Dispense Di Geometria I

Federico De Sisti2024-06-06

1 Geometria Affine

1.1 Spazi Affini

Definizione 1 (Spazio affine)

Sia V uno spazio vettoriale su \mathbb{K} . Uno spazio affine su V è un insieme non vuoto \mathbb{A} i cui elementi si dicono punti di A tale che sia data un'applicazione

$$A \times A \rightarrow V$$
 [1.1].

che associa ad ogni $(P,Q) \in A \times A$ un vettore di V, denotato con \overrightarrow{PQ} e chiamato vettore di punto iniziale P e punto Q, in modo che i seguenti due assiomi siano soddisfatti.

- Per ogni punto $P \in \mathbb{A}$ e per ogni vettore $v \in V$ esiste un unico punto $Q \in \mathbb{A}$ tale che

$$\overrightarrow{PQ} = v.$$

- Per ogni terna P,Q,R di punti di $\mathbb A$ è soddisfatta la seguente identità

$$\overrightarrow{PQ} + \overrightarrow{QR} = \overrightarrow{PR}.$$

L'applicazione [7.1] definisce una struttura di spazio affine sull'insieme \mathbb{A}

Definizione 2 (Rifermineto affine)

Siano V su \mathbb{K} -spazio vettoriale e \mathbb{A} uno spazio affine su V. Un sistema di coordinate affine (ovvero un riferimento affine) nello spazio \mathbb{A} è assegnato una volta fissati un punto $O \in A$ e una base $\{e_1, \ldots, e_n\}$ di V; esso viene denotato con Oe_1, \ldots, e_n

Definizione 3 (Coordinate affini)

Per ogni punto $P \in A$ si ha $\overrightarrow{OP} = a_1e_1 + \ldots + a_ne_n$ per opportuni $a_1, \ldots, a_n \in \mathbb{K}$.

Gli scalari a_1, \ldots, a_n si dicono coordinate affini. Il punto O si dice origine del sistema di coordinate $(0, \ldots, 0)$

Definizione 4 (Giacitura)

La giacitura di uno spazio affine è lo spazio vettoriale sul quale lo spazio affine è definito

Proposizione 1

- 1) Un sottospazio affine è individuato dalla sua giacitura e da uno qualsiasi dei suoi punti
- 2) Sia S un sottospazio affine di $\mathbb A$ avente giacitura W, Associando ad ogni coppia di punti P,Q di S il vettore \overrightarrow{PQ} si definisce su S una struttura di spazio affine su W

Dimostrazione

1) Sia S il sottospazio affine di $\mathbb A$ passante per Q ed avente giacitura W. Sia $M \in S$ e sia T il sottospazio affine passante per M ed avente giacitura W. Se $P \in S$ allora si ha

$$\overrightarrow{MP} = \overrightarrow{MQ} + \overrightarrow{QP} = -\overrightarrow{QM} + \overrightarrow{QP}.$$

che è un vettore di W perché entrambe gli addendi vi appartengono, quindi $P \in T$.

Se viceversa $P \in T$, allora

$$\overrightarrow{QP} = \overrightarrow{QM} + \overrightarrow{MP} = -\overrightarrow{MQ} + \overrightarrow{MQ} \in W.$$

e quindi $P \in S$. In conclusione S = T

2) Se $P,Q \in S$ allora $\overrightarrow{PQ} \in W$ perché, per la (1), S coincide con il sottospazio affine passante per P e parallelo a W. Otteniamo quindi un'applicazione

$$S \times S \to W \\ (P,Q) \to \overrightarrow{PQ}$$

la quale soddisfa le proprietà dell'applicazione che definisce la struttura di spazio affine, perché sono verificate in $\mathbb A$

Osservazioni

1) Possiamo quindi definire sottospazi affini di (A, V) come i sottospazi del tipo

$$p + W$$
 $W \subseteq V$ sottospazio vettoriale.

Ricordiamo anche che $p+W=q+W \Leftrightarrow \overrightarrow{PQ} \in W$

2) Se $\Sigma_1=p_1+W_1$, $_2=p_2+W_2$ sono sottospazi affini , la loro intersezione, se non vuota, è un sottospazio affine. Infatti $p\in\Sigma_1\cap\Sigma_2$

$$\Sigma_1 \cap \Sigma_2 = p + W_1 \cap W_2$$
.

Lemma 1

$$\begin{array}{ll} \emptyset \neq S \subset A & p,q \in S \\ H_p = \{\overrightarrow{px} \mid x \in S\} \ H_q = \{\overrightarrow{qy} \mid y \in S\} \\ Allora < H_p > = < H_q > e \ p + < H_p > = q + < H_q > \\ (sottospazio \ generato \ da \ S) \end{array}$$

Dimostrazione

$$v_0 = \overrightarrow{pq} \quad v_0 \in H_p \quad -v_0 = \overrightarrow{qp} \in H_q$$

$$H_p \ni \overrightarrow{px} = \overrightarrow{pq} + \overrightarrow{qx} = v_0 + \overrightarrow{qx} \in < H_q >$$

$$H_p \subseteq < H_q > \Rightarrow < H_p > \subseteq < H_q >$$

$$H_q \ni \overrightarrow{qp} = \overrightarrow{qp} + \overrightarrow{py} \in < H_q > \Rightarrow < H_q > \subseteq < H_p >$$

$$Quindi \quad ;H_p > = < H_q >$$

$$\overrightarrow{pq} \in < H_p > = < H_q >$$

$$p+ < H_p > = q+ < H_q >$$

Nomenclatura 1

 Σ_1, Σ_2 sottospazi affini

 $\Sigma_1 \vee \Sigma_2 := sottospazio generato da \Sigma_1 \cup \Sigma_2.$

Lemma 2

Siano $\Sigma_i = p_i + W_i, \quad i = 1, 2 \text{ sottospazi affini. Allora}$ (a) $\Sigma_1 \cap \Sigma_2 \neq \emptyset \Leftrightarrow \overrightarrow{p_1 p_2} \in W_1 + W_2$ (b) $\Sigma_1 \vee \Sigma_2 = p_1 + (W_1 + W_2 + \langle \overrightarrow{p_1 p_2} \rangle)$

Dimostrazione

$$\begin{array}{l} (a) \ p_0 \in \Sigma_1 \cap \Sigma_2 \ allora \ \Sigma_1 = p_0 + W_1 \ \ _2 = p_0 + W_2 \\ \exists w_i \in W_i, \ i = 1, 2 \ \ t.c \\ p_1 = p_0 + W_1, p_2 = p_0 + W_2 \\ \overline{p_1p_2} = w_2 - w_1 \in W_1 + W_2 \\ Viceversa, \ se \ \overline{p_1p_2} = w_1 + w_2, w_1 \in W_1, w_2 \in W_2 \\ p_2 = p_1 + \overline{p_1p_2} = p_1 + w_1 + w_2 \\ p_2 - w_2 = p_1 + w_1 \in \Sigma_1 \cap \Sigma_2 \end{array} \tag{2} \ Dato \ x \in \Sigma_1 \cup \Sigma_2, \ risulta \\ \overline{p_1x} \in W_1 \ se \ x \in \Sigma_1 \\ oppure \end{array}$$

$$\overrightarrow{p_1x} \in \overrightarrow{p_1p_2} + W_2 \quad (\overrightarrow{p_1x} = \overrightarrow{p_1p_2} + \overrightarrow{p_2x}).$$

Dunque la giacitura di $\Sigma_1 \vee \Sigma_2$ è

$$W_1 + W_2 + \langle \overrightarrow{p_1 p_2} \rangle$$
.

1.2 Posizioni Reciproche di sottospazi affini

Definizione 5

Siano Σ_1, Σ_2 sottospazi affini di (A, V) di giacitura rispettivamente W_1, W_2 Diciamo che

- 1) Σ_1, Σ_2 sono **incidenti**, se $\Sigma_1 \cap \Sigma_2 \neq \emptyset$
- 2) Σ_1, Σ_2 sono **paralleli** se $W_1 \subseteq W_2$ o $W_2 \subseteq W_1$
- 3) Σ_1, Σ_2 sono **sghembi** se $\Sigma_1 \cap \Sigma_2 = \emptyset$ e $W_1 \cap W_2 = \{0\}$

Osservazione

Queste posizioni non sono mutuamente esclusive e non costituiscono tutte le possibilità

Proposizione 2 (Fromula Grassmann per spazi affini) Siano Σ_1, Σ_2 sottospazi affini di A, Allora

$$dim(\Sigma_1 \vee \Sigma_2) \leq dim\Sigma_1 + dim\Sigma_2 - dim(\Sigma_1 \cap \Sigma_2).$$

e vale l'uguaglianza se Σ_1, Σ_2 sono incidenti o sghembi si usa la notazione $dim(\emptyset) = -1$

Dimostrazione

- Supponiamo Σ_1, Σ_2 incidenti, allora esiste

$$p_0 \in \Sigma_1 \cap \Sigma_2$$

$$\Sigma_1 = p_0 + W_1, \Sigma_2 = p_0 + W_2$$

$$\Sigma_1 \cap \Sigma_2 = p_0 + W_1 \cap W_2, \Sigma_1 \vee \Sigma_2 = p_0 + W_1 + W_2$$

dunque vale l'uguaglianza per Grassman vettoriale

- Sia ora $\Sigma_1 \cap \Sigma_2 = \emptyset$ allora $\Sigma_i = p_i + W_i$ i = 1, 2 risulta $\overrightarrow{p_1p_2} \notin W_1 + W_2$ (per lemma)

$$dim(\Sigma_1 \vee \Sigma_2) = dim(W_1 + W_2 + \langle \overrightarrow{p_1 p_2}) = dim(W_1 + W_2) + 1 \le$$

 $\leq dim(W_1) + dim(W_2) - (-1) = dim(W_1) + dim(W_2) + dim(\Sigma_1 \cap \Sigma_2)$

e vale l'uguaglianza se e solo se $dim(W_1) + dim(W_2) = dim(W_1 + W_2)$ ovvero $W_1 \cap W_2 = 0$ ovvero se Σ_1, Σ_2 sono sghembi \square

Proposizione 3

siano Σ_1, Σ_2 sottospazi affini di $\mathbb{A}^n(\mathbb{K})$ definiti dai sistemi lineari

$$A_i X = b_i \ i = 1, 2.$$

Allora:

(a) Σ_1, Σ_2 sono incidenti se e solo se

$$rk\begin{pmatrix} A_1 & b_1 \\ A_2 & b_2 \end{pmatrix} = rk\begin{pmatrix} A_1 \\ A_2 \end{pmatrix}.$$

detto r tale rango, $dim(\Sigma_1 \cap \Sigma_2) = n - r$

(b) Σ_1, Σ_2 sono sghembi se e solo se

$$rk \begin{pmatrix} A_1 & b_1 \\ A_2 & b_2 \end{pmatrix} \ge rk \begin{pmatrix} A_1 \\ A_2 \end{pmatrix} = n.$$

(c) Se

$$rk\frac{\begin{pmatrix} A_1 & b_1 \\ A_2 & b_2 \end{pmatrix}}{} \geq rk\frac{\begin{pmatrix} A_1 \\ A_2 \end{pmatrix}}{} = r < n.$$

allora Σ_1 (rispetto a Σ_2) contiene un sottospazio affine di dimensione n-rparallelo a Σ_2 (rispetto a Σ_1)

Dimostrazione

- (a) $\Sigma_1 \cap \Sigma_2 \neq \emptyset \Leftrightarrow il \ sistema \ e \ compatibile \ quindi \ tutto \ segue \ da \ Roche-Capelli$
- (b) la disuguaglianza tra i ranghi dice che $\Sigma_1 \cap \Sigma_2 = \emptyset$;

il fatto che
$$rk\left(\frac{A_1}{A_2}\right) = n$$
 implica che $W_1 \cap W_2 = 0$

(c) Di nuovo là disuguaglianza dei ranghi implica $\Sigma_1 \cap \Sigma_2 = \emptyset$;

Se ora $W_1 \cap W_2 = W$ allora $dim(W_1 \cap W_2) = n - r$

Scelto $p_1 \in \Sigma_1$ risulta

$$p_1 + W \subset \Sigma_1$$
 $(W_1 \cap W_2 = W \text{ sottospazio di } W_1)$

 $e\ W\subset W_2\Rightarrow p_1+W\ \ \dot{e}\ parallelo\ a\ \Sigma_2\ \ e\ dim(p_1+W)=dim(W)=n-r\square\ \ \square$

Esempio

 $\mathbb{A} \pi_1, \pi_2 \ piani \ distinti$

 A_1, A_2 vettori riga $(A_1 = (a_{11} \ a_{12} \ a_{13})$

$$C = \begin{pmatrix} A_1 & b_1 \\ A_2 & b_2 \end{pmatrix} \in M_{2,4}(\mathbb{R})$$
piani distinti $\Rightarrow rk(C) = 2$

$$rg\left(A_1\right) = 1 \implies \pi_1 \cap \pi_2 = \emptyset \text{ piani paralleli poich\'e } W_1 = W_2$$

 \mathbb{A}^4 , $\pi_1\pi_2$ piani distinti tali che $rk(A_i|b_i)=2$

$$C = \begin{pmatrix} A_1 & b_1 \\ A_2 & b_2 \end{pmatrix} \in M_{4 \times 5} \quad rk(C) \le 4.$$

$\operatorname{rk}\left(\frac{A_1}{A_2}\right)$	rk(C)	$\pi_1 \cap \pi_2$
4	4	{p}
3	4	\emptyset e W_1, W_2 hanno una direzione in comune
3	3	r
2	3	\emptyset

1.3 Applicazioni affini

V, V' spazi vettoriali su $\mathbb{K}, (A, V, +), (A', V', +)$ spazi affini

Definizione 6

 $f:A\to A'$ è un'applicazione affine se esiste un'applicazione lineare $\phi:V\to V'$ tale che:

$$f(p+v) = f(p) + \phi(v) \quad \forall p \in A, \forall v \in V.$$

$$\begin{pmatrix} ovvero & f(Q) = f(P) + \phi(\overrightarrow{PQ}) & \forall P, Q \in A \\ \hline f(P)f(\overrightarrow{Q}) = \phi(\overrightarrow{PQ}) & \forall P, Q \in A \end{pmatrix}$$

Nomenclatura

Se f è biunivoca, f è detto isomorfismo affine

Un isomorfismo affine $A \to A$ è detto affinità.

Osservazione

vedremo che le affinità formano un gruppo rispetto alla composizione di applicazione che denoteremo come ${\rm Aff}(A)$

Esempio

 $Ov_1...v_n$ rifermento affine in A

$$f: \mathbb{A} \to \mathbb{A}^n \quad f(p) = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \quad e \quad \overrightarrow{OP} = \sum_{i=1}^n x_i v_i.$$

Dico che f è un isomorfismo affine con associato isomorfismo lineare

$$\varphi(\sum_{i=1}^{n} x_i v_0) = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
Verifichiamo che $\overline{f(P)f(Q)} = \varphi(\overrightarrow{PQ})$

$$\overrightarrow{OQ} = \sum_{i=1}^{n} y_i v_i \quad f(Q) = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \overrightarrow{f(P)f(Q)} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} - \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 - x_1 \\ \vdots \\ y_n - x_n \end{pmatrix} = \varphi(\sum_{i=1}^{n} (y_i - x_i) v_i) = \varphi(\overrightarrow{OQ} - \overrightarrow{OP}) = \varphi(\overrightarrow{PQ})$$

3 Esempi di affinità

I traslazioni

Fissato $v \in V$ definiamo

 $t_v:A\to A,\ t_v(P)=p+v$ Dico che t_v è un'affinità con associato isomorfismo Id_V dato che:

$$t_V(p+w) = (p+w) + v = p + (w+v) = p + (v+w) = (p+v) + w = t_V(p) + w = t_V(p) + \varphi(w) \leftarrow Id_V$$

la biunicità segue dagli assiomi per A

II Simmetria rispetto ad un punto

$$\sigma_C(p) = C - \overrightarrow{CP}$$

Dico che σ_C è un'affinità con parte lineare $\varphi = -Id$

$$\sigma_C(p+v) = c - \overrightarrow{CQ} \quad Q = p+v \quad v = \overrightarrow{PQ}$$

$$\sigma_C(p) + \phi(v) = c - \overrightarrow{CP} - v = c - \overrightarrow{CP} - \overrightarrow{PQ} = c - \overrightarrow{CQ}$$

III Otetia di centro O e fattore $\gamma \in R \backslash \{0\}$

$$\omega_{O,\gamma}(p) = O + \gamma \overrightarrow{OP}.$$

è un'affinità con parte lineare $\phi = \gamma I d_V$

$$\omega_{O,\gamma}(p+v) = O + \gamma \overrightarrow{OQ} = O + \gamma (\overrightarrow{OP} + \overrightarrow{PQ}) = (O + \gamma \overrightarrow{OP}) + \gamma \overrightarrow{PQ} = \omega_{O,\gamma}(p) = \varphi(v)$$

Lemma 3

Fissato $O \in \mathbb{A}$, per ogni $O' \in \mathbb{A}$ e per ogni $\varphi \in GL(V)$ esiste un'unica affinità tale che f(O) = O' e che ha φ come isomorfismo associato

Dimostrazione

Esistenza

Pongo
$$f(P) = O' + \varphi(\overrightarrow{OP} \quad f(O) = O' + \varphi(\overrightarrow{OQ}) = O' + O = O'$$

 $f(p+v) = O' + \varphi(\overrightarrow{OQ}) = O' + \varphi(\overrightarrow{OP} + \overrightarrow{PQ}) = O' + \varphi(\overrightarrow{OP}) + \varphi(\overrightarrow{PQ}) = f(p) + \varphi(v)$
dove abbiamo usato $Q = p + v \quad v = \overrightarrow{PQ}$

Unicità

Supponiamo che g abbia le stesse proprietà di f, allora

$$\overrightarrow{f(O)f(p)} = \varphi(\overrightarrow{OP}) = \overrightarrow{g(O)g(p)} = \overrightarrow{O'f(p)} = \overrightarrow{f(O)g(p)} \Rightarrow f(p) = g(p)$$

$$\Rightarrow f = g$$

Definizione 7

Definiamo $Aff_O(A) = \{f \in Aff(A) | f(O) = O\} \le Aff(A)$ tale gruppo è anche isomorfo a GL(V)

Lemma 4

Sia $O \in A, f \in Aff(A)$ Esistono $v, v' \in V$ e $g \in Aff_O(A)$, univocamente determinate da f tale che

$$f = g \circ t_v = t_{v'} \circ g$$
.

Dimostrazione

 $\begin{array}{ll} \textit{poniamo} \ v = -\overrightarrow{Of^{-1}(O)}, \quad v' = \overrightarrow{Of(O)}, \quad g = f \circ t_{-v'}, \quad g' = t_{-v} \circ f \\ \textit{Allora} \end{array}$

$$(g \circ t_v) = (f \circ t_{-v})t_v = f \circ (t_{-v} \circ t_v) = f.$$

quindi vale $f = g \circ t_v$

$$t_{v'} \circ g' = t_{v'} \circ (t_{-v'} \circ f) = (t_{v'} \circ t_{-v'}) \circ f = f.$$

Vedremo che g = g', per cui ho dimostrato anche $f = t_{v'} \circ g$

$$g(O) = (f \circ t_{-v})(O) = f(O - v) = f(O + \overrightarrow{Of^{-1}(O)}) =$$

$$= f(O + f^{-1}(O) - O) = f(f^{-1}(O)) = f(O + f^{-1}(O)) = 0$$

$$g'(O) = t_{-v}(f(O)) = f(O) - v' = f(O) - \overrightarrow{Of(O)} = 0.$$

d'altra parte g, g' hanno lo stesso isomorfismo associato e mandano entrambi O in O, dunque coincidono \square

Descrizione in coordinate delle affinità di \mathbb{A}^n

$$\delta(x) = f(O) + L_A X = AX + b.$$

$$b = f(O) \quad \varphi = L_A \quad L_A : \mathbb{K}^n \to \mathbb{K}^n$$

$$X \to AX$$

con $det(A) \neq 0$ ovviamente Viceversa, per $A \in GL(n, \mathbb{K}), b \in \mathbb{K}^n$

$$f_{A,b} = AX + b.$$

 $f_{A,b}$ è un'affinità con parte lineare L_A

$$f_{A,b}(x+v) = f_{A,b}(x) + \varphi(v)$$

 $f_{A,b}(x+y) = f_{A,b}(x) + L_A y$

$$f_{A,b}(x+y) = A(x+y) + b = AX + AY + b = (AX+b) + AY = f_{A,b}(x) + L_A(y).$$

$$Aff(\mathbb{A}^n = \{f_{A,b} | A \in GL(n, \mathbb{K}), b \in \mathbb{K}^n\}.$$

Osservazione

Aff \mathbb{A}^n è un gruppo per composizione

$$(f_{A,b} \circ f_{C,d})(x) = f_{A,b}(f_{C,d}(x)) =$$

$$= f_{A,b}(CX + d) =$$

$$= A(CX + d) + b =$$

$$= ACX + Ad + b = f_{AC,Ad+b}(x)$$

Osservo che $f_{I,O}$ è l'elemento neutro

$$(f_{A,b} \circ f_{I,O})(x) = f_{A,b}(Ix + O) = f_{A,b}(x)$$

 $(f_{I,O} \circ f_{A,b})(x) = f_{A,b}(x)$

Manca solo dimostrare l'esistenza dell'inverso di $f_{A,b}$, ovvero che esiste $f_{C,d}$ tale che $f_{A,b} \circ f_{C,d} = f_{C,d} \circ f_{A,b} = f_{I,O}$

$$(f_{A,b} \circ f_{C,d})(x) = f_{I,O}(x) = x$$

$$ACX + Ad + b + X \quad \forall X \in \mathbb{K}^n$$

$$\Rightarrow AC = Id \quad Ad + b = 0$$

$$C = A^{-1} \quad d = -A^{-1}b$$

$$(f_{A,b})^{-1} = f_{A^{-1}, -A^{-1}b}$$

Definizione 8

Equivalenza per affinità Due sottoinsiemi $F, F' \subseteq A$ spazio affine, si dicono affinamente equivalenti se esiste $f \in Aff(A)$ tale che f(F) = F'Definiamo anche una proprietà **affine** se è equivalente per affinità

Proposizione 4

Se $f \in Aff(A)$ e F un sottospazio affine di A di dimensione k, allora f(F) è un sottospazio affine di dimensione k

Dimostrazione

F=p+W dim(W)=k Sia φ la parte lineare di f, che è un omomorfismo $\varphi:V\to V.$

Poniamo
$$F' = f(p) + W'$$
 dove $W' = \varphi(W)$
Chiaramente, $dim(W') = dim(\varphi(W)) = k$

 $risulta\ f(F) = F'$

$$Q \in F$$
 $\overrightarrow{f(P)f(Q)} = \varphi(\overrightarrow{PQ}) \in \varphi(W) = W'.$

 $e\ dato\ che\ \overrightarrow{PQ}\in W\ \Rightarrow f(F)\subseteq F'\ \textit{Viceversa, dato}\ R\in F$

$$\overrightarrow{Pf^{-1}(R)} = \varphi^{-1}(\overrightarrow{f(P)R}) \in W \Rightarrow f^{-}1(R) \in F, R \in f(F).$$

dunque $F'\subseteq f(F)$

Teorema 1

Sia (A, V, +) uno spazio affine di dimensione n e siano $\{p_0, \ldots, p_n\}$, $\{a_0, \ldots, a_n\}$ due (n+1)-ple di punti indipendenti. Allora esiste un'unica affinità $f \in Aff(A)$ tale che $f(p_i) = q_i$, $0 \le i \le n$

Dimostrazione

Per ipotesi $\{\overrightarrow{p_0p_1}, \dots, \overrightarrow{p_0p_n}\}, \{\overrightarrow{q_0q_1}, \dots, \overrightarrow{q_0q_n} \text{ Sono basi di } V, \text{ dunque esiste un unico operatore lineare } \varphi \in GL(V) \text{ tale che } \varphi(\overrightarrow{p_0p_i} = \overrightarrow{q_0q_i}) \text{ } 1 \leq i \leq n$

Pongo
$$f(p) = q_0 + \varphi(\overrightarrow{p_0p})$$

 $f(p_i) = q_0 + \varphi(\overrightarrow{p_0p}_i = q_0 + \overrightarrow{q_0q}_i = q_i$
 $f \ \grave{e} \ chiaramente \ biettiva \ \overrightarrow{f(p)f(p')} = \overrightarrow{q_0f(p)} - \overrightarrow{q_0f(p')} = \varphi(\overrightarrow{p_0p'}) - \varphi(\overrightarrow{p_0p}) =$
 $= \varphi(\overrightarrow{p_0p'} - \overrightarrow{p_0p}) = \varphi(pp')$

L'unicità di f segue da quella di φ e dal fatto che $f(p_0) = q_0$ (un'affinità è determinata dalla parte lineare e dall'immagine di un punto).

Esempio

Determino $f \in Aff(\mathbb{A}^2)$ t.c.

$$\begin{split} f\left(\begin{smallmatrix}2\\1\end{smallmatrix}\right) &= \left(\begin{smallmatrix}1\\2\end{smallmatrix}\right), \quad f\left(\begin{smallmatrix}-1\\-1\end{smallmatrix}\right) = \left(\begin{smallmatrix}1\\1\end{smallmatrix}\right), \quad f\left(\begin{smallmatrix}0\\1\end{smallmatrix}\right) = \left(\begin{smallmatrix}2\\-1\end{smallmatrix}\right). \\ \{\overrightarrow{p_0p_1}, \overrightarrow{p_0p_2}\} &\to \{\overrightarrow{q_0q_1}, \overrightarrow{q_0q_2}\} \end{split}$$

Cercherò quindi $\varphi \in GL(V)$ tale che

$$\varphi(\overrightarrow{p_0p_1}) = \overrightarrow{q_0q_1}, \varphi(\overrightarrow{p_0p_2}) = \overrightarrow{q_0q_2}$$

$$\varphi\begin{pmatrix} -3 \\ -2 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}, \quad \varphi\begin{pmatrix} 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$$

$$P = \left\{ \begin{pmatrix} -3 \\ -1 \end{pmatrix}, \begin{pmatrix} -2 \\ 0 \end{pmatrix} \right\} \quad \varepsilon\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

$$[\varphi]_B^{\varepsilon} = \begin{pmatrix} 0 & 1 \\ -1 & -3 \end{pmatrix} \quad [Id]_B^{\varepsilon} = \begin{pmatrix} -3 & -2 \\ -2 & 0 \end{pmatrix}$$

$$[\varphi]_{\varepsilon}^{\varepsilon} = [\varphi]_B^{\varepsilon} [Id]_{\varepsilon}^{\varepsilon} = [\varphi]_B^{\varepsilon} [Id]_B^{\varepsilon}^{-1} =$$

$$= \begin{pmatrix} 0 & 1 \\ -1 & -3 \end{pmatrix} \begin{pmatrix} 0 & -\frac{1}{2} \\ -\frac{1}{2} & \frac{3}{4} \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & \frac{3}{4} \\ \frac{3}{2} & -\frac{7}{4} \end{pmatrix}$$

$$f\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} -\frac{1}{2} & \frac{3}{4} \\ \frac{3}{2} & -\frac{7}{4} \end{pmatrix} \begin{pmatrix} x_1 - 2 \\ x_2 - 1 \end{pmatrix}$$

$$f(p) = q_0 + \varphi(\overrightarrow{p_0p})$$

$$f\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \frac{9}{4} \\ \frac{14}{14} \end{pmatrix} + \begin{pmatrix} -\frac{1}{2} & \frac{3}{4} \\ \frac{3}{2} & -\frac{7}{4} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = (t_V \circ L_A) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \quad v = \begin{pmatrix} \frac{9}{4} \\ \frac{14}{14} \end{pmatrix}$$

Corollario 1

(A, V, +) spazio affine di dimensione n

- 1. per ogni $1 \le k \le n+1$ due qualsiasi k-uple di punti sono affinamente equivalenti
- 2. Due sottospazi affini sono affinamente equivalenti se e solo se hanno al stessa dimensione

Dimostrazione

1. Se $\{p_0, \ldots, p_{k-1}\}, \{q_0, \ldots, q_{k-1}\}$ sono le k-ple date, completiamole a (n+1)-ple di punti indipendenti $\{p_0, \ldots, p_n\}, \{q_0, \ldots, q_n\}$ e usiamo il teorema 2. Abbiamo già visto che un'affinità preserva la dimensione dei sottospazi.

Viceversa, se S, S' sono sottospazi affini della stessa dimensione k, possiamo trovare k+1 punti indipendenti in S, e k+1 punti indipendenti in S' tali che

$$S = \overline{p_0, \dots, p_k}, \quad S' = \overline{q_0, \dots, q_n}.$$

Per la parte 1, esiste un'affinità che manda P_i in q_i , $0 \le i \le k$, dunque

$$f(S) = S'$$
.

1.4 Proiezioni e Simmetrie

Definizione 9 (Proiezioni e Simmetrie)

In (A, V, +) Sia L un sottospazio affine, L = P + WSia U un complementare di W in V, ovvero $V = W \bigoplus U$

$$\pi_W^U(w+u) = w \qquad \qquad \pi_W^U: V \to V$$

$$\sigma_W^U(w+u) = w - u \qquad \sigma_W^U: V \to V$$

$$p_L^U(x) = p + \pi_W^U(\overrightarrow{px}) \quad \text{ proiezione su L parallela a U}$$

$$s_L^U(x) = p + \sigma_W^U(\overrightarrow{px})$$
 simmetria di asse L e direzione U

1.5 Complementi

 $\mathbb A$ spazio affine reale con associato spazio vettoriale V

Definizione 10 (Semiretta)

Possiamo definire la semiretta di origine $Q \in \mathbb{A}$ e direzione $v \in V \setminus \{0\}$

$$P = Q + tv, t \ge 0 \quad (\overrightarrow{QP} = tv, t \ge 0).$$

Definizione 11 (Segmento)

Possiamo definire il segmento di estremi $A, B \in \mathbb{A} \ (A \neq B)$

$$P = A + t\overrightarrow{AB}$$
 $0 < t < 1$.

i punti p_1, \dots, p_t che dividono il segmento AB in t parti uguali sono dati, cioè

$$\overrightarrow{AP_1} = \overrightarrow{p_1p_2} = \overrightarrow{p_2p_3} = \ldots = \overrightarrow{p_{t-1}B}.$$

sono dati da

$$\overrightarrow{AP_i} = \frac{i}{t}\overrightarrow{AB} \quad 1 \le i \le t - 1.$$

In un riferimento affine $Oe_1 \dots, e_n$, in cui

$$A = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}, \quad B = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \quad P_i = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

$$\begin{pmatrix} x_1^i - a_1 \\ \vdots \\ x_n^i - a_n \end{pmatrix} = \frac{i}{t} \begin{pmatrix} b_1 - a_1 \\ \vdots \\ b_n = a_n \end{pmatrix}.$$

$$\begin{pmatrix} x_1^i \\ \vdots \\ x_n^i \end{pmatrix} = \frac{1}{t} \begin{pmatrix} ib_1(t-i)a_1 \\ \vdots \\ \vdots \\ x_n^i \end{pmatrix}.$$

in particolare, il punto medio del segmento AB ha coordinate

$$\left(\begin{array}{c} \frac{a_1+b_1}{2} \\ \vdots \\ \vdots \\ \frac{a_n+b_n}{2} \end{array}\right).$$

A, B, C non allineati

$$\overrightarrow{AP} = t\overrightarrow{AB} + k\overrightarrow{AC}$$

se $t,n\geq 0$ e $t+n\leq 1$ allora abbiamo un triangolo ABC se $0\leq t,n\leq 1$ abbiamo il parallelogramma individuato da A,B,C Osservazione

Questo procedimento funziona in ogni dimensione, Ad esempio se A,B,C,D sono quattro punti indipendenti

$$\overrightarrow{AP} = t\overrightarrow{AB} + k\overrightarrow{AC} + v\overrightarrow{AD}.$$

se $0 \le t, n, v \le 1$ tetraedro di vertici ABCD se $n, t, v \ge 0$ e $n + t + v \le 1$ si ha un parallelogramma in generale dati p_0, \ldots, p_k punti indipendenti:

$$\overrightarrow{p_0p} = \sum_{i=1}^k t_i p_0 p_i, \quad \sum_{i=1}^k t_i \le 1.$$

definisce il k-simplesso di vertici p_0, \ldots, p_k

Definizione 12 (Sottosineime Convesso)

 $S\subseteq \mathbb{A}$ si dice Convesso se per ogni $A,B\in S$ il segmento AB è contenuto in S

1.6 Cambiamenti di riferimento affine

Sia (A, V, +) uno spazio affine *n*-dimensionale

$$R = Ee_1, \dots, e_n;$$
 $R' = Ff_1, \dots, f_n$ due riferimenti affini.

$$\varepsilon = \{e_1, \dots, e_n\}, \quad \Gamma = \{f_1, \dots, f_n\}$$

$$\overrightarrow{EP} = \sum_{i=1}^n x_i e_i \quad \overrightarrow{FE} = \sum_{i=1}^n b_i e_i \quad \overrightarrow{FP} = \sum_{i=1}^n y_i f_i.$$

$$A = (e_{ij}) = \varepsilon (Id_V)_{\Gamma}.$$

$$A = (e_{ij}) = \varepsilon (Ia_V)_{\Gamma}.$$

$$\overrightarrow{FP} = \overrightarrow{FE} + \overrightarrow{EP} = -\overrightarrow{EF} + \overrightarrow{EP} = -\sum_{i=1}^{n} b_i e_i + \sum_{i=1}^{n} x_i e_i \tag{1}$$

$$\overrightarrow{FP} = \sum_{i=1}^{n} y_i f_i = \sum_{i=1, j=1}^{n} y_i a_{ij} - e_i$$
 (2)

Comparando (1), (2) troviamo

$$X = AY + b.$$

$$\left(\frac{1}{X}\right) = \left(\frac{1}{b} \mid 0\right) = \left(\frac{1}{Y}\right).$$

$$Y = A^{-1}X - A^{-1}b.$$

1.7 Forme Bilineari e Simmetriche

VSpazio vettoriale su $\mathbb K$

Definizione 13

Una funzione $g: VxV \to \mathbb{K}$ Si dice **Forma bilineare** se è lineare in ciascuna variabile fissata l'altra

in altre parole:

$$g(\alpha v_1 + v_2, v_3) = \alpha g(v_1, v_3) + \beta g(v_2, v_3) \quad \forall \alpha, \beta \in \mathbb{K} \quad \forall \alpha, \beta \in V \quad \forall v_1, v_2, v_3 \in V.$$

Definizione 14

g si dice **simmetrica** se

$$g(v_1, v_2) = g(v_2, v_1) \quad \forall v_1, v_2 \in V.$$

Esempio

 $Sia\ A\ una\ matrice\ quadrata\ nxn$

Allora
$$g_A(x,y) = X^t A Y$$
.

è una forma bilineare su K^n

Esempio

 g_A è bilineare con

$$A = \begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix}$$

$$f\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}\right) = \begin{pmatrix} x_1 x_2 \end{pmatrix} \begin{pmatrix} 2y_1 + y_2 \\ -y_1 + 3y_2 \end{pmatrix} = x_1(2y_1 + y_2) + x_2(-y_1 + ey_2) =$$

$$= 2x_1 y_1 + x_1 y_2 - x_2 y_1 + 3x_2 y_2$$

Osservazione

 g_A è simmetrica se e solo se A è simmetrica

Esempio (Importante)

in \mathbb{K}^n prendiamo $A = I_n$

$$g_{I_m}(X,Y) = X^t Y = \sum_{i=1}^n x_i y_i.$$

Se g è una forma bilineare simmetrica su V e $B = \{v_1, \ldots, v_n\}$ è una base di V, definisco la matrice di g rispetto a B come

$$[g]_B \rightarrow a_{ij} = g(v_i, v_j) \quad 1 \le i, j \le n.$$

$$g(v, w) = g(\sum_{i=1}^{n} x_i v_i, \quad \sum_{i=1}^{n} y_i v_i) = \sum_{i,j=1}^{n} x_i y_i g(v_i, v_j) = \sum_{i,j=1}^{n} x_i y_i a_{ij} = X^t A Y.$$

Ricorda: X^t è la matrice trasposta di X

1.8 Prodotto Scalare

V spazio vettoriale Reale

Definizione 15 (Prodotto Scalare)

Un prodotto scalare su V è una forma bilineare simmetrica $<,>: VV \to \mathbb{R}$ tale che

$$< v, v > \ge 0 \quad \forall v \in V$$

$$\langle v, v \rangle = 0 \Leftrightarrow v = 0$$

Nomenclatura 2

 $1.v, w \in V$ si dicono **ortogonali** se

$$< v, w > = 0.$$

2.
$$||v|| = \sqrt{\langle v, v \rangle} \ \dot{e} \ la \ norma \ di \ v$$

3. In
$$\mathbb{R}^n$$
, $<\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$, $\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} > = \sum_{i=1}^n x_i y_i \ \dot{e} \ detto \ \textbf{prodotto scalare stan-}$

dard

$$\left|\left|\left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right)\right|\right| = \sqrt{\sum_{i=1}^n x_i^2}.$$

Proposizione 5 (Disuguaglianza di Schwarz)

$$v, w \in V$$
 $< v, w >^2 \le < v, V > < w, w > .$

e vale l'uguaglianza se e solo se v,w sono dipendenti

Dimostrazione

Se w=0 la disuguaglianza è ovvia, quindi possiamo assumere $w \neq 0$. Per $v,w,a,b \in \mathbb{R}$

$$\begin{split} 0 \leq < av + bw, av + bw > &= a < v, av + bw > + b < w, av + bw > = \\ &= a(a < v, v > + b < v, w >) + b(a < w, v > + b < w, w >)i = \\ &= a^2 < v, v > + 2ab < v, w > + b^2 < w, w > \end{split}$$

Dove abbiamo utilizzato la simmetria del prodotto scalare < v, w> = < w, v>Notiamo che vale l'uguaglianza solo se av+bw=0, cioè v,w sono paralleli. La relazione

$$a^{2} < v, v > +2ab < v, w > +b^{2} < w, w >> 0.$$

vale per ogni scelta di a, b.

 $Prendo\ a = < w, w > e\ b = - < v, w >$

$$0 \le \langle w, w \rangle^2 < v, v > -2 < w, w > \langle v, w \rangle^2 + \langle v, w \rangle^2 < w, w > .$$

Poiché $W \neq 0$, < w, w >> 0 quindi posso dividere la relazione precedente per < w, w >, per altro senza cambiare verso dato che il prodotto scalare è definito positivo

$$0 \le \langle w, w \rangle \langle v, w \rangle - \langle v, w \rangle^2$$
.

ovvero

$$< v, w >^2 \le < v, v > < w, w > .$$

Osservazione

 $|< v, w > | \le ||v||||w||$

Proprietà della lunghezza

- 1. $\forall v \in V \ ||v|| \ge 0 \ \mathrm{e} \ ||v|| = 0 \Leftrightarrow v = 0$
- 2. $||\alpha v|| = |\alpha|||v|| \quad \forall \alpha \in \mathbb{R}, \ \forall v \in V$
- 3. $||v + w|| \le ||v|| + ||w|| \quad \forall v, w \in V$

Dimostriamo alcune proprietà del prodotto scalare:

Lemma 5

1.
$$||v|| \ge 0$$
 e $||v|| = 0$ se e solo se $v = 0$..

2.
$$||\alpha v|| = |\alpha| \cdot ||v|| \quad \alpha \in \mathbb{R}, v \in V.$$

3.
$$||v+w|| \le ||v|| + ||w|| \quad \forall v, w \in V.$$

Dimostrazione

- 1. segue dalla definizione
- 2. $||\alpha v|| = \sqrt{<\alpha v, \alpha v>} = \sqrt{\alpha^2 < v, v>} = |\alpha| \cdot ||v||$ 3. $||v+w||^2 = < v+w, v+w> =$

$$= < v, v > + < w, v > + < v, w > + < w, w > =$$

$$= ||v||^2 + 2 < v, w > + ||w||^2 \le ||v||^2 + 2||v||w|| + ||w||^2 = (||v|| + ||w||)^2$$

Ci basta ora prendere le radici quadrate del primo e del secondo termine (possiamo farlo poiché sono entrambi positivi

Definizione 16

Sia E uno spazio affine con associato spazio vettoriale V, Diremo che E \grave{e} uno spazio vettoriale euclideo se in V \grave{e} associato un prodotto scalare $definito\ positivo,\ cio \`e\ se\ V\ \`e\ uno\ spazio\ vettoriale\ euclideo$

Definizione 17 (Versore)

 $Sia\ v \in V\ tale\ che\ ||v|| = 1\ allora\ v\ \grave{e}\ un\ versore$

Dat $u \neq 0$, $\frac{u}{||u||}$ è un versore

$$\left|\left|\frac{u}{||u||}\right|\right| = \frac{1}{||u||} \cdot ||u|| = 1.$$

Proposizione 6

Sia $\{v_1, \ldots, v_k\}$ un insieme ortogonale allora v_1, \ldots, v_k sono linearmente indipendenti. In particolare se dim(V) = n, un insieme ortogonale di n vettori è una base

Dimostrazione

Supponiamo
$$\alpha_1 v_1 + \dots \alpha_k v_k = 0$$

 $< \alpha_1 v_1 + \dots + \alpha_k v_k, v_i > = < 0, v_i > = 0$
 $= \alpha_1 < v_1, v_i > + \dots + \alpha_k < v_k, v_i >$
 $= \alpha_i < v_i, v_i >$

Dato che $\langle v_i, v_i \rangle > 0$ poiché $v_i \neq 0$ per ipotesi, dunque $\alpha_i = 0$, dato che posso scegliere qualunque v_i

Osservazioni

- 1. La base standard di \mathbb{R}^n è ortonormale rispetto al prodotto scalare standard
- 2. Sia g = <,> un prodotto scalare su V, Se $B = \{v_1, \ldots, v_n\}$ è una base gortonormale allora $[g]_B = Id_n$ ovvero $g(v_i, v_j) = \delta_{i,j}$

Inoltre, se
$$X = [v]_B$$
, $Y = [Id]_B$
 $g(v, w) = X^t[g]_B Y = X^t Y$ (sempre con B ortonormale)

Proposizione 7

Se $\{v_1,\ldots,v_n\}$ è una base ortonormale, per ogni $v\in V$ risulta

$$v = \sum_{i=1}^{n} \langle v, v_i \rangle v_i.$$

Dimostrazione

(1) Sia $v = \sum_{j=1}^{n} a_j v_j$

$$< v, v_i > = < \sum_{j=1}^n a_j v_j, v_i > = \sum_{j=1}^n a_j < v_j, v_i > = \sum_{j=1}^n a_j \delta_{ij} = a_i$$

Basta poi sostituire in (1) a_i con $\langle v, v_i \rangle$

Nomenclatura 4

Dato $v \neq 0$ viene detto coefficiente di Fourier di $w \in V$ risptto a v

$$a_v(w) = \frac{\langle v, w \rangle}{\langle v, v \rangle}.$$

Nota

In sostanza il coefficiente di Fourier è il modulo della proiezione di w rispetto a v (moltiplicato quindi per il versore di v otteniamo il vettore della proiezione) Abbiamo quindi una definizione canonica della proiezione.

Abbiamo quindi una definizione canonica della proiezione.
$$\langle w - a_v(w)v, v \rangle = \langle w - \frac{\langle v, w \rangle}{\langle v, v \rangle} v, v \rangle = \langle w, v \rangle - \frac{\langle v, w \rangle}{\langle v, v \rangle} \cdot \langle v, v \rangle$$

1.9 Procedimento di ortogonalizzazione di Gram-Schmidt

Lemma 6

Sia v_1, v_2, \ldots una successione di vettori in V spazio vettoriale euclideo.

1. Esiste una successione w_1, w_2, \ldots in V tale che per ogni $k \geq 1$

a)
$$\langle v_1, \dots, v_K \rangle = \langle w_1, \dots, w_k \rangle$$
.

b)
$$\langle w_i, w_i \rangle = 0 \text{ se } i \neq j.$$

2. Se u_1, u_2, \ldots è un'altra successione che verifica le proprietà a e b, allora esistono non nulli $\gamma_1, \gamma_2, \ldots$ tali che

$$u_k = \gamma_k w_k, \quad k = 1, 2, \dots$$

Dimostrazione

Costruiamo i w_i per induzione su k.

Base k=1

$$v_1 \rightarrow w_1 = v_1 \text{ verifica } a, b.$$

Supponiamo per induzione di aver costruito $w_1, \dots w_t, \ t > 1$ verificanti a e b e costruiamo w_{t+1}

$$\emptyset w_{t+1} = v_{t+1} - \sum_{i=1}^{t} a_{w_i}(v_{t+1})w_i.$$

Verifichiamo a

$$v_{t+1} = w_{t+1} + \sum_{i=1}^{t} a_{w_i}(v_{t+1})w_i.$$

per induzione $v_i \in \langle w_1, \dots, w_t \rangle \subseteq \langle w_1, \dots, w_{t+1} \rangle$ $1 \leq i \leq t$ dunque

$$< v_1, \ldots, v_{t+1} > \subseteq < w_1, \ldots, w_{t+1} > .$$

D'altra parte $w_{t+1} \in \langle w_{1,t}, v_{t+1} \rangle = \langle v_1, \dots, v_{t+1} \rangle$ perché per induzione $w_i \in \langle v_1, \dots, v_t \rangle$ $1 \le i \le t$

 $Quindi < w_1, \ldots, w_{t+1} > \subseteq < v_1, \ldots, v_{t+1} > e$ quindi le proprietà a è verificata.

Verifichiamo ora b, sia $w_i \neq 0$

$$\langle w_{t+1}, w_i \rangle = \langle v_{t+1} - \sum_{j=1}^{\iota} a_{w_j}(v_{t+1})w_j, w_i \rangle =$$

$$= < v_{t+1}, w_i > -a_{w_j} < (v_{t+1})w_j, w_j > =$$

$$=<\boldsymbol{v}_{t+1},\boldsymbol{w}_i>-\frac{<\boldsymbol{v}_{t+1},\boldsymbol{w}_i>}{\leq \boldsymbol{w}_i,\boldsymbol{w}_i>}\leq \underline{\boldsymbol{w}_i,\boldsymbol{w}_i>}=0$$

2. Di nuovo procedo per induzione su k, con base ovvia k=1Supponiamo t>1 e apponiamo che esistano γ_1,\ldots,γ_t con $u_k=\delta_k w_k$ per ogni $k\leq t$. per (a)

$$u_{t+1} = z + \gamma_{t+1} w_{t+1} \quad z \in < w_1, \dots, w_t > = < u_1, \dots, u_t > .$$

$$D'altra \ parte, < u_{t+1}, z > = < w_{t+1}, z > = = 0$$

$$Quindi < u_{t+1} - \gamma_{t+1} w_{t+1}, w > = 0 \ ovvero < z, z >$$

$$\Rightarrow z = 0 \ e \ u_{t+1} = \gamma_{t+1} w_{t+1}$$

Proposizione 8

Sia $B = \{v_1, \ldots, v_n\}$ una base ortonormale dello spazio euclideo V, la base $L = \{w_1, \ldots, w_n\}$ è ortonormale se e solo se $M = [Id_V]_L^B$ è ortogonale $(MM^t = Id_v)$

Dimostrazione

Sia
$$M = (m_{ij})$$
 per definizione di M $w_i = \sum_{j=1}^n m_{ji} v_j$ $1 \le i \le n$

$$\langle w_i, w_j \rangle = \langle \sum_{k=1}^n m_{ki} v_k, \sum_{h=1}^n m_{hj} v_h \rangle = \sum_{k,h=1}^n m_{ki} m_{kj} \langle v_k, v_h \rangle$$

$$= \sum_{k=1}^n m_{ki} m_{kj} = (M^t M)_{i,j}$$

Osservazione

Sia $V = \mathbb{R}[x] \ \langle p(x), q(x) \rangle = \int_{-1}^{1} p(x)q(x)dx$ è un prodotto scalare

Definizione 18 (Angolo non orientato tra vettori)
$$|\langle v,w\rangle| \leq ||v||||w|| \Rightarrow -1 \leq \frac{\langle v,w\rangle}{||v||||w||} \leq 1 \quad (v,w\neq 0)$$
 allora
$$\exists ! \in [0,\pi] : \cos = \frac{\langle v,w\rangle}{||v||||w||}$$
 è detto angolo non orientato tra v,w

Definizione 19

Sia
$$S \subseteq V$$
 con V spazio euclideo, $S^{\perp} := \{v \in V | \langle v, s \rangle = 0 \ \forall s \in S\}$

Osservazione

 S^{\perp} è un sottospazio vettoriale di V. Siano $v_1,v_2\in S^{\perp}$ e $\alpha_{1,2}\in\mathbb{K}$ $\Rightarrow \langle \alpha_1v_1+\alpha_2v_2,s\rangle=\alpha_1\langle v,s\rangle+\alpha_2\langle v_2,s\rangle=0 \quad \forall s\in S$

Proposizione 9

 $Sia\ V\ uno\ spazio\ vettoriale\ euclideo\ e\ W\ un\ sottospazio\ di\ V\ allora$

$$V = W + W^{\perp}$$

Dimostrazione

 $Sia \{w_1, \ldots, w_k\}$ una base ortogonale di W

consideriamo $\pi: V \to W$ con $\pi(v) = \sum_{i=1}^n \frac{\langle v, w_i \rangle}{\langle w_i, w_i \rangle} w_i$, dobbiamo mostrare che $V = W + W^{\perp}$ e che $W \cap W^{\perp} = \{0\}$ ma la seconda è ovvia poiché se $w \in W \cap W^t$ è ortogonale a se stesso $\Rightarrow \langle w, w \rangle = 0 \Leftrightarrow w = 0$

Osserviamo inoltre che se $v \in V \Rightarrow v = \pi(v) + (v - \pi(v))$ la richiesta è dunque $v - \pi(v) \in W^{\perp}$. Basta verificare che $\langle v - \pi(v), w_i \rangle = 0 \ \forall i$

$$\langle v - \sum_{j=1}^n \frac{\langle v, w_j \rangle}{\langle w_j, w_j \rangle} w_j \rangle = \langle v, w_i \rangle - \sum_{j=1}^n \frac{\langle v, w_j \rangle}{\langle w_j, w_j \rangle} \langle w_j, w_i \rangle = \langle v, w_i \rangle - \frac{\langle v, w_i \rangle}{\langle w_j, w_j \rangle} \langle w_j, w_j \rangle = 0.$$

Osservazione

1- Se V è spazio euclideo e W è sottospazio di V,

 $(W,\langle,\rangle|_{W\times W})$ è uno spazio euclideo

2- Se $\{w_1, \ldots, w_k\}$ è base ortogonale di W risulta:

$$||v - \sum_{h=1}^{n} a_h w_l| \ge ||v - \sum_{h=1}^{n} \frac{\langle v, w_h \rangle}{\langle w_h, w_h \rangle} w_h||$$

e vale l'uguaglianza se se solo se $a_h = \frac{\langle v, w_h \rangle}{\langle w_h, w_h \rangle}$

Dimostrazione (Punto 2)

$$||v - \sum_{h=1}^{n} a_h w_h|| \ge ||v - \sum_{h=1}^{n} \frac{\langle v, w_h \rangle}{\langle w_h, w_h \rangle} w_h||;$$

$$||v - w||^2 = \langle v - u, v - u \rangle =$$

$$= \langle v - w + w - u, v - w + w - u \rangle = \langle v - w, v - w \rangle + \langle w - u, w - u \rangle \ge ||v - w||^2$$

1.10 Prodotto vettoriale

Sia Vuno spazio vettoriale euclideo per cui dim(V)=3sia $\{v,j,k\}$ una base ortonormale di V

Definizione 20 (Prodotto vettoriale)
$$Dati\ v = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} \quad w = \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} \ pongo\ v \wedge w = \begin{pmatrix} y_1z_2 - y_2z_1 \\ x_2z_1 - x_1z_2 \\ x_1y_2 - x_2y_1 \end{pmatrix}$$

 B_1, B_2 si dicono concordemente orientate se $det([Id]_{B_1}^{B_2}) > 0$, questa è inoltre una relazione di equivalenza.

Di fatti se
$$B_1 \sim B_2$$
, $B_2 \sim B_3$ $det([Id]_{B_1}^{B_3}) = det([Id]_{B_2}^{B_3}[Id]_{B_1}^{B_2}) = det([Id]_{B_2}^{B_3})det([Id]_{B_1}^{B_2}) > 0 \Rightarrow B_1 \sim B_2$

1.11 Operatori Lineari Unitari

Sia V uno spazio vettoriale euclideo

Definizione 21

Un operatore lineare $T: V \to V$ si dice unitario se $\langle T(u), T(v) \rangle = \langle u, v \rangle \ \forall u, v \in V$

Proposizione 10

Sia V spazio vettoriale euclideo n- dimensionale e sia $T:V\to V$ un applicazione, le seguenti sono equivalenti

- 1. T è unitario
- 2. $T \in lineare \ e||T(w)|| = ||v|| \ \forall v \in V$
- 3. $T(O) = O, ||T(v) T(w)|| = ||v w|| \quad \forall v, w \in V$
- 4. T è lineare e manda basi ortonormali in basi ortonormali
- 5. T è lineare ed esiste una base $\{v_1, \ldots, v_n\}$ ortonormale di V tale che $\{T(v_1), \ldots, T(v_n)\}$ è una base ortonormale

Dimostrazione

$$1 \Rightarrow 2$$
. Unitario $\Rightarrow \langle T(v), T(v) \rangle = ||T(v)||^2 = \langle v, v \rangle = ||v||^2$

$$2 \Rightarrow 3 \ T \ lineare \Rightarrow T(O) = O \ ||T(v) - T(w)|| = ||T(v - w)|| = ||v - w||$$

$$3 \Rightarrow 1||T(v)|| = ||T(v) - O|| = ||T(v) - T(O)|| = ||v - O|| = ||v||$$

Esplicitiamo $||T(v) - T(w)||^2 = ||v - w||^2$

$$\langle T(v) - T(w), T(v) - T(w) \rangle = \langle v - w, v - w \rangle$$

$$\Rightarrow \|T(v)\|^2 - 2\langle T(v), T(w) \rangle + \|T(w)\|^2 = \|\psi\|^2 - 2\langle v, w \rangle + \|\psi\|^2$$

Dunque $\langle T(v), T(w) \rangle = \langle v, w \rangle$

Resta da vedere che T è lineare.

Sia $\{e_1, \ldots, e_n\}$ una base ortonormale di V allora $\{T(e_1), \ldots, T(e_n)\}$ è una base ortonormale per quanto dimostrato prima.

$$\langle T(e_j), T(e_i) \rangle = \langle e_j, e_i \rangle = \delta_{ij}.$$

$$v = \sum_{i=1}^{n} x_i e_i \ (\Rightarrow x_i = \langle v, e_i \rangle)$$

$$T(v) = \sum_{i=1}^{n} \langle T(v), T(e_i) \rangle T(e_i) = \sum_{i=1}^{n} \langle v, e_i \rangle T(e_i) = \sum_{i=1}^{n} x_i T(e_i)$$

Dunque
$$T(\sum_{i=1}^{n} x_i e_i) = \sum_{i=1}^{n} x_i T(e_i)$$
 quindi T è lineare

 $1 \Rightarrow 4\{e_1, \dots, e_n\}$ è una base ortonormale

$$\langle T(e_i), T(e_j) \rangle = \langle e_i, e_j \rangle = \delta_{ij}.$$

 $4 \Rightarrow 5 \ Ovvio$

 $5 \Rightarrow 1$ Sia e_1, \dots, e_n la base ortonormale dell'enunciato. Considero $u, v \in V$

$$u = \sum_{i=1}^{n} x_i e_i, \quad w = \sum_{i=1}^{n} y_i e_i.$$

$$\langle T(u), T(w) \rangle = \langle T(\sum_{i=1}^{n} x_i e_i, T(\sum_{j=1}^{n} y_i e_i) \rangle =$$

$$= \langle \sum_{i=1}^{n} x_i T(e_i), \sum_{j=1}^{n} y_i T(e_i) \rangle =$$

$$= \sum_{i,j=1}^{n} x_i y_i \langle T(e_i), T(e_j) \rangle$$

$$= \sum_{i=1}^{n} x_i y_i = \langle u, w \rangle$$

Dove abbiamo usato $\langle T(e_i), T(e_j) \rangle = \delta_{ij}$

Proposizione 11

$$\alpha \in V\{0\}$$
 $S_{\alpha} = v - 2 \frac{\langle v, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha$ riflessione rispetto ad α^2

- 1. S_{α} è unitaria 2. $S_{\alpha}^2 = Id$
- 3. Esiste una base B di V tale che $(S_{\alpha})_B = diag(1, \dots, 1, -1)$

Dimostrazione

$$\begin{array}{l} 1. \ \langle S_{\alpha}(v), S_{\alpha}(w) \rangle = \langle v, w \rangle \\ \langle v - 2 \frac{\langle v, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha, w - 2 \frac{\langle w, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha \rangle = \\ \langle v, w \rangle - 2 \frac{\langle v, \alpha \rangle \langle \alpha, w \rangle}{\langle \alpha, \alpha \rangle} - 2 \frac{\langle v, \alpha \rangle \langle w, \alpha \rangle}{\langle \alpha, \alpha \rangle} + 4 \frac{\langle v, \alpha \rangle \langle w, \alpha \rangle}{\langle \alpha, \alpha \rangle \langle \alpha, \alpha \rangle} \langle \alpha, \alpha \rangle = \langle v, w \rangle \\ \end{array}$$

$$V = \mathbb{R}\alpha \oplus \alpha^{\perp}.$$

Quindi presa una base $\{w_1, \ldots, w_{n-1}\}\ di\ \alpha^{\perp}$, $B = \{w_1, \dots, w_{n-1}, \alpha\}$ è una base di V e $S_{\alpha}(w_i) = w_i, i = 1, \dots, n-1$

$$S_{\alpha}(\alpha) = -\alpha$$

$$(S_{\alpha})_{B} = \begin{pmatrix} 1 & 0 & \dots \\ 0 & \ddots & 0 \\ \dots & 0 & -1 \end{pmatrix} = M$$

1.12 Osservazioni sugli operatori unitari

1. Se T è unitario, e $v \in Ker(T)$, allora

$$0 = ||T(v)|| = ||v|| \Rightarrow v = 0.$$

Dunque T è invertibile.

È facile vedere che se T_1, T_2 sono unitarie, lo è anche $T_1T_2^{-1}$, quindi, posto

$$O(V) = \{T \in End(V) | T \text{ è unitario} \}.$$

$$O(V) \leq GL(V)$$
.

e O(V) viene chiamato gruppo ortogonale di V.

2. Se fissiamo in V una base ortonormale B, e $T \in O(V)$, $[T]_B^B$ è ortogonale. Infatti sia $A = [T]_B^B$, $B = \{e_1, \ldots, e_n\}$. Le colonne di A sono le coordinate di $T(e_i)$ rispetto a B, quindi T è unitario se e solo se

$$\langle A^i, A^j \rangle = \delta_{ij}$$
.

dove A^i, A^j rappresentano la rigai-esimaej-esimadella matrice A

3. Se $T \in O(V)$ e $\lambda \in \mathbb{R}$ è un autovalore di T, allora $\lambda = \pm 1$ Se λ è autovalore, esiste $v \neq 0$ tale che $T(v) = \lambda v$

$$||v|| = ||T(v)|| = ||\lambda v|| = |\lambda|||v||.$$

Poiché $v \neq 0, ||v|| \neq 0$ quindi $|\lambda| = 1$, cioè $\lambda = \pm 1$

4. Se V è uno spazio euclideo di dimensione n, ogni $T \in O(V)$ è composizione di al più n riflessioni S_n

Dimostrazione

per induzione su n, con base ovvia n = 1.

Supponiamo il teorema valga per ogni spazio euclideo di dimensione n-1 e dimostriamo per uno spazio euclideo di dimensione n. Sia $f \in O(V)$

Primo caso

 $f\ ha\ un\ punto\ fisso\ non\ nullo$

$$v \in V$$
, $v \neq 0$, $f(v) = v$.

$$V = \mathbb{R}v \oplus v^{\perp}$$
.

 $W = v^{\perp}, \quad (W, \langle, \rangle|_{W \times W})$ è euclideo di dimensione n-1 $F|_W : W \to W, infatti, se u \in W$

$$\langle f(u), v \rangle = \langle f(u), f(v) \rangle = \langle u, v \rangle = 0.$$

Per induzione
$$f|_{W} = S_{\alpha_{1}} \circ \ldots \circ S_{\alpha_{r}}, \quad r \leq n-1$$
 $e \ quindi \ f = S_{\alpha_{1}} \circ \ldots \circ S_{\alpha_{r}}, \quad r \leq n-1$

Secondo caso

 $Sia \ v \neq 0 \ tale \ che \ f(v) \neq v. \quad Allora$

$$S_{f(v)-v}(f(v)) = v.$$

Infatti $S_{f(v)-v}(f(v)) = f(v) - 2 \frac{\langle f(v), f(v) - v \rangle}{\langle f(v) - v, f(v) - v \rangle} (f(v) - v)$
 $Ma = f(w) = +2 \frac{\langle f(v), f(v) - v \rangle}{\langle f(v) - v, f(v) - v \rangle} (v - f(v))$
 $Ora \ \langle f(v), f(v) - v \rangle = ||v||^{2} - \langle f(v), v \rangle$
 $\langle f(v) - v, f(v) - v \rangle = 2||v||^{2} - 2\langle f(v), v \rangle.$
 $Dunque \ (S_{f(v)-v} \circ f) \ ha \ un \ punto \ fisso. \ Per \ il \ primo \ caso \ S_{f(v)-v} \circ f = S_{\alpha_{1}} \circ \ldots \circ S_{\alpha_{r}} \quad r \leq n-1$
 $Dunque \ S_{f(v)-v} \circ S_{f(v)-v} \circ f = S_{f(v)-v} \circ S_{\alpha_{1}} \ldots \circ S_{\alpha_{r}}$
 $\Rightarrow f = S_{f(v)-v} \circ S_{\alpha_{1}} \circ \ldots \circ S_{\alpha_{r}}$

2 Geometria Euclidea

Uno spazio affine euclideo è uno spazio affine (E,V,+) dove V è uno spazio euclideo.

Si può definire una distanza tra punti di E

quindi f è composizione di al più n riflessioni

$$d(P,Q) = ||\overrightarrow{PQ}||.$$

Un riferimento cartesiano per uno spazio affine euclideo è il dato $Oe_1 \dots e_n$ di un punto e di una base ortonormale di V

In particolare se
$$P = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
, $Q = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$ allora

$$d(P,Q) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} \qquad \overrightarrow{PQ} = \begin{pmatrix} y_1 - x_1 \\ \vdots \\ y_n - x_n \end{pmatrix}.$$

Definizione 22

Siano S,T sottospazi affini in uno spazio euclideo δ di dimensione n. Diciamo che S,T sono ortogonali se, posto $S=p+U,\ T=q+W,\ p\in S, q\in T$ U,W sottospazi vettoriali di V,

$$\langle U, W \rangle = 0$$
 se $dim(S) + dim(T) < n$.

$$\langle U^{\perp}, W^{\perp} \rangle = 0$$
 se $dim(S) + dim(T) \ge n$.

2.1 Definizioni su operatori

Definizione 23

 $T \in End(V)$ è

 $\cdot \ Simmetrico \ o \ Autoaggiunto \ se$

$$T = T^t$$
.

 $\cdot \ Antisimmetrico \ se$

$$T = -T^t$$
.

Proposizione 12

T è unitario se e solo se $T^t \circ T = Id_V$

Definizione 24

Sia E uno spazio euclideo. Un'affinità $f:E\to E$ si dice Isometria se la sua parte lineare $\varphi:V\to V$ è un operatore unitario

Osservazione

Le isometrie formano un gruppo denotato con Isom(E) (difatti, $Isom(E) \leq Aff(E)$)

Infatti la composizione di isometrie è un isometria.

se φ_1, φ_2 sono le parti lineari di $f_1, f_2 \in Isom(E)$

Per ipotesi $\varphi_1^t \circ \varphi_1 = Id$, $\varphi_2^t \circ \varphi_2 = Id$

$$(\varphi_1 \circ \varphi_2)^t \circ (\varphi_1 \circ \varphi_2) = \varphi_2^t \circ \varphi_1^t \circ \varphi_1 \circ \varphi_2 = \varphi_2^t \circ \varphi_2 = Id.$$

Inoltre, dalla definizione, l'inversa di un operatore unitario è unitario. In effetti, ho dimostrato che

$$O(V) = \{ f \in End(V) | f^t \circ f = Id \}.$$

è un gruppo, e un sottogruppo di GL(V)

Nomenclatura 5

Data $f \in Isom(E)$ diciamo che: $f \ \grave{e} \ diretta \ se \ det(\varphi) = 1$ $f \ \grave{e} \ inversa \ se \ det(\varphi) = -1$

Le isometrie dirette formano un sottogruppo

$$Isom^+(E) \le Isom(E)$$
.

Osservazione

1. Sia $O \in E$

$$Isom^+(E)_O \le Isom(E)_O = \{ f \in Isom(E) | f(O) = O \} \le Isom(E).$$

Dove $Isom^+(E)_O$ sono le rotazioni di centro O

2. Se nello spazio euclideo E è assegnato con riferimento cartesiano $R = Oe_1, \ldots, e_n$, ogni isometria $f \in Isom(E)$ con parte lineare $\varphi \in O(V)$ si scrive in coordinate rispetto al riferimento nella forma

$$Y + AX + c$$
 $A \in O(n)$.

$$\begin{array}{l} \text{dove } p \in E, \quad X = [P]_R, \quad Y + [f(P)]_R \\ A = [\varphi]_{\{e_1, \dots, e_n\}}^{\{e_1, \dots, e_n\}}, \quad c = [f(O)]_R \end{array}$$

Teorema 2

Sia E uno spazio euclideo, Un'applicazione $f: E \to E$ è un isometria se e solo se

$$\circledast d(P,Q) = d(f(P), f(Q)) \quad \forall P, Q \in E.$$

Dimostrazione

supponiamo che f sia un'isometria, con parte lineare φ

$$d(f(P), f(Q)) = ||\overrightarrow{f(P)f(Q)}|| = ||\varphi(\overrightarrow{PQ})|| = ||\overrightarrow{PQ}|| = d(P, Q).$$

Viceversa se $f:E\to E$ un'affinità verificante l'equazione \circledast , fissiamo $O\in E$ e definiamo $\varphi:V\to V$ ponendo

$$\varphi(\overrightarrow{OP}) = \overrightarrow{f(O)f(P)}.$$

Poiché ogni vettore $v \in V$ è del tipo \overrightarrow{OP} per qualche $P \in E$, φ è definita, e tale che se O è il vettore nullo in V

$$\varphi(\underline{O}) = \varphi(\overrightarrow{OO}) = \overline{f(O)f(O)} = \underline{O}.$$

$$\begin{split} & Inoltre \ se \ v = \overrightarrow{OP}, w = \overrightarrow{OQ} \\ & ||\varphi(v) - \varphi(w)|| = ||\varphi(\overrightarrow{OP}) - \varphi(\overrightarrow{OQ})|| = \\ & = ||\overrightarrow{f(O)f(P)} - \overrightarrow{f(O)f(q)}|| = ||\overrightarrow{f(Q)f(P)}|| = \\ & = d(f(Q), f(P)) = d(Q, P) = ||\overrightarrow{PQ}|| = ||v - w|| \end{split}$$

Quindi, per una delle caratterizzazioni già dimostrati, φ è un operatore unitario. Dimostro ora che f è un'affinità con parte lineare φ

$$\varphi(\overrightarrow{PQ}) = \varphi(\overrightarrow{OQ} - \overrightarrow{OP}) = \varphi(\overrightarrow{OQ}) - \varphi(\overrightarrow{OP}) = \overline{f(O)f(P)} - \overline{f(O)} - f(\overrightarrow{Q}) = \overline{f(P)f(Q)}.$$

2.2 Isometrie di piani e spazi euclidei di dimensione 3

$$a^{2} + c^{2} = 1$$

$$A \in SO(2) \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \text{ tale che:} \quad \begin{aligned} a^{2} + c^{2} &= 1 \\ b^{2} + d^{2} &= 1 \\ ab + cd &= 0 \end{aligned}$$

$$ad - bc = 1$$

$$a^{2} + c^{2} = 1 \quad \Rightarrow \quad a = \cos \theta, \quad c = \sin \theta$$
altre condizioni $\Rightarrow \quad b = -\sin \theta \quad d = \cos \theta$

altre condizioni $\leadsto b = -\sin\theta, d = \cos\theta$

Dunque

$$SO(2) = \{R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} | \theta \in \mathbb{R} \}.$$

Osserviamo che se det(A) = det(B) = -1 allora det(AB) = 1, quindi se $A \in O(2) \setminus SO(2)$

$$A = (AB)B^{-1} = (AB)B^t.$$

con $B \in O(2) \setminus SO(2)$ fissato.

Scegliendo $B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, tutti gli elementi di $O(2) \setminus SO(2)$ sono del tipo

$$A_{\theta} = R_{\theta} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}.$$

Lemma 7

- 1) $A_{\theta} = R_{\theta} A_O = A_O R_{-\theta}$
- 2) $A_{\varphi} \circ A_{\theta} = R_{\varphi \theta}$
- 3) A_{θ} ha autovalori 1 e -1 con autospazi ortogonali

Dimostrazione

- 1 annia
- 2. $A_{\varphi}A_{\theta} = R_{\varphi}A_{O}R_{\theta}A_{O} = R_{\varphi}A_{O}A_{O}R_{-\theta} = R_{\varphi}R_{-\theta} = R_{\varphi-\theta}$
- 3. Calcoliamo il polinomio caratteristico di A_{φ} :

$$\det \begin{pmatrix} T - \cos \theta & -\sin \theta \\ -\sin \theta & T + \cos \theta \end{pmatrix} = (T - \cos \theta)(T + \cos \theta) - \sin^2 \theta = T^2 - 1.$$

quindi A_{θ} ha autovalori 1. Si capisce direttamente che gli autospazi sono ortogonali. In realtà

$$V_1 = \mathbb{R} \begin{pmatrix} \cos \theta - 1 \\ \sin \theta \end{pmatrix}, \quad V_{-1} - \begin{pmatrix} \cos \theta + 1 \\ \sin \theta \end{pmatrix}.$$

Sia $c \in E$ $\sigma : E \to E$ rotazione di centro c.

La parte lineare di σ appartiene a SO(2), quindi è del tipo R_{θ} . Se Oe_1e_2 è un riferimento cartesiano

$$R_{c,\theta} = t_{\overrightarrow{OP}} \circ R_{O,\theta} \circ t_{-\overrightarrow{OC}}.$$

Nomenclatura 6

riflessione:isometria diretta che fissa tutti i punti di una retta, detta asse di riflessione

Osservazione

Riflessioni per $O \Leftrightarrow O(w) \setminus SO(2)$

Lemma 8

1. $r \subset E$ retta, $C \in r$, $R_{C,\theta}$ rotazione di centro C. Esistono rette s,t contenenti C tali che

$$R_{C,\theta} = \rho_r \circ \rho_s = \rho_t \circ \rho_r.$$

Viceversa, per ogni coppia di rette r,s passanti per C $\rho_r \circ \rho_s$ è una rotazione di centro C e

$$\rho_r \circ \rho_s = Id \Leftrightarrow r = s.$$

- 2. $R_{C,\theta} \circ R_{D,\varphi}$ è una rotazione di angolo $\theta + \varphi$ a meno che $\theta + \varphi = 2k\pi$, $k \in \mathbb{Z}$, in tal caso è una traslazione che è diversa dall'identità se e solo se $C \neq D$
- 3. Se $C, D \in E$, $C \neq D$ e r è la retta per C e D. Se $R_{C,\theta}, R_{D,\varphi}$ sono non banali e $\theta + \varphi \neq 2k\pi$, $k \in \mathbb{Z}$, allora $R_{C,\theta} \circ R_{D,\varphi}$ e $R_{C,-\theta} \circ R_{D,-\varphi}$ hanno centri distinti e simmetrici rispetto ad r.

$$O(2) = SO(2) \cup O(2) \setminus SO(2)$$

$$R_{\theta} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \quad A_{\theta} = R_{\theta}A_{\theta} = \begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix}.$$

$$R_{\theta}R_{\varphi} = R_{\theta+\varphi}.$$

$$A_{\theta}A_{\varphi} = R_{\theta-\varphi}.$$

Definizione 25 (Riflessione)

Isometria che fissa puntualmente una retta (detta asse della riflessione)

E piano euclideo $C \in E, r \subset E$ retta $\exists s, t$ rette passanti per C tali che

$$R_{c,\theta} = \rho_r \circ \rho_s = \rho_t \circ \rho_r.$$

"e viceversa"

Possiamo fissare c = 0 $p_r = A_{o,\alpha}$. Allora

$$R_{\theta} = A_{\alpha} \circ A_{\alpha-\theta} = A_{\theta+\alpha} \circ A_{\alpha}.$$

dove $\rho_r = A_\alpha \in A_{\alpha-\theta} \equiv \rho_s$

Il viceversa segue, sostituendo $c \equiv 0$, da $A_{\alpha} \circ A_{\beta} = R_{\alpha-\beta}$

$$R_{C,\theta} \circ R_{D,\varphi} \to \text{rotazione di angolo } \theta + \varphi \text{ Se } \theta + \varphi \neq 2k\pi, \ k \in \mathbb{Z}.$$

altrimenti è una traslazione (che è l'identità = D)

Se C = D chiaramente $R_{C,\theta} \circ R_{C,\varphi} = R_{C,\theta+\varphi}$

Se $C \neq D$ sia r la retta per C e D Per la parte precedente possiamo scrivere

$$R_{C,\theta} = \rho_t \circ \rho_r, \quad R_{D,\varphi} = \rho_r \circ \rho_s.$$

per certe rette s, t

$$T = R_{C,\theta} \circ R_{D,\varphi} = \rho_t \circ \rho_r \circ \rho_r \circ \rho_s.$$

Se s,tsono incidenti allora per la parte precedente T è una rotazione, altrimenti s $\parallel t$

In coordinate rispetto ad un riferimetno cartesiano Oe_1e_2 Se $P \equiv \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$

$$(R_{C,\theta} \circ R_{D,\varphi})(P)$$
 ha coordinate.

$$R_{\rho}(R(x-d)+d-x)+x.$$

dove c,d sono i vettori delle coordinate di C,D rispettivamente $R_{\theta+\varphi}(x-d)+R_{\theta}(d-c)+c$ parte lineare

TT è una translazione se e solo se $\theta+\varphi=2k\pi, k\in\mathbb{Z}$ e in tal caso

$$T(x) = x + R_{\theta}(d - c) = (d - c).$$

che è l'identità se e solo se d=c cioè D=C

Definizione 26 (Glissoriflessione)

Una glissoriflessione è un'isometria di un piano euclideo ottenuta come composizione $t_v \circ \rho_r$ di una riflessione di asse r con una traslazione $t_v \neq Id$ con $v \neq 0, v \parallel r$

Teorema 3 (Charles, 1831)

Un'isometria di un piano euclideo che fissa un punto è una rotazione o una riflessione a seconda che sia diretta o inversa. Un'isometria senza punti fissi è una traslazione o una glissoriflessione a seconda che sia diretta o inversa

Dimostrazione

 $Sia\ f \in Isom(E)$

Se f ha un punto fisso abbiamo già visto che f è una rotazione se è diretta o una riflessione se f è inversa

se f diretta priva di punti fissi. Allora anche f^2 non ha punti fissi, perché se $f^2(p) = p$

Dunque f(M) = M escluso.

DIco che p, f(p), $f^2(p)$ che sono distinti per quanto abbiamo visto, sono allineati, Altrimneti

$$d(P, f(p)) = d(f(p), f^{2}(p))$$
 (poichè f è un'isometria).

$$d(Q,P)=d(Q,f(P))=d(Q,f^2(P)).$$

Poiché f preserva l'orientazione, il triangolo QPf(P) viene trasformato in $Q, f(P), f^2(P)$ da cui f(Q) = Q

Dunque tutti i punti $f^i(P)$, $i \ge 0$ sono allineati, quindi se r è la retta che li contiene, f agisce su r come una traslazione.

Poiché f è diretta, f agisce su tutto il piano come una traslazione.

Sia ora f inversa senza punti fissi,

Allora f^2 è diretta e come prima $f^2 = t_v$ per qualche v

Sia $P \in E$ un punto $r_0 = \overrightarrow{Pf^2(P)}, \quad r_1 = \overrightarrow{f(P)f^2(P)}$

 $sono\ rette\ parallele\ che\ sono\ scambiate\ tra\ loro\ da\ f$

Sia r la retta equidistante da r_0 e r_1 . Allora $f(r) \subseteq r$ Ma $f^2 = t_v$ $f|_r = t_{v/2}$ Se ora consideriamo $t_{-v/2} \circ f$ questa è un'isometria inversa che fissa puntualmente r, quindi è una riflessione che indichiamo con ρ . Dunque

$$f=t_{v/2}\circ t_{-v/2}\circ f=t_{v/2}\circ \rho.$$

Diagonalizzazione di operatori simmetrici 2.3

Ricorda

 $f \in End(V)$ diagonalizzabile se esiste una base di V di autovettori di f $\Leftrightarrow A = [f]_B^B$ B base $\exists N \in GL(n, \mathbb{K}) : N^{-1}AN$ è diagonale

Il polinomio caratteristico di $A \in M_n(\mathbb{R})$ simmetrica ha solo radici reali

Dimostrazione

 $A \in M_n(\mathbb{R}) \subseteq (\mathbb{C})$ $L_A : \mathbb{C}^n \to \mathbb{C}^n$.

Sia $\lambda \in \mathbb{C}$ un autovalore e $x \neq 0$ un corrispondente autovettore

$$Ax = \lambda x$$
.

$$\overline{Ax} = \overline{\lambda x}$$
.

$$A\overline{x} = \overline{\lambda}\overline{x}.$$

 $\overline{x}^t A x = \overline{x}^t (A x) = \overline{x}^t (\lambda x) = \lambda \overline{x}^t x$

$$\overline{x}^t A x = \overline{x}^t A^t x = (A \overline{x})^t x = (\lambda \overline{x})^t x = \lambda \overline{x}^t x$$

 $\overline{x}^t A x = \overline{x}^t A^t x = (A\overline{x})^t x = (\overline{\lambda} \overline{x})^t x = \overline{\lambda} \overline{x}^t x$ $\overline{x}^t x = \sum_{i=1}^n \overline{x}_i x_i \leftarrow \grave{e} \ \textit{un numero reale positivo poich\'e} \ x \neq 0$

$$\lambda \overline{x}^t x = \overline{\lambda} x^t x \quad \Rightarrow \quad \lambda = \lambda.$$

Teorema 4 (Teorema Spettrale)

Sia V uno spazio euclideo di dimensione finita e $T \in End(V)$ un operatore simmetrico, esiste una bas ortonormale di autovettori per T

Corollario 2

Per ogni matrice reale simmetrica $A \in M_n(\mathbb{R})$ esiste una matrice ortogonale $N \in O(n)$ tale che

$$N^{-1}AM = N^tAN$$
 è ortogonale.

Dimostrazione (Teorema)

Per induzione su n = dim(V). Base n = 1 ovvia

Supponiamo $n = dim(v) \ge 2$. Poichè T è simmetrico il polinomio caratteristico ha radici reali (per il lemma precedente) quindi T ammette un autovalore λ d sia e_1 il suo corrispondente autovettore di lunghezza 1

$$V = \mathbb{R}e_1 \oplus (\mathbb{R}e_1)^{\perp}.$$

Chiamo $U \equiv (\mathbb{R}e_1)^{\perp}$

Dico che $T|_U: U \to$, per cui $T|_U \in End(U)$

Infatti, dimostro che $u \in U \to T(u) \in U$

ipotesi: $\langle u, e_1 \rangle = 0$

Tesi: $\langle Tu, e_1 \rangle = \langle u, T^t e_1 \rangle = \langle u, Te_1 \rangle = \langle u, \lambda e_1 \rangle = \lambda \langle u, e_1 \rangle = 0$

dove abbiamo usato la simmetria di T

Chiaramente $T|_U$ è simmetrico, quindi per induzione U ha una base ortonormale di autovettori $\{e_2, \ldots, d_n\}$.

Ne segue che $\{e_1, \ldots, e_n\}$ è una base ortonormale di V formata da autovettori per T

2.4 Prodotto Hermitiano

V spazio vettoriale complesso

Definizione 27 (Funzione sesquilineare)

Una funzione sesquilineare su V è un'applicazione $h: V \times V \to \mathbb{C}$ che è lineare nella prima variabile e antilineare nella seconda, cioè

$$h(v + v', w) = h(v, w) + g(v', w)$$

$$h(\alpha v, w) = \alpha h(v, w)$$

$$h(v, w + w') = h(v, w) + h(v, w')$$

$$h(v, \alpha w) = \overline{\alpha}h(v, w)$$

per ogni scelta di $v, w, v', w' \in V$ e $\alpha \in \mathbb{C}$

Definizione 28 (Forma hermitiana)

 $Una\ forma\ sesquilineare\ si\ dice\ hermitiana\ se$

$$h(v,w) = \overline{h(w,v)}.$$

Osservazione

Se h è hermitiana, $h(v,v) \in \mathbb{R}$, infatti deve risultare $h(v,v) = \overline{h(v,v)}$

Definizione 29 (Forma antihermitiana)

Una forma sesquilineare si dice antihermitiana se

$$g(v, w) = -\overline{h(v, w)}.$$

Osservazione

In questo caso $h(v,v) \in \sqrt{1}\mathbb{R}$

Definizione 30

Una forma hermitiana si dice semidefinita positiva se

$$h(v, v) \ge 0 \quad \forall v \in V.$$

Definizione 31

Una forma hermitiana si dice definita positiva se

$$h(v,v) > 0 \quad \forall v \neq 0.$$

ovvero

$$(h(v, v) \ge 0 \ e \ h(v, v) = 0 \Rightarrow v = 0).$$

Esempio

$$V=\mathbb{C}^n$$

$$h(\begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix}, \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix}) = \sum_{i=1}^n z_i \overline{w_i}.$$

questo viene chiamato prodotto hermitiano standard su \mathbb{C}^n

$$h(\left(\begin{array}{c} z_1 \\ \vdots \\ z_n \end{array}\right), \left(\begin{array}{c} z_1 \\ \vdots \\ z_n \end{array}\right)) = \sum_{i=1}^n z_i \overline{z_i} = \sum_{i=1}^n |z_i|^2$$

Dato V, consideriamo una base $B = \{v_1, \ldots, v_n\}$ di V Se h è una forma heritiana, diciamo che $(h_{ij}) = h(v_i, v_j)$ è la matrice che rappresenta h nella base B e la denoto come $(h)_B$

Be la denoto come
$$(h)_B$$

se $v = \sum_{i=1}^n x_i v_i$, $w = \sum_{i=1}^n y_i v_i$
 $h(v, w) = h(\sum_{i=1}^n x_i v_i, \sum_{i=1}^n y_i v_i) =$
 $= \sum_{i=1}^n x_i h_i(v_i, \sum_{i=1}^n y_i v_i) =$
 $= \sum_{i=1}^n x_i \overline{y_i} h(v_i, v_i) =$
 $= x^t H \overline{y}$

Poiché h è hermitiana, $h(v,w)=\overline{h(w,v)}$

$$X^{t}HY = \overline{Y^{t}HX}$$

$$= \overline{Y}^{t}\overline{HX}$$

$$= (\overline{Y}^{t}\overline{HX})^{t}$$

$$= \overline{X}^{t}\overline{H}^{t}\overline{Y} \implies H = \overline{H}^{t}$$

Definizione 32

Una matrice $M \in M_n(\mathbb{C})$ si dice hermitiana se

$$H = \overline{H}^t$$
.

Esercizio

le matrici hermitiane 2×2 sono un \mathbb{R} -sottospazio di $M_2(\mathbb{C})$ di dimensione 4

$$\begin{pmatrix} a_1 + ib_1 & a_2 + ib_2 \\ a_3 + ib_3 & a_4 + ib_4 \end{pmatrix} = \begin{pmatrix} a_1 - ib_1 & a_3 - ib_3 \\ a_2 - ib_2 & a_4 - ib_4 \end{pmatrix}.$$

$$a_1 + ib_1 = a_1 - ib_1 \Rightarrow b_1 = 0$$

$$a_2 + ib_2 = a_3 - ib_3 \Rightarrow a_2 = a_3 \quad b_2 = -b_3$$

$$\Rightarrow \quad a_3 + ib_3 = a_2 - ib_2 \Rightarrow a_2 = a_3 \quad b_2 = -b_3$$

$$a_4 + ib_4 = a_4 - ib_4 \Rightarrow b_4 = 0$$

$$\begin{pmatrix} a_1 & a_2 + ib_2 \\ a_2 - ib_2 & a_4 \end{pmatrix}$$

$$M_2 = \mathbb{R} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \oplus \mathbb{R} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \oplus \mathbb{R} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \oplus \mathbb{R} \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$$

Si definiscano allo stesso modo del caso reale simmetrico S^t coefficiente di Fourier

$$|\langle v,w\rangle| \leq ||v||||w||.$$

disuguaglianza triangolare $||v+w|| \le ||v|| + ||w||$ Operatore unitario: $T \in End_{\mathbb{C}}(V)$ t.c.

$$\langle T(u), T(v) \rangle = \langle u, v \rangle \quad \forall u, v \in V.$$

Verifichiamo le caratteristiche degli operatori unitari dati nel caso reale ${f Gram\ Schmidt}$

 $T \in End(V)$ operatore unitario

- 1. Gli autovalori hanno modulo 1
- 2. Autospazi relativi ad autovalori distinti sono ortogonali
- 1. Sia v un autovettore di autovalore λ

$$\begin{split} \langle v,v\rangle &= \langle Tv,Tv\rangle = \langle tv,tv\rangle = \lambda\overline{\lambda}\langle v,v\rangle = |\lambda|^2\langle v,v\rangle. \\ v\neq 0 \Rightarrow & |\lambda|^2 = 1 \quad \Rightarrow \quad |\lambda| = 1. \end{split}$$

2. Sia $v \in V_{\lambda}$, $w \in V_{\mu}$ $\lambda \neq \mu$

$$\langle v, w \rangle = \langle Tv, Tw \rangle = \langle \lambda v, \mu w \rangle = \lambda \overline{\mu} \langle v, w \rangle.$$

Se $\langle v, w \rangle \neq 0 \neq 0 \Rightarrow \lambda \overline{\mu} = 1$. Per il punto 1

$$\lambda \overline{\lambda} \Rightarrow \overline{\lambda} = \overline{\mu} \Rightarrow \lambda = \mu$$
 assurdo.

Definizione 33

Diciamo che $U \in M_n(\mathbb{C})$ è unitaria se

$$U\overline{U}^t = Id.$$

Proposizione 13

 $T \in End(V)$ è unitario se e solo se la sua matrice in una base ortonormale è unitaria

Dimostrazione

Sia $B = \{v_1, \dots, v_n\}$ una base ortonormale di V

$$\delta_{ij} = \langle v_i, v_j \rangle = \langle Tv_i, Tv_j \rangle = \langle Ae_i, Ae_j \rangle = e_i^t A^t \overline{A} e_j = A_i^t \overline{A}_j$$

dove abbiamo posto $A = (T)_B e \{e_i\}$ è una base di \mathbb{C}^n w dove A_i, A_j sono la i-esima e la j-esima colonna di A $(A_i^t \overline{A}_j$ è il prodotto hermitiano standard)

Come nel caso reale si dimostra

Teorema 5

Sia $T \in End(V)$ un operatore unitario Esiste una base standard di autovettori per T

In particolare, per ogni matrice unitaria $A \in U(n)$ esiste $M \in U(n)$ tale che $M^{-1}AM$ è diagonale a volte si pone

$$A^* = \overline{A}^t$$
.

Aunitario $AA^{\ast}=Id$

A hermitiano $A = A^*$

A antihermitiano $A = -A^*$

Definizione 34 (Operatore Aggiunto)

Dato $T \in End(V)$, esiste unico $S \in End(V)$ tale che

$$\langle Tu, w \rangle = \langle u, Sw \rangle \quad \forall u, w \in V.$$

Tale operatore è detto aggiunto hermitiano di T e denotato con T^*

Definizione 35 (operatore normale)

Sia V uno spazio vettoriale complesso dotato di prodotto hermitiano (forma hermitiana definita positiva), un operatore $L \in End(V)$ è normale se

$$L \circ L^* = L^* \circ L.$$

Osservazione

L unitario, hermitiano, antihermitiano $\Rightarrow L$ diagonale

Teorema 6

Sono equivalenti le seguenti affermazioni:

- 1) L è normale
- 2) esiste una base ortonormale di V formata da autovettori di L

2.5 Diangonalizzazione unitaria di operatori normali

 $(\mathbb{C}^n,$ prodotto hermitiano standard) $M^\star=\overline{M}^t$ Mè normale se $MM^\star=M^\star M$ siano normali le matrici

unitarie $MM^* = Id$ hermitiane $M = M^*$ antihermitiane $M = -M^*$

Teorema 7 (Spettrale)

M è normale se e solo se $\exists U \in U(n) : U^tMU$ è ortogonale

Nota

U(n) spazio delle matrici unitarie

2.6 Classificazioni delle isometrie

Nomenclatura 7

- $\cdot \ rotazioni$
- · riflessioni
- $\cdot traslazioni$
- · glissoriflessione = $t_v \circ s_\alpha$ con $v \parallel \alpha^t$ (disegno de li mortacci sua)
- \cdot glissorotazioni = $t \circ R$ dove $v \parallel a$, a asse di R (altro disegno)
- · riflessioni rotatorie $s_a \circ R$ R rotazione di asse \underline{a} , $s_{\underline{a}}$ è una riflessione rispetto ad una retta parallela ad \underline{a}

Teorema 8 (Eulero 1776)

Ogni isometria di \mathbb{E}^3 è di uno dei sei tipi sopra descritti

2.7 Teoremi vari su spazi Hermitiani e company

Lemma 10

Sia V uno spazio vettoriale su un campo \mathbb{R} Siano $P,Q\in End(V)$ tali che PQ=QP. Allora, se V_{λ} è l'autospazio di autovalore λ su P, risulta

$$Q(V_{\lambda}) \subseteq V_{\lambda}$$
.

Dimostrazione

Sia $v \in V_{\lambda}$ (cioè $P(v) = \lambda v$). Dobbiamo vedere che $Qv \in V_{\lambda}$.

$$P(Q(v)) = (P \circ Q)(v) = (Q \circ P)(v) = Q(\lambda v) = \lambda Q(v).$$

(V,h)spazio Hermitiano (Spazio vettoriale complesso h forma hermitiana definita positiva in V)

 $\dim(V) < +\infty$

Teorema 9

Sia (V,h) uno spazio hermitiano, $L \in End(V)$ operatore, sono equivalenti

- L è normale (rispetto ad h)
- ullet esiste una base ortonormale B di V composta da autovettori per L

Lemma 11

(V,h) spazio hermitiano, $L \in End(V)$ normale sono equivalenti

- $Lv = \lambda v$
- $L^*v = \overline{\lambda}v$

In particolare λ è l'autovalore per L se e solo se $\overline{\lambda}$ è autovalore per L^{\star}

$$V_{\lambda}(L) = V_{\overline{\lambda}}(L^{\star}).$$

Dimostrazione

Se v = 0 non c'è niente da dimostrare.

Se $v \neq 0$ basta far vedere che se $v \in V_{\lambda}(L)$ allora $v \in V_{\overline{\lambda}}(L^{\star})$. L'inclusione contraria segue da $L^{\star t} = L$

$$w \in V_{\lambda}(L), \quad v \in V_{\lambda}(L).$$

$$h(L^{*}(v), w) = h(v, L(w)) = h(v, \lambda w)$$

$$= \overline{\lambda}h(v, w) = h(\overline{\lambda}v, w)$$

$$h(L^{*}(v) - \overline{\lambda}v, w) = 0 \quad \circledast$$

Per il lemma, siccome per ipotesi L è normale,

$$L^{\star}(v) \in V_{\lambda}(L), \quad \overline{\lambda}v \in V_{\lambda}(L)$$

 $\Rightarrow \quad L^{\star}(v) - \overline{\lambda}v \in V_{\lambda}(L)$

Quindi nella \circledast posso prendere $w = L^{\star}(v) - \overline{\lambda}v$, ottenendo

$$h(L^{\star}(v) - \overline{\lambda}v, L^{\star}(v) - \overline{\lambda}v) = 0.$$

Poiché h è definito positivo, segue

$$L^{\star}(v) - \overline{\lambda}v = 0$$

 $cio\grave{e}$

$$L^{\star}(v) = \overline{\lambda}v$$

Osservazione

Dal lemma segue $V_{\lambda}(L) \perp V_{\mu}(L)$ se $\lambda \neq \mu$

$$v \in V_{\lambda}, \quad w \in V_{\mu}$$

$$\lambda h(v,w) = h(\lambda v,w) = h(Lv,w) = h(v,L^\star w) = h(v,\overline{\mu}w) = \mu h(v,w) \Rightarrow h(v,w) = 0$$
 Dato che $\lambda \neq \mu$

Dimostrazione (Teorema Spettrale)

 $1) \Rightarrow 2$) Procediamo per induzione su dim V, con base ovvia dim V = 1

Supponiamo il teorema vero per gli spazi hermitiani di dimensione $\leq n-1$ e sia $\dim_{\mathbb{C}} V = n$

Sia $v_1 \in V$ un autovettore per L, che possiamo assumere di norma 1. Sia $V_1 = \mathbb{C}v_1, W = v_1^p erp$.

Allora $V = V_1 \oplus W$.

Poiché V_1 è L-invariante (per costruzione) e L*-invariante per il lemma precedente, lo stesso accade per W.

Inoltre $L|_W \in End(V)$ è normale.

Per induzione, esiste una base $h|_W$ -ortonormale formata da autovettori per $L|_W$, sia $\{v_2, \ldots, v_n\}$. Allora $\{v_1, \ldots, v_n\}$ è una base h-ortonormale di V formata da autovettori per L.

2) \Rightarrow 1). Sia $B = \{v_1, \dots, v_n\}$ una base h-ortonormale di autovettori per L. Allora

$$[L]_{B}^{B} = \bigwedge = \begin{pmatrix} \lambda_{1} & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & \lambda_{n} \end{pmatrix}$$
$$[L^{\star}]_{B}^{B} = \overline{[L]_{B}^{B}}^{t} = \overline{\bigwedge}$$

$$[L \circ L^{\star}]_B^B = [L]_B^B [L^{\star}]_B^B = \bigwedge \overline{\bigwedge} = \overline{\bigwedge} \bigwedge = [L^{\star}]_B^B [L]_B^B = [L^{\star} \circ L]_B^B$$

Poiché la mappa $A \to [A]_B^B$ è un isomorfismo tra End(V) e $M_{nn}(\mathbb{C})$, segue

$$L\circ L^{\star}=L^{\star}\circ L.$$

cioè L è normale

Osservazioni

1. È essenziale che h sia definita positiva.

$$h(x,y) = x^t H \overline{y} \quad M = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

non è definita positiva $h(\begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = -1$

$$L_A: \mathbb{C}^2 \to \mathbb{C}^2 \ A = \begin{pmatrix} 0 & i \\ i & -2 \end{pmatrix}.$$

Dico che L_A è autoaggiunto, quindi normale

$$\begin{split} h(L_AX,Y) &= h(X,L_AY) \\ (L_AX)^t H \overline{Y} &= X^t H \overline{L_AY} \\ X^t A^t H \overline{Y} &= X^t H \overline{AY} \quad \forall X,Y \\ A^t H &= H \overline{A} \\ \begin{pmatrix} 0 & u \\ i & -2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & -i \\ -i & -2 \end{pmatrix} \\ \begin{pmatrix} 0 & -i \\ i & 2 \end{pmatrix} &= \begin{pmatrix} 0 & -i \\ i & 2 \end{pmatrix} \end{split}$$

Calcolo il polinomio caratteristico di A

$$\det \begin{pmatrix} t & -i \\ -i & t+2 \end{pmatrix} = t(t+2) + 1 = (t+1)^2.$$

Ma $A \neq \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$, in particolare non è diagonalizzabile

2. Vediamo in det
ťaglio il fatto che $L|_W$ è normale

Ritornando alla dimostrazione del teorema spettr
lae, osserviamo che se W è $L\textsubstructura e la che
 <math display="inline">L^\star$ -invariante.

Infatti, se $V = \bigoplus_{\lambda} V_{\lambda}(L)$ (per esercizio da dimostrare)

$$W = \bigoplus_{\lambda} (V_{\lambda}(L) \cap W)$$

$$=\bigoplus_{\lambda} (V_{\overline{\lambda}}(L^{\star}) \cap W)$$

=>Wè L^* -invariante

Adesso osservo che $(L|_W)^* = (L^*)|_W$

$$(L|_{W}) \circ (L|_{W})^{\star} = (L|_{W}) \circ (L^{s}tar|_{W}) =$$

$$(L \circ L^{\star})|_{W} = (L^{\star} \circ L)|_{W} = (L^{\star}|_{W}) \circ L|_{W} = (L|_{W})^{\star} \circ L|_{W}$$

2.8 Richiami su spazi vettoriali duali

V spazio vettoriale su $\mathbb K$ di dimensione finita

$$V^V = V^* = Hom(V, \mathbb{K}).$$

sia $A \leq V$

$$Ann(A)=A^{\#}=\{f\in V^{\star}|f(a)=0\ \forall a\in A\}.$$

Osservazioni

- 1) $A^{\#}$ è un sottospazio
- 2) $A^{\#\#} = \langle A \rangle$

$$i: V \to V^{\star\star}$$

$$v \in V, f \in V^*$$

$$i(v)(f) = f(v)$$

V,W spazi vettoriali di dimensione finita $f \in Hom_{\mathbb{K}}(V,W), f^* \in Hom_{\mathbb{K}}(W^*,V^*),$ la trasposta di f è definita con $\phi \in W^*$

$$f^{\star}(\phi) = \phi \circ f$$

Definisco la dualità standard su V come

$$\langle , \rangle : V^{\star} \times V \to \mathbb{K}.$$

$$\langle v, f \rangle = \langle f, v \rangle = f(v)$$
 con questa proprietà

$$\langle f(v), w^* \rangle = \langle v, f^*(w^*) \rangle.$$

Ricordo che se $B = \{v_1, \dots, v_n\}$ è una base di V allora i funzionali v_i^\star definiti da

$$\langle v_i^{\star}, v_j \rangle = \delta_{ij}.$$

per $1 \leq i \leq n$ formano una base B^* di V^* detta base duale di B Sia $f: V \to W$ un'applicazione lineare, siano $B = \{v_1, \ldots, v_n\}, L = \{w_1, \ldots, w_m\}$ basi di V, W consideriamo $f^*: W^* \to V^*$ Allora:

$$[f]_B^B = [f^*]_{L^*}^{B^*t}$$

$$\parallel \qquad \parallel$$

$$(a_{ij}) \qquad (a_{ij}^*)$$

Tesi $a_{ih} = a_{hi}^{\star}$

$$f^{\star}(w_{i}^{\star}) = \sum_{i=1}^{n} a_{ij}^{\star}$$

$$f^{\star}(w_{i}^{\star})(v_{h}) = \sum_{i=1}^{n} a_{ij}^{\star} v_{i}^{\star}(v_{h}) = \sum_{i=1}^{n} a_{ij}^{\star} \delta_{ih} = a_{hi}^{\star}$$

$$w_i^*(f(w_h)) = w_i^*(\sum_{i=1}^n a_{ih}w_i) = \sum_{i=1}^n a_{ih}w_i^*(w_i) = \sum_{i=1}^n a_{ih}\delta_{ij} = a_{ih}$$

Teorema 10 (Qualche proprietà importante)

$$f: V \to W \ lineare \ f^*: W^* \to V^*$$

- $1)(Imf)^{\#} = \ker f^{\star}$
- $2)(\ker f)^{\#} = Imf^{*}$
- $3)(\lambda f + \mu g)^* = \lambda f^* + \mu g^* \qquad (\lambda, \mu \in \mathbb{K}, g \in Hom(V, W))$
- $4)(h \circ f)^* = f^* \circ h^*$ $h: W \Rightarrow U$ lineare

Dimostrazione (Il punto 2, 3 e 4 vengono lasciati per esercizio)

- 1) $\emptyset \in (Imf)^{\#}$
- $\Leftrightarrow \forall w \in Imf \ \emptyset(w) = 0$
- $\Leftrightarrow \forall v \in V \emptyset (f(v)) = 0$
- $\Leftrightarrow \emptyset \circ f = 0$
- $\Leftrightarrow \emptyset \in kerf^*$

Quindi abbiamo visto che $(Imf)^{\#} = \ker F^{*}$

Proposizione 14

Sia V uno spazio vettoriale di dimensione n su \mathbb{K} e W un sottospazio. Allora

$$\dim(W) + \dim W^{\#} = n.$$

Dimostrazione

Da quanto visto, la mappa

$$Hom(V_1, V_2) \to Hom(V^s tar_2, V^s tar_1)$$
 $f \to f^t$

è un isomorfismo di spazi vettoriali. Inoltre f è iniettiva (rispettivamente suriettiva) se e solo se f^* è suriettiva (rispettivamente iniettiva)

Consideriamo la proiezione $\pi: V \to V|_W := U$

Poiché π è suriettiva $\pi^*: U^* \to V^*$ è iniettiva e

$$W^{\#} = (\ker \pi)^{\#} = Im\pi^{*}.$$

per cui

$$\dim W^{\#} = \dim(Im\pi^{\star}) = \dim U^{\star} = \dim V - \dim W.$$

2.9 Forme bilineari 2

Vspazio vettoriale su $\mathbb R$

Ricordiamo che una forma bilineare è un'applicazione

$$b: V \times V \to \mathbb{R}$$
.

Abbiamo già osservato che se $A = [b]_B$

$$X = [v]_B, Y = [w]_B$$

$$b(v, w) = X^t A Y.$$

Come cambia $[b]_B$ se cambio B

$$B = \{v_1, \dots, v_n\} \quad X = [v]_B \quad X' = [v]'_B$$

$$B' = \{v'_1, \dots, v'_n\} \quad Y = [w]_B \quad Y' = [w]'_B$$

$$A = [b]_B \quad A' = [b]_{B'}$$

$$b(v, w) = X^t A Y = X'^T A' Y'$$

$$\begin{split} X &= MX', \quad Y &= MY' \quad M = [Id_V]_B^B \\ (\text{MX'})^t A (MY') &= X'^t A'Y' \\ X'M^t AMY' &= X'^t A'Y' \\ A' &= M^t AM \end{split}$$

Diciamo che due matrici A,B sono congruenti se esiste una matrice invertibile M tale che $B=M^tAM$

Proposizione 15

 $Due\ matrici\ rappresentano\ la\ stessa\ forma\ bilineare\ in\ basi\ diversi\ se\ e\ solo\ se\ sono\ congruenti$

Osservazione

- 1. La congruenza è una relazione di equivalenza
- 2. Il rango è invariante per la congruenza
- 3. Per matrici reali invertibili, il segno del determinante è invariante
- 4. Se M è ortogonale

$$M^t A M = M^{-1} A M.$$

Se ho una forma bilineare $b:V\times V\to\mathbb{K}$ posso definire due applicazioni $V\to V^\star$ nel modo seguente.

Fissato
$$v \in V$$
, prendo b_v

$$b_v(w) = b(v, w)$$

$$b'_v(w) = b(w, v)$$

È chiaro che $b_v, b_v' \in V^*$ (usiamo il fatto che b è bilineare) Dunque ho due applicazioni $V \to V^*$

$$\delta_b(v) = b_v \quad \delta_b'(v) = b_v'.$$

Definizione 38

Il rango di una funzione bilineare è il rango di una qualsiasi matrice che la rappresenta

Definizione 39

Una forma bilineare è non degenere se ha rango (massimo) $\dim V$

Proposizione 16

Sia V uno spazio vettoriale di dimensione finita,

 $b: V \times V \to \mathbb{K}$ una forma bilineare.

Sono equivalenti

- $b \ \dot{e} \ non \ degenere \ ovvero \ b(v,v) = 0 \Leftrightarrow v = 0$
- $\bullet \ \forall v \in V, v \neq 0 \ \exists w \in V: \ b(v, w) \neq 0$
- $\forall w \in V, \ w \neq 0 \ \exists v \in V : b(v, w) \neq 0$
- $\delta_b: V \to V^{\star}$ è un isomorfismo
- $\delta_b':V \to V^*$ è un isomorfismo

Dimostrazione

 $Sia\ B = \{v_1, \dots, v_n\}$ una base di V e sia $A = [b]_B$

1)
$$\Rightarrow$$
 2) per ipotesi det $A \neq 0$ se $X = [v]_B$ $X \neq 0 \Rightarrow X^t A \neq 0$ quindi esiste $Y \in \mathbb{K}^n : X^t A Y \neq 0$.

Se $w \in V$ è tale che $[w]_B = Y$ ho dimostrato che $b(v, w) = X^t A Y \neq 0$

 $2) \Rightarrow 1$) Riscrivendo l'ipotesi in coordinate abbiamo

$$\forall X \neq 0 \ \exists Y: \ X^t A Y \neq 0$$

$$\Rightarrow X^t A \neq 0 \quad \forall X \neq 0 \Rightarrow A \ \dot{e} \ invertibile$$

- 1) \Leftrightarrow 3) è come sopra
- 2) \Rightarrow 4) Poiché dim $V = \dim V^*$ basta vedere che δ_b è iniettava, cioè ker $\delta_b = \{0\}$ $v \in \ker \delta_b \Rightarrow \delta_b(v) = b_v$ è il funzionale nullo, cioè

$$b_v(w) = 0 \quad \forall w \in V$$

$$b_v(w) = b(v, w) \Rightarrow v = 0$$

4) \Rightarrow 2) Dato $v \neq 0$, $\delta_b(v) = b_v \neq 0$ perché δ_b è un isomorfismo, quindi esiste $w \in V$:

$$b(v, w) = b_v(w) \neq 0$$

2.10 Caso Simmetrico

$$b(v, w) = b(w, v).$$

Osservazione

b è simmetrica se e solo se lo è qualsiasi matrice che la rappresenta. Dato $S \subset V$ definiamo

$$S^{\perp} = \{ v \in V | b(v, s) = 0 \quad \forall s \in S \}.$$

Esercizio S^{\perp} è un sottogruppo e, $S^{\perp} = < s >^{\perp}$

Due sottospazi U, W si dicono ortogonali se

$$Y \subseteq W^p erp \Leftrightarrow W \subset U^{\perp}$$

Definizione 41

 $v \in V$ si dice isotropo se b(v, v) = 0

Definizione 42

$$\ker b = \{ v \in V | b(v, w) = 0 \quad \forall w \in V \} = V^{\perp}$$

Osservazione

b è non degenere se e solo se $\ker b = \{0\}$

Proposizione 17

Sia b non degenere, $W \subseteq V$ sottospazio,

Allora, se $\delta_b: V \to V^*$ è l'isomorfismo canonico indotto da $b, \delta_b(W^t) =$ W^* . In particular risulta sempre $\dim W + \dim W^{\perp} = \dim V$

Nota

Non è vero, anche nel caso non degenere, che $V = W \oplus W^{\perp}$

Dimostrazione

$$w \in W^{\perp}$$
 $\delta_b(w) = b_w$ Voglio vedere che $b_w \in W^{\#}$ $b_w(w') = b(w, w') = 0$ $\forall w' \in W$

Quindi $\delta_b(W^{\perp}) \subseteq W^{\#}$

Prendo ora $f \in W^{\#}$; poiché b è non degenere, δ_b è un isomorfismo, quindi esiste $v \in V$

$$f = \delta_b(v) = b_v \quad b(v, w) = b_v(w) = 0 \quad \forall w \Rightarrow v \in W^{\perp}.$$

quindi $f = \delta(b_v) \ con \ v \in W^{\perp}$

Proposizione 18

Sia V spazio vettoriale, $W \subset V$ sottospazio, $b \in Bi(V)$. Sono equivalenti:

- $\bullet \ \ V = W \oplus W^\perp$
- $b|_W$ è non degenere

Lemma 12

 $\ker b|_W = W \cap W^\perp$

Dimostrazione (lemma)

$$w \in \ker b|_W \Leftrightarrow b(w, w') = 0 \quad \forall w' \in W \Leftrightarrow w \in W \cap W'$$

Dimostrazione (proposizione)

- $1)\Rightarrow 2) segue \ dal \ lemma \ perch\'e \ dall'ipotesi \ W\cap W^{\perp}=\{0\}$
- $(2) \Rightarrow 1)$ Sia $\{w_1, \ldots, w_s\}$ una base di W

Per ipotesi $A = (b(w_i, w_j))$ è invertibile, in particolare dato $v \in V$, il sistema lineare

$$* A \begin{pmatrix} x_1 \\ \vdots \\ x_s \end{pmatrix} = \begin{pmatrix} b(v, w_1) \\ \vdots \\ b(v, w_s) \end{pmatrix}$$

ha soluzione unica. Poniamo

$$w = v - \sum_{h=1}^{s} x_j w_j.$$

Notiamo che * significa

$$\sum_{h=1}^{s} b(v_h, w_j) x_h = b(v, w_j) \quad 1 \le j \le s.$$

Calcoliamo

$$b(w, w_i) = b(v - \sum_{h=1}^{s} x_h w_h, w_j) = b(v, w_j) - \sum_{h=1}^{s} x_h b(w_h, w_j) = b(v, w_j) =$$

$$= b(v, w_i) - b(v, w_i) = 0$$

Poiché i $\{w_i\}$ sono una base di W, risulta $b(w,u)=0 \quad \forall u \in W$, cioè $w \in W^{\perp}$ Allora

$$v = w + \sum_{h=1}^{s} x_h w_h.$$

Pertanto $V=W+W^{\perp}$, per ipotesi $W\cap W^{\perp}=\ker b|_{W}=\{0\}$, quindi $V=W\oplus W^{\perp}$

2.11 Sylvester e forme quadratiche

Definizione 43

la forma quadratica associata a V è l'applicazione $q:V\to\mathbb{K}$ definita da q(v)=g(v,v) e questa è una funzione omogenea di grado 2

Esempio

 $V \cong \mathbb{K}^n, g = \text{prodotto scalare standard}$

$$g\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \sum_{i=1}^n x_i^2$$

Osservazione

Valgono:

- $1) \ q(kv) = k^2 q(v)$
- 2) 2g(v, w) = q(v + w) q(v) q(w)

dove g(v, w) è la forma polare di q

Dimostrazione

1.
$$q(kv) = g(kv, kv) = k^2 g(v, v) = k^2 q(v)$$

$$2.\overline{q(v+w) - q(v) - q(w)} = g(v+w, v+w) - g(v,v) - g(w,w) = g(v,v) + 2g(w,v) + g(w,w) - g(v,v) - g(w,w) = \frac{2g(w,v)}{2g(w,v)}$$

Osservazione

$$V = \mathbb{R}^4 \text{ e sia } q \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = x_1^2 + 2x_2^2 - x_4^2 + x_1x_4 + 6x_2x_3 - 2x_1x_2$$

Voglio trovare la matrice della forma polare di q rispetto alla base canonica

$$\begin{pmatrix} 1 & -1 & 0 & 1/2 \\ -1 & 2 & 3 & 0 \\ 0 & 3 & 0 & 0 \\ 1/2 & 0 & 0 & -1 \end{pmatrix}$$

Sulla diagonale ci sono i coefficienti delle componenti al quadrato $(x_i)^2$ gli altri li ottieni dividendo per 2 ogni altro coefficiente

Teorema 11 ((Caratteristica di \mathbb{K}) \neq 2)

Dato V spazio vettoriale di dimensione $n \ge 1$ e g forma bilineare simmetrica su V, allora esiste una base g-ortogonale.

Dimostrazione

Per induzione su dim V = n. Se n = 1 non c'è nulla da dimostrare.

se g è la forma bilineare nulla $(g(v, w) = 0 \ \forall v, w \in V)$ ogni base è g-ortogonale. Altrimenti esistono, $v, w \in V$ con $g(v, w) \neq 0$.

Assumo che almeno uno tra v, w, v + w è non isotropo. Infatti se v, w sono isotropi

$$g(v + w, v + w) = g(v, v) + g(v, w) + g(w, w) = 2g(v, w) \neq 0$$
.

quindi $\exists v_1 \in V \ t.c \ g(v_1, v_1) \neq 0$. Allora $g|_{\mathbb{K}v_1}$ è non degenere quindi $V = \mathbb{K}v_1 \oplus W \ con \ W = (\mathbb{K}v_1)^{\perp}$

$$\dim(W) = n - 1$$
, per induzione \exists una base $\{v_2, \ldots, v_n\}$ di W con $g(v_1, v_j) = 0$ se $2 \le j \le n, \{v_1, \ldots, v_n\}$ è una base g -ortogonale di V

Teorema 12

Supponiamo \mathbb{K} algebricamente chiuso. Sia V spazio vettoriale dimensione $n \geq 1$ e g forma bilineare simmetrica su V, esiste una base di V rispetto alla quale la matrice di $g \ \dot{e} \ D = \begin{pmatrix} I_r & 0 \\ 0 & O_{n-r} \end{pmatrix} \ r = rg(D)$

In modo equivalente, ogni matrice simmetrica a coefficienti in K è congruente a D

Dimostrazione

Per il teorema precedente, esiste una base $B = \{v'_1, \dots, v'_n\}$ di V rispetto alla

$$quale (g)_{B'} = \begin{pmatrix} a_{11} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & a_{nn} \end{pmatrix}$$

$$Possiamo \ assumere \ che \ a_{11}, \dots, a_{rr} \ siano \ non \ nulli \ e \ che \ a_{r+i,r+i} = 0 \ con$$

 $1 \le i \le n - r$.

Poiché \mathbb{K} è algebricamente chiuso, esistono $\alpha_1, \ldots, \alpha_r \in \mathbb{K}$ t.c. $\alpha_i^2 = a_{ii}, 1 \le$

$$v_i = \begin{cases} \frac{1}{\alpha_i} v_i', & 1 \le i \le r \\ v_i' & r+1 \le i \le n \end{cases}$$

Forche
$$\mathbb{R}$$
 e digeoricamente chiuso, esistono $\alpha_1, \ldots, \alpha_r \in \mathbb{R}$ t.c. $\alpha_i^- = a_{ii}, 1 \le i \le r$ poniamo.
$$v_i = \begin{cases} \frac{1}{\alpha_i} v_i', & 1 \le i \le r \\ v_i' & r+1 \le i \le n \end{cases}$$
è chiaro che $\{v_1, \ldots, v_n\}$ è una base. Risulta
$$g(v_i, v_i) = \begin{cases} g(\frac{v_i'}{\alpha_i}, \frac{v_i'}{\alpha_i} = 1\alpha_i^2 g(v_i', v_i') = \frac{a_{ii}}{\alpha_i^2} = 1 & 1 \le i \le r \\ g(v_i', v_i') = 0 & r+1 \le i \le n \end{cases}$$

Osservazione

Se g è non degenere, esiste una base B rispetto alla quale $(g)_B = Id_n$

Caso Reale $\mathbb{K} = \mathbb{R}$

V spazio vettoriale reale (dim $V = n \ge 1$)

 $g \in Bi_s(V)$

Sia B una base g-ortogonale. Definiamo

Definizione 44

Chiamiamo $i_{+}(g), i_{-}(g), i_{0}(g)$ indice di positività, negatività e nullità di g, e sono rispettivamente

$$i_{+}(g) = \{v \in B | g(v, v) > 0\}$$

$$i_{-}(g) = \{v \in B | g(v, v) < 0\}$$

$$i_0(g) = \{ v \in B | g(v, v) = 0 \}$$

Teorema 13 (Sylvester)

Gli indici non dipendono dalla scelta di B. Posto $p = i_+(g), q = i_-(g)$ allora 1 + q = n - r (r = rg(g))

ed esiste una base di V rispetto alla quale la matrice E di g è tale che

$$E = \begin{pmatrix} Id_p & \dots & 0 \\ \vdots & -Id_q & \vdots \\ 0 & \dots & O_{n-r} \end{pmatrix}.$$

equivalentemente, ogni matrice simmetrica reale A è congruente ad una matrice della forma E in cui r = rg(A) e p dipende solo da A

Dimostrazione

Dal teorema di esistenza di una base g-ortogonale deduciamo che esiste una base $\{f_1,\ldots,f_n\}$ di V rispetto alla quale, se $v=\sum_{i=1}^n y_i f_i$ $q(v)=a_{11}y_1^2+a_{22}y_2^2+\ldots+a_{nn}y_n^2$

$$q(v) = a_{11}y_1^2 + a_{22}y_2^2 + \ldots + a_{nn}y_n^2$$

con esattamente n coefficienti diversi da 0, che possiamo supporre essere a_{11}, \ldots, a_{rr} Siano $a_{11}, \ldots, a_{pp} > 0, \quad a_{p+1,p+1}, \ldots, a_{rr} < 0$

$$\exists \alpha_1, \ldots, \alpha_n, \alpha_{n+1}, \ldots, \alpha_r \in \mathbb{R}$$
 t.c

$$\alpha_i^2 = a_{ii}$$
 $1 \le i \le p$ $\alpha_i^2 = -a_{ii}$ $p+1 \le i \le r$

Sumo
$$a_{11}, \dots, a_{pp} > 0$$
, $a_{p+1,p+1}, \dots, a_{rr} < 0$
 $\exists \alpha_1, \dots, \alpha_p, \alpha_{p+1}, \dots, \alpha_r \in \mathbb{R} \ t.c.$
 $\alpha_i^2 = a_{ii} \ 1 \le i \le p \quad \alpha_i^2 = -a_{ii} \ p+1 \le i \le r$
Allora posto $e_i = \begin{cases} \frac{1}{\alpha_i} f_i \ 1 \le i \le r \\ f_i \ r+1 \le i \le n \end{cases}$

$$\begin{cases} J_i & r+1 \leq i \leq n \\ la \ matrice \ di \ g \ rispetto \ a \ \{e_1, \dots, e_n\} \ \grave{e} \begin{pmatrix} Id_p & \dots & 0 \\ \vdots & -Id_q & \vdots \\ 0 & \dots & O_{n-r} \end{pmatrix}$$

Resta da dimostrare che p dipende solo da g e non dalla base B usata per

Supponiamo che rispetto ad un'altra base g-ortogonale $\{b_1,\ldots,b_n\}$, risulti, per $v = \sum_{i=1}^{n} z_i b_i$

$$q(v) = z_1^2 + \ldots + z_t^2 - z_{t+1}^2 - \ldots - z_r^2.$$

 $mostriamo\ che\ p=t$

se per assurdo $p \neq t$ assumo $t \leq p$ considero quindi i sottospazi $S = \langle e_1, \dots, e_n \rangle$ $T = \langle b_{t+1}, \dots, b_n \rangle$

Poiché $\dim S + \dim T = p + n - t > n$ perché t < p per Grassman vettoriale $S \cap T \neq \{0\}$ sia $0 \neq v \in S \cap T$

allora $r = x_1 e_1 + \ldots + x_p e_p = z_{t+1} b_{t+1} + \ldots, z_n b_n$ contraddizione:

$$q(v) = \sum_{i=1}^{p} x_i^2 > 0.$$

$$q(v) = -\sum_{i=1}^{r} z_i^2 + z_{r+1}^2 + \ldots + z_n^2 < 0.$$

Osservazioni

1. Esiste una definizione più intrinseca degli indici. Ricordiamo che $g \in Bil_S(V), V$ spazio vettoriale su \mathbb{R} è definita positiva se $g(v,v) > 0, \ \forall v \in V \setminus \{0\}$ e che g è definita negativa se -g è definita positiva.

 $2. \mathrm{Il}$ teorema di Sylvester si estende, con la stessa dimostrazione alla forma hermitiana.

In particolare ogni matrice hermitiana è congruente a una matrice diagonale del del tipo

$$\begin{pmatrix} I_p & \dots & 0 \\ \vdots & I_{r-p} & \vdots \\ 0 & \dots & O_{n-r} \end{pmatrix}$$

Proposizione 19

Sia (V,g) uno spazio vettoriale su $\mathbb R$ dotati di una forma bilineare simmetrica g

Siano dati un prodotto scalare h e una forma bilineare simmetrica k Allora esiste una base di V che sia h-ortonormale e k-ortogonale

Dimostrazione

(V,h) è uno spazio euclideo, quindi per il teorema di rappresentazione delle forme bilineari, esiste un operatore $L \in End(V)$ tale che

$$h(L(v), w) = k(v, w).$$

Poiché k è simmetrica, L è simmetrica, per il teorema spettrale siste una base h-ortonormale costituita da autovettori per L.

Sia $\{v_1, \ldots, v_n\}$ tale base. Voglio dimostrare che $\{v_1, \ldots, v_n\}$ è k-ortogonale

$$k(v_r, v_s) = h(L(v_r), v_s) = h(\lambda_r v_r, v_s) = \lambda_r h(v_r, v_s) = \lambda_r \delta_{rs}.$$

Corollario 3

Sia (V,h) uno spazio euclideo, e k una forma bilineare simmetrica su V. Allora $i_+(k), i_-(k), i_0(k)$ corrispondono al numero di autovalori positivi, negativi, nulli, dell'endomorfismo di V che rappresenta k rispetto ad h

Dimostrazione

Sia come nella proposizione, $\{v_1, \ldots, v_n\}$ una h-ortonormale e k-ortogonale, per il teorema di Sylvester

$$i_{+}(k) = |\{v_i|k(v_i, v_i) > 0\}|.$$

Ma abbiamo visto che $k(v_i, v_i) = \lambda_i$ quindi $i_+(k) = |\{\lambda_i > 0\}|$. La dimostrazione non è terminata.

 $\label{lem:constraint} Una\ matrice\ simmetrica\ reale\ si\ dice\ definita\ positiva\ se\ tutti\ gli\ autovalori\ sono\ positivi$

Definizione 46

Data una matrice quadrata $n \times n$, i minori principali leading, sono quelli ottenuti estraendo righe e colonne come segue

$$\{1\}, \{1, 2\}, \{1, 2, 3\}, \dots, \{1, 2, 3, \dots, n\}.$$

Esempio

Lisemplo
$$\begin{pmatrix}
1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 0 & 1
\end{pmatrix}$$

$$|1| = 1$$

$$\det \begin{pmatrix}
1 & 1 \\
1 & -1
\end{pmatrix} = -2$$

$$\det \begin{pmatrix}
1 & 1 \\
1 & -1 & 0 \\
1 & 0 & 1
\end{pmatrix} = \det \begin{pmatrix}
1 & 1 \\
-1 & 0
\end{pmatrix} + \det \begin{pmatrix}
1 & 1 \\
1 & -1
\end{pmatrix} = 1 - 1 - 1 = -1$$

Teorema 14

A è definita positiva se e solo se tutti i suoi autovalori principali leading sono positivi $\,$