C. Claims

The following is a complete listing of the claims, and replaces all earlier versions and listings.

 (Previously Presented) A polyhydroxyalkanoate comprising at least a unit represented by a chemical formula (1) within a molecule:

wherein R represents $-A_1$ -SO₂R₁; R₁ represents OH, a halogen atom, ONa, OK or OR_{1a}; R_{1a} and A₁ each independently represents a group having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure or a substituted or unsubstituted heterocyclic structure; m represents an integer selected from 0-8; Z represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; and in case plural units are present, R, R₁, R_{1a}, A₁, m and Z have the aforementioned meanings independently for each unit.

2. (Previously Presented) The polyhydroxyalkanoate according to claim 1, comprising, as the unit represented by the chemical formula (1), at least a unit represented by a chemical formula (2), a chemical formula (3), a chemical formula (4A) or (4B), within a molecule:

wherein R_2 represents OH, a halogen atom, ONa, OK or OR_{2a} ; R_{2a} represents a linear or branched alkyl group with 1 to 8 carbon atoms or a substituted or unsubstituted phenyl group; A_2 represents a linear or branched alkylene group with 1 to 8 carbon atoms; m represents an integer selected from 0 - 8; Z_2 represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; and in case plural units are present, A_2 , R_2 , R_{2a} , m and Z_2 have the aforementioned meanings independently for each unit;

wherein R_{3a} , R_{3b} , R_{3c} , R_{3d} and R_{3c} each independently represents SO_2R_{3f} (R_{3f} representing OH, a halogen atom, ONa, OK or OR_{3f1} (R_{3f1} representing a linear or branched alkyl group with 1 to 8 carbon atoms or a substituted or unsubstituted phenyl group)), a

hydrogen atom, a halogen atom, an alkyl group with 1 - 20 carbon atoms, an alkoxy group with 1 - 20 carbon atoms, an OH group, an NH $_2$ group, an NO $_2$ group, COOR $_{3g}$ (R $_{3g}$ representing a H atom, a Na atom or a K atom), an acetamide group, an OPh group, a NHPh group, a CF $_3$ group, a C $_2$ F $_5$ group or a C $_3$ F $_7$ group (Ph indicating a phenyl group), of which at least one is SO $_2$ R $_3$ $_5$ $_7$ m represents an integer selected from 0 - 8; Z $_3$ represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; and in case plural units are present, R $_{3a}$, R $_{3b}$, R $_{3c}$, R $_{3d}$, R $_{3c}$, R $_{3f}$, R $_{3g}$, m and Z $_3$ have the aforementioned meanings independently for each unit;

wherein R_{4a} , R_{4b} , R_{4c} , R_{4d} , R_{4c} , R_{4f} and R_{4g} each independently represents SO_2R_{4o} (R_{4o} representing OH, a halogen atom, ONa, OK or OR_{4o1} (R_{4o1} representing a linear or branched alkyl group with 1 to 8 carbon atoms or a substituted or unsubstituted phenyl group)), a hydrogen atom, a halogen atom, an alkyl group with 1 - 20 carbon atoms, an alkoxy group with 1 - 20 carbon atoms, an OH group, an NH_2 group, an NO_2 group, $COOR_{4p}$ (R_{4p} representing a H atom, a Na atom or a K atom), an acetamide group, an OPh

group, an NHPh group, a CF_3 group, a C_3F_5 group or a C_3F_7 group (Ph indicating a phenyl group), of which at least one is SO_2R_{4o} ; m represents an integer selected from 0-8; Z_{4a} represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; and in case plural units are present, R_{4a} , R_{4b} , R_{4c} , R_{4d} , R_{4c} , R_{4f} , R_{4g} , R_{4o} . R_{4o1} , R_{4o2} , and and R_{4o2} have the aforementioned meanings independently for each unit;

wherein R_{4h} , R_{4i} , R_{4j} , R_{4h} , R_{4m} and R_{4n} each independently represents SO_2R_{4o} (R_{4o} representing OH, a halogen atom, ONa, OK or OR_{4o1} (R_{4o1} representing a linear or branched alkyl group with 1 to 8 carbon atoms or a substituted or unsubstituted phenyl group)), a hydrogen atom, a halogen atom, an alkyl group with 1 - 20 carbon atoms, an alkoxy group with 1 - 20 carbon atoms, an OH group, an NH_2 group, an NO_2 group, $COOR_{4p}$ (R_{4p} representing a H atom, a Na atom or a K atom), an acetamide group, an OPh group, an NHPh group, a CF_3 group, a C_3F_5 group or a C_3F_7 group (Ph indicating a phenyl group), of which at least one is SO_2R_{4o} ; m represents an integer selected from 0 - 8; Z_{4p} represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; and in case plural units are present, R_{4h} , R_{4i} , R_{4p} , R_{4p} , R_{4m}

 R_{4o1} , R_{4o} , m and Z_{4b} have the aforementioned meanings independently for each unit.

 (Withdrawn) A polyhydroxyalkanoate comprising at least a unit represented by a chemical formula (5) within a molecule:

$$\begin{array}{c}
COOR_{5} \\
(CH_{2})m \\
CO \downarrow I \\
Z_{5}
\end{array}$$
(5)

wherein R_5 represents hydrogen, a group capable of forming a salt or R_{5a} ; R_{5a} represents a linear or branched alkyl group with 1-12 carbon atoms, an aralkyl group or a substituent having a sugar; m represents an integer selected from 0-8; Z_5 represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; however R_5 only represents a substituent having a sugar in case Z_5 is a methyl group and m is 0-1; and in case plural units are present, R_5 , R_{5a} , m and Z_5 have the aforementioned meanings independently for each unit.

(Previously Presented) The polyhydroxyalkanoate according to

claim 1, further comprising a unit represented by a chemical formula (6) within a molecule:

wherein R₆ represents a linear or branched alkylene with 1 - 11 carbon

atoms, alkyleneoxyalkylene group (each alkylene group being independently with 1 - 2 carbon atoms), a linear or branched alkenyl group with 1 - 11 carbon atoms or an alkylidene group with 1 - 5 carbon atoms which may be substituted with an aryl group; and in case plural units are present, R_6 has the aforementioned meanings independently for each unit.

5. (Withdrawn) A method for producing a polyhydroxyalkanoate comprising a unit represented by a chemical formula (8), of the method comprising a step of executing hydrolysis of a polyhydroxyalkanoate comprising a unit represented by a chemical formula (7) in the presence of an acid or an alkali, or a step of executing hydrogenolysis comprising a catalytic reduction of a polyhydroxyalkanoate comprising a unit represented by a chemical formula (7):

$$COOR_7$$
 $(CH_2)m$
 $COOR_7$
 $COOR_7$

wherein R_7 represents a linear or branched alkyl group with 1-12 carbon atoms or an aralkyl group; m represents an integer selected from 0-8; Z_7 represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group, and m represents an integer selected from 2-8 in case Z_7 is a methyl group; and in case plural units are present, R_7 , m and Z_7 have the aforementioned meanings independently for each unit;

wherein R_8 represents hydrogen, or a group capable of forming a salt; m represents an integer selected from 0 - 8; Z_8 represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group, and m represents an integer selected from 2 - 8 in case Z_8 is a methyl group; and, in case plural units are present, R_8 , m and M_8 have the aforementioned meanings independently for each unit.

6. (Withdrawn) A method for producing a polyhydroxyalkanoate comprising a unit represented by a chemical formula (1), the method comprising a step of executing a condensation reaction of a polyhydroxyalkanoate comprising a unit represented by a chemical formula (9) and an amine compound represented by a chemical formula (10):

$$\begin{array}{c}
COOH_9 \\
CH_2OM \\
COH_2OH \\$$

wherein R_0 represents hydrogen, or a group capable of forming a salt; m represents an integer selected from 0 - 8; Z_0 represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; and, in case plural units are present, m. R_0 and Z_0 have the aforementioned meanings independently for each unit:

wherein R_{10} represents OH, a halogen atom, ONa, OK or OR_{10a}, R_{10a} and A_3 each independently is selected from a group having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure, or a substituted or unsubstituted heterocyclic structure; and, in case plural units are present, R_{10} , R_{10a} and A_3 have the aforementioned meanings independently for each unit;

wherein R represents $-A_1$ -SO₂R₁; R_1 represents OH, a halogen atom, ONa, OK or OR_{1a}; R_{1a} and A_1 each independently represents a group having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure or a substituted or unsubstituted heterocyclic structure; m represents an integer selected from 0-8; Z represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; and in case plural units are present, R, R_1 , R_{1a} , A_1 , m and Z have the aforementioned meanings independently for each unit.

7. (Withdrawn) A method for producing a polyhydroxyalkanoate

comprising a unit represented by a chemical formula (13), the method comprising:

a step of reacting a polyhydroxyalkanoate comprising a unit represented by a chemical formula (11) with a base; and

a step of reacting a compound obtained in the aforementioned step with a compound represented by a chemical formula (12):

wherein Z_{11} represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; and in case plural units are present, Z_{11} has the aforementioned meanings independently for each unit;

wherein m represents an integer selected from 0 - 8; X represents a halogen atom; and R_{12} represents a linear or branched alkyl group with 1 - 12 carbon atoms or an aralkyl group;

$$\begin{array}{c}
\mathsf{COOR}_{13} \\
(\mathsf{CH}_2)\mathsf{m} \\
-\left(-\mathsf{O} \begin{array}{c} & & \\ &$$

wherein m represents an integer selected from 0 - 8; R_{13} represents a linear or branched alkyl group with 1 - 12 carbon atoms or an aralkyl group; Z_{13} represents a

linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group, and m represents an integer selected from 2 - 8 in case Z_{13} is a methyl group; and in case plural units are present, R_{13} , m and Z_{13} have the aforementioned meanings independently for each unit.

 (Withdrawn) A method for producing a polyhydroxyalkanoate comprising a unit represented by a chemical formula (15), the method comprising:

a step of reacting a polyhydroxyalkanoate comprising a unit represented by a chemical formula (11) with a base; and

a step of reacting a compound obtained in the aforementioned step with a compound represented by a chemical formula (14):

$$\frac{-\left(-\circ\frac{1}{\left|\frac{1}{2}\right|}\right)}{\left|\frac{1}{2}\right|}$$
(11),

wherein Z_{11} represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; and in case plural units are present, Z_{11} has the aforementioned meanings independently for each unit;

wherein R₁₄ represents -A₁₄-SO₂R_{14a}; R_{14a} represents OH, a halogen atom,

ONa, OK or $\text{OR}_{14b}; R_{14b}$ and A_{14} each independently is selected from a group having a

substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure or a substituted or unsubstituted heterocyclic structure; and in case plural units are present, R_{14} , R_{14a} , R_{14b} , and A_{14} have the aforementioned meanings independently for each unit;

$$\begin{array}{c}
H_{15} \\
N-H \\
= O \\
\hline
-(OH_2)_{2O} \\
Z_{15}
\end{array}$$
(15)

wherein R_{15} represents $-A_{15}$ -SO₂ R_{15a} ; R_{15a} represents OH, a halogen atom, ONa, OK or OR_{15b}; R_{15b} and A_{15} each independently represents a group having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure or a substituted or unsubstituted heterocyclic structure; Z_{15} represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; and in case plural units are present, R_{15} , R_{15a} , R_{15b} , and A_{15} have the aforementioned meanings independently for each unit.

 (Previously Presented) The polyhydroxyalkanoate according to claim 2, further comprising a unit represented by a chemical formula (6) within a molecule:

wherein R_6 represents a linear or branched alkylene with 1 - 11 carbon atoms, alkyleneoxyalkylene group (each alkylene group being independently with 1 - 2 carbon atoms), a linear or branched alkenyl group with 1 - 11 carbon atoms or an alkylidene group with 1 - 5 carbon atoms which may be substituted with an aryl group; and in case plural units are present, R_6 has the aforementioned meanings independently for each unit.

10. (Withdrawn) The polyhydroxyalkanoate according to claim 3, further comprising a unit represented by a chemical formula (6) within a molecule:

wherein R_6 represents a linear or branched alkylene with 1 - 11 carbon atoms, alkyleneoxyalkylene group (each alkylene group being independently with 1 - 2 carbon atoms), a linear or branched alkenyl group with 1 - 11 carbon atoms or an alkylidene group with 1 - 5 carbon atoms which may be substituted with an aryl group; and in case plural units are present, R_6 has the aforementioned meanings independently for each unit.