1. 问题概述

为了应对终端设备处理能力不足、资源有限等问题,业界在移动边缘计算 (Mobile Edge Computing, MEC)中引入了计算卸载概念。边缘计算卸载即移动设备(Smart Mobile Device, SMD)将计算任务卸载到 MEC 网络(具体指 FEMTO-CLOUD)中,主要解决移动设备在资源存储、计算性能以及能效等方面的不足。

当移动设备需要处理计算密集型应用程序时,它会向边缘云发送资源请求。 边缘云明智地决定是否卸载应用程序,以及需要将哪些部分卸载到云中。一旦边 缘云决定卸载,就需要依次执行三个阶段,如图1所示。

图 1 移动设备执行计算卸载过程

具体三个阶段的执行过程如下:

- 1) 移动设备通过上行通道将数据发送到云端;
- 2) 云端执行卸载数据;
- 3) 通过下行通道将结果发送回移动设备。

为了达到节约移动设备能耗的目的, 卸载的决策取决于移动设备的计算速度、 移动设备的发射功率、信道条件等多方面。

2. 计算卸载能耗最优化问题模型构建

公式(1)表示移动端的总耗能,其中包含移动端计算耗能、上传数据耗能和下载数据耗能三部分。具体如下所示:

$$E(f_l, P_t, \lambda) = \alpha I K \lambda f_l^2 + (P_0 + k_t P_t) \frac{\beta_1 (1 - \lambda) I}{R_{tt}} + P_r \frac{\beta_2 (1 - \lambda) I}{R_{tt}}$$
(1)

公式(2)和(3)分别表示上传和下载速率,具体如下所示:

$$R_U = W_U \log_2(1 + \frac{P_t d^{-\nu} |h_1|^2}{N_0}) \qquad (2)$$

$$R_D = W_D \log_2(1 + \frac{P_F d^{-\nu} |h_2|^2}{N_0}) \quad (3)$$

优化问题 P1:

$$\arg\min_{f_l,P_t,\lambda} E(f_l,P_t,\lambda)$$

约束条件:

$$L(f_l, P_t, \lambda) = \max(t_l, t_c) \le L_{\max} \quad (4)$$

$$t_l = \frac{\alpha \lambda I}{f_l} \tag{5}$$

$$t_c = t_U + \tau_c + t_D \qquad (6)$$

$$t_U = \frac{\beta_1(1-\lambda)I}{R_U} , \quad t_D = \frac{\beta_2(1-\lambda)I}{R_D} , \quad \tau_c = \frac{\alpha(1-\lambda)I}{f_c} \quad (7)$$

$$0 \le \lambda \le 1$$

$$0 \le P_t \le P_{t \max} \tag{9}$$

$$0 \le f_l \le f_{l \max} \tag{10}$$

$$I(1-\lambda)\alpha \le \hat{F} \tag{11}$$

公式(4)为延迟约束,表示本地部分数据执行时间 t_l (即公式 5)和云端部分数据执行时间 t_c (即公式 6 和 7)的最大值不能超过 L_{\max} 。公式(8)、(9)和(10)分别表示卸载比、传输比率和计算速度约束。公式(11)表示边缘云的计算能力约束,卸载到云中执行数据所需要的 CPU 周期不能超过 \hat{F} 。

可以通过智能优化算法在约束条件下不断更新三个决策变量 f_l , P_t , λ 的值得到能耗最优解。算法中通过改变移动端到云端距离 d,可以验证随着 d 的增大,移动端卸载到云端的数据会减少,能耗随之增加。

3. 具体参数说明

决策变量	含义	变量取值范围	其它
f_{l}	移动端计算速度	$[0, f_{l_{\text{max}}}]$	
P_{t}	移动端发射功率	$[0, P_{t max}]$	
λ	本地执行的位数与总输入数据 位数之比(比率)	[0, 1]	

Parameter	Description	Value	Other
W_U/W_D	上行/下行信道带宽	10MHZ	
d	从 SMD 到其服务 FAP 的距离	10、20、30、40、50、60、70、 80、90、100	
h_1/h_2	上行/下行信道衰落系数	0.99	
N_0	白高斯噪声功率	174×10 ⁻¹³	
P_0	SMD 静态能量消耗	0.4W	
$k_{\scriptscriptstyle t}$	SMD 功率放大器的 效率因数	18	
P_r	SMD 接收能量消耗	0.4W	
P_F	服务 FAP 的发射功率	0.1W	
$P_{t \max}$	SMD 最大发射功率	0.1W	
f_c	Cloud 的计算速度	8×10 ⁸ cycles / s	
$f_{l \max}$	SMD 最大计算速度	4×10^8 cycles / s	
k	取决于芯片架构系数(用于 对计算能耗进行建模)	10 ⁻²⁶	
α	计算 1bit 数据需要的周期 数由移动端的应用复杂度 决定	40	
I	计算输入数据的位数	5Mbyte	
v	路径损耗指数	4	

T.	上房田本头的孤阳画出	[15.45]	
$L_{ m max}$	与应用有关的延迟要求	[1.5, 4.5]	
$oldsymbol{eta}_1$	占上行传输开销的系数	1	
eta_2	共同考虑下行链路传输开 销和卸载到云的输出与输 入比特之比的系数	0.2	
\hat{F}	边缘云计算能力上界	6*10^9cycles/slot	
R_U/R_D	上行/下行速率	$R_U = W_U \log_2(1 + \frac{P_t d^{-v} h_1 ^2}{N_0})$	
		$R_D = W_D \log_2(1 + \frac{P_F d^{-v} h_2 ^2}{N_0})$	
t_U/t_D	上行/下行传输延迟	$t_{\rm U} = \frac{\beta_1(1-\lambda)I}{R_{\rm U}}$	
		$t_{\rm D} = \frac{\beta_2 (1 - \lambda)I}{R_{\rm D}}$	
$ au_c$	Cloud 端执行时间	$\tau_c = \frac{\alpha (1 - \lambda)I}{f_c}$	
t_l/E_l	本地执行部分的时间/能源 消耗	$E_l = \alpha \lambda I k f_l^2$	
t_c/E_c	卸载零件的时间/能耗	$t_c = t_{\rm U} + \tau_c + t_{\rm D}$	
		$E_c = (P_0 + k_t P_t) t_{\mathrm{U}} + P_r t_{\mathrm{D}}$	
L/E	SMD 的总时间/能源消耗	$L(f_l, P_t, \lambda) = \max\{t_l, t_c\}$	
		$E\left(f_{l},P_{t},\lambda\right)=E_{l}+E_{c}$	

4. 问题扩展(供参考)

可考虑扩展到多用户的计算能耗最优化问题:

- 1) 针对每个用户,有不同的上行传输速率,卸载比等;
- 2)针对每个用户,除了上述提到的数据量 I,最大延迟 L_{\max} ,添加计算需要的资源 q,并在约束中限制边缘云中资源上界为 Q。