Editing Assignments Avinash Iyer

Theorem 1

- The theorem statement is incorrect: for example, if a = 6, b = 3, c = 4, then a|(bc) but $a \not|b$ and $a \not|c$.
- The proof only looks at one case and generalizes to the entire integers.

Corrected Theorem and Proof

Theorem 1. Let $a, b, c \in \mathbb{Z}$ such that a < b < c. If a|(bc), then a|b or a|c

Proof. Suppose toward contradiction that for $a,b,c\in\mathbb{Z},\ a|(bc),\ a\not|b,\ and\ a\not|c.$ Then $\forall x,y\in\mathbb{Z},\ b\neq xa$ and $c\neq ya$. Then, $bc\neq (xy)a$. However, this means $a\not|bc,$ as $xy\in\mathbb{Z}$. \bot

Theorem 2. If $a \in \mathbb{R}$ and a > 1, then $0 < \frac{1}{a} < 1$.

Proof. Assume that $1 \le \frac{1}{1}$. Since a > 1, we can divide both sides by a (without reversing the inequality) to get $\frac{a}{a} > \frac{1}{a}$ so $1 > \frac{1}{a}$. This contradicts the assumption that $1 \le \frac{1}{a}$. Thus it must be that $a > \frac{1}{a}$.

Theorem 3. If $absx < \epsilon$ for every real number $\epsilon > 0$, then x = 0.

Proof. Suppose that $|x| < \epsilon$ for every positive number ϵ , but $x \neq 0$. Since $x \neq 0$, necessarily $\frac{|x|}{2} > 0$, so in particular $|x| < \epsilon$ for the positive number $\epsilon = \frac{|x|}{2} > 0$. This means

$$|x| < \frac{|x|}{2}.$$

But, $|x| \neq 0$ by assumption, so we can divide both sides by |x| to conclude that $1 < \frac{1}{2}$, which is a contradiction. Thus, if $|x| < \epsilon$ for every real number $\epsilon > 0$, it must me the case that x = 0.

Theorem 4. Let $a, b \in \mathbb{Z}$ where $a \equiv 1 \mod 3$ and $b \equiv 2 \mod 3$. Then $(a + b) \equiv 0 \mod 3$.

Proof. Since $a \equiv 1 \mod 3$ there is an integer k in $\mathbb Z$ such that a = 3k + 1. Since $b \equiv 2 \mod 3$, we can write b = 3k + 2. Thus, a + b = (3k + 1) + (3k + 2) = 6k + 3 = 3(2k + 1), so $(a + b) \equiv 0 \mod 3$.

Theorem 5. There are no integers a, b for which 2a + 4b = 1.

Proof. Suppose the theorem is false, so that there are integers a,b for which 2a+4b=1. Dividing both sides of this equation by 2, we conclude that $a+2b=\frac{1}{2}$. Since aandb are integers, a+2b is also an integer. But $\frac{1}{2}$ is not an integer, so this is impossible. Therefore, the theorem can not be false, so it must be true.

Theorem 6. Let n be an integer. If $n^2 + 5$ is odd, then n is even.

Proof. Suppose, for the sake of contradiction, that $n^2 + 5$ is odd and n is also odd. By definition, then, there exists an integer k so that $n^2 + 5 = 2k + 1$ and n = 2k + 1. Hence we have

$$2k + 1 = n^2 + 5 = (2k + 1)^2 + 1 = 4k^2 + 4k + 1 + 5 = 2(2k^2 + 2k + 3)$$

. Therefore, 2k+1 is even. This is clearly impossible, and hence we cannot have that n^2+5 is odd and n is also odd. Therefore, if that n^2+5 is odd, we must have n is even.