Theoretische Informatik HS23

Nicolas Wehrli Übungsstunde 09 25. November 2023

ETH Zürich nwehrl@ethz.ch

Heute

- 1 Feedback zur Serie
- 2 Satz von Rice Beweis
- **3** EE Reduktion angewendet für \mathcal{L}_{RE}
- 4 Reduktionsaufgaben
- **5** Komplexitätstheorie Einführung

Feedback zur Serie

Feedback zur Serie

- Recht gut.
- Wenn in einer Reduktion eine Algorithmus *A* für ein beliebiges *L'* annehmt, dann dürft ihr **nichts** über *A* annehmen.
 - i. Ihr dürft nicht in *A* hineingreifen und irgendetwas ändern.
 - ii. Ihr müsst die Wörter von der richtigen Form übergeben (i.e. genau so wie sie in der Sprache beschrieben sind).
 - iii. Beispiel:

Sei A so dass $L(A) = L_H$, dann übergebt ihr die Wörter $\operatorname{Kod}(M)$ und w nicht separat, sondern ihr übergebt genau ein Wort nämlich $\operatorname{Kod}(M) \# w$.

Satz von Rice - Beweis

Prerequisites

Zur Erinnerung:

Semantisch nichttriviales Entscheidungsproblem über TMs

Das Entscheidungsproblem (Σ, L) , bzw. die Sprache L muss folgendes erfüllen.

- I. $L \subseteq \mathbf{KodTM}$
- II. $\exists M_1 \text{ so dass } \text{Kod}(M_1) \in L(\text{i.e. } L \neq \emptyset)$
- III. $\exists M_2$ so dass $Kod(M_2) \notin L(i.e. L \neq KodTM)$
- IV. Für zwei TM A und B mit L(A) = L(B) gilt

$$Kod(A) \in L \iff Kod(B) \in L$$

KodTM $\subseteq (\Sigma_{\text{bool}})^*$ ist die Menge aller Kodierungen von Turingmaschinen.

Prerequisites

Wir brauchen

Lemma 5.8

$$L_{H,\lambda} \notin \mathcal{L}_R$$

Zur Erinnerung:

$$L_{H,\lambda} = \{ \operatorname{Kod}(M) \mid M \text{ h\"alt auf } \lambda \}$$

Idee

Wir zeigen für jedes semantisch nichtriviale Entscheidungsproblem (Σ,L)

$$L \in \mathcal{L}_{R} \implies L_{H,\lambda} \in \mathcal{L}_{R}$$

Aus dem folgt dann per Kontraposition

$$L_{H,\lambda} \notin \mathcal{L}_{R} \implies L \notin \mathcal{L}_{R}$$

Mit der Aussage $L_{H,\lambda} \notin \mathcal{L}_R$ von **Lemma 5.8**, können wir dann

$$L \notin \mathcal{L}_{R}$$

wie gewünscht folgern.

Idee

Wir müssen noch die Implikation

$$L \in \mathcal{L}_{R} \implies L_{H,\lambda} \in \mathcal{L}_{R}$$

beweisen.

Kernidee

Wir zeigen die Existenz einer Reduktion, aus der die Implikation folgt.

Idee

Konkret machen wir eine Case Distinction und zeigen jeweils

- Die **Existenz** einer EE-Reduktion von $L_{H,\lambda}$ auf L Daraus folgt $L_{H,\lambda} \leq_{\text{EE}} L$.
- oder die **Existenz** einer EE-Reduktion $L_{H,\lambda}$ auf L^{\complement} Daraus folgt $L_{H,\lambda} \leq_{\rm EE} L^{\complement}$.

Zur Erinnerung:

Lemma 5.3

Seien $L_1 \subseteq \Sigma_1^*$ und $L_2 \subseteq \Sigma_2^*$ zwei Sprachen.

$$L_1 \leq_{\operatorname{EE}} L_2 \implies L_1 \leq_{\operatorname{R}} L_2$$

Weshalb reicht es $L_{H,\lambda} \leq_{\text{EE}} L^{\complement}$ zu zeigen?

Lemma 5.4

Sei Σ ein Alphabet. Für jede Sprache $L\subseteq \Sigma^*$ gilt:

$$L \leq_{\mathbf{R}} L^{\mathbf{C}}$$
 und $L^{\mathbf{C}} \leq_{\mathbf{R}} L$

In beiden Cases folgt mit **Lemma 5.3** und **Lemma 5.4**, die gewünschte Aussage $L_{H,\lambda} \leq_{\mathbb{R}} L$.

Explizit gilt nun

1.

$$L_{H,\lambda} \leq_{\text{EE}} L^{\complement} \xrightarrow{\text{Lemma 5.3}} L_{H,\lambda} \leq_{\text{R}} L^{\complement} \xrightarrow{\text{Lemma 5.4}} L_{H,\lambda} \leq_{\text{R}} L$$

2.

$$L_{H,\lambda} \leq_{\text{EE}} L \xrightarrow{\text{Lemma 5.3}} L_{H,\lambda} \leq_{\text{R}} L$$

Aus $L_{H,\lambda} \leq_{\mathbb{R}} L$ folgt (in beiden Cases) die gewünschte Implikation

$$L \in \mathcal{L}_R \implies L_{H,\lambda} \in \mathcal{L}_R$$

Beweis

Sei M_{\emptyset} eine TM s.d. $L(M_{\emptyset}) = \emptyset$.

Case Distinction

- I. $\mathbf{Kod}(\mathbf{M}_{\emptyset}) \in \mathbf{L}$ Wir zeigen $L_{H,\lambda} \leq_{\mathrm{EE}} L^{\complement}$.
- II. $\mathbf{Kod}(\mathbf{M}_{\emptyset}) \notin \mathbf{L}$ Wir zeigen $L_{H,\lambda} \leq_{\mathrm{EE}} L$.

Case I. $Kod(M_\emptyset) \in L$

Es **existiert** eine TM \overline{M} , so dass Kod(\overline{M}) \notin L. (Nichttrivialität)

Wir beschreiben eine TM S, so dass für eine Eingabe $x \in (\Sigma_{bool})^*$

$$x \in L_{H,\lambda} \iff S(x) \in L^{\complement}$$

Daraus folgt dann die gewünschte EE-Reduktion.

Wir verwenden dabei M_\emptyset und \overline{M} , da $\operatorname{Kod}(M_\emptyset) \notin L^{\complement}$ und $\operatorname{Kod}(\overline{M}) \in L^{\complement}$.

Case I. $Kod(M_{\emptyset}) \in L$ - Beschreibung von S

Eingabe $x \in (\Sigma_{\text{bool}})^*$

- 1. S überprüft ob x = Kod(M) für eine TM M. Falls dies **nicht** der Fall ist, gilt $S(x) = \text{Kod}(M_{\emptyset})$
- 2. Sonst x = Kod(M). Dann S(x) = Kod(A), wobei A wie folgt kodiert ist.
 - i. Gleiches Eingabealphabet wie \overline{M} , i.e. $\Sigma_A = \Sigma_{\overline{M}}$.
 - ii. Für eine beliebige Eingabe $y \in (\Sigma_{\overline{M}})^*$, simuliert A zuerst M auf λ ohne die Eingabe y zu überschreiben.
 - iii. Danach simuliert A die TM \overline{M} auf die gegebene Eingabe y.
 - iv. Akzeptiert y genau dann, wenn \overline{M} y akzeptiert.

Korrektheit

Wir zeigen

$$x \in L_{H,\lambda} \iff S(x) \in L^{\complement}$$

 (\Longrightarrow) :

Wir nehmen $x \in L_{H,\lambda}$ an und zeigen $S(x) \in L^{\complement}$.

Da M auf λ hält, wird A immer \overline{M} auf der Eingabe y simulieren und wir haben $L(A) = L(\overline{M})$.

Da L (und somit auch L^{\complement}) ein **semantisches** Entscheidungsproblem ist, gilt

$$\operatorname{Kod}(\overline{M}) \in L^{\complement} \implies \operatorname{Kod}(A) \in L^{\complement}$$

Da die LHS der Implikation gegeben ist, folgt $S(x) = \text{Kod}(A) \in L^{\complement}$

Korrektheit

$$(\Longleftrightarrow) :$$

Wir nehmen $x \notin L_{H,\lambda}$ an und zeigen $S(x) \notin L^{\complement}$.

Aus Kontraposition folgt dann die gewünschte Rückimplikation.

Da M nicht auf λ hält, wird A bei jeder Eingabe nicht halten.

Somit folgt $L(A)=L(M_\emptyset)$ und da $\operatorname{Kod}(M_\emptyset)\notin L^\complement$ per semantische Eigenschaft von L

$$S(x) = \operatorname{Kod}(A) \notin L^{\complement}$$

Case II.

Zweite Case funktioniert genau gleich.

Wir haben $Kod(M_{\emptyset}) \notin L$.

Per Nichttrivialität existiert eine TM \overline{M} mit Kod $(\overline{M}) \in L$.

•••

16

EE Reduktion angewendet für \mathcal{L}_{RE}

EE-Reduktion impliziert RE-Reduktion (nicht in der Vorlesung)

$$L_1 \leq_{\text{EE}} L_2 \implies (L_2 \in \mathcal{L}_{\text{RE}} \implies L_1 \in \mathcal{L}_{\text{RE}})$$

Beweis

Sei $L_1 \leq_{\text{EE}} L_2$ und $L_2 \in \mathcal{L}_{\text{RE}}$.

Wir zeigen nun $L_1 \in \mathcal{L}_{RE}$.

Per Definition von $L_1 \leq_{\text{EE}} L_2$ existiert ein Algorithmus F, der die Funktion $f: \Sigma_1^* \to \Sigma_2^*$ berechnet, so dass

$$\forall x \in \Sigma_1^* . x \in L_1 \iff f(x) \in L_2$$

Da $L_2 \in \mathcal{L}_{RE}$ existiert eine TM M_2 (die nicht unbedingt immer terminiert) mit $L(M_2) = L_2$.

Wir beschreiben mit F und M_2 nun eine TM M_1 mit $L(M_1) = L_1$.

Eingabe: $x \in \Sigma_1^*$

- 1. F berechnet auf x und übergibt seine Ausgabe f(x) zur TM M_2
- 2. M_2 berechnet auf f(x) und die Ausgabe wird übernommen.

Abbildung 1: TM M_1 , Zsf. Fabian Frei

Korrektheit
$$(L_1 = L(M_1))$$

Case Distinction

I.
$$\mathbf{x} \in \mathbf{L_1}$$
 $\implies f(x) \in L_2$ (Algorithmus F terminiert immer)
 $L(M_2) = L_2 \implies f(x) \in L(M_2)$
da die Ausgabe von M_2 übernommen wird
 $\implies x \in L(M_1)$
II. $\mathbf{x} \notin \mathbf{L_1}$
 $\implies f(x) \notin L_2$
 $\implies f(x) \notin L(M_2)$
 $\implies x \notin L(M_1)$

Aufgabe 1

Zeige

$$L_{\text{diag}} \leq_{\text{EE}} L_{\text{H}}^{\complement}$$

Zur Erinnerung:

$$L_{\text{diag}} = \{w_i \in (\Sigma_{\text{bool}})^* \mid M_i \text{ akzeptiert } w_i \text{ nicht}\}$$

$$L_{\rm H}^{\complement} = \{ {
m Kod}(M) \# w \in \{0, 1, \#\}^* \mid M \text{ hält nicht auf } w \}$$

 $\cup \{ x \in \{0, 1, \#\}^* \mid x \text{ nicht von der Form Kod}(M) \# w \}$

Lösung 1

Wir beschreiben einen Algorithmus A, so dass

$$x \in L_{\text{diag}} \iff A(x) \in L_{\text{H}}^{\complement}$$

Eingabe: $x \in (\Sigma_{\text{bool}})^*$

- 1. Findet *i* so dass $x = w_i$
- 2. Generiert $Kod(M_i)$
- 3. Generiert $Kod(\overline{M}_i)$ mit folgenden Modifikationen zu $Kod(M_i)$
 - Transitionen nach q_{reject} werden in eine Endlosschleife umgeleitet.
- 4. Gibt $Kod(\overline{M}_i)#w_i$ aus.

Lösung 1

Case Distinction

$$\text{I. } x \in L_{\text{diag}}$$

$$\implies M_i$$
 akzeptiert $x = w_i$ nicht $\implies \overline{M}_i$ hält nicht auf w_i $\implies A(x) = \operatorname{Kod}(\overline{M}_i) \# w_i \in L_{\mathrm{H}}^{\complement}$

II.
$$\mathbf{x} \notin \mathbf{L}_{\text{diag}}$$

$$\implies M_i$$
 akzeptiert $x = w_i$

$$\implies \overline{M}_i \text{ hält auf } w_i$$

$$\implies A(x) = \text{Kod}(\overline{M}_i) \# w_i \notin L_H^{\complement}$$

23

Aufgabe 2

Zeige

$$L_{\mathrm{U}}^{\complement} \leq_{\mathrm{EE}} L_{\mathrm{diag}}$$

Komplexitätstheorie Einführung

Sei M eine MTM oder TM, die immer hält. Sei Σ das Eingabealphabet von M. Sei $x \in \Sigma^*$ und $D = C_1, C_2, ..., C_k$ die Berechnung von M auf x.

Die Zeitkomplexität $Time_{M}(x)$ der Berechnung von M auf x ist definiert durch

$$\mathbf{Time_M}(\mathbf{x}) = k - 1.$$

Die **Zeitkomplexität von M** ist die Funktion $\mathrm{Time}_M:\mathbb{N}\to\mathbb{N}$, definiert durch

$$\mathbf{Time}_{\mathbf{M}}(\mathbf{n}) = \max \left\{ \mathrm{Time}_{M}(x) \mid x \in \Sigma^{n} \right\}.$$

Sei $k \in \mathbb{N} \setminus \{0\}$. Sei M eine k-Band-TM, die immer hält. Sei

$$C=(q,x,i,\alpha_1,i_1,\alpha_2,i_2,...,\alpha_k,i_k)$$
mit $0\leq i\leq |x|+1$ und $0\leq i_j\leq |\alpha_j|$ für $j=1,...,k$

eine Konfiguration von M.

Die Speicherplatzkomplexität von C ist

Space_M(**C**) =
$$\max\{|\alpha_i| | i = 1,...,k\}.$$

Sei $C_1, C_2, ..., C_l$ die Berechnung von M auf x. Die **Speicherplatzkomplexität von M auf x** ist

$$\mathbf{Space}_{\mathbf{M}}(\mathbf{x}) = \max \left\{ \mathrm{Space}_{M}(C_{i}) \mid i = 1, ..., l \right\}.$$

Die **Speicherplatzkomplexität von M** ist die Funktion $\mathrm{Space}_M:\mathbb{N}\to\mathbb{N},$ definiert durch

$$Space_{\mathbf{M}}(\mathbf{n}) = \max \{Space_{\mathbf{M}}(x) \mid x \in \Sigma^{n} \}.$$

Space

Bemerkungen

- 1. Länge des Eingabewortes, hat keinen Einfluss auf die Speicherplatzkomplexität.
- 2. Mächtigkeit des Alphabets hat keinen Einfluss auf die Speicherplatzkomplexität.

Space

Lemma 6.1

Sei $k \in \mathbb{N} \setminus \{0\}$. Für jede k-Band-TM A, die immer hält, existiert eine äquivalente 1-Band-TM B, so dass

$$\operatorname{Space}_{B}(n) \leq \operatorname{Space}_{A}(n)$$

Beweisskizze:

Gleiche Konstruktion wie in Lemma 4.2.

Lemma 4.2 = "Für jede MTM A existiert eine äquivalente TM B".

Wir sehen, dass *B* genau so viele Felder braucht, wie *A*.

Space

Lemma 6.2

Zu jeder MTM A existiert eine äquivalente MTM B mit

$$\operatorname{Space}_{B}(n) \leq \frac{\operatorname{Space}_{A}(n)}{2} + 2$$

Beweisskizze:

Wir fassen jeweils 2 Felder von A zu einem Feld in B zusammen. $\Gamma_B = \Gamma_A \times \Gamma_A$. Wir addieren 1 für das φ am linken Rand und 1 für das Aufrunden im Fall von ungerader Länge.