Construction of Magic Squares

Yusuf Seha Uysal

Chapters

- 1. Definiton
- 2. Siamese method for odd orders
- 3. Criss cross method for doubly even orders
- 4. Conway's LUX method for singly even orders

Definiton

A magic square is an nxn array with the consecutive numbers from 1 to n^2. Its all rows, columns and diagonals adds up to the same sum. This sum is called the magic constant. Number n which determines the size of the square is called the order of the square.

Definition

A magic square is an nxn array with the consecutive numbers from 1 to n^2. Its all rows, columns and diagonals adds up to the same sum. This sum is called the magic constant. Number n which determines the size of the square is called the order of the square.

Order: n=3

Magic constant: 15

Magic Constant

$$M = \frac{n(n^2 + 1)}{2}$$

1x1 and 2x2 magic squares

$$M = \frac{n(n^2 + 1)}{2}$$

The center number has to be 5

Suppose 1 is on the corner

Opposing corner has to be 9

No row or column that has 9, can't have any more numbers bigger than 5. So the numbers 6, 7, and 8 all has to be in the two shaded squares.

Contradiction. Then 1 is not on the corner.

4 and 2 has to be in the same row with 9. Rest is easily follows.

Odd-order magic squares (2k+1)

17	24	1	8	15
23	5	7	14	16
4	6	13	20	22
10	12	19	21	3
11	18	25	2	9

Odd-order magic squares (2k+1)

17	24	1	8	15
23	5	7	14	16
4	6	13	20	22
10	12	19	21	3
11	18	25	2	9

Doubly even-order (4k)

1	15	14	4
12	6	7	9
8	10	11	5
13	3	2	16

Singly even-order (4k+2)

35	1	6	26	19	24
3	32	7	21	23	25
31	9	2	22	27	20
8	28	33	17	10	15
30	5	34	12	14	16
4	36	29	13	18	11

Odd-order magic squares (2k+1)

Doubly even-order (4k)

Singly even-order (4k+2)

Odd-order magic squares (2k+1)

Siamese Method

Doubly even-order (4k)

Criss Cross Method

Singly even-order (4k+2)

LUX Method

Algorithm:

1. Start by placing 1 in the center of the first row of the square

Algorithm:

 Start by placing 1 in the center of the first row of the square

- Start by placing 1 in the center of the first row of the square
- 2. Write the next number to the upper right of the previous one (↗)

- Start by placing 1 in the center of the first row of the square
- 2. Write the next number to the upper right of the previous one (↗)

- Start by placing 1 in the center of the first row of the square
- 2. Write the next number to the upper right of the previous one (↗)
- If the upper right is already filled, place it one square below the previous number (\(\psi\))

	1	
3		
		2

- Start by placing 1 in the center of the first row of the square
- 2. Write the next number to the upper right of the previous one (↗)
- If the upper right is already filled, place it one square below the previous number (↓)

- Start by placing 1 in the center of the first row of the square
- 2. Write the next number to the upper right of the previous one (↗)
- If the upper right is already filled, place it one square below the previous number (↓)

966	୨ଆଝ	อ๙๓	ଅ ବ୍ଦେଶ	๒๓๑	ම ໕0	מלפ	ಅದದ	9	٥٥	ต๙	Č G	വവ	ෆ්ර	୨୨୯	०तद	๑๕๓
อ๗๓	೨೧೮	ხიი	๒๓๐	७ ៤๙	ම ්ස	២ជ៧	๑๗	૦ત	ពជ	ଝି៧	രി	ለፎ	૦૦૯	อตต	ว๕๒	୨๕๔
იღი	600	ಠಿಠಿದ	ಅ๔๘	וחכש	ම ්ධ	ეე	೦ದ	ต๗	໕๖	๗๕	ለፈ	๑๑๓	อต๒	9៥9	ഉയര	วต๒
ಶಂಠ	២២๘	ଜୟଣ	ככט	២ದ៥	9៥	๓๔	ღხ	ææ	៧๔	๙๓	ეეს	909	9៥0	אלפ	๑๗๑	ойо
മമവ	ම ශ්ර	ම ්සි	ಅದಡ	०द	๓๓	ต๕	៥ ៤	๗๓	ď២	999	900	०दत	೨೮೮	១ជ៧	<u> </u>	ಅಂದ
୭୯୯	ම ්ස	២๘๓	๑๓	ព២	ඳීව	ĞΠ	๗๒	๙๑	990	೨ಅ୯	೦៥ದ	שלפ	9ದ್ದರ	9ದದ	๒๐๗	පමප
מכש	២ದ២	96	ต๑	ĞО	අත	๗๑	ďО	ооц	១២๘	ଚଝ๗	ებბ	9ದ๕	ಠ೦៤	පරප	වීමම	७दद
ಅದಂ	99	no	ፈለ	ಶಿಡ	៧០	ದಗ	೨೦ದ	ഉഉവ	១๔๖	වර්දී	<u></u> ೨ದ ๔	pon	ഉഠഭ	୭୭୯	ଜୟପ	ම ර්ම
90	७୯	๔๘	של	אל	ದದ	ood	כשפ	୨୯୯	ಶಿರಡ	១๘๓	७୦७	២២୨	๒๒๓	ଜୟଜ	ලපම	ಅದಂ
២ದ	๔๗	לל	ದ๕	ർ៧	500	១២៥	०दद	חלפ	೧ದ២	600	७७०	ପପପ	७୯୨	<u></u> පර්	୭ ଅଏ	ď
ďኃ	ጛ໕	ದಡ	ሬኃ	200	୨୭୯	ଚ๔๓	פולפ	೦ದ೦	000	ಶಿಂದ	២៧๘	ଜୟତ	් රිස්	២៧๘	๘	യ
bď	๘๓	900	००द	๑๒๓	୨๔७	959	១៨០	אממ	ಅಂದ	២៧៧	୭ଅଣ	២៥๘	២៧៧	๗	୯ଅ	៤ ៥
៤២	909	900	୨७७	୨୯୨	oce	୨ଆർ	ಾಗದ	๒๑๗	כחש	විවීම	७๕๗	ട്യവ	ъ	២៥	दद	ხო
900	००४	ეღე	<u> </u> ೧೯೦	೧೩೮	១៧๘	୨୯៧	ලඉර	២៧៥	୭ଝଝ	පදීප	២៧៥	æ	୭ ୯	ፈп	פול	దం
೨೨६	900	อต๙	១៥๘	୨๗๗	сუი	๒๑๕	២៧៤	២៥ព	២៧២	ଡୋଝ	ď	២ព	৫৩	59	డం	ממ
cno	១៧៨	๑๕๗	യാ	ಶಿಗಿಲ	୭୦୯	២ពព	២៥២	ଓଆର	២៧ព	n	២២	ଝଚ	bo	ପାଏ	 ದವ	๑๑๗
อต๗	9໕5	୨៧៥	०๙๔	๒๑๓	๒๓๒	២៥୨	๒๗๐	ಅದನ	в	മറ	ďО	ፎለ	៧๘	ർ៧	იიე	อต๕

Algorithm:

 Place the numbers from 1 to n^2 in consecutive order in the square

Algorithm:

 Place the numbers from 1 to n^2 in consecutive order in the square

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56
57	58	59	60	61	62	63	64

Algorithm:

 Place the numbers from 1 to n^2 in consecutive order in the square

X	63	62	A	5	59	58	8
56	10	11	53	52	14	15	49
48	18	19	45	44	22	23	41
25	39	38	28	29	35	34	32
33	31	30	36	37	27	26	40
24	42	43	21	20	46	47	17
16	50	51	13	12	54	55	9
57	7	6	60	61	3	2	64

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56
57	58	59	60	61	62	63	64

- 2. Draw an X to each 4x4 subsquare
- 3. Reverse the order of the entries that do not overlap with these X's

Let's see an example:

Let's see an example:

John Horton Conway (1937–2020)

Algorithm:

1. Transform the given square into a (2k+1)x(2k+1) square consisting of 2x2 blocks

Algorithm:

1. Transform the given square into a (2k+1)x(2k+1) square consisting of 2x2 blocks

- 1. Transform the given square into a (2k+1)x(2k+1) square consisting of 2x2 blocks
- 2. Fill the,
 - First k+1 rows with L,
 - 1 row with U, and
 - The remaining k-1 rows with X

- 1. Transform the given square into a (2k+1)x(2k+1) square consisting of 2x2 blocks
- 2. Fill the,
 - First k+1 rows with L,
 - 1 row with U, and
 - The remaining k-1 rows with X

- 1. Transform the given square into a (2k+1)x(2k+1) square consisting of 2x2 blocks
- 2. Fill the,
 - First k+1 rows with L,
 - 1 row with U, and
 - The remaining k-1 rows with X
- 3. Swap the **U** in the center and the **L** above it

- 1. Transform the given square into a (2k+1)x(2k+1) square consisting of 2x2 blocks
- 2. Fill the,
 - First k+1 rows with L,
 - 1 row with U, and
 - The remaining k-1 rows with X
- 3. Swap the **U** in the center and the **L** above it

- 1. Transform the given square into a (2k+1)x(2k+1) square consisting of 2x2 blocks
- 2. Fill the,
 - First *k*+1 rows with **L**,
 - 1 row with U, and
 - The remaining k-1 rows with X
- 3. Swap the **U** in the center and the **L** above it

- 4. Number the resulting 2k+1 order square using the Siamese method we have seen earlier
- 5. Using this square, the 2x2 squares are each filled as follows

17	24	1	8	15
23	5	7	14	16
4	6	13	20	22
10	12	19	21	3
11	18	25	2	9

17	24	1	8	15
23	5	7	14	16
4	6	13	20	22
10	12	19	21	3
11	18	25	2	9

17	24	1	8	15
23	5	7	14	16
4	6	13	20	22
10	12	19	21	3
11	18	25	2	9

68	65	96	93	4	1	32	29	60	57
66	67	94	95	2	3	30	31	58	59
92	89	20	17	28	25	56	53	64	61
90	91	18	19	26	27	54	55	62	63
16	13	24	21	49	52	80	77	88	85
14	15	22	23	50	51	78	79	86	87
37	40	45	48	76	73	81 r	84	9	12
38	39	46	47	74	75	82	83	10	11
41	44	69	72	97	100	5	8	33	36
43	42	71	70	99	98	7	6	35	34

68	65	96	93	4	1	32	29	60	57
66	67	94	95	2	3	30	31	58	59
92	89	20	17	28	25	56	53	64	61
90	91	18	19	26	27	54	55	62	63
16	13	24	21	49	52	80	77	88	85
14	15	22	23	50	51	78	79	86	87
37	40	45	48	76	73	81	84	9	12
38	39	46	47	74	75	82	83	10	11
41	44	69	72	97	100	5	8	33	36
43	42	71	70	99	98	7	6	35	34

References

- [1] Wikipedia contributors. "Magic square." Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/wiki/Magic_square
- [2] Mathematics in School, Vol. 24, No. 3 (May, 1995), p. 27
- [3] Jacob, G., & Murugan, A. On the Construction of Doubly Even Order Magic Squares. Research and Development Centre, Bharathiar University, Coimbatore.
- [4] Photo by Denise Applewhite, Princeton University Office of Communications.
- [5] Delucchi, Emanuele. Construction of Magic Squares Notes.
- [6] Wikipedia contributors. "Conway's LUX method for magic squares." Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/wiki/Conway%27s_LUX_method_for_magic_squares
- [7] Block and Tavares, Before Sudoku: The World of Magic Squares, OUP, 2009
- [8] **Limpananont, S.** (2024). *Magic Squares: The Siamese Method* https://www.saranontlimpananont.com/magic-square-siamese-method/
- [9] Walkington, W. (2012, March 9). From the Magic Square to the Magic Torus. Magic Squares, Spheres and Tori. Retrieved from https://carresmagiques.blogspot.com/2020/04/from-magic-square-to-magic-torus.html

Thank you for listening

16	255	2	241	14	253	4	243	12	251	6	245	10	249	8	247
1	242	15	256	3	244	13	254	5	246	11	252	7	248	9	250
240	31	226	17	238	29	228	19	236	27	230	21	234	25	232	23
225	18	239	32	227	20	237	30	229	22	235	28	231	24	233	26
223	48	209	34	221	46	211	36	219	44	213	38	217	42	215	40
210	33	224	47	212	35	222	45	214	37	220	43	216	39	218	41
63	208	49	194	61	206	51	196	59	204	53	198	57	202	55	200
50	193	64	207	52	195	62	205	54	197	60	203	56	199	58	201
80	191	66	177	78	189	68	179	76	187	70	181	74	185	72	183
65	178	79	192	67	180	77	190	69	182	75	188	71	184	73	186
176	95	162	81	174	93	164	83	172	91	166	85	170	89	168	87
161	82	175	96	163	84	173	94	165	86	171	92	167	88	169	90
159	112	145	98	157	110	147	100	155	108	149	102	153	106	151	104
146	97	160	111	148	99	158	109	150	101	156	107	152	103	154	105
127	144	113	130	125	142	115	132	123	140	117	134	121	138	119	136
114	129	128	143	116	131	126	141	118	133	124	139	120	135	122	137

We will now continue with the final part of our presentation