Note del corso di Analisi Matematica 1

Gabriel Antonio Videtta

21 marzo 2023

Analogie tra i limiti di funzioni e i limiti di successioni

Nota. Nel corso del documento, per un insieme X, qualora non specificato, si intenderà sempre un sottoinsieme generico dell'insieme dei numeri reali esteso $\overline{\mathbb{R}}$. Analogamente per f si intenderà sempre una funzione $f: X \to \overline{\mathbb{R}}$.

Proposizione. Dati $f: X \to \overline{\mathbb{R}}$, \overline{x} punto di accumulazione di X tale che $\forall (x_n) \subseteq X \setminus \{\overline{x}\} \mid x_n \xrightarrow[n \to \infty]{} \overline{x}$ vale che $f(x_n)$ converge. Allora il limite di $f(x_n)$ è sempre lo stesso, indipendentemente dalla scelta di (x_n) .

Dimostrazione. Siano per assurdo $(x_n), (y_n) \subseteq X \setminus \{\overline{x}\}$ due successioni tali che $x_n, y_n \xrightarrow[n \to \infty]{} \overline{x}$ e che $f(x_n) \xrightarrow[n \to \infty]{} L$ e $f(y_n) \xrightarrow[n \to \infty]{} G$ con $L \neq G$. Si costruisce allora la successione $(z_n) \subseteq X \setminus \{\overline{x}\}$ nel seguente modo:

$$z_n = \begin{cases} x_{\frac{n}{2}} & \text{se } n \text{ è pari,} \\ y_{\frac{n-1}{2}} & \text{altrimenti,} \end{cases}$$

ossia unendo le due successioni (x_n) e (y_n) in modo tale che agli indici pari corrispondano gli elementi di x_n e a quelli dispari quelli di y_n .

Si mostra che $z_n \xrightarrow[n \to \infty]{} \overline{x}$. Sia I un intorno di \overline{x} . Allora, dal momento che $(x_n), (y_n) \xrightarrow[n \to \infty]{} \overline{x}$, esistono sicuramente due $n_x, n_y \in \mathbb{N}$ tali che $n \geq n_x \implies x_n \in I$ e $n \geq n_y \implies y_n \in I$. Pertanto, detto $n_k = \max\{n_x, n_y\}, \ n \geq n_k \implies x_n, y_n \in I$, ossia che per $n \geq 2n_k, \ z_n \in I$. Si conclude allora che $(z_n) \xrightarrow[n \to \infty]{} \overline{x}$.

Tuttavia $f(z_n)$ non può convergere a nessun limite, dal momento che le due sottosuccessioni $f(x_n)$ e $f(y_n)$ convergeno a valori distinti ed il limite

deve essere unico. L'esistenza di tale successione contraddice allora l'ipotesi, $\boldsymbol{\ell}$.

Proposizione. Data $(x_n) \subseteq \mathbb{R}$, definisco $f : \mathbb{N} \to \overline{\mathbb{R}}$ tale che $f(n) := x_n$, $\forall n \in \mathbb{N}$. Allora $f(n) \xrightarrow[n \to \infty]{} L \iff x_n \xrightarrow[n \to \infty]{} L$.

Dimostrazione. Si dimostrano le due implicazioni separatamente.

 (\Longrightarrow) Sia I un intorno di L. Allora, poiché $f(n) \xrightarrow[n \to \infty]{} L$, esiste un intorno $J = [a, \infty]$ tale che $f(J \cap \mathbb{N} \setminus \{\infty\}) \subseteq I$. Poiché ∞ è un punto di accumulazione di \mathbb{N} , $A = J \cap \mathbb{N} \setminus \{\infty\}$ non è mai vuoto. Inoltre, poiché $A \subseteq \mathbb{N}$, A ammette un minimo¹, detto m. Vale in particolare che $f(n) \in I$, $\forall n \geq m$, e quindi che $x_n \in I$, $\forall n \geq m$, ossia che $x_n \xrightarrow[n \to \infty]{} L$.

 (\Leftarrow) Sia I un intorno di L. Dal momento che $x_n \xrightarrow[n \to \infty]{} L$, $\exists n_k \in \mathbb{N} \mid n \geq n_k \implies x_n \in I$. Allora, detto $J = [n_k, \infty]$, vale che $f(J \cap \mathbb{N} \setminus \{\infty\}) \subseteq I$, ossia che $f(n) \xrightarrow[n \to \infty]{} L$.

Proposizione. Siano $f:X\to \overline{\mathbb{R}}, \ \overline{x}\in X$ punto di accumulazione di X. Allora sono fatti equivalenti i seguenti:

- (i) $f(x) \xrightarrow[x \to \overline{x}]{} f(\overline{x})$,
- (ii) f è continua in \overline{x} .

Dimostrazione. Sia I un intorno di $f(\overline{x})$. Dal momento che \overline{x} è un punto di accumulazione, si ricava allora da entrambe le ipotesi che esiste un intorno J di $f(\overline{x})$ tale che $f(J \cap X \setminus {\overline{x}}) \subseteq I$, e quindi, per definizione, la tesi. \square

Osservazione. Se \overline{x} è un punto isolato di X, allora f è continua in \overline{x} . Pertanto per rendere la proposizione precedente vera, è necessario ipotizzare che \overline{x} sia un punto di accumulazione (infatti il limite in un punto isolato non esiste per definizione, mentre in tale punto f è continua).

Proposizione. Siano $f: X \to \mathbb{R}$ e \overline{x} punto di accumulazione di X. Siano $L \in \overline{\mathbb{R}}$ e $\tilde{f}: X \cup \{\overline{x}\} \to \overline{\mathbb{R}}$ tale che:

$$\tilde{f}(x) = \begin{cases} L & \text{se } x = \overline{x}, \\ f(x) & \text{altrimenti.} \end{cases}$$

 $^{^1\}mathrm{Non}$ è in realtà necessario che si consideri il minimo di tale insieme, occorre semplicemente che A sia non vuoto.

Allora $f(x) \xrightarrow[x \to \overline{x}]{} L \iff \tilde{f}$ è continua in \overline{x} .

Dimostrazione. Si dimostrano le due implicazioni separatamente.

 (\Longrightarrow) Sia I un intorno di L. Si ricava allora dalle ipotesi che esiste sempre un intorno J di \overline{x} tale che $f(\underbrace{J\cap X\setminus\{\overline{x}\}}_A)\subseteq I$. Dal momento che $\overline{x}\notin A$, si

deduce che $f(J \cap X \setminus \{\overline{x}\}) = \tilde{f}(J \cap X \setminus \{\overline{x}\}) \subseteq I$, ossia che \tilde{f} è continua in \overline{x} .

 (\Leftarrow) Sia I un intorno di L. Poiché \tilde{f} è continua in \overline{x} , esiste un intorno J di \overline{x} tale che $\tilde{f}(\underline{J\cap (X\cup \{\overline{x}\})\setminus \{\overline{x}\}})\subseteq I$. Poiché $\overline{x}\notin A$ e \overline{x} è punto di

accumulazione, si deduce che $I \supseteq \tilde{f}(J \cap (X \cup \{\overline{x}\}) \setminus \{\overline{x}\}) = f(J \cap (X \cup \{\overline{x}\}) \setminus \{\overline{x}\}) \supseteq f(J \cap X \setminus \{\overline{x}\})$, e quindi che $f(x) \xrightarrow[x \to \overline{x}]{} L$.

Osservazione. Tutte le funzioni elementari (e.g. $\sin(x)$, $\cos(x)$, $\exp(x)$, $\ln(x)$, |x|, x^a) sono funzioni continue nel loro insieme di definizione.

Proposizione. Siano $f: X \to Y \subseteq \overline{\mathbb{R}}$ e $g: Y \to \overline{\mathbb{R}}$ e sia $\overline{x} \in X$. Sia f continua in \overline{x} e sia g continua in $f(\overline{x})$. Allora $g \circ f$ è continua in \overline{x} .

Dimostrazione. Sia I un intorno di $z=g(f(\overline{x}))$. Allora, poiché g è continua in $f(\overline{x})$, $\exists J$ intorno di $f(\overline{x}) \mid g(J \cap Y \setminus \{f(\overline{x})\}) \subseteq I$. Tuttavia, poiché f è continua in \overline{x} , $\exists K$ intorno di $\overline{x} \mid f(K \cap X \setminus \{\overline{x}\}) \subseteq J$, da cui si conclude che $g(f(K \cap X \setminus \{\overline{x}\})) \subseteq I$, dacché $\forall x \in K \cap X \setminus \{\overline{x}\}$, o $f(x) = f(\overline{x})$, e quindi g(f(x)) = z chiaramente appartiene a I, o altrimenti $f(x) \in J \cap Y \setminus \{f(\overline{x})\} \implies g(f(x)) \in g(J \cap Y \setminus \{f(\overline{x})\}) \subseteq I$.

Teorema. Sia $f: X \to Y \subseteq \overline{\mathbb{R}}$, sia \overline{x} punto di accumulazione di X tale che $f(x) \xrightarrow[x \to \overline{x}]{} \overline{y}$. Se \overline{y} è un punto di accumulazione di Y e $g: Y \to \overline{\mathbb{R}}$ è tale che $\overline{y} \in Y \implies g$ continua in \overline{y} e $g(y) \xrightarrow[y \to \overline{y}]{} \overline{z}$, allora $g(f(x)) \xrightarrow[x \to \overline{x}]{} \overline{z}$.

Dimostrazione. Siano $\tilde{f}:X\cup\{\overline{x}\},\ \tilde{g}:Y\cup\{\overline{y}\}$ due funzioni costruite nel seguente modo:

$$\tilde{f}(x) = \begin{cases} \overline{y} & \text{se } x = \overline{x}, \\ f(x) & \text{altrimenti,} \end{cases}$$
 $\tilde{g}(y) = \begin{cases} \overline{z} & \text{se } y = \overline{y}, \\ g(y) & \text{altrimenti.} \end{cases}$

Poiché $f(x) \xrightarrow[x \to \overline{x}]{} \overline{y}$ e \overline{x} è un punto di accumulazione di X, per una proposizione precedente, \tilde{f} è continua in \overline{x} . Analogamente \tilde{g} è continua in \overline{y} .

Dal momento che vale che $\tilde{f}(\overline{x}) = \overline{y}$, per la proposizione precedente $\tilde{g} \circ \tilde{f}$ è continua in \overline{x} , e dunque $\lim_{x \to \overline{x}} \tilde{g}(\tilde{f}(x)) = \tilde{g}(\tilde{f}(\overline{x})) = \overline{z}$.

Si consideri adesso la funzione $\widetilde{g\circ f}:X\to\overline{\mathbb{R}}$ definita nel seguente modo:

$$\widetilde{g \circ f}(x) = \begin{cases} \overline{z} & \text{se } x = \overline{x}, \\ g(f(x)) & \text{altrimenti.} \end{cases}$$

Si mostra che $\widetilde{g \circ f} = \widetilde{g} \circ \widetilde{f}$. Se $x = \overline{x}$, chiaramente $\widetilde{g \circ f}(x) = \overline{z} = \widetilde{g}(\widetilde{f}(\overline{x}))$. Se $x \neq \overline{x}$, si considera il caso in cui $\widetilde{f}(x) = f(x)$ è uguale a \overline{y} ed il caso in cui non vi è uguale.

Se $\tilde{f}(x) \neq \overline{y}$, $\tilde{g}(\tilde{f}(x)) = \tilde{g}(f(x)) \stackrel{f(x)\neq \overline{y}}{=} g(f(x)) = g \circ f(x)$. Se invece $\tilde{f}(x) = \overline{y}$, $\overline{y} \in Y$, e quindi g è continua in \overline{y} , da cui necessariamente deriva che $g(\overline{y}) = \overline{z}$. Allora $g \circ f(x) = g(f(x)) = g(\overline{y}) = \overline{z} = \tilde{g}(\tilde{f}(\overline{x}))$.

Si conclude allora che $\widetilde{g \circ f} = \widetilde{g} \circ \widetilde{f}$, e quindi che $\widetilde{g \circ f}$ è continua in \overline{x} . Pertanto, dalla proposizione precedente, $g(f(x)) \xrightarrow[x \to \overline{x}]{} \overline{z}$.

Esercizio 1. Mostrare che tutte le ipotesi della proposizione precedente sono necessarie, fornendo alcuni controesempi.

Proposizione. Date $f_1, f_2: X \to \mathbb{R}$ continue in \overline{x} . Allora:

- (i) $f_1 + f_2$ è continua in \overline{x} ,
- (ii) f_1f_2 è continua in \overline{x} .

Dimostrazione. Sia $f := f_1 + f_2$.

(i) Poiché f_1, f_2 sono continue in \overline{x} , $\forall \varepsilon > 0$, $\exists \delta > 0 \mid |x - \overline{x}| < \delta \implies |f_1(x) - f_1(\overline{x})|, |f_2(x) - f_2(\overline{x})| \le \varepsilon$ (per ogni $\varepsilon > 0$, si prende $\delta = \min\{\delta_1, \delta_2\}$, ossia il minimo delle semilunghezze degli intorni di \overline{x}). Allora $|f(x) - f(\overline{x})| \le |f_1(x) - f_1(\overline{x})| + |f_2(x) - f_2(\overline{x})| \le 2\varepsilon$. Si conclude dunque che $\forall \varepsilon > 0$, $\exists \delta > 0 \mid |f(x) - f(\overline{x})| \le 2\varepsilon$, e quindi, poiché $2\varepsilon \xrightarrow[\varepsilon \to 0]{} 0$, che f è continua in \overline{x} .

Proposizione. Date $f_1, f_2 : X \to \overline{\mathbb{R}}$, \overline{x} punto di accumulazione di X. Se $\lim_{x \to \overline{x}} f_1(x) = L_1 \in \mathbb{R}$ e $\lim_{x \to \overline{x}} f_2(x) = L_2 \in \mathbb{R}$, allora valgono i seguenti risultati:

- (i) $f_1(x) + f_2(x) \xrightarrow[x \to \overline{x}]{} L_1 + L_2$,
- (ii) $f_1(x)f_2(x) \xrightarrow[x \to \overline{x}]{} L_1L_2$.