

Worcester Polytechnic Institute

ROBOTICS ENGINEERING PROGRAM - RBE2002

Lab 1 : Electrical Circuits and Operational Amplifiers

Authors:

Dale Herzog

Rob Dabrowski

Steve Kelly

Date: November 7, 2012

Instructor: Prof.

Putnam Section: B02 -

2012

Abstract

akdsjf'a

We learned how to... lksajf adskjfa akldjfa adskkfjalk akdsjfa

Contents

1	Introduction					
2	Method					
	2.1	RLC Circuits	3			
	2.2	Operational Amplifiers	3			
	2.3	Load Effect	3			
	2.4	Amplification	3			
	2.5	Filtering	3			
	2.6	Operations with Amplifiers	3			
		2.6.1 Using the Multisim simulator	3			
3	Results					
	3.1	RLC Circuits	3			
	3.2	Operational Amplifiers	3			
	3.3	Load Effect	3			
	3.4	Amplification	3			
	3.5	Filtering	3			
	3.6	Operations with Amplifiers	3			
		3.6.1 Using the Multisim simulator	3			
4	Discussion					
	4.1	RLC Circuits	3			
	4.2	Operational Amplifiers	3			
	4.3	Load Effect	3			
	4.4	Amplification	3			
	4.5	Filtering	3			
	4.6	Operations with Amplifiers	3			
		4.6.1 Using the Multisim simulator	3			
5	Con	Conclusion				
\mathbf{A}	Raw data					
В	A p	A physica macro				

Figure 1: This is the caption for the picture.

1 Introduction

¹Here's the text of the footnote.

2 Method

- 2.1 RLC Circuits
- 2.2 Operational Amplifiers
- 2.3 Load Effect
- 2.4 Amplification
- 2.5 Filtering
- 2.6 Operations with Amplifiers
- 2.6.1 Using the Multisim simulator
- 3 Results
- 3.1 RLC Circuits
- 3.2 Operational Amplifiers
- 3.3 Load Effect
- 3.4 Amplification
- 3.5 Filtering
- 3.6 Operations with Amplifiers
- 3.6.1 Using the Multisim simulator
- 4 Discussion
- 4.1 RLC Circuits
- 4.2 Operational Amplifiers
- 4.3 Load Effect
- 4.4 Amplification
- 4.5 Filtering
- 4.6 Operations with Amplifiers
- 4.6.1 Using the Multisim simulator

5 Conclusion

References

 $[1]\,$ D. Adams. The Hitchhiker's Guide to the Galaxy. San Val, 1995.

A Raw data

Table 1: Resistance and Temperature of the Filament

$R(T), \Omega$	T, K	$1/T, K^{-1}$	$\ln P$
151.00 ± 3.92	828.35 ± 23.46	1.2072×10^{-3}	-13.29
157.12 ± 3.71	856.88 ± 22.25	1.1671×10^{-3}	-12.64
162.53 ± 3.49	881.99 ± 21.02	1.1338×10^{-3}	-12.33
166.67 ± 3.33	901.14 ± 20.13	1.1097×10^{-3}	-11.90
171.84 ± 3.17	924.98 ± 19.25	1.0811×10^{-3}	-11.25
176.84 ± 3.04	947.96 ± 18.53	1.0549×10^{-3}	-10.77
181.46 ± 2.90	969.13 ± 15.49	1.0319×10^{-3}	-10.20
186.49 ± 2.79	992.09 ± 17.18	1.0080×10^{-3}	-9.66
190.91 ± 2.69	1012.21 ± 16.65	9.8794×10^{-4}	-9.13
195.48 ± 2.59	1032.95 ± 16.45	9.6811×10^{-4}	-8.60
199.93 ± 2.50	1053.08 ± 15.65	9.4960×10^{-4}	-8.10
204.47 ± 2.41	1073.56 ± 15.19	9.3148×10^{-4}	-7.63
208.62 ± 2.34	1092.22 ± 14.83	9.1556×10^{-4}	-7.16

B A physica macro

```
! exp_3.pcm
clear
! read in the data
read\format\noerror exp_3.dat (*) x,y,dy
! plot the data
label\x 'Voltage, V'
label\y 'Power, W'
set colour 1 1
set pchar -4
graph x,y,dy
! fit and plot the curve
scalar\vary A,T,w,phi
! initial values for parameters
A = 2.3
w = 6.5
phi=0
T=10.
fit y=A*cos(w*x+phi)*exp(-x**2/T)
fit\update f
set colour 2 2
set pchar 0
graph\noaxes x,f
```