Zhenfei Zhang

Cryptograhy Engineer Algorand Boston, MA zhenfei.zhang@hotmail.com https://zhenfeizhang.github.io/ https://www.linkedin.com/in/zhenfeizhang/

Education

2010-2014

PhD, Computer Science, University of Wollongong, Australia;

Thesis title: Revisiting Fully Homomorphic Encryption Schemes and Their Cryptographic Primitives

Experience

Cryptography Engineer, Algorand, 2018-now

Identify, develop and standardize cryptographic tools to be used by Algorand blockchain protocol.

- Design: Identify suitable cryptography for Algorand blockchain from scratch;
- Coding: Product level Rust code for Pixel aggregatable signature;
- Standardization: Internet draft for BLS signature scheme, IETF/CFRG workgroup.

Director of Cryptography Research, *OnBoard Security* (Acquired by Qualcomm), 2016-2018 NTRU and post-quantum cryptography research and standardization.

Research Scientist, Security Innovation, 2014-2016

IARPA project on Fully Homomorphic Encryptions.

Highlights

Standards

Contribute to 4 out of 26 2nd round candidates of NIST post-quantum standatdization process: Falcon, LAC, NTRU and Round5;

Internet draft: BLS-signature, Quantum safe hybrid for TLS 1.2 and TLS 1.3;

Former member of ETSI Quantum-safe Cryptography (QSC) working group;

Former member of ISO/SC27 working group.

Publication and patents

3 U.S. patents;

25+ peer reviewed paper at Asiacrypt 2019, Crypto 2019, Asiacrypt 2018, PKC

2018, IEEE Transaction on Computers, etc.;

See next pages for full list.

Programming Languages

Rust: Cryptographic library at product level; to be open sourced soon.

C: Cryptographic library, nearly product level code, submitted to NIST PQC com-

petition.

Python/Sage: Prove of concept codes.

Software

Pixel A pairing based, forward-secure and aggregatable signature, written in python

(PoC) and rust (product level). Improves existing (non-aggregatable) solution by

100x, to be open sourced and deployed soon.

Raptor A lattice based (linkable) ring signature, written in C as a PoC, aiming to protect

user's anonymity against quantum adversaries. Source code.

NTRUEncrypt A C implementation of NTRUEncrypt, submitted to NIST PQC standardization

process. Source code.

Ring mul- A C library for fast ring multiplication using AVX-2; improving prior codes by a factor

tiplication of 2.23. Source code

libgcrypt-ntru Enabling NTRUEncrypt for libgcrypt. **Source code**.

Research Interest

• Fully homomorphic encryptions, with use cases such as smart contracts, machine learning;

• Lattice based signatures, with additional features such as aggregation, anonymity;

• Efficient zero knowledge proofs secure against quantum computers.

See next pages for the full list of patents, standards and publications.

Patents

- Chameleon Hash technique and linkable ring signature technique
 - Zhenfei Zhang
 - Provisional patent, 2018.
- Digital signature technique
 - Jeffrey Hoffstein, Jill Pipher, William J Whyte, Zhenfei Zhang
 - United States Patent Application, 2018.
- Digital signature method and apparatus
 - Jeffrey Hoffstein, Jill Pipher, Joseph H Silverman, William J Whyte, Zhenfei Zhang
 - United States Patent 15530762, 2017.

Standards

- BLS Signature Scheme
 - D. Boneh, S.Gorbunov, R. Wahby, H.Wee, Z.Zhang
 - Internet-Draft.
- Quantum-Safe Hybrid (QSH) Ciphersuite for Transport Layer Security (TLS) version 1.2
 - J. M. Schanck, W. Whyte and Z. Zhang
 - Internet-Draft.
- Criteria for selection of public-key cryptographic algorithms for quantum-safe hybrid cryptography
 - J. M. Schanck, W. Whyte and Z. Zhang
 - Internet-Draft.
- Quantum-Safe Hybrid (QSH) Ciphersuite for Transport Layer Security (TLS) version 1.3
 - W. Whyte, Z. Zhang, S. Fluhrer and O. Garcia-Morchon
 - Internet-Draft.
- Efficient Embedded Security Standards (EESS) #1: Implementation Aspects of NTRUEncrypt
 - W. Whyte and Z. Zhang
 - Consortium for Efficient Embedded Security
- Quantum Safe Cryptography and Security; An introduction, benefits, enablers and challenges
 - One of 22 contributors
 - European Telecommunications Standards Institute(ETSI) white paper

Publications

2019

- Middle-Product Learning with Rounding Problem and its Applications
 - Shi Bai, Katharina Boudgoust, Dipayan Das, Adeline Roux-Langlois, Weiqiang Wen, Zhenfei
 Zhang
 - Asiacrypt 2019.
- Efficient Lattice-Based Zero-Knowledge Arguments with Standard Soundness: Construction and Applications
 - Rupeng Yang, Man Ho Au, Zhenfei Zhang, Qiuliang Xu, Zuoxia Yu, William Whyte
 - Crypto 2019. IACR eprint.
- (Linkable) Ring Signature from Hash-Then-One-Way Signature
 - Xingye Lu, Man Ho Au, Zhenfei Zhang
 - TrustCom 2019. IACR eprint.
- Ring Signatures based on Middle-Product Learning with Errors Problems
 - Dipayan Das, Man Ho Au and Zhenfei Zhang
 - Africacrypt 2019.
- Raptor: A Practical Lattice-Based (Linkable) Ring Signature
 - Xingye Lu, Man Ho Au, Zhenfei Zhang
 - ACNS 2019. IACR eprint. Source code.
- Round5: Compact and Fast Post-Quantum Public-Key Encryption
 - Hayo Baan, Sauvik Bhattacharya, Scott Fluhrer, Oscar Garcia-Morchon, Thijs Laarhoven,
 Ronald Rietman, Markku-Juhani O. Saarinen, Ludo Tolhuizen, Zhenfei Zhang
 - PQCrypto 2019. IACR eprint. Website.
- Cryptanalysis of an NTRU-based Proxy Encryption Scheme from ASIACCS'15
 - Zhen Liu, Yanbin Pan, Zhenfei Zhang
 - PQCrypto 2019. IACR eprint.

2018

- LAC: Practical Ring-LWE Based Public-Key Encryption with Byte-Level Modulus
 - Xianhui Lu, Yamin Liu, Zhenfei Zhang, Dingding Jia, Haiyang Xue, Jingnan He, Bao Li
 - Pre-print. IACR eprint. Source code
- Shorter Messages and Faster Post-Quantum Encryption with Round5 on Cortex M
 - Markku-Juhani O. Saarinen, Sauvik Bhattacharya, Oscar Garcia-Morchon, Ronald Rietman,
 Ludo Tolhuizen, Zhenfei Zhang
 - Cardis 2018. IACR eprint.
- On the Hardness of the Computational Ring-LWR Problem and its Applications
 - Long Chen, Zhenfeng Zhang, Zhenfei Zhang
 - Asiacrypt 2018. IACR eprint.
- A signature scheme from the finite field isomorphism problem.
 - Jeffrey Hoffstein, Joseph H. Silverman, William Whyte, Zhenfei Zhang
 - MathCrypt 2018. IACR eprint, Slides.
- Practical Signatures from the Partial Fourier Recovery Problem Revisited: A Provably-Secure and Gaussian-Distributed Construction.

- Xingye Lu, Zhenfei Zhang, Man Ho Au
- ACISP 2018. Manuscript.
- Optimizing polynomial convolution for NTRUEncrypt.
 - Wei Dai, William Whyte, Zhenfei Zhang
 - IEEE Transaction on Computers. IACR eprint, Source code.
- Fully Homomorphic Encryption from the Finite Field Isomorphism Problem.
 - Yarkin Doröz, Jeffrey Hoffstein, Jill Pipher, Joseph H. Silverman, Berk Sunar, William Whyte,
 Zhenfei Zhang:
 - PKC 2018. IACR eprint.

2017

Choosing parameters for NTRUEncrypt

- Jeffrey Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman, William Whyte, Zhenfei
 Zhang
- CT-RSA 2017. IACR eprint.
- Round2: KEM and PKE based on GLWR.
 - Hayo Baan, Sauvik Bhattacharya, Óscar García-Morchón, Ronald Rietman, Ludo Tolhuizen,
 Jose Luis Torre-Arce, Zhenfei Zhang
 - NIST PQC submission. IACR eprint.
- A signature scheme from Learning with Truncation.
 - Jeffrey Hoffstein, Jill Pipher, William Whyte, Zhenfei Zhang
 - Pre-print. IACR eprint.
- Anonymous Announcement System (AAS) for Electric Vehicle in VANETs.
 - Man Ho Au, Joseph K. Liu, Zhenfei Zhang, Willy Susilo, Jin Li
 - The Computer Journal. Manuscript.

2016

- Circuit-extension handshakes for Tor achieving forward secrecy in a quantum world.
 - John M. Schanck, William Whyte, Zhenfei Zhang
 - PoPETs 2016. IACR eprint, Tor feature request, Source code, Slides.
- NTRU modular lattice signature scheme on CUDA GPUs.
 - Wei Dai, Berk Sunar, John M. Schanck, William Whyte, Zhenfei Zhang
 - HPCS 2016. IACR eprint.

_____2015

- LLL for ideal lattices: re-evaluation of the security of Gentry-Halevi's FHE scheme.
 - Thomas Plantard, Willy Susilo, Zhenfei Zhang
 - Design, Codes and Cryptography. Manuscript.
- DA-Encrypt: Homomorphic Encryption via Non-Archimedean Diophantine Approximation.
 - Jeffrey Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman, William Whyte, Zhenfei
 Zhang
 - Pre-print. IACR eprint.

2014 and earlier

- Fully Homomorphic Encryption Using Hidden Ideal Lattice.
 - Thomas Plantard, Willy Susilo, Zhenfei Zhang
 - IEEE Transation on Information Forensics and Security. Manuscript.
- Adaptive Precision Floating Point LLL.
 - Thomas Plantard, Willy Susilo, Zhenfei Zhang
 - ACISP 2013. Manuscript.
- On the CCA-1 Security of Somewhat Homomorphic Encryption over the Integers.
 - Zhenfei Zhang, Thomas Plantard, Willy Susilo
 - ISPEC 2012. Manuscript.
- Lattice Reduction for Modular Knapsack.
 - Thomas Plantard, Willy Susilo, Zhenfei Zhang
 - SAC 2012. Manuscript.
- Reaction Attack on Outsourced Computing with Fully Homomorphic Encryption Schemes.
 - Zhenfei Zhang, Thomas Plantard, Willy Susilo
 - ISPEC 2012. Manuscript.