University of Mumbai

B. Tech Computer Engineering (Semester VII and VIII) From Academic Year 2017-18

(KJSCE 2014)

K. J. Somaiya College of Engineering, Vidyavihar, Mumbai -77

(Autonomous College Affiliated to University of Mumbai)

Vision and Mission of Computer Engineering Department

Vision

To become a center of excellence in discipline of Computer Engineering for developing technically adept professionals with ethical and leadership qualities in service of society.

Mission

- Provide sound technical foundation in Computer Engineering through comprehensive curriculum and application oriented learning.
- Provide ambience for professional growth and lifelong learning for adapting to challenges in rapidly changing technology.
- Inculcate social and ethical values and leadership qualities.

Program Educational Objectives (PEOs)

A graduate of Computer Engineering will

- **PEO 1:** Solve problems in diverse fields using knowledge of Computer Engineering.
- **PEO 2:** Excel in professional career, exhibit leadership qualities with ethics &soft skills.
- **PEO 3:** Pursue higher education, research or entrepreneurship, engage in professional development, adapt to emerging technologies.

Program Outcomes (POs)

After successful completion of the program a Computer Engineering Graduate will be able to:

- **PO1-** Apply knowledge of mathematics, science and computer engineering fundamentals to the problems in computer systems.
- **PO2-** Formulate and analyze computer engineering problems.

- **PO3-**Design component(s) and module(s) (hardware/software) to develop solutions for computer engineering problems based on specifications and constraints.
- **PO4-** Design and conduct experiments as well as to analyze and interpret the data.
- **PO5-** Identify and apply modern tools to solve computer engineering problems.
- **PO6-** Know the responsibility towards societal, health, safety, legal and cultural problems.
- **PO7-** Understand the impact of computer engineering solutions on society and environment for sustainable development.
- **PO8-** Apply knowledge of computer engineering in profession with ethical responsibility.
- **PO9-** Function effectively as a leader or a member in diverse teams.
- PO10- Communicate effectively in professional community and society at large.
- **PO11-** Apply principles of engineering and management in projects as a member or leader of a team.
- **PO12-** Pursue lifelong learning as a means of enhancing the knowledge in the context of technological change

Program Specific Outcomes (PSO)

After successful completion of the program a Computer Engineering Graduate will be able to:

- Apply acquired skills of Information Systems, Networking, and Image processing in solving problems of varying complexities.
- Pursue higher studies in the field of Computer Science & Engineering and be employable in industries.

Semester VII (Computer Engineering) Credit Scheme

		Teachi	ng Schem	ne (Hrs.)		Credits Assigned				
Sub Code	Subject Name	Theory	Pract	Tutorial	Theory	TW/	Tutorial	Total		
		Theory	Truct	Tutoriur	Theory	Practical	Tutoriai	20002		
UCEC701	Cryptography & System Security	3	-		3	-		3		
UCEC702	Data warehousing & Mining	3	-	-	3	-	-	3		
UCEC703	Software Project Management	3	-	-	3	-	-	3		
UCEC704	Human Machine Interaction	3	-	-	3	-	-	3		
UCEE70 X	Elective - II	3	-	-	3	-	-	3		
UCEP701	Project-I		4			4		4		
UCEL701	Cryptography & System Security Laboratory	-	2	-	-	1	-	1		
UCEL702	Data warehousing & Mining Laboratory	-	2	-	-	1	-	1		
UCEL703	Software Project Management Laboratory	-	2	-	-	1	-	1		
UCEL704	Human Machine Interaction Laboratory	-	2	-	-	1	-	1		
UCEL70 X	Elective – II Laboratory	-	2	-	-	1	-	1		
Total	•	15	14	0	15	9	0	24		

	Elective II						
UCEE701	Advanced Compiler Design						
UCEE702	Soft Computing						
UCEE703	Internet of Things						
UCEE704	Computer Simulation and Modelling						
UCEE705	Image Analysis						
UCEE706	Social, Mobile, Analytics and Cloud						

Semester VII (Computer Engineering) Examination Scheme

		Examination Scheme								
Subject Code	Subject Name		Theory	Marks		Term	Pract.	Oral	Total	
		Test 1	Test 2	IA	ESE	Work	Tract.	Orai	Total	
UCEC701	Cryptography & System Security	15	15	10	60	-	-	-	100	
UCEC702	Data Warehousing & Mining	15	15	10	60	-	-	-	100	
UCEC703	Software Project Management	15	15	10	60	-	-	-	100	
UCEC704	Human Machine Interaction	15	15	10	60	-	-	-	100	
UCEE705	Elective - II	15	15	10	60	-	-	-	100	
UCEL701	Cryptography & System Security Laboratory	-	-	-	-	25	-	25	50	
UCEL702	Data Warehousing & Mining Laboratory	-	-	-	-	25	-	25	50	
UCEL703	Software Project Management Laboratory	-	-	-	-	25	-	25	50	
UCEL704	Human Machine Interaction Laboratory	-	-	-	-	25	-	25	50	
UCEL70X	Elective – II Laboratory	-	-	-	-	25	-	25	50	
UCEP701	Project - I					25		25	50	
Total		75	75	50	300	150	0	150	800	

Semester VIII (Computer Engineering) Credit Scheme

		Teachi	ng Schen	ne (Hrs.)	Credits Assigned				
Subject Code	Subject Name	Theor y	Pract	Tutoria l	Theor y	TW/ Practica	Tutoria l	Total	
UCEC801	Distributed & Cloud Computing	3	-	-	3	-	ı	3	
UCEC802	Software Testing & Quality Assurance	3	-	-	3	-	1	3	
UCEC803	Advance Internet Technology	3	-	-	3	-	-	3	
UCEE80 X	Elective -III	3	-	-	3	-	-	3	
UCEP801	Project -II	-	8	-	-	8	-	8	
UCEL801	Distributed & Cloud Computing Laboratory	-	2	-	-	1	-	1	
UCEL802	Software Testing & Quality Assurance Laboratory	-	2	-	ı	1	ı	1	
UCEL803	Advance Internet Technology Laboratory	-	2	-	-	1	-	1	
UCEL80 X	Elective –III Laboratory	-	2	-	-	1	-	1	
Total		12	16	0	12	12	-	24	

	Elective III							
UCEE801	Machine Learning							
UCEE802	Big Data Analytics							
UCEE803	Software Architecture							
UCEE804	Parallel Computing							
UCEE805	Cyber Security Technology and Crime							

Semester VIII (Computer Engineering) Examination Scheme

					Examina	tion Schen	ne		
Subject Code	Subject Name		Theory	Marks		Term	Pract.	Oral	Total
		Test 1	Test 2	IA	ESE	Work	1 Tact.	Oran	20002
UCEC801	Distributed & Cloud Computing	15	15	10	60	-	-	-	100
UCEC802	Software Testing & Quality Assurance	15	15	10	60	-	-	-	100
UCEC803	Advanced Internet Technologies	15	15	10	60	-	-	-	100
UCEE80 X	Elective -III	15	15	10	60	-	-	-	100
UCEP801	Project -II	-	-	-	-	50	-	50	100
UCEL801	Distributed & Cloud Computing Laboratory	-	-	-	-	25	-	25	50
UCEL802	Software Testing & Quality Assurance Laboratory	-	-	-	-	25	-	25	50
UCEL803	Advanced Internet Technologies Laboratory	-	-	-	-	25	-	25	50
UCEL80 X	Elective –III Laboratory	-	-	-	-	25	-	25	50
Total		60	60	40	240	150	0	150	700

Subject	Subject Name	Teaching Scheme			Credits Assigned			
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
UCEC701	Cryptography	03			03			03
	& System							
	Security							

Subject	Subject Name	Examination Scheme							
Code			Theor	y Marks		Term	Practical	Oral	Total
		Continuous Assessment End (CA) Sem.				Work			
			(CA)						
		Test 1	Test 2	IA	Exam				
UCEC701	Cryptography	15	15	10	60				100
	Cryptography & System								
	Security								

Course Outcome	After successful completion of the course students should be able to
CO1	Explain various security goals, threats, vulnerabilities and controls
CO2	Identify the principles of cryptographic techniques and Apply various cryptographic algorithms for securing systems
CO3	Apply Cryptographic Hash functions system security
CO4	Implement various Authentication mechanisms for Applications
CO5	Illustrate Secure software design principles and apply them for secure software development

Module No.	Unit No.	Details of Topic	Hrs.
Cryptograp	hy & Syster	n Security	
1		Introduction	4
	1.1	Security Attacks, Security Goals, Computer criminals, Methods of defense, Security Services, Security Mechanisms	
2		Basics of Cryptography and Modern Ciphers	11
	2.1	Traditional Symmetric Key cipher- Introduction, Substitution cipher, transposition ciphers, Stream and block ciphers, Other Cipher Properties- Confusion, Diffusion	
	2.2	Modern Block Ciphers, Modern Stream ciphers	
	2.3	Data Encryption Standard(DES), Strength of DES, Block Cipher Design Principles and Modes of Operations, Triple DES, Advance Encryption Standard- Transformations. Key expansion, AES cipher, Analysis of AES	
3		Public Key Cryptography	11
	3.1	Introduction, RSA cryptosystem, Rabin cryptosystem, Diffie Hellman	
	3.2	Message Integrity and Message Authentication Message integrity, Message authentication Cryptographic Hash Function –SHA-512, Tiger Hash Digital signatures – Comparison, Process, Services, attacks on Digital signature, Digital Signature Schemes, variations and Application, Entity Authentication- Passwords, Challenge Response System, Zero Knowledge, Biometrics	
	3.3	Key Management- Symmetric Key Distribution, Kerberos, Symmetric Key Agreement, Public Key Distribution, public Key infrastructure, X.509 certificates, hijacking	
	3.4	Security at Application Layer- PGP,S/MIME	
4		Program Security	7
	4.1	Description of a system, Users Trust and Trusted System, Buffer overflow, Format String Attacks and malicious Software, Malicious Programs, worms, Viruses, Phishing, Intrusion Detection System, Firewall: definitions, Construction and Working Principles	
5		Network Security	6
	5.1	Security at Transport Layer- SSL architecture, Four Protocols,	

	SSL Message formats, Transport Layer Security Security at Network Layer- Two modes, Two Security protocols, Security Association, Security Policy, Internet Key Exchange, ISAKMP Web Security and OWASP	
5.2	DoS, DDoS, Session Hijacking and Spoofing	
	Total	39

- 1. Behrouz A Fourouzan, Debdeep Mukhopadhyay, "Cryptography and Network", 2nd edition, TMH.
- 2. Bernard Menezes, "Network Security and Cryptography", 2nd edition, Cengage Learning..
- 3. William Stallings, "Cryptography and Network Security: Principles and Practice" 5th edition, , Pearson
- 4. Charles P. Pfleeger, "Security in Computing", Pearson Education
- 5. Matt Bishop, "Computer Security Art and Science", Addison-Wesley
- 6. V K Pachghare: Cryptography and Information Security, PHE ,2013.

Subject	Subject Name	Teaching Scheme			Credits Assigned			
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
UCEC702	Data	03			03			03
	Warehousing							
	and mining							

Subject	Subject Name		Examination Scheme						
Code			Theor	y Marks		Term	Practical	Oral	Total
		Contin	Continuous Assessment			Work			
			(CA)	ı	Sem.				
		Test 1	Test 2	IA	Exam				
UCEC702	Data	15	15	10	60				100
	Warehousing								
	and mining								

Course Outcome	After successful completion of the course students should be able to
CO1	Design a data warehouse for any organization
CO2	Apply Online Analytical Processing to extract knowledge from a data warehouse
CO3	Learn data mining techniques in integrating and interpreting data set.
CO4	Compare and contract different data mining algorithms

Module No.	Unit No.	Details of Topic	Hrs.
Data Ware	house and N	Mining	
1		DATA WAREHOUSING	8
		Data warehousing Components –Building a Data warehouse –-	
		Mapping the Data Warehouse to a Multiprocessor Architecture –	
		DBMS Schemas for Decision Support – Data Extraction, Cleanup,	
		and Transformation Tools –Metadata.	
2		BUSINESS ANALYSIS	6
		Reporting and Query tools and Applications – Tool Categories –	
		The Need for Applications – Cognos Impromptu – Online	
		Analytical Processing (OLAP) – Need –Multidimensional Data	
		Model – OLAP Guidelines – Multidimensional versus Multi	
		relational OLAP - Categories of Tools - OLAP Tools and the	
		Internet.	
3		Introduction to DATA MINING concepts	8
		What is Data Mining; Knowledge Discovery in Database (KDD),	
		What can be Data to be Mined, Related Concept to Data Mining,	
		Data Mining Technique, Application and Issues in Data Mining	
		Data Exploration: Types of Attributes; Statistical Description of	
		Data; Data Visualization; Measuring similarity and dissimilarity.	
		Data Preprocessing: Why Preprocessing? Data Cleaning; Data	
		Integration; Data Reduction: Attribute subset selection,	
		Histograms, Clustering and Sampling;	
		Data Transformation & Data Discretization: Normalization,	
		Binning, Histogram Analysis and Concept hierarchy generation. ASSOCIATION RULE MINING AND CLASSIFICATION	
4		ASSOCIATION RULE WIINING AND CLASSIFICATION	9
		Association Rule Mining: Market Basket Analysis, Frequent	
		Itemsets, Closed Itemsets, and Association Rules; Frequent	
		Pattern Mining, Efficient and Scalable Frequent Itemset Mining	
		Methods, The Apriori Algorithm for finding Frequent Itemsets	
		Using Candidate Generation, Generating Association Rules from	
		Frequent Itemsets, Improving the Efficiency of Apriori, A pattern	

	Total	39
	Applications and trends in Data Mining	
	Divisive, BIRCH), Density-Based Methods (DBSCAN, OPTICS)	
	Means, KMedoids) Hierarchical Methods(Agglomerative,	
	What is clustering? Types of data, Partitioning Methods (K-	
5	DATA MINING	8
-	CLUSTERING AND APPLICATIONS AND TRENDS IN	0
	Combining Classifiers: Bagging, Boosting, Random Forests.	
	Comparing Classifier performance using ROC Curves.	
	Holdout, Random Sampling, Cross Validation, Bootstrap;	
	Model Evaluation & Selection: Accuracy and Error measures,	
	Prediction: Structure of regression models; Simple linear regression, Multiple linear regression.	
	2. Bayesian Classification: Naïve Bayes' Classifier. Prodiction: Structure of regression models. Simple linear	
	pruning. 2. Povesion Classification: Neïve Poves' Classifier	
	1. Decision Tree Induction: Attribute Selection Measures, Tree	
	Classification Basic Concepts; Classification methods:	
	to Constraint-Based Association Mining.	
	Correlation Analysis, Pattern Evaluation Measures; Introduction	
	Multidimensional Association Rules; From Association Mining to	
	patterns; Introduction to Mining Multilevel Association Rules and	
	itemsets using vertical data formats; Mining closed and maximal	
	growth approach for mining Frequent Itemsets; Mining Frequent	

- 1. Alex Berson and Stephen J. Smith, "Data Warehousing, Data Mining & OLAP", Tata McGraw Hill Edition, Tenth Reprint 2007.
- 2. Jiawei Han and Micheline Kamber, "Data Mining Concepts and Techniques", Second Edition, Elsevier, 2007.
- 3. Paulraj Ponniah, "Data Warehousing: Fundamentals for IT Professionals", Wiley India
- 4. Reema Theraja "Data warehousing", Oxford University Press.
- 5. Pang-Ning Tan, Michael Steinbach and Vipin Kumar, "Introduction To Data Mining", Person Education, 2007.

Subject	Subject	Te	aching Sche	hing Scheme		Credits Assigned			
Code	Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
UCEC703	Software Project	03			03			03	
	Management								

Subject	Subject Name	Examination Scheme							
Code			Theor	y Marks		Term	Practical	Oral	Total
		Contin	Continuous Assessment (CA)			Work			
		Test 1	Test 2	IA	Exam				
UCEC703	Software Project Management	15	15	10	60				100

Course Outcome	After successful completion of the course students should be able to
CO1	Provide an overview of software project management and the project planning.
CO2	Evaluate and assess the projects and to estimate the project cost using cost benefit evaluation techniques.
CO3	Plan various project activities based on efforts and duration estimations by analyzing risks involved in it.
CO4	Monitor the progress of projects and to assess the risk of slippage so that project's requirements can be controlled.
CO5	Understand the selection of the most appropriate people for the project and the role of continuing training and learning, to improve group working and to select appropriate leadership styles.

Module No.	Unit No.	Details of Topic						
Software P	roject Mana	gement						
1		Software Project Management	4					
	1.1	Introduction, Categorization of Software Projects, Importance of Software Project Management,						
	1.2	2 Contract management and Technical Project management						
	1.3	Activities of Software Project Management						
	1.4	Management control, problems with Software projects						
2		Project Evaluation and Project planning	8					
	2.1	Strategic Programme management						
	2.2	Evaluation of Individual Project						
	2.3	Cost benefit analysis, Cash Flow Forecasting, Early start & late start, Crash cost.						
	2.4	2.4 Cost-benefit evaluation Techniques, Risk evaluation						
	2.5 Introduction to step-wise Project Planning							
3		Activity Planning and Risk Management	9					
	3.1	Objectives of Activity Planning, Project schedules, projects and activities						
	3.2	Sequencing and Scheduling Activities, Network Planning Models Forward Pass, Backward Pass, Identifying the critical path, AoA & AoN diagrams.						
	3.3	Activity Float ,Shortening Project Duration, Activity on Arrow Networks						
	3.4	Categories of Risks, Nature Of Risk, Types of Risk, Risk Identification, Risk Assessment, Risk planning and control, Risk management, Evaluating risk to schedule, PERT technique.						
4		Project Monitoring and control	9					
	4.1	Introduction, Creating Framework ,Collecting The Data						
	4.2	Visualizing Progress, Cost Monitoring, Earned Value						
	4.3	Prioritizing Monitoring ,Getting Project Back To Target, Change						

		Control	
	4.4	Introduction, Types Of Contract, stages in contract placement, typical terms in contract.	
	4.5	Managing Contracts and acceptance.	
5		Team Organization and People Management	9
	5.1	Introduction, Understanding Behavior, Organizational Behavior	
	5.2	Selecting The Right Person for The Job, Instruction In The Best Methods, Motivation.	
	5.3	The Oldham-Hackman job Characteristics Model, Working in Groups, Becoming A Team	
	5.4	Decision Making, Leadership	
	5.5	Organizational Structures	
	5.6	Stress, Health and Safety	
Total	1	1	39

- 1. Bob Hughes, Mike cotterell, Rajib Mall "Software Project Management", fifth Edition, Tata McGraw Hill, Special Indian Edition
- 2. Ramesh, Gopalaswamy, "Managing Global Projects", Tata McGraw Hill, 2001.
- 3. Royce, "Software Project Management", Pearson Education, 1999.
- **4.** Project Management Institute: "A Guide to the Project Management Body of Knowledge (PMBOK Guide)" 5^{th} Edition Project Management Institute.
- 5. John Nicholas, Herman Steyn, "Project Management for Business Engineering and Technology" 4th Edition.

Subject	Subject Name	Te	aching Sche	eme	Credits Assigned			
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
UCEC70	Human	03			03			03
4	Machine							
	Interaction							

Subject	Subject Name		Examination Scheme						
Code			Theor	y Marks		Term	Practical	Oral	Total
		Continuous Assessment (CA)			End Sem.	Work			
		Test 1	Test 2	IA	Exam				
UCEC704	Human	15	15	10	60				100
	Machine								
	Interaction								

Course Outcome	After successful completion of the course students should be able to
CO1	Design user centric interfaces
CO2	Design innovative and user friendly interfaces
CO3	Apply HMI in their day-to-day activities
CO4	Perform critical analysis of existing interface designs, and improve them.
CO5	Design application for social and technical task

Module No.	Unit No.	Details of Topic	Hrs.
Human M	achine Inter	action	
1		Introduction:	6
	1.1	Introduction to Human Machine Interface, Hardware, software and operating environment to use HMI in various fields.	
	1.2	The psychopathology of everyday things – complexity of modern devices; human-centered design; fundamental principles of interaction; Psychology of everyday actions- how people do things;	
	1.3	The seven stages of action and three levels of processing; human error	
2		Understanding Designs – Goal Directed & Guidelines	12
		Goal directed design; Implementation models and mental models;	
	2.1	Beginners, experts and intermediates – designing for different experience levels;	
	2.2	Understanding users; Modeling users – personas and goals.	
	2.3	Perception, Getsalt principles, visual structure, reading is unnatural, color, vision, memory, six behavioral patterns, recognition and recall, learning, factors affecting learning, time.	
3		GUI:	4
	3.1	benefits of a good UI; popularity of graphics; concept of direct manipulation; advantages and disadvantages	
	3.2	characteristics of GUI; characteristics of Web UI; General design principles	
4		Interaction Styles and Communication	14
	4.1	Menus, Windows	
	4.2	Device based controls, Screen based controls	
	4.3	Text messages, feedback and guidance	
	4.4	Graphics, icons and images	
	4.5	Colors	
5		Past and future of HMI	3
	5.1	Perceptual interfaces, context-awareness and perception	
		Total	39

- 1. Wilbert O. Galitz, "The Essential Guide to User Interface Design", Wiley publication.
- 2. Alan Cooper, Robert Reimann, David Cronin, "About Face3: Essentials of Interaction design", Wiley publication.
- 3. Donald A. Normann, "Design of everyday things", Basic Books; Reprint edition 2002
- 4. Rogers Sharp Preece, "Interaction Design: Beyond Human Computer Interaction", Wiley

Subject	Subject Name	Te	aching Sche	eme	Credits Assigned			
Code		Theory	Practical	Tutorial	Theory Practical Tutorial Tot			
UCEE701	Advanced Compiler Design	03			03	-		03

Subject	Subject Name		Examination Scheme						
Code			Theor	y Marks		Term	Practical	Oral	Total
		Continu	uous Asse	essment	End	Work			
			(CA)		Sem.				
		Test 1	Test 2	IA	Exam				
UCEE701	Advanced Compiler Design	15	15	10	60				100

Course Outcome	After successful completion of the course students should be able to
CO1	Study phases of compiler and illustrate different parsing techniques
CO2	Illustrate different intermediate code generation techniques
CO3	Apply optimization techniques
CO4	Explain issues in Code Generation

Module No.	Unit No.	Details of Topic	Hrs.
Advanced	Compiler De	esign	
1.0		Source Program Analysis	08
		Analysis of source program, Phases of compiler, Grouping of	
		Phases, Compiler construction Tools, Lexical Analysis, Language	
		for Lexical Analyzer, Role of parser, Context free Grammars,	
		Writing a grammars, Predictive Parser LR Parser	
2.0		Intermediate Code Generation	07
		Intermediate Language, Declarations, Assignment statements,	
		Boolean Expressions, Case Statements, Back Patching, Procedure	
		calls	
3.0		Basic Optimization	08
		Constant Expression Evaluation, Scalar Replacement of	
		Aggregates, Algebraic simplifications and Re association, Value	
		Number, Copy Propagation, Common Sub expression	
		Elimination, Loop invariant Code motion, Partial Redundancy	
		Elimination, Redundancy Elimination and Re association, Code	
		Hoisting, Induction Variable optimization, Unnecessary Bounds	
		Checking Elimination	
4.0		Procedure Optimization and Register Allocation	08
		Tail call optimization and Tail Recursion Elimination, Procedure	
		Integration, Inline Expansion, Leaf Routine optimization and	
		shrink wrapping, Register allocation and assignment, Graph	
		coloring, Unreachable Code Elimination, Straightening If	
		simplifications, Loop Simplifications, Loop inversion, Un	
		switching, Branch optimizations, Tail merging or cross jumping,	
		Conditional moves, Dead code Elimination, Branch Prediction,	
- •		Machine Idioms and Instruction combining	
5.0		Code Generation	08
		Issues in the Design of code generator, The Target Machine,	
		Runtime Storage management, Next use information, A simple	
		code generator, DAG Representation of Basic Blocks, Peephole	
		Optimization, Generating code from DAG's	20
	1	Total	39

- 1. "Compliers Principles, Techniques and Tools" Alferd V. Aho, Ravi Sethi, Jeffrey D. Ullman, Pearson Education.
- 2. "Advanced Complier Design Implimentation", Steven S. Muchnick, Academic Press.
- 3. "Engineering a Compiler", Cooper & Torczon, Elsevier.
- 4. "Compiler Construction: Principles and Practice", K.C. Louden, Cengage.

Subject	Subject	Te	aching Sche	me	Credits Assigned			
Code	Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
UCEE702	Soft	03			03			03
	Computing							

Subject	Subject			E	xamination	Scheme			
Code	Name		Theor	y Marks		Term	Practical	Oral	Total
		Contin	uous Asso	essment	End	Work			
			(CA)						
		Test 1	Test 2	IA	Exam				
UCEE702	Soft	15	15	10	60				100
	Computing								

Course Outcome	After successful completion of the course students should be able to
CO1	Explain the learning and adaptation capability of neural and fuzzy systems.
CO2	Design, analyze and solve problems using various Supervised & Unsupervised Neural Learning Algorithms.
CO3	Conceptualize fuzzy logic and apply the rules of fuzzy logic for fuzzy control.
CO4	Model hybrid systems using Neuro Fuzzy modeling & deep learning.

Module No.	Unit No.	Details of Topic	Hrs.
Soft Com	puting		
1		Supervised learning Neural Networks:	10
	1.1	Introduction to soft computing, overview of techniques in soft computing, applications.	
	1.2	Fundamental Concepts and Models of Artificial Neural Systems, Neural Network Learning Rules and Comparison. Linearly and Non-Linearly Separable Pattern Classification.	
	1.3	Multilayer Feedforward Network: Delta Learning Rule for Multiperceptron Layer, Adaline networks.	
	1.4	Error Back-propagation Training algorithm.	
2		Unsupervised learning Neural Networks:	10
	2.1	Associative Memory: Hopfield Network, Bidirectional Associative Memory, Radial basis function networks.	
	2.2	Introduction, competitive learning, Kohonen self-organizing feature maps.	
	2.3	Learning vector quantization, SPD, Basic ART network.	
3		Fuzzy Set Theory:	08
	3.1	Fuzzy Logic: Introduction to Fuzzy Logic, Classical and Fuzzy Sets: Overview of Classical Sets	
	3.2	Operations on Fuzzy & Classical Sets: Compliment, Intersections, Unions, Combinations of Operations, properties.	
	3.3	Classical relation & fuzzy relation: Cardinality operations, property and composition. Fuzzy arithmetic and extension principle.	
4		Fuzzy systems:	06
	4.1	Fuzzification: Definition, development of membership function.	
	4.2	De – Fuzzification: Introduction, Lambda Cut, defuzzification methods and fuzzy rule based systems (Mamdani & Sugeno model).	
5		Hybrid systems & introduction to deep learning:	05
	5.1	Fuzzy-Neural Systems, Neuro-Genetic Systems, Fuzzy-Genetic Systems,	
	5.2	Deep Learning: Definition & background, historical Context of deep learning, Three classes of deep learning network.	
		Total	39

- 1) S. N. Sivanandam and S. N. Deepa, "Principles of Soft Computing," 2nd ed. Wiley India
- 2) J.S.R.Jang "Neuro-Fuzzy and Soft Computing" PHI 2003.
- 3) Jacek M. Zurada, "Introduction to Artificial Neural Systems," Jaico Publishing House.
- 4) Timothy J. Ross, "Fuzzy Logic with Engineering Applications," 3rd ed. Wiley India.
- 5) Haykin, Simon. Neural Networks and Learning Machines, Pearson Higher Education.
- 6) Adaptive Business Intelligence by Zbigniew Michalewicz, Martin Schmidt, Matthew Michalewicz, Constantin Chiriac "Adaptive Business Intelligence" by Springer Publication.

Subject	Subject	Teaching Scheme				Credits A	ssigned	
Code	Name	Theory	Theory Practical Tutorial Theory Practical Tutoria					Total
UCEE703	Internet of	03			03			03
	Things							

Subject	Subject Name			E	xamination	Scheme			
Code			Theor	y Marks		Term	Practical	Oral	Total
		Continu	uous Asso	essment	End	Work			
			(CA)						
		Test 1	Test 2	IA	Exam				
UCEE703	Internet of Things	15	15	10	60				100

Course Outcome	After successful completion of the course students should be able to
CO1	Interpret the Internet of Things concepts and challenges
CO2	Evaluate the software for IoT Technologies.
CO3	Study Hardware Platforms used in IoT
CO4	Design small IoT applications

Module No.	Unit	Details of Topic	Hrs.
	No.		
Internet of Th	ings		
1		Introduction to Internet of Things	04
	1.1	Physical Design	
	1.2	Logical Design	
	1.3.	IoT Enabling Technologies	
2		Domain Specific IoTs	08
	2.1	Home Automation.	
	2.2	Environment, Energy	
	2.3	Retail & Logistics	
	2.4	Health & Life Style	
3		IoT & M2M	06
	3.1	Difference Between IoT & M2M	
	3.2	SDN & NFV for IoT	
4		IoT Physical Devices	10
	4.1	Basic Arduino Programming	
	4.2	Extended Arduino Libraries,	
	4.3	Arduino – Based Internet Communication,	
	4.4	Raspberry PI	
	4.5	Sensors and Interfacing.	
5		IoT design Methodology	07
	5.1	Generic Design Methodology	
	5.2	Application Development Steps	
6		Case Study	04
		Agriculture	
		Industrial Application	
		Cities	
		Total	39

- 1. Arshdeep Bahga, Vijay Madisetti, "Internet of Things, A Hands-on Approach", University Press
- 2. Samuel Greengard., "The Internet of Things", MIT Press
- 3. Marco Schwartz, "Arduino Home Automation Projects" Packt Publishing Limited
- 4. Adrian Mcewen, Hakin Cassimally, "Designing The Internet of Things", Wiley

Subject Code	Subject Name	Teaching Scheme				Credits Assigned			
		Theory	Practic	Tutorial	Theory	Practical	Tutorial	Total	
			al						
UCEE704	Computer	03			03			03	
	Simulation &								
	Modeling								

Subject	Subject Name	Examination Scheme								
Code	Code		Theory Marks				Practical	Oral	Total	
			Continuous Assessment (CA)			Work				
		Test 1	Test 2	IA	Exam					
UCEE704	Computer	15	15	10	60				100	
	Simulation &									
	Modeling									

Course Outcom	After successful completion of the course students should be able to
e	
CO1	Understand basic concepts of simulation and modeling.
CO2	Use various statistical methods and queuing in simulation and modeling.
CO3	Generate random numbers, random variates and apply various random number testing techniques.
CO4	Analyze the systems for input modeling, output analysis and validation.

Modul e No.	Unit No.	Details of Topic	Hrs
1		Introduction to Simulation, Simulation Examples & general principles	10
	1.1	Introduction to Simulation: advantages, disadvantages, types of models & steps in simulation study.	
	1.2	Simulation Examples: Manual Simulation: Queuing and Inventory problems	
	1.3	General Principles: Event Scheduling Algorithm/Time advance algorithm, Simulation using time advance algorithm.	
2		Statistical & Queuing Models	10
	2.1	Statistical Models in simulation: Discrete and Continuous Distributions.	
	2.2	Queuing Models: M/G/1, M/M/1	
3		Random Number Generation	10
	3.1	Random Number Generation Techniques	
	3.2	Testing random numbers: Chi square, K-S, Runs up and Down test.	
	3.3	Random Variate Generation: Inverse transform technique, Convolution Method & Acceptance-Rejection Technique	
4		Analysis of simulation data	06
	4.1	Input Modeling, Verification, Calibration and Validation of Simulation. Models.	
	4.2	Estimation of absolute performance, Output Analysis Concepts	
5		Applications of Simulation, Case Study of Simulated systems	03
	<u> </u>	Total	39

- 1. Jerry Banks, John Carson, Barry Nelson, and David M. Nicol, "Discrete Event System Simulation"; Third Edition, Prentice-Hall.
- 2. Averill M Law, "System Modeling & Analysis"; 4th Edition TMH.
- 3. Banks C M, Sokolowski J A, "Principles of Modeling and Simulation", Wiley
- 4. Geoffrey Gordon, "System Simulation", EEE
- 5. Narsing Deo, "System Simulation with Digital Computer", PHI

Subject	Subject Name	Teaching Scheme			Credits Assigned				
Code		Theory	Practical	Tutoria	Theory	Practical	Tutorial	Total	
UCEE705	Image Analysis	03	-		03	-	-	03	

Subject	Subject	Examination Scheme								
Code	Name	Theory Marks				Term	Practical	Oral	Total	
		Ir	Internal assessment			Work				
		Test 1	Test 2	Assignment/Qu iz/Presentation	Sem. Exam					
UCEE705	Image Analysis	15	15	10	60	-	-	-	100	

Course Outcom	After successful completion of the course students should be able to
e	
CO1	Explain Image processing system
CO2	Illustrate the importance of Image Analysis.
CO3	Analyze different methods of Feature generation, Representation Description
CO4	Use the methods of image analysis for various Image Processing Applications

Module No.	Unit No.	Details of Topic	Hrs.
1		Introduction to Image Processing System	10
	1.1	Introduction, Elements of Image Processing System Image Modelling – Sampling, Quantization and Representing Digital Images.	
	1.2	Image Preprocessing – Enhancement : Power Law Transformation, Contrast Stretching and Histogram Equalization,	
	1.3	Smoothing, Sharpening., Spatial domain Filters	
	1.4	Morphological Image Processing: Dilation and Erosion, Opening and Closing, The Hit-or-Miss Transformation	
2		Feature Generation & Image Analysis	9
	2.1	Edge Detection operators :Sobel,prewitt and other edge detection operators.	
	2.2	Image Segmentation: Thresholding, Edge based and Region Based Segmentation.	
	2.3	Boundary Extraction, Feature Extraction, Spatial Feature Extraction and Transform Feature Extraction.	
3		Image Representation and Description	9
	3.1	Boundary Representation : Chain codes ,Fourier descriptors Region Representation :Run length codes	
	3.2	Structure Representation : Morphological Processing and transforms Moments Representation : Moment matching	
	3.3	Shape Representation :geometry features, moment based features Texture Representation: statistical, structure approach	
4		Statistical decision making and Vector Quantization	7
	4.1	Statistical decision making: Bayesian theorem	

		4.2	Multiple features Vector Quantization			
	5		Case study: Medical image processing, fingerprint		4	1
Γ				Total	39	1

- 1. Fundamentals of Digital Image Processing Anil K. Jain, PHI
- 2. Digital Image Processing An Algorithm Approach, Madhuri A. Joshi, PHI
- 3. Digital Image Processing ,Second Edition, Rafael C. Gonzalez and Richard E. Woods, Pearson Prentice Hall,
- 4. Pattern recognition and Image analysis by Earl Gose, Richard Johnsonbaugh, Steve Jost, PHI publication

Subject	Subject Name	Te	aching Sche	eme	Credits Assigned				
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
UCEE706	Social,	03			03			03	
	Mobile,								
	Analytics and								
	Cloud								

Subject	Subject Name			E	xamination	Scheme			
Code			Theory Marks				Practical	Oral	Total
		Continuous Assessment End				Work			
		(CA)			Sem.				
		Test 1	Test 2	IA	Exam				
UCEE706	Social, Mobile,	15	15	10	60				100
	Analytics and								
	Cloud								

Course Outcome	After successful completion of the course students should be able to
CO1	Explain fundamentals of SMAC and pillars of SMAC
CO2	Describe benefits, challenges and key enterprise trends in mobile arena.
CO3	Explain the purpose of analytics and big data
CO4	Explain regarding cloud computing structure, cloud service types, security in cloud and clouds benefits to market.
CO5	Describe in detail SMAC implementation with flexible integration model

Module No.	Unit No.	Details of Topic	Hrs.
Social Me	edia Analy	tics and Cloud	
1		Introduction to SMAC and Social:	6
	1.1	What is SMAC convergence; SMAC stack and market impact SMAC impact on digital channel, Pillars of SMAC	
	1.2	Social media and its impact	
	1.3	Social media in regions	
	1.4	Reasons of social media use	
	1.5	Social media benefits for business	
	1.6	Enterprise social media application market	
	1.7	social media strategy framework	
	1.8		
	1.9	Social CRM	
2		Mobile:	8
	2.1	Mobile devices and its limitations	
	2.2	Mobile subscriber and data traffic	
	2.3	Mobile penetration	
	2.4	Enterprise mobile market	
	2.5	Benefits of enterprise mobility	
	2.6	Key enterprise trends in mobile arena	
	2.7	Key industry challenges imposed by mobile trends	
	2.8	Mobile maturity	
	2.9	Mobile within the SMAC stack	
3		Analytics and Big Data:	10
	3.1	Introduction to Big Data Platform	
	3.2	Challenges of Conventional Systems	
	3.3	Intelligent data analysis	
	3.4	Nature of Data	
	3.5	Analytic Processes and Tools	
	3.6	Analysis v/s Reporting	
	3.7	Modern Data Analytic Tools	
	3.8	Big data market	
	3.9	Big data framework and ecosystem data sources	
	3.10	Big data implication to business	

	3.11	Implementation model							
	3.12	Big data purpose							
	3.13	Analytics in e-commerce							
	3.14	SoLoMo analytics							
	3.15	Business analytics expectations							
	3.16	Social Media Analytics							
	3.17	Google Analytics							
	3.18	SEO							
4		Cloud	7						
	4.1	Cloud computing structure							
	4.2	Deployment model							
	4.3	Cloud computing service types							
	4.4	Data Governance							
	4.5	Data Security							
	4.6	4.6 Application Security							
	4.7	cloud service benefits							
	4.8	cloud computing market							
	4.9	Types of cloud service							
	4.10	Growth drivers							
5		Growth drivers SMAC implementation roadmap	8						
5	4.10	Growth drivers SMAC implementation roadmap Develop an open IT structure and multichannel platform	8						
5		Growth drivers SMAC implementation roadmap Develop an open IT structure and multichannel platform Open architecture	8						
5	5.1	Growth drivers SMAC implementation roadmap Develop an open IT structure and multichannel platform Open architecture Multichannel platform	8						
5		Growth drivers SMAC implementation roadmap Develop an open IT structure and multichannel platform Open architecture	8						
5	5.1	Growth drivers SMAC implementation roadmap Develop an open IT structure and multichannel platform Open architecture Multichannel platform Cloud should be on the core Allow open mobile access	8						
5	5.1	Growth drivers SMAC implementation roadmap Develop an open IT structure and multichannel platform Open architecture Multichannel platform Cloud should be on the core Allow open mobile access Mobile application development and connectivity	8						
5	5.1 5.2 5.3	Growth drivers SMAC implementation roadmap Develop an open IT structure and multichannel platform Open architecture Multichannel platform Cloud should be on the core Allow open mobile access Mobile application development and connectivity Mobile analytics	8						
5	5.1 5.2 5.3	Growth drivers SMAC implementation roadmap Develop an open IT structure and multichannel platform Open architecture Multichannel platform Cloud should be on the core Allow open mobile access Mobile application development and connectivity Mobile analytics Encourage social interaction	8						
5	5.1 5.2 5.3	Growth drivers SMAC implementation roadmap Develop an open IT structure and multichannel platform Open architecture Multichannel platform Cloud should be on the core Allow open mobile access Mobile application development and connectivity Mobile analytics Encourage social interaction Use analytics for insight and business decision	8						
5	5.1 5.2 5.3 5.4 5.5	SMAC implementation roadmap Develop an open IT structure and multichannel platform Open architecture Multichannel platform Cloud should be on the core Allow open mobile access Mobile application development and connectivity Mobile analytics Encourage social interaction Use analytics for insight and business decision Cloud-based deployment	8						
5	5.1 5.2 5.3	SMAC implementation roadmap Develop an open IT structure and multichannel platform Open architecture Multichannel platform Cloud should be on the core Allow open mobile access Mobile application development and connectivity Mobile analytics Encourage social interaction Use analytics for insight and business decision Cloud-based deployment Ensure devOps culture for faster innovation	8						
5	5.1 5.2 5.3 5.4 5.5	Growth drivers SMAC implementation roadmap Develop an open IT structure and multichannel platform Open architecture Multichannel platform Cloud should be on the core Allow open mobile access Mobile application development and connectivity Mobile analytics Encourage social interaction Use analytics for insight and business decision Cloud-based deployment Ensure devOps culture for faster innovation DevOps architecture	8						
5	5.1 5.2 5.3 5.4 5.5	SMAC implementation roadmap Develop an open IT structure and multichannel platform Open architecture Multichannel platform Cloud should be on the core Allow open mobile access Mobile application development and connectivity Mobile analytics Encourage social interaction Use analytics for insight and business decision Cloud-based deployment Ensure devOps culture for faster innovation DevOps architecture DevOps tool chain	8						
5	5.1 5.2 5.3 5.4 5.5	Growth drivers SMAC implementation roadmap Develop an open IT structure and multichannel platform Open architecture Multichannel platform Cloud should be on the core Allow open mobile access Mobile application development and connectivity Mobile analytics Encourage social interaction Use analytics for insight and business decision Cloud-based deployment Ensure devOps culture for faster innovation DevOps architecture	8						

5.8	SMAC success case studies	
	Total	39

- 1. Dan Zarrella: The Social Media Marketing Book: 2010 edition, O'Reilly Media.
- 2. Ganis/Kohirkar, Social Media Analytics, First Edition, 2016, Pearson Education India
- 3. Rajkamal: Mobile computing, Oxford University Press, 2007 edition.
- 4. John W. Rittinghouse, James F. Ransome: Cloud Computing: Implementation, Management, and Security, CRC Press Taylor & Francis Group, 2010
- 5. Michael Minelli (Author), Michele Chambers (Author), Ambiga Dhiraj (Author), Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Businesses, Wiley Publications, 2013

Subject	Subject Name	Te	aching Sche	eme	Credits Assigned				
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
UCEL701	Cryptography		02			01		01	
	& System								
	Security								
	Laboratory								

Subject	Subject Name		Examination Scheme								
Code			Theory Marks				Practical	Oral	Total		
		Continuous Assessment			End	Work	and				
		(CA)			Sem.		Oral				
		Test 1	Test 2	IA	Exam						
UCEL701	Cryptography					25		25	50		
	Cryptography & System										
	Security										
	Laboratory										

Term work should consist of practical experiments and assignments based on the syllabus of the course UCEC701 Cryptography & System Security

Term work assessment will be based on the overall performance of the student during practical with every experiment graded from time to time. The grades converted into marks as per Grade Table will be added and averaged as final TW marks.

The Oral examination will be based on UCEC701 Cryptography & System Security and UCEL701 Cryptography & System Security Laboratory.

Subject	Subject Name	Te	aching Sche	me	Credits Assigned				
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
UCEL70	Data		02			01		01	
2	Warehousing								
	and Data								
	mining								
	Laboratory								

Subject	Subject Name		Examination Scheme							
Code			Theory Marks				Practical	Oral	Total	
		Continuous Assessment End			Work	and				
		(CA)			Sem.		Oral			
		Test 1	Test 2	IA	Exam					
UCEL702	Data					25	25		50	
	Warehousing									
	and mining									
	Laboratory									

Term work should consist of practical experiments and assignments based on the syllabus of the course UCEC702 Data Warehousing and mining.

Term work assessment will be based on the overall performance of the student during practical with every experiment graded from time to time. The grades converted into marks as per Grade Table will be added and averaged as final TW marks.

The oral examination will be based on UCEC702 Data Warehousing and mining and UCEL702 Data Warehousing and mining Laboratory.

Subject	Subject Name	Te	aching Sche	me	Credits Assigned				
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
UCEL703	Software Project Management Laboratory		02			01		01	

Subject	Subject Name		Examination Scheme Theory Marks Term Practical Oral Total							
Code			Theory Marks				Practical	Oral	Total	
		Continuous Assessment End			End	Work	and			
		(CA)			Sem.		Oral			
		Test 1	Test 2	IA	Exam					
UCEL703	Software Project Management Laboratory			-1-		25		25	50	

Term work should consist of practical experiments and assignments based on the syllabus of the course UCEC703 Software Project Management.

Term work assessment will be based on the overall performance of the student during practical with every experiment graded from time to time. The grades converted into marks as per Grade Table will be added and averaged as final TW marks.

The oral examination will be based on UCEC703 Software Project Management and UCEL703 Software Project Management Laboratory.

Subject	Subject Name	Teaching Scheme			Credits Assigned				
Code		Theory	Practical	Tutorial	al Theory Practical Tutorial				
UCEL704	Human		02			01		01	
	Machine								
	Interaction								
	Laboratory								

Subject	Subject Name		Examination Scheme						
Code		Theory Marks				Term	Practical	Oral	Total
		Continuous Assessment			End	Work	and		
		(CA)			Sem.		Oral		
		Test 1	Test 2	IA	Exam				
UCEL704	Human					25		25	50
	Machine								
	Interaction								
	Laboratory								

Term work should consist of practical experiments and assignments based on the syllabus of the course **UCEC704 Human Machine Interaction.**

Term work assessment will be based on the overall performance of the student during practical with every experiment graded from time to time. The grades converted into marks as per Grade Table will be added and averaged as final TW marks.

The oral examination will be based on UCEC704 Human Machine Interaction and UCEL704 Human Machine Interaction Laboratory.

Subject	Subject Name	Te	aching Sche	eme	Credits Assigned				
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
UCEL70	Elective –II		02			01		01	
X	Laboratory								

Subject	Subject Name	Examination Scheme							
Code		Theory Marks				Term	Practical	Oral	Total
		Continuous Assessment			End	Work	and		
		(CA)			Sem.		Oral		
		Test 1	Test 2	IA	Exam				
UCEL70X	Elective –II					25		25	50
	Laboratory								

Term work should consist of practical experiments based on the syllabus of the **concerned Elective Course.**

Term work assessment will be based on the overall performance of the student during practical with every experiment graded from time to time. The grades converted into marks as per Grade Table will be added and averaged as final TW marks.

The Oral examination will be based on Laboratory and Theory course of respective Elective

	Elective II
UCEE701	Advanced Compiler Design
UCEE702	Soft Computing
UCEE703	Internet of Things
UCEE704	Computer Simulation and Modelling
UCEE705	Image Analysis
UCEE706	Social, Mobile, Analytics and Cloud

Subject	Subject Name	Teaching Scheme			Credits Assigned			
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
UCEC801	Distributed &	03			03			03
	Cloud							
	Computing							

Subject	Subject Name		Examination Scheme							
Code			Theor	y Marks		Term	Practical	Oral	Total	
		Continuous Assessment End				Work				
		(CA)			Sem.					
		Test 1	Test 2	IA	Exam					
UCEC801	Distributed &	15	15	10	60				100	
	Cloud									
	Computing									

Course Outcome	After successful completion of the course students should be able to
CO1	Identify the principles and concepts in parallel and distributed computing systems
CO2	Describe Scalable Parallel Computing architectures
CO3	Classify virtualization in to its various forms
CO4	Demonstrate use of various Cloud Platform Architectures
CO5	Explore different types of architectures for Distributed computing

Module No.	Unit No.	Details of Topic	Hrs.
Distributed	& Cloud Co	omputing	
1		Distributed System Models and Enabling Technologies	07
	1.1	Scalable Computing Over the Internet, Technologies for Network-Based Systems, System Models for Distributed and Cloud Computing, Software Environments for Distributed Systems and Clouds, Performance, Security, and Energy Efficiency	
2		Computer Clusters for Scalable Parallel Computing	07
		Clustering for Massive Parallelism, Computer Clusters and MPP	
	2.1	Architectures, Design Principles of Computer Clusters, Cluster	
		Job and Resource Management	
3		Virtual Machines and Virtualization of Clusters and Data Centers	08
	3.1	Implementation Levels of Virtualization, Virtualization Structures/Tools and Mechanisms, Virtualization of CPU, Memory, and I/O Devices, Virtual Clusters and Resource Management, Virtualization for Data-Center Automation	
4		Cloud Platform Architecture over Virtualized Data Centers	08
	4.1	Cloud Computing and Service Models, Data-Center Design and Interconnection Networks, Architectural Design of Compute and Storage Clouds, Public Cloud Platforms: GAE, AWS, and Azure, Inter-cloud Resource Management, Cloud Security and Trust Management	
5		Service-Oriented Architectures for Distributed Computing	09
	5.1	Services and Service-Oriented Architecture, Message-Oriented Middleware, Portals and Science Gateways, Discovery, Registries, Metadata, and Databases, Workflow in Service-Oriented Architectures	
		Total	39

- 1. Kai Hwang, Jack Dongarra, Geoffrey C. Fox , Distributed and Cloud Computing: From Parallel Processing to the Internet of Things, 1st Edition, Morgan Kaufmann Publishers Inc.
- 2. Rajkumar Buyya, James Broberg, Andrzej Goscinski: Cloud Computing Principles and Paradigms, Willey 2014.
- 3. John W Rittinghouse, James F Ransome: Cloud Computing Implementation, Management and Security, CRC Press 2013
- 4. Dan C Marinescu: Cloud Computing Theory and Practice. Elsevier (MK) 2013

Subject	Subject Name	Teaching Scheme			Credits Assigned			
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
UCEC802	Software	03			03			03
	Testing &							
	Quality							
	Assurance							

Subject	Subject Name		Examination Scheme						
Code			Theory Marks				Practical	Oral	Total
		Contin	Continuous Assessment (CA)			Work			
		Test 1	Test 2	IA	Exam				
UCEC802	Software Testing & Quality Assurance	15	15	10	60				100

Course Outcome	After successful completion of the course students should be able to
CO1	Explore the fundamentals of testing.
CO2	Describe the various levels of testing and their use in designing of various test cases.
CO3	Model various test cases for real life applications.
CO4	Outline software quality concepts.
CO5	Identify software quality assurance goals and standards.

Module No.	Unit No.	Details of Topic	Hrs.
1		Fundamentals of Testing:	5
		Human and errors, Testing and Debugging, Software Quality,	
		Requirement Behavior and Correctness, Fundamentals of Test	
		Process, Psychology of Testing, General Principles of Testing,	
		The Tester's Role in a Software Development Organization,	
		Origins of Defects, Defect Classes, The Defect Repository and	
		Test Design, Defect Examples	
2		Levels of Testing:	8
		The Need for Levels of Testing, Unit Test, Unit Test Planning,	
		Designing the Unit Tests. The Class as a Testable Unit, The Test	
		Harness, Running the Unit tests and Recording results, Integration	
		tests, Designing Integration Tests, Integration Test Planning,	
		System Test – The Different Types, Regression Testing, Alpha,	
		Beta and Acceptance Tests	
3		Test Case Design and Implementation:	10
		Introduction to Testing Design Strategies, Test Case Design	
		Strategies, Using Black Box Approach to Test Case Design,	
		Random Testing, Equivalence Class Partitioning, Boundary Value	
		Analysis, Other Black box Test Design Approaches, Using White-	
		Box Approach to Test design, Coverage and Control Flow Graphs,	
4		Covering Code Logic, Additional White Box Test Design.	0
4		Quality Concepts Introduction to software quality, definition of software quality,	8
		quality dimensions and factors, cost, risks, security. Achieving	
		software quality: Software Engineering Methods, Project	
		Management Techniques, Quality Control, Quality Assurance	
5		Software Quality Assurance	8
<i>J</i>		Elements of software quality assurance, SQA tasks, goals and	<u> </u>
		metrics, formal approaches to SQA, statistical software quality	
		assurance: ISO ,CMMI and PCMMI, Six Sigma, software	
		reliability, SQA plan.	
		Total	39
		1000	

- 1. Bernd Bruegge, "Object oriented software engineering", Second Edition, Pearson Education.
- 2. Stephan R. Schach, "Object oriented software engineering", Tata McGraw Hill.
- 3. Roger Pressman, "Software Engineering", sixth edition, Tata McGraw Hill.
- 4. Timothy C. Lethbridge, Robert Laganiere" Object-Oriented Software Engineering -A practical software development using UML and Java", Tata McGraw-Hill, New Delhi
- 5. Ian Sommerville, "Software Engineering" 6thEdition, Pearson Education

Subject	Subject Name	Te	aching Sche	eme	Credits Assigned				
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
UCEC803	Advanced	03	02		03			03	
	Internet								
	Technology								

Subject	Subject Name	Examination Scheme							
Code			Theor	y Marks		Term	Practical	Oral	Total
		Contin	Continuous Assessment (CA)			Work			
		Test 1	Test 2	IA	Exam				
UCEC803	Advanced	15	15	10	60				100
	Internet								
	Technology								

Course Outcomes:

Course Outcome	After successful completion of the course students should be able to
CO1	Use different tools and techniques for responsive web design.
CO2	Identify the use of mashup in rich internet applications.
CO3	Describe the role of web services in web application development.
CO4	Describe the different techniques for search engine optimization.

Module No.	Unit No.	Details of Topic	Hrs.
Advanced 1	Internet Tec	hnology	
1		Responsive web with HTML 5 and CSS3	10
	1.1	Getting Started with HTML 5, CSS3 for Responsive Web Design.	-
	1.2	Media Queries: Supporting Differing Viewports, Embracing Fluid Layout HTML 5 for Responsive Design.	
	1.3	CSS3: Selectors, Typography and color Modes Stunning Aesthetics with CSS3, CSS3 Transitions, Transformations and Animations, Conquer Forms HTML5 and CSS3.	
2		RIA and Mashup	10
	2.1	Characteristic of RIA – Web Mashup Mashup Techniques: 1) Mashing on the Web Server, Rich User Interface using Ajax, Mashing with JSON 2) RIA: Ajax vs Traditional Approach JavaScript and AJAX, Angular JS.	
	2.2	JSON Alternative to XML	
	2.3	Syndication	
3		REST and WS * Web Services	07
	3.1	Understanding Web Services technology, REST based web services (Resource Oriented Architecture) and Service oriented Architecture.	
	3.2	REST design principles, create, read, update, and delete (CRUD) operations and HTTP methods. use of POST. GET. PUT. DELETE.	
4		Search Engine Optimization	06
	4.1	Developing SEO plans Prior to Site Development - SEO for Raw traffic; E-commerce Sales; Mindsahre/Branding; Direct Marketing; Reputation Management; Ideological Influence Getting started	

	4.2	SEO: Defining Your Site's Information Architecture, Auditing an Existing Site to identify SEO Problems, Identifying Current Server Statistic Software and Gaining Access Search Engine Basics Algorithm based Ranking Systems — Determining Searcher Intent and Delivering Relevant, Fresh Content, Analyzing Ranking Factors, Using Advanced Search Techniques, Vertical Search Techniques, Country Specific Search Engines Determining SEO Objective and Finding Your Site's Audience — Setting SEO Goals and Objective	
5		Website SWOT analysis	06
	5.1	Determining Top competitors, Benchmarking Current Indexing Status, Current Rankings, Benchmarking Current Traffic Source and Volumes, Conduct SEO/Website SWOT analysis. Keyword Generation Creating Pages	
	5.2	Website Structure- Creating Content-Creating Communities building Links-Using Google Analytics-Social Media Optimization-Creating Pay-per-click Campaigns Optimizing PPC Campaigns through Quality Score optimization - Tracking Results and Measuring Success.	
		Total	39

- 1. Rich Internet Application AJAX and Beyond WROX press 2.
- 2. Web Technology, Srinivasan, Pearson
- 3. Professional Web 2.0 Programming WROX press 2.
- 4. Responsive Web Design with HTML5 and CSS3 PACKT 3.
- 5. The Art of SEO O"Reilly Publication
- 6. Using Google App Engine: By Charles: O'reilly Press
- 7. Web Services Essentials: By Ethan: O'Reilly
- 8. RESTful web services: By Leonard: O'Reilly Press
- 9. Angular JS: Brad Green: O'Reilly Press

Subject	Subject Name	Te	aching Sche	me	Credits Assigned			
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
UCEE801	Machine	03	-		03	-		03
	Learning							

Subject	Subject Name			E	xamination	Scheme			
Code			Theor	y Marks		Term	Practical	Oral	Total
		Continuous Assessment En				Work			
		(CA)			Sem.				
		Test 1	Test 1 Test 2 IA						
UCEE801	Machine	15 15 10			60				100
	Learning								

Course Outcome	After successful completion of the course students should be able to
CO1	Describe and apply supervised learning methods
CO2	Appreciate Dimensionality reduction techniques
CO3	Analyze unsupervised learning methods
CO4	Understand the working of Reinforcement learning.

Module No.	Unit No.	Details of Topic	Hrs.
Machine L	earning		
1		Machine Learning Basics :	4
	1.1	What is Machine Learning?, Key Terminology, Types, Applications of Machine Learning, How to choose the right algorithm, Steps in developing a Machine Learning Application.	
2		Supervised Learning:	9
	2.1	Linear Regression, Logistic Regression.	
	2.2	Decision Trees, Constructing Decision Trees, Classification and Regression Trees (CART)	
3		Learning with Classification :	8
	3.1	Support Vector Machines: Maximum Margin Linear Separators, Quadratic Programming solution, Kernels for learning non-linear functions.	
	3.2	Bayesian Belief networks, Hidden Markov Models.	
4		Dimensionality Reduction :	6
	4.1	Dimensionality Reduction Techniques: Principal Component Analysis, Independent Component Analysis.	
5		Unsupervised Learning:	6
	5.1	K-means clustering, Hierarchical clustering, Expectation Maximization Algorithm, Supervised learning after clustering, Radial Basis functions	
6		Reinforcement Learning:	6
	6.1	Introduction, Elements of Reinforcement Learning, Model based learning, Temporal Difference Learning, Generalization, Partially Observable States.	
		Total	39

- 1. Peter Harrington "Machine Learning In Action", DreamTech Press
- 2. Ethem Alpaydin, "Introduction to Machine Learning", MIT Press
- 3. Tom M.Mitchell "Machine Learning" McGraw Hill
- 4. Stephen Marsland, "Machine Learning An Algorithmic Perspective" CRC Press

Subject	Subject Name	Te	aching Sche	eme	Credits Assigned			
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
UCEE802	Big Data	03			03			03
	Analytics							

Subject	Subject Name			E	xamination	Scheme			
Code			Theor	y Marks	Term	Practical	Oral	Total	
		Continu	uous Asso	essment	End	Work			
		(CA)			Sem.				
		Test 1	Test 1 Test 2 IA						
UCEE802	Big Data	15	15	10	60				100
	Analytics								

Course Outcome	After successful completion of the course students should be able to
CO1	Understand the key issues in big data management and its associated applications in intelligent business and scientific computing.
CO2	Understand the fundamental enabling techniques like Hadoop, MapReduce and NO SQL in achieving Big data analytics
CO3	Demonstrate the statistical analysis techniques used in decision making.
CO4	Interpret business models and scientific computing paradigm for solving real world problems.

Module No.	Unit No.	Details of Topic	Hrs.				
Big Data A	nalytics						
1		Introduction to Big Data and mining large scale system					
	1.1	Introduction to Big Data, Big Data characteristics, types of Big Data, Traditional vs. Big Data business approach, Case Study of Big Data Solutions.					
	1.2	Introduction to Hadoop and its components, NOSQL					
		Distributed File Systems : Physical Organization of Compute Nodes, Large-Scale File-System Organization					
	1.3	MapReduce: The Map Tasks, Grouping by Key, The Reduce Tasks, Combiners, Details of MapReduce Execution, Coping With Node Failures.					
	1.4	Algorithms Using MapReduce: Matrix-Vector Multiplication by MapReduce, Relational-Algebra Operations, Computing Selections by MapReduce, Computing Projections by MapReduce, Union, Intersection, and Difference by MapReduce, Computing Natural Join by MapReduce, Grouping and Aggregation by MapReduce, Matrix Multiplication, Matrix Multiplication with One MapReduce Step.					
2		Finding Similar Items	3				
	2.1	Applications of Near-Neighbor Search, Jaccard Similarity of Sets, Similarity of Documents, Collaborative Filtering as a Similar-Sets Problem.					
	2.2	Distance Measures: Definition of a Distance Measure, Euclidean Distances, Jaccard Distance, Cosine Distance, Edit Distance, Hamming Distance.					
3		Mining Data Streams	6				
	3.1	The Stream Data Model: A Data-Stream-Management System, Examples of Stream Sources, Stream Querie, Issues in Stream Processing.					

	3.2	Sampling Data in a Stream: Obtaining a Representative Sample, The General Sampling Problem, Varying the Sample Size. Filtering Streams: The Bloom Filter, Analysis. Counting Distinct Elements in a Stream The Count-Distinct Problem, The Flajolet-Martin Algorithm, Combining Estimates, Space Requirements. Counting Ones in a Window:	
		The Cost of Exact Counts, The Datar-Gionis-Indyk-Motwani Algorithm, Query Answering in the DGIM Algorithm, Decaying Windows.	
4		Link Analysis And Frequent Itemsets	10
	4.1	PageRank Definition, Structure of the web, dead ends, Using Page rank in a search engine, Efficient computation of Page Rank: PageRank Iteration Using MapReduce, Use of Combiners to Consolidate the Result Vector. Topic sensitive Page Rank, link Spam, Hubs and Authorities	
	4.2	Handling Larger Datasets in Main Memory Algorithm of Park, Chen, and Yu, The Multistage Algorithm, The Multihash Algorithm.	
	4.3	The SON Algorithm and MapReduce	
	4.4	Counting Frequent Items in a Stream Sampling Methods for Streams, Frequent Item sets in Decaying Windows	
5		Clustering	12
	5.1	CURE Algorithm, Stream-Computing , A Stream-Clustering Algorithm, Initializing & Merging Buckets, Answering Queries	

	Case Studies: Recommendation Systems, Mining Social-Network	
5.2	Graphs	
	Total	39

- 1. Anand Rajaraman and Jeff Ullman "Mining of Massive Datasets", Cambridge University Press,
- 2. Alex Holmes "Hadoop in Practice", Manning Press, Dreamtech Press.
- 3. Dan McCreary and Ann Kelly "Making Sense of NoSQL" A guide for managers and the rest of us, Manning Press.
- 4. Bill Franks, "Taming The Big Data Tidal Wave: Finding Opportunities In Huge Data Streams With Advanced Analytics", Wiley
- 5. Chuck Lam, "Hadoop in Action", Dreamtech Press

K. J. Somaiya College of Engineering, Mumbai-77 (Autonomous College Affiliated to University of Mumbai) BTech COMP Semester VII and VIII (KJSCE2014 CBGS)

Subject	Subject Name	Te	aching Sche	eme		Credits A	ssigned	
Code		Theory	Theory Practical Tutorial			Practical	Tutorial	Total
UCEE803	Software	03			03			03
	Architecture							

Subject	Subject Name	Examination Scheme							
Code			Theory Marks				Practical	Oral	Total
		Continuous Assessment			End	Work			
		(CA)			Sem.				
		Test 1	Test 2	IA	Exam				
UCEE803	Software	15	15	10	60				100
	Architecture								

Course	After successful completion of the course students should be able to
Outcome	
CO1	Design the architecture of software systems in various architectural styles
CO2	Analyze software architecture using analysis techniques
CO3	Analyze non-functional properties in the architectural design
CO4	Design domain models for domain specific software engineering and architecture

Module No.	Unit No.	Details of Topic					
Software A	Architecture						
1		Basic Concepts, Designing Architectures, Conventional Architectural styles:	10				
	1.1	Concepts of Software Architecture, Models, Processes, Stakeholders					
	1.2	The Design Process, Architectural Conception,					
	1.3	Styles and Architectural Patterns, Pipes and Filters, Event-based, Implicit Invocation, Layered systems, Repositories, Interpreters,					
2		Connectors:	6				
	2.1	Connector Foundations, Connector Roles					
	2.2	Connector Types and Their Variation Dimensions, Example					
3		Modeling , Analysis :	10				
	3.1	Modeling Concepts, Ambiguity, Accuracy, and Precision, Complex Modeling: Mixed Content and Multiple Views, Evaluating Modeling Techniques, Specific Modeling Techniques	-				
	3.2	Analysis Goals, Scope of Analysis, Architectural Concern being Analyzed, Level of Formality of Architectural Models, Type of Analysis, Analysis Techniques					
4		Designing for Non-Functional Properties and implementation	6				
	4.1	Efficiency, Complexity, Scalability and Heterogeneity, Adaptability, Dependability					
		Concepts, Existing Frameworks					
5		Applied Architectures and Domain-Specific Software Engineering	7				
	5.1	Distributed and Networked Architectures, Architectures for Network-Based Applications, Decentralized Architectures, Service-Oriented Architectures and Web Services					

5.2	Domain-Specific Software Engineering in a Nutshell, Domain-Specific Software Architecture, DSSAs, Product Lines, and Architectural Styles	
	Total	39

- 1) Richard N. Taylor, Nenad Medvidovic, Eric Dashofy, "Software Architecture: Foundations, Theory, and Practice" ISBN: 978-0-470-16774-8
- 2) M. Shaw: "Software Architecture Perspectives on an Emerging Discipline", Prentice-Hall.
- 3) Len Bass, Paul Clements, Rick Kazman, "Software Architecture in Practice", Pearson.

Subject	Subject Name	Te	aching Sche	me		Credits A	ssigned	
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
UCEE804	Parallel	03			03			03
	Computing							

Subject	Subject Name	Examination Scheme							
Code		Theory Marks				Term	Practical	Oral	Total
		Continuous Assessment			End	Work			
		(CA)			Sem.				
		Test 1	Test 2	IA	Exam				
UCEE804	Parallel	15	15	10	60				100
	Computing								

Course Outcome	After successful completion of the course students should be able to
CO1	Understand different parallel processing approaches and issues involved in it to achieve high computing performance
CO2	Evaluate the parallel computing performance with different processors architectures
CO3	Design and development on parallel platform

Module No.	Unit No.	Details of Topic	Hrs.
Parallel Co	mputing	<u> </u>	
1		Parallel Processing approaches	12
	1.1	Introduction to parallel processing: Levels of parallelism (instruction, transaction, task, thread, memory, and function),	
	1.2	Models (SIMD, MIMD, SIMT, SPMD, Dataflow Models, Demand-driven Computation etc).	
	1.3	Parallel platforms: Message-passing interface (MPI), Shared-memory thread-based OpenMP programs, and hybrid (MPI/OpenMP) programs, Hadoop, Cloud computing, Multi-core Processors (GPUs)	
2		Fundamental Design Issues and limitations in Parallel Computing	08
	2.1	Issues: Synchronization, Scheduling, Job Allocation, Job Partitioning, Dependency Analysis	
	2.2	Mapping Parallel Algorithms onto Parallel Architectures, Performance Analysis of Parallel Algorithms.	
	2.3	Limitations: Bandwidth Limitations, Latency Limitations, Latency Hiding/Tolerating Techniques and their limitations	
3		CUDA: GPU Parallel development Environment	06
	3.1	Compute Unified Device Architecture (CUDA) Architecture, CUDA programming model, execution model	
	3.2	Thread organization: Concept of grid, block and thread	
	3.3	Tread index generation, warp;	
4		GPU primitives, algorithms and applications	06
	4.1	GPU primitives: scan (exclusive or inclusive), scatter, gather, reduce, memory model	
	4.2	Introduction to global, shared, local memories, usage of cache, texture cache, constant memory.	

	4.3	CUDA structure, API and library (CUDPP, CUBLAS, FFT etc.) details.	
5		GPU parallel programming and application	07
	5.1	CUDA example programs (Vector dot product, Matrix multiplication (with the usage of tiling and shared memory) etc.	
	5.2	Graph algorithms, molecular dynamics, n-body simulations, dense linear algebra etc. using GPU	
		Total	39

- 1. Kai Hwang, Faye A. Briggs, "Computer Architecture and Parallel Processing", McGraw-Hill
- 2. Multicore Programming, Increased Performance through Software Multi-threading by Shameem Akhter and Jason, Roberts, Intel Press, 2006
- 3. Edward Kandrot and Jason Sanders , "CUDA by Example: An Introduction to General-Purpose GPU Programming", Addison-Wesley Professional © 2010
- 4. David Kirk, Wen-meiHwu, "UDA: Programming Massively Parallel Processors: A Hands-On Approach. © ELSEVIER Inc.
- 5. Michael J. Quinn, "Parallel Programming in C with MPI and OpenMP", Tata McGraw-Hill Edition
- 6. AnanthGrama, Anshul Gupta, George Karypis, and Vipin Kumar, 2nd edition," Introduction to Parallel Computing," Addison-Welsey, © 2003.

Subject	Subject Name	Teaching Scheme				Credits A	ssigned	
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
UCEL801	Distributed &		02			01		01
	Cloud							
	Computing							
	Laboratory							

Subject	Subject Name	Examination Scheme							
Code			Theor	y Marks		Term	Practical	Oral	Total
		Continuous Assessment			End	Work	and		
		(CA)			Sem.		Oral		
		Test 1	Test 2	IA	Exam				
UCEL801	Distributed &					25		25	50
	Cloud								
	Computing								
	Laboratory								

Term work should consist of practical experiments and assignments based on the syllabus of the course **UCEC801 Distributed System & Cloud Computing.**

Term work assessment will be based on the overall performance of the student during practical with every experiment graded from time to time. The grades converted into marks as per Grade Table will be added and averaged as final TW marks.

The oral examination will be based on UCEC801 Distributed System & Cloud Computing and UCEL801 Distributed System & Cloud Computing Laboratory.

Subject	Subject Name	Teaching Scheme				Credits A	ssigned	
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
UCEL802	Software		02			01		01
	Testing &							
	Quality							
	Assurance							
	Laboratory							

Subject	Subject Name		Examination Scheme						
Code			Theor	y Marks		Term	Practical	Oral	Total
		Contin	uous Asse	ssment	End	Work	and		
		(CA)			Sem.		Oral		
		Test 1	Test 2	IA	Exam				
UCEL802	Software					25		25	50
	Testing &								
	Quality								
	Assurance								
	Laboratory								

Term work should consist of practical experiments and assignments based on the syllabus of the course UCEC802 Software Testing & Quality Assurance.

Term work assessment will be based on the overall performance of the student during practical with every experiment graded from time to time. The grades converted into marks as per Grade Table will be added and averaged as final TW marks.

The oral examination will be based on UCEC802 Software Testing & Quality Assurance and UCEL802 Software Testing & Quality Assurance Laboratory.

Subject Code	Subject Name	Tea	ching Scho	eme		Credits	Assigned	
		Theory	Practical	Tutoria	Theory	Practical	Tutorial	Total
				1				
UCEL803	Advanced		02			01		01
	Internet							
	Technology							
	Laboratory							

Subject Code	Subject Name	Examination Scheme							
		Theory Marks				Term	Practical	Oral	Total
		Continuous Assessment			End	Work	and		
		(CA)			Sem.		Oral		
		Test 1	Test 2	IA	Exam				
UCEL803	Advanced					25		25	50
	Internet								
	Technology								
	Laboratory								

Term work should consist of practical experiments based on the syllabus of the course **UCEC803 Advanced Internet Technology**

Term work assessment will be based on the overall performance of the student during practical with every experiment graded from time to time. The grades converted into marks as per Grade Table will be added and averaged as final TW marks.

The oral examination will be based on UCEC803 Advanced Internet Technology and UCEL803 Advanced Internet Technology Laboratory

Subject	Subject Name	Te	eaching Sche	me		Credits A	ssigned	
Code		Theory	Practical/	Tutorial	Theory		Tutorial	Total
			Oral			Practical/O		
						ral		
UCEL80X	Elective III		02			02		02
	Laboratory							

Subject	Subject Name	Examination Scheme							
Code			Theor	y Marks	Term	Practical	Oral	Total	
		Continuous Assessment			End	Work	and		
		(CA)			Sem.		Oral		
		Test 1	Test 2	IA	Exam				
UCEL80X	Elective III					25		25	50
	Laboratory								

Term work should consist of practical experiments and assignments based on the syllabus of the course **Concerned Elective III Course**

Term work assessment will be based on the overall performance of the student during tutorial with every tutorial graded from time to time. The grades converted into marks as per Grade Table will be added and averaged as final TW marks.

The oral examination will be based on Concerned Elective III Course and Laboratory.

	Elective III					
UCEE801	Machine Learning					
UCEE802	Big Data Analytics					
UCEE803	Software Architecture					
UCEE804	Parallel Computing					