Data modelling - a view from the NMR world

Rasmus Fogh, Global Phasing

ISpyB meeting, Grenoble January 2017

Contents

Introduction

Data modelling in NMR

Possible approaches

Introduction

- Global Phasing has recently joined the ISPyB consortium
 - (I have recently joined GΦL)
- ISPyB is expanding its scope
 - From mainly experiment and sample tracking
 - Adding emphasis on calculations and results

Likely requirements

- Not all calculation and validation parameters are shared between programs
 - Each program has specific input and output
 - Proper representation requires program-specific data
 - Programs continuously change and user interfaces must change to keep up
 - E.g. Autoproc now uses (and ourputs) ellipsoidal (instead of spherical) completeness
- ISPyB must support multiple parallel and changing data structures and interfaces

Similar problems dealt with

 ISPyB: Separation of central core from varied user interfaces

MXCuBE: Different hardware, similar data collection protocols

But this also affects the core

- User interfaces belong to specific sites
 - Each interface developed and maintained on the site that uses it
- Different applications and their specific needs - apply across all sites at once

- Differences in data model as well as user interfaces.
 - Database or XML document?

Contents

Introduction

Data modelling in NMR

Possible approaches

Problem well known in NMR

- Omnicomprehensive data model
 - CCPN
 - NMRSTAR (BioMagResBank)
- 'Sharing in one application'
 - CCPN and PIMS
- Shared core with program-specific extensions
 - Nmr Exchange Format

Common Data Standard

Code Generation Framework

CCPN APIs

- Application Programming Interface and implementation
 - Is the standard
 - Data access subroutine library
 - Classes and objects, with functions (get, set, ...)
- Precise, comprehensive Data Model
 - 50 packages
 - 477 classes
 - 3400 fields
 - Python-XML implementation has ca. 850 000 (autogenerated) lines of code
- Lots of supporting code:
 - Integrated, transparent I/O (file or database)
 - Complete validity checking against model constraints
 - Protection against casual change (data encapsulation)
 - Versioning and backwards compatibility
 - Consistency with underlying model guaranteed
 - APIs in Python, C, and Java

Minimal uptake outside CCPN

- Great success within CCPN, but ...
- Seen as 'owned' by CCPN
- Extension and model modification too hard
- Introduces major dependency

- 'comprehensive' + 'detailed' + 'precise'
 - = 'huge and complex'
- 'Data modellers disease'

NMRSTAR (BioMagResBank)

STAR data format

Used directly for deposition

1:1 match to BioMagResBank internal data structures

Heavily promoted

Little uptake outside BMRB

- Seen as 'owned' by BioMagResBank
- Extension and model modification hard or impossible
- STAR format not well supported
- STAR is
 - Human readable but imprecise (if denormalised)
 - Precise but unintelligible (if normalised)
- 'comprehensive' + 'detailed' + 'precise'
 - = 'huge and complex'
- 'Data modellers disease'

Single application (PIMS)

- Collaboration on new LIMS system
- CCPN working with PIMS
 - To extend open data model to cover LIMS area
 - Using same architecture and design throughout
 - Without being paid
 - 'Open source' collaboration model
- PIMS working with CCPN
 - To acquire bespoke data storage layer for PIMS
 - With full control over all implementation decisions
 - With detailed optimisation for PIMS way of working
 - 'Project management' collaboration model

Collaboration dissolved

The more stakeholders, the more complications

 Shared interests and goals insufficient to justify necessary sacrifices

- Much effort little result
 - Some useful modelling remains

NMR Exchange Format (NEF)

- Exchange format
 - NOT universal data standard
 - Limited size core covering commonly used data.
- Fully extendable with program-specific tags
 - Each group can add its own tables and fields
- STAR-based, denormalised text format
 - Hackable, human readable
 - No code dependencies
- mmCIF used for structures
- ALL major NMR software groups have committed to using NEF

Why did NEF work?

- Developed de novo as collaboration with software groups
 - Implementation choices by consensus
- Owned by consortium changes in core require consensus of users
 - Safe from hijacking by maintainers
- Each group free to extend as needed

Contents

Introduction

Data modelling in NMR

Possible approaches

Conclusions

 The NEF model was clearly superior for sharing and exchange

 But ISPyB is a mission-critical application, not an exchange format, so the answer may not transfer directly

 Political buy-in and mutual support for mutual needs are key to success

Support for program-specific data

- One comprehensive model
 - Ideal, but rigid, cumbersome and one-sided?
- Shared core with unlimited extension (NEF)
 - How does that work technically in a database environment?
 - In database? Two databases? Or in XML data file?
- Modeled 'Tag-value' semantics (like XML)
 - Imprecise and harder to search?
- Separate data for each application
 - Possibly in the form of an XML file or text blob?
 - Requires program-specific searches for everything

Program-specific user interfaces

- Bespoke interface for each program's data?
 - Much redundancy and much to maintain
- Data-driven automatic UI?
 - Not highest quality
 - Gives UI without custom coding
- One core UI with mechanisms for additional fields?
 - Desirable but demanding?

Final slide

 Global Phasing hopes to participate and help sort out these issues.

Some Protagonists

- John Ionides (CCPN architecture)
- Eldon Ulrich (NMRSTAR architect)
- Chris Morris (PIMS collaboration)
- Geerten Vuister (NEF collaboration organiser)
- CCPN project, present and past members
- BBSRC, MRC, EU for funding