Integers II

Integers

- Binary representation of integers
 - Unsigned and signed
 - Arithmetic operations
- Consequences of finite width representations
 - Overflow
- Shifting operations

Values to Remember

Unsigned

- **UMin** = 0
 - o 0b00...00
- UMax = 2^{w} -1
 - o 0b11...11

Signed (2's Complement)

- TMin = -2^{w-1}
 - o 0b10...00
- TMax = $2^{w-1} 1$
 - o 0b01...11

Example: if w = 64

	Hex	Decimal	
UMax	FF FF FF FF FF FF FF	18,446,744,073,709,551,615	
TMax	7F FF FF FF FF FF FF	9,223,372,036,854,775,807	
UMin	00 00 00 00 00 00 00	0	
TMin	80 00 00 00 00 00 00 00	-9,223,372,036,854,775,808	

Sign Extension

- Given a w-bit integer, how can we extend it to a (w+k)-bit integer while keeping the value the same?
 - Unsigned pad with 0s
 - \blacksquare <u>Ex</u>: 0b1000 = 0b00001000 = 8
 - Signed pad with the most significant bit
 - \blacksquare Ex: 0b1000 = 0b111111000 = -8

Two's Complement Arithmetic

- Same as unsigned!
 - Simplifies hardware, no special algorithm needed
 - Just add as normal, then <u>discard the highest carry bit</u>
 - Modular addition: result = sum modulo 2^w

Example:

		carry	
		1111	
0011	= 3	1101	= -3
+0001	= 1	<u>+1111</u>	= -1
0100	= 4	1 1100	= -4

Why Does Two's Complement Work?

- For all representable numbers *x*, we theoretically want *additive inverse*:
 - \circ i.e. (bit representation of x) + (bit representation of -x) = 0
- What are the 8-bit negative encodings for the following?

Why Does Two's Complement Work? (pt 2)

- For all representable numbers *x*, we theoretically want *additive inverse*:
 - \circ i.e. (bit representation of x) + (bit representation of -x) = 0
- What are the 8-bit negative encodings for the following?

$$\begin{array}{r} 00000001 \\ + 11111111 \\ \hline 00000000 \end{array}$$

$$\begin{array}{r} 00000010 \\ + 11111110 \\ \hline 00000000 \end{array}$$

$$\begin{array}{r} 11000011 \\ +00111101 \\ \hline 00000000 \end{array}$$

These are the bitwise complement plus 1!

$$-x == -x + 1$$

Integers

- Binary representation of integers
 - Unsigned and signed
 - Arithmetic operations
- Consequences of finite width representations
 - Overflow
- Shifting operations

Arithmetic Overflow

- What happens if a calculation produces a result that can't be represented in the current encoding scheme? Overflow!
 - Remember: fixed width integers can't represent every possible number
 - Occurs in both signed and unsigned
 - Can occur in both positive and negative directions
- Both C and Java ignore overflow exceptions
 - You end up with a bad value in your program and no indication/warning

Overflow: Unsigned

• Addition: drop carry bit (result is 2^w too small)

$$\begin{array}{rcl}
1111 & = & 15 \\
+ & 0001 & = & 1 \\
\hline
+ & 0000 & = & 16
\end{array}$$

Subtraction: "borrow" extra bit (result is 2^w too large)

$$\begin{array}{rcl}
 10001 & = & 1 \\
 - 0010 & = & 2 \\
 \hline
 1111 & = & -1
 \end{array}$$

Occurs when result is *less than* both operands for addition, or *greater than* for subtraction

Overflow: Signed

Positive addition: (+) + (+) = (-)

$$\begin{array}{rcl}
0110 & = & 6 \\
+ & 0011 & = & 3 \\
1001 & = & -7???
\end{array}$$

Negative addition (i.e. subtraction): (-) + (-) = (+)

$$\begin{array}{rcl}
1001 & = & -7 \\
- & 0011 & = & 3 \\
\hline
0110 & = & 6???
\end{array}$$

Occurs when both operands for an addition have the same sign, and result doesn't match

Why does this matter?

- 1985: Therac-25 radiation therapy machine
 - Overdoses of radiation due to arithmetic overflow on 1-byte safety flag
- **2000**: Y2K problem
 - Limited representation (2-digit decimal year)
 - Similar issue will occur with Unix time in 2038!

- 2013: Deep impact spacecraft lost
 - Suspected integer overflow from storing time as tenth-seconds in unsigned int
 - Lost on 8/11/13, 00:38:49.6

Integers

- Binary representation of integers
 - Unsigned and signed
 - Arithmetic operations
- Consequences of finite width representations
 - Overflow
- Shifting operations

Shift Operations

- Move all bits left or right, extra bits "fall off" the end
- Left shift by n positions (x << n)
 - Lose the most-significant n bits, fill in the least-significant n bits with 0s
- Right shift by *n* positions (x >> n)
 - Lose the least-significant *n* bits
 - Unsigned, use **logical**: fill with most-significant *n* bits with 0s
 - Signed, use **arithmetic**: replicate the previous most-significant bit

	X	0010 0010
1	x << 3	0001 0 <u>000</u>
	(logical) x >> 2	<u>00</u> 00 1000
	(arithmetic) x>>	<u>00</u> 00 1000

Ex: 0xA2

X	1010 0010
x << 3	0001 0 <u>000</u>
(logical) x >> 2	<u>00</u> 10 1000
(arithmetic) x>>	<u>11</u> 10 1000

Shift Operations (pt 2)

- Arithmetic
 - Left shift (x << n) == multiply by 2ⁿ
 - Right shift $(x >> n) == \underline{\text{divide}} \text{ by } 2^n$
 - For signed values, logical right shift preserves the sign
 - Fun fact: Shifting is often faster than the general multiply and divide operations!
- Notes:
 - Shifts by less than 0 or more than w (width of the variable) are undefined
 - i.e. we don't know what will happen!
 - In Java, arithmetic shift is >>, logical is >>>

Left Shifting, 8-bit Example

- Shifting can cause overflow!
- In theory x << n should be x^*2^n

Signed overflow

Right Shifting, 8-bit Example

- Unsigned = <u>logical</u> shift
- In theory, x >> n should be $x \div 2^n$

Code	Binary	Unsigned	Theoretical Value
x = 240u	11110000	240	240
R1 = x >> 3	00011110 000	30	30
R2 = x >> 5	00000111 10000	7	7.5?

Right Shifting, 8-bit Example (pt 2)

- Signed = <u>arithmetic</u> shift
- In theory, x >> n should be $x \div 2^n$

Code	Binary	Unsigned	Theoretical Value
x = -16	11110000	-16	-16
R1 = x >> 3	<u>111</u> 11110 000	-2	-2
R2 = x >> 5	<u>11111</u> 111 10000	-1	-0.5?

Summary

- We can represent a limited number of values in w bits
 - When we exceed the limit (in either direction), we get overflow
- **Shifting** is a useful bitwise behavior
 - Can be used to remove certain bits (similar to masking), or in place of multiplication
 - Right shift can be logical or arithmetic
 - Logical pads with 0s, used for unsigned
 - Arithmetic pads with MSB, used for signed

BONUS SLIDES

Some examples of using shift operators in combination with bitmasks.

- Extract the 2nd most significant byte of an int
- Extract the sign bit of a signed int
- Conditionals as Boolean expressions

Practice Question 1

- Assuming 8-bit data (i.e., bit position 7 is the MSB), what will the following expression evaluate to?
 - UMin = 0, UMax = 255, TMin = -128, TMax = 127

Practice Questions 2

- For the following additions, did signed and/or unsigned overflow occur?
 - $\bigcirc 0x27 + 0x81$
 - $\bigcirc 0x7F + 0xD9$
- Helpful values (assuming 8-bit integers):
 - \circ **0x27** = 39 (signed) = 39 (unsigned)
 - o 0xD9 = -39 (signed) = 217 (unsigned)
 - o 0x7F = 127 (signed) = 127 (unsigned)
 - o 0x81 = -127 (signed) = 129 (unsigned)

Using Shifts and Masks

- Extract the 2nd most significant byte of an int:
 - First shift, then mask: (x>>16) & 0xFF

X	0000001	00000010	0000 0011	00000100
x>>16	00000000	00000000	0000 0001	00000010
0xFF	00000000	00000000	00000000	11111111
(x>>16) & 0xFF	00000000	00000000	00000000	00000010

○ Or first mask, then shift: (x & 0xFF0000)>>16

X	00000001 00000010 00000011 00000100
0xFF0000	00000000 11111111 00000000 00000000
X & 0xFF0000	0000000 00000010 00000000 00000000
(x & 0xFF)>>16	0000000 00000000 00000000 00000010

Using Shifts and Masks (pt 2)

- Extract the sign bit of a signed int:
 - First shift, then mask: (x>>31) & 0x1
 - Assuming arithmetic shift here, but this works in either case
 - Need mask to clear 1s possibly shifted in

x	0 0000001	00000010	00000011	00000100
x>>31	00000000	00000000	00000000	000000€ 0
0x1	00000000	00000000	00000000	00000001
(x>>31) & 0x1	00000000	00000000	00000000	00000000
x	1 0000001	00000010	00000011	00000100
x>>31	11111111	11111111	111111111	1111111 1
0x1	00000000	00000000	00000000	00000001
(x>>31) & 0x1	00000000	00000000	00000000	00000001