Category theory as an abstract programming language

Mohamed Barakat

Universität Siegen

Journées Nationales de Calcul Formel 2019 CIRM, Luminy 4–8 février 2019

Joint work with Markus Lange-Hegermann, Sebastian Gutsche, Florian Heiderich, Sebastian Posur, Kamal Saleh

Example (Intersection of subspaces)

Compute the intersection of the two subspaces of $V := \mathbb{Q}^{3\times 1}$

$$U_1 \coloneqq \langle (1,2,3), (2,3,4), (0,1,2) \rangle,$$

 $U_2 \coloneqq \langle (1,2,4), (3,2,0) \rangle.$

Example (Intersection of subspaces)

Compute the intersection of the two subspaces of $V := \mathbb{Q}^{3 \times 1}$

$$U_1 := \langle (1,2,3), (2,3,4), (0,1,2) \rangle,$$

 $U_2 := \langle (1,2,4), (3,2,0) \rangle.$

Solution:

$$U_1 \cap U_2 = \langle (1,1,1) \rangle < \mathbb{Q}^{3 \times 1}$$
.

Example (Intersection of subspaces)

Compute the intersection of the two subspaces of $V = \mathbb{Q}^{3\times 1}$

$$U_1 := \langle (1,2,3), (2,3,4), (0,1,2) \rangle,$$

 $U_2 := \langle (1,2,4), (3,2,0) \rangle.$

Solution:

$$U_1 \cap U_2 = \langle (1,1,1) \rangle < \mathbb{Q}^{3 \times 1}.$$

Goals

· Describe algorithms to intersect vector subspaces;

Example (Intersection of subspaces)

Compute the intersection of the two subspaces of $V = \mathbb{Q}^{3\times 1}$

$$U_1 := \langle (1,2,3), (2,3,4), (0,1,2) \rangle,$$

 $U_2 := \langle (1,2,4), (3,2,0) \rangle.$

Solution:

$$U_1 \cap U_2 = \langle (1,1,1) \rangle < \mathbb{Q}^{3 \times 1}$$
.

Goals

- Describe algorithms to intersect vector subspaces;
- Generalize these algorithms to more general setups.

Example (Intersection of subspaces)

Compute the intersection of the two subspaces of $V = \mathbb{Q}^{3\times 1}$

$$U_1 := \langle (1,2,3), (2,3,4), (0,1,2) \rangle,$$

 $U_2 := \langle (1,2,4), (3,2,0) \rangle.$

Solution:

$$U_1 \cap U_2 = \langle (1,1,1) \rangle < \mathbb{Q}^{3 \times 1}.$$

Goals

- Describe algorithms to intersect vector subspaces;
- Generalize these algorithms to more general setups.

Algorithm 1: Intersection of vector subspaces

Input: Two stackable matrices $u_1, u_2 \in \mathbb{Q}^{? \times d}$

Algorithm 1: Intersection of vector subspaces

Input: Two stackable matrices $u_1, u_2 \in \mathbb{Q}^{? \times d}$

 $U_1 := \langle \text{rows of the matrix } \mathbf{u}_1 \rangle, U_2 := \langle \text{rows of the matrix } \mathbf{u}_2 \rangle.$

Algorithm 1: Intersection of vector subspaces

Input: Two stackable matrices $u_1, u_2 \in \mathbb{Q}^{? \times d}$

 $U_1 := \langle \text{rows of the matrix } \mathbf{u}_1 \rangle, U_2 := \langle \text{rows of the matrix } \mathbf{u}_2 \rangle.$

Output: i_1 with $U_1 \cap U_2 = \langle \text{rows of the matrix } i_1 \rangle \leq \mathbb{Q}^{1 \times d}$

```
Input: Two stackable matrices \mathbf{u_1}, \mathbf{u_2} \in \mathbb{Q}^{? \times d} U_1 \coloneqq \langle \text{rows of the matrix } \mathbf{u_1} \rangle, U_2 \coloneqq \langle \text{rows of the matrix } \mathbf{u_2} \rangle. Output: \mathbf{i_1} with U_1 \cap U_2 = \langle \text{rows of the matrix } \mathbf{i_1} \rangle \leq \mathbb{Q}^{1 \times d} Intersection1 (\mathbf{u_1}, \mathbf{u_2})
```

```
Input: Two stackable matrices \mathbf{u}_1, \mathbf{u}_2 \in \mathbb{Q}^{? \times d} U_1 \coloneqq \langle \text{rows of the matrix } \mathbf{u}_1 \rangle, U_2 \coloneqq \langle \text{rows of the matrix } \mathbf{u}_2 \rangle. Output: \mathbf{i}_1 with U_1 \cap U_2 = \langle \text{rows of the matrix } \mathbf{i}_1 \rangle \leq \mathbb{Q}^{1 \times d} Intersection1 (\mathbf{u}_1, \mathbf{u}_2) | \mathbf{m}_1 \coloneqq \text{REF}(\mathbf{u}_1)  // row echelon form of \mathbf{u}_1
```

```
\begin{array}{l} \textbf{Input:} \  \, \textbf{Two stackable matrices} \  \, \textbf{u}_1, \textbf{u}_2 \in \mathbb{Q}^{? \times d} \\ \, U_1 \coloneqq \langle \text{rows of the matrix } \textbf{u}_1 \rangle, U_2 \coloneqq \langle \text{rows of the matrix } \textbf{u}_2 \rangle. \\ \textbf{Output:} \  \, \textbf{i}_1 \  \, \text{with} \  \, U_1 \cap U_2 = \langle \text{rows of the matrix } \textbf{i}_1 \rangle \leq \mathbb{Q}^{1 \times d} \\ \textbf{Intersection1} \  \, (\textbf{u}_1, \textbf{u}_2) \\ &  \, \text{m}_1 \coloneqq \text{REF}(\textbf{u}_1) \\ &  \, \text{m}_2 \coloneqq \text{REF}(\textbf{u}_2) \\ \end{array}
```

```
Input: Two stackable matrices u_1, u_2 \in \mathbb{O}^{? \times d}
U_1 := \langle \text{rows of the matrix } \mathbf{u}_1 \rangle, U_2 := \langle \text{rows of the matrix } \mathbf{u}_2 \rangle.
Output: i_1 with U_1 \cap U_2 = \{\text{rows of the matrix } i_1\} \leq \mathbb{O}^{1 \times d}
Intersection 1 (u_1, u_2)
     m_1 = REF(u_1)
                                                            // row echelon form of \mathbf{u}_1
    m_2 = REF(u_2)
     (n_1 \mid n_2) \coloneqq \text{LeftNullSpace}(\frac{m_1}{m_2})
```

```
Input: Two stackable matrices u_1, u_2 \in \mathbb{O}^{? \times d}
U_1 := \langle \text{rows of the matrix } \mathbf{u}_1 \rangle, U_2 := \langle \text{rows of the matrix } \mathbf{u}_2 \rangle.
Output: i_1 with U_1 \cap U_2 = \langle \text{rows of the matrix } i_1 \rangle \leq \mathbb{Q}^{1 \times d}
Intersection1 (u<sub>1</sub>, u<sub>2</sub>)
     m_1 = REF(u_1)
                                                              // row echelon form of \mathbf{u}_1
     m_2 = REF(u_2)
     (n_1 \mid n_2) \coloneqq \text{LeftNullSpace}(\frac{m_1}{m_2})
      i_1 := MatMul(n_1, m_1) := n_1m_1
```

```
Algorithm 1: Intersection of vector subspaces
```

```
Input: Two stackable matrices u_1, u_2 \in \mathbb{O}^{? \times d}
U_1 := \langle \text{rows of the matrix } \mathbf{u}_1 \rangle, U_2 := \langle \text{rows of the matrix } \mathbf{u}_2 \rangle.
Output: i_1 with U_1 \cap U_2 = \{\text{rows of the matrix } i_1\} \leq \mathbb{O}^{1 \times d}
Intersection1 (u<sub>1</sub>, u<sub>2</sub>)
     m_1 = REF(u_1)
                                                           // row echelon form of 111
    m_2 = REF(u_2)
     (n_1 \mid n_2) \coloneqq \text{LeftNullSpace}(\binom{m_1}{m_2})
     i_1 := MatMul(n_1, m_1) := n_1 m_1
     return i1
```

Algorithm 2: Intersection of vector subspaces

Input: Two stackable matrices $\mathbf{u}_1, \mathbf{u}_2 \in \mathbb{Q}^{? \times d}$ $U_1 \coloneqq \langle \text{rows of the matrix } \mathbf{u}_1 \rangle, U_2 \coloneqq \langle \text{rows of the matrix } \mathbf{u}_2 \rangle.$ **Output:** \mathbf{s}_1 with $U_1 \cap U_2 = \langle \text{rows of the matrix } \mathbf{s}_1 \rangle \leq \mathbb{Q}^{1 \times d}$ **Intersection2** $(\mathbf{u}_1, \mathbf{u}_2)$

```
Input: Two stackable matrices u_1, u_2 \in \mathbb{Q}^{? \times d} U_1 \coloneqq \langle \text{rows of the matrix } u_1 \rangle, U_2 \coloneqq \langle \text{rows of the matrix } u_2 \rangle. Output: s_1 with U_1 \cap U_2 = \langle \text{rows of the matrix } s_1 \rangle \leq \mathbb{Q}^{1 \times d} Intersection2 (u_1, u_2)
```

```
\mathbf{1} \qquad \mathbf{e}_2 \coloneqq \mathtt{RightNullSpace}(\mathbf{u}_2)
```

```
\label{eq:local_local_local_local} \begin{array}{l} \textbf{Input:} \  \, \textbf{Two stackable matrices} \ u_1, u_2 \in \mathbb{Q}^{? \times d} \\ U_1 \coloneqq \langle \text{rows of the matrix} \ u_1 \rangle, U_2 \coloneqq \langle \text{rows of the matrix} \ u_2 \rangle. \\ \textbf{Output:} \  \, s_1 \  \, \text{with} \  \, U_1 \cap U_2 = \langle \text{rows of the matrix} \ s_1 \rangle \leq \mathbb{Q}^{1 \times d} \\ \textbf{Intersection2} \  \, (u_1, u_2) \\ & e_2 \coloneqq \text{RightNullSpace}(u_2) \\ & e_1 \coloneqq \text{MatMul}(u_1, e_2) \coloneqq u_1 e_2 \end{array}
```

Algorithm 2: Intersection of vector subspaces

```
\label{eq:local_local_local_local} \begin{split} & \text{Input: Two stackable matrices } u_1, u_2 \in \mathbb{Q}^{? \times d} \\ & U_1 \coloneqq \langle \text{rows of the matrix } u_1 \rangle, U_2 \coloneqq \langle \text{rows of the matrix } u_2 \rangle. \\ & \text{Output: } s_1 \text{ with } U_1 \cap U_2 = \langle \text{rows of the matrix } s_1 \rangle \leq \mathbb{Q}^{1 \times d} \\ & \text{Intersection2 } (u_1, u_2) \\ & e_2 \coloneqq \text{RightNullSpace}(u_2) \\ & w_1 \coloneqq \text{MatMul}(u_1, e_2) \coloneqq u_1 e_2 \\ & k_1 \coloneqq \text{LeftNullSpace}(w_1) \end{split}
```

Algorithm 2: Intersection of vector subspaces

3

```
\label{eq:local_problem} \begin{array}{|l|l|l|l|l|} \hline \textbf{Input:} \  \, \textbf{Two stackable matrices } u_1, u_2 \in \mathbb{Q}^{? \times d} \\ U_1 \coloneqq \langle \text{rows of the matrix } u_1 \rangle, U_2 \coloneqq \langle \text{rows of the matrix } u_2 \rangle. \\ \textbf{Output:} \  \, s_1 \  \, \text{with } U_1 \cap U_2 = \langle \text{rows of the matrix } s_1 \rangle \leq \mathbb{Q}^{1 \times d} \\ \textbf{Intersection2 } (u_1, u_2) \\ & e_2 \coloneqq \text{RightNullSpace}(u_2) \\ & w_1 \coloneqq \text{MatMul}(u_1, e_2) \coloneqq u_1 e_2 \\ & k_1 \coloneqq \text{LeftNullSpace}(w_1) \\ & v_1 \coloneqq \text{MatMul}(k_1, u_1) \coloneqq k_1 u_1 \\ \hline \end{array}
```

Algorithm 2: Intersection of vector subspaces

2

3

4

```
\label{eq:local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_
```

Algorithm 2: Intersection of vector subspaces

3

4

5

```
\label{eq:local_problem} \begin{split} & \text{Input: Two stackable matrices } u_1, u_2 \in \mathbb{Q}^{? \times d} \\ & U_1 \coloneqq \langle \text{rows of the matrix } u_1 \rangle, U_2 \coloneqq \langle \text{rows of the matrix } u_2 \rangle. \\ & \text{Output: } s_1 \text{ with } U_1 \cap U_2 = \langle \text{rows of the matrix } s_1 \rangle \leq \mathbb{Q}^{1 \times d} \\ & \text{Intersection2 } (u_1, u_2) \\ & = \text{RightNullSpace}(u_2) \\ & = \text{RightNullSpace}(u_2) \\ & = \text{MatMul}(u_1, e_2) \coloneqq u_1 e_2 \\ & = \text{RightNullSpace}(w_1) \\ & = \text{Vision matMul}(k_1, u_1) \coloneqq k_1 u_1 \\ & = \text{SightNullSpace}(v_1) \\ & = \text{Vision mathul}(k_1, u_1) \coloneqq k_1 u_1 \\ & = \text{SightNullSpace}(v_1) \\ & = \text{Constant}(k_1, u_1) \coloneqq k_1 u_1 \\ & = \text{ReF}(v_1) \\ & = \text{Constant}(k_1, u_1) \coloneqq k_1 u_1 \\ & = \text{Constant}(k_1, u_1) \end{aligned}
```

```
Input: Two stackable matrices \mathbf{u}_1, \mathbf{u}_2 \in \mathbb{Q}^{? \times d} U_1 \coloneqq \langle \text{rows of the matrix } \mathbf{u}_1 \rangle, U_2 \coloneqq \langle \text{rows of the matrix } \mathbf{u}_2 \rangle. Output: \mathbf{k} with U_1 \cap U_2 = \langle \text{rows of the matrix } \mathbf{k} \rangle \leq \mathbb{Q}^{1 \times d} Intersection3 (\mathbf{u}_1, \mathbf{u}_2)
```

Algorithm 3: Intersection of vector subspaces

```
 \begin{tabular}{ll} \textbf{Input:} Two stackable matrices $u_1,u_2\in\mathbb{Q}^{?\times d}$ \\ $U_1\coloneqq\langle \text{rows of the matrix }u_1\rangle, U_2\coloneqq\langle \text{rows of the matrix }u_2\rangle.$ \\ \textbf{Output:} $k$ with $U_1\cap U_2=\langle \text{rows of the matrix }k\rangle\leq\mathbb{Q}^{1\times d}$ \\ \textbf{Intersection3 }$(u_1,u_2)$ \\ $e_1\coloneqq \text{RightNullSpace}(u_1)$ \\ $e_2\coloneqq \text{RightNullSpace}(u_2)$ \\ \end{tabular}
```

Algorithm 3: Intersection of vector subspaces

```
\label{eq:local_local_local_local} \begin{split} & \text{Input: Two stackable matrices } \mathbf{u}_1, \mathbf{u}_2 \in \mathbb{Q}^{? \times d} \\ & U_1 \coloneqq \langle \text{rows of the matrix } \mathbf{u}_1 \rangle, U_2 \coloneqq \langle \text{rows of the matrix } \mathbf{u}_2 \rangle. \\ & \text{Output: } \mathbf{k} \text{ with } U_1 \cap U_2 = \langle \text{rows of the matrix } \mathbf{k} \rangle \leq \mathbb{Q}^{1 \times d} \\ & \text{Intersection3 } (\mathbf{u}_1, \mathbf{u}_2) \\ & = \mathbf{n} \text{ ightNullSpace}(\mathbf{u}_1) \\ & = \mathbf{n} \text{ ightNullSpace}(\mathbf{u}_2) \\ & = \mathbf{n} \text{ ightNullSpace}(\mathbf{u}_2) \\ & = \mathbf{n} \text{ ightNullSpace}(\mathbf{u}_2) \end{split}
```

Algorithm 3: Intersection of vector subspaces

2

3

```
 \begin{split} & \textbf{Input:} \text{ Two stackable matrices } u_1, u_2 \in \mathbb{Q}^{? \times d} \\ & U_1 \coloneqq \langle \text{rows of the matrix } u_1 \rangle, U_2 \coloneqq \langle \text{rows of the matrix } u_2 \rangle. \\ & \textbf{Output:} \;\; k \text{ with } U_1 \cap U_2 = \langle \text{rows of the matrix } k \rangle \leq \mathbb{Q}^{1 \times d} \\ & \textbf{Intersection3 } (u_1, u_2) \\ & | \;\; e_1 \coloneqq \text{RightNullSpace}(u_1) \\ & \;\; e_2 \coloneqq \text{RightNullSpace}(u_2) \\ & \;\; a \coloneqq \text{Augment}(e_1, e_2) \\ & \;\; k \coloneqq \text{LeftNullSpace}(a) \end{split}
```

Algorithm 3: Intersection of vector subspaces

2

3

4

```
\begin{split} &\textbf{Input:} \text{ Two stackable matrices } u_1, u_2 \in \mathbb{Q}^{? \times d} \\ &U_1 \coloneqq \langle \text{rows of the matrix } u_1 \rangle, U_2 \coloneqq \langle \text{rows of the matrix } u_2 \rangle. \\ &\textbf{Output:} \;\; k \text{ with } U_1 \cap U_2 = \langle \text{rows of the matrix } k \rangle \leq \mathbb{Q}^{1 \times d} \\ &\textbf{Intersection3 } (u_1, u_2) \\ & | \;\; e_1 \coloneqq \text{RightNullSpace}(u_1) \\ & \;\; e_2 \coloneqq \text{RightNullSpace}(u_2) \\ & \;\; a \coloneqq \text{Augment}(e_1, e_2) \\ & \;\; k \coloneqq \text{LeftNullSpace}(a) \\ & \;\; \textbf{return } k \end{split}
```

```
Input: Two stackable matrices u_1, u_2 \in \mathbb{Q}^{? \times d} U_1 \coloneqq \langle \text{rows of the matrix } u_1 \rangle, U_2 \coloneqq \langle \text{rows of the matrix } u_2 \rangle. Output: z_0 with U_1 \cap U_2 = \langle \text{rows of the matrix } z_0 \rangle \leq \mathbb{Q}^{1 \times d} Intersection4 (u_1, u_2)
```

```
Input: Two stackable matrices \mathbf{u}_1, \mathbf{u}_2 \in \mathbb{Q}^{? \times d} U_1 \coloneqq \langle \text{rows of the matrix } \mathbf{u}_1 \rangle, U_2 \coloneqq \langle \text{rows of the matrix } \mathbf{u}_2 \rangle. Output: \mathbf{z}_0 with U_1 \cap U_2 = \langle \text{rows of the matrix } \mathbf{z}_0 \rangle \leq \mathbb{Q}^{1 \times d} Intersection4 (\mathbf{u}_1, \mathbf{u}_2) d \coloneqq \text{NrColumns}(\mathbf{u}_1)
```

```
Mohamed Barakat
```

Algorithm 4: Intersection of vector subspaces

```
\label{eq:local_local_local_local} \begin{split} & \text{Input: Two stackable matrices } u_1, u_2 \in \mathbb{Q}^{? \times d} \\ & U_1 \coloneqq \langle \text{rows of the matrix } u_1 \rangle, U_2 \coloneqq \langle \text{rows of the matrix } u_2 \rangle. \\ & \text{Output: } z_0 \text{ with } U_1 \cap U_2 = \langle \text{rows of the matrix } z_0 \rangle \leq \mathbb{Q}^{1 \times d} \\ & \text{Intersection4 } (u_1, u_2) \\ & \text{$d \coloneqq \texttt{NrColumns}(u_1)$} \\ & \text{$i \coloneqq \texttt{IdentityMat}(d, \mathbb{Q})$} \end{split}
```

Algorithm 4: Intersection of vector subspaces

```
Input: Two stackable matrices u_1, u_2 \in \mathbb{Q}^{? \times d}
U_1 := \langle \text{rows of the matrix } \mathbf{u}_1 \rangle, U_2 := \langle \text{rows of the matrix } \mathbf{u}_2 \rangle.
Output: z_0 with U_1 \cap U_2 = \langle \text{rows of the matrix } z_0 \rangle \leq \mathbb{O}^{1 \times d}
Intersection4 (u<sub>1</sub>, u<sub>2</sub>)
       d = NrColumns(u_1)
      i := IdentityMat(d, \mathbb{Q})
       p \coloneqq \texttt{Stack}(\texttt{Augment}(\texttt{i},\texttt{i}),\texttt{Diag}(\texttt{u}_1,\texttt{u}_2)) \coloneqq \begin{pmatrix} \frac{1}{\texttt{u}_1} & 0\\ 0 & \texttt{u}_2 \end{pmatrix}
```

```
Input: Two stackable matrices u_1, u_2 \in \mathbb{Q}^{? \times d}
     U_1 := \langle \text{rows of the matrix } \mathbf{u}_1 \rangle, U_2 := \langle \text{rows of the matrix } \mathbf{u}_2 \rangle.
     Output: z_0 with U_1 \cap U_2 = \langle \text{rows of the matrix } z_0 \rangle \leq \mathbb{O}^{1 \times d}
     Intersection4 (u<sub>1</sub>, u<sub>2</sub>)
          d = NrColumns(u_1)
        i := IdentityMat(d, \mathbb{Q})
3 p := Stack(Augment(i,i), Diag(u_1, u_2)) := \begin{pmatrix} 1 & 1 \\ u_1 & 0 \\ 0 & u_2 \end{pmatrix}
4 (z_0 \mid z_1 \quad z_2) := LeftNullSpace(p)
```

Algorithm 4: Intersection of vector subspaces

```
Input: Two stackable matrices u_1, u_2 \in \mathbb{Q}^{? \times d}
U_1 := \langle \text{rows of the matrix } \mathbf{u}_1 \rangle, U_2 := \langle \text{rows of the matrix } \mathbf{u}_2 \rangle.
Output: z_0 with U_1 \cap U_2 = \langle \text{rows of the matrix } z_0 \rangle \leq \mathbb{O}^{1 \times d}
Intersection4 (u<sub>1</sub>, u<sub>2</sub>)
      d = NrColumns(u_1)
    i = IdentityMat(d, \mathbb{Q})
       p \coloneqq \texttt{Stack}(\texttt{Augment}(\texttt{i},\texttt{i}),\texttt{Diag}(\texttt{u}_1,\texttt{u}_2)) \coloneqq \begin{pmatrix} 1 & 1 \\ \hline \texttt{u}_1 & 0 \\ \hline & \ddots & \ddots \end{pmatrix}
       ( \mathbf{z}_0 \mid \mathbf{z}_1 \quad \mathbf{z}_2 ) \coloneqq \mathbf{LeftNullSpace}(\mathbf{p})
return \mathbf{z}_0
```

Our goals were ...

Goals

- Describe algorithms to intersect vector subspaces;
- Generalize these algorithms to more general setups.

Our goals were ...

Goals

- Describe algorithms to intersect vector subspaces;
- Generalize these algorithms to more general setups.

Our goals were ...

Goals

- Describe algorithms to intersect vector subspaces;
- · Generalize these algorithms to more general setups.

Main idea

Describe the subspaces $U_1, U_2 \le V$ as the image of linear maps u_1, u_2 defined by the matrices $\mathbf{u}_1, \mathbf{u}_2$, respectively:

$$u_1: \mathbb{Q}^{g_1 \times 1} \xrightarrow{\mathbf{u}_1} \mathbb{Q}^{d \times 1},$$
$$u_2: \mathbb{Q}^{g_2 \times 1} \xrightarrow{\mathbf{u}_2} \mathbb{Q}^{d \times 1}.$$

Our goals were ...

Goals

- Describe algorithms to intersect vector subspaces;
- · Generalize these algorithms to more general setups.

Main idea

Describe the subspaces $U_1, U_2 \le V$ as the image of linear maps u_1, u_2 defined by the matrices u_1, u_2 , respectively:

$$u_1: \mathbb{Q}^{g_1 \times 1} \xrightarrow{\mathbf{u}_1} \mathbb{Q}^{d \times 1},$$
$$u_2: \mathbb{Q}^{g_2 \times 1} \xrightarrow{\mathbf{u}_2} \mathbb{Q}^{d \times 1}.$$

Vector spaces together with their linear maps form a category.

A quiver (directed multi-graph) $\mathcal C$ consists of

A quiver (directed multi-graph) $\mathcal C$ consists of

a class of objects C₀;

A **quiver** (directed multi-graph) $\mathcal C$ consists of

- a class of objects C₀;
- a class of morphisms \mathcal{C}_1

A **quiver** (directed multi-graph) $\mathcal C$ consists of

- a class of objects C₀;
- a class of morphisms \mathcal{C}_1
- two structure maps:
 (1,2) source and target s, t: C₁ → C₀;

A **quiver** (directed multi-graph) $\mathcal C$ consists of

- a class of objects C₀;
- a class of morphisms $\mathcal{C}_1 \coloneqq \dot{\bigcup}_{M,N \in \mathcal{C}_0} \underbrace{\operatorname{Hom}_{\mathcal{C}}(M,N)}_{(s \times t)^{-1}(M,N)};$
- two structure maps:
 (1,2) source and target s, t : C₁ → C₀;

A **quiver** (directed multi-graph) C consists of

- a class of objects C₀;
- a class of morphisms $\mathcal{C}_1 \coloneqq \dot{\bigcup}_{M,N \in \mathcal{C}_0} \underbrace{\operatorname{Hom}_{\mathcal{C}}(M,N)}_{(s \times t)^{-1}(M,N)};$
- two structure maps:
 (1,2) source and target s, t : C₁ → C₀;

A **category** is a quiver C with two further structure maps:

A **quiver** (directed multi-graph) C consists of

- a class of objects C₀;
- a class of morphisms $C_1 \coloneqq \dot{\bigcup}_{M,N \in C_0} \underbrace{\operatorname{Hom}_{\mathcal{C}}(M,N)}_{(s \times t)^{-1}(M,N)};$
- two structure maps:
 - (1,2) source and target $s, t : \mathcal{C}_1 \to \mathcal{C}_0$;

A **category** is a quiver C with two further structure maps:

(3) the identity $1: \mathcal{C}_0 \to \mathcal{C}_1$;

A **quiver** (directed multi-graph) C consists of

- a class of objects C₀;
- a class of morphisms $\mathcal{C}_1 \coloneqq \dot{\bigcup}_{M,N \in \mathcal{C}_0} \underbrace{\operatorname{Hom}_{\mathcal{C}}(M,N)}_{(s \times t)^{-1}(M,N)};$
- · two structure maps:
 - (1,2) source and target $s, t : \mathcal{C}_1 \to \mathcal{C}_0$;

A **category** is a quiver C with two further structure maps:

- (3) the identity $1: \mathcal{C}_0 \to \mathcal{C}_1$;
- (4) the "composition" $\mu: \mathcal{C}_1 \times_{\mathcal{C}_0} \mathcal{C}_1 \to \mathcal{C}_1, (\varphi, \psi) \mapsto \varphi \psi$

A **quiver** (directed multi-graph) C consists of

- a class of objects C₀;
- a class of morphisms $\mathcal{C}_1 \coloneqq \dot{\bigcup}_{M,N \in \mathcal{C}_0} \underbrace{\operatorname{Hom}_{\mathcal{C}}(M,N)}_{(s \times t)^{-1}(M,N)};$
- · two structure maps:
 - (1,2) source and target $s, t : \mathcal{C}_1 \to \mathcal{C}_0$;

A **category** is a quiver C with two further structure maps:

- (3) the identity $1: \mathcal{C}_0 \to \mathcal{C}_1$;
- (4) the "composition" $\mu: \mathcal{C}_1 \times_{\mathcal{C}_0} \mathcal{C}_1 \to \mathcal{C}_1, (\varphi, \psi) \mapsto \varphi \psi$ subject to the obvious relations.

A **quiver** (directed multi-graph) C consists of

- a class of objects C₀;
- a class of morphisms $\mathcal{C}_1 \coloneqq \dot{\bigcup}_{M,N \in \mathcal{C}_0} \underbrace{\operatorname{Hom}_{\mathcal{C}}(M,N)}_{(s \times t)^{-1}(M,N)};$
- two structure maps:
 - (1,2) source and target $s, t : \mathcal{C}_1 \to \mathcal{C}_0$;

A **category** is a quiver C with two further structure maps:

- (3) the identity $1: \mathcal{C}_0 \to \mathcal{C}_1$;
- (4) the "composition" $\mu: \mathcal{C}_1 \times_{\mathcal{C}_0} \mathcal{C}_1 \to \mathcal{C}_1, (\varphi, \psi) \mapsto \varphi \psi$ subject to the obvious relations.

To describe an *instance* of a category we need two data structures (for C_0, C_1) and four algorithms (for $s, t, 1, \mu$).

A **quiver** (directed multi-graph) $\mathcal C$ consists of

- a class of objects C₀;
- a class of morphisms $\mathcal{C}_1 \coloneqq \dot{\bigcup}_{M,N \in \mathcal{C}_0} \underbrace{\operatorname{Hom}_{\mathcal{C}}(M,N)}_{(s \times t)^{-1}(M,N)};$
- two structure maps:
 - (1,2) source and target $s, t : \mathcal{C}_1 \to \mathcal{C}_0$;

A **category** is a quiver C with two further structure maps:

- (3) the identity $1: \mathcal{C}_0 \to \mathcal{C}_1$;
- (4) the "composition" $\mu: \mathcal{C}_1 \times_{\mathcal{C}_0} \mathcal{C}_1 \to \mathcal{C}_1, (\varphi, \psi) \mapsto \varphi \psi$ subject to the obvious relations.

To describe an *instance* of a category we need two data structures (for C_0, C_1) and four algorithms (for $s, t, 1, \mu$).

Categories up to equivalence emphasize morphisms and treat objects merely as place holders for sources and targets.

Definition

A category is called

• **small** if both C_0 and C_1 are sets;

Definition

A category is called

- **small** if both C_0 and C_1 are sets;
- thin if between two objects there is at most one morphism;

Definition

A category is called

- **small** if both C_0 and C_1 are sets;
- thin if between two objects there is at most one morphism;
- skeletal if isomorphic objects are equal.

Definition

A category is called

- **small** if both C_0 and C_1 are sets;
- thin if between two objects there is at most one morphism;
- · skeletal if isomorphic objects are equal.

Example (Categories generalize classical notions)

monoid ≡ small category on one object

Definition

A category is called

- **small** if both C_0 and C_1 are sets;
- thin if between two objects there is at most one morphism;
- · skeletal if isomorphic objects are equal.

Example (Categories generalize classical notions)

monoid = small category on one object
 A category is a "monoid on many objects".

Definition

A category is called

- **small** if both C_0 and C_1 are sets;
- thin if between two objects there is at most one morphism;
- · skeletal if isomorphic objects are equal.

Example (Categories generalize classical notions)

- monoid = small category on one object
 A category is a "monoid on many objects".
- pre-ordered set (proset)
 ≡ thin small category

Definition

A category is called

- **small** if both C_0 and C_1 are sets;
- thin if between two objects there is at most one morphism;
- · skeletal if isomorphic objects are equal.

Example (Categories generalize classical notions)

- monoid = small category on one object
 A category is a "monoid on many objects".
- pre-ordered set (proset)
 ≡ thin small category
- partially ordered set (poset)
 ≡ thin skeletal small category

Example (Instances)

For $\mathbb{N} = \{0, 1, 2, \ldots\}$ consider:

Example (Instances)

For $\mathbb{N} = \{0, 1, 2, \ldots\}$ consider:

• SkeletalFinSets $= \dot{\bigcup}_{m,n \in \mathbb{N}} \{1, \dots, n\}^m$

Example (Instances)

For $\mathbb{N} = \{0, 1, 2, \ldots\}$ consider:

• SkeletalFinSets := $\dot{\bigcup}_{m,n\in\mathbb{N}}\{1,\ldots,n\}^m$, equivalent, even a computational model for the category of **finite sets**

Example (Instances)

For $\mathbb{N} = \{0, 1, 2, \ldots\}$ consider:

- SkeletalFinSets := $\dot{\bigcup}_{m,n\in\mathbb{N}}\{1,\ldots,n\}^m$, equivalent, even a computational model for the category of **finite sets**
- $\Delta \coloneqq \dot{\bigcup}_{m,n \in \mathbb{N}} \underbrace{\{0 < \ldots < n\}^m}_{\text{ordered tuples}}$

Example (Instances)

For $\mathbb{N} = \{0, 1, 2, \ldots\}$ consider:

- SkeletalFinSets := $\dot{\bigcup}_{m,n\in\mathbb{N}}\{1,\ldots,n\}^m$, equivalent, even a computational model for the category of **finite sets**
- $\Delta \coloneqq \dot{\bigcup}_{m,n \in \mathbb{N}} \underbrace{\{0 < \ldots < n\}^m}_{\text{ordered tuples}},$ the simplicial category

Example (Instances)

For $\mathbb{N} = \{0, 1, 2, \ldots\}$ consider:

- SkeletalFinSets := $\dot{\bigcup}_{m,n\in\mathbb{N}}\{1,\ldots,n\}^m$, equivalent, even a computational model for the category of **finite sets**
- $\Delta \coloneqq \dot{\bigcup}_{m,n \in \mathbb{N}} \underbrace{\{0 < \ldots < n\}^m}_{\text{ordered tuples}},$ the simplicial category

Example (Category constructors)

Opposite category C^{op}:

$$C_0^{\text{op}} = C_0$$
, $\text{Hom}_{C^{\text{op}}}(N, M) := \text{Hom}_{C}(M, N)$

Example (Instances)

For $\mathbb{N} = \{0, 1, 2, \ldots\}$ consider:

- SkeletalFinSets := $\dot{\bigcup}_{m,n\in\mathbb{N}}\{1,\ldots,n\}^m$, equivalent, even a computational model for the category of **finite sets**
- $\Delta \coloneqq \dot{\bigcup}_{m,n \in \mathbb{N}} \underbrace{\{0 < \ldots < n\}^m}_{\text{ordered tuples}},$ the simplicial category

- Opposite category C^{op} : $C_0^{\text{op}} = C_0$, $\text{Hom}_{C^{\text{op}}}(N, M) \coloneqq \text{Hom}_{C}(M, N)$
- Free category CatClosure(q) generated by a quiver q

Example (Instances)

For $\mathbb{N} = \{0, 1, 2, \ldots\}$ consider:

- SkeletalFinSets := $\dot{\bigcup}_{m,n\in\mathbb{N}}\{1,\ldots,n\}^m$, equivalent, even a computational model for the category of **finite sets**
- $\Delta \coloneqq \dot{\bigcup}_{m,n \in \mathbb{N}} \underbrace{\{0 < \ldots < n\}^m}_{\text{ordered tuples}},$ the simplicial category

- Opposite category $\mathcal{C}^{\mathrm{op}}$:
 - $C_0^{\text{op}} = C_0$, $\text{Hom}_{C^{\text{op}}}(N, M) := \text{Hom}_{C}(M, N)$
- Free category CatClosure(q) generated by a quiver q
 - $CatClosure(\bullet) = \bigcirc \bullet$

Example (Instances)

For $\mathbb{N} = \{0, 1, 2, \ldots\}$ consider:

- SkeletalFinSets := $\dot{\bigcup}_{m,n\in\mathbb{N}}\{1,\ldots,n\}^m$, equivalent, even a computational model for the category of **finite sets**
- $\Delta \coloneqq \dot{\bigcup}_{m,n \in \mathbb{N}} \underbrace{\{0 < \ldots < n\}^m}_{\text{ordered tuples}},$ the simplicial category

- Opposite category $\mathcal{C}^{\mathrm{op}}$:
 - $C_0^{\text{op}} = C_0$, $\text{Hom}_{C^{\text{op}}}(N, M) := \text{Hom}_{C}(M, N)$
- Free category CatClosure(q) generated by a quiver q
 - $CatClosure(\bullet) = \bigcirc \bullet$
 - CatClosure($\bullet \rightarrow \star$) = $\bigcirc \bullet \rightarrow \star \bigcirc$

Example (Instances)

For $\mathbb{N} = \{0, 1, 2, \ldots\}$ consider:

- SkeletalFinSets := $\dot{\bigcup}_{m,n\in\mathbb{N}}\{1,\ldots,n\}^m$, equivalent, even a computational model for the category of **finite sets**
- $\Delta \coloneqq \dot{\bigcup}_{m,n \in \mathbb{N}} \underbrace{\{0 < \ldots < n\}^m}_{\text{ordered tuples}},$ the simplicial category

- Opposite category $\mathcal{C}^{\mathrm{op}}$:
 - $C_0^{\text{op}} = C_0$, $\text{Hom}_{C^{\text{op}}}(N, M) := \text{Hom}_{C}(M, N)$
- Free category CatClosure(q) generated by a quiver q
 - $CatClosure(\bullet) = \bigcirc \bullet$
 - CatClosure($\bullet \rightarrow \star$) = $\bigcirc \bullet \rightarrow \star \bigcirc$
 - CatClosure($\bullet \rightarrow \star \rightarrow \blacksquare$) =?

Example (Instances)

For $\mathbb{N} = \{0, 1, 2, \ldots\}$ consider:

- SkeletalFinSets := $\dot{\bigcup}_{m,n\in\mathbb{N}}\{1,\ldots,n\}^m$, equivalent, even a computational model for the category of **finite sets**
- $\Delta \coloneqq \dot{\bigcup}_{m,n \in \mathbb{N}} \underbrace{\{0 < \ldots < n\}^m}_{\text{ordered tuples}},$ the simplicial category

- Opposite category $\mathcal{C}^{\mathrm{op}}$:
 - $\mathcal{C}_0^{\mathrm{op}} = \mathcal{C}_0$, $\mathrm{Hom}_{\mathcal{C}^{\mathrm{op}}}(N, M) \coloneqq \mathrm{Hom}_{\mathcal{C}}(M, N)$
- Free category CatClosure(q) generated by a quiver q
 - $CatClosure(\bullet) = \bigcirc \bullet$
 - CatClosure($\bullet \rightarrow \star$) = $\bigcirc \bullet \rightarrow \star \bigcirc$
 - CatClosure($\bullet \rightarrow \star \rightarrow \blacksquare$) =?
 - CatClosure(• ≠ * → ■) =?

Definition

A category $\mathcal C$ is called **pre-additive** if

Definition

A category $\mathcal C$ is called **pre-additive** if

• all $\operatorname{Hom}_{\mathcal{C}}(M,N)$ are Abelian groups;

Definition

A category $\mathcal C$ is called **pre-additive** if

- all $\operatorname{Hom}_{\mathcal{C}}(M,N)$ are Abelian groups;
- the composition μ is bi-additive.

Definition

A category \mathcal{C} is called **pre-additive** if

- all $\operatorname{Hom}_{\mathcal{C}}(M,N)$ are Abelian groups;
- the composition μ is bi-additive.

A ringoid is a small pre-additive category.

Further doctrines: Pre-additive categories

Definition

A category \mathcal{C} is called **pre-additive** if

- all $\operatorname{Hom}_{\mathcal{C}}(M,N)$ are Abelian groups;
- the composition μ is bi-additive.

A ringoid is a small pre-additive category.

Example

(associative unital) ring ≡ ringoid on one object

Further doctrines: \overline{k} -linear categories

Let k be commutative unital ring.

Definition

A category $\mathcal C$ is called k-linear if

Further doctrines: \overline{k} -linear categories

Let k be commutative unital ring.

Definition

A category C is called k-linear if

• C is pre-additive and all $Hom_C(M, N)$ are k-modules;

Let k be commutative unital ring.

Definition

A category C is called k-linear if

- C is pre-additive and all $Hom_{C}(M, N)$ are k-modules;
- the composition μ is k-bi-linear.

Let k be commutative unital ring.

Definition

A category C is called k-linear if

- C is pre-additive and all $Hom_C(M, N)$ are k-modules;
- the composition μ is k-bi-linear.

A k-algebroid is a small k-linear category.

Let k be commutative unital ring.

Definition

A category C is called k-linear if

- C is pre-additive and all $Hom_C(M, N)$ are k-modules;
- the composition μ is k-bi-linear.

A k-algebroid is a small k-linear category.

Example

k-algebra $\equiv k$ -algebroid on one object

Let k be commutative unital ring.

Definition

A category C is called k-linear if

- C is pre-additive and all $Hom_C(M, N)$ are k-modules;
- the composition μ is k-bi-linear.

A *k*-algebroid is a small *k*-linear category.

Example

k-algebra $\equiv k$ -algebroid on one object

We now construct on the computer:

$$\mathbb{Q}\text{-LinClosure}(\text{CatClosure}(1 \underset{a}{\overset{b}{\rightleftharpoons}} 2 \stackrel{c}{\rightarrow} 3))$$

Let k be commutative unital ring.

Definition

A category C is called k-linear if

- C is pre-additive and all $Hom_C(M, N)$ are k-modules;
- the composition μ is k-bi-linear.

A *k*-algebroid is a small *k*-linear category.

Example

k-algebra $\equiv k$ -algebroid on one object

We now construct on the computer:

$$\mathbb{Q}\text{-LinClosure}(\text{CatClosure}(1 \underset{a}{\overset{b}{\rightleftharpoons}} 2 \stackrel{c}{\rightarrow} 3))$$

In particular, CatClosure invents the word calculus.

- A finite product of objects in a category $\mathcal C$

 M_1

:

 M_{ℓ}

- A finite **product** of objects in a category $\mathcal C$

 M_1 P \vdots M_ℓ

- A finite product of objects in a category $\mathcal C$

- A finite product of objects in a category $\mathcal C$

- A finite **product** of objects in a category $\mathcal C$

• A finite **product** of objects in a category C

The empty product is called the terminal object;

- The empty product is called the **terminal object**;
- A category admitting finite products is called cartesian;

- The empty product is called the terminal object;
- · A category admitting finite products is called cartesian;
- A **coproduct** of objects in C is a product in C^{op} ;

- The empty product is called the terminal object;
- · A category admitting finite products is called cartesian;
- A **coproduct** of objects in C is a product in C^{op} ;
- The empty coproduct is called the initial object;

- The empty product is called the terminal object;
- · A category admitting finite products is called cartesian;
- A **coproduct** of objects in C is a product in C^{op} ;
- The empty coproduct is called the initial object;
- A category admitting fin. coproducts is called cocartesian.

• A finite **product** of objects in a category C

- The empty product is called the terminal object;
- A category admitting finite products is called cartesian;
- A **coproduct** of objects in C is a product in C^{op} ;
- The empty coproduct is called the initial object;
- A category admitting fin. coproducts is called cocartesian.

Q:

What are the initial and terminal objects in SkeletalFintSets?

Definition

- A $\mbox{\bf biproduct}$ of objects in ${\cal C}$ is a product and a coproduct simultaneously

Definition

• A **biproduct** of objects in $\mathcal C$ is a product and a coproduct simultaneously: We write $M_1 \oplus \cdots \oplus M_\ell$.

Definition

- A **biproduct** of objects in $\mathcal C$ is a product and a coproduct simultaneously: We write $M_1\oplus\cdots\oplus M_\ell$.
- A pre-additive category is additive if it admits biproducts.

Definition

- A **biproduct** of objects in C is a product and a coproduct simultaneously: We write $M_1 \oplus \cdots \oplus M_\ell$.
- A pre-additive category is additive if it admits biproducts.

Example (One more category constructor)

Let R be a k-algebra viewed as a k-linear category:

Definition

- A **biproduct** of objects in C is a product and a coproduct simultaneously: We write $M_1 \oplus \cdots \oplus M_\ell$.
- A pre-additive category is additive if it admits biproducts.

Example (One more category constructor)

Let R be a k-algebra viewed as a k-linear category:

AdditiveClosure(R) = R-mat

Definition

- A **biproduct** of objects in C is a product and a coproduct simultaneously: We write $M_1 \oplus \cdots \oplus M_\ell$.
- A pre-additive category is additive if it admits biproducts.

Example (One more category constructor)

Let R be a k-algebra viewed as a k-linear category:

$$\mathbf{AdditiveClosure}(R) \coloneqq R\text{-}\mathbf{mat}$$

$$\coloneqq \dot{\bigcup}_{g,g' \in \mathbb{N}} k^{g \times g'}$$

Definition

- A **biproduct** of objects in C is a product and a coproduct simultaneously: We write $M_1 \oplus \cdots \oplus M_\ell$.
- A pre-additive category is additive if it admits biproducts.

Example (One more category constructor)

Let R be a k-algebra viewed as a k-linear category:

$$\mathbf{AdditiveClosure}(R) \coloneqq R\text{-}\mathbf{mat}$$

$$\coloneqq \dot{\bigcup}_{g,g'\in\mathbb{N}} k^{g\times g'} \coloneqq \begin{cases} \mathsf{Obj:} & g,g',\ldots\in\mathbb{N},\\ \mathsf{Mor:} & \mathtt{A}\in k^{g\times g'},\ldots, \end{cases}$$

Definition

- A **biproduct** of objects in C is a product and a coproduct simultaneously: We write $M_1 \oplus \cdots \oplus M_\ell$.
- A pre-additive category is additive if it admits biproducts.

Example (One more category constructor)

Let R be a k-algebra viewed as a k-linear category:

AdditiveClosure(R) = R-mat

$$\coloneqq \dot{\bigcup}_{g,g'\in\mathbb{N}} k^{g\times g'} \coloneqq \begin{cases} \mathsf{Obj:} & g,g',\ldots\in\mathbb{N},\\ \mathsf{Mor:} & \mathtt{A}\in k^{g\times g'},\ldots, \end{cases}$$

with the obvious 4 algorithms for $s, t, 1, \mu$.

Definition

- A **biproduct** of objects in $\mathcal C$ is a product and a coproduct simultaneously: We write $M_1 \oplus \cdots \oplus M_\ell$.
- A pre-additive category is additive if it admits biproducts.

Example (One more category constructor)

Let R be a k-algebra viewed as a k-linear category:

AdditiveClosure(R) = R-mat

$$\coloneqq \dot{\bigcup}_{g,g'\in\mathbb{N}} k^{g\times g'} \coloneqq \begin{cases} \mathsf{Obj:} & g,g',\ldots\in\mathbb{N},\\ \mathsf{Mor:} & \mathtt{A}\in k^{g\times g'},\ldots, \end{cases}$$

with the obvious 4 algorithms for $s, t, 1, \mu$.

In particular, AdditiveClosure invents matrix calculus.

How to model the category of finite dimensional vector spaces up to equivalence?

How to model the category of finite dimensional vector spaces up to equivalence?

Example

Let k be a field.

How to model the category of finite dimensional vector spaces up to equivalence?

Example

Let k be a field. Then

$$k$$
-vec :=
$$\begin{cases} \text{Obj:} & \text{finite dim. } k\text{-vector spaces,} \\ \text{Mor:} & k\text{-linear maps} \end{cases}$$

How to model the category of finite dimensional vector spaces up to equivalence?

Example

Let k be a field. Then

$$k ext{-}\mathbf{vec} \coloneqq \begin{cases} ext{Obj:} & ext{finite dim. } k ext{-} ext{vector spaces,} \\ ext{Mor:} & ext{k-linear maps} \end{cases}$$

$$\simeq k ext{-}\mathbf{mat} = \dot{\bigcup}_{g,g'\in\mathbb{N}} k^{g\times g'}$$

How to model the category of finite dimensional vector spaces up to equivalence?

Example

Let k be a field. Then

$$k ext{-vec} \coloneqq \begin{cases} ext{Obj:} & ext{finite dim. } k ext{-vector spaces,} \\ ext{Mor:} & ext{k-linear maps} \end{cases}$$

$$\simeq k ext{-mat} = \dot{\bigcup}_{g,g'\in\mathbb{N}} k^{g\times g'}$$

$$= \mathbf{AdditiveClosure}(k ext{-LinClosure}(\mathbf{CatClosure}(ullet)))$$

How to model the category of finite dimensional vector spaces up to equivalence?

Example

Let k be a field. Then

$$k ext{-vec} \coloneqq \begin{cases} ext{Obj:} & ext{finite dim. } k ext{-vector spaces,} \\ ext{Mor:} & ext{k-linear maps} \end{cases}$$

$$\simeq k ext{-mat} = \dot{\bigcup}_{g,g'\in\mathbb{N}} k^{g\times g'}$$

$$= \mathbf{AdditiveClosure}(k ext{-LinClosure}(\mathbf{CatClosure}(ullet)))$$

k-vec $\simeq k$ -mat has much more structure.

ABELian categories as a specification

An ABELian category is a category in which we can do a very general form of linear algebra.

An ABELian category is a category in which we can do a very general form of linear algebra.

Definition

A category \mathcal{A} is called ABELian if

An ABELian category is a category in which we can do a very general form of linear algebra.

Definition

A category ${\mathcal A}$ is called ABELian if

· finite biproducts exist,

An ABELian category is a category in which we can do a very general form of linear algebra.

Definition

- · finite biproducts exist,
- each morphism has an additive inverse,

An ABELian category is a category in which we can do a very general form of linear algebra.

Definition

- · finite biproducts exist,
- each morphism has an additive inverse, (additive)

An ABELian category is a category in which we can do a very general form of linear algebra.

Definition

- · finite biproducts exist,
- each morphism has an additive inverse, (additive)
- · kernels and cokernels exist,

An ABELian category is a category in which we can do a very general form of linear algebra.

Definition

- · finite biproducts exist,
- each morphism has an additive inverse, (additive)
- kernels and cokernels exist, (pre-ABELian)

An ABELian category is a category in which we can do a very general form of linear algebra.

Definition

- · finite biproducts exist,
- each morphism has an additive inverse, (additive)
- kernels and cokernels exist, (pre-ABELian)
- the homomorphism theorem is valid, i.e., $\operatorname{coim} \varphi \xrightarrow{\sim} \operatorname{im} \varphi$.

An ABELian category is a category in which we can do a very general form of linear algebra.

Definition

A category A is called ABELian if

- · finite biproducts exist,
- each morphism has an additive inverse, (additive)
- kernels and cokernels exist, (pre-ABELian)
- the homomorphism theorem is valid, i.e., $coim \varphi \xrightarrow{\sim} im \varphi$.

Definition

A category is called **computable** ABELian if all disjunctions (\lor) and all existential quantifiers (\exists) in the axioms of an ABELian category are realized by algorithms.

Example

$$M \xrightarrow{\varphi} N$$

Example

Let $\varphi: M \to N$ be a morphism in \mathcal{A} .

 $\ker \varphi$

$$M \xrightarrow{\varphi} N$$

Example

$$\ker \varphi \xrightarrow{\kappa} M \xrightarrow{\varphi} N$$

Example

Example

Example

Example

Let $\varphi: M \to N$ be a morphism in \mathcal{A} .

So A is a computational context with *many* basic algorithms.

Proposition

k-mat is a computable Abelian category.

Proposition

k-mat is a computable Abelian category.

Proof.

• Objects m,n are natural numbers in $\mathbb N$

Proposition

k-mat is a computable Abelian category.

- Objects m, n are natural numbers in $\mathbb N$
- Morphisms φ, ψ are rectangular matrices over k

Proposition

k-mat is a computable Abelian category.

- Objects m, n are natural numbers in $\mathbb N$
- Morphisms φ, ψ are rectangular matrices over k
- $s(\varphi) = \mathtt{Source}(\varphi)$

Proposition

k-mat is a computable Abelian category.

- Objects m, n are natural numbers in $\mathbb N$
- Morphisms φ, ψ are rectangular matrices over k
- $s(\varphi) = \mathtt{Source}(\varphi) \coloneqq \mathtt{NrRows}(\varphi)$

Proposition

k-mat is a computable Abelian category.

- Objects m, n are natural numbers in $\mathbb N$
- Morphisms φ, ψ are rectangular matrices over k
- $s(\varphi) = \mathtt{Source}(\varphi) \coloneqq \mathtt{NrRows}(\varphi)$
- $t(\varphi) = \operatorname{Range}(\varphi)$

Proposition

k-mat is a computable Abelian category.

- Objects m, n are natural numbers in $\mathbb N$
- Morphisms φ, ψ are rectangular matrices over k
- $s(\varphi) = \mathtt{Source}(\varphi) \coloneqq \mathtt{NrRows}(\varphi)$
- $t(\varphi) = \text{Range}(\varphi) \coloneqq \text{NrColumns}(\varphi)$

Proposition

k-mat is a computable Abelian category.

- Objects m, n are natural numbers in $\mathbb N$
- Morphisms φ, ψ are rectangular matrices over k
- $s(\varphi) = \mathtt{Source}(\varphi) \coloneqq \mathtt{NrRows}(\varphi)$
- $t(\varphi) = \text{Range}(\varphi) \coloneqq \text{NrColumns}(\varphi)$
- $1_m = \text{IdentityMorphism}(m)$

Proposition

k-mat is a computable Abelian category.

- Objects m, n are natural numbers in $\mathbb N$
- Morphisms φ, ψ are rectangular matrices over k
- $s(\varphi) = \mathtt{Source}(\varphi) \coloneqq \mathtt{NrRows}(\varphi)$
- $t(\varphi) = \text{Range}(\varphi) := \text{NrColumns}(\varphi)$
- $1_m = \text{IdentityMorphism}(m) := \text{IdentityMat}(m, k)$

Proposition

k-mat is a computable Abelian category.

- Objects m, n are natural numbers in $\mathbb N$
- Morphisms φ, ψ are rectangular matrices over k
- $s(\varphi) = \mathtt{Source}(\varphi) \coloneqq \mathtt{NrRows}(\varphi)$
- $t(\varphi) = \text{Range}(\varphi) \coloneqq \text{NrColumns}(\varphi)$
- 1_m = IdentityMorphism $(m) \coloneqq$ IdentityMat(m, k)
- $\varphi\psi$ = PreCompose (φ,ψ)

Proposition

k-mat is a computable Abelian category.

- Objects m, n are natural numbers in $\mathbb N$
- Morphisms φ, ψ are rectangular matrices over k
- $s(\varphi) = \mathtt{Source}(\varphi) \coloneqq \mathtt{NrRows}(\varphi)$
- $t(\varphi) = \text{Range}(\varphi) \coloneqq \text{NrColumns}(\varphi)$
- $1_m = \text{IdentityMorphism}(m) \coloneqq \text{IdentityMat}(m, k)$
- $\varphi\psi = \mathtt{PreCompose}(\varphi, \psi) \coloneqq \mathtt{MatMul}(\varphi, \psi)$

Proposition

k-mat is a computable Abelian category.

- Objects m, n are natural numbers in $\mathbb N$
- Morphisms φ, ψ are rectangular matrices over k
- $s(\varphi) = \mathtt{Source}(\varphi) \coloneqq \mathtt{NrRows}(\varphi)$
- $t(\varphi) = \text{Range}(\varphi) \coloneqq \text{NrColumns}(\varphi)$
- 1_m = IdentityMorphism $(m) \coloneqq$ IdentityMat(m, k)
- $\varphi\psi$ = PreCompose $(\varphi,\psi)\coloneqq \mathtt{MatMul}(\varphi,\psi)$
- DirectSum(m,n)

Proposition

k-mat is a computable Abelian category.

- Objects m, n are natural numbers in $\mathbb N$
- Morphisms φ, ψ are rectangular matrices over k
- $s(\varphi) = \mathtt{Source}(\varphi) \coloneqq \mathtt{NrRows}(\varphi)$
- $t(\varphi) = \text{Range}(\varphi) \coloneqq \text{NrColumns}(\varphi)$
- 1_m = IdentityMorphism $(m) \coloneqq$ IdentityMat(m,k)
- $\varphi\psi = \mathtt{PreCompose}(\varphi, \psi) \coloneqq \mathtt{MatMul}(\varphi, \psi)$
- DirectSum(m,n) = m + n

Proposition

k-mat is a computable Abelian category.

- Objects m, n are natural numbers in $\mathbb N$
- Morphisms φ, ψ are rectangular matrices over k
- $s(\varphi) = \mathtt{Source}(\varphi) \coloneqq \mathtt{NrRows}(\varphi)$
- $t(\varphi) = \text{Range}(\varphi) \coloneqq \text{NrColumns}(\varphi)$
- 1_m = IdentityMorphism $(m) \coloneqq$ IdentityMat(m,k)
- $\varphi\psi$ = PreCompose $(\varphi, \psi) \coloneqq \mathtt{MatMul}(\varphi, \psi)$
- DirectSum(m,n) = m + n
- UniversalMorphismIntoDirectSum (φ,ψ)

Proposition

k-mat is a computable Abelian category.

- Objects m, n are natural numbers in $\mathbb N$
- Morphisms φ, ψ are rectangular matrices over k
- $s(\varphi) = \mathtt{Source}(\varphi) \coloneqq \mathtt{NrRows}(\varphi)$
- $t(\varphi) = \text{Range}(\varphi) := \text{NrColumns}(\varphi)$
- $1_m = \text{IdentityMorphism}(m) := \text{IdentityMat}(m, k)$
- $\varphi \psi = \text{PreCompose}(\varphi, \psi) \coloneqq \text{MatMul}(\varphi, \psi)$
- DirectSum(m,n) = m + n
- UniversalMorphismIntoDirectSum $(\varphi, \psi) \coloneqq \mathtt{Augment}(\varphi, \tau)$

Proposition

k-mat is a computable Abelian category.

- Objects m, n are natural numbers in $\mathbb N$
- Morphisms φ, ψ are rectangular matrices over k
- $s(\varphi) = \mathtt{Source}(\varphi) \coloneqq \mathtt{NrRows}(\varphi)$
- $t(\varphi) = \text{Range}(\varphi) \coloneqq \text{NrColumns}(\varphi)$
- $1_m = \text{IdentityMorphism}(m) := \text{IdentityMat}(m, k)$
- $\varphi \psi = \text{PreCompose}(\varphi, \psi) \coloneqq \text{MatMul}(\varphi, \psi)$
- DirectSum(m,n) = m + n
- UniversalMorphismIntoDirectSum $(\varphi, \psi) \coloneqq \texttt{Augment}(\varphi, \tau)$
- UniversalMorphismFromDirectSum $(arphi,\psi)$

Proposition

k-mat is a computable Abelian category.

- Objects m, n are natural numbers in $\mathbb N$
- Morphisms φ, ψ are rectangular matrices over k
- $s(\varphi) = \mathtt{Source}(\varphi) \coloneqq \mathtt{NrRows}(\varphi)$
- $t(\varphi) = \text{Range}(\varphi) := \text{NrColumns}(\varphi)$
- 1_m = IdentityMorphism $(m) \coloneqq$ IdentityMat(m, k)
- $\varphi \psi = \text{PreCompose}(\varphi, \psi) \coloneqq \text{MatMul}(\varphi, \psi)$
- DirectSum(m,n) = m + n
- UniversalMorphismIntoDirectSum $(\varphi, \psi) \coloneqq \texttt{Augment}(\varphi, \tau)$
- UniversalMorphismFromDirectSum $(\varphi, \psi) \coloneqq \mathtt{Stack}(\varphi, \tau)$

Proposition

k-mat is a computable Abelian category.

- Objects m, n are natural numbers in $\mathbb N$
- Morphisms φ, ψ are rectangular matrices over k
- $s(\varphi) = \mathtt{Source}(\varphi) \coloneqq \mathtt{NrRows}(\varphi)$
- $t(\varphi) = \text{Range}(\varphi) \coloneqq \text{NrColumns}(\varphi)$
- 1_m = IdentityMorphism $(m) \coloneqq$ IdentityMat(m, k)
- $\varphi \psi = \text{PreCompose}(\varphi, \psi) \coloneqq \text{MatMul}(\varphi, \psi)$
- DirectSum(m, n) = m + n
- UniversalMorphismIntoDirectSum $(\varphi, \psi) \coloneqq \text{Augment}(\varphi, \tau)$
- UniversalMorphismFromDirectSum $(\varphi, \psi) \coloneqq \text{Stack}(\varphi, \tau)$
- •

Proposition

k-mat is a computable Abelian category.

Proof. (continued)

• KernelObject (φ)

Proposition

k-mat is a computable Abelian category.

Proof. (continued)

• $\texttt{KernelObject}(\varphi) \coloneqq \texttt{NrRows}(\varphi) - \texttt{Rank}(\varphi)$

Proposition

k-mat is a computable Abelian category.

Proof. (continued)

- KernelObject $(\varphi) \coloneqq \operatorname{NrRows}(\varphi) \operatorname{Rank}(\varphi)$
- KernelEmbedding (φ)

Proposition

k-mat is a computable Abelian category.

- KernelObject(φ) \coloneqq NrRows(φ) Rank(φ)
- KernelEmbedding $(\varphi) \coloneqq \texttt{REF}(\texttt{LeftNullSpace}(\varphi))$

Proposition

k-mat is a computable Abelian category.

- KernelObject(φ) \coloneqq NrRows(φ) Rank(φ)
- KernelEmbedding $(\varphi) \coloneqq \texttt{REF}(\texttt{LeftNullSpace}(\varphi))$
- KernelLift (φ, au)

Proposition

k-mat is a computable Abelian category.

- KernelObject(φ) \coloneqq NrRows(φ) Rank(φ)
- KernelEmbedding $(\varphi) \coloneqq \texttt{REF}(\texttt{LeftNullSpace}(\varphi))$
- KernelLift(φ, τ) := Sol($\chi \cdot \text{REF}(\text{LeftNullSpace}(\varphi)) = \tau$)

Proposition

k-mat is a computable Abelian category.

- KernelObject $(\varphi) \coloneqq \operatorname{NrRows}(\varphi) \operatorname{Rank}(\varphi)$
- KernelEmbedding $(\varphi) \coloneqq \texttt{REF}(\texttt{LeftNullSpace}(\varphi))$
- KernelLift(φ, τ) := Sol($\chi \cdot \text{REF}(\text{LeftNullSpace}(\varphi)) = \tau$)
- CokernelObject (φ)

Proposition

k-mat is a computable Abelian category.

- KernelObject $(\varphi) \coloneqq \operatorname{NrRows}(\varphi) \operatorname{Rank}(\varphi)$
- $\operatorname{KernelEmbedding}(\varphi) \coloneqq \operatorname{REF}(\operatorname{LeftNullSpace}(\varphi))$
- KernelLift(φ, τ) := Sol($\chi \cdot \text{REF}(\text{LeftNullSpace}(\varphi)) = \tau$)
- CokernelObject(φ) := NrColumns(φ) Rank(φ)

Proposition

k-mat is a computable Abelian category.

- KernelObject $(\varphi) \coloneqq \operatorname{NrRows}(\varphi) \operatorname{Rank}(\varphi)$
- $\operatorname{KernelEmbedding}(\varphi) \coloneqq \operatorname{REF}(\operatorname{LeftNullSpace}(\varphi))$
- KernelLift(φ, τ) := Sol($\chi \cdot \text{REF}(\text{LeftNullSpace}(\varphi)) = \tau$)
- CokernelObject $(\varphi) \coloneqq \operatorname{NrColumns}(\varphi) \operatorname{Rank}(\varphi)$
- CokernelProjection (φ)

Proposition

k-mat is a computable Abelian category.

- KernelObject $(\varphi) \coloneqq \operatorname{NrRows}(\varphi) \operatorname{Rank}(\varphi)$
- $\operatorname{KernelEmbedding}(\varphi) \coloneqq \operatorname{REF}(\operatorname{LeftNullSpace}(\varphi))$
- $\mathsf{KernelLift}(\varphi,\tau) \coloneqq \mathsf{Sol}(\chi \cdot \mathsf{REF}(\mathsf{LeftNullSpace}(\varphi)) = \tau)$
- CokernelObject $(\varphi) \coloneqq \operatorname{NrColumns}(\varphi) \operatorname{Rank}(\varphi)$
- CokernelProjection(φ) \coloneqq CEF(RightNullSpace(φ))

Proposition

k-mat is a computable Abelian category.

- KernelObject(φ) \coloneqq NrRows(φ) Rank(φ)
- KernelEmbedding $(\varphi) \coloneqq \texttt{REF}(\texttt{LeftNullSpace}(\varphi))$
- $\mathsf{KernelLift}(\varphi,\tau) \coloneqq \mathsf{Sol}(\chi \cdot \mathsf{REF}(\mathsf{LeftNullSpace}(\varphi)) = \tau)$
- CokernelObject $(\varphi) \coloneqq \texttt{NrColumns}(\varphi) \texttt{Rank}(\varphi)$
- CokernelProjection(φ) \coloneqq CEF(RightNullSpace(φ))
- CokernelColift (φ, au)

Proposition

k-mat is a computable Abelian category.

- KernelObject(φ) \coloneqq NrRows(φ) Rank(φ)
- $\operatorname{KernelEmbedding}(\varphi) \coloneqq \operatorname{REF}(\operatorname{LeftNullSpace}(\varphi))$
- $\bullet \ \mathtt{KernelLift}(\varphi,\tau) \coloneqq \mathtt{Sol}(\chi \cdot \mathtt{REF}(\mathtt{LeftNullSpace}(\varphi)) = \tau)$
- CokernelObject $(\varphi) \coloneqq \texttt{NrColumns}(\varphi) \texttt{Rank}(\varphi)$
- CokernelProjection(φ) \colonequals CEF(RightNullSpace(φ))
- CokernelColift $(\varphi, \tau) \coloneqq \text{Sol}(\text{CEF}(\text{RightNullSpace}(\varphi)) \cdot \chi = \tau)$

Proposition

k-mat is a computable Abelian category.

- KernelObject(φ) \coloneqq NrRows(φ) Rank(φ)
- KernelEmbedding $(\varphi) \coloneqq \texttt{REF}(\texttt{LeftNullSpace}(\varphi))$
- $\mathsf{KernelLift}(\varphi,\tau) \coloneqq \mathsf{Sol}(\chi \cdot \mathsf{REF}(\mathsf{LeftNullSpace}(\varphi)) = \tau)$
- CokernelObject $(\varphi) \coloneqq \texttt{NrColumns}(\varphi) \texttt{Rank}(\varphi)$
- CokernelProjection(φ) \colonequals CEF(RightNullSpace(φ))
- CokernelColift $(\varphi, \tau) \coloneqq \text{Sol}(\text{CEF}(\text{RightNullSpace}(\varphi)) \cdot \chi = \tau)$
- LiftAlongMonomorphism (κ, au)

Proposition

k-mat is a computable Abelian category.

- KernelObject(φ) \coloneqq NrRows(φ) Rank(φ)
- KernelEmbedding $(\varphi) \coloneqq \texttt{REF}(\texttt{LeftNullSpace}(\varphi))$
- $\mathsf{KernelLift}(\varphi,\tau) \coloneqq \mathsf{Sol}(\chi \cdot \mathsf{REF}(\mathsf{LeftNullSpace}(\varphi)) = \tau)$
- CokernelObject $(\varphi) \coloneqq \texttt{NrColumns}(\varphi) \texttt{Rank}(\varphi)$
- CokernelProjection(φ) \colonequals CEF(RightNullSpace(φ))
- CokernelColift $(\varphi, \tau) \coloneqq \text{Sol}(\text{CEF}(\text{RightNullSpace}(\varphi)) \cdot \chi = \tau)$
- LiftAlongMonomorphism $(\kappa, \tau) \coloneqq \operatorname{Sol}(\chi \cdot \kappa = \tau)$

Proposition

k-mat is a computable Abelian category.

- KernelObject(φ) \coloneqq NrRows(φ) Rank(φ)
- KernelEmbedding $(\varphi) \coloneqq \texttt{REF}(\texttt{LeftNullSpace}(\varphi))$
- $\mathsf{KernelLift}(\varphi,\tau) \coloneqq \mathsf{Sol}(\chi \cdot \mathsf{REF}(\mathsf{LeftNullSpace}(\varphi)) = \tau)$
- CokernelObject $(\varphi) \coloneqq \texttt{NrColumns}(\varphi) \texttt{Rank}(\varphi)$
- CokernelProjection(φ) \colonequals CEF(RightNullSpace(φ))
- CokernelColift $(\varphi, \tau) \coloneqq \text{Sol}(\text{CEF}(\text{RightNullSpace}(\varphi)) \cdot \chi = \tau)$
- LiftAlongMonomorphism $(\kappa, \tau) \coloneqq \operatorname{Sol}(\chi \cdot \kappa = \tau)$
- ColiftAlongEpimorphism (ε, τ)

Proposition

k-mat is a computable Abelian category.

- KernelObject(φ) \coloneqq NrRows(φ) Rank(φ)
- KernelEmbedding $(\varphi) \coloneqq \texttt{REF}(\texttt{LeftNullSpace}(\varphi))$
- $\mathsf{KernelLift}(\varphi,\tau) \coloneqq \mathsf{Sol}(\chi \cdot \mathsf{REF}(\mathsf{LeftNullSpace}(\varphi)) = \tau)$
- CokernelObject $(\varphi) \coloneqq \texttt{NrColumns}(\varphi) \texttt{Rank}(\varphi)$
- CokernelProjection(φ) \colonequals CEF(RightNullSpace(φ))
- CokernelColift $(\varphi, \tau) \coloneqq \text{Sol}(\text{CEF}(\text{RightNullSpace}(\varphi)) \cdot \chi = \tau)$
- LiftAlongMonomorphism $(\kappa, \tau) \coloneqq \operatorname{Sol}(\chi \cdot \kappa = \tau)$
- ColiftAlongEpimorphism $(\varepsilon, \tau) \coloneqq \text{Sol}(\varepsilon \cdot \chi = \tau)$

Let k be a field.

Let k be a field.

Proposition (GAP-package FunctorCategories)

If $\mathcal B$ is a finitely presented k-linear category (k-algebroid) and $\mathcal A$ is computable ABELian over k, then the functor category

$$\mathcal{A}^{\mathcal{B}} \coloneqq \mathbf{FuncCat}(\mathcal{B}, \mathcal{A})$$

is computable ABELian over k.

Let k be a field.

Proposition (GAP-package FunctorCategories)

If $\mathcal B$ is a finitely presented k-linear category (k-algebroid) and $\mathcal A$ is computable ABELian over k, then the functor category

$$\mathcal{A}^{\mathcal{B}} \coloneqq \mathbf{FuncCat}(\mathcal{B}, \mathcal{A})$$

is computable ABELian over k.

Corollary

Let R be a finitely presented k-algebra (or k-algebroid), then the category of *finite dimensional* R-modules

$$R$$
-fdmod $\simeq k$ -mat ^{R} = $(\dot{\bigcup}_{g,g'\in\mathbb{N}}k^{g\times g'})^R$

is computable ABELian.

Let k be a field.

Proposition (GAP-package FunctorCategories)

If $\mathcal B$ is a finitely presented k-linear category (k-algebroid) and $\mathcal A$ is computable ABELian over k, then the functor category

$$\mathcal{A}^{\mathcal{B}} \coloneqq \mathbf{FuncCat}(\mathcal{B}, \mathcal{A})$$

is computable ABELian over k.

Corollary

Let R be a finitely presented k-algebra (or k-algebroid), then the category of *finite dimensional* R-modules

$$R$$
-fdmod $\simeq k$ -mat ^{R} = $(\dot{\bigcup}_{g,g'\in\mathbb{N}}k^{g\times g'})^R$

is computable ABELian.

What about finitely presented modules?

From now on let R be a ring with 1.

From now on let R be a ring with 1.

Definition

We call a constructive ring **left computable** if the solvability of XA = B is algorithmically decidable.

From now on let R be a ring with 1.

Definition

We call a constructive ring **left computable** if the solvability of XA = B is algorithmically decidable. This means:

Determining a syzygy matrix S of A:

$$SA = 0, \forall S' : S'A = 0 \implies \exists Y : YS = S';$$

From now on let R be a ring with 1.

Definition

We call a constructive ring **left computable** if the solvability of XA = B is algorithmically decidable. This means:

Determining a syzygy matrix S of A:

$$SA = 0, \forall S' : S'A = 0 \implies \exists Y : YS = S';$$

Deciding the solvability of XA = B

From now on let R be a ring with 1.

Definition

We call a constructive ring **left computable** if the solvability of XA = B is algorithmically decidable. This means:

Determining a syzygy matrix S of A:

$$SA = 0, \forall S' : S'A = 0 \implies \exists Y : YS = S';$$

 Deciding the solvability of XA = B and in the affirmative case determining a particular solution X.

From now on let R be a ring with 1.

Definition

We call a constructive ring **left computable** if the solvability of XA = B is algorithmically decidable. This means:

Determining a syzygy matrix S of A:

$$SA = 0, \forall S' : S'A = 0 \implies \exists Y : YS = S';$$

 Deciding the solvability of XA = B and in the affirmative case determining a particular solution X.

Proposition ([Pos17])

If R is left computable then the category $\dot{\bigcup}_{g,g'\in\mathbb{N}}R^{g\times g'}$ is computable additive with weak kernels and decidable lifts.

From now on let R be a ring with 1.

Definition

We call a constructive ring **left computable** if the solvability of XA = B is algorithmically decidable. This means:

Determining a syzygy matrix S of A:

$$SA = 0, \forall S' : S'A = 0 \implies \exists Y : YS = S';$$

 Deciding the solvability of XA = B and in the affirmative case determining a particular solution X.

Proposition ([Pos17])

If R is left computable then the category $\dot{\bigcup}_{g,g'\in\mathbb{N}}R^{g\times g'}$ is computable additive with weak kernels and decidable lifts.

Now to a computable model for the category of f.p. R-modules:

Freyd construction $\mathbf{Freyd}(P)$

Let P be an additive category, then a particular ideal quotient

$$\mathbf{Freyd}(\mathbf{P}) := \mathbf{P}^{\{\bullet \to \star\}}/I = \mathbf{FuncCat}(\{\bullet \to \star\}, \mathbf{P})/I$$

is additive with cokernels

Freyd construction $\mathbf{Freyd}(\mathbf{P})$

Let P be an additive category, then a particular ideal quotient

$$\mathbf{Freyd}(\mathbf{P}) \coloneqq \mathbf{P}^{\{\bullet \to \star\}}/I = \mathbf{FuncCat}(\{\bullet \to \star\}, \mathbf{P})/I$$

is additive with cokernels

Theorem ([Pos17])

Freyd's construction yields a computable $ABELian\ category\ if\ in$ addition P has weak cokernels and decidable lifts.

Freyd construction **Freyd**(P)

Let P be an additive category, then a particular ideal quotient

$$\mathbf{Freyd}(\mathbf{P}) := \mathbf{P}^{\{\bullet \to \star\}}/I = \mathbf{FuncCat}(\{\bullet \to \star\}, \mathbf{P})/I$$

is additive with cokernels

Theorem ([Pos17])

Freyd's construction yields a computable $Abelian\ category\ if\ in$ addition P has weak cokernels and decidable lifts.

Corollary ([Pos17], [BLH11])

If R is left computable then

$$R$$
-fpmod \simeq Freyd $(\dot{\bigcup}_{g,g'\in\mathbb{N}}R^{g\times g'})$

is computable ABELian.

Freyd construction $\mathbf{Freyd}(\mathbf{P})$

Let P be an additive category, then a particular ideal quotient

$$\mathbf{Freyd}(\mathbf{P}) := \mathbf{P}^{\{\bullet \to \star\}}/I = \mathbf{FuncCat}(\{\bullet \to \star\}, \mathbf{P})/I$$

is additive with cokernels

Theorem ([Pos17])

Freyd's construction yields a computable $Abelian\ category\ if\ in$ addition P has weak cokernels and decidable lifts.

Corollary ([Pos17], [BLH11])

If R is left computable then

$$R$$
-fpmod \simeq Freyd $(\dot{\bigcup}_{g,g'\in\mathbb{N}}R^{g\times g'})$

is computable ABELian.

 $\mathbf{Freyd}(\mathbf{AdditiveClosure}(R\text{-}\mathbf{LinClosure}(\mathbf{CatClosure}(\bullet))))!!$

Examples of computable rings

Example (computable rings)		
ring a constructive field k ring of rational integers \mathbb{Z} a univariate polynomial ring $k[x]$ a polynomial ring ^a $R[x_1, \ldots, x_n]$ many noncommutative rings $k[x_1, \ldots, x_n]_{\mathfrak{p}}$ residue class rings ^b	algorithm GAUSS HERMITE normal form HERMITE normal form BUCHBERGER n.c. BUCHBERGER MORA BUCHBERGER	
aR any of the above rings b modulo ideals which are f.g. as left resp. right ideals.		

In this context any algorithm to compute a GRÖBNER basis is a substitute for the GAUSS resp. HERMITE normal form algorithm.

Q:

 $\mathbf{Freyd}^2(\mathbf{AdditiveClosure}(R\text{-}\mathbf{LinClosure}(\mathbf{CatClosure}(q)..)?$

Q:

 $\mathbf{Freyd}^2(\mathbf{AdditiveClosure}(R\text{-}\mathbf{LinClosure}(\mathbf{CatClosure}(q)..)\mathbf{?}$

Category theory "invents" data structures and calculi

Free instance of a doctrine

Calculus

Q:

 $\mathbf{Freyd}^2(\mathbf{AdditiveClosure}(R\text{-}\mathbf{LinClosure}(\mathbf{CatClosure}(q)..)\mathbf{?}$

Free instance of a doctrine	Calculus
cartesian closed category (CCC)	λ -calculus

Q:

 $\mathbf{Freyd}^2(\mathbf{AdditiveClosure}(R\text{-}\mathbf{LinClosure}(\mathbf{CatClosure}(q)..)\mathbf{?}$

Free instance of a doctrine	Calculus
cartesian closed category (CCC)	λ -calculus
compact closed category (CCC)	quantized λ -calculus

Q:

 $\mathbf{Freyd}^2(\mathbf{AdditiveClosure}(R\text{-}\mathbf{LinClosure}(\mathbf{CatClosure}(q)..)\mathbf{?}$

Free instance of a doctrine	Calculus
cartesian closed category (CCC)	λ -calculus
compact closed category (CCC)	quantized λ -calculus
topos	non-dependent type theory

Q:

 $\mathbf{Freyd}^2(\mathbf{AdditiveClosure}(R\text{-LinClosure}(\mathbf{CatClosure}(q)..)?$

Free instance of a doctrine	Calculus
cartesian closed category (CCC)	λ -calculus
compact closed category (CCC)	quantized λ -calculus
topos	non-dependent type theory
locally closed category (LCCC)	dependent type theory

Q:

 $\mathbf{Freyd}^2(\mathbf{AdditiveClosure}(R\text{-LinClosure}(\mathbf{CatClosure}(q)..)?$

Category theory "invents" data structures and calculi

Free instance of a doctrine	Calculus
cartesian closed category (CCC)	λ -calculus
compact closed category (CCC)	quantized λ -calculus
topos	non-dependent type theory
locally closed category (LCCC)	dependent type theory

Software demo

Thank you

- Mohamed Barakat and Markus Lange-Hegermann, An axiomatic setup for algorithmic homological algebra and an alternative approach to localization, J. Algebra Appl. 10 (2011), no. 2, 269–293, (arXiv:1003.1943). MR 2795737 (2012f:18022)
- Sebastian Posur, A constructive approach to Freyd categories, ArXiv e-prints (2017), (arXiv:1712.03492).