparando as curvas o que você pode afirmar?
- (f) Refaça o item (e), assumindo diferentes valores de $\alpha=0,01;0,05,0,07;0,10$ e os demais argumentos se mantem como anteriormente. Plote todas as funções num mesmo gráfico. Comparando as curvas o que você pode afirmar?
- (g) Crie uma função que calcula o poder do teste de hipóteses de média unilaterial a direita. Use como argumentos nesta função o tamanho da amostra, o nível de significância, o valor da média populacional em H_0 (μ_0) e o valor verdadeiro da média populacional (μ). Especifique alguns valores para os arqumentos e plote a função para diversos valores de μ .
- 3. Importe o arquivo BaseGenero.rds. O arquivo contém informações de pacientes que sofrem de ELA (uma doença degenerativa). O arquivo possui informações sobre a idade, peso e o gênero dos pacientes. Usando funções já criadas, ou criando novas funções (se necessário), teste as seguintes afirmações a seguir:
 - (a) O pesquisador afirma que o Peso dos homens é superior a 70 Kg. Com base em um nível de significância de 5% você concorda com o pesquisador? Tome a sua decisão com base no p-valor.
 - (b) O pesquisador afirma que a Idade dos homens é inferior a 30 anos. Com base em um nível de significância de 1% você concorda com o pesquisador? Tome a sua decisão com base na região crítica.
 - (c) O pesquisador afirma que a idade das mulheres é diferente de 20 anos. Com base em um nível de significância de 3% você concorda com o pesquisador? Tome a sua decisão com base no p-valor.
 - (d) O pesquisador acredita que a proporção de mulheres com peso superior a 70 Kg é superior a 65%.
- 4. Refaça a questão anterior utilizando funções fornecidas pelo R.
- 5. Crie uma função que calcula o erro tipo II do teste de hipóteses unilateral a direita para a proporção.
- 6. Crie uma função que calcula o poder do teste de hipóteses bilateral para a proporção.