Compile Principle: A Simple SDT

Spring 2025

Homework 3 — March 19

Lecturer: Feng Xiaobing Completed by: 2022K8009929010 Zhang Jiawei

3.1

词素序列如下:

3.2

- (1) 字母表为 {a,b},第一个和最后一个字符为 a,中间字符任意的字符串。
- (2) 字母表为 {a,b} 的所有字符串。
- (3) 字母表为 {a,b},最后三个字符为 aaa、aab、aba、abb 的所有字符串。

3.3

- (1) 记串 csnt = (b|c|d|f|g|h|j|k|l|m|n|p|q|r|s|t|v|w|x|y|z),
 则正则表达式为: $csnt^*a^*(a|csnt)^*e^*(e|csnt)^*i^*(i|csnt)^*o^*(o|csnt)^*u^*(u|csnt)^*$
- (2) $b^*(ab|a)^*$
- (3) $b^*a^*(b|\varepsilon)^*a*$

3.4

(1) 设计 DFA 如下:

(2) 设计 DFA 如下:

3.5

- 起始状态为 0, 读入 a, 状态仍为 0;
- 读入 a, 状态变为 1;
- 读入 b, 状态变为 2;
- 读入 b,状态变为 3,接受。

或

- 起始状态为 0, 读入 a, 状态变为 1;
- 读入 a, 状态仍为 1;
- 读入 b, 状态变为 2;
- 读入b,状态变为3,接受。

3.6

3.6

(1) 初步画出的 NFA 如下:

然后使用子集构造法将其转换为 DFA:

首先计算各个状态的 ε -闭包:

- ε -闭包 $(q_0) = \{q_0, q_1, q_2\}$
- ε -闭包 $(q_1) = \{q_1, q_2\}$
- ε -闭包 $(q_2) = \{q_0, q_1, q_2\}$

构造 DFA 的状态转移表:

DFA 状态	a	b
$A = \{q_0, q_1, q_2\}$	$A = \{q_0, q_1, q_2\}$	$A = \{q_0, q_1, q_2\}$

从转移表可以看出,对于输入 a 和 b,DFA 都保持在同一个状态 A。 得到的 DFA 如下:

(2) 初步画出的 NFA 如下:

使用子集构造法将此 NFA 转换为 DFA:

首先计算 ε -闭包:

- ε-闭包 (q₀) = {q₀}
- ε-闭包 (q₁) = {q₁}
- ε-闭包 (q₂) = {q₂}
- ε -闭包 $(q_3) = \{q_3, q_4\}$
- ε -闭包 $(q_4) = \{q_4\}$

构造 DFA 的状态转移表:

DFA 状态	a	b
$A = \{q_0\}$	$\{q_0,q_1\}$	$\{q_0\}$
$B = \{q_0, q_1\}$	$\{q_0,q_1\}$	$\{q_0,q_2\}$
$C = \{q_0, q_2\}$	$\{q_0,q_1\}$	$\{q_0,q_3,q_4\}$
$D = \{q_0, q_3, q_4\}$	$\{q_0,q_1,q_4\}$	$\{q_0,q_4\}$
$E = \{q_0, q_1, q_4\}$	$\{q_0,q_1,q_4\}$	$\{q_0,q_2,q_4\}$
$F = \{q_0, q_2, q_4\}$	$\{q_0,q_1,q_4\}$	$\{q_0,q_3,q_4\}$
$G = \{q_0, q_4\}$	$\{q_0,q_1,q_4\}$	$\{q_0,q_4\}$

得到的 DFA 如下:

最小化后的 DFA 为:

3.7

所有能被3整除的正整数的二进制串能被正则表达式表示。

证明

我们可以基于数论知识构造一个识别能被 3 整除的二进制数的 DFA。对于任意二进制数, 如果它能被 3 整除,则它的值模 3 余 0。

考虑如何构造二进制数:

- 如果当前值为 n,读入 0 后,新值为 2n
- 如果当前值为 n,读入 1 后,新值为 2n+1

基于上述规则,我们可以跟踪读取过程中数值模3的余数变化:

当前余数	读入0后的余数	读入1后的余数
0	$(2 \times 0) \bmod 3 = 0$	$(2 \times 0 + 1) \bmod 3 = 1$
1	$(2 \times 1) \bmod 3 = 2$	$(2 \times 1 + 1) \bmod 3 = 0$
2	$(2 \times 2) \bmod 3 = 1$	$(2 \times 2 + 1) \bmod 3 = 2$

据此,我们可以构造一个3状态的DFA:

其中:

- q₀:表示当前数值模 3 余 0
- q₁:表示当前数值模3余1
- q2:表示当前数值模3余2

由于这个语言可以用 DFA 表示,由于 DFA 与正则语言等价,那么它一定可以用正则表达式表示。