Golden Rapidity and Tangential Velocity in VAM

Setup

Let the golden ratio be

$$\varphi \equiv \frac{1+\sqrt{5}}{2}, \qquad \varphi^2 = \varphi + 1.$$
 (1)

Define the golden rapidity

$$\xi_g \equiv \frac{3}{2} \ln \varphi. \tag{2}$$

We use the standard hyperbolic functions (definitions in [?]).

Identity: $\tanh(\xi_g) = 1/\varphi$

Using $\tanh y = \frac{e^{2y} - 1}{e^{2y} + 1}$, substitute $y = \xi_g$ to obtain

$$\tanh(\xi_g) = \frac{e^{3\ln\varphi} - 1}{e^{3\ln\varphi} + 1} = \frac{\varphi^3 - 1}{\varphi^3 + 1}.$$
 (3)

From $\varphi^2 = \varphi + 1$ it follows $\varphi^3 = \varphi(\varphi + 1) = 2\varphi + 1$. Hence

$$\tanh(\xi_g) = \frac{(2\varphi + 1) - 1}{(2\varphi + 1) + 1} = \frac{2\varphi}{2(\varphi + 1)} = \frac{\varphi}{\varphi + 1} = \frac{\varphi}{\varphi^2} = \frac{1}{\varphi}.$$
 (4)

Therefore

VAM Mapping to Tangential Velocity

In a rapidity parametrization, the dimensionless speed is

$$\beta \equiv \frac{v}{C_e} = \tanh \xi. \tag{6}$$

Setting $\xi = \xi_g$ gives the golden tangential fraction

$$\beta_g = \tanh(\xi_g) = \frac{1}{\varphi},$$
 (7)

and thus a characteristic tangential velocity and swirl frequency

$$v_g = \frac{C_e}{\varphi}, \qquad \Omega_g = \frac{v_g}{r_c} = \frac{1}{\varphi} \frac{C_e}{r_c}.$$
 (8)

Both are dimensionally consistent: v_g has units of m/s and Ω_g of s⁻¹.

Numerical Validation (User Constants)

Using $C_e = 1\,093\,845.63\,\mathrm{m/s}$ and $r_c = 1.408\,970\,17 \times 10^{-15}\,\mathrm{m}$,

$$\varphi \approx 1.618033988749895,$$
 (9)

$$\xi_q = \frac{3}{2} \ln \varphi \approx 0.721817737589405,\tag{10}$$

$$\beta_g = \tanh \xi_g \approx 0.618033988749895 = \frac{1}{\varphi},$$
 (11)

$$v_g = \frac{C_e}{\varphi} \approx 6.760\,337\,777\,855\,416 \times 10^5\,\text{m/s},$$
 (12)

$$\Omega = \frac{C_e}{r_c} \approx 7.763440655383073 \times 10^{20} \,\mathrm{s}^{-1},\tag{13}$$

$$\Omega_g = \frac{\Omega}{\varphi} \approx 4.798\,070\,194\,669\,498 \times 10^{20}\,\mathrm{s}^{-1}.$$
(14)

Consistency checks. Since $\beta_g = 1/\varphi$, we have $v_g = C_e/\varphi$ and $\Omega_g = \Omega/\varphi$ exactly, up to machine precision in floating-point arithmetic.

Discussion

This construction supplies a natural, dimensionless benchmark $(1/\varphi)$ for tangential speeds in VAM. If swirl states quantize in hyperbolic angle ξ ,

the golden rapidity ξ_g defines a preferred scaling layer where tangential velocity and core swirl frequency are reduced by a factor φ relative to their maxima, potentially useful for defining stable vortexknot operating points or resonance bands in the spectrum.