

Computer Vision 2 – Image Acquisition

WS 2019 / 2020

Gunther Heidemann

- Aim: Understanding how a scene is mapped onto a CCD
- Abstraction: Pin hole camera
- CCD-camera
- Human eye
- Color
- Image representation
- Loss of information
- Other types of image acquisition

First known photo: 1822

[FP]

La table servie, Joseph Nicephore Niepce, 1822.

Heliography:

Metal with coating of bitumen, which hardens according to exposure to light.

Daguerreotype: 1838

Louis Daguerre, 1838:

Copper plate with photo sensitive coating of silver + iodine vapor, developed using mercury vapor Patent 1839

OSNABRÜCK Milestones of image acquisition and reproduction

- 1822: First photo
- 1839: Daguerreotype
- 1889: Roll film (George Eastman)
- 1895: Cinema (Brothers Lumière)
- 1908: Color photography (Brothers Lumière)
- 1920: Television (Baird, Farnsworth, Zworykin)
- TV in Germany:
 - 1939 about 500 private "Volksfernseher"
 - BRD starts TV 1952
 - ZDF 1963
- 1968-1973: Development from first image sensor based on discrete photo diodes to first commercial CCD camera of 100x100 pixels

Pinhole camera

- Aristoteles:First description
- Da Vinci:
 - Description, compares pinhole camera and eye, explains why images appear upside down (so he knew the idea of beams of light)
- We use the pinhole camera as an abstract camera model

- Pinhole camera: Box with a small hole
- Object reflects light, light goes through the hole and hits the screen (opposite part of the box). The screen is the "image plane".
- Why do we need the hole?
 - Without hole: Light reflected by each point of the object hits each point on the screen.
 - With hole: Each point of the object reflects light to one point of the screen.

Pinhole camera

The size of an object in the image plane is inverse proportional to the distance of the real object to the hole. O denotes the hole.

Pinhole camera

- Alternative: Image plane (film plane) H is depicted in front of O.
- Parallel lines (left, in □) are mapped onto lines which meet in a common point, called the vanishing point for this direction.
- Non-parallel lines end in different vanishing points.
- For all lines in a plane Π , the vanishing points are collinear. This line is called the *horizon* H for Π .

A point of an object in (3d-) space P = (x, y, z) is mapped onto the (2d-) point P(x',y') in Π' :

$$x' = f'x/z$$
, $y' = f'y/z$

Note in this coordinate system z<0 always holds for all objects visible to the camera.

- For a sharp image a small pinhole is required
- Small pinholes lead to dark images
- We need lenses or lens systems for sharp and bright images
- In a real camera a film or CCD replaces the screen.

[J]

CCD-chip of an industrial camera

Common image sensor formats

medium format (Kodak KAF 39000)

[W1]

OSNABRÜCK UNIVERSITÄT

- CCD-chip: Light sensitive Charge Coupled Device
- Typical pixel size 5-20µm

- Focusing by changing the shape of the lens
- Iris controls brightness
- Retina contains two types of receptors:
 - Cones
 - Rods for low light
- Fovea: Small region of high resolution, contains mostly cones, color vision
- Optic nerve: 1 million fibers

Human eye

B. Wandell, *Foundations of Vision*, Sinauer Associates, Inc., (1995).

Distribution of cones (fovea) and rods

Blind spot: Spot where optic nerve emerges (papilla)

Receptors of the eye

B. Wandell, *Foundations of Vision*, Sinauer Associates, Inc., (1995).

Left: Cones in the fovea

Right: Cones and rods in the periphery

- Visible wavelengths: About 400-750 nm
- Eye contains three types of receptors with different spectral sensitivities
- Arranged side by side in the retina
- So we reduce the incoming spectrum to just three stimuli:
 - ∞ dim. input \rightarrow 3-dim. representation

Each color is represented by a triple (red, green, blue)

- Problem: We need to record three color values for each image point
- Two construction principles:
 - 1. 1-chip camera:
 - The sensor elements for R, G and B are arranged side by side on a single chip.
 - Colors are separated by a filter overlaid to the sensors
 - 2. 3-chip camera:
 - A prism separates light of different wavelengths and directs it onto three chips

Pros:

- Compact
- Cheap

Cons:

- Limits resolution
- R, G and B are not recorded at exactly the same location

Different filter layouts

Problems of interpretation

If a Bayer-Filter

has this activation

then the following interpretations are consistent with the activation:

Pros:

- Better spatial resolution
- R,G,B are recorded at the same location

Cons:

- Bigger
- More expensive

Image acquisition

- Photodiodes provide analog signal
- Camera digitizes the signal
- Transmission from CCD-Chip to the computer:
 - Analog (outdated, but still in use):
 - Camera converts digital representation to an analog signal according to the video standard
 - Computer re-digitalizes the video signal
 - Loss of quality, but still in use for compatibility
 - Digital (better)
- Transmission to
 - computer memory or
 - specialized image processing card

Image representation

Threefold discretisation of the input

- 1. spatial (pixels)
- 2. color (or intensity only)
- 3. temporal (frames)

Image representation: Spatial resolution

(a): 4x3, (b): 16x12, (c): 64x48, (d): 256x192 [J]

Image representation: Contrast resolution

gray values: (a): 16, (b): 8, (c): 4, (d): 2. [J]

Image representation: Pixel

- Sensor is a 2d-array of photodiodes which map the intensity g(x, y) onto a matrix (spatial discretisation)
- Commonly, pixels have square shape ⇒ Definition of neighborhood is a problem

Definition of neighborhood

- For square pixels two definitions of neighborhood present themselves:
 - 4-neighborhood: Only pixels with a common edge are neighbors.
 - 8-neighborhood: In addition, pixels with a common corner are neighbors.
- Neighborhood is well defined for hexagonal pixels.

[H]

Connectivity of objects

- Object is connected if each of its pixels has at least one neighboring pixel which is also part of the object.
- Problem: We have to use different neighborhood definitions for fore- and background.

Connectivity

Two intersecting lines on a square grid

Two intersecting lines on a hexagonal grid

[H]

Distance measures

$$D_{e}(x_{1}, y_{1}; x_{2}, y_{2}) = \sqrt{(x_{1} - x_{2})^{2} + (y_{1} - y_{2})^{2}}$$

$$D_{4}(x_{1}, y_{1}; x_{2}, y_{2}) = |x_{1} - x_{2}| + |y_{1} - y_{2}|$$

$$D_{8}(x_{1}, y_{1}; x_{2}, y_{2}) = \max(|x_{1} - x_{2}|, |y_{1} - y_{2}|)$$

Euclidean distance

Cityblock distance

Chessboard distance

Cityblock distance

Chessboard distance

D₄ / D₈ is the smallest distance between two pixels under 4- / 8-neighborhood

[T]

Loss of information

Two types of loss of information:

- Deterministic loss
- Stochastic loss

Most important causes:

- Projection and sampling
- Bad camera parameters: Over/underexposure, focus
- Motion blur
- Noise

Loss of information by projection

- Points outside the field of vision ("pyramid of sight") are lost
- Occluded points are lost
- Depth information is lost

Loss of information by motion blur

- Let camera move by △s during exposure time △t.
- Thus a point p of the object is mapped onto several points on the CCD-chip.
- Let the intensity of the point be h for a still camera
- For a moving camera the intensity is only h/∆s.
- If △s is identical for all points on the CCD-chip, motion blur can be described by a convolution (linear filtering, later).

Loss of information by focus blur

Blur depends on the distance z between lens system and object and parameters of the lens system.

 Focus blur can be detected using a point like test object.

Stochastic loss of information

- Noise: non deterministic
- Types of noise:
 - Quantum noise
 - Impulse noise
- We need the probability that a pixel is disrupted in a certain way

UNIVERSITÄT OSNABRÜCK

Gaussian noise

- Quantum noise: Photons from an object hit the CCD chip only with a certain probability, in addition, there is a spatial Possion-distributed uncertainty.
- Image g(x,y) is composed of two components:
 - a. Photons that follow with sufficient accuracy a classical trajectory (straight line) from the object to the image: f(x,y).
 - b. Photons where quantum effects can not be neglected: Noise $\eta(x,y)$.

$$g(x,y) = f(x,y) + \eta(x,y)$$

 Approximation: The disruption of the "classical" f(x,y) by quantum effects is spatially uncorrelated (on the CCD chip) and can be described as a Gaussian distribution

$$P(\eta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\left(\frac{\eta}{\sigma}\right)^2\right)$$

■ Variance

reflects influence of the quantum noise.

Gaussian noise

Signal to noise ratio

- SNR: Signal to noise ratio is "strength" of the noise compared to "strength" of the signal.
- Signal: Difference between the gray values of object and background
- Alternative definition if object is unknown or undefined:
 - Background = Gray value 0
 - Object = Maximum or average gray value
- Noise is given by standard deviation σ.
- Thus we have two definitions (for an MxN image):

$$SNR_{max}(f) = f_{max}/\sigma,$$

$$SNR_{avq}(f) = 1/MN \cdot \sum_{m=0...M-1} \sum_{n=0...N-1} f(m,n)/\sigma.$$

Impulse noise

- Isolated pixels are disrupted.
- Disruption is maximal but independent of the correct gray value (i.e. the disrupted pixel is either black or white – "salt-and-pepper noise")

Other Image Acquisition Systems

Other image acquisition systems

- The results of non-standard image acquisition can often still be represented by gray value images.
- In this case the gray value has an interpretation other than luminance. Examples:
 - X-ray images
 - Reconstructed layers of 3d scans
 - Reflection time images
 - Depth images

- Monochrome
- Semantics: Projection of X-ray absorption
- High resolution (> 4 megapixel)
- Range of values: 8–12 Bit
- Problem: Lacking depth information

[T]

UNIVERSITÄT OSNABRÜCK

Reconstructed layers of 3d scans

PET (positron emission tomography) shows concentration of injected radioactive isotope (tracer) attached to a biologically active molecule. Indicates e.g. glucose uptake.

MRI (magnetic resonance imaging) provides good contrast between different soft tissues of the body.

- One layer of 3d scan
- Monochrome
- Semantics: depends
- Small to medium resolution (0.02-0.25 megapixel)
- Range of values: 8-12 Bit
- Problems: Artifacts, noise

CT (X-ray computed tomography), computed from 2d X-rays, shows absorption

2

Reflection time images

- Monochrome
- Semantics: Time to receive an echo
- Varying resolution
- Range of values: 8 Bit
- Problem: Artifacts

Depth maps

- Monochrome
- Semantics: Distance to camera
- Resolution: Equal to digital camera
- Range of values: 8-16 Bit
- Problem: Depth errors.

Literature and sources

- [T] Klaus D. Tönnies, *Grundlagen der Bildverarbeitung*, Pearson Studium, 2005.
- [J] Bernd Jähne, *Digitale Bildverarbeitung*, Springer, 2005.
- [FP] David Forsyth, Jean Ponce, Computer Vision: A Modern Approach, Prentice Hall, 2002.
- [SS] Linda G. Shapiro, George C. Stockman, Computer Vision, Prentice Hall, 2001.
- [BK] Henning Bässmann, Jutta Kreyss, Bildverarbeitung Ad Oculos, Springer, 2004.
- [L] David Lowe, Slides, http://www.cs.ubc.ca/~lowe/425/.
- [A] Artexplosion Explosion® Photo Gallery, Nova Development Corporation, 23801 Calabasas Road, Suite 2005 Calabasas, California 91302-1547, USA.
- [C] Corel GALLERY™ Magic 65000, Corel Corporation, 1600 Carling Ave., Ottawa, Ontario, Canada K1Z 8R7.
- [W1] From www.wikipedia.org, license CC BY-SA 3.0, 3.2.2016.
- [H] Copyright Gunther Heidemann, 2008.