

Digital Systems 18B11EC213

Module 1: Boolean Function Minimization Techniques and Combinational Circuits-12

Dr. Saurabh Chaturvedi

Combinational Logic Circuits

- Two classes of logic circuits:
 - combinational
 - sequential
- Combinational Circuit:

Each output depends entirely on the immediate (present) inputs.

Sequential Circuit:

Output depends on both present and past inputs.

Memory (via feedback loop) contains past information.

Analysis Procedure

Analyze the function of the given combinational logic circuit:

Steps:

- 1. Label the inputs and outputs.
- 2. Obtain the functions of intermediate points and the outputs.

A	В	(A+B)	(A'+B')	F 1	F2
0	0	0	1	0	0
0	1	1	1	1	0
1	0	1	1	1	0
1	1	1	0	0	1

- 3. Draw the truth table.
- 4. Deduce the functionality of the circuit **a** half adder

Design Methods

- Different combinational circuit design methods:
 - Gate-level method (with logic gates)
 - ❖ Block-level design method
- Design methods make use of logic gates and useful functional blocks.
 - ❖ These are available as integrated circuit (IC) chips.

Gate-level Design: Half Adder

Design procedure:

1) State Problem

Example: Build a Half Adder to add two bits

2) Determine and label the inputs and outputs of circuit.

Example: Two inputs and two outputs labelled, as follows:

3) Draw truth table.

X	Y	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

4) Obtain the simplified Boolean function from truth table:

$$C = X.Y$$

 $S = X'.Y + X.Y' = X \oplus Y$

5) Draw the logic diagram.

X	Y	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Half Adder

Gate-level Design: Full Adder

- Half adder adds up only two bits.
- To add two binary numbers, we need to add 3 bits (including the carry).
- Example:

This addition operation requires a Full Adder circuit. A full adder can be made using two half adders.

■ Truth table:

X	Y	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Note:

Z: carry in (to the current position)

C: carry out (to the next position)

Using K-map, the simplified SOP forms:

$$C = X.Y + X.Z + Y.Z$$

 $S = X'.Y'.Z + X'.Y.Z' + X.Y'.Z' + X.Y.Z$

• Alternative formulae using algebraic manipulation:

$$C = X.Y + X.Z + Y.Z$$

$$= X.Y + X.(Y+Y').Z + (X+X').YZ$$

$$= X.Y + XYZ + XY'Z + XYZ + X'YZ$$

$$= X.Y (1+Z) + (X \oplus Y).Z$$

$$= X.Y + (X \oplus Y).Z$$

$$S = X'.Y'.Z + X'.Y.Z' + X.Y'.Z' + X.Y.Z$$

$$= X'.(Y'.Z + Y.Z') + X.(Y'.Z' + Y.Z)$$

$$= X'.(Y \oplus Z) + X.(Y \oplus Z)'$$

$$= X \oplus (Y \oplus Z)$$

$$= X \oplus Y \oplus Z$$

■ Full adder circuit using the following formulae:

$$C = X.Y + (X \oplus Y).Z$$
$$S = (X \oplus Y) \oplus Z$$

Full adder is made using two half adders and one OR gate.

■ Full adder circuit using the following formulae:

Full adder is designed using two half adders and one OR gate.

Gate-level Design: Half Subtractor

1) Obtain the simplified Boolean functions from truth table:

$$B = X'.Y$$

$$D = X'.Y + X.Y' = X \oplus Y$$

2) Draw the logic diagram.

X	Y	В	D
0	0	0	0
0	1	1	1
1	0	0	1
1	1	0	0

D: Difference

B: Borrow

Gate-level Design: Full Subtractor

- Full subtractor has 3 inputs:
 - Two data inputs
 - One borrow input

$$B_{i+1} = X_i'Y_i + X_i'B_i + Y_iB_i$$
$$D_i = X_i \oplus Y_i \oplus B_i$$

(a)

D_i: Difference

B_i: Borrow in

 B_{i+1} : Borrow out

Xi	Y_{i}	B_i	B_{i+1}	D_i
$\frac{X_i}{0}$	0	0	0	0
0	0	1	ı	1
0	1	0	1	1
0	1	1	1	0
1	0	0	О	1
1	0	1	О	o
1	1	О	О	o
1	1	1	1	1
		(b)		

(b)

14

Block-Level Design Method

- More complex circuits can be built using the block-level method.
- In general, block-level design method (as opposed to gate-level design) relies on algorithms or formulae of the circuit, which are obtained by decomposing the main problem to sub-problems recursively (until small enough to be directly solved by blocks of circuits).

Cont.. 4-bit Parallel Adder

Consider a circuit to add two 4-bit numbers together and a carry-in to produce a 5-bit result:

Black-box view of 4-bit parallel adder

5-bit result is sufficient because the largest result is:

$$(1111)_2 + (1111)_2 + (1)_2 = (11111)_2$$

Cont.. 4-bit Parallel Adder

Cascading four full adders via their carries:

Cont.. 16-bit Parallel Adder

- Larger parallel adders can be built from smaller ones.
- Example: a 16-bit parallel adder can be constructed from four 4-bit parallel adders:

Block diagram of 16-bit parallel adder

Cont.. 16-bit Parallel Adder

Shortened notation for multiple lines:

- 16-bit parallel adder ripples carry from one 4-bit block to the next.
- Such ripple-carry circuits are "slow" because of long delays needed to propagate the carries.

References

- M. M. Mano, Digital Logic and Computer Design, 5th ed., Pearson Prentice Hall, 2013.
- R. P. Jain, Modern Digital Electronics, 4th ed., Tata McGraw-Hill Education, 2009.