

Os elementos químicos

- ✓ Elementos químicos são um conjunto de átomos que possuem o mesmo número atômico e as mesmas propriedades.
- ✓ Cerca de 90 elementos químicos naturais formam tudo que existe no universo;
- ✓ A combinação variada de elementos forma um número gigante de substâncias.

MASSA MÉDIA DE ÁTOMOS DE ELEMENTOS QUÍMICOS EM 1 KG DE TERRA

Elemento químico	Massa média em 1 kg de terra						
Oxigênio	460 g						
Silício	270 g						
Alumínio	82 g						
Ferro	63 g						
Cálcio	50 g						
Potássio	29 g						
Sódio	23 g						
Magnésio	23 g						
Titânio	6,6 g						
Hidrogênio	1,5 g						

A formação dos elementos químicos

			1				
		Linha do temp	o da formaça	ao dos eleme	ntos quimicos		
\rightarrow \rightarrow \rightarrow	→ →	$\rightarrow \rightarrow \rightarrow$	\rightarrow \rightarrow \rightarrow	\rightarrow \rightarrow	$\rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow \rightarrow$	→ →
Tempo				100,000	0.1.111.00	-1.111.2	45110 4
0	1 s	15 s	3 min e 15 s	400 000 anos	2 bilhões de anos	5 bilhões de anos	15 bilhões de anos
Temperatura 10 ³² K	10 ¹⁰ K	10 ¹⁰ K	10 ¹⁰ K	4000 K	20 K	<20 K	2,7 K
Eventos							
partículas	prótons e	núcleos	núcleos de	primeiros	primeiras	primeiras	vida na
subatômicas	nêutrons	de hélio	deutério	átomos	estrelas	galáxias	Terra
~/////////////////////////////////////							

Elementos químicos

Alguns elementos são conhecidos desde a antiguidade.

Ferro

Carbono

Prata

Ouro

Cobre

Johann Dobereiner (1829 – 55 elementos conhecidos) = tríades

Lítio (Li) Sódio (Na) Potássio (K) Cálcio (Ca) Estrôncio (Sr) Bário (Ba) Enxofre (S) Selênio (Se) Telúrio (Te) Cloro (Cℓ) Bromo (Br) Iodo (I)

Chancourtois (1862 – 62 elementos conhecidos) = parafuso telúrico

John Newland (1864 – 63 elementos conhecidos) = lei das oitavas

Dó	Ré	Mi	Fá	Sol	Lá	Si
Н	Li	Ве	В	С	Ν	0
F	Na	Mg	Al	Si	Р	S
Cl	K	Ca	Cr	Ti		

Mendeleev e Meyer (1869 – 63 elementos conehcidos) = tabela organizada em ordem crescente de massa

Linhas na vertical = elementos com as mesmas propriedades.

Mendeleev percebeu que para seguir a lógica era necessário deixar "buracos" na tabela para os elementos desconhecidos.

Propriedade	Previsto por Mendeleev (1871)	Encontrado (1876)
Massa	72	72,3
Densidade	5,5 g/ml	5,47 g/ml
Fórmula do óxido	XO ₂	GeO ₂
Cor	Cinza	Cinza

H																	He
1	-	ı									i		_	L.I		-	4
	Be											В	C	N	U	F	Ne
7	9											11	12	14	16	19	20
Na	Mg											Al	S	P	S	CI	Ar
23	24											27	28	31	32	35	40
K	Са	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39	40	45	48	51	52	55	56	59	59	63	65	70	73	75	79	80	84
Rb	Sr	Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	ln	Sn	Sb	Te		Хe
85,5	88	89	91	93	96	97	101	103	106	108	112	115	119	122	128	127	31
Cs	Ba		Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
133	137		178	181	184	186	190	192	195	197	201	204	207	209	210	210	222
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
223	226		261	262	263	262	265	266	269	272	285	286	289	288	292	117	294

La	Сe	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
139	140	141	144	147	150	152	157	159	162	165	167	169	173	175
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
227	232	231	238	237	239	243	247	247	251	254	257	256	259	260

Moseley (1914) = ordem crescente de número atômico

Períodos

Nº período = nº camadas

Continuação do sexto Período Continuação do sétimo Período

Elementos de transição interna

Famílias ou grupos

LANTANÍDEOS	
ACTINÍDEOS	

Famílias ou grupos

Grupo	Nome	Elementos	Camada de valência	Camada de Valência
1	metais alcalinos	H, Li, Na, K, Rb, Cs e Fr	ns ¹	1 elétron
2	metais alcalinoterrosos	Be, Mg, Ca, Sr, Ba e Ra	ns²	2 elétrons
13	família do boro	B, Al, Ga, In e Tl	ns² np¹	3 elétrons
14	família do carbono	C, Si, Ge, Sn e Pb	ns² np²	4 elétrons
15	família do nitrogênio	N, P, As, Sb e Bi	ns² np³	5 elétrons
16	calcogênios	O, S, Se, Te e Po	ns² np⁴	6 elétrons
17	halogênios	F, Cl, Br, I e At	ns² np ⁵	7 elétrons
18	gases nobres	He, Ne, Ar, Kr, Xe e Rn	ns² np ⁶	8 elétrons

Tarefa

Apresentação em grupo sobre as principais famílias da tabela periódica.

É necessário ter:

- Elementos que pertencem à família;
- Distribuição eletrônica de todos os elementos, destacando a camada de valência de cada um;
- Propriedades gerais da família;
- Imagens de cada um dos elementos;
- Origem do nome da família.

Apresentação de até 15 minutos.

Grupos

Metais alcalinos:

Metais alcalino terrosos:

Família do boro:

Família do carbono:

Família do nitrogênio:

Calcogênios:

Halogênios:

Gases nobres:

Blocos

1																	18
H hidrogénio	2											13	14	15	16	17	He holio
Li lilio	Be berilio 8,8122											B boro	C carbone	N nitrogénio 14,107	O exigênio	F	Ne neônio 21.100
Na sodio zzan	Mg magnesio	3	4	5	6	7	8	9	10	11	12	Al Al aluminio 24.862	Si silicio 26,365	P fósforo stare	S enxofre 12.00	CI cloro 35,45	Ar argônio 38,948
K potás 31,86	Ca Lálcio	SC escindio	Ti titánio ar,ser	V Vanidio MM2	Cr crómio tt.me	Mn manganès sesse	Fe ferro	Co cobalto stato	Ni niquel stats	Cu cobre statech	Zn zinco st.seps	Ga gallo ea.723	Ge germânio 11,630(8)	AS arstr	Se Minio strup	Br bromo 79.864	Kr criptônio 41,749(2)
Rb rubidio	Sr estrôncio	Y tirio III.NN	Zr zirośnio H.ZI42i	Nb nióbio scam	MO molibdinio st.ss	TC becover	tu ténio nango	Rh ródio	Pd paladio	Ag prata serar	Cd cadmio	In India	Sn estanho	S. antimónio	Te tellirio	63 I lodo 12LM	Xe xendolo
CS césio	Ba bario	67 a 21	72 Hf hidnio	Ta tantalo	74 W tungstinio	Re rênio	OS ósmio	77 Ir iridio	Pt Pt platina 100.00	Au ouro	Hg mercurio man	81 TI 1360 204.38	Pb chumbo	Bi bismuto	PO polónio prej	At astato gns	Rn radórsio
Fr frância poq	Ra radio (200)	89 a 103	Rf rutherfordio psij	165 Db dúbnio paq	Sg seaborgio	Bh bahrio pro	HS hassio	Mt meitnário pro	DS darmatiditio	Rg roentgánio	Cn copernicio	Nh nhónio paq	FI FI Serovio	MC moscovio panj	116 LV Evermório paq	TS tennesso	Og oganessöni prej
			La luminio	Ce	Pr Pr	Nd neodimio	Pm promicio	Sm samario	Eu murapio	64 Calledo	Tb tirbio	Dy depresse	67 Ho hômio	Er irbis	Tm	Yb itserbio	Lu Lu
			AC actinio	80 Th torio	91 Pa protectiolo	92 U uránio zsus	93 Np neptunio	94 Pu plutónio	95 Am americio	96 Cm cúrio (H1)	97 Bk berquello	98 Cf catifornio	99 ES sinstinio	100 Fm fermio	101 Md mendelévio	102 No	103 Lr Isurêncio

1							Не	Gas	es								18
Н	2			Met	ais		С	Sóli	dos			13	14	15	16	17	Не
Li	Ве			Ame	etais		Hg	Líqui	idos			В	С	N	0	F	Ne
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	Р	S	CI	Ar
K	Ca	Sc	Ti	٧	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ва	57- 71	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	89- 103	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og
		La	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

Metais

Ametais

São sólidos a TA (exceção Hg)

FINE DODGE STATE OF THE STATE O

Altas temperaturas de fusão e ebulição Sólidos, líquidos ou gasosos a TA

Baixas temperaturas de fusão e ebulição

São maleáveis, dúcteis e brilhosos Opacos e se fragmentam facilmente.

Bons condutores de eletricidade e calor

Maus condutores de eletricidade e calor

Hidrogênio

Tem comportamento parecido com os ametais

Se combina com metais e ametais

Não pertence a família 1

É um gás inflamável

Gases nobres

São gases

Tem alta estabilidade

Dificilmente se combinam com outros elementos

Usados em painéis **luminosos**

Localização dos elementos bloco s e p

₁₁Na - 1s² 2s² 2p⁶ 3s¹ \rightarrow família 1 ou 1A e 3º período.

₁₇Cl - $1s^2 2s^2 2p^6 3s^2 3p^5 \rightarrow família 17 ou 7A 3º período.$

Localização dos elementos bloco d

 $_{23}$ V - 1s² 2s² 2p6 3s² 3p6 4s² 3d³ → família 5 e 4º período.

 $_{47}$ Ag - 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d⁹ \rightarrow família 11 e 5º período.

Localização dos elementos bloco f

 $_{58}$ Ce - 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹0 4p⁶ 5s² 4d¹0 5p⁶ 6s² 4f² → família 3 e 6º período.

 $_{63}$ Eu - 1s² 2s² 2p6 3s² 3p6 4s² 3d¹0 4p6 5s² 4d¹0 5p6 6s² 4f7 → família 3 e 6º período.

Localização dos elementos

Bloco s e p

 Nº de elétrons de valência = nº da família

Bloco d

Nº de elétrons d +
2 = nº da família

Bloco f

Família 3 sempre

Identifique no gráfico abaixo os elementos químicos que estão em um mesmo período da tabela periódica e os que estão em um mesmo grupo. Que relação podemos estabelecer entre a posição na tabela e a variação de raio atômico? Tente justificá-las.

Raio atômico (em pm) *versus* número atômico (z) para os primeiros elementos químicos (com exceção dos gases nobres)

Propriedades Periódicas

Raio Atômico num grupo

Propriedades Periódicas

Raio Atômico num período

Na
$$Z = 11$$

CI
$$Z = 17$$

Propriedades Periódicas

Raio Atômico

Raio Iônico

₁₁Na - $1s^2 2s^2 2p^6 3s^1 \rightarrow Na^+ - 1s^2 2s^2 2p^6$

Cátion < neutro < ânion

$$_{8}$$
O - 1s² 2s² 2p⁴ \rightarrow O²⁻ - 1s² 2s² 2p⁶

Energia ou Potencial de Ionização

Consiste na energia gasta na retirada de um ou mais elétrons de um átomo no estado gasoso.

$$A \rightarrow A^+ + 1e^-$$

Energia ou Potencial de Ionização

Energia de Ionização (EI)	Al (kJ/mol)	Si (kJ/mol)
1ª	577	786
2ª	1 817	1 577
3 <u>a</u>	2 745	3 232
4 ª	11 577	4 356
5 <u>a</u>	14 842	16 091
6 <u>a</u>	18 379	19 805

Afinidade eletrônica ou eletroafinidade

É a energia liberada por um átomo no estado gasoso quando ele recebe um elétron.

$$A + 1e^{-} \rightarrow A^{-}$$

Afinidade

Eletronegatividade

Define a força com que o núcleo de um átomo atrai seus elétrons e elétrons de outros átomos em uma ligação química.

Menor eletronegatividade

Eletropositividade ou caráter metálico

É a tendência de um átomo a doar elétrons.

Maior eletropositividade

Densidade

$$d=\frac{m}{v}$$

