

1.TYPES AND FEATURES OF ROLLING BEARINGS

1.1 Design and Classification

Rolling bearings generally consist of two rings, rolling elements, and a cage, and they are classified into radial bearings or thrust bearings depending on the direction of the main load. In addition, depending on the type of rolling elements, they are classified into ball bearings or roller bearings, and they are further segregated by differences in their design or specific purpose.

The most common bearing types and nomenclature of bearing parts are shown in Fig.1.1, and a general classification of rolling bearings is shown in Fig. 1.2.

1.2 Characteristics of Rolling Bearings

Compared with plain bearings, rolling bearings have the following major advantages:

(1) Their starting torque or friction is low and the difference between the starting torque and running torque is small.

- (2) With the advancement of worldwide standardization, rolling bearings are internationally available and interchangeable.
- (3) Maintenance, replacement, and inspection are easy because the structure surrounding rolling bearings is simple.
- (4) Many rolling bearings are capable of taking both radial and axial loads simultaneously or independently.
- (5) Rolling bearings can be used under a wide range of temperatures.
- (6) Rolling bearings can be preloaded to produce a negative clearance and achieve greater rigidity.

Furthermore, different types of rolling bearings have their own individual advantages. The features of the most common rolling bearings are described on Pages A10 to A12 and in Table 1.1 (Pages A14 and A15).

Fig. 1.1 Nomenclature for Bearing Parts

A 6 A 7

Single-Row Deep Groove Ball Bearings

Single-row deep groove ball bearings are the most common type of rolling bearings. Their use is very widespread. The raceway grooves on both the inner and outer rings have circular arcs of slightly larger radius than that of the balls. In addition to radial loads, axial loads can be imposed in either direction. Because of their low torque, they are highly suitable for applications where high speeds and low power loss are required.

In addition to open type bearings, these bearings often have steel shields or rubber seals installed on one or both sides and are prelubricated with grease. Also, snap rings are sometimes used on the periphery. As to cages, pressed steel ones are the most common.

Magneto Bearings

The inner groove of magneto bearings is a little shallower than that of deep groove bearings. Since the outer ring has a shoulder on only one side, the outer ring may be removed. This is often advantageous for mounting. In general, two such bearings are used in duplex pairs. Magneto bearings are small bearings with a bore diameter of 4 to 20 mm and are mainly used for small magnetos, gyroscopes, instruments, etc. Pressed brass cages are generally used.

Single-Row Angular Contact Ball Bearings

Individual bearings of this type are capable of taking radial loads and also axial loads in one direction. Four contact angles of 15°, 25°, 30°, and 40° are available. The larger the contact angle, the higher the axial load capacity. For high speed operation, however, the smaller contact angles are preferred. Usually, two bearings are used in duplex pairs, and the clearance between them must be adjusted properly.

Pressed-steel cages are commonly used, however, for high precision bearings with a contact angle less than 30°, polyamide resin cages are often used.

Duplex Bearings A combination of two radial bearings is called a duplex pair. Usually, they are formed using angular contact ball bearings or tapered roller bearings. Possible combinations include face-to-face, which have the outer ring faces together (type DF), back-to-back (type DB), or both front faces in the same direction (type DT). DF and DB duplex bearings are capable of taking radial loads and axial loads in either direction. Type DT is used when there is a strong axial load in one direction and it is necessary to impose the load equally on each bearing.

Double-Row **Angular Contact** Ball Bearings

Double-row angular contact ball bearings are basically two single-row angular contact ball bearings mounted back-to-back except that they have only one inner ring and one outer ring, each having raceways. They can take axial loads in either direction.

Four-Point Contact **Ball Bearings**

The inner and outer rings of four-point contact ball bearings are separable because the inner ring is split in a radial plane. They can take axial loads from either direction. The balls have a contact angle of 35° with each ring. Just one bearing of this type can replace a combination of face-to-face or back-to-back angular contact bearings.

Machined brass cages are generally used.

Self-Alianina Ball Bearings

The inner ring of this type of bearing has two raceways and the outer ring has a single spherical raceway with its center of curvature coincident with the bearing axis. Therefore, the axis of the inner ring, balls, and cage can deflect to some extent around the bearing center. Consequently, minor angular misalignment of the shaft and housing caused by machining or mounting error is automatically corrected.

This type of bearing often has a tapered bore for mounting using an adapter sleeve.

Cylindrical Roller Bearings

There are different types designated NU, NJ, NUP, N, NF for single-row bearings, and NNU, NN for double-row bearings depending on the design or absence of side ribs. The outer and inner rings of all types are separable.

Some cylindrical roller bearings have no ribs on either the inner or outer ring, so the rings can move axially relative to each other. These can be used as free-end bearings. Cylindrical roller bearings, in which either the inner or outer rings has two ribs and the other ring has one, are capable of taking some axial load in one direction. Double-row cylindrical roller bearings have high radial rigidity and are used primarily for precision machine tools.

Pressed steel or machined brass cages are generally used, but sometimes molded polyamide cages are also used.

A 11 A 10

Needle Roller Bearings

Needle roller bearings contain many slender rollers with a length 3 to 10 times their diameter. As a result, the ratio of the bearing outside diameter to the inscribed circle diameter is small, and they have a rather high radial load capacity.

There are numerous types available, and many have no inner rings. The drawn-cup type has a pressed steel outer ring and the solid type has a machined outer ring. There are also cage and roller assemblies without rings. Most bearings have pressed steel cages, but some are without cages.

Tapered Roller Bearings

Bearings of this type use conical rollers guided by a back-face rib on the cone. These bearings are capable of taking high radial loads and also axial loads in one direction. In the HR series, the rollers are increased in both size and number giving it an even higher load capacity.

They are generally mounted in pairs in a manner similar to single-row angular contact ball bearings. In this case, the proper internal clearance can be obtained by adjusting the axial distance between the cones or cups of the two opposed bearings. Since they are separable, the cone assemblies and cups can be mounted independently.

Depending upon the contact angle, tapered roller bearings are divided into three types called the normal angle, medium angle, and steep angle. Double-row and four-row tapered roller bearings are also available. Pressed steel cages are generally used.

Spherical Roller Bearings

These bearings have barrel-shaped rollers between the inner ring, which has two raceways, and the outer ring which has one spherical raceway. Since the center of curvature of the outer ring raceway surface coincides with the bearing axis, they are self-aligning in a manner similar to that of selfaligning ball bearings. Therefore, if there is deflection of the shaft or housing or misalignment of their axes, it is automatically corrected so excessive force is not applied to the bearings.

Spherical roller bearings can take, not only heavy radial loads, but also some axial loads in either direction. They have excellent radial load-carrying capacity and are suitable for use where there are heavy or impact loads.

Some bearings have tapered bores and may be mounted directly on tapered shafts or cylindrical shafts using adapters or withdrawal sleeves.

Pressed steel and machined brass cages are used.

Single-Direction Thrust Ball Bearings

Single-direction thrust ball bearings are composed of washer-like bearing rings with raceway grooves. The ring attached to the shaft is called the shaft washer (or inner ring) while that attached to the housing is called the housing washer (or outer ring).

In double-direction thrust ball bearings, there are three rings with the middle one (center ring) Double-Direction being fixed to the shaft.

Thrust Ball Bearings

There are also thrust ball bearings with an aligning seat washer beneath the housing washer in order to compensate for shaft misalignment or mounting error.

Pressed steel cages are usually used in the smaller bearings and machined cages in the larger

Spherical Thrust These bearings have a spherical raceway in the housing washer and barrel-shaped rollers obliquely Roller Bearings arranged around it. Since the raceway in the housing washer in spherical, these bearings are selfaligning. They have a very high axial load capacity and are capable of taking moderate radial loads when an axial load is applied.

Pressed steel cages or machined brass cages are usually used.

A 12 A 13

Table 1. 1 Types and Characteristics

_												
	\	Bearing Types	Deep Groove Ball Bearings	Magneto Bearings	Angular Contact Ball Bearings	Double-Row Angular Contact Ball Bearings	Duplex Angular Contact Ball Bearings	Four-Point Contact Ball Bearings	Self- Aligning Ball Bearings	Cylindrical Roller Bearings	Double-Row Cylindrical Roller Bearings	Cylindrical Roller Bearings with Single Rib
	Fe	atures					D	₩ P		旦		
	ity	Radial Loads	\bigcirc	0	0	0	<u></u>	0	\bigcirc	\odot	<u></u>	0
	Load Capacity	Axial Loads		0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	1 0	×	×	$\bigcup_{}$
	9	Combined Loads	\bigcirc	0	0	0	0	\bigcirc	0	×	×	\bigcirc
	ŀ	High Speeds		0	0	\bigcirc	0	0	\odot	(\odot	0
	ŀ	High Accuracy			0		0	0		0	0	
		Low Noise and Forque								\odot		
	F	Rigidity					0			(o)	0	0
	A	Angular Misalignment	\odot	0	0	0	0	0	0	\bigcirc	0	
	(Self-Aligning Capability							☆			
	F	Ring Separability		☆				☆		☆	☆	☆
	F	Fixed-End Bearing	☆			☆	☆	☆	☆			
	F	Free-End Bearing	*			*	*	*	*	☆	☆	
	1 i	Tapered Bore n Inner Ring							☆		☆	
	F	Remarks		Two bearings are usually mounted in opposition.	Contact angles of 15°, 25° 30°, and 40°. Two bearings are usually mounted in opposition. Clearance adjustment is necessary.	,	Combination of DF and DT pairs is possible, but use on free-end is not possible.	Contact angle of 35°		Including N type	Including NNU type	Including NF type
	F	Page No.	B5 B31	B5 B28	B47	B47 B70	B47	B47 B72	B77	B85	B85 B110	B85
		Excellent	⊙ G	ood	O Fair	0 1	Poor ×	Impossible	← Oi or	ne direction nly	←→ Tw	o directions
		☆ Applicable ★ Applicable, but it is necessary to allow shaft contraction/elongation at fitting surfaces of bearings.										

of Rolling Bearings

Cylindrical Roller Bearings with Thrust Collars	Needle Roller Bearings	Tapered Roller Bearings	Double-and Multiple-Row Tapered Roller Bearings	Spherical Roller Bearings	Thrust Ball Bearings	Thrust Ball Bearings with Aligning Seat	Double- Direction Angular Contact Thrust Ball Bearings	Thrust Cylindrical Roller Bearings	Thrust Tapered Roller Bearings	Thrust Spherical Roller Bearings	Page No.
\bigcirc	0	\odot	0	0	×	×	×	×	×	0	
$\overline{\bigcirc}$	×	\bigcirc	$\bigcirc \downarrow$	$\bigcirc \mathfrak{l}$	\bigcirc	\bigcirc	\bigcirc	(i)	(i)		_
	×	0	0	0	×	×	×	×	×	0	_
\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	×	×	\bigcirc	0	0	0	A18 A37
		0			0		0				A19 A58 A81
											A19
\bigcirc	0	0	0				0	0	0		A19 A96
	0	\bigcirc	0	0	×	0	×	×	×	0	A18 Blue pages of each brg. type
				☆		☆				☆	A18
☆	☆	☆	☆		☆	☆	☆	☆	☆	☆	A19 A20
☆			☆	☆							A20 ~A21
	☆		*	*							A20 ~A27
				☆							A80 A118 A122
Including NUP type		Two bearings are usually mounted in opposition. Clearance adjustment is necessary.	KH, KV types are also available but use on free-end is impossible.					Including needle roller thrust bearings		To be used with oil lubrication	
B85		B115	B115 B176 B299	B183	B207	B207	B235	B207 B224		B207 B228	

A 14 A 15

[☆] Applicable ★ Applicable, but it is necessary to allow shaft contraction/elongation at fitting surfaces of bearings.

2. BEARING SELECTION PROCEDURE

The number of applications for rolling bearings is almost countless and the operating conditions and environments also vary greatly. In addition, the diversity of operating conditions and bearing requirements continue to grow with the rapid advancement of technology. Therefore, it is necessary to study bearings carefully from many angles to select the best one from the thousands of types and sizes available.

Usually, a bearing type is provisionally chosen considering the operating conditions, mounting arrangement, ease of mounting in the machine, allowable space, cost, availability, and other factors.

Then the size of the bearing is chosen to satisfy the desired life requirement. When doing this, in addition to fatigue life, it is necessary to consider grease life, noise and vibration, wear, and other factors.

There is no fixed procedure for selecting bearings. It is good to investigate experience with similar applications and studies relevant to any special requirements for your specific application. When selecting bearings for new machines, unusual operating conditions, or harsh environments, please consult with NSK.

The following diagram (Fig.2.1) shows an example of the bearing selection procedure.

Fig. 2.1 Flow Chart for Selection of Rolling Bearings

3. SELECTION OF BEARING TYPES

3.1 Allowable Bearing Space

The allowable space for a rolling bearing and its adjacent parts is generally limited so the type and size of the bearing must be selected within such limits. In most cases, the shaft diameter is fixed first by the machine design; therefore, the bearing is often selected based on its bore size. For rolling bearings, there are numerous standardized dimension series and types, and the selection of the optimum bearing from among them is necessary. Fig. 3.1 shows the dimension series of radial bearings and corresponding bearing types.

3.2 Load Capacity and Bearing Types

The axial load carrying capacity of a bearing is closely related to the radial load capacity (see Page A24) in a manner that depends on the bearing design as shown in Fig. 3.2. This figure makes it clear that when bearings of the same dimension series are compared, roller bearings have a higher load capacity than ball bearings and are superior if shock loads exist.

3.3 Permissible Speed and Bearing Types

The maximum speed of rolling bearings varies depending, not only the type of bearing, but also its size, type of cage, loads, lubricating method, heat dissipation, etc. Assuming the common oil bath lubrication method, the bearing types are roughly ranked from higher speed to lower as shown in Fig. 3.3

3.4 Misalignment of Inner/Outer Rings and Bearing Types

Because of deflection of a shaft caused by applied loads, dimensional error of the shaft and housing, and mounting errors, the inner and outer rings are slightly misaligned. The permissible misalignment varies depending on the bearing type and operating conditions, but usually it is a small angle less than 0.0012 radian (4').

When a large misalignment is expected, bearings having a self-aligning capability, such as self-aligning ball bearings, spherical roller bearings, and certain bearing units should be selected (Figs. 3.4 and 3.5).

Fig. 3.1 Dimension Series of Radial Bearings

Bearing Types

Deep Groove

Ball Bearings

Ball Bearings

Needle Roller

Tapered Roller

Bearings

Bearings

Bearings

Angular Contact

Cylindrical Roller

Note(1) The bearings with ribs can take some axial loads.

Fig. 3.2 Relative Load Capacities of Various Bearing Types

Relative permissible speed

13

10

Fig. 3.3 Relative Permissible Speeds of Various Bearing Types

Permissible bearing misalignment is given at the beginning of the dimensional tables for each bearing type.

Fig. 3.4 Permissible Misalignment of Spherical Roller Bearings

Fig. 3.5 Permissible Misalignment of Ball Bearing Units

Bearing Types	Highest accuracy specified	Tolerance comparison of inner ring radial runout 1 2 3 4 5
Deep Groove Ball Bearings	Class 2	-
Angular Contact Ball Bearings	Class 2	\rightarrow
Cylindrical Roller Bearings	Class 2	
Tapered Roller Bearings	Class 4	
Spherical Roller Bearings	Normal	

Fig. 3.6 Relative Inner Ring Radial Runout of Highest Accuracy Class for Various Bearing Types

3.5 Rigidity and Bearing Types

When loads are imposed on a rolling bearing, some elastic deformation occurs in the contact areas between the rolling elements and raceways. The rigidity of the bearing is determined by the ratio of bearing load to the amount of elastic deformation of the inner and outer rings and rolling elements. For the main spindles of machine tools, it is necessary to have high rigidity of the bearings together with the rest of the spindle. Consequently, since roller bearings are deformed less by load, they are more often selected than ball bearings. When extra high rigidity is required, bearings are given a preload, which means that they have a negative clearance. Angular contact ball bearings and tapered roller bearings are often preloaded.

3.6 Noise and Torque of Various Bearing Types

Since rolling bearings are manufactured with very high precision, noise and torque are minimal. For deep groove ball bearings and cylindrical roller bearings particularly, the noise level is sometimes specified depending on their purpose. For high precision miniature ball bearings, the starting torque is specified. Deep groove ball bearings are recommended for applications in which low noise and torque are required, such as motors and instruments.

3.7 Running Accuracy and Bearing Types

For the main spindles of machine tools that require high running accuracy or high speed applications like superchargers, high precision bearings of Class 5, 4 or 2 are usually used.

The running accuracy of rolling bearings is specified in various ways, and the specified accuracy classes vary depending on the bearing type. A comparison of the inner ring radial runout for the highest running accuracy specified for each bearing type is shown in Fig. 3.6.

For applications requiring high running accuracy, deep groove ball bearings, angular contact ball bearings, and cylindrical roller bearings are most suitable.

3.8 Mounting and Dismounting of Various Bearing Types

Separable types of bearings like cylindrical roller bearings, needle roller bearings and tapered roller bearings are convenient for mounting and dismounting. For machines in which bearings are mounted and dismounted rather often for periodic inspection, these types of bearings are recommended. Also, self-aligning ball bearings and spherical roller bearings (small ones) with tapered bores can be mounted and dismounted relatively easily using sleeves.

4. SELECTION OF BEARING ARRANGEMENT

In general, shafts are supported by only two bearings. When considering the bearing mounting arrangement, the following items must be investigated:

- Expansion and contraction of the shaft caused by temperature variations.
- (2) Ease of bearing mounting and dismounting.
- (3) Misalignment of the inner and outer rings caused by deflection of the shaft or mounting error.
- (4) Rigidity of the entire system including bearings and preloading method.
- (5) Capability to sustain the loads at their proper positions and to transmit them.

4.1 Fixed-End and Free-End Bearings

Fixed-end

Fixed-end

Among the bearings on a shaft, only one can be a "fixed-end" bearing that is used to fix the shaft axially. For this fixed-end bearing, a type which can carry both radial and axial loads must be selected.

Bearings other than the fixed-end one must be "freeend" bearings that carry only radial loads to relieve the shaft's thermal elongation and contraction.

No distinction between fixed-end and free-end

No distinction between fixed-end and free-end

Free-end (separable bearing)

Free-end (non-separable bearing)

If measures to relieve a shaft's thermal elongation and contraction are insufficient, abnormal axial loads are applied to the bearings, which can cause premature failure.

For free-end bearings, cylindrical roller bearings or needle roller bearings with separable inner and outer rings that are free to move axially (NU, N types, etc.) are recommended. When these types are used, mounting and dismounting are also easier.

When non-separable types are used as free-end bearings, usually the fit between the outer ring and housing is loose to allow axial movement of the running shaft together with the bearing. Sometimes, such elongation is relieved by a loose fitting between the inner ring and shaft.

When the distance between the bearings is short and the influence of the shaft elongation and contraction is negligible, two opposed angular contact ball bearings or tapered roller bearings are used. The axial clearance (possible axial movement) after the mounting is adjusted using nuts or shims.

BEARING B · Cylindrical I

Cylindrical Roller Bearing (NU, N types)
Needle Roller Bearing (NA type, etc.) Fig. 4.1.

BEARING C(1)

Deep Groove Ball Bearing
 Matched Angular Contact
Ball Bearing (back-to-back)
 Double Pow Angular

· Double-Row Angular Contact Ball Bearing

Self-Aligning Ball Bearing
 Double-Row Tapered
 Roller Bearing (KBE type)
 Spherical Roller Bearing

BEARING F

Deep Groove Ball Bearing Self-Aligning Ball Bearing Spherical Roller Bearing

BEARING D,E(²)

Angular Contact Ball
Bearing

Tapered Roller Bearing

Magneto Bearing

Cylindrical Roller Bearing

(NJ, NF types)

BEARING A

Ball Bearing

types)

· Deep Groove Ball Bearing · Matched Angular Contact

· Double-Row Angular

Contact Ball Bearing
Self-Aligning Ball Bearing
Cylindrical Roller Bearing

with Ribs (NH, NUP

· Double-Row Tapered

· Spherical Roller Bearing

Roller Bearing

Notes: (1) In the figure, shaft elongation and contraction are relieved at the outside surface of the outer ring, but sometimes it is done at the bore.

(2) For each type, two bearings are used in opposition.

The distinction between free-end and fixed-end bearings and some possible bearing mounting arrangements for various bearing types are shown in

4.2 Example of Bearing Arrangements

Some representative bearing mounting arrangements considering preload and rigidity of the entire assembly, shaft elongation and contraction, mounting error, etc. are shown in Table 4.1.

Table 4. 1 Representative Bearing Mounting Arrangements and Application Examples

Bearing Arrangements		Remarks	Application Examples		
Fixed-end Free-end		L/CIIIai V2	Aphiration Evamples		
		 This is a common arrangement in which abnormal loads are not applied to bearings even if the shaft expands or contracts. If the mounting error is small, this is suitable for high speeds. 	Medium size electric motors, blowers		
		OThis can withstand heavy loads and shock loads and can take some axial load. OEvery type of cylindrical roller bearing is separable. This is helpful when interference is necessary for both the inner and outer rings.	Traction motors for rolling stock		
		 This is used when loads are relatively heavy. For maximum rigidity of the fixed-end bearing, it is a back-to-back type. Both the shaft and housing must have high accuracy and the mounting error must be small. 	Table rollers for steel mills, main spindles of lathes		
		OThis is also suitable when interference is necessary for both the inner and outer rings. Heavy axial loads cannot be applied.	Calender rolls of paper making machines, axles of diesel locomotives		
		 This is suitable for high speeds and heavy radial loads. Moderate axial loads can also be applied. It is necessary to provide some clearance between the outer ring of the deep groove ball bearing and the housing bore in order to avoid subjecting it to radial loads. 	Reduction gears in diesel locomotives		
		OFor maximum rigidity of the fixed-end bearing, it is a back-to-back type. OBoth the shaft and housing must have high accuracy and the mounting error must be small. OThis is also suitable when interference is necessary for both the inner and outer rings. Heavy axial loads cannot be applied. OThis is suitable for high speeds and heavy radial loads. Moderate axial loads can also be applied. OIT is necessary to provide some clearance between the outer ring of the deep groove ball bearing and the housing bore in order to avoid	Calender rolls of paper ma machines, axles of di locomotives		

Continued on next page

Table 4. 1 Representative Bearing Mounting Arrangements and Application Examples (cont'd)

Bearing Arrangements Fixed-end Free-end	Remarks	Application Examples
The cha	○This is the most common arrangement. ○It can sustain not only radial loads, but moderate axial loads also.	Double suction volute pumps, automotive transmissions
	 This is the most suitable arrangement when there is mounting error or shaft deflection. It is often used for general and industrial applications in which heavy loads are applied. 	Speed reducers, table rollers of steel mills, wheels for overhead travelling cranes
	 This is suitable when there are rather heavy axial loads in both directions. Double row angular contact bearings may be used instead of a arrangement of two angular contact ball bearings. 	Worm gear reducers
When there is no distinction between fixed-end and free-end	Remarks	Application Examples
Back-to-back mounting Face-to-face mounting	 This arrangement is widely used since it can withstand heavy loads and shock loads. The back-to-back arrangement is especially good when the distance between bearings is short and moment loads are applied. Face-to-face mounting makes mounting easier when interference is necessary for the inner ring. In general, this arrangement is good when there is mounting error. To use this arrangement with a preload, affection must be paid to the amount of preload and clearance adjustment. 	Pinion shafts of automotive differential gears, automotive front and rear axles, worm gear reducers
Back-to-back mounting	 This is used at high speeds when radial loads are not so heavy and axial loads are relatively heavy. It provides good rigidity of the shaft by preloading. For moment loads, back-to-back mounting is better than face-to-face mounting. 	Grinding wheel shafts

When there is no distinction between fixed-end and free-end	Remarks	Application Examples
NJ + NJ mounting	 ○This can withstand heavy loads and shock loads. ○It can be used if interference is necessary for both the inner and outer rings. ○Care must be taken so the axial clearance doesn't become too small during running. ○NF type + NF type mounting is also possible. 	Final reduction gears of construction machines
	Osometimes a spring is used at the side of the outer ring of one bearing.	Small electric motors, small speed reducers, small pumps
Vertical arrangements	Remarks	Application Examples
	Matched angular contact ball bearings are on the fixed end.Cylindrical roller bearing is on the free end.	Vertical electric motors
	 The spherical center of the self-aligning seat must coincide with that of the self-aligning ball bearing. The upper bearing is on the free end. 	Vertical openers (spinning and weaving machines)

Continued on next page

5. SELECTION OF BEARING SIZE

5.1 Bearing Life

The various functions required of rolling bearings vary according to the bearing application. These functions must be performed for a prolonged period. Even if bearings are properly mounted and correctly operated, they will eventually fail to perform satisfactorily due to an increase in noise and vibration, loss of running accuracy, deterioration of grease, or fatigue flaking of the rolling surfaces.

Bearing life, in the broad sense of the term, is the period during which bearings continue to operate and to satisfy their required functions. This bearing life may be defined as noise life, abrasion life, grease life, or rolling fatigue life, depending on which one causes loss of bearing service.

Aside from the failure of bearings to function due to natural deterioration, bearings may fail when conditions such as heat-seizure, fracture, scoring of the rings, damage of the seals or the cage, or other damage occurs.

Conditions such as these should not be interpreted as normal bearing failure since they often occur as a result of errors in bearing selection, improper design or manufacture of the bearing surroundings, incorrect mounting, or insufficient maintenance.

5.1.1 Rolling Fatigue Life and Basic Rating Life

When rolling bearings are operated under load, the raceways of their inner and outer rings and rolling elements are subjected to repeated cyclic stress. Because of metal fatigue of the rolling contact surfaces of the raceways and rolling elements, scaly particles may separate from the bearing material (Fig. 5.1). This phenomenon is called "flaking". Rolling fatigue life is represented by the total number of revolutions at which time the bearing surface will start flaking due to stress. This is called fatigue life. As shown in Fig. 5.2, even for seemingly identical bearings, which are of the same type, size, and material and receive the same heat treatment and other processing, the rolling fatigue life varies greatly even under identical operating conditions. This is because the flaking of materials due to fatigue is subject to many other variables. Consequently, "basic rating life", in which rolling fatigue life is treated as a statistical phenomenon, is used in preference to actual rolling fatigue life.

Suppose a number of bearings of the same type are operated individually under the same conditions. After a certain period of time, 10 % of them fail as a result of flaking caused by rolling fatigue. The total number of revolutions at this point is defined as the basic rating life or, if the speed is constant, the basic rating life is often expressed by the total number of operating hours completed when 10 % of the bearings become inoperable due to flaking.

In determining bearing life, basic rating life is often the only factor considered. However, other factors must also be taken into account. For example, the grease life

of grease-prelubricated bearings (refer to Section 12, Lubrication, Page A107) can be estimated. Since noise life and abrasion life are judged according to individual standards for different applications, specific values for noise or abrasion life must be determined empirically.

5.2 Basic Load Rating and Fatigue Life5.2.1 Basic Load Rating

The basic load rating is defined as the constant load applied on bearings with stationary outer rings that the inner rings can endure for a rating life of one million revolutions ($10^6~{\rm rev}$). The basic load rating of radial bearings is defined as a central radial load of constant direction and magnitude, while the basic load rating of thrust bearings is defined as an axial load of constant magnitude in the same direction as the central axis. The load ratings are listed under $C_{\rm r}$ for radial bearings and $C_{\rm a}$ for thrust bearings in the dimension tables.

5.2.2 Machinery in which Bearings are Used and Projected Life

It is not advisable to select bearings with unnecessarily high load ratings, for such bearings may be too large and uneconomical. In addition, the bearing life alone should not be the deciding factor in the selection of bearings. The strength, rigidity, and design of the shaft

Fig. 5.1 Example of Flaking

Table 5. 1 Fatigue Life Factor f_h for Various Bearing Applications

Operating Deriods			Fatigue Life Factor $f_{ m f}$	ı	
Operating Periods	~3	2~4	3~5	4~7	6~
Infrequently used or only for short periods	· Small motors for home appliances like vacuum cleaners and washing machines · Hand power tools	· Agricultural equipment			
Used only occasionally but reliability is impor- tant		Motors for home heaters and air conditioners Construction equipment	· Conveyors · Elevator cable sheaves		
Used intermittently for relatively long periods	· Rolling mill roll necks	Small motors Deck cranes General cargo cranes Pinion stands Passenger cars	Factory motors Machine tools Transmissions Vibrating screens Crushers	Crane sheaves Compressors Specialized transmissions	
Used intermittently for more than eight hours daily		·Escalators	Centrifugal separators Air conditioning equipment Blowers Woodworking machines Large motors Axle boxes on railway rolling stock	Mine hoists Press flywheels Railway traction motors Locomotive axle boxes	Paper making machines
Used continuously and high reliability is impor- tant					Waterworks pumps Electric power stations Mine draining pumps

on which the bearings are to be mounted should also be considered. Bearings are used in a wide range of applications and the design life varies with specific applications and operating conditions. Table 5.1 gives an empirical fatigue life factor derived from customary operating experience for various machines. Also refer to Table 5.2.

5.2.3 Selection of Bearing Size Based on Basic Load Rating

The following relation exists between bearing load and basic rating life:

For ball bearings
$$L = \left(\frac{C}{P}\right)^3$$
.....(5.1)
For roller bearings $L = \left(\frac{C}{P}\right)^{\frac{10}{3}}$(5.2)

where L: Basic rating life (10⁶ rev)

P: Bearing load (equivalent load) (N), {kgf}(Refer to Page A30)

C: Basic load rating (N), {kgf} For radial bearings, C is written C_r For thrust bearings, C is written C_a

In the case of bearings that run at a constant speed, it is convenient to express the fatigue life in terms of hours. In general, the fatigue life of bearings used in automobiles and other vehicles is given in terms of mileage.

By designating the basic rating life as L_h (h), bearing speed as n (min⁻¹), fatigue life factor as f_h , and speed factor as f_n , the relations shown in Table 5.2 are obtained:

Table 5. 2 Basic Rating Life, Fatigue Life Factor and Speed Factor

	. aoto: ana opo	ou : uoto.
Life Parameters	Ball Bearings	Roller Bearings
Basic Rating Life	$L_{\rm h} = \frac{10^6}{60 n} \left(\frac{C}{P}\right)^3 = 500 f_{\rm h}^3$	$L_{\rm h} = \frac{10^6}{60n} \left(\frac{C}{P}\right)^{\frac{10}{3}} = 500 f_{\rm h}^{\frac{10}{3}}$
Fatigue Life Factor	$f_{\rm h} = f_{\rm h} \frac{C}{P}$	$f_{\rm h} = f_{ m n} \frac{C}{P}$
Speed Factor	$f_{n} = \left(\frac{10^{6}}{500 \times 60 n}\right)^{\frac{1}{3}}$ $= (0.03 n)^{-\frac{1}{3}}$	$f_{n} = \left(\frac{10^{6}}{500 \times 60 n}\right)^{\frac{3}{10}}$ $= (0.03 n)^{-\frac{3}{10}}$

n, f_nFig. 5.3 (See Page A26), Appendix Table 12 (See Page C24)

 $L_{\rm h},~f_{\rm h}$...Fig. 5.4 (See Page A26), Appendix Table 13 (See Page C25)

Fig. 5.3 Bearing Speed and Speed Factor

Fig. 5.4 Fatigue Life Factor and Fatigue Life

If the bearing load P and speed n are known, determine a fatigue life factor f_h appropriate for the projected life of the machine and then calculate the basic load rating C by means of the following equation.

$$C = \frac{f_{\rm h} \cdot P}{f_{\rm n}} \dots (5.3)$$

A bearing which satisfies this value of C should then be selected from the bearing

5.2.4 Temperature Adjustment for Basic Load Rating

If rolling bearings are used at high temperature, the hardness of the bearing steel decreases. Consequently, the basic load rating, which depends on the physical properties of the material, also decreases. Therefore, the basic load rating should be adjusted for the higher temperature using the following equation:

$$C_t = f_t \cdot C \quad \dots \quad (5.4)$$

where C_t : Basic load rating after temperature correction (N), {kgf}

> $f_{\rm t}$: Temperature factor (See Table 5.3.)

C: Basic load rating before temperature adjustment $(N), \{kgf\}$

If large bearings are used at higher than 120°C, they must be given special dimensional stability heat treatment to prevent excessive dimensional changes. The basic load rating of bearings given such special dimensional stability heat treatment may become lower than the basic load rating listed in the bearing tables.

Table 5.3 Temperature Factor $f_{\rm t}$

		•			
Bearing Temperature °C	125	150	175	200	250
Temperature Factor $ extbf{\emph{f}}_{ ext{t}}$	1.00	1.00	0.95	0.90	0.75

5.2.5 Correction of Basic Rating Life

As described previously, the basic equations for calculating the basic rating life are as follows:

For ball bearings
$$L_{10} = \left(\frac{C}{P}\right)^3$$
(5.5)

For roller bearings
$$L_{10} = \left(\frac{C}{P}\right)^{\frac{10}{3}}$$
(5.6)

The L_{10} life is defined as the basic rating life with a statistical reliability of 90%. Depending on the machines in which the bearings are used, sometimes a reliability higher than 90% may be required. However, recent improvements in bearing material have greatly extended the fatigue life. In addition, the developent of the Elasto-Hydrodynamic Theory of Lubrication proves that the thickness of the lubricating film in the contact zone between rings and rolling elements greatly influences bearing life. To reflect such improvements in the calculation of fatique life, the basic rating life is adjusted using the following adjustment factors:

$$L_{\text{na}} = \partial_1 \, \partial_2 \, \partial_3 \, L_{10} \, \dots (5.7)$$

where L_{na} : Adjusted rating life in which reliability, material improvements, lubricating conditions, etc. are considered

 L_{10} : Basic rating life with a reliability of 90%

a₁: Life adjustment factor for reliability

a2: Life adjustment factor for special bearing properties

a₃: Life adjustment factor for operating conditions

The life adjustment factor for reliability, a_1 , is listed in Table 5.4 for reliabilities higher than 90%.

The life adjustment factor for special bearing properties, a_2 , is used to reflect improvements in bearing steel.

NSK now uses vacuum degassed bearing steel, and the results of tests by NSK show that life is greatly improved when compared with earlier materials. The basic load ratings C_r and C_a listed in the bearing tables were calculated considering the extended life achieved by improvements in materials and manufacturing techniques. Consequently, when estimating life using Equation (5.7), it is sufficient to assume that is greater than one.

Table 5.4 Reliability Factor a_1

Reliability (%)	90	95	96	97	98	99
a_1	1.00	0.62	0.53	0.44	0.33	0.21

The life adjustment factor for operating conditions a_3 is used to adjust for various factors, particularly lubrication. If there is no misalignment between the inner and outer rings and the thickness of the lubricating film in the contact zones of the bearing is sufficient, it is possible for a_3 to be greater than one; however, a_3 is less than one in the following cases:

- ·When the viscosity of the lubricant in the contact zones between the raceways and rolling elements is low.
- ·When the circumferential speed of the rolling elements is very slow.
- · When the bearing temperature is high.
- · When the lubricant is contaminated by water or foreign matter.
- · When misalignment of the inner and outer rings is excessive.

It is difficult to determine the proper value for a_3 for specific operating conditions because there are still many unknowns. Since the special bearing property factor a_2 is also influenced by the operating conditions, there is a proposal to combine a_2 and a_3 into one quantity($a_2 \times a_3$), and not consider them independently. In this case, under normal lubricating and operating conditions, the product $(a_2 \times a_3)$ should be assumed equal to one. However, if the viscosity of the lubricant is too low, the value drops to as low as 0.2.

If there is no misalignment and a lubricant with high viscosity is used so sufficient fluid-film thickness is secured, the product of $(a_2 \times a_3)$ may be about two.

When selecting a bearing based on the basic load rating, it is best to choose an a_1 reliability factor appropriate for the projected use and an empirically determined C/P or f_b value derived from past results for lubrication, temperature, mounting conditions, etc. in similar machines.

The basic rating life equations (5.1), (5.2), (5.5), and (5.6) give satisfactory results for a broad range of bearing loads. However, extra heavy loads may cause detrimental plastic deformation at ball/raceway contact points. When $P_{\rm r}$ exceeds $C_{\rm or}$ (Basic static load rating) or 0.5 $C_{\rm r}$, whichever is smaller, for radial bearings or P_a exceeds 0.5 C_a for thrust bearings, please consult NSK to establish the applicability of the rating fatigue life equations.

5.3 Calculation of Bearing Loads

The loads applied on bearings generally include the weight of the body to be supported by the bearings, the weight of the revolving elements themselves, the transmission power of gears and belting, the load produced by the operation of the machine in which the bearings are used, etc. These loads can be theoretically calculated, but some of them are difficult to estimate. Therefore, it becomes necessary to correct the estimated using empirically derived data.

5.3.1 Load Factor

When a radial or axial load has been mathematically calculated, the actual load on the bearing may be greater than the calculated load because of vibration and shock present during operation of the machine. The actual load may be calculated using the following equation:

where F_r , F_a : Loads applied on bearing (N), {kgf}

 $\begin{array}{c} F_{rc},\,F_{ac}: \text{Theoretically calculated load (N),} \\ \{kgf\} \end{array}$

 f_{w} : Load factor

The values given in Table 5.5 are usually used for the load factor $f_{\rm w}$.

5.3.2 Bearing Loads in Belt or Chain Transmission Applications

The force acting on the pulley or sprocket wheel when power is transmitted by a belt or chain is calculated using the following equations.

$$M = 9 550 000H/n...(N \cdot mm)$$

= 974 000 $H/n....(kgf \cdot mm)$ }.....(5.9)

$$P_{\rm k} = M / r$$
(5.10)

where M: Torque acting on pulley or sprocket wheel $(N \cdot mm)$, $\{kgf \cdot mm\}$

 P_{k} : Effective force transmitted by belt or chain (N), {kgf}

H: Power transmitted(kW)

n: Speed (min⁻¹)

r: Effective radius of pulley or sprocket wheel (mm)

When calculating the load on a pulley shaft, the belt tension must be included. Thus, to calculate the actual load $K_{\rm b}$ in the case of a belt transmission, the effective transmitting power is multiplied by the belt factor $f_{\rm b}$, which represents the belt tension. The values of the belt factor $f_{\rm b}$ for different types of belts are shown in Table 5.6.

$$K_{\rm b} = f_{\rm b} \cdot P_{\rm k}$$
(5.11)

In the case of a chain transmission, the values corresponding to f_b should be 1.25 to 1.5.

Table 5. 5 Values of Load Factor f_{vv}

Operating Conditions	Typical Applications	$f_{\rm w}$
Smooth operation free from shocks	Electric motors, Machine tools, Air conditioners	1 to 1.2
Normal operation	Air blowers, Compressors, Elevators, Cranes, Paper making machines	1.2 to 1.5
Operation accompanied by shock and vibration	Construction equipment, Crushers, Vibrating screens, Rolling mills	1.5 to 3

Table 5. 6 Belt Factor $f_{\rm b}$

1.3 to 2
2 to 2.5
2.5 to 3
4 to 5

5.3.3 Bearing Loads in Gear Transmission Applications

The loads imposed on gears in gear transmissions vary according to the type of gears used. In the simplest case of spur gears, the load is calculated as follows:

$$M = 9 550 000H / n(N \cdot mm)$$

$$= 974 000H / n\{kgf \cdot mm\}\}......(5.12)$$

$$P_k = M / r(5.13)$$

$$S_k = P_k \tan \theta(5.14)$$

$$K_c = \sqrt{P_k^2 + S_k^2} = P_k \sec \theta(5.15)$$

where M: Torque applied to gear $(N \cdot mm)$, $\{kgf \cdot mm\}$

 P_k : Tangential force on gear (N), {kgf}

 S_k : Radial force on gear (N), $\{kgf\}$

 K_c : Combined force imposed on gear (N), {kgf}

H: Power transmitted (kW)

n: Speed (min⁻¹)

r: Pitch circle radius of drive gear (mm)

 θ : Pressure angle

In addition to the theoretical load calculated above, vibration and shock (which depend on how accurately the gear is finished) should be included using the gear factor $f_{\rm g}$ by multiplying the theoretically calculated load by this factor.

The values of $f_{\rm g}$ should generally be those in Table 5.7. When vibration from other sources accompanies gear operation, the actual load is obtained by multiplying the load factor by this gear factor.

Table 5. 7 Values of Gear Factor f_{σ}

Gear Finish Accuracy	$f_{ m g}$
Precision ground gears	1 ~1.1
Ordinary machined gears	1.1~1.3

5.3.4 Load Distribution on Bearings

In the simple examples shown in Figs. 5.5 and 5.6. The radial loads on bearings I and II can be calculated using the following equations:

$$F_{\rm CI} = \frac{b}{c} K$$
....(5.16)

$$F_{\text{CII}} = \frac{a}{C}K \dots (5.17)$$

where F_{CI} : Radial load applied on bearing I (N), {kgf}

 F_{CII} : Radial load applied on bearing II (N), {kgf}

K: Shaft load (N), {kgf}

When these loads are applied simultaneously, first the radial load for each should be obtained, and then, the sum of the vectors may be calculated according to the load direction.

Fig. 5.5 Radial Load Distribution (1)

Fig. 5.6 Radial Load Distribution (2)

5.3.5 Average of Fluctuating Load

When the load applied on bearings fluctuates, an average load which will yield the same bearing life as the fluctuating load should be calculated.

(1) When the relation between load and rotating speed is divided into the following steps (Fig. 5.7)

 $\begin{array}{c} \mathsf{Load} \ F_1 : \mathsf{Speed} \ \textit{\textbf{n}}_1 \ ; \ \mathsf{Operating} \ \mathsf{time} \ \textit{\textbf{t}}_1 \\ \mathsf{Load} \ F_2 : \ \mathsf{Speed} \ \textit{\textbf{n}}_2 \ ; \ \mathsf{Operating} \ \mathsf{time} \ \textit{\textbf{t}}_2 \\ \vdots \\ \vdots \\ \vdots \\ \end{array}$

Load $F_{
m n}$: Speed $n_{
m n}$; Operating time $t_{
m n}$

Then, the average load $F_{\rm m}$ may be calculated using the following equation:

$$F_{\rm m} = {}^{\rm p} \sqrt{\frac{F_1{}^{\rm p} n_1 t_1 + F_2{}^{\rm p} n_2 t_2 + \dots + F_n{}^{\rm p} n_n t_n}{n_1 t_1 + n_2 t_2 + \dots + n_n t_n}}$$
.....(5.18)

where F_m : Average fluctuating load (N), {kgf}

p = 3 for ball bearings

p = 10/3 for roller bearings

NSK

The average speed $n_{\rm m}$ may be calculated as follows:

$$n_{\rm m} = \frac{n_1 t_1 + n_2 t_2 + \dots + n_{\rm n} t_{\rm n}}{t_1 + t_2 + \dots + t_{\rm n}} \dots (5.19)$$

(2) When the load fluctuates almost linearly (Fig. 5.8), the average load may be calculated as follows:

$$F_{\rm m} = \frac{1}{3} (F_{\rm min} + 2F_{\rm max}) \dots (5.20)$$

 F_{\min} : Minimum value of fluctuating load (N), {kgf}

 F_{\max} : Maximum value of fluctuating load (N), {kgf}

(3) When the load fluctuation is similar to a sine wave (Fig. 5.9), an approximate value for the average load $F_{\rm m}$ may be calculated from the following

In the case of Fig. 5.9 (a)

$$F_{\rm m} \stackrel{..}{=} 0.65 \; F_{\rm max}$$
(5.21)

In the case of Fig. 5.9 (b)

(4) When both a rotating load and a stationary load are applied (Fig. 5.10).

 $F_{\mathbb{R}}$: Rotating load (N), {kgf}

 F_s : Stationary load (N), {kgf}

An approximate value for the average load F_m may be calculated as follows:

a) Where
$$F_{\rm R} \ge F_{\rm S}$$

$$F_{\rm m} = F_{\rm R} + 0.3F_{\rm S} + 0.2 \frac{{F_{\rm S}}^2}{F_{\rm R}}.....(5.23)$$

b) Where
$$F_{\rm R} < F_{\rm S}$$

$$F_{\rm m} = F_{\rm S} + 0.3 F_{\rm R} + 0.2 \frac{F_{\rm R}^2}{F_{\rm c}}......(5.24)$$

5.4 Equivalent Load

In some cases, the loads applied on bearings are purely radial or axial loads; however, in most cases, the loads are a combination of both. In addition, such loads usually fluctuate in both magnitude and direction. In such cases, the loads actually applied on bearings cannot be used for bearing life calculations; therefore, a hypothetical load that has a constant magnitude and passes through the center of the bearing, and will give the same bearing life that the bearing would attain under actual conditions of load and rotation should be estimated. Such a hypothetical load is called the equivalent load.

Fig. 5.7 Incremental Load Variation

Fig. 5.8 Simple Load Fluctuation

5.4.1 Calculation of Equivalent Loads

The equivalent load on radial bearings may be calculated using the following equation:

$$P = XF_{r} + YF_{a}$$
(5.25)

P: Equivalent Load (N), {kgf}

 $F_{\rm r}$: Radial load (N), {kgf}

 F_a : Axial load (N), {kgf}

X: Radial load factor

Y: Axial load factor

The values of X and Y are listed in the bearing tables. The equivalent radial load for radial roller bearings with $\alpha = 0^{\circ}$ is

$$P = F_r$$

In general, thrust ball bearings cannot take radial loads, but spherical thrust roller bearings can take some radial loads. In this case, the equivalent load may be calculated using the following equation:

$$P = F_{\rm a} + 1.2 F_{\rm r} \eqno(5.26)$$
 where
$$\frac{F_{\rm r}}{F_{\rm c}} \le 0.55$$

5.4.2 Axial Load Components in Angular Contact Ball Bearings and Tapered Roller Bearings

The effective load center of both angular contact ball bearings and tapered roller bearings is at the point of intersection of the shaft center line and a line representing the load applied on the rolling element by the outer ring as shown in Fig. 5.11. This effective load

center for each bearing is listed in the bearing tables. When radial loads are applied to these types of bearings, a component of load is produced in the axial direction. In order to balance this component load bearings of the same type are used in pairs, placed face to face or back to back. These axial loads can be calculated using the following equation:

$$F_{ai} = \frac{0.6}{V} F_{r}$$
(5.27)

where F_{ai} : Component load in the axial direction

(N), {kgf}

 F_r : Radial load (N), {kgf}

Y: Axial load factor

Assume that radial loads F_{r1} and F_{rII} are applied on bearings I and II (Fig. 5.12) respectively, and an external axial load $F_{\rm ae}$ is applied as shown. If the axial load factors are $Y_{\rm I}$, $Y_{\rm II}$ and the radial load factor is X, then the equivalent loads $P_{\scriptscriptstyle \rm T}$, $P_{\scriptscriptstyle \rm T}$ may be calculated as

where
$$F_{ae} + \frac{0.6}{Y_{\parallel}} F_{r_{\parallel}} \ge \frac{0.6}{Y_{\parallel}} F_{r_{\parallel}}$$

 $P_{\parallel} = XF_{r_{\parallel}} + Y_{\parallel} \left(F_{ae} + \frac{0.6}{Y_{\parallel}} F_{r_{\parallel}} \right)$ (5.28)
 $P_{\parallel} = F_{r_{\parallel}}$

where
$$F_{\mathrm{ae}} + \frac{0.6}{Y_{\mathrm{II}}} F_{\mathrm{r}\,\mathrm{II}} < \frac{0.6}{Y_{\mathrm{I}}} F_{\mathrm{r}\,\mathrm{I}}$$

$$P_{\text{I}} = F_{\text{r}_{\text{I}}}$$

 $P_{\text{II}} = XF_{\text{r}_{\text{II}}} + Y_{\text{II}} \left(\frac{0.6}{Y_{\text{I}}} F_{\text{r}_{\text{I}}} - F_{\text{ae}} \right)$ (5.29)

Bearing I Bearing II Bearing II F_{ae} $F_{
m rI}$ (b) (a)

Fig. 5.12 Loads in Opposed Duplex Arrangement

5.5 Static Load Ratings and Static Equivalent Loads

5.5.1 Static Load Ratings

When subjected to an excessive load or a strong shock load, rolling bearings may incur a local permanent deformation of the rolling elements and permanent deformation of the rolling elements and raceway surface if the elastic limit is exceeded. The nonelastic deformation increases in area and depth as the load increases, and when the load exceeds a certain limit, the smooth running of the bearing is impeded.

The basic static load rating is defined as that static load which produces the following calculated contact stress at the center of the contact area between the rolling element subjected to the maximum stress and the raceway surface.

In this most heavily stressed contact area, the sum of the permanent deformation of the rolling element and that of the raceway is nearly 0.0001 times the rolling element's diameter. The basic static load rating $C_{\rm o}$ is written $C_{\rm or}$ for radial bearings and $C_{\rm oa}$ for thrust bearings in the bearing tables.

In addition, following the modification of the criteria for basic static load rating by ISO, the new $C_{\rm o}$ values for NSK's ball bearings became about 0.8 to 1.3 times the past values and those for roller bearings about 1.5 to 1.9 times. Consequently, the values of permissible static load factor $f_{\rm s}$ have also changed, so please pay attention to this.

5.5.2 Static Equivalent Loads

The static equivalent load is a hypothetical load that produces a contact stress equal to the above maximum stress under actual conditions, while the bearing is stationary (including very slow rotation or oscillation), in the area of contact between the most heavily stressed rolling element and bearing raceway. The static radial load passing through the bearing center is taken as the static equivalent load for radial bearings, while the static avail load in the direction coinciding with the central axis is taken as the static equivalent load for thrust bearings.

(a) Static equivalent load on radial bearings

The greater of the two values calculated from the following equations should be adopted as the static equivalent load on radial bearings.

$$P_{\rm o} = X_{\rm o} F_{\rm r} + Y_{\rm o} F_{\rm a}$$
 (5.30)
 $P_{\rm o} = F_{\rm r}$ (5.31)

where P_0 : Static equivalent load (N), {kgf}

 $F_{\rm r}$: Radial load (N), {kgf} $F_{\rm a}$: Axial load (N), {kgf}

 X_0 : Static radial load factor

 Y_0 : Static axial load factor

(b)Static equivalent load on thrust bearings

$$P_0 = X_0 F_r + F_a$$
 $\alpha \neq 90^{\circ}$ (5.32)

where P_0 : Static equivalent load (N), {kgf}

 α : Contact angle

When $F_{\rm a}{<}X_{\rm o}F_{\rm r}$, this equation becomes less accurate. The values of $X_{\rm o}$ and $Y_{\rm o}$ for Equations (5.30) and (5.32) are listed in the bearing tables.

The static equivalent load for thrust roller bearings with

$$\alpha = 90^{\circ}$$
 is $P_0 = F_3$

5.5.3 Permissible Static Load Factor

The permissible static equivalent load on bearings varies depending on the basic static load rating and also their application and operating conditions.

The permissible static load factor f_s is a safety factor that is applied to the basic static load rating, and it is defined by the ratio in Equation (5.33). The generally recommended values of f_s are listed in Table 5.8. Conforming to the modification of the static load rating, the values of f_s were revised, especially for bearings for which the values of C_o were increased, please keep this in mind when selecting bearings.

$$f_{\rm S} = \frac{C_0}{P_0}$$
....(5.33)

where C_0 : Basic static load rating (N), {kgf}

 P_{o} : Static equivalent load (N), {kgf}

For spherical thrust roller bearings, the values of f_s should be greater than 4.

Table 5. 8 Values of Permissible Static Load Factor f_s

Operating Conditions		imit of $\emph{\textbf{f}}_{s}$ Roller Bearings
Low-noise applications	2	3
Bearings subjected to vibration and shock loads	1.5	2
Standard operating conditions	1	1.5

5.6 Maximum Permissible Axial Loads for Cylindrical Roller Bearings

Cylindrical roller bearings having inner and outer rings with ribs, loose ribs or thrust collars are capable of sustaining radial loads and limited axial loads simultaneously. The maximum permissible axial load is limited by an abnormal temperature rise or heat seizure due to sliding friction between the end faces of rollers and the rib face, or the rib strength.

The maximum permissible axial load (the load considered the heat generation between the end face of rollers and the rib face) for bearings of diameter series 3 that are continuously loaded and lubricated with grease or oil is shown in Fig. 5.13.

Grease lubrication (Empirical equation)

$$C_{\Lambda} = 9.8f \left\{ \frac{900 (k \cdot d)^{2}}{n+1500} - 0.023 \times (k \cdot d)^{2.5} \right\} ...(N)$$

$$= f \left\{ \frac{900 (k \cdot d)^{2}}{n+1500} - 0.023 \times (k \cdot d)^{2.5} \right\} \{ kgf \}$$

Oil lubrication (Empirical equation)

$$C_{A} = 9.8f \left\{ \frac{490 (k d)^{2}}{n+1000} - 0.000135 \times (k d)^{3.4} \right\}...(N)$$

$$= f \left\{ \frac{490 (k d)^{2}}{n+1000} - 0.000135 \times (k d)^{3.4} \right\}....\{kgf\}$$

where C_{Δ} : Permissible axial load (N), {kgf}

d: Bearing bore diameter (mm)

n : Speed (min⁻¹)

In the equations (5.34) and (5.35), the examination for the rib strength is excluded. Concerning the rib strength, please consult with NSK.

In addition, for cylindrical roller bearings to have a stable axial-load carrying capacity, the following precautions are required for the bearings and their surroundings:

- Radial load must be applied and the magnitude of radial load should be larger than that of axial load by 2.5 times or more.
- · Sufficient lubricant must exist between the roller end faces and ribs.
- · Superior extreme-pressure grease must be used.
- · Sufficient running-in should be done.
- ·The mounting accuracy must be good
- The radial clearance should not be more than necessary.

In cases where the bearing speed is extremely slow, the speed exceeds the limiting speed by more than 50%, or the bore diameter is more than 200mm, careful study is necessary for each case regarding lubrication, cooling, etc. In such a case, please consult with NSK.

Fig. 5.13 Permissible Axial Load for Cylindrical Roller Bearings

For Diameter Series 3 bearings (k=1.0) operating under a continuous load and lubricated with grease or oil.

5.7 Examples of Bearing Calculations

(Example1)

Obtain the fatigue life factor $f_{\rm h}$ of single-row deep groove ball bearing 6208 when it is used under a radial load $F_{\rm r}$ =2 500 N, (255kgf) and speed n =900 min⁻¹.

The basic load rating $C_{\rm r}$ of **6208** is 29 100N, (2 970kgf) (Bearing Table, Page B10). Since only a radial load is applied, the equivalent load P may be obtained as follows:

$$P = F_{\rm r} = 2500$$
N, {255kgf}

Since the speed is $n = 900 \text{ min}^{-1}$, the speed factor f_n can be obtained from the equation in Table 5.2 (Page A25) or Fig. 5.3(Page A26).

$$f_{\rm n} = 0.333$$

The fatigue life factor $f_{\rm h}$, under these conditions, can be calculated as follows:

$$f_{\rm h} = f_{\rm h} \frac{C_{\rm r}}{P} = 0.333 \times \frac{29100}{2500} = 3.88$$

This value is suitable for industrial applications, air conditioners being regularly used, etc., and according to the equation in Table 5.2 or Fig. 5.4 (Page A26), it corresponds approximately to 29 000 hours of service life.

(Example 2)

Select a single-row deep groove ball bearing with a bore diameter of 50 mm and outside diameter under 100 mm that satisfies the following conditions:

Radial load $F_r = 3000N$, (306kgf)

Speed $n = 1900 \text{ min}^{-1}$

Basic rating life $L_h \ge 10~000h$

The fatigue life factor f_h of ball bearings with a rating fatigue life longer than 10 000 hours is $f_h \ge 2.72$. Because $f_n = 0.26$, $P = F_r = 3 000$ N. (306kgf)

$$f_{\rm h} = f_{\rm h} \frac{C_{\rm r}}{P} = 0.26 \times \frac{C_{\rm r}}{3.000} \ge 2.72$$

therefore,
$$C_r \ge 2.72 \times \frac{3000}{0.26} = 31380N$$
, (3 200kgf)

Among the data listed in the bearing table on Page B12, **6210** should be selected as one that satisfies the above conditions.

(Example3

Obtain C_r/P or fatigue life factor f_h when an axial load F_a =1 000N, (102kgf) is added to the conditions of (Example 1)

When the radial load F_r and axial load F_a are applied on single-row deep groove ball bearing **6208**, the dynamic equivalent load P should be calculated in accordance with the following procedure.

Obtain the radial load factor X, axial load factor Y and constant e obtainable, depending on the magnitude of f_0F_a/C_{or} , from the table above the single-row deep groove ball bearing table.

The basic static load rating C_{or} of ball bearing **6208** is 17 900N, (1 820kgf) (Page B10)

$$f_{\rm o}F_{\rm a}/C_{\rm or} = 14.0 \times 1\ 000/17\ 900 = 0.782$$

 $e \doteq 0.26$

and
$$F_a$$
 / F_r = 1 000/2 500 = 0.4 > e

$$X = 0.56$$

Y=1.67 (the value of Y is obtained by linear interpolation)

Therefore, the dynamic equivalent load *P* is

$$P = XF_r + YF_a$$

$$= 0.56 \times 2500 + 1.67 \times 1000$$

$$= 3 070N$$
, {313kgf}

$$\frac{C_{\rm r}}{P} = \frac{29\ 100}{3\ 070} = 9.48$$

$$f_{\rm h} = f_{\rm h} \frac{C_{\rm r}}{P} = 0.333 \times \frac{29 \ 100}{3 \ 070} = 3.16$$

This value of $f_{\rm h}$ corresponds approximately to 15 800 hours for ball bearings.

(Example 4)

Select a spherical roller bearing of series 231 satisfying the following conditions:

Radial load $F_{\rm r} = 45\,000{\rm N}$, {4 950kgf}

Axial load $F_a = 8000 \text{N}$, (816kgf)

Speed $n = 500 \text{min}^{-1}$

Basic rating life $L_h \ge 30~000h$

The value of the fatigue life factor f_h which makes $L_h \ge 30~000h$ is bigger than 3.45 from Fig. 5.4 (Page A26).

The dynamic equivalent load P of spherical roller bearings is given by:

when
$$F_a / F_r \leq e$$

$$P = XF_r + YX_a = F_r + Y_3 F_a$$

when
$$F_a / F_r > e$$

$$P = XF_r + YF_a = 0.67 F_r + Y_2 F_a$$

 $F_a / F_r = 8000/45000 = 0.18$

We can see in the bearing table that the value of e is about 0.3 and that of Y_3 is about 2.2 for bearings of series 231:

Therefore,
$$P = XF_r + YF_a = F_r + Y_3F_a$$

= 45 000 + 2.2 × 8 000
= 62 600N, (6 380kgf)

From the fatigue life factor f_n , the basic load rating can be obtained as follows:

$$f_{\rm h} = f_{\rm n} \frac{C_{\rm r}}{P} = 0.444 \times \frac{C_{\rm r}}{62\,600} \ge 3.45$$

consequently, $C_r \ge 490\,000N$, $_{50\,000kgf}$ Among spherical roller bearings of series 231 satisfying this value of C_r , the smallest is **23126CE4** $(C_r = 505\,000N$, $_{51\,500keff})$

Once the bearing is determined, substitude the value of Y_2 in the equation and obtain the value of P_2 .

$$P = F_r + Y_3 F_a = 45\ 000 + 2.4 \times 8\ 000$$

= 64\ 200N, \{6\ 550\kgf\}

$$L_{h} = 500 \left(f_{h} \frac{C_{r}}{P} \right)^{\frac{10}{3}}$$

$$= 500 \left(0.444 \times \frac{505\ 000}{64\ 200} \right)^{\frac{10}{3}}$$

$$= 500 \times 3.49^{\frac{10}{3}} \stackrel{3}{=} 32\ 000\ h$$

(Example 5)

Assume that tapered roller bearings HR30305DJ and HR30206J are used in a back-to-back arrangement as shown in Fig. 5.14, and the distance between the cup back faces is 50 mm.

Calculate the basic rating life of each bearing when beside the radial load $F_r = 5\,500N$, (561kgf),

axial load $F_{\rm ae}$ = 2 0.00N,{204kgf} are applied to HR30305DJ as shown in Fig. 5.14. The speed is 600 min⁻¹.

To distribute the radial load $F_{\rm r}$ on bearings I and II, the effective load centers must be located for tapered roller bearings. Obtain the effective load center a for bearings I and II from the bearing table, then obtain the relative position of the radial load $F_{\rm r}$ and effective load centers. The result will be as shown in Fig. 5.14. Consequently, the radial load applied on bearings I (HR30305DJ) and II (HR30206J) can be obtained from the following equations:

$$F_{\rm rI} = 5\,500 \times \frac{23.9}{83.8} = 1\,569 \text{N}, \{160 \text{kgf}\}$$

$$F_{\text{rII}} = 5\,500 \times \frac{59.9}{83.8} = 3\,931\text{N}$$
, (401kgf)

From the data in the bearing table, the following values are obtained;

Bearings	Basic dy load ra C _r (N)		Axial load factor Y_1	Constan $oldsymbol{e}$
Bearing I (HR30305DJ)	38 000	{3 900}	$Y_{\rm I} = 0.73$	0.83
Bearing II (HR30206J)	43 000	{4 400}	$Y_{II} = 1.6$	0.38

When radial loads are applied on tapered roller bearings, an axial load component is produced, which must be considered to obtain the dynamic equivalent radial load (Refer to Paragraph 5.4.2, Page A31).

$$F_{\text{ae}} + \frac{0.6}{Y_{\text{II}}} F_{\text{r II}} = 2\,000 + \frac{0.6}{1.6} \times 3\,931$$

= 3 474N, (354kgf)

$$\frac{0.6}{Y_{\rm I}} F_{\rm rI} = \frac{0.6}{0.73} \times 1569 = 1290 \text{N}, \{132 \text{kgf}\}$$

Therefore, with this bearing arrangement, the axial load $F_{ae}+\frac{0.6}{Y_{I\!I}}$ $F_{r\,I\!I}$ is applied on bearing I but not on bearing II . For bearing I

$$F_{\rm r\,I}=1$$
 569N, {160kgf}

$$F_{aI} = 3 474 \text{N}, \{354 \text{kgf}\}$$

since
$$F_{\rm a\,I} / F_{\rm r\,I} = 2.2 > e = 0.83$$

the dynamic equivalent load $P_{
m I} = X F_{
m r\,I} + Y_{
m I} \, F_{
m a\,I}$

$$= 0.4 \times 1569 + 0.73 \times 3474$$

= 3164N, {323kgf}

The fatigue life factor
$$f_h = f_n \frac{C_r}{P_r}$$

$$=\frac{0.42\times38\ 000}{3\ 164}=5.04$$

and the rating fatigue life $L_{\rm h} = 500 \times 5.04^{\frac{10}{3}} = 109$ 750h

For bearing II

since $F_{\text{rII}} = 3 \ 931 \text{N}$, {401kgf}, $F_{\text{aII}} = 0$

the dynamic equivalent load

$$P_{\Pi} = F_{r \Pi} = 3.931 \text{N}$$
, (401kgf)

the fatigue life factor

$$f_{\rm h} = f_{\rm h} \frac{C_{\rm r}}{P_{\rm T}} = \frac{0.42 \times 43\,000}{3\,931} = 4.59$$

and the rating fatigue life $L_h = 500 \times 4.59^{\frac{10}{3}} = 80 \ 400 h$ are obtained

Remarks For face-to-face arrangements (DF type), please contact NSK.

(Example 6)

Select a bearing for a speed reducer under the following conditions:

Operating conditions

Radial load $F_{\rm r} = 245~000{\rm N}$, {25 000kgf}

Axial load $F_a = 49\ 000\text{N}$, (5 000kgf)

Speed Size limitation

 $n = 500 \text{min}^{-1}$

Shaft diameter: 300mm

Bore of housing: Less than 500mm

In this application, heavy loads, shocks, and shaft deflection are expected; therefore, spherical roller bearings are appropriate.

The following spherical roller bearings satisfy the above size limitation (refer to Page B196)

d	D	В	Bearing No.	Basic dyl load ra $C_{ m r}$ (N)		Constant $oldsymbol{e}$	Factor Y_3
300	420	90	23960 CAE4	1 230 000	125 000	0.19	3.5
	460	118	23060 CAE4	1 920 000	196 000	0.24	2.8
	460	160	24060 CAE4	2 310 000	235 000	0.32	2.1
	500	160	23160 CAE4	2 670 000	273 000	0.31	2.2
	500	200	24160 CAE4	3 100 000	315 000	0.38	1.8

since $F_a / F_r = 0.20 < e$ the dynamic equivalent load P is

$$P = F_r + Y_3 F_a$$

Judging from the fatigue life factor f_h in Table 5.1 and examples of applications (refer to Page A25), a value of f_h between 3 and 5 seems appropriate.

$$f_{\rm h} = f_{\rm n} \frac{C_{\rm r}}{P} = \frac{0.444 \ C_{\rm r}}{F_{\rm r} + Y_3 F_{\rm a}} = 3 \text{ to } 5$$

Assuming that $Y_3 = 2.1$, then the necessary basic load rating C_r can be obtained

$$C_{\rm r} = \frac{(F_{\rm r} + Y_3 F_{\rm a}) \times (3 \text{ to } 5)}{0.444}$$

$$=\frac{(245\ 000+2.1\times49\ 000)\times(3\ to\ 5)}{0.444}$$

= $2\ 350\ 000\ to\ 3\ 900\ 000\ N$, {240 000 to 400 000 kgf}

The bearings which satisfy this range are 23160CAE4, and 24160CAE4.

6. LIMITING SPEED

The speed of rolling bearings is subject to certain limits. When bearings are operating, the higher the speed, the higher the bearing temperature due to friction. The limiting speed is the empirically obtained value for the maximum speed at which bearings can be continuously operated without failing from seizure or generation of excessive heat. Consequently, the limiting speed of bearings varies depending on such factors as bearing type and size, cage form and material, load, lubricating method, and heat dissipating method including the design of the bearing's surroundings.

The limiting speeds for bearings lubricated by grease and oil are listed in the bearing tables. The limiting speeds in the tables are applicable to bearings of standard design and subjected to normal loads, i. e.

standard design and subjected to normal roads, i. e. $C/P \ge 12$ and $F_a/F_r \le 0.2$ approximately. The limiting speeds for oil lubrication listed in the bearing tables are for conventional oil bath lubrication.

Some types of lubricants are not suitable for high speed, even though they may be markedly superior in other respects. When speeds are more than 70 percent of the listed limiting speed, it is necessary to select an oil or grease which has good high speed characteristics.

(Refer to)

Table 12.2 Grease Properties (Pages A110 and 111)

Table 12.5 Example of Selection of Lubricant for Bearing Operating Conditions (Page A113)

Table 15.8 Brands and Properties of Lubricating Grease (Pages A138 to A141)

6.1 Correction of Limiting Speed

When the bearing load P exceeds 8 % of the basic load rating C, or when the axial load F_a exceeds 20 % of the radial load F_r , the limiting speed must be corrected by multiplying the limiting speed found in the bearing tables by the correction factor shown in Figs. 6.1 and 6.2.

When the required speed exceeds the limiting speed of the desired bearing; then the accuracy grade, internal clearance, cage type and material, lubrication, etc., must be carefully studied in order to select a bearing capable of the required speed. In such a case, forced-circulation oil lubrication, jet lubrication, oil mist lubrication, or oil-air lubrication must be used.

If all these conditions are considered. The maximum permissible speed may be corrected by multiplying the limiting speed found in the bearing tables by the correction factor shown in Table 6.1. It is recommended that NSK be consulted regarding high speed applications.

6.2 Limiting Speed for Rubber Contact Seals for Ball Bearings

The maximum permissible speed for contact rubber sealed bearings (DDU type) is determined mainly by the sliding surface speed of the inner circumference of the seal. Values for the limiting speed are listed in the bearing tables.

Fig. 6.2 Limiting Speed Correction Factor for Combined Radial and Axial Loads

Table 6.1 Limiting Speed Correction Factor for High-Speed Applications

riigii-Speed Applications	
Bearing Types	Correction Factor
Cylindrical Roller Brgs.(single row)	2
Needle Roller Brgs.(except broad width)	2
Tapered Roller Brgs.	2
Spherical Roller Brgs.	1.5
Deep Grooove Ball Brgs.	2.5
Angular Contact Ball Brgs.(except matched bearings)	1.5

7. BOUNDARY DIMENSIONS AND IDENTIFYING NUMBERS FOR BEARINGS

7.1 Boundary Dimensions and Dimensions of Snap Ring Grooves

7.1.1 Boundary Dimensions

The boundary dimensions of rolling bearings, which are shown in Figs.7.1 through 7.5, are the dimensions that define their external geometry. They include bore diameter d, outside diameter D, width B, bearing width(or height) T, chamfer dimension r, etc. It is necessary to know all of these dimensions when mounting a bearing on a shaft and in a housing. These boundary dimensions have been internationally standardized (ISO15) and adopted by JIS B 1512 (Boundary Dimensions of Rolling Bearings).

The boundary dimensions and dimension series of radial bearings, tapered roller bearings, and thrust bearings are listed in Table 7.1 to 7.3 (Pages A40 to A49).

In these boundary dimension tables, for each bore number, which prescribes the bore diameter, other boundary dimensions are listed for each diameter series and dimension series. A very large number of series are possible; however, not all of them are commercially available so more can be added in the future. Across the top of each bearing table (7.1 to 7.3), representative bearing types and series symbols are shown (refer to Table 7.5, Bearing Series Symbols, Page A55).

The relative cross-sectional dimensions of radial bearings (except tapered roller bearings) and thrust bearings for the various series classifications are shown in Figs. 7.6 and 7.7 respectively.

7.1.2 Dimensions of Snap Ring Grooves and Locating Snap Rings

The dimensions of Snap ring grooves in the outer surfaces of bearings are specified by ISO 464. Also, the dimensions and accuracy of the locating snap rings themselves are specified by ISO 464. The dimensions of snap ring grooves and locating snap ring for bearings of diameter series 8, 9, 0, 2, 3, and 4, are shown in Table 7.4 (Pages A50 to A53).

Fig. 7.1 Boundary Dimensions of Radial Ball and Roller Bearings

Fig. 7.6 Comparison of Cross Sections of Radial Bearings (except Tapered Roller Bearings) for various Dimensional Series

Fig. 7.2 Tapered Roller Bearings

Fig. 7.3 Single-Direction Thrust Ball Bearings

Fig. 7.4 Double-Direction Thrust Ball Bearings

Fig. 7.5 Spherical Thrust Roller Bearings

Fig. 7.7 Comparison of Cross Sections of Thrust Bearings (except Diameter Series 5) for Various Dimension Series

nds	,
Bear	
<u></u>	
Š	
l labered Koller Bearings)	-
of Radial Bearings (except	•
s (e	
arluc	,
Ř	
Kadlal	
3	
SION	
E E	
2	,
Boundary Dimensions	
8	
_	
lable	

- 1	1	1	1 1		l c	1.9	1		101010										
					Dimension Series	10~60	r (min.)	0.15	0.15 0.15 0.15	0.2	0.3	0.3	0.3	0.6			====	222	1.5
					Dim	8	r (r	111	111	111	111	0.3	0.3	0.3	0.3	0.6 0.6 0.6	0.6	0.0	
						09		111	111	111	25	33,33	844	43	44 50 50	54 63	63 71	1.88	88
				s 0		20		111	111	111	19 20	21 21 23	30 30 30	32 33 34 34	38	40 46 46	46 54 54	60 60	67
	NN40		240	Serie	Series	40		111	1.1.1	111	144	10 17 17	18 22 22	22 24 25	26 27 28	32 30	35 40	44 45	20
	NN30		230	Diameter Series	Dimension Series	30	В	m	3.5	976	1111	12 13	14 16 16	18 19	202	23 26 26	30 28	34 33	37
	N20			Ä	Dime	20		111	1.1.1	111	860	199	24 4	15 4	9 1 2	13	222	24	88
32	N10					10		2.5	3.88	4 5 9	9~~	∞ ∞ o-	172	122	14 13	9 9 9	20 18	222	24
160						8		111	1.1.1	\perp	1.1.1	1 ~ 8	$\infty \infty \infty$	ω ω o-	666	551	====	1 4 4	16
						D		9	7 8 9	12 14 17	19 22 24	26 28 32	35 44	47 52 55	58 62 68	27 80 90	95 110 110	115 125 130	140
					series	49~64		111	111	0.15 0.15	0.15 0.2 0.3	0.3	0.3	0.3	0.6 0.6 0.6	0.6			<u> </u>
					sion §	19~39 49~69	(min.)	0.1	0.15 0.15 0.15	0.15 0.2 0.2	0.3	0.3	0.3	0.3	0.6	0.6			
					Dimension Series	60	r	111	111	111	111	111	0.3	0.3	0.3	0.3	0.3	0.6	9.0
		NA69				69		111	1.1.1	1.1.1	1.1.1	22 22 23	30 30	888	36 36 40	40 40	45 54 54	54 63	63
		NA59		ries 9		59		111	111	111	111	9 2 9 2	18 23 23	23	27 27 30	330	34 40	4 4 4 4	46
	NN49	NA49		Diameter Series	eries	49		111	1.1.1	166	222	555	113	1111	222	22 22 25	30 32	3588	35
	NN39		239	Diame	Dimension Series	39	В	2.3	3.5	7	L 6 6	999	13	222	15 9	16 19	19 19 23	23 23 26	26
	N29			_	Dimen	29		111	1.1.1	111	1.1.1	∞ ∞ ∞ Ω	11.8.5	===	213	4 4 4 9	16	19	22
36	61N					19		1.6	2.5	446	0 0 0	992	6 6	000	12 19	13 12 12	13 13	9 2 9 1 9	20 20
						60		111	111	111	1.1.1	111	1 ~ ~	~ ~ ~	~ ~ 0	∞ ∞ ૦-	9 01	222	===
						Д		1 4 5	9 7 8	± 55 £	11 20 20	22 24 28	30 37 39	42 45 47	52 55 62	68 72 80	85 100 100	105 110	125
					imension Series	18~68	(min.)	0.05	0.08 0.08 0.1	0.1 0.15 0.15	0.15 0.2 0.2	0.3	0.3	0.3	0.3	0.3	0.3 0.6 0.6	0.6	
					Dimer Seri	80	r (m	111	111	111	111	111	0.3	0.3	0.3	0.3	0.3	0.3	0.3
						89		111	111	111	1.1.1	111	122	222	222	8228	888	884	4 4
				80		28		111	111	111	111	111	1 9 9	929	929	23	24 27 27	27	34
	NN48	NA48		Diameter Series	eries	84		111	111	111	I ^{∞ ∞}	000	12	12	12	17	222	222	25
	NN38			meter	sion S	88	В	2 1.5	2.3	4 5 9	999	~~~	70 10 10	500	555	13	15	15 6	10
	N28			Dia	Dimension Series	28		111	111	3.5	വവവ	9 9 9	98	∞ ∞	∞ ∞	8 110	13 13	1333	91 9
89						18		1.2	2 1.5	3.5	3.5	വവവ	7 7 2	L L L	L L L	L L 6	555	200	133
						80		111	111	111	111	111	4 4	444	444	4 5 /	~ ~ ∞	000	6.0
						Д	,	2.5 4	5 4	113	14 17	19 21 24	26 32 34	37 40 42	44 47 52	58 65 72	78 85 90	95 110 110	115
					es	17~37	min.)	0.05	0.05	0.08 0.08 0.1	0.0	0.7	0.2	0.2	111	111	111	111	1
				ies 7	Dimension Series	37 1		1 %	3.3	23 23 23 25	8.8.4 7.5.5		ا ي			111	111	111	
				Diameter Series	nensio	27	В	111	2.5	2.5	_m	111	111		111	111	111	111	
\exists				Jiamei	ļ.	17		0.8	2 1.5	2.5	2.5	W 4 4	44	4 4	111	111	111	111	
× .	oller Ball	er	oller	Ī		Ω		2.5	4 2 9	7 8 10	12 14	15 18 21	23 27	32	111	111	111	1.1.1	1.1
Ball Brgs.	Double-Row Ball Brgs. Cylindrical Roller Brgs.	dle Rol Brgs.	Spherical Roller Brgs.			p		0.6	2.5	4 2 9	7 8 6	225	12 20 20 20	25 30 30	32 35 40	45 50 55	65 70	75 80 85	98
Ba	Double Cylind	Nee	Sphei	J	əqwr	лИ эл	og	-	3 5	4 2 9	786	0100	03 04 22	05 /28 06	/32 07 08	193	252	15	8 6

				48 240 52 260 56 280											1600 1600 1700 1700 1800 1800	
1.1.1	111	111	111	111	111	111	111	111	111	111	111	111	111		111	
				111									111		111	
111	111															
	111			111												
120	165	200 215 225	240 250 270	320	2008	440 500	520 540 580	600 620 650	730 730 780	820 870 920	080	1150	1360	1700	1950 – 2060 – 2180 –	2430 —
000	11 18 20	13 20 41 22 22	16 24 16 24 16 24	19 28 22 33	25 25 38 25 38 25	25 31 46 46	31 46 37 56	37 56 37 56 37 56	37 56 42 60 48 69	50 74 50 74 54 78	57 82 60 85 85	63 77 70 70 70 70 70 70 70 70 70 70 70 70	78 106 78 106 80 112	88 122 95 132 — 140		175
13 16 19 16	222			3888	888	899	982	6 22 22	9 88 82 88	94 8	2 2 106 112 112	0 178	64 145 145	2 165 2 175 0 185	5 200 5 206 5 218	230
	888			2 4 4 5 2 2 2 4 4 5		855			1288	3 112 0 128	2 13% 2 13%	8 17 165 165 165 165 165 165 165 165 165 165	888	224	265 272 290	325
												_		300	345 355 375	425
30 8	35 40 50 50 50 50 50 50 50 50 50 50 50 50 50	45 45 6	200	999	80 109 80 109	80 100 138 138	138 138 139 139	118 160 118 160 118 160	118 160 128 175 150 200	150 200 160 218 170 230	180 243 180 243 190 258	200 272 218 300 218 300	243 325 243 325 250 335	375	7335	1
40 4	24 54 54 7	7 8 8 9 8	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	888		36 36 180 38 180 180			218 236 272 272		13 325 13 325 38 345	72 355 00 400 400			111	11
545	43 000	71 0.6 80 0.6 80 0.6	888	109 1.1	145 145 145 1.5 1.5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	180 2 218 2.	218 2. 218 2. 218 2.	3 3 3 2	272 290 4 4 308	4 4 4	2002	438 438 450 6	545 6	111	11
6.63	999	6 6 6		1 2 2 2	5 2.1	2.1	1.2.1	~~~ ~~~	r. ∞ω4	440	വവവ	9 9 9	999	7.5	7.5	9.5
15	190	2201 230	300	320 360 380	1 420 1 440 1 460	1 480 1 520 1 540	1 600 620 620	650 670 710	750 800 850 850	900	1060 1120 1180	1250 1320 1400	1460 1540 1630	1720 1820 1950	2060	2430
145												80 103 109	00 109 115 122	128		
13 20 27 27 27 27 27 27	16 24 24 28 28 28 28 28 28 28 28 28 28 28 28 28	19 28 22 33	22 25 38 25 38	25 31 46 31 46	37 37 56 37 56	44 44 65 65 65	50 74 74 74 74	54 78 28 28 28 28 28 28 28 28 28 28 28 28 28	66 72 70 70 70 70 70 70	3 3 108 112 112	85 115 88 122	32 140 150 150	25 150	28 175 - 185 - 195	200 - 212 - 218 - 218	- 230
2 24 24 24 24	888		888	8 9 9 9	6 72 6	882	24 4 4 5 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2	9882	5 112 0 118 0 128	3 136 2 140 2 145	2 150 2 155 2 165	2 175 0 185 0 195	0 195 0 206 0 218	5 243 5 258 5 258	265 2 280 2 290	0 308
		36 45 42 52 52	88.22	8 60 75 0 75 0	222	22 22 20 40 40 40 40 40 40 40 40 40 40 40 40 40	2 106 5 118 5 118	0 128 0 128 0 136	2 140 8 150 8 165	6 170 0 180 5 185	200	5 224 5 236 5 250	5 250 6 272 8 280	335	5 345 0 355 0 375	1 400
30 44	37 56 37 56			0 2 2 8 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 118	0 118 140 140	8 160 8 160 160	88 170 180 180	0 190 0 200 5 218	0 230 0 243 15 250	15 258 10 272 16 280	300 315 0 335	0 335 2 355 0 375	0 400 5 425 15 450	5 462 5 475 5 500	0 530
45	900	09 09 09 09	69 80 109 80 109	136	8 160 8 160 8 160	9000	0 190 0 218 0 218	0 230 0 230 10 243	0 258 0 272 8 300	3 325	8 355 2 365 10 375	0 400 5 438 15 462	5 462 5 488 5 515	0 545	0.55	9 1
54 7	67 9	0 109			555	0 218 0 250 0 250	0 250 8 290 8 290		8 345 2 355 0 400	8 412 5 438 5 450	5 462 5 500 5 500		2 615 8 650 5 690	-		
- 177 - 0.00	90		125 145 145 1.	145 180 2 180 2	2222	3335	0000	308 4 308 4 325 4	5555	0.82	0 9 9 9	545 6 580 6 615 7.		710 7.	111	11
0.6 1.1 0.6 1.1 0.6 1.1	2,15	1 2 2 1.1 2	1.5 2.2	1.5 2. 2 2. 2 2.	~~~~	L. ω 4 4	444	വവവ	O CO CO	999	999	6 7.5 6 7.5 7.5 7.5	7.5 7. 7.5 7.	7.5 7.	9.67	- 12
====		777		22.2.2	m m m	W 4 4	444	വവവ	O 20 20	999	999	5 7.5 5 7.5 5 7.5	5 7.5	5 9.6	5 9.5	- 12
	200 210 225	240 260 280	290 1 310 1 340	360 1 400 1 420	460 480 520	540 560 600	620 650 680	7007	820 870 920	980 1030 1090	1150 1220 1280	1360	1580 1660 1750	1850 1950 1950 1950	5 2240 5 2360 2500	11
180 18 170 19 19 19	22 22 22 24 24	25 28 31 31	31 34 37 37	37 80 84 84 84	2000		63 67 71	000 177 80 80	000 000 000 000 000 000	000	00 112 00 118 00 122	32 136 136 140	145	999		1 1
888	3333	844	55.57	65 65 65	4448	888	846	256	1118	856	136	8288	200 212 218	230	30,28	1 1
398	45	248 60	726	882	95 106	106	118	128 128 145	150	195	212	243	272 290	315	365 375 400	1 1
44	223	67	982	1042	121	135	157	165	2002	236	382	3288	345 355 375	400	475 500 530	1 1
9999	69 69 72	860	100	118	160	200	212 218 218	218 218 250	258 272 290	308 315 335	345 365 375	412 412 438	462 475 500	530 545 615	690	1 1
75	1005	122	136	966	218 218 243	243 243 272	272	300	365	425 438 462	475 500 515	260	615	111		1 1
1996	125	186	2002	218 250 250	3258	325	355	9944	462 488 515	580	869	8022	825	111	111	1 1
	222	2 1.5	2.1		444	440	വവവ	Q 20 20	999	7.5	7.5	7.5	9.5	111		
777	222		355	W 4 4	446	വവവ	0 0 0	999	9 9 2.	7.5	7.5	7.5	0,0,0,	1222	15	
	_								10	101010	101010	101010	വവവ			

The chamfer dimensions listed in this table do not necessarily apply to the following chamfers: (a) Chamfers of the grooves in outer rings that have snap ring grooves. (b) For thin section cylindrical roller bearings, the chamfers on side without rib and bearing bore (in case of an inner ring) or outer surface (in case of an outer ring). (c) For angular contact ball bearings, the chamfers between the front face and bore (in case of an inner ring) or outer surface (in case of an outer ring). (d) Chamfers on inner rings of bearings with tapered bores. Remarks

7 Table 7. 1 Boundary Dimensions of Radial Bearings (except Tapered Roller Bearings)

			ּוֹם,		_). -	140		יטו טו	LIVIII	11110	INOIN	IDLI	3101	\ DLA	IVIIVO	3			
					4	Dimension Series	04~24	r (min.)	111	111	111	0.6	0.6	221	1.5	1.5	2.1	2.1	∞∞4	444
					Series	Dimension Series	24	В	111	1 1 1	111	1 4 5	16 19 24	29	36	43	50 53 57	64 74	77 80 86	82 80
74	104	N 4			Diameter Series 4	Dime	04	Щ	111	111	111	191	13 12	119	21		33	35	45 48 52	222
					Ω		D		111	1.1.1	1.1.1	30	37 42 52	62 72 —	80 06	100	120 130 140	150 160 180	190 200 210	225
						nsion	03~33	in.)	111	0.2	0.3	0.3	1 1 0.6	-55	222	1.5.1	1.5	2:1	2.1	m m i
						Dimension Series	83	r (min.)	111	111	111	111	0.3	9.0	0.6 0.6 0.6	0.6		1.1.1.	1.5	222
633	32	N 33					33		111	~	9 2 2 1 3	15 16	19	22.2 22.2 25	25.4 30.2 30.2	32 34.9 36.5	39.7 44.4 49.2	54 58.7 63.5	68.3 68.3 73	73
623	23	N 23		223	Diameter Series 3	eries	23		111	111	=	13.3	11	21 21	2242	33 33	44 63	94 51 51	98.89	64
					ameter	Dimension Series	13	В	111	111	1.1.1	111	111	111	111	111	111	1.1.1	111	5
23	13	N 3		213	□	Dime	03		111	115	7 0 2	6 6 0	127	15 16	18 19	23 23	27.22	3333	33	45
							83		111	111	111	111	666	199	1337	4 4 1 9	17	22 24 25	27 28 30	33
							Ω	'	111	1 1	16 22	26 28 30	35 37 42	47 52 56	62 68 72	75 80 90	120	130 150	160 170 180	200
						nsion	02~42	in.)	111	0.15	0.3	0.3	0.6 0.6 0.6	1 1 1 1 1		-55	1111	2; T 2; T 3; T	1.5 2	2.1
						Dimension Series	82	r (min.)	111	1.0	0.15 0.15 0.2	0.3	0.3	0.3	0.3	9.0	9.0			==:
							42		111	1.1.1	1.1.1	111	70	22 27 27	27 30 32	33 37 40	40 45	220	2999	69
632	222	N 32		232	ies 2	0	32		111	112	7 8 10	13 13	14.3 15.9 15.9	17.5 20.6 20.6	20.6 23 23.8	25 27 30.2	30.2 30.2 33.3	36.5 38.1 39.7	41.3 44.4 49.2	52.4
622	42	N 22		222	Diameter Series 2	Dimension Series	22	В	111	111	111	111	4 4 4	9 8 8	8198	2323	2233	338	3833	43.6
					Diam	imensic	12	Щ	111	111	111	111	111	111	111	111	111	1.1.1	111	11
25	12	N 2					02		111	4	O CO CO	<u>~</u> ∞ ∞	1109	244	16	17 18	19 20 21	23 24	25 26 28	32
							82		111	2.5	3.5	6 5 5	r r 8	00 O	555	121	25.54	222	18 19 21	242
							D		111	1 ا و	19 13	22 24 26	30 32 35	40 47 50	52 58 62	65 72 80	85 100	110 120 125	130 140 150	160
						Dimension Series	11~41	(min.)	111	1 1 1	111	111	111	111	111	111	111	1.1.1	111	222
						Dime	10	r (n	111	1 1 1	111	111	111	111	111	111	111	1.1.1	111	113
				241	-		41		111	1 1 1	111	15	2000	848	25 27 28	3333	35 40	45.4	2623	999
		NN 31		231	Series '	Series	31		111	1 1 1	_ 7 01	12	<u> </u>	1986	28 21	25 22 26 26	888	888	37 37 41	42
					Diameter	Dimension S	21	В	111	1 1 1	∞	600	12 12	15 13	16	19 21 22	22 22 24	24 27 27	30 31	33
					Ω	Dime	11		111	111	111	111	111	111	111	111	111	1.1.1	111	118
							10		111	1 1 1	111	111	111	111	111	111	111	1.1.1	111	1 13
< .	w	- ú	er	ller			О		111	1.1.1	1.1.1	1.1.1	1.1.1	1.1.1	1.1.1	1.1.1	1.1.1	1.1.1	1.1.1	150
ingle-Rov 3all Brgs.	Double-Row Ball Brgs.	ylindrica oller Brgs	edle Roll Brgs.	erical Ro Brgs.		,	p		0.6	2.5	409	7 8 6	12 10	17 20 22	25 28 30	32 35 40	45 50 55	65 70	75 80 85	929
S. S.	200	O.5	Ne	Sph	ı	əqwr	re Nu	og		3 2	4 5 9	7 8 9	010	03 04 22	05 28 06	/32 07 08	110	132	15 16 17	2 1 2

440	വവവ	6 20 20	999	7.5	7.5 9.5 9.5	9.5 9.5	1222	512	512	15	111	111	111	1.1
108 118 118	128 132 138	142 145 150	155 160 180	190 206 224	236 250 265	280 300 315	325 335 345	365 375 400	412 438 450	475	111	111	111	11
60 65 72	78 82 85	98 92 95	98 102 115	122 132 140	150 155 165	180 190 200	206 212 218	230 236 250	258 272 280	290	111	111	111	11
260 280 310	340 360 380	400 420 440	460 480 540	580 620 670	710 750 800	850 900 950	980 1030 1060	1120 1150 1220	1280 1360 1420	1500	111	111	111	1.1
നനന	444	444	വവവ	665	7.5 7.5 7.5	7.5 7.5 7.5	9.5 9.5	9.5 12 12	12 2 2	512	119	9 1 10	111	
33.7	κ4	111	111	111	111	111	111	111	111	111	111	111	111	11
87.3 92.1 106	112 118 128	128	155 186 186	195 206 224	236 258 272	300 308 308	315 345 365	375 388 412	438 462 488	515 530 560	630 630 650	670 710 —	111	11
1288	201 108 108	178	132 138 145	155 165 175	185 200 212	224 230 243	250 265 280	290 300 325	335 355 375	400 412 438	462 488 500	515 545 —	111	11
53 62	66 70 75	79 88 88	92 97 106	114 123 132	140 155 165	170 175 185	190 200 212	218 230 243	258 272 280	300 308 325	355 375 388	400	111	11
85 S S S	82 79	822	888	25 108 108	112	128 138	138	8558	200 200 206	218 224 236	258 272 280	300	111	11
37 44	48 50 —	111	111	111	111	111	111	111	111	111	111	111	111	11
225 240 260	280 300 320	340 360 380	400 420 460	500 540 580	620 670 710	750 780 820	850 900 950	980 1030 1090	1150 1220 1280	1360 1420 1500	1600 1700 1780	1850 1950 —	111	11
2:1	നനന	844	444	400	6 C) S	999	7.5	7.5 7.5 9.5	9.5 9.5	122	555	5일	111	11
1.5	111	111	111	111	111	111	111	111	111	111	111	111	111	11
888	100 109 118	178 140 140	86,000	200 218 218	243 258 280	290 300 315	335 345 365	388 412 450	475 488 515	545 560 615	615 650 670	710	111	11
65.1 69.8 76	88 88 96	104 110 112	120 128 144	160 174 176	192 208 224	232 240 256	272 280 296	310 336 355	365 388 412	438 450 475	488 515 515	530	111	
22.23	64 68 73	888	92 108	021 130 130 130	140 150 165	170 175 185	195 200 212	224 243 258	272 280 300	315 325 345	355 375 388	412 425 —	111	11
42	46 50 54	58 62 62	65 70 78	988	98 105 118	122 132 140	150 155 165	170 185 200	206 212 230	243 250 265	272 280 300	315	111	11
38 40	45 45	52 52	588	882	35 82	95 103	112	125 136 145	150 155 165	175 180 195	200 206 218	230 243	111	11
27	111	111	111	111	111	111	111	111	111	111	111	111	111	11
190 200 215	230 250 270	290 310 320	340 360 400	440 480 500	540 580 620	650 680 720	760 790 830	870 920 980	1030 1090 1150	1220 1280 1360	1420 1500 1580	1660	111	1.1
222	2.1 2.1	2.1	ω ω 4	440	വവവ	O C O O	6 6 7.5	7.5 7.5 7.5	7.5 7.5 7.5	7.5 9.5 9.5	9.5 12 12	122	5 5 5	19
1121	1.5	2 2.1	നനന	444	വവവ	O CD O	999	6 7.5 7.5	7.5 7.5 7.5	7.5 9.5 9.5	9.5 12 12	122	111	11
\$\$8	885	118	128	288	200 218 243	243 243 250	300	308 325 335	355 375 400	412 438 475	475 500 515	545 580 600	630 670 710	750
2823	288	888	104	24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	82,66	192 200	224 226 240	248 264 272	280 300 315	336 345 365	375 400 412	438 462 475	475 500 530	280
42 48	48 50 60	66 72	78 82 88	95 106 106	118 128 140	140 145 145	165 165 175	190	206 218 230	243 250 272	272 290 300	315 335 345	365 388 400	425 450
3333	38 40 46	51	69 69	74 82 82	901 901 901	106	122 122 132	136 145 150	160 170 175	185 195 206	212 224 230	243 258 265	280 290 308	325
22 22 25	25 27 31	34 37 37	44 48 48	50 57 57	63 71 78	78 78 80	9888	100	115 122 128	136 140 150	155 165 165	175 185 190	111	11
													1750 1850 1950	
													1120 1180 1250	
21 22 24	26 28 30	32 34 36	38 40 44	48 52 56	64 68 68	72 76 80	88 92	96 /500 /530	/260 /600 /630	/670 /710 /750	0820	/1000/1060	/1120 /1180 /1250	/1320

Remarks

Table 7. 2 Boundary Dimensions of

Tapi Ro Bri	ller					329						32	0 X				330					33	31		
					Diam	eter Se	ries 9							Diam	eter Se	ries 0					Di	ameter	Serie	s 1	
nber				Din	nensio	n Serie:	s 29		Cha Dime	mfer nsion		Dime	nsion S	Series	Dime	nsion S	Series	Cha Dime	mfer nsion		Dime	nsion S	Series	Chai Dime	mfer nsion
Bore Number	d			Ι			II		Cone				20			30		Cone	Cup			31		Cone	Cup
Bor		D	В	С	T	В	С	Т	r (1	min.)	D	В	С	Т	В	С	Т	r (r	min.)	D	В	С	Т	r (1	nin.)
00 01 02	10 12 15	_ _ _	=	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	28 32	 11 12	_ _ _	 11 12	13 14		13 14	0.3 0.3	0.3 0.3	_ _ _	=	_ _ _	_ _ _	_ _ _	_ _ _
03 04 /22	17 20 22	— 37 40	11 —	_ _ _	11.6 —	12 12	- 9 9	— 12 12	 0.3 0.3	0.3 0.3	35 42 44	13 15 15	12 11.5	13 15 15	15 17 —	_ _ _	15 17 —	0.3 0.6 0.6	0.3 0.6 0.6	_ _ _	=	_ _ _	_ _ _	_ _ _	_
05 /28 06	25 28 30	42 45 47	11 — 11	_ _ _	11.6 — 11.6	12 12 12	9 9 9	12 12 12	0.3 0.3 0.3	0.3 0.3 0.3	47 52 55	15 16 17	11.5 12 13	15 16 17	17 — 20	14 — 16	17 — 20	0.6 1 1	0.6 1 1	_ _ _	=	_ _ _	_ _ _	_ _ _	_ -
/32 07 08	32 35 40	52 55 62	 13 14	_ _ _	 14 15	15 14 15	10 11.5 12	14 14 15	0.6 0.6 0.6	0.6 0.6 0.6	58 62 68	17 18 19	13 14 14.5	17 18 19	 21 22	 17 18	 21 22	1 1 1	1 1 1	_ _ 75	_ _ 26	_ _ _ 20.5	_ _ 26	_ _ 1.5	_ _ 1.5
09 10 11	45 50 55	68 72 80	14 14 16	_ _ _	15 15 17	15 15 17	12 12 14	15 15 17	0.6 0.6 1	0.6 0.6 1	75 80 90	20 20 23	15.5 15.5 17.5	20 20 23	24 24 27	19 19 21	24 24 27	1 1 1.5	1 1 1.5	80 85 95	26 26 30	20.5 20 23	26 26 30	1.5 1.5 1.5	1.5 1.5 1.5
12 13 14	60 65 70	85 90 100	16 16 19	_ _ _	17 17 20	17 17 20	14 14 16	17 17 20	1 1 1	1 1 1	95 100 110	23 23 25	17.5 17.5 19	23 23 25	27 27 31	21 21 25.5	27 27 31	1.5 1.5 1.5	1.5 1.5 1.5	100 110 120	30 34 37	23 26.5 29	30 34 37	1.5 1.5 2	1.5 1.5 1.5
15 16 17	75 80 85	105 110 120	19 19 22	_ _ _	20 20 23	20 20 23	16 16 18	20 20 23	1 1 1.5	1 1 1.5	115 125 130	25 29 29	19 22 22	25 29 29	31 36 36	25.5 29.5 29.5	31 36 36	1.5 1.5 1.5	1.5 1.5 1.5	125 130 140	37 37 41	29 29 32	37 37 41	2 2 2.5	1.5 1.5 2
18 19 20	90 95 100	125 130 140	22 22 24	_ _ _	23 23 25	23 23 25	18 18 20	23 23 25	1.5 1.5 1.5	1.5 1.5 1.5	140 145 150	32 32 32	24 24 24	32 32 32	39 39 39	32.5 32.5 32.5	39 39 39	2 2 2	1.5 1.5 1.5	150 160 165	45 49 52	35 38 40	45 49 52	2.5 2.5 2.5	2 2 2
21 22 24	105 110 120	145 150 165	24 24 27	_ _ _	25 25 29	25 25 29	20 20 23	25 25 29	1.5 1.5 1.5	1.5 1.5 1.5	160 170 180	35 38 38	26 29 29	35 38 38	43 47 48	34 37 38	43 47 48	2.5 2.5 2.5	2 2 2	175 180 200	56 56 62	44 43 48	56 56 62	2.5 2.5 2.5	2 2 2
26 28 30	130 140 150	180 190 210	30 30 36	_ _ _	32 32 38	32 32 38	25 25 30	32 32 38	2 2 2.5	1.5 1.5 2	200 210 225	45 45 48	34 34 36	45 45 48	55 56 59	43 44 46	55 56 59	2.5 2.5 3	2 2 2.5	_ _ _	=	_ _	_ _ _	_ _ _	_
32 34 36	160 170 180	220 230 250	36 36 42	_ _ _	38 38 45	38 38 45	30 30 34	38 38 45	2.5 2.5 2.5	2 2 2	240 260 280	51 57 64	38 43 48	51 57 64	_ _ _	_ _ _	_ _ _	3 3 3	2.5 2.5 2.5	_ _ _	=	_ _ _	 - -	_ _ _	_
38 40 44	190 200 220	260 280 300	42 48 48	_ _ _	45 51 51	45 51 51	34 39 39	45 51 51	2.5 3 3	2 2.5 2.5	290 310 340	64 70 76	48 53 57	64 70 76	_ _ _	_ _ _	_ _ _	3 3 4	2.5 2.5 3	_ _ _	=	_ _ _	_ _ _	_ _ _	_ _ _
48 52 56	240 260 280	320 360 380	48 — —	_ _ _	51 —	51 63.5 63.5	39 48 48	51 63.5 63.5	3 3 3	2.5 2.5 2.5	360 400 420	76 87 87	57 65 65	76 87 87	_ _ _	_ _ _	_ _	4 5 5	3 4 4	_ _ _	Ξ	_ _ _	_ _ _	_ _ _	=
60 64	300 320	420 440	_	_	_	76 76	57 57	76 76	4	3	460 480	100	74 74	100	_	_	_	5	4 4	_	_	_	_	_	_

Remarks

1. Other series not conforming to this table are also specified by ISO.

2. In the Dimension Series of Diameter Series 9, Classification I is those specified by the old standard, Classification II is those specified by the ISO.

2. Dimension Series not classified conform to dimensions (D, B, C, T) specified by ISO.

3. The chamfer dimensions listed are the minimum permissible dimensions specified by ISO. They do not apply to

chamfers on the front face.

Tapered Roller Bearings

																							Units:	mm		
	31	02			322				332				303	3 or 30)3D			313				323			Tape Ro Bre	ller
				Di	amete	r Series	s 2										Diam	eter Se	eries 3							
	Di	imensi	ion	Di	imensi	on	Di	imensi	on	Cha	mfer nsion		Di	mensi	on Ser	ies	Di	mensi	on	Di	imensi	on	Cha	mfer		per
	S	ieries (12	S	eries 2	2	S	eries 3	2	Cone				C	3		S	eries 1	3	S	eries 2	23	Cone		d	Bore Number
D												D													-	ore
	В	С	T	В	С	Т	В	С	Т	<i>r</i> (1	min.)	D	В	С	C (1)	Т	В	С	Т	В	С	T	r (1	min.)		<u> </u>
30 32 35	9 10 11	9 10	9.7 10.75 11.75	14 14 14	_ _ _	14.7 14.75 14.75	_ _ _		1 1 1	0.6 0.6 0.6	0.6 0.6 0.6	35 37 42	11 12 13	_ _ 11	 	11.9 12.9 14.25		_ _ _	_	17 17 17	_ _ 14	17.9 17.9 18.25	0.6 1 1	0.6 1 1	10 12 15	00 01 02
40 47 50	12 14 14	11 12 12	13.25 15.25 15.25	16 18 18	14 15 15	17.25 19.25 19.25	_ _ _	_ _ _	_ _ _	1 1 1	1 1 1	47 52 56	14 15 16	12 13 14	_ _ _	15.25 16.25 17.25	_ _ _	_ _ _	_	19 21 21	16 18 18	20.25 22.25 22.25	1 1.5 1.5	1 1.5 1.5	17 20 22	03 04 /22
52 58 62	15 16 16	13 14 14	16.25 17.25 17.25	18 19 20	15 16 17	19.25 20.25 21.25	22 24 25	18 19 19.5	22 24 25	1 1 1	1 1 1	62 68 72	17 18 19	15 15 16	13 14 14	18.25 19.75 20.75	=	 - -	_ _ _	24 24 27	20 20 23	25.25 25.75 28.75		1.5 1.5 1.5	25 28 30	05 /28 06
65 72 80	17 17 18	15 15 16	18.25 18.25 19.75	21 23 23	18 19 19	22.25 24.25 24.75	26 28 32	20.5 22 25	26 28 32	1 1.5 1.5	1 1.5 1.5	75 80 90	20 21 23	17 18 20	15 15 17	21.75 22.75 25.25	=	 - -	_	28 31 33	24 25 27	29.75 32.75 35.25	1.5 2 2	1.5 1.5 1.5	32 35 40	/32 07 08
85 90 100	19 20 21	16 17 18	20.75 21.75 22.75	23 23 25	19 19 21	24.75 24.75 26.75	32 32 35	25 24.5 27	32 32 35	1.5 1.5 2	1.5 1.5 1.5	100 110 120	25 27 29	22 23 25	18 19 21	27.25 29.25 31.5	_ _ _	_ _ _	_	36 40 43	30 33 35	38.25 42.25 45.5	2 2.5 2.5	1.5 2 2	45 50 55	09 10 11
110 120 125	22 23 24	19 20 21	23.75 24.75 26.25	28 31 31	24 27 27	29.75 32.75 33.25	38 41 41	29 32 32	38 41 41	2 2 2	1.5 1.5 1.5	130 140 150	31 33 35	26 28 30	22 23 25	33.5 36 38	_ _ _	_ _ _	_	46 48 51	37 39 42	48.5 51 54	3 3 3	2.5 2.5 2.5	60 65 70	12 13 14
130 140 150	25 26 28	22 22 24	27.25 28.25 30.5	31 33 36	27 28 30	33.25 35.25 38.5	41 46 49	31 35 37	41 46 49	2 2.5 2.5	1.5 2 2	160 170 180	37 39 41	31 33 34	26 27 28	40 42.5 44.5	_	_ _ _		55 58 60	45 48 49	58 61.5 63.5	3 3 4	2.5 2.5 3	75 80 85	15 16 17
160 170 180	30 32 34	26 27 29	32.5 34.5 37	40 43 46	34 37 39	42.5 45.5 49	55 58 63	42 44 48	55 58 63	2.5 3 3	2 2.5 2.5	190 200 215	43 45 47	36 38 39	30 32 —	46.5 49.5 51.5	_ 51	_ _ 35	_ _ 56.5	64 67 73	53 55 60	67.5 71.5 77.5	4 4 4	3 3 3	90 95 100	18 19 20
190 200 215	36 38 40	30 32 34	39 41 43.5	50 53 58	43 46 50	53 56 61.5	68 — —	52 —	68 —	3 3 3	2.5 2.5 2.5	225 240 260	49 50 55	41 42 46	_	53.5 54.5 59.5	53 57 62	36 38 42	58 63 68	77 80 86	63 65 69	81.5 84.5 90.5	4 4 4	3 3 3	105 110 120	21 22 24
230 250 270	40 42 45	34 36 38	43.75 45.75 49	64 68 73	54 58 60	67.75 71.75 77	_ _ _	_ _ _	_ _ _	4 4 4	3 3 3	280 300 320	58 62 65	49 53 55	_ _ _	63.75 67.75 72	66 70 75	44 47 50	72 77 82	93 102 108	78 85 90	98.75 107.75 114	5 5 5	4 4 4	130 140 150	26 28 30
290 310 320	48 52 52	40 43 43	52 57 57	80 86 86	67 71 71	84 91 91	_ _ _	_ _ _	_ _ _	4 5 5	3 4 4	340 360 380	68 72 75	58 62 64	_ _ _	75 80 83	79 84 88	_ _ _	87 92 97	114 120 126	95 100 106	121 127 134	5 5 5	4 4 4	160 170 180	32 34 36
340 360 400	55 58 65	46 48 54	60 64 72	92 98 108	75 82 90	97 104 114	_ _ _	_ _ _	_ _ _	5 5 5	4 4 4	400 420 460	78 80 88	65 67 73	_ _ _	86 89 97	92 97 106	_ _ _	101 107 117	132 138 145	109 115 122	140 146 154	6 6 6	5 5 5	190 200 220	38 40 44
440 480 500	72 80 80	60 67 67	79 89 89	120 130 130	100 106 106	127 137 137	_ _ _	_ _ _	_ _ _	5 6 6	4 5 5	500 540 580	95 102 108	80 85 90	_ _ _	105 113 119	114 123 132	_ _ _	125 135 145	155 165 175	132 136 145	165 176 187	6 6 6	5 6 6	240 260 280	48 52 56
540 580 —	85 92 —	71 75 —	96 104 —	140 150 —	115 125 —	149 159 —	_ _ _	_ _ _	- - -	6 6 —	5 5 —	_ _ _ _	_ _ _	=	_ _ _	_ _ _ _	_ _ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _ _	_ _ _	300 320 340 360	60 64 68 72

Note (1) Regarding steep-slope bearing 303D, in DIN, the one corresponding to 303D of JIS is numbered 313. For bearings with bore diameters larger than 100 mm, those of dimension series 13 are numbered 313.

Table 7. 3 Boundary Dimensions of

Thrust B	Ball Brgs.									511					512		522			
Spherica Roller	al Thrust Brgs.													292						
			Diam	neter Se	ries 0			Diam	neter Se	ries 1					Dian	neter Sei	ries 2			
per			Dime	ension S	Series			Dime	ension S	Series				[Dimensi	on Serie	S			
Bore Number	d	ъ.	70	90	10		D	71	91	11		D	72	92	12	22	2	2		
Bori		D		Т		$m{r}$ (min.)	D		Т		$m{r}$ (min.)	D			Т		Central	Washer	I (min.)	r_1 (min.)
				1					1						1		d_2	В		
4 6 8	4 6 8	12 16 18	4 5 5	_ _ _	6 7 7	0.3 0.3 0.3	=	_ _ _	_ _ _	_ _ _	=	16 20 22	6 6 6	_ _ _	8 9 9	_ _ _	_	_ _ _	0.3 0.3 0.3	_ _ _
00 01 02	10 12 15	20 22 26	5 5 5	_ _ _	7 7 7	0.3 0.3 0.3	24 26 28	6 6 6	_ _ _	9 9 9	0.3 0.3 0.3	26 28 32	7 7 8	_ _ _	11 11 12	_ 22	_ 10	_ _ 5	0.6 0.6 0.6	 0.3
03 04 05	17 20 25	28 32 37	5 6 6	_ _ _	7 8 8	0.3 0.3 0.3	30 35 42	6 7 8	_ _ _	9 10 11	0.3 0.3 0.6	35 40 47	8 9 10		12 14 15	26 28	15 20	- 6 7	0.6 0.6 0.6	 0.3 0.3
06 07 08	30 35 40	42 47 52	6 6 6	_ _ _	8 8 9	0.3 0.3 0.3	47 52 60	8 8 9	_ _ _	11 12 13	0.6 0.6 0.6	52 62 68	10 12 13		16 18 19	29 34 36	25 30 30	7 8 9	0.6 1 1	0.3 0.3 0.6
09 10 11	45 50 55	60 65 70	7 7 7	_ _ _	10 10 10	0.3 0.3 0.3	65 70 78	9 9 10	_ _ _	14 14 16	0.6 0.6 0.6	73 78 90	13 13 16	_ 21	20 22 25	37 39 45	35 40 45	9 9 10	1 1 1	0.6 0.6 0.6
12 13 14	60 65 70	75 80 85	7 7 7	_ _ _	10 10 10	0.3 0.3 0.3	85 90 95	11 11 11	_ _ _	17 18 18	1 1 1	95 100 105	16 16 16	21 21 21	26 27 27	46 47 47	50 55 55	10 10 10	1 1 1	0.6 0.6 1
15 16 17	75 80 85	90 95 100	7 7 7	_ _ _	10 10 10	0.3 0.3 0.3	100 105 110	11 11 11	_ _ _	19 19 19	1 1 1	110 115 125	16 16 18	21 21 24	27 28 31	47 48 55	60 65 70	10 10 12	1 1 1	1 1 1
18 20 22	90 100 110	105 120 130	7 9 9	_ _ _	10 14 14	0.3 0.6 0.6	120 135 145	14 16 16		22 25 25	1 1 1	135 150 160	20 23 23	27 30 30	35 38 38	62 67 67	75 85 95	14 15 15	1.1 1.1 1.1	1 1 1
24 26 28	120 130 140	140 150 160	9 9 9	_ _ _	14 14 14	0.6 0.6 0.6	155 170 180	16 18 18	21 24 24	25 30 31	1 1 1	170 190 200	23 27 27	30 36 36	39 45 46	68 80 81	100 110 120	15 18 18	1.1 1.5 1.5	1.1 1.1 1.1
30 32 34	150 160 170	170 180 190	9 9 9	_ _ _	14 14 14	0.6 0.6 0.6	190 200 215	18 18 20	24 24 27	31 31 34	1 1 1.1	215 225 240	29 29 32	39 39 42	50 51 55	89 90 97	130 140 150	20 20 21	1.5 1.5 1.5	1.1 1.1 1.1
36 38 40	180 190 200	200 215 225	9 11 11	_ _ _	14 17 17	0.6 1 1	225 240 250	20 23 23	27 30 30	34 37 37	1.1 1.1 1.1	250 270 280	32 36 36	42 48 48	56 62 62	98 109 109	150 160 170	21 24 24	1.5 2 2	2 2 2
44 48 52	220 240 260	250 270 290	14 14 14	_ _ _	22 22 22	1 1 1	270 300 320	23 27 27	30 36 36	37 45 45	1.1 1.5 1.5	300 340 360	36 45 45	48 60 60	63 78 79	110 —	190 —	24 —	2 2.1 2.1	2
56 60 64	280 300 320	310 340 360	14 18 18	 24 24	22 30 30	1 1 1	350 380 400	32 36 36	42 48 48	53 62 63	1.5 2 2	380 420 440	45 54 54	60 73 73	80 95 95	_ _ _	_ _ _	_ _ _	2.1 3 3	_ _ _

Remarks
1. Dimension Series 22, 23, and 24 are double direction bearings.
2. The maximum permissible outside diameter of shaft and central washers and minimum permissible bore diameter of housing washers are omitted here. (Refer to the bearing tables for Thrust Bearings).

Thrust Bearings (Flat Seats) — 1 —

																				Un	its: mm	
			513		523							514		524							Thrus Bro	
		293									294										Spherica Roller	I Thrust Brgs.
			Diam	neter Se	ries 3							Diam	eter Se	ries 4				Diam	neter Se	ries 5		Ü
		[Dimensi	on Seri	es						D	imensi	on Serie	es					Dimensior Series	1		ē
	73	93	13	23	2	:3				74	94	14	24	2	4				95			Bore Number
D					Central	Washer	r (min.)	$m{arGathered}_1$ (min.)	D					Central	Washer	$m{r}$ (min.)	$m{r}_1$ (min.)	D		r (min.)	d	Bore
			T		d_2	В						T		d_2	В				T			
					u ₂	_								u _z	_							
2	8	_	11 12	_	_	_	0.6	_	_	_	_	_	_	_	=	_	_	_	_	_	4 6	4 6
20	8	_	12	_	_	_	0.6	_	_	_	_	_	_	_	_	_	_	_	_	_	8	8
3:		_	14 14	_	=	_	0.6 0.6	_	_	_	_	_	_	_	_	_	_	_	=	_	10 12	00 01
3.	10	-	15	_	_	-	0.6	_	_	_	_	_	_	_	-	-	-	_	-	-	15	02
41		_	16 18	_	_	_	0.6	_	_	_	_	_	_	_	_	_	_	52 60	21 24	1	17 20	03 04
5:		-	18	34	20	8	1	0.3	60	16	21	24	45	15	11	1	0.6	73	29	1.1	25	05
61		-	21	38	25	9	1	0.3	70	18	24	28	52	20	12	1	0.6	85	34	1.1	30	06
7		22	24 26	44 49	30 30	10 12	1	0.3 0.6	80 90	20 23	27 30	32 36	59 65	25 30	14 15	1.1	0.6	100 110	39 42	1.1 1.5	35 40	07 08
8!		24	28	52	35	12	1	0.6	100	25	34	39	72	35	17	1.1	0.6	120	45	2	45	09
9! 10!		27 30	31 35	58 64	40 45	14 15	1.1 1.1	0.6 0.6	110 120	27 29	36 39	43 48	78 87	40 45	18 20	1.5 1.5	0.6	135 150	51 58	2 2.1	50 55	10 11
110	23	30	35	64	50	15	1.1	0.6	130	32	42	51	93	50	21	1.5	0.6	160	60	2.1	60	12
11! 12!	23	30 34	36 40	65 72	55 55	15 16	1.1 1.1	0.6	140 150	34 36	45 48	56 60	101 107	50 55	23 24	2 2	1	170 180	63 67	2.1	65 70	13 14
10	5 27	2/	.,,	79	//	10	1.5	1	1/0	20	F1	/5	115	/0	٦,	,	1	100	/0	3		45
13! 14! 15!	27	36 36 39	44 44 49	79 87	60 65 70	18 18 19	1.5 1.5 1.5	1 1	160 170 180	38 41 42	51 54 58	65 68 72	115 120 128	60 65 65	26 27 29	2 2.1 2.1	1 1 1.1	190 200 215	69 73 78	3 4	75 80 85	15 16 17
15:	32	39 42	50 55	88 97	75 85	19 21	1.5	1	190 210	45 50	60 67	77 85	135 150	70 80	30 33	2.1	1.1	225 250	90 90	4	90 100	18 20
19	36	48	63	110	95	24	2	1	230	54	73	95	166	90	37	3	1.1	270	95	5	110	22
210 229	42	54 58	70 75	123 130	100 110	27 30	2.1 2.1	1.1 1.1	250 270	58 63	78 85	102 110	177 192	95 100	40 42	4 4	1.5 2	300 320	109 115	5 5	120 130	24 26
24	45	60	80	140	120	31	2.1	1.1	280	63	85	112	196	110	44	4	2	340	122	5	140	28
250 270		60 67	80 87	140 153	130 140	31 33	2.1	1.1 1.1	300 320	67 73	90 95	120 130	209 226	120 130	46 50	4 5	2 2	360 380	125 132	6	150 160	30 32
28		67	87	153	150	33	3	1.1	340	78	103	135	236	135	50	5	2.1	400	140	6	170	34
30		73 78	95 105	165 183	150 160	37 40	3 4	2 2	360 380	82 85	109 115	140 150	245	140	52	5	3	420 440	145 150	6	180 190	36 38
34		85	110	192	170	40	4	2	400	90	122	155	_	_	_	5	_	440	155	7.5	200	38 40
36		85	112	_	-	_	4	_	420	90	122	160	_	_	_	6	_	500	170	7.5	220	44
38i 42i		85 95	112 130	_	_	_	5	_	440 480	90 100	122 132	160 175	_	_	=	6	_	540 580	180 190	7.5 9.5	240 260	48 52
44	73	95	130	_	_	_	5	_	520	109	145	190	_	_	_	6	_	620	206	9.5	280	56
48	82	109 109	140 140	_	_	_	5	_	540 580	109 118	145 155	190 205	_	_	_	6 7.5	_	670 710	224 236	9.5 9.5	300 320	60 64

A 46 A 47

Table 7. 3 Boundary Dimensions of

Thrust B	Ball Brgs.									511					512		522			
Spherica Roller	al Thrust Brgs.													292						
			Dian	neter Se	ries 0			Diam	neter Se	ries 1					Dian	neter Sei	ries 2			
per			Dime	ension S	Series			Dime	ension S	Series				ı	Dimensi	on Serie	s			
Bore Number	d	ъ.	70	90	10		D	71	91	11		D	72	92	12	22	2	2		
Bori		D		T		$m{r}$ (min.)	D		T		$m{r}$ (min.)	D			Т		Central	Washer	I (min.)	r_1 (min.)
				1					1						1		d_2	В		
68 72 76	340 360 380	380 400 420	18 18 18	24 24 24	30 30 30	1 1 1	420 440 460	36 36 36	48 48 48	64 65 65	2 2 2	460 500 520	54 63 63	73 85 85	96 110 112	_ _ _	_ _ _	=	3 4 4	_ _ _
80 84 88	400 420 440	440 460 480	18 18 18	24 24 24	30 30 30	1 1 1	480 500 540	36 36 45	48 48 60	65 65 80	2 2 2.1	540 580 600	63 73 73	85 95 95	112 130 130	_ _ _	_ _ _	_ _ _	4 5 5	_ _ _
92 96 /500	460 480 500	500 520 540	18 18 18	24 24 24	30 30 30	1 1 1	560 580 600	45 45 45	60 60 60	80 80 80	2.1 2.1 2.1	620 650 670	73 78 78	95 103 103	130 135 135	_ _ _	_ _ _	_ _ _	5 5 5	
/530 /560 /600	530 560 600	580 610 650	23 23 23	30 30 30	38 38 38	1.1 1.1 1.1	640 670 710	50 50 50	67 67 67	85 85 85	3 3 3	710 750 800	82 85 90	109 115 122	140 150 160	_ _ _	_ _ _	_ _ _	5 5 5	_ _ _
/630 /670 /710	630 670 710	680 730 780	23 27 32	30 36 42	38 45 53	1.1 1.5 1.5	750 800 850	54 58 63	73 78 85	95 105 112	3 4 4	850 900 950	100 103 109	132 140 145	175 180 190	_ _ _	_ _ _	_ _ _	6 6 6	_ _ _
/750 /800 /850	750 800 850	820 870 920	32 32 32	42 42 42	53 53 53	1.5 1.5 1.5	900 950 1000	67 67 67	90 90 90	120 120 120	4 4 4	1000 1060 1120	112 118 122	150 155 160	195 205 212	_ _ _	_	_ _ _	6 7.5 7.5	
/900 /950 /1000	900 950 1000	980 1030 1090	36 36 41	48 48 54	63 63 70	2 2 2.1	1060 1120 1180	73 78 82	95 103 109	130 135 140	5 5 5	1180 1250 1320	125 136 145	170 180 190	220 236 250	_ _ _	_	_ _ _	7.5 7.5 9.5	
/1060 /1120 /1180	1060 1120 1180	1150 1220 1280	41 45 45	54 60 60	70 80 80	2.1 2.1 2.1	1250 1320 1400	85 90 100	115 122 132	150 160 175	5 5 6	1400 1460 1520	155 — —	206 206 206	265 — —	_ _ _	_ _ _	_ _ _	9.5 9.5 9.5	
/1250 /1320 /1400	1250 1320 1400	1360 1440 1520	50 —	67 —	85 95 95	3 3 3	1460 1540 1630	_ _ _	_ _ _	175 175 180	6 6 6	1610 1700 1790	_ _ _	216 228 234	_ _ _	_ _ _	_ _ _	_ _ _	9.5 9.5 12	_ _ _
/1500 /1600 /1700	1500 1600 1700	1630 1730 1840		_ _ _	105 105 112	4 4 4	1750 1850 1970	_ _ _	_ _ _	195 195 212	6 6 7.5	1920 2040 2160	_ _ _	252 264 276	_ _ _	_ _ _	_ _ _	_ _ _	12 15 15	_ _ _
/1800 /1900 /2000	1800 1900 2000	1950 2060 2160		_ _ _	120 130 130	4 5 5	2080 2180 2300	_ _ _	_ _ _	220 220 236	7.5 7.5 7.5	2280 — —	_ _ _	288 — —	_ _ _	_ _ _	_ _ _	_ _ _	15 — —	_ _ _
/2120 /2240 /2360 /2500	2120 2240 2360 2500	2300 2430 2550 2700	= = =	_ _ _ _	140 150 150 160	5 5 5 5	2430 2570 2700 2850	_ _ _ _	_ _ _ _	243 258 265 272	7.5 9.5 9.5 9.5	_ _ _ _	_ _ _	_ _ _ _	_ _ _ _	 		_ _ _ _	_ _ _ _	_ _ _ _

- Remarks
 Dimension Series 22, 23, and 24 are double direction bearings.
 The maximum permissible outside diameter of shaft and central washers and minimum permissible bore diameter of housing washers are omitted here. (Refer to the bearings tables for Thrust Bearings).

Thrust Bearings (Flat Seats) — 2 —

		ŭ	Ť		•															Un	its: mm	1
			513		523							514		524							Thrus Br	st Ball gs.
		293									294										Spheric	al Thrust Brgs.
			Diam	eter Se	ries 3							Diam	eter Se	ries 4				Diam	neter Se	ries 5		
		D	imensi	on Serie	es						0	imensi	on Serie	es					Dimension Series			Jer.
	73	93	13	23	2	3				74	94	14	24	2	4				95		d	Bore Number
D					Central	Washer	I (min.)	$m{r}_1$ (min.)	D					Central	Washer	I (min.)	$m{r}_1$ (min.)	D		$m{r}$ (min.)	_	Bore
			T		d_2	В						T		d_2	В				Т			
540	90	122	160	_	_	_	5	_	620	125	170	220	_	_	_	7.5	_	750	243	12	340	68
560 600	90 100	122	160 175	_	=	=	5	_	640 670	125 132	170 175	220 224	_	_	=	7.5 7.5	_	780 820	250 265	12	360 380	72 76
620	100	132	175				ļ ,		710	140	185	243				7.5		850	272	12	400	80
650 680	100 103 109	140 145	180 190	_		=	6 6	_	730 780	140 140 155	185 185 206	243 243 265		_		7.5 7.5 9.5	=	900 950	290 308	15 15	420 440	84 88
							-										_					
710 730	112 112	150 150	195 195	_	_	_	6	_	800 850	155 165	206 224	265 290	_	_	=	9.5 9.5	_	980 1000	315 315	15 15	460 480	92 96
750	112	150	195	_	_	_	6	-	870	165	224	290	_	_	-	9.5	_	1060	335	15	500	/500
800 850	122 132	160 175	212 224	_	_	_	7.5 7.5	_	920 980	175 190	236 250	308 335	_	_	_	9.5 12	_	1090 1150	335 355	15 15	530 560	/530 /560
900	136	180	236	_	_	_	7.5	-	1030	195	258	335	_	_	-	12	_	1220	375	15	600	/600
950 1000	145 150	190 200	250 258	_	_	_	9.5 9.5	_	1090 1150	206 218	280 290	365 375	_	_	_	12 15	_	1280 1320	388 388	15 15	630 670	/630 /670
1060	160	212	272	_	-	-	9.5	-	1220	230	308	400	_	_	-	15	_	1400	412	15	710	/710
1120	165	224	290	_	_	_	9.5	_	1280	236	315	412	_	_	_	15	_	=	_	_	750	/750
1180 1250	170 180	230 243	300 315	_	_	=	9.5 12	_	1360 1440	250 —	335 354	438	_	_	_	15 15	_	_	=	_	800 850	/800 /850
1320	190	250	335	_	_	_	12	_	1520	_	372	_	_	_	_	15	_	_	_	_	900	/900
1400 1460	200	272 276	355	_	_	_	12 12	_	1600 1670	_	390 402	_	_	_	_	15 15	_	_	=	_	950 1000	/950 /1000
1540	_	288	_	_	_	_	15	_	1770	_	426	_	_	_	_	15	_	_	_	_	1060	/1060
1630 1710	_	306 318	_	_	_	_	15 15	_	1860 1950	_	444 462	_	_	_	=	15 19	_	_	=	_	1120 1180	/1120 /1180
1800		330					19		2050		480					19					1250	/1250
1900 1900 2000	_	348 360	_	_	_	=	19 19 19	_	2160 2280	Ξ	505 530	_	_	_	=	19 19 19	=	Ξ	Ξ	=	1320 1400	/1320 /1400
									2200		330					''						
2140 2270	_	384 402	_	_	_	_	19 19	_	_	=	_	_	_	_	=	_	_	_	=	_	1500 1600	/1500 /1600
_	_	_	_	_	-	_	-	_	_	-	_	_	_	_	-	_	_	_	_	_	1700	/1700
_	_	_	_	_	=	_	_	_	_	=	_	_	_	_	=	=	_	_	_	_	1800 1900	/1800 /1900
-	_	_	_	_	-	-	-	-	_	-	_	_	_	_	-	-	_	_	-	_	2000	/2000
Ξ	=	_	_	_	_	=	_	_	_	=	_	_	_	_	=	_	_	=	=	_	2120 2240	/2120 /2240
_	_	_	_	_	_	_	_	_	_	=	_	_	_	_	=	_	_	Ξ	Ξ	=	2360 2500	/2360 /2500

A 48 A 49

Table 7. 4 Dimensions of Snap Ring Grooves and Locating Snap Rings — (1) Bearings of Dimension Series 18 and 19

Арр	licable Bear	ings				Snap F	Ring Groove				
	d			ig Groove neter			a			g Groove dth	Radius of Bottom
		D		D ₁		Bearing Dim				b	Corners
Dimension	on Series		1	21		18	1	19			r_0
18	19		max.	min.	max.	min.	max.	min.	max.	min.	max.
_	10 12 15	22 24 28	20.8 22.8 26.7	20.5 22.5 26.4	_	_	1.05 1.05 1.3	0.9 0.9 1.15	1.05 1.05 1.2	0.8 0.8 0.95	0.2 0.2 0.25
	17 —	30 32 34	28.7 30.7 32.7	28.4 30.4 32.4	1.3 1.3	— 1.15 1.15	1.3 — —	1.15 — —	1.2 1.2 1.2	0.95 0.95 0.95	0.25 0.25 0.25
25 — 28	20 22 —	37 39 40	35.7 37.7 38.7	35.4 37.4 38.4	1.3 — 1.3	1.15 — 1.15	1.7 1.7 —	1.55 1.55 —	1.2 1.2 1.2	0.95 0.95 0.95	0.25 0.25 0.25
30 32 —	25 — 28	42 44 45	40.7 42.7 43.7	40.4 42.4 43.4	1.3 1.3 —	1.15 1.15 —	1.7 — 1.7	1.55 — 1.55	1.2 1.2 1.2	0.95 0.95 0.95	0.25 0.25 0.25
35 40 —	30 32 35	47 52 55	45.7 50.7 53.7	45.4 50.4 53.4	1.3 1.3 —	1.15 1.15 —	1.7 1.7 1.7	1.55 1.55 1.55	1.2 1.2 1.2	0.95 0.95 0.95	0.25 0.25 0.25
45 — 50	40 —	58 62 65	56.7 60.7 63.7	56.4 60.3 63.3	1.3 — 1.3	1.15 — 1.15	1.7 —	 1.55 	1.2 1.2 1.2	0.95 0.95 0.95	0.25 0.25 0.25
 55 60	45 50 —	68 72 78	66.7 70.7 76.2	66.3 70.3 75.8	— 1.7 1.7	— 1.55 1.55	1.7 1.7 —	1.55 1.55 —	1.2 1.2 1.6	0.95 0.95 1.3	0.25 0.25 0.4
65 70	55 60 65	80 85 90	77.9 82.9 87.9	77.5 82.5 87.5	1.7 1.7	— 1.55 1.55	2.1 2.1 2.1	1.9 1.9 1.9	1.6 1.6 1.6	1.3 1.3 1.3	0.4 0.4 0.4
75 80 —	70 75	95 100 105	92.9 97.9 102.6	92.5 97.5 102.1	1.7 1.7 —	1.55 1.55 —	2.5 2.5	 2.3 2.3	1.6 1.6 1.6	1.3 1.3 1.3	0.4 0.4 0.4
85 90 95	80 — 85	110 115 120	107.6 112.6 117.6	107.1 112.1 117.1	2.1 2.1 2.1	1.9 1.9 1.9	2.5 — 3.3	2.3 — 3.1	1.6 1.6 1.6	1.3 1.3 1.3	0.4 0.4 0.4
100 105 110	90 95 100	125 130 140	122.6 127.6 137.6	122.1 127.1 137.1	2.1 2.1 2.5	1.9 1.9 2.3	3.3 3.3 3.3	3.1 3.1 3.1	1.6 1.6 2.2	1.3 1.3 1.9	0.4 0.4 0.6
120 130	105 110 120	145 150 165	142.6 147.6 161.8	142.1 147.1 161.3	2.5 3.3		3.3 3.3 3.7	3.1 3.1 3.5	2.2 2.2 2.2	1.9 1.9 1.9	0.6 0.6 0.6
140 — 150 160	130 140 —	175 180 190 200	171.8 176.8 186.8 196.8	171.3 176.3 186.3 196.3	3.3 — 3.3 3.3	3.1 3.1 3.1	3.7 3.7 —	3.5 3.5 —	2.2 2.2 2.2 2.2	1.9 1.9 1.9 1.9	0.6 0.6 0.6 0.6

Remarks The minimum permissible chamfer dimensions $r_{\rm N}$ on the snap-ring-groove side of the outer rings are as follows: Dimension series 18: For outside diameters of 78mm and less, use 0.3mm chamfer. For all others exceeding 78mm, use 0.5mm chamfer. Dimension series 19: For outside diameters of 24mm and less, use 0.2mm chamfer.

For 47mm and less, use 0.3mm chamfer.

For all others exceeding 47mm, use 0.5mm chamfer (However, for an outside diameter of 68 mm, use a 0.3 mm chamfer, which is not compliant with ISO 15).

Units: mm

		Locati	ng Snap Rin	ıg			Side Cover
Locating Snap Ring Number	He	Sectional ight	Thic	kness f	fitted	ry of snap ring I in groove eference) Snap Ring Outside Diameter D_2	Stepped Bore Diameter (Reference)
	max.	min.	max.	min.	approx.	max.	min.
NR 1022	2.0	1.85	0.7	0.6	2	24.8	25.5
NR 1024	2.0	1.85	0.7	0.6	2	26.8	27.5
NR 1028	2.05	1.9	0.85	0.75	3	30.8	31.5
NR 1030	2.05	1.9	0.85	0.75	3	32.8	33.5
NR 1032	2.05	1.9	0.85	0.75	3	34.8	35.5
NR 1034	2.05	1.9	0.85	0.75	3	36.8	37.5
NR 1037	2.05	1.9	0.85	0.75	3	39.8	40.5
NR 1039	2.05	1.9	0.85	0.75	3	41.8	42.5
NR 1040	2.05	1.9	0.85	0.75	3	42.8	43.5
NR 1042	2.05	1.9	0.85	0.75	3	44.8	45.5
NR 1044	2.05	1.9	0.85	0.75	4	46.8	47.5
NR 1045	2.05	1.9	0.85	0.75	4	47.8	48.5
NR 1047	2.05	1.9	0.85	0.75	4	49.8	50.5
NR 1052	2.05	1.9	0.85	0.75	4	54.8	55.5
NR 1055	2.05	1.9	0.85	0.75	4	57.8	58.5
NR 1058	2.05	1.9	0.85	0.75	4	60.8	61.5
NR 1062	2.05	1.9	0.85	0.75	4	64.8	65.5
NR 1065	2.05	1.9	0.85	0.75	4	67.8	68.5
NR 1068	2.05	1.9	0.85	0.75	5	70.8	72
NR 1072	2.05	1.9	0.85	0.75	5	74.8	76
NR 1078	3.25	3.1	1.12	1.02	5	82.7	84
NR 1080	3.25	3.1	1.12	1.02	5	84.4	86
NR 1085	3.25	3.1	1.12	1.02	5	89.4	91
NR 1090	3.25	3.1	1.12	1.02	5	94.4	96
NR 1095	3.25	3.1	1.12	1.02	5	99.4	101
NR 1100	3.25	3.1	1.12	1.02	5	104.4	106
NR 1105	4.04	3.89	1.12	1.02	5	110.7	112
NR 1110	4.04	3.89	1.12	1.02	5	115.7	117
NR 1115	4.04	3.89	1.12	1.02	5	120.7	122
NR 1120	4.04	3.89	1.12	1.02	7	125.7	127
NR 1125	4.04	3.89	1.12	1.02	7	130.7	132
NR 1130	4.04	3.89	1.12	1.02	7	135.7	137
NR 1140	4.04	3.89	1.7	1.6	7	145.7	147
NR 1145	4.04	3.89	1.7	1.6	7	150.7	152
NR 1150	4.04	3.89	1.7	1.6	7	155.7	157
NR 1165	4.85	4.7	1.7	1.6	7	171.5	173
NR 1175	4.85	4.7	1.7	1.6	10	181.5	183
NR 1180	4.85	4.7	1.7	1.6	10	186.5	188
NR 1190	4.85	4.7	1.7	1.6	10	196.5	198
NR 1200	4.85	4.7	1.7	1.6	10	206.5	208

Table 7. 4 Dimensions of Snap Ring Grooves and Locating Snap Rings — (2) Bearing of Diameter Series 0, 2, 3, and 4

	Appli	cable Bea	rings					Snap Ri	ng Groove				
	(d				ng Groove meter			oove Positi 2 meter Serie			g Groove dth	Radius of Bottom
	Diamete	er Series		D	i	D_1)	2, 3		1 .	b	Corners r_0
0	2	3	4		max.	min.	max.	min.	max.	min.	max.	min.	max.
10 12	_	_	_	26 28	24.5 26.5	24.25 26.25	1.35 1.35	1.19 1.19	_	_	1.17 1.17	0.87 0.87	0.2 0.2
 15 17	10 12 15	9 — 10	8 9 —	30 32 35	28.17 30.15 33.17	27.91 29.9 32.92	2.06 2.06	1.9 1.9	2.06 2.06 2.06	1.9 1.9 1.9	1.65 1.65 1.65	1.35 1.35 1.35	0.4 0.4 0.4
 20	17 —	12 — 15	10 — 12	37 40 42	34.77 38.1 39.75	34.52 37.85 39.5	 2.06	 1.9	2.06 2.06 2.06	1.9 1.9 1.9	1.65 1.65 1.65	1.35 1.35 1.35	0.4 0.4 0.4
22 25 —		17		44 47 50	41.75 44.6 47.6	41.5 44.35 47.35	2.06	1.9 1.9	2.46 2.46	2.31 2.31	1.65 1.65 1.65	1.35 1.35 1.35	0.4 0.4 0.4
28 30	25 —	20 — 22	15 —	52 55 56	49.73 52.6 53.6	49.48 52.35 53.35	2.06 2.08	1.9 1.88	2.46 — 2.46	2.31	1.65 1.65 1.65	1.35 1.35 1.35	0.4 0.4 0.4
32 35 —	28 30 32	25 —		58 62 65	55.6 59.61 62.6	55.35 59.11 62.1	2.08 2.08	1.88 1.88	2.46 3.28 3.28	2.31 3.07 3.07	1.65 2.2 2.2	1.35 1.9 1.9	0.4 0.6 0.6
40 — 45	35 —	28 30 32	20 —	68 72 75	64.82 68.81 71.83	64.31 68.3 71.32	2.49 — 2.49	2.29 — 2.29	3.28 3.28 3.28	3.07 3.07 3.07	2.2 2.2 2.2	1.9 1.9 1.9	0.6 0.6 0.6
50 — 55	40 45 50	35 — 40	25 — 30	80 85 90	76.81 81.81 86.79	76.3 81.31 86.28	2.49 — 2.87	2.29 — 2.67	3.28 3.28 3.28	3.07 3.07 3.07	2.2 2.2 3	1.9 1.9 2.7	0.6 0.6 0.6
60 65 70	55 60	— 45 50	— 35 40	95 100 110	91.82 96.8 106.81	91.31 96.29 106.3	2.87 2.87 2.87	2.67 2.67 2.67	3.28 3.28	3.07 3.07	3 3 3	2.7 2.7 2.7	0.6 0.6 0.6
75 — 80	65 70	 55 	45 —	115 120 125	111.81 115.21 120.22	111.3 114.71 119.71	2.87 — 2.87	2.67 — 2.67	4.06 4.06	3.86 3.86	3 3.4 3.4	2.7 3.1 3.1	0.6 0.6 0.6
85 90 95	75 80 —	60 65 —	50 55 —	130 140 145	125.22 135.23 140.23	124.71 134.72 139.73	2.87 3.71 3.71	2.67 3.45 3.45	4.06 4.9 —	3.86 4.65 —	3.4 3.4 3.4	3.1 3.1 3.1	0.6 0.6 0.6
100 105 110	85 90 95	70 75 80	60 65 —	150 160 170	145.24 155.22 163.65	144.73 154.71 163.14	3.71 3.71 3.71	3.45 3.45 3.45	4.9 4.9 5.69	4.65 4.65 5.44	3.4 3.4 3.8	3.1 3.1 3.5	0.6 0.6 0.6
120 — 130	100 105 110	85 90 95	70 75 80	180 190 200	173.66 183.64 193.65	173.15 183.13 193.14	3.71 — 5.69	3.45 — 5.44	5.69 5.69 5.69	5.44 5.44 5.44	3.8 3.8 3.8	3.5 3.5 3.5	0.6 0.6 0.6

Units: mm

Geometry of snap ring fitted in groove (Reference) Slit Snap Ring Stepped Diam (Reference)			Locati		
Width Outside D	ckness		ght	Cross S Hei	ocating Snap Ring Number
B Bidiffeter B2	min.	max.	min.	max.	
Bidifficter B2	min. 0.74 0.74 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02	max. 0.84 0.84 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.1	min. 1.91 1.91 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.89 3.89 3.89 3.89 3.89 4.7 4.7 4.7 4.7 4.7 4.7 4.7 7.06	max. 2.06 2.06 3.25 3.25 3.25 3.25 3.25 3.25 4.04 4.04 4.04 4.04 4.04 4.04 4.04 4.0	NR 26 (¹) NR 28 (¹) NR 30 NR 30 NR 35 NR 37 NR 40 NR 42 NR 44 NR 50 NR 50 NR 50 NR 55 NR 56 NR 65 NR 65 NR 65 NR 68 NR 62 NR 68 NR 75 NR 80 NR 75 NR 80 NR 95 NR 100 NR 110 NR 110 NR 115

A 52 A 53

Note (1) The locating snap rings and snap ring grooves of these bearings are not specified by ISO.

1. The dimensions of these snap ring grooves are not applicable to bearings of dimension series 00, 82, and 83.

2. The minimum permissible chamfer dimension r_N on the snap-ring side of outer rings is 0.5mm. However, for bearings of diameter series 0 having outside diameters 35mm and below, it is 0.3mm.

(Example 4) NU 3 18 M CM

(Example 5) NN 3 0 17 K CC1 P4

Radial Clearance for

Machined Brass Cage

Bearing Bore 90mm

Diameter Series 3

NU Type Cylindrical

Accuracy of ISO Class 4

Radial Clearance in Non-

Roller Bearing

Electric-Motor Bearings CM

7.2 Formulation of Bearing Numbers

Bearing numbers are alphanumeric combinations that indicate the bearing type, boundary dimensions, dimensional and running accuracies, internal clearance. and other related specifications. They consist of basic numbers and supplementary symbols. The boundary dimensions of commonly used bearings mostly conform to the organizational concept of ISO, and the bearing numbers of these standard bearings are specified by JIS B 1513 (Bearing Numbers for Rolling Bearings). Due to a need for more detailed classification, NSK uses auxiliary symbols other than those specified by JIS.

Bearing numbers consist of a basic number and supplementary symbols. The basic number indicates

Table 7. 5 Bearing Series Symbols

			rabie	7.5 Bear	ing Series Symbols				
			Dimensio	n Symbols				Dimensio	n Symbols
Bearing Type	Bearing Series Symbols	Type Symbols	Width Symbols	Diameter Symbols	Bearing Type	Bearing Series Symbols	Type Symbols	Width Symbols or Height Symbols	Diameter Symbols
	68	6	(1)	8	Double-Row	NNU49	NNU	4	9
Single-Row	69	6	(1)	9	Cylindrical	NN30	NN	3	0
Deep Groove	60	6	(1)	0	Roller Bearings				
Ball Bearings	62	6	(0)	2		NA48	NA	4	8
	63	6	(0)	3	Needle Roller	NA49	NA	4	9
	79	7	(1)	9	Bearings	NA59	NA	5	9
Single-Row	70	7	(1)	0	J.	NA69	NA	6	9
Angular Contact	72	7	(0)	2					
Ball Bearings	73	7	(0)	3		329	3	2	9
			(0)			320	3	2	0
Calf Aligning	12 13	1 1	(0)	2		330	3	3	0
Self-Aligning	22		(0)	2		331	3	3	1
Ball Bearings	23	(1) (1)	2	3	Tapered Roller	302	3	0	2
					Bearings	322	3	2	2
	NU10	NU	1	0		332	3	3	2
	NU2	NU	(0)	2					
	NU22	NU	2	2		303	3	0	3
	NU3	NU	(0)	3		323	3	2	3
	NU23	NU	2	3			_	_	_
	NU4	NU	(0)	4		230	2	3	0
	NJ2	NJ	(0)	2	Spherical	231	2	3	1
	NJ22	NJ	2	2	Roller	222	2	2	2
	NJ3	NJ	(0)	3	Bearings	232	2	3	2
	NJ23	NJ	2	3	Boar mgo	213 (1)	2	0	3
Single-Row	NJ4	NJ	(0)	4		223	2	2	3
Cylindrical	NUP2	NUP	(0)	2					
Roller	NUP22	NUP	2	2		511	5	1	1
Bearings	NUP3	NUP	(0)	3		512	5	1	2
	NUP23	NUP	2	3	Thrust Ball	513	5	1	3
	NUP4	NUP	(0)	4	Bearings with	514	5	1	4
	N10	N	1	0	Flat Seats	522	5	2	2
	N2	N	(0)	2		523	5	2	3
	N3	N	(0)	3		524	5	2	4
	N4	N	(0)	4					
					Spherical	292	2	9	2
	NF2	NF	(0)	2	Thrust Roller	293	2	9	3
	NF3	NF	(0)	3	Bearings	294	2	9	4
	NF4	NF	(0)	4			_	<u> </u>	·
Note (1) Res	arina Sorios S	umbal 212	chould lo	gically bo 20	13 hut customarily it is r	numbered 212	,		

Note (1) Bearing Series Symbol 213 should logically be 203, but customarily it is numbered 213. Remarks Numbers in () in the column of width symbols are usually omitted from the bearing number.

A 54 A 55

Table 7. 6 Formulation of

		Bas	ic Numbers	S									
Bear	ing Series	Dore	a Numbar	Cor	ntact Angle	Intorn	ual Dagian Cumbal	Mai	torial Cumbal	Coa	o Cumbal	Exter	nal Features
Syr	mbols (1)	DOL	e Number		Symbol	men	al Design Symbol	IVIa	terial Symbol	Cay	e Symbol		ls, Shields Symbol
Symbol	Meaning	Symbol	Meaning	Symbol	Meaning	Symbol	Meaning	Symbol	Meaning	Symbol	Meaning	Symbol	Meaning
68 69 60 :	Single- Row Deep Groove Ball Bearings	1 2 3	Bearing 1mm 2 3	(C	ngular ontact Ball earings Standard Contact Angle	A	Internal Design Differs from Standard One Smaller Diameter	g	Case-Hardened Steel Used in Rings, Rolling Elements	M	Machined Brass Cage	Z ZS	Shield on One Side Only
70 72 73 :	Single-Row Angular Contact Ball Bearings Self-	9 00 01	9 10 12	A 5	of 30° Standard Contact Angle of 25°		of Outer Ring Raceway, Contact Angle, and Outer Ring Width of Tapered Roller Bearings Conform to ISO 355	h	Stainless Steel Used in Rings, Rolling Elements	W	Pressed Steel Cage	ZZ ZZS	Shields on Both Sides
13 22 : NU10	Aligning Ball Bearings Cylindrical	02	15 17	В	Standard Contact Angle of 40°		,			Т	Synthetic Resin Cage	DU	Contact Rubber Seal on One Side Only
NJ 2 N 3 NN 30	Róller Bearings	/22 /28 /32	22 28 32	С	Standard Contact Angle of 15°	C (F	or High Capacity) Bearings			٧	Without	DDU	Contact Rubber Seals on Both Sides
NA48 NA49 NA69 : 320 322	Needle Roller Bearings Tapered Roller Bearings	04(3) 05 06	20 25 30 :		Tapered Roller Bearings / Contact Angle Less than 17°	CA CD EA	Spherical Roller Bearings				Cage	V	Non- Contact Rubber Seal on One Side Only
323 : 230 222 223	(2) Spherical Roller Bearings	88 92 96	: 440 460 480	C	Contact Angle about 20°	E	Cylindrical Roller Bearings					vv	Non- Contact Rubber Seals on Both Sides
: 511 512 513	Thrust Ball Bearing with Flat Seats	/500 /530 /560	500 530 560 :	D	Contact Angle about 28°	E	Spherical Thrust Roller Bearings						
: 292 293 294 :	Thrust Spherical Roller Bearings	: /2 360 /2 500	: 2 360 2 500										
HR(4)	High Capacity Tapered Rolle Bearings, and	r											
	Symbols	and Nu	mbers Confe	orm to .	JIS(5)			NSK	Symbol			NS	K Symbol
					Marked on Bea	rinas					t Marked		
						5-				on	Bearings		

- Notes
 (1) Bearing Series Symbols conform to Table 7.5.
 (2) For basic numbers of tapered roller bearings in ISO's new series, refer to Page B111.
 (3) For Bearing Bore Numbers 04 through 96, five times the bore number gives the bore size (mm) (except double-direction thrust ball bearings).
 (4) HR is prefix to bearing series symbols and it is NSK's original prefix.

Bearing Numbers

Αι	uxiliary Syn	nbols													
	ol for Design		ngement ymbol	Inter		Clearance Symbol oad Symbol		ance Class Symbol	S	Spe	Special ecification Symbol		er or Sleeve Symbol	Grea	se Symbol
	f Rings Meaning	Symbol	Meaning	Symbol	Mea	ining (radial clearance)	Symbol	Meaning	Svm	ibol	Meaning	Symbol	Meaning	Symbol	Meaning
K	Tapered Bore of	DB	Back-to-Back Arrangement	C1		Clearance Less than C2 Clearance Less	,	ISO Normal	1	Bea	arings ated for	+ K	Bearings with Outer	AS2	SHELL ALVANIA GREASE S2
	Inner Ring (Taper 1:12)	DF	Face-to-	C2 Omitted	Radial Brgs.	than CN CN Clearance	P6	ISO Class 6			nensional bilization	+L	Ring Spacers Bearings	ENS	ENS GREASE
	Tapered Bore of		Face Arrangement	C3 C4	For All Ra	Clearance Greater than CN Clearance Greater than C3	P6X	ISO Class 6X	Х2		Working Temperature Lower than 150 °C		with Inner Ring Spacers	NS7	NS HI-LUBE
	Inner Ring (Taper 1:30)	DT	Tandem Arrangement	C5		Clearance Greater than C4	. P5	ISO Class 5	X2		Working Temperature	+KL	Bearings with Both Inner and Outer Ring	PS2	MULTEMP PS No. 2
	Notch or Lubricating Groove in Plan CCC CCC Section 1 Normal Clear						P4	ISO Class 4	X2		Lower than 200 °C Working	Н	Spacers Adapter		
	Groove in Ring CC CC SE Clearance Gro					Normal Clearance Clearance Greater than CC	P2	ISO Class 2	\	29	Temperature Lower than 250 °C		Designation		
	CC3 CC4 Lubricating Common in CC5 CC5 CC6					Clearance Greater than CC3 Clearance Greater than CC4		MA(7) hered		Ic	Spherical \		Withdrawal Sleeve Designation		
	Outside Surface and Holes in Outer Ring			MC1	Js.	Clearance Less than MC2		ler bearing/		(F	Roller Bearings	HJ	Thrust Collar Designation		
	Snap Ring Groove in			MC2 MC3	a-Small re Ball Br	Clearance Less than MC3 Normal Clearance	PN2	Class 2	S1		Dimensional Stabilizing Treatment Working				
	Outer Ring Snap Ring			MC4 MC5	For Extra-	Clearance Greater than MC3 Clearance Greater than MC4	PN3	Class 3			Temperature Lower than 200°C				
	Groove with Snap Ring in Outer Ring			MC6	and	Clearance Greater than MC5	PN0	Class 0							
	J			СМ	Clea Ball Moto	rance in Deep Groove Bearings for Electric ors	PN00	Class 00							
				CT CM		rance in Cylindrical er Bearings for Electric ors									
				(1	Ball Be		:								
				L M	Ligh Med	a light Preload nt Preload dium Preload									
S	rtially the ame as JIS(5)		ame as IIS(5)	NSK S		Partially the same as JIS(5)/BAS(6)	San	ne as JIS(5)			NSK Sym	nbol, Par	tially the same	as JIS(5)
	315()					ple, Marked on Bearing	IS						Not Marked	on Bear	ings

- Notes (5) JIS: Japanese Industrial Standards.
 (6) BAS: The Japan Bearing Industrial Association Standard.
 (7) ABMA: The American Bearing Manufacturers Association.

8. BEARING TOLERANCES

8.1 Bearing Tolerance Standards

The tolerances for the boundary dimensions and running accuracy of rolling bearings are specified by ISO 492/199/582 (Accuracies of Rolling Bearings). Tolerances are specified for the following items:

Regarding bearing accuracy classes, besides ISO normal accuracy, as the accuracy improves there are Class 6X (for tapered roller bearings), Class 6, Class 5, Class 4, and Class 2, with Class 2 being the highest in ISO. The applicable accuracy classes for each bearing type and the correspondence of these classes are shown in Table 8.1.

Table 8. 1 Bearing Types and Tolerance Classes

	Bearing	Types		Applica	able Tolerance (Classes		Applicable Tables	Reference Pages
ı	Deep Groove B	all Bearings	Normal	Class 6	Class 5	Class 4	Class 2		
	Angular Contac	t Ball Bearings	Normal	Class 6	Class 5	Class 4	Class 2		
:	Self-Aligning Ba	all Bearings	Normal	Class 6 equivalent	Class 5 equivalent	_	_	Table	A60
	Cylindrical Roll	er Bearings	Normal	Class 6	Class 5	Class 4	Class 2	8.2	to A63
	Needle Roller B (solid type)	earings	Normal	Class 6	Class 5	Class 4	_		
:	Spherical Rolle	r Bearings	Normal	Class 6	Class 5	_	_		
	Tapered	Metric Design	Normal Class 6X	_	Class 5	Class 4	_	Table 8.3	A64 to A67
	Roller Bearings	Inch Design	ANSI/ABMA CLASS 4	ANSI/ABMA CLASS 2	ANSI/ABMA CLASS 3	ANSI/ABMA CLASS 0	ANSI/ABMA CLASS 00	Table 8.4	A68 and A69
	Magneto Bearir	ngs	Normal	Class 6	Class 5	_	_	Table 8.5	A70 and A71
	Thrust Ball Bea	rings	Normal	Class 6	Class 5	Class 4	_	Table 8.4	A72 to A74
	Thrust Spherica	al Roller Bearings	Normal	_	_	_	_	Table 8.7	A75
S	JIS	(1)	Class 0	Class 6	Class 5	Class 4	Class 2	_	_
ndard	DIN	J(2)	P0	P6	P5	P4	P2	_	_
Equivalent standards (Reference)		Ball Bearings	ABEC 1	ABEC 3	ABEC 5 (CLASS 5P)	ABEC 7 (CLASS 7P)	ABEC 9 (CLASS 9P)	Table 8.2	A60 to A63
quival (Re	ANSI/ ABMA(3)	Roller Bearings	RBEC 1	RBEC 3	RBEC 5	_	_	[Table] 8.8	(A76 and A77)
Ш		Tapered Roller Bearings	CLASS 4	CLASS 2	CLASS 3	CLASS 0	CLASS 00	Table 8.4	(A68 and A69)

Notes (1) JIS: Japanese Industrial Standards (2) DIN: Deutsch Industrie Norm

(3) ANSI/ABMA: The American Bearing Manufacturers Association

Remarks The permissible limit of chamfer dimensions shall conform to Table 8.9 (Page A78), and the tolerances and permissible tapered bore diameters shall conform to Table 8.10 (Page A80).

(Reference) Rough definitions of the items listed for Running Accuracy and their measuring methods are shown in Fig. 8.1, and they are described in detail in ISO 5593 (Rolling Bearings-Vocabulary) and JIS B 1515 (Rolling Bearings-Tolerances) and elsewhere.

Supplementary Table

Running Accuracy	Inner Ring	Outer Ring	Dial Gauge
K _{ia}	Rotating	Stationary	Α
K_{ea}	Stationary	Rotating	Α
S_{ia}	Rotating	Stationary	B ₁
S_{ea}	Stationary	Rotating	B ₂
S_d	Rotating	Stationary	С
S_D	_	Rotating	D
S_i , $S_{ m e}$	Only the shaft or central wash rotated.	or housing her is to be	E

Fig. 8.1 Measuring Methods for Running Accuracy (summarized)

Symbols for Boundary Dimensions and Running Accuracy

Brg bore dia., nominal

Deviation of a single bore dia. Δ_{ds}

Single plane mean bore dia. deviation

Bore dia. Variation in a single radial plane

 $V_{d\mathrm{mp}}$ Mean bore dia. Variation

В Inner ring width, nominal

Deviation of a single inner ring width Δ_{Bs}

Inner ring width variation V_{Bs}

Radial runout of assembles brg inner ring K_{ia}

inner ring reference face (backface, where applicable) runout with bore

Assembled brg inner ring face (back face) runout with raceway

 S_h S_e Raceway to backface thickness variation of thrust brg

Brg width, nominal T

Deviation of the actual brg width

Brg outside dia., nominal

 Δ_{Ds} Deviation of a single outside dia.

Single plane mean outside dia. Deviation V_{Dp}

Outside dia. Variation in a single radial

Mean outside dia. Variation

COuter ring width, nominal

Deviation of a single outer ring width $\Delta c_{\rm s}$

Outer ring width variation

 K_{ea} Radial runout of assembled brg outer ring Variation of brg outside surface generatrix

inclination with outer ring reference face (backface)

Assembled brg outer ring face (backface) runout with raceway

Table 8. 2 Tolerances for Radial Bearings Table 8. 2. 1 Tolerances for Inner Rings and

Nominal	Bore Diameter					Δ,	_{dmp} (2)						Δ	ds (2)	
	d (mm)			-							n o		ass 4		
'	(11111)	N	ormal	CI	ass 6	C	lass 5	Ci	lass 4	(Class 2	S	eries 2, 3, 4	- 0	lass 2
OL/OF.	inal	hiah	low	hiah	low	hiah	lour	hiah	low	hiah	lour	_	low	hiah	low
over	incl.	high	low	high	low	high	low	high	low	high	low	high	IOW	high	IOW
0.6(1) 2.5 10	2.5 10 18	0 0 0	- 8 - 8 - 8	0 0	- 7 - 7 - 7	0 0	- 5 - 5 - 5	0 0	- 4 - 4 - 4	0 0	-2.5 -2.5 -2.5	0 0 0	- 4 - 4 - 4	0 0	-2.5 -2.5 -2.5
18 30 50	30 50 80	0 0 0	- 10 - 12 - 15	0 0 0	- 8 -10 -12	0 0 0	- 6 - 8 - 9	0 0 0	- 5 - 6 - 7	0 0 0	-2.5 -2.5 -4	0 0 0	- 5 - 6 - 7	0 0 0	-2.5 -2.5 -4
80 120 150 180	120 150 180 250	0 0 0 0	- 20 - 25 - 25 - 30	0 0 0 0	-15 -18 -18 -22	0 0 0 0	-10 -13 -13 -15	0 0 0 0	- 8 -10 -10 -12	0 0 0	-5 -7 -7 -8	0 0 0 0	- 8 -10 -10 -12	0 0 0	-5 -7 -7 -8
250 315 400	315 400 500	0 0 0	- 35 - 40 - 45	0 0 0	-25 -30 -35	0 0 -	-18 -23 -	- - -	_ _ _	- - -	- - -	- - -	- - -	- - -	- - -
500 630 800	630 800 1 000	0 0 0	- 50 - 75 -100	0 - -	-40 -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -
1 000 1 250 1 600	1 250 1 600 2 000	0 0 0	-125 -160 -200	- - -	- - -	 - - -	 - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -

				Δ_{E}	$_{ m g}_{ m s}$ (or $arDelta$	Cs)(3)							V_{\cdot}	$_{Bs}$ (or V	_{Cs})	
		Single	Bearing				Со	mbined	d Bearing:	s (4)		Inner Ri Outer Ri	ing (or ing) (³)		Inner Rin	ıg
	ormal class 6		ass 5 ass 4	Cl	ass 2		ormal ass 6		ass 5 ass 4	C	ass 2	Normal	Class 6	Class 5	Class 4	Clas
high	low	high	low	high	low	high	low	high	low	high	low	max.	max.	max.	max.	max
0 0 0	- 40 - 120 - 120	0 0 0	- 40 - 40 - 80	0 0 0	- 40 - 40 - 80	_ 0 0	-250 -250	0 0 0	-250 -250 -250	0 0 0	-250 -250 -250	12 15 20	12 15 20	5 5 5	2.5 2.5 2.5	1.5 1.5 1.5
0 0 0	- 120 - 120 - 150	0 0 0	-120 -120 -150	0 0 0	-120 -120 -150	0 0 0	-250 -250 -380	0 0 0	-250 -250 -250	0 0 0	-250 -250 -250	20 20 25	20 20 25	5 5 6	2.5 3 4	1. 1. 1.
0 0 0 0	- 200 - 250 - 250 - 300	0 0 0 0	-200 -250 -250 -300	0 0 0	-200 -250 -250 -300	0 0 0	-380 -500 -500 -500	0 0 0 0	-380 -380 -380 -500	0 0 0 0	-380 -380 -380 -500	25 30 30 30	25 30 30 30	7 8 8 10	4 5 5 6	2. 2. 4 5
0 0 0	- 350 - 400 - 450	0 0 -	-350 -400 -	- - -	- - -	0 0 -	-500 -630 -	0 0 -	-500 -630 -	- - -	- - -	35 40 50	35 40 45	13 15 -	- -	- - -
0 0 0	- 500 - 750 -1 000	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	60 70 80	50 - -	- - -	- - -	- -
0 0	-1 250 -1 600 -2 000	- - -	- - -	- - -	_ _ _	- - -	- - -	- - -	- - -	-	- - -	100 120 140	- - -	- - -	- - -	- -

Notes (1) 0.6mm is included in the group.

Applicable to bearings with cylindrical bores.
 Tolerance for width deviation and tolerance limits for the width variation of the outer ring should be the same bearing.
 Tolerances for the width variation of the outer ring of Class 5, 4, and 2 are shown in Table 8.2.2.
 Applicable to individual rings manufactured for combined bearings.
 Applicable to ball bearings such as deep groove ball bearings, angular contact ball bearings, etc.

(excluding Tapered Roller Bearings) Widths of Outer Rings

					V_{dp} (2)								V_{dr}	_{np} (2)	
	Norma	l		Class 6	3	Cla	ıss 5	Cla	ss 4	Class 2					
Dia	meter Se	eries	Dia	meter S	eries		meter ries		neter ries	Diameter Series	Normal	Class 6	Class 5	Class 4	Class 2
9	0, 1	2, 3, 4	9	0, 1	2, 3, 4	9	0,1,2,3,4	9	0,1,2,3,4	0,1,2,3,4		_		_	
						m	ax.	m	ax.	max.	max.	max.	max.	max.	max.
10 10 10	8 8 8	6 6 6	9 9 9	7 7 7	5 5 5	5 5 5	4 4 4	4 4 4	3 3 3	2.5 2.5 2.5	6 6 6	5 5 5	3 3 3	2 2 2	1.5 1.5 1.5
13 15 19	10 12 19	8 9 11	10 13 15	8 10 15	6 8 9	6 8 9	5 6 7	5 6 7	4 5 5	2.5 2.5 4	8 9 11	6 8 9	3 4 5	2.5 3 3.5	1.5 1.5 2
25 31 31 38	25 31 31 38	15 19 19 23	19 23 23 28	19 23 23 28	11 14 14 17	10 13 13 15	8 10 10 12	8 10 10 12	6 8 8 9	5 7 7 8	15 19 19 23	11 14 14 17	5 7 7 8	4 5 5 6	2.5 3.5 3.5 4
44 50 56	44 50 56	26 30 34	31 38 44	31 38 44	19 23 26	18 23 -	14 18 -	- - -	- - -	_ _ _	26 30 34	19 23 26	9 12 -	- - -	- - -
63	63	38	50	50	30	-	-	-	-	_	38	30	-	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	-	-	_	-	-	_	_	-	_	_	_	-	_	_
-	-	-	_	-	-	-	-	-	-	-	-	-	-	_	_

Units : μm

		K ia				S_d			S _{ia} (5)		Nominal Bore	Diameter
Norma	Class 6	Class 5	Class 4	Class 2	Class 5	Class 4	Class 2	Class 5	Class 4	Class 2	d (mm)	
max.	max.	max.	max.	max.	max.	max.	max.	max.	max.	max.	over	incl.
10	5	4	2.5	1.5	7	3	1.5	7	3	1.5	0.6(¹)	2.5
10	6	4	2.5	1.5	7	3	1.5	7	3	1.5	2.5	10
10	7	4	2.5	1.5	7	3	1.5	7	3	1.5	10	18
13	8	4	3	2.5	8	4	1.5	8	4	2.5	18	30
15	10	5	4	2.5	8	4	1.5	8	4	2.5	30	50
20	10	5	4	2.5	8	5	1.5	8	5	2.5	50	80
25 30 30 40	13 18 18 20	6 8 8 10	5 6 6 8	2.5 2.5 5	9 10 10 11	5 6 6 7	2.5 2.5 4 5	9 10 10 13	5 7 7 8	2.5 2.5 5	80 120 150 180	120 150 180 250
50	25	13	-	-	13	-	-	15	-	-	250	315
60	30	15	-	-	15	-	-	20	-	-	315	400
65	35	–	-	-	–	-	-	–	-	-	400	500
70	40	-	-	-	-	-	-	-	-	-	500	630
80	-	-	-	-	-	-	-	-	-	-	630	800
90	-	-	-	-	-	-	-	-	-	-	800	1 000
100	-	-	-	-	_	-	-	-	-	-	1 000	1 250
120	-	-	-	-	_	-	-	-	-	-	1 250	1 600
140	-	-	-	-	_	-	-	-	-	-	1 600	2 000

Remarks
1. The cylindrical bore diameter "no-go side" tolerance limit (high) specified in this table does not necessarily apply within a distance of 1.2 times the chamfer dimension *r* (max.) from the ring face.
2. ABMA Std 20-1996: ABEC1-RBEC1, ABEC3-RBEC3, ABEC5-RBEC5, ABEC7-RBEC7, and ABEC9-RBEC9

are equivalent to Classes Normal, 6, 5, 4, and 2 respectively.

Table 8. 2 Tolerances for Radial Bearings

Table 8. 2. 2 Tolerances

Nominal Ou	ıtside					Δ	<i>D</i> mp						۷	$_{D\mathrm{s}}$	
Diamete D (mm)	er	N	ormal	Cl	ass 6	Cl	ass 5	Cl	ass 4	С	lass 2	Dia S	ass 4 imeter eries 2, 3, 4	Cl	ass 2
over	incl.	high	low	high	low	high	low	high	low	high	low	high	low	high	low
2.5(¹)	6	0	- 8	0	- 7	0	- 5	0	- 4	0	- 2.5	0	- 4	0	- 2.5
6	18	0	- 8	0	- 7	0	- 5	0	- 4	0	- 2.5	0	- 4	0	- 2.5
18	30	0	- 9	0	- 8	0	- 6	0	- 5	0	- 4	0	- 5	0	- 4
30	50	0	- 11	0	- 9	0	- 7	0	- 6	0 0 0	- 4	0	- 6	0	- 4
50	80	0	- 13	0	-11	0	- 9	0	- 7		- 4	0	- 7	0	- 4
80	120	0	- 15	0	-13	0	-10	0	- 8		- 5	0	- 8	0	- 5
120	150	0	- 18	0	-15	0	-11	0	- 9	0 0 0	- 5	0	- 9	0	- 5
150	180	0	- 25	0	-18	0	-13	0	-10		- 7	0	-10	0	- 7
180	250	0	- 30	0	-20	0	-15	0	-11		- 8	0	-11	0	- 8
250	315	0	- 35	0	-25	0	-18	0	-13	0 0 -	- 8	0	-13	0	- 8
315	400	0	- 40	0	-28	0	-20	0	-15		-10	0	-15	0	-10
400	500	0	- 45	0	-33	0	-23	-	-		-	-	-	-	-
500	630	0	- 50	0	-38	0	-28		-	-	-	-	-	-	-
630	800	0	- 75	0	-45	0	-35		-	-	-	-	-	-	-
800	1 000	0	-100	0	-60	-	-		-	-	-	-	-	-	-
1 000 1 250 1 600 2 000	1 250 1 600 2 000 2 500	0 0 0 0	-125 -160 -200 -250	- - -	- - - -	- - -	- - - -	- - - -	- - - -	- - -	- - - -	- - -	- - - -	- - -	- - - -

Notes

(1) 2.5mm is included in the group.
(2) Applicable only when a locating snap ring is not used.
(3) Applicable to ball bearings such as deep groove ball bearings and angular contact ball bearings.
(4) The tolerances for outer ring width variation of bearings of Classes Normal and 6 are shown in Table 8.2.1.

Remarks

1. The outside diameter "no-go side" tolerances (low) specified in this table do not necessarily apply within a distance of 1.2 times the chamfer dimension \(r\) (max.) from the ring face.

2. ABMA Std 20-1996: ABEC1-RBEC1, ABEC3-RBEC3, ABEC5-RBEC5, ABEC7-RBEC7, and ABEC9-RBEC9 are equivalent to Classes Normal, 6, 5, 4, and 2 respectively.

(excluding Tapered Roller Bearings) for Outer Rings

						V_{Dp} ((2)								V	_{Dmp} (2)	ı		
Ī		Nori	nal			Cla	ss 6		Cla	ss 5	Cla	ss 4	Class 2						
	О	pen Type	9	Shielded Sealed	0	pen Typ	эе	Shielded Sealed	Open	Туре	Open	Туре	Open Type	Normal	Class	Class	Class	Class	
		Diameter	Series			Diamete	er Series	S	Diar Se	neter ries		neter ries	Diameter Series	INOLIHAL	6	5	4	2	
	9	9 0, 1 2, 3, 4 2, max.			9	0, 1	2, 3, 4	0,1,2,3,4	9	0,1,2,3,4	9	0,1,2,3,4	0,1,2,3,4						
		ma	Х.			m	ax.		m	ах.	m:	ax.	max.	max.	max.	max.	max.	max.	
	10 10 12	8 8 9	6 6 7	10 10 12	9 9 10	7 7 8	5 5 6	9 9 10	5 5 6	4 4 5	4 4 5	3 3 4	2.5 2.5 4	6 6 7	5 5 6	3 3 3	2 2 2.5	1.5 1.5 2	
	14 16 19	11 13 19	8 10 11	16 20 26	11 14 16	9 11 16	7 8 10	13 16 20	7 9 10	5 7 8	6 7 8	5 5 6	4 4 5	8 10 11	7 8 10	4 5 5	3 3.5 4	2 2 2.5	
	23 31 38	23 31 38	14 19 23	30 38 -	19 23 25	19 23 25	11 14 15	25 30 -	11 13 15	8 10 11	9 10 11	7 8 8	5 7 8	14 19 23	11 14 15	6 7 8	5 5 6	2.5 3.5 4	
	44 50 56	44 50 56	26 30 34	- - -	31 35 41	31 35 41	19 21 25	- - -	18 20 23	14 15 17	13 15 –	10 11 -	8 10 –	26 30 34	19 21 25	9 10 12	7 8 -	4 5 -	
	63 94 125	63 94 125	38 55 75	- - -	48 56 75	48 56 75	29 34 45	- - -	28 35 -	21 26 -	- - -	- - -	- - -	38 55 75	29 34 45	14 18 -	- - -	- - -	
	-	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
	_	_	_	-	-	_	-	-	_	_	-	_	_	-	_	-	_	_ _	

Inits	II m

		K_{ea}				S_D			S ea (3)			V _{Cs} (4)		. Nominal C	uteido
Normal	Class 6	Class 5	Class 4	Class 2	Class 5	Class 4	Class 2	Class 5	Class 4	Class 2	Class 5	Class 4	Class 2	Diame Diame	ter
max.	max.	max.	max.	max.	max.	max.	max.	max.	max.	max.	max.	max.	max.	over	incl.
15	8	5	3	1.5	8	4	1.5	8	5	1.5	5	2.5	1.5	2.5 (¹)	1
15	8	5	3	1.5	8	4	1.5	8	5	1.5	5	2.5	1.5	6	
15	9	6	4	2.5	8	4	1.5	8	5	2.5	5	2.5	1.5	18	
20	10	7	5	2.5	8	4	1.5	8	5	2.5	5	2.5	1.5	30	5
25	13	8	5	4	8	4	1.5	10	5	4	6	3	1.5	50	8
35	18	10	6	5	9	5	2.5	11	6	5	8	4	2.5	80	12
40	20	11	7	5	10	5	2.5	13	7	5	8	5	2.5	120	15
45	23	13	8	5	10	5	2.5	14	8	5	8	5	2.5	150	18
50	25	15	10	7	11	7	4	15	10	7	10	7	4	180	25
60	30	18	11	7	13	8	5	18	10	7	11	7	5	250	31
70	35	20	13	8	13	10	7	20	13	8	13	8	7	315	40
80	40	23	-	-	15	-	–	23	-	-	15	-	–	400	50
100	50	25	-	-	18	-	-	25	-	-	18	-	-	500	63
120	60	30	-	-	20	-	-	30	-	-	20	-	-	630	80
140	75	-	-	-	-	-	-	-	-	-	-	-	-	800	1 00
160 190 220 250	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - - -	1 000 1 250 1 600 2 000	1 25 1 60 2 00 2 50

A 62 A 63

Table 8. 3 Tolerances for Metric Design Tapered Roller Bearings

Table 8. 3. 1 Tolerances for Inner Ring Bore Diameter and Running Accuracy

Nomin Dian				Δ	<i>d</i> mp				1 _{ds}		V	<i>d</i> p			V_{α}	<i>l</i> mp	
(m	d m)		ormal ss 6X		ass 6 ass 5	Cl	ass 4	Cl	ass 4	Normal Class 6X	Class 6	Class 5	Class 4	Normal Class 6X	Class 6	Class 5	Class 4
over	incl.	high	low	high	low	high	low	high	low	max.	max.	max.	max.	max.	max.	max.	max.
10 18 30	18 30 50	0 0 0	- 8 -10 -12	0 0 0	- 7 - 8 -10	0 0 0	- 5 - 6 - 8	0 0 0	- 5 - 6 - 8	8 10 12	7 8 10	5 6 8	4 5 6	6 8 9	5 6 8	5 5 5	4 4 5
50 80 120	80 120 180	0 0 0	-15 -20 -25	0 0 0	-12 -15 -18	0 0 0	- 9 -10 -13	0 0 0	- 9 -10 -13	15 20 25	12 15 18	9 11 14	7 8 10	11 15 19	9 11 14	6 8 9	5 5 7
180 250 315	250 315 400	0 0 0	-30 -35 -40	0 0 0	-22 -25 -30	0 0 0	-15 -18 -23	0 0 0	-15 -18 -23	30 35 40	22 - -	17 - -	11 - -	23 26 30	16 - -	11 - -	8 - -
400 500 630	500 630 800	0 0 0	-45 -50 -75	0 0 0	-35 -40 -60	0 - -	-27 - -	0 - -	-27 - -	- - -	1 1 1		- - -	- - -	- - -	- - -	- - -

- Remarks
 1. The bore diameter "no-go side" tolerances (high) specified in this table do not necessarily apply within a distance of 1.2 times the chamfer dimension r (max.) from the ring face.
 2. Some of these tolerances conform to the NSK Standard.

Table 8. 3. 2 Tolerances for Outer Ring Outside Diameter and Running Accuracy

		l Outside neter			Δ	<i>D</i> mp				1 _{Ds}		V	<i>D</i> p			V_I	Omp	
	_	D im)		ormal ass 6X		ass 6 ass 5	Cl	ass 4	Cl	ass 4	Normal Class 6X	Class 6	Class 5	Class 4	Normal Class 6X	Class 6	Class 5	Class 4
ĺ	over	incl.	high	low	high	low	high	low	high	low	max.	max.	max.	max.	max.	max.	max.	max.
	18	30	0	- 9	0	- 8	0	- 6	0	- 6	9	8	6	5	7	6	5	4
	30	50	0	- 11	0	- 9	0	- 7	0	- 7	11	9	7	5	8	7	5	5
	50	80	0	- 13	0	-11	0	- 9	0	- 9	13	11	8	7	10	8	6	5
	80	120	0	- 15	0	-13	0	-10	0	-10	15	13	10	8	11	10	7	5
	120	150	0	- 18	0	-15	0	-11	0	-11	18	15	11	8	14	11	8	6
	150	180	0	- 25	0	-18	0	-13	0	-13	25	18	14	10	19	14	9	7
	180	250	0	- 30	0	-20	0	-15	0	-15	30	20	15	11	23	15	10	8
	250	315	0	- 35	0	-25	0	-18	0	-18	35	25	19	14	26	19	13	9
	315	400	0	- 40	0	-28	0	-20	0	-20	40	28	22	15	30	21	14	10
	400	500	0	- 45	0	-33	0	-23	0	-23	45	-	-	-	34	-	-	-
	500	630	0	- 50	0	-38	0	-28	0	-28	50	-	-	-	38	-	-	-
	630	800	0	- 75	0	-45	-	-	-	-	-	-	-	-	-	-	-	-
ı	800	1 000	0	-100	0	-60	_	-	_	-	-	-	-	_	_	-	-	_

- Remarks 1. The outside diameter "no-go side" tolerances (low) specified in this table do not necessarily apply within a distance of 1.2 times the chamfer dimension r (max.) from the ring face.
 2. Some of these tolerances conform to the NSK Standard.

					Offits . p	
	K	ia		s	d	S ia
Normal	Class	Class	Class	Class	Class	Class
Class 6X	6	5	4	5	4	4
max.	max.	max.	max.	max.	max.	max.
15	7	3.5	2.5	7	3	3
18	8	4	3	8	4	4
20	10	5	4	8	4	4
25	10	5	4	8	5	4
30	13	6	5	9	5	5
35	18	8	6	10	6	7
50	20	10	8	11	7	8
60	25	13	10	13	8	10
70	30	15	12	15	10	14
70	35	18	14	19	13	17
85	40	20	-	22	-	-
100	45	22	-	27	-	-

Units: um

	K	ea		S	D	S_{ea}
Normal	Class	Class	Class	Class	Class	Class
Class 6X	6	5	4	5	4	4
max.	max.	max.	max.	max.	max.	max.
18	9	6	4	8	4	5
20	10	7	5	8	4	5
25	13	8	5	8	4	5
35 40 45	35 18 40 20		6 7 8	9 10 10	5 5 5	6 7 8
50	25	15	10	11	7	10
60	30	18	11	13	8	10
70	35	20	13	13	10	13
80	40	23	15	15	11	15
100	50	25	18	18	13	18
120	60	30	–	20	-	-
120	75	35	-	23	-	

Table 8. 3 Tolerances for Metric Design Table 8. 3. 3 Tolerances for Width, Overall Bearing Width,

N	omina Diam	al Bore neter			Δ	1 _{Bs}					4	1 _{Cs}					Δ_T	's		
	(m)			ormal ass 6	Cla	ss 6X		ass 5 ass 4		ormal ass 6	Cla	ass 6X		lass 5 lass 4		rmal iss 6	Class	6X		iss 5 iss 4
	over	incl.	high	low	high	low	high	low	high	low	high	low	high	n low	high	low	high	low	high	low
	10 18 30	18 30 50	0 0 0	-120 -120 -120	0 0 0	-50 -50 -50	0 0 0	-200 -200 -240	0 0 0	-120 -120 -120	0 0 0	-100 -100 -100	0 0 0	-200 -200 -240	+200 +200 +200	0 0 0	+100 +100 +100	0 0 0	+200 +200 +200	-200 -200 -200
	50 80 120	80 120 180	0 0 0	-150 -200 -250	0 0 0	-50 -50 -50	0 0 0	-300 -400 -500	0 0 0	-150 -200 -250	0 0 0	-100 -100 -100	0 0 0	-300 -400 -500	+200 +200 +350	0 -200 -250	+100 +100 +150	0 0 0	+200 +200 +350	-200 -200 -250
	180 250 315	250 315 400	0 0 0	-300 -350 -400	0 0 0	-50 -50 -50	0 0 0	-600 -700 -800	0 0 0	-300 -350 -400	0 0 0	-100 -100 -100	0 0 0	-600 -700 -800	+350 +350 +400	-250 -250 -400	+150 +200 +200	0 0 0	+350 +350 +400	-250 -250 -400
	400 500 630	500 630 800	0 0 0	-450 -500 -750	- - -	- - -	0 0 0	-800 -800 -800	0 0 0	-450 -500 -750	- - -	- - -	0 0 0	-800 -800 -800	+400 +500 +600	-400 -500 -600	- - -	- - -	+400 +500 +600	-400 -500 -600

Remarks The effective width of an inner ring with rollers T_1 is defined as the overall bearing width of an inner ring with rollers combined with a master outer ring.

The effective width of an outer ring T_2 is defined as the overall bearing width of an outer ring combined with a master inner ring with rollers.

Tapered Roller Bearings and Combined Bearing Width

 $\text{Units}: \mu m$

R		with Roller T1s	'S	Outer Ri	٠,	ve Width D T2s	eviation		Combined Bea		Deviation , $\Delta_{C4\mathrm{s}}$		nal Bore meter
Nor	mal	Class	s 6X	Nor	mal	Class	s 6X	All classes row be	of double- earings		of four-row ings		d nm)
high	low	high	low	high	low	high	low	high	low	high	low	over	incl.
+100	0	+ 50	0	+100	0	+ 50	0	+ 200	- 200	-	-	10	18
+100	0	+ 50	0	+100	0	+ 50	0	+ 200	- 200	-	-	18	30
+100	0	+ 50	0	+100	0	+ 50	0	+ 200	- 200	-	-	30	50
+100	0	+ 50	0	+100	0	+ 50	0	+ 300	- 300	+ 300	- 300	50	80
+100	-100	+ 50	0	+100	-100	+ 50	0	+ 300	- 300	+ 400	- 400	80	120
+150	-150	+ 50	0	+200	-100	+100	0	+ 400	- 400	+ 500	- 500	120	180
+150	-150	+ 50	0	+200	-100	+100	0	+ 450	- 450	+ 600	- 600	180	250
+150	-150	+100	0	+200	-100	+100	0	+ 550	- 550	+ 700	- 700	250	315
+200	-200	+100	0	+200	-200	+100	0	+ 600	- 600	+ 800	- 800	315	400
-	-	-	-	-	-	-	-	+ 700	- 700	+ 900	- 900	400	500
-	-	-	-	-	-	-	-	+ 800	- 800	+1 000	-1 000	500	630
-	-	-	-	-	-	-	-	+1 200	-1 200	+1 500	-1 500	630	800

Table 8. 4 Tolerances for Inch Design Tapered Roller Bearings

(Refer to page A58 Table 8. 1 for the tolerance class "CLASS ** " that is the tolerance classes of ANSI/ABMA.)

Table 8. 4. 1 Tolerances for Inner Ring Bore Diameter

Units : $\mu \, m$

	Nominal Bo	1				Δ	ds		
over		incl.		CLAS	S 4, 2	CLAS	S 3, 0	CLAS	SS 00
(mm)	1/25.4	(mm)	1/25.4	high	low	high	low	high	low
- 76.200 266.700	3.0000 10.5000	76.200 266.700 304.800	3.0000 10.5000 12.0000	+ 13 + 25 + 25	0 0 0	+13 +13 +13	0 0 0	+8 +8 -	0 0 -
304.800 609.600 914.400 1 219.200	12.0000 24.0000 36.0000 48.0000	609.600 914.400 1 219.200	24.0000 36.0000 48.0000	+ 51 + 76 +102 +127	0 0 0	+25 +38 +51 +76	0 0 0	- - - -	- - -

	Nominal Outs					Δ	Ds		
over		incl.		CLAS	S 4, 2	CLAS	S 3, 0	CLAS	SS 00
(mm)	1/25.4	(mm)	1/25.4	high	low	high	low	high	low
266.700 304.800	10.5000 12.0000	266.700 304.800 609.600	10.5000 12.0000 24.0000	+ 25 + 25 + 51	0 0 0	+13 +13 +25	0 0 0	+8 +8 -	0 0 -
609.600 914.400 1 219.200	24.0000 36.0000 48.0000	914.400 1 219.200 –	36.0000 48.0000 –	+ 76 +102 +127	0 0 0	+38 +51 +76	0 0 0	- - -	- - -

Table 8. 4. 3 Tolerances for

		re Diameter d						Δ	Ts				
0	ver	ir	ıcl.	CL	ASS 4	CLA	SS 2	D≦508.0		SS 3	.000 (mm)	CLAS	S 0, 00
(mm)	1/25.4	(mm) 1/25.4		high	low	high	low	high	low	high	low	high	low
_ 101.600	4.0000	101.600 304.800	4.0000 12.0000	+203 +356	0 -254	+203 +203	0	+203 +203	-203 -203	+203 +203	-203 -203	+203 +203	-203 -203
304.800 609.600	12.0000 24.0000	609.600	24.0000	+381 +381	-381 -381	+381	-381 -	+203 +381	-203 -381	+381 +381	-381 -381	- -	

and Radial Runout of Inner and Outer Rings

 $\text{Units}: \mu m$

			K_{ia} , K_{ea}		
C	LASS 4	CLASS 2	CLASS 3	CLASS 0	CLASS 00
	max.	max.	max.	max.	max.
	51 51 51	38 38 38	8 8 18	4 4 -	2 2 -
	76 76 76	51 - -	51 76 76	- - -	- -

Overall Width and Combined Width

Un	IIS	÷	μ	n

			Dou		rings (KBE T <i>B</i> 2s	ype)				(KV	v Bearings Type) Δ_{C4s}
CL	ASS 4	CLAS	SS 2	D< 500 (CLA 000 (mm)	SS 3	000 (mm)	CLAS	SS 0,00	CLAS	SS 4, 3
high	low	high	low	high	low	high	low	high	low	high	low
+406 +711	0 -508	+406 +406	0 -203	+406 +406	-406 -406	+406 +406	-406 -406	+406 +406	-406 -406	+1 524 +1 524	-1 524 -1 524
+762 +762	-762 -762	+762	-762 -	+406 +762	-406 -762	+762 +762	-762 -762	 -	-	+1 524 +1 524	-1 524 -1 524

Table 8. 5 Tolerances
Table 8. 5. 1 Tolerances for Inner Rings

Dian	Nominal Bore Diameter d (mm)								$V_{d\mathrm{p}}$			$V_{d\mathrm{mp}}$			$\it \Delta$ $_{\it Bs}$ (or	Δ $_{C\mathrm{s}}$) (1)
(mm)		No	rmal	Cla	ass 6	Cla	ass 5	Normal	Class 6	Class 5	Normal	Class 6	Class 5		rmal ss 6	Cla	ass 5
over	incl.	high	low	high	low	high	low	max.	max.	max.	max.	max.	max.	high	low	high	low
2.5	10	0	- 8	0	-7	0	-5	6	5	4	6	5	3	0	-120	0	- 40
10	18	0	- 8	0	-7	0	-5	6	5	4	6	5	3	0	-120	0	- 80
18	30	0	-10	0	-8	0	-6	8	6	5	8	6	3	0	-120	0	-120

Note (1) The width deviation and width variation of an outer ring is determined according to the inner ring of the same

Remarks The bore diameter "no-go side" tolerances (high) specified in this table do not necessarily apply within a distance of 1.2 times the chamfer dimension r (max.) from the ring face.

Table 8. 5. 2 Tolerances

Nominal Diam	eter -			Bearing S	ieries E		Δ	Omp	E	Bearing Se	eries EN	1			$V_{D{ m p}}$	
D (mm)		Norr	nal	Clas	s 6	Clas	ss 5	Nor	mal	Clas	s 6	Clas	s 5	Normal	Class 6	Class 5
over	incl.	high	low	high	low	high	low	high	low	high	low	high	low	max.	max.	max.
6	18	+ 8	0	+7	0	+5	0	0	- 8	0	-7	0	-5	6	5	4
18	30	+ 9	0	+8	0	+6	0	0	- 9	0	-8	0	-6	7	6	5
30	50	+11	0	+9	0	+7	0	0	-11	0	-9	0	-7	8	7	5

Remarks The outside diameter "no-go side" tolerances (low) do not necessarily apply within a distance of 1.2 times the chamfer dimension r (max.) from the ring face.

for Magneto Bearings and Width of Outer Rings

							Un	its : μm
V _{Bs} (or	V _{Cs}) (1)	Δ	Ts		K ia		S_d	S _{ía}
Normal Class 6	Class 5	Normal Class 6 Class 5		Normal	Class 6	Class 5	Class 5	Class 5
max.	max.	high	low	max.	max.	max.	max.	max.
15	5	+120	-120	10	6	4	7	7
20	5	+120	-120	10	7	4	7	7
20	5	+120	-120	13	8	4	8	8

for Outer Rings

ioi outo	i itiligo		Units : μ	ιm			
	$V_{D{ m mp}}$			K _{ea}		S_{ea}	S_D
Normal	Class 6	Class 5	Normal	Class 6	Class 5	Class 5	Class 5
max.	max.	max.	max.	max.	max.	max.	max.
6	5	3	15	8	5	8	8
7	6	3	15	9	6	8	8
8	7	4	20	10	7	8	8

Table 8. 6 Tolerances for Thrust Ball Bearings

Table 8. 6. 1 Tolerances for Shaft Washer Bore Diameter and Running Accuracy

Units: μm

Nominal Bore Diameter $oldsymbol{d}$ or $oldsymbol{d}_2$			Δ_{dmp} O	r ⊿ _{d2mp}		·	V_{d2p}	S_i or $S_{\mathbf{e}}$ (1)					
(mm)		Nor Clas Clas		Class 4		Normal Class 6 Class 5	Class 4	Normal	Class 6	Class 5	Class 4		
over ir	ncl.	high	low	high	low	max.	max.	max.	max.	max.	max.		
-	18	0	- 8	0	- 7	6	5	10	5	3	2		
18	30	0	- 10	0	- 8	8	6	10	5	3	2		
30	50	0	- 12	0	-10	9	8	10	6	3	2		
	80	0	- 15	0	-12	11	9	10	7	4	3		
	120	0	- 20	0	-15	15	11	15	8	4	3		
	180	0	- 25	0	-18	19	14	15	9	5	4		
250	250	0	- 30	0	-22	23	17	20	10	5	4		
	315	0	- 35	0	-25	26	19	25	13	7	5		
	400	0	- 40	0	-30	30	23	30	15	7	5		
500	500	0	- 45	0	-35	34	26	30	18	9	6		
	630	0	- 50	0	-40	38	30	35	21	11	7		
	800	0	- 75	0	-50	-	-	40	25	13	8		
	000	0	-100	-	-	-	<u>-</u>	45	30	15	-		
	250	0	-125	-	-	-	-	50	35	18	-		

Note (1) For double-direction bearings, the thickness variation doesn't depend on the bore diameter d_2 , but on d for single-direction bearings with the same D in the same diameter series.

The thickness variation of housing washers, S_e , applies only to flat-seat thrust bearings.

Table 8. 6. 2 Tolerances for Outside Diameter of Housing Washers and Aligning Seat Washers

 $\text{Units}: \mu\,m$

Nominal Outside I Bearing or Al Seat Was	ligning		Flat Se	$oldsymbol{arDelta}_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	<i>D</i> mp	Aligni Wash	ng Seat er Type	V	<i>D</i> p	Aligning Seat Was Outside Diamete Deviation Δ_{D3s}	
D or D (mm)	o .	Cla	rmal iss 6 iss 5	Cla	iss 4	No	rmal ss 6	Normal Class 6 Class 5	Class 4	Class 4 Nor Class	
over	incl.	high	low	high	low	high	low	max.	max.	high	low
10	18	0	- 11	0	- 7	0	- 17	8	5	0	- 25
18	30	0	- 13	0	- 8	0	- 20	10	6	0	- 30
30	50	0	- 16	0	- 9	0	- 24	12	7	0	- 35
50	80	0	- 19	0	-11	0	- 29	14	8	0	- 45
80	120	0	- 22	0	-13	0	- 33	17	10	0	- 60
120	180	0	- 25	0	-15	0	- 38	19	11	0	- 75
180	250	0	- 30	0	-20	0	- 45	23	15	0	- 90
250	315	0	- 35	0	-25	0	- 53	26	19	0	-105
315	400	0	- 40	0	-28	0	- 60	30	21	0	-120
400	500	0	- 45	0	-33	0	- 68	34	25	0	-135
500	630	0	- 50	0	-38	0	- 75	38	29	0	-180
630	800	0	- 75	0	-45	0	-113	55	34	0	-225
800	1 000	0	-100	-	-	-	-	75	-	-	-
1 000	1 250	0	-125	-	-	-	-	-	-	-	-
1 250	1 600	0	-160	-	-	-	-	-	-	-	-

Table 8. 6. 3 Tolerances for Thrust Ball Bearing Height and Central Washer Height

Units: um

										•					
Nomina	al Bore		Flat Se	at Type		Aliç	gning Seat	Washer	Туре	Witl	n Aligning	Seat Wa	sher		Deviation
Diam		Δ_{Ts} o	or Δ $_{T2s}$	Δ	Tis	Δ_{T3s}	or Δ $_{T6s}$	Δ	T5s	Δ_{T4s} C	or $ extstyle \Delta extstyle T_{88}$	Δ	T7s		al Washer 1 _{Bs}
d(1) (mm) over incl.			, Class 6 , Class 4		,		rmal ass 6		rmal ss 6	Noi Clas	rmal ss 6	Nor Clas	rmal ss 6		l, Class 6 , Class 4
over	incl.	high low high low		high	high low		low	high	low	high	high low		low		
- 30 50	30 50 80	0 0 0	- 75 -100 -125	+ 50 + 75 +100	-150 -200 -250	0 0 0	- 75 -100 -125	+ 50 + 75 +100	-150 -200 -250	+ 50 + 50 + 75	- 75 -100 -125	+150 +175 +250	-150 -200 -250	0 0 0	- 50 - 75 -100
80 120 180	120 180 250	0 0 0	-150 -175 -200	+125 +150 +175	-300 -350 -400	0 0 0	-150 -175 -200	+125 +150 +175	-300 -350 -400	+ 75 +100 +100	-150 -175 -200	+275 +350 +375	-300 -350 -400	0 0 0	-125 -150 -175
250 315	315 400	0 0	-225 -300	+200 +250	-450 -600	0 0	-225 -300	+200 +250	-450 -600	+125 +150	-225 -275	+450 +550	-450 -550	0 0	-200 -250

Note (1) For double-direction bearings, its classification depends on d for single-direction bearings with the same D in the same diameter series.

Remarks Δ_{T_s} in the table is the deviation in the respective heights T in figures below.

Table 8. 7 Tolerances for Thrust Spherical Roller Bearings

Table 8. 7. 1 Tolerances for Bore Diameters of Shaft Rings and Height (Class Normal)

Units: μm

Nomina						Reference	
Diam <i>(</i> (m	ĺ	Δ,	<i>l</i> mp	<i>V</i> _{<i>d</i>p}	S_d	Δ	Ts
over	incl.	high low		max.	max.	high	low
50 80 120	80 120 180	0 0 0	-15 -20 -25	11 15 19	25 25 30	+150 +200 +250	-150 -200 -250
180 250 315	250 315 400	0 0 0	-30 -35 -40	23 26 30	30 35 40	+300 +350 +400	-300 -350 -400
400	500	0	-45	34	45	+450	-450

Remarks The bore diameter "no-go side" tolerances (high) specified in this table do not necessarily apply within a distance of 1.2 times the chamfer dimension r (max.) from the ring face.

Table 8. 7. 2 Tolerances for Housing Ring Diameter (Class Normal)

Jnits : µm

		UI	iiiS : μm
l	side Diameter D m)	Δ	<i>D</i> mp
over	incl.	high	low
120 180 250	180 250 315	0 0 0	- 25 - 30 - 35
315 400 500	400 500 630	0 0 0	- 40 - 45 - 50
630 800	800 1 000	0	- 75 -100

Remarks

The outside diameter "no-go side" tolerances (low) specified in this table do not necessarily apply within a distance of 1.2 times the chamfer dimension \boldsymbol{r} (max.) from the ring face.

Table 8. 8 Tolerances of

CLASS 5P, CLASS 7P, and CLASS 9P

(1) Tolerances for Inner Rings

	Nominal Bore Diameter			Δ,	<i>l</i> mp			Δ	ds		V	<i>d</i> p	V_a	/mp	Δ Bs	
	d			CLASS 5P CLASS 7P		SS 9P	CLAS CLAS		CLAS	SS 9P	CLASS 5P CLASS 7P	CLASS 9P	CLASS 5P CLASS 7P	CLASS 9P	CLASS 5P CLASS 7P CLASS 9P	
i	over	incl.	high	low	high	low	high	nigh low		low	max.	max.	max.	max.	high	low
ı	-	10	0	-5.1	0	-2.5	0	-5.1	0	-2.5	2.5	1.3	2.5	1.3	0	-25.4
	10	18	0	-5.1	0	-2.5	0	-5.1	0	-2.5	2.5	1.3	2.5	1.3	0	-25.4
	18	30	0	-5.1	0	-2.5	0	-5.1	0	-2.5	2.5	1.3	2.5	1.3	0	-25.4

Note (i) Applicable to bearings for which the axial clearance (preload) is to be adjusted by combining two selected bearings.

Remarks For the CLASS 3P and the tolerances of Metric design Instrument Ball Bearings, it is advisable to consult NSK.

(2) Tolerances for

Nominal		Δ	Omp			Δ $_{Ds}$						$V_{D\mathbf{p}}$		$V_{D{ m mp}}$		
Outside Diameter D	CLA	SS 5P				CLAS	SS 5P SS 7P		CLA	SS 9P		SS 5P SS 7P	CLASS 9P		SS 5P SS 7P	CLASS 9P
(mm)	CLASS 7P		CLASS 9P		Open			Shielded Sealed		Open		Shielded Sealed	Open	Open	Shielded Sealed	Open
over incl.	high	low	high	low	high	low	high	low	high	low	max.	max.	max.	max.	max.	max.
- 18	0	-5.1	0	-2.5	0	-5.1	+1	-6.1	0	-2.5	2.5	5.1	1.3	2.5	5.1	1.3
18 30	0	-5.1	0	-3.8	0	-5.1	+1	-6.1	0	-3.8	2.5	5.1	2	2.5	5.1	2
30 50	0	-5.1	0	-3.8	0	-5.1	+1	-6.1	0	-3.8	2.5	5.1	2	2.5	5.1	2

Notes (i) Applicable to flange width variation for flanged bearings.
(2) Applicable to flange back face.

Instrument Ball Bearings (Inch design)

(ANSI/ABMA Equivalent)

and Width of Outer Rings

Units : μ m

(or	Δ_{Cs})	V _{Bs}				K ia			S ia		S_d			
Combi	ned Brgs (1)													
CLA	ASS 5P ASS 7P ASS 9P	CLASS 5P	CLASS 7P	CLASS 9P	CLASS 5P	CLASS 7P	CLASS 9P	CLASS 5P	CLASS 7P	CLASS 9P	CLASS 5P	CLASS 7P	CLASS 9P	
high	low	max.	max.	max.	max.	max.	max.	max.	max.	max.	max.	max.	max.	
0	-400	5.1	2.5	1.3	3.8	2.5	1.3	7.6	2.5	1.3	7.6	2.5	1.3	
0	-400	5.1	2.5	1.3	3.8	2.5	1.3	7.6	2.5	1.3	7.6	2.5	1.3	
0	-400	5.1	2.5	1.3	3.8	3.8	2.5	7.6	3.8	1.3	7.6	3.8	1.3	

Outer Rings

Units : $\mu\,m$

V _{Cs} (1)				S_D			K _{ea}			S_{ea}			ation of Outside	Deviation of Flange Width		Flange Backface Runout
CLASS	CLASS	CLASS	CLASS	CLASS	CLASS	CLASS	CLASS	CLASS	CLASS	CLASS	CLASS			Δ_{C1s}		with Raceway (2) Sea1
5P	7P	9P	5P	7P	9P	5P	7P	9P	5P	7P	9P					CLASS 5P CLASS 7P
max.	max.	max.	max.	max.	max.	max.	max.	max.	max.	max.	max.	high	low	high	low	max.
5.1	2.5	1.3	7.6	3.8	1.3	5.1	3.8	1.3	7.6	5.1	1.3	0	-25.4	0	-50.8	7.6
5.1	2.5	1.3	7.6	3.8	1.3	5.1	3.8	2.5	7.6	5.1	2.5	0	-25.4	0	-50.8	7.6
5.1	2.5	1.3	7.6	3.8	1.3	5.1	5.1	2.5	7.6	5.1	2.5	0	-25.4	0	-50.8	7.6

- r: Chamfer Dimension of Inner/Outer Ring
- r_1 : Chamfer Dimension of Inner/Outer Ring (Front Side) or of Central Washer of Thrust Ball Bearings

Remarks The precise shape of chamfer surfaces has not been specified but its profile in the axial plane shall not intersect an arc of radius r (min.) or r_1 (min.) touching the side face of an inner ring or central washer and bore surface, or the side face of an outer ring and outside surface.

Table 8. 9 Chamfer Dimension Limits (for Metric Design Bearings)

Table 8. 9. 1 Chamfer Dimension Limits for Radial Bearings (excluding Tapered Roller Bearings) Units : mm

Permissible			Permissibl	Reference		
Chamfer Dimension for Inner/ Outer Rings r (min.) or	Nominal Bore Diameter d		Dimens Inner/Ou r (max.) o	Dimension for Inner/Outer Rings \boldsymbol{r} (max.) or \boldsymbol{r}_1 (max.)		
$m{r}_1$ (min.)	over	incl.	Radial Direction	Axial Direction	max.	
0.05	-	-	0.1	0.2	0.05	
0.08 0.1	-	-	0.16 0.2	0.3 0.4	0.08 0.1	
		_				
0.15 0.2	-	-	0.3 0.5	0.6 0.8	0.15 0.2	
0.3	- 40	40 -	0.6 0.8	1 1	0.3	
0.6	- 40	40 -	1 1.3	2 2	0.6	
1	- 50	50 -	1.5 1.9	3 3	1	
1.1	- 120	120 –	2 2.5	3.5 4	1	
1.5	- 120	120 -	2.3 3	4 5	1.5	
2	- 80 220	80 220 –	3 3.5 3.8	4.5 5 6	2	
2.1	- 280	280 –	4 4.5	6.5 7	2	
2.5	- 100 280	100 280 –	3.8 4.5 5	6 6 7	2	
3	- 280	280 -	5 5.5	8 8	2.5	
4 5	- -	- -	6.5 8	9 10	3 4	
6 7.5 9.5	- - -	- - -	10 12.5 15	13 17 19	5 6 8	
12 15 19	- - -	- - -	18 21 25	24 30 38	10 12 15	

Remarks For bearings with nominal widths less than 2mm, the value of r (max.) in the axial direction is the same as that in the radial direction.

Table 8. 9. 2 Chamfer Dimension Limits for **Tapered Roller Bearings**

Units : mm

Permissible	Nomina	Bore or	Reference		
Chamfer Dimension for Inner/ Outer Rings	Nominal Diame	Outside eter (¹)	Dimensior Outer	le Chamfer n for Inner/ Rings nax.)	Corner Radius of Shaft or Housing r_a
$m{r}$ (min.)	over	incl.	Radial Direction	Axial Direction	max.
0.15	-	-	0.3	0.6	0.15
0.3	- 40	40 -	0.7 0.9	1.4 1.6	0.3
0.6	- 40	40 -	1.1 1.3	1.7 2	0.6
1	- 50	50 -	1.6 1.9	2.5 3	1
1.5	- 120 250	120 250 –	2.3 2.8 3.5	3 3.5 4	1.5
2	- 120 250	120 250 –	2.8 3.5 4	4 4.5 5	2
2.5	- 120 250	120 250 –	3.5 4 4.5	5 5.5 6	2
3	- 120 250 400	120 250 400 –	4 4.5 5 5.5	5.5 6.5 7 7.5	2.5
4	- 120 250 400	120 250 400 –	5 5.5 6 6.5	7 7.5 8 8.5	3
5	- 180	180 –	6.5 7.5	8 9	4
6	- 180	180	7.5 9	10 11	5
Note	(1) Inne	r Rings a	re classified	i by <i>d</i> and (Juter Rings

Note (1) Inner Rings are classified by d and Outer Rings by D.

Table 8. 9. 3 Chamfer Dimension Limits for Thrust Bearings

Units: mm

Dannaianible Observice	Permissible Chamfer	Reference	
Permissible Chamfer Dimension for Shaft (or Central)/Housing Washers *\mathcal{\mathcal{\mathcal{T}}}(\text{min.})\text{ or }\mathcal{\mathcal{T}}_1\text{ (min.})	Dimension for Shaft (or Central)/Housing Washers r (max.) or r 1 (max.)	Corner Radius of Shaft or Housing $oldsymbol{r_a}$	
2 () 5: 21 ()	Radial or Axial Direction	max.	
0.05	0.1	0.05	
0.08	0.16	0.08	
0.1	0.2	0.1	
0.15	0.3	0.15	
0.2	0.5	0.2	
0.3	0.8	0.3	
0.6	1.5	0.6	
1	2.2	1	
1.1	2.7	1	
1.5	3.5	1.5	
2	4	2	
2.1	4.5	2	
3	5.5	2.5	
4	6.5	3	
5	8	4	
6	10	5	
7.5	12.5	6	
9.5	15	8	
12	18	10	
15	21	12	
19	25	15	

A 78 A 79

Table 8.10 Tolerances for Tapered Bores (Class Normal)

d: Nominal Bore Diameter

 d_1 : Theoretical Diameter of Larger End of Tapered Bore

Taper 1:12 $d_1 = d + 1/12B$ Taper 1:30 $d_1 = d + /30B$

 $\Delta_{
m dmp}$: Single Plane Mean Bore Diameter Deviation in Theoretical Diameter of Smaller End of Bore $\Delta_{
m dmp}$: Single Plane Mean Bore Diameter Deviation in Theoretical Diameter of Larger End of Bore

 V_{dp} : Bore diameter variation in a single radial plane

 \vec{B} : Nominal Inner Ring width

 α : Half of Taper Angle of Tapered Bore

Taper 1:12

Units : $\mu\,m$

Nominal Bore Diameter d (mm)		$arDelta$ $_{dmp}$		Δ_{d1mp} – Δ_{dmp}		V _{dp} (1) (2)
over	incl.	high	low	high	low	max.
18	30	+33	0	+21	0	13
30	50	+39	0	+25	0	16
50	80	+46	0	+30	0	19
80	120	+54	0	+35	0	22
120	180	+63	0	+40	0	40
180	250	+72	0	+46	0	46
250	315	+81	0	+52	0	52
315	400	+89	0	+57	0	57
400	500	+97	0	+63	0	63
500	630	+110	0	+70	0	70
630	800	+125	0	+80	0	-
800	1 000	+140	0	+90	0	-
1 000	1 250	+165	0	+105	0	-
1 250	1 600	+195	0	+125	0	-

Notes (1) Applicable to all radial planes of tapered bores.

(2) Not applicable to diameter series 7 and 8.

Taper 1:30

Units:	μm
--------	----

Nominal Bore Diameter d (mm)		$arDelta_{dmp}$		Δ_{d1mp} – Δ_{dmp}		V _{dp} (1) (2)
over	incl.	high	low	high	low	max.
80 120 180	120 180 250	+20 +25 +30	0 0 0	+35 +40 +46	0 0 0	22 40 46
250 315 400	315 400 500	+35 +40 +45	0 0 0	+52 +57 +63	0 0 0	52 57 63
500	630	+50	0	+70	0	70

Notes (1) Applicable to all radial planes of tapered bores.

(2) Not applicable to diameter series 7 and 8.

Remarks For a value exceeding 630 mm, please contact NSK.

8.2 Selection of Accuracy Classes

For general applications, Class Normal tolerances are adequate in nearly all cases for satisfactory performance, but for the following applications, bearings having an accuracy class of 5,4 or higher are more suitable.

For reference, in Table 8.11, examples of applications and appropriate tolerance classes are listed for various bearing requirements and operating conditions.

Table 8. 11 Typical Tolerance Classes for Specific Applications (Reference)

Bearing Requirement, Operating Conditions	Examples of Applications	Tolerance Classes	
	VTR Drum Spindles	P5	
	Magnetic Disk Spindles for Computers	P5, P4, P2	
	Machine-Tool Main Spindles	P5, P4, P2	
High running accuracy	Rotary Printing Presses	P5	
is required	Rotary Tables of Vertical Presses, etc.	P5, P4	
	Roll Necks of Cold Rolling Mill Backup Rolls	Higher than P4	
	Slewing Bearings for Parabolic Antennas	Higher than P4	
	Dental Drills	CLASS 7P, CLASS 5P	
	Gyroscopes	CLASS 7P, P4	
Extra high speed is	High Frequency Spindles	CLASS 7P, P4	
required	Superchargers	P5, P4	
	Centrifugal Separators	P5, P4	
	Main Shafts of Jet Engines	Higher than P4	
Low torque and low	Gyroscope Gimbals	CLASS 7P, P4	
torque variation are	Servomechanisms	CLASS 7P, CLASS 5P	
required	Potentiometric Controllers	CLASS 7P	

A 80 A 81

9. FITS AND INTERNAL CLEARANCES

9.1 Fits

9.1.1 Importance of Proper Fits

In the case of a rolling bearing with the inner ring fitted to the shaft with only slight interference, a harmful circumferential slipping may occur between the inner ring and shaft. This slipping of the inner ring, which is called "creep", results in a circumferential displacement of the ring relative to the shaft if the interference fit is not sufficiently tight. When creep occurs, the fitted surfaces become abraded, causing wear and considerable damage to the shaft. Abnormal heating and vibration may also occur due to abrasive metallic particles entering the interior of the bearing.

It is important to prevent creep by having sufficient interference to firmly secure that ring which rotates to either the shaft or housing. Creep cannot always be eliminated using only axial tightening through the bearing ring faces. Generally, it is not necessary, however, to provide interference for rings subjected only to stationary loads. Fits are sometimes made without any interference for either the inner or outer ring, to accommodate certain operating conditions, or to facilitate mounting and dismounting. In this case, to prevent damage to the fitting surfaces due to creep, lubrication of other applicable methods should be considered.

9.1.2 Selection of Fit

(1) Load Conditions and Fit

The proper fit may be selected from Table 9.1 based on the load and operating conditions.

(2) Magnitude of Load and Interference

The interference of the inner ring is slightly reduced by the bearing load; therefore, the loss of interference should be estimated using the following equations:

$$\Delta d_{\rm F} = 0.08 \sqrt{\frac{d}{B} F_{\rm r}} \times 10^{-3} \dots (N)$$

$$\Delta d_{\rm F} = 0.25 \sqrt{\frac{d}{B} F_{\rm r}} \times 10^{-3} \dots {\rm \{kgf\}}$$
... (9.1)

where $\Delta d_{\rm F}$: Interference decrease of inner ring (mm)

d: Bearing bore diameter (mm)

B: Nominal inner ring width (mm)

 $F_{\rm r}$: Radial load applied on bearing

(N), {kgf}

Table 9.1 Loading Conditions and Fits

Load Application	Bearing Operation		Load	Fitting	
Load Application	Inner Ring	Outer Ring	Conditions	Inner Ring	Outer Ring
TO T	Rotating	Stationary	Rotating Inner Ring Load		
Load Rotating O O O O O O O O O O O O O	Stationary	Rotating	Stationary Outer Ring Load	Tight Fit	Loose Fit
Load Stationary	Stationary	Rotating	Rotating Outer Ring Load	Loose Fit	Tight Fit
[Coad Rotating Coad Rotating	Rotating	Stationary	- Stationary Inner Ring Load		
Direction of load indeterminate due to variation of direction or unbalanced load	Rotating or Stationary	Rotating or Stationary	Direction of Load Indeterminate	Tight Fit	Tight Fit

Therefore, the effective interference Δd should be larger than the interference given by Equation (9.1). However, in the case of heavy loads where the radial load exceeds 20% of the basic static load rating $C_{\rm or}$, under the operating condition, interference often becomes shortage. Therefore, interference should be estimated using Equation (9.2):

where Δd : Effective interference (mm)

 $F_{\rm r}$: Radial load applied on bearing (N), {kgf}

B: Nominal inner ring width (mm)

(3) Interference Variation Caused by Temperature Difference between Bearing and Shaft or Housing

The effective interference decreases due to the increasing bearing temperature during operation. If the temperature difference between the bearing and housing is ΔT (°C), then the temperature difference between the fitted surfaces of the shaft and inner ring is estimated to be about (0.1~0.15) ΔT in case that the shaft is cooled. The decrease in the interference of the inner ring due to this temperature difference $\Delta d_{\rm T}$ may be calculated using Equation (9.3):

$$\Delta d_{\rm T} = (0.10 \text{ to } 0.15) \times \Delta T \cdot \alpha \cdot d$$

= 0.0015 \Delta T \cdot d \times 10^{-3}(9.3)

where Δd_T : Decrease in interference of inner ring due to temperature difference (mm)

△ T: Temperature difference between bearing interior and surrounding parts (°C)

 α : Coefficient of linear expansion of bearing steel=12.5×10⁻⁶ (1/°C)

d: Bearing nominal bore diameter (mm)

In addition, depending on the temperature difference between the outer ring and housing, or difference in their coefficients of linear expansion, the interference may increase.

(4) Effective Interference and Finish of Shaft and Housing

Since the roughness of fitted surfaces is reduced during fitting, the effective interference becomes less than the apparent interference. The amount of this interference decrease varies depending on the

roughness of the surfaces and may be estimated using the following equations:

For ground shafts
$$\Delta d = \frac{d}{d+2} \Delta d_a \dots (9.4)$$

For machined shafts
$$\Delta d = \frac{d}{d+3} \Delta d_a$$
(9.5)

where Δd : Effective interference (mm)

 Δd_a : Apparent interference (mm)

d: Bearing nominal bore diameter (mm)

According to Equations (9.4) and (9.5), the effective interference of bearings with a bore diameter of 30 to 150 mm is about 95% of the apparent interference.

(5) Fitting Stress and Ring Expansion and Contraction

When bearings are mounted with interference on a shaft or in a housing, the rings either expand or contract and stress is produced. Excessive interference may damage the bearings; therefore, as a general guide, the maximum interference should be kept under approximately 7/10 000 of the shaft diameter.

The pressure between fitted surfaces, expansion or contraction of the rings, and circumferential stress may be calculated using the equations in Section 15.2, Fitting(1) (Pages A130 and A131).

9.1.3 Recommended Fits

As described previously, many factors, such as the characteristics and magnitude of bearing load, temperature differences, means of bearing mounting and dismounting, must be considered when selecting the proper fit.

If the housing is thin or the bearing is mounted on a hollow shaft, a tighter than usual fit is necessary. A split housing often deforms the bearing into an oval shape; therefore, a split housing should be avoided when a tight fit with the outer ring is required.

The fits of both the inner and outer rings should be tight in applications where the shaft is subjected to considerable vibration.

The recommended fits for some common applications are shown in Table 9.2 to 9.7. In the case of unusual operating conditions, it is advisable to consult NSK. For the accuracy and surface finish of shafts and housings, please refer to Section 11.1 (Page A100).

Table 9.2 Fits of Radial Bearings with Shafts

			9	Shaft Diameter (mm					
Load	Load Conditions		Ball Brgs	Cylindrical Roller Brgs, Tapered Roller Brgs	Spherical Roller Brgs	Tolerance of Shaft	Remarks		
	Radial Bearings with Cylindrical Bores								
Rotating Outer	Easy axial displacement of inner ring on shaft desirable.	Wheels on Stationary Axles	AN OL O DI			g6	Use g5 and h5 where accuracy is required. In case of large		
Ring Load	Easy axial displacement of inner ring on shaft unnecessary	Tension Pulleys Rope Sheaves		All Shaft Diameters		h6	bearings, f6 can be used to allow easy axial movement.		
	liabt lands	Electrical Home	<18	_	_	js5			
	Light Loads or Variable	Appliances Pumps, Blowers, Transport	18 to 100	<40	_	js6(j6)			
	Loads $(<0.06C_r(^1))$	Vehicles, Precision Machinery,	100 to 200	40 to 140	_	k6			
	(< 0.00C _T ())	Machine Tools	_	140 to 200	_	m6			
			<18	_	_	js5 or js6 (j5 or j6)			
	Normal Loads	General Bearing Applications, Medium and Large Motors(³), Turbines, Pumps, Engine Main Bearings, Gears, Woodworking Machines	18 to 100	<40	<40	k5 or k6	k6 and m6 can be used for single-row tapered roller bearings and single- row angular contact ball bearings instead of k5 and m5.		
Rotating Inner			100 to 140	40 to 100	40 to 65	m5 or m6			
Ring Load or Direction of			140 to 200	100 to 140	65 to 100	m6			
Load	$(0.06 \text{ to } 0.13 C_{\rm r}(^1))$		200 to 280	140 to 200	100 to 140	n6			
Indeterminate			_	200 to 400	140 to 280	p6			
			_	_	280 to 500	r6			
			_	_	over 500	r7			
		Railway Axleboxes, Industrial Vehicles.	_	50 to 140	50 to 100	n6	Mana than CN		
	Heavy Loads or Shock Loads	Traction Motors,	_	140 to 200	100 to 140	p6	More than CN bearing internal		
	$(>0.13C_{\rm r}(^1))$	Construction Equipment,	_	over 200	140 to 200	r6	clearance is necessary.		
		Crushers	_	_	200 to 500	r7	necessary.		
Axial Loads Only				All Shaft Diameters	;	js6 (j6)	_		
		Radi General bearing	ial Bearings with	Tapered Bores and	Sleeves				
All Tyro	ANT		All Chaff Disposition			h9/IT5(2)	IT5 and IT7 mean that the deviation of the shaft from its true geometric		
All Types of Loading		Transmission Shafts, Woodworking Spindles		All Shaft Diameters			form, e. g. roundness and cylindricity should be within the tolerances of IT5 and IT7 respectively.		

 Notes (1) C_r represents the basic load rating of the bearing.
 (2) Refer to Appendix Table 11 on page C22 for the values of standard tolerance grades IT.
 (3) Refer to Tables 9.13.1 and 9.13.2 for the recommended fits of shafts used in electric motors for deep groove ball bearings with bore diameters ranging from 10 mm to 160 mm, and for cylindrical roller bearings with bore diameters ranging from 24 mm to 200 mm.

Remarks This table is applicable only to solid steel shafts.

Table 9.3 Fits of Thrust Bearings with Shafts

			<u> </u>		
Load Conditions		Examples Shaft Diameter (mm)		Tolerance of Shaft	Remarks
Central A	Axial Load Only	Main Shafts of Lathes	All Shaft Diameters	h6 or js6 (j6)	
Combined	Stationary Inner Ring Load	Cone Crushers	All Shaft Diameters	js6 (j6)	
Radial and Axial Loads	Rotating Inner Ring		<200	k6	_
(Spherical Thrust Roller	Load or Direction of Load	Refiners, Plastic	200 to 400	m6	
Bearings)	Indeterminate	Extruders	over 400	n6	

Table 9.4 Fits of Radial Bearings with Housings

	Load Conditions		Examples	Tolerances for Housing Bores	Axial Displacement of Outer Ring	Remarks
		Heavy Loads on Bearing in Thin-Walled Housing or Heavy Shock Loads	Automotive Wheel Hubs (Roller Bearings) Crane Travelling Wheels	P7		
	Rotating Outer Ring	Normal or Heavy Loads	Automotive Wheel Hubs (Ball Bearings) Vibrating Screens	N7	- Impossible	
Solid Housings	Load	Light or Variable Loads	Conveyor Rollers Rope Sheaves Tension Pulleys	M7	impossible	_
		Heavy Shock Loads	Traction Motors			
	Direction of Load	Normal or Heavy Loads	Pumps Crankshaft Main Bearings	K7	Generally Impossible	If axial displacement of the outer ring is not required.
	macterninate	Normal or Light Loads	Medium and Large Motors(1)	JS7 (J7)	Possible	Axial displacement of outer ring is necessary.
Solid or Split		Loads of All kinds	General Bearing Applications, Railway Axleboxes	Н7		
Housings		Normal or Light Loads	Plummer Blocks	H8	Easily possible	_
	Rotating Inner Ring	High Temperature Rise of Inner Ring Through Shaft	Paper Dryers	G7		
	Load	Accurate Running Desirable under	Grinding Spindle Rear Ball Bearings High Speed Centrifugal Compessor Free Bearings	JS6 (J6)	Possible	_
Solid Housing Direction of Load Indeterminate Rotating Inner Ring Load	Normal or Light Loads	Grinding Spindle Front Ball Bearings High Speed Centrifugal Compressor Fixed Bearings	K6	Generally Impossible	For heavy loads, interference fit tighter than K is used. When high accuracy is	
		Accurate Running and High Rigidity Desirable under Variable Loads	Cylindrical Roller Bearings for Machine Tool Main Spindle	M6 or N6	Impossible	required, very strict tolerances should be used for fitting.
		Minimum noise is required.	Electrical Home Appliances	Н6	Easily Possible	_

Note (1) Refer to Tables 9.13.1 and 9.13.2 for the recommended fits of housing bores of deep groove ball bearings and cylindrical roller bearings for electric motors.

Remarks 1. This table is applicable to cast iron and steel housings. For housings made of light alloys, the interference should

be tighter than those in this table.

2. Refer to the introductory section of the bearing dimension tables (blue pages) for special fits such as drawn cup needle roller bearings.

Table 9.5 Fits of Thrust Bearings with Housings

Load Conditions		Bearing Types	Tolerances for Housing Bores	Remarks
		Thrust Ball	Clearance over 0.25mm	For General Applications
		Bearings	H8	When precision is required
Axial Loads Only		Spherical Thrust Roller Bearings Steep Angle Tapered Roller Bearings	Outer ring has radial clearance.	When radial loads are sustained by other bearings.
Combined Radial	Stationary Outer Ring Loads	Spherical Thrust	H7 or JS7 (J7)	_
and Axial	Rotating Outer Ring Loads or	Roller Bearings	K7	Normal Loads
Loads	Direction of Load Indeterminate		M7	Relatively Heavy Radial Loads

A 84 A 85

Table 9.6 Fits of Inch Design Tapered Roller Bearings with Shafts

(1) Bearings of Precision Classes 4 and 2

Unite : um

(.,	Dournings of F	00101011 0141								Units : μ m
Ono	rating Conditions		Nominal Bore	e Diameters $oldsymbol{d}$		Bore Diameter Tolerances Δ_{ds}		Shaft Diameter Tolerances		Remarks
Ope	atting conditions	OV	ver .	inc	:l.					IXEITIBI K3
		(mm)	1/25.4	(mm)	1/25.4	high	low	high	low	
		-	_	76.200	3.0000	+13	0	+ 38	+ 25	
_	Normal Loads	76.200	3.0000	304.800	12.0000	+25	0	+ 64	+ 38	For bearings with $d \le 152.4 \text{ mm}$,
S	NOTHIAI LUAUS	304.800	12.0000	609.600	24.0000	+51	0	+127	+ 76	clearance is usually larger than CN.
g Ir		609.600	24.0000	914.400	36.0000	+76	0	+190	+114	
Rotating Inner Ring Loads	Home Loods	_	_	76.200	3.0000	+13	0	+ 64	+ 38	In general, bearings with a clear-
Sot	Heavy Loads Shock Loads	76.200	3.0000	304.800	12.0000	+25	0	*		ance larger than CN are used.
	High Speeds	304.800	12.0000	609.600	24.0000	+51	0	*		* means that the average
	riigir opoodo	609.600	24.0000	914.400	36.0000	+76	0	+381	+305	interference is about 0.0005 d.
		_	_	76.200	3.0000	+13	0	+ 13	0	The inner ring cannot be displaced axially.
<u>_</u>		76.200	3.0000	304.800	12.0000	+25	0	+ 25	0	When heavy or shock loads exist, the
Sute		304.800	12.0000	609.600	24.0000	+51	0	+ 51	0	figures in the above (Rotating inner ring
Rotating Outer Ring Loads	Normal Loads	609.600	24.0000	914.400	36.0000	+76	0	+ 76	0	loads, heavy or shock loads) apply.
atir g L	without Shocks	_	_	76.200	3.0000	+13	0	0	- 13	
Rot		76.200	3.0000	304.800	12.0000	+25	0	0	- 25	The inner ring can be displaced
		304.800	12.0000	609.600	24.0000	+51	0	0	- 51	axially.
		609.600	24.0000	914.400	36.0000	+76	0	0	- 76	

(2) Bearings of Precision Classes 3 and 0 (1)

Units : $\mu \, m$

One	rating Conditions		Nominal Bore	e Diameters $oldsymbol{d}$		Bore Di Tolera	ances	Shaft Di Tolera		- Remarks
Ope	rating Conditions	OV	er	inc	il.					Remarks
		(mm)	1/25.4	(mm)	1/25.4	high	low	high	low	
	Descipion	_	_	76.200	3.0000	+13	0	+ 30	+18	
_	Precision Machine-Tool	76.200	3.0000	304.800	12.0000	+13	0	+ 30	+18	
inel.	Main Spindles	304.800	12.0000	609.600	24.0000	+25	0	+ 64	+38	_
n g	iviairi Spiridics	609.600	24.0000	914.400	36.0000	+38	0	+102	+64	
Rotating Inner Ring Loads		_	-	76.200	3.0000	+13	0	_	_	
Sing Sing	Heavy Loads Shock Loads	76.200	3.0000	304.800	12.0000	+13	0	_	_	A minimum interference of about
4	High Speeds	304.800	12.0000	609.600	24.0000	+25	0	_	_	0.00025 d is used.
	J 1	609.600	24.0000	914.400	36.0000	+38	0	_	_	
Rotating Outer Ring Loads	Descioles	_	-	76.200	3.0000	+13	0	+ 30	+18	
g Or	Precision Machine-Tool	76.200	3.0000	304.800	12.0000	+13	0	+ 30	+18	
atin	Main Spindles	304.800	12.0000	609.600	24.0000	+25	0	+ 64	+38	_
종등	ividiri əpiridicə	609.600	24.0000	914.400	36.0000	+38	0	+102	+64	

Note (1) For bearings with d greater than 304.8 mm, Class 0 does not exist.

Table 9.7 Fits of Inch Design Tapered Roller Bearings with Housings

(1) Bearings of Precision Classes 4 and 2

Units : μm

										onito . pm
Ono	rating Conditions	No	ominal Outsio	de Diameters <i>I</i>)	Outside Tolera ⊿		Dian	ng Bore neter ances	Remarks
Ope	rating Conditions	OVE	er	ind	ol.					Remarks
		(mm)	1/25.4	(mm)	1/25.4	high	low	high	low	
		_	_	76.200	3.0000	+25	0	+ 76	+ 51	
	Used either	76.200	3.0000	127.000	5.0000	+25	0	+ 76	+ 51	The outer ring can be easily
	on free-end or	127.000	5.0000	304.800	12.0000	+25	0	+ 76	+ 51	The outer ring can be easily displaced axially.
SS	fixed-end	304.800	12.0000	609.600	24.0000	+51	0	+152	+102	displaced axially.
-0a		609.600	24.0000	914.400	36.0000	+76	0	+229	+152	
Rotating Inner Ring Loads		_	-	76.200	3.0000	+25	0	+ 25	0	
돌	The outer ring	76.200	3.0000	127.000	5.0000	+25	0	+ 25	0	The outer ring can be displaced
ner	position can be	127.000	5.0000	304.800	12.0000	+25	0	+ 51	0	axially.
J.	adjusted axially.	304.800	12.0000	609.600	24.0000	+51	0	+ 76	+ 25	axiany.
ţi		609.600	24.0000	914.400	36.0000	+76	0	+127	+ 51	
ota	The suites since	_	-	76.200	3.0000	+25	0	- 13	- 38	
~	The outer ring position cannot	76.200	3.0000	127.000	5.0000	+25	0	- 25	- 51	Generally, the outer ring is fixed
	be adjusted	127.000	5.0000	304.800	12.0000	+25	0	- 25	- 51	axially.
	axially.	304.800	12.0000	609.600	24.0000	+51	0	- 25	- 76	axiany.
		609.600	24.0000	914.400	36.0000	+76	0	- 25	-102	
Rotating Outer Ring Loads	Normal Loads	_	-	76.200	3.0000	+25	0	- 13	- 38	
g S S	The outer ring	76.200	3.0000	127.000	5.0000	+25	0	- 25	- 51	
EGG CGG	position cannot	127.000	5.0000	304.800	12.0000	+25	0	- 25	- 51	The outer ring is fixed axially.
n g	be adjusted	304.800	12.0000	609.600	24.0000	+51	0	- 25	- 76	
<u> </u>	axially.	609.600	24.0000	914.400	36.0000	+76	0	- 25	-102	

(2) Bearings of Precision Classes 3 and 0 (1)

Units : μm

One	rating Conditions	No	ominal Outsid	le Diameters $\it L$)	Outside I Tolera	ances	Housin Diam Tolera	neter	Remarks
Ope	rating conditions	OVE	er	inc	:1.					IVEITIGI N.S
		(mm)	1/25.4	(mm)	1/25.4	high	low	high	low	
		_	-	152.400	6.0000	+13	0	+38	+25	
	Used on free-	152.400	6.0000	304.800	12.0000	+13	0	+38	+25	The outer ring can be easily
	end	304.800	12.0000	609.600	24.0000	+25	0	+64	+38	displaced axially.
		609.600	24.0000	914.400	36.0000	+38	0	+89	+51	
Rotating Inner Ring Loads		_	-	152.400	6.0000	+13	0	+25	+13	
J.	Used on fixed-	152.400	6.0000	304.800	12.0000	+13	0	+25	+13	The outer ring can be displaced
ÿi	end	304.800	12.0000	609.600	24.0000	+25	0	+51	+25	axially.
er F		609.600	24.0000	914.400	36.0000	+38	0	+76	+38	
드	The outer ring	_	-	152.400	6.0000	+13	0	+13	0	
р	position can be	152.400	6.0000	304.800	12.0000	+13	0	+25	0	Generally, the outer ring is fixed
tati	adjusted axially.	304.800	12.0000	609.600	24.0000	+25	0	+25	0	axially.
&		609.600	24.0000	914.400	36.0000	+38	0	+38	0	
	The outer ring	_	-	152.400	6.0000	+13	0	0	-13	
	position cannot	152.400	6.0000	304.800	12.0000	+13	0	0	-25	The outer ring is fixed axially.
	be adjusted	304.800	12.0000	609.600	24.0000	+25	0	0	-25	The cater ring is tinea amany.
	axially.	609.600	24.0000	914.400	36.0000	+38	0	0	-38	
ıter	Normal Loads	_	-	76.200	3.0000	+13	0	-13	-25	
35 Sp	The outer ring	76.200	3.0000	152.400	6.0000	+13	0	-13	-25	
Log	position cannot	152.400	6.0000	304.800	12.0000	+13	0	-13	-38	The outer ring is fixed axially.
Rotating Outer Ring Loads	be adjusted	304.800	12.0000	609.600	24.0000	+25	0	-13	-38	
200	axially.	609.600	24.0000	914.400	36.0000	+38	0	-13	-51	

Note (1) For bearings with D greater than 304.8 mm, Class 0 does not exist.

A 86

9.2 Bearing Internal Clearances

9.2.1 Internal Clearances and Their Standards

The internal clearance in rolling bearings in operation greatly influences bearing performance including fatique life, vibration, noise, heat-generation, etc. Consequently, the selection of the proper internal clearance is one of the most important tasks when choosing a bearing after the type and size have been determined.

This bearing internal clearance is the combined clearances between the inner/outer rings and rolling elements. The radial and axial clearances are defined as the total amount that one ring can be displaced relative to the other in the radial and axial directions respectively (Fig. 9.1).

To obtain accurate measurements, the clearance is generally measured by applying a specified measuring load on the bearing: therefore, the measured clearance (sometimes called "measured clearance" to make a distinction) is always slightly larger than the theoretical internal clearance (called "geometrical clearance" for radial bearings) by the amount of elastic deformation caused by the measuring load.

Therefore, the theoretical internal clearance may be obtained by correcting the measured clearance by the amount of elastic deformation. However, in the case of roller bearings this elastic deformation is negligibly

Usually the clearance before mounting is the one specified as the theoretical internal clearance.

In Table 9.8, reference table and page numbers are listed by bearing types.

Table 9.8 Index for Radial Internal Clearances by Bearing Types

Ве	earing Types	Table Number	Page Number
Deep Groove Ba	III Bearings	9.9	A89
Extra Small and	Miniature Ball Bearings	9.10	A89
Magneto Bearin	gs	9.11	A89
Self-Aligning Ba	III Bearings	9.12	A90
Deep Groove Ball Bearings		9.13.1	A90
Cylindrical Roller Bearings	For Motors	9.13.2	A90
Cylindrical Roller Bearings	With Cylindrical Bores With Cylindrical Bores (Matched) With Tapered Bores (Matched)	9.14	A91
Spherical Roller Bearings	With Cylindrical Bores With Tapered Bores	9.15	A92
Double-Row an Roller Bearings	d Combined Tapered	9.15	A93
Combined Angu Bearings (1)	ılar Contact Ball	9.17	A94
Four-Point Cont	act Ball Bearings (¹)	9.18	A94

Note (1) Values given are axial clearances.

Table 9.9 Radial Internal Clearances in **Deep Groove Ball Bearings**

Clearance

Units: um

Diamet						Oicui	uncc				
d (mn		C	2	С	N	С	3	С	24	С	5
over	incl.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
10 only 10 18	18 24	0 0 0	7 9 10	2 3 5	13 18 20	8 11 13	23 25 28	14 18 20	29 33 36	20 25 28	37 45 48
24	30	1	11	5	20	13	28	23	41	30	53
30	40	1	11	6	20	15	33	28	46	40	64
40	50	1	11	6	23	18	36	30	51	45	73
50	65	1	15	8	28	23	43	38	61	55	90
65	80	1	15	10	30	25	51	46	71	65	105
80	100	1	18	12	36	30	58	53	84	75	120
100	120	2	20	15	41	36	66	61	97	90	140
120	140	2	23	18	48	41	81	71	114	105	160
140	160	2	23	18	53	46	91	81	130	120	180
160	180	2	25	20	61	53	102	91	147	135	200
180	200	2	30	25	71	63	117	107	163	150	230
200	225	2	35	25	85	75	140	125	195	175	265
225	250	2	40	30	95	85	160	145	225	205	300
250	280	2	45	35	105	90	170	155	245	225	340
280	315	2	55	40	115	100	190	175	270	245	370
315	355	3	60	45	125	110	210	195	300	275	410
355	400	3	70	55	145	130	240	225	340	315	460
400	450	3	80	60	170	150	270	250	380	350	510
450	500	3	90	70	190	170	300	280	420	390	570
500	560	10	100	80	210	190	330	310	470	440	630
560	630	10	110	90	230	210	360	340	520	490	690
630	710	20	130	110	260	240	400	380	570	540	760
710	800	20	140	120	290	270	450	430	630	600	840
Remarks	To obt	ain th	e mea	surec	l value	es use	e the o	learar	nce co	rrecti	

Nominal Bore

Remarks To obtain the measured values, use the clearance correction for radial clearance increase caused by the measuring load in the table below.

> For the C2 clearance class, the smaller value should be used for bearings with minimum clearance and the larger value for bearings near the maximum clearance range.

Units: μm

Nominal E Dia. d (n		Meas Lo			lial Cle ount	arance	Correc	tion
over	incl.	(N)	au {kgf}	C2	CN	C3	C4	C5
10 (incl) 18 50	18 50 280	24.5 49 147		3 to 4 4 to 5 6 to 8	4 5 8	4 6 9	4 6 9	4 6 9

Remarks For values exceeding 280 mm, please contact NSK.

Table 9.10 Radial Internal Clearances in Extra Small and Miniature Ball Bearings

Units: um

Clear- ance Symbol		C1	M	C2	M	СЗ	M	C4	M	C5	M	C6
	min.	max.										
Clear- ance	0	5	3	8	5	10	8	13	13	20	20	28

Remarks 1. The standard clearance is MC3.

2. To obtain the measured value, add correction amount in the table below.

Units: μm

Clearance Symbol	MC1	MC2	МС3	MC4	MC5	MC6
Clearance Correction Value	1	1	1	1	2	2

The measuring loads are as follows:

For miniature ball bearings* 2.5N {0.25kgf} For extra small ball bearings*

4.4N {0.45kgf} *For their classification, refer to Table 1 on Page B 31.

Table 9.11 Radial Internal Clearances in Magneto Bearings

Units: um

Nomina Diam $oldsymbol{d}$ (n	neter	Bearing Series	Clearance			
over	incl.		min.	max.		
2.5	30	EN	10	50		
2.5	30	E	30	60		

A 88

Table 9.12 Radial Internal Clearances in Self-Aligning Ball Bearings

Units : μm

Nomina			Cl	earanc	e in Be	arings	with C	ylindri	cal Bo	es			(learan	ice in E	earing	s with	Tapere	d Bore	S	
Dia. d ((mm)	C	22	C	N	C	C3	C	:4	C	5	(C 2	C	N	C	23	C	4		C5
over	incl.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
2.5 6 10	6 10 14	1 2 2	8 9 10	5 6 6	15 17 19	10 12 13	20 25 26	15 19 21	25 33 35	21 27 30	33 42 48	<u> </u>	_	_	_	=	=	=	_	=	_
14 18 24	18 24 30	3 4 5	12 14 16	8 10 11	21 23 24	15 17 19	28 30 35	23 25 29	37 39 46	32 34 40	50 52 58		17 20	13 15	 26 28	20 23	33 39	28 33	42 50	37 44	55 62
30 40 50	40 50 65	6 6 7	18 19 21	13 14 16	29 31 36	23 25 30	40 44 50	34 37 45	53 57 69	46 50 62	66 71 88	12 14 18	24 27 32	19 22 27	35 39 47	29 33 41	46 52 61	40 45 56	59 65 80	52 58 73	72 79 99
65 80 100	80 100 120	8 9 10	24 27 31	18 22 25	40 48 56	35 42 50	60 70 83	54 64 75	83 96 114	76 89 105	108 124 145	23 29 35	39 47 56	35 42 50	57 68 81	50 62 75	75 90 108	69 84 100	98 116 139	91 109 130	123 144 170
120 140	140 160	10 15	38 44	30 35	68 80	60 70	100 120	90 110	135 161	125 150	175 210	40 45	68 74	60 65	98 110	90 100	130 150	120 140	165 191	155 180	205 240

Table 9.13 Radial Internal Clearances in **Bearings for Electric Motors**

Table 9.13. 1 Deep Groove Ball Bearings for Electric Motors

				Units : μm				
Nominal E		Clea	rance	Ren	narks			
Dia. d (m	ım)	C	M	Recommended fit				
over	incl.	min.	max.	Shaft	Housing Bore			
10 (incl)	18	4	11	js5 (j5)				
18	30	5	12					
30	50	9	17		H6, H7(1)			
				k5	or			
50	80	12	22		JS6, JS7			
80	100	18	30		(J6, J7)(²)			
					1			
100	120	18	30	m5				
120	160	24	38	1110				

Notes (1) Applicable to outer rings that require movement in the axial direction.

> (2) Applicable to outer rings that do not require movement in the axial direction.

Remarks The radial clearance increase caused by the measuring load is equal to the correction amount for CN clearance in the remarks under Table 9.9.

Table 9.13.2	Cylindrical Roller Bearings
	for Electric Motors

Units: um

							110 · pc 111		
Nomina	l Bore		Clear	ance		Remarks			
Dia. d	(mm)	Interchan	geable CT	Non-Interch	angeable CM	Recor	mmended Fit		
over	incl.	min.	max.	min.	max.	Shaft	Housing Bore		
24	40	15	35	15	30	k5			
40	50	20	40	20	35				
50	65	25	45	25	40				
65	80	30	50	30	45				
80	100	35	60	35	55	m5	JS6, JS7 (J6, J7)(1)		
100	120	35	65	35	60		or		
120	140	40	70	40	65		K6, K7(2)		
140	160	50	85	50	80				
160	180	60	95	60	90	n6			
180	200	65	105	65	100	110			

Notes (1) Applicable to outer rings that require movement in the axial direction.

(2) Applicable to outer rings that do not require movement in the axial direction.

Table 9.14 Radial Internal Clearances in Cylindrical Roller Bearings and Solid-Type Needle Roller Bearings

Units : μm

	lom ore						ances Cylind									Cleara		Non-I				rings		
(d (m	nm)	C	2	C	N	C	3	C	4	C	5	C	C1	С	CC2	CC	(1)	C	C3	C	C 4	C	C5
0	ver	incl.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.								
	10 24	10 24 30	0 0 0	25 25 25	20 20 20	45 45 45	35 35 35	60 60 60	50 50 50	75 75 75	— 65 70	90 95	 5 5	 15 15	10 10	 20 25	20 25	30 35	35 40	45 50	45 50	 55 60	65 70	75 80
	30 40 50	40 50 65	5 5 10	30 35 40	25 30 40	50 60 70	45 50 60	70 80 90	60 70 80	85 100 110	80 95 110	105 125 140	5 5 5	15 18 20	12 15 15	25 30 35	25 30 35	40 45 50	45 50 55	55 65 75	55 65 75	70 80 90	80 95 110	95 110 130
		80 100 120	10 15 15	45 50 55	40 50 50	75 85 90	65 75 85	100 110 125	90 105 125	125 140 165	130 155 180	165 190 220	10 10 10	25 30 30	20 25 25	40 45 50	40 45 50	60 70 80	70 80 95	90 105 120	90 105 120	110 125 145	130 155 180	150 180 205
1	40	140 160 180	15 20 25	60 70 75	60 70 75	105 120 125	100 115 120	145 165 170	145 165 170	190 215 220	200 225 250	245 275 300	10 10 10	35 35 40	30 35 35	60 65 75	60 65 75	90 100 110	105 115 125	135 150 165	135 150 165	160 180 200	200 225 250	230 260 285
2	00	200 225 250	35 45 45	90 105 110	90 105 110	145 165 175	140 160 170	195 220 235	195 220 235	250 280 300	275 305 330	330 365 395	15 15 15	45 50 50	40 45 50	80 90 100	80 90 100	120 135 150	140 155 170	180 200 215	180 200 215	220 240 265	275 305 330	315 350 380
2	80	280 315 355	55 55 65	125 130 145	125 130 145	195 205 225	190 200 225	260 275 305	260 275 305	330 350 385	370 410 455	440 485 535	20 20 20	55 60 65	55 60 65	110 120 135	110 120 135	165 180 200	185 205 225	240 265 295	240 265 295	295 325 360	370 410 455	420 470 520
4	00	400 450 500	100 110 110	190 210 220	190 210 220	280 310 330	280 310 330	370 410 440	370 410 440	460 510 550	510 565 625	600 665 735	25 25 25	75 85 95	75 85 95	150 170 190	150 170 190	225 255 285	255 285 315	330 370 410	330 370 410	405 455 505	510 565 625	585 650 720

Note (1) CC denotes normal clearance for non-Interchangeable cylindrical roller bearings and solid-type needle roller bearings.

Units : μm

	minal e Dia.	Clearances in Non-Interchangeable Bearings with Tapered Bores															
	e Dia. (mm)	CC	9 (1)	C	C 0	C	C1	C	C2	CC	(2)	C	C3	C	C4	C	C5
over	incl.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
10	24	5	10		—	10	20	20	30	35	45	45	55	55	65	75	85
24	30	5	10	8	15	10	25	25	35	40	50	50	60	60	70	80	95
30	40	5	12	8	15	12	25	25	40	45	55	55	70	70	80	95	110
40	50	5	15	10	20	15	30	30	45	50	65	65	80	80	95	110	125
50	65	5	15	10	20	15	35	35	50	55	75	75	90	90	110	130	150
65	80	10	20	15	30	20	40	40	60	70	90	90	110	110	130	150	170
80	100	10	25	20	35	25	45	45	70	80	105	105	125	125	150	180	205
100	120	10	25	20	35	25	50	50	80	95	120	120	145	145	170	205	230
120	140	15	30	25	40	30	60	60	90	105	135	135	160	160	190	230	260
140	160	15	35	30	50	35	65	65	100	115	150	150	180	180	215	260	295
160	180	15	35	30	50	35	75	75	110	125	165	165	200	200	240	285	320
180	200	20	40	30	50	40	80	80	120	140	180	180	220	220	260	315	355
200	225	20	45	35	60	45	90	90	135	155	200	200	240	240	285	350	395
225	250	25	50	40	65	50	100	100	150	170	215	215	265	265	315	380	430
250	280	25	55	40	70	55	110	110	165	185	240	240	295	295	350	420	475
280 315 355	315 355 400	30 30 35	60 65 75	=	_	60 65 75	120 135 150	120 135 150	180 200 225	205 225 255	265 295 330	265 295 330	325 360 405	325 360 405	385 430 480	470 520 585	530 585 660
400 450	450 500	40 45	85 95		=	85 95	170 190	170 190	255 285	285 315	370 410	370 410	455 505	455 505	540 600	650 720	735 815

(1) Clearance CC9 is applicable to cylindrical roller bearings with tapered bores in ISO Tolerance Classes 5 and 4.
(2) CC denotes normal clearance for non-Interchangeable cylindrical roller bearings and solid-type needle roller bearings.

Table 9.15 Radial Internal Clearances in Spherical Roller Bearings

Units : μm

	ninal Dia.		(Cleara	nce in	Beari	ings wit	th Cylin	drical B	ores				Cle	arance i	in Beari	ngs wit	h Taper	ed Bore	!S	
	nm)	C	2	C	N	(C3	C	24	(C5	C	2	(CN	C	3	C	24	C	5
over	incl.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
24	30	15	25	25	40	40	55	55	75	75	95	20	30	30	40	40	55	55	75	75	95
30	40	15	30	30	45	45	60	60	80	80	100	25	35	35	50	50	65	65	85	85	105
40	50	20	35	35	55	55	75	75	100	100	125	30	45	45	60	60	80	80	100	100	130
50	65	20	40	40	65	65	90	90	120	120	150	40	55	55	75	75	95	95	120	120	160
65	80	30	50	50	80	80	110	110	145	145	180	50	70	70	95	95	120	120	150	150	200
80	100	35	60	60	100	100	135	135	180	180	225	55	80	80	110	110	140	140	180	180	230
100	120	40	75	75	120	120	160	160	210	210	260	65	100	100	135	135	170	170	220	220	280
120	140	50	95	95	145	145	190	190	240	240	300	80	120	120	160	160	200	200	260	260	330
140	160	60	110	110	170	170	220	220	280	280	350	90	130	130	180	180	230	230	300	300	380
160	180	65	120	120	180	180	240	240	310	310	390	100	140	140	200	200	260	260	340	340	430
180	200	70	130	130	200	200	260	260	340	340	430	110	160	160	220	220	290	290	370	370	470
200	225	80	140	140	220	220	290	290	380	380	470	120	180	180	250	250	320	320	410	410	520
225	250	90	150	150	240	240	320	320	420	420	520	140	200	200	270	270	350	350	450	450	570
250	280	100	170	170	260	260	350	350	460	460	570	150	220	220	300	300	390	390	490	490	620
280	315	110	190	190	280	280	370	370	500	500	630	170	240	240	330	330	430	430	540	540	680
315	355	120	200	200	310	310	410	410	550	550	690	190	270	270	360	360	470	470	590	590	740
355	400	130	220	220	340	340	450	450	600	600	750	210	300	300	400	400	520	520	650	650	820
400	450	140	240	240	370	370	500	500	660	660	820	230	330	330	440	440	570	570	720	720	910
450 500 560	500 560 630	140 150 170	260 280 310	260 280 310	410 440 480	410 440 480	550 600 650	550 600 650	720 780 850		900 1 000 1 100	260 290 320	370 410 460	370 410 460	490 540 600	490 540 600	630 680 760	630 680 760	790 870 980	870	1 000 1 100 1 230
630 710 800	710 800 900	190 210 230	350 390 430	350 390 430	530 580 650	530 580 650	700 770 860	700 770 860	920 1 010 1 120	1 010	1 190 1 300 1 440	350 390 440	510 570 640	510 570 640	670 750 840	670 750 840	850 960 1 070	850 960 1 070	1 090 1 220 1 370	1 090 1 220 1 370	1 360 1 500 1 690
900 1 000 1 120 1 250	1 000 1 120 1 250 1 400	260 290 320 350	480 530 580 640	480 530 580 640	710 780 860 950	710 780 860 950	930 1 020 1 120 1 240		1 220 1 330 1 460 1 620	1 220 — — —	1 570 — — —	490 530 570 620	710 770 830 910	830	930 1 030 1 120 1 230	1 030	1 190 1 300 1 420 1 560	1 190 1 300 1 420 1 560	1 520 1 670 1 830 2 000	1 520 — — —	

Table 9.16 Radial Internal Clearances in Double-Row and Combined Tapered Roller Bearings

 $\text{Units}: \mu m$

	ndrical						CI	earance					
Bore Tape	ered Bore	C	C1	C	22	C	N	C	C3	C	24	C	5
Nominal Bo Dia. d (mr		-	_	C	1	C	22	C	N	C	23	С	4
over	incl.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
18 24	18 24 30	0 0 0	10 10 10	10 10 10	20 20 20	20 20 20	30 30 30	35 35 40	45 45 50	50 50 50	60 60 60	65 65 70	75 75 80
30	40	0	12	12	25	25	40	45	60	60	75	80	95
40	50	0	15	15	30	30	45	50	65	65	80	95	110
50	65	0	15	15	35	35	55	60	80	80	100	110	130
65	80	0	20	20	40	40	60	70	90	90	110	130	150
80	100	0	25	25	50	50	75	80	105	105	130	155	180
100	120	5	30	30	55	55	80	90	115	120	145	180	210
120	140	5	35	35	65	65	95	100	130	135	165	200	230
140	160	10	40	40	70	70	100	110	140	150	180	220	260
160	180	10	45	45	80	80	115	125	160	165	200	250	290
180	200	10	50	50	90	90	130	140	180	180	220	280	320
200	225	20	60	60	100	100	140	150	190	200	240	300	340
225	250	20	65	65	110	110	155	165	210	220	270	330	380
250	280	20	70	70	120	120	170	180	230	240	290	370	420
280	315	30	80	80	130	130	180	190	240	260	310	410	460
315	355	30	80	80	130	140	190	210	260	290	350	450	510
355	400	40	90	90	140	150	200	220	280	330	390	510	570
400	450	45	95	95	145	170	220	250	310	370	430	560	620
450	500	50	100	100	150	190	240	280	340	410	470	620	680
500	560	60	110	110	160	210	260	310	380	450	520	700	770
560	630	70	120	120	170	230	290	350	420	500	570	780	850
630	710	80	130	130	180	260	310	390	470	560	640	870	950
710	800	90	140	150	200	290	340	430	510	630	710	980	1 060
800	900	100	150	160	210	320	370	480	570	700	790	1 100	1 200
900	1 000	120	170	180	230	360	410	540	630	780	870	1 200	1 300
1 000 1 120 1 250	1 120 1 250 1 400	130 150 170	190 210 240	200 220 250	260 280 320	400 450 500	460 510 570	600 670 750	700 770 870		=	_ _ _	_ _ _

 $\begin{array}{ll} \textbf{Remarks} & \textbf{Axial internal clearance} & \varDelta_{\textbf{a}} = \varDelta_{\textbf{r}} \cot \alpha \stackrel{:}{=} \frac{1.5}{e} \ \varDelta_{\textbf{r}} \\ & \text{where} \ \varDelta_{\textbf{r}} : \textbf{Radial internal clearance} \\ & \alpha : \textbf{Contact angle} \\ & e : \textbf{Constant (Listed in bearing tables)} \\ \end{array}$

A 92

Table 9.17 Axial Internal Clearances in Combined Angular Contact Ball Bearings (Measured Clearance)

Units: u.m.

Nomi	nal Bore		Axial Internal Clearance										
Dia	meter.			Contact	Angle 30°					Contact A	Contact Angle 40°		
a	(mm)	C	N	(C3	(C4	C	N			C4	
over	incl.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
—	10	9	29	29	49	49	69	6	26	26	46	46	66
10	18	10	30	30	50	50	70	7	27	27	47	47	67
18	24	19	39	39	59	59	79	13	33	33	53	53	73
24	30	20	40	40	60	60	80	14	34	34	54	54	74
30	40	26	46	46	66	66	86	19	39	39	59	59	79
40	50	29	49	49	69	69	89	21	41	41	61	61	81
50	65	35	60	60	85	85	110	25	50	50	75	75	100
65	80	38	63	63	88	88	115	27	52	52	77	77	100
80	100	49	74	74	99	99	125	35	60	60	85	85	110
100	120	72	97	97	120	120	145	52	77	77	100	100	125
120	140	85	115	115	145	145	175	63	93	93	125	125	155
140	160	90	120	120	150	150	180	66	96	96	125	125	155
160	180	95	125	125	155	155	185	68	98	98	130	130	160
180	200	110	140	140	170	170	200	80	110	110	140	140	170

Remarks This table is applicable to bearings in Tolerance Classes Normal and 6. For internal axial clearances in bearings in tolerance classes better than 5 and contact angles of 15° and 25°, it is advisable to consult NSK.

Table 9.18 Axial Internal Clearance in Four-Point **Contact Ball Bearings** (Measured Clearances)

Unite : um

							UI	IIIS : μ1	111
Nomin	al Bore			Axia	l Intern	al Clear	ance		
Dia. d	(mm)	C	C2 CN C3		C	24			
over	incl.	min.	max.	min.	max.	min.	max.	min.	max.
10	18	15	55	45	85	75	125	115	165
18	40	26	66	56	106	96	146	136	186
40	60	36	86	76	126	116	166	156	206
60	80	46	96	86	136	126	176	166	226
80	100	56	106	96	156	136	196	186	246
100	140	66	126	116	176	156	216	206	266
140	180	76	156	136	196	176	246	226	296
180	220	96	176	156	226	206	276	256	326
220	260	115	196	175	245	225	305	285	365
260	300	135	215	195	275	255	335	315	395
300	350	155	235	215	305	275	365	345	425
350	400	175	265	245	335	315	405	385	475
400	500	205	305	285	385	355	455	435	525

9.2.2 Selection of Bearing Internal Clearances

Among the bearing internal clearances listed in the tables, the CN Clearance is adequate for standard operating conditions. The clearance becomes progressively smaller from C2 to C1 and larger from C3 to C5.

Standard operating conditions are defined as those where the inner ring speed is less than approximately 50% of the limiting speed listed in the bearing tables, the load is less than normal $(P = 0.1C_r)$, and the bearing is tight-fitted on the shaft.

As a measure to reduce bearing noise for electric motors, the radial clearance range is narrower than the normal class and the values are somewhat smaller for deep groove ball bearings and cylindrical roller bearings for electric motors. (Refer to Table 9.13.1 and

Internal clearance varies with the fit and temperature differences in operation. The changes in radial clearance in a roller bearing are shown in Fig. 9.2.

(1) Decrease in Radial Clearance Caused by Fitting and Residual Clearance

When the inner ring or the outer ring is tight-fitted on a shaft or in a housing, a decrease in the radial internal clearance is caused by the expansion or contraction of the bearing rings. The decrease varies according to the bearing type and size and design of the shaft and housing. The amount of this decrease is approximately 70 to 90% of the interference (refer to Section 15.2, Fits (1), Pages A130 to A133). The internal clearance after subtracting this decrease from the theoretical internal clearance Δ_0 is called the residual clearance, $\Delta_{\rm f}$

(2) Decrease in Radial Internal Clearance Caused by Temperature Differences between Inner and Outer Rings and Effective Clearance

The frictional heat generated during operation is conducted away through the shaft and housing. Since housings generally conduct heat better than shafts, the temperature of the inner ring and the rolling elements is usually higher than that of the outer ring by 5 to 10°C. If the shaft is heated or the housing is cooled, the difference in temperature between the inner and outer rings is greater. The radial clearance decreases due to the thermal expansion caused by the temperature difference between the inner and outer rings. The amount of this decrease can be calculated using the following equations:

$$\delta_t = \alpha \Delta_t D_e$$
 (9.6)

where δ_t : Decrease in radial clearance due to temperature difference between inner and outer rings (mm)

α : Coefficient of linear expansion of bearing steel $= 12.5 \times 10^{-6} (1/^{\circ}C)$

 Δ_t : Temperature difference between inner and outer rings (°C)

 $D_{\rm e}$: Outer ring raceway diameter (mm)

For ball bearings

$$D_{\rm e} = \frac{1}{5} (4D + d) \dots (9.7)$$

For roller bearings
$$D_{\rm e} = \frac{1}{4} (3D + d) \dots (9.8)$$

The clearance after substracting this δ_t from the residual clearance. Δ_f is called the effective clearance. Δ . Theoretically, the longest life of a bearing can be expected when the effective clearance is slightly negative. However, it is difficult to achieve such an ideal condition, and an excessive negative clearance will greatly shorten the bearing life. Therefore, a clearance of zero or a slightly positive amount, instead of a negative one, should be selected. When single-row angular contact ball bearings or tapered roller bearings are used facing each other, there should be a small effective clearance, unless a preload is required. When two cylindrical roller bearings with a rib on one side are used facing each other, it is necessary to provide adequate axial clearance to allow for shaft elongation during operation.

The radial clearances used in some specific applications are given in Table 9.19. Under special operating conditions, it is advisable to consult NSK.

Fig. 9.2 Changes in Radial Internal Clearance of Bearings

Table 9. 19 Examples of Clearances for Specific **Applications**

Operating Conditions	Examples	Internal Clearance
When shaft deflection is large.	Semi-floating rear wheels of automobiles	C5 or equivalent
When steam passes	Dryers in paper making machines	C3, C4
through hollow shafts or roller shafts are heated.	Table rollers for rolling mills	C3
When impact leads and	Traction motors for railways	C4
When impact loads and vibration are severe or	Vibrating screens	C3, C4
when both the inner and outer rings are tight-	Fluid couplings	C4
fitted.	Final reduction gears for tractors	C4
When both the inner and outer rings are loose-fitted	Rolling mill roll necks	C2 or equivalent
When noise and vibration restrictions are severe	Small motors with special specifications	C1, C2, CM
When clearance is adjusted after mounting to prevent shaft deflection, etc.	Main shafts of lathes	CC9, CC1

10. PRELOAD

Rolling bearings usually retain some internal clearance while in operation. In some cases, however, it is desirable to provide a negative clearance to keep them internally stressed. This is called "preloading". A preload is usually applied to bearings in which the clearance can be adjusted during mounting, such as angular contact ball bearings or tapered roller bearings. Usually, two bearings are mounted face-to-face or back-to-back to form a duplex set with a preload.

10.1 Purpose of Preload

The main purposes and some typical applications of preloaded bearings are as follows:

- (1) To maintain the bearings in exact position both radially and axially and to maintain the running accuracy of the shaft.
 - ... Main shafts of machine tools, precision instruments, etc.
- (2) To increase bearing rigidity
- ... Main shafts of machine tools, pinion shafts of final drive gears of automobiles, etc.
- (3) To minimize noise due to axial vibration and resonance
 - .. Small electric motors, etc.
- (4) To prevent sliding between the rolling elements and raceways due to gyroscopic moments
- ... High speed or high acceleration applications of angular contact ball bearings, and thrust ball
- (5) To maintain the rolling elements in their proper position with the bearing rings
 - ... Thrust ball bearings and spherical thrust roller bearings mounted on a horizontal shaft

10.2 Preloading Methods

10.2.1 Position Preload

A position preload is achieved by fixing two axially opposed bearings in such a way that a preload is imposed on them. Their position, once fixed, remain unchanged while in operation.

In practice, the following three methods are generally used to obtain a position preload.

- (1) By installing a duplex bearing set with previously adjusted stand-out dimensions (see Page A7, Fig. 1.1) and axial clearance.
- (2) By using a spacer or shim of proper size to obtain the required spacing and preload. (Refer to Fig.
- (3) By utilizing bolts or nuts to allow adjustment of the axial preload. In this case, the starting torque should be measured to verify the proper preload.

10.2.2 Constant-Pressure Preload

A constant pressure preload is achieved using a coil or leaf spring to impose a constant preload. Even if the relative position of the bearings changes during operation, the magnitude of the preload remains relatively constant (refer to Fig. 10.2)

10.3 Preload and Rigidity

10.3.1 Position Preload and Rigidity

When the inner rings of the duplex bearings shown in Fig.10.3 are fixed axially, bearings A and B are displaced δ_{a0} and axial space $2\delta_{a0}$ between the inner rings is eliminated. With this condition, a preload F_{a0} is imposed on each bearing. A preload diagram showing bearing rigidity, that is the relation between load and displacement with a given axial load F_a imposed on a duplex set, is shown in Fig. 10.4.

Fig. 10.3 Back-to-Back Duplex Bearing Preload

10.3.2 Constant-Pressure Preload and Rigidity

A preload diagram for duplex bearings under a constant-pressure preload is shown in Fig. 10.5. The deflection curve of the spring is nearly parallel to the horizontal axis because the rigidity of springs is lower than that of the bearing. As a result, the rigidity under a constant-pressure preload is approximately equal to that for a single bearing with a preload F_{a0} applied to it. Fig. 10.6 presents a comparison of the rigidity of a bearing with a position preload and one with a constant-pressure preload.

10.4 Selection of Preloading Method and Amount of Preload

10.4.1 Comparison of Preloading Methods

A comparison of the rigidity using both preloading methods is shown in Fig. 10.6. The position preload and constant-pressure preload may be compared as follows:

- (1) When both of the preloads are equal, the position preload provides greater bearing rigidity, in other words, the deflection due to external loads is less for bearings with a position preload.
- (2) In the case of a position preload, the preload varies depending on such factors as a difference in axial expansion due to a temperature difference between the shaft and housing, a difference in radial expansion due to a temperature difference between the inner and outer rings, deflection due to load, etc.

 F_{aA} : Axial load imposed on Bearing A F_{aB} : Axial load imposed on Bearing B

bearing set : Displacement of Bearing A

Displacement of Bearing B

Fig. 10.4 Axial Displacement with Position Preload

In the case of a constant-pressure preload, it is possible to minimize any change in the preload because the variation of the spring load with shaft expansion and contraction is negligible. From the foregoing explanation, it is seen that position preloads are generally preferred for increasing rigidity and constant-pressure preloads are more suitable for high speed applications, for prevention of axial vibration, for use with thrust bearings on horizontal shafts, etc.

Fig. 10.5 Axial Displacement with Constant-Pressure Preload

Fig. 10.6 Comparison of Rigidities and Preloading Methods

10.4.2 Amount of Preload

If the preload is larger than necessary, abnormal heart generation, increased frictional torque, reduced fatigue life, etc. may occur. The amount of the preload should be carefully determined considering the operating conditions and the purpose of the preload.

(1) Preloading of Duplex Angular Contact Ball **Bearings**

Average preloads for duplex angular contact ball bearings (contact angle of 15°) with precision better than P5 class, which are used on the main shafts of machine tools, are listed in Table 10.2.

The recommended fitting between the shaft and inner ring and between the housing and outer ring are listed in Table 10.1. In the case of fits with housings, the lower limit of the fitting range should be selected for fixed-end bearings and the upper limit for free-end

As a general rule, an extra light or light preload should be selected for grinding spindles and the main shafts of machining centers, while a medium preload should be adopted for the main shafts of lathes requiring

When speeds result in a value of $D_{pw} \times n$ ($d_{m}n$ value) higher than 500000, the preload should be very carefully studied and selected. In such a case, please consult with NSK beforehand.

Table 10 2 1 Duplex Bearings of Series 79

	Table To	. 2. 1 Duplex beal	ings of Series 79	Units : N
		Prel	oads	
Bearing	Extra light	Light	Medium	Heavy
No.	Preload EL	Preload L	Preload M	Preload H
7900 C	7	15	29	59
7901 C	8.6	15	39	78
7902 C	12	25	49	100
7903 C	12	25	59	120
7904 C	19	39	78	150
7905 C	19	39	100	200
7906 C	24	49	100	200
7907 C	34	69	150	290
7908 C	39	78	200	390
7909 C	50	100	200	390
7910 C	50	100	250	490
7911 C	60	120	290	590
7912 C	60	120	290	590
7913 C	75	150	340	690
7914 C	100	200	490	980
7915 C	100	200	490	980
7916 C	100	200	490	980
7917 C	145	290	640	1 270
7918 C	145	290	740	1 470
7919 C	145	290	780	1 570
7920 C	195	390	880	1 770

Table 10. 1 Recommended Fitting for High Accuracy Duplex Angular Contact Ball Bearings with Preload

					11.5 . pi 111
Nomin Dia. <i>d</i>		Target Shaft Interference		Outside ia. nm)	Target Housing
over	incl.		over	incl.	Clearance
18 30	18 30 50	0 to 2 0 to 2.5 0 to 2.5	18 30	18 30 50	2 to 6 2 to 6
50 80 120	80 120 150	0 to 3 0 to 4 —	50 80 120	80 120 150	3 to 8 3 to 9 4 to 12
150 180	180 250	_	150 180	180 250	4 to 12 5 to 15

Bearing

No.

7000 C

7001 C

7002 C

7003 C

7004 C

7005 C

7006 C

7007 C

7008 C

7009 C

7010 C

7011 C

7012 C

7013 C

7014 C

7015 C

7016 C

7017 C

7018 C

7019 C

7020 C

Table 10. 2 Preloads for Duplex

Light

Preload L

25

25

29

29

49

59

78

120

120

150

150

200

200

250

290

290

390

390

490

540

540

Extra light

Preload EL

12

12

14

14

24

29

39

60

75

75

100

100

125

145

195

195

245

270

Units · um

Table 10. 2. 2 Duplex

(2) Preload of Thrust Ball Bearings

When the balls in thrust ball bearings rotate at relatively high speeds, sliding due to gyroscopic moments on the balls may occur. The larger of the two values obtained from Equations(10.1) and (10.2) below should be adopted as the minimum axial load in order to prevent such sliding

$$F_{\text{a min}} = \frac{C_{0 \text{ a}}}{100} \left(\frac{n}{N_{\text{max}}}\right)^2 \dots (10.1)$$

$$F_{\rm a\,min} = \frac{C_{0\,\rm a}}{1000}$$
(10.2)

 $\begin{array}{cc} \text{where} & F_{\text{a}\min}: \text{Minimum axial load (N), \{kgf\}} \\ & n: \text{Speed (min}^{\text{-1}}) \end{array}$

 C_{0a} : Basic static load rating (N), {kgf} N_{max} : Limiting speed (oil lubrication) (min⁻¹)

Angular Contact Ball Bearings

Bearings of Series 70

Medium

Preload M

59

69

69

120

150

200

250

290

340

390

490

540

540

740

780

930

980

1 180

1 180

1 270

Preloads

Units : N

1 5 7 0

1 860

1 960

2 350

2 350

2 5 5 0

				Orinto .	
	Preloads				
Bearing	Extra light	Light	Medium	Heavy	
No.	Preload EL	Preload L	Preload M	Preload H	
7200 C	14	29	69	150	
7201 C	19	39	100	200	
7202 C	19	39	100	200	
7203 C	24	49	150	290	
7204 C	34	69	200	390	
7205 C	39	78	200	390	
7206 C	60	120	290	590	
7207 C	75	150	390	780	
7208 C	100	200	490	980	
7209 C	125	250	540	1 080	
7210 C	125	250	590	1 180	
7211 C	145	290	780	1 570	
7212 C	195	390	930	1 860	
7213 C	220	440	1 080	2 160	
7214 C	245	490	1 180	2 350	
7215 C	270	540	1 230	2 450	
7216 C	295	590	1 370	2 750	
7217 C	345	690	1 670	3 330	
7218 C	390	780	1 860	3 730	
7219 C	440	880	2 060	4 120	
7220 C	490	980	2 350	4 710	

(3) Preload of Spherical Thrust Roller Bearings

When spherical thrust roller bearings are used, damage such as scoring may occur due to sliding between the rollers and outer ring raceway. The minimum axial load $F_{\rm a \ min}$ necessary to prevent such sliding is obtained from the following equation:

$$F_{\rm a\,min} = \frac{C_{0\,\rm a}}{1000} \qquad (10.3)$$

Units: N

11. DESIGN OF SHAFTS AND HOUSINGS

11.1 Accuracy and Surface Finish of Shafts and Housings

If the accuracy of a shaft or housing does not meet the specification, the performance of the bearings will be affected and they will not provide their full capability. For example, inaccuracy in the squareness of the shaft shoulder may cause misalignment of the bearing inner and outer rings, which may reduce the bearing fatigue life by adding an edge load in addition to the normal load. Cage fracture and seizure sometimes occur for this same reason. Housings should be rigid in order to provide firm bearing support. High rigidity housings are advantageous also from he standpoint of noise, load distribution, etc.

For normal operating conditions, a turned finish or smooth bored finish is sufficient for the fitting surface; however, a ground finish is necessary for applications where vibration and noise must be low or where heavy loads are applied.

In cases where two or more bearings are mounted in one single-piece housing, the fitting surfaces of the housing bore should be designed so both bearing seats may be finished together with one operation such as in -line boring. In the case of split housings, care must be taken in the fabrication of the housing so the outer ring will not become deformed during installation. The accuracy and surface finish of shafts and housings are listed in Table 11.1 for normal operating conditions.

Table 11. 1 Accuracy and Roughness of Shaft and Housing

Housing Bore	
$\frac{\text{IT4}}{2}$ to $\frac{\text{IT5}}{2}$	
$\frac{\text{IT2}}{2}$ to $\frac{\text{IT3}}{2}$	
$\frac{\text{IT4}}{2}$ to $\frac{\text{IT5}}{2}$	
$\frac{\text{IT2}}{2}$ to $\frac{\text{IT3}}{2}$	
IT3 to IT4	
IT3	
1.6 3.2	

Remarks This table is for general recommendation using radius measuring method, the basic tolerance (IT) class should be selected in accordance with the bearing precision class. Regarding the figures of IT, please refer to the Appendix Table 11 (page C22). In cases that the outer ring is mounted in the housing bore with interference or that a thin crosssection bearing is mounted on a shaft and housing. the accuracy of the shaft and housing should be higher since this affects the bearing raceway directly.

11.2 Shoulder and Fillet Dimensions

The shoulders of the shaft or housing in contact with the face of a bearing must be perpendicular to the shaft center line. (Refer to Table 11.1) The front face side shoulder bore of the housing for a tapered roller bearing should be parallel with the bearing axis in order to avoid interference with the cage.

The fillets of the shaft and housing should not come in contact with the bearing chamfer; therefore, the fillet radius r_a must be smaller than the minimum bearing chamfer dimension r or r_1 .

Fig. 11.1 Chamfer Dimensions, Fillet Radius of Shaft and Housing, and Shoulder Height

The shoulder heights for both shafts and housings for radial bearings should be sufficient to provide good support over the face of the bearings, but enough face should extend beyond the shoulder to permit use of special dismounting tools. The recommended minimum shoulder heights for metric series radial bearings are listed in Table 11.2

Nominal dimensions associated with bearing mounting are listed in the bearing tables including the proper shoulder diameters. Sufficient shoulder height is particularly important for supporting the side ribs of tapered roller bearings and cylindrical roller bearings subjected to high axial loads.

The values of \vec{h} and \vec{r}_a in Table 11.2 should be adopted in those cases where the fillet radius of the shaft or housing is as shown in Fig. 11.2 (a), while the values in Table 11.3 are generally used with an undercut fillet radius produced when grinding the shaft as shown in Fig. 11.2 (b).

Table 11. 2 Recommended Minimum Shoulder Heights for Use with Metric Series Radial Bearings

Units: mm

			UIIIS : IIIII		
Nominal	Shaft or Housing				
Chamfer Dimensions	Fillet Minimun Shor				
$m{arGamma}(min.)$ or $m{arGamma}_1$ (min.)	Radius $\it r_{ m a}$ (max.)	Deep Groove Ball Bearings, Self-Aligning Ball Bearings, Cylindrical Roller Bearings, Solid Needle Roller Bearings	Angular Contact Ball Bearings, Tapered Roller Bearings, Spherical Roller Bearings		
0.05	0.05	0.2	_		
0.08	0.08	0.3	_		
0.1	0.1	0.4	_		
0.15	0.15	0.6	_		
0.2	0.2	0.8	_		
0.3	0.3	1	1.25		
0.6	0.6	2	2.5		
1	1	2.5	3		
1.1	1	3.25	3.5		
1.5	1.5	4	4.5		
2	2	4.5	5		
2.1	2	5.5	6		
2.5	2		6		
3	2.5	6.5	7		
4	3	8	9		
5	4	10	11		
6	5	13	14		
7.5	6	16	18		
9.5	8	20	22		
12	10	24	27		
15	12	29	32		
19	15	38	42		

- Remarks 1. When heavy axial loads are applied, the shoulder height must be sufficiently higher than the values listed.
 - 2. The fillet radius of the corner is also applicable to thrust bearings.
 - 3. The shoulder diameter is listed instead of shoulder height in the bearing tables.

Fig. 11. 2 Chamfer Dimensions, Fillet Radius, and Shoulder Height

Table 11. 3 Shaft Undercut

Units: mm

Chamfer Dimensions of Inner and	Undercut Dimensions			
Outer Rings $m{r}$ (min.) or $m{r}_1$ (min.)	t	$r_{ m g}$	b	
1	0.2	1.3	2	
1.1	0.3	1.5	2.4	
1.5	0.4	2	3.2	
2	0.5	2.5	4	
2.1	0.5	2.5	4	
2.5	0.5	2.5	4	
3	0.5	3	4.7	
4	0.5	4	5.9	
5	0.6	5	7.4	
6	0.6	6	8.6	
7.5	0.6	7	10	

A 100

For thrust bearings, the squareness and contact area of the supporting face for the bearing rings must be adequate. In the case of thrust ball bearings, the housing shoulder diameter D_a should be less than the pitch circle diameter of the balls, and the shaft shoulder diameter d_a should be greater than the pitch circle diameter of the balls (Fig. 11.3).

For thrust roller bearings, it is advisable for the full contact length between rollers and rings to be supported by the shaft and housing shoulder (Fig. 11.4).

These diameters d_a and D_a are listed in the bearing tables.

Fig. 11.3 Face Supporting Diameters for Thrust Ball Bearings

Fig. 11.4 Face Supporting Diameters for Thrust Roller Bearings

(a)

Fig. 11.5 Examples of Oil Grooves

11.3 Bearing Seals

To insure the longest possible life of a bearing, it may be necessary to provide seals to prevent leakage of lubricant and entry of dust, water and other harmful material like metallic particles. The seals must be free from excessive running friction and the probability of seizure. They should also be easy to assemble and disassemble. It is necessary to select a suitable seal for each application considering the lubricating method.

11.3.1 Non-Contact Type Seals

Various sealing devices that do not contact the shaft, such as oil grooves, flingers, and labyrinths, are available. Satisfactory sealing can usually be obtained with such seals because of their close running clearance. Centrifugal force may also assist in preventing internal contamination and leakage of the lubricant.

(1) Oil Groove Seals

The effectiveness of oil groove seals is obtained by means of the small gap between the shaft and housing bore and by multiple grooves on either or both of the housing bore and shaft surface (Fig. 11.5 (a), (b)).

Since the use of oil grooves alone is not completely effective, except at low speeds, a flinger or labyrinth type seal is often combined with an oil groove seal (Fig. 11.5 (c)). The entry of dust is impeded by packing grease with a consistency of about 200 into the

The smaller the gap between the shaft and housing, the greater the sealing effect; however, the shaft and housing must not come in contact while running. The recommended gaps are given in Table 11.4.

The recommended groove width is approximately 3 to 5mm, with a depth of about 4 to 5mm. In the case of sealing methods using grooves only, there should be three or more grooves.

(c)

(2) Flinger (Slinger) Type Seals

A flinger is designed to force water and dust away by means of the centrifugal force acting on any contaminants on the shaft. Sealing mechanisms with flingers inside the housing as shown in Fig. 11.6 (a), (b) are mainly intended to prevent oil leakage, and are used in environments with relatively little dust. Dust and moisture are prevented from entering by the centrifugal force of flingers shown in Figs 11.6 (c), (d).

Table 11. 4 Gaps between Shafts and Housings for Oil-Groove Type Seals

	Units : mm	
Nominal Shaft Diameter	Radial Gap	
Under 50	0.25 to 0.4	
50-200	0.5 to 1.5	

(3) Labyrinth Seals

Labyrinth seals are formed by interdigitated segments attached to the shaft and housing that are separated by a very small gap. They are particularly suitable for preventing oil leakage from the shaft at high speeds. The type shown in Fig. 11.7 (a) is widely used because of its ease of assembly, but those shown in Fig. 11.7 (b), (c) have better seal effectiveness.

Table 11. 5 Labyrinth Seal Gaps

Units: mm

Nominal Shaft Diameter	Labyrinth Gaps			
Norminal Shart Diameter	Radial Gap	Axiall Gap		
Under 50	0.25 to 0.4	1 to 2		
50-200	0.5 to 1.5	2 to 5		

Fig. 11.6 Examples of Flinger Configurations

(d)

Fig. 11.7 Examples of Labyrinth Designs

11.3.2 Contact Type Seals

The effectiveness of contact seals is achieved by the physical contact between the shaft and seal, which may be made of synthetic rubber, synthetic resin, felt, etc. Oil seals with synthetic rubber lips are most frequently used.

(1) Oil Seals

Many types of oil seals are used to prevent lubricant from leaking out as well as to prevent dust, water, and other foreign matter from entering (Figs. 11.8 and

In Japan, such oil seals are standardized (Refer to JIS B 2402) on the basis of type and size. Since many oil seals are equipped with circumferential springs to maintain adequate contact force, oil seals can follow the non-uniform rotational movement of a shaft to some degree.

Seal lip materials are usually synthetic rubber including nitrile, acrylate, silicone, and fluorine. Tetrafluoride ethylene is also used. The maximum allowable operating temperature for each material increases in this same order.

Synthetic rubber oil seals may cause trouble such as overheating, wear, and seizure, unless there is an oil film between the seal lip and shaft. Therefore, some lubricant should be applied to the seal lip when the

seals are installed. It is also desirable for the lubricant inside the housing to spread a little between the sliding surfaces. However, please be aware that ester-based grease will cause acrylic rubber material to swell. Also, low aniline point mineral oil, silicone-based grease, and silicon-based oil will cause silicone-based material to swell. Moreover, urea-based grease will cause fluorinebased material to deteriorate.

The permissible circumferential speed for oil seals varies depending on the type, the finish of the shaft surface, liquid to be sealed, temperature, shaft eccentricity, etc. The temperature range for oil seals is restricted by the lip material. Approximate circumferential surface speeds and temperature permitted under favorable conditions are listed in Table

When oil seals are used at high circumferential surface speed or under high internal pressure, the contact surface of the shaft must be smoothly finished and the shaft eccentricity should be less than 0.02 to 0.05 mm. The hardness of the shaft's contact surface should be made higher than HRC40 by means of heat treatment or hard chrome plating in order to gain abrasion resistance. If possible, a hardness of more than HRC 55 is recommended.

The approximate level of contact surface finish required for several shaft circumferential surface speeds is given in Table 11.7.

Fig. 11.8 Example of Application of Oil Seal (1)

Fig. 11.9 Example of Application of Oil Seal (2)

Table 11. 6 Permissible Circumferential Surface Speeds and Temperature Range for Oil Seals

Seal Materials		Permissible Circumferential Speeds(m/sec)	Operating Temperature Range(°C)(¹)
	Nitrile Rubber	Under 16	-25 to +100
Synthetic Rubber	Acrylic Rubber	Under 25	-15 to +130
	Silicone Rubber	Under 32	-70 to +200
	Fluorine- containes Rubber	Under 32	-30 to +200
Tetrafluoride Ethylene Resin		Under 15	-50 to +220

Note (1) The upper limit of the temperature range may be raised about 20 °C for operation for short intervals.

Table 11. 7 Shaft Circumferential Surface Speeds and Finish of Contact Surfaces

Surface Finish $R_a\;(\mu m)$	
0.8	
0.4	
0.2	

(2) Felt Seals

Felt seals are one of the simplest and most common seals being used for transmission shafts, etc. However, since oil permeation and leakage are

unavoidable if oil is used, this type of seal is used only

for grease lubrication, primarily to prevent dust and other foreign matter from entering. Felt seals are not suitable for circumferential surface speeds exceeding 4 m/sec; therefore, it is preferable to replace them with synthetic rubber seals depending on the application.

12. LUBRICATION

12.1 Purposes of Lubrication

The main purposes of lubrication are to reduce friction and wear inside the bearings that may cause premature failure. The effects of lubrication may be briefly explained as follows:

(1) Reduction of Friction and Wear

Direct metallic contact between the bearing rings, rolling elements and cage, which are the basic components of a bearing, is prevented by an oil film which reduces the friction and wear in the contact areas.

(2) Extension of Fatigue Life

The rolling fatigue life of bearings depends greatly upon the viscosity and film thickness between the rolling contact surfaces. A heavy film thickness prolongs the fatigue life, but it is shortened if the viscosity of the oil is too low so the film thickness is insufficient.

(3) Dissipation of Frictional Heat and Cooling Circulation lubrication may be used to carry away frictional heat or heat transferred from the outside to prevent the bearing from overheating and the oil from deteriorating.

(4) Others

Adequate lubrication also helps to prevent foreign material from entering the bearings and guards against corrosion or rusting.

12.2 Lubricating Methods

The various lubricating methods are first divided into either grease or oil lubrication. Satisfactory bearing performance can be achieved by adopting the lubricating method which is most suitable for the particular application and operating condition.

In general, oil offers superior lubrication; however, grease lubrication allows a simpler structure around the bearings. A comparison of grease and oil lubrication is given in Table 12.1.

Table 12. 1 Comparison of Grease and Oil Lubrication

Item	Grease Lubrication	Oil Lubrication
Housing Structure and Sealing Method	Simple	May be complex, Careful maintenance required.
Speed	Limiting speed is 65% to 80% of that with oil lubrication.	Higher limiting speed.
Cooling Effect	Poor	Heat transter is possible using forced oil circulation.
Fluidity	Poor	Good
Full Lubricant Replacement	Sometimes difficult	Easy
Removal of Foreign Matter	Removal of particles from grese is impossible.	Easy
External Contamination due to Leakage	Surroundings seldom contaminated by leakage.	Often leaks without proper countermeasures. Not suitable if external contamination must be avoided.

12.2.1 Grease Lubrication

(1) Grease Quantity

The quantity of grease to be packed in a housing depends on the housing design and free space, grease characteristics, and ambient temperature. For example, the bearings for the main shafts of machine tools, where the accuracy may be impaired by a small temperature rise, require only a small amount of grease. The quantity of grease for ordinary bearings is determined as follows.

Sufficient grease must be packed inside the bearing including the cage guide face. The available space inside the housing to be packed with grease depends on the speed as follows:

1/2 to 2/3 of the space ... When the speed is less than 50% of the limiting speed.

1/3 to 1/2 of the space ... When the speed is more than 50% of the limiting speed.

A 104 A 105

(2) Replacement of Grease

Grease, once packed, usually need not be replenished for a long time; however, for severe operating conditions, grease should be frequently replenished or replaced. In such cases, the bearing housing should be designed to facilitate grease replenishment and replacement.

When replenishment intervals are short, provide replenishment and discharge ports at appropriate positions so deteriorated grease is replaced by fresh grease. For example, the housing space on the grease supply side can be divided into several sections with partitions. The grease on the partitioned side gradually passes through the bearings and old grease forced from the bearing is discharged through a grease valve (Fig. 12.1). If a grease valve is not used, the space on

Fig. 12.1 Combination of Partitioned Grease Reservoir and Grease Valve

Radial Ball Bearings 20 000 10 0 Interval, t 8 000 6 000-5 000-4 000-3 000 2 000-1 000-800-600-Speed n

(1) Radial Ball Bearings, Cylindrical Roller Bearings

(3) Load factor

≤0.06 0.1 0.13 0.16 0.65 0.45 Load factor 1.5

the discharge side is made larger than the partitioned side so it can retain the old grease, which is removed periodically by removing the cover.

(3) Replenishing Interval

Even if high-quality grease is used, there is deterioration of its properties with time; therefore, periodic replenishment is required. Figs 12.2 (1) and (2) show the replenishment time intervals for various bearing types running at different speeds. Figs. 12.2 (1) and (2) apply for the condition of high-quality lithium soap-mineral oil grease, bearing temperature of 70°C. and normal load (P/C=0.1).

· Temperature If the bearing temperature exceeds 70°C, the replenishment time interval must be reduced by half for every 15°C temperature rise of the bearings.

· Grease

In case of ball bearings especially, the replenishing time interval can be extended depending on used grease type. (For example, high-quality lithium soapsynthetic oil grease may extend about two times of replenishing time interval shown in Fig.12.2 (1). If the temperature of the bearings is less than 70°C, the usage of lithium soap-mineral oil grease or lithium soap-synthetic oil grease is appropriate.)

It is advisable to consult NSK.

Load

The replenishing time interval depends on the magnitude of the bearing load.

Please refer to Fig. 12.2 (3).

If P/C exceeds 0.16, it is advisable to consult NSK.

(2) Tapered Roller Bearings, Spherical Roller Bearings

min-1

(4) Grease Life of Sealed Ball Bearings

When grease is packed into single-row deep groove ball bearings, the grease life may be estimated using Equation (12.1) or (12.2) or Fig. 12.3: (General purpose grease (1))

$$log t = 6.54 - 2.6 \frac{n}{N_{\text{max}}} - \left(0.025 - 0.012 \frac{n}{N_{\text{max}}}\right)T$$
.....(12.1)

(Wide-range grease (2))

$$log \ t = 6.12 - 1.4 \frac{n}{N_{\text{max}}} - \left(0.018 - 0.006 \frac{n}{N_{\text{max}}}\right)T$$
.....(12.2)

where *t*: Average grease life, (h)

n: Speed (min⁻¹)

 $N_{\rm max}$: Limiting speed with grease lubrication (values for ZZ and VV types listed in the

bearing tables)

T: Operating temperature °C

Equations (12.1) and (12.2) and Fig. 12.3 apply under the following conditions:

(a) Speed, n

$$0.25 \leq \frac{n}{N_{\text{max}}} \leq 1$$

when
$$\frac{n}{N_{\rm max}}$$
 < 0.25, assume $\frac{n}{N_{\rm max}}$ = 0.25

Fig. 12.3 Grease Life of Sealed Ball Bearings

(b) Operating Temperature, T For general purpose grease (1)

70 °C ≤ T ≤ 110 °C

For wide-range grease (2)

70 °C ≤ T ≤ 130 °C

When T < 70 °C assume T = 70 °C

(c) Bearing Loads

The bearing loads should be about 1/10 or less of the basic load rating C_r .

- Notes (1) Mineral-oil base greases (e.g. lithium soap base grease) which are often used over a temperature range of around – 10 to 110 °C.
 - (2) Synthetic-oil base greases are usable over a wide temperature range of around - 40 to 130 °C.

12.2.2 Oil Lubrication

(1) Oil Bath Lubrication

Oil bath lubrication is a widely used with low or medium speeds. The oil level should be at the center of the lowest rolling element. It is desirable to provide a sight gauge so the proper oil level may be maintained (Fig. 12.4)

(2) Drip-Feed Lubrication

Drip feed lubrication is widely used for small ball bearings operated at relatively high speeds. As shown in Fig. 12.5, oil is stored in a visible oiler. The oil drip rate is controlled with the screw in the top

Fig. 12.4 Oil Bath Lubrication

Lubrication

(3) Splash Lubrication

With this lubricating method, oil is splashed onto the bearings by gears or a simple rotating disc installed near bearings without submerging the bearings in oil. It is commonly used in automobile transmissions and final drive gears. Fig. 12.6 shows this lubricating method used on a reduction gear.

(4) Circulating Lubrication

Circulating lubrication is commonly used for high speed operation requiring bearing cooling and for bearings used at high temperatures. As shown in Fig. 12.7 (a), oil is supplied by the pipe on the right side, it travels through the bearing, and drains out through the pipe on the left. After being cooled in a reservoir, it returns to the bearing through a pump and filter.

The oil discharge pipe should be larger than the supply pipe so an excessive amount of oil will not back up in the housing.

Fig. 12.6 Splash Lubrication

(5) Jet Lubrication

Jet lubrication is often used for ultra high speed bearings, such as the bearings in jet engines with a $d_{\mathbf{m}}n$ valve ($d_{\mathbf{m}}$: pitch diameter of rolling element set in mm; n: rotational speed in \min^{-1}) exceeding one million. Lubricating oil is sprayed under pressure from one or more nozzles directly into the bearing.

Fig. 12.8 shows an example of ordinary jet lubrication. The lubricating oil is sprayed on the inner ring and cage guide face. In the case of high speed operation, the air surrounding the bearing rotates with it causing the oil jet to be deflected. The jetting speed of the oil from the nozzle should be more than 20 % of the circumferential speed of the inner ring outer surface (which is also the guide face for the cage).

More uniform cooling and a better temperature distribution is achieved using more nozzles for a given amount of oil. It is desirable for the oil to be forcibly discharged so the agitating resistance of the lubricant can be reduced and the oil can effectively carry away the heat.

(6) Oil Mist Lubrication

Oil mist lubrication, also called oil fog lubrication, utilizes an oil mist sprayed into a bearing. This method has the following advantages:

(a) Because of the small quantity of oil required, the oil agitation resistance is small, and higher speeds are possible.

(b) Contamination of the vicinity around the bearing is slight because the oil leakage is small.

(c) It is relatively easy to continuously supply fresh oil; therefore, the bearing life is extended.

This lubricating method is used in bearings for the high speed spindles of machine tools, high speed pumps, roll necks of rolling mills, etc (Fig. 12.9).

For oil mist lubrication of large bearings, it is advisable to consult NSK.

(7) Oil/Air Lubricating Method

Using the oil/air lubricating method, a very small amount of oil is discharged intermittently by a constant-quantity piston into a pipe carrying a constant flow of compressed air. The oil flows along the wall of the pipe and approaches a constant flow rate.

The major advantages of oil/air lubrication are:

(a) Since the minimum necessary amount of oil is supplied, this method is suitable for high speeds because less heat is generated.

(b) Since the minimum amount of oil is fed continuously, bearing temperature remains stable. Also, because of the small amount of oil, there is almost no atmospheric pollution.

(c) Since only fresh oil is fed to the bearings, oil deterioration need not be considered.

(d) Since compressed air is always fed to the bearings, the internal pressure is high, so dust, cutting fluid, etc. cannot enter.

For these reasons, this method is used in the main spindles of machine tools and other high speed applications (Fig. 12.10).

Fig. 12.8 Jet Lubrication

Fig. 12.9 Oil Mist Lubrication

Fig. 12.7 Circulating Lubrication

Fig. 12.10 Oil/Air Lubrication

A 108

12.3 Lubricants

12.3.1 Lubricating Grease

Grease is a semi-solid lubricant consisting of base oil, a thickener and additives. The main types and general properties of grease are shown in Table 12.2. It should be remembered that different brands of the same type of grease may have different properties.

(1) Base Oil

Mineral oils or synthetic oils such as silicone or diester oil are mainly used as the base oil for grease. The lubricating properties of grease depend mainly on the characteristics of its base oil. Therefore, the viscosity of the base oil is just as important when selecting grease as when selecting an oil. Usually, grease made with low viscosity base oils is more suitable for high speeds and low temperatures, while greases made with high viscosity base oils are more suited for high temperatures and heavy loads.

However, the thickener also influences the lubricating properties of grease; therefore, the selection criteria for grease is not the same as for lubricating oil. Moreover, please be aware that ester-based grease will cause acrylic rubber material to swell, and that silicone-based grease will cause silicone-based material to swell.

(2) Thickener

As thickeners for lubricating grease, there are several types of metallic soaps, inorganic thickeners such as silica gel and bentonite, and heat resisting organic thickeners such as polyurea and fluoric compounds.

The type of thickener is closely related to the grease dropping point (1); generally, grease with a high dropping point also has a high temperature capability during operation. However, this type of grease does not have a high working temperature unless the base oil is heat-resistant. The highest possible working temperature for grease should be determined considering the heat resistance of the base oil.

The water resistance of grease depends upon the type of thickener. Sodium soap grease or compound grease containing sodium soap emulsifies when exposed to water or high humidity, and therefore, cannot be used where moisture is prevalent. Moreover, please be aware that urea-based grease will cause fluorine-based material to deteriorate.

Note (1) The grease dropping point is that temperature at which a grease heated in a specified small container becomes sufficiently fluid to drip.

Table 12.2

			Table 12.2		
Name (Popular name)	Lithium Grease				
Thickener	Li Soap				
Base Oil Properties	Mineral Oil	Diester Oil, Polyatomic Silicone Ester Oil			
Dropping Point,°C	170 to 195	170 to 195	200 to 210		
Working Temperatures, °C	-20 to +110	-50 to +130	-50 to +160		
Working Speed, %(1)	70	100	60		
Mechanical Stability	Good	Good	Good		
Pressure Resistance	Fair Fair Good Good Good Good		Poor		
Water Resistance			Good		
Rust Prevention			Poor		
Remarks	General purpose grease used for numerous applications	Good low temperature and torque characteristics. Often used for small motors and instrument bearings. Pay attention to rust caused by insulation varnish.	Mainly for high temperature applications. Unsuitable for bearings for high and low speeds or heavy loads or those having numerous sliding-contact areas (roller bearings, etc.)		

Note (i) The values listed are percentages of the limiting speeds given in the bearing tables.

(3) Additives

Grease often contains various additives such as antioxidants, corrosion inhibitors, and extreme pressure additives to give it special properties. It is recommended that extreme pressure additives be used in heavy load applications. For long use without replenishment, an antioxidant should be added.

(4) Consistency

Consistency indicates the "softness" of grease. Table 12.3 shows the relation between consistency and working conditions.

Grease Properties

Sodium Grease (Fiber Grease)	Calcium Grease (Cup Grease)	Mixed Base Grease	Complex Base Grease (Complex Grease)	Non-Soap Base Grease (Non-Soap Grease)	
Na Soap	Ca Soap	Na + Ca Soap, Li + Ca Soap, etc.	Ca Complex Soap, Al Complex Soap, Li Complex Soap, etc.		te, Carbon Black, Fluoric Heat Resistant Organic cc.
Mineral Oil	Mineral Oil	Mineral Oil	Mineral Oil	Mineral Oil	Synthetic Oil (Ester Oil, Polyatomic Ester Oil, Synthetic Hydrocarbon Oil, Silicone Oil, Fluoric Based Oil)
170 to 210	70 to 90	160 to 190	180 to 300	> 230	> 230
-20 to +130	-20 to +60	-20 to +80	-20 to +130	-10 to +130	< +220
70	40	70	70	70	40 to 100
Good	Poor	Good	Good	Good	Good
Fair	Poor	Fair to Good	Fair to Good	Fair	Fair
Poor	Good	Poor for Na Soap Grease	Good	Good	Good
Poor to Good	Good	Fair to Good	Fair to Good	Fair to Good	Fair to Good
Long and short fiber types are available. Long fiber grease is unsuitable for high speeds. Attention to water and high temperature is requred.	Extreme pressure grease containing high viscosity mineral oil and extreme pressure additive (Pb soap, etc.) has high pressure resistance.	Often used for roller bearings and large ball bearing.	Suitable for extreme pressures mechanically stable	Mineral oil base grease is middle and high temperature purpose lubricant. Synthetic oil base grease is recommended for low or high temperature. Some silicone and fluoric oil based grease have poor rust prevention and noise.	

Remarks The grease properties shown here can vary between brands.

Table 12.3 Consistency and Working Conditions

Consistency Number	0	1	2	3	4	
Consistency(1) 1/10 mm	355 to 385	310 to 340	265 to 295	220 to 250	175 to 205	
Working Conditions (Application)	-For centralized oiling -When fretting is likely to occur	For centralized oiling When fretting is likely to occur For low temperatures	-For general use -For sealed ball bearings	For general useFor sealed ball bearingsFor high temperatures	·For high temperatures ·For grease seals	

Note (1) Consistency: The depth to which a cone descends into grease when a specified weight is applied, indicated in units of 1/10mm. The larger the value, the softer the grease.

A 110 A 111

(5) Mixing Different Types of Grease

In general, different brands of grease must not be mixed. Mixing grease with different types of thickneners may destroy its composition and physical properties. Even if the thickeners are of the same type, possible differences in the additive may cause detrimental effects.

12.3.2 Lubricating Oil

The lubricating oils used for rolling bearings are usually highly refined mineral oil or synthetic oil that have a high oil film strength and superior oxidation and corrosion resistance. When selecting a lubricating oil, the viscosity at the operating conditions is important. If the viscosity is too low, a proper oil film is not formed and abnormal wear and seizure may occur. On the other hand, if the viscosity is too high, excessive viscous resistance may cause heating or large power loss. In general, low viscosity oils should be used at high speed; however, the viscosity should increase

with increasing bearing load and size.

Table 12.4 gives generally recommended viscosities for bearings under normal operating conditions.

For use when selecting the proper lubricating oil, Fig. 12.11 shows the relationship between oil temperature and viscosity, and examples of selection are shown in Table 12.5.

Table 12. 4 Bearing Types and Proper Viscosity of Lubricating Oils

Bearing Type	Proper Viscosity at Operating Temperature
Ball Bearings and Cylindrical Roller Bearings	Higher than 13mm ² /s
Tapered Roller Bearings and Spherical Roller Bearings	Higher than 20mm²/s
Spherical Thrust Roller Bearings	Higher than $32mm^2/s$

Remarks 1mm²/s=1cSt (centistokes)

Fig. 12.11 Temperature-Viscosity Chart

Oil Replacement Intervals

Oil replacement intervals depend on the operating conditions and oil quantity.

In those cases where the operating temperature is less than 50°C, and the environmental conditions are good with little dust, the oil should be replaced approximately once a year. However, in cases where the oil temperature is about 100°C, the oil must be changed at least once every three months.

If moisture may enter or if foreign matter may be mixed in the oil, then the oil replacement interval must be shortened.

Mixing different brands of oil must be prevented for the same reason given previously for grease.

Table 12. 5 Examples of Selection Lubricating Oils

Operating Temperature	Speed	Light or normal Load	Heavy or Shock Load
-30 to 0 °C	Less than limiting speed	ISO VG 15, 22, 32 (refrigerating machine oil)	_
	Less than 50% of limiting speed	ISO VG 32, 46, 68 (bearing oil, turbine oil)	ISO VG 46, 68, 100 (bearing oil, turbine oil)
0 to 50 °C	50 to 100% of limiting speed	ISO VG 15, 22, 32 (bearing oil, turbine oil)	ISO VG 22, 32, 46 (bearing oil, turbine oil)
	More than limiting speed	ISO VG 10, 15, 22 (bearing oil)	_
50 to 80 °C	Less than 50% of limiting speed 50 to 100% of limiting speed	ISO VG 100, 150, 220 (bearings oil) ISO VG 46, 68, 100 (bearing oil, turbine oil)	ISO VG 150, 220, 320 (bearing oil) ISO VG 68, 100, 150 (bearing oil, turbine oil)
	More than limiting speed	ISO VG 32, 46, 68 (bearing oil, turbine oil)	_
	Less than 50% of limiting speed	ISO VG 320, 460 (bearing oil)	ISO VG 460, 680 (bearing oil, gear oil)
80 to 110 °C	50 to 100% of limiting speed	ISO VG 150, 220 (bearing oil)	ISO VG 220, 320 (bearing oil)
	More than limiting speed	ISO VG 68, 100 (bearing oil, turbine oil)	_

Remarks 1. For the limiting speed, use the values listed in the bearing tables.

- Refer to Refrigerating Machine Oils (JIS K 2211), Bearing Oils (JIS K 2239), Turbine Oils (JIS K 2213), Gear Oils (JIS K 2219).
- 3. If the operating temperature is near the high end of the temperature range listed in the left column, select a high viscosity oil.
- 4. If the operating temperature is lower than -30 $^{\circ}$ C or higher than 110 $^{\circ}$ C , it is advisable to consult NSK.

A 112 A 113

13. BEARING MATERIALS

The bearing rings and rolling elements of rolling bearings are subjected to repetitive high pressure with a small amount of sliding. The cages are subjected to tension and compression and sliding contact with the rolling elements and either or both of the bearing rings.

Therefore, the materials used for the rings, rolling elements, and cages require the following characteristics:

Other necessary characteristics, such as easy production, shock and heat resistance, and corrosion resistance, are required depending on individual applications.

13.1 Materials for Bearing Rings and Rolling Elements

Primarily, high carbon chromium bearing steel (Table 13.1) is used for the bearing rings and rolling elements. Most NSK bearings are made of SUJ2 among the JIS steel types listed in Table 13.1, while the larger bearings generally use SUJ3. The chemical composition of SUJ2 is approximately the same as AISI 52100 specified in the USA, DIN 100 Cr6 in Germany and BS 535A99 in England.

For bearings that are subjected to very severe shock loads, carburized low-carbon alloy steels such as chrome steel, chrome molybdenum steel, nickel chrome molybdenum steel, etc. are often used. Such steels, when they are carburized to the proper depth and have sufficient surface hardness, are more shock resistant than normal, through-hardened bearing steels because of the softer energy-absorbing core. The chemical composition of common carburized bearing steels is listed in Table 13.2.

Table 13. 1 Chemical Composition of High-Carbon Chromium Bearing Steel (Major Elements)

Chandand	Comple ala		Chemical Composition (%)									
Standard	Symbols	C	Si	Mn	P	S	Cr	Mo				
JIS G 4805	SUJ 2	0.95 to 1.10	0.15 to 0.35	Less than 0.50	Less than 0.025	Less than 0.025	1.30 to 1.60	-				
	SUJ 3	0.95 to 1.10	0.40 to 0.70	0.90 to 1.15	Less than 0.025	Less than 0.025	0.90 to 1.20	_				
	SUJ 4	0.95 to 1.10	0.15 to 0.35	Less than 0.50	Less than 0.025	Less than 0.025	1.30 to 1.60	0.10 to 0.25				
ASTM A 295	52100	0.93 to 1.05	0.15 to 0.35	0.25 to 0.45	Less than 0.025	Less than 0.015	1.35 to 1.60	Less than 0.10				

Table 13. 2 Chemical Composition of Carburizing Bearing Steels (Major Elements)

Standard	Cumbala				Chemical Cor	nposition (%)			
Staridard	Symbols	С	Si	Mn	P	S	Ni	Cr	Mo
JIS G 4052	SCr 420 H	0.17 to 0.23	0.15 to 0.35	0.55 to 0.95	Less than 0.030	Less than 0.030	Less than 0.25	0.85 to 1.25	_
	SCM 420 H	0.17 to 0.23	0.15 to 0.35	0.55 to 0.95	Less than 0.030	Less than 0.030	Less than 0.25	0.85 to 1.25	0.15 to 0.35
	SNCM 220 H	0.17 to 0.23	0.15 to 0.35	0.60 to 0.95	Less than 0.030	Less than 0.030	0.35 to 0.75	0.35 to 0.65	0.15 to 0.30
	SNCM 420 H	0.17 to 0.23	0.15 to 0.35	0.40 to 0.70	Less than 0.030	Less than 0.030	1.55 to 2.00	0.35 to 0.65	0.15 to 0.30
JIS G 4053	SNCM 815	0.12 to 0.18	0.15 to 0.35	0.30 to 0.60	Less than 0.030	Less than 0.030	4.00 to 4.50	0.70 to 1.00	0.15 to 0.30
ASTM A 534	8620 H	0.17 to 0.23	0.15 to 0.35	0.60 to 0.95	Less than 0.025	Less than 0.015	0.35 to 0.75	0.35 to 0.65	0.15 to 0.25
	4320 H	0.17 to 0.23	0.15 to 0.35	0.40 to 0.70	Less than 0.025	Less than 0.015	1.55 to 2.00	0.35 to 0.65	0.20 to 0.30
	9310 H	0.07 to 0.13	0.15 to 0.35	0.40 to 0.70	Less than 0.025	Less than 0.015	2.95 to 3.55	1.00 to 1.40	0.08 to 0.15

Table 13. 3 Chemical Composition of High Speed Steel for Bearings Used at High Temperatures

_						•		•		•	•			
c	`tondord	Cumbolo	Chemical Composition (%)											
3	olai luai u	Symbols	С	Si	Mn	P	S	Cr	Mo	V	Ni	Cu	Co	W
	AISI	M50	0.77 to 0.85	Less than 0.25	Less than 0.35	Less than 0.015	Less than 0.015	3.75 to 4.25	4.00 to 4.50	0.90 to 1.10	Less than 0.10	Less than 0.10	Less than 0.25	Less than 0.25

NSK uses highly pure vacuum-degassed bearing steel containing a minimum of oxygen, nitrogen, and hydrogen compound impurities. The rolling fatigue life of bearings has been remarkably improved using this material combined with the appropriate heat treatment. For special purpose bearings, high temperature bearing steel, which has superior heat resistance, and stainless steel having good corrosion resistance may be used. The chemical composition of these special materials are given in Tables 13.3 and 13.4.

13.2 Cage Materials

The low carbon steels shown in Table 13.5 are the main ones for the pressed cages for bearings. Depending on the purpose, brass or stainless steel may be used. For machined cages, high strength brass (Table 13.6) or carbon steel (Table 13.5) is used. Sometimes synthetic resin is also used.

Table 13. 4 Chemical Composition of Stainless Steel for Rolling Bearing (Major Elements)

Standard	Cumbala			n (%)				
Stariuaru	Symbols	С	Si	Mn	P	S	Cr	Mo
JIS G 4303	SUS 440 C	0.95 to 1.20	Less than 1.00	Less than 1.00	Less than 0.040	Less than 0.030	16.00 to 18.00	Less than 0.75
SAE J 405	51440 C	0.95 to 1.20	Less than 1.00	Less than 1.00	Less than 0.040	Less than 0.030	16.00 to 18.00	Less than 0.75

Table 13. 5 Chemical Composition of Steel sheet and Carbon Steel for Cages (Major Elements)

Classification	Standard	Cumbala	Chemical Composition (%)							
Classification	Standard	Symbols	С	Si	Mn	P	S			
Steel sheet and	JIS G 3141	SPCC	Less than 0.12	_	Less than 0.50	Less than 0.04	Less than 0.045			
strip for pressed	BAS 361	SPB 2	0.13 to 0.20	Less than 0.30	0.25 to 0.60	Less than 0.03	Less than 0.030			
cages	JIS G 3311	S 50 CM	0.47 to 0.53	0.15 to 0.35	0.60 to 0.90	Less than 0.03	Less than 0.035			
Carbon steel for machined cages	JIS G 4051	S 25 C	0.22 to 0.28	0.15 to 0.35	0.30 to 0.60	Less than 0.03	Less than 0.035			

Remarks BAS is Japanese Bearing Association Standard.

Table 13. 6 Chemical Composition of High Strength Brass for Machined Cages

		Chemical Composition (%)											
Standard	Symbols	Cu	Zn	Mn	F	4.1	C	Ni	Impurities				
		Cu	ZII	IVIII	n Fe Al S	Sn	INI	Pb	Si				
JIS H 5120	CAC301 (HBsC 1)	55.0 to 60.0	33.0 to 42.0	0.1 to 1.5	0.5 to 1.5	0.5 to 1.5	Less than 1.0	Less than 1.0	Less than 0.4	Less than 0.1			
JIS H 3250	C 6782	56.0 to 60.5	Residual	0.5 to 2.5	0.1 to 1.0	0.2 to 2.0	_	_	Less than 0.5	_			

Remarks Improved HBsC 1 is also used.

A 114 A 115

14. BEARING HANDLING

14.1 Precautions for Proper Handling of Bearings

Since rolling bearings are high precision machine parts, they must be handled accordingly. Even if high quality bearings are used, their expected performance cannot be achieved if they are not handled properly. The main precautions to be observed are as follows:

(1) Keep Bearings and Surrounding Area Clean

Dust and dirt, even if invisible to the naked eye, have harmful effects on bearings. It is necessary to prevent the entry of dust and dirt by keeping the bearings and their environment as clean as possible.

(2) Careful Handling

Heavy shocks during handling may cause bearings to be scratched or otherwise damaged possibly resulting in their failure. Excessively strong impacts may cause brinelling, breaking, or cracking.

(3) Use Proper Tools

Always use the proper equipment when handling bearings and avoid general purpose tools.

(4) Prevent Corrosion

Since perspiration on the hands and various other contaminants may cause corrosion, keep the hands clean when handling bearings. Wear gloves if possible. Pay attention to rust of bearing caused by corrosive gasses.

14.2 Mounting

The method of mounting rolling bearings strongly affects their accuracy, life, and performance, so their mounting deserves careful attention. Their characteristics should first be thoroughly studied, and then they should be mounted in the proper manner. It is recommended that the handling procedures for bearings be fully investigated by the design engineers and that standards be established with respect to the following items:

- (1) Cleaning the bearings and related parts.
- (2) Checking the dimensions and finish of related parts.
- (3) Mounting
- (4) Inspection after mounting.
- (5) Supply of Jubricants.

Bearings should not be unpacked until immediately before mounting. When using ordinary grease lubrication, the grease should be packed in the bearings without first cleaning them. Even in the case of ordinary oil lubrication, cleaning the bearings is not required. However, bearings for instruments or for high speed operation must first be cleaned with clean filtered oil in order to remove the anti-corrosion agent.

After the bearings are cleaned with filtered oil, they should be protected to prevent corrosion.

Prelubricated bearings must be used without cleaning. Bearing mounting methods depend on the bearing type and type of fit. As bearings are usually used on rotating shafts, the inner rings require a tight fit.

Bearings with cylindrical bores are usually mounted by pressing them on the shafts (press fit) or heating them to expand their diameter (shrink fit). Bearings with tapered bores can be mounted directly on tapered shafts or cylindrical shafts using tapered sleeves.

Bearings are usually mounted in housings with a loose fit. However, in cases where the outer ring has an interference fit, a press may be used. Bearings can be interference-fitted by cooling them before mounting using dry ice. In this case, a rust preventive treatment must be applied to the bearing because moisture in the air condenses on its surface.

14.2.1 Mounting of Bearings with Cylindrical Bores

(1) Press Fits

Fitting with a press is widely used for small bearings. A mounting tool is placed on the inner ring as shown in Fig. 14.1 and the bearing is slowly pressed on the shaft with a press until the side of the inner ring rests against the shoulder of the shaft. The mounting tool must not be placed on the outer ring for press mounting, since the bearing may be damaged. Before mounting, applying oil to the fitted shaft surface is recommended for smooth insertion. The mounting method using a hammer should only be used for small ball bearings with minimally tight fits and when a press is not available. In the case of tight interference fits or for medium and large bearings, this method should not be used. Any time a hammer is used, a mounting tool must be placed on the inner ring.

When both the inner and outer rings of non-separable bearings, such as deep groove ball bearings, require tight-fit, a mounting tool is placed on both rings as shown in Fig. 14.2, and both rings are fitted at the same time using a screw or hydraulic press. Since the outer ring of self-aligning ball bearings may deflect a mounting tool such as that shown in Fig. 14.2 should always be used for mounting them.

In the case of separable bearings, such as cylindrical roller bearings and tapered roller bearings, the inner and outer rings may be mounted separately. Assembly of the inner and outer rings, which were previously mounted separately, should be done carefully to align the inner and outer rings correctly. Careless or forced assembly may cause scratches on the rolling contact surfaces.

Fig. 14.1 Press Fitting Inner Ring

Fig. 14.2 Simultaneous Press Fitting of Inner and Outer Rings

(2) Shrink Fits

Since press fitting large bearings requires a large force, a shrink fit is widely used. The bearings are first heated in oil to expand them before mounting.

This method prevents an excessive force from being imposed on the bearings and allows mounting them in a short time.

The expansion of the inner ring for various temperature differences and bearing sizes is shown in Fig. 14.3. The precautions to follow when making shrink fits are as follows:

- (a) Do not heat bearings to more than 120°C.
- (b) Put the bearings on a wire net or suspend them in an oil tank in order to prevent them from touching the tank's bottom directly.
- (c) Heat the bearings to a temperature 20 to 30°C higher than the lowest temperature required for mounting without interference since the inner ring will cool a little during mounting.
- (d) After mounting, the bearings will shrink in the axial direction as well as the radial direction while cooling. Therefore, press the bearing firmly against the shaft shoulder using locating methods to avoid a clearance between the bearing and shoulder.

NSK Bearing Induction Heaters

Besides heating in oil, NSK Bearing Heaters, which use electromagnetic induction to heat bearings, are widely used. (Refer to Page C7.)

In NSK Bearing Heaters, electricity (AC) in a coil produces a magnetic field that induces a current inside the bearing that generates heat. Consequently, without using flames or oil uniform heating in a short time is possible, making bearing shrink fitting efficient and

In the case of relatively frequent mounting and dismounting such as cylindrical roller bearings for roll necks of rolling mills and for railway journal boxes, induction heating should be used for mounting and dismounting inner rings.

A 116

14.2.2 Mounting of Bearings with Tapered Bores

Bearings with tapered bores are mounted on tapered shafts directly or on cylindrical shafts with adapters or withdrawal sleeves (Figs. 14.4 and 14.5). Large spherical roller bearings are often mounted using hydraulic pressure. Fig. 14.6 shows a bearing mounting utilizing a sleeve and hydraulic nut. Fig. 14.7 shows another mounting method. Holes are drilled in the sleeve which are used to feed oil under pressure to the bearing seat. As the bearing expands radially, the sleeve is inserted axially with adjusting bolts.

Spherical roller bearings should be mounted while checking their radial-clearance reduction and referring to the push-in amounts listed in Table 14.1. The radial clearance must be measured using clearance gauges. In this measurement, as shown in Fig. 14.8, the

In this measurement, as shown in Fig. 14.8, the clearance for both rows of rollers must be measured simultaneously, and these two values should be kept roughly the same by adjusting the relative position of the outer and inner rings.

When a large bearing is mounted on a shaft, the outer ring may be deformed into an oval shape by its own weight. If the clearance is measured at the lowest part of the deformed bearing, the measured value may be bigger than the true value. If an incorrect radial internal clearance is obtained in this manner and the values in Table 14.1 are used, then the interference fit may

become too tight and the true residual clearance may become too small. In this case, as shown in Fig. 14.9. one half of the total clearance at points \boldsymbol{a} and \boldsymbol{b} (which are on a horizontal line passing through the bearing center) and \boldsymbol{c} (which is at the lowest position of the bearing) may be used as the residual clearance. When a self-aligning ball bearing is mounted on a shaft with an adapter, be sure that the residual clearance does not become too small. Sufficient clearance for easy alignment of the outer ring must be allowed.

14.3 Operation Inspection

After the mounting has been completed, a running test should be conducted to determine if the bearing has been mounted correctly. Small machines may be manually operated to assure that they rotate smoothly. Items to be checked include sticking due to foreign matter or visible flaws, uneven torque caused by improper mounting or an improper mounting surface, and excessive torque caused by an inadequate clearance, mounting error, or seal friction. If there are no abnormalities, powered operation may be started.

Fig. 14.4 Mounting with Adapter

Fig. 14.5 Mounting with Withdrawal Sleeve

Fig. 14.6 Mounting with Hydraulic Nut

Fig. 14.7 Mounting with Special Sleeve and Hydraulic Pressure

Fig. 14.8 Clearance Measurement of Spherical Roller Bearing

Units: mm

				Push	-in amour	nt in axial di	rection		Permissible Clearance
C	1			Taper	1:12	Taper	1:30		
over	incl.	min.	max.	min.	max.	min.	max.	CN	C3
30	40	0.025	0.030	0.40	0.45	-	_	0.010	0.025
40	50	0.030	0.035	0.45	0.55	-	_	0.015	0.030
50	65	0.030	0.035	0.45	0.55	-	_	0.025	0.035
65	80	0.040	0.045	0.60	0.70	-	_	0.030	0.040
80	100	0.045	0.055	0.70	0.85	1.75	2.15	0.035	0.050
100	120	0.050	0.060	0.75	0.90	1.9	2.25	0.045	0.065
120	140	0.060	0.070	0.90	1.1	2.25	2.75	0.055	0.080
140	160	0.065	0.080	1.0	1.3	2.5	3.25	0.060	0.100
160	180	0.070	0.090	1.1	1.4	2.75	3.5	0.070	0.110
180	200	0.080	0.100	1.3	1.6	3.25	4.0	0.070	0.110
200	225	0.090	0.110	1.4	1.7	3.5	4.25	0.080	0.130
225	250	0.100	0.120	1.6	1.9	4.0	4.75	0.090	0.140
250	280	0.110	0.140	1.7	2.2	4.25	5.5	0.100	0.150
280	315	0.120	0.150	1.9	2.4	4.75	6.0	0.110	0.160
315	355	0.140	0.170	2.2	2.7	5.5	6.75	0.120	0.180
355	400	0.150	0.190	2.4	3.0	6.0	7.5	0.130	0.200
400	450	0.170	0.210	2.7	3.3	6.75	8.25	0.140	0.220
450	500	0.190	0.240	3.0	3.7	7.5	9.25	0.160	0.240
500	560	0.210	0.270	3.4	4.3	8.5	11.0	0.170	0.270
560	630	0.230	0.300	3.7	4.8	9.25	12.0	0.200	0.310
630	710	0.260	0.330	4.2	5.3	10.5	13.0	0.220	0.330
710	800	0.280	0.370	4.5	5.9	11.5	15.0	0.240	0.390
800	900	0.310	0.410	5.0	6.6	12.5	16.5	0.280	0.430
900	1 000	0.340	0.460	5.5	7.4	14.0	18.5	0.310	0.470
1 000	1 120	0.370	0.500	5.9	8.0	15.0	20.0	0.360	0.530
	Over 30 40 50 65 80 100 120 140 160 180 200 225 250 280 315 355 400 450 500 560 630 710 800 900 1 000	30 40 40 50 50 65 65 80 80 100 120 120 140 140 160 180 180 200 200 225 225 280 280 315 315 355 355 400 400 450 450 500 500 560 630 710 710 800 800 900 900 1 000 1 000	Diameter d Clear over incl. min. 30 40 0.025 40 50 0.030 50 65 0.030 65 80 0.040 100 120 0.050 120 140 0.060 140 160 0.065 160 180 0.070 180 200 0.080 200 225 0.090 225 250 0.100 250 225 0.090 250 225 0.090 250 225 0.090 250 280 0.110 280 315 0.120 315 355 0.140 355 400 0.150 400 450 0.170 450 500 0.190 500 560 0.210 630 710 0.260 710 800 <th>Diameter d Clearance d min. max. 30 40 0.025 0.030 40 50 0.030 0.035 50 65 0.030 0.035 65 80 0.040 0.045 80 100 120 0.050 0.060 120 140 0.060 0.070 0.090 140 160 180 0.070 0.090 180 200 0.080 0.100 200 225 0.090 0.110 225 250 0.100 0.120 250 280 0.110 0.140 280 315 0.120 0.150 315 355 0.140 0.170 400 450 0.170 0.210 450 500 0.190 0.240 500 560 0.210 0.270 560 630 710 0.260 0.330</th> <th>Diameter d Clearance Taper over incl. min. max. min. 30 40 0.025 0.030 0.40 40 50 0.030 0.035 0.45 50 65 80 0.040 0.045 0.60 80 100 0.045 0.055 0.70 100 120 0.050 0.060 0.75 120 140 0.065 0.080 1.0 160 180 0.070 0.090 1.1 180 200 0.080 0.100 1.3 200 225 0.090 0.110 1.4 225 250 0.100 0.120 1.6 1.7 225 250 0.100 0.120 1.6 250 280 0.110 0.140 1.7 280 315 355 0.140 0.170 2.2 315 355 0.140 0.170<</th> <th>Diameter d Clearance Taper 1: 12 over incl. min. max. min. max. 30 40 0.025 0.030 0.40 0.45 40 50 0.030 0.035 0.45 0.55 50 65 0.030 0.035 0.45 0.55 65 80 0.040 0.045 0.60 0.70 0.85 100 120 0.050 0.060 0.75 0.90 0.90 120 140 0.060 0.070 0.90 1.1 1.4 140 160 180 0.070 0.90 1.1 1.4 180 200 0.080 0.100 1.3 1.6 200 225 0.090 0.110 1.4 1.7 225 250 0.100 0.120 1.6 1.9 250 280 0.110 0.140 1.7 2.2 280 315 <t< th=""><th>Diameter d Clearance Taper 1: 12 Taper 1 over incl. min. max. min. max. min. 30 40 0.025 0.030 0.040 0.45 — 40 50 0.030 0.035 0.45 0.55 — 50 65 0.030 0.035 0.45 0.55 — 65 80 0.040 0.045 0.055 0.70 0.85 1.75 100 120 0.050 0.060 0.75 0.90 1.9 120 140 0.060 0.070 0.90 1.1 2.25 140 160 180 0.070 0.090 1.1 1.4 2.75 180 200 0.080 0.100 1.3 1.6 3.25 200 225 250 0.100 0.120 1.6 1.9 4.0 225 250 0.100 0.120 1.6 1.9</th><th>Diameter d Clearance Taper 1 : 12 Taper 1 : 30 over incl. min. max. min. max. min. max. 30 40 0.025 0.030 0.40 0.45 — — 40 50 0.030 0.035 0.45 0.55 — — 50 65 0.030 0.035 0.45 0.55 — — 65 80 0.040 0.045 0.60 0.70 — — 80 100 0.045 0.055 0.70 0.85 1.75 2.15 100 120 0.050 0.060 0.75 0.90 1.9 2.25 120 140 0.060 0.070 0.90 1.1 2.25 2.75 140 160 0.065 0.080 1.0 1.3 2.5 3.25 180 200 0.080 0.100 1.3 1.6 3.25 4.0</th><th>Diameter d Clearance Taper 1: 12 Taper 1: 30 Residual Taper 1: 12 Taper 1: 30 Residual 30 40 0.025 0.030 0.45 — — 0.010 40 50 0.030 0.035 0.45 0.55 — — 0.015 50 65 0.030 0.035 0.45 0.55 — — 0.025 65 80 0.040 0.045 0.60 0.70 — — 0.025 65 80 0.040 0.055 0.70 0.85 1.75 2.15 0.035 100 120 0.050 0.060 0.75 0.990 1.9 2.25 0.045 100 120 0.050 0.060 0.070 0.990 1.1 2.25 2.75 0.055 100 140 160 180</th></t<></th>	Diameter d Clearance d min. max. 30 40 0.025 0.030 40 50 0.030 0.035 50 65 0.030 0.035 65 80 0.040 0.045 80 100 120 0.050 0.060 120 140 0.060 0.070 0.090 140 160 180 0.070 0.090 180 200 0.080 0.100 200 225 0.090 0.110 225 250 0.100 0.120 250 280 0.110 0.140 280 315 0.120 0.150 315 355 0.140 0.170 400 450 0.170 0.210 450 500 0.190 0.240 500 560 0.210 0.270 560 630 710 0.260 0.330	Diameter d Clearance Taper over incl. min. max. min. 30 40 0.025 0.030 0.40 40 50 0.030 0.035 0.45 50 65 80 0.040 0.045 0.60 80 100 0.045 0.055 0.70 100 120 0.050 0.060 0.75 120 140 0.065 0.080 1.0 160 180 0.070 0.090 1.1 180 200 0.080 0.100 1.3 200 225 0.090 0.110 1.4 225 250 0.100 0.120 1.6 1.7 225 250 0.100 0.120 1.6 250 280 0.110 0.140 1.7 280 315 355 0.140 0.170 2.2 315 355 0.140 0.170<	Diameter d Clearance Taper 1: 12 over incl. min. max. min. max. 30 40 0.025 0.030 0.40 0.45 40 50 0.030 0.035 0.45 0.55 50 65 0.030 0.035 0.45 0.55 65 80 0.040 0.045 0.60 0.70 0.85 100 120 0.050 0.060 0.75 0.90 0.90 120 140 0.060 0.070 0.90 1.1 1.4 140 160 180 0.070 0.90 1.1 1.4 180 200 0.080 0.100 1.3 1.6 200 225 0.090 0.110 1.4 1.7 225 250 0.100 0.120 1.6 1.9 250 280 0.110 0.140 1.7 2.2 280 315 <t< th=""><th>Diameter d Clearance Taper 1: 12 Taper 1 over incl. min. max. min. max. min. 30 40 0.025 0.030 0.040 0.45 — 40 50 0.030 0.035 0.45 0.55 — 50 65 0.030 0.035 0.45 0.55 — 65 80 0.040 0.045 0.055 0.70 0.85 1.75 100 120 0.050 0.060 0.75 0.90 1.9 120 140 0.060 0.070 0.90 1.1 2.25 140 160 180 0.070 0.090 1.1 1.4 2.75 180 200 0.080 0.100 1.3 1.6 3.25 200 225 250 0.100 0.120 1.6 1.9 4.0 225 250 0.100 0.120 1.6 1.9</th><th>Diameter d Clearance Taper 1 : 12 Taper 1 : 30 over incl. min. max. min. max. min. max. 30 40 0.025 0.030 0.40 0.45 — — 40 50 0.030 0.035 0.45 0.55 — — 50 65 0.030 0.035 0.45 0.55 — — 65 80 0.040 0.045 0.60 0.70 — — 80 100 0.045 0.055 0.70 0.85 1.75 2.15 100 120 0.050 0.060 0.75 0.90 1.9 2.25 120 140 0.060 0.070 0.90 1.1 2.25 2.75 140 160 0.065 0.080 1.0 1.3 2.5 3.25 180 200 0.080 0.100 1.3 1.6 3.25 4.0</th><th>Diameter d Clearance Taper 1: 12 Taper 1: 30 Residual Taper 1: 12 Taper 1: 30 Residual 30 40 0.025 0.030 0.45 — — 0.010 40 50 0.030 0.035 0.45 0.55 — — 0.015 50 65 0.030 0.035 0.45 0.55 — — 0.025 65 80 0.040 0.045 0.60 0.70 — — 0.025 65 80 0.040 0.055 0.70 0.85 1.75 2.15 0.035 100 120 0.050 0.060 0.75 0.990 1.9 2.25 0.045 100 120 0.050 0.060 0.070 0.990 1.1 2.25 2.75 0.055 100 140 160 180</th></t<>	Diameter d Clearance Taper 1: 12 Taper 1 over incl. min. max. min. max. min. 30 40 0.025 0.030 0.040 0.45 — 40 50 0.030 0.035 0.45 0.55 — 50 65 0.030 0.035 0.45 0.55 — 65 80 0.040 0.045 0.055 0.70 0.85 1.75 100 120 0.050 0.060 0.75 0.90 1.9 120 140 0.060 0.070 0.90 1.1 2.25 140 160 180 0.070 0.090 1.1 1.4 2.75 180 200 0.080 0.100 1.3 1.6 3.25 200 225 250 0.100 0.120 1.6 1.9 4.0 225 250 0.100 0.120 1.6 1.9	Diameter d Clearance Taper 1 : 12 Taper 1 : 30 over incl. min. max. min. max. min. max. 30 40 0.025 0.030 0.40 0.45 — — 40 50 0.030 0.035 0.45 0.55 — — 50 65 0.030 0.035 0.45 0.55 — — 65 80 0.040 0.045 0.60 0.70 — — 80 100 0.045 0.055 0.70 0.85 1.75 2.15 100 120 0.050 0.060 0.75 0.90 1.9 2.25 120 140 0.060 0.070 0.90 1.1 2.25 2.75 140 160 0.065 0.080 1.0 1.3 2.5 3.25 180 200 0.080 0.100 1.3 1.6 3.25 4.0	Diameter d Clearance Taper 1: 12 Taper 1: 30 Residual Taper 1: 12 Taper 1: 30 Residual 30 40 0.025 0.030 0.45 — — 0.010 40 50 0.030 0.035 0.45 0.55 — — 0.015 50 65 0.030 0.035 0.45 0.55 — — 0.025 65 80 0.040 0.045 0.60 0.70 — — 0.025 65 80 0.040 0.055 0.70 0.85 1.75 2.15 0.035 100 120 0.050 0.060 0.75 0.990 1.9 2.25 0.045 100 120 0.050 0.060 0.070 0.990 1.1 2.25 2.75 0.055 100 140 160 180

Remarks The values for reduction in radial internal clearance are for bearings with CN clearance. For bearing with C3 Clearance, the maximum values listed should be used for the reduction in radial internal clearance.

Fig. 14.9 Measuring Clearance in Large Spherical Roller Bearing

Large machines, which cannot be turned by hand, can be started after examination with no load, and the power immediately cutoff and the machine allowed to coast to a stop. Confirm that there is no abnormality such as vibration, noise, contact of rotating parts, etc. Powered operation should be started slowly without load and the operation should be observed carefully until it is determined that no abnormalities exist, then gradually increase the speed, load, etc. to their normal levels. Items to be checked during the test operation include the existence of abnormal noise, excessive rise of bearing temperature, leakage and contamination of lubricants, etc. If any abnormality is found during the test operation, it must be stopped immediately and the machine should be inspected. If necessary, the bearing should be dismounted for examination.

Although the bearing temperature can generally be estimated by the temperature of the outside surface of the housing, it is more desirable to directly measure the temperature of the outer ring using oil holes for access.

The bearing temperature should rise gradually to the steady state level within one to two hours after the operation starts. If the bearing or its mounting is improper, the bearing temperature may increase rapidly and become abnormally high. The cause of this abnormal temperature may be an excessive amount of lubricant, insufficient bearing clearance, incorrect mounting, or excessive friction of the seals.

In the case of high speed operation, an incorrect selection of bearing type or lubricating method may also cause an abnormal temperature rise.

The sound of a bearing may be checked with a noise locater or other instruments. Abnormal conditions are indicated by a loud metallic sound, or other irregular noise, and the possible cause may include incorrect lubrication, poor alignment of the shaft and housing, or the entry of foreign matter into the bearing. The possible causes and measures for irregularities are listed in Table 14.2.

Table 14. 2 Causes of and Measures for Operating Irregularities

Irr	egularities	Possible Causes	Measures			
		Abnormal Load	Improve the fit, internal clearance, preload, position of housing shoulder, etc.			
	Loud Metallic Sound (1)	Incorrect mounting	Improve the machining accuracy and alignment of shaft and housing, accuracy of mounting method.			
		Insufficient or improper Lubricant	Replenish the lubricant or select another lubricant.			
		Contact of rotating parts	Modify the labyrinth seal, etc.			
Noise	Laurd Damidae	Flaws,corrosion,or scratches on raceways	Replace or clean the bearing, improve the seals, and use clean lubricant.			
	Loud Regular Sound	Brinelling	Replace the bearing and use care when handling bearings.			
		Flaking on raceway	Replace the bearing.			
		Excessive clearance	Improve the fit, clearance and preload.			
	Irregular Sound	Penetration of foreign particles	Replace or clean the bearing, improve the seals, and use clean lubricant.			
		Flaws or flaking on balls	Replace the bearing.			
		Excessive amount of lubricant	Reduce amount of lubricant, select stiffer grease.			
		Insufficient or improper lubricant	Replenish lubricant or select a better one.			
Abnorm	nal Temperature Rise	Abnormal load	Improve the fit, internal clearance, preload, position of housing shoulder.			
	Rise	Incorrect mounting	Improve the machining accuracy and alignment of shaft and housing, accuracy of mounting, or mounting method.			
		Creep on fitted surface, excessive seal friction	Correct the seals, replace the bearing, correct the fitting or mounting.			
		Brinelling	Replace the bearing and use care when handling bearings.			
\	√ibration	Flaking	Replace the bearing.			
	kial runout)	Incorrect mounting	Correct the squareness between the shaft and housing shoulder or side of spacer.			
		Penetration of foreign particles	Replace or clean the bearing, improve the seals.			
Disc	eakage or coloration of Lubricant	Too much lubricant, Penetration by foreign matter or abrasion chips	Reduce the amount of lubricant, select a stiffer grease. Replace the bearing or lubricant. Clean the housing and adjacent parts.			

Note (1) Intermittent squeal or high-pitch noise may be heard in medium- to large-sized cylindrical roller bearings or ball bearings that are operating under grease lubrication in low-temperature environments. Under such low-temperature conditions, bearing temperature will not rise resulting in fatigue nor is grease performance affected. Although intermittent squeal or high-pitch noise may occur under these conditions, the bearing is fully functional and can continue to be used. In the event that greater noise reduction or quieter running properties are needed, please contact your nearest NSK branch office.

14.4 Dismounting

A bearing may be removed for periodic inspection or for other reasons. If the removed bearing is to be used again or it is removed only for inspection, it should be dismounted as carefully as when it was mounted. If the bearing has a tight fit, its removal may be difficult. The means for removal should be considered in the original design of the adjacent parts of the machine. When dismounting, the procedure and sequence of removal should first be studied using the machine drawing and considering the type of mounting fit in order to perform the operation properly.

14.4.1 Dismounting of Outer Rings

In order to remove an outer ring that is tightly fitted, first place bolts in the push-out holes in the housing at several locations on its circumference as shown in Fig. 14.10, and remove the outer ring by uniformly tightening the bolts. These bolt holes should always be fitted with blank plugs when not being used for dismounting. In the case of separable bearings, such as tapered roller bearings, some notches should be made at several positions in the housing shoulder, as shown in Fig. 14.11, so the outer ring may be pressed out using a dismounting tool or by tapping it.

14.4.2 Dismounting of Bearings with Cylindrical Bores

If the mounting design allows space to press out the inner ring, this is an easy and fast method. In this case, the withdrawal force should be imposed only on the inner ring (Fig. 14.12). Withdrawal tools like those shown in Figs. 14.13 and 14.14 are often used.

Fig. 14.10 Removal of Outer Ring with Dismounting Bolts

Fig. 14.11 Removal Notches

Fig. 14.12 Removal of Inner Ring Using a Press

Fig. 14.13 Removal of Inner Ring Using Withdrawal Tool (1)

Fig. 14.14 Removal of Inner Ring Using Withdrawal Tool (2)

In both cases, the claws of the tools must substantially engage the face of the inner ring; therefore, it is advisable to consider the size of the shaft shoulder or to cut grooves in the shoulder to accommodate the withdrawal tools (Fig. 14.14).

The oil injection method is usually used for the withdrawal of large bearings. The withdrawal is achieved easily by mean of oil pressure applied through holes in the shaft. In the case of extra wide bearings, the oil injection method is used together with a withdrawal tool.

Induction heating is used to remove the inner rings of NU and NJ types of cylindrical roller bearings. The inner rings are expanded by brief local heating, and then withdrawn (Fig. 14.15). Induction heating is also used to mount several bearings of these types on a shaft.

14.4.3 Dismounting of Bearings with Tapered Bores

When dismounting relatively small bearings with adapters, the inner ring is held by a stop fastened to the shaft and the nut is loosened several turns. This is followed by hammering on the sleeve using a suitable tool as shown in Fig. 14.18. Fig. 14.16 shows one procedure for dismounting a withdrawal sleeve by tightening the removal nut. If this procedure is difficult, it may be possible to drill and tap bolt holes in the nut and withdraw the sleeve by tightening the bolts as shown in Fig. 14.17.

Large bearings may be withdrawn easily using oil pressure. Fig. 14.19 illustrates the removal of a bearing by forcing oil under pressure through a hole and groove in a tapered shaft to expand the inner ring. The bearing may suddenly move axially when the interference is relieved during this procedure so a stop nut is recommended for protection. Fig. 14.20 shows a withdrawal using a hydraulic nut.

Fig. 14.15 Removal of Inner Ring Using Induction Heater

Fig. 14.16 Removal of Withdrawal Sleeve Using Withdrawal Nut (1)

Fig. 14.17 Removal of Withdrawal Sleeve Using Withdrawal Nut (2)

Fig. 14.18 Removal of Adapter with Stop and Axial Pressure

Fig. 14.19 Removal Using Oil Injection Hydraulic Pump

14.5 Inspection of Bearings

14.5.1 Bearing Cleaning

When bearings are inspected, the appearance of the bearings should first be recorded and the amount and condition of the residual lubricant should be checked. After the lubricant has been sampled for examination, the bearings should be cleaned. In general, light oil or kerosene may be used as a cleaning solution.

Dismounted bearings should first be given a preliminary cleaning followed by a finishing rinse. Each bath should be provided with a metal net to support the bearings in the oil without touching the sides or bottom of the tank. If the bearings are rotated with foreign matter in them during preliminary cleaning, the raceways may be damaged. The lubricant and other deposits should be removed in the oil bath during the initial rough cleaning with a brush or other means. After the bearing is relatively clean, it is given the finishing rinse. The finishing rinse should be done carefully with the bearing being rotated while immersed in the rinsing oil. It is necessary to always keep the rinsing oil clean.

Fig. 14.20 Removal Using Hydraulic Nut

14.5.2 Inspection and Evaluation of Bearings

After being thoroughly cleaned, bearings should be examined for the condition of their raceways and external surfaces, the amount of cage wear, the increase in internal clearance, and degradation of tolerances. These should be carefully checked, in addition to examination for possible damage or other abnormalities, in order to determine the possibility for its reuse.

In the case of small non-separable ball bearings, hold the bearing horizontally in one hand, and then rotate the outer ring to confirm that it turns smoothly.

Separable bearings such as tapered roller bearings may be checked by individually examining their rolling elements and the outer ring raceway.

Large bearings cannot be rotated manually; however, the rolling elements, raceway surfaces, cages, and contact surface of the ribs should be carefully examined visually. The more important a bearing is, the more carefully it should be inspected.

The determination to reuse a bearing should be made only after considering the degree of bearing wear, the function of the machine, the importance of the bearings in the machine, operating conditions, and the time until the next inspection. However, if any of the following defects exist, reuse is impossible and replacement is necessary.

- (a) When there are cracks in the inner or outer rings, rolling elements, or cage.
- (b) When there is flaking of the raceway or rolling elements.
- (c) When there is significant smearing of the raceway surfaces, ribs, or rolling elements.
- (d) When the cage is significantly worn or rivets are loose.
- (e) When there is rust or scoring on the raceway surfaces or rolling elements.
- (f) When there are any significant impact or brinell traces on the raceway surfaces or rolling elements.
- (g) When there is significant evidence of creep on the bore or the periphery of the outer ring.
- (h) When discoloration by heat is evident.
- When significant damage to the seals or shields of grease sealed bearings has occurred.

A 122 A 123

14.6 Maintenance and Inspection

14.6.1 Detecting and Correcting Irregularities

In order to maintain the original performance of a bearing for as long as possible, proper maintenance and inspection should be performed. If proper procedures are used, many bearing problems can be avoided and the reliability, productivity, and operating costs of the equipment containing the bearings are all improved. It is suggested that periodic maintenance be done following the procedure specified. This periodic maintenance encompasses the supervision of operating conditions, the supply or replacement of lubricants, and regular periodic inspection. Items that should be regularly checked during operation include bearing noise, vibration, temperature, and lubrication. If an irregularity is found during operation, the cause should be determined and the proper corrective actions should be taken after referring to Table 14.2. If necessary, the bearing should be dismounted and examined in detail. As for the procedure for

NSK BEARING MONITOR (Bearing Abnormality Detector)

Inspection of Bearings.

It is important during operation to detect signs of irregularities early before damage becomes severe. The NSK Bearing Monitor (see Page C5) is an instrument that checks the condition of bearings and gives a warning of any abnormality, or it stops a machine automatically in order to prevent serious trouble. In addition, it helps to improve maintenance and reduce its cost.

dismounting and inspection, refer to Section 14.5,

14.6.2 Bearing Failures and Measures

In general, if rolling bearings are used correctly they will survive to their predicted fatigue life. However, they often fail prematurely due to avoidable mistakes. In contrast to fatigue life, this premature failure is caused by improper mounting, handling, or lubrication, entry of foreign matter, or abnormal heat generation. For instance, the causes of rib scoring, as one example of premature failure, may include insufficient lubrication, use of improper lubricant, faulty lubrication system, entry of foreign matter, bearing mounting error, excessive deflection of the shaft, or any combination of these. Thus, it is difficult to determine the real cause of some premature failures. If all the conditions at the time of failure and previous to the time of failure are known, including the application. the operating conditions, and environment; then by studying the nature of the failure and its probable causes, the possibility of similar future failures can be reduced. The most frequent types of bearing failure, along with their causes and corrective actions, are listed in Table 14.3.

Table 14.3 Causes and Measures for Bearing Failures

Type of Failure	Probable Causes	Measures		
Flaking Flaking of one-side of the raceway of radial bearing.	Abnomal axial load.	A loose fit should be used when mounting the outer ring of free-end bearings to allow axial expansion of the shaft.		
Flaking of the raceway in symmetrical patterm.	Out-of-roundness of the housing bore.	Correct the faulty housing.		
Flaking pattern inclined relative to the raceway in radial ball bearings. Flaking near the edge of the raceway and rolling surfaces in roller bearings.	Improper muonting, deflection of shaft, inadequate tolerances for shaft and housing.	Use care in mounting and centering, select a bearing with a large clearance, and correct the shaft and housing shoulder.		
Flaking of raceway with same spacing as rolling elements.	Large shock load during mounting, rusting while bearing is out of operation for prolonged period.	Use care in mounting and apply a rust preventive when machine operation is suspended for a long time.		
Premature flaking of raceway and rolling elements.	Insufficient clearance, excessive load, improper lubrication, rust, etc.	Select proper fit, bearing clearance, and lubricant.		
Premature flaking of duplex bearings.	Excessive preload.	Adjust the preload.		

Type of Failure	Probable Causes	Measures				
Scoring Scoring or smearing between raceway and rolling surfaces.	Inadequate initial lubrication, excessively hard grease and high acceleration when starting.	Use a softer grease and avoid rapid acceleration.				
Spiral scoring or smearing of raceway surface of thrust ball bearing.	Raceway rings are not parallel and excessive speed.	Correct the mounting, apply a preload, or select another bearing type.				
Scoring or smearing between the end face of the rollers and guide rib.	Inadequate lubrication, incorrect mounting and large axial load.	Select proper lubricant and modify the mounting.				
Cracks Crack in outer or inner ring.	Excessive shock load, excessive interference in fitting, poor surface cylindricality, improper sleeve taper, large fillet radius, development of thermal cracks and advancement of flaking.	Examine the loading conditions, modify the fit of bearing and sleeve. The fillet radius must be smaller than the bearing chamfer.				
Crack in rolling element. Broken rib.	Advancement of flaking, shock applied to the rib during mounting or dropped during handling.	Be carefull in handling and mounting.				
Fractured cage.	Abnormal loading of cage due to incorrect mounting and improper lubrication.	Reduce the mounting error and review the lubricating method and lubricant.				
Indentations Indentations in raceway in same pattern as rolling elements.	Shock load during mounting or excessive load when not rotating.	Use care in handling.				
Indentations in raceway and rolling elements.	Foreign matter such as metallic chips or sand.	Clean the housing, improve the seals, and use a clean lubricant.				
Abnormal Wear False brinelling (phenomenon similar to brinelling)	Vibration of the bearing without rotation during shipment or rocking motion of small amplitude.	Secure the shaft and housing, use oil as a lubricant and reduce vibration by applying a preload.				
Fretting	Slight wear of the fitting surface.	Increase interference and apply oil.				
Wearing of raceway, rolling elements, rib, and cage.	Penentration by foreign matter, incorrect lubrication, and rust.	Improve the seals, clean the housing, and use a clean lubricant.				
Creep	Insufficient interference or insufficient tightening of sleeve.	Modify the fit or tighten the sleeve				
Seizure Discoloration and melting of raceway, rolling elements, and ribs.	Insufficient clearance, incorrect lubrication, or improper mounting.	Review the internal clearance and bearing fit, supply an adequate amount of the proper lubricant and improve the mounting method and related parts.				
Electric Burng Fluting or corrugations.	Melting due to electric arcing.	Install a ground wire to stop the flow of electricity or insulate the beaning.				
Corrosion & Rust Rust and corrosion of fitting surfaces and bearing interior.	Condensation of water from the air, or fretting. Penetration by corrosive substance(especially varnish-gas, etc).	Use care in storing and avoid high temperature and high humidily, treatment for rust prevention is necessary when operation is stopped for long time. Selection of varnish and grease.				

A 124 A 125

15. TECHNICAL DATA

15. 1	AXIAL DISPLACEMENT OF BEARINGS	Page
13. 1		A 120
	(1) Contact Angle and Axial Displacement of Deep Groove Ball Bearings and Angular Contact Ball Bearings	A 128
	(2) Axial Load and Axial Displacement of Tapered Roller Bearings	A 128
15. 2	FITS	A 130
	(1) Surface Pressure, Maximum Stress on Fitted Surfaces and Expansion or Contraction of Raceway Diameter	
	(2) Interferences or Clearances for Shafts and Inner Rings	A 130
	(3) Interferences or Clearances for Housing Bores and Outer Rings	A 130
15. 3	RADIAL AND AXIAL INTERNAL CLEARANCES	A 132
	(1) Radial and Axial Internal Clearances for	
	Single-Row Deep Groove Ball Bearings	A 132
	(2) Radial and Axial Internal Clearances for Double-Row Angular Contact Ball Bearings	A 132
15. 4	PRELOAD AND STARTING TORQUE	A 134
	(1) Axial Load and Starting Torque of Tapered Roller Bearings	A 134
	(2) Preload and Starting Torque of Angular Contact Ball Bearings and Double-Direction Angular Contact Thrust	
	Ball Bearings	A 134
15. 5	COEFFICIENTS OF FRICTION AND OTHER BEARING DATA	A 136
	(1) Bearing Types and Their Coefficients of Friction	A 136
	(2) Circumferential Speed of Rolling Elements about Their Centers and Bearing Center	A 136
	(3) Radial Internal Clearance and Fatigue Life	
45 /	PRANCE AND PROPERTIES OF LURBICATING OPPACES	4 40-
15. 6	BRANDS AND PROPERTIES OF LUBRICATING GREASES	A 138

DEFINIONS OF SYMBOLS AND THEIR UNITS

Symbols	Nomenclature	Units			
a	Contact Ellipse Major Axis	(mm)			
b	Contact Ellipse Major Axis	(mm)			
$C_{ m r}$	Basic Dynamic Load Rating of Radial Bearings	(N){kgf}			
C_{0r}	Basic Static Load Radial of Radial Bearings	(N){kgf}			
Ca	Basic Dynamic Load Rating of Thrust Bearings	(N){kgf}			
C_{0a}	Basic Static Load Rating of Thrust Bearings	(N){kgf}			
d	Shaft Diameter, Nominal Bearing Bore Diameter	(mm)			
D	Housing Bore Diameter, Nominal Bearing Outside Diameter	(mm)			
D_{e}	Outer Ring Raceway Diameter	(mm)			
D_i	Inner Ring Raceway Diameter	(mm)			
D_0	Housing Outside Diameter	(mm)			
D_{pw}	Rolling Element Pitch Diameter	(mm)			
$\dot{D_{ m W}}$	Nominal Rolling Element Diameter	(mm)			
e	Contact Position of Tapered Roller End Face with Rib	(mm)			
E	Modulus of Longitudinal Elasticity (Bearing Steel) 208 000 MPa{21 200 kgf/mm²}				
E(k)	Complete elliptic integral of the 2nd kind for which the population parameter is $k=\sqrt{1-\left(\frac{b}{a}\right)^2}$				
f_{0}	factor which depends on the geometry of the bearing components and on the applicable stress level				
$f(\varepsilon)$	Function of ϵ				
$F_{\rm a}$	Axial Load, Preload	$(N)\{kgf\}$			
$F_{\rm r}$	Radial Load	(N){kgf}			
h	$D_{ m e}/D$				
$h_{\scriptscriptstyle 0}$	D/D_0				
\vec{k}	d/D_i				
K	Constant Determined by Internal Design of Bearing				
L	Fatigue Life when Effective Clearance is 0				
$L_{\rm we}$	Effective Leng of Roller	(mm)			
$L_{arepsilon}$	Fatigue Life when Effective Clearance is Δ	,			
$m_{\scriptscriptstyle 0}$	Distance between Centers of Curvature of Inner and Outer Rings				
M	$r_i + r_e - D_W$	(mm)			
M	Frictional Torque	(N·mm){kgf·mm} (N·mm){kgf·mm}			
$M_{\rm S}$	Spin Friction	(N.mm) fleet mm			

Symbols	Nomenclature	Units
<i>n</i> _a	Rotating Speed of Rolling Elements	(min ⁻¹)
$n_{\rm c}$	Revolving Speed of Rolling Elements (Cape Speed)	(min ⁻¹)
$n_{\rm e}$	Speed of Ouder Ring	(min ⁻¹)
n_i	Speed of Inner Ring	(min ⁻¹)
p_{m}	Surface Pressure on Fitted Surface	$(MP_a)\{kgf/mm^2\}$
P	Bearing Load	(N){kgf}
Q	Rolling Element Load	(N){kgf}
$r_{\rm e}$	Groove Radius of Outer Ring	(mm)
r_i	Groove Radius of Inner Ring	(mm)
V a	Circumferential Speed of Rolling Element about Its Center	(m/sec)
V _c	Circumferential Speed of Rolling Element about Beaing Center	(m/sec)
Z	Number of Rolling Elements per Row	
α	Contact Angle (when axial load is applied on Radial Ball Bearning	(°)
α_0	Initial Confact Angle (Geometri) (when inner and outer rings of Angular Contact Ball Bearings are pushed axially)	(°)
α_{R}	Initial Contact Angle (Geometric) (when inner and outer rings Angular Contact Ball Bearing are pushed radially)	(°)
β	1/2 of Conical Angle of Roller	(°)
δ_a	Relative Axial Displacement of Inner and Outer Rings	(mm)
Δa	Axial Internal Clearance	(mm)
Δd	Effective Interference of Inner Ring and	
	Shaft	(mm)
$\Delta_{\rm r}$	Radial Internal Clearance	(mm)
ΔD	Effective Interference of Outer Ring and Housing	(mm)
$\Delta D_{\rm e}$	Contraction of Outer Ring Raceway Diameter due to Fit	(mm)
ΔD_i	Expansion of Inner Ring Raceway Diameter dus to Fit	(mm)
3	Load Factor	
μ	Coefficient of Dynamic Friction of Rolling Bearing	
μ_{e}	Coefficient of Friction between Roller End Face and Rib	
μ_{s}	Coefficient of Sliding Friction	
σ_{tmax}	Maximum Stress on Fitted Surfaces	$(MP_a)\{kgf/mm^2\}$
Ot max	Maximum Stress on Fitted Surfaces	$(MP_a)\{kgf/mm^2\}$

A 126 A 127

NSK

15. 1 Axial Displacement of Bearings

(1) Contact Angle α and Axial Displacement δ_a of Deep Groove Ball Bearing and Angular Contact Ball Bearings

(2) Axial Load F_a and Axial Displacement δ_a of Tapered Roller Bearings (Fig. 15.4)

Fig. 15.1 F_a/C_{or} and Contact Angle of Deep Groove and Angular Contact Ball Bearings

Remarks:

Actual axial displacement may vary depending on the shaft/housing thickness, material, and fitting interference with the bearing. Please contact NSK about such factors of axial displacement which are not discussed in detail in this catalog.

Fig. 15.2 Axial Load and Axial Displacement of Deep Groove Ball Bearings

Fig. 15.3 Axial Load and Axial Displacement of Angular Contact Ball Bearings

Fig. 15.4 Axial Load and Axial Displacement of Tapered Roller Bearings

15.2 Fits

(1) Surface Pressure $p_{\rm m}$, Maximum Stress $\sigma_{\rm tmax}$ on Fitted Surfaces and Expansion of Inner Ring Raceway Diameter ΔD_i or Contraction of Outer Ring Raceway Diameter ΔD_e (Table 15.1, Figs. 15.5 and 15.6)

- (2) Interferences or Clearances of Shafts and Inner Rings (Table 15.2)
- (3) Interferences or Clearances of Housing Bores and Outer Rings (Table 15.3)

Table. 15. 1 Surface Pressure, Maximum Stress on Fitted Surfaces and Expansion or Contraction

Items	Shaft & Inner Ring	Housing & Bore & Outer Ring
Surface Pressure Pm (MPa) {kgf/mm²}	(In case of sold shaft) $p_{\rm m} = \ \frac{E}{2} \ \frac{\varDelta d}{2} \ \ (1 - \emph{k}^2)$	In case of housing outside dia. $D_0 \neq \infty$ $p_{\rm m} = \frac{E}{2} \frac{\Delta D}{D} \frac{(1 - h^2)(1 - h_0^2)}{1 - h^2 h_0^2}$ In case $D_0 = \infty$ $p_{\rm m} = \frac{E}{2} \frac{\Delta D}{D} (1 - h^2)$
$\begin{array}{c} \text{Maximum stress} \\ \sigma_{\text{t max}} \\ \text{(MPa)} \\ \text{\{kgf/mm}^2\} \end{array}$	Maximum circumferential stress on fitted surface of inner ring bore is $\sigma_{t \max} = p_{\text{m}} \frac{1 + k^2}{1 - k^2}$	Maximum circumferential stress on outer ring bore surface is $\sigma_{\text{t max}} = p_{\text{m}} \frac{2}{1 - h^2}$
Expansion of inner ring raceway dia. \$\Displace D_i \text{ (mm)}\$	In case of solid shaft $\Delta D_i = \Delta d \cdot k$	In case $D_0 \neq \infty$
Contraction of outer ring raceway dia. \$\D_{\text{e}}(\text{mm})\$		In case $D_0 = \infty$

Remarks The modulus of longitudinal elasticity and Poisson's ratio for the shaft and housing material are the same as those for inner and outer rings.

Reference 1 MPa=1 N/mm²=0.102 kgf/mm²

Table 15. 2 Interferences or Clearances

ı	Si	70		e Plane n Bore											Interf	ferences	or Cleara	nces for
	Classif	ication	Dia. De	eviation	f	6		g5	g	6	h	15	h	6	js5		j5	
	(m	m)		rmal) $d_{ m mp}$	Clear	ance	Clearance	Inter- ference	Clearance	Inter- ference	Clearance	Inter- ference	Clearance	Inter- ference	Clearance	Inter- ference	Clearance	Inter- ference
	over	incl.	high	low	max.	min.	max.	max.	max.	max.	max.	max.	max.	max.	max.	max.	max.	max.
	3 6 10	6 10 18	0 0 0	- 8 - 8 - 8	18 22 27	2 5 8	9 11 14	4 3 2	12 14 17	4 3 2	5 6 8	8 8 8	8 9 11	8 8 8		— 11 12		— 12 13
	18	30	0	-10	33	10	16	3	20	3	9	10	13	10	4.5	14.5	4	15
	30	50	0	-12	41	13	20	3	25	3	11	12	16	12	5.5	17.5	5	18
	50	65	0	-15	49	15	23	5	29	5	13	15	19	15	6.5	21.5	7	21
	65	80	0	-15	49	15	23	5	29	5	13	15	19	15	6.5	21.5	7	21
	80	100	0	-20	58	16	27	8	34	8	15	20	22	20	7.5	27.5	9	26
	100	120	0	-20	58	16	27	8	34	8	15	20	22	20	7.5	27.5	9	26
	120	140	0	- 25	68	18	32	11	39	11	18	25	25	25	9	34	11	32
	140	160	0	- 25	68	18	32	11	39	11	18	25	25	25	9	34	11	32
	160	180	0	- 25	68	18	32	11	39	11	18	25	25	25	9	34	11	32
	180	200	0	-30	79	20	35	15	44	15	20	30	29	30	10	40	13	37
	200	225	0	-30	79	20	35	15	44	15	20	30	29	30	10	40	13	37
	225	250	0	-30	79	20	35	15	44	15	20	30	29	30	10	40	13	37
	250	280	0	- 35	88	21	40	18	49	18	23	35	32	35	11.5	46.5	16	42
	280	315	0	- 35	88	21	40	18	49	18	23	35	32	35	11.5	46.5	16	42
	315	355	0	- 40	98	22	43	22	54	22	25	40	36	40	12.5	52.5	18	47
	355	400	0	- 40	98	22	43	22	54	22	25	40	36	40	12.5	52.5	18	47
	400	450	0	- 45	108	23	47	25	60	25	27	45	40	45	13.5	58.5	20	52
	450	500	0	- 45	108	23	47	25	60	25	27	45	40	45	13.5	58.5	20	52

Remarks 1. The figures for tolerance classes where stress caused by the fitting of the shaft and inner ring becomes excessive are omitted.

2. The tolerance range js is now recommended instead of j.

Fig. 15.5 Surface Pressure $p_{\rm m}$ and Maximum Stress $\sigma_{\rm t\,max}$ for Average Fitting Interference

Fig. 15.6 Surface Pressure $p_{\rm m}$ and Maximum Stress $\sigma_{\rm t \ max}$ for Maximum Fitting Interference

of Shafts and Inner Rings

I	Inite	٠	11	n

Each Fit	ting Cla	SS																Si	70
js	6	j	6	ŀ	5	ŀ	6	n	15	n	n6	n6		p6		r6		Classification	
Clearance	Inter- ference	Clearance	Inter- ference	Interf	erence	Interf	erence	Interf	erence	Interf	erence	Interf	erence	Interf	erence	Interfe	erence	(m	m)
max.	max.	max.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	over	incl.
— 4.5 5.5	— 12.5 13.5	_ 2 3	 15 16	_	_			_	_	=	=	_ _ _	_	_	_	_ _ _	=	3 6 10	6 10 18
6.5 8 9.5	16.5 20 24.5	4 5 7	19 23 27	2 2 2	21 25 30	2 2 2	25 30 36	9 11	— 32 39	9 11	— 37 45	_ 	_	_ 	_	_ _ _	_	18 30 50	30 50 65
9.5 11 11	24.5 31 31	7 9 9	27 33 33	2 3 3	30 38 38	2 3 3	36 45 45	11 13 13	39 48 48	11 13 13	45 55 55	20 23 23	54 65 65	- 37 37	— 79 79	_ _ _	_	65 80 100	80 100 120
12.5 12.5 12.5	37.5 37.5 37.5	11 11 11	39 39 39	3 3 3	46 46 46	3 3 3	53 53 53	15 15 15	58 58 58	15 15 15	65 65 65	27 27 27	77 77 77	43 43 43	93 93 93	63 65 68	113 115 118	120 140 160	140 160 180
14.5 14.5 14.5	44.5 44.5 44.5	13 13 13	46 46 46	4 4 4	54 54 54	4 4 4	63 63 63	17 17 17	67 67 67	17 17 17	76 76 76	31 31 31	90 90 90	50 50 50	109 109 109	77 80 84	136 139 143	180 200 225	200 225 250
16 16 18	51 51 58	16 16 18	51 51 58	4 4 4	62 62 69	4 4 4	71 71 80	20 20 21	78 78 86	20 20 21	87 87 97	34 34 37	101 101 113	56 56 62	123 123 138	94 98 108	161 165 184	250 280 315	280 315 355
18 20 20	58 65 65	18 20 20	58 65 65	4 5 5	69 77 77	4 5 5	80 90 90	21 23 23	86 95 95	21 23 23	97 108 108	37 40 40	113 125 125	62 68 68	138 153 153	114 126 132	190 211 217	355 400 450	400 450 500

A 130 A 131

Table 15. 3 Interferences or

Si	70	Sing	le Plane n O. D.											Interf	erences	or Cleara	ances for
Classif	ication	Dev	viation ormal)	G	7	Н	16	F	I 7	H	18	J	6	JS	66	J	7
(m	m)		Dmp	Clear	ance	Clea	rance	Clea	rance	Clea	rance	Clearance	Inter- ference	Clearance	Inter- ference	Clearance	Inter- ference
over	incl.	high	low	max.	min.	max.	min.	max.	min.	max.	min.	max.	max.	max.	max.	max.	max.
6 10 18	10 18 30	0 0 0	- 8 - 8 - 9	28 32 37	5 6 7	17 19 22	0 0 0	23 26 30	0 0 0	30 35 42	0 0 0	13 14 17	4 5 5	12.5 13.5 15.5	4.5 5.5 6.5	16 18 21	7 8 9
30 50 80	50 80 120	0 0 0	- 11 - 13 - 15	45 53 62	9 10 12	27 32 37	0 0 0	36 43 50	0 0 0	50 59 69	0 0 0	21 26 31	6 6 6	19 22.5 26	8 9.5 11	25 31 37	11 12 13
120 150 180	150 180 250	0 0 0	- 18 - 25 - 30	72 79 91	14 14 15	43 50 59	0 0 0	58 65 76	0 0 0	81 88 102	0 0 0	36 43 52	7 7 7	30.5 37.5 44.5	12.5 12.5 14.5	44 51 60	14 14 16
250 315 400	315 400 500	0 0 0	- 35 - 40 - 45	104 115 128	17 18 20	67 76 85	0 0 0	87 97 108	0 0 0	116 129 142	0 0 0	60 69 78	7 7 7	51 58 65	16 18 20	71 79 88	16 18 20
500 630 800	630 800 1 000	0 0 0	- 50 - 75 -100	142 179 216	22 24 26	94 125 156	0 0 0	120 155 190	0 0 0	160 200 240	0 0 0	_ _ _	=	72 100 128	22 25 28	_ _ _	_ _ _

Note (*) Indicates the minimum interference

Remarks The tolerance range JS is now recommended instead of J.

15.3 Radial and Axial Internal Clearances

(1) Radial Internal Clearance $\Delta_{\rm r}$ and Axial Internal Clearance $\Delta_{\rm a}$ in Single-Row Deep Groove Ball Bearings (Fig. 15.7)

$$\Delta_{\mathbf{a}} = K \Delta_{\mathbf{r}}^{\frac{1}{2}} \tag{mm}$$

where

$$K=2 (r_{\rm e} + r_i - D_{\rm w})^{\frac{1}{2}}$$

(2) Radial Internal Clearance Δ_r and Axial Internal Clearance Δ_a in Double-Row Angular Contact Ball Bearings (Fig. 15.8)

$$\Delta_{\rm a} = 2\sqrt{m_0^2 - \left(m_0 \cos\alpha_{\rm R} - \frac{\Delta_{\rm r}}{2}\right)^2}$$
$$-2m_0 \sin\alpha_{\rm R} \qquad (mm)$$

Table 15. 4 Constant K

	Values of K												
Bore No.	160XX	60XX	62XX	63XX									
00		—	0.93	1.14									
01	0.80	0.80	0.93	1.06									
02	0.80	0.93	0.93	1.06									
03	0.80	0.93	0.99	1.11									
04	0.90	0.96	1.06	1.07									
05	0.90	0.96	1.06	1.20									
06	0.96	1.01	1.07	1.19									
07	0.96	1.06	1.25	1.37									
08	0.96	1.06	1.29	1.45									
09	1.01	1.11	1.29	1.57									
10	1.01	1.11	1.33	1.64									
11	1.06	1.20	1.40	1.70									
12	1.06	1.20	1.50	2.09									
13	1.06	1.20	1.54	1.82									
14	1.16	1.29	1.57	1.88									
15	1.16	1.29	1.57	1.95									
16	1.20	1.37	1.64	2.01									
17	1.20	1.37	1.70	2.06									
18	1.29	1.44	1.76	2.11									
19	1.29	1.44	1.82	2.16									
20	1.29	1.44	1.88	2.25									
21	1.37	1.54	1.95	2.32									
22	1.40	1.64	2.01	2.40									
24	1.40	1.64	2.06	2.40									
26	1.54	1.70	2.11	2.49									
28	1.54	1.70	2.11	2.59									
30	1.57	1.76	2.11	2.59									

Clearances of Housing Bores and Outer Rings

Units: µm

Each Fit	ting Cla	SS																c	ize
JS	57	ŀ	6	K	.7	N	16	N	17	N	16	N	17	P6		P7		Classi	fication
Clearance	Inter- ference	Interf	erence	Interf	erence	(n	nm)												
max.	max.	max.	max.	min.	max.	over	incl.												
15	7	10	7	13	10	5	12	8	15	1	16	4	19	4	21	1	24	6	10
17	9	10	9	14	12	4	15	8	18	1*	20	3	23	7	26	3	29	10	18
19	10	11	11	15	15	5	17	9	21	2*	24	2	28	9	31	5	35	18	30
23	12	14	13	18	18	7	20	11	25	1*	28	3	33	10	37	6	42	30	50
28	15	17	15	22	21	8	24	13	30	1*	33	4	39	13	45	8	51	50	80
32	17	19	18	25	25	9	28	15	35	1*	38	5	45	15	52	9	59	80	120
38	20	22	21	30	28	10	33	18	40	2*	45	6	52	18	61	10	68	120	150
45	20	29	21	37	28	17	33	25	40	5	45	13	52	11	61	3	68	150	180
53	23	35	24	43	33	22	37	30	46	8	51	16	60	11	70	3	79	180	250
61	26	40	27	51	36	26	41	35	52	10	57	21	66	12	79	1	88	250	315
68	28	47	29	57	40	30	46	40	57	14	62	24	73	11	87	1	98	315	400
76	31	53	32	63	45	35	50	45	63	18	67	28	80	10	95	0	108	400	500
85	35	50	44	50	70	24	70	24	96	6	88	6	114	28	122	28	148	500	630
115	40	75	50	75	80	45	80	45	110	25	100	25	130	13	138	13	168	630	800
145	45	100	56	100	90	66	90	66	124	44	112	44	146	0	156	0	190	800	1 000

Fig. 15.7 $\, \varDelta_{\, r} \, \text{and} \, \varDelta_{\, a} \, \text{in Single-Row Deep Groove Ball Bearings} \,$

Fig. 15.8 \varDelta_r and \varDelta_a in Double-Row Angular Contact Ball Bearings (52, 53 Series)

15. 4 Preload and Staring Torque

(1) Axial Load F_a and Starting Torque M of Tapered Roller Bearings (Figs. 15.9 and 15.10)

$$M$$
 = $e \mu_{\rm e} F_{\rm a} \cos \beta$ (N·mm), {kgf·mm} where

 $\mu_{\rm e}$: 0.20

When bearings with the same number are used in opposition, the torque M caused by the preload becomes 2M.

Fig. 15.9 Relation between e and β

(2) Preload F_a and Starting Torque M of Angular Contact Ball Bearings and Double-Direction Angular Contact Thrust Ball Bearings (Figs. 15.11 and 15.12)

$$M = M_{\rm S} \, Z \, {\rm sin} \alpha$$
 (N·mm), {kgf·mm} where $M_{\rm S}$ is spin friction

$$M_{\rm S} = \frac{3}{8} \,\mu_{\rm s} \,Q \,a \,E(k)$$
 (N·mm), {kgf·mm}

where

$$\mu_{\rm s} = 0.15$$

When bearings with the same number are used in opposition, the torque M caused by the preload becomes 2M.

Fig. 15.10 Relation between Axial Load and Starting **Torque of Tapered Roller Bearings**

Fig. 15.11 Preload and Starting Torque for Back-to-Back or Face-to-Face Arrangements of Angular Contact Ball Bearings ($\alpha = 15^{\circ}$)

Fig. 15.12 Preload and Starting Torque of Double-Direction Angular Contact Thrust Ball Bearings

15.5 Coefficients of Dynamic Friction and Other Bearing Data

(1) Bearing Types and Their Coefficients of Dynamic Friction μ

$$\mu = \frac{M}{P \cdot \frac{d}{2}}$$

Table 15.5 Coefficients of Dynamic Friction

Bearing Types	Approximate values of $\boldsymbol{\mu}$
Deep Groove Ball Bearings	0.0013
Angular Contact Ball Bearings	0.0015
Self-Aligning Ball Bearings	0.0010
Thrust Ball Bearings	0.0011
Cylindrical Roller Bearings	0.0010
Tapered Roller Bearings	0.0022
Spherical Roller Bearings	0.0028
Needle Roller Bearings with Cages	0.0015
Full Complement Needle Roller Bearings	0.0025
Spherical Thrust Roller Bearings	0.0028

(3) Radial Internal Clearance $\Delta_{\rm r}$ and Fatigue Life L(Fig. 15.13)

For the radial internal clearance Δ_r and the function f(ε) of the load factor, the following equations are valid:

For Deep Groove Ball Bearings

$$f(\varepsilon) = \frac{\Delta_{\rm r} \cdot D_{\rm w}^{\frac{1}{3}}}{0.00044 \left(\frac{F_{\rm r}}{Z}\right)^{\frac{2}{3}}} \tag{N}$$

$$f(\varepsilon) = \frac{\Delta_{\rm r} \cdot D_{\rm w}^{\frac{1}{3}}}{0.002 \left(\frac{F_{\rm r}}{Z}\right)^{\frac{2}{3}}} \tag{kgf}$$

$$f(\varepsilon) = \frac{\Delta_{\rm r} \cdot D_{\rm w}^{\frac{1}{3}}}{0.002 \left(\frac{F_{\rm r}}{Z}\right)^{\frac{2}{3}}} \dots \{kgf$$

For Cylindrical Roller Bearings

$$f(\varepsilon) = \frac{\Delta_{\rm r} \cdot L_{\rm we}^{0.8}}{0.000077 \left(\frac{F_{\rm r}}{Z}\right)^{0.9}}$$
(N)

$$f(\varepsilon) = \frac{\Delta_{\rm r} \cdot L_{\rm we}^{0.8}}{0.0006 \left(\frac{F_{\rm r}}{Z}\right)^{0.9}} \dots \{\rm kgf\}$$

The relation between the load factor ε and $f(\varepsilon)$ and L_{ε}/L , when the radial internal clearance is Δ_{r} is as shown in Table 15.7.

From the above equations, first obtain $f(\varepsilon)$ and then ε and L_{ε}/L can be obtained.

(2) Circumferential Speeds of Rolling Elements about Their Centers and Bearing Center

Table 15.6 Circumferential Speeds of Rolling Elements about Their Centers and Bearing Center

Items	Rotating inner ring, fixed outer ring	Rotating outer ring, fixed inner ring
Ball rotating speed n _a (min ⁻¹)	$-\left(\frac{D_{\mathrm{pw}}}{D_{\mathrm{w}}} - \frac{\cos^{2}\alpha}{D_{\mathrm{pw}}/D_{\mathrm{w}}}\right)\frac{n_{i}}{2}$	$+ \left(\frac{D_{\mathrm{pw}}}{D_{\mathrm{w}}} - \frac{\cos^{2}\alpha}{D_{\mathrm{pw}}/D_{\mathrm{w}}}\right) \frac{n_{\mathrm{e}}}{2}$
Cicumferential speed around bearing ball's center $v_a(m/sec)$	$-\frac{\pi \cdot D_{\mathrm{w}}}{60 \times 10^{3}} \left(\frac{D_{\mathrm{pw}}}{D_{\mathrm{w}}} - \frac{\cos^{2} \alpha}{D_{\mathrm{pw}}/D_{\mathrm{w}}} \right) \frac{n_{i}}{2}$	$+\frac{\pi \cdot D_{\mathrm{w}}}{60 \times 10^{3}} \left(\frac{D_{\mathrm{pw}}}{D_{\mathrm{w}}} - \frac{\cos^{2} \alpha}{D_{\mathrm{pw}}/D_{\mathrm{w}}}\right) \frac{n_{\mathrm{e}}}{2}$
Revolving speed around bearing center n_c (min ⁻¹)	$+ \left(1 - \frac{\cos \alpha}{D_{\rm pw}/D_{\rm w}}\right) \frac{n_i}{2}$	$+ \left(1 - \frac{\cos \alpha}{D_{\rm pw}/D_{\rm w}}\right) \frac{n_{\rm e}}{2}$
Cicumferential speed around bearing center $\upsilon_{c}\left(m/sec\right)$	$-\frac{\pi \cdot D_{\text{pw}}}{60 \times 10^3} \left(1 - \frac{\cos \alpha}{D_{\text{pw}}/D_{\text{w}}} \right) \frac{n_i}{2}$	$+\frac{\pi \cdot D_{\text{pw}}}{60 \times 10^3} \left(1 - \frac{\cos \alpha}{D_{\text{pw}}/D_{\text{w}}}\right) \frac{n_{\text{e}}}{2}$

1. + sign indicates CW rotation and - sign CCW

Table 15. 7 ϵ and $f(\epsilon)$, L_{ϵ}/L

	Deep Groove Ball Bearings		Cylindrical Roller Bearings	
ε	$f(\varepsilon)$	$\frac{L_{\mathcal{E}}}{L}$	$f(\varepsilon)$	$\frac{L_{\mathcal{E}}}{L}$
0.1	33.713	0.294	51.315	0.220
0.2	10.221	0.546	14.500	0.469
0.3	4.045	0.737	5.539	0.691
0.4	1.408	0.889	1.887	0.870
0.5	0	1.0	0	1.0
0.6	- 0.859	1.069	– 1.133	1.075
0.7	- 1.438	1.098	- 1.897	1.096
0.8	- 1.862	1.094	- 2.455	1.065
0.9	- 2.195	1.041	- 2.929	0.968
1.0	- 2.489	0.948	- 3.453	0.805
1.25	- 3.207	0.605	- 4.934	0.378
1.5	- 3.877	0.371	- 6.387	0.196
1.67	- 4.283	0.276	- 7.335	0.133
1.8	- 4.596	0.221	- 8.082	0.100
2.0	- 5.052	0.159	- 9.187	0.067
2.5	- 6.114	0.078	-11.904	0.029
3	- 7.092	0.043	-14.570	0.015
4	- 8.874	0.017	-19.721	0.005
5	–10.489	0.008	-24.903	0.002
10	–17.148	0.001	-48.395	0.0002

Fig. 15.13 Radial Internal Clearance and Life Ratio

^{2.} The revolving speed and circumferential speed of the rolling elements are the same as those of the

15. 6 BRANDS AND PROPERTIES OF LUBRICATING GREASES

Table 15. 8 Brands of Lubricating Greases

Brands	Thickeners	Base Oils	
ADLEX	Lithium	Mineral oil	
APOLOIL AUTOLEX A	Lithium	Mineral oil	
ARAPEN RB 300	Lithium/Calcium	Mineral oil	
EA2 GREASE	Urea (3)	Poly-α-olefin oil	
EA3 GREASE	Urea (3)	Poly-α-olefin oil	
EA5 GREASE	Urea (3)	Poly-α-olefin oil	
EA7 GREASE	Urea (3)	Poly-α-olefin oil	
ENC GREASE	Urea (3)	Polyol ester oil + Mineral oil (4)	
ENS GREASE	Urea (3)	Polyol ester oil (4)	
ECE GREASE	Lithium	Poly-α-olefin oil	
ISOFLEX NBU 15	Barium Complex	Ester oil + Mineral oil (4)	
ISOFLEX SUPER LDS 18	Lithium	Ester oil (4)	
ISOFLEX TOPAS NB 52	Barium Complex	Poly-α-olefin oil	
DOW CORNING SH 33 L GREASE	Lithium	Silicone oil (5)	
DOW CORNING SH 44 M GREASE	Lithium	Silicone oil (5)	
NS HI-LUBE	Lithium	Polyol ester oil + Diester oil (4)	
NSC GREASE	Lithium	Alkyldiphenyl ether oil + Polyol ester oil (4)	
NSK CLEAN GREASE LG2	Lithium	Poly-α-olefin oil + Mineral oil	
EMALUBE 8030	Urea (3)	Mineral oil	
MA8 GREASE	Urea (3)	Alkyldiphenyl ether oil + Poly-α-olefin oil	
KRYTOX GPL-524	PTFE	Perfluoropolyether oil	
KP1 GREASE	PTFE	Perfluoropolyether oil	
COSMO WIDE GREASE WR No.3N	Sodium Terephtalamate	Polyol ester oil + Mineral oil (4)	
G-40M	Lithium	Silicone oil (5)	
SHELL GADUS S2 V220 2	Lithium	Mineral oil	
SHELL ALVANIA GREASE S1	Lithium	Mineral oil	
SHELL ALVANIA GREASE S2	Lithium	Mineral oil	
SHELL ALVANIA GREASE S3	Lithium	Mineral oil	
CASSIDA GREASE RLS 2	Aluminum Complex	Poly-α-olefin oil	
SHELL SUNLIGHT GREASE 2	Lithium	Mineral oil	
WPH GREASE	Urea (3)	Poly-α-olefin oil	
DEMNUM GREASE L-200	PTFE	Perfluoropolyether oil	
NIGACE WR-S	Urea (3)	Synthetic oil	
NIGLUBE RSH	Sodium Complex	Polyalkylene Glycol oil	

Notes (1) If grease will be used at the upper or lower limit sufficient of the temperature range or in a special environment such

and Comparison of Properties

Dropping Point (°C)	Consistency	Working Temperature Range(¹)(°C)	Pressure Resistance	Usable Limit Compare to Listed Limiting Speed(2)(%)
198	300	0 to +110	Good	70
198	280	-10 to +110	Fair	60
177	294	-10 to + 80	Fair	70
≧260	243	-40 to +150	Fair	100
≧260	230	-40 to +150	Fair	100
≧260	251	-40 to +160	Good	60
≧260	243	-40 to +160	Fair	100
≧260	262	-40 to +160	Fair	70
≧260	264	-40 to +160	Poor	100
≧260	235	-10 to +120	Fair	100
≧260	280	-30 to +120	Poor	100
195	280	-50 to +110	Poor	100
≧260	280	-40 to +130	Poor	90
210	310	-60 to +120	Poor	60
210	260	-30 to +130	Poor	60
192	250	-40 to +130	Fair	100
192	235	-30 to +140	Fair	70
201	199	-40 to +130	Poor	100
≧260	280	0 to +130	Good	60
≧260	283	-30 to +160	Fair	70
≧260	265	0 to +200	Fair	70
≧260	280	-30 to +200	Fair	60
≧230	227	-40 to +130	Poor	100
223	252	-30 to +130	Poor	60
187	276	0 to + 80	Good	60
182	323	-10 to +110	Fair	70
185	275	-10 to +110	Fair	70
185	242	-10 to +110	Fair	70
≧240	280	0 to +120	Fair	70
200	274	-10 to +110	Fair	70
259	240	-40 to +150	Fair	70
≧260	280	-30 to +200	Fair	60
≧260	230	-30 to +150	Poor	70
≧260	270	-20 to +120	Fair	60

(continued on next page)

A 138 A 139

as vacuum, it is advisable to consult NSK.
 For short-term operation or when cooling is grease may be used at speeds exceeding the above limits provided the supply of grease is appropriate.
 Urea-based grease causes fluorine-based material to deteriorate.
 Ester-based grease causes acrylic rubber material to swell.
 Silicone-based grease causes silicone-based material to swell.

Brands	Thickeners	Base Oils
PALMAX RBG	Lithium Complex	Mineral oil
BEACON 325	Lithium	Diester oil (4)
MULTEMP PS No.2	Lithium	Poly-α-olefin oil + Diester oil (4)
MOLYKOTE FS-3451 GREASE	PTFE	Fluorosilicone oil (5)
UME GREASE	Urea	Mineral oil
RAREMAX AF-1	Urea	Mineral oil

Ν	lotes	(
IV	lotes	(

- (1) If grease will be used at the upper or lower limit sufficient of the temperature range or in a special environment such
- (3) Silicone-based grease causes silicone-based material to swell.

Dropping Point (°C)	Consistency	Working Temperature Range(¹)(°C)	Pressure Resistance	Usable Limit Compared to Listed Limiting Speed(2)(%)
216	300	-10 to +130	Good	70
190	274	-50 to +100	Poor	100
190	275	-50 to +110	Poor	100
≧260	285	0 to +180	Fair	70
≧260	268	-10 to +130	Fair	70
≧260	300	-10 to +130	Fair	70

A 140 A 141