Polarization-transfer measurement to a large-virtuality bound proton in the deuteron Supplemental Material

November 28, 2016

I. Yaron^{a,1}, D. Izraeli^{a,1}, P. Achenbach^c, H. Arenhövel^c, J. Beričič^f, R. Böhm^c, D. Bosnarⁱ, E. O. Cohen^a, L. Debenjak^f, M. O. Distler^c, A. Esser^c, I. Friščić^{i,2}, R. Gilman^e, I. Korover^{a,j}, J. Lichtenstadt^a, H. Merkel^c, D. G. Middleton^c, M. Mihovilovič^c, U. Müller^c, E. Piasetzky^a, S. Širca^{f,g}, S. Strauch^h, J. Pochodzalla^c, G. Ron^d, B. S. Schlimme^c, M. Schoth^c, F. Schulz^c, C. Sfienti^c, M. Thiel^c, A. Tyukin^c, A. Weber^c, (A1 Collaboration)

^aSchool of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel.
^bMassachusetts Institute of Technology, Cambridge, MA 02139.
^cInstitut für Kernphysik, Johannes Gutenberg-Universität, 55099 Mainz, Germany.
^dRacah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel.
^eRutgers, The State University of New Jersey, Piscataway, NJ 08855, USA.
^fJožef Stefan Institute, 1000 Ljubljana, Slovenia.
^gDepartment of Physics, University of Ljubljana, 1000 Ljubljana, Slovenia.
^hUniversity of South Carolina, Columbia, South Carolina 29208, USA.
ⁱDepartment of Physics, University of Zagreb, HR-10002 Zagreb, Croatia.
^jDepartment of Physics, NRCN, P.O. Box 9001, Beer-Sheva 84190, Israel.

Comparing the measurements to the calculation

Consistent deviations between the data and the calculation are shown in Fig. S-1. The ratio in Fig. S-1 between the data and calculation is determined event by event and averaged over the virtuality bin (note that Fig. 3 in the paper shows the calculations and data averaged separately over the virtuality bins). The data are consistently above the calculation by about 10% (a difference of 4 standard deviations).

We checked also the agreement between the calculation and the data as a function of the collinearity of the initial proton momentum and the momentum transfer. We define θ_{p_mq} as the angle between \vec{p}_{miss} and \vec{q} . Notice that with no initial and final state intentions $\vec{p}_{i} = -\vec{p}_{miss}$. For large missing momenta \vec{p}_{miss} and \vec{q} are close to be collinear (see Table 1). For low p_{miss} , values θ_{p_mq} cover the full range.

¹These authors contributed equally to this work.

²Present address: MIT-LNS, Cambridge, MA 02139, USA.

Figure S-2 shows the dependence of $(P_x/P_z)_{^2\mathrm{H}}/(P_x/P_z)_{\mathrm{H}}$ on θ_{p_mq} . Also shown is the calculation of [1]. As seen in the figure, the deviations between the data and the calculation have no systematic dependence on θ_{p_mq} .

References

References

[1] H. Arenhovel, W. Leidemann, E. L. Tomusiak, General survey of polarization observables in deuteron electrodisintegration, Eur. Phys. J. A23 (2005) 147–190. arXiv:nucl-th/0407053, doi:10.1140/epja/i2004-10061-5.

Figure S-1: The double-ratio of the measured $(P_x/P_z)_{2\mathrm{H}}^{\mathrm{exp}}$ to the theoretical $(P_x/P_z)_{2\mathrm{H}}^{\mathrm{calc}}$ (full calculation of [1]). The symbols refer to the different experimental set-ups defined in the legend of Fig. 2 in the paper. The gray band presents our estimate of the theoretical uncertainty (see text in the paper for details).

Figure S-2: The measured and calculated [1] double-ratio $(P_x/P_z)_{^2\mathrm{H}}/(P_x/P_z)_{\mathrm{H}}$ as a function of θ_{p_mq} . Symbols are as used in Figures 2 and 3 of the paper.