## МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.ЛОМОНОСОВА



## ЭКОНОМИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ЭКОНОМИКИ ИННОВАЦИЙ

### РАЗДАТОЧНЫЙ МАТЕРИАЛ К ВКР

# «ВЗАИМОСВЯЗЬ ДИНАМИКИ ЦЕН АКЦИЙ И НЕФИНАНСОВЫХ ПОТОКОВ ИНФОРМАЦИИ НА ПРИМЕРЕ АВТОМОБИЛЬНЫХ КОМПАНИЙ»

The Interrelation of Share Price Dynamics and Non-Financial Information: a Case of Automobile Companies

Выполнила: студентка группы э403

Горшкова Марина Олеговна

Научный руководитель:

Мирзоян Ашот Гамлетович

Москва

#### Результаты проведенного анализа по компании Ferrari

Таблица 1. ARIMA-модель для модели с применением сентимент-анализа



Источник: составлено автором

|           | estimate | sd     | t_stat   | pi_val |
|-----------|----------|--------|----------|--------|
| intercept | 0.0010   | 0.0005 | 1.8970   | 0.0578 |
| sent_1    | -0.0004  | 0.0002 | - 1.8482 | 0.0646 |
| AIC       | - 5 329  |        |          |        |
| BIC       | - 5 314  |        |          |        |
| n.obs     | 1 007    |        |          |        |

Как видно из таблицы, новостной сентимент статистически значим при первом его лагировании, то есть рынку для реакции на новостной фон необходим один день. Знак оценки коэффициента отрицательный, что говорит об ошибочности «мгновенной» реакции рынка на новую информацию.

Таблица 2. Прогнозирование доходностей акций компании с помощью линейной ARIMAмодели на всей выборке

Источник: составлено автором

|      | int_a_arima | cor_arima | int_b_arima | pv_arima |
|------|-------------|-----------|-------------|----------|
| ferr | 0.04944     | 0.14392   | 0.23585     | 0.01258  |

При использовании линейных моделей имеет смысл прогнозирование доходностей только на новостной информации: корреляция прогнозов с истинными значениями на выборке обучения довольно большая и статистически значимая.

Таблица 3. Прогнозирование больших по модулю доходностей с использованием сентимент-анализа

Источник: Составлено автором

|      | int_a_lm  | cor_lm   | int_b_lm | pv_lm    |
|------|-----------|----------|----------|----------|
| ferr | -0.214488 | 0.030091 | 0.271119 | 0.840869 |

Прогнозирование больших доходностей (в контексте отклонения от модуля медианы) с использованием сентимент-анализа является нецелесообразным, поскольку дает статистически незначимые результаты. Возможно, между новостным фоном и большими по модулю доходностями имеется нелинейная связь.

Таблица 4. Прогнозирование доходностей с использованием ML-моделей Источник: составлено автором

|                                         | kernel_svm | int_a_svm | int_b_svm | cor_svm  | pv_svm |
|-----------------------------------------|------------|-----------|-----------|----------|--------|
|                                         | Linear     | - 0.0068  | 0.1821    | 0.0884   | 0.1265 |
| Только финансы                          | Poly       | - 0.1966  | - 0.0083  | - 0.1034 | 0.0738 |
|                                         | Radial     | - 0.1067  | 0.0835    | - 0.0117 | 0.8399 |
| <b></b>                                 | Linear     | - 0.1973  | - 0.0090  | - 0.1041 | 0.0719 |
| Только сентимент в<br>усеченной форме   | Poly       | - 0.1417  | 0.0482    | - 0.0471 | 0.4159 |
| усеченной форме                         | Radial     | - 0.0494  | 0.1405    | 0.0459   | 0.4280 |
|                                         | Linear     | - 0.2358  | - 0.0494  | - 0.1439 | 0.0126 |
| Только сентимент в<br>значимой форме    | Poly       | - 0.2358  | - 0.0494  | - 0.1439 | 0.0126 |
| значимой формс                          | Radial     | - 0.0324  | 0.1571    | 0.0629   | 0.2773 |
|                                         | Linear     | - 0.0917  | 0.0986    | 0.0035   | 0.9516 |
| Финансы + усеченная<br>форма сентимента | Poly       | - 0.0816  | 0.1086    | 0.0136   | 0.8143 |
| форма сентимента                        | Radial     | - 0.0830  | 0.1073    | 0.0123   | 0.8320 |
|                                         | Linear     | - 0.0863  | 0.1040    | 0.0089   | 0.8778 |
| Финансы + значимая                      | Poly       | - 0.0429  | 0.1469    | 0.0525   | 0.3653 |
| форма сентимента                        | Radial     | - 0.0958  | 0.0945    | - 0.0007 | 0.9907 |

Таблица 5. Прогнозирование больших доходностей с использованием ML-моделей Источник: составлено автором

|                                       | kernel_svm | int_a_svm | int_b_svm | cor_svm  | pv_svm |
|---------------------------------------|------------|-----------|-----------|----------|--------|
|                                       | Linear     | - 0.0068  | 0.2577    | 0.1277   | 0.1181 |
| Только финансы                        | Poly       | - 0.1837  | 0.0844    | - 0.0505 | 0.5379 |
|                                       | Radial     | - 0.2002  | 0.0673    | - 0.0677 | 0.4090 |
| T.                                    | Linear     | - 0.0281  | 0.2377    | 0.1067   | 0.1921 |
| Только сентимент в<br>усеченной форме | Poly       | - 0.0656  | 0.2019    | 0.0694   | 0.3971 |
| уссченной форме                       | Radial     | - 0.1124  | 0.1562    | 0.0223   | 0.7858 |
| T.                                    | Linear     | 0.1148    | 0.3676    | 0.2454   | 0.0024 |
| Только сентимент в<br>значимой форме  | Poly       | 0.1148    | 0.3676    | 0.2454   | 0.0024 |
| значимой формс                        | Radial     | - 0.1145  | 0.1542    | 0.0202   | 0.8051 |
| _                                     | Linear     | 0.0057    | 0.2693    | 0.1400   | 0.0864 |
| Финансы и усеченная форма сентимента  | Poly       | - 0.0332  | 0.2329    | 0.1017   | 0.2142 |
| форма сентимента                      | Radial     | - 0.0561  | 0.2111    | 0.0789   | 0.3354 |
|                                       | Linear     | 0.1511    | 0.3992    | 0.2798   | 0.0005 |
| Финансы и значимая                    | Poly       | 0.0741    | 0.3316    | 0.2064   | 0.0110 |
| форма сентимента                      | Radial     | - 0.2179  | 0.0489    | - 0.0861 | 0.2934 |

Использование ML-методов в прогнозировании всех доходностей при сентиментанализе нецелесообразно. При больших доходностях корреляция прогнозов высокая и значимая, что говорит об обратном.

Таблица 6. Классификация по направлению движения акций с использованием методов машинного обучения и сентимент-анализа

|                                 | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|---------------------------------|---------------|---------|---------|-------------|-----------|
|                                 | Logit         | 0.4936  | 0.5452  | 0.5194      | -         |
| Использование                   | Random_forest | 0.3887  | 0.5668  | 0.4777      | -         |
|                                 | Bayes_Naive   | 0.4767  | 0.5381  | 0.5074      | -         |
| только финансовой               | Boosting      | 0.4595  | 0.5295  | 0.4945      | -         |
| информации                      | SVM-Linear    | 0.5183  | 0.5304  | 0.5244      | +         |
|                                 | SVM-Poly      | 0.5107  | 0.5380  | 0.5244      | +         |
|                                 | SVM-Radial    | 0.4547  | 0.5364  | 0.4956      | -         |
|                                 | Logit         | 0.5004  | 0.5485  | 0.5244      | +         |
| Использование                   | Random_forest | 0.4666  | 0.5763  | 0.5214      | -         |
| только новостной                | Bayes_Naive   | 0.4445  | 0.5226  | 0.4835      | -         |
| информации                      | Boosting      | 0.4600  | 0.5829  | 0.5215      | -         |
| (текущая и первый               | SVM-Linear    | 0.5050  | 0.5378  | 0.5214      | +         |
| лаг)                            | SVM-Poly      | 0.5183  | 0.5304  | 0.5244      | +         |
|                                 | SVM-Radial    | 0.4709  | 0.5700  | 0.5205      | -         |
|                                 | Logit         | 0.4601  | 0.5689  | 0.5145      | -         |
|                                 | Random_forest | 0.4758  | 0.5769  | 0.5264      | -         |
| Использование                   | Bayes_Naive   | 0.4160  | 0.5528  | 0.4844      | -         |
| лагированной<br>новостной       | Boosting      | 0.4583  | 0.5646  | 0.5115      | -         |
| информации                      | SVM-Linear    | 0.5038  | 0.5351  | 0.5194      | +         |
| • •                             | SVM-Poly      | 0.5183  | 0.5304  | 0.5244      | +         |
|                                 | SVM-Radial    | 0.4858  | 0.6107  | 0.5482      | -         |
|                                 | Logit         | 0.4743  | 0.5666  | 0.5204      | -         |
|                                 | Random_forest | 0.4093  | 0.5522  | 0.4807      | -         |
| Оба канала                      | Bayes_Naive   | 0.4468  | 0.5243  | 0.4855      | -         |
| информации<br>(текущая и первый | Boosting      | 0.4449  | 0.5521  | 0.4985      | -         |
| лаг)                            | SVM-Linear    | 0.5050  | 0.5378  | 0.5214      | +         |
| ,                               | SVM-Poly      | 0.5183  | 0.5304  | 0.5244      | +         |
|                                 | SVM-Radial    | 0.4413  | 0.5777  | 0.5095      | -         |
|                                 | Logit         | 0.4466  | 0.5604  | 0.5035      | -         |
|                                 | Random_forest | 0.4039  | 0.5555  | 0.4797      | -         |
| Оба канала                      | Bayes_Naive   | 0.3991  | 0.5620  | 0.4805      | -         |
| информации<br>(новости          | Boosting      | 0.4351  | 0.5262  | 0.4806      | -         |
| (новости<br>лагированные)       | SVM-Linear    | 0.5038  | 0.5351  | 0.5194      | +         |
| • /                             | SVM-Poly      | 0.5183  | 0.5304  | 0.5244      | +         |
|                                 | SVM-Radial    | 0.4285  | 0.5943  | 0.5114      | -         |

В любой спецификации модели, построенные с помощью метода опорных векторов и линейного или полиномиального ядра статистически значимо лучше, чем слепой классификатор. Точность моделей вне зависимости от источника данных сопоставима.

Таблица 7. Классификация по размаху движения акций с использованием методов машинного обучения и сентимент-анализа

|                                   | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|-----------------------------------|---------------|---------|---------|-------------|-----------|
|                                   | Logit         | 0.4584  | 0.5863  | 0.5223      | -         |
|                                   | Random_forest | 0.4198  | 0.5652  | 0.4925      | -         |
| Использование                     | Bayes_Naive   | 0.4829  | 0.6015  | 0.5422      | -         |
| только финансовой                 | Boosting      | 0.5121  | 0.5645  | 0.5383      | +         |
| информации                        | SVM-Linear    | 0.4572  | 0.5438  | 0.5005      | -         |
|                                   | SVM-Poly      | 0.4979  | 0.5807  | 0.5393      | -         |
|                                   | SVM-Radial    | 0.4429  | 0.6180  | 0.5304      | -         |
|                                   | Logit         | 0.4464  | 0.5724  | 0.5094      | -         |
| Ионо и зоронио                    | Random_forest | 0.4587  | 0.5562  | 0.5074      | -         |
| Использование<br>только новостной | Bayes_Naive   | 0.4795  | 0.5574  | 0.5184      | -         |
| информации                        | Boosting      | 0.4361  | 0.5766  | 0.5064      | -         |
| (текущая и первый                 | SVM-Linear    | 0.4630  | 0.5478  | 0.5054      | -         |
| лаг)                              | SVM-Poly      | 0.4789  | 0.5360  | 0.5074      | -         |
|                                   | SVM-Radial    | 0.4516  | 0.5692  | 0.5104      | -         |
|                                   | Logit         | 0.4770  | 0.5616  | 0.5193      | -         |
|                                   | Random_forest | 0.4047  | 0.5566  | 0.4806      | -         |
| Использование                     | Bayes_Naive   | 0.4234  | 0.5616  | 0.4925      | -         |
| лагированной<br>новостной         | Boosting      | 0.4364  | 0.5586  | 0.4975      | -         |
| информации                        | SVM-Linear    | 0.4508  | 0.5381  | 0.4945      | -         |
| • •                               | SVM-Poly      | 0.4588  | 0.5601  | 0.5094      | -         |
|                                   | SVM-Radial    | 0.4555  | 0.5516  | 0.5036      | -         |
|                                   | Logit         | 0.4420  | 0.5808  | 0.5114      | -         |
|                                   | Random_forest | 0.4281  | 0.5608  | 0.4944      | -         |
| Оба канала                        | Bayes_Naive   | 0.4874  | 0.6090  | 0.5482      | -         |
| информации<br>(текущая и первый   | Boosting      | 0.4738  | 0.5967  | 0.5353      | -         |
| лаг)                              | SVM-Linear    | 0.4691  | 0.5656  | 0.5173      | -         |
| ,                                 | SVM-Poly      | 0.4988  | 0.5877  | 0.5432      | -         |
|                                   | SVM-Radial    | 0.4824  | 0.5962  | 0.5393      | -         |
|                                   | Logit         | 0.4406  | 0.5683  | 0.5045      | -         |
|                                   | Random_forest | 0.4325  | 0.5645  | 0.4985      | -         |
| Оба канала                        | Bayes_Naive   | 0.4284  | 0.5904  | 0.5094      | -         |
| информации<br>(новости            | Boosting      | 0.4476  | 0.5711  | 0.5093      | -         |
| лагированные)                     | SVM-Linear    | 0.4607  | 0.5363  | 0.4985      | -         |
| •                                 | SVM-Poly      | 0.4869  | 0.5936  | 0.5402      | -         |
|                                   | SVM-Radial    | 0.4631  | 0.5898  | 0.5264      | -         |

В случае компании Феррари прогнозирование «аномальных» доходностей представляется возможным только в одном случае — при применении бустингового алгоритма на финансовых данных. Возможно, это объясняется особенностями компании.

Таблица 8. ARIMA-модель для Феррари с выделением топиков по методу LDA Источник: составлено автором

|           | estimate | sd     | t_stat    | pi_val |
|-----------|----------|--------|-----------|--------|
| ar1       | - 0.9135 | 0.0420 | - 21.7512 | 0.0000 |
| ma1       | 0.9563   | 0.0307 | 31.1549   | 0.0000 |
| intercept | 0.0016   | 0.0006 | 2.4719    | 0.0134 |
| topik_5_1 | -0.0202  | 0.0085 | -2.3806   | 0.0173 |
| topik_6_2 | 0.0105   | 0.0055 | 1.8977    | 0.0577 |
| topik_4_2 | -0.0077  | 0.0042 | -1.8202   | 0.0687 |
| topik_1_3 | -0.0093  | 0.0056 | -1.6702   | 0.0949 |
| AIC       | - 5 339  |        |           |        |
| BIC       | - 5 300  |        |           |        |
| n.obs     | 1 007    |        |           |        |

Применительно к компании Феррари статистически значимыми являются тематические группы, относящиеся к компании как к бренду; затрагивающие вопросы производства компаний-конкурентов, о технических характеристиках автомобилей Феррари, а также о новостях касательно Формулы-1, гоночного соревнования, в котором команда Феррари принимает участие.

Таблица 9. Прогнозы доходностей с помощью модели с использованием LDA Источник: составлено автором

|      | int_a_arima_dir | int_b_arima_dir | cor_arima_dir | pv_arima_dir |
|------|-----------------|-----------------|---------------|--------------|
| ferr | 0.0630          | 0.2826          | 0.1750        | 0.0024       |

Прогнозы, построенные с использованием словарей, составленных по методу Латентного размещения Дирихле, имеют статистически значимую корреляцию с истинными значениями доходностей Феррари. Причем по своему среднему значению она превышает аналогичный показатель, полученный при оценивании ARIMA-модели с использованием сентимент-анализа.

Таблица 10. Прогнозы дневных доходностей с помощью методов машинного обучения и словарей, составленных с применением LDA

|            | kernel_svm | int_a_svm | int_b_svm | cor_svm | pv_svm |
|------------|------------|-----------|-----------|---------|--------|
|            | Linear     | -0.0716   | 0.1544    | 0.0419  | 0.4693 |
| Финансовая | Poly       | -0.2216   | 0.0021    | -0.1112 | 0.0544 |
| информация | Radial     | -0.0739   | 0.1523    | 0.0397  | 0.4932 |

|                                  | kernel_svm | int_a_svm | int_b_svm | cor_svm | pv_svm |
|----------------------------------|------------|-----------|-----------|---------|--------|
|                                  | Linear     | -0.1148   | 0.1117    | -0.0016 | 0.9783 |
| Только текущие                   | Poly       | -0.1460   | 0.0803    | -0.0333 | 0.5660 |
| словари                          | Radial     | -0.1819   | 0.0435    | -0.0701 | 0.2260 |
|                                  | Linear     | -0.0813   | 0.1449    | 0.0322  | 0.5786 |
| Только лаги словарей             | Poly       | -0.0743   | 0.1519    | 0.0393  | 0.4977 |
|                                  | Radial     | -0.0485   | 0.1770    | 0.0651  | 0.2611 |
|                                  | Linear     | -0.1126   | 0.1138    | 0.0006  | 0.9916 |
| 2 источника –<br>текущие словари | Poly       | -0.1355   | 0.0909    | -0.0226 | 0.6965 |
| текущие словари                  | Radial     | -0.0812   | 0.1450    | 0.0323  | 0.5774 |
| •                                | Linear     | -0.0632   | 0.1627    | 0.0504  | 0.3846 |
| 2 источника – лаги               | Poly       | -0.0640   | 0.1619    | 0.0496  | 0.3922 |
| словарей                         | Radial     | -0.1737   | 0.0519    | -0.0617 | 0.2869 |

Использование методов машинного обучения при прогнозировании значений доходности компании Феррари не приносит статистически значимых результатов и при использовании тематических словарей в качестве регрессоров.

Таблица 11. Классификация направления изменения доходностей на LDA-словарях Источник: составлено автором

|                                            | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|--------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                            | Logit         | 0.4936  | 0.5452  | 0.5194      | -         |
|                                            | Random_forest | 0.3887  | 0.5668  | 0.4777      | -         |
|                                            | Bayes_Naive   | 0.4767  | 0.5381  | 0.5074      | -         |
| Использование только финансовой информации | Boosting      | 0.4595  | 0.5295  | 0.4945      | -         |
| финансовой информации                      | SVM-Linear    | 0.5183  | 0.5304  | 0.5244      | +         |
|                                            | SVM-Poly      | 0.5107  | 0.5380  | 0.5244      | +         |
|                                            | SVM-Radial    | 0.4547  | 0.5364  | 0.4956      |           |
|                                            | Logit         | 0.4924  | 0.5744  | 0.5334      | -         |
|                                            | Random_forest | 0.4543  | 0.5886  | 0.5214      | -         |
| Использование только                       | Bayes_Naive   | 0.4503  | 0.5369  | 0.4936      | -         |
| новостной информации                       | Boosting      | 0.4792  | 0.5716  | 0.5254      | -         |
| (текущая)                                  | SVM-Linear    | 0.4854  | 0.5753  | 0.5304      | -         |
|                                            | SVM-Poly      | 0.4896  | 0.5731  | 0.5314      | -         |
|                                            | SVM-Radial    | 0.4768  | 0.5899  | 0.5334      |           |
|                                            | Logit         | 0.4511  | 0.5999  | 0.5255      | -         |
|                                            | Random_forest | 0.4434  | 0.5876  | 0.5155      | -         |
| Использование                              | Bayes_Naive   | 0.4113  | 0.6019  | 0.5066      | -         |
| лагированной новостной                     | Boosting      | 0.4776  | 0.6051  | 0.5414      | -         |
| информации                                 | SVM-Linear    | 0.4356  | 0.5915  | 0.5136      | _         |
|                                            | SVM-Poly      | 0.4642  | 0.5947  | 0.5294      | -         |
|                                            | SVM-Radial    | 0.4326  | 0.6005  | 0.5165      | -         |

|                                              | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|----------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                              | Logit         | 0.4861  | 0.5747  | 0.5304      | -         |
|                                              | Random_forest | 0.4326  | 0.5845  | 0.5085      | -         |
| 0.4                                          | Bayes_Naive   | 0.4548  | 0.5165  | 0.4856      | -         |
| Оба канала информации<br>(текущая)           | Boosting      | 0.4367  | 0.5603  | 0.4985      | -         |
| (текущан)                                    | SVM-Linear    | 0.4854  | 0.5753  | 0.5304      | -         |
|                                              | SVM-Poly      | 0.4896  | 0.5731  | 0.5314      | -         |
|                                              | SVM-Radial    | 0.4966  | 0.5900  | 0.5433      | -         |
|                                              | Logit         | 0.4324  | 0.5986  | 0.5155      | -         |
|                                              | Random_forest | 0.4620  | 0.5530  | 0.5075      | -         |
| 0.4                                          | Bayes_Naive   | 0.4102  | 0.5990  | 0.5046      | -         |
| Оба канала информации (новости лагированные) | Boosting      | 0.4508  | 0.6079  | 0.5293      | -         |
| (повости лагированные)                       | SVM-Linear    | 0.4377  | 0.5933  | 0.5155      | -         |
|                                              | SVM-Poly      | 0.4900  | 0.5687  | 0.5294      | -         |
|                                              | SVM-Radial    | 0.4657  | 0.6028  | 0.5342      | _         |

Таблица 12. Классификация магнитуды изменения доходностей на LDA-словарях Источник: составлено автором

|                                           | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|-------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                           | Logit         | 0.4584  | 0.5863  | 0.5223      | -         |
| 17                                        | Random_forest | 0.4198  | 0.5652  | 0.4925      | -         |
|                                           | Bayes_Naive   | 0.4829  | 0.6015  | 0.5422      | -         |
| Использование только финансовой нформации | Boosting      | 0.5121  | 0.5645  | 0.5383      | +         |
| финансовой пформации                      | SVM-Linear    | 0.4572  | 0.5438  | 0.5005      | -         |
|                                           | SVM-Poly      | 0.4979  | 0.5807  | 0.5393      | -         |
|                                           | SVM-Radial    | 0.4429  | 0.6180  | 0.5304      | -         |
|                                           | Logit         | 0.4433  | 0.5617  | 0.5025      | -         |
|                                           | Random_forest | 0.4527  | 0.5722  | 0.5125      | -         |
| Использование только                      | Bayes_Naive   | 0.4274  | 0.5837  | 0.5055      | -         |
| новостной информации                      | Boosting      | 0.4496  | 0.5634  | 0.5065      | -         |
| (текущая)                                 | SVM-Linear    | 0.4364  | 0.5608  | 0.4986      | -         |
|                                           | SVM-Poly      | 0.4759  | 0.5530  | 0.5144      | -         |
|                                           | SVM-Radial    | 0.4367  | 0.5624  | 0.4996      | -         |
|                                           | Logit         | 0.4296  | 0.5613  | 0.4954      | -         |
|                                           | Random_forest | 0.4802  | 0.5605  | 0.5204      | -         |
| Использование                             | Bayes_Naive   | 0.4242  | 0.5669  | 0.4955      | -         |
| лагированной новостной                    | Boosting      | 0.4647  | 0.5621  | 0.5134      | -         |
| информации                                | SVM-Linear    | 0.4095  | 0.5595  | 0.4845      | -         |
|                                           | SVM-Poly      | 0.4522  | 0.5488  | 0.5005      | -         |
|                                           | SVM-Radial    | 0.4184  | 0.5587  | 0.4886      | -         |
| 0.5                                       | Logit         | 0.4556  | 0.5754  | 0.5155      | -         |
| Оба канала информации<br>(текущая)        | Random_forest | 0.4813  | 0.5855  | 0.5334      | -         |
| (текущал)                                 | _Bayes_Naive  | 0.4695  | 0.5892  | 0.5293      | -         |
|                                           |               |         |         |             |           |

|                                              | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|----------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                              | Boosting      | 0.4727  | 0.6078  | 0.5402      | -         |
|                                              | SVM-Linear    | 0.4362  | 0.5730  | 0.5046      | -         |
|                                              | SVM-Poly      | 0.5128  | 0.5877  | 0.5502      | +         |
|                                              | SVM-Radial    | 0.4640  | 0.5850  | 0.5245      | -         |
|                                              | Logit         | 0.3853  | 0.6097  | 0.4975      | -         |
|                                              | Random_forest | 0.4174  | 0.6232  | 0.5203      | -         |
| 04                                           | Bayes_Naive   | 0.4300  | 0.5551  | 0.4926      | -         |
| Оба канала информации (новости лагированные) | Boosting      | 0.4826  | 0.6099  | 0.5462      | -         |
| (повости лагированные)                       | SVM-Linear    | 0.4255  | 0.5395  | 0.4825      | -         |
|                                              | SVM-Poly      | 0.4450  | 0.5540  | 0.4995      | -         |
|                                              | SVM-Radial    | 0.4286  | 0.6061  | 0.5173      | -         |

Для решения задач классификации применение LDA-словарей не делает модели лучше по качеству, чем случайное угадывание.

Таблица 13. Классификация направления изменения доходности по важным для компании Феррари словам (TF-IDF)

|                                            | ml_type        | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|--------------------------------------------|----------------|---------|---------|-------------|-----------|
|                                            | Logit          | 0.4936  | 0.5452  | 0.5194      | -         |
|                                            | Random_forest  | 0.3887  | 0.5668  | 0.4777      | -         |
| ***                                        | Bayes_Naive    | 0.4767  | 0.5381  | 0.5074      | -         |
| Использование только финансовой информации | Boosting       | 0.4595  | 0.5295  | 0.4945      | -         |
| финансовой информации                      | SVM-Linear     | 0.5183  | 0.5304  | 0.5244      | +         |
|                                            | SVM-Poly       | 0.5107  | 0.5380  | 0.5244      | +         |
|                                            | SVM-Radial     | 0.4547  | 0.5364  | 0.4956      | -         |
|                                            | Logit          | 0.5015  | 0.5553  | 0.5284      | +         |
|                                            | Random_forest  | 0.5040  | 0.5468  | 0.5254      | +         |
| Использование только                       | Bayes_Naive    | 0.4936  | 0.5492  | 0.5214      | -         |
| новостной информации                       | Boosting       | 0.5183  | 0.5304  | 0.5244      | +         |
| (текущая)                                  | SVM-Linear     | 0.5004  | 0.5483  | 0.5244      | +         |
|                                            | SVM-Poly       | 0.5102  | 0.5466  | 0.5284      | +         |
|                                            | SVM-Radial     | 0.5183  | 0.5304  | 0.5244      | +         |
|                                            | Logit          | 0.5059  | 0.5559  | 0.5309      | +         |
|                                            | Random_forest  | 0.5044  | 0.5533  | 0.5289      | +         |
| Использование                              | Bayes_Naive    | 0.4781  | 0.5638  | 0.5210      | -         |
| лагированной новостной                     | Boosting       | 0.5175  | 0.5303  | 0.5239      | +         |
| информации                                 | SVM-Linear     | 0.5025  | 0.5533  | 0.5279      | +         |
|                                            | SVM-Poly       | 0.5075  | 0.5443  | 0.5259      | +         |
|                                            | SVM-Radial     | 0.4989  | 0.5649  | 0.5319      | -         |
| Оба канала информации                      | Logit          | 0.4829  | 0.5640  | 0.5234      | -         |
| (текущая)                                  | _Random_forest | 0.5183  | 0.5304  | 0.5244      | +         |
|                                            |                |         |         |             |           |

|                                              | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|----------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                              | Bayes_Naive   | 0.4891  | 0.5477  | 0.5184      | -         |
|                                              | Boosting      | 0.4595  | 0.5295  | 0.4945      | -         |
|                                              | SVM-Linear    | 0.5027  | 0.5481  | 0.5254      | +         |
|                                              | SVM-Poly      | 0.5102  | 0.5466  | 0.5284      | +         |
|                                              | SVM-Radial    | 0.5007  | 0.5521  | 0.5264      | +         |
|                                              | Logit         | 0.4896  | 0.5683  | 0.5289      | -         |
|                                              | Random_forest | 0.5175  | 0.5303  | 0.5239      | +         |
|                                              | Bayes_Naive   | 0.4781  | 0.5638  | 0.5210      | -         |
| Оба канала информации (новости лагированные) | Boosting      | 0.4132  | 0.5710  | 0.4921      | -         |
| (новости лагированные)                       | SVM-Linear    | 0.5039  | 0.5539  | 0.5289      | +         |
|                                              | SVM-Poly      | 0.5075  | 0.5443  | 0.5259      | +         |
|                                              | SVM-Radial    | 0.4770  | 0.5807  | 0.5289      | -         |

Как модели, использующие только новостную информацию, так и комбинирующие 2 источника данных показывают точность выше, чем случайный классификатор. При добавлении в них новостной информации качество классификации улучшается.

Таблица 14. Классификация масштаба изменения доходности по важным для компании Феррари словам (TF-IDF)

|                                            | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|--------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                            | Logit         | 0.4584  | 0.5863  | 0.5223      | -         |
|                                            | Random_forest | 0.4198  | 0.5652  | 0.4925      | -         |
| ***                                        | Bayes_Naive   | 0.4829  | 0.6015  | 0.5422      | -         |
| Использование только финансовой информации | Boosting      | 0.5121  | 0.5645  | 0.5383      | +         |
| финансовой информации                      | SVM-Linear    | 0.4572  | 0.5438  | 0.5005      | -         |
|                                            | SVM-Poly      | 0.4979  | 0.5807  | 0.5393      | -         |
|                                            | SVM-Radial    | 0.4429  | 0.6180  | 0.5304      | -         |
|                                            | Logit         | 0.4756  | 0.5374  | 0.5065      | -         |
|                                            | Random_forest | 0.4768  | 0.5382  | 0.5075      | -         |
| Использование только                       | Bayes_Naive   | 0.4888  | 0.5201  | 0.5045      | -         |
| новостной информации                       | Boosting      | 0.4935  | 0.5055  | 0.4995      | -         |
| (текущая)                                  | SVM-Linear    | 0.4873  | 0.5296  | 0.5085      | -         |
|                                            | SVM-Poly      | 0.4906  | 0.5303  | 0.5104      | -         |
|                                            | SVM-Radial    | 0.4860  | 0.5310  | 0.5085      | -         |
|                                            | Logit         | 0.4727  | 0.5193  | 0.4960      | -         |
|                                            | Random_forest | 0.4799  | 0.5280  | 0.5040      | -         |
| Использование                              | Bayes_Naive   | 0.4827  | 0.5214  | 0.5020      | -         |
| лагированной новостной                     | Boosting      | 0.4939  | 0.5042  | 0.4990      | -         |
| информации                                 | SVM-Linear    | 0.4779  | 0.5181  | 0.4980      | -         |
|                                            | SVM-Poly      | 0.4860  | 0.5260  | 0.5060      | -         |
|                                            | SVM-Radial    | 0.4917  | 0.5103  | 0.5010      | -         |

|                                              | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|----------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                              | Logit         | 0.4660  | 0.5669  | 0.5165      | -         |
|                                              | Random_forest | 0.4786  | 0.5503  | 0.5144      | -         |
| 0.4                                          | Bayes_Naive   | 0.4931  | 0.5198  | 0.5065      | -         |
| Оба канала информации<br>(текущая)           | Boosting      | 0.5121  | 0.5645  | 0.5383      | +         |
| (текущан)                                    | SVM-Linear    | 0.4738  | 0.5312  | 0.5025      | -         |
|                                              | SVM-Poly      | 0.4709  | 0.5599  | 0.5154      | -         |
|                                              | SVM-Radial    | 0.4547  | 0.5702  | 0.5124      | -         |
|                                              | Logit         | 0.4456  | 0.5823  | 0.5140      | -         |
|                                              | Random_forest | 0.4684  | 0.5796  | 0.5240      | -         |
|                                              | Bayes_Naive   | 0.4827  | 0.5214  | 0.5020      | -         |
| Оба канала информации (новости ланированные) | Boosting      | 0.4862  | 0.6135  | 0.5498      | -         |
| (новости ланированные)                       | SVM-Linear    | 0.4474  | 0.5308  | 0.4891      | -         |
|                                              | SVM-Poly      | 0.4836  | 0.5422  | 0.5129      | -         |
|                                              | SVM-Radial    | 0.4669  | 0.5410  | 0.5040      | -         |

Модели классификации амплитуды колебаний дневных доходностей компании Феррари с использованием данных о частоте употребления «важных» для компании слов справляется с задачей не лучше слепого классификатора.

#### Результаты проведенного анализа по компании Ford



Таблица 1. ARIMA-модель для модели с применением сентимент-анализа

Источник: составлено автором

|           | estimate | sd     | t_stat  | pi_val |  |
|-----------|----------|--------|---------|--------|--|
| ar1       | -0.5850  | 0.1299 | -4.5024 | 0.0000 |  |
| ma1       | 0.7843   | 0.1312 | 5.9797  | 0.0000 |  |
| ma2       | 0.1230   | 0.0493 | 2.4933  | 0.0127 |  |
| ma3       | 0.0221   | 0.0417 | 0.5290  | 0.5968 |  |
| ma4       | -0.0804  | 0.0364 | -2.2054 | 0.0274 |  |
| intercept | 0.0004   | 0.0009 | 0.4557  | 0.6486 |  |
| sent_7    | 0.0003   | 0.0001 | 2.1425  | 0.0322 |  |
| sent_2    | -0.0002  | 0.0001 | -1.9178 | 0.0551 |  |
| sent      | 0.0002   | 0.0001 | 1.7820  | 0.0748 |  |
| AIC       | -4 638   |        |         |        |  |
| BIC       | -4589    |        |         |        |  |
| n.obs     | 1 007    |        |         |        |  |

Таблица 2. Прогнозирование доходностей акций компании с помощью линейной ARIMAмодели на всей выборке

Источник: составлено автором

|      | int_a_arima | int_b_arima | cor_arima | pv_arima |
|------|-------------|-------------|-----------|----------|
| ford | -0.1142     | 0.0761      | -0.0192   | 0.7404   |

Таблица 3. Прогнозирование больших по модулю доходностей с использованием сентимент-анализа

Источник: Составлено автором

|      | int_a_lm | int_b_lm | cor_lm  | pv_lm  |  |
|------|----------|----------|---------|--------|--|
| ford | -0.1775  | 0.0908   | -0.0441 | 0.5904 |  |

В результате оценивания линейной ARIMA-модели статистически значимо на дневные доходности влияют текущий сентимент, а также его второй и седьмой лаги. Однако прогнозирование на всей выборке только по текстовой информации не имеет в себе статистически значимой корреляции прогнозов с истинными значениями, равно как и аналогичная процедура, но для больших по модулю доходностей.

Таблица 4. Прогнозирование доходностей с использованием ML-моделей Источник: составлено автором

|                                         | kernel_svm | int_a_svm | int_b_svm | cor_svm | pv_svm |
|-----------------------------------------|------------|-----------|-----------|---------|--------|
|                                         | Linear     | 0.1841    | 0.3602    | 0.2745  | 0.0000 |
| Только финансы                          | Poly       | 0.1778    | 0.3545    | 0.2684  | 0.0000 |
|                                         | Radial     | 0.1693    | 0.3468    | 0.2602  | 0.0000 |
| ar.                                     | Linear     | -0.1917   | -0.0032   | -0.0984 | 0.0890 |
| Только сентимент в<br>усеченной форме   | Poly       | -0.1424   | 0.0474    | -0.0479 | 0.4082 |
| усеченной форме                         | Radial     | -0.0221   | 0.1672    | 0.0732  | 0.2060 |
| <b>T</b>                                | Linear     | -0.1197   | 0.0705    | -0.0249 | 0.6680 |
| Только сентимент в<br>значимой форме    | Poly       | -0.0685   | 0.1217    | 0.0268  | 0.6435 |
| значимой формс                          | Radial     | -0.1156   | 0.0747    | -0.0206 | 0.7217 |
|                                         | Linear     | 0.1591    | 0.3376    | 0.2504  | 0.0000 |
| Финансы + усеченная<br>форма сентимента | Poly       | 0.1359    | 0.3164    | 0.2281  | 0.0001 |
| форма сентимента                        | Radial     | 0.1092    | 0.2918    | 0.2022  | 0.0004 |
| <u>.</u>                                | Linear     | 0.1570    | 0.3357    | 0.2485  | 0.0000 |
| Финансы + значимая<br>форма сентимента  | Poly       | 0.0543    | 0.2404    | 0.1487  | 0.0099 |
| форма сентимента                        | Radial     | 0.0846    | 0.2689    | 0.1783  | 0.0019 |

Таблица 5. Прогнозирование больших доходностей с использованием ML-моделей Источник: составлено автором

|                                       | kernel_svm | int_a_svm | int_b_svm | cor_svm | pv_svm |
|---------------------------------------|------------|-----------|-----------|---------|--------|
|                                       | Linear     | 0.2405    | 0.4744    | 0.3632  | 0.0000 |
| Только финансы                        | Poly       | 0.2387    | 0.4729    | 0.3615  | 0.0000 |
|                                       | Radial     | 0.2198    | 0.4572    | 0.3440  | 0.0000 |
| TD.                                   | Linear     | -0.2536   | 0.0112    | -0.1234 | 0.1313 |
| Только сентимент в<br>усеченной форме | Poly       | -0.1687   | 0.0997    | -0.0351 | 0.6685 |
| уссченной форме                       | Radial     | -0.0734   | 0.1944    | 0.0616  | 0.4522 |
| TT.                                   | Linear     | -0.2200   | 0.0467    | -0.0882 | 0.2814 |
| Только сентимент в<br>значимой форме  | Poly       | -0.2160   | 0.0510    | -0.0840 | 0.3051 |
| значимой формс                        | Radial     | -0.1546   | 0.1141    | -0.0206 | 0.8014 |
| -                                     | Linear     | 0.1372    | 0.3871    | 0.2666  | 0.0009 |
| Финансы и усеченная форма сентимента  | Poly       | 0.0626    | 0.3213    | 0.1953  | 0.0162 |
| форма сентимента                      | Radial     | 0.1388    | 0.3886    | 0.2682  | 0.0009 |
|                                       | Linear     | 0.1947    | 0.4363    | 0.3207  | 0.0001 |
| Финансы и значимая                    | Poly       | 0.1472    | 0.3958    | 0.2761  | 0.0006 |
| форма сентимента                      | Radial     | 0.0903    | 0.3461    | 0.2220  | 0.0062 |

Включение финансовой информации в модели прогнозирования дневной доходности компании Форд, применяющие методы машинного обучения не ведет к увеличению их качества, измеряемого в данном случае корреляцией прогнозов с истинными значениями.

Таблица 6. Классификация по направлению движения акций с использованием методов машинного обучения и сентимент-анализа

|                                 | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|---------------------------------|---------------|---------|---------|-------------|-----------|
|                                 | Logit         | 0.5034  | 0.6787  | 0.5910      | +         |
|                                 | Random_forest | 0.4863  | 0.6124  | 0.5494      | -         |
| Использование                   | Bayes_Naive   | 0.4750  | 0.6833  | 0.5791      | -         |
| только финансовой               | Boosting      | 0.4558  | 0.6848  | 0.5703      | -         |
| информации                      | SVM-Linear    | 0.5071  | 0.6451  | 0.5761      | +         |
|                                 | SVM-Poly      | 0.5138  | 0.6484  | 0.5811      | +         |
|                                 | SVM-Radial    | 0.5060  | 0.6922  | 0.5991      | +         |
|                                 | Logit         | 0.4654  | 0.5496  | 0.5075      | -         |
| Использование                   | Random_forest | 0.4188  | 0.5424  | 0.4806      | -         |
| только новостной                | Bayes_Naive   | 0.4587  | 0.5363  | 0.4975      | -         |
| информации                      | Boosting      | 0.4265  | 0.5645  | 0.4955      | -         |
| (текущая и первый               | SVM-Linear    | 0.5084  | 0.5205  | 0.5144      | +         |
| лаг)                            | SVM-Poly      | 0.5084  | 0.5205  | 0.5144      | +         |
|                                 | SVM-Radial    | 0.4396  | 0.5553  | 0.4975      | -         |
|                                 | Logit         | 0.4565  | 0.6161  | 0.5363      | -         |
|                                 | Random_forest | 0.4547  | 0.5922  | 0.5235      | -         |
| Использование                   | Bayes_Naive   | 0.4376  | 0.5692  | 0.5034      | -         |
| лагированной<br>новостной       | Boosting      | 0.4005  | 0.5727  | 0.4866      | -         |
| информации                      | SVM-Linear    | 0.4896  | 0.5373  | 0.5134      | -         |
|                                 | SVM-Poly      | 0.4838  | 0.5689  | 0.5264      | -         |
|                                 | SVM-Radial    | 0.4351  | 0.6079  | 0.5215      | -         |
|                                 | Logit         | 0.5201  | 0.6441  | 0.5821      | +         |
|                                 | Random_forest | 0.5077  | 0.6528  | 0.5802      | +         |
| Оба канала                      | Bayes_Naive   | 0.4789  | 0.6514  | 0.5651      | -         |
| информации<br>(текущая и первый | Boosting      | 0.4535  | 0.6829  | 0.5682      | -         |
| лаг)                            | SVM-Linear    | 0.5260  | 0.6163  | 0.5711      | +         |
|                                 | SVM-Poly      | 0.4859  | 0.6782  | 0.5821      | -         |
|                                 | SVM-Radial    | 0.4766  | 0.6678  | 0.5722      | -         |
|                                 | Logit         | 0.4958  | 0.6683  | 0.5821      | -         |
|                                 | Random_forest | 0.4726  | 0.6699  | 0.5712      | -         |
| Оба канала                      | Bayes_Naive   | 0.4652  | 0.6351  | 0.5502      | -         |
| информации<br>(новости          | Boosting      | 0.4804  | 0.6620  | 0.5712      | -         |
| лагированные)                   | SVM-Linear    | 0.4805  | 0.6617  | 0.5711      | -         |
| ·                               | SVM-Poly      | 0.4826  | 0.6596  | 0.5711      | -         |
|                                 | SVM-Radial    | 0.4593  | 0.6672  | 0.5633      | -         |

Таблица 7. Классификация по размаху движения акций с использованием методов машинного обучения и сентимент-анализа

|                                            | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|--------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                            | Logit         | 0.4259  | 0.5812  | 0.5036      | -         |
| Использование только финансовой информации | Random_forest | 0.5005  | 0.6516  | 0.5761      | +         |
|                                            | Bayes_Naive   | 0.5790  | 0.6628  | 0.6209      | +         |
|                                            | Boosting      | 0.5679  | 0.6581  | 0.6130      | +         |
|                                            | SVM-Linear    | 0.4974  | 0.5555  | 0.5264      | -         |
|                                            | SVM-Poly      | 0.5403  | 0.5900  | 0.5651      | +         |
|                                            | SVM-Radial    | 0.5568  | 0.6988  | 0.6278      | +         |
|                                            | Logit         | 0.4710  | 0.5280  | 0.4995      | -         |
| Использование                              | Random_forest | 0.4494  | 0.5635  | 0.5064      | -         |
| только новостной                           | Bayes_Naive   | 0.4821  | 0.5587  | 0.5204      | -         |
| информации                                 | Boosting      | 0.4607  | 0.5723  | 0.5165      | -         |
| (текущая и первый                          | SVM-Linear    | 0.4771  | 0.5258  | 0.5015      | -         |
| лаг)                                       | SVM-Poly      | 0.4804  | 0.5445  | 0.5124      | -         |
|                                            | SVM-Radial    | 0.4685  | 0.5782  | 0.5233      |           |
|                                            | Logit         | 0.4229  | 0.5545  | 0.4887      | -         |
|                                            | Random_forest | 0.4058  | 0.6114  | 0.5086      | -         |
| Использование                              | Bayes_Naive   | 0.4680  | 0.5588  | 0.5134      | -         |
| лагированной<br>новостной                  | Boosting      | 0.4235  | 0.5598  | 0.4916      | -         |
| информации                                 | SVM-Linear    | 0.4340  | 0.5613  | 0.4976      | -         |
|                                            | SVM-Poly      | 0.4717  | 0.5374  | 0.5045      | -         |
|                                            | SVM-Radial    | 0.4475  | 0.5794  | 0.5135      | -         |
|                                            | Logit         | 0.4534  | 0.5895  | 0.5215      | -         |
|                                            | Random_forest | 0.4979  | 0.6383  | 0.5681      | -         |
| Оба канала                                 | Bayes_Naive   | 0.5343  | 0.6058  | 0.5701      | +         |
| информации<br>(текущая и первый            | Boosting      | 0.5516  | 0.6465  | 0.5991      | +         |
| лаг)                                       | SVM-Linear    | 0.4689  | 0.5460  | 0.5074      | -         |
| ,                                          | SVM-Poly      | 0.5264  | 0.6079  | 0.5672      | +         |
|                                            | SVM-Radial    | 0.5291  | 0.6827  | 0.6059      | +         |
|                                            | Logit         | 0.4246  | 0.5905  | 0.5075      | -         |
|                                            | Random_forest | 0.5072  | 0.6510  | 0.5791      | +         |
| Оба канала                                 | Bayes_Naive   | 0.5089  | 0.6055  | 0.5572      | +         |
| информации<br>(новости                     | Boosting      | 0.5489  | 0.6612  | 0.6050      | +         |
| ланированные)                              | SVM-Linear    | 0.4574  | 0.5577  | 0.5075      | -         |
|                                            | SVM-Poly      | 0.5245  | 0.5940  | 0.5592      | +         |
|                                            | SVM-Radial    | 0.5203  | 0.6817  | 0.6010      | +         |

Таблица 8. ARIMA-модель для Форд с выделением топиков по методу LDA Источник: составлено автором

|            | estimate | sd     | t_stat  | pi_val |  |
|------------|----------|--------|---------|--------|--|
| ar1        | -0.5919  | 0.1262 | -4.6910 | 0.0000 |  |
| ma1        | 0.7901   | 0.1280 | 6.1722  | 0.0000 |  |
| ma2        | 0.1333   | 0.0493 | 2.7027  | 0.0069 |  |
| ma3        | 0.0449   | 0.0425 | 1.0558  | 0.2911 |  |
| ma4        | -0.0654  | 0.0373 | -1.7524 | 0.0797 |  |
| intercept  | 0.0020   | 0.0013 | 1.5156  | 0.1296 |  |
| topik_9_1  | -0.0165  | 0.0066 | -2.4880 | 0.0129 |  |
| topik_9_2  | -0.0161  | 0.0066 | -2.4209 | 0.0155 |  |
| topik_10_3 | 0.0208   | 0.0122 | 1.7035  | 0.0885 |  |
| topik_8_2  | -0.0169  | 0.0097 | -1.7390 | 0.0820 |  |
| topik_1_3  | -0.0095  | 0.0046 | -2.0582 | 0.0396 |  |
| AIC        | - 4 647  |        |         |        |  |
| BIC        | -4578    |        |         |        |  |
| n.obs      | 1 007    |        |         |        |  |

Статистически значимыми тематическими разделами являются: новости, посвященные общей динамике на рынке (их первые два лага), второй лаг новостей, посвященных нефти, а также третьи лаги таких тем как динамика финансовых показателей и новости касательно моделей автомобилей марки Ford.

Таблица 9. Прогнозы доходностей с помощью модели с использованием LDA Источник: составлено автором

| int_a_arima_dir    | int_b_arima_dir | cor_arima_dir | pv_arima_dir |
|--------------------|-----------------|---------------|--------------|
| <b>ford</b> 0.0074 | 0.2306          | 0.1205        | 0.0370       |

Наблюдается статистически значимая корреляция прогнозов модели, построенной на принадлежности новостей к тематическим группам, и истинных значений дневной доходности компании Форд

Таблица 10. Прогнозы дневных доходностей с помощью ML и LDA-словарей Источник: составлено автором

|                | kernel_svm | int_a_svm | int_b_svm | cor_svm | pv_svm |
|----------------|------------|-----------|-----------|---------|--------|
| _              | Linear     | 0.1732    | 0.3821    | 0.2810  | 0.0000 |
| Финансовая     | Poly       | 0.1736    | 0.3824    | 0.2813  | 0.0000 |
| информация     | Radial     | 0.0507    | 0.2712    | 0.1630  | 0.0047 |
| Только текущие | Linear     | -0.1769   | 0.0487    | -0.0649 | 0.2622 |
| словари        | Poly       | -0.1885   | 0.0366    | -0.0769 | 0.1840 |
|                |            |           |           |         |        |

|                                  | kernel_svm | int_a_svm | int_b_svm | cor_svm | pv_svm |
|----------------------------------|------------|-----------|-----------|---------|--------|
|                                  | Radial     | -0.2449   | -0.0226   | -0.1354 | 0.0189 |
|                                  | Linear     | -0.0205   | 0.2041    | 0.0930  | 0.1080 |
| Только лаги словарей             | Poly       | -0.0369   | 0.1883    | 0.0767  | 0.1853 |
|                                  | Radial     | -0.0117   | 0.2125    | 0.1017  | 0.0787 |
|                                  | Linear     | 0.1565    | 0.3672    | 0.2650  | 0.0000 |
| 2 источника – текущие<br>словари | Poly       | 0.0975    | 0.3142    | 0.2084  | 0.0003 |
| Словари                          | Radial     | 0.0043    | 0.2277    | 0.1174  | 0.0421 |
| 2 источника – лаги<br>словарей   | Linear     | 0.1852    | 0.3926    | 0.2923  | 0.0000 |
|                                  | Poly       | 0.1569    | 0.3677    | 0.2655  | 0.0000 |
|                                  | Radial     | 0.0908    | 0.3081    | 0.2019  | 0.0004 |

Модели, построенные только на лагированной информации словарей, имеют статистически значимую корреляцию при использовании радиально-базисного ядра в методе опорных векторов, также добавление этого потока информации положительно сказывается на качестве моделей, комбинирующих источники данных.

Таблица 11. Классификация направления изменения доходностей на LDA-словарях Источник: составлено автором

|                                            | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|--------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                            | Logit         | 0.5034  | 0.6787  | 0.5910      | +         |
|                                            | Random_forest | 0.4863  | 0.6124  | 0.5494      | -         |
| TI                                         | Bayes_Naive   | 0.4750  | 0.6833  | 0.5791      | -         |
| Использование только финансовой информации | Boosting      | 0.4558  | 0.6848  | 0.5703      | -         |
| финансовой информации                      | SVM-Linear    | 0.5071  | 0.6451  | 0.5761      | +         |
|                                            | SVM-Poly      | 0.5138  | 0.6484  | 0.5811      | +         |
|                                            | SVM-Radial    | 0.5060  | 0.6922  | 0.5991      | +         |
|                                            | Logit         | 0.4392  | 0.6096  | 0.5244      | -         |
|                                            | Random_forest | 0.4804  | 0.5545  | 0.5175      | -         |
| Использование только                       | Bayes_Naive   | 0.4280  | 0.6011  | 0.5145      | -         |
| новостной информации                       | Boosting      | 0.4667  | 0.5923  | 0.5295      | -         |
| (текущая)                                  | SVM-Linear    | 0.4316  | 0.6213  | 0.5264      | -         |
|                                            | SVM-Poly      | 0.4314  | 0.6235  | 0.5274      | -         |
|                                            | SVM-Radial    | 0.4296  | 0.6253  | 0.5274      | -         |
|                                            | Logit         | 0.4214  | 0.6052  | 0.5133      | -         |
|                                            | Random_forest | 0.4223  | 0.5647  | 0.4935      | -         |
| Использование                              | Bayes_Naive   | 0.4087  | 0.5981  | 0.5034      | -         |
| лагированной новостной                     | Boosting      | 0.4489  | 0.5620  | 0.5054      | -         |
| информации                                 | SVM-Linear    | 0.5087  | 0.5242  | 0.5164      | +         |
|                                            | SVM-Poly      | 0.4393  | 0.5913  | 0.5153      | -         |
|                                            | SVM-Radial    | 0.4214  | 0.6052  | 0.5133      | -         |
|                                            | Logit         | 0.5218  | 0.6504  | 0.5861      | +         |

|                        | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|------------------------|---------------|---------|---------|-------------|-----------|
|                        | Random_forest | 0.4696  | 0.6629  | 0.5663      | -         |
|                        | Bayes_Naive   | 0.4944  | 0.5861  | 0.5403      | -         |
| Оба канала информации  | Boosting      | 0.4731  | 0.6814  | 0.5772      | -         |
| (текущая)              | SVM-Linear    | 0.5047  | 0.6336  | 0.5692      | +         |
|                        | SVM-Poly      | 0.5130  | 0.6433  | 0.5781      | +         |
|                        | SVM-Radial    | 0.4726  | 0.6679  | 0.5702      | -         |
|                        | Logit         | 0.4731  | 0.6792  | 0.5762      | -         |
|                        | Random_forest | 0.4772  | 0.6014  | 0.5393      | -         |
|                        | Bayes_Naive   | 0.4284  | 0.5887  | 0.5085      | -         |
| Оба канала информации  | Boosting      | 0.4878  | 0.7082  | 0.5980      | -         |
| (новости лагированные) | SVM-Linear    | 0.4551  | 0.6255  | 0.5403      | -         |
|                        | SVM-Poly      | 0.4762  | 0.6363  | 0.5563      | -         |
|                        | SVM-Radial    | 0.4712  | 0.6133  | 0.5422      | -         |

Таблица 12. Классификация магнитуды изменения доходностей на LDA-словарях Источник: составлено автором

|                                           | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|-------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                           | Logit         | 0.4259  | 0.5812  | 0.5036      | -         |
|                                           | Random_forest | 0.5005  | 0.6516  | 0.5761      | +         |
| TT                                        | Bayes_Naive   | 0.5790  | 0.6628  | 0.6209      | +         |
| Использование только финансовой нформации | Boosting      | 0.5679  | 0.6581  | 0.6130      | +         |
| финансовой пформации                      | SVM-Linear    | 0.4974  | 0.5555  | 0.5264      | -         |
|                                           | SVM-Poly      | 0.5403  | 0.5900  | 0.5651      | +         |
|                                           | SVM-Radial    | 0.5568  | 0.6988  | 0.6278      | +         |
|                                           | Logit         | 0.4977  | 0.6030  | 0.5503      | -         |
|                                           | Random_forest | 0.4599  | 0.6050  | 0.5324      | -         |
| Использование только                      | Bayes_Naive   | 0.4669  | 0.6099  | 0.5384      | -         |
| новостной информации                      | Boosting      | 0.4997  | 0.5969  | 0.5483      | -         |
| (текущая)                                 | SVM-Linear    | 0.4914  | 0.6013  | 0.5463      | -         |
|                                           | SVM-Poly      | 0.4911  | 0.6076  | 0.5493      | -         |
|                                           | SVM-Radial    | 0.5122  | 0.5944  | 0.5533      | +         |
|                                           | Logit         | 0.4242  | 0.6226  | 0.5234      | -         |
|                                           | Random_forest | 0.4775  | 0.6328  | 0.5552      | -         |
| Использование                             | Bayes_Naive   | 0.4524  | 0.5982  | 0.5253      | -         |
| лагированной новостной                    | Boosting      | 0.4486  | 0.6418  | 0.5452      | -         |
| информации                                | SVM-Linear    | 0.4069  | 0.5842  | 0.4956      | -         |
|                                           | SVM-Poly      | 0.4450  | 0.6414  | 0.5432      | -         |
|                                           | SVM-Radial    | 0.4264  | 0.6540  | 0.5402      | -         |
|                                           | Logit         | 0.5088  | 0.5977  | 0.5533      | +         |
| 0.4                                       | Random_forest | 0.5365  | 0.6495  | 0.5930      | +         |
| Оба канала информации<br>(текущая)        | Bayes_Naive   | 0.5297  | 0.6424  | 0.5860      | +         |
| (текущал)                                 | Boosting      | 0.5245  | 0.6896  | 0.6071      | +         |
|                                           | SVM-Linear    | 0.4936  | 0.6011  | 0.5473      | -         |
|                                           |               |         |         |             |           |

|                                              | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|----------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                              | SVM-Poly      | 0.5153  | 0.5991  | 0.5572      | +         |
|                                              | SVM-Radial    | 0.5478  | 0.6481  | 0.5980      | +         |
|                                              | Logit         | 0.4247  | 0.6002  | 0.5125      | -         |
|                                              | Random_forest | 0.5299  | 0.6660  | 0.5979      | +         |
| 04                                           | Bayes_Naive   | 0.4874  | 0.6209  | 0.5542      | -         |
| Оба канала информации (новости лагированные) | Boosting      | 0.5308  | 0.6771  | 0.6039      | +         |
| (новости лагированные)                       | SVM-Linear    | 0.4011  | 0.5940  | 0.4975      | -         |
|                                              | SVM-Poly      | 0.4847  | 0.6634  | 0.5740      | -         |
|                                              | SVM-Radial    | 0.4505  | 0.6916  | 0.5711      | -         |

Применение информации, полученной на основании тематического распределения новостей в большинстве своем имеет смысл только при прогнозировании числовых значений доходности.

Таблица 13. Классификация направления изменения доходности по важным для компании Форд словам (TF-IDF)

|                                            | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|--------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                            | Logit         | 0.5034  | 0.6787  | 0.5910      | +         |
|                                            | Random_forest | 0.4863  | 0.6124  | 0.5494      | -         |
| ***                                        | Bayes_Naive   | 0.4750  | 0.6833  | 0.5791      | -         |
| Использование только финансовой информации | Boosting      | 0.4558  | 0.6848  | 0.5703      | -         |
| финансовой информации                      | SVM-Linear    | 0.5071  | 0.6451  | 0.5761      | +         |
|                                            | SVM-Poly      | 0.5138  | 0.6484  | 0.5811      | +         |
|                                            | SVM-Radial    | 0.5060  | 0.6922  | 0.5991      | +         |
|                                            | Logit         | 0.4879  | 0.5529  | 0.5204      | -         |
|                                            | Random_forest | 0.4926  | 0.5461  | 0.5194      | -         |
| Использование только                       | Bayes_Naive   | 0.5007  | 0.5301  | 0.5154      | +         |
| новостной информации                       | Boosting      | 0.4886  | 0.5423  | 0.5154      | -         |
| (текущая)                                  | SVM-Linear    | 0.4983  | 0.5424  | 0.5204      | -         |
|                                            | SVM-Poly      | 0.5068  | 0.5340  | 0.5204      | +         |
|                                            | SVM-Radial    | 0.5084  | 0.5205  | 0.5144      | +         |
|                                            | Logit         | 0.4716  | 0.5344  | 0.5030      | -         |
|                                            | Random_forest | 0.5075  | 0.5204  | 0.5139      | +         |
| Использование                              | Bayes_Naive   | 0.4832  | 0.5247  | 0.5040      | -         |
| лагированной новостной                     | Boosting      | 0.4764  | 0.5375  | 0.5069      | -         |
| информации                                 | SVM-Linear    | 0.4713  | 0.5207  | 0.4960      | -         |
|                                            | SVM-Poly      | 0.5075  | 0.5204  | 0.5139      | +         |
|                                            | SVM-Radial    | 0.5075  | 0.5204  | 0.5139      | +         |
|                                            | Logit         | 0.5093  | 0.6786  | 0.5940      | +         |
| Оба канала информации                      | Random_forest | 0.5175  | 0.6208  | 0.5692      | +         |
| (текущая)                                  | Bayes_Naive   | 0.5019  | 0.5269  | 0.5144      | +         |

|                                              | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|----------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                              | Boosting      | 0.4711  | 0.7071  | 0.5891      | -         |
|                                              | SVM-Linear    | 0.4954  | 0.5434  | 0.5194      | -         |
|                                              | SVM-Poly      | 0.5068  | 0.5340  | 0.5204      | +         |
|                                              | SVM-Radial    | 0.5144  | 0.6459  | 0.5802      | +         |
|                                              | Logit         | 0.5489  | 0.6465  | 0.5977      | +         |
|                                              | Random_forest | 0.5074  | 0.6581  | 0.5827      | +         |
| 0.4                                          | Bayes_Naive   | 0.4857  | 0.5442  | 0.5150      | -         |
| Оба канала информации (новости лагированные) | Boosting      | 0.5246  | 0.6568  | 0.5907      | +         |
| (новости лагированные)                       | SVM-Linear    | 0.4574  | 0.5823  | 0.5199      | -         |
|                                              | SVM-Poly      | 0.5075  | 0.5204  | 0.5139      | +         |
|                                              | SVM-Radial    | 0.5039  | 0.6554  | 0.5797      | +         |

При добавлении лагированной информации о тематическом распределении новостей в «финансовые» модели машинного обучения, их точность увеличивается.

Таблица 14. Классификация масштаба доходности по важным для компании словам Источник: составлено автором

|                                            | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|--------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                            | Logit         | 0.4259  | 0.5812  | 0.5036      | -         |
|                                            | Random_forest | 0.5005  | 0.6516  | 0.5761      | +         |
| **                                         | Bayes_Naive   | 0.5790  | 0.6628  | 0.6209      | +         |
| Использование только финансовой информации | Boosting      | 0.5679  | 0.6581  | 0.6130      | +         |
| финансовой информации                      | SVM-Linear    | 0.4974  | 0.5555  | 0.5264      | -         |
|                                            | SVM-Poly      | 0.5403  | 0.5900  | 0.5651      | +         |
|                                            | SVM-Radial    | 0.5568  | 0.6988  | 0.6278      | +         |
|                                            | Logit         | 0.4727  | 0.5640  | 0.5184      | -         |
|                                            | Random_forest | 0.4618  | 0.5809  | 0.5213      | -         |
| Использование только                       | Bayes_Naive   | 0.4889  | 0.5220  | 0.5055      | -         |
| новостной информации                       | Boosting      | 0.4779  | 0.5589  | 0.5184      | -         |
| (текущая)                                  | SVM-Linear    | 0.4561  | 0.5547  | 0.5054      | -         |
|                                            | SVM-Poly      | 0.4767  | 0.5561  | 0.5164      | -         |
|                                            | SVM-Radial    | 0.4669  | 0.5698  | 0.5184      | -         |
|                                            | Logit         | 0.4669  | 0.5698  | 0.5184      | -         |
|                                            | Random_forest | 0.4669  | 0.5429  | 0.5049      | -         |
| Использование                              | Bayes_Naive   | 0.4580  | 0.5401  | 0.4990      | -         |
| лагированной новостной                     | Boosting      | 0.4777  | 0.5381  | 0.5079      | -         |
| информации                                 | SVM-Linear    | 0.4741  | 0.5397  | 0.5069      | -         |
|                                            | SVM-Poly      | 0.4638  | 0.5163  | 0.4900      | -         |
|                                            | SVM-Radial    | 0.4905  | 0.5235  | 0.5070      | -         |
|                                            | Logit         | 0.4834  | 0.5891  | 0.5363      | -         |
| Оба канала информации                      | Random_forest | 0.5425  | 0.6455  | 0.5940      | +         |
| (текущая)                                  | Bayes_Naive   | 0.4592  | 0.5755  | 0.5174      | -         |

|                                              | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|----------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                              | Boosting      | 0.5653  | 0.6407  | 0.6030      | +         |
|                                              | SVM-Linear    | 0.4553  | 0.5556  | 0.5054      | -         |
|                                              | SVM-Poly      | 0.4767  | 0.5561  | 0.5164      | -         |
|                                              | SVM-Radial    | 0.5200  | 0.6817  | 0.6009      | +         |
|                                              | Logit         | 0.4195  | 0.6240  | 0.5218      | -         |
|                                              | Random_forest | 0.5222  | 0.6650  | 0.5936      | +         |
| 0.5                                          | Bayes_Naive   | 0.4758  | 0.5520  | 0.5139      | -         |
| Оба канала информации (новости ланированные) | Boosting      | 0.5047  | 0.7202  | 0.6125      | +         |
| (повости лапированные)                       | SVM-Linear    | 0.4659  | 0.5222  | 0.4940      | -         |
|                                              | SVM-Poly      | 0.4918  | 0.5261  | 0.5090      | -         |
|                                              | SVM-Radial    | 0.5269  | 0.6862  | 0.6065      | +         |

## Результаты проведенного анализа по компании Nissan NISSAN



Таблица 1. ARIMA-модель для модели с применением сентимент-анализа

Источник: составлено автором

|           | estimate       | sd     | t_stat   | pi_val |  |
|-----------|----------------|--------|----------|--------|--|
| intercept | -0.0009        | 0.0007 | - 1.3051 | 0.1919 |  |
| sent_4    | 0.0006         | 0.0003 | 1.7432   | 0.0813 |  |
| sent_5    | 0.0006         | 0.0003 | 1.7225   | 0.0850 |  |
| AIC       | - 4 848        |        |          |        |  |
| BIC       | <b>− 4 829</b> |        |          |        |  |
| n.obs     | 1 007          |        |          |        |  |

Таблица 2. Прогнозирование доходностей акций компании с помощью ARIMA-модели на всей выборке

Источник: составлено автором

| int_a_arima           | int_b_arima | cor_arima | pv_arima |  |
|-----------------------|-------------|-----------|----------|--|
| <b>niss</b> $-0.0025$ | 0.1862      | 0.0927    | 0.1090   |  |

Таблица 3. Прогнозирование больших по модулю доходностей с использованием сентимент-анализа

Источник: Составлено автором

|      | int_a_lm | int_b_lm | cor_lm | pv_lm  |  |
|------|----------|----------|--------|--------|--|
| niss | -0.0941  | 0.1743   | 0.0408 | 0.6187 |  |

Таблица 4. Прогнозирование доходностей с использованием МL-моделей

|                                       | kernel_svm | int_a_svm | int_b_svm | cor_svm | pv_svm |
|---------------------------------------|------------|-----------|-----------|---------|--------|
|                                       | Linear     | -0.1134   | 0.0769    | -0.0184 | 0.7509 |
| Только финансы                        | Poly       | -0.1496   | 0.0401    | -0.0553 | 0.3402 |
|                                       | Radial     | -0.1675   | 0.0218    | -0.0735 | 0.2041 |
| T.                                    | Linear     | -0.0452   | 0.1446    | 0.0502  | 0.3865 |
| Только сентимент в<br>усеченной форме | Poly       | -0.0630   | 0.1272    | 0.0324  | 0.5763 |
| уссченной форме                       | Radial     | -0.1142   | 0.0761    | -0.0192 | 0.7399 |
| TD.                                   | Linear     | -0.0056   | 0.1832    | 0.0896  | 0.1216 |
| Только сентимент в<br>значимой форме  | Poly       | -0.0031   | 0.1856    | 0.0921  | 0.1114 |
| значимой форме                        | Radial     | -0.1061   | 0.0842    | -0.0111 | 0.8484 |
|                                       | Linear     | -0.0456   | 0.1442    | 0.0498  | 0.3905 |
| Финансы + усеченная форма сентимента  | Poly       | -0.0631   | 0.1270    | 0.0323  | 0.5778 |
|                                       | Radial     | -0.2002   | -0.0120   | -0.1071 | 0.0641 |

|                                        | kernel_svm | int_a_svm | int_b_svm | cor_svm | pv_svm |
|----------------------------------------|------------|-----------|-----------|---------|--------|
| <b>.</b>                               | Linear     | -0.0031   | 0.1857    | 0.0921  | 0.1113 |
| Финансы + значимая<br>форма сентимента | Poly       | -0.0025   | 0.1862    | 0.0927  | 0.1090 |
| форма сентимента                       | Radial     | -0.1813   | 0.0076    | -0.0876 | 0.1299 |

Таблица 5. Прогнозирование больших доходностей с использованием ML-моделей Источник: составлено автором

|                                         | kernel_svm | int_a_svm | int_b_svm | cor_svm | pv_svm |
|-----------------------------------------|------------|-----------|-----------|---------|--------|
|                                         | Linear     | -0.1365   | 0.1323    | -0.0022 | 0.9789 |
| Только финансы                          | Poly       | -0.1884   | 0.0796    | -0.0554 | 0.4995 |
|                                         | Radial     | -0.1311   | 0.1377    | 0.0033  | 0.9676 |
| TD.                                     | Linear     | -0.0220   | 0.2434    | 0.1127  | 0.1681 |
| Только сентимент в<br>усеченной форме   | Poly       | -0.0084   | 0.2562    | 0.1262  | 0.1226 |
| уссченной форме                         | Radial     | -0.2092   | 0.0580    | -0.0769 | 0.3477 |
| TD.                                     | Linear     | -0.0463   | 0.2204    | 0.0886  | 0.2792 |
| Только сентимент в<br>значимой форме    | Poly       | -0.0438   | 0.2228    | 0.0912  | 0.2657 |
| значимой формс                          | Radial     | -0.2367   | 0.0292    | -0.1056 | 0.1967 |
| <b>.</b>                                | Linear     | -0.0243   | 0.2412    | 0.1104  | 0.1771 |
| Финансы и усеченная<br>форма сентимента | Poly       | -0.0108   | 0.2540    | 0.1238  | 0.1299 |
| форма сентимента                        | Radial     | -0.1847   | 0.0833    | -0.0516 | 0.5289 |
| _                                       | Linear     | -0.0482   | 0.2186    | 0.0868  | 0.2895 |
| Финансы и значимая форма сентимента     | Poly       | -0.0490   | 0.2178    | 0.0859  | 0.2940 |
| форма септимента                        | Radial     | -0.1470   | 0.1218    | -0.0128 | 0.8758 |

Таблица 6. Классификация по направлению движения акций с использованием методов машинного обучения и сентимент-анализа

|                   | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|-------------------|---------------|---------|---------|-------------|-----------|
|                   | Logit         | 0.4796  | 0.5392  | 0.5094      | -         |
|                   | Random_forest | 0.4314  | 0.5757  | 0.5035      | -         |
| Использование     | Bayes_Naive   | 0.4748  | 0.5879  | 0.5313      | -         |
| только финансовой | Boosting      | 0.4503  | 0.5725  | 0.5114      | -         |
| информации        | SVM-Linear    | 0.5147  | 0.5241  | 0.5194      | +         |
|                   | SVM-Poly      | 0.4996  | 0.5610  | 0.5303      | -         |
|                   | SVM-Radial    | 0.4194  | 0.5838  | 0.5016      |           |
|                   | Logit         | 0.4950  | 0.5497  | 0.5224      | -         |
| Использование     | Random_forest | 0.4706  | 0.5661  | 0.5184      | -         |
| только новостной  | Bayes_Naive   | 0.4716  | 0.5594  | 0.5155      | -         |
| информации        | Boosting      | 0.4689  | 0.5500  | 0.5094      | -         |
| (текущая и первый | SVM-Linear    | 0.5147  | 0.5241  | 0.5194      | +         |
| лаг)              | SVM-Poly      | 0.5147  | 0.5241  | 0.5194      | +         |
|                   | SVM-Radial    | 0.5074  | 0.5434  | 0.5254      | +         |

|                                 | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|---------------------------------|---------------|---------|---------|-------------|-----------|
|                                 | Logit         | 0.4773  | 0.5775  | 0.5274      | -         |
|                                 | Random_forest | 0.4725  | 0.5841  | 0.5283      | -         |
| Использование                   | Bayes_Naive   | 0.4891  | 0.5874  | 0.5383      | -         |
| лагированной<br>новостной       | Boosting      | 0.4640  | 0.5766  | 0.5203      | -         |
| информации                      | SVM-Linear    | 0.5043  | 0.5346  | 0.5194      | +         |
|                                 | SVM-Poly      | 0.5072  | 0.5554  | 0.5313      | +         |
|                                 | SVM-Radial    | 0.4768  | 0.5758  | 0.5263      | -         |
|                                 | Logit         | 0.4897  | 0.5490  | 0.5194      | -         |
|                                 | Random_forest | 0.4130  | 0.5842  | 0.4986      | -         |
| Оба канала                      | Bayes_Naive   | 0.4403  | 0.6022  | 0.5213      | -         |
| информации<br>(текущая и первый | Boosting      | 0.3986  | 0.6345  | 0.5166      | -         |
| лаг)                            | SVM-Linear    | 0.5147  | 0.5241  | 0.5194      | +         |
| ,                               | SVM-Poly      | 0.4839  | 0.5886  | 0.5362      | -         |
|                                 | SVM-Radial    | 0.4597  | 0.5811  | 0.5204      | -         |
|                                 | Logit         | 0.4764  | 0.5585  | 0.5175      | -         |
|                                 | Random_forest | 0.4131  | 0.5918  | 0.5025      | -         |
| Оба канала                      | Bayes_Naive   | 0.4762  | 0.5964  | 0.5363      | -         |
| информации<br>(новости          | Boosting      | 0.4507  | 0.6021  | 0.5264      | -         |
| лагированные)                   | SVM-Linear    | 0.5074  | 0.5394  | 0.5234      | +         |
| ,                               | SVM-Poly      | 0.4925  | 0.5781  | 0.5353      | -         |
|                                 | SVM-Radial    | 0.4635  | 0.5434  | 0.5034      | -         |

Использование информации о сентименте новостей для компании Ниссан ведет к повышению точности моделей, отличных по качеству от случайного угадывания при их сравнении с моделями, построенными только на текстовых данных (или же классификации на том же уровне).

Таблица 7. Классификация по размаху движения акций с использованием методов машинного обучения и сентимент-анализа

|                   | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|-------------------|---------------|---------|---------|-------------|-----------|
|                   | Logit         | 0.3880  | 0.5595  | 0.4737      | -         |
|                   | Random_forest | 0.4575  | 0.6233  | 0.5404      | -         |
| Использование     | Bayes_Naive   | 0.4792  | 0.7011  | 0.5901      | -         |
| только финансовой | Boosting      | 0.4843  | 0.6620  | 0.5732      | -         |
| информации        | SVM-Linear    | 0.4019  | 0.5475  | 0.4747      | -         |
|                   | SVM-Poly      | 0.4864  | 0.5605  | 0.5234      | -         |
|                   | SVM-Radial    | 0.4849  | 0.6835  | 0.5842      |           |
| Использование     | Logit         | 0.4859  | 0.5648  | 0.5253      | -         |
| только новостной  | Random_forest | 0.4835  | 0.5452  | 0.5144      | -         |
| информации        | _Bayes_Naive  | 0.4762  | 0.5466  | 0.5114      | -         |

|                                         | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|-----------------------------------------|---------------|---------|---------|-------------|-----------|
| (текущая и первый                       | Boosting      | 0.4794  | 0.5493  | 0.5144      | -         |
| лаг)                                    | SVM-Linear    | 0.4768  | 0.5441  | 0.5104      | -         |
|                                         | SVM-Poly      | 0.4855  | 0.5593  | 0.5224      | -         |
|                                         | SVM-Radial    | 0.4934  | 0.5573  | 0.5254      | -         |
|                                         | Logit         | 0.4303  | 0.6042  | 0.5172      | -         |
|                                         | Random_forest | 0.4172  | 0.6096  | 0.5134      | -         |
| Использование                           | Bayes_Naive   | 0.4782  | 0.5566  | 0.5174      | -         |
| лагированной<br>новостной               | Boosting      | 0.4562  | 0.5786  | 0.5174      | -         |
| информации                              | SVM-Linear    | 0.4596  | 0.5889  | 0.5243      | -         |
|                                         | SVM-Poly      | 0.5058  | 0.5569  | 0.5313      | +         |
|                                         | SVM-Radial    | 0.4345  | 0.5644  | 0.4995      | -         |
|                                         | Logit         | 0.3934  | 0.6018  | 0.4976      | -         |
|                                         | Random_forest | 0.4979  | 0.6067  | 0.5523      | -         |
| Оба канала                              | Bayes_Naive   | 0.4901  | 0.6144  | 0.5522      | -         |
| информации<br>(текущая и первый         | Boosting      | 0.4857  | 0.6846  | 0.5852      | -         |
| лаг)                                    | SVM-Linear    | 0.4239  | 0.5970  | 0.5104      | -         |
| ,                                       | SVM-Poly      | 0.4801  | 0.5727  | 0.5264      | -         |
|                                         | SVM-Radial    | 0.5070  | 0.6453  | 0.5762      | +         |
|                                         | Logit         | 0.4094  | 0.5935  | 0.5014      | -         |
|                                         | Random_forest | 0.5172  | 0.6450  | 0.5811      | +         |
| Оба канала                              | Bayes_Naive   | 0.4721  | 0.6085  | 0.5403      | -         |
| информации<br>(новости<br>ланированные) | Boosting      | 0.5099  | 0.6543  | 0.5821      | +         |
|                                         | SVM-Linear    | 0.4550  | 0.5698  | 0.5124      | -         |
| 1                                       | SVM-Poly      | 0.5149  | 0.5876  | 0.5512      | +         |
|                                         | SVM-Radial    | 0.4904  | 0.6498  | 0.5701      | -         |

Комбинация источников данных ведет к наилучшим результатам классификации дневных доходностей по факту их отклонения от модуля медианного значения.

Таблица 8. ARIMA-модель для Ниссан с выделением топиков по методу LDA Источник: составлено автором

|             | estimate | sd     | t_stat  | pi_val |  |
|-------------|----------|--------|---------|--------|--|
| intercept   | 0.0009   | 0.0009 | 0.9950  | 0.3197 |  |
| topik_3_3   | 0.0102   | 0.0063 | 1.6327  | 0.1025 |  |
| topik_10    | -0.0268  | 0.0105 | -2.5498 | 0.0108 |  |
| topik_4_3   | 0.0330   | 0.0163 | 2.0218  | 0.0432 |  |
| topik_3_2   | -0.0151  | 0.0061 | -2.4533 | 0.0142 |  |
| topik_4_2   | -0.0332  | 0.0157 | -2.1168 | 0.0343 |  |
| _topik_10_3 | -0.0246  | 0.0117 | -2.1091 | 0.0349 |  |
| AIC         | -4,862   |        |         |        |  |
| BIC         | -4,823   |        |         |        |  |
| n.obs       | 1,007    |        |         |        |  |

Статистически значимой является информация, получаемая из следующих тематических групп: относительно поставок комплектующих (причем это единственный показатель, на который рынок реагирует моментально), модельного ряда (с двумя порядками легирования), а также нвоости, посвященные административным вопросам относительно компании.

Таблица 9. Прогнозы доходностей с помощью модели с использованием LDA Источник: составлено автором

|      | int_a_arima_dir | int_b_arima_dir | cor_arima_dir | pv_arima_dir |
|------|-----------------|-----------------|---------------|--------------|
| niss | 0.0255          | 0.2477          | 0.1383        | 0.0165       |

Таблица 10. Прогнозы дневных доходностей с помощью ML и LDA-словарей Источник: составлено автором

|                          | kernel_svm | int_a_svm | int_b_svm | cor_svm | pv_svm |
|--------------------------|------------|-----------|-----------|---------|--------|
| _                        | Linear     | -0.2009   | 0.0238    | -0.0897 | 0.1211 |
| Финансовая<br>информация | Poly       | -0.1999   | 0.0248    | -0.0887 | 0.1254 |
|                          | Radial     | -0.2255   | -0.0020   | -0.1152 | 0.0462 |
| TT.                      | Linear     | -0.1423   | 0.0840    | -0.0296 | 0.6100 |
| Только текущие           | Poly       | -0.1186   | 0.1079    | -0.0054 | 0.9254 |
| словари                  | Radial     | -0.1505   | 0.0757    | -0.0379 | 0.5134 |
|                          | Linear     | -0.1571   | 0.0690    | -0.0446 | 0.4414 |
| Только лаги словарей     | Poly       | -0.1466   | 0.0796    | -0.0339 | 0.5581 |
|                          | Radial     | -0.1091   | 0.1174    | 0.0042  | 0.9424 |
| •                        | Linear     | -0.1635   | 0.0624    | -0.0512 | 0.3770 |
| 2 источника – текущие    | Poly       | -0.1263   | 0.1001    | -0.0133 | 0.8191 |
| словари                  | Radial     | -0.0932   | 0.1332    | 0.0202  | 0.7270 |
|                          | Linear     | -0.1698   | 0.0559    | -0.0577 | 0.3195 |
| 2 источника – лаги       | Poly       | -0.1493   | 0.0769    | -0.0367 | 0.5266 |
| словарей                 | Radial     | -0.1109   | 0.1155    | 0.0023  | 0.9680 |

Таблица 11. Классификация направления изменения доходностей на LDA-словарях Источник: составлено автором

|                                            | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|--------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                            | Logit         | 0.4796  | 0.5392  | 0.5094      | -         |
|                                            | Random_forest | 0.4314  | 0.5757  | 0.5035      | -         |
|                                            | Bayes_Naive   | 0.4748  | 0.5879  | 0.5313      | -         |
| Использование только финансовой информации | Boosting      | 0.4503  | 0.5725  | 0.5114      | -         |
| финансовой информации                      | SVM-Linear    | 0.5147  | 0.5241  | 0.5194      | +         |
|                                            | SVM-Poly      | 0.4996  | 0.5610  | 0.5303      | -         |
|                                            | SVM-Radial    | 0.4194  | 0.5838  | 0.5016      |           |

|                                                                                           | ml_type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ml_sd_a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ml_sd_b  | ml_accuracy ml_better |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------|
|                                                                                           | Logit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.4594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5494   | 0.5044 -              |
| Logit Random_forest   0.4454   0.5494   0.5044   Random_forest   0.4456   0.5591   0.5024 | Random_forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.4456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5591   | 0.5024 -              |
|                                                                                           | Bayes_Naive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.4297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5414   | 0.4856 -              |
|                                                                                           | 0.5004 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                       |
| (текущая)                                                                                 | Logit         0.4594         0.5494         0.5044           Random_forest         0.4456         0.5591         0.5024           Bayes_Naive         0.4297         0.5414         0.4856           Boosting         0.4513         0.5496         0.5004           SVM-Linear         0.4738         0.5371         0.5054           SVM-Poly         0.5147         0.5241         0.5194           SVM-Radial         0.5147         0.5241         0.5194           Logit         0.4557         0.5973         0.5265           Random_forest         0.4649         0.5741         0.5195           Bayes_Naive         0.4186         0.6102         0.5144           Boosting         0.4477         0.5914         0.5195           SVM-Linear         0.4332         0.5880         0.5106           SVM-Poly         0.5147         0.5241         0.5194           SVM-Radial         0.4505         0.6044         0.5275           Logit         0.4468         0.5343         0.4905           Random_forest         0.4457         0.5791         0.5124           Bayes_Naive         0.4306         0.5385         0.4846           SVM-Poly <td>0.5054 -</td> | 0.5054 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                       |
| Logit Random_forest   0.4456   0.5494                                                     | 0.5241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5194 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                       |
|                                                                                           | SVM-Radial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5241   | 0.5194 +              |
|                                                                                           | Logit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.4557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5973   | 0.5265 -              |
|                                                                                           | Random_forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.4649                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5741   | 0.5195 -              |
| Использование                                                                             | Bayes_Naive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.4186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.6102   | 0.5144 -              |
|                                                                                           | Boosting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.4477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5914   | 0.5195 -              |
| информации                                                                                | SVM-Linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5880   | 0.5106 -              |
| 1 1                                                                                       | SVM-Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5241   | 0.5194 +              |
|                                                                                           | SVM-Radial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.6044   | 0.5275 -              |
|                                                                                           | Logit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.4468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5343   | 0.4905 -              |
|                                                                                           | Random_forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.4457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5791   | 0.5124 -              |
| 0.4                                                                                       | Bayes_Naive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.4306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5385   | 0.4846 -              |
|                                                                                           | Boosting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.3855                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5877   | 0.4866 -              |
| (текущан)                                                                                 | SVM-Linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5476   | 0.5084 -              |
|                                                                                           | SVM-Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.4513       0.5496       0.5004       -         0.4738       0.5371       0.5054       -         0.5147       0.5241       0.5194       -         0.5147       0.5241       0.5194       -         0.4557       0.5973       0.5265       -         0.4649       0.5741       0.5195       -         0.4186       0.6102       0.5144       -         0.4477       0.5914       0.5195       -         0.4332       0.5880       0.5106       -         0.5147       0.5241       0.5194       -         0.4505       0.6044       0.5275       -         0.4468       0.5343       0.4905       -         0.4468       0.5343       0.4905       -         0.4306       0.5385       0.4846       -         0.3855       0.5877       0.4866       -         0.4692       0.5476       0.5084       -         0.4824       0.6061       0.5443       -         0.4824       0.6065       0.5196       -         0.4082       0.5671       0.4877       -         0.4337       0.5795       0.5066       - | 0.5214 - |                       |
|                                                                                           | SVM-Radial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.6061   | 0.5443 -              |
|                                                                                           | Logit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.4426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5965   | 0.5196 -              |
|                                                                                           | Random_forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.4255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.6058   | 0.5156 -              |
|                                                                                           | Bayes_Naive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.4112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.6215   | 0.5164 -              |
|                                                                                           | Boosting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.4082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5671   | 0.4877 -              |
| (HODOCIN MAI HPOBARHEIC)                                                                  | SVM-Linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5795   | 0.5066 -              |
|                                                                                           | SVM-Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5241   | 0.5194 +              |
|                                                                                           | SVM-Radial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.6300   | 0.5345 -              |

Таблица 12. Классификация магнитуды изменения доходностей на LDA-словарях Источник: составлено автором

|                                                           | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|-----------------------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                                           | Logit         | 0.3880  | 0.5595  | 0.4737      | -         |
|                                                           | Random_forest | 0.4575  | 0.6233  | 0.5404      | -         |
| **                                                        | Bayes_Naive   | 0.4792  | 0.7011  | 0.5901      | -         |
| Использование только финансовой нформации                 | Boosting      | 0.4843  | 0.6620  | 0.5732      | -         |
| финансовой нформации                                      | SVM-Linear    | 0.4019  | 0.5475  | 0.4747      | -         |
|                                                           | SVM-Poly      | 0.4864  | 0.5605  | 0.5234      | -         |
|                                                           | SVM-Radial    | 0.4849  | 0.6835  | 0.5842      | -         |
|                                                           | Logit         | 0.4849  | 0.6835  | 0.5842      | -         |
| Использование только<br>новостной информации<br>(текущая) | Random_forest | 0.4718  | 0.5788  | 0.5253      | -         |
|                                                           | Bayes_Naive   | 0.4650  | 0.5499  | 0.5074      | -         |
| (10N) Hun)                                                | Boosting      | 0.4634  | 0.5595  | 0.5115      | -         |

|                                                           | ml_type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ml_sd_a | ml_sd_b | ml_accuracy                                                                                                                                                                                                                                          | ml_better |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                                                           | SVM-Linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4759  | 0.5709  | 0.5234                                                                                                                                                                                                                                               | -         |
|                                                           | SVM-Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.4543  | 0.5826  | 0.5184                                                                                                                                                                                                                                               | -         |
|                                                           | SVM-Radial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4634  | 0.5934  | 0.5284                                                                                                                                                                                                                                               | -         |
|                                                           | Logit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.4187  | 0.5903  | 0.5045                                                                                                                                                                                                                                               | -         |
|                                                           | Random_forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.4295  | 0.5737  | 0.5016                                                                                                                                                                                                                                               | -         |
| Использование                                             | Bayes_Naive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.4451  | 0.5699  | 0.5075                                                                                                                                                                                                                                               | -         |
| лагированной новостной                                    | Boosting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.4255  | 0.5477  | 0.4866                                                                                                                                                                                                                                               | -         |
| информации                                                | SVM-Linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4453  | 0.5576  | 0.5015                                                                                                                                                                                                                                               | -         |
|                                                           | SVM-Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.4762  | 0.5745  | 0.5253                                                                                                                                                                                                                                               | -         |
|                                                           | SVM-Radial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4615  | 0.5356  | 0.4986                                                                                                                                                                                                                                               | -         |
|                                                           | Logit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.4603  | 0.5744  | 0.5173                                                                                                                                                                                                                                               | -         |
|                                                           | Random_forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.4609  | 0.6437  | 0.5523                                                                                                                                                                                                                                               | -         |
| 0.4                                                       | Bayes_Naive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.4528  | 0.5941  | 0.5235                                                                                                                                                                                                                                               | -         |
|                                                           | SVM-Poly         0.4543         0.5826         0.5184         -           SVM-Radial         0.4634         0.5934         0.5284         -           Logit         0.4187         0.5903         0.5045         -           Random_forest         0.4295         0.5737         0.5016         -           Bayes_Naive         0.4451         0.5699         0.5075         -           Bocthoй         Boosting         0.4255         0.5477         0.4866         -           SVM-Linear         0.4453         0.5576         0.5015         -           SVM-Poly         0.4762         0.5745         0.5253         -           SVM-Radial         0.4615         0.5356         0.4986         -           Logit         0.4603         0.5744         0.5173         -           Random_forest         0.4609         0.6437         0.5235         -           Bayes_Naive         0.4528         0.5941         0.5235         -           SVM-Poly         0.4613         0.5776         0.5174         -           SVM-Poly         0.4613         0.5776         0.5195         -           Random_forest         0.4737         0.6290 <t< td=""><td>-</td></t<> | -       |         |                                                                                                                                                                                                                                                      |           |
| (текущая)                                                 | SVM-Linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4522  | 0.5827  | 0.5184<br>0.5284<br>0.5045<br>0.5016<br>0.5075<br>0.4866<br>0.5015<br>0.5253<br>0.4986<br>0.5173<br>0.5523<br>0.5235<br>0.5690<br>0.5174<br>0.5195<br>0.5553<br>0.5035<br>0.5035<br>0.5035<br>0.5184<br>0.5622<br>0.5044<br>0.5354                   | -         |
|                                                           | Logit0.46030.57440.5173Random_forest0.46090.64370.5523Вауеs_Naive0.45280.59410.5235Вооsting0.48080.65730.5690SVM-Linear0.45220.58270.5174SVM-Poly0.46130.57760.5195SVM-Radial0.48350.62700.5553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.5195  | -       |                                                                                                                                                                                                                                                      |           |
|                                                           | SVM-Radial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4835  | 0.6270  | 0.4986       -         0.5173       -         0.5523       -         0.5235       -         0.5690       -         0.5174       -         0.5195       -         0.5553       -         0.5035       -         0.5184       -         0.5622       - | -         |
|                                                           | Logit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.4334  | 0.5736  | 0.5035                                                                                                                                                                                                                                               | -         |
|                                                           | Random_forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.4737  | 0.6290  | 0.5513                                                                                                                                                                                                                                               | -         |
|                                                           | Bayes_Naive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.4465  | 0.5903  | 0.5184                                                                                                                                                                                                                                               | -         |
| Оба канала информации (новости лагированные)  Rance  Ваус | Boosting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.4707  | 0.6537  | 0.5622                                                                                                                                                                                                                                               | -         |
| (повости лагированные)                                    | SVM-Linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4398  | 0.5690  | 0.5044                                                                                                                                                                                                                                               | -         |
|                                                           | SVM-Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.4713  | 0.5994  | 0.5354                                                                                                                                                                                                                                               | -         |
|                                                           | SVM-Radial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4591  | 0.5836  | 0.5214                                                                                                                                                                                                                                               | -         |

Таблица 13. Классификация направления изменения доходности по важным для компании Ниссан словам (TF-IDF)

|                                                   | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|---------------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                                   | Logit         | 0.4796  | 0.5392  | 0.5094      | -         |
|                                                   | Random_forest | 0.4314  | 0.5757  | 0.5035      | -         |
| п                                                 | Bayes_Naive   | 0.4748  | 0.5879  | 0.5313      | -         |
| <b>Использование только</b> финансовой информации | Boosting      | 0.4503  | 0.5725  | 0.5114      | -         |
| финансовой информации                             | SVM-Linear    | 0.5147  | 0.5241  | 0.5194      | +         |
|                                                   | SVM-Poly      | 0.4996  | 0.5610  | 0.5303      | -         |
|                                                   | SVM-Radial    | 0.4194  | 0.5838  | 0.5016      | -         |
|                                                   | Logit         | 0.4950  | 0.5498  | 0.5224      | -         |
|                                                   | Random_forest | 0.5147  | 0.5241  | 0.5194      | +         |
| Использование только                              | Bayes_Naive   | 0.5026  | 0.5263  | 0.5144      | +         |
| новостной информации<br>(текущая)                 | Boosting      | 0.5147  | 0.5241  | 0.5194      | +         |
| (= ===; ==; ==;                                   | SVM-Linear    | 0.4976  | 0.5372  | 0.5174      | -         |
|                                                   | _SVM-Poly     | 0.5087  | 0.5321  | 0.5204      | +         |

|                        | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|------------------------|---------------|---------|---------|-------------|-----------|
|                        | SVM-Radial    | 0.5147  | 0.5241  | 0.5194      | +         |
| Использование          | Logit         | 0.5005  | 0.5374  | 0.5189      | +         |
|                        | Random_forest | 0.5161  | 0.5238  | 0.5199      | +         |
|                        | Bayes_Naive   | 0.4787  | 0.5411  | 0.5099      | -         |
| лагированной новостной | Boosting      | 0.5161  | 0.5238  | 0.5199      | +         |
| информации             | SVM-Linear    | 0.4938  | 0.5360  | 0.5149      | -         |
|                        | SVM-Poly      | 0.5096  | 0.5342  | 0.5219      | +         |
|                        | SVM-Radial    | 0.5161  | 0.5238  | 0.5199      | +         |
|                        | Logit         | 0.4549  | 0.5916  | 0.5233      | -         |
|                        | Random_forest | 0.5147  | 0.5241  | 0.5194      | +         |
| 0.4                    | Bayes_Naive   | 0.5026  | 0.5263  | 0.5144      | +         |
|                        | Boosting      | 0.4503  | 0.5725  | 0.5114      | -         |
| агированной новостной  | SVM-Linear    | 0.4992  | 0.5395  | 0.5194      | -         |
|                        | SVM-Poly      | 0.5087  | 0.5321  | 0.5204      | +         |
|                        | SVM-Radial    | 0.4558  | 0.5969  | 0.5263      | -         |
|                        | Logit         | 0.4700  | 0.5659  | 0.5180      | -         |
|                        | Random_forest | 0.5161  | 0.5238  | 0.5199      | +         |
|                        | Bayes_Naive   | 0.4788  | 0.5391  | 0.5089      | -         |
|                        | Boosting      | 0.4756  | 0.5903  | 0.5330      | -         |
| (повости лагированные) | SVM-Linear    | 0.4964  | 0.5355  | 0.5159      | -         |
|                        | SVM-Poly      | 0.5096  | 0.5342  | 0.5219      | +         |
|                        | SVM-Radial    | 0.4489  | 0.5372  | 0.4931      | -         |

Таблица 14. Классификация масштаба доходности по важным для компании словам Источник: составлено автором

|                                            | ml_type                       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|--------------------------------------------|-------------------------------|---------|---------|-------------|-----------|
|                                            | Logit                         | 0.3880  | 0.5595  | 0.4737      | -         |
|                                            | Random_forest                 | 0.4575  | 0.6233  | 0.5404      | -         |
| Использованна только                       | Bayes_Naive                   | 0.4792  | 0.7011  | 0.5901      | -         |
| Использование только финансовой информации | Boosting                      | 0.4843  | 0.6620  | 0.5732      | -         |
| финансовой информации                      | SVM-Linear 0.4019 0.5475 0.47 | 0.4747  | -       |             |           |
|                                            | SVM-Poly                      | 0.4864  | 0.5605  | 0.5234      | -         |
|                                            | SVM-Radial                    | 0.4849  | 0.6835  | 0.5842      | -         |
|                                            | Logit                         | 0.4571  | 0.5717  | 0.5144      | -         |
|                                            | Random_forest                 | 0.4525  | 0.5684  | 0.5104      | -         |
| Использование только                       | Bayes_Naive                   | 0.4935  | 0.5055  | 0.4995      | -         |
| новостной информации                       | Boosting                      | 0.4851  | 0.5119  | 0.4985      | -         |
| (текущая)                                  | SVM-Linear                    | 0.4608  | 0.5621  | 0.5114      | -         |
|                                            | SVM-Poly                      | 0.4713  | 0.5595  | 0.5154      | -         |
|                                            | SVM-Radial                    | 0.4616  | 0.5633  | 0.5125      | -         |
|                                            | Logit                         | 0.4779  | 0.5479  | 0.5129      | -         |
|                                            | _Random_forest                | 0.4750  | 0.5529  | 0.5139      | -         |
|                                            |                               |         |         |             |           |

|                                              | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|----------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                              | Bayes_Naive   | 0.4820  | 0.5339  | 0.5079      | -         |
| Использование                                | Boosting      | 0.4910  | 0.5189  | 0.5050      | -         |
| лагированной новостной                       | SVM-Linear    | 0.4788  | 0.5371  | 0.5079      | -         |
| информации                                   | SVM-Poly      | 0.4872  | 0.5367  | 0.5119      | -         |
|                                              | SVM-Radial    | 0.4915  | 0.5562  | 0.5239      | -         |
|                                              | Logit         | 0.4574  | 0.5555  | 0.5065      | -         |
|                                              | Random_forest | 0.4793  | 0.6552  | 0.5673      | -         |
| 0.4                                          | Bayes_Naive   | 0.4935  | 0.5055  | 0.4995      | -         |
| Оба канала информации<br>(текущая)           | Boosting      | 0.4932  | 0.6571  | 0.5752      | -         |
| (текущая)                                    | SVM-Linear    | 0.4608  | 0.5621  | 0.5114      | -         |
|                                              | SVM-Poly      | 0.4713  | 0.5595  | 0.5154      | -         |
|                                              | SVM-Radial    | 0.4682  | 0.6741  | 0.5711      | -         |
|                                              | Logit         | 0.4723  | 0.5614  | 0.5169      | -         |
|                                              | Random_forest | 0.4554  | 0.6242  | 0.5398      | -         |
| 0.4                                          | Bayes_Naive   | 0.4820  | 0.5339  | 0.5079      | -         |
| Оба канала информации (новости ланированные) | Boosting      | 0.5027  | 0.6606  | 0.5817      | +         |
| (повости лапированные)                       | SVM-Linear    | 0.4807  | 0.5452  | 0.5129      | -         |
|                                              | SVM-Poly      | 0.4872  | 0.5367  | 0.5119      | -         |
|                                              | SVM-Radial    | 0.5016  | 0.6636  | 0.5826      | +         |

## Результаты проведенного анализа по компании Кіа (КІ)



Таблица 1. ARIMA-модель для модели с применением сентимент-анализа

Источник: составлено автором

|                                          | estimate                                                                 | sd                                   | t_stat                                    | pi_val                               |  |
|------------------------------------------|--------------------------------------------------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------|--|
| ar1                                      | 0.0275                                                                   | 0.0516                               | 0.5335                                    | 0.5937                               |  |
| ar2                                      | -0.8960                                                                  | 0.0602                               | -14.8778                                  | 0.0000                               |  |
| ar3                                      | 0.2060                                                                   | 0.0363                               | 5.6809                                    | 0.0000                               |  |
| ar4                                      | 0.0021                                                                   | 0.0375                               | 0.0551                                    | 0.9560                               |  |
| ma1                                      | 0.2327                                                                   | 0.0406                               | 5.7332                                    | 0.0000                               |  |
| ma2                                      | 0.9226                                                                   | 0.0569                               | 16.2233                                   | 0.0000                               |  |
| intercept                                | 0.0009                                                                   | 0.0008                               | 1.1135                                    | 0.2655                               |  |
| sent                                     | -0.0005                                                                  | 0.0002                               | -2.6176                                   | 0.0089                               |  |
| sent_1                                   | -0.0005                                                                  | 0.0002                               | -2.2236                                   | 0.0262                               |  |
| sent_4                                   | 0.0006                                                                   | 0.0002                               | 2.7813                                    | 0.0054                               |  |
| AIC                                      | - 5 031                                                                  |                                      |                                           |                                      |  |
| BIC                                      | -4977                                                                    |                                      |                                           |                                      |  |
| n.obs                                    | 985                                                                      |                                      |                                           |                                      |  |
| ma2 intercept sent sent_1 sent_4 AIC BIC | 0.9226<br>0.0009<br>- 0.0005<br>- 0.0005<br>0.0006<br>- 5 031<br>- 4 977 | 0.0569<br>0.0008<br>0.0002<br>0.0002 | 16.2233<br>1.1135<br>- 2.6176<br>- 2.2236 | 0.0000<br>0.2655<br>0.0089<br>0.0262 |  |

Таблица 2. Прогнозирование доходностей акций компании с помощью ARIMA-модели на всей выборке

Источник: составлено автором

| int_a_arima        | int_b_arima | cor_arima | pv_arima |  |
|--------------------|-------------|-----------|----------|--|
| <b>kia</b> -0.1135 | 0.0842      | -0.0148   | 0.8066   |  |

Таблица 3. Прогнозирование больших по модулю доходностей с использованием сентимент-анализа

Источник: Составлено автором

|     | int_a_lm | int_b_lm | cor_lm  | pv_lm  |  |
|-----|----------|----------|---------|--------|--|
| kia | -0.1713  | -0.1007  | -0.0360 | 0.6654 |  |

Таблица 4. Прогнозирование доходностей с использованием ML-моделей

|                                       | kernel_svm | int_a_svm | int_b_svm | cor_svm | pv_svm |
|---------------------------------------|------------|-----------|-----------|---------|--------|
|                                       | Linear     | -0.1134   | 0.0769    | -0.0184 | 0.7509 |
| Только финансы                        | Poly       | -0.1096   | 0.0881    | -0.0109 | 0.8564 |
|                                       | Radial     | -0.1675   | 0.0218    | -0.0735 | 0.2041 |
| TD.                                   | Linear     | -0.0452   | 0.1446    | 0.0502  | 0.3865 |
| Только сентимент в<br>усеченной форме | Poly       | -0.0630   | 0.1272    | 0.0324  | 0.5763 |
|                                       | Radial     | -0.0731   | 0.1245    | 0.0260  | 0.6665 |

|                                         | kernel_svm | int_a_svm | int_b_svm | cor_svm | pv_svm |
|-----------------------------------------|------------|-----------|-----------|---------|--------|
| TD.                                     | Linear     | -0.0056   | 0.1832    | 0.0896  | 0.1216 |
| Только сентимент в<br>значимой форме    | Poly       | -0.0031   | 0.1856    | 0.0921  | 0.1114 |
|                                         | Radial     | -0.1061   | 0.0842    | -0.0111 | 0.8484 |
|                                         | Linear     | 0.0949    | 0.2854    | 0.1919  | 0.0013 |
| Финансы + усеченная<br>форма сентимента | Poly       | -0.0111   | 0.1851    | 0.0879  | 0.1439 |
| форма сентимента                        | Radial     | -0.0512   | 0.1461    | 0.0479  | 0.4264 |
|                                         | Linear     | 0.0944    | 0.2850    | 0.1915  | 0.0013 |
| Финансы + значимая                      | Poly       | 0.0969    | 0.2873    | 0.1939  | 0.0012 |
| форма сентимента                        | Radial     | -0.0902   | 0.1075    | 0.0087  | 0.8852 |

Таблица 5. Прогнозирование больших доходностей с использованием ML-моделей Источник: составлено автором

|                                         | kernel_svm | int_a_svm | int_b_svm | cor_svm | pv_svm |
|-----------------------------------------|------------|-----------|-----------|---------|--------|
|                                         | Linear     | 0.1500    | 0.4013    | 0.2804  | 0.0006 |
| Только финансы                          | Poly       | 0.1473    | 0.3990    | 0.2779  | 0.0007 |
|                                         | Radial     | 0.1039    | 0.3613    | 0.2368  | 0.0039 |
| T.                                      | Linear     | -0.1431   | 0.1293    | -0.0070 | 0.9325 |
| Только сентимент в<br>усеченной форме   | Poly       | -0.1412   | 0.1312    | -0.0051 | 0.9513 |
| уссченной форме                         | Radial     | -0.0926   | 0.1793    | 0.0442  | 0.5951 |
| _                                       | Linear     | -0.1480   | 0.1244    | -0.0120 | 0.8855 |
| Только сентимент в<br>значимой форме    | Poly       | -0.1288   | 0.1437    | 0.0076  | 0.9272 |
| значимой формс                          | Radial     | -0.1631   | 0.1091    | -0.0275 | 0.7408 |
| _                                       | Linear     | 0.0009    | 0.2683    | 0.1371  | 0.0978 |
| Финансы и усеченная<br>форма сентимента | Poly       | -0.0289   | 0.2404    | 0.1077  | 0.1940 |
| форма сентимента                        | Radial     | -0.0334   | 0.2361    | 0.1032  | 0.2133 |
| _                                       | Linear     | -0.0482   | 0.2186    | 0.0868  | 0.2895 |
| Финансы и значимая                      | Poly       | -0.0289   | 0.2404    | 0.1077  | 0.1940 |
| форма сентимента                        | Radial     | -0.0334   | 0.2361    | 0.1032  | 0.2133 |

Таблица 6. Классификация по направлению движения акций с использованием методов машинного обучения и сентимент-анализа

|                   | ml_type        | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|-------------------|----------------|---------|---------|-------------|-----------|
|                   | Logit          | 0.5320  | 0.6440  | 0.5880      | +         |
|                   | Random_forest  | 0.4651  | 0.6174  | 0.5412      | -         |
| Использование     | Bayes_Naive    | 0.4766  | 0.6625  | 0.5696      | -         |
| только финансовой | Boosting       | 0.4806  | 0.6363  | 0.5585      | -         |
| информации        | SVM-Linear     | 0.5384  | 0.6416  | 0.5900      | +         |
|                   | SVM-Poly       | 0.5418  | 0.6626  | 0.6022      | +         |
|                   | SVM-Radial     | 0.5144  | 0.6575  | 0.5859      | +         |
| Использование     | Logit          | 0.4687  | 0.5772  | 0.5230      | -         |
| только новостной  | _Random_forest | 0.4846  | 0.5794  | 0.5320      | -         |

|                                 | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|---------------------------------|---------------|---------|---------|-------------|-----------|
| информации                      | Bayes_Naive   | 0.4496  | 0.5899  | 0.5198      | -         |
| (текущая и первый<br>лаг)       | Boosting      | 0.4848  | 0.6036  | 0.5442      | -         |
|                                 | SVM-Linear    | 0.4982  | 0.5191  | 0.5086      | -         |
|                                 | SVM-Poly      | 0.4797  | 0.5458  | 0.5128      | -         |
|                                 | SVM-Radial    | 0.4447  | 0.6072  | 0.5260      | -         |
|                                 | Logit         | 0.4387  | 0.6029  | 0.5208      | -         |
|                                 | Random_forest | 0.4299  | 0.5244  | 0.4771      | -         |
| Использование                   | Bayes_Naive   | 0.4028  | 0.5552  | 0.4790      | -         |
| лагированной<br>новостной       | Boosting      | 0.4230  | 0.5391  | 0.4811      | -         |
| информации                      | SVM-Linear    | 0.4484  | 0.5873  | 0.5178      | -         |
| * *                             | SVM-Poly      | 0.4560  | 0.5939  | 0.5250      | -         |
|                                 | SVM-Radial    | 0.4061  | 0.5785  | 0.4923      | -         |
|                                 | Logit         | 0.5180  | 0.6641  | 0.5911      | +         |
|                                 | Random_forest | 0.5024  | 0.5719  | 0.5372      | +         |
| Оба канала                      | Bayes_Naive   | 0.4975  | 0.6458  | 0.5717      | -         |
| информации<br>(текущая и первый | Boosting      | 0.5256  | 0.6219  | 0.5738      | +         |
| лаг)                            | SVM-Linear    | 0.5372  | 0.6652  | 0.6012      | +         |
| ,                               | SVM-Poly      | 0.5487  | 0.6619  | 0.6053      | +         |
|                                 | SVM-Radial    | 0.5221  | 0.6579  | 0.5900      | +         |
|                                 | Logit         | 0.5405  | 0.6538  | 0.5972      | +         |
|                                 | Random_forest | 0.5066  | 0.6043  | 0.5554      | +         |
| Оба канала                      | Bayes_Naive   | 0.4218  | 0.6384  | 0.5301      | -         |
| информации<br>(новости          | Boosting      | 0.5352  | 0.6225  | 0.5788      | +         |
| лагированные)                   | SVM-Linear    | 0.5334  | 0.6590  | 0.5962      | +         |
| ,                               | SVM-Poly      | 0.5669  | 0.6335  | 0.6002      | +         |
|                                 | SVM-Radial    | 0.4873  | 0.6378  | 0.5625      |           |

Таблица 7. Классификация по размаху движения с использованием ML и сентиментов Источник: составлено автором

|                                 | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|---------------------------------|---------------|---------|---------|-------------|-----------|
|                                 | Logit         | 0.4162  | 0.5851  | 0.5006      | -         |
|                                 | Random_forest | 0.4541  | 0.5774  | 0.5157      | -         |
| Использование                   | Bayes_Naive   | 0.4662  | 0.6572  | 0.5617      | -         |
| только финансовой               | Boosting      | 0.4729  | 0.6260  | 0.5494      | -         |
| информации                      | SVM-Linear    | 0.4570  | 0.5645  | 0.5108      | -         |
|                                 | SVM-Poly      | 0.4826  | 0.5816  | 0.5321      | -         |
|                                 | SVM-Radial    | 0.5129  | 0.6449  | 0.5789      | +         |
|                                 | Logit         | 0.4018  | 0.5564  | 0.4791      | -         |
| Использование                   | Random_forest | 0.4210  | 0.5721  | 0.4965      | -         |
| только новостной                | Bayes_Naive   | 0.4593  | 0.5520  | 0.5056      | -         |
| информации<br>(текущая и первый | Boosting      | 0.4471  | 0.5399  | 0.4935      | -         |
| лаг)                            | SVM-Linear    | 0.4248  | 0.5457  | 0.4853      | -         |
|                                 | SVM-Poly      | 0.4948  | 0.5042  | 0.4995      | -         |

|                                 | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|---------------------------------|---------------|---------|---------|-------------|-----------|
|                                 | SVM-Radial    | 0.4288  | 0.5846  | 0.5067      | -         |
|                                 | Logit         | 0.4327  | 0.5724  | 0.5026      | -         |
|                                 | Random_forest | 0.4560  | 0.5349  | 0.4954      | -         |
| Использование                   | Bayes_Naive   | 0.4554  | 0.5823  | 0.5189      | -         |
| лагированной<br>новостной       | Boosting      | 0.4308  | 0.6008  | 0.5158      | -         |
| информации                      | SVM-Linear    | 0.4303  | 0.5770  | 0.5036      | -         |
|                                 | SVM-Poly      | 0.4538  | 0.5799  | 0.5168      | -         |
|                                 | SVM-Radial    | 0.4582  | 0.5470  | 0.5026      | -         |
|                                 | Logit         | 0.4245  | 0.5746  | 0.4996      | -         |
|                                 | Random_forest | 0.4743  | 0.6101  | 0.5422      | -         |
| Оба канала                      | Bayes_Naive   | 0.5026  | 0.6063  | 0.5545      | +         |
| информации<br>(текущая и первый | Boosting      | 0.4627  | 0.6280  | 0.5454      | -         |
| лаг)                            | SVM-Linear    | 0.4443  | 0.5406  | 0.4924      | -         |
| ,                               | SVM-Poly      | 0.4419  | 0.5937  | 0.5178      | -         |
|                                 | SVM-Radial    | 0.4903  | 0.6187  | 0.5545      | -         |
|                                 | Logit         | 0.4341  | 0.5835  | 0.5088      | -         |
|                                 | Random_forest | 0.4393  | 0.6452  | 0.5422      | -         |
| Оба канала                      | Bayes_Naive   | 0.4429  | 0.6274  | 0.5351      | -         |
| информации<br>(новости          | Boosting      | 0.4843  | 0.6452  | 0.5647      | -         |
| ланированные)                   | SVM-Linear    | 0.4638  | 0.5658  | 0.5148      | -         |
| 1                               | SVM-Poly      | 0.4691  | 0.5707  | 0.5199      | -         |
|                                 | SVM-Radial    | 0.4619  | 0.6348  | 0.5483      | _         |

Таблица 8. ARIMA-модель для Киа с выделением топиков по методу LDA Источник: составлено автором

|           | estimate     | sd     | t_stat    | pi_val |  |
|-----------|--------------|--------|-----------|--------|--|
| ar1       | 0.0215       | 0.0500 | 0.4290    | 0.6679 |  |
| ar2       | -0.8886      | 0.0607 | - 14.6420 | 0.0000 |  |
| ar3       | 0.1976       | 0.0373 | 5.2937    | 0.0000 |  |
| ar4       | 0.0061       | 0.0368 | 0.1658    | 0.8683 |  |
| ma1       | 0.2337       | 0.0384 | 6.0822    | 0.0000 |  |
| ma2       | 0.9187       | 0.0541 | 16.9745   | 0.0000 |  |
| intercept | 0.0009       | 0.0010 | 0.9313    | 0.3517 |  |
| topik_4_2 | -0.0139      | 0.0073 | -1.8991   | 0.0576 |  |
| topik_5_1 | 0.0170       | 0.0075 | 2.2574    | 0.0240 |  |
| topik_8   | -0.0141      | 0.0066 | -2.1340   | 0.0328 |  |
| topik_7_1 | -0.0116      | 0.0062 | -1.8727   | 0.0611 |  |
| topik_5   | 0.0110       | 0.0077 | 1.4286    | 0.1531 |  |
| topik_2_2 | 0.0075       | 0.0054 | 1.4077    | 0.1592 |  |
| AIC       | - 5 025      |        |           |        |  |
| BIC       | <b>-4957</b> |        |           |        |  |
| n.obs     | 985          |        |           |        |  |

Статистически значимыми являются тематические группы, посвященные новостям об автомобилях данного бренда, об изменениях цен на автомобили Kia, безопасности данных автомобилей, а также динамике продаж и электромобилям.

Таблица 9. Прогнозы доходностей с помощью модели с использованием LDA Источник: составлено автором

|     | int_a_arima_dir | int_b_arima_dir | cor_arima_dir | pv_arima_dir |
|-----|-----------------|-----------------|---------------|--------------|
| kia | 0.0023          | 0.2343          | 0.1199        | 0.0458       |

Таблица 10. Прогнозы дневных доходностей с помощью ML и LDA-словарей Источник: составлено автором

|                                | kernel_svm | int_a_svm | int_b_svm | cor_svm | pv_svm |
|--------------------------------|------------|-----------|-----------|---------|--------|
| <b>.</b>                       | Linear     | -0.2009   | 0.0238    | -0.0897 | 0.1211 |
| Финансовая<br>информация       | Poly       | -0.1999   | 0.0248    | -0.0887 | 0.1254 |
| информация                     | Radial     | -0.2255   | -0.0020   | -0.1152 | 0.0462 |
| m                              | Linear     | -0.1423   | 0.0840    | -0.0296 | 0.6100 |
| Только текущие                 | Poly       | -0.1186   | 0.1079    | -0.0054 | 0.9254 |
| словари                        | Radial     | -0.1505   | 0.0757    | -0.0379 | 0.5134 |
|                                | Linear     | -0.1571   | 0.0690    | -0.0446 | 0.4414 |
| Только лаги словарей           | Poly       | -0.1466   | 0.0796    | -0.0339 | 0.5581 |
|                                | Radial     | -0.1091   | 0.1174    | 0.0042  | 0.9424 |
| •                              | Linear     | -0.1635   | 0.0624    | -0.0512 | 0.3770 |
| 2 источника – текущие          | Poly       | -0.1263   | 0.1001    | -0.0133 | 0.8191 |
| словари                        | Radial     | -0.0932   | 0.1332    | 0.0202  | 0.7270 |
| _                              | Linear     | -0.1698   | 0.0559    | -0.0577 | 0.3195 |
| 2 источника – лаги<br>словарей | Poly       | -0.1493   | 0.0769    | -0.0367 | 0.5266 |
|                                | Radial     | -0.1109   | 0.1155    | 0.0023  | 0.9680 |

Таблица 11. Классификация направления изменения доходностей на LDA-словарях Источник: составлено автором

|                                               | ml_type        | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|-----------------------------------------------|----------------|---------|---------|-------------|-----------|
| Использование только<br>финансовой информации | Logit          | 0.5320  | 0.6440  | 0.5880      | +         |
|                                               | Random_forest  | 0.4651  | 0.6174  | 0.5412      | -         |
|                                               | Bayes_Naive    | 0.4766  | 0.6625  | 0.5696      | -         |
|                                               | Boosting       | 0.4806  | 0.6363  | 0.5585      | -         |
|                                               | SVM-Linear     | 0.5384  | 0.6416  | 0.5900      | +         |
|                                               | SVM-Poly       | 0.5418  | 0.6626  | 0.6022      | +         |
|                                               | SVM-Radial     | 0.5144  | 0.6575  | 0.5859      | +         |
|                                               | Logit          | 0.4596  | 0.5781  | 0.5188      | -         |
|                                               | _Random_forest | 0.4563  | 0.5752  | 0.5158      | -         |

|                                                     | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|-----------------------------------------------------|---------------|---------|---------|-------------|-----------|
| Использование только новостной информации (текущая) | Bayes_Naive   | 0.4624  | 0.5915  | 0.5270      | -         |
|                                                     | Boosting      | 0.4506  | 0.5810  | 0.5158      | -         |
|                                                     | SVM-Linear    | 0.4636  | 0.5741  | 0.5188      | -         |
|                                                     | SVM-Poly      | 0.4608  | 0.5831  | 0.5219      | -         |
|                                                     | SVM-Radial    | 0.4695  | 0.5723  | 0.5209      | -         |
| Использование                                       | Logit         | 0.4514  | 0.5230  | 0.4872      | -         |
|                                                     | Random_forest | 0.4416  | 0.5370  | 0.4893      | -         |
|                                                     | Bayes_Naive   | 0.4411  | 0.5721  | 0.5066      | -         |
| лагированной новостной                              | Boosting      | 0.4361  | 0.5671  | 0.5016      | -         |
| информации                                          | SVM-Linear    | 0.3999  | 0.5643  | 0.4821      | -         |
|                                                     | SVM-Poly      | 0.5049  | 0.5144  | 0.5097      | +         |
|                                                     | SVM-Radial    | 0.4532  | 0.5172  | 0.4852      | -         |
| Оба канала информации<br>(текущая)                  | Logit         | 0.5296  | 0.6363  | 0.5830      | +         |
|                                                     | Random_forest | 0.4882  | 0.6450  | 0.5666      | -         |
|                                                     | Bayes_Naive   | 0.4555  | 0.6433  | 0.5494      | -         |
|                                                     | Boosting      | 0.5046  | 0.6410  | 0.5728      | +         |
|                                                     | SVM-Linear    | 0.5259  | 0.6625  | 0.5942      | +         |
|                                                     | SVM-Poly      | 0.5253  | 0.6833  | 0.6043      | +         |
|                                                     | SVM-Radial    | 0.4791  | 0.6480  | 0.5635      | -         |
| Оба канала информации<br>(новости лагированные)     | Logit         | 0.4865  | 0.6304  | 0.5585      | -         |
|                                                     | Random_forest | 0.4842  | 0.6162  | 0.5502      | -         |
|                                                     | Bayes_Naive   | 0.4418  | 0.5876  | 0.5147      | -         |
|                                                     | Boosting      | 0.5058  | 0.6416  | 0.5737      | +         |
|                                                     | SVM-Linear    | 0.4996  | 0.5948  | 0.5472      | -         |
|                                                     | SVM-Poly      | 0.4955  | 0.6133  | 0.5544      | -         |
|                                                     | SVM-Radial    | 0.4750  | 0.5870  | 0.5310      | -         |

Таблица 12. Классификация магнитуды изменения доходностей на LDA-словарях Источник: составлено автором

|                                                           | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|-----------------------------------------------------------|---------------|---------|---------|-------------|-----------|
| Использование только<br>финансовой нформации              | Logit         | 0.4162  | 0.5851  | 0.5006      | -         |
|                                                           | Random_forest | 0.4541  | 0.5774  | 0.5157      | -         |
|                                                           | Bayes_Naive   | 0.4662  | 0.6572  | 0.5617      | -         |
|                                                           | Boosting      | 0.4729  | 0.6260  | 0.5494      | -         |
|                                                           | SVM-Linear    | 0.4570  | 0.5645  | 0.5108      | -         |
|                                                           | SVM-Poly      | 0.4826  | 0.5816  | 0.5321      | -         |
|                                                           | SVM-Radial    | 0.5129  | 0.6449  | 0.5789      | +         |
| Использование только<br>новостной информации<br>(текущая) | Logit         | 0.4230  | 0.5576  | 0.4903      | -         |
|                                                           | Random_forest | 0.4237  | 0.5041  | 0.4639      | -         |
|                                                           | Bayes_Naive   | 0.4304  | 0.5665  | 0.4985      | -         |
|                                                           | Boosting      | 0.4143  | 0.5481  | 0.4812      | -         |
|                                                           | SVM-Linear    | 0.4205  | 0.5520  | 0.4863      | -         |
|                                                           | _SVM-Poly     | 0.4815  | 0.5317  | 0.5066      | -         |

|                                              | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|----------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                              | SVM-Radial    | 0.4180  | 0.5423  | 0.4802      | -         |
|                                              | Logit         | 0.4598  | 0.5980  | 0.5289      | -         |
|                                              | Random_forest | 0.4465  | 0.6256  | 0.5361      | -         |
| Использование                                | Bayes_Naive   | 0.4407  | 0.6213  | 0.5310      | -         |
| лагированной новостной                       | Boosting      | 0.4291  | 0.5983  | 0.5137      | -         |
| информации                                   | SVM-Linear    | 0.4336  | 0.6161  | 0.5249      | -         |
|                                              | SVM-Poly      | 0.4363  | 0.6317  | 0.5340      | -         |
|                                              | SVM-Radial    | 0.4667  | 0.5994  | 0.5330      | -         |
|                                              | Logit         | 0.4261  | 0.5852  | 0.5057      | -         |
|                                              | Random_forest | 0.4655  | 0.5803  | 0.5229      | -         |
| 0.7                                          | Bayes_Naive   | 0.4871  | 0.6013  | 0.5442      | -         |
| Оба канала информации<br>(текущая)           | Boosting      | 0.4593  | 0.6519  | 0.5556      | -         |
| (текущая)                                    | SVM-Linear    | 0.4309  | 0.5355  | 0.4832      | -         |
|                                              | SVM-Poly      | 0.4376  | 0.6144  | 0.5260      | -         |
|                                              | SVM-Radial    | 0.4655  | 0.5987  | 0.5321      | -         |
|                                              | Logit         | 0.4774  | 0.5907  | 0.5341      | -         |
|                                              | Random_forest | 0.4604  | 0.6670  | 0.5637      | -         |
|                                              | Bayes_Naive   | 0.4621  | 0.6080  | 0.5350      | -         |
| Оба канала информации (новости лагированные) | Boosting      | 0.4644  | 0.6506  | 0.5575      | -         |
| (повости лагированные)                       | SVM-Linear    | 0.4811  | 0.6114  | 0.5463      | -         |
|                                              | SVM-Poly      | 0.4605  | 0.6138  | 0.5372      | -         |
|                                              | SVM-Radial    | 0.4602  | 0.6120  | 0.5361      | -         |

Таблица 13. Классификация направления изменения доходности по важным для компании Киа словам (TF-IDF)

|                                            | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|--------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                            | Logit         | 0.5320  | 0.6440  | 0.5880      | +         |
|                                            | Random_forest | 0.4651  | 0.6174  | 0.5412      | -         |
|                                            | Bayes_Naive   | 0.4766  | 0.6625  | 0.5696      | -         |
| Использование только финансовой информации | Boosting      | 0.4806  | 0.6363  | 0.5585      | -         |
| финансовой информации                      | SVM-Linear    | 0.5384  | 0.6416  | 0.5900      | +         |
|                                            | SVM-Poly      | 0.5418  | 0.6626  | 0.6022      | +         |
|                                            | SVM-Radial    | 0.5144  | 0.6575  | 0.5859      | +         |
|                                            | Logit         | 0.4759  | 0.5415  | 0.5087      | -         |
|                                            | Random_forest | 0.4714  | 0.5582  | 0.5148      | -         |
| Использование только                       | Bayes_Naive   | 0.4863  | 0.5208  | 0.5036      | -         |
| новостной информации                       | Boosting      | 0.4795  | 0.5582  | 0.5188      | -         |
| (текущая)                                  | SVM-Linear    | 0.4884  | 0.5596  | 0.5240      | -         |
|                                            | SVM-Poly      | 0.4940  | 0.5417  | 0.5178      | -         |
|                                            | SVM-Radial    | 0.4646  | 0.5671  | 0.5159      | -         |
| ·                                          | _Logit        | 0.4647  | 0.5578  | 0.5112      | -         |

|                                              | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|----------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                              | Random_forest | 0.4979  | 0.5287  | 0.5133      | -         |
|                                              | Bayes_Naive   | 0.4971  | 0.5233  | 0.5102      | -         |
| Использование                                | Boosting      | 0.4803  | 0.5625  | 0.5214      | -         |
| лагированной новостной информации            | SVM-Linear    | 0.4853  | 0.5474  | 0.5163      | -         |
|                                              | SVM-Poly      | 0.4913  | 0.5413  | 0.5163      | -         |
|                                              | SVM-Radial    | 0.4657  | 0.5650  | 0.5153      | -         |
|                                              | Logit         | 0.5241  | 0.6519  | 0.5880      | +         |
|                                              | Random_forest | 0.4790  | 0.6055  | 0.5423      | -         |
| 0.4                                          | Bayes_Naive   | 0.4881  | 0.5230  | 0.5056      | -         |
| Оба канала информации<br>(текущая)           | Boosting      | 0.5074  | 0.6400  | 0.5737      | +         |
| (текущая)                                    | SVM-Linear    | 0.4889  | 0.5529  | 0.5209      | -         |
|                                              | SVM-Poly      | 0.4941  | 0.5396  | 0.5168      | -         |
|                                              | SVM-Radial    | 0.4825  | 0.6589  | 0.5707      | -         |
|                                              | Logit         | 0.4961  | 0.6752  | 0.5857      | -         |
|                                              | Random_forest | 0.4729  | 0.5985  | 0.5357      | -         |
| 0.4                                          | Bayes_Naive   | 0.4932  | 0.5293  | 0.5112      | -         |
| Оба канала информации (новости лагированные) | Boosting      | 0.4727  | 0.6803  | 0.5765      | -         |
| (повости лагированные)                       | SVM-Linear    | 0.4775  | 0.5532  | 0.5153      | -         |
|                                              | SVM-Poly      | 0.4913  | 0.5413  | 0.5163      | -         |
|                                              | SVM-Radial    | 0.4438  | 0.6644  | 0.5541      | -         |

Таблица 14. Классификация масштаба доходности по важным для компании словам Источник: составлено автором

|                                            | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|--------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                            | Logit         | 0.4162  | 0.5851  | 0.5006      | -         |
|                                            | Random_forest | 0.4541  | 0.5774  | 0.5157      | -         |
| ***                                        | Bayes_Naive   | 0.4662  | 0.6572  | 0.5617      | -         |
| Использование только финансовой информации | Boosting      | 0.4729  | 0.6260  | 0.5494      | -         |
| финансовой информации                      | SVM-Linear    | 0.4570  | 0.5645  | 0.5108      | -         |
|                                            | SVM-Poly      | 0.4826  | 0.5816  | 0.5321      | -         |
|                                            | SVM-Radial    | 0.5129  | 0.6449  | 0.5789      | +         |
|                                            | Logit         | 0.4644  | 0.5428  | 0.5036      | -         |
|                                            | Random_forest | 0.4670  | 0.5525  | 0.5097      | -         |
| Использование только                       | Bayes_Naive   | 0.4758  | 0.5334  | 0.5046      | -         |
| новостной информации                       | Boosting      | 0.4399  | 0.5266  | 0.4833      | -         |
| (текущая)                                  | SVM-Linear    | 0.4648  | 0.5301  | 0.4975      | -         |
|                                            | SVM-Poly      | 0.4945  | 0.5025  | 0.4985      | -         |
|                                            | SVM-Radial    | 0.4416  | 0.5719  | 0.5068      | -         |
|                                            | Logit         | 0.4747  | 0.5395  | 0.5071      | -         |
| Использование                              | Random_forest | 0.4740  | 0.5484  | 0.5112      | -         |
| лагированной новостной                     | Bayes_Naive   | 0.4713  | 0.5308  | 0.5011      | -         |
| информации                                 | Boosting      | 0.4460  | 0.5194  | 0.4827      | -         |
|                                            | SVM-Linear    | 0.4685  | 0.5417  | 0.5051      | -         |

|                                              | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|----------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                              | SVM-Poly      | 0.4723  | 0.5298  | 0.5010      | -         |
|                                              | SVM-Radial    | 0.4856  | 0.5409  | 0.5132      | -         |
|                                              | Logit         | 0.4286  | 0.5683  | 0.4985      | -         |
|                                              | Random_forest | 0.4516  | 0.6005  | 0.5260      | -         |
| 0.4                                          | Bayes_Naive   | 0.4631  | 0.5564  | 0.5097      | -         |
| Оба канала информации<br>(текущая)           | Boosting      | 0.4739  | 0.6678  | 0.5708      | -         |
| (текущая)                                    | SVM-Linear    | 0.4648  | 0.5301  | 0.4975      | -         |
|                                              | SVM-Poly      | 0.4945  | 0.5025  | 0.4985      | -         |
|                                              | SVM-Radial    | 0.5112  | 0.5895  | 0.5504      | +         |
|                                              | Logit         | 0.4417  | 0.5542  | 0.4980      | -         |
|                                              | Random_forest | 0.4442  | 0.5926  | 0.5184      | -         |
|                                              | Bayes_Naive   | 0.4693  | 0.5369  | 0.5031      | -         |
| Оба канала информации (новости ланированные) | Boosting      | 0.4901  | 0.6261  | 0.5581      | -         |
| (новости ланированные)                       | SVM-Linear    | 0.4691  | 0.5452  | 0.5071      | -         |
|                                              | SVM-Poly      | 0.4723  | 0.5298  | 0.5010      | -         |
|                                              | SVM-Radial    | 0.4811  | 0.6453  | 0.5632      |           |

## Результаты проведенного анализа по компании General Motors



Таблица 1. ARIMA-модель для модели с применением сентимент-анализа

Источник: составлено автором

|           | estimate | Sd     | t_stat  | pi_val |  |
|-----------|----------|--------|---------|--------|--|
| ar1       | -0.2994  | 0.4893 | -0.6118 | 0.5407 |  |
| ar2       | 0.3269   | 0.5971 | 0.5474  | 0.5841 |  |
| ar3       | -0.1003  | 0.4519 | -0.2219 | 0.8244 |  |
| ma1       | 0.6077   | 0.4882 | 1.2448  | 0.2132 |  |
| ma2       | -0.1918  | 0.7175 | -0.2673 | 0.7893 |  |
| ma3       | -0.0185  | 0.5391 | -0.0342 | 0.9727 |  |
| ma4       | 0.0346   | 0.1501 | 0.2304  | 0.8178 |  |
| ma5       | 0.0854   | 0.0371 | 2.3009  | 0.0214 |  |
| intercept | 0.0002   | 0.0012 | 0.1395  | 0.8891 |  |
| sent      | 0.0005   | 0.0004 | 1.2445  | 0.2133 |  |
| sent_1    | -0.0000  | 0.0004 | -0.0246 | 0.9804 |  |
| sent_4    | -0.0003  | 0.0004 | -0.6422 | 0.5207 |  |
| AIC       | -4,293   |        |         |        |  |
| BIC       | -4,229   |        |         |        |  |
| n.obs     | 986      |        |         |        |  |

Таблица 2. Прогнозирование доходностей акций компании с помощью ARIMA-модели на всей выборке

Источник: составлено автором

| int_a_arima          | int_b_arima | cor_arima | pv_arima |  |
|----------------------|-------------|-----------|----------|--|
| <b>genmt</b> -0.0285 | 0.1610      | 0.0669    | 0.2482   |  |

Таблица 3. Прогнозирование больших по модулю доходностей с использованием сентимент-анализа

Источник: Составлено автором

| int_a_lm             | int_b_lm | cor_lm | pv_lm  |  |
|----------------------|----------|--------|--------|--|
| <b>genmt</b> -0.0084 | 0.2562   | 0.1261 | 0.1228 |  |

Таблица 4. Прогнозирование доходностей с использованием ML-моделей

|                | kernel_svm | int_a_svm | int_b_svm | cor_svm | pv_svm |
|----------------|------------|-----------|-----------|---------|--------|
|                | Linear     | 0.1446    | 0.3243    | 0.2365  | 0.0000 |
| Только финансы | Poly       | 0.1446    | 0.3243    | 0.2365  | 0.0000 |
|                | Radial     | 0.0896    | 0.2736    | 0.1832  | 0.0014 |
|                | Linear     | -0.0270   | 0.1625    | 0.0684  | 0.2377 |

|                                         | kernel_svm | int_a_svm | int_b_svm | cor_svm | pv_svm |
|-----------------------------------------|------------|-----------|-----------|---------|--------|
| Только сентимент в                      | Poly       | -0.0292   | 0.1603    | 0.0661  | 0.2535 |
| усеченной форме                         | Radial     | -0.0232   | 0.1662    | 0.0722  | 0.2127 |
| ar.                                     | Linear     | -0.0285   | 0.1610    | 0.0669  | 0.2482 |
| Только сентимент в<br>значимой форме    | Poly       | 0.0401    | 0.2269    | 0.1347  | 0.0196 |
| значимой форме                          | Radial     | -0.0701   | 0.1201    | 0.0252  | 0.6632 |
| <b>.</b>                                | Linear     | 0.1560    | 0.3347    | 0.2475  | 0.0000 |
| Финансы + усеченная<br>форма сентимента | Poly       | 0.1570    | 0.3357    | 0.2484  | 0.0000 |
| форма сентимента                        | Radial     | -0.0045   | 0.1842    | 0.0907  | 0.1170 |
| _                                       | Linear     | 0.1432    | 0.3230    | 0.2351  | 0.0000 |
| Финансы + значимая                      | Poly       | 0.1461    | 0.3257    | 0.2379  | 0.0000 |
| форма сентимента                        | Radial     | 0.1307    | 0.3117    | 0.2231  | 0.0001 |

Таблица 5. Прогнозирование больших доходностей с использованием ML-моделей Источник: составлено автором

|                                       | kernel_svm | int_a_svm | int_b_svm | cor_svm | pv_svm |
|---------------------------------------|------------|-----------|-----------|---------|--------|
|                                       | Linear     | 0.1812    | 0.4249    | 0.3081  | 0.0001 |
| Только финансы                        | Poly       | 0.1842    | 0.4274    | 0.3109  | 0.0001 |
|                                       | Radial     | 0.1663    | 0.4122    | 0.2941  | 0.0002 |
| TD.                                   | Linear     | -0.0439   | 0.2227    | 0.0911  | 0.2661 |
| Только сентимент в<br>усеченной форме | Poly       | -0.0387   | 0.2276    | 0.0961  | 0.2403 |
| уссченной форме                       | Radial     | -0.0556   | 0.2115    | 0.0794  | 0.3324 |
| _                                     | Linear     | -0.0084   | 0.2562    | 0.1261  | 0.1228 |
| Только сентимент в<br>значимой форме  | Poly       | -0.0084   | 0.2562    | 0.1261  | 0.1228 |
| значимон формс                        | Radial     | -0.0494   | 0.2175    | 0.0856  | 0.2960 |
| _                                     | Linear     | 0.1933    | 0.4351    | 0.3193  | 0.0001 |
| Финансы и усеченная                   | Poly       | 0.2183    | 0.4561    | 0.3427  | 0.0000 |
| форма сентимента                      | Radial     | 0.1785    | 0.4226    | 0.3056  | 0.0001 |
|                                       | Linear     | 0.2170    | 0.4549    | 0.3414  | 0.0000 |
| Финансы и значимая                    | Poly       | 0.2188    | 0.4565    | 0.3431  | 0.0000 |
| форма сентимента                      | Radial     | 0.2504    | 0.4826    | 0.3723  | 0.0000 |

Таблица 6. Классификация по направлению движения акций с использованием методов машинного обучения и сентимент-анализа

|                   | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|-------------------|---------------|---------|---------|-------------|-----------|
|                   | Logit         | 0.5106  | 0.6275  | 0.5691      | +         |
|                   | Random_forest | 0.4426  | 0.6539  | 0.5483      | -         |
| Использование     | Bayes_Naive   | 0.4673  | 0.6309  | 0.5491      | -         |
| только финансовой | Boosting      | 0.5089  | 0.5955  | 0.5522      | +         |
| информации        | SVM-Linear    | 0.5054  | 0.6208  | 0.5631      | +         |
|                   | SVM-Poly      | 0.4997  | 0.6265  | 0.5631      | -         |
|                   | SVM-Radial    | 0.4949  | 0.6174  | 0.5562      | -         |

|                                 | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|---------------------------------|---------------|---------|---------|-------------|-----------|
|                                 | Logit         | 0.4609  | 0.5501  | 0.5055      | -         |
| Использование                   | Random_forest | 0.4334  | 0.4919  | 0.4627      | -         |
| только новостной                | Bayes_Naive   | 0.4528  | 0.5661  | 0.5094      | -         |
| информации                      | Boosting      | 0.4265  | 0.5486  | 0.4875      | -         |
| (текущая и первый               | SVM-Linear    | 0.4949  | 0.5241  | 0.5095      | -         |
| лаг)                            | SVM-Poly      | 0.4904  | 0.5405  | 0.5154      | -         |
|                                 | SVM-Radial    | 0.4021  | 0.5470  | 0.4746      | -         |
|                                 | Logit         | 0.4598  | 0.6109  | 0.5354      | -         |
|                                 | Random_forest | 0.3816  | 0.6495  | 0.5155      | -         |
| Использование                   | Bayes_Naive   | 0.4298  | 0.6191  | 0.5245      | -         |
| лагированной<br>новостной       | Boosting      | 0.4514  | 0.5497  | 0.5006      | -         |
| информации                      | SVM-Linear    | 0.4853  | 0.5396  | 0.5125      | -         |
|                                 | SVM-Poly      | 0.4895  | 0.5612  | 0.5254      | -         |
|                                 | SVM-Radial    | 0.4401  | 0.5670  | 0.5035      | -         |
|                                 | Logit         | 0.4893  | 0.6369  | 0.5631      | -         |
|                                 | Random_forest | 0.4243  | 0.6305  | 0.5274      | -         |
| Оба канала                      | Bayes_Naive   | 0.4660  | 0.5807  | 0.5233      | -         |
| информации<br>(текущая и первый | Boosting      | 0.4887  | 0.6077  | 0.5482      | -         |
| лаг)                            | SVM-Linear    | 0.5017  | 0.6067  | 0.5542      | +         |
| ,                               | SVM-Poly      | 0.5169  | 0.6054  | 0.5611      | +         |
|                                 | SVM-Radial    | 0.4867  | 0.6196  | 0.5532      | -         |
|                                 | Logit         | 0.4807  | 0.6336  | 0.5572      | -         |
|                                 | Random_forest | 0.4452  | 0.6634  | 0.5543      | -         |
| Оба канала                      | Bayes_Naive   | 0.4911  | 0.5876  | 0.5393      | -         |
| информации<br>(новости          | Boosting      | 0.4882  | 0.6241  | 0.5561      | -         |
| лагированные)                   | SVM-Linear    | 0.4715  | 0.6270  | 0.5492      | -         |
| •                               | SVM-Poly      | 0.5003  | 0.6280  | 0.5641      | +         |
|                                 | SVM-Radial    | 0.4914  | 0.5873  | 0.5394      | -         |

Таблица 7. Классификация по размаху движения с использованием ML и сентиментов Источник: составлено автором

|                                | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|--------------------------------|---------------|---------|---------|-------------|-----------|
|                                | Logit         | 0.4398  | 0.6089  | 0.5244      | -         |
|                                | Random_forest | 0.4798  | 0.5847  | 0.5323      | -         |
| Использование                  | Bayes_Naive   | 0.5053  | 0.6311  | 0.5682      | +         |
| только финансовой              | Boosting      | 0.4954  | 0.6350  | 0.5652      | -         |
| информации                     | SVM-Linear    | 0.4709  | 0.5977  | 0.5343      | -         |
|                                | SVM-Poly      | 0.4690  | 0.6155  | 0.5423      | -         |
|                                | SVM-Radial    | 0.4948  | 0.6693  | 0.5821      |           |
|                                | Logit         | 0.4757  | 0.5849  | 0.5303      | -         |
| Использование                  | Random_forest | 0.4523  | 0.5647  | 0.5085      | -         |
| только новостной<br>информации | Bayes_Naive   | 0.4692  | 0.5696  | 0.5194      | -         |
|                                | Boosting      | 0.4416  | 0.5455  | 0.4936      | -         |

|                                 | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|---------------------------------|---------------|---------|---------|-------------|-----------|
| (текущая и первый               | SVM-Linear    | 0.4775  | 0.5573  | 0.5174      | -         |
| лаг)                            | SVM-Poly      | 0.4740  | 0.5609  | 0.5174      | -         |
|                                 | SVM-Radial    | 0.4426  | 0.5643  | 0.5035      | -         |
|                                 | Logit         | 0.4261  | 0.5550  | 0.4905      | -         |
|                                 | Random_forest | 0.4564  | 0.5865  | 0.5214      | -         |
| Использование                   | Bayes_Naive   | 0.4520  | 0.5570  | 0.5045      | -         |
| лагированной<br>новостной       | Boosting      | 0.4539  | 0.5889  | 0.5214      | -         |
| информации                      | SVM-Linear    | 0.4702  | 0.5268  | 0.4985      | -         |
| • •                             | SVM-Poly      | 0.4717  | 0.5372  | 0.5045      | -         |
|                                 | SVM-Radial    | 0.4745  | 0.5984  | 0.5365      | -         |
|                                 | Logit         | 0.4806  | 0.6318  | 0.5562      | -         |
|                                 | Random_forest | 0.4781  | 0.6342  | 0.5561      | -         |
| Оба канала                      | Bayes_Naive   | 0.4964  | 0.6181  | 0.5572      | -         |
| информации<br>(текущая и первый | Boosting      | 0.5021  | 0.6500  | 0.5761      | +         |
| лаг)                            | SVM-Linear    | 0.4850  | 0.5737  | 0.5294      | -         |
| ,                               | SVM-Poly      | 0.4727  | 0.6019  | 0.5373      | -         |
|                                 | SVM-Radial    | 0.5035  | 0.6627  | 0.5831      | +         |
|                                 | Logit         | 0.4330  | 0.6019  | 0.5174      | -         |
|                                 | Random_forest | 0.4959  | 0.6106  | 0.5532      | -         |
| Оба канала                      | Bayes_Naive   | 0.4820  | 0.6226  | 0.5523      | -         |
| информации<br>(новости          | Boosting      | 0.4837  | 0.6448  | 0.5643      | -         |
| ланированные)                   | SVM-Linear    | 0.4663  | 0.5844  | 0.5254      | -         |
| ,                               | SVM-Poly      | 0.4664  | 0.6101  | 0.5383      | -         |
|                                 | SVM-Radial    | 0.4836  | 0.6587  | 0.5711      | -         |

Таблица 8. ARIMA-модель для Дженерал Моторс с выделением топиков по методу LDA Источник: составлено автором

|           | estimate       | sd     | t_stat  | pi_val |  |
|-----------|----------------|--------|---------|--------|--|
| ar1       | 0.1998         | 0.0309 | 6.4707  | 0.0000 |  |
| intercept | -0.0010        | 0.0010 | -0.9830 | 0.3256 |  |
| topik_7   | 0.0155         | 0.0082 | 1.8968  | 0.0579 |  |
| AIC       | <i>−</i> 4 724 |        |         |        |  |
| BIC       | -4700          |        |         |        |  |
| n.obs     | 1 007          |        |         |        |  |

Статистически значимой является только 1 тематическая группа, посвященная продажам компании.

Таблица 9. Прогнозы доходностей с помощью модели с использованием LDA Источник: составлено автором

| -     | int_a_arima_dir | int_b_arima_dir | cor_arima_dir | pv_arima_dir |  |
|-------|-----------------|-----------------|---------------|--------------|--|
| genmt | -0.0384         | 0.1868          | 0.0751        | 0.1944       |  |

Таблица 10. Прогнозы дневных доходностей с помощью ML и LDA-словарей Источник: составлено автором

|                          | kernel_svm | int_a_svm | int_b_svm | cor_svm | pv_svm |
|--------------------------|------------|-----------|-----------|---------|--------|
| _                        | Linear     | 0.1452    | 0.3572    | 0.2543  | 0.0000 |
| Финансовая<br>информация | Poly       | 0.1423    | 0.3547    | 0.2515  | 0.0000 |
| информации               | Radial     | 0.1150    | 0.3301    | 0.2253  | 0.0001 |
| <b>T</b>                 | Linear     | -0.0487   | 0.1768    | 0.0649  | 0.2626 |
| Только текущие           | Poly       | -0.0328   | 0.1922    | 0.0807  | 0.1632 |
| словари                  | Radial     | -0.1114   | 0.1151    | 0.0019  | 0.9737 |
|                          | Linear     | -0.1405   | 0.0858    | -0.0277 | 0.6330 |
| Только лаги словарей     | Poly       | -0.1944   | 0.0306    | -0.0829 | 0.1518 |
|                          | Radial     | -0.1536   | 0.0725    | -0.0410 | 0.4788 |
| •                        | Linear     | 0.1149    | 0.3300    | 0.2252  | 0.0001 |
| 2 источника – текущие    | Poly       | 0.1236    | 0.3378    | 0.2335  | 0.0000 |
| словари                  | Radial     | 0.0753    | 0.2940    | 0.1870  | 0.0011 |
|                          | Linear     | 0.0532    | 0.2735    | 0.1654  | 0.0041 |
| 2 источника – лаги       | Poly       | 0.0021    | 0.2256    | 0.1154  | 0.0459 |
| словарей                 | Radial     | -0.0142   | 0.2101    | 0.0992  | 0.0863 |

Таблица 11. Классификация направления изменения доходностей на LDA-словарях Источник: составлено автором

|                                            | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|--------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                            | Logit         | 0.5106  | 0.6275  | 0.5691      | +         |
|                                            | Random_forest | 0.4426  | 0.6539  | 0.5483      | -         |
| TT                                         | Bayes_Naive   | 0.4673  | 0.6309  | 0.5491      | -         |
| Использование только финансовой информации | Boosting      | 0.5089  | 0.5955  | 0.5522      | +         |
| финансовой информации                      | SVM-Linear    | 0.5054  | 0.6208  | 0.5631      | +         |
|                                            | SVM-Poly      | 0.4997  | 0.6265  | 0.5631      | -         |
|                                            | SVM-Radial    | 0.4949  | 0.6174  | 0.5562      | -         |
|                                            | Logit         | 0.4406  | 0.6064  | 0.5235      | -         |
|                                            | Random_forest | 0.4103  | 0.5947  | 0.5025      | -         |
| Использование только                       | Bayes_Naive   | 0.4340  | 0.6009  | 0.5174      | -         |
| новостной информации                       | Boosting      | 0.4240  | 0.5930  | 0.5085      | -         |
| (текущая)                                  | SVM-Linear    | 0.4433  | 0.6057  | 0.5245      | -         |
|                                            | SVM-Poly      | 0.4482  | 0.5987  | 0.5235      | -         |
|                                            | SVM-Radial    | 0.4420  | 0.6010  | 0.5215      | -         |
|                                            | _Logit        | 0.4385  | 0.5744  | 0.5065      | -         |

|                                              | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|----------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                              | Random_forest | 0.4194  | 0.6053  | 0.5123      | -         |
|                                              | Bayes_Naive   | 0.4437  | 0.5911  | 0.5174      | -         |
| Использование                                | Boosting      | 0.4028  | 0.5901  | 0.4965      | -         |
| лагированной новостной<br>информации         | SVM-Linear    | 0.4607  | 0.5362  | 0.4985      | -         |
| # ob                                         | SVM-Poly      | 0.4527  | 0.5883  | 0.5205      | -         |
|                                              | SVM-Radial    | 0.4018  | 0.5993  | 0.5006      | -         |
|                                              | Logit         | 0.4811  | 0.6272  | 0.5542      | -         |
|                                              | Random_forest | 0.4773  | 0.6174  | 0.5473      | -         |
| 0.4                                          | Bayes_Naive   | 0.4177  | 0.5993  | 0.5085      | -         |
| Оба канала информации<br>(текущая)           | Boosting      | 0.5006  | 0.6099  | 0.5553      | +         |
| (текущая)                                    | SVM-Linear    | 0.4881  | 0.6225  | 0.5553      | -         |
|                                              | SVM-Poly      | 0.4657  | 0.6469  | 0.5563      | -         |
|                                              | SVM-Radial    | 0.4790  | 0.6295  | 0.5543      | -         |
|                                              | Logit         | 0.4987  | 0.6059  | 0.5523      | -         |
|                                              | Random_forest | 0.4371  | 0.6295  | 0.5333      | -         |
| 0.4                                          | Bayes_Naive   | 0.4625  | 0.6061  | 0.5343      | -         |
| Оба канала информации (новости лагированные) | Boosting      | 0.4673  | 0.6787  | 0.5730      | -         |
| (повости лагированные)                       | SVM-Linear    | 0.4317  | 0.6370  | 0.5344      | -         |
|                                              | SVM-Poly      | 0.4894  | 0.5952  | 0.5423      | -         |
|                                              | SVM-Radial    | 0.4749  | 0.5960  | 0.5354      | -         |

Таблица 12. Классификация магнитуды изменения доходностей на LDA-словарях Источник: составлено автором

|                                           | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|-------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                           | Logit         | 0.5106  | 0.6275  | 0.5691      | +         |
|                                           | Random_forest | 0.4426  | 0.6539  | 0.5483      | -         |
| TI                                        | Bayes_Naive   | 0.4673  | 0.6309  | 0.5491      | -         |
| Использование только финансовой нформации | Boosting      | 0.5089  | 0.5955  | 0.5522      | +         |
| финансовой пформации                      | SVM-Linear    | 0.5054  | 0.6208  | 0.5631      | +         |
|                                           | SVM-Poly      | 0.4997  | 0.6265  | 0.5631      | -         |
|                                           | SVM-Radial    | 0.4949  | 0.6174  | 0.5562      | -         |
|                                           | Logit         | 0.4609  | 0.5501  | 0.5055      | -         |
|                                           | Random_forest | 0.4334  | 0.4919  | 0.4627      | -         |
| Использование только                      | Bayes_Naive   | 0.4528  | 0.5661  | 0.5094      | -         |
| новостной информации                      | Boosting      | 0.4265  | 0.5486  | 0.4875      | -         |
| (текущая)                                 | SVM-Linear    | 0.4949  | 0.5241  | 0.5095      | -         |
|                                           | SVM-Poly      | 0.4904  | 0.5405  | 0.5154      | -         |
|                                           | SVM-Radial    | 0.4021  | 0.5470  | 0.4746      | _         |
|                                           | Logit         | 0.4598  | 0.6109  | 0.5354      | -         |
| Использование<br>лагированной новостной   | Random_forest | 0.3816  | 0.6495  | 0.5155      | -         |
|                                           | Bayes_Naive   | 0.4298  | 0.6191  | 0.5245      | -         |
| информации                                | Boosting      | 0.4514  | 0.5497  | 0.5006      | -         |
|                                           | SVM-Linear    | 0.4853  | 0.5396  | 0.5125      | -         |

|                                    | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|------------------------------------|---------------|---------|---------|-------------|-----------|
|                                    | SVM-Poly      | 0.4895  | 0.5612  | 0.5254      | -         |
|                                    | SVM-Radial    | 0.4401  | 0.5670  | 0.5035      | -         |
|                                    | Logit         | 0.4893  | 0.6369  | 0.5631      | -         |
|                                    | Random_forest | 0.4243  | 0.6305  | 0.5274      | -         |
| 0.4                                | Bayes_Naive   | 0.4660  | 0.5807  | 0.5233      | -         |
| Оба канала информации<br>(текущая) | Boosting      | 0.4887  | 0.6077  | 0.5482      | -         |
| (текущая)                          | SVM-Linear    | 0.5017  | 0.6067  | 0.5542      | +         |
|                                    | SVM-Poly      | 0.5169  | 0.6054  | 0.5611      | +         |
|                                    | SVM-Radial    | 0.4867  | 0.6196  | 0.5532      | -         |
|                                    | Logit         | 0.4807  | 0.6336  | 0.5572      | -         |
|                                    | Random_forest | 0.4452  | 0.6634  | 0.5543      | -         |
|                                    | Bayes_Naive   | 0.4911  | 0.5876  | 0.5393      | -         |
| Оба канала информации              | Boosting      | 0.4882  | 0.6241  | 0.5561      | -         |
| (новости лагированные)             | SVM-Linear    | 0.4715  | 0.6270  | 0.5492      | -         |
|                                    | SVM-Poly      | 0.5003  | 0.6280  | 0.5641      | +         |
|                                    | SVM-Radial    | 0.4914  | 0.5873  | 0.5394      | -         |

Таблица 13. Классификация направления изменения доходности по важным для компании Дженерал Моторс словам (TF-IDF)

|                                            | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|--------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                            | Logit         | 0.5106  | 0.6275  | 0.5691      | +         |
|                                            | Random_forest | 0.4426  | 0.6539  | 0.5483      | -         |
|                                            | Bayes_Naive   | 0.4673  | 0.6309  | 0.5491      | -         |
| Использование только финансовой информации | Boosting      | 0.5089  | 0.5955  | 0.5522      | +         |
| финансовой информации                      | SVM-Linear    | 0.5054  | 0.6208  | 0.5631      | +         |
|                                            | SVM-Poly      | 0.4997  | 0.6265  | 0.5631      | -         |
|                                            | SVM-Radial    | 0.4949  | 0.6174  | 0.5562      | -         |
|                                            | Logit         | 0.4500  | 0.5649  | 0.5075      | -         |
|                                            | Random_forest | 0.5060  | 0.5169  | 0.5114      | +         |
| Использование только                       | Bayes_Naive   | 0.4786  | 0.5342  | 0.5064      | -         |
| новостной информации                       | Boosting      | 0.4720  | 0.5430  | 0.5075      | -         |
| (текущая)                                  | SVM-Linear    | 0.4688  | 0.5342  | 0.5015      | -         |
|                                            | SVM-Poly      | 0.5060  | 0.5169  | 0.5114      | +         |
|                                            | SVM-Radial    | 0.4708  | 0.5520  | 0.5114      | -         |
|                                            | Logit         | 0.4889  | 0.5430  | 0.5160      | -         |
|                                            | Random_forest | 0.5035  | 0.5184  | 0.5109      | +         |
| Использование                              | Bayes_Naive   | 0.4900  | 0.5319  | 0.5109      | -         |
| лагированной новостной                     | Boosting      | 0.4851  | 0.5310  | 0.5080      | -         |
| информации                                 | SVM-Linear    | 0.4864  | 0.5414  | 0.5139      | -         |
|                                            | SVM-Poly      | 0.5078  | 0.5161  | 0.5119      | +         |
|                                            | SVM-Radial    | 0.4646  | 0.5632  | 0.5139      | -         |

|                                    | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|------------------------------------|---------------|---------|---------|-------------|-----------|
|                                    | Logit         | 0.4803  | 0.6540  | 0.5671      | -         |
|                                    | Random_forest | 0.4467  | 0.6200  | 0.5333      | -         |
| 0.4                                | Bayes_Naive   | 0.4786  | 0.5342  | 0.5064      | -         |
| Оба канала информации<br>(текущая) | Boosting      | 0.4930  | 0.6054  | 0.5492      | -         |
| (текущая)                          | SVM-Linear    | 0.4628  | 0.5421  | 0.5025      | -         |
|                                    | SVM-Poly      | 0.5060  | 0.5169  | 0.5114      | +         |
|                                    | SVM-Radial    | 0.5034  | 0.6287  | 0.5661      | +         |
|                                    | Logit         | 0.5043  | 0.6330  | 0.5686      | +         |
|                                    | Random_forest | 0.4965  | 0.6170  | 0.5567      | -         |
|                                    | Bayes_Naive   | 0.4900  | 0.5319  | 0.5109      | -         |
| Оба канала информации              | Boosting      | 0.4904  | 0.6210  | 0.5557      | -         |
| (новости лагированные)             | SVM-Linear    | 0.4808  | 0.5510  | 0.5159      | -         |
|                                    | SVM-Poly      | 0.5078  | 0.5161  | 0.5119      | +         |
|                                    | SVM-Radial    | 0.4900  | 0.6531  | 0.5716      | -         |

Таблица 14. Классификация масштаба доходности по важным для компании словам Источник: составлено автором

|                                            | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|--------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                            | Logit         | 0.4398  | 0.6089  | 0.5244      | -         |
|                                            | Random_forest | 0.4798  | 0.5847  | 0.5323      | -         |
| TI.                                        | Bayes_Naive   | 0.5053  | 0.6311  | 0.5682      | +         |
| Использование только финансовой информации | Boosting      | 0.4954  | 0.6350  | 0.5652      | -         |
| финансовой информации                      | SVM-Linear    | 0.4709  | 0.5977  | 0.5343      | -         |
|                                            | SVM-Poly      | 0.4690  | 0.6155  | 0.5423      | -         |
|                                            | SVM-Radial    | 0.4948  | 0.6693  | 0.5821      | -         |
|                                            | Logit         | 0.4853  | 0.5356  | 0.5104      | -         |
|                                            | Random_forest | 0.4895  | 0.5354  | 0.5125      | -         |
| Использование только                       | Bayes_Naive   | 0.4903  | 0.5365  | 0.5134      | -         |
| новостной информации                       | Boosting      | 0.4823  | 0.5506  | 0.5164      | -         |
| (текущая)                                  | SVM-Linear    | 0.4888  | 0.5301  | 0.5095      | -         |
|                                            | SVM-Poly      | 0.4921  | 0.5388  | 0.5154      | -         |
|                                            | SVM-Radial    | 0.4859  | 0.5390  | 0.5125      | -         |
|                                            | Logit         | 0.4881  | 0.5397  | 0.5139      | -         |
|                                            | Random_forest | 0.4803  | 0.5356  | 0.5080      | -         |
| Использование                              | Bayes_Naive   | 0.4792  | 0.5366  | 0.5079      | -         |
| лагированной новостной                     | Boosting      | 0.5011  | 0.5308  | 0.5159      | +         |
| информации                                 | SVM-Linear    | 0.4890  | 0.5368  | 0.5129      | -         |
|                                            | SVM-Poly      | 0.4919  | 0.5400  | 0.5159      | -         |
|                                            | SVM-Radial    | 0.4828  | 0.5411  | 0.5119      | -         |
|                                            | Logit         | 0.4583  | 0.6064  | 0.5323      | -         |
| Оба канала информации                      | Random_forest | 0.4789  | 0.5797  | 0.5293      | -         |
| (текущая)                                  | Bayes_Naive   | 0.4903  | 0.5365  | 0.5134      | -         |
|                                            | Boosting      | 0.4849  | 0.6355  | 0.5602      | -         |
|                                            |               |         |         |             |           |

|                                              | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|----------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                              | SVM-Linear    | 0.4884  | 0.5325  | 0.5105      | -         |
|                                              | SVM-Poly      | 0.4971  | 0.5338  | 0.5154      | -         |
|                                              | SVM-Radial    | 0.4730  | 0.6673  | 0.5702      | -         |
|                                              | Logit         | 0.4402  | 0.6215  | 0.5308      | -         |
|                                              | Random_forest | 0.4784  | 0.5892  | 0.5338      | -         |
| 0.5                                          | Bayes_Naive   | 0.4835  | 0.5423  | 0.5129      | -         |
| Оба канала информации (новости ланированные) | Boosting      | 0.5302  | 0.6412  | 0.5857      | +         |
| (повости лапированные)                       | SVM-Linear    | 0.4910  | 0.5349  | 0.5129      | -         |
|                                              | SVM-Poly      | 0.4919  | 0.5400  | 0.5159      | -         |
|                                              | SVM-Radial    | 0.5069  | 0.6324  | 0.5697      | +         |

## Результаты проведенного анализа по компании Toyota



Таблица 1. ARIMA-модель для модели с применением сентимент-анализа

Источник: составлено автором

|           | estimate | sd     | t_stat   | pi_val |
|-----------|----------|--------|----------|--------|
| ar1       | 0.9118   | 0.0354 | 25.7777  | 0.0000 |
| ar2       | -0.9175  | 0.0512 | -17.9244 | 0.0000 |
| ma1       | -0.8553  | 0.0410 | -20.8392 | 0.0000 |
| ma2       | 0.9022   | 0.0600 | 15.0244  | 0.0000 |
| intercept | 0.0002   | 0.0004 | 0.4856   | 0.6272 |
| sent      | 0.0001   | 0.0001 | 1.3089   | 0.1906 |
| AIC       | -5870    |        |          |        |
| BIC       | - 5 836  |        |          |        |
| n.obs     | 1 007    |        |          |        |

Таблица 2. Прогнозирование больших по модулю доходностей с использованием сентимент-анализа

Источник: Составлено автором

| int_a_lm               | int_b_lm | cor_lm | pv_lm  |  |
|------------------------|----------|--------|--------|--|
| <b>toyota</b> - 0.0871 | 0.1811   | 0.0479 | 0.5595 |  |

Таблица 3. Прогнозирование доходностей с использованием ML-моделей

|                                       | kernel_svm | int_a_svm | int_b_svm | cor_svm | pv_svm |
|---------------------------------------|------------|-----------|-----------|---------|--------|
|                                       | Linear     | 0.0594    | 0.2452    | 0.1537  | 0.0077 |
| Только финансы                        | Poly       | 0.0189    | 0.2068    | 0.1139  | 0.0487 |
|                                       | Radial     | -0.0765   | 0.1138    | 0.0188  | 0.7454 |
|                                       | Linear     | -0.1642   | 0.0251    | -0.0702 | 0.2255 |
| Только сентимент в<br>усеченной форме | Poly       | -0.1612   | 0.0283    | -0.0670 | 0.2470 |
| усс ченной формс                      | Radial     | -0.1416   | 0.0483    | -0.0471 | 0.4164 |
|                                       | Linear     | -0.0366   | 0.1530    | 0.0587  | 0.3105 |
| Только сентимент в<br>значимой форме  | Poly       | -0.0488   | 0.1411    | 0.0466  | 0.4213 |
| значимой формс                        | Radial     | -0.2091   | -0.0213   | -0.1163 | 0.0442 |
| _                                     | Linear     | -0.0448   | 0.1450    | 0.0506  | 0.3828 |
| Финансы + усеченная                   | Poly       | -0.0824   | 0.1079    | 0.0128  | 0.8246 |
| форма сентимента                      | Radial     | -0.0413   | 0.1484    | 0.0541  | 0.3508 |
|                                       | Linear     | 0.0531    | 0.2393    | 0.1475  | 0.0105 |
| Финансы + значимая                    | Poly       | -0.0001   | 0.1885    | 0.0950  | 0.1004 |
| форма сентимента                      | Radial     | -0.0720   | 0.1182    | 0.0233  | 0.6881 |

Таблица 4. Прогнозирование больших доходностей с использованием ML-моделей Источник: составлено автором

|                                         | kernel_svm | int_a_svm | int_b_svm | cor_svm | pv_svm |
|-----------------------------------------|------------|-----------|-----------|---------|--------|
|                                         | Linear     | 0.0602    | 0.3191    | 0.1930  | 0.0176 |
| Только финансы                          | Poly       | 0.0654    | 0.3238    | 0.1980  | 0.0148 |
|                                         | Radial     | 0.0366    | 0.2977    | 0.1701  | 0.0368 |
| m                                       | Linear     | -0.1258   | 0.1429    | 0.0087  | 0.9156 |
| Только сентимент в                      | Poly       | -0.2175   | 0.0493    | -0.0856 | 0.2959 |
| усеченной форме                         | Radial     | -0.2208   | 0.0459    | -0.0890 | 0.2770 |
|                                         | Linear     | -0.0841   | 0.1840    | 0.0509  | 0.5351 |
| Только сентимент в<br>значимой форме    | Poly       | -0.1666   | 0.1019    | -0.0329 | 0.6880 |
| значимой формс                          | Radial     | -0.2278   | 0.0386    | -0.0963 | 0.2394 |
| _                                       | Linear     | 0.0305    | 0.2921    | 0.1642  | 0.0439 |
| Финансы и усеченная<br>форма сентимента | Poly       | 0.0202    | 0.2827    | 0.1541  | 0.0588 |
| форма сентимента                        | Radial     | 0.1002    | 0.3548    | 0.2314  | 0.0042 |
|                                         | Linear     | 0.0522    | 0.3119    | 0.1853  | 0.0227 |
| Финансы и значимая                      | Poly       | -0.0262   | 0.2395    | 0.1086  | 0.1846 |
| форма сентимента                        | Radial     | -0.0085   | 0.2561    | 0.1261  | 0.1230 |

Таблица 5. Классификация по направлению движения акций с использованием методов машинного обучения и сентимент-анализа

|                           | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|---------------------------|---------------|---------|---------|-------------|-----------|
|                           | Logit         | 0.4740  | 0.6045  | 0.5393      | -         |
|                           | Random_forest | 0.4542  | 0.5568  | 0.5055      | -         |
| Использование             | Bayes_Naive   | 0.4457  | 0.6090  | 0.5273      | -         |
| только финансовой         | Boosting      | 0.4277  | 0.6171  | 0.5224      | -         |
| информации                | SVM-Linear    | 0.4897  | 0.5450  | 0.5174      | -         |
|                           | SVM-Poly      | 0.5183  | 0.5265  | 0.5224      | +         |
|                           | SVM-Radial    | 0.4236  | 0.5893  | 0.5065      | -         |
|                           | Logit         | 0.4966  | 0.5601  | 0.5283      | -         |
| Использование             | Random_forest | 0.4393  | 0.5655  | 0.5024      | -         |
| только новостной          | Bayes_Naive   | 0.4695  | 0.5414  | 0.5055      | -         |
| информации                | Boosting      | 0.4634  | 0.5535  | 0.5084      | -         |
| (текущая и первый         | SVM-Linear    | 0.5183  | 0.5265  | 0.5224      | +         |
| лаг)                      | SVM-Poly      | 0.5183  | 0.5265  | 0.5224      | +         |
|                           | SVM-Radial    | 0.4784  | 0.5404  | 0.5094      | -         |
|                           | Logit         | 0.4637  | 0.5531  | 0.5084      | -         |
| Использование             | Random_forest | 0.4200  | 0.5374  | 0.4787      | -         |
| лагированной<br>новостной | Bayes_Naive   | 0.4039  | 0.5434  | 0.4736      | -         |
|                           | Boosting      | 0.4092  | 0.5680  | 0.4886      | -         |
| информации                | SVM-Linear    | 0.5183  | 0.5265  | 0.5224      | +         |
|                           | _SVM-Poly     | 0.5183  | 0.5265  | 0.5224      | +         |

|                                 | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|---------------------------------|---------------|---------|---------|-------------|-----------|
|                                 | SVM-Radial    | 0.4676  | 0.5474  | 0.5075      | -         |
|                                 | Logit         | 0.4828  | 0.5917  | 0.5372      | -         |
|                                 | Random_forest | 0.4120  | 0.5730  | 0.4925      | -         |
| Оба канала                      | Bayes_Naive   | 0.4335  | 0.5875  | 0.5105      | -         |
| информации<br>(текущая и первый | Boosting      | 0.4037  | 0.5991  | 0.5014      | -         |
| лаг)                            | SVM-Linear    | 0.4656  | 0.5832  | 0.5244      | -         |
| ,                               | SVM-Poly      | 0.5183  | 0.5265  | 0.5224      | +         |
|                                 | SVM-Radial    | 0.4482  | 0.5826  | 0.5154      | -         |
|                                 | Logit         | 0.4505  | 0.6021  | 0.5263      | -         |
|                                 | Random_forest | 0.4345  | 0.5365  | 0.4855      | -         |
| Оба канала                      | Bayes_Naive   | 0.4397  | 0.5653  | 0.5025      | -         |
| информации<br>(новости          | Boosting      | 0.3954  | 0.5955  | 0.4954      | -         |
| лагированные)                   | SVM-Linear    | 0.4676  | 0.5552  | 0.5114      | -         |
| 1                               | SVM-Poly      | 0.5183  | 0.5265  | 0.5224      | +         |
|                                 | SVM-Radial    | 0.4274  | 0.6073  | 0.5173      | -         |

Таблица 6. Классификация по размаху движения с использованием ML и сентиментов Источник: составлено автором

|                           | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|---------------------------|---------------|---------|---------|-------------|-----------|
|                           | Logit         | 0.4522  | 0.5488  | 0.5005      | -         |
|                           | Random_forest | 0.4752  | 0.5695  | 0.5223      | -         |
| Использование             | Bayes_Naive   | 0.4726  | 0.6336  | 0.5531      | -         |
| только финансовой         | Boosting      | 0.4899  | 0.6026  | 0.5462      | -         |
| информации                | SVM-Linear    | 0.4756  | 0.5770  | 0.5263      | -         |
|                           | SVM-Poly      | 0.4795  | 0.5870  | 0.5333      | -         |
|                           | SVM-Radial    | 0.4929  | 0.6096  | 0.5513      | -         |
|                           | Logit         | 0.4312  | 0.5201  | 0.4756      | -         |
| Использование             | Random_forest | 0.4638  | 0.5968  | 0.5303      | -         |
| только новостной          | Bayes_Naive   | 0.4447  | 0.5522  | 0.4985      | -         |
| информации                | Boosting      | 0.4291  | 0.5540  | 0.4915      | -         |
| (текущая и первый         | SVM-Linear    | 0.4365  | 0.5227  | 0.4796      | -         |
| лаг)                      | SVM-Poly      | 0.4790  | 0.5121  | 0.4955      | -         |
|                           | SVM-Radial    | 0.4733  | 0.5794  | 0.5263      | -         |
|                           | Logit         | 0.4466  | 0.5724  | 0.5095      | -         |
|                           | Random_forest | 0.4554  | 0.6293  | 0.5424      | -         |
| Использование             | Bayes_Naive   | 0.4551  | 0.5618  | 0.5085      | -         |
| лагированной<br>новостной | Boosting      | 0.4846  | 0.5881  | 0.5363      | -         |
| информации                | SVM-Linear    | 0.4262  | 0.5709  | 0.4985      | -         |
| 1 1                       | SVM-Poly      | 0.4367  | 0.5884  | 0.5126      | -         |
|                           | SVM-Radial    | 0.4439  | 0.5910  | 0.5175      | -         |
| 0.5                       | Logit         | 0.4189  | 0.5562  | 0.4875      | -         |
| Оба канала<br>информации  | Random_forest | 0.4478  | 0.6286  | 0.5382      | -         |
| мпформации<br>            | Bayes_Naive   | 0.4641  | 0.6283  | 0.5462      | -         |
|                           |               |         |         |             |           |

|                        | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|------------------------|---------------|---------|---------|-------------|-----------|
| (текущая и первый      | Boosting      | 0.4912  | 0.6370  | 0.5641      | -         |
| лаг)                   | SVM-Linear    | 0.4326  | 0.5802  | 0.5064      | -         |
|                        | SVM-Poly      | 0.4739  | 0.5927  | 0.5333      | -         |
|                        | SVM-Radial    | 0.4549  | 0.6096  | 0.5322      | -         |
|                        | Logit         | 0.4570  | 0.5939  | 0.5254      | -         |
|                        | Random_forest | 0.4326  | 0.6122  | 0.5224      | -         |
| Оба канала             | Bayes_Naive   | 0.4905  | 0.6060  | 0.5482      | -         |
| информации<br>(новости | Boosting      | 0.5066  | 0.6295  | 0.5681      | +         |
| ланированные)          | SVM-Linear    | 0.4344  | 0.6145  | 0.5245      | -         |
| ,                      | SVM-Poly      | 0.4880  | 0.5846  | 0.5363      | -         |
|                        | SVM-Radial    | 0.4661  | 0.6186  | 0.5423      | -         |

Таблица 7. ARIMA-модель для Тойота с выделением топиков по методу LDA Источник: составлено автором

|           | estimate | sd     | t_stat    | pi_val |  |
|-----------|----------|--------|-----------|--------|--|
| ar1       | 0.9065   | 0.0441 | 20.5458   | 0.0000 |  |
| ar2       | -0.9032  | 0.0602 | - 15.0016 | 0.0000 |  |
| ma1       | -0.8455  | 0.0526 | - 16.0629 | 0.0000 |  |
| ma2       | 0.8867   | 0.0662 | 13.4021   | 0.0000 |  |
| intercept | 0.0015   | 0.0007 | 2.1888    | 0.0286 |  |
| topik_1   | -0.0122  | 0.0042 | -2.9240   | 0.0035 |  |
| topik_4_2 | 0.0066   | 0.0033 | 2.0146    | 0.0440 |  |
| topik_9_2 | -0.0061  | 0.0029 | - 2.1161  | 0.0343 |  |
| topik_2_3 | -0.0115  | 0.0046 | -2.4796   | 0.0132 |  |
| topik_1_3 | 0.0072   | 0.0042 | 1.7181    | 0.0858 |  |
| topik_8   | 0.0078   | 0.0041 | 1.8972    | 0.0578 |  |
| topik_3_2 | -0.0088  | 0.0041 | -2.1408   | 0.0323 |  |
| topik_8_3 | -0.0080  | 0.0042 | - 1.9206  | 0.0548 |  |
| AIC       | - 5 890  |        |           |        |  |
| BIC       | - 5 821  |        |           |        |  |
| n.obs     | 1 007    |        |           |        |  |

Статистически значимыми тематическими группами новостей являются: материалы, посвященные компании Тойота как японскому автопроизводителю, также производству электромобилей под брендом Тойота, их модельному ряду в целом, внедорожникам в частности, а также китайскому авто-рынку.

Таблица 8. Прогнозы доходностей с помощью модели с использованием LDA Источник: составлено автором

| -      | int_a_arima_dir | int_b_arima_dir | cor_arima_dir | pv_arima_dir |
|--------|-----------------|-----------------|---------------|--------------|
| toyota | -0.0021         | 0.2216          | 0.1112        | 0.0544       |

Таблица 9. Прогнозы дневных доходностей с помощью ML и LDA-словарей Источник: составлено автором

|                          | kernel_svm | int_a_svm | int_b_svm | cor_svm | pv_svm |
|--------------------------|------------|-----------|-----------|---------|--------|
| _                        | Linear     | -0.0413   | 0.1840    | 0.0723  | 0.2119 |
| Финансовая<br>информация | Poly       | -0.0677   | 0.1583    | 0.0459  | 0.4282 |
| информации               | Radial     | -0.0319   | 0.1931    | 0.0816  | 0.1586 |
| T.                       | Linear     | -0.0066   | 0.2174    | 0.1067  | 0.0648 |
| Только текущие           | Poly       | -0.0757   | 0.1505    | 0.0379  | 0.5136 |
| словари                  | Radial     | -0.0742   | 0.1519    | 0.0394  | 0.4970 |
|                          | Linear     | -0.1011   | 0.1254    | 0.0123  | 0.8318 |
| Только лаги словарей     | Poly       | -0.1020   | 0.1244    | 0.0114  | 0.8447 |
|                          | Radial     | -0.0440   | 0.1814    | 0.0696  | 0.2293 |
|                          | Linear     | -0.0068   | 0.2172    | 0.1066  | 0.0653 |
| 2 источника – текущие    | Poly       | -0.0274   | 0.1974    | 0.0861  | 0.1367 |
| словари                  | Radial     | -0.0574   | 0.1683    | 0.0562  | 0.3323 |
| _                        | Linear     | -0.0869   | 0.1394    | 0.0266  | 0.6465 |
| 2 источника – лаги       | Poly       | -0.0865   | 0.1398    | 0.0270  | 0.6416 |
| словарей                 | Radial     | -0.0306   | 0.1943    | 0.0829  | 0.1519 |

Таблица 10. Классификация направления изменения доходностей на LDA-словарях Источник: составлено автором

|                                            | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|--------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                            | Logit         | 0.4740  | 0.6045  | 0.5393      | -         |
|                                            | Random_forest | 0.4542  | 0.5568  | 0.5055      | -         |
| TT                                         | Bayes_Naive   | 0.4457  | 0.6090  | 0.5273      | -         |
| Использование только финансовой информации | Boosting      | 0.4277  | 0.6171  | 0.5224      | -         |
| финансовой информации                      | SVM-Linear    | 0.4897  | 0.5450  | 0.5174      | -         |
|                                            | SVM-Poly      | 0.5183  | 0.5265  | 0.5224      | +         |
|                                            | SVM-Radial    | 0.4236  | 0.5893  | 0.5065      | -         |
|                                            | Logit         | 0.4418  | 0.6132  | 0.5275      | -         |
|                                            | Random_forest | 0.4052  | 0.6462  | 0.5257      | -         |
| Использование только                       | Bayes_Naive   | 0.4372  | 0.6378  | 0.5375      | -         |
| новостной информации                       | Boosting      | 0.4399  | 0.6173  | 0.5286      | -         |
| (текущая)                                  | SVM-Linear    | 0.4418  | 0.6292  | 0.5355      | -         |
|                                            | SVM-Poly      | 0.4492  | 0.6217  | 0.5355      | -         |
|                                            | SVM-Radial    | 0.4519  | 0.6130  | 0.5325      | -         |

|                                              | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|----------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                              | Logit         | 0.4632  | 0.6155  | 0.5394      | -         |
|                                              | Random_forest | 0.4696  | 0.5492  | 0.5094      | -         |
| Использование                                | Bayes_Naive   | 0.4539  | 0.6028  | 0.5283      | -         |
| лагированной новостной                       | Boosting      | 0.4468  | 0.5800  | 0.5134      | -         |
| информации                                   | SVM-Linear    | 0.4374  | 0.5955  | 0.5164      | -         |
|                                              | SVM-Poly      | 0.4350  | 0.6375  | 0.5362      | -         |
|                                              | SVM-Radial    | 0.4292  | 0.6312  | 0.5302      | -         |
|                                              | Logit         | 0.4652  | 0.6038  | 0.5345      | -         |
|                                              | Random_forest | 0.4232  | 0.6057  | 0.5145      | -         |
| 06                                           | Bayes_Naive   | 0.4209  | 0.6323  | 0.5266      | -         |
| Оба канала информации<br>(текущая)           | Boosting      | 0.4446  | 0.5984  | 0.5215      | -         |
| (текущан)                                    | SVM-Linear    | 0.4359  | 0.6272  | 0.5315      | -         |
|                                              | SVM-Poly      | 0.4415  | 0.6295  | 0.5355      | -         |
|                                              | SVM-Radial    | 0.4607  | 0.5863  | 0.5235      | -         |
|                                              | Logit         | 0.4351  | 0.6238  | 0.5294      | -         |
|                                              | Random_forest | 0.4498  | 0.5929  | 0.5213      | -         |
| 0.2                                          | Bayes_Naive   | 0.4817  | 0.5869  | 0.5343      | -         |
| Оба канала информации (новости лагированные) | Boosting      | 0.4614  | 0.5933  | 0.5273      | -         |
| (повости лагированные)                       | SVM-Linear    | 0.4542  | 0.5964  | 0.5253      | -         |
|                                              | SVM-Poly      | 0.4654  | 0.6012  | 0.5333      | -         |
|                                              | SVM-Radial    | 0.4373  | 0.6529  | 0.5451      | -         |

Таблица 11. Классификация магнитуды изменения доходностей на LDA-словарях Источник: составлено автором

|                                           | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|-------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                           | Logit         | 0.4522  | 0.5488  | 0.5005      | -         |
|                                           | Random_forest | 0.4752  | 0.5695  | 0.5223      | -         |
| TI.                                       | Bayes_Naive   | 0.4726  | 0.6336  | 0.5531      | -         |
| Использование только финансовой нформации | Boosting      | 0.4899  | 0.6026  | 0.5462      | -         |
| финансовой пформации                      | SVM-Linear    | 0.4756  | 0.5770  | 0.5263      | -         |
|                                           | SVM-Poly      | 0.4795  | 0.5870  | 0.5333      | -         |
|                                           | SVM-Radial    | 0.4929  | 0.6096  | 0.5513      | -         |
|                                           | Logit         | 0.4395  | 0.6211  | 0.5303      | -         |
|                                           | Random_forest | 0.4276  | 0.6308  | 0.5292      | -         |
| Использование только                      | Bayes_Naive   | 0.4382  | 0.6106  | 0.5244      | -         |
| новостной информации                      | Boosting      | 0.4624  | 0.6022  | 0.5323      | -         |
| (текущая)                                 | SVM-Linear    | 0.4210  | 0.6217  | 0.5213      | -         |
|                                           | SVM-Poly      | 0.4444  | 0.6301  | 0.5372      | -         |
|                                           | SVM-Radial    | 0.4569  | 0.6275  | 0.5422      | _         |
|                                           | Logit         | 0.4686  | 0.6437  | 0.5561      | -         |
| Использование                             | Random_forest | 0.4202  | 0.6046  | 0.5124      | -         |
| лагированной новостной информации         | Bayes_Naive   | 0.4882  | 0.6302  | 0.5592      | -         |
|                                           | _Boosting     | 0.4611  | 0.6174  | 0.5392      | -         |

|                                 | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|---------------------------------|---------------|---------|---------|-------------|-----------|
|                                 | SVM-Linear    | 0.4852  | 0.6350  | 0.5601      | -         |
|                                 | SVM-Poly      | 0.4756  | 0.6505  | 0.5631      | -         |
|                                 | SVM-Radial    | 0.4730  | 0.6135  | 0.5432      | -         |
|                                 | Logit         | 0.4379  | 0.6347  | 0.5363      | -         |
|                                 | Random_forest | 0.4642  | 0.6521  | 0.5581      | -         |
| 0.4                             | Bayes_Naive   | 0.4742  | 0.6420  | 0.5581      | -         |
| Оба канала информации (текущая) | Boosting      | 0.4922  | 0.6538  | 0.5730      | -         |
| (текущая)                       | SVM-Linear    | 0.4252  | 0.6115  | 0.5184      | -         |
|                                 | SVM-Poly      | 0.4629  | 0.6155  | 0.5392      | -         |
|                                 | SVM-Radial    | 0.5147  | 0.6354  | 0.5750      | +         |
|                                 | Logit         | 0.4639  | 0.6582  | 0.5610      | -         |
|                                 | Random_forest | 0.4413  | 0.6294  | 0.5354      | -         |
|                                 | Bayes_Naive   | 0.4987  | 0.6375  | 0.5681      | -         |
| Оба канала информации           | Boosting      | 0.5073  | 0.5713  | 0.5393      | +         |
| (новости лагированные)          | SVM-Linear    | 0.4791  | 0.6371  | 0.5581      | -         |
|                                 | SVM-Poly      | 0.4539  | 0.6642  | 0.5591      | -         |
|                                 | SVM-Radial    | 0.4963  | 0.6021  | 0.5492      |           |

Таблица 12. Классификация направления доходности по важным для компании словам Источник: составлено автором

|                                            | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|--------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                            | Logit         | 0.4740  | 0.6045  | 0.5393      | -         |
|                                            | Random_forest | 0.4542  | 0.5568  | 0.5055      | -         |
| **                                         | Bayes_Naive   | 0.4457  | 0.6090  | 0.5273      | -         |
| Использование только финансовой информации | Boosting      | 0.4277  | 0.6171  | 0.5224      | -         |
| финансовой информации                      | SVM-Linear    | 0.4897  | 0.5450  | 0.5174      | -         |
|                                            | SVM-Poly      | 0.5183  | 0.5265  | 0.5224      | +         |
|                                            | SVM-Radial    | 0.4236  | 0.5893  | 0.5065      | -         |
|                                            | Logit         | 0.4902  | 0.5427  | 0.5164      | -         |
|                                            | Random_forest | 0.4836  | 0.5690  | 0.5263      | -         |
| Использование только                       | Bayes_Naive   | 0.4722  | 0.5487  | 0.5104      | -         |
| новостной информации                       | Boosting      | 0.5191  | 0.5535  | 0.5363      | +         |
| (текущая)                                  | SVM-Linear    | 0.4887  | 0.5402  | 0.5144      | -         |
|                                            | SVM-Poly      | 0.5179  | 0.5448  | 0.5313      | +         |
|                                            | SVM-Radial    | 0.5095  | 0.5532  | 0.5313      | +         |
|                                            | Logit         | 0.4874  | 0.5445  | 0.5160      | -         |
|                                            | Random_forest | 0.4800  | 0.5657  | 0.5229      | -         |
| Использование                              | Bayes_Naive   | 0.4870  | 0.5467  | 0.5169      | -         |
| лагированной новостной                     | Boosting      | 0.5035  | 0.5681  | 0.5358      | +         |
| информации                                 | SVM-Linear    | 0.4871  | 0.5368  | 0.5119      | -         |
|                                            | SVM-Poly      | 0.5048  | 0.5450  | 0.5249      | +         |
|                                            | SVM-Radial    | 0.4866  | 0.5731  | 0.5298      | -         |

|                                              | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|----------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                              | Logit         | 0.4678  | 0.5988  | 0.5333      | -         |
|                                              | Random_forest | 0.5136  | 0.5312  | 0.5224      | +         |
| 0.4                                          | Bayes_Naive   | 0.4668  | 0.5522  | 0.5095      | -         |
| Оба канала информации<br>(текущая)           | Boosting      | 0.4494  | 0.6231  | 0.5363      | -         |
| (текущая)                                    | SVM-Linear    | 0.4903  | 0.5406  | 0.5154      | -         |
|                                              | SVM-Poly      | 0.5179  | 0.5448  | 0.5313      | +         |
|                                              | SVM-Radial    | 0.4639  | 0.5649  | 0.5144      | -         |
|                                              | Logit         | 0.4697  | 0.5900  | 0.5299      | -         |
|                                              | Random_forest | 0.5175  | 0.5303  | 0.5239      | +         |
|                                              | Bayes_Naive   | 0.4870  | 0.5467  | 0.5169      | -         |
| Оба канала информации (новости лагированные) | Boosting      | 0.4581  | 0.6018  | 0.5300      | -         |
| (новости лагированные)                       | SVM-Linear    | 0.4991  | 0.5288  | 0.5139      | -         |
|                                              | SVM-Poly      | 0.5048  | 0.5450  | 0.5249      | +         |
|                                              | SVM-Radial    | 0.4637  | 0.5562  | 0.5100      | -         |

Таблица 13. Классификация масштаба доходности по важным для компании словам Источник: составлено автором

|                                            | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|--------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                            | Logit         | 0.4522  | 0.5488  | 0.5005      | -         |
|                                            | Random_forest | 0.4752  | 0.5695  | 0.5223      | -         |
| **                                         | Bayes_Naive   | 0.4726  | 0.6336  | 0.5531      | -         |
| Использование только финансовой информации | Boosting      | 0.4899  | 0.6026  | 0.5462      | -         |
| финансовой информации                      | SVM-Linear    | 0.4756  | 0.5770  | 0.5263      | -         |
|                                            | SVM-Poly      | 0.4795  | 0.5870  | 0.5333      | -         |
|                                            | SVM-Radial    | 0.4929  | 0.6096  | 0.5513      | -         |
|                                            | Logit         | 0.4640  | 0.5669  | 0.5154      | -         |
|                                            | Random_forest | 0.4751  | 0.5696  | 0.5223      | -         |
| Использование только                       | Bayes_Naive   | 0.4685  | 0.5484  | 0.5084      | -         |
| новостной информации                       | Boosting      | 0.4842  | 0.5486  | 0.5164      | -         |
| (текущая)                                  | SVM-Linear    | 0.4662  | 0.5566  | 0.5114      | -         |
|                                            | SVM-Poly      | 0.4866  | 0.5621  | 0.5243      | -         |
|                                            | SVM-Radial    | 0.4717  | 0.5710  | 0.5214      | -         |
|                                            | Logit         | 0.4866  | 0.5354  | 0.5110      | -         |
|                                            | Random_forest | 0.4575  | 0.5765  | 0.5170      | -         |
| Использование                              | Bayes_Naive   | 0.4728  | 0.5352  | 0.5040      | -         |
| лагированной новостной                     | Boosting      | 0.4812  | 0.5507  | 0.5160      | -         |
| информации                                 | SVM-Linear    | 0.4723  | 0.5497  | 0.5110      | -         |
|                                            | SVM-Poly      | 0.4842  | 0.5577  | 0.5210      | -         |
|                                            | SVM-Radial    | 0.4649  | 0.5710  | 0.5180      | -         |
|                                            | Logit         | 0.4646  | 0.6079  | 0.5363      | -         |
| Оба канала информации                      | Random_forest | 0.4843  | 0.5963  | 0.5403      | -         |
| (текущая)                                  | Bayes_Naive   | 0.4656  | 0.5592  | 0.5124      | -         |
|                                            | Boosting      | 0.5181  | 0.6221  | 0.5701      | +         |

|                                              | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|----------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                              | SVM-Linear    | 0.4679  | 0.5549  | 0.5114      | -         |
|                                              | SVM-Poly      | 0.4866  | 0.5621  | 0.5243      | -         |
|                                              | SVM-Radial    | 0.4993  | 0.6230  | 0.5611      | _         |
|                                              | Logit         | 0.4376  | 0.5806  | 0.5091      | -         |
|                                              | Random_forest | 0.4724  | 0.6013  | 0.5368      | -         |
| 0.5                                          | Bayes_Naive   | 0.4570  | 0.5848  | 0.5209      | -         |
| Оба канала информации (новости ланированные) | Boosting      | 0.4832  | 0.6403  | 0.5617      | -         |
| (новости лапированные)                       | SVM-Linear    | 0.4859  | 0.5421  | 0.5140      | -         |
|                                              | SVM-Poly      | 0.4842  | 0.5577  | 0.5210      | -         |
|                                              | SVM-Radial    | 0.4398  | 0.6301  | 0.5350      | -         |

## Результаты проведенного анализа по компании Volkswagen



Таблица 1. ARIMA-модель для модели с применением сентимент-анализа

Источник: составлено автором

|           | estimate     | sd     | t_stat  | pi_val |  |
|-----------|--------------|--------|---------|--------|--|
| ma1       | 0.2203       | 0.0309 | 7.1203  | 0.0000 |  |
| intercept | -0.0001      | 0.0008 | -0.0919 | 0.9268 |  |
| sent_1    | 0.0001       | 0.0001 | 1.2091  | 0.2266 |  |
| AIC       | - 5 013      |        |         |        |  |
| BIC       | <b>-4993</b> |        |         |        |  |
| n.obs     | 1 016        |        |         |        |  |

Таблица 2. Прогнозирование больших по модулю доходностей с использованием сентимент-анализа

| int_a_lm              | int_b_lm | cor_lm | pv_lm  |  |
|-----------------------|----------|--------|--------|--|
| <b>volkw</b> - 0.1174 | 0.1504   | 0.0168 | 0.8373 |  |

Таблица 3. Прогнозирование доходностей с использованием ML-моделей Источник: составлено автором

|                                         | kernel_svm | int_a_svm | int_b_svm | cor_svm | pv_svm |
|-----------------------------------------|------------|-----------|-----------|---------|--------|
|                                         | Linear     | 0.0709    | 0.2534    | 0.1636  | 0.0039 |
| Только финансы                          | Poly       | 0.0709    | 0.2534    | 0.1636  | 0.0039 |
|                                         | Radial     | -0.0289   | 0.1578    | 0.0650  | 0.2545 |
| T.                                      | Linear     | -0.2254   | -0.0412   | -0.1344 | 0.0181 |
| Только сентимент в<br>усеченной форме   | Poly       | -0.2379   | -0.0545   | -0.1475 | 0.0094 |
| усеченной форме                         | Radial     | -0.1210   | 0.0664    | -0.0275 | 0.6300 |
| ar.                                     | Linear     | -0.0905   | 0.0970    | 0.0032  | 0.9547 |
| Только сентимент в<br>значимой форме    | Poly       | -0.0872   | 0.1003    | 0.0066  | 0.9086 |
| значимой форме                          | Radial     | -0.1081   | 0.0793    | -0.0145 | 0.7992 |
| _                                       | Linear     | 0.0310    | 0.2156    | 0.1244  | 0.0288 |
| Финансы + усеченная<br>форма сентимента | Poly       | 0.0289    | 0.2136    | 0.1223  | 0.0316 |
| форма сентимента                        | Radial     | 0.0091    | 0.1946    | 0.1028  | 0.0712 |
|                                         | Linear     | 0.0678    | 0.2505    | 0.1605  | 0.0047 |
| Финансы + значимая<br>форма сентимента  | Poly       | 0.0682    | 0.2509    | 0.1609  | 0.0046 |
| форма сентимента                        | Radial     | 0.0279    | 0.2127    | 0.1213  | 0.0330 |

Таблица 4. Прогнозирование больших доходностей с использованием ML-моделей Источник: составлено автором

|                                         | kernel_svm | int_a_svm | int_b_svm | cor_svm | pv_svm |
|-----------------------------------------|------------|-----------|-----------|---------|--------|
|                                         | Linear     | 0.0291    | 0.2901    | 0.1625  | 0.0455 |
| Только финансы                          | Poly       | 0.0291    | 0.2901    | 0.1625  | 0.0455 |
|                                         | Radial     | -0.0030   | 0.2603    | 0.1310  | 0.1078 |
| m                                       | Linear     | -0.2075   | 0.0589    | -0.0756 | 0.3545 |
| Только сентимент в<br>усеченной форме   | Poly       | -0.1499   | 0.1180    | -0.0162 | 0.8426 |
| уссченной форме                         | Radial     | -0.1417   | 0.1262    | -0.0079 | 0.9232 |
|                                         | Linear     | -0.1174   | 0.1504    | 0.0168  | 0.8373 |
| Только сентимент в<br>значимой форме    | Poly       | -0.1174   | 0.1504    | 0.0168  | 0.8373 |
| значимой формс                          | Radial     | -0.2006   | 0.0661    | -0.0685 | 0.4018 |
| •                                       | Linear     | 0.0066    | 0.2693    | 0.1404  | 0.0844 |
| Финансы и усеченная<br>форма сентимента | Poly       | 0.0122    | 0.2744    | 0.1459  | 0.0730 |
| форма сентимента                        | Radial     | -0.0088   | 0.2549    | 0.1253  | 0.1241 |
| Финансы и значимая                      | Linear     | 0.0222    | 0.2837    | 0.1556  | 0.0555 |
|                                         | Poly       | 0.0165    | 0.2785    | 0.1501  | 0.0649 |
| форма сентимента                        | Radial     | -0.0825   | 0.1846    | 0.0520  | 0.5248 |

Таблица 5. Классификация по направлению движения акций с использованием методов машинного обучения и сентимент-анализа

|                           | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|---------------------------|---------------|---------|---------|-------------|-----------|
|                           | Logit         | 0.5746  | 0.6463  | 0.6105      | +         |
|                           | Random_forest | 0.4953  | 0.6250  | 0.5602      | -         |
| Использование             | Bayes_Naive   | 0.5153  | 0.6800  | 0.5977      | +         |
| только финансовой         | Boosting      | 0.5244  | 0.6373  | 0.5808      | +         |
| информации                | SVM-Linear    | 0.5653  | 0.6398  | 0.6025      | +         |
|                           | SVM-Poly      | 0.5644  | 0.6664  | 0.6154      | +         |
|                           | SVM-Radial    | 0.5551  | 0.6460  | 0.6006      | +         |
|                           | Logit         | 0.5055  | 0.5557  | 0.5306      | +         |
| Использование             | Random_forest | 0.4918  | 0.6027  | 0.5473      | -         |
| только новостной          | Bayes_Naive   | 0.5047  | 0.5742  | 0.5394      | +         |
| информации                | Boosting      | 0.5038  | 0.5967  | 0.5503      | +         |
| (текущая и первый         | SVM-Linear    | 0.5123  | 0.5251  | 0.5187      | +         |
| лаг)                      | SVM-Poly      | 0.5028  | 0.5426  | 0.5227      | +         |
|                           | SVM-Radial    | 0.5102  | 0.6158  | 0.5630      | +         |
|                           | Logit         | 0.4962  | 0.5453  | 0.5207      | -         |
| Использование             | Random_forest | 0.3962  | 0.5682  | 0.4822      | -         |
| лагированной<br>новостной | Bayes_Naive   | 0.4736  | 0.5441  | 0.5089      | -         |
| информации                | Boosting      | 0.4112  | 0.5533  | 0.4822      | -         |
|                           | SVM-Linear    | 0.5123  | 0.5251  | 0.5187      | +         |

|                                 | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|---------------------------------|---------------|---------|---------|-------------|-----------|
|                                 | SVM-Poly      | 0.4909  | 0.5664  | 0.5286      | -         |
|                                 | SVM-Radial    | 0.4764  | 0.5512  | 0.5138      | -         |
|                                 | Logit         | 0.5585  | 0.6564  | 0.6075      | +         |
|                                 | Random_forest | 0.5028  | 0.6488  | 0.5758      | +         |
| Оба канала                      | Bayes_Naive   | 0.5195  | 0.6639  | 0.5917      | +         |
| информации<br>(текущая и первый | Boosting      | 0.5293  | 0.6522  | 0.5907      | +         |
| лаг)                            | SVM-Linear    | 0.5511  | 0.6521  | 0.6016      | +         |
| ,                               | SVM-Poly      | 0.5564  | 0.6684  | 0.6124      | +         |
|                                 | SVM-Radial    | 0.5446  | 0.6624  | 0.6035      | +         |
|                                 | Logit         | 0.5585  | 0.6564  | 0.6075      | +         |
|                                 | Random_forest | 0.4935  | 0.6247  | 0.5591      | -         |
| Оба канала                      | Bayes_Naive   | 0.4908  | 0.6176  | 0.5542      | _         |
| информации                      | Boosting      | 0.5432  | 0.6344  | 0.5888      | +         |
| (новости<br>лагированные)       | SVM-Linear    | 0.5506  | 0.6387  | 0.5947      | +         |
| 1 " ")                          | SVM-Poly      | 0.5372  | 0.6618  | 0.5995      | +         |
|                                 | SVM-Radial    | 0.5120  | 0.6201  | 0.5661      | +         |

Таблица 6. Классификация по размаху движения с использованием ML и сентиментов Источник: составлено автором

|                                   | ml_type        | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|-----------------------------------|----------------|---------|---------|-------------|-----------|
|                                   | Logit          | 0.4253  | 0.6083  | 0.5168      | -         |
|                                   | Random_forest  | 0.4263  | 0.5597  | 0.4930      | -         |
| Использование                     | Bayes_Naive    | 0.4908  | 0.6255  | 0.5581      | -         |
| только финансовой                 | Boosting       | 0.4759  | 0.6345  | 0.5552      | -         |
| информации                        | SVM-Linear     | 0.4701  | 0.6108  | 0.5404      | -         |
|                                   | SVM-Poly       | 0.4725  | 0.6183  | 0.5454      | -         |
|                                   | SVM-Radial     | 0.4919  | 0.6401  | 0.5660      | -         |
|                                   | Logit          | 0.4573  | 0.5724  | 0.5149      | -         |
| Ионо и зорочио                    | Random_forest  | 0.3930  | 0.6249  | 0.5090      | -         |
| Использование<br>только новостной | Bayes_Naive    | 0.4437  | 0.5541  | 0.4989      | -         |
| информации                        | Boosting       | 0.4318  | 0.5861  | 0.5089      | -         |
| (текущая и первый                 | SVM-Linear     | 0.4536  | 0.5798  | 0.5167      | -         |
| лаг)                              | SVM-Poly       | 0.4575  | 0.5898  | 0.5236      | -         |
|                                   | SVM-Radial     | 0.4364  | 0.5717  | 0.5040      | -         |
|                                   | Logit          | 0.4452  | 0.5685  | 0.5068      | -         |
|                                   | Random_forest  | 0.4292  | 0.5924  | 0.5108      | -         |
| Использование                     | Bayes_Naive    | 0.4308  | 0.5417  | 0.4863      | -         |
| лагированной<br>новостной         | Boosting       | 0.4178  | 0.5940  | 0.5059      | -         |
| информации                        | SVM-Linear     | 0.4430  | 0.5745  | 0.5088      | -         |
| 1 1                               | SVM-Poly       | 0.4669  | 0.5982  | 0.5325      | -         |
|                                   | SVM-Radial     | 0.4711  | 0.6057  | 0.5384      | -         |
| Оба канала                        | Logit          | 0.4331  | 0.6044  | 0.5188      | -         |
| информации                        | _Random_forest | 0.4367  | 0.5611  | 0.4989      | -         |

|                        | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|------------------------|---------------|---------|---------|-------------|-----------|
| (текущая и первый      | Bayes_Naive   | 0.4851  | 0.6272  | 0.5561      | -         |
| лаг)                   | Boosting      | 0.4729  | 0.6039  | 0.5384      | -         |
|                        | SVM-Linear    | 0.4305  | 0.6168  | 0.5236      | -         |
|                        | SVM-Poly      | 0.4919  | 0.6026  | 0.5473      | -         |
|                        | SVM-Radial    | 0.4852  | 0.6232  | 0.5542      | -         |
|                        | Logit         | 0.4179  | 0.6116  | 0.5147      | -         |
|                        | Random_forest | 0.4136  | 0.6512  | 0.5324      | -         |
| Оба канала             | Bayes_Naive   | 0.4727  | 0.6200  | 0.5463      | -         |
| информации<br>(новости | Boosting      | 0.4432  | 0.6376  | 0.5404      | -         |
| ланированные)          | SVM-Linear    | 0.4096  | 0.6278  | 0.5187      | -         |
| ,                      | SVM-Poly      | 0.4568  | 0.6162  | 0.5365      | -         |
|                        | SVM-Radial    | 0.4568  | 0.6478  | 0.5523      | -         |

Таблица 7. ARIMA-модель для Фольксваген с выделением топиков по методу LDA Источник: составлено автором

|           | estimate     | sd     | t_stat   | pi_val |  |
|-----------|--------------|--------|----------|--------|--|
| ar1       | 0.2171       | 0.0306 | 7.0895   | 0.0000 |  |
| intercept | 0.0001       | 0.0011 | 0.0742   | 0.9408 |  |
| topik_3_3 | -0.0134      | 0.0082 | - 1.6310 | 0.1029 |  |
| topik_4   | 0.0121       | 0.0066 | 1.8232   | 0.0683 |  |
| AIC       | - 5 014      |        |          |        |  |
| BIC       | <b>-4990</b> |        |          |        |  |
| n.obs     | 1 016        |        |          |        |  |

Статистически значимыми являются словари, посвященные автомобильным авариям и судебным разбирательствам, а также информации о производстве автомобилей марки Фольксваген.

Таблица 8. Прогнозы доходностей с помощью модели с использованием LDA Источник: составлено автором

|       | int_a_arima_dir | int_b_arima_dir | cor_arima_dir | pv_arima_dir |
|-------|-----------------|-----------------|---------------|--------------|
| volkw | -0.1159         | 0.1073          | -0.0044       | 0.9390       |

Таблица 9. Прогнозы дневных доходностей с помощью ML и LDA-словарей Источник: составлено автором

|                          | kernel_svm | int_a_svm | int_b_svm | cor_svm | pv_svm |
|--------------------------|------------|-----------|-----------|---------|--------|
| <u>.</u>                 | Linear     | 0.0544    | 0.2716    | 0.1650  | 0.0036 |
| Финансовая<br>информация | Poly       | 0.0553    | 0.2724    | 0.1658  | 0.0035 |
| информация               | Radial     | 0.0742    | 0.2899    | 0.1843  | 0.0011 |

|                                  | kernel_svm | int_a_svm | int_b_svm | cor_svm | pv_svm |
|----------------------------------|------------|-----------|-----------|---------|--------|
| Tr.                              | Linear     | -0.1790   | 0.0431    | -0.0688 | 0.2281 |
| Только текущие<br>словари        | Poly       | -0.1874   | 0.0345    | -0.0774 | 0.1746 |
|                                  | Radial     | -0.1804   | 0.0416    | -0.0703 | 0.2180 |
|                                  | Linear     | -0.1891   | 0.0326    | -0.0792 | 0.1647 |
| Только лаги словарей             | Poly       | -0.2032   | 0.0180    | -0.0938 | 0.0998 |
|                                  | Radial     | -0.0741   | 0.1487    | 0.0378  | 0.5085 |
| 2                                | Linear     | 0.0444    | 0.2623    | 0.1552  | 0.0062 |
| 2 источника – текущие<br>словари | Poly       | 0.0387    | 0.2569    | 0.1496  | 0.0084 |
| Словари                          | Radial     | -0.0050   | 0.2156    | 0.1066  | 0.0612 |
| _                                | Linear     | 0.0157    | 0.2353    | 0.1270  | 0.0256 |
| 2 источника — лаги<br>словарей   | Poly       | -0.0223   | 0.1991    | 0.0895  | 0.1163 |
| Словарси                         | Radial     | 0.0066    | 0.2267    | 0.1181  | 0.0379 |

Таблица 10. Классификация направления изменения доходностей на LDA-словарях Источник: составлено автором

|                                            | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|--------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                            | Logit         | 0.5746  | 0.6463  | 0.6105      | +         |
|                                            | Random_forest | 0.4953  | 0.6250  | 0.5602      | -         |
|                                            | Bayes_Naive   | 0.5153  | 0.6800  | 0.5977      | +         |
| Использование только финансовой информации | Boosting      | 0.5244  | 0.6373  | 0.5808      | +         |
| финансовой информации                      | SVM-Linear    | 0.5653  | 0.6398  | 0.6025      | +         |
|                                            | SVM-Poly      | 0.5644  | 0.6664  | 0.6154      | +         |
|                                            | SVM-Radial    | 0.5551  | 0.6460  | 0.6006      | +         |
|                                            | Logit         | 0.4178  | 0.5764  | 0.4971      | -         |
|                                            | Random_forest | 0.4474  | 0.6236  | 0.5355      | -         |
| Использование только                       | Bayes_Naive   | 0.4084  | 0.5698  | 0.4891      | -         |
| новостной информации                       | Boosting      | 0.4202  | 0.5522  | 0.4862      | -         |
| (текущая)                                  | SVM-Linear    | 0.4356  | 0.5822  | 0.5089      | -         |
|                                            | SVM-Poly      | 0.5123  | 0.5251  | 0.5187      | +         |
|                                            | SVM-Radial    | 0.4282  | 0.5898  | 0.5090      | -         |
|                                            | Logit         | 0.4588  | 0.5392  | 0.4990      | -         |
|                                            | Random_forest | 0.4731  | 0.5861  | 0.5296      | -         |
| Использование                              | Bayes_Naive   | 0.4103  | 0.5780  | 0.4941      | -         |
| лагированной новостной                     | Boosting      | 0.4618  | 0.5521  | 0.5070      | -         |
| информации                                 | SVM-Linear    | 0.4443  | 0.5399  | 0.4921      | -         |
|                                            | SVM-Poly      | 0.5006  | 0.5959  | 0.5482      | +         |
|                                            | SVM-Radial    | 0.4991  | 0.5640  | 0.5316      | _         |
|                                            | Logit         | 0.5377  | 0.6534  | 0.5956      | +         |
|                                            | Random_forest | 0.5250  | 0.6309  | 0.5779      | +         |
| Оба канала информации                      | Bayes_Naive   | 0.4597  | 0.6192  | 0.5394      | -         |
| (текущая)                                  | Boosting      | 0.5308  | 0.6448  | 0.5878      | +         |
|                                            | SVM-Linear    | 0.5389  | 0.6169  | 0.5779      | +         |
|                                            | SVM-Poly      | 0.4860  | 0.6620  | 0.5740      | -         |

|                                              | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|----------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                              | SVM-Radial    | 0.4951  | 0.6469  | 0.5710      | -         |
|                                              | Logit         | 0.5286  | 0.6567  | 0.5926      | +         |
|                                              | Random_forest | 0.5247  | 0.6291  | 0.5769      | +         |
| 0.4                                          | Bayes_Naive   | 0.4200  | 0.6253  | 0.5227      | -         |
| Оба канала информации (новости лагированные) | Boosting      | 0.4845  | 0.6358  | 0.5601      | -         |
| (новости лагированные)                       | SVM-Linear    | 0.5122  | 0.6377  | 0.5750      | +         |
|                                              | SVM-Poly      | 0.5048  | 0.6353  | 0.5700      | +         |
|                                              | SVM-Radial    | 0.5069  | 0.6253  | 0.5661      | +         |

Таблица 11. Классификация магнитуды изменения доходностей на LDA-словарях Источник: составлено автором

|                                              | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|----------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                              | Logit         | 0.4253  | 0.6083  | 0.5168      | -         |
|                                              | Random_forest | 0.4263  | 0.5597  | 0.4930      | -         |
| т                                            | Bayes_Naive   | 0.4908  | 0.6255  | 0.5581      | -         |
| Использование только финансовой нформации    | Boosting      | 0.4759  | 0.6345  | 0.5552      | -         |
| финансовой пформации                         | SVM-Linear    | 0.4701  | 0.6108  | 0.5404      | -         |
|                                              | SVM-Poly      | 0.4725  | 0.6183  | 0.5454      | -         |
|                                              | SVM-Radial    | 0.4919  | 0.6401  | 0.5660      | -         |
|                                              | Logit         | 0.4073  | 0.5927  | 0.5000      | -         |
|                                              | Random_forest | 0.3817  | 0.6262  | 0.5040      | -         |
| Использование только                         | Bayes_Naive   | 0.3925  | 0.5599  | 0.4762      | -         |
| новостной информации                         | Boosting      | 0.3797  | 0.5471  | 0.4634      | -         |
| (текущая)                                    | SVM-Linear    | 0.3952  | 0.5634  | 0.4793      | -         |
|                                              | SVM-Poly      | 0.4594  | 0.5879  | 0.5237      | -         |
|                                              | SVM-Radial    | 0.4246  | 0.5853  | 0.5050      | -         |
|                                              | Logit         | 0.4182  | 0.5797  | 0.4990      | -         |
|                                              | Random_forest | 0.4119  | 0.6336  | 0.5228      | -         |
| Использование                                | Bayes_Naive   | 0.4379  | 0.5976  | 0.5178      | -         |
| лагированной новостной                       | Boosting      | 0.4241  | 0.5620  | 0.4930      | -         |
| информации                                   | SVM-Linear    | 0.4357  | 0.5624  | 0.4990      | -         |
|                                              | SVM-Poly      | 0.4414  | 0.5645  | 0.5030      | -         |
|                                              | SVM-Radial    | 0.4371  | 0.6004  | 0.5188      | -         |
|                                              | Logit         | 0.4251  | 0.6047  | 0.5149      | -         |
|                                              | Random_forest | 0.4365  | 0.6148  | 0.5256      | -         |
| 0.4                                          | Bayes_Naive   | 0.4731  | 0.6137  | 0.5434      | -         |
| Оба канала информации<br>(текущая)           | Boosting      | 0.4530  | 0.6101  | 0.5315      | -         |
| (текущая)                                    | SVM-Linear    | 0.4167  | 0.5835  | 0.5001      | -         |
|                                              | SVM-Poly      | 0.4660  | 0.5951  | 0.5306      | -         |
|                                              | SVM-Radial    | 0.4538  | 0.5756  | 0.5147      | -         |
| 0.5                                          | Logit         | 0.4368  | 0.5809  | 0.5089      | -         |
| Оба канала информации (новости лагированные) | Random_forest | 0.4385  | 0.6287  | 0.5336      | -         |
| (повости лагированные)                       | _Bayes_Naive  | 0.4464  | 0.6443  | 0.5454      | -         |
|                                              |               |         |         |             |           |

| 1 | ml_type    | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|---|------------|---------|---------|-------------|-----------|
|   | Boosting   | 0.4355  | 0.6001  | 0.5178      | -         |
|   | SVM-Linear | 0.4086  | 0.6070  | 0.5078      | -         |
| : | SVM-Poly   | 0.4362  | 0.5934  | 0.5148      | -         |
| : | SVM-Radial | 0.4423  | 0.6012  | 0.5217      | -         |

Таблица 12. Классификация направления изменения доходности по важным для компании Фольксваген словам (TF-IDF)

|                                               | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|-----------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                               | Logit         | 0.5746  | 0.6463  | 0.6105      | +         |
| Использование только<br>финансовой информации | Random_forest | 0.4953  | 0.6250  | 0.5602      | -         |
|                                               | Bayes_Naive   | 0.5153  | 0.6800  | 0.5977      | +         |
|                                               | Boosting      | 0.5244  | 0.6373  | 0.5808      | +         |
| финансовой информации                         | SVM-Linear    | 0.5653  | 0.6398  | 0.6025      | +         |
|                                               | SVM-Poly      | 0.5644  | 0.6664  | 0.6154      | +         |
|                                               | SVM-Radial    | 0.5551  | 0.6460  | 0.6006      | +         |
|                                               | Logit         | 0.4883  | 0.5589  | 0.5236      | -         |
|                                               | Random_forest | 0.5123  | 0.5251  | 0.5187      | +         |
| Использование только                          | Bayes_Naive   | 0.5006  | 0.5369  | 0.5187      | +         |
| новостной информации                          | Boosting      | 0.4865  | 0.5510  | 0.5187      | -         |
| (текущая)                                     | SVM-Linear    | 0.4866  | 0.5507  | 0.5187      | -         |
|                                               | SVM-Poly      | 0.5107  | 0.5327  | 0.5217      | +         |
|                                               | SVM-Radial    | 0.5082  | 0.5273  | 0.5177      | +         |
|                                               | Logit         | 0.4763  | 0.5679  | 0.5221      | -         |
|                                               | Random_forest | 0.5133  | 0.5252  | 0.5192      | +         |
| Использование                                 | Bayes_Naive   | 0.5029  | 0.5337  | 0.5183      | +         |
| лагированной новостной                        | Boosting      | 0.4766  | 0.5441  | 0.5104      | -         |
| информации                                    | SVM-Linear    | 0.4668  | 0.5696  | 0.5182      | -         |
|                                               | SVM-Poly      | 0.5119  | 0.5325  | 0.5222      | +         |
|                                               | SVM-Radial    | 0.5133  | 0.5252  | 0.5192      | +         |
|                                               | Logit         | 0.5531  | 0.6579  | 0.6055      | +         |
|                                               | Random_forest | 0.5287  | 0.5995  | 0.5641      | +         |
| 0.4                                           | Bayes_Naive   | 0.5006  | 0.5369  | 0.5187      | +         |
| Оба канала информации (текущая)               | Boosting      | 0.5458  | 0.6495  | 0.5976      | +         |
| (текущан)                                     | SVM-Linear    | 0.4864  | 0.5667  | 0.5265      | -         |
|                                               | SVM-Poly      | 0.5107  | 0.5327  | 0.5217      | +         |
|                                               | SVM-Radial    | 0.5285  | 0.6373  | 0.5829      | +         |
|                                               | Logit         | 0.5371  | 0.6692  | 0.6031      | +         |
| 0.4                                           | Random_forest | 0.4877  | 0.6476  | 0.5677      | -         |
| Оба канала информации                         | Bayes_Naive   | 0.5029  | 0.5337  | 0.5183      | +         |
| (HODOCTH HAFHMADAHHI IA)                      |               |         |         |             |           |
| (новости лагированные)                        | Boosting      | 0.5125  | 0.6602  | 0.5864      | +         |

| ml_typ | e ml_sd_a    | ml_sd_b | ml_accuracy | ml_better |
|--------|--------------|---------|-------------|-----------|
| SVM-P  | oly 0.5119   | 0.5325  | 0.5222      | +         |
| SVM-R  | adial 0.4997 | 0.6475  | 0.5736      | _         |

Таблица 13. Классификация масштаба доходности по важным для компании словам Источник: составлено автором

|                                            | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|--------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                            | Logit         | 0.4253  | 0.6083  | 0.5168      | -         |
|                                            | Random_forest | 0.4263  | 0.5597  | 0.4930      | -         |
| **                                         | Bayes_Naive   | 0.4908  | 0.6255  | 0.5581      | -         |
| Использование только финансовой информации | Boosting      | 0.4759  | 0.6345  | 0.5552      | -         |
| финансовой информации                      | SVM-Linear    | 0.4701  | 0.6108  | 0.5404      | -         |
|                                            | SVM-Poly      | 0.4725  | 0.6183  | 0.5454      | -         |
|                                            | SVM-Radial    | 0.4919  | 0.6401  | 0.5660      | -         |
|                                            | Logit         | 0.4740  | 0.5596  | 0.5168      | -         |
|                                            | Random_forest | 0.4657  | 0.5581  | 0.5119      | -         |
| Использование только                       | Bayes_Naive   | 0.4947  | 0.5289  | 0.5118      | -         |
| новостной информации                       | Boosting      | 0.4572  | 0.5605  | 0.5089      | -         |
| (текущая)                                  | SVM-Linear    | 0.4596  | 0.5502  | 0.5049      | -         |
|                                            | SVM-Poly      | 0.4825  | 0.5174  | 0.5000      | -         |
|                                            | SVM-Radial    | 0.4669  | 0.5450  | 0.5060      | -         |
|                                            | Logit         | 0.4963  | 0.5363  | 0.5163      | -         |
|                                            | Random_forest | 0.4666  | 0.5541  | 0.5103      | -         |
| Использование                              | Bayes_Naive   | 0.4751  | 0.5712  | 0.5232      | -         |
| лагированной новостной                     | Boosting      | 0.4680  | 0.5549  | 0.5114      | -         |
| информации                                 | SVM-Linear    | 0.4868  | 0.5458  | 0.5163      | -         |
|                                            | SVM-Poly      | 0.4713  | 0.5336  | 0.5025      | -         |
|                                            | SVM-Radial    | 0.4700  | 0.5429  | 0.5065      | -         |
|                                            | Logit         | 0.4678  | 0.6111  | 0.5395      | -         |
|                                            | Random_forest | 0.4760  | 0.5830  | 0.5295      | -         |
|                                            | Bayes_Naive   | 0.4952  | 0.5323  | 0.5138      | -         |
| Оба канала информации                      | Boosting      | 0.4856  | 0.6268  | 0.5562      | -         |
| (текущая)                                  | SVM-Linear    | 0.4558  | 0.5520  | 0.5039      | -         |
|                                            | SVM-Poly      | 0.4114  | 0.5962  | 0.5038      | -         |
|                                            | SVM-Radial    | 0.4454  | 0.6611  | 0.5532      | -         |
|                                            | Logit         | 0.5152  | 0.5924  | 0.5538      | +         |
|                                            | Random_forest | 0.4801  | 0.5821  | 0.5311      | -         |
|                                            | Bayes_Naive   | 0.4639  | 0.5923  | 0.5281      | -         |
| Оба канала информации                      | Boosting      | 0.4628  | 0.6585  | 0.5607      | -         |
| (новости ланированные)                     | SVM-Linear    | 0.4873  | 0.5434  | 0.5153      | -         |
|                                            | SVM-Poly      | 0.4630  | 0.5399  | 0.5014      | -         |
|                                            | SVM-Radial    | 0.4679  | 0.6691  | 0.5685      |           |

## Результаты проведенного анализа по компании BMW



Таблица 1. ARIMA-модель для модели с применением сентимент-анализа

Источник: составлено автором

|           | estimate | sd     | t_stat   | pi_val |  |
|-----------|----------|--------|----------|--------|--|
| ar1       | 0.2119   | 0.0306 | 6.9141   | 0.0000 |  |
| intercept | 0.0004   | 0.0006 | 0.5995   | 0.5489 |  |
| sent_2    | -0.0002  | 0.0001 | - 1.4572 | 0.1451 |  |
| AIC       | - 5 464  |        |          |        |  |
| BIC       | - 5 445  |        |          |        |  |
| n.obs     | 1 016    |        |          |        |  |

Таблица 2. Прогнозирование больших по модулю доходностей с использованием сентимент-анализа

| int_a_lm             | int_b_lm | cor_lm | pv_lm  |  |
|----------------------|----------|--------|--------|--|
| <b>bmw</b> $-0.1072$ | 0.1605   | 0.0272 | 0.7397 |  |

Таблица 3. Прогнозирование доходностей с использованием ML-моделей Источник: составлено автором

|                                       | kernel_svm | int_a_svm | int_b_svm | cor_svm | pv_svm |
|---------------------------------------|------------|-----------|-----------|---------|--------|
|                                       | Linear     | 0.0669    | 0.2497    | 0.1596  | 0.0049 |
| Только финансы                        | Poly       | 0.0626    | 0.2456    | 0.1554  | 0.0062 |
|                                       | Radial     | 0.0672    | 0.2499    | 0.1599  | 0.0048 |
| ar.                                   | Linear     | -0.0885   | 0.0990    | 0.0053  | 0.9255 |
| Только сентимент в<br>усеченной форме | Poly       | -0.0848   | 0.1027    | 0.0091  | 0.8740 |
| уссченной форме                       | Radial     | -0.0632   | 0.1241    | 0.0307  | 0.5906 |
| ar.                                   | Linear     | -0.0988   | 0.0887    | -0.0051 | 0.9284 |
| Только сентимент в<br>значимой форме  | Poly       | -0.0601   | 0.1272    | 0.0339  | 0.5533 |
| значимой форме                        | Radial     | -0.0554   | 0.1319    | 0.0386  | 0.4993 |
| _                                     | Linear     | 0.0625    | 0.2455    | 0.1553  | 0.0062 |
| Финансы + усеченная                   | Poly       | 0.0650    | 0.2479    | 0.1578  | 0.0054 |
| форма сентимента                      | Radial     | 0.0498    | 0.2335    | 0.1429  | 0.0119 |
| _                                     | Linear     | 0.0416    | 0.2257    | 0.1348  | 0.0177 |
| Финансы + значимая форма сентимента   | Poly       | 0.0200    | 0.2051    | 0.1135  | 0.0461 |
| форма сентимента                      | Radial     | 0.0236    | 0.2085    | 0.1171  | 0.0397 |

Таблица 4. Прогнозирование больших доходностей с использованием ML-моделей Источник: составлено автором

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | kernel_svm | int_a_svm | int_b_svm | cor_svm | pv_svm |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|-----------|---------|--------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Linear     | 0.0197    | 0.2814    | 0.1533  | 0.0594 |
| Только финансы                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Poly       | 0.0128    | 0.2750    | 0.1464  | 0.0718 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Radial     | 0.0153    | 0.2774    | 0.1490  | 0.0670 |
| The state of the s | Linear     | -0.1121   | 0.1557    | 0.0222  | 0.7860 |
| Только сентимент в<br>усеченной форме                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Poly       | -0.1088   | 0.1589    | 0.0255  | 0.7554 |
| усеченной форме                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Radial     | -0.1182   | 0.1496    | 0.0160  | 0.8450 |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Linear     | -0.0456   | 0.2202    | 0.0889  | 0.2761 |
| Только сентимент в<br>значимой форме                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Poly       | -0.0410   | 0.2246    | 0.0935  | 0.2521 |
| значимой формс                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Radial     | -0.2365   | 0.0284    | -0.1059 | 0.1941 |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Linear     | 0.0468    | 0.3061    | 0.1796  | 0.0269 |
| Финансы и усеченная                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Poly       | 0.0320    | 0.2927    | 0.1652  | 0.0420 |
| форма сентимента                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Radial     | 0.0166    | 0.2785    | 0.1502  | 0.0648 |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Linear     | 0.0411    | 0.3010    | 0.1741  | 0.0320 |
| Финансы и значимая                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Poly       | 0.0205    | 0.2821    | 0.1540  | 0.0582 |
| форма сентимента                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Radial     | 0.0124    | 0.2746    | 0.1461  | 0.0725 |

Таблица 5. Классификация по направлению движения акций с использованием методов машинного обучения и сентимент-анализа

|                           | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|---------------------------|---------------|---------|---------|-------------|-----------|
|                           | Logit         | 0.5461  | 0.6512  | 0.5987      | +         |
|                           | Random_forest | 0.4457  | 0.5995  | 0.5226      | -         |
| Использование             | Bayes_Naive   | 0.5383  | 0.6236  | 0.5809      | +         |
| только финансовой         | Boosting      | 0.5537  | 0.6199  | 0.5868      | +         |
| информации                | SVM-Linear    | 0.5147  | 0.6531  | 0.5839      | +         |
|                           | SVM-Poly      | 0.5381  | 0.6473  | 0.5927      | +         |
|                           | SVM-Radial    | 0.5337  | 0.6260  | 0.5798      | +         |
|                           | Logit         | 0.4893  | 0.5698  | 0.5295      | -         |
| Использование             | Random_forest | 0.4307  | 0.6047  | 0.5177      | -         |
| только новостной          | Bayes_Naive   | 0.3933  | 0.5930  | 0.4931      | -         |
| информации                | Boosting      | 0.4495  | 0.5956  | 0.5226      | -         |
| (текущая и первый         | SVM-Linear    | 0.5229  | 0.5362  | 0.5296      | +         |
| лаг)                      | SVM-Poly      | 0.5229  | 0.5362  | 0.5296      | +         |
|                           | SVM-Radial    | 0.4621  | 0.6010  | 0.5315      | -         |
|                           | Logit         | 0.4849  | 0.5586  | 0.5217      | -         |
| Использование             | Random_forest | 0.4302  | 0.5932  | 0.5117      | -         |
| лагированной<br>новостной | Bayes_Naive   | 0.4380  | 0.6013  | 0.5197      | -         |
|                           | Boosting      | 0.4416  | 0.5819  | 0.5117      | -         |
| информации                | SVM-Linear    | 0.5229  | 0.5362  | 0.5296      | +         |
|                           | SVM-Poly      | 0.5229  | 0.5362  | 0.5296      | +         |

|                                 | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|---------------------------------|---------------|---------|---------|-------------|-----------|
|                                 | SVM-Radial    | 0.4563  | 0.6400  | 0.5482      | -         |
|                                 | Logit         | 0.5352  | 0.6504  | 0.5928      | +         |
|                                 | Random_forest | 0.4954  | 0.5952  | 0.5453      | -         |
| Оба канала                      | Bayes_Naive   | 0.5220  | 0.6004  | 0.5612      | +         |
| информации<br>(текущая и первый | Boosting      | 0.5507  | 0.6327  | 0.5917      | +         |
| лаг)                            | SVM-Linear    | 0.5205  | 0.6453  | 0.5829      | +         |
| ,                               | SVM-Poly      | 0.5343  | 0.6453  | 0.5898      | +         |
|                                 | SVM-Radial    | 0.5407  | 0.6270  | 0.5838      | +         |
|                                 | Logit         | 0.5371  | 0.6622  | 0.5997      | +         |
|                                 | Random_forest | 0.4881  | 0.6577  | 0.5729      | -         |
| Оба канала                      | Bayes_Naive   | 0.4955  | 0.6286  | 0.5621      | -         |
| информации<br>(новости          | Boosting      | 0.5543  | 0.6430  | 0.5987      | +         |
| лагированные)                   | SVM-Linear    | 0.5109  | 0.6589  | 0.5849      | +         |
| 1 " ")                          | SVM-Poly      | 0.5271  | 0.6663  | 0.5967      | +         |
|                                 | SVM-Radial    | 0.5075  | 0.6583  | 0.5829      | +         |

Таблица 6. Классификация по размаху движения с использованием ML и сентиментов Источник: составлено автором

|                           | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|---------------------------|---------------|---------|---------|-------------|-----------|
|                           | Logit         | 0.4219  | 0.6255  | 0.5237      | -         |
|                           | Random_forest | 0.4726  | 0.6301  | 0.5514      | -         |
| Использование             | Bayes_Naive   | 0.5288  | 0.6330  | 0.5809      | +         |
| только финансовой         | Boosting      | 0.5256  | 0.6500  | 0.5878      | +         |
| информации                | SVM-Linear    | 0.4724  | 0.5789  | 0.5257      | -         |
|                           | SVM-Poly      | 0.5102  | 0.5983  | 0.5543      | +         |
|                           | SVM-Radial    | 0.5075  | 0.6564  | 0.5819      | +         |
|                           | Logit         | 0.4496  | 0.5585  | 0.5040      | -         |
| Использование             | Random_forest | 0.4490  | 0.6003  | 0.5247      | -         |
| только новостной          | Bayes_Naive   | 0.4446  | 0.5553  | 0.5000      | -         |
| информации                | Boosting      | 0.4413  | 0.5352  | 0.4882      | -         |
| (текущая и первый         | SVM-Linear    | 0.4407  | 0.5536  | 0.4971      | -         |
| лаг)                      | SVM-Poly      | 0.4658  | 0.5383  | 0.5021      | -         |
|                           | SVM-Radial    | 0.4560  | 0.5834  | 0.5197      | -         |
|                           | Logit         | 0.4038  | 0.5529  | 0.4784      | -         |
|                           | Random_forest | 0.4686  | 0.5906  | 0.5296      | -         |
| Использование             | Bayes_Naive   | 0.4589  | 0.5787  | 0.5188      | -         |
| лагированной<br>новостной | Boosting      | 0.4598  | 0.5482  | 0.5040      | -         |
| информации                | SVM-Linear    | 0.4045  | 0.5663  | 0.4854      | -         |
| • •                       | SVM-Poly      | 0.4513  | 0.5487  | 0.5000      | -         |
|                           | SVM-Radial    | 0.4894  | 0.5521  | 0.5207      | -         |
|                           | Logit         | 0.4278  | 0.5862  | 0.5070      | -         |
| Оба канала<br>информации  | Random_forest | 0.4901  | 0.6204  | 0.5553      | -         |
|                           | Bayes_Naive   | 0.4883  | 0.6418  | 0.5651      | -         |
|                           |               |         |         |             |           |

|                        | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|------------------------|---------------|---------|---------|-------------|-----------|
| (текущая и первый      | Boosting      | 0.5233  | 0.6542  | 0.5887      | +         |
| лаг)                   | SVM-Linear    | 0.4593  | 0.5566  | 0.5079      | -         |
|                        | SVM-Poly      | 0.4865  | 0.6300  | 0.5583      | -         |
|                        | SVM-Radial    | 0.4801  | 0.6661  | 0.5731      | -         |
|                        | Logit         | 0.3955  | 0.6104  | 0.5030      | -         |
|                        | Random_forest | 0.5022  | 0.6479  | 0.5751      | +         |
| Оба канала             | Bayes_Naive   | 0.4945  | 0.6181  | 0.5563      | -         |
| информации<br>(новости | Boosting      | 0.5089  | 0.6273  | 0.5681      | +         |
| ланированные)          | SVM-Linear    | 0.4655  | 0.5781  | 0.5218      | -         |
| ,                      | SVM-Poly      | 0.4815  | 0.6489  | 0.5652      | -         |
|                        | SVM-Radial    | 0.5086  | 0.6552  | 0.5819      | +         |

Таблица 7. ARIMA-модель для БМВ с выделением топиков по методу LDA Источник: составлено автором

|           | estimate | sd     | t_stat  | pi_val |  |
|-----------|----------|--------|---------|--------|--|
| ar1       | 0.2067   | 0.0307 | 6.7257  | 0.0000 |  |
| intercept | -0.0001  | 0.0008 | -0.1387 | 0.8897 |  |
| topik_5_2 | -0.0119  | 0.0059 | -2.0256 | 0.0428 |  |
| topik_7_2 | 0.0102   | 0.0058 | 1.7512  | 0.0799 |  |
| topik_7_3 | 0.0114   | 0.0058 | 1.9597  | 0.0500 |  |
| AIC       | - 5 467  |        |         |        |  |
| BIC       | -5437    |        |         |        |  |
| n.obs     | 1 016    |        |         |        |  |

Статистически значимыми являются тематические группы, затрагивающие судебные разбирательства и вопросы, связанные с производством автомобилей, функционированием заводов компании.

Таблица 8. Прогнозы доходностей с помощью модели с использованием LDA Источник: составлено автором

|     | int_a_arima_dir | int_b_arima_dir | cor_arima_dir | pv_arıma_dır |
|-----|-----------------|-----------------|---------------|--------------|
| bmw | - 0.1228        | 0.1004          | -0.0114       | 0.8425       |

Таблица 9. Прогнозы дневных доходностей с помощью ML и LDA-словарей Источник: составлено автором

|                          | kernel_svm | int_a_svm | int_b_svm | cor_svm | pv_svm |
|--------------------------|------------|-----------|-----------|---------|--------|
| <b>.</b>                 | Linear     | 0.0554    | 0.2725    | 0.1660  | 0.0034 |
| Финансовая<br>информация | Poly       | 0.0305    | 0.2493    | 0.1416  | 0.0127 |
| информация               | Radial     | 0.0214    | 0.2406    | 0.1326  | 0.0197 |

|                           | kernel_svm | int_a_svm | int_b_svm | cor_svm | pv_svm |
|---------------------------|------------|-----------|-----------|---------|--------|
| T.                        | Linear     | -0.1837   | 0.0382    | -0.0736 | 0.1967 |
| Только текущие<br>словари | Poly       | -0.1825   | 0.0395    | -0.0724 | 0.2043 |
| Словари                   | Radial     | -0.1087   | 0.1145    | 0.0029  | 0.9593 |
|                           | Linear     | -0.2197   | 0.0008    | -0.1108 | 0.0516 |
| Только лаги словарей      | Poly       | -0.1930   | 0.0286    | -0.0832 | 0.1445 |
|                           | Radial     | -0.0895   | 0.1336    | 0.0223  | 0.6957 |
| 2                         | Linear     | 0.0138    | 0.2335    | 0.1252  | 0.0278 |
| 2 источника – текущие     | Poly       | 0.0072    | 0.2272    | 0.1186  | 0.0371 |
| словари                   | Radial     | 0.0056    | 0.2258    | 0.1172  | 0.0396 |
| _                         | Linear     | -0.0146   | 0.2065    | 0.0971  | 0.0883 |
| 2 источника – лаги        | Poly       | -0.0363   | 0.1856    | 0.0756  | 0.1852 |
| словарей                  | Radial     | -0.0569   | 0.1656    | 0.0550  | 0.3353 |

Таблица 10. Классификация направления изменения доходностей на LDA-словарях Источник: составлено автором

|                                            | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|--------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                            | Logit         | 0.5461  | 0.6512  | 0.5987      | +         |
|                                            | Random_forest | 0.4457  | 0.5995  | 0.5226      | -         |
| 11                                         | Bayes_Naive   | 0.5383  | 0.6236  | 0.5809      | +         |
| Использование только финансовой информации | Boosting      | 0.5537  | 0.6199  | 0.5868      | +         |
| финансовой информации                      | SVM-Linear    | 0.5147  | 0.6531  | 0.5839      | +         |
|                                            | SVM-Poly      | 0.5381  | 0.6473  | 0.5927      | +         |
|                                            | SVM-Radial    | 0.5337  | 0.6260  | 0.5798      | +         |
|                                            | Logit         | 0.4477  | 0.5681  | 0.5079      | -         |
|                                            | Random_forest | 0.4409  | 0.5728  | 0.5069      | -         |
| Использование только                       | Bayes_Naive   | 0.4777  | 0.5973  | 0.5375      | -         |
| новостной информации                       | Boosting      | 0.4242  | 0.6151  | 0.5197      | -         |
| (текущая)                                  | SVM-Linear    | 0.4603  | 0.5773  | 0.5188      | -         |
|                                            | SVM-Poly      | 0.5241  | 0.5371  | 0.5306      | +         |
|                                            | SVM-Radial    | 0.4654  | 0.5603  | 0.5128      | _         |
|                                            | Logit         | 0.4288  | 0.5853  | 0.5071      | -         |
|                                            | Random_forest | 0.3932  | 0.6090  | 0.5011      | -         |
| Использование                              | Bayes_Naive   | 0.4372  | 0.5826  | 0.5099      | -         |
| лагированной новостной                     | Boosting      | 0.4529  | 0.5867  | 0.5198      | -         |
| информации                                 | SVM-Linear    | 0.4477  | 0.5464  | 0.4971      | -         |
|                                            | SVM-Poly      | 0.5229  | 0.5362  | 0.5296      | +         |
|                                            | SVM-Radial    | 0.5202  | 0.5371  | 0.5286      | +         |
|                                            | Logit         | 0.5240  | 0.6694  | 0.5967      | +         |
|                                            | Random_forest | 0.4959  | 0.6440  | 0.5699      | -         |
| Оба канала информации                      | Bayes_Naive   | 0.4757  | 0.6052  | 0.5404      | -         |
| (текущая)                                  | Boosting      | 0.5017  | 0.6304  | 0.5661      | +         |
|                                            | CIDAT:        | 0.5027  | 0.6217  | 0.5622      | +         |
|                                            | SVM-Linear    | 0.3027  | 0.0217  | 0.3022      | '         |

|                                              | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy ml_bett |   |
|----------------------------------------------|---------------|---------|---------|---------------------|---|
|                                              | SVM-Radial    | 0.5100  | 0.6321  | 0.5710              | + |
|                                              | Logit         | 0.5534  | 0.6597  | 0.6065              | + |
|                                              | Random_forest | 0.5041  | 0.6559  | 0.5800              | + |
| 0.4                                          | Bayes_Naive   | 0.4492  | 0.5784  | 0.5138              | - |
| Оба канала информации (новости лагированные) | Boosting      | 0.5101  | 0.6712  | 0.5907              | + |
| (новости лагированные)                       | SVM-Linear    | 0.5142  | 0.6793  | 0.5968              | + |
|                                              | SVM-Poly      | 0.5224  | 0.6612  | 0.5918              | + |
|                                              | SVM-Radial    | 0.5049  | 0.6294  | 0.5671              | + |

Таблица 11. Классификация магнитуды изменения доходностей на LDA-словарях Источник: составлено автором

|                                              | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|----------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                              | Logit         | 0.4219  | 0.6255  | 0.5237      | -         |
|                                              | Random_forest | 0.4726  | 0.6301  | 0.5514      | -         |
| 11                                           | Bayes_Naive   | 0.5288  | 0.6330  | 0.5809      | +         |
| Использование только финансовой нформации    | Boosting      | 0.5256  | 0.6500  | 0.5878      | +         |
| финансовой пформации                         | SVM-Linear    | 0.4724  | 0.5789  | 0.5257      | -         |
|                                              | SVM-Poly      | 0.5102  | 0.5983  | 0.5543      | +         |
|                                              | SVM-Radial    | 0.5075  | 0.6564  | 0.5819      | +         |
|                                              | Logit         | 0.4662  | 0.5772  | 0.5217      | -         |
|                                              | Random_forest | 0.4651  | 0.5623  | 0.5137      | -         |
| Использование только                         | Bayes_Naive   | 0.4742  | 0.5712  | 0.5227      | -         |
| новостной информации                         | Boosting      | 0.4949  | 0.5859  | 0.5404      | -         |
| (текущая)                                    | SVM-Linear    | 0.4519  | 0.5936  | 0.5227      | -         |
|                                              | SVM-Poly      | 0.4679  | 0.5934  | 0.5307      | -         |
|                                              | SVM-Radial    | 0.4591  | 0.6022  | 0.5306      | -         |
|                                              | Logit         | 0.4165  | 0.6012  | 0.5088      | -         |
|                                              | Random_forest | 0.4322  | 0.6096  | 0.5209      | -         |
| Использование                                | Bayes_Naive   | 0.4359  | 0.6035  | 0.5197      | -         |
| лагированной новостной                       | Boosting      | 0.4256  | 0.6475  | 0.5365      | -         |
| информации                                   | SVM-Linear    | 0.4242  | 0.6074  | 0.5158      | -         |
|                                              | SVM-Poly      | 0.4318  | 0.6237  | 0.5277      | _         |
|                                              | SVM-Radial    | 0.4351  | 0.6182  | 0.5266      | -         |
|                                              | Logit         | 0.4542  | 0.6013  | 0.5277      | -         |
|                                              | Random_forest | 0.5035  | 0.6445  | 0.5740      | +         |
| 0.4                                          | Bayes_Naive   | 0.5324  | 0.6254  | 0.5789      | +         |
| Оба канала информации<br>(текущая)           | Boosting      | 0.4868  | 0.6631  | 0.5749      | -         |
| (текущая)                                    | SVM-Linear    | 0.4489  | 0.5967  | 0.5228      | -         |
|                                              | SVM-Poly      | 0.4709  | 0.6339  | 0.5524      | -         |
|                                              | SVM-Radial    | 0.5207  | 0.6431  | 0.5819      | +         |
| 0.4                                          | Logit         | 0.4099  | 0.6038  | 0.5069      | -         |
| Оба канала информации (новости лагированные) | Random_forest | 0.5123  | 0.6320  | 0.5721      | +         |
| (повости лагированные)                       | Bayes_Naive   | 0.4299  | 0.6448  | 0.5373      | -         |
|                                              | _             |         |         |             |           |

| ml | _type    | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|----|----------|---------|---------|-------------|-----------|
| Bo | osting   | 0.5110  | 0.6548  | 0.5829      | +         |
| SV | M-Linear | 0.4354  | 0.6179  | 0.5266      | -         |
| SV | M-Poly   | 0.4382  | 0.6172  | 0.5277      | -         |
| SV | M-Radial | 0.4680  | 0.6210  | 0.5445      | _         |

Таблица 12. Классификация направления изменения доходности по важным для компании БМВ словам (TF-IDF)

|                                            | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|--------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                            | Logit         | 0.5461  | 0.6512  | 0.5987      | +         |
|                                            | Random_forest | 0.4457  | 0.5995  | 0.5226      | -         |
| п                                          | Bayes_Naive   | 0.5383  | 0.6236  | 0.5809      | +         |
| Использование только финансовой информации | Boosting      | 0.5537  | 0.6199  | 0.5868      | +         |
| финансовой информации                      | SVM-Linear    | 0.5147  | 0.6531  | 0.5839      | +         |
|                                            | SVM-Poly      | 0.5381  | 0.6473  | 0.5927      | +         |
|                                            | SVM-Radial    | 0.5337  | 0.6260  | 0.5798      | +         |
|                                            | Logit         | 0.5040  | 0.5789  | 0.5414      | +         |
|                                            | Random_forest | 0.4986  | 0.5685  | 0.5335      | -         |
| Использование только                       | Bayes_Naive   | 0.4579  | 0.5795  | 0.5187      | -         |
| новостной информации                       | Boosting      | 0.4953  | 0.5600  | 0.5276      | -         |
| (текущая)                                  | SVM-Linear    | 0.4982  | 0.5729  | 0.5355      | -         |
|                                            | SVM-Poly      | 0.5197  | 0.5454  | 0.5325      | +         |
|                                            | SVM-Radial    | 0.4996  | 0.5675  | 0.5335      | -         |
|                                            | Logit         | 0.4950  | 0.5929  | 0.5439      | -         |
|                                            | Random_forest | 0.4790  | 0.6009  | 0.5399      | -         |
| Использование                              | Bayes_Naive   | 0.4404  | 0.5705  | 0.5054      | -         |
| лагированной новостной                     | Boosting      | 0.4939  | 0.5663  | 0.5301      | -         |
| информации                                 | SVM-Linear    | 0.4898  | 0.5763  | 0.5331      | -         |
|                                            | SVM-Poly      | 0.5187  | 0.5455  | 0.5321      | +         |
|                                            | SVM-Radial    | 0.4912  | 0.5867  | 0.5390      | -         |
|                                            | Logit         | 0.5303  | 0.6612  | 0.5958      | +         |
|                                            | Random_forest | 0.4919  | 0.5890  | 0.5404      | -         |
| 0.4                                        | Bayes_Naive   | 0.4553  | 0.5919  | 0.5236      | -         |
| Оба канала информации (текущая)            | Boosting      | 0.5469  | 0.6445  | 0.5957      | +         |
| (текущан)                                  | SVM-Linear    | 0.4973  | 0.5757  | 0.5365      | -         |
|                                            | SVM-Poly      | 0.5197  | 0.5454  | 0.5325      | +         |
|                                            | SVM-Radial    | 0.5052  | 0.6054  | 0.5553      | +         |
|                                            | Logit         | 0.5384  | 0.6582  | 0.5983      | +         |
| 0.6                                        | Random_forest | 0.4598  | 0.5985  | 0.5291      | -         |
| Оба канала информации                      | Bayes Naive   | 0.4335  | 0.6109  | 0.5222      | -         |
| (новости лагированные)                     | -             |         |         |             |           |
| ,                                          | Boosting      | 0.5276  | 0.6393  | 0.5834      | +         |

| ml_ | type m       | l_sd_a ml | _sd_b ml_ | _accuracy n | nl_better |
|-----|--------------|-----------|-----------|-------------|-----------|
| SVI | M-Poly 0.:   | 5187 0.5  | 5455 0.53 | 321 +       |           |
| SVN | M-Radial 0.4 | 4813 0.6  | 5245 0.5  | 529 -       |           |

Таблица 13. Классификация масштаба доходности по важным для компании словам Источник: составлено автором

|                                            | ml_type       | ml_sd_a | ml_sd_b | ml_accuracy | ml_better |
|--------------------------------------------|---------------|---------|---------|-------------|-----------|
|                                            | Logit         | 0.4219  | 0.6255  | 0.5237      | -         |
|                                            | Random_forest | 0.4726  | 0.6301  | 0.5514      | -         |
|                                            | Bayes_Naive   | 0.5288  | 0.6330  | 0.5809      | +         |
| Использование только финансовой информации | Boosting      | 0.5256  | 0.6500  | 0.5878      | +         |
| финансовой информации                      | SVM-Linear    | 0.4724  | 0.5789  | 0.5257      | -         |
|                                            | SVM-Poly      | 0.5102  | 0.5983  | 0.5543      | +         |
|                                            | SVM-Radial    | 0.5075  | 0.6564  | 0.5819      | +         |
|                                            | Logit         | 0.4433  | 0.5253  | 0.4843      | -         |
|                                            | Random_forest | 0.4530  | 0.5393  | 0.4961      | -         |
| Использование только                       | Bayes_Naive   | 0.4759  | 0.5260  | 0.5010      | -         |
| новостной информации                       | Boosting      | 0.4541  | 0.5421  | 0.4981      | -         |
| (текущая)                                  | SVM-Linear    | 0.4381  | 0.5246  | 0.4814      | -         |
|                                            | SVM-Poly      | 0.4712  | 0.5327  | 0.5020      | -         |
|                                            | SVM-Radial    | 0.4526  | 0.5436  | 0.4981      | -         |
|                                            | Logit         | 0.4385  | 0.5190  | 0.4788      | -         |
|                                            | Random_forest | 0.4787  | 0.5124  | 0.4956      | -         |
| Использование                              | Bayes_Naive   | 0.4576  | 0.5374  | 0.4975      | -         |
| лагированной новостной                     | Boosting      | 0.4501  | 0.5431  | 0.4966      | -         |
| информации                                 | SVM-Linear    | 0.4408  | 0.5187  | 0.4798      | -         |
|                                            | SVM-Poly      | 0.4845  | 0.5146  | 0.4995      | -         |
|                                            | SVM-Radial    | 0.4714  | 0.5217  | 0.4966      | -         |
|                                            | Logit         | 0.4056  | 0.6024  | 0.5040      | -         |
|                                            | Random_forest | 0.5033  | 0.6172  | 0.5603      | +         |
|                                            | Bayes_Naive   | 0.4558  | 0.5697  | 0.5127      | -         |
| Оба канала информации                      | Boosting      | 0.5205  | 0.6551  | 0.5878      | +         |
| (текущая)                                  | SVM-Linear    | 0.4392  | 0.5216  | 0.4804      | -         |
|                                            | SVM-Poly      | 0.4712  | 0.5327  | 0.5020      | -         |
|                                            | SVM-Radial    | 0.4796  | 0.6626  | 0.5711      | -         |
|                                            | Logit         | 0.4015  | 0.6195  | 0.5105      | -         |
|                                            | Random_forest | 0.4780  | 0.6355  | 0.5568      | -         |
|                                            | Bayes_Naive   | 0.4657  | 0.5471  | 0.5064      | -         |
| Оба канала информации                      | Boosting      | 0.4910  | 0.6879  | 0.5895      | -         |
| (новости ланированные)                     | SVM-Linear    | 0.4458  | 0.5038  | 0.4748      | -         |
|                                            | SVM-Poly      | 0.4845  | 0.5146  | 0.4995      | -         |
|                                            | SVM-Radial    | 0.4872  | 0.6522  | 0.5697      | -         |