Document made available under the **Patent Cooperation Treaty (PCT)**

International application number: PCT/JP05/001165

International filing date:

21 January 2005 (21.01.2005)

Document type:

Certified copy of priority document

Document details:

Country/Office: JP

Number:

2004-012612

Filing date:

21 January 2004 (21.01.2004)

Date of receipt at the International Bureau: 10 March 2005 (10.03.2005)

Remark:

Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

日本国特許庁 JAPAN PATENT OFFICE

21.01.2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2004年 1月21日

出 願 番 号 Application Number:

人

特願2004-012612

[ST. 10/C]:

[JP2004-012612]

出 願
Applicant(s):

ソニー株式会社

特許庁長官 Commissioner, Japan Patent Office 2005年 2月25日

1) 1

特許願 【書類名】 0390855602 【整理番号】 平成16年 1月21日 【提出日】 【あて先】 特許庁長官 殿 G09F 9/35 【国際特許分類】 【発明者】 東京都品川区北品川6丁目7番35号 ソニー株式会社内 【住所又は居所】 木下 智豊 【氏名】 【発明者】 東京都品川区北品川6丁目7番35号 ソニー株式会社内 【住所又は居所】 浅野 明彦 【氏名】 【特許出願人】 000002185 【識別番号】 ソニー株式会社 【氏名又は名称】 【代理人】 100086298 【識別番号】 【弁理士】 船橋 國則 【氏名又は名称】 046-228-9850 【電話番号】 【手数料の表示】 007364 【予納台帳番号】 21,000円 【納付金額】 【提出物件の目録】 特許請求の範囲 【物件名】 明細書 1 【物件名】 図面 1 【物件名】 要約書 1 【物件名】 【包括委任状番号】 9904452

【書類名】特許請求の範囲

【請求項1】

対向する 1 対の基板の少なくとも一方に液晶駆動用電極が形成され、

前記基板間に設けたスペーサーにより前記基板間の間隔を保って形成された空間に液晶が封止された液晶表示装置において、

前記一対の基板の少なくとも一方の基板が繊維布を含有している樹脂基板であり、

前記一対の基板の少なくとも一方の外側に偏光板が備えられ、

前記繊維の軸と前記偏光板の光軸とが同軸である

ことを特徴とする液晶表示装置。

【請求項2】

前記樹脂基板の繊維布が格子状の平織りの構造を成し、

前記樹脂基板の主面内において、前記樹脂基板の厚み方向にみて、前記樹脂基板を構成 する樹脂のみが存在する領域と、前記樹脂と前記繊維布とが存在する領域とを有する ことを特徴とする請求項1記載の液晶表示装置。

【請求項3】

前記液晶駆動用の電極は、製造基板上に形成された後、繊維布を含有している樹脂基板 に移載されたものからなる

ことを特徴とする請求項1記載の液晶表示装置。

【請求項4】

前記繊維布は、ガラス繊維で形成されているガラスクロスである

ことを特徴とする請求項1記載の液晶表示装置。

【請求項5】

対向する1対の基板の少なくとも一方に液晶駆動用電極が形成され、

前記基板間に設けたスペーサーにより前記基板間の間隔を保って形成された空間に液晶が封止された液晶表示装置の製造方法において、

前記一対の基板の少なくとも一方の基板に繊維布を含有している樹脂基板を用い、

前記一対の基板の少なくとも一方の外側に偏光板を配設し、

前記繊維の軸と前記偏光板の光軸とを同軸とする

ことを特徴とする液晶表示装置の製造方法。

【請求項6】

前記樹脂基板の繊維布は、格子状の平織りの構造を成すものを用い、

前記樹脂基板の主面内において、前記樹脂基板の厚み方向にみて、前記樹脂基板を構成 する樹脂のみが存在する領域と、前記樹脂と前記繊維布とが存在する領域とを有する ことを特徴とする請求項5記載の液晶表示装置の製造方法。

【請求項7】

前記液晶駆動用の電極は、製造基板上に形成した後に繊維布を含有している樹脂基板に 移載する

ことを特徴とする請求項5記載の液晶表示装置の製造方法。

【請求項8】

前記繊維布には、ガラス繊維で形成されているガラスクロスを用いる

ことを特徴とする請求項5記載の液晶表示装置の製造方法。

【書類名】明細書

【発明の名称】液晶表示装置および液晶表示装置の製造方法

【技術分野】

[0001]

本発明は、樹脂基板を用いる液晶表示装置および液晶表示装置の製造方法に関するものである。

【背景技術】

[0002]

近年、薄膜デバイスは、使用機器の小型化の影響を受けて、薄型化、軽量化、堅牢化に対する要求を受けている。しかしながら、液晶表示デバイスに使われる薄膜デバイスは、高温、真空という環境で作製されるために、製造に使われる基板に制限がある。例えば、薄膜トランジスタを用いた液晶表示装置では、1000℃の温度に耐える石英基板、500℃の温度に耐えるガラス基板が使われている。これらの基板の薄型化も検討されているが、石英基板、ガラス基板を用いる限り、基板の剛性が低下することを考慮して基板サイズを縮小せざるを得ず、それによって生産性が低下する。また、基板が薄くなれば堅牢さも急激に低下するため、実用上の問題点となる。

[0003]

このように、製造基板に要求されている性能と実際に使用する際に求められている性能とが異なる。また、薄型、軽量、堅牢化が可能なプラスチック基板上に直接、薄膜トランジスタを作製しようという試みもある。この場合、アクティブ素子を用いないパッシブ方式の液晶表示装置は、モノクロ型で量産化されているが、薄膜トランジスタや薄膜ダイオードを使用するアクティブ方式の液晶表示装置は、基板の耐熱温度の点から困難さが高い

[0004]

そこで、耐熱温度の高い製造基板上に形成した薄膜デバイスを実使用基板に転写する技術が検討されている。転写する方法としては、剥離層を設けてデバイス作製後に剥離層から剥離する方法(例えば、特許文献1参照。)や、エッチングによりガラス基板を除去してしまう方法(例えば、特許文献2参照。)などが検討されている。これらの方法を使用することによって、プラスチック基板上に薄膜デバイスを形成することが可能となる。

[0005]

しかしながら、膨張係数の高い通常のプラスチック基板に薄膜デバイス層を形成すると、主に無機層で形成されている薄膜デバイス層とプラスチック基板の膨張係数が違うため、形成後に加熱すると、反るという問題がある。また、反った状態でさらに温度を上げると、薄膜層にクラックが入って破壊することもある。そのため、薄膜デバイス層をプラスチック基板上に形成するためには、膨張係数の低いプラスチック基板を使用しなければならない。

[0006]

しかしながら、膨張係数の低いプラスチック基板は、非常に高価であったり、ポリイミドのように着色されているものがあり、透過型の液晶表示装置に使用できないという問題がある。

[0007]

図14(a)の平面レイアウト図および図14(b)の斜視図に示すように、膨張係数の低いプラスチック基板501中に繊維布502を含有したものが知られている(例えば、特許文献3、4参照。)。繊維布502としてはガラスクロスやポリイミドクロス、金属クロスなどが用いられていて、その中でもガラスクロスが最も多く用いられている。ガラスクロスと透明な樹脂を用いた場合、透明なプラスチック基板を作製することができ、そのプラスチック基板は透過型の液晶表示装置にも使用できる。ガラスクロスを含有するプラスチック基板501は、液体状の樹脂にガラスクロスを含有させ、加熱、光照射または溶剤を揮発させることによって、樹脂を硬化させて作製する。ガラスクロスとしては、縦横の線膨張係数を同じにするため、また強度が強くコストが安いことから、一般的には

図14 (a) に示すように格子状の平織りが用いられる。この場合、糸(繊維束)503と隣接する糸(繊維束)503との間には、樹脂が存在しており、樹脂のみの部分と繊維布502が入っている部分とが存在することになる。このようにして作製されたプラスチック基板501の線膨張係数は、面内方向で15ppm/K以下とすることが可能である

[0008]

【特許文献1】特開平10-125930号公報

【特許文献2】特開2003-68995号公報

【特許文献3】特開平11-2812号公報

【特許文献4】特開2003-202816号公報

【発明の開示】

【発明が解決しようとする課題】

[0009]

解決しようとする問題点は、ガラス繊維を含有するプラスチック基板を用いた場合、プラスチック基板を形成する樹脂が硬化する時に、図15に示すように、ガラス繊維の重なり部(図面の丸印の部分)において、樹脂に応力がかかり、その部分の樹脂が複屈折を持つという問題がある点である。例えば、ガラス繊維入りのプラスチック基板を使用した液晶表示装置の光透過の概略を図16~図17によって説明する。図16~図17では、ノーマリーホワイトモードで、TN液晶に電圧をかけ黒表示をしようとしている状態を示す

[0010]

図16は、ガラス繊維入りのプラスチック基板の領域の中で、ガラス繊維の重なり部分でない領域の光透過状態を示している。この領域は、複屈折を持たないため、バックライトから出た光は、第1偏光板560で直線偏光に変化し、そのままアクティブ基板510、液晶層520、対向基板530と透過して第2偏光板570まで到達し、第2偏光板570により完全に遮断され光を通さない。

[0011]

図17は、ガラス繊維の重なり部分で、複屈折の光軸と偏光板の軸が同軸ではない場合の光透過状態を示している。この場合は、バックライトから出た光は、第1偏光板560で直線偏光に変化し、直線偏光が複屈折の持つアクティブ基板510、液晶層520、対向基板530で楕円偏光に変わるため、第1偏光板560から第2偏光板570まで光が透過する。これにより、ガラス繊維が重なる部分とそれ以外の部分で明るさが違うという問題が起きる。また、黒以外の階調においても、ガラス繊維が重なる部分とそれ以外の部分の明るさが違うという問題が起きる。そのため、液晶表示装置として正常な表示ができない。

【課題を解決するための手段】

[0012]

本発明の液晶表示装置は、対向する1対の基板の少なくとも一方に液晶駆動用電極が形成され、前記基板間に設けたスペーサーにより前記基板間の間隔を保って形成された空間に液晶が封止された液晶表示装置において、前記一対の基板の少なくとも一方の基板が繊維布を含有している樹脂基板であり、前記一対の基板の少なくとも一方の外側に偏光板が備えられ、前記繊維の軸と前記偏光板の光軸とが同軸であることを最も主要な特徴とする

[0013]

本発明の液晶表示装置は、対向する1対の基板の少なくとも一方に液晶駆動用電極が形成され、前記基板間に設けたスペーサーにより前記基板間の間隔を保って形成された空間に液晶が封止された液晶表示装置の製造方法において、前記一対の基板の少なくとも一方の基板に繊維布を含有している樹脂基板を用い、前記一対の基板の少なくとも一方の外側に偏光板を配設し、前記繊維の軸と前記偏光板の光軸とを同軸とすることを最も主要な特徴とする。

【発明の効果】

[0014]

本発明者は、ガラス繊維の重なり部分の解析を行った結果、プラスチック基板の樹脂部分にかかる応力が、ガラス繊維の方向に沿っていることを見出し、それに基づいて、複屈折の光軸は、必ずガラス繊維方向となることを見出した。この知見に基づいて、本発明成されている。すなわち、本発明の液晶表示装置およびその製造方法では、一対の基板の少なくとも一方の基板に繊維布を含有している樹脂基板を用い、一対の基板の少なくとも一方の外側に偏光板を備え、繊維の軸と偏光板の光軸とが同軸であるため、複屈折の光軸と偏光板の軸を同軸にすることができるので、複屈折の影響を排除し、ガラス繊維の重なり部分で、それ以外の部分と同じ正常表示が可能になるという利点がある。そのため、安価なガラスクロス入りのプラスチック基板を使用することができ、液晶表示装置の製造コストが安くなる。なお、ここでいう同軸とは、偏光板の光軸と繊維の少なくとも一つの軸が平行であることを示している。

【発明を実施するための最良の形態】

[0015]

プラスチック基板中にガラス繊維を含む場合、そのガラス繊維の重なり部分において、プラスチック基板を構成する樹脂に応力がかかり、その部分の樹脂が持つ複屈折の影響を排除するという目的を、対向する1対の基板の少なくとも一方に液晶駆動用電極が形成され、その基板間に設けたスペーサーにより基板間の間隔を保って形成された空間に液晶が封止された液晶表示装置において、上記一対の基板の少なくとも一方の基板が繊維布を含有している樹脂基板であり、上記一対の基板の少なくとも一方の外側に偏光板が備えられ、上記繊維の軸と前記偏光板の光軸とが同軸とすることで、ガラス繊維の重なり部分で、それ以外の部分と同じような正常表示を実現した。

[0016]

次に、具体的に本発明の液晶表示装置およびその製造方法に係る実施の形態例を、図1の模式断面図および図2の概略構成図によって説明する。この図2では、ノーマリーホワイトモードで、TN液晶に電圧をかけ黒表示をしようとしている状態を示す。

[0017]

図1に示すように、対向する1対の基板、すなわち、アクティブ基板11と対向基板12とを対向して設けて、その少なくとも一方に液晶駆動用電極(図示せず)を形成し、その基板間に設けたスペーサー(図示せず)により基板間の間隔を保って形成された空間に液晶層13を封止した液晶表示装置1である。上記一対の基板のうち、少なくとも一方の基板には繊維布を含有している樹脂基板を用いている。図面の構成では一例として、アクティブ基板11に繊維布16が含有されている。この繊維布16は、格子状の平織りの構造を成すもので、アクティブ基板11の主面内において、アクティブ基板11の厚み方向に見て、アクティブ基板11を構成する樹脂のみが存在する領域と、樹脂と繊維布16とが存在する領域とを有するものであり、例えば繊維布16としては、ガラスクロスを用いる。より好ましくは、ガラスクロスを用いる。さらに、ガラスクロスなどを用いる。より好ましくは、ガラスクロスを用いる。また、図示はしないが、上記対向基板12に繊維布が含有された樹脂基板を用いることもでクティブ基板11の外側に第1偏光板14を設け、対抗基板12の外側に第2偏光板15を設け、しかも上記繊維の軸(言い換えれば、複屈折の光軸)と第1偏光板14の偏光軸とを同軸方向に配置する。

[0018]

上記液晶表示装置の光透過の概略を図2によって説明する。図2に示すように、複屈折の光軸と第1偏光板14の軸が同軸の場合、第1偏光板14を通過した直線偏光は、複屈折を持つアクティブ基板11においても楕円偏光には変わらず、直線偏光のまま通過する。そのため光は第2偏光板15を通過できず、液晶表示装置としては、前記図15によって説明したのと同様な表示動作となる。すなわち、ガラス繊維入りのプラスチック基板の領域中で、ガラス繊維の重なり部分でない領域は、複屈折を持たないため、バックライト

から出た光は、第1偏光板14で直線偏光に変化し、そのまま第2偏光板15まで到達し、第2偏光板15により完全に遮断され光を通さない。黒以外の階調においても同様にガラス繊維の重なり部分と他の部分は、同じ表示動作が可能となり液晶表示装置として正常な表示が可能となる。

【実施例1】

[0019]

本発明の液晶表示装置および液晶表示装置の製造方法に係る第1実施例を、図3~図8によって説明する。本実施例では、プラスチック基板に透過型液晶用のアクティブ基板を作製した。

[0020]

まず、薄膜デバイス層の形成方法を図3によって説明する。図3に示すように、第1基板101上に、後に行うフッ酸によるエッチング時における第1基板101の保護層102を形成する。上記第1基板101には、例えば厚さ0.4mm~1.1mm程度、例えば0.7mm厚のガラス基板を用いる。このガラス基板のかわりに石英基板を用いてもよい。上記保護層102は、フッ酸に耐えられる材料を用いて形成するもので、例えばモリブデン(Mo)層を用い、例えば500nmの厚さに形成した。今回、モリブデン層の膜厚を500nmとしたが、フッ酸に耐えられるならば、厚さを適宜変更しても問題ない。このモリブデンの保護層102は、例えばスパッタリング法によって成膜することができる。その後、絶縁層103を形成する。この絶縁層103は、例えばプラズマCVD法によって成膜することができる。

[0021]

次に、一般的な低温ポリシリコン技術、例えば「2003 FPDテクノロジー大全」 (電子ジャーナル 2003 年 3 月 25 日発行、p. 166-183 および p. 198-201)、「99 最新液晶プロセス技術」(プレスジャーナル 1998 年発行、p. 53-59)、「フラットパネル・ディスプレイ 1999」(日経 BP社、1998 年発行、p. 132-139)等に記載されているような低温ポリシリコンボトムゲート型薄膜トランジスタ (以下薄膜トランジスタを TFT と記す)プロセスで TFT を含む薄膜デバイス層を形成した。薄膜デバイス層の形成方法の一例を以下に説明する。

[0022]

まず、第1基板101上に保護層102を介して形成された絶縁層103上にゲート電極104を形成するための導電膜を形成した。この導電膜には例えば厚さが100nmのモリブデン(Mo)膜を用いた。モリブデン膜の形成方法としては例えばスパッタリング法を用いた。そして上記導電膜をゲート電極104に形成した。このゲート電極104は、一般的なフォトリングラフィー技術およびエッチング技術によりパターニングして形成した。次いで、ゲート電極104上を被覆するようにゲート絶縁膜105を形成した。ゲート絶縁膜105は、例えばプラズマCVD法によって、酸化珪素(SiO_2)層、または酸化珪素(SiO_2)層と窒化珪素(SiN_x)層との積層体で形成した。さらに連続的に非晶質シリコン層(厚さ30nm~100nm)を形成した。

[0023]

この非晶質シリコン層に波長 308nmoXeC1エキシマレーザパルスを照射し熔融 再結晶化し結晶シリコン層(ポリシリコン層)を作製した。このポリシリコン層を用いて、チャネル形成領域となるポリシリコン層 106 を形成し、その両側にn 型ドープ領域からなるポリシリコン層 107 、n 世界・プ領域からなるポリシリコン層 107 、n 世界・プ領域からなるポリシリコン層 108 を形成した。このように、アクティブ領域は高いオン電流と低いオフ電流を両立するためのLDD (Lightly Doped Drain) 構造とした。またポリシリコン層 106 上にはn 型のリンイオン打込み時にチャネルを保護するためのストッパー層 109 を形成した。このストッパー層 109 は、例えば酸化珪素(102)層で形成した。

[0024]

さらに、プラズマCVD法によって、酸化珪素 (SiO2)層、または酸化珪素 (Si 出証特2005-3015044 O_2) 層と窒化珪素($S_i N_x$)層との積層体からなるパッシベーション膜110を形成した。このパッシベーション膜110上に、各ポリシリコン層108に接続するソース電極111およびドレイン電極112を形成した。各ソース電極111およびドレイン電極112は例えばアルミニウム、アルミニウム合金、高融点金属等の導電性材料で形成した。

各ソース電極111およびドレイン電極112形成した後、カラーフィルター113を形成した。カラーフィルター113は、カラーレジストを全面に塗布した後、リソグラフィー技術でパターニングを行って形成した。カラーフィルター113には、ソース電極111と後に形成する液晶駆動用電極が接続されるようにコンタクトホール113Cを形成した。このカラーフィルターの形成工程を3回行って、RGBの3色(赤、緑、青)を形成した。次に、平坦化を行うために保護膜114を形成した。保護膜114には、ソース電極11と液晶駆動用電極とが接続されるようにコンタクトホール114Cを形成した。その後、ソース電極111に接続する画素電極115を形成した。この画素電極115は、例えば、透明電極で形成される。透明電極としては、例えばインジウムスズオキサイド(ITO)により形成され、その形成方法としてはスパッタリング法が用いられる。

[0026]

以上の工程により、第1基板101上に透過型のアクティブマトリックス基板が作製できた。また、今回は、ボトムゲート型ポリシリコンTFTを作製したが、トップゲート型ポリシリコンTFTやアモルファスTFTでも同じように実施できる。

[0027]

次に、第1基板101上の薄膜デバイス層121をプラスチック基板上に移載する工程 を説明する。

[0028]

図4 (1) に示すように、第1基板101上に保護層102、絶縁層103、薄膜デバイス層121を形成したものをホットプレート122で80℃~140℃に加熱しながら、第1接着剤123を厚さ1mm程度に塗布し、第2基板124を上に載せ、加圧しながら、室温まで冷却した。第2基板124には、例えば厚さ1mmのモリブデン基板を用いた。または、第2基板124にガラス基板を用いてもよい。または、第2基板124上に第1接着剤123を塗布して、その上に保護層102から薄膜デバイス層121が形成された第1基板101の薄膜デバイス層121側を載せてもよい。上記第1接着剤123には、例えばホットメルト接着剤を用いた。

[0029]

次に、図4(2)に示すように、第2基板124を貼り付けた第1基板101をフッ酸 (HF) 125に浸漬して、第1基板101のエッチングを行った。このエッチングは、保護層102である酸化アルミニウム層がフッ酸125にエッチングされないため、このエッチングは保護層102で自動的に停止する。ここで用いたフッ酸125は、一例として、重量濃度が50%のもので、このエッチング時間は3.5時間とした。フッ酸125の濃度とエッチング時間は、第1基板101のガラスを完全にエッチングすることができるならば、変更しても問題はない。

[0030]

上記フッ化水素酸125によるエッチングの結果、図5(3)に示すように、第1基板 101[前記図4(2)参照]が完全にエッチングされ、保護層102が露出される。

[0031]

次に、混酸 [例えば、リン酸(H_3 PO₄) 72 wt%と硝酸(H NO₃) 3 wt%と酢酸(CH_3 COOH) 10 wt%] により、保護層 102 [前記図 5 (3) 参照)であるモリプデン層(厚さ:500 nm)をエッチングした。これは、透過型の液晶パネルを作製するために、不透明なモリブデン層があると問題となるためである。上記混酸で 500 nmの厚さのモリブデン層をエッチングするのに必要な時間は約 1 分である。このエッチングの結果、図 5 (4) に示すように、この混酸は第 1 絶縁層 103 である酸化珪素をエッチン

グしないため、第1絶縁層103で自動的にエッチングが停止する。

[0032]

次に、図5 (5) に示すように、上記エッチング後に、薄膜デバイス層121の裏面側、すなわち絶縁層103表面に、第2接着層126を形成した。第2接着層126には例えば紫外線硬化型接着剤を用いた。

[0033]

続けて、上記第2接着層126に第3基板127を貼り付けた。第3基板127には繊維布128が含有されており、例えば第3基板127には、ガラスクロス入りプラスチック基板を用いた。上記プラスチック基板は、酸化ケイ素を主成分とするガラスクロスを含んだエポキシ樹脂で構成されている。ガラスクロスは以下のように形成される。例えば、直径1 μ m~20 μ m程度の細いガラス線を数本から数十本東ねて直径10 μ m~300 μ mの一本の糸とする。今回は、直径約100 μ mの糸を使用した。この糸を平織りにして形成される。平織りのため、縦糸と横糸とが直交している。これにより、基板の線膨張係数は、基板面内の縦方向と横方向とで等しくなる。今回使用した基板の線膨張係数は13 μ mのが2ましてある。無機薄膜層との熱膨張率差を考えると30 μ mが2ましく、今回は基板の厚さは200 μ mである。その後、紫外線を照射して第2接着層126を硬化させた。

[0034]

次に、上記基板をアルコール(図示せず)中に浸漬し、ホットメルト接着剤からなる第1接着層123[前記図4(1)参照]を溶かして第2基板124[前記図4(1)参照]を外した。その結果、図6(6)に示すように、繊維布128を含有する第3基板127上に第2接着層126、絶縁層103を介して薄膜デバイス層121が載った薄膜デバイス(アクティブ基板)100を得た。

[0035]

次に、対向基板の製造例を、図7の概略構成断面図によって説明する。

[0036]

図7に示すように、対向基板130としては、プラスチック基板131を用意し、さらに上記プラスチック基板131側の全面に透明電極132を形成したものである。この透明電極132には、例えばITO (インジウムスズオキサイド)を用いた。このITO膜は、例えばスパッタ法により成膜した。

[0037]

次に、図8に示すように、上記対向基板130とアクティブ基板100とに図示はしないが配向膜(例えばポリイミド膜)を塗布してラビング処理を行う配向処理を行った。ラビング方向は、アクティブ基板100に含有されているガラス繊維の一方向にラビングを行い、対向基板130とアクティブ基板100とで互いに直交するように行った。

[0038]

次に、アクティブ基板100にはシール剤(図示せず)を塗布し、対向基板130には 多数のスペーサー(図示せず)を散布した。

[0039]

そして、アクティブ基板 100 と対向基板 130 とを張り合わせた後、例えば 1 kg/cm²で加圧しながら紫外線を照射してシール剤を硬化させた。次に、レーザー加工によりパネルの大きさに切断した後、注入口(図示せず)から液晶 150 を注入して、注入口をモールド樹脂で覆い、モールド樹脂を硬化させ、液晶表示パネルを作製した。今回は液晶には TN液晶を用いた。

[0040]

上記液晶表示パネルの両側、すなわち、アクティブ基板100の外側に第1偏光板16 0を貼り付けるとともに、対向基板130の外側に第2偏光板170を貼り付けて、液晶 表示装置とした。第1、第2偏光板160、170は、前記図2によって説明したのと同 様に、偏光軸が互い直交する(垂直になる)ように貼り合わせた。今回は、ノーマリーホ ワイトモードとしたが、ノーマリープラックモードにするには、2枚の偏光板を垂直にす

るまたはアクティブ基板と対向基板のラビングを並行にするなどの変更を行えばよい。なお、偏光板の軸とラビング方向を上記のようにクロス軸に合わせれば、クロス軸は、基板に対してどのような角度で入っていてもよく、その場合、視野角などが改善する場合もある。

[0041]

上記工程により作製した液晶表示装置は、基板の線膨張係数が低いため、温度を上げてもクラック等は発生しない。また、ガラスクロス入りプラスチック基板だが、ガラス繊維の繊維方向と偏光板の光軸が同じ方向であるため、繊維が重なった部分も重なってない部分と同じ表示となる。

[0042]

本発明は、本発明者により見出されたガラス繊維の重なり部分の解析の結果、すなわち、プラスチック基板の樹脂部分にかかる応力が、ガラス繊維の方向に沿っていることを見出したことに基づいて、複屈折の光軸は、必ずガラス繊維方向となるということによる。この知見に基づいて、本発明は成されており、本発明の液晶表示装置およびその製造方法では、一対の基板の少なくとも一方の基板、第1実施例ではアクティブ基板100に繊維布128を含有している樹脂製の第3基板127を用い、アクティブ基板100および対向基板130のそれぞれの外側に第1、第2偏光板160、170を備え、繊維の軸と偏光板の光軸とが同軸であるため、複屈折の光軸と第1偏光板160の軸を同軸にすることができるので、複屈折の影響を排除し、ガラス繊維の重なり部分で、それ以外の部分と同じ正常表示が可能になるという利点がある。そのため、安価なガラスクロス入りのプラスチック基板を使用することができ、液晶表示装置の製造コストが安くなる。

【実施例2】

[0043]

本発明の液晶表示装置および液晶表示装置の製造方法に係る第2実施例を、図9~図1 1の断面図によって説明する。第2実施例では、プラスチック基板上に反射型液晶用のア クティブ基板を作製した。

[0044]

まず、薄膜デバイス層の形成方法を図9によって説明する。図9に示すように、第1基板201上にアモルファスシリコン層202を形成する。上記第1基板201には、例えば厚さ0.4mm~1.1mm程度、例えば0.7mm厚のガラス基板を用いる。このガラス基板のかわりに石英基板を用いてもよい。また上記アモルファスシリコン層202の膜厚は、例えば50nmとした。この膜厚は10nm~1μmであるならば問題はない。アモルファスシリコン層202の成膜方法は、プラズマCVD法を用いた。プラズマCVD法では、アモルファスシリコン層202中に、水素を多く含むように、また製造途中で薄膜デバイス層が剥がれない限りの低温が望ましい。今回は150℃にて成膜を行った。また、低圧CVD法、大気圧プラズマCVD法、ECR法、スパッタ法によりアモルファスシリコン層202を成膜しても問題はない。

[0045]

次いで、上記アモルファスシリコン層202上に保護絶縁層203を成膜する。この保 護絶縁層203は、例えば100nmの厚さに形成した。この保護絶縁層203は、例え ばプラズマCVD法によって成膜することができる。

[0046]

その後、一般的な低温ポリシリコン技術、例えば「2003 FPDテクノロジー大全」(電子ジャーナル2003年3月25日発行、p. 166-183およびp. 198-201)、「199最新液晶プロセス技術」(プレスジャーナル1998年発行、p. 53-59)、「フラットパネル・ディスプレイ1999」(日経BP社、1998年発行、p. 132-139)等に記載されているような低温ポリシリコンボトムゲート型薄膜トランジスタ(以下薄膜トランジスタをTFTと記す)プロセスでTFTを含む薄膜デバイス層を形成した。薄膜デバイス層の形成方法の一例を以下に説明する。

[0047]

まず、第1基板 201上にアモルファスシリコン層 202を介して形成された保護絶縁層 203上にゲート電極 204を形成するための導電膜を形成した。この導電膜には例えば厚さが 100 n mのモリブデン(Mo)膜を用いた。モリブデン膜の形成方法としては例えばスパッタリング法を用いた。そして上記導電膜をゲート電極 204 に形成した。このゲート電極 204 は、一般的なフォトリソグラフィー技術およびエッチング技術によりパターニングして形成した。次いで、ゲート電極 204 上を被覆するようにゲート絶縁膜 205 を形成した。ゲート絶縁膜 205 を形成した。ゲート絶縁膜 205 を形成した。ゲート絶縁膜 205 を形成した。ゲート絶縁膜 205 を形成した。グート絶縁膜 205 を記した。グート絶縁膜 205 を記した。グート絶縁膜 205 を記した。グート絶縁膜 205 を記した。グート絶縁膜 205 を記した。グート絶縁度 205 を記した。

[0048]

この非晶質シリコン層に波長 308nmのXeClxキシマレーザパルスを照射し熔融 再結晶化し結晶シリコン層(ポリシリコン層)を作製した。このポリシリコン層を用いて、チャネル形成領域となるポリシリコン層 206 を形成し、その両側に n^- 型ドープ領域からなるポリシリコン層 208 を形成した。このように、アクティブ領域は高いオン電流と低いオフ電流を両立するためのLDD (Lightly Doped Drain) 構造とした。またポリシリコン層 206 上には n^- 型のリンイオン打込み時にチャネルを保護するためのストッパー層 209 を形成した。このストッパー層 209 は、例えば酸化珪素(SiO2)層で形成した。

[0049]

さらに、プラズマCVD法によって、酸化珪素(SiO_2)層、または酸化珪素(SiO_2)層と窒化珪素(SiN_x)層との積層体からなるパッシベーション膜 210 を形成した。このパッシベーション膜 210 上に、各ポリシリコン層 208 に接続するソース電極 211 およびドレイン電極 212 を形成した。各ソース電極 211 およびドレイン電極 212 を形成した。各ソース電極 211 およびドレイン電極 212 は例えばアルミニウム、アルミニウム合金、高融点金属等の導電性材料で形成した。

【0050】 ソース電極211およびドレイン電極212形成した後、素子を保護するためと平坦化を行うために保護層213を形成した。保護層213は、例えばポリメチルメタクリル樹脂系の材料で形成される。そして、保護層213は、次工程で保護層213上に形成される反射層表面に凹凸が形成されるように、上記保護層213表面が凹凸となるように形成される。次いで、通常のコンタクトホールの形成技術によって、保護膜213に、ソース電極211と後に形成される液晶駆動用電極とが接続されるようにコンタクトホール213C内面に、反射層214を形成した。この反射層214は、例えばスパッタリングによって銀(Ag)を堆積して形成した。

[0051]

上記反射層 2 1 4 を形成後、カラーフィルター 2 1 5 を形成した。これは、カラーレジストを全面に塗布した後、リソグラフィー技術でパターニングを行って形成した。次いで、カラーフィルター 2 1 5 に、ソース電極 2 1 1 と後に形成される液晶駆動用電極が接続されるようにコンタクトホール 2 1 5 C を形成した。このカラーフィルターの形成工程を3 回行って、RGBの 3 色(赤、緑、青)を形成した。

[0052]

その後、上記カラーフィルター215表面およびコンタクトホール215C内面に画素電極216を形成した。この画素電極216は、例えばインジウムスズオキサイド(ITO)を、例えばスパッタリングによって堆積して形成した。したがって、画素電極216はソース電極211に接続して形成される。

[0053]

以上の工程により、ガラス基板からなる第1基板201上にアクティブマトリックス基板が作製できた。また、今回は、ボトムゲート型ポリシリコンTFTを作製したが、トップゲート型ポリシリコンTFTやアモルファスTFTでも同じように実施できる。

[0054]

次に、第1基板201上の薄膜デバイス層をプラスチック基板上に移載する工程を説明 する。

[0055]

図10(1)に示すように、第1基板201上にアモルファスシリコン層202、保護 絶縁層203を介して形成されている薄膜デバイス層221に、第1接着剤222を介して第2基板223を貼り付ける。この第2基板223には、例えば厚さ1mmのモリブデン基板を用いた。または、第2基板223にガラス基板を用いてもよい。または、第2基板223上に第1接着剤222を形成して、その上にアモルファスシリコン層202から 薄膜デバイス層221までが形成された第1基板201の薄膜デバイス層221側を載せてもよい。上記第1接着剤222には、例えばホットメルト接着剤を用いた。

[0056]

次に、ガラス基板からなる第1基板201側からキセノン塩素(XeC1)エキシマレーザー光を照射した。ガラスは上記エキシマレーザー光を透過させるため、レーザー光は、アモルファスシリコン層202で吸収される。アモルファスシリコン層202に紫外線が吸収されると水素が発生し、アモルファスシリコン層202を境として薄膜デバイス層221と第1基板201との分離が起きる。この技術の詳細は、特開平10−125930号公報に開示されている。その結果、図10(2)に示すように、保護絶縁層203が露出された。

[0057]

次に、図10(3)に示すように、保護絶縁層203に第2接着層224を形成した。 この第2接着層224は、例えば紫外線硬化接着剤を塗布により形成される。塗布方法は 、スプレーコーティング、ディップコーティングもしくはスピンコーティングを用いるこ とができる。

[0058]

[0059]

次に、上記基板をアルコール中に浸漬し、ホットメルト接着剤からなる第1接着層22 2を溶かして第2基板223を外した。その結果、薄膜デバイス層221が露出され、図 11(4)に示すように、第3基板225上に第2接着層224、保護絶縁層203を介 して薄膜デバイス層221が載った薄膜デバイス(アクティブ基板)200を得た。

[0060]

次に、図示はしないが、前記図8によって説明したのと同様にして、上記対向基板130とアクティブ基板200とに配向膜(例えばポリイミド膜)を塗布し、ラビング処理を行う配向処理を行った。ラビング方向は、アクティブ基板200に含有されているガラス繊維方向にラビングを行い、対向基板130とアクティブ基板200で互いに直交するように行った。

[0061]

次に、アクティブ基板 2 0 0 にはシール剤(図示せず)を塗布し、対向基板 1 3 0 には 多数のスペーサーを散布した。

[0062]

そして、アクティプ基板200と対向基板130とを張り合わせた後、例えば1kg/ cm²で加圧しながら紫外線を照射してシール剤を硬化させた。次に、レーザー加工によ りパネルの大きさに切断した後、注入口から液晶150を注入して、注入口をモールド樹 脂で覆い、モールド樹脂を硬化させ、液晶表示パネルを作製した。今回は液晶にはTN液 晶を用いた。

[0063]

上記第2実施例では、前記第1実施例と同様に、一対の基板の少なくとも一方の基板、 としてアクティブ基板200に繊維布226を含有している樹脂製の第3基板225を用 い、アクティブ基板200および対向基板130のそれぞれの外側に第1、第2偏光板1 60、170を備え、繊維の軸と偏光板の光軸とが同軸であるため、複屈折の光軸と第1 偏光板160の軸を同軸にすることができるので、複屈折の影響を排除し、ガラス繊維の 重なり部分で、それ以外の部分と同じ正常表示が可能になるという利点がある。そのため 、安価なガラスクロス入りのプラスチック基板を使用することができ、液晶表示装置の製 造コストが安くなる。

【実施例3】

[0064]

本発明の液晶表示装置および液晶表示装置の製造方法に係る第3実施例を、図12~図 13の断面図によって説明する。第3実施例では、薄膜デバイス層が形成された第1基板 (ガラス基板) の一部を残した状態で薄膜デバイス層を、ガラスクロスを含有する樹脂基 板に移載してアクティブ基板を形成した液晶表示装置を作製した。

[0065]

まず、前記第1実施例の前記図3によって説明したのと同様な製造方法によって、薄膜 デバイス層を形成する。

[0066]

次に、図12(1)に示すように第1基板301上に薄膜デバイス層321を形成した ものをホットプレート322で80℃~140℃に加熱しながら、第1接着層323を、 例えばホットメルト接着剤を例えば1mm程度の厚さに塗布して形成した。次に、上記第 1接着層323上に第2基板324を載せ、第2基板324を第1基板301方向に加圧 しながら、室温まで冷却した。上記第2基板324には、例えば厚さが1mmのモリプデ ン (Mo) 基板を用いた。または、第2基板324上にホットメルト接着剤を塗布して、 その上に薄膜デバイス層321が形成された第1基板301の薄膜デバイス層321側を 載せてもよい。

[0067]

次に、図12(2)に示すように、第2基板324を貼り付けた基板をフッ化水素酸3 25に浸漬して、第1基板301のエッチングを行った。このエッチングでは、第1基板 301が例えばおよそ30μmの厚さが残るように、エッチング終点は例えばエッチング 時間により制御する。一例として、ここで用いたフッ化水素酸325は重量濃度15%~ 25%のもので、このエッチング時間はエアープローによるバブリングによって弗化水素 酸溶液を攪拌しながら室温で約3時間とした。フッ化水素酸325の濃度とエッチング時 間は、適宜変更しても問題はない。上記エッチングの代わりに、例えば機械的な研磨、化 学的機械研磨等の研磨によって、第1基板301を薄くしても良い。

[0068]

上記フッ化水素酸325によるエッチングの結果、図13(3)に示すように、第1基 板301上に薄膜デバイス層321が形成され、さらに薄膜デバイス層321上に第1接 着層323を介して第2基板324が形成されたものが得られる。

[0069]

その後、図13(4)に示すように、上記第1基板301の上記薄膜デバイス層321 が形成されている面とは反対側の面に第2接着層326を形成する。上記第2接着層32 6は、一例として、回転塗布技術により例えばアクリル系の紫外線硬化接着剤を塗布して

形成した。回転塗布技術による膜形成では、膜厚を約10μmとした。

[0070]

[0071]

次に、上記基板をアルコール(図示せず)中に浸漬し、ホットメルト接着剤からなる第1接着層322[前記図12(1)参照]を溶かして第2基板323[前記図12(1)参照]を外し、図13(5)に示すように、繊維布328を含有する第3基板327上に第2接着層326、第1基板301を介して薄膜デバイス層321が載った薄膜デバイス(アクティブ基板)300を得た。

[0072]

その後の工程は、前記第1実施例と同様である。

[0073]

すなわち、図示はしないが、前記図8によって説明したのと同様にして、上記対向基板130とアクティブ基板300とに配向膜(例えばポリイミド膜)を塗布し、ラビング処理を行う配向処理を行った。ラビング方向は、アクティブ基板300に含有されているガラス繊維方向にラビングを行い、対向基板130とアクティブ基板300で互いに直交するように行った。

[0074]

次に、アクティブ基板300にはシール剤(図示せず)を塗布し、対向基板130には 多数のスペーサーを散布した。

[0075]

そして、アクティブ基板 300と対向基板 130とを張り合わせた後、例えば $1 \text{ kg}/c \text{ m}^2$ で加圧しながら紫外線を照射してシール剤を硬化させた。次に、レーザー加工によりパネルの大きさに切断した後、注入口から液晶 150を注入して、注入口をモールド樹脂で覆い、モールド樹脂を硬化させ、液晶表示パネルを作製した。今回は液晶には TN液晶を用いた。

[0076]

上記第3実施例では、前記第1実施例と同様に、一対の基板の少なくとも一方の基板、としてアクティブ基板300に繊維布328を含有している樹脂製の第3基板327を用い、アクティブ基板300および対向基板130のそれぞれの外側に第1、第2偏光板160、170を備え、繊維の軸と偏光板の光軸とが同軸であるため、複屈折の光軸と第1偏光板160の軸を同軸にすることができるので、複屈折の影響を排除し、ガラス繊維の重なり部分で、それ以外の部分と同じ正常表示が可能になるという利点がある。そのため、安価なガラスクロス入りのプラスチック基板を使用することができ、液晶表示装置の製造コストが安くなる。

【実施例4】

[0077]

本発明の液晶表示装置および液晶表示装置の製造方法に係る第4実施例を以下に説明する。第4実施例では、前記第1実施例と同様なる製造方法で、第1基板上に薄膜デバイス

層を設けた薄膜デバイスを形成する。本第4実施例では、この第1基板に形成した薄膜デ バイスをアクティブ基板として用いる。したがって、アクティブ基板は、ガラス基板に薄 膜デバイス層を形成したものとなる。―方、対向基板には、前記第1実施例の図7によっ て説明したものを用いる。

[0.078]

上記アクティブ基板と対向基板とをスペーサーを介して貼り合わせ、アクティブ基板と 対向基板との間の空間に液晶を封止する工程以降は、前記第1実施例と同様である。

上記第4実施例でも前記第1実施例と同様なる作用効果が得られる。

【産業上の利用可能性】

[0080]

本発明の液晶表示装置および液晶表示装置の製造方法は、プラスチック基板を用いた液 晶表示装置および液晶表示装置の製造方法に適用するのに好適である。

【図面の簡単な説明】

[0081]

- 【図1】液晶表示装置および液晶表示装置の製造方法に係る実施の形態を示した概略 構成断面図である。
 - 【図2】本発明の液晶表示装置に係る光透過の概略を示した説明図である。
- 【図3】本発明の液晶表示装置および液晶表示装置の製造方法に係る第1実施例を示 した断面図である。
- 【図4】本発明の液晶表示装置および液晶表示装置の製造方法に係る第1実施例を示 した断面図である。
- 【図 5】本発明の液晶表示装置および液晶表示装置の製造方法に係る第1実施例を示 した断面図である。
- 【図6】本発明の液晶表示装置および液晶表示装置の製造方法に係る第1実施例を示 した断面図である。
- 【図7】本発明の液晶表示装置および液晶表示装置の製造方法に係る第1実施例を示 した断面図である。
- 【図8】本発明の第1実施例に係る液晶表示装置の光透過の概略を示した説明図であ
- 【図9】本発明の液晶表示装置および液晶表示装置の製造方法に係る第2実施例を示 した断面図である。
- 【図10】本発明の液晶表示装置および液晶表示装置の製造方法に係る第2実施例を 示した断面図である。
- 【図11】本発明の液晶表示装置および液晶表示装置の製造方法に係る第2実施例を 示した断面図である。
- 【図12】本発明の液晶表示装置および液晶表示装置の製造方法に係る第3実施例を 示した断面図である。
- 【図13】本発明の液晶表示装置および液晶表示装置の製造方法に係る第3実施例を 示した断面図である。
- 【図14】従来の透過型の液晶表示装置に使用されるプラスチック基板の説明図であ る。
- 【図15】プラスチック基板中の繊維布の説明図である。
- 【図16】従来の液晶表示装置の光透過の概略を示した説明図である。
- 【図17】従来の液晶表示装置の光透過の概略を示した説明図である。

【符号の説明】

[0082]

1…液晶表示装置、11…アクティブ基板、12…対向基板、13…液晶層、14…第 1偏光板、15…第2偏光板、16…繊維布

【書類名】図面【図1】

【図2】

・第1偏光板14の偏光軸⊥第2偏光板15の偏光軸

・複屈折光軸が第1偏光板14の偏光軸と同軸

[図3]

【図4】

【図5】

【図6】

【図 7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

光が透過しない

【図17】

【曹類名】要約書

【要約】

【課題】繊維布が含有されるプラスチック基板の繊維が重なる部分とそれ以外の部分との明るさの違いを、繊維の軸と偏光板の光軸とを同軸とすることで解消し、正常な表示を可能とする。

【解決手段】対向する1対のアクティブ基板11と対向基板12との少なくとも一方に液晶駆動用電極(図示せず)が形成され、前記基板間に設けたスペーサー(図示せず)により前記基板間の間隔を保って形成された空間に液晶(液晶層13)が封止された液晶表示装置1において、前記一対の基板の少なくとも一方の基板として、例えばアクティブ基板11が繊維布16を含有している樹脂基板であり、前記一対の基板の少なくとも一方の外側、例えば両側に第1、第2偏光板14、15が備えられ、前記繊維布16の繊維の軸と前記第1偏光板14の光軸とが同軸であるものである。

【選択図】図1

特願2004-012612

出願人履歴情報

識別番号

[000002185]

1. 変更年月日 [変更理由] 住 所 氏 名 1990年 8月30日 新規登録 東京都品川区北品川6丁目7番35号 ソニー株式会社

PATENT COOPERATION TREATY

From the INTERNATIONAL BUREAU

PCT

NOTIFICATION CONCERNING SUBMISSION OR TRANSMITTAL OF PRIORITY DOCUMENT

(PCT Administrative Instructions, Section 411)

To:

NAKAMURA, Tomoyuki c/o Miyoshi International Patent Office Toranomon Kotohira Tower 2-8, Toranomon 1-chome Minato-ku, Tokyo 1050001 JAPON

Date of mailing (day/month/year) 12 April 2005 (12.04.2005)	
Applicant's or agent's file reference JSONY-649PCT	IMPORTANT NOTIFICATION
International application No. PCT/JP05/001165	International filing date (day/month/year) 21 January 2005 (21.01.2005)
International publication date (day/month/year)	Priority date (day/month/year) 21 January 2004 (21.01.2004)
Applicant	NY CORPORATION et ai

- 1. By means of this Form, which replaces any previously issued notification concerning submission or transmittal of priority documents, the applicant is hereby notified of the date of receipt by the International Bureau of the priority document(s) relating to all earlier application(s) whose priority is claimed. Unless otherwise indicated by the letters "NR", in the right-hand column or by an asterisk appearing next to a date of receipt, the priority document concerned was submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b).
- 2. (If applicable) The letters "NR" appearing in the right-hand column denote a priority document which, on the date of mailing of this Form, had not yet been received by the International Bureau under Rule 17.1(a) or (b). Where, under Rule 17.1(a), the priority document must be submitted by the applicant to the receiving Office or the International Bureau, but the applicant fails to submit the priority document within the applicable time limit under that Rule, the attention of the applicant is directed to Rule 17.1(c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.
- 3. (If applicable) An asterisk (*) appearing next to a date of receipt, in the right-hand column, denotes a priority document submitted or transmitted to the International Bureau but not in compliance with Rule 17.1(a) or (b) (the priority document was received after the time limit prescribed in Rule 17.1(a) or the request to prepare and transmit the priority document was submitted to the receiving Office after the applicable time limit under Rule 17.1(b)). Even though the priority document was not furnished in compliance with Rule 17.1(a) or (b), the International Bureau will nevertheless transmit a copy of the document to the designated Offices, for their consideration. In case such a copy is not accepted by the designated Office as the priority document, Rule 17.1(c) provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.

Priority date Priority application No. Country or regional Office or PCT receiving Office of priority document
21 January 2004 (21.01.2004) 2004-012612 JP 10 March 2005 (10.03.2005)

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland Authorized officer

Abbou Farid

Facsimile No. +41 22 338 70 10 Telephone No. +41 22 338 8169

Facsimile No. +41 22 740 14 35

Form PCT/IB/304 (January 2004)