Teoria erorilor și aritmetica în virgula flotantă

Radu T. Trîmbiţaş

19 martie 2009

1 Probleme

- P1. Scrieți o funcție MATLAB pentru a calcula epsilon-ul mașinii.
- **P2**. Scrieţi funcţii Matlab pentru calculul lui $\sin x$ şi $\cos x$ folosind formula lui Taylor:

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots$$
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$$

Știm de la cursul de Analiză matematică următoarele:

- modulul erorii este mai mic decat modulul primului termen neglijat;
- raza de convergență este $R = \infty$.

Ce se întâmplă pentru $x=10\pi$ (și în general pentru $x=2k\pi,\,k$ mare)? Explicați fenomenul și propuneți un remediu.

P3. Fie

$$E_n = \int_0^1 x^n e^{x-1} dx.$$

Se observă că $E_1=1/e$ și $E_n=1-nE_{n-1}, \ n=2,3,\dots$ Se poate arătă că

$$0 < E_n < \frac{1}{n+1}$$

și dacă $E_1 = c$ avem

$$\lim_{n\to\infty} E_n = \begin{cases} 0, & \text{pentru } c = 1/e \\ \infty & \text{altfel.} \end{cases}$$

Explicați fenomenul, găsiți un remediu și calculați e cu precizia eps.

2 Probleme suplimentare

1. Fie două numere reale $x_1, x_2 \in \mathbb{R}$, $x_1 \neq x_2$. Considerăm reprezentările lor în virgulă flotantă x_1^* și x_2^* astfel încât $x_1^* = fl(x_1) = x_1(1 + \delta_1)$, $x_2 = fl(x_2) = x_2(1 + \delta_2)$ și $|\delta_1| < \delta$, $|\delta_2| < \delta$. Cât de mic trebuie să fie δ , astfel incât să putem testa corect (în virgulă flotantă cu precizia mașinii eps) dacă $x_1 \neq x_2$.