基础物理实验原始数据记录

实验名称测量金属的杨氏模量	地点	教学楼 710
学生姓名 <u>了教</u> 学号 2023 K800990903	分班分组座号 <u>2-05-</u>	2号 (例: 1-04-5号)
实验日期 2024 年 1 月 12 日	成绩评定	t师签字

一. 拉伸法

设备型号:

- (1) 钼丝长度 L= <u>791.2</u> mm, 卷尺仪器误差 e= <u>12.0</u> mm
- (2) 钼丝直径

测量次数	1	2	3	4	5	6	平均值d̄
d/mm	0.192	0.192	0.190	0.141	0.191	0.192	

(3) 监视器示数

初始示数1₀= <u>/.00</u> mm,千分尺仪器误差 e=**±0.00**5 mm

序号	砝码质		叉丝读数/mn	1	$l_i M_i$	示数差值	不确定
i	量 M/g	加载l _i /mm	卸载l' _i /mm	平均值[[/mm	/(mm • g)	$\Delta \overline{l_i} = \overline{l_{i+4}} - \overline{l_i}$	
1	250	0.80	0.65		į.		
2	500	0.55	0.40		j		
3	150	0.30	0.30				
4	1000	0.10	0.10				
5	125 o	-0.10	-0.15		TC.		
6	1500	-0.35	-0.35				
7	1750	-0.60	-0.60				
8	2000	-0.80					
	r		_				
M			Ī.				
ΣΜ			$\sum \overline{l}_{r}$	No. 1 to 1			

(4) 作图法处理数据

(请注意绘图纸大小。注意图表要素齐全)

二. 霍尔法

设备型号: 十10分(一)样品: (一)样品: (一)样别

(1) 横梁的几何尺寸

测量次数	1	2	3	4	5	6	平均值
长度 d/mm	229.2	230.	230.0	229.4	229.3	229.3	
宽度 b/mm	23.50	23.46	23.44	23.44	23.48	23.52	
厚度 a/mm	0.980	0.983	0.979	0.965			

序号i	1	2	3	4	5	6	7	8	平均值
M _i / g	12.4	22.0	29.6	39.8	50.0	59.5	10.3	80.0	
Z_i / mm	1.125	1.229	1.316	1.433	1.540	1.659	1.782	1.897	
U _i /mV	34	58	78	104	Control of the Contro	149	水 " 特	20	

$\Delta Z_i / mm$	1.5	T			 ý.	
ΔU _i /mV		77 2 - 1	100 m			4
U_i^2/mV^2						- 1
Z_i^2/mm^2						. 29
<i>Z_i U_i/</i> (mm • m∨)				77		

(二)样品:口黄铜山铸铁 → 120分

(3) 横梁的几何尺寸

测量次数	1	2	3	4	5	6	平均值
长度 d/mm	229.4	230.0	229.5	229.5	229.8	230.1	
			23.36				1
厚度 a/mm	0.973		0.969				

(4) 读数显微镜示数

显微镜初始读数Z₀= <u>0.0 4 6</u> mm

序号i	1	2	3	4	5	6	7	8	平均值
M _i /g	20.2	39.6	60.0	91.4	100.6	120.5	140.0	160.0	
Z_i / mm	0.189	0.320	0.461	0.603	0.717	0.868	1.019	1.162	a K
U_i / mV	31	61	91		Table 100 - 27/2/7 - 100	178			
ΔZ_i / mm		9	delication						
ΔU_i / mV			, , , , ,	7 7				/	
U_i^2/mV^2									
Z_i^2/mm^2	The same of	4	A 11 - 1 - 1 - 1 - 1		1			**	90 Pr 100
$Z_i U_i/$ (mm • mV)									

动态法

设备型号: DH08 D3 ()版) MSD 2022 B (示) 样品: 黄铜, 长度 L=180.0mm; 直径 d=5.956mm; 样品质量 m=42.10g

	T					72.1	-	
序号	1	2	3	4	5	6	7	8
悬挂点位置 x(mm)	20	25	30	35	45	50	55	60
x/L								
共振频率 fi(Hz)	592.696	589.847	588.386	587.325	586.189	587.759	588,198	590.082

基频共振频率 fi=

Hz

Y=

四. 光杠杆法的装置读数

设备型号:

数据记录表:

序号	拉力 (kg)	微分头示数 (mm)	读数(mm)	计算的伸长量 (mm)
1				
2				
3				

注:拉力和微分头示数只填1列(部分装置使用微分头替代砝码拉伸产生位移)。