37 Cl(d, α), 37 Cl(d, $\alpha\gamma$) 1975VaYG,1972Va07

1972Va07,1975VaYG: 37 Cl(d, $\alpha\gamma$) 35 S with a 4.25-MeV deuteron beam of 55 nA from the Groningen 5 MV Van de Graaff generator. The target was a 100 μ g/cm 2 Co 37 Cl enriched to 98% evaporated onto 10μ g/cm 2 Formva plus 10μ g/cm 2 carbon. α particles were detected using a 60- μ m annular silicon detector. γ rays were detected using a 120 cm 3 Ge(Li) at 90°. Measured σ (E $_{\alpha}$), E $_{\gamma}$, I $_{\gamma}$, and $\alpha\gamma$ -coin. Deduced levels, γ -branching ratios.

1968Te06: 37 Cl(d, $\alpha\gamma$) 35 S with 3.1-4.6-MeV deuteron beams of 50 nA from the Groningen 5-MV Van de Graaff generator. The target was a 100 μ g/cm 2 Co 37 Cl both of natural 37 Cl abundance and enriched to 93% evaporated onto 10μ g/cm 2 Formva plus 10μ g/cm 2 carbon. α particles were detected using an annular solid-state detector at 168-173°. γ rays were detected using a 3 in. by 3 in. NaI(Tl) scintillator at 55°. Measured σ (E $_{\alpha}$), E $_{\gamma}$, and $\alpha\gamma$ -coin. Deduced levels.

1955Pa54: 37 Cl(d, α) 35 S with 3.0, 5.6, 6.0, 7.0, and 7.5-MeV deuteron beams from the MIT-ONR electrostatic generator. Targets were 80^- and $300-\mu g/\text{cm}^2$ Barium chloride (75.4% 35 Cl, 24.6% 37 Cl) evaporated onto formvar films on a gold layer. Charged reaction products emitted at 90° were magnetically analyzed by a broad-range spectrograph. Measured $\sigma(E_\alpha)$. Deduced levels.

³⁵S Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0	3/2+	
1572.2 <i>12</i>	1/2+	
1990.0 <i>10</i>	5/2-,7/2-	E(level): Other: 1992 10 from 1955Pa54.
2348.2 10	3/2-	E(level): Other: 2348 10 from 1955Pa54.
2716.7 <i>10</i>	(3/2,5/2,7/2)	E(level): Other: 2714 10 from 1955Pa54.
2939.2 <i>13</i>	(3/2,5/2)	
3423 5		
3560.8 19		
3598.4 <i>21</i>		
3803.6 19		
3818.1 11		
3889.0 19		
4022.2 22		Ed. 1) Oil 1005 10 C 1055D 51
4027.7 10		E(level): Other: 4025 10 from 1955Pa54.
4108 3		
4180 3		
4187 <i>3</i> 4302 <i>4</i>		
4302 <i>4</i> 4480.0 <i>16</i>		
. 100.0 10		

[†] From 1975VaYG based on γ -ray energies.

 $\gamma(^{35}S)$

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\sharp}	E_f J_f^π	Comments
1572.2	1/2+	1572.2	100	0 3/2+	
1990.0	5/2-,7/2-	1989.9	100	$0 3/2^+$	
2348.2	$3/2^{-}$	776.0	25 2	1572.2 1/2 ⁺	
		2348.1	75 2	$0 3/2^+$	
2716.7	(3/2,5/2,7/2)	2716.6	100	$0 3/2^+$	
2939.2	(3/2,5/2)	2939.1	100	$0 3/2^+$	
3423		3423	100	$0 3/2^+$	
3560.8		1212.6	35 4	2348.2 3/2-	
		1570.8	65 <i>4</i>	1990.0 5/2-,7/2-	
3598.4		3598.2	100	$0 3/2^+$	I_{ν} : >95 in 1975VaYG.
3803.6		2231.3	38 <i>3</i>	1572.2 1/2+	,
		3803.4	62 <i>3</i>	$0 3/2^+$	
3818.1		1828.1	100	1990.0 5/2-,7/2-	
3889.0		1540.8	40 4	2348.2 3/2-	

[‡] From $\gamma(\theta)$ of $^{34}S(d,p\gamma)^{35}S$ in 1972Va07.

37 Cl(d, α), 37 Cl(d, $\alpha\gamma$) 1975VaYG,1972Va07 (continued)

γ (35S) (continued)

$E_i(level)$	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Comments
3889.0	1898.9	45 5	1990.0	5/2-,7/2-	
	3888.8	15 <i>3</i>	0	3/2+	
4022.2	2032.1	100	1990.0	5/2-,7/2-	
4027.7	1088.5	33 4	2939.2	(3/2,5/2)	
	1679.5	33 4	2348.2	3/2-	
	2455.4	34 6	1572.2	1/2+	
4108	4108	100	0	3/2+	I_{γ} : >95 in 1975VaYG.
4180	2608	18 5	1572.2	1/2+	
	4180	82 5	0	3/2+	
4187	1839	100	2348.2	3/2-	I_{γ} : >95 in 1975VaYG.
4302	1954	59 <i>5</i>	2348.2	3/2-	
	4302	41 5	0	3/2+	
4480.0	1763.3	36 <i>4</i>	2716.7	(3/2,5/2,7/2)	
	2489.9	15 <i>4</i>	1990.0	5/2-,7/2-	
	2907.7	39 <i>4</i>	1572.2	1/2+	
	4479.7	10 2	0	3/2+	

 $^{^{\}dagger}$ Deduced by evaluators from level-energy difference in 1975VaYG. ‡ From 1975VaYG.

37 Cl(d, α), 37 Cl(d, $\alpha\gamma$) 1975VaYG,1972Va07

Level Scheme

Intensities: % photon branching from each level

