

🥉 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE170501604

FCC REPORT

(WIFI)

Applicant: LAVA INTERNATIONAL (H.K) LIMITED

Address of Applicant: UNIT L 1/F MAU LAM COMM BLDG 16-18 MAU LAM ST,

JORDAN KL, HK

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: iris 30

Trade mark: LAVA

FCC ID: 2AEE8LAVAIRIS30

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 05 May, 2017

Date of Test: 05 May, to 27 May, 2017

Date of report issued: 29 May, 2017

Test Result: PASS*

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	29 May, 2017	Original

Tested by:

Date: 29 May, 2017

Test Engineer

Reviewed by: 29 May, 2017

Project Engineer

3 Contents

			Page
1	COV	ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4	TES.	T SUMMARY	4
5		ERAL INFORMATION	
	5.1	CLIENT INFORMATION	-
	5.2	GENERAL DESCRIPTION OF E.U.T	
	5.2	TEST ENVIRONMENT AND MODE	
	5.4	MEASUREMENT UNCERTAINTY	
	5.5	LABORATORY FACILITY	
	5.6	LABORATORY LOCATION	
	5.7	TEST INSTRUMENTS LIST	
6	_	T RESULTS AND MEASUREMENT DATA	
	6.1	ANTENNA REQUIREMENT:	
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.1		
	6.6.2 6.7	SPURIOUS EMISSIONSPURIOUS EMISSION	
	6.7.1		
	6.7.1		
_	· · · · -		
7	TES	T SETUP PHOTO	70
R	FUT	CONSTRUCTIONAL DETAILS	71

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	LAVA INTERNATIONAL (H.K) LIMITED
Address of Applicant:	UNIT L 1/F MAU LAM COMM BLDG 16-18 MAU LAM ST, JORDAN KL, HK
Manufacturer:	LAVA INTERNATIONAL (H.K) LIMITED
Address of Manufacturer:	UNIT L 1/F MAU LAM COMM BLDG 16-18 MAU LAM ST, JORDAN KL, HK

5.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	iris 30
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-1400mAh
AC adapter:	Model: CLV-3 Input: AC100-300V 50/60Hz 0.15A Output: DC 5.0V, 500mA

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Operation Frequency each of channel For 802.11n(H40)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
		4	2427MHz	7	2442MHz		
		5	2432MHz	8	2447MHz		
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n (H40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Operation mode	Keep the EUT in continuous transmitting with modulation

Report No: CCISE170501604

Project No.: CCISE1705016

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps
802.11n(H40)	13.5Mbps

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 7 of 71

testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Website: http://www.ccis-cb.com

Tel: +86-755-23118282 Fax:+86-755-23116366 Email: info@ccis-cb.com

5.7 Test Instruments list

Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	02-25-2017	02-24-2018
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	02-25-2017	02-24-2018
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	02-25-2017	02-24-2018
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	02-25-2017	02-24-2018
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	02-25-2017	02-24-2018
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	02-25-2017	02-24-2018
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	02-25-2017	02-24-2018
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	02-25-2017	02-24-2018
10	Loop antenna	Laplace instrument	RF300	EMC0701	02-25-2017	02-24-2018
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
12	Coaxial Cable	N/A	N/A	CCIS0018	02-25-2017	02-24-2018
13	Coaxial Cable	N/A	N/A	CCIS0020	02-25-2017	02-24-2018

Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	02-25-2017	02-24-2018
3	LISN	CHASE	MN2050D	CCIS0074	02-25-2017	02-24-2018
4	Coaxial Cable	CCIS	N/A	CCIS0086	02-25-2017	02-24-2018
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 0 dBi.

6.2 Conducted Emission

FCC Part 15 C Section 1	FCC Part 15 C Section 15.207		
ANSI C63.4: 2014			
150 kHz to 30 MHz			
Class B			
RBW=9 kHz, VBW=30 k	Hz		
		dBuV)	
(MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
		50	
* Decreases with the log	arithm of the frequency.		
 line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be change 			
AUX Equipment Test table/Insula	40cm 80cm LISM E.U.T EMI Receiver	ilter — AC power	
Refer to section 5.6 for d	letails		
Refer to section 5.3 for d	letails		
Passed			
	ANSI C63.4: 2014 150 kHz to 30 MHz Class B RBW=9 kHz, VBW=30 k Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * Decreases with the log 1. The E.U.T and simuline impedance stable 500hm/50uH coupling 2. The peripheral device a LISN that provides termination. (Please photographs). 3. Both sides of A.C. light interference. In order positions of equipment according to ANSI Company and the positions of equipment according to ANSI Company and the provided stable height—0.8 m. Refer to section 5.6 for decrease and the positions of the provided stable height—0.8 m. Refer to section 5.6 for decrease and the provided stable height—0.8 m.	ANSI C63.4: 2014 150 kHz to 30 MHz Class B RBW=9 kHz, VBW=30 kHz Frequency range	

Measurement Data:

Neutral:

Trace: 13

Site

: CCIS Shielding Room : FCC CLASS-B QP LISN NEUTRAL Condition

EUT : Mobile Phone : iris 30 : WIFI mode Model Test Mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Carey

Remark

CMAIR	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line		Remark
-	MHz	dBu∜	₫₿	d₿	dBu∀	dBu∛	dB	
1	0.166	40.25	0.13	10.77	51.15	65.16	-14.01	QP
2	0.226	36.68	0.16	10.75	47.59	62.61	-15.02	QP
3	0.282	24.75	0.18	10.74	35.67	50.76	-15.09	Average
4	0.435	39.66	0.23	10.73	50.62	57.15	-6.53	QP
1 2 3 4 5 6 7 8 9	0.449	31.84	0.24	10.74	42.82	46.89	-4.07	Average
6	0.505	27.19	0.24	10.76	38.19	46.00	-7.81	Average
7	0.513	33.07	0.25	10.76	44.08	56.00	-11.92	QP
8	0.561	23.75	0.27	10.77	34.79	46.00	-11.21	Average
9	0.792	32.11	0.31	10.81	43.23		-12.77	
10	0.792	23.29	0.31	10.81	34.41	46.00	-11.59	Average
11	0.904	32.93	0.28	10.84	44.05	56.00	-11.95	QP
12	0.904	23.56	0.28	10.84	34.68	46.00	-11.32	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Line:

: CCIS Shielding Room : FCC CLASS-B QP LISN LINE : Mobile Phone Site Condition

EUT Model : iris 30 Test Mode : WIFI mode

Power Rating: AC 120V/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Carey

(emar)	:							
	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	₫₿	₫₿	dBuV	dBu₹	₫₿	
1	0.170	39.07	0.14	10.77	49.98	64.94	-14.96	QP
2	0.170	30.23	0.14	10.77	41.14	54.94	-13.80	Average
1 2 3 4 5 6 7 8 9	0.226	28.84	0.15	10.75	39.74	52.61	-12.87	Average
4	0.437	43.47	0.24	10.74	54.45	57.11	-2.66	QP
5	0.454	30.27	0.24	10.74	41.25	46.80	-5.55	Average
6	0.510	22.55	0.25	10.76	33.56	46.00	-12.44	Average
7	0.513	35.52	0.25	10.76	46.53	56.00	-9.47	QP
8	0.549	36.16	0.26	10.77	47.19	56.00	-8.81	QP
9	0.739	34.69	0.31	10.79	45.79	56.00	-10.21	QP
10	0.796	23.70	0.30	10.81	34.81	46.00	-11.19	Average
11	0.904	23.93	0.28	10.84	35.05			Average
12	0.933	37.22	0.27	10.85	48.34	56.00		

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 9.2.2.2		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Test CH	Ма	ximum Conduct	Limit(dBm)	Result		
	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dDin)	Nesuit
Lowest	15.77	14.91	15.40	13.17		
Middle	15.75	17.19	15.05	14.84	30.00	Pass
Highest	16.11	15.27	15.23	13.06		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

Middle channel

Highest channel

Middle channel

Highest channel

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)	
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 8.1	
Limit:	>500kHz	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.6 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Passed	

Measurement Data:

Test CH		6dB Emission	Limit(kHz)	Result		
1631 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Liiiii(Ki iz)	Nesuit
Lowest	10.24	15.60	17.44	35.64		
Middle	9.64	15.72	16.20	35.52	>500	Pass
Highest	10.24	15.60	15.92	35.68		
Test CH		99% Occupy	Limit(kHz)	Result		
1031 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Liiiii(Ki iz)	rtesuit
Lowest	12.48	16.48	16.48	35.84		
Middle	12.48	16.48	16.48	36.00	N/A	N/A
Highest	12.56	16.48	16.48	35.84		

Test plot as follows:

6dB EBW

Date: 7.MAY.2017 11:00:55

Lowest channel

Date: 7.MAY.2017 11:01:39

Middle channel

Date: 7.MAY.2017 11:02:22

Highest channel

Date: 7.MAY.2017 10:58:21

Lowest channel

Date: 7.MAY.2017 10:58:51

Middle channel

Date: 7.MAY.2017 10:59:52

Highest channel

Date: 7.MAY.2017 10:50:34

Lowest channel

Date: 7.MAY.2017 10:53:09

Middle channel

Date: 7.MAY.2017 10:53:43

Highest channel

Date: 7.MAY.2017 10:48:23

Lowest channel

Date: 7.MAY.2017 10:47:44

Middle channel

Date: 7.MAY.2017 10:47:01

Highest channel

Date: 7.MAY.2017 11:02:55

Lowest channel

Date: 7.MAY.2017 11:02:45

Middle channel

Date: 7.MAY.2017 11:02:33

Highest channel

Date: 7.MAY.2017 10:57:36

Lowest channel

Date: 7.MAY.2017 10:57:19

Middle channel

Date: 7.MAY.2017 10:57:09

Highest channel

Date: 7.MAY.2017 10:54:18

Lowest channel

Date: 7.MAY.2017 10:54:05

Middle channel

Date: 7.MAY.2017 10:53:54

Highest channel

Date: 7.MAY.2017 10:45:34

Lowest channel

Date: 7.MAY.2017 10:46:28

Middle channel

Date: 7.MAY.2017 10:46:37

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 10.2		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Test CH		Power Spec	Limit(dBm)	Result		
	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(abin)	Nesuit
Lowest	6.36	2.83	3.27	-2.86		
Middle	6.80	4.49	2.62	-0.38	8.00	Pass
Highest	6.55	3.03	2.42	-2.01		

Test plot as follows:

Date: 7.MAY.2017 11:03:08

Lowest channel

Date: 7.MAY.2017 11:03:23

Middle channel

Date: 7.MAY.2017 11:03:32

Highest channel

Date: 7.MAY.2017 10:56:31

Lowest channel

Date: 7.MAY.2017 10:56:44

Middle channel

Date: 7.MAY.2017 10:56:58

Highest channel

Date: 7.MAY.2017 10:55:38

Lowest channel

Date: 7.MAY.2017 10:55:47

Middle channel

Date: 7.MAY.2017 10:55:56

Highest channel

Date: 7.MAY.2017 10:45:17

Lowest channel

Date: 7.MAY.2017 10:45:07

Middle channel

Date: 7.MAY.2017 10:44:56

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)		
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 13		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Test plot as follows:

Lowest channel

Highest channel

Lowest channel

Highest channel

Highest channel

Lowest channel

Highest channel

6.6.2 Radiated Emission Method

Above 1GHz Peak 1MHz 3MHz Peak 1MHz 3MHz Ave RMS 1MHz 3MHz Ave Limit: Frequency Limit (dBuV/m @3m) Rem 54.00 Average 74.00 Peak 1 Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 met the ground at a 3 meter camber. The table was rotated 36 to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-red	Value Value	
Test site: Measurement Distance: 3m	eak Value rage Value ark e Value Value	
Test site: Measurement Distance: 3m Frequency Detector RBW VBW Above 1GHz Peak 1MHz 3MHz Ave RMS 1MHz 3MHz Ave Limit: Frequency Limit (dBuV/m @3m) Rem Above 1GHz 74.00 Peak Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 met the ground at a 3 meter camber. The table was rotated 36 to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-red	eak Value rage Value ark e Value Value	
Receiver setup: Frequency Detector RBW VBW Above 1GHz Peak 1MHz 3MHz Peak RMS 1MHz 3MHz Ave RMS 1MHz Ave RMS RMS Ave RMS Ave Ave RMS Ave Ave RMS Ave Ave Ave	eak Value rage Value ark e Value Value	
Above 1GHz Peak 1MHz 3MHz Peak 1MHz 3MHz Ave RMS 1MHz 3MHz Ave Limit: Frequency Limit (dBuV/m @3m) Rem 54.00 Average 74.00 Peak 1 Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 met the ground at a 3 meter camber. The table was rotated 36 to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-red	eak Value rage Value ark e Value Value	
Limit: Frequency Above 1GHz Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 met the ground at a 3 meter camber. The table was rotated 36 to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-red	ark Value Value	
Above 1GHz Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 met the ground at a 3 meter camber. The table was rotated 36 to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-red	Value Value	
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 met the ground at a 3 meter camber. The table was rotated 36 to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-red	√alue	
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 met the ground at a 3 meter camber. The table was rotated 36 to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-red		
tower. 3. The antenna height is varied from one meter to four meter the ground to determine the maximum value of the field st Both horizontal and vertical polarizations of the antenna at make the measurement. 4. For each suspected emission, the EUT was arranged to its case and then the antenna was tuned to heights from 1 m meters and the rota table was turned from 0 degrees to 36 to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB to the limit specified, then testing could be stopped and the pof the EUT would be reported. Otherwise the emissions the have 10dB margin would be re-tested one by one using peaks.	 the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 	
Test setup: Horn Antenna Tower Ground Reference Plane Test Receiver Test Receiver Controller		
Test Instruments: Refer to section 5.6 for details		
Test mode: Refer to section 5.3 for details		
Test results: Passed		

802.11b

Test channel: Lowest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Mobile Phone Model : iris 30
Test mode : 802.11B-L mode
Power Rating : AC 120V / 60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK

TO THE REAL PROPERTY.	No. 1								
	Freq		Antenna Factor				Limit Line	Over Limit	
	MHz	dBu∀	dB/m	₫₿	dB	dBuV/n	dBu√/m	dB	
1 2	2326.464 2326.464	21.82 8.52	23.67 23.67	The second secon	0.00			-23.88 -17.18	Peak Average
3	2390.000 2390.000	17.50 8.07		4.69		45.87 36.44		-28.13 -17.56	Peak Average

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Mobile Phone EUT

Model : iris 30
Test mode : 802.11B-L mode
Power Rating : AC 120V / 60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

ENMI		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹	$\overline{-dB/m}$	dB	dB	dBuV/m	dBu√/m	<u>dB</u>	
1 2	2321.073 2321.073			4.62 4.62				-24.56 -17.32	Peak Average
3	2390.000 2390.000	17.74 7.91	23.68 23.68	4.69				-27.89 -17.72	Peak Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

: 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

: Mobile Phone : iris 30 EUT Model Test mode : 802.11B-H mode

Power Rating : AC 120V / 60Hz Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK :

Over ReadAntenna Cable Preamp Limit Freq Level Factor Loss Factor Level Line Limit Remark dB dB dBuV/m dBuV/m MHz dBuV dB/m 0.00 48.69 74.00 -25.31 Peak 0.00 37.28 54.00 -16.72 Average 2483.500 20.18 23.70 4.81 8.77 23.70 4.81

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Mobile Phone

Model : iris 30 Test mode : 802.11B-H mode Power Rating : AC 120V / 60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK

	30	Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu∀	dB/m	₫B	−−−dB	dBuV/m	dBuV/m	dB		
1	2483.500 2483.500									

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g

Test channel: Lowest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Mobile Phone Condition

EUT : iris 30 : 802.11G-L mode Model Test mode Power Rating: AC 120V / 60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Carey

amou!	1/2/6	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1 2	2390, 000 2390, 000	25. 61 11. 17	23.68 23.68	4.69 4.69	0.00 0.00	53.98 39.54	74.00 54.00	-20.02 -14.46	Peak Average

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Mobile Phone

Model : iris 30
Test mode : 802.11G-L mode
Power Rating : AC 120V / 60Hz
Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey

REMARK

rem.	and the second								
		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∀	dB/m	₫₿	₫B	dBuV/m	dBuV/m	dB	
1	2390,000								

Remark:

1 2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

model : iris 30
Test mode : 802.11G-H mode
Power Rating : AC 120V / 60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey
REMARK :

44116.04		Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	dB/m	dB	<u>d</u> B	dBuV/n	dBu√/m	dB	
	2483.500 2483.500								

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Mobile Phone Condition

EUT

Model : iris 30
Test mode : 802.11G-H mode
Power Rating : AC 120V / 60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey
RFMARK

LIMA	700		Antenna Factor				Limit Line		Remark
	MHz	dBuV	dB/m	₫B	₫B	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500					55.89 41.59			

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Mobile Phone

: iris 30 : 802.11N20-L mode Model Test mode

Power Rating: AC 120V / 60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Carey

REMARK

T. HELL		Read	Antenna	Cable	Preamp	E 140	Limit	Over	2 2
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∀	dB/m	₫B	₫B	dBuV/m	dBuV/m	₫₿	
1 2	2390.000 2390.000								

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Mobile Phone Condition

Model : iris 30
Test mode : 802.11N20-L mode
Power Rating : AC 120V / 60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey
REMARK :

MAR	cv :	Read	Antenna	Cable	Presen		Limit	Over	
	Freq								Remark
	MHz	dBu∛	dB/m	dB	dB	dBuV/n	dBuV/m	dB	
1 2	2390,000								Peak

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Mobile Phone EUT

Model : iris 30
Test mode : 802.11N2O-H mode
Power Rating : AC 120V / 60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK :

w	in the second								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹	dB/n	₫B	₫B	dBuV/m	dBuV/m	₫B	
1	2483.500 2483.500								

Remark:

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCISE1705016

Page 47 of 71

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Mobile Phone EUT Model

: iris 30 : 802.11N20-H mode Test mode Power Rating : AC 120V / 60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK

		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq								Remark
	MHz	dBuV	dB/m	₫B	₫B	dBuV/m	dBuV/m	₫₿	
1 2	2483.500 2483.500					57.61 40.52			

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

802.11n (H40)

Test channel: Lowest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Mobile Phone Condition

EUT

Model : iris 30 : 802.11N40-L mode Test mode Power Rating: AC 120V / 60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Carey

REMARK

ur.									
	Read	Antenna	Cable			Limit	Over		
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
MHz	dBu∜	—dB/m	<u>dB</u>	₫₿	dBuV/m	dBuV/a	dB		
2390.000 2390.000	200 of 4 C and 200				48.96 38.54			Peak Average	

Remark:

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 49 of 71

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Mobile Phone Condition

EUT

Model Test mode : 802.11N40-L mode Power Rating : AC 120V / 60Hz Environment : Temp:25.5°C Huni:55% Test Engineer: Carey REMARK : iris 30

MAR	. A	Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq		Factor						Remark
	MHz	dBu₹	-dB/m	<u>dB</u>	dB	dBu∀/m	dBu∀/m	<u>dB</u>	
1 2	2390.000 2390.000	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	23.68	4, 69			74.00 54.00		Peak Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Mobile Phone

: iris 30 Model

: 802.11N40-H mode Test mode

Power Rating : AC 120V / 60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK

CIILAN	ь .	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB/m	₫B	dB	dBuV/m	dBuV/m	dB	
1 2	2483,500 2483,500		23.70 23.70	4.81 4.81		51.89 40.67			Peak Average

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Mobile Phone

: iris 30 : 802.11N40-H mode Model Test mode Power Rating: AC 120V / 60Hz Environment: Temp: 25.5°C Huni: 55% Test Engineer: Carey

REMARK

Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
MHz	dBu∀	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
2483.500 2483.500								

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 11						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table						
	Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Test mode: 802.11b

Date: 7.MAY.2017 11:54:14

30MHz~25GHz

Date: 7.MAY.2017 11:53:54

30MHz~25GHz

Date: 7.MAY.2017 11:53:32

30MHz~25GHz

Test mode: 802.11g

Lowest channel

Date: 7.MAY.2017 11:54:33

30MHz~25GHz

Date: 7.MAY.2017 11:54:51

30MHz~25GHz

Date: 7.MAY.2017 11:56:44

30MHz~25GHz

Test mode: 802.11n(H20)

Date: 7.MAY.2017 11:57:05

30MHz~25GHz

Date: 7.MAY.2017 11:57:23

30MHz~25GHz

Date: 7.MAY.2017 11:57:41

30MHz~25GHz

Test mode: 802.11n(H40)

Date: 7.MAY.2017 11:58:04

30MHz~25GHz

Date: 7.MAY.2017 11:58:19

30MHz~25GHz

Date: 7.MAY.2017 11:58:31

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C S	ection 15	5.209 a	and 15.205			
Test Method:	ANSI C63.10:201	13					
Test Frequency Range:	9kHz to 25GHz						
Test site:	Measurement Dis	stance: 3r	m				
Receiver setup:	Frequency	Detect	tor	RBW	V	BW	Remark
·	30MHz-1GHz	Quasi-p	eak	120KHz	300KHz		Quasi-peak Value
	Above 1GHz	Peak			3MHz		Peak Value
		RMS		1MHz		ИHz	Average Value
Limit:	Frequency		Limit	(dBuV/m @3	m)	_	Remark
	30MHz-88MH			40.0			uasi-peak Value
	88MHz-216MH			43.5			uasi-peak Value
							uasi-peak Value
	960MHz-1GHz 54.0 Quasi-pea						
	Above 1GHz	<u>:</u>		54.0 74.0		<i>'</i>	Average Value Peak Value
Test Procedure:	The table was highest radia 2. The EUT was antenna, who tower. 3. The antennathe ground to Both horizor make the med. 4. For each suscase and the meters and to find the med. 5. The test-reconspecified Base 6. If the emission the limit specified Buthave 10dB research.	(above 10 as rotated ation. It is set 3 m ich was not a height is to determinatel and voe asurements and with a rota taximum rever systemowidth woon level of cified, the would be margin wo	GHz) and 360 of the lent sent sent sent able were adinated with Mof the lent test report ould be desired.	above the gradegrees to degrees to degrees to degrees to degree d	he into of a meter value s of the was a point of a mode stoppe the ne by	at a 3 aine the erferent variable to four of the time ante errange phts frodegree tect Fude. Example was 1 oped and emission one up to the time arrange of the time arrange example.	meter chamber. e position of the nce-receiving le-height antenna meters above field strength. enna are set to ed to its worst m 1 meter to 4 s to 360 degrees

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL Condition

Model : iris 30
Test mode : WIFI mode
Power Rating : AC 120V / 60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey
REMARK :

THURST IN										
	Freq		Antenna Factor				Limit Line	Over Limit	Remark	
-	MHz	dBu∜	dB/m	aB	₫₿	dBuV/m	dBuV/m	dB		
1	44.901		17.40	1.28		19.27	A DECEMBER OF THE PERSON OF TH			
1 2 3	146.888 183.844			2. 75		18.13 20.31		-23.19	4.0 - 1.0 - 1.0	
4 5			11.68			23.72				
6	530, 101		17.60	0.04.00.00	29.04			-21,06	O Paragraphic Control of the Control	

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL Condition

EUT : Mobile Phone

Model : iris 30

Test mode : WIFI mode

Power Rating : AC 120V / 60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK

Freq	Read/ Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	
MHz	dBu∀	dB/m	₫₿	d₿	dBuV/n	dBuV/m	dB	
36.127	41.27	15.30	1.07	29.94	27.70	40.00	-12.30	QP
41.567	38.90	17.15	1.24	29.89	27.40	40.00	-12.60	QP
129,923	42.18	12.30	2.28	29.33	27.43	43.50	-16.07	QP
202.100	41.40	10.29	2.87	28.82	25.74	43.50	-17.76	QP
266.609	42.76	11.95	2.85	28.51	29.05	46.00	-16.95	QP
369.405	39.13	14.84	3.09	28.65	28.41	46.00	-17.59	QP
	MHz 36.127 41.567 129.923 202.100 266.609	Freq Level MHz dBuV 36.127 41.27 41.567 38.90 129.923 42.18 202.100 41.40 266.609 42.76	MHz dBuV dB/m 36.127 41.27 15.30 41.567 38.90 17.15 129.923 42.18 12.30 202.100 41.40 10.29 266.609 42.76 11.95	MHz dBuV dB/m dB 36.127 41.27 15.30 1.07 41.567 38.90 17.15 1.24 129.923 42.18 12.30 2.28 202.100 41.40 10.29 2.87 266.609 42.76 11.95 2.85	MHz dBuV dB/m dB dB dB 36.127 41.27 15.30 1.07 29.94 41.567 38.90 17.15 1.24 29.89 129.923 42.18 12.30 2.28 29.33 202.100 41.40 10.29 2.87 28.82 266.609 42.76 11.95 2.85 28.51	MHz dBuV dB/m dB dB dBuV/m 36.127 41.27 15.30 1.07 29.94 27.70 41.567 38.90 17.15 1.24 29.89 27.40 129.923 42.18 12.30 2.28 29.33 27.43 202.100 41.40 10.29 2.87 28.82 25.74 266.609 42.76 11.95 2.85 28.51 29.05	MHz dBuV dB/m dB dB dBuV/m dBuV/m 36.127 41.27 15.30 1.07 29.94 27.70 40.00 41.567 38.90 17.15 1.24 29.89 27.40 40.00 129.923 42.18 12.30 2.28 29.33 27.43 43.50 202.100 41.40 10.29 2.87 28.82 25.74 43.50 266.609 42.76 11.95 2.85 28.51 29.05 46.00	Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 36.127 41.27 15.30 1.07 29.94 27.70 40.00 -12.30 41.567 38.90 17.15 1.24 29.89 27.40 40.00 -12.60 129.923 42.18 12.30 2.28 29.33 27.43 43.50 -16.07

Above 1GHz

Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	48.14	36.06	6.81	41.82	49.19	74.00	-24.81	Vertical	
4824.00	48.45	36.06	6.81	41.82	49.50	74.00	-24.50	Horizontal	
Test	mode: 802.	11b	Te	st channel: Lo	owest	Rem	ark: Avera	age	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	38.15	36.06	6.81	41.82	39.20	54.00	-14.80	Vertical	
4824.00	38.12	36.06	6.81	41.82	39.17	54.00	-14.83	Horizontal	

Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	46.95	36.32	6.85	41.84	48.28	74.00	-25.72	Vertical	
4874.00	47.38	36.32	6.85	41.84	48.71	74.00	-25.29	Horizontal	
Test	mode: 802.	11b	Test channel: Middle			Rem	ark: Avera	age	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	36.39	36.32	6.85	41.84	37.72	54.00	-16.28	Vertical	
4874.00	37.94	36.32	6.85	41.84	39.27	54.00	-14.73	Horizontal	

Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	48.37	36.58	6.89	41.86	49.98	74.00	-24.02	Vertical	
4924.00	47.17	36.58	6.89	41.86	48.78	74.00	-25.22	Horizontal	
Test	mode: 802.	11b	Test channel: Highest			Rem	nark: Avera	age	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	38.41	36.58	6.89	41.86	40.02	54.00	-13.98	Vertical	
4924.00	37.16	36.58	6.89	41.86	38.77	54.00	-15.23	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11g		Test char	nel: Lowest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	47.47	36.06	6.81	41.82	48.52	74.00	-25.48	Vertical	
4824.00	48.11	36.06	6.81	41.82	49.16	74.00	-24.84	Horizontal	
Tes	t mode: 802.	11g	Test channel: Lowest			Rem	ark: Avera	age	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	37.46	36.06	6.81	41.82	38.51	54.00	-15.49	Vertical	
4824.00	38.47	36.06	6.81	41.82	39.52	54.00	-14.48	Horizontal	

Test mode: 80	02.11g		Test char	nel: Middle		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	47.12	36.32	6.85	41.84	48.45	74.00	-25.55	Vertical	
4874.00	47.69	36.32	6.85	41.84	49.02	74.00	-24.98	Horizontal	
Tes	t mode: 802.	.11g	Test channel: Middle			Rem	ark: Avera	age	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	37.03	36.32	6.85	41.84	38.36	54.00	-15.64	Vertical	
4874.00	37.95	36.32	6.85	41.84	39.28	54.00	-14.72	Horizontal	

Test mode: 80	Test mode: 802.11g			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	46.41	36.58	6.89	41.86	48.02	74.00	-25.98	Vertical	
4924.00	48.85	36.58	6.89	41.86	50.46	74.00	-23.54	Horizontal	
Tes	t mode: 802.	11g	Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	36.87	36.58	6.89	41.86	38.48	54.00	-15.52	Vertical	
				41.86	40.12	54.00		Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	47.74	36.06	6.81	41.82	48.79	74.00	-25.21	Vertical
4824.00	48.24	36.06	6.81	41.82	49.29	74.00	-24.71	Horizontal
Test m	ode: 802.11	n(H20)	Test channel: Lowest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	37.41	36.06	6.81	41.82	38.46	54.00	-15.54	Vertical
4824.00	38.54	36.06	6.81	41.82	39.59	54.00	-14.41	Horizontal

Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	47.47	36.32	6.85	41.84	48.80	74.00	-25.20	Vertical
4874.00	47.36	36.32	6.85	41.84	48.69	74.00	-25.31	Horizontal
Test m	Test mode: 802.11n(H20)		Test channel: Middle			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	37.48	36.32	6.85	41.84	38.81	54.00	-15.19	Vertical
4874.00	37.37	36.32	6.85	41.84	38.70	54.00	-15.30	Horizontal

Test mode: 802.11n(H20)		Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	46.74	36.58	6.89	41.86	48.35	74.00	-25.65	Vertical
4924.00	48.86	36.58	6.89	41.86	50.47	74.00	-23.53	Horizontal
Test m	ode: 802.11	n(H20)	Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	36.58	36.58	6.89	41.86	38.19	54.00	-15.81	Vertical
4924.00	38.48	36.58	6.89	41.86	40.09	54.00	-13.91	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H40)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	47.47	36.06	6.81	41.82	48.52	74.00	-25.48	Vertical
4844.00	48.36	36.06	6.81	41.82	49.41	74.00	-24.59	Horizontal
Test m	ode: 802.11	n(H40)	Test channel: Lowest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	37.41	36.06	6.81	41.82	38.46	54.00	-15.54	Vertical
4844.00	38.82	36.06	6.81	41.82	39.87	54.00	-14.13	Horizontal

Test mode: 80	Test mode: 802.11n(H40)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	47.74	36.32	6.85	41.84	49.07	74.00	-24.93	Vertical	
4874.00	47.25	36.32	6.85	41.84	48.58	74.00	-25.42	Horizontal	
Test m	ode: 802.11	n(H40)	Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	37.48	36.32	6.85	41.84	38.81	54.00	-15.19	Vertical	
4874.00	37.32	36.32	6.85	41.84	38.65	54.00	-15.35	Horizontal	

Test mode: 802.11n(H40)			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	46.41	36.45	6.87	41.85	47.88	74.00	-26.12	Vertical
4904.00	48.53	36.45	6.87	41.85	50.00	74.00	-24.00	Horizontal
Test m	ode: 802.11	n(H40)	Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	36.34	36.45	6.87	41.85	37.81	54.00	-16.19	Vertical
4904.00	38.69	36.45	6.87	41.85	40.16	54.00	-13.84	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.