দুই চলকবিশিষ্ট সরল সহসমীকরণ

অনুশীলনী - ১২.১

7	সমীকরণজোটের সমঞ্জস /অসমঞ্জস, পরস্পর নির্ভরশীল/ অনির্ভরশীল হওয়ার শর্তগুলো সংক্ষেপে ছকের মাধ্যমে উপস্থাপন করা হলো:									
	সমীকরণজোট	সহগও ধ্রুবক পদ তুলনা	সমঞ্জস / অসমঞ্জস	পরষ্পর নির্ভরশীল/ অনির্ভরশীল	সমাধান সংখ্যা	মন্তব্য				
	ধ্রুবক পদযুক্ত					ভিন্ন দুইটি সমীকরণ নির্দেশ করে ফলে একটিমাত্র ছেদ				
i.	$a_1x + b_1y = c_1$	$\frac{a_1}{a_1} \neq \frac{b_1}{a_1}$	সমঞ্জস	অনির্ভরশীল	আছে	বিন্দু পাওয়া যায়। তাই সমাধান একটি বা অনন্য				
	$a_2x + b_2y = c_2$	$a_2 \stackrel{\neq}{=} b_2$	गमञ्जू		(একটিমাত্র)	(Unique)				
ii.	$a_1x + b_1y = c_1$	$a_1 _ b_1 _ c_1$	সমঞ্জস	নির্ভরশীল	আছে	একই সরলরেখা নির্দেশ করে ফলে সমাধান সংখ্যা				
	$a_2x + b_2y = c_2$	$\overline{a_2} = \overline{b_2} = \overline{c_2}$	শ্ৰপ্ত	াশভরশাল	(অসংখ্য)	অসংখ্য।				
iii.	$a_1x + b_1y = c_1$	a_1 b_1 c_1	অসমঞ্জস অনির্ভরশীল		নেই	পরষ্পর সমান্তরাল সরলরেখা নির্দেশ করে ফলে কোনো				
	$a_2x + b_2y = c_2$	$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$	অসমঞ্জস	બાનબુનાન	ત્વર	ছেদবিন্দু নেই। তাই এক্ষেত্রে সমাধান নেই।				
	ধ্রুবক পদহীন					মূলবিন্দুগামী ভিন্ন দুইটি সমীকরণ নির্দেশ করে। ফলে				
iv.	$a_1x + b_1y = 0$	$\underline{a_1}$, $\underline{b_1}$		C (S	আছে	একটিমাত্র ছেদ বিন্দু পাওয়া যায় যা মূলবিন্দু। তাই				
	$a_2x + b_2y = 0$	$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$	সমঞ্জস	অনির্ভরশীল	(একটিমাত্র)	সমাধান একটি এবং সমাধান বিন্দু $(0,0)$ ।				
v.	$a_1 x + b_1 y = 0$	$\underline{a_1}$ $\underline{b_1}$	সমঞ্জস	নির্ভরশীল	আছে	একই সরলরেখা নির্দেশ করে ফলে সমাধান অসংখ্য।				
	$a_2x + b_2y = 0$	$\frac{1}{a_2} = \frac{1}{b_2}$	গৰ্জগ	1.404.1101	(অসংখ্য)					

্রী <mark>অনুশীলনীর সমাধান</mark>

নিচের সরল সহসমীকরণগুলো সমঞ্জস/অসমঞ্জস, পরস্পর নির্ভরশীল/অনির্ভরশীল কি না যুক্তিসহ উল্লেখ কর এবং এগুলোর সমাধানের সংখ্যা নির্দেশ কর:

$$x - y = 4$$
$$x + y = 10$$

সমাধান: প্রদত্ত সমীকরণজোট: x-y=4

$$x + y = 10$$

x এর সহগদ্বয়ের অনুপাত $\frac{1}{1}$

y এর সহগদ্বয়ের অনুপাত $\frac{-1}{1}$

আমরা পাই, $\frac{1}{1} \neq \frac{-1}{1}$

∴ প্রদত্ত সমীকরণজোটটি সমঞ্জস ও পরস্পর অনির্ভরশীল। সমীকরণজোটটির একটিমাত্র (অনন্য) সমাধান আছে।

$$2x + y = 3$$
$$4x + 2y = 6$$

<u>সমাধান:</u> প্রদত্ত সমীকরণজোট: 2x+y=3

$$4x + 2y = 6$$

x এর সহগদ্বয়ের অনুপাত $\frac{2}{4}$ বা, $\frac{1}{2}$

y এর সহগদ্বয়ের অনুপাত $\frac{1}{2}$

ধ্রুবক পদদ্বয়ের অনুপাত $\frac{3}{6}$ বা, $\frac{1}{2}$

আমরা পাই, $\frac{2}{4} = \frac{1}{2} = \frac{3}{6}$

∴ প্রদত্ত সমীকরণজোটটি সমঞ্জস ও পরস্পর নির্ভরশীল। সমীকরণজোটটির অসংখ্য সমাধান আছে।

$$x - y - 4 = 0$$
$$3x - 3y - 10 = 0$$

<u>সমাধান</u>: এখানে, x - y - 4 = 0

বা,
$$x - y = 4 \dots (i)$$

আবার,
$$3x - 3y - 10 = 0$$

বা,
$$3x - 3y = 10 \dots (ii)$$

∴ সমীকরণজোট: x - y = 4

$$3x - 3y = 10$$

x এর সহগদ্বয়ের অনুপাত $\frac{1}{3}$

y এর সহগদ্বয়ের অনুপাত $\frac{-1}{-3}$ বা $\frac{1}{3}$

ধ্রুবক পদদ্বয়ের অনুপাত $\frac{4}{10}$ বা, $\frac{2}{5}$

আমরা পাই, $\frac{1}{3} = \frac{-1}{-3} \neq \frac{4}{10}$

∴ প্রদত্ত সমীকরণজোটটি অসমঞ্জস ও পরস্পর অনির্ভরশীল। সমীকরণজোটটির কোনো সমাধান নেই।

$$8 \quad 3x + 2y = 0$$
$$6x + 4y = 0$$

<u>সমাধান</u>: প্রদত্ত সমীকরণজোট: 3x + 2y = 0

$$6x + 4y = 0$$

x এর সহগদ্ধয়ের অনুপাত $\frac{3}{6}$ বা, $\frac{1}{2}$

y এর সহগদ্বয়ের অনুপাত $\frac{2}{4}$ বা, $\frac{1}{2}$

আমরা পাই,
$$\frac{3}{6} = \frac{2}{4}$$

এক্ষেত্রে যেহেতু সমীকরণজোটের উভয় সমীকরণে ধ্রুবক পদ নেই তাই বলা যায়, প্রদন্ত সমীকরণজোটিটি সমঞ্জস ও পরস্পর নির্ভরশীল। সমীকরণজোটিটির অসংখ্য সমাধান আছে।

$$3x + 2y = 0$$
$$9x - 6y = 0$$

<u>সমাধান</u>: প্রদত্ত সমীকরণজোট: 3x + 2y = 0

$$9x - 6y = 0$$

x এর সহগদ্বয়ের অনুপাত $\frac{3}{9}$ বা $\frac{1}{3}$

y এর সহগদ্ধের অনুপাত $\dfrac{2}{-6}$ বা $\dfrac{1}{-3}$

আমরা পাই,
$$\frac{3}{9} \neq \frac{2}{-6}$$

এক্ষেত্রে যেহেতু সমীকরণজোটের উভয় সমীকরণে ধ্রুবক পদ নেই তাই বলা যায়, প্রদন্ত সমীকরণজোটিট সমঞ্জস ও পরস্পর অনির্ভরশীল। সমীকরণজোটিটির একটিমাত্র (অনন্য) সমাধান আছে।

$$5x - 2y - 16 = 0$$
$$3x - \frac{6}{5}y = 2$$

<u>সমাধান</u>: প্রদত্ত সমীকরণজোট: 5x - 2y - 16 = 0

বা,
$$5x - 2y = 16 \dots (i)$$

এবং
$$3x - \frac{6}{5}y = 2$$
 (ii)

x এর সহগদ্বয়ের অনুপাত $\frac{5}{3}$

y এর সহগদ্বয়ের অনুপাত $\dfrac{-2}{-\dfrac{6}{5}}$ বা $\dfrac{5}{3}$

ধ্রুবক পদদ্বয়ের অনুপাত $\frac{16}{2}$ বা 8

আমরা পাই,
$$\frac{5}{3} = \frac{-2}{-\frac{6}{5}} \neq \frac{16}{2}$$

∴ প্রদত্ত সমীকরণজোটটি অসমঞ্জস ও পরস্পর অনির্ভরশীল। সমীকরণজোটটির কোনো সমাধান নেই।

$$\boxed{9} - \frac{1}{2}x + y = -1$$

$$x - 2y = 2$$

<u>সমাধান</u>: প্রদত্ত সমীকরণজোট: $-\frac{1}{2}x+y=-1$

$$x - 2y = 2$$

x এর সহগদ্ধের অনুপাত $\dfrac{-\dfrac{1}{2}}{1}$ বা $-\dfrac{1}{2}$

y এর সহগদ্বয়ের অনুপাত $\frac{1}{-2}$ বা $-\frac{1}{2}$

ধ্রুবক পদদ্বয়ের অনুপাত $\frac{-1}{2}$ বা $-\frac{1}{2}$

আমরা পাই,
$$\frac{-\frac{1}{2}}{1} = \frac{1}{-2} = \frac{-1}{2}$$

প্রদত্ত সমীকরণজোটটি সমঞ্জস ও পরস্পর নির্ভরশীল। সমীকরণজোটটির
অসংখ্য সমাধান আছে।

$$\boxed{\mathbf{b}} - \frac{1}{2}x - y = 0$$

$$x - 2y = 0$$

<u>সমাধান</u>: প্রদত্ত সমীকরণ জোট: $-\frac{1}{2}x-y=0$

$$x - 2y = 0$$

x এর সহগদ্বয়ের অনুপাত $\frac{-\frac{1}{2}}{1} = -\frac{1}{2}$

y এর সহগদ্বয়ের অনুপাত $\frac{-1}{-2}=\frac{1}{2}$

আমরা পাই,
$$\frac{-\frac{1}{2}}{1} \neq \frac{-1}{-2}$$

এক্ষেত্রে যেহেতু সমীকরণজোটের উভয় সমীকরণে ধ্রুবক পদ নেই তাই বলা যায়, প্রদত্ত সমীকরণজোটিটি সমঞ্জস ও পরস্পর অনির্ভরশীল। সমীকরণজোটিটির একটিমাত্র (অনন্য) সমাধান আছে।

$$\boxed{\delta} - \frac{1}{2}x + y = -1$$

$$x + y = 5$$

<u>সমাধান</u>: প্রদত্ত সমীকরণ জোট: $-\frac{1}{2}x + y = -1$

$$x + y = 5$$

x এর সহগদ্ধয়ের অনুপাত $\dfrac{-\dfrac{1}{2}}{1}$ বা $-\dfrac{1}{2}$

y এর সহগদ্বয়ের অনুপাত $\frac{1}{1}$

আমরা পাই,
$$\frac{-\frac{1}{2}}{1} \neq \frac{1}{1}$$

∴ প্রদত্ত সমীকরণজোটটি সমঞ্জস ও পরস্পর অনির্ভরশীল। সমীকরণজোটটির একটিমাত্র (অনন্য) সমাধান আছে।

সমাধান: প্রদত্ত সমীকরণজোট: ax-cy=0

$$cx - ay = c^2 - a^2$$

x এর সহগদ্বয়ের অনুপাত $\frac{a}{c}$

y এর সহগদ্বয়ের অনুপাত $\frac{-c}{-a}$ বা $\frac{c}{a}$

আমরা পাই,
$$\frac{a}{c} \neq \frac{-c}{-a}$$

∴ প্রদত্ত সমীকরণজোটটি সমঞ্জস ও পরস্পর অনির্ভরশীল। সমীকরণজোটটির একটিমাত্র (অনন্য) সমাধান আছে।

পাঠ্যবইয়ের কাজের সমাধান

কাজ

>পাঠ্যবই পৃষ্ঠা-২২৫

x - 2y + 1 = 0 ও 2x + y - 3 = 0 সমীকরণদ্বয়ের প্রত্যেকটির পাঁচটি করে সমাধান লিখ যেন তন্মধ্যে সাধারণ সমাধানটিও থাকে।

সমাধান:
$$x - 2y + 1 = 0 \dots (i)$$

$$2x + y - 3 = 0 \dots (ii)$$

এখন, সমীকরণ (i) থেকে নিচের ছকটি পুরণ করি:

<i>x</i> -এর মান	<i>y</i> -এর মান	বামপক্ষ $(x-2y+1)$ এর মান	ডানপক্ষ
- 3	- 1	-3+2+1=0	0
1	1	1 - 2 + 1 = 0	0
3	2	3 - 4 + 1 = 0	0
5	3	5 - 6 + 1 = 0	0
7	4	7 - 8 + 1 = 0	0
		= 0	0

সমীকরণটির অসংখ্য সমাধান আছে। তার মধ্যে পাঁচটি সমাধান (-3, -1), (1, 1), (3, 2), (5, 3) ও (7, 4)

আবার, সমীকরণ (ii) থেকে নিচের ছকটি পূরণ করি:

x-এর মান y -এর মান		বামপক্ষ $(2x+y-3)$ এর মান	ডানপক্ষ
0	3	0 + 3 - 3 = 0	0
1	1	2+1-3=0	0
2	- 1	4 - 1 - 3 = 0	0
3	– 3	6 - 3 - 3 = 0	0
4	-5	8 - 5 - 3 = 0	0

সমীকরণটির অসংখ্য সমাধান আছে। তার মধ্যে পাঁচটি সমাধান (0, 3), (1, 1), (2, -1), (3-3) ও (4, -5) সমীকরণ (i) ও (ii)-এর সাধারণ সমাধান (1, 1)।

কাজ

>পাঠ্যবই পৃষ্ঠা-২২৮

x-2y+1=0 ও 2x+y-3=0 সমীকরণজোটটি সমঞ্জস কি না, পরস্পর নির্ভরশীল কি না যাচাই কর এবং সমীকরণজোটটির কয়টি সমাধান থাকতে পারে তা নির্দেশ কর।

সমাধানঃ প্রদত্ত সমীকরণজোট: x-2y+1=0

বা,
$$x - 2y = -1$$
 ... (i)

$$2x + y - 3 = 0$$

বা,
$$2x + y = 3 \dots \dots (ii)$$

 \therefore সমীকরণজোট: x-2y=-1

$$2x + v = 3$$

x এর সহগদ্বয়ের অনুপাত $\frac{1}{2}$

y এর সহগদ্বয়ের অনুপাত $\frac{-2}{1}$

আমরা পাই,
$$\frac{1}{2} \neq \frac{-2}{1}$$

∴ প্রদত্ত সমীকরণজোটটি সমঞ্জস ও পরস্পর অনির্ভরশীল। সমীকরণজোটটির একটিমাত্র (অনন্য) সমাধান আছে।