Matrix Algebra

William Brasic

The University of Arizona

What is Matrix Algebra?

Definition 1: Matrix Algebra

In its simplest form, matrix algebra is a convenient way to express linear equations in terms of vectors and matrices.

 It greatly simplifies the math and notation for the rest of the semester so we will cover the main topics

Main Terms

The main terms in matrix algebra are:

- Dimensions
- Column Vector
- Row Vector
- Transpose
- Dot Product
- Matrix
- Square Matrix
- Symmetric Matrix
- Identity Matrix
- Inverse

Column Vector

Definition 2: Column Vector

A column vector \boldsymbol{x} of numbers x_1, \ldots, x_n is given by

$$m{x} = egin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

- We say this is a $n \times 1$ dimensional column vector
- Unless otherwise noted, a vector in this course is a column vector

Row Vector

Definition 3: Row Vector

A row vector \boldsymbol{x} of numbers x_1, \ldots, x_n is given by

$$\boldsymbol{x} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}.$$

• We say this is a $1 \times n$ dimensional row vector

Transpose

Definition 4: Transpose

The transpose of a column vector ${\boldsymbol x}$ of numbers x_1,\dots,x_n is given by

$$\mathbf{x}' = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}' = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}.$$

• The transpose of a column vector is a row vector and vice versa

Dot Product

Definition 5: Dot Product

The dot product of two vectors x and y is given by

$$x'y = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \sum_{i=1}^n x_i y_i.$$

 To perform a dot product, the vectors must be of the same dimension

Dot Product

Question 1: Dot Product

$$x'\beta = \begin{pmatrix} 1 & x_1 & x_2 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix} = ?$$

Dot Product

Question 1: Dot Product

$$x'\beta = \begin{pmatrix} 1 & x_1 & x_2 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix} = ?$$

Answer to Question 1

$$x'\beta = 1 + \beta_1 x_1 + \beta_2 x_2 = 1 + \sum_{i=1}^{2} \beta_i x_i$$

Matrix

Definition 6: Matrix

A $n \times k$ matrix X is a rectangular array of numbers given by

$$X = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1k} \\ x_{21} & x_{22} & \dots & x_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nk} \end{pmatrix}.$$

- The n rows typically correspond to observations
- The k columns typically correspond to variables
- We say this is a $n \times k$ dimensional matrix

Square Matrix

Definition 7: Square Matrix

A $n \times k$ matrix X of numbers is square when it has the same number of rows as columns (so n = k):

$$X = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nn} \end{pmatrix}.$$

Matrix Addition and Scalar Multiplication

Example 1: Matrix Addition and Scalar Multiplication

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix} = 2 * \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

• We can add two matrices X and Y, X + Y, if they have the same number of rows and columns (same dimension)

Matrix Multiplication

Example 2: Matrix Multiplication

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} (1*1) + (2*3) & (1*2) + (2*4) \\ (3*1) + (4*3) & (3*2) + (4*4) \end{bmatrix}$$
$$= \begin{bmatrix} 1+6 & 2+8 \\ 3+12 & 6+16 \end{bmatrix}$$
$$= \begin{bmatrix} 7 & 10 \\ 15 & 22 \end{bmatrix}$$

- We can multiply two matrices X and Y, XY, if the number of columns of X equals the number of rows of Y
 - ▶ If X is 4×5 and Y is 4×2 , then X'Y exists and is 5×2

Matrix-Vector Multiplication

Example 3: Matrix-Vector Multiplication

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} (1*1) + (2*2) \\ (3*1) + (4*2) \end{bmatrix} = \begin{bmatrix} 1+4 \\ 3+8 \end{bmatrix} = \begin{bmatrix} 5 \\ 12 \end{bmatrix}$$

- We can multiply a matrix X with a vector y, Xy, if the number of columns of X equals the dimension of y
 - ▶ If X is $n \times k$ and y is $n \times 1$, then X'y is $k \times 1$

Symmetric Matrix

Definition 8: Symmetric Matrix

A $n \times n$ square matrix X of numbers is symmetric if X = X'.

Example 4: Symmetric Matrix

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 6 & 7 \\ 3 & 6 & 8 & 9 \\ 4 & 7 & 9 & 10 \end{bmatrix}$$

Matrix Multiplied by its Transpose is Symmetric

Theorem 1: Matrix Multiplied by its Transpose is Symmetric

For any $n \times k$ matrix X of numbers, the resulting matrix Y = X'X is symmetric.

Identity Matrix

Definition 9: Identity Matrix

A $n \times n$ square matrix I of numbers is called the identity matrix if

$$I = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}.$$

Identity Matrix

Property 1: Properties of the Identity Matrix

If I is the $k\times k$ identity matrix, X is a $n\times k$ matrix, and $\pmb{\beta}$ is a $k\times 1$ vector, then

- 1. II = I
- 2. XI = X
- 3. $I\beta = \beta$
- 4. I' = I

Inverse

Definition 10: Inverse

The inverse of an $n\times n$ square matrix X is denoted by X^{-1} and is defined when X has n linearly independent columns and rows. When X^{-1} exists, it satisfies $XX^{-1}=X^{-1}X=I$, where I is the $n\times n$ identity matrix.

Inverse

Property 2: Properties of Invertible Matrices

When X and Y are invertible,

- 1. $(X^{-1})^{-1} = X$
- 2. $(cX)^{-1}=c^{-1}X^{-1}$ for any constant $c\neq 0$
- 3. $(X')^{-1} = (X^{-1})'$
- 4. $(XY)^{-1} = Y^{-1}X^{-1}$

Vector and Matrix Calculus

Definition 11: Derivative of a Vector

The derivative of a function f(x) where x is a $n \times 1$ vector is

$$\frac{\partial f(x)}{\partial x} = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{bmatrix}.$$

• This is commonly called the gradient of f

Vector and Matrix Calculus

Property 3: Properties of Matrix Differentiation

For $n \times 1$ vectors \boldsymbol{x} and \boldsymbol{y} and a matrix A,

1.
$$\frac{\partial y'x}{\partial x} = \frac{\partial x'y}{\partial x} = y$$

2. When A is not symmetric,

$$\frac{\partial \boldsymbol{x'} A \boldsymbol{x}}{\partial \boldsymbol{x}} = (A + A') \boldsymbol{x}$$

3. When A is symmetric,

$$\frac{\partial \boldsymbol{x}' A \boldsymbol{x}}{\partial \boldsymbol{x}} = (A + A') \boldsymbol{x} = (A + A) \boldsymbol{x} = 2A \boldsymbol{x}$$

Why Do We Care?

Question 2: Why Do We Care?

Why go through all the trouble of this matrix algebra stuff?

Why Do We Care?

Question 2: Why Do We Care?

Why go through all the trouble of this matrix algebra stuff?

Answer to Question 2

We can represent any OLS specification conveniently in terms of vectors and matrices.

Linear Regression Model in Vector Form

Definition 12: Vector Representation of the Linear Model

Given $y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik} + u_i$ for $i = 1, \ldots n$, we can write this as

$$y_i = \boldsymbol{x_i'}\boldsymbol{\beta} + u_i$$
, for $i = 1, \dots, n$.

- y_i is agent i's outcome
- x_i is the $(k+1) \times 1$ vector of covariates corresponding to agent i
- β is the $(k+1) \times 1$ vector of parameters
- u_i is the error corresponding to agent i

Linear Regression Model in Matrix Form

Definition 13: Matrix Representation of the Linear Model

We can write $y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik} + u_i$ for $i = 1, \ldots n$, as $y = X\beta + u$,

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & \dots & x_{1k} \\ 1 & x_{21} & \dots & x_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \dots & x_{nk} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{bmatrix} + \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$

- y is the $n \times 1$ vector of outcomes for each agent
- X is the $n \times (k+1)$ vector of covariates for each agent
- β is the $(k+1) \times 1$ vector of parameters
- u is the $n \times 1$ vector of errors for each agent

Sum of Squared Residuals (SSR) in Matrix Form

Definition 14: Sum of Squared Residuals (SSR)

The sum of squared residuals (SSR) in vector notation is

$$\sum_{i=1}^{n} \widehat{u}_{i}^{2} = \widehat{\boldsymbol{u}}' \widehat{\boldsymbol{u}} = \left(\boldsymbol{y} - X \widehat{\boldsymbol{\beta}} \right)' \left(\boldsymbol{y} - X \widehat{\boldsymbol{\beta}} \right)$$
$$= \boldsymbol{y}' \boldsymbol{y} - \boldsymbol{y}' X \widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}' X' \boldsymbol{y} + \widehat{\boldsymbol{\beta}}' X' X \widehat{\boldsymbol{\beta}}$$
$$= \boldsymbol{y}' \boldsymbol{y} - 2 \widehat{\boldsymbol{\beta}}' X' \boldsymbol{y} + \widehat{\boldsymbol{\beta}}' X' X \widehat{\boldsymbol{\beta}}$$

We can now derive the OLS estimator without using summations!
 So, lets do it!

The OLS Estimator in Matrix Form

Theorem 2: OLS Solution

The solution, $\widehat{\beta}$, to the OLS problem is given by

$$\widehat{\beta} = (X'X)^{-1}X'\boldsymbol{y}.$$

- X'y is analogous to Cov(x, y)
- X'X is analogous to Var(x)

Proof of the OLS Solution

Proof 1: Proof of OLS Solution Part 1

First, find the derivative of the SSR:

$$\frac{\partial SSR\left(\widehat{\boldsymbol{\beta}}\right)}{\partial \widehat{\boldsymbol{\beta}}} = \frac{\partial \boldsymbol{u}'\boldsymbol{u}}{\partial \widehat{\boldsymbol{\beta}}} \\
= \frac{\partial}{\widehat{\boldsymbol{\beta}}} \left(\boldsymbol{y}'\boldsymbol{y} - 2\widehat{\boldsymbol{\beta}}'\boldsymbol{X}'\boldsymbol{y} + \widehat{\boldsymbol{\beta}}'\boldsymbol{X}'\boldsymbol{X}\widehat{\boldsymbol{\beta}} \right) \\
= -2\boldsymbol{X}'\boldsymbol{y} + 2\boldsymbol{X}'\boldsymbol{X}\widehat{\boldsymbol{\beta}}.$$

Proof of the OLS Solution

Proof 1: Proof of OLS Solution Part 2

Second, use the first order condition for minimization:

$$\frac{\partial SSR\left(\widehat{\boldsymbol{\beta}}\right)}{\partial\widehat{\boldsymbol{\beta}}} = -2X'\boldsymbol{y} + 2X'X\widehat{\boldsymbol{\beta}} = 0$$

Proof of the OLS Solution

Proof 1: Proof of OLS Solution Part 3

Lastly, solve the equation for $\widehat{\beta}$:

$$\begin{split} -2X'\boldsymbol{y} + 2X'X\widehat{\boldsymbol{\beta}} &= 0 \iff 2X'X\widehat{\boldsymbol{\beta}} = 2X'\boldsymbol{y} \\ &\iff X'X\widehat{\boldsymbol{\beta}} = X'\boldsymbol{y} \\ &\iff (X'X)^{-1}X'X\widehat{\boldsymbol{\beta}} = (X'X)^{-1}X'\boldsymbol{y} \\ &\iff I\widehat{\boldsymbol{\beta}} = (X'X)^{-1}X'\boldsymbol{y} \\ &\iff \widehat{\boldsymbol{\beta}} = (X'X)^{-1}X'\boldsymbol{y}. \end{split}$$

Hooray!

Thank You!