Algebraic Geometry(rv)

(24fall)quiddite

This is a very very brief note based on a course lectured by Prof. Zhang, which covers roughly the first 2 chapters of [1], with more examples. Good refenences are [1, 2, 3, 4, 5, 6, 7](the first three books are used frequently) & [8]. I type it in order to review & tide up my mind, so don't blame me for the abundant typos & mis-usages of symbols, terms blabla.

目录

1	Var	ieties	3
2	Schemes		3
	2.1	Schemes	3
	2.2	Properties of schemes & morphisms I	6
	2.3	Properties of schemes & morphisms II	9
	2.4	Quasi-coherent sheaves	9
	2.5	Projective sheaves	9
\mathbf{A}	Category theory		
	A.1	colimit & limit	10
В	Commutative algebra		
	B.1	Valuation rings	12
	B.2	Jacobson rings	14
	B.3	Nakayama's lemma	15

C Sheaves 16

1 Varieties

2 Schemes

2.1 Schemes

Definition 2.1 (spectrum of a ring). Let A be a ring, the spectrum is a ringed space (Spec A, $\mathcal{O}_{\operatorname{Spec} A}$) given by

(1) Spec A with the Zariski topology;

(2)
$$\mathcal{O}_{\operatorname{Spec} A}(U) = \{s : u \to \coprod_{\mathfrak{p} \in U} A_{\mathfrak{p}}\} | s(p) \in A_{\mathfrak{p}} \}.$$

Luckily, the tidious construction above is used not that often. We always simply use the properties suggested by the following proposition.

Proposition 2.2 (*). Let A be a ring,

- (1) for and $p \in \operatorname{Spec} A$, $\mathcal{O}_{\mathfrak{p}} \cong A_{\mathfrak{p}}$;
- (2) for any $f \in A$, $\mathcal{O}_{\operatorname{Spec} A}(D(f)) \cong A_f$;
- (3) as a result of (2), $\mathcal{O}_{\operatorname{Spec} A}(\operatorname{Spec} A) \cong A$.

Definition 2.3 (ringed spaces and morphisms).

- (1) A ringed space is a pair (X, \mathcal{O}_X) ;
- (2) A locally ringed space is a r.s. whose stalks $\mathcal{O}_{X,P}$ are local rings $\forall P \in X$;
- (3) A morphism between r.s.'s (X, \mathcal{O}_X) & (Y, \mathcal{O}_Y) is a pair $(f, f^{\#})$, where $f: X \xrightarrow{\text{conti}} Y$ & $f^{\#}: \mathcal{O}_Y \to f_*\mathcal{O}_X$;
- (4) A morphism between l.r.s.'s is a morphism $X \xrightarrow{f} Y$ between r.s.'s, which induces **local** homomorphisms $f_p^{\#} : \mathcal{O}_{Y,f(p)} \to \mathcal{O}_{X,p}$, i.e. $(f_p^{\#})^{-1}$ preserves the maximal ideal.

Proposition 2.4.

- (1) (Spec A, $\mathcal{O}_{\text{Spec }A}$) is a l.r.'s.;
- (2) The set of morphisms $(f, f^{\#})$ between l.r.s.'s (Spec $B, \mathcal{O}_{\operatorname{Spec} B}$) \mathcal{E} (Spec $A, \mathcal{O}_{\operatorname{Spec} A}$) consists exactly of the morphisms induced by some $\varphi : A \xrightarrow{\operatorname{homo}} B$.

Now we can define schemes.

Definition 2.5 (schemes).

- (1) An affine scheme is a l.r.s. (X, \mathcal{O}_X) which is isomorphic to some $(\operatorname{Spec} A, \mathcal{O}_{\operatorname{Spec} A});$
- (2) A scheme is a l.r.s. (X, \mathcal{O}_X) which is locally affine, i.e. \exists an open cover $\{U\}$ s.t. each $(U, \mathcal{O}_X|_U)$ is an affine scheme;
- (3) A morphism of schemes is a morphisms of l.r.s.'s.

Example 2.6 (schemes). In these examples, k = alg.cl k.

- (1) If R is a d.v.r., then Spec $R = \{\circ, \bullet\}$, where \circ is a generic point and \bullet is a closed point(see [1]P.74 for detailed explanation);
- (2) $\mathbb{A}^1_k = \operatorname{Spec} k[x] = \{\circ\} \cup k$, where $\{\circ\}$ is a generic point and points in k are all closed;
- (3) $\mathbb{A}^2_k = \operatorname{Spec} k[x,y] = \{(0)\} \cup \{f \in k[x,y] \mid f \text{ is irreducible}\} = \{\circ\} \cup k^2 \cup \{f \in k[x,y] \mid f \text{ is irreducible}, \deg f \geqslant 2\}$. The first part is the generic point, the second part consists of closed points, and the third part consists of generic points of such curves f(x,y) = 0.
- (4) (**affine line with a doubled point) Let $X_1 = X_2 = \mathbb{A}^1_k$, $U_1 = U_2 = \mathbb{A}^1_k \setminus \{0\}$. Glueing $X_1 \otimes X_2$ along $U_1 \otimes U_2$ via the identity map $U_1 \to U_2$, nothing is done except for $\{0\}$.

this gives a non-affine scheme.

Proposition 2.7 (generic points). Let X be a scheme, then every non-empty irreducible closed subset Y of X has a unique generic point, i.e. a point $p \in Y$ s.t. $\{p\} = Y$

Let $U = \operatorname{Spec} A$ be an affine open subset of X s.t. $U \cap Y \neq \emptyset$, then $U \cap Y$ is an irreducible closed subset of U (i.e. "reduced" to affine case), thus $U \cap Y = V(p)$ for some $p \in \operatorname{Spec} A$. Obviously, $U \cap Y = \overline{\{p\}}^U = \overline{\{p\}} \cap U$. At the same time, $U \cap Y \neq \emptyset$ is open in Y, from the irreducibility, $\overline{U \cap Y}^Y = Y$, so $Y \subset \overline{\{p\}}$, i.e. $\overline{\{p\}} = Y$. For the uniqueness, if $y = \overline{\{p\}} = \overline{\{p'\}}$, then $V(p) = U \cap Y = V(')$, thus p = p'.

Now we are going to a criterion for affine-ness(see [1]P.81 or [3]P.28).

Procedure 2.8 (Construction of X_f). Let X be a scheme, $f \in \mathcal{O}_X(X)$

- 1. $X_f = \{ p \in X \mid f_p \notin \mathfrak{m}_p = \mathfrak{m}_{\mathcal{O}_p}(equivalently, f_p \text{ is invertible in } \mathcal{O}_p) \};$ 2. properties of X_f :
 - (a) X_f is open in X_f
 - **(b)** $X_f \cap X_g = X_{fg}$;
 - (c) if X has a finite cover $\{U_i\}$, s.t. each $U_i \cap U_j$ is q.c., then $\mathcal{O}_X(X_f) = (\mathcal{O}_X(X))_f$.

Proposition 2.9 (**Criterion for affine-ness). Let X be a scheme, then X is affine $\iff \exists$ finitely many $\{f_i\}$ s.t.

- (1) X_{f_i} are affine;
- (2) $\{f_i\}$ generates $\mathcal{O}_X(X)$.

Definition 2.10 (residue field). Let X be a scheme, $(\mathcal{O}_x, \mathfrak{m}_x)$ be the local ring at $x \in X$. $k(x) = \mathcal{O}_x/\mathfrak{m}_x$ is called the residue field of x.

Remark 2.11. In order to define a morphism $f: \operatorname{Spec} K \to X$, where K is a field, it suffices to identify a point $x \in X$ & an inclusion $k(x) \hookrightarrow K$. e.g. $k(x) \xrightarrow{\operatorname{id}} k(x) \iff \operatorname{Spec} k(x) \hookrightarrow X$.

2.2 Properties of schemes & morphisms I

Let's begin with an annoying table of definitions.

Definition 2.12 (some special schemes). A scheme X is called

- (1) quasi-compact, if sp(X) is q.c.;
- (2) connected, if sp(X) is connected;
- (3) irreducible, if sp(X) is irreducible;
- (4) reduced, if $\forall U \overset{open}{\subset} X$, $\mathcal{O}_X(U)$ is reduced, i.e. $\operatorname{nil}(\mathcal{O}_X(U)) = \{0\}$;
- (5) integral, if $\forall U \overset{open}{\subset} X$, $\mathcal{O}_X(U)$ is a domain;
- (6) locally noetherian, if $\forall U = \operatorname{Spec} A \overset{open}{\subset} X$, A is noetherian;
- (7) noetherian, if X is l.n. & q.c.;

Remark 2.13. The condition is (6) can be replaced with " \exists a cover $\{U_i\}$ of X, where $U_i = \operatorname{Spec} A_i \subset X$, each A_i is noetherian". The equivalence between " $\forall U$ " \mathcal{E} " \exists a cover $\{U_i\}$ " also holds for (1)(2)(3)(5).

Here's some connections between these definitions.

Proposition 2.14. Let X be a scheme,

- (1) X is integral \iff X is reduced \mathcal{E} irreducible;
- (2) if $X = \operatorname{Spec} A$ is affine, then X is noetherian $\iff A$ is noetherian;

Let's continue with an annoying table of definitions.

Definition 2.15 (some special morphisms). Let $f: X \to Y$ be a morphism between schemes, f is (called)

(1) locally of finite type, if $\forall V = \operatorname{Spec} B \overset{open}{\subset} Y, \exists \ a \ cover \{U_j\}$ of $f^{-1}(V)$, where $U_j = \operatorname{Spec} A_j \overset{open}{\subset} X$, each A_j is a f.g. B-algebra;

- (2) of finite type, if $\forall V = \operatorname{Spec} B \overset{open}{\subset} Y, \exists \ a \ \textbf{finite} \ cover \ \{U_j\} \ of \ f^{-1}(V), \ where \ U_j = \operatorname{Spec} A_j \overset{open}{\subset} X, \ each \ A_j \ is \ a \ f.g. \ B-\textbf{algebra};;$
- (3) finite, if $\forall V = \operatorname{Spec} B \overset{open}{\subset} Y, f^{-1}(V) = \operatorname{Spec} A \overset{open}{\subset} X$, where A is a f.g. B-module;
- (4) quasi-finite, if $\forall y \in Y, f^{-1}(y)$ is a finite set;
- (5) quasi-compact, if $\forall V = \operatorname{Spec} B \overset{open}{\subset} Y, f^{-1}(V)$ is q.c.. Here's a famous & useful trick.

Proposition 2.16 (Nike's trick). Let X be a scheme, Spec A, Spec B \subset X, then Spec $A \cap$ Spec B is covered by (principle) open {Spec C}, which is open both in Spec A & Spec B.

 $\forall p \in \operatorname{Spec} A \cap \operatorname{Spec} B$, take $f \in A, g \in B$ s.t. $p \in D_{\operatorname{Spec} B}(g) \subset D_{\operatorname{Spec} A}(f) \subset \operatorname{Spec} A \cap \operatorname{Spec} B$. Let $g' = g|_{D_{\operatorname{Spec} A}(f)} \in \mathcal{O}_{\operatorname{Spec} A}(D_{\operatorname{Spec} A}(f)) = A_f(\operatorname{since} D_{\operatorname{Spec} A}(f) \subset \operatorname{Spec} B$, this can be done). Then we write $g' = \frac{h}{f^n}$, where $h \in A, n \in \mathbb{N}$. $D_{\operatorname{Spec} B}(g) = D_{\operatorname{Spec} A_f}(g') = \operatorname{Spec}(A_f)_{g'} = \operatorname{Spec} A_{fh}$, where "=" holds on the "set" level. Thus $D_{\operatorname{Spec} B}(g)$ is open in $\operatorname{Spec} B$.

Remark 2.17. As for intersections of the form $U \cap \operatorname{Spec} A$, where U is an arbitrary open set, the result is easier(since openness is "weaker"): $U \cap \operatorname{Spec} A$ is covered by open $\{D_{\operatorname{Spec} A}(f)\}$.

Proposition 2.18 (closed points). Let X be a scheme which is of finite type over a field k, then the set of closed points is dense in X.

According to the condition, we have a finite cover $\{U_i\}$ of $X(\operatorname{Spec} k)$ is a singleton), where $U_i = \operatorname{Spec} A_i \subset X$, each A_i is a f.g. k-algebra. Only need to prove that, $\forall U = \operatorname{Spec} B \subset X$, it contains a closed point of X. Let p be a closed point in U, and consider $U_i \ni p$. Using 2.16, take a principle open set $p \in D(f) \neq \emptyset$ in $U_i \cap U$. The inclusion $i: D(f) \to U_i$ induces $i^{\#}: A_i \to (A_i)_f$ between Jacobson rings, so p = i(p) is closed in U_i . Thus p is closed in X. The existence of such $p \in U$ follows the existence of maximal ideals(reduce to affine case).

Remark 2.19. 2.18 fails generally, e.g. $(1)X = \{\circ, \bullet\}$. problem 3.3 & 3.13

Definition 2.20 (open & closed immersions). Let $f: X \to Y$ be a morphism of schemes, f is called a

- (1) open immersion, if $(X, \mathcal{O}_X) \stackrel{f}{\cong} (Z, \mathcal{O}_Z)$, for some open subscheme (Z, \mathcal{O}_Z) of Y;
- (2) closed immersion, if $\operatorname{sp}(X) \stackrel{f}{\cong} \operatorname{sp}(Z) \bowtie f^{\#} : \mathcal{O}_{Y} \to f_{*}\mathcal{O}_{X}$ is surjective;
- (3) immersion, if f can be factorized as $h \circ g : X \to U \to Y$, where $g : X \to U$ is a closed imm. & $h : U \to Y$ is an open imm..
- (4) 2 closed imm.'s $f_1: X_1 \to Y, f_2: X_2 \to Y$ are equivalent if \exists an isom. $g: X_1 \to X_2$ s.t. the following diagram commutes.

$$X_1 \xrightarrow{f_1} Y$$

$$\sim \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$$

The following proposition characterizes closed immersions in affine case.

Proposition 2.21. Let A be a ring, X be a scheme. $X \to \operatorname{Spec} A$ is a closed imm. $\iff (X, \mathcal{O}_X) \cong (\operatorname{Spec} A/\mathfrak{a}, \mathcal{O}_{\operatorname{Spec} A})$ for some ideal \mathfrak{a} of A.

Definition 2.22 (fiber product & fiber).

(1) Let X, Y be schemes over S, the fiber product $X \times_S Y$ is defined by the following diagram of morphisms:

(2) the fiber of $f: X \to Y$ at y is defined by $X_y = X \times_Y \operatorname{Spec} k(y)$

$$X \times_{Y} \operatorname{Spec} k(y) \xrightarrow{\operatorname{pr}_{1}} X$$

$$\downarrow^{\operatorname{pr}_{2}} \qquad \qquad \downarrow$$

$$\operatorname{Spec} k(y) \hookrightarrow X$$

where " \hookrightarrow " exists in the sense of 2.11.

- 2.3 Properties of schemes & morphisms II
- 2.4 Quasi-coherent sheaves
- 2.5 Projective sheaves

A Category theory

A.1 colimit & limit

Definition A.1 (direct system). Let I be a directed set, a direct system $\{X_i, f_{ij}\}$ over I consists of a family of objects $\{X_i\}_{i \in I}$ \mathcal{E} morphisms $f_{ij}: X_i \to X_j$ s.t.

(1)
$$f_{ii} = \mathrm{id}_{X_i}, \forall i;$$

(2)
$$f_{ik} = f_{jk} \circ f_{ij}, \forall i \leqslant j \leqslant k$$
.

"colimit" has many names, including "direct limit", "inductive limit".

Definition A.2 (colimit). Let $\{X_i, f_{ij}\}$ be a direct system, then colimit $\varinjlim X_i$ is defined by the following diagram.

Definition A.3 (inverse system). Let I be a directed set, a inverse system $\{X_i, g_{ij}\}$ over I consists of a family of objects $\{X_i\}_{i \in I}$ \mathcal{E} morphisms $g_{ij}: X_j \to X_i$ s.t.

(1)
$$g_{ii} = \mathrm{id}_{X_i}, \forall i;$$

(2)
$$g_{ik} = g_{ij} \circ g_{jk}, \forall i \leqslant j \leqslant k.$$

"limit" has many names, including "inverse limit", "projective limit".

Definition A.4 (limit). Let $\{X_i, g_{ij}\}$ be an inverse system, then limit $\varprojlim X_i$ is defined by the following diagram.

Example A.5 (colimit & limit).

(1) Let I be equiped with the discrete order $(i \leq j \iff i = j)$, $\{X_i\}$ be a family of objects, then

(a) $\varinjlim X_i = \coprod X_i$, it's called the sum or coproduct;

(b) $\varprojlim X_i = \prod X_i$, it's called the product.

(2) Let $I = \emptyset$,

- (a) the colimit coincides with the initial object;
- (b) the limit coincides with the terminal object.
- (3) In the category of R-algebras, $A \coprod B = A \otimes_R B$;
- (4) Let $I = \{a, b, c\}$, where $a \leq b, c$, $\{X_i\}$ be a family of objects, then

$$\varprojlim X_i = X_b \times_{X_a} X_c$$

Proposition A.6 (with adjoint functors). Let C, D be 2 categories, F, G be a pair of adjoint functors, i.e.

(1)
$$C \stackrel{F}{\rightleftharpoons} \mathcal{D}$$
; (2) $\operatorname{Hom}_{\mathcal{C}}(G(-), \star) \cong \operatorname{Hom}_{\mathcal{D}}(-, F(\star))$.

Let I be a directed set,

(1) $\{Y_i\} \subset \mathcal{D}$ be a direct system, then $G(\varinjlim Y_i) = \varinjlim G(Y_i)$;

(2) $\{X_i\} \subset \mathcal{C}$ be an inverse system, then $F(\varprojlim X_i) = \varprojlim F(X_i)$.

B Commutative algebra

B.1 Valuation rings

Definition B.1 (valuation rings). Let k be a field, A be a subring(thus a domain) of k. We say A is a valuation ring of k if $\forall x \neq 0 \in k$, either $x \in A$ or $\frac{1}{x} \in k$.

Proposition B.2 (properties of v.r.s). Let A be a v.r. of k.

- (1) A is a local ring, and $\mathfrak{m}_A = \{x \in A \mid x \text{ is not invertible}\} = \{x \neq 0 \in A \mid \frac{1}{x} \notin A\} \cup \{0\};$
- (2) A is integrally closed in k;
- (3) if B is a ring s.t. $A \subset B \subset k$, the B is also a v.r. of k. Moreover,
 - (a) $\mathfrak{m}_B \subset A$;
 - (b) \mathfrak{m}_B is a prime ideal of A;
 - (c) $B = A_{\mathfrak{m}_B}$, i.e. B is a local ring of A
- (4) $\forall 2 \text{ ideals } \mathfrak{a}, \mathfrak{b} \text{ of } A, \text{ either } \mathfrak{a} \subset \mathfrak{b} \text{ or } \mathfrak{a} \supset \mathfrak{b}.$ Moreover, if any subring B of k with this compariable properties, must be a v.r..

Now we are going to construct v.r.'s of a field k.

Procedure B.3. Fix a field k and an algebraically closed filed Ω .

- 1. $\Sigma = \{(A, f) \mid A \subset k, f : A \xrightarrow{\text{homo}} \Omega\};$
- 2. define a partial order on Σ :

$$(A, f) \leqslant (B, g) \iff A \subset B \& g|_A = f,$$

then Σ has at least one maximal element(Zorn's lemma);

- 3. let (B,g) be a maximal element of Σ , then
 - (a) (B,g) is a local ring \mathfrak{S} $\mathfrak{m}_B = \ker g$;

(b) (B, g) is a v.r. of k.

Corollary B.4. Let A be a subring of k, then int.cl $A = \cap B$, where the intersection is taken over $\{B \mid A \subset B \subset k \& B \text{ is a v.r. of } k\}$.

- Obviously int.cl $A \subset \cap B$;
- Conversely, if $x \in \text{int.cl } A$ but $x \notin A$, let $B = A[\frac{1}{x}]$, then $\frac{1}{x}$ is not invertible in B. Let \mathfrak{m} be a maximal ideal of B s.t. $\frac{1}{x} \in \mathfrak{m}$, and let $\Omega = \text{alg.cl } B/\mathfrak{m}$. The quotient gives a map $f: B \to \Omega$. From B.3, (B, f) can be extended to some valuation ring (C, g). But $f(\frac{1}{x}) = 0$, thus $\frac{1}{x} \in \ker C$, i.e $x \notin C$.

There's another construction which happens to be equivalent to B.3.

Procedure B.5. Fix a field k.

- 1. $\Sigma = \{(A, \mathfrak{m}) \mid A \subset k \text{ is a local ring with maximal ideal } \mathfrak{m}\};$
- 2. define a partial order(called dominance) on Σ :

$$(A, \mathfrak{m}) \leqslant (B, \mathfrak{n}) \iff A \subset B \& \mathfrak{m} \subset \mathfrak{n},$$

then Σ has at least one maximal element;

3. (A, \mathfrak{m}) is a maximal element of $\Sigma \iff A$ is a v.r. of k.

Proposition B.6. Let $A \subset B$ be 2 domains, B f.g. over A. $\forall x \neq 0 \in B, \exists u \neq 0 \in A$ s.t. any $f: A \to \Omega = \operatorname{alg.cl} \Omega, f(u) \neq 0$ can be extended to $g: B \to \Omega$ with $g(v) \neq 0$.

Using B.6, we can prove one form of Hilbert's Nullstellensatz.

Corollary B.7. Let k be a field and B a f.g. k-algebra. If B is a field, the B/k is a finite algebraic extension.

Take $A = k, v = 1, \Omega = \text{alg.cl } k$, then we get some $g : B \to \Omega$, which is non-trivial thus injective.

Explanation: Consider only the case when B = k[x]. Take some $\xi \neq 0 \in \Omega = \text{alg.cl } k$, we get a homomorphism by sending x to ξ .

Finally, we explore the relation between v.r.'s & valuations of a field.

Definition B.8 (valuations). Let k be a field, G be a totally ordered abelian group. A valuation of k with values in G is a mapping v: $k^* \to G$ s.t.

$$(1) v(xy) = v(x)v(y);$$

(2)
$$v(x+y) \ge \min\{v(x), v(y)\}, \text{ if } x+y \ne 0.$$

Procedure B.9.

- 1. From a v.r A of k to a valuation
 - (a) $U = \{units \ of \ A\}, G = k^*/U;$
 - (b) define a partial order on G:

$$[x] \leqslant [y] \iff \frac{y}{x} \in A,$$

then G becomes a totally ordered group, moreover, the quotient $v: k \to G$ is a valuation with values in G.

- 2. From a valuation $v: k^* \to G$ of k to a v.r.
 - (a) $A = \{x \in k^* \mid v(x) \ge 0\} \cup \{0\};$
 - (b) A is a v.r. of k, which is called the v.r. of v.

B.2 Jacobson rings

Definition B.10 (Jacobson rings). We say a ring A is a Jacobson ring if $\forall \mathfrak{p} \in \operatorname{Spec} A, \mathfrak{p} = \cap \mathfrak{m}$, where the intersection is taken over $\{\mathfrak{m} \in \operatorname{Spm} | \mathfrak{p} \subset \mathfrak{m}\}$.

Remark B.11. In non-commatative cases, Jacobson rings are defined via primitive ideals.

Example B.12 (Jacobson rings). The following rings are Jacobson.

- (1) A field k;
- (2) A polynomial ring $k[x_1, \dots, x_n]$;
- (3) A p.i.d. A with Jac(A) = 0;
- (4) A ring of Krull dimension 0, e.g. a ring with only one prime ideal.

 Here's an interesting example.

Example B.13 (**Jacobson yet not noetherian). Let k be a field, $R = k[x_1, x_2, \cdots]/(x_1^2, x_2^2, \cdots)$. The only prime ideal of R is (x_1, x_2, \cdots) , which is not f.g..

Proposition B.14 (properties of Jacobson rings).

- (1) A ring A is Jacobson \iff A[x] is Jacobson([9]P.18);
- (2) As a result of (1), a f.g. algebra over a Jacobson ring is also Jacobson;
- (3) Let A, B be Jacobson, $f : A \to B$, then $f^{-1}(\mathfrak{m})$ is a maximal ideal of A, \forall maximal ideal \mathfrak{m} of B;
- (4) As a result of (3), $f^{\#}$: Spec $B \to \operatorname{Spec} A$ maps closed points in Spec B to closed points in Spec A.

B.3 Nakayama's lemma

Theorem B.15 (Nakayama's lemma). Let M be a f.g. A-module, \mathfrak{a} be an ideal. If $\mathfrak{a}M = M$, then $\exists x \in A \text{ s.t.}$

- (1) $x \equiv 1 \mod \mathfrak{a}$;
- (2) xM = 0.

Corollary B.16. Let M be a f.g A-module, ([4]P.556)

- (1) if $u: M \xrightarrow{\text{homo}} M$ is surjective, then u is bijective;
- (2) if A is local with \mathfrak{m} , then a subset $\{m_1, \dots, m_r\}$ generates $M \iff \{m_1, \dots, m_r\}$ generates $M/\mathfrak{m}M$ over A/\mathfrak{m} .
- (1) Consider M as A[x]-module, where $x \cdot m = u(m)([10]P.9)$;
- (2) " \Rightarrow " is obvious. As for " \Leftarrow ", let $N=(x_1,\cdots,x_r)$, then $N\hookrightarrow M\to M/\mathfrak{m}M$ is exact, i.e. $M=N+\mathfrak{m}M$.

Remark B.17. Essentially, B.15 generalizes the existence of annihilating polynomial in linear algebra. Thus the idea in (1) is natural.

C Sheaves

We consider only sheaves of Abelian groups, thus rings & modules are treated as special cases.

Definition C.1 (presheaves & sections & morphisms). Let X be a topo. space,

- (1) a presheaf \mathcal{F} on X is a contra. functor from $\mathrm{Open}(X) \to \mathbf{Ab}$;
- (2) a morphism between 2 presheaves \mathcal{F}, \mathcal{G} is a natural transformation from $\mathcal{F} \to \mathcal{G}$.

Or we can adopt human's language,

- (1) a presheaf \mathcal{F} on X consists of
 - (a) $\mathcal{F}(U) \in \mathbf{Ab}, \forall U \in \mathrm{Open}(X);$
 - (b) restriction $\rho_{UV}: \mathcal{F}(U) \to \mathcal{F}(V), \forall V \subset U \in \mathrm{Open}(X);$

s.t.

(a)
$$\mathcal{F}(\emptyset) = 0$$
;

- (b) $\rho_{UU} = id$;
- (c) $\rho_{UW} = \rho_{VW} \circ \rho_{UV}$.
- (2) any element $s \in \mathcal{F}(U)$ is called a section of \mathcal{F} on U, we sometimes write $\Gamma(U, \mathcal{F})$ for $\mathcal{F}(U)$;
- (3) a morphism $f: \mathcal{F} \to \mathcal{G}$ consists of morphisms $f(U): \mathcal{F}(U) \to \mathcal{G}(U), \forall U \in \mathrm{Open}(X), s.t.$ the following diagram commutes $\forall V \subset U \in \mathrm{Open}(X)$

$$\mathcal{F}(U) \xrightarrow{f(U)} \mathcal{G}(U)
\rho_{UV} \downarrow \qquad \qquad \downarrow \rho_{UV}
\mathcal{F}(V) \xrightarrow{f(V)} \mathcal{G}(V)$$

Definition C.2 (sheaves). Let X be a topo. space. A sheaf \mathcal{F} on X is a presheaf, s.t. if $U \in \text{Open}(X)$, $\{V_i\} \subset \text{Open}(X)$ is a cover of U,

- (1) (factorizing) if $s \in \mathcal{F}(U)$ s.t. $s|_{V_i} = 0, \forall i, then s = 0$;
- (2) (glueing)if $s_i \in \mathcal{F}(V_i)$ s.t. $s_i|_{V_i \cap V_j} = s_j|_{V_i \cap V_j}, \forall i, j, then \exists s \in \mathcal{F}(U)$ s.t. $s|_{V_i} = s_i, \forall i.$

Definition C.3 (stalks & germs). Let X be a topo. space $p \in X$, \mathcal{F} be a presheaf on X.

(1) We define the stalk \mathcal{F}_p at p by

$$\mathcal{F}_p = \varinjlim \mathcal{F}(U),$$

where the colimit is taken over $\{U \overset{open}{\subset} X \mid p \in U\};$

(2) Any element $s_p \in \mathcal{F}_p$ is called a germ of \mathcal{F} at p.

Remark C.4. To be more concrete, $\mathcal{F}_p = \{(U, s) \mid p \in U \subset X, s \in \mathcal{F}(U)\}/\sim$, where $(U, s) \sim (V, t) \iff \exists W \subset X \ s.t.$

(1)
$$p \in W \subset U \cap V$$
;

(2) $s|_{W} = t|_{W}$.

Thus any germ s_p comes from some sections.

Proposition C.5 (sheaves are determined by stalks). Let X be a topo. space, \mathcal{F}, \mathcal{G} be 2 sheaves on X, $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism. Then

- (1) φ is injective $\iff \varphi_p : \mathcal{F}_p \to \mathcal{G}_p$ is injective $\forall p \in X$;
- (2) φ is surjective $\iff \varphi_p : \mathcal{F}_p \to \mathcal{G}_p$ is surjective $\forall p \in X$;
- (3) Thus φ is an isom. $\iff \varphi_p : \mathcal{F}_p \to \mathcal{G}_p$ is an isom. $\forall p \in X$;

Remark C.6. This result applies only to sheaves.

Procedure C.7 (sheafification). Let X be a topo. space, \mathcal{F} be a presheaf on X.

- 1. $\forall U \overset{open}{\subset} X$, define $\mathcal{F}^{\ddagger}(U) = \{s : U \to \bigcup_{p \in U} \mathcal{F}_p \mid s \text{ satisfies } 1a \& 1b\}$:
 - (a) $\forall p \in U, s(p) \in \mathcal{F}_p$
 - (b) $\forall p \in U, \exists p \in V \subset U, t \in \mathcal{F}(V) \text{ s.t. } \forall q \in V, t_q = s(q).$
- 2. properties of \mathcal{F}^{\ddagger} :
 - (a) \mathcal{F}^{\ddagger} is a sheaf;
 - (b) \exists a natural morphism $\theta : \mathcal{F} \to \mathcal{F}^{\ddagger}$, which satisfies the following universal property.

Moreover, the pair $(\mathcal{F}^{\ddagger}, \theta)$ is unquee in this sense.

(c)
$$\mathcal{F}_p = \mathcal{F}_p^{\ddagger}, \forall p \in X$$
.

Definition C.8 (kernel, image & cokernel). Let X be a topo. space, \mathcal{F}, \mathcal{G} be 2 sheaves on X, $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism.

- (1) $\ker \varphi(U) := \ker(\varphi(U));$
- (2) p.im $\varphi(U) := \operatorname{im}(\varphi(U));$
- (3) p.coker $\varphi(U) := \text{p.coker}(\varphi(U))$

In general, p.im φ , p.coker φ fail to be sheaves, so we define

- (1) im $\varphi = (p.im \varphi)^{\ddagger}$;
- (2) $\operatorname{coker} \varphi = (\operatorname{p.coker} \varphi)^{\ddagger}$.

Definition C.9 (injective & surjective morphisms, exact sequences). Let X be a topo. space,

- (1) a sequence $\cdots \to \mathcal{F}^{i-1} \xrightarrow{\varphi^{i-1}} \mathcal{F}^i \xrightarrow{\varphi^i} \mathcal{F}^{i+1} \to \cdots$ of sheaves on X is called exact if $\operatorname{im} \varphi^{i-1} = \ker \varphi^i, \forall i$;
- (2) $\varphi: \mathcal{F} \to \mathcal{G}$ is called injective if $0 \to \mathcal{F} \xrightarrow{\varphi} \mathcal{G}$ is exact;
- (3) $\varphi: \mathcal{F} \to \mathcal{G}$ is called surjective if $\mathcal{F} \xrightarrow{\varphi} \mathcal{G} \to 0$ is exact.

Proposition C.10 (exactness on the stalk level). Let X be a topologone, a sequence $\cdots \to \mathcal{F}^{i-1} \xrightarrow{\varphi^{i-1}} \mathcal{F}^i \xrightarrow{\varphi^i} \mathcal{F}^{i+1} \to \cdots$ of sheaves on X is exact $\iff \cdots \to \mathcal{F}_p^{i-1} \xrightarrow{\varphi_p^{i-1}} \mathcal{F}_p^i \xrightarrow{\varphi_p^i} \mathcal{F}_p^{i+1} \to \cdots$ is exact $\forall p \in X$.

Proposition C.11 (left-exactness of restriction). Let X be a topologone, $U \subset X$. Then the functor $\Gamma(U, \star)$ is left exact, i.e. if $0 \to \mathcal{F}' \xrightarrow{\varphi} \mathcal{F} \xrightarrow{\psi} \mathcal{F}''$ is an exact sequence of sheaves on X, then $0 \to \mathcal{F}'(U) \xrightarrow{\varphi(U)} \mathcal{F}(U) \xrightarrow{\psi(U)} \mathcal{F}''(U)$ is an exact sequence in \mathbf{Ab} .

Remark C.12. The problem occurs since $(\operatorname{im} \varphi)(U) \neq \operatorname{im}(\varphi(U)) = (\operatorname{p.im} \varphi)(U)$ in general. Roughly speaking, the left-exactness comes from (3) of the following proposition, since $\ker(\psi(U)) = (\ker \psi)(U) = (\operatorname{im} \varphi)(U) \cong \mathcal{F}'(U) \cong (\operatorname{p.im} \varphi)(U) = \operatorname{im}(\varphi(U))$.

Proposition C.13 (on injectivity). Let X be a topo. space, \mathcal{F}, \mathcal{G} be 2 presheaves on X, $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism.

(1) If $\varphi(U): \mathcal{F}(U) \to \mathcal{G}(U)$ is injective $\forall U \subset (X)$, then the induced morphism $\varphi^{\ddagger}: \mathcal{F}^{\ddagger} \to \mathcal{G}^{\ddagger}$ is injective;

(2) As a result of (1), if φ is a morphism of sheaves, then $\operatorname{im} \varphi$ is naturally a subsheaf of \mathcal{G} . Moreover, $\operatorname{im} \varphi \cong \mathcal{F}/\ker \varphi$.

$$\mathcal{F}(U) \longrightarrow \text{p.im } \varphi(U) \longrightarrow \mathcal{G}(U)$$

(3) As a result of (2), if $0 \to \mathcal{F} \xrightarrow{\varphi} \mathcal{G}$ is exact, then $\mathcal{F} \cong \operatorname{im} \varphi$.

Definition C.14 (direct image & inverse image). Let $f: X \to Y$ be a conti. map of topo. spaces, \mathcal{F}, \mathcal{G} are sheaves on X, Y resp.,

- (1) $(f_*\mathcal{F})(V) := \mathcal{F}(f^{-1}(V))$, this gives the direct image $f_*\mathcal{F}$ on Y;
- (2) $(f^{-1}\mathcal{G})(U) := \varinjlim \mathcal{G}(V)$, where the colimit is taken over $\{V \subset Y \mid f(U) \subset V\}$, this gives the inverse image $f^{-1}\mathcal{G}$ on X.

Remark C.15.

- (1) Calculating $f_*\mathcal{F}$ is always a crucial problem in algebraic geometry;
- (2) $f^{-1}\mathcal{G}$ is difficult to define, but easy to use.

Proposition C.16 $(f^{-1}(-)\& f_*(\star) \text{ are adjoint})$. Let $f: X \to Y$ be a conti. map of topo. spaces, \mathcal{F}, \mathcal{G} are sheaves on X, Y resp.,

$$\operatorname{Hom}_X(f^{-1}\mathcal{G},\mathcal{F}) = \operatorname{Hom}_Y(\mathcal{G},f_*\mathcal{F}).$$

More precisely, we have 2 natural maps $f^{-1}f_*\mathcal{F} \to \mathcal{F} \boxtimes \mathcal{G} \to f_*f^{-1}\mathcal{G}$. Let's examine some examples.

Example C.17 (sheaves). Let X be a topo. space, A be an ab. grp..

- (1) (constant sheaf) Equip A with the disc. topo.. Define $\mathcal{A}(U) = \{f: U \xrightarrow{\text{conti}} A\}, \forall U \overset{\text{open}}{\subset} X$, then $\mathcal{A}(U) \cong A$ if U is connected.
- (2) (skyscraper sheaf) For $p \in X$, define $i_p(A)(U) = \begin{cases} A, \text{ if } p \in U \\ 0, \text{ otherwise} \end{cases}$.

 Note that $(i_p(A))_q = \begin{cases} A, \text{ if } q \in \overline{\{p\}} \\ 0, \text{ otherwise} \end{cases}$. Also, let \mathcal{A} be the const. sheaf on $\{p\}, j : \{p\} \to X$, then $i_p(A) = j_*\mathcal{A}$.

Definition C.18 (flasque sheaves). Let X be a topo. space, \mathcal{F} be a sheaf on X. \mathcal{F} is called flasque if $\rho_{UV} : \mathcal{F}(U) \to \mathcal{F}(V)$ is surjective $\forall V \subset U \in \text{Open}(X)$.

Proposition C.19 (properties of flasque sheaves).

- (1) Let X be a topo. space, $0 \to \mathcal{F}' \xrightarrow{\varphi} \mathcal{F} \xrightarrow{\psi} \mathcal{F}'' \to 0$ be an exact sequence of sheaves on X
 - (a) if \mathcal{F}' is flasque, then $\Gamma(U,\star)$ is exact, i.e. $0 \to \mathcal{F}'(U) \to \mathcal{F}'(U) \to 0$ is an exact sequence in \mathbf{Ab} ;
 - (b) if $\mathcal{F}' \& \mathcal{F}$ are flasque, then \mathcal{F}'' is flasque.
- (2) Let $f: X \to Y$ be a conti. map of topo. spaces, \mathcal{F} be a flasque sheaf on X, then $f_*\mathcal{F}$ is a flasque sheaf on Y.

- (3) Let X be a topo. space, \mathcal{F} be a sheaf on X. Define $\mathcal{F}^{\dagger}(U) = \{s : U \to \bigcup_{p \in U} \mathcal{F}_p \mid \forall p \in U, s(p) \in \mathcal{F}_p\}$. Then
 - (a) \mathcal{F}^{\dagger} is a flasque sheaf;
 - (b) \exists a natural injective morphism $\mathcal{F} \to \mathcal{F}^{\dagger}$.

0-extension of sheaves.

参考文献

- [1] Robin Hartshorne, *Algebraic geometry*, vol. 52, Springer Science & Business Media, 2013.
- [2] David Mumford, The red book of varieties and schemes: includes the Michigan lectures (1974) on curves and their Jacobians, vol. 1358, Springer, 2004.
- [3] Lei Fu, Algebraic Geometry, Tsinghua University Press Beijing, 2006.
- [4] Ulrich Görtz and Torsten Wedhorn, Algebraic Geometry I: Schemes, Springer, 2010.
- [5] David Eisenbud and Joe Harris, *The geometry of schemes*, vol. 197, Springer Science & Business Media, 2006.
- [6] Igor R Shafarevich, Basic algebraic geometry 2: Schemes and complex manifolds, Springer Science & Business Media, 2013.
- [7] Orrin H Pilkey and Rob Young, The rising sea, Island Press, 2010.
- [8] Michael Atiyah, *Introduction to commutative algebra*, CRC Press, 2018.

- [9] Irving Kaplansky, Commutative Rings, Allyn and Bacon, 1970.
- [10] Hideyuki Matsumura, *Commutative ring theory*, Number 8. Cambridge university press, 1989.