Matemática Discreta - Listas de Exercícios

Jorge Augusto Salgado Salhani

Agosto, 2022

1 Lista 2 - Equivalências, Inferências, Demonstrações

1.1 Prove as tautologias a seguir, começando com a expressão à esquerda do símbolo do bicondicional e encontrando uma série de equivalências que convertem a expressão à esquerda na expressão à direita.

(a)
$$(p \lor q) \land (p \lor \sim q) \leftrightarrow p$$

Da distributiva de operadores, temos que

$$p \land (q \lor s) \leftrightarrow (p \land q) \lor (p \land s)$$

$$p \lor (q \land s) \leftrightarrow (p \lor q) \land (p \lor s)$$

Assim

$$p \lor (q \land \sim q) \leftrightarrow (p \lor q) \land (p \lor \sim q)$$

Como $q \land \sim q = F$ (falso), vale que $p \lor (q \land \sim q) \leftrightarrow p$.

Em sequência, temos que

$$(p \lor q) \land (p \lor \sim q) \leftrightarrow p \lor (q \land \sim q) \leftrightarrow p$$

(b)
$$\sim (p \land q) \land (p \lor \sim q) \leftrightarrow \sim q$$

Pela lei de DeMorgan, vale que $\sim (p \wedge q) \leftrightarrow \sim p \lor \sim q$. Logo

$$\sim (p \land q) \land (p \lor \sim q) \leftrightarrow (\sim p \lor \sim q) \land (p \lor \sim q)$$

Pela distributiva anterior, vale que $\sim q \lor (\sim p \land p) \leftrightarrow (\sim q \lor \sim p) \land (\sim q \lor p)$. Como também $\sim p \land p = F$ (falso), vale que $\sim q \lor (\sim p \land p) \leftrightarrow \sim q$.

Em sequência, temos que

$$\sim (p \land q) \land (p \lor \sim q) \leftrightarrow (\sim p \lor \sim q) \land (p \lor \sim q) \leftrightarrow (\sim p \land p) \lor \sim q \leftrightarrow \sim q$$

(c) $p \lor (q \land \sim p) \leftrightarrow p \lor q$

Por distributiva, temos que $p \lor (q \land \sim p) \leftrightarrow (p \lor q) \land (p \lor \sim p)$. Como $(p \lor \sim p) = V$ (verdadeiro), vale que $(p \lor q) \land (p \lor \sim p) \leftrightarrow (p \lor q)$.

Logo, em sequência temos

$$p \lor (q \land \sim p) \leftrightarrow (p \lor q) \land (p \lor \sim p) \leftrightarrow p \lor q$$

(d) $[\sim (p \land \sim q)] \lor q \leftrightarrow \sim p \lor q$

Usando que $[\sim (p \land \sim q)] \leftrightarrow \sim p \lor q$, e $p \lor q \lor q \leftrightarrow \sim p \lor q$, em sequência temos que

$$[\sim (p \land \sim q)] \lor q \leftrightarrow (\sim p \lor q) \lor q \leftrightarrow \sim p \lor q$$

(e)
$$p \wedge [\sim (p \wedge \sim q)] \leftrightarrow p \wedge q$$

Sendo $\sim (p \land \sim q) \leftrightarrow \sim p \lor q$ e por associatividade $p \land (\sim p \lor q) \leftrightarrow (p \land \sim p) \lor (p \land q)$.

Como $p \wedge \sim p = F$ (falso), vale que $(p \wedge \sim p) \vee (p \wedge q) \leftrightarrow p \wedge q$. Assim, em sequência temos que

$$p \land [\sim (p \land \sim q)] \leftrightarrow p \land (\sim p \lor q) \leftrightarrow (p \land \sim p) \lor (p \land q) \leftrightarrow p \land q$$

1.2 Justifique cada passo na sequência de demonstração de

(a)
$$q \wedge [(q \wedge r) \rightarrow \sim p] \wedge (q \rightarrow r) \rightarrow \sim p$$

- 1. q: primeira hipótese
- 2. $(q \wedge r) \rightarrow \sim p$. Segunda hipótese
- 3. $q \rightarrow r$ terceira hipótese.
- 4. r

Para 3.

$$q \to r \leftrightarrow \sim q \vee r$$

Por 1.

$$q \land (q \to r) \leftrightarrow q \land (\sim q \lor r) \leftrightarrow (q \land \sim q) \lor (q \land r) \leftrightarrow q \land r \therefore (q \to r) \to r$$

5. $q \wedge r$

Por 4.

$$q \wedge [(q \wedge r) \to \sim p] \wedge (q \to r) \to \sim p \leftrightarrow [(q \wedge r) \to \sim p] \wedge (q \wedge r)$$

Sendo que

$$(q \wedge r) \rightarrow \sim p \leftrightarrow [\sim (q \wedge r)] \lor \sim p$$

Então

$$[(q \wedge r) \to \sim p] \wedge (q \wedge r) \leftrightarrow [\sim (q \wedge r)] \vee \sim p \wedge (q \wedge r)$$

6. $\sim p \text{ Por } 5.$

$$[\sim (q \land r)] \lor \sim p \land (q \land r) \leftrightarrow [\sim (q \land r)] \land (q \land r) \lor \sim p \leftrightarrow \sim p$$

(b)
$$[p \to (q \lor r)] \land \sim q \land \sim r \to \sim p$$

1. $p \to (q \lor r)$: hipótese 1

2. $\sim q$: hipótese 2

3. $\sim r$: hipótese 3

 $4. \ \sim q \wedge \sim r$

$$\sim q \land \sim r \leftrightarrow \sim (q \lor r)$$

5. $\sim (q \vee r)$

$$\begin{split} p \to (q \vee r) &\longleftrightarrow \sim p \vee (q \vee r) \implies \\ [p \to (q \vee r)] \wedge &\sim \wedge \sim r \leftrightarrow \sim p \vee (q \vee r) \wedge [\sim (q \vee r)] \leftrightarrow \end{split}$$

6. $\sim p$

$$\sim p \vee [(q \vee r) \wedge \sim (q \vee r)] \leftrightarrow \sim p$$

(c)
$$\sim p \wedge q \wedge [q \rightarrow (p \vee r)] \rightarrow r$$

1. $\sim p$: hipótese 1

2. q: hipótese 2

3. $q \to (p \lor r)$: hipótese 3

 $4. \ p \vee r$

$$\begin{split} q &\to (p \vee r) \leftrightarrow \sim q \vee (p \vee r) \implies \\ q \wedge [\sim q \vee (p \vee r)] \leftrightarrow [q \wedge \sim q] \vee (p \vee r) \leftrightarrow p \vee r \end{split}$$

5. $\sim (\sim p) \vee r$

$$p \wedge r \leftrightarrow \sim (\sim p) \vee r$$

6. $\sim p \rightarrow r$

$$\sim p \to r \leftrightarrow p \lor r \leftrightarrow \sim (\sim p) \lor r$$

7. r

$$\sim p \land (p \lor r) \leftrightarrow (\sim p \land p) \lor r \leftrightarrow r$$

1.3 Use lógica proposicional para provar que o argumento é válido

(a) $\sim (p \lor \sim q) \land (q \rightarrow r) \rightarrow (\sim p \land r)$

$$\sim (p \lor \sim q) \land (q \to r) \leftrightarrow$$
$$(\sim p \land q) \land (q \to r) \leftrightarrow$$

$$(\sim p \wedge r)$$

(b) $\sim p \land (q \rightarrow p) \rightarrow \sim q$

$$\begin{split} &\sim p \wedge (q \to p) \leftrightarrow \\ &\sim p \wedge (\sim q \vee p) \leftrightarrow \sim q \end{split}$$

(c) $\sim p \land (p \lor q) \rightarrow q$

$$(\sim p \land p) \lor q \leftrightarrow q$$

(d) $(\sim p \rightarrow \sim q) \land q \land (p \rightarrow r) \rightarrow r$

$$\begin{split} (\sim p \to \sim q) \wedge q \wedge (p \to r) \leftrightarrow \\ (p \lor \sim q) \wedge q \wedge (p \to r) \leftrightarrow \\ [p \land (p \to r)] \lor \sim q \land q \leftrightarrow r \end{split}$$

1.4 Usando tabela verdade, prove que

$$p \land q \to (r \to s) \leftrightarrow p \land q \land r \to s \tag{1}$$

é uma tautologia. Agora, suponha que o argumento que queremos provar tenha a forma

$$p_1 \wedge p_2 \wedge \dots \wedge p_n \to (r \to s).$$
 (2)

Desde que (1) é uma tautologia, em vez de usar $p_1, p_2, ..., p_n$ como hipóteses e inferir $r \to s$, o método dedutivo nos permite adicionar r como uma hipótese e depois inferir s. Em outras palavras, provar (2) é equivalente a provar

$$p_1 \wedge p_2 \wedge ... \wedge p_n \wedge r \to s$$
.

Usando o método dedutivo, prove que os seguintes argumentos são válidos.

(a)
$$(p \to q) \land [p \to (q \to r)] \to (p \to r)$$

$$(p \to q) \land [p \to (q \to r)] \to (p \to r)$$

$$\leftrightarrow (p \to q) \land [p \to (q \to r)] \land p \to r$$

$$\to q \land (q \to r) \to r$$

(b)
$$[(r \rightarrow s) \rightarrow r] \rightarrow [(r \rightarrow s) \rightarrow s]$$

$$\begin{split} &[(r \to s) \to r] \to [(r \to s) \to s] \\ & \leftrightarrow [(r \to s) \to r] \land (r \to s) \to s \\ & \to r \to s \end{split}$$

(c)
$$[p \to (q \to r] \land (p \lor \sim s) \land q \to (s \to r)$$

$$\begin{split} [p \to (q \to r] \wedge (p \lor \sim s) \wedge q \to (s \to r) \\ & \leftrightarrow [p \to (q \to r)] \wedge (p \lor \sim s) \wedge q \wedge s \to r \\ & \to (q \to r) \lor \sim s \wedge q \wedge s \to r \\ & \leftrightarrow (q \to r) \wedge q \lor \sim s \wedge s \to r \end{split}$$

(d)
$$(p \to q) \land [q \to (r \to s)] \land [p \to (q \to r)] \to (p \to s)$$

$$\begin{split} &(p \to q) \land [q \to (r \to s)] \land [p \to (q \to r)] \to (p \to s) \\ & \leftrightarrow (p \to q) \land [q \to (r \to s)] \land [p \to (q \to r)] \land p \to s \\ & \to q \land [q \to (r \to s)] \land (q \to r) \to s \\ & \to (r \to s) \land r \to s \end{split}$$

1.5 Use uma demonstração direta para mostrar que a soma de dois números inteiros ímpares é par

Sejam $m, n \in \mathbb{Z}$ ímpares, então sejam $k_1, k_2 \in \mathbb{Z}$

$$m = 2k_1 + 1$$

 $n = 2k_2 + 1$
 $m + n = 2(k_1 + k_2) + 2 = 2(k_1 + k_2 + 1) = 2k_3$

Seja k_3 dado pela combinação acima, m+n é par.

1.6 Demonstrar que se m+n e n+p são número inteiros pares, em que $m,n,p\in\mathbb{Z},$ então m+p é par.

Novamente, sejam $k_1, k_2 \in \mathbb{Z}$

$$m + n = 2k_1$$

 $n + p = 2k_2$
 $m - p = 2(k_1 - k_2) \implies m + p = 2(k_1 - k_2) + 2p$
 $\implies m + p = 2(k_1 - k_2 + p) = 2k_3$

Seja k_3 dado pela combinação acima, m+p é par.

1.7 Use uma demonstração direta para mostrar que todo número inteiro ímpar é a diferença de dois quadrados.

Sendo m=2k+1 inteiro ímpar e $a,b,k\in\mathbb{Z}$. Se $m=a^2-b^2$, se a,b par, inválido!!

1.8 Prove que todo quadrado de um número inteiro deixa resto 0 ou 1 na divisão por 4.

Sejam $m, k \in \mathbb{Z}$, m pode ser par ou ímpar. Logo

$$m \text{ par}: m = 2k$$

$$\implies m^2 = (2k)^2 = 4k^2$$

$$\therefore m^2 \mod 4 = 0$$

$$m \text{ impar}: m = 2k + 1$$

$$\implies m^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 4(k^2 + k) + 1$$

$$\therefore m^2 \mod 4 = 1$$

1.9 Use uma demonstração por contradição para provar que a soma de um número irracional e um racional é irracional.

Seja $m\in\mathbb{I}$ e $n\in\mathbb{Q}$, então n=p/q, com $p,q\in\mathbb{Z}$. Supondo que $m+n=k\in\mathbb{Q}$, temos que

$$m+n=k=r/s \implies m=r/s-n=r/s-p/q$$

 $\implies m=(rq-ps)/(sq) \in \mathbb{Q}$

Que é uma contradição com a hipótese de que $m \in \mathbb{I}$. Logo $m + n = k \in \mathbb{I}$.

1.10 Seja n um número inteiro. Prove que 3n + 2 é impar se, e somente se, n é impar.

Como $n\in\mathbb{Z},\,n$ é par ou ímpar. Se n ímpar, $n=2k+1,\,\mathrm{com}\ k\in\mathbb{Z}$ de modo que

$$3n + 2 = 3(2k + 1) + 2 = 2(3k) + 3 + 2 = 2(3k + 2) + 1$$

Válido pela hipótese do enunciado. Já se n par

$$3n + 2 = 3(2k) + 2 = 2(3k) + 2 = 2(3k + 1)$$

que é par, invalidando a hipótese que 3n+2 é impar. Logo n impar $\leftrightarrow 3n+2$ impar.

1.11 Seja n um número inteiro positivo. Prove que n ímpar $\leftrightarrow n^2$ impar.

Se n inteiro, n é par ou ímpar. Seja $k \in \mathbb{Z}$. Se n par,

$$n = 2k \implies n^2 = (2k)^2 = 4k^2 = 2(2k^2)$$

Logo, se n par, n^2 par. Já para n ímpar,

$$n = 2k + 1 \implies n^2 = (2k + 1)^2$$

= $4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$

Logo, n ímpar $\leftrightarrow n^2$ ímpar, como gostaríamos.

1.12 Mostrar que $\sqrt{2}$ é irracional.

Supondo $\sqrt{2} \in \mathbb{Q}$, existe $p, q \in \mathbb{Z}$ tais que $\sqrt{2} = p/q$, irredutível. Assim

$$2 = p^2/q^2 \implies 2q^2 = p^2$$
.

Como ambos p, q não podem ser simultaneamente par, vamos supor que q ímpar. Como vale que q ímpar $\leftrightarrow q^2$ ímpar (item anterior) e também vale que p par, pois p par $\leftrightarrow p^2$ par (item anterior), então sejam $r \in \mathbb{Z}$, logo

$$2 = p^2/q^2 = (2r)^2/q^2 \implies 2q^2 = 4r^2 \implies q^2 = 2r^2$$

Que indica que q^2 é par, contradizendo o que afirmamos acima. Logo $\sqrt{2} \in \mathbb{I}$.

1.13 Demonstre que se x é irracional, então 1/x é irracional.

Supondo que $1/x \in \mathbb{Q}$, então existem $p, q \in \mathbb{Z}$ tais que 1/x = p/q. Assim $x = q/p \in \mathbb{Q}$, o que contradiz a hipótese que $x \in \mathbb{I}$. Logo $1/x \in \mathbb{I}$.

1.14 Demonstre ou contrarie que o produto de dois números irracionais é irracional.

Sendo $a,b\in\mathbb{I}$. Supondo que $ab\in\mathbb{I}$, como sabemos que se $b\in\mathbb{I}\to 1/b\in\mathbb{I}$, podemos fazer com que b=1/a. Logo $ab=1\in\mathbb{Q}$, em contradição com a hipótese. Logo $ab\in\mathbb{Q}$.

1.15 Demonstre ou contrarie que o produto de um número racional diferente de zero e um número irracional é irracional.

Sendo $m \in \mathbb{Q}$ e $n \in \mathbb{I}$, existem $p, q \in \mathbb{Z}$ tais que m = p/q. Supondo que $mn \in \mathbb{Q}$, mn = r/s, com $r, s \in \mathbb{Z}$ tais que

$$mn = r/s \implies (p/q)n = r/s \implies n = (rq/sp) \in \mathbb{Q}.$$

Que contradiz a hipótese de que $n \in \mathbb{I}$. Logo $mn \in \mathbb{I}$.

1.16 Use o princípio de indução para mostrar que

(a)
$$1^2 + 2^2 + 3^2 + ... + n^2 = [n(n+1)(2n+1)]/6; \forall n \ge 1$$

Para n=1

$$1 = (1)(2)(3)/6 = 1$$
. Válido!

Supondo válido para k, para k+1 temos

$$1^{2} + 2^{2} + 3^{2} + \dots + k^{2} + (k+1)^{2} = [(k+1)(k+2)[2(k+1)+1]]/6$$
$$[k(k+1)(2k+1)]/6 + (k+1)^{2} = [(k+1)(k+2)[2(k+1)+1]]/6$$
$$\implies k(2k+1) + 6(k+1) = (k+2)(2k+3)$$
$$\implies 2k^{2} + k + 6k + 6 = 2k^{2} + 3k + 4k + 6. \text{ Válido!}$$

(b)
$$1+3+5+...+(2n-1)=n^2; \forall n \geq 1$$

Para n=1

$$1 = (1)^2 = 1$$
. Válido!

Supondo válido para k, para k+1 temos

$$1+3+5+...+(2k-1)+[2(k+1)-1]=(k+1)^2$$

$$k^2+[2(k+1)-1]=(k+1)^2$$

$$\implies k^2+2k+1=k^2+2k+1. \text{ V\'alido!}$$

(c)
$$2.1 + 2.2 + 2.3 + ... + 2n = n^2 + n; \forall n \ge 1$$

Para n=1

$$2 = (1)^2 + 1 = 2$$
. Válido!

Supondo válido para k, para k+1 temos

$$2.1 + 2.2 + 2.3 + \dots + 2k + 2(k+1) = (k+1)^2 + k + 1$$

 $k^2 + k + 2(k+1) = k^2 + 2k + 1 + k + 1$
 $\implies k^2 + 3k + 2 = k^2 + 3k + 2$. Válido!

(d)
$$1^3 + 2^3 + 3^3 + ... + n^3 = [n^2(n+1)^2]/4; \forall n \ge 1$$

Para n=1

$$1 = (1)^2 (2)^2 / 4 = 1$$
. Válido!

Supondo válido para k, para k+1 temos

$$1^{3} + 2^{3} + 3^{3} + \dots + k^{3} + (k+1)^{3} = [(k+1)^{2}(k+2)^{2}]/4$$
$$[k^{2}(k+1)^{2}]/4 + (k+1)^{3} = [(k+1)^{2}(k+2)^{2}]/4$$
$$\implies k^{2} + 4(k+1) = (k+2)^{2}$$
$$\implies k^{2} + 4k + 4 = k^{2} + 4k + 4. \text{ Válido!}$$

(e)
$$\sum_{i=1}^{n-1} i(i+1) = [n(n-1)(n+1)]/3; \forall n \geq 2$$

Para n=2

$$1(2) = 2 = 2(1)(3)/3 = 2$$
. Válido!

Supondo válido para k, para k+1 temos

$$\sum_{i=1}^{k-1} i(i+1) + k(k+1) = [(k+1)(k)(k+2)]/3$$

$$[k(k-1)(k+1)]/3 + k(k+1) = [(k+1)(k)(k+2)]/3$$

$$\implies k-1+3 = k+2 \implies k+2 = k+2. \text{ V\'alido!}$$

(f)
$$2n+1 < 2^n; \forall n \ge 3$$

Para n=3

$$2(3) + 1 < 2^3 \implies 7 < 8$$
. Válido!

Para k+1 temos

$$2[2(k+1)+1] < 2^{k+1} \Leftrightarrow 4k+6 < 2^{k+1}$$

Supondo válido para k

$$2k + 1 < 2^k \Leftrightarrow 2[2k + 1] < 2.2^k \Leftrightarrow 4k + 2 < 2^{k+1}$$

Como $4k+2 < 4k+6 < 2^{k+1}$ (para k, 2k+1 é limitado por 2^k ; para k+1, 2(k+1)+1 também é limitado por 2^{k+1}), logo, vale a proposição $2n+1 < 2^n$; $\forall n \geq 3$.

(g)
$$n^2 < 2^n; \forall n \ge 5$$

Para n=5

$$5^2 < 2^5 \Leftrightarrow 25 < 32$$
. Válido!

Supondo válido para k, então vale que

$$k^2 < 2^k \Leftrightarrow 2k^2 < 2^{k+1}$$

Para k+1 temos

$$(k+1)^2 < 2^{k+1} \Leftrightarrow k^2 + 2k + 1 < 2^{k+1}$$

Como $k^2 < k^2 + 2k + 1 < 2^{k+1}$ (ou seja, para k, k^2 é limitado por 2^k e para $k+1, (k+1)^2$ também é limitado por 2^{k+1}), vale a proposição $n^2 < 2^n$; $\forall n \geq 5$.

(h) Seja a sequência a_1, a_2, a_3, \dots definida como $a_1 = 3$; $a_k = 7 \times a_{k-1}; \forall k \geq 2$. Mostre que $a_n = 3 \times 7^{n-1}$, para $n \geq 1$.

Para n = 1, 2

$$a_1 = 3 = 3 \times 7^0 = 3$$

$$a_2 = 21 = 3 \times 7^1 = 21 \text{ V\'alidos!}$$

Por hipótese, válido para k implica que vale $a_k = 3 \times 7^{k-1}$. Para k+1, temos

$$a_{k+1} = 7a_k = 7 \times 3 \times 7^{k-1}$$

$$\implies a_{k+1} = 3 \times 7^k \Leftrightarrow a_k = 3 \times 7^{k-1},$$

conforme, gostaríamos.