Problem 1 - Least Squares

Define $\mathbf{b} = \begin{bmatrix} b_0 & b_1 & b_2 \dots b_m \end{bmatrix}$ where $\mathbf{b} \in \mathbb{R}^n$. Similarly, define $\mathbf{x}_i = \begin{bmatrix} 1 & x_{i1} & x_{i2} \dots x_{in} \end{bmatrix}$ where $\mathbf{x}_i \in \mathbb{R}^n$. Here we have defined $x_{i0} = 1$.

The vertical distance between a point (y_i, \mathbf{x}_i) and the hyperplane $\mathbf{x}_i^T \mathbf{b}$ is $y_i - (\mathbf{x}_i^T \mathbf{b}), i = \{1, 2, \dots m\}.$

By summing the squared terms for every point y_i , we get the RSS function

$$RSS = \sum_{i=1}^{m} [y_i - (\mathbf{x}_i^T \mathbf{b})]^2$$

If we define
$$X = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_m \end{bmatrix}$$
 and $Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$, then we can minimize RSS with spect to \mathbf{b} to get
$$\mathbf{b} = \left(X^TX\right)^{-1}XY$$

Problem 2 - Optimization

Please see Problem2\problem.1.2.R for work.

Problem 3 - Interpretation

See Q3_considerations.R for all calculations and marketing plan.

Problem 4 - Weighted Regression

1. We consider the model $y = X\beta + \epsilon$, where

$$\epsilon \sim \mathcal{N} \left(\begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_m \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & 0 & \dots & 0 \\ 0 & \sigma_2^2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_m^2 \end{bmatrix} \right)$$

where m is the total number of observations.

W is a matrix with w_i on the diagonal and zeroes everywhere else, which corresponds to the reciprocal $w_i = \frac{1}{\sigma_i^2}$. Then, we have

$$W = \begin{bmatrix} \frac{1}{\sigma_1^2} & 0 & \dots & 0\\ 0 & \frac{1}{\sigma_2^2} & \dots & 0\\ \dots & \ddots & \vdots\\ 0 & 0 & \dots & \frac{1}{\sigma_m^2} . \end{bmatrix}$$

We can now minimize

$$WRSS = \frac{1}{n}(y - Xb)^T W(y - Xb).$$

Take the gradient of WRSS and set it to zeros.

$$\frac{\partial WRSS}{\partial b} = \frac{1}{n}X^TW(y - Xb) = 0$$

$$\Rightarrow \frac{1}{n}X^T(Wy - WXb) = 0$$

$$\Rightarrow \frac{1}{n}X^TWy - X^TWXb = 0$$

$$\Rightarrow \frac{1}{n}X^TWy = X^TWXb$$

$$\Rightarrow b = \frac{1}{n}(X^TWX)^{-1}X^TWy$$

- 2. It prioritizes fitting to points with smaller variance than those with higher.
- 3. We want to weight the terms with a smaller variance σ_i^2 higher than terms with a smaller variance. In this case, $\frac{1}{\sigma_i^2} > \frac{1}{\sigma_j^2} \iff \sigma_i^2 < \sigma_j^2$.