Universidade Federal Fluminense

FACULDADE FEDERAL DE RIO DAS OSTRAS

DEPARTAMENTO DE CIÊNCIA E TECNOLOGIA (RCT)

Gabarito da $1^{\underline{a}}$ Prova – Cálculo III – 13/09 – 09:00 - 11:00

Questão 1 (4 pontos):

Solução:

- a) As funções coordenadas do vetor α para cada $t \in \mathbb{R}$ são x = 1 t e y = 3t 2, daí, isolando t em cada equação vemos que y = 3x 5, logo a trajetória de α é uma reta. Do mesmo modo vemos que as coordenadas do vetor β satisfazem a equação cartesiana $y = (1 x)^2$, portanto a trajetória de β é uma parábola. Os pontos onde as trajetórias se cruzam são aqueles que satisfazem as duas equações, portanto quando $3x 5 = (1 x)^2$. Resolvendo essa equação, vemos que tais pontos são (2,1) e (3,4).
- b) Para que as partículas se encontre devemos ter $\alpha(t) = \beta(t)$ para algum $t \in \mathbb{R}$, ou seja, 1 t = 1 + t e $3t 2 = t^2$. Da primeira equação vemos que a única possibilidade é t = 0, entretanto 0 não satisfaz a segunda, logo $\alpha(t)$ nunca é igual a $\beta(t)$.
- c) Queremos encontrar $t \in \mathbb{R}$ tal que $\|\alpha'(t)\| = \|\beta'(t)\|$. Podemos ver que $\|\alpha'(t)\| = \sqrt{10}$ e $\|\beta'(t)\| = \sqrt{1+4t^2}$, $\forall t \in \mathbb{R}$. Com isso,

$$\|\alpha'(t)\| = \|\beta'(t)\| \Leftrightarrow t = -\frac{3}{2} \text{ ou } t = \frac{3}{2}.$$

Questão 2 (4 pontos):

Solução:

Note que $\alpha(0)=(1,2)$. Denotemos por r a reta perpendicular à α no ponto (1,2). Sabemos que os coeficientes da equação cartesiana da reta r são sempre as coordenadas de um vetor perpendicular a esta reta, portanto são as coordenadas de um vetor tangente à α . Assim, um vetor tangente à α no ponto (1,2) é o vetor $\alpha'(0)=(2,2)$. Com isso, a reta r tem equação da forma.

$$2x + 2y + c = 0.$$

Como r passa pelo ponto (1,2) temos que este deve satisfazer a equação da reta, portanto obtemos que c=6, daí,

$$r: \ 2x + 2y + 6 = 0.$$

Questão 3 (2 pontos):

Solução:

Sabemos que V=v T, onde T é o vetor tangente unitario. Como o vetor tangente unitario é o mesmo para qualquer parametrização com mesmo sentido de percurso da partícula, tomemos a seguinte parametrização $\alpha(t)=(t,t^2)$. Com isso,

$$T = \frac{\alpha'(2)}{\|\alpha'(2)\|} = \frac{1}{\sqrt{17}}(1,4)$$
 e $V = \frac{3}{\sqrt{17}}(1,4)$.

Sabemos que o vetor aceleração é dado por

$$A = \frac{dv}{dt}T + v^2kN,$$

onde k é a curvatura e N é o vetor normal unitário da curva no ponto (2,4). Como N aponta para o lado côncavo da curva, sabemos que N é a rotação de 90^o do vetor T no sentido anti-horário, ou seja, $N=\frac{1}{\sqrt{17}}(-4,1)$. Além disso, temos que

$$k = \frac{|y''(2)|}{(1+y'(2))^{3/2}} = \frac{2}{17\sqrt{17}}.$$

Com isso,

$$A = \frac{7}{\sqrt{17}}(1,4) + \frac{18}{(17)^{5/2}}(-4,1) = \frac{1}{(17)^{5/2}}(65,46).$$