

Dysregulation of *SLC1A3* in AUD and alcohol-associated behaviors

Aryan Mangla, Mayfield Lab

Alcohol use is a large public health problem

- ➤ Alcohol Global Impact
 - Alcohol use contributes to ~5% of the global burden of disease and injury (2.4 million deaths annually).
- ➤ Alcohol Use Disorder (AUD) is a significant contributor to alcohol-related burden, affecting ~11% of the US population (NIAAA)
- > AUD is characterized by:
 - > Loss of control over alcohol intake
 - Drinking continues despite negative consequences ("compulsivity")
 - > Preference of alcohol over natural rewards
- ➤ DSM-5 focuses on behavioral patterns over the quantity of alcohol consumption.
 - ➤ These behavioral symptoms reflect persistent neuroadaptations in key brain structures that control motivated behavior

Our World in Data 2021

Alcohol disrupts glutamate homeostasis — 'via GLT-1 downregulation'

- ➤ Primary Glu transporters are SLC1A2 and SLC1A3 (*Glast*)
 - SLC1A2 is more abundant (~1% of total brain protein)
 - Glast is 4-6 times less abundant than SLC1A2
- Extracellular Glu reuptake by SLC1A2/SLC1A3
 - Chronic alcohol exposure and withdrawal lead to elevated levels of extracellular glutamate
- ➤ GLT-1 (SLC1A2):
 - Cocaine, opioids, ethanol, nicotine, and amphetamines have each been shown to affect GLT-1 expression and glutamate uptake; mainly in the nucleus accumbens and prefrontal cortex

Reviews: Alasmari et al., 2018; Roberts-Wolfe & Kalivas 2015

In our experiments, *Glast* is frequently found dysregulated

Downregulated in astrocytes from mPFC – EOD-2BC (Every Other Day 2-Bottle Choice)

(Erickson et al 2019.a)

(Farris et al 2020)

Downregulation

but normalized by

(Erickson et al 2019.a)

Upregulated in PFC from astrocytes and microglia from alcohol-dependent humans

(Brenner et al 2020)

Astrocyte co expression module upregulated in mPFC after CIE.

(Salem et al., 2024)

Glast KD in the dmPFC resulted in a small but stable increase in alcohol consumption in mice

Expression levels of prelimbic *Glast* inversely correlated with cumulative voluntary EtOH intake

In a separate experiment, KD of *Glast* in the dmPFC showed no effect

8.0

SCR

KD

2 log PL Slc1a3 expression

1.0

2 log PL Slc1a3 expression

1.2

Effect of prior exposure to EtOH on *Glast* KD in the dmPFC

Discussion

- ➤ Glast is dysregulated following alcohol consumption in both humans and mice, more so than Glt-1 in our data
- ➤ KD of *Glast* in the dmPFC does not appear to reliably change EtOH intake or preference, despite the robust inverse correlation between GLAST expression and alcohol intake

➤ Glast KD in the PL appear to have an anxiolytic effect suggesting that Glast might play a nuanced role in modulating anxiety-like behaviors

Thank you for your attention!

This research was supported by funding from the National Institutes of Health (R01 AA012404 and U01 AA020926 to RDM; K00 AA029955 to NAS).

Mayfield Lab

(Geoff Dilly)

Dayne Mayfield
Elizabeth Osterndorff-Kahanek
Nihal Salem
Marion Friske
Anna Warden
Wen Chen
Ruth Allard
Aashna Mangal
Aryan Mangla
Jessica McFarland
Jody Mayfield
Jayna Dixon

Blednov Lab

Yuri Blednov Sonia Mason Whitney Leigh Hodgson

Microscopy & Imaging Facility
Anna Webb
Paul Oliphint

UT Genomic Sequencing and Analysis Facility Jessica Podnar Holly Stevenson John Ludes-Meyers