Evidence for a Double-Minimum Potential in an Excited State of ClO₂

By J. B. Coon, F. A. Cesani and C. M. Loyd

Physics Dept., Texas A. and M. University College Station, Texas, U.S.A.

Received 21st January, 1963

Evidence is presented which suggests the existence of a double-minimum potential in the antisymmetrical vibrational co-ordinate of an excited electronic state of ClO_2 . A previously reported vibrational analysis of the 3600 Å absorption system of ClO_2 vapour proposes the excited state assignments $2v_3' = (1^+ - 0^+) = 1559 \text{ cm}^{-1}$ and $4v_3' - 2v_3' = (2^+ - 1^+) = 1640.5 \text{ cm}^{-1}$. In the present work, a two-parameter double-minimum potential function is adjusted to fit these levels of the Q_3' mode. The resulting function has a barrier of 2520 cm⁻¹, and at each potential minimum one bond is 0.065 Å shorter and one bond is 0.065 Å longer than the average bond of 1.620 Å. The isotope shift calculated for the interval $(1^+ - 0^+)$ agrees with the shift observed; however, the shift calculated for $(2^+ - 1^+)$ does not. A Franck-Condon calculation based on the vibrational wave functions of the double-minimum potential yields intensity ratios in approximate agreement with the experimental ratios. The isotope shifts and intensity ratios calculated assuming a harmonic potential in the Q_3' mode do not agree with experiment.

Recently 1 an intense progression of vibronic bands in the 3600 Å absorption system of ClO_2 has been given the assignment $(v_1', 0, 2) \leftarrow (0, 0, 0)$, and a less intense progression has been given the assignment $(v_1', 0, 4) \leftarrow (0, 0, 0)$. These progressions are labelled (c) and (d) respectively. The observed intensities of these progressions relative to the (a) progression $(v_1', 0, 0) \leftarrow (0, 0, 0)$ is much greater than is expected on the basis of a harmonic potential in the Q_3' co-ordinate, but a double-minimum potential explains the observed intensities qualitatively. Furthermore, the isotope shift of $2v_3'$ as obtained from progressions (c) and (d) is about 25 % less than that expected for a harmonic potential. The purpose of this paper is to explain quantitatively the anomalous intensity and isotope shift in terms of a double-minimum potential function in the Q_3' co-ordinate.

Mulliken 2a and Walsh 2b have discussed the probability that not only ClO₂ but some excited states of SO₂ and NO₂ differ slightly from C_{2v} symmetry. Mulliken suggests that the $2b_1$ molecular orbital is responsible for these slightly unsymmetrical states.

1. THE POTENTIAL FUNCTION 3

It is assumed that the potential function in the Q_3 co-ordinate has the form

$$V(Q) = \frac{\lambda}{2}Q^2 + A \exp(-a^2Q^2)$$
 (1.1)

where Q is a co-ordinate satisfying the condition $2T = \dot{Q}^2$. The minima of this three-parameter potential function are located at $\pm Q_m$ given by

$$Q_m^2 = \frac{1}{a^2} \ln \left(\frac{2a^2 A}{\lambda} \right). \tag{1.2}$$

A parameter ρ is introduced by writing

$$a^2 = \frac{\lambda}{2A}e^{\rho}. ag{1.3}$$

A frequency v_0 is defined by $\lambda = (2\pi c v_0)^2$, and a dimensionless parameter B is introduced such that the barrier height is $Bhcv_0$. From eqn. (1.1), (1.2) and (1.3),

$$Bhcv_0 = V(0) - V(Q_m) = A \frac{(e^{\rho} - \rho - 1)}{e^{\rho}}.$$
 (1.4)

The barrier height in cm⁻¹ is

$$b = Bv_0, (1.5)$$

and the minima are located at $\pm Q_m$ where

$$Q_m^2 = \frac{2\rho}{e^{\rho} - \rho - 1} \frac{h}{4\pi^2 c} \frac{B}{v_0}.$$
 (1.6)

We may replace the parameters λ , A and a^2 by the parameters v_0 , B and ρ . In the present application ρ is set equal to 1.5. For this value of ρ the minima are parabolic. The energy levels and wave functions of the potential function (1.1) have been determined 3 for 60 different barrier heights ranging from B=0.0 to B=6.0 in intervals of 0.1. Machine calculations based on the secular equation of the linear variation method lead to wave functions of the form

$$\Psi(Q) = \sum_{k=0}^{23} a_k \phi_k(Q),$$

where the ϕ_k are harmonic oscillator wave functions corresponding to the frequency v_0 . Numerical values of the dimensionless energy levels $G(0^+)/v_0$, $G(0^-)/v_0$, . . ., $G(4^+)/v_0$, $G(4^-)/v_0$ are given for each value of the dimensionless barrier height B. Here G is the energy above the potential minima in cm⁻¹. The coefficients a_k are tabulated against B for each of ten levels 0^+ , . . ., 4^- . This requires ten tables of coefficients. The energy level tables are available 3^- but the tables of a_k are too extensive to publish.

2. BARRIER HEIGHT AND BOND LENGTHS

The data used in this section are taken from Coon and Ortiz,¹

$$2v_3' = G(1^+) - G(0^+) = 1559 \text{ cm}^{-1},$$

$$4v_3' - 2v_3' = G(2^+) - G(1^+) = 1640.5 \text{ cm}^{-1}.$$
(2.1)

Examination of the table giving the levels G/v_0 for a barrier B described in § 1 reveals that only for B = 2.050 does the ratio

$$\frac{G(2^+)/\nu_0 - G(1^+)/\nu_0}{G(1^+)/\nu_0 - G(0^+)/\nu_0}$$
(2.2)

agree with the experimental value, 1640.5/1559. This establishes the value of B. The value of v_0 is determined from the identity

$$v_0 = \frac{G(1^+) - G(0^+)}{G(1^+)/v_0 - G(0^+)/v_0} \text{ cm}^{-1}.$$
 (2.3)

The result is $v_0 = 1229 \text{ cm}^{-1}$. Multiplication of tabulated values of G/v_0 by this value of v_0 yields the levels

$$G(0^{+}) = 945 \text{ cm}^{-1}, \quad G(1^{+}) = 2504 \text{ cm}^{-1}, \quad G(2^{+}) = 4143 \text{ cm}^{-1},$$

 $G(0^{-}) = 1014 \text{ cm}^{-1}, \quad G(1^{-}) = 3034 \text{ cm}^{-1}, \quad G(2^{-}) = 5128 \text{ cm}^{-1}.$ (2.4)

Accordingly the (0^+-0^-) separation is 69 cm⁻¹. It also follows that the barrier height is

$$b = Bv_0 = 2520 \text{ cm}^{-1}$$
. (2.5)

DOUBLE-MINIMUM POTENTIAL IN ClO₂

In order to calculate the configuration of the molecule at the potential minima, consider fig. 1. Let r_0 be the bond length at the symmetrical configuration and let r be the change of bond length corresponding to an antisymmetrical displacement Q. For small displacements the kinetic energy T is given by $2T = \mu r^2$, where

$$\mu = \frac{2mM}{2m\sin^2\theta + M}. (2.6)$$

For the excited state 2θ is 107° 24'.4 Using $2T = \dot{Q}^2$ and setting $Q = Q_m$,

$$Q_m^2 = \mu r_m^2. \tag{2.7}$$

Fig. 1.

Since $\rho = 1.5$, eqn. (1.6) gives $Q_m^2 = 0.1414 \times 10^{-40}$ g cm². Consequently by eqn. (2.7), $r_m = 0.0651$ Å. Since the average bond length 4 for the excited state is 1.620 Å, the bond lengths at the potential minima are

bond lengths =
$$1.620 \text{ Å} \pm 0.065 \text{ Å}$$
. (2.8)

The displacement of the potential minima from the symmetrical configuration is considered to be within the range of small displacements.

3. THE ISOTOPE SHIFT

The values of B and v_0 determined in § 2 along with the assumed value of ρ are sufficient to determine a specific double-minimum potential function having the form of eqn. (1.1). The isotope shift calculated on the basis of this potential function and that calculated on the basis of a harmonic potential function may be compared with the isotope shift spectroscopically observed. Table 1 gives the isotope shift $\Delta \sigma = \sigma (\text{Cl}^{35}\text{O}_2) - \sigma (\text{Cl}^{37}\text{O}_2)$ observed for the three band progressions,

$$a(v)$$
 $(v'_1, 0, 0) \rightarrow (0, 0, 0),$
 $c(v)$ $(v'_1, 0, 2) \rightarrow (0, 0, 0),$
 $d(v)$ $(v'_1, 0, 4) \rightarrow (0, 0, 0).$ (3.1)

TABLE 1.—PEAK EXTINCTION COEFFICIENT ε IN (1./mole cm) AND THE ISOTOPE SHIFT $\Delta \sigma = \sigma(\text{Cl}^{35}\text{O}_2) - \sigma(\text{Cl}^{37}\text{O}_2)$ for three band progressions in the spectrum OF CHLORINE DIOXIDE

v_i'	σ _{cm} -1	$_{ m cm^{-1}}^{\Delta\sigma}$	•	$\sigma_{\text{cm}^{-1}}^{c(v)}$	$_{ m cm^{-1}}^{\Delta\sigma}$	ε	$d(v)$ $\sigma_{\rm cm}^{-1}$	$_{ m cm^{-1}}^{\Delta\sigma}$	ε
2	22425.5		89	23960.6	20.9		25571.5	32.0	139
3	23119-2		233	24636.7	24.8	180	26232-2	35.9	168
4	23806.9		384	25307-6	31.6	295	26888.8	40.4	147
5	24488.2	24.1	491	25973.8	35.4	409	27540-7	44.9	106
6	25164.3	29.6	638	26635.5	41.2	495	28187-9	50.1	37
7	25835.7	34.5	900	27292.0	45.9	470			
8	26502.4	41.0	1076						
9	27164-1	44.9	1108						

These isotope shifts are obtained by averaging the shift measured by Urey and Johnston 5 with that measured by Ku.6 For each progression $\Delta \sigma$ may be plotted against v_1' and a best straight line may be drawn through the points. The interval between the straight lines for progressions a(v) and c(v) gives an approximate value for the isotope shift of $2v_3'$,

(experimental)
$$\Delta(2v_3') = 11.6 \text{ cm}^{-1}$$
. (3.2)

To calculate the isotope shift for a harmonic potential we may use

$$(2v_3')^2/(2v_3')_i^2 = \mu_i/\mu. \tag{3.3}$$

The subscript *i* refers to isotopic quantities. The reduced mass μ is given by eqn. (2.6) and μ_i contains the mass of Cl³⁷ instead of Cl³⁵. Substituting $2v_3' = 1559$ cm⁻¹ into eqn. (3.3) leads to

(harmonic)
$$\Delta(2v_3') = 15.8 \text{ cm}^{-1}$$
, (3.4)

which deviates considerably from the observed value.

To calculate the isotope shift for the double-minimum potential it is noted that the barrier height Bv_0 and the position of the potential minima $\pm r_m$ do not change with isotopic substitution. Consequently eqn. (1.6) and (2.7) yield

$$(\mu_i/\mu)^{\frac{1}{2}} = \nu_0/\nu_0^i = B_i/B. \tag{3.5}$$

Using these relations the parameters B_i and v_0^i for the isotopic molecule may be determined and hence the energy levels may be obtained from the table of (G/v_0) . It follows that $[G(1^+) - G(0^+)]_i = 1547.6 \text{ cm}^{-1}$ which compared to 1559 cm⁻¹ corresponds to

(double min.)
$$\Delta(2v_3) = 11.4 \text{ cm}^{-1}$$
, (3.6)

in agreement with the observed isotope shift. However, the success of the doubleminimum potential function in explaining the isotopic shift of the second observed interval is less marked:

$$(\exp t.)\Delta(4v_3'-2v_3') = 10.4 \text{ cm}^{-1},$$

 $(\text{double min.})\Delta[G(2^+)-G(1^+)] = 26.0 \text{ cm}^{-1}.$ (3.7)

4. INTENSITY CALCULATION

Another method of checking the validity of the double-minimum potential function of §2 is to test the ability of the wave functions of this potential to produce observed intensity ratios. Let $\varepsilon/\sigma(1^+,0)$ designate the peak extinction coefficient divided by the frequency for a band of the progression c(v), and let $\varepsilon/\sigma(0^+,0)$ designate the same for the corresponding band of progression a(v). According to the Franck-Condon principle,

$$\frac{\varepsilon/\sigma(1^+,0)}{\varepsilon/\sigma(0^+,0)} = \left[\frac{R(1^+,0)}{R(0^+,0)}\right]^2,\tag{4.1}$$

where

$$R(v,0) = \int \Psi'(v)\Psi''(0)dQ_3.$$
 (4.2)

In this overlap integral, $Q_3' = Q_3''$.

The average value of the intensity ratio as determined from the data of table 1 is

$$\frac{\varepsilon/\sigma(1^+,0)}{\varepsilon/\sigma(0^+,0)} = 0.74. \tag{4.3}$$

The data for bands $v'_1 = 3$, 4, 5 and 6 are averaged. This experimental intensity ratio is to be compared with the value calculated from eqn. (4.1).

For the parameter B = 2.050 the tables described in § 1 give the coefficients a_k of the wave functions,

$$\Psi'(1^{+}) = 0.706 \,\phi'_{0} - 0.408 \,\phi'_{2} - 0.570 \,\phi'_{4} + \dots, \Psi'(0^{+}) = 0.623 \,\phi'_{0} + 0.744 \,\phi'_{2} + 0.241 \,\phi'_{4} + \dots.$$

$$(4.4)$$

The ϕ_k' are harmonic oscillator wave functions corresponding to the frequency given by the double-minimum parameter $v_0 = 1229 \text{ cm}^{-1}$. The ground-state vibrational wave function is

$$\Psi''(0) = \phi_0'', \tag{4.5}$$

where ϕ_0'' is the harmonic oscillator wave function for v'' = 0 corresponding to the frequency $v_3'' = 1110.5 \text{ cm}^{-1}.^1$ The ratio $R(1^+, 0)/R(0^+, 0)$ is easily evaluated by use of the formulae,

$$\frac{r(2,0)}{r(0,0)} = \left(\frac{1}{2}\right)^{\frac{1}{2}} \left[\frac{v'_0 - v''}{v'_0 + v''}\right], \quad \frac{r(4,0)}{r(0,0)} = \left(\frac{3}{8}\right)^{\frac{1}{2}} \left[\frac{v'_0 - v''}{v'_0 + v''}\right]^2,
\frac{r(6,0)}{r(0,0)} = \left(\frac{5}{16}\right)^{\frac{1}{2}} \left[\frac{v'_0 - v''}{v'_0 + v''}\right]^3, \quad \frac{r(8,0)}{r(0,0)} = \left(\frac{35}{128}\right)^{\frac{1}{2}} \left[\frac{v'_0 - v''}{v'_0 + v''}\right]^4,$$
(4.6)

where

$$r(v,0) = \int \phi_v' \phi_0'' \mathrm{d}Q_3.$$

The result is

$$[R(1^+, 0)/R(0^+, 0)]^2 = 1.13,$$
 (4.7)

which is in fair agreement with eqn. (4.3). A similar calculation yields

$$[R(2^+, 0)/R(0^+, 0)]^2 = 0.22, (4.8)$$

which compares in order of magnitude to the intensity ratio of progression d(v) to progression a(v). These calculated intensities are a great improvement over those based on a harmonic potential in the Q_3' mode. Using $v_3' = 1559/2$ and $v_3'' = 1110.5$ cm⁻¹ the harmonic potential leads to 0.015 and 0.00036 in the place of values given in eqn. (4.7) and (4.8) respectively.

DISCUSSION

The double-minimum potential function specified by $(\rho = 1.5, B = 2.050, \text{ and } v_0 = 1229 \text{ cm}^{-1})$, having a barrier of 2520 cm⁻¹, explains the two observed vibrational intervals 1559 cm⁻¹ = 1^+ – 0^+ and $1640.5 \text{ cm}^{-1} = 2^+$ – 1^+ . However, this potential explains the small isotope shift of only the first interval. Calculations not reported above show that a potential function with a barrier of about 3500 cm⁻¹ is able to explain the small isotope shift observed for both intervals. For such a high barrier the second vibrational interval is reduced to 75 % of the value observed. The fact that both of the intervals and the isotope shifts of both intervals can not be explained by a single double-minimum potential function constitutes a serious difficulty.

This work was supported by the United States Air Force under Contract No. AF 49(638)-593 monitored by the AF Office of Scientific Research of the Office of Aerospace Research.

- Coon and Ortiz, J. Mol. Spectr., 1957, 1, 81.
 Mulliken, Can. J. Chem., 1958, 36, 10. Ritchie, Walsh and Warsop, Spectroscopy (ed. Wells), (Pergamon Press, Oxford, 1962).
- ³ Coon, Naugle, Henderson and McKenzie, Report Air Force OSR (Contract AF(638)-593), Mar. 1963.
- Coon, DeWames and Loyd, J. Mol. Spectr., 1962, 8, 285.
 Urey and Johnston, Physic. Rev., 1931, 38, 2131.
- ⁶ Ku, Physic. Rev., 1933, 44, 376.