Magnitude or length of a vector product space. The magnitude or length of a vector x denoted by ||x|| is defined as $||x|| = \sqrt{\langle x_1 x_2 \rangle}$ The distance between two vectors x and y denoted by $d(x_1y) = ||x-y|| = \sqrt{\langle x_1 x_2 \rangle}$

Angle between two vectors The road number θ in the interval [0,T] that satisfies $\cos\theta = \langle \chi_{iy} \rangle$ [IXII IIYII

Us the angle between χ and χ .

Pb:1 consider the inner product space the with Standard inner product. Find the length of (3,5,-4) and Find the distance between (1,3,-2), (0,1,0) $5 \cdot |n| - too \overline{\chi} = (\chi_1, \chi_2, \chi_3)$ and $\overline{y} = (y_1, y_2, y_3)$ $\langle \pi, \overline{y} \rangle = \chi_{|y|} + \chi_{2}y_{2} + \chi_{3}y_{3}$ (i) Take $\pi = (3, 5, -4)$ length of $\pi = \sqrt{(2, \pi)} = \sqrt{(3, 5, -4)}$ $= \sqrt{3-3} + 5.5 + (4)(4)$ = $\sqrt{9+25+16}$ = $5\sqrt{2}$

(ii) Take $\overline{\pi} = (1/3, -2)$; $\overline{y} = (0, 1/0)$ $d(\overline{x}, \overline{y}) = || \overline{\pi} - \overline{y}|| = || (1/3, -2) - (0, 1/0)||$ $= || (1/2, -2) || = \sqrt{(1/2, -2)}, (1/2, -2) >$ $= \sqrt{1.1 + 2.2 + (-2) \cdot (-2)} = \sqrt{1 + 4 + 4}$

Pb:2 GnSider the inner product Space R3 with inner product. $\langle (\chi_1, \chi_2, \chi_3), (y_1, y_2, y_3) \rangle = \chi_1 y_1 + 3 \chi_2 y_2 + 5 \chi_3 y_3$ Find the angle between (1,2,3) and (2,-1,3)50 m:tolo $\overline{y} = (1,2,3)$; $\overline{y} = (2,-1,3)$ $||\overline{\chi}|| = \sqrt{\langle \overline{\chi}, \overline{\chi} \rangle} = \sqrt{\langle (,2,3), (1,2,3) \rangle} = \sqrt{\langle (,2,3), (1,2,3), (1,2,3), (1,2,3) \rangle} = \sqrt{\langle (,2,3), (1,2,3), (1,2,3), (1,2,3), (1,2,3) \rangle} = \sqrt{\langle (,2,3), (1,2,3), (1,2,3), (1,2,3), (1,2,3), (1,2,3), (1,2,3), (1,2,3)}$ $= \sqrt{1+12+45} = \sqrt{58}$ $||y|| = \sqrt{\langle y, y \rangle} = \sqrt{\langle (2, -1, 3), (2, -1, 2) \rangle} = \sqrt{2^2 + 3 \cdot (-1)^2 + 5 \cdot 3^2}$ = $\sqrt{4+3+45}$ = $\sqrt{52}$ $\langle \overline{\chi}, \overline{y} \rangle = \langle (1, 2, 3) (2, -1, 3) \rangle = 1.2 + 3 - 2 - (-1) + 5 \cdot 3 \cdot 3$ = 2 - 6 + 45 = 41We know, $650 = \frac{2}{12111211} = \frac{41}{58}$ $\theta = (00)^{-1} \left(\frac{41}{\sqrt{58}} \right)$

#02 consider the inner product space
$$P_3(R)$$
 with inner product $\langle f(t), g(t) \rangle = \int_{0}^{R} f(t)g(t) dt$

Find the angle between $2t^2$, $3t^2$

Soln: Take $f(t) = 2t^2$; $g(t) = 3t^2$

IIf $II = \sqrt{\langle f(t), f(t) \rangle} = \sqrt{\langle 2t^2, 2t^2 \rangle} = \sqrt{\int_{0}^{1} 2t^2 \cdot 2t^2 dt}$
 $= 2\sqrt{\int_{0}^{1} t^4 dt} = 2\sqrt{\left[\frac{t^5}{5}\right]_{0}^{1}}$
 $= 2/\sqrt{5}$

II $gII = \sqrt{\langle g(t), g(t) \rangle} = \sqrt{\langle 2t^2, 3t^2 \rangle} = \sqrt{\left[\frac{1}{2}t^3, 3t^3 \right]_{0}^{2}} = \sqrt{\left[\frac{1}{2}t^3, 3t^3 \right]_{0}^{2}}$
 $\langle f(t), g(t) \rangle = \int_{0}^{1} 2t^2 \cdot 3t^3 dt = 6\int_{0}^{1} t^5 dt = 6\left[\frac{1}{6}t^6\right]_{0}^{1} = 1$

(a) $\theta = \sqrt{f(t)}, g(t) \rangle = \sqrt{\left[\frac{1}{2}t^3, 3t^3 \right]_{0}^{2}} =$

Pb: 3 Let & and y be two vectors in an inner product space V. Suppose $\|x\|=1$; $\|y\|=1$; $\langle x_1y\rangle = -1/2$ then find $\|x-y\|$. 50 h:- $\|x-y\| = \sqrt{\langle x,y\rangle - \langle y,x\rangle + \langle y,y\rangle}$ $= \int ||x||^2 - \langle x, y \rangle - \langle x, y \rangle + ||y||^2$ $= \int ||\chi||^2 - 2 \langle \chi(y) \rangle + ||y||^2$ Griven $\|x\|=1$; $\|y\|=1$; $\langle x,y\rangle = -y_2$ then $\|\chi - y\| = \sqrt{1 - 2 - (-\frac{1}{2}) + 1} = \sqrt{1 + 1 + 1} = \sqrt{3}$ Pb:4 (Eauchy Schwartz inequality) If x and y are two vectors in an inner product Space V then show that $\langle x,y \rangle^{\frac{1}{2}} \leq \langle x,x \rangle^{\frac{1}{2}} \langle y,y \rangle$ Soln!-Recall: - <x,0,>=0 for any x ∈ V (0,, y > = 0 for any y \in V Suppose either x=0, or y=0, then $\langle x, y \rangle = 0$ and either ||x|| = 0 or ||y|| = 0Hence, $\langle \chi_{i} y \rangle^2 \leq \langle \chi_i x \rangle \langle \chi_{i} y \rangle$ Assume x + ov and y + ov. For any ter we observe the following 0 \le \langle \ta + y, \ta + y > = <tx,tx> +2tx,y>+2y,tx>+2y,y> $= \ell^2 \langle \chi, \chi \rangle + \ell \langle \chi, y \rangle + \langle \ell \chi, y \rangle + ||y||^2$ 0 ≤ 12 |(x||2 + 2t < x,y> + |(y||2 →0) Equation () sepsesents a quadratic equation interms of the variable to. From O it is clear that either no real root or repeated roots. Hence we have

have $(2 < x_1 y >)^2 - 4 \cdot ||x||^2 ||y||^2 \le 0$ $4 < x_1 y >^2 - 4 ||x||^2 ||y||^2 \le 0$ $4 < x_1 y >^2 \le 4 ||x||^2 ||y||^2$ $\Rightarrow < x_1 y >^2 \le ||x||^2 ||y||^2$ Hence proved Pb:5 let V be an inner product space. If x, y EV then Show that (i) 2x,y> < 11211 11911 $(iii) |||x||-||y|| \leq ||x-y||$ solni- We know that $(i) < x,y>^2 \leq ||x||^2 ||y||^2$ Take square root on both sides $\langle x, y \rangle \in ||x|| ||y||$ $(ii) ||x+y|| = \sqrt{\langle x+y, x+y \rangle}$ $= \sqrt{|(\chi_1|^2 + 2\langle \chi_1 y \rangle + |(y|)^2}$ from (1), < x,y> < 1/21/11/11 capply this in (*) we have $||x+y|| \leq \sqrt{||x||^2 + 2||x|||y|| + ||y||^2}$ < \((\| \chi \| + \| \gamma \) \\ 1) 21/4 / 1/X/1 = 1/X/1 + 1/y/1 (111) (try!)