THE EXAM- SCHEDULING PROBLEM

EXAMS

ΑI

FINANCE

STATISTICS

PHYSICS

AGRI. ENGG

EXAM - SLOTS

3:00 pm - 5:00 pm

5:00 pm - 7:00 pm

7:00 pm – 9:00 pm

9:00 pm - 11:00 pm

11:00 pm – 1:00 am

Student – Overlap Matrix

	Al	FIN	STAT	AGR	PHY
Al	-	Yes	Yes	No	No
FIN	Yes	-	Yes	No	Yes
STAT	Yes	Yes	-	No	Yes
AGR	No	No	No	-	Yes
PHY	No	Yes	Yes	Yes	-

Objective

• All exams must be held.

No student should miss an exam.

The exams must be wrapped up ASAP.

Colour – Slot Mapping

- Imagine 5 distinct colours {Col.1, Col.2, Col.3, Col.4, Col.5}
- Each colour is associated with one unique slot.

EXAM - SLOTS	Colour
3:00 pm - 5:00 pm	COL.1
5:00 pm – 7:00 pm	COL.2
7:00 pm – 9:00 pm	COL.3
9:00 pm – 11:00 pm	COL.4
11:00 pm – 1:00 am	COL.5

Graph – Colouring Problem

- Imagine 5 distinct colours {Col.1, Col.2, Col.3, Col.4, Col.5}
- Each colour is associated with one unique slot.
- Assign a colour to each node.
- No two adjacent nodes should have the same colour.
- Colour all nodes using minimum number of colours.

Chromatic Number

■ *GT Problem*: Given a graph G and 'k' colours assign a colour to each node such that no two adjacent nodes have the same colour.

 The minimum value of 'k' for which such a colouring scheme exists for a graph G is called the chromatic number of graph G

Basic Colouring Algorithm

Given a graph G

- i. Order the *vertices* in some order: $\,v_1$, v_2 , v_3 , v_4 $\,v_n$
- ii. Order the *colours* in some order: COL_1 , COL_2 , COL_3 , COL_n
- iii. For i=1,2,3....nAssign the lowest legal colour to v_i

Theorem

If every node is a graph G has degree \leq d, the basic algorithm will require AT MOST (d+1) colours, no matter what the ordering is.