Noncommutative Spaces

Lecture Course, Summer Semester 2025

Koen van den Dungen* July 10, 2025

^{*}Notes by Melvin Weiß

Contents

1	Introduction		
2	C^* -	Algebras	3
	2.1	Banach algebras	3
	2.2	Commutative Banach algebras	6
	2.3	The Gelfand transform	8
	2.4	C^* -algebras	10

1 Introduction

TODO: Motivation

2 C^* -Algebras

2.1 Banach algebras

Definition 1. A Banach algebra is a (not necessarily unital or commutative) \mathbb{C} -algebra A together with a norm $\|.\|: A \to \mathbb{R}$ such that:

- $\|.\|$ is submultiplicative: $\|ab\| \le \|a\| \|b\|$ for all $a, b \in A$.
- $(A, \|.\|)$ is a Banach space: A complete normed vector space.

Remark 1.1. The multiplication on a Banach algebra A is continuous: As for all $a, b \in A$ we have $||ab|| \le ||a|| ||b||$, the linear map $a \cdot (-) \colon A \to A$ is a bounded operator, hence continuous.

Remark 1.2. We can usually assume A to be *unital* (i.e. there is some $1 \in A$ with $1 \cdot a = a \cdot 1 = a$ for all $a \in A$), otherwise replacing it by the *unitization* \tilde{A} of A, given by:

$$\tilde{A} := A \oplus \mathbb{C}$$

with the multiplication

$$(a, \lambda) \cdot (b, \mu) := (ab + \lambda B + \mu A, \lambda \mu)$$

and the norm

$$||(a,\lambda)|| := ||a|| + |\lambda|.$$

This is in fact a unital Banach algebra: The unit is given by (0,1), as witnessed by

$$(0,1)\cdot(a,\lambda)=(a,\lambda)=(a,\lambda)\cdot(0,1)$$

for $(a,\lambda) \in \tilde{A}$. \tilde{A} is a Banach space as \mathbb{C} is one and the sum of Banach spaces is

again a Banach space. Submultiplicativity follows from

$$\begin{aligned} \|(a,\lambda)\cdot(b,\mu)\| &= \|ab + \lambda b + \mu a\| + |\lambda\mu| \\ &\leq \|ab\| + \|\lambda b\| + \|\mu a\| + |\lambda\mu| \\ &\leq \|a\| \|b\| + |\lambda| \|b\| + |\mu| \|a\| + |\lambda| |\mu| \\ &= \|(a,\lambda)\| \|(b,\mu)\| \, . \end{aligned}$$

Confirming the algebra structure is a straightforward check. Maybe: Remark on adjunction

Example 2. 1. Let V be a Banach space. Then

$$\mathcal{B}(V) \coloneqq \{T \colon V \to V \mid T \text{ bounded linear}\}$$

with norm $\|T\| \coloneqq \sup_{v \in V} \frac{\|Tv\|}{\|v\|}$ and composition as multiplication is a unital Banach algebra.

2. Let X be a topological space. We can define

$$\mathcal{C}_b(X) := \left\{ f: X \to \mathbb{C} \mid f \text{ continuous, } \sup_{x \in X} |f(x)| < \infty \right\}$$

and

$$\mathcal{C}_0(X) := \left\{ f \in \mathcal{C}_b(X) \mid \forall \varepsilon > 0 \exists K \subseteq X \text{ compact}, \ f^{-1}((-\varepsilon, \varepsilon)) \subseteq K \right\}$$

with pointwise multiplication and $||f|| := \sup_{x \in X} |f(x)|$. Both of these form Banach algebras. C_b is always unital with unit const₁, whereas C_0 is unital if and only if X is compact.

Definition 3. A (twosided) ideal $J \subseteq A$ is a subspace $J \subseteq A$ with $AJ \subseteq J$ and $JA \subseteq J$. This is equivalent to J being a twosided ideal of A viewed as an ordinary (non-unital) ring.

Lemma 4. If $J \subseteq A$ is a closed ideal, the quotient ring A/J equipped with the norm

$$||a+J|| := \inf_{j \in J} ||a+j||$$

is again a Banach algebra.

Proof. Quotients of algebras under two ideals are again algebras, hence so is A/J. Further, the underlying normed vector space of A/J agrees with the quotient A/J of

underlying normed vector spaces, hence is the quotient of a Banach space by a closed subspace and as such again a Banach space. Lastly, as J is an ideal, for $a, b \in A$ and $j, k \in J$ we have $aj + bk + jk \in J$, hence

$$\begin{split} \|(a+J)(b+J)\| &= \inf_{j \in J} \|ab+j\| \\ &\leqslant \inf_{j,k \in J} \|ab+aj+bk+jk\| \\ &= \inf_{j,k \in J} \|(a+j)(b+k)\| \\ &\leqslant \inf_{j,k \in J} \|a+j\| \|b+k\| \\ &= \left(\inf_{j \in J} \|a+j\|\right) \left(\inf_{k \in J} \|b+k\|\right) \\ &= \|a+J\| \|b+J\| \,, \end{split}$$

so submultiplicativity holds.

Example 5. For a Banach algebra $A, A \subseteq \tilde{A}$ is a two sided ideal.

Proof. The map $p: \tilde{A} \to \mathbb{C}, (a, \lambda) \mapsto \lambda$ is a ring homomorphism, hence the kernel $\ker p = A$ is a twosided ideal. Further, p is continuous and $\{0\} \subseteq \mathbb{C}$ is closed, hence so is A.

Definition 6. For a unital Banach algebra A and an element $a \in A$, we define the *spectrum*

$$\operatorname{sp}(a) := \{ \lambda \in \mathbb{C} \mid (\lambda \cdot 1 - a) \notin A^{\times} \},$$

where A^{\times} is the group of units of A. We further define the spectral radius

$$r(a)\coloneqq \sup_{\lambda\in\operatorname{sp}(a)} \lvert \lambda\rvert.$$

This spectrum for elements of a general Banach algebra behaves just like the familiar one:

Theorem 7. Let A be a unital Banach algebra and $a \in A$. Then:

• $\operatorname{sp}(a) \subseteq \mathbb{C}$ is non-empty and compact.

• The following formula describes the spectral radius:

$$r(a) = \lim_{n \to \infty} \|a^n\|^{\frac{1}{n}}.$$

Especially, by submultiplicativity, $r(a) \leq ||a||$.

Corollary 8 (Gelfand-Mazur). Let A be a unital Banach algebra with $A^{\times} = A \setminus \{0\}$. Then $A \cong \mathbb{C}$.

Proof sketch. Let $a \in A^{\times}$. By Theorem 7, there is some $\lambda \in \mathbb{C}$ with $\lambda \cdot 1 - a \in A \setminus A^{\times} = \{0\}$, so $a = \lambda \cdot 1$. This provides an isomorphism $A \cong \mathbb{C}$. Maybe: More detail.

2.2 Commutative Banach algebras

For this section, fix a commutative Banach algebra A.

Definition 9.

- A character on A is a non-zero \mathbb{C} -algebra homomorphism $\chi:A\to\mathbb{C}.$
- \bullet The spectrum of A is

$$\hat{A} := \{ \chi : A \to \mathbb{C} \mid \chi \text{ character} \}$$

Remark 9.1. If A is unital, for an algebra homomorphism $\chi:A\to\mathbb{C}$ to be non-zero is equivalent to being unital, i.e. satisfying $\chi(1)=1$. This is because $\chi(a)=\chi(1)\chi(a)$ for all $a\in A$.

Example 10. As we will see in TODO: reference, we have:

• For a locally compact Hausdorff space X,

$$X \cong \mathcal{C}_0(X)$$

• For a unital C^* -algebra A and $a \in A$ with $aa^* = a^*a$ we have

$$\operatorname{sp}(a) \cong \langle \hat{1,a} \rangle,$$

where $\langle 1, a \rangle \subseteq A$ is the sub-C*-algebra of A generated by 1 and a.

Fact 10.1. For a commutative Banach algebra A, the following hold:

- An ideal $m \subseteq A$ is maximal if and only if it has codimension 1.
- Maximal ideals are closed.

Proposition 11. If additionally A is unital, the map

$$\hat{A} \to \mathrm{mSpec}(A)$$

 $\chi \mapsto \ker \chi$,

where $mSpec\ A$ denotes the set of maximal ideals of A, is a bijection.

Proof. As ker χ has codimension 1 and is closed, it is maximal by Fact 10.1, hence the map is well defined.

Let $m \in \mathrm{mSpec}(A)$. m is closed by Fact 10.1. Thus, A/m is a Banach algebra by Lemma 4, and a field by maximality of m, hence we have $A/m \cong \mathbb{C}$ by Corollary 8. But then, the quotient map $A \to A/m \cong \mathbb{C}$ is a character with kernel m, hence surjectivity.

For injectivity, let χ, χ' be characters with $\ker \chi = \ker \chi' =: m$. Note that $A/m \cong \mathbb{C}$ by the argument above and fix such an isomorphism. Especially, both χ and χ' factor as a composition $A \to A/m \cong \mathbb{C} \to \mathbb{C}$, where the first map is the quotient map and the second map is the fixed isomorphism. But now, as any non-zero homomorphism of \mathbb{C} -algebras from \mathbb{C} to \mathbb{C} is the identity¹, the composition above is unique and $\chi = \chi'$. \square

Maybe: Something about the topology on the spectrum

Lemma 12. For $\chi \in \hat{A}$, we have $\|\chi\| \leq 1$. In particular, $\hat{A} \subseteq A^* := \mathcal{B}(A, \mathbb{C})$, where $\mathcal{B}(V, W)$ denotes the Banach space of bounded linear maps $V \to W$, equipped with the operator norm.

Proof. Suppose A is unital and let $\chi \in \hat{A}$. By the proof of Proposition 11, χ is already isomorphic to the quotient map $p: A \to A/(\ker \chi)$. But that quotient map satisfies $||p(a)|| = ||a + \ker \chi|| \le ||a||$ for all $a \in A$, hence so does χ .

Now, consider the case where A is not unital. We can define

$$\tilde{\chi}: \tilde{A} \to \mathbb{C}$$

 $(a,\lambda) \mapsto \chi(a) + \lambda$

It is easy to see that this is again an algebra homomorphism. But then, by the unital case:

$$|\chi(a)| = |\tilde{\chi}((a,0))| \le ||(a,0)|| = ||a||.$$

Hence, $\|\chi\| \le 1$ and especially χ is continuous.

¹To see this, first note that any such homomorphism φ is already unital. Then, $\varphi(\lambda) = \lambda \varphi(1) = \lambda$ for all $\lambda \in \mathbb{C}$.

Definition 13. We equip $A^* = \mathcal{B}(A,\mathbb{C})$ with the *weak-** topology: The coarsest topology such that for all $a \in A$

$$\operatorname{ev}_a: A^* \to \mathbb{C}$$

$$\varphi \mapsto \varphi(a)$$

is continuous. In other words, $\varphi_n \to \varphi$ in A^* if and only if $\varphi_n(a) \to \varphi(a)$ for all $a \in A$. We further equip $\hat{A} \subseteq A^*$ with the subspace topology.

Lemma 14. A^* is Hausdorff. In particular, so is \hat{A} .

Proof. Let $\varphi, \varphi' \in A^*$. Then there is some $a \in A$ with $\varphi(a) \neq \varphi'(a)$. Now, picking disjoint opens $U, V \subseteq \mathbb{C}$ with $\varphi(a) \in U$, $\varphi'(a) \in V$, their preimages form disjoint opens $\operatorname{ev}_a^{-1}(U), \operatorname{ev}_a^{-1}(V) \subseteq A^*$ with $\varphi \in \operatorname{ev}_a^{-1}(U)$ and $\varphi' \in \operatorname{ev}_a^{-1}(V)$.

Theorem 15 (Banach-Alaoglu). The closed unit ball $B^* := \{ \varphi \in A^* \mid ||\varphi|| \le 1 \}$ is compact.

Proof. Omitted. \Box

Proposition 16. \hat{A} is locally compact. If A is unital, \hat{A} is compact.

Proof. By Lemma 12, \hat{A} is a subspace of the closed unit ball $B^* := \{\varphi \in A^* \mid ||\varphi|| \le 1\}$, which is compact by Theorem 15 and Hausdorff by Lemma 14, hence for the first part of the statement it suffices to show that $\hat{A} \cup \{0\} \subseteq B^*$ is closed. Pick a sequence $(\varphi_n)_{n \in \mathbb{N}} \in (\hat{A} \cup \{0\})^{\mathbb{N}}$ converging to $\varphi \in B^*$. Then

$$\varphi(ab) = \lim_{n \to \infty} \varphi_n(ab) = \lim_{n \to \infty} \varphi_n(a) \lim_{n \to \infty} \varphi_n(b) = \varphi(a)\varphi(b)$$

and analogous arguments for \mathbb{C} -linearity work, hence φ is again an algebra homomorphism and hence $\varphi \in \hat{A}$. If A is unital and all φ_n are non-zero, then $\varphi_n(1) = 1$ for all $n \in \mathbb{N}$ by Remark 9.1 and especially $\varphi(1) = 1$, so φ is non-zero as well - hence in that case, \hat{A} is already compact.

2.3 The Gelfand transform

Definition 17. We define the Gelfand transform to be the map

$$\Gamma \colon A \to \mathcal{C}_0(\hat{A})$$

 $a \mapsto (\chi \mapsto \chi(a)).$

Remark 17.1. This is well defined: $\Gamma(a)$ is bounded as

$$|\Gamma(a)(\chi)| = |\chi(a)| \le ||\chi|| \, ||a|| \le ||a||$$

In other words, $\Gamma(a) \in \mathcal{C}_b(\hat{A})$. Now, let $\varepsilon > 0$ and pick a sequence $(\chi_n)_{n \in \mathbb{N}}$ of elements in $\hat{A} \cup \{0\}$ with $|\chi_n(a)| \leq \varepsilon$ for all $n \in \mathbb{N}$ that converges to an element $\chi \in \hat{A} \cup \{0\}$. Then $|\chi(a)| = \lim_{n \to \infty} |\chi_n(a)| \leq \varepsilon$, hence the set

$$K_{a,\varepsilon} := \{ \chi \in \hat{A} \cup \{0\} \mid |\chi(a)| \le \varepsilon \}$$

is a closed subspace of the compact space $\hat{A} \cup \{0\}$ and thus compact. But further

$$\Gamma(a)^{-1}((-\varepsilon,\varepsilon)) \subseteq K_{a,\varepsilon}$$

so $\Gamma(a) \in \mathcal{C}_0(\hat{A})$.

Theorem 18. Γ is a norm-decreasing algebra homomorphism and $\Gamma(A)$ separates points in \hat{A} .

Proof. We have

$$\|\Gamma(a)\| = \sup_{\chi \in \hat{A}} |\chi(a)| \leqslant \sup_{\chi \in \hat{A}} \|\chi\| \, \|a\| \leqslant \|a\| \, ,$$

so Γ is indeed norm-decreasing. Furthermore,

$$\Gamma(ab) = (\chi \mapsto \chi(ab)) = (\chi \mapsto \chi(a))(\chi \mapsto \chi(b)) = \Gamma(a)\Gamma(b)$$

and an analogous argument shows \mathbb{C} -linearity, so Γ is an algebra homomorphism. Lastly, for $\varphi \neq \varphi' \in \hat{A}$, there is some $a \in A$ with

$$\Gamma(a)(\chi) = \chi(a) \neq \chi'(a) = \Gamma(a)(\chi'),$$

hence $\Gamma(A)$ separates points in \tilde{A} .

Example 19. We will see in TODO: reference that for $A = \mathcal{C}_0(X)$ for a locally compact topological space X, the Gelfand transform $\Gamma: A \to \mathcal{C}_0(\hat{A})$ is an isomorphism.

Proposition 20. If A is unital and $a \in A$, we have $\operatorname{sp}(a) = \operatorname{Im}(\Gamma(a))$. If A is not unital, $\widetilde{\operatorname{sp}}(a) = \operatorname{Im}(\Gamma(a)) \cup \{0\}$, where $\widetilde{\operatorname{sp}}(a) := \operatorname{sp}((a,0))$ in \tilde{A} .

Proof. TODO: Think about this

Corollary 21. For A unital and $a \in A$ we have $\|\Gamma(a)\| = r(a)$. In particular, $\ker \Gamma = \{ a \in A | r(a) = 0 \}.$

2.4 C^* -algebras

Definition 22. An *involution* on a Banach algebra A is a map $(-)^*: A \to A$ such

- For all $\lambda \in \mathbb{C}$, $a, b \in A$ we have $(\lambda a + b)^* = \overline{\lambda}a^* + b^*$. For $a, b \in A$ we have $(ab)^* = b^*a^*$.
- For all $a \in A$ we have $a^{**} = a$.

Remark 22.1. One can, more generally, define an involution on a (non-unital) ring R as a (non-unital) ring automorphism $(-)^*: R \to R^{\mathrm{op}}$ with $((-)^*)^{-1} = ((-)^*)^{\mathrm{op}}$, where R^{op} is the ring with reversed multiplication. For such a ring with involution R, an involution on an R-algebra A is an involution $(-)^*$ on A making

$$\begin{array}{ccc} R & \longrightarrow & A \\ \downarrow (-)^* & & \downarrow (-)^* \\ R & \longrightarrow & A \end{array}$$

commute. An involution on a Banach algebra is then just an involution of the Calgebra, where the involution on \mathbb{C} is $\overline{(-)}$. This approach works in any category with a C_2 -action.

Definition 23. A C^* -algebra is a Banach algebra $(A, \|.\|)$ with involution $(-)^*$ such that $||a^*a|| = ||a||^2$ for all $a \in A$.

Lemma 24. Let A be a C^* -algebra and $a \in A$. Then $||a^*|| = ||a||$.

Proof. For a=0 we have $a^*=\overline{0}=0$, hence $||a||=||a^*||$ is clear. Otherwise, we have ||a|| > 0 and

$$||a||^2 = ||a^*a|| \le ||a^*|| ||a||,$$

thus dividing by ||a|| yields $||a|| \leq ||a^*||$. Applying the same result to a^* , we get

$$||a|| \le ||a^*|| \le ||a^{**}|| = ||a||,$$

so $||a|| = ||a^*||$. **Example 25.** The following Banach algebras with involution are C^* -algebras:

- $C_b(X)$ and $C_0(X)$ with (pointwise) complex conjugation.
- For any Hilbert space \mathcal{H} , the algebra $\mathcal{B}(\mathcal{H})$ of bounded operators on \mathcal{H} with involution induced by $\langle T^*v|w\rangle = \langle v|Tw\rangle$.

Proof. We have already seen that $C_b(X)$ and $C_0(X)$ are commutative Banach algebras. Pointwise conjugation being an involution is a simple check. Lastly,

$$||a^*a|| = \sup_{x \in X} |a(x)\overline{a(x)}| = \sup_{x \in X} |a(x)|^2 = ||a||^2,$$

so the given algebra with involution is indeed a C^* -algebra.

We have also already seen that $\mathcal{B}(\mathcal{H})$ is a Banach algebra. The axioms for an involution are again a straightforward check. Further, we have

$$\begin{split} \|T^*T\| &= \sup_{\substack{v \in V \\ \|v\| = 1}} \|T^*Tv\| \\ &= \sup_{\substack{v \in V \\ \|v\| = 1}} |\langle T^*Tv|T^*Tv\rangle|^{\frac{1}{2}} \\ &= \sup_{\substack{v \in V \\ \|v\| = 1}} |\langle TTv|TTv\rangle|^{\frac{1}{2}} \\ &= \sup_{\substack{v \in V \\ \|v\| = 1}} \|TTv\| \\ &= \|TT\| \end{split}$$

hence $\mathcal{B}(\mathcal{H})$ is a C^* -algebra.

Remark 25.1. Let A be a non-unital C^* -algebra. We can consider the unitization \tilde{A} of the underlying Banach algebra: This is a unital Banach algebra with norm $\|(a,\lambda)\| = \|a\|$, $|\lambda|$, but with that norm it does not necessarily admit the structure of a C^* -algebra compatible with that of A (Maybe: Example for this phenomenon). Hence we have to provide a different norm on \tilde{A} if we aim to construct a unitization for C^* -algebras.

Definition 26. Let A be a C^* -algebra and consider the embedding

$$L \colon \tilde{A} \to \mathcal{B}(A)$$

 $(a,\lambda) \mapsto (b \mapsto ab + \lambda b).$

We will see in Lemma 27 that L is an injective algebra homomorphism, hence we

define the norm and $(-)^*$ on $\tilde{A} \cong L(\tilde{A}) \subseteq \mathcal{B}(A)$ to be the ones inherited from $\mathcal{B}(A)$. We refer to this C^* -algebra as the unitization of A.

Lemma 27. Let A be a C^* -algebra. The map $L: \tilde{A} \to \mathcal{B}(A)$ from Definition 26 is an injective algebra homomorphism. Further, $\tilde{A} \cong L(\tilde{A})$ with the norm and $(-)^*$ inherited from $\mathcal{B}(A)$ forms a unital C^* -algebra and $A \subseteq \tilde{A}$ is a C^* -subalgebra.

Maybe: Prove at least parts of this

Note. The norm on A is $\|(a,\lambda)\| = \sup_{b \in A} \|ab + \lambda b\|$, the involution is $(a,\lambda)^* = (a^*,\overline{\lambda})$.

Maybe: Note on the adjunction

Definition 28. Let A be a C^* -algebra and $a \in A$. We say that a is

- self-adjoint if a* = a,
 unitary if a*a = aa* = 1,
 normal if a*a = aa*,
- positive if $a = b^*b$ for some $b \in A$.

Definition 29. For a (not necessarily unital) C^* -algebra A and $a \in A$, we define the spectral radius of a to be r(a) := r((a,0)), the spectral radius of $(a,0) \in A$.

Proposition 30. For a C^* -algebra $A, a \in A$ normal and $n \in \mathbb{N}$, we have $||a^n|| =$ $||a||^n$.

Proof. Using normality and $(aa)^* = a^*a^*$ for the second equation, we have

$$||a^{2}|| = ||a^{2}(a^{2})^{*}||^{\frac{1}{2}}$$

$$= ||(a^{*}a)(a^{*}a)^{*}||^{\frac{1}{2}}$$

$$= ||a^{*}a||$$

$$= ||a||^{2}.$$

Inductively, $\|a^{2^n}\| = \|a\|^{2^n}$. Further, by submultiplicativity, for any $n \in \mathbb{N}$ we have

 $||a^n|| \leq ||a||^n$. But then, letting $k \in \mathbb{N}$ with $2^k > n$, we get

$$||a||^{n} ||a^{2^{k}-n}|| \le ||a||^{n} ||a||^{2^{k}-n}$$

$$= ||a||^{2^{k}}$$

$$= ||a^{2^{k}}||$$

$$\le ||a^{n}|| ||a^{2^{k}-n}||.$$

Now, if a = 0, the statement to be proven is trivial, otherwise we get

$$||a||^n \leqslant ||a^n|| \leqslant ||a||^n,$$

which yields the desired equality.

Corollary 31. For a C^* -algebra A and $a \in A$ normal, we have r(a) = ||a||.

Proof. Let $\alpha = (a, 0) \in \tilde{A}$. As a was normal, so is α . By Theorem 7 and Lemma 30, we have

$$r(a) = r(\alpha) = \lim_{n \to \infty} \|\alpha^n\|^{\frac{1}{n}} = \lim_{n \to \infty} (\|\alpha\|^n)^{\frac{1}{n}} = \|\alpha\|.$$

Corollary 32. For a C*-algebra A and $a \in A$, we have $||a|| = r(a^*a)^{\frac{1}{2}}$. In particular, the norm of a C^* -algebra is already uniquely determined by the \mathbb{C} -algebra structure.

Proof. a*a is self-adjoint, hence normal, so we get

$$||a|| = ||a^*a||^{\frac{1}{2}} = r(a^*a)^{\frac{1}{2}}.$$