Innlevering 10 INF1080

Endre Wullum endrewu@ulrik.uio.no

4. november 2013

Oppgave 17.9

Denne oppgaven forstår jeg ikke helt. Variablene får det til å gå litt i surr for meg og jeg finner ikke noen gode eksempler på lignende oppgaver i forelesningsnotatene. Men her er et forsøk.

- (a) La relasjonssymbolet tolkes slik at $R^{\mathrm{M}}=\{1,2\}$. Da er den sann fordi $P(\overline{1},\overline{1}),\,P(\overline{1},\overline{2}),\,P(\overline{2},\overline{1})$ og $P(\overline{2},\overline{2})$ er sanne, og de er sanne fordi $1,2\in R^{\mathrm{M}}$
- (b) La relasjonssymbolet tolkes slik at $R^{\mathrm{M}}=\{1,2\}$. Da er den sann fordi $P(\overline{1},\overline{1}),\,P(\overline{1},\overline{2}),\,P(\overline{2},\overline{1})$ og $P(\overline{2},\overline{2})$ er sanne, og de er sanne fordi $1,2\in R^{\mathrm{M}}$

Oppgave 17.12

(a) La M være en vilkårlig modell, og D domenet til M.

For å vise at $M \models (F \rightarrow G)$ sann er det tilstrekkelig å vise at hvis M gjør F sann, så gjør M også G sann.

Anta at M gjør $Pa \vee Pb$ er sann.

Da må vi vise at M gjør $\exists x Px$ sann.

Fordi M gjør $Pa \vee Pb$ sann må M også gjøre $\exists x Px$ sann.

Altså kan vi konkludere at $Pa \vee Pb \rightarrow \exists xPx$ er gyldig.

(b) La M være en vilkårlig modell, og D domenet til M.

For å vise at $M\models (F\to G)$ er sann er det tilstrekkelig å vise at hvis M gjør F sann så gjør M også G sann.

Anta at M gjør $\forall x Px$ er sann.

Da må vi vise at M gjør $Pa \wedge Pb$ sann.

Fordi M
 gjør $\forall x Px$ sann må M også gjøre $Pa \wedge Pb$ sann.

Altså kan vi konkludere at $\forall x Px \rightarrow Pa \land Pb$ er gyldig.