BADANIE ZALEŻNOŚCI POLARYZACJI SPONTANICZNEJ FERROELEKTRYKA OD TEMPERATURY

I. Zestaw przyrządów:

- mostek Diamanta Drencka Pepinskiego
- oscyloskop
- regulator temperatury (TEMPERATURE CONTROLLER TYPE 660)
- woltomierz

II. Zadania do wykonania

Na podstawie pomiarów zależności parametrów pętli histerezy dielektrycznej od temperatury wyznaczyć zależność polaryzacji spontanicznej i pola koercji od temperatury.

III. Schemat blokowy układu pomiarowego

Badana próbka umieszczona jest w termostacie, którego temperatura stabilizowana jest za pomocą regulatora PID. Czujnikiem temperatury jest termometr platynowy Pt-100.

Rys.1. Schemat mostka Diamanta – Drencka – Pepinskiego.

IV. Wykonanie pomiarów

1. Połączyć obwód zgodnie ze schematem (Rys.2).

Rys.2 Schemat blokowy układu pomiarowego

- (a). podłączyć czujnik temperatury PT100 oraz grzałkę z regulatorem temperatury
- (b). podłączyć termoparę z miliwoltomierzem
- 2. Przygotować mieszaninę wody z lodem
- 3. Termoparę umieścić w mieszaninie wody z lodem
- 3. Regulator temperatury ustawić zgodnie z wytycznymi prowadzącego.
- 4. Włączyć oscyloskop
- 5. Przy wyłączonym mostku Diamanta-Drencka-Pepinskiego ustawić położenie plamki na oscyloskopie na środek ekranu.
- 6. Włącz mostek DDP i za pomocą pokrętła ustaw wartość napięcia, dającą nasyconą pętlę histerezy.
- 7. Uruchomić program SPE 108. Za pomocą funkcji READ "zamrozić" pętlę histerezy.
- 8. Zapisać pętlę histerezy w formacie plik.dat. W nazwie pliku umieścić aktualna temperaturę próbki.
- 9. Włączyć regulator temperatury pozwalający na płynna (automatyczną) zmianę temperatury

próbki.

10. Wykonać pomiary pętli histerezy w funkcji temperatury zgodnie z wytycznymi prowadzącego

V. Opracowanie wyników

- 1. Na jednym wykresie narysuj pętle histerezy dla różnych temperatur, uwzględniając temperaturę przy której obserwuje się zanik ferroelektrycznej pętli histerezy.
- 2. Dla wszystkich zarejestrowanych pętli histerezy odczytaj odpowiednio X_c , X_{manx} , Y_c oraz Y_{max} .

Rys.4 Ferroelektryczna petla histerezy.

Xc oraz Xmax odczytujemy mierząc na ekranie odpowiednie odcinki wzdłuż osi X, czyli: X_{max} równy współrzędnej X-owej punktu 1 (lub 4) histerezy oraz X_c odpowiadający współrzędnej X-owej punktu 3 (lub 6).

Y_c oraz Y_{max} odczytujemy mierząc na ekranie odpowiednie odcinki wzdłuż osi y, czyli: X_{max} równy współrzędnej Y-owej punktu 1 (lub 4) histerezy oraz Y_c odpowiadający współrzędnej Y-owej punktu 2 (lub 5).

3. Na podstawie otrzymanych danych wyznacz maksymalne pole elektryczne przyłożone do próbki zgodnie ze wzorem

$$E_{\text{max}} = \frac{U_{\text{max}}}{d} = \frac{\sqrt{2} \cdot U_{sk}}{d}$$

gdzie $U_{\rm sk}$ - napiecie skuteczne wskazane przez woltomierz, d- grubość próbki

 $\mathbf{U}_{\mathrm{max}} = \sqrt{2} \cdot \mathbf{U}_{\mathrm{sk}}$ amplituda przyłożonego napięcia na próbce.

4. Wyznacz przenikalność w stanie nasycenia ε_{max}

$$\varepsilon_{\text{max}} = \frac{P_{\text{max}}}{\varepsilon_0 \cdot E_{\text{max}}}$$

gdzie: $P_{\text{max}} = \frac{Y_{\text{max}} \cdot C_0}{S}$ polaryzacja nasycenia

ε₀ – przenikalność dielektryczna w próżni.

5. Wyznacz polaryzację spontaniczna raz pole koercji

$$P_{s} = \frac{Y_{c} \cdot C_{0}}{S} \qquad E_{c} = \frac{X_{c}}{X_{\text{max}}} \cdot E_{\text{max}}$$

- 6. Narysować wykresy polaryzacji nasycenia P_{max} , polaryzacji spontanicznej P_s oraz pola koercji E_C w funkcji temperatury.
- 7. Na podstawie pomiarów narysować wykresy zależności kwadratu polaryzacji spontanicznej P_s^2 od temperatury.
- 8. Oszacować zakres temperatur dla którego $P_{\rm s}^{\,2}$ jest liniową funkcją temperatury.
- 9. Narysować wykres zależności współczynnika piroelektrycznego od temperatury

$$\gamma = \frac{dP_s}{dT}$$

Wartości C₀ i wymiary geometryczne próbki podaje prowadzący.