

Data sheet acquired from Harris Semiconductor SCHS200D

November 1997 - Revised October 2003

High-Speed CMOS Logic Decade Counter/Divider with 10 Decoded Outputs

Features

- Fully Static Operation
- Buffered Inputs
- Common Reset
- · Positive Edge Clocking
- Typical $f_{MAX} = 50MHz$ at $V_{CC} = 5V$, $C_L = 15pF$, $T_A = 25^{\circ}C$
- Fanout (Over Temperature Range)

 - Bus Driver Outputs 15 LSTTL Loads
- Wide Operating Temperature Range . . . -55°C to 125°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- HC Types
 - 2V to 6V Operation
 - High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} at V_{CC} = 5V

Description

The 'HC4017 is a high speed silicon gate CMOS 5-stage Johnson counter with 10 decoded outputs. Each of the decoded outputs is normally low and sequentially goes high on the low to high transition clock period of the 10 clock period cycle. The CARRY (TC) output transitions low to high after OUTPUT 10 goes from high to low, and can be used in conjunction with the CLOCK ENABLE (CE) to cascade several stages. The CLOCK ENABLE input disables counting when in the high state. A RESET (MR) input is also provided which when taken high sets all the decoded outputs, except "0", low.

The device can drive up to 10 low power Schottky equivalent loads.

Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE
CD54HC4017F3A	-55 to 125	16 Ld CERDIP
CD74HC4017E	-55 to 125	16 Ld PDIP
CD74HC4017M	-55 to 125	16 Ld SOIC
CD74HC4017MT	-55 to 125	16 Ld SOIC
CD74HC4017M96	-55 to 125	16 Ld SOIC
CD74HC4017NSR	-55 to 125	16 Ld SOP
CD74HC4017PW	-55 to 125	16 Ld TSSOP
CD74HC4017PWR	-55 to 125	16 Ld TSSOP

NOTE: When ordering, use the entire part number. The suffixes 96 and R denote tape and reel. The suffix T denotes a small-quantity reel of 250.

Pinout

CD54HC4017 (CERDIP) CD74HC4017 (PDIP, SOIC, SOP, TSSOP) TOP VIEW

Functional Diagram

TRUTH TABLE

СР	CE	MR	OUTPUT STATE †				
L	Х	L	No Change				
Х	Н	H L No Change					
X	Х	Н	"0" = H, "1"-"9" = L				
1	L	L	Increments Counter				
\	Х	L	No Change				
Х	1	L	No Change				
Н	\	L	Increments Counter				

H = High Level

L = Low Level

↑ = High to Low Transition

↓ = Low to High Transition

X = Don't Care.

 \dagger If n < 5 TC = H, Otherwise = L

Absolute Maximum Ratings

DC Supply Voltage, V _{CC} 0.5V to 7V
DC Input Diode Current, I _{IK}
For $V_I < -0.5V$ or $V_I > V_{CC} + 0.5V$
DC Output Diode Current, I _{OK}
For $V_O < -0.5V$ or $V_O > V_{CC} + 0.5V$
DC Output Source or Sink Current per Output Pin, IO
For $V_O > -0.5V$ or $V_O < V_{CC} + 0.5V$
DC V_{CC} or Ground Current, I_{CC} or I_{GND}

Thermal Information

Package Thermal Impedance, θ_{JA} (see Note 1):
E (PDIP) Package
M (SOIC) Package73°C/W
NS (SOP) Package
PW (TSSOP) Package108 ^o C/W
Maximum Junction Temperature
Maximum Storage Temperature Range65°C to 150°C
Maximum Lead Temperature (Soldering 10s)300°C
(SOIC - Lead Tips Only)

Operating Conditions

Temperature Range, T _A	55°C to 125°C
Supply Voltage Range, V _{CC}	
HC Types	2V to 6V
HCT Types	4.5V to 5.5V
DC Input or Output Voltage, V _I , V _O	0V to $V_{\mbox{\footnotesize{CC}}}$
Input Rise and Fall Time	
2V	1000ns (Max)
4.5V	500ns (Max)
6V	400ns (Max)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. The package thermal impedance is calculated in accordance with JESD 51-7.

DC Electrical Specifications

		TES CONDI		v _{cc}		25°C		-40°C T	O 85°C	-55°C T	O 125°C	4
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
High Level Input	V _{IH}	-	-	2	1.5	-	-	1.5	-	1.5	-	V
Voltage				4.5	3.15	-	-	3.15	-	3.15	-	V
				6	4.2	-	-	4.2	-	4.2	-	V
Low Level Input	V _{IL}	-	-	2	-	-	0.5	-	0.5	-	0.5	V
Voltage				4.5	-	-	1.35	-	1.35	-	1.35	V
				6	-	-	1.8	-	1.8	-	1.8	V
High Level Output	V _{OH}	V _{IH} or V _{IL}	-0.02	2	1.9	-	-	1.9	-	1.9	-	V
Voltage CMOS Loads			-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
OWOO LOAGS			-0.02	6	5.9	-	-	5.9	-	5.9	-	V
High Level Output	1		-	-	-	-	-	-	-	-	-	V
Voltage TTL Loads			-4	4.5	3.98	-	-	3.84	-	3.7	-	V
112 20003			-5.2	6	5.48	-	-	5.34	-	5.2	-	V
Low Level Output	V _{OL}	V _{IH} or V _{IL}	0.02	2	-	-	0.1	-	0.1	-	0.1	V
Voltage CMOS Loads			0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
OMOO Edado			0.02	6	-	-	0.1	-	0.1	-	0.1	V
Low Level Output	1		-	-	-	-	-	-	-	-	-	V
Voltage TTL Loads			4	4.5	-	-	0.26	-	0.33	-	0.4	V
112 20003			5.2	6	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current	II	V _{CC} or GND	-	6	-	-	±0.1	-	±1	-	±1	μΑ
Quiescent Device Current	Icc	V _{CC} or GND	0	6	-	-	8	-	80	-	160	μΑ

Prerequisite for Switching Specifications

		TEST	v _{cc}		25°C		-40°C 1	O 85°C	-55°C TO 125°C		
PARAMETER	SYMBOL	CONDITIONS	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
Maximum Clock	f _{MAX}	-	2	6	-	-	5	-	4	-	MHz
Frequency			4.5	30	-	-	35	-	20	-	MHz
			6	35	-	-	49	-	23	-	MHz
CP Pulse Width	t _W	-	2	80	-	-	100	-	120	-	ns
			4.5	16	-	-	20	-	24	-	ns
			6	14	-	-	17	-	20	-	ns
MR Pulse Width	t _W	-	2	80	-	-	100	-	120	-	ns
			4.5	16	-	-	20	-	24	-	ns
			6	14	-	-	17	-	20	-	ns
Set-up Time,	t _{SU}	-	2	75	-	-	95	-	110	-	ns
CE to CP			4.5	15	-	-	19	-	22	-	ns
			6	13	-	-	16	-	19	-	ns
Hold Time,	t _H	-	2	0	-	-	0	-	0	-	ns
CE to CP			4.5	0	-	-	0	-	0	-	ns
			6	0	-	-	0	-	0	-	ns
MR Removal Time	t _{REM}	-	2	5	-	-	5	-	5	-	ns
			4.5	5	-	-	5	-	5	-	ns
			6	5	-	-	5	-	5	-	ns

Switching Specifications Input t_r , $t_f = 6ns$

		TEST	TEST V _{CC}		25°C			C TO °C	-55°C T	O 125°C	
PARAMETER	SYMBOL	CONDITIONS	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
Propagation Delay	t _{PLH,}	C _L = 50pF	2	-	-	230	-	290	-	345	ns
CP to any Dec. Out	t _{PHL}	C _L = 50pF	4.5	-	-	46	-	58	-	69	ns
		C _L = 15pF	5	-	19	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	39	-	49	-	59	ns
CP to TC	^t PLH, ^t PHL	C _L = 50pF	2	-	-	230	-	290	-	345	ns
		C _L = 50pF	4.5	-	-	46	-	58	-	69	ns
		C _L = 15pF	5	-	19	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	39	-	49	-	59	ns
CE to any Dec. Out	t _{PLH,}	C _L = 50pF	2	-	-	250	-	315	-	375	ns
		C _L = 50pF	4.5	-	-	50	-	63	-	75	ns
		C _L = 15pF	5	-	21	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	43	-	54	-	64	ns
CE to TC	t _{PLH,}	C _L = 50pF	2	-	-	250	-	315	-	375	ns
	t _{PHL}	C _L = 50pF	4.5	-	-	50	-	63	-	75	ns
		C _L = 15pF	5	-	21	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	43	-	54	-	64	ns

Switching Specifications Input t_r , $t_f = 6ns$ (Continued)

		TEST	V _{CC}		25°C			С ТО °С	-55°C T	O 125 ⁰ C	
PARAMETER	SYMBOL	CONDITIONS	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
MR to any Dec. Out	t _{PLH} ,	C _L = 50pF	2	-	-	230	-	290	-	345	ns
	t _{PHL}	C _L = 50pF	4.5	-	-	46	-	58	-	69	ns
		C _L = 15pF	5	-	19	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	39	-	49	-	59	ns
MR to TC	t _{PLH,} t _{PHL}	C _L = 50pF	2	-	-	230	-	290	-	345	ns
		C _L = 50pF	4.5	-	-	46	-	58	-	69	ns
		C _L = 15pF	5	-	19	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	39	-	49	-	59	ns
Transition Time TC, Dec. Out	t _{TLH} , t _{THL}	C _L = 50pF	2	-	-	75	-	95	-	110	ns
		C _L = 50pF	4.5	-	-	15	-	19	-	22	ns
		C _L = 50pF	6	-	-	13	-	16	-	19	ns
Input Capacitance	C _{IN}	C _L = 50pF	-	-	-	10	-	10	-	10	pF
Maximum CP Frequency	f _{MAX}	C _L = 15pF	5	-	60	-	-	-	-	-	MHz
Power Dissipation Capacitance (Notes 2, 3)	C _{PD}	C _L = 15pF	5	-	39	-	ı	-	-	-	pF

NOTES:

- 2. $C_{\mbox{PD}}$ is used to determine the dynamic power consumption, per package.
- 3. $P_{D} = V_{CC}^{2} \, f_{i} \, \Sigma \\ \in \, C_{L} \, V_{CC}^{2} \, fo \, \, where \, f_{i} = input \, frequency, \, f_{0} = output \, frequency, \, C_{L} = output \, load \, capacitance, \, V_{CC} = supply \, voltage.$

Test Circuits and Waveforms

NOTE: Outputs should be switching from 10% V_{CC} to 90% V_{CC} in accordance with device truth table. For f_{MAX} , input duty cycle = 50%.

FIGURE 1. HC CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH

FIGURE 2. HC TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC

Test Circuits and Waveforms (Continued)

FIGURE 3. HC SETUP TIMES, HOLD TIMES, REMOVAL TIME, AND PROPAGATION DELAY TIMES FOR EDGE TRIGGERED SEQUENTIAL LOGIC CIRCUITS

Timing Diagrams

www.ti.com 30-Jul-2024

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
8601101EA	ACTIVE	CDIP	J	16	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8601101EA CD54HC4017F3A	Samples
CD54HC4017F3A	ACTIVE	CDIP	J	16	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8601101EA CD54HC4017F3A	Samples
CD74HC4017E	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD74HC4017E	Samples
CD74HC4017EE4	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD74HC4017E	Samples
CD74HC4017M	OBSOLETE	SOIC	D	16		TBD	Call TI	Call TI	-55 to 125	HC4017M	
CD74HC4017M96	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4017M	Samples
CD74HC4017MT	OBSOLETE	SOIC	D	16		TBD	Call TI	Call TI	-55 to 125	HC4017M	
CD74HC4017NSR	ACTIVE	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4017M	Samples
CD74HC4017PW	OBSOLETE	TSSOP	PW	16		TBD	Call TI	Call TI	-55 to 125	HJ4017	
CD74HC4017PWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4017	Samples
CD74HC4017PWRE4	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4017	Samples
CD74HC4017PWT	OBSOLETE	TSSOP	PW	16		TBD	Call TI	Call TI	-55 to 125	HJ4017	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

www.ti.com 30-Jul-2024

- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF CD54HC4017, CD74HC4017:

Catalog: CD74HC4017

Automotive: CD74HC4017-Q1, CD74HC4017-Q1

Enhanced Product: CD74HC4017-EP, CD74HC4017-EP

Military: CD54HC4017

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Military QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 16-Apr-2024

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD74HC4017M96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD74HC4017NSR	so	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
CD74HC4017PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com 16-Apr-2024

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD74HC4017M96	SOIC	D	16	2500	340.5	336.1	32.0
CD74HC4017NSR	SO	NS	16	2000	356.0	356.0	35.0
CD74HC4017PWR	TSSOP	PW	16	2000	356.0	356.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 16-Apr-2024

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
CD74HC4017E	N	PDIP	16	25	506	13.97	11230	4.32
CD74HC4017E	N	PDIP	16	25	506	13.97	11230	4.32
CD74HC4017EE4	N	PDIP	16	25	506	13.97	11230	4.32
CD74HC4017EE4	N	PDIP	16	25	506	13.97	11230	4.32

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

SMALL OUTLINE PACKAGE

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

SOP

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.

SOF

NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOF

NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated