Pengawasan Detak Jantung dan Peringatan Aritmia secara Ubiquitous Menggunakan Protokol MQTT

Tugas Akhir

Kelompok Keahlian: Telematics

Muhammad Alif Akbar NIM: 1103132163

Program Studi Sarjana Teknik Informatika
Fakultas Informatika
Universitas Telkom
Bandung
2017

Lembar Pernyataan

Dengan ini Saya menyatakan bahwa Tugas Akhir dengan judul "Pengawasan Detak Jantung dan Peringatan Aritmia secara Ubiquitous Menggunakan Protokol MQTT" beserta seluruh isinya adalah benar-benar karya Saya sendiri dan Saya tidak melakukan penjiplakan atau pengutipan dengan cara-cara yang tidak sesuai dengan etika keilmuan yang berlaku dalam masyarakat keilmuan. Atas pernyataan ini, Saya siap menanggung resiko/sanksi yang dijatuhkan kepada Saya apabila kemudian ditemukan adanya pelanggaran terhadap etika keilmuan dalam karya Saya ini, atau ada klaim dari pihak lain terhadap keaslian karya Saya ini.

Bandung, 1 Agustus 2017

Yang membuat penyataan,

Muhammad Alif Akbar NIM: 1103132163

Lembar Pengesahan

Pengawasan Detak Jantung dan Peringatan Aritmia secara Ubiquitous Menggunakan Protokol MQTT

Muhammad Alif Akbar NIM: 1103132163

Tugas Akhir ini diterima dan disahkan untuk memenuhi sebagian dari syarat untuk memperoleh gelar sarjana Teknik Informatika
Program Studi Sarjana Teknik Informatika
Fakultas Informatika Universitas Telkom

Bandung, 1 Agustus 2017

Menyetujui, Pembimbing

<u>Satria Mandala, S.T, M.Sc, Ph.D</u> <u>NIP: 15731897-3</u>

Mengesahkan, Kepala Program Studi Teknik Informatika

Ir. Moch. Arif Bijaksana, M.Tech, Ph.D NIP: 03650312-4

Abstrak

Pada tahun 2015 diperkirakan sebanyak 17,7 juta kematian disebabkan oleh penyakit kardiovaskuler (penyakit jantung). Pada penyakit jantung seringkali ditandai dengan munculnya pola tidak beratur pada detak jantung seseorang. Pola ini dikenal dengan istilah Aritmia. Mengetahui terjadinya pola ini dapat menyelamatkan banyak nyawa. Namun keahlian untuk menganalisis pola detak jantung hanya dimiliki oleh mereka yang telah mengemban pendidikan kesehatan seperti dokter jantung. Pada beberapa penelitian sebelumnya telah dikembangkan berbagai metode pengukuran detak jantung non-invasive dan telah dikembangkan pula metode mendeteksi terjadinya Aritmia. Namun sistem yang ada tidak dapat memberikan peringatan dini ketika Aritmia terjadi. Tugas akhir ini mengusulkan sebuah rancangan sistem pemberian peringatan dini kepada orang terdekat dan atau dokter tentang terjadinya Aritmia.

Kata Kunci: Penyakit Jantung, Aritmia, Peringatan Dini.

Abstract

In 2015 it was estimated that 17.7 million deaths were caused by cardio-vascular disease (heart disease). In heart disease is often characterized by the emergence of irregular patterns in the heart rate of a person. This pattern is known as Arrhythmia. Knowing the occurrence of this pattern can save many lives. But the skill to analyze heartbeat patterns is only shared by those who have had health education like heart doctors. In several previous studies, various non-invasive heart rate measurement methods have been developed and a method of detecting the occurrence of arrhythmias has been developed. However, the existing system can not provide early warning when the arrhythmia occurs. This final project proposes an early warning system design to alert the nearest person and or doctor about the occurrence of arrhythmias.

Keywords: Cardiovascular Disease, Arrhythmia, early warning.

Lembar Persembahan

Bismillahirrahmanirrahim, Alhamdulillah, setelah perjalanan sangat panjang penulis dapat menyelesaikan Tugas Akhir ini. Dalam perjalanan panjang ini penulis mendapatkan sangat banyak bantuan dan dukungan dari berbagai pihak. Pada kesempatan ini penulis ingin mengucapkan terima kasih banyak kepada:

- Allah SWT, yang telah memberikan rahmat dan karunia-Nya kepada penulis, serta kekuatan untuk dapat menyelesaikan Tugas Akhir ini, Alhamdulillah.
- 2. Keluarga saya, Mama Sophia, Bapak Takdir, dan Adik Nanda, yang tidak hentinya mendukung baik secara materi maupun moral, yang tidak hentinya mendoakan dalam sholat malamnya,
- 3. Bapak Satria Mandala, ST., MSc., PhD selaku pembimbing yang telah meluangkan banyak waktunya untuk memberikan bimbingan, arahan serta tidak pernah bosan untuk mengingatkan penulis untuk tetap fokus. Semoga Allah selalu memberikan kesehatan dan kemudahan kepada Bapak,
- 4. Ibu Florita Diana Sari SS, MPd dan Bapak Kiki Maulana Adhinugraha S.Kom., M.T., PhD selaku dosen wali yang telah menyambut penulis di awal perkuliahan, yang selalu memberikan arahan dan dukungan kepada penulis untuk dapat mengarungi dunia perkuliahan dengan baik. Semoga bapak dan ibu diberi kesehatan dan kemudahan selalu dari Allah SWT,
- 5. Para Staf fakultas dan BK, Pak Said, Pak xx, Pak yy, yang senantiasa memberikan dukungan dalam penulis berproses di kampus
- 6. Dosen-dosen yang telah memberikan ilmunya sehingga Penulis mempunyai pengetahuan lebih dibanding sebelumnya.
- 7. Kawan-kawan satu pembimbing, Shamila, Salim, Lusi, dan Husna yang telah berbagi derita perjuangan namun tetap saling memotivasi selama Tugas Akhir berlangsung.

- 8. Kawan-kawan URHUL, Fahmi, Januar, Akbar, Fahri, Faruq, Eka, Bragas, Zidni, Reza, Tesha, Vira, Aida. Terimakasih atas semua kenangan kenangan selama perkulihan baik yang senang, sedih, dan marah. Semoga untuk kedepannya kalian semua diberi kemudahan dan kesuksesan kedepannya.
- UKM kedaerahan KBMS dan semua anggotanya, yang menyambut dan membuat penulis selalu merasa memiliki keluarga dan rumah untuk kembali selama jauh dari kampung.
- Kawan-kawan di Lab Motion, Deas, Devy, Sarah, Adi, Dani, Rizky, Riza, Hanum dan semua anggota yang terlalu banyak untuk disebutkan. Semoga Lab Motion dapat terus berjaya.
- 11. Kawan-kawan dan Senior di Proclub, Nanda, David, Dean, Caca, Danang, Bagus, Luke, Musa, Ipat, Kak Aul, Kak Wahyu, Kak Byan, Kak Arif, dan Kak Dody yang dengan dorongan mereka penulis dapat mencapai berbagai mimpi selama kuliah
- 12. Tim BuahBatu, Januar, Kak Taufik, Dede, Pume, Irfa, Fadlu, Ibu Cut, dan Pak Tauhid yang menjadi tim terbaik yang penulis pernah miliki, yang menggapai sangat banyak mimpi bersama, semoga kita semua dapat meraih kesuksesan.
- Tim Jantung, Shamila, Faida, Qhansa, Mena, Lusi, Husna, dan Hasbi, yang bersama sama penulis menghabiskan uang kampus diakhir perkuliahan.
- 14. Kawan-kawan liqo Pak Kurniawan, yang bersama mereka penulis dapat meluruskan kembali pikiran, hati dan niat selama berkuliah.
- 15. Teman-teman kelas IF 37 08, GOIs, Deadliners, dll, yang sudah mengisi hari-hari di masa awal perkuliahan.
- 16. Semua teman-teman Telkom University dan semua pihak yang tidak dapat disebutkan namanya satupersatu.

Kata Pengantar

Puji syukur atas segala rahmat dan karunia Allah SWT yang telah memberikan kesempatan penulis untuk melaksanakan dan menyelesaikan Tugas Akhir dengan judul "Pengawasan Detak Jantung dan Peringatan Aritmia secara Ubiquitous Menggunakan Protokol MQTT" ini, shalawat serta salam senantiasa dihanturkan kepada junjungan Nabi Muhammad SAW. Tugas Akhir ini disusun sebagai salah satu syarat sidang Tugas Akhir pada program studi Teknik Informatika Fakultas Teknik Informatika Telkom University.

Penulis menyadari masih ada banyak kekurangan pada Tugas Akhir ini, karena itu kritik dan saran sangat diharapkan dan diterima dengan senang hati agar Tugas Akhir ini menjadi lebih baik lagi. Semoga Tugas Akhir ini memberikan manfaat bagi siapapun yang membaca atau turut meneliti apa yang ada di dalam Tugas Akhir ini.

Akhir kata, penulis meminta maaf sebesar besarnya kepada semua pihak apabila ada kesalahan yang penulis lakukan selama proses pembuatan Tugas Akhir ini baik disengaja atau tidak.

Bandung, 1 Agustus 2017

Penulis,

Muhammad Alif Akbar NIM: 1103132163

Daftar Isi

Al	ostra	ık	i
Al	ostra	act	ii
Le	mba	r Persembahan	iii
Ka	ata F	Pengantar	\mathbf{v}
Da	aftar	Isi	vi
Da	aftar	Gambar	iii
Da	aftar	Tabel	ix
Ι	Pen 1.1 1.2 1.3 1.4	Adahuluan Latar Belakang Perumusan Masalah Tujuan Hipotesis (opsional)	
II	•	ian Pustaka Persamaan Air Dangkal	2 2 2
II	3.1 3.2	todologi dan Desain Sistem Flowchart sistem	3 3 4
IV	Has 4.1 4.2	sil dan Pembahasan Flowchart sistem	5 5
\mathbf{V}	Kes 5.1 5.2	simpulan Flowchart sistem	7 7 8

Daftar Pustaka	9
Lampiran	10

Daftar Gambar

2.1	Caption	2
3.1	Caption flowchart	٠
4.1	Caption flowchart	5
5.1	Caption flowchart	7

Daftar Tabel

Bab I

Pendahuluan

1.1 Latar Belakang

WHO mencatat terjadi sekitar 17,7 juta kematian diakibatkan oleh Cardiovascular Diseases (CVDs, penyakit jantung) di seluruh dunia pada tahun 2015 [3]. Bahkan menurut Dinas Kesehatan Republik Indonesia, lebih dari 3 juta kematian akibat penyakit jantung terjadi sebelum usia 60 tahun[]. Penyakit jantung juga umumnya tidak memiliki gejala sebelum penyakit menyerang. Hal ini menunjukkan bahwa bahaya penyakit jantung dapat menyerang siapa saja, dimana saja dan kapan saja.

1.2 Perumusan Masalah

Berikut rumusan masalah yang ingin saya angkat adalah

- 1. Mengapa ini terjadi?
- 2. Bagaimana proses kejadiannya?
- 3. Apa saja yang dipengaruhinya?

1.3 Tujuan

Berikut adalah tujuan yang ingin dicapai pada penulisan proposal/TA.

- 1. Untuk mengetahui mengapa ini terjadi;
- 2. Untuk mempelajari proses kejadian masalah;
- 3. Untuk melihat dampak yang dipengaruhi oleh kejadian ini.

1.4 Hipotesis (opsional)

Hipotesis dari tulisan ini adalah

- 1. Masalah timbul karena A;
- 2. Hasil numeriknya menuju $x \to \infty$

Bab II

Kajian Pustaka

2.1 Persamaan Air Dangkal

Berikut diberikan persamaan pengatur dari persamaan gelombang pada gitar

 $\int_0^1 \frac{f(x)}{g(x)} \, \mathrm{dx} = \sin x \tag{2.1}$

Rumus (2.1) merupakan contoh persamaan matematika. persamaan matematika diatas diberi nama \label{nama-rumus}.

Gambar 2.1: Caption

2.1.1 Cara memanggil pustaka

Contoh pustaka prosiding [1], jurnal [2] dan buku [4]. Atau dapat juga mengguanakan dua pustaka atau lebih dalam [2, 4].

Bab III Metodologi dan Desain Sistem

3.1 Flowchart sistem

Gambar 3.1: Caption flowchart

3.2 Algoritma

Atau dalam bentuk algoritma seperti contoh pada Algoritma 3 berikut ini:

Algorithm 1 Prosedur simulasi dinamika lalu lintas menggunakan FVDM.

```
1: procedure FVDM(Tfinal, \Delta t)
 2:
       Start
       For n = 1 : N \text{ do}
                                                          ⊳ Pemberian nilai awal
 3:
           Input nilai x[n]
 4:
           Input nilai v[n]
 5:
       EndFor
 6:
       time=0
 7:
       while time < T final do
 8:
 9:
               time = time + \Delta t
               Hitung jarak bamper menggunakan rumus untuk n = 2, \dots, N
10:
               If (S(n) \leq 0m) then return End If.
11:
               Tentukan \lambda menggunakan.
12:
               Hitung kecepatan optimal v_o(t) menggunakan.
13:
               Hitung percepatan a_n(time) menggunakan .
14:
               Hitung kecepatan baru dengan v_n(time) = v_n(time - \Delta t) +
15:
    a_n(time)\Delta t.
                Hitung posisi baru dengan x_n(time) = x_n(time - \Delta t) +
16:
    v_n(time)\Delta t.
               If (\Delta v \le 10^{-5} \&\& a_n(time) \le 10^{-5}) then
17:
                   OUTPUT Cetak hasil data a_n, v_n, x_n.
18:
                   return.
19:
               End If.
20:
       end while
21:
22:
       End
23: end procedure
```

Bab IV Hasil dan Pembahasan

4.1 Flowchart sistem

Gambar 4.1: Caption flowchart

4.2 Algoritma

Atau dalam bentuk algoritma seperti contoh pada Algoritma 3 berikut ini:

Algorithm 2 Prosedur simulasi dinamika lalu lintas menggunakan FVDM.

```
1: procedure FVDM(Tfinal, \Delta t)
 2:
       Start
       For n = 1 : N \text{ do}
                                                          ⊳ Pemberian nilai awal
 3:
           Input nilai x[n]
 4:
           Input nilai v[n]
 5:
       EndFor
 6:
       time=0
 7:
       while time < T final do
 8:
 9:
               time = time + \Delta t
               Hitung jarak bamper menggunakan rumus untuk n = 2, \dots, N
10:
               If (S(n) \leq 0m) then return End If.
11:
               Tentukan \lambda menggunakan.
12:
               Hitung kecepatan optimal v_o(t) menggunakan.
13:
               Hitung percepatan a_n(time) menggunakan .
14:
               Hitung kecepatan baru dengan v_n(time) = v_n(time - \Delta t) +
15:
    a_n(time)\Delta t.
                Hitung posisi baru dengan x_n(time) = x_n(time - \Delta t) +
16:
    v_n(time)\Delta t.
               If (\Delta v \le 10^{-5} \&\& a_n(time) \le 10^{-5}) then
17:
                   OUTPUT Cetak hasil data a_n, v_n, x_n.
18:
                   return.
19:
               End If.
20:
       end while
21:
22:
       End
23: end procedure
```

$\mathbf{Bab} \ \mathbf{V}$

Kesimpulan

5.1 Flowchart sistem

Gambar 5.1: Caption flowchart

5.2 Algoritma

Atau dalam bentuk algoritma seperti contoh pada Algoritma 3 berikut ini:

Algorithm 3 Prosedur simulasi dinamika lalu lintas menggunakan FVDM.

```
1: procedure FVDM(Tfinal, \Delta t)
 2:
       Start
       For n = 1 : N \text{ do}
                                                          ⊳ Pemberian nilai awal
 3:
           Input nilai x[n]
 4:
           Input nilai v[n]
 5:
       EndFor
 6:
       time=0
 7:
       while time < T final do
 8:
 9:
               time = time + \Delta t
               Hitung jarak bamper menggunakan rumus untuk n = 2, \dots, N
10:
               If (S(n) \leq 0m) then return End If.
11:
               Tentukan \lambda menggunakan.
12:
               Hitung kecepatan optimal v_o(t) menggunakan.
13:
               Hitung percepatan a_n(time) menggunakan .
14:
               Hitung kecepatan baru dengan v_n(time) = v_n(time - \Delta t) +
15:
    a_n(time)\Delta t.
                Hitung posisi baru dengan x_n(time) = x_n(time - \Delta t) +
16:
    v_n(time)\Delta t.
               If (\Delta v \le 10^{-5} \&\& a_n(time) \le 10^{-5}) then
17:
                   OUTPUT Cetak hasil data a_n, v_n, x_n.
18:
                   return.
19:
               End If.
20:
       end while
21:
22:
       End
23: end procedure
```

Bibliografi

- [1] DOYEN, D., AND GUNAWAN, P. H. An explicit staggered finite volume scheme for the shallow water equations. In *Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects*. Springer, 2014, pp. 227–235.
- [2] GUNAWAN, P. H., AND LHÉBRARD, X. Hydrostatic relaxation scheme for the 1d shallow water-exner equations in bedload transport. *Computers & Fluids 121* (2015), 44–50.
- [3] GÜTING. An introduction to spatial database systems, special issue on spatial database systems of the vldb journal, 1-6.
- [4] TORO, E. F. Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer Science & Business Media, 2013.

Lampiran