

EVENT SCHEMAS: LEARNING AND USE IN HUMANS AND RECURRENT NETWORKS

Andre Beukers, Qihong Lu, Cathy Chen, Christopher Baldassano, Uri Hasson, Kenneth Norman

Schemas

- * are the scaffolding of memory
- * constructed from multiple episodes
- * afford generalization
- * support encoding
- * how are they learned and used?

Approach

- * algorithmically generate narratives with:
- long range probabilistic dependencies
- filler dependent transition

1) sample fillers

Humans stop and ask 2AFC. what happens next? all experiments on mturk. n=25 above catch question thresh. chance is 50%

is learning possible in our task?

- only subject and victim names changing

- subjects approached probability matching performance on unconditioned transitions more so than on conditioned transitions.

high filler complexity

4096 possible different combinations of fillers

- learning is still possible in high filler complexity

does surface complexity help or hinder learning?

- surface complexity helps on conditioned transitions but hinders on unconditioned transitions. note however: does not survive bonferoni correction.

Networks

- network performance: close to perfect on filler questions. unfortunately it is difficult to draw inferences regarding the learning on next state questions as there is a confound in the assymptote level.

Future directions

- generalization task: filler vectors randomized.
- networks at chance in conditioned transitions where filler information is required for next state questions.
- began investigating the impact of different learning regimes: blocked versus interleaved learning, and curriculum learning. how do these influence learning dynamics, task solutions and latent representations?

Take home

- * validation of new task for studying schemas
- * naturalistic complexity might help learning
- * different mnemonic architectures have different learning dynamics and task solutions