

FILTRADO ANALÓGICO

2008-2009 Instrumentación Electrónica

INTRODUCCIÓN

Cuadripolo capaz de atenuar ciertas frecuencias y permitir el paso de las otras.

$$H(s) = \frac{v_{o}(s)}{v_{i}(s)} \qquad S = j\omega$$

$$H(j\omega) = |H(j\omega)| \angle \phi(\omega)$$

$$Ganancia \qquad Fase$$

$$H(s) = \frac{a_m \cdot s^m + a_{m-1} \cdot s^{n-1} + \dots + a_1 \cdot s + a_0}{s^n + b_{m-1} \cdot s^{n-1} + \dots + b_1 \cdot s + b_0}$$
polos: raíces del denominador ceros: raíces del numerador

Orden del Filtro: n

 $n \geq m \,$

Especificaciones de un filtro

- Ganancia
- · Frecuencia de corte
- · Orden del filtro
- Especificaciones Frecuenciales
 - Amáxima: rizado máximo de la banda de paso
 - Amin: atenuación mínima de la banda atenuada (referida a la ganancia máxima de la banda de paso)
 - f_p: frecuencia límite de la banda de paso
 - ullet f_s : frecuencia donde comienza la banda atenuada
 - Factor de calidad (Q)
 - frecuencia normalizada: f_n=f/f_c f_n=f/f_c
- · Especificaciones temporales
 - Respuesta de un filtro ante una entrada escalón: tiempo de subida, tiempo de establecimiento, sobreoscilación
 - Retardo de fase (ϕ/ω) : retardo de tiempo que le corresponde al desfase entre las señales de entrada y de salida
 - Retardo de grupo: retardo de fase visto desde la banda de pasos

Factor de calidad del filtro

Respuesta normalizada de filtros de segundo orden en función de Q (a) paso bajo, paso alto, (b) pasa banda, rechaza banda

Respuesta en frecuencia normalizada

- Frecuencia normalizada: f/f_c, f/f_o,
- Pulsación normalizada: ω/ω_c ω/ω_o

2008-2009

Instrumentación Electrónica

7

Parámetros de diseño (especificaciones temporales)

Respuesta del filtro ante una entrada escalón

- · Tiempo de subida
- Tiempo de establecimiento
- Sobreoscilación

Retardo de fase

2008-2009

Instrumentación Electrónica

В

Aproximación de Chebyshev

Tipo I

- Sólo tienen polos
- Característica monótona en la banda atenuada

Tipo II

- Tienen polos y ceros
- Rizado constante en la banda de paso Rizado constante en la banda de atenuada
 - Característica monótona en la banda de paso

2008-2009 11 Instrumentación Electrónica

Aproximación de Bessel

$$H(s) = \frac{1}{B_n(s)}$$

$$B_n(s) = \sum_{k=0}^n a_k s^k$$

Polinomio de Bessel

$$a_k = \frac{(2n-k)!}{2^{n-k}k!(n-k)!}$$

k = 0, 1...n

Respuesta de fase es lineal en la banda de paso Aplicaciones de filtrado de ondas cuadradas

2008-2009

Instrumentación Electrónica

12

Filtros pasivos

Resistencias, bobinas y condensadores

- ✓ Buena linealidad
- ✓ No requieren alimentación
- ✓ Amplio margen de tensiones y corrientes
- X Cada etapa tiene una impedancia de salida que afecta a la etapa siguiente y una impedancia de entrada que afecta a la anterior ⇒ dificulta conexión en cascada
- X La ganancia de paso en la banda de paso siempre es la unidad
- × Tamaño de las bobinas en las aplicaciones de baja frecuencia elevado

Filtros pasivos RC (Tabla 4.2)

2008-2009 Instrumentación Electrónica

ü

Filtros activos

Resistencias, condensadores y operacionales

- ✓ Aplicaciones de baja frecuencia y pequeña señal
- √ Facilitan el encadenamiento de etapas aprovechando la baja impedancia de salida de los Operacionales
- × Ancho de banda limitado al Operacional empleado
- × Necesidad de alimentación
- × Ruido adicional provocado por el Operacional

Estructuras para implementar filtros activos

- ⇒ Sallen-Key
- ⇒ Realimentación múltiple (MFB): para filtros que requieren valores de Q y de ganancia altos
- ⇒ Variables de estado

2008-2009

Instrumentación Electrónica

16

15

ü

Filtros activos: diseño de filtros paso bajo

Método general de diseño

Considerar la FDT normalizada de un filtro de segundo orden e identificarla con la expresión matemática del filtro particular a diseñar

$$H(j\omega_n) = \frac{K}{1 + a_1(j\omega_n) + b_1(j\omega_n)^2}$$

FDT normalizada de un filtro paso bajo de segundo orden

$$\omega_{\rm n} = \frac{\omega}{\omega}$$
 Pulsación normalizada

K: Ganancia

a1, b1 : coeficientes que definen el tipo de aproximación matemática

Filtros activos: diseño de filtros paso alto

Método general de diseño

La respuesta de un filtro paso alto se puede obtener sin más que relejar la respuesta de un filtro paso bajo respecto a la frecuencia normalizada unidad.

- \Rightarrow La FDT de un filtro paso alto de segundo orden se obtiene a partir de la FDT de un filtro paso bajo de segundo orden reemplazando ω_n por $1/\omega_n$
- ⇒ La estructura física de un filtro paso alto se obtiene reemplazando en un filtro paso bajo R por C y C por R

Filtros de variables de estado

Estructuras Sallen-Key y MFB

- × Sensibles a las tolerancias de los componentes y de la temperatura
- × NO permiten valores de Q elevados
- En general No permiten ajustes independientes de la ganancia y del factor de calidad

2008-2009 Instrumentación Electrónica 25

Filtros de capacidad conmutada

- La señal de entrada es muestreada y procesada en un tiempo discreto.
- Las resistencias del filtro son reemplazadas por interruptores MOS y condensadores integrados en el propio chip
 - ⇒ Ajuste del valor de las R mediante las variación de la frecuencia de conmutación de los interruptores
- · Valor de la frecuencia de corte proporcional a la frecuencia del reloj externo

Integrador RC mediante un operacional

Cte de tiempo (RC) depende de la los componentes discretos !!!

Filtros de capacidad conmutada

Integrador inversor de capacidad conmutada

2008-2009 Instrumentación Electrónica

Aplicaciones de los filtros

- Eliminación de ruido
 - Notch para eliminar la frecuencia de línea (instrumentación biomédica)
 - · Paso bajo
 - anti-aliasing (limitar el ancho de banda y limitar el espectro del ruido)
- Detección de tono (filtros de capacidades conmutadas)
- · Aplicaciones de filtrado con frecuencia ajustable
- Procesamiento de señales de audio
- Pulsación normalizada: ω/ωc ω/ωο

2008-2009 Instrumentación Electrónica 28

27