

0	Todos los apuntes	que necesitas	están aqu
_			

- Al mejor precio del mercado, desde 2 cent.
- Recoge los apuntes en tu copistería más cercana o recíbelos en tu casa
- Todas las anteriores son correctas

ARQUITECTURA DE COMPUTADORES GRUPO B. BENCHMARK del TEMA 1

Estudiante:

- 1. En la expresión de la ley de Amdahl, $Sp \le p/(1+f(p-1))$, para la ganancia de velocidad de un computador al mejorar uno de sus recursos (Responda verdadero (V) o falso (F)):
 - p es el factor de incremento de prestaciones del recurso que se mejora \checkmark

(V)

- f es la fracción del tiempo antes de la mejora en la que se utiliza el recurso mejorado 🗲

(F)

- La máxima ganancia de velocidad que se puede conseguir, por mucho que se mejore el recurso es 1/f $\,\,$ $\,\,$ $\,\,$
 - (V)

- p puede ser mayor que 1 🤍

(V)

2. En un procesador segmentado a pleno rendimiento, el número de ciclos por instrucción (CPI) es (estrictamente) menor que 1 (responda Verdadero, V, o Falso, F)

(F)

- 3. Los núcleos de la arquitectura Sunday Bridge de Intel pueden terminar hasta 8 operaciones en coma flotante (FLOP) por ciclo.
- ¿Cuál es la máxima velocidad (en GFLOPS) de un microprocesador con 4 núcleos Sunday Bridge que funciona a una frecuencia de reloj de 2 GHz?

8 FLOP/(núcleo*ciclo)* 2 Gciclos/s * 4 núcleos = 64 GFLOPS

- 4. Responda Verdadero (V) o Falso (F):
 - Un computador UMA, es un multiprocesador donde la memoria está físicamente distribuida.

(**F**)

- Un multicomputador también se denomina computador NORMA

(V)

5. Si el bucle siguiente: for i=1 to N do a(i)=b(i)*c; se ejecuta en 2 segundos y N=10¹¹, siendo c, a(), y b() datos en coma flotante. ¿Cuántos GFLOPS alcanza la máquina al ejecutar el código?.

$1*10^{11}$ FLOP / 2 s $*10^9$ = 100/2 GFLOPS = 50 GFLOPS

- 6. Responda Verdadero (V) o Falso (F):
 - Las hebras de un proceso necesitan recurrir a llamadas al sistema operativo para comunicarse

(**F**)

 El paralelismo entre hebras permite aprovechar una granularidad menor que el paralelismo entre procesos

(V)

 Un multiprocesador puede funcionar como computador MISD con la correspondiente sincronización entre sus procesadores

(V)

- 7. En la secuencia de instrucciones:
 - (a) add r1, r2, r3; r1 \leftarrow r2 + r3
 - (b) sub r1, r1, r4; r1 \leftarrow r1 r4
 - Hay dependencia WAW entre las instrucciones debido al registro r1

(V)

- No hay dependencia WAR entre las instrucciones debido al registro r1

(V)

