Signale und Systeme Boxen

Florian Lubitz & Steffen Hecht

20. Juni 2018

$$X(f) = \sum_{n=0}^{\infty} r_n \cdot \delta(f - nf_0)$$

$$= \hat{x} \frac{T_i}{T} \cdot \delta(f) + \sum_{n=1}^{\infty} 2\hat{x} \frac{T_i}{T} \cdot \left| si \left(n\pi \frac{T_i}{T} \right) \right| \cdot \delta(f - nf_0)$$

$$X_H(f) = 2\hat{x}\frac{T_i}{T} \cdot \left| si\left(n\pi\frac{T_i}{T}\right) \right| = 2\hat{x}\frac{T_i}{T} \cdot \left| si\left(\pi\frac{T_i}{T} \cdot \frac{f}{f_0}\right) \right|$$

$$f \in \{4f_0, 8f_0, 12f_0, \dots\}$$

$$c_0 := \frac{a_0}{2}, c_n := \frac{1}{2}(a_n - jb_n), c_{-n} := \frac{1}{2}(a_n + jb_n) = c_n^*$$

$$a_0 = 2c_0, \ a_n = c_n + c_{-n} = 2Re(c_n), \ b_n = j(c_n - c_{-n}) = -2Im(c_n)$$

$$c_{n} := \frac{1}{2}(a_{n} - jb_{n}) = \frac{1}{T} \int_{-T/2}^{T/2} x(t) \cos(n\omega_{0}t) dt - j\frac{1}{T} \int_{-T/2}^{T/2} x(t) \sin(n\omega_{0}t) dt$$

$$= \frac{1}{T} \int_{-T/2}^{T/2} x(t) \underbrace{(\cos(n\omega_{0}t) + j\sin(-n\omega_{0}t))}_{e^{-jn\omega_{0}t}} dt = \frac{1}{T} \int_{-T/2}^{T/2} x(t) \cdot e^{-jn\omega_{0}t} dt$$

$$c_{-n} = c_{n}^{*} = \frac{1}{T} \int_{-T/2}^{T/2} x(t) \cdot e^{jn\omega_{0}t} dt$$

$$c_0 = \frac{a_0}{2} = \hat{x} \frac{T_i}{T}$$

$$c_n = \frac{1}{2} (a_n - jb_n) = \frac{a_n}{2} = \hat{x} \frac{T_i}{T} \cdot \operatorname{si} \left(n\pi \frac{T_i}{T} \right)$$

$$c_{-n} = (c_n)^* = c_n$$

$$c_k = \hat{x} \frac{T_i}{T} \cdot \operatorname{si}\left(k\pi \frac{T_i}{T}\right)$$

$$X_F(t) = \sum_{k=-\infty}^{\infty} c_k \cdot e^{jk\omega_0 t} \text{ für } c_k = \frac{1}{T} \int_{-T/2}^{T/2} x(t) e^{-jk\omega_0 t} dt$$

$$X_F(t) = \sum_{k=-\infty}^{\infty} \frac{\Delta\omega}{2\pi} \int_{-T/2}^{T/2} x(t')e^{-j\omega_k t'} dt' \cdot e^{j\omega_k t}$$

$$= \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} \left[\int_{-T/2}^{T/2} x(t')e^{-j\omega_k t'} dt' \right] \cdot e^{j\omega_k t} \cdot \Delta\omega$$

$$\underbrace{X_F(t)} \stackrel{(T \to \infty)}{=} \frac{1}{2\pi} \int_{-\infty}^{\infty} \underbrace{\left[\int_{-\infty}^{\infty} x(t)e^{-j\omega t'} \right]}_{=:X(\omega)} e^{j\omega t} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega)e^{j\omega t} d\omega$$

212
$$x(t) = \delta(t) \circ - X(f) = \int_{-\infty}^{\infty} \delta(t) \cdot e^{-j2\pi ft} dt = e^{0} = 1$$

$$\delta(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{j\omega t} d\omega = \int_{-\infty}^{\infty} e^{j2\pi f t} df$$

$$x(t) \circ \longrightarrow X(\omega) = \int_{-\infty}^{\infty} \hat{x} \cdot \operatorname{rect}(\frac{t}{T_i}) e^{-j\omega t} dt = \hat{x} \int_{-T_i/2}^{T_i/2} e^{-j\omega t} dt = \hat{x} \left[\frac{e^{-j\omega t}}{-j\omega} \right]_{-T_i/2}^{T_i/2}$$

$$= -\frac{\hat{x}}{j\omega} \left(e^{-j\omega \frac{T_i}{2}} - e^{j\omega \frac{T_i}{2}} \right) = -\frac{\hat{x}}{j\omega} \cdot 2j \cdot Im(e^{-j\omega \frac{T_i}{2}})$$

$$= -\frac{2\hat{x}}{\omega} \sin(-\omega \frac{T_i}{2}) = \hat{x}T_i \cdot \sin(\omega \frac{T_i}{2}) \stackrel{(\omega=2\pi f)}{=} \hat{x} \cdot T_i \cdot \sin(\pi f T_i)$$

$$X(f) = \delta(f - f_0) \bullet \sim x(t) = \int_{-\infty}^{\infty} \delta(f - f_0) \cdot e^{j2\pi f t} df = e^{j2\pi f_0 t}$$

$$c_1 x_1(t) + c_2 x_2(t) \circ - \bullet c_1 X_1(\omega) + c_2 X_2(\omega)$$

$$\operatorname{rect}(\frac{t}{2t}) \circ - \bullet 2T \cdot \operatorname{si}(T\omega) \text{ und } \operatorname{rect}(\frac{t}{4t}) \circ - \bullet 4T \cdot \operatorname{si}(2T\omega)$$

$$x(t) = 2\operatorname{rect}(\frac{t}{2t}) + 0.5\operatorname{rect}(\frac{t}{4t})$$

$$X(\omega) = 2 \cdot 2T \cdot \operatorname{si}(T\omega) + 0.54T \cdot \operatorname{si}(2T\omega) = 4T\operatorname{si}(T\omega) + 2T\operatorname{si}(2T\omega) = 4T\operatorname{si}(\pi 2Tf) + 2T\operatorname{si}(\pi 4Tf)$$

Todo list