

## IN THE CLAIMS

Please cancel claims 6, 19 and 23, without prejudice.

Please amend claims 1, 7, 10 and 22 as follows:

- 1. (Amended) A method for slowing the degradation rate of a biodegradable polymer composition wherein the method comprises:
  - a. introducing a phenol-containing compound comprising terpene-phenol resin into a biodegradable polymer or biodegradable polymer composition in an amount sufficient to slow the degradation rate of the biodegradable polymer or biodegradable polymer composition; and
  - b. mixing the phenol-containing compound with the biodegradable polymer or biodegradable polymer composition; wherein the biodegradable polymer or biodegradable polymer composition comprises one or more of:
    - 1. an aliphatic-aromatic copolyester having repeat units of the following structures:



(i) R<sup>11</sup> and R<sup>12</sup> are the same or different, and are residues of one or more of diethylene glycol, propylene glycol, 1,3-propanediol, 2,2-dimethyl-1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 2,2,4-trimethyl-1,6-hexanediol, thiodiethanol, 1,3-cyclohexanedimathanol, 1,4-



5UB 101/

cyclohexanedimethanol, 2,2,4,4-tetramethyl-1,3-cyclobutanediol, triethylene glycol, or tetraethylene glycol;

- (ii) R<sup>31</sup> and R<sup>12</sup> are 100% of the diol components in the copolyester;
- (iii)  $R^{13}$  is absent or is selected from one or more of the groups consisting of  $C_1$   $C_{12}$  alkylene or oxyalkylene;  $C_1$   $C_{12}$  alkylene or oxyalkylene substituted with one to four substituents independently selected from the group consisting of halo,  $C_6$   $C_{10}$  aryl, and  $C_1$   $C_4$  alkoxy;  $C_5$   $C_{10}$  cycloalkylene; and  $C_5$   $C_{10}$  cycloalkylene substituted with one to four substituents independently selected from the group consisting of halo,  $C_6$   $C_{10}$  aryl, and  $C_1$   $C_4$  alkoxy; and
- (iv)  $R^{14}$  is selected from one or more of the groups consisting of  $C_6 C_{10}$  aryl, and  $C_6 C_{10}$  aryl substituted with one to four substituents independently selected from the group consisting of halo,  $C_1 C_4$  alkyl, and  $C_1 C_4$  alkoxy, an aliphatic polyester having repeat units of one or more of the

following structures:

SUB BIT

2.



3

Oľ

wherein m is an integer of from 0 to 10, and R10 is selected from the group consisting of hydrogen; C1-C12 alkyl; C1-C12 alkyl substituted with one to four substituents independently selected from the group consisting of halo, C6-C10 aryl, and C1-C4 alkoxy; C5-C10 cycloalkyl; and C5-C10 cycloalkyl substituted with one to four substituents independently selected from the group consisting of halo, C6-C10 aryl, and C1-C/alkoxy, wherein R<sup>8</sup> is selected from the group consisting of C<sub>2</sub>-C<sub>12</sub> alkylene or C<sub>2</sub>-C<sub>12</sub> oxyalkylene; C<sub>2</sub>-C<sub>12</sub> alkylene or C<sub>2</sub>-C<sub>12</sub> oxyalkylene substituted with one to four substituents independently selected from the group consisting of halo, C6-C10 aryl, and C1-C4 alkoxy; C5-C10 cycloalkylene; C5-C10 cycloalkylene substituted with one to four substituents independently selected from the group consisting of halo, C6-C10 aryl, and C1-C4 alkoxy, and wherein R9 is absent or is selected from one or more of the group consisting of C1-C12 alkylene/or oxyalkylene; C1-C12 alkylene or oxyalkylene substituted with one to four substituents independently selected from the group consisting of halo, C<sub>6</sub>-C<sub>10</sub> aryl, and C<sub>1</sub>-C<sub>4</sub> alkoxy; C5-C10 cycloalkylene; and C5-C10 cycloalkylene substituted with one to four substituents independently selected from the group consisting of halo, C<sub>6</sub>-C<sub>10</sub> aryl, and C<sub>1</sub>-C<sub>4</sub> alkoxy; and a  $C_1$ - $C_{10}$  cellulose ester having a DS equal to or less than about 2.5.

7. (Amended) The method of claim 1 wherein the biodegradable polymer or biodegradable polymer composition comprises the aliphatic-aromatic copolyester and wherein R<sup>11</sup> and R<sup>12</sup> are the same or different, and are selected from consisting of residues of one or more of glycol, propylene glycol, 1,3and wherein R11 and R12 are the same of different, and are selected from the group propanediol, 1,3-butanediol, and 1/4-butanediol, R13 is selected from the group consisting of malonic acid, succipic acid, glutaric acid, adipic acid, pimelic acid,



 $a^2$ 

2,2-dimethyl glutaric acid, diglycolic acid, and an ester forming derivative thereof, and R<sup>14</sup> is selected from the group consisting of one or more of 1,4-terephthalic acid, 1,3-terephthalic acid, 2,6-naphthoic acid, 1,5-naphthoic acid, and an ester forming derivative thereof.

- 10. (Amended) A method for slowing the degradation rate of a biodegradable polymer or polymer composition, wherein the method comprises:
  - (a) introducing a phenol-containing compound into a biodegradable polymer or polymer composition in an amount sufficient to slow the degradation rate of the biodegradable polymer or polymer composition; and
  - (b) mixing the phenol-containing compound with the biodegradable polymer or polymer composition, wherein the biodegradable polymer comprises one or more of the following:
- 23

1. an aliphatic-aromatic copolyester having repeat units of the following structures:



5UB/

wherein

- (i) R<sup>11</sup> and R<sup>12</sup> are the same or different, and are residues of one or more of diethylene glycol, propylene glycol, 1,3-propanediol, 2,2-dimethyl-1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 2,2,4-trimethyl-1,6-hexanediol, thiodiethanol, 1,3-cyclohexanedimathanol, 1,4-cyclohexanedimethanol, 2,2,4,4-tetramethyl-1,3-cyclobutanediol, triethylene glycol, or tetraethylene glycol;
- (ii) R<sup>11</sup> and R<sup>12</sup> are/100% of the diol components in the copolyester;
- (iii)  $R^{13}$  is absent or is selected from one or more of the groups consisting of  $C_1$   $C_{12}$  alkylene or oxyalkylene;  $C_1$   $C_{12}$  alkylene or



oxyalkylene substituted with one to four substituents independently selected from the group consisting of halo,  $C_6$  -  $C_{10}$  aryl, and  $C_1$  -  $C_4$  alkoxy;  $C_5$  -  $C_{10}$  cycloalkylene; and  $C_5$  -  $C_{10}$  cycloalkylene substituted with one to four substituents independently selected from the group consisting of halo,  $C_6$  -  $C_{10}$  aryl, and  $C_1$  -  $C_4$  alkoxy; and (iv)  $R^{14}$  is selected from one or more of the groups consisting of  $C_6$  -  $C_{10}$  aryl, and  $C_6$  -  $C_{10}$  aryl substituted with one to four substituents

(iv) R<sup>2</sup> is selected from one or more of the group's consisting of  $C_6$  -  $C_{10}$  aryl, and  $C_6$  -  $C_{10}$  aryl substituted with one to four substituents independently selected from the group consisting of halo,  $C_1$  -  $C_4$  alkyl, and  $C_1$  -  $C_4$  alkoxy;

2) an aliphatic polyester having repeat units of one or more of the following structures:



5UB B3/

or

wherein m is an integer of from 0 to 10, and R10 is/selected from the group consisting of hydrogen; C1-C12 alkyl; C1-C12 alkyl substituted with one to four substituents independently selected from the group consisting of halo, C<sub>6</sub>-C<sub>10</sub> aryl, and C<sub>1</sub>-C<sub>4</sub> alkoxy; C<sub>5</sub>-C<sub>10</sub> cycloalkyl; and C<sub>5</sub>-C<sub>10</sub> cycloalkyl substituted with one to four substituents independently selected from the group consisting of halo,  $C_6$ - $C_{10}$  aryl, and  $C_1$ - $C_4$  alkoxy, wherein R<sup>8</sup> is selected from the group consisting of C<sub>2</sub>-C<sub>12</sub> alkylene or C<sub>2</sub>-C<sub>12</sub> oxyalkylene; C<sub>2</sub>-C<sub>12</sub> alkylene or C<sub>2</sub>-C<sub>12</sub> oxyalkylene substituted with one to four substituents independently selected from the group consisting of halo, C<sub>6</sub>-C<sub>10</sub> aryl, and C<sub>1</sub>-C<sub>4</sub> alkexy; C<sub>5</sub>-C<sub>10</sub> cycloalkylene; C<sub>5</sub>-C<sub>10</sub> cycloalkylene substituted with one to four substituents independently selected from the group consisting of halo, C<sub>6</sub>-C<sub>10</sub> aryl, and C<sub>1</sub>-C<sub>4</sub> alkoxy, and wherein R9 is absent or is selected from one or more of the group consisting of C<sub>1</sub>-C<sub>12</sub> alkylene or oxyalkylene; C<sub>1</sub>-C<sub>12</sub> alkylene or oxyalkylene substituted with one to four substituents independently selected from the group consisting of halo, C<sub>6</sub>-C<sub>10</sub> aryl, and C<sub>1</sub>-C<sub>4</sub> alkoxy; C<sub>5</sub>-C<sub>10</sub> cycloalkylene;/and C<sub>5</sub>-C<sub>10</sub> cycloalkylene substituted with one to four substituents independently selected from the group consisting of halo,  $C_6$ - $C_{10}$  aryl, and  $C_7$ - $C_4$  alkoxy; and

3) C<sub>1</sub>-C<sub>10</sub> ce/lulose ester having a DS equal to or less than about 2.5.

22. (Amended) A biodegradable polymer composition comprising:

B

a.

a phenol-containing compound comprising terpene-phenol resin incorporated in the biodegradable polymer or biodegradable polymer-second material composition, the phenol-containing compound being present at an amount sufficient to slow the degradation rate of the biodegradable polymer or biodegradable polymer second-material composition; and

4

LE & DOOENDEDO

## ATTORNEY DOCKET NO.: 05015.0365U1 App. Serial No.: 09/662,965

- b. a biodegradable polymer or biodegradable polymer-second material composition comprising one or more of the following:
- 1. an aliphatic-aromatic copolyester having repeat units of the following structures:

$$\begin{bmatrix}
0 & R^{11} & O & C & R^{13} & C
\end{bmatrix} \quad \text{and} \quad \begin{bmatrix}
0 & R^{12} & O & C & R^{14} & C
\end{bmatrix}$$

wherein

- (i) R<sup>11</sup> and R<sup>12</sup> are the same or different, and are residues of one or more of diethylene glycol, propylene glycol, 1,3-propanediol, 2,2-dimethyl-1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 2,2,4-trimethyl-1,6-hexanediol, thiodiethanol, 1,3-cyclohexanedimathanol, 1,4-cyclohexanedimethanol, 2,2,4,4-tetramethyl-1,3-cyclobutanediol, triethylene glycol, or tetraethylene glycol;
- (ii) R<sup>11</sup> and R<sup>12</sup> are 100% of the diol components in the copolyester;
- (iii)  $R^{13}$  is absent or is selected from one or more of the groups consisting of  $C_1$   $C_{12}$  alkylene or oxyalkylene;  $C_1$   $C_{12}$  alkylene or oxyalkylene substituted with one to four substituents independently selected from the group consisting of halo,  $C_6$   $C_{10}$  aryl, and  $C_1$   $C_4$  alkoxy;  $C_5$   $C_{10}$  cycloalkylene; and  $C_5$   $C_{10}$  cycloalkylene substituted with one to four substituents independently selected from the group consisting of halo,  $C_6$   $C_{10}$  aryl, and  $C_1$   $C_4$  alkoxy; and
- (iv)  $R^{14}$  is selected from one or more of the groups consisting of  $C_6$   $C_{10}$  aryl, and  $C_6$   $C_{10}$  aryl substituted with one to four substituents independently selected from the group consisting of halo,  $C_1$   $C_4$  alkoxy;

24

SUB\_BY/

an aliphatic polyester having repeat units of one or more of the following structures:

or

WH SUBJ

wherein m is an integer of from 0 to 10, and R<sup>10</sup> is selected from the group consisting of hydrogen; C<sub>1</sub>-C<sub>12</sub> alkyl; C<sub>1</sub>-C<sub>12</sub> alkyl substituted with one to four substituents independently selected from the group consisting of halo, C<sub>6</sub>-C<sub>10</sub> aryl, and C<sub>1</sub>-C<sub>4</sub> alkoxy; C<sub>5</sub>-C<sub>10</sub> cycloalkyl; and C<sub>5</sub>-C<sub>10</sub> cycloalkyl substituted with one to four substituents independently selected from the group consisting of halo, C<sub>6</sub>-C<sub>10</sub> aryl, and C<sub>1</sub>-C<sub>4</sub> alkoxy, wherein R<sup>8</sup> is selected from the group consisting of C<sub>2</sub>-C<sub>12</sub> alkylene or C<sub>2</sub>-C<sub>12</sub> oxyalkylene; C<sub>2</sub>-C<sub>12</sub> alkylene or C<sub>2</sub>-C<sub>12</sub> oxyalkylene substituted with one to four substituents independently selected from the group consisting of halo, C<sub>6</sub>-C<sub>10</sub> aryl, and C<sub>1</sub>-C<sub>4</sub> alkoxy; C<sub>5</sub>-C<sub>10</sub> cycloalkylene; C<sub>5</sub>-C<sub>10</sub> cycloalkylene substituted with one to four substituents independently selected from the group consisting of halo, C<sub>6</sub>-C<sub>10</sub> aryl, and C<sub>1</sub>-C<sub>4</sub> alkoxy, and