graph_ricci_curvature Release 1.0.0

Brian Andrews

CONTENTS:

1 graph_ricci_curvature				
	1.1 Installation			
	1.2 Usage			
	1.3 Manual	2		
2	References			
3	graph_ricci_curvature 3.1 graph_ricci_curvature package	5		
4	Indices and tables	9		
Рy	ython Module Index	11		
Ind	dex	13		

ONE

GRAPH_RICCI_CURVATURE

Calculate the Ricci curvature tensor for a networkx graph. Both Ollivier [1] and Forman [3] discretizations of Ricci curvature are implemented (see [4] for comparison of methods).

1.1 Installation

1.1.1 From Source

- · Clone the repository and cd into the top level directory
- Install python's build: python -m pip install build
- Build the project: python -m build
- Install the project with pip: python -m pip install dist/[file name].whl

For testing the installation, you need pytest. Run pytest in the top level directory to run the full test suite.

1.1.2 Download the .whl from Releases

After download, install the wheel via pip: python -m pip install [file name].whl

1.1.3 From PyPi

Not done yet

1.2 Usage

After installation:

```
from graph_ricci_curvature.ollivier_ricci_curvature import OllivierRicciCurvature
import networkx as nx

#setting up a simple graph
G = nx.Graph()
G.add_nodes_from([1, 2, 3])
G.add_edges_from([(1, 2), (1, 3)])
```

(continues on next page)

(continued from previous page)

```
#create an object and calculate the values of the tensor and its contractions
g = OllivierRicciCurvature(G)
g.calculate_ricci_curvature()

#print results of calculation
print(list(g.G.edges.data()))
print(list(g.G.nodes.data()))
print(g.G.graph["graph_ricci_curvature"], g.G.graph["norm_graph_ricci_curvature"])
```

Output:

```
#edge curvature data
[
(1, 2, {"weight": 1.0, "ricci_curvature": 0.5}),
(1, 3, {"weight": 1.0, "ricci_curvature": 0.5}),
]

#node curvature data
[
(1, {"weight": 1.0, "ricci_curvature": 0.5}),
(2, {"weight": 1.0, "ricci_curvature": 0.5}),
(3, {"weight": 1.0, "ricci_curvature": 0.5})
]

#graph curvature data
1.5 0.5
```

1.3 Manual

You can see the manual here which is in docs/_build/latex. Or, after installation, can run the following with python

```
import graph_ricci_curvature as grc
grc.__manual__
```

to obtain the link to the pdf in the github repository.

TWO

REFERENCES

- [1] Ollivier, Y. 2009. "Ricci curvature of Markov chains on metric spaces". Journal of Functional Analysis, 256(3), 810-864. DOI: https://doi.org/10.1016/j.jfa.2008.11.001, arXiv: https://arxiv.org/abs/math/0701886
- [2] Sandhu et al. 2015. "Graph Curvature for Differentiating Cancer Networks". Scientific Reports. DOi: 10.1038/srep12323. DOI: https://doi.org/10.1038/srep12323.
- [3] R P Sreejith et al. "Forman curvature for complex networks" J. Stat. Mech. (2016) 063206. DOI: 10.1088/1742-5468/2016/06/063206. arXiv: https://arxiv.org/pdf/1603.00386.
- [4] Samal et al. "Comparative analysis of two discretizations of Ricci curvature for complex networks". Nature Scientific Reports, 2018. https://www.nature.com/articles/s41598-018-27001-3.

THREE

GRAPH RICCI CURVATURE

3.1 graph_ricci_curvature package

3.1.1 Submodules

3.1.2 graph_ricci_curvature.forman_ricci_curvature module

References:

• [1] R P Sreejith et al J. Stat. Mech. (2016) 063206. DOI: 10.1088/1742-5468/2016/06/063206. arXiv: https://arxiv.org/pdf/1603.00386.

class graph_ricci_curvature.forman_ricci_curvature.**FormanRicciCurvature**(G: Graph,

edge_weight_key='weight',
node_weight_key='weight')

Bases: _RicciCurvature

Class for calculating Forman Ricci Curvature for a connected graph. Edge and node weights are set to 1.0 unless values are specified by the user in the input networkx graph object.

Parameters

G

[networkx graph] Input graph

edge_weight_key

[str] Key to specify edge weights in networkx graph. Default = weight.

node weight key

[str] Key to specify node weights in networkx graph. Default = weight.

calculate_edge_curvature(source_node, target_node)

Calculate value of Forman Ricci Curvature tensor associated with an edge between a source and target node defined as in References.

Parameters

source node

[int or tuple] index of source_node in graph self.G

target_node

[int or tuple] index of target node in graph self.G

calculate_ricci_curvature(norm=True)

Calculate nonzero values of Ricci curvature tensor for all edges in graph self.G

Parameters

norm

[bool] If True, normalize nodal scalar curvature.

Returns

self.G

[networkx graph] Returns graph with ricci_curvature as graph, node, and edge attributes

3.1.3 graph ricci curvature.ollivier ricci curvature module

References:

- [1] Ollivier, Y. 2009. "Ricci curvature of Markov chains on metric spaces". Journal of Functional Analysis, 256(3), 810-864. DOI: https://doi.org/10.1016/j.jfa.2008.11.001, arXiv: https://arxiv.org/abs/math/0701886
- [2] Sandhu et al. 2015. "Graph Curvature for Differentiating Cancer Networks". Scientific Reports. DOI: 10.1038/srep12323. DOI: https://doi.org/10.1038/srep12323.

class graph_ricci_curvature.ollivier_ricci_curvature.**0llivierRicciCurvature**(G: Graph,

edge_weight_key='weight',
node_weight_key='weight')

Bases: _RicciCurvature

Class for calculating Ollivier Ricci Curvature of a connected graph. Only edge weights are considered in Ollivier curvature and are set to 1.0 if values are not provided in user or found in the input networkx graph object.

Parameters

G

[networkx graph] Input graph

edge_weight_key

[str] Key to specify edge weights in networkx graph. Default = weight.

node_weight_key

[str] Key to specify node weights in networkx graph. Default = weight.

calculate_edge_curvature(source_node, target_node, alpha=0.5, dist_type='uniform', method='otd', weight path matrix=False, numThreads=1, reg=0.1)

Calculate value of Ollivier Ricci Curvature tensor associated with an edge between a source and target node defined as

1 - (Wasserstein 1 Distance / Edge Weight)

Parameters

source node

[int or tuple] index of source_node in graph self.G

target_node

[int or tuple] index of target node in graph self.G

alpha

[float] hyperparameter (0 <= alpha <=1) determining how much mass to move from node

dist_type

[str] Distribution type for mass distribution in source or target node neighborhood. Default: uniform. Options: uniform, linear, inverse-linear, gaussian.

method

[str] Method for calculating optimal transport plan. Options: otd (optimal transport distance), sinkhorn

weight_path_matrix

[bool] When True, use edge weights when calculating shortest distance matrix. Default: False.

numThreads

[int] Specify number of threads for optimal transport plan. Only for "otd" method.

reg

[float] Regularization term to be used with "sinkhorn" method

Returns

curvature

[float] value of curvature tensor

```
calculate_ricci_curvature(alpha=0.5, norm=True, dist_type='uniform', method='otd', weight_path_matrix=False, numThreads=1, reg=0.1)
```

Calculate nonzero values of Ricci curvature tensor for all edges in graph self.G and tensor contractions.

Parameters

alpha

[float] Hyperparameter ($0 \le \text{alpha} \le 1$) determining how much mass to move from node.

norm

[bool] If True, normalize nodal scalar curvature.

dist_type

[str] Distribution type for mass distribution in source or target node neighborhood. Default: uniform. Options: uniform, linear, inverse-linear, gaussian.

method

[str] Method for calculating optimal transport plan. Options: otd (optimal transport distance), sinkhorn.

weight_path_matrix

[bool] When True, use edge weights when calculating shortest distance matrix. Default: False.

numThreads

[int] Specify number of threads for optimal transport plan. Only for "otd" method.

reg

[float] Regularization term to be used with "sinkhorn" method.

Returns

self.G

[networkx graph] Returns graph with ricci_curvature as graph, node, and edge attributes

3.1.4 Module contents

FOUR

INDICES AND TABLES

- genindex
- modindex
- search

PYTHON MODULE INDEX

12 Python Module Index

INDEX

```
C
calculate_edge_curvature()
        (graph\_ricci\_curvature.forman\_ricci\_curvature.FormanRicciCurvature
        method), 5
calculate_edge_curvature()
        (graph ricci curvature.ollivier ricci curvature.OllivierRicciCurvature
        method), 6
calculate_ricci_curvature()
        (graph_ricci_curvature.forman_ricci_curvature.FormanRicciCurvature
calculate_ricci_curvature()
        (graph_ricci_curvature.ollivier_ricci_curvature.OllivierRicciCurvature
        method), 7
F
FormanRicciCurvature
                                (class
        graph_ricci_curvature.forman_ricci_curvature),
G
graph_ricci_curvature
    module, 8
graph_ricci_curvature.forman_ricci_curvature
    module, 5
graph_ricci_curvature.ollivier_ricci_curvature
    module, 6
M
module
    graph_ricci_curvature, 8
    graph_ricci_curvature.forman_ricci_curvature,
    graph_ricci_curvature.ollivier_ricci_curvature,
OllivierRicciCurvature
                                 (class
                                               in
        graph_ricci_curvature.ollivier_ricci_curvature),
```