

آزمون نهایی درس: بهینهسازی محدب

مدت آزمون: ۱۳۰ دقیقه

تاریخ آزمون: ۱۴۰۰/۱۰/۲۶ ساعت آزمون: ۸:۰۰

دانشکده های فنی

پردیس

سال تحصيلي: ۱۴۰۱-۱۴۰۰

نيمسال: اول

سوال ۱: در مورد محدب بودن نواحی مشخص شده زیر، با ذکر دلایل بحث نمایید.

 $\{X \in R^2 | x_1 x_2 < 1\}$ (ب

 $\{X \in R^3 \mid x_1^2 + x_2^2 < |x_3| \}$ (الف

 $(X \in \mathbb{R}^n)$ مساله زیر را در نظر بگیرید. ($X \in \mathbb{R}^n$

$$\min \sum_{i=1}^n \log(1+ie^{x_i})$$

subject to: $\sum_{i=1}^{n} x_i \ge 1$

الف) در مورد محدب بودن مسئله بحث نمایید.

ب) آیا شرایط دوگانی قوی (strong duality) در این مسئله برقرار است؟

پ) جواب بهینه مسئله را بدست آورید. مراحل حل را توضیح دهید.

سوال۳:

الف) تابع و مىنيمم تابع را بدست آوريد. $f(x,y) = x^4 + (y-1)^2$ الف) تابع

ب) میخواهیم مینیمم تابع را از طریق یک الگوریتم با نقطه شروع $(x_0, y_0) = (1, 1)$ و با دقت $\varepsilon = 10^{-4}$ بدست آوریم. الگوریتم گرادیان با تعیین گام دقیق را اجرا کرده و جواب بهینه را بدست آورید.

. پ) الگوريتم گراديان با تعيين گام بصورت Back tracking با پارامترهای (0.5,0.5) و اجرا کرده و جواب بهينه را بدست آوريد

ت) الگوريتم نيوتن با تعيين گام دقيق را اجرا كرده و جواب بهينه را بدست آوريد. (نمره امتيازي)

سوال4:

الف) مسئله زير را از لحاظ تحدب بررسی نماييد و جواب مسئله را به صورت تحليلی محاسبه نماييد.

min $e^{x^2+(y-2)^2}$

 $subject to : x + y \le 1$

ب) اگر بخواهیم جواب مسئله فوق را به روش Barrier محاسبه نماییم، جواب هر تکرار Barrier را بر حسب θ بدست آورده و نشان دهید با افزایش تکرارها (افزایش θ) جواب Barrier به جواب قسمت الف همگرا می شود.

موفق باشيد