Trabalho de Física

Cristhian Grundmann Danilo Lemos Cardoso

Outubro de 2019

Introdução

Foi feita uma simulação de um elástico discretizado em uma sequência finita de pontos, de tal modo que dois pontos consecutivos se comportem como uma mola:

$$F = -k^2x$$

onde x é a variação em relação à uma distância fixa, F é a intensidade da força e k é uma constante. Não há unidades para os valores das variáveis.

Cada ponto do elástico possui três atributos: posição, velocidade e aceleração. A equação diferencial de segunda ordem foi estimada numericamente por dois métodos: o método e Euler e o método do ponto médio.

Há um formulário interativo que permite a manipulação de variáveis, como número de pontos, gravidade, constante elástica, e o método de aproximação a ser usado.

Na simulação, é possível observar fenômenos físicos semelhantes à realidade, como por exemplo: a formaçãop de uma curva catenária e a propagação de ondas transversais e longitudinais. O elástico é colorido conforme suas tensões, para a visualização de tais ondas.

Foi usado o módulo de Javascript do Processing, portanto a simulação deve ser executada em um navegador web.

Método de Euler

O método de Euler foi implementado da seguinte maneira:

A posição de um ponto é atualizada somando-a com sua velocidade (multiplicada por um intervalo de tempo fixo). A velocidade é atualizada somando-a com sua aceleração. A aceleração é calculada, com exatidão, através das novas posições dos pontos.

Método do ponto médio

O método do ponto médio foi implementado da seguinte maneira:

A posição é atualizada segundo o método de Euler, mas para a metade do intervalo do tempo. A aceleração dos pontos é calculada com exatidão. A velocidade dos pontos é atualizada com o método de Euler com metade do intervalo do tempo. A posição é atualizada a partir da posição inicial e da velocidade, usando Euler com intervalo de tempo inteiro.

Colisão com círculos

Para melhor entretenimento, foi adicionado um esquema de colisão entre o elástico e círculos fixos, de modo que o elástico possa deslizar.

A colisão é testada ponto por ponto. Caso um ponto esteja dentro de um círculo, sua posição é alterada radialmente para ficar na circunferência e a componente da velocidade na direção radial invertida e multiplicada por uma constante específica do círculo, enquanto a outra componente se mantém.

Conclusão

O experimento permitiu uma comparação entre os dois métodos, e ficou evidente que o método de Euler acumula erros de forma explosiva.

A simulação pode ser acessada através do link danilolc.github.io.

The Rubber

Figure 1: Simulação