

Structural Variations as detected for the whole Genome

Fig. 1.Here we see the Figure 4. from paper [21] where clearly higher deviation is observed for sum of nucleotides of SNPs plus DIPs (blue) compared to sum of bases for the SNPs (magenta).

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39

A,C,G,G,G,A,A,G,G,C,T,G,G,G,G,A,A,G,T,C,A,T,T,C,G,A,A,T,G,C,T,A,C,G,T,T,A,G

C,A,A,T,A,G,A,C,G,C,A,C,G,G,T,C,TGAGAG,G,T,C,C,A,G,G,T,G,G,G,G,CATTC,C,G,C,G,C,T,T,T,G,G,A,T

G,AGCATATA,T,A,C,CCTGGCCCC,G,G,G,T,T,A,G,C,G,A,A,TGACA,A,A,T,G,T,G,T,G,G,T,G,A,T,A,C,A,G,G,A,T,A,G,T,A

C,C,C,A,G,C,TTTCG,C,A,T,T,A,C,A,A,T,A,A,C,G,GG,A,C,C,A,C,G,A,A,G,T,C,T,ATTAAGTCG,G,G,G,C,A

T,C,A,G,T,T,C,A,A,T,T,G,C,A,C,C,T,G,A,A,C,A,A,G,G,G,A,G,C,A,GGG,C,A,C,G,A,C,G,A,C,G,A

C,T,G,G,T,C,A,A,T,C,A,C,A,G,G,G,C,G,A,GCGGG,T,A,C,T,C,C,T,G,T,C,G,T,G,T,T

A,C,T,G,G,T,A,G,G,T,TAAAAAAT,T,A,G,T,T,ACCCATGA,G,A,A,G,T,G,T,A,A,T,G,C,G,C,C,A,A,G,A,G,C,C

Fig 2. Randomly generated Genotype data for 8 patients for illustration purpose. The example data chosen for simulation comprises of 40 individuals and 200 genotypic loci.

0	1	2	3	4	5	6	7	8	9
т	0	т	0	т	0	т	0	т	0
A	0	A	0	С	0	ı	CATTCTAGC	С	0
С	0	т	0	С	0	С	0	Т	0
G	0	С	0	A	0	т	0	С	0
т	0	С	0	A	0	A	0	С	0
G	0	G	0	С	0	G	0	A	0
ı	CGCGAGGGAGCGT	A	0	С	0	A	0	Т	0
т	0	С	0	G	0	G	0	G	0
ı	CTAGA	С	0	С	0	Т	0	С	0
G	0	Т	0	С	0	A	0	A	0
I	CGATCTACAGACGA	G	0	G	0	G	0	A	0
A	0	A	0	Т	0	A	0	С	0
G	0	A	0	G	0	т	0	A	0
G	0	Т	0	A	0	G	0	A	0
Т	0	С	0	С	0	С	0	С	0
С	0	1	ATTGTAGGCAGGC	A	0	С	0	A	0

Figure 3. For illustration purpose, we show how the DIPs columns are generated, by splitting each feature column variable into 2.

Figure 4 Example of a sample clustering by multiple sequence alignment with consensus regions and the consensus score with individual scores as well (which we call divergence score in this paper).

T	0.0	T	0.0	T	0.0	T	0.0	T
T	0.0	С	0.0	T	0.0	A	0.0	T
G	0.0	T	0.0	G	0.0	С	0.0	G
С	0.0	G	0.0	T	0.0	A	0.0	G
С	0.0	A	0.0	A	0.0	С	0.0	С
G	0.0	С	0.0	I	79.0	A	0.0	С
T	0.0	T	0.0	С	0.0	I	58.0	С
С	0.0	С	0.0	T	0.0	T	0.0	T
T	0.0	A	0.0	A	0.0	G	0.0	T
G	0.0	G	0.0	A	0.0	T	0.0	G
T	0.0	G	0.0	I	61.0	A	0.0	A
T	0.0	A	0.0	A	0.0	A	0.0	T
С	0.0	A	0.0	С	0.0	G	0.0	С
T	0.0	A	0.0	T	0.0	T	0.0	T

Figure 5. The DIPs are replaced by the corresponding divergence from consensus score, lying between 0 and 100.

Figure 6. Now, the single nucleotide variations, SNVs or SNPs, are also one-hot encoded

Figure 7. Confusion MATRIX for ExhaustiveDNN model for simulated dataset.

Algorithm	Accuracy %
Exhaustive Deep Neural Network	100
Logistic Regression	58.33
AdaBoost	66.67
GradientBoost	50
Naïve Bayes	75
Bagging	33.33
Support Vector	66.67
Random Forest	50
Extra Tree Classifier	66.67

Table 1. ExhaustiveDNN outperforming some of the popular Machine Learning methods for simulated dataset

Fig 8.Top left to bottom right: Confusion MATRIX for logistic regression, Naïve Bayes, Gradient Boost, Bagging approach, AdaBoost, RandomForest, Support Vector & Extratree Classifier respectively for simulated dataset

# Hidden Layers	# Hidden Units in Each Layer	Average Score of K-fold (k = 10)
2	8	0.9600000023841858
3	8	0.9400000005960465
4	8	0.9600000023841858
5	8	0.9400000035762787
6	8	0.9600000023841858
7	8	0.9600000023841858
2	9	0.9800000011920929
3	9	0.9800000011920929
4	9	0.9600000023841858
5	9	0.9200000047683716
6	9	0.6333333551883698
7	9	0.9800000011920929
2	10	0.9400000005960465
3	10	0.9600000023841858

4	10	0.6333333551883698
5	10	0.9600000023841858
6	10	0.9600000023841858
7	10	0.6333333551883698
2	11	0.9600000023841858
3	11	0.940000005960465
4	11	0.940000005960465
5	11	0.9600000023841858
6	11	0.9400000035762787
7	11	0.9400000005960465

Table 2. Exhaustive DNN leading to several different average accuracy score for various combinations of hidden layers and hidden units.

Algorithm	Accuracy %
Exhaustive Deep Neural Network	78.5
Logistic Regression	94.64
AdaBoost	76.78
GradientBoost	76.78
Naïve Bayes	76.78
Bagging	78.5
Support Vector	94.64
Random Forest	78.5
Extra Tree Classifier	78.5

Table 3. List of various machine and deep learning algorithms with the score of their accuracy.

Figure 9. ROC curve for Logistic regression in DMWAS suite MHHRTATT trait for GTEx V7 pilot dataset

Figure 10. Confusion Matrix of Logistic Regression of DMWAS on GTEx V7 Pilot data for MHHRTATT trait giving accuracy of 97.3%

Figure 11: Confusion Matrices top to bottom for ExhaustiveDNN, Logistic Regression, AdaBoost, GradientBoost, Naïve Bayes, Bagging, Support Vector, Random Forest, ExtraTreesClassifier for MHHRTATT phenotype GTEx V7 Pilot dataset.

PDValues	ColumnName
0.690258855	289
0.690258855	232_I
0.690258855	53
0.690258855	9
0.690258855	3
0.690258855	288_I
0.690258855	233
0.690258855	377
0.690258855	267
0.690258855	259
0.690258855	145
0.690258855	392_I
0.690258855	214_C
0.690258855	356_I
0.690258856	226_I

0.690258856	234_I
0.690258857	196_C
0.690258857	380_T
0.690258857	68_I
0.690258858	296_I
0.690258858	396_T
0.690258858	110_A
0.690258858	206_G
0.711782557	395
0.712538851	137
0.712730046	81
0.712760458	399
0.713352305	121
0.713557698	183
0.714217146	197
0.714282215	349
0.714400629	389
0.716420812	149
0.719423753	329
0.724220414	113
0.72980916	187

Table 4: List of partial score and the corresponding column explanatory genomic variant variable

	PDValues	ColumnName	
0.	1389527682	7249736,9395961	l
0.	1389563978	1002272,710427	5
0.	1392353054	1027984,1135422	21
0.	1392709479	1319042,1105002	29
0.	1394794367	7072142,9281287	7
0.	1394986489	1527605,6479351	L
0.	1397138368	4704966,4671785	5
0.	1397705924	5647452,2642209)
0.	1401294761	7522825,3610447	7
0.	1421194664	8423188,388414	5

GTEx Pilot 5M.PED.MAP File ROW	Genotype
Number	
2348991	Chromosome 9 position 95811874 and
	variant ld P1_M_061510_9_203_M
1776069	Chromosome 6 variant Id
	P1_M_061510_6_987_P position
	162112867

2838556	Chromosome 12 variant Id P1_M_061510_12_59_P genomic position 5223453
2762508	Chromosome 11 variant Id P1_M_061510_11_420_M genomic position 93911243
2320322	Chromosome 9 variant Id P1_M_061510_9_163_M genomic position 78004294
1619838	Chromosome 6 variant Id P1_M_061510_6_181_P genomic position 48930947
1167947	Chromosome 4 variant Id P2_M_061510_4_715_M genomic position 137617593
660553	Chromosome 2 variant Id P1_M_061510_2_509_P genomic position 233364549
902612	Chromosome 3 variant Id P1_M_061510_3_309_M genomic position 145931899
971037	Chromosome 3 variant Id P1_M_061510_3_402_P genomic position 192063195

Table 5: List of top 10 partial score as per the logistic regression and the corresponding column explanatory genomic variant variable column number as per the GTEx V7 pilot data numbering. The corresponding genomic co-ordinates can be found using the .MAP and .PED file information from GTEx dataset as described in 'Optimized Feature set for MHHRTATT biomarkers' section and are also shown in the table

```
0.13240398739505238,16830168_G
0.13240398739505238,16830170_G
0.13240398739506198,7592676_T
0.1324039873952151,3591768_T
0.1324039873952151,3591288_C
0.1324039873952151,13241510_T
0.1324039873952151,5093676_G
0.1324039873952151,5093678_G
0.1324039873952151,14435950_A
```

GTEx Pilot 5M.PED.MAP File ROW Number	Genotype		
4207542	Chromosome 23 variant Id kgp30994055 genomic position 52587347		
4207543	Chromosome 23 variant ld kgp31134917 genomic position 52588392		
1898169	Chromosome 7 Variant Id kgp11290556 genomic position 70226068		
897942	Chromosome 3 Variant Id kgp5923265 genomic position 142797398		
897822	Chromosome 3 Variant Id kgp18185020 genomic position 142711709		
3310378	Chromosome 14 Variant Id kgp28093020 genomic position 97615238		
1273419	Chromosome 5 Variant Id kgp22643217 genomic position 13809129		
1273420	Chromosome 5 Variant Id kgp22679345 genomic position 13809146		
3608988	Chromosome 17 Variant Id kgp5104948 genomic position 4991686		

Table 6: List of bottom 10 partial score as per the logistic regression and the corresponding column explanatory genomic variant variable column number as per the GTEx V7 pilot data numbering. The corresponding genomic co-ordinates can be found using the .MAP and .PED file from GTEx dataset information as described in 'Optimized Feature set for MHHRTATT biomarkers' section and are also shown in the table.