Math 3B: Lecture 17

Noah White

February 22, 2017

Newton's Law of Cooling

Isaac Newton stated that

Newton's Law of Cooling

The temperature T of a body changes at a rate proportional to the difference between the ambient temperature A and T.

Newton's Law of Cooling

Isaac Newton stated that

Newton's Law of Cooling

The temperature T of a body changes at a rate proportional to the difference between the ambient temperature A and T.

Newton's Law of Cooling

Isaac Newton stated that

Newton's Law of Cooling

The temperature T of a body changes at a rate proportional to the difference between the ambient temperature A and T.

$$\frac{\mathrm{d}T}{\mathrm{d}t} = k(A - T)$$

General solution

$$T(t) = A - Ce^{-kt}$$
.

An object takes 20 minutes to cool from 90° to 86° in a room which is 70° . At what time will it be 75° ?

Solution

An object takes 20 minutes to cool from 90° to 86° in a room which is 70° . At what time will it be 75° ?

Solution

The temp is described by the equation

$$\frac{\mathrm{d}T}{\mathrm{d}t}=k(70-T).$$

An object takes 20 minutes to cool from 90° to 86° in a room which is 70° . At what time will it be 75° ?

Solution

The temp is described by the equation

$$\frac{\mathrm{d}T}{\mathrm{d}t}=k(70-T).$$

The solution is given by

$$T(t) = 70 - Ce^{-kt}$$

An object takes 20 minutes to cool from 90° to 86° in a room which is 70° . At what time will it be 75° ?

Solution

The temp is described by the equation

$$\frac{\mathrm{d}T}{\mathrm{d}t}=k(70-T).$$

The solution is given by

$$T(t) = 70 - Ce^{-kt}$$

• We know T(0) = 90 and T(20) = 86.

An object takes 20 minutes to cool from 90° to 86° in a room which is 70° . At what time will it be 75° ?

Solution

The temp is described by the equation

$$\frac{\mathrm{d}T}{\mathrm{d}t}=k(70-T).$$

The solution is given by

$$T(t) = 70 - Ce^{-kt}$$

- We know T(0) = 90 and T(20) = 86.
- Thus

$$90 = 70 - C$$
 so $C = -20$.

•
$$T(t) = 70 + 20e^{-kt}$$

- $T(t) = 70 + 20e^{-kt}$
- To find k we use T(20) = 86

$$86 = 70 + 20e^{-20k}$$

- $T(t) = 70 + 20e^{-kt}$
- To find *k* we use T(20) = 86

$$86 = 70 + 20e^{-20k}$$

Thus

$$e^{-20k} = \frac{86 - 70}{20} = \frac{4}{5}$$
 so $k = -\frac{1}{20} \ln\left(\frac{4}{5}\right) \approx -0.01$.

- $T(t) = 70 + 20e^{-kt}$
- To find k we use T(20) = 86

$$86 = 70 + 20e^{-20k}$$

Thus

$$e^{-20k} = \frac{86 - 70}{20} = \frac{4}{5}$$
 so $k = -\frac{1}{20} \ln\left(\frac{4}{5}\right) \approx -0.01$.

• The model is thus $T(t) = 70 + 20e^{-0.01t}$. We want to solve

$$75 = 70 + 20e^{-0.01t}.$$

- $T(t) = 70 + 20e^{-kt}$
- To find k we use T(20) = 86

$$86 = 70 + 20e^{-20k}$$

Thus

$$e^{-20k} = \frac{86 - 70}{20} = \frac{4}{5}$$
 so $k = -\frac{1}{20} \ln\left(\frac{4}{5}\right) \approx -0.01$.

• The model is thus $T(t) = 70 + 20e^{-0.01t}$. We want to solve

$$75 = 70 + 20e^{-0.01t}.$$

• Rearranging we get $20e^{-0.01t} = 5$ i.e.

• $20e^{-0.01t} = 5$ becomes

$$e^{-0.01t} = \frac{1}{4}$$

• $20e^{-0.01t} = 5$ becomes

$$e^{-0.01t} = \frac{1}{4}$$

• Applying a logarithm

$$-0.01t = \ln\left(\frac{1}{4}\right)$$

• $20e^{-0.01t} = 5$ becomes

$$e^{-0.01t} = \frac{1}{4}$$

Applying a logarithm

$$-0.01t = \ln\left(\frac{1}{4}\right)$$

• So we get

$$t = -100 \ln \left(\frac{1}{4}\right) \approx 138 = 2 \text{ hours } 18 \text{ minutes.}$$