HYPERBOLA

1.	If e, e'	are the eccentricities of hyperbolas	$\frac{x^2}{a^2}$ –	$-\frac{y^2}{b^2}$	= 1	and	$\frac{y^2}{b^2}$ –	$-\frac{x^2}{a^2} = 1, \text{ ther}$	n
	(1)	2/	/D	١ -		-1			

$$(A) e = e'$$

(B)
$$e = -e^{t}$$

(C)
$$e e' = 1$$

(D)
$$\frac{1}{e^2} + \frac{1}{e^{\prime 2}} = 1$$

2. Centre of the hyperbola
$$x^2 + 4y^2 + 6xy + 8x - 2y + 7 = 0$$
 is,

(B) (0, 2)

(D) none of these.

3. The eccentricity of the hyperbola
$$2x^2 - y^2 = 6$$
 is

$$(A)\sqrt{2}$$

(B) 2

(D)
$$\sqrt{3}$$

4. The radius of the director circle of the hyperbola
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 is

(B)
$$\sqrt{a-b}$$

(C)
$$\sqrt{a^2 - b^2}$$

(D)
$$\sqrt{a^2 + b^2}$$

5. The tangent to the curve
$$x = a(\theta - \sin \theta)$$
; $y = a(1 + \cos \theta)$ at the points $\theta = (2k + 1)\pi$, $k \in Z$ are parallel to

$$(A) y = x$$

(B)
$$y = -x$$

(C)
$$y = 0$$

(D)
$$x = 0$$

6. The legth of latus rectum for hyperbola
$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$
 is

(A)
$$\frac{32}{3}$$

(B)
$$\frac{9}{2}$$

$$(C)\frac{8}{3}$$

(D) none of these

7. The straight line
$$y = 3x + c$$
 will be tangent to hyperbola $\frac{x^2}{25} - \frac{y^2}{16} = 1$ if c^2 is equal to

(A) 119

(B) 225

(C) 209

(D) 144

8. Co-ordinates of the foci of the hyperbola
$$\frac{(x-1)^2}{9} - \frac{(y-2)^2}{16} = 1$$
 are

(A) (1, 7) and (1, -3)

(B) (6, 2) and (-4, 2)

(C) (1, 3) and (1, -7)

(D) None of these

12. Centre of the hyperbola
$$\frac{(x-1)^2}{4} - y^2 = 1$$
, is

(A) (0, 1)
(B) (1, 0)
(C) (2, 0)
(D) (0, 2)

13. Centre of the hyperbola
$$\frac{(x-1)^2}{4} - \frac{y^2}{16} = 1$$
 is

(A) (0, 1)
(C) (2, 0)
(B) (1, 0)
(D) (0, 2)

14. Length of the latus rectum of the hyperbola $xy = c^2$ is (A) 2 c (B) 4 c (C) $2\sqrt{2}$ c (D) $\sqrt{2}$ c

15. Co-ordinates of the foci of the hyperbola:
$$\frac{(x-1)^2}{16} - \frac{(y-1)^2}{9} = 1$$
(A) (1, 7) and (1, -3)
(B) (1, 3) and (1, -7)
(C) (-6, 2) and (4, 2)
(D) (-4, 2) and (6, 2)

16. Eccentricity of the hyperbola: $4 x^2 - 8 x - 5 y^2 + 10 y = 21$ is $(A) \frac{\sqrt{5}}{3}$ $(B) \frac{4}{3}$

(D) $\frac{3}{4}$

Length of latus rectum of the hyperbola: $4 x^2 - 8 x - 5 y^2 + 10 y = 21$ is 17.

$$(A)\frac{\sqrt{5}}{8}$$

(B) $\frac{1}{2}$

(C) 2

(D) $\frac{8}{\sqrt{5}}$

Eccentricity of the hyperbola $\frac{(x-1)^2}{9} - \frac{(y-1)^2}{16} = 1$; is 18.

$$(A)\frac{5}{4}$$

(C)
$$\frac{4}{3}$$

(D) $\frac{3}{2}$

Length of latus rectum of the hyperbola; $\frac{(x-1)^2}{9} - \frac{(y-2)^2}{16} = 1$; is 19.

$$(A)\frac{9}{2}$$

$$(C)\frac{7}{4}$$

(B) $\frac{9}{4}$ (D) $\frac{32}{2}$

Centre of the hyperbola $\frac{(x-y)^2}{4} - \frac{(x+y)^2}{9} = 1$; is 20.

(A) (0, 0)

(C)(1,1)

ANSWERS

1.	D	2.	D	3	D	4.	С
5.	С	6.	В	7.	С	8.	В
9.	С	10.	В	11.	D	12.	В
13.	В	14.	С	15.	D	16.	С
17.	D	18.	В	19.	D	20.	Α