액체 밀도 측정 실험

조	3조				
조원/작성자	20215545 김윤진	20215692 김이찬	20216793 김준섭		

[1] 실험값

(1) $C_2H_5OH(l)$ 의 밀도 측정

① 1회

- 액체 시료의 온도 측정

시료 이름	$C_2H_5OH(l)$	$H_2O(l)$		
온도(℃)	(T_a) 16 $(^{\circ}\mathbb{C})$	(T_w) 17 $(^{\circ}\mathbb{C})$		

- 측정한 온도에서의 $H_2O(l)$ 의 밀도

 $0.9988(g/cm^3)$ (소주의 에탄을 도수와 밀도 환산표에 표기된 대로라면 유효숫자가 소수점 이하 4자리이므로 소수 4자리로 표기하도록 한다.)

- 액체 기둥의 높이 측정값 및 $C_2H_5OH(l)$ 의 밀도 (g/cm^3) 계산

	$C_2 H_5 OH(l)$				$H_2O(l)$				밀도(g/cm³)	
회	$\begin{pmatrix} h_a \\ (cm) \end{pmatrix}$	회	$h_a^{'} (cm)$	$h_a - h_a$ (cm)	회	$egin{array}{c} h_w \ (cm) \end{array}$	회	h_w (cm)	$h_w - h_u \ (cm)$	$\rho_{a} (= (\frac{h_{w} - h_{w}^{'}}{h_{a} - h_{a}^{'}}) \rho_{w})$
1	49.5	5	32.1	17.4	1	38.4	5	24.7	13.7	0.786
2	43.9	6	27.5	16.4	2	33.9	6	21.1	12.8	0.780
3	39.4	7	23.5	15.9	3	30.4	7	17.9	12.5	0.785
4	35.9	8	19.9	16.0	4	27.7	8	15.1	12.6	0.787
										0.784

② 2회

- 액체 시료의 온도 측정

시료 이름	$C_2H_5OH(l)$	$H_2O(l)$		
온도(℃)	(T_a) 16 $(^{\circ}C)$	(T_w) 17 $(^{\circ}\mathbb{C})$		

- 측정한 온도에서의 $H_2O(l)$ 의 밀도 $0.9988(g/cm^3)$

- 액체 기둥의 높이 측정값 및 $C_2H_5OH(l)$ 의 밀도 (g/cm^3) 계산

$C_2H_5OH(l)$					$H_2O(l)$				밀도(g/cm³)	
회	$\begin{pmatrix} h_a \\ (cm) \end{pmatrix}$	회	$h_a^{'} \ (cm)$	$h_a - h_a' \choose (cm)$	회	$egin{array}{c} h_w \ (cm) \end{array}$	회	h_w (cm)	$h_w - h_w \ (cm)$	$\rho_{a}(=(\frac{h_{w}-h_{w}^{'}}{h_{a}-h_{a}^{'}})\rho_{w})$
1	49.7	5	30.0	19.7	1	38.6	5	23.1	15.5	0.786
2	45.6	6	23.9	21.7	2	35.2	6	18.2	17.0	0.782
3	40.4	7	19.5	20.9	3	31.2	7	14.7	16.5	0.789
4	34.7	8	14.9	19.8	4	26.8	8	11.1	15.7	0.792
			•						•	0.787

(2) 소주의 알코올 도수 측정

- 액체 시료의 온도 측정

시료 이름	소주(l)	$H_2O(l)$		
온도(℃)	(T_s) 16 $(^{\circ}C)$	(T_w) 17 $(^{\circ}C)$		

- 측정한 온도에서의 $H_2O(l)$ 의 밀도 $0.9988(g/cm^3)$

- 액체 기둥의 높이 측정값 및 소주(l)의 밀도 (g/cm^3) 계산

	소주(l)					$H_2O(l)$				밀도(g/cm³)
회	$\begin{pmatrix} h_s \\ (cm) \end{pmatrix}$	회	$h_s^{'} \ (cm)$	$h_s - h_s'$ (cm)	회	$egin{array}{c} h_w \ (cm) \end{array}$	회	$\begin{pmatrix} h_w \\ (cm) \end{pmatrix}$	$h_w - h_u$	$\rho_{s}(=(\frac{h_{w}-h_{w}^{'}}{h_{s}-h_{s}^{'}})\rho_{w})$
1	49.5	5	22.3	27.2	1	49.7	5	23.3	26.4	0.969
2	48.1	6	20.3	27.8	2	48.3	6	21.4	26.9	0.966
3	46.5	7	18.2	28.3	3	46.7	7	19.2	27.5	0.971
4	44.2	8	16.0	28.2	4	44.4	8	17.0	27.4	0.970
										0.969

- 소주의 알코올 도수 측정값 27%
- 소주병에 기재된 알코올 도수 값 25%

[2] 결과 분석

(1) 실험(1)의 오차 값 분석 및 비교(참값: $\rho_{C_2\!H_5O\!H(l)}=0.7894(g/cm^3)$)

① 실험(1)-1회

회	밀도(g/cm³)	밀도의 절대오차(g/cm³)	밀도의 상대오차(%)	밀도의 표준 편차
1	0.786	0.003	0.379	
2	0.780	0.009	1.248	
3	0.785	0.004	0.530	0.006
4	0.787	0.002	0.360	
평균	0.784	0.005	0.629	

② 실험(1)-2회

회	밀도(g/cm³)	밀도의 절대오차(g/cm³)	밀도의 상대오차(%)	밀도의 표준 편차
1	0.786	0.004	0.449	
2	0.782	0.007	0.878	
3	0.789	0.001	0.111	0.004
4	0.792	0.003	0.327	
평균	0.787	0.003	0.441	

③ 밀도와 높이의 상관관계

실험(1)-1회에서 2번째 측정한 밀도의 상대오차가 매우 크다. 이는 2번째와 6번째 높이 측정으로 구한 밀도인 $0.780(g/cm^3)$ 는 평균의 다른 값들에 비해 평균의 값과 상대적으로 차이가 크기 때문이다. 다음의 표는 실험(1)-1회의 높이 경향성을 나타 낸 그래프이다.

각 회차별 밀도의 상대오차는 2회차 실험에서 제일 큰 것에 비해, 1회차 실험의 회차별 높이차와 그 평균의 차가 제일 큰 것으로 보아 각 회차별 높이차는 밀도와 유의미한 상관관계는 없다는 것을 알 수 있다.

④ 1회와 2회의 밀도 비교

밀도의 표준 편차를 보았을 때 1회의 실험이 2회의 실험보다 정확하게 진행되었다고 할 수 있다.(random error는 배제한 경우) 실험 1회의 경우 1-4회가 가장 정확하게 진행되었으며 1-2회가 가장 부정확하게 진행되었다. 또한, 실험 2회에서는 2-2회가 가장 정확하게 진행되었으며 2-1회가 부정확하게 진행되었다.

(2) 실험(2)의 오차 값 분석(오차의 원인: 전제한 온도와 실제 실험에서의 온도차로 인한 밀도차이)

① 실험(2)의 오차 값 분석

	밀도(g/cm³)	밀도의 절대오차(g/cm³)	밀도의 상대오차(%)	밀도의 표준 편차
1	0.969	0.002	0.173	
2	0.966	0.005	0.477	
3	0.971	0.001	0.055	0.002
4	0.970	0.001	0.065	
평균	0.969	0.002	0.193	

도수 참값(%) 도수 측정값(%	5) 도수의 절대오차(%p) 도수의 상대오차(%)
25	27	2	8

실험(2)은 밀도의 표준 편차를 보았을 때 실험(1)에서 진행한 어떤 회차의 실험보다 부정확하게 진행되었다고 할 수 있다. 또한, 상대오차로 보았을 때 밀도 값을 기준으로 한다면 0.2344(%)의 차이가 나지만 도수를 기준으로 하면 약 8(%)의 차이가 나는 것을 알 수 있다. 이를 통해 도수는 밀도와 비교하면 상당히 민감한 것을 알 수 있다. 그럼에도 측정한 도수가 이론상의 도수와 근접한 이유는 모집단의 크기가 8이며 표본이 2인 신뢰 수준이 90%일 때 상대오차의 오차 한계가 약 5`%이므로 실험에서의 측정값이 오차 한계의 범위 내에 있었기 때문이다.

[3] 오차 논의 및 검토

(1) 실험(1)에 대한 논의 및 검토

- ① 오차 원인 추정
 - 각 높이 측정 시 온도를 측정하지 않아 정확한 물의 밀도를 알 수 없으며 동시에 실험 중 측정한 $C_2H_5OH(l)$ 의 밀도가 일정하지 않을 수 있다.
 - 높이 측정 시 눈으로 보고 판단하였기에 정확하지 않다.
 - 모세관 현상은 비중에 반비례하므로 온도가 다르다면 비중 역시 변화할 것이며 이에 따른 높이차가 발생할 수 있다.

② 해결책 제시

- 높이 측정 시 디지털 온도계를 이용하여 각각의 온도를 기록하여 물의 밀도를 이용해 기록하여야 하며 $C_2H_5OH(l)$ 의 열팽창계수를 이용하여 밀도를 환산하여야 한다.
- 높이를 판단할 시 정확한 측정 장비를 이용해야 한다.
- 모세관 현상에 따른 높이 변화와 관련된 식과 $C_2H_5OH(l)$ 의 열팽창계수 등을 이용하여 밀도에 대한 예측값을 이용한 높이 변화를 고려해야 한다.

(2) 실험(2)에 대한 논의 및 검토

- ① 오차 원인 추정
 - 액체는 온도에 따라 부피가 변화하므로 온도에 따른 밀도가 다르다. 하지만 제공 된 소주의 알코올 도수와 밀도 환산표가 15℃ 기준의 환산표이다.
 - 이전 실험의 알코올이 관에 미량 남아 오차가 발생했을 수 있다.
 - 실험(1)에서 추정한 모든 오차 원인은 실험(2)의 오차 원인으로 추정할 수 있다.

② 해결책 제시

- 16℃ 기준의 도수와 밀도 환산표가 제공되어야 한다. (온도가 높으면 밀도가 낮아 지므로 만약 16℃ 기준의 환산표로 계산한다면 현재의 도수보다 조금 더 낮게 나올 것이다.)
- 가열하거나 장시간 동안 두어 잔여 알코올이 없도록 한다.
- 실험(1)에서 논의한 해결책은 실험(2)에도 적용할 수 있다.

[4] 결론

해당 실험은 Hare의 장치를 이용하여 액체의 밀도를 측정하며 그 과정에서 뉴턴의 운동 제 1법칙의 적용과 액체(유체) 내의 압력에 관한 정의를 이해할 수 있었다. $H_2O(l)$ 와 $C_2H_5OH(l)$ 를 양쪽의 관에 넣고 피펫 필러로 관 내부의 공기양을 늘려가며 높이를 측정하여 밀도를 추정할 수 있었다. 또한, 소주(l)의 밀도를 같은 방법으로 측정하였으며 이를 통해 소주(l)의 도수 또한 추정할 수 있었다. $C_2H_5OH(l)$ 의 밀도를 측정했을 때 1회와 2회는 각각 0.006, 0.004의 표준 편차가 나와 상당히 정확하게 측정하였다는 것을 알 수 있었으며 소주 밀도의 경우 0.002의 표준 편차가나왔고 도수는 27도로 상당히 정확하게 측정되었다는 것을 알 수 있었다. 또한, 높이차와 밀도 간의 직접적인 관련은 없었으며 비교하는 두 용액의 높이차의 비와밀도 간의 관계가 있다는 것을 확인할 수 있었다. 온도, 높이 등의 계측 오차로 인해 오차가 발생하였을 것으로 예측하였으며 해당 오차를 줄일 수 있었다면 더욱실험이 될 수 있었을 것이라 생각한다. 따라서 해당 실험을 하며 각 용액 $(H_2O(l), C_2H_5OH(l), \Delta T(l))$ 의 온도를 알 때 하나의 용액 $(H_2O(l))$ 의 밀도를 기준으로 다른 용액 $(\Delta T(l), C_2H_5OH(l))$ 이 혼합 $(\Delta T(l))$ 되어 있을 때 그 비율 $(\Delta T(l))$ 을 알 수 있다.