

First Isomorphism Theorem for quivers

 ${\bf Canonical\ name} \quad {\bf First Isomorphism Theorem For Quivers}$

Date of creation 2013-03-22 19:17:25 Last modified on 2013-03-22 19:17:25

Owner joking (16130) Last modified by joking (16130)

Numerical id 5

Author joking (16130) Entry type Definition Classification msc 14L24 Let $Q=(Q_0,Q_1,s,t)$ and $Q'=(Q'_0,Q'_1,s',t')$ be quivers. Assume, that $F:Q\to Q'$ is a morphism of quivers. Define an equivalence relation \sim on Q as follows: for any $a,b\in Q_0$ and any $\alpha,\beta\in Q_1$ we have

$$a \sim_0 b$$
 if and only if $F_0(a) = F_0(b)$;

$$\alpha \sim_1 \beta$$
 if and only if $F_1(\alpha) = F_1(\beta)$.

It can be easily checked that $\sim = (\sim_0, \sim_1)$ is an equivalence relation on Q.

Using standard techniques we can prove the following:

First Isomorphism Theorem for quivers. The mapping

$$\overline{F}: (Q/\sim) \to \operatorname{Im}(F)$$

(where on the left side we have http://planetmath.org/QuotientQuiverthe quotient quiver and on the right side http://planetmath.org/SubquiverAndImageOfAQuiverthe image of a quiver) given by

$$\overline{F}_0([a]) = F_0(a), \quad \overline{F}_1([\alpha]) = F_1(\alpha)$$

is an isomorphism of quivers.

Proof. It easily follows from the definition of \sim that \overline{F} is a well-defined morphism of quivers. Thus it is enough to show, that \overline{F} is both "onto" and "1-1" (in the sense that corresponding components of \overline{F} are).

1. We will show, that \overline{F} is onto, i.e. both \overline{F}_0 , \overline{F}_1 are onto. Let $b \in \text{Im}(F)_0$ and $\beta \in \text{Im}(F)_1$. By definition

$$F_0(a) = b, \quad F_1(\alpha) = \beta$$

for some $a \in Q_0$, $\alpha \in Q_1$. It follows that

$$\overline{F}_0([a]) = b, \ \overline{F}_1([\alpha]) = \beta.$$

which completes this part.

2. \overline{F} is injective. Indeed, if

$$\overline{F}_0([a]) = \overline{F}_0([b])$$

then $F_0(a) = F_0(b)$. But then $a \sim_0 b$ and thus [a] = [b]. Analogously we prove the statement for \overline{F}_1 .

This completes the proof. \Box