$$\theta_{_{K}} < \pi$$
 $\,$... diode \lor 0 không hoạt động

$$heta_K > rac{2\pi}{p} + heta_Z$$
 ... dòng điện liên tục

Dòng điện liên tục

$$i_{d}(\theta_{K}) = i_{d}(\theta_{Z}) = i_{d}(\pi)e^{-\frac{\theta_{Z} + \frac{2\pi}{p} - \pi}{\omega \tau}} - \frac{E_{u}}{R} \left(1 - e^{-\frac{\theta_{Z} + \frac{2\pi}{p} - \pi}{\omega \tau}} \right)$$

$$i_{d}(\theta_{Z}) = \frac{U_{m}e^{-\frac{2\pi}{p\omega\tau}} \left[e^{-\frac{\theta_{Z}-\pi}{\omega\tau}} \sin\varphi - \sin(\theta_{Z}-\varphi) \right]}{Z\left(1 - e^{-\frac{2\pi}{p\omega\tau}}\right)} - \frac{E_{u}}{R}$$

61

3.7 Hiện tương trùng dẫn (Overlapping)

Khái niệm: Trạng thái các nhánh thyristor ở cùng nhóm cùng dẫn điện tại thời điểm chuyển mạch.

Nguyên nhân: Do nguồn có cảm kháng trong làm dòng điện qua nó không thể thay đổi đột ngột.

3.7.1 Hiện tượng trùng dẫn trong chỉnh lưu hình tia

Dòng điện khi chuyển mạch

Giả sử V₁ đang dẫn và kích mở V₂

$$\begin{split} i_{V_1} + i_{V_2} &= i_d; \quad u_{V_1} = 0; \quad u_{V_2} = 0; \quad i_{V_3} = 0; \quad u_{V_3} = u_3 - u_d; \\ u_d &= R.i_d + L.\frac{di_d}{dt} + E_{\perp} = u_1 - L_k.\frac{di_{V_1}}{dt} = u_2 - L_k.\frac{di_{V_2}}{dt} \\ &\implies L_k \left(\frac{di_{V_2}}{dt} - \frac{di_{V_1}}{dt}\right) - u_2 - u_1 \end{split} \tag{1}$$

$$L \rightarrow \infty \implies i_{V_1} + i_{V_2} = I_d = const$$

$$\Rightarrow \frac{di_{V_1}}{dt} + \frac{di_{V_2}}{dt} = 0 \tag{2}$$

Điện áp dây:
$$u_2 - u_1 = u_k = U_{km} \sin \theta = \sqrt{3} \cdot U_m \sin \theta$$
 (3)

(1), (2), (3)
$$\Rightarrow \frac{di_{V2}}{d\theta} = \frac{U_{km} \sin \theta}{2\omega L_k}$$

$$\Rightarrow i_{\nu_2} = \frac{U_{km}}{2\omega L_k} (\cos \alpha - \cos \theta) = I_{km} (\cos \alpha - \cos \theta)$$
 (4)

$$I_{km} = \frac{U_{km}}{2\omega L_k}$$

$$\Rightarrow i_{V1} = I_d - I_{km}(\cos\alpha - \cos\theta)$$
 (5)

Dòng i_{V2} tăng dần từ giá trị 0 và dòng i_{V1} giảm dần từ giá trị $I_{\rm d}$

Góc chuyển mạch:

 μ : Khoảng thời gian chuyển mạch qui ra góc độ điện được gọi là góc chuyển mạch (hay góc trùng dẫn)

$$I_d = I_{km} \left[\cos \alpha - \cos(\alpha + \mu) \right]$$

Khi kết thúc chuyển mạch thì i_{V1} =0 và i_{V2} = I_d

$$\Rightarrow \mu = \arccos\left(\cos\alpha - \frac{I_d}{I_{km}}\right) - \alpha$$

Điện áp khi chuyển mạch

$$2u_{d} = u_{1} + u_{2} - L_{k} \frac{d_{iV1}}{dt} - L_{k} \frac{d_{iV2}}{dt}$$

$$u_{d} = u_{2} - L_{k} \frac{d_{iV2}}{dt} = \frac{u_{1} + u_{2}}{2}$$

Độ sụt giảm của điện áp chỉnh lưu trung bình

$$\Delta U_{d\theta} = \frac{1}{\frac{2\pi}{m}} \int_{\alpha}^{\alpha+\mu} (u_2 - u_d) d\theta = \frac{m}{2\pi} \int_{\alpha}^{\alpha+\mu} \left(\frac{u_2 - u_1}{2} \right) d\theta$$

$$\Delta U_{d\theta} = \frac{m.U_{km}}{4\pi} (\cos \alpha - \cos(\alpha + \mu))$$

Tại thời điểm $\theta = \alpha + \mu$ thì i_{v2}= I_d

$$\Delta U_{d\theta} = \frac{m.U_{km}.I_{d}}{4\pi.I_{km}} = \frac{m.\omega.L_{k}}{2\pi}I_{d}$$

Điện áp chỉnh lưu trung bình khi có tính đến quá trình chuyển mạch:

$$U_d = U_{d0} \cdot \cos \alpha - (m/2\pi) \cdot \omega \cdot L_k \cdot I_d$$

3.7.2 Hiện tượng trùng dẫn trong chỉnh lưu cầu 1 pha

 α : Góc điều khiển là μ : Góc điều khiển là

Trong giai đoạn trùng dẫn, 4 van đều dẫn \rightarrow $u_d = 0$ Sụt áp do trùng dẫn gấp đôi sơ đồ tia hai pha

$$\begin{split} \Delta U_{d\theta} &= 2.\frac{m.\omega.L_k}{2\pi}\,I_d = \frac{2.\omega.L_k\,I_d}{\pi} \\ i &= I_{km}(\cos\alpha - \cos\theta) - I_d \\ I_{km} &= \frac{U_{km}}{\omega L_k} \\ i_{V1} &= i_{V2} = \frac{I_{km}}{2}(\cos\alpha - \cos\theta) \\ i_{V3} &= i_{V4} = I_d - i_{V1} \\ 2I_d &= I_{km} \left[\cos\alpha - \cos(\alpha + \mu)\right] \\ \text{G\'oc trùng dẫn}: \ \mu &= \arccos\left(\cos\alpha - \frac{2I_d}{I_{km}}\right) - \alpha \end{split}$$

Sụt áp do trùng dẫn

Độ sụt áp do trùng dẫn trong trường hợp tổng quát, :

$$\Delta U_{d\theta} = R_{\theta}.I_{d}$$

$$R_{\theta} = \frac{p.X_k}{2\pi}$$

$$R_{\theta} = \frac{p.X_k}{\pi}$$

- + Chỉnh lưu hình tia 3 pha
- + Chỉnh lưu cầu 1 pha

+ Chỉnh lưu cầu 3 pha

Các hệ quả của hiện tượng trùng dẫn:

- > Hiện tượng chuyển mạch làm giảm áp tải.
- ightharpoonup Hiện tượng chuyển mạch hạn chế phạm vi góc điều khiển α và do đó hạn chế phạm vi điều khiển điện áp chỉnh lưu. $\alpha_{\rm M}$ + μ + γ = π
- > Hiện tượng chuyển mạch làm biến dạng điện áp nguồn.

67

3.8 Các nguyên tắc điều khiển chỉnh lưu

Khối điều khiển → Đưa xung điều khiển đưa vào thyristor lúc điện áp đặt lên thyristor dương:

- Phải biết được khi nào điện áp đặt lên thyristor dương
- Phải có điện áp đồng bộ: đồng bộ với điện áp khóa đặt lên thyristor

Khối đồng bộ

Tạo điện áp đồng bộ \mathbf{u}_{db} (hay còn gọi là điện áp tựa) cung cấp cho mạch so sánh

- Dạng: sin điều hòa (phương pháp arcos) hoặc dạng răng cưa tuyến tính
- Pha: đồng pha hoặc trễ pha

Khối so sánh

So sánh giữa điện áp đồng bộ u_{db} và điện áp điều khiển U_{dk} , phát tín hiệu xung vuông ngõ ra khối so sánh.

Khối khuếch đại và phân phối xung

Phân phối xung đến các van điều khiển để mở các van theo một quy luật nhất định.

00

3.8.1 Nguyên tắc thẳng đứng tuyến tính

Điện áp đồng bộ là điện áp răng cưa

$$\alpha = \pi \frac{U_{dk}}{U_{dbM}} = K.U_{dk}$$

Cách tính (xét tam giác đồng dạng)

$$\frac{\alpha}{\pi} = \frac{U_{dk}}{U_{dbM}}$$

3.8.2 Nguyên tắc arccos

Điện đồng bộ đạng sin u_{db} vượt trước điện áp khóa (thu được ở thứ cấp biến áp đồng bộ) một góc $\pi/2$

Khi
$$\theta = \alpha$$
 thì $u_c = u_{db} = U_m \cos \alpha \Rightarrow$

$$\alpha = \arccos\left(\frac{u_c}{U_m}\right)$$

71

3.9 BỘ LỌC MỘT CHIỀU

3.9.1 Sóng hài bậc cao của điện áp chỉnh lưu

$$U_{\scriptscriptstyle d} = \frac{p.U_{\scriptscriptstyle m}}{\pi}.\sin\frac{\pi}{m}.\cos\alpha = \frac{p.\sqrt{2}U_{\scriptscriptstyle 2}}{\pi}.\sin\frac{\pi}{m}.\cos\alpha = U_{\scriptscriptstyle d0}.\cos\alpha \qquad \qquad \begin{array}{l} \text{M: pha} \\ \text{p: số xung đập mạch} \end{array}$$

Trị hiệu dụng của điện áp chỉnh lưu:

$$U_{d(RMS)} = \sqrt{\frac{1}{2\pi} \int_{0}^{2\pi} u_{d}^{2} . d\theta} = U^{2} \sqrt{\frac{1}{2} \left(1 + \frac{p}{2\pi} \sin \frac{2\pi}{p} \cos 2\alpha \right)} = \sqrt{U_{d}^{2} + U_{\sigma}^{2}}$$

Trị hiệu dụng của thành phần bậc cao :
$$U_{\sigma} = \sqrt{U_{d(RMS)}^2 - U_{d}^2}$$

72