Introduction

CS 6501: Serverless Al Fall 2025 Lecture 1

Yue Cheng

Introduction

- Yue Cheng
 - Associate professor of Data Science & Computer Science
 - Web: https://tddg.github.io
 - Email: mrz7dp@virginia.edu

- Current research:
 Designing better data systems for AI
 - (Storage) Systems for Al
 - (Affordable) Serverless Al

Course staff and office hours

- Instructor: Yue Cheng
 - Office hours: M/W, 2:30pm-3:30pm on Zoom

- GTA:
 - TBD

Discussion and getting help

- Discussion, questions: Ed
 - https://edstem.org/us/dashboard
 - Alternative place to ask questions, brainstorming, and discussing anything related to course topics
 - No anonymous posts or questions
 - Can use private posts to instructor/GTA
 - We are monitoring Ed several times a day
 - We will respond to questions in a batch manner

Today's agenda

- Why are we studying Serverless + AI? What is this course about?
 - What is Serverless and FaaS?
 - What are serverless Al applications?

What will you do in this course?

What is serverless?

- Operationally
 - "No-ops" (almost) no configuration
 - Autoscaling down to 0
 - Closer to pay-per-use (rather than pay-per-allocation)
 - Fine-grained billing

- Popular offering: serverless custom code
 - Function-as-a-Service (FaaS)

What is FaaS?

- A programming abstraction that enables users to upload code, run them at (virtually) any scale, and pay only for the resources used
- Well-defined life-cycle: trigger, invocation

short small

Quite many limitations in <u>duration</u>, <u>memory</u>,
 <u>communication</u>, <u>state</u>

indirect stateless

2008

Serverless industry trend

Serverless industry trend: 2025 and onwards ...

When AI meets serverless

- Users don't need to manage Al hardware or infrastructure
 - but can run/use AI applications on demand (anytime)

Serverless GPU FaaS (GPUaaS)

Serverless GPU demo

Course syllabus

Big picture course goals

- Learn key works in serverless and modern Al systems
- Learn how to read, present, and evaluate a systems research paper
- Learn how to manage project and write code with Al coding tools
 - Sharpen your AI coding skill: an exciting time to do so
- Learn how to approach, discuss, and communicate about technical subject matter

Schedule (tentative)

- Readings, project due dates, resources
- Less concrete further out

https://tddg.github.io/cs6501-serverless-ai-fall25/

Schedule (tentative)

- Most lectures will have two paper presentations, each led by one of us (including me:-)
- Week 1-2: Cloud & serverless computing (Foundations)
- Week 3-5: FaaS platforms, workloads, cold starts
- Week 6: Stateful serverless computing

(Serverless & FaaS)

- Week 7-9: Serverless applications
- Week 10-11: LLM serving and inference

(Serverless AI)

- Week 12-14: Serverless Al
- Week 15-16: Final project presentation

Readings

- Mostly papers, occasionally blog articles
 - As most topics are not directly covered by a text
- Slides/lecture notes
- Optional textbooks (both are free)
 - "Operating Systems: Three Easy Pieces (OSTEP)" by Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau
 - "Distributed Systems (3rd edition)" by van Steen and Tenenbaum will supply optional alternate explanations

Paper reviews and presentations

- Three roles: Audience, Scribers, Presenters
- Audience: Read both papers for that class
 - Ensure to understand key ideas, designs, findings
 - Fill the survey for that day (5 wild cards)
- Scribers: Capture in-class discussions
 - Sign up as scriber for at least 3 presentations
- Presenters: Prepare slides and present the paper of your choice in class
 - Presenter doesn't need to submit survey for that class
 - Send your slides to the instructor at least 3 days before the class

Projects

- A term-long, research / development project
 - I'll supply ideas (and codebase for some)
 - You'll build the idea into an MVP (minimum viable product) with Al assisted coding
- Week 2: Team signup (size up to two)
- Week 4: Proposal report due
- Week 8: Midterm project reflection
- Week 9: Checkpoint report due
- Week 15-16: Project presentation and everything due
- My experience of working with AI coding tools
 - Started earlier this summer, tried many tools
 - Actively driving three projects in parallel

Me before Al coding is a thing

Summer experiments supercharged by Al tools

Teaching

Writing papers

Writing proposals

Endless meetings

Managing students

Serverless GPU notebooks

derived from NotebookOS

Customized Qwen CLI

- Reflective learning
- Workload tracing

Qwen3-Coder

[Experience so far] AI coding:

- Excellent for rapid prototyping & hypothesis validation
- But gets confused easily requires smart user management

Y. Cheng

Not enough time for coding...

By the end of the semester...

Hopefully, you will have built some sophisticated, functional MVP that addresses an important real-world painpoint

Grading

• Paper reviews (10% total)

Class participation (10%)

• Presentation (30%)

Project (50%)

Resources and TODOs

- Sign-ups
 - Sign up for Ed (enrollment email sent)
 - Sign up for paper presentations & scribing
 - Redeem Google Cloud edu credit (\$50 each)
 - Install Qwen Code CLI customized for this class
 - Interfaces Qwen 3 Coder Plus (reasonably powerful LLM)
 - Offers 2,000 free requests per day for free-tier users
 - Provides dashboard visualization for historical prompts
- Next week
 - Fundamentals of cloud & serverless computing