Exercise 1 (Lesson 3, 5 points). Compute β_0 and β_1 of the graphs G_1 and G_2 given in the Lesson 3 notes.

Since our simplices are both 1-dimensional, our chain complex in both cases will be

$$0 \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \xrightarrow{\partial_0} 0,$$

so the homology groups will be

$$H_0 = \frac{\operatorname{Ker} \partial_0}{\operatorname{Im} \partial_1} \cong \frac{C_0}{\operatorname{Im} \partial_1},$$

$$H_1 = \frac{\operatorname{Ker} \partial_1}{\operatorname{Im} \partial_0} \cong \operatorname{Ker} \partial_1.$$

For our two graphs G_1 and G_2 , we have dim $C_0 = \dim C_1 = 5$ since each graph has 5 vertices and 5 edges each. Thus the betti numbers are

$$\beta_0 = \dim H_0$$

$$= \dim C_0 - \dim(\operatorname{Im} \partial_1)$$

$$= \dim C_0 - (\dim C_1 - \dim(\operatorname{Ker} \partial_1))$$

$$= \dim(\operatorname{Ker} \partial_1)$$

and

$$\beta_1 = \dim(\operatorname{Ker} \partial_1).$$

So both these graphs 0th and 1st betti numbers are both just the dimension of the kernel of ∂_1 . We compute these kernels below.

1. For G_1 , an element of the kernel of ∂_1 satisfies

$$\partial_1 (\alpha[v_1, v_2] + \beta[v_2, v_3] + \gamma[v_1, v_3] + \delta[v_3, v_4] + \varepsilon[v_4, v_5]) = 0$$

$$\alpha(v_1 + v_2) + \beta(v_2 + v_3) + \gamma(v_1 + v_3) + \delta(v_3 + v_4) + \varepsilon(v_4 + v_5) = 0$$

$$(\alpha + \gamma)v_1 + (\alpha + \beta)v_2 + (\beta + \gamma + \delta)v_3 + (\delta + \varepsilon)v_4 + \varepsilon v_5 = 0.$$

Each coefficient must then be zero, giving us a system that we can represent in matrix form. Performing Gaussian elimination gives

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix},$$

so $\delta = \varepsilon = 0$ and $\alpha = \beta = \gamma$. The space of all viable tuples $(\alpha, \beta, \gamma, \delta, \varepsilon)$ is then spanned by $(1, 1, 1, 0, 0)\gamma$ (the single triangle in the diagram), so dim(Ker p_1) = 1. Thus $\beta_0 = \beta_1 = 1$.

2. For G_2 , we can similarly derive that any element of the kernel of ∂_1 satisfies

$$\partial_1 (\alpha[v_1, v_2] + \beta[v_2, v_4] + \gamma[v_1, v_4] + \delta[v_1, v_3] + \varepsilon[v_3, v_4]) = 0$$

$$(\alpha + \gamma + \delta)v_1 + (\alpha + \beta)v_2 + (\delta + \varepsilon)v_3 + (\beta + \gamma + \varepsilon)v_4 = 0.$$

Once again, we perform Gaussian elimination on the matrix form of this system to get

$$\begin{pmatrix} 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix},$$

so $\alpha = \beta = \gamma + \delta$ and $\delta = \varepsilon$. Then the whole space of viable $(\alpha, \beta, \gamma, \delta, \varepsilon)$ is spanned by $(1, 1, 1, 0, 0)\gamma + (1, 1, 0, 1, 1)\delta$, the square and one of the triangles in the diagram. Thus $\dim(\operatorname{Ker} \partial_1) = 2$, so $\beta_0 = \beta_1 = 2$.

Exercise 2 (Lesson 4, 5 points). Compute the zero dimensional persistence diagram of the filtered graph (i.e. graph and associated monotonic function) shown in the Lesson 4 notes.

$$\begin{array}{ccc}
1 & 2 & \xrightarrow{3} & 3 \\
6 & 7 & & \\
4 & 5 & &
\end{array}$$

The persistence diagram is below.

As a set, this is

$$\{[1,\infty),[2,\infty),[4,6),[5,7)\}$$
.