DOTS: Decoupling Operation and Topology in Differentiable Architecture Search

Yu-Chao Gu¹, Li-Juan Wang¹, Yun Liu¹, Yi Yang², Yu-Huan Wu¹, Shao-Ping Lu¹, Ming-Ming Cheng¹

¹Nankai University ²Zhejiang University

Introduction

■ Revisit DARTS

Figure 1. Derive the cell structure in DARTS

Introduction

- □ Problems in DARTS
 - 1) Select edge based on operation weight (coupling operation and topology search)
 - 2) Handcraft policy of edge numbers (fix to 2)

Figure 2. Architecture search via continuous relaxation

Introduction

□ Can operation weight represents the edge importance?

Figure 3. Correlation between edge importance and stand-alone accuracy in DARTS (Left: CIFAR10, Right: CIFAR100)

Method

☐ Decouple operation and topology search

- 1 Decouple the topology representation from operation weight
 - Relax combinatorial edge selection into continuous
- 2 Decouple the search process
 - Incorporate previous cell-based into operation search
 - Group-based operation search

Method - topology search

1. Define topology search space + continuous relaxation

Two edges (follow DARTS)

$$\mathcal{E}_{x_j} = \{ \langle (i_1, j), (i_2, j) \rangle | 0 < i_1 < i_2 < j \}$$

2. Correlation analysis

Any number of edges

$$c_m = \{e_1, e_2, \dots, e_n\}$$

 $\mathcal{E}_{x_i} = \{c^1, c^2, \dots, c^M\}$

Figure 4. Correlation between edge importance and stand-alone accuracy in DOTS (Left: CIFAR10, Right: CIFAR100)

Method - operation search

■ Method 1: Incorporate existing cell-based operation search

Operation Weight

	Op1	Op2	Op3	Op4	Op5	Op6	Op7	Op8
Edge 1:	0.02	0.1	0.1	0.3	0.2	0.01	0.07	0.2
Edge 2:	0.02	0.01	0.4	0.1	0.1	0.02	0.05	0.3
Edge 3:	0.22	0.01	0.2	0.1	0.1	0.02	0.05	0.3
Edge 4:	0.22	0.01	0.1	0.1	0.05	0.02	0.45	0.05

Intermediate results for further topology search :

Edge 1:	Op4
Edge 2:	Op3
Edge 3:	Op8
Edge 4:	Op7

Architecture	TS	CIFAR10	CIFAR100
DARTS [35]	X /	97.02±0.12 97.40±0.09	80.74 83.07
DARTS (2nd) [35]	X /	97.01±0.15 97.12±0.11	81.37 83.28
GDAS [11]	×	96.84±0.06 97.06±0.08	82.75 83.01
SNAS [50]	X /	97.05±0.10 97.26±0.12	81.92 83.25
PC-DARTS [51]	X /	97.28±0.08 97.45±0.06	81.74 82.36

Table 1. Improve cell-based NAS by topology search

Method - operation search

■ Method 2: Group-based operation search

Group Criterion: Parameterized Op: Op1-Op4

Non-Parameterized Op: Op5-Op8

	Op1	Op2	Op3	Op4	Op5	Op6	Op7	Op8
Edge 1:	0.2	0.1	0.4	0.3	0.5	0.1	0.2	0.2
Edge 2:	0.1	0.5	0.1	0.3	0.1	0.3	0.2	0.4
Edge 3:	0.1	0.2	0.2	0.5	0.1	0.2	0.1	0.6
Edge 4:	0.4	0.1	0.3	0.2	0.2	0.2	0.45	0.15

Operation Weight

Intermediate results for further topology search:

Edge 1:	Op3	Op5
Edge 2:	Op2	Op8
Edge 3:	Op4	Op8
Edge 4:	Op1	Op7

Figure 5. Decouple the grouped operation in topology search by annealing

Experiments

□ Comparison with state-of-the-art models on CIFAR/ImageNet

Architecture	Top-1 Acc. (%) CIFAR10	Params (M) CIFAR10	Top-1 Acc. (%) CIFAR100	Params (M) CIFAR100	Search Cost (GPU-davs)	Search Method
DARTS [35]	97.00	3.4	82.46^{\dagger}	3.4	0.4	GD
SNAS [50]	97.15	2.8	82.45	2.8	1.5	GD
GDAS [11]	97.07	2.5	81.62^{\dagger}	3.4	0.2	GD
P-DARTS [6]	97.50	3.4	82.51^\dagger	3.6	0.3	GD
FairDARTS [9]	97.46	2.8	82.39	2.8	0.4	GD
PC-DARTS [51]	97.43 ± 0.07	3.6	83.10	3.6	0.1	GD
DropNAS [20]	97.42 ± 0.14	4.1	83.13	4.0	0.6	GD
MergeNAS [45]	97.27 ± 0.02	2.9	82.42	2.9	0.2	GD
ASAP [38]	97.32 ± 0.11	2.5	82.69	2.5	0.2	GD
SDARTS-ADV [5]	97.39 ± 0.02	3.3	83.27	3.3	1.3	GD
DARTS- [7]	97.41 ± 0.08	3.5	82.84^{\dagger}	3.4	0.4	GD
DOTS (best)	97.63	3.5	83.72	4.1	0.26	GD
DOTS (avg)*	97.51 ± 0.06	3.5	83.52 ± 0.13	4.1	0.26	GD

Table 2. Benchmark Results on CIFAR10/100

Architecture	Acc.	Acc. (%)		Multi-Add	Search Cost	Search Method	
Arcintecture	top-1	top-5	(M)	(\mathbf{M})	(GPU-days)	Search Method	
ProxylessNAS (ImageNet) [4]	75.1	92.5	7.1	465	8.3	GD	
FairDARTS (ImageNet) [9]	75.6	92.6	4.3	440	3	GD	
PC-DARTS (ImageNet) [51]	75.8	92.7	5.3	597	3.8	GD	
DOTS (ImageNet)	76.0	92.8	5.3	596	1.3	GD	

Table 3. Benchmark Results on ImageNet

Experiments

DOTS: 25% skip-connection

CIFAR100: 83.07% top-1 Acc

DARTS: 75% skip-connection CIFAR100: 80.74% top-1 Acc

Figure 6. Comparison between DARTS and DOTS topology derivation on the same operation results

Experiments

☐ Transfer to downstream tasks

Backbone	#Param (M)	FLOPs (M)	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
ResNet-50 [7]	25.6	4120	0.363	0.553	0.386	0.193	0.400	0.488
MobileNet-V2 [14]	3.4	300	0.283	0.467	0.293	0.148	0.307	0.381
SinglePath NAS [6]	4.3	365	0.307	0.498	0.322	0.154	0.339	0.416
MobileNet-V3 [9]	5.4	219	0.299	0.493	0.308	0.149	0.333	0.411
MnasNet [15]	4.8	340	0.305	0.502	0.320	0.166	0.341	0.411
FairDARTSC [4]	5.0	386	0.319	0.519	0.330	0.174	0.353	0.430
DOTS	5.3	596	0.357	0.552	0.378	0.199	0.393	0.478

Table 4. Evaluation of object detection on the MS-COCO 2017 dataset

Backbone	#Param	FLOPs	mIO	U(%)
Dackbone	(M)	(G)	val	test
ResNet-18	14.1	20.1	74.8	74.7
Xception-39	1.9	4.1	69.0	68.4
MnasNet	6.8	11.0	76.8	74.2
DOTS	8.0	12.9	79.3	77.6

Table 5: Evaluation of semantic image segmentation on the Cityscapes dataset