1. What w and b would a hard-margin SVM give you for the following training data? Remember that $\gamma = \frac{1}{||w||}$. (6 points)

, w , -				
x_1	x_2	y		
-2	-2	1		
-2	-3	1		
-3	-2	1		
2	1	-1		
3	1	-1		
2	2	-1		

$$dir_w = (-4, -3)$$

$$V = \sqrt{4^2 + 3^2} = 2.5$$
 or $\frac{5}{2}$

$$\frac{5}{3} = \frac{1}{110011}$$
 $110011 = \frac{2}{5}$

normalize $dir_w \rightarrow \left(\frac{-4}{5}, -\frac{3}{5}\right) \cdot \frac{2}{5}$

$$-2.\frac{3}{5}-2.\frac{10}{5}=\frac{28}{5}$$

$$+\frac{10}{5}+\frac{12}{5}+\frac{13}{5}=1$$

$$+\frac{10}{5}+\frac{12}{5}+\frac{13}{5}=1$$

$$+\frac{23}{5}+\frac{23}{5}+\frac{23}{5}=1$$

$$W = \left(-\frac{8}{5}, -\frac{6}{5}\right)$$

$$b = -\frac{23}{5}.$$

2. Given w = (1,1) and b = 2, find the ξ (slack variable) for each training sample provided below. Include your answers in the table. (4 points)

10 10 10 10 10 10 10					
x_1	x_2	y	ξ		
-2	-1	1	2		
1	1	1	0		
1	2	-1	10		
2	2	-1	7		

$$\begin{aligned}
|.-2+|.-1+2| &= -1 + 2 = 1 \\
|.|+1.|+2| &= 4 \\
|.|+1.2+2| &= 5 - 6 = -1
\end{aligned}$$

$$|.2+|.2+2| &= 6 - 6 = -1$$