Fundamentals of Information Systems

Python Programming (for Data Science)

Master's Degree in Data Science

Gabriele Tolomei

gtolomei@math.unipd.it
University of Padua, Italy
2018/2019
November, 19 2018

Lecture 8: I/O with pandas

Overview

- Accessing data is a necessary first step for any data scientist.
- We are going to see how to perform data input/output operations using **pandas**.
- I/O might refer to: reading from/writing to text files (or other more efficient on-disk formats), accessing databases, interacting with network sources like web APIs, etc.
- We will be exploring each of those separately (although we will be focusing more on text files).

Reading and Writing Text Files

Parsing functions in pandas (1 of 2)

Function	Description
read_csv	Load delimited data from a file, URL, or file-like object. Use comma as default delimiter
read_table	Load delimited data from a file, URL, or file-like object. Use tab ('\t') as default delimiter
read_fwf	Read data in fixed-width column format (that is, no delimiters)
read_clipboard	Version of read_table that reads data from the clipboard. Useful for converting tables from web pages
read_excel	Read tabular data from an Excel XLS or XLSX file
read_hdf	Read pandas data from an HDF5 file
read_html	Read all tables found in the given HTML document
read_json	Read data from a JSON (JavaScript Object Notation) string representation

Parsing functions in pandas (2 of 2)

read_msgpack	Read pandas data encoded using the MessagePack binary format
read_pickle	Read an arbitrary object stored in Python pickle format
read_sas	Read a SAS dataset stored in one of the SAS system's custom storage formats
read_sql	Read the results of a SQL query (using SQLAlchemy) as a pandas DataFrame.
read_stata	Read a dataset from Stata file format
read_feather	Read the Feather binary file format

Loading Data into DataFrame Objects

- All the functions listed above allow **pandas** to read tabular data as a **DataFrame** object.
- Among those, **read_csv** and **read_table** are by far the ones you'll likely use the most.

Optional Arguments to read_* Functions

- Indexing: can treat one or more columns as the returned **DataFrame**, and whether to get column names from the file, the user, or not at all.
- Type inference and data conversion: this includes the user-defined value conversions and custom list of missing value markers.
- Datetime parsing: includes combining date and time information spread over multiple columns into a single column in the result.
- Iterating: support for iterating over chunks of very large files.
- Unclean data issues: skipping rows or a footer, comments, or other minor things like numeric data with thousands separated by commas.

Too Many Optional Arguments

- Because of how messy data in the real world can be, some of the data loading functions (especially read_csv) have grown very complex over time.
- To avoid feeling ovewhelmed by the huge number of possible options, please refer to the <u>online pandas documentation</u>.
- Type inference is one of the more important features of these functions; that means you don't necessarily have to specify which columns are numeric, integer, boolean, or string.

read_csv/read_table

- We will explore some of the most important I/O features provided by pandas using an example.
- To this end, we use a tabular data file located on a remote server.
- To check out how such a file looks like, just click <u>here</u>.
- Of course, you can save this file on your machine and load it locally from there with **pandas**.
- By default, data is assumed to be tab-separated ('\t').

In [1]: import pandas as pd
import numpy as np

```
In [2]: """
Let's start with a real example on how to load a tabular data file using pandas.
"""
# Locate the dataset (in this case, we use a remote file located on an external server)
# Alternatively, you can save this file on your machine and load it locally from there.
url = 'https://raw.githubusercontent.com/justmarkham/DAT8/master/data/u.user'
# The first line of the file represents the header, and each field
# is separated by a pipe
"""
We specify the url where the data is located, the character used to separate fields ('|')
and the name of the column to use as row label (otherwise, RangeInteger will be used)
"""
users = pd.read_csv(url, sep='|', index_col='user_id')
print(users.head(10))
```

	age	gender	occupation	zip_code
user_id				
1	24	M	technician	85711
2	53	F	other	94043
3	23	M	writer	32067
4	24	M	technician	43537
5	33	F	other	15213
6	42	M	executive	98101
7	57	M	administrator	91344
8	36	M	administrator	05201
9	29	M	student	01002
10	53	M	lawyer	90703

```
In [3]: """
Suppose we have stored the file on our local machine.
"""

path = './data/user_occupations.txt'

users = pd.read_csv(path, sep='|', index_col='user_id')
print(users.head(10))
```

	age	gender	occupation	zip_code
user_id				
1	24	M	technician	85711
2	53	F	other	94043
3	23	M	writer	32067
4	24	M	technician	43537
5	33	F	other	15213
6	42	M	executive	98101
7	57	M	administrator	91344
8	36	M	administrator	05201
9	29	M	student	01002
10	53	M	lawyer	90703

```
In [4]: """
```

Suppose the file does not contain any header line. We can still load the file telling pandas there is no header AND we can also provide pandas with a list of names corresponding to the header we want to use.

"""

This is the path to the same file yet without the header line path_no_header = './data/user_occupations_no_header.txt'

If the file does not contain the header as the first line users = pd.read_csv(path_no_header, sep='|', header=None)

Row and column indices fall back to the default RangeIndex (i.e., integers) print(users.head(10))

	0	1	2	3	4
0	1	24	M	technician	85711
1	2	53	F	other	94043
2	3	23	M	writer	32067
3	4	24	M	technician	43537
4	5	33	F	other	15213
5	6	42	M	executive	98101
6	7	57	M	administrator	91344
7	8	36	M	administrator	05201
8	9	29	M	student	01002
9	10	53	M	lawyer	90703

	age	gender	occupation	zip_code
user_id				
1	24	M	technician	85711
2	53	F	other	94043
3	23	M	writer	32067
4	24	M	technician	43537
5	33	F	other	15213
6	42	M	executive	98101
7	57	M	administrator	91344
8	36	M	administrator	05201
9	29	M	student	01002
10	53	M	lawyer	90703

	age	gender	occupation	zip_code
user_id				
2	53	F	other	94043
5	33	F	other	15213
6	42	M	executive	98101
7	57	M	administrator	91344
8	36	M	administrator	05201
9	29	M	student	01002
10	53	M	lawyer	90703
11	39	F	other	30329
12	28	F	other	06405
13	47	M	educator	29206

Handling Missing Values (NA or Not Available)

- Missing data is usually either not present (i.e., empty string) or marked by some sentinel value.
- By default, **pandas** uses a set of commonly occurring sentinels, such as **None** and **NaN**.
- The na_values is used to customize sentinel values by adding to the default ones either a list or set of strings to consider missing values.

```
In [7]: """

Suppose we want to mark as NA any entry whose value is 'N/A'.

"""

# Load again the data with the option for handling missing values (na_values)
users = pd.read_csv(path, sep='|', index_col='user_id', na_values=['N/A'])
# Alternatively, we can define a dictionary of sentinels, i.e., a set for each column.
sentinels = {'age': ['inf', 'N/A'], 'zipcode': ['00000']}
users = pd.read_csv(path, sep='|', index_col='user_id', na_values=sentinels)
print(users.head(10))
```

	age	gender	occupation	zip_code
user_id				
1	24	M	technician	85711
2	53	F	other	94043
3	23	M	writer	32067
4	24	M	technician	43537
5	33	F	other	15213
6	42	M	executive	98101
7	57	M	administrator	91344
8	36	M	administrator	05201
9	29	M	student	01002
10	53	M	lawyer	90703

read_csv/read_table Function Arguments

Argument	Description
path	String indicating filesystem location, URL, or file-like object
sep or delimiter	Character sequence or regular expression to use to split fields in each row
header	Row number to use as column names. Defaults to 0 (first row), but should be None if there is no header row
index_col	Column numbers or names to use as the row index in the result. Can be a single name/number or a list of them for a hierarchical index
names	List of column names for result, combine with header=None
skiprows	Number of rows at beginning of file to ignore or list of row numbers (starting from 0) to skip
na_values	Sequence of values to replace with NA
comment	Character or characters to split comments off the end of lines
parse_dates	Attempt to parse data to datetime; False by default. If True, will attempt to parse all columns. Otherwise can specify a list of column numbers or name to parse. If element of list is tuple or list, will combine multiple columns together and parse to date (for example if date/time split across two columns)

read_csv/read_table Function Arguments

keep_date_col	If joining columns to parse date, keep the joined columns. Default False
converters	Dict containing column number of name mapping to functions. For example {'foo': f} would apply the function f to all values in the 'foo' column
dayfirst	When parsing potentially ambiguous dates, treat as international format (e.g. $7/6/2012$ -> June 7, 2012). Default False
date_parser	Function to use to parse dates
nrows	Number of rows to read from beginning of file
iterator	Return a TextParser object for reading file piecemeal
chunksize	For iteration, size of file chunks
skip_footer	Number of lines to ignore at end of file
verbose	Print various parser output information, like the number of missing values placed in non- numeric columns
encoding	Text encoding for unicode. For example 'utf-8' for UTF-8 encoded text
squeeze	If the parsed data only contains one column return a Series
thousands	Separator for thousands, e.g. ', ' or '.'

Reading Text Files in Pieces

- When processing very large files, you may only want to read in a small piece of a file or iterate through smaller chunks of the file.
- If we want to only read out a small number of rows (avoiding reading the entire file), specify that with **nrows**.

In [8]: """ Suppose we want to just read 100 records from our file. """ # Specify the number of rows to be read users_100 = pd.read_csv(path, sep='|', index_col='user_id', nrows=100) # Verify that we actually read that many rows print("Number of observations (#rows) = {}".format(users_100.shape[0])) users_100.head()

Number of observations (#rows) = 100

Out[8]:

	age	gender	occupation	zip_code
user_id				
1	24	М	technician	85711
2	53	F	other	94043
3	23	М	writer	32067
4	24	М	technician	43537
5	33	F	other	15213

```
In [9]: """
    Let's reload the dataset from the remote file.
    """
    users = pd.read_csv(url, sep='|', index_col='user_id')
    print(users.head())
    users.head()
```

	age	gender	occupation	zip_code
user_id				
1	24	M	technician	85711
2	53	F	other	94043
3	23	M	writer	32067
4	24	M	technician	43537
5	33	F	other	15213

Out[9]:

	age	gender	occupation	zip_code
user_id				
1	24	М	technician	85711
2	53	F	other	94043
3	23	М	writer	32067
4	24	М	technician	43537
5	33	F	other	15213

```
In [10]:
    """
    Let's print out some information about the data we just loaded.
    """
    print("Number of observations (#rows) = {}".format(users.shape[0]))
    print("Number of fields (#columns) = {}".format(users.shape[1]))
    print("Column names = [{}]".format(", ".join([c for c in users.columns])))
    print("The index (i.e., the labels) is:\n{}".format(users.index))
    print("The data types of each column are:\n{}".format(users.dtypes))

Number of observations (#rows) = 943
    Number of fields (#columns) = 4
    Column names = [age, gender, occupation, zip_code]
    The index (i.e., the labels) is:
    Int64Index([ 1,  2,  3,  4,  5,  6,  7,  8,  9,  10,
```

934, 935, 936, 937, 938, 939, 940, 941, 942, 943],

dtype='int64', name='user_id', length=943)
The data types of each column are:
age int64

gender object
occupation object
zip_code object
dtype: object

```
In [11]:
         ** ** **
         Suppose we want to access a single column of the DataFrame.
          ** ** **
         # Let's return the first 5 values of the 'occupation' column.
         print(users['occupation'][:5]) # alternatively, use users['occupation'].head()
         print()
         # The same can be obtained using '.' notation
         print(users.occupation[:5]) # alternatively, use users.occupation.head()
         user id
              technician
                    other
         3
                  writer
              technician
                    other
```

Name: occupation, dtype: object

Name: occupation, dtype: object

technician

technician

other

other

writer

user id

3

```
In [12]:
    """

Let's now create a deep copy of the loaded DataFrame 'users'.

Remember: assigning another name to the same DataFrame is simple a view.

For example, users_df = users makes users_df point to the same users. As such,
    any change to the content of the DataFrame while working on users_df is reflected to users.

"""

# Make a deep copy of users
    users_df = users.copy()
    print(users_df.head())
```

	age	gender	occupation	zip_code
user_id				
1	24	M	technician	85711
2	53	F	other	94043
3	23	M	writer	32067
4	24	M	technician	43537
5	33	F	other	15213

```
In [13]:
    """
    Let's add an extra column to the DataFrame and populate this column
    with some values (e.g., a series)
    """
    # Suppose we want to add an extra column 'salary', which we randomly populate
    # with values in the range [5000, 1000000]
    np.random.seed(42) # Initialize internal state of the random number generator
    BASE_SALARY = 5000
    values = pd.Series(np.random.randint(995000, size=users_df.shape[0]) + BASE_SALARY)
    print(values.head())
```

```
0 126958
1 676155
2 136932
3 370838
4 264178
dtype: int64
```

```
user_id

1 126958

2 676155

3 136932

4 370838

5 264178

dtype: int64
```

	age	gender	occupation	zip_code	salary
user_id					
1	24	M	technician	85711	126958
2	53	F	other	94043	676155
3	23	M	writer	32067	136932
4	24	M	technician	43537	370838
5	33	F	other	15213	264178

other 676155

other 264178

writer 136932

technician 370838

'marketing', 'none', 'healthcare', 'retired', 'salesman', 'doctor'], dtype=object)

'programmer', 'librarian', 'homemaker', 'artist', 'engineer',

```
In [18]:

"""

Create a mask to assign a salary only to those users who are at least 18 AND are not student nor unoccupied.

We therefore set salary to 0 for any of the users above

"""

mask = (users_df.age >= 18) & ~(users_df.occupation.isin(['student', 'none']))

# mask = (users_df.age >= 18) & (users_df.occupation != 'student') \

# & (users_df.occupation != 'none')

# mask = (users_df.age >= 18) & ~(users_df.occupation == 'student') \

# & ~(users_df.occupation == 'none')
```

```
In [19]: users_df['salary'] = users_df['salary'].where(mask, 0)
# Alternatively
# users_df['salary'] = np.where(mask, users_df['salary'], 0)
users_df.head(10)
```

Out[19]:

	age	gender	occupation	zip_code	salary
user_id					
1	24	М	technician	85711	126958
2	53	F	other	94043	676155
3	23	М	writer	32067	136932
4	24	М	technician	43537	370838
5	33	F	other	15213	264178
6	42	М	executive	98101	649167
7	57	М	administrator	91344	115268
8	36	М	administrator	05201	737180
9	29	М	student	01002	0
10	53	М	lawyer	90703	142337

In [20]: """ Use integer slicing (special behavior to select rows) """ # Note that this integer slicing operator cannot be extended on both axis, # as we did for 2-D numpy arrays. In other words, you cannot use the same # syntax to slice over rows and columns with something like # users2[i_start:i_stop, j_start:j_stop] # In order to use integer slicing on BOTH axis as above, we need to use the .iloc method print("First 7 rows of the DataFrame:\n{}".format(users_df[:7]))

First 7 rows of the DataFrame: occupation zip code salary age gender user id technician 85711 126958 24 Μ 53 94043 676155 other 23 32067 136932 writer M technician 43537 370838 24 Μ 33 15213 264178 other 42 98101 649167 executive Μ 57 91344 115268 M administrator

```
In [21]:
         ** ** **
         Select all the users in the DataFrame whose salary is greater than 500k
         # This is a boolean mask which returns a Series containing either True or False
         # corresponding to each entry index of the DataFrame depending on whether that entry
         # has a salary which is greater than 500k or not.
         mask = users df.salary > 500000
         print(mask.head(7))
         print()
         print("The list of first 5 users having salary greater than 500k is:\n{}"
               .format(users_df[mask].head()))
         user id
              False
               True
              False
              False
              False
              True
```

The list of first 5 users having salary greater than 500k is:

other

other

other

executive

M administrator

occupation zip_code salary

94043 676155

98101 649167

05201 737180

30329 526430

06405 959698

False

user id

6

11

12

Name: salary, dtype: bool

53

42

39

28

36

age gender

M

```
In [22]:
         11 11 11
         Suppose I want to select only female users whose salary is greater than 500k
         mask = (users_df.salary > 500000) & (users_df.gender == 'F')
         print(mask.head(7))
         print()
         print("The list of first 5 female users having salary greater than 500k is:\n{}"
               .format(users_df[mask].head()))
         user id
              False
              True
             False
             False
             False
             False
              False
         dtype: bool
         The list of first 5 female users having salary greater than 500k is:
                  age gender occupation zip_code salary
         user id
```

94043

30329 526430

06405 959698

97301 917756

94533 723315

676155

other

other

other

artist

educator

F

F

F

53

39

28

49

21

11

12

15

24

```
In [23]:
         11 11 11
         Let's use loc and iloc methods to index both axis (i.e., rows and columns)
         using either index/column labels (loc) or integers (iloc).
         # Note that in this special case, index (row) labels are integers...
         # In cases like this, loc falls back to work like .iloc
         print("user id: 1 and 4 (ROWS); gender, salary, zip code (COLUMNS):\n{}"
               .format(users_df.loc[[1, 4], ['gender', 'salary', 'zip_code']]))
         print()
         print("user id: 1 and 4 (ROWS); 2nd, 5th, 4th (COLUMNS):\n{}"
               .format(users df.iloc[[0, 3], [1, 4, 3]]))
         user id: 1 and 4 (ROWS); gender, salary, zip code (COLUMNS):
                 gender salary zip code
         user id
                                   85711
                      M 126958
                      M 370838
                                   43537
```

user id: 1 and 4 (ROWS); 2nd, 5th, 4th (COLUMNS):

85711

43537

gender salary zip_code

M 126958

M 370838

user id

```
In [24]:
         11 11 11
         Suppose we want to sort the DataFrame by age (ascending) and salary (descending)
         print(users_df.sort_values(by=['age', 'salary'], ascending=[True, False]).head())
                  age gender occupation zip_code salary
         user_id
         30
                                 student
                                            55436
                           M
                                                        0
         471
                   10
                                 student
                                           77459
                                                        0
                           M
```

94619

48118

55106

none

other

student

0

0

0

289

142

609

11

13

13

M

M

F

	age	gender	occupation	zip_code	salary
user_id					
620	18	F	writer	81648	719998
851	18	M	other	29646	522923
507	18	F	writer	28450	398002
925	18	F	salesman	49036	155159
859	18	F	other	06492	31790
747	19	M	other	93612	981535
601	19	F	artist	99687	755201
35	20	F	homemaker	42459	994436
596	20	M	artist	77073	749840
677	20	M	other	99835	748583

The average salary across ALL the users is: 369708.87
The average salary across all working users is: 474333.96

The median age across ALL the users is: 31.0

```
In [28]:
```

```
Let's see what happens if we call 'describe()' on this DataFrame
"""

print(users_df.describe()) # Notice, only numeric columns are part of the description!
```

	age	salary
count	943.000000	943.000000
mean	34.051962	369708.865323
std	12.192740	324238.271411
min	7.00000	0.000000
25%	25.000000	42366.500000
50%	31.000000	310062.000000
75%	43.000000	653225.000000
max	73.000000	994873.000000

```
In [29]: # Let's try to include all the columns in the description
    print(users_df.describe(include = "all"))
```

	age	gender	occupation	zip_code	salary
count	943.000000	943	943	943	943.000000
unique	NaN	2	21	795	NaN
top	NaN	M	student	55414	NaN
freq	NaN	670	196	9	NaN
mean	34.051962	NaN	NaN	NaN	369708.865323
std	12.192740	NaN	NaN	NaN	324238.271411
min	7.000000	NaN	NaN	NaN	0.00000
25%	25.000000	NaN	NaN	NaN	42366.500000
50%	31.000000	NaN	NaN	NaN	310062.000000
75%	43.000000	NaN	NaN	NaN	653225.000000
max	73.000000	NaN	NaN	NaN	994873.000000

There are 21 unique occupation values, which are as follows:
[Administrator, Artist, Doctor, Educator, Engineer, Entertainment, Executive, Healthcare, Homemaker, Lawyer, Librarian, Marketing, None, Other, Programmer, Retired, Salesman, Scientist, Student, Technician, Writer]

```
In [31]:

Now let's see how many times each unique value of the 'occupation' column appears across the dataset. In other words, we compute the frequency count (a.k.a. histogram) of the 'occupation' attribute.

"""

print("Histogram of occupation values:\n{}"

.format(pd.value_counts(users_df.occupation, sort=True)))

Histogram of occupation values:

student 196
```

```
105
other
                  95
educator
                  79
administrator
                  67
engineer
                  66
programmer
librarian
                  51
                  45
writer
                  32
executive
                  31
scientist
                  28
artist
                  27
technician
                  26
marketing
entertainment
                  18
healthcare
                  16
retired
                  14
                  12
salesman
lawyer
                  12
none
doctor
homemaker
Name: occupation, dtype: int64
```

Working with other text formats

- Plain text files, such as .csv or .tsv, are not the only formats we might need work with.
- Other possible "text" formats can be: JSON (JavaScript Object Notation), XML/HTML, etc.
- We focus on **JSON** as this has become increasingly popular as a "standard" data exchange format (especially between distributed systems).

What is JSON?

- <u>JSON</u> is strongly used as one of the standard formats for sending data via HTTP request between web browsers and servers.
- It is a much more free-form data format than a tabular text form like **csv**.
- The following is an example of a JSON object:

Similarity with pure Python

- JSON is very nearly valid Python code with the exception of its null value **null** and some other nuances.
- The basic types are objects (dicts), arrays (lists), strings, numbers, booleans, and nulls.
- All of the keys in an object <u>must be</u> strings.
- There are several Python modules for reading and writing JSON data; we'll use json here as it is built into the Python standard library.

```
In [32]:
          ** ** **
         Let's import the json module.
         import json
          # Assume we have the string json obj above, representing a piece of JSON data
         json str = """
          {"name": "Wes",
         "places lived": ["United States", "Spain", "Germany"],
          "pet": null,
         "siblings": [{"name": "Scott", "age": 29, "pets": ["Zeus", "Zuko"]},
                     {"name": "Katie", "age": 38,
                      "pets": ["Sixes", "Stache", "Cisco"] } ]
          ** ** **
          # We can load a JSON string into a JSON object using json.loads
         json obj = json.loads(json str)
         print(json obj)
```

{'name': 'Wes', 'places lived': ['United States', 'Spain', 'Germany'], 'pet': None, 'sibli

ngs': [{'name': 'Scott', 'age': 29, 'pets': ['Zeus', 'Zuko']}, {'name': 'Katie', 'age': 3

8, 'pets': ['Sixes', 'Stache', 'Cisco']}]}

ngs': [{'name': 'Scott', 'age': 29, 'pets': ['Zeus', 'Zuko']}, {'name': 'Katie', 'age': 3

8, 'pets': ['Sixes', 'Stache', 'Cisco']}]}

```
In []: """
Similarly, when we want to serialize out a JSON string or a JSON object
we can either use 'json.dumps(json_str, outfile)' in case of a JSON string
or json.dump(json_obj, outfile) in case of a JSON object
"""
# json_out_filename = './data/sample_out.json'
# with open(json_out_filename, 'w') as json_out_file:
# json.dumps(json_str, json_outfile) # json_str is a (JSON) string object
# json.dump(json_obj, json_outfile) # json_obj is a JSON object
```

```
In [35]: """
How to convert a JSON object into a pandas DataFrame.
For example, we can pass a list of JSON objects to the DataFrame constructor
and select a subset of the data fields.
"""
siblings = pd.DataFrame(json_obj['siblings'], columns=['name', 'age'])
print(siblings.head())
```

name age

0 Scott

1 Katie

29

38

```
In [36]: """
Alternatively, there is also a 'read_json' method that pandas provides, which allows us to directly load a JSON file (or a JSON string) into a pandas DataFrame (i.e., without the need of first loading it into a JSON object).
The default options for pandas.read_json assume that each object in the JSON array is a row in the table.
"""

df = pd.read_json('./data/sample_df.json')
print(df.head())
```

```
color value
0 red #f00
1 green #0f0
2 blue #00f
3 cyan #0ff
4 magenta #f0f
```

Working with Binary File Formats

- One of the easiest ways to efficiently work with data in **binary format** is using Python's built-in **pickle** serialization/de-serialization.
- This module essentially provides the ability to serialize (de-serialize) **any** Python object to (from) disk.
- Serialize means writing out a binary representation of an object, whilst de-serialize is the inverse operation.
- pandas objects all have a to_pickle method which writes data to disk in pickle format, whereas there exists a pandas.read_pickle method to deserialize objects back from disk.

```
In [37]: """
    Suppose we want to serialize out to disk (in binary format) a DataFrame,
    which we previously loaded from a text file.
    """

# Let's use again the same text file as above
    path = './data/user_occupations.txt'
    users = pd.read_csv(path, sep='|', index_col='user_id')
    print(users.head())
```

	age	gender	occupation	zip_code
user_id				
1	24	M	technician	85711
2	53	F	other	94043
3	23	M	writer	32067
4	24	M	technician	43537
5	33	F	other	15213

```
In [38]:

"""

Suppose we want to serialize out to (de-serialize in from) disk
a DataFrame (in binary format), which we previously loaded from a text file.

"""

# Let's serialize this DataFrame object out to a binary file on disk
binary_outfilename = './data/user_occupations.pickle'
# the same as pickle.dump(users, open(binary_outfilename, 'wb'))
users.to_pickle(binary_outfilename)
# Let's de-serialize the binary representation of the object back
users_from_binary = pd.read_pickle(binary_outfilename)
# This has given us back the DataFrame object we previously serialized
print(users_from_binary.head())
```

	age	gender	occupation	zip_code
user_id				_
1	24	M	technician	85711
2	53	F	other	94043
3	23	M	writer	32067
4	24	M	technician	43537
5	33	F	other	15213

pandas Supports Many Binary Formats

- pandas has built-in support for two more binary data formats: <u>HDF5</u> and <u>MessagePack</u>.
- I encourage you to explore different file formats to see how fast they are and how well they work for your task.