MATHEMATICS 271 L01 FALL 2015 QUIZ 3 SOLUTIONS

- 1. The sequence $a_0, a_1, a_2,...$ is defined by $a_0 = a_1 = a_2 = 1$ and for integers $n \ge 3$, $a_n = a_{n-1} + a_{n-2} + a_{n-3}$.
- (a) Compute a_3 , a_4 and a_5 .

Solution:

$$a_3 = a_2 + a_1 + a_0 = 1 + 1 + 1 = 3$$

 $a_4 = a_3 + a_2 + a_1 = 3 + 1 + 1 = 5$
 $a_5 = a_4 + a_3 + a_2 = 5 + 3 + 1 = 9$

(b) Prove by strong induction on n that $a_n < 2^n$ for all integers $n \ge 1$.

Solution

Base cases
$$(n = 1, 2, 3)$$

 $a_1 = 1 < 2 = 2^1$
 $a_2 = 1 < 4 = 2^2$
 $a_3 = 3 < 8 = 2^3$

Inductive Step.

Suppose that $k \geq 3$ is an integer and suppose that

$$a_m < 2^m$$
 for all integers m where $1 \le m \le k$. (IH)

We want to prove that $a_{k+1} < 2^{k+1}$.

Now, since $k+1 \ge 4$, but he definition of the sequence, we have

$$\begin{array}{rcl} a_{k+1} & = & a_k + a_{k-1} + a_{k-2} \\ & < & 2^k + 2^{k-1} + 2^{k-2} \\ & = & (2^2 + 2 + 1) 2^{k-2} \\ & = & 7 \times 2^{k-2} \\ & < & 8 \times 2^{k-2} \\ & = & 2^3 \times 2^{k-2} \\ & = & 2^{k+1}. \end{array}$$
 by (IH)

Thus, $a_n < 2^n$ for all integers $n \ge 1$.

- 2. Of the two following statements, one is true and one is false. Prove the true statement and disprove the false statement.
- (a) For all sets A, B and C, if A B = C then $A = B \cup C$.

Solution: This statement is false. For example, when $A = C = \emptyset$ and $B = \{1\}$, we have $A - B = \emptyset - C = \emptyset = C$, but $A = \emptyset \neq \{1\} = B = B - \emptyset = B - C$.

(b) For all sets A, B and C, if $C \subseteq B - A$ then $A \cap C = \emptyset$.

Solution: This statement is true and here is a proof. Suppose that A, B and C are sets so that $C \subseteq B - A$. We prove that $A \cap C = \emptyset$ by contradiction. Suppose that $A \cap C \neq \emptyset$, that is, there exists an element $a \in A \cap C$. Since $a \in A \cap C$, we know $a \in A$ and $a \in C$. Since $a \in A$, we know that $a \notin B - A$. Thus, there exists an element a so that $a \in C$ and $a \notin B - A$, this implies $C \nsubseteq B - A$, which contradicts the assumption that $C \subseteq B - A$. Thus, $A \cap C = \emptyset$.