## CS-275 – Coursework Part 2

## Arno Pauly

## a.m.pauly@swansea.ac.uk

- By submitting this work, you state that you fully understand and are complying with the university's policy on Academic Integrity and Academic Misconduct. The policy can be found at https://www.swansea.ac.uk/academic-services/ academic-guide/assessment-issues/academic-integrity-academic-misconduct.
- This is an individual assignment, and you must not collaborate with others or share solutions
- If you are using sources other than the lecture material, cite them.
- You submit your solutions by uploading a single pdf file on Canvas.



Figure 1: A non-deterministic automaton

**Exercise 1** (Easy, 1 mark). Consider the grammar  $S \to aTS$ ,  $S \to T$ ,  $T \to b$ ,  $T \to bcc$ ,  $T \to TT$ . Explain why the word abbbcc belongs to the generated language by writing out the derivation steps (ie a path in the  $\hookrightarrow$  relation).

**Exercise 2** (Medium, 2 marks). Draw an automaton that accepts the language  $\{aa, bb\}^*$ .

Exercise 3 (Medium, 2 marks). Use the powerset construction to find a deterministic automaton accepting the same language as the non-deterministic one in Figure 1. (Omit unreachable states. You may also omit dead ends.)

Exercise 4 (Medium-advanced, 2 marks). Prove that the language

$$\{a^x b^y a c^z \mid x, y, z \in \mathbb{N} \ x > 3 \land y \text{ is prime}\}$$

is not regular using the pumping lemma.

**Exercise 5** (Advanced, 6 marks). Given two words w, u of the same length, let their interleaving be  $\langle u, w \rangle$  defined as  $|\langle u, w \rangle| = 2|u|$ ,  $\langle u, w \rangle(2n) = u(n)$  and  $\langle u, w \rangle(2n+1) = w(n)$ . Thus, we put the symbols from u at the even positions in  $\langle u, w \rangle$  and the symbols from w at the odd positions. Recall that we start numbering positions by 0.

Given two languages  $L_1$ ,  $L_2$ , let  $\langle L_1, L_2 \rangle = \{ \langle u, w \rangle \mid u \in L_1 \land w \in L_2 \land |u| = |w| \}$ .

Prove that if  $L_1$  and  $L_2$  are regular, then so is  $\langle L_1, L_2 \rangle$  by showing how to construct a finite automaton for  $\langle L_1, L_2 \rangle$  from finite automata for  $L_1$  and  $L_2$ .

 $\mathit{Hint}$ : Have a look at the product automaton construction and get creative with the transition relation.