

HIC

SEQUENCE LISTING

<110> Mack, David
Gish, Kurt C.
Wilson, Keith E.

<120> NOVEL METHODS OF DIAGNOSING COLORECTAL CANCER AND/OR BREAST CANCER, COMPOSITIONS, AND METHODS OF SCREENING FOR COLORECTAL CANCER AND/OR BREAST CANCER MODULATORS

<130> A-69439/DJB/JJD

<140> US 09/733,756
<141> 2000-12-08

<150> US 09/525,993
<151> 2000-03-15

<150> US 09/493,444
<151> 2000-01-28

<150> US 09/453,850
<151> 1999-12-02

<150> PCT/US 00/07044
<151> 2000-03-15

<160> 3

<170> PatentIn version 3.1

<210> 1
<211> 1743
<212> DNA
<213> Homo sapiens

<400> 1

gctgctgctg	ctgctgctgc	tcgtgcccgt	gccgctgctg	ccgctgctgg	cccaagggcc	60
cgagggggcg	ctggaaacc	ggcatcggtt	gtactggaac	agctccaacc	agcacctgcg	120
gcgagagggc	tacaccgtgc	aggtgaacgt	gaacgactat	ctggatattt	actgccccca	180
ctacaacagc	tcgggggtgg	gccccggggc	gggaccgggg	cccgaggcg	gggcagagca	240
gtacgtgctg	tacatggta	gccgcaacgg	ctaccgcacc	tgcaacgcca	gccagggttt	300
caagcgctgg	gagtgcaacc	ggccgcacgc	cccgacacgc	cccatcaagt	tctcgagaaa	360
gttccagcgc	tacagcgcct	tctctctggg	ctacgagttc	cacgcccccc	acgagttacta	420
ctacatctcc	acgcccactc	acaacctgca	ctggaagtgt	ctgaggatga	agggtttcgt	480
ctgctgcgcc	tccacatcgc	actccgggga	gaagccggtc	cccactctcc	cccagttcac	540
catggggccc	aatgtgaaga	tcaacgtgct	ggaagacttt	gaggagagaa	accctcagg	600
gcccaagctt	gagaagagca	tcagcgggac	cagccccaaa	cgggaacacc	tgccccctggc	660

cgtgggcatc gccttcttcc tcatgacgtt cttggcctcc tagctctgcc ccctccctg 720
 gggggggaga gatggggcg ggcttggaaag gagcaggag ccttggcct ctccaaggga 780
 agcctagtgg gccttagaccc ctcccccatttggtaagt gggcctgca ccatacatct 840
 gtgtccgccc cctctacccc ttccccccac gtagggcact gtagtggacc aagcacgggg 900
 acagccatgg gtcccgccg gccttggc tctggtaatg tttggtacca aacttgggg 960
 ccaaaaaggc cagtgcctcg gactccctgg cccctgg tac cttccctga ctcctggc 1020
 cctctccctt tgtccccca gagagacata tgccccaga gagagcaa at cgaagcgtgg 1080
 gaggcaccggc cattgcctc ctccaggggc agaacatggg gaggggacta gatggcaag 1140
 gggcagcact gcctgctgct tccttcccgttacagca ataagcacgt ctcctccccc 1200
 cactccact tccaggattt tggttggat taaaaccaag ttacaagta gacacccctg 1260
 gggggcgccg cagtggacaa ggatgccaag gggtggcat tgggtgcca ggcaggcatg 1320
 tacagactct atatcttat atataatgtt cagacagaca gagtcccttc cctctttaac 1380
 cccctgacct ttcttgactt ccccttcagc ttccagaccc ttccccacca ggctaggccc 1440
 cccacacccg ggggacccccc tggccctct tttgtttct gtgaagacag gacatatgca 1500
 acgcacagac acttttggag accgtaaaac aacagcgccc cttcccttc agccctgagc 1560
 cggtggaccat ctccaggac ctggccctgc tcaccctatg tggcccacc tatcctcctg 1620
 ggccttttc aagtgcctt gctgtgactt tcatactctg ctcttagtct aaaaaaaaata 1680
 aactggagat aaaaataaaaaa aaaatacctc gagaaaaaaaaaaaaaaaaaaaaaaa 1740
 aaa 1743

<210> 2
<211> 238
<212> PRT
<213> Homo sapiens

<400> 2

Met Ala Ala Ala Pro Leu Leu Leu Leu Leu Val Pro Val Pro
1 5 10 15

Leu Leu Pro Leu Leu Ala Gln Gly Pro Gly Gly Ala Leu Gly Asn Arg
20 25 30

His Ala Val Tyr Trp Asn Ser Ser Asn Gln His Leu Arg Arg Glu Gly
35 40 45

Tyr Thr Val Gln Val Asn Val Asn Asp Tyr Leu Asp Ile Tyr Cys Pro
 50 55 60

His Tyr Asn Ser Ser Gly Val Gly Pro Gly Ala Gly Pro Gly Pro Gly
 65 70 75 80

Gly Gly Ala Glu Gln Tyr Val Leu Tyr Met Val Ser Arg Asn Gly Tyr
 85 90 95

Arg Thr Cys Asn Ala Ser Gln Gly Phe Lys Arg Trp Glu Cys Asn Arg
 100 105 110

Pro His Ala Pro His Ser Pro Ile Lys Phe Ser Glu Lys Phe Gln Arg
 115 120 125

Tyr Ser Ala Phe Ser Leu Gly Tyr Glu Phe His Ala Gly His Glu Tyr
 130 135 140

Tyr Tyr Ile Ser Thr Pro Thr His Asn Leu His Trp Lys Cys Leu Arg
 145 150 155 160

Met Lys Val Phe Val Cys Cys Ala Ser Thr Ser His Ser Gly Glu Lys
 165 170 175

Pro Val Pro Thr Leu Pro Gln Phe Thr Met Gly Pro Asn Val Lys Ile
 180 185 190

Asn Val Leu Glu Asp Phe Glu Gly Glu Asn Pro Gln Val Pro Lys Leu
 195 200 205

Glu Lys Ser Ile Ser Gly Thr Ser Pro Lys Arg Glu His Leu Pro Leu
 210 215 220

Ala Val Gly Ile Ala Phe Phe Leu Met Thr Phe Leu Ala Ser
 225 230 235

<210> 3

<211> 5

<212> PRT

<213> Unknown

<220>

<223> Cytokine receptor extracellular motif found in many species

<220>

<221> MISC_FEATURE
<222> (3)..(3)
<223> "Xaa" at position 3 can be any amino acid.

<400> 3

Trp Ser Xaa Trp Ser
1 5