Zadania 1

Informatyka - Modelowanie Cyfrowe

Przykładowe zadania

1. Metoda trapezów numerycznego rozwiązywania równania różniczkowego

$$\frac{dy(t)}{dt} = f(y,t)$$

jest następująca:

$$y(k) = y(k-1) + \frac{T}{2} (f(y(k), t_k) + f(y(k-1), t_{k-1})).$$

Stosując tę metodę, określić odpowiedni cyfrowy model:

- a) indukcyjności *L*,
- b) pojemności C,
- c) gałęzi szeregowo połączonych elementów RL.
- 2. Napisać równania stanu do symulacji stanu przejściowego w poniższym odwodzie po podaniu napięcia u(t). Podać i uzasadnić liczbę tych równań.

- 3. Na rysunkach (a) podane są schematy gałęzi obwodu elektrycznego, którym odpowiadają modele przedstawione odpowiednio na rysunkach (b). Określić parametry G oraz j(k-1) tych modeli, przyjmując aproksymację całkowania według:
 - metody prostokątów,
 - metody trapezów

4. Model cyfrowy bezstratnej jednofazowej linii długiej jest przedstawiony równaniem: $i_2(k) = G_f u_2(k) - G_f u_1(k-m) - i_i(k-m)$ i analogicznie dla drugiej strony linii,

gdzie:
$$m = \frac{\tau}{T} = \frac{l}{vT}$$
, $v = \frac{1}{\sqrt{L'C'}}$, $Z_f = \sqrt{\frac{L'}{C'}}$, $G_f = \frac{1}{Z_f}$,

L', C' - parametry jednostkowe linii, T - okres modelowania, l - długość linii.

Symulacja procesu przejściowego z udziałem tego modelu wymaga znajomości schematów zastępczych układów po obu końcach linii. Określić model cyfrowy układu przesyłowego, w którym linia zasilana jest idealnym źródłem napięcia, a drugi koniec linii jest:

- a) zwarty,
- b) otwarty.
- 5. Określić cyfrowe modele według metody trapezów podanych gałęzi.

6. Postać macierzowa metody potencjałów węzłowych jest określona następującym równaniem:

$$GU = J$$

gdzie: G - macierz przewodności węzłowych, U - wektor nieznanych napięć węzłowych, J - wektor źródłowych prądów węzłowych.

Określić postać macierzy \mathbf{G} oraz wektora \mathbf{J} dla modelu cyfrowego podanej sieci (rysunek a), przy założeniu, że pojemności i indukcyjności są reprezentowane modelem jak na rysunku (b). Przyjąć podaną numerację węzłów. Węzłem odniesienia jest ziemia.

Zadania 3

- 7. Określić warunki początkowe (dla czasu t=0) w postaci odpowiednich wartości i(0), u(0) w modelu cyfrowym przedstawionej sieci. Założyć, że pojemności i indukcyjności są aproksymowane zgodnie z metodą:
 - prostokątów,
 - trapezów.

Przyjąć, że stan początkowy jest ustalony przy wymuszeniu napięciowym: $u(t)=U\sin(\omega t+\pi/4)$, $\omega=2\pi f$, $f=50\,{\rm Hz}$.

8. Proces przejściowy w bezstratnej linii długiej jest określony następującą zależnością: $i_1(k) = G_f u_1(k) - G_f u_2(k-m) - i_2(k-m)$,

 \boldsymbol{L}

C

gdzie:
$$m = \frac{\tau}{T} = \frac{l}{vT}$$
, $v = \frac{1}{\sqrt{L'C'}}$, $Z_f = \sqrt{\frac{L'}{C'}}$, $G_f = \frac{1}{Z_f}$,

L', C' - parametry jednostkowe linii, T - okres modelowania, l - długość linii.

Podać pięć pierwszych próbek prądu $i_1(k)$ przy wymuszeniu w postaci napięcia stałego $u_1(k)=100\,\mathrm{V}$ w linii jak na rysunku.

Przyjąć następujące parametry: $T = 0.0001 \,\mathrm{s}$, $Z_f = 300 \,\Omega$, m = 3.

9. W podanym obwodzie u_1 = 10V, R_1 = 5 Ω , natomiast nieliniowy opornik jest określony za pomocą następującej funkcji: $u=2\sqrt{|i|}$. Określić sposób obliczenia wartości prądu i.

