UNIVERSIDAD DEL VALLE DE GUATEMALA CAMPUS CENTRAL FACULTAD DE INGENIERÍA

Iniciativa Académica de Inteligencia Artificial

1 Identificación

Curso: CC4037 – Inteligencia Artificial Créditos: 4

Ciclo: Primero Requisitos: Algoritmos y Estructuras de Datos

Año: 2022 Lógica Matemática

Estadística, Álgebra Lineal

Profesor: Alan Reyes–Figueroa **Horario:** Martes y jueves – 19:50-21:25

Email: agreyes **Sala:** A definir.

Sitio Web del Curso:

• https://pfafner.github.io/ia2022

Office Hours:

• Viernes de 18:00 a 20:00 hrs, o por solicitud del estudiante, o pueden enviar sus dudas por correo electrónico.

2 Descripción

Este es un curso introductorio a la inteligencia artificial (IA), la cual es una disciplina que mezcla mucha ramas del conocimiento, como programación, estadística y probabilidad, neurociencia, visión, lenguaje y robótica, entre otros. Esta disciplina permite al estudiante adquirir conocimientos sobre los fundamentos de la inteligencia artificial, así como la aplicabilidad de múltiples métodos y técnicas para resolver problemas mediante el uso de agentes inteligentes.

Inicialmente se hace un estudio de los conceptos y fundamentos de la IA, así como el desarrollo histórico de la disciplina. Se revisan el estado del arte y temas éticos generales. Además, se introducen los agentes inteligentes, así como los ambientes y estados en que se desarrollas.

Luego el curso se dedica al desarrollo de técnicas para resolver problemas, principalmente los métodos de búsqueda BFS y DFS, así como el desarrollo de heurísticas de búsqueda, *backtracking*, y otros métodos. Se estudian problemas de restricción y juegos y búsqueda adversaria, así como agentes y modelos basados en reglas lógicas, sistemas expertos y heurísticas de planificación. Luego se estudian modelos de cuantificación de incertidumbre, en donde se introducen razonamiento probabilístico, y se estudian los modelos ocultos de Markov, y las redes bayesianas.

En la segunda parte del curso, se estudia la teoría del aprendizaje automático, y métodos de aprendizaje estadístico. Se estudian las redes neuronales artificiales, y elementos de aprendizaje profundo y aprendizaje por refuerzo. En la parte final del curso se introducen elementos de visión computacional, procesamiento del lenguaje y robótica.

3 Competencias a Desarrollar

Competencias genéricas

1. Piensa de forma crítica y analítica.

- 2. Resuelve problemas de forma efectiva.
- 3. Desarrolla habilidades de investigación y habilidades de comunicación científica a través de seminarios y presentaciones ante sus colegas.

Competencias específicas

- 1.1 Identifica los aspectos fundamentales en el campo de la inteligencia artificial, para tener una visión global de los orígenes y motivaciones de ésta área.
- 1.2 Distingue el concepto de agentes inteligentes como aspecto central de la inteligencia artificial.
- 1.3 Comprende y conoce la terminología común en las áreas de inteligencia artificial y aprendizaje automático, y redes neuronales.
- 2.1 Evalúa correctamente ambientes de problemas para determinar el acercamiento más adecuado para el desarrollo de agentes, tomando en consideración limitantes de tiempo y espacio computacional.
- 2.2 Construye agentes inteligentes para resolver eficientemente problemas computacionales clásicos (búsqueda, inferencia probabilística, aprendizaje, planificación, juegos, optimización, entre otros.
- 2.3 Utiliza un enfoque global para resolver problemas. Utiliza herramientas auxiliares en su solución, como matemática, estadística y probabilidad, lógica y algoritmos.
- 3.1 Desarrolla todas las etapas de un proyecto aplicado donde se realiza una implementación de métodos inteligentes.
- 3.2 Escribe un reporte técnico sobre la solución de un problema en inteligencia artificial. Concreta un análisis riguroso y conclusiones importantes.
- 3.3 Comunica de manera efectiva, en forma escrita, oral y visual, los resultados de su investigación.

4 Metodología Enseñanza Aprendizaje

El curso se desarrollará durante diecinueve semanas, con cuatro períodos semanales de cuarenta y cinco minutos para desenvolvimiento de la teoría, la resolución de ejemplos y problemas, comunicación didáctica y discusión. Se promoverá el trabajo colaborativo de los estudiantes por medio de listas de ejercicios.

El resto del curso promoverá la revisión bibliográfica y el auto aprendizaje a través de la solución de los ejercicios del texto, y problemas adicionales, y el desarrollo de una monografía. Se espera que el estudiante desarrolle su trabajo en grupo o individualmente, y que participe activamente y en forma colaborativa durante todo el curso.

5 Contenido

- 1. Conceptos básicos: Definición de inteligencia artificial. Historia, terminología, aplicaciones. Agentes inteligentes: ambientes, tipos de ambientes y de agentes. Espacios de estados. Solución automática de problemas. Ventajas y consideraciones éticas.
- 2. Búsqueda local: Algoritmos de búsqueda: BFS, DFS. Estrategias de búsqueda: uninformadas, informadas, heurísticas, *backtracking*. Problemas con restricciones. Juegos adversarios y decisiones óptimas.
- 3. Sistemas expertos: Lógica proposicional y lógica de primer orden. Modelos. Planificación: búsqueda progresiva, búsqueda regresiva. Planificación e incertidumbre.

 Juegos: Juegos de dos jugadores, reducción de complejidad, Teoría de juegos: Estrategias dominantes, óptimos

de Pareto, estrategias mixtas. Calendarización, manejo de recursos.

- 4. Probabilidad: Conceptos básicos. Dependencia e independencia. Regla de Bayes. Redes Bayesianas. Dependencia condicional, separación. Inferencia probabilística. Muestreo de Gibbs. Modelos ocultos de Markov y filtros.
- 5. Optimización estocástica y combinatoria: Hill-climbing. Enfriamiento simulado. Algoritmos evolutivos: algoritmos genéticos, evolución diferencial. Estrategias de enjambre y PSO.
- 6. Aprendizaje automático: Reducción de dimensionalidad. PCA y variantes. Variables latentes. Métodos locales. Métodos de agrupamiento. Agrupamiento jerárquico, K-means y variantes. Otros métodos geométricos. Métodos basados en mezclas y densidades. Clasificación: Regresión logística, naive Bayes, clasificadores lineales, árboles de decisión y random forests. Redes neuronales.
- 7. Aprendizaje profundo. ConvNets. Introducción a visión computacional. Redes recurrentes. Introducción al procesamiento de lenguajes naturales. Aprendizaje por refuerzo. Introducción a robótica.

6 Bibliografía

Textos:

- Stuart Russell y Peter Norvig (2021). Artificial Intelligence: A Modern Approach, Pearson. 4a. edición.
- Wolfgang Ertel. (2018). Introduction to Artificial Intelligence, Springer, 2a. edición.

Referencias adicionales:

- El-Ghazali Talbi (2009). Metaheuristics: From Design to Implementation. Wiley.
- S. Luke (2013). Essential of Metaheuristics.
- A. E. Eiben, J. E. Smith (2003). Introduction to Evolutionary Computing. Springer.
- T. Bäck (1996). Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press.
- M. Mitchell (1999). An Introduction to Genetic Algorithms. MIT Press.
- C. Bishop (2000). Pattern Recognition and Machine Learning. Springer
- T. Hastie, R. Tibshirani, J. Friedman (2013). The Elements of Statistical Learning. Springer.
- Daphne Koller, Nir Friedman (2012). Probabilistic Graphical Models. MIT Press.
- K. Murphy (2012). Machine Learning: a Probabilistic Perspective. MIT Press.
- Richard Sutton, Andrew Barto (2018). Reinforcement Learning: an Introduction. MIT Press, 2a. edición.

7 Actividades de evaluación

Actividad	Cantidad aproximada	Porcentaje
Listas de ejercicios	4	40%
Mini-proyectos	2	20%
Proyectos	2	40%

8 Cronograma

Semana	Tópico	Fecha	Actividades
1	Introducción y motivación al curso. Conceptos básicos. Historia de la IA.	10-14 enero	
2	Agentes y espacios de estados. Búsqueda. local. Métodos y tipos de búsqueda.	17-21 enero	
3	Estrategias de búsqueda, BFS, DFS. Heurísticas. Búsqueda con restricciones y Backtracking.	24-28 enero	
4	Juegos adversarios y decisiones óptimas. Teoría de juegos, óptimos de Pareto.	31 enero-04 febrero	
5	Sistemas lógicos y basados en reglas. Modelos. Planificación e incertidumbre.	07-11 febrero	
6	Calendarización, manejo de recursos. Repaso de probabilidad: Dependencia e independencia.	14-18 febrero	Mini-proyecto
7	Dependencia condicional, separación. Regla de Bayes. Redes Bayesianas.	21-25 febrero	
8	Muestreo de Gibbs. Modelos ocultos de Markov y filtros.	28 febrero-04 marzo	
9	Optimización continua. Convexidad. Método del gradiente.	07-11 marzo	
10	Optimización estocástica y combinatoria. Hill-climbing. Enfriamiento simulado.	14-18 marzo	
11	Algoritmos evolutivos: algoritmos genéticos, evolución diferencial. Estrategias de enjambre y PSO.	21-25 marzo	Mini-proyecto
12	Aprendizaje automático: Reducción de dimensionalidad. PCA y variantes. Variables latentes. Métodos locales.	28 marzo-01 abril	
13	Métodos de agrupamiento. Agrupamiento jerárquico. K -means. Métodos basados en mezclas.	04-07 abril	
	Semana Santa	11-15 abril	
14	Clasificación: Regresión logística, <i>naive Bayes</i> . SVM. Árboles de decisión y <i>random forests</i>	18-23 abril	
15	Presentación de proyectos.	25-29 abril	Proyecto 1
16	Redes neuronales multicapa. Funciones de activación. Aprendizaje profundo.	02-06 mayo	
17	ConvNets. Introducción a visión computacional y procesamiento de imágenes.	09-13 mayo	
18	Redes recurrentes. Introducción al procesamiento de lenguajes naturales.	16-20 mayo	
19	Aprendizaje por refuerzo. Introducción a robótica. \mathbb{R}^3_1 . Estado actual de la IA.	23-27 mayo	
20	Presentación de proyectos.	30 mayo-03 junio	Proyecto 2