

第三章

非线性方程(组)的数值解法

(1)

第一节 引言

- ❖ 数学物理中的许多问题常常归结为解函数方程f(x) = 0。
- * 方程f(x) = 0的解 x^* 称作它的根,或称为f(x)的零点。

零点定理:设函数f(x)在[a,b]上连续且f(a)f(b)<0,根据连续函数的性质可知方程f(x)=0在区间[a,b]内一定有实根,这时称(a,b)为方程f(x)=0的有根区间。

第二节 二分法/* Bisection Method */

▶ 2.1 二分法

二分法的思想:将有根区间折半搜索,即对有根区间(a,b),取中点 $x_1 = \frac{a+b}{2}$ 将它分为两半,检查 $f(x_1)$ 与f(a)是否同号,如果确系同号,说明所求的根 x^* 在 x_1 的右侧,这时令 $a_1 = x_1$, $b_1 = b$;否则 x^* 在 x_1 的左侧,这时令 $a_1 = a$, $b_1 = x_1$,不管出现哪一种情况,新的有根区间仅为原来的一半.

终止条件: $b_k - a_k < \varepsilon$ 或 $f(x_k) < \varepsilon$

▶ 2.2 二分法的误差分析

第1步产生的
$$x_1 = \frac{a+b}{2}$$
,有误差 $|x_1 - x^*| \le \frac{b-a}{2}$

第
$$k$$
步产生的 x_k ,有误差 $|x_k - x^*| \le \frac{b-a}{2^k}$

对于给定的精度 ε . 可估计二分法所需的步数k:

$$\frac{b-a}{2^k} < \varepsilon \Rightarrow k > \frac{[\ln(b-a) - \ln \varepsilon]}{\ln 2}$$

- ① 简单; ② 对 f(x) 要求不高.

- ① 无法求复根及偶重根:
- ② 收敛慢.

例1.求方程 $f(x) = x^3 - x - 1$ 在[1.0,1.5]区间内的一个实根,并准确到小数点后的第2位, 若 $x^* = 1.324717...$,求结果的有效数字。

解: 二分过程解题过程见下表: a = 1.0, f(a) < 0, b = 1.5, f(b) > 0

k	a_k	b_k	x_k	$f(x_k)$
0	1.0	1.5	1.25	_
1	1.25		1.375	+
2		1.375	1.3125	_
3	1.3125		1.3438	+
4		1.3438	1.3281	+
5		1.3281	1.3203	_
6	1.3203		1.3242	_

 $x^* = 0.1324717 \cdots \times 10^1$, $\|x^* - x_k\| = 0.0517 \times 10^{-2} < 0.5 \times 10^{1-3}$ 故有效数字为3位

例2: 求方程 $f(x) = x^3 - e^{-x} = 0$ 的一个实根。

解: f(0) < 0, f(1) > 0.

故有根区间为(0,1).

$$\diamondsuit(a,b)=(0,1)$$

 $\mathfrak{P} x_{10} = 0.7729,$

误差为 $|x*-x_{10}| \leq \frac{1}{2^{11}}$.

k	a_k	b_k	x_k	$f(x_k)$	
0	0	1	0.5	_	
1	0.5		0.75	_	
2	0.75		0.875	_	
3		0.875	0.8125	+	
4		0.8125	0.7812	+	
5		0.7812	0.7656	+	
6	0.7656		0.7734	_	
7		0.7734	0.7695	+	
8	0.7695		0.7714	_	
9	0.7714		0.7724	_	
10	0.7724		0.7729	+	

第三节 迭代法及其收敛性

/* Iterative Method and Convergent */

▶ 2.1 不动点迭代法 /* Fixed-Point Iteration */

$$f(x) = 0 \stackrel{ 等价变换}{\longleftarrow} x = \varphi(x)$$

$$f(x) = 0$$
 的根 $\varphi(x)$ 的不动点

从一个初值 x_0 出发,计算 $x_1 = \varphi(x_0), \dots, x_{k+1} = \varphi(x_k), \dots$,若 $\{x_k\}$ 收敛,即存在 x^* 使得 $\lim_{k\to\infty} x_k = x^*$,且 $\varphi(x)$ 连续,则由极限的性质可知 $x^* = \varphi(x^*)$,即 x^* 是 $\varphi(x)$ 的不动点,也就是f(x) = 0的根。

例1. 设 $f(x) = x^3 + 4x^2 - 10 = 0$ (此方程在[1,2]中有唯一根),用不同的方法将它变换成等价的方程。

解: (1).
$$x = \varphi_1(x) = x - x^3 - 4x^2 + 10$$
,

(2).
$$x = \varphi_2(x) = \left(\frac{10}{x} - 4x\right)^{\frac{1}{2}}$$
, (3). $x = \varphi_3(x) = \frac{1}{2}(10 - x^3)^{\frac{1}{2}}$,

(4).
$$x = \varphi_4(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$
,

对所选取的 $\varphi_i(x)$, i = 1, 2, 3, 4, 取初始近似值 $x_0 = 1.5$, 迭代法计算结果列入下表:

\boldsymbol{k}	(1) (2)	(3)	(4)
0	1.5	1.5	1.5
1	-0.875 0.8165	1.28695377	1.37333333
2	6.732 2.9969	1.40254080	1.36526201
3	-469.4 $(-8.65)^{1/2}$	1.34545838	1.36523001
4	1.03×10^{8}	1.37517025	
5		1.36009419	
6		1.36784697	
7		1.36388700	
8	迭代过程发散	1.36591673	
9	应 I C 过作主义 fix	1.36487822	
10		1.36541006	
11		1.36522368	
12	迭代过程中出现	1.36523024	
13	负数开方,发散	1.36522998	外小小士口小人人
14	933717J	1.36523001	迭代过程收敛

> 迭代过程的收敛性

需要讨论如下问题:

- 1) 如何选取合适的<mark>迭代函数 $\varphi(x)$?</mark>
- 2)迭代函数 $\varphi(x)$ 应满足什么条件,序列 $\{x_k\} = \{\varphi(x_{k-1})\}$ 收敛?
- 3)怎样加速序列 $\{x_k\}$ 的收敛?

定理1. 方程 $x = \varphi(x)$, 若 $\varphi(x) \in C[a,b]$, 且满足

(I) 当 $x \in [a,b]$ 时, $\varphi(x) \in [a,b]$;

(II) 对 $\forall x \in [a, b]$, $\exists 0 \le L < 1$ 使得 $|\varphi'(x)| \le L < 1$;

则任取 $x_0 \in [a, b]$, 由 $x_{k+1} = \varphi(x_k)$ 得到的序列 $\{x_k\}$ 收敛

于 $\varphi(x)$ 在[a,b]上的唯一不动点 x^* 。并且有误差估计式:

$$|x^* - x_k| \le \frac{1}{1-L}|x_{k+1} - x_k| \le \frac{L^k}{1-L}|x_1 - x_0|,$$

且存在极限
$$\lim_{k\to\infty}\frac{x^*-x_{k+1}}{x^*-x_k}=\boldsymbol{\varphi}'(x^*)$$

停机准则

绝对误差估计

证明: ① $\varphi(x)$ 在[a,b]上存在不动点?

$$\diamondsuit f(x) = \varphi(x) - x \quad : a \le \varphi(x) \le b$$

$$f(a) = \varphi(a) - a \ge 0$$
, $f(b) = \varphi(b) - b \le 0 \Rightarrow f(x)$ 有根.

② 不动点唯一? 反证: 若不然,设还有 $\tilde{x} = \varphi(\tilde{x})$,则 $x^* - \tilde{x} = \varphi(x^*) - \varphi(\tilde{x}) = \varphi'(\xi)(x^* - \tilde{x}).\xi$ 介于 x^* 和 \tilde{x} 之间.

$$\Rightarrow (x^* - \widetilde{x})(1 - \varphi'(\xi)) = 0$$
,又因为 $\varphi'(\xi) < 1$,所以 $x^* = \widetilde{x}$.

③ 当 $k \to \infty$ 时, x_k 收敛到 x^* ?

$$|x^* - x_k| = |\varphi(x^*) - \varphi(x_{k-1})| = |\varphi'(\xi_{k-1})| \cdot |x^* - x_{k-1}|$$

$$\leq L|x^* - x_{k-1}| \leq \dots \leq L^k|x^* - x_0| \to 0$$

(4)
$$|x^* - x_k| \le \frac{1}{1-L}|x_{k+1} - x_k|$$
 ?

可用 $|x_{k+1} - x_k|$ 来控制收敛精度

$$|x_{k+1}-x_k| \geq |x^*-x_k|-|x^*-x_{k+1}| \geq |x^*-x_k|-L|x^*-x_k|$$

⑤
$$|x^* - x_k| \le \frac{L^k}{1-L} |x_1 - x_0|$$
 ? L 越小,收敛越快 $|x_{k+1} - x_k| = |\varphi(x_k) - \varphi(x_{k-1})| = |\varphi'(\xi_k)(x_k - x_{k-1})|$ $\le L|x_k - x_{k-1}| \le \dots \le L^k|x_1 - x_0|$

6
$$\lim_{k\to\infty} \frac{x^*-x_{k+1}}{x^*-x_k} = \varphi'(x^*)$$
 ?

$$\lim_{k \to \infty} \frac{x^* - x_{k+1}}{x^* - x_k} = \lim_{k \to \infty} \frac{\varphi'(\xi_k)(x^* - x_k)}{x^* - x_k} = \varphi'(x^*) \checkmark$$

今ルエザ大学 HEFEI UNIVERSITY OF TECHNOLOGY

例:设 $f(x) = x^3 + 4x^2 - 10 = 0$ (此方程在[1,2]中有唯一根),考察

$$a: x_{k+1} = \varphi(x_k) = \left(\frac{10}{4+x_k}\right)^{1/2} \Rightarrow b: x_{k+1} = \varphi(x_k) = \frac{1}{2} \left(10 - x_k^3\right)^{1/2}$$

的收敛性, 当 $x_0 = 1.5$, $|x_k - x^*| < 10^{-5}$ 时, 确定收敛时的迭代次数k。

解 对于迭代过程a, 迭代函数 $\varphi(x) = \left(\frac{10}{4+x}\right)^{1/2}$,于是当 $x \in [1,2]$ 时,

$$\varphi(x) \in (1,2) \quad |\varphi'(x)| = \left| \frac{-5}{\sqrt{10}(4+x)^{\frac{3}{2}}} \right| \le \frac{5}{\sqrt{10}(5)^{\frac{3}{2}}} < 0.15 = L$$

因此,迭代函数 $\varphi(x)$ 在[1,2]上满足定理条件,故迭代过程b收敛。

由
$$|x_k - x^*| \le \frac{L^k}{1-L}|x_1 - x_0| < 10^{-5} = \varepsilon$$
, 又 $x_1 = 1.34839972$, 得

$$k > \frac{\lg(\frac{\varepsilon(1-L)}{|x_1-x_0|})}{\lg L} = \frac{\lg\left(\frac{10^{-5}(1-0.15)}{|1.34839972-1.5|}\right)}{\lg(0.15)} = 5.1599$$
,所以要迭代6次。

对于迭代过程**b**, 迭代函数 $\varphi(x) = \frac{1}{2} (10 - x^3)^{1/2}$,于是当 $x \in [1, 2]$ 时, $\varphi'(x) = -\frac{3x^2}{4\sqrt{10-x^3}} < 0, \quad \exists x \in [1, 2]$ 时, $\varphi''(x) < 0$,所以 $\varphi'(x)$ 单调递减,

故 $|\varphi'(x)| \leq |\varphi'(2)| = 2.12$. 因此, 迭代函数 $\varphi(x)$ 在[1,2]上不满足定理条件, 故迭代过程 α 发散。

注:若考虑区间[1,1.7], $|\varphi'(x)| \leq |\varphi'(1.7)| = 0.96 < 1$. 因此,迭代函数 $\varphi(x)$ 在[1,1.7]上满足定理条件,则迭代收敛。 所以,迭代函数的收敛性与有根区间的选择有关。

定理1条件非必要条件,可将有根区间[a,b]缩小,定义局部收敛性: 若在 x^* 的某 δ 领域 $R = \{x | |x - x^*| \le \delta\}$ 有 $\varphi \in C^1[a,b]$ 且 $|\varphi'| < 1$,则 由 $\forall x_0 \in R$ 开始的迭代收敛。即调整初值可得到收敛的结果。

▶ 2.2 局部收敛性和收敛阶

定义1. 若存在 x^* 的某邻域 $R:|x-x^*|\leq \delta$,使迭代过程 $x_{k+1}=\varphi(x_k)$ 对于任意初值 $x_0\in R$ 均收敛,则称迭代过程 $x_{k+1}=\varphi(x_k)$ 在根 x^* 邻近具有局部收敛性。

定理2. 设 x^* 为方程 $x = \varphi(x)$ 的根, $\varphi'(x)$ 在 x^* 的邻域内连续,且 $|\varphi'(x)| < 1$,

则迭代过程 $x_{k+1} = \varphi(x_k)$ 具有局部收敛性。

定义2. 设 $x_{k+1} = \varphi(x_k)$ 收敛到 $\varphi(x)$ 的不动点 x^* ,设 $e_k = x_k - x^*$,

若 $\lim_{k\to\infty}\frac{|e_{k+1}|}{|e_k|^p}=C>0$,则称该迭代为p阶收敛,其中 C 称为渐近误差常数。

注: p = 1, 称迭代线性收敛, p = 2, 称迭代平方收敛.

定理3. 设 x^* 为 $x = \varphi(x)$ 的不动点,若 $\varphi \in C^p(R(x^*))$,使得 当 $p \ge 2$ 时,有 $\varphi'(x^*) = \cdots = \varphi^{(p-1)}(x^*) = 0$,且 $\varphi^{(p)}(x^*) \ne 0$,则 $x_{k+1} = \varphi(x_k)$ 在 $R(x^*)$ 内 p 阶收敛。

证明: $x_{k+1} = \varphi(x_k) = \varphi(x^*) + \varphi'(x^*)(x_k - x^*) + \dots + \frac{\varphi^{(p)}(\xi_k)}{p!}(x_k - x^*)^p$