ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ФИЗИКЕ

Для студентов 2-го курса МФТИ

31 мая 2017г.

ВАРИА	нт
A	

1	2	3	4	5	Σ
	8 %				

зада	пиня	Итог
I	II	

1А. Дифракция Фраунгофера наблюдается на двух узких параллельных щелях. Перед щелями установлен светофильтр с относительной полосой пропускания $\Delta \nu/\nu_0 = 10^{-2}$, при этом спектральная интенсивность прошедшего света равномерно распределена по частоте на отрезке $|\nu-\nu_0| \leq \Delta \nu/2$. Найти номер полосы m, вблизи которой видность интерференционной картины равна $V(m) \approx 0.9$. Видность вблизи нулевой полосы V(0) = 1.

2А. В непрозрачном экране проделано круглое отверстие, освещаемое плоской монохроматической волной с интенсивностью I_0 . Точка наблюдения P, находящаяся на оси отверстия, соответствует $m_1 = 1,5$ открытым зонам Френеля. В центре отверстия размещают круглый прозрачный диск с показателем преломления n, перекрывающий $m_2 = 0,5$ зон Френеля. Определить наименьшую толщину диска d, при которой интенсивность света в точке P оказывается максимальной. Чему равна эта интенсивность?

3А. В интерференционной схеме, показанной на рис., используется квазимонохроматический протяженный источник света S. Средняя длина волны излучения $\lambda=5\cdot 10^{-5}$ см, ширина спектральной линии $\Delta\lambda=25$ Å, размер источника b=25 мкм, геометрические размеры установки d=0,5 см, L=1 м. Определить: 1) ширину интерференционных полос Δx на экране Э; 2) минимальный m_{\min} и максимальный m_{\max} порядки наблюда-

емых интерференционных полос; 3) максимальную видность полос V_{max} . При расчетах считать, что размеры зеркала не ограничивают максимальный порядок интерференции.

4А. Ячейка Керра, помещённая между двумя скрещенными поляризаторами, используется в качестве электро-оптического затвора (прерывателя излучения). Направление напряжённости электрического поля E в конденсаторе составляет угол 45° с плоскостями пропускания поляризаторов. Конденсатор заполнен нитробензолом, для которого разность показателей преломления обыкновенной и необык-

новенной волн равна $\Delta n = \lambda b E^2$, где b — константа Керра. Оказалось, что минимальная напряженность электрического поля в конденсаторе, при которой интенсивность прошедшего через систему излучения не изменяется при повороте выходного поляризатора Π_2 , равна $E_0 = 15$ кВ/см. Найти число прерываний света $N_{\rm np}$ за период синусоидально изменяющегося напряжения, поданного на конденсатор, если амплитуда напряженности электрического поля в нем равна $E_m = 70$ кВ/см. Поглощением излучения пренебречь.

5А. Распространение коротких радиоволн (от 4 до 30 МГц) и радиолокация на сверхдальние расстояния осуществляется за счет отражения радиоволн от ионосферы Земли. Найти дальность L распространения радиолуча вдоль поверхности Земли через ионосферу, показатель преломления которой зависит от вертикальной координаты z как $n=\sqrt{1-\mu z}$, где $\mu=\frac{1}{600}$ км $^{-1}$. Нижняя граница ионосферы (z=0) находится

на высоте H=150 км, угол падения луча на неё составляет $\varphi_0=60^\circ$ (см. рис.). До границы с ионосферой считать n=1, поверхность Земли считать плоской.

ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ФИЗИКЕ

Для студентов 2-го курса МФТИ

31 мая 2017г.

ФИО	№ группь

ВАРИАНТ Б

1	2	3	4	5	Σ

зада	ания	Итог
I	II	
	-	20.2

1Б. Дифракция Фраунгофера наблюдается на двух узких параллельных щелях. Оказалось, что интенсивность в максимуме десятой полосы (m=10) на 5% меньше интенсивности нулевой полосы (m=0). Видность картины вблизи нулевой полосы V(0)=1. Найти относительную ширину $\Delta \omega/\omega_0$ спектра излучения, падающего на щели. Считать, что спектральная интенсивность равномерно распределена по частоте на отрезке $|\omega-\omega_0| \leq \Delta \omega/2$.

2Б. Тонкий непрозрачный диск освещается нормально падающей плоской монохроматической волной с интенсивностью I_0 . Точка наблюдения P, находящаяся на оси диска, соответствует $m_1=1,5$ перекрытым зонам Френеля. В центре диска проделывают круглое отверстие, открывающее $m_2=0,5$ зон Френеля, и перекрывают его прозрачной пластинкой с показателем преломления n. Определить наименьшую толщину пластинки d, при которой интенсивность света в точке P оказывается максимальной. Чему равна эта интенсивность?

3Б. На рис. показана интерференционная схема, в которой используется квазимонохроматический протяженный источник света S. На экране Э отчётливо наблюдаются N=200 интерференционных полос шириной $\Delta x=50$ мкм каждая, причем максимальная видность полос равна $V_{\rm max}=4/\pi^2$. Геометрические размеры установки d=5 мм, L=1 м. Определить параметры источника света: среднюю длину волны излучения λ ,

ширину спектральной линии $\Delta \lambda$, размер источника b. Считать, что размеры зеркала не дают ограничение на максимальный порядок интерференции.

4Б. Ячейка Керра, помещённая между двумя скрещенными поляризаторами, используется в качестве электрооптического затвора (прерывателя излучения). Направление напряжённости электрического поля E в конденсаторе составляет угол 45° с плоскостями пропускания поляризаторов. Длина конденсатора (вдоль оптического тракта) L = 5 см, конденсатор заполнен нитробензолом, постоян-

ная Керра для которого $b=2,2\cdot 10^{-10}$ см/ B^2 (разность показателей преломления обыкновенной и необыкновенной волн равна $\Delta n=b\lambda E^2$). На конденсатор подано синусоидальное напряжение частоты $\nu=5$ МГц со значением амплитуды напряженности поля $E_m=75$ кВ/см. Найти число прерываний излучения $N_{\mathrm{пр}}$ за секунду. Поглощением излучения пренебречь.

5Б. Распространение коротких радиоволн (от 4 до 30 МГц) и радиолокация на сверхдальние расстояния осуществляется за счет отражения радиоволн от ионосферы Земли. Найти время τ распространения радиоимпульса вдольтрассы «земля—ионосфера—земля» (см. рис.). Зависимость показателя преломления ионосферы от вертикальной координаты z определяется из соотношения $n^2 = 1 - z/z_0$,

где $z_0=600$ км. Нижняя граница ионосферы (z=0) находится на высоте H=150 км, угол падения луча на неё составляет $\varphi_0=45^\circ$. До границы с ионосферой считать n=1, поверхность Земли считать плоской.

 $\mathit{Указание}$: в ионосфере групповая и фазовая скорости радиоволн связаны соотношением $v_{\rm rp}v_{\rm \varphi}=c^2.$

Решения задач экзаменационной контрольной работы по физике

Для студентов 2-го курса МФТИ

ВАРИАНТ А

1A. (Овчинкин В.А.) Так как вблизи нулевой полосы V(0) = 1, то радиус пространственной когерентности $\rho \to \infty$. Поэтому

$$V(\Delta) = \left| \frac{\sin\left(\frac{\pi\Delta\nu}{c}\Delta\right)}{\frac{\pi\Delta\nu}{c}\Delta} \right|, \text{ r. e. } \frac{\sin x}{x} = 0.9 \text{ .}$$

При таком условии синус можно разложить вблизи нуля, откуда $\frac{\sin x}{x} \approx 1 - \frac{x^2}{6} = 0.9 \rightarrow x = \sqrt{0.6} \approx 0.775$. Размести чето

$$pprox 0,775$$
. Разность хода в одном из максимумов $\Delta = \lambda_0 m$. Итого получаем $x = \frac{\pi \Delta v}{c} \Delta = \frac{\pi \Delta v}{c} \lambda_0 m = \frac{\pi \Delta v}{c} \frac{c}{v_0} m \rightarrow m = \frac{x}{\pi} \frac{v_0}{\Delta v} = \frac{0,775}{\pi} 10^2 \approx 25$.

2А. (Локшин Γ .Р.) Вектор $\vec{A}_{\text{кол}}$ — амплитуда света, прошедшего через кольцевое отверстие между краем диска (0,5 зоны) и краем отверстия (1,5 зоны). $|\vec{A}_{\text{кол}}| = 2A_0$. Вектор \vec{A}_1 — амплитуда света, падающего на диск. Амплитуда после прохождения диска $\vec{A}_{\rm d}$ получится поворотом вектора \vec{A}_1 на угол $\varphi=\frac{2\pi}{\lambda}(n-1)d$. Интенсивность будет максимальна, когда $\varphi=3\pi/4$. Толщина пластинки равна $d=\frac{3\lambda}{8(n-1)}$. Учитывая, что $|\vec{A}_{\Pi\Pi}|=\sqrt{2}\;A_0$, для максимальной интенсивности получим $I_{\text{max}} = (2 + \sqrt{2})^2 I_0 = (6 + 4\sqrt{2})I_0 \approx 11,7 I_0$.

2d

ЗА. (Локшин Г.Р.) Зеркало ограничивает область интерференции лучей на экране ниже точки О. Для точки наблюдения A, расположенной ниже т. O на расстоянии x, разность

$$\Delta(x) = \frac{(2d+x)^2}{2L} - \frac{x^2}{2L} = \frac{2d(d+x)}{L}.$$

хода лучей P_1A и P_2A равна $(x \ll L, d \ll L)$ $\Delta(x) = \frac{(2d+x)^2}{2L} - \frac{x^2}{2L} = \frac{2d(d+x)}{L}.$ Максимумы интерференционных полос будут наблюдаться при $\Delta = m\lambda$. 1) Ширина полосы

$$\Delta x = \lambda \frac{L}{2d} = 5 \cdot 10^{-3} \text{ cm}.$$

2) Минимальный порядок интерференции
$$m_{\min}$$
 соответствует минимальной разности хода:
$$m_{\min} = \frac{2d^2}{L\lambda} = \frac{2 \cdot 0.5^2}{100 \cdot 5 \cdot 10^{-5}} = 100, \qquad \Delta_{\min} = 5 \cdot 10^{-3} \text{ см.}$$

Полагая, что отражающее зеркало не ограничивает область пересечения пучков света, для максимального порядка интерференции $m_{
m max}$ имеем

$$m_{\rm max} = \frac{\lambda}{\Delta \lambda} = \frac{5 \cdot 10^{-5}}{25 \cdot 10^{-8}} = 200, \quad \Delta_{\rm max} = 10^{-2} \text{ cm}.$$

3) Видность вблизи полосы m_{\min} , обусловленная протяжённостью источника, определяется степенью пространственной когерентности в точках О и В:

$$V_1 = \frac{\sin(x_1)}{x_1}, \qquad x_1 = \frac{kb\Omega}{2} = \frac{2\pi bd}{\lambda L} = 2\pi \cdot \frac{25 \cdot 10^{-4} \cdot 0.5}{5 \cdot 10^{-5} \cdot 100} = \frac{\pi}{2}, \qquad V_1 = \frac{2}{\pi}.$$

Видность вблизи полосы m_{\min} , обусловленная немонохроматичностью источника:

$$V_2 = \frac{\sin(x_2)}{x_2}, \quad x_2 = \frac{\Delta\omega}{2c} \Delta_{\min} = \pi \frac{\Delta\lambda}{\lambda^2} \Delta_{\min} = \pi \cdot \frac{25 \cdot 10^{-8}}{25 \cdot 10^{-10}} \cdot 5 \cdot 10^{-3} = \frac{\pi}{2}, \quad V_2 = \frac{2\pi}{\pi}.$$

Окончательно $V = V_1 V_2 = \frac{4}{\pi^2} \approx 0.4$.

4А. (Крымский К.М., Попов П.В.) Интенсивность прошедшего света не зависит от угла поворота выходного поляризатора в единственном случае, когда свет на выходе из конденсатора имеет круговую

поляризацию. Это означает, что нитробензол эквивалентен пластинке в четверть длины волны, то есть $Lb\lambda E_0^2 = \frac{\lambda}{4} + \frac{m\lambda}{2} = \frac{\lambda}{4}$ (m=0, т.к. E_0 минимально). Найдём число прерываний излучения за четверть периода изменения напряжённости электрического поля. Поскольку поляризаторы скрещены, то интенсивность равна нулю при условии $Lb\lambda E^2 = m\lambda$ (ячейка эквивалентна пластинке λ). Максимальное значение m есть $m_{\rm max} = \frac{1}{4} \frac{E_{\rm m}^2}{E_{\rm o}^2} \approx 5,4$ — следует взять целое $m_{\rm max} = 5$. За весь период таких прерываний в 4 раза больше, а также следует учесть еще два прерывания в моменты, когда поле равно нулю. Итого число прерываний за период изменения поля $N_{\rm np}=4~m_{\rm max}+2=22$.

5А. (Данилин В.А.) Поскольку $\lambda \frac{dn}{dz} \approx \frac{\mu c}{2f} \le 6 \cdot 10^{-5} \ll 1$, можно пользоваться приближением геометрической оптики. По закону Снедлиуса имеем $n(z)\sin\varphi(z)=\sin\varphi_0$. Для траектории луча получа-

$$\frac{dx}{dz} = \operatorname{tg} \varphi; \quad dx = \frac{\sin \varphi_0 \, dz}{\sqrt{n^2(z) - \sin^2 \varphi_0}}$$

В точке отражения луча $n(z_{\rm orp})=\sin\varphi_0 \rightarrow n^2=1-\mu z_{\rm orp}=\sin^2\varphi_0 \rightarrow z_{\rm orp}=\cos^2\varphi_0/\mu$

В ионосфере до точки отражения

$$x_0 = \int\limits_0^{z_{\text{exp}}} \frac{\sin \varphi_0 \ dz}{\sqrt{\cos^2 \varphi_0 - \mu z}} = \frac{2 \sin \varphi_0 \cos \varphi_0}{\mu} = 300\sqrt{3} \text{ km}.$$

До границы с ионосферой $\Delta x = H \operatorname{tg} \varphi_0 = 150\sqrt{3}$ км. Длина «скачка» луча $L = 2(x_0 + \Delta x) =$ = $900\sqrt{3}$ ≈ 1560 km.

ВАРИАНТ Б

1Б. (Овчинкии В.А.) $I_{\text{max}} = 2I_0(1+V)$, $\frac{I_{\text{max}}(10)}{I_{\text{max}}(0)} = \frac{1+V(10)}{1+V(0)} = 0,95$, откуда V(10) = 0,9. Далее аналогично задаче 1A из уравнения $\sin x/x=0.9$ получим x=0.775, где $\frac{\Delta\omega}{\omega_0}=\frac{x}{\pi m}=\frac{0.775}{10~\pi}\approx0.025$.

2Б. (Локшин $\Gamma.P.$, Филатов Ю.Н.) Вектор $\vec{A}_{\rm out}$ — амплитуда света, прошедшего снаружи диска (1,5 зоны Френеля). $|\vec{A}_{\text{out}}| = A_0$. Вектор $\vec{A}_{\rm in}$ — амплитуда света, прошедшего через кольцевое отверстие в диске (0,5 зоны Френеля). $|\vec{A}_{\rm in}| = \sqrt{2}\,A_0$. Амплитуда света после прохождения прозрачной пластинки $A_{\rm пл}$ получится поворотом вектора $\vec{A}_{\rm in}$ на угол $\varphi = \frac{2\pi}{\lambda}(n-1)d$. Интенсивность будет максимальна, когда $\varphi = \frac{7\pi}{4}$. Толщина пластинки равна $d = \frac{7\lambda}{8(n-1)}$. Для максимальной интенсивности получим $l_{\text{max}} = \left(1 + \sqrt{2}\right)^2 l_0 =$ $=(3+2\sqrt{2})I_0\approx 5.83I_0$

3Б. (Локиим Г.Р., Филатов Ю.Н.) См. 3А. 1) Длина волны $\lambda = \frac{2 \Delta x d}{L} = \frac{2 \cdot 50 \cdot 10^{-4} \cdot 0.5}{100} = 5 \cdot 10^{-5} \text{ см.}$

2) Максимальная видность будет наблюдаться вблизи полосы, соответствующей минимальному порядку интерференции (в т. О)

 $m_{
m min}=rac{2d^2}{L\lambda}=rac{d}{\Delta x}=rac{0.5}{5\cdot 10^{-4}}=100, \qquad \Delta_{
m min}=m_{
m min}\,\lambda\,.$ Количество наблюдаемых полос равно

$$N = m_{\text{max}} - m_{\text{min}} = \frac{\lambda}{\Delta \lambda} - \frac{d}{\Delta x}, \rightarrow \Delta \lambda = \frac{\lambda}{N + \frac{d}{\Delta x}} = \frac{5 \cdot 10^{-5}}{200 + \frac{0.5}{50 \cdot 10^{-4}}} = 25 \cdot 10^{-8} \text{ cm}.$$

Видность вблизи полосы m_{\min} , обусловленная немонохроматичностью источника: $V_{\Delta\lambda} = \frac{\sin(x_1)}{x_1}, \quad x_1 = \frac{\Delta\omega}{2c} \Delta_{\min} = \pi \frac{\Delta\lambda}{\lambda^2} \Delta_{\min} = \pi \frac{\Delta\lambda}{\lambda} \cdot m_{\min} = \pi \frac{m_{\min}}{N + m_{\min}} = \frac{\pi}{2}, \quad V_{\Delta\lambda} = \frac{3}{2} \sqrt{3}$ Для видности, обусловленной протяжённостью источника, получим: $V_{\text{пр}} = \frac{\sin(x_2)}{x_2} = \frac{V}{V_{\Delta\lambda}} = \frac{8}{\pi} \frac{3}{9} \rightarrow x_2 = \frac{\pi}{2} = \frac{2\pi bd}{\lambda L} = \pi \frac{b}{\Delta x}, \quad b = \frac{\Delta x}{4} = \frac{25 \text{ мкм.}}{2} = \frac{27 \text{ mkm.}}{2} = \frac{27$

5Б. (Данилин В.А.) См. 5А. Для приращения длины ds вдоль траектории луча получаем: $ds = dz/\cos \varphi(z)$. Луч пройдет это расстояние за время

$$dt = \frac{ds}{v_{\rm rp}} = \frac{ds}{nc} = \frac{dz}{c\sqrt{\cos^2\varphi_0 - z/z_0}}$$

Здесь учтено, что $v_{\rm rp} = \frac{c^2}{v_{\rm th}} = nc$ и $n\cos\varphi = \sqrt{n^2 - \sin^2\varphi_0} = \sqrt{\cos^2\varphi_0 - z/z_0}$

Время до точки отражения $(z_{\text{отр}} = \cos^2 \varphi_0 \ z_0)$ луча в ионосфере $\tau_1 = \int_0^{z_{\text{отр}}} \frac{dz}{c \sqrt{\cos^2 \varphi_0 - z/z_0}} = \frac{2z_0 \cos \varphi_0}{c}$

Время до границы с ионосферой $\tau_2 = \frac{H}{c \cos \varphi_0}$

Время распространения радиосигнала $\tau = 2(\tau_1 + \tau_2) = 2\sqrt{2} \frac{z_0 + H}{c} = \frac{2 \cdot 1,41 \cdot 750 \cdot 10^3}{2 \cdot 10^8} \approx 7$ мс.

Вниманию преподавателей! Инструкция для проверяющих

За задачу ставится полных 2 балла, если задача решена верно: приведено обоснованное решение и даны ответы на все вопросы задачи. Возможно наличие арифметических ошибок, не влияющих на ход решения и не приводящих к ошибке в порядке или знаке величины. В противном случае балл за задачу определяется со-

1,5 балла	Ход решения в целом верен и получены ответы на все вопросы задачи, но решение содержит ошибки не касающиеся физического содержания (арифметические ошибки, влияющие на порядок или знак
1 балл	ошибки, влияющие на ход решение содержит грубые ошибки (напр., имеются вычислительное
0,5 балла	на основе которых задача может быть
0 аллов	Задача не решена: основные физические законы применены с грубыми ошибками, перечислены не полностью или использованы законы, не имеющие отношения к задаче / решение задачи не соответ- за письменную работу добарилисть б

К баллам за письменную работу добавляются баллы за сданные задания:

отл: + 2 б./задание; хор: + 1 б./задание;

Итоговая сумма округляется до целых. Результат определяет максимальную оценку на устном экзамене

į	MH	имал	тьная	оцен	ка вс	егла с	(Hevn(1)) I	1	определяет м
ľ	1	1.	1 -				ЭД(1)»). Г	римерь	определяет м заполнения:
ı	1	1 2	3	4	5	Σ	Задание	Uron	

1	2	3	4	5	Σ	Задание Итог	Полнен	іня;			_	
0,5	1,0	1,5	1,0	1,0	5,0	NAME AND ADDRESS OF THE PROPERTY OF THE PARTY OF THE PART	1	2	3	4	5	Σ
			CO. Co.			BO3MONUS -	1,0	2,0	1,5	2,0	2,0	8,5

Зад	ание	
I	11	Итог
+1	+2	12

В примере слева максимально возможная оценка на устном экзамене — удовл(3), справа — отл(10). Обсуждение замечаний, критериев проверки и результатов — на форуме кафедры board physics mipt ru

Обсуждение письменного экзамена состоится в понедельник 05.06.2017 в 8 час. 30 мин. в Главной Физической аудитории.