Jakub Błoński	277656	20.03.2025
Ćwiczenie 2 - Podstawowe operacje na sygnałach cyfrowych		
Wejściówka		
Zadanie 1. Funkcje narzędziowe		
Zadanie 2. Operacje arytmetyczne na sygnałach		
Zadanie 3. Splot		
Data oddania		

Zadanie 1. Funkcje narzędziowe

Sinus

Parametry: A = 1, Freq = 1, fi = 0

Parametry: A = 2, $f \sin = 2$, f i = 0.5

A – amplituda, fsin – częstotliwość, fi – przesunięcie fazowe

Gauss

Parametry: u = 0.5, s = 0.1

Parametry: u = 0.5, s = 0.05

u – środek rozkładu, s – odchylenie standardowe

Triangle

Parametry: tr = 0.5, tf = 0.5, A = 1

Parametry: tr = 0.5, tf = 0, A = 2

tr – czas narastania, tf – czas opadania, A – amplituda

Wnioski

Zmiana parametrów sygnałów działa zgodnie z założeniami. W przypadku funkcji Sin zmiana częstotliwości, amplitudy oraz przesunięcia sygnału powoduje zmianę tych konkretnych parametrów, co widoczne jest na wyżej przedstawionym wykresie. W funkcji Gauss zmniejszenie odchylenia standardowego 'zwęża' nam funkcje. W przypadku funkcji Triangle zmiana czasu opadania powoduje powstanie na wykresie trójkąta prostokątnego

Zadanie 2. Operacje arytmetyczne na sygnałach

Parametry sygałów:

y_sin = gen_sin(t, fsin, A, fi);
y_triangle = gen_triangle(t, A, 0.5, 0.5);

Dodawanie y_add = y_sin + y_triangle;

• Zmiana amplitudy y_amp_change = 1.5 * y_sin;

Przesuwanie sygnału y_delay = sig_delay_N(y_sin, Nd); dla Nd = 100

Mnożenie sygnałów y_mult = y_sin .* y_triangle;

• Składowa stała y_add_const = y_sin + 0.5;

• Obliczanie parametrów

mean_y_sin = mean(y_sin); % srednia

rms_y_sin = A/sqrt(2); % wartosc skuteczna

Funkcja zwraca:

srednia wartość sinusa: -0.0000

wartość skuteczna sinusa: 0.3536

Wartości te są poprawnie obliczone.

• Wnioski

Operacje na sygnałach są przeprowadzane zgodnie z założeniami. Dodawanie oraz mnożenie funkcji Sin i Triangle daje nam prawidłowe wykresy. Zmiana amplitudy zwiększa wartości funkcji Sin o x1.5. Przesunięcie sygnału Sin przesuwa sygnał o 100 próbek, tak że Sin zaczyna się dopiero od 100-tnej próbki. Dodanie składowej stałej powoduje dodania do każdej wartości funkcji Sin 0.5.