[13.1] Let **G** be a set of elements with one element called "1".

Part 1:

Given (1) $1a = a \ \forall a$, (2) $\forall a \ \exists \ a^{-1}$ such that $a^{-1} \ a = 1$, and (3) Associative Law: $a \ (b \ c) = (a \ b) \ c \ \forall \ a, \ b$, and c.

Show (A) $a \ 1 = a \ \forall a \ \text{and} \ (B) \ a \ a^{-1} = 1 \ \forall a.$

Part 2:

Replace (1) with (1'): $a = 1 = a \forall a$ **Show** this is not sufficient to imply (A) and (B)

Solution Part 1: From (2) $\exists (a^{-1})^{-1}$ such that

(4)
$$(a^{-1})^{-1} a^{-1} = 1$$
. So

(B)
$$a a^{-1} = (1a) a^{-1} = 1(a a^{-1}) = [(a^{-1})^{-1} a^{-1}] (a a^{-1}) = (a^{-1})^{-1} [(a^{-1}a) a^{-1}]$$

= $(a^{-1})^{-1} [1a^{-1}] = (a^{-1})^{-1} a^{-1} = 1$

(A)
$$a \stackrel{(2)}{1=} a (a^{-1} a) \stackrel{(3)}{=} (a a^{-1}) a \stackrel{(B)}{=} 1 a \stackrel{(1)}{=} 1$$

Solution Part 2: Let $G = \{1, x\}$ with multiplication defined by

$$1^2 = 1 x = 1$$
 and $x^2 = x 1 = x$.

(1'):
$$a = 1 = 1$$
 $\forall a$ (i.e., $1 = 1$ and $x = 1 = 1$)

(2): Define
$$1^{-1} = x^{-1} = 1$$
.
Then $a^{-1} a = 1 \ \forall a$ (i.e., $1^{-1} 1 = 1^2 = 1$ and $x^{-1} x = 1 x = 1$)

(3):
$$1(ab) = 1$$
 and $(1a)b = 1b = 1$ for any a and b in G , and $x(ab) = x$ and $(xa)b = xb = x$ for any a and b in G

But (B) fails:
$$x x^{-1} = x 1 = x \ne 1$$

Note: Part 2 solution is a simplification of deant's simplification of Beckmann's idea.