# Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

# Лабораторная работа №6 по дисциплине «Методы машинного обучения» на тему «Ансамбли моделей машинного обучения»

Выполнил: студентка группы ИУ5-21М Попова И.А.



(https://colab.research.google.com/github/InnaAndreeva/mmo\_labs/blob/master/lab\_5.ipynb)

# Лабораторная работа №6

## Ансамбли моделей машинного обучения.

Цель лабораторной работы: изучение ансамблей моделей машинного обучения.

#### Задание:

- 1. Выберите набор данных (датасет) для решения задачи классификации или регресии.
- 2. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.
- 3. С использованием метода train\_test\_split разделите выборку на обучающую и тестовую.
- 4. Обучите две ансамблевые модели. Оцените качество моделей с помощью одной из подходящих для задачи метрик. Сравните качество полученных моделей.
- 5. Произведите для каждой модели подбор значений одного гиперпараметра. В зависимости от используемой библиотеки можно применять функцию GridSearchCV, использовать перебор параметров в цикле, или использовать другие методы.
- 6. Повторите пункт 4 для найденных оптимальных значений гиперпараметров. Сравните качество полученных моделей с качеством моделей, полученных в пункте 4.

#### In [0]:

```
from datetime import datetime
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.metrics import median_absolute_error, r2_score, mean_absolute_error
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import ShuffleSplit
from sklearn.model_selection import cross_val_score, train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.ensemble import RandomForestRegressor
```

# Выбор набора данных(датасета) и исследование его

#### In [2]:

```
data = pd.read_csv('camera_dataset.csv', sep=',')
data.head()
```

#### Out[2]:

|   | Model                           | Release<br>date | Max<br>resolution | Low<br>resolution | Effective pixels | Zoom<br>wide<br>(W) | Zoom<br>tele<br>(T) | Normal<br>focus<br>range | Macro<br>focus<br>range | Storage included | k |
|---|---------------------------------|-----------------|-------------------|-------------------|------------------|---------------------|---------------------|--------------------------|-------------------------|------------------|---|
| 0 | Agfa<br>ePhoto<br>1280          | 1997            | 1024.0            | 640.0             | 0.0              | 38.0                | 114.0               | 70.0                     | 40.0                    | 4.0              |   |
| 1 | Agfa<br>ePhoto<br>1680          | 1998            | 1280.0            | 640.0             | 1.0              | 38.0                | 114.0               | 50.0                     | 0.0                     | 4.0              |   |
| 2 | Agfa<br>ePhoto<br>CL18          | 2000            | 640.0             | 0.0               | 0.0              | 45.0                | 45.0                | 0.0                      | 0.0                     | 2.0              |   |
| 3 | Agfa<br>ePhoto<br>CL30          | 1999            | 1152.0            | 640.0             | 0.0              | 35.0                | 35.0                | 0.0                      | 0.0                     | 4.0              |   |
| 4 | Agfa<br>ePhoto<br>CL30<br>Clik! | 1999            | 1152.0            | 640.0             | 0.0              | 43.0                | 43.0                | 50.0                     | 0.0                     | 40.0             |   |
| 4 |                                 |                 |                   |                   |                  |                     |                     |                          |                         |                  | • |

#### In [3]:

data.shape

#### Out[3]:

(1038, 13)

#### In [4]:

data.dtypes

#### Out[4]:

| Model                   | object  |  |  |  |
|-------------------------|---------|--|--|--|
| Release date            | int64   |  |  |  |
| Max resolution          | float64 |  |  |  |
| Low resolution          | float64 |  |  |  |
| Effective pixels        | float64 |  |  |  |
| Zoom wide (W)           | float64 |  |  |  |
| Zoom tele (T)           | float64 |  |  |  |
| Normal focus range      | float64 |  |  |  |
| Macro focus range       | float64 |  |  |  |
| Storage included        | float64 |  |  |  |
| Weight (inc. batteries) | float64 |  |  |  |
| Dimensions              | float64 |  |  |  |
| Price                   | float64 |  |  |  |
| dtype: object           |         |  |  |  |

```
In [5]:
```

```
data.isnull().sum()
Out[5]:
Model
                            0
Release date
                            0
Max resolution
                            0
Low resolution
                            0
Effective pixels
                            0
Zoom wide (W)
                            0
Zoom tele (T)
                            0
Normal focus range
                            0
                            1
Macro focus range
Storage included
                            2
```

dtype: int64

**Dimensions** 

Price

Weight (inc. batteries)

# **Удаление или заполнение пропусков и кодирование** категориальных признаков

2

```
In [0]:
```

```
# кодирование категориальных признаков числовыми
le = LabelEncoder()
data['Model'] = le.fit_transform(data['Model'])
```

```
In [0]:
```

```
# заполнение 0 пропусков
data = data.fillna(0)
```

#### In [8]:

```
data.dtypes
```

#### Out[8]:

| Model                   | int64   |  |  |  |
|-------------------------|---------|--|--|--|
| Release date            | int64   |  |  |  |
| Max resolution          | float64 |  |  |  |
| Low resolution          | float64 |  |  |  |
| Effective pixels        | float64 |  |  |  |
| Zoom wide (W)           | float64 |  |  |  |
| Zoom tele (T)           | float64 |  |  |  |
| Normal focus range      | float64 |  |  |  |
| Macro focus range       | float64 |  |  |  |
| Storage included        | float64 |  |  |  |
| Weight (inc. batteries) | float64 |  |  |  |
| Dimensions              | float64 |  |  |  |
| Price                   | float64 |  |  |  |
| dtyne: object           |         |  |  |  |

dtype: object

#### In [9]:

```
data.isnull().sum()
```

#### Out[9]:

Model 0 Release date 0 Max resolution Low resolution 0 Effective pixels 0 Zoom wide (W) 0 Zoom tele (T) 0 Normal focus range 0 Macro focus range 0 Storage included Weight (inc. batteries) Dimensions Price dtype: int64

#### In [10]:

```
data.head()
```

#### Out[10]:

|   | Model | Release<br>date | Max<br>resolution | Low<br>resolution | Effective<br>pixels | Zoom<br>wide<br>(W) | Zoom<br>tele<br>(T) | Normal<br>focus<br>range | Macro<br>focus<br>range | Storage<br>included | b        |
|---|-------|-----------------|-------------------|-------------------|---------------------|---------------------|---------------------|--------------------------|-------------------------|---------------------|----------|
| 0 | 0     | 1997            | 1024.0            | 640.0             | 0.0                 | 38.0                | 114.0               | 70.0                     | 40.0                    | 4.0                 |          |
| 1 | 1     | 1998            | 1280.0            | 640.0             | 1.0                 | 38.0                | 114.0               | 50.0                     | 0.0                     | 4.0                 |          |
| 2 | 2     | 2000            | 640.0             | 0.0               | 0.0                 | 45.0                | 45.0                | 0.0                      | 0.0                     | 2.0                 |          |
| 3 | 3     | 1999            | 1152.0            | 640.0             | 0.0                 | 35.0                | 35.0                | 0.0                      | 0.0                     | 4.0                 |          |
| 4 | 4     | 1999            | 1152.0            | 640.0             | 0.0                 | 43.0                | 43.0                | 50.0                     | 0.0                     | 40.0                |          |
| 4 |       |                 |                   |                   |                     |                     |                     |                          |                         |                     | <b>•</b> |

# С использованием метода train\_test\_split разделение выборки на обучающую и тестовую.

Разделим данные на целевой столбец и признаки.

#### In [0]:

```
# Перейдем к разделению выборки на обучающую и тестовую.
X = data.drop('Price',axis = 1).values
y = data['Price'].values
```

Разделим выборку на тренировочную и тестовую.

```
In [0]:
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=1)
```

#### In [13]:

```
print(X_train.shape)
print(y_train.shape)
print(X_test.shape)
print(y_test.shape)
```

(934, 12) (934,) (104, 12) (104,)

## Обучение моделей

#### In [0]:

```
def test_model(model):
    print("mean_absolute_error:", mean_absolute_error(y_test, model.predict(X_test)))
    print("median_absolute_error:", median_absolute_error(y_test, model.predict(X_test)))
    print("r2_score:", r2_score(y_test, model.predict(X_test)))
```

#### In [15]:

```
rand_forest = RandomForestRegressor(n_estimators=40)
rand_forest.fit(X_train, y_train)
```

#### Out[15]:

#### In [16]:

```
test_model(rand_forest)
```

mean\_absolute\_error: 107.40961538461536 median\_absolute\_error: 25.80000000000001

r2 score: 0.6977728057694944

```
In [17]:
```

```
gr_b = GradientBoostingRegressor(n_estimators=200)
gr_b.fit(X_train, y_train)
```

#### Out[17]:

#### In [18]:

```
test_model(gr_b)
```

```
mean_absolute_error: 129.25491530611214
median_absolute_error: 55.75679717112452
r2_score: 0.7014463209236989
```

Градиентный бустинг оказался несколько хуже по сравнению со случайным лесом.

## Подбор гиперпараметра п

#### Случайный лес

#### In [19]:

```
param_range = np.arange(10, 201, 10)
tuned_parameters = [{'n_estimators': param_range}]
tuned_parameters
```

#### Out[19]:

```
[{'n_estimators': array([ 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 1 10, 120, 130, 140, 150, 160, 170, 180, 190, 200])}]
```

#### In [20]:

```
gs = GridSearchCV(RandomForestRegressor(), tuned_parameters,
cv=ShuffleSplit(n_splits=10), scoring="r2", return_train_score=True, n_jobs=-1)
gs.fit(X, y)
gs.best_estimator_
```

#### Out[20]:

#### In [21]:

```
plt.plot(param_range, gs.cv_results_["mean_train_score"]);
```



#### In [22]:

```
plt.plot(param_range, gs.cv_results_["mean_test_score"]);
```



```
In [23]:
```

```
reg = gs.best_estimator_
reg.fit(X_train, y_train)
test_model(reg)
```

r2\_score: 0.7681896302883974

Конкретно данная модель оказалась заметно лучше, чем исходная.

#### Градиентный бустинг

#### In [24]:

```
tuned_parameters
```

#### Out[24]:

```
[{'n_estimators': array([ 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 1 10, 120, 130, 140, 150, 160, 170, 180, 190, 200])}]
```

#### In [25]:

```
gs = GridSearchCV(GradientBoostingRegressor(), tuned_parameters,
cv=ShuffleSplit(n_splits=10), scoring="r2", return_train_score=True, n_jobs=-1)
gs.fit(X, y)
gs.best_estimator_
```

#### Out[25]:

#### In [26]:

```
plt.plot(param_range, gs.cv_results_["mean_train_score"]);
```



#### In [27]:

plt.plot(param\_range, gs.cv\_results\_["mean\_test\_score"]);



#### In [28]:

reg = gs.best\_estimator\_
reg.fit(X\_train, y\_train)
test\_model(reg)

mean\_absolute\_error: 128.05688631388736
median\_absolute\_error: 55.7567971711246

r2\_score: 0.7041796386905111

### Вывод

При выполнении лабораторной работы были использованы следующие ансамблевые модели: случайный лес и градиентный бустинг для предсказания целевого признака. Точность модели была определена при помощи трех метрик: средняя абсолютная ошибка, медианная абсолютная ошибка и коэффициент детерминации. Изначально гиперпараметры для алгоритмов подбирались произвольно, затем был осуществлен поиск гиперпараметров при помощи GridSearchCV. По результатам вычислений можно сделать вывод о том, что градиентный бустинг работает немного хуже, чем случайный лес на данной выборке.