Statistique mathématique: TD1

Exercice 1. Donner la valeur de $\int f d\mu$ pour les fonctions $f : \mathbb{R} \to \mathbb{R}$ et mesures μ sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ suivantes. Pour chacun des exemples, dites si la mesure μ est une mesure de probabilité et si elle est discrète, continue ou ni l'un ni l'autre, ou si elle a un nom!

- 1. f(x) = x, $\mu = \delta_5$
- 2. f(x) = 2, $\mu = 1_{[0,10]}(x)dx$
- 3. $f(x) = \cos x$, $\mu = 1_{[0,\pi/2]}(x)\cos x dx$
- 4. f(x) = x, $\mu = \frac{1}{3}\delta_1 + \frac{4}{3}1_{[0,1/2]}(x)dx$
- 5. $f(x) = 1_{[0,1]}(x)$, $\mu = dx + 3\delta_0$
- 6. $f(x) = e^x$, $\mu = p\delta_0 + (1-p)\delta_1$, $p \in]0,1[$
- 7. f(x) = 1, $\mu = \frac{1-e}{2} \sum_{k=0}^{+\infty} e^{-k} \delta_k + \frac{1}{2} e^{-x} dx$

Pour les variables aléatoires suivantes, écrivez leur loi sous forme de mesure

- 1. X = B + (1 B)G où B est une variable aléatoire de loi $\mathcal{B}(1/2)$ et G est une variable aléatoire indépendante de B et de loi $\mathcal{N}(0,1)$.
- 2. $X = 1_{Y>0}Z$ où Y et Z sont deux variables aléatoires indépendantes de loi $\mathcal{N}(0,1)$.
- 3. $X = X_1 + X_2$ où X_1 et X_2 sont indépendantes et de loi $\mathcal{B}(1/2)$.

Exercice 2. Soit X une variable aléatoire réelle admettant un moment d'ordre 2. Démontrer que

$$\mathbb{E}((X - \mathbb{E}(X))^2) = \mathbb{E}(X^2) - \mathbb{E}(X)^2.$$

Exercice 3. Donner des exemples de variables aléatoires satisfaisant les propriétés suivantes.

- Donner un exemple de variable aléatoire qui ne soit ni à densité, ni discète.
- Donner un exemple de variable aléatoire discrète ayant un moment d'ordre 3 mais pas de moment d'ordre 4.
- Donner un exemple de variable aléatoire à densité ayant une espérance mais pas de second moment.
- Démontrer qu'une variable aléatoire bornée admet des moments de tous ordres.
- Donner un exemple d'une suite de variables aléatoires qui converge en probabilité vers 0 mais dont l'espérance est constante égale à 1.
- Donner un exemple d'une suite de variables aléatoires qui converge en probabilité

Exercice 4. Le but de cet exercice est de démontrer de nombreuses propriétés des variables exponentielles.

- 1. Calculer l'espérance et la variance d'une variable aléatoire de loi exponentielle $\mathcal{E}(\lambda)$.
- 2. Montrer que la fonction de répartition d'une variable aléatoire de loi $\mathcal{E}(\lambda)$ est $F(t) = (1 e^{-\lambda t})1_{t \geq 0}$.
- 3. En déduire que si X est une variable aléatoire de loi $\mathcal{E}(1)$, alors λX est une variable aléatoire de loi $\mathcal{E}(\frac{1}{\lambda})$.

4. Soit X une variable aléatoire de loi $\mathcal{E}(1)$. Montrer que, pour tout $k \in \mathbb{N}$,

$$\mathbb{E}(X^k) = k!.$$

- 5. En déduire les moments d'une variable aléatoire de loi $\mathcal{E}(\lambda)$.
- 6. Soient X une variable aléatoire de loi $\mathcal{E}(\lambda_1)$ et Y une variable aléatoire de loi $\mathcal{E}(\lambda_2)$. Calculer la fonction de répartition de la variable aléatoire $\min(X,Y)$.
- 7. En déduire la loi de min(X, Y).

Exercice 5. Soit X une variable aléatoire réelle. Montrer que sa fonction de répartition F_X est croissante, continue à gauche, admet en tout point une limite à droite, et vérifie

$$\lim_{t \to -\infty} F_X(t) = 0 \quad et \lim_{t \to +\infty} F_X(t) = 1.$$

Enfin, montrez que F_X est continue en tout pour $a \in \mathbb{R}$ tel que $\mathbb{P}(X = a) = 0$.

Exercice 6. Soient X et Y deux variables aléatoires réelles indépendantes. Calculez, en fonction des fonctions de répartition de X et Y, la fonction de répartition de $\max(X,Y)$. Soient X_1,\ldots,X_n , n variables aléatoires indépendantes et de même loi, donner la fonction de répartition de $\max_{1\leq i\leq n} X_i$ en fonction de la fonction de répartition de X.

Exercice 7. Soient X et Y deux variables aléatoires indépendantes de loi $\mathcal{N}(0,1)$.

- 1. Montrer que la variable aléatoire Z = X/Y est bien définie (c'est à dire définie sauf peut-être sur un événement négligeable).
- 2. Déterminer la fonction de répartition de Z. Quelle loi reconnaissez-vous?

Exercice 8. Soient X et Y deux variables aléatoires admettant un moment d'ordre deux.

1. Montrer que

$$Var(X + Y) = Var(X) + 2Cov(X, Y) + Var(Y).$$

- 2. Si $X \perp \!\!\! \perp Y$, montrer que $\operatorname{Cov}(X,Y) = 0$. Soient $X \sim \mathcal{N}(0,1)$, Z une variable de Rademacher indépendante de X et Y = ZX. Montrer que les variables X et Y ne sont pas indépendantes.
- 3. Montrer que Cov(X, Y) = 0.
- 4. En tirez-vous un enseignement sur la relation entre covariance et indépendance?

Exercice 9. Soient X et Y deux variables aléatoires réelles, indépendantes. Est-ce que X et Y^2 sont indépendantes? X et $\cos Y$? Si X est indépendantes de X, que peut-on dire de X? (calculer sa variance)

Exercice 10. Soient X_1, \ldots, X_n des variables aléatoires indépendantes de loi de Bernoulli de paramètre $p \in]0, 1[$.

- 1. Calculez l'espérance et la variance de X_1 .
- 2. Quelle est la loi de $\sum_{i=1}^{n} X_i$?
- 3. Soit Y_n une variable aléatoire binomiale $\mathcal{B}(n,p)$. En s'aidant des questions précédentes, calculer l'espérance de Y? Quelle est la variance de Y?