Application No.: 09/602,951

Docket No.: TESSERA 3.0-113 CONT

second outer dielectric layers;

(e) metallizing said coated through vias to form metallic via liners connecting said outer metal layers and insulated from said first and second metal layers; and

- (f) patterning said outer metal ayers such that at least some of said metallic via liners are electrically isolated from said first and second metal layers.
- 2. (Amended) The method as claimed in claim 1 wherein said patterning of said outer metal layers forms first signal lines overlying and substantially parallel to the plane of said first metal layer and second signal lines overlying and substantially parallel to the plane of said second metal layer.

()

- 4. (Twice Amended) The method as claimed in claim 2, wherein said first signal lines are substantially perpendicular to said second signal lines.
- 5. (Amended) The method as claimed in claim 1 further comprising the steps of forming blind vias through said outer dielectric layers to expose one or more regions of said first and second metal layers and metallizing said blind vias so that at least some of said signal lines are connected to said first and second metal layers.
- 6. (Amended) The method as claimed in claim 5 wherein said steps of metallizing said blind vias and metallizing said through vias are performed simultaneously.
- 7. (Amended) The method as claimed in claim 2, further comprising the step of forming additional signal lines in at least one of said first and second metal layers before the coating step.

Application No.: 09/602,951 Docket No.: TES\$ERA 3.0-113 CONT

(Amended) The method as claimed in claim 1, wherein each said through via has side walls, said side walls being covered by said dielectric material during the coating step

(Twice Amended) The method as claimed in claim 2, wherein 9. the selectively patterning step includes the step of selectively removing portions of the outer metal layers.

- The method as claimed in claim 9 wherein the (Amended) selectively patterning step includes the step of selectively etching the outer metal layers to form said first and second signal lines therein.
- (Amended) The method as claimed in claim 5, wherein the 11. step of providing outer metal layers over the first and second outer dielectric layers includes the step of:

depositing a seed layer over said outer dielectric layers including the blind vias and the exposed regions ϕ f said first and second metal layers;

plating or sputtering a metal onto said seed layer.

- (Amended) The method as claimed in claim 2 wherein said step of selectively patterning said outer metal layers includes the step of selectively depositing said outer metal layers.
- (Amended) The method as claimed in claim 5, wherein the 13. step of forming said blind vias includes the step of laser drilling said outer dielectric layers.
- The method as claimed in claim 13, (Amended) comprising the step of plasma etching said blind vias after the laser drilling step to remove any said dieledtric material

Application No.: 09/602,951 Docket No.: TESSERA 3.0-113 CONT residue remaining in said blind vias.

- 15. (Amended) The method as claimed in claim 1, wherein during the coating step said dielectric material is provided having a uniform thickness.
- 16. (Amended) The method as claimed in claim 1, wherein after the coating step said dielectric material has a uniform thickness of approximately 25-75 microns.
- 17. (Amended) The method as claimed in claim 1, wherein after the coating step said through vias remain open.
- 18. (Amended) The method as claimed in claim 1, wherein said through vias have a diameter of approximately 175-200 microns before the coating step and approximately 25-150 microns after the coating step.
- 19. (Amended) The method as claimed in claim 1, wherein the coating step includes the step of electrophoretically depositing said dielectric material.
- 22. (Amended) The method as claimed in claim 1, wherein the step of forming said through vias includes the steps of etching said first and second metal layers and drilling said inner dielectric element.
- step of forming said through vias includes the steps of:

 etching said first and second metal layers to provide
 aligned openings therein;

(Amended) The method as claimed in claim 1, wherein the

aligning a laser in one of said aligned openings and drilling said inner dielectric element.

01

25.

Application No.: 09/602,951 Docket No.: TESSERA 3.0-113 CONT

(Amended) The method as claimed in claim 1, wherein said first and second metal layers are approximately 1+18 microns thick.

- (Amended) The method as claimed in claim 1, wherein said 27. inner dielectric element is approximately 25-50 microhs thick.
- (Three Times Amended) A method of making a multi-layer circuit assembly comprising the steps of:
 - providing an inner dielectric element;
 - layers (b) providing first and second metal having openings therein on opposite surfaces of said inner dielectric element, said openings defining edges in said first and second metal layers, each said opening layer being in substantial said first metal alignment with one of said openings in said second metal layer;
 - coating said inner dielectric element and said first (c) and second metal layers and said edges of said first and second metal layers with a dielectric material to thereby form a coated structure having first and second outer dielectric layers covering said first and second metal layers respectively and having dielectric material in said openings of said fitst and second metal layers and covering said edges of said first and second metal layers;
 - forming one or more through vias extending through (d) said coated structure, each said through via being in substantial alignment with said aligned openings in said first and second metal layers;
 - providing first and second outer metal layers covering (e) said outer dielectric layers;

- (f) metallizing said through vias to form metallic via liners connecting said outer metal layers, and insulated from said first and second metal layers, said dielectric material extending into said vias being disposed between the metallic via liners and said first and second metal layers; and
- (g) patterning said outer metal layers such that at least some of said metallic via liners are electrically isolated from said first and second metal layers.
- 29. (Amended) The method as claimed in claim 28 wherein said patterning of said outer metal layers forms first signal lines overlying said first metal layer and second signal lines overlying said second metal layer.
- 0
- 30. (Amended) The method as claimed in claim 28 further comprising the steps of forming blind vias through said outer dielectric layers to expose one or more regions of said first and second metal layers and metallizing said blind vias so that at least some of said signal lines are connected to some first and second metal layers.
- 31. (Amended) The method as claimed in claim 30, wherein the steps of metallizing said through vias and metallizing said blind vias are performed simultaneously.
- 010
- 33. (Amended) The method as claimed in claim 29, wherein said first signal lines are substantially perpendicular to said second signal lines.
- 34. (Amended) The method as claimed in claim 33, wherein the selectively patterning step includes the step of etching the outer metal layers.