CREATE AN ANALYTICAL DATASET: PAWDACITY

Business and Data Understanding

Pawdacity would like to expand and open a 14th Store.

Key Decisions:

Pawdacity is a leading pet store chain in Wyoming currently with 13 stores throughout the state, to expand and open a 14th store. To make the recommendation city for the new store, we need make an analysis from previous years sales of each city.

To be able to make an informed decision we need to have the following:

- Sales data for of the Pawdacity stores of 2010
- Data on the population records for each city.
- Demographic data of each city in the state of Wyoming.

Data that is needed to make the decision is the following:

City 2010 Census Population Total Pawdacity Sales Households with Under 18 Land Area

Population Density Total Families

Building the Training Set

Here we focus on cleaning up the data set, and blend on city level and not at store level. Data provided is only city wide, so any analysis at store level would not be sufficient.

Data Validation

Column	Sum	Average
Census Population	213,862	19,442
Total Pawdacity Sales	3,773,304	343,027.64
Households with Under 18	34,064	3096.73
Land Area	33,071	3096.73
Population Density	63	5.71
Total Families	62,653	5695.71

Dealing with Outliers

Scatter Plots to help visualize each predictor variable against the total city sales for Pawdacity.

		2010_Census		Households with	Population	
City	Total_Sales	Population	Land Area	Under 18	Density	Total Families
Buffalo	185328	4,585	3,115.51	746	1.55	1,819.50
Casper	317736	35,316	3,894.31	7,788	11.16	8,756.32
Cheyenne	917892	59,466	1,500.18	7,158	20.34	14,612.64
Cody	218376	9,520	2,998.96	1,403	1.82	3,515.62
Douglas	208008	6,120	1,829.47	832	1.46	1,744.08
Evanston	283824	12,359	999.50	1,486	4.95	2,712.64
Gillette	543132	29,087	2,748.85	4,052	5.80	7,189.43
Powell	233928	6,314	2,673.57	1,251	1.62	3,134.18
Riverton	303264	10,615	4,796.86	2,680	2.34	5,556.49
Rock Springs	253584	23,036	6,620.20	4,022	2.78	7,572.18
Sheridan	308232	17,444	1,893.98	2,646	8.98	6,039.71
Q1	226152	7917	1861.721074	1327	1.72	2923.41
Q3	312984	26061.5	3504.9083	4037	7.39	7380.805
IQR	86832	18144.5	1643.187226	2710	5.67	4457.395
Upper Fence	443232	53278.25	5969.689139	8102	15.895	14066.8975
Lower Fence	95904	-19299.75	-603.059765	-2738	-6.785	-3762.6825

Outliers

Calculation for the quartiles Q1 and Q3 using Excel, 'QUARTILE.INC'

Interquartile Range: IQR Q3 – Q1

Upper Fence: Q3 + 1.5 IQR Lower Fence: Q1 – 1.5 IQR

There are 3 Outliers in the blended dataset: Cheyenne, Gillette, Rock Springs, these are defined as the column values are either above the Upper Fence, or below the Lower Fence.

Cheyenne and Gillette do flag as an outlier, based on Total Sales.

Cheyenne also is flagged as an outlier based on population.

Rock Springs is an outlier due to have most land area.

Keeping Cheyenne in the data set would allow us to run a model against more populated cities and keeping Rock Springs will account for cities that have a bigger land area.

When we look at Gillette a little closer, we see that although it has high total sales, its population is almost 20,000 lower than Cheyenne. Also, the Total number of Families in Gillette is almost half of that of Cheyenne.

Therefore, we should drop Gillette from the Dataset.

Alteryx Workflow

Resources

https://knowledge.udacity.com/questions/166424