15 ноября 2024 г.

Задача 1.

Пусть $X_t = 2\mathbbm{1}_{[0,1]}(t) + 3\mathbbm{1}_{(1,3]}(t) - 5\mathbbm{1}_{(3,4]}(t)$. Выразите интеграл Ито $\int_0^4 X_t \, dW_t$ в виде суммы случайных величин; найдите его распределение и дисперсию. Покажите, что случайный процесс $M_t = \int_0^t X_s \, dW_s$, $0 \le t \le 4$ – гауссовский, и найдите его ковариационную функцию.

Задача 2.

Пусть $X_t = (1-t) \int_0^t \frac{dW_s}{1-s}$, где $0 \le t < 1$. Найдите ковариационную функцию $cov(X_{t_1}, X_{t_2})$.

Задача 3.

Пусть X_t , $t \geq 0$ — процесс Орнштейна-Уленбека, описываемый уравнением $dX_t = -\frac{X_t}{\theta} dt + \sigma dW_t$, где $\theta > 0$.

- а) Примените лемму Ито к $Z_t = X_t e^{\frac{t}{\theta}}$ и решите получившееся СДУ относительно Z_t . После этого найдите стационарное распределение процесса X_t , то есть, подберите начальное условие X_0 так, что распределение X_t не меняется во времени.
- b) Найдите СДУ для процесса $Y_t = |X_t|$.

Задача 4.

Интеграл Стратоновича для процесса X_t , измеримого по фильтрации, порождённой стандартным винеровским процессом W_t , очень похож на интеграл Ито, и определяется как предел сумм

$$\int_{T_0}^{T_1} X_t dW_t = \lim_{\Delta t_i \to 0} \sum_{i=0}^{n-1} \frac{1}{2} (X_{t_{i+1}} + X_{t_i}) (W_{t_{i+1}} - W_{t_i}).$$

Найдите интеграл Стратоновича $\int_0^T W_t dW_t$.