

Scuola Politecnica e delle Scienze di Base Corso di Laurea Magistrale in **Ingegneria Informatica**

Prof.ssa Valentina Casola

A.A. 2019/2020

Studenti:

Della Torca Salvatore Matr. M63001011

Indice

1	Spe	cifiche di progetto	1					
2	2 Soluzione							
	2.1	Architettura del sistema	2					
	2.2	Protocolli	3					
	2.3	Mappa della memoria	5					
	2.4	Implementazione	7					
		2.4.1 Documentazione del codice	7					
		2.4.2 Codice Assembly	10					
		2.4.3 Configurazione in Asim	10					

Capitolo 1

Specifiche di progetto

Un sistema S1 è dotato di una periferica parallela P1 operante secondo il meccanismo delle interruzioni. Il sistema è programmato per ricevere \mathbf{N} vettori di 5 interi ciascuno, espressi su 1 byte, secondo la seguente modalità: ogni 5 interi $xi_1...xi_5$ ricevuti sulla periferica P1, il sistema effettua una verifica sul vettore ricevuto tramite una funzione di libreria VERIFICA, che prende in ingresso l'indirizzo del vettore, la sua dimensione e il valore VAL=100 e restituisce un valore pari a 1 se la somma degli elementi del vettore è maggiore di VAL.

Nel caso in cui il valore restituito sia pari a 1, il vettore di 5 interi $[xi_1, xi_2, xi_3, xi_4, xi_5]$ viene trasferito in un'apposita area di memoria utilizzando un DMA. In caso contrario, il vettore non viene copiato.

(Nota: i vettori di 5 interi acquisiti nel tempo devono essere memorizzati in aree contigue).

Una volta ricevuti gli N vettori in maniera corretta, le interruzioni sulle periferiche vengono disabilitate dal programma principale, che quindi deve essere in grado di rilevare la fine della trasmissione.

In particolare, è stata fatta la scelta di porre N=1, ovvero di trasmettere un solo vettore di 5 numeri.

Capitolo 2

Soluzione

2.1 Architettura del sistema

Da un punto di vista architetturale i due sistemi S1 e S2 sono costituiti da una memoria, un processore e una periferica parallela PIA. In più il sistema S1 che riceve presenta anche un DMA che ha il compito di trasferire il vettore di 5 interi in un'apposita area di memoria nel caso in cui vada a buon fine la funzione di verifica.

Fig. 2.1: Architettura del sistema

Il programma è stato implementato mediante l'utilizzo di 2 interruzioni, entrambe localizzate nel sistema S1:

• Interruzione in ricezione della PIA del sistema S1, sulla linea INT3, che è responsabile di ricevere e memorizzare i valori che sono stati inviati dalla PIA del sistema S2;

• Interruzione del DMA, sulla linea INT7, che è stata implementata per permettere al programma principale di disabilitare le interruzioni.

2.2 Protocolli

Le seguenti immagini mostrano come sono legate le PIA tra di loro e il protocollo di comunicazione.

Fig. 2.2: Collegamento tra le PIA

Fig. 2.3: Protocollo di comunicazione tra le PIA

Fig. 2.4: Comunicazione DMA-memoria

Il DMA si occupa invece di prendere il messaggio depositato dalla PIA all'indirizzo 8000 e di trasferirlo all'indirizzo 8200. Nel registro caddr0 del canale 0 carico quindi l'indirizzo 8000, mentre in caddr1 del canale 1 carico l'indirizzo 8200. Una volta configurati i registri di modo per entrambi i canali per settare la comunicazione memoria interfaccia, si invia la richiesta di bus al processore.

Una volta che la richiesta viene accettata, il DMA inizia il trasferimento in modalità block: prende un byte per volta dall'indirizzo 8000 e lo memorizza nel canale 0, lo passa poi al registro dato del canale 1, e questo poi trasferisce il byte all'indirizzo 82000. Per ogni byte trasferito si decrementa il contatore di caratteri da trasferire: quando questo contatore diventa 0, allora si attiva l'interruzione legata a EOP (INT7) per segnalare alla CPU che il trasferimento è finito e quindi ritorna a lui il controllo del bus indirizzi.

2.3 Mappa della memoria

	MEMORIA S1 RX	
\$8000	00	00
\$8002	00	00
\$8004	00	05
\$8006	00	100
\$8008	00	00
\$8010	00	
1		
\$8200	00	00
\$8202	00	00
\$8204	00	
-1		
\$8500	MAIN	
1		
\$9000	INT3	
1		
\$9200	INT7	
1		
\$9500	VERIFICA	

	MEMOR	A S2 TX	
\$8000	30	28	
\$8002	08	00	
\$8004	15	90	
\$8006	05		
\$8008			
\$8010			
1			
\$8200	MAIN		
\$8202			
\$8204			
1			
\$8500			
1			
\$9000			
1			
\$9200			
1			
\$9500			

Fig. 2.5: Mappa della memoria dei sistemi S1 e S2

	REGISTRI S1	
\$2004	PDRA	CRA
\$2006	PDRB	CRB
\$2008		
\$2010	CADDR0	
\$2012	CADDR1	CCOUNT1
\$2014		nbyte
\$2016		
\$2018	CNTRL	
\$2020		MODE
\$2022		RESET
\$2024		

	REGISTRI S2	
\$2004	PDRA	CRA
\$2006	PDRB	CRB
\$2008		
\$2010		
\$2012		
\$2014		
\$2016		
\$2018		
\$2020		
\$2022		
\$2024		

Fig. 2.6: Mappatura dei registri delle periferiche

Dato che il processore M68000 utilizza la tecnica degli *autovettori*, le ISR delle periferiche si trovano in una memoria ROM di 256 locazioni in una posizione che dipende dalla linea di interruzione alla quale è collegata la periferica associata.

Fig. 2.7: Collegamenti alle linee di interruzione

Poiché la ISR della PIA del sistema S1 è collegata alla linea INT3, e poiché nella ROM i 7 autovettori si trovano a partire dall'indice 24 fino all'indice 31, la ISR della PIA si troverà all'indice 24 + 3 = 27, il cui indirizzo è pari a $27 \cdot 4 = 108 \rightarrow 6C$.

Lo stesso discorso vale anche per la ISR del DMA che è mappata sulla linea INT7. Per il sistema S2 non è stato rappresentato il vettore delle eccezioni in quanto tale sistema (il trasmettitore) non scatena alcuna interruzione.

\$	INDICE	ROM
00	0	
01	1	
	I	
6C	27	\$9000
70	28	
74	29	
- 1	1	
7C	31	\$9200
ı	1	
FF	255	

Fig. 2.8: Memoria dei vettori ISR per sistema S1

2.4 Implementazione

2.4.1 Documentazione del codice

Fig. 2.9: Diagramma di flusso Main S2

Fig. 2.10: Diagramma di flusso Main S1

FLAGVER è il flag che verrà messo ad 1 dall'interruzione INT3 della PIA, per segnalare al programma principale che il vettore di numeri è stato completamente ricevuto e quindi si può chiamare la funzione VERIFICA. Se tale funzione restituisce 0, allora il DMA non lavora proprio e si passa alla disabilitazione delle interruzioni.

Se invece il DMA effettua il trasferimento, allora prima di passare alla disabilitazione delle interruzioni si controlla il flag FLAGFINEINT, che verrà messo ad 1 dalla ISR del DMA per segnalare che il trasferimento memoria-memoria è stato completato. Tale flag lo setta questa ISR poiché è stato scelto di trasmettere un solo vettore.

Fig. 2.11: Diagramma di flusso INT3 (ISR della PIA) di S1

Fig. 2.12: Diagramma di flusso INT7 (ISR del DMA) di S1

Fig. 2.13: Diagramma di flusso funzione VERIFICA

Fig. 2.14: Evoluzione dello stack

2.4.2 Codice Assembly

Per il codice Assembly si rimanda ai file .a68, presenti nello zip, dotati di opportuni commenti.

2.4.3 Configurazione in Asim

```
Configuration name: config.cfg
         CHIP Name: MEMORY
Type: MMU/BUS. Identif: 01.
                                    BUS: 0000.
Addres 1: 00008000.
                          Address 2: 00000000.
Com1: 0000. Com2: 0010. Com3: 0008. Com4: 0000.
         CHIP Name: M68000
Type: CPU.
                                    BUS: 0001.
                 Identif: 02.
Addres 1: 00009000.
                          Address 2: 00009200.
Com1: 0000. Com2: 0000. Com3: 0000. Com4: 0000.
         CHIP Name: M6821PIA
Type: Device.
                Identif: 03.
                                   BUS: 0001.
Addres 1: 00002004.
                          Address 2: 00002007.
Com1: 0002. Com2: 0003. Com3: 0004. Com4: 0207.
CHIP Name: MEMORY
Type: MMU/BUS. Identif: 05.
                                    BUS: 0000.
Addres 1: 00008000.
                         Address 2: 000000000.
Com1: 0000. Com2: 0010. Com3: 0008. Com4: 0000.
         CHIP Name: M68000
Type: CPU.
                Identif: 06.
                                    BUS: 0005.
Addres 1: 0000A000.
                          Address 2: 0000A200.
Com1: 0000. Com2: 0000. Com3: 0000. Com4: 0000.
         CHIP Name: M6821PIA
Type: Device.
                                    BUS: 0005.
                Identif: 07.
Addres 1: 00002004.
                          Address 2: 00002007.
Com1: 0006. Com2: 0003. Com3: 0004. Com4: 0203.
         CHIP Name: 18237DMA
Type: Device. Identif: 08.
                                    BUS: 0005.
Addres 1: 00002010.
                          Address 2: 0000201F.
Com1: 0006. Com2: 0007. Com3: 0006. Com4: 0000.
```

Fig. 2.15: File di configurazione ASIM