Feuille 2: sous-groupes et morphismes de groupes

Exercice 1 (Exercice d'entrainement/révisions). Soient G et H des groupes et $f: G \to H$ un morphisme de groupes. Vérifier que vous savez faire les questions suivantes qui sont issues du cours.

- 1. Prouver que $f(e_G) = e_H$ et que $f(x^{-1}) = f(x)^{-1}$ pour tout $x \in G$.
- 2. Prouver que Ker(f) est un sous-groupe de G et que Im(f) est un sous-groupe de H.
- 3. Prouver que f est injectif si et seulement si $Ker(f) = \{e_G\}$.
- 4. Donner un exemple d'isomorphisme de groupes, de morphismes de groupes surjectifs qui n'est pas un isomorphisme et de morphisme de groupe injetcif qui n'est pas un isomorphisme.

Exercice 2 (Intersection). Soit $(H_i)_{i\in I}$ une famille de sous-groupes d'un groupe (G,*).

- 1. Démontrer que l'intersection $\bigcap_{i \in I} H_i$ est un sous-groupe de G.
- 2. En déduire que pour tout sous-ensemble S de G, il existe un unique plus petit sous-groupe de G contenant S.

Exercice 3. Soit $E = \{1, \dots, 4\}$ et $(Bij(E), \circ)$ le groupe des bijections de E.

- 1. Démontrer que le sous-ensemble H dont les éléments sont les bijections f telles que f(4) = 4 est un sous-groupe de Bij(E).
- 2. Démontrer que H est isomorphe à $\mathrm{Bij}(\{1,2,3\})$.

Exercice 4. Soit G un groupe et $H_1, H_2 \subset G$ des sous-groupes.

- 1. Prouver que $H_1 \cup H_2$ est un sous-groupe de G si et seulement si $H_1 \subset H_2$ ou $H_2 \subset H_1$.
- 2. Lorsque $G = \mathbb{Z}$, $H_1 = 5\mathbb{Z}$ et $H_2 = 7\mathbb{Z}$, calculer $H_1 \cap H_2$ et $H_1 \cup H_2$. Quel est le plus petit sous-groupe de \mathbb{Z} contenant $H_1 \cup H_2$? (Indic: utiliser Bezout).

Exercice 5. 1. Que peut-on dire d'un sous-groupe de $(\mathbb{Z}, +)$ qui contient 1?

2. Dresser la liste des sous-groupes de $\mathbb{Z}/3\mathbb{Z}$ puis de $\mathbb{Z}/6\mathbb{Z}$.

Exercice 6. Expliciter en termes¹ de morphismes de groupes les propriétés suivantes

- 1. $\ln(x \cdot y) = \ln(x) + \ln(y)$.
- 2. $\exp(z_1 + z_2) = \exp(z_1) \cdot \exp(z_2)$.
- 3. $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$.
- 4. $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$.

¹c'est à dire explquer en quoi elles traduisent que certaines applications sont des morphismes entre groupes à préciser

5. $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$.

Exercice 7 (Morphismes entre groupes cycliques). Soit $p, q \ge 2$ des entiers.

Soit (G,*) un groupe. Démontrer qu'une application $f:\mathbb{Z}/n\mathbb{Z}\to G$ est un morphisme de groupes si et seulement si

$$(f(\overline{1}^n))^{*n} = e_G.$$

Que veut dire cette égalité en terme d'ordre de $f(\overline{1}^n)$ dans G ?

En déduire tous les morphismes de groupes de $\mathbb{Z}/n\mathbb{Z}$ dans $\mathbb{Z}/m\mathbb{Z}$. Lesquels sont injectifs, surjectifs, bijectifs ?

Exercice 8. Les groupes suivants sont-ils des groupes isomorphes ? (indic: utiliser l'exercice 6)

- 1. \mathbb{R} et \mathbb{R}_{+}^{*} .
- 2. \mathbb{C} et \mathbb{C}^* .
- 3. \mathbb{R}^* et \mathbb{R} .(Indication: raisonner par l'absurde et utiliser que $(-1)^2 = 1$).