Scenario

- Neuropsychological test score among children (8-12yrs old)
- Want to understand the trajectory of score improvement over time

Cross-Sectional Study

One observation per subject

Cross-Sectional Study

One observation per subject

^{*} No intercept for simplicity

Cross-Sectional Study

Longitudinal Study

One observation per year for each subject

Longitudinal Study

One observation per year for each subject

Longitudinal Study

One observation per year for each subject

$$Y = b_i X + \beta X + \epsilon$$

^{*} No intercept for simplicity

Y =
$$b_i X + \underline{\beta} X + \varepsilon$$

Fixed effect

$$Y = b_i X + \beta X + \epsilon$$

Overall regression slope

for the population

Y =
$$b_i X + \beta X + \epsilon$$

Random effect

Y =
$$b_i X + \beta X + \epsilon$$

Individual slope
(i = 1, 2, ..., N)
Deviation from the overall

slope in the fixed effect

$$Y = b_i X + \beta X + \epsilon$$
Error

varies from subject to subject

 σ_{w1}^2 , σ_{w2}^2 , ..., σ_{wN}^2

or

Why Mixed Model?

- Can we just fit a regular regression line?
 - Forget random effects. Ignore repeated observations

Why Mixed Model?

- Can we just fit a regular regression line?
 - Forget random effects. Ignore repeated observations

Mixed Model or Fixed Effect Model?

- Fixed effect model
 - One observation per subject
 - No within-subject variance
- Mixed model
 - Multiple observations per subject
 - Need to separate within- and between-subject variance

Notes on Mixed Model

$$Y = b_i X + \beta X + \epsilon$$

- Fitting a mixed model → estimating many parameters
 - Fixed effect regression parameters
 - Random effect regression parameters
 - Within-subject variance
 - Between-subject variance
- Parameters can be estimated at once computationally intensive

Notes on Mixed Model

Quick and easy (i.e., less computationally intensive) way

Fit individual regression lines first

Then calculate the average of slopes

→ slope for the population Very common in fMRI

^{*} No intercept for simplicity

First-Level Analysis

Fitting expected BOLD fMRI signal to observed fMRI time series
 — in a single subject

What if there are multiple subjects?

Can we concatenate fMRI data across subjects?

Can we concatenate fMRI data across subjects?

No!

- Between-subject variance
- Within-subject variance

Between-subject variability in activation magnitude

Within-subject variance

- First-level analysis individually
 - Estimate activation magnitude (i.e., contrast)

- Fixed-effect model on contrast
 - One observation per subject
 - Focus on between-subject variance

Quick and easy way to fit a mixed model

- Often a simple statistical model is adequate
 - One-sample T-test (to assess significant activation)
 - Two-sample T-test
 - Independent groups (to compare activation magnitudes)
 - Paired (to examine changes within same subjects)

Contrasts in 2nd-Level Analyses

Each Beta corresponds to a group

One-sample setting

(Group 1)

Beta1

Subject 8

Group 1

Each Beta corresponds to a group

Two-sample setting		Beta1 (Group 1)	Beta2 (Group 2)
	Subject 1	1	0
Group 1	Subject 2	1	O
Group 1	Subject 3	1	O
	Subject 4	1	O
	Subject 5	O	1
Group 2	Subject 6	O	1
Group 2	Subject 7	O	1
	Subject 8	0	1

Contrasts of interests

One-sample setting

```
Beta1 (Group 1)
```

```
Activation: [ 1]
```

```
Deactivation: [ -1]
```

Contrasts of interests

Two-sample setting

```
Beta1 Beta2 (Group 1) (Group 2)

Activation, Group 1 [ 1 0 ]

Activation, Group 2 [ 0 1 ]

Group 1 > Group 2 [ 1 -1 ]

Group 2 > Group 1 [ -1 1 ]
```

Higher-Level Analyses (Higher than 2)

Paired Two-Sample T-Test

- Two conditions to be compared
- Each subject scanned under 2 conditions serving as own control

Subject 1	Condition 1	Condition 2		Difference
Subject 2	Condition 1	Condition 2	—	Difference
Subject 3	Condition 1	Condition 2		Difference
Subject 4	Condition 1	Condition 2		Difference
Subject 4	Condition	Condition 2		Dilicicice
Subject 5	Condition 1	Condition 2		Difference

Paired Two-Sample T-Test

- Special case of higher-level analysis
 - First-level: individual scanning session
 - Second-level: calculating difference within individual
 - E.g., pre- vs. post-, condition 1 vs. condition 2
 - Third-level: calculating significant paired difference across subjects

- Possible scenarios:
 - Same experiment was repeated multiple times on the same subject
 - Within the same session or separate sessions

E.g., within the same session

Run 1 Resting scan Run 2

E.g., separate sessions

- Multiple 4D fMRI time series on the same experiment
 - Distinct runs cannot be concatenated
 - Need to be treated as 2nd level analysis
 - Within-run variance
 - Between-run variance
- Results from individual 2nd level analyses combined as the 3rd level analysis

1st-level Analysis on each run on each subject

Subject 1 Run 1 Run 2 Run 3 Subject 2 Run 1 Run 2 Run 3 Subject 3 Run 2 Run 1 Run 3 Subject 4 Run 2 Run 1 Run 3 Subject 5 Run 1 Run 2 Run 3

Note: very time consuming!

2nd-level Analysis on contrast images from multiple runs within each subject

Subject 5

Contrast: Run 1

Subject 1	Contrast: Run 1	Contrast: Run 2	Contrast: Run 3	\longrightarrow	Contrast: Subject 1
Subject 2	Contrast: Run 1	Contrast: Run 2	Contrast: Run 3		Contrast: Subject 2
Subject 3	Contrast: Run 1	Contrast: Run 2	Contrast: Run 3		Contrast: Subject 3
Subject 4	Contrast: Run 1	Contrast: Run 2	Contrast: Run 3		Contrast: Subject 4

Contrast: Run 3

Contrast: Subject 5

Contrast: Run 2

3rd-level Analysis on contrast images from 2nd-level analysis

Subject 1 Contrast: Subject 1

Subject 2 Contrast: Subject 2

Subject 3 Contrast: Subject 3

Overall contrast

Subject 4 Contrast: Subject 4

Subject 5 Contrast: Subject 5