1 SchemeIBME

1.1 Setup() \rightarrow (mpk, msk)

generate $r, s \in \mathbb{Z}_p^*$ randomly generate $P \in \mathbb{G}_1$ randomly $P_0 \leftarrow r \cdot P$ $H_1 : \mathbb{Z}_p^* \to \mathbb{G}_1$ $H' : \mathbb{Z}_p^* \oplus mask \to \mathbb{G}_1$ $mpk \leftarrow (P, P_0, H, H')$ $msk \leftarrow (r, s)$ **return** (mpk, msk)

1.2 $SKGen(S) \rightarrow ek_S$

 $ek_S \leftarrow s \cdot H'(S)$ $textbfreturnek_S$

1.3 $SKGen(S) \rightarrow dk_R$

 $\begin{aligned} H_R \leftarrow H(R) \\ dk_1 \leftarrow r \cdot H_R \\ dk_2 \leftarrow s \cdot H_R \\ dk_3 \leftarrow H_R \\ dk_R \leftarrow (dk_1, dk_2, dk_3) \\ textbfreturndk_R \end{aligned}$

1.4 $\operatorname{Enc}(\boldsymbol{ek_S}, R, M) \to C$

 $\begin{array}{l} \text{generate } u,t \in \mathbb{Z}_p^* \text{ randomly} \\ T \leftarrow t \cdot P \\ U \leftarrow u \cdot P \\ H_R \leftarrow H(R) \\ k_R \leftarrow e(H_R, u \cdot P_0) \\ k_S \leftarrow e(H_R, T + ek_S) \\ V \leftarrow M \oplus k_R \oplus k_S \\ C \leftarrow (T, U, V) \\ \mathbf{return} \ C \end{array}$

1.5 $\mathbf{Dec}(\mathbf{dk}_R, S, C) \to M$

 $k_R \leftarrow e(dk_1, U)$ $H_S' \leftarrow H'(S)$ $k_S \leftarrow e(dk_3, T)$ $M \leftarrow V \oplus k_R \oplus k_S$ **return** M