Rank-76292 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_1^2 X_3 + X_1 X_2^2 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over ${\rm GF}(4)$ is 1503221082

General information

Number of lines	4
Number of points	21
Number of singular points	2
Number of Eckardt points	1
Number of double points	1
Number of single points	15
Number of points off lines	4
Number of Hesse planes	0
Number of axes	0
Type of points on lines	54
Type of lines on points	$3, 2, 1^{15}, 0^4$

Singular Points

The surface has 2 singular points:

$$0: P_{23} = \mathbf{P}(1,0,0,1) = \mathbf{P}(1,0,0,1) 1: P_{39} = \mathbf{P}(1,0,1,1) = \mathbf{P}(1,0,1,1)$$

The 4 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \mathbf{Pl}(0, 1, 0, 0, 0, 0)_1$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{100} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{100} = \mathbf{Pl}(0, 1, 1, 0, 0, 0)_{6}$$

$$\ell_{2} = \begin{bmatrix} 1 & 1 & 0 & \omega^{2} \\ 0 & 0 & 1 & 1 \end{bmatrix}_{290} = \begin{bmatrix} 1 & 1 & 0 & 3 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{290} = \mathbf{Pl}(0, 3, 1, 1, 1, 1)_{204}$$

$$\ell_{3} = \begin{bmatrix} 1 & 1 & 0 & \omega \\ 0 & 0 & 1 & 1 \end{bmatrix}_{206} = \begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{206} = \mathbf{Pl}(0, 2, 1, 1, 1, 1)_{203}$$

Rank of lines: (356, 100, 290, 206)

Rank of points on Klein quadric: (1, 6, 204, 203)

Eckardt Points

The surface has 1 Eckardt points: $0: P_{38} = \mathbf{P}(0, 0, 1, 1) = \mathbf{P}(0, 0, 1, 1).$

Double Points

The surface has 1 Double points: The double points on the surface are:

$$P_2 = (0, 0, 1, 0) = \ell_0 \cap \ell_1$$

Single Points

The surface has 15 single points: The single points on the surface are:

$0: P_3 = (0,0,0,1)$ lies on line ℓ_0
1: $P_{17} = (2, 2, 1, 0)$ lies on line ℓ_2
2: $P_{22} = (3, 3, 1, 0)$ lies on line ℓ_3
$3: P_{23} = (1,0,0,1)$ lies on line ℓ_1
4: $P_{32} = (2, 2, 0, 1)$ lies on line ℓ_2
$5: P_{37} = (3,3,0,1)$ lies on line ℓ_3
6: $P_{39} = (1,0,1,1)$ lies on line ℓ_1
7: $P_{53} = (0, 0, 2, 1)$ lies on line ℓ_0

The single points on the surface are:

8: $P_{54} = (1,0,2,1)$ lies on line ℓ_1 9: $P_{58} = (1,1,2,1)$ lies on line ℓ_2 10: $P_{63} = (2,2,2,1)$ lies on line ℓ_3 11: $P_{69} = (0,0,3,1)$ lies on line ℓ_0 12: $P_{70} = (1,0,3,1)$ lies on line ℓ_1 13: $P_{74} = (1,1,3,1)$ lies on line ℓ_3 14: $P_{84} = (3,3,3,1)$ lies on line ℓ_2

Points on surface but on no line

The surface has 4 points not on any line: The points on the surface but not on lines are:

$$0: P_1 = (0, 1, 0, 0) 1: P_{42} = (0, 1, 1, 1) 2: P_{65} = (0, 3, 2, 1)$$

$$3: P_{77} = (0, 2, 3, 1)$$

Line Intersection Graph

$$\begin{array}{c|c} 0123 \\ \hline 0 & 0111 \\ 1 & 1000 \\ 2 & 1001 \\ 3 & 1010 \end{array}$$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3
in point	P_2	P_{38}	P_{38}

Line 1 intersects

Line	ℓ_0
in point	P_2

Line 2 intersects

Line	ℓ_0	ℓ_3
in point	P_{38}	P_{38}

Line 3 intersects

Line	ℓ_0	ℓ_2
in point	P_{38}	P_{38}

The surface has 21 points:

The points on the surface are:

$0: P_1 = (0, 1, 0, 0)$	$8: P_{38} = (0,0,1,1)$	16: $P_{69} = (0, 0, 3, 1)$
$1: P_2 = (0,0,1,0)$	$9: P_{39} = (1,0,1,1)$	17: $P_{70} = (1, 0, 3, 1)$
$2: P_3 = (0,0,0,1)$	$10: P_{42} = (0, 1, 1, 1)$	$18: P_{74} = (1, 1, 3, 1)$
$3: P_{17} = (2, 2, 1, 0)$	$11: P_{53} = (0,0,2,1)$	$19: P_{77} = (0, 2, 3, 1)$
$4: P_{22} = (3, 3, 1, 0)$	$12: P_{54} = (1,0,2,1)$	$20: P_{84} = (3, 3, 3, 1)$
$5: P_{23} = (1,0,0,1)$	13: $P_{58} = (1, 1, 2, 1)$	
$6: P_{32} = (2, 2, 0, 1)$	$14: P_{63} = (2, 2, 2, 1)$	
$7: P_{37} = (3, 3, 0, 1)$	$15: P_{65} = (0, 3, 2, 1)$	