

Matthias von Wachter

Professur Elektronische Bauelemente und Integrierte Schaltungen

Extraktion von Modellparametern für ein Kompaktmodell am Beispiel einer PN Diode

Hauptseminar Mikro- und Nanoelektronik // Dresden, 10. Juni 2020

Outline

Einführung

Messungen

Modell

Implementierung in Python

Zusammenfassung und Ausblick

Einführung

Automated Wafer Characterization

The Micromanipulator Company [1]

Grundgleichungen

Spannungsgesteuerte Stromquelle $I_{
m D,pn}$

Shockley Diodengleichung:

$$I_{\mathrm{D,pn}} = I_{\mathrm{S}} \left[\exp(\frac{U_{\mathrm{pn}}}{mU_{\mathrm{T}}}) - 1 \right]$$

 $I_{\rm S}$: Sättigungsstrom

m: Idealitätsfaktor

 $U_{
m T}=rac{kT}{q}$: Temperaturspannung

Grundgleichungen

Spannungsgesteuerte Stromquelle $I_{
m D,pn}$

Diodenkapazität $C_{\rm D}$ = Diffusionskapazität $C_{\rm d}$ + Sperrschichtkapazität $C_{\rm i}$

Shockley Diodengleichung:

$$I_{\mathrm{D,pn}} = I_{\mathrm{S}} \left[\exp(\frac{U_{\mathrm{pn}}}{mU_{\mathrm{T}}}) - 1 \right]$$

 $I_{
m S}$: Sättigungsstrom m: Idealitätsfaktor $U_{
m T}=rac{kT}{q}$: Temperaturspannung

Diffusionskapazität C_d :

$$C_{
m d} = au_{
m T} * rac{I_{
m D}}{U_{
m T}}$$

 $au_{
m T}$: Transferzeit

Grundgleichungen

Spannungsgesteuerte Stromquelle $I_{
m D,pn}$

Diodenkapazität $C_{\rm D}$ = Diffusionskapazität $C_{\rm d}$ + Sperrschichtkapazität $C_{\rm i}$

Bahnwiderstand $R_{\rm S}$.

Shockley Diodengleichung:

$$I_{\mathrm{D,pn}} = I_{\mathrm{S}} \left[\exp(\frac{U_{\mathrm{pn}}}{mU_{\mathrm{T}}}) - 1 \right]$$

 $I_{
m S}$: Sättigungsstrom m: Idealitätsfaktor $U_{
m T}=rac{kT}{q}$: Temperaturspannung

Diffusionskapazität C_d :

$$C_{
m d} = au_{
m T} * rac{I_{
m D}}{U_{
m T}}$$

 $au_{
m T}$: Transferzeit

Messungen

Messungen: Diodenstrom $I_{\rm C}$ logarithmisch

- Messbereich $0.65\,\mathrm{V} < V_\mathrm{CA} < 1.00\,\mathrm{V}$
- Rein exponentieller Verlauf für $V_{\rm CA} \leq 0.75\,{
 m V}$
- Positiver
 Temperaturkoeffizient

Messungen: Diodenstrom $I_{\rm C}$ linear

• Linear steigend für $V_{\mathrm{CA}} > 0.9\,\mathrm{V}$

Messungen: Diodenkapazität C_{CA}

- Ähnlicher Verlauf wie $I_{\rm C}$ für $V_{\rm CA} < 0.85\,{
 m V}$
- Nicht mehr steigend für höhere Spannungen
- Ungeklärter Temperatureffekt!

Modell

Grundgleichungen (Wiederholung)

Spannungsgesteuerte Stromquelle $I_{
m D,pn}$

Diodenkapazität $C_{\mathrm{D}} \approxeq \mathsf{Diffusionskapazität}$ C_{d}

Bahnwiderstand $R_{\rm S}$.

Shockley Diodengleichung:

$$I_{\rm D,pn} = I_{\rm S} \left[\exp(\frac{U_{\rm pn}}{mU_{\rm T}}) - 1 \right]$$

*I*_S: Sättigungsstrom*m*: Idealitätsfaktor

Diffusionskapazität C_d :

$$C_{
m d} \approxeq au_{
m T} * rac{I_{
m D}}{U_{
m T}}$$

 $au_{
m T}$: Transferzeit

Modell: Exponentieller Diodenstrom I_D

Linearisiere Diodengleichung

$$I_{
m D}=I_{
m S}\left[\exp(rac{U_{
m D}}{mU_{
m T}})-1
ight]$$
 für $rac{U_{
m D}}{mU_{
m T}}>10$ ($\Rightarrow U_{
m D}>0.25$ V) :

$$\ln(I_{\rm D}) = \ln(I_{\rm S}) + \frac{U_{\rm D}}{mU_{\rm T}}I_{\rm D}$$

Modell: Bahnwiderstand $R_{\rm S}$

$$R_{\rm S} = \frac{D}{\Delta I_{\rm D}} = \frac{1.0V - 0.9V}{I_{\rm D}(U_{\rm D} = 1.0V) - I_{\rm D}(U_{\rm D} = 1.0V)}$$

Alternative: $R_{
m S}$ als Durchschnitt des differentiellen Widerstands $r_{
m D}$

DC Modell: Diode mit ohmschem Widerstand

$$U_{\rm D}(I_{\rm D}) = U_{\rm pn} + U_{\rm R} = \left[\ln \left[\frac{I_{\rm D} + I_{\rm S}}{I_{\rm S}} \right] * U_{\rm T} + I_{\rm D} * I_{\rm S} \right] + I_{\rm D} * R_{\rm S}$$

Analytische Lösung mit Lambertscher W-Funktion:

$$f(x) = x \exp(x) \Leftrightarrow W(x) = f^{-1}(x)$$

$$I_{\mathrm{D}}(U_{\mathrm{D}}) = \Re \left[\mathrm{W} \left[I_{\mathrm{S}} R_{\mathrm{S}} * \exp \left[\frac{I_{\mathrm{S}} R_{\mathrm{S}} + U_{\mathrm{D}}}{U_{\mathrm{T}}} \right] * \frac{1}{U_{\mathrm{T}}} \right) \right] * \frac{U_{\mathrm{T}}}{R_{\mathrm{S}}} - I_{\mathrm{S}} R_{\mathrm{S}} \right]$$

$$I_{\mathrm{D}} = I_{\mathrm{S}} \left[\exp \left(\frac{U_{\mathrm{D}}}{m U_{\mathrm{D}}} \right) - 1 \right]$$

DC Modell: Diode mit ohmschem Widerstand

Ideale Diode

Ohmscher Widerstand

Modell: Kapazität C_{D}

$$C_{
m D} \approxeq C_{
m d} = au_{
m T} * rac{I_{
m D}}{U_{
m T}}$$

Modell: Sättigungsstrom $I_S(T)$

Vereinfachtes HICUM-Modell für eine interne Basis-Emitter-Diode:

$$I_{\rm S,BEi}(T) \approx I_{\rm S,simplified}(T) =$$

$$I_{\rm S0} * \exp \left[\frac{E_{\rm g}}{U_{\rm T}} * \frac{T}{T_0} \right]$$

$$E_{\rm g} = E_{\rm bandgap, silicon} = 1.17 \,\rm V$$

$$T_0 = 300.15 \,\mathrm{K}$$

$$U_{\rm T} = \frac{kT}{q}$$

Implementierung in Python

Objektorientierter Ansatz

Klasse DiodeModel:

- Initialisierung mit Messdaten
- ⇒ Berechnen und Speichern der Modellparameter
- Funktionen zur Simulation von Messgrößen

Verwendete Python Module

• Numpy für numerische Berechnungen

- Scipy für Curve Fitting:
 - scipy.optimize.curve_fit() basiert auf Methode der kleinsten Quadrate

Matplotlib für Diagramme

Zusammenfassung und Ausblick

Zusammenfassung

 DC: gute Genauigkeit für Reihenschaltung von idealer Diode und ohmscher Widerstand

Zusammenfassung

- DC: gute Genauigkeit für Reihenschaltung von idealer Diode und ohmscher Widerstand
- AC: Bei höheren Spannungen/Temperaturen gilt nicht mehr $C_{
 m D} \approxeq C_{
 m d} = au_{
 m T} * rac{I_{
 m D}}{U_{
 m T}}$

Zusammenfassung

- DC: gute Genauigkeit für Reihenschaltung von idealer Diode und ohmscher Widerstand
- AC: Bei höheren Spannungen/Temperaturen gilt nicht mehr $C_{
 m D} \approxeq C_{
 m d} = au_{
 m T} * rac{I_{
 m D}}{U_{
 m T}}$
- Open-Source Python Pakete NumPy, SciPy und matplotlib ermöglichen effiziente Datenanalyse und Modellierung

Ausblick

 Ungeklärte Hochtemperatur-Anomalie der Kapazität der Basis-Emitter Diode

Ausblick

- Ungeklärte Hochtemperatur-Anomalie der Kapazität der Basis-Emitter Diode
- Weiterentwicklung der Software:
 - Test Driven Development
 - Continuos Integration
 - Effizientere Nutzung von NumPy Funktionen

Ausblick

- Ungeklärte Hochtemperatur-Anomalie der Kapazität der Basis-Emitter Diode
- Weiterentwicklung der Software:
 - Test Driven Development
 - Continuos Integration
 - Effizientere Nutzung von NumPy Funktionen
- Gitlab Repository:

```
https://gitlab.hrz.tu-chemnitz.de/s1760196--tu-dresden.de/diode_model_parameters.git
```


Fragen?

Anhang

Literatur I

- The Micromanipulator Company. *P300L Semi-Automatic Probe Station*. P200LSemiAutomaticProber.jpg. URL: https://www.micromanipulator.com/products/probe-stations/p3001-300mm/.
- Elprocus. Rectifier Diode Circuit Working And Its Applications. URL: https://www.elprocus.com/rectifier-diode-working-applications/.
- Holger Göbel. *Einführung in die Halbleiter-Schaltungstechnik*. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
- Reinhold Paul. *Halbleiterdioden Grundlagen und Anwendung*. Berlin: Verl. Technik, 1976.
- Michael Schroter. *HICUM A scalable physics-based compact bipolar transistor model.* 2000.

Literatur II

Michael Schröter. Elektronische Bauelemente. Vorlesungsmanuskript.

p-n Kapazitäten im Bauelemente Skript

Elektronische Bauelemente. Schröter. I6, S. 631

<u>Fig. 3.4.0/3:</u>Diffusionskapazität als Funktion der angelegten Spannung: (a) lineare Darstellung; (b) halblogarithmische Darstellung.

Daten Import und Export


```
with open('data.json', 'r') as f:
    measurements = json.load(f)
for measurement in measurements.items():
    v_ca_a = measurement[1]['V_CA'][:]
    i_ca = # ...

model = DiodeModel(v_ca_a, i_c_a , c_ca_a , T)
with open('model_parameters.json', 'w') as f:
    json.dump(base_model.params, f)
```

Import (Messdaten) und Export (Modellparameter) im JSON Format

Berechnung der Modellparameter

```
def diode model params_isotherm(v_ca_a, i_c_a , c_ca_a , T):
   # Curve fit C CA to I C curve
    tt = diode_capacitance_model(v_ca_a, i_c_a , c_ca_a)
    model params = {'TT': tt}
   # ...
    return model params
def diode_capacitance_model(v_ca_a , i_c_a , c_ca_a):
    p_opt, pcov = scipy.optimize.curve_fit(diode_cap_TT_eq, i_c_a, c_ca_a)
    tt = p opt[0] # Transit time
    return tt
def diode cap TT eq(i c, tt):
   c ca = tt * i c
   return c ca
```


Dioden im HICUM Modell

Bestimmung des Widerstands durch Stromsprungantwort

$$R_{\rm S} = \frac{\Delta U_{\rm D}}{I_{\rm F}}$$

Probleme und Lösungen

- Numerische Instabilität bei Curve Fitting auf eine Exponentialfunktion
 Linearisiere physikalische Gleichung und Eingangsparameter mit Logarithmus
- Kein ideales Verhalten der Eingangsdaten
 Nutze Datenbereiche mit (fast) rein expone
 - ⇒ Nutze Datenbereiche mit (fast) rein exponentiellem/linearem Anstieg für Modell
- Bestimmung des ohmschen Widerstands durch Stromsprung nicht möglich
 - ⇒ Verwende Steigung des Diodenstroms bei höherer Spannung

