

<110> Ruben et al.

<120> 27 Human secreted proteins

<130> PZ038P1

<140> Unassigned

<141> 2000-09-13

<150> PCT/US00/06783

<151> 2000-03-16

<150> 60/125,055

<151> 1999-03-18

<160> 156

<170> PatentIn Ver. 2.0

<210> 1

<211> 733

<212> DNA

<213> Homo sapiens

<400> 1

gggatccgga	gcccaaata	tctgacaaaa	ctcacacatg	cccaccgtgc	ccagcacctg	60
aattcgagg	tgcaaccgtc	gtcttcctct	tccccccaaa	acccaaggac	accctcatga	120
tctcccgac	tcctgagg	acatgcgtgg	tggtggacgt	aagccacgaa	gaccctgagg	180
tcaagttcaa	ctggta	cgatgcgtgg	agg	tgccaagaca	aagccgcggg	240
aggagcaga	caacagc	taccgtgtgg	tcagcgtcct	caccgtcctg	caccaggact	300
ggctgaatgg	caaggagtac	aagtgc	tctccaacaa	agccctccca	accccccac	360
agaaaaccat	ctccaa	aaaggc	ccc	gagaacc	acaggtgtac	420
catcccg	tgagctgacc	aagaaccagg	tcagcctgac	ctgcctgg	aaaggcttct	480
atccaagcga	catcgccgt	gagtggaga	gcaatggca	gccggagaac	aactacaaga	540
ccacgcctcc	cgtgctgg	tccgacgg	ccttcttct	ctacagcaag	ctcaccgtgg	600
acaagagcag	gtggcagcag	ggaaacgtct	tctcatgtc	cgtgatgcat	gaggctctgc	660
acaaccacta	cacgcagaag	agcctctccc	tgtctccgg	taaatgagt	cgacggccgc	720
gactctagag	gat					733

<210> 2

<211> 5

<212> PRT

<213> Homo sapiens

<220>

<221> Site

<222> (3)

<223> Xaa equals any of the twenty naturally occurring L-amino acids

<400> 2

Trp	Ser	Xaa	Trp	Ser
1				5

<210> 3

<211> 86

<212> DNA

<213> Homo sapiens

<400> 3

gcgcctcgag	at	ttcccccga	aatcttagatt	tccccgaaat	gatttccccg	aaatgatttc	60
cccgaaat	at	ctggccat	tc	aattag			86

<210> 4		
<211> 27		
<212> DNA		
<213> Homo sapiens		
<400> 4		
gcggcaagct ttttcaaag cctaggc	27	
<210> 5		
<211> 271		
<212> DNA		
<213> Homo sapiens		
<400> 5		
ctcgagattt ccccgaaatc tagatttccc cgaaaatgatt tccccgaaat gattccccg	60	
aaatatctgc catctcaatt agtcagcaac catagccccg cccctaactc cgcccatccc	120	
gcccctaact ccgccccagt ccgccccattc tccgccccat ggctgactaa ttttttttat	180	
ttatgcagag gccgaggccg cctcggcctc tgagctattc cagaagtagt gaggaggctt	240	
ttttggaggc ctaggctttt gcaaaaagct t	271	
<210> 6		
<211> 32		
<212> DNA		
<213> Homo sapiens		
<400> 6		
gcgctcgagg gatgacagcg atagaacccc gg	32	
<210> 7		
<211> 31		
<212> DNA		
<213> Homo sapiens		
<400> 7		
gcgaagcttc gcgactcccc ggatccgcct c	31	
<210> 8		
<211> 12		
<212> DNA		
<213> Homo sapiens		
<400> 8		
ggggactttc cc	12	
<210> 9		
<211> 73		
<212> DNA		
<213> Homo sapiens		
<400> 9		
gcggcctcga ggggactttc ccggggactt tccggggact ttccgggact ttccatcctg	60	
ccatctcaat tag	73	
<210> 10		
<211> 256		
<212> DNA		
<213> Homo sapiens		
<400> 10		
ctcgaggggc ctccccggg gactttccgg ggactttccg ggactttcca tctgccatct	60	

caattagtca gcaaccatag tccccccct aactccgccc atcccggcc taactccgcc	120
cagttccgccc cattctccgc cccatggctg actaatttt tttatttatg cagaggcccga	180
ggccgcctcg gcctctgagc tattccagaa gtagtgagga ggctttttg gaggcctagg	240
cttttgcaaa aagctt	256

<210> 11
 <211> 3191
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> SITE
 <222> (4)
 <223> n equals a,t,g, or c

 <220>
 <221> SITE
 <222> (5)
 <223> n equals a,t,g, or c

 <220>
 <221> SITE
 <222> (10)
 <223> n equals a,t,g, or c

 <220>
 <221> SITE
 <222> (32)
 <223> n equals a,t,g, or c

 <220>
 <221> SITE
 <222> (3179)
 <223> n equals a,t,g, or c

 <220>
 <221> SITE
 <222> (3186)
 <223> n equals a,t,g, or c

<400> 11	
gggnntcatn tggtaaaggc caagctggta cttctgcagg taccgggtccg gaattccgg	60
gtcgacccac ggttcggca tggccctccc agccctggc ctggaccctt ggagccctct	120
gggccttttc ctcttccaac tgcttcagct gctgctggc acgacgaccg cggggggagg	180
cgggcagggg cccatgccc gggtcagata ctatgcagg gatgaacgta gggcacttag	240
cttcttccac cagaagggcc tccaggatt tgacactctg ctcctgagtg gtgatggaaa	300
tactctctac gtgggggctc gagaagccat tctggcctt gatatccagg atccagggggt	360
ccccaggtca aagaacatga taccgtggcc agccagtgc agaaaaaaaaga gtgaatgtgc	420
ctttaagaag aagagcaatg agacacagtg tttcaacttc atccgtgtcc tggtttctta	480
caatgtcacc catctctaca cctgcggcac ctgcgccttc agccctgtt gtaccttcat	540
tgaacttcaa gattcctacc tggcccat ctggaggac aaggcatgg agggaaaagg	600
ccaaagcccc ttgaccccg ctcacaagca tacggctgtc ttgggtggatg ggatgtctca	660
ttctggtaat atgaacaact tcctggcag tgagcccatc ctgatgcgc cactggatc	720
ccagcctgtc ctcaagaccg acaacttcct ccgctggctg catcatgacg cctcctttgt	780
ggcagccatc ctttcgacc aggtcgtcta ttcttccttc gaggagacag ccagcgagtt	840
tgacttcttt gagaggctcc acacatcgcg ggtggctaga gtctgcaaga atgacgtggg	900
cggcgaaaag ctgctgcaga agaagtggac caccttctg aaggcccagc tgctctgcac	960
ccagccgggg cagctggcct tcaacgtcat ccgccacgcg gtcctgtcc ccgcgcattc	1020
tcccacagct ccccacatct acgcagtctt cacctcccag tggcagggtg gcgggaccag	1080
gagctctgctg gtttgtccct tctctctt ggacattgaa cgtgtcttia agggaaaata	1140
caaagagttg aacaaagaaa cttcacgctg gactacttat agggccctg agaccaaccc	1200
ccggscaggg agttgctyar tggcccty ctctgataag gccctgaccc tcatgaagga	1260
ccatttcctg atggatgagc aagtgggg gacgcccctg ctgggtaaaat ctggcgtgg	1320
gtatacacgg ctgcagtgg agacagccca gggcctgtat gggcacagcc atcttgtcat	1380
gtacctggga accaccacag ggtcgctcca caaggctgtg gtaagtgggg acagcagtg	1440

tcatctggtg gaagagattc agctgytccc tgaccctgaa cctgttcgca acctgcagct 1500
 ggcccccacc cagggtgcag ttttgkagg cttctyagga ggtgtctgra ggggtgccccg 1560
 agccaactgt agtgtctatg agagctgtgt ggactgtgtc cttgcccggg acccccactg 1620
 tgcctggac cctgagtccc gaacctgttg cctcctgtct gcccccaacc tgaactcctg 1680
 gaagcaggac atggagcggg ggaacccaga gtgggcatgt gccagtggcc ccatgagcag 1740
 gagcccttcgg cctcagagcc gcccccaaat cattaaagaa gtcctggctg tcccttaactc 1800
 catcctggag ctccccctgcc cccacactgtc agccttgccc tcttattatt ggagtcatgg 1860
 cccagcagca gtcccagaag cctcttccac tgtctacaat ggctccctct tgctgatagt 1920
 gcaggatgga gttgggggtc tctaccagtg ctgggcaact gagaatggct ttctataccc 1980
 tgtgatctcc tactgggtgg acagccagga ccagacccctg gcccggatc ctgaactggc 2040
 aggcatcccc cggggagcatg tgaagggtccc gttgaccagg gtcagtgggt gggccgcct 2100
 ggctgcccag cagtcctact gcccccaactt tgtcaactgtc actgtcctct ttgccttagt 2160
 gctttcagga gcccctatca tcctcggtc ctccccattg agagcactcc gggctgggg 2220
 caagggtcag ggtgtgaga ccctggggcc tggggagaag gccccgttaa gcagagagca 2280
 acacccctcag tctcccaagg aatgcaggac ctgccttaggc actgaggtag cttaaactct 2340
 ctggccatgc tggctggggc gccccaggac gacccttctt ccctccatgg agagcactcc 2400
 ggggtatgca cagcagtctg cctcccttat tctaacaaggg tgggggtcac ccccagacct 2460
 aggatccttc agttctggcc attccaggaa cttaaactctc gctactctgc atcactgtatc 2520
 cttaaaaaacc tgctgtccc aggacccat tataatggggcc tctcggatc gatgtggacg 2580
 tatgctaaca tgccactctt gaaaactcca ctctgaagct gcccgtttgg acaccaacac 2640
 tcccttcctcc cagggtcatg caggatctg gtcctcacac tgatattgaa gaaactggag 2700
 cgcgtgactc ccaggaagtc ttcctgtcaag ccctccagaa acacagtgtt tcaagagacc 2760
 ggcagactct gatcccttct gcccggcag aatggcaggg gtaatctgag ccttcttac 2820
 tccttaccc tagctgaccc cttaacctct cccctccct tttcctttgt tttggattc 2880
 agaaaaactgc ttgtcagaga ctgtttatatt ttataaaaaa atataaggt taaaaaaaaa 2940
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaaagng 3000
 gggggnncccc c 3120
 3180
 3191

<210> 12
 <211> 1104
 <212> DNA
 <213> Homo sapiens

<400> 12

gcaggttacg	gtccggaaatt	cccgggtcga	cccacgcgtc	cgggcctyct	ccactgggtc	60
cgaatcagta	ggtagccccg	cccctggatt	ctggaaagacc	tcaccatggg	acgcggcccgaa	120
cctcgtgcgg	ccaagacgtg	gatttcctg	ctcttgcgttgg	ggggagccctg	ggcagcgtgt	180
ggaagcctgg	acttcctcac	taagttgtat	gcggagaact	tgccgtgtgt	ccatttgaac	240
ccacagtggc	cttcccagcc	ctcgcaactgc	cccagagggt	ggcgatccaa	ccctctccct	300
cctgctgcag	gacactccag	ggcacaggag	gacaagggtgc	tgggggtca	tgagtgccaa	360
ccccattcgc	agccttggca	ggcgcccttgc	ttccaggggcc	agcaactact	ctgtggcggt	420
gtccttgcgt	gtggcaactg	gttccttaca	gctgccact	gtaaaaaaaaacc	gaaatacaca	480
gtacgcctgg	gagaccacag	cctacagaat	aaagatggcc	cagagcaaga	aataacctgtg	540
gttcagtcac	tcccacaccc	ctgytacaac	agcagcgatg	tggaggacca	caaccatgat	600
ctgatgttcc	ttcaactgtcg	tgaccaggca	tccctgggtt	ccaaagtgaa	gcccatcago	660
ctggcagatc	attgcaccca	gcctggccag	aagtgcaccc	tctcaggctg	gggcactgtc	720
accagtcccc	gagagaattt	tcctgacact	ctcaactgtg	cagaagtaaa	aatctttccc	780
cagaagaagt	gtgaggatgc	ttacccgggg	cagatcacag	atggcatgtt	ctgtgcaggc	840
agcagcaaag	gggctgacac	gtgccagggc	gattctggag	gccccctgggt	gtgtgatggt	900
gcactccagg	gcatcacatc	ctggggctca	gaccctgtg	ggaggtccga	caaacctggc	960
gtctataacca	acatctgccc	ctaccgttgc	tggatcaaga	agatcatagg	cagcaagggc	1020
tgattctagg	ataaggacta	gatctccctt	aataaactca	caactctctg	gttcaaaaaaa	1080
aaaaaaaaaa	aaaagggcgg	ccgc				1104

<210> 13
 <211> 1927
 <212> DNA
 <213> Homo sapiens

<220>
 <221> SITE

<222> (1920)
 <223> n equals a,t,g, or c

<220>
 <221> SITE
 <222> (1923)
 <223> n equals a,t,g, or c

<220>
 <221> SITE
 <222> (1927)
 <223> n equals a,t,g, or c

<400> 13

ggtgtggccca	gcgtgctgtg	gcctccggga	gtggaaagtg	gaggcaggag	ctttccttac	60
acttcgccat	gagtttcctg	atcgactcca	gcatcatgat	tacctcccg	ataaccatgc	120
ctcgtaactta	ctcaacaaaa	gtgaagccaa	aagataactat	tttttgatt	tgggtggctt	180
tttcttcatgc	gccaattgtt	taaagactat	gagatacgtc	agtatgttg	acaggtgatc	240
ttctccgtga	cgtttgcatt	ttcttgcacc	atgtttgagc	tcatcatctt	tgaatctta	300
ggagtattga	atagcagctc	ccgttatttt	cactggaaaa	tgaacctgtg	ygttaattctg	360
ctgatcctgg	ttttcatggt	gccttttac	attggctatt	ttattgttag	caatatccga	420
ctactgcata	aacaacgact	gtcttttcc	tgtctttat	ggctgacett	tatgtatttc	480
ttctggaaac	taggagatcc	ctttcccatt	ctcagcccaa	aacatgggat	cttatccata	540
gaacagctca	tcaagccgggt	tggtgtgatt	ggagtgactc	tcatggctct	tctttctgga	600
tttggtgctg	tcaactgccc	atacacttac	atgtcttact	tccttcaggaa	tgtgactgac	660
acrgatattc	tagccctgga	acggcgactg	ctgcaaacca	ttggatatgat	cataagcaaa	720
aagaaaagga	tggcaatggc	acggagaaca	atgttccaga	agggggaaagt	gcataacaaa	780
ccatcaggtt	tctggggaat	gataaaaaagt	gttaccactt	cagcatcagg	aagtgaaaat	840
cttactctta	ttcaacagga	agtggatgct	tttggaaagaat	taagcaggca	gcttttctg	900
gaaacagctg	atctatatgc	taccaaggag	agaatagaat	actccaaaac	cttcaagggg	960
aaatatttta	attttcttgg	ttacttttcc	tctatttact	gtgtttggaa	aattttcatg	1020
gctaccatca	atattgtttt	tgatcgagtt	ggggaaacgg	atcctgtcac	aagaggcatt	1080
gagatcactg	tgaattatct	gggaatccaa	tttgcgtgt	agttttggtc	ccaacacatt	1140
tccttcattc	ttgttggaaat	aatcatcgtc	acatccatca	gaggattgtct	gatcactctt	1200
accaaggct	tttatgcat	ctctagcagt	aagtccctca	atgtcattgt	cctgctatta	1260
gcacagataa	tgggcatgta	ctttgtctcc	tctgtgctgc	tgatccgaat	gagttatgcct	1320
tttagaatacc	gcaccataat	cactgaagtc	cttggagaac	tgcagttcaa	cttctatcac	1380
cgttggttt	atgtgatctt	cctggcagc	gctctctcta	gcatactctt	cctctatttg	1440
gctcacaaac	aggcaccaga	gaagcaaatt	gcacccgtaa	cttaaggccta	ctacagactg	1500
ttagaggcca	gtgggttcaa	aatttagata	taagaggggg	gaaaaatgga	accagggcct	1560
gacattttat	aaacaaacaa	aatgctatgg	tagcatttt	cacccatata	gcatactcct	1620
tccccstcag	gtgatactat	gaccatgagt	agcatcagcc	agaacatgag	agggagaact	1680
aactcaagac	aatactcagc	agagagcatc	ccgtgtggat	atgaggctgg	tgtagaggcg	1740
gagaggagcc	aagaaactaa	aggtaaaaaa	tacactggaa	ctctggggca	agasatgtct	1800
atggtagctg	agccaaacac	gtaggatttc	cgtttaagg	ttcacatgga	aaaggttata	1860
gctttgcctt	gagattgact	cattaaaatc	agagactgta	aaaaaaaaaa	aaaaaggggn	1920
ccnttan						1927

<210> 14
 <211> 847
 <212> DNA
 <213> Homo sapiens

<220>
 <221> SITE
 <222> (651)
 <223> n equals a,t,g, or c

<400> 14

gggaaaaatga	aggcatatat	gataaaaaag	aatgaacata	ctctgtacat	gtttgctgtg	60
tgtgttacag	catcagagcg	cctctgcctc	atatgccctg	ggaaatacc	ccagggcacag	120
acagtcaactc	ccgaggccct	ctgggcaaac	atctgtcact	acttcatgtt	gcaatctgct	180
tacagaacta	aggcaccat	cttccgctga	ctttggacat	cagagctcca	ggttctctct	240
cctagaactg	agacacccat	ctgctgctgc	ctgtggacat	cagaactcca	ggttctctct	300
gtttagaactg	agacgcccatt	cttctgatgc	ttttggacat	cagagttcca	gattatctct	360

cctagacacctc	agacatacat	ctgctgctgc	ctttggacat	cagaactcca	ggttctct	420
cgtagaactg	agacacccat	cttctgatgc	ctttggacat	cagaactcca	gattctgttt	480
tctagacacctg	agacacccat	ctgctgctgc	ctttggacat	cagaactcca	ggttctcta	540
cgtagaaccg	aggcacccat	cttctgctgc	ctttggacat	cagaactcca	gattctcagg	600
cctttgtact	ctaggatgtg	tagcagcaac	ccctgcggca	ggtttcagg	nctttggcct	660
cagactcaa	gctacaccc	kgrttctct	ggttctgagg	cttttgact	tggactgagc	720
catgytgcag	gcatccctgg	gtytccagct	tgcataatggc	ctgttgtagg	acttctcagc	780
ctccataatac	atgtgagcca	attcccttaa	taaatagctt	ctcacttatac	taaaaaaaaaaa	840
aaaaaaa						847

<210> 15
<211> 2175
<212> DNA
<213> Homo sapiens

<400> 15						
ccacgcgtcc	gcccatgcgcg	aggtagtcc	gcggggagccg	ccgcccgcgc	cgtcccggtcc	60
cagctccgc	cccgcgcggc	ccgcggccgc	gccaggatgc	tggaggaagc	gggcgagggtg	120
ctggagaaca	tgctgaaggc	gtctgtctg	cctctcggt	tcatcgtctt	cctgcccgt	180
gtgctgctgc	tgggtggcgc	gccgctgcct	gccgcgcacg	ccgcgcacga	gttcaccgtg	240
taccgcata	agcagtagca	cctgcaggc	cagccctacg	gcacacggaa	tgcagtgtcg	300
aacacggagg	cgcgcacgt	ggcggcggag	gtgctgagcc	gccgcgtcg	gctcatgcgg	360
ctactgact	tctcctacga	gcagtagcc	aaggccctgc	ggcagtcg	gggcgcgtg	420
gtcatcatcc	tgcccagggc	catggccgc	gtgcccagg	acgtcgtccg	gcaattcatg	480
gagatcgagc	cggagatgt	ggccatggag	accgcgtcc	ccgtgtactt	tgcgtggag	540
gacgaggccc	tgctgtctat	ctacaaggc	acccaggctg	cctccgcctc	ccagggtctcc	600
gcctctgctg	ctgaagta	gctgcgcacg	gccactgcca	acggcttcca	gatggtcacc	660
agcgggtac	agagcaaggc	cgtgagtgac	tggctgattt	ccagcgtgga	ggggcggctg	720
acggggctgg	gcggagagga	ccttcccacc	atcgatcg	tggcccaacta	cgacgcctt	780
ggagtgcccc	cctggctgtc	gctgggcgcg	gactccaa	ggagcggcgt	ctctgtgtcg	840
ctggagctgg	cacgcctt	ctcccggtc	tacacctaca	agcgcacgca	cgccgcctac	900
aacctcctgt	tcttgcgtc	tggaggaggg	aagtttaact	accagggaac	caagcgtgg	960
ctggaaagaca	acctggacca	cacagactcc	agcctgttc	aggacaatgt	ggccttcgtg	1020
ctgtgcctgg	acaccgtggg	ccggggcagc	agcctgcacc	tgcacgtgc	caagccgcct	1080
cgggaggcga	cctgtcagca	cgcccttcctg	cgggagctgg	agacggtg	cgccgcaccag	1140
ttccctgagg	tacggtttctc	catggtgac	aagcggatca	acctggcgga	ggacgtgtcg	1200
gcctggggac	acgagcgctt	cgccatccgc	cgactggccg	cettcacgt	gtcccacgt	1260
gagagccacc	gtgacggcca	gcgcagcagc	atcatggac	tgcggtccc	ggtggattct	1320
aagaccctga	cccgtaaacac	gaggatcatt	gcagaggccc	tgactcgagt	catctacaac	1380
ctgacagaga	aggggacacc	cccagacatg	ccgggtttca	cagagcagat	gcagatccag	1440
caggagcagc	tggactcggt	gatggactgg	ctcaccaacc	agccgcgggc	cgccgcagctg	1500
gtggacaagg	acagcacctt	cctcagcagc	ctggagacc	acctgagccg	ctacactgaag	1560
gacgtgaagc	agcaccacgt	caaggctgac	aagcgggacc	cagagttgt	cttctacgac	1620
cagctgaagc	aagtgtatgaa	tgcgtacaga	gtcaaggccgg	ccgtctttga	cctgtctctg	1680
gctgttgca	ttgttgtcata	cctcggcgtat	gcctacgtgg	ctgtccagca	cttcagcctc	1740
ctctacaaga	ccgtccagag	gctgtctgt	aaggccaaga	cacagtgaca	cagccacccc	1800
cacagccgga	gccccccgc	ctccacagtc	cctggggccg	agcagcagtg	agtggacact	1860
gccccccgc	ggcgccccct	gcagggacag	gggcctctc	cctccccggc	ggtgtttgga	1920
acactgaatt	acagagctt	tttctgtgc	tctccgagac	tgggggggg	ttgtttctc	1980
ttttccttgt	ctttgaactt	ccttggagga	gaccttgga	gacgtccccc	ggccaggcta	2040
cggacttgcg	gacgagcccc	ccagtcctgg	gagccggccg	ccctcggtct	ggtgtaaagca	2100
cacatgcacg	ataaaagagg	agacgcgggg	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	2160
aaaaaaaaaa	aaaaaa					2175

<210> 16
<211> 1355
<212> DNA
<213> Homo sapiens

<400> 16						
ggagtccctga	tcaagtata	caaatgagct	gcaatggta	cataaactct	tgacagagat	60
tggaaaatgt	gctggaaacac	catcttttct	tttaactttt	tatggtgctt	ctgttggcat	120
agttggggaa	agcacatcaca	acatgagttt	tatcatgaag	cttcacagac	acttcaaag	180
aacagtcat	ctgcttgcca	ctttttgtat	ggtgagcatt	atcatttctg	cttactacat	240

gtacagtggc tacaaacagg	aaaatgaact ctctgagacg	gcttcagaag ttgactgtgg	300
cgacctccaa cacctaccat	atcaactaat ggaagtgaaa	gcaatgaagc ttttgatgc	360
ctcaaggaca gaccccacag	tcctagtatt tgttagagac	cagtaactcat ctcttggtca	420
agacatcatt atgattctag	aatcaagtag attccagtt	cacattgaaa ttgcccctgg	480
aaaggagat ctcctcgtc	ttatacgacaa aatgaaaggc	aaatacattc tcattattta	540
tgagaatatt ttaaaagtata	taaatatgga ttccctggaat	cgaaggcctc tagataaata	600
ctgtgttagaa tatgggtgg	gtgtcattgg attccacaaa	actagtgaga agagtgtaca	660
gagcttcag ttaaaagggtt	tcccttttc catatatgga	aatcttgcag taaaagattg	720
ttgttattaat cctcattctc	cattgattcg tgtgaccaaa	tcttccaagc ttgaaaaagg	780
ttcttacact ggaactgact	ggacagttt tcagattaat	cattcagcct atcaaccagt	840
aatattgcc aaagtaaaga	ccccagaaaa ccttttcct	tccatctcta aagggtctt	900
ttatgccact attatacatg	acctggggct tcatgtgga	attcaaaggg ttcttttgg	960
caacaacttg aactttggc	tgcacaagct catttcata	gatgccatct ccttcttac	1020
agggaaaggc ctgacattgt	ccttggacag gtacattctt	gtggatattg atgatataatt	1080
tgtggaaaaa gagggAACAA	gaatgaacac caatgtgta	aaggtaaggc tctatTTCT	1140
caagtttcaa agttcagttc	atctccagc agggatacaa	ctatcccagt ttgtactaca	1200
actgggttac ccaggacatg	ggatttactg ggaaagtctg	ggcaatctag gattatcgct	1260
caccctaaat caactaagaa	gattatgtat ttctatctga	atcaagaaaa ataaagattt	1320
tactaaaaaa aaaaaaaaaa	aaaaaaa aaaaaaaa		1355

<210> 17
<211> 2178
<212> DNA
<213> Homo sapiens

<220>
<221> SITE
<222> (704)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (1337)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (1357)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (1408)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (1641)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (1649)
<223> n equals a,t,g, or c

<400> 17
cgggcgcgtg gagggggccc cgcacatggg agcagcccc tggccctcac tgccctgtgg 60
gccctgcata cccatcatgc tggcctggc caccctggct gcgccttca tcctcaccac 120
cgctgttgtg gctgaacgccc tggccggcc tgctctccgc ccagaccccc gccaccgtgc 180
acccacccctg gtgtggcgc caggaggaga gctgtggatt garcccatgg gcaccgcccc 240
aaagcgctct gaggactggg atggctctgc rgtccccctg ctgacagatc gggccccctga 300
gcctccacc cagggtggca cttggaggc ccgagcaaca gccccacctg cccctcagc 360
cccaaattct gctcccagca acttggggccc ccagaccgtc ctggaggtcc cagccccggag 420
cacttctgg gggccccagc cctggggaggg gaggcccccc gccacagggc tggtgagctg 480
ggctgaaccc gaggcagaggc cagaggccag cgtccagttt gggagcccc aggccaggar 540

gcagcggcca	gggagcccg	atcctgagtg	gggcctccag	ccacgggtca	ccttggagca	600
gatctcaagct	ttctgraagc	gtgaaggccg	gaccagtgtg	gggttctgaa	tcccagggt	660
tccccagaga	tccccgaggc	aggccttgcc	tcagtggac	cggngacccc	aggatccagc	720
attaggattg	agactgcccc	agcgaagatg	cccttcccag	gctccttcca	cctggagtcc	780
ccctccccgg	gtctgggtgg	tggccaggct	atgtggacta	gggaaagccc	agcagtgcct	840
ctgctcaagct	acctgggctg	tggctcagag	acctgggggt	ggagccaaatg	ccaggccaga	900
agccttcaag	atcgcatacca	gatgaagaac	ccaaggtaact	agatagtca	gaaatggcat	960
cgaccagcca	cctccaccc	ctttcagtg	ttaccgaagc	caccaatacc	aaagagaacg	1020
ggtcctgcgg	tgctgaacag	cctcggtgt	gcatgacag	ctggcaggag	atgacaggaa	1080
tccagttcc	cagagccaca	aatctgttc	tcctggcca	ctcacccact	gtgaggtect	1140
cttagaaaaat	acacaaaagag	aggaccagac	caggcagagg	aacatttgt	ttcatatgaa	1200
ctgggccttg	accccaaaac	tgcaaggagg	aacttgctgg	gccaaagctg	cagcggcgct	1260
gkcttgctgg	agtggggacc	tagagtca	aaaaaacccmc	aggctcctct	gcccatttctc	1320
ctccatctgc	acacgtnlca	gcctcgacc	ctcacccnctc	catggtgagg	aaggccatgg	1380
ccaggggaaa	ctgagttca	tccaatgnng	agaggagcgt	tgtcctagag	cagggcaact	1440
cccaaactgk	gacctctgat	categtccct	tccagcttgc	tgaggtgtcc	agagagacag	1500
atttgcaca	agctaggctt	acttataatg	ctccaccccta	cagaaatggg	accccaagta	1560
cccaatcttc	cctttaggag	aggcaggcag	gtgggtgagc	agcagatgt	gtttccattt	1620
ccctgggggt	ttaattttcc	naactttgnc	ttttttttt	ttttttttt	tttttttttg	1680
agacagaatc	tcaactctgt	cacccagact	ggagtgcagt	ggcacaatct	caactcacta	1740
cagcctcgaa	ctccttaggt	caagcgatcc	tcccaccta	acctctagaa	tagtgggac	1800
tgcaggtgca	taccaccacg	cccagcta	ttttgtattt	tttttgtaga	gacacgggtct	1860
caccatactg	cctgggcagg	tttccaactc	ctgggctcaa	gtgatccagc	agcccttagcc	1920
tcccaaaaatg	ctgggattac	aggtatgagc	actgcacccg	gccactttt	tttggggat	1980
aaacagggtc	tcaactctgtt	gcccaggctg	gactacagt	gcacaatctc	agctcactgc	2040
ggccttgaac	tcctgggctt	aagtgtatct	cccacccatg	tctccctagt	aggtggaaact	2100
acaggcatgt	accaccacac	ctggcaaca	tagcaagagc	ccatctctac	cagaaaaaaaaa	2160
aaaaaaaaagg	gcggccgc					2178

<210> 18
<211> 2229
<212> DNA
<213> Homo sapiens

<220>
<221> SITE
<222> (2227)
<223> n equals a,t,g, or c

<400> 18						
ggcagtatat	aaaatttgtg	gggcattacag	cctcgccac	ctgcttact	tctgcagccc	60
acagcatcat	attctcgaaa	agataaaagac	caaaggaagc	aacaggcaat	gtggcgagtg	120
ccctctgatt	taaagatgt	aaaaagactc	aaaactcaaa	tggccgaagt	tcgatgtatg	180
aaaactgtat	taaagaataac	actttcagaa	ataaaaagca	gcagtgctgc	ttctggagac	240
atgcagacaa	gccttttttc	tgctgaccag	gcagctctgg	ctgcatgtgg	aactgaaaac	300
tctggcagat	tgcaggattt	gggaatggaa	ctcctggcaa	agtcatcagt	tgccaaattgt	360
tacatacgaa	actccacaaa	taagaagagt	aattcggcca	agccagctcg	atccagtgt	420
gcaggtagtc	tatcacttcg	aagagcagtg	gaccctggag	aaaatagtcg	ttcaaaggga	480
gactgtcaga	ctctgtctga	aggctccca	ggaagctctc	agtctggag	cagggcacagt	540
tctccccgag	ccttgataca	tggcagtatc	ggtgatattc	tgccaaaaac	tgaagaccgg	600
cagtgtaaag	cttggattc	agatgtgtt	gtgggtgcag	ttttcagtg	cttgcctgc	660
gttgagaaaa	ggagaaaaat	ggtcacctg	ggggctaata	ctaaaggagg	tcatctggaa	720
ggactgcaga	tgactgtat	ggaaaataat	tctgaaactg	gagagttaca	gcctgtacta	780
cctgaaggag	cttcagctgc	ccctgaagaa	ggaatgagta	gcgacagt	cattgaatgt	840
gacactgaga	atgaggagca	ggaagagcat	accagtgtgg	gcgggtttca	cgactccttc	900
atggtcatga	cacagcccc	ggatgaagat	acacatcca	gttttctga	tggtgaacaa	960
ataggccctg	aaagatctca	tttcaataca	gatgaaaata	gtggaaggta	attgccaat	1020
caagagaact	gacttgcaag	ctaccttgac	cctgaatttt	gctgtatgt	gtgatcaat	1080
ttgtcatca	tcaagataatc	agatttggtc	ttatatttcc	attatctca	cctgaaatag	1140
taatttggaa	actgttggaa	ggtggcacag	tttagtctaa	gacagcaga	gtacatggga	1200
aaaacagtat	gggaagagtt	ctttgtatgt	taaggaaata	acaatgtat	tctctattaa	1260
tttagcaa	ttgtacattc	acaaaaggca	gtttgtctac	tacagcaga	ggctggtaa	1320
ctgcccagaaa	atgtacctcc	aggccctgca	tgccgtcagt	aacccgcccc	gcattgggtc	1380
tctactgtct	ttggcttagag	tttagttgtg	tttaaataat	catcttata	tttggggttt	1440
taattacagt	tccattagtg	cctgttagatt	agtgaacaga	aaattgctt	ggaagagatt	1500

ctgcccgtgt	gacactatgt	gaataactga	agtaaacacta	gactgaatct	ccttttggaa	1560
gtatgtatct	tctctca	ttcaagtac	aggcacactg	ttcaaccgca	tggtatcttt	1620
ctgttgtgt	acttctacaa	atgttaattt	aatgaaatt	aagttaacat	ggattcatta	1680
cgttcctggc	cctgttagaca	cgtgtaa	gat	tcttcattt	ttttctgcct	1740
cttactatac	gactgttagtg	caacaaat	at	cctttcttc	tttattttca	1800
ttagttgtac	attgattca	gtgtcaacac	at	tcattcatgt	tgcacagtgg	1860
tttacatgaa	cgtgaaactg	tgtatataagg	tttcttca	tactcataat	tagcccaaaa	1920
cagttgccaa	actttgccat	tgtgtcctg	catttgtgtt	tgagctgcta	tatatttg	1980
gaaattacac	tgaaaagttga	ctaagagact	attgaaaaag	catgaataat	taaatataca	2040
tgtgagagac	atctcatctg	ctgtatttt	cttagtgaat	attgttca	cttccgtgtc	2100
tgtatgtctt	ctgaatgctg	tgactcatag	tttactttt	ttcaaaaatag	tttgcacttt	2160
ttgttaataa	aatcaacttg	agaaaaaaaaa	aaaaaaa	aaaaaaa	aaaaaaa	2220
aaaaaaancg						2229

<210> 19
<211> 1514
<212> DNA
<213> Homo sapiens

<400> 19	60					
ccacgcgtcc	ggctgggcot	gcctcgacg	ccgcccgtgt	cgccgattct	cttccgccc	60
gctccatggc	ggtgatgcc	tgactggaa	cccgaggtgg	atgcggctga	cgccgaagcg	120
gctctgtcg	tttcttatcg	ccctgtactg	cctattctcc	ctctacgctg	cctaccacgt	180
cttcttcggg	cggccgcgc	aggcgccggc	cggtccccg	cggggcctca	ggaagggggc	240
ggccccccgc	cgggagagac	gcggccgaga	acagtcact	ttggaaagt	aagaatggaa	300
tccttgggaa	ggagatgaaa	aaaatgagca	acaacacaga	ttaaaaacta	gccttcaa	360
attagataaa	tccacgaaag	gaaaaacaga	tctcagtgt	caa	atctggg	420
cattggcttg	tatctctggg	agcatatttt	tgaaggctt	cttgc	atgcgtgc	480
tgctcaatgg	agagaaggaa	agtcaatcg	aggaagaaca	cagtacag	tcatca	540
tccagctgt	ataccagggt	acttctccgt	tgatgtgaat	aatgtgg	tcat	600
tggaaagagaa	aaagcaaaaga	tctttatgc	cacccagtgg	ttactttatg	cacaaaattt	660
agtgc	aaatttactcc	agcatcttgc	tgtgtttt	ctcg	gaaatgtga	720
taatgagtt	ataaaacccat	tcctcaaaag	aaatggaggc	ttcgtgg	tgctttcat	780
aatatatgac	agccccctgga	ttaatgacgt	ggatgtttt	cagtgg	tttaggatagc	840
aacatacagg	aattttcctg	tggggaggc	aagttgtca	atgc	tgatgaggcc	900
atatttatgt	aatttcttag	gaacgattt	tgaaaattca	tccagacagg	cactaatgaa	960
cattttgaaa	aaagatggga	acgataagct	ttgttgggtt	tca	gcaagag	1020
gcctcaggaa	acaaatgaaa	gtcttaagaa	ttaccaagat	gccttgc	aaactggca	1080
cacattgtgc	ccggtcggag	taaacacaga	atgc	tatcg	agagtgtatct	1140
tggctccatt	cctgtgggt	aagacgtgt	gacagctggc	aactgtgg	atacatctgt	1200
gcaccacgg	gctcctctgc	agttactcaa	gtccatgggt	gctcccttta	tctttatcaa	1260
gaactggaag	gaactccctg	ctgtttaga	aaaagagaaa	actataattt	tacaagaaaa	1320
aattgaaaaga	agaaaaatgt	tacttcagt	gtatcagcac	ttcaagacag	agctaaaaat	1380
gaaattttact	aatatttttag	aaagcttatt	ttaatgaat	aataaaagtt	aattatcttt	1440
ttgagctaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaa	aaaaaaa	aaaaacaaa	1500
aaaaaaaaaa	aaaa					1514

<210> 20
<211> 1021
<212> DNA
<213> Homo sapiens

<400> 20	60					
ccacgcgtcc	ggataggcac	aggacaggag	taggcac	gcctactgt	gtttaacctt	60
tcagcttctc	caggccccca	atcctgctt	ctcccagtt	ggaaacgaga	cactgctgag	120
ctggaaagact	tcggggcca	caggcacagc	cttcctgct	ctggcggcgc	tgctgggct	180
gcctggcaac	ggcttcgtgg	tgtggagctt	ggcgggctgg	cgccctgcac	ggggggcggc	240
gctggcgcc	acgcttgc	tgcac	gctggccgac	ggcgccgtgc	tgctgctcac	300
gcccgtctt	gtggccttcc	tgacccggca	ggcctggccg	ctggggccagg	cgggctgca	360
ggcggtgtac	tacgtgtgc	cgctcagcat	gtacggc	gtgctgctca	ccggcctgct	420
cagcctgcag	cgtgcctcg	cagtaccccg	cccttcctgg	cgccctcgct	gcccagcccg	480
gcctggcccg	ccgctgctgc	tggcggtctg	gctggccg	ctgttgctcg	ccgtcccgcc	540
cggcgtctac	cggcacctgt	ggagggaccg	cgtatgccag	ctgtgccacc	cgtcgccgg	600
ccacgcgc	gcccacctga	gcctggagac	tctgaccgct	ttcgtgc	tttgcggct	660

gatgctcgcc	tgctacagcg	tgacgctggc	acggctgcgg	ggcgccccgt	ggggctccgg	720
gcggcacccgg	gcgcgggtgg	gccggctgg	gagcgccatc	gtgcttcctt	cggcttgc	780
tggggccccc	accacgcagt	'caaccctctg	caggcggctcg	cagcgcgtggc	tccaccggaa	840
ggggccttgg	cgaagctggg	cggagccggc	caggcggcgc	gagcgggaaac	tacggccttg	900
gccttcttca	gttcttagcgt	caaccgggtg	ctctacgtct	tcaccgctgg	agatctgctg	960
ccccgggcag	gtccccgttt	cctcaacgcgg	ctcttcgaag	gtctctgggaa	ggcccggagg	1020
g						1021

<210> 21
<211> 1859
<212> DNA
<213> Homo sapiens

<400> 21						
gtttcgcc	agaaggctgc	ctcgctggc	cgaattcggt	ggcgccacgt	ccgcccgtct	60
ccgccttc	catcgccgct	tcggcggctt	ccacctagac	acctaacagt	cgccgascgg	120
ccgcgtcg	agggggtcg	cacggggagt	cggcgggtct	tgtgcattt	ggctacactgt	180
gggtcaga	tgtcgacat	cggagactgg	ttcaggagca	tcccggcgat	cacgcgttat	240
tggttcgcc	ccaccgtcgc	cgtgccctt	gtcgccaaac	tcggcctcat	cagcccgccc	300
taccttcc	tctggcccga	agccttcctt	tatcgctt	agatttggag	gccaatcact	360
gccacctt	atttccctgt	gggtccagga	actggattt	tttatttgg	caatttat	420
ttcttatatc	agtatttctac	gcgacttgaa	acaggagctt	tttatttgg	caatttat	480
tatttatca	tgctcctctt	taactggatt	tgcatcgta	ttactggctt	agcaatggat	540
atgcagttgc	tgtatgattcc	tctgatcatg	tcagtactt	atgtctggc	ccagctgaac	600
agagacatga	ttgtatcatt	ttgggttgg	acacgattt	aggcctgcta	tttaccctgg	660
gttattctt	gattcaacta	tatcatcgga	ggctcgtaa	tcaatgagct	tatttggaaat	720
ctgggttggac	atctttattt	tttccataatg	ttcagatacc	caatggactt	gggaggaaga	780
aattttctat	ccacaccta	gttttgtac	cgctggctgc	ccagtaggag	aggaggaga	840
tcaggattt	gtgtcccccc	tgctagcatg	aggcgagctg	ctgatcagaa	tggcggargc	900
gggagacaca	actggggcca	gggcttcga	cttggagacc	agtgaagggg	cgccctcg	960
cagccgc	tctcaagcca	catttcctcc	cagtgcgg	tgcrccta	aactgcgttc	1020
tggcta	acac	tgttggac	gaccacact	aatgttagtc	tttcagatc	1080
tcttaatcc	cgaaaaaaa	tatagtgtt	ccacaagttt	cacgattt	tttcaagtcc	1140
ttactgtgt	gaagaacaaa	taccaactgt	gcaaatttgc	aaactgacta	catttttgg	1200
tgtcttc	tctccc	tttccctt	tttgcataat	aatgggttt	agcgggtctt	1260
cattgagctg	gggctgggtc	accaaaccct	tcccaaaagg	acccttatct	tttcttgca	1320
cacatgc	cctccactt	ttcccaaccc	ccacatttgc	aactagaaga	gttgcccat	1380
aaaattgtc	tgcccttgac	aggttctgtt	atttatttgc	ttttgccaag	gtttggtcac	1440
aacaatcata	ttcacgtat	tttccccctt	ttgtggcaga	actgttagcaa	tagggggaga	1500
agacaagcag	cggatga	gttttctc	cttttgaat	tgcttcgacc	tgacatccgt	1560
tgttaaccgtt	tgccacttct	tcatatat	ttataaaaaaa	gtaccactga	gtcagtgagg	1620
gccacagatt	ggtattaatg	agatacawg	gttstgtgg	gywgttaag	attaagaggc	1680
atacaccact	tagtaaacta	atgaaagcct	attgtgaac	acagggattt	tcaatgaggc	1740
agatcagatt	ccgatttgac	gggcaaccaa	tcaatgaaac	agacacac	gcacagttgg	1800
aaatggagga	tgaagataca	attgatgtt	tccaaacagca	gacgggaggt	gtctactga	1859

<210> 22
<211> 1494
<212> DNA
<213> Homo sapiens

<400> 22						
acgcgtccgc	agcattcg	ccgagatgtc	tcgctccgt	gccttagctg	tgctcg	60
actctctt	tctggctgg	aggctatcca	gcgtgagtcc	tctcttaccc	ttcccgctct	120
ggtccttc	ctcccgctc	gcaccctct	tggccctcg	tgtgtctct	cgctccgt	180
cttccctt	ccaagttctc	cttgggtggcc	cgccgtgg	ctagtc	cttgcagg	240
ggggaaagcg	cgggggtggcc	tgggagtgg	gaaggggtg	cgcacccgg	acgcgcgt	300
cttgc	ccctt	tcggcgggg	cctttgcct	acggcgcac	gagggtcg	360
acaaagtta	gggcgtcgat	aagcg	gcccgcagg	tgggggagg	tttcttcc	420
gtctttc	ggggcctct	gtctcccc	gcccgcagg	gtgggggac	gtttaggc	480
tcccaaaggc	ggggcgctg	gttttg	cgcggtgg	ggcgttgg	gtctgggg	540
ggcg	tcgccc	ggtaaggct	gtctgtcg	gtctgttc	ccttagact	600
gacttc	cgccccc	taagttcg	tgtcttagc	cctctgggt	tatgtgggg	660
cacaccgtgg	ggaggaaaca	gcacgcac	tttgtagaat	gttggctgt	gataaaagcg	720

gtttcgaata	attaacttat	ttgttccat	cacatgtcac	tttaaaaaaa	ttataagaac	780
tacccgttat	tgacatctt	ctgtgtgcca	aggacttat	gtgctttcg	tcatttaatt	840
ttgaaaacag	ttatcttccg	'ccatagataa	ctacatggtt	atcttctg	tctcacagat	900
gaagaaaacta	aggcaccgag	attttaagaa	acttaattac	acaggggata	aatgggcagc	960
aatcgagatt	gaagtcaagc	ctaaccagg	ctttgcggg	agcgcatg	ttttggctgt	1020
aattcgtgca	ttttttta	agaaaaaacgc	ctgccttctg	cgtgagattc	tccagagcaa	1080
actggcgcc	atgggcctg	tggtctttc	gtacagaggg	cttctctt	ggctctttgc	1140
ctgggtgtt	ccaagatgt	ctgtgcctct	tactttcggt	ttgaaaaca	tgagggggtt	1200
gggcgtggta	gcttacgcct	gtaatcccag	cacttaggga	ggcgaggcg	ggaggatggc	1260
ttgaggtccg	tagttgagac	cagcctggcc	aacatggtga	agctggtct	ctacaaaaaa	1320
taataacaaa	aattagccgg	gtgtggtggc	tcgtgcctgt	ggtcccagct	gctccgggtgg	1380
ctgaggcgcc	aggatctctt	gagcttaggc	tttgagcta	tcatggcgc	agtgcactcc	1440
agcgtggca	acagagcgag	accctgtctc	tcaaaaaaaga	aaaaaaaaaa	aaaa	1494

<210> 23
<211> 2105
<212> DNA
<213> Homo sapiens

<400> 23						
tccagaccat	ctacaactgc	acggcctgga	acagcttcgg	ctccgacact	gagatcatcc	60
ggcacgagga	gcaagggtcg	gaaatgaagt	cgggagccgg	gctggaacag	agtctgtgcc	120
gatggccgtc	atcattgggg	tggccgtagg	agctgggtgt	gccttcctcg	tccttatggc	180
aaccatcg	gcgttctgt	gtgcccgttc	ccagagaaat	ctcaaaggtg	ttgtgtcagc	240
caaaaatgtat	atccgagtgg	aaatttgtcca	caaggaacca	gcctctggc	gggaggggtga	300
ggagcactcc	accatcaagc	agctgatgtat	ggaccggggt	gaattccagc	aagactcagt	360
cctgaaacag	ctggaggtcc	tcaaagaaga	ggagaaagag	tttcagaacc	tgaaggaccc	420
caccaatggc	tactacagcg	tcaacacctt	caaagagcac	cactcaaccc	cgaccatctc	480
cctctccagc	tgcagcccc	acctgcgtcc	tgcgggtaag	cagcgtgtgc	ccacaggcat	540
gtccttcacc	aacatctaca	gcacctcgag	cgcccgaggc	cgccctctacg	actacggcag	600
cggtttgtgc	tggcgtatggg	cagctcg	atcgagctt	gtgagcggga	gttcagaga	660
ggctccctca	gcgacagcag	ctccttcctg	gacacgcagt	gtgacagcag	cgtcagcagc	720
agcggcaagc	aggatggcta	tgtcagttc	gacaaggcca	gcaaggcttc	tgcttcctcc	780
tcccaccact	cccagtcctc	gtcccagaac	tctgacccca	gtcgacccct	gcagcggcgg	840
atgcagactc	acgtcttaagg	atcacacacc	cggggtgggg	acggggcagg	gaagaggtca	900
gggcacgttc	tgggtgtcca	gggacgaggg	gtactttgca	gaggacacca	gaattggcca	960
cttccaggac	agcctccca	cgcctctg	actgccttcc	ttcgaagctc	tgatcaagca	1020
caaatactggg	tccccaggtg	ctgtgtcc	gagggtggcg	ggtggggaga	cagacagagg	1080
ctgcggctga	gtgcgtgt	cttagtgc	gacacccgt	tcccccggcc	tttctggag	1140
gcccctctac	cacctgctct	gcccacaggc	acaagtggca	gctataactc	tgcttcatg	1200
aaactgcgg	ccactctct	gtctctctgt	gggctctacc	cctcactgac	cacaagctct	1260
acctaccct	gtgcctgtc	tcccatacag	ccctgggag	aaggggatga	cgtctccca	1320
gcactgagct	gccccagaaa	ccccggctcc	ccactgtc	tcatagccca	taccctggag	1380
gctgacaagc	cagaaatggc	cttggctaaa	ggagcctctc	tctcaccagg	ctggccggga	1440
gcccacccccc	aatttgtttt	gtgtttgt	tccataactct	tgcagttctc	tccttgact	1500
tgatgcgc	gaactctgc	gtgggaccgg	tcccgtcaga	gcctgggt	ctggggggag	1560
ggagggagga	gggagcctgt	gctgacggag	cacccgtcc	ggtgtcccc	tcctggctg	1620
tgtgacccca	gcctcccccac	ccacccctcg	cttgcgtac	tcctccctc	cccctcagca	1680
caatcgagg	tcatataaga	agtgcggag	cttctctgt	cagggttctc	tgaacactta	1740
tggagagagt	gcttcctggg	aagtgtggcg	tttgaagggg	ctggagggca	ggtcttaag	1800
atggcgagac	tgccttc	agctgataaa	cacaagaacg	gcatcctgt	cttcagtaag	1860
gctccacag	aagagaggaa	gtatatctac	acctaacc	tcctagtcac	cacccat	1920
aaatgttagg	gacactactc	caacatgttt	gttctgttct	tttgccttca	caaagccaca	1980
ggaagaaccc	aagagctcat	agaatgcgtt	ggaaacccaa	ggtctctgc	cctcccttga	2040
ttcaatcatc	ctagacaata	aaggcagtt	atagctctga	aaaaaaaaaa	aaaaaaaaaa	2100
aaaaaa						2105

<210> 24
<211> 1290
<212> DNA
<213> Homo sapiens

<400> 24						60
ccacgcgtcc	gggcctggcg	atgctgtctg	tggcgtatcg	gatcgactac	acccacatcg	

aagtgctcat	cgtggaaaag	gggtgtaagc	cccccgagta	caggaattac	cagatcgct	120
tcatcgctt	cggcgttctc	atgaccatgg	ccttgatcgt	tgccactca	ttccggttcc	180
gctacaacca	tttcaaaaaac	'atgattcta	aaggaaaaga	ggtggagatc	ccgcagggtgg	240
aaaggaacaa	ctctacagag	tcctctgagg	agacaccaac	caccacaagc	cactcgagg	300
ccttcaactt	ttgggactta	atcaagctgc	tctgcagcgt	gcagtatggc	tcagtgcgt	360
ttgtggcttg	gttcatgggt	tttggatatg	gcttcgtgtt	caccttctc	tactggcatt	420
tggaagacct	caatggaaact	acaaccctct	ttggggctcg	ttcagtcctg	agtcatgtgt	480
ctgagctgac	agcatatttt	tttagtcaca	agcttattga	attgatcggc	cacatcaggg	540
ttctgtacat	tggcctggcc	tgcaatacgg	ctcgctatat	tatatttcct	acctggagaa	600
tgccctggact	gttctccccca	tggaagttct	tcaaggagtg	acacacgcgg	ccatctgggc	660
agcatgcatt	tcttacctca	gtgcagccgt	tccccctgag	ctgaggacat	ctgctcaggg	720
catcctgcag	ggccttcacc	tggtttggg	aagaggatgt	ggtgccatga	tcggaggcgt	780
gttagtcaat	tattttgggg	ctgctgcaac	cttccgagga	attggcatgg	cctgcttgg	840
gatcctactg	ctctttgcc	tgatccagt	gctggcagt	ccagatgagg	aagaagacaa	900
gacaatgtt	gcagaaaagaa	ttcctgttcc	ctccagtccc	gttcctata	caaccatcga	960
cttggtagac	caacagacag	aagatgtcat	gccacgcatt	gagcccagac	ttccacccaa	1020
gaaaactaag	caccaggaag	aacaggaaga	tgtgaacaaa	ccagcctggg	gagtcagtc	1080
ttctccctgg	gtgaccttgc	tctatgcact	ctaccaaatt	aaagagatga	tgcaactcac	1140
aagagacaac	cgtgcttctg	agatacagcc	tttacagggg	accaatgaga	atagggaaaa	1200
ttctcctgct	ggtagagccc	agcctgtccc	atgtgagact	ccatctaaaa	aaaaaaaaaa	1260
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1290

<210> 25
<211> 1728
<212> DNA
<213> Homo sapiens

<220>
<221> SITE
<222> (921)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (929)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (974)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (983)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (1714)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (1715)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (1719)
<223> n equals a,t,g, or c

<400> 25
gattcggcac gagagataat tcatcaccca ggtataataagc ataacaccca atggtagtt 60
tttccatctt caccctcctc ccaccctcca ctcataagta ggcccccagt tctattttc 120

ctttttgtgt	gtgtccatgt	gtacaaaacg	ttttgctccc	acttatgaga	acatgtggca	180
tttggttttg	tttctgcact	agctcgctta	ggataatggc	ctctagcttc	acctacgttg	240
ctgcaaagaa	catgatctca	'ctgctttat	ggcttcata	tgaaatggga	aaagtccct	300
tgtccccctc	gcagggtgtg	cgatggggat	gtgactcgct	tcttcagtgt	cccgctgctc	360
aaacctctat	ggggggcatg	cakacgggca	ggctgtgggg	ctccgacc	aaggcagtgt	420
ctaggggtga	agccccagtg	ggcgtgtgtt	acaggggtgt	ctttcagttt	agccgtccat	480
akgcggcttg	tgtactcagc	tcaatttagac	ccctgcctta	tcgcaaggac	agagggcttt	540
ctgtatccct	gggttcttgc	cttgggtgtac	tggaagaatc	ggatcacacg	tgggcttgg	600
gactgagttac	aagggtttgt	tgastggaag	tmctctcagc	arttggggga	gccagaaggg	660
agatggttt	cccccgttgaat	ctggccattc	agcagcgcag	gctctcctcc	tccgaccctg	720
tccaaactcc	atgttctgcc	ggtcgtatggc	ctgctgac	gccggcgct	gtcggtgtgc	780
tcttccactg	gcgtgttccc	cttgagtcct	ctggacgtcc	agccgcttgc	gtctctgccc	840
gctagggcgt	tgggttttta	tgggtacagg	atggggcat	ggcaagccaa	ggtggcttgc	900
ggaaatgcaa	cgttgggca	ngaaaacana	aatgcctgtt	ctcacctaag	tctgtggca	960
caggcctggg	ggtnaaaccc	tancaaggg	aacacgaact	cctgtaccca	gcacttctct	1020
cccccccttc	cctatcaata	gtactccgt	gtttataggt	accgcattt	ctytatacag	1080
tctaccgtt	atgggcattt	aggtgattcc	atgtcttgc	cattgtgaac	agtgttgcaa	1140
tgaacatacg	cgtgcatgt	tctttatgt	aagacaattt	agatctctt	acgtgtatac	1200
ccagtaatgg	cattgcggct	tgaatggtar	ttctgtttt	agttatttgc	tgarttctt	1260
tttaatgggt	tkgttttca	tagtggtatg	gatgtaccaa	ttctgaatcy	attttatatt	1320
tattgaagaa	ttaagtgtgt	aaatatgatt	atgttgaag	aagccagcgt	tctcaactgt	1380
gaagaaagga	ggcagaattt	tggatggag	aaaagaaagg	aagatctctg	tgggtttgtt	1440
gaattggcac	aggaggcttc	agtatgaact	catgattct	aaaacaaaaca	aacacgtcaa	1500
tagcgatgag	tgtccctaat	gcccagatct	tagttgttt	ataatagaaa	tggcatcatc	1560
taactagagg	gaaagatgat	gttgc当地	gtggcacttt	tttttttct	tcttttttg	1620
agacggagtc	tcactctgtc	gtccaggctg	gagtgcagt	gcacaaatctc	gctcgtgccg	1680
aattcgat	caagcttatac	gcataccgtc	gacnnncgng	gggggtcc		1728

<210> 26
<211> 1569
<212> DNA
<213> Homo sapiens

<220>
<221> SITE
<222> (999)
<223> n equals a,t,g, or c

<400> 26						
cccgaaattc	ccgggtcgac	ccacgcgttc	gctytcacca	tctcccac	ggatgattgt	60
cacagtattt	caagccaccc	tggtccaaac	ttgccacact	tagctcattc	tctaaactgc	120
agttaaattt	ctctatgact	aatgtatcat	gggaaggcct	gggcctt	tcctccctc	180
ctctctacca	atcttggcat	caaacacatc	agcaagccat	ggttaactcac	ctgtcactcc	240
ctgaacacat	aatgtgtt	ttttctacat	gatctgttt	ctgctcctcc	ctctgcctt	300
tggggctttt	ttacaatttt	tcacctggct	aactcttact	caaccttga	aatttagctc	360
tggtgccata	tcctctarga	aaggtaccc	tkaatcccc	gactaagtga	aggtttgagt	420
gcggacagcc	ttggagaatg	ggagagaatg	agaaaaaaacc	tatcaaggag	aaattcccta	480
gactaagcat	gactgtkagg	tgaaaaagca	atggtgtctt	acattcaggt	tcaagttctt	540
ttgtgkttatc	tgctgctcar	gaagctccct	ctttttctc	aaagagtcag	caacataaga	600
rtgacttart	ggccttgagt	tcctctgtat	ttcgcat	aggagaggag	aatgattgg	660
gcttagggag	aagctgtgt	gggaacacat	ttcagtcata	ggcaagtgg	caaatggaca	720
aggttaggaga	ataaagtccc	ctcctcctgc	atccataactg	agaattaaaa	ttaaaaaaaaa	780
aaaaaaaaaa	acatagggat	ggaatcacta	ggcatgg	ctcatgtct	taatctcagc	840
actttggggg	gccaatgtgg	gaggatcacc	tgagcccaag	agttcaagac	cagcctggc	900
aatgtatga	gaccctatct	ctacaaaaaa	atgtat	aaatttttagc	cggccatgtgt	960
ggtgagtgcc	tgtatccc	gttactkgga	aggctgagn	aggaggattt	caggacccca	1020
ggaggtgaag	gttgcagt	gttatgattt	caccactgt	ctccaaactt	ggtgacacag	1080
tgagacccct	cttcaaaag	aaaaaaaaat	cataggaaa	atatttagat	acataattaa	1140
gccatttaat	ttggacataa	aaaaaggcag	agctagaat	ctagaggatt	tttgaacgtc	1200
tagtctgtt	attataataa	cactaagaga	agattttt	tatttattt	tttatttaat	1260
tttattgttt	ttgagacaga	atctcactct	gttgc当地	ctggagatc	ctgggtcaat	1320
ctcaggtcac	tgc当地	gc当地	cttgc当地	agccacccaa	gtatgtgg	1380
ttatagctgt	gc当地	gtccaggtaa	tttttgc当地	ttttagtaaa	cacagggttt	1440
ctccatgtt	gc当地	tttgc当地	ctggccctaa	gtatattcacc	cacctctgcc	1500
tcccaaagt	ctgggattac	atgcgtgagc	caccatgcct	ggccaaaaaa	aaaaaaaaag	1560

ggccggccgc 1569
 <210> 27
 <211> 1058
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> SITE
 <222> (1010)
 <223> n equals a,t,g, or c
 <400> 27

gtttgagctg	aatagagcac	ctgcataaaat	gcccatgggg	cattatttac	tcttgcttac	60
tcttcatcca	cctgccacac	acccttctct	ctccagagtt	ctctgtgttc	tgtggtgtct	120
ttctctttgg	acaggccaaa	agatcacaca	ggacaacgca	atgccattta	ccttggactc	180
tgtagtcttc	atgttttccc	aactgaatg	tttctccttgc	atggcagcaa	ctggatccta	240
cattgtccta	taactctcg	aacatatacc	acaaaccta	gcataaaaatt	cagtaagtgt	300
tcagtaata	tttactcact	agagaacaaa	sgtttlyttt	ctaaaaaaaaa	aaaaaaaaaa	360
agaaaaagaaa	acaacccagg	gaacaaaatc	tctaatggtg	aaatttcagt	tactttgaca	420
ggaatatgca	agatattttt	gaaaagagca	cctttttttt	ttcacttcca	gtcgttatctg	480
tggtgttctt	atagagtgca	gaccccccaga	agcttctgag	aactacatcc	aaggatgtct	540
gctggggcta	tgaaagctca	agcccttctta	ttgcaatgg	ggtagctaat	atgaggccta	600
aatattgggt	gaaaaatatg	gaggggcttc	aggccttcta	aaggtatccg	aatttcttct	660
ttcatcttta	aaataaaatac	cttcccacca	ttcaaaaata	aataattctc	tcagaatcag	720
gaagtttgtg	catattttata	tccttatcca	tgtaggcttc	tggaaaggag	cagaaatgtg	780
attcctgttt	aatagacgta	tacaccccat	tgtctaatta	tgtgcattaa	tacttcttgg	840
aaaaaaatgtg	gtctttcata	actagttttt	taccagattc	taaatatttt	ttgaagtgtc	900
atagtttctt	aatcctaatt	agtataattt	attattagca	aatttttcca	ttgtcaagat	960
attattttta	ttgccagct	aaattactat	tttcatttgc	atcacaaaaan	tcttaagtgg	1020
tttggtaaaa	tataaaaaca	tcacaaaaact	tccctcga			1058

<210> 28
 <211> 1353
 <212> DNA
 <213> Homo sapiens
 <400> 28

ccacgcgtcc	ggggatctgg	ggtcaggcag	cccggggggc	ttggagagac	ttccagagga	60
ggcgcggact	cgttagcgcg	gcgggcaagg	caggcgccat	gaccctgatt	gaagggggtgg	120
gtgatgaggt	gaccgtcctt	ttctcggtgc	ttgcctgcct	tctgggtctg	gcccttgcct	180
gggtctcaac	gcacaccgct	gagggcgggg	acccactgcc	ccagccgtca	gggaccccaa	240
cgccatccca	gccccagcga	gccatggcag	ctaccgacag	catgagaggg	gaggccccag	300
gggcagagac	ccccagcctg	agacacagag	gtcaagctgc	acagccagag	cccagcacgg	360
ggttcacagc	aacaccgcca	gccccggact	ccccgcagga	gccctctgt	ctacggctga	420
aattcctcaa	tgattcagag	caggtggcca	gggcctggcc	ccacgcacacc	attggctcct	480
tgaaaaggac	ccagtttccc	ggccgggaac	agcagggtcg	actcatctac	caagggcagc	540
tgcttaggcga	cgacacccag	accctggca	gccttcaccc	ccctcccaac	tgcggtctcc	600
actgccacgt	gtccacgaga	gtcggtcccc	caaattcccc	ctgccccccg	gggtccgagc	660
ccggccccct	ccgggcttgg	aatcggcagc	ctgctgtcgc	ccctgtgtct	cctgtgttgc	720
ctgctgtct	ggtaactgcca	gatccagttac	cgcccttct	ttccccctgac	cgccactctg	780
ggcctggccg	gtttcacccct	gctcctcagt	cteetggcct	ttgccccatgt	ccgccccgtag	840
tgccctccgct	ggcgcttggc	agcgctcgccg	gccccctccgg	accttgcgtcc	ccgcgcggcg	900
gccccggagctg	ctgcctgccc	aggccccct	ctccggcctg	ccttttcccg	ctgcccctgg	960
gccccagccct	gccccggcaga	ggactcccg	gactggcgga	ggccccggccc	tgcgacccgccc	1020
ggggctcggg	gccacccccc	ggggctgtcg	accctcagcc	cgcaactggga	gtgggtctcct	1080
ccccggctcggg	catctgtctgt	cgctgcctcg	gccccggca	gagccggggcc	gccccgggggg	1140
ccccgtcttag	tgttctgccc	gaggaccct	ccgcctccaa	tccctgacag	ctccttggc	1200
tgagttgggg	acgccagggtc	ggtggggaggc	ttgtgaaggg	gagcggggag	ggcagagagga	1260
gttccccccgga	accctgtcag	attaaagtaa	ctgtgaagtt	ttcaaaaaaaaaa	aaaaaaaaaaa	1320
aaaaaaaaaaa	aaaaaaaaaaa	aaaaaaaaaaa	aaa			1353

<211> 1078
 <212> DNA
 <213> Homo sapiens

<400> 29

ggagctcgcg	cgcctgcagg	tcgacactag	tggatccaaa	gaattckgca	cgagcacacc	60
tgkgcagggtg	gaagtggatg	tggacgagca	gcgcctggcg	gaaggtgggt	gggtctgctc	120
cttccacactg	cagggcagccc	tggggaaat	gctgcctcc	ccacccccc	gggctctgag	180
tgtggagggc	aggggcagga	atggcgcccc	tcaggagcca	gcatggccct	ggagccccc	240
agtccctgag	gaaagtgttg	atgcctccca	gcatggggct	ccttcctatc	ctgtacgccc	300
ggctgccacc	cagcctgggt	ggccaggcag	gcaggtggat	agggtggca	ggccgggcag	360
gggggcaggc	ggtcaggcag	ccctctccca	cagtcctcat	cgacggcgtg	gagtgcagcg	420
acgtcaagtt	cttccagctg	gcccgcgact	ggtcctcgca	cgtgaagcac	ttccccatct	480
gcatcttcgg	acactcacaag	gccacccctt	agccccaccc	accagggggg	ccacccctcg	540
ccccatgctg	tgagggggccc	aaegtcat	ctgttaacat	ttcagttac	tacagagaca	600
gacgcttaaa	acacaaagag	aaacagtctt	aagtatgaat	gtgctcacaa	cgtggaaact	660
aacgggggag	ctcctgcccag	gagccgaata	actgctctgc	ttattaaccc	gaacgttcgg	720
cccggggctg	ggaaggccaga	aggacgatgc	tgagccatgg	atccgcggaa	gcgtccctcg	780
gcctcaggag	ccacccagag	cctcacaggc	tgagttcttg	cctctgtgtc	ctgtccctcc	840
tggaagttag	gactctgttt	cctcaggag	cccggggaaag	gcccggactca	gtggccacag	900
gccgaggggcc	atggggccgc	tcagttccgt	tgggttgc	ctgagtttag	cctgggggg	960
ccgtcctgccc	cgccctaagag	atgcctccag	caccgcacac	tcgtggttcc	caataaaactc	1020
ctscctgcgg	cggagggttt	atagcaaaaa	aaaaaaaaa	aaaaacaaaa	aaaaaaaa	1078

<210> 30
 <211> 2412
 <212> DNA
 <213> Homo sapiens

<400> 30

ggcacgagct	taatctcgct	gcgtgctgat	ctctggcctt	tccctttagt	ctgtccgagt	60
ctcccccttt	gggacatcat	tcttcttctg	atgctccag	gagacgctct	gtctcttcct	120
tcccagtccc	ccaggacaat	gtggatgctc	atcctggttc	tgttaaagaa	gtgagggtac	180
cagctactgc	cttgtgtgtc	ttcgatgcac	atgatgggaa	agtcaacgct	gtgcagttca	240
gtccagggtt	ccggttactg	gccactggag	gcatggaccg	caggttaag	ctttgggaag	300
tatttggaga	aaaatgttag	ttcaagggtt	ccctatctgg	cagtaatgca	ggaattacaa	360
gcattgaatt	tgatagtgtc	ggatcttacc	tcttagcagc	ttcaaattat	tttgcagacc	420
gaatctggac	tgtggatgat	tatcgattac	ggcacacact	cacgggacac	agtggaaag	480
tgctgtctgc	taagttctgt	ctggacaatg	cgccggattgt	ctcaggaatg	cacgaccgga	540
ctctcaaaact	ctgggatctc	cgcagcaaaag	tctgcataaa	gacagtgttt	gcaggatcca	600
tttgcataatg	tattgtctgc	acagagcaat	gtgtaatgag	tggacatttt	gacaagaaaa	660
ttcgtttctg	ggacattcga	tcaagagaca	tagttcgaga	gatggagctg	ttgggaaaga	720
ttactgcctt	ggacttaaaac	ccagaaaagga	ctgagctcct	gagctgctcc	cgtgatgact	780
tgctaaaagt	tattgtatctc	cgaacaaatg	ctatcaagca	gacattcagt	gcacccgggt	840
tcaagtgcgg	ctctgactgg	accagagttt	tcttcagccc	tgtatggcagt	tacgtggcgg	900
caggctctgc	tgagggtctct	ctgtatatact	ggagtgtgct	cacagggaaa	gtggaaaagg	960
ttctttcaaa	gcagcacagc	tcatccatca	atgcgggtggc	gtggtcgccc	tctggctcgc	1020
acgttgcag	tgtggacaaa	ggatgcaaaag	ctgtgctgt	ggcacagttac	tgacggggct	1080
ctcagggtctg	ggaggacccc	agtgcctcc	tcagaagaag	cacatgggct	cctgcagccc	1140
tgtcctggca	ggtgatgtgc	tgggtatagc	atggacccctc	cagagaagct	caagctatgt	1200
ggcactgttag	ctttgcgtgt	aatgggattt	ctgaagattt	gactgaggtc	tctcttggcc	1260
tggaagaata	acactgaaaa	aacctgacgc	tgcggteact	tagcagaggg	tcaggttctt	1320
gccttgggaa	acactactag	ctctgacctt	ccataccctca	cttggggag	cacagggccc	1380
cgctggggct	cctcaccaac	ggcagtgcac	aaatcagccc	ccacatcaag	gtgggtttct	1440
ctgtgccttc	tctcgcttct	ccaaagtcgg	ttctggctta	acgcatgtcc	caacacccct	1500
ggttcatttg	cccggtgaac	tcactttaag	cattggatta	acggaaactc	ccgaactaca	1560
gaccctccc	tggtgggttg	catgaatgt	tcttcattact	gctgaaatgt	cctccatct	1620
cttgcactgt	tcttcagac	tttctggctc	tcttcccc	acaaaattcg	acatattaa	1680
aaatctccgt	gtggctttaa	aaaatggttt	tttggttttt	tgttttttg	aggtgggaga	1740
ggatgtgtga	aaatctttc	cagggaaatg	ggttcgctgc	agaggttaagg	atgtgttcct	1800
gtatcgatct	gcagacaccc	agaaggtgg	tgcacactgc	atgcttgggg	gtgccaagg	1860
attcgagacc	tccaacatac	ttgtctgaag	gtggtgatcc	tggccatggc	ccctctgcca	1920
agcctgtgtg	cgatgcctt	ggtgctttag	tgcaagaagc	ctaggctca	aagcacagca	1980
gcgccatctt	tccgttca	gggttgtat	gaaggccaaag	gaaaaacatt	tatcttact	2040
attttaccta	cgtataaaagt	tttagttcat	tgggtgtcg	aaacaccctt	tttatcact	2100

ttaaaattgc actttatTTT ttttcttcca tgcttggTct ctggacattt ggggatgtga	2160
gtgttagAGC tggtgagaga ggagtcaGGT ggcTTcccA ccGATggTcc TggcTccAc	2220
ctggcCTcTC ttccCTgcCT gatcaccGCT ttccaATTG ccTTcAGAG aactaAGTC	2280
aaggagAGTT gaaATTcaca ggCCAGGGCA catTTTtat ttATTTcatt atgtTggCCA	2340
acagaACTTG attgtAAATA ataATAAAGA aatCTGTTat atactTTCA aaaaaaaaaaa	2400
aaaaaaaaaa aa	2412

<210> 31
<211> 1736
<212> DNA
<213> Homo sapiens

<400> 31	
cggTccggaa ttcccgggtc gaccCACGCG tccggTcaGT ttctctggaa tgccaaaata	60
agggaaTTTT gtgtggCTG tcctatgaaa atgaagCTCT gtcACAGAGA agtgtgtgag	120
ccaaatccaa atactgagTT tattttactg tccAAATAGA atattttcac cccAGTGAAG	180
caattgtAAG catCTcatCC aaAGCATATT cactatCCTT gagTATTCTT ggttgCTTAT	240
tgaatgaata agtgaatgAG gtggatttgg ctgACACTAA CCTTGGGAT tacCTCACAG	300
cttgcCAGTg gcaAGCTTAG taAGTACTGG gCCATAGTGT ttGAGGATAG gtCTCTAGAG	360
tcataATGTCT ctaAGTTCAA atGCTAGCCT CCTGTATTAG tCTGTTTCA tgCTGTGAT	420
gaAGCCATAC CCCAGACTGG gtaATTACA AAATAAAGGG tTTAATTGG actTACAGTT	480
ccacttcaCT gggGAAGCCT cacaATCATG gtggAAGGCA agaAGGAGCA agTCACATCT	540
tacgtggatg gcAGCAGACA gaaAGTATGA gagCCAAAGCA AAATGGATT CCCCTTATGA	600
aaccatcaga tCTTGTGAGA CTTATTCACT accATGAGAA CAGTATGTGG AAAACTGCC	660
ccatgattca actaatCTCC cactgggtcc CTTCACCCA caACATGTGG ggATTCAAGA	720
tgagatgtgg gtggggacac agccAAACCA tatCACCTCC tttcCTAGTT gCTTGGTTG	780
gaagAGTTAT gtaATCTTT tgAGCTCAA tttcCTCATC tataAAATAG ggaAGATGCT	840
agttactCTC ttATAGGGTA gttATGATTt atTTTATGTG AAATGTTAG aATGGTCCAT	900
gccatgatgt actgcAGTTG gttgtACTG gCTCACAAg ACCAATAGTA cacTTTTT	960
ctgattCTGC caatCTTCCC atCCTCACAT ccAGTGAcat CATAATTGGTA gTTTGAATT	1020
aattggccat ggtgagaATA ttTACACTAC agatATTGc AAATCCTATC accAGGGCT	1080
agctttGCCA gcACACCgtt ggttagatGA catCCGTAAg TTCTGTATAA ATCTTAACAT	1140
tattattACT cAGTAGGTAC tCCTGCTCCC ttATGGTTT gagaAGGCCT tcCTTCTAGT	1200
taaataAAATC atTTTGAATT AAAATAACAC tgATGGACT CTTAGCAATG ttttACCTCT	1260
tggGAATCAC tgCCTACATT tGTGGTCTAT AAATCTGAAT CCTTAATTCA CTCGGATTGA	1320
ttttTGGCTC CGTGAAGCAG gagCTTTCT CACTGCTGTa GCCCCCACAC atGGCACAGG	1380
cctgggacAG agTAAGCACT cataAGTATT tgTTAAGTGA AAAAATAAAAT gaATGAAAGT	1440
atccccAAACA ctTGcATTtTt caAAAGGTT tgACATCCAC ttCCtttCt tCTCAAAGTA	1500
cgCTTtgAGA tgGATAGGTC CTATTTACt tCTATTGcat CGATGAAGAA ACTGCAATGC	1560
aaAGAAGTGT ctaATTAGTC ATTGCTTCC ttTCATCAAa tATGTCCATT ACACCAAGTGT	1620
ttCTCaaaAT gtGTTCCATA gATCATAAAT CCTGAAGGAT GTTAATAGTT ATTATGTGCC	1680
aggggacCCG tggatataA AGTTGGAAA atAGTGAAGT aaaaaaaaaa aaaaaaa	1736

<210> 32
<211> 2287
<212> DNA
<213> Homo sapiens

<220>
<221> SITE
<222> (1370)
<223> n equals a,t,g, or c

<400> 32	
ggactattCT aaATATTAAT gtATTAaaaaA ggAAAATACA acAAATGTA tATTTAGACA	60
cgagCTTACA tggCATAACCT tATTTGTA tcATTCTTA aAGTTACAA aaaaaAACCT	120
tATGTTTTA tGTAATCAGT cATTACACTA gggAGAAATT tATCAGCTT agTTCTAAAT	180
atGCTCATGA ggtATAAAAG CTATTCTTC atCAGTATT TGCTTTATG CTGCTTTTC	240
tTTTGTAC tCCAGGTtTA tAAACTATCT ttAAATTT TAAGCCAGGA CTTCAAAAT	300
tGTAGAGTAC ttGTTGGCG ttCCCTACCT tcATTCTCTT aggGTtaAGG AGCCTTCTT	360
tCTGCAgCTA agggCAGAGG CTGTGCTAG ggCTATAccA CCACtAGCAT CTGTATTGA	420
gACTGTTCC ttagATGGGT aAGAGGTGGA AAACAAACTT agTATCAGGG GtCCATGAAG	480
CCCATGGCAT CATTtTGAa AATATTCTA GTTTGTAGC CAAAGCAATT GGTTAGTAA	540
aatGAGACTT CTTCAGGAGT CMTCCTTA CTGTGGAYCC ATTGCTTAGT gggAAATGGAA	600

gtatatgttat	ctatcttgkg	tattaaacttc	tgacttttattt	ataacaagagc	agctataagga	660
gtttacaaaa	gaactttaag	ttattaagtt	actataaaatt	tggggatccct	agagtgatct	720
taaatatggc	aagatacacgc	tcatttagaa	taaaatctca	catccattat	tttaaaggga	780
atgattgggg	ggaaaaactg	gtgaagaaga	aatataaaaa	ggaccctaaa	aagaattctg	840
caaataaga	gaagaaataaa	tttgtgacag	gtaatagaat	actagtagga	tagaaaacaac	900
tagaaaggaa	agtgtgacac	agttttaaa	tttagatgt	gaaaataatg	aattaatgag	960
atgggtgaaa	ggaaatcatg	caaaacattt	gaatgcaaag	catttctaac	aaaaagtgcac	1020
tggagcactt	gccattgcaa	caaccctgtt	tttgcattt	ggtttttgcac	tgttaaaatg	1080
gatattttca	taaaamtgggt	gttctgaatt	ttgctacagg	gctgcttaaa	tttatgatta	1140
cctgttagaca	cttgatattt	acatagatta	cagcttgggt	aatatgtcac	tggagtaatt	1200
acgctgtaat	acctgtttag	aattcatacc	atctgatgct	tatataattaa	tttctttagt	1260
ttgttaagttt	ggctttgggg	aataggtgtg	gagaaattaa	agagtgaagg	ccatatttca	1320
ttttttataa	attatctttc	aagctcagat	agcttaagag	cagtttatan	taaggagacc	1380
cttttctcct	tgaggatagg	gataggtaag	gtaaacttgt	aaaaaggatg	tcacagaagt	1440
cacttttaa	ttaagtcatg	attgagatac	tgaactcttc	cactcattct	tcttccccat	1500
ttcccttatta	tgtttgataa	ttatatgtat	ttttaaaaac	tgtgagaggg	aaaattagtc	1560
ataacccttt	tgggttatcc	actttaaattt	aggatttttc	atattactca	ggtaaagatg	1620
gaaatgacag	agcacagmc	tttatttttt	aaattgatag	ggtagaaaat	gaaatgtact	1680
yctgtttatt	cttaataacta	tatataata	cacacatagt	tttagcaaat	tggaaataat	1740
atattcattt	gtatggcaag	ataaatgcag	tcatcttaat	actagtctat	acatttttgc	1800
caaatggcgc	aaatataac	ccatttat	tttgtatctt	aaaatgtagt	ttaaaaatag	1860
gaccatgtat	gagacactt	tttacaaaaa	gtgccgtata	tacatatgt	acaggtgagt	1920
gtgtgtttaa	cataatttat	aattatttct	gtcagtacag	cgtatatgga	aaattcaagt	1980
tgttttttaac	atattcaagt	atgttcagta	taaaataagt	taatcccatt	tcataatgt	2040
aatcatattt	ttgttattt	ccatatttta	tttgaagtga	taaaatttta	taactcaa	2100
ttgaatgtca	tagtacattt	tgtgtcaacc	atggcaagca	aacatttaca	tttgggggg	2160
acaataaaatt	tcttttaaaa	tatactttct	attttctgt	actgacat	gcaataaaatt	2220
ggtacattaa	aaatttgatt	aatgtcttca	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaggg	2280
cggccgc						2287

<210> 33
<211> 688
<212> DNA
<213> *Homo sapiens*

<210> 34
<211> 995
<212> DNA
<213> *Homo sapiens*

<220>
<221> SITE
<222> (960)
<223> n equals a.t.q. or c

```

<400> 34
ggaaagcaat gtggctcctg tgtgtggcgt tggcggtctt ggcattttttt ttccctctggg      60
tttgggactc ctcagaacga atgaagagtc gggagcaggg aggacggctg ggagccgaaa      120
gccggaccct gctggtcata gcgcacccctg wckatgaagc catgtttttt gctcccacag      180
tgctraqqctt qccccqcccta aggactqgg tgtaacctqct ttqcttctct qcagttttcv      240

```

gtagggagct aagtgaatac accgaagtct tacctctgaa cccctcacag cctaggaca	300
ggagcgccg gcttacctgg tgggttgggg gacgtcgca gtcgcgtac tacgccagca	360
ggattgagga gcagagaaaac agttgcagtt gttgttattc agtacctgca ttccgttgg	420
gaactccacc tgtacttgtt attctgtgga actttttt atttgttagaa ggagcaagaa	480
tattgacacctt actatatagc acacgaaaca atctatgctg tatygtgcct gctcaatcct	540
taaagttAAC ttctaattgt agtaaaaagac cttectgctg cctttaaaat gcagcttgg	600
ctagtaacat gcatgtgtca aattgaagaa ttagacatag atgactagat agaaagtaat	660
ttttaggtt attttaggt tcaactccac ccagcttca gtgaagggAAC ctttcaaata	720
atagattttt gcttaccata gagaaaaagat caaatgacaa agcaaatttatt gaccattaag	780
ctggaatatgt gtgataatgt aacagttgt aataatgaagt aattgaattt tacacatACA	840
atgggtgaat tttatggcat gtcaaagtat acctcaataa agctattttt ttaaattGCC	900
aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaan	960
aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaa	995

<210> 35
 <211> 765
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> SITE
 <222> (671)
 <223> n equals a,t,g, or c

 <220>
 <221> SITE
 <222> (680)
 <223> n equals a,t,g, or c

 <220>
 <221> SITE
 <222> (683)
 <223> n equals a,t,g, or c

 <220>
 <221> SITE
 <222> (699)
 <223> n equals a,t,g, or c

 <220>
 <221> SITE
 <222> (740)
 <223> n equals a,t,g, or c

 <220>
 <221> SITE
 <222> (765)
 <223> n equals a,t,g, or c

<400> 35	
gttttttttt tttttttttt ttagaaatac tagaatttct tcctttctcc atgtttacct	60
gacatataat attcttcaga aaatggagca cattagcggt tataattcca tactccagtG	120
tttctggcat aatttccata gcttccctca tgctggtagc ttcaagagatt gctctttgg	180
tatttctgag gaaaaacacc acgtttgggt ccaggaactc ctggggaaaga ggggtacaga	240
gcatgtggag atgcattttt tccatgtatgt gcttcgcagt tcttttggaa gggagttttt	300
ctgaaatctc ttgtccatt tcttcattct ctctgttttag aggttggct agagattcgg	360
ttctcagtga cacacgctta gctcgactt tatccacggc ctccacttt tgagaataag	420
tctcttttcc ctcttctccc tcttcagaca ggacaggatct catcaatc tccacctcca	480
cctcctccgg caccatagtG cggttagatga agagcgccga gggccccctcc tcctcgctcg	540
cctgggttag gaagtgcAGG atgaggtctt cggccctggcc gtcgtcgcc ttgagcaggt	600
cctcgaaaaAG ctgggggtcg gtgatGCCGA aagccgcata cacgcgcggc acgaaggggg	660
ggggccccgtA nccaaattcgn cchnataagtG agtcgtatna caaatttactt gggccgtcg	720
ttacaacgtc gtgactgggn aaaacctggc ggttaaccca aactn	765

<210> 36
<211> 742
<212> DNA
<213> Homo sapiens

<400> 36

gaaacccatcg gcaagttcct ggccatcccc	aggcctcatt ttcccattcag	gaagaaggaa	60
ataaggcacac ctgtctcccc	agtctccctg cctggctcac	tggcaggca aatgtgtggg	120
aggtgattgc aaaggatcca	gattgccaa atatacgctt	gcaattaaat ccaaaggcct	180
gtcccacagt tgcttgactt	ttttaaagg ccaatttatac	ctcccttctt aaagactaaa	240
caattttcc acttcattt	ttaaaataaa gctcttaac ttgcacgctt	tttagacaaaa	300
gcaacagtagc tctgaaatga	ccccatcaact ttcagtgag	aagctgtgct ccctgttctt	360
tgtgcttctt gggattgcaa	gtgcggcctt tgcgtgtgt	ctgtggcctt ggagcagcca	420
cacggaaagg ctcacagctg	aaccaggcag tagcatcacc	tgcccttccc caccctggtt	480
ttttttccct tcttaattt	gggttcttctt atagctctc	aaatacaatg tactcggtc	540
cctcagagcc actgcacaga	ctgtccccctc tccctaaaga	gaccccgctc ttatctccc	600
cctccctac ccmacccagt	cagcagctg aactctggtt	catctctgc atccgggtga	660
aaggtcacct tccttgccag	tcaaaaaaaaaa cctccact	gcagtcatca gagatgagca	720
gcctctaaaaa cctgcccctcg	ag		742

<210> 37
<211> 2750
<212> DNA
<213> Homo sapiens

<220>
<221> SITE
<222> (1879)
<223> n equals a,t,g, or c

<400> 37

ggacgtcgtc gcctcagcgc cggctcccg	ccggggccgcg gccgcccacc	gttgagccgc	60
cggtgagcc gcctgctgaa gtccctccct	caggaacccc tcgcaccacc	tccacctccg	120
aaccgccttc gccccggcga cccatgtggg	ggttcaggct cctgcggctcg	ccgcccgttgc	180
tgctcctgct gccgcagctc ggaatcggaa	acgcctcgta	ctgctctcag gccagaacca	240
tgaaccgggg cgccagcggc ggccgcgcgt	gtccctctc	ggccgagggtg cgccgcgtc	300
agtgcctgca gctttccacc gtgcctggag	ccgakccgca	gcccagsaac gaattgtcc	360
tgttggccgc gcccggggag ggactggagc	ggcaggaccc	ccccggggac ccagcgaagg	420
aggagccgca gccgcccggcc	cagcatcagc	ccctggggat gtgcagaatt	480
accatgaaat tatgacttgt catcctgaga	ttctctat	attatcaatg gaaaaactgg agtctagaaa	540
atgttgcata catttttagcc cacgggttcc	ccaatagtt	tattttgggt ataaaatgtt	600
cccgaaatgca ttgcacwaa ttca	ttca	atgacaat	660
gtgccccaga acacaatact gactttggag	ttttttaagca	ttttaatgtt ttatttagtta	720
atgcttttaa tttaagttag aatagtttat	caaagaaaag	tttgaatgtt tggataaagg	780
actccatagc atctaactgt agatccagtc	cttctcatac	tacgaatgtt tgccaggag	840
aaaaagttag gacctgtgaa aaatctgtat	agtctccat	gagttttat ccaccatcac	900
taaatgaygc atctttact ttgattggat	tcagtaaagg	ttgtgttgkt ttgaatcagt	960
tgcttttga attgaaagaa gccaagaaag	acaagaacat	agatgtttt atcaaaagca	1020
taagaacaat gtattggctg gatgggtgtc	attctggagg	aagcaatact tgggttactt	1080
atccagaagt ctgaaagaa ttgcacaaa	caggaattat	cgttccacact catgtAACAC	1140
cttaccaagt acgtgatcca atgagatctt	ggattggaaa	ggagcmcaag aaatttggtc	1200
agataacttgg gatatgggt atgcaggtga	ctagccaaat	tcattttaca aaggaagctc	1260
cttccataga gaatcaacttcc aggggtcatg	aagtattttg	agattacagg tatattaatg	1320
aacttggtca gtggaagaac ataagcactt	ttgagtgtt	taaattcaga taatggatg	1380
taattcatag ctgcattgtc agttttgggg	tatggggga	agcacacatt cctaaaatgt	1440
gagtgtatag tcaaatagta tttttgtt	gtgaatgtga	gcagttatta atttggattg	1500
agttagaatt agttaatttg aaatctaaca	aggtggttt	taataatgtt gaggagat	1560
aagaccctta aatgaaagt tacaacattt	ttcttataaa	agtaactaa aattgttact	1620
gttggaaata actgattttc tgagtaatgt	tttaaactaa	tttggtgaca ttttaacagt	1680
aatttagctat ttgagtggaa aatattttca	tttctcttca	aacaaaagca aaggtacgt	1740
gctgtttct atcatttgg aataactgca	ccctgcctt	tgtgttttg taaactccctt	1800
gactcattct ttcatgtgtc accaagtact	tttctctra	gagtcamcat atatttggatt	1860
ccaaatgtcc acaagtgtnc aatagtgtaa	aggtggttt	taaaamcata gccaggtgt	1920
gtggcacgtg cctttagttc cagctactca	ggaggcttaag	gcagratttt tgcttggagcc	1980
caggctgtgt gttcaccat aattgtgttt	gtgactagct	actgcactcc aacctggca	2040

acatagtgg acttcatctc taaaacaaaa caaaacaaaa ttacacttaa gcactattgt	2100
ttaatttttta attgtcagtt tatkattttt ttgggtaaga cattctgggg tttcttgaat	2160
cttgtccaaa aaccagggtgt tttggaaaat tgctttaat tgacatatt tatgtatatt	2220
ggataaaaaat gtactacaga gcaaattca aatttttcat tatatcagtc ttttgaaag	2280
gatcaacttg gataaaataa atatataatg ctctattgt tagagctcta taaaagga	2340
aacagattcc atagatctaa gtcaatgttt ctccagaagc atgattttgt ctgc当地	2400
aaaatagctc tcttggcca aaatgaaaaa ttacattgtc ataagaaaaag ttacaaggga	2460
aagtttgaag acacaaatga tttaattttg gctaaaaaac tgaatttgc taacactgct	2520
acataatttg ggtgaagttt cttctgccc gttttctt acctagataa atacactttg	2580
agaaatccag atctaataaa tgtcaaccaa cattgacatt gtaattgggt gattacaata	2640
aaaggtgagc agtttgggt ttattaataa ttagctttg caggtaatga aatagcaggg	2700
aagtaacatg ctgttttagg actaaaaaaaaaaaaaaa aaaaaactcga	2750

<210> 38
<211> 1538
<212> DNA
<213> Homo sapiens

<400> 38	
cgcagcttga tggcgtcggg ctggagagcc gcagtcggg ctgcagcacc tgggagaagg	60
cagaccgtgt gaggggggcgt gtggcccgac gtgcgtggc ctcsgggagt gggaaatggg	120
ggcaggagcc ttccttacac ttccatga gtttccsat cgactccagc atcatgatta	180
cctcccgat actatttttt ggatttgggt ggctttctt catgcgcca ttgtttaaag	240
actatgagat acgtcagttt gtttacagg tgcatttc cgtgacggtt gcattttctt	300
gcaccatgtt tgagctcatc atctttgaaa tctttagggtt attgaatagc agctcccggt	360
attttcaactg gaaaatgaac ctgtgtgtaa ttctgtctat cctgggtttc atgggtgcctt	420
tttacattgg ctattttattt gtgagcaata tccgactact gcataaaca cgaatgtttt	480
tttcctgtct ctatggctg acctttatgtt atttcttctg gaaacttagga gatcccttcc	540
ccattctcag cccaaaaacat gggatctt ccatagaaca gctcatcagc cgggttgggt	600
tgattggagt gactctcatg gctttctt ctggatttgg tgctgtcaac tgccatataca	660
cttacatgtc ttacttcctc aggaatgtga ctgacacggc tattctagcc ctggAACGGC	720
gactgctgca aaccatggat atgatcataa gaaaaagaa aaggatggca atggcacggc	780
gaacaatgtt ccagaagggg gaagtgcata acaaaccatc aggtttctgg ggaatgataa	840
aaagtgttac cacttcagca tcaggaatgtg aaaatcttac tcttatttca caggaagtgg	900
atgcttttga agaattaagc aggacgtttt ttctggaaac agctgatcta tatgctacca	960
aggagagaat agaataactcc aaaaccttca agggaaaata ttttaattttt ctgggttact	1020
ttttctctat ttactgtgtt tggaaaattt tcattggctac catcaatatt gtttttgc	1080
gagttggaa aacggatcgt gtcacaagag gcattggat cactgtaat tatctggaa	1140
tccaaatttga tggtaagttt tggcccaac acattttctt cattttgtt ggaataatca	1200
tcgtcacatc catcagagga ttgtgtatca ctcttmccma ggtgatacta tgaccatgag	1260
tagcatcagc cagaacatgaa gagggagaac taactcaaga caataactcag cagagagcat	1320
cccggtggaa tatggggctg gtgttagggc ggagaggagc caagaaacta aaggtaaaaa	1380
atacactgga actctggggc aagasatgtc tatggtagct gagccaaaca cgtaggattt	1440
ccgttttaag gttcacatgg aaaaggttt agcttgcct tgagattgac tcattaaat	1500
cagagactgt aaaaaaaaaaaaaaaa aaaaaaaaaaaa gggcgccc	1538

<210> 39
<211> 5065
<212> DNA
<213> Homo sapiens

<220>
<221> SITE
<222> (2531)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (5063)
<223> n equals a,t,g, or c

<400> 39	
ttttttttttttt tttttttttc tatgggttat tttttattttt ttttawttttt atttwttttattt	60
atacttaag ttttagggta catgtgcaca atgtgcaggt tagttacata tgatacatg	120

tgccatgctg	gtgygctgca	cccaytaact	cgtcatytag	cattaggat	atctccyaat	180
gctatccctc	ccccctcccc	ccacccca	acagccccca	gwgtgtgatg	ttcccccttc	240
tgtgtccatg	tgwtctcatt	gttcaattcc	cacctatgag	tgagaayatg	cgggtttgg	300
tttttgtyc	ttgcgatagt	ttrctgagaa	tgatgrttc	caryttcatc	catgtcccta	360
caaaggacat	gaactcatca	tttttatgg	ctgcatagta	ttccatggtg	tatatgtgcc	420
acattttctt	aatccagct	atcattgtt	gacattggg	ttggttccaa	gtcttgctta	480
ttgtgaatar	tgccgcaata	aacatacgt	tgcattgtc	ttttagcag	catgatttat	540
artccttgg	gtatatacc	agtaatggg	tggctgggtc	aataggattt	tctagttcta	600
gatccctgag	gaatcgccac	actgacttcc	acaatgggt	aactagttt	cagccccacc	660
aacagtgtaa	aagtgttcc	atttctccac	atcctctcca	gcacctgtt	tttcttgact	720
tttaatgtat	ygcattcta	actgggtgt	gatggatct	cattgtgggt	ttgatggca	780
tttctctgat	ggccagtgt	gatgagcatt	tttcatgt	tyttttggct	gcataaatgt	840
cttctttga	gaagtgtct	ttcatatcct	tygcccactt	tttgatgggg	ttgtttgttt	900
tttcttgta	aatttgggt	agttcwttgt	agattctgga	tattagccct	ttgtcagatg	960
agtagrttgc	aaaaattttc	tccatttgc	tagttgcct	gttcaactct	atgttagttt	1020
cttttgcgt	gcagaagctc	tttagtttaa	ttagatccca	tttgcatttgc	ttggcttttg	1080
ttgcccattgc	ttttgggtt	tttagwcatga	agtccttgc	catgcctatg	tcctgaatgg	1140
tattgcctag	gttttcttct	agggtttta	tgggtttagg	tctaacattt	aagtctttaa	1200
tccatcttga	attaattttt	gtataagggt	taaggaaagg	atccagttt	agctttctac	1260
atatggctag	ccagttttcc	cagcaccatt	tattaaatag	gaaatccctt	ccccattkct	1320
tgttttstc	agggttgc	aagatcagat	rgttgttagat	rtgygyr	atttctgagg	1380
gctctgttct	gttccatttgc	tctatatctc	tgttttggta	ccagttaccat	gctgttttgg	1440
ttactgttagc	cttgcgttat	agtttgaagt	caggtagyrt	gatgccttca	gctttgttct	1500
tttggcttag	gattgacttgc	gcratgcggg	ctcttttttgc	gttccatatg	aactttaaag	1560
tagtttttc	caattctgt	aagaaagtca	ttggtagctt	gatggggatg	gcattgaatc	1620
tataaattac	cttgggcagt	atggccattt	tcacgatatt	gattcttct	accatgagc	1680
atggaatgtt	cttccatttgc	tttgtatcct	cttttatttc	mttggcagt	ggtttgttagt	1740
tctcatttgc	gagggtccttgc	acatccatttgc	taagttggat	tccttaggtat	tttattctct	1800
ttgaagcaat	tgtgaatggg	agttcactca	tgattttggct	ctctgtttgt	ctgttrttgg	1860
tgtataagaa	tgcttgcgtat	ttttgcacat	tgattttgt	tcctgagact	ttgtcgttagt	1920
tgcttgcgtat	cttaaggaga	ttttgggtct	agacratggg	gttttctaga	tatacaatca	1980
tgtcrtctgc	aaacaggggac	aatttgcattt	cctcttttcc	taatttgcata	ccctttattt	2040
ccttcttgc	cctratttgc	ctggccagaa	cttccaaacac	tatgttgcatt	aggagtgg	2100
agagagggca	tccctgttgc	gtgccagttt	tcaaaggaa	tgcttccagt	ttttgcccatt	2160
tcagtagat	attggctgt	ggtttgtcat	agatagctt	tattattttgc	agatacgtcc	2220
catcaatacc	taatttatttgc	agagtttttgc	gcatgaagg	ttgttgcattt	ttgtcaaaagg	2280
ccttttctgc	atctatttgc	ataatcatgt	ggttttgc	tttgcatttgc	tttattatgt	2340
ggattacatt	tattgatttgc	cgtatrttgc	accagcttgc	catcccagg	atgaagccca	2400
cttgatcatg	gtggataagc	tttttgcgtat	gctgctggat	tcgggttgc	agtattttat	2460
tgaggatttt	tgcattcaat	ttcatcaagg	atatttgc	aaaatttcttgc	ttttkgtttgc	2520
tgtctctgc	nggctttgt	atcaggat	tgctggcctc	ataaaatgag	ttagggagga	2580
ttccctcttgc	ttcttatttgc	tggatagtt	tcagaaggaa	ttgttaccag	tcctcatttgc	2640
acctcttgc	gaatttgcgt	gtgaatccat	ctggccttgc	actytttttgc	tttggtaagc	2700
tattrattat	tgccwcaatt	tcagakccttgc	ttatttgc	attcagagat	tcaacttcttgc	2760
cctgggttag	tcttggggagr	gtgtatgttgc	cgaggaattt	atccatttcttgc	tctagattttgc	2820
ctagtttatttgc	tgcrttagagg	tgtttgcgtat	attctctgtat	ggttagtttgc	atttctgtgg	2880
gatcggttgt	gatatcccttgc	ttatcatatttgc	ttatttgc	tatttgcatttgc	ttctctcttgc	2940
tyttctttat	tagtcttgc	agcggcttat	caattttgttgc	gatcytttca	aaaaaccaggc	3000
tcctggatttgc	attratttttgc	tgaagggtttgc	tttgcatttgc	tatttgcatttgc	agttctgttgc	3060
tgattttat	tatttcttgc	cttctgttgc	cttttgcatttgc	tttttgcatttgc	tgcttttcttgc	3120
gttcttttgc	ttgttgcgtt	agggtgttgc	ttttggatcttgc	ttcctgttgc	ctcttgcgttgc	3180
cattttagtgc	tataaatttgc	cctctacaca	ctgcttgc	tgygtcccag	agattctgttgc	3240
atgttgcgttgc	tttgcatttgc	ttgttgcatttgc	agaacatcttgc	tatttcttgc	ttcatttcttgc	3300
tatgtacccca	gtgttgcatttgc	aggagcagg	tgttcatttgc	ccatgttgcatttgc	gagcggttttgc	3360
gagtggatwtt	cttaatccgc	agttcttagtgc	tgatttgcatttgc	gtgggttgc	agayagtttgc	3420
ttataaatttgc	ttgttgcatttgc	catttgcatttgc	ggagagcttgc	acttccaaat	atgttgcatttgc	3480
ttttggatata	gtgttgcatttgc	gggtgttgc	gggtgttgc	aaaatgttgc	tttgggttgc	3540
gagttctgttgc	gatgttgcatttgc	aggccgcatttgc	ggtgcatttgc	tgagttcaat	tcctgggttgc	3600
ccttgcatttgc	tttgcatttgc	gttgcatttgc	caatgttgc	cagtgggttgc	ttaaagtcttgc	3660
ccatttatttgc	tgttgcatttgc	tcttaatgttgc	tttgcatttgc	actcaggact	tgctttatgc	3720
atctgggttgc	tcctgttgc	gggtgcatttgc	tatttgcatttgc	atgttgcatttgc	tcttgcatttgc	3780
ttgatcccttgc	taccattat	taatggcatttgc	tttgcatttgc	tttgcatttgc	tttgcatttgc	3840
agtctgttttgc	atcagagact	aggatttgc	cccctgcatttgc	tttttgcatttgc	ccatttgcatttgc	3900
ggttagatcttgc	cctccatccy	tttgcatttgc	gcctatgttgc	gtctctgcac	gtgagatggg	3960
tttccttgcatttgc	acagcacact	gatgggttgc	gacttgcatttgc	ccaatttgc	agtctgttgc	4020
tttgcatttgc	agcatttgcatttgc	ccatttgcatttgc	ttaaagttaat	tatttgcatttgc	tgtgaatttgc	4080

atcctgtcat tatgatgtta gctggattt ttgctcgta gttgatgcag tttcttccta	4140
gyctcgatgg tctttacawt ttggcatgwt ttgcagyyy ctggtaccgg ttgttcctt	4200
ccatgttag ygcttcctt aggagctct tttagggcagg cctgggtgtg aaaaaatctc	4260
tcagcatttg cttgtctgta aagkattta ttcttcctc acttatgaag cttagtttg	4320
ctggatata aattctgggt tgaaaattct ttctttaag aatgttgaat attggcccc	4380
actctttct ggctttagr gtttctgcc agagatccgc tgtagtctg atgggcttc	4440
ctttgwgggt aacccgaccc ttctctctgg ctgccttaa catttttcc ttcatttcaa	4500
ctttggtgaa tctgacaattt atgtgtctt gagttgctct tctcgaggag tatcttg	4560
gcgttctctg tatttcctga atctgaaygt tggcctgcct tgctagattg gggaaagtct	4620
cctggataat atcctgcaga gtgtttcca acttggttcc attctcccr tcactttcag	4680
gtacaccaat cagacgtaga tttggcttt tcacatagtc ccataattct tggaggctt	4740
gytcatttct ttttattttt ttttctctaa acttcccttc tcgcttcatt tcattcattt	4800
catctccat ygctgatacc ctttcttcca gttgatcgca tcggctcctg aggcttctgc	4860
attcttcacg tagttctcga gggggggccc ggtaccaat tcgcctata gtgagtcgt	4920
ttacaattca ctggccgtcg ttttacaacg tcgtgactgg gaaaaccctg gcgttaccca	4980
acttaatcgc cttgcagcac atccccctt cgcagctgg cgtaatagcg aagaggcccc	5040
caccgatcgc cttcccaaa aanc	5065

<210> 40
<211> 4709
<212> DNA
<213> Homo sapiens

<220>
<221> SITE
<222> (14)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (18)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (30)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (34)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (177)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (2213)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (3846)
<223> n equals a,t,g, or c

<400> 40
ataccctttttcc tccntacngg aacgaccctt ggangatttc ctcttttct atcgattgga
atatttttag aaggaatgtt accagttctt cttgtacct ctggtagaat tcagctgtga
atccatctgg tcctggactc ttttgggtt gtaagctatt gattattgcc acaatwncc
agaacgccac aaagatactc ctgcagaaga gcaactccaa gacacataat tgtcagattc
acccaaagttg aaatgaagga aaaaatgtta agggcagcca gagagaaagg tcgggttacc
cwcaaaggga agccatcag actaacagcg gatctctcg cagaaacyt acaagccaga

60
120
180
240
300
360

agagagtggg ggccaatatt caacattctt aaagaaaaga atttcaacc cagaattca	420
tatccagcca aactaagctt cataagtcaa ggagaaaataa aatmcttac agacaagcaa	480
atgctgagag atttgtcac' caccaggcct gcccctaaaag agctcctgaa ggaagcrcta	540
aacatggaaa ggaacaaccg gtaccagccr ctgcaaaawc atgccaaawt gtaaagacca	600
tcgagrctag gaagaaaactg catcaactaa cgagcaaaat aaccagctaa catcataatg	660
acaggatcaa attcacacat aacaatatta actttaatg taaatggact aaatgctcca	720
attaaaagac acagactggc aaattggata aagagtcaag acccatcagt gtgctgtatt	780
cagggaaaccc atctcacgtg cagagacaca cataggctca aaataaargg atggaggaag	840
atcttaccaag caaatggaaa acaaaaaaag gcaggggttg caatcctagt ctctgataaa	900
acagacttta accaacaaa gatcaaaaaga gacaagaag gccattacat aatggtaaag	960
ggatcaattc aacaagaaga gctaactatc ctaaatatat atgcacccaa tacaggagca	1020
cccagattca taaagcaagt cctgagtgac ctacaaaagag acttagactc ccacacawta	1080
ataatgggag actttaacac cccactgtca acattagaca gatcaacgag acagaaagty	1140
aacaaggata cccaggaatt gaactcagct ctgcaccaag cggaccta atgatctac	1200
agaactctcc accccaaatc aacagaat acatttttt cagcacccac acctattcca	1260
aaattgacca catasttggc agtaaagctc tcctcagcaa atgtaaaaga acagaaatta	1320
taacaaactr tctctcagac cacagtgcac tcaaactaga actcaggatt aagaawctca	1380
ctcaaaaaccc ctcaactaca tgaaaactga acaacctgct cctgaatgac tactgggtac	1440
ataacgaaat gaagggcgaa ataaaagatg tcttggaaac caacgagaac aaagacacaa	1500
cataccagaa tctctgggac rcattcaaaag cagtgtgtg aggaaattt atagcactaa	1560
atgcccacaa gagaagacgag gaaagatcca aaattgacac cctaacatca caattaaag	1620
aactagaaaa gcaagagcaa acacattcaa aagctagcag aaggcaagaa ataactaara	1680
tcagcaga actgaaggaa atagagacac aaaaaaccctc tcaaaaaaty aatgaatcca	1740
ggagctgggt ttggaaarg atcaacaaaa ttgatagacc gctagcaaga ctaataaaaga	1800
araaaagaga gaagaatcaa atagacgcaaa taaaatga taaaggggat atcaccacccg	1860
atcccacaga aatacaaact accatcagag aatactayaa acacctctay gcaataaaac	1920
tagaaaaatct agaagaaatg gataattcc tcgacacata cacyctccca agactaaacc	1980
aggaagaagt tgaatctctg aatagaccaa taacaggctc taaaatttgw gcaataatya	2040
atagcttacc aaccaaaaaar agtccaggac cagatggatt cacagccaa ttctaccaga	2100
ggtacaaggaa ggarctggta ccattccttc tgaaaactatt ccaatcaata gaaaaagagg	2160
gaatcctccc taactcattt tatgaggcca gcatcatcct gataccaaag cncngcagag	2220
acacaacmaa aaaagagaat ttttagaccaa tattccctgat gaacatttgat gcaaaaatcc	2280
tcaataaaat actggcaaaac cgaatccagc agcacaatcaa aaagcttac caccatgatc	2340
aagtgggctt catccctggg atgcaaggct gttcaayat acgcaaatca ataaatgtaa	2400
tccagcatat aaacagaacc aaagacaaaa accacatgat tatctcaata gatcagaaaa	2460
aggccttga caaaaattcaa caacccttca tgctaaaaac tctcaataaa ttaggtattg	2520
atggacrtta tytcaaaaata ataagagctt tctatgacaa acccacagcc aatatcatac	2580
tgaatgggca aaaactggaa gcattccctt tgaaaactgg cacaagacag ggatgccctc	2640
tctcaccact cctattcaac atagtgtgg aagttctggc cagggcaaty aggcaggaga	2700
aggaaataaa gggatttcaa ttagaaaaag aggaagtcaa attgtccctg tttgcagayg	2760
acatgattgt atatctagaa aaccccatyg tctcagccca aaatctcctt aagctgataa	2820
gcaacttcag caaagtctca ggataaaaaa tcaatgtca aaaatcacaa gcattcttat	2880
acaccaataa cagacaaaca gagagccaaa tcatgagtga actcccattc acaattgctt	2940
caaagagaat aaaataccta ggaatccaaac ttacaaggga tgtgaaggac ctcttcaagg	3000
agaactacaa accactgctc aakgaataaa aagaggatac aaacaaatgg aagaacattc	3060
catgctcatg ggttaggaaga atcaatatcg tgaaaatggc catactgccc aagtaat	3120
atagattcaa tgccatcccc atcaagctac caatgactt cttcacagaa ttggaaaaaaa	3180
ctactttaaa gttcatatgg aaccaaaaaa gagcccgcat ygc当地 atcctaagcc	3240
aaaagaacaa agctggaggc atcacrctac ctgacttcaa actatactac aagctacag	3300
taaccaaaac agcatggta tggtaaaaaa acagagatat agaycaatgg aacagaacag	3360
agccctcaga aataayrccr cayatctaca acyatctgat ctttgacaaa cctgasaaaa	3420
acaagmaatg gggaaaggat tccctattta ataaatggtg ctggaaaaac tggctagcca	3480
tatgttagaaa gctgaaactg gatcccttcc ttacacctta tacaattt aattcaagat	3540
ggattaaaga cttaaatgtt agacctaaaa ccataaaaaac ccttagaagaa aacctaggca	3600
ataccattca ggacataaggc atgggcaagg acttcatgwc taaaacacca aaagcaatgg	3660
caacaaaagc caaaaatttgc aaatgggatc taattaaact aaagagctt cgcacagcaa	3720
aagaaactac catcagatg aacaggcaac ctacaraatg ggagaaaaatt tttgcaayct	3780
actcatctga caaaggctt atatccagaa tctacaawga actcaaacaa attacaaga	3840
aaaaanacaa caacccatc aaaaagtggg craagggat gaacagacac ttctcaaaaag	3900
aagacattta tgcagccaaa aracacatga aaaaatgctc atcatcaact gccatcagag	3960
aaatgcaat caaaaccaca atgagatacc atctcacacc agttagaact gcratcatta	4020
aaaagtctagg aaacaacagg tgcggggag gatgtggaga aataggaaca cttttacact	4080
gttggggca ctgtaaaacta gttcaaccat tggaaagtc agtggggcga ttctcaggg	4140
atcttagaact agaaatacca tttgacccag ccatcccatt actgggtata tacccaaagg	4200
aytataaaatc atgctgtat aaagacacat gcacacgtat gtttattgcg gcaytattca	4260
caatagcaaa gacttggAAC caacccaaat gtccaaacaat gatagactgg attaagaaaa	4320

tgtggcacat atacaccatg gaatactatg cagccataaaa aaatgatgag ttcatgtcct	4380
ttttagggac atggatgaar ytggaaayca tcatttcag yaaactatcg caagracaaa	4440
aaaccaaaca ccgcatrttc tcactcatag gtgggaattt aacaatgaga wcacatggac	4500
acaggaaggg gaacatcaca cwcyygggmc tggtgtgggg tggggggagg ggggagggat	4560
agcattagga gatataccta atgytaaatg aygagttat gggtcagca caccaacatg	4620
gcacatgtat acatatgtaa caaacctgca crtgtgcac atgtacccta raacttaaag	4680
tataataaaa aaaaaaagaa aaaagaatc	4709

<210> 41
<211> 2248
<212> DNA
<213> Homo sapiens

<220>
<221> SITE
<222> (2234)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (2248)
<223> n equals a,t,g, or c

<400> 41

gggcagttag cgcaacgcaa ttaatgttag tttagctact cattaggcac cccaggctt	60
acactttatg cttccggctc gtatgttg tggaaattgtg agcggataac aatttcacac	120
agggaaacagc tatgaccatg attacgccaa gctcggaaatt aaccctcaact aaagggaaca	180
aaagctggag ctccaccgcg gtggcgccg ctctagaact agtggatccc ccgggctgca	240
ggaattcggc acgagcggat tctttccg cccgcctcat ggcggtgat gcctgactgg	300
aagcccgagt gggatgcggc tgacgcggaa gcggctctgc tcgtttctta tcgcccgtta	360
ctgccttattc tccctctacg ctgcctacca cgtctcttc gggcgccccc gccaggcgcc	420
ggccgggtcc ccgcggggcc tcaggaaggg ggcggcccccc gcgcgggaga gacgcggccg	480
agaacagtcc actttggaaa gtgaaagaatg gaatcttgg gaaggagatg aaaaaaatga	540
gcaacaacac agattaaaaa ctgccttca aatatttagat aaatccacga aggaaaaaac	600
agatctcagt gtacaaatct gggcaaaagc tgccattgtc caagctggca gcgttctgc	660
tcataaaaaca ttctgaagaa ctttgtggc cctctgtgt tgcacagga ttcaactccat	720
tagatggaa gtcctctgc agatctttc tgtagtatacc cmtctccatt tctggcttct	780
gctgagatgg ctgaggagac ctgcattgtat ctctggagc atattttga aggcttactt	840
gatcccagcg atgtgactgc tcaatggaga gaagggaaagt caatcgtagg aagaacacag	900
tacagcttca tcactggtcc agctgtataa ccagggtaact tctccgtgt tgcacatataat	960
gtggtaactca ttttaaatgg aagagaaaaaa gcaaaagatct tttatgccac ccagtggta	1020
ctttatgcac aaaatttagt gcaatttcaa aaactccagc atcttgcgtg tggggcttc	1080
ggaaatgaac attgtgataa tgagtggata aacccattcc tcaaaagaaa tggaggcttc	1140
gtggagctgc ttttctataat atatgacagc ccctggatta atgacgtgg tggggcttc	1200
tggccctttag gagtagcaac atacaggaat tttctgtgg tggaggcaag ttggtaatg	1260
ctgcattgtg agaggccata tttatgtaat ttcttaggaa cgatttataa aaattcatcc	1320
agacaggcac taatgaacat tttaaaaaaa gatgggaacg ataagcttgc ttgggtttca	1380
gcaagagaac actggcagcc tcaggaaaca aatgaaagtc ttaagaatta ccaagatgcc	1440
ttgcttcaga gtgatctcac attgtgccc gtcggagtaa acacagaatg ctatcgaatc	1500
tatgaggctt gtccttatgg ctccatttcgtt gtgggtggaa acgtgtatgac agctggcaac	1560
tgtggaaata catctgtca ccacgggtct cctctgcagt tactcaagtc catgggtgt	1620
ccctttatct ttatcaagaa ctggaaaggaa ctccctgtgt ttttagaaaa agagaaaaact	1680
ataattttac aagaaaaaat tgaaagaaga aaaatgttac ttcaagtgttca tcagcacttc	1740
aagacagagc taaaatgaa atttactaat atttttagaaa gtcattttt aatgaataat	1800
aaaagttat tatcttttg agctaacatg tgattttaa aatcattttt actactgggt	1860
gtataaatgt gtttgtgtgt gtatgtattt atagatgttc tttaaggta ccttgaaaac	1920
tctacattat gtatgccaca taatgacatt tcagtcagtg tgcactaca tatatgatag	1980
tggtcccata agattataat ggagctgaaa aatttctatc gcctagtgtat gtcatagcct	2040
agtgtatgaca tatgtattgc aatacatcac tcacgtgtt gttgtatac ttggtaaac	2100
aaatctattt cactgccagt caagtaaaag tacagcaatt atgtcctgtt cataatattt	2160
aataatgaca ataaatgact atgttactgg taaaaaaaaaaa aaaaaaaaaa actcgagggg	2220
ggcccggtccc aatnccctat agtrgcn	2248

<210> 42

<211> 1037
 <212> DNA
 <213> Homo sapiens

<220>
 <221> SITE
 <222> (12)
 <223> n equals a,t,g, or c

<400> 42

tcgaccacg	cncggata	ggcacaggac	aggagtaggc	accccgccca	ctgtcgctta	60
accttcagc	ttctccaggc	ccccaatccc	gcttgcaccc	agcttggaa	cgagacactg	120
ctgagctgga	agacttcgca	ggcacaggc	acagccccc	tgctgctggc	ggcgctgctg	180
gggctgcctg	gcaacggcct	cgttgtgtgg	agcttggcgg	gctggcggcc	tgcacggggg	240
cgaccgctgg	cggccacgct	tgtgtgcac	ctggcgctgg	ccgacggcgc	ggtgctgctg	300
ctcacgcgc	tctttgtggc	cttcctgacc	cgccaaggct	ggccgctggg	ccaggcgggc	360
tgcaaggcgg	tgtactacgt	gtgcgcgctc	agoatgtacg	ccagcgtgct	gtcaccggc	420
ctgatcagcc	tgcagcgctg	cctcgcggc	acccggccct	tcctggcgcc	tgcgtgcgca	480
gcccggccct	ggcccgccgc	ctgtgtggc	cggtctggct	ggccggccctg	ttgtcgccg	540
tcccgccgc	cgtctaccgc	cacctgtgg	gggacccgc	atgcagctg	tgcacccgt	600
cgccgttcca	cgccggccgc	cacccgtgg	tggagactct	gaccgcttcc	gtgttccctt	660
tcgggctgtat	gtctggctgc	tacagcgtga	cgctggcaca	gtcgccgggc	gcccgctggg	720
gtctccggcgc	gcaacggggcgc	cgggtggggc	ggctggtgag	cgccatcg	ccttcttcgg	780
cttgcgtctgg	gccccctacc	acgcagtcaa	ccttctgcag	ggggtcgcag	cgctggctcc	840
accggaaagg	gccttggcga	agctggggcgg	agccggccag	ggggcgccag	cgggaaactac	900
ggccttggcc	ttcttcagtt	ctagcgtcaa	cccggtgctc	tacgcttca	ccgctggaga	960
tctgcgtccc	cgggcaggc	cccggttcc	cacgcggctc	ttcgaaggct	ctggggaggc	1020
ccgaggggggc	ggccgct					1037

<210> 43
 <211> 2102
 <212> DNA
 <213> Homo sapiens

<400> 43

tccagaccat	ctacaactgc	acggcctgga	acagcttcgg	ctccgacact	gagatcatcc	60
ggctcaagga	gcaagggtcg	gaaatgaagt	cgggagccgg	gctggAACAG	agtctgtgcc	120
gatggcgtca	tcatgggggt	ggccgttagag	ctgggtgtggc	cttcctcgcc	tttatggcaa	180
ccatcggtgc	gttctgctgt	gcccgttccc	agagaaatct	caaaggtgtt	gtgtcagcca	240
aaaatgatat	ccgagtggaa	attgtccaca	aggaaccagc	ctctggtcgg	gagggtgagg	300
agcactccac	catcaagcag	ctgatgatgg	accgggtga	attccagccaa	gactcagtc	360
tgaaacagct	ggaggtcctc	aaagaagagg	agaaagagtt	tcagaacctg	aaggacccca	420
ccaatggcta	ctacagcgtc	aacacccctca	aagagccca	ctcaaccccg	accatctccc	480
tctccagctg	ccagcccgac	ctgcgtcctg	cgggyaagca	ggctgtgccc	acaggcatgt	540
ccttcaccaa	catctacagc	accctgagcg	gccaggggcc	tctacgacta	cgccagcggt	600
ttgtgytggg	catgggcagc	tcgtccatcg	agytttgta	gcgggaggtc	cagagaggct	660
ccctcagcga	cagcagctcc	ttcctggaca	cgcagttgt	cagcagcg	agcagcagcg	720
gcaaggcagga	tggctatgt	cagttcgaca	aggccagcaa	ggcttctgtct	tcctcctccc	780
accactccca	gtcctcgatcc	cagaactctg	accccagtcg	acccctgcag	cgccggatgc	840
agactcacgt	ctaaggatca	cacaccgcgg	gtggggacgg	gccagggaag	aggtcagggc	900
acgttctgg	tgtccaggga	cgaggggtac	tttgcagagg	acaccagaat	tggccacttc	960
caggacagcc	tcccagcgcc	tctgcactg	ctttcctcg	aagctctgtat	caagcacaaa	1020
tctgggtccc	caggtgtgt	gtgcaragg	tgggggggt	gggagacaga	cagaggctgc	1080
ggctgagtgc	gctgtgtctt	gtgtgtggaca	cccggttccc	cgccctttc	ctggaggccc	1140
ctctaccacc	tgctctgccc	acaggcacaa	gtggcagcta	taactctgt	ttcatgaaac	1200
tgcgggtccac	tctctggct	ctctgtggc	tctaccctc	rctgaccasa	agctctacat	1260
acccctgtgc	ctgtgtctcc	atacagccct	ggggagaagg	ggatgacgtc	ttcccagcac	1320
tgagctgccc	cagaaacccc	ggctccccac	tgctgtctat	agcccatacc	ctggaggctg	1380
acaagccaga	aatggcctt	gctaaaggag	cctctctctc	accaggctgg	cggggagccc	1440
accccaatt	tgtttgggt	tttgtgtcca	tactcttgc	gttctgtct	tggacttgat	1500
gccgctgaac	tctgcgggtt	gaccggctcc	gtcagagct	ggtgtactgg	ggggagggag	1560
ggaggaggga	gcctgtgt	acggagcacc	tcgcccgggt	tgcccttct	gggctgtgt	1620
accccagcct	ccccaccac	ctcctgtt	gtgtactct	cccttcccc	tcagcacaat	1680
cggagttcat	ataagaagt	cgggagctt	tctggtcagg	tttctctgaa	cacttatgaa	1740
gagagtgtt	cctggaaagt	gtggcgttt	aaggggctgg	agggcaggc	tttaagatgg	1800

cgagactgcc	cttctcagct	gataaacaca	agaacggcga	tcctgtcttc	agtaaggctc	1860
cacgagaaga	gaggaagtat	atctacacct	caaccctcct	agtcaccacc	tgaaataaat	1920
gttagggaca	ctactccaad	atgtttgttc	tgcccttttgc	ttccctacaaa	gccacaggaa	1980
gaacccaaga	gctcatagaa	tgcgttggga	acccaagggtt	ctctgccctc	ctttgattca	2040
atcatcctag	acaataaagg	cagttgatag	ctctgaaaaaa	aaaaaaaaaa	aaaaaaaaaa	2100
at						2102

<210> 44
<211> 1362
<212> DNA
<213> Homo sapiens

<400> 44	60					
tcgaccacacg	cgtccgggaa	tctggggtca	ggcagccccg	ggggcttggaa	gagacttcca	120
gaggaggcgc	ggactcgta	gcgcggcggg	caaggcaggc	gccatgaccc	tgattgaagg	180
ggtagggat	gaggtgaccg	tcctttctc	ggtgcttgc	tgccctctgg	tgctggccct	240
tgcctgggtc	tcaacgcaca	ccgctgaggg	cggggaccca	ctgccccagc	cgtcaggac	300
cccaacgcca	tcccagccca	gcgcagcatg	gcagctaccg	acagcatgag	aggggaggcc	360
ccagggggcag	agaccccccag	cctgagacac	agaggtcaag	ctgcacagcc	agagcccagc	420
acgggggtca	cagcaacacc	gccagccccg	gactccccgc	aggagccct	cgtgctacgg	480
ctgaaattcc	tcaatgatcc	agagcaggtg	gccagggcct	ggccccacga	caccattggc	540
tccttgaaaa	ggacccagtt	tcccgccgg	gaacagcagg	tgcgactcat	ctaccaagggg	600
cagctgctag	gcpacgacac	ccagaccctg	ggcagccctc	acctccctcc	caactgcgtt	660
ctccactgcc	acgtgtccac	gagagtcgg	cccccaaatac	ccccctgccc	gccgggggtcc	720
gagccggcc	cctccggct	ggaatatggc	agcctgtgc	tgccctgtct	gctcctgtcg	780
ttgctgtgc	tctggtactg	ccagatccag	taccggccct	tcttccct	gaccgcccact	840
ctgggcctgg	ccggcttcac	cctgctcctc	agtctctgg	ccttgcctat	gtaccgccc	900
tagtgcctcc	gcgggcgtt	ggaagcgte	ccggccccc	cggaccttgc	tcccccgc	960
gcggccggag	ctgctgcctg	cccaaggcccc	cctctccggc	ctgcctcttc	ccgctgccc	1020
ggagccccc	cctgcgcgc	agaggactcc	ccggactggc	ggaggcccc	ccctgcgacc	1080
gccggggctc	ggggccaccc	ccccgggctg	ctgaccctca	gcccgcactg	ggagtgggt	1140
cctcgggggtc	gggcatctgc	tgtcgctgca	tcggccccc	cagagcccc	ccgccccgggg	1200
gccccgttta	gtgttctgca	ggaggaccca	gcccgcctca	atccctgaca	gctccttggg	1260
ctgagttggg	gacgccaggt	cggtgggagg	ctggtaagg	ggagcgggaa	ggggcagagg	1320
agttccccgg	aaccctgtca	gataaaagta	actgtgaagt	tttcaaaaaaa	aaaaaaaaaa	1362
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaagggcgg	cc		

<210> 45
<211> 390
<212> DNA
<213> Homo sapiens

<400> 45	60					
ggcacgagcg	tcttgcctt	ctcccgattt	tctgccccca	ctttctaaag	catgaaactc	120
tttatgttaag	ccccctgtc	accatctgc	gtggagttcc	cgcctcaagg	ccctgcctt	180
gggcctgaca	ctcgagcccc	ttcccagtc	accctcatcc	tccctctgg	cacaggccct	240
cacatcttat	ctggcatgg	aattatctgg	cattctctgg	caattttcag	ccacctcctt	300
ccccagctcc	caggccttcc	ggccctgaca	tcttttata	aaccaggaca	gtgtttagga	360
attaatgaga	acccagaccc	cagacctgg	tcctgagcag	cagagcagt	gatgcccagg	390
gctctcgctt	aaaaaaaaaa	aaaaaaaaaa				

<210> 46
<211> 1546
<212> DNA
<213> Homo sapiens

<400> 46	60					
ggcacgagtt	cagccctgat	ggcagttacg	tggcgccagg	ctctgctgag	ggctctctgt	120
atatctggag	tgtgctcaca	gggaaagtgg	aaaaggttct	ttcaaagcag	cacagctcat	180
ccatcaatgc	ggtggcgtgg	tcggccctctg	gctcgacgt	tgtcagtgt	gacaaaggat	240
gcaaagctgt	gctgtggca	cagtaactgac	ggggctctca	gggctgggag	gaccccagt	300
ccctcctcag	aagaagcaca	tgggctcctg	cagccctgtc	ctggcaggt	atgtgctggg	360
tatagcatgg	acctcccaaga	gaagctcaag	ctatgtggca	ctgttagctt	gccgtgaatg	

ggatttctga	agatttgact	gaggtctctc	ttggcctgga	agaataacac	tgaaaaaaacc	420
tgacgctgcg	gtcacttagc	agaggctca	gttctgcct	tggaaaacac	tactagctct	480
gacccat	acctcaccc	ggggagcaca	gggcccgc	gggcctc	accaacggca	540
gtgc	aaaaat	cagccccac	atcaagg	tgttctctgt	gtcttc	600
agt	cggttct	ggccta	atgtcc	accttgg	cattgccc	660
ttta	agcatt	ggatta	aaactccc	actacagacc	cctccctgg	720
aat	gtgtctc	attact	aatgtc	acatctt	cactgtt	780
tgg	c	tccccc	cacaa	attaaaaat	ctccgt	840
tgg	ttttt	ttttt	ttttg	gggagaggat	gtgt	900
gaa	atggg	cgctgc	agag	gtaggatgt	gttcc	960
gg	gggt	cactgc	ttgggg	caaggattc	cgat	1020
ctg	aaagg	tgatt	ctggc	catggccc	cttca	1080
ctt	tagtgc	agaag	ccatg	gtcaga	acat	1140
tgt	gtgaag	gcca	aggaaa	aacattt	actt	1200
gtt	catt	tgtgc	gaaac	cccttt	tac	1260
ctt	ccat	tgtt	ctgg	acattt	tttt	1320
tcag	gtgg	ttcc	cacca	ttgg	ttcc	1380
acc	gctt	aattt	gcct	tcagaga	ttcc	1440
aggg	cacatc	tttattt	ttcattat	tggcca	acat	1500
taa	agaaatc	tgttatatac	tttcaaaaaa	aaaaaaa	aaaaaa	1546

<210> 47

<211> 1643

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (5)

<223> n equals a,t,g, or c

<220>

<221> SITE

<222> (59)

<223> n equals a,t,g, or c

<400> 47

aaganagaaa	ttaacc	ctaaagg	aaaaag	agctcc	cgg	60
cgctc	tagaa	ctagtgg	atc	ccccc	ggcgnc	120
ttacgtgg	cr	gcagg	ctg	ctgagg	ctgatgg	180
agtgg	aaaag	gttctt	caa	agcac	aggcc	240
ctctgg	ctcg	cacgtt	gttgg	atcgat	ctgtgt	300
ctgac	ggggc	tctc	gggagg	gggagg	gggcac	360
tcctgc	agcc	ctgt	cctgg	gtgtat	gtgt	420
tcaag	ctat	tgg	actgt	tttt	tttt	480
ctcttt	ggc	act	gttgc	gggatt	tttttt	540
ctcagg	ttct	ttt	ggacaa	aatgg	tttttttt	600
gcac	gggc	ttt	ggatg	ggat	tttttttttt	660
gtgg	gttct	ttt	gtgt	ttttt	tttttttttt	720
caac	ccctt	ttt	gttgc	ttttt	tttttttttt	780
ccga	actaca	ttt	gttgc	ttttt	tttttttttt	840
cctc	acatct	ttt	gttgc	ttttt	tttttttttt	900
cacat	ttt	ttt	gttgc	ttttt	tttttttttt	960
gg	tttgc	ttt	gttgc	ttttt	tttttttttt	1020
tgtgt	cctg	ttt	gttgc	ttttt	tttttttttt	1080
tgcc	agg	ttc	gttgc	ttttt	tttttttttt	1140
cctct	gc	cc	gttgc	ttttt	tttttttttt	1200
agc	acag	cc	gttgc	ttttt	tttttttttt	1260
atctt	actt	cc	gttgc	ttttt	tttttttttt	1320
ttatc	actt	cc	gttgc	ttttt	tttttttttt	1380
gggat	gttgc	ttt	gttgc	ttttt	tttttttttt	1440
ggc	ctcc	ttt	gttgc	ttttt	tttttttttt	1500
actt	aaat	ttt	gttgc	ttttt	tttttttttt	1560
tgtt	ggcc	ttt	gttgc	ttttt	tttttttttt	1620
aaaa	aaaa	ttt	gttgc	ttttt	tttttttttt	1643
aaaa	aaaa	ttt	gttgc	ttttt	tttttttttt	

<210> 48
<211> 652
<212> DNA
<213> Homo sapiens

<220>
<221> SITE
<222> (1)
<223> n equals a,t,g, or c

<400> 48

ncacctggtg	gagggccgtg	tggaaactwg	tggrtcccc	ggggtkgcmg	ggaaaagaaaa	60
tttgtata	gcccaaactt	aagactgtct	caccagagct	taaagggtgtt	agctctggcc	120
acagcagcgg	cctcagtac	tcttcttaca	tggattttga	tgcaaattct	gctccttttc	180
tatttctaa	gatttcttagc	cccttcgagg	gscccaaccc	tcgaaggagt	ccagtaaatg	240
tgttaactca	ctctgccttg	cctgtgctga	aaacacatag	aaagaggaac	agaggaggca	300
ggcacctgga	ggtcagaatg	gcagctggat	tgtgaagaag	gtgtggtttg	catgcctggc	360
agtgtatggc	ttcttaggtt	tcattcttaa	cctcggagca	agactcattt	tccagccaca	420
agcagcgttg	gcctccagag	gcctccgtgg	gcagggcctg	ccctgtgaaa	ctcaggtctk	480
caagagaacc	ttgagacccag	gtgcccgtgg	ytggctggtt	cacaaaggaa	gacgggctyt	540
atccatttcc	aggaagagcg	cccttgcctc	cctggagta	atgtatgtgg	gaccaggcaa	600
gaggccagga	gtggtgagga	aacattccct	tcttgaaa	atgcaagcga	gg	652

<210> 49
<211> 1093
<212> DNA
<213> Homo sapiens

<400> 49

ggcacgagcg	gcccgcacga	gaagaactgc	ttctcctgcc	agccggcac	cttccactgc	60
gttaccaacc	tgtgcacatctt	cgagacgtgg	cgctgtgacg	gccaggaaga	ctgccaggac	120
ggcagcgatg	agcatgggtg	cctggccgccc	gtgccccgca	aggtcatcac	ggcggcgctc	180
attggcagcc	tggtgtgtgg	cctgctgtcg	gtcatcgcc	tgggctgccc	cttcaagctc	240
tactcaactgc	gcacgcagga	atacaggccc	ttcgagaccc	agatgacgcg	cctggaggct	300
gagttcgtgc	ggcgggaggc	acccccattcc	tatggtcagc	tcatcgccca	gggcctcatt	360
ccaccctgtgg	aggactttcc	tgtctacagt	gcgtcccagg	cctctgtgtt	gcagaatctt	420
cgcacagcca	tgccggagaca	gatgcgtcgg	cacgcctccc	gccggggggcc	ctcccccggc	480
cgcctcggcc	gcctctgaa	ccgctcttt	cacggccgc	gggcgccccg	aggccagatc	540
ccactgctga	ccgcagcacg	ccctcacag	accgtgtctgg	gcatggctt	cctccagcct	600
gctccagggg	ctgccccccg	ccccccagca	ccgctcatgg	acacaggcag	caccaggcg	660
gccggagaca	ggcccccccg	tgccccccgg	cgtgcacccgg	aggtgggacc	ttcagggcca	720
cccttgcctt	cgggcctgtcg	agacccagag	tgcaggcccc	tggacaagga	cagaaaggtc	780
tgcaggggagc	cactggcaga	cgccccagct	cctgcagatg	cacctcgaaa	gcctgctca	840
gcccaggacc	cgcaccccca	ggtctccact	gccagcagca	ccctggggccc	ccactcgcca	900
gagccactgg	gggtctgcag	gaaccccccgg	ccccctgtct	ccccaatgtt	ggaggccagc	960
gatgtatgggg	ccctgttggt	ctgttgaccg	ctgggctcgc	tggtgaccgc	cacagccccg	1020
ctttgttaacc	aggaaataca	cagtatttc	taaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1080
aaaaaaaaaaa	aaa					1093

<210> 50
<211> 2752
<212> DNA
<213> Homo sapiens

<400> 50

ggcacgagga	cgtcgcc	tcagcgccgg	ctccggccg	ggccgcggcc	gcgcaccgtt	60
gagccggccgg	ctgagccgccc	tgctgaagtc	cctccctcag	gaacccctcc	gccaccctcc	120
acctccgaac	cgctctcgcg	gcggcgaccc	atgtgggggt	tcaggctctt	gcgtcgccg	180
ccgttgcgtc	tcctgcgtcc	gcagctcgga	atcggaaacg	cctcgtctt	ctctcaggcc	240
agaaccatga	acccggccgg	cagcggccgg	gcgcgtatgt	ccctctcgcc	cgaggtgcgc	300
cgccgtcagt	gcctgcagct	ttccaccgtg	cctggagccg	agccgcagcg	cagcaacgaa	360
ttgctctgt	tggccggccgg	cggggaggga	ctggagcggc	aggacctccc	cggggaccct	420

gcgaaggagg	agccgcagcc	gccgccccag	catcacgtcc	tctatttccc	tggggatgtg	480
cagaattacc	atgaaattat	gactcgtcat	cctgagaatt	atcaatggga	aaactggagt	540
ctagaaaatg	ttgctaccat	tttagccac	cggccccca	atagttatat	ttgggtgata	600
aatgttccc	gaatgcattt	gcacaattc	agctgctatg	acaattttgt	aaaaagtaac	660
acgtttggtg	ccccagaaca	caatactgac	tttggagctt	ttaagcacct	ttatatgtta	720
ttagttaatg	cttttaattt	aagtcaaat	agtttatcaa	agaaaagttt	gaatgttgg	780
aataaggact	ccatagcattc	taactgtaga	tccagtcctt	ctcatactac	gaatgggtgc	840
cagggagaaa	aagtgaggac	ctgtaaaaaa	tctgatgagt	ctgccccatg	tttttatcca	900
ccatcaacta	atgacgcattc	tttactttt	attggattca	gtaaagggtt	tgtgttttg	960
aatcagttgc	tttttgaatt	gaaaagaagcc	aagaaagaca	agaacataga	tgcttttata	1020
aaaagcataa	gaacaatgtt	ttggctggat	ggtggtcatt	ctggaggaag	caatacttgg	1080
gttacttatac	cagaagtctt	gaaagaattt	gcacaaacag	gaattatcg	tcacactcat	1140
gtaacacctt	accaagtacg	tgatccatg	agatcttgg	ttggaaagga	gcacaagaaaa	1200
tttggcaga	tacttgggg	tcttggatg	caggtgacta	gccaaatca	ttttacaaag	1260
gaagctcctt	ccatagagaa	tcacttcagg	gttcatgaag	tattttggaa	ttacaggtat	1320
attaatgaac	ttgttcagtg	gaagaacata	agcacattt	agtgttataa	attcagataa	1380
tgggatgtaa	ttcatagctg	cattgtcagt	tttgggtat	ggggggaaagc	acacattcct	1440
aaaatgtgag	tgtaatgtgc	aatagtattt	tttgcattgt	aatgtgagca	gttattaatt	1500
tggattgagt	tagaatttagt	taatttgaaa	tctacaaggt	ggtttgtaat	aatgctgagg	1560
agatataaga	cccttaaaat	gaaagttaca	acattgttct	tataaaaggt	aactaaaatt	1620
gttactgtt	gaaataactg	attttctgag	taatgtttt	aactaattt	gtgacatttt	1680
aacagtaatt	agctatttt	agtggaaata	ttttcatttc	tcttcaaaca	aaagcaaagg	1740
tacgatgctg	ttttctatca	tttttggaaa	actgcaccct	gcctttgt	tttttgtaaa	1800
ctccttgact	cattcttca	tgtgtcacca	agtactttc	tcatgagagt	caacatata	1860
ttgtttccaa	atgtccacaa	gtgtacaata	gtgtaaaggt	ggtttttaaa	aacatagcca	1920
ggtgtgggt	cacgtgcctt	tagttccagc	tactcaggag	gctaaggcag	gaggattgct	1980
tgagcccagg	ctgtgtgggt	caccataatt	gtgtttgt	ctagctactt	gcactccaa	2040
ctggcaaca	tagtggact	tcatctctaa	aacaaaacaa	accaaaatta	cacttaagca	2100
ctattgttta	atttttaatt	gtcagtttat	cattatttt	ggttaagacat	tctggggttt	2160
cttgaatctt	gtccaaaaac	cagttgtttt	ggaaaattgc	tttaaattga	gcatatttat	2220
gtatatttgg	taaaaaatgtt	ctacagagca	aatttcaat	tttcattat	atcagtctt	2280
ttgaaaggat	caacttggat	aaaataaaata	tataatgctc	tatgtttag	agctctatta	2340
aaaaggaaac	agattccata	gatctaagtc	aatgttctc	cagaagcatg	atttgtctg	2400
ccaaaagaaa	atagctct	ttggccaaaa	tgcaaaattt	cattgctata	agaaaagttt	2460
caaggaaag	tttgaagaca	caaattgattt	aattttggct	aaaaaaactga	atttgcttaa	2520
cactgctaca	taattttgggt	gaagtttcct	tctgcccgtt	tttcttgacc	tagataaaata	2580
cactttgaga	aatccagatc	taataatgt	caaccaacat	tgacattgt	attgggtgat	2640
tacaataaaa	ggtgagcagt	ttgttgttta	ttaataattt	gcttttgag	gtaatgaaat	2700
agcagggaaag	taacatgctg	ctttaggact	aaaaaaaaaa	aaaaaaaaaa	aa	2752

<210> 51
<211> 761
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (376)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (380)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (381)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (384)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
 <221> SITE
 <222> (463)
 <223> Xaa equals any of the naturally occurring L-amino acids

<220>
 <221> SITE
 <222> (483)
 <223> Xaa equals any of the naturally occurring L-amino acids

<220>
 <221> SITE
 <222> (486)
 <223> Xaa equals any of the naturally occurring L-amino acids

<220>
 <221> SITE
 <222> (490)
 <223> Xaa equals any of the naturally occurring L-amino acids

<400> 51
 Met Ala Leu Pro Ala Leu Gly Leu Asp Pro Trp Ser Leu Leu Gly Leu
 1 5 10 15

Phe Leu Phe Gln Leu Leu Gln Leu Leu Pro Thr Thr Thr Ala Gly
 20 25 30

Gly Gly Gly Gln Gly Pro Met Pro Arg Val Arg Tyr Tyr Ala Gly Asp
 35 40 45

Glu Arg Arg Ala Leu Ser Phe Phe His Gln Lys Gly Leu Gln Asp Phe
 50 55 60

Asp Thr Leu Leu Leu Ser Gly Asp Gly Asn Thr Leu Tyr Val Gly Ala
 65 70 75 80

Arg Glu Ala Ile Leu Ala Leu Asp Ile Gln Asp Pro Gly Val Pro Arg
 85 90 95

Leu Lys Asn Met Ile Pro Trp Pro Ala Ser Asp Arg Lys Lys Ser Glu
 100 105 110

Cys Ala Phe Lys Lys Ser Asn Glu Thr Gln Cys Phe Asn Phe Ile
 115 120 125

Arg Val Leu Val Ser Tyr Asn Val Thr His Leu Tyr Thr Cys Gly Thr
 130 135 140

Phe Ala Phe Ser Pro Ala Cys Thr Phe Ile Glu Leu Gln Asp Ser Tyr
 145 150 155 160

Leu Leu Pro Ile Ser Glu Asp Lys Val Met Glu Gly Lys Gly Gln Ser
 165 170 175

Pro Phe Asp Pro Ala His Lys His Thr Ala Val Leu Val Asp Gly Met
 180 185 190

Leu Tyr Ser Gly Thr Met Asn Asn Phe Leu Gly Ser Glu Pro Ile Leu
 195 200 205

Met Arg Thr Leu Gly Ser Gln Pro Val Leu Lys Thr Asp Asn Phe Leu
 210 215 220

Arg Trp Leu His His Asp Ala Ser Phe Val Ala Ala Ile Pro Ser Thr
 225 230 235 240

Gln Val Val Tyr Phe Phe Glu Glu Thr Ala Ser Glu Phe Asp Phe
 245 250 255
 Phe Glu Arg Leu His Thr Ser Arg Val Ala Arg Val Cys Lys Asn Asp
 260 265 270
 Val Gly Gly Glu Lys Leu Leu Gln Lys Lys Trp Thr Thr Phe Leu Lys
 275 280 285
 Ala Gln Leu Leu Cys Thr Gln Pro Gly Gln Leu Pro Phe Asn Val Ile
 290 295 300
 Arg His Ala Val Leu Leu Pro Ala Asp Ser Pro Thr Ala Pro His Ile
 305 310 315 320
 Tyr Ala Val Phe Thr Ser Gln Trp Gln Val Gly Gly Thr Arg Ser Ser
 325 330 335
 Ala Val Cys Ala Phe Ser Leu Leu Asp Ile Glu Arg Val Phe Lys Gly
 340 345 350
 Lys Tyr Lys Glu Leu Asn Lys Glu Thr Ser Arg Trp Thr Thr Tyr Arg
 355 360 365
 Gly Pro Glu Thr Asn Pro Arg Xaa Gly Ser Cys Xaa Xaa Gly Pro Xaa
 370 375 380
 Ser Asp Lys Ala Leu Thr Phe Met Lys Asp His Phe Leu Met Asp Glu
 385 390 395 400
 Gln Val Val Gly Thr Pro Leu Leu Val Lys Ser Gly Val Glu Tyr Thr
 405 410 415
 Arg Leu Ala Val Glu Thr Ala Gln Gly Leu Asp Gly His Ser His Leu
 420 425 430
 Val Met Tyr Leu Gly Thr Thr Gly Ser Leu His Lys Ala Val Val
 435 440 445
 Ser Gly Asp Ser Ser Ala His Leu Val Glu Glu Ile Gln Leu Xaa Pro
 450 455 460
 Asp Pro Glu Pro Val Arg Asn Leu Gln Leu Ala Pro Thr Gln Gly Ala
 465 470 475 480
 Val Phe Xaa Gly Phe Xaa Gly Gly Val Xaa Arg Val Pro Arg Ala Asn
 485 490 495
 Cys Ser Val Tyr Glu Ser Cys Val Asp Cys Val Leu Ala Arg Asp Pro
 500 505 510
 His Cys Ala Trp Asp Pro Glu Ser Arg Thr Cys Cys Leu Leu Ser Ala
 515 520 525
 Pro Asn Leu Asn Ser Trp Lys Gln Asp Met Glu Arg Gly Asn Pro Glu
 530 535 540
 Trp Ala Cys Ala Ser Gly Pro Met Ser Arg Ser Leu Arg Pro Gln Ser
 545 550 555 560
 Arg Pro Gln Ile Ile Lys Glu Val Leu Ala Val Pro Asn Ser Ile Leu
 565 570 575
 Glu Leu Pro Cys Pro His Leu Ser Ala Leu Ala Ser Tyr Tyr Trp Ser
 580 585 590

His Gly Pro Ala Ala Val Pro Glu Ala Ser Ser Thr Val Tyr Asn Gly
 595 600 605
 Ser Leu Leu Leu Ile Val Gln Asp Gly Val Gly Gly Leu Tyr Gln Cys
 610 615 620
 Trp Ala Thr Glu Asn Gly Phe Ser Tyr Pro Val Ile Ser Tyr Trp Val
 625 630 635 640
 Asp Ser Gln Asp Gln Thr Leu Ala Leu Asp Pro Glu Leu Ala Gly Ile
 645 650 655
 Pro Arg Glu His Val Lys Val Pro Leu Thr Arg Val Ser Gly Gly Ala
 660 665 670
 Ala Leu Ala Ala Gln Gln Ser Tyr Trp Pro His Phe Val Thr Val Thr
 675 680 685
 Val Leu Phe Ala Leu Val Leu Ser Gly Ala Leu Ile Ile Leu Val Ala
 690 695 700
 Ser Pro Leu Arg Ala Leu Arg Ala Arg Gly Lys Val Gln Gly Cys Glu
 705 710 715 720
 Thr Leu Arg Pro Gly Glu Lys Ala Pro Leu Ser Arg Glu Gln His Leu
 725 730 735
 Gln Ser Pro Lys Glu Cys Arg Thr Ser Ala Ser Asp Val Asp Ala Asp
 740 745 750
 Asn Asn Cys Leu Gly Thr Glu Val Ala
 755 760

<210> 52
 <211> 305
 <212> PRT
 <213> Homo sapiens

<400> 52
 Met Gly Arg Pro Arg Pro Arg Ala Ala Lys Thr Trp Met Phe Leu Leu
 1 5 10 15
 Leu Leu Gly Gly Ala Trp Ala Ala Cys Gly Ser Leu Asp Leu Leu Thr
 20 25 30
 Lys Leu Tyr Ala Glu Asn Leu Pro Cys Val His Leu Asn Pro Gln Trp
 35 40 45
 Pro Ser Gln Pro Ser His Cys Pro Arg Gly Trp Arg Ser Asn Pro Leu
 50 55 60
 Pro Pro Ala Ala Gly His Ser Arg Ala Gln Glu Asp Lys Val Leu Gly
 65 70 75 80
 Gly His Glu Cys Gln Pro His Ser Gln Pro Trp Gln Ala Ala Leu Phe
 85 90 95
 Gln Gly Gln Gln Leu Leu Cys Gly Gly Val Leu Val Gly Gly Asn Trp
 100 105 110
 Val Leu Thr Ala Ala His Cys Lys Lys Pro Lys Tyr Thr Val Arg Leu
 115 120 125
 Gly Asp His Ser Leu Gln Asn Lys Asp Gly Pro Glu Gln Glu Ile Pro
 130 135 140

Val Val Gln Ser Ile Pro His Pro Cys Tyr Asn Ser Ser Asp Val Glu
 145 150 155 160
 Asp His Asn His Asp Leu Met Leu Leu Gln Leu Arg Asp Gln Ala Ser
 165 170 175
 Leu Gly Ser Lys Val Lys Pro Ile Ser Leu Ala Asp His Cys Thr Gln
 180 185 190
 Pro Gly Gln Lys Cys Thr Val Ser Gly Trp Gly Thr Val Thr Ser Pro
 195 200 205
 Arg Glu Asn Phe Pro Asp Thr Leu Asn Cys Ala Glu Val Lys Ile Phe
 210 215 220
 Pro Gln Lys Lys Cys Glu Asp Ala Tyr Pro Gly Gln Ile Thr Asp Gly
 225 230 235 240
 Met Val Cys Ala Gly Ser Ser Lys Gly Ala Asp Thr Cys Gln Gly Asp
 245 250 255
 Ser Gly Gly Pro Leu Val Cys Asp Gly Ala Leu Gln Gly Ile Thr Ser
 260 265 270
 Trp Gly Ser Asp Pro Cys Gly Arg Ser Asp Lys Pro Gly Val Tyr Thr
 275 280 285
 Asn Ile Cys Arg Tyr Leu Asp Trp Ile Lys Lys Ile Ile Gly Ser Lys
 290 295 300
 Gly
 305
 <210> 53
 <211> 379
 <212> PRT
 <213> Homo sapiens
 <400> 53
 Met Asn Leu Cys Val Ile Leu Leu Ile Leu Val Phe Met Val Pro Phe
 1 5 10 15
 Tyr Ile Gly Tyr Phe Ile Val Ser Asn Ile Arg Leu Leu His Lys Gln
 20 25 30
 Arg Leu Leu Phe Ser Cys Leu Leu Trp Leu Thr Phe Met Tyr Phe Phe
 35 40 45
 Trp Lys Leu Gly Asp Pro Phe Pro Ile Leu Ser Pro Lys His Gly Ile
 50 55 60
 Leu Ser Ile Glu Gln Leu Ile Ser Arg Val Gly Val Ile Gly Val Thr
 65 70 75 80
 Leu Met Ala Leu Leu Ser Gly Phe Gly Ala Val Asn Cys Pro Tyr Thr
 85 90 95
 Tyr Met Ser Tyr Phe Leu Arg Asn Val Thr Asp Thr Asp Ile Leu Ala
 100 105 110
 Leu Glu Arg Arg Leu Leu Gln Thr Met Asp Met Ile Ile Ser Lys Lys
 115 120 125
 Lys Arg Met Ala Met Ala Arg Arg Thr Met Phe Gln Lys Gly Glu Val

130	135	140
His Asn Lys Pro Ser Gly Phe Trp Gly Met Ile Lys Ser Val Thr Thr		
145	150	155
160		
Ser Ala Ser Gly Ser Glu Asn Leu Thr Leu Ile Gln Gln Glu Val Asp		
165	170	175
Ala Leu Glu Glu Leu Ser Arg Gln Leu Phe Leu Glu Thr Ala Asp Leu		
180	185	190
Tyr Ala Thr Lys Glu Arg Ile Glu Tyr Ser Lys Thr Phe Lys Gly Lys		
195	200	205
Tyr Phe Asn Phe Leu Gly Tyr Phe Phe Ser Ile Tyr Cys Val Trp Lys		
210	215	220
Ile Phe Met Ala Thr Ile Asn Ile Val Phe Asp Arg Val Gly Lys Thr		
225	230	235
240		
Asp Pro Val Thr Arg Gly Ile Glu Ile Thr Val Asn Tyr Leu Gly Ile		
245	250	255
Gln Phe Asp Val Lys Phe Trp Ser Gln His Ile Ser Phe Ile Leu Val		
260	265	270
Gly Ile Ile Ile Val Thr Ser Ile Arg Gly Leu Leu Ile Thr Leu Thr		
275	280	285
Lys Phe Phe Tyr Ala Ile Ser Ser Ser Lys Ser Ser Asn Val Ile Val		
290	295	300
Leu Leu Leu Ala Gln Ile Met Gly Met Tyr Phe Val Ser Ser Val Leu		
305	310	315
320		
Leu Ile Arg Met Ser Met Pro Leu Glu Tyr Arg Thr Ile Ile Thr Glu		
325	330	335
Val Leu Gly Glu Leu Gln Phe Asn Phe Tyr His Arg Trp Phe Asp Val		
340	345	350
Ile Phe Leu Val Ser Ala Leu Ser Ser Ile Leu Phe Leu Tyr Leu Ala		
355	360	365
His Lys Gln Ala Pro Glu Lys Gln Met Ala Pro		
370	375	

<210> 54
<211> 228
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (207)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (217)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (218)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 54

Met	Asn	Ile	Leu	Cys	Thr	Cys	Leu	Leu	Cys	Val	Leu	Gln	His	Gln	Ser
1															
							5				10				15

Ala	Ser	Ala	Ser	Tyr	Ala	Leu	Gly	Asn	Thr	Pro	Arg	His	Arg	Gln	Ser
							20			25				30	

Leu	Pro	Arg	Pro	Ser	Gly	Gln	Thr	Ser	Val	Thr	Ser	Cys	Cys	Asn
							35			40			45	

Leu	Leu	Thr	Glu	Leu	Arg	His	Pro	Ser	Ser	Ala	Asp	Phe	Gly	His	Gln
							50			55			60		

Ser	Ser	Arg	Phe	Ser	Leu	Leu	Glu	Leu	Arg	His	Pro	Ser	Ala	Ala	Ala
							65			70			75		80

Cys	Gly	His	Gln	Asn	Ser	Arg	Phe	Ser	Leu	Leu	Glu	Leu	Arg	Arg	Pro
							85			90			95		

Ser	Ser	Asp	Ala	Phe	Gly	His	Gln	Ser	Ser	Arg	Leu	Ser	Leu	Leu	Asp
							100			105			110		

Leu	Arg	His	Thr	Ser	Ala	Ala	Ala	Phe	Gly	His	Gln	Asn	Ser	Arg	Phe
							115			120			125		

Ser	Leu	Val	Glu	Leu	Arg	His	Pro	Ser	Ser	Asp	Ala	Phe	Gly	His	Gln
							130			135			140		

Asn	Ser	Arg	Phe	Cys	Phe	Leu	Asp	Leu	Arg	His	Pro	Ser	Ala	Ala	Ala
							145			150			155		160

Phe	Gly	His	Gln	Asn	Ser	Arg	Phe	Ser	His	Val	Glu	Pro	Arg	His	Pro
							165			170			175		

Ser	Ser	Ala	Ala	Phe	Gly	His	Gln	Asn	Ser	Arg	Phe	Ser	Gly	Leu	Cys
							180			185			190		

Thr	Leu	Gly	Cys	Val	Ala	Ala	Thr	Pro	Ala	Pro	Gly	Phe	Gln	Xaa	Phe
							195			200			205		

Gly	Leu	Arg	Leu	Gln	Ala	Thr	Pro	Xaa	Xaa	Ser	Leu	Val	Leu	Arg	Leu
							210			215			220		

Leu	Asp	Leu	Asp
	225		

<210> 55

<211> 552

<212> PRT

<213> Homo sapiens

<400> 55

Met	Leu	Lys	Ala	Ser	Cys	Leu	Pro	Leu	Gly	Phe	Ile	Val	Phe	Leu	Pro
1															15
							5			10					

Ala	Val	Leu	Leu	Leu	Val	Ala	Pro	Pro	Leu	Pro	Ala	Ala	Asp	Ala	Ala
							20			25			30		

His	Glu	Phe	Thr	Val	Tyr	Arg	Met	Gln	Gln	Tyr	Asp	Leu	Gln	Gly	Gln
							35			40			45		

Pro	Tyr	Gly	Thr	Arg	Asn	Ala	Val	Leu	Asn	Thr	Glu	Ala	Arg	Thr	Met
							50			55			60		

Ala Ala Glu Val Leu Ser Arg Arg Cys Val Leu Met Arg Leu Leu Asp
 65 70 75 80

Phe Ser Tyr Glu Gln Tyr Gln Lys Ala Leu Arg Gln Ser Ala Gly Ala
 85 90 95

Val Val Ile Ile Leu Pro Arg Ala Met Ala Ala Val Pro Gln Asp Val
 100 105 110

Val Arg Gln Phe Met Glu Ile Glu Pro Glu Met Leu Ala Met Glu Thr
 115 120 125

Ala Val Pro Val Tyr Phe Ala Val Glu Asp Glu Ala Leu Leu Ser Ile
 130 135 140

Tyr Lys Gln Thr Gln Ala Ala Ser Ala Ser Gln Gly Ser Ala Ser Ala
 145 150 155 160

Ala Glu Val Leu Leu Arg Thr Ala Thr Ala Asn Gly Phe Gln Met Val
 165 170 175

Thr Ser Gly Val Gln Ser Lys Ala Val Ser Asp Trp Leu Ile Ala Ser
 180 185 190

Val Glu Gly Arg Leu Thr Gly Leu Gly Gly Glu Asp Leu Pro Thr Ile
 195 200 205

Val Ile Val Ala His Tyr Asp Ala Phe Gly Val Ala Pro Trp Leu Ser
 210 215 220

Leu Gly Ala Asp Ser Asn Gly Ser Gly Val Ser Val Leu Leu Glu Leu
 225 230 235 240

Ala Arg Leu Phe Ser Arg Leu Tyr Thr Tyr Lys Arg Thr His Ala Ala
 245 250 255

Tyr Asn Leu Leu Phe Phe Ala Ser Gly Gly Lys Phe Asn Tyr Gln
 260 265 270

Gly Thr Lys Arg Trp Leu Glu Asp Asn Leu Asp His Thr Asp Ser Ser
 275 280 285

Leu Leu Gln Asp Asn Val Ala Phe Val Leu Cys Leu Asp Thr Val Gly
 290 295 300

Arg Gly Ser Ser Leu His Leu His Val Ser Lys Pro Pro Arg Glu Gly
 305 310 315 320

Thr Leu Gln His Ala Phe Leu Arg Glu Leu Glu Thr Val Ala Ala His
 325 330 335

Gln Phe Pro Glu Val Arg Phe Ser Met Val His Lys Arg Ile Asn Leu
 340 345 350

Ala Glu Asp Val Leu Ala Trp Glu His Glu Arg Phe Ala Ile Arg Arg
 355 360 365

Leu Pro Ala Phe Thr Leu Ser His Leu Glu Ser His Arg Asp Gly Gln
 370 375 380

Arg Ser Ser Ile Met Asp Val Arg Ser Arg Val Asp Ser Lys Thr Leu
 385 390 395 400

Thr Arg Asn Thr Arg Ile Ile Ala Glu Ala Leu Thr Arg Val Ile Tyr
 405 410 415

Asn Leu Thr Glu Lys Gly Thr Pro Pro Asp Met Pro Val Phe Thr Glu
 420 425 430

Gln Met Gln Ile Gln Gln Glu Gln Leu Asp Ser Val Met Asp Trp Leu
 435 440 445

Thr Asn Gln Pro Arg Ala Ala Gln Leu Val Asp Lys Asp Ser Thr Phe
 450 455 460

Leu Ser Thr Leu Glu His His Leu Ser Arg Tyr Leu Lys Asp Val Lys
 465 470 475 480

Gln His His Val Lys Ala Asp Lys Arg Asp Pro Glu Phe Val Phe Tyr
 485 490 495

Asp Gln Leu Lys Gln Val Met Asn Ala Tyr Arg Val Lys Pro Ala Val
 500 505 510

Phe Asp Leu Leu Leu Ala Val Gly Ile Ala Ala Tyr Leu Gly Met Ala
 515 520 525

Tyr Val Ala Val Gln His Phe Ser Leu Leu Tyr Lys Thr Val Gln Arg
 530 535 540

Leu Leu Val Lys Ala Lys Thr Gln
 545 550

<210> 56
 <211> 385
 <212> PRT
 <213> Homo sapiens

<400> 56
 Met Ser Phe Ile Met Lys Leu His Arg His Phe Gln Arg Thr Val Ile
 1 5 10 15

Leu Leu Ala Thr Phe Cys Met Val Ser Ile Ile Ile Ser Ala Tyr Tyr
 20 25 30

Leu Tyr Ser Gly Tyr Lys Gln Glu Asn Glu Leu Ser Glu Thr Ala Ser
 35 40 45

Glu Val Asp Cys Gly Asp Leu Gln His Leu Pro Tyr Gln Leu Met Glu
 50 55 60

Val Lys Ala Met Lys Leu Phe Asp Ala Ser Arg Thr Asp Pro Thr Val
 65 70 75 80

Leu Val Phe Val Glu Ser Gln Tyr Ser Ser Leu Gly Gln Asp Ile Ile
 85 90 95

Met Ile Leu Glu Ser Ser Arg Phe Gln Tyr His Ile Glu Ile Ala Pro
 100 105 110

Gly Lys Gly Asp Leu Pro Val Leu Ile Asp Lys Met Lys Gly Lys Tyr
 115 120 125

Ile Leu Ile Ile Tyr Glu Asn Ile Leu Lys Tyr Ile Asn Met Asp Ser
 130 135 140

Trp Asn Arg Ser Leu Leu Asp Lys Tyr Cys Val Glu Tyr Gly Val Gly
 145 150 155 160

Val Ile Gly Phe His Lys Thr Ser Glu Lys Ser Val Gln Ser Phe Gln

165	170	175	
Leu Lys Gly Phe Pro Phe Ser Ile Tyr Gly Asn Leu Ala Val Lys Asp			
180	185	190	
Cys Cys Ile Asn Pro His Ser Pro Leu Ile Arg Val Thr Lys Ser Ser			
195	200	205	
Lys Leu Glu Lys Gly Ser Leu Pro Gly Thr Asp Trp Thr Val Phe Gln			
210	215	220	
Ile Asn His Ser Ala Tyr Gln Pro Val Ile Phe Ala Lys Val Lys Thr			
225	230	235	240
Pro Glu Asn Leu Ser Pro Ser Ile Ser Lys Gly Ala Phe Tyr Ala Thr			
245	250	255	
Ile Ile His Asp Leu Gly Leu His Asp Gly Ile Gln Arg Val Leu Phe			
260	265	270	
Gly Asn Asn Leu Asn Phe Trp Leu His Lys Leu Ile Phe Ile Asp Ala			
275	280	285	
Ile Ser Phe Leu Ser Gly Lys Arg Leu Thr Leu Ser Leu Asp Arg Tyr			
290	295	300	
Ile Leu Val Asp Ile Asp Asp Ile Phe Val Gly Lys Glu Gly Thr Arg			
305	310	315	320
Met Asn Thr Asn Asp Val Lys Val Arg Leu Tyr Phe Leu Lys Phe Gln			
325	330	335	
Ser Ser Val His Leu Pro Ala Gly Ile Gln Leu Ser Gln Phe Val Leu			
340	345	350	
Gln Leu Gly Tyr Pro Gly His Gly Ile Tyr Trp Glu Ser Leu Gly Asn			
355	360	365	
Leu Gly Leu Ser Leu Thr Leu Asn Gln Leu Arg Arg Leu Cys Ile Ser			
370	375	380	
Ile			
385			

<210> 57
<211> 190
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (155)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (180)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 57
Met Leu Val Leu Ala Thr Leu Ala Ala Leu Phe Ile Leu Thr Thr Ala
1 5 10 15

Val Leu Ala Glu Arg Leu Phe Arg Arg Ala Leu Arg Pro Asp Pro Ser
20 25 30

His Arg Ala Pro Thr Leu Val Trp Arg Pro Gly Gly Glu Leu Trp Ile
 35 40 45

Glu Pro Met Gly Thr Ala Arg Lys Arg Ser Glu Asp Trp Tyr Gly Ser
 50 55 60

Ala Val Pro Leu Leu Thr Asp Arg Ala Pro Glu Pro Pro Thr Gln Val
 65 70 75 80

Gly Thr Leu Glu Ala Arg Ala Thr Ala Pro Pro Ala Pro Ser Ala Pro
 85 90 95

Asn Ser Ala Pro Ser Asn Leu Gly Pro Gln Thr Val Leu Glu Val Pro
 100 105 110

Ala Arg Ser Thr Phe Trp Gly Pro Gln Pro Trp Glu Gly Arg Pro Pro
 115 120 125

Ala Thr Gly Leu Val Ser Trp Ala Glu Pro Glu Gln Arg Pro Glu Ala
 130 135 140

Ser Val Gln Phe Gly Ser Pro Gln Ala Arg Xaa Gln Arg Pro Gly Ser
 145 150 155 160

Pro Asp Pro Glu Trp Gly Leu Gln Pro Arg Val Thr Leu Glu Gln Ile
 165 170 175

Ser Ala Phe Xaa Lys Arg Glu Gly Arg Thr Ser Val Gly Phe
 180 185 190

<210> 58

<211> 57

<212> PRT

<213> Homo sapiens

<400> 58

Met Ala Val Ser Val Ile Phe Cys Gln Lys Leu Lys Thr Gly Ser Val
 1 5 10 15

Lys Leu Trp Ile Gln Met Leu Leu Trp Leu Gln Phe Ser Val Ala Cys
 20 25 30

Leu Arg Leu Arg Lys Gly Gly Lys Trp Ser Pro Trp Gly Leu Met Leu
 35 40 45

Lys Glu Val Ile Trp Lys Asp Cys Arg
 50 55

<210> 59

<211> 443

<212> PRT

<213> Homo sapiens

<400> 59

Met Arg Leu Thr Arg Lys Arg Leu Cys Ser Phe Leu Ile Ala Leu Tyr
 1 5 10 15

Cys Leu Phe Ser Leu Tyr Ala Ala Tyr His Val Phe Phe Gly Arg Arg
 20 25 30

Arg Gln Ala Pro Ala Gly Ser Pro Arg Gly Leu Arg Lys Gly Ala Ala
 35 40 45

Pro Ala Arg Glu Arg Arg Gly Arg Glu Gln Ser Thr Leu Glu Ser Glu
 50 55 60

Glu Trp Asn Pro Trp Glu Gly Asp Glu Lys Asn Glu Gln Gln His Arg
 65 70 75 80

Phe Lys Thr Ser Leu Gln Ile Leu Asp Lys Ser Thr Lys Gly Lys Thr
 85 90 95

Asp Leu Ser Val Gln Ile Trp Gly Lys Ala Ala Ile Gly Leu Tyr Leu
 100 105 110

Trp Glu His Ile Phe Glu Gly Leu Leu Asp Pro Ser Asp Val Thr Ala
 115 120 125

Gln Trp Arg Glu Gly Lys Ser Ile Val Gly Arg Thr Gln Tyr Ser Phe
 130 135 140

Ile Thr Gly Pro Ala Val Ile Pro Gly Tyr Phe Ser Val Asp Val Asn
 145 150 155 160

Asn Val Val Leu Ile Leu Asn Gly Arg Glu Lys Ala Lys Ile Phe Tyr
 165 170 175

Ala Thr Gln Trp Leu Leu Tyr Ala Gln Asn Leu Val Gln Ile Gln Lys
 180 185 190

Leu Gln His Leu Ala Val Val Leu Leu Gly Asn Glu His Cys Asp Asn
 195 200 205

Glu Trp Ile Asn Pro Phe Leu Lys Arg Asn Gly Phe Val Glu Leu
 210 215 220

Leu Phe Ile Ile Tyr Asp Ser Pro Trp Ile Asn Asp Val Asp Val Phe
 225 230 235 240

Gln Trp Pro Leu Gly Val Ala Thr Tyr Arg Asn Phe Pro Val Val Glu
 245 250 255

Ala Ser Trp Ser Met Leu His Asp Glu Arg Pro Tyr Leu Cys Asn Phe
 260 265 270

Leu Gly Thr Ile Tyr Glu Asn Ser Ser Arg Gln Ala Leu Met Asn Ile
 275 280 285

Leu Lys Lys Asp Gly Asn Asp Lys Leu Cys Trp Val Ser Ala Arg Glu
 290 295 300

His Trp Gln Pro Gln Glu Thr Asn Glu Ser Leu Lys Asn Tyr Gln Asp
 305 310 315 320

Ala Leu Leu Gln Ser Asp Leu Thr Leu Cys Pro Val Gly Val Asn Thr
 325 330 335

Glu Cys Tyr Arg Ile Tyr Glu Ala Cys Ser Tyr Gly Ser Ile Pro Val
 340 345 350

Val Glu Asp Val Met Thr Ala Gly Asn Cys Gly Asn Thr Ser Val His
 355 360 365

His Gly Ala Pro Leu Gln Leu Leu Lys Ser Met Gly Ala Pro Phe Ile
 370 375 380

Phe Ile Lys Asn Trp Lys Glu Leu Pro Ala Val Leu Glu Lys Glu Lys
 385 390 395 400

Thr Ile Ile Leu Gln Glu Lys Ile Glu Arg Arg Lys Met Leu Leu Gln
 405 410 415

Trp Tyr Gln His Phe Lys Thr Glu Leu Lys Met Lys Phe Thr Asn Ile
 420 425 430

Leu Glu Ser Ser Phe Leu Met Asn Asn Lys Ser
 435 440

<210> 60
 <211> 211
 <212> PRT
 <213> Homo sapiens

<400> 60
 Met Tyr Ala Ser Val Leu Leu Thr Gly Leu Leu Ser Leu Gln Arg Cys
 1 .5 10 15

Leu Ala Val Thr Arg Pro Ser Trp Arg Leu Gly Cys Ala Ala Arg Pro
 20 25 30

Gly Pro Pro Leu Leu Ala Val Trp Leu Ala Ala Leu Leu Ala
 35 40 45

Val Pro Ala Ala Val Tyr Arg His Leu Trp Arg Asp Arg Val Cys Gln
 50 55 60

Leu Cys His Pro Ser Pro Val His Ala Ala Ala His Leu Ser Leu Glu
 65 70 75 80

Thr Leu Thr Ala Phe Val Leu Pro Phe Gly Leu Met Leu Gly Cys Tyr
 85 90 95

Ser Val Thr Leu Ala Arg Leu Arg Gly Ala Arg Trp Gly Ser Gly Arg
 100 105 110

His Gly Ala Arg Val Gly Arg Leu Val Ser Ala Ile Val Leu Pro Ser
 115 120 125

Ala Cys Ser Gly Pro Pro Thr Thr Gln Ser Thr Phe Cys Arg Arg Ser
 130 135 140

Gln Arg Trp Leu His Arg Lys Gly Pro Trp Arg Ser Trp Ala Glu Pro
 145 150 155 160

Ala Arg Arg Arg Glu Arg Glu Leu Arg Pro Trp Pro Ser Ser Val Leu
 165 170 175

Ala Ser Thr Arg Cys Ser Thr Ser Ser Pro Leu Glu Ile Cys Cys Pro
 180 185 190

Gly Gln Val Pro Val Ser Ser Arg Gly Ser Ser Lys Ala Leu Gly Arg
 195 200 205

Pro Glu Gly
 210

<210> 61
 <211> 151
 <212> PRT
 <213> Homo sapiens

<220>
 <221> SITE

<222> (137)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 61

Met	Leu	Leu	Phe	Asn	Trp	Ile	Cys	Ile	Val	Ile	Thr	Gly	Leu	Ala	Met
1					5				10						15

Asp	Met	Gln	Leu	Leu	Met	Ile	Pro	Leu	Ile	Met	Ser	Val	Leu	Tyr	Val
								25						30	

Trp	Ala	Gln	Leu	Asn	Arg	Asp	Met	Ile	Val	Ser	Phe	Trp	Phe	Gly	Thr
							35		40			45			

Arg	Phe	Lys	Ala	Cys	Tyr	Leu	Pro	Trp	Val	Ile	Leu	Gly	Phe	Asn	Tyr
						50			55			60			

Ile	Ile	Gly	Gly	Ser	Val	Ile	Asn	Glu	Leu	Ile	Gly	Asn	Leu	Val	Gly
					65		70			75				80	

His	Leu	Tyr	Phe	Phe	Leu	Met	Phe	Arg	Tyr	Pro	Met	Asp	Leu	Gly	Gly
						85		90						95	

Arg	Asn	Phe	Leu	Ser	Thr	Pro	Gln	Phe	Leu	Tyr	Arg	Trp	Leu	Pro	Ser
						100		105				110			

Arg	Arg	Gly	Gly	Val	Ser	Gly	Phe	Gly	Val	Pro	Pro	Ala	Ser	Met	Arg
						115		120				125			

Arg	Ala	Ala	Asp	Gln	Asn	Gly	Gly	Xaa	Gly	Arg	His	Asn	Trp	Gly	Gln
						130		135				140			

Gly	Phe	Arg	Leu	Gly	Asp	Gln					
						145		150			

<210> 62

<211> 118

<212> PRT

<213> Homo sapiens

<400> 62

Met	Ser	Arg	Ser	Val	Ala	Leu	Ala	Val	Leu	Ala	Leu	Ser	Leu	Ser
1					5				10				15	

Gly	Leu	Glu	Ala	Ile	Gln	Arg	Glu	Ser	Ser	Pro	Thr	Leu	Pro	Ala	Leu
					20			25				30			

Val	Leu	Pro	Leu	Pro	Leu	Cys	Thr	Leu	Cys	Gly	Pro	Arg	Cys	Ala	Leu
						35		40			45				

Ser	Leu	Arg	Asp	Phe	Pro	Ser	Pro	Ser	Ser	Pro	Trp	Trp	Pro	Ala	Val
						50		55			60				

Gly	Leu	Val	Gln	Gly	Trp	Ile	Ser	Gly	Lys	Arg	Arg	Gly	Gly	Leu	Gly
						65		70			75			80	

Val	Gly	Lys	Gly	Val	Arg	Thr	Arg	Asp	Ala	Arg	Tyr	Leu	Pro	Leu	Ser
					85			90				95			

Ala	Gly	Ser	Arg	Gly	Asp	Leu	Trp	Pro	Thr	Ala	Thr	Gly	Ser	Gly
						100		105				110		

Gln	Ser	Leu	Gly	Arg	Arg
					115

<210> 63
 <211> 322
 <212> PRT
 <213> Homo sapiens

<400> 63
 Met Ala Val Ile Ile Gly Val Ala Val Gly Ala Gly Val Ala Phe Leu
 1 5 10 15

Val Leu Met Ala Thr Ile Val Ala Phe Cys Cys Ala Arg Ser Gln Arg
 20 25 30

Asn Leu Lys Gly Val Val Ser Ala Lys Asn Asp Ile Arg Val Glu Ile
 35 40 45

Val His Lys Glu Pro Ala Ser Gly Arg Glu Gly Glu His Ser Thr
 50 55 60

Ile Lys Gln Leu Met Met Asp Arg Gly Glu Phe Gln Gln Asp Ser Val
 65 70 75 80

Leu Lys Gln Leu Glu Val Leu Lys Glu Glu Lys Glu Phe Gln Asn
 85 90 95

Leu Lys Asp Pro Thr Asn Gly Tyr Tyr Ser Val Asn Thr Phe Lys Glu
 100 105 110

His His Ser Thr Pro Thr Ile Ser Leu Ser Ser Cys Gln Pro Asp Leu
 115 120 125

Arg Pro Ala Gly Lys Gln Arg Val Pro Thr Gly Met Ser Phe Thr Asn
 130 135 140

Ile Tyr Ser Thr Leu Ser Gly Gln Gly Arg Leu Tyr Asp Tyr Gly Ser
 145 150 155 160

Gly Leu Cys Trp Ala Trp Ala Ala Arg Pro Ser Ser Phe Val Ser Gly
 165 170 175

Ser Ser Arg Glu Ala Pro Ser Ala Thr Ala Ala Pro Ser Trp Thr Arg
 180 185 190

Ser Val Thr Ala Ala Ser Ala Ala Ala Ser Arg Met Ala Met Cys
 195 200 205

Ser Ser Thr Arg Pro Ala Arg Leu Leu Leu Pro Pro Pro Thr Thr Pro
 210 215 220

Ser Pro Arg Pro Arg Thr Leu Thr Pro Val Asp Pro Cys Ser Gly Gly
 225 230 235 240

Cys Arg Leu Thr Ser Lys Asp His Thr Pro Arg Val Gly Thr Gly Gln
 245 250 255

Gly Arg Gly Gln Gly Thr Phe Trp Leu Ser Arg Asp Glu Gly Tyr Phe
 260 265 270

Ala Glu Asp Thr Arg Ile Gly His Phe Gln Asp Ser Leu Pro Ala Pro
 275 280 285

Leu Pro Leu Pro Ser Phe Glu Ala Leu Ile Lys His Lys Ser Gly Ser
 290 295 300

Pro Gly Ala Val Cys Gln Arg Trp Ala Gly Gly Glu Thr Asp Arg Gly
 305 310 315 320

Cys Gly

<210> 64
<211> 41
<212> PRT
<213> Homo sapiens

<400> 64
Met Ala Gln Cys Cys Leu Trp Leu Gly Ser Trp Val Leu Asp Met Ala
1 5 10 15
Ser Cys Ser Pro Phe Ser Thr Gly Ile Trp Lys Thr Ser Met Glu Leu
20 25 30
Gln Pro Ser Leu Gly Ser Val Gln Ser
35 40

<210> 65
<211> 152
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (73)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (106)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 65
Met Arg Thr Cys Gly Ile Trp Phe Cys Phe Cys Thr Ser Ser Leu Arg
1 5 10 15
Ile Met Ala Ser Ser Phe Thr Tyr Val Ala Ala Lys Asn Met Ile Ser
20 25 30
Leu Leu Leu Trp Leu His Ser Glu Met Gly Lys Val Pro Leu Ser Pro
35 40 45
Ser Gln Gly Val Arg Trp Gly Cys Asp Ser Leu Leu Gln Cys Pro Ala
50 55 60
Ala Gln Thr Ser Met Gly Gly Met Xaa Thr Gly Arg Leu Trp Gly Ser
65 70 75 80
Asp Pro Lys Ala Val Ser Arg Gly Glu Ala Pro Val Gly Val Cys Tyr
85 90 95
Arg Val Leu Phe Gln Phe Ser Arg Pro Xaa Ala Ala Cys Val Leu Ser
100 105 110
Ser Ile Arg Pro Leu Pro Tyr Arg Lys Asp Arg Gly Leu Ser Val Ser
115 120 125
Leu Gly Ser Cys Leu Gly Val Leu Glu Glu Ser Asp His Thr Trp Ala
130 135 140
Trp Arg Leu Ser Thr Arg Phe Cys
145 150

<210> 66
 <211> 45
 <212> PRT
 <213> Homo sapiens

<220>
 <221> SITE
 <222> (37)
 <223> Xaa equals any of the naturally occurring L-amino acids

<220>
 <221> SITE
 <222> (42)
 <223> Xaa equals any of the naturally occurring L-amino acids

<400> 66
 Met Ile Leu Phe Leu Leu Pro Leu Pro Cys Gly Ala Phe Leu Gln
 1 5 10 15
 Phe Phe Thr Trp Leu Thr Leu Thr Gln Pro Leu Lys Phe Ser Ser Gly
 20 25 30
 Ala Ile Ser Ser Xaa Lys Gly Thr Ser Xaa Ser Pro Asp
 35 40 45

<210> 67
 <211> 72
 <212> PRT
 <213> Homo sapiens

<400> 67
 Met Gly His Tyr Leu Leu Leu Leu Thr Leu His Pro Pro Ala Thr His
 1 5 10 15
 Pro Ser Leu Ser Arg Val Leu Cys Val Leu Trp Cys Leu Ser Leu Trp
 20 25 30
 Thr Gly Gln Lys Ile Thr Gln Asp Asn Ala Met Pro Phe Thr Leu Asp
 35 40 45
 Ser Val Val Phe Met Phe Ser Gln Leu Glu Cys Phe Ser Leu Met Ala
 50 55 60
 Ala Thr Gly Ser Tyr Ile Val Leu
 65 70

<210> 68
 <211> 362
 <212> PRT
 <213> Homo sapiens

<400> 68
 Met Thr Leu Ile Glu Gly Val Gly Asp Glu Val Thr Val Leu Phe Ser
 1 5 10 15
 Val Leu Ala Cys Leu Leu Val Leu Ala Leu Ala Trp Val Ser Thr His
 20 25 30
 Thr Ala Glu Gly Gly Asp Pro Leu Pro Gln Pro Ser Gly Thr Pro Thr
 35 40 45
 Pro Ser Gln Pro Ser Ala Ala Met Ala Ala Thr Asp Ser Met Arg Gly
 50 55 60

Glu Ala Pro Gly Ala Glu Thr Pro Ser Leu Arg His Arg Gly Gln Ala
 65 70 75 80
 Ala Gln Pro Glu Pro Ser Thr Gly Phe Thr Ala Thr Pro Pro Ala Pro
 85 90 95
 Asp Ser Pro Gln Glu Pro Leu Val Leu Arg Leu Lys Phe Leu Asn Asp
 100 105 110
 Ser Glu Gln Val Ala Arg Ala Trp Pro His Asp Thr Ile Gly Ser Leu
 115 120 125
 Lys Arg Thr Gln Phe Pro Gly Arg Glu Gln Gln Val Arg Leu Ile Tyr
 130 135 140
 Gln Gly Gln Leu Leu Gly Asp Asp Thr Gln Thr Leu Gly Ser Leu His
 145 150 155 160
 Leu Pro Pro Asn Cys Val Leu His Cys His Val Ser Thr Arg Val Gly
 165 170 175
 Pro Pro Asn Pro Pro Cys Pro Pro Gly Ser Glu Pro Arg Pro Leu Arg
 180 185 190
 Ala Gly Asn Arg Gln Pro Ala Ala Ala Pro Ala Ala Pro Ala Val Ala
 195 200 205
 Ala Ala Leu Val Leu Pro Asp Pro Val Pro Ala Leu Leu Ser Pro Asp
 210 215 220
 Arg His Ser Gly Pro Gly Arg Leu His Pro Ala Pro Gln Ser Pro Gly
 225 230 235 240
 Leu Cys His Val Pro Pro Val Val Pro Pro Arg Ala Leu Gly Ser Val
 245 250 255
 Ala Gly Pro Ser Gly Pro Cys Ser Pro Arg Arg Gly Gly Ser Cys Cys
 260 265 270
 Leu Pro Arg Pro Ala Ser Pro Ala Cys Leu Phe Pro Leu Pro Trp Ser
 275 280 * 285
 Pro Ala Leu Arg Arg Arg Gly Leu Pro Gly Leu Ala Glu Ala Pro Pro
 290 295 300
 Cys Asp Arg Arg Gly Ser Gly Pro Pro Pro Gly Ala Ala Asp Pro Gln
 305 310 315 320
 Pro Ala Leu Gly Val Gly Ser Ser Gly Ser Gly Ile Cys Cys Arg Cys
 325 330 335
 Leu Gly Pro Gly Gln Ser Arg Ala Ala Pro Gly Ala Arg Leu Ser Val
 340 345 350
 Leu Pro Glu Asp Pro Ala Ala Ser Asn Pro
 355 360

<210> 69
 <211> 103
 <212> PRT
 <213> Homo sapiens

<400> 69
 Met Ala Ser Leu Arg Ser Gln His Gly Pro Gly Ala Pro Glu Ser Leu

1	5	10	15
---	---	----	----

Arg Lys Val Leu Met Pro Ser Ser Met Gly Leu Leu Leu Ile Leu Tyr			
20	25	30	

Ala Arg Leu Pro Pro Ser Leu Val Gly Gln Ala Gly Arg Trp Ile Gly			
35	40	45	

Trp Ala Gly Arg Ala Gly Gly Gln Ala Val Arg Gln Pro Ser Pro Thr			
50	55	60	

Val Leu Ile Asp Gly Val Glu Cys Ser Asp Val Lys Phe Phe Gln Leu			
65	70	75	80

Ala Ala Gln Trp Ser Ser His Val Lys His Phe Pro Ile Cys Ile Phe			
85	90	95	

Gly His Ser Lys Ala Thr Phe			
100			

<210> 70

<211> 90

<212> PRT

<213> Homo sapiens

<400> 70

Met Ala Val Thr Trp Arg Gln Ala Leu Leu Arg Ala Leu Cys Ile Ser			
1	5	10	15

Gly Val Cys Ser Gln Gly Lys Trp Lys Arg Phe Phe Gln Ser Ser Thr			
20	25	30	

Ala His Pro Ser Met Arg Trp Arg Gly Arg Pro Leu Ala Arg Thr Leu			
35	40	45	

Ser Val Trp Thr Lys Asp Ala Lys Leu Cys Cys Gly His Ser Thr Asp			
50	55	60	

Gly Ala Leu Arg Ala Gly Arg Thr Pro Val Pro Ser Ser Glu Glu Ala			
65	70	75	80

His Gly Leu Leu Gln Pro Cys Pro Gly Arg			
85	90		

<210> 71

<211> 43

<212> PRT

<213> Homo sapiens

<400> 71

Met Arg Trp Ile Trp Leu Thr Leu Thr Phe Gly Ile Thr Ser Gln Leu			
1	5	10	15

Ala Ser Gly Lys Leu Ser Lys Tyr Trp Ala Ile Val Phe Glu Asp Arg			
20	25	30	

Ser Leu Glu Ser Tyr Val Ser Lys Phe Lys Cys			
35	40		

<210> 72

<211> 53

<212> PRT

<213> Homo sapiens

<400> 72
 Met Leu Met Arg Tyr Lys Ser Tyr Phe Phe Ile Ser Ile Leu Leu Leu
 1 5 10 15
 Cys Cys Phe Phe Leu Ile Leu Gln Val Tyr Lys Leu Ser Phe Lys
 20 25 30
 Ile Leu Ser Gln Asp Phe Lys Asn Cys Arg Val Leu Val Trp Arg Ser
 35 40 45
 Leu Pro Ser Phe Ser
 50

<210> 73
<211> 105
<212> PRT
<213> Homo sapiens

<400> 73
 Met Ser Phe Leu Gly Phe Ile Leu Asn Leu Gly Ala Arg Leu Ile Val
 1 5 10 15
 Gln Pro Gln Ala Ala Leu Ala Ser Arg Gly Leu Arg Gly Gln Gly Leu
 20 25 30
 Pro Cys Glu Thr Gln Val Cys Lys Arg Thr Leu Arg Pro Gly Ala Val
 35 40 45
 Gly Trp Leu Val His Lys Gly Arg Arg Ala Leu Ser Ile Ser Arg Lys
 50 55 60
 Ser Ala Leu Val Ser Leu Gly Val Met Tyr Val Gly Pro Gly Lys Arg
 65 70 75 80
 Pro Gly Val Val Arg Lys His Ser Leu Leu Val Lys Met Gln Ala Arg
 85 90 95
 Gly Lys Glu Val Ser Pro Thr Met Cys
 100 105

<210> 74
<211> 192
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (48)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (49)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (78)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 74
 Met Trp Leu Leu Cys Val Ala Leu Ala Val Leu Ala Trp Gly Phe Leu
 1 5 10 15

Trp Val Trp Asp Ser Ser Glu Arg Met Lys Ser Arg Glu Gln Gly Gly
 20 25 30
 Arg Leu Gly Ala Glu Ser Arg Thr Leu Leu Val Ile Ala His Pro Xaa
 35 40 45
 Xaa Glu Ala Met Phe Phe Ala Pro Thr Val Leu Gly Leu Ala Arg Leu
 50 55 60
 Arg His Trp Val Tyr Leu Leu Cys Phe Ser Ala Val Phe Xaa Arg Glu
 65 70 75 80
 Leu Ser Glu Tyr Thr Glu Val Leu Pro Leu Asn Pro Ser Gln Pro Arg
 85 90 95
 Asp Arg Ser Gly Arg Leu Thr Trp Trp Val Gly Gly Arg Arg Gln Leu
 100 105 110
 Ala Tyr Tyr Ala Ser Arg Ile Glu Glu Gln Arg Asn Ser Cys Ser Trp
 115 120 125
 Leu Tyr Ser Val Pro Ala Phe Pro Leu Gly Thr Pro Pro Val Leu Val
 130 135 140
 Ile Leu Trp Asn Phe Phe Leu Phe Val Glu Gly Ala Arg Ile Leu Thr
 145 150 155 160
 Leu Leu Tyr Ser Thr Arg Asn Asn Leu Cys Cys Ile Val Pro Ala Gln
 165 170 175
 Ser Leu Lys Leu Thr Ser Asn Asp Ser Lys Arg Pro Ser Cys Cys Leu
 180 185 190

<210> 75
 <211> 56
 <212> PRT
 <213> Homo sapiens

<400> 75
 Met Trp Arg Cys Ile Phe Ser Met Met Cys Phe Ala Val Leu Leu Glu
 1 5 10 15
 Gly Ser Phe Ser Glu Ile Ser Leu Ser Ile Ser Ser Ser Leu Phe
 20 25 30
 Arg Gly Trp Pro Arg Asp Ser Val Leu Ser Asp Thr Arg Leu Ala Arg
 35 40 45
 Thr Leu Ser Thr Asp Ser Thr Phe
 50 55

<210> 76
 <211> 59
 <212> PRT
 <213> Homo sapiens

<400> 76
 Met Thr Pro Ser Leu Leu Ser Glu Lys Leu Cys Ser Leu Phe Phe Val
 1 5 10 15

Leu Leu Gly Ile Ala Ser Ala Ala Phe Val Ser Ala Leu Trp Ala Trp
 20 25 30

Ser Ser His Thr Glu Arg Leu Thr Ala Glu Pro Ser Ser Ser Ile Thr
 35 40 45

Cys Leu Ser Pro Pro Trp Phe Phe Phe Pro Phe
 50 55

<210> 77

<211> 385

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (64)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (68)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (159)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (269)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (348)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 77

Met Trp Gly Phe Arg Leu Leu Arg Ser Pro Pro Leu Leu Leu Leu Leu
 1 5 10 15

Pro Gln Leu Gly Ile Gly Asn Ala Ser Ser Cys Ser Gln Ala Arg Thr
 20 25 30

Met Asn Pro Gly Gly Ser Gly Gly Ala Arg Cys Ser Leu Ser Ala Glu
 35 40 45

Val Arg Arg Arg Gln Cys Leu Gln Leu Ser Thr Val Pro Gly Ala Xaa
 50 55 60

Pro Gln Arg Xaa Asn Glu Leu Leu Leu Ala Ala Ala Gly Glu Gly
 65 70 75 80

Leu Glu Arg Gln Asp Leu Pro Gly Asp Pro Ala Lys Glu Glu Pro Gln
 85 90 95

Pro Pro Pro Gln His His Val Leu Tyr Phe Pro Gly Asp Val Gln Asn
 100 105 110

Tyr His Glu Ile Met Thr Arg His Pro Glu Asn Tyr Gln Trp Glu Asn
 115 120 125

Trp Ser Leu Glu Asn Val Ala Thr Ile Leu Ala His Arg Phe Pro Asn

130

135

140

Ser Tyr Ile Trp Val Ile Lys Cys Ser Arg Met His Leu His Xaa Phe
 145 150 155 160

Ser Cys Tyr Asp Asn Phe Val Lys Ser Asn Met Phe Gly Ala Pro Glu
 165 170 175

His Asn Thr Asp Phe Gly Ala Phe Lys His Leu Tyr Met Leu Leu Val
 180 185 190

Asn Ala Phe Asn Leu Ser Gln Asn Ser Leu Ser Lys Lys Ser Leu Asn
 195 200 205

Val Trp Asn Lys Asp Ser Ile Ala Ser Asn Cys Arg Ser Ser Pro Ser
 210 215 220

His Thr Thr Asn Gly Cys Gln Gly Glu Lys Val Arg Thr Cys Glu Lys
 225 230 235 240

Ser Asp Glu Ser Ala Met Ser Phe Tyr Pro Pro Ser Leu Asn Asp Ala
 245 250 255

Ser Phe Thr Leu Ile Gly Phe Ser Lys Gly Cys Val Xaa Leu Asn Gln
 260 265 270

Leu Leu Phe Glu Leu Lys Glu Ala Lys Lys Asp Lys Asn Ile Asp Ala
 275 280 285

Phe Ile Lys Ser Ile Arg Thr Met Tyr Trp Leu Asp Gly Gly His Ser
 290 295 300

Gly Gly Ser Asn Thr Trp Val Thr Tyr Pro Glu Val Leu Lys Glu Phe
 305 310 315 320

Ala Gln Thr Gly Ile Ile Val His Thr His Val Thr Pro Tyr Gln Val
 325 330 335

Arg Asp Pro Met Arg Ser Trp Ile Gly Lys Glu Xaa Lys Lys Phe Val
 340 345 350

Gln Ile Leu Gly Asp Leu Gly Met Gln Val Thr Ser Gln Ile His Phe
 355 360 365

Thr Lys Glu Ala Pro Ser Ile Glu Asn His Phe Arg Val His Glu Val
 370 375 380

Phe
 385

<210> 78
 <211> 292
 <212> PRT
 <213> Homo sapiens

<220>
 <221> SITE
 <222> (288)
 <223> Xaa equals any of the naturally occurring L-amino acids

<220>
 <221> SITE
 <222> (289)
 <223> Xaa equals any of the naturally occurring L-amino acids

<400> 78
 Met Asn Leu Cys Val Ile Leu Leu Ile Leu Val Phe Met Val Pro Phe
 1 5 10 15

Tyr Ile Gly Tyr Phe Ile Val Ser Asn Ile Arg Leu Leu His Lys Gln
 20 25 30

Arg Leu Leu Phe Ser Cys Leu Leu Trp Leu Thr Phe Met Tyr Phe Phe
 35 40 45

Trp Lys Leu Gly Asp Pro Phe Pro Ile Leu Ser Pro Lys His Gly Ile
 50 55 60

Leu Ser Ile Glu Gln Leu Ile Ser Arg Val Gly Val Ile Gly Val Thr
 65 70 75 80

Leu Met Ala Leu Leu Ser Gly Phe Gly Ala Val Asn Cys Pro Tyr Thr
 85 90 95

Tyr Met Ser Tyr Phe Leu Arg Asn Val Thr Asp Thr Asp Ile Leu Ala
 100 105 110

Leu Glu Arg Arg Leu Leu Gln Thr Met Asp Met Ile Ile Ser Lys Lys
 115 120 125

Lys Arg Met Ala Met Ala Arg Arg Thr Met Phe Gln Lys Gly Glu Val
 130 135 140

His Asn Lys Pro Ser Gly Phe Trp Gly Met Ile Lys Ser Val Thr Thr
 145 150 155 160

Ser Ala Ser Gly Ser Glu Asn Leu Thr Leu Ile Gln Gln Glu Val Asp
 165 170 175

Ala Leu Glu Glu Leu Ser Arg Gln Leu Phe Leu Glu Thr Ala Asp Leu
 180 185 190

Tyr Ala Thr Lys Glu Arg Ile Glu Tyr Ser Lys Thr Phe Lys Gly Lys
 195 200 205

Tyr Phe Asn Phe Leu Gly Tyr Phe Phe Ser Ile Tyr Cys Val Trp Lys
 210 215 220

Ile Phe Met Ala Thr Ile Asn Ile Val Phe Asp Arg Val Gly Lys Thr
 225 230 235 240

Asp Pro Val Thr Arg Gly Ile Glu Ile Thr Val Asn Tyr Leu Gly Ile
 245 250 255

Gln Phe Asp Val Lys Phe Trp Ser Gln His Ile Ser Phe Ile Leu Val
 260 265 270

Gly Ile Ile Ile Val Thr Ser Ile Arg Gly Leu Leu Ile Thr Leu Xaa
 275 280 285

Xaa Val Ile Leu
 290

<210> 79
 <211> 65
 <212> PRT
 <213> Homo sapiens

<400> 79
 Met Ile Trp Leu Ser Val Cys Leu Leu Leu Val Tyr Lys Asn Ala Cys

1 5 10 15
Asp Phe Cys Thr Leu Ile Leu Tyr Pro Glu Thr Leu Leu Lys Leu Leu
20 25 30
Ile Ser Leu Arg Arg Phe Trp Ala Glu Thr Met Gly Phe Ser Arg Tyr
35 40 45
Thr Ile Met Ser Ser Ala Asn Arg Asp Asn Leu Thr Ser Ser Phe Pro
50 55 60
Asn
65

<210> 80
<211> 1010
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (25)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (104)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (194)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (362)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (525)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (643)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (649)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (656)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (660)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE
<222> (731)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (770)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (777)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (790)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (800)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (825)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (987)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (996)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (1003)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 80
Met Lys Ala Glu Ile Lys Met Phe Phe Glu Thr Asn Glu Asn Lys Asp
1 5 10 15
Thr Thr Tyr Gln Asn Leu Trp Asp Xaa Phe Lys Ala Val Cys Arg Gly
20 25 30
Lys Phe Ile Ala Leu Asn Ala His Lys Arg Lys Gln Glu Arg Ser Lys
35 40 45
Ile Asp Thr Leu Thr Ser Gln Leu Lys Glu Leu Glu Lys Gln Glu Gln
50 55 60
Thr His Ser Lys Ala Ser Arg Arg Gln Glu Ile Thr Lys Ile Arg Ala
65 70 75 80
Glu Leu Lys Glu Ile Glu Thr Gln Lys Thr Leu Gln Lys Ile Asn Glu
85 90 95
Ser Arg Ser Trp Phe Phe Glu Xaa Ile Asn Lys Ile Asp Arg Pro Leu
100 105 110

Ala Arg Leu Ile Lys Lys Arg Glu Lys Asn Gln Ile Asp Ala Ile
 115 120 125
 Lys Asn Asp Lys Gly Asp Ile Thr Thr Asp Pro Thr Glu Ile Gln Thr
 130 135 140
 Thr Ile Arg Glu Tyr Tyr Lys His Leu Tyr Ala Asn Lys Leu Glu Asn
 145 150 155 160
 Leu Glu Glu Met Asp Lys Phe Leu Asp Thr Tyr Thr Leu Pro Arg Leu
 165 170 175
 Asn Gln Glu Glu Val Glu Ser Leu Asn Arg Pro Ile Thr Gly Ser Glu
 180 185 190
 Ile Xaa Ala Ile Ile Asn Ser Leu Pro Thr Lys Lys Ser Pro Gly Pro
 195 200 205
 Asp Gly Phe Thr Ala Glu Phe Tyr Gln Arg Tyr Lys Glu Glu Leu Val
 210 215 220
 Pro Phe Leu Leu Lys Leu Phe Gln Ser Ile Glu Lys Glu Gly Ile Leu
 225 230 235 240
 Pro Asn Ser Phe Tyr Glu Ala Ser Ile Ile Leu Ile Pro Lys Pro Gly
 245 250 255
 Arg Asp Thr Thr Lys Lys Glu Asn Phe Arg Pro Ile Ser Leu Met Asn
 260 265 270
 Ile Asp Ala Lys Ile Leu Asn Lys Ile Leu Ala Asn Arg Ile Gln Gln
 275 280 285
 His Ile Lys Lys Leu Ile His His Asp Gln Val Gly Phe Ile Pro Gly
 290 295 300
 Met Gln Gly Trp Phe Asn Ile Arg Lys Ser Ile Asn Val Ile Gln His
 305 310 315 320
 Ile Asn Arg Thr Lys Asp Lys Asn His Met Ile Ile Ser Ile Asp Ala
 325 330 335
 Glu Lys Ala Phe Asp Lys Ile Gln Gln Pro Phe Met Leu Lys Thr Leu
 340 345 350
 Asn Lys Leu Gly Ile Asp Gly Thr Tyr Xaa Lys Ile Ile Arg Ala Ile
 355 360 365
 Tyr Asp Lys Pro Thr Ala Asn Ile Ile Leu Asn Gly Gln Lys Leu Glu
 370 375 380
 Ala Phe Pro Leu Lys Thr Gly Thr Arg Gln Gly Cys Pro Leu Ser Pro
 385 390 395 400
 Leu Leu Phe Asn Ile Val Leu Glu Val Leu Ala Arg Ala Ile Arg Gln
 405 410 415
 Glu Lys Glu Ile Lys Gly Ile Gln Leu Gly Lys Glu Glu Val Lys Leu
 420 425 430
 Ser Leu Phe Ala Asp Asp Met Ile Val Tyr Leu Glu Asn Pro Ile Val
 435 440 445
 Ser Ala Gln Asn Leu Leu Lys Leu Ile Ser Asn Phe Ser Lys Val Ser
 450 455 460

Gly Tyr Lys Ile Asn Val Gln Lys Ser Gln Ala Phe Leu Tyr Thr Asn
 465 470 475 480
 Asn Arg Gln Thr Glu Ser Gln Ile Met Ser Glu Leu Pro Phe Thr Ile
 485 490 495
 Ala Ser Lys Arg Ile Lys Tyr Leu Gly Ile Gln Leu Thr Arg Asp Val
 500 505 510
 Lys Asp Leu Phe Lys Glu Asn Tyr Lys Pro Leu Leu Xaa Glu Ile Lys
 515 520 525
 Glu Asp Thr Asn Lys Trp Lys Asn Ile Pro Cys Ser Trp Val Gly Arg
 530 535 540
 Ile Asn Ile Val Lys Met Ala Ile Leu Pro Lys Val Ile Tyr Arg Phe
 545 550 555 560
 Asn Ala Ile Pro Ile Lys Leu Pro Met Thr Phe Phe Thr Glu Leu Glu
 565 570 575
 Lys Thr Thr Leu Lys Phe Ile Trp Asn Gln Lys Arg Ala Arg Ile Ala
 580 585 590
 Lys Ser Ile Leu Ser Gln Lys Asn Lys Ala Gly Gly Ile Thr Leu Pro
 595 600 605
 Asp Phe Lys Leu Tyr Tyr Lys Ala Thr Val Thr Lys Thr Ala Trp Tyr
 610 615 620
 Trp Tyr Gln Asn Arg Asp Ile Asp Gln Trp Asn Arg Thr Glu Pro Ser
 625 630 635 640
 Glu Ile Xaa Pro His Ile Tyr Asn Xaa Leu Ile Phe Asp Lys Pro Xaa
 645 650 655
 Lys Asn Lys Xaa Trp Gly Lys Asp Ser Leu Phe Asn Lys Trp Cys Trp
 660 665 670
 Glu Asn Trp Leu Ala Ile Cys Arg Lys Leu Lys Leu Asp Pro Phe Leu
 675 680 685
 Thr Pro Tyr Thr Lys Ile Asn Ser Arg Trp Ile Lys Asp Leu Asn Val
 690 695 700
 Arg Pro Lys Thr Ile Lys Thr Leu Glu Glu Asn Leu Gly Asn Thr Ile
 705 710 715 720
 Gln Asp Ile Gly Met Gly Lys Asp Phe Met Xaa Lys Thr Pro Lys Ala
 725 730 735
 Met Ala Thr Lys Ala Lys Ile Asp Lys Trp Asp Leu Ile Lys Leu Lys
 740 745 750
 Ser Phe Cys Thr Ala Lys Glu Thr Thr Ile Arg Val Asn Arg Gln Pro
 755 760 765
 Thr Xaa Trp Glu Lys Ile Phe Ala Xaa Tyr Ser Ser Asp Lys Gly Leu
 770 775 780
 Ile Ser Arg Ile Tyr Xaa Glu Leu Lys Gln Ile Tyr Lys Lys Lys Xaa
 785 790 795 800
 Asn Asn Pro Ile Lys Lys Trp Ala Lys Asp Met Asn Arg His Phe Ser
 805 810 815

Lys Glu Asp Ile Tyr Ala Ala Lys Xaa His Met Lys Lys Cys Ser Ser
 820 825 830
 Ser Leu Ala Ile Arg Glu Met Gln Ile Lys Thr Thr Met Arg Tyr His
 835 840 845
 Leu Thr Pro Val Arg Met Ala Ile Ile Lys Lys Ser Gly Asn Asn Arg
 850 855 860
 Cys Trp Arg Gly Cys Gly Glu Ile Gly Thr Leu Leu His Cys Trp Trp
 865 870 875 880
 Asp Cys Lys Leu Val Gln Pro Leu Trp Lys Ser Val Trp Arg Phe Leu
 885 890 895
 Arg Asp Leu Glu Leu Glu Ile Pro Phe Asp Pro Ala Ile Pro Leu Leu
 900 905 910
 Gly Ile Tyr Pro Lys Asp Tyr Lys Ser Cys Cys Tyr Lys Asp Thr Cys
 915 920 925
 Thr Arg Met Phe Ile Ala Ala Leu Phe Thr Ile Ala Lys Thr Trp Asn
 930 935 940
 Gln Pro Lys Cys Pro Thr Met Ile Asp Trp Ile Lys Lys Met Trp His
 945 950 955 960
 Ile Tyr Thr Met Glu Tyr Tyr Ala Ala Ile Lys Asn Asp Glu Phe Met
 965 970 975
 Ser Phe Val Gly Thr Trp Met Lys Leu Glu Xaa Ile Ile Leu Ser Lys
 980 985 990
 Leu Ser Gln Xaa Gln Lys Thr Lys His Arg Xaa Phe Ser Leu Ile Gly
 995 1000 1005
 Gly Asn
 1010

<210> 81
 <211> 120
 <212> PRT
 <213> Homo sapiens

<400> 81
 Met Arg Leu Thr Arg Lys Arg Leu Cys Ser Phe Leu Ile Ala Leu Tyr
 1 5 10 15
 Cys Leu Phe Ser Leu Tyr Ala Ala Tyr His Val Phe Phe Gly Arg Arg
 20 25 30
 Arg Gln Ala Pro Ala Gly Ser Pro Arg Gly Leu Arg Lys Gly Ala Ala
 35 40 45
 Pro Ala Arg Glu Arg Arg Gly Arg Glu Gln Ser Thr Leu Glu Ser Glu
 50 55 60
 Glu Trp Asn Pro Trp Glu Gly Asp Glu Lys Asn Glu Gln Gln His Arg
 65 70 75 80
 Phe Lys Thr Ser Leu Gln Ile Leu Asp Lys Ser Thr Lys Gly Lys Thr
 85 90 95
 Asp Leu Ser Val Gln Ile Trp Gly Lys Ala Ala Ile Val Gln Ala Gly
 100 105 110

Ser Val Ser Ala His Lys Thr Phe
115 120

<210> 82
<211> 77
<212> PRT
<213> Homo sapiens

<400> 82
Met Tyr Ala Ser Val Leu Leu Thr Gly Leu Leu Ser Leu Gln Arg Cys
1 5 10 15

Leu Ala Val Thr Arg Pro Phe Leu Ala Pro Arg Cys Ala Ala Arg Pro
20 25 30

Trp Pro Ala Ala Cys Cys Trp Arg Ser Gly Trp Pro Pro Cys Cys Ser
35 40 45

Pro Ser Arg Pro Pro Ser Thr Ala Thr Cys Gly Gly Thr Ala Tyr Ala
50 55 60

Ser Cys Ala Thr Arg Arg Arg Ser Thr Pro Pro Pro Thr
65 70 75

<210> 83
<211> 256
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (184)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 83
Met Lys Ser Gly Ala Gly Leu Glu Gln Ser Leu Cys Arg Trp Arg His
1 5 10 15

His Trp Gly Gly Arg Arg Ala Gly Val Ala Phe Leu Val Leu Met Ala
20 25 30

Thr Ile Val Ala Phe Cys Cys Ala Arg Ser Gln Arg Asn Leu Lys Gly
35 40 45

Val Val Ser Ala Lys Asn Asp Ile Arg Val Glu Ile Val His Lys Glu
50 55 60

Pro Ala Ser Gly Arg Glu Gly Glu Glu His Ser Thr Ile Lys Gln Leu
65 70 75 80

Met Met Asp Arg Gly Glu Phe Gln Gln Asp Ser Val Leu Lys Gln Leu
85 90 95

Glu Val Leu Lys Glu Glu Glu Lys Glu Phe Gln Asn Leu Lys Asp Pro
100 105 110

Thr Asn Gly Tyr Tyr Ser Val Asn Thr Phe Lys Glu His His Ser Thr
115 120 125

Pro Thr Ile Ser Leu Ser Ser Cys Gln Pro Asp Leu Arg Pro Ala Gly
130 135 140

Lys Gln Arg Val Pro Thr Gly Met Ser Phe Thr Asn Ile Tyr Ser Thr

145	150	155	160
Leu Ser Gly Gln Gly Pro Leu Arg Leu Arg Gln Arg Phe Val Leu Gly			
165	170	175	
Met Gly Ser Ser Ser Ile Glu Xaa Cys Glu Arg Glu Phe Gln Arg Gly			
180	185	190	
Ser Leu Ser Asp Ser Ser Ser Phe Leu Asp Thr Gln Cys Asp Ser Ser			
195	200	205	
Val Ser Ser Ser Gly Lys Gln Asp Gly Tyr Val Gln Phe Asp Lys Ala			
210	215	220	
Ser Lys Ala Ser Ala Ser Ser Ser His His Ser Gln Ser Ser Ser Gln			
225	230	235	240
Asn Ser Asp Pro Ser Arg Pro Leu Gln Arg Arg Met Gln Thr His Val			
245	250	255	

<210> 84
<211> 61
<212> PRT
<213> Homo sapiens

<400> 84
Met Thr Leu Ile Glu Gly Val Gly Asp Glu Val Thr Val Leu Phe Ser
1 5 10 15
Val Leu Ala Cys Leu Leu Val Leu Ala Leu Ala Trp Val Ser Thr His
20 25 30
Thr Ala Glu Gly Gly Asp Pro Leu Pro Gln Pro Ser Gly Thr Pro Thr
35 40 45
Pro Ser Gln Pro Ser Ala Ala Trp Gln Leu Pro Thr Ala
50 55 60

<210> 85
<211> 23
<212> PRT
<213> Homo sapiens

<400> 85
Met Glu Leu Ser Gly Ile Leu Trp Gln Phe Ser Ala Thr Ser Phe Pro
1 5 10 15
Ser Ser Gln Ala Ser Trp Pro
20

<210> 86
<211> 90
<212> PRT
<213> Homo sapiens

<400> 86
Met Ala Val Thr Trp Arg Gln Ala Leu Leu Arg Ala Leu Cys Ile Ser
1 5 10 15
Gly Val Cys Ser Gln Gly Lys Trp Lys Arg Phe Phe Gln Ser Ser Thr

20

25

30

Ala His Pro Ser Met Arg Trp Arg Gly Arg Pro Leu Ala Arg Thr Leu		
35	40	45
Ser Val Trp Thr Lys Asp Ala Lys Leu Cys Cys Gly His Ser Thr Asp		
50	55	60
Gly Ala Leu Arg Ala Gly Arg Thr Pro Val Pro Ser Ser Glu Glu Ala		
65	70	75
His Gly Leu Leu Gln Pro Cys Pro Gly Arg		
85	90	

<210> 87

<211> 90

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (6)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 87

Met Ala Val Thr Trp Xaa Gln Ala Leu Leu Arg Ala Leu Cys Ile Ser		
1	5	10
15		

Gly Val Cys Ser Gln Gly Lys Trp Lys Arg Phe Phe Gln Ser Ser Thr		
20	25	30

Ala His Pro Ser Met Arg Trp Arg Gly Arg Pro Leu Ala Arg Thr Leu		
35	40	45

Ser Val Trp Thr Lys Asp Ala Lys Leu Cys Cys Gly His Ser Thr Asp		
50	55	60

Gly Ala Leu Arg Ala Gly Arg Thr Pro Val Pro Ser Ser Glu Glu Ala		
65	70	75
80		

His Gly Leu Leu Gln Pro Cys Pro Gly Arg		
85	90	

<210> 88

<211> 25

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (18)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 88

Met Gln Ile Leu Leu Leu Phe Tyr Phe Ser Arg Phe Leu Ala Pro Ser		
1	5	10
15		

Arg Xaa Pro Thr Leu Glu Gly Val Gln		
20	25	

<210> 89

<211> 50

<212> PRT

<213> Homo sapiens

<400> 89

Met	Gly	Ala	Trp	Pro	Pro	Cys	Pro	Ala	Arg	Ser	Ser	Arg	Arg	Arg	Ser
1				5				10					15		

Leu	Ala	Ala	Trp	Cys	Val	Ala	Cys	Cys	Trp	Ser	Ser	Arg	Trp	Ala	Ala
				20			25					30			

Pro	Ser	Ser	Ser	Thr	His	Cys	Ala	Arg	Arg	Asn	Thr	Gly	Pro	Ser	Arg
				35			40				45				

Pro Arg

50

<210> 90

<211> 385

<212> PRT

<213> Homo sapiens

<400> 90

Met	Trp	Gly	Phe	Arg	Leu	Leu	Arg	Ser	Pro	Pro	Leu	Leu	Leu	Leu	Leu
1				5			10					15			

Pro	Gln	Leu	Gly	Ile	Gly	Asn	Ala	Ser	Ser	Cys	Ser	Gln	Ala	Arg	Thr
				20			25					30			

Met	Asn	Pro	Gly	Gly	Ser	Gly	Gly	Ala	Arg	Cys	Ser	Leu	Ser	Ala	Glu
				35			40					45			

Val	Arg	Arg	Arg	Gln	Cys	Leu	Gln	Leu	Ser	Thr	Val	Pro	Gly	Ala	Glu
				50			55			60					

Pro	Gln	Arg	Ser	Asn	Glu	Leu	Leu	Leu	Leu	Ala	Ala	Ala	Gly	Glu	Gly
				65			70			75			80		

Leu	Glu	Arg	Gln	Asp	Leu	Pro	Gly	Asp	Pro	Ala	Lys	Glu	Glu	Pro	Gln
				85			90					95			

Pro	Pro	Pro	Gln	His	His	Val	Leu	Tyr	Phe	Pro	Gly	Asp	Val	Gln	Asn
				100			105					110			

Tyr	His	Glu	Ile	Met	Thr	Arg	His	Pro	Glu	Asn	Tyr	Gln	Trp	Glu	Asn
				115			120				125				

Trp	Ser	Leu	Glu	Asn	Val	Ala	Thr	Ile	Leu	Ala	His	Arg	Phe	Pro	Asn
				130			135			140					

Ser	Tyr	Ile	Trp	Val	Ile	Lys	Cys	Ser	Arg	Met	His	Leu	His	Lys	Phe
				145			150			155			160		

Ser	Cys	Tyr	Asp	Asn	Phe	Val	Lys	Ser	Asn	Thr	Phe	Gly	Ala	Pro	Glu
				165			170				175				

His	Asn	Thr	Asp	Phe	Gly	Ala	Phe	Lys	His	Leu	Tyr	Met	Leu	Leu	Val
				180			185			190					

Asn	Ala	Phe	Asn	Leu	Ser	Gln	Asn	Ser	Leu	Ser	Lys	Ser	Leu	Asn	
				195			200			205					

Val	Trp	Asn	Lys	Asp	Ser	Ile	Ala	Ser	Asn	Cys	Arg	Ser	Ser	Pro	Ser
				210			215			220					

His	Thr	Thr	Asn	Gly	Cys	Gln	Gly	Glu	Lys	Val	Arg	Thr	Cys	Glu	Lys
				225			230			235		240			

BIOLOGICAL POLYMERS

Ser Asp Glu Ser Ala Met Ser Phe Tyr Pro Pro Ser Leu Asn Asp Ala
 245 250 255

Ser Phe Thr Leu Ile Gly Phe Ser Lys Gly Cys Val Val Leu Asn Gln
 260 265 270

Leu Leu Phe Glu Leu Lys Glu Ala Lys Lys Asp Lys Asn Ile Asp Ala
 275 280 285

Phe Ile Lys Ser Ile Arg Thr Met Tyr Trp Leu Asp Gly Gly His Ser
 290 295 300

Gly Gly Ser Asn Thr Trp Val Thr Tyr Pro Glu Val Leu Lys Glu Phe
 305 310 315 320

Ala Gln Thr Gly Ile Ile Val His Thr His Val Thr Pro Tyr Gln Val
 325 330 335

Arg Asp Pro Met Arg Ser Trp Ile Gly Lys Glu His Lys Lys Phe Val
 340 345 350

Gln Ile Leu Gly Asp Leu Gly Met Gln Val Thr Ser Gln Ile His Phe
 355 360 365

Thr Lys Glu Ala Pro Ser Ile Glu Asn His Phe Arg Val His Glu Val
 370 375 380

Phe
 385

<210> 91
 <211> 21
 <212> PRT
 <213> Homo sapiens

<220>
 <221> SITE
 <222> (6)
 <223> Xaa equals any of the naturally occurring L-amino acids

<400> 91
 Arg Pro Ser Trp Tyr Xaa Cys Arg Tyr Arg Ser Gly Ile Pro Gly Ser
 1 5 10 15

Thr His Ala Ser Gly
 20

<210> 92
 <211> 124
 <212> PRT
 <213> Homo sapiens

<400> 92
 Gln Leu Asp Gly Val Gly Leu Glu Ser Arg Ser Pro Gly Cys Ser Thr
 1 5 10 15

Trp Glu Lys Ala Asp Arg Val Arg Gly Pro Val Ala Gln Arg Ala Val
 20 25 30

Ala Ser Gly Ser Gly Lys Trp Arg Gln Glu Pro Ser Leu His Phe Ala
 35 40 45

Met Ser Phe Leu Ile Asp Ser Ser Ile Met Ile Thr Ser Gln Ile Leu

FINGERPRINT

50	55	60
----	----	----

Phe Phe Gly Phe Gly Trp Leu Phe Phe Met Arg Gln Leu Phe Lys Asp	65 70 75 80	
---	---	--

Tyr Glu Ile Arg Gln Tyr Val Val Gln Val Ile Phe Ser Val Thr Phe	85 90 95	
---	--	--

Ala Phe Ser Cys Thr Met Phe Glu Leu Ile Ile Phe Glu Ile Leu Gly	100 105 110	
---	---	--

Val Leu Asn Ser Ser Ser Arg Tyr Phe His Trp Lys	115 120	
---	-----------------------	--

<210> 93

<211> 43

<212> PRT

<213> Homo sapiens

<400> 93

Gln Leu Asp Gly Val Gly Leu Glu Ser Arg Ser Pro Gly Cys Ser Thr	1 5 10 15	
---	---	--

Trp Glu Lys Ala Asp Arg Val Arg Gly Pro Val Ala Gln Arg Ala Val	20 25 30	
---	--------------------------------------	--

Ala Ser Gly Ser Gly Lys Trp Arg Gln Glu Pro	35 40	
---	---------------------	--

<210> 94

<211> 44

<212> PRT

<213> Homo sapiens

<400> 94

Ser Leu His Phe Ala Met Ser Phe Leu Ile Asp Ser Ser Ile Met Ile	1 5 10 15	
---	---	--

Thr Ser Gln Ile Leu Phe Phe Gly Phe Gly Trp Leu Phe Phe Met Arg	20 25 30	
---	--------------------------------------	--

Gln Leu Phe Lys Asp Tyr Glu Ile Arg Gln Tyr Val	35 40	
---	---------------------	--

<210> 95

<211> 37

<212> PRT

<213> Homo sapiens

<400> 95

Val Gln Val Ile Phe Ser Val Thr Phe Ala Phe Ser Cys Thr Met Phe	1 5 10 15	
---	---	--

Glu Leu Ile Ile Phe Glu Ile Leu Gly Val Leu Asn Ser Ser Ser Arg	20 25 30	
---	--------------------------------------	--

Tyr Phe His Trp Lys	35	
---------------------	----	--

<210> 96

<211> 43

<212> PRT

<213> Homo sapiens

<400> 96

Pro	Arg	Val	Arg	Pro	Cys	Arg	Gly	Glu	Ser	Ala	Gly	Ala	Ala	Ala	Ala
1					5				10					15	

Ala	Val	Pro	Ser	Gln	Leu	Pro	Pro	Arg	Ala	Ala	Pro	Pro	Pro	Ala	Arg
					20			25					30		

Met	Leu	Glu	Glu	Ala	Gly	Glu	Val	Leu	Glu	Asn					
						40									

<210> 97

<211> 34

<212> PRT

<213> Homo sapiens

<400> 97

His	Lys	Leu	Leu	Thr	Glu	Ile	Gly	Lys	Val	Ala	Gly	Thr	Pro	Ser	Phe
1					5				10				15		

Leu	Leu	Thr	Phe	Tyr	Gly	Ala	Ser	Val	Gly	Ile	Val	Gly	Glu	Ser	Thr
					20			25				30			

Tyr Asn

<210> 98

<211> 25

<212> PRT

<213> Homo sapiens

<400> 98

Gly	Arg	Val	Glu	Gly	Pro	Pro	Ala	Trp	Glu	Ala	Ala	Pro	Trp	Pro	Ser
1					5				10				15		

Leu	Pro	Cys	Gly	Pro	Cys	Ile	Pro	Ile							
					20			25							

<210> 99

<211> 332

<212> PRT

<213> Homo sapiens

<400> 99

Asn	Leu	Trp	Gly	Leu	Gln	Pro	Arg	Pro	Pro	Ala	Ser	Leu	Leu	Gln	Pro
1					5					10			15		

Thr	Ala	Ser	Tyr	Ser	Arg	Lys	Asp	Lys	Asp	Gln	Arg	Lys	Gln	Gln	Ala
					20			25			30				

Met	Trp	Arg	Val	Pro	Ser	Asp	Leu	Lys	Met	Leu	Lys	Arg	Leu	Lys	Thr
						35		40			45				

Gln	Met	Ala	Glu	Val	Arg	Cys	Met	Lys	Thr	Asp	Val	Lys	Asn	Thr	Leu
					50			55			60				

Ser	Glu	Ile	Lys	Ser	Ser	Ser	Ala	Ala	Ser	Gly	Asp	Met	Gln	Thr	Ser
65					70				75			80			

Leu	Phe	Ser	Ala	Asp	Gln	Ala	Ala	Leu	Ala	Ala	Cys	Gly	Thr	Glu	Asn
					85			90			95				

Ser Gly Arg Leu Gln Asp Leu Gly Met Glu Leu Leu Ala Lys Ser Ser
 100 105 110
 Val Ala Asn Cys Tyr Ile Arg Asn Ser Thr Asn Lys Lys Ser Asn Ser
 115 120 125
 Pro Lys Pro Ala Arg Ser Ser Val Ala Gly Ser Leu Ser Leu Arg Arg
 130 135 140
 Ala Val Asp Pro Gly Glu Asn Ser Arg Ser Lys Gly Asp Cys Gln Thr
 145 150 155 160
 Leu Ser Glu Gly Ser Pro Gly Ser Ser Gln Ser Gly Ser Arg His Ser
 165 170 175
 Ser Pro Arg Ala Leu Ile His Gly Ser Ile Gly Asp Ile Leu Pro Lys
 180 185 190
 Thr Glu Asp Arg Gln Cys Lys Ala Leu Asp Ser Asp Ala Val Val Val
 195 200 205
 Ala Val Phe Ser Gly Leu Pro Ala Val Glu Lys Arg Arg Lys Met Val
 210 215 220
 Thr Leu Gly Ala Asn Ala Lys Gly Gly His Leu Glu Gly Leu Gln Met
 225 230 235 240
 Thr Asp Leu Glu Asn Asn Ser Glu Thr Gly Glu Leu Gln Pro Val Leu
 245 250 255
 Pro Glu Gly Ala Ser Ala Ala Pro Glu Glu Gly Met Ser Ser Asp Ser
 260 265 270
 Asp Ile Glu Cys Asp Thr Glu Asn Glu Glu Gln Glu His Thr Ser
 275 280 285
 Val Gly Phe His Asp Ser Phe Met Val Met Thr Gln Pro Pro Asp
 290 295 300
 Glu Asp Thr His Ser Ser Phe Pro Asp Gly Glu Gln Ile Gly Pro Glu
 305 310 315 320
 Asp Leu Ser Phe Asn Thr Asp Glu Asn Ser Gly Arg
 325 330

<210> 100
 <211> 40
 <212> PRT
 <213> Homo sapiens

<400> 100
 Asn Leu Trp Gly Leu Gln Pro Arg Pro Pro Ala Ser Leu Leu Gln Pro
 1 5 10 15
 Thr Ala Ser Tyr Ser Arg Lys Asp Lys Asp Gln Arg Lys Gln Gln Ala
 20 25 30
 Met Trp Arg Val Pro Ser Asp Leu
 35 40

<210> 101
 <211> 41
 <212> PRT
 <213> Homo sapiens

<400> 101

Lys	Met	Leu	Lys	Arg	Leu	Lys	Thr	Gln	Met	Ala	Glu	Val	Arg	Cys	Met
1					5				10					15	

Lys	Thr	Asp	Val	Lys	Asn	Thr	Leu	Ser	Glu	Ile	Lys	Ser	Ser	Ser	Ala
			20					25					30		

Ala	Ser	Gly	Asp	Met	Gln	Thr	Ser	Leu							
				35			40								

<210> 102

<211> 41

<212> PRT

<213> Homo sapiens

<400> 102

Phe	Ser	Ala	Asp	Gln	Ala	Ala	Leu	Ala	Ala	Cys	Gly	Thr	Glu	Asn	Ser
1					5				10				15		

Gly	Arg	Leu	Gln	Asp	Leu	Gly	Met	Glu	Leu	Leu	Ala	Lys	Ser	Ser	Val
		20				25						30			

Ala	Asn	Cys	Tyr	Ile	Arg	Asn	Ser	Thr							
		35				40									

<210> 103

<211> 42

<212> PRT

<213> Homo sapiens

<400> 103

Asn	Lys	Lys	Ser	Asn	Ser	Pro	Lys	Pro	Ala	Arg	Ser	Ser	Val	Ala	Gly
1					5				10				15		

Ser	Leu	Ser	Leu	Arg	Arg	Ala	Val	Asp	Pro	Gly	Glu	Asn	Ser	Arg	Ser
			20				25					30			

Lys	Gly	Asp	Cys	Gln	Thr	Leu	Ser	Glu	Gly						
			35				40								

<210> 104

<211> 44

<212> PRT

<213> Homo sapiens

<400> 104

Ser	Pro	Gly	Ser	Ser	Gln	Ser	Gly	Ser	Arg	His	Ser	Ser	Pro	Arg	Ala
1					5				10				15		

Leu	Ile	His	Gly	Ser	Ile	Gly	Asp	Ile	Leu	Pro	Lys	Thr	Glu	Asp	Arg
			20			25						30			

Gln	Cys	Lys	Ala	Leu	Asp	Ser	Asp	Ala	Val	Val	Val				
			35				40								

<210> 105

<211> 42

<212> PRT

<213> Homo sapiens

<400> 105

Ala Val Phe Ser Gly Leu Pro Ala Val Glu Lys Arg Arg Lys Met Val
 1 5 10 15

Thr Leu Gly Ala Asn Ala Lys Gly Gly His Leu Glu Gly Leu Gln Met
 20 25 30

Thr Asp Leu Glu Asn Asn Ser Glu Thr Gly
 35 40

<210> 106

<211> 44

<212> PRT

<213> Homo sapiens

<400> 106

Glu Leu Gln Pro Val Leu Pro Glu Gly Ala Ser Ala Ala Pro Glu Glu
 1 5 10 15

Gly Met Ser Ser Asp Ser Asp Ile Glu Cys Asp Thr Glu Asn Glu Glu
 20 25 30

Gln Glu Glu His Thr Ser Val Gly Gly Phe His Asp
 35 40

<210> 107

<211> 38

<212> PRT

<213> Homo sapiens

<400> 107

Ser Phe Met Val Met Thr Gln Pro Pro Asp Glu Asp Thr His Ser Ser
 1 5 10 15

Phe Pro Asp Gly Glu Gln Ile Gly Pro Glu Asp Leu Ser Phe Asn Thr
 20 25 30

Asp Glu Asn Ser Gly Arg
 35

<210> 108

<211> 33

<212> PRT

<213> Homo sapiens

<400> 108

His Ala Ser Gly Trp Ala Cys Leu Gly Arg Arg Arg Cys Arg Gly Phe
 1 5 10 15

Ser Phe Arg Pro Leu His Gly Gly Cys Leu Thr Gly Ser Pro Ser
 20 25 30

Gly

<210> 109

<211> 476

<212> PRT

<213> Homo sapiens

<400> 109

His Ala Ser Gly Trp Ala Cys Leu Gly Arg Arg Arg Cys Arg Gly Phe
 1 5 10 15

Ser Phe Arg Pro Leu His Gly Gly Cys Leu Thr Gly Ser Pro Ser
 20 25 30

Gly Met Arg Leu Thr Arg Lys Arg Leu Cys Ser Phe Leu Ile Ala Leu
 35 40 45

Tyr Cys Leu Phe Ser Leu Tyr Ala Ala Tyr His Val Phe Phe Gly Arg
 50 55 60

Arg Arg Gln Ala Pro Ala Gly Ser Pro Arg Gly Leu Arg Lys Gly Ala
 65 70 75 80

Ala Pro Ala Arg Glu Arg Arg Gly Arg Glu Gln Ser Thr Leu Glu Ser
 85 90 95

Glu Glu Trp Asn Pro Trp Glu Gly Asp Glu Lys Asn Glu Gln Gln His
 100 105 110

Arg Phe Lys Thr Ser Leu Gln Ile Leu Asp Lys Ser Thr Lys Gly Lys
 115 120 125

Thr Asp Leu Ser Val Gln Ile Trp Gly Lys Ala Ala Ile Gly Leu Tyr
 130 135 140

Leu Trp Glu His Ile Phe Glu Gly Leu Leu Asp Pro Ser Asp Val Thr
 145 150 155 160

Ala Gln Trp Arg Glu Gly Lys Ser Ile Val Gly Arg Thr Gln Tyr Ser
 165 170 175

Phe Ile Thr Gly Pro Ala Val Ile Pro Gly Tyr Phe Ser Val Asp Val
 180 185 190

Asn Asn Val Val Leu Ile Leu Asn Gly Arg Glu Lys Ala Lys Ile Phe
 195 200 205

Tyr Ala Thr Gln Trp Leu Leu Tyr Ala Gln Asn Leu Val Gln Ile Gln
 210 215 220

Lys Leu Gln His Leu Ala Val Val Leu Leu Gly Asn Glu His Cys Asp
 225 230 235 240

Asn Glu Trp Ile Asn Pro Phe Leu Lys Arg Asn Gly Gly Phe Val Glu
 245 250 255

Leu Leu Phe Ile Ile Tyr Asp Ser Pro Trp Ile Asn Asp Val Asp Val
 260 265 270

Phe Gln Trp Pro Leu Gly Val Ala Thr Tyr Arg Asn Phe Pro Val Val
 275 280 285

Glu Ala Ser Trp Ser Met Leu His Asp Glu Arg Pro Tyr Leu Cys Asn
 290 295 300

Phe Leu Gly Thr Ile Tyr Glu Asn Ser Ser Arg Gln Ala Leu Met Asn
 305 310 315 320

Ile Leu Lys Lys Asp Gly Asn Asp Lys Leu Cys Trp Val Ser Ala Arg
 325 330 335

Glu His Trp Gln Pro Gln Glu Thr Asn Glu Ser Leu Lys Asn Tyr Gln
 340 345 350

Asp Ala Leu Leu Gln Ser Asp Leu Thr Leu Cys Pro Val Gly Val Asn
 355 360 365

Thr Glu Cys Tyr Arg Ile Tyr Glu Ala Cys Ser Tyr Gly Ser Ile Pro
 370 375 380

Val Val Glu Asp Val Met Thr Ala Gly Asn Cys Gly Asn Thr Ser Val
 385 390 395 400

His His Gly Ala Pro Leu Gln Leu Leu Lys Ser Met Gly Ala Pro Phe
 405 410 415

Ile Phe Ile Lys Asn Trp Lys Glu Leu Pro Ala Val Leu Glu Lys Glu
 420 425 430

Lys Thr Ile Ile Leu Gln Glu Lys Ile Glu Arg Arg Lys Met Leu Leu
 435 440 445

Gln Trp Tyr Gln His Phe Lys Thr Glu Leu Lys Met Lys Phe Thr Asn
 450 455 460

Ile Leu Glu Ser Ser Phe Leu Met Asn Asn Lys Ser
 465 470 475

<210> 110

<211> 68

<212> PRT

<213> Homo sapiens

<400> 110

Pro Gly Asn Gly Phe Val Val Trp Ser Leu Ala Gly Trp Arg Pro Ala
 1 5 10 15

Arg Gly Arg Pro Leu Ala Ala Thr Leu Val Leu His Leu Ala Leu Ala
 20 25 30

Asp Gly Ala Val Leu Leu Leu Thr Pro Leu Phe Val Ala Phe Leu Thr
 35 40 45

Arg Gln Ala Trp Pro Leu Gly Gln Ala Gly Cys Lys Ala Val Tyr Tyr
 50 55 60

Val Cys Ala Leu
 65

<210> 111

<211> 85

<212> PRT

<213> Homo sapiens

<400> 111

Phe Gly Leu Leu Trp Ala Pro Tyr His Ala Val Asn Leu Gln Ala
 1 5 10 15

Val Ala Ala Leu Ala Pro Pro Glu Gly Ala Leu Ala Lys Leu Gly Gly
 20 25 30

Ala Gly Gln Ala Ala Arg Ala Gly Thr Thr Ala Leu Ala Phe Phe Ser
 35 40 45

Ser Ser Val Asn Pro Val Leu Tyr Val Phe Thr Ala Gly Asp Leu Leu
 50 55 60

Pro Arg Ala Gly Pro Arg Phe Leu Thr Arg Leu Phe Glu Gly Ser Gly
 65 70 75 80

Glu Ala Arg Gly Gly
85

<210> 112
<211> 72
<212> PRT
<213> Homo sapiens

<400> 112
Tyr Arg His Leu Trp Arg Asp Arg Val Cys Gln Leu Cys His Pro Ser
1 5 10 15

Pro Val His Ala Ala Ala His Leu Ser Leu Glu Thr Leu Thr Ala Phe
20 25 30

Val Leu Pro Phe Gly Leu Met Leu Gly Cys Tyr Ser Val Thr Leu Ala
35 40 45

Arg Leu Arg Gly Ala Arg Trp Gly Ser Gly Arg His Gly Ala Arg Val
50 55 60

Gly Arg Leu Val Ser Ala Ile Val
65 70

<210> 113
<211> 172
<212> PRT
<213> Homo sapiens

<400> 113
Ala Pro Arg Leu Leu Leu Asn Leu Ser Ala Ser Pro Gly Pro Gln
1 5 10 15

Ser Cys Leu His Pro Ala Trp Glu Arg Asp Thr Ala Glu Leu Glu Asp
20 25 30

Phe Ala Gly His Arg His Ser Leu Pro Ala Ala Gly Gly Ala Ala Gly
35 40 45

Ala Ala Trp Gln Arg Leu Arg Gly Val Glu Leu Gly Gly Leu Ala Ala
50 55 60

Cys Thr Gly Ala Thr Ala Gly Gly His Ala Cys Ala Ala Pro Gly Ala
65 70 75 80

Gly Arg Arg Arg Gly Ala Ala Ala His Ala Ala Leu Cys Gly Leu Pro
85 90 95

Asp Pro Ala Ser Leu Ala Ala Gly Pro Gly Gly Leu Gln Gly Gly Val
100 105 110

Leu Arg Val Arg Ala Gln His Val Arg Gln Arg Ala Ala His Arg Pro
115 120 125

Ala Gln Pro Ala Ala Leu Pro Arg Gly His Pro Pro Leu Pro Gly Ala
130 135 140

Ser Val Arg Ser Pro Ala Leu Ala Arg Arg Leu Leu Leu Ala Val Trp
145 150 155 160

Leu Ala Ala Leu Leu Leu Ala Val Pro Ala Ala Val
165 170

<210> 114
<211> 89
<212> PRT
<213> Homo sapiens

<400> 114
Pro Ser Ser Ala Cys Ser Gly Pro Pro Thr Thr Gln Ser Thr Phe Cys
1 5 10 15
Arg Arg Ser Gln Arg Trp Leu His Arg Lys Gly Pro Trp Arg Ser Trp
20 25 30
Ala Glu Pro Ala Arg Arg Glu Arg Glu Leu Arg Pro Trp Pro Ser
35 40 45
Ser Val Leu Ala Ser Thr Arg Cys Ser Thr Ser Ser Pro Leu Glu Ile
50 55 60
Cys Cys Pro Gly Gln Val Pro Val Ser Ser Arg Gly Ser Ser Lys Ala
65 70 75 80
Leu Gly Arg Pro Glu Gly Ala Ala Ala
85

<210> 115
<211> 149
<212> PRT
<213> Homo sapiens

<400> 115
Pro Gly Lys Pro Gly Arg Trp Ala Arg Arg Ala Ala Arg Arg Cys Thr
1 5 10 15
Thr Cys Ala Arg Ser Ala Cys Thr Pro Ala Cys Cys Ser Pro Ala Cys
20 25 30
Ser Ala Cys Ser Ala Ala Ser Arg Ser Pro Ala Pro Ser Trp Arg Leu
35 40 45
Gly Ala Gln Pro Gly Pro Gly Pro Pro Pro Ala Ala Gly Gly Leu Ala
50 55 60
Gly Arg Pro Val Ala Arg Arg Pro Gly Arg Arg Leu Pro Pro Pro Val
65 70 75 80
Glu Gly Pro Arg Met Pro Ala Val Pro Pro Val Ala Gly Pro Arg Arg
85 90 95
Arg Pro Pro Glu Pro Gly Asp Ser Asp Arg Phe Arg Ala Ser Phe Arg
100 105 110
Ala Asp Ala Arg Leu Leu Gln Arg Asp Ala Gly Thr Ala Ala Gly Arg
115 120 125
Pro Leu Gly Leu Arg Ala Ala Arg Gly Ala Gly Gly Pro Ala Gly Glu
130 135 140
Arg His Arg Ala Phe
145

<210> 116
<211> 77
<212> PRT
<213> Homo sapiens

<400> 116
Met Tyr Ala Ser Val Leu Leu Thr Gly Leu Leu Ser Leu Gln Arg Cys
1 5 10 15

Leu Ala Val Thr Arg Pro Phe Leu Ala Pro Arg Cys Ala Ala Arg Pro
20 25 30

Trp Pro Ala Ala Cys Cys Trp Arg Ser Gly Trp Pro Pro Cys Cys Ser
35 40 45

Pro Ser Arg Pro Pro Ser Thr Ala Thr Cys Gly Gly Thr Ala Tyr Ala
50 55 60

Ser Cys Ala Thr Arg Arg Ser Thr Pro Pro Pro Thr
65 70 75

<210> 117

<211> 163

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (39)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 117

Val Ser Pro Gln Lys Ala Ala Ser Leu Val Arg Ile Arg Trp Arg His
1 5 10 15

Val Arg Pro Ser Pro Pro Ser Ala Ser Arg Leu Arg Arg Leu Pro Pro
20 25 30

Arg His Leu Thr Val Ala Xaa Arg Pro Arg Arg Glu Gly Val Gly Thr
35 40 45

Gly Ser Arg Ala Val Leu Cys Ile Leu Ala Thr Cys Gly Ser Lys Met
50 55 60

Ser Asp Ile Gly Asp Trp Phe Arg Ser Ile Pro Ala Ile Thr Arg Tyr
65 70 75 80

Trp Phe Ala Ala Thr Val Ala Val Pro Leu Val Gly Lys Leu Gly Leu
85 90 95

Ile Ser Pro Ala Tyr Leu Phe Leu Trp Pro Glu Ala Phe Leu Tyr Arg
100 105 110

Phe Gln Ile Trp Arg Pro Ile Thr Ala Thr Phe Tyr Phe Pro Val Gly
115 120 125

Pro Gly Thr Gly Phe Leu Tyr Leu Val Asn Leu Tyr Phe Leu Tyr Gln
130 135 140

Tyr Ser Thr Arg Leu Glu Thr Gly Ala Phe Asp Gly Arg Pro Ala Asp
145 150 155 160

Tyr Leu Phe

<210> 118

<211> 43

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (39)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 118

Val	Ser	Pro	Gln	Lys	Ala	Ala	Ser	Leu	Val	Arg	Ile	Arg	Trp	Arg	His
1				5				10					15		

Val	Arg	Pro	Ser	Pro	Pro	Ser	Ala	Ser	Arg	Leu	Arg	Arg	Leu	Pro	Pro
	20					25				30					

Arg	His	Leu	Thr	Val	Ala	Xaa	Arg	Pro	Arg	Arg
	35					40				

<210> 119

<211> 44

<212> PRT

<213> Homo sapiens

<400> 119

Glu	Gly	Val	Gly	Thr	Gly	Ser	Arg	Ala	Val	Leu	Cys	Ile	Leu	Ala	Thr
1				5				10				15			

Cys	Gly	Ser	Lys	Met	Ser	Asp	Ile	Gly	Asp	Trp	Phe	Arg	Ser	Ile	Pro
	20					25				30					

Ala	Ile	Thr	Arg	Tyr	Trp	Phe	Ala	Ala	Thr	Val	Ala
	35					40					

<210> 120

<211> 45

<212> PRT

<213> Homo sapiens

<400> 120

Val	Pro	Leu	Val	Gly	Lys	Leu	Gly	Leu	Ile	Ser	Pro	Ala	Tyr	Leu	Phe
1				5				10			15				

Leu	Trp	Pro	Glu	Ala	Phe	Leu	Tyr	Arg	Phe	Gln	Ile	Trp	Arg	Pro	Ile
	20				25				30						

Thr	Ala	Thr	Phe	Tyr	Phe	Pro	Val	Gly	Pro	Gly	Thr	Gly
	35					40			45			

<210> 121

<211> 31

<212> PRT

<213> Homo sapiens

<400> 121

Phe	Leu	Tyr	Leu	Val	Asn	Leu	Tyr	Phe	Leu	Tyr	Gln	Tyr	Ser	Thr	Arg
1				5				10			15				

Leu	Glu	Thr	Gly	Ala	Phe	Asp	Gly	Arg	Pro	Ala	Asp	Tyr	Leu	Phe
	20				25				30					

<210> 122

<211> 314

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (39)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (300)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 122

Val	Ser	Pro	Gln	Lys	Ala	Ala	Ser	Leu	Val	Arg	Ile	Arg	Trp	Arg	His
1				5					10				15		

Val	Arg	Pro	Ser	Pro	Pro	Ser	Ala	Ser	Arg	Leu	Arg	Arg	Leu	Pro	Pro
	20					25						30			

Arg	His	Leu	Thr	Val	Ala	Xaa	Arg	Pro	Arg	Arg	Glu	Gly	Val	Gly	Thr
	35					40					45				

Gly	Ser	Arg	Ala	Val	Leu	Cys	Ile	Leu	Ala	Thr	Cys	Gly	Ser	Lys	Met
	50				55					60					

Ser	Asp	Ile	Gly	Asp	Trp	Phe	Arg	Ser	Ile	Pro	Ala	Ile	Thr	Arg	Tyr
	65				70				75				80		

Trp	Phe	Ala	Ala	Thr	Val	Ala	Val	Pro	Leu	Val	Gly	Lys	Leu	Gly	Leu
				85				90				95			

Ile	Ser	Pro	Ala	Tyr	Leu	Phe	Leu	Trp	Pro	Glu	Ala	Phe	Leu	Tyr	Arg
	100					105					110				

Phe	Gln	Ile	Trp	Arg	Pro	Ile	Thr	Ala	Thr	Phe	Tyr	Phe	Pro	Val	Gly
	115					120					125				

Pro	Gly	Thr	Gly	Phe	Leu	Tyr	Leu	Val	Asn	Leu	Tyr	Phe	Leu	Tyr	Gln
	130				135					140					

Tyr	Ser	Thr	Arg	Leu	Glu	Thr	Gly	Ala	Phe	Asp	Gly	Arg	Pro	Ala	Asp
	145				150				155			160			

Tyr	Leu	Phe	Met	Leu	Leu	Phe	Asn	Trp	Ile	Cys	Ile	Val	Ile	Thr	Gly
	165					170						175			

Leu	Ala	Met	Asp	Met	Gln	Leu	Leu	Met	Ile	Pro	Leu	Ile	Met	Ser	Val
				180				185				190			

Leu	Tyr	Val	Trp	Ala	Gln	Leu	Asn	Arg	Asp	Met	Ile	Val	Ser	Phe	Trp
	195					200					205				

Phe	Gly	Thr	Arg	Phe	Lys	Ala	Cys	Tyr	Leu	Pro	Trp	Val	Ile	Leu	Gly
	210				215					220					

Phe	Asn	Tyr	Ile	Ile	Gly	Gly	Ser	Val	Ile	Asn	Glu	Leu	Ile	Gly	Asn
	225				230				235			240			

Leu	Val	Gly	His	Leu	Tyr	Phe	Phe	Leu	Met	Phe	Arg	Tyr	Pro	Met	Asp
				245				250				255			

Leu	Gly	Gly	Arg	Asn	Phe	Leu	Ser	Thr	Pro	Gln	Phe	Leu	Tyr	Arg	Trp
	260					265				270					

Leu	Pro	Ser	Arg	Arg	Gly	Gly	Val	Ser	Gly	Phe	Gly	Val	Pro	Pro	Ala
				275			280			285					

Ser Met Arg Arg Ala Ala Asp Gln Asn Gly Gly Xaa Gly Arg His Asn
 290 295 300

Trp Gly Gln Gly Phe Arg Leu Gly Asp Gln
 305 310

<210> 123
 <211> 172
 <212> PRT
 <213> Homo sapiens

<400> 123
 Ala Ala Arg Gly Leu Tyr Asp Tyr Gly Ser Gly Leu Cys Trp Ala Trp
 1 5 10 15

Ala Ala Arg Pro Ser Ser Phe Val Ser Gly Ser Ser Arg Glu Ala Pro
 20 25 30

Ser Ala Thr Ala Ala Pro Ser Trp Thr Arg Ser Val Thr Ala Ala Ser
 35 40 45

Ala Ala Ala Ala Ser Arg Met Ala Met Cys Ser Ser Thr Arg Pro Ala
 50 55 60

Arg Leu Leu Leu Pro Pro Pro Thr Thr Pro Ser Pro Arg Pro Arg Thr
 65 70 75 80

Leu Thr Pro Val Asp Pro Cys Ser Gly Gly Cys Arg Leu Thr Ser Lys
 85 90 95

Asp His Thr Pro Arg Val Gly Thr Gly Gln Gly Arg Gly Gln Gly Thr
 100 105 110

Phe Trp Leu Ser Arg Asp Glu Gly Tyr Phe Ala Glu Asp Thr Arg Ile
 115 120 125

Gly His Phe Gln Asp Ser Leu Pro Ala Pro Leu Pro Leu Pro Ser Phe
 130 135 140

Glu Ala Leu Ile Lys His Lys Ser Gly Ser Pro Gly Ala Val Cys Gln
 145 150 155 160

Arg Trp Ala Gly Gly Glu Thr Asp Arg Gly Cys Gly
 165 170

<210> 124
 <211> 39
 <212> PRT
 <213> Homo sapiens

<400> 124
 Ala Ala Arg Gly Leu Tyr Asp Tyr Gly Ser Gly Leu Cys Trp Ala Trp
 1 5 10 15

Ala Ala Arg Pro Ser Ser Phe Val Ser Gly Ser Ser Arg Glu Ala Pro
 20 25 30

Ser Ala Thr Ala Ala Pro Ser
 35

<210> 125
 <211> 39

<212> PRT
<213> Homo sapiens

<400> 125
Trp Thr Arg Ser Val Thr Ala Ala Ser Ala Ala Ala Ser Arg Met
1 5 10 15
Ala Met Cys Ser Ser Thr Arg Pro Ala Arg Leu Leu Leu Pro Pro Pro
20 25 30
Thr Thr Pro Ser Pro Arg Pro
35

<210> 126
<211> 41
<212> PRT
<213> Homo sapiens

<400> 126
Arg Thr Leu Thr Pro Val Asp Pro Cys Ser Gly Gly Cys Arg Leu Thr
1 5 10 15
Ser Lys Asp His Thr Pro Arg Val Gly Thr Gly Gln Gly Arg Gly Gln
20 25 30
Gly Thr Phe Trp Leu Ser Arg Asp Glu
35 40

<210> 127
<211> 42
<212> PRT
<213> Homo sapiens

<400> 127
Gly Tyr Phe Ala Glu Asp Thr Arg Ile Gly His Phe Gln Asp Ser Leu
1 5 10 15
Pro Ala Pro Leu Pro Leu Pro Ser Phe Glu Ala Leu Ile Lys His Lys
20 25 30
Ser Gly Ser Pro Gly Ala Val Cys Gln Arg
35 40

<210> 128
<211> 11
<212> PRT
<213> Homo sapiens

<400> 128
Trp Ala Gly Gly Glu Thr Asp Arg Gly Cys Gly
1 5 10

<210> 129
<211> 21
<212> PRT
<213> Homo sapiens

<400> 129
Ala Pro Val Ser Ile Ile Pro Phe Cys Val Cys Pro Cys Val Gln Asn
1 5 10 15
Val Leu Leu Pro Leu

<210> 130
 <211> 103
 <212> PRT
 <213> Homo sapiens

<220>
 <221> SITE
 <222> (42)
 <223> Xaa equals any of the naturally occurring L-amino acids

<400> 130
 Met Phe Leu Leu Asp Gly Ser Asn Trp Ile Leu His Cys Pro Ile Thr
 1 5 10 15

Leu Arg Thr Tyr Thr Asn Leu Ser Ile Lys Phe Ser Lys Cys Ser
 20 25 30

Val Asn Ile Tyr Ser Leu Glu Asn Lys Xaa Phe Phe Ser Lys Lys Lys
 35 40 45

Lys Lys Lys Arg Lys Glu Asn Asn Pro Gly Asn Lys Ile Ser Asn Gly
 50 55 60

Glu Ile Ser Val Thr Leu Thr Gly Ile Cys Lys Ile Phe Trp Lys Arg
 65 70 75 80

Ala Pro Phe Phe His Phe Gln Ser Tyr Leu Trp Cys Ser Tyr Arg
 85 90 95

Val Gln Thr Ser Arg Ser Phe
 100

<210> 131
 <211> 211
 <212> PRT
 <213> Homo sapiens

<400> 131
 Gly Arg Gly Pro Thr Ala Pro Ala Val Arg Asp Pro Asn Ala Ile Pro
 1 5 10 15

Ala Gln Arg Ser Met Ala Ala Thr Asp Ser Met Arg Gly Glu Ala Pro
 20 25 30

Gly Ala Glu Thr Pro Ser Leu Arg His Arg Gly Gln Ala Ala Gln Pro
 35 40 45

Glu Pro Ser Thr Gly Phe Thr Ala Thr Pro Pro Ala Pro Asp Ser Pro
 50 55 60

Gln Glu Pro Leu Val Leu Arg Leu Lys Phe Leu Asn Asp Ser Glu Gln
 65 70 75 80

Val Ala Arg Ala Trp Pro His Asp Thr Ile Gly Ser Leu Lys Arg Thr
 85 90 95

Gln Phe Pro Gly Arg Glu Gln Gln Val Arg Leu Ile Tyr Gln Gly Gln
 100 105 110

Leu Leu Gly Asp Asp Thr Gln Thr Leu Gly Ser Leu His Leu Pro Pro
 115 120 125

Asn Cys Val Leu His Cys His Val Ser Thr Arg Val Gly Pro Pro Asn
 130 135 140
 Pro Pro Cys Pro Pro Gly Ser Glu Pro Gly Pro Ser Gly Leu Glu Ile
 145 150 155 160
 Gly Ser Leu Leu Leu Pro Leu Leu Leu Leu Leu Leu Leu Trp
 165 170 175
 Tyr Cys Gln Ile Gln Tyr Arg Pro Phe Phe Pro Leu Thr Ala Thr Leu
 180 185 190
 Gly Leu Ala Gly Phe Thr Leu Leu Leu Ser Leu Leu Ala Phe Ala Met
 195 200 205
 Tyr Arg Pro
 210

<210> 132
 <211> 42
 <212> PRT
 <213> Homo sapiens

<400> 132
 Gly Arg Gly Pro Thr Ala Pro Ala Val Arg Asp Pro Asn Ala Ile Pro
 1 5 10 15

Ala Gln Arg Ser Met Ala Ala Thr Asp Ser Met Arg Gly Glu Ala Pro
 20 25 30

Gly Ala Glu Thr Pro Ser Leu Arg His Arg
 35 40

<210> 133
 <211> 43
 <212> PRT
 <213> Homo sapiens

<400> 133
 Gly Gln Ala Ala Gln Pro Glu Pro Ser Thr Gly Phe Thr Ala Thr Pro
 1 5 10 15

Pro Ala Pro Asp Ser Pro Gln Glu Pro Leu Val Leu Arg Leu Lys Phe
 20 25 30

Leu Asn Asp Ser Glu Gln Val Ala Arg Ala Trp
 35 40

<210> 134
 <211> 46
 <212> PRT
 <213> Homo sapiens

<400> 134
 Pro His Asp Thr Ile Gly Ser Leu Lys Arg Thr Gln Phe Pro Gly Arg
 1 5 10 15

Glu Gln Gln Val Arg Leu Ile Tyr Gln Gly Gln Leu Leu Gly Asp Asp
 20 25 30

Thr Gln Thr Leu Gly Ser Leu His Leu Pro Pro Asn Cys Val
 35 40 45

<210> 135
<211> 46
<212> PRT
<213> Homo sapiens

<400> 135
Leu His Cys His Val Ser Thr Arg Val Gly Pro Pro Asn Pro Pro Cys
1 5 10 15
Pro Pro Gly Ser Glu Pro Gly Pro Ser Gly Leu Glu Ile Gly Ser Leu
20 25 30
Leu Leu Pro Leu Leu Leu Leu Leu Leu Leu Trp Tyr
35 40 45

<210> 136
<211> 34
<212> PRT
<213> Homo sapiens

<400> 136
Cys Gln Ile Gln Tyr Arg Pro Phe Phe Pro Leu Thr Ala Thr Leu Gly
1 5 10 15
Leu Ala Gly Phe Thr Leu Leu Ser Leu Leu Ala Phe Ala Met Tyr
20 25 30
Arg Pro

<210> 137
<211> 394
<212> PRT
<213> Homo sapiens

<400> 137
Thr Arg Pro Gly Ile Trp Gly Gln Ala Ala Arg Gly Ala Trp Arg Asp
1 5 10 15
Phe Gln Arg Arg Gly Leu Gly Ser Ala Ala Gly Lys Ala Gly Ala
20 25 30
Met Thr Leu Ile Glu Gly Val Gly Asp Glu Val Thr Val Leu Phe Ser
35 40 45
Val Leu Ala Cys Leu Leu Val Leu Ala Leu Ala Trp Val Ser Thr His
50 55 60
Thr Ala Glu Gly Gly Asp Pro Leu Pro Gln Pro Ser Gly Thr Pro Thr
65 70 75 80
Pro Ser Gln Pro Ser Ala Ala Met Ala Ala Thr Asp Ser Met Arg Gly
85 90 95
Glu Ala Pro Gly Ala Glu Thr Pro Ser Leu Arg His Arg Gly Gln Ala
100 105 110
Ala Gln Pro Glu Pro Ser Thr Gly Phe Thr Ala Thr Pro Pro Ala Pro
115 120 125
Asp Ser Pro Gln Glu Pro Leu Val Leu Arg Leu Lys Phe Leu Asn Asp
130 135 140

Ser Glu Gln Val Ala Arg Ala Trp Pro His Asp Thr Ile Gly Ser Leu
 145 150 155 160
 Lys Arg Thr Gln Phe Pro Gly Arg Glu Gln Gln Val Arg Leu Ile Tyr
 165 170 175
 Gln Gly Gln Leu Leu Gly Asp Asp Thr Gln Thr Leu Gly Ser Leu His
 180 185 190
 Leu Pro Pro Asn Cys Val Leu His Cys His Val Ser Thr Arg Val Gly
 195 200 205
 Pro Pro Asn Pro Pro Cys Pro Pro Gly Ser Glu Pro Arg Pro Leu Arg
 210 215 220
 Ala Gly Asn Arg Gln Pro Ala Ala Ala Pro Ala Ala Pro Ala Val Ala
 225 230 235 240
 Ala Ala Leu Val Leu Pro Asp Pro Val Pro Ala Leu Leu Ser Pro Asp
 245 250 255
 Arg His Ser Gly Pro Gly Arg Leu His Pro Ala Pro Gln Ser Pro Gly
 260 265 270
 Leu Cys His Val Pro Pro Val Val Pro Pro Arg Ala Leu Gly Ser Val
 275 280 285
 Ala Gly Pro Ser Gly Pro Cys Ser Pro Arg Arg Gly Gly Ser Cys Cys
 290 295 300
 Leu Pro Arg Pro Ala Ser Pro Ala Cys Leu Phe Pro Leu Pro Trp Ser
 305 310 315 320
 Pro Ala Leu Arg Arg Gly Leu Pro Gly Leu Ala Glu Ala Pro Pro
 325 330 335
 Cys Asp Arg Arg Gly Ser Gly Pro Pro Pro Gly Ala Ala Asp Pro Gln
 340 345 350
 Pro Ala Leu Gly Val Gly Ser Ser Gly Ser Gly Ile Cys Cys Arg Cys
 355 360 365
 Leu Gly Pro Gly Gln Ser Arg Ala Ala Pro Gly Ala Arg Leu Ser Val
 370 375 380
 Leu Pro Glu Asp Pro Ala Ala Ser Asn Pro
 385 390

<210> 138
 <211> 266
 <212> PRT
 <213> Homo sapiens

<400> 138
 Met Asp Arg Arg Phe Lys Leu Trp Glu Val Phe Gly Glu Lys Cys Glu
 1 5 10 15
 Phe Lys Gly Ser Leu Ser Gly Ser Asn Ala Gly Ile Thr Ser Ile Glu
 20 25 30
 Phe Asp Ser Ala Gly Ser Tyr Leu Leu Ala Ala Ser Asn Asp Phe Ala
 35 40 45
 Ser Arg Ile Trp Thr Val Asp Asp Tyr Arg Leu Arg His Thr Leu Thr
 50 55 60

Gly His Ser Gly Lys Val Leu Ser Ala Lys Phe Leu Leu Asp Asn Ala
 65 70 75 80
 Arg Ile Val Ser Gly Ser His Asp Arg Thr Leu Lys Leu Trp Asp Leu
 85 90 95
 Arg Ser Lys Val Cys Ile Lys Thr Val Phe Ala Gly Ser Ser Cys Asn
 100 105 110
 Asp Ile Val Cys Thr Glu Gln Cys Val Met Ser Gly His Phe Asp Lys
 115 120 125
 Lys Ile Arg Phe Trp Asp Ile Arg Ser Glu Ser Ile Val Arg Glu Met
 130 135 140
 Glu Leu Leu Gly Lys Ile Thr Ala Leu Asp Leu Asn Pro Glu Arg Thr
 145 150 155 160
 Glu Leu Leu Ser Cys Ser Arg Asp Asp Leu Leu Lys Val Ile Asp Leu
 165 170 175
 Arg Thr Asn Ala Ile Lys Gln Thr Phe Ser Ala Pro Gly Phe Lys Cys
 180 185 190
 Gly Ser Asp Trp Thr Arg Val Val Phe Ser Pro Asp Gly Ser Tyr Val
 195 200 205
 Ala Ala Gly Ser Ala Glu Gly Ser Leu Tyr Ile Trp Ser Val Leu Thr
 210 215 220
 Gly Lys Val Glu Lys Val Leu Ser Lys Gln His Ser Ser Ser Ile Asn
 225 230 235 240
 Ala Val Ala Trp Ser Pro Ser Gly Ser His Val Val Ser Val Asp Lys
 245 250 255
 Gly Cys Lys Ala Val Leu Trp Ala Gln Tyr
 260 265

<210> 139

<211> 53

<212> PRT

<213> Homo sapiens

<400> 139

Met Asp Arg Arg Phe Lys Leu Trp Glu Val Phe Gly Glu Lys Cys Glu
 1 5 10 15

Phe Lys Gly Ser Leu Ser Gly Ser Asn Ala Gly Ile Thr Ser Ile Glu
 20 25 30

Phe Asp Ser Ala Gly Ser Tyr Leu Leu Ala Ala Ser Asn Asp Phe Ala
 35 40 45

Ser Arg Ile Trp Thr
 50

<210> 140

<211> 53

<212> PRT

<213> Homo sapiens

<400> 140

Val Asp Asp Tyr Arg Leu Arg His Thr Leu Thr Gly His Ser Gly Lys
 1 5 10 15

Val Leu Ser Ala Lys Phe Leu Leu Asp Asn Ala Arg Ile Val Ser Gly
 20 25 30

Ser His Asp Arg Thr Leu Lys Leu Trp Asp Leu Arg Ser Lys Val Cys
 35 40 45

Ile Lys Thr Val Phe
 50

<210> 141
 <211> 53
 <212> PRT
 <213> Homo sapiens

<400> 141
 Ala Gly Ser Ser Cys Asn Asp Ile Val Cys Thr Glu Gln Cys Val Met
 1 5 10 15

Ser Gly His Phe Asp Lys Lys Ile Arg Phe Trp Asp Ile Arg Ser Glu
 20 25 30

Ser Ile Val Arg Glu Met Glu Leu Leu Gly Lys Ile Thr Ala Leu Asp
 35 40 45

Leu Asn Pro Glu Arg
 50

<210> 142
 <211> 53
 <212> PRT
 <213> Homo sapiens

<400> 142
 Thr Glu Leu Leu Ser Cys Ser Arg Asp Asp Leu Leu Lys Val Ile Asp
 1 5 10 15

Leu Arg Thr Asn Ala Ile Lys Gln Thr Phe Ser Ala Pro Gly Phe Lys
 20 25 30

Cys Gly Ser Asp Trp Thr Arg Val Val Phe Ser Pro Asp Gly Ser Tyr
 35 40 45

Val Ala Ala Gly Ser
 50

<210> 143
 <211> 54
 <212> PRT
 <213> Homo sapiens

<400> 143
 Ala Glu Gly Ser Leu Tyr Ile Trp Ser Val Leu Thr Gly Lys Val Glu
 1 5 10 15

Lys Val Leu Ser Lys Gln His Ser Ser Ser Ile Asn Ala Val Ala Trp
 20 25 30

Ser Pro Ser Gly Ser His Val Val Ser Val Asp Lys Gly Cys Lys Ala
 35 40 45

Val Leu Trp Ala Gln Tyr
50

<210> 144
<211> 14
<212> PRT
<213> Homo sapiens

<400> 144
Ser Gln Leu Ala Ser Gly Lys Leu Ser Lys Tyr Trp Ala Ile
1 5 10

<210> 145
<211> 52
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (9)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (11)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (15)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 145
Pro Gly Gly Gly Pro Cys Gly Asn Xaa Trp Xaa Pro Arg Gly Xaa Arg
1 5 10 15

Glu Lys Lys Phe Val Tyr Ser Pro Asn Leu Arg Leu Ser His Gln Ser
20 25 30

Leu Lys Val Leu Ala Leu Ala Thr Ala Ala Ser Val Thr Leu Leu
35 40 45

Thr Trp Ile Leu
50

<210> 146
<211> 124
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (67)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 146
Lys Glu Glu Gln Arg Arg Gln Ala Pro Gly Gly Gln Asn Gly Ser Trp
1 5 10 15

Ile Val Lys Lys Val Trp Phe Ala Cys Leu Ala Val Met Ser Phe Leu
20 25 30

Gly Phe Ile Leu Asn Leu Gly Ala Arg Leu Ile Val Gln Pro Gln Ala

35

40

45

Ala Leu Ala Ser Arg Gly Leu Arg Gly Gln Gly Leu Pro Cys Glu Thr
 50 55 60

Gln Val Xaa Lys Arg Thr Leu Arg Pro Gly Ala Val Gly Trp Leu Val
 65 70 75 80

His Lys Gly Arg Arg Ala Leu Ser Ile Ser Arg Lys Ser Ala Leu Val
 85 90 95

Ser Leu Gly Val Met Tyr Val Gly Pro Gly Lys Arg Pro Gly Val Val
 100 105 110

Arg Lys His Ser Leu Leu Val Lys Met Gln Ala Arg
 115 120

<210> 147

<211> 40

<212> PRT

<213> Homo sapiens

<400> 147

Lys Glu Glu Gln Arg Arg Gln Ala Pro Gly Gly Gln Asn Gly Ser Trp
 1 5 10 15

Ile Val Lys Lys Val Trp Phe Ala Cys Leu Ala Val Met Ser Phe Leu
 20 25 30

Gly Phe Ile Leu Asn Leu Gly Ala
 35 40

<210> 148

<211> 40

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (27)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 148

Arg Leu Ile Val Gln Pro Gln Ala Ala Leu Ala Ser Arg Gly Leu Arg
 1 5 10 15

Gly Gln Gly Leu Pro Cys Glu Thr Gln Val Xaa Lys Arg Thr Leu Arg
 20 25 30

Pro Gly Ala Val Gly Trp Leu Val
 35 40

<210> 149

<211> 44

<212> PRT

<213> Homo sapiens

<400> 149

His Lys Gly Arg Arg Ala Leu Ser Ile Ser Arg Lys Ser Ala Leu Val
 1 5 10 15

Ser Leu Gly Val Met Tyr Val Gly Pro Gly Lys Arg Pro Gly Val Val
 20 25 30

Arg Lys His Ser Leu Leu Val Lys Met Gln Ala Arg
 35 40

<210> 150
 <211> 60
 <212> PRT
 <213> Homo sapiens

<400> 150
 His Ile Ile Phe Phe Arg Lys Trp Ser Thr Leu Ala Phe Ile Ile Pro
 1 5 10 15
 Tyr Ser Ser Val Ser Gly Ile Ile Ser Ile Ala Ser Phe Met Ser Val
 20 25 30
 Ala Ser Glu Ile Ala Ser Leu Val Phe Leu Arg Lys Asn Thr Thr Phe
 35 40 45

Trp Ser Arg Asn Ser Ser Gly Arg Gly Val Gln Ser
 50 55 60

<210> 151
 <211> 110
 <212> PRT
 <213> Homo sapiens

<220>
 <221> SITE
 <222> (73)
 <223> Xaa equals any of the naturally occurring L-amino acids
<400> 151
 Val Leu Cys Gly Pro Gly Ala Ala Thr Arg Lys Gly Ser Gln Leu Asn
 1 5 10 15
 Pro Ala Val Ala Ser Pro Ala Phe Pro His Pro Gly Phe Phe Ser Leu
 20 25 30
 Ser Asn Leu Gly Ser Ser Tyr Ser Ser Ser Asn Thr Met Tyr Ser Cys
 35 40 45
 Pro Ser Glu Pro Leu His Arg Leu Ser Pro Leu Pro Lys Glu Thr Pro
 50 55 60
 Leu Leu Ser Ser Pro Ser Pro Thr Xaa Pro Ser Gln Pro Ala Glu Leu
 65 70 75 80
 Trp Phe Ile Phe Cys Ile Arg Val Lys Gly His Leu Pro Cys Gln Ser
 85 90 95
 Thr Pro Thr Leu Pro Leu Gln Ser Ser Glu Met Ser Ser Leu
 100 105 110

<210> 152
 <211> 39
 <212> PRT
 <213> Homo sapiens

<400> 152
 Val Leu Cys Gly Pro Gly Ala Ala Thr Arg Lys Gly Ser Gln Leu Asn
 1 5 10 15

Pro Ala Val Ala Ser Pro Ala Phe Pro His Pro Gly Phe Phe Ser Leu
 20 25 30

Ser Asn Leu Gly Ser Ser Tyr
 35

<210> 153
 <211> 40
 <212> PRT
 <213> Homo sapiens

<220>
 <221> SITE
 <222> (34)
 <223> Xaa equals any of the naturally occurring L-amino acids

<400> 153
 Ser Ser Ser Asn Thr Met Tyr Ser Cys Pro Ser Glu Pro Leu His Arg
 1 5 10 15

Leu Ser Pro Leu Pro Lys Glu Thr Pro Leu Leu Ser Ser Pro Ser Pro
 20 25 30

Thr Xaa Pro Ser Gln Pro Ala Glu
 35 40

<210> 154
 <211> 31
 <212> PRT
 <213> Homo sapiens

<400> 154
 Leu Trp Phe Ile Phe Cys Ile Arg Val Lys Gly His Leu Pro Cys Gln
 1 5 10 15

Ser Thr Pro Thr Leu Pro Leu Gln Ser Ser Glu Met Ser Ser Leu
 20 25 30

<210> 155
 <211> 47
 <212> PRT
 <213> Homo sapiens

<400> 155
 Thr Ser Ser Pro Gln Arg Arg Leu Pro Ala Gly Pro Arg Pro Pro Thr
 1 5 10 15

Val Glu Pro Pro Ala Glu Pro Pro Ala Glu Val Pro Pro Ser Gly Thr
 20 25 30

Pro Pro Pro Pro Ser Thr Ser Glu Pro Leu Ser Arg Arg Arg Pro
 35 40 45

<210> 156
 <211> 432
 <212> PRT
 <213> Homo sapiens

<220>
 <221> SITE
 <222> (111)
 <223> Xaa equals any of the naturally occurring L-amino acids

<220>
 <221> SITE
 <222> (115)
 <223> Xaa equals any of the naturally occurring L-amino acids

<220>
 <221> SITE
 <222> (206)
 <223> Xaa equals any of the naturally occurring L-amino acids

<220>
 <221> SITE
 <222> (316)
 <223> Xaa equals any of the naturally occurring L-amino acids

<220>
 <221> SITE
 <222> (395)
 <223> Xaa equals any of the naturally occurring L-amino acids

<400> 156

Thr	Ser	Ser	Pro	Gln	Arg	Arg	Leu	Pro	Ala	Gly	Pro	Arg	Pro	Pro	Thr
1				5				10					15		

Val Glu Pro Pro Ala Glu Pro Pro Ala Glu Val Pro Pro Ser Gly Thr
 20 25 30

Pro Pro Pro Pro Ser Thr Ser Glu Pro Leu Ser Arg Arg Arg Pro Met
 35 40 45

Trp Gly Phe Arg Leu Leu Arg Ser Pro Pro Leu Leu Leu Leu Pro
 50 55 60

Gln Leu Gly Ile Gly Asn Ala Ser Ser Cys Ser Gln Ala Arg Thr Met
 65 70 75 80

Asn Pro Gly Gly Ser Gly Gly Ala Arg Cys Ser Leu Ser Ala Glu Val
 85 90 95

Arg Arg Arg Gln Cys Leu Gln Leu Ser Thr Val Pro Gly Ala Xaa Pro
 100 105 110

Gln Arg Xaa Asn Glu Leu Leu Leu Leu Ala Ala Ala Gly Glu Gly Leu
 115 120 125

Glu Arg Gln Asp Leu Pro Gly Asp Pro Ala Lys Glu Glu Pro Gln Pro
 130 135 140

Pro Pro Gln His His Val Leu Tyr Phe Pro Gly Asp Val Gln Asn Tyr
 145 150 155 160

His Glu Ile Met Thr Arg His Pro Glu Asn Tyr Gln Trp Glu Asn Trp
 165 170 175

Ser Leu Glu Asn Val Ala Thr Ile Leu Ala His Arg Phe Pro Asn Ser
 180 185 190

Tyr Ile Trp Val Ile Lys Cys Ser Arg Met His Leu His Xaa Phe Ser
 195 200 205

Cys Tyr Asp Asn Phe Val Lys Ser Asn Met Phe Gly Ala Pro Glu His
 210 215 220

Asn Thr Asp Phe Gly Ala Phe Lys His Leu Tyr Met Leu Leu Val Asn
 225 230 235 240

Ala Phe Asn Leu Ser Gln Asn Ser Leu Ser Lys Lys Ser Leu Asn Val
245 250 255

Trp Asn Lys Asp Ser Ile Ala Ser Asn Cys Arg Ser Ser Pro Ser His
260 265 270

Thr Thr Asn Gly Cys Gln Gly Glu Lys Val Arg Thr Cys Glu Lys Ser
275 280 285

Asp Glu Ser Ala Met Ser Phe Tyr Pro Pro Ser Leu Asn Asp Ala Ser
290 295 300

Phe Thr Leu Ile Gly Phe Ser Lys Gly Cys Val Xaa Leu Asn Gln Leu
305 310 315 320

Leu Phe Glu Leu Lys Glu Ala Lys Lys Asp Lys Asn Ile Asp Ala Phe
325 330 335

Ile Lys Ser Ile Arg Thr Met Tyr Trp Leu Asp Gly Gly His Ser Gly
340 345 350

Gly Ser Asn Thr Trp Val Thr Tyr Pro Glu Val Leu Lys Glu Phe Ala
355 360 365

Gln Thr Gly Ile Ile Val His Thr His Val Thr Pro Tyr Gln Val Arg
370 375 380

Asp Pro Met Arg Ser Trp Ile Gly Lys Glu Xaa Lys Lys Phe Val Gln
385 390 395 400

Ile Leu Gly Asp Leu Gly Met Gln Val Thr Ser Gln Ile His Phe Thr
405 410 415

Lys Glu Ala Pro Ser Ile Glu Asn His Phe Arg Val His Glu Val Phe
420 425 430