Estudio y análisis del uso de redes siamesas en estrategias de recomendación basadas en contenido y de filtrado colaborativo

Nicolás Serrano

#### Índice

- Introducción
- Estado del arte
- Implementación
- Experimentos y resultados
- Conclusiones y trabajo futuro

# Introducción

#### Motivación

- Las redes siamesas surgen para calcular la similitud entre dos elementos. Últimamente, se utilizan sobre todo en multimedia.
- La similitud es una pieza clave en los sistemas de recomendación.



#### **Propuesta**

- 1. Conocer el estado del arte de las redes siamesas para recomendación.
- 2. Plantear modelos de recomendación basados en redes siamesas.
  - O Basado en contenido.
  - Filtrado colaborativo.
- 3. Evaluar los modelos estudiados.

## Estado del arte

#### Sistemas de Recomendación

- Herramienta que proporciona una sugerencia de artículo a un usuario.
- Artículo / Ítem: Lo que es sugerido.
- Usuario: Sujeto de la recomendación.
- Tres tipos de puntuación: escalar (numérica y ordinal), binaria y unaria.
- Las recomendaciones se tienden a mostrar como un ranking de los artículos.

#### Sistemas de Recomendación



#### **Basado en Contenido**

- Aprende a recomendar artículos similares a los que al usuario le han gustado en un pasado.
- Las recomendaciones se crean considerando un perfil creado para el usuario, teniendo en cuenta las características de los artículos que le han gustado al mismo.

#### Filtrado Colaborativo

- Aprende a recomendar al usuario artículos en base a cómo se comportan el resto de usuarios en el sistema:
  - O Buscando usuarios o artículos similares (vecindarios).
  - Construyendo modelos predictivos (SVD, redes neuronales, ...)

#### **Redes Siamesas**

- Surgen en 1993 para la verificación de firma manuscrita.
- Arquitectura de red neuronal compuesta por varias redes feedforward idénticas (arquitectura y pesos), unidas en la salida.
- Cada red procesa uno de los elementos y compara las salidas mediante una métrica de distancia, determinando su similitud.



### **Parejas**

- Son las primeras propuestas en 1993. También se las conoce como Twin Neural Network (gemelas).
- Se emparejan pares de elementos y se aprende su similitud mediante una función de pérdida.

# **Parejas**



#### **Parejas**

- Entropía binaria cruzada (BCE) determina si dos elementos son de la misma clase o de distintas clases.
- Contrastive Loss, que debería adaptarse mejor a este problema, pues el objetivo es diferencias y no clasificar entre dos elementos.

### **Tripletas**



- Propuestas en 2015. También se las conoce como Triplet Networks.
- En vez de parejas, se tienen tres elementos (A, P, N).
  - O Ancla (A): elemento a comparar o usuario.
  - Positivo (P): elemento de la misma clase que el ancla.
  - Negativo (N): elemento de una clase distinta al ancla.
- Función de perdida: Triplet Loss.

# **Tripletas**



### Integración Recomendación + SNN

- Coexisten desde los 90, pero no existen integración hasta 2018.
- Diferentes aproximaciones para diferentes problemas.
- Análisis de la literatura para aprender y entender los métodos concretos.

#### Metodología

- Consultas generalistas en Web of Science y Scopus.
- 55 artículos →
- Eliminación de duplicados, consulta ambigua.
- Clasificación de la literatura (survey).
- Novedoso (enviado a revista).
  - Neural Computing and Applications

```
QUA. TITLE-ABS-KEY("recommender systems") OR
TITLE-ABS-KEY("recommendation system") OR
TITLE-ABS-KEY("recommendation")
)
AND
(
TITLE-ABS-KEY("siamese network") OR
TITLE-ABS-KEY("siamese neural network") OR
TITLE-ABS-KEY("twin neural network")
)
```

#### Tareas de recomendación

| Dominio              | Artículos    | Texto Audio |   | Imágenes | Vídeos |
|----------------------|--------------|-------------|---|----------|--------|
| Búsqueda de Trabajo  | [9, 14]      | Χ           |   |          |        |
| Comercio Electrónico | [10, 15, 16] | Χ           |   |          |        |
| Moda                 | [7,8,17,18]  | Χ           |   | Χ        |        |
| Música               | [19, 20]     |             | X |          |        |
| Noticias             | [11]         | Χ           |   |          |        |
| Películas            | [10,21,22]   |             |   |          |        |
| Turismo              | [22, 23]     |             |   |          |        |
| Otros                | [24-32]      |             |   | Χ        | Χ      |

#### Enfoque algorítmico

- Hemos dividido los artículos de la bibliografía en cuatro categorías.
  - O Uso de la red en el problema.
  - Nº de parámetros de entrada.
  - Función de pérdida.
  - Red feedforward utilizada en la red siamesa.

#### Uso de la red

| Extracción de características Predicción |                              |                           |
|------------------------------------------|------------------------------|---------------------------|
| Feedforward                              | [14, 18, 22, 24, 26, 31, 32] |                           |
| Clusterización                           | [16, 20, 23, 27]             | [8-11, 15, 19, 21, 28-30] |
| Aprendizaje de clasificación             | [7, 17, 25]                  |                           |

#### Parámetros de entrada

- Parejas  $(I_1, I_2)$ .
- Tripletas (A, P, N).
- Otro (A, P, N<sub>1</sub>, N<sub>2</sub>, ..., N<sub>n</sub>).

¡HAY ARTÍCULOS QUE LLAMAN TRIPLETAS A PAREJAS ETIQUETADAS!

#### Función de pérdida

- Entropía Binaria Cruzada (3 artículos).
- Contrastive Loss (7 artículos).
- Triplet Loss (1 artículo).
- Personalizadas (3 artículos).
- Otras (4 artículos).
- Desconocida (6 artículos).

#### Red feedforward

| Red feedforward      | Artículos                    |  |
|----------------------|------------------------------|--|
| Perceptrón multicapa | [21, 24, 25, 28, 29, 31]     |  |
| Red convolucional    | [7-9, 14, 16-20, 26, 27, 32] |  |
| Red recurrente       | [10, 11, 14–16, 22, 23]      |  |
| Transformer          | [30]                         |  |

### Ajustes de evaluación

- Comparar diferentes aproximaciones detectando cuál es el mejor algoritmo.
- Técnicas Online.
- Técnicas Offline: Recall@K, Precision@K,

AUC, F1, NDC

| Artículo | Métrica de evaluación                           |  |
|----------|-------------------------------------------------|--|
| Año 2018 |                                                 |  |
| [7]      | AUC                                             |  |
| [8]      | Mean Recall@K                                   |  |
| [9]      | Accuracy, Precision, Recall, F1                 |  |
| [10]     | Recall@K, MRR                                   |  |
| [11]     | HR@K, NDCG@K                                    |  |
| Año 2019 |                                                 |  |
| [17]     | AUC                                             |  |
| [18]     | Lift@K                                          |  |
| [21]     | Precision, Recall, F1, BPREF, LTC, WLTC, TTC    |  |
| [29]     | AUC, ERR, RD, FPR, TPR, FNR                     |  |
| [32]     | Recall, Betrayal Rate                           |  |
| Año 2020 |                                                 |  |
| [14]     | Accuracy                                        |  |
| [19]     | Precision, AUC                                  |  |
| [22]     | Precision                                       |  |
| [23]     | Accuracy@K, macro-F1                            |  |
| [25]     | HR, NDCG                                        |  |
| [26]     | Precision, Recall, F1, ROC                      |  |
| [27]     | Accuracy                                        |  |
| Año 2021 |                                                 |  |
| [15]     | Precision, Recall A/B Test                      |  |
| [16]     | Accuracy, AUC                                   |  |
| [20]     | Accuracy, Satisfacción de Usuario               |  |
| Año 2022 |                                                 |  |
| [24]     | AUC, NDCG, MMR, PR-AUC                          |  |
| [28]     | Precision, Recall, HR and Average Reciprocal HR |  |
| [30]     | Precision, Recall, F1, MRR, MAP                 |  |
| [31]     | Accuracy@K, Precision@K, Recall@K, F1@K, ROC    |  |

# Implementación de los modelos

## Artículos con código

| Artículo | Año  | Librerías         | Link                              |
|----------|------|-------------------|-----------------------------------|
| [10]     | 2018 | TensorFlow        | https://github.com/               |
|          |      |                   | PreferredAI/cbs                   |
| [11]     | 2018 | Keras             | https://github.com/               |
|          |      |                   | dhruvkhattar/RARE                 |
| [16]     | 2021 | TensorFlow, Keras | https://github.com/               |
|          |      |                   | marinaangelovska/                 |
|          |      |                   | complementary_products_           |
|          |      |                   | suggestions                       |
| [20]     | 2021 | TensorFlow, Keras | https://github.                   |
|          |      |                   | com/michaelpulis/                 |
|          |      |                   | SnnForCbColdStartMusicRecommendat |
| [30]     | 2022 | PyTorch           | https://github.com/malteos/       |
|          |      |                   | aspect-document-embeddings        |











- 2 experimentos, Imágenes y Audios.
- Comparar diferentes redes feedforward y distintas funciones de pérdida.
- Enfoque algorítmico:
  - O Uso de la red: Predicción.
  - Parámetros de entrada: Pareja.
  - Función de pérdida: BCE y Contrastive Loss.
  - Red feedforward: Red convolucional.





- Modelos de red Feedforward:
  - Custom CNN for MNIST
  - O VGG-19 (Imagenet)
  - Inception-ResNet v2 (Imagenet)
- Funciones de pérdida:
  - o BCE
  - Contrastive Loss

- Comparar efecto del tamaño de recomendación en Precision y Recall.
- Comparar el sistema frente a un modelo de referencia.
- Enfoque algorítmico:
  - O Uso de la red: Predicción.
  - Parámetros de entrada: Tripleta.
  - Función de pérdida: Triplet Loss .
  - Red feedforward: Perceptrón Multicapa.





- Modelo de referencia:
  - O Recomendación de vecindarios basado en usuario.
  - O Similitud coseno.
  - Mejora de mínimo solapamiento.
  - O Se debe estudiar el tamaño de vecindario.

# **Experimentos y Resultados**

## Código y entorno de ejecución

 Repositorio de GitHub: https://github.com/masternico97 /Siamese-Recommender-Systems

| Recursos          | Características  |
|-------------------|------------------|
| CPU               | Intel(R) Xeon(R) |
| Frecuencia CPU    | 2.20GHz          |
| Nº de núcleos CPU | 2                |
| Tamaño de disco   | 80GB             |
| GPU               | Nvidia Tesla T4  |
| Memoria GPU       | 16GB             |
| RAM               | 12.6 GB          |

**Tabla 4.1:** Especificaciones Hardware del entorno utilizado en Google Colab.

- Dataset: V. Luhaniwal, "E-commerce product images," 2021.
  - O Dominio: moda.
  - Imágenes de ropa para hombres y mujeres.
  - O Nos quedamos con calzado para hombre.

```
Total number of products: 811

Total Subcategories for men footwear: ['Shoes' 'Flip Flops' 'Sandal']

Total Product Types for men footwear: ['Casual Shoes' 'Flip Flops' 'Sandals' 'Formal Shoes' 'Sports Sandals']

Total Colours for men footwear: ['Black' 'White' 'Purple' 'Red' 'Khaki' 'Silver' 'Blue' 'Grey' 'Brown' 'Beige' 'Tan' 'Olive' 'Navy Blue' 'Maroon' 'Yellow' 'Charcoal' 'Turquoise Blue' 'Green' 'Orange' 'Multi' 'Mushroom Brown']
```



|                     | Entropía Binaria Cruzada | Contrastive loss |
|---------------------|--------------------------|------------------|
| MNIST CNN           | 0.0114                   | 0.0247           |
| VGG-19              | <u>0.0551</u>            | 0.0200           |
| Inception-ResNet v2 | 0.0114                   | 0.0230           |
|                     |                          |                  |

Tabla 4.2: Resultados de Recall@10 para el experimento 1.



|                     | Entropía | Binaria Cruzada | Contrastive loss |
|---------------------|----------|-----------------|------------------|
| MNIST CNN           | 0.0114   |                 | 0.0247           |
| VGG-19              | 0.0551   | >               | 0.0200           |
| Inception-ResNet v2 | 0.0114   |                 | 0.0230           |

Tabla 4.2: Resultados de Recall@10 para el experimento 1.

|                     | Entropía E    | Binaria Cruzada | Contrastive loss |
|---------------------|---------------|-----------------|------------------|
| MNIST CNN           | 0.3025        |                 | 0.3850           |
| VGG-19              | <u>0.8100</u> | >               | 0.2925           |
| Inception-ResNet v2 | 0.1725        |                 | 0.4050           |

Tabla 4.3: Resultados de Precision@10 para el experimento 1.

#### Basado en Contenido: Audio

- Dataset: FMA.
  - O Dominio: música.
  - o 16 géneros.
  - O Transformar audios en imágenes de su espectrograma de Mel.
  - O Se establece similitud si algún género coincide.

#### Basado en Contenido: Audio

|                     | Entropía E | Binaria Cruzada | Contrastive loss |
|---------------------|------------|-----------------|------------------|
| MNIST CNN           | 0.0764     | >               | 0.0552           |
| VGG-19              | 0.0130     |                 | 0.0244           |
| Inception-ResNet v2 | 0.0268     |                 | 0.0269           |

Tabla 4.4: Resultados de Recall@10 para el experimento 2.

#### Basado en Contenido: Audio

|                     | Entropía Binaria | Contrastive loss |        |
|---------------------|------------------|------------------|--------|
| MNIST CNN           | 0.2607           |                  | 0.3000 |
| VGG-19              | 0.1107           |                  | 0.1893 |
| Inception-ResNet v2 | 0.2071           | >                | 0.1429 |

Tabla 4.5: Resultados de Precision@10 para el experimento 2.

#### Filtrado Colaborativo

- Dataset: MovieLens Small.
  - Dominio: películas.
  - Películas con al menos 50 ratings.
  - O Positivo si puntuación > 3,5.
- Modelo de referencia: Vecindario de tamaño 5 tras hacer pruebas.

#### Filtrado Colaborativo

| K  | Recall@K | Precision@K |
|----|----------|-------------|
| 1  | 0.0307   | 0.2065      |
| 2  | 0.0571   | 0.2083      |
| 3  | 0.0849   | 0.2083      |
| 4  | 0.1097   | 0.1993      |
| 5  | 0.1265   | 0.1860      |
| 6  | 0.1414   | 0.1765      |
| 7  | 0.1631   | 0.1713      |
| 8  | 0.1829   | 0.1685      |
| 9  | 0.2002   | 0.1612      |
| 10 | 0.2190   | 0.1587      |
|    |          |             |

**Tabla 4.6:** Resultados de Recall@K y Precision@K en el experimento 3 para el sistema de recomendación con la integración de la red siamesa, diferentes valores de K.

| K  | Recall@K      | Precision@K |
|----|---------------|-------------|
| 1  | 0.0139        | 0.0735      |
| 2  | 0.0273        | 0.0726      |
| 3  | 0.0483        | 0.0783      |
| 4  | 0.0645        | 0.0802      |
| 5  | 0.0762        | 0.0785      |
| 6  | 0.0893        | 0.0797      |
| 7  | 0.1033        | 0.0776      |
| 8  | 0.1128        | 0.0775      |
| 9  | 0.1234        | 0.0767      |
| 10 | <u>0.1309</u> | 0.0749      |

**Tabla 4.8:** Resultados de Recall@K y Precision@K en el experimento 3 para el sistema de recomendación de vecindarios basado en usuario. con un tamaño de vecindario 5.

## Conclusiones del proyecto

#### Conclusiones

- Se han catalogado y agrupado artículos del estado del arte.
- Se han clarificado términos.
- Se han creado experimentos reproducibles en diseño y con acceso a código.
- Se ha observado que no siempre la Contrastive Loss es mejor que BCE.

## Trabajo futuro

- Referencia de integración de SNN y sistemas de recomendación.
- Plantilla de diseño o código para futuras aproximaciones.
- Modelo de referencia de otro modelo.
- Investigación a expandir cuando el número de artículos en el área sea mayor.

# Fin

## ¡Gracias por vuestra atención!



# **Apéndices**

#### **Consultas**

```
TI="recommender
                  systems"
                             OR
                                    TS="recommender
                                                                   OR
                                                        systems"
AB="recommender systems" OR AK="recommender systems" OR
TI="recommendation system" OR TS="recommendation system"
                                                                   OR
AB="recommendation system" OR AK="recommendation system" OR
TI="recommendation" OR TS="recommendation" OR AB="recommendation" OR
AK="recommendation"
AND
TI="siamese network" OR TS="siamese network" OR AB="siamese network" OR
AK="siamese network" OR
TI="siamese neural network" OR TS="siamese neural network" OR AB="siamese
neural network" OR AK="siamese neural network" OR
TI="twin neural network" OR TS="twin neural network" OR AB="twin neural net-
work" OR AK="twin neural network"
```

Cuadro A.1: Consulta en la base de datos de artículos Web of Science

#### Consultas

```
TITLE-ABS-KEY("recommender systems") OR
TITLE-ABS-KEY("recommendation system") OR
TITLE-ABS-KEY("recommendation")
AND
TITLE-ABS-KEY("siamese network") OR
TITLE-ABS-KEY("siamese neural network") OR
TITLE-ABS-KEY("twin neural network")
```

Cuadro A.2: Consulta en la base de datos de artículos Scopus

## Busqueda Bibliográfica

| Titulo                                                                                                       | <b>∓</b> Apto | ▼ Año de publica = ¿Accesible? | ⇒ Propone datε ⇒ | Origen dataset                                                                            |             |
|--------------------------------------------------------------------------------------------------------------|---------------|--------------------------------|------------------|-------------------------------------------------------------------------------------------|-------------|
| A contextual-bandit approach for multifaceted reciprocal recommendations in online dating                    | Sí            | 2022 Sí                        | Sí               | Speed Dating Experiment                                                                   | Público     |
| CNGAN: Generative adversarial networks for cross-network user preference generation for non-overlapped users | ?             | 2020 Sí                        | Sí               | Dice como lo han hecho                                                                    |             |
| Deep Learning-based Online Alternative Product Recommendations at Scale                                      | Sí            | 2021 Si                        | Sí               | Dice como lo han hecho                                                                    |             |
| Fashion clothes matching scheme based on Siamese Network and AutoEncoder                                     | Si            | 2019 Sí                        | Sí               | MbFashion (FashionVC + MicroBlog)                                                         |             |
| From Recommendation to Generation: A Novel Fashion Clothing Advising Framework                               | Sí            | 2018 Sí                        | Sí               | Amazon Fashion, Amazon Men's and Amazon Women's                                           | Público     |
| ImRec: Learning Reciprocal Preferences Using Images                                                          | Sí            | 2020 Sí                        | Si               | Pairs (Asian dating app)                                                                  | Privado     |
| Learning Fashion Compatibility Across Apparel Categories for Outfit Recommendation                           | Si            | 2019 Sí                        | Si               | Polyvore                                                                                  | Público     |
| Matching Recommendations based on Slamese Network and Metric Learning                                        | Sí            | 2018 Si                        | ?                |                                                                                           |             |
| Matching Recruiters and Jobseekers on Twitter                                                                | Sí            | 2020 Si                        | Sí               | Dice como lo ha hecho (Twitter Search API con keywords)                                   |             |
| Matching Resumes to Jobs via Deep Siamese Network                                                            | Sí            | 2018 Sí                        | ?                | Dice como lo ha hecho (IBM Research Labs Intern Applications and Indian Job Descriptions) |             |
| Mitigating long tail effect in recommendations using few shot learning technique                             | Sí            | 2019 Sí                        | Si               | MovieLens1M, Netflix                                                                      | Publico, ?  |
| Modeling contemporaneous basket sequences with twin networks for next-item recommendation                    | Sí            | 2018 Sí                        | Si               | Alibaba, MovieLens                                                                        | Público, Pú |
| MOOCs Recommender System with Siamese Neural Network                                                         | Sí            | 2022 Sí                        | Sí               | Logs from XuetangX                                                                        | ?           |
| N2one: Identifying coreference object among user generated content with siamese network                      | Sí            | 2020 Sí                        | Sí               | Yelp, IMDB                                                                                | Público, Pú |
| Rare: A recurrent attentive recommendation engine for news aggregators                                       | Sí            | 2018 Sí                        | Si               | CLEF NewsREEL, Other two news aggregation website                                         | Público, Pr |
| Siamese neural networks for detecting complementary products                                                 | Sí            | 2021 Sí                        | Sí               |                                                                                           | Privado     |
| Siamese neural networks for content-based cold-start music recommendation                                    | Sí            | 2021 Si                        | Sí               | Free Music Archive                                                                        | Público     |
| TDFI: Two-stage Deep Learning Framework for Friendship Inference via Multi-source Information                | Sí            | 2019 Sí                        | Sí               | Instagram (2016, NYC, LA, London)                                                         | Inaccesible |
| Convolutional networks for appearance-based recommendation and visualisation of mascara products             | Sí            | 2020 Sí                        | Si               | Dice como lo han hecho                                                                    |             |
| FoodNet: Simplifying Online Food Ordering with Contextual Food Combos                                        | Sí            | 2022 Sí                        | Sí               | Dice como lo han hecho                                                                    |             |
| Learning audio embeddings with user listening data for content-based music recommendation                    | Si            | 2020 Sí                        | Si?              |                                                                                           |             |
| Semi-Siamese Network for Content-based Video Relevance Prediction                                            | ?             | 2019 Sí                        | Si               | Content-Based Video Relevance Prediction Datasets (HULU)                                  |             |
| Specialized document embeddings for aspect-based similarity of research papers                               | ?             | 2022 Si                        | Sí               | Hecho por ellos                                                                           | Público     |
| TULSN: Siamese Network for Trajectory-user Linking                                                           | Sí            | 2020 Sí                        | Si               | Gowalla, Brightkite (Referencia a un paper donde dice como lo hicieron)                   |             |
|                                                                                                              |               |                                |                  |                                                                                           |             |

## **Horarios**

| Fecha =    | Motivo =                         | Tarea =            | Horas = |
|------------|----------------------------------|--------------------|---------|
| 14/06/2022 | 1º Reunión Alejandro             | Reunión            | 1       |
| 15/06/2022 | Mirar cosas                      | Estado del arte    | 2,5     |
| 16/06/2022 | Toqueteo                         |                    | 3       |
| 19/07/2022 | Reanudar con cosas               |                    | 1,25    |
| 20/07/2022 | Busqueda bibliográfica           | Estado del arte    | 1,5     |
| 05/09/2022 | Comprobrar referencias           | Estado del arte    | 0,75    |
| 05/09/2022 | Catalogar validos con Abstract   | Estado del arte    | 0,5     |
| 06/09/2022 | Catalogar validos con Abstract   | Estado del arte    | 1,5     |
| 08/09/2022 | Revisar catalago                 | Estado del arte    | 1,5     |
| 11/09/2022 | Leer papers morados              | Estado del arte    | 3,5     |
| 12/09/2022 | Leer papers naranjas             | Estado del arte    | 3       |
| 13/09/2022 | Leer papers azules + 1 amarillo  | Estado del arte    | 3       |
| 14/09/2022 | Leer papers + reunion            | Estado del arte    | 3,5     |
| 15/09/2022 | Terminar papers amarillos        | Estado del arte    | 1       |
| 20/09/2022 | Lectura 3 papers                 | Estado del arte    | 1,5     |
| 22/09/2022 | Leer papers                      | Estado del arte    | 1       |
| 25/09/2022 | Acabar lectura                   | Estado del arte    | 2,5     |
| 26/09/2022 | Acabar repaso                    | Estado del arte    | 1       |
| 28/09/2022 | Reunión                          | Reunión            | 1,5     |
| 04/10/2022 | Configurar entorno               |                    | 1,5     |
| 05/10/2022 | Descargar datos del primer test  | Estado del arte    | 0,5     |
| 07/10/2022 | Entender y probar código cbs     | Estado del arte    | 4       |
| 10/10/2022 | Seguir cbs y rare                | Estado del arte    | 2       |
| 11/10/2022 | Detecting complementary products | Estado del arte    | 3       |
| 17/10/2022 | Últimos dos papers               | Estado del arte    | 4       |
| 25/10/2022 | Mirando redes siamesas           | Estado del arte    | 2,5     |
| 27/10/2022 | Probando modelos                 |                    | 6       |
| 28/10/2022 | VGC19, MLP, LSTM                 |                    | 10      |
| 02/11/2022 | Reunión Bellogin                 | Reunión            | 2       |
| 02/11/2022 | Presentación proyecto            | Gestion            | 1       |
| 14/11/2022 | Escribir Paper                   | TFM                | 2,5     |
| 16/11/2022 | Encontrar dataset moda           | Desarrollo fashion | 1,5     |
| 21/11/2022 | Contrative loose y visualize     | Desarrollo BC?     | 8,5     |