# Алгебра 1 семестр ПИ, Лекция, 09/17/21

Собрано 27 сентября 2021 г. в 17:19

# Содержание

| 1. | Отношения и перестановки       | 1 |
|----|--------------------------------|---|
|    | 1.1. Отношения                 | ] |
|    | 1.2. Отношение эквивалентности | 1 |
|    | 1.3. Класс эквивалентности     | 1 |
|    | 1.4. Перестановка              | 2 |
|    | 1.5. Знак перестановки         |   |
|    | 1.6. Чётные перестановки       |   |
|    | 1.7. Инверсии                  |   |

#### 1.1. Отношения

**Def. 1.1.1.** Отношением  $\omega$  на  $X \times Y$  называется любое подмножество  $X \times Y$ .

Если X = Y, то говорят про отношение на X.

Отношение на X называется:

- 1. рефлексивным, если  $\forall x \in X(x,x) \in \omega$
- 2. антирефлексивным, если  $(x,y) \in \omega \Rightarrow x \neq y$
- 3. симметричным, если  $(x,y) \in \omega \Rightarrow (y,x) \in \omega$
- 4. антисимметричным, если  $(x,y),(y,x) \in \omega \Rightarrow y=x$
- 5. транзитивным, если  $(x,y),(y,z)\in\omega\Rightarrow(x,z)\in\omega$

#### 1.2. Отношение эквивалентности

**Def. 1.2.1.** Отношение на X, которое является рефлексивным, симметричным, транзитивным, называется эквивалентностью и обозначается  $x \sim y$ 

Пример 1.2.2.  $X = \mathbb{Z} x\omega y \Leftrightarrow x - y$ :5

- 1. x x:5 рефлексивно
- 2.  $x y : 5 \Rightarrow y x : 5$  симметрично
- 3. x y:5, y z:5 x z = (x y) + (y z):5  $\Rightarrow x z$ :5 транзитивно
- $\Rightarrow \omega$  отношение эвивалентности

#### 1.3. Класс эквивалентности

**Def. 1.3.1.** Классом эквивалентности, содержащим  $a \in X$ , называется  $[a] = \{x : x \in X, x \sim a\}$ 

**Def. 1.3.2.** Разбиением множества X называется  $\pi(X) = \{X_i\}$ :

- 1.  $X_1 \cup X_2 \cdots = X$
- 2.  $\forall i, j : i \neq j, X_i \cap X_j = \emptyset$

Теорема 1.3.3. Связь эквивалентности и разбиения множества

- 1. Отношения эквивалентности на X задаёт разбиение множества  $\pi(X), X_i$  классы эквивалентности
- 2. Разбиение  $\pi(X)$  задаёт эквивалентность на X

Доказательство. 1.  $X_i = [x] = \{y \in X : y \sim x\}$  — перебираем все  $x \in X \Rightarrow X = X_1 \cup X_2 \cup \cdots X_n \cup \cdots$ 

 $X_i, X_j: X_i = [x_i], X_j = [x_j]$  предположим, что  $a \in X_i \cap X_j \Rightarrow a \sim x_i, a \sim x_j \Rightarrow x_i \sim x_j \Rightarrow X_i = X_j \Rightarrow [x_i]$  задают разбиения

- 2.  $\sim: x \sim y \Leftrightarrow x, y \in X_i$ , проверить, что  $\sim$  эквивалентность:
  - 1.  $x, x \in X_i \Rightarrow x \sim x$
  - $2. \ x, y \in X_i \Rightarrow y, x \in X_i$
  - 3.  $x, y, y, z \in X_i \Rightarrow x, z \in X_i$

 $\Rightarrow \sim$  — эквивалентность

**Def. 1.3.4.**  $\sim$  на X, тогда фактормножество  $(X/\sim)$  — множество, состоящее из классов эквивалентности

**1.4.** Перестановка — биективное отображение  $X = \{1, 2, \cdots, n\}$  в X

Запись перестановки:  $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$ 

**Def. 1.4.1.** Композиция перестановок. (  $\sigma, \tau$  )

 $\sigma, \tau \Rightarrow \sigma \circ \tau = \sigma \tau$  — выполняется справа налево.

**Def. 1.4.2.**  $e = \begin{pmatrix} 1 & 2 & ... & n \\ 1 & 2 & ... & n \end{pmatrix} - m$ ожедественная перестановка

Утверждение 1.4.3.  $\forall \sigma \to \exists \sigma^{-1}$ 

Множество всех перестановок  $X = \{1, 2, ..., n\}$  обозначается  $S_n$ 

**Def. 1.4.4.** Группой называется некоторое множество G, на котором определена бинарная операция:  $\forall x, y \in G \to xy \in G$ . При этом выполняются следующие аксиомы

- 1.  $\forall x, y, z \in G \rightarrow (xy)z = x(yz)$  ассоциативность.
- 2.  $\forall x \in G \rightarrow \exists e \in G : xe = ex = x$  нейтральный элемент
- 3.  $\forall x \in G \to \exists x^{-1} \in G : xx^{-1} = x^{-1}x = e$

**Теорема 1.4.5.**  $S_n$  относительно композиции является группой.

**Def. 1.4.6.** Порядком группы G называется количество элементов в G Обозначается |G|

**Def. 1.4.7.** 
$$\begin{pmatrix} 1 & i_1 & i_2 & \dots & i_k \\ i_1 & i_2 & i_3 & \dots & 1 \end{pmatrix}$$
 –  $k$ -чикл  $\begin{pmatrix} i & j \\ j & i \end{pmatrix} = (ij)$  –  $m$ ранспозиция.

Пример 1.4.8. 
$$\sigma = \begin{pmatrix} 1 & 5 & 3 & 4 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 4 & 2 & 3 \end{pmatrix}$$
  $\sigma^2 = \begin{pmatrix} 1 & 5 & 3 & 4 & 2 \end{pmatrix} \begin{pmatrix} 1 & 5 & 3 & 4 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 & 5 & 4 \end{pmatrix}$ 

**Теорема 1.4.9.**  $\forall \sigma \in S_n$  может быть разложена в произведение независимых циклов.

Доказательство.  $1 \leqslant i, j \leqslant n$ .  $i \sim j \Leftrightarrow \exists p \in \mathbb{Z} : \sigma^p(i) = j$ 

- 1.  $\sigma^{0}(i) = i$  рефлексивность
- 2.  $\sigma^p(i) = i \Rightarrow \sigma^{-p}(i) = i$  симметричность
- 3.  $\sigma^p(i)=j, \sigma^q(j)=k\Rightarrow \sigma^{p+q}(i)=k$  транзитивность

 $\Rightarrow$  по теореме о разбиении множества  $\Rightarrow X = X_1 \cup ... \cup X_s \Rightarrow \forall X_i$  соответствует цикл, длина которого равна  $|X_i|$ 

Пусть  $j \in X_i$ , тогда  $\begin{pmatrix} j & \sigma(j) & \sigma^2(j) & \dots & \sigma^p(j) \\ \sigma(j) & \sigma^2(j) & \sigma^3(j) & \dots & j \end{pmatrix}$   $\Rightarrow$  все такие циклы независимы.

Замечание 1.4.10. Можно доказать, что это разложение единственно с точностью до порядка.

 $Cnedcmeue\ 1.4.11.\ \forall \sigma\in S_n$  раскладывается в произведение транспозиций

$$\begin{pmatrix} i_1 & i_2 & i_3 & \dots & i_k \\ i_2 & i_3 & i_4 & \dots & i_1 \end{pmatrix} = \begin{pmatrix} i_1 & i_k \\ i_k & i_1 \end{pmatrix} \begin{pmatrix} i_1 & i_{k-1} \\ i_{k-1} & i_1 \end{pmatrix} \dots \begin{pmatrix} i_1 & i_3 \\ i_3 & i_1 \end{pmatrix} \begin{pmatrix} i_1 & i_2 \\ i_2 & i_1 \end{pmatrix}$$

Замечание 1.4.12. Разложение перестановки в произведение транспозиций не является единственным.

# 1.5. Знак перестановки

**Def. 1.5.1.**  $\sigma = \tau_1, \tau_2, ..., \tau_k, \tau_i, 1 \le i \le k$  - транспозиции. Знаком перестановки  $\sigma$  называется  $\varepsilon_{\sigma} = (-1)^k$ 

Замечание 1.5.2. Если  $\tau = (ij) \Rightarrow \tau^2 = (ij)^2 = e$ 

Теорема 1.5.3. О знаке перестановки

- 1.  $\varepsilon_{\sigma}$  не зависит от способа разложения  $\sigma$  на произведение транспозиций
- 2.  $\varepsilon_{\sigma}\varepsilon_{\tau} = \varepsilon_{\sigma\tau}$

Доказательство. 1.  $\sigma = \tau_1 \tau_2 ... \tau_k = \tau_1' \tau_2' ... \tau_s', \tau_i, \tau_j'$  - транспозиции.  $\Rightarrow \tau_1 \tau_2 ... \tau_k \tau_s' = \tau_1' \tau_2' ... \tau_{s-1}' \Rightarrow \tau_1 \tau_2 ... \tau_k \tau_s' \tau_{s-1}' = \tau_1' \tau_2' ... \tau_{s-2}' \Rightarrow e = \tau_1 \tau_2 ... \tau_k \tau_s' ... \tau_1'$ .

Если k,s одной четности  $\Rightarrow e$  раскладывается в четное число транспозиций

k, s разной четности  $\Rightarrow e$  раскладывается в нечетное число транспозиций.

Докажем, что e не может быть разложена в нечётное число транспозиций. Найдем транспозицию, содержащую i и будем двигать её влево

$$e = \tau_1 \tau_2 ... (ij) ...$$

Смотрим транспозицию слева от (ij):

$$(ij)(ij) = e \Rightarrow$$

число транспозиций уменьшилось на 2

$$(ik)(ij) = (ij)(jk)$$

$$(jk)(ij) = (ik)(jk)$$

$$(kl)(ij) = (ij)(kl)$$

 $\Rightarrow$  если не будет пункта  $1 \Rightarrow e = (it)...$ 

e(i)=i. Однако правая часть  $i\to t$ , что невозможно.  $\Rightarrow$  обязательно будет  $1\Rightarrow$  число транспозиций уменьшится на 2

Было k+s транспозиций.  $k+s-2, k+s-4, ... = 0 \Rightarrow k+s$  - чётное.

2. 
$$\varepsilon_{\sigma}\varepsilon_{\tau} = \varepsilon_{\sigma\tau}$$
  
 $\sigma = \tau_1...\tau_k, \tau = \tau'_1...\tau'_s$   
 $\varepsilon_{\sigma}\varepsilon = (-1)^k \cdot (-1)^s = (-1)^{k+s}$   
 $\varepsilon_{\sigma\tau} = (-1)^{k+s}$ 

**Def. 1.5.4.** Если  $\varepsilon = +1$ , то перестановка называется четной

# 1.6. Чётные перестановки

 $\underline{A_n} = \{$ чётные перестановки в  $S_n\}$  $\overline{A_n} = S_n \setminus A_n$ 

Утверждение 1.6.1.  $|A_n| = |\overline{A_n}| = \frac{n!}{2}$ 

Доказательство. Пусть  $\tau=(ij), \sigma\in A_n, \varphi:A_n\to\overline{A_n}, \varphi(\sigma)=\tau\sigma\in\overline{A_n}$ 

Инъективность:  $\sigma_1 \neq \sigma_2 \in A_n, \varphi(\sigma_1) = \tau \sigma_1, \varphi(\sigma_2) = \tau \sigma_2$ 

Если  $au\sigma_1= au\sigma_2\Rightarrow\sigma_1=\sigma_2$  - противоречие

Сюръективность: Пусть  $\rho \in \overline{A_n} \Rightarrow \tau \rho \in A_n \Rightarrow \varphi(\tau \rho) = \tau(\tau \rho) = \rho \Rightarrow \varphi$  - биективно  $\Rightarrow |A_n| = |\overline{A_n}|$ 

Замечание 1.6.2.  $e \in A_n, \sigma, \rho \in A_n \Rightarrow \sigma \rho \in A_n$ .

$$\sigma = \tau_1 \tau_2 ... \tau_k, \sigma^{-1} = \tau_k \tau_{k-1} ... \tau_1 \in A_n$$

Значит  $A_n$  - группа относительно композиции.

**Def. 1.6.3.** G - группа. Множество  $H \subseteq G$  называется подгруппой G, если оно также образует группу. Обозначение:  $H \leqslant G$ 

Теорема 1.6.4.  $A_n \leqslant S_n \Rightarrow |A_n| = \frac{n!}{2}$ 

**Def. 1.6.5.**  $A_n$  - знакопеременная группа (alternating)

### 1.7. Инверсии

**Def. 1.7.1.**  $\sigma = \begin{pmatrix} 1 & \dots & s & \dots & t & \dots & n \\ i & \dots & i_s & \dots & i_t & \dots & i_n \end{pmatrix}$ . Говорят, что (s,t) образуют инверсию, если  $s < t \land i_s > i_t$ . Количество всех инверсий равно  $inv(\sigma)$ 

**Теорема 1.7.2** (Инверсии и четность и перестановки).  $\sigma$  – четная (нечетная)  $\Leftrightarrow inv(\sigma)$  четно (нечетно)

Доказательство. 1. Пусть  $\sigma = \begin{pmatrix} \dots & s & t & \dots \\ \dots & i & j & \dots \end{pmatrix}, \tau = \begin{pmatrix} i & i+1 \\ i+1 & i \end{pmatrix}, j=i+1$  Хотим узнать, как меняется количество инверсий при умножении на  $\tau$ .

$$\tau\sigma = \begin{pmatrix} i & i+1 \\ i+1 & i \end{pmatrix} \begin{pmatrix} \dots & s & \dots & t & \dots \\ \dots & i & \dots & i+1 & \dots \end{pmatrix} \Rightarrow$$

количество инверсий изменится на 1.

Число инверсий в парах без s и t не поменялось. (k,s),(m,t) - тоже не поменялось. (s,t) - изменилось на 1.

- 2.  $\tau=(ij)$  произовальная транспозиция.  $\sigma$  произовальная перестановка.  $\tau=\begin{pmatrix} i&i+1 \end{pmatrix}\begin{pmatrix} i+1&i+2 \end{pmatrix}...\begin{pmatrix} i+k-1&j \end{pmatrix}\begin{pmatrix} i+k-2&i+k-1 \end{pmatrix}...\begin{pmatrix} i+1&i+2 \end{pmatrix}\begin{pmatrix} i&i+1 \end{pmatrix}$   $\Rightarrow \tau$  раскладывается в 2(k-1)+1 транспозицию соседних элементов  $\Rightarrow$  число инверсий  $\tau\sigma$  изменится на нечётное число.
- 3.  $\sigma = \sigma_1 \sigma_2 ... \sigma_l e$ , где  $\sigma_i$  независимые циклы. Если  $\sigma_l$  раскладывается в чётное число транспозиций, то в  $\sigma_l e$  чётное число инверсий (т.к. каждая транспозиция меняет  $inv(\sigma_l)$  на нечетное число). Если  $\sigma_l$  раскладывается в нечётное число транспозиций, то в  $\sigma_l e$  нечётное число инверсий.