RADICI DI UN POLINOMIO

Dato il polinomio $p \in \mathbb{P}^n$

$$p(x) = a_1x^n + a_2x^{n-1} + \ldots + a_{n-1}x^2 + a_nx + a_{n+1}$$

cerco
$$x_1, x_2,, x_n : p(x_n) = 0.$$

- 1) Costruisco il vettore a contenente i coefficienti a_i a partire da a_1 .
- 2) Richiamo il comando matlab x=roots(a)
- x è il vettore delle radici.

Esempio:calcolare le radici di

$$p(x) = x^4 - 3x^3 - 3x^2 + 7x + 6.$$

```
>> format long e

>> x

x =

3.000000000000001e+00 + 0.000000000000000e+00i

1.999999999999998e+00 + 0.00000000000000e+00i

-9.99999999999996e-01 + 1.229656911965825e-08i

-9.999999999999996e-01 - 1.229656911965825e-08i
```

N.B.

Calcolare

$$x-ones(4,1)$$

Le radici semplici sono calcolate correttamente fino alla 15-sima cifra, la radice doppia fino alla settima, ottava.

Come vengono calcolate le radici di $p_n(x) \in \mathbb{P}_n$

Il metodo di Newton-Hörner è una variante del metodo di Newton per calcolare tutte le radici di un polinomio.

- si calcola una prima radice r_1 di $p_n(x)$ con il metodo di Newton scegliendo un opportuno punto iniziale $x^{(0)}$,
- ② si costruisce il polinomio $p_{n-1}(x) = \frac{p_n(x)}{(x-r_1)}$ (di grado n-1) (si opera cioè una **deflazione** (abbassamento di grado), tutte le radici di $p_{n-1}(x)$ sono le restanti n-1 radici di $p_n(x)$;
- 3 si calcola una radice (la chiamo r_2) di $p_{n-1}(x)$ con il metodo di Newton prendendo $x^{(0)} = r_1$;
- **3** si costruisce il polinomio $p_{n-2}(x) = \frac{p_{n-1}(x)}{(x-r_2)}$ (di grado n-2), tutte le radici di $p_{n-2}(x)$ sono le restanti n-2 radici di $p_{n-1}(x)$;
- 5 ... ecc. finché non ho calcolato tutte le radici.

Analisi di stabilità per calcolo di radici

Sia α la radice di f(x) = 0,

 $\hat{\alpha}$ la radice calcolata numericamente.

Se α è radice semplice, si ha:

$$\frac{|\hat{\alpha} - \alpha|}{|\alpha|} \le C\epsilon_M \tag{1}$$

Se α è radice multipla di f(x) = 0 con molteplicità m, si ha:

$$\frac{|\hat{\alpha} - \alpha|}{|\alpha|} \le C \sqrt[m]{\epsilon_M} \tag{2}$$

L'equazione $p(x) = x^4 - 3x^3 - 3x^2 + 7x + 6 = 0$ ha due radici semplici e una radice doppia.

In Matlab $\epsilon_M\simeq 2.22e-16$, quindi per la radice semplice l'errore è circa $\epsilon_M\simeq 10^{-16}$, mentre per la radice doppia l'errore è circa $\epsilon_M^2\simeq 10^{-8}$.

Esercizio.

Calcolare le radici del polinomio $p(x) = x^4 - 4x^3 + 6x^2 - 4x + 1$ con il comando roots di matlab.

Si trova

```
alpha =
1.000219151659574e+00 + 0.000000000000000e+00i
9.999999832294281e-01 + 2.191348848513377e-04i
9.999832294281e-01 - 2.191348848513377e-04i
9.997808818815743e-01 + 0.0000000000000000e+00i
```

Calcolare

```
alpha-ones(4,1)
```

Le radici calcolate distano da quelle vere ($\alpha=1$ con molteplicità 4) circa di 10^{-4} .