

IIC1253 — Matemáticas Discretas — 1' 2016

TAREA 6

Publicación: Viernes 20 de Mayo.

Entrega: Viernes 27 de Mayo hasta las 10:15 horas.

Indicaciones

- Debe entregar una solución para cada pregunta (sin importar si esta en blanco).
- Cada solución debe estar escrita en L⁴TEX. No se aceptarán tareas escritas a mano ni en otro sistema de composición de texto.
- Responda cada pregunta en una hoja separada y ponga su nombre en cada hoja de respuesta.
- Si usa más de una hoja para una misma pregunta corchetelas.
- Junte las respuestas a preguntas distintas usando un clip (no un corchete).
- Debe entregar una copia escrita durante la ayudantía asignada y una copia digital por el buzón del curso, ambas antes de la fecha/hora de entrega.
- Se penalizará con 1 punto en la nota final de la tarea por cada regla que no se cumpla.
- La tarea es individual.

Pregunta 1

- 1. Demuestre que a tiene un inverso multiplicativo en \mathbb{Z}_n , entonces $\gcd(a,n)=1$.
- 2. Demuestre que n y n-1 son primos relativos para todo $n \ge 2$.
- 3. Demuestre que a y n son primos relativos si, y solo si, a_0 y n son primos relativos donde a_0 es el digito menos significativo de la representación $(a)_n$ en base n.

Pregunta 2

- 1. ¿Es cierto que si $ab \equiv 0 \pmod{n}$, entonces $a \equiv 0 \pmod{n}$ o $b \equiv 0 \pmod{n}$? Demuestre o de un contra-ejemplo. Si da un contra-ejemplo, muestre qué condición adicional debe agregar a la afirmación para que sea cierta y demuestrelo.
- 2. Sea p primo. Encuentre todas las soluciones de la ecuación $x^2 \equiv 1 \pmod{p}$ con $x \in \mathbb{Z}$.
- 3. Demuestre que $(n-1)! \equiv (n-1) \pmod{n}$ si, y solo si, n es primo.

Evaluación y puntajes de la tarea

Cada **item** de cada pregunta se evaluará con un puntaje de:

- 0 (respuesta incorrecta),
- 3 (con errores menores),
- 4 (correcta).

Todas las preguntas tienen la misma ponderación en la nota final.