Отчет по лабораторной работе №2

Ивлев А.Е Б19-511

19 июня 2022 г.

Рис. 1: Фазовые портреты при $a=-1,\,b=0.5;\,a=-1,\,b=1$

Исходная динамическая система:

$$\begin{cases} \dot{x} = y, \\ \dot{y} = b(1 - x^5)y - ax - bx^3. \end{cases}$$
 (1)

Для начала воспользуемся критерием Бендиксона.

$$\begin{cases} \frac{\partial f(x,y)}{\partial x} = 0\\ \frac{\partial g(x,y)}{\partial y} = b(1-x^5). \end{cases}$$
 (2)

Здесь f(x,y) и g(x,y) - правые части исходной системы. Сумма $f_x(x,y)+g_y(x,y)$ меняет свой знак при пересечении прямой x=1. Примем параметр b за положительную величину. Тогда справа от x=1 выражение $f_x+g_y>0$, а слева $f_x+g_y<0$. В данном случае согласно критерию Бендиксона замкнутая траектория не может не пересекать прямую x=1.

Для получения большей информации воспользуемся теорией индексов. Найдем все точки покоя системы. Приравнивая к нулю правые части, находим 3 точки покоя: $(0;0), (-\sqrt{-a/b};0)$ и $(\sqrt{-a/b};0)$.

Примем параметр a = -1.

Находя собственные значения для матриц Якоби в точках покоя получаем, что (0;0) - седло $(I_0=-1)$ и $(-\sqrt{1/b};0)$ тоже седло $(I_1=-1)$ при любых положительных значениях параметра b.

Точка $(\sqrt{1/b};0)$ является седлом при $b\in(0;0,79),\,I_2=-1.$ В этом случае замкнутая траектория нигде не возможна. При $b\in(0,79;0,81)$ устойчивый узел, $I_2=1.$ Возможна замкнутая траектория, охватывающая эту точку и пересекающая прямую x=1. В случае $b\in(143,94;\infty)$ узел будет неустойчивым. При $b\in(0,81;\ 143,94)$ собственные значения станут комплексными. Точка покоя станет фокусом, $I_2=1$, замкнутая траектория возможна.