Московский государственный институт электронной техники (Технический университет)

Лабораторная работа №2. Исследование элементарных звеньев и построение их характеристик.

Цель работы.

- 1. Ознакомиться с временными и частотными характеристиками типовых звеньев.
- 2. Получить практические навыки построения характеристик в среде MatLab.

Теоретическая часть

Звено – математическая модель элемента, соединения элементов или любой части системы. Звенья, как и системы, могут описываться дифференциальными уравнениями довольно высокого порядка, и в общем случае их передаточные функции могут быть записаны в виде:

$$W(s) = \frac{\left(b_0 \cdot s^m + b_1 \cdot s^{m-1} + \dots + b_m\right)}{\left(a_0 \cdot s^n + a_1 \cdot s^{n-1} + \dots + a_n\right)}$$
 (1)

Их всегда можно представить как соединение типовых или элементарных звеньев, порядок дифференциальных уравнений которых не выше второго.

Из курса алгебры известно, что полином произвольного порядка можно разложить на простые множители – множители вида:

$$k_1 \cdot s$$
; $(d_1 \cdot s + d_2)$; $(d_1 \cdot s^2 + d_2 \cdot s + d_3)$

Следовательно, передаточную функцию (1) можно представить как произведение простых множителей вида (2) и простых дробей вида:

$$\frac{k}{s}$$
; $\frac{k}{d_1 \cdot s + d_2}$; $\frac{k}{d_1 \cdot s^2 + d_2 \cdot s + d_3}$ (3)

Звенья, передаточные функции которых имеют вид простых множителей, называют типовыми или элементарными звеньями.

В дальнейшем будем рассматривать звенья соответственно обозначениям, указанным на рисунке:

Рисунок – Принятые обозначения

Пропорциональное звено

Пропорциональным называют звено, которое описывается уравнением вида $x(t) = k \times u(t)$ или передаточной функцией W(s) = k .

Частотные характеристики этого типового звена имеют вид:

$$W(jw)=k;$$

$$U(\omega) = k$$
;

$$V(\omega) = 0$$
;

$$A(\omega) = k$$
;

$$\varphi(\omega) = 0$$
;

$$L(\omega) = 20 \cdot \lg k$$
;

Временные характеристики этого типового звена имеют вид:

$$h(t) = k \cdot 1(t);$$

$$w(t) = \delta(t)$$
;

Рисунок 1 – Характеристики пропорционального звена, при к=2

На рисунке 1 представлены логарифмические частотные и переходная характеристики пропорционального звена при k=2.

Интегрирующее звено

Интегрирующим называют звено, которое описывается уравнением $s\cdot x=k\cdot u$ или передаточной функцией $W(s)=\frac{k}{s}$.

Частотная передаточная функция $W(jw) = \frac{k}{j\omega} = -\frac{jk}{\omega}$.

Остальные характеристики имеют вид:

$$U(\omega) = 0;$$

$$V(\omega) = -\frac{k}{\omega};$$

$$A(\omega) = \frac{k}{\omega};$$

$$\varphi(\omega) = -\frac{\pi}{2};$$

$$L(\omega) = 20 \cdot \lg(k) - 20 \cdot \lg(\omega);$$

Временные характеристики имею вид:

$$h(t) = k \cdot t;$$

$$w(t) = k;$$

Амплитудно-фазовая частотная характеристика интегрирующего звена совпадает с отрицательной мнимой полуосью. ЛФЧХ (рисунок 2а) параллельна оси частот и проходит на уровне $\varphi(\omega) = -\pi/2$; т.е. сдвиг фазы не зависит от частоты и равен $-\pi/2$. ЛАЧХ (рисунок 2а) — наклонная прямая, проходящая через точку с координатами $\omega=1$; $L(\omega)=20\cdot \lg k$. Как видно из уравнения $L(\omega)=20\cdot \lg k-20\cdot \lg \omega$, при увеличении частоты на одну декаду ордината $L(\omega)$ уменьшается на 20 дБ. Поэтому наклон ЛАЧХ равен —20 дБ/дек. Переходная характеристика представляет собой прямую, проходящую через начало координат с угловым коэффициентом наклона, равным k (рисунок 2б).

Рисунок 2 – Характеристики интегрирующего звена при k=2

Дифференцирующее звено

Дифференцирующим называют звено, которое описывается уравнением $x = k \cdot s \cdot u$ или передаточной функцией $W(s) = k \cdot s$.

Частотные характеристики имеют вид:

$$W(j\omega) = jk\omega;$$

$$U(\omega) = 0;$$

$$V(\omega) = k\omega;$$

$$A(\omega) = k\omega;$$

$$\varphi(\omega) = \frac{\pi}{2};$$

$$L(\omega) = 20 \lg k + 20 \lg \omega;$$

Временные характеристики имеют вид:

$$h(t) = \delta(t);$$

$$\omega(t) = \delta(t);$$

Амплитудно-фазовая частотная характеристика совпадает с положительной мнимой полуосью. ЛФЧХ параллельна оси частот и проходит на уровне $\varphi(\omega) = \frac{\pi}{2}$; т.е. сдвиг фазы не зависит от частоты и равен $\frac{\pi}{2}$. ЛАЧХ есть прямая, проходящая через точку с координатами $\omega = 1$ и $L(\omega) = 20 \cdot \lg k$ и имеющая наклон 20 дБ/дек; $L(\omega)$ увеличивается на 20 дБ/дек при увеличении частоты на одну декаду.

Апериодическое звено

Апериодическим звеном первого порядка называют звено, которое описывается уравнением $(T\cdot s+1)y=k\cdot u$ (4) или передаточной функцией $W(s)=\frac{k}{(Ts+1)}$.

Это звено также называют инерционным звеном первого порядка. Апериодическое звено в отличие от рассмотренных выше звеньев характеризуется двумя параметрами: постоянной времени T и передаточным коэффициентом k.

Частотная передаточная функция:

$$W(j\omega) = \frac{k}{(Tj\omega + 1)};$$

Умножив числитель и знаменатель на комплексно-сопряженное знаменателю число, получим частотные характеристики:

$$U(\omega) = \frac{k}{[(T\omega)^2 + 1]};$$

$$V(\omega) = -\frac{kT\omega}{[(T\omega)^2 + 1]};$$

Амплитудную и фазовую частотные функции можно определить, воспользовавшись правилом модулей и аргументов.

Так как модуль числителя частотной передаточной функции равен k , а модуль знаменателя $\sqrt{(T\omega)^2+1}$, то

$$A(\omega) = \frac{k}{\sqrt{(T\omega)^2 + 1}} \tag{5}$$

Аргумент числителя $W(j\omega)$ равен нулю, а аргумент знаменателя $arctg(\omega T)$, поэтому $\varphi(\omega) = \arg W(j\omega) = -arctg(\omega T)$.

С учетом уравнения (5) получим:

$$L(\omega) = 20 \cdot \lg A(\omega) = 20 \cdot \lg k - 20 \cdot \lg \sqrt{(T\omega)^2 + 1}$$
 (6)

При $\omega << \frac{1}{T}$ в сумме $\left((T\omega)^2 + 1\right)$ первым слагаемым можем пренебречь и выражение (6) примет вид: $L(\omega) = 20 \cdot \lg k$, т.е. это прямая линия, параллельная оси абсцисс.

При $\omega >> \frac{1}{T}$ в сумме $((T\omega)^2+1)$ можем пренебречь 1, тогда выражение (6) примет вид: $L(\omega) = 20 \cdot \lg A(\omega) = 20 \cdot \lg k - 20 \cdot \lg \sqrt{(T\omega)^2} = 20 \cdot \lg k - 20 \cdot \lg (T\omega)$, как видно из этого уравнения, при увеличении частоты на одну декаду ордината $L(\omega)$ уменьшается на 20 дБ. Поэтому наклон ЛАЧХ равен –20 дБ/дек.

Таким образом, асимптотическую ЛАЧХ можем представить в виде соединяющихся в точке $\omega=\frac{1}{T}$ двух линий: слева – параллельной оси абсцисс, а справа – идущей с наклоном –20 дБ/дек.

Частоту, на которой ЛАЧХ меняет наклон, будем называть сопрягающей.

Вычислим истинное значение ЛАЧХ на сопрягающей частоте: $L(\omega_c)_{|_{k=1}} = 20 \cdot \lg 1 - 20 \cdot \lg \sqrt{\left(T \cdot \frac{1}{T}\right)^2 + 1} = -20 \cdot \lg 2 \approx -3 \, \partial \mathcal{B} \,, \quad \text{т.е.} \quad \text{истинное} \quad \text{значение}$ характеристики меньше асимптотического на 3 дБ.

Решив дифференциальное уравнение (4) при u=1(t) и нулевом начальном условии, получим $h(t)=k\Big(1-e^{-t/T}\Big)$. Весовая функция $\omega(t)=h(t)=\Big(\frac{k}{T}\Big)e^{-t/T}$.

Рисунок 3 – АФЧХ апериодического звена, при Т=1, к=1

АФЧХ апериодического звена (рисунок 3) есть окружность, в чем нетрудно убедиться, исключив из параметрических уравнений АФЧХ частоту.

Рисунок – 4 Логарифмические характеристики апериодического звена при T=1, к=1 Логарифмические частотные характеристики представлены на рис. 4.

Логарифмическая фазовая частотная характеристика асимптотически стремится к нулю при $\omega \to 0$ и к $-\pi/2$ при $\omega \to \infty$. При $\omega = 1/T$ фазовая частотная функция принимает значение $-\pi/4$. ЛФЧХ всех апериодических звеньев имеют одинаковую форму и могут быть получены по какой-либо одной характеристики параллельным сдвигом вдоль оси частот влево или вправо в зависимости от постоянной времени T.

Переходная характеристика апериодического звена (рисунок 5a) представляет собой экспоненциальную кривую. По ней можно определить

следующие параметры: передаточный коэффициент, равный установившемуся значению $h(\infty)$; постоянную времени T и другие характеристики.

Импульсная переходная характеристика представлена на рисунке 5б.

Рисунок 5 – Временные характеристики апериодического звена

Форсирующее звено.

Форсирующим звеном, или форсирующим звеном первого порядка называют звено, которое описывается уравнением $x = k(T \cdot s + 1)u$ или передаточной функцией $W(s) = k(T \cdot s + 1)$.

Это звено, как и апериодическое, характеризуется двумя параметрами: постоянной времени T и передаточным коэффициентом k .

Частотная передаточная функция:

$$W(j\omega) = k(Tj\omega + 1);$$

Остальные частотные характеристики имеют вид:

$$U(\omega) = k, \ V(\omega) = kT\omega;$$

$$A(\omega) = k\sqrt{(T\omega)^2 + 1};$$

$$\varphi(\omega) = arctg(T \cdot \omega);$$

$$L(\omega) = 20 \cdot \lg k + 20 \cdot \lg \sqrt{(T\omega)^2 + 1};$$

Временные характеристики имеют вид:

$$h(t) = k\sqrt{T\delta(t) + 1(t)};$$

$$w(t) = k \cdot [T\delta(t) + 1(t)];$$

АФЧХ есть прямая, параллельная мнимой оси и пересекающая действительную ось в точке U=k . Как и в случае апериодического звена, на практике ограничиваются построением асимптотической ЛАЧХ.

Уравнение асимптотической ЛАЧХ форсирующего звена:

$$L(\omega) \approx \begin{cases} 20 \cdot \lg k \text{ при } \omega < \frac{1}{T}, \\ 20 \cdot \lg k + 20 \cdot \lg T\omega \text{ при } \omega \ge \frac{1}{T} \end{cases}$$

ЛФЧХ форсирующего звена можно получить зеркальным отражением относительно оси частот ЛФЧХ апериодического звена.

Колебательное, консервативное и апериодическое второго порядка звенья.

Звено, которое можно описать уравнением $(T_0^2s+T_1s+1)x=ku$, или в другой форме $(T^2s^2+2\xi Ts+1)x=ku$, где $T=T_0, \xi=\frac{T_1}{2T}$, или передаточной функцией $W(s)=\frac{k}{(T^2s^2+2\xi Ts+1)}$, называют колебательным при $0<\xi<1$, консервативным при $\xi=0$ $(T_1=0)$, и апериодическим второго порядка при $\xi\geq 1$. Коэффициент ξ называют коэффициентом демпфирования.

Колебательное звено ($0 < \xi < 1$).

Частотная передаточная функция

$$W(j\omega) = \frac{k}{\left[(1 - T^2 \omega^2) + j2\xi T\omega \right]}$$

Умножив числитель и знаменатель на комплексно-сопряженное знаменателю выражение, получим вещественную и мнимую частотные функции:

$$U(\omega) = \frac{k(1 - T^2 \omega^2)}{(1 - T^2 \omega^2)^2 + (2\xi T \omega)^2};$$

$$V(\omega) = \frac{-2k\xi T \omega}{(1 - T^2 \omega^2)^2 + (2\xi T \omega)^2};$$

Фазовая частотная функция, как это видно из АФЧХ (рис. 6), изменяется монотонно от 0 до $-\pi$ и выражается формулой

$$\varphi(\omega) = \begin{cases} -\operatorname{arctg} \frac{2\xi T\omega}{1 - T^2\omega^2}, \operatorname{при} \omega \leq \frac{1}{T}, \\ -\pi - \operatorname{arctg} \frac{2\xi T\omega}{1 - T^2\omega^2}, \operatorname{при} \omega > \frac{1}{T}. \end{cases}$$

Логарифмическая фазовая частотная характеристика (рис. 6) при $\omega \to 0$ асимптотически стремится к оси частот, а при $\omega \to \infty$ - к прямой $\varphi = -\pi$.

Амплитудная частотная функция

$$A(\omega) = \frac{k}{\sqrt{\left(1 - T^2 \omega^2\right)^2 + \left(2\xi T \omega\right)^2}},$$

ЛАЧХ имеет вид:
$$L(\omega) = 20 \lg k - 20 \lg \sqrt{\left(1 - T^2 \omega^2\right)^2 + \left(2 \xi T \omega\right)^2}$$

Рисунок 6 – Частотные характеристики колебательного звена при T=1; 2*ksi*T=0.3 Переходная функция:

Весовая функция:

$$w(t) = h(t) = \frac{k(\alpha^2 + \beta^2)}{\beta} e^{-\alpha t} \sin \beta t$$

Рисунок 7 – Временные характеристики колебательного звена при T=1; 2*ksi*T=0.3 По переходной характеристике (рисунок 7) можно определить параметры колебательного звена следующим образом:

Консервативное звено ($\xi = 0$).

Передаточная функция

$$W(s) = k / (T^2 s^2 + 1).$$

Характеристики данного звена студентам предлагается изучить самостоятельно.

Апериодическое звено второго порядка ($\xi \ge 1$).

Передаточную функцию апериодического звена при $\xi \ge 1$ можно преобразовать к виду

$$W(s) = \frac{k}{(T_1s+1)(T_2s+1)},$$

Апериодическое звено второго порядка можно представить как последовательное соединение двух апериодических звеньев первого порядка. Оно не относится к числу элементарных звеньев.

Форсирующее звено второго порядка.

Так называют звено, которое описывается уравнением

$$x = k(T^2 p^2 + 2\xi Tp + 1) \times u$$

или, что то же, передаточной функцией

$$W(s) = k(T^2s^2 + 2\xi Ts + 1)$$

при условии, что $0 \le \xi < 1$.

Не представляет трудности получить выражения для частотных и временных функций и построить соответствующие характеристики.

При частотах, превышающих сопрягающую частоту, ЛАЧХ имеет наклон 40 дБ/дек и ЛФЧХ получается зеркальным отражением относительно оси частот ЛФЧХ соответствующего колебательного или консервативного звена. Если $\xi \ge 1$, то звено не относится к числу элементарных; его можно представить как последовательное соединение двух форсирующих звеньев первого порядка.

Практическая часть

Внимание!!! Результаты выполнения упражнений необходимо сохранять в виде ТЕКСТОВОГО файла (*.DOC, *.TXT), который предъявляется преподавателю при защите работы.

Упражнение 1

Построить с помощью функции plot графики $A(\omega)$, $\phi(\omega)$, $U(\omega)$, $V(\omega)$, $L(\omega)$ для апериодического звена. Параметры T и K взять из таблицы 1. Изучить влияние параметра T на вид $\phi(\omega)$ и $L(\omega)$. Сделать выводы.

Построить в одном окне асимптотическую и точную ЛАЧХ апериодического звена. Сделать выводы.

Самостоятельно изучить функцию tf. С помощью нее задать передаточную функцию апериодического звена с параметрами вашего варианта (при T=2, к=1: sys=tf([1],[2 1])). Построить все известные вам характеристики для этого звена (см help ltiview).

Упражнение 2

Построить с помощью функции plot графики A(ω), $\varphi(\omega)$, U(ω), V(ω), L(ω) для колебательного звена. Параметры T и K взять из таблицы 1. . Изучить влияние параметров T и ξ на вид $\varphi(\omega)$ и L(ω). Сделать выводы.

Построить в одном окне асимптотическую и точную ЛАЧХ колебательного звена. Сделать выводы.

С помощью функции tf задать передаточную функцию колебательного звена с параметрами вашего варианта. Построить все известные вам характеристики для этого звена.

Таблица 1 – Параметры для моделирования

Nº	Nº	k	T/T1	T2	ξ
1	16	1	0,2	0,1	0,01
2	17	2	0,4	0,3	0,02
3	18	3	0,6	0,5	0,03
4	19	4	0,8	0,02	0,04
5	20	5	1	0,04	0,05
6	21	6	1,2	0,08	0,06
7	22	7	1,4	0,12	0,07
8	23	8	0,5	2,4	0,08
9	24	9	0,8	2,6	0,09
10	25	10	1,1	0,28	0,1
11	26	0,1	1,4	0,35	0,2
12	27	0,2	1,7	0,34	0,3
13	28	0,3	2	0,33	0,4
14	29	0,4	2,3	3	0,5
15	30	0,5	6	4	0,6

Упражнение 3

Построить точную и асимптотическую ЛАЧХ для сложной системы с передаточной функцией $W(p) = \frac{kp}{\left(T_1p+1\right)\cdot\left(T_2^{\ 2}p^2+2T_2\xi p+1\right)}.$

Построить ЛФЧХ типовых звеньев, входящих в эту систему. Построить ЛФЧХ данной системы.

Упражнение 4

С помощью функции Itiview построить переходные функции всех упомянутых выше звеньев. По полученным графикам сделать выводы.