Informatique Théorique

Sémantique: Interprétation et validité

(MAM3-SI3)

September 28, 2021

1 Vrai/Faux

Soient les formules:

- a) $p(a,b) \wedge \neg p(f(a),b)$
- b) $\exists y \ p(y,b)$
- c) $\exists y \exists x \ p(y,x)$
- d) $\forall x \exists y \ p(x,y)$
- e) $\forall x \ p(x,x)$
- f) $\exists y \forall x \ p(x,y)$
- g) $\exists y \ ((p(y,a) \lor p(f(y),b))$
- 1. Les formules précédentes sont elles vraies dans l'interprétation I_1 ? Interprétation I_1 :
 - ullet le domaine est l'ensemble ${f N}$ des entiers naturels
 - a est l'entier 0
 - b est l'entier 1
 - f est la fonction successeur
 - p est la relation <
- 2. Même question pour l'interprétation I_2 :
 - domaine : les listes de longueur quelconque contenant des 0 et des 1
 - a est la liste vide
 - b est la liste [1, 1, 1, 1, 1]
 - f est la fonction $cons_1$ qui ajoute un 1 en tête d'une liste
 - p est la relation length(x) < length(y)

2 Interprétation

1. Trouver (si possible) une interprétation I_1 qui prouve que la formule

$$\Phi_1 [(\exists x \ p(x)) \land (\exists x \ q(x))] \Leftrightarrow [\exists x \ (p(x) \land q(x))]$$

n'est pas universellement valide et une interprétation I_2 où la formule Φ_1 est vraie.

2. Même question en remplaçant dans Φ_1 tous les \wedge par des \vee , c'est à dire : Trouver (si possible) une interprétation I_3 qui prouve que la formule

$$\Phi_2 [(\exists x \ p(x)) \lor (\exists x \ q(x))] \Leftrightarrow [\exists x \ (p(x) \lor q(x))]$$

n'est pas universellement valide et une interprétation I_4 où la formule Φ_2 est vraie.

3. Même question en remplaçant dans Φ_2 tous les \exists par des \forall , c'est à dire : Trouver (si possible) une interprétation I_5 qui prouve que la formule

$$\Phi_3 [(\forall x \ p(x)) \lor (\forall x \ q(x))] \Leftrightarrow [\forall x \ (p(x) \lor q(x))]$$

n'est pas universellement valide et une interprétation I_4 où la formule Φ_2 est vraie.

4. Même question en remplaçant dans Φ_3 tous les \vee par des \wedge , c'est à dire : Trouver (si possible) une interprétation I_7 qui prouve que la formule

$$\Phi_4 \left[(\forall x \ p(x)) \land (\forall x \ q(x)) \right] \Leftrightarrow \left[\forall x \ (p(x) \land q(x)) \right]$$

n'est pas universellement valide et une interprétation I_8 où la formule Φ_4 est vraie.

- 5. Dans tous les cas précédents, si la formule n'est pas universellement valide qu'en est il si on remplace le \Leftrightarrow par \Leftarrow ou \Rightarrow ?
- 6. Trouver une interprétation I dans laquelle la formule : $(\forall x \exists y \ p(x,y)) \land (\forall x \ \neg p(x,x))$ est vraie. Cette formule peut-elle être vraie pour une interprétation dont le domaine a un seul élément ?

3 Interprétation et véracité

Soit le langage:

- variables : x , y
- symboles fonctionnels : f (arité 2), a (arité 0)
- symboles de prédicat : p (arité 2)

Soit l'interprétation I :

- ullet domaine : les entiers positifs
- f est la fonction somme, a la constante 0
- p est l'égalité

Caractériser la véracité des formules suivantes :

- 1. $\Phi_1: \exists y \forall x \ p(f(x,y),x)$
- 2. $\Phi_2: (\forall x \exists y \ p(f(x,y),x))) \Rightarrow (\exists x \exists y \ p(f(x,y),x))$
- 3. $\Phi_3 : \forall x \exists y \ p(f(x,y),a)$
- 4. $\Phi_4: \forall x \forall y \ p(f(x,y), f(y,x))$