LaPIS Diagnostic Test Workbook - Mathematics

Name : Shevalini S

Class: 7

Section : C

School : AKV Public School

Login ID : AKV196

Shevalini S's Performance Report

Score: 21/40 Percentage: 52.5%

Shevalini S's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sig
		Teacher's Fe	edback to Student		
	Class Teacher S	 Signature	Princi	pal Signature	

Basic arithmetic

Topics to be Improved		
Types of angles	Identification of types of angles	

Hi, here in this video you will learn Types of Angles

Question: 1

Find the angles.

Answer:

The angle ranges from ____° to ____°.

The angle perpendicular to 0° is $_{---}^{\circ}$.

The straight line measures $__$ °.

Question: 2

The angle formed between the directions

(i) West and East is _____ angle.

(ii) North and East is angle.
(iii) East and South is angle.
Answer:
The angle formed between West and East is° and it is called angle.
The angle formed between North and East is° and it is called angle.
The angle formed between East and South is° and it is called angle.
$\underline{\textit{Question: 3}}$
The addition of straight angle and right angle is angle.
Answer:
The measurement of straight angle is°
The measurement of right angle is°.
Straight angle + Right angle = + = =
It is called as angle.

Mensuration

Topics to be Improved		
Area	Area of rectangle	

Hi, here in this video you will learn Area

Question: 4

Find which of the shaded portion in the given shape represent it's area.

.....

......

Answer:

Given figure is ______ in shape.

Area is the _____ (inside/ outside/ boundary) of a shape.

Question: 5

Find the area of a rectangular garden whose dimension is 25 ft in length and 20 ft in breadth.

Answer:

The garden is in _____ shape.

Length of garden is _____ and breadth of garden is _____.

Formula for area of the shape = _____.

The area of garden = $\underline{\qquad}$ x $\underline{\qquad}$ = $\underline{\qquad}$ cm^2

Question: 6

Shade the possible dimension of the door whose area is 500 m^2

$$50 m \times 10 m$$

$$25 m \times 20 m$$

.....

$$30~m~\times~20~m$$

Door is _____ in shape. Area of the ____ shaped door is ____.

Dimensions	Length	Breadth	Area
$50 \text{m} \times 10 \text{m}$			
$25\text{m} \times 25\text{m}$			
$25m \times 20m$			
$30 \text{m} \times 20 \text{m}$			

Therefore, possible dimension of the door whose area is 500 m^2 is/are _____

Data handling

Topics to be Improved		
Chance of probability Sample space in probability, Basis of probability		
Arithmetic mean, mode and median	Mean, Median and Mode	
Range	Finding the range	

Hi, here in this video you will learn Basics of probability

Question: 7

Which of the following contains list of all possible outcomes.

Probability

Sample space

Sure events

......

.....

Impossible events

Answer:

Probability is the measure of ______ (chance /number) of an events happenings. Sample space consists of _____ (possible/ impossible) outcomes. Sure events always _____ (occurs/don't occurs). Impossible events _____ (occurs/ don't occurs). Therefore, _____ contains list of possible outcomes.

Question: 8

Write the possible outcomes while spinning the given wheel.

<u>Answer:</u>
Outcomes are (possible/impossible) results of an experiment. The possible outcomes while spinning wheel are $\mathbf{\xi}0$, $\mathbf{\xi}10$,
Question: 9
A bag contains three balss of colour blue, green and red. Write the possible outcomes if two balls are taken out.
Answer:
A bag contains, and balls. If one of the ball is blue in colour, then other ball can be or If one of the ball is green in colour, then other ball can be or If one of the ball is red in colour, then other ball can be or Therefore, if two balls are taken out then possible outcomes are blue +,
Hi, here in this video you will learn Mean, Median, Mode
Question: 10
Find the mode of the following data: 5, 15, 23, 5, 32, 44, 72, 55, 6, 3, 5, 65, 45, 67, 24, 19 and 98.
Answer:
Mode is the number that occurs (frequently / rarely) in a given list of observations Arranging the data in ascending order: occurs most number of times. Then, mode of the given data is
Question: 11
Which shape contains median of the given data 3, 5, 6, 2, 7, 9, 6, 4 and 1
$ \begin{array}{c c} & \hline & 5 \\ \hline & 6 \\ \hline & 9 \\ \hline \end{array} $
Answer:
Median is the(first/central/last) value of a data when the data is arranged in ascending or descending order. Arrange the given data in ascending order: Central value of the given data is and it is the of a data.
Question: 12

Marks scored	100	90	80	70
Number of students	4	5	2	1

 $Mean = \underline{\hspace{1cm}}$, $Median = \underline{\hspace{1cm}}$ and $Mode = \underline{\hspace{1cm}}$. Answer: of all observation number of observation . Mean = ---Here s sum of all observation = ______, number of observation = _____ Therefore, mean = _____ Arrange the data in ascending order: Here, $median = \underline{\hspace{1cm}}$, $mode = \underline{\hspace{1cm}}$. Hi, here in this video you will learn Range Question: 13 Range of the data = _____ Answer: The difference between highest value and lowest value is _____ Example: Find the range of 10, 5, 30, 23, 54, 39 and 16 $Highest value = \underline{\hspace{1cm}}$, $Lowest value = \underline{\hspace{1cm}}$. $Range = \underline{\hspace{1cm}} - \underline{\hspace{1cm}} = \underline{\hspace{1cm}}.$ Question: 14 Circle the correct range for the following data 31, -20, 35, -38, 29, 0, 43, -25, 51, 14, 9 -20+51 $\frac{-38-51}{2}$ 51+38Answer: Arranging the data in ascending order, _____ In the given data, $Highest \ value = \underline{\hspace{1cm}}$, $Lowest \ value = \underline{\hspace{1cm}}$, $Range = \underline{\hspace{1cm}}$ Question: 15 Find the range of first 10 multiple of 5. Answer: First 10 multiple of 5 =

Therefore,

Highest value = _____, Lowest value = ____, Range = ____ - ___ = ___

Hi, here in this video you will learn Basics of probability
Question: 16
Identify the sure events and impossible events
(i) The sun rises in the west.
(ii) Water is colourless.
(iii) Clock rotates in clock wise direction.
(iv) Ball is square in shape.
Answer:
Events that always occur are called (sure/ impossible) events. Events that cannot occur are called (sure/ impossible) events. Here, The sun rises in the west is event. Water is colourless is event. Clock rotates in clock wise direction is event. Ball is square in shape is event.
Question: 17
Probability of sure events is (greater / smaller) than probability of impossible events.
Answer:
Probability of sure event = $___(0/\ 1/\ any\ number)$. Probability of impossible event = $___(0/\ 1/\ any\ number)$. Therefore, Probability of sure event $___$ Probability of impossible event.
Question: 18
Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his box. What is the probability of getting a pen from his box.
Answer:
Things Raju have

Geometry

Topics to be Improved		
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle	
Faces vertex and edges	Idenfication of faces, edges and vertices	
Related angles	Basic of angles	
Lines of symmetry for regular polygons	Identification of lines of symmetry	
Right angle triangle and pythagoras property	Basics of Pythagoras property	

Hi, here in this video you will learn Sum of the length of sides of the triangle

Question: 19

Find the greatest distance to reach C from A in the given diagram.

......

Answer:

The sides of the given triangle are _____.

The possible way to reach point C from point A are _____ and AB then to

 $\overline{\text{Side AC}} = \underline{\hspace{1cm}}$

Side AB + BC = _____ + ___ = ____

Therefore, the greatest distance to reach C from A in the given diagram is ______.

Question: 20

_____ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.

......

Answer:

There are ______ sides in a triangle.

The sum of the two sides of a triangle is ______ than the other side of the triangle.

The difference of the two sides of a triangle is ______ than the other side of the triangle. Example: In triangle XYZ,

Question: 21

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

Answer:

- 1. The sum of the two sides of a triangle is ______ than the third side of the triangle. Therefore, the third side should be _____ (less/ greater) than sum of other two sides. Here, sum of the two sides = _____ + ___ = ____ Therefore, the length of the third side is less than _____
- 2. The difference of the two sides of a triangle is ______ than the third side of the triangle.

 Therefore, the third side should be ______ (less/ greater) than sum of other two sides.

 Here, difference of the two sides = _____ ___ = _____

 Therefore, the length of the third side is greater than ______

Therefore, length of the third side is greater than ______ but less than _____.

Therefore, length of the third side is greater than ______ but less than _____

Hi, here in this video you will learn Basics of 3D model

Question: 22

A point at which two or more lines segments meet is called _____(Vertex/ edges/ faces).

Answer:

_____ has two end point (line/line segment/ray).

A ______is a point where two or more line segments meet(Vertex/ edges/ faces). Mark the vertices in the diagram,

Mark and find the number of vertices, edges and faces in a cube.

$\underline{Answer:}$

Mark the vertex, edges and faces in a cube.

Count the number	of vertex,	edges and	faces in a	cube.	
Cube have	vertices,	ed	lges and $_{-}$		faces

Question: 24

How many vertices, edges and faces does dices have?

Answer	\boldsymbol{A}	ns	\boldsymbol{w}	er	•
--------	------------------	----	------------------	----	---

The	shape of dice is
Dices	s have vertices, edges and faces.
Hi,	here in this video you will learn Related Angles
Que	<u>stion: 25</u>
(i)	When two rays of an angle are perpendicular, then the angle formed between them is a angle .
(ii)	When two rays of an angle are in opposite sides, then the angle formed between them is a angle .
\underline{Ans}	wer:
Α	(line segment /ray) begins from one point and travels endlessly in a direction.
(i)	The angle formed between two perpendicular rays is° and it is called angle.
(ii)	If two rays starting at same point moves in opposite direction, they form a (straight / perpendicular) line. The measure of the angle formed is and it is called angles.
Que	stion:~26
Find	the angle of $\angle DBE$
	C_{\bullet}

30°

В

▼ E

BA and BC are _____ (parallel / perpendicular) rays. The angle formed between this rays is $__$, $\angle ABC = __$.

$$\angle ABC = \angle ABE + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= 30^{\circ} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= \underline{\hspace{1cm}}$$
 Therefore,
$$\angle DBE = \underline{\hspace{1cm}}$$

.....

Question: 27

Find the complementary angles in the given diagram.

Answer:

Two angles are said be complementary if sum of their angles is equal to ______.

 $\angle AOB =$ ______, and its complement angle is ______.

 $\angle BOC = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.

 $\angle COD = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.

 $\angle DOE =$ _____, and its complement angle is _____.

Therefore, in the given figure the complementary angles are $\angle AOB$, _____ and $\angle BOC$, _

Hi, here in this video you will learn **Symmerty**

Question: 28

Line of symmetry is divides any shape into _____ (one / two) ____ (identical / non identical) halves.

......

Answer:

Lines of symmetry is a line that divides any shape into _____ (equal / unequal) halves. Symmetrical image have _____ (identical / non identical) parts.

Therefore, line of symmetry is dividing the shape into _____ halves.

Question: 29

A	netry does square nave:	
Answer:		
Square have	sides. and all angles are	
All sides of square are _	Mark the lines of symmetry.	
	wark the lines of symmetry.	
Therefore, square has	lines of symmetry.	
Therefore, square nos =		
$\underline{Question: 30} \qquad \dots$		
Classify the following ba	ased on the symmetry.	
Letter S, sca	alene triangle, Letter K, Rhombus, Number 8, and circ	cle .
Answer:		
Lines of symmetry is a l	line that divides the shape into (equa	al / unequal) halves
	(symmetrical / asymmetrical) and have	
symmetry.		
Scalene triangle is	(symmetrical / asymmetrical) and have	lines of
symmetry.		-
	(symmetrical / asymmetrical) and have	lines of
symmetry.	(symmetrical / asymmetrical) and have	lines of
symmetry.	(symmetrical / asymmetrical) and have	inles of
	symmetrical / asymmetrical) and have	_ lines of symmetry.
	(symmetrical / asymmetrical) and have	
		miewm
TT. 1		
Hi, here in this vid	eo you will learn Pythagoras property	
		— m-887628.
$Question: 31 \dots$		
In a right angled triangl	le, square of the $\underline{\hspace{1cm}}$ = sun	n of the squares of the
legs.	, 1	1
Answer:		
	only applicable for triangle.	
v — —	ngle is (hypotenuse/ legs) and other to	wo sides are called
(hypoter		mo bideb are carred
,	tes that	
-		

Question: 32

Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.

Answer:

Pythagoras theorem states that square of the _____ = sum of the squares of its

 $Given: Base = \underline{\hspace{1cm}}, Altitude = \underline{\hspace{1cm}},$

Base and altitude are _____ (hypotenuse/ legs) of the triangle.

By Pythagoras theorem,
$$(____)^2 = (____)^2 + (____)^2$$

= ____ + ____

Therefore, hypotenuse of the triangle is _____.

Question: 33

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? ____ (yes/ no).

Given: breadth = _____, length of diagonal = _____

Therefore, diagonal of the rectangle is _____

Number system

Topics to be Improved		
Positive and negative rational numbers	Identification of positive rational numbers	
Exponents	Solving exponents	
Operations on rational numbers	Subtraction of rational numbers	
Properties of integers	Associative property	

Hi, here in this video you will learn **Positive and Negative rational numbers**

Question: 34

Segregate positive and negative rational number.

......

Answer:

- If either the numerator and the denominator of a rational number are negative, then it is ______ (positive/negative) rational number.

In the given circle, positive rational numbers are _____ and negative rational numbers are

Question: 35

 $\frac{-3}{-4}$ is a _____ (positive /negative / neither positive nor negative) rational number.

Answer:
-3 is a number, -4 is a number.
-3 is a number, -4 is a number. Division of $\frac{-3}{-4} = \boxed{}$ and this rational number.
(Positive / Negative / Neither positive nor negative rational number)
Question: 36
The product of a positive rational number and a negative rational number isrational number. (Positive/ Negative/ neither positive nor negative)
Answer:
Examples for positive rational numbers: Examples for negative rational numbers: Positive rational number × Negative rational number = × = and this is rational number
Hi, here in this video you will learn Exponents and power
Question: 37
Find the exponential form of 1000.
Answer:
(Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result. Exponents is also called as (Base / Power).
1000 can be written as = $10 \times $
10 is raised to the power of $\underline{\hspace{1cm}} = (10)\overline{\hspace{1cm}}$
Question: 38
Find the value of $(-2)^3$.
$\underline{Answer:}$
(Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.
In this exponential form $(-2)^3$, base =, power = $(-2)^3 = \underline{\qquad} \times \underline{\qquad} = \underline{\qquad}.$
Question: 39

- (i) Tenth power of 100 is $((10)^{100})$ or $(100)^{10}$.
- (ii) k is raised to the power of 5 is $((k)^5)$ or $(5)^k$.

Exponential form = (Base)—

- (i) Tenth power of 100: Base = ____, Power/Exponents = ____, exponential form = ____.
- (ii) k is raised to the power of 5: Base = ____, Power/Exponent = ____, exponential form = ____.

Hi, here in this video you will learn **Operation on rational numbers**

Question: 40

Solve: $\frac{-3}{3} + \frac{1}{3}$

Answer:

Fractions with same denominators are called ______ (like/ unlike) fractions. Fraction can be added only if they are ______ (like/ unlike) fractions.

$$\frac{-3}{3} + \frac{1}{3} = \frac{-3}{3} = \frac{-3}{3}$$

......

Question: 41

Find the addition of shaded part of box A and shaded part of box B.

......

Answer:

Total number of square in box $A = \underline{\hspace{1cm}}$.

Number of shaded square in box A =______ Shaded part of box A in fraction =______

Total number of square in box $B = \underline{\hspace{1cm}}$.

Number of shaded square in box $B = \underline{\hspace{1cm}}$. Shaded part of box B in fraction $= \underline{\hspace{1cm}}$.

Shaded part of box A + Shaded part of box B = $___$ + $___$

Question: 42

Find the missing values in the given figure.

$$= \begin{array}{c} \\ \\ \\ \\ \\ \end{array}$$

......

Answer:

Given:
$$1 = \frac{7}{10} + \underline{\hspace{1cm}}$$

Transposing $\frac{7}{10}$ to other sides, $1 = \frac{7}{10} = \underline{\hspace{1cm}}$
Therefore, result is $\underline{\hspace{1cm}}$.

Hi, here in this video you will learn **Properties of integers**

Question: 43

Match the following based on the properties of integers

i	Closure
ii	Associative
iii	Commutative
iv	Identity

a	(5+7)+3=3+(7+5)
b	21 + 0 = 21
С	15 + 17 = 32
d	1 + 99 = 99 + 1

$\underline{Answer:}$

(i) Closure property:

The sum of integers is always _____(integer / not a integer).

Therefore, _____ + ___ = ____

From the given option ______ satisfies the closure property.

(ii) Associative property:

Rearranging the parentheses (brackets) _____ (does not/ does) change the sum.

.....

Therefore, $(a + b) + c = \underline{\hspace{1cm}}$

From the given option ______ satisfies the Associative property.

(iii)	9 9	(does not/ does) change the sum.	
	Therefore, $a + b = \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$ From the given option $\underline{\hspace{1cm}}$		
(iv)	(iv) Identity property: The sum of and any number always returns same number. Therefore, a + = a From the given option satisfies the Identity property.		
		property holds true for any two integers.	
wiain	Addition Subtracti	D	
Ans	wer:		
For a	mmutative property, changing the (does not/ does) change the ny two integers, commutative property commutative property for addition iscommutative property for multiplication	holds true for	
Que	stion: 45		
Are a	additive identity and multiplicative iden	tity the same? (Yes or No)	
Ans	wer:		
The l		and additive identity is and multiplicative identity is	
There	efore, additive identity is (equ	al / not equal) to multiplicative identity.	

Com	paring	Quai	atities
\sim 0 I I I		& aai	

	Topics to be Improved	
Percentage	Basic of percentage	
Hi, here in this video you	will learn Basics of percentage	- 1
Question: 46		
2% can be written as		
Answer:		
Percentages are numerators of	fractions with denominator $2\% = \frac{\square}{\square}$	
Question: 47		
Arun attended the LaPIS test: Arun?	for 100 marks and got 75% marks. What is the	mark scored by
Answer:		
Arun attended LaPIS test for .	marks. He got	marks.
75 % can be written in fraction	n form ———	
Then the mark scored by Arun	$= \text{Total mark} \times 75\% = \underline{\qquad} \times \underline{\qquad}$	=
Question: 48		
There are 25 apples in a basket apples.	in which 10 of them are rotten. Find the perc	entage of rotten
Answer:		
There are apples in a l Number of rotten apples are		

Fraction form of rotten apples in a basket $=$	
Convert it into a percent= x	% =

Algebra

Topics to be Improved						
Addition and subtraction of algebraic expressions	Like terms and Unlike terms					
subtraction of algebraic expressions	subtraction of algebraic expressions					
Monomials, binomials, trinomials and polynomials	Types of algebraic expression					

Hi, here in this video you will learn Addition on expression

Question: 49

Shade the like terms.

\boldsymbol{A}	n	e 1	.,	on	٠.
71	IU	n ("	C. I	

Given terms are _____

Two or more term have _____ (same/ different) variables is called like terms.

Here, like terms are _____

Question: 50

Complete the expression $7r^2 + r \square - 2 \square = r^2$

Answer:

_____ (Like / Unlike) terms can be added or subtracted.

$$_{7r^2+ \ r} \square_{-2} \square = (_{7} + \underline{ } - 2)_{r^2} = \underline{ }$$

Question: 51

Sam have 3a chocolates and 9y icecream. Ram have 7a chocolates and 5y icecream.

(ii) How ma	ny icecreams	Sam	have more	than	Ram:		
-----	----------	--------------	-----	-----------	------	------	--	--

	Chocolates	Icecream
Sam		
Ram		

.....

......

(i)	Total chocolates Ram and Sam have:		
	Bam's chocolate + Sam's chocolates =	+	=

(ii)	How many	icecreams Sam have	more than Ram:			
		icecream	$\underline{}$ icecream = $\underline{}$	=	=	

Hi, here in this video you will learn Subtraction on expression

Question:	<i>52</i>

Find the sum of two expressions a + b + c and b + c + d

Answer:

The	given two	expressions a	are	_ and			
The	two terms	will get adde	ed only if t	they are	(Like	/ Unlike	terms.

The sum of two expressions = = + =.

The answer is _____

Question: 53

	School A	School B		
Number of boys	100b	250b		
Number of girls	150g	200g		
Number of teachers	25t	45t		

(i)	Total	${\rm number}$	of	boys	in	school	A	and	В	is		
-----	-------	----------------	----	------	----	--------	---	-----	---	----	--	--

- (ii) Total number of students in school B is _____
- (iii) How many more teachers are there in school B than school A? _____

(i) Number of boys in school $A = \underline{\hspace{1cm}}$,

Number of boys in school $B = \underline{\hspace{1cm}}$

Total number of boys in school A and school B is $___$ + $___$ = $__$.

(ii) Number of boys in school $B = \underline{\hspace{1cm}}$,

Number of girls in school $B = \underline{\hspace{1cm}}$.

Total number of students in school B is $___$ + $___$ = $__$.

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A = $___$.

Question: 54

Solve the following:

$$\begin{array}{c|c}
3a - 5b \\
\hline
 (-) & 5a - 7b \\
\hline
 -2a - \underline{\hspace{1cm}}
\end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

.....

 $\operatorname{Hi},$ here in this video you will learn \mathbf{Types} of $\mathbf{expression}$

Question: 55

There are _____ terms in the expression 7x + 3y + m + 5.

Answer:

In algebraic expression, _____ (variables/ terms) are connected together with operations of addition.

The terms in the expression are ______, _____, and ______.

Therefore, there are ______ terms in the expression.

Question: 56

Classify the following expression into monomial, binomial and polynomial.

1.
$$7m + n + 2$$

2.
$$8x^2 + 0$$

3. 7xy + 4m
 Answer:
 1. The terms in expression 8x² + 0 are _____.
 Here, expression has _____ term and it is a _____.

 2. The terms in expression 7xy + 4m are _____.
 Here, expression has _____ term and it is a _____.

 3. The terms in expression 7m + n + 2 are _____.

Question: 57

 $5m^2 + m + 0$ is a ______ expression. (Monomial/ Binomial/ Trinomial)

Here, expression has _____ term and it is a ______.

Answer:

The terms in expression $5m^2 + m + 0$ are _____. Here, the expression has _____ terms and it is called a _____ expression.