Congratulations! You passed!

Grade received 100% To pass 80% or higher

Go to next item

1. Assume that there are 2 happy people and 2 unhappy people in a room. Concretely, persons A and B are happy and persons C and D are unhappy. If you were to randomly pick a person from the room, what is the probability that the person is happy.

1/1 point

- 1/2
- 0 1/4
- O 3/4
- 0 0

(\checkmark)	Correct
()	COLLECT

2. Assume that there are 2 happy people and 2 unhappy people in a room. Concretely, persons A and B are happy and persons C and D are unhappy. If a friend showed you the part of the room where the two happy people are, what is the probability that you choose person B?

1/1 point

- 1/2
- O 1/4
- O 3/4
- O 1

⊘ Correct

3. From the equations presented below, express the probability of a tweet being positive given that it contains the word happy in terms of the probability of a tweet containing the word happy given that it is positive

1/1 point

$$P(\text{ Positive } \mid \text{ "happy"}) = \frac{P(\text{ Positive } \cap \text{ "happy"})}{P(\text{ "happy"})}$$

$$P("happy" \mid Positive) = \frac{P("happy" \cap Positive)}{P(Positive)}$$

- **(a)** $P(\text{Positive} \mid \text{"happy"}) = P(\text{"happy"} \mid \text{Positive}) \times \frac{P(\text{Positive})}{P(\text{"happy"})}$
- O $P(\text{Positive} \mid \text{"happy"}) = P(\text{"happy"} \mid \text{Positive}) \times \frac{P(\text{"happy"})}{P(\text{Positive})}$
- $\bigcirc \ P(\text{ Positive } \bigcap \text{ "happy"}) = P(\text{ "happy"} \ | \ \text{Positive }) \times \frac{P(\text{ Positive})}{P(\text{ "happy"})}$
- $\bigcirc \ P(\text{ Positive } \bigcap \text{ "happy"}) = P(\text{ "happy"} \ | \ \text{Positive}) \times \frac{P(\text{ "happy"})}{P(\text{ Positive})}$
- ✓ Correct

Yes, that is the correct answer.

4. Bayes rule is defined as

1 / 1 point

$$\bigcirc P(X \mid Y) = P(Y \mid X) \times \frac{P(X)}{P(Y)}$$

$$\bigcirc P(X \mid Y) = P(Y \mid X) \times \frac{P(Y)}{P(X)}$$

$$\bigcirc P(X \mid Y) = P(X \mid Y) \times \frac{P(X)}{P(Y)}$$

$$\bigcirc P(X \mid Y) = P(Y \mid X) \times \frac{P(X)}{P(Y \mid X)}$$

⊘ Correct

Yes.

5. Suppose that in your dataset, 25% of the positive tweets contain the word 'happy'. You also know that a total of 13% of the tweets in your dataset contain the word 'happy', and that 40% of the total number of tweets are positive. You observe the tweet: "happy to learn NLP'. What is the probability that this tweet is positive? (Please, round your answer up to two decimal places. Remember that 0.578 = 0.58 and 0.572 = 0.57)

1/1 point

	✓ Correct That's right. You just applied Bayes' rule.	
6.	The log likelihood for a certain word w_i is defined as: $\log(\frac{P(w_i pos)}{P(w_i neg)}).$	1/1 point
	 ✓ Correct □ Positive numbers imply that the word is negative. ✓ Negative numbers imply that the word is negative. ✓ Correct □ Negative numbers imply that the word is positive. 	
7.	The log likelihood mentioned in lecture, which is the log of the ratio between two probabilities is bounded between	1/1 point
8.	When implementing naive Bayes, in which order should the following steps be implemented. 1. Get or annotate a dataset with positive and negative tweets 2. Preprocess the tweets: process_tweet(tweet) →	1/1 point
	 3. Compute freq(w, class) 4. Get P(w pos), P(w neg) 5. Get λ(w) 6. Compute logprior = log(P(pos) / P(neg)) 1. Get or annotate a dataset with positive and negative tweets 	
	 Get 01 almotate a dataset with positive and negative tweets Preprocess the tweets: process_tweet(tweet) → Compute freq(w, class) Get λ(w) Get P(w pos), P(w neg) Compute logprior = log(P(pos) / P(neg)) 	
	 Compute logprior=log(P(pos) / P(neg)) Get or annotate a dataset with positive and negative tweets Compute freq(w, class) Preprocess the tweets: process_tweet(tweet) → Get P(w pos), P(w neg) Get λ(w) 	

	6. Compute logprior = log(P(pos) / P(neg))	
	1. Get or annotate a dataset with positive and negative tweets	
	2. Compute freq(w, class)	
	3. Preprocess the tweets: process_tweet(tweet) →	
	4. Compute logprior = log(P(pos) / P(neg)	
	5. Get P(w pos), P(w neg)	
	6. $\operatorname{Get} \lambda(w)$	
	○ Correct Yes, that is correct.	
9.	To test naive bayes model, which of the following are required?	1/1 point
	$lacktriangleq X_{val}, Y_{val}, \lambda, logprior$	
	$igcup X_{val}, Y_{val}, logprior$	
	$igcup X_{val}, \lambda, logprior$	
	$igcup Y_{val}, \lambda, logprior$	
10	Which of the following is NOT an application of naive Bayes?	1/1 point
		1/1 point
	O Sentiment Analysis	
	O Author identification	
	O Information retrieval	
	○ Word disambiguation	
	Numerical predictions	
	○ Correct This is correct.	