Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт космических и информационных технологий		
институт		
Программная инженерия		
кафедра		

ОТЧЕТ О ПРАКТИЧЕСКОЙ РАБОТЕ №1

Конечные автоматы

тема

Преподаватель		А. С. Кузнецов
	подпись, дата	инициалы, фамилия
G 19122 17/15 02221704		IC N. H
Студент КИ23-16/1Б, 032321684		К. М. Дорошев
номер группы, зачетной книжки	подпись, дата	инициалы, фамилия

1 Цель

Реализация и исследование детерминированных и недетерминированных конечных автоматов.

2 Задание

Вариант – 10.

Для выполнения практической работы необходимо разработать в системе JFLAP конечные автоматы и произвести программную реализацию на языке Java для следующих автоматов:

- 1) Построить ДКА, допускающий в алфавите $\{0, 1\}$ все цепочки нулей и единиц с одинаковыми парами символов на обоих краях цепочки.
- 2) Построить НКА, допускающий язык из цепочек из 0 и 1, в которых хотя бы на одной из последних пяти позиций стоит 1.

3 Ход выполнения

Для начала была установлена программа JFLAP, в которой были построены конечные автоматы из условия задания. Каждый КА был сначала протестирован в JFLAP тестовыми цепочками, затем была написана программная реализация на Java, которая также была протестирована на корректность работы теми же самыми тестовыми цепочками.

3.1 Построение ДКА

Необходимо было реализовать детерминированный конечный автомат (ДКА). Построить ДКА, допускающий в алфавите {0, 1} все цепочки нулей и единиц, где самый левый символ отличается от самого правого символа.

Рисунок 1 – ДКА в JFLAР

На рисунке 2 показан тест ДКА для цепочки «00100» которая удовлетворяет условию.

Рисунок 2 – Тест для цепочки «00100»

Также была проверка на отклонение строки, которая не удовлетворяет условию. На рисунке 3 показан тест ДКА для цепочки «110000».

Рисунок 3 — Тест для цепочки «110000»

Дальше был написан код на Java для реализации данного ДКА, он показан на рисунке 4.

Рисунок 4 – Код для ДКА на Java

После компиляции, сборки и запуска программы были повторно проведены тесты, показанные на рисунке 5.

```
00 -> ACCEPT
01 -> ACCEPT
10 -> ACCEPT
11 -> ACCEPT
0000 -> ACCEPT
00100 -> ACCEPT
0 -> REJECT
1 -> REJECT
0001 -> REJECT
110000 -> REJECT
```

Рисунок 5 – Тесты для ДКА на Java

3.2 Построение НКА

Также необходимо было реализовать недетерминированный конечный автомат (НКА) допускающий язык из цепочек из 0 и 1, в которых хотя бы на одной из последних пяти позиций стоит 1. На рисунке 6 показана реализация ДКА первого задания в системе JFLAP.

Рисунок 6 - НКА в JFLAP.

Дальше необходимо было провести все самые главные тесты для этой цепочки, они показаны на рисунке 7.

Рисунок 7 – Тесты для НКА.

Все тесты были пройдены успешно. На рисунке 8 показан код на Java для реализации данного НКА.

```
Press 2 for holp

. (op a dist)

. (obs.)

. (
```

Рисунок 8 – Код для НКА на Java

После компиляции, сборки и запуска программы были повторно проведены тесты, показанные на рисунке 9.

NFA results: 1 -> ACCEPT 01 -> ACCEPT 00001 -> ACCEPT 101000 -> ACCEPT 11111 -> ACCEPT 0001000 -> ACCEPT 1010101 -> ACCEPT 000001 -> ACCEPT 0 -> REJECT 00 -> REJECT 00000 -> REJECT 100000 -> REJECT 1100000 -> REJECT

Рисунок 9 – Тесты для НКА на Java

4 Выводы

В ходе данной практической работы был изучен материал о детерминированных и недетерминированных конечных автоматах, были выполнены все задания, построены ДКА и НКА в системе JFLAP и реализован программный код на Java.