Egzamin: Wstęp do Statystycznej Analizy Danych

Wydział MiI UMK, styczeń 2019, I termin. Zestaw A

Wypełnij miejsca wykropkowane [""]. Oceniane będą tylko odpowiedzi wpisane w wykropkowane miejsca na tej kartce, bez uzasadnień i rachunków. Wpisz odpowiedzi dopiero po ostatecznym ich sprawdzeniu ; odpowiedzi pokreślone lub nieczytelne będą traktowan jako błędne ! Możesz korzystać z kalkulatora, tablic statystycznych, notatek, książek. Nie wolno korzystać z komputerów, telefonów ani z tabletów. Nie wolno się porozumiewać . Powodzenia!
Imię i NAZWISKO:
1. Wiadomo, że $\mathbb{P}(A)=0.5,\mathbb{P}(B)=0.4$ i $\mathbb{P}(A\setminus B)=0.2.$ Oblicz
(a) $\mathbb{P}(A \cap B) = \dots$
(b) $\mathbb{P}(A \cup B) = \dots$
(c) $\mathbb{P}(B \setminus A) = \dots$
(d) $\mathbb{P}(B A) = \dots$
(e) Czy zdarzenia losowe A i B są niezależne? (napisz TAK lub NIE)
2. Rzucamy dwie rzetelne kostki do gry: białą i czarną.
(a) Oblicz prawdopodobieństwo tego, że liczba oczek na czarnej kości będzie większa niż na białe
Odpowiedź:
(b) Oblicz prawdopodobieństwo tego, że na obu kościach liczba oczek będzie taka sama.
Odpowiedź:
(c) Oblicz prawdopodobieństwo otrzymania sumy oczek na obu kościach równej 11.
Odpowiedź:
3. Fabryki A, B i C produkują odpowiednio 50%, 30% i 20% ogólnej produkcji żarówek. Udział braków wynosi odpowiednio 5% produkcji fabryki A, 2% produkcji B i 3% produkcji C.
(a) Oblicz prawdopodobieństwo tego, że losowo wybrana żarówka jest brakiem.
Odpowiedź:
(b) Oblicz prawdopodobieństwo tego, że losowo wybrana żarówka pochodzi z fabryki A, jeśli wiadomo, że jest brakiem.
Odpowiedź:
(c) Oblicz prawdopodobieństwo tego, że losowo wybrana żarówka pochodzi z fabryki A, jeśli wiadomo, że nie jest brakiem.

Odpowiedź:....

4.	Zmienna losowa X ma rozkład prawdopodobienstwa o gęstości danej wzorem $f(x) = \int 4x^3 \text{dla } 0 \leqslant x \leqslant 1;$
	$f(x) = \begin{cases} 4x^3 & \text{dla } 0 \leq x \leq 1; \\ 0 & \text{w przeciwnym przypadku} \end{cases}.$
	(a) $\mathbb{E}(X)=$
5.	Wykonujemy 6 rzutów symetryczną monetą.
	(a) Oblicz prawdopodobieństwo otrzymania dokładnie 3 orłów.
	Odpowiedź:
	(b) Oblicz prawdopodobieństwo otrzymania ciągu wyników 'OOORRR' (w podanej kolejności).
	Odpowiedź:
	(c) Oblicz prawdopodobieństwo tego, że liczba orłów jest mniejsza od liczby reszek.
	Odpowiedź:
	(d) Oblicz wartość oczekiwaną (średnią) liczby orłów.
	Odpowiedź:
	(e) Oblicz wariancję liczby orłów.
	Odpowiedź:
	Zakładamy, że dzienny utarg w pewnym markecie jest zmienną losową X taką, że $\mathbb{E}X=10$ i $\mathrm{Var}X=10^2$ (w tysiącach PLN). Zakładamy, że zmienne X_1,\ldots,X_{256} opisujące utarg w kolejnych dniach roku (rok ma 256 dni roboczych) są niezależne i mają taki sam rozkład prawdopodobieństwa. Niech $S=X_1+\cdots+X_{256}$ będzie sumarycznym utargiem w ciągu roku, a $\bar{X}=S/256$ – średnim utargiem. Oblicz:
	(a) $\mathbb{E}(S) = \dots$ (b) $\text{Var}(S) = \dots$
	(c) $\mathbb{E}(\bar{X}) = \dots$
	(d) $\operatorname{Var}(\bar{X}) = \dots$
	(e) Oblicz w przybliżeniu $\mathbb{P}(S>2500),$ wykorzystując Centralne Twierdzenie Graniczne.
	Odpowiedź:
	(f) Znajdź liczbę a taką, że $\mathbb{P}(S\leqslant a)\approx 0.975.$

Odpowiedź:....

	Imię i NAZWISKO:
7.	Wysokości cen 11 mieszkań sprzedanych przez pewnego pośrednika były następujące:
	150, 245, 225, 195, 300, 170, 120, 390, 200, 190, 235
	Na podstawie tych danych należy obliczyć następujące wielkości.
	(a) Oblicz wartość średnią ceny mieszkania. Odpowiedź:
	(b) Oblicz medianę ceny mieszkania. Odpowiedź:
	(c) Oblicz wariancję ceny mieszkania. Odpowiedź:
	(d) Oblicz odchylenie standardowe ceny mieszkania. Odpowiedź:
8.	Zakładamy, że X_1,\ldots,X_{400} jest próbką z rozkładu normalnego $N(\mu,\sigma^2)$ z nieznaną wartością oczekiwaną μ i wariancją σ^2 . Obliczono średnią z próbki i nieobciążony estymator wariancji: $\bar{X}=51.75,S^2=20^2.$
	• Przeprowadź test hipotezy $H_0: \mu=50$ przeciw alternatywie $H_1: \mu>50$ na poziomie istotności $\alpha=0,05.$
	(a) Oblicz wartość statystyki T (t-Studenta): $T=\!\!\ldots\!\!$
	(b) Oblicz p-wartość testu: $P = \dots$
	(c) Podejmij decyzję: odrzucamy H_0 ? (napisz TAK lub NIE)
	• Przeprowadź test hipotezy $H_0: \mu = 50$ przeciw alternatywie $H_1: \mu \neq 50$ na poziomie istotności $\alpha = 0,05$.
	(d) Oblicz p-wartość testu: $P = \dots$
	(e) Podejmij decyzję: odrzucamy H_0 ? (napisz TAK lub NIE)
	(f) Oblicz przedział ufności dla μ na poziomie $1-\alpha=0,95.$
	Odpowiedź:
	$Uwaga$: Rozkład t-Studenta z 399 stopniami swobody jest przybliżeniu równy standardowemu rozkładowi normalnemu $N(0,1)$. W szczególności można wykorzystać następujące przybliżone wartości kwantyli: $t_{0,95}(399)\approx z_{0,95}=1.65$ i $t_{0,975}(399)\approx z_{0,975}=1.96\approx 2$. Do obliczania p-wartości można użyć tablic rozkładu normalnego.
9.	W losowo wybranej próbce $n=400$ studentów, znalazło się $x=80$ palących. Interesuje nas frakcja p palących w populacji studentów.
	(a) Zbuduj przedział ufności dla p na poziomie ufności $0,95.$
	Odpowiedź:
	• Przeprowadź test hipotezy $H_0: p=0.25$ przeciw $H_1: p\neq 0.25$. Przyjmij poziom istotności $0,05$.

(b) Oblicz wartość statystyki $Z\colon Z=\dots$ (c) Oblicz p-wartość testu: $P=\dots$

(d) Podejmij decyzję: odrzucamy H_0 ? (napisz TAK lub NIE)

Uwaga: Możesz przyjąć przybliżoną wartość kwantyla rozkładu normalnego: $z_{0.975} \approx 2$.

10. Zmienna losowa X ma rozkład wykładniczy o dystrybuancie

$$F_X(x) = \mathbb{P}(X \leqslant x) = \begin{cases} 1 - e^{-3x} & \text{dla } x \geqslant 0; \\ 0 & \text{w przeciwnym przypadku} . \end{cases}$$

Zmienną losową Y definiujemy wzorem

$$Y = e^{2X}$$
.

Należy znaleźć rozkład prawdopodobieństwa zmiennej losowej Y.

- (a) Oblicz dystrybuantę zmiennej losowej Y: $F_Y(y) = \mathbb{P}(Y \leq y) = \dots$
- (b) Oblicz gęstość zmiennej losowej Y: $f_Y(y) = \dots$
- (c) Oblicz wartość oczekiwaną zmiennej losowej $Y\colon \mathbb{E}(Y)=\dots$

Uwaga: Pamiętaj, że mamy $X \ge 0$, a zatem $Y = e^{2X} \ge 1$.

11. W celu zbadania, czy trzy obecne na rynku marki golarek elektrycznych: A,B i C są jednakowo popularne, zanotowano jaką markę wybrało 90 klientów kupujących golarki. Wyniki przedstawia następująca tabelka:

marka	A	В	С
liczba klientów	20	30	40

Czy mamy podstawy do odrzucenia hipotezy H_0 mówiącej, że klienci wybierają każdą z 3 marek z jednakowym prawdopodobieństwem 1/3?

Przeprowadź odpowiedni test zgodności χ^2 (chi-kwadrat) na poziomie istotności $\alpha=0.05$. Oblicz wartość statystyki testowej χ^2 , podaj odpowiedni kwantyl i podejmij decyzję: odrzucamy H_0 czy nie?

- (a) Statystyka $\chi^2 =$
- (b) Kwantyl $\chi_{0.95}^2(2) = \dots$
- (c) Decyzja: odrzucamy $H_0?$ (napisz TAK lub NIE)
- (d) p-wartość testu: $P = \dots$

 $Wskaz \acute{o}wka$: Skorzystaj z następującego faktu. Rozkład $\chi^2(2)$ (chi-kwadrat z dwoma stopniami swobody) ma dystrybuantę F daną wzorem

$$F(x) = \begin{cases} 1 - e^{-x/2} & \text{dla } x \geqslant 0; \\ 0 & \text{w przeciwnym przypadku} . \end{cases}$$

(Jest to po prostu rozkład wykładniczy z parametrem 1/2.) Jeśli nie masz kalkulatora "naukowego" możesz przyjąć, że $e^{-3} \approx 0.05$.