Examen la Calcul numeric

14 iunie 2024

Setul 1

Problema 1. Coeficienții din relația de recurență pentru polinoamele (π_n) ortogonale pe $\mathbb R$ în raport cu ponderea $w(t) = \frac{t}{2\sinh \pi t}$ sunt $\alpha_k = 0$, $\beta_0 = \frac{1}{4}$, $\beta_k = \frac{k(k+1)}{4}$.

- (a) Verificați ortogonalitatea polinoamelor (π_n) . (1p)
- (b) Implementați în MATLAB o cuadratură de tip Gauss cu n noduri pentru ponderea și intervalul de mai sus. (1p)
- (c) Calculați

$$\int_{-\infty}^{\infty} w(t) \cos(t) \, \mathrm{d}t$$

cu funcția de la punctul (b) cu o precizie de 10^{-6} . (2p)

Problema 2. (a) Se consideră ecuația în \mathbb{R} f(x)=0 cu rădăcina α și o metodă cu ordinul de convergență p și eroarea asimptotică C_p . Dacă se fac N_p operații pe pas și operațiile de inițializare se ignoră, arătați că numărul total de operații necesar pentru a aproxima soluția cu precizia ε este

$$T_p = \frac{N_p}{\log p} \log \left[\frac{\frac{\log C_p}{p-1} + \log \varepsilon}{\frac{\log C_p}{p-1} + \log e_0} \right], \tag{**}$$

unde baza logaritmului este arbitrară, e_0 este eroarea inițială. (1p)

- (b) Considerăm algoritmul al cărui pas constă din doi pași ai metodei lui Newton. Care este odinul de convergență al algoritmului? (1p)
- (c) Când este metoda secantei mai eficientă decât metoda lui Newton? Folosiți formula de la punctul (a). (1p)

Indicație: Fie $e_n = |x_n - \alpha|$ eroarea la pasul n. Se pune $e_{n+1} \approx C_p e_n^p$. Din condiția $e_n \approx \varepsilon$ se scoate n.

Problema 3. (a) Determinați spline-ul cubic natural pentru funcția $f(x) = x^3$ și diviziunea $\Delta: x_1 = -1 < x_2 = 0 < x_3 = 1$ (1p)

(b) De ce nu este un spline cubic propriu-zis. (1p)

Setul 2

Problema 4. Coeficienții din relația de recurență pentru polinoamele (π_n) ortogonale pe \mathbb{R} în raport cu ponderea $w(t) = \frac{e^{-t}}{(1+e^{-t})^2}$ sunt $\alpha_k = 0$, $\beta_0 = 1$, $\beta_k = \frac{k^4\pi^2}{4k^2-1}$.

- (a) Verificați ortogonalitatea polinoamelor (π_n) . (1p)
- (b) Implementați în MATLAB o cuadratură de tip Gauss pentru ponderea și intervalul de mai sus. (1p)
- (c) Calculați

$$\int_{-\infty}^{\infty} w(t) \cos(t) \, \mathrm{d}t$$

cu funcția de la punctul (b) cu o precizie de 10^{-6} . (2p)

Problema 5. (a) Se consideră ecuația în \mathbb{R} f(x)=0 cu rădăcina α și o metodă cu ordinul de convergență p și eroarea asimptotică C_p . Dacă se fac N_p operații pe pas și operațiile de inițializare se ignoră, arătați că numărul total de operații necesar pentru a aproxima soluția cu precizia ε este

$$T_p = \frac{N_p}{\log p} \log \left[\frac{\frac{\log C_p}{p-1} + \log \varepsilon}{\frac{\log C_p}{p-1} + \log e_0} \right], \tag{**}$$

unde baza logaritmului este arbitrară, e_0 este eroarea inițială. (1p)

- (b) Considerăm algoritmul al cărui pas constă din doi pași ai metodei secantei. Care este odinul de convergență al algoritmului? (1p)
- (c) Când este metoda lui Newton mai eficientă decât o metodă cu ordinul de convergență trei? Folosiți formula de la punctul (a). (1p)

Indicație: Fie $e_n = |x_n - \alpha|$ eroarea la pasul n. Se pune $e_{n+1} \approx C_p e_n^p$. Din condiția $e_n \approx \varepsilon$ se scoate n.

Problema 6. (a) Determinați spline-ul cubic deBoor pentru funcția $f(x) = \cos \pi x$ și diviziunea $\Delta : x_1 = -1 < x_2 = 0 < x_3 = 1(1p)$

(b) De ce nu este un spline cubic propriu-zis? (1p)