LowC SDS-PAGE

Anika Wiegard, Ilka Maria Axmann

Abstract

SDS-PAGE using gels with low crosslinking of acrylamide and bisacrylamide. This protocol can be used to separate phosphorylation forms of KaiC proteins.

Citation: Anika Wiegard, Ilka Maria Axmann LowC SDS-PAGE. protocols.io

https://www.protocols.io/view/lowc-sds-page-gysbxwe

Published: 17 Jan 2017

Guidelines

references:

1. SDS-PAGE modified from

Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage 780 t4. *Nature* 1970, 227(5259):680-5,

and

Green MR and Sambrook J: Molecular cloning: a laboratory manual - 4th ed. *Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2012*

2. low C content according to

Nishiwaki T, Satomi Y, Kitayama Y, Terauchi K, Kiyohara R, Takao T, Kondo T: A sequential program of dual phosphorylation of KaiC as a basis for circadian rhythm in cyanobacteria. *Embo J* 2007, 26:4029-4037.

Possible modifications:

The total acrylamide concentration (%T) and crosslinking of acrylamide and bis-acrylamide (%C) can be adjusted using the following formula (provided by Carl Roth

https://www.carlroth.com/downloads/ba/en/3/BA 3037 EN.pdf)

Vt = total gel volume (ml)

T = total gel concentration in % = % Acrylamide + % Bisacrylamide

C = % Crosslinking = (% Bisacrylamide x 100) / T

Va = Volume Gel A in ml

Vb = Volume Gel B in ml

 $Va = (T \times (100 - C) \times Vt) / 3000$

 $Vb = (T \times C \times Vt) / 200$

required chemicals/buffers

chemical/buffer comments

Rotiphorese® Gel A see materials tab
Rotiphorese® Gel B see materials tab

1.5 M Tris/HCl pH8.8

1 M Tris/HCl pH 6.8

TEMED

10 % (w/v) ammonium persulfate (APS)

20 % SDS (w/v)

2-propanol

1 x Tris-Glycine elctrophoresis buffersee buffer table5 x SDS Gel loading buffersee buffer tableRotiphorese® Blau Rsee materials tab

7 % acetic acid

Destaining solution see buffer table

buffer compositions:

name ingredients reference

1 x Tris-Glycine elctrophoresis buffer

5 x SDS Gel loading buffer

0.1 % (w/v) SDS 0.192 M Glycin

250 mM Tris

Green and Sambrook (2012)

250 mM Tris-HCl, pH 6,8

40 % (v/v) glycerol

8 % (w/v) SDS 100 mM DTT Green and Sambrook (2012)

0.1 % (w/v) bromophenol

blue

acetic acid: ethanol: H₂O

10:50:40 (v/v/v)

required equipment:

destaining solution

heating block glass plates, spacers, combs, gel casting unit gel chamber syringe power supply benchtop centrifuge horizontal shaker

Materials

Rotiphorese® Gel A 3037.2 by <u>Carl Roth</u>
Rotiphorese® Gel B 3039.2 by <u>Carl Roth</u>
Rotiphorese® Blau R 3074.1 by <u>Carl Roth</u>

Protocol

gel preparation

Step 1.

Clean glass plates, spacers, combs and all components with 70 % ethanol and assemble gel casting unit.

gel preparation

Step 2.

Place the comb between the glass plates and mark a line ca. 0.5 cm below the comb. Take out the comb again.

gel preparation

Step 3.

To prepare a 0.67 % C resolving gel mix the following ingredients:

Depending on the gel chamber, the volume has to be adjusted. You can adjust % T using the formula given in additional information.

For 10 ml	10 % T, 0.67 %C	11 % T, 0.67 %C	13 % T 0.67 %C
H2O	3.8 ml	3.44 ml	2.71
1.5 M Tris/HCl pH 8.8	2.5 ml	2.5 ml	2.5 ml
Rotiphorese® Gel A	3.31	3.64 ml	4.3 ml
Rotiphorese® Gel B	335 μΙ	370 μΙ	440 μΙ
20 % SDS	50 μΙ	50 μΙ	50 μΙ
TEMED	5 μΙ	5 μΙ	5 μΙ

For 20 ml	10 % T, 0.67 %C	11 % T, 0.67 %C	13 % T 0.67 %C
H2O	7.6 ml	6.88 ml	5,3
1.5 M Tris/HCl pH 8.8	5 ml	5 ml	5 ml
Rotiphorese® Gel A	6.62 ml	7.28 ml	8,6 ml
Rotiphorese® Gel B	670 μΙ	740 μΙ	880 μΙ
20 % SDS	100 μΙ	100 μΙ	100 μΙ
TEMED	10 μΙ	10 μΙ	10 μΙ

For 30 ml	10 % T, 0.67 %C	11 % T, 0.67 %C	13 % T 0.67 %C
H2O	11.4 ml	10.32 ml	7.95
1.5 M Tris/HCl pH 8.8	7.5 ml	7.5 ml	7.5 ml
Rotiphorese® Gel A	9.93	10.92 ml	12.9 ml
Rotiphorese® Gel B	1 ml	1.11 ml	1.32 ml
20 % SDS	150 μΙ	150 μΙ	150 μΙ
TEMED	15 μΙ	15 μΙ	15 μΙ

gel preparation

Step 4.

Pour a stop gel for each gel: take a 1 ml aliquot, add 40 μ l APS, and immediately pour between the glass plates. Wait until the stop gel is polymerized.

gel preparation

Step 5.

Add 50 μ l APS to the residual gel mixture (100 μ l for 20 ml total gel volume, 150 μ l for 30 ml total volume), mix gently, immediately pour resolving gel between the glass plates and overlay with 0.5 ml 2-propanol. Wait until separating gel is polymerized.

gel preparation

Step 6.

Pour of 2-propanol and dry carefully using a sheet of thin filter paper.

gel preparation

Step 7.

Mix the following ingredients (5 % T, 2.7 % C stacking gel):

Depending on the gel chamber, the volume has to be adjusted.

For 3 ml	5 % T, 2.7 %C	
H2O	1.89 ml	
1 M Tris/HCl pH 6.8	0,38 ml	
Rotiphorese® Gel A	0.49 ml	
Rotiphorese® Gel B	0.2 ml	
20 % SDS	15 μΙ	
TEMED	3 μΙ	

5 % T, 2.7 %C	
3.77	
0.75 ml	
1 ml	
0.4 ml	
30 μl	
6 μΙ	
	3.77 0.75 ml 1 ml 0.4 ml 30 µl

For 12 ml	5 % T, 2.7 %C	
H2O	7.56 ml	
1 M Tris pH 6.8	1.5 ml	
Acrylamid A	1.96 ml	
Acrylamid B	0.8 ml	
20 % SDS	60 µl	
TEMED	12 μΙ	

gel preparation

Step 8.

Add 30 μ l APS to the gel mixture (60 μ l for 6 ml total gel volume, 120 μ l for 12 ml total volume), mix gently, immediately pour between the glass plates on top of the resolving gel and place the comb between glass plates into the stacking gel. Wait until the stacking gel is polymerized.

If you use peqLab Twin ExW System, it will be better to place the combs before pouring the gel

sample preparation

Step 9.

Mix your protein sample with 5 x SDS Gel loading buffer (1x final concentration). For separation in mini gels use $0.75-3 \mu g$ of recombinant KaiC protein (55 kDa).

sample preparation

Step 10.

Denature for 3 min at 95 °C.

sample preparation

Step 11.

Spin down for 1 min at max. speed using a benchtop centrifuge.

electrophoresis

Step 12.

Remove comb and wash wells thoroughly with MilliQ using a syringe. Place gels in a gel chamber and fill with running buffer.

electrophoresis

Step 13.

Load samples into the bottom of the wells.

electrophoresis

Step 14.

Connect gel chamber with power supply and separate proteins at 120 V. When samples enter the separating gel, set voltage to 150-180 V.

staining

Step 15.

Disassemble gel chamber. Carefully separate glass plates and place gels in a plastic box with MiliQ.

staining

Step 16.

Incubate gel in destaining solution for 10 min to fixate proteins and remove SDS (SDS interferes with Coomassie Blue staining) under gentle agitation on a horizontal shaker.

staining

Step 17.

Pour off the water and incubate in Rotiphorese® Blau R for 10-30 min under gentle agitation. Use a lid to avoid evaporation of methanol.

staining

Step 18.

Remove Rotiphorese® Blau R (can be reused!!!) and rinse with MiliQ.

staining

Step 19.

Discard MiliQ and alternate incubation in destaining solution and 7 % acetic acid until the background of the gel is clear. You can add a tissue to soak up Coomassie.

Warnings

Always wear vinyl gloves, when handling acrylamide!

Discard staining solution (contains methanol and Coomassie blue) and destaining solutions (contains ethanol and acetic acid) in the appropriate liquid waste!