9장 신경망에서 딥러닝으로

OOO 목차

- 1 기울기 소실 문제와 활성화 함수
- 2 속도와 정확도 문제를 해결하는 고급 경사 하강법

000

신경망에서 딥러닝으로

- 다층 퍼셉트론이 오차 역전파를 만나 신경망이 되었고, 신경망은
 XOR문제를 가볍게 해결함
- 이제 신경망을 차곡차곡 쌓아올리면 마치 사람처럼 생각하고 판단
 하는 인공지능이 금방이라도 완성될 것처럼 보임

그림 9-1 다층 확장

▶ 오차 역전파 :

출력층으로부터 하나씩 앞으로 되돌아가며 각 층의 가중치를 수정하는 방법

▶ 가중치를 수정하려면 미분 값, 즉 기울기가 필요하다고 배움

그림 9-2 기울기 소실 문제 발생!

- 기울기 소실(vanishing gradient) 문제가 발생하기 시작한 것은 활성화 함
 수로 사용된 시그모이드 함수의 특성 때문임
- 여러 층을 거칠수록 기울기가 사라져 가중치를 수정하기가 어려워지는 것임

그림 9-3 시그모이드의 미분

 이를 해결하고자 활성화 함수를 시그모이드가 아닌 여러 함수로 대체 하기 시작함

그림 9-4 여러 활성화 함수의 도입

- 하이퍼볼릭 탄젠트(tanh) 함수
 - 미분한 값의 범위가 함께 확장되는 효과를 가져옴
 - 다양한 여전히 1보다 작은 값이 존재하므로 기울기 소실 문제는 사 라지지 않음
- 렐루(ReLU) 함수
 - 시그모이드 함수의 대안으로 떠오르며 현재 가장 많이 사용되는 활성화 함수임
 - 여러 은닉층을 거치며 곱해지더라도 맨 처음 층까지 사라지지 않고 남아있을 수 있음
 - 이 간단한 방법이 여러 층을 쌓을 수 있게 했고, 이로써 딥러닝의
 발전에 속도가 붙게 됨

- 소프트플러스 (softplus) 함수
 - 이후 렐루의 0이 되는 순간을 완화

000

- 가중치를 업데이트하는 방법으로 우리는 경사 하강법을 배웠음
- 경사 하강법은 정확하게 가중치를 찾아가지만, 한 번 업데이트할 때마다 전체 데이터를 미분해야 하므로 계산량이 매우 많다는 단 점이 있음
- 이러한 점을 보완한 고급 경사 하강법이 등장하면서 딥러닝의 발
 전 속도는 더 빨라짐

확률적 경사 하강법

- 경사 하강법은 불필요하게 많은 계산량은 속도를 느리게 할 뿐 아니라,
 최적 해를 찾기 전에 최적화 과정이 멈출 수도 있음
- 경사 하강법의 이러한 단점을 보완한 방법
- 전체 데이터를 사용하는 것이 아니라, 랜덤하게 추출한 일부 데이터를
 사용함
- 일부 데이터를 사용하므로 더 빨리 그리고 자주 업데이트를 하는 것이 가능해짐

- 000
- 랜덤한 일부 데이터를 사용하는 만큼 확률적 경사 하강법은 중간 결과의 진폭이 크고 불안정해 보일 수도 있음
- 속도가 확연히 빠르면서도 최적 해에 근사한 값을 찾아낸다는 장점
 덕분에 경사 하강법의 대안으로 사용되고 있음

경사 하강법

확률적 경사 하강법

그림 9-5 경사 하강법과 확률적 경사 하강법의 비교

000

모멘텀

- 모멘텀(momentum)이란 단어는 '관성, 탄력, 가속도'라는 뜻
- 모멘텀 SGD란 말 그대로 경사 하강법에 탄력을 더해 주는 것
- 다시 말해서, 경사 하강법과 마찬가지로 매번 기울기를 구하지만, 이를 통해 오차를 수정하기 전 바로 앞 수정 값과 방향(+, -)을 참고하여 같 은 방향으로 일정한 비율만 수정되게 하는 방법
- 수정 방향이 양수(+) 방향으로 한 번, 음수(-) 방향으로한 번 지그재그로 일어나는 현상이 줄어들고, 이전 이동 값을 고려하여 일정 비율만큼
 만 효과를 낼 수 있음

확률적 경사 하강법

모멘텀을 적용한 확률적 경사 하강법

그림 9-6 모멘텀을 적용했을 때

고급 경사 하강법	개요	효과	케라스 사용법
확률적 경사 하강법	랜덤하게 추출한 일부 데이터를 사용해	속도 개선	keras.optimizers.SGD(lr = 0.1)
(SGD)	더 빨리, 자주 업데이트를 하게 하는 것		케라스 최적화 함수를 이용합니다.
모멘텀	관성의 방향을 고려해 진동과 폭을 줄이	정확도	keras.optimizers.SGD(lr = 0.1,
(Momentum)	는 효과	개선	momentum = 0.9)
(Morner llarit)		계신	모멘텀 계수를 추가합니다.
네스테로프 모멘텀 (NAG)	모멘텀이 이동시킬 방향으로 미리 이동해	정확도 개선	keras.optimizers.SGD(lr = 0.1,
	서 그레이디언트를 계산. 불필요한 이동		momentum = 0.9, nesterov = True)
	을 줄이는 효과		네스테로프 옵션을 추가합니다.
			keras.optimizers. $Adagrad(lr = 0.01)$
			epsilon = $1e - 6$)
			아다그라드 함수를 사용합니다.
아다그라드	변수의 업데이트가 잦으면 학 습률을 적게	보폭 크기	
(Adagrad)	하여 이동 보폭을 조절하는 방법	개선	※ 참고: 여기서 epsilon, rho, decay 같은
			파라미터는 바꾸지 않고 그대로 사용하기를
			권장하고 있습니다. 따라서 lr , 즉 learning
			rate(학습률) 값만 적절히 조절하면 됩니다.

○ ○ ○ 2 속도와 정확도 문제를 해결하는 고급 경사 하강법

0	0	0

고급 경사 하강법	개요	효과	케라스 사용법
알엠에스프롭 (RMSProp)	아다그라드의 보폭 민감도를 보완한 방법	보폭 크기 개선	keras.optimizers.RMSprop(lr = 0.001, rho = 0.9, epsilon = 1e - 08, decay = 0.0) 알엠에스프롭 함수를 사용합니다.
아담(Adam)	모멘텀과 알엠에스프롭 방법을 합친 방법	정확도와 보폭 크기 개선	keras.optimizers.Adam(lr = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e - 08, decay = 0.0) 아담 함수를 사용합니다.

표 9-1 딥러닝 구동에 사용되는 고급 경사 하강법 개요 및 활용법