

Ma/CS 6a

Class 4: Primality Testing

Is $2^{6972593} - 1$ prime?

By Adam Sheffer

• Email: adamcandobetter@gmail.com

Password: anonymous

There aren't enough crocodiles in the presentations

Only today! 75% off for Morphine and Xanax. Why won't you tell me how to solve the homework?!

Adam make me a public key!

• Euler's totient $\varphi(n)$ is defined as follows: Given $n \in \mathbb{N}$, then

$$\varphi(n) = |\{x \mid 1 \le x < n \text{ and } GCD(x, n) = 1\}|.$$

• In more words: $\varphi(n)$ is the number of natural numbers $1 \le x \le n$ such that x and n are coprime.

$$\varphi(12) = |\{1,5,7,11\}| = 4.$$

Reminder #2: The RSA Algorithm

- Bob wants to generate keys:
 - Arbitrarily chooses primes p and q. \nearrow n = pq \checkmark find $\varphi(n)$. \nearrow
 - Chooses e such that $GCD(\varphi(n), e) = 1.$
 - Find d such that $de \equiv 1 \mod \varphi(n)$.
- Alice wants to pass bob m.
 - Receives n, e from Bob.
 - Returns $X \equiv m^e \mod n$.
- Bob receives X.

 Calculates $X^d \mod n$.

- **Problem.** Given n=pq, where p,q are large primes, find $\varphi(n)$.
 - We need the number of elements in {1,2, ..., n} that are not multiplies of p or q.
 - \circ There are $\frac{n}{p}=q$ numbers are divisible by p.
 - \circ There are $\frac{n}{q}=p$ numbers are divisible by q.
 - Only n = pq is divided by both.
 - Thus: $\varphi(n) = n p q + 1$.

The RSA Algorithm

- Bob wants to generate keys:
 - Arbitrarily chooses primes p and q. n = pq find $\varphi(n)$.
 - Chooses e such that $GCD(\varphi(n), e) = 1.$
 - Find d such that $de \equiv 1 \mod \varphi(n)$.
- Alice wants to pass bob m.
 - Receives n, e from Bob.
 - Returns $X \equiv m^e \mod n$.
- Bob receives X.
 Calculates X^d mod n. √

- **Problem.** Given n=pq, where p,q are large primes, find $e \in \mathbb{N}$ such that $GCD(\varphi(n),e)=1$.
 - We can **choose arbitrary numbers** until we find one that is relatively prime to $\varphi(n)$.
 - For the "worst" values of $\varphi(n)$, a random number is good with probability $1/\log \log n$.

The RSA Algorithm

- Bob wants to generate keys:

 - Chooses e such that $GCD(\varphi(n), e) = 1$.
 - Find d such that $de \equiv 1 \mod \varphi(n)$.
- Alice wants to pass bob m.
 - Receives n, e from Bob.
 - Returns $X \equiv m^e \mod n$.
- Bob receives X.

 Calculates $X^d \mod n$.

- **Recall.** Since $GCD(e, \varphi(n)) = 1$ then there exist $s, t \in \mathbb{Z}$ such that $se + t\varphi(n) = 1$.
- That is, $se \equiv 1 \mod \varphi(n)$.
- We can find s, t by the extended
 Euclidean algorithm from lecture 2.

The RSA Algorithm

- Bob wants to generate keys:
 - Arbitrarily chooses primes p and q. \nearrow n = pq \checkmark find $\varphi(n)$. \checkmark
 - Chooses e such that $GCD(\varphi(n), e) = 1$.
 - Find d such that $de \equiv 1 \mod \varphi(n)$.
- Alice wants to pass bob m.
 - \circ Receives n, e from Bob.
 - Returns $X \equiv m^e \mod n$.
- Bob receives X.

 Calculates $X^d \mod n$.

Quantum Computing

- A bit of a computer contains a value of either 0 or 1.
- A quantum computer contains qubits, which can be in superpositions of states.
- Theoretically, a quantum computer can easily factor numbers and decipher almost any known encryption.

- Let n be a LARGE integer (e.g., 2^{4000}).
- The prime number theorem. The probability of a random $p \in \{1, ..., n\}$ being prime is about $1/\log n$.
- If we randomly choose numbers from $\{1, ..., n\}$, we expect to have about $\log n$ iterations before finding a prime.
 - But how can we check whether our choice is a prime or not?!

Primality Testing

- Given a LARGE $q \in \mathbb{Z}$, how can we check whether q is prime?
- The naïve approach. Go over every number in $\{2, ..., \sqrt{q}\}$ and check whether it divides q.
 - But we chose our numbers to be too large for a computer to go over all of them!

• For any prime p and integer a relatively prime to p, we have

 $a^p \equiv a \bmod p$.

- Pick a random integer a and check whether $a^q \equiv a \mod q$.
 - If not, q is not a prime!
 - ∘ If yes, ???

Pierre de Fermat

Example: Fermat Primality Testing

- Is n = 355207 prime? $2^{355207} \equiv 84927 \mod 355207.$
- n is not prime since $2^n \not\equiv 2 \mod n$.
- We can try 1000 different values of a and see if $a^n \equiv a \bmod n$ for each of them.

- A number $q \in \mathbb{N}$ is said to be a **Carmichael number** if it is not prime, but still satisfies $a^q \equiv a \mod q$ for every a that is relatively prime to q.
 - The smallest such number is 561.
 - Very rare about one in 50 trillion in the range 1 10^{21} .

R. D. Carmichael

Example: Carmichael Numbers

- Claim. Let $k \in \mathbb{N} \setminus \{0\}$ such that 6k+1,12k+1, and 18k+1 are primes. Then n=(6k+1)(12k+1)(18k+1) is a Carmichael number.
- Example.
 - For k = 1, we have that 7,13,19 are primes.
 - $7 \cdot 13 \cdot 19 = 1729$ is a Carmichael number.

$$a^n \equiv a \bmod n$$
.

- **Recall.** Since GCD(a, n) = 1, this is equivalent to $a^{n-1} \equiv 1 \mod n$.
- We rewrite $n = 1296k^3 + 396k^2 + 36k + 1$.
- For any such a, we have

$$a^{n-1} = a^{1296k^3 + 396k^2 + 36k}$$
$$= (a^{6k})^{216k^2 + 66k + 6}.$$

Proof (cont.)

ullet For any a relatively prime to n, we have

$$a^{n-1} = \left(a^{6k}\right)^{216k^2 + 66k + 6}$$

- Recall. If $a \in \mathbb{N}$ is not divisible by a prime p then $a^{p-1} \equiv 1 \bmod p$.
- Since a and 6k-1 are relatively prime $a^{n-1} \equiv 1^{216k^2+66k+6} \equiv 1 \mod 6k+1.$
- Similarly, we have $a^{n-1} \equiv 1 \mod 12k + 1$ and $a^{n-1} \equiv 1 \mod 18k + 1$.
- Since $a^{n-1}-1$ is divisible by the three pairwise coprime integers 6k+1, 12k+1, and 18k+1, it is also divisible by their product n. That is, $a^{n-1} \equiv 1 \mod n$.

 The Miller-Rabin primality test works on every number.

Gary Miller

Michael Rabin

Root of Unity

- Claim. For any prime p, the only numbers $a \in \{1, ..., p\}$ such that $a^2 \equiv 1 \mod p$ are 1 and p-1.
- Example. The solutions to $a^2 \equiv 1 \ mod \ 1009$ are exactly the numbers satisfying $a \equiv 1 \ or \ 1008 \ mod \ 1009$.

- Claim. For any prime p, the only numbers $a \in \{1, ..., p\}$ such that $a^2 \equiv 1 \bmod p$ are 1 and p-1.
- Proof.

$$a^{2} \equiv 1 \bmod p$$

$$a^{2} - 1 \equiv 0 \bmod p$$

$$(a+1)(a-1) \equiv 0 \bmod p$$

• That is, either p|(a+1) or p|(a-1).

Roots of Unity Properties

• Given a prime p > 2, we write

$$p-1=2^sd$$

where d is odd and $s \ge 1$.

- Claim. For any *odd* prime p and any 1 < a < p, one of the following holds.
 - $a^d \equiv 1 \bmod p$.
 - There exists $0 \le r < s$ such that $a^{2^r d} \equiv -1 \mod p$.

- Claim. For any odd prime p and any 1 < a < p, one of the following holds.
 - $a^d \equiv 1 \mod p$.
 - There exists $0 \le r < s$ such that $a^{2^r d} \equiv -1 \mod p$.
- Proof.
 - By Fermat's little theorem $a^{p-1} \equiv 1 \mod p$.
 - \circ Consider $a^{(n-1)/2}$, $a^{(n-1)/4}$, ..., $a^{(n-1)/2^s}$. By the previous claim, each such root is $\pm 1 \ mod \ n$.
 - If all of these roots equal 1, we are in the first case. Otherwise, we are in the second.

Composite Witnesses

- Given a composite (non-prime) *odd* number n, we again write $n-1=2^sd$ where d is odd and $s \ge 1$.
- We say that $a \in \{2,3,4,...,n-2\}$ is a witness for n if
 - ∘ $a^d \not\equiv 1 \mod p$.
 - For every $0 \le r < s$, we have $a^{2^r d} \not\equiv -1 \mod p$.

• Problem. Prove that 91 is not a prime.

$$90 = 2 \cdot 45$$
.

$$2^{45} \equiv 57 \mod 91$$
.

• 2 is a witness that 91 is not a prime.

There are Many Witnsses

- Given an odd composite n, the probability of a number $\{2, ..., n-2\}$ being a witness is at least $\frac{3}{4}$.
- Given an odd $n \in \mathbb{N}$, take i numbers and check if they are witnesses.
 - If we found a witness, *n* is composite.
 - \circ If we did not find a witness, n is prime with probability at least

The End

I'VE DISCOVERED A WAY TO GET COMPUTER SCIENTISTS TO LISTEN TO ANY BORING STORY.