Mapas Autoorganizativos (SOM) para Clustering

- Entendiendo el algoritmo SOMKohonen
- Principales componentes y lógica del código
- Visualización del entrenamiento y datos de prueba

¿Qué es un Mapa Autoorganizado (SOM)?

- Un algoritmo de aprendizaje no supervisado para clustering y visualización.
- Proyecta datos de alta dimensión en una rejilla de menor dimensión.
- Aprende mediante aprendizaje competitivo las neuronas compiten para representar los datos.

Aplicaciones

- Clustering y reconocimiento de patrones
- Reducción de dimensionalidad
- Extracción de características

La BMU es la mejor porque:

- Es la más parecida al punto de datos en términos de similitud.
- Su vector de pesos es el más cercano al dato de entrada.
- El proceso de aprendizaje ajusta la BMU (y sus vecinos) para que se parezcan más a los datos, refinando el mapa.

Clase: SOMKohonen: Define la rejilla SOM y la lógica de entrenamiento. Métodos:

- train(data, epochs): Aprende los patrones de los datos.
- _find_bmu(x): Encuentra la unidad de mejor coincidencia (BMU).
- _update_weights(x, bmu_row, bmu_col): Ajusta los pesos de las neuronas.
- plot_clusters(data, test_data): Visualiza los clusters y datos de prueba.

```
class SOMKohonen:
     A simple Self-Organizing Map (Kohonen Map) for clustering.
     This class supports a 2D grid of neurons, each with a weight vector in
'input dim'.
     def init (
           self.
          # dimension of input data learning_rate=0.5,
           map size=(10, 10), # shape of the SOM grid
                                  # initial neighborhood radius
           sigma=3.0,
          lr_decay=0.99, # learning rate decay per epoch sigma_decay=0.99, # sigma decay per epoch
           seed=None
     ):
           if seed is not None:
                np.random.seed(seed)
                random.seed(seed)
           self.map size = map size
           self.input dim = input dim
           self.learning rate = learning_rate
           self.sigma = sigma
           self.lr decay = lr decay
           self.sigma decay = sigma decay
           # Initialize SOM weights: shape = [rows, cols, input dim]
           self.weights = np.random.rand(map size[0], map size[1], input dim)
```

- Rejilla SOM: 10×10 neuronas
- Cada neurona tiene un vector de pesos con la misma dimensión que los datos
- Pesos inicializados aleatoriamente para el clustering

```
# Initialize SOM weights: shape = [rows, cols, input_dim]
self.weights = np.random.rand(map_size[0], map_size[1], input_dim)
```

esto significa que cada neurona (nodo) en la rejilla 2D tiene un vector de pesos, y estos valores son asignados aleatoriamente al inicio.

- La rejilla SOM en sí misma es 2D → Tiene una estructura organizada (por ejemplo, una malla de 10×10).
- Cada neurona en la rejilla está asociada con un vector de pesos de dimensión input dim.
- Estos pesos existen en el mismo espacio que los datos de entrada (no en la rejilla 2D, sino en el espacio de características).

Ejemplo: Si input_dim = 3 (Agrupamiento de colores RGB)

 Cada neurona en una rejilla 10×10 tiene un vector de 3 dimensiones (R,G,B) que representa un color:

```
Posición en la Rejilla (2D) \rightarrow Vector de Pesos (Espacio de Color RGB) (0,0) \rightarrow [0.8, 0.2, 0.3] (Color marrón) (0,1) \rightarrow [0.1, 0.9, 0.2] (Color verdoso) (1,0) \rightarrow [0.5, 0.5, 0.5] (Color gris) (9,9) \rightarrow [0.9, 0.1, 0.7] (Color rosado)
```

Aunque las neuronas están organizadas en 2D, sus vectores de pesos existen en el espacio de características (en este caso, RGB).

Proceso de Entrenamiento:

- 1. Barajar los datos en cada época
- 2. Encontrar la Mejor Unidad de Coincidencia (BMU) para cada muestra
- 3. Actualizar los pesos de la BMU y sus vecinos
- 4. Reducir la tasa de aprendizaje y el radio de vecindad

```
def train(self, data, epochs=100):
    Train the SOM using the given data for the specified number of epochs.
    data = np.array(data)
    for epoch in range(epochs):
        np.random.shuffle(data)
        for x in data:
            bmu_row, bmu_col = self._find_bmu(x)
            self._update_weights(x, bmu_row, bmu_col)
    # Decay learning rate, sigma
        self.learning_rate *= self.lr_decay
        self.sigma_decay
```

- SOM aprende los patrones de los datos progresivamente
- La influencia de la vecindad disminuye con el tiempo

Encontrar la Mejor Unidad de Coincidencia (BMU) ¿Cómo encuentra el SOM la neurona más cercana?

- Calcula la distancia euclidiana entre la entrada y todas las neuronas.
- La neurona con la menor distancia es la BMU.

```
def _find_bmu(self, x):
    """
    Find the Best Matching Unit (BMU) for input x.
    Returns (row, col) of the BMU in the grid.
    """
    diff = self.weights - x
    dist_sq = np.sum(diff**2, axis=2)
    bmu_idx = np.unravel_index(np.argmin(dist_sq), dist_sq.shape)
    return bmu_idx
```

Los pesos se actualizan según una función de vecindad

- Se actualizan la BMU y sus vecinos.
- Se usa una función gaussiana para determinar la influencia.

La BMU se actualiza más, los vecinos menos La influencia de la vecindad disminuye con la distancia

Cada punto de datos se asigna a una neurona BMU

```
def get_cluster_assignments(self, data):
    Find the BMU for each data point and return a list of (bmu_row, bmu_col).
    assignments = []
    for x in data:
        bmu_row, bmu_col = self._find_bmu(x)
        assignments.append((bmu_row, bmu_col))
    return assignments
```

- Devuelve la ubicación BMU de cada punto de datos
- Agrupa puntos de datos similares juntos

The update step:

Comportamiento del SOM

- *Múltiples BMUs por Cluster:* La cuadrícula del SOM tiene muchas neuronas, y varios BMUs pueden existir dentro del mismo cluster real.
- Asignaciones Fragmentadas: Los puntos de prueba se asignan a muchos BMUs diferentes en la misma región, en lugar de consolidarse.
- Necesidad de Clustering Final: El SOM se comporta más como un mapeo detallado que como un algoritmo de clustering, requiriendo postprocesamiento.

Adiciones de K-Means en el Post-Procesamiento

- Consolidación de BMUs: Después del entrenamiento del SOM, K-Means agrupa los BMUs en un número fijo de clusters finales (por ejemplo, 3).
- Asignación Estable de Clusters: Cada BMU se asigna a un cluster final, asegurando coherencia en el etiquetado.
- *Manejo de Nuevos BMUs:* Los BMUs de datos de prueba que no aparecieron en el entrenamiento se asignan al cluster de BMU más cercano existente.

Optimización por Enjambre de Partículas (PSO) para Clustering

Descripción del Algoritmo

- Inspirado en la inteligencia de enjambre, PSO optimiza los centroides de clusters ajustando iterativamente las posiciones de las partículas.
- Cada partícula representa una posible solución de clustering, moviéndose según inercia, mejor posición personal y mejor posición global.
- Las partículas actualizan sus posiciones para minimizar las distancias intra-cluster, obteniendo centroides óptimos.
- Los clusters finales se asignan según la proximidad a los centroides optimizados.

Qué Hace Este Código

- Genera datos sintéticos (blobs gaussianos) para clustering.
- Utiliza PSO para encontrar los centroides óptimos, minimizando la distancia intracluster.
- Asigna muestras de prueba a clusters según los centroides entrenados.
- Evalúa la calidad del clustering con puntuación de pureza.
- Grafica los resultados de entrenamiento y prueba con colores de cluster correctos.

Descripción del Algoritmo

- Basado en el comportamiento de búsqueda de alimento de las hormigas.
- Las hormigas recorren los puntos de datos, reforzando conexiones entre puntos similares.
- Las trayectorias con feromonas más fuertes forman clusters naturales con el tiempo.
- Los clusters finales se extraen mediante Clustering Aglomerativo sobre las feromonas.

Qué Hace Este Código

- Genera datos sintéticos (blobs gaussianos) para clustering.
- Utiliza ACO para agrupar datos, reforzando caminos entre puntos similares.
- Asigna muestras de prueba a clusters según conexiones de feromonas.
- Evalúa la calidad del clustering con puntuación de pureza.
- Grafica los resultados de entrenamiento y prueba con colores correctos de cluster.

Optimización por Colonia de Hormigas para Clustering

```
class AntColonyClustering:
     Ant Colony Optimization for Clusterina.
     Ants reinforce paths between similar points, forming clusters.
     def __init__(
          self.
          distance_matrix,
          num ants=10,
          alpha=1.0,
                                      # Importance of pheromone
          beta=2.0,
                                       # Importance of similarity
          evaporation_rate=0.5, # Pheromone evaporation
          pheromone constant=100,# 0 in ACO
          generations=50.
          num clusters=3.
          seed=None
     ):
          if seed is not None:
                random.seed(seed)
                np.random.seed(seed)
          self.distance matrix = np.array(distance matrix)
          self.num nodes = self.distance matrix.shape[0]
          self.num ants = num ants
          self.alpha = alpha
          self.beta = beta
          self.evaporation rate = evaporation rate
          self.0 = pheromone constant
          self.generations = generations
          self.num_clusters = num_clusters
          # Initialize pheromone trails
          self.pheromones = np.ones((self.num nodes, self.num nodes)) * 0.1
          # Heuristic (1/distance), except diagonal = 0
          self.desirability = 1.0 / (self.distance_matrix + 1e-9)
          np.fill diagonal(self.desirability, 0.0)
           # Will store final cluster assignments
          self.cluster_labels = None
```


Optimización por Colonia de Abejas (BCO) para Clustering

Descripción del Algoritmo

- Inspirado en el comportamiento de búsqueda de alimento de las abejas.
- Abejas obreras refinan los centroides basándose en soluciones cercanas.
- Abejas observadoras seleccionan los mejores centroides según la aptitud.
- Abejas exploradoras buscan soluciones completamente nuevas al azar.

Características Clave

- Utiliza BCO para optimizar los centroides de clusters iterativamente.
- Asigna datos de prueba usando los centroides más cercanos.
- Evalúa la calidad del clustering con puntuación de pureza.
- Grafica los datos de entrenamiento y prueba con asignaciones de cluster.

```
class BeeColonyClustering:
     Improved Bee Colony Optimization (BCO) for Clustering with:
        - Bounding cluster centers to data range
        - Final K-Means on top solutions to reduce fragmentation
        - Refined local search to converge smoothly
     def init (
          self.
          data,
          num clusters=3,
          num bees=30,
          num employed=15,
          num scouts=5,
          generations=50,
          top_solutions=5, # number of best solutions to keep for final K-Means
          seed=None
     ):
          if seed is not None:
               np.random.seed(seed)
                random.seed(seed)
          self.data = np.array(data)
          self.num_samples, self.num_features = self.data.shape
          self.num clusters = num clusters
          self.num bees = num bees
          self.num employed = num employed
          self.num scouts = num scouts
          self.generations = generations
          self.top solutions = top solutions
          # Determine bounding box of data to prevent
           # centroids from drifting away
          self.data_min = self.data.min(axis=0)
          self.data max = self.data.max(axis=0)
          # Initialize random positions for bee solutions
          #(shape: [num_bees, num_clusters, num_features])
          self.positions = np.random.uniform(
                low=self.data min, high=self.data max,
                size=(self.num bees, self.num clusters, self.num features)
          # Track best solution
          self.best solution = None
          self.best fitness = np.inf
```


Mejoras Clave en la Optimización de la Colonia de Abejas Búsqueda Local Refinada

- Las abejas empleadas se mueven hacia la mejor solución en lugar de explorar aleatoriamente.
- Las abejas observadoras eligen entre todas las soluciones con probabilidad exp(-fitness)

Múltiples Soluciones para K-Means Final

- Se recopilan las N mejores soluciones (top_solutions=5) después de la optimización.
- K-Means sobre las mejores soluciones fusiona centroides duplicados y reduce la fragmentación.

Mayor Exploración de Exploradoras

- Las abejas exploradoras buscan cerca de la mejor solución pero con un rango más amplio (±1.0).
- Permite escapar de mínimos locales y mejorar la precisión de los centroides de los clusters.

Manos-a-la-obra: #1

Revisión y Ejecución del Código

- En este ejercicio, vas a probar y analizar diferentes algoritmos de clustering:
 - Optimización por Enjambre de Partículas (PSO)
 - Optimización por Colonia de Hormigas (ACO)
 - Optimización por Colonia de Abejas (BCO)
 - Mapa Autoorganizado (SOM)

Qué hacer:

- 1. Ejecuta cada algoritmo y observa cómo agrupa los datos.
- 2. Revisa la estructura del código para comprender cómo funciona cada algoritmo.
- 3. Modifica parámetros clave (por ejemplo, número de clusters, generaciones, tamaño del enjambre/colonia) y analiza su efecto en el rendimiento del clustering.
- 4. Compara los resultados entre los algoritmos. Identifica cuál funciona mejor y comenta sus ventajas o desventajas.

Manos-a-la-obra: #2

Enunciado: En este ejercicio, seleccionarás dos de los siguientes algoritmos de clustering:

- Optimización por Enjambre de Partículas (PSO)
- Optimización por Colonia de Hormigas (ACO)
- Optimización por Colonia de Abejas (BCO)
- Mapa Autoorganizado de Kohonen (SOM)

Tarea

- 1. Elige un conjunto de datos real de tu interés (por ejemplo, un dataset de UCI Machine Learning Repository o Kaggle).
- 2. Aplica los dos algoritmos seleccionados al dataset y realiza el clustering.
- 3. Analiza y compara los resultados:
 - ¿Los algoritmos identifican correctamente los grupos esperados?
 - ¿Cuál parece ser más eficiente o robusto?
 - ¿Existen diferencias en la distribución de los clusters?

Objetivos:

- Implementar y ejecutar los algoritmos en un conjunto de datos real.
- Comparar la calidad del clustering entre los dos métodos elegidos.
- Presentar los resultados en un breve informe o diapositivas, incluyendo:
 - Descripción de los datos y su preprocesamiento.
 - Cómo se asignan los puntos a los clusters en cada algoritmo.
 - Comparación visual (gráficos de los clusters).
 - Métrica de evaluación (ej. pureza, silhouette score, etc.).
 - Discusión de ventajas y desventajas de cada enfoque.