实验名称: 测定空气的比热容比

学生姓名: 宋奕纬 学号: 2212000 学院: 网络空间安全学院 A 组 19 号 2024 年 4 月 7 日

一、实验器材

FD-NCD- Ⅱ 空气比热容比测定仪,由机箱 (含数字电压表二只)、储气瓶、传感器两只(电流型集成温度传感器 AD590 和扩散硅压力传感器各一只)等组成。

二、实验目的

- 1、学习测定空气比定压热容与比定容热容之比的一种方法。
- 2、观察热学过程中状态变化及基本物理规律。
- 3、学习用传感器精确测定气体压强和温度的原理与方法。

三、实验原理

1、比热容

一定质量的物体温度升高 1K, 所吸收的热量与 1kg 该物质和升高 1K 温度的比值称作比热容, 用 C 表示。(单位 $J/(kg \cdot K)$)

2、比热容比

比热容比是定压比热容与定容比热容之比,通常用符号 γ 表示,即 γ =Cp/Cv,是描述气体热力学性质的一个重要参数。

3、克列曼和迭索尔姆方法

在实验过程中先向瓶内通入气体得到状态I

快速放出气体,研究气体进行绝热膨胀,从实验状态 I 到状态 I (此过程中速度极快,对外热量交换极少),状态从高温常压到室温常压,从此时符合泊松公式:

$$P_1V_1^{\gamma} = P_aV_2^{\gamma}$$

由于绝热膨胀,系统温度下降,迅速关闭活塞,状态 Ⅱ 稳定后,系统将从外界吸收热量 (使温度恢复到状态 I),压强随之增大。

从实验状态Ⅱ到状态Ⅲ,可近似为等温状态,波义耳定律成立:

$$P_1V_1 = P_2V_2$$

联立解得

$$\gamma = \frac{\ln(p_1/p_a)}{\ln(p_1/p_2)}$$

若用 p_1 '和 p_2 '分别表示 p_1 与 p_a 及 p_2 与 p_a 的压力差,则有

$$\gamma = \frac{p_1}{p_1 - p_2}$$

四、操作步骤

- 1、开启玻璃瓶的两个活塞并开启电子仪器的电源,使用调零旋钮将测定气压的表示数调整为 0mV,预热 20 分钟。
- 2、关闭出气活塞,使用橡皮球往玻璃瓶中压入大约 120mV 气体后,关闭进气活塞,等待直到电压表示数稳定,记录此时电压表的示数为 $P_{1}^{'}$,温度表的示数为 T_{1} 。
- **3**、打开出气活塞,待放气声音停止后立即关闭,等待直到电压表的示数稳定,记录电压表示数为 P_2 ,温度表示数为 T_2 。
- 4、重新打开两个活塞, 重复步骤 1 和 2.
- 5、测10组数据,代入公式进行测量。

五、数据记录、计算与处理

(一) 记录

1、初始数据

(器材出现问题, 初始压强始终无法调零且有变小趋势, 已与助教老师说明)

初始温度 $T_e = 1465.2 \text{mV}$

初始压强 $P_a = -0.03mV$

2、实验过程数据记录

	p / _/ /mV	T _/ /mV	<i>p</i> ₂ /mV	<i>T ₂</i> /mV	$p_1' - p_2'$ /mV	$y = \frac{p_1'}{p_1' - p_2'}$
$1_{P_a = -0.03mV}$	135.7	1466.0	32.4	1465.7	103.3	1.314
2	134.8	1466.4	31.1	1466.2	103.7	1.300
3	131.4	1466.9	29.8	1466.6	101.6	1.293
$4P_a = -0.04mV$	133.3	1467.1	31.3	1466.8	102	1.307
5	134.6	1467.2	31.5	1467.0	103.1	1.306
6	125.7	1467.3	29.6	1467.0	96.1	1.308
7	134.0	1467.6	31.2	1467.2	102.8	1.304
8	129.6	1467.7	30.4	1467.4	99.2	1.306
$9_{P_a = -0.05mV}$	130.4	1467.8	30.6	1467.5	99.8	1.307
10	131.2	1468.1	30.7	1467.8	100.5	1.305

3、实验数据修正

由于器材问题无法调零,故需要对数据进行修正,

第1、2、3组数据的压强需要加上0.03mV;

第4、5、6、7、8组数据的压强需要加上0.04mV;

第9、10组数据的压强需要加上0.05mV。

(此处始终无法调零,已与助教老师说明情况)

	p //mV	T _/ /mV	<i>p</i> ₂ /mV	<i>T ₂</i> /mV	$p_1' - p_2'/\text{mV}$	$\gamma = \frac{p_1'}{p_1' - p_2'}$
--	--------	--------------------	---------------------------	---------------------------	-------------------------	-------------------------------------

1	136.0	1466.0	32.7	1465.7	103.3	1.317
2	135.1	1466.4	31.4	1466.2	103.7	1.303
3	131.7	1466.9	30.1	1466.6	101.6	1.296
4	133.7	1467.1	31.7	1466.8	102	1.311
5	135.0	1467.2	31.9	1467.0	103.1	1.309
6	126.1	1467.3	30.0	1467.0	96.1	1.312
7	134.4	1467.6	31.6	1467.2	102.8	1.307
8	130.0	1467.7	30.8	1467.4	99.2	1.310
9	130.9	1467.8	31.1	1467.5	99.8	1.312
10	131.7	1468.1	31.2	1467.8	100.5	1.310
平均	γ=1.309					

(二) 计算

1、相对误差

$$E_x = \frac{1.402 - 1.309}{1.402} = 6.6\%$$

2、不确定度

$$s_{\gamma} = \sqrt{\frac{\sum_{i=1}^{n} (\gamma_{i} - \overline{\gamma})^{2}}{n-1}} = \sqrt{\frac{\sum_{i=1}^{10} (\gamma_{i} - \overline{\gamma})^{2}}{10-1}} = 0.0057$$
 $s_{\overline{\gamma}} = \frac{s_{\gamma}}{\sqrt{n}} = \frac{0.0057}{\sqrt{10}} = 0.0018$
 $u_{a} = t_{(0.683,9)} \times s_{\overline{\gamma}} = 1.06 \times 0.0018 = 0.0019$
 by

六、实验反思与误差分析

注意事项:

- 1、注意系统密封性,检查是否漏气。
- 2、旋转活塞时不可动作过猛, 折断活塞。
- 3、贮气瓶加压不要超过量程 200mV。
- 4、当听到放气声结束应迅速关闭活塞,否则会给实验结果带来较大的不确定度。
- 5、注意实验进程, 防止因试验周期过长, 环境温度较大变化对实验结果造成影响。
- 6、实验完毕将仪器复原,活塞打开与大气相通。

误差分析:

- 1、仪器问题: 硅胶老化、仪器漏气、传感器由于老化导致的精度问题等。
- 2、实验周期过长,环境温度难以控制,实验过程中冷却时间不够导致温度不断上升。
- 3、旋转活塞的过程由人为操作,可能存在没有将活塞旋紧导致漏气等问题。
- 4、实验过程中,对活塞的关闭时间、开活塞放气时间等把握不够精确,可能出现示数还未稳定就进行操作的情况。
- 5、传感器具有一定的滞后性、所测定的不一定是当前时刻的状态。
- 6、打入气体过多或过少,过多时,仪器不密封造成的误差较大。
- 7、打开活塞放气时, 需要声音消失立即关闭, 在人为实验中难以保证这一点的精确性。

七、考察题与思考题

1、考察题 4:如果停止打气到读取 P₁以及从停止放气到读取 P₂的时间都很短,那 么它们分别对测量结果产生什么影响?若时间都很长,对测量结果有影响吗?为 什么?

$$\gamma = \frac{p_{1}^{'}}{p_{1}^{'} - p_{2}^{'}} = \frac{1}{1 - \frac{p_{2}^{'}}{p_{1}^{'}}}$$

停止打气到读取 p_1 的时间过短,考虑到仪器漏气问题,未达到稳定状态;同时气体分布不均匀,传感器测定的是瓶口气压,大于实际气压。故 p_1 测量值大于实际值,使比热容比测量值偏小。

停止放气到读取 P_2 的时间过短,气体未充分膨胀到瓶口, p_2 测量值小于实际值,使比热容比测量值偏小。

时间过长理论上无影响,但考虑到仪器漏气等情况, \mathbf{p}_1' 、 \mathbf{p}_2' 都会偏小,由上式,二者同时偏小时影响不确定,但会造成比较大的误差。

2、思考题 3:现已假定 V_1 , V_2 分别代表绝热前、后空气的比容,在此假设下本实验所考察的热力学系统是什么?若重新假定绝热膨胀后仍留在"V"中的那部分空气作为我们所考察的热力学系统,对实验有影响吗?在后一种假设下 V_1 及 V_2 将等于什么?(设容器体积为 V)

系统: 绝热膨胀前储气瓶内的全部空气

影响: 无影响 **结论**: *V*₂=V;

 V_I =绝热膨胀后仍留在"V"中的空气在绝热前在储气瓶中占的体积,由热力学方程

 $(其中 P_1 \mathbin{,} V_1 \mathbin{,} T_1$ 为绝热前系统状态; $P_2 \mathbin{,} V_2 \mathbin{,} T_2$ 为绝热后系统状态) :

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

得:
$$V_1 = \frac{T_1 P_2}{T_2 P_1} V.$$

八、原始数据与助教签字

17	Te = 1465.2 mV	pa = -00	.3mV.		p.1
w į	Pi/mV	Tiz/mV	Pi/mV		r= 1-P1-P2
沙型鱼.	135.7	146 6.0	32.4	1465.7	
\$ 柳花 8 2	134.8	1466.4.	31.1	1466.2	
	131.4	1466.9	21.6	1466.6	
1466. 5047.	133.3	1467.1	31.3		
1466.7 5	134.6	1467-2.	31.5	1467.0	
1466.8 6	125.7	1467.3	31.5		
1467.1 8	134.0	1467.6	31.2	1467.2.	
1467.70.5q	130.4	1467.7	30.4	1467.4	
1467.4. (0		1467.8	30.6	146 7.5	
		1468.7	30.7	1467.8.	
P.15p	3 Pi	P2'	P''-P'	r= 11'	P; .
(1 +.	136.0	32.7	103.3	1.317	
+03 { 2	135.	31.4	103.7.	1.303	
13	131.7	30.1.	101.6	1300	246
-0.4 6 7 8 1054 9	133.7	31.7	102.0	1.311	
5	135.0	31.9	103.1	1.309	3
+0.4 6	126.1	30.0	96.1	1.312	
18	130.0	3 1. 6 3 0.2	102.8	1.307	
10	130.4	31.1	4 4.2.	1.310	
105 / 10			91.8	1.312.	
	131.7		100.5.	1.310	
曹江清	争均	1991-		> 1.309	
	打印对误差:	H3351	1.39-1.40	= -0.066	= - 6.6%
N.		1004	1.402		= 64%