

POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA

SISTEMI ENERGETICI PER INGEGNERIA FISICA

06/07/2017

Allievi fisici

A	Allegare alle soluzioni il presente testo indicando (in STAMPAT	ELLO):
NOME E COG	GNOME	

Leggere attentamente le avvertenze: Indicare chiaramente nome e cognome su <u>tutti</u> i fogli da consegnare. Rispondere <u>brevemente</u> ma <u>con chiarezza solamente ai quesiti posti, evidenziando le necessarie unità di misura.</u> Calcoli e spiegazioni - pur corretti in sé - che non rispondono ai quesiti posti <u>non</u> saranno considerati ai fini della valutazione del compito. Nel caso sia richiesta una soluzione grafica indicare con chiarezza sui grafici

Tempo a disposizione: 2 ore 30 minuti

allegati la soluzione proposta.

Tenere spenti i telefoni cellulari, non usare appunti, dispense, etc. Riportare i risultati richiesti su questo foglio e procedimento/calcoli intermedi sul foglio a quadretti.

Punteggio: Punteggio totale pari a 35. Il docente si riserva di normalizzare i risultati in trentesimi con coefficienti correttivi in base all'esito medio delle risposte date.

Dati per la risoluzione dei quesiti

Costante universale dei gas \Re = 8314 J/(kmol·K), densità acqua = 1000 kg/m³, c_{acqua} =4.2 kJ/kg/K, μ_{acqua} =1.14E-03 Pa*s

□ ESERCIZIO 1 (punti 5)

Un sistema di distribuzione di acqua è costituito da un bacino, un tubo di aspirazione, una pompa e da 5 tubi di mandata identici che convogliano l'acqua in 5 bacini differenti. Il tubo di aspirazione ha un diametro di 750 mm e una lunghezza di 300 m mentre la lunghezza dei tubi di mandata è pari a 5 km ed il loro diametro è 500 mm. Tutti i bacini si trovano alla stessa quota, il coefficiente di attrito (uguale per tutti i tubi) è pari a 0.025 e il coeffiente Kc delle perdite di carico concentrate è 4 (uguale per tutti i tubi). Il rendimento idraulico della pompa di 86% e un rendimento organico elettrico di 98%. Assumendo che la portata volumetrica elaborata dalla pompa è di 3600 m³/h, si chiede di:

- Rappresentare lo schema di impianto evidenziando le portate e le velocità nei condotti
- Determinare le perdite dell'impianto
- Calcolare l'incremento di temperatura a cavallo della pompa
- Calcolare la potenza elettrica della pompa

□ ESERCIZIO 2 (punti 4)

Una portata di acqua (12 kg/s) in condizioni di liquido saturo (h1=800 kJ/kg) è laminata adiabaticamente fino ad una pressione P2=2 bar. Successivamente viene inviata in un separatore e la frazione di vapore saturo uscente (punto 3) viene espansa in una turbina ideale isoentropica (temperatura allo scarico T4= 50°C). Si chiede di:

- Rappresentare lo schema di impianto e le trasformazioni che avvengono nei componenti (sul diagramma T-s allegato)
- Calcolare la portata di liquido in uscita dal separatore
- Calcolare la potenza elettrica idealmente producibile dal sistema con η_{el}=0.9

ESERCIZIO 3 (punti 6)

In un tubo in acciaio (k_{acc} =25 W/m/K) di diametro interno 18 cm e spessore 2 mm, entra una portata di 0.05 kg/s di vapore saturo alla pressione di 1 bar. Il tubo è lungo 10 m ed è rivestito da uno strato isolante (k_{iso} =0.25 W/m/K) di spessore 1 cm. Una corrente d'aria a 11°C e velocità di 3 m/s lambisce trasversalmente il tubo. Sapendo che all'uscita del tubo si ha una miscela bifase e trascurando la resistenza convettiva interna e lo scambio termico radiativo si chiede: (T_{sat} @1bar)=100°C, $h_{vap,sat}$ - $h_{liq,sat}$ = Δh_{ev} (@1bar)=2257.5 kJ/kg)

- Il coefficiente di scambio termico convettivo sulla superficie esterna del tubo
- Le resistenze termiche caratteristiche del problema
- La potenza termica scambiata
- Il titolo di vapore all'uscita

<u>Correlazioni per geometria Cilindrica</u> (Dimensione caratteristica → Diametro del cilindro) Le proprietà termofisiche sono riferite alla temperatura di film.

Intervallo Numero Re	Convezione Forzata	Proprietà aria @T _{film}		
0.4-40	Nu=0.989 Re ^{0.33} Pr ^{1/3}	Cp	1006.73	J/kg/K
4-40	Nu=0.911 Re ^{0.385} Pr ^{1/3}	le.	0.0262	W/m/K
40-4000	Nu=0.683 Re ^{0.466} Pr ^{1/3}	k	0.0262	V V/111/1
4000-40000	Nu=0.193 Re ^{0.618} Pr ^{1/3}		1.873E-05	Pa*s
40000-400000	Nu=0.027 Re ^{0.805} Pr ^{1/3}	densità	1.15	kg/m ³

□ ESERCIZIO 4 (punti 5)

Si consideri un ciclo Joule-Brayton aperto con rigenerazione ideale ($c_p=1.1~kJ/kg/K$ indipendente dalla temperatura e MM=28.9 kg/kmol) che ha come input termico la radiazione solare concentrata da un campo specchi. La temperatura massima è 850°C. La temperatura ambiente è 25°C e la pressione ambiente (P1=P6) è 1 bar. La temperatura reale di fine espansione è 600°C. Le trasformazioni 2-3 e 5-6 sono isobare mentre nel ricevitore solare (trasformazione 3-4) è presente una caduta di pressione di 50 kPa. Il rendimento isoentropico di compressore e turbina sono rispettivamente 88% e 92% mentre il rendimento organico-elettrico è 99%.

Sapendo che la portata massica circolante è 20 kg/s si chiede di:

- Rappresentare qualitativamente il ciclo nel piano T-s.
- Determinare il rapporto di espansione (P4/P5) e il rapporto di compressione (P2/P1)
- Determinare il lavoro specifico del compressore, della turbina e il lavoro netto
- Determinare la potenza termica scambiata nel rigeneratore
- Determinare la potenza netta, la potenza termica entrante e il rendimento netto nel ciclo

□ QUESITO 5 (Rispondere ad una sola delle due domande) (punteggio 7.5)

- 1- Applicare il principio di conservazione dell'energia ad una laminazione adiabatica ed introdurre il coefficiente di Joule-Thompson ed il significato della curva di inversione.
- 2- Discutere l'approccio a parametri concentrati per la risoluzione di problemi di scambio termico in condizioni non stazionarie. Ricavare l'espressione del profilo di temperatura evidenziando i numeri adimensionali caratteristici.

□ QUESITO 6 (DOMANDE A RISPOSTA GUIDATA) (punteggio 7.5)

Rispondere alle seguenti 15 domande a risposta guidata. Segnare la casella relativa alla **sola risposta corretta** (0.5 punto per risposta corretta, -0.125 punti se sbagliata).

	I
La relazione $c_p = c_v + R$ con	□ Non è mai valida
(R=8314 J/kmolK):	E' valida solo per gas ideali
	□ E' valida sempre
	□ Approssima il comportamento di fluidi con Z<1
Una sfera di rame (k=395W/m/K,	
D=3mm, ρ =7850kg/m ³ ,	□ E' Linearmente dipendente da D
c=385J/kg/K) a T _{iniziale} =95°C è	□ E' 51 min
immersa in vasca d'olio	□ E' 30.6 s
(T=30°C,h=2W/m ² /K), il tempo per	
raffreddare la sfera di 15°C:	
In un ciclo Rankine surriscaldato	✓ Una riduzione del rendimento del ciclo
ideale, l'aumento della pressione di	□ Un aumento del lavoro del ciclo
condensazione implica:	□ Un aumento del lavoro della pompa di alimento
	□ La riduzione del titolo di vapore allo scarico dela turbina
In un flusso incomprimibile, le	□ diminuiscono la velocità del flusso
perdite:	□ diminuiscono sia la pressione che la temperatura
	diminuiscono la pressione in un condotto rigido
,	orizzontale a sezione costante
*	□ provocano unicamente un aumento di temperatura
Una portata di fluido incomprimibile	$v_1*D_1=2*v_2*D_2$
m ₁ fluisce in un tubo di diametro D ₁	□ Se v1=v2 allora (D1/D2)^2=4
e successivamente si separa in 2	□ 2*m₁=m₂
tubi identici di diametro D ₂ :	⊠ Re₁=Re₂ solo se D1=2*D2
Dati due corpi neri (A e B) a	□ εA< εB
TA=1000 °C e TB=2000 °C:	□ E _A =8E _B
λ _{max} → Lungh.onda di massima	$\square \lambda_{\max} A = 2\lambda_{\max} B$
emissione, E→ Pot.Emissivo totale	
La curva di inversione è:	★ Indefinita per gas perfetti
La darva ar inversione e.	□ Indipendente dal fluido
	□ II luogo dei punti in cui $(\partial T/\partial P)_S$ cambia segno
	□ Definita solo per la fase gas
Con il solo obiettivo di aumentare	·
la potenza termica scambiata,	□ Sempre
l'aggiunta di una serie di alette su	□ Solo se efficienza è maggiore di 1
una superficie è giustificata:	□ Solo se la lunghezza è minore di un determinato valore ☑ Solo se efficacia >1
	Ma_Solo se efficacia > 1
In un ciclo Joule-Brayton reale	$\ \square$ II β_{compr} è uguale a quello β_{turb}
aperto:	□ Il lavoro netto, a pari T massima, è crescente con β
	□ La potenza della turbina è indipendente dalla portata
	∡∕ A pari β _{compr} il η cresce sempre con T massima
Per un ciclo Rankine rigenerativo	□ Un η pari a quello reversibile
reale, si ha generalmente:	
	ciclo semplice
	□ Un effetto trascurabile sul rendimento
	□ L _{netto} crescente con aumento del numero rigeneratori
La generica grandezza specifica y	x(y = yLS + x (yVS - yLS)
della miscela è:	y = yVS / (1 - x) + yLS / x
(LS = liq.saturo, VS = vap.saturo,	$\Box y = yVS + xv / (1 - x) yLS$
x=frazione massica vapore,	$\Box y = (1 - xv) yLS + xv yVS$
xv=frazione volumica vapore)	

☑ Presentano punti angolosi per P <pcritica< td=""></pcritica<>
□ Sono curve a pendenza costante
□ Sono rette con pendenza crescente con la T
□ Collassano per liquido incomprimibile
□ Una riduzione del rendimento del sistema
✓ Una riduzione della T dei fumi scaricati in ambiente
□ Un aumento della potenza della TG
□ Un η _{II} pari a 1
□ ∆Tideale>∆Treale ≤∞
□ ∆Treale dipendente dal rendimento idraulico
□ Pot. all'albero>Pot Elettrica> Pot. ideale
✓ Pot.Elettrica>Pot all'albero>Pot. ideale
□ Il coefficiente di attrito è circa 5E-05
□ II numero di Reynolds è 1438689
≰La caduta di pressione è circa 407 Pa
□ Nessuna delle precedenti

- ~7

*ESAME OO/UT/2021-X

$$m_{ASP} = 3600 \frac{m^3}{P_0} = 1000 \frac{M}{S}$$

$$N_{ASP} = \frac{m_{ASP}}{g \pi D_{ASP}^2} = 2,26 \frac{m}{g}$$

$$N_{M} = \frac{m_{M}}{\int \frac{\pi \Omega_{M}^{2}}{4}} = 1,02 \text{ m/s}$$

PENOTIE ILLRIANO

$$\frac{V_{c,m} = V_{c,m} = V_{c,m}}{2} = 2,075 \frac{V_{d}}{2}$$

$$\frac{V_{o,m} = \int_{0}^{4} \frac{L_{m}}{D_{m}} \frac{N_{m}^{2}}{2} = 129,7 \frac{V_{d}}{N_{d}}}{N_{d}}$$

1/c, A = Kc
$$\frac{\sqrt{\Delta^2}}{2}$$
 = 10,24 $\frac{3}{4}$

$$V_{c,A} = V_{c,A} = V_{c$$

Pauls =
$$lideale,pompa$$
 $(1-7ion)_{-}$ $27,38 Mg$
 $lideale,pompa$ $27,38 Mg$
 $lideale,pompa$ $27,38 Mg$
 $lideale,pompa$ $27,38 Mg$
 $lideale,pompa$ $27,38 Mg$

PEC, Pauls = masp. lnesie, Pauls = 199WW.
Zion Zong, EC

$$\frac{2}{2}$$

CALLINATIONE ADIABATICA $h_1 = h_2 = 800 \text{ W/} \times_2 = 0, \pm 34$

SEPANSTONE 3 -> NATONE STUNO h3= 2706, 24 Kgy X3=1

LS-> GOUDD SATURO XIS = O PLS - CALLAND AGOLD T-S

BILLALCIO DI LLUSSA SEPANOTONE

My = mis + m3) NAPONE Saruno

m2 = m2 + x2.m2 = m2 (1-x2) = 10,3 g M3 = m2 X2 = 1,61 /4/5 1. 1219

ESPANSIONE ISOERTROPICA $S_3 = S_4$ $\rightarrow h_4 = 2285 VM$

PEL = M3 (h3-h4). 2EL = 640,33 WW

This Trund Too 100°C - 11°C = 5223

RETOT ROOT POOR - 100°C - 11°C = 5223 Ah = DSCREWOVERA = 104,47 8Mg -> how=hig-Ah= T S OUT V3 X VAR = 1 - Dh = 0,354 2257,2 19 GAS PENFERO CON CALONI SPECIFICI INDIFENDENTI DE Y DYNEAUE, ESPAISIONE = T4-T5 = 250°C △VIDEALE, ESPANSIONE =

ΔVIDEALE, ESPANSIONE = 271,74°C

(ZIS, TUNBINA) → 0,92 TS, 15 = TG - DTIVEALE = 851,41K BESPANSIONS = 14 DESPANSIONE = 2,884 louis = Cp (T4-T5) = 275 KT (Caron Tunerus)

(4)

$$P_{c} = P_{S} \cdot P_{ESPANSONE} = 2,884 \text{ bot}$$
 $P_{3} = P_{4} + \Delta P_{34} = 3,384 \text{ bot}$
 $P_{2} = P_{3} \cdot (2 \rightarrow 3 \text{ 1500mm})$
 $P_{caspnessione} = \frac{P_{2}}{P_{1}} = 3,384$
 $P_{3} = P_{4} + (T_{2},15 - T_{2})/T_{15},660$
 $P_{4} = P_{5} \cdot P_{5} \cdot P_{5}$
 $P_{5} = P_{5} \cdot P_{5}$
 $P_{5} = P_{5} \cdot P_{5} \cdot P_{5}$
 P_{5}

PIN, CICIO - PINO - COURM) · ZONG-EC = 2679, IS MW N = PNETRA/PIN = 0,486

5