

Institut für Experimentalphysik der Technischen Universität Graz

&

Institut für Physik der Universität Graz

LABORÜBUNGEN 1: MECHANIK UND WÄRME

Übungstitel: Quincke Kundt						
Betreuer: Elisbet	th Hörldrich					
Gruppennummer:		Vorbereitung	Durchführung	Protokoll		Σ

Name: <u>Maximilian Philipp</u>

Kennzahl: UF 033 678 Matrikelnummer: 11839611

Datum: 16 Mai 2021 SS 2021

Inhaltsverzeichnis

Aufg	$_{ m gabenstellung}$
Vora	ussetzungen und Grundlagen
Vers	uchsanordnung
Gerä	iteliste
Vers	uchsdurchführung und Messergebnisse
5.1	Quincke Resonanzrohr
	5.1.1 Ablauf
5.2	Kundt'sches Rohr
	5.2.1 Ablauf
5.3	Schallgeschwindigkeit in Stäben
	5.3.1 Ablauf
Aus	wertung
6.1	Quincke-Resonanzrohr Auswertung
6.2	Kundt'sches Rohr Auswertung
6.3	Bestimmung des E-Moduls von diversen Materialien
Zusa	atz am Genfer See
	sussion und Zusammenfassung
8.1	Diskussion
8.2	Zusammenfassung
	Vora Vers Gerä Vers 5.1 5.2 5.3 Ausv 6.1 6.2 6.3 Zusa Disk 8.1

1 Aufgabenstellung

Die folgenden Punkte sind zu erfüllen:

- 1. Bestimmung der Schwingungsknoten der stehenden Welle im Quincke-Resonanzrohr.
- 2. Bestimmung der Schallgeschwindigkeit in Luft.
- 3. Berechnung des Adiabatenexponenten von Luft.
- 4. Bestimmung der Wellenlänge einer stehenden Welle (5 Messungen) im Kundt'schen Rohr.
- 5. Berechnung des Elastizizätsmoduls des Stabes unter Verwendung der mit dem Quincke-Resonanzrohr bestimmten Schallgeschwindigkeit in Luft.

2 Voraussetzungen und Grundlagen

Der Schall breitet sich in Gasen als longitudinale Welle aus, d.h. die Teilchen schwingen in Ausbreitungsrichtung der Welle. In zwei Medien gilt mit ν der Frequenz, mit λ, λ' und c, c' den jeweiligen Wellenlängen und Schallgeschwindigkeiten:

$$c = \lambda \nu \quad \text{und} \quad c' = \lambda' \nu$$
 (1)

Wird Schall reflektiert, so bilden, bei geeigneten Bedingungen, die mit der einfallenden interferierende reflektierte Welle eine stehende Welle. Für Reflexion am einen offenen Ende und am anderen starren Ende (Wasseroberfläche) gilt die Resonanzbedingung, daß die Länge der Luftsäule ein ungeradzahliges Vielfaches eines Viertels der Wellenlänge sein muß.

$$l_1 = \frac{1}{4}\lambda, l_2 = \frac{3}{4}\lambda, l_3 = \frac{5}{4}\lambda, \dots, l_n = \frac{2n-1}{4}\lambda \qquad n = 1, 2, 3, \dots$$
 (2)

Der temperaturabhängige Quotient des Drucks p und der Dichte ρ steht mit p_0 (1013 mbar) und ρ_0 (1,29 · 10⁻³ $\frac{g}{cm^3}$), dem Luftdruck und -dichte bei 0 °C auf Meereshöhe, und dem Spannungskoeffizienten der Luft ($\alpha = \frac{1}{273.15} \frac{1}{K}$) im Zusammenhang:

$$\frac{p}{\rho} = \frac{p_0}{\rho_0} (1 + \alpha \theta) \tag{3}$$

Damit ergibt sich aus der Schallgeschwindigkeit c nach Laplace für die von der Temperatur abhängige Schallgeschwindigkeit c_T :

$$c = \sqrt{\frac{p\kappa}{\rho}} \implies c_T = \sqrt{\frac{p_0\kappa(1+\alpha\theta)}{\rho_0}}$$
 (4)

Für Luft gilt näherungsweise im Temperaturbereich $-20\,^{\circ}\text{C} \Rightarrow 40\,^{\circ}\text{C}$ die Zahlenwertgleichung:

$$c\left[\frac{m}{s}\right] = 331,5 + 0,6 \ \theta \ [^{\circ}C]$$
 (5)

Beim Übergang von einem Medium ins andere gibt sich nach Gleichung 1

$$\frac{c}{c'} = \frac{\lambda}{\lambda'} \tag{6}$$

d.h. in zwei verschiedenen Medien verhalten sich die Ausbreitungsgeschwindigkeiten einer Welle wie ihre Wellenlängen. Die Frequenz ändert sich dabei nicht. Wird also die Wellenlänge in beiden Medien gemessen, und ist die Schallgeschwindigkeit in einem Medium bekannt, so ist die Schallgeschwindigkeit im anderen Medium aus Gleichung 6 bestimmbar. Bei bekannter Dichte des Stabmaterials (Dichte von Glas bei Raumtemperatur: $\rho = 2500 \, \frac{\mathrm{kg}}{\mathrm{m}^3}$) kann sein Elastizitätsmodul E aus der Gleichung für die Schallgeschwindigkeit bestimmt werden.

$$c_{\text{Stab}} = \sqrt{\frac{E}{\rho}} \tag{7}$$

Um zu sehen wie sich die Unsicherheit der Messungen bis in die Ergebnisse fortplanzt, ist Gleichung 8 verwendet worden. Die Grundlagen dieser Gleichung sind von den Powerpointfolien von GUM entnommen worden.[13] Die Verallgemeinerung ist von Wikipedia entnommen worden [5]. Für die Auswertung ist die Progammiersprache Python im speziellen das Packet scipy, zur Hilfe genommen worden.

$$V_y = J(x) \cdot V_x \cdot J^T(x) \tag{8}$$

Wobei V_y und V_x die Kovarianzmatrizen von den Vektoren \boldsymbol{y} und \boldsymbol{x} . \boldsymbol{x} ist der Vektor der Eingangsvariablen und \boldsymbol{y} ist der Vektor der Ausgangsvariabeln. J ist die Jakobimatrix der vektorwertigen Funktion $\boldsymbol{y} = \vec{F}(\boldsymbol{x})$ ist. So lassen sich die Komponent der Matrix relativ einfach anschreiben $J_{ij}(x) = \frac{\partial y_i}{\partial x_j}(x)$. Damit man die Unsicherheit der einzelnen Variabeln y_i bekommt muss nur die Quadratwurzel des i-ten Diagonalelementes der \boldsymbol{y} -Kovarianzmatrix genommen werden $u_i = \sqrt{\operatorname{diag}(V_y)_i}$. Da in diesem Experiment meistens nur skalare Funktionen untersucht werden vereinfacht sich die Gleichung 8 dramatisch und die Unsicherheit der Variabel \boldsymbol{y} lässt sich einfach so berechnen:

$$u_y = \sqrt{\operatorname{grad} y^T \cdot V_x \cdot \operatorname{grad} y} \tag{9}$$

3 Versuchsanordnung

Abbildung 1: Das Quincke-Resonanzrohr. F Frequenzgeber (1600 Hz), R Glasrohr mit veränderbarem Wasserspiegel, AB Ausgleichsbehälter, l Länge der Luftsäule, λ Wellenlänge.

Abbildung 2: Das Kundt'sche Rohr. λ_{Stab} , λ_{Luft} Wellenlänge im longitudinal schwingenden Glasstab bzw. in der Luft.

Abbildung 3: Zur Bestimmung der Wellenlänge

Zu Abbildung 1: Das Resonanzrohr ist ein Glasrohr, das eine Luftsäule veränderbarer Länge enthält. Durch Heben und Senken des Ausgleichsbehälters kann man die Länge der Luftsäule variieren. Die Luftsäule wird durch einen Schallgeber über der Öffnung des Rohres zum Schwingen angeregt. Die Frequenz ist durch den Schallgeber vorgegeben. Die Wellen laufen bis zum Ende der Luftsäule (Wasseroberfläche), werden dort reflektiert, und interferieren mit den einfallenden Wellen, so daß sich im Rohr eine stehende Welle ausbildet. Ist die Luftsäule so lang, daß sich an der Wasseroberfläche ein Schwingungsknoten, an der Rohröffnung aber ein Schwingungsbauch befindet, so besteht Resonanz zwischen dem Frequenzgeber und der Luftsäule im Rohr.

Zu Abbildung 2: Die vom Stabende bei longitudinaler Anregung ausgehende Schallwelle pflanzt sich in das Glasrohr fort, und wird am Ende des Glasrohres reflektiert. Es entsteht eine stehende Welle, die mittels Korkpulver in der Röhre sichtbar gemacht wird. Die stehende Welle bildet sich nur dann scharf aus, wenn am geschlossenen Ende des Rohres ein Wellenknoten liegt. Dies wird erreicht, indem man die Länge der Luftsäule durch Verschieben des Glasrohres variiert.

Zu Abbildung 3: Zur Bestimmung der Wellenlänge in Luft λ_{Luft} werden zunächst alle Knotenstellen ausgemessen (l_0, l_1, \ldots, l_n) . Soll zur Verbesserung der Ablesefehler der Knotenstellen die größtmögliche Anzahl von Messungen zur Mittelwertbildung verwendet werden, so werden als Anfangs- und Endknotenstellen die Knoten herangezogen, deren Abstand voneinander gerade größer ist als $\frac{a}{2}$, wobei a der Abstand zwischen dem ersten und dem letzten zur Messung geeigneten Knoten ist. Wie aus Abbildung 3 ersichtlich, ergeben sich dadurch beispielsweise für 6 Meßpunkte 3 voneinander unabhängige Mittelwerte für $\frac{\lambda_{Luft}}{2}$.

4 Geräteliste

Tabelle 1: Verwendete Geräte

Gerät	Gerät-Nr.	Unsicherheit	Bemerkungen
Quincke-Resonanzrohr	axx	-	Wird verwendet um die Schallgeschwindigkeit zu bestimmen
Maßband	bxx	$1\mathrm{mm}$	Um den Glasstab abzumessen
Zollstab	cxx	1 mm	Um die Abstände der Knoten bei den stehenden Wellen beim Kundt'schen Rohr zu messen
Eisener Zollstab	dxx	$0.5\mathrm{mm}$	Um die Abstände der Knoten bei den Resonanzen im Quincke-Rohr zu bestimmen
Flüssigkeit, nicht viskos	gxx	-	Zum Befüllen des Quincke-Rohres
Signalgenerator	hxx	$0.01\mathrm{Hz}$	Sendet einen 1600,00 Hz Sinussignal an den Lautsprecher
Lautsprecher	ixx	-	Zum Anregen von stehenden Wellen im Quincke-Rohr mit der Frequenz vom Signal- generator
Thermometer	jxx	0,6 K	Modell: GTH 1170 (Greisinger GmbH.) Um die Umgebungstemperatur zu bestimmen
Kundt'sches Rohr, klein	kxx	-	Zur Bestimmung der Frequenz der Triller- pfeie
Trillerpfeife	lxx	-	-
Glasstab	mxx	$(1500 \pm 2) \mathrm{mm}$	Zur Anregung von longitudinaler Wellen im Kundt'schen Rohr (groß)
Kundt'sches Rohr, groß	nxx	-	Zur Bestimmung des E-Moduls des Glasstabes
Stoppel	oxx	-	Um sicherzustellen, dass ein Knoten am Ende des Rohres ist
Schwamm	pxx	-	Zum Anregen des Glasstabes
Klemmen Halterungen	qxx	-	Diverse Befestigungen
Sensor-CASSY ¹	rxx	50 μm	(LD Didactic GmbH) Zum Aufnehmen der Daten des Piezelektr. Körpers
CASSY Lab	SXX	-	(LD Didactic GmbH) Zum Verarbeiten der Daten vom Sensor
Piezoelektr. Körper	txx	-	Reagiert auf die Schallwellen im Medium mit einer elektr. Spannung

¹Die Unsicherheit wurde aus dem Manual des Cassy-Sensors genommen [6]

Tabelle 1:	(Fortsetzung)
------------	---------------

Gerät	Gerät-Nr.	Unsicherheit	Bemerkungen
Stativstange	uxx	$(1500 \pm 2) \mathrm{mm}$	Schützt die Testobjekte
Alustange	VXX	$(1500 \pm 2) \mathrm{mm}$	Testobjekt
Messingstange	wxx	$(1500 \pm 2) \mathrm{mm}$	Testobjekt
Kupferstange	XXX	$(1500 \pm 2) {\rm mm}$	Testobjekt
Stahlstange	yxx	$(1500 \pm 2) \mathrm{mm}$	Testobjekt
Holzstab	ZXX	-	-
PC mit Windows 95/98/NT oder höher	aax	1 μs	Um CASSY Lab zu laufen
Anregerstab	abx	-	Um die Testobjekte anzuregen

5 Versuchsdurchführung und Messergebnisse

Da es drei Objektiven, in diesem Experiment gibt, wird dieses Kapitel in folgende drei Unterkapitel geteilt:

- 1. Quincke Resonanzrohr
- 2. Kundt'sches Rohr
- 3. Schallgeschwindigkeit in Stäben

5.1 Quincke Resonanzrohr

In den folgenden Punkten wurde der Ablauf des Experiment, beschrieben um die Wellenlänge λ von der Sinusschwingung $\nu=(1600,00\pm0,01)$ Hz, welche durch den Lautsprecher ausgesendet wird. Der Aufbau ist, so zu vollziehen, wie im Kapitel Versuchsanordnung in Abbildung 1 ersichtlich.

5.1.1 Ablauf

- 1. Der Ausgleichsbehälter wird so hoch gehoben, dass das Rohr fast zur Gänze gefüllt ist.
- 2. Nun wird der Ausgleichsbehälter langsam abgesenkt.
- 3. Während dem Absenken wird der im Rohr sinkende Wasserspiegel mit einer Kamera aufgenommen, wobei ein Zollstab auch neben dem Rohr gut ersichtlich zu sehen ist.
- 4. Verwendet man ein Videobearbeitungsprogramm kann man den genauen Zeitpunkt, der Resonanz bestimmen und somit auch das richtige Bild der Aufnahme, welches den Messwert beinhaltet.

5. Das Bild mit dem Messwert wird dann mittels dem Bildbearbeitungsprogramm GIMP untersucht. Die maximale Anzahl an sichtbaren Skalenstrichen wurden als Maßstab verwendet um ± 7 px Ableseauflösung zu haben.

Durch das mehrmalige Durchführen dieses Ablaufes sind folgende Messwerte entstanden, siehe Tabelle 2:

Tabelle 2: Stellen x_i entlang des Zollstabs wo Resonanz im Quinckerohr stattfindet. Alle Messungen sind in cm und sind auf ± 0.3 mm

i	Messreihe 1.	Messreihe 2.	Messreihe 3.	Messreihe 4.	Messreihe 5.
1	3,45	-	-	-	3,45
2	14,25	14,15	14,10	14,15	14,15
3	24,95	24,95	24,65	24,90	24,90
4	$35,\!55$	35,60	35,60	35,40	35,40
5	46,30	46,25	46,30	45,90	45,90
6	56,75	56,75	56,90	56,95	56,95

5.2 Kundt'sches Rohr

In den folgenden Punkten wurde der Ablauf des Experiment beschrieben um die Wellenlänge λ der stehenden Welle im Kundt'schen Rohr zu bestimmen. Der Aufbau ist, so zu vollziehen, wie im Kapitel Versuchsanordnung in Abbildung 2 ersichtlich.

5.2.1 Ablauf

- 1. Nachdem Aufbau wird der Glasstab durch einen Schwamm erregt, indem dieser entlang des Stabes gezogen wird.
- 2. Dadurch bildet sich eine Welle im Stab, welche an das Kundt'sche Rohr weiter gegeben wird.
- 3. Die entstandenen stehenden Wellen machen sich durch das Ablagern des Korkstaubes im Rohr sichtbar.
- 4. Werden die Abstände der Knoten, neben einem Zollstab, mit einer Kamera aufgenommen, ist es möglich die Stellen der Bäuche zu bestimmen.
- 5. Verwendet man ein Videobearbeitungsprogramm kann man den genauen Zeitpunkt, der Resonanz bestimmen und somit auch das richtige Bild der Aufnahme, welches den Messwert beinhaltet.
- 6. Das Bild mit dem Messwert wird dann mittels dem Bildbearbeitungsprogramm GIMP untersucht. Die maximale Anzahl an sichtbaren Skalenstrichen wurden als Maßstab verwendet um ± 15 px Ableseauflösung zu haben.

Durch das Durchführen dieses Ablaufes sind folgende Messwerte für die Stellen der Knoten entstanden, siehe Tabelle 3:

Tabelle 3: Stellen entlang des Zollstabs wo sich Bäuche der stehenden Wellen im Kundt'schen Rohr befinden. Alle Messungen sind in cm und sind mit einer Unsicherheit von ± 2 mm.

i	Stellen
1	96,9
2	87,1
3	77,0
4	67,1
5	57,3
6	47,2

5.3 Schallgeschwindigkeit in Stäben

Der Aufbau ist folgender Maßen zu vollziehen. Der, zu untersuchende, Stab, ist in ein eingespanntes vertikal Rohr einzuführen, damit dieser frei beweglich bleibt. Am unteren Ende befindet sich ein piezoelektrischer Körper, welcher mit dem Cassy Lab System durch signaltragende Kabel verbunden wird. In den folgenden Punkten wurde der Ablauf des Experiment beschrieben um die Schallgeschwindigkeit c in verschieden Stäben zu bestimmen.

5.3.1 Ablauf

- 1. Nachdem Aufbau wird der, zu untersuchende, Stab durch einen Schlag angeregt.
- 2. Die propagierende Druckwelle wird von dem piezoelektrischen Körper in ein Spannungsignal, umgewandelt, welches mit dem Cassy Lab aufgezeichnet wird.
- 3. Die Daten werden im Cassy Lab mit einer Skala, ausgegeben.
- 4. Ein Bild der Messwert wird dann mittels dem Bildbearbeitungsprogramm GIMP untersucht. Die maximale Anzahl an sichtbaren Skalenstrichen wurden als Maßstab verwendet um ± 4 px Ableseauflösung zu haben.

Durch das Durchführen dieses Ablaufes sind folgende Messwerte für die Abstände von n Perioden entstanden, siehe Tabelle 4:

Tabelle 4: Den gemessenen Abstand l (in px) von n Perioden mit einem Maß m (in px/5ms), welches Pixel in Zeit umwandelt. Alle l Werte haben eine Unsicherheit von 4 px und m Werte haben eine Unsicherheit von 4 px/5ms. Diese drei Werte wurden für folgende Stoffe aus den Diagrammen ermittelt.

 l_A, n_A, m_A sind die drei zuvor erwähnten Werte für Aluminium

 $l_K,\,n_K,\,m_K$ sind die drei zuvor erwähnten Werte für Kupfer

 $l_M,\,n_M,\,m_M$ sind die drei zuvor erwähnten Werte für Messing

 l_S, n_S, m_S sind die drei zuvor erwähnten Werte für Stahl

i	n_A	l_A	m_A	n_K	l_K	m_K	n_M	l_M	m_M	n_S	l_S	m_S
Einheit	-	px	px/5ms									
1	9	1222	1263	6	996	1254	5	860	1270	9	1206	1248
2	9	1182	1262	6	992	1258	6	1084	1270	9	1199	1247
3	9	1165	1261	6	990	1256	6	1067	1271	9	1205	1246
4	8	1055	1260	7	1190	1260	4	642	1271	9	1206	1246
5	9	1206	1258	7	1191	1256	5	869	1276	9	1208	1248
6	9	1213	1258	7	1187	1256	5	869	1272	9	1206	1249
7	9	1157	1264	7	1192	1253	5	870	1275	9	1206	1248
8	9	1197	1260	6	991	1254	5	872	1275	8	1056	1246
9	8	1057	1258	7	1190	1262	4	642	1270	8	1055	1250
10	8	1054	1258	7	1191	1262	5	869	1270	8	1059	1250
11	-	-	-	6	991	1252	ı	-	-	-	-	-

6 Auswertung

Da es drei Objektiven, in diesem Experiment gibt, wird dieses Kapitel in folgende drei Unterkapitel geteilt:

- 1. Quincke-Resonanzrohr Auswertung
- 2. Kundt'sches Rohr Auswertung
- 3. Bestimmung des E-Moduls von diversen Materialien

6.1 Quincke-Resonanzrohr Auswertung

Kombiniert man nun die Messwerte aus dem Kapitel Quincke Resonanzrohr mit den Gleichungen aus Voraussetzungen und Grundlagen kommt man zuerst auf die mehrere Messwerte für die Wellenlänge λ der Schallwelle und kombiniert mit der Frequenz ν des Signalgenerators kann die Schallgeschwindigkeit in Luft c_{Luft} , nach Gleichung 1, bestimmt werden.

Tabelle 5: Errechnete Wellenlängen $\lambda_i = x_{i+1} - x_i$ (in cm) aus den Daten, der Tabelle 2, von einer Sinusschwingung mit $(1600,00 \pm 0,01)$ Hz. Wobei λ der Mittelwerte der Messwerte λ_i ist und der Fehler den Standarderror und den Fehler bei der Manufaktur des Zollstabs (ein Skalenabstand auf die Gesamtlänge also $\pm 0,5$ mm) berücksichtig.

i	Messreihe 1.	Messreihe 2.	Messreihe 3.	Messreihe 4.	Messreihe 5.
1	10,8	-	-	-	10,75
2	10,7	10,8	10,55	10,75	10,8
3	10,6	10,65	10,95	10,5	10,75
4	10,75	10,65	10,7	10,5	10,75
5	10,45	10,5	10,6	11,05	10,5
λ	$(10,68 \pm 0,09) \mathrm{cm}$				

Mit λ und ν bekannt erhält man für die Schallgeschwindigkeit in Luft:

$$c_{Luft} = (342 \pm 3) \, \frac{\mathrm{m}}{\mathrm{s}}$$

Da c_{Luft} nun bekannt ist, ist es für uns auch möglich die Adiabatenexponente κ mit der Umgebungstemperatur $\theta = (18.4 \pm 0.6)$ °C, wenn Gleichung 4 nach κ umformt wird, zu bestimmen. Zudem wurden $p_0 = 1013.25 \,\text{hPa}$ [4] und $\rho_0 = 1.29 \cdot 10^{-3} \,\frac{\text{g}}{\text{cm}^3}$ [9] von diesen Quellen entnommen. Man kommt somit auf einen Wert von 1.39 ± 0.03 für κ .

6.2 Kundt'sches Rohr Auswertung

Kombiniert man nun die Messwerte aus dem Kapitel Kundt'sches Rohr mit den Gleichungen aus Voraussetzungen und Grundlagen kommt man zuerst auf die mehrere Messwerte für die Wellenlänge λ mit Gleichung 2 indem man über Messpunkte, die über einen Abstand von 1,5 Wellenlängen spannen, gemittelt wird $\lambda_i = \frac{2(l_{i+2}-l_i)}{3}$.

Tabelle 6: Errechnete Wellenlängen $\lambda_i = \frac{2(l_{i+2}-l_i)}{3}$ (in cm) aus den Daten, der Tabelle 3, von einer im Kundt'schen Rohr entstanden stehende Welle. Wobei λ der Mittelwerte der Messwerte λ_i ist und der Fehler den Standarderror und den Fehler bei der Manufaktur des Zollstabs (ein Skalenabstand auf die Gesamtlänge also $\pm 1 \,\mathrm{mm}$) berücksichtig.

i	λ_i
1	19,87
2	19,87
3	19,87
λ	$(19.9 \pm 0.2) \mathrm{cm}$

Da man durch diese Methode dreimal die gleiche Zahl für die Daten bekommen hat, wurden die Werte um einen Millimeter variiert und die maximale Abweichung bestimmt und dieser dem Herstellerfehler hinzufügt und aufgerundet. Mit der Wellenlänge $\lambda_{Luft} = (19.9 \pm 0.2)\,\mathrm{cm}$ und der in Quincke-Resonanzrohr Auswertung gemessenen Schallgeschwindigkeit c_{Luft} ist es möglich anhand Gleichung 6 die Schallgeschwindigkeit im Glasstab c_{Glas} zu bestimmen. Da die Wellenlänge im Glas $\lambda_{Glas} = (300.0 \pm 0.4)\,\mathrm{cm}$, wie in Abbildung 2 ersichtlich, die doppelte Länge des Glasstabes, siehe Tabelle 1 mxx, ist. Somit bekommt man einen Wert für die Schallgeschwindigkeit in Glas:

$$c_{Glas} = (5160 \pm 100) \, \frac{\mathrm{m}}{\mathrm{s}}$$

Weiters lässt sich mit der Dichte von Glass $\rho_{Glas}=2500\,\frac{\mathrm{kg}}{\mathrm{m}^3}$ [12] durch Gleichung 7 der E-Modul des Glasstabes bestimmen:

$$E_{Glas} = (67 \pm 3) \, \text{GPa}$$

6.3 Bestimmung des E-Moduls von diversen Materialien

Nimmt man nun die Messwerte aus dem Kapitel Schallgeschwindigkeit in Stäben ist es möglich die Schallgeschwindigkeiten c in den diversen Materialien zu bestimmen, folgender einfachen Beziehung:

$$c = \frac{2L}{t}$$

Wobei L die Länge des Stabes ist und t die Periodendauer des aufgenommen Signals ist. t lässt sich mit den Daten aus Tabelle 4 wie folgt berechnen:

$$t_{*_i} = \frac{5l_{*_i}}{m_{*_i}} \tag{10}$$

Wobei * ein Platzhalter für die diveresen Material Initialien ist. Mit dieser Gleichung 10 erhalten wir folgende Messwerte für die Peridendauern t_{*i} :

Tabelle 7: Errechnete Periodendauern $t_{*_i} = \frac{5l_{*_i}}{m_{*_i}}$ (in ms) aus den Daten, der Tabelle 4, von einer im durch Anschlagen im Stab enstandene propagierende Welle. Wobei t_* der Mittelwerte der Messwerte t_{*_i} von dem Material * ist und der Fehler den Standarderror und das maximale Auflöseverfögen einer RS-232 Verbindung ($\pm 50\,\mu s$) berücksichtigt.

 $t_{A_i},\,t_A$ sind die gemessenen Periodendauern und deren Mittelwerte für Aluminium $t_{K_i},\,t_K$ sind die gemessenen Periodendauern und deren Mittelwerte für Kupfer $t_{M_i},\,t_M$ sind die gemessenen Periodendauern und deren Mittelwerte für Messing $t_{S_i},\,t_S$ sind die gemessenen Periodendauern und deren Mittelwerte für Stahl

i	t_{A_i}	t_{K_i}	t_{M_i}	t_{S_i}
1	0,605	0,794	0,846	0,604
2	0,585	0,789	0,854	0,601
3	0,577	0,788	0,839	0,604
4	0,598	0,787	0,842	0,605
5	0,599	0,790	0,851	0,605
6	0,603	0,788	0,854	0,603
7	0,572	0,793	0,853	0,604
8	0,594	0,790	0,855	0,605
9	0,600	0,786	0,843	0,603
10	0,598	0,786	0,855	0,605
_11	-	0,792	-	-
_	t_A	t_K	t_M	t_S
_	$0,593 \pm 0,017$	$0,789 \pm 0,011$	$0,849 \pm 0,016$	$0,604 \pm 0,010$

Um die maximale zeitliche Unsicherheit zu bestimmen wurde Angenommen das jede zeitlich Messung plus minus ein Packet genau bestimmt wurde und da der Standard RS-232 verwendet wurde kommt man auf eine zeitliche Unsicherheit von $\pm 50\,\mu s$. Da jedoch immer mehrer Perioden gemessen wurde, verkleinert sich diese Unsicherheit um den Mittel der Anzahl der Perioden. Weiters erhält man die folgenden Werte für die Schallgeschwindigkeiten:

Tabelle 8: Schallgeschwindigkeiten in diverser Materialien:

 c_A Schallgeschwindigkeit in Aluminium

 c_K Schallgeschwindigkeit in Kupfer

 c_M Schallgeschwindigkeit in Messing

 c_S Schallgeschwindigkeit in Stahl

Alle Werte haben die Einheit m

	Wert	Δ
c_A	5060	± 150
c_K	3800	±60
c_M	3530	±80
c_S	4970	±70

Durch Gleichung 7 lässt sich wie bei Kundt'sches Rohr Auswertung das E-Modul der diversen Materialien bestimmen:

Tabelle 9: E-Module von diverser Materialien berechnet durch mit den Schallgeschwindigkeiten c_* aus Tabelle 8 und den Dichten ρ_* der Materialien *:

 E_A E-Modul und die Dichte E_A von Aluminium

 E_K E-Modul und die Dichte E_K von Kupfer

 E_M E-Modul und die Dichte E_M von Messing

 ${\cal E}_S$ E-Modul und die Dichte ${\cal E}_S$ von Stahl

Materialien	E_*/GPa	$\Delta E_*/\mathrm{GPa}$	$\rho_*/\frac{\mathrm{kg}}{\mathrm{m}^3}$
Aluminium	69	±5	2700
Kupfer	130	±4	8960
Messing	109	±5	8730
Stahl	190	±6	7850

7 Zusatz am Genfer See

Als Zusatzaufgabe soll sich ein Verfahren überlegt werden, wie man vor 200 Jahren in der Schweiz die Schallgeschwindigkeit von Wasser bestimmen hätte können.

Um dies zu vollbringen, läutet eine Person auf der einen Seite des Sees mit der Glocke unter Wasser, um ein Signal auszusenden. Gleichzeitig wird ein Lichtblitz ausgesandt, um die Zeitmessung auf der anderen Seite zu starten. Mit einem Hörrohr wird nun auf der anderen Seite auf das akustische Signal gewartet und so über Laufzeitmessung die Geschwindigkeit des Signals errechnet. Dazu muss natürlich die Distanz der beiden Uferseiten bekannt sein.

8 Diskussion und Zusammenfassung

Nun werden die verwendeten Methoden diskutiert und die Ergebnisse zusammengefasst.

8.1 Diskussion

Bei der Bestimmung der Schallgeschwindigkeit beim Quincke Resonanzrohr sind dankt der hinzufügten Tonspur und der Aufzeichnung die Resonanzstellen sehr gut bestimmbar. Dadurch konnte die Schallgeschwindigkeit mit kleinen Fehlerbalken relativ zum errechnten Wert bestimmt werden. Der erhaltne Wert für die Schallgeschwindigkeit beinhaltet in seiner Unsicherheit, dennoch den Literaturwert, siehe Tabelle 10. Weiters wurde noch die Adiabatenexponente κ bestimmt, welche auch, wegen den niedrigen Unsicherheiten der Schallgeschwindigkeit, eine niedrige relative Unsicherheit besitzt. Der erhaltene Wert beinhaltet in seiner Unsicherheit auch den Literaturwert, siehe Tabelle 10.

Bei der Bestimmung des E-Modul E_{Glas} eines Glasstabes wurde ein Kundt'sches Rohr verwendet um zunächst die Schallgeschwindigkeit c_{Glas} im Stab zu bestimmen. Durch die Bestimmung der Stellen der Bäuche mittels Bildbearbeitungsprogramm und der, in Versuchsanordnung erwähnten, Messwertmittelung konnte die Wellenlänge von einer stehenden Welle bestimmt werden. Durch die die Schallgeschwindigkeit c_{Glas} und auch gleich der E-Modul E_{Glas} bestimmt wurde. Die Werte beinhalten die Literaturwerte in ihrer Unsicherheit, siehe Tabelle 10.

Bei der Bestimmung der E-Module der diversen Materialien konnte die Länge und Zeit wieder genau bestimmt werden durch die Verwendung eines Bildbearbeitungsprogramm. Dadurch sind selbst die relative Unsicherheiten der dreifachen Standardabweichung niedrig, der Schallgeschwindigkeit und der E-Module in den diversen Materialien. Alle erhaltenen Werte beinhalten die Literaturwerte in ihren Unsicherheitsintervallen, siehe Tabelle 10.

Tabelle 10: Hier werden die erhaltenen Werte den Literaturwerten gegenübergestellt.

 c_{Luft} die Schallgeschwindigkeit in Luft

 κ die Adiabaten
exponente von Luft

 E_{Glas} E-Modul von und die Schallgeschwindigkeit c_{Glas} in Glas

 E_A E-Modul von und die Schallgeschwindigkeit c_A in Aluminium

 ${\cal E}_K$ E-Modul von und die Schallgeschwindigkeit c_K in Kupfer

 E_M E-Modul von und die Schallgeschwindigkeit c_M in Messing

 E_S E-Modul von und die Schallgeschwindigkeit c_S in Stahl

Alle Werte wurden unter folgenden Bedingungen aufgenommen:

Umgebungstemperatur @ (18.4 ± 0.6) °C

Luftdruck @ $1013,25\,\mathrm{hPa}$

Luftdichte @ 1,29 \cdot 10⁻³ $\frac{g}{cm^3}$

Symbol:	Bestimmter Wert	Literaturwert	
c_{Luft}	$(342 \pm 3) \frac{m}{s}$	$343.2 \frac{m}{s} [10]$	
κ	$1,39 \pm 0,03$	$1,\!417[1]$	
c_{Glas}	$(5.16 \pm 0.10) \cdot 10^3 \frac{\text{m}}{\text{s}}$	$5.14 \cdot 10^3 \frac{\text{m}}{\text{s}}[11]$	
E_{Glas}	$(67 \pm 3) \mathrm{GPa}$	$50\mathrm{GPa}$ to $90\mathrm{GPa}[2]$	
c_A	$(5.06 \pm 0.15) \cdot 10^3 \frac{\text{m}}{\text{s}}$	$5,00 \cdot 10^3 \frac{\mathrm{m}}{\mathrm{s}}[11]$	
c_K	$(3.80 \pm 0.06) \cdot 10^3 \frac{\text{m}}{\text{s}}$	$3.81 \cdot 10^3 \frac{\mathrm{m}}{\mathrm{s}}[11]$	
c_M	$(3.53 \pm 0.08) \cdot 10^3 \frac{\mathrm{m}}{\mathrm{s}}$	$3,48 \cdot 10^3 \frac{\mathrm{m}}{\mathrm{s}}[11]$	
c_S	$(4.97 \pm 0.07) \cdot 10^3 \frac{\mathrm{m}}{\mathrm{s}}$	$5,00 \cdot 10^3 \frac{\mathrm{m}}{\mathrm{s}}[11]$	
E_A	$(69 \pm 5) \mathrm{GPa}$	$68,9\mathrm{GPa}[14][8]$	
E_K	$(130 \pm 4) \mathrm{GPa}$	121 GPa to 138 GPa[3]	
E_M	$(109 \pm 5) \mathrm{GPa}$	102 GPa to 125 GPa[2]	
E_S	$(190 \pm 6) \mathrm{GPa}$	$193\mathrm{GPa}[7]$	

8.2 Zusammenfassung

Da alle erhaltenen Werte die Literaturwerte beinhalten lässt sich sagen dass die Methoden zureichend sind um diese Werte zu bestimmen. Wenn die Auswertung richtig gemacht wurde sind auch die relativen Unsicherheiten aller Werte niedrig. Im Ganzen lässt sich sagen dass dieses Experiment die Literaturwerte weiter unterstützt.

Ein Vebesserungs Vorschlag wäre, wenn die Werte noch genauer bestimmt werden müssen genauer Messgeräte verwendet werden. Außer beim Kundt'schen Rohr dort müssen sollte man vielleicht die Glasstange mehrmals anregen und noch mehr Messwerte sammeln.

Literatur

- [1] Rainer Ahrberg u. a. *Handbuch Maschinenbau: Grundlagen und Anwendungen der Maschinenbau-Technik.* Wiesbaden: Springer-Verlag, 2011. ISBN: 978-3-8348-1025-0.
- [2] Aluminum Alloys Mechanical Properties. Young's Modulus or Tensile Modulus alt. Modulus of Elasticity and Ultimate Tensile and Yield Strength for steel, glass, wood and other common materials. Engineering ToolBox. 2008. URL: https://www.engineeringtoolbox.com/properties-aluminum-pipe-d_1340.html (besucht am 31.05.2021).
- [3] David EJ Armstrong, Angus J Wilkinson und Steve G Roberts. "Measuring anisotropy in Young's modulus of copper using microcantilever testing". In: *Journal of materials research* 24.11 (2009), S. 3268–3276.
- [4] Wolfgang Demtröder. Experimentalphysik 1: Mechanik und Wärme. de. Google-Books-ID: 3PoiBAAAQBAJ. Springer-Verlag, März 2006. ISBN: 9783540299349.
- [5] Fehlerfortpflanzung. de. Page Version ID: 205827844. Nov. 2020. URL: https://de.wikipedia.org/w/index.php?title=Fehlerfortpflanzung&oldid=205827844 (besucht am 08.05.2021).
- [6] Michael Hund, Karl-Heinz Wietzke und Timm Hanschke. CASSY® Lab Manual (524 202). 21. Sep. 2007. URL: https://www.ld-didactic.de/software/524202.pdf.
- [7] Esther Mar. Young's Modulus (Elastic Modulus, Modulus of Elasticity). en. BAI-LEY METAL PROCESSING LIMITED. 28. März 2019. URL: https://www.baileymetalprocessing.com/techmatters/blog-category-1/2019/03/28/young-s-modulus-(elastic-modulus-modulus-of-elasticity)#:~:text=The%20tensile%20Young's%20Modulus%20of%20austenitic%20stainless%20steels%20is%20about, temperature%20decreases%20the%20Young's%20Modulus. (besucht am 31.05.2021).
- [8] Properties: Aluminum Advantages and Properties of Aluminum. en. URL: https://www.azom.com/properties.aspx?ArticleID=1446 (besucht am 31.05.2021).
- [9] Quincke'sches und Kundt'sches Rohr. de. Petersgasse 16, A-8010 Graz: Institut f. Experimentalphysik Technische Universitat Graz, 15. Feb. 2012.
- [10] Schallgeschwindigkeit. de. URL: https://www.geothermie.de/bibliothek/lexikon-der-geothermie/s/schallgeschwindigkeit.html (besucht am 01.06.2021).
- [11] Speed of Sound in Solids and Metals. Engineering ToolBox. 2004. URL: https://www.engineeringtoolbox.com/sound-speed-solids-d_713.html (besucht am 31.05.2021).
- [12] Verarbeitungsrichtlinie für Kalk-Natronsilicatglas hergestellt nach DIN EN 572.

 Euroglas GmbH. Dammühlenweg 60 39340 Haldensleben Germany. URL: https://www.euroglas.com/uploads/tx_lwproductdatabase/Float%20Verarbeitungsrichtlinie%20RVN%2020181218-01.pdf.

[13]] Braunschweig Wolfgang Kessel. Die ISO/BIPM-GUM Sicht:Schätzwert & Mess sicherheit. 2004.				
[14]	Young's Modulus - Tensile and Yield Strength for common Materials. Mechanic properties of aluminum alloys - tensile strength, yield strength and more. Engineering ToolBox. 2003. URL: https://www.engineeringtoolbox.com/youngmodulus-d_417.html (besucht am 31.05.2021).				
Abb	oildungsverzeichnis				
1 2 3	Quincke-Resonanzrohr Kundt'sches Rohr Zur Bestimmung der Wellenlänge				
Tab	ellenverzeichnis				
1	Geräteliste				
2	Stellen x_i entlang des Zollstabs wo Resonanz im Quinckerohr stattfindet. Alle Messungen sind in cm und sind auf $\pm 0.3 \mathrm{mm}$				
3	Stellen entlang des Zollstabs wo sich Bäuche der stehenden Wellen im Kundt'schen Rohr befinden. Alle Messungen sind in cm und sind mit einer Unsicherheit von $\pm 2\text{mm}$				
4	Den gemessenen Abstand l (in px) von n Perioden mit einem Maß m (in px/5ms), welches Pixel in Zeit umwandelt. Alle l Werte haben eine Unsicherheit von 4 px und m Werte haben eine Unsicherheit von 4 px/5ms. Diese drei Werte wurden für folgende Stoffe aus den Diagrammen ermittelt. l_A , n_A , m_A sind die drei zuvor erwähnten Werte für Aluminium l_K , n_K , m_K sind die drei zuvor erwähnten Werte für Kupfer l_M , n_M , m_M sind die drei zuvor erwähnten Werte für Messing l_S , n_S , m_S sind die drei				
5	zuvor erwähnten Werte für Stahl				
6	Errechnete Wellenlängen $\lambda_i = \frac{2(l_{i+2}-l_i)}{3}$ (in cm) aus den Daten, der Tabelle 3, von einer im Kundt'schen Rohr entstanden stehende Welle. Wobei λ der Mittelwerte der Messwerte λ_i ist und der Fehler den Standarderror und den Fehler bei der Manufaktur des Zollstabs (ein Skalenabstand auf die Gesamtlänge also ± 1 mm) berücksichtig				

7	Errechnete Periodendauern $t_{*_i} = \frac{5l_{*_i}}{m_{*_i}}$ (in ms) aus den Daten, der Tabelle 4,	
	von einer im durch Anschlagen im Stab enstandene propagierende Welle.	
	Wobei t_* der Mittelwerte der Messwerte t_{*_i} von dem Material $*$ ist und	
	der Fehler den Standarderror und das maximale Auflöseverfögen einer	
	RS-232 Verbindung ($\pm 50\mu s$) berücksichtigt. t_{A_i},t_A sind die gemessenen	
	Periodendauern und deren Mittelwerte für Aluminium t_{K_i} , t_K sind die	
	gemessenen Periodendauern und deren Mittelwerte für Kupfer t_{M_i} , t_M	
	sind die gemessenen Periodendauern und deren Mittelwerte für Messing	
	t_{S_i} , t_S sind die gemessenen Periodendauern und deren Mittelwerte für	
	Stahl	13
8	Schallgeschwindigkeiten in diverser Materialien: c_A Schallgeschwindigkeit	10
	in Aluminium c_K Schallgeschwindigkeit in Kupfer c_M Schallgeschwindig-	
	keit in Messing c_S Schallgeschwindigkeit in Stahl Alle Werte haben die	
	Einheit $\frac{m}{s}$	14
9	E-Module von diverser Materialien berechnet durch mit den Schallge-	
	schwindigkeiten c_* aus Tabelle 8 und den Dichten ρ_* der Materialien $*$:	
	E_A E-Modul und die Dichte E_A von Aluminium E_K E-Modul und die	
	Dichte E_K von Kupfer E_M E-Modul und die Dichte E_M von Messing E_S	
	E-Modul und die Dichte E_S von Stahl	14
10	Hier werden die erhaltenen Werte den Literaturwerten gegenübergestellt.	
	c_{Luft} die Schallgeschwindigkeit in Luft κ die Adiabatenexponente von Luft	
	E_{Glas} E-Modul von und die Schallgeschwindigkeit c_{Glas} in Glas E_A E-	
	Modul von und die Schallgeschwindigkeit c_A in Aluminium E_K E-Modul	
	von und die Schallgeschwindigkeit c_K in Kupfer E_M E-Modul von und die	
	Schallgeschwindigkeit c_M in Messing E_S E-Modul von und die Schallge-	
	schwindigkeit c_S in Stahl Alle Werte wurden unter folgenden Bedingun-	
	gen aufgenommen: Umgebungstemperatur @ (18.4 ± 0.6) °C Luftdruck @	
	1013 25 hPa Luftdichte @ 1 20 . 10^{-3} $\frac{g}{}$	16