Polunadzirana klasifikacija rukom pisanih znakova generativnim suparničkim modelima

Marko Jelavić

Fakultet Elektrotehnike i Računarstva

July 20, 2017

Duboke konvolucijske generativne suparničke mreže

- Klasifikatorska generativna suparnička mreža
- Zaključak

- Ideja suprotstavljanja dvaju višeslojnih perceptrona treniranih unazadnom propagacijom
- Suprotstavljeni su generator i diskriminator
- Generator generira podatke nalik stvarnima
- Diskriminator određuje klasu podatka (stvaran ili generiran)
- Igraju minimax game po sljedećoj formuli:

Minimax igra

$$V(G, D) = \int_{x} p_{data}(x) \log D(x) dx + \int_{z} p_{z}(z) \log(1 - D(G(z)) dz$$

$$= \int_{x} (p_{data}(x) \log D(x) + p_{g}(x) \log(1 - D(x))) dx$$
(1)

Optimalan diskriminator:

$$D_G^*(x) = \frac{p_{data}(x)}{p_{data}(x) + p_g(x)}$$
 (2)

- 4 ロ ト 4 部 ト 4 恵 ト 4 恵 ト 9 Q (C)

$$f(y) = a \log y + b \log(1 - y) \tag{3}$$

• gdje je $a = p_{data}(x)$, $b = p_g(x)$, y = D(x). $f'(y) = \frac{a}{y} - \frac{b}{1 - y}$ (4)

$$\frac{a}{y} - \frac{b}{1 - y} = 0$$

$$a - ay = by$$

$$a = ay + by$$

$$a = y(a + b)$$

$$y' = \frac{a}{2 + b}$$
(5)

$$f''(y) = -\frac{a}{y^2} - \frac{b}{(1-y)^2}$$

$$f''\left(\frac{a}{a+b}\right) = -\frac{a}{\left(\frac{a}{a+b}\right)^2} - \frac{b}{(1-\frac{a}{a+b})^2}$$
(6)

 a i b su distribucijske funkcije, stoga je navedeni ekstrem maksimum funkcije

⟨□⟩ ⟨□⟩ ⟨≡⟩ ⟨≡⟩ ⟨≡⟩ ⟨□⟩

$$\begin{split} C(G) &= \max_{\mathbf{D}} V(D,G) \\ &= V(D^*,G) \\ &= \mathbb{E}_{x \sim p_{data}(x)} [\log D^*(x)] + \mathbb{E}_{x \sim p_g(x)} [\log(1-D^*(x))] \\ &= \int_x p_{data}(x) \log D^*(x) dx + \int_x p_g(x) \log(1-D^*(x)) dx \\ &= \int_x p_{data}(x) \log \left(\frac{p_{data}(x)}{p_{data}(x) + p_g(x)} \right) dx + \int_x p_g(x) \log \left(1 - \frac{p_{data}(x)}{p_{data}(x) + p_g(x)} \right) dx \\ &= \int_x p_{data}(x) \log \left(\frac{p_{data}(x)}{p_{data}(x) + p_g(x)} \right) dx + \int_x p_g(x) \log \left(\frac{p_g(x)}{p_{data}(x) + p_g(x)} \right) dx \\ &= \int_x p_{data}(x) \log \left(\frac{p_{data}(x)}{p_{data}(x) + p_g(x)} \right) dx - \int_x p_{data}(x) \log 2 dx \\ &+ \int_x p_g(x) \log \left(\frac{p_g(x)}{p_{data}(x) + p_g(x)} \right) dx - \int_x p_g(x) \log 2 dx \\ &= \int_x p_{data}(x) \log \left(\frac{p_{data}(x)}{p_{data}(x) + p_g(x)} \right) dx - \log 2 \\ &+ \int_x p_g(x) \log \left(\frac{p_g(x)}{p_{data}(x) + p_g(x)} \right) dx - \log 2 \\ &= KL \left(p_{data} \right) \frac{p_{data}(x)}{2} + KL \left(p_g \right) \frac{p_{data}(x) + p_g}{2} - 2 \log 2 \\ &= -\log 4 + 2JSD(p_{data} \| p_g) \\ &= \log \frac{1}{4} + 2JSD(p_{data} \| p_g) \end{split}$$

Generative adversarial networks (conceptual)

Figure: Generativna suparnička mreža

4□ > 4□ > 4□ > 4□ > 4□ > □

Algoritam

for number of training iterations do

for ksteps do

Sample minibatch of m noise samples $\{z^{(1)},...,z^{(m)}\}$ from $p_z(z)$

Sample minibatch of m examples $\{x^{(1)},...,x^{(m)}\}$ from real data

Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D(x^{(i)}) + \log(1 - D(G(z^{(i)}))) \right]$$
 (7)

end

Sample minibatch of m noise samples $\{z^{(1)},...,z^{(m)}\}$ from $p_z(z)$ Update the generator by ascending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log D(G(z^{(i)}))$$
 (8)

end

Algorithm 1: GAN

Implementacija

- Uzorkovanje šuma $\mathcal{N}(0,1)$. Vektor veličine 100.
- Inicijalizacija svih težina tf.truncated_normal s $\mathcal{N}(0,0.01)$, pristranosti na 0.1
- Generator
 - 100x200x784
 - Skriveni sloj ReLU, izlazni sloj sigmoida
 - Adam s predefiniranim parametrima
- Diskriminator
 - 784x200x1
 - Skriveni sloj ReLU, izlazni sloj sigmoida
 - Stohastički gradijentni spust stopa učenja 0.01
- 100000 iteracija, batch veličina 500

Rezultati

Figure: Uzorci nakon 0, 25000, 50000, 100000 iteracija

Figure: Gubitak diskriminatora (lijevo) i generatora (desno)

Duboke konvolucijske generativne suparničke mreže

- Umjesto višeslojnog perceptrona konvolucijske arhitekture
- Uvedena još 3 bitna faktora u treniranju
 - Nema slojeva sažimanja generator i diskriminator uče prostorna povećanja/smanjenja preko koraka (najčešće 2)
 - Izostavljanje potpuno povezanih slojeva osim po 1 na početku (generator) i kraju (diskriminator)
 - Grupna normalizacija (osim na ulazu diskriminatora, te izlazu generatora)
- Također se savjetuje korištenje ReLU (generator) i LeakyReLU (diskriminator)

Implementacija

- ullet Šum je ovaj put uzorkovan iz $\mathcal{U}(-1,1)$ (nema vidne razlike)
- Implementirana su 4 modela, interesantni su nam 1. i 4.
- Model 1 generator
 - Potpuno povezani sloj 100x6272 koji se zatim preoblikuje u 7x7x128
 - Prvi dekonvolucijski sloj 7x7x128, drugi 14x14x1
- Model 4 generator
 - Potpuno povezani sloj 100x2048 koji se zatim preoblikuje u 2x2x512
 - Prvi dekonvolucijski sloj 2x2x256, drugi 4x4x128, treći 7x7x64, četvrti 14x14x1
- Diskriminator sva 4 modela
 - Prvi konvolucijski sloj 5x5x16, drugi 5x5x32, treći 5x5x64, četvrti 5x5x128
 - Izlaz konvolucija je 2x2x128 koji se zatim izravna te preda sigmoidalnom neuronu

Implementacija

- Inicijalizacija svih težina tf.truncated_normal s $\mathcal{N}(0,0.02)$, pristranosti na 0.1
- Generator i diskriminator se treniraju Adam optimizatorom
 - Stopa učenja 0.0002
 - $\beta_1 = 0.5$
 - Ostalo predefinirano
- Veličina grupe 64
- Postupak se ponavlja 100000
- Za svako treniranje diskriminatora, generator se trenira dvaput!

Rezultati - model 1

Figure: Uzorci nakon 0, 25000, 50000, 100000 iteracija

Figure: Gubitak diskriminatora (lijevo) i generatora (desno)

Rezultati - model 4

Figure: Uzorci nakon 0, 25000, 50000, 100000 iteracija

Figure: Gubitak diskriminatora (lijevo) i generatora (desno)

Metode verifikacije

- Šetnja latentnim prostorom (kolinearni vektori)
 - Provjera kakve slike generator vraća za [-0.05, 0.05, ... -0.05],
 [0, 0, ... 0], [0.05, 0.05, ... 0.05]
 - U gornjem primjeru očigledno je pomak 0.05, stoga se svi vektori razlikuju za k*0.05
 - Drugi način je generiranje vektora iste veličine iz distribucije $\mathcal{U}(-0.05, 0.05)$ i korištenje njega kao pomak
- Izvlačenje značajki
 - Izvuku se značajke koje je diskriminator naučio
 - Proslijede se linearnom klasifikatoru te se uspoređuju s drugim modelima

Šetnja latentnim prostorom

Figure: Primjer šetnje skrivenim prostorom

Figure: Primjer druge šetnje skrivenim prostorom

Izvlačenje značajki

Table: Rezultati mjerenja za Linearni SVM

Klasifikator	Cijeli MNIST	1000 primjera	100 primjera
LSVM (pikseli)	$91.75\% \pm 0\%$	$83.13\% \pm 0\%$	$72.2\% \pm 0\%$
LSVM (RND značajke)	$93.86\% \pm 0.48\%$	$83.55\% \pm 1.15\%$	$66.84\% \pm 1.7\%$
LSVM (DCGAN značajke)	$97.68\% \pm 0.21\%$	$92.99\% \pm 0.45\%$	$75.36\%\pm2\%$
Diskriminator	$99.21\% \pm 0.07\%$	$91.14\% \pm 2.6\%$	$71.27\% \pm 1.64\%$

Table: Rezultati mjerenja za Logističku regresiju

Klasifikator	Cijeli MNIST	1000 primjera	100 primjera
LR (pikseli)	$91.98\% \pm 0\%$	$85.85\% \pm 0\%$	$73.15\% \pm 0\%$
LR (RND značajke)	$93.98\% \pm 0.51\%$	$85.11\%\pm1\%$	$67.69\% \pm 1.86\%$
LR (DCGAN značajke)	$97.93\% \pm 0.21\%$	$93.74\% \pm 0.44\%$	$74.16\% \pm 2.24\%$
Diskriminator	$99.21\% \pm 0.07\%$	$91.14\% \pm 2.6\%$	$71.27\% \pm 1.64\%$

Primjena na FM3 datasetu - model 4

Figure: Uzorci nakon 0, 25000, 50000, 100000 iteracija

Primjena na FM3 datasetu - model 4

Table: Rezultati mjerenja preciznosti

	0	1	2	3	4	5	6	7
pikseli	91.05%	63.52%	95.56%	71.43%	72.50%	33.33%	65.96%	66.67%
značajke	95.74%	69.41%	95.90%	92.31%	76.92%	78.05%	72.00%	65.38%

Table: Rezultati mjerenja odziva

	0	1	2	3	4	5	6	7
pikseli značajke				89.74% 92.31%				

Klasifikatorska generativna suparnička mreža

- Identična priča, promjena što diskriminator ima 2 izlaza
- Stoga postoje i 2 gubitka
- Funkcije izglednosti izgledaju:

$$L_{S} = \mathbb{E}[\log P(S = real|X_{real})] + \mathbb{E}[\log P(S = fake|X_{fake})]$$
 (9)
$$L_{C} = \mathbb{E}[\log P(C = c|X_{real})] + \mathbb{E}[\log P(C = c|X_{fake})]$$

- L_S predstavlja log izglednost uzorkovanja diskriminatora
- L_C klasifikacijsku log izglednost
- Diskriminator maksimizira vrijednost $L_S + L_C$ dok generator maksimizira $L_C L_S$.

◆ロト ◆個ト ◆差ト ◆差ト 差 めので

Klasifikatorska generativna suparnička mreža

ACGAN · How does it work? (I) FC layer with sigmoid (2) FC layer with softmax real or fake? Discriminator one-hot vector representing 5 (multi-task learning) Training with real images Training with false images latent vector z real or fake? one-hot vector representing 2 one-hot vector representing 2

Figure: Klasifikatorska generativna suparnička mreža

Rezultati

Figure: Uzorci nakon 0, 25000, 50000, 100000 iteracija

Figure: Uzorci nakon 0, 25000, 50000, 100000 iteracija (otežan)

Rezultati

Table: Rezultati mjerenja za klasifikatore

Klasifikator	Cijeli MNIST	1000 primjera	100 primjera
AC-GAN	98.56%	75.48%	16.4%
Weighted AC-GAN	99.21%	88.65%	22.13%
Diskriminator	99.2%	91.89%	75.4%

Zaključak

- Interesantno područje
- Moguće primjene kod zadataka s malo označenih primjera
- Nove varijante na tjednoj bazi
- Prema stabilnijim treniranjima arhitektura (WGAN)
- Teoretske analize nestabilnosti
- Kriteriji konvergencije

Zahvala

Hvala na pozornosti!