Package 'flowdurr'

May 12, 2014

Type Package

Version 1.0

Title What the package does (short line)

to_wateryear

Index

Date 2014-05-12
Author Who wrote it
Maintainer Who to complain to <yourfault@somewhere.net></yourfault@somewhere.net>
Description More about what it does (maybe more than one line)
License What license is it under?
R topics documented:
flowdurr-package
add_wateryear
clean_flowdata
convert_from_cfsd
get_excurves
get_forecast
get_parameters
get_peakavg
get_ppositions
get_waterdata
plot_all_traces
plot_curves
plot_diagnostics
plot_empirical_exceedance
plot_trace

17

2 add_wateryear

flowdurr-package

What the package does (short line)

Description

More about what it does (maybe more than one line)

Details

Package: flowdurr Type: Package

Title: What the package does (short line)

Version: 1.0

Date: 2014-05-12 Author: Who wrote it

Maintainer: Who to complain to <yourfault@somewhere.net>

License: What license is it under?

Author(s)

Who wrote it

add_wateryear

Add a wateryear column.

Description

wrapper for get_wateryear() that adds a column named 'WYD' in the second column of a dataframe produced by get_waterdata() or get_forecast().

Usage

add_wateryear(d)

Arguments

d

a dataframe generated by $get_forecast()$ or $get_waterdata()$.

Value

the supplied dataframe, with 'WYD' in second column.

Author(s)

Who wrote it

clean_flowdata 3

Examples

```
# d = data.frame(GMT=as.Date(c('2012-10-01', '2013-01-01', '2013-09-30')), 
# x=c(10,20,30)
# add_wateryear(d)
```

clean_flowdata

Clean up flow data.

Description

Replace negative, 0 or NA entries in the flow data.

Usage

```
clean_flowdata(d, s = c(0, NA, -1), r)
```

Arguments

d a dataframe produced by get_forecast() or get_waterdata().

s the value targeted for substitution. s = -1 means negative values will be replaced. s = NA means NA values will be replaced. s = 0 means zero values will be

replaced.

r the replacement value, either NA or numeric.

Value

the same dataframe, with all zero values replaced.

Author(s)

Who wrote it

Examples

#

 ${\tt convert_from_cfsd}$

Flow to volume conversion.

Description

convert from thousand cubic-feet/second days to cubic feet or acre-feet.

Usage

```
convert_from_cfsd(d, to = c("cf", "af"))
```

4 get_excurves

Arguments

```
d a dataframe produced by get_forecast() or get_waterdata().
to convert to cubic feet ('cf') or acre-feet ('af').
```

Details

CFSD stands for cubic feet per second (cfs) averaged over the day (D), i.e. "mean daily flow in cfs". Volume is calculated by multiplying flows by the 86400 seconds/day to achieve units of cubic feet. Conversion to acre-feet is then achieved by multiplying by the ratio of acres to square feet.

Value

the same dataframe, but with a conversion factor applied.

Author(s)

Who wrote it

Examples

```
# d = data.frame(GMT=seq(0,10,1), WYD=seq(2014001, 2014011),
# x=seq(0, 10, 1), y=seq(0, 20, 2))
# convert_from_cfsd(d, 'cf')
# convert_from_cfsd(d, 'af')
```

get_excurves

Calculate exceedance curves.

Description

generate fitted exceedance curves for plotting.

Usage

Arguments

parameterdata dataframe of parameters as generated by get_parameters().

distr The distribution corresponding to the parameter estimates. Can be either log

Pearson III ('lp3') or 3-parameter lognormal ('ln3').

probs the quantiles used to generate the curve.

Value

a dataframe for plotting exceedance curves for each flow duration. Rows correspond to probability values contained in column 'p.exceedance'. Column names are the flow durations.

Author(s)

Who wrote it

get_forecast 5

Examples

#

get_forecast

Download ESP traces from CNRFC.

Description

download forecast data from the internet and get it into R.

Usage

```
get_forecast(datestring)
```

Arguments

datestring

the date to download, represented by the string YYYY-MM-DD or R date class. e.g. October 12, 1980 is "1980-10-12"

Details

The California Nevada River Forecast Center provides daily flow predictions generated for ensemble forecasting. Daily flows are reported as daily average instantaneous flow in thousand cubic feet per second, or kcfsd (i.e. 1 kcfs = 1000 cfs (d)aily). Flow values are multiplied by a factor of 1,000 so that the data is returned in cfsd.

Value

a dataframe containing the trace data.

Author(s)

Who wrote it

```
# get_forecast(as.Date(Sys.time()))
```

6 get_peakavg

get_parameters

Parameter estimates for exceedance curve fitting.

Description

estimate the parameters of a log Pearson III or 3-parameter lognormal distribution.

Usage

```
get_parameters(flowdata, distr = c("lp3", "ln3"), ...)
```

Arguments

flowdata flow duration data to be used for fitting, as created by get_peakavg().

distribution to be fitted, either log Pearson III ('lp3') or lognormal ('ln3').

other parameters to pass to pel-functions. For more information, see lmom::pelln3 and lmom::pelpe3.

Details

The function uses the Imom package to compute method of L-moment estimates. See Imom package documentation for information on definitions of the log Pearson III and 3-parameter lognormal distributions.

Value

a dataframe of similar construction to one generated by get_peakavg(). Column names are flow durations, named rows are the distribution parameters.

Author(s)

Who wrote it

Examples

#

get_peakavg

Calculate peak flow durations.

Description

get the peak average flows for many flow records.

Usage

get_ppositions 7

Arguments

d a dataframe generated by get_forecast() or get_waterdata(). flowduration a vector of window sizes for calculating moving averages.

na.rm logical: remove NA values prior to calculating peak flow durations?

Details

the function uses the rollmean() function in package 'zoo' to compute flow duration timeseries. The maximum value of each averaged timeseries is the peak flow for that flow duration.

Value

a dataframe.

Author(s)

Who wrote it

Examples

```
# d1 = add_wateryear(get_forecast(as.Date(Sys.time()) ))
# d2 = split_by_calendaryear(add_wateryear(get_waterdata(startdate='2010-10-01')))
# get_peakavg(d1, c(1,3,7,15,30,60,90))
# get_peakavg(d2, c(1,3,7,15), na.rm=TRUE)
```

get_ppositions

Cunnane plotting positions.

Description

calculate plotting positions for empirical cdf.

Usage

```
get_ppositions(pafdata, alpha = 0.4)
```

Arguments

pafdata a data frame generated by get_peakavg().

alpha shape parameter, default is 0.4.

Value

a data frame of size pafdata containing the plotting positions of observations for each record.

Author(s)

Who wrote it

get_waterdata

References

Cunnane 1978, J. Hydrol. 37:205-222 Helsel and Hirsch, Statistical Methods in Water Resources, USGS.

Examples

```
# d1 = add_wateryear(get_forecast(as.Date(Sys.time()) ))
# d2 = split_by_calendaryear(add_wateryear(get_waterdata(startdate='2010-10-01')))
# p1 = get_peakavg(d1, c(1,3,7,15,30,60,90))
# p2 = get_peakavg(d2, c(1,3,7,15), na.rm=TRUE)
# get_ppositions(p1)
# get_ppositions(p2, 0.4)
```

get_waterdata

Download daily flow data from USGS.

Description

download flowdata from a USGS gauge using the waterData package.

Usage

```
get_waterdata(startdate = NULL, enddate = NULL, locid = "11173200")
```

Arguments

startdate start date of record, string of form "YYYY-MM-DD".

enddate end date of record, same format as startdate.

locid the station id, default is Arroyo Hondo '11173200'.

Details

flow data is downloaded using the waterData package for R. Daily mean flow data (parameter code 00060, stat code 00003) is specified.

Value

a continuous time series from the waterData package.

Author(s)

Who wrote it

```
# get_waterdata()
```

```
# get_waterdata(startdate='2011-10-01', enddate='2012-09-30')
```

plot_all_traces 9

Description

plot traces in dataset, as well as mean and median flows.

Usage

```
plot_all_traces(d)
```

Arguments

d a dataframe generated by get_forecast() or split_by_*year(get_waterdata()).

Value

a ggplot plot of all traces, the mean flow, and the median flow.

Author(s)

Who wrote it

Examples

```
# d1 = add_wateryear(get_forecast(as.Date(Sys.time()) ))
# d2 = split_by_calendaryear(add_wateryear(get_waterdata()))
# plot_all_traces(d1)
# plot_all_traces(d2)
```

plot_curves

Plot empirical and fitted exceedance curves.

Description

plot the exceedance curves and empirical data.

Usage

Arguments

flowdata flow data generated by get_peakavg().

ppos plotting positions generated by get_ppositions().

curvedata fitted curves generated by get_excurves().

distr the distribution used to generate the fitted curves.

units the units to be used for displaying flow. Options are cubic feet ('cf') or acre-feet

('af').

Value

a ggplot2 plot.

Author(s)

Who wrote it

Examples

#

plot_diagnostics

Diagnostic plots for flow duration curves

Description

Create two diagnostic plots for checking distribution fits

Usage

```
plot_diagnostics(dp, distr)
```

Arguments

dp a dataframe of parameter values produced by get_parameters()

distr the distribution of the supplied parameters. Options are log Pearson type III

('lp3') or 3-parameter lognormal ('ln3').

Author(s)

Who wrote it

Examples

#

```
plot_empirical_exceedance
```

Plot empirical exceedance curves.

Description

plot the empirical cumulative distribution function using plotting positions.

Usage

```
plot_empirical_exceedance(flows, ppos)
```

plot_trace 11

Arguments

flows a dataframe produced by get_peakavg().

ppos a dataframe produced by get_ppositions().

Value

a ggplot plot.

Author(s)

Who wrote it

Examples

```
# d1 = add_wateryear(get_forecast(as.Date(Sys.time()) ))
# d2 = split_by_calendaryear(add_wateryear(get_waterdata(startdate='2010-10-01')))
# p1 = get_peakavg(d1, c(1,3,7,15,30,60,90))
# p2 = get_peakavg(d2, c(1,3,7,15), na.rm=TRUE)
# plot_empirical_exceedance(p1, get_ppositions(p1))
# plot_empirical_exceedance(p2, get_ppositions(p2, 0.4))
```

plot_trace

Plot a single ESP trace.

Description

plot an individual trace.

Usage

```
plot_trace(d, colname)
```

Arguments

d a dataframe generated by get_forecast() or split_by_*year(get_waterdata()). colname the column name of the trace to be plotted.

Value

a ggplot plot.

Author(s)

Who wrote it

```
# d1 = add_wateryear(get_forecast(as.Date(Sys.time()) ))
# d2 = split_by_calendaryear(add_wateryear(get_waterdata()))
# plot_trace(d1, tail(names(d1), 1))
# plot_trace(d2, tail(names(d2), 1))
```

12 split_by_calendaryear

replace_zero_flows

Replace zero values in a dataframe.

Description

replace numeric values of zero with a specified numeric placeholder.

Usage

```
replace_zero_flows(d, r)
```

Arguments

d a dataframe generated by get_forecast() or get_waterdata().

r the value to substitute, of type numeric.

Value

the same dataframe, with all zero values replaced.

Author(s)

Who wrote it

Examples

```
# d = data.frame(x=c(1,2,3), y=c(0, 5, 6), z=c(0,0,9))
# replace_zero_values(d, 0.001)
# replace_zero_values(d, 10)
# replace_zero_values(d, NA)
```

split_by_calendaryear Split a timeseries by calendar year.

Description

splits a timeseries downloaded using the waterData package by calendar year.

Usage

```
split_by_calendaryear(d)
```

Arguments

d a dataframe generated by get_waterdata().

Value

a dataframe with columns 'GMT' and wyXXXX, where XXXX is a year in the record.

split_by_wateryear 13

Author(s)

Who wrote it

Examples

```
# d = get_waterdata()
# split_by_calendaryear(d)
```

split_by_wateryear

Split a timeseries by water year.

Description

splits a timeseries downloaded using the waterData package by water year.

Usage

```
split_by_wateryear(d)
```

Arguments

d

a dataframe generated by get_waterdata() and add_wateryear().

Value

a dataframe with each column containing data from each water year in the record. Missing values are NA.

Author(s)

Who wrote it

Examples

```
# d = get_waterdata()
# split_by_wateryear(d)
```

strip_na_cols

Remove NA columns.

Description

remove columns that only contain NA values.

Usage

```
strip_na_cols(d)
```

Arguments

d

a dataframe.

14 subset_forecast

Value

the supplied dataframe, but with NA columns removed.

Author(s)

Who wrote it

Examples

```
# d = data.frame(w=seq(0, 10), x=c(rep(NA, 6), seq(5)),
# y=rep(NA, 11), z=seq(0, 20, 2))
# strip_na_cols(d)
```

subset_forecast

Subset ESP trace data.

Description

pull time interval and/or specific locations from forecast data.

Usage

```
subset_forecast(d, sc = c("GMT", "WYD"), startdate = NULL, enddate = NULL,
location = NULL)
```

Arguments

d a dataframe generated by get_forecast.

sc name or index of column to use for date, e.g. 'GMT' or 'WYD'. Default is

'GMT'.

startdate the start of interval, date format e.g. as.Date('2012-01-15') or string 'YYYY-

MM-DD', or numeric water year date, e.g. October 1st, 2013 is 2014001.

enddate the last entry in interval, same format as startdate.

location the region identifier, e.g. Arroyo Hondo is 'AHOC1'.

Value

return subset of data.

Author(s)

Who wrote it

```
# d = get_forecast(as.Date(Sys.time()))
# d = add_wateryear(d)
# subset_forecast(d, location='AHOC1')
# subset_forecast(startdate='2014-04-01', enddate='2014-06-30')
# subset_forecast(sc='WYD', enddate=2014365)
```

subset_waterdata 15

subset_waterdata

Subset downloaded USGS flow data.

Description

subset waterdata by interval.

Usage

```
subset_waterdata(d, sc = c("WYD", "GMT"), startdate = NULL, enddate = NULL,
    na.cols = TRUE)
```

Arguments

d a dataset generated by split_by_wateryear() or split_by_calendaryear().

sc search column to use for subsetting by date.

startdate the first day of the interval, either 'MM-DD' string or 3-digit WYD.

enddate the last day of the interval, same format as startdate.

na.cols Logical: remove columns with all values NA?

Value

a subset of the original dataframe.

Author(s)

Who wrote it

Examples

```
# d = get_waterdata()
# subset_waterdata(d, startdate='2013-10-01')
```

to_wateryear

Hydrologic date conversion.

Description

converts a date to a water year.

Usage

```
to_wateryear(thedate)
```

Arguments

thedate

a date created by as.Date('YYYY-MM-DD') or a string of form 'YYYY-MM-

DD'.

16 to_wateryear

Value

an interger of form YYYYDDD, e.g. 2014-01-01 is 2014001.

Author(s)

Who wrote it

```
# to_wateryear(as.Date(Sys.time()))
```

- # to_wateryear('2013-10-01')
 # to_wateryear('2014-09-30')
 # to_wateryear('2012-09-30')

Index

```
*Topic package
    flowdurr-package, 2
add_wateryear, 2
clean_flowdata, 3
convert_from_cfsd, 3
flowdurr (flowdurr-package), 2
flowdurr-package, 2
get_excurves, 4
get_forecast, 5
get_parameters, 6
get_peakavg, 6
get_ppositions, 7
{\tt get\_waterdata}, {\tt 8}
\verb|plot_all_traces|, 9
plot_curves, 9
plot_diagnostics, 10
plot_empirical_exceedance, 10
plot_trace, 11
replace_zero_flows, 12
split_by_calendaryear, 12
split_by_wateryear, 13
strip\_na\_cols, 13
subset_forecast, 14
subset_waterdata, 15
to_wateryear, 15
```