GE23131-Programming Using C-2024

REC-CIS	
	Returns:
	int: an integer representing the index of the pivot
	Constraints
	· 3 ≤ n ≤ 10 ⁵
	. 1 ≤ arr[i] ≤ 2 × 10 ⁴ , where 0 ≤ i < n
	It is guaranteed that a solution always exists.
	Input Format for Custom Testing
	Input from stdin will be processed as follows and passed to the function.
	The first line contains an integer n, the size of the array arr.
	Each of the next n lines contains an integer, $arr[i]$, where $0 \le i < n$.
	Sample Case 0
	Sample Input 0
	STDIN Function Parameters
	4 → arr[] size n = 4
	1 \rightarrow arr = [1, 2, 3, 3]
	2
	3
	3

Using zero based indexing, arr[1]=2 is the pivot between the two subarrays. The index of the pivot is 1. Answer: (penalty regime: 0 %) Reset answer * Complete the 'balancedSum' function below. * The function is expected to return an INTEGER. * The function accepts INTEGER_ARRAY arr as parameter. int balancedSum(int arr count, int* arr) 9 + int 1 = 0, r = 0; 10 for (int i=0;i<arr_count;i++){ 11 + r += arr[i]; 12 13 14 + for (int i=0;i<arr_count;i++){ if (1 -- r - arr[i]){ 15 + return i; 16 17 1 += arr[i]; 18 r -= arr[i]; 19 20 21 return 1; 22 23

	Test	Expected	Got	
~	int arr[] = {1,2,3,3}; printf("%d", balanced5um(4, arr))	2	2	~

REC-CIS	
Question 2 Correct	Calculate the sum of an array of integers.
Y Flag question	Example
	numbers = [3, 13, 4, 11, 9]
	The sum is $3 + 13 + 4 + 11 + 9 = 40$.
	Function Description
	Complete the function arraySum in the editor below.
	arraySum has the following parameter(s):
	int numbers[n]: an array of integers
	Returns
	int: integer sum of the numbers array
	Constraints
	$1 \le n \le 10^4$
	1 ≤ numbers[i] ≤ 10 ⁴
	Input Format for Custom Testing
	Input from stdin will be processed as follows and passed to the function.


```
2 → numbers[] size n = 2
    → numbers = [12, 12]
12
Sample Output 1
24
Explanation 1
12 + 12 = 24.
Answer: (penalty regime: 0 %)
 Reset answer
       * Complete the 'arraySum' function below.
       * The function is expected to return an INTEGER.
       * The function accepts INTEGER ARRAY numbers as parameter.
       int arraySum(int numbers_count, int *numbers)
   9 .
           int s =0;
  10
          for (int i=0;i<numbers_count;i++){
  11 +
  12
              s += numbers[i];
  13
           return s;
  14
  15
  16
```

```
12 + 12 = 24.
Answer: (penalty regime: 0 %)
 Reset answer
       * Complete the 'arraySum' function below.
       * The function is expected to return an INTEGER.
       * The function accepts INTEGER_ARRAY numbers as parameter.
       int arraySum(int numbers_count, int *numbers)
   9 +
           int s =0;
   10
          for (int i=0;i<numbers_count;i++){
  11 +
              s += numbers[i];
  12
  13
  14
           return s;
  15
  16
```

	Test	Expected	Got	
~	int arr[] = {1,2,3,4,5}; printf("%d", arraySum(5, arr))	15	15	~

Passed all tests! 🗸

Question 3 Correct P Flag question

Given an array of n integers, rearrange them so that the sum of the absolute differences of all adjacent elements is minimized. Then, compute

Answer: (penalty regime: 0 %) Reset answer

```
* Complete the 'minDiff' function below.
     * The function is expected to return an INTEGER.
     * The function accepts INTEGER_ARRAY arr as parameter.
    int minDiff(int arr count, int* arr)
 8
 9
        for(int i=0;i<arr count;i++)
10
11 4
            for(int j=i;j<arr count;j++)
12
13
                if(i|=j)
14
15
                    if(arr[i] > arr[j])
16
17
                        int temp=arr[i];
18
                        arr[j]=arr[i];
19
                        arr[i]=temp;
20
21
22
23
24
25
        for(int i=0;i<arr count-1;i++)
26
```


	Test	Expected	Got	
~	<pre>int arr[] = {5, 1, 3, 7, 3}; printf("%d", minDiff(5, arr))</pre>	6	6	~