DIGITÁLIS TECHNIKA I

Dr. Lovassy Rita Dr. Pődör Bálint

Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet

9. ELŐADÁS

A jelen előadáshoz kapcsolódó jegyzetrészek:

Sándor T., Takács G. Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez

Rőmer jegyzet 146-160 old., 179-181 old. Zsom jegyzet I, 19-49 old., 297-299 old.

Gál könyv 132-145 old., 167-201 old.

http://users.atw.hu/tfginfo/ht/hardver/szamabr.pdf Sándor T.; Takács G.:Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez

2

BINÁRIS KIVONÁS KETTES KOMPLEMENSSEL

A számítógépek a kivonást a kettes komplemens segítségével végzik.

VIĞYÁZAT!!! A kivonandót is annyi bittel kell felírni, ahány bites a kisebbítendő!

A kivonás az összeadásra vezethető vissza pl. 8 - 3 = 8 + (-3)

3

OKTÁLIS KIVONÁS ELŐJEL NÉLKÜLI SZÁMÁBRÁZOLÁSBAN

67 o - 36 o

31 o

részletesen:

7 - 6 = 1 o átvitel 0 6 - 3 = 3 o átvitel 0

4

HEXADECIMÁLIS KIVONÁS ELŐJEL NÉLKÜLI SZÁMÁBRÁZOLÁSBAN

37 h -1E h

19 h

részletesen:

7-E = 9 h átvitel 1 (a kivonás valójában így néz ki:

17 h-E h=9 h, és az átvitel ezért keletkezik)

3-1-1 = 1h átvitel 0.

BINÁRIS SZORZÁS

Az A x B = P bináris szorzás szorzótáblája (bináris "egyszeregy") igen egyszerű

Α	В	Р
0	0	 0
0	1	0
1	0	0
1	1	- 1

Lényegében azonos a logikai ÉS kapcsolattal (logikai szorzás)

6

BINÁRIS SZÁMOK SZORZÁSA

A bináris számok szorzása ugyanúgy történik, mint a decimális számoké:

- ha a szorzó soronkövetkező számjegye 1-es, akkor összeadás következik,
- ha 0-as, akkor nincs összeadás.

Minden helyértéknél léptetjük a részletszorzatot a megfelelő irányba.

BINÁRIS SZORZÁS ELVÉGZÉSE

 $100100 \times 1011 \implies 36 \times 11$

100100 1. részletszorzat 100100 2. részletszorzat

1101100 összeg 3. részletszorzat 000000

01101100 összeg

4. részletszorzat 100100

110001100 végösszeg ⇒ 396

BINÁRIS SZORZÁS VÉGREHAJTÁSA

szorzandó multiplicand *x*₃ *x*₂ *x*₀ szorzó multiplier *y*₁ $(xy_0)_4\ (xy_0)_3\ (xy_0)_2\ (xy_0)_1\ (xy_0)_0$ $(xy_1)_4\ (xy_1)_3\ (xy_1)_2\ (xy_1)_1\ (xy_1)_0$ pp₁ $(xy_2)_4\ (xy_2)_3\ (xy_2)_2\ (xy_2)_1\ (xy_2)_0$ pp_2 $(xy_3)_4 (xy_3)_3 (xy_3)_2 (xy_3)_1 (xy_3)_0$ pp_3 p: szorzat pp: rész-szorzat

BINÁRIS SZORZÁS ALGORITMUSA

 $P = A \times B$

$$\begin{array}{ccc} & & & & & & \\ \text{n-1} & & & & & \\ \text{A} = \sum A_i \ 2^i & & \text{és} & & \text{B} = \sum B_i \ 2^i \\ & & & & \text{i} = 0 & & & \text{i} = 0 \\ \end{array}$$

a részletszorzatok

$$P_k = B_k \sum A_i 2^i = 0$$
 ha $B_k = 0$, és = A ha $B_k = 1$
 $i = 0$

a teljes szorzat

$$\begin{array}{cccc} m\text{-}1 & n\text{-}1 & m\text{-}1 \\ P = \sum P_k \ 2^k = \sum & \sum & \sum \left(A_i B_k\right) \ 2^{i+k} \\ k = 0 & i=0 & k=0 \end{array}$$

10

Action

BINÁRIS SZÁMOK OSZTÁSA

A szokásos decimális "kézi" osztáshoz hasonlóan végezhető.

Visszaállító algoritmus, illetve visszaállítás nélküli algoritmus.

11

BINÁRIS SZÁMOK OSZTÁSA

http://www.sonoma.edu/users/f/farahman/sonoma/courses/es310/labs/division.pdf2

LEBEGŐPONTOS SZÁMÁBRÁZOLÁS

$$N=m\cdot 2^k$$
 m – mantissza k - karakterisztika
$$\frac{1}{2}<\left|m\right|<1 \quad \text{az első számjegy} \atop \text{mindig 1}$$

 $0.000111011 = 0.111011 \cdot 2^{-3}$ $10.00110 = 0.1000110 \cdot 2^{+2}$

megnöveli a számtartományt lehetővé teszi a törtszámok ábrázolását

- Mivel a mantissza első, legnagyobb helyiértéke mindig 1, ezért ezt nem kell tárolni, helyette az első bit az előjel, a szám mantisszája pl. 7 biten ábrázolódik
- Nem kell tárolni a hatványalapot sem, mert az 2. A kitevőt (karakterisztikát) többletes ábrázolással vesszük.

- 1. BCD típusú és egyéb különleges kódok
- 2. Összegzés BCD kódban

15

DECIMÁLIS SZÁMJEGYEK BINÁRIS KÓDOLÁSA

Információ ábrázolás és feldolgozás: tiszta bináris (és 1-es, valamint 2-es komplemens) kód.

Adat be- és kivitel: tízes számrendszer.

10-es számrendszer egyes számjegyei (a 10 szimbólum, 0, 1, ... 9) kifejezése bináris kóddal:

binárisan kódolt decimális kód

Binary Coded Decimal (BCD)

16

NORMÁL BCD KÓD Decimal digit 8421 code Természetes kód 0000 - Minden számjegyhez a 4-bites bináris 0001 kódját rendeli 0010 - Természetes helyérték: 8 4 2 1 Érvényes kodszavak 0101 $d = 8a_4 + 4a_3 + 2a_2 + 1a_0$ 0110 0111 A hat nem megengedett kombináció 1000 1001 (1010, ... 1111) neve pszeudotetrád. unused 1010 1011 Nem használt, illetve érvénytelen kódszajyak

ARITMETIKAI MŰVELETEK, ÖSSZEADÁS TETRÁD KÓDBAN

A digitális rendszerek és a számítógépek jelentős része a négy aritmetikai műveletet, illetve azok egy részét közvetlenül a binárisan kódolt decimális (BCD) számokon is el tudja végezni.

Pl. a mikroprocesszorok alkalmasak BCD kódbeli összeadására, egy részük kivonására is. Egyes célprocesszorok a BCD kódú, szorzást illetve osztást is el tudják végezni.

Az összeadást a közönséges bináris összeadásra vezetik vissza. Elve az, hogy az operandusok egyes tetrádjait közönséges bináris számoknak tekintve tetrádonként elvégzik az összeadást, majd ha szükséges (pszeudotetrádok keletkeznek) korrigálják az eredményt.

19

ÖSSZEADÁS KÖZÖNSÉGES BCD (8421 SÚLYOZÁSÚ) KÓDBAN

Ha két tetrád összege nem nagyobb mint 9, akkor az eredmény helyes, nincs szükség korrekcióra.

Ha az eredmény nagyobb mint 9 (ekkor átvitel és pszeudotetrád lép fel) akkor az eredmény csak binárisan helyes, BCD kódban nem. Ekkor a korrekció 6 (decimális) azaz 0110 (bináris) hozzáadásával elvégezhető.

Mindezt a legalacsonyabb helyértéktől kezdve tetrádról tetrádra haladva kell elvégezni.

20

BCD (8421) ÖSSZEADÁS

Példa:

 decimális
 BCD

 427
 0100 0010 0111

 + 131
 + 0001 0011 0001

 558
 0101 0101 1000

Mivel egyetlen helyértéken sem volt az összeg 9-nél nagyobb, ezért korrekcióra nem volt szükség

21

BCD (8421) ÖSSZEADÁS ALGORITMUSA

 $A_{BCD} +_{BCD} B_{BCD} = A_{BCD} +_{bin} B_{BCD}$

 $ha A_{BCD} +_{bin} B_{BCD} \le 9$

 $A_{BCD} +_{BCD} B_{BCD} = A_{BCD} +_{bin} B_{BCD} +_{bin} 6_{BCD}$

 $ha A_{BCD} +_{bin} B_{BCD} > 9$

23

