

Capstone Project 1: Data Wrangling

1. What kind of cleaning steps did I perform?

For genotypic data:

- Step 1: Checked the dimension of the two genotypic data sets and found that there were mismatches.
- Step 2: Merge two genotypic dataset with 'inner' option based on SNP id.
- Step 3: Found out common lines that have both genotypic and phenotypic data.
- Step 4: Got a subset of genotypic data that match phenotypic data.
- Step 5: Imputed missing values for genotypic data.
- Step 6: Drop monomorphic SNP data.

For phenotypic data:

- Step 1: Checked the dimension of phenotypic data and found the mismatch with genotypic data
- Step 2: Found out common lines that have both phenotypic and genotypic data.
- Step 3: Found duplicates in lines' Id and dropped those duplicates.
- Step 4: Using Z-score (-3 and 3) as thresholds to find out outliers.
- Step 5: Wrote out a subset of phenotypic data that match genotypic data and without duplicates and outliers.

2. How did I deal with missing values, if any?

For genotypic data: Using 'major' genotypic code replaced missing values [in 240].

For phenotypic data: Found low proportion missing value for protein and oil (<0.001) trait. Missing values were kept. Relative high proportions of missing values were found in yield data. All missing values were discarded.

3. Were there outliers, and how did I handle them?

<u>For genotypic data:</u> SNP data with missing data more than 20% were considered as outliers. I discarded those markers.

For phenotypic data: There were outliers for all three traits. I used Z-score, namely >-3 and < 3, as thresholds to find out outliers.