

UNIVERSIDADE FEDERAL DE RORAIMA

Redes de Petri

Prof. Herbert Oliveira Rocha

Motivação

O Problema Jantar dos Filósofos

Como especificar adequadamente este problema de forma que o modelo obtido não trave (deadlock) e que todos os filósofos tenham oportunidade de comer?

Classificação dos Modelos

- Modelos Baseados em Estado
 - Consideram apenas o conjunto S para modelar e se referir as propriedades do sistema.
 - Maioria das lógicas temporais: CTL (Computation Tree Logic)
- Modelos Baseados em Ações
 - Consideram apenas o conjunto T para modelar e se referir as propriedades dos sistemas.
 - As álgebras de processos: CCS, CSP, FSP
- Modelos Mistos
 - Consideram ambos os conjuntos S e T.
 - Redes de Petri

• Áreas de Aplicação:

- Concorrência
- Arquitetura de Computadores
- Protocolo de Redes
- Sistemas Operacionais
- Sistemas de Produção
- Sistemas Digitais
- Hardware/Software Co-design
- Engenharia de Software
- Sistemas de Tempo Real

- Modelagem e Avaliação de
 Desempenho
- Diagnóstico de Falhas
- Controle de Tráfego
- Workflow
- Administração
- Química
- etc

Componentes

Transição

Rede

Períodos do Dia

• Linha de Produção

• Linha de Produção

• Linha de Produção

• Definição: Place/Transition Nets - Teoria Bag (multiconjuntos)

```
R = (P, T, I, O, M_o)
```

- P Conjunto de lugares $P=\{p_0, ..., p_n\}$
- T Conjunto de transições $T=\{t_0, ..., t_m\}$
- I Conjunto de *bags* de entrada I: $T \to P^{\infty}$, é um conjunto de *bags* que representa o mapeamento de transições para lugares de entrada.
- O Conjunto de *bags* de saída O: $T \to P^{\infty}$
- M_0 Vetor marcação inicial M_0 : $P \rightarrow N$

• Definição: Place/Transition Nets - Teoria Matricial

$$R = (P, T, I, O, M_o)$$

- P Conjunto de Lugares $P=\{p_0, ..., p_n\}$
- T Conjunto de transições $T=\{t_0, ..., t_m\}$
- I Matriz de entrada I: $P \times T \rightarrow N$
- O Matriz de saída O: $P \times T \rightarrow N$
- M_0 Marcação inicial M_0 : $P \rightarrow N$

• Definição:Place/Transition Nets - Relação de Fluxo

$$R = (P, T, A, V, M_o)$$

- P Conjunto de Lugares Estados locais
- T Conjunto de transições Ações
- A Arcos A \subseteq (P \times T) \cup (T \times P)
- V Valoração V: $A \rightarrow N$
- M_0 Marcação inicial M_0 : $P \rightarrow N$

Linha de Produção

porcas

```
R_{IP}=(P,T,A,V,M_0)
P={parafusos, porcas, pacote, máquina depósito}
T={monta_pacote,envia_pacote}
A={(parafusos,monta_pacote), (porcas,
   monta_pacote), (monta_pacote, pacote),
   (pacote, envia_pacote), (envia_pacote, máquina),
   (envia_pacote, depósito) }
V=|3,3,1,1,1,1|
M_0 = |7,7,0,1,0|
```

- $P=\{p_1,p_2,p_3,p_4,p_5,p_6,p_7\}$
- $T = \{t_1, t_2, t_3, t_4, t_5, t_6\}$

$$\begin{vmatrix}
1000000 \\
0100000 \\
0010000
\end{vmatrix}$$

$$\begin{vmatrix}
0000000 \\
1000000 \\
011000
\end{vmatrix}$$

$$011000 \\
000100 \\
0000100 \\
011010$$

Semântica de Disparo de Transição

Regras de habilitação

$$M[p_i \geq I(p_i,t_j) \ \forall \ p_i \in P$$

A transição t1 está habilitada?

$$M(p_i) = [1,0,0,1,0,0,1]$$

$$I(p_i,t_1) = [1,0,0,0,0,0,1]$$

Nesse caso, $M(p_i) \ge I(p_i,t_1)$

Portanto, t1 está habilitada!

Semântica de Disparo de Transição

• Regras de habilitação

$$M[p_i \ge I(p_i,t_j) \ \forall \ p_i \in P$$

A transição t2 está habilitada?

$$M(p_i) = [1, 0, 0, 1, 0, 0, 1]$$

$$I(p_i,t_2) = [0,1,0,0,0,0,0]$$

Nesse caso, $M(p_i) < I(p_i,t_2)$

Portanto, t₂ **não está habilitada!**

Transição Sink

• Transição Source

•Grafo de Marcações Acessíveis (Alcançáveis)

•Grafo de Marcações Acessíveis (Alcançáveis)

•Grafo de Marcações Acessíveis (Alcançáveis)

Sequenciamento

• Distribuição

Sequenciamento

• Distribuição

• Sequenciamento

Distribuição

Sequenciamento

• Distribuição

• Sequenciamento

• Distribuição

Sequenciamento

Distribuição

Conflitos

- Escolha Não-Determinística: é uma rede que ao se disparar uma transição, inabilita-se a outra.
- O fator não-determinístico dessa rede gera uma situação chamada de conflito.
- O conflito pode ser classificado como estrutural ou efetivo.
- Ambos os conflitos estão associados ao fato de duas transições possuírem o mesmo lugar como entrada.

Conflito Estrutural

Se a rede não possuir tokens, o conflito é dito estrutural.

• N=(P,T,I,O), t1, t2 \in T estão em conflito estrutural sse $\exists p \in P$ tal que I(p,t1) \times I(p,t2) \neq 0

Conflito Efetivo

Se há uma única marca no lugar comum às transições, diz-se que o conflito é efetivo

N=(P,T,I,O,M₀), se t1, t2 ∈ T estão em conflito efetivo para M se estão em conflito estrutual e M[t1>, M[t2> e
 M(p) < I(p,t1) + I(p,t2)

Computação Simples

• Sequenciamento

• If-then-else

Reachability Graph

Reachability Graph

Reachability Graph

Reachability Graph

Reachability Graph

- Alcançabilidade (*Reachability*)
- Indica a possibilidade de atingirmos uma determinada marcação pelo disparo de um número finito de transições, a partir de uma marcação inicial.
- Marcação Alcançável: seja $M_i[t_j>M_k$ e $M_k[t_h>M_l$ então $M_i[t_j t_h>M_l$. Por recorrência designamos o disparo de uma seqüência $s \in T^*$ por M[s>M'. Dizemos que M' é alcançável de M.

- •M'=(0,0,0,1) é acessível a partir de M_0 ?
 - •É. Pelo disparo de s'=t₀t₁t₃ e de s''=t₂t₃

- •M'=(0,0,0,1) é acessível a partir de M_0 ?
 - •É. Pelo disparo de s'=t₀t₁t₃ e de s''=t₂t₃

- •M'=(0,0,0,1) é acessível a partir de M_0 ?
 - •É. Pelo disparo de s'=t₀t₁t₃ e de s''=t₂t₃

- •M'=(0,0,0,1) é acessível a partir de M_0 ?
 - •É. Pelo disparo de s'=t₀t₁t₃ e de s''=t₂t₃

- •M'=(0,0,0,1) é acessível a partir de M_0 ?
 - •É. Pelo disparo de s'=t₀t₁t₃ e de s''=t₂t₃

- •M'=(0,0,0,1) é acessível a partir de M_0 ?
 - •É. Pelo disparo de s'=t₀t₁t₃ e de s''=t₂t₃

- •M'=(0,0,0,1) é acessível a partir de M_0 ?
 - •É. Pelo disparo de s'=t₀t₁t₃ e de s''=t₂t₃

• Alcançabilidade (*Reachability*)

 Problemas associados: alcançabilidade de submarcação e verificação de *deadlock*

- •M'=(0,0,0,0,1) é um deadlock.
- •Esta marcação é alcançável?

p3

- •M'=(0,0,0,0,1) é um deadlock.
- •Esta marcação é alcançável?

p3

- •M'=(0,0,0,0,1) é um deadlock.
- •Esta marcação é alcançável?

- •M'=(0,0,0,0,1) é um deadlock.
- •Esta marcação é alcançável?

p3

- •M'=(0,0,0,0,1) é um deadlock.
- •Esta marcação é alcançável?

- •M'=(0,0,0,0,1) é um deadlock.
- •Esta marcação é alcançável?

p3

- •M'=(0,0,0,0,1) é um deadlock.
- •Esta marcação é alcançável?

• Alcançabilidade (*Reachability*)

•M'=(0,0,0,0,1) é um deadlock.

•Esta marcação é alcançável?

Resposta: É

p3

Visual C++ Redistributable for Visual Studio 2015

- Para instalar o Snoopy

https://www.microsoft.com/en-us/download/details.aspx?id=48145

Snoopy

http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Snoopy

INA

http://www2.informatik.hu-berlin.de/lehrstuehle/automaten/ina/

Mais sobre Redes de Petri

http://disciplinas.stoa.usp.br/course/view.php?id=3078

• O Problema Jantar dos Filósofos

