Annexe F

Arithmétique

Un des premiers algorithmes codé est l'algorithme d'Euclide pour calculer le pgcd. Pour $a \neq 0$, on a $a \wedge 0 = a$ et $a \wedge b = b \wedge (a \mod b)$. On peut le coder en OCaml avec la fonction euclid suivante.

```
1 let rec euclid (a: int) (b: int): int =
2     (* Hyp: a >= b et a != 0 *)
3     if b = 0 then a
4     else euclide b (a mod b)
```

Code 1 – Algorithme d'Euclide calculant le PGCD

Quelle est la complexité de cet algorithme? On représente le nombre d'appels récursifs à euclid, et on devine une courbe logarithmique. En notant (u_n) les divisions euclidiennes réalisées et (q_n) les quotients, ainsi, on $u_n = q_{n-1} \cdot u_{n-1} + u_{n-2}$. Alors, euclid $(u_n, u_{n-1}) = \cdots = \text{euclid}(u_3, u_2) = \text{euclid}(u_2, u_1) = \text{euclid}(u_1, u_0)$.

En fixant la complexité, on cherche les valeurs de (u_n) maximisant les appels récursifs. On peut montrer par récurrence que si $\operatorname{euclid}(a,b)$ conduit à n appels récursifs de euclid , alors $a\geqslant F_n$ et $b\geqslant F_{n-1}$, où $(F_n)_{n\in\mathbb{N}}$ est la suite de Fibonacci.

En effet, soit un tel couple (a,b). Alors, $(b,a \mod b)$ conduit à n-1 appels récursifs donc $b \ge F_{n-1}$ et $a \mod b \ge F_{n-2}$ par hypothèse de recurrence. Et, $a = bq + (a \mod b)$ et donc $a \ge F_{n-1} + F_{n-2} = F_n$.

De plus, pour tout $n \in \mathbb{N} \setminus \{0,1\}$, $F_n \geqslant \varphi^{n-2}$ où φ est le nombre d'or. ¹ En effet, $F_2 = 1 \geqslant \varphi^0 = 1$ et $F_3 = 2 \geqslant \varphi^1 = \varphi = (1+\sqrt{5})/2$. Et, $F_n = F_{n-1} + F_{n-2} \geqslant \varphi^{n-3} + \varphi^{n-4} \geqslant \varphi^{n-4}(1+\varphi) \geqslant \varphi^{n-2}$.

Soient (p,q), où $p\geqslant q$, une entrée de l'algorithme d'Euclide. Si l'appel $\mathrm{euclid}(p,q)$ conduit à plus de $\left\lceil\log_{\varphi}p\right\rceil+4$ appels, alors $p\geqslant F_{\left\lceil\log_{\varphi}p\right\rceil+4}\geqslant \varphi^{\left\lceil\log_{\varphi}p\right\rceil+4-2}>\varphi^{\log_{\varphi}p}=p$, ce qui est absurde.

Ceci conduit à une complexité en $\mathbb{G}(\log p)$.

Soit n un entier premier. Pour l'algorithme RSA, on cherche un inverse de $a \in \mathbb{Z}/n\mathbb{Z}$: on cherche $b \in \mathbb{Z}/n\mathbb{Z}$ tel que $ab \equiv 1$ [1]. D'après le théorème de Bézout, on a au + nv = 1 car $a \wedge n = 1$. L'inverse est v. D'où l'importance des coefficients de Bézout.

Comment calculer les coefficients de Bézout? On peut utiliser l'algorithme d'Euclide. On pose r_n la valeur de a après n appels récursifs.

r_i	u_i		v_i	
$r_0 = a$	1	a	0	b
$r_1 = b$	0	b	1	a
:	:	:	:	:
r_{i-2}	u_{i-2}	a	v_{i-2}	b
r_{i-1}	u_{i-1}	a	v_{i-1}	b

Table 1 – Valeurs de r_i avec invariant $r_i = au_i + bv_i$

Alors,

$$r_i = u_{i-2}a + v_{i-2}b - (r_{i-2}/r_{i-1})(u_{i-1}a + v_{i-1}b)$$

= $(u_{i-2} - (r_{i-2}/r_{i-1})u_{i-1})a + (v_{i-2} - (r_{i-2}/r_{i-1})v_{i-1})b$

Ainsi, on a bien $pgcd(a, b) = u_{n-1}a + v_{n-1}b$.

^{1.} C'est la solution positive de $X^2 - X - 1 = 0$.