Question Bank

- Q1. Discuss the need of Support vector machines? Explain why they are called as optimal binary classifiers?
- Q2. Explain the following terminologies with the help of appropriate illustrations:
 - i. Optimal Decision Boundary
 - ii. Support vectors
 - iii. Margins
- Q3. Express the SVM as a constrained optimization problem. Discuss how predictions can be done by using SVM. Support your answer with appropriate equations.
- Q4. Given '+' ly labelled data points as: $\{(3,1), (3,-1), (6,1), (6,-1)\}$ and '-'ly labelled data points as: $\{(1,0), (0,1), (0,-1), (-1,0)\}$. Find the parameters of the decision boundary using SVM and classify the point (1,3).
- Q5. Obtain the Optimal Binary hyper-plane for classifying the data points given below:
- + ve class data points: {(1,1), (3,1), (1,4)}
- -ve class data points: {(2, 4), (3,3), (5,1)}
- Q6. Apply DBSCAN algorithm to cluster the following points

P1	P2	P3	P4	P5	P6	P7	P8
(2,1)	(2,2)	(3,2)	(6,4)	(8,6)	(9,5)	(9,6)	(10,6)

- Q7. Explain Minimum spanning tree based clustering.
- Q8. Explain following terms with respect to DBSCAN algorithm

Core point, Noise point, Border point, Directly density reachability, Indirectly density reachability

Q9. Apply Graph based clustering for following example to form 4 clusters.

Q10. Explain Principal Component Analysis in detail.