

오박사: 그래, 발표 준비는 다 되었는가?

그럼 바로 시작하도록 하지

오박사: 포켓몬은 1996년 일본에서 처음 출시된 비디오 게임 시리즈로, 다양한 생물체를 포획하고 훈련하여 배틀하는 게임으로 시작하여 애니메이션, 카드 게임 등으로 확장된 글로벌 프랜차이즈라네

오박사: 음, 현재까지 9세대까지 도달했으며,

총 1051종의 포켓몬이 발견되었다고 하네!

정말 놀라운 숫자이지! 포켓몬의 세계는 점점 더 확장되고 있구나!`

오박사: 魯래左윤 포켓몬 도감을 만들려고 하는데…….

사라조: 우리의 이름은 사라조

자, 그럼 포켓몬 도감을 만들어 볼까?

HP:

1.주제 선정

포켓몬 공식 사이트를 활용하여 이미지를 학습한 후 인터넷 상의 포켓몬을 알아보고자 함

11번가

0001 이상해씨 전 세대 신상품 ...

[1. 주제 선정

띠부띠부실 공식 사이트에서 자료 수집

2. 관동 지방

1. 띄부띄부실 - 모델 전처리

- 좌우 반전
- 상하 반전
- 회전
- 노이즈 처리
- 음영 처리
- 사이즈: 100X100

268종 캐릭터 16,348장 생성

1. 띄부띄부실 - 데이터 셋 준비

pixel.29998	pixel.29999	target
255	255	101
255	255	101
255	255	101
255	255	101
255	255	101

훈련 셋과 테스트 셋 분리

X_train => 2D (13078, 30000) / X_test => 2D, (3270, 30000)
y_train => 1D (13078,), / y_test => 1D, (3270,)

1. 띄부띄부실 - RandomForest

rf_model.pkl - 모델 성능 -

정확도: 0.9498

정밀도: 0.9548

재현율: 0.9498

F1 스코어: 0.9502

오차 (MSE): 3590081.2902

RMS: 1894.7510

띠부띠부 씰 분류

띠부띠부씰 번호 [001.01.]

예상 도감번호 [[101]]

HP:

3. 포켓몬 분류 모델 - 4세대

2. 개요

포켓몬 4세대 분류 모델 (신오지방)				
학습 방법	지도 학습			
역급 경급	분류			
사용 알고리즘	랜덤 포레스트			

2. 전처리 1

전처리를 흑백으로 했을때

[('XGBClassifier', 1.0, 0.688)]

정확도 정밀도 재정	월 F1 스코어 오차
------------	-------------

Train 1.0 1.0 1.0 1.0 0.343

정확도 정밀도 재현율 F1 스코어 오차

Test 0.559441 0.59805 0.512216 0.510328 2.903

2. 전처리 3

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 44840 entries, 0 to 44839
Columns: 14701 entries, 0 to 14700

dtypes: int64(14701)
memory usage: 4.9 GB

2. 전처리 4

```
# [2-1] 피쳐 타겟 분리
from sklearn.preprocessing import LabelEncoder

featureDF = pokemon_df[pokemon_df.columns[1:]] # 피쳐 : 2차원
targetSR = pokemon_df[pokemon_df.columns[0]] # 타겟 : 1차원
```

```
# [2-2] 피쳐 전처리 : 데이터 타입 확인, 값의 범위 맞추기

# 데이터 타입 변경 int64 -> uint8
featureDF = featureDF.astype('uint8')
featureDF.values

# 정규화
# 0 ~ 255 -> 0.0 ~ 1.0 정규화 : 효율 증대
featureDF = featureDF/255. # 정규화 과정에서 데이터프레임이나 배열의 모든 값이 동일한 타입으로 처리되도록 보장
featureDF
```



```
# [2-3] 타겟 전처리 : str/object 타입의 경우 수치화 인코딩
lencoder = LabelEncoder()
lencoder.fit(targetSR)
targetSR = lencoder.transform(targetSR)
# 확인
print(lencoder.classes_)
```


2. 학습 결과

	정확도	정밀도	재현율	F1 스코어	오차
Train	1.0	1.0	1.0	1.0	0.272

정확도 정밀도 재현율 F1 스코어 오차

과대적합

Test 0.828613 0.835863 0.828613 0.829248 1.713

2. 예측


```
predict_CSV = './predict.csv'
predict_df = pd.read_csv(predict_CSV, header=None)
featureDF2 = predict_df[predict_df.columns[1:]] # 피쳐 : 2차원
targetSR2 = predict_df[predict_df.columns[0]] # 타겟 : 1차원
# 데이터 타입 변경 int64 -> uint8
featureDF2 = featureDF2.astype('uint8')
featureDF2.values
# 정규화
# 0 ~ 255 -> 0.0 ~ 1.0 정규화 : 효율 증대
featureDF2 = featureDF2/255.
new image = featureDF2
prediction = model.predict(new_image)
print(prediction)
```


HF:

4. 뮤 모델

3. 뮤 모델

전처리과정 띠부띠부씰 데이터 268장 리사이즈, 돌리고, 반전 약 2500장

전처리과정 띠부띠부씰 데이터 268장 리사이즈, 돌리고, 반전 약 2500장

1/4	1.00	1.00	1.00	U

accuracy			0.99	650
macro avg	0.99	0.99	0.99	650
weighted avg	0.99	0.99	0.99	650

Output is truncated. View as a scrollable element or open in a text el

	train_score	test_score	diff	train_loss	test_loss
rf	1.0	0.986154	0.013846	0.0	0.013846

000102.png

전처리과정 [[[부[[부발]]] 데이터 268장 리사이즈, 돌리고, 반전 약 2500장

전처리과정 띠부띠부씰 데이터 268장 리사이즈, 돌리고, 반전 약 2500장

전처리과정 띠부띠부씰 데이터 268장 리사이즈, 돌리고, 비틀고, 음영처리, 반전 약 18000장

	train_score	test_score	diff	train_loss	test_loss
rf	0.999767	0.609375	0.390392	0.000233	0.390625

전처리과정 띠부띠부씰 데이터 268장 리사이즈, 돌리고, 비틀고, 음영처리, 반전 약 18000장

	train_score	test_score	diff	train_loss	test_loss
rf	0.999767	0.609375	0.390392	0.000233	0.390625

012101.png

전처리과정 띠부띠부씰 데이터 268장 리사이즈, 돌리고, 비틀고, 음영처리, 반전 약 18000장

HP:

5. 알로라 지방 (7세대)

4. 알로라 지방

미국의 하와이를 모티브로 제작된 포켓몬 7세대의 메인 무대

4. 모델링 – 최근접 이웃

최근접 이웃 분석 k model = KNeighborsClassifier() k model.fit(X train,y train)

✓ 0.8s

KNeighborsClassifier()

acc_score: 0.5904030710172745

pre_score: 0.8111441439726497

rc_score: 0.5901205217035691

F1 score: 0.6118012027883518

loss: 0.898039758866473

acc_score: 0.3254029163468918

pre_score: 0.5387312072601929

rc_score: 0.33160743023339445

F1 score: 0.32360059605622116

loss: 0.898039758866473

좋지 못한 성적을 보여줌

4. 모델링 – 서포트 벡터 머신

```
# 서포트 벡터 머신
s_model = SVC()
s_model.fit(X_train,y_train)
```

```
▼ SVC ① ②
SVC()
```


acc_score: 0.5760076775431862

pre_score: 0.8348289755279066

rc_score: 0.5715477460082814

F1_score: 0.6011597735027565

loss: 0.898039758866473

acc_score: 0.3561013046815042

pre_score: 0.5313146055916742

rc_score: 0.342448450480095

F1_score: 0.3419262846610268

loss: 0.898039758866473

좋지 못한 성적을 보여줌

4. 모델링 – 랜덤 포레스트 모델

```
# 랜덤 포레스트
r_model = RandomForestClassifier()

r_model.fit(X_train,y_train)

> 56.7s
```


pre_score: 1.0

rc_score: 1.0

F1_score: 1.0

loss: 0.898039758866473

acc_score: 0.9293937068303914

pre_score: 0.9478981116088326

rc_score: 0.9267384336677815

F1_score: 0.9307043564466877

loss: 0.898039758866473

과대적합 존재하나 가장 고성능

4. 예측 – 랜덤 포레스트 모델

실제 학습에 사용된 이미지

모델에 넣은 이미지


```
new_image = featureDF2

prediction = r_model.predict(new_image)

print(prediction)
```

[19]

홍길동: 야호, 모든 발표를 다 끝냈다!

자, 그럼 이제 실전이다

THE END

발표를 경청해주셔서 감사합니다!

질문이 있으시면 말씀해주세요!

