Plan

- 1 k-coloration
- 2 Arbre couvrant minimal

2/16

Plan

- 1 k-coloration
- 2 Arbre couvrant minimal

k-coloration

Soit G = (V, E) un graphe, $k \in \mathbb{N}$. Une k-coloration de G est une fonction $f : V \longrightarrow [k]$, telle que pour chaque deux noeuds voisins $u, v \in V$ on a $f(u) \neq f(v)$.

(FPO)

k-coloration

Soit G = (V, E) un graphe, $k \in \mathbb{N}$. Une k-coloration de G est une fonction $f : V \longrightarrow [k]$, telle que pour chaque deux noeuds voisins $u, v \in V$ on a $f(u) \neq f(v)$.

Le nombre chromatique $\chi(G)$ est le plus petit nombre $k \in \mathbb{N}$, tel qu'il existe une k-coloration de G .

4 / 16

Chromatic number is 3

Graphe complet K_n

Graphe complet K_n

Le nombre chromatique de K_n égale à n.

5/16

Chaîne

Chaîne

Pour n > 1, le nombre chromatique d'une chaîne P_n égale à 2.

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ · 臺 · 釣९♡

6/16

Si n est pair, le nombre chromatique d'un cycle C_n égale à 2.

7/16

Si n est impair, le nombre chromatique d'un cycle C_n égale à 3.

↓□▶ ↓□▶ ↓ □▶ ↓ □▶ ↓ □ ♥ ♀ ○

graphe biparti

graphe biparti

Le nombre chromatique d'un graphe biparti, contenant au moins une arête, égale à 2.

(FPO) La théorie des graphes Avril 2022 9 / 16

Exercice

Montrer que pour tout graphe G ayant n nœuds, on a

$$\chi(G).\alpha(n) \geq n$$

10 / 16

Caractérisation d'un graphe biparti

Soit G = (V, E) un graphe non vide. les assertions suivantes sont équivalentes :

- **1** G est biparti, $V = S \uplus T$, $E(S) = E(T) = \emptyset$.
- **2** $\chi(G) = 2$.
- 3 G contient aucun cycle de longueur impaire.

◆ロト ◆昼 ト ◆ 差 ト → 差 → りへぐ

 $1) \Rightarrow 2)$

 $1) \Rightarrow 2$ On peut colorer S avec la première couleur et T avec la deuxième couleur, c.à.d. $\chi(G) \leq 2$. Puisque $E \neq \emptyset$ nous avons $\chi(G) \geq 2$ (les deux extrémités de l'arête doivent être colorées différemment).

(FPO) La théorie des graphes

12 / 16

 $[1) \Rightarrow 2]$ On peut colorer S avec la première couleur et T avec la deuxième couleur, c.à.d. $\chi(G) \leq 2$. Puisque $E \neq \emptyset$ nous avons $\chi(G) \geq 2$ (les deux extrémités de l'arête doivent être colorées différemment).

2) \Rightarrow 3) Soit fune 2-coloration de G.

12 / 16

 $[1)\Rightarrow 2)$ On peut colorer S avec la première couleur et T avec la deuxième couleur, c.à.d. $\chi(G)\leq 2$. Puisque $E\neq\emptyset$ nous avons $\chi(G)\geq 2$ (les deux extrémités de l'arête doivent être colorées différemment).

 $2) \Rightarrow 3$ Soit fune 2-coloration de G. On partage l'ensemble des nœuds V en deux ensemble S, T, où chaque ensemble est monochromatique, c.à.d. $S := f^{-1}(\{1\})$ et $T := f^{-1}(\{2\})$.

12 / 16

 $[1)\Rightarrow 2)$ On peut colorer S avec la première couleur et T avec la deuxième couleur, c.à.d. $\chi(G)\leq 2$. Puisque $E\neq\emptyset$ nous avons $\chi(G)\geq 2$ (les deux extrémités de l'arête doivent être colorées différemment).

 $(2) \Rightarrow 3)$ Soit f une 2-coloration de G. On partage l'ensemble des nœuds V en deux ensemble S, T, où chaque ensemble est monochromatique, c.à.d. $S := f^{-1}(\{1\})$ et $T := f^{-1}(\{2\})$. Alors nous aurons $S \uplus T = V$.

 $[1) \Rightarrow 2]$ On peut colorer S avec la première couleur et T avec la deuxième couleur, c.à.d. $\chi(G) \leq 2$. Puisque $E \neq \emptyset$ nous avons $\chi(G) \geq 2$ (les deux extrémités de l'arête doivent être colorées différemment).

 $2) \Rightarrow 3)$ Soit f une 2-coloration de G. On partage l'ensemble des nœuds V en deux ensemble S, T, où chaque ensemble est monochromatique, c.à.d. $S := f^{-1}(\{1\})$ et $T := f^{-1}(\{2\})$. Alors nous aurons $S \uplus T = V$. Il s'ensuit que T et S ne contiennent aucune arête.

12 / 16

 $[1) \Rightarrow 2)$ On peut colorer S avec la première couleur et T avec la deuxième couleur, c.à.d. $\chi(G) \leq 2$. Puisque $E \neq \emptyset$ nous avons $\chi(G) \geq 2$ (les deux extrémités de l'arête doivent être colorées différemment).

 $[2)\Rightarrow 3)$ Soit fune 2-coloration de G. On partage l'ensemble des nœuds V en deux ensemble S, T, où chaque ensemble est monochromatique, c.à.d. $S:=f^{-1}(\{1\})$ et $T:=f^{-1}(\{2\})$. Alors nous aurons $S\uplus T=V$. Il s'ensuit que T et S ne contiennent aucune arête.

Soit $C_{\ell}=(v_1,v_2,\ldots,v_{\ell},v_1)$ un cycle dans G. Supposons par exemple $v_1\in S$. Puisque dans S (et T) il n'y a pas d'arête, alors

ロト 4回ト 4 豆ト 4 豆 ト 9 Q ()

 $|1)\Rightarrow 2)$ On peut colorer S avec la première couleur et T avec la deuxième couleur, c.à.d. $\chi(G)\leq 2$. Puisque $E\neq\emptyset$ nous avons $\chi(G)\geq 2$ (les deux extrémités de l'arête doivent être colorées différemment). $|2)\Rightarrow 3$ Soit f une 2-coloration de G. On partage l'ensemble des nœuds V en deux ensemble S, T, où chaque ensemble est monochromatique, c.à.d. $S:=f^{-1}(\{1\})$ et $T:=f^{-1}(\{2\})$. Alors nous aurons $S\uplus T=V$.

Soit $C_{\ell}=(v_1,v_2,\ldots,v_{\ell},v_1)$ un cycle dans G. Supposons par exemple $v_1\in S$. Puisque dans S (et T) il n'y a pas d'arête, alors

Il s'ensuit que T et S ne contiennent aucune arête.

$$\textit{v}_2 \in \textit{T}, \textit{v}_3 \in \textit{S}, \ldots, \textit{v}_\ell \in \textit{T}, \textit{v}_1 \in \textit{S},$$

(ロ) (国) (国) (国) (国) (国)

 $[1)\Rightarrow 2)$ On peut colorer S avec la première couleur et T avec la deuxième couleur, c.à.d. $\chi(G)\leq 2$. Puisque $E\neq\emptyset$ nous avons $\chi(G)\geq 2$ (les deux extrémités de l'arête doivent être colorées différemment).

 $2) \Rightarrow 3)$ Soit fune 2-coloration de G. On partage l'ensemble des nœuds V en deux ensemble S, T, où chaque ensemble est monochromatique, c.à.d. $S := f^{-1}(\{1\})$ et $T := f^{-1}(\{2\})$. Alors nous aurons $S \uplus T = V$. Il s'ensuit que T et S ne contiennent aucune arête.

Soit $C_\ell = (v_1, v_2, \dots, v_\ell, v_1)$ un cycle dans G. Supposons par exemple $v_1 \in S$. Puisque dans S (et T) il n'y a pas d'arête, alors

$$\textit{v}_2 \in \textit{T}, \textit{v}_3 \in \textit{S}, \ldots, \textit{v}_\ell \in \textit{T}, \textit{v}_1 \in \textit{S},$$

d'où l'indice ℓ est paire, c.à.d. la longueur de la chaîne (v_1, \ldots, v_ℓ) est paire et par suite C_ℓ a une longueur paire.

(ロ) (型) (重) (重) (重) の(0)

12 / 16

 $3) \Rightarrow 1)$ Sans perte de généralité, on peut supposer que G connexe.

Sans perte de généralité, on peut supposer que G connexe. Nous choisissons un nœud v_0 . Soit S l'ensemble de tout les nœuds qui ont une distance impaire de v_0 , et avec T le complémentaire de S.

(FPO)

[3) \Rightarrow 1) Sans perte de généralité, on peut supposer que G connexe. Nous choisissons un nœud v_0 . Soit S l'ensemble de tout les nœuds qui ont une distance impaire de v_0 , et avec T le complémentaire de S. Supposons qu'il existe une arête $\{v, u\} \in S$.

13 / 16

3) \Rightarrow 1) | Sans perte de généralité, on peut supposer que Gconnexe. Nous choisissons un nœud v_0 . Soit S l'ensemble de tout les nœuds qui ont une distance impaire de v_0 , et avec T le complémentaire de S. Supposons qu'il existe une arête $\{v, u\} \in S$. Soient $P_{\nu} = (v_1 = v_0, v_2, \dots, v_k = v), P_{\mu} = (u_1 = v_0, u_2, \dots, u_{\ell} = u)$ le plus court chemin de v_0 vers v et vers u. D'après les données ont P_v et P_u une longueur impaire. Soit x le dernier nœuds commun sur les deux chaînes . c.à.d. $x \in V(P_v) \cap V(P_u)$, $x = v_{i_0} = u_{i_0}$, et pour tout $i > i_0$ on a $v_i \notin V(P_u)$ et pour tout $j > j_0$ on a $u_i \notin V(P_v)$. Alors $C := (x = v_{i_0}, v_{i_0+1}, \dots, v = v_k, u = u_\ell, u_{\ell-1}, \dots, u_{i_0+1}, u_{i_0} = x)$ construit un cycle. Puisque P_{ν} et P_{μ} les deux sont des plus courts chemin, alors on aura $i_0 = i_0$.

4□ > 4□ > 4 = > 4 = > = 90

3) \Rightarrow 1) Sans perte de généralité, on peut supposer que G connexe. Nous choisissons un nœud v_0 . Soit S l'ensemble de tout les nœuds qui ont une distance impaire de v_0 , et avec T le complémentaire de S. Supposons qu'il existe une arête $\{v, u\} \in S$. Soient $P_{\nu} = (v_1 = v_0, v_2, \dots, v_k = v), P_{\mu} = (u_1 = v_0, u_2, \dots, u_{\ell} = u)$ le plus court chemin de v_0 vers v et vers u. D'après les données ont P_v et P_u une longueur impaire. Soit x le dernier nœuds commun sur les deux chaînes, c.à.d. $x \in V(P_v) \cap V(P_u)$, $x = v_{i_0} = u_{i_0}$, et pour tout $i > i_0$ on a $v_i \notin V(P_u)$ et pour tout $i > i_0$ on a $u_i \notin V(P_v)$. Alors $C := (x = v_{i_0}, v_{i_0+1}, \dots, v = v_k, u = u_\ell, u_{\ell-1}, \dots, u_{j_0+1}, u_{j_0} = x)$ construit un cycle. Puisque P_{ν} et P_{μ} les deux sont des plus courts chemin, alors on aura $i_0 = i_0$. Le chemin partiel de x vers v de P_v et celui de x vers u de P_u sont par suite ont tout les deux une longueur paire ou tout les deux impaire.

13 / 16

3) \Rightarrow 1) Sans perte de généralité, on peut supposer que G connexe. Nous choisissons un nœud v_0 . Soit S l'ensemble de tout les nœuds qui ont une distance impaire de v_0 , et avec T le complémentaire de S. Supposons qu'il existe une arête $\{v, u\} \in S$. Soient $P_{\nu} = (v_1 = v_0, v_2, \dots, v_k = v), P_{\mu} = (u_1 = v_0, u_2, \dots, u_{\ell} = u)$ le plus court chemin de v_0 vers v et vers u. D'après les données ont P_v et P_u une longueur impaire. Soit x le dernier nœuds commun sur les deux chaînes, c.à.d. $x \in V(P_v) \cap V(P_u)$, $x = v_{i_0} = u_{i_0}$, et pour tout $i > i_0$ on a $v_i \notin V(P_u)$ et pour tout $i > i_0$ on a $u_i \notin V(P_v)$. Alors $C := (x = v_{i_0}, v_{i_0+1}, \dots, v = v_k, u = u_\ell, u_{\ell-1}, \dots, u_{i_0+1}, u_{i_0} = x)$ construit un cycle. Puisque P_{ν} et P_{μ} les deux sont des plus courts chemin, alors on aura $i_0 = i_0$. Le chemin partiel de x vers v de P_v et celui de x vers u de P_u sont par suite ont tout les deux une longueur paire ou tout les deux impaire. Par conséquence C est de longueur paire, ce qui est absurde.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○・

(FPO)

Plan

- 1 k-coloration
- 2 Arbre couvrant minimal

Arbre couvrant minimal

Lemme

Soit G = (V, E) un graphe. Les assertions suivantes sont équivalentes.

- G est un arbre.
- \odot entre chaques deux noeuds dans G il existe exactement une chaîne.
- **3** G est connexe et |E| = |V| 1.

15 / 16

(FPO) La théorie des graphes Avril 2022

Arbre couvrant minimal

Lemme

Soit G = (V, E) un graphe. Les assertions suivantes sont équivalentes.

- G est un arbre.
- \odot entre chaques deux noeuds dans G il existe exactement une chaîne.
- **3** G est connexe et |E| = |V| 1.

Théorème (La Formule de Caley)

Le nombre d'arbres couvrants dans K_n est n^{n-2} (pour $n \ge 2$).

15 / 16

(FPO) La théorie des graphes Avril 2022

Arbre couvrant minimal

Lemme

Soit G = (V, E) un graphe. Les assertions suivantes sont équivalentes.

- G est un arbre.
- 2 entre chaques deux noeuds dans G il existe exactement une chaîne.
- **3** G est connexe et |E| = |V| 1.

Théorème (La Formule de Caley)

Le nombre d'arbres couvrants dans K_n est n^{n-2} (pour $n \ge 2$).

Preuve : Voir J. Matoušek, J. Nešetřil, *Diskrete Mathematik*, pages 249–270.

4□ > 4□ > 4 = > 4 = > = 90

15 / 16

(FPO) La théorie des graphes Avril 2022

Arbre couvrant de poids minimal (MST)

Données : G = (V, E) graphe connexe, une fonction poids des arêtres $c: E \to \mathbb{O}$.

Résultat : Trouver un arbre couvrant T = (V, F) de G avec un poids minimal, c.à.d. avec

 $c(F) = \min\{c(F'): T' = (V, F') \text{ est un arbre}\}.$

Kruskal's Algorithm

Start with an empty graph T

• Repeat n-1 times:

 Add to T an edge of the smallest weight which doesn't create a cycle in T

