ISyE 6739 — Summer 2017

Homework #7 (Modules 3.3–3.4) — Solutions

1. (Hines et al., 7-26. CLT.) 100 small bolts are packed in a box. Each weighs an average of 1 ounce, with a standard deviation of 0.1 ounce. Find the probability that a box weighs more than 102 ounces.

Solution: Let X_i be the weight of the *i*th bolt and let $Y = \sum_{i=1}^{100} X_i$ be the weight of the box. Note that $\mathsf{E}(X_i) = 1$, $\mathsf{Var}(X_i) = 0.01$, $i = 1, 2, \ldots, 100$.

Assuming that the X_i 's are independent, we use the central limit theorem to approximate the distribution of $Y \sim \text{Nor}(100, 1)$. Then

$$\Pr(Y > 102) \ = \ \Pr\Big(Z > \frac{102 - 100}{1}\Big) \ = \ 1 - \Phi(2) \ = \ 0.02275. \quad \diamondsuit$$

2. (Hines et al., 7–29(a). CLT.) A production process produces items, of which 8% are defective. A random sample of 200 items is selected every day and the number of defective items X is counted. Using the normal approximation to the binomial, find $\Pr(X \leq 16)$.

Solution: $p=0.08,\ n=200,\ np=16,\ \sqrt{npq}=3.84.$ Let's incorporate the "continuity correction," and then the CLT:

$$\begin{array}{lll} \Pr(X \leq 16) & = & \Pr(X \leq 16.5) \\ & \approx & \Pr\Big(Z \leq \frac{16.5 - np}{\sqrt{npq}}\Big) & (\text{where } Z \sim \operatorname{Nor}(0,1)) \\ & = & \Pr\Big(Z \leq \frac{16.5 - 16}{3.84}\Big) \\ & = & \Phi(0.13) = 0.55172. \quad \diamondsuit \end{array}$$

3. (Hines et al., 7–37. lognormal.) The random variable Y = ln(X) has a Nor(50, 25) distribution. Find the mean, variance, mode, and median of X.

Solution: I got these answers by directly plugging into the equations from the book. For example, in general, $\mathsf{E}[X] = \exp(\mu + \sigma^2/2) = e^{62.5}$. And similarly, $\mathsf{Var}(X) = e^{125}(e^{25} - 1)$, $\mathsf{median}(X) = e^{50}$, $\mathsf{mode}(X) = e^{25}$. \diamondsuit

- 4. Computer Exercises Random Variate Generation
 - (a) Let's start out with something easy the Uniform(0,1) distribution. To generate a Uniform(0,1) random variable in Excel, you simply type = RAND(). Copy an entire column of 100 of these guys and make a histogram. If things don't look particularly uniform, try the same exercise for 1000 observations. By the way, you can use the <F9> key to get an independent realization of your experiment.
 - (b) It's very easy to generate an Exponential(1) random variable in Excel. Just use

$$=-LN(RAND())$$

(This result uses the inverse transform method from Module 2.6.) Generate 1000 or so of these guys and make a nice histogram.

(c) In Excel, you can generate a Normal(0,1) random variable using

or

$$= \mathtt{SQRT}(-2 * \mathtt{LN}(\mathtt{RAND}())) * \mathtt{COS}(2 * \mathtt{PI}() * \mathtt{RAND}()) \qquad (\mathrm{Box-Muller\ method})$$

Generate a bunch of normals using one of the above equations and make a histogram.

(d) Triangular distribution. Generate two columns of Uniform(0,1)'s. In the third column, add up the respective entries from the previous two columns, e.g., C1
= A1 + B1, etc. Make a histogram of the third column. Guess what you get?

Solution: You get a triangular p.d.f. Surprise! \Diamond

(e) Normal distribution from the Central Limit Theorem. Generate twelve columns of Uniform(0,1)'s. In the 13th column, add up the respective entries from the previous 12 columns. Make a histogram of the 13th column. Guess what you get this time?

Solution: You get what looks like a normal p.d.f. The CLT works! \diamond

(f) Cauchy distribution. It turns out that you can generate a Cauchy random variable as the ratio of two i.i.d. Nor(0,1)'s. Make a histogram and comment. Does the CLT work for this distribution?

Solution: You get a mess that has extreme values. If you zoom in towards x = 0, it looks vaguely normal — but the tails are way too fat to actually be normal. If you try to apply the CLT, it fails — in fact, you get another Cauchy. The reason for the CLT failure is that the variance of the Cauchy is infinite, thus violating one of the CLT assumptions. \Diamond