Assignment 1

Elisa Piolai Mat. 856591

Risolvere il seguente problema di programmazione lineare sia tramite il metodo grafico che tramite il metodo del simplesso

$$\max 3x_1 + 5x_2$$

$$7x_1 - 3x_2 \le 2$$

$$-x_1 + x_2 \le 1$$

$$x_1 - 3x_2 \le 3$$

$$x_1 \ge 0, x_2 \ge 0$$

Nello specifico:

- nella soluzione grafica: evidenziare i vertici e gli spigoli
- per ogni vertice della regione ammissibile indicare: la soluzione di base corrispondente (specificando le variabili in base e fuori base) e i vertici adiacenti
- identificare almeno una soluzione di base non ammissibile specificando quale/i vincoli sono violati
- illustrare per esteso ogni passo dell'algoritmo del simplesso (inizializzazione, test di ottimalità, selezione variabile entrante in base, selezione della variabile uscente dalla base, ...)

Risoluzione avafica

Intersezioni con ali assi:

$$72, -32 = 2$$

$$\mathcal{L}_{i} = \frac{2}{3} \approx 0.28$$

$$\mathcal{Z}_{1} = \frac{2}{7} \approx 0.28$$

$$\mathcal{Z}_{2} = -\frac{2}{3} \approx -0.66$$

$$-\varkappa_1 + \varkappa_z = 1$$

$$\alpha_{l} = -1$$

$$z_2 = 1$$

$$2, -3x_z = 3$$

$$\mathcal{Z} = 3z_1 + 5z_2 = 5$$
 \rightarrow coefficienti entrambi positivi \rightarrow cresce

$$z_1 = \frac{5}{3} = 1.6$$

$$\mathcal{X}_1 = \frac{3}{3} = 1.0$$
 $\mathcal{X}_2 = 1$

Vertici:

$$\begin{cases} -x_1 + x_2 = 1 \\ 7x_1 - 3x_2 = 2 \end{cases}$$

$$\begin{cases} \mathcal{X}_{2} = \mathcal{Z}_{1} + 1 \\ \mathcal{I}\mathcal{Z}_{1} - 3(\mathcal{Z}_{1} + 1) = 2 \longrightarrow \mathcal{I}\mathcal{Z}_{1} - 3\mathcal{Z}_{1} - 3 = 2 \longrightarrow \mathcal{I}\mathcal{Z}_{2} = 5 \longrightarrow \mathcal{Z}_{1} = \frac{5}{4} \end{cases}$$

$$\begin{cases} \mathcal{Z}_z = \underline{5}_{+1} = \underline{9} \\ \mathcal{Z}_z = \underline{\frac{5}{4}} \end{cases} \qquad \begin{cases} \mathcal{Z}_z = \underline{\frac{5}{4}} = 1.25 \\ \mathcal{Z}_z = \underline{\frac{9}{4}} = 2.25 \end{cases}$$

Vertici adiacenti

	vertici ammissibili	uertici ammissibili adiacenti
(ı)	(0,0)	$\left(\frac{2}{7},0\right);(0,1)$
(2)	$\left(\frac{2}{7}, 0\right)$	$(0,0)$; $\left(\frac{5}{4},\frac{9}{4}\right)$
(3)	(1,0)	$(0,0)$; $(\frac{5}{4},\frac{9}{4})$
(4)	$\left(\frac{5}{4},\frac{9}{4}\right)$	$(0,1); \left(\frac{2}{7},0\right)$

Soluzioni di base

Per trovare le rispettive soluzioni di base scriviamo innanzitutto la forma aumentata;

$$\begin{aligned}
2 - 3x_1 - 5z_2 &= 0 \\
7x_1 - 3x_2 + x_3 &= 2 \\
-x_1 + x_2 + x_4 &= 1 \\
x_1 - 3x_2 + x_5 &= 3 \\
x_1 x_2 x_3 x_4 x_5 &> 0
\end{aligned}$$

variabili in base: $\mathcal{Z}_3,\mathcal{Z}_4,\mathcal{Z}_5$ variabili fuori base: $\mathcal{Z}_1,\mathcal{Z}_2$

variabili in base: $lpha_1,lpha_4,lpha_5$ variabili fuori base: $lpha_2,lpha_3$

variabili in base: $\varkappa_{1}, \varkappa_{3}, \varkappa_{5}$ variabili fuori base: $\varkappa_{1}, \varkappa_{4}$

$$\frac{4}{4} \left(\frac{5}{4}, \frac{9}{4}\right) \Rightarrow \left(\frac{5}{4}, \frac{9}{4}, 0, 0, \frac{17}{2}\right)$$

$$\frac{7.5}{4} - \frac{3.9}{4} + \mathcal{X}_3 = 2 \Rightarrow \frac{35}{4} - \frac{27}{4} + \mathcal{X}_3 = 2 \Rightarrow \mathcal{X}_3 = 0$$

$$-\frac{5}{4} + \frac{9}{4} + \mathcal{X}_4 = 1 \Rightarrow \mathcal{X}_4 = 0$$

$$\frac{5}{4} - \frac{3.9}{4} + \mathcal{X}_3 = 3 \Rightarrow \frac{5}{4} - \frac{27}{4} + \mathcal{X}_5 = 3 \Rightarrow \mathcal{X}_5 = \frac{11}{2} + 3 = \frac{17}{2}$$

variabili in base: $\varkappa_1, \varkappa_2, \varkappa_5$ variabili fuori base: \varkappa_3, \varkappa_4

Vertice intercessione -2, +2, =1 e z, -3z, =3

$$\begin{cases}
-2, +2 = 1 \\
2, -32 = 3
\end{cases}$$

$$\begin{cases} \mathcal{Z}_z = \mathcal{Z}_1 + 1 \\ \mathcal{Z}_1 - 3(\mathcal{Z}_1 + 1) = 3 \end{cases}$$

$$\begin{cases} \mathcal{Z}_{2} = \mathcal{Z}_{1} + 1 \\ \mathcal{Z}_{1} - 3\mathcal{Z}_{1} - 3 = 3 \end{cases}$$

$$\begin{cases} \mathcal{Z}_2 = \mathcal{Z}_1 + 1 \\ -2\mathcal{Z}_1 = 6 \end{cases}$$

$$\begin{cases} x_1 = -3 \\ x_2 = -2 \end{cases}$$

•
$$7 \cdot (-3) - 3 \cdot (-2) + \varkappa_3 = 2$$

 $-21 + G + \varkappa_3 = 2$
 $\varkappa_3 = 17$

•
$$-3 + 6 + \mathcal{X}_5 = 3$$

 $\mathcal{X}_5 = 0$

 $\angle a$ solutione c_i base non e_i ammissibile perché il vertice Viola il vincolo c_i non negativita $c_i > 0$ $c_i < c_i > 0$

Iniziali zzazione

variabile di base	eg.	7	2,	Z_z	\mathcal{X}_{3}	\mathcal{Z}_{4}	\mathcal{X}_{5}	t.y.
2 2, 2,	(D) (I)	0 0	-3 7	- 5 - 3	0 (0	0 0	0 2
x_{5}	(3)	Ō	1	- 3	0	0	(3

Test di Ottimalita`

$$\mathcal{Z}_{z} = 0$$

soluzione di base ammissibile

- la soluzione non e' ottimale (non tutti i coefficienti cli (o) sono non negativi)

(T) Iterazione 1

- Selezione (Vella variabile entrante in base : z_z (minimo coefficiente negativo in (0))
- Selezione della Variabile uscente tramite test del rapporto minimo (ignoro se coefficienti negativi)

variabile di base	eg.	7	2,	Z_z	\mathcal{X}_{3}	\mathcal{Z}_{a}	z_{5}	t.y.	<i>va</i> pporto
2 2, 2, 2, 2,	(D) (1) (2) (3)	0 0	-3 7 -1	- 5 - 3 1 - 3	0 (0 0	0 0 1	0 0 0	0 2 1 3	1

- variabile uscente : 24 (rapporto minimo)

· Determino nuova soluzione di base:

variabile di base	eg.	7	2,	\mathcal{Z}_{z}	\mathcal{X}_{3}	\mathcal{X}_{a}	25	t.y.
2 2,	(D) (I)	0	-3 7	- 5 - 3	0	0	0	0 2
χ_3 χ_4 χ_5	(7) (3)	0	-1	-3	0	0	0	3
2	(D)	I 0	-8 4	0	0	5	0	5
23 22 25	(7) (3)	0	- I - 2	0	0	3	0	6

· Test di ottimalita

$$2 = 0$$
 $2 = 0$
 $0, 1, 5, 0, 6$

-- la soluzione non e ottimale (non tutti i coefficienti di (0) sono non negativi)

② lterazione 2

- Selezione della variabile entrante in base: 2, (minimo coefficiente negativo in (0))
- · Selezione Vella variabile uscente tramite test del rapporto minimo.

variabile di base	eg.	7	Z,	\mathcal{Z}_{z}	\mathcal{X}_{3}	\mathcal{Z}_{a}	\mathcal{X}_{5}	t.y.	vapporto
2 2, 2, 2, 2,	(D) (I) (2) (3)	- 0 0	-8 4 -1 -2	0 0 1	0 0 0	5 3 1 3	0 0 0	5 5 1 6	4/ ₅ → 0.8

 \longrightarrow variabile uscente: z_3 (rapporto minimo)

Determino nuova soluzione di base:

	variabile di base	eg.	7	2,	\mathcal{Z}_{z}	\mathcal{X}_{3}	\mathcal{Z}_{a}	\mathcal{X}_{5}	t.n.
(0) (1) (2) (3)	2 2, 2, 2, 2,	(0) (1) (2) (3)	0 0	-8 4 -1 -2	0 0 1 0	0 0 0	5 3 1 3	0 0 0 1	5 5 1 6
	ξ χ, χ ₂ χ ₅	(0) (1) (2) (3)	1 0 0	0 (0 0	0 0 1 0	2 1/4 1/4 1/ ₂	11 3/4 7/4 9/2	0 0 0	[5 5/4 9/4

· Test di ottimalita

$$\mathcal{Z}_3 = 0$$

 $z_3 = 0$ $z_4 = 0$ (5/4, 9/4, 0, 0, 17/z)

1a soluzione e' ottimale (entrambi i coefficienti sono positivi)