STAT 135 Lecture 17

Henry Liev 31 July 2025


```
Example 0.2

Generalize Student College Gpa Test 1 Test 2 Test 3 \cdots Test (p-1)

1 \vdots
2 \vdots
3 \vdots
\vdots
\vdots
n
\vdots

Let y_i = \text{college GPA for student } i
Let x_{ij} = \text{test score for student } i on test j
Try to find the best linear prediction
```

Method 0.3 (Fitting Higher Dimensional "Line")

 $y_i \approx \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_{p-1} x_{i(p-1)}$

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{12} & x_{13} & \cdots & x_{1(p-1)} \\ 1 & x_{21} & x_{22} & \cdots & & & \\ 1 & & & & & & \\ \vdots & & & & & & \\ 1 & x_{n1} & & & & & x_{n(p-1)} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{bmatrix}$$

$$\mathbb{Y} \approx \mathbb{X} \mathcal{B}$$

 \mathbbm{Y} $n\times 1$ matrix, \mathbbm{X} $n\times p$ matrix, β $p\times 1$ matrix Think of \mathbb{Y} as a point in \mathbb{R}^n

Span(X)

 $\hat{\mathbb{Y}} - \mathbb{Y}$ is orthogonal to span(\mathbb{X})

$$\mathbb{X}(\hat{\mathbb{Y}} - \mathbb{Y}) = 0$$

$$\mathbb{X}(\hat{\mathbb{Y}}) - \mathbb{X}^T \mathbb{Y}$$

$$\mathbb{X}^T \mathbb{X} \hat{\beta} = \mathbb{X}^T \mathbb{Y}$$

$$\hat{\beta} = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbb{Y}$$

Method 0.4

 $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_{p-1} X_{i(p-1)} + \varepsilon_{ij}, \ \varepsilon_{ij}$ independent $\mathbb{E}(\varepsilon_{ij}) = 0$ OLS is BLUE (Best Linear Unbiased Estimator) of β

 $Var(\varepsilon_{ij}) = \sigma^2$ Gauss-Markov Theorem

OLS is "good" even under weak assumptions

Method 0.5

 $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_{p-1} X_{i(p-1)} + \varepsilon_{ij}, \ \varepsilon_{ij} \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2), \ \sigma^2 \text{ known}$ Choose β 's which maximize likelihood

 $\varepsilon_i = Y_i - X_i^T \beta$

$$f(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n | \beta) = \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^n \exp\left(\frac{-1}{2\sigma^2} \sum_{i=1}^n (y_i - x_i^T \beta)^2\right)$$

Minimize $\sum_{i=1}^{n} (y_i - x_i^T \beta)^2$ to maximize the likelihood

MLE = OLS assuming normal error $\hat{\beta}$

Remark 0.6 (Properties of $\hat{\beta}$)

 $\hat{\beta}$ is unbiased: $E(\hat{\beta}) = \beta$

Expectation of a vector:
$$\mathbb{E}\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} \mathbb{E}[Y_1] \\ \mathbb{E}[Y_2] \\ \vdots \\ \mathbb{E}[Y_n] \end{bmatrix}$$
$$\mathbb{E}(\hat{\beta}) = \mathbb{E}\left[(\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T (\mathbb{X}\beta + \varepsilon) \right]$$
$$= \mathbb{E}\left[(\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbb{X}\beta \right] + \left[(\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X} \right] \mathbb{E}(\varepsilon)$$
$$= \beta$$

 $\hat{\beta}$ is unbiased and MLE

 $\hat{\beta}$ is consistent

 $\hat{\beta}$ is asymptotically (multivariate) normal

 $\hat{\beta}$ is "efficient"

Y is a random vector

$$\operatorname{Cov}(\mathbb{Y}) = \begin{bmatrix} \operatorname{Var}(Y_1) & \operatorname{Cov}(Y_1, Y_2) & \operatorname{Cov}(Y_1, Y_3) & \cdots & \operatorname{Cov}(Y_1, Y_n) \\ \operatorname{Cov}(Y_2, Y_1) & \operatorname{Var}(Y_2) & \operatorname{Cov}(Y_2, Y_3) & \cdots & \operatorname{Cov}(Y_2, Y_n) \\ \operatorname{Cov}(Y_3, Y_1) & \operatorname{Cov}(Y_3, Y_2) & \operatorname{Var}(Y_3) & \cdots & \operatorname{Cov}(Y_3, Y_n) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}(Y_n, Y_1) & \operatorname{Cov}(Y_n, Y_2) & \operatorname{Cov}(Y_n, Y_3) & \cdots & \operatorname{Var}(Y_n) \end{bmatrix}$$

 $M_{ij} = Cov(Y_i, Y_j)$

Intersted in $Cov(\hat{\beta})$

Need one fact for a matrix \mathbb{A} (constant) $Cov(\mathbb{AY}) = \mathbb{A} Cov(\mathbb{Y})\mathbb{A}^T$

Example 0.7

 $Cov(\hat{\beta})$

Solution. $\mathbb{Y} = \mathbb{X}\beta + \varepsilon \to \operatorname{Cov}(\mathbb{Y}) = \sigma^2 \mathbb{I}$

 $\mathrm{Cov}((\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T\mathbb{Y}) = (\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T \ \mathrm{Cov}(\mathbb{Y})\mathbb{X}(\mathbb{X}^T\mathbb{X})^{-1} = \sigma^2(\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T\mathbb{X}(\mathbb{X}^T\mathbb{X})^{-1}\mathbb{I} = \sigma^2(\mathbb{X}^T\mathbb{X})^{-1}$

Remark 0.8 (Residuals)

Define the i^{th} residual

 $\hat{\varepsilon}_i = Y_i - \hat{Y}_i$

The i^{th} residual is our best guess of ε_i

Claim $\sum_{i=1}^{n} \hat{\varepsilon}_i = 0$

Remember $Y_i - \hat{Y}_i$ is orthogonal to columns of X

Since we have a column of \mathbb{I} , and $Y_i - \hat{Y}_i$ is orthogonal to \mathbb{X} , then the dot product between the two is $0 \ \hat{\varepsilon}_i$ estimates ε_i

Remark 0.9

"Sample Variance" of $\hat{\varepsilon}_i$ could estimate σ^2

$$\hat{\sigma}_{reg}^2 = \frac{1}{n-p} \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i - \dots - \hat{\beta}_{p-1} x_i)^2$$

Unbiased estimate of σ^2

Remark 0.10

$$M = \operatorname{Cov}(\hat{\beta}) \approx \hat{\sigma}_{reg}^{2}(\mathbb{X}^{T}\mathbb{X})^{-1}$$

$$\operatorname{SE}(\hat{\beta}_{i}) = \sqrt{M_{ii}}$$

$$\frac{\hat{\beta}_{i} - \beta_{i}}{\operatorname{SE}(\hat{\beta}_{i})} \sim t_{n-p}$$