#### Pannon Egyetem Villamosmérnöki és Információs Tanszék



# Számítógép Architektúrák II. (MIVIB344ZV)

2. előadás: Számrendszerek,

Nem-numerikus információ ábrázolása

Előadó: Dr. Vörösházi Zsolt

voroshazi.zsolt@mik.uni-pannon.hu



#### Jegyzetek, segédanyagok:

- Könyvfejezetek:
  - □ <a href="http://www.virt.uni-pannon.hu">http://www.virt.uni-pannon.hu</a> → Oktatás → Tantárgyak → Számítógép Architektúrák II.
  - □ (chapter02.pdf)
- Fóliák, óravázlatok .ppt (.pdf)
- Feltöltésük folyamatosan

#### M

#### Információ ábrázolás:

- A) Számrendszerek (numerikus információ):
  - □ I.) Egész típusú:
    - előjel nélküli,
    - előjeles:
      - □ 1-es komplemens,
      - □ 2-es komplemens számrendszerek.
  - □ II.) Fix-pontos,
  - □ III.) Lebegő-pontos (IBM-32, DEC-32, IEEE-32),
    - Excess kód (exponens kódolására)
- B) Nem-numerikus információ kódolása
- C) Hiba-detektálás, és javítás (Hamming kód)
  - SEC-DED

# A) Számrendszerek

# Endianitás (endianness)

- A számítástechnikában, az endianitás ("bit/byte-sorrend" a jó fordítása) az a tulajdonság, ami bizonyos adatok többnyire kisebb adategységek egymást követő sorozata tárolási és/vagy továbbítási sorrendjéről ad leírást (pl. két protokoll, vagy busz kommunikációja).
- Ez a tulajdonság döntő fontosságú az értékeknek a számítógép memóriájában <u>bit/byte-onként</u> való tárolása (egy memória címhez relatívan), ill. továbbítása esetében
- Két lehetséges sorrend:
  - □ Big-Endian (BE) formátum
  - □ Little-Endian (LE) formátum



Háttér: Az eredeti angol kifejezés az endianness (1980) egy utalás arra a háborúra, amely a két szembenálló csoport között zajlik, akik közül az egyik szerint a lágytojás nagyobb/vastagabb végét (big-endian), míg a másik csoport szerint a lágytojás kisebb végét (little-endian) kell feltörni. Erről Swift ír a Gulliver Kalandos Utazásai című könyvében ©

# "Kicsi a végén" - Little-endian (LE)

Példa: 32-bites "3A 4B 1C 2D" értéket a 0x100... címtől növekvő módon, **4x1byte**-os tárolási egységekben tároljuk:

0x100 0x101 0x102 0x103 ...

Ekkor a kevésbé jellemző ("legkisebb") byte (az angol Least Significant Byte rövidítéséből LSB néven ismert) az első, ez a 2D, tehát a kis vége kerül "előre", azaz a legkisebb címen van tárolva (0x100):

| 0x103 | 0x102 | 0x101     | <b>0x100</b> <i>me</i> | móriacímek | [31:0] |
|-------|-------|-----------|------------------------|------------|--------|
| 3A    | 4B    | <b>1C</b> | 2D                     |            |        |
| MSB   |       |           | LSB ada                | tegységek  |        |

- LE = Hagyományos, általánosan használt formátum: ha mást nem mondunk, nem kötik ki külön, ezt feltételezzük!
- pl. Intel, AMD, illetve ARM processzorok stb.

# "Nagy a végén" - Big-endian (BE)

Példa: 32-bites értéket "3A 4B 1C 2D", a 0x100 címtől kezdve tároljuk a memóriában, **4x1 byte-os** tárolási egységekben:

1 byte-onként növekvő címekkel rendelkezik

```
0x100 0x101 0x102 0x103 ... "2D 1C 4B 3A"...
```

| 0x103 | 0x102     | 0x101 | 0x100       | [0:31] |
|-------|-----------|-------|-------------|--------|
| 2D    | <b>1C</b> | 4B    | 3A          |        |
| LSB   |           | -     | MSB adategy | ségek  |

- Ekkor a "legjellemzőbb" byte "Most Significant Byte" (MSB), ami itt a "3A" a memóriában az legalacsonyabb címen van tárolva (0x100), míg a következő "jellemző byte" (4B) az egyel nagyobb címen van tárolva, és így tovább.
- Bit/byte-reversed format! (fordított formátum)
- PI: speciális, beágyazott rendszerek processzorai, pl. MCU mikrovezérlők, programozható FPGA-k (MicroBlaze, PowerPC), stb<sup>7</sup>

#### I.) Egész típusú számrendszerek

Bináris (*p=2*) számrendszer: "1" / "0" (I / H, T / F, ...)

Átalános szabály:

N biten → 2<sup>N</sup> lehetséges érték ábrázolható!

- Példa: N = 2 byte-os (16 bites), vagy N = 4 byte-os (32-bites) bináris, pozitív, egész szám esetén:
  - $\Box$  2<sup>16</sup>-1 = 65535 vagy
  - $\square$  2<sup>32</sup>-1 = 4 294 967 295 a maximálisan ábrázolható érték.
- Negatív alak = Előjel kezelése? legegyszerűbb mód, ha a szám legfelső helyiértékű (MSB) bitjét *előjelbitnek* (S) tekintjük: "+": 0, "–": 1 (de nem feltétlenül ez az általános!)
  - □ Ennek oka: célszerű olyan ábrázolási módot alkalmazni, ahol a kivonás (-) művelete → összeadással (+) helyettesíthető.

S



## a.) előjel nélküli egész:

Unsigned integer:

$$V_{\text{UNSIGNED INTEGER}} = \sum_{i=0}^{N-1} b_i \times 2^i$$

- ahol b<sub>i</sub> az i-edik pozícióban lévő '0' vagy '1'
- Reprezentálható értékek határa: 0-tól 2<sup>N</sup>-1 -ig
- Helyiértékes rendszer
- Negatív számok ábrázolása nem lehetséges!
- PI: (Legyen N:=6, LE, unsigned int)

$$10\ 1101_2 \Rightarrow 1x2^5 + 0x2^4 + 1x2^3 + 1x2^2 + 0x2^1 + 1x2^0 = 45_{10}$$

#### M

## b.) 1's komplemens rendszer

- V értékű, N bites rendszer: 2N-1-V
  - "0" lesz ott ahol "1"-es volt, "1"-es lesz ott ahol "0" volt (mivel egy szám negatív alakját, bitjeinek kiegészítésével kapjuk meg).
- csupán minden bitjét negálni, (gyors műveletet)
- Értékhatár: 2<sup>(N-1)</sup>−1 −től −(2(N-1)−1) −ig terjed,
- Nem helyiértékes rendszer
  - kétféleképpen is lehet ábrázolni a zérust!! (-0 / +0, ellenőrzés szükséges)

#### Példa: 1's komplemens

Példa: N:=6, LE

$$V = 01 \ 0010_{2} = 18_{10}$$

a.) Adja meg a fenti V szám1's komplemensét!

$$V(1's) = 10 1101_{2}$$

b.) Milyen decimális, negatív, egész értéket ábrázol a fenti bináris 1's komplemens szám?

$$V(1's)= 10 11012 = ?= -1810$$

| V érték           | V(Unsigned int) | V(1's comp) |  |  |
|-------------------|-----------------|-------------|--|--|
| 01 1111           | 31              | 31          |  |  |
| 01 1110           | 30              | 30          |  |  |
|                   |                 | •••         |  |  |
| 010 010           | 18              | 18          |  |  |
|                   |                 |             |  |  |
| •••               | •••             | •••         |  |  |
| 00 0010           | 2               | 2           |  |  |
| 00 0001           | 1               | 1           |  |  |
| 00 0000           | 0               | +0          |  |  |
| 11 1111           | 63              | -0          |  |  |
| 11 1110           | 62              | -1          |  |  |
| 11 1101           | 61              | -2          |  |  |
| •••               | •••             | •••         |  |  |
| <b>→ 1</b> 0 1101 | 45              | (-18)       |  |  |
| •••               |                 |             |  |  |
| 100001            | 33              | -30         |  |  |
| 100000            | 32              | -31         |  |  |

#### c.) 2's komplemens rendszer

V jelöli a szám értékét, N bites, LE rendszer:

$$V_{2'S \text{ COMPLEMENT}} = -b_{N-1} \times 2^{N-1} + \sum_{i=0}^{N-2} b_i \times 2^i$$

- Értékhatár: −2 (N-1) −től ... +2 (N-1) −1 −ig
  - □ ha MSB='1', a szám negatív
  - helyiértékes rendszer!

| Bit Pattern       | Value      | Note                                          |
|-------------------|------------|-----------------------------------------------|
| <b>01</b> 1111111 | 127        | Largest representable value.                  |
| 01111110          | 126        | 3 1                                           |
| 01111101          | 125        |                                               |
|                   | •••        |                                               |
|                   | ***        |                                               |
| 00000010          | 2          | Note that leading zero indicates              |
| 00000001          | 1          | positive number.                              |
| 00000000          | 0          | Unique representation of zero.                |
| 11111111          | <b>-</b> l | Minus one is always all ones.                 |
| 11111110          | <b>-</b> 2 | Note that leading one indicates               |
| 11111101          | <b>-</b> 3 | negative number.                              |
|                   | •••        |                                               |
|                   | •••        |                                               |
| 10000010          | -126       |                                               |
| 10000001          | -127       |                                               |
| 10000000          | -128       | Smallest (most negative) representable value. |
| 10000000          | -128       | Smallest (most negative) representable val    |

### М

## Példa: 2's komplemens

Legyen előjeles – 2's komplemens rendszer,

N:=6, LE

# Milyen decimális, negatív, egész értéket ábrázol az alábbi bináris 2's komplemens szám?

V(2's) = 10 1101<sub>2</sub> = ?

$$-1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 =$$
  
=  $-32 + 8 + 4 + 1 = -19_{10}$ 

További számítási módszerek:

\* azt jelöli, amikor az adott helyiértéken '1'-et kell kivonni még az Xi értékéből (borrow from Xi)



#### II.) Fix-pontos számrendszerek

MSB = N-1

N-p

- Műveletek:
  - +, -: mint egész számrendszereknél
  - \*, / : vizsgálni kell a tizedespont helyét
- V jelöli az előjeles, bináris, fixpontos szám értékét (LE):

$$V_{\text{FIXEDPOINT}} = -b_{N-1} \times 2^{N-p-1} + \sum_{i=0}^{N-2} b_i \times 2^{i-p}$$

- Paraméterek:
  - □ N: fixpontos szám hossza (egész + törtrész együttesen)
  - p: radix (tizedes) pont helye, törtrész hossza
  - □ *differencia*,  $\Delta r = 2^{-p}$  (számrendszer finomsága, azaz két szomszédos szám távolsága)
    - $Ha p=0 \rightarrow \Delta r=1 \rightarrow eg\acute{e}sz sz\acute{a}mrendszer$  pl: -1, 0, 1, 2, 3, ...
    - $Ha p=1 \rightarrow \Delta r=1/2 \rightarrow fixpontos számrendszer pl: -1/2, 0, 1/2, 1, 3/2, 2, ...$
    - Ha  $p=2 \rightarrow \Delta r=1/4 \rightarrow$  fixpontos számrendszer pl: -1/4, 0, 1/4, 1/2, 3/4, 1, ...

0 = LSB

#### М

### Példa: Fixpontos rendszer

Legyen egy N:=16 bites, LE, bináris, 2's komp. fixpontos rdsz. ahol p:=8.

#### Kérdések:

- Ábrázoljuk az N, p paramétereknek megfelelő számformátumot
- V(legkisebb pozitív)=?
- V(legnagyobb pozitív)=?
- V(legkisebb negatív)=? //"leg-negatívabb"
- V(legnagyobb negatív)=? //"legkevésbé negatív"
- V(zéró),
- $\Delta r = ?$

Minden paramétert számoljunk ki, és ahol lehet decimális értékben / hatványalakban is megadva!

## Megoldás: Fixpontos rendszer

Számformátum:



- Differencia  $\Delta r = 2^{-8} = 1/256 = (0,390625*10^{-2})$
- V(zero)=

- $\mathbf{0}$ 0000000.00000000 = 0.0
- V(legkisebb poz)=  $\Delta r = (0,390625*10^{-2})$
- $00000000.0000001 = 2^{-8} = 1/256 =$

- $V(legkisebb negatív) = 10000000.00000000 = -2^7 = -128$
- V(legnagyobb negatív) =  $\mathbf{1}$ 11111111111111 =  $-2^{-8}$  = -1/256 =  $= -\Delta r = (-0.390625 \times 10^{-2})$

#### III.) Lebegőpontos számrendszerek

- Nagyobb pontosság vs. több paraméter tárolása → nehezebb számolni
- 7 különböző paraméter: a számrendszer alapja, előjele és nagysága, a mantissza alapja, előjele és hosszúsága, ill. a kitevő alapja.
- Egyszerű matematikai jelölés:

(előjel) Mantissza × Alap<sup>Kitevő</sup>

- Fixpontosnál nagyságrendekkel kisebb, vagy nagyobb számok ábrázolására is lehetőség van:
  - PI: Avogadro-szám: 6.022\*10^23
  - PI: proton tömege 1.673\*10^-24 g
  - □ Normalizált lebegőpontos rendszerek: pl. DEC-32, IBM-32, IEEE-32
    - 32-bites, vagy egyszeres pontosságú float (C) vagy
    - 64-bites, vagy dupla pontosságú double (C)

#### M.

## Normalizálás (mantissza)

Példa: adott decimális (r<sub>b</sub> = 10-es) alapú lebegőpontos szám **normalizálása** esetén:

■ 32 
$$768_{10} = 0.32768 \times 10^5 =$$
 $3.2768 \times 10^4 = 32.768 \times 10^3 =$ 
 $327.68 \times 10^2 = 3267.8 \times 10^1$ 

(mindegyik érvényes alak) DE

 $\blacksquare$  [ $\frac{1}{r_h}$ , 1[ közé <u>normalizált</u> alak:

 $0.32768 \times 10^{5}$ 

Mantissza igazítása ↔ exponens változása!

# Lebegőpontos rendszer (FPN) jellemző paraméterei

- lacksquare Számrendszer / kitevő alapja: lacksquare
- Mantissza értéke:  $V_M = \sum_{i=0}^{N-1} d_i \times r_b^{i-p}$ 
  - □ Maximális:  $V_{M_{max}} = 0.d_{m}d_{m}d_{m}... = (1 r_{b}^{-m})$
  - $\square$  Minimális:  $V_{M_{min}} = 0.100 .. = 1/r_b$ 
    - Ahol d<sub>m</sub> a számjegyek
  - □ Radix pont helye: p
    - (a p helye az exponens értékével összefüggésben változik!)
  - □ Mantissza bitjeinek száma: m
- Exponens értéke (max / min): V<sub>E</sub> V<sub>Emax</sub> V<sub>Emax</sub> V<sub>Emax</sub>
- Lebegőpontos szám értéke:  $V_{FPN} = (-1)^{SIGN} V_M \times r_b^{V_E}$



#### Excess-kód

#### Miért használják az Excess "kódolást"?

- Lebegőpontos számok kitevőjét (exponens-ét) tárolják / kódolják e módszerrel. Cél: a kitevő NE legyen negatív, ezért eltolással oldják meg, hogy a negatív kitevőhöz egy pozitív számot adnak hozzá.
- Megjegyzés: egy lebegőpontos szám előjelbitje, a mantissza előjelét, és nem pedig az exponens előjelét tárolja!
  - □ V: az exponens valódi értéke, (lehet pozitív, negatív)
  - □ E: az excess (offset/eltolás értéke)
  - □ S: a reprezentálni kívánt érték, azaz a kitevő kódolt értéke, melyet eltárolunk (ez csak pozitív lehet)
  - $\square$  S = V + E

# Lebegőpontos számrendszerek

- **DEC-32:**  $r_b=2$ ,  $r_e=2$ , m=24 (nincs HB), p=24 (m=p), e=8, az exponenst Excess-128 kódolással tárolja. Normalizálás:  $\left[\frac{1}{r_b}, 1\right[$
- IBM-32:  $r_b=16$ ,  $r_e=2$ , m=p=6 (nincs HB), e=7, az exponenst Excess-64 kódolással tárolja. Normalizálás:  $\left[\frac{1}{r_b}\right]$ , 1[
- IEEE-32:  $r_b$ =2,  $r_e$ =2, m=24, de p=23! (HB='1'), e=8, az exponenst Excess-127 kódolással tárolja. Normalizálás: [HB,  $r_b$ [ = [1,2[

#### м

#### IEEE 754-1985 számformátum

- Nemzetközileg elfogadott szabvány a bináris lebegőpontos számok tárolására, amely tartalmazza:
  - $\square$  negatív zérust is:  $-0 = 1_{000..0000_{00...0000}$  (két zérus: +0)
  - □ normalizálatlan (denormált) számok (Hidden-Bit = 0)
  - □ NaN: nem szám (pl.  $\frac{\pm 0}{\pm 0}$  = NaN; vagy  $\pm 0 \times \pm \infty$  = NaN



Sign-magnitude format ("előjel-hossz" formátum): az előjel (sign) külön biten van el tárolva (MSB), az exponens kódolt (excess-el "eltolt"), ill. a törtrész (mantissza) következik végül. Fontos a sorrendjük!

# IEEE-32 bites normalizált lebegőpontos rendszer

- $V_{E \text{ [min,max]}} = [-126, 127] \rightarrow [1, 254]$  az Excess127-el
  - eltolt exponens tartomány





- □ V<sub>E</sub> = 0 értékénél (zérus ábrázolása)
- □ V<sub>E</sub> = [255] értékénél lehetőség van bizonyos információk tárolására

$$(+\infty) + (+7) = (+\infty)$$
  
 $(+\infty) \times (-2) = (-\infty)$   
 $(+\infty) \times 0 = \text{NaN}$   
 $0 / 0 = \text{NaN}$   
 $\text{Sqrt}(-1) = \text{NaN}$ 

| V <sub>E</sub> [255] | S<br>(előjel) | Ábrázolás<br>jelentése |
|----------------------|---------------|------------------------|
| ≠ 0                  | X             | Nem egy szám<br>(NaN)  |
| 0                    | 0             | +∞                     |
| 0                    | 1             | -∞                     |

# Különböző pontosságú **IEEE** lebegőpontos rendszerek

| Típus IEEE       | Sign<br>(s) | Exponens<br>(e) | Excess-<br>kód (Exc) | Mantissza<br>(p < m) | Teljes<br>szóhossz |  |
|------------------|-------------|-----------------|----------------------|----------------------|--------------------|--|
| Half (IEEE 754r) | 1           | 5               | 15                   | 10                   | 16                 |  |
| Single           | 1           | 8               | 127                  | 23                   | 32                 |  |
| Double           | 1           | 11              | 1023                 | 52                   | 64                 |  |
| Quad             | 1           | 15              | 16383                | 112                  | 128                |  |



#### Példa: DEC-32

Ábrázoljuk DEC-32 rendszerben a következő decimális számot: **-12.625**<sub>10</sub> =?

DEC-32 paraméterei:  $r_b=2$ ,  $r_e=2$ , m=p=24, (nincs HB), e=8, Excess-128



#### Példa: IBM-32

Ábrázoljuk IBM-32 rendszerben a következő decimális számot: **-12.625**<sub>10</sub> =?

IBM-32 paraméterei:  $r_b=16$ ,  $r_e=2$ , (m=p=6), (nincs HB), e=7, Excess-64

```
-12.625<sub>10</sub> = C.A<sub>16</sub> = (normalizálás [\frac{1}{r_b}, 1[) \Rightarrow 0.CA_{16} \times 16^{1}]

12=C<sub>16</sub>, 0.625=\frac{10}{16}= \frac{A}{16}=0.A<sub>16</sub>

Kitevő: \frac{1}{10} \Rightarrow \frac{1}{2} + Exc-64 = 1100 0000 = 100 00001

SI PROPERTY MARCHANISTA (A COMPANIA DE LA COMPANIA DEL COMPANIA DE LA COMPANIA DE LA COMPANIA DEL COMPAN
```



#### Példa: IEEE-32

Ábrázoljuk IEEE-32 rendszerben a következő decimális számot:  $-12.625_{10} = ?$ 

IEEE-32 paraméterei:  $r_b=2$ ,  $r_e=2$ , (m=24>p=23), (HB=1!), e=8, Excess-127

# Lebegőpontos rendszer dinamika tartománya



A lebegőpontos számábrázolás A és B számtartományt tudja (részben) ábrázolni.

- Ha  $x < -N_{max}$  vagy  $x > N_{max}$ , akkor
  - túlcsordulásról,
- Ha -N<sub>min</sub> < x < N<sub>min</sub> , akkor alulcsordulásról beszélünk, és ekkor x nem ábrázolható.
- Az ilyen esetek kezelése a programozó feladata.



# Lebegőpontos számrendszerek összehasonlítása (ha FPN előjele pozitív):



# B) Nem-numerikus információ kódolása



#### Nem-numerikus információk

- Szöveges,
- Logikai (Boolean) információt,
- Grafikus szimbólumokat,
- és a címeket, vezérlési karaktereket értjük alattuk



#### Szöveges információ

- Minimális: 14 karakterből álló halmazban: számjegy (0-9), tizedes pont, pozitív ill. negatív jel, és üres karakter.
- + ábécé (A-Z), a központozás, címkék és a formátumvezérlő karakterek (mint pl. vessző, tabulátor, (CR: Carriage Return) kocsi-vissza, soremelés (LF:Line Feed), lapemelés (FF: From Feed), zárójel)
- Így elemek száma 46: 6 biten ábrázolható  $\lceil \log_2 46 \rceil = 6$  bit
- De 7 biten tárolva már kisbetűs, mind pedig a nagybetűs karaktereket is magába foglalja

#### M

## Szöveges információ kódolás

- BCD (Binary Coded Decimal): 6-biten
  - nagybetűk, számok, és speciális karakterek
- EBCDIC (Extended Binary Coded Decimal Interchange Code): 8-biten (A. Függelék)
  - + kisbetűs karaktereket és kiegészítő-információkat
  - 256 értékből nincs mindegyik kihasználva
  - Továbbá I és R betűknél szakadás van!
- ASCII (American Standard Code for Information Interchange): (A függelék) alap 7-biten / extended 8-biten
- UTF-n (Universal Transformation Format): váltózó hosszúságú karakterkészlet (többnyelvűség támogatása)

#### **EBCDIC**

| HEX    |                   |                 |                   |               |                 |                |                 |                |                    |               |                |                |
|--------|-------------------|-----------------|-------------------|---------------|-----------------|----------------|-----------------|----------------|--------------------|---------------|----------------|----------------|
| 187 -> | 4-                | 5-              | 6-                | 7-            | 8-              | 9-             | Α-              | B-             | C-                 | D-            | E-             | F-             |
| 2ND ∳  |                   |                 |                   | _             |                 |                |                 |                |                    |               |                | _              |
| -0     | (SP)<br>SP010000  | &<br>smosoooo   | SP100000          | Ø<br>L0610000 | Ø<br>L0420000   | O<br>SM190000  | μ<br>sм+20000   | ¢<br>50040000  | {<br>SM110000      | }<br>SM140000 | SM070000       | 0<br>N0:100000 |
| -1     | (RSP)<br>SP300000 | Ć<br>LE110000   | /<br>SP120000     | É             | a<br>LA810000   | j<br>13010000  | ~               | £              | A                  | J             | ÷<br>\$A060000 | 1.<br>ND010000 |
| -2     | â.                | Ĝ<br>LE150000   | Â<br>LA160000     | Ê.            | ь<br>гво10000   | k              |                 |                | 000                | K<br>LX000000 | S<br>L5020000  | 2<br>ND020000  |
| -3     | ă.<br>LA170000    | Č<br>LE170000   | Ä<br>LA180000     | Ë             | C<br>LC010000   | 1<br>LL010000  |                 | Α              | 000                | L             | Т              | 3<br>N0030000  |
| -4     | å_<br>LA130000    | Č<br>LE150000   | À<br>LA140000     | È             | d<br>1.0010000  | m<br>LM010000  | L               | AD20000        | 900                | M<br>LM020000 | U              | 4<br>N0040000  |
| -5     | á<br>LA110000     | Í<br>Littocco   | Á<br>LA120000     | Î<br>LI120000 | C<br>LE010000   | n<br>Livo10000 | LV010000        | SM240000       | LEGEGGGG           | N             | V-             | 5<br>ND050000  |
| -6     | ã.<br>LA190000    | Î<br>LI150000   | Ã<br>LA200000     | Î<br>L/160000 | f<br>LF010000   | O<br>LC010000  | W<br>LW010000   | ¶<br>5M250000  | F                  | O             | W<br>LW020000  | 6<br>ND060000  |
| -7     | ā.<br>LA270000    | Ï<br>LH170000   | Å<br>LA290000     | Ĭ<br>LI180000 | g<br>LG010000   | p<br>ure10000  | X<br>LXID10000  | Œ<br>LOSESSOSS | G                  | P<br>LP020000 | X<br>LXXXXXXX  | 7<br>ND070000  |
| -8     | Ç<br>LC410000     | Ì               | Ç                 | Ì             | h<br>U+010000   | <b>q</b>       | y<br>LY010000   | C2<br>LOS10000 | H<br>UH029000      | Q             | Y<br>LY020000  | 8<br>ND000000  |
| -9     | ñ<br>LN190000     | B<br>L5610000   | Ñ<br>LNER00000    | \$D130000     | i<br>1010000    | r<br>uko:0000  | Z<br>L2010000   | Ÿ<br>LY180000  | I<br>L1020000      | R             | Z<br>12020000  | 9<br>ND080000  |
| -A     | Ý<br>LY120000     | !<br>\$P0(90000 | Š<br>L5820000     | :<br>SP130000 | 6(<br>SP170000  | Ø<br>\$M210000 | i<br>5200000    |                | (SHY)<br>\$P3(9000 | 1<br>N0011000 | 2<br>N0021000  | 3<br>N0091000  |
| -В     | SP110000          | \$<br>scossoso  | 5P000000          | #<br>smereces | 3)-<br>SP180000 | 9<br>\$M200000 | \$P160000       | \$<br>LS210000 | Ô<br>LO150000      | û<br>LU150000 | Ô              | Û              |
| -c     | <<br>SA000000     | *<br>SM040000   | %<br>similization | @<br>SM050000 | Ŏ<br>LO830000   | 2C<br>LAS10000 | Đ               | 50010000       | Ö<br>LO179000      | Ü.,           | Ö,             | Ü<br>LU180000  |
| -D     | (<br>SP060000     | )<br>seorecco   | 5P090000          | sPoscoco      | ý<br>LV110000   | Ž<br>L2210000  | [<br>SM0000000  | ]<br>SM080000  | Ò<br>LO138888      | ù<br>LU130000 | O140000        | Ù              |
| -E     | +<br>sacrosso     | SP140000        | ><br>sactooo      | =<br>5A040000 | þ<br>(7830000   | Æ              | Þ<br>(7840000   | Ž              | Ó<br>LO110000      | Ú<br>LU110000 | Ó<br>LO120000  | Ú              |
| -F     | SM1130000         | A<br>\$0150000  | ?<br>sP150000     | SP040000      | ±<br>8A020000   | €              | (g)<br>sms30000 | X<br>SASTOOOD  | Õ                  | ÿ<br>LY170000 | Õ              | œ              |

# Extended **ASCII** (1 byte)



Legend

control diarracter.

reserved for future use.

#### Unicode

Nyelvkészletek: Alap, - Latin 1/2, görög, cirill, héber, arab stb.

Általános írásjelek, matematikai, pénzügyi, mértani szimbólumok stb.



\*részlet **36** 

## C) Hamming hibakódolás – Hiba-detektálás, és javítás



### Hibakódolás - Hibadetektálás és Javítás

- N bit segítségével 2^N különböző érték, cím, vagy utasítás ábrázolható
- 1 bittel növelve (N+1) bit esetén: 2<sup>N</sup> -ről 2<sup>N+1</sup> –re: tehát megduplázódik az ábrázolható értékek tartománya
- Redundancia: "többlet bitek" segítségével lehet a hibákat detektálni, ill. akár javítani is!
  - □ Redundáns többlet bitek a paritás, v. kódbitek.

### Paritás bit

Legegyszerűbb hibafelismerési eljárás, a paritásbit átvitele. Két lehetőség:

Adatbitek Paritásbit(kódbit)

- □ páros paritás 1 1 0 1 1
- □ páratlan paritás 1 1 0 1 0
- Páros paritás: az '1'-esek száma páros.
  - Az adatszóban lévő '1'-esek számát '1' vagy '0' hozzáadásával párossá egészítjük ki.
  - □ '0' a paritásbit, ha az '1'-esek száma páros volt.
- Páratlan paritás: az '1'-esek száma páratlan.
  - A adatszóban lévő '1'-esek számát '1' vagy '0' hozzáadásával páratlanná egészítjük ki.
  - □ '1' a paritásbit, ha az '1'-esek száma páros volt.



### Paritás bit generáló áramkör

- Paritásbit képzése:
  - ANTIVALENCIA (XOR) művelet alkalmazása a kódszó bitjeire, pl. 'n' adatbit esetén "n-1"-szer!
- Példa:

Kódszó

Paritásbit(P)



```
0\ 0\ 0\ 1\ ?\longrightarrow 0\ \oplus 0\ \oplus 0\ \oplus 1=1
0\ 1\ 1\ 0\ ?\longrightarrow 0\ \oplus 1\ \oplus 1\ \oplus 0=0
1\ 1\ 1\ 0\ ?\longrightarrow 1\ \oplus 1\ \oplus 1\ \oplus 0=1
```

Páros paritás!



#### Paritás bit ellenőrzés

- Páros v. páratlan paritás: N bites információ egy kiegészítő bittel bővül → egyszeres hiba felismerése
- Hibák lehetséges okai:
  - leragadásból: '0'-ból '1'-es lesz, vagy fordítva
  - ideiglenes, tranziens jellegű hiba
  - áthallás (crosstalk)
  - 8-adatbithez páros paritásbit generálás
     (IC 74'180. <a href="http://alldatasheet.com">http://alldatasheet.com</a> 9 bites paritás ellenőrző)
     (XOR gate IC 74'86)

XOR

XOR

XOR

XOR

XOR

XOR

### Hamming kód

- Háttér: több redundáns bittel nemcsak a hiba meglétét, és helyét tudjuk detektálni, hanem akár a hibás bitet javítani is tudjuk
- Hamming kód: egy biten tároljuk a bitmintázatok azonos helyiértékű bitjeinek különbségét, tehát egybites hibát lehet vele javítani.
  - □ Előny:
    - Bitcsoportokon történő paritás ellenőrzésen alapul: gyors művelet
    - Egy-szeres hibát tud javítani (adatokon)
    - SEC-DED: Single Error Correction / Double Error Detection
  - □ Hátrány:
    - Csoportos hibát nem képes javítani, ill. több egy-bites hibát sem
    - Adatbitekhez képest "túl sok" a javító ún. kód bitek száma



- 2<sup>N</sup>-1 bites Hamming kód: N kódbit → 2<sup>N</sup>-N-1 adatbit
- Összesen pl. 7 biten 4 adatbitet (D0,D1,D2,D3), 3 kódbittel (C0,C1,C2) kódolunk (LE!)
- C<sub>i</sub> kódbitek a bináris súlyuknak megfelelő bitpozíciókban
- $\blacksquare$  A maradék pozíciókat rendre adatbitekkel töltjük fel  $(D_i)$ .



| Paritás-<br>csoportok | Bit<br>pozíciók | Bitek<br>jelölései |
|-----------------------|-----------------|--------------------|
| 0                     | 1, 3, 5, 7      | C0, D0, D1, D3     |
| 1                     | 2, 3, 6, 7      | C1, D0, D2, D3     |
| 2                     | 4, 5, 6, 7      | C2, D1, D2, D3     |

## Pl. 1/a) Hamming kódú hibajavító áramkör tervezése (Little Endian)

- Példa: bemeneti adatbit-mintázatunk 0101 (D<sub>3</sub>-D<sub>0</sub>). LE!
- 4 adatbit → 3 kódbitünk van
  - Alkalmazzunk <u>páratlan paritást!</u> A megfelelő helyen szereplő kódbitekkel kiegészítve a következő szót kapjuk: 010**0**1**10**. Ha nincs hiba, a paritásellenőrzők (C2, C1, C0) kimenete '000' (nem-létező bitpozíciót azonosít, azaz nincs hiba), így megegyezik a kódolt mintázat paritásbitjeinek értékével, minden egyes paritáscsoportra (küldött és az azonosított Ci-minták bitenkénti XOR kapcsolata).
  - Hiba szindróma: Hiba esetén például, tfh. az input mintázat 0100010 re változik, ekkor a vevő oldali paritásellenőrző hibát észlel. Ugyan C2. paritásbitcsoport rendben ('0'), DE a C1 ('0') és C0 ('1') változott, tehát hiba van:
    - Ekkor 011 = 3 az azonosított minta, ami a 3. oszlopot jelenti (→ D0 helyén).
    - Javításként invertálni kell a 3. bitpozícióban lévő bitet. 0100010 ⇒ 0100110. Ekkor a kódbitek a következőképpen módosulnak a páratlan paritásnak megfelelően: C2=0, C1=1 és C0=0.



- 4 adatbithez  $(D_3-D_0)=0101 \rightarrow 3$  paritásbit  $(C_2-C_0)$ 
  - □ azaz 7-bites Hamming kódú hibajavító kódszó

| 7  | 6  | 5  | 4   | 3  | 2  | 1  |
|----|----|----|-----|----|----|----|
| D3 | D2 | D1 | C2  | D0 | C1 | C0 |
| 0  | 1  | 0  | ?   | 1  | ?  | ?  |
| 0  | 1  | 0  | 0   | 1  | 1  | 0  |
|    | -  |    | -   |    | -  |    |
| Ī  | I  | -  | -   | Ĩ  | ĺ  |    |
|    | I  | I  | - 1 |    |    |    |

poz

Error syndrome

|             | C2 | C1 | C0 |
|-------------|----|----|----|
| Adó         | 0  | 1  | 0  |
| <u>Vevő</u> | 0  | 1  | 0  |
| XOR         | 0  | 0  | 0  |

Azaz 000 = 0. pozíció (nem létezik, tehát nincsen hiba)

## Pl. 1/a) folyt. Hamming kódú kódszó (Little Endian)

■ Tfh. van hiba, a D0 megváltozik '1' → '0'

| 7  | 6  | 5  | 4  | 3  | 2          | 1  |
|----|----|----|----|----|------------|----|
| D3 | D2 | D1 | C2 | D0 | <b>C</b> 1 | C0 |
| 0  | 1  | 0  | ?  | 0  | ?          | ?  |
| 0  | 1  | 0  | 0  | 0  | 0          | 1  |
|    | -  | I  |    |    | -          |    |
|    |    | -  |    |    |            |    |
|    |    |    |    |    |            |    |

poz

Error syndrome

Azaz 011 = 3. pozíció (tehát D0 a hibás!)

Javítás = hibás D0 invertálása '0' → '1'

## Pl. 1/b) Hamming kódú hibajavító áramkör tervezése (Big Endian)

- Példa: bemeneti adatbit-mintázatunk 0101 (D<sub>0</sub>-D<sub>3</sub>). BE!
- 4 adatbit → 3 kódbitünk van
  - Alkalmazzunk <u>páratlan paritást!</u> A megfelelő helyen szereplő kódbitekkel kiegészítve a következő szót kapjuk: <u>10</u>0<u>1</u>101. Ha nincs hiba, a paritásellenőrzők (C0, C1, C2) kimenete '000' (nem-létező bitpozíciót azonosít, azaz nincs hiba), így megegyezik a kódolt mintázat paritásbitjeinek értékével, minden egyes paritáscsoportra (azaz a küldött és azonosított Ci-minták bitenkénti XOR kapcsolata).
  - □ Hiba szindróma: Hiba esetén például, tfh. az input mintázat 10111101 re változik, ekkor a vevő oldali paritásellenőrző hibát észlel. Ugyan C2. paritásbitcsoport rendben ('1'), DE a C1 ('1') és C0 ('0') változott, tehát hiba van:
    - Ekkor (110) azaz 011 = 3 az azonosított minta, ami a 3. oszlopot jelenti (→ D0 helyén).
    - Javításként invertálni kell a 3. bitpozícióban lévő bitet. 1011 ⇒ 1001101. Ekkor a kódbitek következőképpen módosulnak a páratlan paritásnak megfelelően: C0=1, C1=0 és C2=1.

## Pl 2.) Hamming kódú hibajavító áramkör tervezése (Little Endian)

- Példa: bemeneti adatbit-mintázatunk 0101 (D<sub>3</sub>-D<sub>0</sub>). LE!
- 4 adatbit → 3 kódbitünk van
  - Alkalmazzunk <u>páros paritást!</u> A megfelelő helyen szereplő kódbitekkel kiegészítve a következő szót kapjuk: 010<u>1</u>1<u>01</u>. Ha nincs hiba, a paritásellenőrzők (C2, C1, C0) kimenete '000' (nem-létező bitpozíciót azonosít). Így megegyezik a kódolt mintázat paritásbitjeinek értékével, minden egyes paritáscsoportra (küldött és vett Ci-k bitenkénti XOR kapcsolata).
  - □ Hiba esetén például, ha az input mintázat 0111101 -re változik, ekkor a paritásellenőrző hibát észlel. Két paritásbit ellenőrző megváltozott: C2 ('0'), a C0 ('0'), de C1 ('0') változatlan.
    - Ekkor 101 = 5, az azonosított minta, ami a 5. oszlopot jelenti (→ D1 helyén).
  - □ Javításként invertálni kell a 5. bitpozícióban lévő bitet. 0111101 ⇒ 0101101. Ekkor a kódbitek a következőképpen módosulnak a páratlan paritásnak megfelelően: C2=1, C1=0 és C0=1.

# PI 3.) Hamming kódú hibajavító áramkör tervezése (Little Endian)

- Példa: bemeneti adatbit-mintázatunk 0101 (D<sub>3</sub>-D<sub>0</sub>). LE!
- 4 adatbit → 3 kódbitünk van
  - Alkalmazzunk <u>páratlan paritást!</u> A megfelelő helyen szereplő kódbitekkel kiegészítve a következő szót kapjuk: 010<u>0</u>1<u>10</u>. Ha nincs hiba, a paritásellenőrzők (C2, C1, C0) kimenete '000' (nem-létező bitpozíciót azonosít, azaz nincs hiba), így megegyezik a kódolt mintázat paritásbitjeinek értékével, minden egyes paritáscsoportra (küldött és vett Ci-k bitenkénti XOR kapcsolata).
  - □ Hiba esetén például, tfh. az input mintázat 010<u>0</u>1<u>0</u>0 -re változik, akkor a paritásellenőrző hibát észlel. C2. paritásbit ellenőrző változatlan ('0'), és a C0 is ('0'), DE a C1 ('0') hibát észlel, tehát:
    - Ekkor 010 = 2 az azonosított minta önmaga, ami a 2. oszlopot jelenti (→ C1 paritásbit! helyén).
  - Javításként itt már a dupla hibaellenőrzést (DEB / vagy SECDEC) kell alkalmazni, amely a paritásbiteket is kódolja.

## 7-bites Hamming kódú hibajavító áramkör felépítése



### Példa: SEC-DED-dupla paritáshiba ellenőrzés (Little Endian) DEB: extra bit, a teljes kódszóra vonatkozóan (Ci-ket is kódolja)

Hamming kód (DEB-el) 8 adatbitre: mi a helyes ábrázolása 8 biten a 01011100 adatbit mintázatnak. Szükséges 8 adatbit (D0-D7), 4 kódbit (C0-C3) és egy kettős hibajelző bit (DEB). Páratlan paritást alkalmazunk. (BW-binary weight jelenti az egyes oszlopok bináris súlyát, 1,2, 4 ill 8 biten).

| 13  | 12 | 11 | 10 | 9  | 8          | 7  | 6  | 5  | 4  | 3  | 2          | 1          | Oszlopszám |
|-----|----|----|----|----|------------|----|----|----|----|----|------------|------------|------------|
| DEB | D7 | D6 | D5 | D4 | <b>C</b> 3 | D3 | D2 | D1 | C2 | D0 | <b>C</b> 1 | <b>C</b> 0 |            |
|     | 1  | 1  | 1  | 1  | 1          | 0  | 0  | 0  | 0  | 0  | 0          | 0          | BW, 8bit   |
|     | 1  | 0  | 0  | 0  | 0          | 1  | 1  | 1  | 1  | 0  | 0          | 0          | BW, 4 bit  |
|     | 0  | 1  | 1  | 0  | 0          | 1  | 1  | 0  | 0  | 1  | 1          | 0          | BW, 2 bit  |
|     | 0  | 1  | 0  | 1  | 0          | 1  | 0  | 1  | 0  | 1  | 0          | 1          | BW, 1 bit  |

| Paritáscsoportok | Bit pozíciók       | Bitek jelölései        |
|------------------|--------------------|------------------------|
| 0                | 1, 3, 5, 7, 9, 11  | C0, D0, D1, D3, D4, D6 |
| 1                | 2, 3, 6, 7, 10, 11 | C1, D0, D2, D3, D5, D6 |
| 2                | 4, 5, 6, 7, 12     | C2, D1, D2, D3, D7     |
| 3                | 8, 9, 10, 11, 12   | C3, D4, D5, D6, D7     |

| 13  | 12 | 11 | 10 | 9  | 8          | 7  | 6  | 5  | 4  | 3  | 2          | 1  | Oszlopszám |
|-----|----|----|----|----|------------|----|----|----|----|----|------------|----|------------|
| DEB | D7 | D6 | D5 | D4 | <b>C</b> 3 | D3 | D2 | D1 | C2 | D0 | <b>C</b> 1 | C0 |            |
| _   | 0  | 1  | 0  | 1  | _          | 1  | 1  | 0  | _  | 0  | _          | _  | Adatbitek  |
| 1   | 0  | 1  | 0  | 1  | 1          | 1  | 1  | 0  | 1  | 0  | 0          | 0  | Hozzáadott |

kódbitek. Tehát a helyes ábrázolása 01011100-nek a következő: 1010111101000.