

AS3821

12 Channel White LED Controller for LCD Backlight

General Description

The AS3821 is a 12 channel precision LED controller for use in LCD-backlight panels.

Dynamic power feedback controls the external power supply to guarantee best efficiency. Built-in safety features include thermal shutdown as well as open and short LED detection. The device is programmable via serial interface.

Ordering Information and Content Guide appear at end of datasheet.

Key Benefits & Features

The benefits and features of AS3821, 12 Channel White LED Controller for LCD Backlight, are listed below:

Figure 1: Added Value of Using AS3821

Benefits	Features
All LED backlight topologies	No limit of VLED or ILED, device is not exposed to high voltage/high current
Optimum power savings through local dimming	12 fully flexible 12 bit PWM generators (period, high time, delay, revers)
Highest brightness uniformity	One global high accurate 10 bit DAC which sets the LED current (±0.5% accuracy)
Full platform approach	Dedicated device family (AS382x) ⁽¹⁾ is available with different number of channels, all SW compatible
Global dimming mode available	AS3821E is pre-programed to external PWM mode. VSYNC pin is used as PWM input
Synchronization with TV frame	VSYNC and HSYNC inputs available as well as a digital PLL integrated (2)
• Lowest BOM	Due to 2 pin concept of the output channel: no HV protection, no cascade FETs
Digital enhanced DC-DC feedback	Feedback function is compatible to every DC-DC architecture and configurable via SPI (2)
On chip safety features	Short/open LED detection, temperature shutdown, register lock/unlock, SPI transfer checksum

Note(s):

- 1. The device family AS382x includes AS3820, AS3821, AS3822, AS3823.
- 2. ams system patent

Applications

The AS3821 is suitable for LED backlighting for LCD such as TV sets and monitors.

Block Diagram

The functional blocks of this device are shown below:

Figure 2: AS3821 Block Diagram

Page 2

Document Feedback

[v2-00] 2016-Jan-11

Pin Assignments

Figure 3: LQFP-44 Pin Assignments (Top View)

Figure 4: QFN-48 Pin Assignments (Top View)

ams Datasheet Page 3
[v2-00] 2016-Jan-11 Document Feedback

Figure 5: Pin Descriptions

Pin N	lumber	B: N	D: T	
QFN48	LQFP44	Pin Name	Pin Type	Description
1	1	G1	A I/O	Connect to gate of external transistor
2	2	S1	A I/O	Connect to source of external transistor
3	3	V3_2	Р	Digital supply output. Connect 2.2µF capacitor to GND
4	4	VSYNC	DI_PD	Vertical sync frequency
5	5	HSYNC	DI_PD	Clock input for PWM generators
6	6	VDD	Р	Power supply. Connect 4.7μF bypass capacitor to GND
7	7	FB2	Р	Power supply feedback output2
8	8	FB1	A I/O	Power supply feedback output1
9	9	VSSA	Р	GND
10		VSSA	Р	GND
11	10	VSSA	Р	GND
12	11	VSSA	Р	GND
13	12	VSSA	Р	GND
14	13	VSSA	Р	GND
15	14	SHDET2	A I/O	Short comparator 2 input
	15	SHDET1	A I/O	Short comparator 1 input
16	16	VSSA	Р	GND
17		SHDET1	A I/O	Short comparator 1 input
18	17	VSSA	Р	GND
19	18	G12	A I/O	Connect to gate of external transistor
20	19	S12	A I/O	Connect to source of external transistor
21	20	G11	A I/O	Connect to gate of external transistor
22	21	S11	A I/O	Connect to source of external transistor
23	22	G10	A I/O	Connect to gate of external transistor
24	23	S10	A I/O	Connect to source of external transistor
25	24	G9	A I/O	Connect to gate of external transistor
26	25	S9	A I/O	Connect to source of external transistor

Page 4ams DatasheetDocument Feedback[v2-00] 2016-Jan-11

Pin N	lumber	Pin Name	Pin Type	Description
QFN48	LQFP44	riii Naiiie	Fill Type	Description
27	26	xFAULT	DO_OD	Fault output. Open drain. Connect pullup to V3_2
28		DCDCEN	DO	GPIO output to enable DC-DC converter
29		MODE3D	DO	GPIO output to enable 3D mode
30	27	xCS	DI_PU	SPI interface chip select
31	28	SDO	DO	SPI interface data output. Tristate output
32		V3_2	Р	Digital supply output. Connect 2.2µF capacitor to GND
33	29	SCL	DI_PD	SPI interface clock
34	30	SDI	DI_PD	SPI interface data input
35	31	S8	A I/O	Connect to source of external transistor
36	32	G8	A I/O	Connect to gate of external transistor
37	33	S7	A I/O	Connect to source of external transistor
38	34	G7	A I/O	Connect to gate of external transistor
39	35	S6	A I/O	Connect to source of external transistor
40	36	G6	A I/O	Connect to gate of external transistor
41	37	S5	A I/O	Connect to source of external transistor
42	38	G5	A I/O	Connect to gate of external transistor
43	39	G4	A I/O	Connect to gate of external transistor
44	40	S4	A I/O	Connect to source of external transistor
45	41	G3	A I/O	Connect to gate of external transistor
46	42	S3	A I/O	Connect to source of external transistor
47	43	G2	A I/O	Connect to gate of external transistor
48	44	S2	A I/O	Connect to source of external transistor
EP		VSSA	Р	GND

Note(s):

1. If an output channel X is not used, short Gx and Sx

Abbreviations for pin types in Figure 5:

A_I/O... Analog pin

P... Power pin

DO... Digital output

DO_OD... Digital output open drain

DI... Digital input

DI_PU... Digital input with pull up resistor

DI_PD... Digital input with pull down resistor

Page 6ams DatasheetDocument Feedback[v2-00] 2016-Jan-11

Absolute Maximum Ratings

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under Operating Conditions is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 6: Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit							
	Electrical Parameters										
V _{DDMAX}	Supply voltage	-0.3	7	V	Applicable for pin V _{DD}						
Vanamax	Maximum voltage analog pins	-0.3	7	V	See note (1)						
Vdigmax	Maximum voltage digital pins	-0.3	5	V	See note (2)						
l _{latch}	Latch-up immunity	-100	+100	mA	Norm: JEDEC 78						
	E	lectrostati	c Discharge								
ESD _{HBM}	Electrostatic discharge	±2	000	V	Norm: MIL 883 E Method 3015 Human body model						
	Temperature Ranges and Storage Conditions										
T _{Jmax}	Junction temperature		150	°C							
Tstrg	Storage temperature range	-55	150	°C							
T _{BODY}	Package body temperature		260		The reflow peak soldering temperature (body temperature) specified is in accordance with IPC/JEDEC J-STD-020 "Moisture/Reflow Sensitivity Classification for Non-Hermetic Solid State Surface Mount Devices". The lead finish for Pb-free leaded packages is matte tin (100% Sn).						
RH _{NC}	Relative humidity (non condensing)	5	85	%							
MSL	Moisture sensitivity level	3			Represents a maximum floor life time of 168h						

Note(s):

1. Pins: FB1,FB2,G1-G12, S1-S12,VSYNC, HSYNC, SHDET1, SHDET2

2. Pins: V3_2, SDI, SDO, SCL, xCS, MODE3D, DCDCEN, xFAULT

ams Datasheet Page 7
[v2-00] 2016-Jan-11 Document Feedback

Electrical Characteristics

All limits are guaranteed. The parameters with min and max values are guaranteed with production tests or SQC (Statistical Quality Control) methods.

Operating Conditions

Figure 7: **General Parameters**

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Rthca	Thermal resistance case – ambient	See Thermal Characteristics				°C/W
T _J	Junction temperature		-20		115	°C

Figure 8: **Power Supply**

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DD}	Supply voltage		4.5		5.5	V
V3_2	Voltage regulator output	I _{LOAD} = 20mA	3.0	3.2	3.4	V
V _{3_2_POR}	Power-on reset level	Circuit stays in power down until V3_2 reaches V _{3_2_POR}	1.6		2.2	V
V _{DD_UVL}	Under voltage lockout level	Current outputs are turned OFF if V_{DD} is lower than V_{DD_UVL} . This is done by resetting the CURRx bits.	2.4		2.9	V
IDD_q	Quiescent current	V _{DD} = 5V, Default setting, PWM = 0,		12		mA
IDD_r	Supply current	V _{DD} = 5V, HSYNC = 1MHz, VSYNC = 480Hz, Duty = 50%, VDAC=250mV		13		mA

Page 8 ams Datasheet **Document Feedback** [v2-00] 2016-Jan-11

Page 9

Document Feedback

Figure 9: Current Outputs

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
lled_500_250	Trimmed current accuracy at 25°C	Trimmed during production. ILED = 100mA, DACref = 500mV, VDAC = 250mV, T _J = 25°C (excluding error of external Rset)	-0.5		+0.5	%
lch_250	Channel to channel accuracy at 25°C	ILED=100mA, DACref = 500mV, VDAC = 250mV, $T_J = 25^{\circ}C$ (excluding error of external Rset)	-0.2		+0.2	%
lled_500_ALL	Current accuracy over VDAC	DACref = 500mV, VDAC = 200mV - 500mV $T_J = 25^{\circ}C$ (excluding error of external Rset)	-1.5		+1.5	%
lled_500_TMP	Current accuracy over VDAC and Temp	DACref = 500mV, VDAC = 200mV - 500mV $T_J = 25^{\circ}C$ to 115°C (excluding error of external Rset)	-2		+2	%
lled_800_250	Trimmed current accuracy at 25°C	Trimmed during production. ILED = 100mA, DACref = 800mV, VDAC = 250mV, T _J = 25°C (excluding error of external Rset)	-0.5		+0.5	%
lled_800_ALL	Current accuracy over VDAC	DACref = 800mV, VDAC = 200mV - 800mV $T_J = 25^{\circ}$ C (excluding error of external Rset)	-1.5		+1.5	%
Iled_800_TMP	Current accuracy over VDAC and Temp	DACref = 800mV, VDAC = 200mV - 800mV $T_J = 25^{\circ}C$ to 115°C (excluding error of external Rset)	-2		+2	%
I _{GX}	Output current pin GX		3		4	mA
R_{GX}	Output resistor pin GX			1.0	1.3	kΩ
V_{GX}	Output voltage pin GX	Igx = 0mA			V _{DD}	V

Figure 10: Feedback Circuit, Fault Detectors

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
IFB _{max}	Feedback current maximum	V _{FB_X} > 0.25V		255		μΑ
FB_IDAC_ LSB	FB_IDAC LSB			1		μΑ
T _{ovtemp}	Overtemperature limit		130	140	150	°C
T _{hyst}	Overtemperature hysteresis			10		°C

Figure 11: PWM Generators

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC}	Internal Clock for PWM		400	500	600	kHz
f _{HSYNC}	HSYNC frequency		100		2000	kHz
f _{VSYNC}	VSYNC frequency		60		480	Hz

Figure 12: Digital Pins

Symbol	Parameter	Min	Тур	Max	Units	Note
V _{IH}	High level input voltage	1.3		V3_2 + 0.3	V	
V _{IL}	Low level input voltage	-0.3		0.8	V	
V _{OH}	High level output voltage	V3_2 - 0.3			V	I = 2mA
V _{OL}	Low level output voltage			0.3	V	I = 2mA
V _{OL_PD}	Low level output voltage open drain outputs			0.3	V	I = 2mA
R_pu	Input resistance pullup inputs		300		kΩ	
R_pd	Input resistance pulldown inputs		300		kΩ	

Page 10ams DatasheetDocument Feedback[v2-00] 2016-Jan-11

Timing Characteristics

Figure 13: SPI Timings

Symbol	Parameter	Min	Тур	Max	Unit	Note
f _{SCLK}	SCLK frequency	0		10	MHz	
t1	xCS setup time	50			ns	
t2	xCS hold time	100			ns	
t3	xCS disable time	100			ns	
t4	SDI setup time	5			ns	
t5	SDI hold time	5			ns	
t6	SCLK rise time	5			ns	
t7	SCLK fall time	5			ns	
t8	SCLK low time	40			ns	
t9	SCLK high time	40			ns	
t10	Output valid from SCLK low	10			ns	

Timing Diagrams

Figure 14: SPI Input Timing

Figure 15: SPI Output Timing

Page 12ams DatasheetDocument Feedback[v2-00] 2016-Jan-11

Pins Equivalent Circuit

Figure 16: Pins Equivalent Circuit

Detailed Description

Figure 17: Typical Application

Page 14ams DatasheetDocument Feedback[v2-00] 2016-Jan-11

Current Outputs

Figure 18: Precision Current Sink

Precision Current Sink

All current sinks are built with an internal error amplifier A1 and an external power transistor. The external transistor can either be a NMOS or a NPN bipolar transistor. For low EMI radiation the slew rate of the amplifier output voltage can be adjusted.

Power Supply Feedback

The gate driving voltage for the external transistor is monitored to adjust the power supply output. If this voltage gets to high a comparator enables counting up of the "idac_fbX_counter" with 256µs clock speed. This increases the output current of the FB-IDAC and so the output voltage of the external power supply can be increased via pin FB1 or pin FB2. The feedback function of each output can be assigned to either FB1 or FB2. The power supply feedback can be turned OFF for every current channel separately.

ams Datasheet Page 15
[v2-00] 2016-Jan-11 Document Feedback

Manual Control of External Power Supply

The counter value " $idac_fbX_counter$ " can also be preset by software if " $fbcounter_man_fx$ " =1. This enables software control of the external power supply output voltage.

Open LED Detection

If open led detection is enabled a broken LED-string is detected during PWM=1. If a LED-string is broken and the feedback function is enabled, the " $idac_fbx_counter$ " will count up in order to increase the power supply output voltage. After the " $idac_fbx_counter$ " has reached its maximum value, a debounce counter is started. In order to run the debounce counter, the corresponding PWM-signal has to be high for more than 150 μ s. After the debounce couter has counted up for 32ms, the corresponding " $OPENLED_x$ " bit is set and the output xFAULT = "0".

Figure 19: Open LED Detection

Page 16

Document Feedback

[v2-00] 2016-Jan-11

Short LED Detection

Short LED detection is implemented in two different ways:

- 1. With a built-in self-test (Short-BIST) circuit.
- 2. With two comparator inputs for monitoring external voltages (Short-COMP).

Figure 20: Short-COMP Block Diagram

The external voltage is divided by an external resistor and an internal current source. The output of the comparators only takes effect if all selected PWM-signals are "1" at the same time. The selection of Short1 or Short2 Group is done by "fb_ON_x" and "fb_sel_X".

ams Datasheet Page 17
[v2-00] 2016-Jan-11 Document Feedback

DAC

The reference voltage for the output stage is generated by an internal 10-bit DAC. The DAC reference can be selected between 500mV and 800mV depending on register settings. The DAC is trimmed during production with

DACref = 800mV/VDAC = 250mV and

DAQref = 500mV/ VDAC = 250mV to guarantee an output current accuracy of $\pm 0.5\%$ on every current output.

Figure 21: DAC and DAC Reference Generation

The DAC output voltage can be calculated with:

(EQ1)
$$VDAC = \frac{DACref}{1024} \times DAC$$

DAC...10-bit data value

DACref...DAC reference voltage 500mV or 800mV

Page 18ams DatasheetDocument Feedback[v2-00] 2016-Jan-11

Registers in Current Output Stage

ACCESS: R...read, W...write, AS...async set, AC...async clear, WC...write clear

Figure 22: CUR_ON_1

RegAddr: 0x01				CUR_ON_1
Bit	Bit Name	Default	Access	Bit Description
7:0	CURR_1 - CURR_8	00000000	RW_AC	Enables or disables current outputs. 0Output OFF 1Output ON

Figure 23: CUR_ON_2

RegAddr: 0x02		CUR_ON_2		
Bit	Bit Name	Default	Access	Bit Description
7:0	CURR_9 – CURR_16	00000000	RW_AC	Enables or disables current outputs. 0Output OFF 1Output ON

ams Datasheet Page 19 [v2-00] 2016-Jan-11 Document Feedback

Figure 24: Fault_1

Re	RegAddr: 0x03		Fault_1			
Bit	Bit Name	Default	Access	Bit Description		
7	Autotoff_uv	1	RW	1Undervoltage lockout: If V _{DD} < V _{DD_UVL} channels are turned OFF by resetting CURRx-bits.		
6	Short_bist_en	0	RW_AC	1Starts built-in self-test (BIST) for short detection. Bit is cleared after BIST has finished.		
5:4	Short_cmp_en	00	RW	Short detection with comparators: 00OFF 01Enables short comp 1 10Enables short comp 2 11Enables short comp 1 and comp 2		
3	Retrial_open	0	RW	1 Retrial open detection after autotoff_open was triggered		
2	Autotoff_ot	1	RW	Automatic Output turn OFF at over temperature 0 Do not turn OFF current outputs on over temperature 1 Turn OFF current outputs on over temperature		
1	Open_en	0	RW	1 Enable open LED detection for all channels		
0	Autotoff_open	0	RW	Automatic Feedback turn OFF on open LED detection 0 Do not turn OFF feedback on open LED detection 1 Turn OFF feedback on open LED detection		

Page 20ams DatasheetDocument Feedback[v2-00] 2016-Jan-11

Figure 25: GPIO_CTRL

RegAddr: 0x04		GPIO_CTRL			
Bit	Bit Name	Default	Access	Bit Description	
7:6	xFAULT_config	0	RW	Output configuration pin xFAULT: 00Open Drain 01Push/Pull 10Hi-Z, input only 11No effect	
5:4		0	RW		
3		0	RW		
2:1		0	RW		
0		0	RW		

Figure 26: FB_SEL1

RegAddr: 0x05		FB_SEL1		
Bit	Bit Name	Default	Access	Bit Description
7:0	Fb_sel_1 – Fb_sel_8	00000000	RW	Select FB-channel for current outputs 1 to 8 0Select FB channel FB1 and short-compar- ator group 1 1Select FB channel FB2 and short-compar- ator group 2

Figure 27: FB_SEL2

RegAddr: 0x06		FB_SEL2		
Bit	Bit Name	Default	Access	Bit Description
7:0	Fb_sel_9 – Fb_sel_16	00000000	RW	Select FB-channel for current outputs 9 to 16 0Select FB channel FB1 and short-compar- ator group 1 1Select FB channel FB2 and short-compar- ator group 2

ams Datasheet Page 21
[v2-00] 2016-Jan-11 Document Feedback

Figure 28: CURR_CTRL

Re	gAddr: 0x07			CURR_CTRL
Bit	Bit Name	Default	Access	Bit Description
7:6	Sel_ac	00	RW	Do not change
5	Fb_ac_off	0	RW	0AC feedback enabled 1AC feedback disabled (external BJT) If Ib_comp=1, FB_ac_off = 1 must be set
4	lb_comp	0	RW	0Bias current compensation OFF 1Bias current compensation ON (external BJT) If Ib_comp=1, FB_ac_off = 1 must be set
3	DACref_buffer	0	RW	0DAC output is buffered 1DAC output is unbuffered
2	DACref	0	RW	0DACref = 500mV 1DACref = 800mV
1:0	Slew_rate	00	RW	Select slew rate of output drivers. (Slew rate of VREF) 00250mV/16μs 01250mV/8μs 10250mV/4μs 11250mV/2μs

Figure 29: SHORTLED_1

RegAddr: 0x08		SHORTLED_1		
Bit	Bit Name	Default	Access	Bit Description
7:0	SHORTLED_1 – SHORTLED_8	00000000	R/WC	Indicates short LED found with BIST on outputs 1 to 8 0No short LED detected 1Short LED detected

Page 22ams DatasheetDocument Feedback[v2-00] 2016-Jan-11

Figure 30: SHORTLED_2

RegAddr: 0x09		SHORTLED_2		
Bit	Bit Name	Default	Access	Bit Description
7:0	SHORTLED_9 – SHORTLED_16	00000000	R/WC	Indicates short LED found with BIST on outputs 9 to 16 0No short LED detected 1Short LED detected

Figure 31: OPENLED_1

RegAddr: 0x0A		OPENLED_1		
Bit	Bit Name	Default	Access	Bit Description
7:0	OPENLED_1 – OPENLED_8	00000000	AS/WC	Indicates open LED condition on outputs 1 to 8 0No open LED detected 1Open LED detected

Figure 32: OPENLED_2

RegAddr: 0x0B		OPENLED_2			
Bit	Bit Name	Default	Access	Bit Description	
7:0	OPENLED_9 – OPENLED_16	00000000	AS/WC	Indicates open LED condition on outputs 9 to 16 0No open LED detected 1Open LED detected	

Figure 33: VDAC_H / VDAC_L

RegAddr: 0x0C	RegAddr: 0x0D	VDAC_H / VDAC_L			
Bit	Bit	Default	Access	Bit Description	
7:0	1:0	0x80, 0x00	RW	DAC input [9:0]	

ams Datasheet Page 23
[v2-00] 2016-Jan-11 Document Feedback

Figure 34: FB_ON_1

RegAddr: 0x0E		FB_ON_1		
Bit	Bit Name	Default	Access	Bit Description
7:0	FB_CURR_1 – FB_CURR _8	00000000	RW	Enables or disables feedback function of output channels 0No feedback function on CURRx 1Function on CURRx

Figure 35: FB_ON_2

RegAddr: 0x0F		FB_ON_2		
Bit	Bit Name	Default	Access	Bit Description
7:0	FB_CURR_9 – FB_CURR _16	00000000	RW	Enables or disables feedback function of output channels 0No feedback function on CURRx 1Function on CURRx

Figure 36: IDAC_FB1_COUNTER

RegAddr: 0x10		IDAC_FB1_COUNTER			
Bit	Bit Name	Default	Access	Bit Description	
7:0	IDAC_FB1_COUNTER	00000000	RW	Feedback 1 counter value. Can be overwritten if Fb_cnt_man_fb1 = 1 0x00FB-current 0µA 0xFFFB-current 255µA	

Page 24ams DatasheetDocument Feedback[v2-00] 2016-Jan-11

Figure 37: IDAC_FB2_COUNTER

RegAddr: 0x11		IDAC_FB2_COUNTER			
Bit	Bit Name	Default	Access	Bit Description	
7:0	IDAC_FB2_COUNTER	00000000	RW	Feedback 2 counter value. Can be overwritten if Fb_cnt_man_fb2 = 1 0x00FB-current 0µA 0xFFFB-current 255µA	

Figure 38: FBLOOP_CTRL

Re	RegAddr: 0x12		FBLOOP_CTRL		
Bit	Bit Name	Default	Access	Bit Description	
7:6	Vtrip	00	RW	Select gate trip voltage for feedback 005*(VDD/6) 01 4*(VDD/6) 10 3*(VDD/6) 11 2*(VDD/6)	
5	Fb_cnt_man_fb2	0	RW	0FB2 counter runs automatically in feedback loop 1FB2 counter is set manual	
4	Fb_cnt_man_fb1	0	RW	0FB1 counter runs automatically in feedback loop 1FB1 counter is set manual	
3:2	Fbcount_dn_time ⁽¹⁾	01	RW	FB1 and FB2 counter down counting clock cycle. 00512µs 012048µs 104096µs 118192µs	
1:0	Fbcount_up_time	01	RW	FB1 and FB2 counter up counting clock cycle 001024µs 01 256µs 10 64µs 11 16µs	

Note(s):

1. Down counting starts after 200ms delay time

ams Datasheet Page 25 [v2-00] 2016-Jan-11 Document Feedback

Figure 39: STATUS

RegAddr: 0x60		STATUS			
Bit	Bit Name	Default	Access	Bit Description	
7	STAT novsync	0	R	1Indicates missing Vsync signal for longer than 100ms	
6	STAT OT	0	R	1Indicates Overtemperature fault happened	
5	STAT Open	0	R	1Indicates open detection fault happened	
4	Short_bist	0	R	1Indicates a short bist interrupt	
3	Vcnt underflow	0	AS_WC	1VSYNC signal to fast	
2	Short2	0	AS_WC	1Indicates short on channel group 2	
1	Short1	0	AS_WC	1Indicates short on channel group 1	
0	Power_good	0	R	1Power good. Indicates that VDD is greater than VDD_UVL	

Figure 40: SHORT_BIST_CTRL1

RegAddr: 0x63		SHORT_BIST_CTRL1			
Bit	Bit Name	Default	Access	Bit Description	
7:5		000	R	Do not change	
4	BIST_retrial	0	RW	0No BIST retrial 1Short BIST retrial after 1 second	
3	BIST_steptime	0	RW	BIST counter step down time 064µs/step 1128µs/step	
2	Autotoff_BIST	0	RW	1Shorted channels found by BIST are turned OFF	
1:0	BIST_wait ⁽¹⁾	0	RW	Wait after max step down value of counter is reached. 00No wait 01Wait 1 VSYNC pulse 10Wait 2 VSYNC pulses 11Wait 3 VSYNC pulses	

Note(s):

1. This option is necessary for phase shifted PWM. To ensure each channel is tested.

Page 26ams DatasheetDocument Feedback[v2-00] 2016-Jan-11

Figure 41: SHORT_BIST_MAXSTEP

RegAddr: 0x64		SHORT_BIST_MAXSTEP			
Bit	Bit Name	Default	Access	Bit Description	
7:0	BISTmaxstep	11111111	RW	Maximum down-counts of IDAC counter during BIST	

Figure 42: SHORT_BIST_CTRL2

RegAddr: 0x65		SHORT_BIST_CTRL2			
Bit	Bit Name	Default	Access	Bit Description	
7:6		00	R	Do not change	
5	COMP_retrial	0	RW	0No COMP retrial 1Short COMP retrial after 1 second	
4	Autotoff_COMP	0	RW	1Shorted channels found by COMP are turned OFF	
3:0	COMP_LEVEL	1010	RW	Short detection voltage based on external 100k resistor 00002V 00013V 00104V 00115V 01006V 01017V 01108V 01119V 100010V 100111V 101012V 101113V 111013V 111113V	

Page 27 ams Datasheet [v2-00] 2016-Jan-11 Document Feedback

Figure 43: $COMPREG_1$

RegAddr: 0x6C		COMPREG_1		
Bit	Bit Name	Default	Access	Bit Description
7:0	CompReg1 – CompReg8	00000000	AS/AR	Status of trip comparator

Figure 44: COMPREG_2

RegAddr: 0x6D		COMPREG_2			
Bit	Bit Name	Default	Access	Bit Description	
7:0	CompReg9 – CompReg16	00000000	AS/AR	Status of trip comparator	

Page 28 $ams\, Datasheet$ **Document Feedback** [v2-00] 2016-Jan-11

PWM Generators

Figure 45: **PWM Generators**

Clock and Reset

The clock for the built-in PWM generators can be one of three different sources listed below:

- 1. Internal RC oscillator with 500KHz
- 2. External clock signal. This is usually the HSYNC signal of
- 3. Digital PLL (DPLL) clock derived from Vsync

ams Datasheet Page 29 **Document Feedback**

Digital PLL

A DPLL can be used to generate a PWM input clock with a frequency that is a multiple of the VSYNC frequency. The frequency multiplication factor can be controlled to be either "PWMperiod" or "PLLmulti" by control bit "PLL_per_sel".

By default "PLL_per_sel"=0 to control the frequency by "PWMperiod" which also defines the period for the PWM generators.

If necessary, control bit "PLL_per_sel" can be set to control the frequency multiplication by register "PLLmulti" with 16-bit resolution and independently of PWMperiod.

PLL per sel=0 (default):

(EQ2)
$$f_{DPLLout} = f_{VSYNC} \times PWM_{period}$$

PLL_per_sel=1:

(EQ3)
$$f_{DPLLout} = f_{VSYNC} \times PLL_{multi}$$

The VSYNC frequency is determined by measuring the VSYNC period with an internal clock. Since the internal clock and the external VSYNC signal are asynchronous, the result of the measurement will jitter by one internal clock cycle. Therefore the generated DPLL-frequency jitters by one clock cycle.

In order to prevent starting of a new PWM-period at the end of the current PWM-period due to this jitter it is recommended to use the following setting:

- Set PLL_per_sel = 1
- Set PLLmulti = PWMperiod 1

By either changing the input frequency at VSYNC or by changing the divider setting the DPLL will need up to 4 VSYNC cycles to settle to the new value.

If $f_{VSYNC} > 8MHz/PLLmulti$, the bit V_{CNT} is set and a fault is indicated.

Page 30
Document Feedback
[v2-00] 2016-Jan-11

PWM Counter

Figure 46: PWM Counter

Each PWM-generator is build with a 13bit counter and digital comparators. The counter is counting up with t_{clk} until the value stored in "PWMper" is reached. This resets the counter and starts the next period. While the counter value is below "PWMxHT" the PWM-signal is "1", the rest of the period the PWM-signal is "0". The output of each PWM-generator can also be inverted by means of the "PWMrev".

Figure 47: PWMx, VSYNC and clk

ams Datasheet Page 31
[v2-00] 2016-Jan-11 Document Feedback

SPI Data Update, UPDATEmode Bit

The PWM-settings that are programmed via the SPI-Interface take effect depending on the status of the "UPDATEmode"-bit.

If UPDATEmode = 1 new data from the serial interface are stored at the next rising edge of VSYNC

If UPDATEmode = 0 new data from the serial interface are stored immediately after xCS goes high and will take effect after current PWM cycle is finished. In this mode the values in the PWMxdel registers are ignored. There will be no Delay on the PWM signals.

Figure 48: UPDATEmode

The PWMxHT-values are double buffered. HighTime values for the next VSYNC can be written even when the current HighTime is not finished.

Within the first two HSYNC pulses after rising VSYNC no SPI data transfer is allowed.

Page 32

Document Feedback

[v2-00] 2016-Jan-11

Direct PWM Mode

The internal signals PWMx can also be direct applied at the VSYNC input if the bit Direct PWM =1.

In this mode the default driver has the following configuration:

- All current outputs are ON
- All feedback controls are enabled and connected to FB1
- Open LED detection is enabled
- Open LED detection auto turn OFF function is enabled
- Open LED detection retrial function is enabled
- Short LED detection (Short-COMP) is enabled
- Short LED detection auto turn OFF function is enabled
- Undervoltage lockout and overtemperature detection are enabled

VSYNC Detect

If the bit "VSYNCdet" is set (Register "PWM_CTRL") the VSYNC detector monitors the presence of a VSYNC signal.

If the VSYNC signal is missing for more than 100ms the following changes are done:

- In Register "STATUS" the bit "STAT novsync" ist set.
- Output xFAULT is acitivated (LOW)
- Current outputs are turned OFF. All register settings remain while the outputs are turned OFF.

If the VSYNC signal is applied again the following changes are done:

- In Register "STATUS" the bit "STAT novsync" ist reset.
- Output xFAULT is deactivated
- Current outputs are turned ON

VSYNC Duration

Since the VSYNC input is connected to an edge detector, there is no restriction on the duration of the VSYNC pulse.

ams Datasheet Page 33 **Document Feedback**

Registers in PWM Generators

Figure 49: PWM_CTRL

RegAddr: 0x13		PWM_CTRL		
Bit	Bit Name	Default	Access	Bit Description
7	PLL_per_sel	0	RW	DPLL frequency generation 0DPLL-period = Vsync*PWMperiod 1DPLL-period = Vsync*PLLmulti
6	ClockSrc1	0	RW	Clock source for internal PWM-generators 0Internal RC oscillator or HSYNC (depending on ClockSrc0) 1PLL output
5	Pwm_rev	0	RW	0Normal PWM operation 1PWM signals are inverted
4	VSYNCdet	0	RW_AS	Enable VSYNC detection 0VSYNC-detection OFF 1 VSYNC-detection ON. All current outputs are turned OFF if VSYNC signal is missing for 100ms
3	VSYNCedge	0	RW	Defines VSYNC trigger edge 0VSYNC trigger on rising edge 1VSYNC trigger on falling edge
2	Direct_PWM	0	RW_AS	Select external or internal PWM signal 0PWM signal is generated internally 1PWM signal is applied externally at pin VSYNC Factory trim bit is read during startup. See Direct PWM Mode
1	Update_Mode	0	RW	Defines when internal registers are updated 0Registers updated with rising edge of xCS 1Registers updated with next VSYNC-edge
0	ClockSrc0 ⁽¹⁾	0	RW	Clock source for internal PWM-generators 0Internal RC oscillator 1External Pin HSYNC

Note(s):

1. This bit only takes effect when ClockSrc1 = 0

Page 34ams DatasheetDocument Feedback[v2-00] 2016-Jan-11

PWM Examples

Figure 50: PWM Example 1

Figure 51: PWM Example 2

ams Datasheet [v2-00] 2016-Jan-11

Figure 52: PWM Example 3

Figure 53: PWM Example 4

Page 36ams DatasheetDocument Feedback[v2-00] 2016-Jan-11

Power Supply

Voltage Regulator V3_2

A build in linear voltage regulator provides 3.2V supply voltage for external devices at pin V3_2. A 2.2µF decoupling capacitor should be connected to pin V3_2.

Interface Power Supply V3_2

Pin V3_2 supplies all digital inputs/outputs.

Safety Features

Temperature Shutdown

If "autotoff_ot" = 1 the outputs of the device are turned OFF when the die temperature reaches 140°C. If the die temperature goes below 130°C the outputs are turned ON again.

Register Lock/Unlock

To prevent wrong writing to registers due to noise on the serial interface a lock/unlock mechanism is implemented.

Register 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, 0x63, 0x64, 0x65 belong to Group1 and can only be written if Group1 is unlocked by the "LOCKUNLOCK"-byte (Reg: 0x36)

Register 0x0C, 0x0D, 0x14, 0x15, 0x61, 0x62 belong to Group2 and can only be written if Group2 is unlocked by the "LOCKUNLOCK"-byte (Reg: 0x36)

The default value of the Groups is locked.

Dynamic Feedback Control

The output of pins "FB1" and "FB2" can be used to control any external power supply for best power efficiency.

Every power supply senses its output voltage with a resistive voltage divider. This voltage divider can be modified to set the output voltage between a minimum output voltage VMIN and a maximum output voltage VMAX. The design of the dynamic feedback control is done in 2 steps.

ams Datasheet Page 37 **Document Feedback**

Step 1: Calculate resistors R1 in order to achieve the desired voltage range (VMAX – VMIN) with 255 μ A maximum current DAC output.

Figure 54: Step 1

(EQ4)
$$R1 = \frac{Vout_{MAX} - Vout_{MIN}}{255\mu A}$$

Step 2: Calculate resistor R2 for minimum output voltage with $0\mu A$ minimum current DAC output.

Figure 55: Step 2

Page 38ams DatasheetDocument Feedback[v2-00] 2016-Jan-11

(EQ5)
$$R2 = \frac{R1}{\left(\frac{Vout_{MIN}}{V_{sense}} - 1\right)}$$

The output voltage VOUT can also be adjusted manually by writing the "idac_FBx_counter" value ("FB_cnt_man_fbx"=1). In this case the output voltage can be calculated as follows:

Figure 56: Step 3

(EQ6)
$$V_{out} = \left(1 + \frac{R1}{R2}\right) \times V_{sense} + R1 \times idac_{fbx-counter} \times 1\mu A$$

Example:

$$V_{outMIN} = 60V$$
, $V_{outMAX} = 80V$, $V_{sense} = 1.25V$

$$R1 \, = \, \frac{Vout_{MAX}\!-Vout_{MIN}}{255\mu A} \, = \, \frac{80V\!-\!60V}{255\mu A} \, = \, 78k\Omega$$

$$R2 = \frac{R1}{\left(\frac{Vout_{MIN}}{V_{sense}} - 1\right)} = \frac{78k}{\left(\frac{60V}{1.25V} - 1\right)} = 1.66k\Omega$$

ams Datasheet Page 39 **Document Feedback**

Application Information

SPI Interface

For the data transfer a serial peripheral interface (SPI) is used. The SPI is configured to work only as SPI slave. If more than one driver is connected to a SPI master, they can be connected in a "Daisy Chain"-structure or a parallel structure.

SPI Daisy Chain Structure

All SPI slaves share the same clock (SCLK) and chip select (xCS) signal. In that configuration all devices can be treated as one big shift register. The devices are automatically enumerated as described in the next section.

Figure 57: SPI Daisy Chain Structure

Page 40

Document Feedback

[v2-00] 2016-Jan-11

SPI Parallel Structure

All SPI slaves share the same input (SDI) output (SDO) and clock (SCLK) signal. Every single device can be addressed via the chip select (xCS) signal. In this configuration every device has DevAddr = 0x01.

Figure 58: SPI Parallel Structure

ams Datasheet Page 41
[v2-00] 2016-Jan-11 Document Feedback

SPI Device Address Enumeration

The device address of each driver is automatically set by the position of the device in the chain.

The first device has DevAddr = 0x01, the second device has DevAddr = 0x02 and so on. Device Addresses 0x00 and 0x3F are used for special broadcast writing commands described below.

SPI Protocol Data Types

When xCS=0 all slaves will be activated. The addressing and data section is organized in byte packages. Each message can be built with the following Bytes:

Device Address

Addresses a specific driver and defines protocol information

Figure 59: Device Address

В	S	DevAddr[5:0]
---	---	--------------

Bit	Meaning	Value
В	Broadcast	B=1Broadcast message to all devices B=0Normal message to one single device
S	Singlebyte	S=0Block data read or write S=1Single data transmission (only one byte)
DevAddr[5:0]	Device Address	0x00 Write same data to same register of all devices (B=1) 0x01 to 0x3E. Device addresses for device 1 to 62 0x3F Write different data to same register of all devices (B=1)

Nr_of_data

Defines the number of data bytes in the data frame if S=0

Figure 60: Nr_of_data

NrOfdata[7:0]

Bit	Meaning	Value
NrOfdata[7:0]	Number of data bytes in frame	0x00 to 0xFF

Page 42

Document Feedback

[v2-00] 2016-Jan-11

Register_address

Register address to be read or written

Figure 61:

Register_address

RW	RegAddr[6:0]

Bit	Meaning	Value
RW	Read/Write	RW=0 write to register address RW=1 read from register address
RegAddr[6:0]	Select register address	0x00 to 0x60

Data

The data to be transferred

Figure 62:

Data

Data[7:0]

Bit	Meaning	Value
Data[7:0]	Data	0x00 to 0xFF

ams Datasheet Page 43
[v2-00] 2016-Jan-11 Document Feedback

Timings

DA...DevAddr, RA...RegAddr, D.....Data

Figure 63: Write Single Data Into Single Device

Figure 64: Read Single Data from Single Device

Page 44

Document Feedback [v2-00] 2016-Jan-11

SPI Protocol Examples

Write Single Data

Figure 65: Write to Reg0x02 of Dev0x01

Figure 66: Write to Reg0x02 of Dev0x03

ams Datasheet Page 45
[v2-00] 2016-Jan-11 Document Feedback

Write N Data

Figure 67: Write to Reg0x02 - Reg0x04 of Dev0x01

Write Different Data in Same Register of All Devices (Single Byte)

Figure 68: Write to Reg0x02 of Dev0x01 – Dev0x03

Page 46

Document Feedback

[v2-00] 2016-Jan-11

Write Different Data in Same Register of All Devices (Multiple Bytes)

Figure 69: Write to Reg0x02- Reg0x03 of Dev0x01 - Dev0x03

Write Same Data in Same Register of All Devices (Single Byte)

Figure 70: Write to Reg0x02 of Dev0x01 – Dev0x03

ams Datasheet Page 47
[v2-00] 2016-Jan-11 Document Feedback

Write Same Data in Same Register of All Devices (Multiple Bytes)

Figure 71: Write to Reg0x02 - Reg0x04 of Dev0x01 - Dev0x03

Read Single Data

Figure 72: Read From Reg0x02 of Dev0x01

Page 48
Document Feedback

[v2-00] 2016-Jan-11

Figure 73: Read From Reg0x02 of Dev0x03

Read N Data

Figure 74:
Read From Reg0x02-Reg0x04 of Dev0x03

ams Datasheet Page 49
[v2-00] 2016-Jan-11 Document Feedback

Register Description

Register Overview

Figure 75: Register Map

Registers can only be written if **Group1** is UNLOCKED. **Default = LOCKED**

Registers can only be written if **Group2** is UNLOCKED. **Default = LOCKED**

Addr	Name	D7	D6	D5	D4	D3	D2	D1	D0	Default
0x00		Used for bloc	Used for block writing							
0x01	CUR_ON_1	Curr_8	Curr_7	Curr_6	Curr_5	Curr_4	Curr_3	Curr_2	Curr_1	0x00
0x02	CUR_ON_2	Curr_16	Curr_15	Curr_14	Curr_13	Curr_12	Curr_11	Curr_10	Curr_9	0x00
0x03	FAULT_1	Autotoff _uv	Short Bist_en	Shortcmp_en		Retrial _Open	Autotoff _ot	Open _en	Autotoff _open	0x84
0x04	GPIO_CTRL	xFAULT_confi	g	Mode3D_con	Mode3D_config		DCDCEN_config		DCDCEN	0x00
0x05	FB_SEL1	FBsel_8	FBsel_7	FBsel_6	FBsel_5	FBsel_4	FBsel_3	FBsel_2	FBsel_1	0x00
0x06	FB_SEL2	FBsel_16	FBsel_15	FBsel_14	FBsel_13	FBsel_12	FBsel_11	FBsel_10	FBsel_9	0x00
0x07	CURR_CTRL	Sel_ac		Fb_ac_off	lb_comp	DACref _buffer	DACref	Slew_rate		0x00
0x08	SHORTLED_1	Short_8	Short_7	Short_6	Short_5	Short_4	Short_3	Short_2	Short_1	0x00
0x09	SHORTLED_2	Short_16	Short_15	Short_14	Short_13	Short_12	Shor_11	Shor_10	Short_9	0x00
0x0A	OPENLED_1	Open_8	Open_7	Open_6	Open_5	Open_4	Open_3	Open_2	Open_1	0x00

Addr	Name	D7	D6	D5	D4	D3	D2	D1	D0	Default
0x0B	OPENLED_2	Open_16	Open_15	Open_14	Open_13	Open_12	Open_11	Open_10	Open_9	0x00
0x0C	VDAC_H	DAC9	DAC8	DAC7	DAC6	DAC5	DAC4	DAC3	DAC2	0x80
0x0D	VDAC_L		DAC1 DAC0							
0x0E	FB_ON_1	FB_Curr_8	FB_Curr_7	FB_Curr_6	FB_Curr_5	FB_Curr_4	FB_Curr_3	FB_Curr_2	FB_Curr_1	0x00
0x0F	FB_ON_2	FB_Curr_16	FB_Curr_15	FB_Curr_14	FB_Curr_13	FB_Curr_12	FB_Curr_11	FB_Curr_10	FB_Curr_9	0x00
0x10	IDAC_FB1_COUNTER	IDAC_FB1_CC	DUNTER							0x00
0x11	IDAC_FB2_COUNTER	IDAC_FB2_CC	DUNTER							0x00
0x12	FBLOOP_CTRL	Vtrip		FB_cnt _man_fb2	FB_cnt _man_fb1	FB_count_dn_time		FB_count_up_time		0x05
0x13	PWM_CTRL	DPLL_per_s el	Clock Src1	PWM_rev	VSYNC det	VSYNC edge	Direct_ PWM	Update_ Mode	Clock Src0	0x00
0x14	PWMperiodLSB	PWM Per7	PWM Per6	PWM Per5	PWM Per4	PWM Per3	PWM Per2	PWM Per1	PWM Per0	0x00
0x15	PWMperiodMSB	0	0	0	PWM Per12	PWM Per11	PWM Per10	PWM Per9	PWM Per8	0x00
0x16	PWM1delLSB	PWM1 Del7	PWM1 Del6	PWM1 Del5	PWM1 Del4	PWM1 Del3	PWM1 Del2	PWM1 Del1	PWM1 Del0	0x00
0x17	PWM1delMSB	0	0	0	0	PWM1 Del11	PWM1 Del10	PWM1 Del9	PWM1 Del8	0x00
0x18	PWM2delLSB	PWM2 Del7	PWM2 Del6	PWM2 Del5	PWM2 Del4	PWM2 Del3	PWM2 Del2	PWM2 Del1	PWM2 Del0	0x00
0x19	PWM2delMSB	0	0	0	0	PWM2 Del11	PWM2 Del10	PWM2 Del9	PWM2 Del8	0x00

Addr	Name	D7	D6	D5	D4	D3	D2	D1	D0	Default
0x1A	PWM3delLSB	PWM3 Del7	PWM3 Del6	PWM3 Del5	PWM3 Del4	PWM3 Del3	PWM3 Del2	PWM3 Del1	PWM3 Del0	0x00
0x1B	PWM3delMSB	0	0	0	0	PWM3 Del11	PWM3 Del10	PWM3 Del9	PWM3 Del8	0x00
0x1C	PWM4delLSB	PWM4 Del7	PWM4 Del6	PWM4 Del5	PWM4 Del4	PWM4 Del3	PWM4 Del2	PWM4 Del1	PWM4 Del0	0x00
0x1D	PWM4delMSB	0	0	0	0	PWM4 Del11	PWM4 Del10	PWM4 Del9	PWM4 Del8	0x00
0x1E	PWM5delLSB	PWM5 Del7	PWM5 Del6	PWM5 Del5	PWM5 Del4	PWM5 Del3	PWM5 Del2	PWM5 Del1	PWM5 Del0	0x00
0x1F	PWM5delMSB	0	0	0	0	PWM5 Del11	PWM5 Del10	PWM5 Del9	PWM5 Del8	0x00
0x20	PWM6delLSB	PWM6 Del7	PWM6 Del6	PWM6 Del5	PWM6 Del4	PWM6 Del3	PWM6 Del2	PWM6 Del1	PWM6 Del0	0x00
0x21	PWM6delMSB	0	0	0	0	PWM6 Del11	PWM6 Del10	PWM6 Del9	PWM6 Del8	0x00
0x22	PWM7delLSB	PWM7 Del7	PWM7 Del6	PWM7 Del5	PWM7 Del4	PWM7 Del3	PWM7 Del2	PWM7 Del1	PWM7 Del0	0x00
0x23	PWM7delMSB	0	0	0	0	PWM7 Del11	PWM7 Del10	PWM7 Del9	PWM7 Del8	0x00
0x24	PWM8delLSB	PWM8 Del7	PWM8 Del6	PWM8 Del5	PWM8 Del4	PWM8 Del3	PWM8 Del2	PWM8 Del1	PWM8 Del0	0x00
0x25	PWM8delMSB	0	0	0	0	PWM8 Del11	PWM8 Del10	PWM8 Del9	PWM8 Del8	0x00

Addr	Name	D7	D6	D5	D4	D3	D2	D1	D0	Default
0x26	PWM9delLSB	PWM9 Del7	PWM9 Del6	PWM9 Del5	PWM9 Del4	PWM9 Del3	PWM9 Del2	PWM9 Del1	PWM9 Del0	0x00
0x27	PWM9delMSB	0	0	0	0	PWM9 Del11	PWM9 Del10	PWM9 Del9	PWM9 Del8	0x00
0x28	PWM10delLSB	PWM10 Del7	PWM10 Del6	PWM10 Del5	PWM10 Del4	PWM10 Del3	PWM10 Del2	PWM10 Del1	PWM10 Del0	0x00
0x29	PWM10delMSB	0	0	0	0	PWM10 Del11	PWM10 Del10	PWM10 Del9	PWM10 Del8	0x00
0x2A	PWM11delLSB	PWM11 Del7	PWM11 Del6	PWM11 Del5	PWM11 Del4	PWM11 Del3	PWM11 Del2	PWM11 Del1	PWM11 Del0	0x00
0x2B	PWM11delMSB	0	0	0	0	PWM11 Del11	PWM11 Del10	PWM11 Del9	PWM11 Del8	0x00
0x2C	PWM12delLSB	PWM12 Del7	PWM12 Del6	PWM12 Del5	PWM12 Del4	PWM12 Del3	PWM12 Del2	PWM12 Del1	PWM12 Del0	0x00
0x2D	PWM12delMSB	0	0	0	0	PWM12 Del11	PWM12 Del10	PWM12 Del9	PWM12 Del8	0x00
0x2E	PWM13delLSB	PWM13 Del7	PWM13 Del6	PWM13 Del5	PWM13 Del4	PWM13 Del3	PWM13 Del2	PWM13 Del1	PWM13 Del0	0x00
0x2F	PWM13delMSB	0	0	0	0	PWM13 Del11	PWM13 Del10	PWM13 Del9	PWM13 Del8	0x00
0x30	PWM14delLSB	PWM14 Del7	PWM14 Del6	PWM14 Del5	PWM14 Del4	PWM14 Del3	PWM14 Del2	PWM14 Del1	PWM14 Del0	0x00
0x31	PWM14delMSB	0	0	0	0	PWM14 Del11	PWM14 Del10	PWM14 Del9	PWM14 Del8	0x00

Addr	Name	D7	D6	D5	D4	D3	D2	D1	D0	Default
0x32	PWM15delLSB	PWM15 Del7	PWM15 Del6	PWM15 Del5	PWM15 Del4	PWM15 Del3	PWM15 Del2	PWM15 Del1	PWM15 Del0	0x00
0x33	PWM15delMSB	0	0	0	0	PWM15 Del11	PWM15 Del10	PWM15 Del9	PWM15 Del8	0x00
0x34	PWM16delLSB	PWM16 Del7	PWM16 Del6	PWM16 Del5	PWM16 Del4	PWM16 Del3	PWM16 Del2	PWM16 Del1	PWM16 Del0	0x00
0x35	PWM16delMSB	0	0	0	0	PWM16 Del11	PWM16 Del10	PWM16 Del9	PWM16 Del8	0x00
0x36	LOCKUNLOC	MagicByte								0x00
0x37	PWM1htLSB	PWM1 HT7	PWM1 HT6	PWM1 HT5	PWM1 HT4	PWM1 HT3	PWM1 HT2	PWM1 HT1	PWM1 HT0	0x00
0x38	PWM1htMSB	0	0	0	0	PWM1 HT11	PWM1 HT10	PWM1 HT9	PWM1 HT8	0x00
0x39	PWM2htLSB	PWM2 HT7	PWM2 HT6	PWM2 HT5	PWM2 HT4	PWM2 HT3	PWM2 HT2	PWM2 HT1	PWM2 HT0	0x00
0x3A	PWM2htMSB	0	0	0	0	PWM2 HT11	PWM2 HT10	PWM2 HT9	PWM2 HT8	0x00
0x3B	PWM3htLSB	PWM3 HT7	PWM3 HT6	PWM3 HT5	PWM3 HT4	PWM3 HT3	PWM3 HT2	PWM3 HT1	PWM3 HT0	0x00
0x3C	PWM3htMSB	0	0	0	0	PWM3 HT11	PWM3 HT10	PWM3 HT9	PWM3 HT8	0x00
0x3D	PWM4htLSB	PWM4 HT7	PWM4 HT6	PWM4 HT5	PWM4 HT4	PWM4 HT3	PWM4 HT2	PWM4 HT1	PWM4 HT0	0x00
0x3E	PWM4htMSB	0	0	0	0	PWM4 HT11	PWM4 HT10	PWM4 HT9	PWM4 HT8	0x00

Addr	Name	D7	D6	D5	D4	D3	D2	D1	D0	Default
0x3F	PWM5htLSB	PWM5 HT7	PWM5 HT6	PWM5 HT5	PWM5 HT4	PWM5 HT3	PWM5 HT2	PWM5 HT1	PWM5 HT0	0x00
0x40	PWM5htMSB	0	0	0	0	PWM5 HT11	PWM5 HT10	PWM5 HT9	PWM5 HT8	0x00
0x41	PWM6htLSB	PWM6 HT7	PWM6 HT6	PWM6 HT5	PWM6 HT4	PWM6 HT3	PWM6 HT2	PWM6 HT1	PWM6 HT0	0x00
0x42	PWM6htMSB	0	0	0	0	PWM6 HT11	PWM6 HT10	PWM6 HT9	PWM6 HT8	0x00
0x43	PWM7htLSB	PWM7 HT7	PWM7 HT6	PWM7 HT5	PWM7 HT4	PWM7 HT3	PWM7 HT2	PWM7 HT1	PWM7 HT0	0x00
0x44	PWM7htMSB	0	0	0	0	PWM7 HT11	PWM7 HT10	PWM7 HT9	PWM7 HT8	0x00
0x45	PWM8htLSB	PWM8 HT7	PWM8 HT6	PWM8 HT5	PWM8 HT4	PWM8 HT3	PWM8 HT2	PWM8 HT1	PWM8 HT0	0x00
0x46	PWM8htMSB	0	0	0	0	PWM8 HT11	PWM8 HT10	PWM8 HT9	PWM8 HT8	0x00
0x47	PWM9htLSB	PWM9 HT7	PWM9 HT6	PWM9 HT5	PWM9 HT4	PWM9 HT3	PWM9 HT2	PWM9 HT1	PWM9 HT0	0x00
0x48	PWM9htMSB	0	0	0	0	PWM9 HT11	PWM9 HT10	PWM9 HT9	PWM9 HT8	0x00
0x49	PWM10htLSB	PWM10 HT7	PWM10 HT6	PWM10 HT5	PWM10 HT4	PWM10 HT3	PWM10 HT2	PWM10 HT1	PWM10 HT0	0x00
0x4A	PWM10htMSB	0	0	0	0	PWM10 HT11	PWM10 HT10	PWM10 HT9	PWM10 HT8	0x00

Addr	Name	D7	D6	D5	D4	D3	D2	D1	D0	Default
0x4B	PWM11htLSB	PWM11 HT7	PWM11 HT6	PWM11 HT5	PWM11 HT4	PWM11 HT3	PWM11 HT2	PWM11 HT1	PWM11 HT0	0x00
0x4C	PWM11htMSB	0	0	0	0	PWM11 HT11	PWM11 HT10	PWM11 HT9	PWM11 HT8	0x00
0x4D	PWM12htLSB	PWM12 HT7	PWM12 HT6	PWM12 HT5	PWM12 HT4	PWM12 HT3	PWM12 HT2	PWM12 HT1	PWM12 HT0	0x00
0x4E	PWM12htMSB	0	0	0	0	PWM12 HT11	PWM12 HT10	PWM12 HT9	PWM12 HT8	0x00
0x4F	PWM13htLSB	PWM13 HT7	PWM13 HT6	PWM13 HT5	PWM13 HT4	PWM13 HT3	PWM13 HT2	PWM13 HT1	PWM13 HT0	0x00
0x50	PWM13htMSB	0	0	0	0	PWM13 HT11	PWM13 HT10	PWM13 HT9	PWM13 HT8	0x00
0x51	PWM14htLSB	PWM14 HT7	PWM14 HT6	PWM14 HT5	PWM14 HT4	PWM14 HT3	PWM14 HT2	PWM14 HT1	PWM14 HT0	0x00
0x52	PWM14htMSB	0	0	0	0	PWM14 HT11	PWM14 HT10	PWM14 HT9	PWM14 HT8	0x00
0x53	PWM15htLSB	PWM15 HT7	PWM15 HT6	PWM15 HT5	PWM15 HT4	PWM15 HT3	PWM15 HT2	PWM15 HT1	PWM15 HT0	0x00
0x54	PWM15htMSB	0	0	0	0	PWM5 HT11	PWM15 HT10	PWM15 HT9	PWM15 HT8	0x00
0x55	PWM16htLSB	PWM16 HT7	PWM16 HT6	PWM16 HT5	PWM16 HT4	PWM16 HT3	PWM16 HT2	PWM16 HT1	PWM16 HT0	0x00
0x56	PWM16htMSB	0	0	0	0	PWM16 HT11	PWM16 HT10	PWM16 HT9	PWM16 HT8	0x00
0x57	ASICIDLSB	Asic_ID0 Rev Nr.					0xA0			

Addr	Name	D7	D6	D5	D4	D3	D2	D1	D0	Default
0x58	ASICIDMSB	ASIC_ID2				ASIC_ID1			•	0x21
0x59	Not used									0x00
0x60	STATUS	STAT Nosync	STAT OT	STAT Open	Short Bist	Vcnt underflow	Short2	Short1	Power good	0x00
0x61	PLLmultiMSB	PLL Multi15	PLL Multi14	PLL Multi13	PLL Multi12	PLL Multi11	PLL Multi10	PLL Multi9	PLL Multi8	0x00
0x62	PLLmultiLSB	PLL Multi7	PLL Multi6	PLL Multi5	PLL Multi4	PLL Multi3	PLL Multi2	PLL Multi1	PLL Multi0	0x00
0x63	SHORT_BIST_CTRL1	0	0	0	BIST _retrial	BIST _steptime	Autotoff _BIST	BIST_wait		0x02
0x64	SHORT_BIST_MAXSTEP	BIST maxstep7	BIST Maxstep6	BIST Maxstep5	BIST Maxstep4	BIST Maxstep3	BIST Maxstep2	BIST Maxstep1	BIST Maxstep0	0xFF
0x65	SHORT_BIST_CTRL2	0	0	COMP _retrial	Autotoff _COMP	COMPlevel			0x0A	
0x6C	CompReg_1	Comp Reg8	Comp Reg7	Comp Reg6	Comp Reg5	Comp Reg4	Comp Reg3	Comp Reg2	Comp Reg1	0x00
0x6D	CompReg_2	Comp Reg16	Comp Reg15	Comp Reg14	Comp Reg13	Comp Reg12	Comp Reg11	Comp Reg10	Comp Reg9	0x00

Note(s):

1. Addresses from 0x66 to 0x6B and above 0x6D are for factory test only. Do not write!

Package Drawings & Markings

Figure 76: 44-Pin LQFP Package

Ref	Min	Nom	Max			
Α	-	-	1.60			
A1	0.05	-	0.15			
A2	1.35	1.40	1.45			
b	0.30	0.37	0.45			
С	0.09	-	0.20			
D	12.00 BSC					
D1	10.00 BSC					
E	12.00 BSC					
E1	10.00 BSC					
е	0.80 BSC					
L	0.45 0.60		0.75			
L1	1.00 REF					

Ref	Min	Nom	Max
R1	0.08	-	-
R2	0.08	-	0.20
S	0.20	-	-
Θ	0°	3.5°	7°
Θ1	0°	-	-
Θ2	11°	12°	13°
Θ3	11°	12°	13°
aaa	-	0.20	-
bbb	-	0.20	-
ccc	-	0.10	-
ddd	-	0.20	-
N		44	

Note(s):

- 1. Dimensions & tolerancing conform to ASME Y14.5M-1994.
- 2. All dimensions are in millimeters. Angles are in degrees.
- 3. Datums A-B and D to be determined at datum H.

Page 58ams DatasheetDocument Feedback[v2-00] 2016-Jan-11

Figure 77: 48-Pin QFN Package

ddd

eee

fff

N

-

0.05

0.08

0.10

48

_

-

Note(s):

- 1. Dimensions & tolerancing conform to ASME Y14.5M-1994.
- 2. All dimensions are in millimeters. Angles are in degrees.

D

Ε

е

D2

3. Coplanarity applies to the exposed heat slug as well as the terminal.

4.00

7.00 BSC

7.00 BSC

0.50 BSC

4.10

4.20

- 4. Radius on terminal is optional.
- 5. N is the total number of terminals.

ams Datasheet Page 59
[v2-00] 2016-Jan-11 Document Feedback

Figure 78: 44-Pin LQFP Marking

Figure 79: 48-Pin QFN Marking

Figure 80: Packaging Code YYWWGZZ or YYWWXZZ

YY	ww	G or X	ZZ	@@ or @
Last two digits of the manufacturing year	Manufacturing week	Plant identifier	Free choice / trace- ability code	Sublot identifier

Page 60 ams Datasheet

Thermal Characteristics

The thermal characteristics of the devices were measured at 25°C ambient temperature. The device was mounted on a double sided FR4 PCB with the bottom layer used as cooling area.

Figure 81: PCB FR4, 1cm Distance from Ground

Figure 82:
Tcase vs Power QFN48 with Different Copper Area, Tamb = 25°C

ams Datasheet Page 61
[v2-00] 2016-Jan-11 Document Feedback

Figure 83: Rth_CA [K/W] vs Copper Area

Page 62ams DatasheetDocument Feedback[v2-00] 2016-Jan-11

Ordering & Contact Information

Figure 84: **Ordering Information**

Ordering Code	Marking	Package	Description	Delivery Form	Delivery Quantity
AS3821-ZLQT	AS3821	44-Pin LQFP	12 Channel White LED Controller for LCD Backlight	Tape & Reel	1000
AS3821-ZQFT	AS3821	48-Pin QFN	12 Channel White LED Controller for LCD Backlight	Tape & Reel	4000
AS3821E-ZLQT	AS3821E	44-Pin LQFP	Direct PWM Mode Enabled as default setting	Tape & Reel	1000

Buy our products or get free samples online at:

www.ams.com/ICdirect

Technical Support is available at:

www.ams.com/Technical-Support

Provide feedback about this document at:

www.ams.com/Document-Feedback

For further information and requests, e-mail us at:

ams_sales@ams.com

For sales offices, distributors and representatives, please visit: www.ams.com/contact

Headquarters

ams AG Tobelbaderstrasse 30 8141 Unterpremstaetten Austria, Europe

Tel: +43 (0) 3136 500 0 Website: www.ams.com

ams Datasheet Page 63 **Document Feedback**

RoHS Compliant & ams Green Statement

RoHS: The term RoHS compliant means that ams AG products fully comply with current RoHS directives. Our semiconductor products do not contain any chemicals for all 6 substance categories, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, RoHS compliant products are suitable for use in specified lead-free processes.

ams Green (RoHS compliant and no Sb/Br): ams Green defines that in addition to RoHS compliance, our products are free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

Important Information: The information provided in this statement represents ams AG knowledge and belief as of the date that it is provided. ams AG bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. ams AG has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. ams AG and ams AG suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

Page 64

Document Feedback

[v2-00] 2016-Jan-11

Copyrights & Disclaimer

Copyright ams AG, Tobelbader Strasse 30, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

Devices sold by ams AG are covered by the warranty and patent indemnification provisions appearing in its General Terms of Trade. ams AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein. ams AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with ams AG for current information. This product is intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by ams AG for each application. This product is provided by ams AG "AS IS" and any express or implied warranties, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose are disclaimed.

ams AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams AG rendering of technical or other services.

ams Datasheet Page 65
[v2-00] 2016-Jan-11 Document Feedback

Document Status

Document Status	Product Status	Definition
Product Preview	Pre-Development	Information in this datasheet is based on product ideas in the planning phase of development. All specifications are design goals without any warranty and are subject to change without notice
Preliminary Datasheet	Pre-Production	Information in this datasheet is based on products in the design, validation or qualification phase of development. The performance and parameters shown in this document are preliminary without any warranty and are subject to change without notice
Datasheet	Production	Information in this datasheet is based on products in ramp-up to full production or full production which conform to specifications in accordance with the terms of ams AG standard warranty as given in the General Terms of Trade
Datasheet (discontinued)	Discontinued	Information in this datasheet is based on products which conform to specifications in accordance with the terms of ams AG standard warranty as given in the General Terms of Trade, but these products have been superseded and should not be used for new designs

Page 66ams DatasheetDocument Feedback[v2-00] 2016-Jan-11

Revision Information

Changes from 1.11 (2013-Aug-22) to current revision 2-00 (2016-Jan-11)	Page
Content of austriamicrosystems datasheet was converted to latest ams design	
Updated Key Benefits and Features	1
Updated Marking Information	58
Updated Thermal Characteristics	61
Updated Ordering Information	63

Note(s):

- 1. Page and figure numbers for the previous version may differ from page and figure numbers in the current revision.
- 2. Correction of typographical errors is not explicitly mentioned.

ams Datasheet Page 67 Document Feedback

Content Guide

1 General Description

- 1 Key Benefits & Features
- 2 Applications
- 3 Block Diagram

4 Pin Assignments

4 44-Pin LQFP

8 Absolute Maximum Ratings

9 Electrical Characteristics

- 9 Operating Conditions
- 12 Timing Characteristics
- 13 Timing Diagrams
- 14 Pins Equivalent Circuit

15 Detailed Description

- 16 Current Outputs
- 16 Precision Current Sink
- 16 Power Supply Feedback
- 17 Manual Control of External Power Supply
- 17 Open LED Detection
- 18 Short LED Detection
- 19 DAC
- 20 Registers in Current Output Stage
- 30 PWM Generators
- 30 Clock and Reset
- 30 Digital PLL
- 31 PWM Counter
- 32 SPI Data Update, UPDATEmode Bit
- 33 Direct PWM Mode
- 33 VSYNC Detect
- 33 VSYNC Duration
- 34 Registers in PWM Generators
- 35 PWM Examples
- 37 Power Supply
- 37 Voltage Regulator V3 2
- 37 Interface Power Supply V3_2
- 37 Safety Features
- 37 Temperature Shutdown
- 37 Register Lock/Unlock
- 37 Dynamic Feedback Control

40 Application Information

- 40 SPI Interface
- 40 SPI Daisy Chain Structure
- 41 SPI Parallel Structure
- 41 SPI Device Address Enumeration
- 42 SPI Protocol Data Types
- 42 Device Address
- 42 Nr_of_data
- 43 Register_address
- 43 Data
- 44 Timings

Page 68ams DatasheetDocument Feedback[v2-00] 2016-Jan-11

- 45 SPI Protocol Examples
- 45 Write Single Data
- 46 Write N Data
- Write Different Data in Same Register of All Devices (Single Byte)
- Write Different Data in Same Register of All Devices (Multiple Bytes)
- 47 Write Same Data in Same Register of All Devices (Single Byte)
- 48 Write Same Data in Same Register of All Devices (Multiple Bytes)
- 48 Read Single Data
- 49 Read N Data
- 50 Register Description
- 50 Register Overview
- 58 Package Drawings & Markings
- 61 Thermal Characteristics
- 63 Ordering & Contact Information
- 64 RoHS Compliant & ams Green Statement
- 65 Copyrights & Disclaimer
- **66 Document Status**
- **67 Revision Information**

ams Datasheet Page 69
[v2-00] 2016-Jan-11 Document Feedback