

Università degli Studi di Padova

Groundwater hydrology project

Precision irrigation Modelling of a cranberry field in Quebec (Canada)

Andrea Gorgi

University of Padova

February 2022

Outline

- First Part: Model setting in Cathy
 - Creation of the geometry
 - Initial and Boundary conditions
 - Atmospheric conditions/ soil parameters
 - First Result
- 2 Calibration
 - Possible approaches
 - First Improvement Local Search
 - Physics effect of parameters
 - Results
- Validation
 - Conclusions

Creation of the geometry

Exploit main features of the assignment.

Pressure automatic gage

Creation of the geometry

Idea: z-axis horizontal plane 1 meter below surface. z discretization with parallel planes. Drain at x=0 as a long monodimensional tube in the y-direction.

Mesh to have exact points at

- T1 (6,0.5,0.9);
- **1** T2 (3,0.5,0.9);
- **1** T3 (0.2,0.5,0.9);
- Orain (0,0:1,0);

Surface definition: hap.in

Domain extension in x = 6, $\frac{6}{0.2} = 30 \implies 30$ cells in x. Problem y-symmetric \implies Consider sufficient 2 cells in y.

```
STRUCTURAL PARAMETERS

Grid spacing along the x-direction = 0.50

Grid spacing along the y-direction = 0.50

DEM rectangle size along the x-direction = 30

DEM rectangle size along the y-direction = 2

Number of cells within the catchment = 60

X low left corner coordinate = 0.000000000

Y low left corner coordinate = 0.000000000
```

Surface definition: dem13.val

File with 30 columns and 2 rows of "1.0".

Last value equal to 0.99999 to ensure possibility of outflow.

```
fid = fopen('dtm_13.val', 'w');
N_x = 2;
N_y = 30;
for i_x=1:N_x
    for i_y=1:N_y
        fprintf(fid, '1.0 ');
    end
    fprintf(fid, '\n');
end
fclose(fid);
```

Mesh creation: dem_parameters

Exact points at T1 (6,0.5,0.9), T2 (3,0.5,0.9), T3 (0.2,0.5,0.9), Drain (0,0.1,0).

Layer at 0.1 (5% of 2) from the top (not necessarily the first layer); Layer at 1 (50% of 2) from the top.

```
Finer discretization near surface and near drain?
0.2
0.5
1.0
9 9 2 B
0.01 0.02 0.02 0.03 0.04 0.05 0.06 0.08 0.09 0.10 0.10 0.11 0.13 0.16
delta x
delta y
factor
dostep
nzone nstr
ivert isp
zratio(i).i=1.nstr
```

Mesh creation: Parm file

Set IPRT1 = 3 and obtain the mesh.

Adapt some convergence parameter (DELTAT, DTMIN, DTMAGM). One VTK file for each hour.

Set maximum time equal to 500 for calibration (see next).

```
TRAFI AG
          0.00
                    0
                                     ISIMGR PONDH MIN VELREC
          0.01
                                     KSLOPE TOLKSL
         -1.0
                    -3.0
                         -1.0
                                      PKRL
                                             PKRR
                                                     PSEL
                                                            PSER
         -2.5 -1.5
                              -1.0
                                      PDSE1L PDSE1R PDSE2L PDSE2R
                    0
                                     ISFONE ISFCVG DUPUIT
                                                    IOPT
                                     TETAE
          0.8
                                     NURFLX OMEGA
          1.0e-4
                  1.0e+30
                             1.0e+30 L2NORM TOLUNS TOLSWI
                                                            ERNLMX
                                              ITUNS1 ITUNS2
          500
                                     TSOL V
                                            TTMXCG TOLCG
                      1.00-10
         0.0000001
                          1.0
                                 500.0
0.0
          4.0
                    0.0
                                      DTMAGA DTMAGM DTREDS DTREDM
                  500
1.0
2.0
3.0
4.0
5.0
6.0
```

February 2022

Units of measure

Data for 2018 hours(\sim 84days) \implies Time unit: hours (days); Length unit: meter.

- Pressure head $[\psi] = m$;
- Hydraulic conductivity $[K] = mhours^{-1}$;
- Specific storage [S] = 1/m.

Mesh Results

Mesh Results

Initial condition: IC file

Unsaturated zone \implies partially saturated vertical hydrostatic equilibrium as IC.

WTPOSITION in depth from the surface.

First trial: initial water table depth of 0.4 meters (will be calibrated).

4 0 INDP IPOND 0.4 WTPOSITION

Boundary Conditions: drain

Three possibilities:

- $\psi = 0$ at the drain;
- $\psi = 0$ at drain + hydrostatic pressure in the vertical;
- $\psi = 0$ at the points in N3 (variable condition in time).

Freeze and Cherry. Ideal drain in saturated-unsaturated region.

Dirichlet BC

```
clear all; close all; clc;
fid = fopen('project/runs/weilletal/input/nansfdirbc','w');
TIME\n'):
flag = 0;
NAW FIND NODES
nodes - Nodes():
$\[ [0.01 0.02 0.02 0.04 0.06 0.10 0.06 0.05 0.03 0.02 0.03 0.07 0.10 0.18 0.21];
z = 2*[0 0.01 0.02 0.02 0.03 0.04 0.05 0.06 0.08 0.09 0.10 0.10 0.11 0.13 0.16];
sum = 0;
Tmax - 2018.0:
for i = 1:length(z)
   sum = sum + z(i);
   z(i) = sum:
switch flag
   case 0
       z = z(z <= 0);
       id = zeros(length(z),3);
       for i = 1:length(z)
           id(i,1:3) = (nodes.Find(2,0,0,z(i)))';
       fprintf(fid, '
                         0 %d \n', length(z)*3);
       fprintf(fid.
       for i = 1:length(z)
           fprintf(fid, ' %d %d %d ', id(i,:));
       forintf(fid.'\n
       for i = 1:length(z)
           fprintf(fid, ' %2.1f %2.1f %2.1f ', -z(i), -z(i), -z(i));
```

```
case 1
    input = xlsread('Input data completo');
WTD = input(:,4);
id = zeros(1,3);
for i=1:Tmax
    z search = WTD(i);
    incumb = 1e5:
   for j = 1 : length(z)
       dist = abs(z(j) - z search);
       if dist < incumb
            incumb = dist:
            index = i:
       end
   end
    id = nodes.Find(2,0,0,z(index));
   ¥-----
    if i ~= 1
       fprintf(fid, '\n\n %4.1f\n', i);
    end
    fprintf(fid, '
                       0 %d \n', 3);
    fprintf(fid,'
    fprintf(fid.' %d %d %d '. id(:)):
    fprintf(fid, '\n
                         1):
   fprintf(fid, " %2.1f %2.1f %2.1f ", 0.0, 0.0, 0.0);
```

Dirichlet BC: class Nodes

```
function this = Nodes()
    path = "project/runs/weilletal/output/xyz";
    fileID = fopen(char(path), 'r');
    formatSpec = '%f %f %f %f';
    A = textscan(fileID, formatSpec, 'headerLines', 1);
    A = cat(4,A\{:\});
    this.indeces = A(:,1):
    this.x coord = A(:,2):
    this.v coord = A(:,3);
    this.z coord = A(:,4);
end
function outIndex = Find(this, flag, x, y, z)
    % flag = 0: just that node;
           = 1: all possible x;
          = 2: all possible y;
           = 3: all possible z:
    toll = 1e-4;
    switch flag
        case 0
            outIndex = 0:
            for i = 1:this.indeces(end)
                 if (abs(this.x\_coord(i) - x) < toll \&\& abs(this.y\_coord(i) - y) < toll \&\& abs(this.z\_coord(i) - z) < toll) \\
                     outIndex = this.indeces(i);
                     break;
                end
            end
```

Atmospheric BC: rain+evapotranspiration

Compute NET flow : drain - ET for each time step and adjust the dimensions.

Soil parameters

Assume medium-textured soil (50-70% sand, 25-40% silt, 5-15% clay).

Table 2. Approximate ranges of saturated hydraulic conductivities expected for materials commonly encountered in geoenvironmental engineering based on permeation with water

Material	Saturated hydraulic conductivity (ms ⁻¹)	Comments
Gravel	10-2-10-3	Values based on "clean" soils;
Sand	10-3-10-5	variation in $k_{\rm gat}$ based on particle size distribution
Silt	10-5-10-8	Variation in $k_{\rm sat}$ based on mineralogical composition of silt particles
Clay	10-8-10-12	Variation in $k_{\rm SST}$ based on mineralogical composition of clay particles
Geosynthetic clay liner	10-10-10-11	Values based on sodium bentonite sandwiched between two geotextiles
Sand-bentonite mixture	10-9-10-10	Values based on a mixture of clean sand (w/o fines) and 4–10% (w/w) sodium bentonite

Samples Num	ber	D1	D2	D3	11	12	13	P1	P2	P3
	Clay (%)	14.09	27.60	25.70	13.71	11.84	13.45	21.58	11.19	11.25
Texture	Silt (%)	12.45	25.88	21.50	21.61	20.63	15.26	18.20	23.34	19.39
	Sand (%)	73.46	46.52	52.80	64.68	67.53	71.18	60.22	65.67	69.36
Bulk density, g (cm ³) ⁻¹		1.20	1.23	1.21	1.17	1.18	1.14	1.08	1.01	1.16
Particule den	nsity, g (cm³)-1	2.53	2.54	2.53	2.50	2.48	2.54	2.54	2.44	2.61
Porosity (%)		52.65	51.49	52.17	53.22	52.43	55.12	57.49	58.61	55.56
Organic matt	er (%)	2.15	2.01	2.09	2.01	1.93	1.79	1.99	4.22	2.88
Aggregate sta	ability (%)	46.03	32.13	32.17	21.62	16.86	17.22	61.42	88.28	75.85
Lime (%)		1.09	1.09	1.31	1.28	1.40	1.46	2.80	2.58	3.47
Hydraulic cor	nduct, cm h -1	6.04	4.63	5.09	5.25	4.55	4.75	7.35	8.98	9.56

Soil: Range of parameters

Obtain an approximate range of variability of the parameters

- $K = 0.02 \text{ m/hour} \div 2.53 \text{ m/hour};$
- $S_s = 1\text{E-5} \ m^{-1} \div 0.01 \ m^{-1}$;
- $\eta = 50\% \div 57\%$.

The first values used are:

WTPOS	PERMX	PERMY	PERMZ	ELSTOR	POROS	VGN1	VGN2	VGN3
0.4	0.5	0.5	0.5	0.005	0.55	1.46	0.15	0.03125

First Result

Drain applied with second approach.

Figure: MSE = $0.033 \text{ } m^2$; NSE = -0.999; KGE = 0.173

Figure: MSE = $0.027 \ m^2$; NSE = -4.87; KGE = 0.357

First Result

Figure: MSE = $0.0133 \ m^2$; NSE = 0.3144; KGE = 0.233

Scatter plots depicting simulated and observed head pressures. $k_s = 2.31$.

First Result

Time: 1.12207

Pressure "Pseudocolor" result in Visit at time 1.12 hours.

CALIBRATION

Introduction

- Test on 1/4 of total data (approximately 500 hours). Remaining used for validation.
- Choose and objective function to minimize (MSE) or maximize (NSE or KGE).
- Various possible heuristic models to find "good" values of parameters.
- Just some:
 - First improvement local search;
 - Best improvement local search;
 - Genetic algorithm (?).
- Need to discretize the search space (finite number of possible values combinations).
- Define a "move". Idea: Firstly great steps, find local optima, then reduce steps.

Local Search

```
double WTpos = 0.35;
double PERMX = 1.0:
double PERMY = 1.0:
double PERMZ = 1.5:
double ELSTOR = 0.005:
double POROS = 0.55;
double VGN1 = 1.46;
double VGN2 = 0.15;
double VGN3 = 0.03185;
/// INCREMENTS
double delta WTpos = -0.05;
double delta PERMX = 0.0125;
double delta PERMY = 0.0125;
double delta PERMZ = 0.0125;
double delta ELSTOR = 0.02;
double delta POROS = -0.05;
double delta VGN1 = 0.01;
double delta VGN2 = 0.01;
double delta VGN3
                  = 0.0005;
```

Code hints

- Increase first parameter (horizontal permeability).
- Build dynamically IC, parm and soil files.
- Launch the cathy_ft.
- Get the pressure values and the interested nodes.
- Compute KGE (NSE) errors and check for improvements.
 - If improvement restart the cycle and increase horizontal permeability
 - else decrease permeability to previous value and increment the new one.
- Finally, "change move" and check convergence.

```
void setIC(const double& WTdepth) {
   std::ofstream icFile;
   icFile.open( "runs/weilletal/input/ic");
   icFile << 4 << std::setw(3) << 0 << " INDP IPOND \n";
   icFile << WTdepth << " WTPOSITION";
   icFile.close();
}</pre>
```

Objective function

- From results: parameters that increase fit at T1 or T2 decrease it in T3.
- Possible motivations:
 - Drain might not be ideal;
 - Observed data near drain can be affected by errors;
 - Richard's equation is not enough near the drain.
- Idea: Penalize the error in T3 in the objective function.

```
// KGE
double KGE_1 = 1 - ED_1; double KGE_2 = 1 - ED_2; double
std::cout << "KGE1 = " << KGE_1 << "\n KGE2 = " << KGE_2
curr_err = (KGE_1 + KGE_2 + 0.5*KGE_3) /(2.5);</pre>
```

First Improvement Local Search

```
if (curr KGE > incumbent KGE) {
   std::ofstream resultFile:
   snprintf(name, NAME SIZE, "Results3/result%d.txt", iter);
   char const * filename = (char*)(&name[0]):
   resultFile.open(filename);
   resultfile << std::setw(15) << "T1" << std::setw(15) << "T2" << std::setw(15) << "T3" << std::setw(15) << "TIME" << std::setw(15) << " KGE ERR\n":
    for (int i = 0; i < Tmax; i++) {
       double curr time:
           double lambda - 1.0/times[i];
           curr time - lambda * times[i]:
           T1 curr = lambda * T1[i]; T2 curr = lambda * T2[i]; T3 curr = lambda * T3[i];
           double lambda = (i+1 - times[i-1])/(times[i] - times[i-1]);
           curr time = lambda * times[i] + (1-lambda)*times[i-1];
           T1 curr = lambda * T1[i] + (1 - lambda) * T1[i-1]:
           T2 curr = lambda * T2[i] + (1 - lambda) * T2[i-1];
           T3 curr = lambda * T3[i] + (1 - lambda) * T3[i-1]:
       resultFile << std::setw(15) << T1 curr << std::setw(15) << T2 curr << std::setw(15) << T3 curr << std::setw(15) << curr KGE:
       resultFile << std::endl;
   resultFile.close();
   incumbent KGE - curr KGE:
   outFile << "SOLUTION IMPROVED!! \n":
   std::cout << "SOLUTION IMPROVED!! \n";
   switch (count)
     std::cout << "IMPROVED WTpos \n";
     outFile << "IMPROVED WTpos \n";
    std::cout << "IMPROVED PERMX/Y \n":
```

First Improvement Local Search

```
count = 0:
   PERMX += delta PERMX:
   PERMY += delta PERMY;
} else {
        count += 1:
        switch (count)
            case 0:
           WTpos += delta WTpos:
           case 1:
           PERMX += delta PERMX;
           PERMY += delta PERMY:
            std::cout << "trial increase PERMX \n":
           outFile << "trial increase PERMX \n";
               break:
           PERMX -= delta PERMX:
           PERMY -- delta PERMY:
           PERMZ += delta PERMZ;
           std::cout << "trial increase PERMX \n":
            outFile << "trial increase PERMX \n":
            case 3:
           PERMZ -= delta PERMZ:
           ELSTOR += delta ELSTOR:
            std::cout << "trial increase POROS \n":
           outFile << "trial increase POROS \n";
           ELSTOR -= delta ELSTOR;
           POROS += delta POROS:
```

```
CALTBRATTON
   WTPOS
                                                            VGN2
                                            0.55
                                                            0.15 0.03135
KGE ERROR: 0.421991
SOLUTTON IMPROVED!!
TMPROVED PERMX/Y
                                                            VGN2
   WTPOS
          PERMX
                           PERMZ ELSTOR
                                            0 55
                                                            0 15 0 03135
KGE ERROR: 0.421803
trial increase PERMX
                           PERMZ FISTOR
                                                    1.46
                                                            0.15 0.03135
KGE ERROR: 0.423099
SOLUTION IMPROVED!!
TMPROVED PERMZ
                           PERMZ FISTOR
                                            0 55
                                                            A 15 A A3135
KGE ERROR: 0.422666
trial increase PERMX
                                                            VGN2 VGN3
                           PERMZ FLSTOR
   0.35
            0.9
                                            0.55
                                                    1.46
                                                            0.15 0.03135
KGE ERROR: 0.424387
SOLUTTON IMPROVED!!
TMPROVED PERM7
                           PERMZ FISTOR
                                            a 55
                                                            A 15 A A3135
KGE ERROR: 0.424806
SOLUTION IMPROVED!
IMPROVED PERMX/Y
                          PERMZ ELSTOR POROS
                                                    VGN1
                                                            VGN2 VGN3
  WTPOS PERMY PERMY
```

MSE and NSE

- MSE (mean squared error) [0, +inf]; MSE $=\frac{\sum_{t=1}^{n}(x_{s,t}-x_{o,t})^2}{n}$
- NSE (Nash–Sutcliffe efficiency) [-inf, 1];
 - $\blacktriangleright NSE = 1 \frac{MSE}{\sigma_o^2};$
 - ► Classic skill score. If NSE≤0 observed mean is a better predictor;
 - Likely underestimates of the variability in the flows;
 - May lead to a Pareto set of optimal solutions
- Decomposition:
 - MSE = $2\sigma_s\sigma_o(1-r) + (\sigma_s \sigma_o)^2 + (\mu_s \mu_o)^2$;
 - ► NSE = $2\alpha r \alpha^2 \beta_n^2$ $\alpha = \frac{\sigma_s}{\sigma_o}$, $\beta_n = (\mu_s - \mu_o)/\sigma_o$.

KGE

- Ideas:
 - Corrected formulations:
 - Multi-objective perspective (KGE).
- Klinga-Gupta efficiency (KGE) = 1- ED
- ED = $\sqrt{(r-1)^2 + (\alpha-1)^2 + (\beta-1)^2}$
- $\bullet \ \beta = \mu_{\rm s}/\mu_{\rm o}$

Fig. 2. Example for three-dimensional Pareto front of r, α and β . ED is the Euclidian distance between the optimal point and the ideal point, where all three measures are 1.0. Glan River, Austria, 432 km², 5 years daily data, HBV model variant, random parameter sampling.

Move: change one parameter's value

- Useful to understand parameters effects on the solution.
- Not so effective if parameters effects are dependent to each other.

Effects of initial conditions decrease in time and vanish at approximately 350 hours.

Change one parameter's value: K_x/K_y

Change the horizontal conductivity.

Change one parameter's value: K_z

Change the vertical conductivity.

Change one parameter's value: *ELSTOR*

Change the specific storage value.

 S_s proportional to volume water released per surface area per head drop. High $S_s \implies \psi$ less sensible to atmospheric conditions.

Change one parameter's value: POROS

Change the porosity.

Porosity decrease \implies S_y decrease. More sensible to atmospheric conditions.

Change one parameter's value: VGN1

Change N parameter of Van Geneucthen.

Change one parameter's value: VGN2

Change theta parameter of Van Geneucthen.

Change one parameter's value: VGN3

Change inverse alpha parameter of Van Geneucthen.

Calibration with KGE

Calibration with KGE and first approach for drain boundary conditions.

Figure: Best: MSE = 0.0097 m^2 ; NSE = Figure: Best: MSE = 0.0056 m^2 ; NSE = 0.4122; KGE = 0.450 -0.2154; KGE = 0.6803

Calibration with KGE

See how the best approximation for T1 and T2 is almost the worst for T3.

-0.512; KGE = -0.083

Figure: Best: MSE = 0.0293 m^2 ; NSE = Figure: Scatter plots depicting simulated and observed head pressures. $k_s = 1.63$.

Calibration with KGE: Comparison

		1 APPROACH			2 APPROACH			3 APPROACH			BEST + NEW MOVE				
	KGE	MSE(cm^2)	NSE	KGE	MSE(cm^2)	NSE	KGE	MSE(cm^2)	NSE	KGE	MSE(cm^2)	NSE			
T1	0.45	0.97	0.41	0.47	0.79	0.52	0.45	0.88	0.47	0.56	0.55	0.6			
T 2	0.68	0.56	-0.21	0.73	0.39	0.16	0.72	0.47	-0.012	0.77	0.23	0			
Т3	-0.083	2.93	-0.51	-0.16	3.34	-0.72	-0.1	3.02	-0.558	-0.29	4.2	-1.1			

Calibration with KGE: Comparison

Figure: Scatter plots depicting simulated and observed head pressures. $k_s = 1.49$.

1	WTPOS	PERMX	PERMY	PERMZ	ELSTOR	POROS	VGN1	VGN2 VGN3
1		1.125 0.47166		1.85	0.065	0.55	1.36	0.15 0.03185

NSE calibration

Figure: Best: MSE = 0.0058 m^2 ; NSE = Figure: Best: MSE = 0.0020 m^2 ; NSE = 0.65; KGE = 0.52 0.57; KGE = 0.81

Calibration with NSE

Figure: Best: MSE = $0.0041 \ m^2$; NSE = Figure: Scatter plots depicting simulated and observed head pressures. k_s = 1.65.

IMPROVED P	ERMX/Y							
WTPOS	PERMX	PERMY	PERMZ	ELSTOR	POROS	VGN1	VGN2	VGN3
200,000,000								
0.35	1.5	1.5	2.45	0.009	0.7	1.46	0.16	0.03125
NSE ERROR:	0.26431	.5						

KGE validation

Figure: Best: MSE = 0.0101 m^2 ; NSE = Figure: Best: MSE = 0.0056 m^2 ; NSE = 0.3315; KGE = 0.49 0.1503; KGE = 0.61

KGE validation

Figure: Best: MSE = $0.0250 \ m^2$; NSE = Figure: Scatter plots depicting simulated and observed head pressures. k_s = 1.12.

	WTPOS	PERMX	PERMY	PERMZ	ELSTOR	POROS	VGN1	VGN2	VGN3
	0.35	1.125	1.125	1.85	0.065	0.55	1.36	0.15	0.03185
KGE	ERROR:	0.47166	56						

NSE validation

Figure: Best: MSE = 0.0099 m^2 ; NSE = Figure: Best: MSE = 0.0054 m^2 ; NSE = 0.3324; KGE = 0.48 0.18; KGE = 0.61

NSE validation

Figure: Best: MSE = 0.0268 m^2 ; NSE = -0.43; KGE = 0.20

Figure: Scatter plots depicting simulated and observed head pressures. $k_s = 1.099$.

IMPROVED	PERMX/Y							
WTPOS	PERMX	PERMY	PERMZ	ELSTOR	POROS	VGN1	VGN2	VGN3
0.35	1.5	1.5	2.45	0.009	0.7	1.46	0.16	0.03125
NSE ERRO	R: 0.2643	15						

Conclusions

- Better accuracy with second approach for drain, but worst fit in T3;
- Better fit in T3 with third approach, but worst fit overall;
- Calibration on NSE and KGE provides similar results overall of fit, but extremely different paramters:
 - ► ELSTOR = 0.65 is not so realistic for KGE;
 - ► PORSO = 0.7 is not so realistic for NSE.

