#### Overview of Module - 1

## **Topics**

- The wave equation
- Energy and power of waves
- Superposition
- Standing waves as sums of traveling waves
- Fourier series

#### Harmonic Waves

A simple harmonic wave has sinusoidal form:



- For a string along the x-axis, this is local displacement in y-direction at some instant.
- For a <u>sound wave</u> traveling in the x-direction, this is local x-displacement at some instant.

## **Traveling Wave**

 Experimentally, a pulse traveling down a string under tension maintains its shape:



• Mathematically, this means the perpendicular displacement y stays the same function of x, but with an origin moving at velocity v:

$$y = f(x,t) = f(x-vt)$$

# Traveling Harmonic Wave

• A sine wave of wavelength  $\lambda$ , amplitude A, traveling at velocity  $\nu$  has displacement

$$y = A \sin\left(\frac{2\pi}{\lambda}(x - vt)\right) = A \sin(kx - \omega t)$$

$$vt$$

#### Harmonic Wave Notation

• A sine wave of wavelength  $\lambda$ , amplitude A, traveling at velocity  $\nu$  has displacement

$$y = A \sin\left(\frac{2\pi}{\lambda}(x - vt)\right)$$

- This is usually written  $y = A \sin(kx \omega t)$ , where the "wave number"  $k = 2\pi / \lambda$  and  $\omega = vk$ .
- As the wave is passing, a single particle of string has simple harmonic motion with frequency  $\omega$  radians/sec, or  $f = \omega/2\pi$  Hz. Note that  $v = \lambda f$

## The Wave Equation

• The wave equation is just Newton's law F = ma applied to a little bit of the vibrating string:



• The tiny length of string shown in red has length  $m = \mu dx$ , is accelerating in the y-direction with acceleration  $a = \partial^2 f(x,t)/\partial t^2$ , and the force F is the sum of the tensions at the two ends of the bit of string, which don't cancel because they're not parallel. Animation!

## The Wave Equation

- The y-direction component of the tension T at the front end of the string is just T multiplied by the slope (for small amplitudes),  $T \partial f(x + dx, t) / \partial x$ .
- At the back end, T points backwards, so the downward component is  $-T \partial f(x,t) / \partial x$ .



The total y-direction force is therefore

$$F = T\partial f(x + dx, t) / \partial x - T\partial f(x, t) / \partial x = T(\partial^2 f(x, t) / \partial x^2) dx$$

## Wave Equation

• We're ready to write F = ma for that bit of string:

$$F = T\partial f(x+dx,t)/\partial x - T\partial f(x,t)/\partial x = T(\partial^2 f(x,t)/\partial x^2)dx$$

- $m = \mu dx$ ,  $a = \partial^2 f(x,t) / \partial t^2$ .
- Putting it all together:

$$\frac{\partial^2 f}{\partial x^2} = \frac{\mu}{T} \frac{\partial^2 f}{\partial t^2}$$

 Since this is nothing but Newton's second law, it must be true for any wave on a string.

# Traveling Wave Equation

- Recall that from observation a traveling wave has the form y = f(x-vt).
- From the chain rule, for that function

$$\frac{\partial f}{\partial t} = \frac{\partial f}{\partial (x - vt)} \frac{\partial (x - vt)}{\partial t} = -v \frac{\partial f}{\partial x}, \quad \frac{\partial^2 f}{\partial t^2} = v^2 \frac{\partial^2 f}{\partial x^2}$$

• Comparing this with the wave equation, we see that

see that 
$$\frac{\partial^2 f}{\partial x^2} = \frac{\mu}{T} \frac{\partial^2 f}{\partial t^2} = \frac{1}{v^2} \frac{\partial^2 f}{\partial t^2}$$

This proves that  $v = \sqrt{T / \mu}$ .

## Harmonic Wave Energy

- Writing the wave  $y = A\sin(kx \omega t)$  where remember  $k = 2\pi / \lambda$ ,  $\omega = vk$  it's clear that at any fixed point x a bit of string dx is oscillating up and down in simple harmonic motion with amplitude A and frequency  $f = \omega/2\pi$  Hz.
- The energy of that bit dx is <u>all</u> kinetic when y = 0,  $(kx = \omega t)$ , the y-velocity at that instant is  $v = \frac{\partial y}{\partial t} = -\omega A \cos(kx \omega t) = -\omega A$

so the total energy in dx is  $\frac{1}{2}mv^2 = \frac{1}{2}(\mu dx)A^2\omega^2$ .



- The total energy in dx is  $\frac{1}{2}mv^2 = \frac{1}{2}(\mu dx)A^2\omega^2$ , so in length L the wave energy is  $\frac{1}{2} \mu LA^2 \omega^2$ .
- Imagine now a group of waves, choose length v, moving to the right at speed  $\nu$  (passes you in just one second!):



 The power delivered by the waves is the energy passing a fixed point per second—that is

$$\overline{P} = \frac{1}{2} \mu v A^2 \omega^2 = 2\pi^2 \mu v A^2 f^2$$

### The Wave Equation and Superposition

- If you have two solutions to the wave equation, y = f(x,t) and y = g(x,t), then y = f + g is also a solution to the wave equation!
- This can be checked with the actual equation:

$$\frac{\partial^2 (f+g)}{\partial x^2} = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 g}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 f}{\partial t^2} + \frac{1}{v^2} \frac{\partial^2 g}{\partial t^2} = \frac{1}{v^2} \frac{\partial^2 (f+g)}{\partial t^2}$$

• Differential equations with this property are called "linear". It means you can build up any shape wave from harmonic waves.

#### A Wave Hits a Wall...

- When a wave hits a wall, the energy and wave form are reflected.
- What does this look like? Let's take the case of a wave on a string, the <u>string fixed at one</u> end.
- Now think about a harmonic wave hitting a wall!

#### Harmonic Wave Addition

Two harmonic waves of the same wavelength and amplitude, but moving in opposite directions, add to give a standing wave.



Notice the standing wave also satisfies  $\lambda f = v$ , even though it's not traveling!

# Standing Wave Formula

 To add two traveling waves of equal amplitude and wavelength moving in opposite directions, we use the trig formula for addition of sines:

$$\sin A + \sin B = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$$

Applying this,

$$A\sin(kx - \omega t) + A\sin(kx + \omega t) = 2A\sin kx \cos \omega t$$

• Allowed values of k are given by  $k\ell = \pi, 2\pi, 3\pi...$  where  $\ell$  is the string length.

# Harmonic Wave on String

• The amplitude must always be zero at the ends of the string. From  $\lambda v = f$ , the lowest frequency note (the fundamental, or first harmonic) has the longest allowed wavelength:  $\lambda = 2\ell$ .

• The second harmonic has  $\lambda = \ell$ :



## Nodes and Antinodes



The standing wave has form  $y(x,t) = A \sin kx \cos \omega t = A \sin \frac{2\pi x}{\lambda} \cos 2\pi ft$ 

For a pure note on a string with fixed ends,  $\lambda = 2\ell, \ell, \frac{2}{3}\ell, \dots$ 

At a node, the string never moves:  $\sin \frac{2\pi x}{\lambda} = 0$ ,  $x = 0, \frac{1}{2}\lambda, \lambda, \frac{3}{2}\lambda, \dots$ 

#### **Fourier Series**

We can also build up any type of periodic wave by adding harmonic waves with the right amplitudes—this is called "Fourier analysis": in music, it's building up a complex note from its harmonics: here's a triangle (formed by pulling an instrument string up at the midpoint then letting go?).



#### Pulse Encounter

It's worth seeing how <u>two pulses</u> traveling in opposite directions pass each other:

