

Cairo University - Faculty of Engineering Computer Engineering Department Computer Architecture

Team 5 Phase 1 Report

Name	Section	BN
Abdallah Hussien	2	2
Ali Adel	2	4
Mohamed Adel	2	21
Saad Eldeen Mohamed	1	26

Submitted to:

Eng/ Maheed Hatem

Academic Year: 2020 – 2021

Instruction Format:

IR = 32 bit

Types of instructions

- 1-op
- 2-op
- Memory
- BR
- Signals (INT, RESET)

Those main types represented by the first three bits of the opcode (OP-A)

Bits indices		15:13	12:9	2:0
Туре	Operation	OP-A	OP-B	Rdst
1-OP	NOP	000	0000	xxx
	SETC		0001	
	CLRC		0010	
	CLR Rdst		0011	
	NOT Rdst		0100	
	INC Rdst		0101	
	DEC Rdst		0110	
	NEG Rdst		0111	
	OUT Rdst		1000	
	IN Rdst		1001	
	RLC Rdst		1010	
	RRC Rdst		1011	

Bits indices		31:16	15:13	12:9	5:3	2:0
Туре	Operation	Offset / Imm	OP-A	ОР-В	Rsrc	Rdst
2-OP	MOV Rsrc, Rdst		001	0000	xxx	xxx
	ADD Rsrc, Rdst			0001		
	SUB Rsrc, Rdst			0010		
	AND Rsrc, Rdst			0011		
	OR Rsrc, Rdst			0100		
	IADD Rdst,Imm			0101		

Bits indices		19:16	15:13	12:9	2:0
Туре	Operation	Offset / Imm	OP-A	ОР-В	Rdst
2-OP	SHL Rsrc, Imm	xxxxx	001	0110	xxx
	SHR Rsrc, Imm			0111	

Bits indices		31:16	15:13	12:9	2:0
Туре	Operation	Offset / Imm	OP-A	OP-B	Rdst
Memory	PUSH Rdst		010	0000	xxx
	POP Rdst			0001	
	LDM Rdst, Imm			0010	
	LDD Rdst, offset(Rsrc)			0011	
	STD Rdst, offset(Rsrc)			0100	
Branch	JZ Rdst		011	0000	xxx
	JN Rdst			0001	
	JC Rdst			0010	
	JMP Rdst			0011	
	CALL Rdst			0100	
	RET			0101	-
	RTI			0110	
Input SGL	Reset		111	0000	-
	Interrupt			0001	

Control Unit Design:

One Operand

	Alu Source	Alu Operation	Read/Write	Port I/O	Mem I/O	SP_Add/Subract	Push_Pop/ Load_Store	Sp Write	WB
	(1 bit)	(5bits)	(1bit)	(1 bit)	(1 bit)	(1 bit)	(1 bit)	(1 bit)	(1 bit)
NOP	0	00000	0	0	0	0	0	0	0
SETC	0	00010	0	0	0	0	0	0	0
CLRC	0	00011	0	0	0	0	0	0	0
CLR	0	00100	0	0	0	0	0	0	1
NOT	0	00101	0	0	0	0	0	0	1
INC	0	00110	0	0	0	0	0	0	1
DEC	0	00111	0	0	0	0	0	0	1
NEG	0	01000	0	0	0	0	0	0	1
OUT	0	00000	1	1	0	0	0	0	0
IN	0	00000	0	1	0	0	0	0	1
RLC	0	01111	0	0	0	0	0	0	1
RRC	0	10000	0	0	0	0	0	0	1

Two Operands

	Alu Source	Alu Operation	Read/Write	Port I/O	Mem I/O	SP_Add/Subra ct	Push_Pop /Load_Sto re	Sp Write	WB
	(1 bit)	(5bits)	(1bit)	(1 bit)	(1 bit)	(1 bit)	(1 bit)	(1 bit)	(1 bit)
MOV	0	00001	0	0	0	0	0	0	1
ADD	0	01001	0	0	0	0	0	0	1
SUB	0	01010	0	0	0	0	0	0	1
AND	0	01011	0	0	0	0	0	0	1
OR	0	01100	0	0	0	0	0	0	1
IADD	1	01001	0	0	0	0	0	0	1
SHL	1	01101	0	0	0	0	0	0	1
SHR	1	01110	0	0	0	0	0	0	1

Memory/Branch Operations

	Alu Source	Alu Operation	Read/Write	Port I/O	Mem I/O	SP_Add/Subra ct	Push_Pop /Load_Sto re	Sp Write	WB
	(1 bit)	(5bits)	(1bit)	(1 bit)	(1 bit)	(1 bit)	(1 bit)	(1 bit)	(1 bit)
PUSH	0	00000	1	0	1	0	0	1	0
POP	0	00000	0	0	1	1	0	1	1
LDM	1	00001	0	0	0	0	0	0	1
LDD	0	00000	0	0	1	0	1	0	1
STD	0	00000	1	0	1	0	1	0	0
JUMP	0	00000	0	0	0	0	0	0	0
CALL	0	00000	0	0	0	1	0	1	0
RET	0	00000	0	0	0	0	0	1	0

Pipeline Stages Design:

Fetching Stage (IF/ID Buffer) (29 bits):

```
1- Offset \rightarrow 16 bits.
```

- 2- Opcode → 7 bits
- 3- Srcbits \rightarrow 3 bits
- 4- Dstbits \rightarrow 3 bits
- 5- PCUpdated \rightarrow 32 bits (**optional** No Jump).

Decoding Stage (ID/EX Buffer) (115 bits):

```
1- Rsrc \rightarrow 32 bits.
```

- 2- Rdst → 32bits
- 3- Srcbits → 3 bits
- 4- Dstbits → 3 bits
- 5- Offset Extended → 32 bits
- 6- PCUpdated → 32 bits (optional No Jump).
- 7- Control Signals (EX, M, WB) → 13 bits

Execution Stage (EX/M Buffer) (138 bits):

```
1- Rsrc \rightarrow 32 bits.
```

- 2- AluResult → 32bits
- 3- SpBuffered \rightarrow 32 bits
- 4- Dstbits → 3 bits
- 5- Offset Extended → 32 bits
- 6- PCUpdated → 32 bits (**optional** No Jump).
- 7- Control Signals (EX, M, WB) → 7 bits

MemoryStage (M/WB Buffer) (36 bits):

- 1- WriteBack Data→ 32bits
- 2- Dstbits → 3 bits
- 3- Control Signals (EX, M, WB) → 1 bits

Hazards

Structural Hazards

- Harvard architecture to handle memory access hazard
 - Using two separate memories one for program instructions and the other for data to avoid the hazard.

Data Hazards

- RAW
 - Full forwarding unit.
- WAW, WAR
 - Won't reorder instructions so no need to handle them.
- Load-Use
 - Stalling for one clock cycle.