ATMOSPHERIC SCIENCES 6910

Programming for Environmental Sciences

Syllabus

- MWF 9:40 10:30 in WBB 711
- Instructors:
 - Sally Benson
 - Chris Galli
- First 10 minuets of class reviewing readings and homework is applicable, followed by lecture.
- Homework will be available on class website by the start of class.
- To turn in homework email your answer / program to the instructor who assigned it.
- Class HTML page at:
 - https://github.com/cgalli/ATMOS 6910 2018

Languages

- Environmental sciences is a big field encompassing many different disciplines, employing the use of an array of different analytical practices.
- Languages: R, Fortran, Python, MatLab, Idl, C, ect...
- Data Structures: .csv, Netcdf, HDF5
- Analytical Methods: Statistical, visual, spatial, time-series
- This class will be language agnostic or neutral. We are assuming some basic understanding of coding.

Languages

- Each research group will employ different data structures, methods and languages to examine their particular field.
- Each language has its benefits and limitations. Some languages have strong communities built around them (R, Python). Open source languages tend to have better communities which can be a real advantage.
- Stack Overflow!
- Our Goal: to provide you with a background in computer science / programming to help you answer your research objectives in the most powerful and time efficient ways while avoiding common pitfalls.

Workflow

Regardless of which toolsets used, the general flow of each of your projects will follow a similar workflow.

- 1) Get data
- 2) Bring data and packages into environment
- 3) Frist look
- 4) QA/QC
- 5) Pair additional data sets
- 6) Data transformations
- 7) Sub-setting / isolating data
- 8) Analysis
- 9) Plotting / data visualization
- 10) Final results

Workflow: Data

- Step 1: Get your data
 - Data API's
 - Measurements
 - Laboratory Experiments
- Understand your data
 - Products vs. Measurements
 - Expectations (freq., sensitivity)
 - Data Quality
 - Accuracy and Precision
 - Data Type
- Where to store the data?
 - CHPC, personal computer, other server

Workflow: Data In

Step 2: Get the data into an environment

```
11.
12 see Look in the data
13
14 Setwd("-/DQA Wintertine PMZ.5 Study/Data/WSB")
15 GOT = read.csv("We8_UNT_Aggregated_169927.csv", stringsAshoctors = FALSE)
1b dot:Time <- os.PUblict(cot:Time, tz='M51')</pre>
17 dat inv = subset(dat, dct9ViO >= 4)
18 dat.clean = subset(dat, datS/H) < 4)
28 setwd("-/DQA Wintertine PM2.5 Study/Dete/Eackgrounds")
21 background = read.csv("background_150930.csv")
22 backgroundsTime = as.POSIXct(backgroundsTime, tz = 'M6T')
25 Setwd("-/DQA Wintertine PM2.5 Study/Data")
25 sites = resd.csv("Site_locations.csv", header = TRLE)
27 sites!Site.ID = os.therocter(sites!Site.ID)
29 satwd("~/DQA Wintertine PM2.5 Study/Dats/hawthorse")
38 haw = read.csv("haw_161603.csv", stringsAsFactors = FALSE)
31 how/Time <- os_POSI(ct(how/Time, tz='MST')
33 satwd("~/DDA Wintertine PM2.5 Study/Data/Nobile")
34 mobile = read.csv("nobile subset agg 16:863.csv")
```

Load necessary packages

```
1 | throry(ggmop)
2 | throry(ggplot2)
3 | throry(leaflet)
4 | library(sp)
5 | throry(maptools)
6 | throry(maptools)
7 | throry(maps)
8 | require("rgdol") # requires sp, will use proj.4 if installed
9 | require("maptools")
10 | require("ggplot2")
11 | require("plyn")
```

Workflow: First Look

- Step 3: First look
- Headers
- Data structure
- Variables
- Data types
- Data frequency

```
> str(nobile)
"data.frame":
             89617 obs. of 13 variables:
8 X
             : int 12345678910 ...
$ Time_UTC
             : Factor w/ 72095 levels "2016-01-25 22:07:38",..: 1285 1287 1288 1289 1290 1
S lat
             : num 40.7 40.7 40.7 40.7 40.7 ...
             : num -112 -112 -112 -112 -112 ...
$ lon
             : int 467 467 464 462 458 453 448 446 443 441 ...
$ C02d_ppm
$ CH4d_ppm
             : num 1.95 1.95 1.96 1.95 1.95 ...
S CO_ppm
             $ pm2.5
             : num NA ...
$ NOx
             : num NA NA NA NA NA 43 NA NA NA NA ...
$ 03_ppbv
             : num NA 24.3 26.7 NA NA 28.5 28.9 NA NA 27.2 ...
$ 00_ppb
             : nun 610 610 610 610 738 ...
                  $ ID
             : chiri
                   "I15" "I15" "I15" "I15" ...
```

Workflow: QA/QC

- Step 4: QA/QC the data
- Visual / Interactive
 - Plot the data and visually identify problematic areas
 - Limited to smaller datasets and can be subjective
 - http://www.inscc.utah.edu/~u0079358/atmos6910/Class_1/ qaqc.html
- Statistical / Mathematical
 - STDEV, > or <, y-x, smoothing, quintiles
 - Great for large data sets and automated scripts but can miss complex problems and can remove valid data
- Pre-define data levels
 - Raw, qa/qc, final

```
12
13 # Ramove only dote that is below 400 apm
14 x = dartSCG2_ppm
15 y = 1
16 for(i in i:length(x)) {
17 if (400 - x[y] > 0) {
18 x[y] - NA
19 y = y+1
20 }
21 }
22
23 # Ramove only dote that is below 400 apm
24 dot = subset(actiCD2_ppm >= 400)
25
```

Workflow: Pairing Additional Data

- Step 5: Pair additional datasets
- Repeat steps 1:4 and make sure to QC/QC new data before pairing!!!
- Matching variable
 - Common time stamps / gridded location
- Matching data frequencies
- Double check that the matching variables line up....
 - Pay attention to time zones

Workflow: Data Transformations

- Step 6: Data Transformations
 - Unit Conversions
 - Data Type Changes
 - as.numeric(), as.POSIXct(), as.boolean()
 - Calculations
 - Interpolations
 - Averages

Workflow: Analysis

- Step 7: Analysis
- Statistical
- Spatial
- Validation

Workflow: Visualization

Step 8: Data Visualization / Plotting

https://www.youtube.com/watch?v=x1SgmFa0r04

Workflow: Final Results

- Step 9: Final Results
- Science is a never ending redefining of the knowledge we currently have.
- A good analysis will identify more questions than it will answer.
- Repeat steps 1 8…
- Publish or perish!

Analysis Paralysis

- The prospect of taking on a multi-year research project can be overwhelming at times. There are so many decisions to be made and obstacles to overcome.
- It is easy to fall in to analysis paralysis, or a "state of overanalyzing (over-thinking) a situation so that a decision or action is never taken, in effect paralyzing the outcome".

Overcoming Analysis Paralysis

- Differentiate between big and small decisions
 - Small
 - Mid-level
 - Big
- Identify your objectives. And remember to re-analyze your objectives as new knowledge is gained
- Perfection is not the goal.
 - "Perfection is the enemy of good enough" Jim Ehleringer
- Eliminate the bad options
- Pick one and go. Don't second guess
- Set a hard time limit! Deadlines are the key to preventing procrastination

Overcoming Analysis Paralysis

- Delegate the decision to someone else
 - Your advisors are there for a reasons... to advise you
- Get the opinion of someone you trust
 - Other gradstudents have been there before. Ask them!
- Make to do lists.
 - There is something incredibly powerful about writing down an objective then crossing it off. Take your larger objective and break it down into smaller, yet actionable events.
- Don't go down the rabbit hole. "Curb your curiosity".
- The moons will never be perfectly aligned.