CS/MATH 111 Quiz 1 Responses

Ivan Neto

Problem 1:

a)

i)
$$5n^{4} - 3n^{3} + 10^{5} + 7n$$
 $\theta(n^{4})$
ii) $2n^{3}e^{3}(n^{7}) + n^{2} \log^{3}(n) + \frac{10n}{5^{n}} \Theta(n^{2})\log(n)$
iii) $\frac{10n^{4}}{n\pi} + 5n^{2} \log n + 12n^{2} \theta(n^{2})\log(n)$
iv) $15n^{3} \cdot 5^{n} + (\frac{10}{3})^{n} \theta(n^{3} \cdot 5^{n})$

b) not enough time

Problem 2:

a)

20 \$ 5 |
i) i=e i=1

- First kar runs 20 times

- second runs; times for each j.

N 1 | 1 | 2 | 1 |

N 1 | 2 | 1 |

N 1 | 2 | 1 |

N 1 | 2 | 1 |

N 1 | 2 | 1 |

N 1 | 2 | 1 |

N 1 | 2 | 1 |

N 1 | 2 | 1 |

N 1 | 2 | 1 |

N 1 | 2 | 1 |

N 1 | 2 | 1 |

N 1 | 2 | 1 |

N 1 | 2 | 1 |

N 1 | 2 | 1 |

N 1 | 2 | 1 |

N 1 | 2 | 1 |

N 1 | 2 | 1 |

N 2 | 1 |

N 3 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 2 | 1 |

N 3 | 2 |

N 3 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 2 | 1 |

N 3 | 2 |

N 3 | 2 |

N 1 | 2 |

N 1 | 2 |

N 2 | 2 |

N 3 | 2 |

N 3 | 2 |

N 4 | 2 |

N 5 | 2 |

N 1 | 2 |

N 1 | 2 |

N 2 | 2 |

N 3 | 2 |

N 3 | 2 |

N 4 | 2 |

N 5 | 2 |

N 1 | 2 |

N 1 | 2 |

N 2 | 2 |

N 3 | 2 |

N 3 | 2 |

N 4 | 2 |

N 5 | 2 |

N 1 | 2 |

N 1 | 2 |

N 2 | 2 |

N 3 | 2 |

N 3 | 2 |

N 4 | 2 |

N 5 | 2 |

N 6 | 2 |

N 7 | 2 |

N 8 | 2 |

N 8 | 2 |

N 9 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 2 | 2 |

N 3 | 2 |

N 4 | 2 |

N 5 | 2 |

N 6 | 2 |

N 7 | 2 |

N 8 | 2 |

N 8 | 2 |

N 9 | 2 |

N 9 | 2 |

N 9 | 2 |

N 9 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 2 | 2 |

N 3 | 2 |

N 4 | 2 |

N 5 | 2 |

N 6 | 2 |

N 7 | 2 |

N 8 | 2 |

N 8 | 2 |

N 9 | 2 |

N 9 | 2 |

N 9 | 2 |

N 9 | 2 |

N 9 | 2 |

N 9 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 2 | 2 |

N 3 | 2 |

N 3 | 2 |

N 4 | 2 |

N 5 | 2 |

N 6 | 2 |

N 7 | 2 |

N 8 | 2 |

N 8 | 2 |

N 8 | 2 |

N 9 | 2 |

N 9 | 2 |

N 9 | 2 |

N 9 | 2 |

N 9 | 2 |

N 9 | 2 |

N 9 | 2 |

N 9 | 2 |

N 9 | 2 |

N 9 | 2 |

N 9 | 2 |

N 9 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

N 1 | 2 |

iii) $\frac{1}{24n^2}$ (log₃(n))

i=1

Ahilt loop runs

Log₃(n) times

ii)
$$\sum_{i=1}^{2n^3} | F_{ii}|^2 = 1$$

First while loop will cause is to be $\geq n^2$.

26) i) θ (1) does not levery on n ii) $U(n \log n)$ - First loop runs n - Jod N LOL GRALY V (ii) O [n2 log n) - log n is summed 241 - we drop constants and buses in) fl(N2) - 6 ees From i to 213

Problem 3:

P(n):
$$\sum_{i=1}^{n} i \cdot 2^{i+1} \geq 2^{n} \cdot (n-1)$$

FOR $N \geq 1$.

base case

P(1): $1 \cdot 2^{2} \geq 2^{1} \cdot (n)$

Inductive step

hypothesis $P(K)$: $\sum_{i=2}^{n} i \cdot 2^{i+1} \geq 2^{k} \cdot (k-1)$

Proving
$$P(K) \rightarrow P(K+1)$$
 $k+1$
 $k+1$

- Not enough time for steps after