Aula 19

Teorema Fundamental do Cálculo

Teorema (Teorema Fundamental do Cálculo/Regra de Barrow):

Sejam $f:D_f\subset\mathbb{C}\to\mathbb{C}$ uma função contínua nos pontos duma curva em D_f parametrizada por um caminho seccionalmente regular γ e seja F uma função holomorfa sobre os pontos da curva tal que F'(z)=f(z) nesses pontos. Então, tem-se

$$\int_{\gamma} f(z) dz = \int_{\gamma} F'(z) dz = F(\gamma(t_1)) - F(\gamma(t_0)).$$

Em particular, se o caminho é fechado, tem-se que $\gamma(t_1)=\gamma(t_0)$ e

$$\oint_{\gamma} f(z)dz = \oint_{\gamma} F'(z)dz = 0.$$

Exemplos:

$$\oint_{|z|=1} \frac{1}{z} dz = 2\pi i$$

$$\oint_{|z|=1} \frac{1}{z^2} \, dz = 0$$

Conjuntos Conexos

<u>Definição</u>: Um conjunto Ω diz-se **desconexo** se existem dois abertos A_1, A_2 tais que:

- $\Omega \subset A_1 \cup A_2$
- $\Omega \cap A_1 \neq \emptyset$ e $\Omega \cap A_2 \neq \emptyset$
- $(\Omega \cap A_1) \cap (\Omega \cap A_2) = \emptyset$

Um conjunto Ω diz-se **conexo por arcos** se, dados quasiquer dois pontos $z_1, z_2 \in \Omega$ existe um caminho com imagem contida em Ω que os une.

<u>Teorema</u>: Se f é contínua e Ω é conexo, então $f(\Omega)$ é conexo.

Proposição: Se um conjunto é conexo por arcos então é conexo.

Se um conjunto é aberto e conexo, então é conexo por arcos.

Teorema (Teorema da Independência do Caminho): Seja $f:D_f\subset\mathbb{C}\to\mathbb{C}$ uma função contínua num domínio D_f aberto e conexo. Então as seguintes proposições são equivalentes entre si.

- i) f tem primitiva em D_f , ou seja, uma função holomorfa $F:D_f\subset\mathbb{C}\to\mathbb{C}$ tal que F'(z)=f(z) para todo o $z\in D_f$.
- ii) Para qualquer caminho fechado γ em D_f tem-se

$$\oint_{\gamma} f(z) \, dz = 0$$

iii) Se $z_0,z_1\in D_f$ são quaisquer dois pontos e $\gamma,\tilde{\gamma}$ quaisquer dois caminhos em D_f , de z_0 para z_1 , tem-se

$$\int_{\gamma} f(z) \, dz = \int_{\tilde{\gamma}} f(z) \, dz.$$

Teorema de Cauchy

Teorema de Cauchy (Versão Básica): Seja $f:D_f\subset\mathbb{C}\to\mathbb{C}$ uma função holomorfa sobre os pontos de uma curva de Jordan $\Gamma\subset D_f$, assim como em **todos** os pontos do seu interior. Então

 $\oint_{\Gamma} f(z)dz = 0.$

Teorema da Deformação (Versão Básica): Seja $f:D_f\subset\mathbb{C}\to\mathbb{C}$ uma função holomorfa no domínio D_f e $\gamma,\tilde{\gamma}$ dois caminhos homotópicos em D_f . Então

$$\int_{\gamma} f(z) \, dz = \int_{\tilde{\gamma}} f(z) \, dz.$$