

US Army Corps of Engineers

Construction Engineering lesearch Laboratory

TECHNICAL REPORT N-86/12 June 1986

MicroBNOISE: A User's Manual

by Steven D. Hottman John J. Fittipaldi Richard G. Gauthier Mark E. Cole

This report provides instruction for using Micro-BNOISE—a computer program that supports the Army's Installation Compatible Use Zone Program (ICUZ) by enabling installation personnel to examine the relative consequences of blast-related mission activities. Installation planners and managers can use this program to assess results of realigning and rescheduling mission activities.

86 10 31 007

Approved for public release; distribution unlimited.

IN FILE COPY

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official indorsement or approval of the use of such commercial products. The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED DO NOT RETURN IT TO THE ORIGINATOR

During extensive use of MicroBNOISE and while training personnel in the use of the software, it was discovered that the manual could be expanded in several places to improve clarity. It was also discovered that a few hints could make use of the software much easier, particularly for the relatively inexperienced user. These expansions and hints will be published in the form of addenda.

Each addendum will consist of pages to be inserted into TR N-86 at the places indicated; e.g., pages 15.1 and 15.2 should follow page 15 of N-86/12. Addendum #1 has already been produced and inserted in this manual.

It is expected that further addenda will be produced as more experience with MicroBNOISE is gained, and as the data bases are expanded. Users are encouraged to send suggestions for improvements to the USA-CERL Principal Investigators.

10日本人の大学

The state of the s

200000

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMEN	READ INSTRUCTIONS BEFORE COMPLETING FORM		
T. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER	
CERL TR N-86/12	ADA 173605		
4. TITLE (and Subtitio)		5. TYPE OF REPORT & PERIOD COVERED	
MICROBNOISE: A USER'S MAN	UAL	Final	
		5. PERFORMING ORG. REPORT NUMBER	
7. AUTHOR(*)	Mark E. Cole	8. CONTRACT OR GRANT NUMBER(a)	
Steven D. Hottman John J. Fittipaldi Richard G. Gauthier	mark E. Cole	IAO 35-86, dated 9 April 85	
U. S. Army Construction En P.O. Box 4005 Champaign, IL 61820-1305	o ADDRESS gr Research Laboratory	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
11. CONTROLLING OFFICE NAME AND ADD	RESS	12. REPORT DATE	
		June 1986	
		13. NUMBER OF PAGES	
		86	
14. MONITORING AGENCY NAME & ADDRES	S(ii different from Controlling Office)	15. SECURITY CLASS. (of this report)	
		UNCLASSIFIED	
		15a. DECLASSIFICATION/DOWNGRADING	

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

Copies are available from the National Technical Information Service Springfield, VA 22161

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

MicroBNUISE Installation Compatible Use Zone

26. ABSTRACT (Continue on reverse olds if necessary and identify by block number)

This report provides instruction for using MicroBNOISE--a computer program that supports the Army's Installation Compatible Use Zone Program (ICUZ) by enabling installation personnel to examine the relative consequences of blast-related mission activities. Installation planners and managers can use this program to assess results of realigning and rescheduling mission activities.

FOREWORD

This project was performed for Headquarters, U. S. Army Forces Command (FORSCOM), Fort McPherson, GA, under Intra-Army Order Number 35-86, dated 9 April 1985. Mr. Patrick Kelly, Master Planning Office (AFEN-RMP), and Mr. Rudy Stine, Environmental Office, AFEN-FDE, were the FORSCOM project monitors.

The work was performed by the Environmental Division (EN), U. S. Army Construction Engineering Research Laboratory (USA-CERL). The System Analysis Department, Analysis & Technology, Inc., North Stonington, CT, adapted the mainframe version of BNOISE to microcomputers and provided the documentation under Contract DACA88-84-0019. Mr. Richard G. Gauthier was the Project Manager.

Dr. Steven Hottman and Mr. John Fittipaldi were the USA-CERL Principal Investigators. Administrative support and counsel were provided by Mr. Walter Mikucki, Mr. Ronald Webster, Mr. Robert Riggins, and Dr. Paul Schomer, all of USA-CERL. Mr. Robert Riggins is Acting Chief of USA-CERL-EN.

COL Paul J. Theuer is Commander and Director of USA-CERL, and Dr. L. R. Shaffer is Technical Director.

CONTENTS

DD FORM 1473				Page
LIST OF TABLES AND FIGURES 1 INTRODUCTION				_
Background Purpose Approach Scope Mode of Technology Transfer 2 DESCRIPTION AND USE OF MICROBNOISE 9 TABGEN Program EDITOR Program LCDN Program NASAPLOT Program NASAPLOT Program NASAPLOT Program 3 DESCRIPTION OF A MICROBNOISE USER SESSION 28 Input Data Module Selection Output Received 4 SUMMARY 32 REFERENCES APPENDIX A: Files Needed To Run MicroBNOISE 34 APPENDIX B: Table Generation (TABGEN) (Inversion Factors 74.20%, 8.60%, 18.67%) 35 APPENDIX C: Sample MicroBNOISE Session 62 APPENDIX D: Printed Output From the Example Problem 76 APPENDIX E: Fundamental DOS Commands 84			S AND FIGURES	3
2 DESCRIPTION AND USE OF MICROBNOISE	1	Background Purpose Approach Scope		7
TABGEN Program EDITOR Program LCDN Program NASAPLOT Program NASAPLOT Program 3 DESCRIPTION OF A MICROBNOISE USER SESSION		Mode of Tech	nology Transfer	
Input Data Module Selection Output Received 4 SUMMARY	2	TABGEN Prog EDITOR Prog LCDN Progra	gram ram m	9
APPENDIX A: Files Needed To Run MicroBNOISE APPENDIX B: Table Generation (TABGEN) (Inversion Factors 74.20%, 8.60%, 18.67%) APPENDIX C: Sample MicroBNOISE Session APPENDIX D: Printed Output From the Example Problem APPENDIX E: Fundamental DOS Commands 84	3	Input Data Module Select	tion	28
APPENDIX A: Files Needed To Run MicroBNOISE APPENDIX B: Table Generation (TABGEN) (Inversion Factors 74.20%, 8.60%, 18.67%) APPENDIX C: Sample MicroBNOISE Session APPENDIX D: Printed Output From the Example Problem APPENDIX E: Fundamental DOS Commands 84	4	SUMMARY		32
APPENDIX B: Table Generation (TABGEN) (Inversion Factors 74.20%, 8.60%, 18.67%) APPENDIX C: Sample MicroBNOISE Session APPENDIX D: Printed Output From the Example Problem APPENDIX E: Fundamental DOS Commands 84		REFERENCES		
APPENDIX C: Sample MicroBNOISE Session 62 APPENDIX D: Printed Output From the Example Problem 76 APPENDIX E: Fundamental DOS Commands 84			Table Generation (TABGEN) (Inversion Factors	34
APPENDIX D: Printed Output From the Example Problem 76 APPENDIX E: Fundamental DOS Commands 84				
APPENDIX E: Fundamental DOS Commands 84				_
•••				
		DISTRIBUTION	rundamentar DOS Commands	84

TABLES

Number		Page
1	Weapon Codes	11
2	Projectile and Propellant Weights for Table 1 Weapon Codes (TNT Equivalent in Pounds)	12
3	Directivity Information for Table 1 Weapon Codes	13
4	Order of Module Execution and Optionality	19
5	Temperature Inversion Factors	23
	FIGURES	
1	MicroBNOISE System Flow	9
2	CDNL Contours for Installation "SHOW"	30
3	Scattergram for Installation "SHOW"	31
D1	MicroBNOISE Header: Coordinate Units and Data Used by Program LCDN	76
D2	MAP Module Output	76
D3	BOUNDS Module Output	79
D4	BASE Module Output: Coordinates of Line Segments for Installation Outline	79
D5	FORMA Module Output	79
D6	PUDDLE GRID Module Output	80
D7	SCATTER Module Output: Bounds, Input Parameters, Output Parameters	82
D8	LOCATOR Module Output: Labels and Locations of Plot Annotations	82
D9	PLOT Module Output: Data for First Plot (CONTOURS) Requested	83
D10	PLOT Module Output: Data for Second Plot (SCATTERGRAM) Requested	83

MICROBNOISE: A USER'S MANUAL

1 INTRODUCTION

Background

The Army has developed the Installation Compatible Use Zone (ICUZ) program to safeguard the operational capability of Army installations from encroachment by offpost, noise-sensitive land uses such as housing. ICUZ, which is based on the Integrated Noise Contour System developed by the U.S. Army Construction Engineering Research Laboratory (USA-CERL), requires noise contours to be developed around military installations to assist in effective land-use planning and to prevent community encroachment on high-noise training areas. By identifying heavily noise-impacted areas, the public, local governments, and the installation can work together to minimize noise-sensitive development. The ICUZ program uses the Blast Noise Prediction (BNOISE 3.2) computer program to generate noise contour maps that characterize an installation's noise "footprint."

BNOISE was developed by USA-CERL and is operated by the U.S. Army Environmental Hygiere Agency for all requesting Army installations. Recent research has made BNOISE operable from its current operating environment (a CDC mainframe computer) on any one of a family of microcomputers. The microcomputer system has been successfully operated on an IBM-AT, AT&T Model 6300, and a COMPAC DESKPPO Model IV. USA-CERL Technical Report E-17³ provides details of the modeling organization and computational algorithms.

MicroBNOISE, as the program is now called, can be run on any IBM-compatible microcomputer that has 400 Kbytes of Random Access Memory (RAM), a mathematics coprocessor, and a fixed disk. As currently implemented, the microcomputer must also be connected to a Hewlett-Packard (HP) compatible plotter to produce noise plots. (The 7470A and the 7475A have been used successfully.) Installation planners can use the plots to assess the results of realigning and rescheduling mission activities.

Purpose

The purpose of this report is to provide instructions for using MicroBNOISE.

Lincoln L. Little, Violet I. Pawlowska, and David L. Effland, Blast Noise Prediction Volume II: BNOISE 3.2 Computer Program Description and Program Listing, Technical Report N-98/ADA099335 (U. S. Army Construction Engineering Research Laboratory [USA-CERL], 1981); Paul D. Schomer, et al., Blast Noise Prediction Volume I: Data Bases and Computational Procedures, Technical Report N-98/ADA099440 (USA-CERL, 1981).

²USA-CERL Technical Report N-98, Vols I and II.

³Paul D. Schomer, Predicting Community Response to Blast Noise, Technical Report E-17/ADA773690 (USA-CERL, 1973).

Approach

The table generation capabilities, program inputs, module functions, and contouring display program are described (Chapter 2), and a detailed example of a user session provided (Chapter 3).

Scope

The information in this report assumes that the user already has a fundamental knowledge of how to operate an IBM-compatible microcomputer system. Appendix E provides a short summary of the disk operating commands needed to install and run MicroBNOISE.

Mode of Technology Transfer

The program and documentation for MicroBNOISE are available from the Army Environmental Hygiene Agency.

2 DESCRIPTION AND USE OF MICROBNOISE

MicroBNOISE is a series of digital computer programs that can produce C-weighted day/night average sound level (CDNL) contours for military activities or operations having impulsive noise sources (e. g., artillery, explosions or demolitions, and weapon blasts). These programs are written in FORTRAN 77 and used on IBM-compatible microcomputers. They include TABGEN (a table generation program), EDITOR (a user-friendly, conversational data input program), LCDN (a contour generation program), and NASAPLOT (a general-purpose contouring display program). Figure 1 shows the relationship between these programs and their sequence of use.

The software is operational on microcomputers running under the Microsoft Disk Operating System (MS-DOS). MicroBNOISE is a conversational, user-friendly system capable of accepting various operational scenarios and installations defined by the system user.

Using MicroBNOISE on a microcomputer is quite simple. Once the programs and data files have been loaded onto the fixed disk (see Appendix E), the user simply types the word BNOISE to begin executing the MicroBNOISE system. Appendix A lists the files needed to run the system. All input is made in response to prompts from the computer. The user's responses are checked for accuracy, and the user is reprompted for data whenever a response is invalid or unreasonable. The system automatically channels the flow from one program to another; this process is transparent to the user.

Figure 1. MicroBNOISE system flow.

TABGEN Program

TABGEN creates the tables of decibel (dB) values produced at given distances by a 5-lb C-4 explosive charge. The LCDN program then uses these tables to calculate CDNL. The tables are automatically stored in disk file TAPE20.DAT (Appendix B). TABGEN needs to be run only once to produce the disk file. (TAPE20.DAT has already been initialized from an input file called TABGENIN.DAT; no operator action is required.)

EDITOR Program

This program is a preprocessor to the LCDN program. Its sole purpose is to accept data from the user in an interactive, user-friendly manner and create the following two input files for LCDN:

- 1. TAPE7.DAT, the database file, which contains gun-type, target-point, and firing-point data (discussed below).
- 2. BNOISEIN.DAT, which contains the module data that direct the calculation flow of LCDN and produce printed and/or plotted results. The module data are discussed on p 18.

Responses to EDITOR prompts must be input in upper-case letters.

Gun-Type Data

The gun-type data describe the weapons by specifying the weight of explosive in the projectile, the weight of the different propellant charges, the name of the weapon, the weight parameters A and B,* and the directivity pattern (variation of the noise pattern emanating from the source). The user must differentiate between the amount of propelling charge at the firing point and the amount of projectile charge exploding at the target point. These values vary for different weapons and ammunition. Table I gives the codes used for a set of standard weapons; as new weapons are measured and the data analyzed, this set of weapons will be expanded. USA-CERL will provide revisions periodically. Tables 2 and 3 give the weight of propellant and projectile charges for these weapons (in TNT equivalents) and directivity information.

Table 2 shows that various amounts of propellant can be used to fire one size of projectile. The user is not restricted to the weapon types listed in Tables 1, 2, and 3. He** may create data to suit his needs as long as they are entered and labeled with a new gun-type code. All of the data in Tables 1, 2, and 3 are already stored in a disk file within MicroBNOISE called GUNTABLE.DAT. The user may either select weapons individually, select all of the weapons, or enter a new weapon code. The user responds to the following prompts:

WEAPON CODE:

^{*}Chapter 5 of USA-CERL Technical Report N-98 defines these parameters.

^{**}The male pronoun is used to refer to both sexes.

Table 1

Weapon Codes

Weapon	Code
105-mm howitzer (M102)	1
155-mm howitzer (M109)	2
8-in. howitzer (M110)	3
175-mm gun	4
155-mm howitzer (M109A1)	5
155-mm howitzer (M114)	6
8-in. howitzer (M110A1)	7
155-mm howitzer (M198)	8
8-in. howitzer (M110A2)	9
Small-charge TNT (0.25-90 lb)	10 11
Large-charge TNT (110-500 lb)	11
60-mm mortar	20
81-mm mortar	22
107-mm mortar (4.2 in.)	23
57-mm recoilless rifle	30
90-mm recoilless rifle (M67)	31
106-mm recoilless rifle (M40A1)	32
20-mm dun	40
20-mm gun 40-mm gun	41
57-mm gun	42
90-mm gun	43
	50
2.75-in. rocket	51
3.5-in. rocket	52
66-mm rocket	53
LAW missile (M72) TOW missile	54
Dragon missile	55
Shillelagh missile (from 152-mm gun)	56
10 mm man de leunghen (M202)	60
40-mm grenade launcher (M203)	61
Rifle grenade (M79) Hand grenade (M67)	62
M60 tank (105-mm) regular shell	90
M60 tank (105-mm) high-velocity shell	91
152-mm tank gun (Sheridan) (M551) regular shell	92
152-mm tank gun (Sheridan) (M551) HEAT-T shell	93
165-mm cannon (M135)	94
120-mm Abrams HEAT shell	95 96
120-mm Abrams SABO	96

Table 2

Projectile and Propellant Weights for Table 1 Weapon Codes (TNT Equivalent in Pounds)

01		90.0 500.0						
Б 1	43.6	43.6 43.6 70.0 440.0	0.2284					
80 1	20.34 38.00	20.34 38.00 20.34 38.00 50.00	0.1941					
es 7	2.7456 13.2750 28.1375	13.2750 13.2750 28.1375 13.2750 28.1375 35.0000	0.1818					
Charge Zon	1.8656 9.8375 22.0125	9.8375 9.8375 22.0125 9.8375 22.0125 25.0000 290.0000	0.1585					
Propellant Weight Charge Zones	1.3275 7.0500 16.8500	7.05 7.05 16.85 7.05 16.85 15.00 240.00	0.1352 0.6717					
Propel	1.0040 4.0250 9.5188	4.0250 4.0250 9.5188 4.0250 9.5188 10.0000	0.0840 0.1119 0.3369					
ml	0.7731 3.0875 7.5125 57.2400	3.0875 3.0875 7.5125 3.0875 7.5125 5.0000	0.0630 0.0886 0.1642					
2	0.6050 2.2875 6.2688	2.2875 2.2875 6.2688 2.2875 6.2688 1.0000	0.0420 0.0653 0.1132					
-1	0.5175 1.7687 5.3188	1.7687 1.7687 5.3188 1.7687 5.3188 0.2500	0.0210 0.0420 0.0803	1.0 1.31 8.0	0.200 0.718 2.280 7.310	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0100 0.0001 0.0100	5.90 11.50 6.00 6.00 2.12 0.10
Projectile Weight	4.6 36.3	36.34 4 6.35 36.34 4 6.35 36.34 4 6.35	0.42 2.25 8.50	0.55 1.72 2.79	0.05 0.14 0.44 1.90	5.00 0.13 0.65 5.30 8.00	0.60	6.60 2.14 9.50 6.30 20.00 0.10
Meapon	# 2 F F	55 7 10 11	20 22 23	32 33	45 43 43	55 53 55 55 55 55 56 57	60 61 62	8.2.8.2.8.8.8

Table 3

Directivity Information for Table 1 Weapon Codes

Avg.	10.84 0.67 7.36 9.90	-0.60 9.45 0.60 0.60	4.86 4.86 4.74	-1.29 -4.11 -1.29	7.36 7.36 7.36 7.36	-5.60 -4.90		10.78 10.78 4.80 7.36 3.60
	13. 91 0. 46 10. 29 13. 08		6.39 6.39 6.61	-0.87 -9.75 -0.87	10.29 10.29 10.29 10.29	-17.1		14.04 14.04 7.38 7.38 10.29 6.50 5.30
300	10.02 0.29 6.82 9.84	-1.53 10.18 9.84 -1.53	4.48 4.78	4.6.4 0.88 0.88	6.6.6.6 8888	-16.0 -18.2		12.73 12.73 7.19 7.19 6.82 5.60 5.20
270	6.46 1.00 4.01 5.41	-0.49 -0.49 -0.49	5.75 5.75 5.17	-4.77 -7.18 -4.77	4.4.4.4 9.999	8. 8 6. 8 0		7.61 7.61 2.73 2.73 4.30 3.70
240	2.97 1.45 1.42 3.03	3.22 3.03 3.03 3.03 3.03	2.20 2.20 1.89	-2.40 -3.17 -2.40	1.42	-5. 4 0		2.88 1.98 1.30 1.30
210	0.53 0.39 0.50	00.10 20.50	2.88 2.88 1.58	0.00 0.04 0.07	9995 8888	-1.90		1.09 1.09 0.39 0.70 0.70
180	0000	0000	000	0.00	0000	0.0		000000
150	0.0.0.0	6-1-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	2.88 2.88 1.58	0.00	6666 2222	-1.90		1.09 0.39 0.39 0.39 0.39
120	2.97 1.45 1.42 3.03		2.20 2.20 1.89	-2.40 -3.17 -2.40	1.42 1.42 1.42	-5.40		4.81 1.05 1.05 1.42 2.80 1.30
. 06	6.46 1.90 4.01	6.87 6.87 6.87 6.49	5.75 5.75 5.17	-4.77 -7.18 -4.77	4.4.4	-8.00 -6.40		7.61 2.73 2.73 2.73 4.01 4.30
09	10.02 0.29 6.82	1.53 10.18 9.84 -1.53	4.48 4.48 7.8	464	8888	-16.0		12.73 12.73 7.19 7.19 6.82 5.60
30.	13.91 0.46 10.29	12.55 13.08 13.08	6.39 6.39	-9.75 -9.75 -0.87	10.29 10.29 10.29 10.29	-17.1		14.04 14.04 7.38 7.38 10.29 6.50 5.30
ઢા		16.33 16.33 1.88	8.29 8.29 8.45	2.28 -9.51 2.28	13.77 13.77 13.77 13.77	-18.5 -22.0		15.35 15.35 7.56 7.56 13.77 7.20 5.40
co !	13.91 18.51 14.13	18.11 15.59 15.87 18.11 17.50	20.00 19.57 18.85	0.00	15.00 15.00 15.00 15.00	13.85 13.85 0.00 0.00 13.85 13.85	000 888	0.00 0.00 0.00 0.00 0.00
≪ (1	83.78 75.74 83.64	73.29 80.86 76.99 73.29	95.00 90.27 85.17	106.00 107.10 117.80	88.88 85.88 86.88	88.75 88.75 88.75 106.80 106.10 88.75	85.00 65.00 65.00	111.40 115.80 115.80 115.80 60.91 117.40 118.60
Meapon	C E 4	55 7 8 8 9 11	25 23 23	30 31 32	40 41 43 43	50 51 52 53 54 55	61 62 62	8888888

If the user selects a weapon code that does not appear in Table 1, he can correct the mistake or enter a new weapon code. The following prompts will be issued for entering a new weapon code:

DO YOU WANT TO INPUT DATA FOR THIS CODE?
PROJECTILE WEIGHT:
PROPELLANT WEIGHT FOR CHARGE ZONE 1:
•
•
•
PROPELLANT WEIGHT FOR CHARGE ZONE 10:
NAME OF WEAPON:
PARAMETER A:
PARAMETER B:
DECIBEL DIFFERENCE AT 0 DEGREES:
DECIBEL DIFFERENCE AT 30 DEGREES:
•
•
•
DECIBEL DIFFERENCE AT 150 DEGREES:
AVERAGE DECIBEL DIFFERENCE:
The weapon code must be a one- or two-digit number. The projectile ellant weights are expressed in equivalent pounds of TNT explosive (see Table

The weapon code must be a one- or two-digit number. The projectile and propellant weights are expressed in equivalent pounds of TNT explosive (see Table 2). The name of the weapon is limited to the first 20 characters that the user inputs. The dB difference for the weapon is the difference between the level measured at the rear of the gun (i. e., at 180 degrees) and the level measured at some other position (e. g., at 150 degrees); 0 degree is the front of the gun. Table 3 shows these values. The parameters A, B, and AVG are used to calculate the difference between the blast from the weapon and the standard blast produced by a 5-lb C-4 explosive charge. For a weapon not listed in Table 1, use the values for the weapon that most closely resembles the new (unlisted) weapon (e. g., tube length and diameter, breech-type, charge weight, etc.).

Target Point Data

CONTRACT CONTRACT CONTRACTOR CONTRACTOR

MicroBNOISE considers noise from firing points and target points. The firing point is the spot from which a projectile is being launched or the site of a demolition charge; the target point is the site of a projectile's impact. If data are to be useful to

MicroBNOISE, a projectile's launching weapon must produce a sharp blast and not a drawnout, "whoosh-type" sound such as that emitted by most rockets. (At present, a small charge is used to simulate the sound of rockets.)

Target point data that must be input include the x and y coordinates (i.e., installation grid map coordinates) of the target point and the ground correction factor* (in dB). The default value for the ground correction factor is 1.5 dB. To use the default values in any of the data in MicroBNOISE, the user need only enter a zero. There is a limit of 50 targets.

The first prompt for target point data is:

DO YOU WANT TO INPUT FROM A FILE?

The user responds either "Y" for yes or "N" for no. The program can recover information from a disk file. A user who responds "Y" will have saved a file of target data in a previous session. Regardless of the response (Y or N), the user is next given the following options:

ADD, DELETE, LIST, SAVE, OR END?

The valid responses of A, D, L, S, and E** are as follows. ADD allows the user to add a single target point to the in-memory list of target points. DELETE allows the user to delete a single target point from the in-memory list. This target point could have been input either from a file or from the keyboard. ADD and DELETE both generate the prompt:

TARGET ID: ____

where the target ID is a one- to three-character name (e. g., TP1 or T33). Option ADD also requests the following:

LOCATION, X-COORDINATE:

LOCATION, Y-COORDINATE:

GROUND CORRECTION FACTOR (dB) [1.5]:

Note that default values, where used, are always found within brackets, []. Executing LIST and END does not require any more input. LIST will display all the target points currently in memory (RAM) on the user's monitor. END will channel the user to the firing point input section of the EDITOR. SAVE allows all the targets currently inmemory to be saved in a disk file. One prompt is given:

FILE NAME: ____

The file name may have up to eight characters and may have a one- to three-character extension (e. g., TEST.JOE). The file name should be as descriptive as possible

^{*}The ground correction factor tells the program whether the firing will be over normal ground, soft ground, or water.

^{**}A=add; D=delete; L=list; S=save; E=end.

TARGET POINT DATA:

Column(s)	Data
1	End of Target point data? Asterisk (*) => last line of TP data Blank => not the last line
3-5	Target Point ID
7-12	X-coordinate (meters, from grid map) of TP
13-18	Y-coordinate (meters, from grid map) of TP
23	Ground correction factor 0 => use default, 1.5 dB

General:

- 1. As with the Firing Point data, there may be no blank lines in the data file.
- 2. The example target point data file is 572 bytes in length. This is the typical size expected, i.e. there are usually about 25 target points at a typical installation.

so it can be recognized easily in the future. All options except END may be repeated as often as needed.

Firing Point Data

When sound occurs only at a firing point, the user must determine whether it is caused by an explosion at that point (e.g., a demolition charge) or if it results from a weapon propelling a projectile that makes no noise upon impact at its target point (e.g., an illumination round). In the first case, only the firing point coordinate is needed; in the second case, both firing and target point coordinates are required, even though there is no sound a. the target. This is because noise produced by a weapon is associated with a directivity pattern that characterizes the variation in sound pressure level around the weapon. The degree of variance depends mostly on the weapon's physical characteristics. However, a projectile or demolition produces noise omnidirectionally from its source.

ANTERNATION CONTRACTOR STATES SALES SALES

Firing point data that must be input include the x and y coordinates (i. e., installation grid map coordinates of the firing point) and the ground correction factor (in dB). The default value for the ground correction factor is 1.5 dB. There is a limit of 300 firing points. Also, the following must be input for each weapon fired: gun type code, number of day firings, number of night firings, minimum charge zone, maximum charge zone, corresponding target ID, presence or absence of noise at the target, and the height (in feet) above or below the ground of the firing. The number of weapons being fired at a given firing point is limited to 50. Therefore, to enter more than 50 weapons at a firing point, the user should construct several firing points at the same x and y coordinates.

The first prompt for firing point data is:

DO YOU WANT TO INPUT FROM A FILE?

As in the case of target point data, the user can enter all or part of his firing point data from a previously created file. A choice of options is the next prompt, regardless of the response (Y or N) to the previous question.

ADD, DELETE, LIST, SAVE, OR END?

This prompt is repeated until the user responds with E (for END), which sends him to the module input section of EDITOR. The remaining options (A, D, L, and S) operate as follows. ADD (entered as A) allows the user to append an additional firing point and its associated weapons to the in-memory list of firing points. For the firing point, the following prompts are used:

FIRING POINT ID:

LOCATION, X-COORDINATE

LOCATION, Y-COORDINATE

GROUND CORRECTION FACTOR (dB) [1.5]:

The firing point ID is a one- to three-character name (e. g., FP1 or F33). There must be at least one weapon fired at each firing point. For each weapon, the following prompts are used to solicit the appropriate data from the user.

FIRING POINT DATA:

Line 1:

Column(s)	Data
3,4,5	Firing point ID
7-12	X-coordinate (meters, from grid map) of Firing Point
13-18	Y-coordinate (meters, from grid map) of Firing Point
23	Ground correction factor for Firing Point (0. = default of 1.5 dB)

Lines 2 through 6:

CONTRACTOR OF CONTRACTOR OF THE PROPERTY OF TH

Column(s)	Data
1	Asterisk (*) => last line for this Firing Point; Blank => not last line
19,20	Gun type code
21-24	Number of daytime firings for this gun type
25-28	Number of night-time firings for this gun type
30	Minimum charge zone used for this gun type
32	Maximum charge zone used for this gun type
33-35	Target Point ID
36	Noise at the Target Point? 0 => noise at Target point 1 => no noise at target point
37-41	Height of explosion (ft) at target point

General:

- 1. There may be no blank lines in the data file. In the example, the first line of the file is "3A1 50170., etc", and the last line is "* 2 11 etc." Blank lines in the data file will cause a run-time error, and abort execution.
- 2. The example firing point data file is 1024 bytes in length. A Firing Point data file for a typical installation would be approximately 20 kilobytes in length.
- 3. The program will accept a maximum of 9999 firings (day or night) for any particular weapon and firing point. If there are 10,000 or more firings, split the number and enter them as two separate (identical) gun types, target points, etc.

GUN TYPE (CODE):
NUMBER OF DAY FIRINGS [0]:
NUMBER OF NIGHT FIRINGS [0]:
MIN CHARGE ZONE:
MAX CHARGE ZONE:
CORRESPONDING TARGET ID:
IS THERE NOISE AT THE TARGET?
HEIGHT (IN FEET):
ARE THERE MORE GUN TYPES FOR THIS ID?
The gun type is limited to those that were selected previously (see p 10). Both the minimum and the maximum charge zones are limited by the range of zero through 10 inclusive; the minimum must be less than or equal to the maximum. The corresponding target ID must either be one of the valid target IDs entered (see p 15) or blank. A blank response indicates that the firing point sound is omnidirectional (i. e., demolition or explosion) and that there is no noise at the target. The question about whether there is noise at the target is prompted only for nonblank corresponding target IDs. The program accepts only Y and N as valid responses. The height data, if applicable, are entered as negative for below ground and positive for above ground. Finally, the user is prompted for additional weapon firings at the firing point. Again, only Y and N are valid responses.
The DELETE option (typed as D) removes all of the information currently in RAM for a given firing point. The data removed include information both about the actual firing point and for each weapon fired from that firing point. It has only one prompt:
FIRING POINT ID:
Because of the voluminous amount of data that could be entered for firing points, the LIST option (entered as L) will list the data only for a given firing point. Of course, LIST can be enacted many times to produce the desired results. Only one prompt is used:
FIRING POINT ID:
The user may permanently save, on disk, whatever portion of his firing point data that is currently in-memory by invoking the SAVE option (entered as S). The program prompts only for a file name; this file name has the same characteristics/restrictions as those used in the target data.

LCDN Program

FILE NAME:

Each module of the LCDN program contributes either directly or indirectly to producing LCDN contours for an installation or a portion of an installation. The database for the program (see p 10) for a description of the data) is a description of the area and

its noise sources (i. e., the location of firing points, targets, blast sites, and materiel involved in producing the noise). Use of the program modules requires instructions in the form of input from the user. The EDITOR program accepts this input and passes it to LCDN by a disk file called BNOISEIN.DAT. Input files, such as the database file (TAPE7.DAT) or a file containing intermediate results from another module, are also necessary. Each module produces a printed report consisting of:

- 1. Module name
- 2. Input values supplied by the user and/or default values supplied by the program

Secreta Registers Experience

25.50 E

- 3. Module-specific output
- 4. Module execution time.

The LCDN program asks the user to specify the disposition of printed output. The prompts give the user three choices:

PRINTED OUTPUT IS TO BE DIRECTED TO:

- 1 SCREEN
- 2 LINE PRINTER
- 3 FILE

ENTER CHOICE: ____

The user can direct the output to the monitor (screen), the line printer, or to a disk file for later printing or editing. If the user chooses option 3, he is then prompted for a file name:

ENTER FILE NAME:

The file name is constructed like the ones used in target and firing point data saves (see pp 15, 17).

Input to the modules is read by the EDITOR preprocessor. With a few exceptions, LCDN will accept module execution in any order; the EDITOR has a fixed order for inputting and executing the modules. (Several of the modules are optional.) Table 4 shows the order of the module execution as well as which modules are required and which are optional. Appendix D provides an example of the output produced by each module.

Although most MicroBNOISE sessions produce plots of CDNL contours, use of the PLOT module is optional. The PLOT module may be repeated as often as necessary to produce the number of plots the user needs. Also, it is repeated automatically when a plot will not fit completely on one sheet of $8\frac{1}{2} \times 11$ paper.

Before data for the first module are input, the system prompts for the following general information:

DO	YOU	WANT	TO	INPUT	FROM	A	FILE?	
FIL	E NA	ME:						

METERS OR	FEET?
ANY CHANG	ES?

The user can input data from a previously created disk file. If the user chooses to enter data from a file, he must supply the file name and indicate whether data from the file will be changed. In any case, the user must tell MicroBNOISE whether the database coordinates are in meters or in feet. After all module input has been entered and/or modified, the user has the option of saving the newly created module data in a permanent disk file. One or both of the following two prompts are used for this:

SAVE MODULE DATA ON FILE?	
FILE NAME:	
The rules for file names (see pp 15	5-16) also apply here.

BASE Module

BASE generates line segments that the PLOT module can draw on the plotter. It can be used to create an outline of the installation or the portion of the installation for which the user is providing data. It can also be used to draw lines for visual reference in lining up the paper plot with an actual map, or for showing a compass, north arrow, direction, and scale line segment. BASE causes PLOT to draw line segments from coordinate to coordinate, as specified.

Table 4

Order of Module Execution and Optionality

Order	Module	Status
1	MAP	Required
2	BOUNDS	Required
3	BASE	Optional
4	FORMA	Required
5	PUDDLE GRID	Optional
6	POINT	Optional
7	SCATTER	Optional
8	LOCATOR	Optional
9	PLOT	Optional

FILES REQUIRED TO RUN MICROBNOISE

The following files should be in the BNOISE directory on the hard disk:

1. BNOISE.BAT	Batch file that invokes various executable (.EXE) programs
2. NASAPLOT.BAT	Batch file called by BNOISE.BAT (or can be used individually) to make the plots.
3. EDITOR.EXE	Program that prompts for data input and used to edit various data files.
4. TABGEN.EXE	Program that generates the table of noise levels, as a function of distance and inversion factors, from the standard (5#) C-4 detonation. Also calculates various correction factors. Runs only once, produces TAPE20.DAT which resides in BNOISE directory.
5. NASAMAIN.EXE	Builds the data file (TAPE55.DAT) to be used by NASAPLOT.BAT when plotting contours.
6. LCDN.EXE	Program that calculates the noise levels from target data, firing point data and TABGEN data (TAPE20.DAT).
7. GUNTABLE.DAT	Data file containing gun type codes, directivity data for each code, and correction factors.
8. TABGENIN.DAT	Contains standard inversion and correction factors used by TABGEN.EXE.
9. Target Data File (e.g. TARGET01.DAT)	Contains target ID's and coordinates. Filename is prompted for from EDITOR during first part of run.
10. Firing Point Data File (e.g. FIRING01.DAT)	Contains firing point IDs, coordinates and firing activity. Filename is prompted for from EDITOR during the MicroBNOISE run.
11. Module Data File (e.g. MODULE01.DAT)	Contains data that determines what output is desired (reports, plots) and the parameters needed to produce the specified output. Filename is prompted for from EDITOR near end of the MicroBNOISE input session.

BASE can accept data for several continuous line segments. (A continuous line segment is two or more points connected consecutively by a line.) Since this module is optional, the first prompt is:
ANY BASE MODULE DATA?
Like all other questions written to elicit a "yes" or "no" response, this question will accept only Y or N. The following two prompts are used for each of the first two points of every continuous line segment and for any additional points in the line segment:
X COORDINATE:
Y COORDINATE:
The following question is asked after the first two points have been input and again after each successive point in a given outline is indicated:
IS THIS THE END OF A CONTINUOUS LINE?
\boldsymbol{Y} lifts the pen, and \boldsymbol{N} leaves the pen down to continue drawing the line. A response of \boldsymbol{Y} produces a new question.
IS THIS THE LAST LINE?
A response of Y channels the user to the next module. An N response prompts for the next set of coordinates.
BOUNDS Module
BOUNDS uses map coordinates to set the limits of the total area encompassed by CDNL calculations and to which the plot drawing will be limited. It defines the area in which the user is interested. It has four prompts:
MINIMUM X COORDINATE:
MINIMUM Y COORDINATE:
MAXIMUM X COORDINATE:
MAXIMUM Y COORDINATE:
Coordinates should be taken from the installation grid coordinate map.
FORMA Module
This module tabulates target and firing point information from the database and compresses data into the form required by PUDDLE GRID (see p 22). FORMA requires input of the charge averaging technique and the ground correction. The two prompts are:

CHARGE AVERAGING TECHNIQUE (MAX, IAVE, CAVE):

GROUND CORRECTION (dB) [1.5]:

Depending on the technique specified, the charge figure used in calculations may be:

- 1. The weight corresponding to the maximum charge zone (MAX)
- 2. The weight corresponding to the average of the maximum and minimum charge zones rounded to the next highest integer (IAVE)
- 3. The average of the two weights corresponding to the maximum and minimum charge zones (CAVE).

LOCATOR Module

This optional module labels target and firing points on the plot. The user must supply the following information:

ANT LOCATOR MODULE DATA:
"ALL," TARGET," OR "FIRING"?
PRINT ID ON PLOT?
PRINT COORDINATES?
SIZE OF LETTER [0.14 (INCHES)]:
ROTATION OF LETTERS [0 DEG]

ANY LOCATOR MODELE DATAS

If the user selects this module, he must choose whether to label the target points, the firing points, or both the target and firing points. Targets are labeled with an "X" and firing points are labeled with an "O" on the plot. The user can either specify the size and rotation of these two letters, or the defaults of 0.14 in. and 0 degree can be used. The user may also have the target or firing point ID written on the plot next to the "X" or "O." Another option is to place the x and y coordinates (the installation grid map coordinates) of the target or firing point adjacent to the ID on the plot.

MAP Module

MAP performs elementary error checking on the database information. It also lists the input data and generates cross-reference tables. To determine what the user wants printed, the system asks six questions:

PRINT DATA BASE INFORMATION?
PRINT TARGET VS FIRING POINT TABLE?
PRINT TARGET VS GUN TYPE TABLE?
PRINT GUN TYPE VS TARGET TABLE?
PRINT GUN TYPE VS FIRING POINT TABLE?
DRINT "FYTRANFOLIS DATA" MESSACE?

The user must also supply the amount of information in the database in response to the following prompt:

NUMBER OF DAYS OF INFORMATION	ON IN DATA BASE [1]:
-------------------------------	----------------------

If a user wants to determine how many points PUDDLE GRID will generate for a specified grid size, he may request this information from the MAP module. The user must specify the number of various grid sizes he wishes to try, and then list the various grid sizes. The MAP output will list the number of points that the chosen grid sizes will generate. Two prompts are given:

NUMBER O	GRID	SIZES	то	BE	TESTED:	
GRID SIZE:						

PUDDLE GRID Module

The "grid size" specification in the PUDDLE GRID module specifies how often, in terms of x and y coordinates, the CDNL values are to be computed (e. g., reasonable values are every 1000 m or 3000 ft if the overall land area included in the contour is fairly large). The smaller the values used, the finer the grid size, the smoother the contour produced, and the longer the computation period. This is because the program has a greater number of actual points for calculating the CDNL and plotting, and fewer points to approximate. Cutting the grid size in half will cause four times as many points to be computed and will take about four times longer to run. The prompt for the grid size is:

GRID SIZE	[2000]:	
-----------	---------	--

This grid-size value must be an even multiple of 250. There cannot be more than 100 grid points in the y direction and 50 grid points in the x direction.

The "inversion factors" specification in the PUDDLE GRID and POINT modules provides a set of meteorological data to the program. Weather conditions, especially temperature, affect the way sound propagates throughout the atmosphere. Currently, the MicroBNOISE program does not consider the effects of wind. However, it does account for temperature inversions. Therefore, the user must provide appropriate inversion data for the noise study location. Inversion tables available from the National Weather Service summarize radiosonde observations made at selected weather stations. Table 5 summarizes these temperature data. This table can be used to determine the temperature inversion factors required by PUDDLE GRID and POINT. The user should locate the city that is geographically closest to and meteorologically most like the location of interest. The number in that row under the column labeled "SURFACE" is the value used for inversion factor l. The second factor is obtained under the "1-500 m" column; the third factor is found under the column labeled "1-3000 m."

Prompts for the inversion factors are:
INVERSION FACTOR 1 (SURFACE):
INVERSION FACTOR 2 (1-500 m):

[&]quot;USA-CERL Technical Report N-98, Vol II.

Table 5

Temperature Inversion Factors

1 to 500 = 1 to 3000																34.3																				
Surface	0,49	7.6.7	9.09	65.8	66.5	9.94	0.99	27.8	65.7	65.7	43.4	63.4	64.1	68.2	58.2	46.7	55.0	74.8	25.5	2000	7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	47.3	7.44	42.2	53.9	52.2	55.9	70.0	67.7	23.1	53.5	9.68	57.9	67.0	88.3	
Location	Little Rock, A.R.	Medford, OR	Atast, FL	Midland, TX	Montgomery, AL	Nantucket, MA	Nashville, TN	New York, NY	Nome, AK	North Flatte, NE	Oakland, CA	Oklahoma City, OK	Omaha, NB	Peorla, IL	Pittburgh, PA	Point Barrow, A K	Fortland, ME	Rapid City, SD	Seriona, an	Calt over City	San Antonio, TX	San Diego, CA	San Juan, P.R.	Santa Monica, CA	Sault Sainte Marie, MI	Seattle, WA	Shreveport, LA	Spokane, WA	Tampa, FL	Totoosh Island, WA	Topeka, KA	Tucson, A.R.	Wallops Island, VA	Washington, DC	Winnemicca, NV	
1 to 3000 m	45.0	11.4	21.9	25.1	26.2	23.5	48.7	32.0	8.5	30.⁴	39.4	28.9	36.6	45.6	23.0	2.62	28.0		1 7 1 1	60	17.6	36.5	48.0	20.1	3.7	33.6	33.6	25.1	. 8 . 1	30.6	33.7	29.8	22.8	18.5	6.1	
1 to 500	20.1	6.0	14.2	13.3	3.0	13.3	34.3	18.0	4.5	9.5	10.5	5.6	8.6	20.0	74.5	ر. 1 د. م	2	. ດີ ລັສ	7	9	6.8	15.2	25.0	10.9	1.3	13.7	13.7	12.4	w	7.3	n.n.	15.8	11.2	9.1	1.2	
88	45.1	71.9	73.2	55.2	30.9	70.1	1.8.	64.3	1.61	61.0	6° n n	1.71	Z. 4 12 12 12 12 12 12 12 12 12 12 12 12 12	7.4.5	7.60	50.5	- « • • •	72.6	65.6	91.6	71.5	53.2	45.8	73.9	0.48	59.0	0.64	6.59	85.1	0.00	59.6	54.2	63.7	79.2	9.48	-
r d																																				

INVERSION FACTOR 3 (1-3000 m):
The user must also specify which noise to include. The choices are: day noise only, night noise only, or both day and night noise. Day is defined as 0700 to 2200 hours, and night is 2200 to 0700 hours. The prompt for this information is:
"DAY," "NIGHT," or "BOTH":
POINT Module
POINT calculates the C-weighted day-night level (CDNL) for specific locations. The user retrieves the inversion factors from Table 5. Input for the inversion factors and for which noise to include is exactly the same as that used in PUDDLE GRID. Specific locations must be input to the program for this module. The prompts are:
NAME OF X, Y LOCATION:
X COORDINATE:
Y COORDINATE:
AND MORE POINTS?
This module is used solely to produce a report, and does not affect the contour plot. The location name asked for in the prompt is a one- to nine-character name of the point whose coordinates are being supplied. Up to 30 points may be input.
PLOT Module
This module combines output from appropriate modules for use by the NASAPLOT program to create actual plotter CDNL contours. PLOT requires more input than any other module because the user is given wide flexibility in selecting what is to be plotted and how it is to be plotted. Most of the information requested concerns the scaling and annotation of the plot. The prompts for this module appear in four logical groups: output, scale, contours, and additional text.
Output from one to four of the modules (PUDDLE GRID, LOCATOR, SCATTER, BASE) may be selected for a given plot. The following questions will appear only if the module has been selected.
USE PUDDLE GRID OUTPUT?
USE LOCATOR OUTPUT?
USE SCATTER OUTPUT?
USE BASE OUTPUT?

A response of Y to any of these questions will provide output that plots data from that specific module.

										t. The							
repre	sents	the	ratio	of plot	size to	act	tual siz	e (e.	g.,	1:50000	transl	ate	s to	l e	quals	50	000
m). 1	Che us	ser is	pron	npted by	7 :												

SCALE [500	00]:
user to employ	scale must be between 1000 and 100,000. The second method allows the percentages of the actual size independently in the x and the y values must be between 0.01 (1 percent) and 9.0 (900 percent) of the mpts* are:
PERCENT X	[1.0]:
PERCENT Y	[1.0]:

Generally, the x and y values should be equal to avoid distortion. The third method is called magnification; here, the user can magnify or shrink the plot in both directions simultaneously. Again, the factor must be within the range of 0.01 to 9.0. The prompt is:

56,54350 SEC. 100,000 SEC. 100,

MAGNIFICATIO	N [1.0]:	
MAGNIFICATIO	N [1.0]:	

The user must specify or choose the default values for (1) percent smoothing of the contour lines, (2) which contours are to be plotted, and (3) which contours are to be labeled. Except for percent smoothing, the other data are self-explanatory. Circular are smoothing is performed for all contour lines drawn. The "percent smoothing" value input represents a percentage of the plot's grid size; the recommended value for use in NASAPLOT is one-third (0.333). The following prompts are used:

PERCENT SMOOTHING [0.333]:
FIRST CONTOUR LEVEL TO BE PLOTTED [65]:
LAST CONTOUR LEVEL TO BE PLOTTED [75]:
CONTOUR INCREMENT [10]:
DO YOU WANT LABELS?
FIRST CONTOUR TO BE LABELED [65]:
LAST CONTOUR TO BE LABELED [75]:
I ADDI INCDEMENT [10].

The default values for the first and last contours to be plotted (labeled 65 and 75) are the values most normally used, since these contours define the boundary between Zone I and Zone II (65 dB) or between Zone II and Zone III (75 dB). Since Army policy addresses noise impacts in terms of Zones I, II, or III, 5 the contours are usually not labeled. Instead, a green pen is used to plot the 65-dB contour to show the Zone I/II

^{*}Numbers in brackets are default values.

⁵AR 200-1, Environmental Protection and Enhancement (Department of the Army, 15 June 1982), Chapter 7.

boundary, and a red pen is used to plot the 75-dB contour to show the Zone II/III boundary. Text may be added later to label the zones. The user may display on the plot at any location, size, and slant of the lettering. The following prompts are issued for text input (e. g., labeling a contour map, such as "Scenario A, night firing until 2330 hrs; assuming 200 events, 3 green bags") and associated data parameters:

ANY ADDITIONAL TEXT TO DISPLAY?
STARTING LOCATION OF TEXT X COORDINATE:
STARTING LOCATION OF TEXT Y COORDINATE:
HEIGHT OF TEXT:
ANGLE OF TEXT [0 DEG]:
ARE COORDINATES PLOTTER COORDINATES?
TEXT (FIRST 38 CHARACTERS):
MORE TEXT FOR THIS LOCATION?
TEXT (NEXT 69 CHARACTERS):
ANOTHER TEXT LOCATION?
Coordinates for the start of the text may be input in plotter coordinates (inches) or in grid map coordinates (meters or feet).
SCATTER Module
SCATTER allows the PLOT module to create a scattergram (dots) of noise sources; the number of dots is proportional to the blasting activity at that point. There will be one dot for each noise source that occurs per day according to the data specified by the user. The dots of the scattergram will have a normal distribution, with a standard deviation equal to the user-supplied value. The center of the normal distribution will be at the target or firing point location. No dots are allowed outside the limits established by the BOUNDS module.
The first part of the SCATTER input concerns selecting the points. Points may be displayed for targets and/or firing points; they may be for day, night, or both day and night firings; they may be for all weapon types or for selected weapons. The following prompts are given:
SCATTER INFORMATION COLLECTED FOR TARGETS?
SCATTER INFORMATION COLLECTED FOR FIRING POINTS?
DAY (D), NIGHT (N), OR BOTH (B) DATA:
DO YOU WANT TO SPECIFY GUN TYPES?

GUN TYPE:	
MORE GUN TYPES?	

The gun type should not be left blank; up to 28 different gun types may be selected. A multiplier (a default value of 1) is also required; scatter points will be multiplied by this factor before being divided by the number of days of data in the database.

MULTIPLIER [1]:

The standard deviation, expressed in meters or feet (whichever the user has chosen previously), must also be input; it should be roughly one-fourth of the actual size of the target point (impact area) or firing line. The following prompt is given:

STANDARD DEVIATION [300]

NASAPLOT Program

NASAPLOT is a general-purpose contouring program specifically linked to LCDN to draw noise contours, installation boundaries, text, and scattergrams. The user's only interactions with this program are specifying which communications port is being used for the plotter and changing the pens and paper. The following prompts are issued:

ARE YOU USING "COM1" OR "COM2" FOR YOUR PLOTTER?

INSERT PAPER IN PLOTTER

PUT BLACK PEN IN SLOT 1 (LEFT)

PUT GREEN (OR RED) PEN IN SLOT 2 (RIGHT)

CHANGE PEN 2

CHANGE PAPER

"COM1" and "COM2" refer to the computer's communication (RS-232 C, or serial) ports. If the computer is equipped with a modem for communications over telephone lines, the "COM1" port is usually dedicated to this. The plotter would then be connected to "COM2." If the plotter does not respond when a plot is expected, the wrong port may have been specified.

The user may change pens for every level of contour plotted to make the various contours different colors. Also, after the plots are completed, the user can produce additional copies, as provided by the following prompt:

ANOTHER COPY OF THE PLOT(S)?

COMPUTER OUTPUT AND PLOTTER SETUP

Computer Output Setup

MicroBNOISE expects to communicate with a Hewlett-Packard compatible plotter via an RS232-C I/O port. The computer output setup is accomplished from the software using the DOS "MODE" command.

There are two methods for setting the output MODE:

1. Set the MODE from the root directory before entering the BNOISE directory to start a MicroBNOISE session. The DOS string to be used is:

MODE COM1:96,N,8,1,P

This sets the serial port COM1 (or COM2 if that port is substituted above) to 9600 baud, no parity, 8 data bits, 1 stop bit, and instructs the serial interface to retry data transmission continuously if a time out error occurs.

This method may produce an error (nonfatal) during execution of MicroBNOISE. This is because the MODE command is part of the NASAPLOT.BAT file called by BNOISE.BAT; if the PATH has not been set to include both the root directory and the BNOISE directory, the MODE command will not be available from the BNOISE directory. See below.

2. This method avoids the error described above, but requires that AUTOEXEC.BAT file in the root directory (accessed during boot-up of the computer) be changed. The AUTOEXEC.BAT file will be modified to contain a PATH statement that includes both the root directory (C:\)and the BNOISE directory (\BNOISE). The DOS string that should appear in the AUTOEXEC.BAT file is:

PATH = C:\WS;\TERM;\BNOISE;C:\

where \WS is the WordStar directory, \TERM is the communications (terminal) directory, \BNOISE is the MicroBNOISE directory, and C:\ is the root directory.

Setting the PATH in this way allows the MODE statement in the NASAPLOT.BAT to be executed, since the computer has been told how to get to the root directory to fetch the MODE statement code.

Plotter Setup:

The plotter must be expecting the same data format the computer is sending. The MODE statement above set the computer's output format. The plotter format is set with switches on the back of the plotter. (H-P 7470A, 2 pen plotter setup is discussed here.)

Eight small switches are located near the cable socket on the back of the plotter (see pp 13-15 of the 7470A Operators Manual).

The following table shows the settings to be used to be compatible with the MODE set above.

Switch	Position (0 or 1)	Use
S1	0	No parity checking performed
S2	0 or 1	Sets odd or even parity; doesn't matter since S1 is set to no parity.
D/Y	0 (or D)	Direct connect of plotter to computer
A4/US	1 (or US)	Maximum plotting limits (8½ X 11")
B4	1	Sets baud rate at 9600 and 1 stop bit
В3	0	
B2	1	
B1	0	

Thus, using MODE COM1:96,N,8,1,P and the switch settings 0,0,0,1,1,0,1,0 sets both the computer and the plotter to 9600 baud, no parity, 8 data bits and one stop bit.

Accepted accepted appropriate accepted accepted

3 DESCRIPTION OF A MICROBNOISE USER SESSION

Data used in the example problem described in this chapter are for the hypothetical installation "SHOW" for the month of June (30 days). A map of the installation in metric coordinates was provided with the data. Four types of activities occurred, with five sites involved in the activities (weapons were fired from three firing points toward two target points).

The first activity used a 155-mm self-propelled howitzer (M109) to fire 160 rounds from firing point 2 (located at coordinates 35000, 20000) to target point 2 (located at coordinates 32000, 25000). One hundred and fifty rounds were fired during the day (0700 to 2200 hours), and 10 were fired at night (2200 to 0700 hours). Charge zones 4 and 5 were used for this weapon.

The second activity used an 81-mm mortar, which fired 325 rounds from firing point 1 (located at coordinates 29000, 23000) to target point 2. All 325 projectiles were nonexploding (i. e., smoke or illumination). Three hundred rounds were fired during the day, and 25 were fired at night, using charge increments of 5 to 7.

The third activity involved demolitions at firing point 3 (located at coordinates 32000, 28000). There were 100 daytime explosions, each of which exploded 15 lb (6 kg) of ammunition.

The last activity used a nonstandard weapon (not listed in Table 1). It fired 17 night rounds from firing point 1 to target point 1 (located at coordinates 27000, 25000), using charge zones 3 and 4. All rounds exploded 100 ft (30 m) above the target. The user learned that this weapon fires a projectile containing 10.5 lb (4.8 kg) of explosive and has six charge zones containing 1.2, 3.4, 5.7, 7.3, 9.2, and 12.1 lb (0.54, 1.54, 2.58, 3.31, 4.17, and 5.49 kg) of propellant in zones 1 through 6, respectively, and that its directivity pattern is the same as that of the 105-mm self-propelled howitzer (M102).

The user wants to generate a set of CDNL contours for this set of data and have an outline of the installation drawn on them for reference. He also wants an indication of the activities' magnitudes and location.

Appendix C shows the sequence of input used in the installation "SHOW" example run. The following sections discuss the input data and module input for this example.

Input Data

Tables 2, 3, and 4 show information for the first three gun types, which correspond to standard weapons used in this example. The last weapon is not on the list, since it is not a standard weapon; therefore, the user must create his own weapon code and guntype data for it from the information received. A weapon code of 80 was chosen and input; the rest of the information was entered as prompted. Target point data were then created; short target point names were made up to fit into the input field's maximum width of three characters.

Two types of data--location and gun type--are associated with each firing point. In the example, the location information received from the installation and the shortened firing point names created to fit into the input field were entered. The gun type, number of day and night firings, minimum and maximum charge zones, corresponding target ID, and height were also entered for all of the chosen firing points.

Appendix C illustrates input for a sample session of MicroBNOISE.

Module Selection

The next portion of the input consisted of the module data, which tells the computer what it must do with the input data described in the previous section. In this example, the data were checked, and two plots were generated. The first plot had an outline of the installation, with target and firing points marked, and showed CDNL contours for the area. The second plot provided the installation outline and noise event density plot (scattergram). The MAP, BOUNDS, BASE, FORMA, PUDDLE GRID, SCATTER, LOCATOR, and PLOT modules were all used to produce the two plots.

Output Received

WARE MANAGED BOUNDED BOUNDED WHICH TO THE WARE STATES OF THE PROPERTY OF THE P

The user received printed output provided in Appendix D and the two plots shown in Figures 2 and 3. The printed output summarizes all the input entered, showing how many gun types, targets, and firing points were input. It provides statistics on the number of total firings and the number of firings per day for both day and night. Information is also given about minimum and maximum charge zones and charge weight. The average weight of firings is given in pounds, and the maximum height and depth are given in feet. The maximum and minimum values for coordinates are given, along with the coordinate pair in which each set of values occurs.

The user also received the four cross-reference tables (see Appendix D) requested in the MAP module. The first cross-reference table (targets by firing points) provides the average number of rounds fired by day for each target and firing point combination. The second table lists targets by gun type and provides the average total weight exploding at each target for each gun type. The third table provides the same information given in the second table, but in a different order--gun types by targets. The last table lists gun types by firing point, giving the average daily charge weight of each combination.

The rest of the output given in Appendix D is for the options chosen from the various modules. Output from PUDDLE GRID provides a table of contour values for each grid point.

COMPAQ 12-31-85 PLOT 1 1 OF 1 SCALE 1: 50000. 1 INCH=5773. METERS

Figure 2. CDNL contours for installation "SHOW."

COMPAG 12-31-65 PLOT 2 1 OF 1 SCALE 1: 50000. 1 INCH- 5773. HETERS

Figure 3. Scattergram for installation "SHOW."

EDITING THE DATA FILES

It is generally most convenient and efficient to edit a baseline data file to produce a file for a particular scenario/situation. Hence, baseline firing point and target files should be generated and saved to a write protected, back up diskette. Then a file can be made for a particular situation by copying the baseline file (to a different file name) and editing the new file to reflect the situation at hand.

Likewise, a set of MODULE.DAT files can be generated to produce some "standard" output requests. One such file might only produce the installation outline and a few alignment marks. Another might produce the installation outline, alignment marks and the noise contours.

The data files (e.g., guntable, firing point) must <u>not</u> contain control characters. Therefore, any editing of the data files must not introduce control characters. Most word processor programs (e.g. WordStar) use control characters to pass formatting information for paragraphing, hypenation, etc.; however, these programs usually have a "nondocument"option that does not introduce the control characters.

Alternately, the operating system line editor may be used. MS-DOS and PC-DOS both refer to this editor as EDLIN, and it is designed specifically to avoid control characters.

Miscellaneous Notes

- 1. During a MicroBNOISE session, execution can be halted by using control-C from the keyboard. This suspends execution, and you are asked if you want execution terminated. If so, the job is aborted and you are returned to DOS.
- 2. From DOS, control-S halts scrolling; strike any key to resume scrolling. This can be done while examining a data file. [Use "type <filename>" to examine the file <filename>].
- 3. Copies of contours may be produced by running NASAPLOT.EXE. However, only the most recent plots may be made using this method since NASAPLOT.EXE uses the data in TAPE55.DAT which is overwritten each time MicroBNOISE is run.

4 SUMMARY

This report has described how to use MicroBNOISE--a computer program that characterizes impulsive noise generated by military activities and operations. A detailed example of a user session was provided to illustrate the steps required to use the program. The program will be useful to installation planning personnel who must work with the public and local government to minimize noise-sensitive development near noise-generating Army activities.

REFERENCES

- AR 200-1, Environmental Protection and Enhancement (Department of the Army, 15 June 1982), Chapter 7.
- Little, Lincoln L., Violet I. Pawlowska, and David L. Effland, Blast Noise Prediction Volume II: BNOISE 3.2 Computer Program Description and Program Listing, Technical Report N-98/ADA099335 (U.S. Army Construction Engineering Research Laboratory [USA-CERL], 1981).
- Schomer, Paul D., et al., Blast Noise Prediction Volume I: Data Bases and Computational Procedures, Technical Report N-98/ADA099440 (USA-CERL, 1981).
- Schomer, Paul D., Predicting Community Response to Blast Noise, Technical Report E-17/ADA773690 (USA-CERL, 1973).

APPENDIX A:

FILES NEEDED TO RUN MICROBNOISE

The following files provided with the program are required to use the ${\tt MicroBNOISE}$ system:

BNOISE.BAT

NASAPLOT.BAT

LCDN.EXE

EDITOR.EXE

NASAMAIN.EXE

TABGEN.EXE

GUNTABLE.DAT

TAPE20.DAT

TABGENIN.DAT

These files require 423K bytes of storage on disk or diskettes.

APPENDIX B:

TABLE GENERATION (TABGEN) (INVERSION FACTORS 74.20%, 8.60%, 18.67%)

DAY	FOCUS I	1AX			1	
	9	301	100.00	-199.00	DAY FOCUS MAX	
	141.10	100.00ME	TER		100.00	1.00
	132.50	1000.00FE	ET		304.80	49.40
	126.60	2000.00FE	ET		609.60	79.50
	117.30	1.00MI	LE		1609.34	121.66
	107.50	2.00MI	LE		3218.69	151.77
	99.10	5.00MI	LE		8046.72	191.56
	92.50	10.00MI	LE		16093.44	221.66
	89.70	15.00MI	LE		24140.16	239.27
	80.60	100000.00ME	TER		100000.00	301.00

```
141.1 140.8 140.7 140.5 140.3 140.1 139.9 139.8 139.6 139.4
139.2 139.1 138.9 138.7 138.5 138.3 138.2 138.0 137.8 137.6
137.5 137.3 137.1 136.9 136.7 136.6 136.4 136.2 136.0 135.9
135.7 135.5 135.3 135.1 135.0 134.8 134.6 134.4 134.3 134.1
133.9 133.7 133.5 133.4 133.2 133.0 132.8 132.7 132.5 132.3
132.1 131.9 131.7 131.5 131.3 131.1 130.9 130.7 130.5 130.3
130.1 129.9 129.7 129.5 129.3 129.1 129.0 128.8 128.6 128.4
128.2 128.0 127.8 127.6 127.4 127.2 127.0 126.8 126.6 126.4
126.2 125.9 125.7 125.5 125.3 125.1 124.8 124.6 124.4 124.2
124.0 123.7 123.5 123.3 123.1 122.9 122.6 122.4 122.2 122.0
121.7 121.5 121.3 121.1 120.9 120.6 120.4 120.2 120.0 119.8
119.5 119.3 119.1 118.9 118.7 118.4 118.2 118.0 117.8 117.6
117.3 117.0 116.7 116.4 116.1 115.7 115.4 115.1 114.7 114.4
114.1 113.8 113.4 113.1 112.8 112.5 112.1 111.8 111.5 111.2
110.8 110.5 110.2 109.9 109.5 109.2 108.9 108.6 108.2 107.9
107.6 107.3 107.1 106.9 106.7 106.5 106.3 106.1 105.9 105.7
105.4 105.2 105.0 104.8 104.6 104.4 104.2 104.0 103.8 103.5
103.3 103.1 102.9 102.7 102.5 102.3 102.1 101.9 101.6 101.4
                                                   99.5
101.2 101.0 100.8 100.6 100.4 100.2 100.0
                                             99.7
                                                         99.3
                                      97.8
                                             97.6
                                                   97.4
                                                         97.1
 99.1
       98.9
             98.7
                   98.5
                          98.2
                                98.0
96.9
       96.7
                   96.3
                                95.8
                                      95.6
                                             95.4
                                                   95.2
                                                         94.9
             96.5
                          96.0
                                      93.4
                                             93.2
                                                   93.0
                                                         92.8
 94.7
       94.5
             94.3
                   94.1
                          93.9
                                93.6
                                                   91.3
92.5
       92.4
             92.2
                   92.0
                          91.9
                                91.7
                                      91.6
                                             91.4
                                                         91.1
 90.9
       90.8
             90.6
                   90.5
                          90.3
                                90.1
                                      90.0
                                             89.8
                                                   89.7
                                                         89.5
                                      88.5
                                                   88.2
89.4
       89.2
             89.1
                   88.9
                          88.8
                                88.6
                                             88.3
                                                         88.0
87.9
       87.8
             87.6
                   87.5
                          87.3
                                87.2
                                      87.0
                                             86.9
                                                   86.7
                                                         86.6
             86.1
                   86.0
                                85.7
                                      85.5
                                             85.4
                                                   85.2
                                                         85.1
86.4
       86.3
                          85.8
       84.8
                   84.5
84.9
             84.7
                          84.4
                                84.2
                                      84.1
                                             83.9
                                                   83.8
                                                         83.6
83.5
       83.3
             83.2
                   83.0
                          82.9
                                82.7
                                      82.6
                                             82.4
                                                   82.3
                                                         82.1
82.0
       81.9
             81.7
                   81.6
                          81.4
                                81.3
                                      81.1
                                             81.0
                                                   80.8
                                                         80.7
80.6
```

DAY FOCUS MEAN 2 DAY FOCUS MEAN 9 301 100.00 -199.00100.00METER 100.00 1.00 140.60 49.40 132.10 1000.00FEET 304.80 2000.00FEET 609.60 79.50 124.00 113.30 1.00MILE 1609.34 121.66 2.00MILE 3218.69 151.77 102.50 94.10 5.00MILE 8046.72 191.56 87.50 10.00MILE 16093.44 221.66 84.70 15.00MILE 24140.16 239.27 75.60 100000.00METER 100000.00 301.00

```
140.6 140.3 140.2 140.0 139.8 139.6 139.5 139.3 139.1 138.9
138.8 138.6 138.4 138.2 138.1 137.9 137.7 137.5 137.4 137.2
137.0 136.8 136.6 136.5 136.3 136.1 135.9 135.8 135.6 135.4
135.2 135.1 134.9 134.7 134.5 134.4 134.2 134.0 133.8 133.7
133.5 133.3 133.1 133.0 132.8 132.6 132.4 132.3 132.1 131.8
131.5 131.3 131.0 130.7 130.5 130.2 129.9 129.7 129.4 129.1
128.8 128.6 128.3 128.0 127.8 127.5 127.2 127.0 126.7 126.4
126.2 125.9 125.6 125.3 125.1 124.8 124.5 124.3 124.0 123.7
123.5 123.2 123.0 122.7 122.5 122.2 122.0 121.7 121.5 121.2
121.0 120.7 120.4 120.2 119.9 119.7 119.4 119.2 118.9 118.7
118.4 118.2 117.9 117.7 117.4 117.1 116.9 116.6 116.4 116.1
115.9 115.6 115.4 115.1 114.9 114.6 114.4 114.1 113.8 113.6
113.3 113.0 112.6 112.3 111.9 111.6 111.2 110.8 110.5 110.1
109.8 109.4 109.1 108.7 108.3 108.0 107.6 107.3 106.9 106.5
106.2 105.8 105.5 105.1 104.7 104.4 104.0 103.7 103.3 103.0
102.6 102.3 102.1 101.9 101.7 101.5 101.3 101.1 100.9 100.7
100.4 100.2 100.0
                    99.8
                          99.6
                                 99.4
                                       99.2
                                             99.0
                                                    98.8
                                                          98.5
       98.1
             97.9
                    97.7
                          97.5
                                97.3
                                       97.1
                                             96.9
                                                    96.6
                                                          96.4
98.3
                                 95.2
       96.0
             95.8
                    95.6
                          95.4
                                       95.0
                                             94.7
                                                    94.5
                                                          94.3
 96.2
                    93.5
                          93.2
                                93.0
 94.1
       93.9
             93.7
                                       92.8
                                             92.6
                                                    92.4
                                                          92.1
                                       90.6
 91.9
       91.7
             91.5
                    91.3
                          91.0
                                 90.8
                                             90.4
                                                    90.2
                                                          89.9
                    89.1
                          88.9
 89.7
       89.5
             89.3
                                88.6
                                       88.4
                                             88.2
                                                    88.0
                                                          87.8
                          86.9
 87.5
       87.4
             87.2
                    87.0
                                 86.7
                                       86.6
                                             86.4
                                                    86.3
                                                          86.1
 85.9
       85.8
             85.6
                    85.5
                          85.3
                                85.1
                                       85.0
                                             84.8
                                                    84.7
                                                          84.5
                    83.9
                          83.8
                                83.6
                                             83.3
 84.4
       84.2
             84.1
                                       83.5
                                                    83.2
                                                          83.0
82.9
       82.8
             82.6
                    82.5
                          82.3
                                82.2
                                       82.0
                                             81.9
                                                   81.7
                                                          81.6
                    81.0
                          80.8
                                80.7
 81.4
       81.3
             81.1
                                       80.5
                                             80.4
                                                    80.2
                                                          80.1
 79.9
       79.8
             79.7
                    79.5
                          79.4
                                79.2
                                       79.1
                                             78.9
                                                    78.8
                                                          78.6
             78.2
                    78.0
                          77.9
                                 77.7
                                       77.6
 78.5
       78.3
                                             77.4
                                                    77.3
                                                          77.1
                          76.4
 77.0
       76.9
             76.7
                    76.6
                                76.3
                                       76.1
                                             76.0
                                                    75.8
                                                          75.7
 75.6
```

```
3
DAY BASE MAX
                                     -199.00
                           100.00
                                                 DAY BASE MAX
                   301
               100.00METER
                                                       100.00
    140.10
                                                                    1.00
              1000.00FEET
                                                       304.80
                                                                   49.40
    131.60
              2000.00FEET
                                                      609.60
                                                                   79.50
    123.60
                                                     1609.34
                                                                  121.66
                  1.00MILE
    111.60
                                                     3218.69
                                                                  151.77
     99.30
                 2.00MILE
     89.00
                  5.00MILE
                                                     8046.72
                                                                  191.56
                                                    16093.44
     84.00
                 10.00MILE
                                                                  221.66
     80.80
                 15.00MILE
                                                    24140.16
                                                                  239.27
                                                   100000.00
     68.60 100000.00METER
                                                                  301.00
```

140.1 139.8 139.7 139.5 139.3 139.1 139.0 138.8 138.6 138.4 138.3 138.1 137.9 137.7 137.6 137.4 137.2 137.0 136.9 136.7 136.5 136.3 136.1 136.0 135.8 135.6 135.4 135.3 135.1 134.9 134.7 134.6 134.4 134.2 134.0 133.9 133.7 133.5 133.3 133.2 133.0 132.8 132.6 132.5 132.3 132.1 131.9 131.8 131.6 131.3 131.0 130.8 130.5 130.2 130.0 129.7 129.4 129.2 128.9 128.7 128.4 128.1 127.9 127.6 127.3 127.1 126.8 126.5 126.3 126.0 125.7 125.5 125.2 124.9 124.7 124.4 124.1 123.9 123.6 123.3 123.0 122.7 122.5 122.2 121.9 121.6 121.3 121.0 120.8 120.5 120.2 119.9 119.6 119.3 119.0 118.8 118.5 118.2 117.9 117.6 117.3 117.1 116.8 116.5 116.2 115.9 115.6 115.3 115.1 114.8 114.5 114.2 113.9 113.6 113.4 113.1 112.8 112.5 112.2 111.9 109.2 108.8 108.4 108.0 111.6 111.3 110.9 110.4 110.0 109.6 107.6 107.2 106.8 106.4 105.9 105.5 105.1 104.7 104.3 103.9 103.5 103.1 102.7 102.3 101.9 101.5 101.0 100.6 100.2 99.8 99.1 98.9 98.6 98.3 98.1 97.8 97.6 97.3 99.4 97.0 95,0 96.3 96.0 95.7 95.5 95.2 94.7 96.5 94.5 96.8 93.9 93.7 93.4 93.2 92.9 92.6 92.4 92.1 91.9 94.2 90.8 90.6 90.3 90.1 89.8 91.6 91.3 91.1 89.5 87.3 89.0 88.8 88.7 88.5 88.3 88.2 88.0 87.8 87.7 87.5 87.3 87.2 87.0 86.9 86.7 86.5 86.4 86.2 86.0 85.9 85.5 85.4 85.2 85.0 84.9 84.7 84.5 84.4 85.7 84.2 83.5 83.8 83.7 83.3 83.1 82.9 82.8 84.0 82.6 82.4 82.2 82.0 81.8 81.7 81.5 81.3 81.1 80.9 80.8 80.6 80.0 79.8 79.6 79.4 79.2 80.4 80.2 79.0 78.8 78.6 77.6 77.2 78.2 78.0 77.8 77.4 77.0 78.4 76.8 76.6 75.8 76.4 76.2 76.0 75.6 75.4 75.2 75.0 74.8 74.6 74.4 74.2 74.0 73.8 73.6 73.4 73.2 73.0 72.8 72.7 72.5 72.3 72.1 71.9 71.7 71.5 71.3 70.9 71.1 70.7 70.1 70.5 70.3 69.9 69.7 69.5 69.3 69.1 68.9 68.7 48.4

Secretary Market Physical Commerce

DAY BASE MEAN 301 100.00 -199.00DAY BASE MEAN 9 100.00METER 100.00 1.00 137.60 304.80 49.40 1000.00FEET 125.00 79.50 116.70 2000.00FEET 609.60 105.80 1.00MILE 1609.34 121.66 2.00MILE 3218.69 151.77 94.40 85.10 5.00MILE 8046.72 191.56 79.70 10.00MILE 16093.44 221.66 75.80 15.00MILE 24140.16 239.27 60.60 100000.00METER 100000.00 301.00

```
137.6 137.2 136.9 136.7 136.4 136.2 135.9 135.6 135.4 135.1
134.9 134.6 134.3 134.1 133.8 133.6 133.3 133.0 132.8 132.5
132.3 132.0 131.7 131.5 131.2 131.0 130.7 130.4 130.2 129.9
129.7 129.4 129.1 128.9 128.6 128.4 128.1 127.8 127.6 127.3
127.1 126.8 126.5 126.3 126.0 125.8 125.5 125.2 125.0 124.7
124.4 124.1 123.9 123.6 123.3 123.0 122.8 122.5 122.2 121.9
121.7 121.4 121.1 120.8 120.6 120.3 120.0 119.7 119.5 119.2
118.9 118.6 118.4 118.1 117.8 117.5 117.3 117.0 116.7 116.4
116.2 115.9 115.7 115.4 115.1 114.9 114.6 114.4 114.1 113.9
113.6 113.3 113.1 112.8 112.6 112.3 112.0 111.8 111.5 111.3
111.0 110.8 110.5 110.2 110.0 109.7 109.5 109.2 108.9 108.7
108.4 108.2 107.9 107.7 107.4 107.1 106.9 106.6 106.4 106.1
105.8 105.5 105.1 104.7 104.3 104.0 103.6 103.2 102.8 102.5
102.1 101.7 101.3 100.9 100.6 100.2
                                       99.8
                                              99.4
                                                     99.0
                                                           98.7
 98.3
       97.9
              97.5
                    97.2
                           96.8
                                 96.4
                                        96.0
                                              95.6
                                                     95.3
                                                           94.9
                          93.5
                                        93.1
                                              92.8
                                                    92.6
 94.5
       94.2
              94.0
                    93.8
                                 93.3
                                                           92.4
       91.9
              91.7
                    91.4
                          91.2
                                 91.0
 92.1
                                        90.7
                                              90.5
                                                     90.3
                                                           90.0
                          88.9
       89.6
             89.3
                    89.1
 89.8
                                 88.6
                                        88.4
                                              88.2
                                                    87.9
                                                           87.7
 87.5
       87.2
              87.0
                    86.8
                          86.5
                                 86.3
                                        86.0
                                              85.8
                                                     85.6
                                                           85.3
 85.1
       84.9
             84.8
                    84.6
                          84.4
                                 84.2
                                       84.0
                                              83.9
                                                    83.7
                                                           83.5
 83.3
       83.1
              83.0
                    82.8
                          82.6
                                 82.4
                                        82.2
                                              82.1
                                                     81.9
                                                           81.7
 81.5
       81.3
             81.2
                    81.0
                          80.8
                                 80.6
                                        80.4
                                                           79.9
                                              80.3
                                                    80.1
 79.7
       79.5
              79.3
                    79.1
                           78.9
                                 78.6
                                        78.4
                                              78.2
                                                     78.0
                                                           77.7
             77.1
                    76.9
 77.5
                          76.6
       77.3
                                 76.4
                                        76.2
                                              76.0
                                                     75.7
                                                           75.5
 75.3
       75.0
              74.8
                    74.5
                           74.3
                                 74.0
                                        73.8
                                              73.5
                                                     73.3
                                                           73.0
 72.8
       72.5
             72.3
                    72.1
                           71.8
                                 71.6
                                                           70.6
                                       71.3
                                              71.1
                                                    70.8
 70.3
              69.8
                    69.6
                           69.3
       70.1
                                 69.1
                                        68.8
                                              68.6
                                                     68.4
                                                           68.1
 67.9
       67.6
              67.4
                    67.1
                           66.9
                                 66.6
                                        66.4
                                              66.1
                                                     65.9
                                                           65.6
 65.4
       65.2
              64.9
                    64.7
                           64.4
                                 64.2
                                        63.9
                                              63.7
                                                     63.4
                                                           63.2
 62.9
       62.7
              62.4
                    42.2
                          62.0
                                 61.7
                                        61.5
                                              61.2
                                                     61.0
                                                           60.7
 60.6
```

DAY	NEG MAX	(5	
	9	301	100.00	-199.00	DAY NEG MAX	
	135.10	100.00MET	ER		100.00	1.00
	121.60	1000.00FEE	Т		304.80	49.40
	112.60	2000.00FEE	Τ		609.60	79.50
	101.60	1.00MIL	E		1609.34	121.66
	89.60	2.00MIL	E		3218.69	151.77
	79.00	5.00MIL	E		8046.72	191.56
	73.00	10.00MIL	E		16093.44	221.66
	68.60	15.00MIL	E		24140.16	239.27
	55.60	100000.00MET	ER		100000.00	301.00

135.1 134.7 134.4 134.1 133.8 133.6 133.3 133.0 132.7 132.5 132.2 131.9 131.6 131.3 131.1 130.8 130.5 130.2 129.9 129.7 129.4 129.1 128.8 128.5 128.3 128.0 127.7 127.4 127.2 126.9 126.6 126.3 126.0 125.8 125.5 125.2 124.9 124.6 124.4 124.1 123.8 123.5 123.2 123.0 122.7 122.4 122.1 121.9 121.6 121.3 121.0 120.7 120.4 120.1 119.8 119.5 119.2 118.9 118.6 118.3 118.0 117.7 117.4 117.1 116.8 116.5 116.2 115.9 115.6 115.3 115.0 114.7 114.4 114.1 113.8 113.5 113.2 112.9 112.6 112.3 112.1 111.8 111.6 111.3 111.0 110.8 110.5 110.3 110.0 109.7 109.5 109.2 108.9 108.7 108.4 108.2 107.9 107.6 107.4 107.1 106.9 106.6 106.3 106.1 105.8 105.6 105.3 105.0 104.8 104.5 104.3 104.0 103.7 103.5 103.2 102.9 102.7 102.4 102.2 101.9 101.6 101.3 100.9 100.5 100.1 99.7 99.3 98.9 98.5 98.1 97.7 97.3 96.9 96.5 95.7 95.3 94.9 96.1 94.5 94.1 93.7 93.3 92.9 92.5 92.1 91.7 91.3 90.9 90.5 90.1 89.7 89.4 89.1 88.9 88.6 88.3 88.1 87.8 87.5 87.3 86.7 86.5 86.2 85.9 84.9 87.0 85.7 85.4 85.1 84.6 83.5 83.3 82.7 84.3 84.1 83.8 83.0 82.5 82.2 81.9 81.4 80.9 80.6 80.3 80.1 79.5 79.3 81.7 81.1 79.8 79.0 78.8 78.6 78.4 78.2 78.0 77.8 77.6 77.4 77.2 77.0 76.8 76.6 76.4 76.2 76.0 75.8 75.6 75.4 75.2 75.0 74.8 74.6 74.4 74.2 74.0 73.8 73.6 73.4 73.2 73.0 72.8 72.5 72.3 72.0 71.8 71.5 71.0 70.8 71.3 70.5 70.3 69.5 70.0 69.8 69.3 69.0 68.8 68.6 48.3 67.9 67.7 67.5 67.3 66.9 68.1 67.1 66.7 66.4 66.2 65.8 65.6 65.4 65.2 66.0 65.0 64.B 64.6 64.3 64.1 63.7 63.3 63.9 63.5 63.1 62.9 62.7 62.4 62.2 62.0 61.8 61.6 61.4 61.2 61.0 60.B 60.5 60.3 60.1 59.9 59.7 59.5 59.3 59.1 58.9 58.7 58.4 58.2 58.0 57.8 57.6 57.4 57.2 57.0 56.8 56.5 56.3 56.1 55.9 55.6

STATES STATES STATES STATES STATES STATES

DAY	NEG ME	AN			6	
	9	301	100.00	-199.00	DAY NEG MEAN	
	131.10	100.00MET	rer 💮		100.00	1.00
	117.20	1000.00FE	ET		304.80	49.40
	106.40	2000.00FE	ET		609.60	79.50
	97.30	1.00MI	_E		1609.34	121.66
	85.90	2.00MIL	_E		3218.69	151.77
	73.80	5.00MI	_E		8046.72	191.56
	69.40	10.00MIL	-E		16093.44	221.66
	65.8 0	15.00MI	_E		24140.16	239.27
	52 AA	100000 00ME3	rep		100000 - 00	301-00

COCCURACION CONTINUE VARIABLE DE COCCURA DE COCURA DE COCCURA DE COCURA DE COCCURA DE CO

131.1 130.7 130.4 130.1 129.8 129.5 129.2 128.9 128.7 128.4 128.1 127.8 127.5 127.2 126.9 126.6 126.4 126.1 125.8 125.5 125.2 124.9 124.6 124.4 124.1 123.8 123.5 123.2 122.9 122.6 122.3 122.1 121.8 121.5 121.2 120.9 120.6 120.3 120.0 119.8 119.5 119.2 118.9 118.6 118.3 118.0 117.7 117.5 117.2 116.8 116.4 116.1 115.7 115.4 115.0 114.7 114.3 113.9 113.6 113.2 112.9 112.5 112.1 111.8 111.4 111.1 110.7 110.3 110.0 109.6 109.3 108.9 108.6 108.2 107.8 107.5 107.1 106.8 106.4 106.2 106.0 105.8 105.5 105.3 105.1 104.9 104.7 104.5 104.2 104.0 103.8 103.6 103.4 103.2 102.9 102.7 102.5 102.3 102.1 101.9 101.7 101.4 101.2 101.0 100.8 100.6 100.4 100.1 99.9 99.7 98.4 98.2 99.5 99.3 99.1 98.8 98.6 98.0 97.8 97.6 95.5 97.3 97.0 96.6 96.2 95.8 95.1 94.7 94.3 94.0 90.9 93.6 93.2 92.8 92.4 92.1 91.7 91.3 90.5 90.2 89.4 89.0 88.7 88.3 87.9 89.8 87.5 87.1 86.8 86.4 86.0 85.7 85.4 85.1 84.8 84.5 84.2 83.9 83.5 83.2 82.9 82.6 82.3 82.0 81.7 81.4 81.1 80.8 80.5 80.2 79.9 79.6 79.3 79.0 78.7 78.4 78.1 77.8 77.5 77.2 76.9 75.9 75.6 75.3 76.6 76.3 75.0 74.7 74.4 74.1 73.8 73.5 73.7 73.4 73.2 73.1 72.9 72.8 72.6 72.5 72.3 72.2 72.1 71.9 71.8 71.6 71.5 71.3 71.2 71.0 70.3 70.9 70.7 70.6 70.4 70.2 70.0 69.9 69.7 69.6 69.4 69.2 69.0 68.4 68.8 68.6 68.2 68.0 67.8 67.6 67.4 67.2 67.0 66.8 66.6 66.4 66.2 66.0 65.8 65.5 65.3 65.1 64.9 64.7 64.5 64.3 64.0 63.8 63.6 63.4 63.2 63.0 62.8 62.5 62.3 62.1 61.9 61.7 61.5 61.3 60.8 60.6 60.2 61.0 60.4 60.0 59.8 59.6 59.3 59.1 58.9 58.7 58.5 58.3 58.1 57.8 57.6 57.4 57.2 57.0 56.8 56.6 56.3 56.1 55.9 55.7 55.5 55.3 55.1 54.8 54.6 54.4 54.2 54.0 53.8 53.6 53.3 53.1 52.9 52.7 52.6

DAY EX NEG MAX -199.00 9 301 100.00 DAY EX NEG MAX 120.10 100.00METER 100.00 1.00 107.60 1000.00FEET 49.40 304.80 99.60 2000.00FEET 609.60 79.50 90.60 1.00MILE 1609.34 121.66 81.20 2.00MILE 3218.69 151.77 64.70 5.00MILE 191.56 8046.72 59.60 10.00MILE 16093.44 221,66 57.00 15.00MILE 24140.16 239.27 46.60 100000.00METER 100000.00 301.00

120.1 119.7 119.5 119.2 118.9 118.7 118.4 118.2 117.9 117.6 117.4 117.1 116.9 116.6 116.4 116.1 115.8 115.6 115.3 115.1 114.8 114.5 114.3 114.0 113.8 113.5 113.3 113.0 112.7 112.5 112.2 112.0 111.7 111.4 111.2 110.9 110.7 110.4 110.2 109.9 109.6 109.4 109.1 108.9 108.6 108.3 108.1 107.8 107.6 107.3 107.0 106.8 106.5 106.2 106.0 105.7 105.4 105.2 104.9 104.7 104.4 104.1 103.9 103.6 103.3 103.1 102.8 102.5 102.3 102.0 101.7 101.5 101.2 100.9 100.7 100.4 100.1 99.9 99.6 99.4 99.2 99.0 98.7 98.5 98.3 98.1 97.5 97.9 97.7 97.3 97.0 96.8 96.6 96.4 96.2 96.0 95.8 95.3 95.5 95.1 94.7 94.5 94.1 94.9 94.3 93.8 93.6 93.2 93.4 93.0 92.8 92.6 92.3 92.1 91.9 91.7 91.5 91.3 91.1 90.8 90.6 90.3 90.0 89.7 89.4 89.1 88.5 88.8 88.2 87.8 87.5 87.2 86.9 86.6 86.3 86.0 85.7 85.3 85.0 84.7 84.4 84.1 83.8 83.5 83.2 82.8 82,2 82.5 81.9 81.6 81.3 80.9 80.5 80.1 79.7 79.2 78.8 78,4 78.0 77.6 77.2 76.8 76.3 75.9 75.5 75.1 74.7 74.3 73.8 73.4 72.6 73.0 72.2 71.8 71.4 70.9 70.5 70.1 69.7 69.3 68.0 68.9 68.5 67.6 67.2 66.8 66.4 66.0 65.6 65.1 64.7 64.5 64.4 64.2 64.0 63.9 63.5 63.7 63.4 63.2 63.0 62.8 62.7 62.5 62.3 62.2 62.0 61.8 61.7 61.5 61.3 61.2 61.0 60.B 60.6 60.5 60.3 60.1 60.0 59.8 59.6 59.5 59.3 59.2 59.0 58.9 58.7 58.6 58.4 58.3 58.1 58.0 57.9 57.7 57.6 57.4 57.3 57.1 57.0 56.8 56.6 56.5 56.3 56.1 56.0 55.8 55,4 55.6 55.3 55.1 54.9 54.8 54.6 54.4 53.9 54.3 54.1 53.8 53.6 53.4 53.1 52.9 53.3 52.7 52.6 52.4 52.2 52.1 51.9 51.7 51.6 51.4 51.2 51.1 50.9 50.7 50.6 50.4 50.2 50.1 49.4 49.9 49.7 49.5 49.2 49.0 48.9 48.7 48.5 48.4 48.2 48.0 47.9 47.7 47.5 47.4 47.2 47.0 46.9 46.7 46.6

STANDARD STANDARD WESTERN STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD

DAY EX NEG MEAN 8 301 100.00 -199.00DAY EX NEG MEAN 100.00METER 100.00 118.10 1.00 106.10 1000.00FEET 304.80 49.40 97.00 2000.00FEET 609.60 79.50 1.00MILE 1609.34 86.90 121.66 77.10 2.00MILE 3218.69 151.77 5.00MILE 60.50 8046.72 191.56 54.60 10.00MILE 16093.44 221.66 49.10 15.00MILE 24140.16 239.27 39.10 100000.00METER 100000.00 301.00

118.1 117.7 117.5 117.2 117.0 116.7 116.5 116.2 116.0 115.7 115.5 115.2 115.0 114.8 114.5 114.3 114.0 113.8 113.5 113.3 113.0 112.8 112.5 112.3 112.0 111.8 111.5 111.3 111.0 110.8 110.5 110.3 110.0 109.8 109.5 109.3 109.1 108.8 108.6 108.3 108.1 107.8 107.6 107.3 107.1 106.8 106.6 106.3 106.1 105.8 105.5 105.2 104.9 104.6 104.3 104.0 103.7 103.3 103.0 102.7 102.4 102.1 101.8 101.5 101.2 100.9 100.6 100.3 100.0 99.7 99.4 99.1 98.5 98.2 97.9 97.6 97.3 98.8 97.0 96.8 96.0 95.8 95.6 95.3 96.5 96.3 95.1 94.8 94.6 94.4 94.1 93.9 93.6 93.4 93.2 92.9 92.7 92.4 92.2 92.0 91.7 91.5 91.3 91.0 90.8 90.5 90.3 90.1 89.8 89.6 89.3 89.1 88.9 88.6 88.4 87.9 88.1 87.7 87.4 87.2 86.9 86.6 86.3 86.0 85.7 85.3 85.0 84.7 84.3 84.0 83.7 83.4 83.0 82.7 82.4 82.1 81.4 81.7 81.1 80.8 79.8 80.4 80.1 79.5 79.1 78.8 78.5 78.2 77.8 77.5 77.2 76.8 76.4 76.0 75.5 75.1 74.7 73.9 74.3 73.5 73.0 72.6 72.2 71.8 71.4 71.0 70.5 70.1 69.7 69.3 68.9 68.5 68.0 67.6 67.2 66.8 66.4 65.9 65.5 65.1 64.7 64.3 63.9 63.4 63.0 62.6 62.2 61.8 61.4 60.9 60.3 60.5 60.1 59.9 59.7 59.5 59.3 59.1 58.9 58.7 58.4 58.2 58.0 57.8 58.6 57.6 57.4 57.2 57.0 56.8 56.6 56.4 56.2 56.0 55.8 55.6 55.4 55.2 55.0 54.8 54.6 54.3 54.0 53.7 53.4 52.8 53.1 52.5 52.2 51.8 51.5 51.2 50.9 49.3 50.6 50.3 50.0 49.7 49.1 48.9 48.7 48.6 48.4 48.3 48.1 47.9 47.8 47.6 47.4 47.3 47.1 47.0 46.8 46.6 46.5 46.3 46.1 46.0 45.8 45.7 45.5 45.3 45.2 45.0 44.9 44.2 44.7 44.5 44.4 44.0 43.9 43.7 43.6 43.4 43.2 43.1 42.9 42.7 42.6 42.4 42.3 42.1 41.9 41.8 41.6 41.4 41.3 41.1 41.0 40.8 40.6 40.5 40.3 40.2 40.0 39.8 39.3 39.7 39.5 39.2 39.1

DAY	EX NEG	MIN			9	
	9	301 1	00.00	-199.00	DAY EX NEG MIN	
	111.10	100.00METER	1		100.00	1.00
	97.10	1000.00FEET			304.80	49.40
	88.10	2000.00FEET			609.60	79.50
	78.60	1.00MILE			1609.34	121.66
	68.10	2.00MILE			3218.69	151.77
	50.60	5.00MILE			8046.72	191.56
	44.10	10.00MILE			16093.44	221.66
	38.10	15.00MILE			24140.16	239.27
	27 10	100000 .00METER	•		100000 00	201 00

111.1 110.7 110.4 110.1 109.8 109.5 109.2 108.9 108.6 108.4 108.1 107.8 107.5 107.2 106.9 106.6 106.3 106.0 105.7 104.9 104.6 104.3 104.0 103.7 103.4 105.2 103.1 102.9 102.6 102.3 102.0 101.7 101.4 101.1 100.8 100.5 100.3 100.0 99.7 99.4 99.1 98.8 98.5 98.2 97.9 97.7 97.4 97.1 96.8 96.5 96.2 95.9 95.6 95.3 95.0 94.7 94.4 94.1 93.8 92.9 93.5 93.2 92.6 92.3 92.0 91.7 91.4 91.1 90.8 90.5 90.2 89.9 89.6 89.3 89.0 88.7 88.4 88.1 87.9 87.4 87.7 87.2 87.0 86.7 86.5 86.3 86.1 85.8 85.6 85.4 85.2 84.9 84.7 84.5 84.3 84.0 83.8 83.6 83.4 82.9 83.1 82.7 82.5 82.2 82.0 81.1 81.8 81.6 81.3 80.7 79.8 80.9 80.0 80.4 80.2 79.5 79.3 79.1 78.9 78.6 78.3 78.0 77.6 77.3 76.9 76.6 76.2 75.9 75.5 75.2 74.8 74.5 74.1 73.8 73.4 73.1 72.7 72.4 72.0 71.7 71.3 71.0 70.6 70.3 69.9 69.6 69.2 68.9 68.5 48.2 67.B 67.3 66.9 66.5 66.0 65.6 65.1 64.7 64.3 63.8 63.4 42.9 62.5 62.1 61.6 61.2 60.7 59.9 60.3 59.4 59.0 58.5 58.1 57.7 57.2 56.8 56.3 55.9 55.5 55.0 54.6 54.1 53.7 53.3 52.8 52.4 51.9 51.5 51.1 49.5 50.6 50.4 50.2 50.0 49.7 49.3 49.1 48.9 48.7 48.5 48.2 48.0 47.8 47.6 47.4 47.2 46.9 46.7 46.5 46.3 46.1 45.9 45.6 45.4 45.2 45.0 44.4 44.8 44.6 44.1 43.8 43.5 43.1 42.8 42.5 42.1 41.8 41.4 41.1 40.7 40.4 40.1 39.7 39.4 39.0 38.7 38.4 38.1 37.9 37.7 37.5 37.3 37.2 37.0 36.8 36.6 36.5 36.3 36.1 35.9 35.7 35.6 35.4 35.2 35.0 34.9 34.7 34.5 34.3 34.1 34.0 33.8 33.6 33.4 33.2 33.1 32.9 32.7 32.5 32.4 32.2 31.6 32.0 31.8 31.5 31.3 31.1 30.9 30.8 29.7 30.6 30.4 30.2 30.0 29.9 29.5 29.3 29.1 29.0 28.8 28.6 28.4 28.3 28.1 27.9 27.7 27.5 27.4 27.2 27.1

NIGHT FOCUS MAX 10 100.00 -199.00 NIGHT FOCUS MAX 9 301 100.00 100.00METER 1.00 140.90 1000.00FEET 304.80 49.40 132.10 79.50 609.60 127.10 2000.00FEET 115.90 1.00MILE 1609.34 121.66 3218.69 151.77 2.00MILE 106.40 96.70 5.00MILE 8046.72 191.56 16093.44 221.66 93.00 10.00MILE 239.27 15.00MILE 24140.16 91.60 86.60 100000.00METER 100000.00 301.00

140.9 140.6 140.4 140.3 140.1 139.9 139.7 139.5 139.4 139.2 139.0 138.8 138.6 138.4 138.3 138.1 137.9 137.7 137.5 137.4 137.2 137.0 136.8 136.6 136.4 136.3 136.1 135.9 135.7 135.5 135.4 135.2 135.0 134.8 134.6 134.4 134.3 134.1 133.9 133.7 133.5 133.4 133.2 133.0 132.8 132.6 132.4 132.3 132.1 131.9 131.8 131.6 131.4 131.3 131.1 130.9 130.8 130.6 130.4 130.3 130.1 129.9 129.8 129.6 129.4 129.3 129.1 128.9 128.8 128.6 128.4 128.3 128.1 127.9 127.8 127.6 127.4 127.3 127.1 126.8 126.6 126.3 126.0 125.8 125.5 125.2 125.0 124.7 124.4 124.2 123.9 123.6 123.4 123.1 122.9 122.6 122.3 122.1 121.8 121.5 121.3 121.0 120.7 120.5 120.2 119.9 119.7 119.4 119.1 118.9 118.6 118.3 118.1 117.8 117.5 117.3 117.0 116.7 116.5 116.2 115.9 115.6 115.3 115.0 114.7 114.4 114.1 113.7 113.4 113.1 112.8 112.5 112.2 111.8 111.5 111.2 110.9 110.6 110.3 110.0 109.6 109.3 109.0 108.7 108.4 108.1 107.7 107.4 107.1 106.8 106.5 106.2 106.0 105.7 105.5 105.2 105.0 104.8 104.5 104.3 104.0 103.8 103.5 103.3 103.1 102.8 102.6 102.3 102.1 101.8 99.4 101.6 101.3 101.1 100.9 100.6 100.4 100.1 99.9 99.6 99.2 98.9 98.7 98.4 98.2 97.9 97.7 97.4 97.2 97.0 96.5 96.3 96.2 95.8 96.7 96.6 96.1 96.0 95.7 95.6 95.5 95.4 95.2 95.1 95.0 94.9 94.7 94.6 94.5 94.4 94.2 94.1 94.0 93.9 93.8 93.6 93.5 93.4 93.3 93.1 92.9 92.9 93.0 92.8 92.7 92.6 92.5 92.5 92.4 92.3 91.7 91.7 92.2 92.1 92.1 92.0 91.9 91.8 91.6 91.5 91.4 91.3 91.3 91.2 91.1 91.0 90.9 90.9 90.8 90.7 90.6 90.5 90.4 90.4 90.3 90.2 90.1 90.0 90.0 89.9 89.8 89.7 89.6 89.6 89.5 89.4 89.3 89.2 89.2 89.1 89.0 88.9 88.8 88.7 88.7 88.6 88.5 88.4 88.3 88.3 88.2 88.1 88.0 87.9 87.9 87.8 87.7 87.6 87.5 87.5 87.4 87.3 87.2 87.1 87.0 87.0 86.9 86.8 86.7 86.6 86.6

NIGHT FOCUS MEAN 11 301 100.00 -199.00NIGHT FOCUS MEAN 9 139.30 100.00METER 100.00 1.00 130.40 1000.00FEET 304.80 49.40 2000.00FEET 124.30 609.60 79.50 110.90 1.00MILE 1609.34 121.66 101.40 2.00MILE 3218.69 151.77 91.70 5.00MILE 8046.72 191.56 88.00 10.00MILE 16093.44 221.66 86.60 15.00MILE 24140.16 239.27 82.10 100000.00METER 100000.00 301.00

139.3 139.0 138.8 138.7 138.5 138.3 138.1 137.9 137.7 137.6 137.4 137.2 137.0 136.8 136.6 136.4 136.3 136.1 135.9 135.7 135.5 135.3 135.2 135.0 134.8 134.6 134.4 134.2 134.1 133.9 133.7 133.5 133.3 133.1 133.0 132.8 132.6 132.4 132.2 132.0 131.9 131.7 131.5 131.3 131.1 130.9 130.7 130.6 130.4 130.2 130.0 129.8 129.6 129.4 129.2 129.0 128.8 128.6 128.4 128.2 127.9 127.7 127.5 127.3 127.1 126.9 126.7 126.5 126.3 126.1 125.9 125.7 125.5 125.3 125.1 124.9 124.7 124.5 124.3 124.0 123.7 123.3 123.0 122.7 122.4 122.1 121.8 121.4 121.1 120.8 120.5 120.2 119.9 119.5 119.2 118.9 118.6 118.3 117.9 117.6 117.3 117.0 116.7 116.4 116.0 115.7 115.4 115.1 114.8 114.4 114.1 113.8 113.5 113.2 112.9 112.5 112.2 111.9 111.6 111.3 111.0 110.6 110.3 110.0 109.7 109.4 109.1 108.7 108.4 108.1 107.8 107.5 107.2 106.8 106.5 106.2 105.9 105.6 105.3 105.0 104.6 104.3 104.0 103.7 103.4 103.1 102.7 102.4 102.1 101.8 101.5 101.2 101.0 100.7 100.5 100.2 100.0 99.8 99.5 99.3 99.0 98.8 98.5 98.3 98.1 97.8 97.6 97.3 97.1 96.8 95.9 94.9 96.6 96.3 96.1 95.6 95.4 95.1 94.6 94.4 93.7 94.2 93.9 93.4 93.2 92.9 92.7 92.4 92.2 92.0 91.7 91.6 91.5 91.3 91.2 91.1 91.0 90.8 90.7 90.6 90.5 90.4 90.2 90.1 90.0 89.9 89.7 89.6 89.5 89.4 89.2 89.1 89.0 88.9 88.8 88.5 88.6 88.4 88.3 88.1 88.0 87.9 87.9 87.8 87.7 87.6 87.5 87.5 87.4 87.3 87.1 87.2 87.1 87.0 86.9 86.8 86.7 86.7 86.6 86.5 86.4 86.4 86.3 86.2 86.1 86.1 86.0 85.9 85.9 85.8 85.7 85.6 85.6 85.5 85.4 85.3 85.3 85.2 85.1 85.1 85.0 84.9 84.8 84.8 84.7 84.6 84.5 84.5 84.4 84.3. 84.3 84.2 84.1 84.0 84.0 83.9 83.8 83.7 83.7 83.6 83.5 83.4 83.4 83.3 83.2 83.2 83.1 83.0 82.9 82.9 82.8 82.6 82.7 82.6 82.5 82.4 82.4 82.3 82.2 82.1 82.1

```
NIGHT BASE MAX
                                                          12
                  301
                          100.00
                                    -199.00
                                                NIGHT BASE MAX
    138.10
               100.00METER
                                                      100.00
                                                                   1.00
              1000.00FEET
    128.60
                                                      304.80
                                                                  49.40
    122.60
              2000.00FEET
                                                      609.60
                                                                  79.50
    109.60
                 1.00MILE
                                                     1609.34
                                                                 121.66
     99.60
                 2.00MILE
                                                     3218.69
                                                                 151.77
     89.20
                 5.00MILE
                                                     8046.72
                                                                 191.56
     83.50
                10.00MILE
                                                    16093.44
                                                                 221.66
     79.90
                15.00MILE
                                                    24140.16
                                                                 239.27
     68.10 100000.00METER
                                                   100000.00
                                                                 301.00
```

```
138.1 137.8 137.6 137.4 137.2 137.0 136.8 136.6 136.4 136.2
136.0 135.8 135.6 135.5 135.3 135.1 134.9 134.7 134.5 134.3
134.1 133.9 133.7 133.5 133.3 133.1 132.9 132.7 132.5 132.3
132.1 131.9 131.7 131.5 131.3 131.1 130.9 130.7 130.5 130.3
130.2 130.0 129.8 129.6 129.4 129.2 129.0 128.8 128.6 128.4
128.2 128.0 127.8 127.6 127.4 127.2 127.0 126.8 126.6 126.4
126.2 126.0 125.8 125.6 125.4 125.2 125.0 124.8 124.6 124.4
124.2 124.0 123.8 123.6 123.4 123.2 123.0 122.8 122.6 122.3
122.0 121.7 121.4 121.1 120.8 120.4 120.1 119.8 119.5 119.2
118.9 118.6 118.3 118.0 117.7 117.4 117.1 116.7 116.4 116.1
115.8 115.5 115.2 114.9 114.6 114.3 114.0 113.7 113.4 113.0
112.7 112.4 112.1 111.8 111.5 111.2 110.9 110.6 110.3 110.0
109.7 109.3 109.0 108.7 108.3 108.0 107.7 107.3 107.0 106.7
106.3 106.0 105.7 105.3 105.0 104.7 104.3 104.0 103.7 103.3
103.0 102.7 102.3 102.0 101.7 101.3 101.0 100.7 100.4 100.0
99.7
       99.4
             99.1
                    98.9
                          98.6
                                 98.4
                                       98.1
                                              97.8
                                                    97.6
                                                           97.3
 97.1
       96.8
              96.5
                    96.3
                          96.0
                                 95.7
                                       95.5
                                              95.2
                                                    95.0
                                                           94.7
       94.2
             93.9
                    93.7
                          93.4
                                 93.1
 94.4
                                       92.9
                                              92.6
                                                    92.4
                                                           92.1
                          90.8
 91.8
       91.6
              91.3
                    91.0
                                 90.5
                                       90.3
                                              90.0
                                                    89.7
                                                           89.5
89.2
       87.0
             88.8
                    88.6
                          88.5
                                 88.3
                                       88.1
                                              87.9
                                                    87.7
                                                           87.5
 87.3
       87.1
             86.9
                    86.8
                          86.6
                                 86.4
                                       86.2
                                              86.0
                                                    85.8
                                                           85.6
85.4
       85.2
             85.0
                    84.9
                          84.7
                                 84.5
                                       84.3
                                              84.1
                                                    83.9
                                                           83.7
 83.5
       83.3
                    82.9
                          82.7
                                 82.5
             83.1
                                       82.3
                                              82.1
                                                    81.9
                                                           81.7
                                       80.3
                                                    79.9
       81.3
             81.1
                    80.9
                          80.7
                                 80.5
81.5
                                              80.1
                                                           79.7
 79.5
       79.3
             79.1
                    78.9
                          78.7
                                 78.5
                                       78.3
                                              78.1
                                                    77.9
                                                           77.8
       77.4
             77.2
 77.6
                    77.0
                          76.8
                                 76.6
                                       76.4
                                              76.2
                                                    76.0
                                                           75.8
 75.7
       75.5
             75.3
                    75.1
                          74.9
                                 74.7
                                       74.5
                                              74.3
                                                    74.1
                                                           73.9
       73.5
             73.4
                    73.2
                          73.0
73.7
                                 72.8
                                       72.6
                                              72.4
                                                    72.2
                                                           72.0
                    71.3
                                 70.9
       71.6
             71.4
                          71.1
 71.8
                                       70.7
                                              70.5
                                                    70.3
                                                           70.1
 69.9
       69.7
             69.5
                    69.3
                          69.2
                                 69.0
                                       68.8
                                              68.6
                                                    68.4
                                                           68.2
 68.1
```

NIGHT I	BASE	MEAN			13	
	9	301	100.00	-199.00	NIGHT BASE ME	AN
135	5.10	100.00MET	ER		100.00	1.00
124	4.30	1000.00FEE	T		304.80	49.40
117	7.20	2000.00FEE	Τ		609.60	79.50
104	4.60	1.00MIL	E		1609.34	121.66
95	5.30	2.00MIL	E		3218.69	151.77
84	4.70	5.00MIL	Ε		8046.72	191.56
78	3.80	10.00MIL	E		16093.44	221.66
76	6.10	15.00MIL	E		24140.16	239.27
65	5.10	100000.00MET	ER		100000.00	301.00

15.7.53.53 (S. 23.3) Por

135.1 134.8 134.5 134.3 134.1 133.9 133.6 133.4 133.2 133.0 132.8 132.5 132.3 132.1 131.9 131.6 131.4 131.2 131.0 130.7 130.5 130.3 130.1 129.9 129.6 129.4 129.2 129.0 128.7 128.5 128.3 128.1 127.8 127.6 127.4 127.2 127.0 126.7 126.5 126.3 126.1 125.8 125.6 125.4 125.2 124.9 124.7 124.5 124.3 124.0 123.8 123.6 123.3 123.1 122.9 122.6 122.4 122.2 121.9 121.7 121.4 121.2 121.0 120.7 120.5 120.3 120.0 119.8 119.6 119.3 119.1 118.9 118.6 118.4 118.1 117.9 117.7 117.4 117.2 116.9 116.6 116.3 116.0 115.7 115.4 115.1 114.8 114.5 114.2 113.9 113.6 113.3 113.0 112.7 112.4 112.1 111.8 111.5 111.2 110.9 110.6 110.3 110.0 109.7 109.4 109.1 108.8 108.5 108.2 107.9 107.6 107.3 107.0 106.7 106.4 106.1 105.8 105.5 105.2 104.9 104.6 104.3 104.0 103.7 103.4 103.1 102.8 102.5 102.2 101.9 101.6 101.3 100.9 100.6 100.3 100.0 99.7 99.4 99.1 **98.8** 96.6 97.2 96.3 96.0 95.7 98.5 98.2 97.9 97.5 96.9 95.4 95.1 94.8 94.6 94.3 94.0 93.8 93.5 93.2 93.0 90.8 90.6 92.7 92.4 92.2 91.9 91.6 91.4 91.1 90.3 89.5 89.2 89.0 88.7 88.4 88.2 87.9 87.6 90.0 89.8 85.8 85.5 85.2 85.0 86.3 87.4 87.1 86.8 86.6 86.0 83.1 83.9 83.7 83.5 83.3 82.9 84.7 84.5 84.3 84.1 81.4 81.2 82.0 81.6 81.0 82.8 82.6 82.4 82.2 81.8 79.2 80.8 80.6 80.4 80.2 80.0 79.8 79.6 79.4 79.0 78.8 78.7 78.5 78.4 78.2 78.1 77.9 77.8 77.6 77.4 77.3 77.1 77.0 76.8 76.7 76.5 76.4 76.2 76.1 75.9 75.5 75.3 75.2 75.0 74.8 74.6 74.5 74.3 74.1 75.7 72.5 73.4 73.2 72.9 72.7 72.3 73.9 73.7 73.6 73.0 72.0 71.4 71.1 70.9 70.7 70.5 72.1 71.8 71.6 71.2 69.6 69.3 69.1 68.9 70.2 70.0 69.8 69.5 48.8 70.4 67.3 67.1 68.4 68.2 68.0 67.9 67.7 67.5 67.0 68.6 65.9 65.7 65.5 65.4 66.B 66.6 66.4 66.3 66.1 65.2 65.1

NIGHT NEG N	1AX			14	
9	301	100.00	-199.00	NIGHT NEG MAX	
133.60	100.00MET	TER .		100.00	1.00
121.60	1000.00FEE	ĒΤ		304.80	49.40
111.60	2000.00FEE	T		609.60	79.50
98.60	1.00MIL	-E		1609.34	121.66
90.B0	2.00MIL	.E		3218.69	151.77
77.40	5.00MIL	.E		8046.72	191.56
72.70	10.00MIL	.E		16093.44	221.66
67.40	15.00MIL	-E		24140.16	239.27
6 2 40	100000 00ME1	rco		100000 00	201 00

SACONS NOTANA

133.6 133.2 133.0 132.7 132.5 132.2 132.0 131.7 131.5 131.2 131.0 130.7 130.5 130.3 130.0 129.8 129.5 129.3 129.0 128.8 128.5 128.3 128.0 127.8 127.5 127.3 127.0 126.8 126.5 126.3 126.0 125.8 125.5 125.3 125.0 124.8 124.6 124.3 124.1 123.8 123.6 123.3 123.1 122.8 122.6 122.3 122.1 121.8 121.6 121.2 120.9 120.6 120.2 119.9 119.6 119.2 118.9 118.6 118.2 117.9 117.6 117.2 116.9 116.6 116.3 115.9 115.6 115.3 114.9 114.6 114.3 113.9 113.6 113.3 112.9 112.6 112.3 111.9 111.6 111.3 111.0 110.7 110.4 110.1 109.8 109.4 109.1 108.8 108.5 108.2 107.9 107.6 107.3 107.0 106.7 106.4 106.1 105.7 105.4 105.1 104.8 104.5 104.2 103.9 103.6 103.3 103.0 102.7 102.4 102.0 101.7 101.4 101.1 100.8 100.5 100.2 99.9 99.6 99.3 99.0 98.7 98.4 98.1 97.9 97.6 97.3 97.1 96.6 96.3 96.8 96.1 95.8 95.5 95.3 95.0 94.8 94.5 94.2 94.0 93.7 93.5 93.2 92.9 92.7 92.4 92.2 91.9 91.6 91.4 91.1 90.9 90.6 90.2 89.9 89.5 89.2 88.9 87.9 88.5 88.2 86.2 85.8 85.5 85.2 87.5 87.2 86.8 86.5 84.8 84.5 84.2 83.8 83.5 82.8 82.5 82.1 81.8 83.1 81.5 81.1 80.8 80.5 80.1 79.8 79.4 79.1 78.8 78.4 78.1 77.8 77.4 77.3 77.1 76.9 76.8 76.6 76.5 76.3 76.2 76.0 75.7 75.4 75.2 75.1 74.9 75.8 75.5 74.8 74.6 74.4 74.1 74.0 73.8 73.7 73.5 73.4 73.2 72.9 74.3 73.0 72.7 72.4 72.1 71.8 71.5 71.2 70.9 70.6 70.3 70.0 69.7 69.4 69.1 **68.8** 48.5 48.2 67.9 67.6 67.3 67.1 65.9 65.7 65.4 66.9 66.6 66.4 66.1 65.2 64.9 64.7 64.5 64.2 64.0 63.7 63.5 63.3 63.0 8.56 62.6 42.3 61.8 60.9 62.1 61.6 61.4 61.1 60.6 60.4 60.2 59.9 59.7 59.4 59.2 59.0 58.7 58.5 58.2 58.0 57.8 57.5 55.4 57.3 57.0 56.8 56.6 56.3 56.1 55.8 55.6 55.1 54.9 54.6 54.4 54.2 53.9 53.7 53.4 53.2 53.0 52.7 52.6

15 NIGHT NEG MEAN 301 100.00 -199.00NIGHT NEG MEAN 100.00 1.00 100.00METER 132.10 118.40 1000.00FEET 304.80 49.40 107.30 2000.00FEET 609.60 79.50 93.90 1.00MILE 1609.34 121.66 3218.69 2.00MILE 151.77 86.90 73.40 5.00MILE 8046.72 191.56 10.00MILE 16093.44 221.66 68.40 24140.16 239.27 64.90 15.00MILE 51.60 100000.00METER 100000.00 301.00

Control Control Control

132.1 131.7 131.4 131.1 130.8 130.5 130.3 130.0 129.7 129.4 129.1 128.8 128.6 128.3 128.0 127.7 127.4 127.1 126.9 126.6 126.3 126.0 125.7 125.4 125.2 124.9 124.6 124.3 124.0 123.8 123.5 123.2 122.9 122.6 122.3 122.1 121.8 121.5 121.2 120.9 120.6 120.4 120.1 119.8 119.5 119.2 118.9 118.7 118.4 118.0 117.6 117.3 116.9 116.5 116.2 115.8 115.4 115.0 114.7 114.3 113.9 113.6 113.2 112.8 112.5 112.1 111.7 111.4 111.0 110.6 110.3 109.9 109.5 109.1 108.8 108.4 108.0 107.7 107.3 107.0 106.7 106.3 106.0 105.7 105.4 105.1 104.8 104.4 104.1 103.8 103.5 103.2 102.9 102.5 102.2 101.9 101.6 101.3 100.9 100.6 99.7 99.4 99.0 98.7 98.4 98.1 97.8 97.4 100.3 100.0 95.2 96.2 95.9 95.5 94.9 94.6 94.3 97.1 96.8 96.5 92.5 91.8 94.0 93.7 93.5 93.2 93.0 92.8 92.3 92.1 90.9 90.7 90.5 90.2 90.0 89.8 89.5 91.6 91.4 91.1 87.9 87.7 87.4 87.2 89.3 89.1 88.8 88.6 88.4 98.1 85.6 85.3 85.0 84.6 84.3 83.9 87.0 86.7 86.3 86.0 83.6 83.3 82.9 82.6 82.2 81.9 81.6 81.2 80.9 80.5 79.9 79.5 79.2 78.8 78.5 78.2 77.8 77.5 77.2 80.2 76.1 76.5 75.8 75.5 75.1 74.8 74.4 74.1 73.8 76.8 72.9 72.6 72.4 72.2 72.1 71.9 73.4 73.2 73.1 72.7 71.7 71.6 71.4 71.3 71.1 70.9 70.8 70.6 70.4 70.3 69.9 69.4 68.9 68.6 69.8 69.6 69.3 69.1 68.8 70.1 68.4 68.2 68.0 67.8 67.6 67.4 67.2 67.0 66.8 66.6 66.0 65.8 65.7 65.5 65.3 65.1 64.9 64.6 66.4 66.2 62.9 62.7 64.2 64.0 63.8 63.6 63.3 63.1 62.5 64.4 60.B 62.3 62.1 61.8 61.6 61.4 61.2 61.0 60.5 60.3 59.9 59.7 59.5 59.2 59.0 58.8 58.6 58.4 58.2 60.1 57.7 56.4 58.0 57.5 57.3 57.1 56.9 56.7 56.2 56.0 55.8 55.6 55.4 55.2 54.9 54.7 54.5 54.3 54.1 53.9 53.6 53.4 53.2 53.0 52.8 52.6 52.4 52.1 51.9 51.7 51.6

NIGHT EX NE	G MAX			16	
9	301	100.00	-199.00	NIGHT EX NEG	MAX
122.50	100.00MET	ER		100.00	1.00
108.60	1000.00FEE	T		304.80	49.40
99.60	2000.00FEE	T		609.60	79.50
86.60	1.00MIL	E		1609.34	121.66
78.50	2.00MIL	E		3218.69	151.77
65.40	5.00MIL	E		8046.72	191.56
62.00	10.00MIL	E		16093.44	221.66
58.40	15.00MIL	E		24140.16	239.27
45 10	100000 . 00MET	FR		100000 00	301 00

122.5 122.1 121.8 121.5 121.2 120.9 120.6 120.3 120.1 119.8 119.5 119.2 118.9 118.6 118.3 118.0 117.8 117.5 117.2 116.9 116.6 116.3 116.0 115.8 115.5 115.2 114.9 114.6 114.3 114.0 113.7 113.5 113.2 112.9 112.6 112.3 112.0 111.7 111.4 111.2 110.9 110.6 110.3 110.0 109.7 109.4 109.1 108.9 108.6 108.3 108.0 107.7 107.4 107.1 106.8 106.5 106.2 105.9 105.6 105.3 105.0 104.7 104.4 104.1 103.8 103.5 103.2 102.9 102.6 102.3 102.0 101.7 101.4 101.1 100.8 100.5 100.2 99.9 99.6 99.0 98.7 98.4 98.1 97.8 97.4 97.1 96.8 96.5 96.2 94.4 94.1 95.9 95.6 95.3 95.0 94.7 93.7 93.4 93.1 92.8 92.5 92.2 91.9 91.6 91.3 91.0 90.7 90.4 90.0 89.7 89.4 89.1 88.8 88.5 88.2 87.9 87.6 87.3 87.0 86.7 86.4 86.1 85.8 85.6 85.3 85.0 84.8 84.5 84.2 82.9 84.0 83.7 83.4 83.1 82.6 82.3 82.1 81.8 81.5 81.0 81.3 80.7 79.9 79.6 80.5 80.2 79.4 79.1 78.8 78.6 78.3 77.9 77.6 77.3 76.9 76.6 76.3 76.0 75.6 72.7 75.3 75.0 74.6 74.3 74.0 73.7 73.3 73.0 72.3 72.0 71.7 71.3 71.0 70.7 70.4 70.0 69.7 69.4 69.0 68.7 68.4 68.1 67.7 67.4 67.1 66.7 66.4 66.1 65.7 65.3 65.1 64.6 65.4 65.2 65.0 64.8 64.7 64.5 64.4 64.3 64.2 64.1 63.9 63.8 63.7 63.6 63.5 63.4 63.3 63.1 63.0 62.9 8.56 62.7 62.6 62.5 62.4 5.56 62.1 62.0 61.8 61.6 61.4 61.2 61.0 60.8 60.6 60.4 60.2 60.0 59.8 59.6 59.4 59.2 59.0 58.8 58.6 58.4 58.1 57.9 57.7 57.5 57.3 57.1 56.8 56.6 56.4 56.2 56.0 55.8 55.6 55.3 55.1 54.9 54.7 54.5 54.3 54.0 53.8 53.6 53.4 53.2 52.5 53.0 52.7 52.3 52.1 51.9 51.7 51.2 51.5 50.8 50.6 51.0 50.4 50.2 49.9 49.7 49.5 48.9 48.7 49.3 49.1 48.4 48.2 48.0 47.8 47.6 47.4 47.1 46.9 46.7 46.5 46.3 46.1 45.9 45.6 45.4 45.2 45.1

NIGHT EX NEG MEAN 17 9 100.00 -199.00 NIGHT EX NEG MEAN 301 121.30 100.00METER 100.00 1.00 106.50 1000,00FEET 304.80 49.40 97.60 2000.00FEET 609.60 79.50 82.60 1.00MILE 1609.34 121.66 73.20 2.00MILE 3218.69 151.77 60.50 5.00MILE 8046.72 191.56 55.10 10.00MILE 16093.44 221.66 51.60 15.00MILE 24140.16 239.27 39.60 100000.00METER 100000.00 301.00

```
121.3 120.8 120.5 120.2 119.9 119.6 119.3 119.0 118.7 118.4
118.1 117.8 117.5 117.2 116.9 116.6 116.3 115.9 115.6 115.3
115.0 114.7 114.4 114.1 113.8 113.5 113.2 112.9 112.6 112.3
112.0 111.7 111.4 111.1 110.8 110.4 110.1 109.8 109.5 109.2
108.9 108.6 108.3 108.0 107.7 107.4 107.1 106.8 106.5 106.2
105.9 105.6 105.3 105.0 104.7 104.4 104.1 103.8 103.5 103.2
102.9 102.6 102.3 102.0 101.7 101.4 101.1 100.9
                                                    100.6 100.3
              99.4
100.0
       99.7
                     99.1
                           98.8
                                  98.5
                                        98.2
                                               97.9
                                                      97.6
                                                            97.2
 96.9
       96.5
              96.2
                     95.8
                           95.5
                                  95.1
                                         94.8
                                               94.4
                                                      94.0
                                                            93.7
93.3
       93.0
              92.6
                     92.3
                           91.9
                                  91.6
                                         91.2
                                               90.8
                                                      90.5
                                                            90.1
 89.8
       89.4
              89.1
                                                            86.6
                     88.7
                           88.4
                                  88.0
                                        87.6
                                               87.3
                                                      86.9
86.2
       85.9
              85.5
                    85.1
                           84.8
                                  84.4
                                        84.1
                                               83.7
                                                      83.4
                                                            83.0
 82.7
       82.3
              82.0
                     81.7
                           81.4
                                  81.1
                                        80.8
                                               80.5
                                                      80.2
                                                            79.8
79.5
       79.2
              78.9
                    78.6
                           78.3
                                  78.0
                                               77.3
                                                      77.0
                                        77.7
                                                            76.7
              75.8
                     75.5
76.4
       76.1
                           75.2
                                  74.8
                                         74.5
                                               74.2
                                                      73.9
                                                            73.6
73.3
       73.0
              72.6
                    72.3
                           72.0
                                  71.7
                                        71.4
                                               71.1
                                                      70.7
                                                            70.4
       69.8
              69.5
                     69.1
 70.1
                           68.8
                                  68.5
                                         68.2
                                               67.9
                                                      67.5
                                                            67.2
66.9
       66.6
              66.3
                    65.9
                           65.6
                                  65.3
                                        65.0
                                               64.7
                                                      64.3
                                                            64.0
 63.7
       63.4
              63.1
                     62.8
                           62.4
                                  62.1
                                         61.8
                                               61.5
                                                      61.2
                                                            60.8
60.5
       60.3
              40.2
                    60.0
                           59.8
                                  59.6
                                        59.4
                                               59.3
                                                      59.1
                                                            58.9
58.7
                           58.0
       58.5
              58.4
                    58.2
                                  57.8
                                        57.6
                                               57.5
                                                      57.3
                                                            57.1
56.9
       56.7
              56.6
                    56.4
                           56.2
                                  56.0
                                        55.8
                                               55.7
                                                      55.5
                                                            55.3
55.1
       54.9
                    54.5
              54.7
                           54.3
                                  54.1
                                        53.9
                                               53.7
                                                      53.5
                                                            53.3
       52.9
53.1
              52.7
                    52.5
                           52.4
                                  52.2
                                        52.0
                                               51.8
                                                      51.6
                                                            51.4
51.2
       51.0
              50.8
                    50.6
                           50.4
                                  50.2
                                               49.8
                                        50.0
                                                      49.6
                                                            49.4
49.2
       49.0
              48.8
                    48.6
                           48.4
                                  48.3
                                        48.1
                                               47.9
                                                      47.7
                                                            47.5
47.3
       47.1
              46.9
                    46.7
                           46.5
                                  46.3
                                               45.9
                                        46.1
                                                      45.7
                                                            45.5
45.3
       45.1
              44.9
                    44.8
                           44.6
                                                            43.6
                                  44.4
                                        44.2
                                               44.0
                                                      43.8
                    42.8
43.4
       43.2
              43.0
                           42.6
                                  42.4
                                        42.2
                                               42.0
                                                      41.8
                                                            41.6
41.4
       41.3
              41.1
                    40.9
                                 40.5
                           40.7
                                                      39.9
                                        40.3
                                               40.1
                                                            39.7
39.6
```

The second secon

NIGHT EX NE	G MIN		18	
9	301 100	0.00 -199.00	NIGHT EX NEG	MIN
117.10	100.00METER		100.00	1.00
100.80	1000.00FEET		304.80	49.40
90.70	2000.00FEET		609.60	79.50
75.10	1.00MILE		1609.34	121.66
64.10	2.00MILE		3218.69	151.77
50.60	5.00MILE		8046.72	191.56
44.60	10.00MILE		16093.44	221.66
40.60	15.00MILE		24140.16	239.27
29.00	100000.00METER		100000.00	301.00

117.1 116.6 116.3 115.9 115.6 115.2 114.9 114.6 114.2 113.9 113.6 113.2 112.9 112.6 112.2 111.9 111.5 111.2 110.9 110.5 110.2 109.9 109.5 109.2 108.8 108.5 108.2 107.8 107.5 107.2 106.8 106.5 106.2 105.8 105.5 105.1 104.8 104.5 104.1 103.8 103.5 103.1 102.8 102.5 102.1 101.8 101.4 101.1 100.8 100.4 97.7 100.1 99.8 99.4 99.1 98.8 98.4 98.1 97.4 97.1 96.1 95.7 95.4 95.1 94.7 94.4 94.1 93.7 96.7 96.4 93.4 93.1 92.7 92.4 92.0 91.7 91.4 91.0 90.7 90.3 90.0 89.6 89.2 88.9 88.5 88.1 87.7 87.4 87.0 86.6 85.5 84.4 83.3 82.9 86.3 85.9 85.2 84.8 84.0 83.7 80.7 80.3 79.6 79.2 82.6 82.2 81.8 81.5 81.1 80.0 77.0 75.9 75.5 78.9 78.5 78.1 77.8 77.4 76.6 76.3 72.6 74.4 74.1 73.7 73.3 73.0 72.2 71.9 75.2 74.8 69.3 69.7 71.5 71.1 70.8 70.4 70.0 68.9 68.6 48.2 67.9 67.5 67.1 66.8 66.4 66.0 65.7 45.3 64.9 64.6 62.2 64.2 63.9 63.5 63.2 8.56 62.5 61.8 61.5 61.1 59.4 59.1 58.8 58.1 57.7 60.8 60.5 60.1 59.8 58.4 57.4 57.1 56.7 56.4 56.0 55.7 55.4 55.0 54.7 54.4 53.3 53.7 53.0 52.7 52.3 52.0 51.6 51.3 51.0 54.0 49.6 50.6 50.4 50.2 50.0 49.8 49.4 49.2 49.0 48.8 48.4 48.2 48.0 47.8 47.6 47.4 47.2 47.0 46.8 48.6 46.2 46.0 45.4 45.8 46.6 46.4 45.6 45.2 45.0 44.8 44.2 44.6 44.4 44.0 43.7 43.5 43.3 43.0 42.8 42.6 42.4 42.1 41.9 41.7 41.5 41.2 41.0 40.8 40.6 40.4 40.2 40.0 39.8 39.6 39.4 39.2 39.1 38.9 38.7 38.5 37.9 38.3 38.1 37.7 37.6 37.4 37.2 37.0 36.B 36.6 36.2 36.0 35.9 35.3 36.4 35.7 35.5 35.1 34.9 34.7 34.5 34.4 34.2 34.0 33.8 33.6 33.4 32.9 33.2 33.0 32.7 32.5 32.3 32.1 31.9 31.7 31.5 31.0 31.3 31.2 30.4 30.6 30.2 30.0 29.8 30.8 29.7 29.5 29.3 29.1 29.0

DAY FOCU	S PERC	ENT			400	••	DAY FO	19	DCENT.	
	7	301		0.00	-199.	00		CUS PEI 04.80		.40
	=	000.00						09.60		.50
	-	000.00						07.34	121	
	46	1.00						18.69	151	
	30	2.00						46.72	191	
	60	5.00						93.44	221	
	70	10.00							239	
3.	10	15.00	11166							
.0 .0	.0	.0	.0	.0	.0	.0	.0 .0 .0	.0	.0	
.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	
.0	.0	.0	.0	.0 .0	.0	.0	.0	.0	.0	
.0	.0	.0 .0	.0	.0	.o	.0	.0	.0	.0	
.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	
.0	.0 .0	.0	.1	.1	.1	. 1	. 1	. 1	. 1	
.0	.1	ž.	.è	.2	.2	.2	.2	.2	.2	
.1 .2	.3	.3	.3	.з	.3	.3	.з	.3	.3	
.3	.4	.4	.4	.4	.4	.4	.4	.4	.4	
.5	.5	.6	.6	.7	.8	.8	.9	.9	1.0	
1.1	1.1	1.2	1.2	1.3	1.4	1.4	1.5	1.6	1.6	
1.7	1.7	1.8	1.9	1.9	2.0	2.0	2.1	2.2	2.2	
2.3	2.4	2.6	2.8	3.0	3.2	3.4	3.5	3.7	3.9	
4.1	4.3	4.5	4.6	4.8	5.0	5.2	5.4	5.6	5.7	
5.9	6.1	6.3	6.5	6.7	6.B	7.0	7.2	7.4	7.6	
7.8	7.9	8.1	8.3	8.5	8.7	8.9	9.0	9.2 9.6	9.4 9.6	
9.6	9.6	9.6	9.6	9.6	9.6	9.6 9.7	9.6 9.7	9.7	9.7	
9.6	9.6	9.6	9.6	9.6	9.6 9.7	9.7	9.7	9.7	9.7	
9.7	9.7	9.7	9.7	9.7 8.3	7.7 7.9	7.5	7.1	6.8	6.4	
9.7	9.4	9.0	8.6 4.9	4.5	4.1	3.8	3.4	3.1	3.1	
6.0	5.6	5.3 3.1		3.1				3.1	3.1	
3.1	3.1 3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	
3.1 3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	
3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	
3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	
3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	
3.1										

DAY BASE PER	CENT					20	
7	301	100.00	-199	.00	DAY B	ASE PE	RCENT
25.07	1000.00F	EET				304.80	49.40
32.44	2000.00FI	EET				609.60	79.5 0
18.53	1.00M	ILE			1	609.34	121.66
20.60	2.00M	ILE			3	218.69	151.77
25.90	5.00M				8	046.72	
31.80	10.00M					093.44	
30.00	15.00M					140.16	
25.1 25.1	25.1 2	5.1 25.1	25.1	25.1	25.1	25.1	25.1
25.1 25.1	25.1 25	5.1 25.1	25.1	25.1	25.1	25.1	25.1
25.1 25.1	25.1 2	5.1 25.1	25.1	25.1	25.1	25.1	25.1
25.1 25.1	25.1 29	5.1 25.1	25.1	25.1	25.1	25.1	25.1
25.1 25.1		5.1 25.1	25.1	25.1	25.1	25.1	25.3
25.6 25.8		6.3 26.6	26.8	27.1	27.3	27.5	27.8
28.0 28.3		8.8 29.0	29.3	29.5	29.7	30.0	30.2
30.5 30.7		1.2 31.5	31.7	31.9	32.2	32.4	32.1
31.8 31.5		0.8 30.5	30.1	29.8	29.5	29.1	28.8
28.5 28.2		7.5 27.2	26.8	26.5	26.2	25.8	25.5
25.2 24.9		4.2 23.9	23.5	23.2	22.9	22.5	22.2
21.9 21.6		0.9 20.6	20.2	19.9	19.6	19.2	18.9
18.6 18.6		8.7 18.8	18.9	18.9	19.0	19.1	19.1
19.2 19.3		7.4 19.5	19.6	19.6	19.7	19.8	19.8
19.9 20.0		0.1 20.2	20.2	20.3	20.4	20.4	20.5
20.6 20.7		1.0 21.1	21.2	21.4	21.5	21.6	21.8
21.9 22.0		2.3 22.4	22.6	22.7	22.8	23.0	23.1
23.2 23.4		3.6 23.8	23.9	24.0	24.2	24.3	24.4
24.6 24.7		5.0 25.1	25.2	25.4	25.5	25.6	25.8
25.9 26.1		6.5 26.7	26.9	27.1	27.3	27.5	27.7
27.8 28.0		8.4 28.6	28.8	29.0	29.2	29.4	29.6
29.8 30.0		0.4 30.6	30.8	31.0	31.2	31.4	31.6
31.8 31.7		1.5 31.4	31.3	31.2	31.1	31.0	30.9
30.8 30.7		0.5 30.4	30.3	30.2	30.1	30.0	30.0
30.0 30.0		0.0 30.0	30.0	30.0	30.0	30.0	30.0
30.0 30.0		0.0 30.0	30.0	30.0	30.0	30.0	30.0
30.0 30.0		0.0 30.0	30.0	30.0	30.0	30.0	30.0
30.0 30.0		0.0 30.0	30.0	30.0	30.0	30.0	30.0
30.0 30.0		0.0E 0.0	30.0	30.0	30.0	30.0	30.0
30.0 30.0		0.0 30.0	30.0	30.0	30.0	30.0	30.0
30.0					2410	24.4	

received treatment treatment observation to the property to th

```
DAY NEG PERCENT
                                                             21
          7
                   301
                            100.00
                                      ~199.00
                                                   DAY NEG PERCENT
     72.69
               1000.00FEET
                                                         304.80
                                                                     49.40
     59.22
               2000.00FEET
                                                         609.60
                                                                     79.50
     64.88
                  1.00MILE
                                                       1609.34
                                                                    121.66
     39.60
                  2.00MILE
                                                       3218.69
                                                                    151.77
     35.00
                  5.00MILE
                                                       8046.72
                                                                    191.56
     32.60
                 10.00MILE
                                                      16093,44
                                                                    221.66
     32.10
                 15.00MILE
                                                      24140.16
                                                                    239.27
  72.7
         72.7
                72.7
                       72.7
                              72.7
                                     72.7
                                            72.7
                                                   72.7
                                                         72.7
                                                                72.7
 72.7
         72.7
                72.7
                       72.7
                              72.7
                                    72.7
                                           72.7
                                                   72.7
                                                         72.7
                                                                72.7
  72.7
         72.7
                72.7
                       72.7
                              72.7
                                     72.7
                                            72.7
                                                   72.7
                                                          72.7
                                                                72.7
 72.7
         72.7
                72.7
                       72.7
                              72.7
                                    72.7
                                           72.7
                                                   72.7
                                                         72.7
                                                                72.7
 72.7
         72.7
                72.7
                       72.7
                              72.7
                                    72.7
                                            72.7
                                                   72.7
                                                         72.7
                                                                72.2
 71.8
        71.3
                70.9
                       70.4
                             70.0
                                    69.5
                                           69.1
                                                  68.6
                                                         68.2
                                                                67.7
 67.3
         66.8
                66.4
                      45.9
                              65.5
                                    65.0
                                           64.6
                                                   64.1
                                                         63.7
                                                                63.2
 8.56
        62.4
               61.9
                      61.5
                             61.0
                                    60.6
                                           60.1
                                                  59.7
                                                         59.2
                                                                59.4
 59.5
        59.6
               59.8
                      59.9
                             60.0
                                    60.2
                                           60.3
                                                  60.4
                                                         60.6
                                                                60.7
 8.06
        61.0
               61.1
                      61.2
                             61.4
                                    61.5
                                           61.6
                                                  61.B
                                                         61.9
                                                                62.0
 62.2
        62.3
               62.4
                      62.6
                             62.7
                                    8.56
                                           63.0
                                                  63.1
                                                         63.2
                                                                63.4
 63.5
        63.6
               63.8
                      63.9
                             64.1
                                    64.2
                                           64.3
                                                  64.5
                                                         64.6
                                                                64.7
 64.9
        64.2
               63.3
                      62.5
                             61.7
                                    60.8
                                           60.0
                                                  59.1
                                                         58.3
                                                                57.5
        55.8
 56.6
               54.9
                      54.1
                             53.3
                                    52.4
                                           51.6
                                                  50.7
                                                         49.9
                                                                49.1
 48.2
        47.4
               46.5
                      45.7
                             44.9
                                    44.0
                                           43.2
                                                  42.3
                                                         41.5
                                                                40.7
 39.8
        39.5
               39.4
                      39.3
                             39.2
                                    39.1
                                           38.9
                                                  38.8
                                                         38.7
                                                                38.6
 38.5
        38.4
               38.2
                      38.1
                             38.0
                                    37.9
                                           37.8
                                                  37.7
                                                         37.6
                                                                37.4
 37.3
        37.2
               37.1
                      37.0
                             36.9
                                    36.7
                                           36.6
                                                  36.5
                                                         36.4
                                                                36.3
 36.2
        36.0
               35.9
                      35.8
                             35.7
                                    35.6
                                           35.5
                                                  35.4
                                                         35.2
                                                                35.1
 35.0
        34.9
               34.8
                      34.8
                             34.7
                                    34.6
                                           34.5
                                                  34.4
                                                         34.4
                                                                34.3
 34.2
        34.1
               34.0
                      34.0
                             33.9
                                    33.8
                                           33.7
                                                  33.6
                                                         33.6
                                                                33.5
 33.4
        33.3
               33.3
                      33.2
                             33.1
                                    33.0
                                           32.9
                                                  32.9
                                                         32.8
                                                                32.7
        32.6
 32.6
               32.5
                      32.5
                             32.5
                                    32.5
                                           32.4
                                                  32.4
                                                         32.4
                                                                32.3
 32.3
        32.3
               32.3
                      32.2
                             32.2
                                    32.2
                                           32.2
                                                  32.1
                                                                32.1
                                                         32.1
 32.1
        32.1
               32.1
                      32.1
                             32.1
                                    32.1
                                           32.1
                                                  32.1
                                                         32.1
                                                                32.1
 32.1
        32.1
               32.1
                                    32.1
                      32.1
                             32.1
                                           32.1
                                                  32.1
                                                         32.1
                                                                32.1
 32.1
        32.1
               32.1
                      32.1
                             32.1
                                    32.1
                                           32.1
                                                  32.1
                                                         32.1
                                                                32.1
 32.1
        32.1
               32.1
                      32.1
                             32.1
                                    32.1
                                           32.1
                                                  32.1
                                                         32.1
                                                                32.1
 32.1
        32.1
               32.1
                      32.1
                             32.1
                                    32.1
                                           32.1
                                                  32.1
                                                         32.1
                                                                32.1
 32.1
        32.1
               32.1
                      32.1
                             32.1
                                    32.1
                                           32.1
                                                  32.1
                                                         32.1
                                                                32.1
```

32.1

DAY EX	NEG PE	RCENT						22		
	7	30	1 1	00.00	-199	.00	DAY E	X NEG I	PERCEN	r
2	.24	1000.0	OFEET					304.80	49	7.40
8	.34	2000.0						609.60		7.50
16	.13		OMILE					609.34		1.66
37	.50		OMILE					218.69		1.77
	.50		OMILE					046.72		1.56
	.90		OMILE					093.44		1.66
34	.80	15.0	OMILE				24	140.16	53	7.27
2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	
2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	
2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	
2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	
2.2	2.2	2.2	2.2	2.2	2.2		2.2	2.2	2.5	
2.7	2.9	3.1	3.3	3.5	3.7			4.3	4.5	
4.7	4.9	5.1	5.3	5.5	5.7		6.1	6.3	6.5	
6.7	6.9	7.1	7.3	7.5	7.7	7.9		8.3	8.5	
8.7	8.9	9.1			9.6		10.0	10.2	10.4	
10.6	10.7		11.1	11.3	11.5		11.8	12.0	12.2	
	12.6		13.0	13.1	13.3	13.5	13.7	13.9	14.1	
14.3	14.4	14.6	14.8	15.0	15.2	15.4	15.5	15.7	15.9	
16.1	16.7	17.4	18.1	18.9	19.6	20.3	21.0	21.7	22.4	
23.1	23.8	24.5	25.2	26.0	26.7	27.4	28.1	28.8	29.5	
30.2	30.9	31.6	32.3	33.1	33.8	34.5	35.2	35.9	36.6	
37.3	37.4	37.2	37.0	36.7	36.5		36.1	35.9	35.7	
35.5	35.3		34.9	34.7	34.5		34.1	33.9	33.7	
33.5	33.3	33.1	32.9	32.7	32.5	32.3	32.1	31.9	31.7	
31.5	31.3	31.1	30.9	30.7	30.5	30.3	30.1	29.9	29.7	
29.5	29.4	29.3	29.1	29.0	28.9	28.8	28.7	28.6	28.4	
28.3	28.2	28.1	28.0	27.8	27.7	27.6	27.5	27.4	27.2	
27.1	27.0		26.8	26.6	26.5		26.3	26.2	26.0	
25.9	26.3	26.8 31.9	27.3	27.8 32.9	28.3 33.4		29.4		30.4	
30.9	31.4 34.8	34.8	32.4			33.9 34.8	34.4		34.8	
34.8		34.8 34.8	34.8 34.8	34.8 34.8	34.8 34.8		34.8	34.8	34.8 34.8	
34.8 34.8	34.8 34.8		34.8	34.8 34.8	34.8 34.8	34.8 34.8	34.8 34.8	34.8 34.8	34.8 34.8	
34.8	34.B		34.8	34.8	34.8	34.8		34.8	34.8	
	34.8		34.8	34.8		34.8	34.8	34.8	34.8	
34.8	34.8		34.8	34.8	34.8	34.8	34.8	34.8	34.8	
34.8	J7.0	J7.J	J7.U	54.0	J-1.U	uu	34.0	JU	J7.U	
J4.0										

7 301 100.00 .00 1000.00FEET .00 2000.00FEET 2.64 1.00MILE 6.10 2.00MILE 7.60 5.00MILE 7.10 10.00MILE 4.40 15.00MILE					-199.	00	3 6 16 32 80 160	23 FOCUS 04.80 09.60 09.34 218.69 046.72 093.44	79 121 151 191 221	.40 .50 .66 .77 .56
2.0 3.8 4.1 5.8 2.6 4.3 7.7 7.7 7.1 5.4 4.4 4.4	0000000284179015936430444444	000000003951901259364283444444	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000001123456677777764444444	4.4	000000000000000000000000000000000000000	6.48 7.55 7.77 7.59 4.44 4.44	00000017396780482653174444444	

STATES SECTION SECTION

NIGHT BASE PR 27.34 47.67 65.86 39.00 27.30 20.00 16.70		100.00	-199	.00	1 3 8 16	24 BASE 1 304.80 609.60 609.34 218.69 046.72 093.44 140.16	151.77 191.56 221.66
27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3	27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3	27.3 27.3 27.3 27.3 31.5 27.3 31.5 27.3 31.5 45.0 54.5 45.0 54.5 47.9 20.1 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21	27.332.196.70365654333222221277777777777777777777777777777	27.3 27.3 27.3 27.3 39.6 51.5 59.1 55.1 57.1 57.1 57.1 57.1 57.1 57.1 57	27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3	27.7.23.40.7.03.69.99.07.88.94.95.57.77.77.77.77.77.77.77.77.77.77.77.77	27.3 27.3 27.3 28.1 34.8 41.6 48.1 52.4 56.7 65.4 58.0 49.1 40.1 36.4 33.5 30.6 25.1 20.3 18.3 16.7

STATES STATES STATES

ACCRECAGE SERVICES

NIGHT NE	EG PER	CENT						25		
	7	30	1 1	00.00	-199	.00	NIGHT	NEG P	ERCENT	
72.	. 66	1000.0	OFEET					304.80	49.40)
44	.21	2000.0	OFEET					609.60	79.50)
24.	. 35	1.0	OMILE				1	609.34	121.66	•
29	.50	2.0	OMILE					218.69	151.77	
31.	.30	5.0	OMILE				8	046.72	191.56	
25	.00	10.0	OMILE				16	093.44		
33.	.70	15.0	OMILE				24	140.16	239.27	,
72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	
72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	
72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	
72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	
72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	71.6	
70.7	69.7	68.8	67.8	66.9	66.0	65.0	64.1	63.1	62.2	
61.2	60.3	59.3	58.4	57.4	56.5	55.6	54.6	53.7	52.7	
51.8	50.8	49.9	48.9	48.0	47.0	46.1	45.2	44.2	43.7	
43.3	42.8	42.3	41.9	41.4	40.9	40.4	40.0	39.5	39.0	
38.6	38.1	37.6	37.1	36.7	36.2	35.7	35.3	34.8	34.3	
33.8	33.4	32.9	32.4	32.0	31.5	31.0	30.6	30.1	29.6	
29.1	28.7	28.2	27.7	27.3	26.8	26.3	25.8	25.4	24.9	
24.4	24.5	24.7	24.8	25.0	25.2	25.3	25.5	25.7	25.9	
26.0	26.2	26.4	26.5	26.7	26.9	27.1	27.2	27.4	27.6	
27.7	27.9	28.1	28.3	28.4	28.6	28.8	28.9	29.1	29.3	
29.5	29.5	29.6	29.6	29.7	29.7	29.8	29.8	29.8	29.9	
29.9	30.0	30.0	30.1	30.1	30.2	30.2	30.3	30.3	30.3	
30.4	30.4	30.5	30.5	30.6	30.6	30.7	30.7	30.B	30.8	
30.8	30.9	30.9	31.0	31.0	31.1	31.1	31.2	31.2	31.3	
31.3	31.1	30.9	30.7	30.5	30.3	30.1	29.8	29.6	29.4	
29.2	29.0	28.8	28.6	28.4	28.2	28.0	27.8	27.5	27.3	
27.1	26.9	26.7	26.5	26.3	26.1	25.9	25.7	25.5	25.2	
25.0	25.4	25.9	26.4	26.9	27.4	27.9	28.4	28.9	29.4	
29.9	30.4	30.8	31.3	31.8	32.3	32.8	33.3	33.7	33.7	
33.7	33.7	33.7	33.7	33.7	33.7	33.7	33.7	33.7	33.7	
33.7	33.7	33.7	33.7	33.7	33.7	33.7	33.7	33.7	33.7	
33.7	33.7	33.7	33.7	33.7	33.7	33.7	33.7	33.7	33.7	
33.7	33.7	33.7	33.7	33.7	33.7	33.7	33.7	33.7	33.7	
33.7	33.7	33.7	33.7	33.7	33.7	33.7	33.7	33.7	33.7	
33.7	33.7	33.7	33.7	33.7	33.7	33.7	33.7	33.7	33.7	
33.7										

	7 .00 3.12	30 1000.0 2000.0)1 1 OFEET	.00.00	-199	.00		26 EX NE 304.80 609.60 609.34	4	ENT 9.40 79.50
	.40		OMILE					218.69		11.77
	.80		OMILE					046.72		1.56
	7.90		OMILE					093.44		1.66
40	.20	15.0	OHILE				E4	140.16	63	9.27
.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	
.0	.0	.0 1.1	.0 1.4	.0 1.6	.0 1.9	o. 2.2	.0	.0 2.7	.3	
.6 3.3	.8 3.5	3.8	4.1	4.3	4.6	4.9	2.5 5.2	5.4	3.0 5.7	
6.0	6.2	6.5	6.8	7.0	7.3	7.6	7.8	8.1	8.1	
8.1	8.1	8.0	8.0	8.0	8.0	7.9	7.9	7.9	7.9	
7.8	7.8	7.8	7.8	7.8	7.7	7.7	7.7	7.7	7.6	
7.6	7.6	7.6	7.5	7.5	7.5	7.5	7.5	7.4	7.4	
7.4	7.4	7.3	7.3	7.3	7.3	7.2	7.2	7.2	7.2	
7.2	7.7	8.3	8.9	9.5	10.1	10.7	11.3	11.9	12.5	
13.1 19.2	13.7 19.8	14.3 20.4	14.9 21.0	15.5 21.6	16.1 22.2	16.8 22.8	17.4 23.4	18.0 24.0	18.6	
25.2	25.6	25.8	26.0	26.2	26.4	26.6	26.8	27.0	24.6 27.2	
27.5	27.7	27.9	28.1	28.3	28.5	28.7	28.9	29.1	29.4	
29.6	29.8	30.0	30.2	30.4	30.6	30.8	31.0	31.3	31.5	
31.7	31.9	32.1	32.3	32.5	32.7	32.9	33.2	33.4	33.6	
33.8	34.2	34.7	35.2	35.6	36.1	36.6	37.0	37.5	38.0	
38.5	38.9	39.4	39.9	40.3	40.8	41.3	41.7	42.2	42.7	
43.1	43.6	44.1	44.5	45.0	45.5	45.9	46.4	46.9	47.4	
47.8	47.8	47.6	47.5	47.3	47.2	47.0	46.9	46.7	46.5	
46.4	46.2	46.1	45.9	45.8	45.6	45.5	45.3	45.2	45.2	
45.2	45.2	45.2	45.2	45.2	45.2	45.2	45.2	45.2	45.2	
					45.2		45.2	45.2	45.2	
	45.2 45.2		45.2 45.2		45.2 45.2		45.2 45.2	45.2	45.2 45.2	
	45.2				45.2		45.2		45.2	
45.2	45.2	45.2	45.2		45.2		45.2	45.2	45.2	
45.2	• -	-	· ·							

CHARGE SIZE	CORRECTI			27	
21	601	100.00	201.00	CHARGE SIZE CO	
-29.80	.01			.01	5.14
-26.10	.02			.02	28.88 61.21
-22.50	.04 .08			.04 .08	90.21
-18.90 -15.40	.16			.16	120.38
-13.40	.31			.31	150.49
-8.80	.63			.63	180.59
-5.60	1.25			1.25	210.69
-2.70	2.50			2.50	240.79
.00	5.00			5.00	270.90
2.40	10.00			10.00	301.00 331.10
4.60	20.00 40.00			20.00 40.00	361.10
5. 6 0 8.50	BO.00			80.00	391.31
10.20	160.00			160.00	421.41
11.80	320.00			320.00	451.52
13.40	640.00			640.00	481.62
14.90	1280.00			1280.00	511.72
16.40	2560.00			2560.00	541.82
17.60	5120.00 9999.00			5120.00 9999.00	571.93 601.00
18.20	7777.00			7777.00	001.00
				-29.3 -29.1 -29	
				-27.7 -27.6 -21	
-27.2 -27.1	-26.9 -26.8	-26.6	~26.5 ~26.3	-26.2 -26.0 -2 <u>!</u>	. P
-23.8 -23./	-23.0 -23.0	-24 2	-26 1 -26 (-25.0 -24.9 -24 -23.9 -23.8 -23	7.0 3.7
				-22.8 -22.7 -28	
				7 -21.6 -21.5 -2	
-21.2 -21.1	-21.0 -20.8	-20.7	-20.6 -20.5	3 -20.4 -20.2 -20	0.1
-20.0 -19.9	-19.7 -19.6	-19.5	-19.4 - 19.8	2 -19.1 -19.0 -1	8.9
-18.8 -18.6	-18.5 -18.4	-18.3	-18.2 -18.	-17.9 -17.8 -1	7.7
				7 -16.8 -16.7 -16	
				7 -15.6 -15.5 -1: 5 -14.5 -14.4 -1:	
				5 -13.4 -13.2 -13	
				-12.2 -12.1 -1	
				3 -11.1 -11.0 -10	
-10.8 -10.7					9.9
-9.8 -9.7			-9.2 -9.		8.8
-8.7 -8.6					7.7
-7.6 -7.5 -6.6 -6.5					6.7 5 .6
-5.5 -5.4			-5.0 -4.9		4.7
-4.6 -4.5					3.7
-3.6 -3.5					2.7
-2.6 -2.5					1.8
-1.7 -1.7					9
88			4: .4 .:		.0 .8
.0 .1 .8 .9			1.2 1.		1.6
1.6 1.7			2.0 2.		2.4
2.4 2.5			2.8 2.9		3.1
3.2 3.2			3.5 3.6		3.8
3.9 4.0			4.3 4.3 5.0 5.0		4.6 5.2
4.6 4.7 5.3 5.4					5.9
6.0 6.0			6.3 6.4		5.6
6.6 6.7					7.2
7.2 7.3			7.6 7.6		7.8
7.9 7.9			8.2 8.3		8.4
8.5 8.6			8.8 8.9		9.0
9.1 9.1			9.4 9.		9.6
9.6 9.7 10.2 10.3			9.9 10.0 10.5 10.0		0.1 0.7
10.7 10.8			11.0 11.		1.2
11.3 11.3					1.7
11.8 11.9			12.1 12.	1 12.2 12.2 1	2.3
12.3 12.4	12.4 12.		12.6 12.	5 12.7 12.8 1	2.8
12.9 12.9			13.1 13.6		3.3
13.4 13.4 13.9 13.9			13.6 13.		3.8 4.3
14.4 14.4			14.6 14.		4.9
14.9 14.9	15.0 15.0	15.1	15.1 15.8	2 15.2 15.3 1	5.3
15.4 15.4			15.6 15.	7 15.7 15.8 1	5.8
15.9 15.9 16.4 16.4			16.1 16.6		5.3
16.9 16.8			16.6 16.6 17.0 17.0		5.7 ~.1
17.2 17.2	17.3 17.3	3 17.3	17.4 17.4		7. 5
17.6 17.6	17.6 17.7	17.7	17.7 17.7	17.7 17.8 17	7.8
17.8 17.8 18.0 18.0			17.9 17.9	7 17.9 18.0 18	9.0
18.2	18.0 18.1	18.1	18.1 18.1	18.1 18.2 16	3.2
_					

CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL

APPENDIX C:

SAMPLE MICROBNOISE SESSION

C:>BNOISE	Typed at DOS prompt, this activates the Bnoise program
C:BNOISE>ECHO OFF	Program operating
SELECT WEAPON CODES (0 TO END, 99 FOR ALL)	Choose weapons to be used in blast noise simulation
WEAPON CODE: 2	From Table 1
WEAPON CODE: 22	From Table 1
WEAPON CODE: 10	From Table 1
WEAPON CODE: 80 INVALID WEAPON CODE	Weapon code not included in existing database
DO YOU WANT INPUT DATA FOR THIS CODE? Y	To create a new weapon code
PROJECTILE WEIGHT: 10.5	weight of explosive in projectile
PROPELLANT WEIGHT FOR CHARGE ZONE 1: 1.2	Amount of propellant used in various weapon configurations
PROPELLANT WEIGHT FOR CHARGE ZONE 2: 8.4	Amount of propellant used in various weapon configurations
PROPELLANT WEIGHT FOR CHARGE ZONE 3: 5.7	Amount of propellant used in various weapon configurations
PROPELLANT WEIGHT FOR CHARGE ZONE 4: 7.8	Amount of propellant used in various weapon configurations
PROPELLANT WEIGHT FOR CHARGE ZONE 5: 9.2	Amount of propellant used in various weapon configurations
PROPELLANT WEIGHT FOR CHARGE ZONE 6: 12.1	Amount of propellant used in various weapon configurations
PROPELLANT WEIGHT FOR CHARGE ZONE 7. 0	Enter 0 for nonexistent configuration
PROPELLANT WEIGHT FOR CHARGE ZONE 8: 0	Enter 0 for nonexistent configuration
PROPELLANT WEIGHT FOR CHARGE ZONE 9: 0	Enter 0 for nonexistent configuration

TO SOUL AND WINGHOUSE DOD ON A DOD WOMEN TO BE				
PROPELLANT WEIGHT FOR CHARGE ZONE 10: 0	Enter 0 for nonexistent configuration			
NAME OF WEAPON: EXPERIMENTAL	Designation of new weapon (20 chars max)			
PARAMETER A: 83.79	From Table 3			
PARAMETER B: 13.91	From Table 3			
DECIBEL DIFFERENCE AT 0 DEGREES: 17.80	Front of gun			
DECIBEL DIFFERENCE AT 30 DEGREES: 13.91	See Table 3			
DECIBEL DIFFERENCE AT 60 DEGREES: 10.02	See Table 3			
DECIBEL DIFFERENCE AT 90 DEGREES: 6.46	See Table 3			
DECIBEL DIFFERENCE AT 120 DEGREES: 2.97	See Table 3			
DECIBEL DIFFERENCE AT 150 DEGREES: 0.53	See Table 3			
AVERAGE DECIBEL DIFFERENCE: 10.84	See Table 3			
WEAPON CODE: 0	End new weapon input			
ENTER TARGET DATA				
DO YOU WANT TO INPUT FROM A FILE? N	Use either existing target data file (Y) or create new target data file (N)			
ADD, DELETE, LIST, SAVE OR END: A	ADD a new target data file			
TARGET ID: TP1	Target I.D. (3 chars max)			
LOCATION, X-COORDINATE: 27000	X coordinate of target point			
LOCATION, Y-COORDINATE: 25000	Y coordinate of target point			
GROUND CORRECTION FACTOR (dB) [1.5]: 0	Default used (1.5 dB)			
ADD, DELETE, LIST, SAVE OR END: A	ADD a new target data file			

TARGET ID: TP2	Target I.D. (3 chars max)
LOCATION, X-COORDINATE: 82000	X coordinate of target point
LOCATION, Y-COORD INATE: 25000	Y coordinate of target point
GROUND CORRECTION FACTOR (dB) [1.5]: 0	Default used (1.5 dB)
ADD, DELETE, LIST, SAVE OR END: L TP1 27000.25000. 0. TP2 32000.25000. 0.	LIST target point data
ADD, DELETE, LIST, SAVE OR END: S	SAVE target point data in a file
FILE NAME: TTEST.DAT	Target point data filename
ADD, DELETE, LIST, SAVE OR END: E	END target data input
ENTER FIRING POINT DATA)
DO YOU WANT TO INPUT FROM A FILE? N	Use either an existing file (Y) or create a new file (N)
ADD, DELETE, I-IST, SAVE OR END: A	ADD a new firing point data file
FIRING POINT ID: FP1	Firing point I.D. (3 chars max)
LOCATION, X-COORDINATE: 29000	X coordinate of firing point
LOCATION, Y-COORDINATE: 28000	Y coordinate of firing point
GROUND CORRECTION FACTOR (dB) [1.5]: 0	Default used (1.5 dB)
GUN TYPE (CODE): 80	New gun type
NUMBER OF DAY FIRINGS [0]: 0	Default used (0)
NUMBER OF NIGHT FIRINGS [0]: 17	Default is 0
MIN CHARGE ZONE: 8	Minimum propellant charge weight zone used from Table 2

MAX CHARGE ZONE: 4	Maximum propellant charge weight zone used from Table 2
CORRESPONDING TARGET ID: TP1	Target location to be used
IS THERE NOISE AT THE TARGET? Y	Y or N
HEIGHT (IN FEET): 100	Distance above or below ground of detonation
ARE THERE MORE GUN TYPES FOR THIS ID? Y	
GUN TYPE (CODE): 22	New gun type
NUMBER OF DAY FIRINGS [0]: 300	Default is 0
NUMBER OF NIGHT FIRINGS [0]: 25	Default is 0
MIN CHARGE ZONE: 5	Minimum propellant charge weight zone used from Table 2
MAX CHARGE ZONE: 7	Maximum propellant charge weight zone used from Table 2
CORRESPONDING TARGET ID: TP2	Target location to be used
IS THERE NOISE AT THE TARGET? N	Y or N
HEIGHT (IN FEET): 0	Distance above or below ground of detonation
ARE THERE MORE GUN TYPES FOR THIS ID? N	
ADD, DELETE, LIST, SAVE OR END: A	ADD a new firing point data file
FIRING POINT ID: FP2	New firing point
LOCATION, X-COORDINATE: 85000	X coordinate of firing point
LOCATION, Y-COORDINATE: 20000	Y coordinate of firing point
GROUND CORRECTION FACTOR (dB) [1.5]: 0	Default used (1.5 dB)
GUN TYPE (CODE): 2	New gun type

NUMBER OF DAY FIRINGS [0]: 150	Default is 0
NUMBER OF NIGHT FIRINGS [0]: 10	Default is 0
MIN CHARGE ZONE: 4	Minimum propellant charge weight zone used from Table 2
MAX CHARGE ZONE: 5	Maximum propellant charge weight zone used from Table 2
CORRESPONDING TARGET ID: TP2	Target location to be used
IS THERE NOISE AT THE TARGET? Y	Y or N
HEIGHT (IN FEET): 0	Distance above or below ground of detonation
ARE THERE MORE GUN TYPES FOR THIS ID? N	
ADD, DELETE, LIST, SAVE OR END: A	ADD new firing point data
FIRING POINT ID: FP3	New firing point
L OCATION, X-COORDINATE: 82000	X coordinate of firing point
LOCATION, Y-COORDINATE: 28000	Y coordinate of firing point
GROUND CORRECTION FACTOR (dB) [1.5]: 0	Default used (1.5 dB)
GUN TYPE (CODE): 10	New gun type
NUMBER OF DAY FIRINGS [0]: 100	Default is 0
NUMBER OF NIGHT FIRINGS [0]: 0	Default is 0
MIN CHARGE ZONE: 5	Minimum propellant charge weight zone used from Table 2
MAX CHARGE ZONE: 5	Maximum propellant charge weight zone used from Table 2

Target location to be used

CORRESPONDING TARGET ID:

HEIGHT (IN FEET): 0	Distance above or below ground of detonation
ARE THERE MORE GUN TYPES FOR THIS ID? N	
ADD, DELETE, LIST, SAVE OR END: L	LIST firing point data
FIRING POINT ID FP1 FP1 29000.23000 0. 80 0 17 3 4TP10 100. 20 300 25 5 7TP21 0.	
ADD, DELETE, LIST, SAVE OR END: S	SAVE firing point data
FILE NAME: FTEST.DATA	Firing point data file name
ADD, DELETE, LIST, SAVE OR END: E	END firing point data input
ENTER MODULE DATA	
DO YOU WANT TO INPUT FROM A FILE? N	Use either existing module data (Y) or create new module data (N)
METERS OR FEET? METERS	Units of distance measurement (usually meters)

Possocial despendi professor recessor especial especial especial recessor essessor professor

ENTER MAP MODULE DATA	
PRINT DATA BASE INFORMATION? Y	Information to be printed
PRINT TARGET VS FIRING POINT TABLE? Y	Information to be printed
PRINT TARGET VS GUN TYPE TABLE? Y	Information to be printed
PRINT GUN TYPE VS TARGET TABLE? Y	Information to be printed
PRINT GUN TYPE VS FIRING POINT TABLE? Y	Information to be printed
PRINT "EXTRANEOUS DATA" MESSAGE? Y	Information to be printed
NUMBER OF DAYS OF INFORMATION IN DATA BASE [1]: 80	Default is 1
NUMBER OF GRID SIZES TO BE TESTED: 1	Only one needed usually
GRID SIZE: 250	Distance between points used in grid

ENTER BOUNDS MODULE DATA	
MINIMUM X COORDINATE: 14000	Minimum value of X coordinate used for border of plot
MINIMUM Y COORDINATE: 0	Minimum value of Y coordi- nate used for border of plot
MAXIMUM X COORDINATE: 50000	Maximum value of X coordinate used for border of plot
MAXIMUM Y COORDINATE: 89000	Maximum value of Y coordinate used for border of plot
ANY BASE MODULE DATA? Y	Base module will draw install- tion, labels, etc.
STARTING NEW OUTLINE	
X COORDINATE: 19000	These points are used to specify the registration mark in the upper left hand corner of Fig- ures 1 and 2
Y COORDINATE: 8000	These points are used to specify the registration mark in the upper left hand corner of Fig- ures 1 and 2
X COORDINATE: 21000	These points are used to specify the registration mark in the upper left hand corner of Fig- ures 1 and 2

Y COORD INATE: 8000	These points are used to specify the registration mark in the upper left hand corner of Fig- ures 1 and 2
IS THIS THE END OF A CONTINUOUS LINE? Y	Lifts pen
IS THIS THE LAST LINE? N	
STARTING NEW OUTLINE	
X COORDINATE: 20000	These points are used to specify the registration mark in the upper left hand corner of Fig- ures 1 and 2
Y COORDINATE: 7000	These points are used to specify the registration mark in the upper left hand corner of Fig- ures 1 and 2
X COORDINATE: 20000	These points are used to specify the registration mark in the upper left hand corner of Fig- ures 1 and 2
Y COORDINATE: 9000	These points are used to specify the registration mark in the upper left hand corner of Figures 1 and 2

TO DELL'AND DESCRIPTION RECEIVED TO DESCRIPTION OF DESCRIPTION RECEIVED RECEIVED.

IS THIS THE END OF A CONTINUOUS LINE? Y	Lifts pen
IS THIS THE LAST LINE? N	
STARTING NEW OUTLINE	
X COORDINATE: 24000	These points are used to specify the outline of the installation
Y COORDINATE: 10000	These points are used to specify the outline of the installation
X COORDINATE: 40000	These points are used to specify the outline of the installation
Y COORDINATE: 10000	These points are used to specify the outline of the installation
IS THIS THE END OF A CONTINUOUS LINE? N	Pen stays down
X COORDINATE: 40000	These points are used to specify the outline of the installation
Y COORDINATE: 25000	These points are used to specify the outline of the installation
IS THIS THE END OF A CONTINUOUS LINE? N	Pen stays down
X COORDINATE: 82000	These points are used to specify the outline of the installation
Y COORDINATE: 80000	These points are used to specify the outline of the installation
IS THIS THE END OF A CONTINUOUS LINE? N	Pen stays down
X COORDINATE: 24000	These points are used to specify the outline of the installation
Y COORDINATE: 25000	These points are used to specify the outline of the installation
IS THIS THE END OF A CONTINUOUS LINE? N	Pen stays down
X COORDINATE: 24000	These points are used to specify the outline of the installation
Y COORDINATE: 10000	These points are used to specify the outline of the installation
IS THIS THE END OF A CONTINUOUS LINE? Y	Lifts pen

IS THIS THE LAST LINE? Y	End of installation boundary
ENTER FORMA MODULE DATA	
CHARGE AVERAGING TECHNIQUE (MAX,IAVE,CAVE): MAX	Use maximum charge zone (MAX), average of charge zones (IAVE), or use the actual TNT charge equivalents (CAVE)
GROUND CORRECTION (dB) [1.5]: 0	Default used (1.5 dB)
ANY PUDDLE GRID MODULE DATA? Y	
INVERSION FACTOR 1: 65.8	From Table 5
INVERSION FACTOR 2: 15.5	From Table 5
INVERSION FACTOR 3: 27.9	From Table 5
GRID SIZE [2000]: 0	Default used (2000 meters)
DAY", "NIGHT" OR "BOTH": BOTH	BOTH day and night noise included
ANY POINT MODULE DATA? N	Noise at a specific point not cal- culated
ANY SCATTER MODULE DATA? Y	A scattergram is desired
SCATTER INFORMATION COLLECTED FOR TARGETS? Y	Target points included
SCATTER INFORMATION COLLECTED FOR FIRING POINTS? Y	Firing points included
DAY (D), NIGHT (N) OR BOTH (B) DATA: B	Both day and night firings are included
DO YOU WANT TO SPECIFY GUN TYPES? N	
MULTIPLIER [1]: 2	Scatter points are multiplied by this factor before division by number of days
STANDARD DEVIATION [300]: 0	Default chosen, expressed in meters or feet depending upon user selection
ANY LOCATOR MODULE DATA? Y	
"ALL", "TARGET" OR "FIRING": ALL	ALL points to market on plot

PRINT ID ON PLOT? N	
PRINT COORDINATES? N	
SIZE OF LETTERS [0.14]: 0	Height of letters (inches), default chosen
ROTATION OF LETTERS [0 DEG]: 0	Text relative to plot, default chosen
ANY PLOT MODULE DATA? Y	Plot of contours desired
USE PUDDLE GRID OUTPUT? Y	Using puddle grid data file
USE LOCATOR OUTPUT? Y	Using locator data file
USE SCATTER OUTPUT? N	No scattergram used on contour plot
USE BASE OUTPUT? Y	Include base module output
SCALE [50000]: 0	Default used, must be between 1000 and 100,000
%X [1.0]: 0	Default used
%Y [1.0]: 0	Default used, must be between
MAGNIFICATION [1.0]: 0.22	Increase or decrease size of plot, default is 1.0
% SMOOTHING [0.333]: 0	Use default (0.333)
FIRST CONTOUR LEVEL TO BE PLOTTED [65]: 55	Sound level in dB to be plotted; default is 65dB
LAST CONTOUR LEVEL TO BE PLOTTED [75]: 75	Sound level in dB to be plotted; default is 75dB
CONTOUR INCREMENT [10]: 5	Sound difference (in dB) between contours; default is 10dB
DO YOU WANT LABELS? Y	Labels attached to contours
FIRST CONTOUR TO BE LABELED [65]: 55	Label 55dB contour
LAST CONTOUR TO BE LABELED [75]: 75	Label 75dB contour

terms coccoss conserval statement conserval conserval conserval conserval

LABEL INCREMENT [10]: 5	Label 5dB contour increments
ANY ADDITIONAL TEXT TO DISPLAY? N	No additional text included with plot
MORE PLOTS? Y	Scattergram is next
USE PUDDLE GRID OUTPUT? N	Don't use puddle grid output
USE LOCATOR OUTPUT? N	Don't use locator file output
USE SCATTER OUTPUT? Y	Use scatter file output
USE BASE OUTPUT? Y	Include installation outline
SCALE [50000]: 0	Default used
%X [1.0]: 0	Default used
%Y [1.0]: 0	Default used
MAGNIFICATION [1.0]: 0.22	Same size as contours, default is 1.0
%SMOOTHING [0.333]: 0	Use default (0.333)
FIRST CONTOUR LEVEL TO BE PLOTTED [65]: 0	Default used although contours won't be shown
LAST CONTOUR LEVEL TO BE PLOTTED [75]: 0	Default used although contours won't be shown
CONTOUR INCREMENT [10]: 0	Default used although contours won't be shown
DO YOU WANT LABELS? N	No contour labels included
ANY ADDITIONAL TEXT TO DISPLAY? N	No additional text included
MORE PLOTS? N	End of module data input
SAVE MODULE DATA ON FILE? Y	Save module data in a file for later use

FILE NAME: MTEST.DAT

TIME IN EDITOR IS 12.6 MINUTES

PRINTED OUTPUT IS TO BE DIRECTED TO: 1 - SCREEN 2 - LINE PRINTER 3 - FILE

ENTER CHOICE: 8

ENTER FILENAME: BTEST.DAT

TIME IN LCDN IS 2.0 MINUTES

Resident portion of MODE loaded

COM2: 9600,n,8,1,p

COM1: 9600,n,8,1,p

ARE YOU USING "COM1" OR "COM2" FOR YOUR PLOTTER? COM2
INSERT PAPER IN PLOTTER
PUT BLACK PEN IN SLOT 1 (LEFT)
PUT GREEN PEN IN SLOT 2 (RIGHT) Pause. Please press

<return > to continue.

CHANGE PEN 2 Pause. Please press < return > to continue.

CHANGE PEN 2 Pause. Please press < return > to continue.

CHANGE PEN 2 Pause. Please press < return > to continue.

CHANGE PEN 2 Pause. Please press < return > to continue.

CHANGE PAPER Pause. Please press < return > to continue.

TIME IN NASAPLOT IS 6.2 MINUTES

ANOTHER COPY OF THE PLOT(S)? N

APPENDIX D:

PRINTED OUTPUT FROM THE EXAMPLE PROBLEM

DISTANCES EXPRESSED IN METERS

THRESH 85.0 PENITE 10.0 PPIP .1000E+01 Figure D1. MicroBNOISE header: coordinate units and data used by Program LCDN.

... MAP OF SOURCE POINTS ...

..... GUN TYPE CARDS

2 15.40 1.77 2.29 3.09
22 2.25 .04 .07 .09
22 2.25 .04 .07 .09
22 2.25 .04 .07 .09
23 2.25 .04 .07 .09
24 2.25 .04 .07 .09
25 2.25 .04 .07 .09
26 2.25 .04 .07 .09
27 2.25 .04 .07 .09
28 2.25 .04 .07 .09
28 2.25 .04 .07 .09

90.00 00.00

.00 .23 70.00

20.34 .19 50.00

13.27 .18 35.00

4.03

7.30

PROPELLANT WEIGHTS

2.88 2.88 .00 .53 8888 1.45 2.20 .00 2.97 .63 .46 .29 8.29 6.39 4.48 .00 .00 .00 17.80 13.91 10.02 EQ PARB 18.51 19.57 .00 13.91 EQ PARA 75.74 90.27 .00 83.79 155MM HOWITZER M109 81-MM MORTAR SMALL DEWO EXPERIMENTAL GTYPE 22 22 10 80

... 2 ERROR/WARNING CONDITIONS DETECTED FOR THIS CARD TYPE

Figure D2a. MAP module output: gun types and parameters.

```
TARGET CARDS .....

FLAG ID X Y HT CORR

TP1 27000. 25000. 0.

* TP2 32000. 25000. 0.

.... 0 ERROR/WARNING CONDITIONS DETECTED FOR THIS CARD TYPE
```

Figure D2b. MAP module output: target IDs and coordinates.

```
FIRING PT. SOURCE AND DEFINITION CARDS
                               HT CORR
                                         G TYPE DAYNO NIGHTNO
                                                                  MIN MAX T ID FLAG HGT
FLAG
        ID
             FP1
                     29000.
                              23000.
                                           80
                                                   0.
                                                           17.
                                                                            TP1
                                                                                   0
                                                                                      100.0
                                                  300.
                                           22
                                                           25.
             FP2
                     35000.
                              20000.
                                                  150.
                                                           10.
                                                                            TP2
                                                                                   0
                                                                                         .0
             FP3
                     32000.
                              28000.
                                                                                          .0
        O ERROR/WARNING CONDITIONS DETECTED FOR THIS CARD TYPE
.... END OF INPUT PHASE:
                             2 ERROR/WARNING CONDITIONS DETECTED
```

Figure D2c. MAP module output: firing point IDs and coordinates.

```
NUMBER OF DATA BASE CARD IMAGES READ IS
NUMBER OF GUN TYPES READ IS
NUMBER OF TARGETS READ IS
NUMBER OF SOURCES READ IS
          DATA BASE TIME PERIOD: 30. DAY(S)
TOTAL DAY FIRINGS IS
                            550.00
TOTAL NIGHT FIRINGS IS
                            52.00
TOTAL PER DAY DAY FIRINGS IS
                                    18.33
TOTAL PER DAY NIGHT FIRINGS IS
MINIMUM CHARGE NUMBER
MAXIMUM CHARGE NUMBER
MINIMUM CHARGE WEIGHT MAXIMUM CHARGE WEIGHT
                             .1 LBS
                          15.0 LBS
TOTAL DAY CHARGE WEIGHT PER DAY
                                       215.4 LBS
TOTAL NIGHT CHARGE WEIGHT PER DAY
MAXIMUM HEIGHT IS
                      100.00
MAXIMUM DEPTH IS
             35000.0 IN PAIR (
MAXIMUM X IS
                                      35000.0 ,
                                                   20000.0 )
MAXIMUM / IS
                28000.0 IN PAIR (
                                      32000.0 ,
                                                   28000.0 )
MINIMUM X IS
              27000.0 IN PAIR (
                                      27000.0 ,
                                                   25000.0 )
MINIMUM Y IS
                20000.0 IN PAIR (
                                      35000.0 .
                                                   20000.0 1
 FOR GRID SIZE 250.0, GRID DIMENSIONS = 32.0 X
```

Figure D2d. MAP module output: input data summary.

CROSS-REFERENCE: TARGETS BY FIRING POINTS; DAILY FIRINGS

THE STANDARD LANGUESTER FROM STANDARD S	TARGET ID FPT ID	ų	FPT 1D		FPT 1D	a	PPT 10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FPT ID	PPT 1D
GUN ID TAR ID FPT ID		ø.								
GUN ID TAR ID FPT ID		10.8	FP2	5.3						
GUN ID TAR ID FPT ID		TARGETS	BY GUN T	YPES;	DAILY	PROJECTILE	CHARGE WEIGHT	(FBS)		
TAR ID			GUN ID		GUN I	۵	GUN ID	GUN ID	GI NDD	GI ND
TAR ID		6.9								
TAR ID		82.1								
TAR ID FPT ID		GUN TYP	ES BY TAR	GETS;	DAILY	PROJECTILE	CHARGE WEIGHT	(TBS)		
TA3			TAR ID		TAR I	۵	TAR ID	TAR ID	TAR ID	TAR ID
FPT ID		82.1								
TA3										
FPT ID										
FPT ID		5.9								
FPT ID FPT ID FPT ID		GUN TYP	ES BY FIR	ING PO	INTS; D	AILY PROPEL	LENT CHARGE WE	IGHT (LBS)		
FPT ID FPT ID FPT ID										
37.6 2.0 50.0 4.1			FPT 1D		FPT I	0	FPT ID	FPT ID	FPT ID	FPT ID
2.0 50.0 4.1		37.6								
50.0		2.0								
4.1		50.0								
		4.1								

Figure D2e. MAP module output: cross-reference table.

```
MINIMUM BOUNDARY = 14000. 0. MAXIMUM BOUNDARY = 50000. 39000.

BOUNDARY VALUES VERIFIED
..... TIME IN BOUNDS IS .000 .....

Figure D3. BOUNDS module output.
```

BASE LINE CARDS X-Y START X-Y END LINE 19000. 8000. 21000. 8000. NEW LINE 20000. 9000. 7000. 20000. LINE NEW LINE 24000. 10000. 40000. 10000. LINE LINE 40000. 10000. 40000. 25000. 40000. 25000. 32000. 30000. LINE 32000. 30000. 24000. 25000. LINE 24000. 10000. 24000. 25000. LINE TIME IN BASE IS 1.000

Figure D4. BASE module output: coordinates of line segments for installation outline.

```
.... FORM-A CALCULATION ....

FOR THE EQUIVALENT, FORM-A WILL USE MAXIMUM CHARGE ZONE

.... DATA BASE TIME PERIOD: 30. DAY(S)

NUMBER OF UNIQUE NOISE SOURCES COUNTED IS 6

TOTAL PER DAY DAY EXPLOSIONS IS 23.33
TOTAL PER DAY NIGHT EXPLOSIONS IS 2.63

.... TIME FOR FORM-A SUBPROGRAM IS 19.000 SECONDS
```

Figure D5. FORMA module output.

```
WARNING -- SPECIFIED BOUNDS ( 14000.0, .0 ): ( 50000.0, 39000.0 ) DO NOT CORRESPOND TO INTEGRAL GRID BOUNDS. MODIFIED BOUNDS WILL BE USED TO PRODUCE THE GRID AND TO DEFINE ANY PLOT UTILIZING THIS GRID
```

100 X 100 X

```
CALCULATIONS FOR NEF WILL USE BOTH D + N OF DAY AND NIGHT CALCULATIONS
· 0.
                              40000.0)
                              50000.0,
  START AT DATA BASE COORDINATES ( 14000.0,
                                                                               27.90
                                                                               15.50
                              AT DATA BASE COORDINATES (
                                                                               65.80
                                                                            INVERSION =
                                 STOP
```

GRID SIZE = 2000.0 ; DISTANCES IN METERS

Figure D6a. PUDDLE GRID module output: boundaries, grid size, weather data.

To produce the second of the second s

PUDDLE GRID

44444444444444444444444444444444444444	
44444444444444444444444444444444444444	
88.444446 9.46.4646 9.4646 9.4646 9.4646 9.4646 9.4646 9.4646 9.4646 9.4646 9.	
8. 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
84444666666666666666666666666666666666	
32000 44.050 551.99 56.17 57.00	
0000 0000	
28000 280000 280000 280000 280000 28000 28000 28000 28000 28000	
00000000000000000000000000000000000000	0.000000000000000000000000000000000000
244444000 44444000 446.0 46	44444444444444444444444444444444444444
22000 4445.19 466.01 551.11 551.11 66.03 86.03 86.03 86.03 86.03 86.03 86.03 86.03 86.03 86.03	44444444444444444444444444444444444444
20000 244444444444444444444444444444444	44444444444444444444444444444444444444
11800 1280 1380	40000 38000 34000 34000 34000 34000 24000 24000 116000 116000 116000 116000 116000 116000 116000 116000 116000
16000 160000 160	
14000 14404 14000 14	

一年 日本

Figure D6b. PUDDLE GRID module output: table of levels calculated at each grid point coordinate.

40.000 SECONDS

TIME FOR PUDDLING SUBPROGRAM IS

THE SCATTER DIAGRAM WILL REPRESENT ..DAY+NIGHT.. DATA FOR:

...TARGETS
...FIRING PTS
...ALL GUN TYPES

BOUNDED BY (14000.0, .0) - (50000.0, 39000.0)

...MULTIPLIER = 2.0
...STANDARD DEVIATION = 300.000
...30. DAYS DATA IN DATA BASE

OUTPUT FILE TAPE4 CONTAINS NASAPLOT PHS4 INPUT DATA REPRESENTING:

2 TARGETS : 12 SCATTER PTS.
3 FIRING PTS: 41 SCATTER PTS.

MULTIPLIER USED = 2.0

Figure D7. SCATTER module output: bounds, input parameters, output parameters.

..... TIME IN SCATTER IS 2.000 SECONDS

LOCATOR ... LOCATOR TARGET FIRING POINT SIZE= .14** ANGLE= .00* STARS INDICATE DEFAULT VALUES ANGLE= .00** ID CODE X COORD. Y COORD. G CORR. BOUNDS .. TARGET DATA.. 27000. 32000. TP1 25000. TP2 25000. .. FIRING POINT DATA.. FP1 29000. 23000. FP2 35000. 20000. 28000. 1.000 SECONDS IN LOCATOR TIME OF

Figure D8. LOCATOR module output: labels and locations of plot annotations.

```
PLOT
                      COMPAQ
                                   12:55.14
                                               02-13-86
                                                              PLOT 1
              FOLLOWING FILES WERE REQUESTED
                  PGRID
                  BASE
                  LOCATOR
WARNING...PUDDLE GRID BOUNDS DO NOT MATCH SPECIFIED BOUNDS...
                                              SPECIFIED BOUNDS
                  PGRID VALUES USED
                    14000.00
                                                14000.00
       XMIN
                                                      .00
       YMIN
                         .00
                    50000.00
                                                50000.00
       XMAX
                    40000.00
                                                 39000.00
       YMAX
                   VALUES USED BY PLOT
                      =50000.0
          **SCALE
          **PERCENT X=1.00
                                      **PERCENT Y=1.00
                                      **PERC SMTH= .33
            MAG
                      = .22
          **START
                      = 55
                                      **STOP
                                                  = 75
           **L START = 55
                                      **L STOP
                                      **INCREMENT= 5
          **LABEL
                      = 1
          **L INCREMT= 5
                                        GRID SIZE= 2000.
           STARS INDICATE DEFAULT VALUES
           FOLLOWING CARDS WERE USER TEXT INPUT
           NO USER TEXT CARDS INPUT
           THIS PLOT IS
                          6 INCHES BY
           ONE INCH IS EQUAL TO 5773. METERS
IT CONSISTS OF 1 PAGES IN THE X DIRECTION AND 1 SECTIONS IN THE Y DIRECTION
              .... TIME IN PLOT IS 29.000 .....
```

Figure D9. PLOT module output: data for first plot (CONTOURS) requested.

```
PLOT
                                     02-13-86
                                                    PLOT 2
                        12:55:43
           COMPAG
  FOLLOWING FILES WERE REQUESTED
       BASE
       SCATTER
        VALUES USED BY PLOT
           =50000.0
**SCALE
                           **PERCENT Y=1.00
**PERCENT X=1.00
                           **PERC SMTH= .33
 MAG
           = .22
**START
           = 55
                            **STOP
                                       = 75
**L START = 55
                            **L STOP
                            **INCREMENT= 5
 LABEL
           = -1
**L INCREMT= 5
                             GRID SIZE=
STARS INDICATE DEFAULT VALUES
FOLLOWING CARDS WERE USER TEXT INPUT
NO USER TEXT CARDS INPUT
                               7 INCHES
THIS PLOT IS 6 INCHES BY
ONE INCH IS EQUAL TO 5773. METERS
IT CONSISTS OF 1 PAGES IN THE X DIRECTION AND 1 SECTIONS IN THE Y DIRECTION
   ..... TIME IN PLOT IS
                            7.000 ....
```

Figure D10. PLOT module output: data for second plot (SCATTERGRAM) requested.

APPENDIX E:

FUNDAMENTAL DOS COMMANDS

To load the MicroBNOISE program onto a hard disk:

Make a directory that will contain the program and data files using the command "mkdir."

C> mkdir <name>

Change into the new directory using the "change directory" command

C> cd <name>

Insert the program or data disks into floppy disk drive A.

Change over to disk drive A using the command

C>a:

Copy the files from the floppy disks over to the hard disk using the "copy" command.

A>copy *.* c:

After copying all the files over to the hard disk, return to the hard disk by typing

A>c:

The program can then be activated by typing

C>bnoise

Error Messages

Attached is a listing of error messages that might appear during a MicroBNOISE run. In general, the "Runtime Errors" (error codes 1000 through 2002) are those of interest, since the program has been compiled and linked and all of the compiler errors have been eliminated.

Most errors can be traced to unexpected characters in the data files (e.g., control characters, or alpha data when numeric data is expected). In general, blank lines are not allowed in the data files; they produce runtime errors, aborting execution.

The following eight pages are copyrighted by Microsoft, ©1981,1982, 1984.

C.2 Compiler Back End Errors

The main source of back end errors is user error from either the optimizer or the code generator. There are, in fact, very few of these errors. All are concerned with limitations that cannot be detected by the front end.

Back end errors cause an immediate termination, while an error number and approximate listing line number appear on your screen. The back end errors are listed below:

Code Message

- 1 Attempt to divide by zero.
 - For example, A DIV 0.
- 2 Overflow during integer constant folding.
 - For example, MAXINT + A + MAXINT.
- 3 Expression too complex Too many internal labels.
 - Try breaking up expression with intermediate value assigns.
- 4 Too many procedures and or functions.
 - Pcode only. Try breaking up compiland into modules or units.
- 5 Range error (number too large to fit into target).

C.3 Runtime Error Messages

Runtime errors fall into two classes.

1. file system errors

A CONTRACTOR OF STREET, CONTRACTOR OF STREET

2 nonfile system errors

Nonfile system errors include the following

- 1. memory errors
- 2. type REAL anthmetic errors

Microsoft FORTRAN Reference Manual

- 3. type INTEGER*4 arithmetic errors
- 4. other errors

If you see an error message that is not listed, check your operating system manual, as the error may be an operating system error.

C.3.1 File System Errors

Code numbers 1000 through 1099 are status codes, always issued in conjunction with an OS status code.

Code	Message
1000	Write error when writing end of file
1002	Filename extension with more than 3 characters
1003	Error during creation of new file (Disk or directory full)
1004	Error during open of existing file (File not found)
1005	Filename with more than 8 or zero characters
1007	Filename length over 21 characters or contains invalid characters
1008	Write error when advancing to next record
1009	File too big (Over 65535 logical sectors)
1010	Write error when seeking to direct record device
1011	Attempt to open a random file to a non-disk device
1012	Forward space or back space on a non-disk device
1013	Disk or directory full error during forward space or back space

An additional set of error messages and numbers has been created for MS-DOS 20 error handling. These numbers are in the range 1023 to 1048. The numbers 1031 to 1048 correspond to the MS-DOS error return codes on page D-14 of the MS-DOS manual (1030 + error return code).

Error Messages

Code	мевьиве
1023	Operation error (invalid operation)
1027	Filename error (for example, invalid syntax, name too long)
1028	Device full error (disk full, directory full)
1032	File not found
1033	Path not found
1034	Too many open files (no handles left)
1035	Access denied (trying to read from write-only)
1036	Invalid handle (file not currently open)
1038	Insufficient memory
1045	Invalid drive was specified
1200	Format missing final ")"
1201	Sign not expected in input
1202	Sign not followed by digit in input
1203	Digit expected in input
1204	Missing N or Z after B in format
1205	Unexpected character in format
1206	Zero repetition factor in format not allowed
1207	Integer expected for w field in format
1208	Positive integer required for w field in format
1209	"." expected in format
1210	Integer expected for d field in format
1211	Integer expected for e field in format
1212	Positive integer required for e field in format
1213	Positive integer required for w field in format
1214	Hollerith field in format must not appear for reading
1215	Hollerith field in format requires repetition factor
1216	X field in format requires repetition factor

Microsoft FORTRAN Reference Manual

1217	P field in format requires repetition factor
1218	Integer appears before + or - in format
1219	Integer expected after + or - in format
1220	P format expected after signed repetition factor in format
1221	Maximum nesting level for formats exceeded
1222	")" has repetition factor in format
1223	Integer followed by "," illegal in format
1224	"." is illegal format control character
1225	Character constant must not appear in format for reading
1226	Character constant in format must not be repeated
1227	"/" in format must not be repeated
1228	"\" in format must not be repeated
1229	BN or BZ format control must not be repeated
1230	Attempt to reference unknown unit number
1231	Formatted I O attempted on file opened as unformatted
1232	Format fails to begin with "("
1233	I format expected for integer read
1234	F or E format expected for real read
1235	Two "." characters in formatted real read
1236	Invalid REAL number
1237	L format expected for logical read
1238	Blank logical field
1239	T or F expected in logical read
1240	A format expected for character read
1241	I format expected for integer write
1242	w field in F format not greater than c field + 1
1243	Scale factor out of range of d field in E format
1244	E or F format expected for real write

220

Error Messages

1245	L format expected for logical write
1246	A format expected for character write
1247	Attempt to do unformatted I O to a unit opened as formatted
1251	Integer overflow on input
1252	Too many bytes read from input record
1253	Too many bytes written to direct access unit record
1255	Attempt to do external I O on a unit beyond end of file record
1256	Attempt to position a unit for direct access on a non-positive record number
1257	Attempt to do direct access to a unit opened as sequential
1258	Unable to seek to file position
1260	Attempt to BACKSPACE, REWIND, or ENDFILE unit connected to unblocked device
1261	Premature end of file of unformatted sequential file
1262	Invalid blocking in unformatted sequential file
1263	Incorrect physical record structure in unformatted file
1264	Attempt to do unformatted I O to internal unit
1265	Attempt to put more than one record into internal unit
1266	Attempt to write more characters to internal unit than its length
1267	EOF called on unknown unit
1265	Dynamic file allocation limit exceeded
1269	Scratch file opened for read
1270	Console 1 O error
1272	File operation attempted after error encountered on previous operation
1273	Keyboard (uffer overflow) too many bytes written to keyboard input record (Must be less than 132)
1274	Reading long integer

Microsoft FORTRAN Reference Manual

1275 Writing long integer 1281 Repeat field not on integer 1282 Multiple repeat character 1283 Invalid numeric data in list-directed input 1284 List directed numeric items bigger than record size 1285 Invalid string in list-directed input 1286 No comma encountered in list-directed complex input End-of-file encountered 1298 Integer variable not ASSIGNed a label used in 1299 assigned GOTO

C.3.2 Other Runtime Errors

Nonfile system error codes range from 2000 to 2999. In some cases, metacommands determine if errors are checked; in other cases, error codes are always checked.

C.3.2.1 Memory Errors

The heap is the storage area where MS-FORTRAN dynamically allocates storage for file control blocks. Since the stack and the heap grow toward each other, memory errors are all related; for example, a stack overflow can cause a "Heap is Invalid" error.

General note regarding floating-point overflow: A floating-point overflow in either direct or emulated mode, generates a NAN ("Not-A-Number") which appears in the output field as asterisks (*) or the letters "NAN", depending on the choice of formats.

Code Message

2000 Stack Overflow2002 Heap is Invalid

C.3.2.2 Type INTEGER Arithmetic Errors

- 2052 INTEGER Divide By Zero (This error appears only when \$1)EBUG is set.)
- 2054 INTEGER Math Overflow (This error appears only when \$DEBUG is set.)
- 2084 INTEGER Zero to Negative Power

C.3.2.3 Type REAL Arithmetic Errors

Code Message

- 2100 REAL Divide By Zero
- 2101 REAL Math Overflow
- 2102 SIN or COS Argument Range
- 2103 EXP Argument Range
- 2104 SQRT of Negative Argument
- 2105 LN of Non-Positive Argument
- 2106 TRUNC ROUND Argument Range
- 2131 Arctan Argument Zero
- 2132 Arcsine or Arccosine of REAL > 1.0
- 2133 Negative REAL to REAL Power
- 2134 REAL Zero to Negative Power
- 2135 REAL Math Underflow
- 2136 REAL Indefinite (uninitialized or previous error)
- 2137 Missing Arithmetic Processor
 (You have linked your program with the runtime library intended for use with the 8087 numeric coprocessor, but there is no coprocessor on your system Relink your program with the runtime library
 - that emulates floating point arithmetic.)
- 2139 REAL Precision Loss

(An arithmetic operation on the 8087 numeric coprocessor has generated a loss of numeric precision in the result of an operation.)

Microsoft FORTRAN Reference Manual

2140 REAL Arithmetic Processor Instruction Illegal or Not Emulated

(An attempt was made to execute an illegal arithmetic coprocessor instruction, or the floating point emulator cannot emulate a legal coprocessor instruction.)

2145 REAL Stack Overflow

(Using the alternate math package and expression too many real operands were encountered.)

C.3.2.4 Type INTEGER*4 Arithmetic Errors

Code Message

2200 Long integer divided by zero

2201 Long integer math overflow

2234 Long integer zero to negative power

C.3.2.5 Other Errors

Code Message

2451 Assigned GOTO label not in list (This error appears only when \$DERUG is set.)

USA-CERL DISTRIBUTION

```
Chief of Engineers
                                        ROK/US Combined Forces Command 96301
ATTN: Tech Monitor
                                          ATTN: EUSA-HHC-CFC/Engr
ATTN: DAEN-IMS-L
                    (2)
                                        MOW, ATTN: DEH (3)
ATTN:
       DAEN-CCP
ATTN: DAEN-CW
ATTN: DAEN-CWE
                                          ATTN: MTMC-SA 20315
ATTN: DAEN-CWM-R
                                          ATTN: Facilities Engineer (3)
ATTN: DAEN-CWO
ATTN: DAEN-CWP
                                        NARADCON, ATTN: DRDNA-F 01760
ATTN: DAEN-EC
ATTN: DAEN-ECC
                                        TARCOM, Pac. Div. 48090
ATTN: DAEN-ECE
ATTN: DAEN-ECR
                                        TRADOC
ATTN: DAEN-RD
                                          HQ, TRADOC, ATTN: ATEN-DEH
ATTN: DAEN-RDC
                                          ATTN: DEH (19)
ATTN: DAEN-RON
ATTN: DAEN-RM
                                        TSARCON, ATTN: STSAS-F 63120
ATTN: DAEN-ZCE
ATTN: DAEN-ZCF
                                        USACC, ATTN: Facilities Engr (2)
ATTN: DAEN-ZCI
ATTN: DAEN-ZCM
ATTN: DAEN-ZCZ
                                        WESTCON
                                          ATTN: DEH, Ft. Shafter 96858
                                          ATTN: APEN-IN
FESA, ATTN: Library 22060
ATTN: DET III 79906
                                        SHAPE 09055
                                          ATTM: Surv. Section. CCB-OPS
US Army Engineer Districts
                                             Infrastructure Branch, LANDA
  ATTM: Library (41)
                                        HQ USEUCOM 09128
US Army Engineer Divisions
                                          ATTN: ECJ 4/7-LOE
  ATTN: Library (14)
                                        FORT BELVOIR, VA 22060 (7)
US Army Europe
AEAEN-ODCS/Engr 09403
                                          ATTM: Canadian Liaison Officer
                                          ATTN: British Lisison Officer
  ISAE 09081
                                          ATTW: Australian Liaison Officer
  V Corps
ATTW: DEH
                                          ATTM: French Limison Officer
               (11)
                                          ATTM: German Liaison Officer
  VII Corps
                                          ATTM: Water Resources Support Ctr
   ATTN: DEH (15)
                                          ATTM: Engr Studies Center
  21st Support Command
                                          ATTM: Engr Topographic Lab.
ATTM: ATZA-DTE-SU
    ATTN: DEH (12)
  USA Berlin
                                          ATTN: ATZA-DTE-EN
   ATTN: DEH (11)
                                          ATTM: R&D Command
  USASETAF
    ATTN: DEH (10)
                                        CRREL, ATTN: Library 03755
  Allied Command Europe (ACE)
    ATTN: DEH (3)
                                        WES, ATTN: Library 39180
8th USA, Korea (19)
                                        HQ, XVIII Airborn Corps
                                            and Fort Bragg
USA Japan (USARJ)
  ATTN: AJEN-DEH 96343
ATTN: DEH-Honshu 96343
ATTN: DEH-Okinawa 96331
                                          ATTN: AFZA-FE-EE 28307
                                        Area Engineer, AEDC-Area Office
                                        Arnold Air Force Station, TN 37389
416th Engineer Command 60623
                                        Chanute AFB, IL 61868
  ATTN: Facilities Engineer
                                          3345 CES/DE, Stop 27
US Military Academy 10966
                                        Norton AFB, CA 92409
  ATTN: Facilities Engineer
                                          ATTN: AFRCE-MX/DEE
  ATTM: Dept of Geography &
         Computer Science
                                        AFESC, Tyndall AFB, FL 32403
  ATTM: DSCPER/MAEN-A
                                        NAVFAC
AMMRC. ATTN DRXMR-WE 02172
                                          ATTN: Engineering Command
                                          ATTN: Division Offices (6)
USA ARRCOM 61299
                                          ATTN: Naval Public Works Center (9)
 ATTN: DRCIS-RI-I
ATTN: DRSAR-IS
                                          ATTN: Naval Civil Engr Lab. (3)
                                        ATTN: Library, Code LOSA NCEL 93043
AMC - Dir., Inst., & Servo
  ATTN: DEH (23)
                                        Defense Technical Info. Center 22314
                                          ATTN: DDA
DLA ATTN: DLA-WI 22314
                                        Engr Societies Library, NY 10017
DNA ATTN: NADS 20305
                                        Natl Guard Bureau Inerl. Div 20310
FORSCOM
 FORSCOM Engr. ATTN: AFEN-DEH
ATTN: DEH (23)
                                        US Covt Print Office 22304
                                          Receiving Sect/Depository Copies (2)
                                        US Army Env. Hygiene Agency
 ATTN: HSLO-F 78234
                                         ATTN: HSH8-E 21010
        Facilities Engineer
        Fitzsimons AMC 80240
Walter Reed AMC 20012
                                       National Bureau of Standards 20899
INSCOM - Ch, Insti. Div
ATTN: Facilities Engineer (3)
                                                                          06/86
```

ENA Team Distribution

Missouri River 68101 ATTN: Chief, MRDED-T

South Pacific 94111 ATTN: Chief, SPDED-TG

ATTN: Chief, Engr Div

Pacific Ocean 96858

North Pacific 97208

Southwestern 75202 ATTN: Chief, SWDED-T

60

6th US Army 94129 National Bureau of Standards 20234 Chief of Engineers ATTN: AFKC-EN ATTN: DAEN-ECC-E Office of Noise Abatement 20590 ATTN: DAEN-ECE-B 7th Army Combined Arms Trng. Cntr. 09407 ATTN: DAEN-ECE-I (2) ATTN: AETTM-HRD-EHD ATTN: DAEN-ZCF-B ATTN: DAEN-ECZ-A Armament & Dev. Command 21005 ATTN: DRDAR-BLT ATTN: DAEN-ZCE-D (2) US Army Engineer District US Army Tank Command ATTN: AMCPM-LCV-T 48090 New York 10007 ATTN: Chief, Design Br Philadelphia 19106 ATTN: Chief, NAPEN-E USA ARRADCOM 07801 ATTN: DRDAR-LCA-OK Baltimore 21203 ATTN: Chief, Engr Div AMC 22333 Norfolk 23510 ATTN: DRCPA-E ATTM: Chief, NADEN-D ATTN: DRCIS-A Huntington 25721 ATTN: Chief, ORHED TRADOC Wilmington 28401 Ft. Monroe, VA 23651 ATTN: Chief. SAWEN-D Savannah 31402 Ft. Clayton, Canal Zone 34004 ATTN: Chief, SASAS-L ATTN: DFAE Mobile 36628 ATTN: Chief, SAMEN-D Ft. Detrick, MD 21701 Louisville 40201 ATTN: Chief, Engr Div Ft. Leavenworth, KS 66027 St. Paul 55101 ATTN: ATZLCA-SA ATTN: Chief, ED-D Chicago 60604 ATTN: Chief, NCCPE-PES Ft. McPherson, CA 30330 (2) Rock Island 61201 Ft. Monroe, VA 23651 (6) ATTN: Chief, Engr Div St. Louis 63101 ATTN: Chief, ED-D Omaha 68102 ATTN: Chief, Engr Div Ft. Rucker, AL 36360 (2) Aberdeen Proving Ground, MD 21005 ATTN: DRDAR-BLL ATTN: STEAP-MT-E New Orleans 70160 ATTN: Chief, LMNED-DC Human Engineering Lab. 21005 (2) Little Rock 72203 ATTN: Chief, Engr Div USA-WES 39181 Tulsa 74102 ATTN: Chief, Engr Div Army Environmental Hygiene Agency 21005 Ft. Worth 76102 (3) ATTN: Chief, SWFED-D San Francisco 94105 ATTN: Chief, Engr Div Naval Air Station 92135 Sacramento 95814 NAVFAC 22332 (2) ATTN: Chief, SPKED-D Naval Air Systems Command 20360 Far East 96301 ATTN: Chief, Engr Div US Naval Oceanographic Office 39522 Seattle 98124 ATTN: Chief, EN-DB-ST Walla Walla 99362 ATTN: Chief, Engr Div Alaska 99501 Naval Surface Weapons Center 22485 ATTN: N-43 Naval Undersea Center, Code 401 92152 (2) ATTN: Chief, NPASA-R Bolling AFB, DC 20332 US Army Engineer Division AF/LEEEU New England 02154 ATTN: Chief, NEDED-T Patrick AFB, FL 32925 North Atlantic 10007 ATTN: Chief, NADEN-T ATTN: XRQ Middle East (Rear) 22601 Wright-Patterson AFB, OH 45433 (3) ATTN: Chief, MEDED-T South Atlantic 30303 Building Research Advisory Board 20418 ATTN: Chief, SADEN-TS Huntsville 35807 ATTN: Chief, HNDED-CS ATTN: Chief, HNDED-SR Transportation Research Board 20418 Ohio River 45201 Dept of Housing and Urban Development 20410 ATTN: Chief, Engr Div

Dept of Transportation Library 20590

Federal Aviation Administration 20591

Federal Highway Administration 22201

Illinois EPA 62706 (2)

Region 15

NASA 23365 (2)

ATTN: Office of Secretary USA Logistics Management Center 23801 Airports and Construction Services Dir Ottawa, Ontario, Canada KIA ONB Division of Building Research Ottawa, Ontario, Canada KIA OR6 National Defense HODA Ottawa, Ontario, Canada KIA OK2 Michigan Army National Guard ATTN: Co. B, 38th AVN 104 +48 6-86