Printed Page	e 1 of 2					,	Sub	Cod	le:N	AS1	03
Paper Id:	199123	Roll No:									

B. TECH. (SEM I) THEORY EXAMINATION 2019-20 ENGINEERING MATHEMATICS -I

Time: 3 Hours Total Marks: 100

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

a.	Find y_n , if $y = x^2 \log x$.
b.	If $u(x,y) = \left(\sqrt{x} + \sqrt{y}\right)^{\frac{1}{5}}$, find the value of $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$.
c.	Calculate $\frac{\partial(u,v)}{\partial(x,y)}$ for $x = e^u \cos v$, and $y = e^u \sin v$.
d.	Prove that $e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots$
e.	Find the rank of the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 3 & 1 & 1 \end{bmatrix}$.
f.	Find the inverse of the matrix $A = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$.
g.	Evaluate $\int_0^1 x^2 (1-x)^3 dx$.
h.	Evaluate $\int_0^1 \int_0^{x^2} x dy dx$.
i.	Show that $\vec{F} = (x^2 - y^2 + x)\hat{\imath} - (2xy + y)\hat{\jmath}$ is irrotational.
j.	State Gauss divergence theorem.

SECTION B

2. Attempt any *three* of the following:

10x3=30

a.	If $y = (\sin^{-1} x)^2$, show that $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$ and calculate $y_n(0)$.
b.	Find the volume of the largest rectangular parallelopiped that can be inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.
C.	Reduce the matrix $A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -1 \\ 0 & 0 & 3 \end{bmatrix}$ to the diagonal form.
d.	Find the volume of the solid surrounded by the surface $\left(\frac{x}{a}\right)^{\frac{2}{3}} + \left(\frac{y}{b}\right)^{\frac{2}{3}} + \left(\frac{z}{c}\right)^{\frac{2}{3}} = 1$.
e.	Verify Stokes's theorem for $\vec{F} = x^2 \hat{\imath} + xy \hat{\jmath}$ integrated round the square whose sides are $x = 0, y = 0, x = a, y = a$ in the plane $z = 0$.

Roll No:

SECTION C

3. Attempt any *one* part of the following:

10x1=10

a.	Trace the curve: $y^2(2a-x) = x^3$
b.	If $u = \log(x^3 + y^3 + z^3 - 3xyz)$, show that $(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z})^2 u = -\frac{9}{(x+y+z)^2}$.

4. Attempt any *one* part of the following:

10x1=10

a.	Expand $\tan^{-1} \frac{y}{x}$ in the neighbourhood of (1,1) upto and inclusive of second-degree terms. Hence
	compute $f(1.1,0.9)$ approximately.
b.	If <i>u</i> , <i>v</i> , <i>w</i> are the roots of the equation
	$(x-a)^3 + (x-b)^3 + (x-c)^3 = 0$, then find $\frac{\partial(u, v, w)}{\partial(a, b, c)}$.

5. Attempt any *one* part of the following:

10x1=10

a.	Find the value of λ such that the following equations have unique solution:					
	$\lambda x + 2y - 2z - 1 = 0, 4x + 2\lambda y - z - 2 = 0, 6x + 6y + \lambda z - 3 = 0$ and use matrix method to					
	solve these equations when $\lambda = 2$.					
b.	Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ and hence find A^{-1}					

6. Attempt any *one* part of the following:

10x1=10

a.	Show that in the Catenary $y = c \cosh \frac{x}{c}$, the length of arc from the vertex $x = 0$ to any point (x, y) is given by $s = c \sinh \frac{x}{c}$.
b.	Evaluate $\int_0^a \int_y^a \frac{x dx dy}{x^2 + y^2}$ by changing the order of integration.

7. Attempt any *one* part of the following:

10x1=10

a.	Find the directional derivative of $\emptyset = 5x^2y - 5y^2z + \frac{5}{2}z^2x$ at the point $P(1,1,1)$ in the direction of the line $\frac{x-1}{2} = \frac{y-3}{-2} = \frac{z}{1}$.
b.	Apply Green's theorem to evaluate $\int_C [(2x^2 - y^2)dx + (x^2 + y^2)dy]$ where C is the boundary of the area enclosed by the $x - axis$ and upper half of the circle $x^2 + y^2 = a^2$.