RHEL 7

ONTAP SAN Host

NetApp June 03, 2020

This PDF was generated from https://docs.netapp.com/us-en/ontap-sanhost/hu_rhel_78.html on June 03, 2020. Always check docs.netapp.com for the latest.

Table of Contents

R	HEL 7	1
	Using Red Hat Enterprise Linux 7.8 with ONTAP	1
	Using Red Hat Enterprise Linux 7.7 with ONTAP	6
	Using Red Hat Enterprise Linux 7.6 with ONTAP	. 13
	Using Red Hat Enterprise Linux 7.5 with ONTAP	. 20
	Using Red Hat Enterprise Linux 7.4 with ONTAP	. 29
	Using Red Hat Enterprise Linux 7.3 with ONTAP	. 34
	Using Red Hat Enterprise Linux 7.2 with ONTAP	. 40
	Using Red Hat Enterprise Linux 7.1 with ONTAP	. 45
	Using Red Hat Enterprise Linux 7.0 with ONTAP	. 52

RHEL 7

Using Red Hat Enterprise Linux 7.8 with ONTAP

Installing the Linux Unified Host Utilities

The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 32-bit and 64-bit .rpm file. If you do not know which file is right for your configuration, use the NetApp Interoperability Matrix Tool to verify which one you need.

Installing the Linux Unified Host Utilities is strongly recommended, but not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration.

Before you begin

If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you should remove it and use the following steps to install the latest version.

- 1. Download the 32-bit or 64-bit Linux Unified Host Utilities software package from the NetApp Support Site to your host.
- 2. Use the following command to install the software package:

```
rpm -ivh netapp linux unified host utilities-7-1.x86 64
```

SAN Toolkit

The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups.

Example

In the following example, the sanlun lun show command returns LUN information.

ontroller(7mode/E-	-Series)/	device	host		lun	
vserver(cDOT/FlashF	Ray) lun-pathname	filename	adapter	protocol	size	Product
data_vserver	/vol/vol1/lun1	/dev/sdb	host16	FCP	120.0g	cD0T
data_vserver	/vol/vol1/lun1	/dev/sdc	host15	FCP	120.0g	cD0T
data_vserver	/vol/vol2/lun2	/dev/sdd	host16	FCP	120.0g	cDOT
data vserver	/vol/vol2/lun2	/dev/sde	host15	FCP	120.0g	cD0T

SAN Booting

Before you begin

If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported.

- 1. Map the SAN boot LUN to the host.
- 2. Verify multiple paths are available.

Remember, multiple paths will only be available after the host OS is up and running on the paths.

3. Enable SAN booting in the server BIOS for the ports to which the SAN boot LUN is mapped.

For information on how to enable the HBA BIOS, see your vendor-specific documentation.

4. Reboot the host to verify the boot is successful.

Multipathing

For Red Hat Enterprise Linux (RHEL) 7.8 the /etc/multipath.conf file must exist, but you do not need to make specific changes to the file. RHEL 7.8 is compiled with all settings required to recognize and correctly manage ONTAP LUNs.

You can use the multipath -ll command to verify the settings for your ONTAP LUNs. The following sections provide sample multipath output for a LUN mapped to ASA and non-ASA personas.

All SAN Array Configuration

For All SAN Array (ASA) configuration there should be one group of paths with single priorities. All the paths are Active/Optimized, meaning they are serviced by the controller and I/O is sent on all the active paths.

Example

The following example displays the correct output for an ONTAP LUN with four Active/Optimized paths:

Note

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Non-ASA Configuration

For non-ASA configuration there should be two groups of paths with different priorities. The paths with the higher priorities are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available.

Example

The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/non-Optimized paths:

```
# multipath -11
3600a09803831347657244e527766394e dm-5 NETAPP,LUN C-Mode
size=80G features='4 queue_if_no_path pg_init_retries 50 retain_attached_hw_handle'
hwhandler='1 alua' wp=rw
|-+- policy='service-time 0' prio=50 status=active
| |- 11:0:1:0 sdj 8:144 active ready running
| |- 11:0:2:0 sdr 65:16 active ready running
'-+- policy='service-time 0' prio=10 status=enabled
|- 11:0:0:0 sdb 8:i6 active ready running
|- 12:0:0:0 sdz 65:144 active ready running
```

Note

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Recommended Settings

The RHEL 7.8 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly for both ASA and non-ASA configuration.

The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zerobyte file using the command:

```
touch /etc/multipath.conf
```

The first time you create this file, you might need to enable and start the multipath services.

```
[root@jfs0 ~]#systemctl enable multipathd
[root@jfs0 ~]# systemctl start multipathd
```

There is no requirement to add anything directly to multipath.conf, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. You can add the following syntax to the multipath.conf file to exclude the unwanted devices.

Note

Replace the <DevId> with the WWID string of the device you want to exclude. Use the following command to determine the WWID:

```
blacklist {
     wwid <DevId>
     devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
     devnode "^hd[a-z]"
     devnode "^cciss.*"
}
```

Example

In this example, sda is the local SCSI disk that we need to blacklist.

1. Run the following command to determine the WWID:

```
# /lib/udev/scsi_id -gud /dev/sda
360030057024d0730239134810c0cb833
```

2. Add this WWID to the blacklist stanza in the /etc/multipath.conf:

You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that may be overriding default settings.

The table below shows the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in multipath.conf that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs may not work as expected. These defaults should only be overridden in consultation with NetApp and/or OS vendor and only when the impact is fully understood.

Parameter	Setting
detect_prio	yes
dev_loss_tmo	"infinity"
failback	immediate
fast_io_fail_tmo	5
features	"3 queue_if_no_path pg_init_retries 50"
flush_on_last_del	"yes"
hardware_handler	"0"
no_path_retry	queue
path_checker	"tur"
path_grouping_policy	"group_by_prio"
path_selector	"service-time 0"
polling_interval	5
prio	"ontap"
product	LUN.*
retain_attached_hw_handler	yes
rr_weight	"uniform"
user_friendly_names	no
vendor	NETAPP

The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and no_path_retry that are not compatible with ONTAP LUNs. If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza.

```
defaults {
   path checker
                     readsector0
   no_path_retry
                       fail
}
devices {
   device {
                      "NETAPP"
      vendor
                       "LUN.*"
      product
      no_path_retry
                         queue
      path_checker
                         tur
   }
}
```

Known Problems and Limitations

There are no known issues for RHEL 7.8.

Release Notes

ASM Mirroring

ASM mirroring might require changes to the Linux multipath settings to allow ASM to recognize a problem and switch over to an alternate fail group. Most ASM configurations on ONTAP use external redundancy, which means that data protection is provided by the external array and ASM does not mirror data. Some sites use ASM with normal redundancy to provide two-way mirroring, normally across different sites. See Oracle Databases on ONTAP for further information.

Using Red Hat Enterprise Linux 7.7 with ONTAP

Installing the Linux Unified Host Utilities

The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 32-bit and 64-bit .rpm file. If you do not know which file is right for your configuration, use the NetApp Interoperability Matrix Tool to verify which one you need.

Installing the Linux Unified Host Utilities is strongly recommended, but not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration.

Before you begin

If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you should remove it and use the following steps to install the latest version.

- 1. Download the 32-bit or 64-bit Linux Unified Host Utilities software package from the NetApp Support Site to your host.
- 2. Use the following command to install the software package:

```
rpm -ivh netapp_linux_unified_host_utilities-7-1.x86_64
```

SAN Toolkit

The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups.

Example

In the following example, the sanlun lun show command returns LUN information.

ontroller(7mode/	E-Series)/	device	host		lun	
vserver(cDOT/Flas	hRay) lun-pathname	filename	adapter	protocol	size	Product
 data_vserver	/vol/vol1/lun1	/dev/sdb	host16	FCP	120.0g	cD0T
data_vserver	/vol/vol1/lun1	/dev/sdc	host15	FCP	120.0g	cD0T
data_vserver	/vol/vol2/lun2	/dev/sdd	host16	FCP	120.0g	cD0T
· · · · _ · · · · · ·						

SAN Booting

Before you begin

If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported.

- 1. Map the SAN boot LUN to the host.
- 2. Verify multiple paths are available.

Remember, multiple paths will only be available after the host OS is up and running on the paths.

3. Enable SAN booting in the server BIOS for the ports to which the SAN boot LUN is mapped.

For information on how to enable the HBA BIOS, see your vendor-specific documentation.

4. Reboot the host to verify the boot is successful.

Multipathing

For Red Hat Enterprise Linux (RHEL) 7.7 the /etc/multipath.conf file must exist, but you do not need to make specific changes to the file. RHEL 7.7 is compiled with all settings required to recognize and correctly manage ONTAP LUNs.

You can use the multipath -ll command to verify the settings for your ONTAP LUNs.

The following sections provide sample multipath output for a LUN mapped to ASA and non-ASA personas.

All SAN Array Configuration

For All SAN Array (ASA) configuration there should be one group of paths with single priorities. All the paths are Active/Optimized, meaning they are serviced by the controller and I/O is sent on all the active paths.

Example

The following example displays the correct output for an ONTAP LUN with four Active/Optimized paths:

Note

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Non-ASA Configuration

For non-ASA configuration there should be two groups of paths with different priorities. The paths with the higher priorities are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available.

Example

The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/non-Optimized paths:

```
# multipath -11
3600a09803831347657244e527766394e dm-5 NETAPP,LUN C-Mode
size=80G features='4 queue_if_no_path pg_init_retries 50 retain_attached_hw_handle0
hwhandler='1 alua' wp=rw
|-+- policy='service-time 0' prio=50 status=active
| |- 11:0:1:0 sdj 8:144 active ready running
| |- 11:0:2:0 sdr 65:16 active ready running
'-+- policy='service-time 0' prio=10 status=enabled
|- 11:0:0:0 sdb 8:i6 active ready running
|- 12:0:0:0 sdz 65:144 active ready running
```

Note

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Recommended Settings

The RHEL 7.7 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly.

The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zero-byte file using the command:

```
touch /etc/multipath.conf
```

The first time you create this file, you might need to enable and start the multipath services.

```
[root@jfs0 ~]#systemctl enable multipathd
[root@jfs0 ~]# systemctl start multipathd
```

There is no requirement to add anything directly to multipath.conf, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. You can add the following syntax to the multipath.conf file to exclude the unwanted devices.

Note

Replace the <DevId> with the WWID string of the device you want to exclude. Use the following command to determine the WWID:

```
blacklist {
      wwid <DevId>
      devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
      devnode "^hd[a-z]"
      devnode "^cciss.*"
}
```

Example

In this example, sda is the local SCSI disk that we need to blacklist.

1. Run the following command to determine the WWID:

```
# /lib/udev/scsi_id -gud /dev/sda
360030057024d0730239134810c0cb833
```

2. Add this WWID to the blacklist stanza in the /etc/multipath.conf:

```
blacklist {
    wwid     360030057024d0730239134810c0cb833
    devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
    devnode "^hd[a-z]"
    devnode "^cciss.*"
}
```

You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that may be overriding default settings.

The table below shows the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in multipath.conf that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs may not work as expected. These defaults should only be overridden in consultation with NetApp and/or OS vendor and only when the impact is fully understood.

Parameter	Setting
detect_prio	yes
dev_loss_tmo	"infinity"
failback	immediate
fast_io_fail_tmo	5
features	"3 queue_if_no_path pg_init_retries 50"
flush_on_last_del	"yes"

Parameter	Setting
hardware_handler	"0"
no_path_retry	queue
path_checker	"tur"
path_grouping_policy	"group_by_prio"
path_selector	"service-time 0"
polling_interval	5
prio	"ontap"
product	LUN.*
retain_attached_hw_handler	yes
rr_weight	"uniform"
user_friendly_names	no
vendor	NETAPP

Example

The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and no_path_retry that are not compatible with ONTAP LUNs. If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza.

```
defaults {
   path_checker
                    readsector0
   no_path_retry
                    fail
}
devices {
   device {
      vendor
                     "NETAPP"
      product
                      "LUN.*"
      no_path_retry
                        queue
      path_checker
                        tur
  }
}
```

Known Problems and Limitations

NetApp Bug ID	Title	Description	Bugzilla ID
1258856	Remote ports transit to a blocked state on RHEL7U7 with Emulex LPe16002 16GB FC during storage failover operations	Remote ports might transit to a blocked state on a RHEL 7.7 host with a LPe16002 16GB FC adapter during storage failover operations. When the storage node returns to an optimal state, the LIFs also come up and the remote port state should read "online". Occasionally, the remote port state might continue to read as "blocked" or "not present". This state can lead to a "failed faulty" path to LUNs at the multipath layer.	1743667
1261474	Remote ports transit to blocked state on RHEL7U7 with Emulex LPe32002 32GB FC	Remote ports might transit to a blocked state on a RHEL 7.7 host with LPe32002 32GB FC adapter during storage failover operations. When the storage node returns to an optimal state, the LIFs also come up and the remote port state should read "online". Occasionally, the remote port state might continue to read as "blocked" or "not present". This state can lead to a "failed faulty" path to LUNs at the multipath layer.	1745995

Release Notes

ASM Mirroring

ASM mirroring might require changes to the Linux multipath settings to allow ASM to recognize a problem and switch over to an alternate fail group. Most ASM configurations on ONTAP use external redundancy, which means that data protection is provided by the external array and ASM does not mirror data. Some sites use ASM with normal redundancy to provide two-way mirroring, normally across different sites. See Oracle Databases on ONTAP for further information.

Using Red Hat Enterprise Linux 7.6 with ONTAP

Installing the Linux Unified Host Utilities

The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 32-bit and 64-bit .rpm file. If you do not know which file is right for your configuration, use the NetApp Interoperability Matrix Tool to verify which one you need.

Installing the Linux Unified Host Utilities is strongly recommended, but not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration.

Before you begin

If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you should remove it and use the following steps to install the latest version.

- 1. Download the 32-bit or 64-bit Linux Unified Host Utilities software package from the NetApp Support Site to your host.
- 2. Use the following command to install the software package:

```
rpm -ivh netapp_linux_unified_host_utilities-7-1.x86_64
```

SAN Toolkit

The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups.

Example

In the following example, the sanlun lun show command returns LUN information.

ontroller(7mode/	E-Series)/	device	host		lun	
/server(cDOT/Flas	hRay) lun-pathname	filename	adapter	protocol	size	Product
data_vserver	/vol/vol1/lun1	/dev/sdb	host16	FCP	120.0g	cD0T
data_vserver	/vol/vol1/lun1	/dev/sdc	host15	FCP	120.0g	cD0T
data_vserver	/vol/vol2/lun2	/dev/sdd	host16	FCP	120.0g	cD0T
	/vol/vol2/lun2	/dev/sde	host15	FCP	120.0g	cD0T

SAN Booting

Before you begin

If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported.

You can use the multipath -ll command to verify the settings for your ONTAP LUNs.

The following sections provide sample multipath output for a LUN mapped to ASA and non-ASA personas.

All SAN Array Configuration

For All SAN Array (ASA) configuration there should be one group of paths with single priorities. All the paths are Active/Optimized, meaning they are serviced by the controller and I/O is sent on all the active paths.

Example

The following example displays the correct output for an ONTAP LUN with four Active/Optimized paths:

Note

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Non-ASA Configuration

For non-ASA configuration there should be two groups of paths with different priorities. The paths with the higher priorities are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available.

Example

The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/non-Optimized paths:

```
# multipath -ll
3600a09803831347657244e527766394e dm-5 NETAPP,LUN C-Mode
size=80G features='4 queue_if_no_path pg_init_retries 50 retain_attached_hw_handleD
hwhandler='1 alua' wp=rw
|-+- policy='service-time 0' prio=50 status=active
| |- 11:0:1:0 sdj 8:144 active ready running
| |- 11:0:2:0 sdr 65:16 active ready running
'-+- policy='service-time 0' prio=10 status=enabled
|- 11:0:0:0 sdb 8:i6 active ready running
|- 12:0:0:0 sdz 65:144 active ready running
```

Note

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Recommended Settings

The RHEL 7.6 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly.

The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zero-byte file using the command:

```
touch /etc/multipath.conf
```

The first time you create this file, you might need to enable and start the multipath services.

```
[root@jfs0 ~]#systemctl enable multipathd
[root@jfs0 ~]# systemctl start multipathd
```

There is no requirement to add anything directly to multipath.conf, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. You can add the following syntax to the multipath.conf file to exclude the unwanted devices.

Note

Replace the <DevId> with the WWID string of the device you want to exclude. Use the following command to determine the WWID:

```
blacklist {
     wwid <DevId>
     devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
     devnode "^hd[a-z]"
     devnode "^cciss.*"
}
```

Example

In this example, sda is the local SCSI disk that we need to blacklist.

1. Run the following command to determine the WWID:

```
# /lib/udev/scsi_id -gud /dev/sda
360030057024d0730239134810c0cb833
```

2. Add this WWID to the blacklist stanza in the /etc/multipath.conf:

You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that may be overriding default settings.

The table below shows the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in multipath.conf that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs may not work as expected. These defaults should only be overridden in consultation with NetApp and/or OS vendor and only when the impact is fully understood.

Parameter	Setting
detect_prio	yes
dev_loss_tmo	"infinity"
failback	immediate
fast_io_fail_tmo	5

Parameter	Setting
features	"3 queue_if_no_path pg_init_retries 50"
flush_on_last_del	"yes"
hardware_handler	"0"
no_path_retry	queue
path_checker	"tur"
path_grouping_policy	"group_by_prio"
path_selector	"service-time 0"
polling_interval	5
prio	"ontap"
product	LUN.*
retain_attached_hw_handler	yes
rr_weight	"uniform"
user_friendly_names	no
vendor	NETAPP

Example

The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and no_path_retry that are not compatible with ONTAP LUNs. If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza.

```
defaults {
                     readsector0
   path_checker
                      fail
   no_path_retry
}
devices {
   device {
      vendor
                     "NETAPP
      product
                      "LUN.*"
      no_path_retry
                        queue
      path_checker
                        tur
   }
}
```

Known Problems and Limitations

NetApp Bug ID	Title	Description	Bugzilla ID
1186754	Remote ports status on	During host discovery,	1628039
	RHEL7U6 with QLogic	FC remote port status on	
	QLE2742 host might be	RHEL7U6 host with a	
	in blocked during host	QLogic QLE2742 adapter	
	discovery	might enter a blocked	
		state. These blocked	
		remote ports might	
		result in the paths to	
		LUNs becoming	
		unavailable. During	
		storage failover, the	
		path redundancy might	
		be reduced and result in	
		I/O outage. You can	
		check the remote port	
		status by entering the	
		following command:#	
		cat	
		/sys/class/fc_remote_por	
		ts/rport-*/port_state	

NetApp Bug ID	Title	Description	Bugzilla ID
1190698	Remote port status on	FC remote ports might	1643459
	RHEL7U6 with QLogic	be blocked on Red Hat	
	QLE2672 host might be	Enterprise Linux (RHEL)	
	in blocked during	7U6 with the QLogic	
	storage failover	QLE2672 host during	
	operations	storage failover	
		operations. Because the	
		logical interfaces go	
		down when a storage	
		node is down, the	
		remote ports set the	
		storage node status to	
		blocked. When the	
		storage node returns to	
		its optimal state, the	
		logical interfaces also	
		come up and the remote	
		ports should be online.	
		However, the remote	
		portsmight still be	
		blocked. This blocked	
		state registers as failed	
		faulty to LUNS at the	
		multipath layer. You can	
		verify the remote ports	
		state with the following	
		command:# cat	
		/sys/class/fc_remote_por	
		ts/rport-*/port_state	

Release Notes

ASM Mirroring

ASM mirroring might require changes to the Linux multipath settings to allow ASM to recognize a problem and switch over to an alternate fail group. Most ASM configurations on ONTAP use external redundancy, which means that data protection is provided by the external array and ASM does not mirror data. Some sites use ASM with normal redundancy to provide two-way mirroring, normally across different sites. See Oracle Databases on ONTAP for further information.

Using Red Hat Enterprise Linux 7.5 with ONTAP

Installing the Linux Unified Host Utilities

The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 32-bit and 64-bit .rpm file. If you do not know which file is right for your configuration, use the NetApp Interoperability Matrix Tool to verify which one you need.

Installing the Linux Unified Host Utilities is strongly recommended, but not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration.

Before you begin

If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you should remove it and use the following steps to install the latest version.

- 1. Download the 32-bit or 64-bit Linux Unified Host Utilities software package from the NetApp Support Site to your host.
- 2. Use the following command to install the software package:

```
rpm -ivh netapp_linux_unified_host_utilities-7-1.x86_64
```

SAN Toolkit

The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups.

Example

In the following example, the sanlun lun show command returns LUN information.

# sanlun lun show a controller(7mode/E- /server(cDOT/FlashR	Series)/	device filename	host adapter	protocol	lun size	Product
data_vserver	/vol/vol1/lun1	/dev/sdb	host16	FCP	120 . 0g	cD0T
data_vserver	/vol/vol1/lun1	/dev/sdc	host15	FCP	120.0g	cD0T
data_vserver	/vol/vol2/lun2	/dev/sdd	host16	FCP	120.0g	cD0T
data_vserver	/vol/vol2/lun2	/dev/sde	host15	FCP	120.0g	cD0T

SAN Booting

Before you begin

If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported.

- 1. Map the SAN boot LUN to the host.
- 2. Verify multiple paths are available.

Remember, multiple paths will only be available after the host OS is up and running on the paths.

3. Enable SAN booting in the server BIOS for the ports to which the SAN boot LUN is mapped.

For information on how to enable the HBA BIOS, see your vendor-specific documentation.

4. Reboot the host to verify the boot is successful.

Multipathing

For Red Hat Enterprise Linux (RHEL) 7.5 the /etc/multipath.conf file must exist, but you do not need to make specific changes to the file. RHEL 7.5 is compiled with all settings required to recognize and correctly manage ONTAP LUNs.

You can use the multipath -11 command to verify the settings for your ONTAP LUNs. The following sections provide sample multipath output for a LUN mapped to ASA and non-ASA personas.

All SAN Array Configuration

For All SAN Array (ASA) configuration there should be one group of paths with single priorities. All the paths are Active/Optimized, meaning they are serviced by the controller and I/O is sent on all the active paths.

Example

The following example displays the correct output for an ONTAP LUN with four Active/Optimized paths:

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Non-ASA Configuration

For non-ASA configuration there should be two groups of paths with different priorities. The paths with the higher priorities are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available.

Example

The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/non-Optimized paths:

```
# multipath -11
3600a09803831347657244e527766394e dm-5 NETAPP,LUN C-Mode
size=80G features='4 queue_if_no_path pg_init_retries 50 retain_attached_hw_handle
hwhandler='1 alua' wp=rw
|-+- policy='service-time 0' prio=50 status=active
| |- 11:0:1:0 sdj 8:144 active ready running
| |- 11:0:2:0 sdr 65:16 active ready running
'-+- policy='service-time 0' prio=10 status=enabled
|- 11:0:0:0 sdb 8:i6 active ready running
|- 12:0:0:0 sdz 65:144 active ready running
```

Note

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Recommended Settings

The RHEL 7.5 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly.

The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zero-byte file using the command:

```
touch /etc/multipath.conf
```

The first time you create this file, you might need to enable and start the multipath services.

```
[root@jfs0 ~]#systemctl enable multipathd
[root@jfs0 ~]# systemctl start multipathd
```

There is no requirement to add anything directly to multipath.conf, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults.

You can add the following syntax to the multipath.conf file to exclude the unwanted devices.

Note

Replace the <DevId> with the WWID string of the device you want to exclude. Use the following command to determine the WWID:

```
blacklist {
     wwid <DevId>
     devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
     devnode "^hd[a-z]"
     devnode "^cciss.*"
}
```

Example

In this example, sda is the local SCSI disk that we need to blacklist.

1. Run the following command to determine the WWID:

```
# /lib/udev/scsi_id -gud /dev/sda
360030057024d0730239134810c0cb833
```

2. Add this WWID to the blacklist stanza in the /etc/multipath.conf:

You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that may be overriding default settings.

The table below shows the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in multipath.conf that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs may not work as expected. These defaults should only be overridden in consultation with NetApp and/or OS vendor and only when the impact is fully understood.

Parameter	Setting
detect_prio	yes
dev_loss_tmo	"infinity"

Parameter	Setting
failback	immediate
fast_io_fail_tmo	5
features	"3 queue_if_no_path pg_init_retries 50"
flush_on_last_del	"yes"
hardware_handler	"0"
no_path_retry	queue
path_checker	"tur"
path_grouping_policy	"group_by_prio"
path_selector	"service-time 0"
polling_interval	5
prio	"ontap"
product	LUN.*
retain_attached_hw_handler	yes
rr_weight	"uniform"
user_friendly_names	no
vendor	NETAPP

Example

The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and no_path_retry that are not compatible with ONTAP LUNs. If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza.

```
defaults {
   path_checker
                     readsector0
                      fail
   no_path_retry
}
devices {
   device {
      vendor
                     "NETAPP
      product
                      "LUN.*"
      no_path_retry
                        queue
      path_checker
                        tur
   }
}
```

Known Problems and Limitations

NetApp Bug ID	Title	Description	Bugzilla ID
1139053	Kernel disruption	During storage failover	1542564
	occurs on RHEL7.5 with	operations on the	
	QLogic QLE2672 16GB	RHEL7U5 kernel with	
	FC during storage	QLogic QLE2672 16GB	
	failover operations	fibre channel host bus	
		adapter, the kernel	
		disruption occurs due to	
		a panic in the kernel.	
		The kernel panic causes	
		RHEL 7.5 to reboot,	
		which leads to an	
		application disruption.	
		The kernel panic	
		generates the vmcore	
		file under the	
		/var/crash/directory if	
		kdump is configured.	
		The vmcore file is used	
		to understand the cause	
		of the failure. In this	
		case, the panic was	
		observed in the	
		"get_next_timer_interru	
		pt+440" module which is	
		logged in the vmcore file	
		with the following	
		string: " [exception RIP:	
		get_next_timer_interrup	
		t+440]" After the kernel	
		disruption, you can	
		recover the operating	
		system by rebooting the	
		host operating system	
		and restarting the	
		application as required.	

NetApp Bug ID	Title	Description	Bugzilla ID
NetApp Bug ID 1138536	Kernel disruption occurs on RHEL7U5 with QLogic QLE2742 32GB FC during storage failover operations	During storage failover operations on the Red Hat Enterprise Linux (RHEL) RHEL7U5 kernel with QLogic QLE2742 HBA, kernel disruption occurs due to a panic in the kernel. The kernel panic leads to a reboot of the operating system, causing an application disruption. The kernel panic generates the vmcore file under the /var/crash/ directory if kdump is configured. When the kernel panics, you can use the vmcore file to investigate the reason for the failure. The following example shows a panic in the bget_next_timer_interru pt+440b module. The panic is logged in the vmcore file with the following string: " [exception RIP: get_next_timer_interrup t+440]" You can recover the operating system by rebooting the host OS and restarting the	Bugzilla ID 1541972

NetApp Bug ID	Title	Description	Bugzilla ID
1148090	Kernel disruption occurs on RHEL 7.5 with QLogic QLE2742 32GB FC HBA during storage failover operations	During storage failover operations on the Red Hat Enterprise Linux (RHEL) 7.5 kernel with a QLogic QLE2742 Fibre Channel (FC) host bus adapter (HBA), a kernel disruption occurs due to a panic in the kernel. The kernel panic causes RHEL 7.5 to reboot, which leads to an application disruption. If the kdump mechanism is enabled, the kernel panic generates a vmcore file located in the /var/crash/directory. You can analyze the vmcore file to determine the cause of the panic. In this instance, when storage failover with the QLogic QLE2742 HBA event occurs, the "native_queued_spin_loc k_slowpath+464" module is affected. You can locate the event in the vmcore file by finding the following string: " [exception RIP: native_queued_spin_loc k_slowpath+464]" After the kernel disruption, you can reboot the Host OS and recover the operating system, and then you can restart the applications as required.	

NetApp Bug ID	Title	Description	Bugzilla ID
1146898	Kernel disruption occurs on RHEL 7.5 with Emulex HBAs during storage failover operations	During storage failover operations on a Red Hat Enterprise Linux (RHEL) 7.5 system with Emulex LPe32002-M2 32-GB FC host bus adapters (HBAs), a disruption in the kernel occurs. The kernel disruption causes a reboot of the operating system, which in turn causes an application disruption. If you configure kdump, the kernel disruption generates the vmcore file under the /var/crash/directory. You can use the vmcore file to determine the cause of the failure. In the following example, you can see the disruption in the "lpfc_hba_clean_txcmpl q+368" module. This disruption is logged in the vmcore file with the following string: "[exception RIP: lpfc_hba_clean_txcmplq +368]" After the kernel disruption, reboot the host OS to recover the operating system. Restart the application as required.	

Release Notes

ASM Mirroring

ASM mirroring might require changes to the Linux multipath settings to allow ASM to recognize a

problem and switch over to an alternate fail group. Most ASM configurations on ONTAP use external redundancy, which means that data protection is provided by the external array and ASM does not mirror data. Some sites use ASM with normal redundancy to provide two-way mirroring, normally across different sites. See Oracle Databases on ONTAP for further information.

Using Red Hat Enterprise Linux 7.4 with ONTAP

Installing the Linux Unified Host Utilities

The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 32-bit and 64-bit .rpm file. If you do not know which file is right for your configuration, use the NetApp Interoperability Matrix Tool to verify which one you need.

Installing the Linux Unified Host Utilities is strongly recommended, but not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration.

Before you begin

If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you should remove it and use the following steps to install the latest version.

- 1. Download the 32-bit or 64-bit Linux Unified Host Utilities software package from the NetApp Support Site to your host.
- 2. Use the following command to install the software package:

```
rpm -ivh netapp_linux_unified_host_utilities-7-1.x86_64
```

SAN Toolkit

The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups.

Example

In the following example, the sanlun lun show command returns LUN information.

<pre>controller(7mode/E-Series)/</pre>		device	host		lun	
/server(cDOT/Flas	hRay) lun-pathname	filename	adapter	protocol	size	Product
data_vserver	/vol/vol1/lun1	/dev/sdb	host16	FCP	120.0g	cD0T
data_vserver	/vol/vol1/lun1	/dev/sdc	host15	FCP	120.0g	cD0T
data_vserver	/vol/vol2/lun2	/dev/sdd	host16	FCP	120.0g	cD0T
	/vol/vol2/lun2	/dev/sde	host15	FCP	120.0g	cD0T

SAN Booting

Before you begin

If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported.

- 1. Map the SAN boot LUN to the host.
- 2. Verify multiple paths are available.

Remember, multiple paths will only be available after the host OS is up and running on the paths.

3. Enable SAN booting in the server BIOS for the ports to which the SAN boot LUN is mapped.

For information on how to enable the HBA BIOS, see your vendor-specific documentation.

4. Reboot the host to verify the boot is successful.

Multipathing

For Red Hat Enterprise Linux (RHEL) 7.4 the /etc/multipath.conf file must exist, but you do not need to make specific changes to the file. RHEL 7.4 is compiled with all settings required to recognize and correctly manage ONTAP LUNs.

You can use the multipath -ll command to verify the settings for your ONTAP LUNs. The following sections provide sample multipath output for a LUN mapped to ASA and non-ASA personas.

All SAN Array Configuration

For All SAN Array (ASA) configuration there should be one group of paths with single priorities. All the paths are Active/Optimized, meaning they are serviced by the controller and I/O is sent on all the active paths.

Example

The following example displays the correct output for an ONTAP LUN with four Active/Optimized

paths:

Note

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Non-ASA Configuration

For non-ASA configuration there should be two groups of paths with different priorities. The paths with the higher priorities are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available.

Example

The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/non-Optimized paths:

```
# multipath -11
3600a09803831347657244e527766394e dm-5 NETAPP,LUN C-Mode
size=80G features='4 queue_if_no_path pg_init_retries 50 retain_attached_hw_handle
hwhandler='1 alua' wp=rw
|-+- policy='service-time 0' prio=50 status=active
| |- 11:0:1:0 sdj 8:144 active ready running
| |- 11:0:2:0 sdr 65:16 active ready running
'-+- policy='service-time 0' prio=10 status=enabled
|- 11:0:0:0 sdb 8:i6 active ready running
|- 12:0:0:0 sdz 65:144 active ready running
```

Note

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Recommended Settings

The RHEL 7.4 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly.

The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zero-byte file using the command:

```
touch /etc/multipath.conf
```

The first time you create this file, you might need to enable and start the multipath services.

```
[root@jfs0 ~]#systemctl enable multipathd
[root@jfs0 ~]# systemctl start multipathd
```

There is no requirement to add anything directly to multipath.conf, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. You can add the following syntax to the multipath.conf file to exclude the unwanted devices.

Note

Replace the <DevId> with the WWID string of the device you want to exclude. Use the following command to determine the WWID:

```
blacklist {
     wwid <DevId>
     devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
     devnode "^hd[a-z]"
     devnode "^cciss.*"
}
```

Example

In this example, sda is the local SCSI disk that we need to blacklist.

1. Run the following command to determine the WWID:

```
# /lib/udev/scsi_id -gud /dev/sda
360030057024d0730239134810c0cb833
```

2. Add this WWID to the blacklist stanza in the /etc/multipath.conf:

You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that may be overriding default settings.

The table below shows the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in multipath.conf that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs may not work as expected. These defaults should only be overridden in consultation with NetApp and/or OS vendor and only when the impact is fully understood.

Parameter	Setting
detect_prio	yes
dev_loss_tmo	"infinity"
failback	immediate
fast_io_fail_tmo	5
features	"3 queue_if_no_path pg_init_retries 50"
flush_on_last_del	"yes"
hardware_handler	"0"
no_path_retry	queue
path_checker	"tur"
path_grouping_policy	"group_by_prio"
path_selector	"service-time 0"
polling_interval	5
prio	"ontap"
product	LUN.*
retain_attached_hw_handler	yes
rr_weight	"uniform"
user_friendly_names	no
vendor	NETAPP

The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and no_path_retry that are not compatible with ONTAP LUNs. If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza.

```
defaults {
   path checker
                     readsector0
   no_path_retry
                       fail
}
devices {
   device {
                      "NETAPP"
      vendor
                       "LUN.*"
      product
      no_path_retry
                         queue
      path_checker
                         tur
   }
}
```

Known Problems and Limitations

There are no known issues for RHEL 7.4.

Release Notes

ASM Mirroring

ASM mirroring might require changes to the Linux multipath settings to allow ASM to recognize a problem and switch over to an alternate fail group. Most ASM configurations on ONTAP use external redundancy, which means that data protection is provided by the external array and ASM does not mirror data. Some sites use ASM with normal redundancy to provide two-way mirroring, normally across different sites. See Oracle Databases on ONTAP for further information.

Using Red Hat Enterprise Linux 7.3 with ONTAP

Installing the Linux Unified Host Utilities

The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 32-bit and 64-bit .rpm file. If you do not know which file is right for your configuration, use the NetApp Interoperability Matrix Tool to verify which one you need.

Installing the Linux Unified Host Utilities is strongly recommended, but not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration.

Before you begin

If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you should remove it and use the following steps to install the latest version.

- 1. Download the 32-bit or 64-bit Linux Unified Host Utilities software package from the NetApp Support Site to your host.
- 2. Use the following command to install the software package:

```
rpm -ivh netapp_linux_unified_host_utilities-7-1.x86_64
```

SAN Toolkit

The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups.

Example

In the following example, the sanlun lun show command returns LUN information.

ontroller(7mode/	E-Series)/	device	host		lun	
vserver(cDOT/Flas	hRay) lun-pathname	filename	adapter	protocol	size	Product
 data_vserver	/vol/vol1/lun1	/dev/sdb	host16	FCP	120.0g	cD0T
data_vserver	/vol/vol1/lun1	/dev/sdc	host15	FCP	120.0g	cD0T
data_vserver	/vol/vol2/lun2	/dev/sdd	host16	FCP	120.0g	cD0T
· · · · _ · · · · · ·						

SAN Booting

Before you begin

If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported.

- 1. Map the SAN boot LUN to the host.
- 2. Verify multiple paths are available.

Remember, multiple paths will only be available after the host OS is up and running on the paths.

3. Enable SAN booting in the server BIOS for the ports to which the SAN boot LUN is mapped.

For information on how to enable the HBA BIOS, see your vendor-specific documentation.

4. Reboot the host to verify the boot is successful.

Multipathing

For Red Hat Enterprise Linux (RHEL) 7.3 the /etc/multipath.conf file must exist, but you do not need to make specific changes to the file. RHEL 7.3 is compiled with all settings required to recognize and correctly manage ONTAP LUNs.

You can use the multipath -ll command to verify the settings for your ONTAP LUNs. The following sections provide sample multipath output for a LUN mapped to ASA and non-ASA personas.

All SAN Array Configuration

For All SAN Array (ASA) configuration there should be one group of paths with single priorities. All the paths are Active/Optimized, meaning they are serviced by the controller and I/O is sent on all the active paths.

Example

The following example displays the correct output for an ONTAP LUN with four Active/Optimized paths:

Note

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Non-ASA Configuration

For non-ASA configuration there should be two groups of paths with different priorities. The paths with the higher priorities are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available.

Example

The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/non-Optimized paths:

```
# multipath -ll
3600a09803831347657244e527766394e dm-5 NETAPP,LUN C-Mode
size=80G features='4 queue_if_no_path pg_init_retries 50 retain_attached_hw_handle
hwhandler='1 alua' wp=rw
|-+- policy='service-time 0' prio=50 status=active
| - 11:0:1:0 sdj 8:144 active ready running
| - 11:0:2:0 sdr 65:16 active ready running
'-+- policy='service-time 0' prio=10 status=enabled
|- 11:0:0:0 sdb 8:i6 active ready running
|- 12:0:0:0 sdz 65:144 active ready running
```

Note

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Recommended Settings

The RHEL 7.3 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly.

The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zero-byte file using the command:

```
touch /etc/multipath.conf
```

The first time you create this file, you might need to enable and start the multipath services.

```
[root@jfs0 ~]#systemctl enable multipathd
[root@jfs0 ~]# systemctl start multipathd
```

There is no requirement to add anything directly to multipath.conf, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. You can add the following syntax to the multipath.conf file to exclude the unwanted devices.

Note

Replace the <DevId> with the WWID string of the device you want to exclude. Use the following command to determine the WWID:

```
blacklist {
      wwid <DevId>
      devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
      devnode "^hd[a-z]"
      devnode "^cciss.*"
}
```

Example

In this example, sda is the local SCSI disk that we need to blacklist.

1. Run the following command to determine the WWID:

```
# /lib/udev/scsi_id -gud /dev/sda
360030057024d0730239134810c0cb833
```

2. Add this WWID to the blacklist stanza in the /etc/multipath.conf:

```
blacklist {
    wwid     360030057024d0730239134810c0cb833
    devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
    devnode "^hd[a-z]"
    devnode "^cciss.*"
}
```

You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that may be overriding default settings.

The table below shows the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in multipath.conf that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs may not work as expected. These defaults should only be overridden in consultation with NetApp and/or OS vendor and only when the impact is fully understood.

Parameter	Setting
detect_prio	yes
dev_loss_tmo	"infinity"
failback	immediate
fast_io_fail_tmo	5
features	"3 queue_if_no_path pg_init_retries 50"
flush_on_last_del	"yes"

Parameter	Setting
hardware_handler	"0"
no_path_retry	queue
path_checker	"tur"
path_grouping_policy	"group_by_prio"
path_selector	"service-time 0"
polling_interval	5
prio	"ontap"
product	LUN.*
retain_attached_hw_handler	yes
rr_weight	"uniform"
user_friendly_names	no
vendor	NETAPP

Example

The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and no_path_retry that are not compatible with ONTAP LUNs. If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza.

```
defaults {
   path_checker
                     readsector0
   no_path_retry
                    fail
}
devices {
   device {
                     "NETAPP"
      vendor
                      "LUN.*"
      product
      no_path_retry
                        queue
      path_checker
                        tur
  }
}
```

Known Problems and Limitations

There are no known issues for RHEL 7.3.

Release Notes

ASM Mirroring

ASM mirroring might require changes to the Linux multipath settings to allow ASM to recognize a problem and switch over to an alternate fail group. Most ASM configurations on ONTAP use external redundancy, which means that data protection is provided by the external array and ASM does not mirror data. Some sites use ASM with normal redundancy to provide two-way mirroring, normally across different sites. See Oracle Databases on ONTAP for further information.

Using Red Hat Enterprise Linux 7.2 with ONTAP

Installing the Linux Unified Host Utilities

The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 32-bit and 64-bit .rpm file. If you do not know which file is right for your configuration, use the NetApp Interoperability Matrix Tool to verify which one you need.

Installing the Linux Unified Host Utilities is strongly recommended, but not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration.

Before you begin

If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you should remove it and use the following steps to install the latest version.

- 1. Download the 32-bit or 64-bit Linux Unified Host Utilities software package from the NetApp Support Site to your host.
- 2. Use the following command to install the software package:

```
rpm -ivh netapp_linux_unified_host_utilities-7-1.x86_64
```

SAN Toolkit

The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups.

Example

In the following example, the sanlun lun show command returns LUN information.

ontroller(7mode/	E-Series)/	device	host		lun	
/server(cDOT/Flas	hRay) lun-pathname	filename	adapter	protocol	size	Product
data_vserver	/vol/vol1/lun1	/dev/sdb	host16	FCP	120.0g	cD0T
data_vserver	/vol/vol1/lun1	/dev/sdc	host15	FCP	120.0g	cD0T
data_vserver	/vol/vol2/lun2	/dev/sdd	host16	FCP	120.0g	cD0T
	/vol/vol2/lun2	/dev/sde	host15	FCP	120.0g	cD0T

SAN Booting

Before you begin

If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported.

- 1. Map the SAN boot LUN to the host.
- 2. Verify multiple paths are available.

Remember, multiple paths will only be available after the host OS is up and running on the paths.

3. Enable SAN booting in the server BIOS for the ports to which the SAN boot LUN is mapped.

For information on how to enable the HBA BIOS, see your vendor-specific documentation.

4. Reboot the host to verify the boot is successful.

Multipathing

For Red Hat Enterprise Linux (RHEL) 7.2 the /etc/multipath.conf file must exist, but you do not need to make specific changes to the file. RHEL 7.2 is compiled with all settings required to recognize and correctly manage ONTAP LUNs.

You can use the multipath -ll command to verify the settings for your ONTAP LUNs. The following sections provide sample multipath output for a LUN mapped to ASA and non-ASA personas.

All SAN Array Configuration

For All SAN Array (ASA) configuration there should be one group of paths with single priorities. All the paths are Active/Optimized, meaning they are serviced by the controller and I/O is sent on all the active paths.

Example

The following example displays the correct output for an ONTAP LUN with four Active/Optimized

paths:

Note

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Non-ASA Configuration

For non-ASA configuration there should be two groups of paths with different priorities. The paths with the higher priorities are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available.

Example

The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/non-Optimized paths:

```
# multipath -11
3600a09803831347657244e527766394e dm-5 NETAPP,LUN C-Mode
size=80G features='4 queue_if_no_path pg_init_retries 50 retain_attached_hw_handle
hwhandler='1 alua' wp=rw
|-+- policy='service-time 0' prio=50 status=active
| |- 11:0:1:0 sdj 8:144 active ready running
| |- 11:0:2:0 sdr 65:16 active ready running
'-+- policy='service-time 0' prio=10 status=enabled
|- 11:0:0:0 sdb 8:i6 active ready running
|- 12:0:0:0 sdz 65:144 active ready running
```

Note

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Recommended Settings

The RHEL 7.2 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly.

The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zero-byte file using the command:

```
touch /etc/multipath.conf
```

The first time you create this file, you might need to enable and start the multipath services.

```
[root@jfs0 ~]#systemctl enable multipathd
[root@jfs0 ~]# systemctl start multipathd
```

There is no requirement to add anything directly to multipath.conf, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. You can add the following syntax to the multipath.conf file to exclude the unwanted devices.

Note

Replace the <DevId> with the WWID string of the device you want to exclude. Use the following command to determine the WWID:

```
blacklist {
     wwid <DevId>
     devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
     devnode "^hd[a-z]"
     devnode "^cciss.*"
}
```

Example

In this example, sda is the local SCSI disk that we need to blacklist.

1. Run the following command to determine the WWID:

```
# /lib/udev/scsi_id -gud /dev/sda
360030057024d0730239134810c0cb833
```

2. Add this WWID to the blacklist stanza in the /etc/multipath.conf:

You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that may be overriding default settings.

The table below shows the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in multipath.conf that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs may not work as expected. These defaults should only be overridden in consultation with NetApp and/or OS vendor and only when the impact is fully understood.

Parameter	Setting
detect_prio	yes
dev_loss_tmo	"infinity"
failback	immediate
fast_io_fail_tmo	5
features	"3 queue_if_no_path pg_init_retries 50"
flush_on_last_del	"yes"
hardware_handler	"0"
no_path_retry	queue
path_checker	"tur"
path_grouping_policy	"group_by_prio"
path_selector	"service-time 0"
polling_interval	5
prio	"ontap"
product	LUN.*
retain_attached_hw_handler	yes
rr_weight	"uniform"
user_friendly_names	no
vendor	NETAPP

The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and no_path_retry that are not compatible with ONTAP LUNs. If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza.

```
defaults {
   path checker
                     readsector0
   no_path_retry
                       fail
}
devices {
   device {
                      "NETAPP"
      vendor
                       "LUN.*"
      product
      no_path_retry
                         queue
      path_checker
                         tur
   }
}
```

Known Problems and Limitations

There are no known issues for RHEL 7.2.

Release Notes

ASM Mirroring

ASM mirroring might require changes to the Linux multipath settings to allow ASM to recognize a problem and switch over to an alternate fail group. Most ASM configurations on ONTAP use external redundancy, which means that data protection is provided by the external array and ASM does not mirror data. Some sites use ASM with normal redundancy to provide two-way mirroring, normally across different sites. See Oracle Databases on ONTAP for further information.

Using Red Hat Enterprise Linux 7.1 with ONTAP

Installing the Linux Unified Host Utilities

The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 32-bit and 64-bit .rpm file. If you do not know which file is right for your configuration, use the NetApp Interoperability Matrix Tool to verify which one you need.

Installing the Linux Unified Host Utilities is strongly recommended, but not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration.

Before you begin

If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you should remove it and use the following steps to install the latest version.

- 1. Download the 32-bit or 64-bit Linux Unified Host Utilities software package from the NetApp Support Site to your host.
- 2. Use the following command to install the software package:

```
rpm -ivh netapp_linux_unified_host_utilities-7-1.x86_64
```

SAN Toolkit

The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups.

Example

In the following example, the sanlun lun show command returns LUN information.

ontroller(7mode/	E-Series)/	device	host		lun	
vserver(cDOT/Flas	hRay) lun-pathname	filename	adapter	protocol	size	Product
 data_vserver	/vol/vol1/lun1	/dev/sdb	host16	FCP	120.0g	cD0T
data_vserver	/vol/vol1/lun1	/dev/sdc	host15	FCP	120.0g	cD0T
data_vserver	/vol/vol2/lun2	/dev/sdd	host16	FCP	120.0g	cD0T
· · · · _ · · · · · ·						

SAN Booting

Before you begin

If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported.

- 1. Map the SAN boot LUN to the host.
- 2. Verify multiple paths are available.

Remember, multiple paths will only be available after the host OS is up and running on the paths.

3. Enable SAN booting in the server BIOS for the ports to which the SAN boot LUN is mapped.

For information on how to enable the HBA BIOS, see your vendor-specific documentation.

4. Reboot the host to verify the boot is successful.

Multipathing

For Red Hat Enterprise Linux (RHEL) 7.1 the /etc/multipath.conf file must exist, but you do not need to make specific changes to the file. RHEL 7.1 is compiled with all settings required to recognize and correctly manage ONTAP LUNs.

You can use the multipath -ll command to verify the settings for your ONTAP LUNs. The following sections provide sample multipath output for a LUN mapped to ASA and non-ASA personas.

All SAN Array Configuration

For All SAN Array (ASA) configuration there should be one group of paths with single priorities. All the paths are Active/Optimized, meaning they are serviced by the controller and I/O is sent on all the active paths.

Example

The following example displays the correct output for an ONTAP LUN with four Active/Optimized paths:

Note

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Non-ASA Configuration

For non-ASA configuration there should be two groups of paths with different priorities. The paths with the higher priorities are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available.

Example

The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/non-Optimized paths:

```
# multipath -ll
3600a09803831347657244e527766394e dm-5 NETAPP,LUN C-Mode
size=80G features='4 queue_if_no_path pg_init_retries 50 retain_attached_hw_handle
hwhandler='1 alua' wp=rw
|-+- policy='service-time 0' prio=50 status=active
| - 11:0:1:0 sdj 8:144 active ready running
| - 11:0:2:0 sdr 65:16 active ready running
'-+- policy='service-time 0' prio=10 status=enabled
|- 11:0:0:0 sdb 8:i6 active ready running
|- 12:0:0:0 sdz 65:144 active ready running
```

Note

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Recommended Settings

The RHEL 7.1 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly.

The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zero-byte file using the command:

```
touch /etc/multipath.conf
```

The first time you create this file, you might need to enable and start the multipath services.

```
[root@jfs0 ~]#systemctl enable multipathd
[root@jfs0 ~]# systemctl start multipathd
```

There is no requirement to add anything directly to multipath.conf, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. You can add the following syntax to the multipath.conf file to exclude the unwanted devices.

Note

Replace the <DevId> with the WWID string of the device you want to exclude. Use the following command to determine the WWID:

```
blacklist {
     wwid <DevId>
     devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
     devnode "^hd[a-z]"
     devnode "^cciss.*"
}
```

Example

In this example, sda is the local SCSI disk that we need to blacklist.

1. Run the following command to determine the WWID:

```
# /lib/udev/scsi_id -gud /dev/sda
360030057024d0730239134810c0cb833
```

2. Add this WWID to the blacklist stanza in the /etc/multipath.conf:

```
blacklist {
    wwid     360030057024d0730239134810c0cb833
    devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
    devnode "^hd[a-z]"
    devnode "^cciss.*"
}
```

You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that may be overriding default settings.

The table below shows the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in multipath.conf that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs may not work as expected. These defaults should only be overridden in consultation with NetApp and/or OS vendor and only when the impact is fully understood.

Parameter	Setting
detect_prio	yes
dev_loss_tmo	"infinity"
failback	immediate
fast_io_fail_tmo	5
features	"3 queue_if_no_path pg_init_retries 50"
flush_on_last_del	"yes"

Parameter	Setting
hardware_handler	"0"
no_path_retry	queue
path_checker	"tur"
path_grouping_policy	"group_by_prio"
path_selector	"service-time 0"
polling_interval	5
prio	"ontap"
product	LUN.*
retain_attached_hw_handler	yes
rr_weight	"uniform"
user_friendly_names	no
vendor	NETAPP

Example

The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and no_path_retry that are not compatible with ONTAP LUNs. If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza.

```
defaults {
   path_checker
                    readsector0
   no_path_retry
                    fail
}
devices {
   device {
      vendor
                     "NETAPP"
      product
                      "LUN.*"
      no_path_retry
                        queue
      path_checker
                        tur
  }
}
```

Known Problems and Limitations

NetApp Bug ID	Title	Description	Bugzilla ID
799323	Emulex FCoE (OCe10102-FX-D) host hang or path failures observed during I/O with storage failover operations	You might observe a host hang or path failures on Emulex 10G FCoE host (OCe10102-FX-D) during I/O with storage failover operations. In such scenarios, you might see the following message: "driver's buffer pool is empty, IO busied and SCSI Layer I/O Abort Request Status"	1061755
836875	IP addresses are not always assigned during the boot of a RHEL 7.0 OS installed on an iSCSI multipath'd LUN	When you install the root(/) on a iSCSI multipath'd LUN, the IP address for the Ethernet interfaces are specified in the kernel command line so that the IP addresses are assigned before the iSCSI service starts. However, dracut cannot assign IP addresses to all the Ethernet ports during the boot, before the iSCSI service starts. This causes the iSCSI login to fail on interfaces without IP addresses. You will see the iSCSI service attempt to login numerous times, which will cause a delay in the OS boot time.	1114966

Release Notes

ASM Mirroring

ASM mirroring might require changes to the Linux multipath settings to allow ASM to recognize a

problem and switch over to an alternate fail group. Most ASM configurations on ONTAP use external redundancy, which means that data protection is provided by the external array and ASM does not mirror data. Some sites use ASM with normal redundancy to provide two-way mirroring, normally across different sites. See Oracle Databases on ONTAP for further information.

Using Red Hat Enterprise Linux 7.0 with ONTAP

Installing the Linux Unified Host Utilities

The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 32-bit and 64-bit .rpm file. If you do not know which file is right for your configuration, use the NetApp Interoperability Matrix Tool to verify which one you need.

Installing the Linux Unified Host Utilities is strongly recommended, but not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration.

Before you begin

If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you should remove it and use the following steps to install the latest version.

- 1. Download the 32-bit or 64-bit Linux Unified Host Utilities software package from the NetApp Support Site to your host.
- 2. Use the following command to install the software package:

```
rpm -ivh netapp_linux_unified_host_utilities-7-1.x86_64
```

SAN Toolkit

The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups.

Example

In the following example, the sanlun lun show command returns LUN information.

ontroller(7mode/	E-Series)/	device	host		lun	
/server(cDOT/Flas	hRay) lun-pathname	filename	adapter	protocol	size	Product
lata_vserver	/vol/vol1/lun1	/dev/sdb	host16	FCP	120.0g	cD0T
lata_vserver	/vol/vol1/lun1	/dev/sdc	host15	FCP	120.0g	cD0T
lata_vserver	/vol/vol2/lun2	/dev/sdd	host16	FCP	120.0g	cD0T
ded_voerver						

SAN Booting

Before you begin

If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported.

- 1. Map the SAN boot LUN to the host.
- 2. Verify multiple paths are available.

Remember, multiple paths will only be available after the host OS is up and running on the paths.

3. Enable SAN booting in the server BIOS for the ports to which the SAN boot LUN is mapped.

For information on how to enable the HBA BIOS, see your vendor-specific documentation.

4. Reboot the host to verify the boot is successful.

Multipathing

For Red Hat Enterprise Linux (RHEL) 7.0 the /etc/multipath.conf file must exist, but you do not need to make specific changes to the file. RHEL 7.0 is compiled with all settings required to recognize and correctly manage ONTAP LUNs.

You can use the multipath -ll command to verify the settings for your ONTAP LUNs. The following sections provide sample multipath output for a LUN mapped to ASA and non-ASA personas.

All SAN Array Configuration

For All SAN Array (ASA) configuration there should be one group of paths with single priorities. All the paths are Active/Optimized, meaning they are serviced by the controller and I/O is sent on all the active paths.

Example

The following example displays the correct output for an ONTAP LUN with four Active/Optimized

paths:

Note

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Non-ASA Configuration

For non-ASA configuration there should be two groups of paths with different priorities. The paths with the higher priorities are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available.

Example

The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/non-Optimized paths:

```
# multipath -11
3600a09803831347657244e527766394e dm-5 NETAPP,LUN C-Mode
size=80G features='4 queue_if_no_path pg_init_retries 50 retain_attached_hw_handle
hwhandler='1 alua' wp=rw
|-+- policy='service-time 0' prio=50 status=active
| |- 11:0:1:0 sdj 8:144 active ready running
| |- 11:0:2:0 sdr 65:16 active ready running
'-+- policy='service-time 0' prio=10 status=enabled
|- 11:0:0:0 sdb 8:i6 active ready running
|- 12:0:0:0 sdz 65:144 active ready running
```

Note

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Recommended Settings

The RHEL 7.0 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly.

The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zerobyte file using the command:

```
touch /etc/multipath.conf
```

The first time you create this file, you might need to enable and start the multipath services.

```
[root@jfs0 ~]#systemctl enable multipathd
[root@jfs0 ~]# systemctl start multipathd
```

There is no requirement to add anything directly to multipath.conf, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. You can add the following syntax to the multipath.conf file to exclude the unwanted devices.

Note

Replace the <DevId> with the WWID string of the device you want to exclude. Use the following command to determine the WWID:

```
blacklist {
     wwid <DevId>
     devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
     devnode "^hd[a-z]"
     devnode "^cciss.*"
}
```

Example

In this example, sda is the local SCSI disk that we need to blacklist.

1. Run the following command to determine the WWID:

```
# /lib/udev/scsi_id -gud /dev/sda
360030057024d0730239134810c0cb833
```

2. Add this WWID to the blacklist stanza in the /etc/multipath.conf:

You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that may be overriding default settings.

The table below shows the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in multipath.conf that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs may not work as expected. These defaults should only be overridden in consultation with NetApp and/or OS vendor and only when the impact is fully understood.

Parameter	Setting
detect_prio	yes
dev_loss_tmo	"infinity"
failback	immediate
fast_io_fail_tmo	5
features	"3 queue_if_no_path pg_init_retries 50"
flush_on_last_del	"yes"
hardware_handler	"0"
no_path_retry	queue
path_checker	"tur"
path_grouping_policy	"group_by_prio"
path_selector	"service-time 0"
polling_interval	5
prio	"ontap"
product	LUN.*
retain_attached_hw_handler	yes
rr_weight	"uniform"
user_friendly_names	no
vendor	NETAPP

The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and no_path_retry that are not compatible with ONTAP LUNs. If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza.

```
defaults {
   path_checker
                     readsector0
   no_path_retry
                      fail
}
devices {
   device {
                     "NETAPP "
      vendor
      product
                      "LUN.*"
      no_path_retry
                        queue
      path_checker
                        tur
  }
}
```

Known Problems and Limitations

NetApp Bug ID	Title	Description	Bugzilla ID
844417	Emulex 16G FC (LPe16002B-M6) host crashes during I/O with storage failover operations	You might observe a 16G FC Emulex (LPe16002B-M6) host crash during I/O with storage failover operations.	1131393
811587	Emulex 16G FC (LPe16002B-M6) host crashes during I/O with storage failover operations	You might observe a 16G FC Emulex (LPe16002B-M6) host crash during I/O with storage failover operations.	1079735
803071	Emulex 16G FC (LPe16002B-M6) host crashes during I/O with storage failover operations	You might observe a 16G FC Emulex (LPe16002B-M6) host crash during I/O with storage failover operations.	1067895

NetApp Bug ID	Title	Description	Bugzilla ID
820163	QLogic host hang or path failures observed during I/O with storage failover operations	You might observe a host hang or path failures on QLogic host during I/O with storage failover operations. In such scenarios, you might see the following message: "Mailbox cmd timeout occurred, cmd=0x54, mb[0]=0x54 and Firmware dump saved to temp buffer" messages which leads to host hung/path failure.	1090378
799323	Emulex FCoE (OCe10102-FX-D) host hang or path failures observed during I/O with storage failover operations	You might observe a host hang or path failures on Emulex 10G FCoE host (OCe10102-FX-D) during I/O with storage failover operations. In such scenarios, you might see the following message: "driver's buffer pool is empty, IO busied and SCSI Layer I/O Abort Request Status" messages which leads to host hung/path failures.	1061755
849212	Emulex 16G FC (LPe16002B-M6) host hang or path failures are observed during I/O with storage failover operations	You might observe a host hang or path failures on Emulex 16G FC (LPe16002B-M6) host during I/O with storage failover operations. In such scenarios, you might see the following message: "RSCN timeout Data and iotag x1301 is out of range: max iotag" messages which leads to host hung/path failures.	1109274

NetApp Bug ID	Title	Description	Bugzilla ID
NetApp Bug ID 836800	Anaconda displays an iSCSI login failure message although logins are successful during RHEL 7.0 OS installation	When you install the root(/) on a iSCSI multipath'd LUN, the IP address for the Ethernet	Bugzilla ID 1114966
		iSCSI service starts. This causes the iSCSI login to fail on interfaces without IP addresses. You will see the iSCSI service attempt to login numerous times, which will cause a delay in the OS boot time.	

NetApp Bug ID	Title	Description	Bugzilla ID
836875	IP addresses are not always assigned during the boot of a RHEL 7.0 OS installed on an iSCSI multipath'd LUN	When you are installing RHEL 7.0, the anaconda installation screen displays that iSCSI login to multiple target IPs have failed though the iSCSI logins are successful. Anaconda displays following error message: "Node Login Failed" You will observe this error only when you select multiple target IPs for iSCSI login. You can continue the OS installation by clicking the "ok" button. This bug does not hamper either the iSCSI or the RHEL 7.0 OS installation.	1114820
836657	Anaconda does not add bootdev argument in kernel cmd line to set IP address for RHEL 7.0 OS installed on iSCSI multipath'd LUN	Anaconda does not add a bootdev argument in the kernel command line where you set the IPv4 address during the RHEL 7.0 OS installation on an iSCSI multipath'd LUN. This prevents assigning of IP addresses to any of the Ethernet interfaces that were configured to establish iSCSI sessions with the storage subsystem during the RHEL 7.0 boot. Since iSCSI sessions are not established, the root LUN is not discovered when the OS boots and hence the OS boot fails.	1114464

Release Notes

ASM Mirroring

ASM mirroring might require changes to the Linux multipath settings to allow ASM to recognize a problem and switch over to an alternate fail group. Most ASM configurations on ONTAP use external redundancy, which means that data protection is provided by the external array and ASM does not mirror data. Some sites use ASM with normal redundancy to provide two-way mirroring, normally across different sites. See Oracle Databases on ONTAP for further information.

Copyright Information

Copyright © 2020 NetApp, Inc. All rights reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means-graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval systemwithout prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.277-7103 (October 1988) and FAR 52-227-19 (June 1987).

Trademark Information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.