$\mathbf{Algebra}$

Groups

Theorem 1.1 (Lagrange's Theorem.)

Let G be a finite group, and let H be a subgroup of G. Then the order of H divides the order of G.

Proof.

Since G is finite, there exist finitely many left cosets of H in G. Let m be the largest integer such that the cosets g_1H, g_2H, \ldots, g_mH are distinct. Claim. $\forall i \in \{1, \ldots, m\}, \operatorname{card}(q_i H) = \operatorname{card}(H)$.

Claim. $\forall i, j \in \{1, ..., m\}$ and $i \neq j$, $g_i H \cap g_j H = \emptyset$.

Claim.
$$\forall i, j \in \{1, \dots, m\}$$
 and $i \neq j, g_i H + g_j H = \emptyset$.
Claim. $G = \bigcup_{i=1}^m g_i H$.