python机器学习之用逻辑回归制作评分卡(个人消费类贷款数据案例实战)

一、数据清洗

1、导库, 获取数据

```
import numpy as np
import pandas as pd
from sklearn.linear_model import LogisticRegression as LR

#其实日常在导库的时候,并不是一次性能够知道我们要用的所有库的。
#通常都是在建模过程中逐渐导入需要的库。
# data = pd.read_csv('../数据/rankingcard.csv',index_col=0)
# data.head()
data = pd.read_csv(r"D:\soft_code\machine_learning\machinelearning\ML_example_cv_gridsearch\GiveMeSomeCredit\cs-training.csv").drop(columns = 'Unnamed: 0')
data.SeriousDlqin2yrs = data.SeriousDlqin2yrs.astype('int')
data.head()
```

	SeriousDlqin2yrs	RevolvingUtilizationOfUnsecuredLines	age	NumberOfTime30- 59DaysPastDueNotWorse	DebtRatio	MonthlyIncome	N
0	1	0.766127	45	2	0.802982	9120.0	1:
1	0	0.957151	40	0	0.121876	2600.0	4
2	0	0.658180	38	1	0.085113	3042.0	2
3	0	0.233810	30	0	0.036050	3300.0	5
4	0	0.907239	49	1	0.024926	63588.0	7

2、探索数据与数据预处理

```
#观察数据结构
data.shape#(150000, 11)
data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150000 entries, 0 to 149999
Data columns (total 11 columns):
# Column
                                               Non-Null Count Dtype
0 SeriousDlqin2yrs 150000 non-null int32
1 RevolvingUtilizationOfUnsecuredLines 150000 non-null float64
                                               150000 non-null int64
3 NumberOfTime30-59DaysPastDueNotWorse 150000 non-null int64
                                               150000 non-null float64
4 DebtRatio
                                               120269 non-null float64
 5 MonthlyIncome
6 NumberOfOpenCreditLinesAndLoans 150000 non-null int64
7 NumberOfTimes90DaysLate 150000 non-null int64
8 NumberRealEstateLoansOrLines 150000 non-null int64
9 NumberofTime60-89DaysPastDueNotWorse 150000 non-null int64
10 NumberOfDependents
                                                 146076 non-null float64
dtypes: float64(4), int32(1), int64(6)
memory usage: 12.0 MB
```

```
#去除重复值
data.drop_duplicates(inplace=True)#inplace=True表示替换原数据
data.info()
#删除之后千万不要忘记,恢复索引
data.index = range(data.shape[0])
data.info()
```

```
1 RevolvingUtilizationOfUnsecuredLines 149391 non-null float64
                                               149391 non-null int64
3
    NumberOfTime30-59DaysPastDueNotWorse 149391 non-null int64
4
    DebtRatio
                                               149391 non-null float64
 5 MonthlyIncome
                                              120170 non-null float64
6 NumberOfOpenCreditLinesAndLoans 149391 non-null int64
7 NumberOfTimes90DaysLate 149391 non-null int64
8 NumberRealEstateLoansOrLines 149391 non-null int64
9 NumberofTime60-89DaysPastDueNotWorse 149391 non-null int64
10 NumberOfDependents
                                               145563 non-null float64
dtypes: float64(4), int32(1), int64(6)
memory usage: 13.1 MB
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 149391 entries, 0 to 149390
Data columns (total 11 columns):
    Column
                                              Non-Null Count Dtype
                                               149391 non-null int32
0 SeriousDlqin2yrs
1
    RevolvingUtilizationOfUnsecuredLines 149391 non-null float64
                                              149391 non-null int64
    NumberOfTime30-59DaysPastDueNotWorse 149391 non-null int64
3
 4
    DebtRatio
                                               149391 non-null float64
    MonthlvIncome
                                              120170 non-null float64
6 NumberOfOpenCreditLinesAndLoans 149391 non-null int64
7 NumberOfTimes90DaysLate 149391 non-null int64
8 NumberRealEstateLoansOrLines 149391 non-null int64
 9 NumberOfTime60-89DaysPastDueNotWorse 149391 non-null int64
10 NumberOfDependents
                                               145563 non-null float64
dtypes: float64(4), int32(1), int64(6)
memory usage: 12.0 MB
```

#探索缺失值

data.info()

data.isnull().sum()/data.shape[0]#得到缺失值的比例

data.isnull().mean()#上一行代码的另一种形式书写

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 149391 entries, 0 to 149390
Data columns (total 11 columns):
                                          Non-Null Count Dtype
# Column
0 SeriousDlqin2yrs
                                         149391 non-null int32
1 RevolvingUtilizationOfUnsecuredLines 149391 non-null float64
2
                                          149391 non-null int64
3
    NumberOfTime30-59DaysPastDueNotWorse 149391 non-null int64
                                         149391 non-null float64
4
    DebtRatio
 5
    MonthlyIncome
                                         120170 non-null float64
 6 NumberOfOpenCreditLinesAndLoans 149391 non-null int64
    NumberOfTimes90DaysLate 149391 non-null int64
NumberRealEstateLoansOrLines 149391 non-null int64
 7
8
 9 NumberOfTime60-89DaysPastDueNotWorse 149391 non-null int64
10 NumberOfDependents
                                         145563 non-null float64
dtypes: float64(4), int32(1), int64(6)
memory usage: 12.0 MB
```

```
0.000000
SeriousDlqin2yrs
RevolvingUtilizationOfUnsecuredLines
                                        0.000000
                                        0.000000
NumberOfTime30-59DaysPastDueNotWorse
                                        0.000000
DebtRatio
                                        0.000000
MonthlyIncome
                                       0.195601
NumberOfOpenCreditLinesAndLoans
                                        0.000000
NumberOfTimes90DaysLate
NumberRealEstateLoansOrLines
                                      0.000000
                                       0.000000
NumberOfTime60-89DaysPastDueNotWorse
                                       0.000000
NumberOfDependents
                                        0.025624
dtype: float64
```

3、使用随机森林填补缺失值

```
def remove_outliers(df):
    df = df[df['NumberofTime30-59DaysPastDueNotWorse'] <= 10]
    df = df[df['NumberofTime30-59DaysPastDueNotWorse'] < 96]
    df = df[df['NumberofTime60-89DaysPastDueNotWorse'] < 96]
    df = df[df['NumberofTimes90DaysLate'] < 96]
    df = df.loc[(df['DebtRatio'] <= df['DebtRatio'].quantile(0.95))]
    df = df.loc[(df['age'] >= 20)]
    return df

data = remove_outliers(data)
    data.shape
# 填充缺失值
data['NumberofDependents'].fillna(0,inplace=True)
```

```
# def fill_missing_rf(X,y,to_fill):
     使用随机森林填补一个特征的缺失值的函数
     参数:
     X: 要填补的特征矩阵
    y: 完整的,没有缺失值的标签
    to_fill:字符串,要填补的那一列的名称
     #构建我们的新特征矩阵和新标签
     df = X.copy()
     fill = df.loc[:,to_fill]
    df = pd.concat([df.loc[:,df.columns != to_fill],pd.DataFrame(y)],axis=1)
     # 找出我们的训练集和测试集
     Ytrain = fill[fill.notnull()]
     Ytest = fill[fill.isnull()]
     Xtrain = df.iloc[Ytrain.index,:]
    Xtest = df.iloc[Ytest.index,:]
     #用随机森林回归来填补缺失值
     from sklearn.ensemble import RandomForestRegressor as rfr
     rfr = rfr(n_estimators=100)
     rfr = rfr.fit(Xtrain, Ytrain)
     Ypredict = rfr.predict(Xtest)
     return Ypredict
# def fill_missing_rf(data,to_fill):
    # 使用随机森林填补一个特征的缺失值的函数
    # to fill = 'MonthlyIncome'
    train_data = data.dropna()
    test_data = data.loc[data[to_fill].isna()]
    print(data.shape,train_data.shape,test_data.shape)
     from sklearn.ensemble import RandomForestRegressor as rfr
    rfr = rfr(n_estimators=100)
    rfr = rfr.fit(train_data.loc[:,train_data.columns != to_fill], train_data[to_fill])
     Ypredict = rfr.predict(test_data.loc[:,train_data.columns != to_fill])
     return(Ypredict)
# 写法2
def fill_missing_rf(data,to_fill):
   # 使用随机森林填补一个特征的缺失值的函数
   # to_fill = 'MonthlyIncome'
   train_data = data.dropna()
   test_data = data.loc[data[to_fill].isna()].drop(columns=to_fill)
   print(data.shape,train_data.shape,test_data.shape)
   X=train_data.drop(columns=to_fill)
   y=train_data[to_fill]
   print(X.shape,y.shape)
   from sklearn.ensemble import RandomForestRegressor as rfr
   rfr = rfr(n_estimators=30)
   rfr = rfr.fit(X,y)
   Ypredict = rfr.predict(test_data)
   return(Ypredict)
```

```
y_pred = fill_missing_rf(data,to_fill = "MonthlyIncome")
data.loc[data["MonthlyIncome"].isnull(),"MonthlyIncome"] = y_pred
data.info()
```

```
(141703, 11) (119643, 11) (22060, 10)
(119643, 10) (119643,)
<class 'pandas.core.frame.DataFrame'>
Int64Index: 141703 entries, 0 to 149390
Data columns (total 11 columns):
# Column
                                     Non-Null Count Dtype
O SeriousDlqin2yrs
                                      141703 non-null int32
1 RevolvingUtilizationOfUnsecuredLines 141703 non-null float64
2 age
                                      141703 non-null int64
   NumberOfTime30-59DaysPastDueNotWorse 141703 non-null int64
3
                                     141703 non-null float64
                                     141703 non-null float64
141703 non-null int64
5 MonthlyIncome
6 NumberOfOpenCreditLinesAndLoans
8 Numberoffimes 202
9 NumberOfTime60-89DaysPastDueNotWorse 141703 non-null int64
10 NumberOfDependents
                                     141703 non-null float64
dtypes: float64(4), int32(1), int64(6)
memory usage: 12.4 MB
```

4、描述性统计处理异常值

```
#描述性统计
# data.describe()
data.describe([0.01,0.1,0.25,.5,.75,.9,.99]).T
```

	count	mean	std	min	1%	10%	25%	50%	
SeriousDlqin2yrs	141703.0	0.066738	0.249569	0.0	0.0	0.000000	0.000000	0.00000	0.000000
RevolvingUtilizationOfUnsecuredLines	141703.0	5.863975	249.263592	0.0	0.0	0.003158	0.029567	0.15163	0.554887
age	141703.0	52.269726	14.882573	21.0	24.0	32.000000	41.000000	52.00000	63.00000
NumberOfTime30- 59DaysPastDueNotWorse	141703.0	0.244850	0.692513	0.0	0.0	0.000000	0.000000	0.00000	0.000000
DebtRatio	141703.0	140.634327	444.647550	0.0	0.0	0.030536	0.168248	0.34771	0.689655
MonthlyIncome	141703.0	5712.612123	13521.048163	0.0	0.0	0.366667	2322.150000	4676.00000	7588.000
NumberOfOpenCreditLinesAndLoans	141703.0	8.382751	5.106872	0.0	0.0	3.000000	5.000000	8.00000	11.00000
NumberOfTimes90DaysLate	141703.0	0.092496	0.491065	0.0	0.0	0.000000	0.000000	0.00000	0.000000
NumberRealEstateLoansOrLines	141703.0	0.976408	1.104625	0.0	0.0	0.000000	0.000000	1.00000	2.000000
NumberOfTime60- 89DaysPastDueNotWorse	141703.0	0.065503	0.331564	0.0	0.0	0.000000	0.000000	0.00000	0.000000
NumberOfDependents	141703.0	0.753922	1.112966	0.0	0.0	0.000000	0.000000	0.00000	1.000000

5、样本不均衡问题

```
#探索标签的分布
X = data.iloc[:,1:]
y = data.iloc[:,0]
y.value_counts()#查看每一类别值得数据量、查看样本是否均衡
n_sample = X.shape[0]
n_1_sample = y.value_counts()[1]
n_0_sample = y.value_counts()[0]

print('样本个数: {}; 1占{:.2%}; 0占{:.2%}'.format(n_sample,n_1_sample/n_sample/n_sample))
#样本个数: 149165; 1占6.62%; 0占93.38%
```

样本个数: 141703; 1占6.67%; 0占93.33%

6、使用采样方法来平衡样本

```
#如果报错,就在prompt安装: pip install imblearn
# import imblearn
#imblearn是专门用来处理不平衡数据集的库,在处理样本不均衡问题中性能高过sklearn很多
 #imblearn里面也是一个个的类,也需要进行实例化,fit拟合,和sklearn用法相似
 from imblearn.over_sampling import SMOTE
from imblearn.under_sampling import RandomUnderSampler
 from imblearn.pipeline import Pipeline
over = SMOTE(sampling_strategy=0.1,k_neighbors=5)
under = RandomUnderSampler(sampling_strategy=0.5)
steps = [('over', over), ('under', under)]
pipeline = Pipeline(steps=steps)
X, y = pipeline.fit_resample(X, y)
# from imblearn.over_sampling import SMOTE
# sm = SMOTE(random_state=42) #实例化
\# X,y = sm.fit_sample(X,y)
n_sample_ = x.shape[0]#278584
pd.Series(v).value counts()
n_1_sample = pd.Series(y).value_counts()[1]
n 0 sample = pd.Series(v).value counts()[0]
print('样本个数: \{\}; 1 \\ Left : .2\%; 0 \\ Left :
#样本个数: 278584; 1占50.00%; 0占50.00%
```

样本个数: 39672; 1占33.33%; 0占66.67%

7、分训练集和测试集

```
from sklearn.model_selection import train_test_split
X = pd.DataFrame(X)
y = pd.DataFrame(y)

X_train, X_vali, Y_train, Y_vali = train_test_split(X,y,test_size=0.3,random_state=420)
model_data = pd.concat([Y_train, X_train], axis=1)#训练数据构建模型
model_data.index = range(model_data.shape[0])
model_data.columns = data.columns

vali_data = pd.concat([Y_vali, X_vali], axis=1)#验证集
vali_data.index = range(vali_data.shape[0])
vali_data.columns = data.columns

# model_data.to_csv(r".\model_data.csv")#训练数据
# vali_data.to_csv(r".\vali_data.csv")#验证数据
```

二、分箱

分箱步骤:

- 1) 我们首先把连续型变量分成一组数量较多的分类型变量,比如,将几万个样本分成100组,或50组
- 2) 确保每一组中都要包含两种类别的样本, 否则IV值会无法计算
- 3) 我们对相邻的组进行卡方检验,卡方检验的P值很大的组进行合并,直到数据中的组数小于设定的N箱为止
- 4) 我们让一个特征分别分成[2,3,4...20]箱,观察每个分箱个数下的IV值如何变化,找出最适合的分箱个数
- 5) 分箱完毕后,我们计算每个箱的WOE值, bad%,观察分箱效果

```
import scipy

def chimerge(data,col,target,n=20,alpha=0.05,max_groups=8,min_groups = 4):

''''

data: 输入的pandas DataFrame数据集

col: 需要分箱得连续型变量名

target: Y值

n: 初始化分箱的个数,一般选取比较大的值(使用的是等距分箱)
alpha: 卡方分布的显著性水平

max_groups: 最大分箱个数

''''

# 先进行初略的等距分箱

df = data[[col,target]]

# df['cut'],bins = pd.cut(df[col],bins=n,retbins=True,right=False) # right=False,使得区间为左闭右开如[0,10),与下面的cutoff相一致

df['cut'],bins = pd.qcut(df[col], retbins=True, q=n,duplicates="drop")
```

```
freq_tab = pd.crosstab(df['cut'],df[target],dropna=False) # 注意要添加dropna=False,否则全为0的组就不显示
 freq = freq_tab.values # 转换为array数组
 cutoff = bins[:-1]
                    # 分组区间是左闭右开的,如cutoffs = [1,2,3],则表示区间 [1,2) , [2,3) ,[3,3+)。
 # 以下代码确保每一箱中都有target正负样本
 # 这样做的好处一是后续如果计算woehn有这个需要,二是也能保证计算的期望频数fe不为0。
 for i in range(n):
 # 如果第一箱没有包含正样本或负样本,则向下一组合并
 # 但即使原来第一箱和第二进行和合并,还是不能保证新的第一箱都包含正负样本,故使用continue跳出本次循环,开始下一次循环
     if 0 in frea[0]:
        freq[0] = freq[0] + freq[1]
        freq = np.delete(freq,1,0)
        cutoff = np.delete(cutoff, 1, 0)
        continue
 # 经过上面代码确保第一箱都包含正负样本,则判断之后的每箱,是否都包含正负样本,如果不包含,则向前一箱合并
     for i in range(1,len(freq)):
        if 0 in freq[i]:
            freq[i-1] = freq[i] + freq[i-1]
            freq = np.delete(freq,i,0)
            cutoff = np.delete(cutoff,i,0)
     else:
# 计算相邻箱的卡方值
 threshold = scipy.stats.chi2.isf(alpha,freq.shape[-1]) # 卡方阈值根据显著性水平和自由度设置
 while len(freq) > max_groups: # 先根据设定的最大分箱数,合并最小的卡方值
     chi vs=[]
     for i in range(len(freq)-1):
        chi_v = scipy.stats.chi2_contingency(freq[i:i+2])[0]
        chi_vs.append(chi_v)
     i = chi_vs.index(min(chi_vs))
     freq[i] = freq[i] + freq[i+1]
     freq = np.delete(freq,i+1,0)
     cutoff = np.delete(cutoff, i+1, 0)
# 按照预先设定的分箱数合并完毕后,如果发现最小卡方值还有低于卡方阈值的再接着合并
 while len(freq)>min_groups:
     for i in range(len(freq)-1):
        chi_vs=[]
        chi_v = scipy.stats.chi2_contingency(freq[i:i+2])[0]
        chi_vs.append(chi_v)
     if min(chi_vs) < threshold:</pre>
        i = chi_vs.index(min(chi_vs))
        freq[i] = freq[i] + freq[i+1]
        freq = np.delete(freq, i+1, 0)
        cutoff = np.delete(cutoff, i+1,0)
        continue
 return cutoff, freq
```

定义WOE和IV函数

```
#计算WOE和BAD RATE
#BAD RATE与bad%不是一个东西
#BAD RATE是一个箱中,坏的样本所占的比例 (bad/total)
#而bad%是一个箱中的坏样本占整个特征中的坏样本的比例
def get_woe(num_bins):
   # 通过 num_bins 数据计算 woe
   columns = ["min","max","count_0","count_1"]
   df = pd.DataFrame(num_bins,columns=columns)
   df["total"] = df.count_0 + df.count_1#一个箱子当中所有的样本数
   df["percentage"] = df.total / df.total.sum()#一个箱子里的样本数,占所有样本的比例
   df["bad_rate"] = df.count_1 / df.total#一个箱子坏样本的数量占一个箱子里边所有样本数的比例
   df["good%"] = df.count_0/df.count_0.sum()
   df["bad%"] = df.count_1/df.count_1.sum()
   df["woe"] = np.log(df["good%"] / df["bad%"])
   return df
#计算IV值
def get_iv(df):
   rate = df["good%"] - df["bad%"]
   iv = np.sum(rate * df.woe)
   return iv
```

```
"DebtRatio":4,
                "MonthlyIncome":3,
                "NumberOfOpenCreditLinesAndLoans":5}
auto\_col\_bins = ["RevolvingUtilizationOfUnsecuredLines", "age", "DebtRatio", "MonthlyIncome", "NumberOfOpenCreditLinesAndLoans"] \\
#不能使用自动分箱的变量
hand_bins = {"NumberOfTime30-59DaysPastDueNotWorse":[0,1,2,13]
           ,"NumberOfTimes90DaysLate":[0,1,2,17]
           ,"NumberRealEstateLoansOrLines":[0,1,2,4,54]
           ,"NumberOfTime60-89DaysPastDueNotWorse":[0,1,2,8]
           ,"NumberOfDependents":[0,1,2,3]}
#保证区间覆盖使用 np.inf替换最大值,用-np.inf替换最小值
#原因:比如一些新的值出现,例如家庭人数为30,以前没出现过,改成范围为极大值之后,这些新值就都能分到箱里边了
hand\_bins = \{k:[-np.inf,*v[:-1],np.inf] for k,v in hand\_bins.items()\}
bins_of_col = {}
# 生成自动分箱的分箱区间和分箱后的 IV 值
for col in auto_col_bins:
   # bins_df = graphforbestbin(model_data,col
                            ,"SeriousDlqin2yrs"
                            ,n=auto_col_bins[col]
                            #使用字典的性质来取出每个特征所对应的箱的数量
                            ,q=20
                            ,graph=False)
   bins_df = main_chimerge(model_data,col,"SeriousDlqin2yrs",n=20,alpha=0.05,max_groups=8)
   bins_list = sorted(set(bins_df["min"]).union(bins_df["max"]))
   #保证区间覆盖使用 np.inf 替换最大值 -np.inf 替换最小值
   bins_list[0], bins_list[-1] = -np.inf, np.inf
   bins_of_col[col] = bins_list
#合并手动分箱数据
bins_of_col.update(hand_bins)
bins_of_col
```

```
{'RevolvingUtilizationOfUnsecuredLines': [-inf,
 0.0499002,
 0.16015057076654152,
 0.3048497355,
 0.4930721370000001,
 0.7136005890000001,
 0.9876127865500001,
 'age': [-inf, 34.0, 42.0, 50.0, 56.0, 60.0, 63.0, inf],
 'DebtRatio': [-inf,
 0.00665734925,
 0.3255182797,
 0.516923005540016.
 0.71561340275,
 4.0,
 273.0.
 inf],
 'MonthlyIncome': [-inf,
 0.133333333333333333
 673.9350000000001,
 3239.0,
 4500.0,
 5416.0,
 'NumberOfOpenCreditLinesAndLoans': [-inf, 11.0, 12.0, inf],
 'NumberOfTime30-59DaysPastDueNotWorse': [-inf, 0, 1, 2, inf],
 'NumberOfTimes90DaysLate': [-inf, 0, 1, 2, inf],
 'NumberRealEstateLoansOrLines': [-inf, 0, 1, 2, 4, inf],
 'NumberofTime60-89DaysPastDueNotWorse': [-inf, 0, 1, 2, inf],
```

三、计算各箱的WOE并映射到数据中

```
def get_woe(df,col,y,bins):
    df = df[[col,y]].copy()
    df["cut"] = pd.cut(df[col],bins)
    bins_df = df.groupby("cut")[y].value_counts().unstack()
    woe = bins_df["woe"] = np.log((bins_df[0]/bins_df[0].sum())/(bins_df[1]/bins_df[1].sum()))
    return woe

#特所有特征的woe存储到字典当中
woeall = {}
for col in bins_of_col:
    print(col)
    woeall[col] = get_woe(model_data,col,"SeriousDlqin2yrs",bins_of_col[col])
woeall
```

```
RevolvingUtilizationOfUnsecuredLines
age
DebtRatio
MonthlyIncome
NumberOfOpenCreditLinesAndLoans
NumberOfTime30-59DaysPastDueNotWorse
NumberOfTimes90DaysLate
NumberRealEstateLoansOrLines
NumberOfTime60-89DaysPastDueNotWorse
NumberOfTime60-89DaysPastDueNotWorse
NumberOfDependents
```

```
{'RevolvingUtilizationOfUnsecuredLines': cut
 (-inf, 0.0499] 1.665805
(0.0499, 0.16] 1.218706
(0.16, 0.305] 0.570212
(0.305, 0.493] 0.057521
(0.493, 0.714] -0.570071
(0.714, 0.988] -1.191556
(0.988, inf]
                  -1.335739
dtype: float64,
 'age': cut
(-inf, 34.0] -0.561793
(34.0, 42.0] -0.386072
(42.0, 50.0] -0.231332
 (50.0, 56.0] -0.026288
 (56.0, 60.0]
                  0.299640
(60.0, 63.0] 0.497953
(63.0, inf]
                1.096448
dtype: float64,
 'DebtRatio': cut
 (-inf, 0.00666] 0.656355
(0.00666, 0.326] 0.135379
(0.326, 0.517] -0.021719
(0.517, 0.716] -0.393797
(0.716, 4.0] -0.602158
(4.0, 273.0] 0.274911
(273.0, inf]
                    0.168222
dtype: float64,
 'MonthlyIncome': cut
 (-inf, 0.133] 0.891041
(0.133, 0.433]
(0.433, 673.935] -0.072238
(673.935, 3239.0] -0.371057
(3239.0, 4500.0] -0.246029
(4500.0, 5416.0] -0.123708
(5416.0, inf]
                      0.229465
dtype: float64,
 'NumberOfOpenCreditLinesAndLoans': cut
 (-inf, 11.0] -0.010348
(11.0, 12.0] -0.021713
(12.0, inf] 0.051510
dtype: float64,
 'NumberOfTime30-59DaysPastDueNotWorse': cut
 (-inf, 0.0] 0.470457
 (0.0, 1.0] -0.910045
                -1.574876
 (1.0, 2.0]
(2.0, inf] -2.080491
```

```
dtype: float64,
'NumberOfTimes90DaysLate': cut
(-inf, 0.0] 0.337044
(0.0, 1.0] -1.925027
(1.0, 2.0] -2.538727
(2.0, inf] -3.091798
dtype: float64,
'NumberRealEstateLoansOrLines': cut
(-inf, 0.0] -0.268983
(0.0, 1.0] 0.238440
(0.0, 1.0] 0.238440
(1.0, 2.0] 0.283520
(2.0, 4.0] 0.102781
(4.0, inf] -0.820972
dtype: float64,
'NumberOfTime60-89DaysPastDueNotWorse': cut
(-inf, 0.0] 0.230240
(0.0, 1.0] -1.785659
(1.0, 2.0] -2.560847
(2.0, inf] -2.866757
dtype: float64,
'NumberOfDependents': cut
(-inf, 0.0] 0.291426
(0.0, 1.0] -0.290671
(1.0, 2.0] -0.322237
(2.0, inf] -0.398348
dtype: float64}
```

```
#不希望覆盖掉原本的数据,创建一个新的DataFrame,索引和原始数据model_data一模一样
model_woe = pd.DataFrame(index=model_data.index)

#将原数据分箱后,按箱的结果把wOE结构用map函数映射到数据中
model_woe["age"] = pd.cut(model_data["age"],bins_of_col["age"]).map(woeall["age"])

#对所有特征操作可以写成:
for col in bins_of_col:
    model_woe[col] = pd.cut(model_data[col],bins_of_col[col]).map(woeall[col])

#将标签补充到数据中
model_woe["SeriousDlqin2yrs"] = model_data["SeriousDlqin2yrs"]

#这就是我们的建模数据了
model_woe.head()
```

	age	RevolvingUtilizationOfUnsecuredLines	DebtRatio	MonthlyIncome	NumberOfOpenCreditLinesAndLoans	NumberOfTim 59DaysPastDueNotW
0	-0.386072	1.665805	0.274911	-0.072238	-0.010348	0.470457
1	-0.026288	-0.570071	0.135379	-0.246029	-0.010348	-0.910045
2	0.497953	1.665805	-0.021719	0.229465	-0.010348	0.470457
3	0.299640	-0.570071	-0.021719	0.229465	-0.010348	-1.574876
4	-0.561793	0.570212	0.135379	-0.123708	-0.010348	0.470457

四、建模与模型验证

```
vali_woe = pd.DataFrame(index=vali_data.index)

for col in bins_of_col:
    vali_woe[col] = pd.cut(vali_data[col],bins_of_col[col]).map(woeall[col])
vali_woe["SeriousDlqin2yrs"] = vali_data["SeriousDlqin2yrs"]

vali_x = vali_woe.iloc[:,:-1]
vali_y = vali_woe.iloc[:,-1]
```

```
X = model_woe.iloc[:,:-1]
y = model_woe.iloc[:,-1]
import matplotlib.pyplot as plt
import scipy
from sklearn.linear_model import LogisticRegression as LR

lr = LR().fit(X,y)
lr.score(vali_x,vali_y)#0.8641356370249832
```

```
c_1 = np.linspace(0.01,1,20)
c_2 = np.linspace(0.01, 0.2, 20)
score = []
for i in c_1:
   lr = LR(solver='liblinear',C=i).fit(X,y)
   score.append(lr.score(vali_X,vali_y))
plt.figure()
{\tt plt.plot(c\_1,score)}
plt.show()
1r.n_iter_#array([7], dtype=int32)
score = []
for i in [1,2,3,4,5,6]:
   lr = LR(solver='liblinear',C=0.025,max_iter=i).fit(X,y)
   score.append(lr.score(vali_X,vali_y))
{\tt plt.figure()}
plt.plot([1,2,3,4,5,6],score)
plt.show()
```



```
import scikitplot as skplt
```

#%%cmd

#pip install scikit-plot

<AxesSubplot:title={'center':'ROC Curves'}, xlabel='False Positive Rate', ylabel='True Positive Rate'>

ROC Curves

五、制作评分卡

```
# pdo =20 ,特定分数为60 , odds = 1/60
B = 20/np.log(2)
A = 600 + B*np.log(1/60)
B,A
```

(28.85390081777927, 481.8621880878296)

```
base_score = A - B*lr.intercept_#lr.intercept_: 截距
base_score#array([481.56390143])

score_age = woeall["age"] * (-B*lr.coef_[0][1])#lr.coef_: 每一个特征建模之后得出的系数
score_age#"age"特征中每个箱对应的分数
```

```
cut
(-inf, 34.0] -10.890077
(34.0, 42.0] -7.483819
(42.0, 50.0] -4.484266
(50.0, 56.0] -0.509586
(56.0, 60.0] 5.808376
(60.0, 63.0] 9.652580
(63.0, inf] 21.254113
dtype: float64
```

```
file = r"D:\soft_code\machine_learning\machinelearning\ML_example_cv_gridsearch\GiveMeSomeCredit\ScoreData.csv"

#open是用来打开文件的python命令,第一个参数是文件的路径+文件名,如果你的文件是放在根目录下,则你只需要文件名就好
#第二个参数是打开文件后的用途,"w"表示用于写入,通常使用的是"r",表示打开来阅读
#首先写入基准分数
#之后使用循环,每次生成一组score_age类似的分档和分数,不断写入文件之中

with open(file,"w") as fdata:
    fdata.write("base_score, {}\n".format(base_score))
for i,col in enumerate(X.columns):#[*enumerate(X.columns)]
    score = woeall[col] * (-B*lr.coef_[0][i])
    score.name = "Score"
    score.index.name = col
    score.to_csv(file,header=True,mode="a")
```