Building & Implementing a Simple AI/ML Chatbot

BevHacks 2025 Intermediate Workshop

colab.research.google.com

Overview

- 1. Intro
 - a. What we will cover
 - b. The goals of this workshop
- 2. Building a simple chatbot w/out memory
 - a. Coding a simple chatbot using Transformers w/out memory
- 3. Introduction to Al Models & Transformers
 - a. Making an Al Model step-by-step
 - What we will be using—Hugging Face
 Transformers
 - c. Popular Transformer Models
- 4. What is AI? What is ML?
 - a. Artificial intelligence (AI) broken-down
 - b. Artificial intelligence (AI): The big picture
 - c. Machine learning (ML): A subset of Al

- 1. Learn about mathematical/ML tensors
 - a. In mathematics
 - b. In ML
 - c. Concluding tensors
- Building a simple rule-based chatbot
 - a. Coding a short controlled bot
- 3. Building a simple chatbot w/memory
 - a. Coding a simple chatbot w/memory
- 4. Applications

1. Introduction

What will you achieve at the end of this workshop? What will you learn? What will we cover?

Goals

- Build 3 chatbot(s) that can respond to simple questions (simplified, intermediate, advanced)
- Understand applications
- Mathematical tensors

2. A simple rule-based chatbot prototype

Learn how-to build a basic chatbot that responds to specific inputs

Grasping the fundamental logic of how (AI) chatbots work

```
responses = { # Here, we are defining a dictionary of questions and responses
        "hello": "Hi there! How can I help you?",
        "how are you": "I'm just a bot, but I'm functioning as expected!",
        "bye": "Goodbye! Have a great day!",
[ ] def chatbot(input_text): # We are using a function called chatbot to handle the input from the user
        input_text = input_text.lower()
        return responses.get(input text, "Sorry, I don't understand that.")
   buser_input = input("You: ") # Now, we can test it interactively
    print("Bot:", chatbot(user input))
  You:
```

2. A simple rule-based chatbot prototype

3. Introduction to Al Models & Transformers

Al Models Step-By-Step, Hugging Face, Transformer Models

Making an Al Model step-by-step

Step 0: Define goal

3. Introduction to AI Models & Transformers

What we will be using—Hugging Face Transformers

Hugging Face

- NLP stands for natural language processing
- Transformers, machine learning library provided by Hugging Face
 - They excel at processing sequences of data, like text, by paying selective "attention" to different parts of the sequence
- Hugging Face, toolbox of Al models, saving time and computational resources

Popular Transformer Models

- GPT
 - Used in OpenAl's ChatGPT
- BERT
 - Focused on understanding text
- DialoGPT ★
 - Conversational tasks

3. Introduction to AI Models & Transformers

4. What is AI? What is ML?

Artificial Intelligence (AI); Machine Learning (ML)

Artificial Intelligence: The Big Picture

- Broader field of creating MACHINES or SYSTEMS that can perform tasks that require HUMAN-LIKE INTELLIGENCE
- Artificial intelligence includes...
 - ...learning from data (ML)
 - ...reasoning and decision-making
 - ...perception (e.g., vision and speech)
 - ...natural language understanding/processing—NLP
- Examples of AI:
 - Virtual assistants (e.g., Siri or Alexa)
 - Recommendation systems (e.g., on Netflix, Amazon, YouTube)

4. What is AI? What is ML?

Machine Learning: A Subset of Al

- It is a SUBSET OF AI focused on DEVELOPING SYSTEMS that can LEARN and IMPROVE from <u>DATA</u> W/O being explicitly programmed to do so
- How does ML actually work?
 - Supervised Learning
 - Uses labeled data sets to predict outcomes and recognize patterns
 - Given labeled training to learn relationship between inputs and outputs
 - Unsupervised Learning
 - Learn from unlabeled data without explicit instruction or guidance
 - Semi-Supervised Learning
 - Uses both labeled data and unlabeled data
 - Reinforcement Learning
 - Trains software to make decisions to achieve the most optimal results

4. What is AI? What is ML?

5. Mathematical/ML Tensors

What are tensors?

Tensors in Context (Mathematics)

- torch is a library for work with tensors (multi-dimensional arrays) and performing operations on them
- Tensors are
 multi-dimensional arrays
 representing complex
 data and describing
 multilinear relationships
 between sets of algebraic
 objects, often within a
 vector space where
 vectors can be added and
 scaled by numbers called
 scalars

```
\begin{bmatrix} 1,2,3 \\ [4,5,6] \\ [7,8,9] \end{bmatrix} = \begin{bmatrix} 1,2,3 \\ 4,5,6 \\ 7,8,9 \end{bmatrix}
2D Array Matrix
```


(above) is the second-order Cauchy [kow-shee] stress tensor (T) that describes the state of stress experienced by a material at a given point in the deformed state, placement, or configuration

5. Mathematical/ML Tensors

Tensors in Machine Learning

- In machine learning (e.g., PyTorch models like the chatbot) and continuum mechanics (a branch of physics studying how materials behave under forces), tensors share similarities as **mathematical objects**
- However, their applications and interpretations differ significantly: in machine learning, tensors handle data for computations, while in continuum mechanics, they represent quantities like stress in materials treated as continuous, rather than focusing on individual atoms or molecules.

5. Mathematical/ML Tensors

Concluding Tensors

Multi-dimensional nature:

- A tensor's rank indicates its dimensionality:

In ML: a tensor can be 1D (vector), 2D (matrix), or higher (e.g., images, sequences)

6. Real World Applications

How may we apply this to the real-world?

Real World Applications

Health

- Diagnosing
- Research

Agriculture

- Identification of plants
- Automated plant monitoring

Education

- Personalized lessons

Retail/preference

Analyzes patterns to predict what you would like

Digital assistant

- Siri
- Alexa
- Google Assistant

6. Real World Applications