Searching PAJ 1/1ページ

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-044003

(43) Date of publication of application: 08.02.2002

(51)Int.Cl.

H04B 7/24 H04L 12/28

(21)Application number: 2000-205724

(71)Applicant: INTERNATL BUSINESS MACH

CORP <IBM>

(22)Date of filing:

06.07.2000

(72)Inventor: AIHARA TATSU

SHIMOTOONO SUSUMU MIZUTANI MASAHIKO

(54) COMMUNICATION METHOD, RADIO AND HOC NETWORK, COMMUNICATION TERMINAL, AND BLUETOOTH TERMINAL

(57)Abstract:

PROBLEM TO BE SOLVED: To enable network communications to be automatically and optimally carried out in radio ad hoc communications. SOLUTION: A communication terminal is formed as one of a plurality of nodes which constitute a cluster and serves as a cluster head capable of holding communication with the other cluster members or residual nodes and equipped with a cluster head suitability judgment device 11 for grasping the state of link with the cluster members, a cluster head shift schedule forming device 12 which forms a schedule table 15 for assigning the cluster members successively for a tentative cluster head, a link state suitability monitoring device 21 which recognizes the state of link with the other nodes when a cluster member becomes a tentative cluster head, and a cluster reconstruction device 26 which reconstructs the cluster, resting on the basis of the state of link grasped and recognized.

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2002-44003 (P2002-44003A)

(43)公開日 平成14年2月8日(2002.2.8)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

H04B 7/24

H04L 12/28

H04B 7/24

E 5K033

H04L 11/00

310B 5K067

審査請求 有 請求項の数18 OL (全 14 頁)

(21)出願番号

特願2000-205724(P2000-205724)

(22)出願日

平成12年7月6日(2000,7,6)

(71)出願人 390009531

インターナショナル・ビジネス・マシーン

ズ・コーポレーション

INTERNATIONAL BUSIN

ESS MASCHINES CORPO

RATION

アメリカ合衆国10504、ニューヨーク州

アーモンク (番地なし)

(74)代理人 100086243

弁理士 坂口 博 (外4名)

最終頁に続く

(54) 【発明の名称】 通信方法、無線アドホックネットワーク、通信端末、およびブルートゥース端末

(57)【要約】

【課題】 無線アドホック通信において、ネットワーク 通信を自動的かつ最適に行う。

【解決手段】 クラスタを構成する複数のノードの1つ として構成可能であり、この複数のノードの中でクラス タヘッドとして残りのノードであるクラスタメンバとの 通信を可能とする通信端末であって、クラスタメンバと のリンク状態を把握するクラスタヘッド適性度判定装置 11と、クラスタメンバを順番に仮クラスタヘッドとし て巡回させるためのスケジュール表15を作成するクラ スタヘッド交代スケジュール作成装置12と、クラスタ メンバが仮クラスタヘッドとなった場合における他のノ ードとのリンク状態を認識するリンク状態適性度監視装 置21と、把握されたリンク状態と認識されたリンク状 態とに基づいて、クラスタを再構成するクラスタ再構成 装置26とを備える。

1

【特許請求の範囲】

【請求項1】 複数の無線局の間で所定のクラスタを形成し、当該クラスタの管理を行うクラスタヘッドを選択してグループ通信を行う通信方法であって、

前記クラスタに属する無線局の1つ以上を仮クラスタへ ッドとして動作させ、

前記無線局が前記仮クラスタヘッドとなった場合における通信効率を判定し、

判定された前記通信効率に基づいて前記クラスタを構成 する無線局の中から当該クラスタにおけるクラスタへッ ドを選定することを特徴とする通信方法。

【請求項2】 前記グループ通信は、スレーブ間通信ができないマスタ・スレーブ構成をとる無線アドホックネットワークにおいてなされることを特徴とする請求項1記載の通信方法。

【請求項3】 前記無線局を仮クラスタヘッドとして巡回させる動作および前記クラスタを構成するそれぞれの無線局が当該仮クラスタヘッドに対して接続を試みる動作を定めたスケジュールを生成し、

前記クラスタを構成する無線局は、生成された前記スケジュールに基づいて同期して動作することを特徴とする 請求項1記載の通信方法。

【請求項4】 前記仮クラスタヘッドとしての動作後に、元のクラスタ構成に戻る動作および当該元のクラスタ構成に戻る動作および当該元のクラスタ構成に戻れない場合の回復動作を予め回復スケジュールとして定め、

前記クラスタを構成する無線局は、生成された前記回復 スケジュールに基づいて同期して動作することを特徴と する請求項1記載の通信方法。

【請求項5】 クラスタヘッドであるノードおよび1つ *30* 以上のクラスタメンバであるノードからなるクラスタを 構成する無線アドホックネットワークにおいて、

前記クラスタヘッドであるノードは、前記クラスタメンバであるノードに対する自らのリンク状態を把握し、当該リンク状態の把握に基づいてクラスタヘッド交代スケジュールを生成して当該クラスタメンバであるノードに配布し、

前記クラスタメンバであるノードは、配布された前記クラスタへッド交代スケジュールに基づき前記クラスタを構成するノードに対する自らのリンク状態を把握して前 40記クラスタヘッドであるノードに送信することを特徴とする無線アドホックネットワーク。

【請求項6】 前記クラスタヘッドであるノードは、前記クラスタメンバであるノードから送信された前記リンク状態に基づいてクラスタヘッドの権限を委譲するか否かを判断し、委譲する場合には、委譲してもよいノードに対して権限の委譲を試みることを特徴とする請求項5記載の無線アドホックネットワーク。

【請求項7】 前記クラスタヘッドであるノードは、委譲してもよい前記ノードに対する委譲に失敗した場合に

は、自らがクラスタヘッドを継続する元のクラスタ構成 に戻れるように、元のクラスタ構成に戻る時刻を定める ことを特徴とする請求項6記載の無線アドホックネット ワーク。

【請求項8】 クラスタヘッドであるノードおよび1つ 以上のクラスタメンバであるノードからなるクラスタを 構成する無線アドホックネットワークにおいて、

前記クラスタヘッドは、前記クラスタを構成する前記クラスタメンバに対して仮クラスタヘッドとなる巡回動作 10 を定めたスケジュールを配布し、

前記クラスタメンバは、配布された前記スケジュールに基づき、仮クラスタヘッドとして他のノードとの通信状態を把握して前記クラスタヘッドに送信し、当該クラスタヘッドからの権限の委譲に基づいて、新たにクラスタヘッドとなり得ることを特徴とする無線アドホックネットワーク。

【請求項9】 前記クラスタヘッドは、前記クラスタの 構成直後、または、エラーレートの高いノードが検出さ れた時点で前記巡回動作を定めたスケジュールを配布す ることを特徴とする請求項8記載の無線アドホックネッ トワーク。

【請求項10】 クラスタを構成する複数のノードの1 つとして構成可能であると共に、当該複数のノードの中でクラスタへッドとして当該クラスタを構成する残りの ノードであるクラスタメンバとの通信を可能とする通信 端末であって、

前記クラスタメンバとのリンク状態を把握するリンク状 態把握手段と、

前記クラスタメンバが仮クラスタヘッドとなった場合に おける他のノードとのリンク状態を認識する仮クラスタ ヘッドリンク状態認識手段と、

前記リンク状態把握手段により把握されたリンク状態と、前記仮クラスタヘッドリンク状態認識手段により認識されたリンク状態とに基づいて、特定のノードへのクラスタヘッドの委譲を決定する委譲決定手段とを備えることを特徴とする通信端末。

【請求項11】 前記リンク状態把握手段は、前記クラスタメンバごとにテストデータを送信してパケットエラーレートを検出することによりリンク状態を把握することを特徴とする請求項10記載の通信端末。

【請求項12】 前記クラスタメンバを順番に仮クラスタヘッドとして巡回させるためのスケジュールを作成するスケジュール作成手段と、

前記スケジュール作成手段により作成された前記スケジュールを前記クラスタメンバに対して配布するスケジュール配布手段とを更に備えたことを特徴とする請求項10記載の通信端末。

【請求項13】 前記スケジュール作成手段により作成 される前記スケジュールは、適切なクラスタヘッド候補 50 を探索するために、仮クラスタヘッドをノード間で巡回

させる時刻、それぞれのノードが仮クラスタヘッドに対 して接続を試みる時刻、および試みようとする接続が失 敗した場合に再接続を繰り返す期間が定められているこ とを特徴とする請求項12記載の通信端末。

【請求項14】 前記スケジュール作成手段は、前記リ ンク状態把握手段により前記リンク状態に問題があると 判断される場合に、前記スケジュールを作成することを 特徴とする請求項12記載の通信端末。

【請求項15】 クラスタを構成する複数のノードの1 つとして構成可能であると共に、当該複数のノードの中 10 でクラスタメンバとして他のノードであるクラスタヘッ ドとの通信を可能とする通信端末であって、

前記クラスタヘッドからクラスタヘッドとしての適性度 を判定するための巡回スケジュールを受信する受信手段 と、

前記受信手段により受信した前記巡回スケジュールに基 づいて、前記クラスタを構成する他のノードとの通信状 態を把握する通信状態把握手段と、

前記通信状態把握手段により把握された前記通信状態を 前記クラスタヘッドに対して送信する送信手段とを備え たことを特徴とする通信端末。

【請求項16】 ピコネットを構成する複数の無線局の 1つとして構成可能であると共に、マスタとして複数の スレーブを管理することができるブルートゥース端末で あって、

管理する前記複数のスレーブとの通信状態を把握する通 信状態把握手段と、

前記通信状態把握手段による通信状態の把握によって、 自らがマスタとして不適当であると判断される場合に は、前記ピコネットを構成する所定のスレーブに対して 30 マスタとしての権限を委譲して当該ピコネットの再構成 を行う権限委譲手段とを備えたことを特徴とするブルー トゥース端末。

【請求項17】 前記ピコネットを構成する前記複数の スレーブを順番に仮マスタとして巡回させるためのスケ ジュールを作成するスケジュール作成手段と、

前記スケジュール作成手段により作成された前記スケジ ュールを前記複数のスレーブに対して配布するスケジュ ール配布手段とを更に備えたことを特徴とする請求項1 6記載のブルートゥース端末。

【請求項18】 前記複数のスレーブから、仮マスタと して巡回した際の他の無線局との通信状態を受信する通 信状態受信手段と、

前記通信状態受信手段によって受信された通信状態に基 づいて、前記所定のスレーブに対してマスタとしての権 限を委譲することを決定することを特徴とする請求項1 7記載のブルートゥース端末。

【発明の詳細な説明】

[0001]

る通信に係り、特に、複数の無線局によってクラスタを 構成して通信を行う通信方法等に関する。

[0002]

【従来の技術】近年、携帯情報端末の小型化、軽量化に よって、情報端末を気軽に持ち運び、多くのユーザ間で 使用されるようになっている。それに伴い、モバイル環 境下で自由な情報交換を行うために、オンデマンド型の 通信として無線アドホックネットワークを構築する研究 が多くなされている。この無線アドホックネットワーク は、モバイルコンピューティングの一形態として、距離 と時間が近接した状況において、一時的に集合した端末 の間でデータの送受信を行うための通信手段を提供する ことを目的とし、情報端末を持った複数の人間が、必要 になったその場で構成するネットワークである。

【0003】一方で、多様な機器に製造過程で組み込ま れる短距離無線技術を利用し、モバイルおよびビジネス ユーザに便利なサービスを提供することを目的として、 ブルートゥース(Bluetooth)が急速に注目され始めてい る。このBluetoothは、小型で高性能な無線トランシー バをベースとし、IEEE802標準に準拠する48b i t アドレスが割り当てられており、規制のない 2.4 5 G H z I S Mの自由帯域で稼働することが可能であ る。また、モバイルとビジネスユーザに最適な10mを カバー範囲とし、消費電力がスタンバイモードでわずか 0.3mAであるため、バッテリ利用の機器の寿命を伸 ばすことができる。このBluetoothは、電話やデジタル カメラ、プリンタなどの周辺機器に簡易に搭載でき、ノ ートパソコンやPDA(Personal Digital Assistance) などの情報端末機器にも標準装備されることが期待され ている。その場合に、Bluetooth搭載のノートパソコン やPDAを用いて、例えば会議室にてアドホックに通信 できるといったシステムは、極めて自然な応用事例とし て考えることができる。

[0004]

【発明が解決しようとする課題】しかしながら、無線ア ドホック通信は、伝統的な有線ネットワークや、最近、 実用化が進んでいる無線ネットワークと、通信路または ネットワークの構成において根本的に異なるところがあ り、普及の障害となっている。

【0005】即ち、例えば、通信を開始するにあたって は、まず、ネットワークを構成しなければならないが、 有線ネットワークにおいては、ネットワーク管理者が、 ケーブルおよび端子の施設、ルーターの設置などの設備 を事前に準備しており、ネットワークに参加するには、 ユーザは端子に接続すればよい。無線ネットワークにお いても、ネットワーク管理者がサービスエリアを定義 し、固定基地局を配しており、ネットワークに参加する には、ユーザはサービスエリアで基地局にアクセスすれ ばよい。それに対し、アドホックネットワークでは、ネ 【発明の属する技術分野】本発明は、複数の無線局によ 50 ットワーク管理者が存在せず、通信を始める前に、アド

5

ホックに集まったユーザ同士がなんらかの形でネットワークを構成しなければならない。即ち、ユーザ同士が相談して、実質的な配線作業をしなければならないのである。このことを、人手を介さず自動的に実現するのは困難であると同時に、時間的制約を考慮すれば、でき上がった配線状態は、多くの場合最適なものとはならない。 【0006】また、各無線局が移動することが問題を更に複雑化している。アドホックネットワークでは、各無線局がぼらばらに移動するため、定期的にネットワーク構成の最適化が必要となる。また、その最適化は、基地 10 局のような不動なものを仮定することができないため、しばしば、ネットワークトポロジーを大きく変えるものになってしまう。

【0007】ここで、例えばBluetooth等による無線データ通信では、マスタ・スレーブ構成が取られている。このマスタ・スレーブ構成では、マスタによって複数のスレーブに接続することはできるが、スレーブ同士の通信を行うことはできない。このような制約下にあるアドホックネットワークにおいては、クラスタヘッドの選出が極めて重要な問題となる。ここでは、スレーブ同士の通信ができないことから、全ての通信はマスタ・スレーブ間の通信によって実現されることとなる。その結果、不適切なクラスタヘッドが選出されると、クラスタ全体の通信効率に直接、影響を与えることとなる。

【0008】通常のアドホックネットワークにおいて は、クラスタメンバ同士にて通信が行える場合が多く、 クラスタヘッドの仕事はクラスタの管理や、通信路の維 持等が中心的である。そのため、クラスタヘッドの通信 効率に与える影響はBluetoothほどは大きくない。ま た、たとえクラスタヘッドを最適に選んだとしても、ク ラスタメンバ各局、更にクラスタヘッド自体が移動する ので、このトポロジーが維持されるとは限らない。その ため、従来では、取り敢えずつながればよい、という考 え方が支配的であった。一般に、クラスタヘッドの選出 を行うためには、通信周波数および送受信のタイミング を同期させるオーバヘッドが必要である上、無線特有の 隠れ端末問題(例えば、局Aが局B,Cと通信可能であっ ても、局Bと局Cは直接通信不可能であること)のた め、クラスタの最適化、クラスタの再構成そのものが、 効果的ではなかった。

【0009】その一方で、前述したような、会議室に人が集まってきて、それぞれの人が有するノートパソコンの間でファイルやメッセージの交換などの通信をアドホックに行いたいような典型的なアプリケーションを想定した場合には、クラスタヘッドの最適化が極めて重要となる。例えば、会議中、人はほとんど移動せず、移動してもせいぜい歩く程度のゆっくりした速度が普通であるが、その一方で、会議では参加者の出入りがあり、無線局の新たな増減がある。たとえ無線局の移動がなくても、こうした無線局の増減により、最適なクラスタヘッ

ドが変わる可能性があり、通信の効率を保つためには、クラスタの動的な再構成が必要となる。しかしながら、クラスタの再構成に時間がかかるため、再構成中に通信が中断されるオーバヘッドの問題が生じてしまう。また、現在確立されているクラスタを解消してしまい、新たなクラスタに再構成するため、すべての無線局が新しいクラスタに移動できる保証がないことも大きな問題とたる

【0010】また、例えば、人の出入りに応じて、参加者が合議のもとで、人的操作によってクラスタヘッドを変更することも考えられる。しかしながら、人にとっては、どの無線局が最適なクラスタヘッドであるかを容易には判断することができない。即ち、無線通信の場合、目に見えない障害物や個々の無線局による性能によってエラーレートが異なってしまい、例えば、無線局間の距離が近いことが通信し易いことにはならないためである。その結果、通信状態を把握するためには、実際に通信して、エラーレートなどを観測する必要があり、人的操作によってクラスタヘッドを変更することは現実的ではない

【0011】一方、Bluetoothでは、マスタとスレーブにおける通信の開始には、無線局の探索に必要なInquiryというプロセスと、スレーブ局がマスタ局と接続を行うためのPageという時間のかかるプロセスが必要となる。スペックによれば、標準的なプロセスでInquiryを行うには最低10.24秒以上継続して電波を発信し続けなければならない。また、これによって発見されたデバイスと接続を確立するには1台あたり平均1.5秒のPageが必要とされる。従って、妨害のない標準的な場合のにおいても、クラスタの再構成には20秒程度の時間を要してしまう。

【0012】本発明は、以上のような技術的課題を解決するためになされたものであって、その目的とするところは、無線アドホック通信において、ネットワーク通信を自動的かつ最適に行うことにある。また他の目的は、不適格なクラスタヘッドの状態を検出し、より良いクラスタヘッドを再選出することにある。更に他の目的は、ネットワークの構成直後、または極めてエラーレートの高い無線局が発生したときに、ネットワーク構成を最適40 化することにある。

[0013]

【課題を解決するための手段】かかる目的のもと、本発明は、クラスタ内の各無線局を、予め取り決めた時刻と期間で順番に仮クラスタヘッドとして機能させてみて、それぞれが仮クラスタヘッドとなったときに構成する仮クラスタメンバとの受信レベル(接続電波状況)を取得し、それらを現在のクラスタヘッドとの接続電波状況と比較して改善される場合は、クラスタヘッドを交代するように構成している。即ち、本発明は、複数の無線局の間で所定のクラスタを形成し、クラスタの管理を行うク

50

ラスタヘッドを選択して、例えばスレーブ間通信ができないマスタ・スレーブ構成をとる無線アドホックネットワーク等にてグループ通信を行う通信方法であって、このクラスタに属する無線局の1つを仮クラスタヘッドとして動作させ、無線局が仮クラスタヘッドとなった場合における通信効率を判定し、判定された通信効率に基づいてクラスタを構成する無線局の中からクラスタにおけるクラスタヘッドを選定することを特徴としている。

【0014】ここで、この無線局を仮クラスタヘッドと して巡回させる動作およびクラスタを構成するそれぞれ 10 の無線局が仮クラスタヘッドに対して接続を試みる動作 を定めたスケジュールを生成し、クラスタを構成する無 線局は、生成されたこのスケジュールに基づいて同期し て動作することを特徴とすれば、クラスタの再構成を非 同期に行う場合に比べてクラスタの再構成にかかる時間 を短縮できる点で好ましい。また、この仮クラスタヘッ ドとしての動作後に、元のクラスタ構成に戻る動作およ び元のクラスタ構成に戻れない場合の回復動作を予め回 復スケジュールとして定め、このクラスタを構成する無 線局は、生成された回復スケジュールに基づいて同期し て動作することを特徴とすれば、万一、クラスタヘッド 交代作業中にエラーが発生した場合であっても、事前の スケジュールに基づいて対応をとることが可能となる。 【0015】一方、本発明は、クラスタヘッドであるノ ードおよび1つ以上のクラスタメンバであるノードから なるクラスタを構成する無線アドホックネットワークに おいて、このクラスタヘッドであるノードは、クラスタ メンバであるノードに対する自らのリンク状態を把握 し、このリンク状態の把握に基づいてクラスタヘッド交 代スケジュールを生成してクラスタメンバであるノード に配布し、クラスタメンバであるノードは、配布された クラスタヘッド交代スケジュールに基づきクラスタを構 成するノードに対する自らのリンク状態を把握してクラ スタヘッドであるノードに送信することを特徴としてい る。

【0016】ここで、このクラスタヘッドであるノードは、クラスタメンバであるノードから送信されたリンク状態に基づいてクラスタヘッドの権限を委譲するか否かを判断し、委譲する場合には、委譲してもよいノードに対して権限の委譲を試みることを特徴とすれば、クラスタの再構成を行う手間の割にリンク状態の改善効果が低い場合等、クラスタの状態に応じて最適な状況を選択することが可能となる。また、このクラスタヘッドであるノードは、委譲してもよいノードに対する委譲に失敗した場合には、自らがクラスタヘッドを継続する元のクラスタ構成に戻れるように、元のクラスタ構成に戻る時刻を予め定めることを特徴とすれば、クラスタヘッドの交代作業中にエラーが生じた場合でも適切に復旧することができる。

【0017】他の観点から把らえると、本発明は、クラ *50*

8

スタヘッドであるノードおよび1つ以上のクラスタメンバであるノードからなるクラスタを構成する無線アドホックネットワークにおいて、このクラスタヘッドは、クラスタを構成するクラスタメンバに対して仮クラスタヘッドとなる巡回動作を定めたスケジュールを配布し、このクラスタメンバは、配布されたスケジュールに基づき、仮クラスタヘッドとして他のノードとの通信状態を把握してクラスタヘッドに送信し、クラスタヘッドとなりの権限の委譲に基づいて、新たにクラスタヘッドとなり得ることを特徴としている。ここで、このクラスタヘッドは、クラスタの構成直後、または、エラーレートの高いノードが検出された時点で巡回動作を定めたスケジュールを配布することを特徴とすれば、クラスタの再構成が必要なときに、必要な作業を円滑に行うことができる点で好ましい。

【0018】一方、本発明は、クラスタを構成する複数のノードの1つとして構成可能であると共に、この複数のノードの中でクラスタヘッドとして残りのノードであるクラスタメンバとの通信を可能とする通信端末であって、クラスタメンバとのリンク状態を把握するリンク状態把握手段と、クラスタメンバが仮クラスタヘッドとなった場合における他のノードとのリンク状態を認識する仮クラスタヘッドリンク状態認識手段と、把握されたリンク状態と、認識されたリンク状態とに基づいて、特定のノードへのクラスタヘッドの委譲を決定する委譲決定手段とを備えることを特徴としている。

【0019】このリンク状態把握手段は、クラスタメン バごとにテストデータを送信してパケットエラーレート を検出することによりリンク状態を把握することを特徴 とすることができる。また、クラスタメンバを順番に仮 クラスタヘッドとして巡回させるために、例えば、適切 なクラスタヘッド候補を探索するために、仮クラスタヘ ッドをノード間で巡回させる時刻、それぞれのノードが 仮クラスタヘッドに対して接続を試みる時刻、および試 みようとする接続が失敗した場合に再接続を繰り返す期 間が定められているスケジュールを作成するスケジュー ル作成手段と、このスケジュール作成手段により作成さ れたスケジュールをクラスタメンバに対して配布するス ケジュール配布手段とを更に備えたことを特徴としてい る。更に、このスケジュール作成手段は、リンク状態把 握手段によりリンク状態に問題があると判断される場合 に、スケジュールを作成することを特徴とすることがで きる。

【0020】また、本発明は、クラスタを構成する複数のノードの1つとして構成可能であると共に、この複数のノードの中でクラスタメンバとして他のノードであるクラスタヘッドとの通信を可能とする通信端末であって、クラスタヘッドからクラスタヘッドとしての適性度を判定するための巡回スケジュールを受信する受信手段と、受信した巡回スケジュールに基づいて、クラスタを

構成する他のノードとの通信状態を把握する通信状態把握手段と、把握された通信状態をクラスタヘッドに対して送信する送信手段とを備えたことを特徴としている。

【0021】一方、本発明は、ピコネットを構成する複数の無線局の1つとして構成可能であると共に、マスタとして複数のスレーブを管理することができるブルートゥース端末であって、管理する複数のスレーブとの通信状態を把握する通信状態把握手段と、この通信状態把握手段による通信状態の把握によって、自らがマスタとして不適当であると判断される場合には、ピコネットを構成する所定のスレーブに対してマスタとしての権限を委譲してピコネットの再構成を行う権限委譲手段とを備えたことを特徴としている。

【0022】ここで、ピコネットを構成する複数のスレ ーブを順番に仮マスタとして巡回させるためのスケジュ ールを作成するスケジュール作成手段と、このスケジュ ール作成手段により作成されたスケジュールを複数のス レーブに対して配布するスケジュール配布手段とを更に 備えたことを特徴とすれば、クラスタであるピコネット の再構成にかかる時間を劇的に短縮し、現状では実質的 に困難であったピコネットの再構成ができる点で好まし い。また、不適切なマスタが選出されると、ピコネット 全体の通信効率に直接、影響を与えてしまうが、複数の スレーブから仮マスタとして巡回した際の他の無線局と の通信状態を受信する通信状態受信手段と、この通信状 態受信手段によって受信された通信状態に基づいて、所 定のスレーブに対してマスタとしての権限を委譲するこ とを決定することを特徴とすれば、通信状態に応じて最 も適切なスレーブに対して権限を委譲することができる 点で優れている。

[0023]

【発明の実施の形態】以下、添付図面に示す実施の形態に基づいて本発明を詳細に説明する。まず、クラスタを構成する各情報端末機器(ノード)の具体的な構成を説明する前に、本実施の形態が適用される通信の場としてのクラスタ構成について説明する。図1は、本実施の形態にて実現されるクラスタへッド交代によるクラスタ構成の最適化を説明するための図である。図1の①~⑤はクラスタを構成するノード(情報端末機器)であり、図の右側は最適化前のクラスタ構成を示し、図の左側は最適化 40後のクラスタ構成を示している。最適化前では、ノード⑤がクラスタヘッドであり、他はクラスタメンバである。このクラスタヘッドの仕事としては、クラスタの管理や通信路の維持等が中心である。

【0024】まず、図1の右側である最適化前にて、クラスタヘッドであるノード⑤が、ノード②への通信状態の異常を検出したものとする。そこで、ノード⑤は、ノード①、②、③、④と順番に仮のクラスタヘッドとし、仮のクラスタメンバ全てとの接続電波状況を調査する。図2は、各ノードにおける接続電波状況の一例を示した図

10

であり、クラスタを構成する各ノードが、順番にクラスタヘッドとなった場合の通信状態を示している。図2に示すように、ノード⑤では、ノード②との通信状態が悪く、それ以外のクラスタメンバとの通信状態は良好であることを示している。図2に示す例では、ノード⑥がクラスタヘッドとなった場合に、各クラスタメンバとの通信状態が全て良好となっている。

【0025】クラスタヘッドにおいては、通常の通信パケットのやり取りをモニタすることで、定期的に通信状態を算出することができる。一方、仮のクラスタヘッドにおいては、基本単位になるパケットを次々にクラスタメンバに送ることで、通信状態を計測することができる。Bluetoothの場合であれば、1.25msに1パケットの往復テストが可能であり、7個までのスレーブでは、1秒も観測すれば、1スレーブあたり100パケットの統計を取ることができる。ピコネットに属するスレーブノードが少ない場合は、更に短時間での観測が可能となる。

【0026】その後、再度、ノード⑤がクラスタヘッドとなり、自らがクラスタヘッドである場合のクラスタメンバとの接続電波状況と、ノード①,②,③,④を仮のクラスタヘッドとした場合の接続電波状況とを比較し、ノード④がより適切であると判断される。この判断によって、クラスタヘッドをノード⑤からノード④に変更し、図1の左側である最適化後のクラスタ構成を得ることができる。この図1の左側では、ノード④がクラスタヘッドとなり、ノード⑤はクラスタメンバに変わることで、通信の不都合がなく、効率の良い通信を行うことが可能となる。

【0027】ここで、クラスタヘッド交代のアルゴリズ ムとしては、例えば、電波強度が距離の3乗に反比例す るものと仮定すると、距離1のときの電波強度を1とし て、距離5が通信可能限界で電波強度は0.008とな る。このことから、例えば、ノードを距離3以内(電波 強度0.0370以上)にできるようにマスタ(クラスタ ヘッド)を選ぶように構成することが可能である。ま た、クラスタヘッド交代の条件を、例えば、距離4以上 (電波強度 0.0156以下)のノードがある(リンクが落 ちそうである)。としたり、距離3以上(電波強度0.0 370以下)のノードがあり、しかも全てのノードにお ける電波強度の差が5倍以内である(クラスタヘッドが 端にある場合)。等として仮定することも可能である。 【0028】図3(a),(b)は、適性度の判定を、例え ばスループットで行った場合の例を示すものである。こ のスループットとは、ある一定時間に送れるデータの量 であり、図3(a)は最適化前のクラスタヘッドがノード ⑤である場合を示し、図3(b)は最適化後でクラスタへ ッドがノードのに変更された場合を示している。それぞ れ、横軸はクラスタヘッドからの距離を示し、縦軸はス ループットの比較レベルを示している。図3(a)に示す

50

できる。

最適化前では、クラスタヘッド(ノード⑤)からの各クラスタメンバの距離が何れも遠く、スループットのレベルもかなり低くなっている。一方、最適化後の図3(b)では、クラスタヘッド(ノード⑥)からノード⑤までの距離は遠いものの、その他のクラスタメンバからの距離が近くなり、スループットも大きく改善されているのが理解

【0029】ブルートゥース(Bluetooth)においては、 ピコネット(Piconet)が本実施の形態におけるクラスタ に該当し、マスタ(Master)がクラスタヘッドに、また、 スレーブ(Slave)がクラスタメンバに該当する。このBlu etoothでは、リンクマネージャープロトコル(Link Mana ger Protocol)に相手の送信出力を上下させるコマンドL MP_incr_power_reqとLMP_decr_power_reqが用意されて おり、実質的にAGC (Automatic Gain Control)が働 き、多くのデバイスについては適正受信レベルとなって いる。ただし、マスタの受信状態が悪く、出力増を要求 (LMP_incr_power_req) してもスレーブはこれ以上出力レ ベルを上げられない(LMP_max_power)と返事をする場合 がある。通常、このような場合には、相手のスレーブか らも出力レベルを上げるように要求(LMP_incr_power_re q)されているにもかかわらず、すでにマスタにとって限 界である(LMP_max_power)ことが多い。このような場合 は、マスタを交換して、最大出力レベルを必要としない ピコネット構成を試みる。

【0030】また、マスタにおいて、スレーブからの受信レベルは正常であるのに、多くのスレーブから受信レベルが不適当であるとされる、非対称な場合も考えられる。これは、最大出力レベルの異なったデバイスが混在してピコネットを構成している場合に起こる。かかる場合には、このデバイスがマスタとして不適である可能性が高いので、マスタを交換して、より妥当なピコネット構成を試みる。Bluetoothの実装では、出力レベルの段階や制御は、各メーカによって異なることから、出力レベルを知るインタフェースは提供せず、出力を増加または減少しようとするときに、すでに上限または下限であることを通知することしかできない。

【0031】本実施の形態をBluetoothに適応した場合、ピコネットの再構成によって通信状態の確保と消費電力の削減を図ることができる。また、Bluetoothにおいては、良好な通信状態では、マルチスロットパケットをFEC(Forward Error Correction)なしで送信できるため、最大(point-to-pointの通信に換算した場合)723.2kbps(DH5パケット)の通信が可能であるが、通信状態が劣化すると、シングルスロットパケットをFEC付きで送信することになり、最大108.8kbps(2/3FECあり、DM1パケット)と15%程度に低下してしまう。本実施の形態によって良好な通信状態を確保することにより、結果的にスループットを向上させることができる。Bluetoothでは、APIとして

12

提供されるHCI(Host Controller Interface)で、Get _Link_QualityおよびRead_RSSIのコマンドにより、特定リンクの状態を知ることができるが、それぞれの適正レンジの値は、Bluetoothのホストコントローラ(Host Controller)の実装によって異なるため、各製造会社のスペックを参照することになる。

【0032】次に、クラスタを構成する情報端末機器 (ノード)の構成から、本実施の形態を詳細に説明する。 図4は、本実施の形態における情報端末機器(ノード)の 構成を説明するための機能構成図である。ここでは、制 10 御装置としてクラスタヘッド適性度判定装置11、クラ スタヘッド交代スケジュール作成装置12、およびスケ ジュール実行装置13を備えている。また、機能装置と して、リンク状態適性度監視装置21、リンク状態表配 布装置22、テストデータ送信装置23、スケジュール 表配布装置24、リンク状態表受信装置25、クラスタ 再構成装置26、クラスタヘッド適性度表管理装置2 7、推奨クラスタヘッド決定装置28、およびスケジュ ール表受信装置29を備えている。尚、図4において、 実線は制御関係を示しており、波線はデータの流れを示 している。

【0033】このクラスタヘッド適性度判定装置11は、図2に示したような自らのノードとクラスタ内における他のノードとの接続電波状況を把握したリンク状態表14を備え、自らがクラスタヘッドとなった場合に稼動し、クラスタヘッドの交代を試みるか否かを判定している。クラスタヘッド交代スケジュール作成装置12は、クラスタ内における各ノードのスケジュール表15を保持し、クラスタヘッドを交代する際に各ノードにて同期した行動が取れるように、各ノード毎に、いつ、何をするのか、のプログラムを作成している。スケジュール実行装置13は、自ノードスケジュール表16に従い、必要な機能を実行している。

【0034】リンク状態適性度監視装置21は、クラス タヘッドとクラスタメンバとのリンク状態を監視し、エ ラーレートなどの統計情報を収集する(リンク状態表1 4を作成する)機能を有する。作成されたリンク状態表 14は、クラスタヘッド適性度判定装置11に送られ る。リンク状態表配布装置22は、リンク状態適性度監 視装置21で作成されたリンク状態表14を他のノード に対して配布する機能を備えている。テストデータ送信 装置23は、仮クラスタヘッドになった場合に、各仮ク ラスタメンバヘテストデータを送る機能を有する。スケ ジュール表配布装置24は、他のノードに対してスケジ ュール表15を送信する機能を有している。リンク状態 表受信装置25は、リンク状態表14を受信する機能を 有する。クラスタ再構成装置26では、Page ScanやPag eが行われ、クラスタ構成が変更される。クラスタヘッ ド適性度表管理装置27では、各ノードにおいてリンク 状態適性度監視装置21で測定した結果が蓄えられる。

50

本来はクラスタヘッドでのみ管理されれば充分である が、仮クラスタヘッドを一巡した後、もとのクラスタに 復帰できるとは限らないので、念のため、全てのノード で保持することが効果的である。推奨クラスタヘッド決 定装置28は、各ノードをクラスタヘッドとした場合の リンク状態表14を並べてみて、リンク状態表14を評 価し、順位付けする機能を備える。また、スケジュール 表受信装置29は、他ノードよりスケジュール表を受信 する機能を備えている。

最適化処理の流れを示したフローチャートである。ま ず、クラスタヘッドでは、クラスタヘッド適性度判定装 置11を活性化させ、リンク状態適性度監視装置21に よる全てのクラスタメンバとの通信状態を把握して、リ ンク状態表14を作成する(ステップ101)。そして、 このリンク状態表14に基づいて、通信状態不良のノー ドがあるか否かが判断される(ステップ102)。例え ば、クラスタヘッドでは、クラスタメンバ毎にパケット エラーレートを記録し、この記録からクラスタ全体のエ ラーレートの平均値、標準偏差などを算出しクラスタへ ッドとして適格であるか否かが判定される。特定の幾つ かのクラスタメンバに対するエラーレートのみが高い場 合や、全てのクラスタメンバに対するエラーレートが高 い場合は、クラスタヘッドが不適格である場合が多い。 ステップ102にて通信状態不良がないと判断される場 合、即ち、クラスタが正常動作中である場合には、クラ スタヘッドの交代を行う必要がなく、しばらくは現状の クラスタヘッドがクラスタヘッドとして通信に専念する (ステップ103)。クラスタヘッド適性度判定装置11 では、常に各ノードとの通信状態を監視しているリンク 状態適性度監視装置21の情報をもとに、リンク状態表 14を更新している。この通信状態不良がない場合に は、他のノードであるクラスタメンバでは、特に何も行 われない。

【0036】次に、ステップ102で通信状態不良があ ると判断される場合、即ち、クラスタヘッド適性度判定 装置11にて、一部のノードとのリンク状態が健全では ないことが検出されると、クラスタヘッドの交代を試み る決断がなされる。このクラスタヘッドの交代は、クラ スタ内の各ノードを仮クラスタヘッドとし、この仮クラ スタヘッドとして動作している間のリンク状態表14が 作成される。その後、この結果を集計して、相応しいク ラスタヘッドを決定し、必要であればクラスタヘッドの 交代を行うことで実現される。

【0037】このクラスタヘッドの交代作業に際し、ク ラスタヘッド交代スケジュール作成装置12によって、 各ノード毎に、いつ、何をすべきかのスケジュール表1 5が作成される(ステップ104)。即ち、ここでは、仮 クラスタヘッド評価のためのクラスタヘッド巡回プログ ラムであるスケジュール表 1 5 が作成される。この相応 50

しいクラスタヘッドを選定するに際しては、一時的にせ よクラスタヘッドの交代が伴うことから、クラスタヘッ ドの交代に伴うオーバーヘッドを削減するために、事前 にどのタイミングでクラスタヘッドを交代するというス ケジュール表15の作成が必要となる。このスケジュー ル表15の作成にあたっては、クラスタのノード間での 時刻ずれがないことが前提となる。但し、一般に、クラ スタメンバはクラスタヘッドによって同期しており、例 えば、Bluetoothでは、全てのノードはマスタのクロッ 【0035】図5は、本実施の形態におけるクラスタの 10 クに同期し、時刻のずれはない。また、スケジュール表 15の作成では、仮クラスタヘッドの巡回の手順と、元 のクラスタヘッドへの回復手順を定め、それぞれの各手 順において、各ノードの果たすべき役割が時刻毎に記述 されている。

> 【0038】次に、スケジュール表配布装置24から各 ノードに対して、現在のクラスタ構成を利用してスケジ ュール表15の配布が行われる(ステップ105)。同時 に、クラスタヘッドによる不都合なリンク状態表14 も、後で必要となる場合を考慮して、全てのクラスタメ ンバに配布される。クラスタヘッドでは、自らのスケジ ュール表15をスケジュール実行装置13に自ノードス ケジュール表16として格納し、各クラスタメンバで は、クラスタヘッドから配布された自らのスケジュール 表15を、各クラスタメンバにおけるスケジュール実行 装置13に自ノードスケジュール表16として格納す

【0039】ここで、例えば、クラスタを構成するノー ドがノードA~ノードFで、現状のクラスタヘッドがノ ードA(クラスタヘッドA)であり、ノードDとの通信に 30 不都合があったとする。この場合、例えば、仮のクラス タヘッドを $A \rightarrow B \rightarrow C \rightarrow E \rightarrow F \rightarrow D$ のように巡回させて リンク状態が評価される。また、評価後は、通常クラス タヘッドAの現状に回復するものとするが、例えばノー ドAが移動していなくなる等の回復不可能な場合を考慮 して、どのようなクラスタとして回復するのかも順序付 けしておくことが好ましい(例えば、 $A \rightarrow B \rightarrow C \rightarrow E \rightarrow$ F→Dの順等)。

【0040】この巡回として、例えば、5秒後から15 秒ずつ、仮マスタをB(5秒~20秒)、 C(20秒~3 5秒)、E(35秒~50秒)、F(50秒~65秒)、D (65秒~80秒)と循環させ、その後(80秒後)、クラ スタヘッドAとする元のクラスタ構成に戻るものとす る。尚、不幸にして戻れなかった場合は、それぞれのク ラスタメンバは、自分をクラスタヘッドとして順次、ク ラスタを回復しようとする。例えば、90秒後までにB がAをクラスタヘッドとするクラスタに戻れなかった場 合は、Bが90秒後にクラスタ回復を試み、100秒後 までにCがAまたはBをクラスタヘッドとするクラスタ ヘッドに戻れなかった場合は、Cが100秒後にクラス タ回復を試み、以下同様に、Eは110秒後、Fは12

0秒後、Dは130秒後に、それぞれクラスタマスタと して他のメンバを迎えてクラスタを回復しようとする。 つまり、元のクラスタヘッドAのスケジュール表15と しては、5秒後、20秒後、35秒後、50秒後、65 秒後にPage Scanを連続的に起動して仮クラスタヘッド のメンバになろうとし、80秒後には、逆に、元のクラ スタメンバに対してPageを順次行い、クラスタメンバと して取り込み、元のクラスタ構成を回復するものとな る。一方、元のクラスタメンバBのスケジュール表15 としては、5秒後には、全てのクラスタメンバA,C, D, E, FにPageを順次行い、仮クラスタを構成し、通信 状態のテストを行い、15秒後までにはこの仮クラスタ を解消し、更に、20秒後、35秒後、50秒後、65 秒後には、Page Scanを連続的に起動し、他の仮クラス タヘッドのメンバになろうとし、80秒後には、また、 Page Scanを行い、Aをクラスタヘッドとする元のクラ スタ構成に戻ろうとする。ここで、90秒後までにAを クラスタヘッドとする元のクラスタ構成に戻れない場合 は、Pageを起動し、自分をクラスタヘッドとし、クラス タの回復を試みるものとなる。

【0041】このとき、クラスタメンバにおいては、各々のノードにおけるスケジュール表受信装置29にてスケジュール表15を受信し、スケジュール実行装置13にセットされる。また、現状のクラスタヘッド(例えばノードA)におけるリンク状態表14も念のため送付されてくるので、仮クラスタヘッド巡回終了後に比較できるように、クラスタヘッド適性度表管理装置27に蓄えられる。

【0042】次に、スケジュール表15どおりにクラス タメンバが協調・同期して、仮クラスタヘッドを巡回さ せ、リンク状態を評価する(ステップ106)。このと き、元のクラスタヘッド(ノードA)は、その巡回期間 中、クラスタメンバとして動作する。仮クラスタヘッド の巡回は、ノードA用のスケジュールに従い、Page Sca nを行い、次々に仮のクラスタヘッドを変えていく。こ のとき、クラスタ再構成装置26は、Page ScanやPage を行いクラスタ構成を変更している。ここで、それぞれ の仮クラスタに接続できた場合は、ノードAに対して仮 クラスタヘッドからその時のリンク状態表14が送られ てくるので、それをクラスタヘッド適性度表管理装置2 7に蓄えておく。接続できなかった場合は、後に別のク ラスタヘッドに接続した時に、そのノードのクラスタヘ ッド適性度表管理装置27から受け取るものとする。仮 クラスタでクラスタヘッドとして動作する各ノードは、 クラスタ再構成装置26を起動して仮クラスタを構成 し、テストデータ送信装置23を使用して各クラスタメ ンバヘテストデータを送信し、リンク状態適性度監視装 置21にてテストデータの送受信状態の表であるリンク 状態表14を作成する。作成したリンク状態表14は、 リンク状態表配布装置22によって各クラスタメンバへ 50 通知すると同時に、自らのクラスタヘッド適性度表管理 装置27にも蓄えておく。

【0043】次に、元のクラスタヘッドであるノードA は、自身をクラスタヘッドとした場合に比べてかなり優 れたリンク状態表14があるか否かが判断される(ステ ップ107)。即ち、今までに集めたノードA,B, C.... Fのリンク状態表14を、クラスタヘッド適性度 表管理装置27から推奨クラスタヘッド決定装置28へ 転送し、改善効果等が比較判断される。この判断の結 10 果、かなり優れたリンク状態表14がない場合には、元 のクラスタ構成に戻してそのまま落ち着き、現状のクラ スタヘッドがしばらくクラスタヘッドとして通信に専念 する(ステップ103)。尚、クラスタヘッド適性度表管 理装置27は、同じ不都合(例えば、ノードDとのリン ク状態が不健全)が発生した場合に、クラスタヘッドの 変更を試みても再度却下される可能性がある。そのため に、例えば、他の不都合が発生するまで、この不都合の 度合いが更に悪くなるまで、相当時間が経過するまで、 等の条件で、この不都合を許容するように構成すること 20 ができる。

【0044】次に、ステップ107にてかなり優れたり ンク状態表14がある場合には、元のクラスタ構成に戻 った後に、クラスタヘッドが交代される。例えば、比較 判断の結果、ノードCが優れていることを発見し、クラ スタヘッドCに委譲する等である。このとき、現状のク ラスタヘッドであるノードAは、クラスタヘッドを委譲 するためのプログラムを作成して配布する(ステップ1 08)。即ち、ノードAにおけるクラスタヘッド交代ス ケジュール作成装置12は、仮クラスタヘッド巡回の時 30 と同様に、各ノードで実行すべきスケジュール表15を 作成し、スケジュール表配布装置24によって、各クラ スタメンバに配達し、同時に、自らのスケジュール表1 5は自ノードスケジュール表16として、自らのスケジ ュール実行装置13に渡される。このとき、クラスタへ ッドを交代するにしても、同期をとって効率よく交代す るために、最終的なクラスタヘッドとしてC、それがだ めならA、それがだめならB、E、F、Dとすべてのノ ードに順序付けし、スムースな変更をする必要がある。 そこで、本実施の形態では、クラスタヘッドとして優れ ているノードの順番をクラスタヘッド交代スケジュール 作成装置12へ通知するように構成している。

【0045】より具体的に述べると、スケジュールとして、例えば、C,A,B.E,F,Dの順にクラスタヘッドとして適しているとすれば、各々10秒後毎にクラスタヘッドとし、残りのノードをクラスタに取り込むように動作させることができる。例えば、Cは10秒後からPageをして各々のノードを取り込んでクラスタを構成しようとする。Aは10秒後からPage ScanをしてCに取り込まれようとし、だめであれば20秒後から自らPageをし、他のノードを次々に取り込んでクラスタを構成しよ

うとする。Bは10秒後からPage Scanをし、Cまたは Aのノードに取り込まれようとし、だめであれば自らが 30秒後からPageをし、他のメンバを次々に取り込みクラスタを構成しようとする。このようにして、E,F,Dについても同様な手順が図られるように、スケジュール 表 15が作成される。

【0046】各クラスタメンバは、クラスタヘッドより送られてきたスケジュール表15を受信し、自らのスケジュール実行装置13にセットする。スケジュール実行装置13では、クラスタ再構成装置26を使用しながらクラスタ構成を変更し、うまくクラスタが構成されるまで、スケジュールを実行する。これによって、最適なノードがクラスタヘッドとして設定される(ステップ100)

【0047】以上のような流れによって、最も効率が高 いと判断されるノードをクラスタヘッドとして選択する ことが可能となるが、ステップ103に移る際に、現状 のクラスタヘッドを用いた元のクラスタ構成に戻れない 場合が考えられる。例えば、元のクラスタヘッドである ノードAが電源断や移動等によって機能しなくなった場 合等である。このような場合には、クラスタメンバに事 前に順位を付けておき、リカバリのためのクラスタヘッ ドとなる時刻と期間、特定のリカバリにおけるクラスタ ヘッドのクラスタメンバとなろうとする時刻と期間を登 録しておき、元のクラスタに近い形で回復できるように する。即ち、前述の仮クラスタヘッドの巡回と同様に、 クラスタヘッド交代スケジュール作成装置12における クラスタヘッド交代のスケジュール表15に基づき、例 えば、B, C,...の順にクラスタが回復される。このよ うに構成することで、クラスタ構成にエラーが生じた場 合であっても、問題なく動作させることが可能となる。 【0048】尚、本実施の形態では、全てのクラスタメ ンバに対してクラスタヘッド適合検査を行い、また、全 てのクラスタメンバがリカバリクラスタヘッダとなり得 る場合について説明したが、クラスタメンバ個々の能 力、過去の履歴などに応じて、幾つかのクラスタメンバ を除くことも可能である。この幾つかのクラスタメンバ を除くことによって、効率化が図れる場合も考えられ

【0049】以上、詳述したように、本実施の形態によ 40 れば、クラスタの再構成にかかる時間を短縮するために、無線局(ノード)にかかわる情報を再構成以前に各無線局に配布し、無線局探索に必要な作業を軽減することができる。即ち、本実施の形態では、一時的、または最終的にクラスタヘッドを交代させるための手続きと、万一、クラスタヘッド交代作業中にエラーが発生した場合の復旧方法とを組として事前にスケジュールしておくように構成している。これによって、例えば、無線アドホック通信に特有な、無線局の移動や通信状態の不良に対しても、適切に対処することができる。 50

18

【0050】更に、本実施の形態では、順番にクラスタ ヘッドを交代させていく前に、個々の構成無線局(ノー ド)に対して、クラスタヘッドとしてクラスタを構成す る時刻と期間とを相互に確認し、同期させて交代させて いる。これによって、いずれかの段階でも、各無線局 は、クラスタヘッドとして動作すべきか、またはどのク ラスタヘッドに対するクラスタメンバとして動作すべき か、が決まっており、交代の最中にクラスタヘッドとし て機能できない無線局が発生したり、接続できないクラ スタメンバを持つクラスタヘッドが形成されたとして も、当初の設定された一定時間で自動的に回復すること ができる。このクラスタヘッドの交代のメカニズムは、 最適クラスタヘッド探索の際におけるクラスタヘッド巡 回の場合だけではなく、探索後の評価を目的として元の クラスタ構成に戻るときや、最適なクラスタへのクラス タヘッド委譲の際にも用いることが可能である。

【0051】また、前述したように、Bluetoothでは、 通信の開始に、無線局の探索のためのInquiryと、スレ ーブ局と接続を行うためのPageというプロセスが必要と なり、標準的なプロセスでは、非常に多くの時間を必要 としてしまう。しかしながら、本実施の形態を適用すれ ば、再構成を行う前にクラスタ所属の無線局の情報を各 無線局に配布することで、Inquiryプロセスを不要と し、更に、Pageプロセスにかかる時間も20ms程度ま で劇的に短縮することが可能となる。従って、現状では 実質的に不可能な、クラスタ再構成を可能とし、通信効 率の向上を図ることが可能となる。特に、Bluetoothで は、小規模のクラスタが重なってできており、電波の干 渉が起こり易く、従来の方式である、一度形成されたク ラスタを解消して新たに探索をしてからクラスタを作る 方法では、オーバーヘッドが余りにも大きくなる。しか しながら、本実施の形態によれば、同期させてクラスタ を再構成することが可能となり、これらのオーバーヘッ ドを防止することができる。

【0052】更に、Bluetoothでは、1つのピコネット (クラスタ)では、1つのマスタ(クラスタヘッド)と7つまでの活動的なスレーブ(クラスタメンバ)から構成されるため、クラスタ内のメンバ数に8という上限があり、一般のアドホックネットワークよりも制約が強い。即ち、ピコネットは、8つまでの無線局しか扱えないことから、8つ以上の無線局が存在する場合に、たとえ全てが電波の届く範囲であったとしても、複数のピコネットをブリッジで繋ぐという構成をとる必要がある。しかしながら、本実施の形態を適用すれば、例えば、無線局の減少により2つのピコネットを併合しても良いときなど、動的にクラスタを再構成することが可能となり、即ち、複数のピコネットを対象とした分割、併合にも応用でき、Bluetoothにおけるアドホックネットワークの実現に際しても非常に有効である。

50 [0053]

【発明の効果】以上詳述したように、本発明によれば、 クラスタヘッドの不適格な状態を検出して、より良いク ラスタヘッドを再選出することが可能となる。

【図面の簡単な説明】

【図1】 本実施の形態にて実現されるクラスタヘッド 交代によるクラスタ構成の最適化を説明するための図で ある。

【図2】 各ノードにおける接続電波状況の一例を示した図である。

【図3】 (a),(b)は、適性度の判定を、例えばスループットで行った場合の例を示す図である。

【図4】 本実施の形態における情報端末機器(ノード) の構成を説明するための機能構成図である。

【図5】 本実施の形態におけるクラスタの最適化処理 の流れを示したフローチャートである。

【符号の説明】

11…クラスタヘッド適性度判定装置、12…クラスタ ヘッド交代スケジュール作成装置、13…スケジュール 実行装置、14…リンク状態表、15…スケジュール 表、16…自ノードスケジュール表、21…リンク状態 適性度監視装置、22…リンク状態表配布装置、23… テストデータ送信装置、24…スケジュール表配布装 10 置、25…リンク状態表受信装置、26…クラスタ再構 成装置、27…クラスタヘッド適性度表管理装置、28 …推奨クラスタヘッド決定装置、29…スケジュール表 受信装置

【図1】

【図2】

ノード① 接続電波状況	ノード② 接続電波状況
② Good	① Good
③ Good	③ Good
Good	@ Good
Situa de ce	
	<u> </u>

	ノード③ 接続電波状況
	① Good
Ì	② Good
	4 Good
	(B) NGC(II)

[図3]

【図4】

【図5】

フロントページの続き

(72)発明者相原達神奈川県大和市下鶴間1623番地14日本ア

イ・ビー・エム株式会社 東京基礎研究所

内

(72)発明者 下遠野 享

神奈川県大和市下鶴間1623番地14 日本ア イ・ビー・エム株式会社 東京基礎研究所 内 (72)発明者 水谷 晶彦

神奈川県大和市下鶴間1623番地14 日本アイ・ビー・エム株式会社 東京基礎研究所内

Fターム(参考) 5K033 AA01 CB01 CC01 DA01 DA17

DB20 EA06

5K067 AA21 BB21 CC13 DD36 DD43 EE02 EE25 EE35 GG06 JJ17

JJ73