Direct, Indirect and Overhead Costs

Everything a firm does costs money.

Direct (Material and Labour) Costs

The costs of material and labour that are easily measured and conveniently allocated to a specific project.

Indirect (Material and Labour) Costs

Material and labour costs of production that are either practically impossible or uneconomical to assign to a specific project.

Overhead Costs

All costs other than direct material and labour.

- factory overhead
- general and administration overhead

Must "burden" the direct costs to ensure all costs are recovered.

Direct, Indirect and Overhead Costs

Example: Management wants to set a rate for a computer printing service. Monthly maintenance for the printer is \$1 000. The depreciation charge is \$2 000 per month. The cost of a sheet of paper is one cent. The monthly print volume is 50 000 pages. The printer shares the I/O area in the computer room with other services. The printing service is allocated 15% of the monthly costs of the I/O area of \$4 000.

Direct Costs

– Paper	0.01	
Total Direct Costs		0.01
Indirect (Allocated) Costs		
Maintenance (\$1 000/50 000)	0.02	
Depreciation (\$2 000/50 000)	0.04	
- I/O area share $\left(\frac{\$4\ 000 \times 0.15}{50\ 000}\right)$	0.01	0.07
Cost Base (per page)		0.08

Fixed and Variable Costs Automobile Example

Fixed Costs

- Those costs which do not vary in proportion to the quantity of output
- May be "fixed" only at certain levels of output
 e.g. Car insurance, registration, depreciation

Variable Costs

- Costs which vary in proportion with quantity of output
- Normally direct material and labour costs
 e.g. gas, oil, tire replacement
- Every cost is variable in the long run.

Total Costs (TC) = Fixed Costs (FC) + Variable Costs (VC)

$$TC(x) = $2.850 + $0.10x$$
 (/km)

where x is the number of kilometres driven per year.

Fixed and Variable Costs Automobile Example

Average and Marginal Cost

Average Cost

Ratio of total cost to quantity of output

$$AC = \frac{TC(x)}{x}$$

Marginal Cost

- The additional (incremental) cost required to increase the quantity of output by one
- Derivative of the cost function with respect to output quantity

Example: Automobile Cost Function

$$TC = $2850 + $0.10x$$
 $AC = \frac{$2850}{x} + 0.10
 $MC = 0.10
 $x = 10000 \text{ km}$
 $x = 15000 \text{ km}$
 $x = 20000 \text{ km}$
 $AC = 0.29/\text{km}$
 $AC = 0.24/\text{km}$

- 1) If MC < AC an increase in output reduces unit cost
- 2) If MC > AC an increase in output increases unit cost

Incremental Cost

• The costs of one alternative minus the costs of the other alternative.

Costs	<u>A</u>	<u>B</u>	$\underline{A} - \underline{B}$
First Cost	250 000	200 000	50 000
Maintenance	25 000	30 000	(5 000)
Revenues	100 000	100 000	0
ΛR			

• The evaluation of marginal/incremental costs is key to engineering economic analysis.

Hydro Utility

• A small hydro utility has two hydro-electric power plants. The fixed cost of Plant 1 is \$4 000 000 per year and at Plant 2, it is \$2 500 000 per year. The variable cost of producing electricity at Plant 2 is

$$VC(x) = \$(31x + 0.0002x^2)$$

where x is the yearly electricity output of the power plant measured in megawatt hours (MW-hr). At Plant 1, the variable cost of producing each MW-hr of electricity is \$55. The current demand for electricity is 100 000 MW-hr. The utility produces 40,000 MW-hr at Plant 1 and 60 000 MW-hr at Plant 2.

• A large new subdivision has increased the demand for power to 140 000 MW-hr of electricity. At what output level should the utility run each plant to minimize costs? Assume each plant has the capacity to produce the additional 40 000 MW-hr.

Hydro Utility Power Generation Costs

$$TC_1(x_1) = 4\ 000\ 000 + 55\ x_1$$
 $TC_2(x_2) = 2\ 500\ 000 + 31\ x_2 + 0.0002\ x_2^2$
 $TC_u(x_1, x_2) = 6\ 500\ 000 + 55\ x_1 + 31\ x_2 + 0.0002\ x_2^2$

Current Operating Point

$$AC_1 (40\ 000) = \$155.00/MW-hr$$

 $AC_2 (60\ 000) = \$84.67/MW-hr$
 $AC_u (40\ 000;\ 60\ 000) = \$112.80/MW-hr$

Hydro Utility Operating Point

Increased demand: 40 000 MW-hr Which plant should produce the additional power?

$$MC_1 = $55$$

 $MC_2(x_2) = 31 + 0.0004x_2$
 $MC_2(60\ 000) = 55

140 000 MW-hr:
$$x_1 = 80 000$$
 MW-hr $x_2 = 60 000$ MW-hr

 $AC_{ij}(80\ 000;\ 60\ 000) = \$96.29\ MW-hr$

Project Estimation

Goal: Select the "best" of the competing engineering project alternatives.

Evaluation process is based on estimates of future:

- revenues
- savings
- recurring costs
- life of the project
- salvage value of project equipment

Therefore, be careful of "GIGO".

- 1. Order of magnitude estimates
 - quick estimate based on judgment and experience
 - accuracy of $\pm 50\%$
- 2. Preliminary estimates
 - more consideration given to detail
 - some sub-elements of projects specified and estimated
 - often cost estimates before final designs completed
 - accuracy of \pm 20% is typical
- 3. Detailed estimates
 - every sub-element of the project is specified and estimated
 - recommended for pricing a product or contract bidding
 - accuracy level of \pm 5% expected

Tradeoff: Estimation Accuracy versus the Cost of the Estimate

 C_T = Total cost of making the estimate

 $C_M = Cost of preparing the estimate$

 $C_E = Cost of errors in the estimate$

Price Indexes

Statistics Canada, CANSIM, table 326-0020

- Cost data quickly become out of date due to inflation
- Cost index relative cost of an item in terms of its cost in the base year.
 - base year value = 100
- Statistics Canada
 - CPI Consumer Price Index (base year 2002)

Historical CPI – Canada 1915 – 2013 Base Year 2002 = 100

Historical Consumer Price Index - Canada

Statistics Canada, CANSIM, table 326-0021

Construction Price Index (Toronto)

(Non-residential buildings)

	2009	2010	2011	2012	2013
Total	142.0	141.4	146.6	150.7	152.1
Commercial structures	141.4	140.6	145.6	149.6	151.2
Industrial structures	146.7	146.2	152.2	156.6	158.5
Institutional structures	142.2	142.4	147.4	151.8	152.3

Statistics Canada table 327-0043

- Factory and land purchased for \$5 000 000 in 2009
- Structure appraised at \$3 000 000 in 2009
- Appraisal fee \$3 000
- What building insurance coverage is necessary in 2014?
- Pay for another appraisal?
- Use the Construction Price Index?

$$C_{2013} = C_{2009} \times \frac{I_{2013}}{I_{2009}}$$
 3 .2 7 = 3 .0 × $\frac{158.5}{146.7}$ × 1 .0 1

• Estimate a 1.0% increase for 2014.

\$3.27 million reconstruction cost estimate is probably sufficiently accurate.

Cost-Capacity Relationships

A company has recorded its experience with small steam turbines in the following chart:

Capacity (KW)	<u>Cost (\$2014)</u>	<u>Year</u>
130	7 100	2012
160	7 500	2009
205	8 900	2013
290	10 700	2010
400	12 000	2008
435	12 500	2011

The company has a new requirement for a 350 KW steam turbine and needs a quick assessment of estimated cost.

Use the Cost-Capacity Relationship to estimate the cost.

(Note that the actual project costs must be restated into 2014 dollars to estimate the cost in current dollars.)

Cost-Capacity Relationships

$$C_X = C_B \left(\frac{Q_X}{Q_B}\right)^M$$

 $C_X = Cost of equipment of capacity <math>Q_X$

 $C_B = Cost of equipment of capacity Q_B$

M = Cost-Capacity Factor

$$0 \le M \le 1$$
 (typical)
 $M = 0.6$ (average)

Steam Turbine Cost-Capacity Relationships

To determine M:

- 1. use least-squares curve fitting software; or,
- 2. calculate the slope of the line using a pair of points

$$M = \log\left(\frac{C_X}{C_B}\right) / \log\left(\frac{Q_X}{Q_B}\right)$$
$$= \log\left(\frac{14\ 000}{6\ 100}\right) / \log\left(\frac{500}{100}\right) = 0.5162$$

Capacity	<u>Actual</u>	<u>Predicted</u>	<u>Error</u>
(kW)	Cost (\$)	Cost (\$)	(%)
100	6 100	6 100	0
130	7 100	6 985	-2
160	7 500	7 775	+4
205	8 900	8 836	-1
290	10 700	10 568	-1
→ 350	-	11 646	
400	12 000	12 477	4
435	12 500	13 029	4
500	14 000	14 000	0

The cost estimate for the 350 KW steam turbine is \$11 646.