SISTEMAS ELÉCTRICOS DE POTENCIA

PRÁCTICA Nº1 CORTOCIRCUITOS

Sergio de Paula Moratilla 55209 Carlos Alejandro Fernández Zolle 54924 Rubén Ruíz Martínez 54935 Wenbo Javier Ye Wu 53540 César Zabala Martín 55540

En la red representada en la figura:

Se pide:

a) Obtener los valores por unidad de todos los elementos de la red.

En primer lugar, tenemos que determinar la potencia y tensiones base de la red:

Þ

$$S_{BASE} := 100 \cdot MVA$$

$$U_{\text{BASE7}} := 132\text{kV}$$

$$\begin{split} &U_{BASE1} \coloneqq \frac{17}{132} \cdot U_{BASE7} = 17 \cdot kV & U_{BASE2} \coloneqq \frac{20}{138} \cdot U_{BASE7} = 19.1304 \cdot kV \\ &U_{BASE3} \coloneqq \frac{17}{132} \cdot U_{BASE7} = 17 \cdot kV & U_{BASE4} \coloneqq \frac{16.5}{132} \cdot U_{BASE7} = 16.5 \cdot kV \\ &U_{BASE6} \coloneqq \frac{20}{132} \cdot U_{BASE7} = 20 \cdot kV & U_{BASE5} \coloneqq \frac{0.42}{19.5} \cdot U_{BASE6} = 0.4308 \cdot kV \end{split}$$

GENERADOR 2

$$S_{n G2} := 120MVA$$

$$U_{n G2} := 21kV$$
 $X''_{G2} := 12\%$

$$X''_{G2} := 12\%$$

$$Z_{1_G2} := X''_{G2} i \cdot \left(\frac{U_{n_G2}}{U_{BASE2}} \right)^2 \cdot \frac{S_{BASE}}{S_{n_G2}} = 0.1205 i \qquad Z_{2_G2} := Z_{1_G2} \qquad \qquad Z_{0_G2} := Z_{1_G2}$$

$$Z_{2_G2} := Z_{1_G2}$$

$$Z_{0_G2} := Z_{1_G2}$$

GENERADOR 3

$$S_{n_G3} := 100 \text{MVA}$$
 $U_{n_G3} := 17 \text{kV}$ $X''_{G3} := 10\%$

$$U_{n G3} := 17kV$$

$$X''_{G3} := 10\%$$

$$Z_{1_G3} := X''_{G3}i \cdot \left(\frac{U_{n_G3}}{U_{BASE3}}\right)^2 \cdot \frac{S_{BASE}}{S_{n_G3}} = 0.1i$$
 $Z_{2_G3} := Z_{1_G3}$ $Z_{0_G3} := Z_{1_G3}$

$$Z_{2_G3} := Z_{1_G3}$$

$$Z_{0_G3} := Z_{1_G3}$$

$$R_{N_G3} := \frac{\frac{55540}{10^5} \Omega}{\left(\frac{U_{BASE3}^2}{S_{BASE}}\right)} = 0.1922$$

MOTOR 1

$$P_{n \ M1} := 12.5 \text{MW}$$
 $U_{n \ M1} := 16.5 \text{kV}$ $fdp_{M1} := 0.88$ $\eta_{M1} := 0.97$ $I_{an.M1} := 5.5$

$$U_{n_M1} := 16.5 \text{kV}$$

$$fdp_{M1} := 0.88$$

$$\eta_{M1} := 0.97$$

$$I_{an M1} := 5.5$$

$$\mathbf{S_{n_M1}} \coloneqq \frac{\mathbf{P_{n_M1}}}{\mathbf{fdp_{M1}} \cdot \eta_{M1}} = 14.6439 \cdot \mathbf{MVA}$$

MOTOR 2

$$P_{n M2} := 16MW$$

$$P_{n_M2} := 16MW$$
 $U_{n_M2} := 16.5kV$ $fdp_{M2} := 0.85$ $\eta_{M2} := 0.95$ $I_{an.M2} := 5$

$$fdp_{M2} := 0.85$$

$$\eta_{M2} := 0.95$$

$$I_{an.M2} := 5$$

$$S_{n_M2} := \frac{P_{n_M2}}{fdp_{M2} \cdot \eta_{M2}} = 19.8142 \cdot MVA$$

$$Z_{1_M2} \coloneqq \frac{1}{I_{an.M2}} \cdot \left(\frac{U_{n_M2}}{U_{BASE4}}\right)^2 \cdot \frac{S_{BASE}}{S_{n_M2}} i = 1.0094 i \qquad Z_{2_M2} \coloneqq Z_{1_M2} \qquad Z_{0_M2} \coloneqq Z_{1_M2}$$

TRANSFORMADOR 1

$$S_{n_T1} := 30MVA$$
 $U_{n1_T1} := 17kV$ $X''_{T1} := \left(\frac{2 \cdot 55540}{10^4} - 1\right)\%$

$$Z_{1_T1} := X"_{T1} \mathbf{i} \cdot \left(\frac{U_{n1_T1}}{U_{BASE1}} \right)^2 \cdot \frac{S_{BASE}}{S_{n-T1}} = 0.3369 \mathbf{i}$$

$$z_{2_T1} \coloneqq z_{1_T1}$$

$$Z_{0 \text{ T1}} := 0.75Z_{1 \text{ T1}} = 0.2527i$$

TRANSFORMADOR 2

$$\mathbf{S_{n~T2}} \coloneqq 120 \mathrm{MVA} \qquad \mathbf{U_{n1~T2}} \coloneqq 20 \mathrm{kV} \qquad \mathbf{X''_{T2}} \coloneqq 13\%$$

$$Z_{1_T2} := X''_{T2}i \cdot \left(\frac{U_{n1_T2}}{U_{BASE2}}\right)^2 \cdot \frac{S_{BASE}}{S_{n_T2}} = 0.1184i$$

$$Z_2 \quad T_2 := Z_1 \quad T_2$$

$$Z_{0 \text{ } T2} := 0.75Z_{1 \text{ } T2} = 0.0888i$$

TRANSFORMADOR 3

$$S_{n_{T3}} := 100 \text{MVA}$$
 $U_{n1_{T3}} := 17 \text{kV}$ $X''_{T3} := \frac{2 \cdot 55540}{10^4} \%$

$$Z_{1_T3} := X''_{T3}i \cdot \left(\frac{U_{n1_T3}}{U_{BASE3}}\right)^2 \cdot \frac{S_{BASE}}{S_{n_T3}} = 0.1111i$$

$$z_{2_T3} \coloneqq z_{1_T3}$$

$$Z_{0\ T3}:=0.85Z_{1\ T3}=0.0944i$$

TRANSFORMADOR 4

$$\mathbf{S}_{\mathbf{n}_{-}\mathbf{T}\mathbf{4}} \coloneqq 40 \mathrm{MVA}$$
 $\mathbf{U}_{\mathbf{n}\mathbf{1}_{-}\mathbf{T}\mathbf{4}} \coloneqq 132 \mathrm{kV}$ $\mathbf{X}''_{\mathbf{T}\mathbf{4}} \coloneqq 8\%$

$$Z_{1_T4} := X''_{T4}i \cdot \left(\frac{U_{n1_T4}}{U_{BASE7}}\right)^2 \cdot \frac{S_{BASE}}{S_{n_T4}} = 0.2i$$

$$Z_2 \quad T_4 := Z_1 \quad T_4$$

$$Z_{0\ T4} := 0.85 Z_{1\ T4} = 0.17 i$$

TRANSFORMADOR 5

$$S_{n_T5} := 25 \text{MVA}$$
 $U_{n1_T5} := 132 \text{kV}$ $X''_{T5} := 6\%$

$$Z_{1_T5} := X"_{T5}i \cdot \left(\frac{U_{n1_T5}}{U_{BASE7}}\right)^2 \cdot \frac{S_{BASE}}{S_{n_T5}} = 0.24i \qquad Z_{2_T5} := Z_{1_T5} \qquad Z_{0_T5} := Z_{1_T5}$$

TRANSFORMADOR 6

$$S_{n T6} := 1MVA$$
 $U_{n1 T6} := 19.5kV$ $X''_{T6} := 6\%$

$$Z_{1_T6} := X''_{T6}i \cdot \left(\frac{U_{n1_T6}}{U_{BASE6}}\right)^2 \cdot \frac{S_{BASE}}{S_{n-T6}} = 5.7037i$$
 $Z_{2_T6} := Z_{1_T6}$ $Z_{0_T6} := Z_{1_T6}$

LÍNEA 1-2

 $\mathsf{Long}_{L12} \coloneqq 20\mathsf{km}$

$$Z_{1_L12} \coloneqq \frac{0.35 \frac{\Omega}{km} \cdot Long_{L12}}{\left(\frac{U_{BASE7}^{2}}{S_{BASE}}\right)} i = 0.0402i$$

$$Z_2$$
 $L12 := Z_1$ $L12$

$$Z_{0_L12} \coloneqq \frac{0.85 \frac{\Omega}{\text{km}} \cdot \text{Long}_{L12}}{\left(\frac{U_{BASE7}}{S_{BASE}}\right)} i = 0.0976i$$

LÍNEA 1-4

 $Long_{L14} := 80km$

$$Z_{1_L14} := \frac{0.35 \frac{\Omega}{\text{km}} \cdot \text{Long}_{L14}}{\left(\frac{U_{BASE7}}{s_{BASE}}\right)} i = 0.1607i$$

$$Z_2$$
 $L_{14} := Z_1$ L_{14}

$$Z_{0_L14} := \frac{0.85 \frac{\Omega}{\text{km}} \cdot \text{Long}_{L14}}{\left(\frac{U_{BASE7}^{2}}{s_{BASE}}\right)} i = 0.3903i$$

LÍNEA 2-4

 $\mathsf{Long}_{L24} \coloneqq 100 \mathsf{km}$

$$Z_{1_L24} := \frac{0.4 \frac{\Omega}{\text{km}} \cdot \text{Long}_{L24}}{\left(\frac{U_{BASE7}^{2}}{S_{BASE}}\right)} i = 0.2296i$$

$$z_{2_L24} \coloneqq z_{1_L24}$$

$$Z_{0_L24} := \frac{0.96 \frac{\Omega}{\text{km}} \cdot \text{Long}_{L24}}{\left(\frac{U_{BASE7}^{2}}{s_{BASE}}\right)} i = 0.551i$$

LÍNEA 2-3

 $Long_{L23} := 40 \text{km}$

$$Z_{1_L23} := \frac{0.35 \frac{\Omega}{\text{km}} \cdot \text{Long}_{L23}}{\left(\frac{U_{BASE7}^{2}}{s_{BASE}}\right)} i = 0.0803i$$

$$z_{2_L23} \coloneqq z_{1_L23}$$

$$Z_{0_L23} := \frac{0.85 \frac{\Omega}{\text{km}} \cdot \text{Long}_{L23}}{\left(\frac{U_{\text{BASE7}}^2}{s_{\text{BASE}}}\right)} i = 0.1951i$$

LÍNEA 3-5

 $Long_{L35} := 100 km$

$$Z_{1_L35} := \frac{0.4 \frac{\Omega}{\text{km}} \cdot \text{Long}_{L35}}{\left(\frac{U_{BASE7}^{2}}{s_{BASE}}\right)} i = 0.2296i$$

$$Z_2$$
 $L35 := Z_1$ $L35$

$$Z_{0_L35} := \frac{0.96 \frac{\Omega}{\text{km}} \cdot \text{Long}_{L35}}{\left(\frac{U_{\text{BASE7}}^2}{S_{\text{BASE}}}\right)} i = 0.551i$$

LÍNEA 4-5

 $Long_{IA5} := 100km$

$$Z_{1_L45} := \frac{0.38 \frac{\Omega}{\text{km}} \cdot \text{Long}_{\text{L45}}}{\left(\frac{\text{U}_{\text{BASE7}}^2}{\text{S}_{\text{BASE}}}\right)} i = 0.2181i$$

$$z_{2_L45} \coloneqq z_{1_L45}$$

$$Z_{0_L45} := \frac{0.92 \frac{\Omega}{\text{km}} \cdot \text{Long}_{\text{L45}}}{\left(\frac{U_{\text{BASE7}}^2}{\text{S}_{\text{BASE}}}\right)} i = 0.528i$$

b) Obtener el valor de la corriente de cortocircuito si se produce una falta simétrica en $F_{1.}$ Representar dicha corriente de falta en función de la variable x (varía entre el 10% y el 90% de la longitud total de la línea L_{45}).

Al ser una falta simétrica, solamente hay que calcular la impedancia Z1 de secuencia directa. El circuito de secuencia directa correspondiente es:

$$Z_{\text{eq1}} \coloneqq \frac{Z_{1_\text{L35}} \cdot Z_{1_\text{L23}} + Z_{1_\text{L35}} \cdot \left(Z_{1_\text{T3}} + Z_{1_\text{G3}}\right) + Z_{1_\text{L23}} \cdot \left(Z_{1_\text{T3}} + Z_{1_\text{G3}}\right)}{Z_{1_\text{L23}}} = 1.0437 \text{i}$$

$$Z_{\text{eq2}} \coloneqq \frac{Z_{1_\text{L35}} \cdot Z_{1_\text{L23}} + Z_{1_\text{L35}} \cdot \left(Z_{1_\text{T3}} + Z_{1_\text{G3}}\right) + Z_{1_\text{L23}} \cdot \left(Z_{1_\text{T3}} + Z_{1_\text{G3}}\right)}{Z_{1_\text{T3}} + Z_{1_\text{G3}}} = 0.3973i$$

$$Z_{eq3} := \frac{Z_{1_L35} \cdot Z_{1_L23} + Z_{1_L35} \cdot \left(Z_{1_T3} + Z_{1_G3}\right) + Z_{1_L23} \cdot \left(Z_{1_T3} + Z_{1_G3}\right)}{Z_{1_L35}} = 0.3653i$$

$$Z_{eq4} := \frac{Z_{eq1} \cdot (Z_{1_T5} + Z_{1_M2})}{Z_{eq1} + Z_{1_T5} + Z_{1_M2}} = 0.5687i$$

$$Z_{eq5} := \frac{Z_{eq3} \cdot (Z_{1_T2} + Z_{1_G2})}{Z_{eq3} + Z_{1_T2} + Z_{1_G2}} = 0.1444i$$

$$Z_{eq6} := \frac{Z_{1_L24} \cdot Z_{1_L12}}{Z_{1_L24} + Z_{1_L12} + Z_{1_L14}} = 0.0214i \quad Z_{eq7} := \frac{Z_{1_L24} \cdot Z_{1_L14}}{Z_{1_L24} + Z_{1_L12} + Z_{1_L14}} = 0.0857i$$

$$Z_{\text{eq8}} := \frac{Z_{1_\text{L}14} \cdot Z_{1_\text{L}12}}{Z_{1_\text{L}24} + Z_{1_\text{L}12} + Z_{1_\text{L}14}} = 0.015i$$

$$\begin{split} Z_{eq9} &:= \frac{Z_{eq2} \cdot Z_{eq6} + Z_{eq2} \cdot Z_{eq5} + Z_{eq6} \cdot Z_{eq5}}{Z_{eq6}} = 3.2201 i \\ Z_{eq10} &:= \frac{Z_{eq2} \cdot Z_{eq6} + Z_{eq2} \cdot Z_{eq5} + Z_{eq6} \cdot Z_{eq5}}{Z_{eq5}} = 0.4777 i \\ Z_{eq11} &:= \frac{Z_{eq2} \cdot Z_{eq6} + Z_{eq2} \cdot Z_{eq5} + Z_{eq6} \cdot Z_{eq5}}{Z_{eq2}} = 0.1737 i \\ Z_{eq12} &:= Z_{eq8} + Z_{1_T1} + Z_{1_M1} = 1.5216 i \end{split}$$

$$Z_{eq13} := \frac{Z_{eq4} \cdot Z_{eq9}}{Z_{eq4} + Z_{eq9}} = 0.4833i$$

$$Z_{\text{eq14}} := \frac{Z_{\text{eq11}} \cdot Z_{\text{eq12}}}{Z_{\text{eq11}} + Z_{\text{eq12}}} = 0.1559i$$

$$\begin{split} Z_{eq15} &\coloneqq \frac{Z_{eq10}.Z_{eq13}}{Z_{eq10} + Z_{eq13} + Z_{eq14}} = 0.2067i \\ Z_{eq16} &\coloneqq \frac{Z_{eq10}.Z_{eq14}}{Z_{eq10} + Z_{eq13} + Z_{eq14}} = 0.0667i \\ Z_{eq17} &\coloneqq \frac{Z_{eq10}.Z_{eq13}}{Z_{eq10} + Z_{eq13} + Z_{eq14}} = 0.0675i \end{split}$$

Por lo tanto, el valor de la z equivalente será:

$$x := 0.1, 0.11..0.9$$

$$Z_{1_F1}(x) \coloneqq Z_{eq17} + \frac{\left[Z_{eq15} + Z_{1_L45} \cdot (1-x)\right] \cdot \left(Z_{eq7} + Z_{eq16} + Z_{1_L45} \cdot x\right)}{Z_{eq15} + Z_{1_L45} \cdot (1-x) + Z_{eq7} + Z_{eq16} + Z_{1_L45} \cdot x}$$

Finalmente, calculamos la corriente. Como se trata de una falta trifásica:

Para convertir el valor a Amperios, multiplicamos por la corriente base:

$$I_{BASE7} := \frac{S_{BASE}}{\sqrt{3} \cdot U_{BASE7}} = 0.4374 \cdot kA$$

$$I_{1}_{F1}_{3}_{A}(x) := I_{1}_{F1}_{3}_{pu}(x) \cdot I_{BASE7}$$

Si representamos la corriente para los diferentes valores de x (del 10% al 90%):

PRÁCTICA Nº2 CORTOCIRCUITOS

Repetir el apartado b) de la práctica 1 calculando los equivalentes de la red mediante la matriz de impedancia de barras Z_{barras} , obtenida a partir de la matriz admitancia

Y_{barras}.

Tenemos que calcular Z1 otra vez pero usando la matriz de admitancias.

$$\begin{split} y_{1F1_55}(x) &\coloneqq \frac{1}{Z_{1_L35}} + \frac{1}{Z_{1_T5} + Z_{1_M2}} + \frac{1}{Z_{1_L45} \cdot (1-x)} \quad y_{1F1_56}(x) \coloneqq \frac{-1}{Z_{1_L45} \cdot (1-x)} \\ y_{1F1_66}(x) &\coloneqq \frac{1}{Z_{1_L45} \cdot x} + \frac{1}{Z_{1_L45} \cdot (1-x)} \end{split}$$

$$\mathbf{Y_{barras1_F1}(x)} \coloneqq \begin{pmatrix} y_{1F1_11} & y_{1F1_12} & 0 & y_{1F1_14} & 0 & 0 \\ y_{1F1_12} & y_{1F1_22} & y_{1F1_23} & y_{1F1_24} & 0 & 0 \\ 0 & y_{1F1_23} & y_{1F1_33} & 0 & y_{1F1_35} & 0 \\ y_{1F1_14} & y_{1F1_24} & 0 & y_{1F1_44}(\mathbf{x}) & 0 & y_{1F1_46}(\mathbf{x}) \\ 0 & 0 & y_{1F1_35} & 0 & y_{1F1_56}(\mathbf{x}) & y_{1F1_56}(\mathbf{x}) \\ 0 & 0 & 0 & y_{1F1_46}(\mathbf{x}) & y_{1F1_56}(\mathbf{x}) & y_{1F1_66}(\mathbf{x}) \end{pmatrix}$$

La matriz de impedancia será la inversa de la matriz de admitancias:

$$Z_{barras1 F1}(x) := Y_{barras1 F1}(x)^{-1}$$

En nuestro caso, el elemento que representa la impedancia Z1 es el 6x6. Por lo tanto:

$$Z_{1_F1_matriz}(x) := Z_{barras1_F1}(x)_{5,5}$$

Si comparamos la impedancia nueva (calculada mediante la matriz) con la del apartado anterior (obtenida mediante simplificación del circuito equivalente), se observa que sale exactamente igual.

$Z_{1_F1}(x)$	=	Z _{1_F1_ma}	atriz(x) =
0.1891		0.1891	
0.1899		0.1899	
0.1908		0.1908	
0.1916		0.1916	
0.1924		0.1924	
0.1932		0.1932	
0.194		0.194	

Como la impedancia es la misma, la corriente obtenida será igual a la del apartado b.

c) Repetir el apartado b, suponiendo una falta monofásica.

En este caso, hay que calcular las impedancias Z2 y Z0. En nuestro caso, Z2 es la misma que Z1 ya que todos los elementos de la red tienen Z1=Z2. El circuito homopolar equivalente es:

$$\begin{split} y_{0F1_11} &\coloneqq \frac{1}{Z_{0_L14}} + \frac{1}{Z_{0_L12}} + \frac{1}{Z_{0_T1} + Z_{0_M1}} & y_{0F1_12} \coloneqq \frac{-1}{Z_{0_L12}} & y_{0F1_14} \coloneqq \frac{-1}{Z_{0_L14}} \\ y_{0F1_22} &\coloneqq \frac{1}{Z_{0_L12}} + \frac{1}{Z_{0_L23} + Z_{0_L35}} + \frac{1}{Z_{0_L24}} & y_{0F1_23} \coloneqq \frac{-1}{Z_{0_L23} + Z_{0_L35}} \\ & y_{0F1_24} &\coloneqq \frac{-1}{Z_{0_L24}} \\ y_{0F1_33}(x) &\coloneqq \frac{1}{Z_{0_L3}} + \frac{1}{Z_{0_L23} + Z_{0_L35}} + \frac{1}{Z_{0_L45} \cdot (1-x)} & y_{0F1_35}(x) &\coloneqq \frac{-1}{Z_{0_L45} \cdot (1-x)} \\ y_{0F1_44}(x) &\coloneqq \frac{1}{Z_{0_L24}} + \frac{1}{Z_{0_L14}} + \frac{1}{Z_{0_L45} \cdot x} & y_{0F1_45}(x) &\coloneqq \frac{-1}{Z_{0_L45} \cdot x} \\ y_{0F1_55}(x) &\coloneqq \frac{1}{Z_{0_L45} \cdot (1-x)} + \frac{1}{Z_{0_L45} \cdot x} \end{split}$$

$$\mathbf{Y}_{barras0_F1}(\mathbf{x}) := \begin{pmatrix} y_{0F1_11} & y_{0F1_12} & 0 & y_{0F1_14} & 0 \\ y_{0F1_12} & y_{0F1_22} & y_{0F1_23} & y_{0F1_24} & 0 \\ 0 & y_{0F1_23} & y_{0F1_33}(\mathbf{x}) & 0 & y_{0F1_35}(\mathbf{x}) \\ y_{0F1_14} & y_{0F1_24} & 0 & y_{0F1_44}(\mathbf{x}) & y_{0F1_45}(\mathbf{x}) \\ 0 & 0 & y_{0F1_35}(\mathbf{x}) & y_{0F1_45}(\mathbf{x}) & y_{0F1_55}(\mathbf{x}) \end{pmatrix}$$

$$Z_{barras0_F1}(x) := Y_{barras0_F1}(x)^{-1}$$
$$Z_{0_F1}(x) := Z_{barras0_F1}(x)_{4.4}$$

Finalmente, calculamos la corriente. Como se trata de una falta monofásica:

$$I_{1_F1_1_pu}(x) := \frac{U_{pf}}{2 \cdot Z_{1_F1}(x) + Z_{0_F1}(x)}$$

Sabiendo que la corriente de falta 3 veces la corriente homopolar:

$$I_{F_F1_1}(x) := 3 I_{1_F1_3_pu}(x) \cdot I_{BASE7}$$

$$I_{F_F1_1}(x) = \begin{array}{|c|c|c|c|c|}\hline & 0 & \\ 0 & -7.6342i \\ 1 & -7.5998i \\ 2 & -7.5663i \\ 3 & -7.5338i \\ 4 & -7.5022i \\ \hline 5 & ... \\ \end{array} \cdot kA$$

Si representamos la corriente para los diferentes valores de x (del 10% al 90%):

d) Obtener el valor de la corriente que circularía por el interruptor l en el caso de cortocircuito bifásico a tierra en ${\sf F}_2$.

$$Z''_{\text{eq1}} := \frac{Z_{1_\text{L14}} \cdot Z_{1_\text{L12}} + Z_{1_\text{L14}} \cdot \left(Z_{1_\text{T1}} + Z_{1_\text{M1}}\right) + Z_{1_\text{L12}} \cdot \left(Z_{1_\text{T1}} + Z_{1_\text{M1}}\right)}{Z_{1_\text{L14}}} = 1.9234i$$

$$Z''_{eq2} := \frac{Z_{1_L14} \cdot Z_{1_L12} + Z_{1_L14} \cdot \left(Z_{1_T1} + Z_{1_M1}\right) + Z_{1_L12} \cdot \left(Z_{1_T1} + Z_{1_M1}\right)}{Z_{1_T1} + Z_{1_M1}} = 0.2052i$$

$$Z''_{\text{eq3}} := \frac{Z_{1_\text{L}14} \cdot Z_{1_\text{L}12} + Z_{1_\text{L}14} \cdot \left(Z_{1_\text{T}1} + Z_{1_\text{M}1}\right) + Z_{1_\text{L}12} \cdot \left(Z_{1_\text{T}1} + Z_{1_\text{M}1}\right)}{Z_{1_\text{L}12}} = 7.6936i$$

$$Z''_{eq4} := \frac{Z_{1_L45} \cdot Z_{1_L35} + Z_{1_L45} \cdot \left(Z_{1_T5} + Z_{1_M2}\right) + Z_{1_L35} \cdot \left(Z_{1_T5} + Z_{1_M2}\right)}{Z_{1_L45}} = 2.7941i$$

$$Z"_{eq5} := \frac{Z_{1_L45} \cdot Z_{1_L35} + Z_{1_L45} \cdot \left(Z_{1_T5} + Z_{1_M2}\right) + Z_{1_L35} \cdot \left(Z_{1_T5} + Z_{1_M2}\right)}{Z_{1_T5} + Z_{1_M2}} = 0.4877 i$$

$$Z"_{eq6} := \frac{Z_{1_L45} \cdot Z_{1_L35} + Z_{1_L45} \cdot \left(Z_{1_T5} + Z_{1_M2}\right) + Z_{1_L35} \cdot \left(Z_{1_T5} + Z_{1_M2}\right)}{Z_{1_L35}} = 2.6544i$$

$$Z''_{eq7} := \frac{Z''_{eq2} \cdot Z_{1_L24}}{Z''_{eq2} + Z_{1_L24}} = 0.1083i \qquad \qquad Z''_{eq8} := \frac{Z''_{eq1} \cdot \left(Z_{1_T2} + Z_{1_G2}\right)}{Z''_{eq1} + Z_{1_T2} + Z_{1_G2}} = 0.2125i$$

$$Z''_{eq9} := \frac{Z''_{eq3} \cdot Z''_{eq6}}{Z''_{eq3} + Z''_{eq6}} = 1.9735i$$

$$Z''_{eq10} := \frac{Z''_{eq5} \cdot Z''_{eq7}}{Z''_{eq5} + Z''_{eq7} + Z_{1_L23}} = 0.0781i$$

$$Z"_{\text{eq11}} := \frac{Z_{1_\text{L23}} \cdot Z"_{\text{eq7}}}{Z"_{\text{eq5}} + Z"_{\text{eq7}} + Z_{1_\text{L23}}} = 0.0129 \mathrm{i}$$

$$Z''_{\text{eq}12} := \frac{Z''_{\text{eq}5} \cdot Z_{1_L23}}{Z''_{\text{eq}5} + Z''_{\text{eq}7} + Z_{1_L23}} = 0.0579i$$

$$Z"_{eq13} := Z"_{eq12} + \frac{\left(Z"_{eq11} + Z"_{eq8}\right) \cdot \left(Z"_{eq10} + Z"_{eq9}\right)}{Z"_{eq11} + Z"_{eq8} + Z"_{eq10} + Z"_{eq9}} = 0.261i$$

$$Z''_{eq14} := Z_{1_T3} + \frac{Z''_{eq4} \cdot Z''_{eq13}}{Z''_{eq4} + Z''_{eq13}} = 0.3498i$$

$$Z_{1_F2} := \frac{Z''_{eq14} \cdot Z_{1_G3}}{Z''_{eq14} + Z_{1_G3}} = 0.0778i$$

SECUENCIA INVERSA

Igual que en secuencia directa:

$$z_{2_F2} \coloneqq z_{1_F2}$$

SECUENCIA HOMOPOLAR

CORRIENTE DE FALTA

Como se trata de una falta bifásica a tierra:

$$I_{1_F2} := \frac{U_{pf}}{Z_{1_F2} + \frac{Z_{2_F2} \cdot Z_{0_F2}}{Z_{2_F2} + Z_{0_F2}}} = 0.4508 - 7.181i$$

$$I_{2_{F2}} := -I_{1_{F2}} \cdot \frac{Z_{0_{F2}}}{Z_{0_{F2}} + Z_{2_{F2}}} = 0.4508 + 6.9638i$$

$$I_{0_F2} := -I_{1_F2} \cdot \frac{Z_{2_F2}}{Z_{0_F2} + Z_{2_F2}} = -0.9016 + 0.2172i$$

Nos piden la corriente por el interruptor, la cual no es la misma que la de cortocircuito:

$$\begin{split} \mathbf{I}_{1_I} &\coloneqq \mathbf{I}_{1_F2} \cdot \frac{Z''_{eq14}}{Z''_{eq14} + Z_{1_G3}} = 0.3506 - 5.5845\mathbf{i} \\ \\ \mathbf{I}_{2_I} &\coloneqq \mathbf{I}_{2_F2} \cdot \frac{Z''_{eq14}}{Z''_{eq14} + Z_{1_G3}} = 0.3506 + 5.4155\mathbf{i} \\ \\ \mathbf{I}_{0_I} &\coloneqq \mathbf{I}_{0_F2} = -0.9016 + 0.2172\mathbf{i} \end{split}$$

Definimos α como un giro de 120º y obtenemos las corrientes por fase:

$$\begin{split} \alpha &\coloneqq 1 \cdot e^{i \cdot 120 deg} = -0.5 + 0.866i \\ I_{AI} &\coloneqq I_{0_I} + I_{1_I} + I_{2_I} = -0.2005 + 0.0483i \\ I_{BI} &\coloneqq I_{0_I} + I_{1_I} \alpha^2 + I_{2_I} \alpha = -10.7785 + 0.3017i \\ I_{CI} &\coloneqq I_{0_I} + I_{1_I} \alpha + I_{2_I} \alpha^2 = 8.274 + 0.3017i \\ I_{BASE3} &\coloneqq \frac{S_{BASE}}{\sqrt{3} \cdot U_{BASE3}} = 3.3962 \cdot kA \\ I''_{AI} &\coloneqq \left| I_{AI} \right| \cdot I_{BASE3} = 0.7003 \cdot kA \\ I''_{BI} &\coloneqq \left| I_{BI} \right| \cdot I_{BASE3} = 36.6201 \cdot kA \\ I''_{CI} &\coloneqq \left| I_{CI} \right| \cdot I_{BASE3} = 28.1188 \cdot kA \end{split}$$

e) Obtener el valor de la corriente de cortocircuito en el caso de una falta monofásica en ${\sf F}_3$.

SECUENCIA DIRECTA

Observando el circuito equivalente, la impedancia es la vista desde el nudo 4 (el nudo 4 usado para calcular la matriz de impedancias) más las impedancias de T4 y T6. Observando la matriz del nudo 4, evidentemente no depende de x por lo que cogemos el primer elemento:

$$Z_{barras1_F1}(x)_{3,3} = \begin{bmatrix} 0\\ 0\\ 0.1796i\\ 1\\ 0.1796i\\ 2\\ 0.1796i\\ 4\\ 0.1796i\\ 5\\ 0.1796i\\ 6\\ 0.1796i\\ 7\\ \dots \end{bmatrix}$$

$$Z_{1_nudo4} := Z_{barras1_F1}(0.1)_{3,3} = 0.1796i$$

Por lo tanto, la impedancia en secuencia directa es:

SECUENCIA INVERSA

Igual que en secuencia directa:

$$z_{2_F3} \coloneqq z_{1_F3}$$

SECUENCIA HOMOPO LAR

CORRIENTE DE FALTA

Como se trata de una falta monofásica:

$$I_{F3_pu} := \frac{U_{pf}}{Z_{1_F3} + Z_{2_F3} + Z_{0_F3}} = -0.1584i$$

Para convertir el valor a Amperios, multiplicamos por la corriente base:

$$I_{\text{BASE5}} \coloneqq \frac{S_{\text{BASE}}}{\sqrt{3} \cdot U_{\text{BASE5}}} = 134.0277 \cdot \text{kA}$$

$$\mathbf{I_{F_F3_A}} \coloneqq 3 \cdot \left| \mathbf{I_{F3_pu}} \right| \cdot \mathbf{I_{BASE5}} = 63.7038 \cdot \mathrm{kA}$$