FOM Hochschule

Übersicht

Grundbegriffe der Programmierung
2. Einfache Beispielprogramme
3. Datentypen und Variablen
4. Ausdrücke und Operatoren
5. Kontrollstrukturen
6. Blöcke und Methoden
7. Klassen und Objekte
8. Vererbung und Polymorphie
9. Pakete
10. Ausnahmebehandlung
11. Schnittstellen (Interfaces)
12. Geschachtelte Klassen
13. Ein-/Ausgabe und Streams
14. Applets / Oberflächenprogrammierung

Inhalte

✓ Einfache Beispielprogramme

Lexikalische Konventionen

FOM Hochschule

Aufgabe 02.01

- > Hello, world! in Eclipse
- Legen Sie ein neues Projekt in Eclipse namens OOP2 (für Kapitel 2) an
- Legen Sie die Klasse HelloWorld an und implementieren Sie diese wie in der Vorlage

```
public class HelloWorld{
    public static void main(String args[]){
        System.out.println("Hello, world!");
    }
}
```

FOM Hochschule

Lokale Variable, Ausdrücke und Schleifen I

- Symbolische Konstanten
- Vergleichsoperator vs. Zuweisungsoperator
- Schleife

```
1 // Datei: Fahrenheit.java --> Klasse zur Wandlung von Temperaturen von Fahrenheit nach Celsius
     public class Fahrenheit
3 ⊟{
        public static void main (String[] args)
        { // Konstanten
           final int UPPER = 300:
                                     // obere Grenze, UPPER ist eine symbol. Konstante,
                                     //300 ist eine literale Konstante
 8
           final int LOWER =
                                     // untere Grenze
9
           final int STEP =
                                     // Schrittweite
10
11
           // Variablen
12
           int fahr;
                                     // Definition der lokalen Variablen, fahr für die Temperatur in Fahrenheit
13
           int celsius;
                                     // Definition der lokalen Variablen, celsius für die Temperatur in Celsius
14
          // Anweisungen
16
           fahr = LOWER;
                                     // als Anfangswert wird fahr der Wert 0 zugewiesen
17
18
           while (fahr <= UPPER)
19
20
              celsius = 5 * (fahr - 32) / 9;
                                                 // nach dieser Formel berechnet sich der Celsius-Wert aus einem Fahrenheit-Wert
21
22
23
              System.out.print (fahr);
                                             // der Wert von fahr wird auf
24
                                              // den Bildschirm ausgegeben
25
              System.out.print ("
                                             // Leerzeichen in derselben Zeile
26
27
              System.out.println (celsius);
28
                                     // Der Wert von Celsius wird in
29
                                     // derselben Zeile ausgegeben.
                                      // Anschließend springt der Cursor
31
                                      // zum Anfang der naechsten Zeile.
32
33
              fahr = fahr + STEP:
                                     // Der naechste Wert von fahr wird berechnet
34
36
```

FOM Hochschule

Lokale Variable, Ausdrücke und Schleifen II

- Nur mit int (ganzzahligen Ausdrücken)
- Schleife
- Hinweis zur letzten Zeile: Statt einer Variablen kann auch ein komplizierter Ausdruck von diesem Typ stehen

```
// Datei: Fahrenheit2.java
2
3
     public class Fahrenheit2
   □ {
        public static void main (String[] args)
5
 6
           int fahr;
8
9
           for (fahr = 0; fahr \le 300; fahr = fahr + 20)
10
11
              System.out.print (fahr);
12
              System.out.print (" ");
              System.out.println (5 * (fahr - 32) / 9);
13
14
15
16
```

FOM Hochschule

Lokale Variable, Ausdrücke und Schleifen III

- Implizite Konvertierung bei 5.0/9,
- dann explizite Typkonvertierung von double nach float mit Hilfe des Cast-Operators

```
// Datei: Fahrenheit3.java
 2
     public class Fahrenheit3
   □ {
 5
        public static void main (String[] args)
 6
           // Konstanten
           final int UPPER = 300; // obere Grenze
           final int LOWER = 0; // untere Grenze
           final int STEP = 20; // Schrittweite
10
11
12
           int fahr;
13
           float celsius;
14
15
           fahr = LOWER;
16
17
           while (fahr <= UPPER)
18
              celsius = (float) (5.0 / 9) * (fahr - 32);
19
20
              System.out.println (fahr + "
21
              fahr = fahr + STEP;
22
23
24
```

Visualisierung

Fahrenheit3

main(): void

FOM Hochschule

Zeichen von der Tastatur einlesen

Einlesen von Zeichen

```
// Datei: Zeichen.java
2
    public class Zeichen
 4
   □ {
 5
        // beachten Sie die Deklaration der Methode main() nicht
 6
        public static void main (String[] args) throws Exception
 7
 8
           int c = 0;
 9
           int anzahl = 0;
10
           System.out.print ("Bitte eine Folge von Zeichen eingeben ");
11
12
           System.out.println ("und mit <RETURN> abschliessen");
13
14
           do
15
16
              // System.in.read() gibt einen int-Wert im Bereich 0 bis
              // 255 zurueck. -1 wird zurueckgegeben, wenn kein Zeichen
17
              // mehr im Dateipuffer steht.
18
19
              c = System.in.read();
                                                                                                             'Ε'
                                                                                              'F'
                                                                                                   'H'
                                                                                                                       '\n'
                                                                                                                             Dateipuffer
20
21
              // Mit (char) c wird die int-Variable c
22
              // in ein Zeichen gewandelt.
                                                                      Dateizeiger vor erstem
                                                                                                           Dateizeiger nach
              System.out.println (
23
                                                                                                          zweitem Aufruf von
                                                                      Aufruf von
                 "ASCII-Code: " + c + " Zeichen: " + (char) c);
24
                                                                      System.in.read()
                                                                                                           System.in.read()
25
              anzahl = anzahl + 1;
                                                                            Dateizeiger nach
26
                                                                            erstem Aufruf von
27
           } while (c != -1);
                                                                            System.in.read()
28
           System.out.println ("Anzahl: " + anzahl);
29
30
```


Erzeugen von Objekten

```
Punkt p = new Punkt();
// oder...
Punkt p;
p = new Punkt();
```

- Typ-Deklaration der Variablen p und Instanziieren eines Objektes vom Typ p.
- Wenn nur innerhalb eines Methodenrumpfes sichtbar, spricht man von einer lokalen Variablen.
- Aufruf des Konstruktors, da dieser den gleichen Namen wie die Klasse trägt.
- Referenzvariable p zeigt auf ihr Objekt im Speicher.

FOM Hochschule

Initialisierung von Objekten mit Konstruktoren

- Nicht jede Klasse muss eine main-Methode haben
- In der Regel wird jede Klasse in einer eigenen Datei gespeichert
- Wenn mehrere Klassen in einer Datei sind, dann kann nur eine public sein!

```
1 // Datei: TestPunkt2.java
1 // Datei: Punkt2.java
                                                                      public class TestPunkt2
   public class Punkt2
                                                                   3 ₽{
3 ₽{
                                                                         public static void main (String[] args)
4
       private int x;
                                                                   5 🖨
5
       public Punkt2()
                                  // Dieser Konstruktor wird
                                                                   6
                                                                            Punkt2 p1 = new Punkt2(); // Erzeugen eines Punktes.
6
                                  // noch erklaert
                                                                                                        // x wird durch Default-
7
          System.out.println ("Default-Konstruktor");
                                                                   8
                                                                                                        // konstruktor auf 1 gesetzt
8
          x = 1;
                                                                   9
                                                                            Punkt2 p2 = new Punkt2 (3); // Erzeugen eines Punktes.
9
                                                                                                        // x wird auf 3 gesetzt
                                // Dieser Konstruktor wird noch
10
       public Punkt2 (int u)
                                                                            Punkt2 p3 = new Punkt2 (10);// Erzeugen eines Punktes.
11
                                  // erklaert
                                                                                                        // x wird auf 10 gesetzt
          System.out.print ("Konstruktor mit einem Parameter:")
12
                                                                            System.out.println ("Koordinate des Punktes p1:");
13
          System.out.println (" x = " + u);
                                                                  14
                                                                            p1.print();
14
          x = u;
                                                                            System.out.println ("Koordinate des Punktes p2:");
                                                                  15
15
                                                                  16
                                                                            p2.print();
       public void print()
                                                                  17
16
                                                                            System.out.println ("Koordinate des Punktes p3:");
17 þ
                                                                  18
                                                                            p3.print();
                                                                  19
          System.out.println ("x = " + x);
18
                                                                  20 }
19
20
```

FOM Hochschule

Schreiben von Instanzmethoden I

Verschieben eines Punktes (Klasse Punkt3 erweitert um die Methode verschiebe)

```
// Datei: Punkt4.java
2
    public class Punkt4
                           // Deklaration der Klasse Punkt4
4
   □ {
5
       private int x;
                           // Datenfeld für die x-Koordinate vom Typ int
 6
                          // Datenfeld für die y-Koordinate vom Typ int
       private int y;
       public int getX()
                                         // eine Methode, um den x-Wert
8
                                         // abzuholen
9
          return x;
10
11
12
       public int getY()
                                         // eine Methode, um den y-Wert
13
                                         // abzuholen
14
           return y;
15
16
17
       public void setX (int i)
                                    // eine Methode, um den x-Wert
18
                                         // zu setzen
19
           x = i;
20
21
22
       public void setY (int i)
                                         // eine Methode, um den y-Wert
23
                                         // zu setzen
24
          y = i;
25
26
27
       public void verschiebe (int deltaX, int deltaY)
28
29
          x = x + deltaX;
30
          y = y + deltaY;
31
```


FOM Hochschule

Schreiben von Instanzmethoden II

Formalparameter mit aktuellem Parameter initialisieren

```
// Datei: TestPunkt4.java
2
3
    public class TestPunkt4
4
   □ {
5
       public static void main (String[] args)
 6
 7
          Punkt4 p = new Punkt4(); // hiermit wird ein Punkt erzeugt
 8
          p.setX (1);
                                      // Aufruf der Methode setX()
 9
          p.setY (2);
                                      // Aufruf der Methode setY()
10
11
           System.out.println ("Die Koordinaten des Punktes p sind: ");
12
           System.out.println (p.getX());
13
           System.out.println (p.getY());
14
          p.verschiebe (4, 1);
15
16
           System.out.println ("Die Koordinaten des Punktes p sind: ");
17
           System.out.println (p.getX());
18
           System.out.println (p.getY());
19
20
```

FOM Hochschule

Zusammengesetzte Objekte I

Beispiel KreisEck

```
// Datei: Eck.java
    public class Eck
 3 ₽{
       private Punkt5 p1;
 5
       private Punkt5 p2;
 6
       private Punkt5 p3;
       private Punkt5 p4;
 8
 9
       public Eck (double u) // u soll eine halbe Seitenlaenge
10
                                // des Quadrats darstellen
11
          System.out.println ("Viereck wird erzeugt aus 4 Eckpunkten");
12
          p1 = new Punkt5 (u, u);
13
          p2 = new Punkt5 (-u, u);
14
          p3 = new Punkt5 (u, -u);
          p4 = new Punkt5 (-u, -u);
15
16
       public void skaliere (double u)
17
18
19
          p1.setX (p1.getX() * u);
          pl.setY (pl.getY() * u);
20
21
          p2.setX (p2.getX() * u);
22
          p2.setY (p2.getY() * u);
          p3.setX (p3.getX() * u);
23
24
          p3.setY (p3.getY() * u);
25
          p4.setX (p4.getX() * u);
          p4.setY (p4.getY() * u);
26
27
28
       public double berechneFlaeche()
29 中
30
          return (2 * p1.getX()) * (2 * p1.getY());
31
32
```


Visualisierung

FOM Hochschule

Zusammengesetzte Objekte II

Beispiel KreisEck

```
// Datei: Kreis.java
                                               1 // Datei: Kreiseck.java
     public class Kreis
                                                   public class Kreiseck
        private double radius;
                                               4
                                                      private Kreis kreisref;
 4
                                               5
                                                      private Eck eckref;
        static final double PI = 3.1415;
                                                      public Kreiseck (double alpha) // alpha ist der Radius des
        // PI ist eine konstante Klassenvar
                                                                                     // Inkreises
        public Kreis (double u)
                                               8
 8
                                               9
                                                         kreisref = new Kreis (alpha);
 9
           radius = u;
                                                         eckref = new Eck (alpha);
                                              10
10
                                              11
11
        public void skaliere (double u)
                                              12
                                                      public void skaliere (double u)
12
                                              13
13
           radius = radius * u;
                                              14
                                                         kreisref.skaliere (u); // Delegationsprinzip. Der Aufruf
14
                                                         eckref.skaliere (u); // skaliere (u) wird an die Komponenten
                                              15
        public double berechneFlaeche()
                                              16
                                                                               // weitergeleitet.
15
                                              17
                                                      public double flaechendifferenz()
16
                                              18
17
           return (PI * radius * radius);
                                              19
                                                         return (eckref.berechneFlaeche() -
18
                                              20
                                                                 kreisref.berechneFlaeche());
19
        public double getRadius()
                                              21
20
                                              22
                                                      public Kreis getKreis()
21
           return radius;
                                              23
22
                                              24
                                                         return kreisref:
23
                                              25
                                              26
```

Testen mit der Klasse KreisEckTest

FOM Hochschule

Selbst definierte Untertypen durch Vererbung I

- Abgeleitet werden Klassen. Objekte können nicht abgeleitet werden.
- Durch Ableitung wird ein Untertyp geschaffen, dies wird auch als Subtyping bezeichnet

Selbst definierte Untertypen durch Vererbung II

Klasse Person

```
// Datei: Person.java
    import java.util.Scanner;
    public class Person
 4
   □ {
       private String name;
 6
       private String vorname;
 7
       // und können in einer Variable vom
 8
       // Namen sind konstante Zeichenketten
 9
       // Typ String gespeichert werden. Die
10
       // Klasse String ist eine Bibliotheksklasse.
       public Person()
11
12
13
          System.out.print ("\nNachnamen eingeben ");
14
          System.out.print ("(Ende mit <CR>): ");
15
          name = input();
16
17
          System.out.print ("Vornamen eingeben ");
18
          System.out.print ("(Ende mit <CR>): ");
19
          vorname = input();
20
21
       public String input() // bitte überlesen Sie die
22
          Scanner eingabe = new Scanner (System.in);
23
2.4
          return eingabe.next();
25
26
       public void print()
27
28
           System.out.print ("\nNachname: " + name);
29
           System.out.print ("\nVorname: " + vorname);
30
31
```

Klasse Student

```
1 // Datei: Student.java
    public class Student extends Person
3 □{
4
       private String matrikelnummer;
       public Student()
 6
          super(); // Aufruf des Konstruktors der Vaterklasse
          System.out.print ("Matrikelnummer eingeben ");
          System.out.print ("(Ende mit <CR>): ");
10
11
          matrikelnummer = input();
12
13
       public void printMatrikelnummer()
14 🖨
15
          System.out.print ("\nMatrikelnummer : " + matrikelnummer);
16
17
       public static void main (String[] args)
18 🖨
          System.out.print ("\nErfasse Person");
19
20
          Person pers1 = new Person();
21
22
          System.out.print ("\nErfasse Student");
23
          Student stud1 = new Student();
24
25
          System.out.print ("\nAusgabe Person");
26
          persl.print();
27
          System.out.print ("\n\nAusgabe Student");
29
          stud1.print();
30
          stud1.printMatrikelnummer();
31
32
```

FOM Hochschule

Methode printf()

Erwartet als ersten Parameter einen Formatierungsstring

Sonderzeichen	Bedeutung
%d	Integer (32 Bit, mit Vorzeichen)
%u	Integer (32 Bit, positiv, ohne Vorzeichen)
%hu	liest weiterhin ein int, konvertiert es jedoch zu unsigned short int
%x, %X	integer in hexadezimaler Schreibweise (hex, kein Standard!)
%o	Integer in oktaler Schreibweise
%f	Fließkommazahl
%e, %E	Fließkommazahl in Exponentialdarstellung
%с	Wert als ASCII-Zeichen (character)
%s	Adresse als Zeichenkette (String)

> Nach dem Formatstring kommen als weitere Parameter die auszugebenden Variablen

bzw. Ausdrücke

printf-Befehl	Ausgabe
<pre>printf("Insg. %d Euro %d Cent", 15, 20); printf("%5d Euro", 123); printf("%8d Dollar", 123); printf("%-8d Cent", 123); printf("%-8d S", 12345); printf("Nr. %d", 255); printf("Nr. %o", 255); printf("Nr. %h", 255); printf("Euro %.2f", 34.565); printf("Euro %7.2f", 34.564); printf("%5tT", new Calendar()); printf("%5tF", new Calendar());</pre>	Insg. 15 Euro 20 Cent123 Euro123 Dollar 123 Cent 12345 \$ Nr. 255 Nr. 377 Nr. ff Euro 34.57 Euro34.56 19:47:19 2004-10-09

FOM Hochschule

Klasse Scanner

➤ Einfache, mächtige Eingabemöglichkeit mit integrierter Typdefinition

```
// Datei: EingabeTest.java
     import java.util.Scanner;
     public class EingabeTest
 4
   □ {
 5
        public static void main (String[] args)
 6
 7
           // Erzeugen eines Objektes der Klasse Scanner, um von
           // der Standard-Eingabe (Tastatur) einzulesen.
 8
 9
           Scanner eingabe = new Scanner (System.in);
10
11
           System.out.print ("Geben Sie Ihren Namen ein: ");
12
           String name = eingabe.next();
13
           System.out.println ("Hallo " + name +
14
                       "! Heute wollen wir zwei Zahlen addieren.");
15
16
           System.out.print (name + ", gib die erste Zahl ein: ");
17
           int zahl1 = eingabe.nextInt();
18
           System.out.print ("OK. Und nun die zweite Zahl: ");
19
           int zahl2 = eingabe.nextInt();
20
           System.out.println ("Das Ergebnis ist: " + zahl1 +
                         " + " + zahl2 + " = " + (zahl1 + zahl2));
21
22
23
```

FOM Hochschule

Übersicht

1. Grundbegriffe der Programmierung	lugha di a
2. Einfache Beispielprogramme	Inhalte
3. Datentypen und Variablen	✓ Einfache Beispielprogramme
4. Ausdrücke und Operatoren	Elimatric Beispielprogramme
5. Kontrollstrukturen	✓ Lexikalische Konventionen
6. Blöcke und Methoden	Loxinalisono Ronvontionon
7. Klassen und Objekte	
8. Vererbung und Polymorphie	
9. Pakete	
10. Ausnahmebehandlung	
11. Schnittstellen (Interfaces)	
12. Geschachtelte Klassen	
13. Ein-/Ausgabe und Streams	
14. Applets / Oberflächenprogrammierung	

FOM Hochschule

Zeichenvorrat

- Java benutzt den Unicode-Zeichensatz
- Die Wörter oder Zeichengruppen, aus denen Programmtext aufgebaut ist, werden als lexikalische Einheiten bzw. als Token bezeichnet, dieses sind:
 - ✓ Namen
 - ✓ Schlüsselwörter
 - √ Konstanten
 - ✓ Satzzeichen (Interpunktionszeichen, engl. separators)
 - ✓ Operatoren
- Werden durch Trenner begrenzt
 - ✓ Zwischenraum (Whitespacezeichen, Leerzeichen…)
 - ✓ Kommentare (Block, Zeile, Dokumentation)
 - √ Satzzeichen
 - ✓ Operatoren
- Java ist case sensitive

Style-Guide für die Programmierung

- Gestaltungsrichtlinie für das Erstellen von Programmen, um die Lesbarkeit zu erhöhen
- Dazu gehören auch Konventionen über das Einrücken in Blöcken etc. Für Namen hat sich in Java der folgende Programmierstil durchgesetzt:

Name	Konvention	Beispiel
Variablennamen	Kleinbuchstaben	variable
Datenfeldnamen	Kleinbuchstaben	vorname
Methodennamen	Kleinbuchstaben	methode()
Klassennamen	1. Buchstaben groß, Rest klein	Person
symbolische Konstanten	alle Buchstaben groß	MAXIMUM

- Aus mehreren Wörtern zusammengesetzte Namen werden ohne Unterstrich, das zweite Worte groß geschrieben. Z.B. verschiebePunkt()
- Keine Sonderzeichen wie z.B. % & §, aber \$ ist erlaubt
- Umlaute sind erlaubt, sollten aber besser nicht genutzt werden
- Keine Zahl am Anfang
- Keine Schlüsselwörter

FOM Hochschule

Style-Guide für die Programmierung

Schlüsselwörter Auszug

boolean	double	int	return
break	else	long	static
case	extends	new	super
catch	final	null	switch
char	float	package	this
class	for	private	try
default	if	protected	void
do	import	public	while

FOM Hochschule

Aufgabe 02.02

- Welche Bezeichner können in Java verwendet werden?
 - anfang&endVariable
 - o porsche 911
 - erster_Eintrag_nach_Beendigung_von_2_Schleifen
 - new
 - 1objekt
 - objekt_extends_class
 - o else123

FOM Hochschule

Code Formatierung

- Einrückung, wenn neuer Block beginnt (Tabulator oder 4 Leerzeichen)
- Öffnende geschweifte Klammer immer als letztes Zeichen am Ende einer Zeile (K&R-Stil)

```
public class HelloWorld{
    public static ...
}
```

 oder als einziges Zeichen in der darauf folgenden Zeile in Höhe des ersten Zeichens (Allman-Stil)

```
public class HelloWorld
{
    public static ...
}
```

Die schließende geschweifte Klammer steht einzeln in Zeile auf Höhe des ersten Zeichen

FOM Hochschule

Kommentare

- Dokumentationsdokumentar

```
// Datei: DocuTest2.java
 2
   E/** Ich bin ein Kommentar und erlaeutere die Klasse DocuTest2
      * @version 1.0
      * @author Rainer Brang
    public class DocuTest2
   ₽ {
 8
 9
       /** Ich bin ein Kommentar und erlaeutere das Datenfeld x */
10
       public int x;
11
12
       /** Erlaeuterung der Methode meth()
13
         * @param para Hier die Beschreibung des Parameters
         * @return Kein Rueckgabewert
14
15
16
       public void meth (int para)
17
18
          // Anweisungen
19
20
```

FOM Hochschule

Kommentare

- Dokumentationskommentar
- Zusätzliche Kommentierung von z.B. Übergabeparameter, Rückgabewerte etc. über sogenannte Tags

Tag	Bedeutung	Kommentartyp
@see	erstellt einen Link zu anderen Klassen	Klasse, Datenfeld, Methode
@version	gibt die Version an	Klasse
@author	gibt den Autor an	Klasse
@param	beschreibt einen Parameter näher	Methode
@return	beschreibt den Rückgabewert	Methode
@exception	beschreibt die Exception näher	Methode
@deprecated	markiert ein Element als deprecated	Klasse, Datenfeld, Methode

FOM Hochschule

Aufgabe 02.03

Hello, world! in Eclipse

```
public class HelloWorld{
   public static void main(String args[])
   {
      System.out.println("Hello, world!");
   }
}
```

Fügen Sie Kommentare für Autor, Version, Klasse und main-Methode mit Parameter in den Quelltext ein, und erzeugen Sie das zugehörige javadoc.

FOM Hochschule

Aufgabe 02.04

- Fehlerbehandlung
- Finden Sie den Fehler im Programm! Was könnten Sie bei dieser einfachen Klasse besser machen?

```
public class HelloWorld {
    public static void main (String[] args)
        int zahl = 7;
        System.out.println("Bildschirmtext");
        System.out.println(zahl)
        System.out.println("Toll, oder?");
```