Statistics 135

Chapter 1 - Multivariate Data

Chris Drake

Department of Statistics
University of California, Davis

Data Arrays

Simultaneous measurements on observational units; relationship between these variables (dependencies, correlations) distinguish univariate from multivariate analysis

Notation: Observational units $u_1, ..., u_n$ with x_{jk} the k^{th} measurement for k = 1, ..., p on the j^{th} unit displayed in an array

	x_1	x_2	•••	x_k	•••	x_p
u_1	x_{11}	x_{12}	•••	x_{1k}	•••	x_{1p}
u_2	x_{21}	x_{22}	•••	x_{2k}	•••	x_{2p}
•	•	•	•••	•	•••	•
u_n	x_{n1}	x_{n2}	• • •	x_{nk}	• • •	x_{nn}

Data Summaries

Sample mean
$$\mathbf{\bar{x}}' = (\bar{x}_1,, \bar{x}_p)$$

Sample variances and covariances

$$S_n = \begin{pmatrix} s_{11} & s_{12} & \dots & s_{1p} \\ s_{21} & s_{22} & \dots & s_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ s_{p1} & s_{p2} & \dots & s_{pp} \end{pmatrix}$$

where

$$s_{ii} = \frac{1}{n} \sum_{j=1}^{n} (x_{ji} - \bar{x}_i)^2$$
 $s_{ik} = \frac{1}{n} \sum_{j=1}^{n} (x_{ji} - \bar{x}_i) \times (x_{jk} - \bar{x}_k)$

and

$$R = \begin{pmatrix} 1 & r_{12} & \dots & r_{1p} \\ r_{21} & 1 & \dots & r_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ r_{p1} & r_{p2} & \dots & 1 \end{pmatrix}$$

with

$$r_{ik} = \frac{s_{ik}}{\sqrt{s_{ii} \times s_{kk}}}$$

Graphical displays

- 1 Scatterplots (and marginal dot plots)
- 2 Multiple scatterplots
- 3 Growth curves for repeated measurements

Distance

Points $P = (x_1, x_2, ..., x_p)$ and $Q = (y_1, y_2, ..., y_p)$

1 Euclidean distance

$$d(P,Q) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_p - y_p)^2}$$

2 Equation of ellipsoid

$$(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_p - y_p)^2 = c^2$$

3 Statistical distance between two points for uncorrelated variables

$$d(P,Q) = \sqrt{\frac{(x_1 - y_1)^2}{s_{11}} + \frac{(x_2 - y_2)^2}{s_{22}} + \dots + \frac{(x_p - y_p)^2}{s_{PP}}}$$

4 Statistical distance for correlated data (2 dimensions)

$$d(P,Q) = \sqrt{a_{11}(x_1 - y_1)^2 + a_{12}(x_1 - y_1)(x_2 - y_2) + a_{22}(x_2 - y_2)^2}$$

Note: the coefficients a_{ik} depend on the variability of x_i and x_k and the rotation angle.

5 The equation for an ellipse with center at $(y_1, y_2, ..., y_p)$ is given by

$$c^{2} = a_{11}(x_{1} - y_{1})^{2} + a_{12}(x_{1} - y_{1})(x_{2} - y_{2}) + a_{22}(x_{2} - y_{2})^{2}$$