PRACTICAL - 8

AIM: Write a program to classify IRIS data using Random forest classifier

Importing necessary libraries

```
In [1]: import pandas as pd
    from sklearn.linear_model import LogisticRegression
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.model_selection import train_test_split
```

· Loading the dataset

In [2]: df=pd.read_csv("iris_code.csv")
 df

Out[2]:		ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	lris- setosa
	1	2	4.9	3.0	1.4	0.2	Iris- setosa
	2	3	4.7	3.2	1.3	0.2	lris- setosa
	3	4	4.6	3.1	1.5	0.2	Iris- setosa
	4	5	5.0	3.6	1.4	0.2	Iris- setosa
	•••						
	145	146	6.7	3.0	5.2	2.3	lris- virginica
	146	147	6.3	2.5	5.0	1.9	lris- virginica
150	147	148	6.5	3.0	5.2	2.0	lris- virginica
	148	149	6.2	3.4	5.4	2.3	lris- virginica
	149	150	5.9	3.0	5.1	1.8	lris- virginica

150 rows × 6 columns

12202040501038 MEET DADHANIYA

• Display dataset information

```
In [3]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Id	150 non-null	int64
1	SepalLengthCm	150 non-null	float64
2	SepalWidthCm	150 non-null	float64
3	PetalLengthCm	150 non-null	float64
4	PetalWidthCm	150 non-null	float64
5	Species	150 non-null	object
d+vn	os: float64(4)	int64(1) object	(1)

dtypes: float64(4), int64(1), object(1)

memory usage: 7.2+ KB

150.000000

max

• Summary statistics of the dataset

In [4]: df.describe()

Out[4]:		ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
	count	150.000000	150.000000	150.000000	150.000000	150.000000
	mean	75.500000	5.843333	3.054000	3.758667	1.198667
	std	43.445368	0.828066	0.433594	1.764420	0.763161
	min	1.000000	4.300000	2.000000	1.000000	0.100000
	25%	38.250000	5.100000	2.800000	1.600000	0.300000
	50%	75.500000	5.800000	3.000000	4.350000	1.300000
	75%	112.750000	6.400000	3.300000	5.100000	1.800000

4.400000

6.900000

2.500000

7.900000

List column names of the dataset

					202046702
	Sepal engthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	
0	5.1	3.5	1.4	0.2	
1	4.9	3.0	1.4	0.2	
2	4.7	3.2	1.3	0.2	
3	4.6	3.1	1.5	0.2	
4	5.0	3.6	1.4	0.2	
•••					
145	6.7	3.0	5.2	2.3	
146	6.3	2.5	5.0	1.9	
147	6.5	3.0	5.2	2.0	
148	6.2	3.4	5.4	2.3	
149	5.9	3.0	5.1	1.8	

150 rows × 4 columns

AIML

Out[7]:

Group dataset by species

```
In [8]: target=df["Species"]
        target
                  Iris-setosa
Out[8]: 0
                  Iris-setosa
        2
                  Iris-setosa
                  Iris-setosa
                  Iris-setosa
        145 Iris-virginica
        146 Iris-virginica
               Iris-virginica
        147
        148
              Iris-virginica
        149
              Iris-virginica
        Name: Species, Length: 150, dtype: object
```

Working with LogisticRegression

In [11]: # Make a prediction with example input
x=rf.predict([[1,1,1,1]])[0]
print(x)

Iris-versicolor

C:\Users\PARAM\anaconda3\Lib\site-packages\sklearn\base.py:493: UserWarning: X do es not have valid feature names, but RandomForestClassifier was fitted with featu re names

warnings.warn(

Using train_test_split()

In [12]: # Split dataset into training and testing sets
 X_train,X_test,y_train,y_test=train_test_split(features,target,test_size=0.30,ra

In [13]: X_train

Out[13]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
81	5.5	2.4	3.7	1.0
133	6.3	2.8	5.1	1.5
137	6.4	3.1	5.5	1.8
75	6.6	3.0	4.4	1.4
109	7.2	3.6	6.1	2.5
71	6.1	2.8	4.0	1.3
106	4.9	2.5	4.5	1.7
14	5.8	4.0	1.2	0.2
92	5.8	2.6	4.0	1.2
102	7.1	3.0	5.9	2.1

105 rows × 4 columns

In [14]: rf.fit(X_train,y_train)

Out[14]:

🔻 RandomForest lassifier 🧶

RandomForestClassifier()

In [15]: y_pred=rf.predict(X_test)
print(y_pred)

AIML 202046702 ['Iris-versicolor' 'Iris-setosa' 'Iris-virginica' 'Iris-versicolor' 'Iris-versicolor' 'Iris-setosa' 'Iris-versicolor' 'Iris-virginica' 'Iris-versicolor' 'Iris-versicolor' 'Iris-virginica' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-versicolor' 'Iris-virginica' 'Iris-versicolor' 'Iris-versicolor' 'Iris-virginica' 'Iris-setosa' 'Iris-virginica' 'Iris-setosa' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-versicolor' 'Iris-setosa' 'Iris-setosa' 'Iris-virginica' 'Iris-versicolor' 'Iris-setosa' 'Iris-setosa' 'Iris-virginica' 'Iris-versicolor' 'Iris-versicolor' 'Iris-setosa' | In [16]: from sklearn.metrics import accuracy_score accuracy_score(y_test,y_pred) Out[16]: 1.0 In [18]: sol=accuracy_score(y_test,y_pred) In [19]: print(sol) 1.0

In [20]: data=pd.DataFrame({'Actual':y_test,'Predicted': y_pred})

data

AIML		
Outl	201	

	Actual	Predicted
73	Iris-versicolor	Iris-versicolor
18	Iris-setosa	Iris-setosa
118	Iris-virginica	Iris-virginica
78	Iris-versicolor	Iris-versicolor
76	Iris-versicolor	Iris-versicolor
31	Iris-setosa	Iris-setosa
64	Iris-versicolor	Iris-versicolor
141	Iris-virginica	Iris-virginica
68	Iris-versicolor	Iris-versicolor
82	Iris-versicolor	Iris-versicolor
110	Iris-virginica	Iris-virginica
12	Iris-setosa	Iris-setosa
36	Iris-setosa	Iris-setosa
9	Iris-setosa	Iris-setosa
19	Iris-setosa	Iris-setosa
56	Iris-versicolor	Iris-versicolor
104	Iris-virginica	Iris-virginica
69	Iris-versicolor	Iris-versicolor
55	Iris-versicolor	Iris-versicolor
132	Iris-virginica	Iris-virginica
29	Iris-setosa	Iris-setosa
127	Iris-virginica	Iris-virginica
26	Iris-setosa	Iris-setosa
128	Iris-virginica	Iris-virginica
131	Iris-virginica	Iris-virginica
145	Iris-virginica	Iris-virginica
108	Iris-virginica	Iris-virginica
143	Iris-virginica	Iris-virginica
45	Iris-setosa	Iris-setosa
30	Iris-setosa	Iris-setosa
22	Iris-setosa	Iris-setosa

15 Iris-setosa Iris-setosa

65 Iris-versicolor Iris-versicolor

	Actual	Predicted
11	Iris-setosa	Iris-setosa
42	Iris-setosa	Iris-setosa
146	Iris-virginica	Iris-virginica
51	Iris-versicolor	Iris-versicolor
27	Iris-setosa	Iris-setosa
4	Iris-setosa	Iris-setosa
32	Iris-setosa	Iris-setosa
142	Iris-virginica	Iris-virginica
85	Iris-versicolor	Iris-versicolor
86	Iris-versicolor	Iris-versicolor
16	Iris-setosa	Iris-setosa
10	Iris-setosa	Iris-setosa

Wroking with other Libraries

```
In [21]: from sklearn.neighbors import KNeighborsClassifier
         from sklearn import svm
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.ensemble import GradientBoostingClassifier
In [22]: svm=svm.SVC()
         knn=KNeighborsClassifier()
         dt=DecisionTreeClassifier()
         lr=LogisticRegression()
         gbc=GradientBoostingClassifier()
In [23]:
         svm.fit(X_train,y_train)
         knn.fit(X train,y train)
         dt.fit(X_train,y_train)
         lr.fit(X_train,y_train)
         gbc.fit(X_train,y_train)
Out[23]:
             GradientBoosti gClassifier
         GradientBoostingClassifier()
In [24]: y_pred1 = svm.predict(X_test)
         y pred2= knn.predict(X test)
         y_pred3 = dt.predict(X_test)
         y_pred4 = lr.predict(X_test)
         y_pred5 = gbc.predict(X_test)
```

```
AIML
                                                                             2020/6702
 In [25]:
           s1=accuracy_score(y_test,y_pred1)
           s2=accuracy_score(y_test,y_pred2)
           s5=accuracy_score(y_test,y_pred5)
           s6=accuracy_score(y_test,y_pred)
 In [26]:
           print(s1)
           print(s2)
           print(s3)
           print(s4)
           print(s5)
         1.0
         1.0
         1.0
         1.0
         1.0
 In [27]: l=[s1,s2,s3,s4,s5,s6]
           1
 Out[27]: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
 In [28]: import matplotlib.pyplot as plt
 In [29]: model=['SVM','KNN','DT','RF','GBC','LR']
           colors=['b','g','r','c','m','y']
           plt.bar(model, 1,width=0.5,color=colors)
           plt.show()
          1.0 -
          0.8
          0.6
          0.4
          0.2
          0.0
                   SVM
                              KNN
                                           DT
                                                       RF
                                                                  GBC
                                                                               LR
```