Data Classification (1)

1. Consider the training examples shown in the following table for a binary classification problem.

assineation problem.											
Customer ID	Gender	Car Type	ar Type Shirt Size								
1	M	Family	Small	C0							
2	M	Sports Medium		C0							
3	M	Sports Medium		C0							
4	M	Sports	Large	C0							
5	M	Sports Extra Large		C0							
6	M	Sports Extra Large		C0							
7	F	Sports	Small	C0							
8	F	Sports	Small	C0							
9	F	Sports	Medium	C0							
10	F	Luxury	Large	C0							
11	M	Family	Large	C1							
12	M	Family	Extra Large	C1							
13	M	Family	ly Medium								
14	M	Luxury	Extra Large	C1							
15	F	Luxury	Small	C1							
16	F	Luxury	Small	C1							
17	F	Luxury	Medium	C1							
18	F	Luxury	Medium	C1							
19	F	Luxury	Medium	C1							
20	F	Luxury	Large	C1							

- a) Compute the Gini index for the overall collection of training examples.
- b) Compute the Gini index for the **Gender** attribute.
- c) Compute the Gini index for the **Car Type** attribute using multiway split.
- d) Compute the Gini index for the **Shirt Size** attribute using multiway split.
- e) Which attribute is better, Gender, Car Type, or Shirt Size?
- 2. Consider the one-dimensional data set shown in the following table:

X	0.5	0.3	4.5	4.6	4.9	5.2	5.3	5.5	7.0	9.5
у	-	ı	+	+	+	ı	ı	+	ı	ı

- a) Classify the data point x=5.0 according to its 1-, 3-, 5-, and 9- nearest neighbors (using majority vote).
- b) Repeat the previous analysis using the distance-weighted voting approach.

3. Choose **Iris data set** (you can use your course project data set) and use R to generate decision tree out of it. You need to submit the screenshot showing the decision trees and explain the classification results, or use R studio to compile report.