$$\omega = 0$$

$$\alpha = 0$$

$$\alpha = 0.4$$

$$\alpha = 0.6$$

$$\alpha = 0.7$$

$$\gamma = 0.247 \pm 0.003 \ \gamma = 0.248 \pm 0.003 \ \gamma = 0.248 \pm 0.001 \ \gamma = 0.245 \pm 0.003$$

$$\alpha = 1/2$$

$$\omega = 0.2$$

$$\omega = 0.5$$

$$\omega = 1/\sqrt{2}$$

$$\omega = 1$$

$$\gamma = 0.255 \pm 0.006 \ \gamma = 0.259 \pm 0.003 \ \gamma = 0.264 \pm 0.008 \ \gamma = 0.284 \pm 0.001$$

TABLE II: Finite size scaling exponents γ for the cases depicted in Fig. 7

FIG. 8: |r(t)| for $\alpha = 1/2$, $\omega = 1/\sqrt{2}$ and three different values of λ . In all cases N = 10000.

However, the numerical estimates seem to increase for larger values of ω ; in particular, for the case $\omega = 1$, the result for exponent γ is significatively larger than $\gamma = 1/4$.

B. Decoherence factor for the first order ESQPT

For the case $\omega \neq 0$, the Hamiltonian considered produce, in addition to the continuous ESQPT studied in the preceding subsection, a first order ESQPT at energy $E_c^{(1)}$. This critical energy can be estimated calculating the local minima in the energy surface $\mathcal{H}(\phi, \xi)$, as it is shown in Fig. 4. Inserting this value in Eq. (17) a critical coupling $\lambda_c^{(1)}$ is obtained. For the case $\alpha = 1/2$ and $\omega = 1/\sqrt{2}$ the first order EQSPT is obtained at $\lambda_c^{(1)} \approx 1.05$.

In Fig. 8 we show the exact result for the decoherence factor |r(t)| for $\alpha = 1/2$, $\omega = 1/\sqrt{2}$, and three different values of λ around $\lambda = \lambda_c^{(1)} \approx 1.05$. The most significative result is that