The group G is isomorphic to the group labelled by [72, 41] in the Small Groups library. Ordinary character table of $G \cong (C3 \times C3)$: Q8:

	1a	4a	2a	40	4c	$\mathfrak{z}a$
χ_1	1	1	1	1	1	1
χ_2	1	-1	1	-1	1	1
χ_3	1	-1	1	1	-1	1
χ_4	1	1	1	-1	-1	1
χ_5	2	0	-2	0	0	2
χ_6	8	$ \begin{array}{c} 1 \\ -1 \\ -1 \\ 1 \\ 0 \\ 0 \end{array} $	0	0	0	-1

Trivial source character table of $G \cong (C3 \times C3)$: Q8 at p = 2:

 $P_3 = Group([(2,4)(3,6)(5,9)(7,8),(2,3,4,6)(5,7,9,8)]) \cong C4$

 $P_1 = Group([()]) \cong 1$

 $P_2 = Group([(2,4)(3,6)(5,9)(7,8)]) \cong C2$

Normalisers N_i		N_1		N_3	N_4	N_5	N_{ϵ}
p-subgroups of G up to conjugacy in G		P_1		P_3	P_4	P_5	P_{ϵ}
Representatives $n_j \in N_i$	1a	3a	1a	1a	1a	1a	10
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 2 \cdot \chi_5 + 0 \cdot \chi_6$	8	8	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6$	8	-1	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	4	4	4	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	2	2	2	2	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	2	2	2	0	2	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	2	2	2	0	0	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	1	1	1	1	1	1	1

```
\begin{array}{l} P_4 = Group([(2,4)(3,6)(5,9)(7,8),(2,8,4,7)(3,9,6,5)]) \cong \mathrm{C4} \\ P_5 = Group([(2,4)(3,6)(5,9)(7,8),(2,9,4,5)(3,7,6,8)]) \cong \mathrm{C4} \\ P_6 = Group([(2,4)(3,6)(5,9)(7,8),(2,3,4,6)(5,7,9,8),(2,8,4,7)(3,9,6,5)]) \cong \mathrm{Q8} \end{array}
```

 $\begin{array}{l} N_2 = Group([(2,4)(3,6)(5,9)(7,8),(2,3,4,6)(5,7,9,8),(2,8,4,7)(3,9,6,5)]) \cong \mathrm{Q8} \\ N_3 = Group([(2,3,4,6)(5,7,9,8),(2,4)(3,6)(5,9)(7,8),(2,5,4,9)(3,8,6,7)]) \cong \mathrm{Q8} \\ N_4 = Group([(2,8,4,7)(3,9,6,5),(2,4)(3,6)(5,9)(7,8),(2,3,4,6)(5,7,9,8)]) \cong \mathrm{Q8} \\ N_5 = Group([(2,9,4,5)(3,7,6,8),(2,4)(3,6)(5,9)(7,8),(2,3,4,6)(5,7,9,8)]) \cong \mathrm{Q8} \end{array}$

 $N_5 = Group([(2, 9, 4, 5)(3, 7, 6, 8), (2, 4)(3, 6)(5, 9)(7, 8), (2, 3, 4, 6)(5, 7, 9, 8)]) \cong Q8$ $N_6 = Group([(2, 8, 4, 7)(3, 9, 6, 5), (2, 3, 4, 6)(5, 7, 9, 8), (2, 4)(3, 6)(5, 9)(7, 8)]) \cong Q8$