The Short-Time Fourier Transform (2 of 2)

Xavier Serra

Universitat Pompeu Fabra, Barcelona

&

Stanford University

Index

- STFT and analysis window
- Window size
- FFT size
- Hop size
- Time-frequency compromise
- Inverse STFT
- STFT system

STFT and analysis window

$$X_{l}[k] = \sum_{n=-N/2}^{N/2-1} w[n]x[n+lH]e^{-j2\pi kn/N} \quad l=0,1,...,$$

STFT and analysis window

$$X_{l}[k] = \sum_{n=-N/2}^{N/2-1} w[n]x[n+lH]e^{-j2\pi kn/N} \quad l=0,1,...,$$

Window size

Even-odd size window

FFT size

Hop size
$$A_w[n] = \sum_{l=0}^{L-1} w[n-lH] = c$$

Time-frequency compromise

Time-frequency compromise

Amplitude and phase spectrogram

Inverse STFT

$$y[n] = \sum_{l=0}^{L-1} Shift_{lH,n} \left[\frac{1}{N} \sum_{k=-N/2}^{N/2-1} X_{l}[k] e^{j2\pi kn/N} \right]$$

each output frame is:

$$yw_l[n] = x(n+lH)w[n]$$

and the output sound is:

$$y[n] = \sum_{l=0}^{L-1} yw_{l}[n] = x[n] \sum_{l=0}^{L-1} w[n-lH]$$

$$yw_{l}[n]=w[n]y[n+lH]$$
 $l=0,1,...,$

STFT system

References and credits

- More information in:
 - https://en.wikipedia.org/wiki/STFT
 - https://en.wikipedia.org/wiki/Window_function
 - http://en.wikipedia.org/wiki/Spectrogram
- Reference on the STFT by Julius O. Smith: https://ccrma.stanford.edu/~jos/sasp/
- Sounds from: http://www.freesound.org/people/xserra/packs/13038/
- Slides and code released using the CC Attribution-Noncommercial-Share Alike license or the Affero GPL license and available from https://github.com/MTG/sms-tools

The Short-Time Fourier Transform (2 of 2)

Xavier Serra

Universitat Pompeu Fabra, Barcelona

&

Stanford University