CB N°11 - SURFACES - SUJET 1

Dans tout le sujet, l'espace est rapporté à un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$.

EXERCICE 1

Soient C la courbe admettant pour paramétrage : $t\mapsto \left\{ \begin{array}{l} x=t\\ y=t^2\\ z=t^3 \end{array} \right.$, et S la surface réglée engendrée par les droites T_t tangentes à C en M(t).

1. Déterminer un paramétrage de S.

La tangent à
$$C$$
 en $M(t)$ est dirigée par $\begin{pmatrix} 1\\2t\\3t^2 \end{pmatrix}$ d'où le paramétrage ψ de $S:(t,u)\mapsto \left\{ \begin{array}{l} x(t,u)=t+u\\y(t,u)=t^2+2tu\\z(t,u)=t^3+3t^2u \end{array} \right.$

2. Déterminer les points singuliers de S et, pour les points réguliers, donner une équation cartésienne du plan tangent à S.

Pour
$$(t,u) \in \mathbb{R}^2$$
, on a : $\frac{\partial \psi}{\partial t}(t,u) = \begin{pmatrix} 1\\ 2(t+u)\\ 3t(t+2u) \end{pmatrix}$ et $\frac{\partial \psi}{\partial u}(t,u) = \begin{pmatrix} 1\\ 2t\\ 3t^2 \end{pmatrix}$.

La famille $\left(\frac{\partial \psi}{\partial t}(t,u), \frac{\partial \psi}{\partial u}(t,u)\right)$ est libre si, et seulement si $u \neq 0$, donc les points stationnaires sont les points M(t,0), c'est-à-dire les points de C.

Pour $u \neq 0$, le plan tangent à S en M(t, u) admet pour équation :

$$\begin{vmatrix} x - (t+u) & 1 & 1 \\ y - (t^2 + 2tu) & 2(t+u) & 2t \\ z - (t^3 + 3t^2u) & 3t(t+2u) & 3t^2 \end{vmatrix} = 0 \iff \begin{vmatrix} x - t & 0 & 1 \\ y - t^2 & 2u & 2t \\ z - t^3 & 6tu & 3t^2 \end{vmatrix} = 0 \text{ et comme } u \neq 0 \text{ on obtient :}$$

$$-3t^2x + 3ty - z + t^3 = 0$$

3. Vérifier que tous les points réguliers d'une même génératrice T_t ont le même plan tangent.

L'équation du plan tangent à S en M(t, u) ne dépend pas de u; on a donc bien le même plan tangent pour tous les points réguliers d'une même génératrice.

EXERCICE 2

Soit
$$C$$
 la courbe d'équations :
$$\left\{ \begin{array}{l} x-y-1=0 \\ x^2+2z^2-y-1=0 \end{array} \right. .$$

1. Déterminer la projection de C sur le plan (yOz), et la représenter.

On note C_x la projection de C sur le plan (yOz). On a : $M(0,y,z) \in C_x \Leftrightarrow \exists x_0 \in \mathbb{R}, \left\{ \begin{array}{l} x_0 - y = 1 \\ x_0^2 + 2z^2 - y - 1 = 0 \end{array} \right. \Leftrightarrow \exists x_0 \in \mathbb{R}, \left\{ \begin{array}{l} x_0 = x - 1 \\ (y+1)^2 + 2z^2 - y - 1 = 0 \end{array} \right..$

 $\operatorname{Sp\acute{e}}\operatorname{PT}\operatorname{B}$

On en déduit que C_x a pour équations : $\begin{cases} x = 0 \\ \left(y + \frac{1}{2}\right)^2 + 2z^2 = \frac{1}{4} \end{cases}$. On reconnait une ellipse de centre $\Omega\left(0, -\frac{1}{2}, 0\right)$.

2. Donner une équation cartésienne du cylindre Σ de directrice C dont les génératrices sont parallèles à la droite d'équations $\left\{ \begin{array}{l} x-2y-3=0 \\ x-y-z-2=0 \end{array} \right. .$

La droite D d'équations $\begin{cases} x - 2y - 3 = 0 \\ x - y - z - 2 = 0 \end{cases}$ est dirigée par $\overrightarrow{u} = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix} \land \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$. On a :

$$M(x,y,z) \in \Sigma \Leftrightarrow \exists t \in \mathbb{R}, M+t \overrightarrow{u} \in C \Leftrightarrow \exists t \in \mathbb{R}, \left\{ \begin{array}{l} (x+2t)-(y+t)=1 \\ (x+2t)^2+2(z+t)^2-(y+t)-1=0 \end{array} \right.$$

$$\Leftrightarrow \exists t \in \mathbb{R}, \left\{ \begin{array}{l} t=-x+y+1 \\ (x+2(-x+y+1))^2+2(z+(-x+y+1))^2-(y+(-x+y+1))=1 \end{array} \right.$$
On obtient ainsi l'équation cartésienne de Σ :

$$\Leftrightarrow \exists t \in \mathbb{R}, \left\{ \begin{array}{l} t = -x + y + 1 \\ (x + 2(-x + y + 1))^2 + 2(z + (-x + y + 1))^2 - (y + (-x + y + 1)) = 1 \end{array} \right.$$

$$3x^2 + 6y^2 + 2z^2 - 8xy - 4xz + 4yz - 7x + 10y + 4z + 4 = 0$$

3. Donner une équation cartésienne de la surface de révolution S engendrée par la rotation de C autour de la droite (Oy).

$$M(x,y,z) \in S \Leftrightarrow \exists M(x_0,y_0,z_0) \in C, \begin{cases} \overrightarrow{MM_0} \cdot \overrightarrow{j} = \overrightarrow{0} \\ OM_0 = OM \end{cases}$$

$$\Leftrightarrow \exists (x_0,y_0,z_0) \in \mathbb{R}^3, \begin{cases} x_0 - y_0 = 1 \\ x_0^2 + 2z_0^2 - y_0 - 1 = 0 \\ y_0 = y \\ x^2 + y^2 + z^2 = x_0^2 + y_0^2 + z_0^2 \end{cases}$$

$$\Leftrightarrow \exists (x_0,y_0,z_0) \in \mathbb{R}^3, \begin{cases} y_0 = y \\ x_0 = 1 + y \\ z_0^2 = \frac{1}{2} \left(1 + y - (1 + y)^2\right) \\ x^2 + y^2 + z^2 = (1 + y)^2 + y^2 + \frac{1}{2} \left(1 + y - (1 + y)^2\right) \end{cases}$$

Il faut $1+y-(1+y)^2\geq 0$, donc $y\in [-1,0]$; on en déduit une équation cartésienne de S:

$$2x^2 - y^2 + 2z^2 - 3y - 2 = 0$$
 avec $y \in [-1, 0]$

Spé PT B

EXERCICE 3

Soit S la surface d'équation : $x^3 + y^3 + z^3 - 3xyz = 1$.

1. Donner une équation du plan tangent tangent à S en A(1,0,0).

On note
$$f(x, y, z) = x^3 + y^3 + z^3 - 3xyz - 1$$
.
On a $\overrightarrow{\text{Grad}}f(x, y, z) = \begin{pmatrix} 3x^2 - 3yz \\ 3y^2 - 3xz \\ 3z^2 - 3xy \end{pmatrix}$ donc $\overrightarrow{\text{Grad}}f(1, 0, 0) = \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix}$.

On en déduit l'équation du plan tangent à S en A: x=1.

2. On pose s = x + y + z et $t = x^2 + y^2 + z^2$. Montrer que l'équation de S s'écrit : $3st - s^3 = 2$.

$$3st - s^3 = 3(x + y + z)(x^2 + y^2 + z^2) - (x + y + z)^3 = 2(x^3 + y^3 + z^3 - 3xyz) = 2$$

3. Soit \mathscr{B} une base orthonormée directe, dont le premier vecteur est colinéaire à $\overrightarrow{u} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$. A l'aide de la question précédente, donner une équation de S dans le repère (O, \mathscr{B}) .

Si on note (x,y,z) les coordonnées d'un point M dans le repère initial et (x_1,y_1,z_1) ses coordonnées dans (O,\mathcal{B}) , on a : $x_1=\frac{1}{\sqrt{3}}(x+y+z)$ et $x_1^2+y_1^2+z_1^2=x^2+y^2+z^2$, donc l'équation de S dans (O,\mathcal{B}) devient : $3\sqrt{3}x_1(x_1^2+y_1^2+z_1^2)-3\sqrt{3}x_1^3=2$, soit encore :

$$3\sqrt{3}x_1(y_1^2 + z_1^2) = 2$$

4. En déduire que S est une surface de révolution autour de la droite $D=(O, \overrightarrow{u})$.

Les intersections de S avec les plans d'équations $x_1 = k$ sont des cercles de centre sur l'axe (O, \overrightarrow{u}) . On en déduit que S est une surface de révolution autour de la droite $D = (O, \overrightarrow{u})$.

Spé PT B

CB N°11 - SURFACES - SUJET 2

Dans tout le sujet, l'espace est rapporté à un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$.

EXERCICE 1

Soit S la surface admettant pour paramétrage : $(u, v) \mapsto \begin{cases} x = u + v^2 \\ y = v + u^2 \\ z = uv \end{cases}$

1. Montrer que le point A de S de paramètres (1,1) est un point régulier, et déterminer une équation cartésienne du plan P tangent à S en A.

On note ψ le paramétrage de S.

Pour
$$(u,v) \in \mathbb{R}^2$$
, on a : $\frac{\partial \psi}{\partial u}(u,v) = \begin{pmatrix} 1 \\ 2u \\ v \end{pmatrix}$ donc $\frac{\partial \psi}{\partial u}(1,1) = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ et $\frac{\partial \psi}{\partial v}(u,v) = \begin{pmatrix} 2v \\ 1 \\ u \end{pmatrix}$ donc

$$\frac{\partial \psi}{\partial v}(1,1) = \begin{pmatrix} 2\\1\\1 \end{pmatrix} .$$

La famille $\left(\frac{\partial \psi}{\partial u}(u,v), \frac{\partial \psi}{\partial v}(u,v)\right)$ est libre donc A est un point régulier de C.

Le plan tangent à S en A(1,1) admet pour équation : $\begin{vmatrix} x-2 & 1 & 2 \\ y-2 & 2 & 1 \\ z-1 & 1 & 1 \end{vmatrix} = 0$, c'est-à-dire

$$x + y - 3z - 1 = 0$$

2. Montrer que la courbe Γ admettant pour paramétrage : $t\mapsto \left\{ \begin{array}{l} x=1+t^2\\ y=1+t\\ z=t \end{array} \right.$ est tracée sur S et passe par A.

On note φ le paramétrage de Γ . On a $\varphi(t) = \psi(1,t)$ donc Γ est tracée sur S. De plus $A = \psi(1,1) = \varphi(1)$ donc A est sur Γ .

3. Donner un paramétrage de la tangente à Γ en A, et vérifier qu'elle est dans P.

La tangente à Γ en A est $T = A + \text{Vect}(\overrightarrow{\varphi'(1)})$ d'où son paramétrage :

$$t \mapsto \left\{ \begin{array}{l} x = 2 + 2t \\ y = 2 + t \\ z = 1 + t \end{array} \right., \quad t \in \mathbb{R}$$

De plus, pour tout réel t on a : (2+2t)+(2+t)-3(1+t)-1=0 donc $T\subset P$

Spé PT B

EXERCICE 2

Soit C la courbe d'équations : $\left\{ \begin{array}{l} x-y-1=0 \\ x^2-z^2-u=0 \end{array} \right. .$

1. Déterminer la projection de C sur le plan (xOz), et la représenter.

On note C_y la projection de C sur le plan (xOz). On a :

$$M(x,0,z) \in C_y \Leftrightarrow \exists y_0 \in \mathbb{R}, \left\{ \begin{array}{l} x-y_0=1 \\ x^2-z^2=y_0 \end{array} \right. \Leftrightarrow \exists y_0 \in \mathbb{R}, \left\{ \begin{array}{l} y_0=x-1 \\ x^2-z^2=x-1 \end{array} \right.$$

On en déduit que
$$C_y$$
 a pour équations :
$$\begin{cases} y = 0 \\ z^2 - \left(x - \frac{1}{2}\right)^2 = \frac{3}{4} \end{cases} .$$

On reconnait une hyperbole de centre $\Omega\left(\frac{1}{2},0,0\right)$

2. Donner une équation cartésienne du cylindre Σ de directrice C dont les génératrices sont parallèles à la droite d'équations $\begin{cases} x - 2y - 3 = 0 \\ x - y - z - 2 = 0 \end{cases}$

La droite
$$D$$
 d'équations
$$\begin{cases} x - 2y - 3 = 0 \\ x - y - z - 2 = 0 \end{cases}$$
 est dirigée par $\overrightarrow{u} = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix} \land \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$. On a :

$$M(x, y, z) \in \Sigma \Leftrightarrow \exists t \in \mathbb{R}, M + t \overrightarrow{u} \in C \Leftrightarrow \exists t \in \mathbb{R}, \begin{cases} (x + 2t) - (y + t) = 1\\ (x + 2t)^2 - (z + t)^2 - (y + t) = 0 \end{cases}$$

$$M(x,y,z) \in \Sigma \Leftrightarrow \exists t \in \mathbb{R}, M+t \overrightarrow{u} \in C \Leftrightarrow \exists t \in \mathbb{R}, \left\{ \begin{array}{l} (x+2t)-(y+t)=1 \\ (x+2t)^2-(z+t)^2-(y+t)=0 \end{array} \right.$$

$$\Leftrightarrow \exists t \in \mathbb{R}, \left\{ \begin{array}{l} t=-x+y+1 \\ (x+2(-x+y+1))^2-(z+(-x+y+1))^2-(y+(-x+y+1))=0 \end{array} \right.$$
On obtaint since l'équation cartésianne de Σ :

$$3y^2 - z^2 - 2xy + 2xz - 2yz - x + 4y - 2z + 2 = 0$$

3. Donner une équation cartésienne de la surface de révolution S engendrée par la rotation de C autour de la droite (Ox).

$$M(x,y,z) \in S \iff \exists M(x_0,y_0,z_0) \in C, \begin{cases} \overrightarrow{MM_0} \cdot \overrightarrow{i} = \overrightarrow{0} \\ OM_0 = OM \end{cases}$$

$$\Leftrightarrow \exists (x_0,y_0,z_0) \in \mathbb{R}^3, \begin{cases} x_0 - y_0 = 1 \\ x_0^2 - z_0^2 = y_0 \\ x_0 = x \\ x^2 + y^2 + z^2 = x_0^2 + y_0^2 + z_0^2 \end{cases}$$

$$\Leftrightarrow \exists (x_0,y_0,z_0) \in \mathbb{R}^3, \begin{cases} x_0 = x \\ y_0 = x - 1 \\ z_0^2 = x^2 - x + 1 \\ x^2 + y^2 + z^2 = x^2 + (x - 1)^2 + x^2 - x + 1 \end{cases}$$

Pour tout réel x, on a $x^2 - x + 1 > 0$ on en déduit une équation cartésienne de S :

$$2x^2 - y^2 - z^2 - 3x + 2 = 0$$

EXERCICE 3

Soit S la surface d'équation : $x^{3} + y^{3} - xy^{2} - x^{2}y + 2xz^{2} + 2yz^{2} = 1$.

1. Donner une équation du plan tangent tangent à S en A(1,0,0).

On note
$$f(x,y,z)=x^3+y^3-xy^2-x^2y+2xz^2+2yz^2-1$$
.
On a $\overrightarrow{\operatorname{Grad}}f(x,y,z)=\begin{pmatrix} 3x^2-y^2-2xy+2z^2\\3y^2-2xy-x^2+2z^2\\4xz+4yz \end{pmatrix}$ donc $\overrightarrow{\operatorname{Grad}}f(1,0,0)=\begin{pmatrix} 3\\-1\\0 \end{pmatrix}$.
On en déduit l'équation du plan tangent à S en $A:3x-y-3=0$.

- **2.** On pose s = x + y et $t = x^2 + y^2 + z^2$. Montrer que l'équation de S s'écrit : $2st s^3 = 1$. $2st s^3 = 2(x + y)(x^2 + y^2 + z^2) (x + y)^3 = x^3 + y^3 xy^2 x^2y + 2xz^2 + 2yz^2 = 1$
- **3.** Soit \mathcal{B} une base orthonormée directe, dont le premier vecteur est colinéaire à $\overrightarrow{u} = \overrightarrow{i} + \overrightarrow{j}$. A l'aide de la question précédente, donner une équation de S dans le repère (O, \mathcal{B}) .

Si on note (x, y, z) les coordonnées d'un point M dans le repère initial et (x_1, y_1, z_1) ses coordonnées dans (O, \mathcal{B}) , on a : $x_1 = \frac{1}{\sqrt{2}}(x+y)$ et $x_1^2 + y_1^2 + z_1^2 = x^2 + y^2 + z^2$, donc l'équation de S dans (O, \mathcal{B}) devient : $2\sqrt{2}x_1(x_1^2 + y_1^2 + z_1^2) - 2\sqrt{2}x_1^3 = 1$, soit encore :

$$2\sqrt{2}x_1(y_1^2 + z_1^2) = 1$$

4. En déduire que S est une surface de révolution autour de la droite $D=(O,\overrightarrow{u}).$

Les intersections de S avec les plans d'équations $x_1 = k$ sont des cercles de centre sur l'axe (O, \overrightarrow{u}) . On en déduit que S est une surface de révolution autour de la droite $D = (O, \overrightarrow{u})$.

Spé PT B Page 6 sur 6