Page 1

1992 HG9

一半徑為 r cm 的球體剛好被一體積為 $\frac{8\pi r^2}{3} \text{ cm}^3$ 的圓

錐形容器覆蓋於桌上 (如圖所示)。求 r 的最大可能值。 A sphere of radius r cm can just be covered on a table by a

conical vessel of volume $\frac{8\pi r^2}{3}$ cm³ (as shown in the

figure). Determine the largest possible value of r.

1996 HI9

若 x 及 y 為正整數及 x-y=5, 求 x^2-y^2+5 之最小值。

If x and y are positive integers and x - y = 5, find the least value of $x^2 - y^2 + 5$.

2002 FI4.4

已知 α 和 β 是方程 $x^2 - ax + a - 4 = 0$ 的兩個根,其中 a 為實數。 若 $(\alpha+1)^2+(\beta+1)^2$ 的最小值為 S, 求 S 的值。

It is given that α and β are roots of the equation $x^2 - ax + a - 4 = 0$, where a is real. If the minimum value of $(\alpha + 1)^2 + (\beta + 1)^2$ is S, find the value of S.

2008 HG6

設 x 為正實數,求 $x^{2008}-x^{1004}+\frac{1}{x^{1004}}$ 的最小值。

Let x be a positive real number. Find the minimum value of $x^{2008} - x^{1004} + \frac{1}{x^{1004}}$.

2012 HI7

已知 $a \cdot b \cdot c$ 是正數,且 a+b+c=9。設 $a+b \cdot a+c \cdot b+c$ 當中的最大 值為P, 求P的最小值。

Given that a, b and c are positive numbers, and a + b + c = 9. Suppose the maximum value among a + b, a + c and b + c is P, find the minimum value of P.

2012 FG4.4

即是,五數之和等於五數之乘積,求 x5 的最大值。

 $x_1x_2x_3x_4x_5$, that is the sum is the product, find the maximum value of x_5 .

2013 HG3

設 x 及 y 為實數使得 $x^2 + xy + y^2 = 2013$ 。求 $x^2 - xy + y^2$ 的最大值。 Let x and y be real numbers such that $x^2 + xy + y^2 = 2013$.

Find the maximum value of $x^2 - xy + y^2$.

2013 FG3.2

設 $x_1 \setminus x_2 \setminus \dots \setminus x_{10}$ 為非零整數,且滿足 $-1 \le x_i \le 2$,其中 $i = 1 \setminus 2 \setminus \dots \setminus 10$ 。

Let x_1, x_2, \dots, x_{10} be non-zero integers satisfying $-1 \le x_i \le 2$ for $i = 1, 2, \dots, 10$.

If $x_1 + x_2 + \cdots + x_{10} = 11$, find the maximum possible value for $x_1^2 + x_2^2 + \cdots + x_{10}^2$.

2014 HG5

若 $x \cdot y$ 是實數,且 $x^2 + 3y^2 = 6x + 7$,求 $x^2 + y^2$ 的極大值。

If x, y are real numbers and $x^2 + 3y^2 = 6x + 7$, find the maximum value of $x^2 + y^2$. 2014 HG9

已知函數 $y = \sin^2 x - 4 \sin x + m$ 的極小值為 $\frac{-8}{3}$, 求 m^y 的極小值。

Given that the minimum value of the function $y = \sin^2 x - 4 \sin x + m$ is $\frac{-8}{2}$.

Find the minimum value of m^y .

2017 FG2.3

若實數 $x \cdot y$ 及 z 滿足 (x+y+z)=30 及 $C=x^2+y^2+z^2$, 求 C 的最小值。 If real numbers x, y and z satisfy (x + y + z) = 30 and $C = x^2 + y^2 + z^2$, determine the least value of C.

2017 FG2.4

已知 $D = (x-1)^3 + 3 \circ \text{ d} -3 \le x \le 3$, 求 D 的最大值。

Given that $D = (x-1)^3 + 3$. Determine the greatest value of D for $-3 \le x \le 3$.

2018 FI3.1

已知 $a \cdot b \cdot c$ 為實數,且 $A = (3a - X)^2 + (3b - X)^2 + (3c - X)^2 + 6$.

若 X = a + b + c 及 $X^2 = a^2 + b^2 + c^2$, 求 A 的最小值。

Given that a, b, c are real numbers and $A = (3a - X)^2 + (3b - X)^2 + (3c - X)^2 + 6$.

If X = a + b + c \not $X^2 = a^2 + b^2 + c^2$, determine the least value of A.

2018 FG3.3

求 φ 的最大實數值,使不等式 $\sqrt{1-\varphi} - \sqrt{1+\varphi} \ge 1$ 成立。

If x_1 , x_2 , x_3 , x_4 and x_5 are positive integers that satisfy $x_1 + x_2 + x_3 + x_4 + x_5 =$ Determine the largest real value of φ such that the inequality $\sqrt{1-\varphi} - \sqrt{1+\varphi} \ge 1$ holds.

2021 P1O1

已知 $W = a^b - b^a$,其中 $a \neq b \neq 0$ 。若 W 為一非負整數,求 W 的最小值。 Given that $W = a^b - b^a$, where $a \neq b \neq 0$. If W is a non-negative integer, find the least value of W.

2023 FG2.1

假如 x 和 y 都是正整數且它們的和是 15,找出 x^3+y^3 的最小值。 Find the minimum value of x^3+y^3 if x and y are two positive integers whose sum is 15.

Answers

1992 HG9	1996 HI9	2002 FI4.4	2008 HG6	2012 HI7
1	40	10	1	6
2012 FG4.4 5	2013 HG3 6039	2013 FG3.2 31	2014 HG5 14	$ \begin{array}{c} 2014 \text{ HG9} \\ 3^{-\frac{16}{3}} \end{array} $
2017 FG2.3 300	2017 FG2.4 11	2018 FI3.1 6	2018 FG3.3 $-\frac{\sqrt{3}}{2}$	2021 P1Q1 0
2023 FG2.1 855				