SARDAR VALLABHBHAI NATIONAL INSTITUTE OF TECHNOLOGY, SURAT ELECTRONICS ENGINEERING DEPARTMENT

Expt. No: 10

Date: 29-10-2020

Common Emitter Characteristics & Common Emmiter Amplifier

AIM: To study, the Input-Output characteristics of a BJT in Common Emitter Configuration. Also implement Common Emitter Amplifier.

SOFTWARE TOOLS / OTHER REQUIREMENTS:

1. Multisim Simulator/Circuit Simulator

THEORY:

The most frequently encountered transistor configuration appears in Fig.10.1 for the pnp and npn transistors. It is called the common-emitter configuration because the emitter is common to both the input and output terminals (in this case common to both the base and collector terminals). Two sets of characteristics are again necessary to describe fully the behavior of the common-emitter configuration: one for the input or base–emitter circuit and one for the output or collector–emitter circuit. Both are shown in Fig. 10.2 (a) and 10.2 (b) respectively.

Fig. 10.1

Fig. 10.2 (a) CE Input Characterisitcs

Fig. 10.2 (b) CE Output Characterisitcs

INPUT CHARACTERISTICS

The input characteristics are a plot of the input current (IB) versus the input voltage (VBE) for a range of values of output voltage (VCE). The curve describes the changes in the values of input current with respect to the values of input voltage keeping the output voltage constant.

Fig. 10. 3 Circuit Diagram to obtain CE Input/Output Characteristics

PROCEDURE

- 1. CONNECT THE CIRCUIT AS SHOWN IN THE CIRCUIT DIAGRAM.
- 2. KEEP OUTPUT VOLTAGE $V_{CE} = 0V$ BY VARYING V_{CC} .
- 3. VARYING V_{BB} GRADUALLY, NOTE DOWN BASE CURRENT I_B AND BASE-EMITTER VOLTAGE V_{BE} .
- 4. STEP SIZE IS NOT FIXED BECAUSE OF NON LINEAR CURVE. INITIALLY VARY V_{BB} IN STEPS OF 0.1V. ONCE THE CURRENT STARTS INCREASING VARY V_{BB} IN STEPS OF 1V UP TO 5V.
- 5. REPEAT ABOVE PROCEDURE (STEP 3) FOR $V_{CE} = 3V$.

OUTPUT CHARACTERISTICS

The output characteristics are a plot of the output current (IC) versus output voltage (VCE) for a range of values of input current (IB). The curve describes the changes in the values of output current against output voltage keeping the input current constant.

PROCEDURE

- 1. CONNECT THE CIRCUIT AS SHOWN IN THE CIRCUIT DIAGRAM.
- 2. KEEP EMITTER CURRENT $I_B = 0\mu A$ BY VARYING V_{BB} .
- 3. VARYING V_{CC} GRADUALLY IN STEPS OF 1V UP TO 5V AND NOTE DOWN COLLECTOR CURRENT IC AND COLLECTOR-EMITTER VOLTAGE(V_{CE}).
- 4. REPEAT ABOVE PROCEDURE (STEP 3) FOR $I_B = 20\mu A$ AND $60\mu A$.

INPUT CHARACTERISTICS

CIRCUIT DIAGRAM (FROM MULTISIM)

OBSERVATION TABLE

	V _{CE} =	0V	$V_{CE} = 3V$		
V_{BB}	V _{BE}	I_{B}	$V_{ m BE}$	I_B	
	(IN VOLTS)	(IN µA)	(IN VOLTS)	(IN µA)	
0	0	0	0	0	
0.1	0.1	0	0.1	0	
0.2	0.2	0	0.2	0	
0.3	0.3	0	0.3	0	
0.4	0.399	0	0.4	0	
0.5	0.497	0.022	0.499	0	
0.6	0.566	0.330	0.598	0.011	
0.7	0.597	1.029	0.676	0.231	
0.8	0.613	1.8684	0.711	0.885	
0.9	0.623	2.760	0.728	1.714	
1	0.632	3.678	0.739	2.605	
1.5	0.656	8.4352	0.766	7.338	
2	0.670	13.297	0.779	12.206	
2.5	0.679	18.200	0.788	17.119	
3	0.687	23.127	0.794	22.053	
3.5	0.693	28.069	0.799	27.001	
4	0.698	33.020	0.804	31.957	
4.5	0.702	37.978	0.807	36.920	
5	0.705	42.942	0.811 41.887		

GRAPH

CALCULATIONS

	ΔIB = 18 uA
	DVBE = 0.048V
	DNBE = O.IV
	2018 2018
1)	Input impedence DVRE = 0.000 = 2.6 R3E
2)	Reverse Voltage gain & DNCB = 0.1 = 0.033

Input impedance = hie = Ri = Δ VBE / Δ IB (VCE = constant) = $\underline{2.6k\Omega}$. Reverse voltage gain = hre = Δ VEB / Δ VCE (IB = constant) = $\underline{0.033}$.

OUTPUT CHARACTERISTICS

CIRCUIT DIAGRAM (FROM MULTISIM)

OBSERVATION TABLE

	I _B =0	$I_{B} = 20 \ \mu A$ $I_{B} = 60 \ \mu A$) μΑ		
V_{CC}	V_{CE}	I_{C}	V_{CE}	I_{C}	V_{CE}	I_{C}
	(IN VOLTS)	(IN MA)	(IN VOLTS)	(IN MA)	(IN VOLTS)	(IN MA)
0	0	0	0.010	0	0.014	0
0.1	0.1	0	0.041	0.0586	0.030	0.069
0.2	0.2	0	0.0586	0.141	0.0404	0.159
0.3	0.3	0	0.070	0.229	0.048	0.251
0.4	0.4	0	0.079	0.320	0.054	0.345
0.5	0.5	0	0.086	0.413	0.059	0.440
0.6	0.6	0	0.093	0.506	0.064	0.535
0.7	0.7	0	0.098	0.601	0.068	0.631

SARDAR VALLABHBHAI NATIONAL INSTITUTE OF TECHNOLOGY, SURAT ELECTRONICS ENGINEERING DEPARTMENT

0.8	0.8	0	0.104	0.695	0.071	0.728
0.9	0.9	0	0.109	0.790	0.075	0.824
1	1	0	0.114	0.885	0.078	0.921
1.5	1.5	0	0.139	1.360	0.090	1.409
2	2	0	0.179	1.820	0.100	1.899
2.5	2.5	0	0.502	1.997	0.109	2.390
3	3	0	0.992	2.007	0.118	2.881
3.5	3.5	0	1.492	2.007	0.126	3.373
4	4	0	1.992	2.007	0.135	3.864
4.5	4.5	0	2.492	2.007	0.145	4.355
5	5	0	2.992	2.007	0.156	4.843

GRAPH

SARDAR VALLABHBHAI NATIONAL INSTITUTE OF TECHNOLOGY, SURAT ELECTRONICS ENGINEERING DEPARTMENT

CALCULATIONS

	DIC= 2x10-3 A
	DJB= 40×156A
	DIC = 4×103 A
	DVCE = IV
H	Output admittance à DIC = 2x103 = 2mo
	DVCE 1.
2)	forward carrent gain = DIC = 4x103 = 100
	DIB 40x106

Output admittance 1/hoe = Ro = Δ IC / Δ VCE (IB is constant) = $2m\overline{O}$ Forward current gain = hfe = Δ IC / Δ IB (VCE = constant) = 100

PART - B

COMMON EMITTER AMPLIFIER

All types of transistor amplifiers operate using AC signal inputs which alternate between a positive value and a negative value so some way of "presetting" the amplifier circuit to operate between these two maximum or peak values is required. This is achieved using a process known as Biasing. Biasing is very important in amplifier design as it establishes the correct operating point of the transistor amplifier ready to receive signals, thereby reducing any distortion to the output signal.

The aim of any small signal amplifier is to amplify all of the input signal with the minimum amount of distortion possible to the output signal, in other words, the output signal must be an exact reproduction of the input signal but only bigger (amplified).

To obtain low distortion when used as an amplifier the operating quiescent point needs to be correctly selected. This is in fact the DC operating point of the amplifier and its position may be established at any point along the load line by a suitable biasing arrangement. The best possible position for this Q-point is as close to the center position of the load line.

Common Emitter Amplifier Circuit

180 DEGREE PHASE SHIFT

In CE amplifier configuration, there will always a phase-shift of 180 degrees between the input and output as described in figure below.

CIRCUIT DIAGRAM FROM MULTISIM

INPUT – OUTPUT WAVEFORMS

SARDAR VALLABHBHAI NATIONAL INSTITUTE OF TECHNOLOGY, SURAT ELECTRONICS ENGINEERING DEPARTMENT

CONCLUSIONS

Successfully implemented BJT in Common emitter configuration on multisim and plotted input-output characteristics and also implemented common emitter amplifier and observe its input-output waveform.

DELD Assignment for Practical-10

Name: Dhruv Gandhi

ADM No.: U19CS015

 Using the information provided in the figure below, determine the values of Beta, Vcc and Rb theoritically. Also compute and verify the values of Ic, Vb, and Vc by implementing the circuit on Multisim.

Schematic:

Vb = 2.8902V

Vc = 9.4466V

Ic = 3.0494mA

Calculation:

T 0 11 0 7 21V
2) VCC - IBRB - VBC 2 2-1V
17.68 - 20x 106. x RB-0-7 = 2.1
20×106 × RB = 14.88
0 . 11.6 ×186 .52.
RB = 744 KS.
- E 10 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B = IB = 3.068 × 10-3 = 3068
Ic. 20x 10-6. 20
B = 153.4
NB = VCC - IBRB
(EO) x 44 Fx 301 x 05) - 83. F1 =
= 17.(8 - 14.83
VB = 2.9 V
Mc 2 Mcc - IcRc.
= 17.68 - 8.38.
Vc = 9.4.1

2. Simulate the below given circuit on Multisim and predict the type of Digital Logic implemented by the same. Use the default transistor available in Multisim. Attach all the four screenshots (00,05,50,55).

Circuit 1:

Circuit 2:

Circuit 3:

Circuit 4:

By looking at graphs, the given circuit represents an AND GATE.