# Languages and Algorithms for Artificial Intelligence (Third Module)

The Computational Model

Ugo Dal Lago





University of Bologna, Academic Year 2023/2024

- ▶ Giving **positive** results about the feasibility of certain computation task is relatively easy:
  - You implement your algorithm, you run it on a powerful machine, and that's it!

- ▶ Giving **positive** results about the feasibility of certain computation task is relatively easy:
  - You implement your algorithm, you run it on a powerful machine, and that's it!
- ▶ But how about **negative** results?
  - ▶ Which machine should we choose?
  - ▶ If we choose one specific, concrete machine without relating to the other ones, then our negative results would be *vacuous*.

- ► Giving **positive** results about the feasibility of certain computation task is relatively easy:
  - You implement your algorithm, you run it on a powerful machine, and that's it!
- ▶ But how about **negative** results?
  - ▶ Which machine should we choose?
  - ▶ If we choose one specific, concrete machine without relating to the other ones, then our negative results would be *vacuous*.
- ► The only way out is to define a **model of computation** in the form of an abstract machine, keeping in mind that:
  - ▶ It should be as simple as possible, to *facilitate proofs*.
  - ▶ It must be able to simulate with reasonable overhead *all* physically realistic machines.

- ► Giving **positive** results about the feasibility of certain computation task is relatively easy:
  - You implement your algorithm, you run it on a powerful machine, and that's it!
- ▶ But how about **negative** results?
  - ▶ Which machine should we choose?
  - ▶ If we choose one specific, concrete machine without relating to the other ones, then our negative results would be *vacuous*.
- ► The only way out is to define a **model of computation** in the form of an abstract machine, keeping in mind that:
  - ▶ It should be as simple as possible, to *facilitate proofs*.
  - ▶ It must be able to simulate with reasonable overhead all physically realistic machines.
- ➤ There is a universally accepted model of computation, that we will take as our reference model, namely the **Turing** Machine.
  - ► This part of the module is specifically about it.

## Part I

The Model, Informally





- The set of instructions to be followed is fixed (and should work for every input x), and finite.
- ▶ The same instruction can be used potentially many times.
- ► Every instruction proceeds by:
  - Reading a bit of the input;
  - Reading a symbol from the scratchpad;

and based on that decide what to do next, namely:

- either write symbol to the scratchpad, and proceed to another instruction;
- or declare the computation finished, by stopping it and outputting either 0 or 1.



- ▶ The **running time** of this machine/process/algorithm on x is simply the number of these basic instructions which are executed on a certain input x.
- We say that the machine **runs in time** T(n) if it performs at most T(n) instructions on input strings of length n.



- ▶ The **running time** of this machine/process/algorithm on x is simply the number of these basic instructions which are executed on a certain input x.
- We say that the machine **runs in time** T(n) if it performs at most T(n) instructions on input strings of length n.
- ▶ The model is **robust** to many tweaks in the definition, (e.g. changing the alphabet, allowing multiple scratchpads rather than one): the simplest model can simulate the more complicated with a polynomial overhead in time.



- ▶ The **running time** of this machine/process/algorithm on x is simply the number of these basic instructions which are executed on a certain input x.
- We say that the machine **runs in time** T(n) if it performs at most T(n) instructions on input strings of length n.
- ▶ The model is **robust** to many tweaks in the definition, (e.g. changing the alphabet, allowing multiple scratchpads rather than one): the simplest model can simulate the more complicated with a polynomial overhead in time.
- ➤ Since there are finitely many instructions, machine descriptions can be **encoded as binary strings** themselves.



• Given a string  $\alpha$ , we indicate as  $\mathcal{M}_{\alpha}$  the Turing Machine  $\alpha$  encodes.



- ▶ Given a string  $\alpha$ , we indicate as  $\mathcal{M}_{\alpha}$  the Turing Machine  $\alpha$  encodes.
- There is a so-called **Universal** Turing Machine  $\mathcal{U}$ , which simulates any other Turing Machine given its string representation: from a pair of strings  $(x, \alpha)$ , the machine  $\mathcal{U}$  simulates the behaviour of  $\mathcal{M}_{\alpha}$  on x.
  - The simulation is very efficient: if the running time of  $\mathcal{M}_{\alpha}$  were T(|x|), then  $\mathcal{U}$  would take time  $O(T(|x|)\log T(|x|))$ .
- ▶ There are functions  $f: \{0,1\}^* \to \{0,1\}$  which are intrinsically uncomputable by Turing Machines, and this can be proved formally.
  - This has intimate connections to Gödel's famous incompleteness theorem.

## Part II

The Model, Formally

#### A More Detailed View



### The Scratchpad(s)

- ▶ It consists of k tapes, where a tape is an infinite one-directional line of cells, each of which can hold a simbol from a finite alphabel  $\Gamma$ , the *alphabet* of the machine.
- ▶ Each tape is equipped with **tape head**, which can read or write one symbol at a time *from* or *to* the tape. Each head can move left or right.
- Some of the tapes can be designated as **input tapes**, and are read-only.
- ► The last tape can be taken as the **output tape**, and in that case contains the result of the computation.
  - ▶ This slightly deviates from what we have said in our informal account, and is needed to compute arbitrary functions on  $\{0,1\}^*$ .
  - ▶ The output tape(s) can be absent, and in that case the result can be taken as 0 or 1 depending on the *final state*.

#### The Instructions

- ightharpoonup The machine has a finite set of *states*, called Q, which determine the action to be taken at the next step.
- ▶ At *each step*, the machine:
  - 1. **Read** the symbols under the k tape heads.
  - 2. For the k-1 read-write tapes, **replace** the symbol with a new one, or leave it unchanged.
  - 3. Change its state to a new one.
  - 4. Move each of the k tape heads to the left or to the right (or stay in place).

#### The Instructions

- ightharpoonup The machine has a finite set of *states*, called Q, which determine the action to be taken at the next step.
- ▶ At *each step*, the machine:
  - 1. **Read** the symbols under the k tape heads.
  - 2. For the k-1 read-write tapes, **replace** the symbol with a new one, or leave it unchanged.
  - 3. Change its state to a new one.
  - 4. Move each of the k tape heads to the left or to the right (or stay in place).
- ► These instructions are of course very basic, and far from being close to the kind of instructions programming languages offer.
  - ▶ The point here is to have a *simple*, but *expressive* model.

### The Formal Definition

A Turing Machine (TM for short) working on k tapes is described as a triple  $(\Gamma, Q, \delta)$  containing

▶ A finite set  $\Gamma$  of **tape symbols**, which we assume contains the *blank symbol*  $\square$ , the *start symbol*  $\triangleright$ , and the binary digits 0 and 1.

### The Formal Definition

A Turing Machine (TM for short) working on k tapes is described as a triple  $(\Gamma, Q, \delta)$  containing

- ▶ A finite set  $\Gamma$  of **tape symbols**, which we assume contains the *blank symbol*  $\square$ , the *start symbol*  $\triangleright$ , and the binary digits 0 and 1.
- ▶ A finite set Q of **states** which includes a designated *initial* state  $q_{\texttt{init}}$  and a designated final state  $q_{\texttt{halt}}$ .

### The Formal Definition

A Turing Machine (TM for short) working on k tapes is described as a triple  $(\Gamma, Q, \delta)$  containing

- ▶ A finite set  $\Gamma$  of **tape symbols**, which we assume contains the *blank symbol*  $\square$ , the *start symbol*  $\triangleright$ , and the binary digits 0 and 1.
- A finite set Q of **states** which includes a designated *initial* state  $q_{\text{init}}$  and a designated final state  $q_{\text{halt}}$ .
- ► A transition function

$$\delta: Q \times \Gamma^k \to Q \times \Gamma^{k-1} \times \{\mathtt{L},\mathtt{S},\mathtt{R}\}^k$$

describing the instructions regulating the functioning of the machine at each step.

▶ When the first parameter is  $q_{\mathtt{halt}}$ , then  $\delta$  cannot touch the tapes nor the heads:

$$\delta(q_{\mathtt{halt}},(\sigma_1,\ldots,\sigma_k)) = (q_{\mathtt{halt}},(\sigma_2\ldots,\sigma_k),(\mathtt{S},\ldots,\mathtt{S}))$$

and the machine is stuck.

## Machine Configurations and Computations

Given a TM  $\mathcal{M} = (\Gamma, Q, \delta)$  working on k tapes:

- ▶ A configuration consists of
  - ightharpoonup The current state q.
  - ightharpoonup The contents of the k tapes.
  - ightharpoonup The positions of the k tape heads.

One such configuration will be indicated as C.

### Machine Configurations and Computations

Given a TM  $\mathcal{M} = (\Gamma, Q, \delta)$  working on k tapes:

- ► A **configuration** consists of
  - ightharpoonup The current state q.
  - ightharpoonup The contents of the k tapes.
  - ightharpoonup The positions of the k tape heads.

One such configuration will be indicated as C.

- ▶ The initial configuration for the input  $x \in \{0, 1\}^*$  is the configuration  $\mathcal{I}_x$  in which:
  - ightharpoonup The current state is  $q_{init}$ .
  - ▶ The first tape contains  $\triangleright x$ , followed by blank symbols, while the other tapes contain  $\triangleright$ , followed by blank symbols.
  - ► The tape heads are positioned on the first symbol of the *k* tapes.

## Machine Configurations and Computations

Given a TM  $\mathcal{M} = (\Gamma, Q, \delta)$  working on k tapes:

- ► A **configuration** consists of
  - ightharpoonup The current state q.
  - ightharpoonup The contents of the k tapes.
  - ightharpoonup The positions of the k tape heads.

One such configuration will be indicated as C.

- ▶ The initial configuration for the input  $x \in \{0, 1\}^*$  is the configuration  $\mathcal{I}_x$  in which:
  - ightharpoonup The current state is  $q_{init}$ .
  - ▶ The first tape contains  $\triangleright x$ , followed by blank symbols, while the other tapes contain  $\triangleright$ , followed by blank symbols.
  - ightharpoonup The tape heads are positioned on the first symbol of the k tapes.
- ▶ A final configuration for the output  $y \in \{0, 1\}^*$  is any configuration whose state is  $q_{\texttt{halt}}$  and in which the content of the output tape is  $\triangleright y$ , followed by blank symbols.

# Machine Computations

Given a TM  $\mathcal{M} = (\Gamma, Q, \delta)$  working on k tapes:

- ▶ Given any configuration C, the transition function  $\delta$  determines in a natural way the next configuration D, and we write  $C \xrightarrow{\delta} D$  if this is the case.
- ▶ We say that  $\mathcal{M}$  returns  $y \in \{0,1\}^*$  on input  $x \in \{0,1\}^*$  in t steps if

$$\mathcal{I}_x \xrightarrow{\delta} C_1 \xrightarrow{\delta} C_2 \xrightarrow{\delta} \dots \xrightarrow{\delta} C_t$$

where  $C_t$  is a final configuration for y. We write  $\mathcal{M}(x)$  for y if this holds.

- ▶ Finally, we say that  $\mathcal{M}$  computes a function  $f: \{0,1\}^* \to \{0,1\}^*$  iff  $\mathcal{M}(x) = f(x)$  for every  $x \in \{0,1\}^*$ . In this case, f is said to be **computable**.
  - Beware: for the moment, we do not put any constraint on the number of steps  $\mathcal{M}$  needs to compute f(x) from x.

### The Expressive Power of TMs

▶ Please take a loot at

http://turingmachinesimulator.com

- Explicitly constructing TMs is **very tedious**.
  - ▶ One needs to give the set of states, the set of instructions, etc.
  - ▶ One also needs to *prove* that the construction is correct.

### The Expressive Power of TMs

▶ Please take a loot at

http://turingmachinesimulator.com

- ► Explicitly constructing TMs is **very tedious**.
  - One needs to give the set of states, the set of instructions, etc.
  - ▶ One also needs to *prove* that the construction is correct.
- ▶ Usually, functions on binary strings are shown to be computable by informally describing *algorithms* or *programs* computing the function.
  - ► This is fine, *provided* program or algorithm instructions can be **simulated** by TMs.

### The Expressive Power of TMs

▶ Please take a loot at

#### http://turingmachinesimulator.com

- Explicitly constructing TMs is **very tedious**.
  - One needs to give the set of states, the set of instructions, etc.
  - ▶ One also needs to *prove* that the construction is correct.
- ▶ Usually, functions on binary strings are shown to be computable by informally describing *algorithms* or *programs* computing the function.
  - ► This is fine, *provided* program or algorithm instructions can be **simulated** by TMs.
- ▶ There are many other formalisms which are perfectly equivalent to TMs as for the class of computable functions they induce.
  - Examples: Random Access Machines, the  $\lambda$ -calculus, URMs, Partial Recursive Functions, . . .

▶ A TM  $\mathcal{M}$  computes a function  $f: \{0,1\}^* \to \{0,1\}^*$  in time  $T: \mathbb{N} \to \mathbb{N}$  iff  $\mathcal{M}$  returns f(x) on input x in a number of steps smaller or equal to T(|x|) for every  $x \in \{0,1\}^*$ . In this case, f is said to be **computable** in time T.

- ▶ A TM  $\mathcal{M}$  computes a function  $f: \{0,1\}^* \to \{0,1\}^*$  in time  $T: \mathbb{N} \to \mathbb{N}$  iff  $\mathcal{M}$  returns f(x) on input x in a number of steps smaller or equal to T(|x|) for every  $x \in \{0,1\}^*$ . In this case, f is said to be **computable** in time T.
- ▶ A language  $\mathcal{L}_f \subseteq \{0,1\}^*$  is **decidable** in time T iff f is computable in time T.

- ▶ A TM  $\mathcal{M}$  computes a function  $f: \{0,1\}^* \to \{0,1\}^*$  in time  $T: \mathbb{N} \to \mathbb{N}$  iff  $\mathcal{M}$  returns f(x) on input x in a number of steps smaller or equal to T(|x|) for every  $x \in \{0,1\}^*$ . In this case, f is said to be **computable** in time T.
- ▶ A language  $\mathcal{L}_f \subseteq \{0,1\}^*$  is **decidable** in time T iff f is computable in time T.
- Examples.
  - ▶ The set of palindrome words is decidable in time T(n) = 3n.
  - Computing the parity of binary strings requires time T(n) = n + 2.
  - Basic operations like addition and multiplication are computable in polynomial time.

- ▶ A TM  $\mathcal{M}$  computes a function  $f: \{0,1\}^* \to \{0,1\}^*$  in time  $T: \mathbb{N} \to \mathbb{N}$  iff  $\mathcal{M}$  returns f(x) on input x in a number of steps smaller or equal to T(|x|) for every  $x \in \{0,1\}^*$ . In this case, f is said to be **computable** in time T.
- ▶ A language  $\mathcal{L}_f \subseteq \{0,1\}^*$  is **decidable** in time T iff f is computable in time T.
- Examples.
  - ▶ The set of palindrome words is decidable in time T(n) = 3n.
  - Computing the parity of binary strings requires time T(n) = n + 2.
  - Basic operations like addition and multiplication are computable in polynomial time.

▶ Question: why is our definition the right one?

- ▶ Question: why is our definition the right one?
- ▶ Actually, there are many details in our definion of a TM which are arbitrary: **many** alternative definitions are available in the literature.

- ▶ Question: why is our definition the right one?
- ► Actually, there are many details in our definion of a TM which are arbitrary: **many** alternative definitions are available in the literature.
- Examples:
  - ▶ Rather than an arbitrary tape alphabet  $\Gamma$ , restrict to  $\{0,1,\triangleright,\square\}$ .
  - ▶ Just **one tape**, rather than many.
  - ► Tapes can be infinite in both directions.

- ▶ Question: why is our definition the right one?
- ▶ Actually, there are many details in our definion of a TM which are arbitrary: **many** alternative definitions are available in the literature.
- Examples:
  - Rather than an arbitrary tape alphabet  $\Gamma$ , restrict to  $\{0,1,\triangleright,\square\}$ .
  - ▶ Just **one tape**, rather than many.
  - ► Tapes can be infinite in both directions.
- ▶ In all the cases above (and in many others), one can prove that the more restrictive notion of machine **simulates** the more general one **with polynomial overhead**.
  - ▶ We do not have time to see all that, but you are encouraged to take a look at [AroraBarak2009], Section 1.3.1.

### Machines as Strings

• One of the very nice consequences of keeping our definition of a Turing Machine very simple is that any machine  $\mathcal{M} = (\Gamma, Q, \delta)$  is in fact completely determined from the graph of  $\delta$ , seen as a subset of

$$Q\times \Gamma^k\times Q\times \Gamma^{k-1}\times \{\mathtt{L},\mathtt{S},\mathtt{R}\}^k$$

## Machines as Strings

• One of the very nice consequences of keeping our definition of a Turing Machine very simple is that any machine  $\mathcal{M} = (\Gamma, Q, \delta)$  is in fact completely determined from the graph of  $\delta$ , seen as a subset of

$$Q\times \Gamma^k\times Q\times \Gamma^{k-1}\times \{\mathtt{L},\mathtt{S},\mathtt{R}\}^k$$

- Any parismomious encoding of  $\delta$  as a binary string in  $\{0,1\}^*$  thus constitutes an acceptable encoding  $\bot \mathcal{M} \bot$  of  $\mathcal{M}$ , provided the following two conditions are satisfied:
  - 1. Every string in  $\{0,1\}^*$  represents a TM, i.e. for every  $x \in \{0,1\}^*$  there is  $\mathcal{M}$  such that  $x = \bot \mathcal{M} \bot$ .
  - 2. Every TM  $\mathcal{M}$  is represented by an **infinitely many** strings (although exactly one is the "canonical" representation  $\bot \mathcal{M} \bot$  of  $\mathcal{M}$ ).

## Machines as Strings

• One of the very nice consequences of keeping our definition of a Turing Machine very simple is that any machine  $\mathcal{M} = (\Gamma, Q, \delta)$  is in fact completely determined from the graph of  $\delta$ , seen as a subset of

$$Q\times\Gamma^k\times Q\times\Gamma^{k-1}\times\{\mathtt{L},\mathtt{S},\mathtt{R}\}^k$$

- Any parismomious encoding of  $\delta$  as a binary string in  $\{0,1\}^*$  thus constitutes an acceptable encoding  $\bot \mathcal{M} \bot$  of  $\mathcal{M}$ , provided the following two conditions are satisfied:
  - 1. Every string in  $\{0,1\}^*$  represents a TM, i.e. for every  $x \in \{0,1\}^*$  there is  $\mathcal{M}$  such that  $x = \bot \mathcal{M} \bot$ .
  - 2. Every TM  $\mathcal{M}$  is represented by an **infinitely many** strings (although exactly one is the "canonical" representation  $\bot \mathcal{M} \bot$  of  $\mathcal{M}$ ).
- ▶ The two conditions above are not essential in any other contexts (i.e. when the encoded data is not a program), but are technically crucial here.

# The Universal Turing Machine

### Theorem (UTM, Efficiently)

There exists a TM  $\mathcal{U}$  such that for every  $x, \alpha \in \{0,1\}^*$ , it holds that  $\mathcal{U}(x,\alpha) = \mathcal{M}_{\alpha}(x)$ , where  $\mathcal{M}_{\alpha}$  denotes the TM represented by  $\alpha$ . Moreover, if  $\mathcal{M}_{\alpha}$  halts on input x within T steps then  $\mathcal{U}(x,\alpha)$  halts within  $CT \log(T)$  steps, where C is independent of |x| and depending only on  $\mathcal{M}_{\alpha}$ .

# The Universal Turing Machine

### Theorem (UTM, Efficiently)

There exists a TM  $\mathcal{U}$  such that for every  $x, \alpha \in \{0,1\}^*$ , it holds that  $\mathcal{U}(x,\alpha) = \mathcal{M}_{\alpha}(x)$ , where  $\mathcal{M}_{\alpha}$  denotes the TM represented by  $\alpha$ . Moreover, if  $\mathcal{M}_{\alpha}$  halts on input x within T steps then  $\mathcal{U}(x,\alpha)$  halts within  $CT \log(T)$  steps, where C is independent of |x| and depending only on  $\mathcal{M}_{\alpha}$ .

- ▶ A proof of the Theorem above in its full generality requires quite a bit of work.
- More specifically, one has to encode configurations of Turing machines as strings, and prove that  $\mathcal{U}$  can simulate  $\mathcal{M}_{\alpha}$  for every  $\alpha$ .

Theorem (Uncomputable Functions Exist)

There exists a function  $uc: \{0,1\}^* \to \{0,1\}^*$  that is not computable by any Turing Machine.

#### Theorem (Uncomputable Functions Exist)

There exists a function  $uc: \{0,1\}^* \to \{0,1\}^*$  that is not computable by any Turing Machine.

▶ The proof of the Theorem above is constructive. It suffices to consider the function

$$uc(\alpha) = \begin{cases} 0 & \text{if } \mathcal{M}_{\alpha}(\alpha) = 1\\ 1 & \text{otherwise} \end{cases}$$

#### Theorem (Uncomputable Functions Exist)

There exists a function  $uc: \{0,1\}^* \to \{0,1\}^*$  that is not computable by any Turing Machine.

▶ The proof of the Theorem above is constructive. It suffices to consider the function

$$uc(\alpha) = \begin{cases} 0 & \text{if } \mathcal{M}_{\alpha}(\alpha) = 1\\ 1 & \text{otherwise} \end{cases}$$

▶ Indeed, if uc were computable, there would be a TM  $\mathcal{M}$  such that  $\mathcal{M}(\alpha) = uc(\alpha)$  for every  $\alpha$ , and in particular when  $\alpha = \bot \mathcal{M} \bot$ .

#### Theorem (Uncomputable Functions Exist)

There exists a function  $uc: \{0,1\}^* \to \{0,1\}^*$  that is not computable by any Turing Machine.

▶ The proof of the Theorem above is constructive. It suffices to consider the function

$$uc(\alpha) = \begin{cases} 0 & \text{if } \mathcal{M}_{\alpha}(\alpha) = 1\\ 1 & \text{otherwise} \end{cases}$$

- ▶ Indeed, if uc were computable, there would be a TM  $\mathcal{M}$  such that  $\mathcal{M}(\alpha) = uc(\alpha)$  for every  $\alpha$ , and in particular when  $\alpha = \sqcup \mathcal{M} \sqcup$ .
- ▶ This would be a contraddiction, because by definition

$$uc(\bot \mathcal{M} \bot) = 1 \Leftrightarrow \mathcal{M}(\bot \mathcal{M} \bot) \neq 1 \Leftrightarrow uc(\bot \mathcal{M} \bot) = 0$$

ightharpoonup The function uc we proved uncomputable does not represent an interesting computation task.

- ightharpoonup The function uc we proved uncomputable does not represent an interesting computation task.
- ▶ Consider, instead, the function *halt* defined as follows:

$$halt(\lfloor (\alpha, x) \rfloor) = \begin{cases} 1 & \text{if } \mathcal{M}_{\alpha} \text{ halts on input } x; \\ 0 & \text{otherwise.} \end{cases}$$

▶ Being able to compute *halt* would mean being able to check algorithms for termination.

- ightharpoonup The function uc we proved uncomputable does not represent an interesting computation task.
- ▶ Consider, instead, the function *halt* defined as follows:

$$halt( (\alpha, x) ) = \begin{cases} 1 & \text{if } \mathcal{M}_{\alpha} \text{ halts on input } x; \\ 0 & \text{otherwise.} \end{cases}$$

▶ Being able to compute *halt* would mean being able to check algorithms for termination.

### Theorem (Uncomputability of *halt*)

The function halt is not computable by any TM.

- ightharpoonup The function uc we proved uncomputable does not represent an interesting computation task.
- ▶ Consider, instead, the function *halt* defined as follows:

$$halt( (\alpha, x) ) = \begin{cases} 1 & \text{if } \mathcal{M}_{\alpha} \text{ halts on input } x; \\ 0 & \text{otherwise.} \end{cases}$$

▶ Being able to compute *halt* would mean being able to check algorithms for termination.

### Theorem (Uncomputability of *halt*)

The function halt is not computable by any TM.

► This result could be seen as a way to reinterpret Gödel's first incompleteness theorem "computationally".

## Diophantine Equations

- ▶ A diophantine equation is a polynomial equality with integer coefficents and finitely many unknwwns.
  - **Examples**:

$$x^{2} + 3y = 2x + 1$$
  $x^{4} + 3x^{3} + y - z = 12$ 

# Diophantine Equations

- ▶ A diophantine equation is a polynomial equality with integer coefficents and finitely many unknwwns.
  - **Examples**:

$$x^{2} + 3y = 2x + 1$$
  $x^{4} + 3x^{3} + y - z = 12$ 

#### Theorem (MDPR Theorem)

The problem of determining whether an arbitrary diphantine equation has a solution is undecidable.

#### Rice's Theorem

▶ A language  $\mathcal{L} \subseteq \{0,1\}^*$  is **semantic** when the following condition holds: if  $\mathcal{M}$  and  $\mathcal{N}$  compute the same function, then  $\bot \mathcal{M} \bot \in \mathcal{L}$  if and only if  $\bot \mathcal{N} \bot \in \mathcal{L}$ .

#### Rice's Theorem

- ▶ A language  $\mathcal{L} \subseteq \{0,1\}^*$  is **semantic** when the following condition holds: if  $\mathcal{M}$  and  $\mathcal{N}$  compute the same function, then  $\bot \mathcal{M} \bot \in \mathcal{L}$  if and only if  $\bot \mathcal{N} \bot \in \mathcal{L}$ .
- Semantic languages can be seen as extensional properties of programs.
  - **Examples:** the set of all machines which compute a certain function, the set of all terminating programs, the set of all programs which never output a certain "bad" string.

#### Rice's Theorem

- ▶ A language  $\mathcal{L} \subseteq \{0,1\}^*$  is **semantic** when the following condition holds: if  $\mathcal{M}$  and  $\mathcal{N}$  compute the same function, then  $\bot \mathcal{M} \bot \in \mathcal{L}$  if and only if  $\bot \mathcal{N} \bot \in \mathcal{L}$ .
- Semantic languages can be seen as extensional properties of programs.
  - ▶ Examples: the set of all machines which compute a certain function, the set of all terminating programs, the set of all programs which never output a certain "bad" string.

### Theorem (Rice's Theorem)

Every semantic decidable language  $\mathcal{L}$  is trivial, i.e. either  $\mathcal{L} = \emptyset$  or  $\mathcal{L} = \{0, 1\}^*$ .

# How to Prove a Problem to be *Computable*?

▶ One can of course **construct a TM** which computes the given function or that decides the given language.

# How to Prove a Problem to be *Computable*?

- ▶ One can of course **construct a TM** which computes the given function or that decides the given language.
- ▶ One can describe, in a more informal way, **an algorithm** which itself computes the function or decides the language.
  - ▶ It is of course crucial to be sure that all steps the algorithm perform, i.e., all instructions, are elementary, or at least compute functions which are already known to be computable.
  - ▶ In doing so, one can use other algorithms as "subroutines".
  - Evaluating the performances of algorithms defined this way is possible, but often not so precisely.

### How to Prove a Problem to be *Uncomputable*?

- You can prove that the problem under consideration, call it  $\mathcal{L}$  is at least as hard as a problem you already know to be undecidable, call if  $\mathcal{G}$ 
  - You have to show that there is a computable way  $\phi$  of turning strings in  $\{0,1\}^*$  into strings in  $\{0,1\}^*$  in such a way that

$$s \in \mathcal{G} \Leftrightarrow \phi(s) \in \mathcal{L}$$

▶ This way, any hypothetical algorithm for  $\mathcal{L}$  would be turned into one for  $\mathcal{G}$ , which cannot exist however.

### How to Prove a Problem to be *Uncomputable*?

- You can prove that the problem under consideration, call it  $\mathcal{L}$  is at least as hard as a problem you already know to be undecidable, call if  $\mathcal{G}$ 
  - You have to show that there is a computable way  $\phi$  of turning strings in  $\{0,1\}^*$  into strings in  $\{0,1\}^*$  in such a way that

$$s \in \mathcal{G} \Leftrightarrow \phi(s) \in \mathcal{L}$$

- This way, any hypothetical algorithm for  $\mathcal{L}$  would be turned into one for  $\mathcal{G}$ , which cannot exist however.
- ➤ You can use results like Rice's Theorem.

Thank You!

Questions?