

درس: یادگیری ماشین

دانشجو: امیرمحمد خرازی

شماره دانشجویی: ۴۰۱۵۲۵۲۱۰۰۲

استاد درس: دكتر منصور رزقى آهق

دانشکده علوم ریاضی ، گروه علوم کامپیوتر، گرایش دادهکاوی

پرسشهای کلاسی سری پنجم

گیتهاب این پرسش (لینک)

گیتهاب درس (لینک)

سوال ١:

حزئیات لازم در فایل کد آورده شده است . روش رسم خط های جدا ساز نیز در سوال ۲ کمی اشاره شده است . برای رسم بیز از کانتور استفاده شده است.

سوال ٢:

ابتدا دوگان مسئله SVM را بدست می آوریم:

$$Primal: SVM = \max \frac{||W||_2^2}{2}$$

$$s.t$$

$$y_i \times (W^T X_i + W_0) \ge 1 \Rightarrow 1 - y_i \times (W^T X_i + W_0) \le 0$$

$$L(W, W_0, \alpha) = f_0(W) + \sum_{i=1}^N \alpha_i \left[1 - y_i \times (W^T X_i + W_0)\right]$$

$$if \quad \alpha_i \ge 0 \Rightarrow \min L = g(\alpha) \le f_0(x^*)$$

$$L(W, W_0, \alpha) = \frac{1}{2} W^T W + \sum \alpha_i - \sum \alpha_i y_i W^T X_i - \sum \alpha_i y_i W_0$$

$$\frac{\partial L}{\partial W} = W - \sum \alpha_i y_i X_i = 0 \Rightarrow W = \sum \alpha_i y_i X_i$$

$$\frac{\partial L}{\partial W_0} = \sum \alpha_i y_i = 0$$

$$c_i \in \Delta_0 \cup C_0 \cup C_0 \cup C_0 \cup C_0$$

$$c_i \in \Delta_0 \cup C_0 \cup C_0 \cup C_0 \cup C_0 \cup C_0$$

$$c_i \in \Delta_0 \cup C_0 \cup C_0 \cup C_0 \cup C_0$$

$$c_i \in \Delta_0 \cup C_0 \cup C_0 \cup C_0$$

$$c_i \in \Delta_0 \cup C_0 \cup C_0 \cup C_0$$

$$c_i \in \Delta_0 \cup C_0 \cup C_0 \cup C_0$$

$$c_i \in \Delta_0 \cup C_0 \cup C_0 \cup C_0$$

$$c_i \in \Delta_0 \cup C_0$$

$$c_i \in \Delta_0$$

$$c$$

با حل مسئله دوگان داریم $X_i: W = \sum lpha_i y_i$ و در ساخت W تنها آنهایی اثر دارند که $lpha_i$ آنها مخالف صفر است.

پس:

$$W = \sum \alpha_i y_i X_i = \begin{bmatrix} 0.846\\ 0.3852 \end{bmatrix}$$

با داشتن W^* میتوانیم با استفاده از شرط KKT ، مقدار W_0 را بدست آوریم. میگوئیم $lpha_i imes \left[1-y_i(W^{\star T}X_i+W_0)
ight]=0$ میگوئیم بنابراین اگر در حایی $lpha_i
eq lpha_i$ بود، آنگاه بخش دوم آن صفر است .

 $W^{\star T}X + W_0^{\star} = 0:$ لذا معاله این ابر صفحه خواهد بود که بطور خلاصه برابر است با

$$W^{\star T}X + W_0^{\star} = 0 \Rightarrow W_1X_1 + W_2X_2 + W_0 = 0 \Rightarrow \frac{W_1}{W_2}X_1 + \frac{W_2}{W_2}X_2 + \frac{W_0}{W_2} = 0$$

$$\Rightarrow X_2 = -\frac{W_1}{W_2}X_1 - \frac{W_0}{W_2}$$
معادله خط جداساز $X_1 = -\frac{W_1}{W_2}X_1 - \frac{W_0}{W_2}$

برای فاصله یک نقطه مانند X_6 از این خط میتوان یک نقطه روی این خط انتخاب کرد و فاصله آن را با نرم ۲ بدست آورد

$$\begin{split} dist(X_6,X_{i2}&=-\frac{0.846}{0.3852}X_{i1}-\frac{-3.5}{0.3852})\\ \Rightarrow d&=\frac{|W_1X_{61}+W_2X_{62}+W_0|}{\sqrt{W_1^2+W_2^2}}=-1.2497429918467136 \end{split}$$
فاصله مثبت است 1.2497429918467136 فاصله مثبت است

درون محدوده بودن آن به مسئله اصلی بر میگردد. بهینه مسئله اصلی را اگر بدست آوریم یعنی $||x_1-x_2||_2=||x_1-x_2||_2$ با

استفاده از مقادیر بدست آمده از W این مقدار برابر تقریباً 0.46 است که از هر دو طرف خط میانی فاصله دارد. لذا این نقطه خارج این بازه قرار خواهد داشت.

برای کلاس بندی نقطه $z=(3,3)^T$ کافی است آن را در معادله خط گذاشته و جواب را بررسی کنیم . اگر منفی بود، کلاس ۲ و اگر مثبت بود کلاس ۱ است.

$$z: W_1X_1 + W_2X_2 + W_0 \Rightarrow = 0.19260000000000055 > 0 \Rightarrow \in C_1: 1$$

سوال ٣:

هدف پیدا کردن صورت دوگان مسئله زیر است :

$$\min_{W,b,\epsilon_i} \frac{||W||^2}{2} + C \sum_i \epsilon_i$$

$$s.t:$$

$$y_i(W^T X_i + b) \ge 1 - \epsilon_i \Rightarrow (1 - \epsilon_i) - y_i(W^T X_i + W_0) \le 0$$

$$\epsilon_i \ge 0 \Rightarrow -\epsilon_i \le 0$$

ابتدا فرم لاگرانژ آن را بدست می آوریم:

$$L(W, W_0, \epsilon, \alpha, \beta) = \frac{||W||_2^2}{2} + C\sum_i \epsilon_i + \sum_i \alpha_i \times \left[(1 - \epsilon_i) - y_i(W^T X_i + W_0) \right] + \sum_i \beta_i \times \left[-\epsilon_i \right]$$

مرحله بعدی مشتق گرفتن و برابر صفر قرار دادن است :

مانند قبل
$$\frac{\partial L}{\partial W}=0\Rightarrow W=\sum \alpha_i y_i X_i$$
 مانند قبل
$$\frac{\partial L}{\partial W_0}=0\Rightarrow \sum \alpha_i y_i=0$$
 مانند قبل
$$\frac{\partial L}{\partial \epsilon_i}=0\Rightarrow 0+C-\alpha_i-\beta_i=0\Rightarrow \beta_i=C-\alpha_i$$
 را ثابت گرفته ایم گرفته ایم و کرن داریم $C=0$ باید مثبت باشند در مسئله دوگان، داریم $C=0$ پس $C=0$ پس $C=0$ باید مثبت باشند در مسئله دوگان، داریم $C=0$

برسیم. با بدست آوردن این مقادیر آنها را در لاگرانژ جایگذاری میکنیم (مانند سوال ۲) تا به $g(\alpha,\beta)$ برسیم.

$$\Rightarrow \frac{W^TW}{2} + C\sum \epsilon_i + \sum \alpha_i \times \left[(1 - \epsilon_i) - y_i (W^TX_i + W_0) \right] + \sum \beta_i \times \left[-\epsilon_i \right]$$

$$\bullet \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j X_i X_j + C\sum \epsilon_i + \sum \alpha_i$$

$$\bullet - \sum \alpha_i \epsilon_i - \sum \sum \alpha_i \alpha_j y_i y_j X_i X_j - \sum \alpha_i y_i W_0 - \sum \beta_i \epsilon_i$$

$$\bullet - \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j X_i X_j + C\sum \epsilon_i + \sum \alpha_i - \sum \alpha_i \epsilon_i - W_0 \sum \alpha_i y_i - \sum \beta_i \epsilon_i$$

$$\bullet W_0 \sum \alpha_i y_i = 0 \quad \text{e} \quad C = \alpha_i + \beta_i \quad \text{for all } \quad \text{for all$$

شبیه به همان حالت قبلی شد و تعداد پارامتر های دوگان آن با سوال ۲ که SVM معمولی بود یکی شد، مسئله دوگان آن بصورت زیر است :

$$Dual : \max g(\alpha)$$

$$s.t$$

$$0 \le \alpha_i \le C$$

$$\sum \alpha_i y_i = 0$$

فرض کنیم مسئله دوگان را حل کردیم و به بهین آن رسیدیم یعنی $lpha^\star$ را بدست آوردیم. با استفاده از آن مانند قبل (سوال قبل)، $W^\star = \sum lpha_i^\star y_i X_i$ را بدست می آوریم.

 f_i با بررسی شرایط KKT ، مقدار W_0^\star را به صورت میانگینی از آنها بدست میآوریم. مثلا میگویم اگر W_0^\star بود آنگاه و با بررسی شرایط برای ما مهم است، f_i را برابر f_i را برابر میدهیم W_0 متناظر آن باید W_0 برای ما مهم آنهایی که W_0 مخالف صفر دارند بدست آورده و در نهایت و با حل این معادله W_0 مقادیر W_0 را برای همه آنهایی که W_0 مخالف صفر دارند بدست آورده و در نهایت

را میانگین این W_0 را در نظر میگیریم. W_0^\star

اما برای بدست آوردن W_0^\star علاوه بر بهین W^\star به نیز نیاز داریم.

بطور کلی با توجه به شرط KKT اگر α_i ای غیر صفر شود، f_i آن صفر می شود.

- $y_i(W^TX_i+W_0)\geq 1$ ، صفر شود اگر
- $y_i(W^TX_i+W_0)\leq 1$ اگر lpha مقدار α_i مقدار •
- $y_i(W^TX_i + W_0) = 1$ و اگر $0 < lpha_i < C$ و اگر

با استفاده از این W_0 را برابر $y_i - W^T X_i$ قرار میدهیم.

برای label دادن به نقاط میتوان از تابع $f(x) = sign(W^T x + W_0)$ استفاده کرد.

رفرنس این سوال