

Advanced Lens Design

Lecture 10: Special topics

2013-12-17

Herbert Gross

Winter term 2013 www.iap.uni-jena.de

Contents

- 1. Correction
- 2. Sensitivity
- 3. Symmetry
- 4. Stop position
- 5. Telecentricity
- 6. Sine condition
- 7. Retrofocus and Tele systems
- 8. Field lens
- 9. Miscellaneous

Correction Effectiveness

Effectiveness of correction features on aberration types

Makes a good impact.
Makes a smaller impact.
Makes a negligible impact.
Zero influence.

			Aberration									
		Pri	Primary Aberration				5th	Chromatic		С		
			Spherical Aberration	Coma	Astigmatism	Petzval Curvature	Distortion	5th Order Spherical	Axial Color	Lateral Color	Secondary Spectrum	Spherochromatism
	ers	Lens Bending	(a)	(c)		е	(f)					
	mete	Power Splitting										ı.
	Parai	Power Combination	а	С			f		i	j		(k)
	Lens Parameters	Distances				(e)						k
	P	Stop Position										
		Refractive Index	(b)	(d)			(g)	(h)				
	erial	Dispersion							(i)	(j)		(l)
Action	Material	Relative Partial Disp.										
Act		GRIN										
	Se	Cemented Surface	b	d			g	h	ï	i		1
	rface	Aplanatic Surface										
	ıl Su	Aspherical Surface										
	Special Surfaces	Mirror										
	S,	Diffractive Surface										
	nc	Symmetry Principle										
	Struc	Field Lens										

Ref : H. Zügge

Sensitivity of a System

- Sensitivity/relaxation: Average of weighted surface contributions of all aberrations
- Correctability: Average of all total aberration values
- Total refractive power

$$F = F_1 + \sum_{j=2}^{k} \omega_j F_j$$

Important weighting factor: ratio of marginal ray heights

$$\omega_j = \frac{h_j}{h_1}$$

Sensitivity of a System

Quantitative measure for relaxation

$$A_{j} = \omega_{j} \cdot \frac{F_{j}}{F} = \frac{h_{j} \cdot F_{j}}{h_{1} \cdot F}$$

$$\sum_{j=1}^{k} A_{j} = 1$$

with normalization $\sum_{i=1}^{k} A_{i} = 1$

- Non-relaxed surfaces:
 - 1. Large incidence angles
 - 2. Large ray bending
 - 3. Large surface contributions of aberrations
 - 4. Significant occurence of higher aberration orders
 - 5. Large sensitivity for centering
- Internal relaxation can not be easily recognized in the total performance
- Large sensitivities can be avoided by incorporating surface contribution of aberrations into merit function during optimization

Principle of Symmetry

- Perfect symmetrical system: magnification m = -1
- Stop in centre of symmetry
- Symmetrical contributions of wave aberrations are doubled (spherical)
- Asymmetrical contributions of wave aberration vanishes W(-x) = -W(x)
- Easy correction of: coma, distortion, chromatical change of magnification

Symmetrical Systems

Ideal symmetrical systems:

- Vanishing coma, distortion, lateral color aberration
- Remaining residual aberrations:
 - 1. spherical aberration
 - 2. astigmatism
 - 3. field curvature
 - 4. axial chromatical aberration
 - 5. skew spherical aberration

Symmetry Principle

- Application of symmetry principle: photographic lenses
- Especially field dominant aberrations can be corrected
- Also approximate fulfillment of symmetry condition helps significantly: quasi symmetry
- Realization of quasisymmetric setups in nearly all photographic systems

Double Gauss (7 elements)

Ref : H. Zügge

Coma Correction: Symmetry Principle

- Perfect coma correction in the case of symmetry
- But magnification m = -1 not useful in most practical cases

From: H. Zügge

Effect of Stop Position

- Example photographic lens
- Small axial shift of stop changes tranverse aberrations
- In particular coma is strongly influenced

Ref: H.Zügge

Institute of Applied Physics Friedrich-Schiller-Universität Jena

Influence of Stop Position on Performance

Ray path of chief ray depends on stop position

Institute of Applied Physics Friedrich-Schiller-Universität Jena

Telecentricity

- Special stop positions:
 - 1. stop in back focal plane: object sided telecentricity
 - 2. stop in front focal plane: image sided telecentricity
 - 3. stop in intermediate focal plane: both-sided telecentricity
- Telecentricity:
 - 1. pupil in infinity
 - 2. chief ray parallel to the optical axis
- Problem in practical systems:
 large diameters necessary

$$D > 2 \cdot (y_{\text{max}} + f \cdot NA)$$

Telecentricity

- Double telecentric system: stop in intermediate focus
- Realization in lithographic projection systems

Telecentric Systems

- Example system
- Problem : coma and vignetting disturbe telecentricity
- Definition of telecentricity deviation: range of telecentricity for accepted lateral deviation ∆y' for finite cheif ray angle w

$$\Delta s = \frac{\Delta y'}{m \cdot \tan w}$$

Optical Sine Condition

- Condition for finite angles
- Condition for object at infinity
- Condition for afocal system
- In the formulation

$$m_s = \frac{y_s'}{y} = \frac{n \sin U}{n' \sin U'}$$

the sagittal magnification is used

$$m = \frac{nu}{n'u'} = \frac{n\sin U}{n'\sin U'}$$

$$f' = -\frac{h}{u'} = -\frac{h}{\sin U}$$

$$\frac{H_1}{H_k} = \frac{h_1}{h_k}$$

Abbe Sine Condition

- If for example a small field area and a widespread ray bundle is considered, a perfect imaging is possible
- The eikonal with the expression can be written for δL=0 as

$$\delta L = n' \vec{s} \cdot d\vec{r}' - n\vec{s} \cdot d\vec{r}$$

$$n \cdot \vec{s} \cdot d\vec{r} = n' \cdot \vec{s}' \cdot d\vec{r}'$$

$$n \cdot dr \cdot \cos \theta = n' \cdot dr' \cdot \cos \theta'$$

$$n \cdot \cos \theta = n' \cdot \beta \cdot \cos \theta'$$

In the special case of an angle 90° we get with cos(θ)=sin(u) the Abbe sine condition

$$m = \frac{n \sin u}{n' \sin u'}$$

with the lateral magnification

$$m = \frac{d\vec{r}'}{d\vec{r}}$$

Transfer of Energy in Optical Systems

Conservation of energy

$$d^2P = d^2P'$$

Invariant local differential flux

 $d^2P = L \cdot \sin u \cdot \cos u \cdot dA \cdot du \, d\varphi$

Assumption: no absorption

T=1

Delivers the sine condition

 $ny \cdot \sin u = n' y' \cdot \sin u'$

Pupil Sphere

- Sine condition fulfilled: linear scaling from entrance to exit pupil
- Pupil surface must be sperical
- The pupil height scales with the sine of the angle

OSC and Apodization

- Photometric effect of pupil distortion:
 illumination changes at pupil boundary
- Effect induces apodization
- Sign of distortion determines the effect: outer zone of pupil brighter / darker
- Additional effect: absolute diameter of pupil changes

Pupil Aberration

- Interlinked imaging of field and pupil
- Distortion of object imaging corresponds to spherical aberration of the pupil imaging
- Corrected spherical pupil aberration: tangent condition

$$\frac{\tan w'}{\tan w} = const.$$

	Object imaging	Pupil imaging
Blue rays	Marginal rays	Chief rays
Red rays	Chief rays	Marginal rays

Pupil Aberration

Eyepiece with pupil aberration

• Illumination for decentered pupil : dark zones due to vignetting

Skew Spherical aberration

- Decomposition of coma:
 - part symmetrical around chief ray: skew spherical aberration

$$\Delta y_{skewsph} = \frac{\Delta y_{upcom} + \Delta y_{lowcom}}{2}$$

2. asymmetrical part: tangential coma

$$\Delta y_{tangcoma} = \frac{\Delta y_{upcom} - \Delta y_{lowcom}}{2}$$

- Skew spherical aberration:
 - higher order aberration
 - caustic symmetric around chief ray

Isoplanatism

- General definition of isoplanatism:
 - Invariance of performance for small lateral shifts of the field position
 - spherical aberration not necessarily corrected
- Usual simple case: near to axis
- Consequences:
 - vanishing linear growing coma
 - caustic symmetrical arounf chief ray

Isoplanatism Condition of Staeble-Lihotzky

- Sagittal coma aberration: from the geometry of the figure and Lagrange invariant
- $\Delta y'_{s} = \frac{y'}{m} \cdot \left[\frac{n \sin u}{n' \sin u'} \cdot \frac{S' s_{p'}}{S' s_{p'} + \Delta s_{sph'}} m \right]$

Condition of Staeble-Lihotzky

 $s'-s_p' = \frac{S'-s_p'}{m} \left(\frac{n \sin u}{n' \sin u'} - m \right)$

- Problems:
 - no quantitative measure
 - only tangential rays are considered
 - integral criterion

Institute of Applied Physics Friedrich-Schiller-Universität Jena

Isoplanatism from Wave Aberrations

Lateral shift of object point

$$dW = dy \cdot n \cdot \sin u$$

Change in image

$$dy'' = dy' \cdot \frac{R' + ds'}{R'} = m \cdot dy \cdot \frac{R' + ds'}{R'}$$

Change of wave aberration must be equal

$$dW' = -dy'' \cdot n' \cdot \sin u' = -m \cdot dy \cdot \frac{R' + ds'}{R'} n' \sin u'$$

Isoplanatism

$$n \cdot \sin u = -m \cdot \frac{R' + ds'}{R'} n' \sin u'$$

$$\frac{1}{m} \cdot \frac{n \cdot \sin u}{n' \cdot \sin u'} \cdot \frac{R' + ds'}{R'} - 1 = 0$$

Piecewise Isoplanatism

- Invariance of PSF: to be defined
- Possible options:
 - 1. relative change of Strehl
 - 2. correlation of PSF's
- Examples for microscopic lenses with and without flattening correction
- In medium field size: small isoplanatic patches
- On axis: large isoplanatic area
- Criteria not useful at the edge for low performance

System		100x1.25 patch size in m	isoplanatic _l	ne 40x0.85 patch size in m
	Strehl 1%	Psf correlation 0.5%	Strehl 1%	Psf correlation 0.5%
on axis	70	72	81	100
half field	3.8	3.8	27	3.1
field zone	2.5	2.5	29	39
full field	45	3.8	117	62

Offence Against the Sine Condition

- Conradys OSC (offense against sine condition):
 - measurement of deviation of sagittal coma
 - quantitative validation of the sine condition

$$\Delta_{OSC} = \frac{y_t' - y_s'}{y_t'} = 1 - \frac{n \sin u}{m \cdot n' \sin u'} \cdot \frac{S' - s_p'}{s' - s_p'}$$

 Only sagittal coma considered in case of OSC=0 the Staeble-Lihotzkycondition is automatically fulfilled

$$W_{coma}(y, r_p, 0) = r_p \cdot y_t \cdot \Delta_{OSC}$$

$$\Delta y_t = -3y \cdot \left(m - \frac{n \sin u}{n' \sin u'} \right)$$

 OSC allows for the definition of surface contribution

$$\Delta_{OSC} = \frac{\sin w_1}{\sin u_1} \cdot \sum_{k} \frac{(Q_k - Q'_k) \cdot n_k i_k^{(CR)}}{h'_k n'_k u'_k}$$

Coma and isoplanatism are strongly connected

Vectorial OSC: linear scaling of spatial frequencies:

perturbation of the linearity

$$\vec{v}'_{apl} = \frac{1}{m_p} \cdot \vec{v}_{apl}$$

$$\Delta \vec{v} = \vec{v}' - \vec{v}'_{apl} = -\frac{1}{\lambda} \cdot \nabla_{x,y} W$$

Overview Aplanatism-Isoplanatism

Overview on conditions for aberrations and aplanatism-isoplanatism

Nr	Sine cond.	lso- planat cond.	Isoplanatism condition	Spherical aberration	Sagittal coma	Tangential coma	Imaging system
1	#	#		#	#	#	general
2a	#	✓	OSC=0, Conrady	#	0	#	isoplanatic-l
2b	#	✓	Staeble-Lihotzky / Berek	#	0	0	isoplanatic-II
3a	✓	✓		0	0		axial aplanatic
3b	✓	✓		0 (skew)	0	0	off-axis aplanatic

	Isoplanatism Conrady OSC	Isoplanatism Staeble- Lihotzky	sine condition off-axis Aplanatism	sine condition axial Aplanatism
Tangential coma		0	0	
Sagittal coma	0	0	0	0
Spherical aberration				0
Skew Spherical aberration			0	0

Overview

Overview on invariants and conditions

Telephoto Systems

- Combination of a positiv and a negative lens:
 Shift of the first principal plane in front of the system
- The intersection length is smaller than the focal length: reduction factor k
- Typical values: k = 0.6...0.9
- Focal lengths:

$$f_a = \frac{f' \cdot d}{f' \cdot (1 - k) + d}$$

$$f_b = \frac{(f_a - d)(kf' - d)}{f_a - kf'}$$

Overall length

$$L=k\cdot f'$$

Free intersection length

$$s_f = k \cdot f' - d$$

Retrofocal System

- Combination of a negative and a positive lens:
 Shift of the second principal plane behind the system
- The intersection length is larger than the focal length
- Application: systems for large free working distance
- Corresponds to an inverse telephoto system

Retrofocus system results form a telephoto system by inversion

Field Lenses

- Field lens: in or near image planes
- Influences only the chief ray: pupil shifted
- Critical: conjugation to image plane, surface errors sharply seen

Field Lens im Endoscope

Ref : H. Zügge

Coexistence of Aberrations: Balance

- Example: Achromate
- Balance:
 - 1. zonal spherical
- 2. Spot
- 3. Secondary spectrum

Ref : H. Zügge

Institute of Applied Physics Friedrich-Schiller-Universität Jena

Coexistence of Aberrations: Balance

- Example: Apochromate
- Balance:
 - 1. zonal spherical
 - 2. Spot
 - 3. Secondary spectrum

Symmetrical Dublet

- Variable focal lengthf = 15 ...200 mm
- Invariant: object size y = 10 mm numerical aperture NA = 0.1
- Type of system changes:
 - dominant spherical for large f
 - dominant field for small f
- Data:

No	focal length [mm]	Length [mm]	spherical c ₉	field curvature c ₄	astigma- tism c ₅
1	200	808	3.37	-2.01	-2.27
2	100	408	1.65	1.19	-4.50
3	50	206	1.74	3.45	-7.34
4	20	75	0.98	3.93	2.31
5	15	59	0.20	16.7	-5.33

f = 15 mm

Aberrations Limited by Vignetting

- Clipping of outer coma rays by vignetting
- Consequences:
 - reduced brightness
 - anisotropic resolution

Ref: H.Zügge

Institute of Applied Physics Friedrich-Schiller-Universität Jena

Anamorphotic Imaging Setup

- Anamorphotic imaging: different magnifications in x- and y-cross section, tangential and sagittal magnification
- Identical image location in both sections
- Anamorphotic factor

$$\beta_t = \frac{n_1 \cdot u_{t,1}}{n_k \cdot u_{t,k}}$$

$$\beta_s = \frac{n_1 \cdot u_{s,1}}{n_k \cdot u_{s,k}}$$

$$F_{anamoph} = \frac{\beta_s}{\beta_t}$$

Anamorphotic Imaging Setup

Realization of an anamorphotic imaging with cylindrical lenses

