МИНОБРНАУКИ РОССИИ ФГБОУ ВО «СГУ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

АЛГОРИТМЫ АЛГЕБРЫ И ТЕОРИИ ЧИСЕЛ

ЛАБОРАТОРНАЯ РАБОТА №18

студента 4 курса 431 группы	
направления 10.05.01 — Компьютерная безопасность	
факультета КНиИТ	
Никитина Арсения Владимировича	
Проверил	
доцент	А. С. Гераськин

СОДЕРЖАНИЕ

1	Зада	ание лабораторной работы	3
2	Teop	ретическая часть	4
3	Пра	ктическая часть	5
	3.1	Пример работы алгоритма	5
	3.2	Код программы, реализующей рассмотренный алгоритм	5

1 Задание лабораторной работы

Разложение на мнодители полиномов над конечными полями:

— Алгоритм Бэрликемпа.

2 Теоретическая часть

Разложение полиномов на свободные от квадратов мно- множители (Polynomial Squarefree Factorization)

 Bxod : Нормированный свободный от квадратов полином p(x) над GF(p), $\deg[p(x)]=n.$

Bыход: Неприводимые сомножители полинома p(x) над GF(p).

- 1. Построить матрицу Q размерности $n \times n$.
- 2. Триангулировать матрицу Q-I, вычислив ее ранг n-r и найдя нульпространство матрицы Q-I, то есть найти r линейно независимых векторов b_1,\ldots,b_r , таких, что $b_j[Q-I]=0, j=\overline{1,r}$. Первый вектор всегда может быть выбран в виде $(1,0,\ldots,0)$, что представляет тривиальное решение $b_1(x)=1$ уравнения.
- 3. Вычисление сомножителей. Пусть $b_2(x)$ полином, соответствующий вектору b_2 . Вычислим $\gcd(p(x),b_2(x)-s)\ \forall s\in GF(p)$. В результате данной операции будет получено нетриваиельное разложение полинома p(x). Если с использованием $b_2(x)$ получено менее r сомножителей, вычислим $\gcd(w(x),b_k(x)-s)\ \forall s\in GF(p)$ и для всех сомножителей w(x), найденных к данному времений для $k=\overline{3,r}$, пока не будет найдено r сомножителей. Таким образом гарантируется, что будут найдены все сомножители полинома p(x). Если p достаточно мало, то вычисления на данном шаге можно считать эффективными. Считается, что если p>25, следует использовать более эффективные алгоритмы.

3 Практическая часть

3.1 Пример работы алгоритма

```
Введите размер поля: 13
                 + 9, x**2
                   Рисунок 1
```

3.2 Код программы, реализующей рассмотренный алгоритм

```
import random
  cnt = 30
  ls = []
  while cnt:
       a = random.randrange(5, 10)
       b = random.randrange(10, 20)
       c = random.randrange(20, 41)
       d = random.randrange(2, 6)
       if a + b + c + d > 55:
9
           ls.append((a, b, c, d))
           print(cnt)
11
           cnt -= 1
12
  print(*ls, sep=' \n')
```