#### Physics 129: Particle Physics Lecture 23: CP Violation

Nov 12, 2020

- Suggested Reading:
  - ► Thomson Chapter 14
- Reminder: Quiz #3 must be taken by midnight tonight

#### Our Weak Interaction Roadmap

- Unlike strong and EM, weak interactions don't conserve parity
  - Vertex selects left-handed state for of particles (and right handed state for anti-particles)
    - Discussed Nov 3
- $W^{\pm}$  coupling to leptons respect flavor familes  $(e, \mu, \tau)$  but coupling to quarks do not
  - ► Coupling not diagonal in quark flavor: Need to change basis
    - Discussed Nov 5
  - Introduction of this change in basis gives new phenomenology, including mixing and CP violation
    - Mixing discussed this Tuesday
    - Today: CP Violation
- ullet  $W^\pm$  has charge, so it couples to photon
  - Cannot write down a weak theory independent of QED
  - ${\blacktriangleright}$  Unified electroweak theory includes  $Z^0$  as well as  $W^\pm$  and  $\gamma$ 
    - Topic for the week of Nov 17
- Need mechanism to give  $W^\pm$  and  $Z^0$  mass
  - ► This is the Higgs mechanism
    - Discuss this after Thanksgiving

#### Review: Flavor mixing for neutral mesons: $K^0$ example (I)

- Since flavor conserved in strong interactions  $K^0$  ( $\bar{s}d$ ) and  $\overline{K}^0$  ( $s\bar{d}$ ) are separate particles and eigenstates of strong interaction
- ullet Weak interactions don't conserve flavor ( $W^\pm$  changes quark flavor)
  - $lackbox{2}^{nd}$  order weak interactions connect  $K^0$  and  $\overline{K}^0$  states



- $\bullet$  When only strong interactions considered, two eigenstates  $K^0$  and  $\overline{K}^0$  are degenerate
- Weak diagram acts as a perturbation
  - Perturbation breaks the degeneracy
  - As always with degenerate PT, need to move to new basis to find correct eigenstates
  - lacktriangle This is done by diagonalizing the energy matrix  $\langle i|H|i
    angle$

#### Review: Flavor mixing for neutral mesons: $K^0$ example (II)

- Last time: Found correct basis under assumption that CP is a good symmetry of the weak interactions
  - We'll see today that isn't strictly true but it is useful to start with this intermediate situation
- Neutral Kaons transform under CP (not unique definition)

$$CP |K^{0}\rangle = |\overline{K}^{0}\rangle$$
 $CP |\overline{K}^{0}\rangle = |K^{0}\rangle$ 

· Therefore, we can write

$$\begin{split} |K_1\rangle &= \frac{1}{\sqrt{2}} \left( \left| K^0 \right\rangle + \left| \overline{K}^0 \right\rangle \right) \qquad CP \left| K_1 \right\rangle = \left| K_1 \right\rangle \\ |K_2\rangle &= \frac{1}{\sqrt{2}} \left( \left| K^0 \right\rangle - \left| \overline{K}^0 \right\rangle \right) \qquad CP \left| K_2 \right\rangle = - \left| K_2 \right\rangle \end{split}$$

ullet  $|K_1
angle$  and  $|K_2
angle$  are CP eigenstates and almost the physical basis

#### Review: Flavor mixing for neutral mesons: $K^0$ example (II)

Associating the CP states with the decays:

$$|K_1\rangle \to 2\pi$$
  
 $|K_2\rangle \to 3\pi$ 

- However, very little phase space for  $3\pi$  decay: Lifetime of  $|K_2\rangle$  much longer than of  $|K_1\rangle$
- Physical states called "K-long" and "K-short":

$$\tau(K_S) = 0.9 \times 10^{-10} \text{ sec}$$
  
 $\tau(K_L) = 0.5 \times 10^{-7} \text{ sec}$ 

• We'll use distinction that  $|K_1\rangle$ ,  $|K_2\rangle$  are the CP eigenstates and  $|K_S\rangle$ ,  $|K_L\rangle$  are true mass eigenstates (including CP violation)

## A More Formal Treatment of Mixing

• Write our state  $\psi$  as linear combination of  $K^0$  and  $\overline{K}^0$ :

$$\psi = \alpha \left| K^0 \right\rangle + \beta \left| \overline{K}^0 \right\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

Schrodinger eq tells us

$$i\frac{d\psi}{dt} = H\psi$$

where H is Hermitian matrix: "generalized mass matrix"

• In matrix form:

$$H = \left( \begin{array}{cc} M - \frac{i}{2}\Gamma & M_{12} - \frac{i}{2}\Gamma_{12} \\ {M^*}_{12} - \frac{i}{2}\Gamma^*_{12} & M - \frac{i}{2}\Gamma \end{array} \right)$$

- Diagonal elements equal from CPT
- If CP is a good symmetry,  $M_{12}$  and  $\Gamma_{12}$  are real
- Find eigenstates by diagonalizing the matrix

$$M = (m_1 + m_2)/2$$
  $\Delta m \equiv M_{12} = (m_1 - m_2)/2$   
 $\Gamma \equiv \Gamma_{12} = (\Gamma_1 + \Gamma_2)/2$   $\Delta \Gamma = (\Gamma_1 - \Gamma_2)/2$ 

## Time Dependence (I)

Write wave functions (ignoring for now CP violation)

$$|K_1(t)\rangle$$
 =  $e^{-im_1t-\Gamma_1t/2}|K_1\rangle$   
 $|K_2(t)\rangle$  =  $e^{-im_2t-\Gamma_2t/2}|K_2\rangle$ 

Writing this in terms of strong eigenstates

$$\begin{aligned} \left|K^{0}\right\rangle_{\mathrm{at}\;t=0} & \Rightarrow & \frac{1}{\sqrt{2}}\left[e^{-im_{1}t-\Gamma_{1}t/2}\left|K_{1}\right\rangle+e^{-im_{2}t-\Gamma_{2}t/2}\left|K_{2}\right\rangle\right] \\ \left|\overline{K}^{0}\right\rangle_{\mathrm{at}\;t=0} & \Rightarrow & \frac{1}{\sqrt{2}}\left[e^{-im_{1}t-\Gamma_{1}t/2}\left|K_{1}\right\rangle-e^{-im_{2}t-\Gamma_{2}t/2}\left|K_{2}\right\rangle\right] \end{aligned}$$

- If a state  $\psi$  that is purely  $\left|K^0\right>$  is produced at t=0, at a later time it will be a combination of  $\left|K^0\right>$  and  $\left|\overline{K}^0\right>$
- We saw Tuesday that over time the neutral kaon oscillates between  $K^0$  and  $\overline{K}^0$  (while decaying away)

$$\begin{aligned} \left| \left\langle K^0 \right| \left| \psi(t) \right\rangle \right|^2 &= \frac{1}{4} \left[ e^{-\Gamma_1 t} + e^{-\Gamma_2 t} + 2 e^{-(\Gamma_1 + \Gamma_2) t/2} \cos(\Delta m t) \right] \\ \left| \left\langle \overline{K}^0 \right| \left| \psi(t) \right\rangle \right|^2 &= \frac{1}{4} \left[ e^{-\Gamma_1 t} + e^{-\Gamma_2 t} - 2 e^{-(\Gamma_1 + \Gamma_2) t/2} \cos(\Delta m t) \right] \end{aligned}$$

## Time Dependence (II)

- ullet Different neutral meson systems have different values for  $\Delta\Gamma$  and  $\Delta m$
- How the oscillations look will therefore depend on the system
- For kaons, mass difference small enough that oscillation period longer than lifetime: only first ocillation visable



• In B system (due to contributions of different CKM matrix elements in the box diagram), different  $\delta m$  for  $B^0$  and  $B_s$ 



#### Why might CP be a good symmetry when C and P are violated?

- Why CP might be a good symmetry:
  - We know weak interactions don't conserve P since  $\nu$  are LH and  $\overline{\nu}$  are RH
  - ightharpoonup Parity would turn a LH  $\nu$  into a RH  $\nu$
  - **b** But Charge Conjugation turns a  $\nu$  into a  $\overline{\nu}$
  - lacktriangle Hence, CP turns a a LH u into a RH  $\overline{
    u}$
  - Same argument holds for all other Dirac particles: CP seems to map correctly between the physic states
- Weak Interaction Lagrangian appears on the surface to be CP invariant
- In fact, CP is violated in CKM matrix (  $\sim 10^{-3}$  effect) due to the presence of an imaginary phase
- The implications of CP violation are huge
  - ▶ We know our Universe is mainly matter with very little antimatter
    - CP violation necessary ti explain this fact (see next slide)
    - CP violation in the weak interactions, however, seems smaller than
      we need
- Today, we'll review how CP violation was discovered and what we know now

## Matter-Antimatter Asymmetry of the Universe

The universe is made largely of matter with very little antimatter

$$\frac{n_B - n_{\overline{B}}}{n_\gamma} \sim 10^{-9}$$

#### Why is this the case?

- Matter dominance occured during early evolution of the Universe
- ullet Assume Big Bang produces equal numbers of B and  $\overline{B}$
- At high temperature, baryons in thermal equilibrium with photons

$$\gamma + \gamma \leftrightarrow p + \overline{p}$$

- Temperature and mean energy of photons decrease as Universe expands
  - Forward reaction ceases
  - Baryon density becomes low and thus backward reaction rare
  - Number of B and  $\overline{B}$  becomes fixed: "Big-Bang" baryogenesis
- Need a mechanism to explain the observed matter-antimatter asymmetry

#### The Sakharov Conditions

- Sakharov (1967) showed that 3 conditions needed for a baryon dominated Universe
  - 1. A least one B-number violating process so  $N_B N_{\overline{B}}$  is not constant
  - 2. C and CP violation (otherwise, for every reaction giving more B there would be one giving more  $\overline{B}$ )
  - 3. Deviation from thermal equilibrium (otherwise, each reaction would be balanced by inverse reaction)
- Is this possible?
  - ► Options exist for #1 (eg Grand Unified Theories)
  - #3 will occur during phase transitions as temperature falls below mass of relevant particles (bubbles)
  - ▶ #2 is the subject of today's lecture.

## Discovery of CP Violation (1964)



(Cronin and Fitch)

- Create neutral kaon beam
- ullet Long enough decay pipe for  $K_S$  to decay away
  - Since K<sub>L</sub> has much longer lifetime, it hasn't yet decayed way
- Search for CP violating decay

$$K_L \to \pi^+\pi^-$$

- Handles are:
  - Mass of  $\pi^+\pi^-$  pair should be  $M(K^0)$
  - Momentum of  $\pi^+\pi^-$  points along beam direction

$$\left(\sum_{\pi^+\pi^-} \vec{p}\right)_{\perp} = 0$$

#### What Was Seen



Fig. 2. Angular distributions of those events in the appropriate mass range as measured by a coarse measuring machine.



Clear evidence of  $K_L \to \pi^+\pi^-$ 

## How big is the $2\pi$ Amplitude?

Define observed CP parameter

$$|\eta_{+-}| \equiv \frac{A(K_L \to \pi^+ \pi^-)}{A(K_S \to \pi^+ \pi^-)} = 2.27 \times 10^{-3}$$

- Suggests CP violation is small but non-zero
- But original experiment couldn't rule out other possibilities
  - ls there a very low mass  $3^{rd}$  particle released in the decay?
  - Are the " $\pi$ "'s really pions?
- New experiment by Fitch et al the next year to rule these possibilities out

#### Are the Particles Observed in $K_L \to \pi^+\pi^-$ Really Pions?

- $\bullet \ \, \text{Neutral} \,\, K \,\, \text{beam with long decay pipe} \\ \text{so only} \,\, K_L \,\, \text{left} \\$
- Use regenerator to create  $K_s$ . Regenerator amplitude

$$A_R = i\pi N\Lambda \left(\frac{f - \overline{f}}{k}\right) \left(i\delta + \frac{1}{2}\right)^{-1}$$

k: wave number of incident kaon, f and  $\overline{f}$ : forward scattering amplitudes, N: number density of the material,  $\Lambda$ : the mean decay length of the  $K_s$ , and  $\delta=(M_S-M_L)/\Gamma_S$ 

- $K_L \to \pi^+\pi^-$  yield is proportional to  $|A_R + \eta_{+-}|^2$
- ullet Study rate as a function of  $A_R$ 
  - Pick regenerator so that  $A_R$ and  $\eta_{+-}$  similar in size



- Fit data allowing relative phase of  $\eta_{+-}$  and  $\delta$  as free parameter
- Evidence that K<sub>S</sub> and K<sub>L</sub> are decaying to the same final state and have constructive interference

#### More Evidence for CP Violation



Fig. 3. Time dependence of the charge asymmetry of semileptonic decays.

• Clear Evidence of CP Violation in semileptonic decays as well

$$\delta_{\ell} = \frac{\Gamma(K_L \to \pi^- \ell^+ \nu_{\ell}) - \Gamma(K_L \to \pi^+ \ell^- \overline{\nu}_{\ell})}{\Gamma(K_L \to \pi^- \ell^+ \nu_{\ell}) + \Gamma(K_L \to \pi^+ \ell^- \overline{\nu}_{\ell})}$$
$$= 3.3 \times 10^{-3}$$

## One Additional Observable: $\eta_{00} \equiv \frac{A(K_L o \pi^0 \pi^0)}{A(K_S o \pi^0 \pi^0)}$



Fig. 4. Distributions of reconstructed  $K_L \rightarrow \pi^0 \pi^0$  events, and regenerated  $K_s \rightarrow \pi^0 \pi^0$  events

$$|\eta_{00}| = \frac{A(K_L \to \pi^0 \pi^0)}{A(K_S \to \pi^0 \pi^0)} = 2.2 \times 10^{-3}$$

## Characterizing CP Violation (I)



Mixing diagrams may contain CP-violating terms. [They do in the

SM (CKM)]

- These diagrams have  $\Delta S=2$
- Both semi-leptonic and hadronic decays can have  $\Delta S = 2$
- There may also be diagrams with CP violating terms that have nothing to do with mixing
- These occur via WI because strangeness can't be conserved. We have  $\Delta S = 1 \mbox{ (Example shown to left)}$
- Only hadronic decays can have  $\Delta S = 1$

## Characterizing CP Violation (II)

- $\Delta S=2$  required for semi-leptonic decays but both  $\Delta S=2$  and  $\Delta S=1$  possible for hadronic decays
- $\delta$ ,  $\eta_{00}$  and  $\eta_{+-}$  all have similar size: indicates that  $\Delta S=2$  dominates
- $\bullet$  CP violation in the mixing can be described by saying  $K_L$  has a bit of  $|K_1\rangle$  and  $K_S$  has a bit of  $|K_2\rangle$

$$\begin{array}{lcl} |K_S\rangle & = & \frac{(|K_1\rangle + \epsilon \, |K_2\rangle)}{\sqrt{1 + |\epsilon|^2}} \\ |K_L\rangle & = & \frac{(|K_2\rangle + \epsilon \, |K_1\rangle)}{\sqrt{1 + |\epsilon|^2}} \end{array}$$

- Note:  $|K_S\rangle$  and  $|K_L\rangle$  are NOT orthoginal
- Expressing above in terms of  $K^0$  and  $\overline{K}^0$ :

$$\begin{split} |K_S\rangle &=& \frac{1}{\sqrt{2}} \frac{1}{\sqrt{1+|\epsilon|^2}} \left( (1+\epsilon) \left| K^0 \right\rangle + (1-\epsilon) \left| \overline{K}^0 \right\rangle \right) \\ |K_L\rangle &=& \frac{1}{\sqrt{2}} \frac{1}{\sqrt{1+|\epsilon|^2}} \left( (1+\epsilon) \left| K^0 \right\rangle - (1-\epsilon) \left| \overline{K}^0 \right\rangle \right) \end{split}$$

#### CP Violation From Mixing Vs Direct CP Violation

We saw last time

$$i\frac{d\psi}{dt} = \begin{pmatrix} M - i\frac{i}{2}\Gamma/2 & M_{12} - i\frac{i}{2}\Gamma_{12}/2 \\ M^*_{12} - i\frac{i}{2}\Gamma^*_{12}/2 & M - i\frac{i}{2}\Gamma/2 \end{pmatrix}\psi$$

• If we write  $\delta m = \delta m_R + i \delta m_I$  can show

$$\epsilon = \frac{i\delta m_I}{m_L - m_S + i\Gamma_S/2}$$

You will show on HW that

$$\delta_{\ell} = 2 \text{Re } \epsilon$$

- If direct CP violation ( $\Delta S=1$ ) will need one additional parameter (called  $\epsilon'$ ).
  - In K system, this is small, even when compared to  $\epsilon$

VOLUME 54, NUMBER 15



FIG. 2. Invariant-mass distributions for  $K_L \rightarrow 2\pi^0$  candidates with  $P_T^2 < 2500$  (MeV/c)<sup>2</sup>. A fit to the background is superimposed.



FIG. 3.  $|(f-\bar{f})/k|$  for carbon vs momentum from  $\pi^+\pi^-$  and  $\pi^0\pi^0$  samples. The best power-law fit is superimposed. Were  $\epsilon'/\epsilon=0.01$ , the neutral points would lie about 3% above the charged points.

• Must have precision to determine that  $\eta_{00}$  and  $\eta_{+-}$  have different values 2014 PDG Average:  $Re(\epsilon'/\epsilon)=(1.66\pm0.23)\times10^{-3}$ 

## A Higher Statisitcs $K^0$ CP Experiment: CPLear



- Data taking 1990-1996 at CERN
- Anti-protons stopped in hydrogen target

$$p\overline{p} \to K^{\pm} \pi^{\mp} K^0$$

 Strangeness of neutral kaon at production tagged by charge of charged kaon

## CPLear Measurement of $\eta_{+-}$



•  $\alpha$  is a free parameter in the fit,  $\alpha = \frac{e(K^+)}{e(K^-)} (1 + 4\mathbb{R}(\varepsilon_T + \delta))$  used as rate normalization in other decay channels

With  $\Delta m$  free in the fit, not assuming CPT,  $\Delta m = (524.0 \pm 4.4 \pm 3.3) \times 10^7 \hbar s^{-1}$ 



#### published in Phys. Lett. B 458 (1999) 545

$$\begin{split} A_{2\pi} &= \frac{R(\overline{\mathbf{K}}^0 \to \pi\pi)(\tau) - \alpha \times R(\mathbf{K}^0 \to \pi\pi)(\tau)}{R(\overline{\mathbf{K}}^0 \to \pi\pi)(\tau) + \alpha \times R(\mathbf{K}^0 \to \pi\pi)(\tau)} \\ &= -2|\eta_{\pi\pi}|\cos(\Delta\mathbf{m}\tau - \varphi_{\pi\pi})\frac{e^{\frac{1}{2}(\Gamma_S - \Gamma_L)\tau}}{1 + |\eta_{\pi\pi}|^2 e^{(\Gamma_S - \Gamma_L)\tau}} \end{split}$$

#### CPLear Measurement of $\delta$





- kinematical constraints
- electron identification based on:
  - dE/dx in the scintillators,
  - number of photo-electrons in the Cerenkov.
  - number of hits in the calorimeter

# Precise measurement of the oscillation frequency $\Delta m$ (setting $\Im(x_-)=0$ ):

 $\Delta m$  and  $\Im(x_-)$  are strongly correlated, >0.99. With  $\Delta m = (530.1 \pm 1.4) \times 10^7 \hbar s^{-1}$  obtain  $\Im(x_-) = (-0.8 \pm 3.5) \times 10^{-3}$ 

#### $\left| K_L - K_S ight.$ Mass Difference

$$A_{\Delta \mathrm{m}} = \frac{N_{K^0 \leftarrow K^0, K^0 \leftarrow \overline{K}^0} - N_{\overline{K}^0 \leftarrow K^0, K^0 \leftarrow \overline{K}^0}}{N_{K^0 \leftarrow K^0, \overline{K}^0 \leftarrow \overline{K}^0} + N_{\overline{K}^0 \leftarrow K^0, K^0 \leftarrow \overline{K}^0}}$$

$$=~2\frac{\mathrm{e}^{-\overline{\Gamma}\tau}\cos\Delta m\tau+2\Im\left(x_{-}\right)\mathrm{e}^{-\overline{\Gamma}\tau}\sin\Delta m\tau}{\left[1+2\Re\left(x_{+}\right)\right]\mathrm{e}^{-\Gamma_{\mathrm{S}}\tau}+\left[1-2\Re\left(x_{+}\right)\right]\mathrm{e}^{-\Gamma_{\mathrm{L}}\tau}}$$



$$\Delta m = (529.5 \pm 2.0_{\rm stat.} \pm 0.3_{\rm syst.}) \times 10^7 \hbar s^{-1}$$

$$\Delta m = (348.5 \pm 1.3) \times 10^{-9} \text{ eV/c}^2$$

$$\Delta S = \Delta Q$$
 violating decays or wrong tagging:  $\Re e \, x_+ = (-1.8 \pm 4.1_{
m stat.} \pm 4.5_{
m syst.}) imes 10^{-3}$ 

Best single measurements: Phys.Lett. B444 (1998) 38

#### A Modern Treatment of CP Violation

Reminder:

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{ds} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

$$\approx \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

Note, from the explicit form, you can prove:

$$\rho + i \eta = -\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}$$

• Unitarity insures  $VV^{\dagger} = V^{\dagger}V = 1$ . Thus

$$\sum_{i} V_{ij} V_{ik}^{*} = \delta_{jk} \text{ column orthogonality}$$

$$\sum_{i} V_{ij} V_{kj}^{*} = \delta_{ik} \text{ row orthogonality}$$

• Eg:

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

## The Unitarity Triangle

From previous page

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

• Divide by  $|V_{cd}^*V_{cb}|$ :

$$\frac{V_{ud}V_{ub}^*}{|V_{cd}^*V_{cb}|} - 1 + \frac{V_{td}V_{tb}^*}{|V_{cd}^*V_{cb}|} = 0$$

- Think of this as a vector equation in the complex plane
- Orient so that base is along x-axis



• Reminder from previous page:

$$\rho + i\eta = -\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}$$

#### The Measurement Game Plan

- Want to test if matrix is unitary
  - Failure of unitarity means new physics
- Make *many* measurements of sides and angles to over-constrain the triange and test that it closes



$$\alpha \equiv arg[-V_{td}V_{tb}^*/V_{ud}V_{ub}^*]$$

$$\beta \equiv arg[-V_{cd}V_{cb}^*/V_{td}V_{tb}^*]$$

$$\gamma \equiv arg[-V_{ud}V_{ub}^*/V_{cd}V_{cb}^*]$$

#### Measuring the Sides (example): B and D Decays



- Sides are combinations of magnitudes of CKM matrix elements
- Heavy flavor decays one way to measure these
  - $ightharpoonup V_{cd}$  from  $D_s \to K\ell\nu$ ,  $D \to \pi\ell\nu$
  - $V_{cs}$  from  $D_s^+ \to \mu^+ \nu$ ,  $D \to K \ell \nu$
  - $V_{cb}$  from  $B \to X_c \ell \nu$  ( $X_c \equiv D, D^*$ , etc)
  - $V_{ub}$  from  $B \to X_d \ell \nu$  ( $X_d \equiv \pi, \rho$ , etc)
- Requires precise measurement of branching fractions
- Must correct for fact that c or b-quark is bound in a meson
  - ► Need theory for this

## Angle Measurements: Types of CP Violation

- Three different categories
  - ► Direct CP Violation

$$Prob(B \to f) \neq Prob(\overline{B} \to \overline{f})$$

► Indirect CP Violation (CPV in mixing)

$$\operatorname{Prob}(B \to \overline{B}) \neq \operatorname{Prob}(\overline{B} \to B)$$

- CP Violation between mixing and decay
  - ullet  $B^0$  and  $\overline{B}^0$  can decay to the same final particles
  - Two diagrams are

$$B^0 \to f$$
 and  $B^0 \to \overline{B} \to f$ 

- Third category cleanest theoretically since no issues of final state interations
- Always need more than one amplitude to allow interference

## The Angles of the Unitarity Triangle



- ullet CP violating phase in  $V_{ub}$  and  $V_{td}$ 
  - By convention: can do rotations to move the phase to other elements
- $|A|^2$  is real for any single amplitude
  - ▶ Need at least 2 amplitudes to see CP violating effects
- Only cases where all 3 generations are involved exhibt CP violation

## Classifying CP Violating Effects

CP Violation in Decays

$$\Gamma(P \to f) \neq \Gamma(\overline{P} \to \overline{f})$$

or (even better) if  $f = \overline{f}$ 

$$\Gamma(P^0 \to f) \neq \Gamma(\overline{P}^0 \to f)$$

• CP Violation in Mixing

$$Prob(P^0 \to \overline{P}^0) \neq Prob(\overline{P}^0 \to P^0)$$

- CP Violation in Interference
  - lacktriangle Time dependent asymetry dependent on fraction of  $P^0$  at time t

B-decays will provide a rich laboratory for studying all three of these

#### Combined Results



- $\bullet\;$  Unlike K system, B decays provide MANY ways to measure CP violation
- Want to determine if all consistent with single value of  $(\rho,\eta)$
- Pick measurements where theoretical uncertainties under control