

Universidade Federal de Santa Catarina Centro Tecnológico

Departamento de Informática e Estatística Curso de Graduação em Ciências da Computação

Sistemas Digitais

INE 5406

Suplemento à Aula 1-T

Arquiteturas de Somadores Rápidos.

Prof. José Luís Güntzel guntzel@inf.ufsc.br

www.inf.ufsc.br/~guntzel/ine5406/ine5406.html

Somador Paralelo Tipo Ripple Carry

Suponha que no tempo t=0 um par de valores é aplicado às entradas (A,B):

- O resultado só estará pronto quando todas as saídas tiverem estabilizado
- si e ci+1 só estabilizam após ci estabilizar
- Em particular, s3 e c4 só estabilizam depois que c3, c2 e c1 tiverem estabilizados...

Analisando a Propagação do Carry

Os caminhos críticos em somadores *Ripple Carry* passam pela cadeia de propagação do *carry*

Analisando a Propagação do Carry

Pergunta: será que não é possível alterar a arquitetura do somador, de modo a "quebrar" ou reduzir tal interdependência?

A resposta é ...

Analisando a Propagação do Carry

Há três diferentes casos na propagação do carry que são mutuamente exclusivos:

				1	
ai	bi	ci	ki	ci+1	si
0	0	0	1	0	0
0	0	1	1	0	1
0	1	0	0	0	1
0	1	1	0	1	0
1	0	0	0	0	1
1	0	1	0	1	0
1	1	0	0	1	0
1	1	1	0	1	1

Caso 1 (sinal *Kill*)

Quando as entradas A e B do somador local são iguais a zero, independentemente do carry de entrada, o carry de saída será igual a zero e, portanto, o estágio "matará" a propagação do carry do estágio anterior.

ai	bi	ci	gi	ci+1	si
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	0	1
0	1	1	0	1	0
1	0	0	0	0	1
1	0	1	0	1	0
1	1	0	1	1	0
1	1	1	1	1	1

Caso 2 (sinal Generate)

Quando as entradas A e B do somador local são iguais a um, independentemente do carry de entrada, o carry de saída será igual a um e, portanto, haverá geração de carry neste estágio.

ai	bi	ci	pi	ci+1	si
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	1	0	1
0	1	1	1	1	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	0	1	0
1	1	1	0	1	1

Caso 3 (sinal *Propagate*)

Quando uma das entradas, A ou B, do somador local for igual a um e a outra for igual a zero, o carry de saída será igual ao carry de entrada e, portanto, o carry será propagado.

Analisando a Propagação do Carry

Resumindo os três casos do carry, temos:

Caso	$\mathbf{a_i}$	b _i	\mathbf{c}_{i+1}
Kill (k _i)	0	0	0
Propagate (p _i)	0	1	c _i
	1	0	c _i
Generate (g _i)	1	1	1

Agora, a idéia é:

- Encontrar uma equação para cada um dos três sinais (k_i , p_i e g_i)
- Achar as equações de s_i e c_{i+1} em função de k_i, p_i e g_i

Mas qual é a vantagem desta "reestruturação lógica"?

Caso	a _i	b _i	c_{i+1}
Kill (k _i)	0	0	0
Propagate (p _i)	0	1	c _i
	1	0	c _i
Generate (g _i)	1	1	1

Equações das funções k_i, p_i e g_i são:

$$\mathbf{k_i} = \overline{\mathbf{a_i}} \cdot \overline{\mathbf{b_i}} = \overline{\mathbf{a_i} + \mathbf{b_i}}$$
$$\mathbf{p_i} = \mathbf{a_i} \oplus \mathbf{b_i}$$
$$\mathbf{g_i} = \mathbf{a_i} \cdot \mathbf{b_i}$$

Caso	a _i	b _i	c_{i+1}
Kill (k _i)	0	0	0
D	0	1	c _i
Propagate (p _i)	1	0	c _i
Generate (g _i)	1	1	1

Então, usando soma de produtos, o *carry out* do estágio i pode ser definido como:

$$\mathbf{c_{i+1}} = \mathbf{g_i} + \mathbf{p_i} \cdot \mathbf{c_i}$$

E a saída "soma" do estágio i pode ser expressa (em função de p_i e c_i) por:

$$\mathbf{s_i} = \mathbf{a_i} \oplus \mathbf{b_i} \oplus \mathbf{c_i} = \mathbf{p_i} \oplus \mathbf{c_i}$$

Analisando a Propagação do Carry

As fórmulas para s_i e c_{i+1} geram o mesmo circuito já estudado, com base em dois meio-somadores.

$$\mathbf{p_i} = \mathbf{a_i} \oplus \mathbf{b_i}$$

$$\mathbf{g_i} = \mathbf{a_i} \cdot \mathbf{b_i}$$

$$\mathbf{c_{i+1}} = \mathbf{g_i} + \mathbf{p_i} \cdot \mathbf{c_i}$$

$$\mathbf{s_i} = \mathbf{p_i} \oplus \mathbf{c_i}$$

Comparando o Desempenho das Duas Versões

Na versão 2:

- Se g_i =1 não é preciso esperar pelo valor de c_i para determinar o valor de C_{i+1}
- Se $p_i=1$, então já se sabe *a priori* que $c_{i+1}=c_i$

Somadores Rápidos

Para reduzir-se o atraso na propagação do *carry* as seguintes abordagens podem ser usadas:

- 1. Reduzir o atraso na geração do *carry* (aplicada nos somadores Manchester);
- 2. Diminuir o atraso da cadeia de propagação do *carry* (aplicada nos somadores *Carry-Lookahead*, *Carry-Select*, *Carry-Skip*, etc.);
- 3. Mudar o sistema de representação numérica (não será tratado na disciplina).

Estas soluções investem em desempenho, mas resultam em acréscimo de recursos (número de transistores utilizados).

Somadores Manchester Chain

Princípio: usar um circuito mais rápido para propagar a cadeia de *carry*;

- Este circuito mais rápido pode ser constituído de *Transmission* Gates ou transistores de passagem;
- Como as situações de *kill*, *propagate* e *generate* são mutuamente exclusivas, pode-se construir um conjunto de chaves com a seguinte lógica:

- Se
$$k_i = 1$$
, então $c_{i+1} = 0$

- Se
$$g_i = 1$$
, então $c_{i+1} = 1$

- Se
$$p_i = 1$$
, então $c_{i+1} = c_i$

Somadores Manchester Chain

Uma Implementação com transistores de passagem

Controle da Cadeia de Propagação do *Carry* (CC)

INE/CTC/UFSC

slide 1TS.15

Prof. José Luís Güntzel

Sistemas Digitais - semestre 2008/1

Somadores Manchester Chain

E como seria o somador Manchester Chain completo?

Basta modificar o controle da cadeia de propagação do *carry* para que ele calcule também a saída **s**_i

Somadores Carry Lookahead

Princípio: paralelizar o cálculo dos carries

- No extremo, todos os carries podem ser computados ao mesmo tempo.
- Para o somador *Carry-Lookahead*, pode-se considerar que não existe mais a exclusividade mútua entre os sinais *generate* e *propagate*.
- Então, a função propagate pode ser simplificada para um simples "OU" entre as duas entradas, pois se o nível de soma gera carry out (g_i = 1), não importa o valor de propagate.

Somadores Carry Lookahead

Assim, para o carry-lookahead temos que:

$$p_i = a_i + b_i$$

$$c_{i+1} = g_i + p_i \cdot c_i$$

Então:

$$\mathbf{c_1} = \mathbf{g_0} + \mathbf{p_0} \cdot \mathbf{c_0}$$

 $\mathbf{c_2} = \mathbf{g_1} + \mathbf{p_1} \cdot (\mathbf{g_0} + \mathbf{p_0} \cdot \mathbf{c_0})$

Expandindo, segue:

$$\mathbf{c_2} = g_1 + p_1 \cdot g_0 + p_1 \cdot p_0 \cdot c_0$$

$$\mathbf{c_3} = g_2 + p_2 \cdot g_1 + p_2 \cdot p_1 \cdot g_0 + p_2 \cdot p_1 \cdot p_0 \cdot c_0$$

$$\mathbf{c_4} = g_3 + p_3 \cdot g_2 + p_3 \cdot p_2 \cdot g_1 + p_3 \cdot p_2 \cdot p_1 \cdot g_0 + p_3 \cdot p_2 \cdot p_1 \cdot p_0 \cdot c_0$$

Somadores Carry Lookahead

INE/CTC/UFSC Sistemas Digitais - semestre 2008/1 slide 1TS.19

Prof. José Luís Güntzel

Somadores Carry Lookahead

- Problema com os CLGs: a complexidade da equação do carry cresce muito rapidamente!!!
- Para somadores com entradas usando muitos bits, a propagação do carry com cadeia carry-lookahead é mais lenta que um ripple carry.
- Tipicamente, o carry-lookahead não é usado para somadores com entradas maiores que 4 bits.

Somadores Carry Lookahead

- Solução: aplicar o *lookahead* em grupos de somadores com, no máximo, 4 bits.
- Funções auxiliares P e G são necessárias e indicam, respectivamente:
 - Se P = 1, então o carry é propagado pelo grupo.
 - Se G = 1, então o grupo gera carry out.

Somadores Carry Lookahead

Somadores Carry Lookahead

Caminho Crítico

Somadores Carry Select

Princípios:

- dividir a adição em seções de 4 ou 8 bits
- realizar a adição de cada seção simultaneamente para os dois casos possíveis (*carry in=0* e *carry in=1*)
- Em cada seção de adição são usados dois somadores (ripple carry ou carry lookahead) idênticos e um multiplexador
- O multiplexador seleciona um dos dois resultados, utilizando como controle o *carry out* da seção anterior

Somadores Carry Select com 8 bits (usando somadores RCA...)

Somadores Carry Select

Equações utilizadas pelos MUX de cada seção de soma

```
B1 = Cin
                                       B2 = C03 or (C13 and CIN)
                           B3 = C07 \text{ or } (C17 \text{ and } (C03 \text{ or } (C13 \text{ and } CIN)))
            B4 = C011 \text{ or } (C111 \text{ and } (C07 \text{ or } (C17 \text{ and } (C03 \text{ or } (C13 \text{ and } CIN)))))
B4 =C015 or (C115 and(C011 or (C111 and (C07 or (C17 and (C03 or (C13 and CIN))))))
```

Somadores Carry Select com 8 bits

Atraso crítico = Atraso RCA + Atraso MUX

Somadores Carry Select com 32 bits

Atraso crítico = Atraso RCA + Atraso Equação + Atraso MUX