Versión de 17 de enero de 2023, 23:44 h.

Ejercicios de la sección 3.1 Álgebra de matrices

(Ejercicios para hacer en clase: 2, 5, 8, 14, 16, 19, 21, 23, 25, 28, 34.) (Ejercicios con solución o indicaciones: 1, 6, 7, 13, 15, 17, 20, 22, 24, 26, 27, 29, 35, 36, 37.)

- ▶1. Dado que los vectores en \mathbf{R}^n pueden ser considerados como matrices $n \times 1$, las propiedades de las traspuestas también se aplican a vectores. Sean $A = \begin{pmatrix} 1 & -3 \\ -2 & 4 \end{pmatrix}$ y $\mathbf{x} = \begin{pmatrix} \frac{5}{3} \end{pmatrix}$. Calcula $(A\mathbf{x})^T$, \mathbf{x}^TA^T , $\mathbf{x}\mathbf{x}^T$, y $\mathbf{x}^T\mathbf{x}$. ¿Está definido el producto $A^T\mathbf{x}^T$?
- ▶2. Sean A una matriz 4×4 y x un vector en \mathbb{R}^4 . ¿Cuál es la forma más rápida de calcular A^2 x: Haciendo $A(A\mathbf{x})$ o haciendo $(A \cdot A)\mathbf{x}$?. Cuenta las multiplicaciones que hay que hacer en cada caso.

En los ejercicios 3 y 4, sean

$$A = \begin{pmatrix} 2 & 0 & -1 \\ 4 & -5 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 7 & -5 & 1 \\ 1 & -4 & -3 \end{pmatrix},$$
$$C = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 3 & 5 \\ -1 & 4 \end{pmatrix}, \quad E = \begin{pmatrix} -5 \\ 3 \end{pmatrix}.$$

Calcula cada suma o producto si la matriz está definida. Si alguna expresión no está definida, explica por qué.

- 3. -2A, B 2A, AC, CD.
- **4.** A + 2B, 3C E, CB, EB.

En el resto de esta serie de ejercicios y en las series que siguen, debe suponerse que cada expresión de matrices está definida. Esto es, los tamaños de las matrices (y de los vectores) involucrados "se corresponden" de manera apropiada.

- ▶5. Dada la matriz $A = \begin{pmatrix} 4 & -1 \\ 5 & -2 \end{pmatrix}$ calcula $3I_2 A$ y $(3I_2)A$.
- ▶6. Dada la matriz $A = \begin{pmatrix} 9 & -1 & 3 \\ -8 & 7 & -6 \\ -4 & 1 & 8 \end{pmatrix}$ calcula $A 5I_3$ y $(5I_3)A$.

En los ejercicios 7 y 8, calcula el producto AB en dos formas: (a) mediante la definición, donde $A\mathbf{b}_1$ y $A\mathbf{b}_2$ se calculan por separado, y (b) mediante la regla fila-porcolumna para calcular AB.

▶7.
$$A = \begin{pmatrix} -1 & 2 \\ 5 & 4 \\ 2 & -3 \end{pmatrix}$$
, $B = \begin{pmatrix} 3 & -2 \\ -2 & 1 \end{pmatrix}$

▶8.
$$A = \begin{pmatrix} 4 & -2 \\ -3 & 0 \\ 3 & 5 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix}$

- **9.** Si una matriz A es de orden 5×3 y el producto AB es de orden 5×7 , ¿cuál es el orden de B?
- 10. ¿Cuántas filas tiene B si BC es una matriz de orden 3×4 ?
- **11.** Sean $A = \begin{pmatrix} 2 & 5 \\ -3 & 1 \end{pmatrix}$, y $B = \begin{pmatrix} 4 & -5 \\ 3 & k \end{pmatrix}$. ¿Qué valor(es) de k, si hay, hacen que AB = BA?.

- **12.** Sean $A = \begin{pmatrix} 2 & -3 \\ -4 & 6 \end{pmatrix}$, $B = \begin{pmatrix} 8 & 4 \\ 5 & 5 \end{pmatrix}$, y $C = \begin{pmatrix} 5 & -2 \\ 3 & 1 \end{pmatrix}$. Comprueba que AB = AC a pesar de que $B \neq C$.
- ▶13. Sean $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 5 \end{pmatrix}$ y $D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}$. Calcula

AD y DA. Explica cómo cambian las filas o columnas de A cuando se multiplica por D a la derecha o a la izquierda. Halla una matriz B de orden 3×3 , que no sea la matriz identidad o la matriz cero, tal que AB = BA.

- ▶14. Sea $A = \begin{pmatrix} 3 & -6 \\ -1 & 2 \end{pmatrix}$. Construye una matriz B de orden 2×2 tal que AB sea igual a la matriz cero. Las columnas de B no deben ser iguales entre sí y deben ser distintas de cero.
- ▶15. Sean $\mathbf{r}_1, \dots, \mathbf{r}_p$ vectores en \mathbf{R}^n , y sea Q una matriz de orden $m \times n$. Escribe la matriz $[Q\mathbf{r}_1 \dots Q\mathbf{r}_p]$ como un producto de dos matrices sin usar una matriz identidad.

En los ejercicios 16 y 17 indica para cada uno de los enunciados si es verdadero o falso. Justifica tus respuestas.

▶16

- (a) Si A y B son matrices de orden 2×2 con columnas $\mathbf{a_1}$, $\mathbf{a_2}$ y $\mathbf{b_1}$, $\mathbf{b_2}$, respectivamente, entonces $AB = [\mathbf{a_1b_1} \ \mathbf{a_2b_2}].$
- (b) Toda columna de AB es una combinación lineal de las columnas de B usando como coeficientes los elementos de la columna correspondiente de A.
- (c) La igualdad AB + AC = A(B + C) se cumple para cualesquiera matrices A, B, C para las que las operaciones indicadas estén definidas.
- (d) La igualdad $A^{T} + B^{T} = (A + B)^{T}$ se cumple para cualesquiera matrices A, B cuya suma esté definida.
- (e) La traspuesta de un producto de matrices es igual al producto de sus traspuestas en el mismo orden.

▶17

- (a) Si A y B son matrices 3×3 y $B = [\mathbf{b}_1 \ \mathbf{b}_2 \ \mathbf{b}_3]$, entonces $AB = [A\mathbf{b}_1 + A\mathbf{b}_2 + A\mathbf{b}_3]$.
- (b) La segunda fila de AB es la segunda fila de A multiplicada a la derecha por B.
- (c) La igualdad (AB)C = (AC)B se cumple para cualesquiera matrices A, B, C para las que los productos indicados estén definidos.
- (d) La igualdad $(AB)^T = A^TB^T$ se cumple para cualesquiera matrices A y B para las que el producto AB esté definido.
- (e) La traspuesta de una suma de matrices es igual a la suma de sus traspuestas en el mismo orden.
- **18.** Si $A=\left(\begin{array}{cc}1&-2\\-2&5\end{array}\right)$ y $AB=\left(\begin{array}{cc}1&2&-1\\6&-9&3\end{array}\right)$, halla la primera y la segunda columna de B.
- ▶19. Supongamos que las dos primeras columnas de *B* son iguales. ¿Qué puede decirse acerca de las columnas de *AB* (suponiendo que este producto está definido)?. ¿Por qué?
- ▶20. Supongamos que la tercera columna de *B* es la suma de las primeras dos columnas. ¿Qué puede decirse acerca de la tercera columna de *AB*? ¿Por qué?

- ▶21. Supongamos que la segunda columna de *B* es toda cero. ¿Qué puede decirse acerca de la segunda columna de *AB*?
- ▶22. Supongamos que la última columna de *AB* es completamente cero, pero *B* por sí sola no tiene ninguna columna de ceros. ¿Qué puede decirse acerca de las columnas de *A*?
- ▶23. Demuestra que si las columnas de *B* son linealmente dependientes, también lo son las columnas de *AB*.
- ▶24. Supongamos que $CA = I_n$ (la matriz identidad $n \times n$). Demuestra que la ecuación $A\mathbf{x} = \mathbf{0}$ tiene únicamente la solución trivial. Explica por qué A no puede tener más columnas que filas.
- ▶25. Supongamos que $AD = I_m$, (la matriz identidad $m \times m$). Demuestra que para todo \mathbf{b} en \mathbf{R}^m , la ecuación $A\mathbf{x} = \mathbf{b}$ tiene al menos una solución. [Sugerencia: Piensa en la ecuación $AD\mathbf{b} = \mathbf{b}$.] Explica por qué A no puede tener más filas que columnas.
- ▶26. Supongamos que A es una matriz de orden $m \times n$ y que existen matrices $n \times m$, C y D, tales que $CA = I_n$ y $AD = I_m$. Demuestra que m = n y C = D. [Sugerencia: Piensa en el producto CAD).]
- ▶27. Supongamos que A es una matriz de orden $3 \times n$ cuyas columnas generan \mathbb{R}^3 . Explica cómo construir una matriz D de orden $n \times 3$ tal que $AD = I_3$.

En los ejercicios 28 y 29, considera los vectores en \mathbf{R}^n como matrices $n \times 1$. Para \mathbf{u} y \mathbf{v} en \mathbf{R}^n , el producto de matrices $\mathbf{u}^T\mathbf{v}$ es una matriz 1×1 , llamada *producto escalar*, o *producto interno*, de \mathbf{u} y \mathbf{v} . Por lo general, se escribe como un único número real sin paréntesis o corchetes. El producto de matrices $\mathbf{u}\mathbf{v}^T$ es una matriz de orden $n \times n$, llamada *producto exterior* de \mathbf{u} y \mathbf{v} .

▶28. Sean
$$\mathbf{u} = \begin{pmatrix} -2 \\ 3 \\ -4 \end{pmatrix}$$
 y $\mathbf{v} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$. Calcula $\mathbf{u}^{\mathsf{T}}\mathbf{v}$, $\mathbf{v}^{\mathsf{T}}\mathbf{u}$, \mathbf{u} \mathbf{v}^{T} ,

▶29. Si \mathbf{u} y \mathbf{v} están en \mathbf{R}^n , ¿qué relación hay entre $\mathbf{u}^T\mathbf{v}$ y $\mathbf{v}^T\mathbf{u}$? ¿Y entre \mathbf{u} v \mathbf{v} y v \mathbf{u} ??

- **30.** Demuestra que $I_m A = A$ cuando A es una matriz de orden $m \times n$. Puedes utilizar el hecho de que $I_m \mathbf{x} = \mathbf{x}$ para todo \mathbf{x} en \mathbf{R}^m .
- **31.** Demuestra que $AI_n = A$ cuando A es una matriz de orden $m \times n$. [Sugerencia: Usa la definición (de columnas) del producto de matrices AI_n .]
- **32.** Halla una fórmula para $(AB\mathbf{x})^T$, donde \mathbf{x} es un vector y A y B son matrices con los tamaños apropiados.

33. Dada la matriz
$$S = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
, calcula S^k

para k = 2, ..., 6.

Los ejercicios 34 a 37 demuestran casos especiales de las propiedades de las matrices elementales. Aquí A es una matriz 3×3 e $I=I_3$.

▶34. Usa la ecuación fila $_i(AB) = \text{fila}_i(A) \cdot B$ para demostrar que para i = 1, 2, 3,

$$fila_i(A) = fila_i(I) \cdot A.$$

- ▶35. Demuestra que si las filas 1 y 2 de *A* se intercambian, entonces el resultado es igual a *EA*, donde *E* es la matriz elemental obtenida al intercambiar las filas 1 y 2 de *I*.
- ▶36. Demuestra que si la fila 3 de *A* se multiplica por 5, entonces el resultado es igual a *EA*, donde *E* es la matriz elemental obtenida al multiplicar la fila 3 de *I* por 5.
- ▶37. Demuestra que si la fila 3 de A es reemplazada por $\mathsf{fila}_3(A) 4 \mathsf{fila}_1(A)$, el resultado es igual a EA, donde E es la matriz elemental obtenida a partir de I al reemplazar la fila 3 de I por $\mathsf{fila}_3(I) 4 \mathsf{fila}_1(I)$.

38. Dada la matriz
$$A = \begin{pmatrix} 1/6 & 0'5 & 1/3 \\ 0'5 & 1/4 & 1/4 \\ 1/3 & 1/4 & 5/12 \end{pmatrix}$$
, describe

con palabras qué pasa al calcular A^5 , A^{10} , A^{20} y A^{30} . (*Para hacer con* Mathematica *en una práctica de ordenador.*)

Pistas y soluciones de ejercicios seleccionados de la sección 3.1

1. $(A\mathbf{x})^{\mathrm{T}} = \left(\begin{pmatrix} 1 & -3 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} 5 \\ 3 \end{pmatrix} \right)^{\mathrm{T}} = \begin{pmatrix} -4 \\ 2 \end{pmatrix}^{\mathrm{T}} = \begin{pmatrix} -4 & 2 \end{pmatrix}, \mathbf{x}^{\mathrm{T}}A^{\mathrm{T}} = \begin{pmatrix} 5 & 3 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ -3 & 4 \end{pmatrix} = \begin{pmatrix} -4 & 2 \end{pmatrix}, \mathbf{x}\mathbf{x}^{\mathrm{T}} = \begin{pmatrix} 5 \\ 3 \end{pmatrix} \begin{pmatrix} 5 & 3 \end{pmatrix} = \begin{pmatrix} 25 & 15 \\ 15 & 9 \end{pmatrix},$ y $\mathbf{x}^{\mathrm{T}}\mathbf{x} = \begin{pmatrix} 5 & 3 \end{pmatrix} \begin{pmatrix} 5 & 3 \end{pmatrix} = \begin{pmatrix} 25 & 15 \\ 15 & 9 \end{pmatrix}$, y $\mathbf{x}^{\mathrm{T}}\mathbf{x} = \begin{pmatrix} 5 & 3 \end{pmatrix} \begin{pmatrix} 5 & 3 \end{pmatrix} = 25 + 9 = 34$. El producto $A^{\mathrm{T}}\mathbf{x}^{\mathrm{T}}$ no está definido porque el número de columnas de A^{T} (dos) no es igual al número de filas de \mathbf{x}^{T} (una).

6. $A - 5I_3 = \begin{pmatrix} 4 & -1 & 3 \\ -8 & 2 & -6 \\ -4 & 1 & 3 \end{pmatrix}$ (restar 5 de cada elemento de la diagonal de A);

$$(5I_3)A = 5(I_3A) = 5A = \begin{pmatrix} 45 - 5 & 15 \\ -40 & 35 - 30 \\ -20 & 5 & 40 \end{pmatrix}.$$

7. (a)

$$\begin{pmatrix} -\frac{1}{2} & \frac{2}{4} \\ \frac{5}{2} & \frac{4}{3} \end{pmatrix} \begin{pmatrix} \frac{3}{-2} & -\frac{2}{1} \\ -\frac{1}{2} & \frac{2}{3} \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & \frac{2}{4} \\ \frac{2}{2} & -3 \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & \frac{2}{4} \\ \frac{2}{2} & -3 \end{pmatrix} \begin{pmatrix} -\frac{2}{1} \\ -\frac{1}{2} \end{pmatrix} = \begin{bmatrix} 3 \begin{pmatrix} -\frac{1}{5} \\ \frac{1}{2} \end{pmatrix} - 2 \begin{pmatrix} \frac{2}{4} \\ -\frac{3}{3} \end{pmatrix} & -2 \begin{pmatrix} -\frac{1}{5} \\ \frac{2}{2} \end{pmatrix} + \begin{pmatrix} \frac{2}{4} \\ -\frac{3}{3} \end{pmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} -\frac{7}{4} & \frac{4}{7} & -\frac{6}{12} \\ \frac{12}{7} & -\frac{7}{3} \end{pmatrix}.$$

(b)

$$\begin{pmatrix} -1 & 2 \\ 5 & 4 \\ 2 & -3 \end{pmatrix} \begin{pmatrix} 3 & -2 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} (-1)\cdot3+2(-2) & (-1)\cdot(-2)+2\cdot1 \\ 5\cdot3+4(-2) & 5\cdot(-2)+4\cdot1 \\ 2\cdot3-3(-2) & 2(-2)-3\cdot1 \end{pmatrix}$$
$$= \begin{pmatrix} -7 & 4 \\ 7 & -6 \\ 12 & -7 \end{pmatrix}.$$

13. $AD = \begin{pmatrix} 2 & 3 & 5 \\ 2 & 6 & 15 \\ 2 & 12 & 25 \end{pmatrix}$, $DA = \begin{pmatrix} 2 & 2 & 2 \\ 3 & 6 & 9 \\ 5 & 20 & 25 \end{pmatrix}$. Una matriz diagonal, multiplicada por la derecha de otra reescala las columnas y multiplicada por la izquierda de otra reescala las filas. Por lo anterior, una posible B que conmute con A (y con cualquier matriz 3×3) es cualquier matriz diagonal con todos los elementos diagonales iguales (cualquier múltiplo de la identidad). Por ejemplo $B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 2 & 0 \end{pmatrix}$.

15.
$$[Q\mathbf{r}_1 \ldots Q\mathbf{r}_p] = Q[\mathbf{r}_1 \ldots \mathbf{r}_p].$$

17. (a) Debería decir $AB = [A\mathbf{b}_1 \ A\mathbf{b}_2 \ A\mathbf{b}_3]$, (b) Esto es la regla "fila por columna", (c) No en general. Sólo se cumpliría si B y C conmutan, (d) Debería decir $(AB^T = B^TA^T)$, (e) El orden es irrelevante para la suma.

20. Es igual a la suma de las dos primeras columnas de AB debido a la propiedad de linealidad del producto matriz por vector. Si las tres primeras columnas de B son \mathbf{b}_1 , \mathbf{b}_2 y $\mathbf{b}_1 + \mathbf{b}_2$ entonces las tres primeras columnas de AB son $A\mathbf{b}_1$, $A\mathbf{b}_2$ y $A(\mathbf{b}_1 + \mathbf{b}_2) = A\mathbf{b}_1 + A\mathbf{b}_2$.

22. Si la última columna de B es \mathbf{b}_n y es distinta de cero, y si la última columna de AB es cero, tenemos $A\mathbf{b}_n = \mathbf{0}$, lo cual, por ser $\mathbf{b}_n \neq \mathbf{0}$, es una relación de dependencia lineal entre las columnas de A. Luego las columnas de A son linealmente dependientes.

24. Para cualquier solución \mathbf{x} de $A\mathbf{x} = \mathbf{0}$ se cumple $\mathbf{x} = I_n\mathbf{x} = CA\mathbf{x} = C\mathbf{0} = 0$. Esto demuetra que el sistema $A\mathbf{x} = \mathbf{0}$ es determinado y por tanto no tiene variables libres, o sea, A tiene un pivote en cada columna. Como esos pivotes están en distintas filas, A no puede tener menos filas que columnas.

26.
$$D = I_n D = CAD = CI_m = C.$$

27. Sean \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 las columnas de I_3 . Son vectores de \mathbf{R}^3 y como las columnas de A generan \mathbf{R}^3 , los sistemas $A\mathbf{x} = \mathbf{e}_1$, $A\mathbf{x} = \mathbf{e}_2$, $A\mathbf{x} = \mathbf{e}_3$ son compatibles. Sean \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 sendas soluciones de los tres sistemas. La matriz $D = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3]$ verifica $AD = I_3$.

29. La respuesta a las dos preguntas se basa en dos propiedades: primera: la propiedad del producto de matrices que dice que la traspuesta de un producto es el producto de las traspuestas en el orden contrario y segunda: la propiedad de la traspuesta que dice que hacer la traspuesta de la traspuesta da la misma matriz. De ello se deducen las relaciones $\mathbf{u}^T\mathbf{v} = ((\mathbf{u}^T\mathbf{v})^T)^T = (\mathbf{v}^T\mathbf{u})^T\mathbf{v}$ $\mathbf{v}^T\mathbf{v} = ((\mathbf{u}^T\mathbf{v})^T)^T = (\mathbf{v}^T\mathbf{u})^T\mathbf{v}$. Pero además, en el primer caso los resultados son matrices 1×1 y toda matriz 1×1 es igual a su traspuesta por lo que $\mathbf{u}^T\mathbf{v} = \mathbf{v}^T\mathbf{u}$.

35. Sea A' la matriz obtenida al intercambiar las filas 1 y 2 de A. Hay que demostrar que A' = EA, es decir, que para todos los valores de i se cumple $\mathsf{fila}_i(A') = \mathsf{fila}_i(EA)$. Empezamos con i = 1. Sabemos que $\mathsf{fila}_1(E) = \mathsf{fila}_2(I)$, por tanto:

Fila₁ (A') = fila₂ (A) = fila₂ (I) · A = fila₁ (E) · A = fila₁ (EA) Si i=2 podemos usar fila₂ (E) = fila₁ (I) para deducir: fila₂ (A') = fila₁ (A) = fila₁ (I) · A = fila₂ (E) · A = fila₂ (EA). Finalmente, si i=3:

 $fila_3(A') = fila_3(A) = fila_3(I) \cdot A = fila_3(E) \cdot A = fila_3(EA)$.

36. Sea A' la matriz obtenida al multiplicar la fila 3 de A por 5. Hay que demostrar que A' = EA, es decir, que para todos los valores de i se cumple $\operatorname{fila}_i(A') = \operatorname{fila}_i(EA)$. Si i=1 o i=2 entonces $\operatorname{fila}_i(E) = \operatorname{fila}_i(I)$, por tanto: $\operatorname{fila}_i(A') = \operatorname{fila}_i(A) = \operatorname{fila}_i(I) \cdot A = \operatorname{fila}_i(E) \cdot A = \operatorname{fila}_i(EA)$ Si i=3 podemos usar $\operatorname{fila}_3(E) = 5 \operatorname{fila}_3(I)$ para deducir: $\operatorname{fila}_3(A') = 5 \operatorname{fila}_3(A) = 5 \operatorname{fila}_3(I) \cdot A = \operatorname{fila}_3(EA)$.

37. Sea A' la matriz obtenida al realizar la operación de reemplazo indicada sobre A de forma que fila $_3(A')=$ fila $_3(A)-4$ fila $_1(A)$. Hay que demostrar que A'=EA, es decir, que para todos los valores de i se cumple fila $_i(A')=$ fila $_i(EA)$. Si i=1 o i=2 entonces fila $_i(E)=$ fila $_i(I)$, por tanto en esos casos:

 $fila_i(A') = fila_i(A) = fila_i(I) \cdot A = fila_i(E) \cdot A = fila_i(EA)$. Sólo queda el caso i = 3, para el cual $fila_3(E) = fila_3(I) - 4$ $fila_1(I)$. Usando esto podemos deducir: