COM1009 Introduction to Algorithms and Data Structures

Lecture #9

Dr Dirk Sudholt Department of Computer Science University of Sheffield

d.sudholt@sheffield.ac.uk
https://staffwww.dcs.shef.ac.uk/people/D.Sudholt/campus only/com1009.htm

Reading: Lecture notes on MOLE

Aims of this lecture

- To see a class of **self-balancing trees** guaranteeing operations in time $O(\log n)$.
- To show that the depth of AVL trees is $O(\log n)$.
- To show how to perform insertions and deletions,
 rebalancing the tree through rotations whenever it becomes unbalanced.

Self-balancing trees

- There are various types of binary search trees that are guaranteed to have depth $O(\log n)$.
 - AVL Trees
 - 2-3 Trees
 - B-Trees
 - Red-black Trees
 - Splay Trees
 - Van Emde Boas Trees
 - **—** ...

AVL Trees

- Invented by and named after Adelson-Velskii and Landis.
- Invariant: all nodes are locally balanced.
- A binary tree is called AVL tree if for every node the following holds: the height of the left subtree and the height of the right subtree only differ by at most 1.
- Let v be a node and T_l, T_r be its left and right subtrees, respectively. Then $bal(v) \coloneqq h(T_l) h(T_r)$ is the **balance** factor of v, h() denoting the height of a tree.
- In an AVL tree hence for every node v we have $bal(v) \in \{-1, 0, +1\}$.

Balance properties

 The local property does not mean that all leaves are on two levels. AVL trees can be lopsided, see this example:

However, overall the tree is still pretty balanced.

Estimating the depth of an AVL tree

Theorem: the height of an AVL tree with *n* nodes is at most

$$h \le \frac{1}{\log((\sqrt{5}+1)/2)} \log n \approx 1.44 \log n.$$

Proof outline:

- Consider the minimum number of nodes in any AVL tree of height h and call it A(h).
 - This means that any AVL tree of height h will have $n \ge A(h)$ nodes.
- Show that A(h) (and thus n) is exponentially large in h.
 - Will show that A(h) is similar to Fibonacci numbers.
- Take logarithms (+maths) to get the claimed bound.

Minimum number of nodes in an AVL tree

- Let A(h) be the minimum number of nodes in any AVL tree of height h.
 - An AVL tree with height 0 consists of the root only, hence A(0) = 1.
 - The smallest AVL tree of height 1 has two nodes, hence A(1) = 2.
 - An AVL tree of height h has to have a root with one subtree of height h-1, and the other subtree of height at least h-2. Hence A(h) = 1 + A(h-1) + A(h-2).
- This is similar to the Fibonacci numbers (bar the "1 +"):
 - Fib(0) = Fib(1) = 1 and
 - Fib(h) = Fib(h-1) + Fib(h-2).
 - Handy closed form: $\operatorname{Fib}(k) \geq \frac{1}{\sqrt{5}} \left[\left(\frac{\sqrt{5}+1}{2} \right)^{k+1} 1 \right]$

Link to Fibonacci numbers

- We prove by induction that A(h) = Fib(h + 2) 1.
- Base case: A(0) = 1 = 2 1 = Fib(2) 1and A(1) = 2 = 3 - 1 = Fib(3) - 1.
- Assume that the claim holds for A(h-1) and A(h-2), then

$$A(h) = 1 + A(h-1) + A(h-2)$$
 (by recurrence)
 $= 1 + \text{Fib}(h+1) - 1 + \text{Fib}(h) - 1$ (2x induction hypothesis)
 $= \text{Fib}(h+1) + \text{Fib}(h) - 1$
 $= \text{Fib}(h+2) - 1$ (by definition of Fib $(h+2)$).

- Every AVL tree with n nodes and height h has $n \ge A(h) \ge Fib(h+2) 1$.
- Plugging in closed form for Fib gives $\left(\frac{\sqrt{5}+1}{2}\right)^{n+3} \le \sqrt{5}n+1$
- Taking logarithm of base $\frac{\sqrt{5}+1}{2}$: $h+3 \leq \log_{(\sqrt{5}+1)/2}(\sqrt{5}n+1)$ Converting to \log_2 completes proof. $\Rightarrow h \leq \log_{(\sqrt{5}+1)/2}(n)$

Search in an AVL Tree

• Works like in an ordinary binary search tree.

Inserting in an AVL Tree

- Works like in an ordinary binary search tree.
- But the tree may become unbalanced, hence we need to rebalance. (We focus on ideas here; writing code is easy.)
- We record the search path to new element, and then work back up the search path to rebalance so long as the height of the current subtree has increased.
- Let v be the current node and its right child x be on the search path (left child is symmetric)

►Insert (1)

Case 1: bal(v) = 1.

- Left subtree of v was higher than right subtree before insertion.
- After inserting z, the right subtree has increased its height, hence the subtree at v is now balanced.
- The height of v has not changed, hence rebalancing is done.

►Insert (2)

Case 2: bal(v) = 0.

- Both subtrees of v were balanced before insertion.
- After inserting z, the right subtree has increased its height, hence now bal(v) = -1.
- The height of the subtree at v has increased, hence we need to continue rebalancing at v's parent to check for imbalances further up the tree.
- If *v* was the root, we stop.

►Insert (3)

Case 3: bal(v) = -1.

- After insertion, the tree has become unbalanced: bal(v) = -2.
- Search path contains nodes *v, x, w* whose subtrees increased in height.
- We distinguish two sub-cases, depending on whether w is the right child or the left child of x.

►Insert (4)

Sub-case 3-1: w is the right child of x.

- The tree is lopsided because of an "outside" problem.
- Now rotate the tree to the left: x becomes the parent of v, and x's left subtree B becomes a subtree of v.

Height of whole subtree is the same as before insert. Done.

►Insert (5)

Sub-case 3-2: w is the left child of x.

- The tree is lopsided because of an "inside" problem.
- Now need a double rotation to rebalance the tree: a right rotation at x, followed by an immediate left rotation at v.

NB: heights of B and C could be the other way round.

►Insert: Example

► Runtime of Insert

- Inserting an element takes time O(h).
- Rebalancing:
 - Insert finishes with the first rotation/double rotation.
 - All rotations (L/R/LR/RL) take time O(1).
 - Backing up the search path takes time O(1) for each node on the search path, hence time O(h) overall.
 - This includes the time to update balance factors.
- Total runtime of Insert: $O(h) = O(\log n)$.

Deleting in an AVL Tree

- Like for Insert, we work backwards up the search path to rebalance so long as the height of the current subtree has decreased.
- Assume without loss of generality that delete decreased the height of the *left* subtree.
- Case 1: bal(v) = 1. Here deletion decreased the height of the higher subtree, leading to bal(v) = 0.
 However, the height of v has decreased, so we need to iterate the rebalance procedure with v's parent.
- Case 2: bal(v) = 0. Then we update bal(v) = -1 and note that the height of v's subtree has not decreased, so the rebalancing is complete.

Delete (2)

Case 3: bal(v) = -1.

- After deletion, the shallower subtree has become even more shallow: bal(v) = -2.
- Consider path of nodes v, x, w whose subtrees are now too high.
- We distinguish two sub-cases, depending on whether w is the right child or the left child of x.

Delete (3)

Sub-case 3-1: $bal(x) \in \{-1, 0\}$.

- The tree is lopsided because of an "outside" problem.
- Now rotate the tree to the left.
- Two possibilities for the height of B.

If B was high, we're done. Otherwise, iterated at x's parent.

Delete (4)

Sub-case 3-2: bal(x) = 1.

- The tree is lopsided because of an "inside" problem.
- Again need a double rotation.
- B and C can have one of two heights; one must be high.

Runtime of Delete

- Delete may not finish with the first rotation/double rotation.
- Still, the time spent at each node on the search path is O(1), so we still get a time of $O(h) = O(\log n)$.

▶Summary

- AVL trees with n elements have height $O(\log n)$.
- AVL trees with n nodes execute the following operations in time $O(\log n)$
 - Searching, Minimum, Maximum, Successor
 - Follows since AVL trees are binary search trees whose height is always $h = O(\log n)$.
 - Insertion
 - Deletion
- Greater efficiency from a simple idea: rotating nodes.