

Linear Regression Models

Segment 3 – Other Considerations in the MLRM

Topic 1 – Confounding and Collinearity: Correlation Matrix & Variance Inflation Factor (VIF)

Sudarsan N.S. Acharya (sudarsan.acharya@manipal.edu)

Topics

- 1. Confounding and Collinearity: Basic Ideas
- 2. When Does Confounding Arise?
- 3. Detecting Collinearity: Correlation Matrix
- 4. Quantifying Collinearity: Variance Inflation Factor (VIF)

• Confounding:

• Confounding: occurs when a third variable that distorts the observed relationship between the predictor and response.

- Confounding: occurs when a third variable that distorts the observed relationship between the predictor and response.
- Example:

- Confounding: occurs when a third variable that distorts the observed relationship between the predictor and response.
- Example: Japan's death rate is higher than that of countries like Vietnam;

- Confounding: occurs when a third variable that distorts the observed relationship between the predictor and response.
- Example: Japan's death rate is higher than that of countries like Vietnam; before concluding that Japan is a riskier place to live, confounding factors such as age need to be accounted for;

- Confounding: occurs when a third variable that distorts the observed relationship between the predictor and response.
- Example: Japan's death rate is higher than that of countries like Vietnam; before concluding that Japan is a riskier place to live, confounding factors such as *age* need to be accounted for; median age of Japan is much higher than that of, say, Vietnam.

- Confounding: occurs when a third variable that distorts the observed relationship between the predictor and response.
- Example: Japan's death rate is higher than that of countries like Vietnam; before concluding that Japan is a riskier place to live, confounding factors such as *age* need to be accounted for; median age of Japan is much higher than that of, say, Vietnam.
- Collinearity:

- Confounding: occurs when a third variable that distorts the observed relationship between the predictor and response.
- Example: Japan's death rate is higher than that of countries like Vietnam; before concluding that Japan is a riskier place to live, confounding factors such as *age* need to be accounted for; median age of Japan is much higher than that of, say, Vietnam.
- Collinearity: occurs when predictors are highly correlated such that it is difficult to distinguish their effect on the response.

- Confounding: occurs when a third variable that distorts the observed relationship between the predictor and response.
- Example: Japan's death rate is higher than that of countries like Vietnam; before concluding that Japan is a riskier place to live, confounding factors such as *age* need to be accounted for; median age of Japan is much higher than that of, say, Vietnam.
- Collinearity: occurs when predictors are highly correlated such that it is difficult to distinguish their effect on the response.
- Also referred to as multicollinearity or ill-conditioning.

- Confounding: occurs when a third variable that distorts the observed relationship between the predictor and response.
- Example: Japan's death rate is higher than that of countries like Vietnam; before concluding that Japan is a riskier place to live, confounding factors such as *age* need to be accounted for; median age of Japan is much higher than that of, say, Vietnam.
- Collinearity: occurs when predictors are highly correlated such that it is difficult to distinguish their effect on the response.
- Also referred to as multicollinearity or ill-conditioning.
- Structural collinearity:

- Confounding: occurs when a third variable that distorts the observed relationship between the predictor and response.
- Example: Japan's death rate is higher than that of countries like Vietnam; before concluding that Japan is a riskier place to live, confounding factors such as *age* need to be accounted for; median age of Japan is much higher than that of, say, Vietnam.
- Collinearity: occurs when predictors are highly correlated such that it is difficult to distinguish their effect on the response.
- Also referred to as multicollinearity or ill-conditioning.
- Structural collinearity: when model is created with correlated predictors.

- Confounding: occurs when a third variable that distorts the observed relationship between the predictor and response.
- Example: Japan's death rate is higher than that of countries like Vietnam; before concluding that Japan is a riskier place to live, confounding factors such as *age* need to be accounted for; median age of Japan is much higher than that of, say, Vietnam.
- Collinearity: occurs when predictors are highly correlated such that it is difficult to distinguish their effect on the response.
- Also referred to as multicollinearity or ill-conditioning.
- Structural collinearity: when model is created with correlated predictors.
- Data collinearity:

- Confounding: occurs when a third variable that distorts the observed relationship between the predictor and response.
- Example: Japan's death rate is higher than that of countries like Vietnam; before concluding that Japan is a riskier place to live, confounding factors such as *age* need to be accounted for; median age of Japan is much higher than that of, say, Vietnam.
- Collinearity: occurs when predictors are highly correlated such that it is difficult to distinguish their effect on the response.
- Also referred to as multicollinearity or ill-conditioning.
- Structural collinearity: when model is created with correlated predictors.
- Data collinearity: when data comprises correlated predictors.

When Does Confounding Arise?

• Indication bias:

• <u>Indication bias</u>: the effect of a trial drug for treating a particular medical condition may differ substantially between those who have the condition and those who do not.

- <u>Indication bias</u>: the effect of a trial drug for treating a particular medical condition may differ substantially between those who have the condition and those who do not.
- Selection bias:

- <u>Indication bias</u>: the effect of a trial drug for treating a particular medical condition may differ substantially between those who have the condition and those who do not.
- <u>Selection bias</u>: the effect of a trial drug for treating a particular medical condition may be affected by the imbalance between the groups.

- <u>Indication bias</u>: the effect of a trial drug for treating a particular medical condition may differ substantially between those who have the condition and those who do not.
- <u>Selection bias</u>: the effect of a trial drug for treating a particular medical condition may be affected by the imbalance between the groups.
- Recall bias:

- <u>Indication bias</u>: the effect of a trial drug for treating a particular medical condition may differ substantially between those who have the condition and those who do not.
- <u>Selection bias</u>: the effect of a trial drug for treating a particular medical condition may be affected by the imbalance between the groups.
- <u>Recall bias</u>: study participants who have cancer may be more likely to recall being a smoker.

Which of the following are likely to be confounding factors for the hypothesis that high cholesterol food is associated with heart disease?

Factor Low cholesterol food High cholesterol food

Factor	Low cholesterol food	High cholesterol food
Smoker (%)	10%	30%

Factor	Low cholesterol food	High cholesterol food
Smoker (%)	10%	30%
Age (mean years)	42	41

Factor	Low cholesterol food	High cholesterol food
Smoker (%)	10%	30%
Age (mean years)		41
Daily exercise (%)	25%	28%

Factor	Low cholesterol food	High cholesterol food
Smoker (%)	10%	30%
Age (mean years)	42	41
Daily exercise (%)	25%	28%
Diabetes (%)	12%	32%

Factor	Low cholesterol food	High cholesterol food
Smoker (%)	10%	30%
Age (mean years)	42	41
Daily exercise (%)	25%	28%
Diabetes (%)	12%	32%
BMI (mean)	24	26

Which of the following are likely to be confounding factors for the hypothesis that high cholesterol food is associated with heart disease?

Factor	Low cholesterol food	High cholesterol food
Smoker (%)	10%	30%
Age (mean years)	42	41
Daily exercise (%)	25%	28%
Diabetes (%)	12%	32%
BMI (mean)	24	26

Predictors that are imbalanced among the two groups:

Which of the following are likely to be confounding factors for the hypothesis that high cholesterol food is associated with heart disease?

Factor	Low cholesterol food	High cholesterol food
Smoker (%)	10%	30%
Age (mean years)	42	41
Daily exercise (%)	25%	28%
Diabetes (%)	12%	32%
BMI (mean)	24	26

Predictors that are *imbalanced* among the two groups: Smoker, Diabetes are potential confounders.

• Collinearity, an extreme case of confounding, implies an exact linear relationship between predictors.

- Collinearity, an extreme case of confounding, implies an exact linear relationship between predictors.
- Example:

- Collinearity, an extreme case of confounding, implies an exact linear relationship between predictors.
- Example: predictor age1 in years is collinear with the predictor age2 in months because $age1 = 12 \times age2 \Rightarrow$

- Collinearity, an extreme case of confounding, implies an exact linear relationship between predictors.
- Example: predictor age1 in years is collinear with the predictor age2 in months because $age1 = 12 \times age2 \Rightarrow$ columns of design matrix $\mathbf{X} = \begin{bmatrix} age1 & age2 \end{bmatrix}$ are linearly dependent

- Collinearity, an extreme case of confounding, implies an exact linear relationship between predictors.
- Example: predictor age1 in years is collinear with the predictor age2 in months because $age1 = 12 \times age2 \Rightarrow$ columns of design matrix $\mathbf{X} = \begin{bmatrix} age1 & age2 \end{bmatrix}$ are linearly dependent $\Rightarrow (\mathbf{X}^T\mathbf{X})^{-1}$ does not exist.

- Collinearity, an extreme case of confounding, implies an exact linear relationship between predictors.
- Example: predictor age1 in years is collinear with the predictor age2 in months because $age1 = 12 \times age2 \Rightarrow$ columns of design matrix $\mathbf{X} = \begin{bmatrix} age1 & age2 \end{bmatrix}$ are linearly dependent $\Rightarrow (\mathbf{X}^T\mathbf{X})^{-1}$ does not exist.
- Collinearity poses no problem for prediction:

- Collinearity, an extreme case of confounding, implies an exact linear relationship between predictors.
- Example: predictor age1 in years is collinear with the predictor age2 in months because $age1 = 12 \times age2 \Rightarrow$ columns of design matrix $\mathbf{X} = \begin{bmatrix} age1 & age2 \end{bmatrix}$ are linearly dependent $\Rightarrow (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}$ does not exist.
- Collinearity poses no problem for prediction: the model

$$\widehat{height} = \hat{\beta}_0 + \hat{\beta}_1 \times age1 + \hat{\beta}_2 \times age2$$

- Collinearity, an extreme case of confounding, implies an exact linear relationship between predictors.
- Example: predictor age1 in years is collinear with the predictor age2 in months because $age1 = 12 \times age2 \Rightarrow$ columns of design matrix $\mathbf{X} = \begin{bmatrix} age1 & age2 \end{bmatrix}$ are linearly dependent $\Rightarrow (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}$ does not exist.
- Collinearity poses no problem for prediction: the model $\widehat{height} = \hat{\beta}_0 + \hat{\beta}_1 \times \overline{age1} + \hat{\beta}_2 \times \overline{age2}$ has theoretically infinitely many solutions but all result in the same predicted height.

- Collinearity, an extreme case of confounding, implies an exact linear relationship between predictors.
- Example: predictor age1 in years is collinear with the predictor age2 in months because $age1 = 12 \times age2 \Rightarrow$ columns of design matrix $\mathbf{X} = \begin{bmatrix} age1 & age2 \end{bmatrix}$ are linearly dependent $\Rightarrow (\mathbf{X}^T\mathbf{X})^{-1}$ does not exist.
- Collinearity poses no problem for prediction: the model $\widehat{height} = \hat{\beta}_0 + \hat{\beta}_1 \times \overline{age1} + \hat{\beta}_2 \times \overline{age2}$ has theoretically infinitely many solutions but all result in the same predicted height.
- For example, the following solutions are all equivalent:

- Collinearity, an extreme case of confounding, implies an exact linear relationship between predictors.
- Example: predictor age1 in years is collinear with the predictor age2 in months because $age1 = 12 \times age2 \Rightarrow$ columns of design matrix $\mathbf{X} = \begin{bmatrix} age1 & age2 \end{bmatrix}$ are linearly dependent $\Rightarrow (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}$ does not exist.
- Collinearity poses no problem for prediction: the model $\widehat{height} = \hat{\beta}_0 + \hat{\beta}_1 \times \overline{age1} + \hat{\beta}_2 \times \overline{age2}$ has theoretically infinitely many solutions but all result in the same predicted height.
- For example, the following solutions are all equivalent: $\widehat{height} = 30 + 3 \times aqe1 + 0 \times aqe2 =$

- Collinearity, an extreme case of confounding, implies an exact linear relationship between predictors.
- Example: predictor age1 in years is collinear with the predictor age2 in months because $age1 = 12 \times age2 \Rightarrow$ columns of design matrix $\mathbf{X} = \begin{bmatrix} age1 & age2 \end{bmatrix}$ are linearly dependent $\Rightarrow (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}$ does not exist.
- Collinearity poses no problem for prediction: the model $\widehat{height} = \hat{\beta}_0 + \hat{\beta}_1 \times \overline{age1} + \hat{\beta}_2 \times \overline{age2}$ has theoretically infinitely many solutions but all result in the same predicted height.
- For example, the following solutions are all equivalent: $\widehat{height} = 30 + 3 \times age1 + 0 \times age2 = 30 + 2 \times age1 + 12 \times age2 = 30 + 3 \times age1 + 3 \times age2 = 30 + 3 \times age1 + 3 \times age2 = 30 + 3 \times age1 +$

- Collinearity, an extreme case of confounding, implies an exact linear relationship between predictors.
- Example: predictor age1 in years is collinear with the predictor age2 in months because $age1 = 12 \times age2 \Rightarrow$ columns of design matrix $\mathbf{X} = \begin{bmatrix} age1 & age2 \end{bmatrix}$ are linearly dependent $\Rightarrow (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}$ does not exist.
- Collinearity poses no problem for prediction: the model $\widehat{height} = \hat{\beta}_0 + \hat{\beta}_1 \times \overline{age1} + \hat{\beta}_2 \times \overline{age2}$ has theoretically infinitely many solutions but all result in the same predicted height.
- For example, the following solutions are all equivalent: $\widehat{height} = 30 + 3 \times age1 + 0 \times age2 = 30 + 2 \times age1 + 12 \times age2 = 30 + 1 \times age1 + 24 \times age2.$

- Collinearity, an extreme case of confounding, implies an exact linear relationship between predictors.
- Example: predictor aqe1 in years is collinear with the predictor aqe2 in months because $aqe1 = 12 \times aqe2 \Rightarrow$ columns of design matrix $\mathbf{X} = \begin{bmatrix} age1 & age2 \end{bmatrix}$ are linearly dependent $\Rightarrow (\mathbf{X}^T\mathbf{X})^{-1}$ does not exist.
- Collinearity poses no problem for prediction: the model $\widehat{height} = \hat{\beta}_0 + \hat{\beta}_1 \times age1 + \hat{\beta}_2 \times age2$ has theoretically infinitely many solutions but all result in the same predicted height.
- For example, the following solutions are all equivalent: $height = 30 + 3 \times age1 + 0 \times age2 = 30 + 2 \times age1 + 12 \times age2 = 30 + 3 \times age1 + 3 \times age2 = 30 + 3 \times age1 + 3$ $30 + 1 \times aqe1 + 24 \times aqe2$.
- Quantifying individual effects of collinear predictors is a problem.

 Collinearity can be detected by studying the sample correlation matrix of continuous predictors.

- Collinearity can be detected by studying the sample correlation matrix of continuous predictors.
- Given a dataset, sample correlation measure between two predictors \mathbf{x}_1 and $\mathbf{x}_2 \Rightarrow$

- Collinearity can be detected by studying the sample correlation matrix of continuous predictors.
- Given a dataset, sample correlation measure between two predictors \mathbf{x}_1 and $\mathbf{x}_2 \Rightarrow$ mean-centering them $\tilde{\mathbf{x}}_1$ and $\tilde{\mathbf{x}}_2 \Rightarrow$

- Collinearity can be detected by studying the sample correlation matrix of continuous predictors.
- Given a dataset, sample correlation measure between two predictors \mathbf{x}_1 and $\mathbf{x}_2 \Rightarrow$ mean-centering them $\tilde{\mathbf{x}}_1$ and $\tilde{\mathbf{x}}_2 \Rightarrow \rho = \frac{\tilde{\mathbf{x}}_1^T \tilde{\mathbf{x}}_2}{\|\tilde{\mathbf{x}}_1\| \|\tilde{\mathbf{x}}_2\|}$ is in between -1 and 1.

- Collinearity can be detected by studying the sample correlation matrix of continuous predictors.
- Given a dataset, sample correlation measure between two predictors \mathbf{x}_1 and $\mathbf{x}_2 \Rightarrow$ mean-centering them $\tilde{\mathbf{x}}_1$ and $\tilde{\mathbf{x}}_2 \Rightarrow \rho = \frac{\tilde{\mathbf{x}}_1^T \tilde{\mathbf{x}}_2}{\|\tilde{\mathbf{x}}_1\| \|\tilde{\mathbf{x}}_2\|}$ is in between -1 and 1.
- Correlation matrix for some continuous predictors from the saratogaHouses dataset:

	livingArea	lotSize	age	land∨alue	bedrooms	rooms
livingArea	1.00	0.16	-0.17	0.42	0.66	0.73
lotSize	0.16	1.00	-0.02	0.06	0.11	0.14
age	-0.17	-0.02	1.00	-0.02	0.03	-0.08
land∨alue	0.42	0.06	-0.02	1.00	0.20	0.30
bedrooms	0.66	0.11	0.03	0.20	1.00	0.67
rooms	0.73	0.14	-0.08	0.30	0.67	1.00

In model built with correlated predictors:

 regression coefficients estimates will change dramatically depending on which correlated predictors are included or not;

- regression coefficients estimates will change dramatically depending on which correlated predictors are included or not;
- coefficient estimates for predictors with known strong relationships with the response will not be accurate;

- regression coefficients estimates will change dramatically depending on which correlated predictors are included or not;
- coefficient estimates for predictors with known strong relationships with the response will not be accurate;
- standard errors of the coefficients estimates will be (relatively) large;

- regression coefficients estimates will change dramatically depending on which correlated predictors are included or not;
- coefficient estimates for predictors with known strong relationships with the response will not be accurate;
- standard errors of the coefficients estimates will be (relatively) large;
- wider confidence intervals for coefficients.

• If all the predictors are perfectly collinear,

• If all the predictors are perfectly collinear, then the \mathbb{R}^2 metric when one predictor is regressed upon the others will be exactly 1.

- If all the predictors are perfectly collinear, then the R^2 metric when one predictor is regressed upon the others will be exactly 1.
- The *tolerance* of the predictor which is regressed upon the others is $1-R^2$.

- If all the predictors are perfectly collinear, then the R^2 metric when one predictor is regressed upon the others will be exactly 1.
- The *tolerance* of the predictor which is regressed upon the others is $1-R^2$.
- A small value of the tolerance (< 0.1, for example) indicates that the predictor under consideration is highly correlated with the other predictors.

- If all the predictors are perfectly collinear, then the R^2 metric when one predictor is regressed upon the others will be exactly 1.
- The *tolerance* of the predictor which is regressed upon the others is $1-R^2$.
- A small value of the *tolerance* (< 0.1, for example) indicates that the predictor under consideration is highly correlated with the other predictors.
- The variance inflation factor (VIF) of the predictor under consideration is $1/tolerance = 1/(1 R^2)$.

- If all the predictors are perfectly collinear, then the R^2 metric when one predictor is regressed upon the others will be exactly 1.
- The *tolerance* of the predictor which is regressed upon the others is $1-R^2$.
- A small value of the tolerance (< 0.1, for example) indicates that the predictor under consideration is highly correlated with the other predictors.
- The variance inflation factor (VIF) of the predictor under consideration is $1/tolerance = 1/(1 R^2)$.
- A large vale of VIF (> 10, for example) indicates additional study about the correlation between predictors.

• Describe and differentiate between confounding and collinearity.

- Describe and differentiate between confounding and collinearity.
- Describe how correlation matrix can be used to detect collinearity.

- Describe and differentiate between confounding and collinearity.
- Describe how correlation matrix can be used to detect collinearity.
- Interpret variance inflation factor (VIF) for quantifying collinearity.