Homework 3

Problem 1 Solution

unraveled

Trying to draw the picture

```
t=linspace(0, 10*pi,5000);
x=sin(t.*cos(t));
y=cos(t.*sin(t));
z=-t;
plot3(x,y,z,'k.','MarkerSize',2);
set(gcf,'position',[100,100,200,600]);
set(gca,'xtick',[],'ytick',[],'ztick',[],'xcolor','w','ycolor','w','zcolor','w');
title('\it{unraveled}','FontSize',13);
```

Then the figure is as below:

unraveled

shapes

```
axis equal;
x1 = [380 540 540];
y1 = [135 0 270];
patch(x1,y1,[51/255 150/255 93/155],'Edgecolor',[51/255 150/255 93/155]);

rectangle('Position',[10 90 80 80],'Curvature',1,...
    'Edgecolor',[180 177 46]./255,'Facecolor',[180 177 46]./255);
rectangle('Position',[50 30 170 100],'Curvature',0.2,...
    'Edgecolor',[57 62 153]./255,'Facecolor',[57 62 153]./255);
rectangle('Position',[200 155 140 140],'Curvature',1,...
```

```
'Edgecolor',[180 52 39]./255,'Facecolor',[180 52 39]./255);
rectangle('Position',[200 270 200 100],'Facecolor',[1 1 1],'Edgecolor',[1 1 1]);
rectangle('Position',[0 0 540 270],'Edgecolor',[0 0 0],'LineWidth',1);

set(gca,'xtick',[],'ytick',[],'ztick',[],'xcolor','w','ycolor','w','zcolor','w');
xlim([0 540]);
ylim([0 270]);
title('\it{shapes}')
```

The figure is as below:

Problem 2 Solution

```
function mandelbrotPlot(N,xLims,yLims,pass)
    x = linspace(xLims(1),xLims(2),N);
    y = linspace(yLims(1),yLims(2),N);
    z = zeros(N,N);
    for k=1:pass
        z=z.^2 + x + i*y';
    end

    w = exp(-abs(z));
    contourf(x,y,w);
    set(gca,'xtick',[],'ytick',[],'ztick',
    [],'xcolor','w','ycolor','w','zcolor','w');
    title(pass);
end
```

Then write to plot 4 figure:

```
subplot(2,2,1);
mandelbrotPlot(400,[-2 1.5],[-1.75 1.75],2);
```

```
subplot(2,2,2);
mandelbrotPlot(400,[-2 1.5],[-1.75 1.75],5);
subplot(2,2,3);
mandelbrotPlot(400,[-2 1.5],[-1.75 1.75],25);
subplot(2,2,4);
mandelbrotPlot(400,[-2 1.5],[-1.75 1.75],100);
```

Then we got:

Then we try N=1000, pass=100

```
tic;
mandelbrotPlot(1000,[-2 1.5],[-1.75 1.75],100);
toc
```

Then we get:

100

The time it takes:

```
>> test
历时 0.361532 秒。
```

Problem 3 Solution

```
function out = processScores(filename)
  data = csvread(filename);
  team = unique(data(:,1:2));
  l = length(team);

out = zeros(l,4);
  out(:,1) = team;

for i = 1:1
    home = data(data(:,1)==team(i),:);
    away = data(data(:,2)==team(i),:);

  out(i,2) = sum(home(:,3)>home(:,4)) + sum(away(:,4)>away(:,3));
    out(i,3) = numel(home(:,1))+numel(away(:,1)) - out(i,2);
    out(i,4) = out(i,2)/(out(i,2)+out(i,3));
```

```
end

out = sortrows(out,4,"descend");
end
```

The result is:

```
ans =
```

1.0000	23.0000	13.0000	0.6389
7.0000	23.0000	13.0000	0.6389
9.0000	21.0000	15.0000	0.5833
8.0000	19.0000	17.0000	0.5278
4.0000	18.0000	18.0000	0.5000
10.0000	18.0000	18.0000	0.5000
6.0000	17.0000	19.0000	0.4722
3.0000	15.0000	21.0000	0.4167
2.0000	14.0000	22.0000	0.3889
5.0000	12.0000	24.0000	0.3333

Problem 4 Solution

scrambleWord

```
function out = scrambleWord(in)
  noletter = ~isletter(in);
  letter = in(isletter(in));
  scramble = letter;
  scramble(2:end-1) = letter(randperm(length(letter)-2)+1);

  out(noletter) = in(noletter);
  out(isletter(in)) = scramble;
end
```

scramble

```
function scramble(in,out)
  input = fopen(in,'r');
  output = fopen(out,'w');
  line = fgets(input);
  while(line ~= -1)
    a = strread(line,'%s');
  for i = 1:length(a)
      fprintf(output,scrambleWord(a{i}));
      fprintf(output,' ');
```

```
end
    fprintf(output,'\n');
    line = fgets(input);
    end
    fclose(input);
    fclose(output);
end
```

result

We run as below:

```
scramble("test.txt","ans.txt");
```

The result is:

Problem 5 Solution

getCell

```
function out = getCell(in, row, col)
  edge = size(in);
```

```
out = [];

for i = 1:length(row)
    if row(i)<1 | col(i)<1 | row(i)>edge(1) | col(i)>edge(2)
        out(end+1) = 0;
    else out(end+1) = in(row(i),col(i));
    end
end
end
```

countNeighbors

```
function out = countNeighbors(in)
  edge = size(in);
  out = in;
  for i = 1:edge(1)
     for j = 1:edge(2)
        row = [i-1,i-1,i-1,i,i,i+1,i+1];
        col = [j-1,j,j+1,j-1,j+1,j-1,j,j+1];
        out(i,j) = sum(getCell(in,row,col));
     end
  end
end
```

updateCells

```
function out = updateCells(in)
  edge = size(in);
  out = in;
  now = countNeighbors(in);

for i = 1:edge(1)
    for j = 1:edge(2)
        if now(i,j) == 3
            out(i,j) = 1;
        else if now(i,j)<2 | now(i,j)>3
            out(i,j) = 0;
            end
        end
  end
end
end
```

Run the LifeScript.m, because gif is not allowed in PDF, so part of the result is as below:

Problem 6 Solution

```
function plotAFMdata(H,F,I,ss,savename)
    subplot(2,2,1);
    scatter(F,I,'k.');
    xlabel('Friction(mV)');
    ylabel('Current response (V)');
    title('current as a function of friction');
    ylim([-2 8]);
    box on;
```

```
subplot(2,2,2);
    histogram(I, 'FaceColor', [0, 2, 140]./255);
    xlabel('Current response (V)');
    ylabel('Counts');
   title('Current histogram');
    xlim([-1,7]);
    box on;
    s = size(H);
   X = linspace(1, ss, s(1));
   Y = linspace(1, ss, s(2));
   subplot(2,2,3);
   mesh(X,Y,H,F);
    colormap("jet");
    cbar = colorbar;
    cbar.Title.String = sprintf('Friction \n (mV)');
    cbar.Position = [0.5 \ 0.1 \ 0.01 \ 0.3];
    xlabel('nm');
   ylabel('nm');
    zlabel('nm');
    title('Friction overlaid height', 'FontSize', 10);
    box on;
    ax = gca;
    ax.BoxStyle = 'full';
    axis tight;
    grid off;
    subplot(2,2,4);
    mesh(X,Y,H,I);
    colormap("jet");
    cbar = colorbar;
    cbar.Title.String = sprintf('Current \n Response (mV)');
    cbar.Position = [0.93 0.1 0.01 0.3];
    xlabel('nm');
   ylabel('nm');
    zlabel('nm');
    title('Current overlaid height', 'FontSize', 10);
    box on;
    ax = gca;
    ax.BoxStyle = 'full';
    axis tight;
    grid off;
    set(gcf, 'Position', [0, 0, 1000, 460], 'color', 'w');
    print(gcf, '-djpeg', '-r300', savename);
    close(gcf);
end
```

Run this script:

```
plotAFMdata(height,friction,current,<mark>200</mark>,"p6.jpg")
```

Then we get a photo:

