Annealed ME

Donglai Wei

2010.6.24

0) Notations

Hierarchical Dirichlet Process Model with Dirichlet-Multinomial:

i)Formula

 n_{jtk} number of customers in table t, restaurant j, with dish k m_{jk} number of tables in restaurant j, with dish k $n_{..k}$ number of customers in dish k $n_{..k}^w$ number of occurence of word w in dish k $n_{j..}$ number of customers in in Restaurant j n_{jt} number of customers in table t in Restaurant j $m_{..}$ number of tables in total $m_{.k}$ number of tables in dish k J Restaurants,K dishes

a) Goal: (Marginalize θ and Search over z:)

Maximize log Probability $L = log p(x, z | \lambda)$

$$= (\text{t-term}) \underline{log} \frac{\Gamma(\gamma)}{\Gamma(m_{..}+\gamma)} + \sum_{j=1}^{J} \{log \frac{\Gamma(\alpha)}{\Gamma(n_{j..}+\alpha)} + \sum_{t=1}^{m_{j.}} [log(\Gamma(n_{jt.})) + log\alpha] \}$$
$$+ (\text{k-term}) \sum_{k=1}^{K} [log (\frac{\Pi_{w=1}^{W} \Gamma(\lambda_{0} + n_{..k}^{w})}{\Gamma(n_{..k} + W\lambda_{0})}) + log (\frac{\Gamma(W\lambda_{0})}{\Gamma(\lambda_{0})W}) + \underline{log}(\Gamma(m_{.k})) + log\gamma]$$

 $(underlined\ part\ come\ from\ Hierarchical\ Dirichlet\ Process)$

b) Annealing: Maximize the annealed log Probability:

L'(Temperature) = Temperature*(t-term) + (k-term)

1) ME algorithm:

i) Unified Backbone

- (1) Annealing:(n:number of iterations; p:annealing power)
 - (i) For iter=1:n
 - (ii) Temperature= $(\frac{iter}{n})^p$
 - (iii) Decompose Restaurants(Temperature)
 - (iv) Merge Dish(Temperature)
 - (v) End
- (2) Running for Convergence:
 - (i) While L doesn't increase any more
 - (ii) Decompose Restaurants(1)
 - (iii) Merge Dish(1)
 - (iv) End

ii) Decompose Restaurants(Temperature)

For j=Randperm(J)

- (A) Rough reconfiguration for Restaurant j:
 - (i) Make Restaurant j into one table t_0 where customers following uniform distribution: (% Thus the Probability $P(t_{ji} = t_0) = \frac{1}{W}$)
 - (ii) Possible Dish={Nonempty dishes}
 - (iii) While Possible Dish is not empty:
 - (a) For each dish k \in Possible Dish, propose to form a new table t_k out of t_0 with dish k and calculate the change for these two dishes Δk :

(%For each customer i in t_0 , sample $t_{ji} \in \{t_0, t_k\} \sim \{\frac{1}{W}, \frac{n_{...k}^w + \phi}{n_{...k} + W\phi}\}$) (%Propose to form table t_k with customers whose $t_{ji} = t_k$) Sample a proposal t_{k*} according to the weight and make the new table:

```
(%Sample a proposal \{t_{k_1},...,t_{k_K}\} \sim e^{r_{proposal}\{\Delta k_1,...\Delta k_K\}})
```

 $(\%r_{proposal} > 0$, the more decrease of Δk , the less propable to form table t_k)

- (b) Possible Dish=Possible Dish $\setminus k_*$
- (iv) If there are still customers left in t_0 , make it a new table with a new dish
- (B) Refined reconfiguration for Restaurant j:TKM(j, Temperature): (%Divide the change of L between present Restaurant j config and its previous config into t-term,k-term change: $\Delta L = \Delta K + \Delta T$
- (C) Decision:

```
If(\Delta K + Temperature * \Delta T <0):
```

Accept the new configuration

else:

Restore Previous Config

End

iii) Merge Dish(Temperature)

```
Dish List=\{Nonempty\ dishes\}
```

While Dish List is not empty:

- 1) Randomly pick a dish $k \in Dish List$
- 2) Dish List=Dish List\k
- 3) Merge dish k to the dish∈ Dish List which increase L'(Temperature) mostly (if cannot increase L'(Temperature), then leave it alone) End

iv) TKM(Restaurant index, Temperature)

While L'(Temperature) doesn't increase any more:

(A) Local Search Table:

```
For t_1=Randperm(m_{j.}):
For t_2=Randperm(m_{j.} \setminus t_1):
```

While local move can be made:

Greedily move one customer at a time from t_1 to t_2 if the move increases L End

End

End

(B) Local Search Dish:

```
For t_1=Randperm(m_{j.}):
Assign t_1 to the dish which increase L most(allow it to have new dish)
End
```

(C) Merge table:

```
For t_1=Randperm(m_{j.}):
Merge table t_1 to the table in j which increase L'(Temperature) most (if cannot increase L'(Temperature),then leave it alone)
End
```

End

2) Anealing

Things to play with:

- 1. Parameters to tune:
 - (a) Annealing Scheme:n:number of iterations; p:annealing power
 - (b) $r_{proposal}$:constant or annealed? (we may want it peaky in the beginning and allow more variability later on)
- 2. Functions to Anneal: ("Merge table" is annealed, "Local-Search-Dish" doesn't change t-term, thus no anneal needed)
 - 1) Anneal "Local-table" and "Merge dish"?
- P.S. The tests on done on 5 by 5 matrix (10 bars) with 40 restaurants, because the problem becomes easier with more restaurants.

Figure 1: Down-Right is previous no-annealing result, the annealed ones(constant $r_{proposal}$) donot look good

Figure 2: Using annealed $r_{proposal}$, p=1 is even better than the no-annealed one(down-right) by finding right number bars

i) Tuning parameters:

- 1) Annealing Scheme:n=10; $p \in \{0.5,1,2\}$;
- 2) Annealed $r_{proposal}$;

Simply, I set $r_{proposal} = \frac{1}{T}$, where we want harder proposal assignment in the beginning and softer one later on.

Figure 3: (left)no anneal local-table,merge-dish; (mid)anneal local-table only (right)anneal merge-dish only

ii) Annealed Local-table and Merge Dish:

From Figure 3, we can see that:

- 1) annealing merge dish(right) can be also useful to prevent mixture of bars;
- 2) annealing local table(left) is harmful to prevent tables from communicating with each other;