An Application of Central Limit Theorem to Wide Area Network Service Level Agreement Analyses

Sean Farney Global Network Architect seanfarney@ieee.org

Abstract1 --

In this paper I analyze Round Trip Delay (RTD) Service Level Agreements (SLA) on a global MPLS Wide Area Network. Specifically, latency in milliseconds measured between a Data Center facility in Boston and 20 remote locations. The monthly mean of the actual delay is compared to the maximum delay allowed under the terms of the contract, the "latency SLA", and the Central Limit Theorem is applied to assess the probability of exceeding the SLA. The expectation is that the data will establish or challenge the efficacy of the provider guarantees. After performing the analysis, it is clear that the latency SLAs are ineffectual- the Theorem demonstrates that the probabilities of experiencing the conditions which would invoke SLA violation that are so low as to be nonexistent. We see an average distance from the expected mean equal to eight σ , falling within three σ in only five instances. Given such results, I suggest that a more efficient model for SLA construction and measurement is required. Finally, I question the need for managed bandwidth services if latency is perceived as a competitive advantage.

Introduction

Managed Network Service Providers (NSP) supply the bandwidth, transport, equipment, and management services to connect disparate locations across the corporate enterprise. To ensure levels of quality for traffic transiting these networks, Service Level Agreements for latency, availability, and packet loss are included in the contractual arrangements between provider and customer. If these service levels are not met, the customer is entitled to financial remuneration. Usually, there is reimbursement of a certain predetermined percentage of the monthly cost on a per site basis. Obviously, providers are motivated to avoid violations in order to retain as much operating profit as possible.

The carrier monitors SLA performance via network management systems (NMS). In our example, the NSP uses a proprietary NMS to send Simple Network Management Protocol (SNMP) polls to remote routers, and records the roundtrip latency in milliseconds. This happens every 15 minutes, daily, and is tabulated at the end of every month, resulting in sample size n=2,976. In our example, the Boston Data Center facility hosts shared data and applications for the entire enterprise. SLA measurements are performed between this location and 20 sites spanning 11 countries and 4 continents.

One of the challenges of operating a geographically distributed infrastructure is making sense of the abundance of collected data. The network manager is faced with important questions: Are SLAs effective at serving business needs and the infrastructure portfolio? Do they elevate network performance or restrain it? Are SLAs part of the vendor value equation? How are they constructed before finalizing a contract and enforced afterwards? In today's technology driven economy, IT can create a clear competitive edge. Properly answering these questions has evolved from a titular back office consideration into a critical component of corporate data communication strategy. So there is a need for more exacting means of assessing network performance guarantees. For this we turn to statistical analyses.

Anal	MOTO	and	HIMA	111100
Anal	. V.N L.N	<i>unu</i>	I LILL	

_

¹ Paper inspired by material from MITP 431 *Probability and Communications Networks*, taught by Dr. Abraham Haddad, Professor of Electrical and Computer Engineering, McCormick School, Northwestern University

To perform the analysis, I extracted January's SNMP information from an internal NMS located in the Boston Data Center² and formatted it into Microsoft Excel. I then derived the mean, standard deviation, variance, IOR, and other relevant information³.

Before looking at the results we can make some predictions. The Law of Large Numbers tells us that as *n* becomes larger, the variance required to influence the mean becomes very large. With our large sample, we know the average will be driven to the mean and will be resistant to all but a very large number of outliers⁴. These two ideas can be summarized as:

$$\mu_{\mathbf{Y}} = \mathbb{E}\{\mathbf{Y}\} = \mathbb{E}\left\{\frac{1}{n}\sum_{i=1}^{n}X_{i}\right\} = \frac{1}{n}\mathbb{E}\left\{\sum_{i=1}^{n}X_{i}\right\} = \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}\{X_{i}\} = \frac{n\mu}{n} = \mu$$

$$\sigma_{\mathbf{Y}}^{2} = \operatorname{Var}\left\{\frac{1}{n}\sum_{i=1}^{n}X_{i}\right\} = \frac{1}{n^{2}}\operatorname{Var}\left\{\sum_{i=1}^{n}X_{i}\right\} = \frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{Var}\{X_{i}\} = \frac{n\sigma^{2}}{n^{2}} = \frac{\sigma^{2}}{n}$$

To illustrate this, let's look at results from the Dallas office. The true mean, or expected value, of the polling samples from Boston to Dallas for January was 60.58ms. The standard deviation is only 4.69ms and variance is 22.00. It's a relatively tight group, which is not surprising considering the high n. The vendor guarantees that sample mean, the latency SLA, will be <145ms, or more than twice the expected mean! More precisely, the difference is 145-60.58=84.42 ms. So for μ to reach 145ms 84.42ms must be added to every sample. Or, 373.85ms must be added to all samples during a 7 day period (lower n, higher variance):

Soston Data Center router to Dallas router, latency, milliseconds			
Sample Mean, µ, E(X)	60.58		
Standard Deviation, σ	4.69		
Variance, σ2	22.00		
Max	89.63		
SLA Mean, (X)	145.00		
#o's SLA is from µ	18.00		
To exceed SLA, # of ms added			
to every sample for one week	373.85		
To exceed SLA, # of ms added			
to every sample	84.42		

6

From the network user perspective, this could have devastating implications. Latency would have to skyrocket to 2,616ms for an 8 hour period (n=96), a level which would render the network completely unusable, in order to invoke SLA violation. Knowing the behavior the network would have to exhibit to reach the SLA levels, we must determine the chance of this event occurring. For this we apply the Central Limit Theorem.

The Central Limit Theorem teaches us that if sampling from a population with an unknown probability distribution, the sampling distribution of the sample mean will approximate a normal if n is large. By

⁴ The mean is specifically considered not resistant to outliers, but in this the large n makes them irrelevant.

² Solarwinds Orion Network Performance Monitoring NMS, sample period 01 January 00:01-31 January 23:59

³ See Appendix I, Site-to-site Summary. Source Excel data available electronically

⁵ Dr. Abraham Haddad, Professor of Electrical and Computer Engineering, McCormick School, Northwestern University MITP 431 *Probability and Communications Networks*, lecture notes pg. 115

⁶ See Appendix II, SLA Gap Analysis for complete results

⁷ Pg. 239, Montgomery D., and Runger G., (2006) *Applied Statistics and Probability for Engineers*, 3rd Edition, John Wiley & Sons, Inc.

knowing the expected value through testing, and the SLA sample mean, we can compute the exact probability of this occurring. I used a modified Central Limit Theorem which uses distance, σ , away from mean as the key variable:

$$\alpha = \#\sigma$$

$$P(Z \ge \alpha) \cong \frac{1}{\sqrt{2\Pi}\alpha} e^{-\frac{\alpha^2}{2}}$$

8

The importance of standard deviation vis-à-vis probability is best illustrated by the Standard Normal Distribution:

As depicted above, the density of the probability function is greatest about the mean, μ . Logically then, as you move farther away from μ , the density diminishes, eventually reaching an approximated zero. The probabilities within the distribution are bounded by the number of standard deviations, σ , from the mean. Since inclusion within 3σ is .997, the probability of attaining a value outside of 3σ is very low.

I computed the σ value between expected mean and SLA mean and applied the Central Limit Theorem to arrive at the probabilities. The results were shocking. For only three sites is SLA impingement possible. For the others it is not even probable. It is evident that the service level agreements are generally worthless on this network, guarding against latency levels that will never occur in 17 of 20 sites. It's is easy to see why. Once the true mean becomes approximately 10 σ from the SLA mean, the probability becomes essentially zero 11 The sites that have achievable probabilities for SLA violation are Jakarta, 7%, Mumbai, 12%, Shanghai, 58%. For only these locations can we consider the possibility that the RTD levels may be appropriate.

Conclusion

The analysis suggests that the only thing these service level agreements guarantee is that the service provider will never have to pay for SLA encroachment. This is because the provider's sampling methodology, 2,976 per month, wields The Law of Large Numbers offensively to insure no revenues returned to the customer. It seems the key to accurate and valid SLA design and enforcement is the lowering of n. Since there is an inverse relationship between n and variance, if n could be lowered from

 ⁸ Dr. Abraham Haddad, Professor of Electrical and Computer Engineering, McCormick School
 ⁹ Pg. 111. Montgomery D., and Runger G., (2006) *Applied Statistics and Probability for Engineers*, 3rd Edition, John Wiley & Sons, Inc.

¹⁰ See Appendix I, Site-to-site Summary. Source Excel data available electronically

¹¹ The probability exceeds 10⁻³¹, a restraint in Microsoft Excel, which for my purposes can safely be assumed to be zero

2,976 to 96, (30 days to 1 day) for example, the effect of variance would be dramatic 12, and a much more realistic picture of the network experience. Central Limit Theorem can be employed to insure the gulf between the real mean and the SLA mean never exceeds 1.5-2σ. Experience based models could be created to generate acceptable SLA numbers. This would involve defining worst-case scenarios for specific network services. For example, if an application or location cannot tolerate latency >300ms for more than two hours on any given day, a model can be built with these parameters to return a maximal μ , and construct a tight SLA. Transmission delays are a given on computer networks and there is some overhead which can never be eliminated¹³. But having an intimate knowledge of how performance parameters are engineered empowers the consumer of network services and provides tremendous leverage in both negotiations and operations.

A residual effect of the determination that WAN service level agreements may be ineffective is that it could offer an opportunity to pursue a new data communications strategy. Corporate customers pay a premium for managed private network services because of the perceived benefit of service level agreements. However, if these SLAs actually provide no value, it would be the Network Manager's duty to investigate public network services that cost considerably less. In fact, on the same network we studied, in a comparison of both latency and monthly \$/Mb between managed (private MPLS carrier) and unmanaged (public ISP) bandwidth, the public bandwidth comes out quite favorably. 4 Wide Area Networks that carry voice traffic and have strict jitter and packet loss requirements could never pursue a public option for transport, but for those that do not, the cost savings of an alternate communications scheme could be substantial.

Insights

The ubiquity of the wide area connectivity in today's business environment raises network performance to a fundamental level of importance. The simultaneous distribution of global infrastructure resources and consolidation of technical architectures, are pushing perimeters outward at an alarming rate. Combined, these factors mandate predictable, reliable, and high-performing super-distributed enterprises. So knowing exactly how the network performs is seminal to the corporate IT mission. The mathematics involved in these analyses is amateur. But the implications are grand. By applying fundamental statistical analyses, our level of understanding, and subsequently control, of infrastructure systems rises dramatically. Whether it's Poisson arrivals into a switch, Central Limit Theory to predict SLA adherence, or a simple Normal Distribution, probability is an empowering tool in the IT professional's repertoire, and will fast become a necessary skill for advancing technology.

¹² Since variance is a function of the square root 13 T = T_q + T_s + T_p , Total transmission time on a data network = queueing delay + serialization delay +

⁴ See Appendix III, Public vs. Private Bandwidth Comparison

Appendix I: Site-to-site summary

oston Data Center router to A	tlanta router, latency, milliseconds	Boston Data Center router to Bos	ton router, latency, milliseconds
Sample Mean, µ, E(X)	36.29	Sample Mean, μ, E(X)	10.94
Standard Deviation, σ	4.65	Standard Deviation, σ	2.61
Variance, σ2	21.59	Variance, σ2	6.80
Median	34.71	Median	10.25
Average Deviation	3.40	Average Deviation	1.89
Max	82.5	Max	24.63
1st Quartile	33.29	1st Quartile	9.13
3rd Quartile	38.43	3rd Quartile	11.86
IQR	5.14	IQR	2.73
SLA Mean, (X)	83	SLA Mean, (X)	83
#o's SLA is from µ	10.05	#σ's SLA is from μ	27.63
P{E(X)>(X)}		P{E(X)>(X)}	
robability of exceeding SLA	A 0.0000000000000000000000004470612	Probability of exceeding SLA	0.0000000000000000000000000000000000000
oston Data Center router to 💪	hicago router, latency, milliseconds	Boston Data Center router to Dail	las router, latency, milliseconds
Sample Mean, µ, E(X)	37.59	Sample Mean, μ, E(X)	60.58
Standard Deviation, σ	4.09	Standard Deviation, σ	4.69
Variance, σ2	16.70	Variance, σ2	22.00
Median	36.00	Median	58.88
Average Deviation	3.21	Average Deviation	3.60
Max	62.5	Max	89.63
1st Quartile	34.63	1st Quartile	57.5
3rd Quartile	39.57	3rd Quartile	62.86
IQR	4.94	IQR	5.36
SLA Mean, (X)	92	SLA Mean, (X)	145
#o's SLA is from µ	13.31	#o's SLA is from µ	18.00
P{E(X)>(X)}		P{E(X)>(X)}	
obability of exceeding SL/	0.0000000000000000000000000000000000000	Probability of exceeding SLA	0.0000000000000000000000000000000000000
oston Data Center router to H	ong Kong router, latency, milliseconds	Boston Data Center router to Jak	arta router, latency, milliseconds
Sample Mean, μ, E(X)	240.66	Sample Mean, μ, E(X)	300.64
Standard Deviation, σ	12.39	Standard Deviation, σ	46.85
Variance, σ2	153.57	Variance, σ2	2195.37
Median	240.43	Median	290.13
Average Deviation	9.16	Outproper Deviation	00.44
Max	224.42	Average Deviation	20.11
1st Quartile	331.43	Average Deviation Max	20.11 1194.75
	232.5		
3rd Quartile		Max	1194.75
3rd Quartile IQR	232.5	Max 1st Quartile	1194.75 285
	232.5 247.29	Max 1st Quartile 3rd Quartile	1194.75 285 298.43
IQR	232.5 247.29 14.79	Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #o*s SLA is from µ	1194.75 285 298.43 13.43
IQR SLA Mean, (X) #d's SLA is from µ P{E(X)>(X)}	232.5 247.29 14.79 322 6.56	Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from μ P{E(X)>(X)}	1194.75 285 298.43 13.43 373 1.54
IQR SLA Mean, (X) #d's SLA is from µ P{E(X)>(X)}	232.5 247.29 14.79 322	Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from μ P{E(X)>(X)}	1194.75 285 298.43 13.43 373 1.54
IQR SLA Mean, (X) #σ's SLA is from μ P{E(X)>(X) }	232.5 247.29 14.79 322 6.56	Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from μ P{E(X)>(X)}	1194.75 285 298.43 13.43 373 1.54
IGR SLA Mean, (X) #d's SLA is from µ P{E(X)>(X)} robability of exceeding SLA	232.5 247.29 14.79 322 6.56	Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #o's SLA is from µ P{E(X)>(X)} Probability of exceeding SLA	1194.75 285 298.43 13.43 373 1.54
IGR SLA Mean, (X) #d's SLA is from µ P{E(X)>(X)} robability of exceeding SLA	232.5 247.29 14.79 322 6.56 0.000000000026886901713419900000	Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #o's SLA is from µ P{E(X)>(X)} Probability of exceeding SLA	1194.75 285 298.43 13.43 373 1.54 0.07840891151195150000000000000000
IGR SLA Mean, (X) #d's SLA is from µ P{E(X)>(X)} robability of exceeding SLA	232.5 247.29 14.79 322 6.56 0.00000000000026886901713419900000	Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #o's SLA is from µ P{E(X)>(X)} Probability of exceeding SLA Boston Data Center router to Los	1194.75 285 298.43 13.43 373 1.54 0.07840891151195150000000000000000000000000000
IGR SLA Mean, (X) #σ's SLA is from μ P{E(X)>(X)} obability of exceeding SL/ ston Data Center router to K Sample Mean, μ, E(X)	232.5 247.29 14.79 322 6.56 0.0000000000000006886901713419900000 uala Lumpur router, latency, milliseconde	Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #o's SLA is from µ P{E(X)>(X)} Probability of exceeding SLA Boston Data Center router to Los Sample Mean, µ, E(X)	1194.75 285 298.43 13.43 373 1.54 0.07840891151195150000000000000000000000000000
IGR SLA Mean, (X) #σ's SLA is from μ P{E(X)>(X)} robability of exceeding SL/ eston Data Center router to K Sample Mean, μ, E(X) Standard Deviation, σ	232.5 247.29 14.79 322 6.56 0.000000000000006886901713419900000 uala Lumpur router, latency, milliseconds 300.11 15.60	Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from μ P(E(X)>(X)) Probability of exceeding SLA Boston Data Center router to Los Sample Mean, μ, E(X) Standard Deviation, σ	1194.75 285 298.43 13.43 373 1.54 0.07840891151195150000000000000000000000000000
IGR SLA Mean, (X) #σ's SLA is from μ P{E(X)>(X)} obability of exceeding SL/ ston Data Center router to K Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2	232.5 247.29 14.79 322 6.56 0.000000000000006886901713419900000 uala Lumpur router, latency, millisecond. 300.11 15.60 243.35	Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from μ P(E(X)>(X)) Probability of exceeding SLA Boston Data Center router to Los Sample Mean, μ, E(X) Standard Deviation, σ	1194.75 285 298.43 13.43 373 1.54 0.07840891151195150000000000000000000000000000
IGR SLA Mean, (X) #σ's SLA is from μ P{E(X)>(X)} robability of exceeding SLA eston Data Center router to K Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median	232.5 247.29 14.79 322 6.56 0.000000000000006886901713419900000 uala Lumpur router, latency, milliseconds 300.11 15.60 243.35 298.43	Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from μ P(E(X)>(X)) Probability of exceeding SLA Boston Data Center router to Los Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median	1194.75 285 298.43 13.43 373 1.54 0.07840891151195150000000000000000000000000000
IGR SLA Mean, (X) #σ's SLA is from μ P{E(X)>(X)} robability of exceeding SLA exton Data Center router to K Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation	232.5 247.29 14.79 322 6.56 0.000000000000006886901713419900000 uala Lumpur router, latency, milliseconds 300.11 15.60 243.35 298.43 9.10	Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from μ P(E(X)>(X)) Probability of exceeding SLA Boston Data Center router to Los Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation	1194.75 285 298.43 13.43 373 1.54 0.07840891151195150000000000000000000000000000
IGR SLA Mean, (X) #σ's SLA is from μ P{E(X)>(X)} robability of exceeding SLA eston Data Center router to K Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max	232.5 247.29 14.79 322 6.56 0.000000000000006886901713419900000 uala Lumpur router, latency, milliseconds 300.11 15.60 243.35 298.43 9.10 487.63	Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from μ P{E(X)>(X)} Probability of exceeding SLA Boston Data Center router to Los Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max	1194.75 285 298.43 13.43 373 1.54 0.07840891151195150000000000000000000000000000
IGR SLA Mean, (X) #σ's SLA is from μ P{E(X)>(X)} robability of exceeding SLA eston Data Center router to K Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile	232.5 247.29 14.79 322 6.56 0.00000000000026886901713419900000 wala Lumpur router, latency, millisecond. 300.11 15.60 243.35 298.43 9.10 487.63 294	Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from μ P(E(X)>(X)) Probability of exceeding SLA Boston Data Center router to Los Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile	1194.75 285 298.43 13.43 373 1.54 0.07840891151195150000000000000000000000000000
IQR SLA Mean, (X) #σ's SLA is from μ P{E(X)>(X)} robability of exceeding SLA eston Data Center router to K Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile	232.5 247.29 14.79 322 6.56 0.00000000000026886901713419900000 vala Lumpur router, latency, millisecond. 300.11 15.60 243.35 298.43 9.10 487.63 294 304	Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #o's SLA is from µ P(E(X)>(X)) Probability of exceeding SLA Boston Data Center router to Los Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile	1194.75 285 298.43 13.43 373 1.54 0.07840891151195150000000000000000000000000000
IGR SLA Mean, (X) #σ's SLA is from μ P(E(X)>(X)) robability of exceeding SLA aston Data Center router to K Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile IGR	232.5 247.29 14.79 322 6.56 4 0.00000000000026886901713419900000 wala Lumpur router, latency, millisecond. 300.11 15.60 243.35 298.43 9.10 487.63 294 304 10	Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #o's SLA is from µ P(E(X)>(X)) Probability of exceeding SLA Boston Data Center router to Los Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile IQR	1194.75 285 298.43 13.43 373 1.54 0.078408911511951500000000000000000 Angeles router, latency, milliseconds 86.63 4.55 20.71 85.38 3.34 117.6 83.88 88.57 4.69
IGR SLA Mean, (X) #σ's SLA is from μ P{E(X)>(X)} robability of exceeding SLA exton Data Center router to K Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile IGR SLA Mean, (X)	232.5 247.29 14.79 322 6.56 0.00000000000026886901713419900000 uala Lumpur router, latency, millisecond. 300.11 15.60 243.35 298.43 9.10 487.63 294 304 10 374	Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from μ P(E(X)>(X)} Probability of exceeding SLA Boston Data Center router to Los Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile IQR SLA Mean, (X)	1194.75 285 298.43 13.43 373 1.54 0.07840891151195150000000000000000 Angeles router, latency, milliseconds 86.63 4.55 20.71 85.38 3.34 117.6 83.88 88.57 4.69 150

Boston Data Center router to Me	Ibourne router, latency, milliseconds	Boston Data Center router to Mu	mbai router, latency, milliseconds
Sample Mean, μ, E(X)	271.00	Sample Mean, µ, E(X)	245.43
Standard Deviation, σ	22.55	Standard Deviation, σ	60.00
Variance, σ2	508.56	Variance, σ2	3599.88
Median	263.29	Median	237.00
Average Deviation	15.32	Average Deviation	20.00
Max	391	Max	2392.57
1st Quartile	258.57	1st Quartile	228.71
3rd Quartile	271.88	3rd Quartile	246.5175
IQR	13.31	IQR	
			17.8075
SLA Mean, (X)	360	SLA Mean, (X)	324
#d's SLA is from µ	3.95	#o's SLA is from µ	1.31
P(E(X)>(X)) Probability of exceeding SLA	0.000041966263329571400000000000	P{E(X)>(X)} Probability of exceeding SLA	0.129268954960728000000000000000
1 Tobubiney of oncooning och	0.5555410552555255114555555555555	1 Tobability of Choocoaling CET	0.120200010001200000000000000000
	nich router, latency, milliseconds		v York router, latency, milliseconds
Sample Mean, µ, E(X)	108.82	Sample Mean, µ, E(X)	17.05
Standard Deviation, σ	8.24	Standard Deviation, σ	3.54
Variance, σ2	67.94	Variance, σ2	12.55
Median	106.43	Median	15.86
Average Deviation	5.54	Average Deviation	2.62
Max	199.71	Max	36.71
1st Quartile	104.14	1st Quartile	14.57
3rd Quartile	111.43	3rd Quartile	18.13
IQR	7.29	IQR	3.56
SLA Mean, (X)	184	SLA Mean, (X)	61
#σ's SLA is from μ	9.12	#σ's SLA is from μ	12.41
P{E(X)>(X)}	5.1.2	P{E(X)>(X)}	
	0.00000000000000000037508509647	Probability of exceeding SLA	0.0000000000000000000000000000000000000
Boston Data Center router to Sin	aanara router latency milliseconds	Boston Data Center router to San	wi router latency milliseconds
	gapore router, latency, milliseconds	Boston Data Center router to Seo	
Sample Mean, μ, E(X)	274.85	Sample Mean, μ, E(X)	229.34
Sample Mean, μ, E(X) Standard Deviation, σ	274.85 12.24	Sample Mean, μ, E(X) Standard Deviation, σ	229.34 23.74
Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2	274.85 12.24 149.91	Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2	229.34 23.74 563.59
Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median	274.85 12.24 149.91 273.57	Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median	229.34 23.74 563.59 221.71
Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation	274.85 12.24 149.91 273.57 9.79	Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation	229.34 23.74 563.59 221.71 15.63
Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max	274.85 12.24 149.91 273.57 9.79 347.29	Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max	229.34 23.74 563.59 221.71 15.63 508.38
Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile	274.85 12.24 149.91 273.57 9.79 347.29 266.25	Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Guartile	229.34 23.74 563.59 221.71 15.63 508.38 215.29
Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile	274.85 12.24 149.91 273.57 9.79 347.29 266.25 283.0325	Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile	229.34 23.74 563.59 221.71 15.63 508.38 215.29 234.865
Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile	274.85 12.24 149.91 273.57 9.79 347.29 266.25 283.0325 16.7825	Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile	229.34 23.74 563.59 221.71 15.63 508.38 215.29 234.865 19.575
Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile IQR SLA Mean, (X)	274.85 12.24 149.91 273.57 9.79 347.29 266.25 283.0325 16.7825 359	Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile	229.34 23.74 563.59 221.71 15.63 508.38 215.29 234.865
Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile IQR SLA Mean, (X)	274.85 12.24 149.91 273.57 9.79 347.29 266.25 283.0325 16.7825	Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from µ	229.34 23.74 563.59 221.71 15.63 508.38 215.29 234.865 19.575
Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from µ P{E(X)>(X)}	274.85 12.24 149.91 273.57 9.79 347.29 266.25 283.0325 16.7825 359 6.87	Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from µ P{E(X)>(X)}	229.34 23.74 563.59 221.71 15.63 508.38 215.29 234.865 19.575 304 3.14
Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from µ P{E(X)>(X)}	274.85 12.24 149.91 273.57 9.79 347.29 266.25 283.0325 16.7825 359	Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from µ	229.34 23.74 563.59 221.71 15.63 508.38 215.29 234.865 19.575 304 3.14
Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from µ P{E(X)>(X)}	274.85 12.24 149.91 273.57 9.79 347.29 266.25 283.0325 16.7825 359 6.87	Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from µ P{E(X)>(X)}	229.34 23.74 563.59 221.71 15.63 508.38 215.29 234.865 19.575 304 3.14
Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from µ P{E(X)>(X)} Probability of exceeding SLA	274.85 12.24 149.91 273.57 9.79 347.29 266.25 283.0325 16.7825 359 6.87	Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from µ P{E(X)>(X)} Probability of exceeding SLA	229.34 23.74 563.59 221.71 15.63 508.38 215.29 234.865 19.575 304 3.14
Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from µ P{E(X)>(X)} Probability of exceeding SLA	274.85 12.24 149.91 273.57 9.79 347.29 266.25 283.0325 16.7825 359 6.87 0.0000000000003215538669874840000	Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from µ P{E(X)>(X)} Probability of exceeding SLA	229.34 23.74 563.59 221.71 15.63 508.38 215.29 234.865 19.575 304 3.14
Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from µ P(E(X)>(X)) Probability of exceeding SLA Boston Data Center router to Sat	274.85 12.24 149.91 273.57 9.79 347.29 266.25 283.0325 16.7825 359 6.87 0.0000000000003215538669874840000	Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from µ P{E(X)>(X)} Probability of exceeding SLA Boston Data Center router to Sha	229.34 23.74 563.59 221.71 15.63 508.38 215.29 234.865 19.575 304 3.14 0.00090331202369012800000000000000000000000000000000000
Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from µ P(E(X)>(X)) Probability of exceeding SLA Boston Data Center router to San	274.85 12.24 149.91 273.57 9.79 347.29 266.25 283.0325 16.7825 359 6.87 0.0000000000003215538669874840000	Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from μ P{E(X)>(X)} Probability of exceeding SLA Boston Data Center router to Sha	229.34 23.74 563.59 221.71 15.63 508.38 215.29 234.865 19.575 304 3.14 0.00090331202369012800000000000000000000000000000000000
Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from µ P(E(X)>(X)) Probability of exceeding SLA Boston Data Center router to Sat Sample Mean, µ, E(X) Standard Deviation, σ	274.85 12.24 149.91 273.57 9.79 347.29 266.25 283.0325 16.7825 359 6.87 0.00000000000003215538669874840000 Francisco router, latency, milliseconds 95.36 9.60	Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from μ P{E(X)×(X)} Probability of exceeding SLA Sample Mean, μ, E(X) Standard Deviation, σ	229.34 23.74 563.59 221.71 15.63 508.38 215.29 234.865 19.575 304 3.14 0.00090331202369012800000000000000000000000000000000000
Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1 st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from µ P(E(X)>(X)) Probability of exceeding SLA Boston Data Center router to Sat Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median	274.85 12.24 149.91 273.57 9.79 347.29 266.25 283.0325 16.7825 359 6.87 0.0000000000003215538669874840000 **Francisco router, latency, milliseconds 95.36 9.60 92.11	Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from µ P{E(X)>(X)} Probability of exceeding SLA Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median	229.34 23.74 563.59 221.71 15.63 508.38 215.29 234.865 19.575 304 3.14 0.00090331202369012800000000000000000000000000000000000
Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1 st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from µ P(E(X)>(X)) Probability of exceeding SLA Boston Data Center router to Sat Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation	274.85 12.24 149.91 273.57 9.79 347.29 266.25 283.0325 16.7825 359 6.87 0.0000000000003215538669874840000 # Francisco router, latency, milliseconds 95.36 9.60 92.11 93.43 4.31	Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from μ P{E(X)>(X)} Probability of exceeding SLA Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation	229.34 23.74 563.59 221.71 15.63 508.38 215.29 234.865 19.575 304 3.14 0.00090331202369012800000000000000000000000000000000000
Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from µ P{E(X)>(X)} Probability of exceeding SLA Boston Data Center router to Sate Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max	274.85 12.24 149.91 273.57 9.79 347.29 266.25 283.0325 16.7825 359 6.87 0.0000000000003215538669874840000 a Francisco router, latency, milliseconds 95.36 9.60 92.11 93.43 4.31 320.5	Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from µ P{E(X)>(X)} Probability of exceeding SLA Boston Data Center router to Sha Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max	229.34 23.74 563.59 221.71 15.63 508.38 215.29 234.865 19.575 304 3.14 0.00090331202369012800000000000000000000000000000000000
Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from µ P(E(X)>(X)) Probability of exceeding SLA Boston Data Center router to Sate Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile	274.85 12.24 149.91 273.57 9.79 347.29 266.25 283.0325 16.7825 359 6.87 0.0000000000003215538669874840000 Francisco router, latency, milliseconds 95.36 9.60 92.11 93.43 4.31 320.5 91.71	Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from μ P{E(X)>(X)} Probability of exceeding SLA Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile	229.34 23.74 563.59 221.71 15.63 508.38 215.29 234.865 19.575 304 3.14 0.00090331202369012800000000000000000000000000000000000
Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from µ P(E(X)>(X)) Probability of exceeding SLA Soston Data Center router to Sate Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile	274.85 12.24 149.91 273.57 9.79 347.29 266.25 283.0325 16.7825 359 6.87 0.0000000000003215538669874840000 Francisco router, latency, milliseconds 95.36 9.60 92.11 93.43 4.31 320.5 91.71 97.57	Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from μ P(E(X)>(X)) Probability of exceeding SLA Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile	229.34 23.74 563.59 221.71 15.63 508.38 215.29 234.865 19.575 304 3.14 0.00090331202369012800000000000000000000000000000000000
Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile GR SLA Mean, (X) #σ's SLA is from µ P(E(X)>(X)) Probability of exceeding SLA Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile IQR	274.85 12.24 149.91 273.57 9.79 347.29 266.25 283.0325 16.7825 359 6.87 0.0000000000003215538669874840000 Francisco router, latency, milliseconds 95.36 9.60 92.11 93.43 4.31 320.5 91.71 97.57 5.86	Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from μ P{E(X)>(X)} Probability of exceeding SLA Boston Data Center router to Sha Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile IQR	229.34 23.74 563.59 221.71 15.63 508.38 215.29 234.865 19.575 304 3.14 0.00090331202369012800000000000000000000000000000000000
Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile GR SLA Mean, (X) #σ's SLA is from µ P(E(X)>(X)) Probability of exceeding SLA Boston Data Center router to Sate Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile GR SLA Mean, (X)	274.85 12.24 149.91 273.57 9.79 347.29 266.25 283.0325 16.7825 359 6.87 0.0000000000003215538669874840000 2 Francisco router, latency, milliseconds 95.36 9.60 92.11 93.43 4.31 320.5 91.71 97.57 5.86 164	Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile IQR SLA Mean, (X) #σ's SLA is from μ P{E(X)>(X)} Probability of exceeding SLA Boston Data Center router to Sha Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile IQR SLA Mean, (X)	229.34 23.74 563.59 221.71 15.63 508.38 215.29 234.865 19.575 304 3.14 0.00090331202369012800000000000000000000000000000000000
Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile 3rd Quartile IQR SLA Mean, (X) #σ's SLA is from µ P(E(X)>(X)) Probability of exceeding SLA Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile IQR SLA Mean, (X) #σ's SLA is from µ P(E(X)>(X)) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile IQR SLA Mean, (X) #σ's SLA is from µ	274.85 12.24 149.91 273.57 9.79 347.29 266.25 283.0325 16.7825 359 6.87 0.0000000000003215538669874840000 Francisco router, latency, milliseconds 95.36 9.60 92.11 93.43 4.31 320.5 91.71 97.57 5.86	Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile IQR SLA Mean, (X) #σ's SLA is from μ P{E(X)>(X)} Probability of exceeding SLA Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile IQR SLA Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile IQR SLA Mean, (X) #σ's SLA is from μ	229.34 23.74 563.59 221.71 15.63 508.38 215.29 234.865 19.575 304 3.14 0.00090331202369012800000000000000000000000000000000000
Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile GR SLA Mean, (X) #σ's SLA is from µ P(E(X)>(X)) Probability of exceeding SLA Boston Data Center router to Sate Sample Mean, µ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile GR SLA Mean, (X)	274.85 12.24 149.91 273.57 9.79 347.29 266.25 283.0325 16.7825 359 6.87 0.00000000000003215538669874840000 Francisco router, latency, milliseconds 95.36 9.60 92.11 93.43 4.31 320.5 91.71 97.57 5.86 164 7.15	Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile IQR SLA Mean, (X) #σ's SLA is from μ P{E(X)>(X)} Probability of exceeding SLA Boston Data Center router to Sha Sample Mean, μ, E(X) Standard Deviation, σ Variance, σ2 Median Average Deviation Max 1st Quartile IQR SLA Mean, (X)	229.34 23.74 563.59 221.71 15.63 508.38 215.29 234.865 19.575 304 3.14 0.00090331202369012800000000000000000000000000000000000

Boston Data Center router to Syd	ney router, latency, milliseconds	Boston Data Center router to Tok	ryo router, latency, milliseconds
Sample Mean, μ, E(X)	263.12	Sample Mean, µ, E(X)	199.99
Standard Deviation, σ	23.91	Standard Deviation, σ	5.60
Variance, σ2	571.68	Variance, σ2	31.38
Median	254.14	Median	198.86
Average Deviation	16.66	Average Deviation	4.25
Max	393.71	Max	239
1st Quartile	249.75	1st Quartile	196.615
3rd Quartile	262.57	3rd Quartile	203.25
IQR	12.82	IQR	6.635
SLA Mean, (X)	344	SLA Mean, (X)	260
#σ's SLA is from μ	3.38	#o's SLA is from µ	10.71
P{E(X)>(X)}		P{E(X)>(X)}	
Probability of exceeding SLA	0.0003863460562249590000000000000	Probability of exceeding SLA	0.000000000000000000000000004475

Boston Data Center router to Tor	onto router, latency, milliseconds	Boston Data Center router to Wa	shington router, latency, milliseconds
Sample Mean, μ, E(X)	24.33	Sample Mean, µ, E(X)	20.40
Standard Deviation, σ	27.23	Standard Deviation, σ	7.35
Variance, σ2	741.22	Variance, σ2	54.08
Median	34.86	Median	20.43
Average Deviation	23.18	Average Deviation	4.25
Max	414.57	Max	43.86
1st Quartile	-2	1st Quartile	19.14
3rd Quartile	40.75	3rd Quartile	23.38
IQR	42.75	IQR	4.24
SLA Mean, (X)	95	SLA Mean, (X)	68
#o's SLA is from µ	2.60	#o's SLA is from µ	6.47
P{E(X)>(X)}		P{E(X)>(X)}	
Probability of exceeding SLA	0.0052905191564307800000000000000	Probability of exceeding SLA	0.000000000049285760920406800000

Appendix II: SLA gap analysis

Atlanta		Boston	
To exceed SLA, # of ms added		To exceed SLA, # of ms added	
to every sample for one week	207	to every sample for one week	319
To exceed SLA, # of ms added		To exceed SLA, # of ms added	
to every sample	47	to every sample	72
China		D-II	
Chicago		Dallas To exceed SLA, # of ms added	
To exceed SLA, # of ms added to every sample for one week	241	to exceed SLA, # of ms added to every sample for one week	374
To exceed SLA, # of ms added	241	To exceed SLA, # of ms added	574
to every sample	54	to every sample	84
,			
Hong Kong		Jakarta	
To exceed SLA, # of ms added		To exceed SLA, # of ms added	
to every sample for one week	360	to every sample for one week	320
To exceed SLA, # of ms added	81	To exceed SLA, # of ms added	72
to every sample	01	to every sample	12
Kuala Lumpur		Los Angeles	
To exceed SLA, # of ms added		To exceed SLA, # of ms added	
to every sample for one week	327	to every sample for one week	281
To exceed SLA, # of ms added		To exceed SLA, # of ms added	
to every sample	74	to every sample	63
Melbourne		Mumbai	
To exceed SLA, # of ms added		To exceed SLA, # of ms added	
to every sample for one week	394	to every sample for one week	348
To exceed SLA, # of ms added		To exceed SLA, # of ms added	
to every sample	89	to every sample	79
Munich		New York	
To exceed SLA, # of ms added		To exceed SLA, # of ms added	
to every sample for one week	333	to every sample for one week	195
To exceed SLA, # of ms added		To exceed SLA, # of ms added	
to every sample	75	to every sample	44
Si		SI	
Singapore To exceed SLA, # of ms added		Seoul To exceed SLA, # of ms added	
to every sample for one week	373	to every sample for one week	331
To exceed SLA, # of ms added	010	To exceed SLA, # of ms added	551
to every sample	84	to every sample	75
	-		
6 5		61 1 1	
San Francisco		Shanghai	
To exceed SLA, # of ms added	204	To exceed SLA, # of ms added	250
to every sample for one week To exceed SLA, # of ms added	304	to every sample for one week To exceed SLA, # of ms added	250
to every sample	69	to exceed SLA, # of ms added to every sample	56
to o to, y campio		to or or y sumple	
Sydney		Tokyo	
To exceed SLA, # of ms added		To exceed SLA, # of ms added	
to every sample for one week	358	to every sample for one week	266
To exceed SLA, # of ms added	04	To exceed SLA, # of ms added	60
to every sample	81	to every sample	60
Toronto		Washington DC	
To exceed SLA, # of ms added		To exceed SLA, # of ms added	
to every sample for one week	313	to every sample for one week	211
To exceed SLA, # of ms added		To exceed SLA, # of ms added	
to every sample	71	to every sample	48

Appendix III: Public vs. Private Bandwidth comparison

LATENCY: ISP's HAVE SLIGHT ADVANTAGE

WW average: Private Bandwidth 173ms, Public Bandwidth 169ms

