Análise de Dados Longitudinais Modelos Lineares Generalizados Longitudinais

Enrico A. Colosimo/UFMG

Respostas Longitudinal Não-Gaussiana

- $Y_{ij}, i = 1, ..., N; j = 1, ..., k$: binária, contagem, etc.
- Modelos Estatísticos
 - Modelos Lineares Generalizados Mistos.
 - Modelos Marginais: GEE

Exemplos

- Mecanismo Evacuatório de Récem-Nascidos
- 2 Fatores de Risco Coronariano: MCRF, (FLW, pag. 364)

Mecanismo Evacuatório de Récem-Nascidos

- 151 recém-nascidos acompanhados nos primeiros 12 meses de vida no Hospital das Clínicas da UFMG em 2010 e 2011.
- Acompanhamento mensal totalizando 1751 medidas (61 perdas)
- Respostas: (1) Binárias: Dificuldade para evacuar, Esforço evacuatório, Dor ao evacuar e (2) Contagem: Freqüência evacuatória/semana.
- Variável temporal: idade (em dias ou meses).
- Covariáveis: 1- fixa (sexo) e 2- dependentes do tempo: Aleitamento materno, dieta (0/1): cereais; frutas; vegetais, carnes, etc.
- Objetivo: avaliar o comportamento temporal das respostas e seus respectivos indicadores.

Resposta: Dificuldade e Esforço para Evacuar

Obs.: idade foi arrendonda para mês (um único digito).

Covariáveis: Consumo de Cereais e de Carnes

"Muscatine Coronary Risk Factor Study"

- Estudo longitudinal de crianças em idade escolar realizado em Muscatine, Iowa, Estados Unidos na década de 80.
- Cinco coortes de crianças, inicialmente com idades em 5-7, 7-9, 9-11, 11-13 e 13-15 foram acompanhadas bianualmente de 1977 a 1981 (3 medidas).
- Respostas binária: obesidade.
- Variável temporal: idade (em dias ou meses).
- Covariável: sexo.
- Objetivo: avaliar (1) se o risco de obesidade aumenta com a idade e (2) se os padrões são os mesmos para meninos e meninas.

"Muscatine Coronary Risk Factor Study"

		Obesidade (%)		
Gênero	Coorte Idade	1977	1979	1981
Meninos				
	5-7	7.9	15.4	21.2
	7-9	18.8	20.5	23.7
	9-11	21.2	22.7	22.5
	11-13	24.3	21.8	19.4
	13-15	19.2	21.1	18.2
Meninas				
	5-7	14.0	17.2	25.1
	7-9	16.5	24.0	24.9
	9-11	25.4	26.2	22.2
	11-13	23.8	22.1	19.9
	13-15	22.9	25.8	20.9

Revisão: Modelos Lineares Generalizados

Modelos Lineares Generalizados (MLG) é uma classe unificada de modelos de Regressão.

- 1 Considere $Y_1, \dots Y_N$ uma amostra aleatória de respostas univariadas (desenho transversal).
- 2 Um vetor de p-covariáveis associados a cada resposta Y_i . Ou seja

$$X_i = \left(egin{array}{c} X_{i0} \ X_{i1} \ dots \ X_{ip} \end{array}
ight)$$

em que $X_{i0} = 1$.

Modelos Lineares Generalizados (MLG)

- 3 O MLG é definido por três componentes:
 - Distribuição de Y_i .
 - Componente Sistemático (preditor linear).

$$\eta_i = X_i' \beta = \beta_0 + \beta_1 X_{i1} + \dots + \beta_p X_{ip}$$

Função de Ligação.

MLG - Família Exponencial

A distribuição de Y_i pertence a família exponencial que inclue os principais modelos estatísticos: normal, binomial, poisson, exponencial, etc.

Ou seja,

 Y_i tem densidade $f(Y_i|\theta,\phi)$ pertencente a família exponencial.

$$f(y_i|\theta_i,\phi) = \exp\{\phi^{-1}(y_i\theta_i - \psi(\theta_i)) + c(y_i,\phi)\}\$$

em que θ_i é parâmetro natural, ϕ é o de escala e específicas funções $\psi(.)$ e c(.).

Modelos Lineares Generalizados

• $\psi(.)$ é a função geradora de momentos

•
$$\mu = E(Y) = \psi'(\theta)$$
 e

•
$$Var(Y) = \phi \psi''(\theta)$$

• Em geral, média e variância são relacionadas.

$$Var(Y) = \phi \psi'' \ (\psi'^{-1}(\mu) = \phi \nu(\mu))$$

- A função $\nu(\mu)$ é chamada de função de variância.
- ψ'^{-1} que relaciona θ com μ é chamada de função de ligação.

Exemplos

- **1** Modelo Normal (μ, σ^2)
 - $\theta = \mu$

 - $\psi(\theta) = \theta^2/2$
 - Média: $\mu = \theta$ e $\nu(\mu) = 1$
 - Observe que no modelo normal, média e variância não são relacionadas

$$\phi\nu(\mu) = \sigma^2$$

• Função de ligação natural: $\theta = \mu$.

Exemplos

2 Modelo Bernoulli (π)

- $\theta = \log(\pi/(1-\pi))$
- \bullet $\phi = 1$
- $\psi(\theta) = \log(1 \pi) = \log(1 + \exp(\theta))$
- Média: $\mu=\pi=\frac{\exp(\theta)}{1+\exp(\theta)}$ e $\nu(\mu)=\pi(1-\pi)=\frac{\exp(\theta)}{1+\exp(\theta)^2}$
- Observe que no modelo bernoulli, média e variância são relacionadas

$$\phi\nu(\mu) = \mu(1-\mu)$$

• Função de ligação natural: $\theta = \log(\mu/(1-\mu)$.

Função de Ligação Natural ou Canônica

$$g(\mu_i) = \eta_i = X_i'\beta = \beta_0 + \beta_1 X_{i1} + \cdots + \beta_p X_{ip}$$

- Gaussiano: $g(\mu_i) = \eta_i$ (identidade)
- Bernoulli: $g(\mu_i) = logit(\eta_i)$.
- Poisson: $g(\mu_i) = \log(\eta_i)$

Inferência por MV

• Função de log-verossimilhança logL(.) = I(.)

$$L(\beta) = \prod_{i=1}^{N} f(y_i | \theta_i, \phi) = \prod_{i=1}^{N} \exp\{\phi^{-1}(y_i \theta_i - \psi(\theta_i)) + c(y_i, \phi)\}$$

- Equações escore: derivada de I(.).
- Inferência baseada na teoria assintótica de MV.

Referências: Dobson (1990) e Cordeiro e Demétrio (201?)

Exemplo - Regressão Binária

- Uma amostra de 100 indivíduos acompanhados por um período de cinco anos.
- Resposta: ocorrência de doença coronariana.
- Resposta para cada indivíduo foi sim (1) ou não (0).
- Covariável de interesse: 8 faixas etárias (idade): 20-29, ..., 60-69.
- Aconteceram 43 ocorrências de doença coronariana.

Ref: Giolo (2010) pg. 98- Introdução à Análise de Dados Categóricos.

Entrada dos Dados

Existem duas formas de entrada dos dados para resposta binária.

Forma 1: Uma linha para cada indivíduo:

faixa etária	resposta
1 (25)	0
5 (47)	1
	43
	1 (25)

Entrada dos Dados

• Forma 2: Uma linha para cada combinação de covariáveis.

Faixa Etária	Sim	Não
20-29 (25)	1	9
30-34 (32)	2	13
35-39 (38)	3	9
40-44 (43)	5	10
45-49 (47)	6	7
50-54 (53)	5	3
55-59 (57)	13	4
60-69 (65)	8	2

Descrição Gráfica por Faixa Etária

MLG

$$logit(idade_i) = log\{\mu_i/(1-\mu_i)\} = \beta_0 + \beta_1 idade_i$$

е

$$E(Y_i/idade_i) = P(Y_i = 1/idade_i)$$

O modelo logístico pode ser escrito como:

$$P(Y_i = 1/idade_i) = \frac{\exp(\beta_0 + \beta_1 idade_i)}{1 + \exp(\beta_0 + \beta_1 idade_i)}$$

Resultados do Ajuste MV

```
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
  (Intercept) -5.12300 1.11111 -4.611 4.01e-06 ***
  idade 0.10578 0.02337 4.527 5.99e-06 ***
Number of Fisher Scoring iterations: 4
> anova(ajust1, test="Chisq")
Terms added sequentially (first to last)
      Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NUIT.T.
                          7 28.7015
 idade 1 28.118
                          6 0.5838 \ 1.142e-07 \ ***
```

Resultados do Ajuste

Y: presença ou não de doença coronariana;

X: idade (em anos);

n = 100.

Variável	Estimativa	E.P.	Wald
Idade	0,106	0,023	4,53 (<i>p</i> < 0,001)
Constante	-5,123	1,11	-4,61 (<i>p</i> < 0,001)

$$\widehat{\pi}(x) = \frac{\exp(-5, 12 + 0, 106 \text{ idade})}{1 + \exp(-5, 12 + 0, 106 \text{ idade})}$$

$$\widehat{logit}(x) = -5, 12 + 0, 106 \text{ idade}$$

$$\log(\text{verossimilhança}) = \log L(\widehat{\beta}_0, \widehat{\beta}_1) = -10,86$$

Sob
$$H_0: \beta_1 = 0, logL(\widehat{\beta}_0) = -24, 92.$$

$$TRV = 2(-10, 86 + 24, 92) = Null Deviance - Residual Deviance = 28, 118.$$

Modelo Estimado

Interpretação dos Coeficientes

Interpretação: Razão de chances = $\exp(0, 1058) = 1,11 (1,06;1,16)$, isto significa que para o aumento de um ano na idade a chance de doença coronariana aumenta em 11%.

Outros MLG

- Y tem uma Bernoulli.
- Outras funções de ligação:
 - $\pi(x) = \Phi(x)$ (probit)
 - $\pi(x) = \exp \exp(x)$ (complemento log-log)
 - etc (qualquer função de distribuição)

Modelos para Resposta Gaussiana Longitudinal

Modelo Marginal

$$Y_{ij} = X'_{ij}\beta + \varepsilon_{ij}$$

е

$$E(Y_{ij}|X_{ij})=X'_{ij}\beta.$$

Modelo Condicional

$$Y_{ij} = X'_{ij}\beta + Z'_{ij}b_i + \varepsilon_{ij}$$

em que:

 $(\beta)_{p\times 1}$: efeitos fixos;

 $(b_i)_{a\times 1}$: efeitos aletaórios.

e,

$$b_i \sim N_a(0, \Sigma)$$
 e $\varepsilon_{ii} \sim N(0, \sigma^2)$

Sendo b_i e ε_{ij} independentes.

Modelos para Resposta Gaussiana

Média Condicional ou Específica por Indivíduo

$$E(Y_{ij}|b_i,X_{ij})=X'_{ij}\beta+Z'_{ij}b_i.$$

e a Covariância Marginal

$$Var(Y_i) = Z_i \Sigma Z'_i + \sigma^2 I_{n_i}.$$

Modelos para Resposta Não-Gaussiana

- $\mu_{ij} = E(Y_{ij}|X_{ij})$ (modelo marginal) $\mu_{ij} = E(Y_{ij}|b_i,X_{ij})$ (modelo condicional).
- 2 Modelo Bernoulli
 - *Y_{ij}* : 0/1 (Bernoulli)
 - função de ligação: logit (mais comum)

$$logit(\mu_{ij}) = X'_{ij} eta$$
 Modelo Marginal

$$logit(\mu_{ij}) = X'_{ij}\beta + Z'_{ij}b_i$$
 Modelo Condicional

Modelos para Resposta Não-Gaussiana

3 Modelo Poisson

- Y_{ij} :contagem (Poisson)
- função de ligação: logarítmica (mais comum)

$$\log(\mu_{ij}) = X'_{ij}eta$$
 Modelo Marginal $\log(\mu_{ij}) = X'_{ij}eta + Z'_{ij}b_i$ Modelo Condicional

Modelos Lineares Generalizados Longitudinais

- Fácil transferência entre modelos (marginal e condicional) para resposta gaussiana.
- Transferência díficil entre modelos quando a resposta não é gaussiana.
- Modelos Marginais
 - Especificação completa: o ajuste por MV pode ser complicado.
 - Alternativa N\u00e3o-Verossimilhan\u00e7a: MQG, GEE, etc.
- Modelos Condicionais: ajuste complicado.

Resposta LOngitudinal Não-Gaussiano

Equações de Estimação Generalizadas

Modelos Lineares Mistos Generalizados

Modelos Marginais: GEE

Equações de Estimação Generalizadas

$$\sum_{i=1}^{N} D'_{i}V_{i}(Y_{i} - \mu_{i}) = 0,$$

em que

• $D_i = \partial \mu_i / \partial \beta$ e $\mu_i = g^{-1}(X_i \beta)$, ou seja, o inverso da função de ligação g.

•

$$Var(Y_i) = V_i = \phi A_i^{1/2}(\beta) R_i(\alpha) A_i^{1/2}(\beta)$$

em que A_i é uma matriz diagonal formada por $Var(Y_{ij})$, R_i é matriz de correlação de trabalho e ϕ é um parâmetro de dispersão/escala.

• $Var(\widehat{\beta})$ é estimada pela variância robusta (estimador sanduiche).

Formas de Correlação de Trabalho

- independência, **R**_i(α) = **I**_k;
 ⇒ dados longitudinais não correlacionados.
- simetria composta, especifica que $\mathbf{R}_i(\alpha) = \rho \mathbf{1}_k \mathbf{1}'_k + (\mathbf{1} \rho) \mathbf{1}_k$; \Rightarrow mesma correlação.
- AR-1, para a qual $\mathbf{R}_i(\alpha) = \rho^{|j-j'|}$; \Rightarrow válida para medidas igualmente espaçadas no tempo;
- $n\tilde{a}o$ estruturada estima todas as k(k-1)/2 correlações de R.

Variância do Estimador

Naive ou "baseada no modelo"

$$\widehat{Var}(\hat{\boldsymbol{\beta}}) = \left(\sum_{i=1}^{N} \hat{\boldsymbol{D}}_{i}^{i} \boldsymbol{R}_{i}(\hat{\boldsymbol{\alpha}})^{-1} \hat{\boldsymbol{D}}_{i}\right)^{-1}.$$
 (1)

Robusta ou "empírica"

$$\widehat{Var}(\hat{\beta}) = \mathbf{M}_0^{-1} \mathbf{M}_1 \mathbf{M}_0^{-1}, \tag{2}$$

em que

$$\begin{array}{lcl} \pmb{M}_0 & = & \sum_{i=1}^N \hat{\pmb{D}}_i' \pmb{R}_i(\hat{\pmb{\alpha}})^{-1} \hat{\pmb{D}}_i, \\ \\ \pmb{M}_1 & = & \sum_{i=1}^N \hat{\pmb{D}}_i' \pmb{R}_i(\hat{\pmb{\alpha}})^{-1} (\pmb{y}_i - \hat{\pmb{\mu}}_i) (\pmb{y}_i - \hat{\pmb{\mu}}_i)' \pmb{R}_i(\hat{\pmb{\alpha}})^{-1} \hat{\pmb{D}}_i. \end{array}$$

Exemplo: Bernoulli-logit

$$logit(\mu_{ij}) = log(\mu_{ij}/(1-\mu_{ij})) = X'_{ij}\beta$$

$$\mu_{ij} = \frac{e^{X'_{ij}\beta}}{1 + e^{X'_{ij}\beta}}$$

$$Var(Y_{ij}) = \mu_{ij}(1 - \mu_{ij})$$

$$u_{ij} = \mu_{ij}(1 - \mu_{ij}) \quad A_i = diag(\nu_{i1}, \nu_{i2} \dots, \nu_{in})$$

Exemplo: Poisson-log

$$\mu_{\it ij} = {\it e}^{X'_{\it ij}eta}$$

$$Var(Y_{ij}) = \mu_{ij} = e^{X'_{ij}\beta}$$

$$u_{ij} = \mathbf{e}^{X'_{ij}\beta} = \mu_{ij}$$

Estimando a Correlação de Trabalho

- Liang e Zeger (1986) utilizaram estimativas de momento para os parâmetros da matriz de correlação de trabalho.
- Ou seja, utilizar estimadores baseados nos resíduos para as quantidades envolvidas em R_i.
- Resíduos de Pearson:

$$m{e}_{ij} = rac{m{y}_{ij} - \hat{\mu_{ij}}}{\sqrt{\hat{
u}_{ij}}},$$

em que $\nu_{ij} = \mu_{ij} (1 - \mu_{ij})$ para resposta binária e $\nu_{ij} = \mu_{ij}$, para contagem.

Estimadores de Momento usando Resíduos

Estrutura	$Cor(Y_{ij}, Y_{il})$	Estimativa
Independência	0	-
Simetria Composta	α	$\hat{lpha} = 1/N \sum_{i=1}^N 1/(n(n-1) \sum_{j eq l} e_{ij} e_{il}$
AR1	α	$\hat{\alpha} = 1/N \sum_{i=1}^{N} 1/(n-1) \sum_{j \le k-1} e_{ij} e_{ij+1}$
Não Estruturada	$lpha_{jl}$	$\hat{\alpha}_{jl} = 1/N \sum_{i=1}^{N} e_{ij} e_{il}$

$$\hat{\phi} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{n} \sum_{i=1}^{n} e_{ij}^{2}$$

Ajustando GEE

- Use MLE para encontrar a estimativa inicial para β (assumindo independência)
- 2 Encontre os resíduos e estime α e ϕ .
- Faça iterações em 1-2 até a convergência.
- Estime $Var(\hat{\beta})$ usando o estimador sanduíche.

Modelos Lineares Generalizados Mistos

- Modelos Lineares Generalizados
 - Resposta na família exponencial: normal, gama, exponencial, Bernoulli, Poisson, etc.
 - Preditor Linear: $X_i'\beta$.
 - Função de Ligação: $g(\mu_i) = X_i'\beta$.
- Modelos Lineares Generalizados Mistos Preditor Linear:

$$X_i\beta + Z_ib_i$$

.

Modelos Generalizado Misto Longitudinal

$$g(E(Y_{ij}|b_i)) = X'_{ij}\beta + Z'_{ij}b_i$$
 em que:
$$(\beta)_{p\times 1}: \text{efeitos fixos;} \\ (b_i)_{q\times 1}: \text{efeitos aletaórios.}$$
 e,

$$b_i \sim N_q(0,\Sigma)$$
 e $\varepsilon_{ij} \sim N(0,\sigma^2)$

Sendo b_i e ε_{ii} independentes.

Função de Verossimilhança

$$L(\theta/y) = \prod_{i=1}^{N} p(y_i/\theta)$$

$$= \prod_{i=1}^{N} \int p(y_i, b_i/\theta) db_i$$

$$= \prod_{i=1}^{N} \int p(y_i/b_i, \theta) p(b_i/\theta) db_i$$

em que,

$$p(y_i/b_i, \theta) \sim$$
 Bernoulli-logit/Poisson-log, etc

е

$$p(b_i/\theta) \sim N_q(0,\Sigma)$$

Solução

- No modelo linear-normal, a integral pode ser resolvida analiticamente.
- Em geral, aproximações são necessárias no caso não-normal.
- Aproximação do integrando: Laplace
- Aproximação dos dados
- Aproximação da integral: quadratura gaussiana.

Usualmente, a combinação normal-logit não tem solução simples.

Interpretação dos Parâmetros

- Vetor β no GEE tem interpretação populacional. Ou seja, a mesma interpretação dos modelos transversais.
- Vetor β no modelo GLMM tem interpretação condicional sob o nível dos efeitos aleatórios. Ou seja, interpretação específica para cada indivíduo.
- Portanto, as estimativas dos modelos s\(\tilde{a}\) diferentes.
- Em casos mais simples, os parâmetros apresentam uma relação.

$$\frac{\hat{\beta}^{EA}}{\hat{\beta}^{M}} = \sqrt{c^2 \sigma^2 + 1} > 1$$

Interpretação dos Parâmetros

Exemplo: Razão de Chances - Modelo Logit-normal

RC =
$$\frac{P(Y_i = 1 | X_i = x + 1) / P(Y_i = 0 | X_i = x + 1)}{P(Y_l = 1 | X_l = x) / P(Y_l = 0 | X_l = x)}$$
=
$$b_i + \beta(x + 1) - (b_l + \beta x)$$
=
$$\beta + (b_i - b_l)$$

Mecanismo Evacuatório de Récem-Nascidos

- 151 recém-nascidos acompanhados nos primeiros 12 meses de vida no Hospital das Clínicas da UFMG em 2010 e 2011.
- Acompanhamento mensal totalizando 1751 medidas (61 perdas)
- Resposta: Binárias: Dificuldade para evacuar.
- Variável temporal: idade (em dias ou meses).
- Covariáveis: 1- fixa (sexo) e 2- dependentes do tempo:
 Aleitamento materno, dieta (0/1): cereais; frutas; vegetais, carnes, etc.
- Objetivo: avaliar o comportamento temporal das respostas e seus respectivos indicadores.