Parcial 1 HPC: Multiplicación de matrices.

En el siguiente trabajo se pretende mostrar el rendimiento computacional de la operación de multiplicar matrices, utilizando una versión secuencial, otra en paralelo y una versión en paralelo mejorada utilizando memoria compartida.

Se mostrarán gráficas de tiempo y aceleración en varias muestras de datos para el correcto análisis de todo el experimento.

1.Tablas

1.1. Tabla secuencial

Para el código secuencial usaremos una misma muestra de datos para comparar con todas las demás muestras.

	Secuencial Secuencia Secuencial Secuencia Secue										
Tamaño de l	a matriz		Tiempo								
N	М			Hempo			Promedio				
4	8	0.000003	0.000001	0.000002	0.000003	0.000002	0.000002				
8	16	0.000007	0.000008	0.000004	0.000008	0.000004	0.000007				
16	32	0.000022	0.000053	0.000022	0.000025	0.000053	0.000025				
32	64	0.000427	0.000425	0.000175	0.000428	0.000201	0.000425				
64	128	0.001355	0.001962	0.001393	0.001354	0.002312	0.001393				
128	256	0.018135	0.012748	0.017365	0.016294	0.018297	0.017365				
512	1024	0.71641	0.719023	0.713875	0.714625	0.71843	0.71641				
1024	1024	3.322625	3.310955	3.323135	3.306846	3.295315	3.310955				

1.2.Tablas 4 x 4

Para empezar se toman muestras con código secuencial y luego con código utilizando GPU y GPU con memoria compartida con un tamaño de bloque de 4 x 4, posteriormente haremos un vs entre los tiempos para hallar la aceleración.

Tiempos:

	TAMAÑO 4 X 4									
	Paralelo sin tiling									
	Tamaño de la matriz Tiempo									
N	М									
4	8	0.000058	0.000057	0.000058	0.000059	0.000058	0.000058			
8	16	0.000063	0.00006	0.000061	0.000064	0.000062	0.000062			
16	32	0.000068	0.000066	0.000066	0.000067	0.00007	0.000067			
32	64	0.000083	0.000083	0.00008	0.000079	0.00008	0.00008			
64	128	0.000154	0.000154	0.000151	0.00015	0.000155	0.000154			
128	256	0.000512	0.000514	0.000506	0.000509	0.000516	0.000512			
512	1024	0.02439	0.024382							
1024	1024	0.09565	0.095705	0.095728	0.095879	0.095659	0.095705			

	TAMAÑO 4 X 4									
	Paralelo con tiling									
	Tamaño de la matriz Tiempo									
N	M									
4	8	0.000063	0.000065	0.000058	0.000059	0.00006	0.00006			
8	16	0.000058	0.000059	0.000063	0.00006	0.000062	0.00006			
16	32	0.000059	0.00006	0.000061	0.000063	0.00006	0.00006			
32	64	0.000065	0.000065	0.000066	0.000067	0.000069	0.000066			
64	128	0.000102	0.000104	0.000102	0.000106	0.000102	0.000102			
128	256	0.000288	0.000289	0.000287	0.00029	0.000291	0.000289			
512	1024	0.010195	0.010194							
1024	1024	0.038154	0.038131	0.038107	0.038138	0.038063	0.038131			

Aceleración:

	Aceleración con tamaño 4x4									
Tamaño Matriz		Tiempo secuencial	Tiempo sin tiling	Tiempo con tiling	CPU vs GPU	CPU vs GPU Tiling	GPU vs GPU Tiling			
N	M	Secuenciai	Sin tillig	con tilling		Tilling	Tilling			
					0.0344827586	0.0333333333	0.96666666			
4	8	0.000002	0.000058	0.00006	2	3	7			
8	16	0.000007	0.000062	0.00006	0.1129032258	0.1166666667	1.033333333			
16	32	0.000025	0.000067	0.00006	0.3731343284	0.4166666667	1.116666667			
32	64	0.000425	0.00008	0.000066	5.3125	6.439393939	1.212121212			
64	128	0.001393	0.000154	0.000102	9.045454545	13.65686275	1.509803922			
128	256	0.017365	0.000512	0.000289	33.91601563	60.08650519	1.771626298			
512	1024	0.71641	0.024382	0.010194	29.38274137	70.27761428	2.391799098			
1024	1024	3.310955	0.095705	0.038131	34.59542344	86.8310561	2.509900081			

1.3.Tablas 16 x 16

Para empezar se toman muestras con código secuencial y luego con código utilizando GPU y GPU con memoria compartida con un tamaño de bloque de 16x16, posteriormente haremos un vs entre los tiempos para hallar la aceleración.

Tiempos:

	TAMAÑO 16 X 16									
Paralelo sin tiling										
	Tamaño de la matriz Tiempo									
N	M									
4	8	0.000061	0.000062	0.000058	0.000062	0.000058	0.000061			
8	16	0.000063	0.000063	0.000061	0.00006	0.000062	0.000062			
16	32	0.000071	0.000066	0.000069	0.000066	0.00007	0.000069			
32	64	0.000077	0.000079	0.000078	0.00008	0.00008	0.000079			
64	128	0.000115	0.000122	0.000117	0.000115	0.000117	0.000117			
128	256	0.000267	0.000262	0.000267	0.000258	0.00026	0.000262			
512	1024	0.006994	0.00698							
1024	1024	0.025051	0.025082	0.024987	0.025056	0.025251	0.025056			

	TAMAÑO 16 X 16									
	Paralelo con tiling									
	Tamaño de la matriz Tiempo									
N	M									
4	8	0.000058	0.000057	0.000062	0.00006	0.000061	0.00006			
8	16	0.000061	0.000057	0.000057	0.00006	0.000058	0.000058			
16	32	0.000063	0.000064	0.00006	0.00006	0.000068	0.000063			
32	64	0.000066	0.000068	0.00007	0.000071	0.000069	0.000069			
64	128	0.000094	0.000092	0.000092	0.000094	0.000091	0.000092			
128	256	0.000195	0.000191	0.000196	0.000195	0.000195	0.000195			
512	1024	0.003702	0.003703							
1024	1024	0.012188	0.012165	0.012204	0.012241	0.012145	0.012188			

Aceleración:

	Aceleración con tamaño 16x16									
Tamaño Matriz		Tiempo secuencial	Tiempo sin tiling	Tiempo con tiling	CPU vs GPU	CPU vs GPU Tiling	GPU vs GPU Tiling			
N	M	Secuenciai	Sill tilling	con tilling		Tilling	GPU TIIIII			
					0.0327868852	0.0333333333				
4	8	0.000002	0.000061	0.00006	5	3	1.016666667			
8	16	0.000007	0.000062	0.000058	0.1129032258	0.1206896552	1.068965517			
16	32	0.000025	0.000069	0.000063	0.3623188406	0.3968253968	1.095238095			
32	64	0.000425	0.000079	0.000069	5.379746835	6.15942029	1.144927536			
64	128	0.001393	0.000117	0.000092	11.90598291	15.14130435	1.27173913			
128	256	0.017365	0.000262	0.000195	66.27862595	89.05128205	1.343589744			
512	1024	0.71641	0.00698	0.003703	102.6375358	193.4674588	1.884958142			
1024	1024	3.310955	0.025056	0.012188	132.1422015	271.6569577	2.055792583			

1.3.Tablas 32 x 32

Para empezar se toman muestras con código secuencial y luego con código utilizando GPU y GPU con memoria compartida con un tamaño de bloque de 32x32, posteriormente haremos un vs entre los tiempos para hallar la aceleración.

Tiempo:

	TAMAÑO 32 X 32									
	Paralelo sin tiling									
	Tamaño de la matriz Tiempo									
N	M									
4	8	0.000059	0.000062	0.000068	0.000061	0.000059	0.000061			
8	16	0.000083	0.000064	0.000065	0.000061	0.000067	0.000065			
16	32	0.000076	0.000069	0.00007	0.000072	0.000076	0.000072			
32	64	0.000089	0.00009	0.000088	0.000086	0.000086	0.000088			
64	128	0.000131	0.000141	0.000141	0.000132	0.000137	0.000137			
128	256	0.000303	0.000302							
512	1024	0.006904	0.006928							
1024	1024	0.023938	0.024412	0.024367	0.02454	0.024276	0.024367			

	TAMAÑO 32 X 32									
Paralelo con tiling										
	Tamaño de la matriz Tiempo									
N	М									
4	8	0.000069	0.000062	0.000061	0.000061	0.000064	0.000062			
8	16	0.000061	0.000083	0.000065	0.000073	0.000067	0.000067			
16	32	0.000067	0.000067	0.000066	0.00009	0.000063	0.000067			
32	64	0.000071	0.000072	0.000083	0.000074	0.000089	0.000074			
64	128	0.000098	0.000098	0.0001	0.000129	0.000101	0.0001			
128	256	0.000222	0.000222							
512	1024	0.00339	0.00338							
1024	1024	0.010762	0.010701	0.010699	0.01074	0.010737	0.010737			

Aceleración:

	Aceleración con tamaño 32x32									
Tamaño Matriz		Tiempo secuencial	Tiempo sin tiling	Tiempo con tiling	CPU vs GPU	CPU vs GPU Tiling	GPU vs GPU			
N	M	Secuenciai	Sin tilling	con tilling		Tilling	Tiling			
4	8	0.000002	0.000061	0.000062	0.0327868852 5	0.0322580645 2	0.983870967 7			
8	16	0.000007	0.000065	0.000067	0.1076923077	0.1044776119	0.970149253 7			
16	32	0.000025	0.000072	0.000067	0.3472222222	0.3731343284	1.074626866			
32	64	0.000425	0.000088	0.000074	4.829545455	5.743243243	1.189189189			
64	128	0.001393	0.000137	0.0001	10.16788321	13.93	1.37			
128	256	0.017365	0.000302	0.000222	57.5	78.22072072	1.36036036			
512	1024	0.71641	0.006928	0.00338	103.4079099	211.9556213	2.049704142			
1024	1024	3.310955	0.024367	0.010737	135.8786474	308.368725	2.269442116			

2.Gráficas

2.1 Gráficas 4 X 4

Multiplicación matrices secuencial

Multiplicación matrices GPU tiling

2.2 Gráficas 16 X 16

Multiplicación con matrices secuencial

Aceleración 16 x 16

2.3 Gráficas 32 x 32

Multiplicación con matrices GPU tiling

Multiplicación de matrices GPU

Multiplicación con matrices secuencial

3.Conclusiones

- Al igual que la suma de vectores, la multiplicación de matrices de forma secuencial es más efectiva cuando no hay una gran cantidad de datos.
- Al apreciar los tiempos de ejecución de la multiplicación de matrices de forma paralela (con y sin tiling), podemos comprobar una mejoría en el desempeño de la multiplicación de matrices con tiling en comparación con la multiplicación sin tiling.
- Podemos apreciar que con una gran cantidad de datos, la multiplicación secuencial demora bastante, llegando incluso a tiempos de ejecución 3 segundos (3s).