Wydział	Dzień	poniedziałek $17^{15} - 19^{30}$	Nr zespołu
Matematyki i Nauk Informatycznych	Data		18
Nazwisko i Imię:	Ocena z przygotowania	Ocena ze sprawozdania	Ocena Końcowa
1. Jasiński Bartosz			
2. Sadłocha Adrian			
3. Wódkiewicz Andrzej			
Prowadzący		Podpis prowadzącego	
dr hab. Katarzyna Grebieszkow			

Sprawozdanie nr 7

1. Opis ćwiczenia

Celem ćwiczenia jest weryfikacja hipotezy de Broglie'a. Hipoteza ta głosi, że wszelka materia ma dwojaka naturę: cząsteczkową oraz falową.

1.1. Wstęp teoretyczny

Według przedstawionej hipotezy, każdej cząstce można przypisać falę o pewnej długości. Jeśli przez h oznaczmy stałą Plancka, zaś przez p pęd cząstki, to długość fali de Broglie'a (ozn. λ) jest definiowana jako:

$$\lambda = \frac{h}{p}$$

1.2. Układ pomiarowy

Do weryfikacji hipotezy de Broglie'a użyta została lampa oscyloskopowa oraz cienka folia grafitowa. W celu przyspieszania elektronów przykładane było regulowane napięcie. Do odczytu napięcia służył cyfrowy wyświetlacz o rozdzielczości wynoszącej 0.01 kV.

Odległość pomiędzy folią grafitową a ekranem wynosiła – zgodnie z instrukcją – 127 (3) mm.

2. Pomiary i wstępne obliczenia

Dokonaliśmy dwóch serii pomiarów, kolejno A oraz B. W obu seriach napięcie (ozn. U) ustalane było między ok. 3.50 kV a ok. 11.10 kV, z różnicą ok. 0.40 kV pomiędzy pomiarami. Podczas serii A napięcie rosło wraz z każdym pomiarem, podczas serii B – malało.

Ponieważ stan podczas odczytu napięcia nie był stabilny (największy zauważony przez nas skok wartości wyniósł $0.09~\mathrm{kV}$), za niepewność całkowitą pomiaru U przyjęliśmy:

$$u(U) = \frac{0.09 \,\text{kV}}{\sqrt{3}}$$

W dalszej części będziemy sprawdzać zależność liniową pomiędzy średnicą pierścieni a odwrotnością pierwiastka napięcia. Wprowadźmy oznaczenie $X=\frac{1}{\sqrt{U}}$ oraz wyliczmy – korzystając z prawa propagacji niepewności – niepewność całkowitą:

$$u(X) = \sqrt{\left(\frac{\partial X}{\partial U}\right)^2 \cdot u^2(U)} = \left| -\frac{1}{2\sqrt{U^3}} \cdot u(U) \right| = \frac{0.09\,\mathrm{kV}}{2\sqrt{3}\sqrt{U^3}}$$

Dla ustalonego napięcia interesowała nas średnica najbardziej wewnętrznego pierścienia, ozn. D. W celu wyznaczenia tej wartości, mierzona była średnica wewnętrzna oraz zewnętrzna pierścienia, oznaczane kolejno D_w oraz D_z . Za średnicę właściwą przyjęliśmy średnią arytmetyczną z powyższych wartości, tj. $D = \frac{D_w + D_z}{2}$.

Użyty przyrząd pomiarowy miał podziałkę wynoszącą $\Delta D_w=1$ mm. Ze względu na rozmycie pierścieni, za niepewność eksperymentatora przyjęliśmy dwukrotność podziałki: $\Delta D_{w_E}=2\cdot\Delta D_w=2$ mm. Zatem niepewność całkowita pomiaru średnicy wewnętrznej (a także zewnętrznej, którą oznaczymy przez $u(D_z)$) wynosi:

$$u(D_w) = \sqrt{\frac{\Delta D_w^2}{3} + \frac{\Delta D_{w_E}^2}{3}} = \sqrt{\frac{5}{3}} \Delta D_w = \sqrt{\frac{5}{3}} \,\text{mm}$$

Nas jednak interesuje niepewność średnicy właściwej. Skoro $D = \frac{D_w + D_z}{2}$, to – ponownie korzystając z prawa propagacji niepewności – niepewność całkowita pomiaru średnicy wynosi:

$$u(D) = \sqrt{\left(\frac{\partial D}{\partial D_w}\right)^2 \cdot u^2(D_w) + \left(\frac{\partial D}{\partial D_w}\right)^2 \cdot u^2(D_z)} = \sqrt{\frac{1}{4}u^2(D_w) + \frac{1}{4}u^2(D_z)} = \frac{u(D_w)}{\sqrt{2}}$$

Po podstawieniu wyliczonej wcześniej niepewności otrzymujemy:

$$u(D) = \sqrt{\frac{5}{6}} \, \mathrm{mm} \approx 0.912870929175 \, \mathrm{mm} \approx 1 \, \mathrm{mm}$$

Wyniki pomiarów oraz wstępnych obliczeń zostały przedstawione w Tablicy 1 oraz w Tablicy 2. Dla X prezentujemy odpowiednio zaokrąglone wartości z dokładnością do pięciu miejsc po przecinku, zaś obliczenia przeprowadzamy z pełną dostępną precyzją.

3. Opracowanie wyników

Korzystając z pythonowej biblioteki SciPy¹ wyliczyliśmy prostą regresji liniowej postaci D=aX+b. Użyta metoda uwzględniała niepewności pomiarowe zarówno zmiennych D, jak i X. Dla serii A otrzymaliśmy następujące współczynniki (przez σ oznaczamy błąd standardowy):

$$a^{(A)} = 45.5$$
 $\sigma_a^{(A)} = 2.5$
 $b^{(A)} = 0.17$ $\sigma_b^{(A)} = 0.98$

Dla serii B:

¹https://www.scipy.org/

L.p. D_u	, (mm) D_z	(mm)	U (kV)	D (mm)	$X\left(\frac{1}{\sqrt{kV}}\right)$
1	22	28	3.51	25.0	0.53376
2	20	28	3.90	24.0	0.50637
3	17	27	4.30	22.0	0.48224
4	19	25	4.71	22.0	0.46078
5	17	20	5.09	18.5	0.44324
6	17	23	5.50	20.0	0.42640
7	16	22	5.94	19.0	0.41031
8	16	21	6.30	18.5	0.39841
9	14	20	6.70	17.0	0.38633
10	13	19	7.11	16.0	0.37503
11	14	18	7.50	16.0	0.36515
12	13	18	7.92	15.5	0.35534
13	14	18	8.29	16.0	0.34731
14	13	18	8.69	15.5	0.33923
15	14	18	9.10	16.0	0.33150
16	13	18	9.50	15.5	0.32444
17	13	17	9.90	15.0	0.31782
18	12	17	10.30	14.5	0.31159
19	12	17	10.69	14.5	0.30585
20	12	17	11.10	14.5	0.30015

Tablica 1: Wyniki pomiarów seri
iAwraz z wyliczonymi wartościami Dora
z ${\cal X}.$

L.p. D_w	(mm)	D_z	(mm)	U (kV)	D (mm)	X $(\frac{1}{\sqrt{kV}})$
1	14		16	11.10	15.0	0.30015
2	14		17	10.69	15.5	0.30585
3	14		16	10.30	15.0	0.31159
4	14		18	9.89	16.0	0.31798
5	14		18	9.50	16.0	0.32444
6	15		18	9.10	16.5	0.33150
7	14		18	8.70	16.0	0.33903
8	15		18	8.30	16.5	0.34711
9	15		19	7.89	17.0	0.35601
10	15		19	7.50	17.0	0.36515
11	16		19	7.10	17.5	0.37529
12	16		19	6.71	17.5	0.38605
13	17		20	6.33	18.5	0.39746
14	18		23	5.90	20.5	0.41169
15	20		24	5.50	22.0	0.42640
16	19		25	5.12	22.0	0.44194
17	19		25	4.71	22.0	0.46078
18	21		27	4.31	24.0	0.48168
19	20		27	3.89	23.5	0.50702
20	22		29	3.49	25.5	0.53529

Tablica 2: Wyniki pomiarów seri
i ${\cal B}$ wraz z wyliczonymi wartościami ${\cal D}$ ora
z ${\cal X}.$

$$a^{(B)} = 45.5 \quad \sigma_a^{(B)} = 2.3$$

$$b^{(B)} = 0.18$$
 $\sigma_b^{(B)} = 0.90$

Pomiary wraz z wyżej pokazanymi współczynnikami prostej regresji liniowej przedstawione zostały na Rysunku 1 oraz na Rysunku 2. Ponadto zauważmy, że wyliczone współczynniki dla obu serii mieszczą się w granicach niepewności.

Rysunek 1: Wyliczona prosta regresji liniowej zestawiona wraz ze zmierzonymi wartościami dla serii A.

3.1. Odległości między płaszczyznami atomowymi

Ustalmy $a=45.5~(\text{mm}~\sqrt{\text{kV}})$ oraz $u(a)=2.5~(\text{mm}~\sqrt{\text{kV}})$. Przekształcając wzór $a=\frac{rh}{d}\sqrt{\frac{2}{me}}$ w celu wyliczenia d, uzyskujemy:

$$d = \frac{rh}{a} \sqrt{\frac{2}{me}}$$

 ${\bf W}$ celu wyliczenia tej wartości, posłużymy się następującymi wartościami i stałymi wraz z niepewnościami²:

• odległość folia–ekran³: r = 127 (3) mm;

³wartość z instrukcji do laboratorium

²wartości – o ile nie zaznaczono inaczej – pochodzą z National Institute of Standards and Technology (https://physics.nist.gov/cuu/Constants/index.html); dostęp 2018-05-04

Rysunek 2: Wyliczona prosta regresji liniowej zestawiona wraz ze zmierzonymi wartościami dla serii B.

- stała Plancka: $h = 6.626070040 \ (0.000000081) \ 10^{-34} \ \mathrm{Js};$
- masa elektronu: $m = 9.10938356 (0.00000011) 10^{-31} \text{ kg};$
- ładunek elementarny: $e = 1.6021766208 \; (0.0000000098) \; 10^{-19} \; \mathrm{C}.$

Ponownie skorzystamy z prawa propagacji niepewności, oznaczając przez $u(r),\dots,u(e)$ podane wyżej niepewności:

$$\begin{split} u(d) &= \sqrt{\left(\frac{\partial d}{\partial r}\right)^2 \cdot u^2(r) + \left(\frac{\partial d}{\partial h}\right)^2 \cdot u^2(h) + \left(\frac{\partial d}{\partial a}\right)^2 \cdot u^2(a) + \left(\frac{\partial d}{\partial m}\right)^2 \cdot u^2(m) + \left(\frac{\partial d}{\partial e}\right)^2 \cdot u^2(e)} \\ &= \sqrt{\frac{2h^2}{mea^2} \cdot u^2(r) + \frac{2r^2}{mea^2} \cdot u^2(h) + \frac{2h^2r^2}{mea^4} \cdot u^2(a) + \frac{h^2r^2}{2ea^2m^3} \cdot u^2(m) + \frac{h^2r^2}{2ma^2e^3} \cdot u^2(e)} \\ &\approx 1.8311440172431663 \cdot 10^{-11} \, \mathrm{m} \\ &\approx 0.19 \, \mathrm{\mathring{A}} \end{split}$$

Ostatecznie odległość między płaszczyznami atomowymi wynosi:

$$d = 3.06 (0.19) \text{ Å}$$

Porównując ten wynik z dostępnymi w internecie 4 (3.35 Å) i w publikacjach 5 (3.345 Å) – oraz biorąc pod uwagę, że dokładna wartość zależy od użytego grafitu – możemy przyjąć, że wyliczona wartość jest możliwa dla grafitu użytego w laboratorium.

⁴https://hypertextbook.com/facts/2001/AliceWarrenGregory.shtml; dostep 2018-05-04

 $^{^5{\}rm de}$ Boer, J. H. (1940), Atomic distances in small graphite crystals and the nature of the bond. Recl. Trav. Chim. Pays-Bas, 59: 826-830. doi:10.1002/recl.19400590903

4. Wnioski

4.1. Prawdziwość hipotezy de Broglie'a

Rysunek 1 oraz na Rysunek 2 wskazują na liniową zależność między odwrotnością pierwiastka napięcia a średnicą widocznych promieni. Dodatkowo, biorąc pod uwagę wyliczone niepewności prostej regresji liniowej, nie mamy podstaw do odrzucenia hipotezy de Broglie'a.