Let A, B, and C be matrices of the same size, and let r and s be scalars.

a.
$$A + B = B + A$$

d.
$$r(A + B) = rA + rB$$

b.
$$(A + B) + C = A + (B + C)$$

e.
$$(r+s)A = rA + sA$$

c.
$$A + 0 = A$$

f.
$$r(sA) = (rs)A$$

Properties of madrix multiplication

Properties of Matrix Multiplication

The following theorem lists the standard properties of matrix multiplication. Recall that I_m represents the $m \times m$ identity matrix and $I_m \mathbf{x} = \mathbf{x}$ for all \mathbf{x} in \mathbb{R}^m .

Let A be an $m \times n$ matrix, and let B and C have sizes for which the indicated sums and products are defined.

a.
$$A(BC) = (AB)C$$

(associative law of multiplication)

b.
$$A(B+C) = AB + AC$$

(left distributive law)

c.
$$(B+C)A = BA + CA$$

(right distributive law)

d.
$$r(AB) = (rA)B = A(rB)$$

for any scalar r

e. $I_m A = A = A I_n$

(identity for matrix multiplication)

Warnings about makix moltplication

WARNINGS:

- **1.** In general, $AB \neq BA$.
- **2.** The cancellation laws do *not* hold for matrix multiplication. That is, if AB = AC, then it is *not* true in general that B = C. (See Exercise 10.)
- **3.** If a product AB is the zero matrix, you *cannot* conclude in general that either A = 0 or B = 0. (See Exercise 12.)

Multiplicative powers

Powers of a Matrix

If A is an $n \times n$ matrix and if k is a positive integer, then A^k denotes the product of k copies of A:

$$A^k = \underbrace{A \cdots A}_{k}$$

If A is nonzero and if \mathbf{x} is in \mathbb{R}^n , then $A^k \mathbf{x}$ is the result of left-multiplying \mathbf{x} by A repeatedly k times. If k = 0, then $A^0 \mathbf{x}$ should be \mathbf{x} itself. Thus A^0 is interpreted as the identity matrix. Matrix powers are useful in both theory and applications (Sections 2.6, 4.9, and later in the text).

Algebra and the transposi: basic

Let A and B denote matrices whose sizes are appropriate for the following sums and products.

a.
$$(A^T)^T = A$$

b.
$$(A + B)^T = A^T + B^T$$

c. For any scalar
$$r$$
, $(rA)^T = rA^T$

$$d. (AB)^T = B^T A^T$$