제3장 행렬연산

3.1 기본 개념

[정의 3.1] m×n 행렬 A에 대하여

- ① i번째 행의 j번째 원소 🖒 (i, j) 원소[성분] a_{ij}
- ② 행렬 A의 표현 ⇨ A = (a_{ij}) (1≤i≤m, 1≤j≤n)
- ③ m=n 일 때 ⇒ A는 n차 정방행렬(square matrix of order n)
- ④ A가 정방행렬일 때 ⇨ a_{ii}(1≤i≤n)를 A의 주대각원소[성분]

[정의 3.2] n차 정방행렬 A = (a_{ii})에 대하여

- 1) a_{ij}=0 (단, i≠j) ⇒ 대각행렬(diagonal matrix)
- ① a_{ii}=c (1≤i≤n) ⇨ 스칼라행렬(scalar matrix)
- ② a_{ii}=1 (1≤i≤n) ⇒ 단위행렬(identity matrix)
- 2) a_{ii}=0 (단, i<j) ⇒ 하삼각행렬(lower triangular matrix)
- 3) a_{ii}=0 (단, i>j) ⇒ 상삼각행렬(upper triangular matrix)

[정의 3.3] 행렬의 상등

A = (a_{ij})와 B = (b_{ij})를 m×n 행렬이라 할 때, 모든 i,j (1≤i≤m, 1≤j≤n) 에 대해 a_{ij} = b_{ij} 인 경우 A와 B는 서로 같다 또는 상등하다 고 말하다.

3.2 행렬의 합

[정의 3.4] 행렬의 합

A = (a_{ij})와 B = (b_{ij})를 m×n 행렬이라 하면 A와 B의 합(sum)은 m×n 행렬 C = (c_{ii})로서

 $c_{ij} = a_{ij} + b_{ij} (1 \le i \le m, 1 \le j \le n)$

으로 정의된다.

이런 경우 A + B = C 로 표시한다.

[정리 3.1] 행렬의 합의 성질

 M_{mn} 이 $m \times n$ 행렬 전체의 집합이고, A, B, $C \in M_{mn}$ 일 때 다음이 성립한다.

- (1) A + B = B + A
- (2) A + (B + C) = (A + B) + C
- (3) A + O = A를 만족하는 유일한 행렬 O가 M_{mn}에 존재함 ※ 행렬 O: m×n 크기의 영행렬(zero matrix)

(4) A + D = O을 만족하는 행렬 D가 A에 대해 유일하게 M_{mn}에 존재함

※ 행렬 D = -A라 표기하며 A의 음행렬(negative matrix)

3.3 행렬의 스칼라곱

[정의 3.5] 행렬의 스칼라 배

 $A = (a_{ij})$ 가 $m \times n$ 행렬이고 c를 임의의 수라고 하면

A와 c의 스칼라 배(scalar multiple) cA는 m×n 행렬로서

 $cA = (ca_{ij}) (1 \le i \le m, 1 \le j \le n)$

으로 정의된다.

[정리 3.2] 행렬의 스칼라 배의 성질

A, B, C ∈ M_{mn}, c, d를 임의의 수

- (1) (c+d)A = cA + dA
- (2) c(A+B) = cA + cB
- (3) c(dA) = (cd)A
- (4) 1A = A

3.4 행렬의 곱

[정의 3.6] $A = (a_{ij})$ 가 $m \times p$ 행렬이고, $B = (b_{ij})$ 가 $p \times n$ 행렬이면 A, B의 곱 AB는 $m \times n$ 행렬 $C = (c_{ij})$ 로 다음과 같이 정의한다.

$$c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj} \ (1 \le i \le m, \ 1 \le j \le n)$$

이런 경우 AB = C로 표시한다.

[유의사항] 행렬 곱의 특이 사항

 $m \times p$ 행렬 A와 $p \times n$ 행렬 B에 대해 AB는 정의되지만

BA는 다음 4가지 경우가 있음

- ① BA가 정의되지 않는 경우 (n≠m)
- ② BA가 정의되나, AB와 크기가 같지 않은 경우(n=m, p≠n) 즉, AB는 n×n 행렬, BA는 p×p 행렬이다.
- ③ BA가 정의되고, AB와 크기도 같으며 AB≠BA 인 경우
- ③ BA가 정의되고, AB와 크기도 같으며 AB=BA 인 경우

[정리 3.3] 행렬의 곱의 성질

행렬 A, B, C와 임의의 수 c에 대해

행렬의 곱이 정의되는 경우, 다음이 성립한다.

- (1) A(B+C) = AB + AC
- (2) (A+B)C = AC + BC
- (3) A(BC) = (AB)C
- (4) A(cB) = c(AB) = (cA)B

[유의사항] 행렬 곱의 항등원 행렬의 곱에도 항등원이 있는가?

- 임의의 수 a에 대해 1a = a1 = a를 만족하는 수 1과 유사한 기능을 갖는 행렬
- 행렬의 곱에서 AI = IA = A를 만족하는 행렬 I → 단위행렬(정의 3.2)
- 만일 A = (aij)가 m×n 행렬이라면 AI_n = A, I_mA = A가 된다. 즉, 단위행렬은 행렬의 곱에 대한 항등원

3.5 행렬의 전치

[정의 3.7] 행렬의 전치 $A = (a_{ij})$ 가 $m \times n$ 행렬이라 하면 A의 전치행렬(transpose of A)는 $n \times m$ 행렬 $A^T = (a_{ij}^T)$ 로서 $a_{ij}^T = a_{ji} \ (1 \le i \le m, \ 1 \le j \le n)$ 를 만족한다.

[정리 3.5] 행렬 전치의 성질 c가 임의의 수이고 A와 B가 행렬일 때 연산이 정의되는 경우에 있어 다음이 성립한다.

- $(1) (A^T)^T = A$
- (2) $(A+B)^T = A^T + B^T$
- $(3) (AB)^{T} = B^{T}A^{T}$
- $(4) (cA)^{T} = cA^{T}$

[정의] 대칭행렬

 $A^{T} = A$ 인 행렬 A를 대칭행렬(symmetric matrix)이라고 한다.

- ※ 행렬 A가 대칭행렬이기 위해서는
- A는 정방행렬이어야 하며
- a_{ii} = a_{ii}를 만족해야 함