Action Constrained Quasi-Newton Methods:

Robert Gower (Joint work with Jacek Gondzio and Peter Richtarik)

ISMP 2015, the 22nd International Symposium on Mathematical Programming.

Action Constrained Quasi-Newton Methods: for Preconditioning Sequences of Systems

Robert Gower (Joint work with Jacek Gondzio and Peter Richtarik)

ISMP 2015, the 22nd International Symposium on Mathematical Programming.

Table of Contents

The Problem

Motivation

The Assumptions

Iterative Methods Sample Action

The Method

Two Equivalent Formulations

Adding a Symmetry Constraint

Combining with a linear solver

Conjugate Gradients

Parallel Limited memory LBFGS

Numerics

Conclusions

Extensions

Preconditioning Randomized methods

$$\nabla^2 f(x_k) d_k = -\nabla f(x_k).$$
$$x_{k+1} = x_k + d_k$$

*X*0

The Hessian "slowly" changes $\nabla^2 f(x_{k+1}) \approx \nabla^2 f(x_k)$.

The Hessian "slowly" changes $\nabla^2 f(x_{k+1}) \approx \nabla^2 f(x_k)$. Each Newton system is similar

The Hessian "slowly" changes $\nabla^2 f(x_{k+1}) \approx \nabla^2 f(x_k)$. Each Newton system is similar Solving each system individually is a waste.

Solve Sequence of linear systems

Solve in x each

$$A_k x = b_k$$
, for $k = 1, \ldots$,

where $A_k \in \mathbb{R}^{n \times n}$ nonsingular $b \in \mathbb{R}^n$ and $x \in \mathbb{R}^n$.

- ► Continuous $(A_k)_k$ changes "slowly" so that $||A_{k+1}^{-1} A_k^{-1}||$ is "small"
- ▶ Cheap Action Only have access to sampled action $S_k \mapsto A_k S_k$ where $S_k \in \mathbb{R}^{n \times q_k}$

Solve Sequence of linear systems

Solve in x each

$$X_k A_k x = X_k b_k$$
, for $k = 1, \ldots$,

where $A_k \in \mathbb{R}^{n \times n}$ nonsingular $b \in \mathbb{R}^n$ and $x \in \mathbb{R}^n$.

- Continuous $(A_k)_k$ changes "slowly" so that $||A_{k+1}^{-1} A_k^{-1}||$ is "small"
- ▶ Cheap Action Only have access to sampled action $S_k \mapsto A_k S_k$ where $S_k \in \mathbb{R}^{n \times q_k}$

Solution Strategy

Maintain a sequence of preconditioners $X_k \approx A_k^{-1} \in \mathbb{R}^{n \times n}$ where $X_{k+1} = X_k + \text{update}(S_{k+1}, A_{k+1}S_{k+1}),$

where the update is low rank.

The Assumptions

The Continuous property can arise when $(A_k)_k$ is the result of evaluating a continuous matrix field, e.g, Newton type systems

$$f \in C^2(\mathbb{R}^n), \qquad \nabla^2 f(x_k) d_k = -\nabla f(x_k),$$
 $F \in C(\mathbb{R}^n, \mathbb{R}^n), \qquad DF(x_k) d_k = -F(x_k).$

The Assumptions

The Continuous property can arise when $(A_k)_k$ is the result of evaluating a continuous matrix field, e.g, Newton type systems

$$f \in C^2(\mathbb{R}^n), \qquad \nabla^2 f(x_k) d_k = -\nabla f(x_k),$$
 $F \in C(\mathbb{R}^n, \mathbb{R}^n), \qquad DF(x_k) d_k = -F(x_k).$

The Cheap action also in Newton systems. With Automatic differentiation

$$\frac{d\nabla f(x_k + S_k y)}{dy}\bigg|_{y=0} = \nabla^2 f(x_k) S_k$$
$$\frac{dF(x_k + S_k y)}{dy}\bigg|_{y=0} = DF(x_k) S_k.$$

Minimal Residual Methods

Starting from $x_0 = 0 \in \mathbb{R}^n$, the iterates are

$$x_{k+1} = \min_{x} ||Ax - b||_2$$
, subject to $x = S y$,

where $S \in \mathbb{R}^{n \times p}$ with $p \ll n$.

Minimal Residual Methods

Starting from $x_0 = 0 \in \mathbb{R}^n$, the iterates are

$$x_{k+1} = \min_{x} ||Ax - b||_2$$
, subject to $x = S y$,

where $S \in \mathbb{R}^{n \times p}$ with $p \ll n$. In other words

$$x_{k+1} = S y^*, \quad y^* = \arg\min_{y} ||ASy - b||_2,$$

Which requires calculating AS

Minimal Residual Methods

Starting from $x_0 = 0 \in \mathbb{R}^n$, the iterates are

$$x_{k+1} = \min_{\mathbf{x}} ||A\mathbf{x} - \mathbf{b}||_2$$
, subject to $\mathbf{x} = S \mathbf{y}$,

where $S \in \mathbb{R}^{n \times p}$ with $p \ll n$. In other words

$$x_{k+1} = S y^*, \quad y^* = \arg\min_{y} ||ASy - b||_2,$$

Which requires calculating AS

Conjugate Gradients Method

CG solves, starting from $x_0 = 0 \in \mathbb{R}^n$,

$$x_{k+1} = \min_{x} \frac{1}{2} x^T A x - x^T b$$
, subject to $x = S y$.

Minimal Residual Methods

Starting from $x_0 = 0 \in \mathbb{R}^n$, the iterates are

$$x_{k+1} = \min_{\mathbf{x}} ||A\mathbf{x} - \mathbf{b}||_2$$
, subject to $\mathbf{x} = S \mathbf{y}$,

where $S \in \mathbb{R}^{n \times p}$ with $p \ll n$. In other words

$$x_{k+1} = S y^*, \quad y^* = \arg\min_{y} ||ASy - b||_2,$$

Which requires calculating AS

Conjugate Gradients Method

CG solves, starting from $x_0 = 0 \in \mathbb{R}^n$,

$$x_{k+1} = \min_{x} \frac{1}{2} x^T A x - x^T b$$
, subject to $x = S y$.

Which also requires calculating AS

$$x_{k+1} = S y^*, \quad y^* = \arg\min_{y} 1/2y^T S^T A S y - S^T y^T b.$$

Simplified Problem

Temporarily forget the sequence of systems.

Given $X_k \approx A^{-1}$ and a sampled action $S \mapsto AS$, calculate an updated estimate $X_{k+1} \approx A^{-1}$.

 $^{^0\}mathsf{For}$ a Bayesian interpretation see: Hennig, P. (2015). Probabilistic interpretation of linear solvers. SIAM Journal on Optimization, 25(1), 234260.

A positive definite matrix $W \succ 0 \in \mathbb{R}^{n \times n}$ that defines geometry $\langle X, Y \rangle_{F(W^{-1})} \stackrel{\text{def}}{=} \operatorname{Tr} \left(W^{-1} X^T W^{-1} Y \right)$ in $\mathbb{R}^{n \times n}$.

A positive definite matrix $W \succ 0 \in \mathbb{R}^{n \times n}$ that defines geometry $\langle X, Y \rangle_{F(W^{-1})} \stackrel{\text{def}}{=} \operatorname{Tr} \left(W^{-1} X^T W^{-1} Y \right)$ in $\mathbb{R}^{n \times n}$.

Quasi-Newton viewpoint: Action-Assimilate

$$X_{k+1} = \arg\min_{X \in \mathbb{R}^{n \times n}} ||X - X_k||_{F(W^{-1})}$$
 subject to $XAS = S$.

Same action as inverse $XAS = A^{-1}AS$.

A positive definite matrix $W \succ 0 \in \mathbb{R}^{n \times n}$ that defines geometry $\langle X, Y \rangle_{F(W^{-1})} \stackrel{\text{def}}{=} \operatorname{Tr} \left(W^{-1} X^T W^{-1} Y \right)$ in $\mathbb{R}^{n \times n}$.

Quasi-Newton viewpoint: Action-Assimilate

$$X_{k+1} = \arg\min_{X \in \mathbb{R}^{n \times n}} \lVert X - X_k
Vert_{F(W^{-1})}$$
 subject to $XAS = S$.

Same action as inverse $XAS = A^{-1}AS$.

The Approximate Inverse viewpoint

$$X_{k+1} = \arg\min_{X \in \mathbb{R}^{n \times n}, Y \in \mathbb{R}^{n \times q}} \|X - A^{-1}\|_{F(W^{-1})} \quad \text{subject to} \quad X = X_k + Y(WAS)^T.$$

Best approximation in an affine space.

A positive definite matrix $W \succ 0 \in \mathbb{R}^{n \times n}$ that defines geometry $\langle X, Y \rangle_{F(W^{-1})} \stackrel{\text{def}}{=} \operatorname{Tr} (W^{-1} X^T W^{-1} Y) \text{ in } \mathbb{R}^{n \times n}.$

Quasi-Newton viewpoint: Action-Assimilate

$$X_{k+1} = \arg\min_{X \in \mathbb{R}^{n \times n}} \lVert X - X_k
Vert_{F(W^{-1})}$$
 subject to $XAS = S$.

Same action as inverse $XAS = A^{-1}AS$.

$$X \in A^{-1} + \overset{\updownarrow}{L}$$
-Null (AS)

The Approximate Inverse viewpoint

$$X_{k+1} = \arg\min_{X \in \mathbb{R}^{n \times n}, Y \in \mathbb{R}^{n \times q}} \lVert X - A^{-1} \rVert_{F(W^{-1})} \quad \text{subject to} \quad X = X_k + Y(W\!A\!S)^T.$$

Best approximation in an affine space.
$$X \in X_k + L$$
-Range $((WAS)^T)$

$$L-\text{Null}(AS) \stackrel{\text{def}}{=} \{X \mid XAS = 0\} \text{ and } L-\text{Range}\left((WAS)^T\right) \stackrel{\text{def}}{=} \{X \mid X = Y(WAS)^T, Y \in \mathbb{R}^{n \times q}\}$$

$$L$$
-Null $(AS) \oplus L$ -Range $((WAS)^T) = \mathbb{R}^{n \times n}$

L-Null $(AS) \oplus L$ -Range $((WAS)^T) = \mathbb{R}^{n \times n}$

L-Null $(AS) \oplus L$ -Range $((WAS)^T) = \mathbb{R}^{n \times n}$

 $X_{k+1} = \arg\min_{V} ||X - A^{-1}||_{F(W^{-1})}^2$ subject to $X \in X_k + L$ -Range $(WAS)^T$

The Explicit Update

The solution to

$$X_{k+1} = \arg\min_{X} \lVert X - A^{-1} \rVert_{F(W^{-1})}^2 \quad \text{ subject to } \quad X \in X_k + L\text{-}\mathbf{Range}\left((\mathit{WAS})^{\mathsf{T}}\right)$$

is given by the rank—(num. of columns in S) update

$$X_{k+1} = X_k + (A^{-1} - X_k) Z W$$

= $X_k + (I - X_k A) S (S^T A^T W A S)^{-1} S^T A^T W$,

where

$$Z \stackrel{\text{def}}{=} AS(S^TA^TWAS)^{-1}S^TA^T$$
.

Need to form and invert a small matrix.

Symmetric matrices

When A is symmetric, we add a symmetry constraint

$$X_{k+1} = \arg\min_{X \in \mathbb{R}^{n \times n}} \lVert X - X_k \rVert_{F(W^{-1})} \quad \text{subject to} \quad XAS = S, \quad X = X^T,$$

with solution¹

$$X_{k+1} = A^{-1} + (I - WZ)(X_k - A^{-1})(I - ZW),$$

 $Z \stackrel{\text{def}}{=} AS(S^T A^T WAS)^{-1} S^T A^T.$

- ▶ A rank-3(num. of columns in S) update
- ▶ Do not need A^{-1} to calculate

¹Gower, R. M., & Gondzio, J. (2014). Action constrained quasi-Newton methods. arXiv:1412.8045v1, 134.

Choosing S and W

Action-Assimilate updates

Not symmetric:
$$X_{k+1} = A^{-1} + (X_k - A^{-1})(I - ZW)$$

Symmetric: $X_{k+1} = A^{-1} + (I - WZ)(X_k - A^{-1})(I - ZW)$,

where
$$Z = AS(S^TA^TWAS)^{-1}S^TA^T$$
.

Choose S and W so that AS is W-conjugate

$$S^T A^T WAS = \text{diagonal matrix}$$

Because

- inverting diagonal matrix is more numerically stable
- convenient choice for W when used in together with Krylov method
- ▶ guarantees Hereditary property ⇒ for local convergence
- Parallelizable limited memory updates!

Choosing S and W

Action-Assimilate updates

Not symmetric:
$$X_{k+1} = A^{-1} + (X_k - A^{-1})(I - ZW)$$

Symmetric: $X_{k+1} = A^{-1} + (I - WZ)(X_k - A^{-1})(I - ZW)$,
where $Z = AS(S^TA^TWAS)^{-1}S^TA^T$.

Choose S and W so that AS is W-conjugate

$$S^T A^T WAS = \text{diagonal matrix}$$

Because

- inverting diagonal matrix is more numerically stable
- convenient choice for W when used in together with Krylov method
- ightharpoonup guarantees **Hereditary** property \Rightarrow for local convergence
- Parallelizable limited memory updates!

Let $B \succ 0 \in \mathbb{R}^{n \times n}$ and $\langle x, y \rangle_B \stackrel{\text{def}}{=} x^T B y$. Iterates of any Krylov method look like

$$x_{k+1} = \arg\min_{x} ||x_* - x||_B^2$$
 subject to $x \in x_0 + \mathbf{Range}(S)$,

where $Ax_* = b$. If iterates can be calculated by

$$x_{i+1} = x_i + s_i$$
, for $i = 0, \ldots, k$,

where $[s_1, \ldots, s_k] = S$, then $S^T B S =$ diagonal matrix.

¹Liesen, J., & Strako, Z. (2013). Krylov subspace methods: principles and analysis. Oxford: Oxford University Press

Let $B \succ 0 \in \mathbb{R}^{n \times n}$ and $\langle x, y \rangle_B \stackrel{\text{def}}{=} x^T B y$. Iterates of any Krylov method look like

$$x_{k+1} = \arg\min_{x} ||x_* - x||_B^2$$
 subject to $x \in x_0 + \mathbf{Range}(S)$,

where $Ax_* = b$. If iterates can be calculated by

$$x_{i+1} = x_i + s_i$$
, for $i = 0, ..., k$,

where $[s_1, \ldots, s_k] = S$, then $S^T B S =$ diagonal matrix.

Choose AWA = B so that $S^TAWAS = S^TBS = diagonal matrix$

¹Liesen, J., & Strako, Z. (2013). Krylov subspace methods: principles and analysis. Oxford: Oxford University Press

Let $B \succ 0 \in \mathbb{R}^{n \times n}$ and $\langle x, y \rangle_B \stackrel{\text{def}}{=} x^T B y$. Iterates of any Krylov method look like

$$x_{k+1} = \arg\min_{x} ||x_* - x||_B^2$$
 subject to $x \in x_0 + \mathbf{Range}(S)$,

where $Ax_* = b$. If iterates can be calculated by

$$x_{i+1} = x_i + s_i$$
, for $i = 0, ..., k$,

where $[s_1, \ldots, s_k] = S$, then $S^T B S =$ diagonal matrix.

Choose AWA = B so that $S^TAWAS = S^TBS = diagonal matrix$

name	В	W
Conjugate Gradients	Α	A^{-1}
MINRES	A^TA	1
SYMMLQ	1	$(A^{T}A)^{-1}$.

 $^{^{1}}$ Liesen, J., & Strako, Z. (2013). Krylov subspace methods : principles and analysis. Oxford: Oxford University Press

Let $B \succ 0 \in \mathbb{R}^{n \times n}$ and $\langle x, y \rangle_B \stackrel{\text{def}}{=} x^T B y$. Iterates of any Krylov method look like

$$x_{k+1} = \arg\min_{x} ||x_* - x||_B^2$$
 subject to $x \in x_0 + \mathbf{Range}(S)$,

where $Ax_* = b$. If iterates can be calculated by

$$x_{i+1} = x_i + s_i$$
, for $i = 0, ..., k$,

where $[s_1, \ldots, s_k] = S$, then $S^T B S =$ diagonal matrix.

Choose AWA = B so that $S^TAWAS = S^TBS = diagonal matrix$

name	В	W
Conjugate Gradients	Α	A^{-1}
MINRES	A^TA	1
SYMMLQ	1	$(A^TA)^{-1}$.

 $^{^{1}}$ Liesen, J., & Strako, Z. (2013). Krylov subspace methods : principles and analysis. Oxford: Oxford University Press

The Conjugate Gradients (CG) method

Calculates an approximate solution x_{k+1} to $Ax^* = b$ by

$$x_{k+1} = \arg\min_{x} ||x - x^*||_A$$
, subject to $x \in x_0 + \mathbf{Range}(S)$

The columns of S are A conjugate, that is $S^TAS = \text{diagonal matrix}$.

Symmetric Action-Assimilate update $W = A^{-1}$

The symmetric update

$$X_{k+1} = \arg\min_{X \in \mathbb{R}^{n \times n}} ||X - X_k||_{F(A)}$$
 subject to $XAS = S$, $X = X^T$,

is then given by

$$X_{k+1} = \mathsf{quNac}(X_k, S, AS)$$

$$\stackrel{\mathsf{def}}{=} S(S^T A S)^{-1} S^T + (I - S(S^T A S)^{-1} S^T A) X_k (I - A S(S^T A S)^{-1} S^T)$$

An update with many names: block BFGS, Balancing Precon. and LMP

¹Gratton, S., Sartenaer, A., & Ilunga, J. T. (2011). On a Class of Limited Memory Preconditioners for Large-Scale Nonlinear Least-Squares Problems. SIAM Journal on Optimization, 21(3), 912935.

Quadratic Hereditary property

If
$$\mathbf{S} = [S_1, \dots, S_k] \in \mathbb{R}^{n \times n}$$
 is non-singular and $S_i^T A S_j = 0$ for $1 \le j < i \le k$ and

$$X_{i+1} = \operatorname{quNac}(X_i, S_i, AS_i), \text{ for } i = 1, \dots, k,$$

then X_{k+1} "inherits" previous actions

$$X_{k+1}AS_i = S_i$$
, for $i = 1, \ldots, k$.

Corollary:
$$X_{k+1}AS = S \Rightarrow X_{k+1} = A^{-1}$$
.

For sequence of system matrices $(A_k)_k$, choose S_k conjugate to A_k as an approximation!

Quadratic Hereditary property

If
$$\mathbf{S} = [S_1, \dots, S_k] \in \mathbb{R}^{n \times n}$$
 is non-singular and $S_i^T AWAS_j = 0$ for $1 \le j < i \le k$ and

then
$$X_{k+1}$$
 "inherits" previous actions

$$X_{k+1}AS_i = S_i$$
, for $i = 1, \dots, k$.

 $X_{i+1} = \text{quNac}(X_i, S_i, AS_i, W), \text{ for } i = 1, \dots, k,$

Corollary:
$$X_{k+1}A\mathbf{S} = \mathbf{S} \Rightarrow X_{k+1} = A^{-1}$$
.

For sequence of system matrices $(A_k)_k$, choose A_kS_k conjugate to W_k as an approximation!

Preconditioned Sequence using Conjugate Gradients

quNac: quasi-Newton Action Assimilate

```
Set X_0 = I.

For k = 1, \ldots,

Proxy solve using CG

(x_k, S_k, A_k S_k) = \operatorname{Precon\_CG}(X_k A_k x = X_k b_k)

Update Preconditioner

X_{k+1} = \operatorname{quNac}(X_k, S_k, A_k S_k)

End For
```

²Morales, J. L., & Nocedal, J. (2000). Automatic Preconditioning by Limited Memory Quasi-Newton Updating. SIAM Journal on Optimization, 10(4), 10791096.

Preconditioned Sequence using Conjugate Gradients

quNac: quasi-Newton Action Assimilate

```
Set X_0 = I.

For k = 1, \ldots,

Proxy solve using CG

(x_k, S_k, A_k S_k) = \operatorname{Precon\_CG}(X_k A_k x = X_k b_k)

Update Preconditioner

X_{k+1} = \operatorname{quNac}(X_k, S_k, A_k S_k)

End For
```

What about Limited Memory variants?

²Morales, J. L., & Nocedal, J. (2000). Automatic Preconditioning by Limited Memory Quasi-Newton Updating. SIAM Journal on Optimization, 10(4), 10791096.

Preconditioned Sequence using Conjugate Gradients

LquNac: Limited Memory quasi-Newton Action Assimilate

```
Set X_0 = I.

For k = 1, \ldots,

Proxy solve using CG

(x_k, S_k, A_k S_k) = \operatorname{Precon\_CG}(OpX_k A_k x = OpX_k b_k)

Update Preconditioner

OpX_{k+1}(v) = \operatorname{quNac}(OpX_{k+1}^0(v), S_k, A_k S_k)

End For
```

What about Limited Memory variants? This Limited Memory variant is a parallelizable LBFGS preconditioner²

²Morales, J. L., & Nocedal, J. (2000). Automatic Preconditioning by Limited Memory Quasi-Newton Updating. SIAM Journal on Optimization, 10(4), 10791096.

Unravelling Theorem

If the columns of
$$S := [s_1, \dots, s_q]$$
 are A -conjugate and $X_{k+1} = \operatorname{quNac}(X_k, S, AS)$

$$= \arg\min_{X \in \mathbb{R}^{n \times n}} \|X - X_k\|_{F(A)} \quad \text{subject to} \quad XAS = S, \quad X = X^T$$

Unravelling Theorem

If the columns of
$$S:=[s_1,\ldots,s_q]$$
 are A -conjugate and $X_{k+1}=\operatorname{quNac}(X_k,S,AS)$
$$=\arg\min_{X\in\mathbb{R}^{n\times n}}\|X-X_k\|_{F(A)}\quad\text{subject to}\quad XAS=S,\quad X=X^T$$
 then $X_{k+1}=X_k^q$ where $X_k^1\stackrel{\mathrm{def}}{=}X_k$ and $X_k^{i+1}=\operatorname{quNac}(X_k^i,s_i,As_i)$
$$=\arg\min_{X\in\mathbb{R}^{n\times n}}\|X-X_k^i\|_{F(A)}\quad\text{subject to}\quad XAs_i=s_i,\quad X=X^T,$$

$$=\mathrm{BFGS}(X_k^i,s_i,As_i),\quad\text{for }i=0,\ldots,q-1.$$

Unravelling Theorem

If the columns of
$$S:=[s_1,\ldots,s_q]$$
 are A -conjugate and $X_{k+1}=\operatorname{quNac}(X_k,S,AS)$
$$=\arg\min_{X\in\mathbb{R}^{n\times n}}\|X-X_k\|_{F(A)}\quad\text{subject to}\quad XAS=S,\quad X=X^T$$
 then $X_{k+1}=X_k^q$ where $X_k^1\stackrel{\mathrm{def}}{=}X_k$ and $X_k^{i+1}=\operatorname{quNac}(X_k^i,s_i,As_i)$
$$=\arg\min_{X\in\mathbb{R}^{n\times n}}\|X-X_k^i\|_{F(A)}\quad\text{subject to}\quad XAs_i=s_i,\quad X=X^T,$$

$$=\mathrm{BFGS}(X_k^i,s_i,As_i),\quad\text{for }i=0,\ldots,q-1.$$

That is

$$X_{k+1}(v) = \mathsf{LBFGS-two-loops}(X_k, [s_1, \dots, s_q], [As_1, \dots, As_q], v)$$
 but also
$$X_{k+1}(v) = \mathsf{quNac}(X_k, S, AS)(v) = \underline{SS}^T v + \left(I - \underline{SS}^T A\right) X_k \left(I - A\underline{SS}^T\right) v,$$
 where $S = S(S^T AS)^{-1/2}$

Comparing the L-BFGS two-loop recursion with the LquNac

$$\textbf{Input } \textit{OpX}^0_k: \mathbb{R}^n \rightarrow \mathbb{R}^n, \underline{S} = S(S^T A S)^{-1/2} = \left[\underline{s}_1, \dots, \underline{s}_q\right] \text{ and } v \in \mathbb{R}^n.$$

	Algorithm 3.1: LquNac		Algorithm 3.2: two-loop recursion
1		1	\dots for $i=1,\dots,q$ do
2	$\alpha \leftarrow \underline{S}^T v$	2	$\underline{\alpha_i} \leftarrow \underline{s_i}^T v;$
3			$v \leftarrow v - \alpha_i A \underline{s}_i;$
4			$r \leftarrow OpX_k^0(v);$
5			for $i = q, \dots, 1$ do
	$\beta \leftarrow (A\underline{S})^T r$	6	$\beta_i \leftarrow (A\underline{s}_i)^T r;$ $r \leftarrow r + \underline{s}_i(\alpha_i - \beta_i);$
7	$z \leftarrow r + \underline{S}(\alpha - \beta)$ Output: z	7	
	Output: z	_	Output: r

Matrix-vector product instead of a loop.

Comparing the L-BFGS two-loop recursion with the LquNac

$$\textbf{Input } \textit{OpX}^0_k: \mathbb{R}^n \rightarrow \mathbb{R}^n, \underline{S} = S(S^T A S)^{-1/2} = \left[\underline{s}_1, \dots, \underline{s}_q\right] \text{ and } v \in \mathbb{R}^n.$$

Algorithm 3.3: LquNac	Algorithm 3.4: two-loop recursion
1	1 for $i=1,\ldots,q$ do
$\alpha \leftarrow \underline{S}^T v$	$\underline{\alpha_i} \leftarrow \underline{s_i}^T v;$
$z \leftarrow v - A\underline{S}\alpha$	$v \leftarrow v - \alpha_i A\underline{s}_i;$
$4 r \leftarrow OpX_k^0(z)$	$4 r \leftarrow OpX_k^0(v);$
5	${f 5}$ for $i=q,\ldots,1$ do
$\beta \leftarrow (A\underline{S})^T r$	$ \begin{array}{c c} 6 & \beta_i \leftarrow (A\underline{s}_i)^T r; \\ 7 & r \leftarrow r + \underline{s}_i(\alpha_i - \beta_i); \end{array} $
7 $z \leftarrow r + \underline{S}(\alpha - \beta)$ Output: z	
Output: z	Output: r

Matrix-vector product instead of a loop.

Comparing the L-BFGS two-loop recursion with the LquNac

Logistic L2 Regression tests:

$$\min_{w} L_w(y,X) + \|w\|_2^2$$

$$L_w(y,X) = \sum_{i=1}^m \ln \left(1 + \exp(-y_i \langle x^i, w \rangle)\right).$$

quNac vs	s BFGS
41	3
quNac vs	s Newton_CG
31	12
LquNac vs	s LBFGS
27	17
LquNac v	Newton_CG
14	29

Table: # fastest runs on 44 binary classifications problems from LibSVM

Logistic L2 Regression tests:

$$\min_{w} L_w(y,X) + \|w\|_2^2$$

$$L_w(y,X) = \sum_{i=1}^m \ln \left(1 + \exp(-y_i \langle x^i, w \rangle)\right).$$

quNac vs	s BFGS
41	3
quNac vs	s Newton_CG
31	12
LquNac vs	s LBFGS
27	17
LquNac v	Newton_CG
14	29

Table: # fastest runs on 44 binary classifications problems from LibSVM

Logistic L2 Regression tests:

$$\min_{w} L_w(y,X) + \|w\|_2^2$$

$$L_w(y,X) = \sum_{i=1}^m \ln \left(1 + \exp(-y_i \left\langle x^i, w
ight
angle) \right).$$

Dimensions (n; m) = (8; 157413)

Logistic pseudo-Huber Regression tests:

$$\min_{w} L_w(y, X) + R_{\mu}(w) \stackrel{\text{def}}{=} \mu \sum_{i=1}^{n} \left(\sqrt{1 + x_i^2/\mu^2} - 1 \right).$$

quNac v	s BFGS
32	10
quNac v	s Newton_CG
37	4
LquNac v	LBFGS
18	25
LquNac v	rs Newton₋CG
24	16

Table: # fastest runs on 44 binary classifications problems from LibSVM

²Fountoulakis, K., & Gondzio, J. (2013). A Second-Order Method for Strongly Convex I1-regularization Problems.

Logistic pseudo-Huber Regression tests:

$$\min_{w} L_w(y, X) + R_{\mu}(w) \stackrel{\text{def}}{=} \mu \sum_{i=1}^{n} \left(\sqrt{1 + x_i^2/\mu^2} - 1 \right).$$

quNac v	s BFGS
32	10
quNac v	s Newton_CG
37	4
LquNac v	LBFGS
18	25
LquNac v	rs Newton₋CG
24	16

Table: # fastest runs on 44 binary classifications problems from LibSVM

²Fountoulakis, K., & Gondzio, J. (2013). A Second-Order Method for Strongly Convex I1-regularization Problems.

Logistic pseudo-Huber Regression tests:

$$\min_{w} L_w(y, X) + R_{\mu}(w) \stackrel{\text{def}}{=} \mu \sum_{i=1}^{n} \left(\sqrt{1 + x_i^2/\mu^2} - 1 \right).$$

Dimension (n; m) = (2000, 400'000)

Table:

Logistic pseudo-Huber Regression tests:

20

40

60

time (s)

80

100

120

$$\min_{w} L_{w}(y,X) + R_{\mu}(w) \stackrel{\text{def}}{=} \mu \sum_{i=1}^{n} \left(\sqrt{1 + x_{i}^{2}/\mu^{2}} - 1 \right).$$

$$\text{Dimension } (n;m) = (7129;44)$$

$$\log_{10^{\circ}} \text{logistic_huber_duke}$$

Conclusions

- Tool for updating preconditioners for slowly changing linear systems.
- ► A connection between quasi-Newton and Approximate Preconditioning formulation.
- Guideline for implementing with any Krylov method
- Successful implementation with CG
- Parallelizable L-BFGS type preconditioner
- Extensions to other iterative methods for solving systems
- G.,R & Gondzio, J, Action constrained quasi-Newton methods January 2014, Technical Report ERGO-14-020
- G.,R & P Richtárik, Randomized Iterative Methods for Inverting Matrices (in progress, August 2015?)

All block and randomized variants of Kaczmarz method (ARM), Gauss-Seidel, Coordinate descent, Randomized Newton . . .

Randomized Methods

Let $S \in \mathbb{R}^{n \times p}$ be a random matrix and $W \succ 0 \in \mathbb{R}^{n \times n}$ then iterate $k = 1, \ldots,$

$$x_{k+1} = \arg\min_{x} \|x - x_k\|_{W^{-1}}, \quad \text{subject to } S^T A x = S^T b,$$
 where $\langle x, y \rangle_{W^{-1}} = x^T W^{-1} y.$

A sampled action $S \rightarrow S^T A$ comes free!

Quasi-Newton viewpoint: Action-Assimilate

$$X_{k+1} = \arg\min_{X \in \mathbb{R}^{n \times n}} ||X - X_k||_{F(W^{-1})}$$
 subject to $S^T A X = S^T$.

Same left action as inverse $S^TAX = S^TAA^{-1}$.

Randomized Methods

Let $S \in \mathbb{R}^{n \times p}$ be a random matrix and $W \succ 0 \in \mathbb{R}^{n \times n}$ then iterate $x_{k+1} = \arg\min_{x} \|x - x_k\|_{W^{-1}}$, subject to $S^T A x = S^T b$,

and

$$\mathbf{E}\left[\|x_k - x_*\|_{W^{-1}}^2\right] \le \left(1 - \lambda_{\min} \mathbf{E}\left[W^{1/2} Z W^{1/2}\right]\right)^k \|x_0 - x_*\|_{W^{-1}}^2$$

Quasi-Newton viewpoint: Action-Assimilate

$$X_{k+1} = \arg\min_{X \in \mathbb{R}^{n \times n}} \|X - X_k\|_{F(W^{-1})}$$
 subject to $S^T A X = S^T$.

and

$$\mathbf{E}\left[\|X_k - A^{-1}\|_{F(W^{-1})}^2\right] \le \left(1 - \frac{1}{\mathsf{Tr}\left((W^{1/2}\mathsf{E}\left[Z\right]W^{1/2})^{-1}\right)}\right)^k \|X_0 - A^{-1}\|_{F(W^{-1})}^2$$

Where $Z = A^T S(S^T AWA^T S)^{-1} S^T A$.

Randomized Methods

Let $S \in \mathbb{R}^{n \times p}$ be a random matrix and $A \succ 0 \in \mathbb{R}^{n \times n}$ then iterate $x_{k+1} = \arg\min_{x} ||x - x_k||_A$, subject to $S^T A x = S^T b$,

and

$$\mathbf{E}\left[\|x_{k}-x_{*}\|_{A}^{2}\right] \leq \left(1-\frac{\lambda_{\min}(A)}{\mathsf{Tr}(A)}\right)^{k}\|x_{0}-x_{*}\|_{A}^{2}$$

Quasi-Newton viewpoint: Action-Assimilate

$$X_{k+1} = \arg\min_{X \in \mathbb{R}^{n \times n}} ||X - X_k||_{F(A)}$$
 subject to $S^T A X = S^T$, $X = X^T$, and

$$\mathbf{E}\left[\|X_k - A^{-1}\|_{F(A)}^2\right] \le \left(1 - \frac{1}{\mathsf{Tr}(A)\,\mathsf{Tr}(A^{-1})}\right)^k \|X_0 - A^{-1}\|_{F(A)}^2$$

Where $Z = A^T S(S^T AWA^T S)^{-1} S^T A$. When $W^{-1} = A$ and $S = e_i$ with probability $p_i = A_{ii}/\text{Tr}(A)$

Randomized Methods

Let $S \in \mathbb{R}^{n \times p}$ be a random matrix and $\succ 0 \in \mathbb{R}^{n \times n}$ then iterate $x_{k+1} = \arg\min \|x - x_k\|_A$, subject to $S^T A x = S^T b$,

and

$$\mathbf{E}\left[\|x_{k}-x_{*}\|_{A}^{2}\right] \leq \left(1-\frac{\lambda_{\min}(A)}{\mathsf{Tr}(A)}\right)^{k}\|x_{0}-x_{*}\|_{A}^{2}$$

Quasi-Newton viewpoint: Action-Assimilate

 $X_{k+1} = \arg\min_{X \in \mathbb{R}^{n \times n}} \lVert X - X_k \rVert_{F(A)} \quad \text{subject to} \quad \textbf{S}^{\mathsf{T}} A X = \textbf{S}^{\mathsf{T}}, \quad X = X^{\mathsf{T}},$ and

$$\mathbf{E}\left[\|X_{k}-A^{-1}\|_{F(A)}^{2}\right] \leq \left(1 - \frac{1}{\mathsf{Tr}\left(A\right)\mathsf{Tr}\left(A^{-1}\right)}\right)^{k} \|X_{0} - A^{-1}\|_{F(A)}^{2}$$

Where $Z = A^T S(S^T AWA^T S)^{-1} S^T A$.

G.,R & P Richtárik, Randomized Iterative Methods for Linear Systems arXiv:1506.03296