1 Reelle und komplexe Zahlen

Wir definieren die reellen Zahlen "axiomatisch", d.h.: Man legt in einer Definition die Eigenschaften der reellen Zahlen fest, die im folgenden verwendet werden dürfen. Ausblick: \mathbb{R} ist ein "ordnungsvollständiger, geordneter Körper".

1.1 Geordnete Körper

Definition. Sei M eine nichtleere Menge. Eine Abbildung $*: M \times M \to M(x,y) \mapsto x * y$ heißt Verknüpfung auf M.

Definition 1.1. Seien K eine Menge, $0 \in K$, $1 \in K$ mit $0 \neq 1$, und "+" und "·" Verknüpfungen auf K. Dann heißt $(K, 0, 1, +, \cdot)$ ein $K\ddot{o}rper$, wenn die folgenden Eigenschaften für alle $x, y, z \in K$ gelten:

a) Assoziativgesetze:

$$(x + y) + z = x + (y + z)$$
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

b) neutrale Elemente:

$$x + 0 = x, \ x \cdot 1 = x$$

- c) inverse Elemente:
 - Zu jedem $x \in K$ existiert ein $a \in K$ mit x + a = 0.
 - Zu jedem $x \in K \setminus \{0\}$ existiert ein $b \in K$ mit $x \cdot b = 1$.
- d) Kommutativgesetze:

$$x + y = y + x$$
, $x \cdot y = y \cdot x$

e) Distributivgesetz:

$$(x+y) \cdot z = (x \cdot z) + (y \cdot z)$$

Man schreibt oft K anstelle $(K, 0, 1, +, \cdot)$.

Beispiel. a) \mathbb{Q} mit den üblichen $0, 1, +, \cdot$ ist ein Körper.

- b) \mathbb{Z} ist kein Körper, da es kein $b \in \mathbb{Z}$ gibt mit 2b = 1.
- c) Weitere Beispiele in linearer Algebra und Analysis I.

- Bemerkung. a) Wir schreiben -x für das Inverse Element von $x \in K$ bzgl. der Addition und $x^{-1} = \frac{1}{x}$ für das Inverse Element von $x \in K \setminus \{0\}$. Man lässt "·" und überflüssige Klammern meist weg. Dabei gilt "·" vor "+".
 - b) Die inversen Elemente sind eindeutig bestimmt (siehe LA). Man schreibt x-y statt x+(-y) und $\frac{x}{y}$ statt $x\cdot y^{-1}$.
 - c) Es gelten Rechenregeln wie in der Bruchrechnung (z.B. $0 \cdot x = 0$, -(-x) = x, usw.) [siehe LA]. Im folgenden wird dies ohne Kommentar in Ana I verwendet.

Definition 1.2. Sei M eine nichtleere Menge. Eine $Relation\ R$ auf M ist eine Teilmenge von $M\times M$. Man schreibt $x\sim_R y$ statt $(x,y)\in R$.

R ist Ordnungsrelation (oder Ordnung), wenn gelten:

- a) $\forall x \in M : x \sim_R x$ (reflexiv).
- b) $\forall x, y, z \in M$: Wenn $x \sim_R y$ und $y \sim_R z$, dann auch $x \sim_R z$ (transitiv).
- c) $\forall x, y \in M$: Wenn $x \sim_R y$ und $y \sim_R x$, dann gilt x = y (antisymmetrisch). Statt \sim_R schreibt man in diesem Fall meist \leq_R oder \geq_R . Eine Ordnung heißt total, wenn für beliebige $x, y \in M$ stets $x \leq y$ oder $y \leq x$ gilt.

Man schreibt x < y, wenn $x \le y$ und $x \ne y$, sowie $x \ge y$ statt $y \le x$ und y > x statt x < y.

Beispiel. a) Die übliche Ordnung auf \mathbb{Q} erfüllt Definition 1.2 und ist total. Hier:

b) Die Relation "n teilt m" für $n, m \in M$ ist eine nicht-totale Ordnung, z.B. 2 und 3 teilen sich nicht.

Definition 1.3. Ein geordneter Körper $K = (K, \leq)$ besteht aus einem Körper K und einer totalen Ordnung \leq , sodass die folgenden Eigenschaften gelten:

- a) $\forall x, y, z \in K$: Wenn x < y, dann x + z < y + z.
- b) $\forall x, y \in K$: Wenn x > 0 und y > 0, dann gilt xy > 0.

 $x \in K$ heißt positiv (negativ), wenn $x \ge 0$ ($x \le 0$). $x \in K$ heißt strikt positiv (strikt negativ), wenn x > 0 (x < 0). Man setzt

$$K_{+} = \{x \in K : x \ge 0\}, \ K_{-} = \{x \in K : x \le 0\}$$

Es gelten $K_+ \cap K_- = \{0\}$ (nach Def. 1.2 3), sowie $K_+ \cup K_- = K$ (wegen der Totalität).

Beispiel. $\mathbb Q$ mit der üblichen Ordnung ist ein geordneter Körper.

Satz 1.4. a) $y > x \iff y - x > 0$.

- b) a) $x < 0 \iff -x > 0$. b) $x > 0 \iff -x < 0$.
- c) Wenn x > 0 und y < 0, dann xy < 0.
- d) Wenn $x \neq 0$, dann $x^2 = x \cdot x > 0$. Speziell: $1 = 1^2 > 0$.
- e) Wenn x > 0, dann $\frac{1}{x} > 0$.

Beweis. a) Sei y>x. Addiere -x zu beiden Seiten. 1.3 1 liefert y-x>x-x=0. Sei y-x>0. Addiere x. 1.3 1 $\implies y=y-x+x>x$.

- b) a) Setze y = 0 in 1.
 - b) Ergibt sich, wenn man in 2a x durch -x ersetzt. (Beachte: -(-x) = x).
- c) Seien x > 0, $y < 0 \stackrel{2}{\Longrightarrow} -y > 0 \stackrel{1.3}{\Longrightarrow} 0 < x \cdot (-y) = -xy \stackrel{2}{\Longrightarrow} xy < 0$.
- d) Sei $x \neq 0$. Nach 2 und der Totalität der Ordnung gilt entweder x > 0 oder -x > 0. 4 folgt also aus 1.3 2 und $(-x)^2 = x^2$.
- e) Sei x>0. Ann. $\frac{1}{x}<0$. Dann $-\frac{1}{x}>0$ (nach 2) und somit $-1=x\cdot\left(-\frac{1}{x}\right)>0$ nach 1.3 2. Nach 4 und 2 folgt ξ . Da $\frac{1}{x}\neq 0$ folgt die Behauptung, da die Ordnung total ist.

Definition 1.5. Sei K ein geordneter Körper und $x \in K$.

Dann heißt
$$|x| := \begin{cases} x, & x > 0, \\ -x, & x < 0, \end{cases}$$
 der $Betrag \text{ von } x$.

Satz 1.6. Seien K ein geordneter Körper und $x, y \in K$. Dann gelten:

a)
$$|x| \ge 0$$
, $|x| = 0 \iff x = 0$.

b)
$$x \le |x|, -x \le |x|, |x| = |-x|.$$

$$c) |xy| = |x| \cdot |y|.$$

d)
$$|x + y| \le |x| + |y|$$
.

e)
$$|x - y| \ge |x| - |y|$$
.

Beweis. a) - c) folgen leicht aus Def. 1.5 und Satz 1.4.

d) Da
$$x \le |x|, y \le |y|$$
, folgt $x + y \stackrel{1.3}{\le} |x| + y \le |x| + |y|$.
Ebenso: $-(x + y) \le |x| + |y|$. Somit: $|x + y| \le |x| + |y|$.

e) Übungsblatt.

Definition 1.7. Seien K ein geordneter Körper und $a, b \in K$ mit a < b. Dann definiert man die beschränkten Intervalle

$$[a, b] = \{x \in K : a \le x \le b\}, [a, a] = \{a\} \text{ ("abgeschlossen")},$$

$$(a,b) = \{x \in K : a < x < b\}$$
 ("offen", statt $[a,b]$),

$$[a, b) = \{x \in K : a \le x < b\},\$$

$$(a, b] = \{x \in K : a < x < b\},\$$

und die unbeschränkten Intervalle

$$[a, \infty) = \{x \in K : x \ge a\}, (-\infty, a] = \{x \in K : x \le a\},$$
 ("abgeschlossen"),

$$(a, \infty) = \{x \in K : x > a\},\ (-\infty, a) = \{x \in K : x < a\},\$$
 ("offen").

Beispiel. Für welche $x \in \mathbb{Q}$ gilt |2x - 3| + 2 > 3x - 5? (*)

Lösung: Betrag auflösen:

$$|2x - 3| = \begin{cases} 2x - 3, & x \ge \frac{3}{2}, \\ 3 - 2x, & x < \frac{3}{2}, \end{cases} \quad x \in \mathbb{Q}.$$

Fall 1: $x \ge \frac{3}{2}$. Dann:

(*)
$$\iff 2x - 3 + 2 > 3x - 5 \iff 2x - 1 > 3x - 5 \stackrel{1.3}{\iff} 4 > x.$$

Also: jedes $x \in \left[\frac{3}{2}, 4\right)$ erfüllt (*).

Fall 2:
$$x < \frac{3}{2}$$
. Dann:

$$(*) \iff 3 - 2x + 2 > 3x - 5 \stackrel{\text{1.3 1}}{\iff} 10 > 5x \stackrel{\text{(\"{U}b)}}{\iff} x < 2.$$

Also: jedes
$$x \in \left(-\infty, \frac{3}{2}\right)$$
 erfüllt (*).

$$\implies$$
 Lösungsmenge = $(-\infty, 4)$.

Satz 1.8 (Bernoulli-Ungleichung). Seien K ein geordneter Körper, x > -1 und $n \in \mathbb{N}$. Dann gilt

$$(1+x)^n \ge 1 + n \cdot x.$$

(Dabei wird $y^n = y \cdots y$ induktiv definiert.)

Beweis. (per Induktion)

- (IA) Beh. ist wahr für n = 1.
- (IS) Beh. gelte für ein $n \in \mathbb{N}$ (IV).

Dann:

$$(1+x)^{n+1} = \underbrace{(1+x)}_{>0, \text{ n.V. } [x>-1]} (1+x)^n \stackrel{(IV), \text{ "Üb}}{\ge} (1+x)(1+nx)$$
$$= 1 + (n+1)x + \underbrace{nx^2}_{>0} \stackrel{1.3}{\ge} 1 + (n+1)x.$$

$$\implies$$
 IS gilt $\stackrel{\text{Ind.}}{\Longrightarrow}$ Beh.

Lemma 1.9. Sei K ein geordneter Körper und $a, b \in K$ mit a < b. Dann gilt

$$a < \frac{a+b}{2} < b,$$

 $wobei\ 2 := 1 + 1.$

Beweis.
$$2a = a + a \stackrel{1.3}{<} a + b \stackrel{1.3}{<} b + b = 2b$$
. Division mit 2 liefert Beh.

1.2 Suprema und reelle Zahlen

Definition 1.10. Sei K geordneter Körper und $M \subseteq K$ nichtleer.

a) $a \in K$ ist eine obere (untere) Schranke von M, wenn $a \ge m$ ($a \le m$) für alle $m \in M$. M heißt nach oben (unten) beschränkt, wenn es eine obere (untere) Schranke besitzt. M heißt beschränkt, wenn es nach oben und nach unten beschränkt ist. Andernfall heißt M unbeschränkt.

b) $x \in K$ heißt Maximum (Minimum) von M, wenn es eine obere (untere) Schranke von M ist und wenn $x \in M$. Man schreibt dann $x = \max M$ ($x = \min M$).

Beispiel 1.11. a) Sei $M = (-\infty, b]$. Dann hat M die obere Schranke $b \in M$ gemäß Def. 1.7. Ferner hat M keine untere Schranke.

Beweis. Ann. $\exists a \in K \text{ mit } a \leq x \ \forall x \in M.$ Dann: a - 1 < a nach Satz 1.4.

$$\implies a-1 \le b \implies a-1 \in (-\infty,b] \implies \mbox{$\rlap/ 4$}.$$

$$\implies M$$
 hat keine untere Schranke.

b) Sei $N = (-\infty, b)$. Dann hat N auch die obere Schranke b, aber $b \notin N$. Beh. N hat kein max.

Beweis. Ann. Es gebe $a = \max N$. Da $a \in N$, folgt a < b. Somit folgt

$$a < \frac{a+b}{2} < b \text{ nach Lemma 1.9.} \implies \frac{a+b}{2} \in N \implies \notin \text{ zu } a = \max N.$$

Bemerkung 1.12. In Def. 1.10 hat M höchstens ein max und höchstens ein min.

Beweis. (nur für max): Seien x, y Maxima von $M. \implies x \ge m \ \forall m \in M \implies x \ge y$. Genauso: $y \ge x$.

$$\implies x = y$$
.

Definition 1.13. Sei K ein geordneter Körper und $M \subseteq K$ nichtleer.

- a) Sei M nach oben beschränkt. Wenn es eine kleinste obere Schranke von M gibt, dann heißt diese Supremum von M (man schreibt sup M).
- b) Sei M nach unten beschränkt. Wenn es eine größte untere Schranke von M gibt, so heißt diese Infimum von M (inf M).

Beispiel 1.14. Sei $M = (-\infty, b)$. Beh. $b = \sup M$.

Beweis. Nach Def. 1.7. ist b eine obere Schranke von M. Ann. x sei eine echt kleinere obere Schranke von M. Nach Lemma 1.9 gilt:

$$x < \frac{x+b}{2} < b \implies \frac{x+b}{2} \in M \implies \mbox{$\rlap/ $\rlap/$} \ .$$

Bemerkung 1.15. a) Wenn es existiert, dann ist das Supremum gleich dem Minimum der oberen Schranke von M, sowie inf M das Maximum der unteren Schranken von M.

b) Nach 1 Bem. 1.12. besitzt also M höchstens ein sup und höchstens ein inf.

Beispiel 1.16. Seien $K = \mathbb{Q}, M = \{x \in \mathbb{Q}_+ : x^2 \le 2\}.$

Beh. sup M ex. nicht in \mathbb{Q} , wobei M beschränkt ist (mit oberer Schranke 2).

Beweis. Ann. es existiere $s = \sup M \in \mathbb{Q}$.

 $\implies \exists$ teilerfremde $p,q\in \mathbb{N}$ nit $s=\frac{\breve{p}}{q}.$ Nach Lemma 1.24 muss dann $s^2=2$ gelten.

$$\implies p^2 = 2q^2 \implies p^2 \text{ gerade } \implies p \text{ gerade } \implies \exists r \in \mathbb{N} : p = 2r$$

$$\implies 2q^2 = 4r^2 \implies q^2 = 2r^2 \implies q \text{ gerade} \implies \not p, q \text{ teilerfremd.}$$

 $\implies s$ kann nicht in \mathbb{Q} existieren.

(Beweis ohne Vorgriff: Amann/Escher Ana I. Bsp. I. 10.3.)

Bem. Haben gezeigt " $\sqrt{2} \notin \mathbb{Q}$ ".

Definition 1.17. Ein geordneter Körper K, in dem jede nach oben beschränkte nichtleere Menge ein Supremum besitzt, heißt *ordnungsvollständig*. Die *reellen Zahlen* \mathbb{R} sind ein ordnungsvollständiger geordneter Körper.

Bemerkung. a) \mathbb{Q} ist nach Bsp. 1.16 nicht ordnungsvollständig.

b) Man kann \mathbb{R} mit den Eigenschaften aus Def. 1.17 mit Mitteln der Mengentheorie konstruieren (Cantor, Dedekind ~1880). Durch Def. 1.17 ist \mathbb{R} eindeutig bestimmt ("bis auf einen ordnungserhaltenden Körperisomorphismus").

Siehe:

- Ebbinghaus et al. "Zahlen", 1992.
- E. Landau. Grundlagen der Analysis, 1934.
- Aman/Escher Thm. I.10.4.
- c) Wenn man die 1 in \mathbb{R} mit der 1 in \mathbb{Q} identifiziert, dann ist \mathbb{Q} in \mathbb{R} enthalten $(\mathbb{Q} \subseteq \mathbb{R})$, wobei für $x, y \in \mathbb{Q}$ die Verknüpfungen +, \cdot und die Relation \leq von \mathbb{R} mit denen von \mathbb{Q} übereinstimmen.

Denn: Man definiert in \mathbb{R} : $2:=1+1, 3:=2+1, \ldots$ Dabei liefern $+, \cdot, \leq$ von \mathbb{R} auf $1,2,3,\ldots$ die bekannten Verknüpfungen von \mathbb{N} , z.B. gilt auch Satz 1.4: $1<2<3<\cdots$

Damit liegt auch -n in \mathbb{R} für $n \in \mathbb{N}$, sowie $\frac{p}{q} \in \mathbb{Q}$, für $p \in \mathbb{Z}$, $q \in \mathbb{N}$.

Der Rest der Behauptung ist leicht (aber langwierig) zu zeigen.

Eigenschaften von $\mathbb R$ und sup, inf

Satz 1.18. Sei $M \subseteq \mathbb{R}$ nichtleer und nach oben (unten) beschränkt und $s \in \mathbb{R}$. Dann sind äquivalent:

- a) $s = \sup M \ (s = \inf M)$
- b) s ist eine obere (untere) Schranke und

$$\forall \varepsilon > 0 \ \exists x_{\varepsilon} \in M : s - \varepsilon < x_{\varepsilon} \le s \ (s \le x_{\varepsilon} < s + \varepsilon)$$

Beweis. (Nur für sup): Sei B die Menge der oberen Schranken von M. $1 \iff s = \min B \iff s$ ist obere Schranke von M und $\forall \varepsilon > 0 : s - \varepsilon \notin B$ (da s kleinste obere Schranke) $\iff s$ ist obere Schranke von M und $\forall \varepsilon > 0 \exists x_{\varepsilon} \in M : s - \varepsilon < x_{\varepsilon} \iff 2$

Satz 1.19. Sei $M \subseteq \mathbb{N}$ nichtleer. Dann exisitiert min M.

Beweis. Da $\mathbb{N} \subset \mathbb{R}$ und 1 eine untere Schranke von \mathbb{N} ist, exisitert $x = \inf M$. Nach Satz 1.18 mit $\varepsilon = \frac{1}{3}$ existiert ein $m_0 \in M$ mit $x \leq m_0 < x + \frac{1}{3} \leq m + \frac{1}{3}$ für alle $m \in M$. Für $m \in \mathbb{N}$ mit $m \neq m_0$ gilt $|m - m_0| \geq 1$. Also gilt $m_0 \leq m$ für alle $m \in M \implies m_0 = \min M$.

Satz 1.20. a) \mathbb{R} ist "archimedisch geordnet", d.h. $\forall x \in \mathbb{R} \ \exists n_x \in \mathbb{N} : n_x > x$

- $b) \ \forall \varepsilon \in \mathbb{R} \ mit \ \epsilon > 0 \ \exists n_{\varepsilon} \in \mathbb{N}, \ sodass \ \frac{1}{n_{\varepsilon}} < \varepsilon.$
- c) Sei $x \in \mathbb{R}$. Wenn $0 \le x \le \frac{1}{n}$ für alle $n \in \mathbb{N}$, dann x = 0.

Beweis. a) Annahme: Die Behauptung sei falsch, d.h. $\exists x_0 \in \mathbb{R} \ \forall n \in \mathbb{N} : n \leq x_0$. Somit exisitert $s = \sup \mathbb{N} \in \mathbb{R}$. Nach Satz 1.18 mit $\varepsilon = \frac{1}{2}$ exisitert dann $m \in \mathbb{N}$ mit

$$s - \frac{1}{2} < m \implies s < s + \frac{1}{2} < m + 1.$$

Da $m+1 \in \mathbb{N}$, kann s kein Supremum sein. $\nleq \implies 1$ gilt.

b) Sei $\varepsilon > 0$ gegeben. Setze $x = \frac{1}{\varepsilon} \in \mathbb{R}$. Nach 1 existiert $n_x \in \mathbb{N}$ mit $n_x > x = \frac{1}{\varepsilon} \implies \varepsilon > \frac{1}{n_x} \implies$ Beh. 2 mit $n_\varepsilon = n_x$.

c) folgt direkt aus 2.

Definition. Seien M, N nichtleere Mengen. Eine Abbildung $f: M \to N$ heißt injektiv, wenn $\forall x, y \in M$ mit $x \neq y: f(x) \neq f(y)$. Sie heißt surjektiv, wenn $\forall z \in n \exists x \in m$ it f(x) = z. f heißt bijektiv, wenn f injektiv und surjektiv ist, d.h. $\forall z \in N \exists ! x \in M$ mit f(x) = z. Für bijektive $f: M \to N$ definiert man die Umkehrabbildung $f^{-1}: N \to M$ durch $f^{-1}(z) = x$, wenn $f(x) = z, z \in N$.

Definition 1.21. Zwei Mengen M, N heißen gleichmächtig, wenn es ein bijektive Abbildung $f: M \to N$ gibt. M hat die Mächtigkeit (Kardinalität) $n \in \mathbb{N}$, wenn M und $\{1, 2, \ldots, n\}$ gleichmächtig sind. Wenn dies für kein $n \in \mathbb{N}$ der Fall ist, so ist M unendlich. Man schreibt dann #M = n bzw. $\#M = \infty$.

Beispiel. Sei $M = \{A, B, C\}$. Dann ist $f : M \to \{1, 2, 3\}$ mit f(A) = 1, f(B) = 3, f(C) = 2 eine bijektive Abbildung $\implies \#M = 3$.

Beachte: Wenn #M = n, dann gilt $M = x_1, \ldots, x_j$, wobei $x_j := f^{-1}(j)$ mit f aus Def. 1.21 und $j \in \{1, \ldots, n\}$. Wenn M und N gleichmächtig sind, dann #M = #N, da die Verkettung bijektiver Abbildungen bijektiv ist.

Bemerkung. Gleichmächtigkeit ist eine Äquivalenzrelation.

Satz 1.22. a) Sei $m \in \mathbb{N}$. Dann ist $\#\{j \in \mathbb{N} : j \geq m\} = \infty$. Speziell $\#\mathbb{N} = \infty$

b) Seien $a, b \in \mathbb{R}$ mit b > a. Dann $\#\{x \in \mathbb{Q} : a < x < b\} = \infty$

Beweis. a) Annahme: $\#\{j \in \mathbb{N} : j \geq m\} = n$. Dann $\exists x_1, \dots, x_n \in \mathbb{N}$ mit $M := \{j \in \mathbb{N} : j \geq m\} = x_1, \dots, x_n$. Dann $y = x_1 + \dots + x_n + 1 \in \mathbb{N}$ und

$$y > \begin{cases} m & \Longrightarrow y \in M \\ x_j, j \in \{1, \dots, n\} & \Longrightarrow y \notin M \end{cases} \Longrightarrow \sharp.$$

b) Zuerst konstruiert man ein $q \in \mathbb{Q} \cap (a, b)$. Nach Satz 1.20 $\exists n \in \mathbb{N} : b - a > \frac{1}{n} > 0$, also

$$nb > 1 + na \tag{*}$$

Sei $a \geq 0$. Dann existiert nach Satz 1.20 und Satz 1.19 ein minimales $k \in \mathbb{N}$ mit k > na. Sei a < 0. Dann erhallt man genauso ein minimales $l \in \mathbb{N}$ mit $l \geq -na$, also $-l \leq an$. Somit liegt

$$m := \begin{cases} k & , a \ge 0 \\ 1 - l & , a < 0 \end{cases}$$

in $\mathbb Z$ und $na < m \leq an+1 \stackrel{(*)}{<} nb \implies a < \frac{m}{n} < b, \ q := \frac{m}{n} \in \mathbb Q$. Nach Satz 1.20 $\exists j_0 \in \mathbb N$ mit $b-q > \frac{1}{j_0} > 0$. Sei $j \in J := \{k \in \mathbb N : k \geq j_0\} \implies q+\frac{1}{j} \in \mathbb Q$ und $a < q+\frac{1}{j} \leq q+\frac{1}{j_0} < b, \ \forall j \in J$. Die Menge $M = \{q+\frac{1}{j}, j \in J\}$ ist nach 1 unendlich da $f: J \to M, f(j) = b+\frac{1}{j}$ bijektiv ist.

Definition. Seien $A, B \subseteq R$. Dann setzt man

$$A+B:=\{x:\exists a\in A,b\in B \text{ mit } x=a+b\}$$

$$A\cdot B:=\{x:\exists a\in A,b\in B \text{ mit } x=a\cdot b\}$$
 speziell:
$$y+B=\{y\}+B=\{x=y+b,b\in B\}$$

$$y\cdot B=\{y\}\cdot B=\{x=y\cdot b,b\in B\}$$

Beispiel. [0;1] + [2;3] = [2;4]

Beweis. "⊆" ist klar. "⊇" Sei $x \in [2;3]$. Wenn $x \in [2;3]$, dann wähle $a = x - 2 \in [0;1]$ und b = 2Wenn $x \in [3;4]$, dann wähle $a = x - 3 \in [0;1]$ und b = 3In beiden Fällen: a + b = x **Satz 1.23.** Seien $A, B \subseteq \mathbb{R}$ nichtleer.

- a) Seien A und B nach oben beschränkt. Dann:
 - a) Wenn $A \subseteq B$, dann $\sup A \le \sup B$
 - b) $\sup(A+B) = \sup A + \sup B$
 - c) Wenn A, $B \subseteq (0, \infty)$, dann $\sup(A \cdot B) = \sup A \cdot \sup B$
- b) Seien A und B nach unten beschränkt. Dann gelten 1b und 1a von 1) auch für das Infimum. Weiter gelten:
 - a') $A \subseteq B \implies \inf A > \inf B$
 - d) -A ist nach oben beschränkt und inf $A = -\sup(-A)$, wobei $-A := (-1) \cdot A$.

Beweis. a) Sei $A \subseteq B$. Wenn z eine obere Schranke von B ist, dann auch von A. \Longrightarrow Beh. 1a.

b) Seien $x = \sup A$ und $y = \sup B$. Dann $x + y \ge a + b \, \forall a \in A, b \in B \implies x + y$ ist obere Schranke von A + B. Sei $\varepsilon > 0$ gegeben (fest aber beliebig). Setze $\eta = \frac{\varepsilon}{2} > 0$. Satz 1.18 liefert $a_{\eta} \in A$ und $b_{\eta} \in B$ mit $x - \eta < a_{\eta} \le x$ bzw. $y - \eta < b_{\eta} \le y \implies x + y - \underbrace{2\eta}_{\varepsilon} < \underbrace{a_{\eta} + b_{\eta}}_{\in A + B} \le x + y \stackrel{\text{1.18}}{\Longrightarrow}$ Beh. 1b (Rest in Übungen).

Potenzen mit rationalen Exponenten

Seien $a,b\in\mathbb{R}$ mit a,b>0, $r=\frac{m}{n},$ $n\in\mathbb{N},$ $m\in\mathbb{Z}$ gegeben. Ziel: Definiere $a^{\frac{m}{n}}$ und zeige Potenzgesetze. Vorrausgesetzt wird dabei der Fall

$$a^{m} = \begin{cases} \underbrace{a \cdot a \cdots a}_{m \text{ mal}} & \text{für } m > 0 \\ 1 & \text{für } m = 0 \\ \frac{1}{a^{|m|}} & \text{für } m < 0 \end{cases}$$

Wir verwenden (wobei a, b > 0)

$$a < b \iff a^n < b^n \tag{1.1}$$

Beweis. " \Longrightarrow " $a < b \Longrightarrow a^2 < ab$ und $ab < b^2$ induktiv für alle $n \in \mathbb{N}$. "Sei $a^n < b^n$. Annahme: $a \ge b \xrightarrow{\text{wie oben}} a^n \ge b^n \Longrightarrow \cancel{t}$ Hauptschritt: Fall m = 1. Sei $M = \{x \in \mathbb{R}_+ : x^n \le a\}$. Dann

a) $M \neq \emptyset$, da $0 \in M$

b) M hat obere Schranke 1 + a, denn Annahme: 1 + a hat keine obere Schranke: $x > 1 + a \text{ für } x \in M \xrightarrow{\text{(1.1)}} x^n \ge (1+a)^n \ge (1+a) \cdot 1^{n-1} > a$

Def. 1.17
$$\implies \exists w = \sup M$$
 (1.2)

Lemma 1.24. w ist die einzige positive reelle Lösung der Gleichung $y^n = a$.

a) Annahme: $w^n < a$. Sei $\varepsilon \in (0; 1]$. Dann $(w + \varepsilon)^n \stackrel{\text{Bsp. 0.3}}{=} \sum_{i=1}^n \binom{n}{i} w^j \varepsilon^{n-j}$ Beweis.

$$= w^n + \varepsilon \sum_{j=0}^{n-1} \binom{n}{j} \underbrace{w^j}_{>0} \underbrace{\varepsilon^{n-j-1}}_{<1} \leq w^n + \varepsilon \sum_{j=0}^n \binom{n}{j} w^i \overset{\mathrm{Bsp. } 0.3}{=} w^n + \varepsilon (1+w)^n.$$

Wähle speziell $\varepsilon = \min \left\{ 1, \frac{a - w^n}{(1 + w)^n} \right\} \in (0; 1]$

$$\implies (w+\varepsilon)^n \le w^n + \frac{a-w^n}{(1+w)^n} (1+w)^n = a$$

$$\implies w+\varepsilon \in M \implies \text{if } zu \ w = \sup M \implies w^n \ge a.$$

- b) Ähnlich sieht man $w^n \le a \implies w^n = a$
- c) Es gelte $v^n = a$ für ein $v \in \mathbb{R}_+$. Wenn v < (>) w, dann $v^n < (>) w^n$ nach (1.1)

Folgerung. Sei $x \in \mathbb{R}$. Dann ist $y = \sqrt{x^2}$ die einzige positive Lösung von $y^2 = x^2$. Weitere Lösung ist |x|

$$\stackrel{Eind.}{\Longrightarrow} \sqrt{x^2} = |x| \tag{1.3}$$

Definition 1.25. Sei $a \in \mathbb{R}$, a > 0, $n \in \mathbb{N}$, $m \in \mathbb{Z}$, $q = \frac{m}{n}$, w wie in (1.2). Dann setzen wir $\sqrt[n]{a} := a^{\frac{1}{n}} := w \text{ und } a^q := (a^{\frac{1}{n}})^m$

Satz 1.26. Seien $a, b \in \mathbb{R}$, a, b > 0, $p, q \in Q$. Dann gelten:

- $a) a^p b^p = (ab)^p$
- b) $a^p a^q = a^{p+q}$

c)
$$(a^p)^q = a^{pq}$$

d) $a > b > 0 \implies \begin{cases} a^p > b^p, & p > 0 \\ a^p < b^p, & p < 0 \end{cases}$

Beweis. a) Seien $a, b > 0, p = \frac{m}{n}, m \in \mathbb{Z}, n \in \mathbb{N}$. Zu zeigen: $a^p b^p = (ab)^p$ Dann: $(a^{\frac{1}{n}}b^{\frac{1}{n}})^n = \underbrace{a^{\frac{1}{n}}b^{\frac{1}{n}}\cdots}_{n\text{-mal}} = (a^{\frac{1}{n}})^n(b^{\frac{1}{n}})^n \stackrel{1.24}{=} ab \stackrel{1.24}{\Longrightarrow} a^{\frac{1}{n}}b^{\frac{1}{n}} = (ab)^{\frac{1}{n}}$. $n\text{-te Potenz liefert Beh. 1. b), c) gehen so ähnlich.$

b) Sei
$$p = \frac{m}{n} \in \mathbb{Q}$$
m $a > b > 0$. Zu zeigen:
$$\begin{cases} p > 0 & \Longrightarrow a^p > b^p \\ p < 0 & \Longrightarrow a^p < b^p \end{cases}$$
 Annahme: $a^{\frac{1}{n}} \leq b^{\frac{1}{n}}, \ n \in \mathbb{N} \ a \overset{\text{Def.}}{=} (a^{\frac{1}{n}})^n \overset{1.1}{\leq} (b^{\frac{1}{n}})^n \overset{\text{Def.}}{=} b \not \in \Longrightarrow a^{\frac{1}{n}} > b^{\frac{1}{n}} \text{ n-te Potenz, } 1.1, \ \ddot{\text{Ubung }} 2.5, \ 1 \ \text{für } m < 0 \ \text{liefern } 4$

1.3 Komplexe Zahlen

Ausgangspunkt: Löse $x^2 = -1$ Nach Satz 1.4 hat diese Gleichung keine Lösung in einem geordneten Körper, insbesondere keine Lösung in \mathbb{R} . Idee: Konstruiere einen nicht geordneten Körper, der \mathbb{R} enthält und in dem $x^2 = -1$ lösbar ist.

Ansatz. Auf \mathbb{R}^2 gibt es (Vektor-)addition: $\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} x+u \\ y+v \end{pmatrix}$

Def.:
$$\begin{pmatrix} x \\ y \end{pmatrix} \cdot \begin{pmatrix} u \\ c \end{pmatrix} := \begin{pmatrix} xu - yv \\ xv + xy \end{pmatrix} \in \mathbb{R}^2$$
,

Bsp.:
$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

Neue Bezeichnungen: 1 statt $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, i statt $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$, x+iy=z statt $\begin{pmatrix} x \\ y \end{pmatrix}$ mit $x,y\in\mathbb{R}$ (also $i^2=-1$)

Definition. $\mathbb{C}:=\{z=x+iy:x,y\in\mathbb{R}\}$ Fasse $\mathbb{R}=\{z=x+i\cdot 0=x,x\in\mathbb{R}\}$ als Teilmenge von \mathbb{C} auf.

Seien $z=x+iy,\,w=u+iv$ für $x,y,u,v\in\mathbb{R}.$ Dann setzt man

$$z+w=(x+iy)+(u+iv):=(x+u)+i(y+v)\in\mathbb{C}$$

$$z \cdot w := (xu - yr) + i(yu + xv) \in \mathbb{C}$$

Beachte. Auf der rechten Seite der obigen Definition stehen in den Klammern nur reelle Ausdrücke, die somit wohldefiniert sind. Falls $z=x\in\mathbb{R}$ und $w=u\in\mathbb{R}$, so erhält man wieder die reelen +,- Lineare Algebra: $(\mathbb{C},0,1,+,\cdot)$ ist ein Körper.

Definition 1.27. Sei $z=x+iy\in\mathbb{C}$ mit $x,y\in\mathbb{R}$. Dann heißt x der Realteil von z,y der Imaginärteil von $z,|z|_{\mathbb{C}}:=\sqrt{x^2+y^2}$ der Betrag von z und $\bar{z}:=x-iy$ das konjungiert Komplexe von z. Man schreibt $x=\operatorname{Re} z$ und $y=\operatorname{Im} z$.

Bemerkung. Für $z=x\in\mathbb{R}$ gilt $|x|_{\mathbb{C}}=\sqrt{x^2}\stackrel{??}{=}|x|_{\mathbb{R}}$. Somit schreiben wir |z| statt $|z|_{\mathbb{C}}$ für $z\in\mathbb{C}$.

Sei $z\in\mathbb{C},\ r\in\mathbb{R}, r>0$. Dann ist $B(z,r)=\{w\in\mathbb{C}:|z-w|< r\}$ die offene Kreisscheibe in \mathbb{R}^2 mit Mittelpunkt $z=\begin{pmatrix} x\\y \end{pmatrix}$ und Radius $r,\ \overline{B}(z,r)=\{w\in\mathbb{C}:|z-w|=r\}$ die $|z-w|\le r\}$ die abgeschlossene Kreisscheibe, $s(z,r)=\{w\in\mathbb{C}:|z-w|=r\}$ die Kreislinie.

Ferner: Sei $z = x \in \mathbb{R}$. Dann $B(x,r) \cap \mathbb{R} = \{x - r, x + r\}$.

Satz 1.28. Für $w, z \in \mathbb{C}$ gelten:

a)
$$\bar{z} = z$$
, $|z|^2 = z \cdot \bar{z}$ ($\Longrightarrow \frac{1}{z} = \frac{\bar{z}}{|z|^2}$, $z \neq 0$)

b)
$$\overline{z+w} = \overline{z} + \overline{w}, \ \overline{zw} = \overline{z} \cdot \overline{w}$$

c) Re
$$z = \frac{1}{2}(z + \bar{z})$$
, Im $z = \frac{1}{2}(z - \bar{z})$

d)
$$|\text{Re } z| \le |z|, |\text{Im } z| \le |z|, |\bar{z}| = |z|$$

$$e) \ |z| \ge 0, \ z = 0 \iff |z| = 0$$

$$f) |zw| = |z| \cdot |w|$$

$$g) \ |z+w| \leq |z| + |w| \ (Dreiecksungleichung)$$

$$||h|| ||z - w|| \ge ||z| - |w||$$

Beweis. Seien z = x + iy, w = u + iv für x, y, u, v $in\mathbb{R}$.

a1)
$$\bar{z} = \overline{x + i(-y)} = x - i(-y) = z$$

a2)
$$z\bar{z} = (x+iy)(x-iy) = x^2 - ixy + ixy - i^2y^2 = x^2 + y^2 = |z|^2$$

b1) ist klar

b2)
$$\overline{zw} = \overline{xu - yv + i(xv + yu)} = xu - yv - i(xv - yu) = xu - yv - ixv - iyu = (x - iy)(u - iv) = \overline{z}\overline{w}$$

c1)
$$z + \bar{z} = x + iy + x - iy = 2x \iff \frac{1}{2}(z + \bar{z} = x)$$

c2) genauso

d1)
$$|\operatorname{Re} z| = |x| \stackrel{??}{=} \sqrt{x^2} \stackrel{1.26}{\leq} \sqrt{x^2 + y^2} = |z|$$

d2) genauso

d3)
$$|\bar{z}| = \sqrt{x^2 + -y^2} = |z|$$

e1) klar

e2)
$$|z| = \sqrt{x^2 + y^2} = 0 \iff x^2 + y^2 = 0 \iff x = 0, y = 0$$

f)
$$|zw|^2 = zw \cdot \overline{zw} = z\overline{z}w\overline{w} \cdot |z|^2 |w|^2$$

g)
$$|z+w|^2 = (z+w)(\bar{z}+\bar{w}) = z\bar{z} + z\bar{w} + w\bar{z} + w\bar{w} = |z|^2 + z\bar{w} + w\bar{w} + |w|^2 \le z\bar{w} + z\bar{w$$

$$|z|^2 + 2\underbrace{|z\overline{w}|}_{|z|\cdot|w|} + |w|^2 = (|z| + |w|)^2 \implies \text{Beh.}$$