Zwischenprüfung Programmieren II 19.10.2016 von 13:40 bis 14:40

Dauer: 45 Minuten Erlaubte Hilfsmittel:

- Skript Programmierung II
- Weitere Unterlagen (Bücher, Notitzen etc.)

Laptops/Taschenrechner sind nicht erlaubt!	
Name: Micha Heil	Punkte: <u>28</u> . 5
Aufgabe 1 (4 Punkte)	
Was sind docstrings und weshalb sind diese in Python wi	ichtig?
Schreiben Sie ein konkretes Beispiel einer Klasse, welche (mind. 1 Methode)	docstrings verwendet
Sie beschreiben die Funktion/Klasse/H	ethode - was wird
gemacht und welche Paramete wie eine Sie sind vorallen dann von Nutzen/wie	
an demselber Code arbeiter. So weiss jed	le wast in Cook

Eingerneld

U163 154	an runkt	Im F Z		Daniel	
	1		1	Docstring	***************************************
: param	y: y- Kao	idinate (float)	-	****************
5 11 11 11))				
54	self.x = x				
	self- y = y				
	= : param : param = 11 11 11	= : param x : X - K00	= : param x: X-Koordina+e (float : param y: Y-Koordinate (float = """ " Self.x = x	= : param x: X-Koordina+e (float) : param y: Y-Koordina+e (float) = " " " " Self.x = x	= : param x: X-Koordina+e (float) : param y: Y-Koordina+e (float) = """ So Self. x = x

Aufgabe 2 (6 Punkte)

Gegeben ist die folgende Klasse "Zahl":

```
class Zahl:
    def __init__(self, z):
        self.wert = z

def __add__(self, other):
        return N(self. wert + other.wert)

def __sub__(self, other):
        return N(self. wert - other.wert)

def __str__(self):
        return str("(" + str(self.wert) + ")")

def __float__(self):
        return float(self.wert)

def __int__(self):
        return int(self. wert)
```

- a) Was repräsentiert diese Klasse?
- b) Weshalb sind die folgende Codezeilen möglich und was geschieht da genau? Was sind r0 und r1 (Typ und Wert)?

```
r0 = Zahl(400) - Zahl(200)
r1 = Zahl(3.3) + Zahl(1.2)
```

c) Was geschieht hier?

```
s = str(r)
i = int(r)
f = float(r)
```

a.) eine beliebige Zahl + Struktus und noch keine Zahl als
Objekt velbst (erst bei eine Erstellig eines lustem 7)

b) Die Addition und Subtraktion der lust auten sind durch

die magischen Funktionen add-(self\$, othe): und

-- sub--(self other): möglich. Dabei ist das jeweilige Resultat

wieder eine beliebige Zahl die aber in der Klasse "N" aufgerufen

wied. → 3. B: class N: ""Opvationen mit hotürlichen Zahlern"""

TO ergibt 200 → Integer Typ: tahl

I ergibt N(4.5) → je nach Klasse N gibt es einen Value Erra

weil 4.5 teine natürliche Zahl ist oder er wird auf eine mahirlich

Zahl umgewandelt → mit int (r1)

Dann: I ergibt 5, Typ= lutger

Modul Programmierung II

i = in + (r)	# 1 = Zahl (200)	- Unwardly to Hide het
Ausgabewest:	200 (Ranzestato)	(magisalie Hethodeist - alge
777777777777777777777777777777777777777	# r= Zaul (4.5)	
Ausgabenert:	3 4	6
f = f(oat (r)	# r = Zaul (200)	- humandlung zu Floating Pa
		(magisole tetrode - Hout - and

Aufgabe 3 (6 Punkte)

Die Klassen "Einfamilienhaus" und "Bürogebäude" werden von der Klasse "Gebäude" vererbt. Zeichnen Sie ein UML Klassendiagramm und erstellen Sie

Aufgabe 4 (6 Punkte)

Erstellen Sie eine Klasse Vector3, welche einen dreidimensionalen Vektor repräsentiert.

Über den Konstruktor werden die Komponenten x, y und z definiert. Wird nichts angegeben, so wird ein Null-Vektor erstellt.

Die Addition und Subtraktion von Vektoren soll dabei ermöglicht werden.

Es soll auch möglich sein den Vektor über de print(...) Funktion auszugeben.

Beispiel:

<pre>v0 = Vector3(3,4,1) v1 = Vector3() v2 = v0 + v1</pre>	Doestring =	Vektoroperationen i param x: k-komp
v3 = Vector3(3,4,2) - Vector3(3,1,2) + Vector3(2,1,9) print(v3)		: param y: y-komprise
Class Vektor3:		# и и
detinit (suf, x=0, y=0, t=0)	:	
self.x = x		
self. y = y		
5-5-112		
def - add - (self, other):		
return Vextor3 (self x + other x, se	if y + other	J., self & + other. ?
def Sub (self other)		
return Vektor 3 (self x - other x, self y	- other y, se	f. 2 - other. 2)
def -str (self):		
Cetura of 11 + str (self a) + 11	str(selfig)	5
+ ',' + Str(Self, Z) +		

	******	****************************

Aufgabe 5 (4 Punkte)

- a) Was ist eine Klassendefinition?
- b) Was ist eine Instanz einer Klasse?

u.) Sie beschreibt die Struktur eines Objekt	gps welches auc Attributten
und Kethoden besteht	
- die Klasse ist noch kein Objekt	5 /
Banglan der Klasse	5.5
b.) Das eigentliche Objekt. Aus eines Klasss	kõune zahlreiche
Objette / Justan zen estellt werden	
¥	

Aufgabe 6 (6 Punkte)

Erstellen Sie mit PyQT4 eine GUI, welche folgendermassen aussieht:

import sys	***************************************
from Py Q+4 Qt Core	import *
from Py at 4 Ot Gui	
alatatan dajakan kentiniakin da	man (

class My Windon (Q. Main Windon):
def_init_ (self):
Super (1init ()
self set Window Title ("Adresseingabe")
M-600-000-00-00-00-00-00-00-00-00-00-00-0
layout_v = QVBoxLayout 1)
tagent - h = QHBOX Layout () # night notwardig
*
name = Qlabel ("Name:")
nameline = QLive Edit ()
adresse = Q Label ("Adresse:")
adjessetext = QText Edit ()
button = QPush Button ("Ok")
layout-v. add Widget (name)
layout_v, add Widget (name line)
layout_v add widget (adresse)
layout_v. add Widget (adjessetext)
layout_v. add widget (button)
<i>b</i>
center = Qwidget()
Center Set Layout (layout-v)
Self set Central Widget (center)
self. show ()
det main ():
app = Q Application (sys.argv)
main window > My Window ()
main window raise ()
app.exec_()
if name = = '_ main ':
mais ()