import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import warnings

warnings.filterwarnings('ignore')

df=pd.read_csv(r'C:\text{\text{\$\cup\$Users\text{\$\cup\$Gokul\text{\$\cup\$Downloads\text{\$\cup\$chronickidneydisease}}} (1).csv')

Exploring Dataset

print("The dataset shape is {}".format(df.shape))

The dataset shape is (400, 26)

The dataset shape is (400, 26)

df.head()

id	age rc	bp htn	sg dm	al cad	su appet	rbc pe	pc ane	pcc classific	ba cation		pcv wc
0	0	48.0 44	80.0 7800	1.020 5.2	1.0 yes	0.0 yes	NaN no	normal good	notpre no	sent no	notpresent ckd
1	1 	7.0 38	50.0 6000	1.020 NaN	4.0 no	0.0 no	NaN no	normal good	notpre no	sent no	notpresent ckd
2	2	62.0 31	80.0 7500	1.010 NaN	2.0 no	3.0 yes	normal no	normal poor	notpre no	sent yes	notpresent ckd
3	3	48.0 32	70.0 6700	1.005 3.9	4.0 yes	0.0 no	normal no	abnorn poor	nal yes	presen yes	t notpresent ckd
4	4	51.0 35	80.0 7300	1.010 4.6	2.0 no	0.0 no	normal no	normal good	notpre no	sent no	notpresent ckd

5 rows × 26 columns

df.columns

df.dtypes id int64 float64 age float64 bp float64 sg float64 al float64 su object rbc object рс object рсс object ba float64 bgr float64 bu float64 SC float64 sod float64 pot float64 hemo object pcv object wc

object

rc

htn	object
dm	object
cad	object
appet	object
pe	object
ane	object
classification	object

dtype: object

df.info()

RangeIndex: 400 entries, 0 to 399

Data columns (total 26 columns):

#	Column	Non-Null Count	Dtype
0	id	400 non-null	int64
1	age	391 non-null	float64
2	bp	388 non-null	float64
3	sg	353 non-null	float64
4	al	354 non-null	float64
5	su	351 non-null	float64
6	rbc	248 non-null	object
7	рс	335 non-null	object
8	рсс	396 non-null	object
9	ba	396 non-null	object
10	bgr	356 non-null	float64
11	bu	381 non-null	float64

SC	383 non-null	float64
sod	313 non-null	float64
pot	312 non-null	float64
hemo	348 non-null	float64
рсv	330 non-null	object
wc	295 non-null	object
rc	270 non-null	object
htn	398 non-null	object
dm	398 non-null	object
cad	398 non-null	object
appet	399 non-null	object
pe	399 non-null	object
ane	399 non-null	object
	sod pot hemo pcv wc rc htn dm cad appet pe	sod 313 non-null pot 312 non-null hemo 348 non-null pcv 330 non-null wc 295 non-null rc 270 non-null htn 398 non-null dm 398 non-null cad 398 non-null appet 399 non-null pe 399 non-null

25 classification 400 non-null object

dtypes: float64(11), int64(1), object(14)

memory usage: 81.4+ KB

df.describe().T

count	mean	std min	25%	50%	75%	max			
id	400.0	199.500000	115.61	4301	0.000	99.75	199.50	299.25	399.000
age	391.0	51.483376	17.169	714	2.000	42.00	55.00	64.50	90.000
bp	388.0	76.469072	13.683	637	50.000	70.00	80.00	80.00	180.000
sg	353.0	1.017408	0.0057	17	1.005	1.01	1.02	1.02	1.025
al	354.0	1.016949	1.3526	79	0.000	0.00	0.00	2.00	5.000
su	351.0	0.450142	1.0991	91	0.000	0.00	0.00	0.00	5.000
bgr	356.0	148.036517	79.281	714	22.000	99.00	121.00	163.00	490.000

```
bu
     381.0 57.425722
                       50.503006
                                  1.500 27.00 42.00 66.00 391.000
                      5.741126
     383.0 3.072454
                                  0.400 0.90
                                              1.30
                                                   2.80
                                                         76.000
SC
     313.0 137.528754
                                  4.500 135.00 138.00 142.00 163.000
sod
                      10.408752
                                  2.500 3.80
     312.0 4.627244
                      3.193904
                                             4.40
                                                   4.90
                                                         47.000
pot
hemo 348.0 12.526437
                      2.912587
                                  3.100 10.30 12.65 15.00 17.800
for col in df:
   unique=df[col].value_counts()
   0
      1
263
      1
273
      1
272
      1
271
      1
130
129
      1
128
      1
127
      1
399
      1
Name: id, Length: 400, dtype: int64
```

60.0 19

65.0 17

48.0 12

55.0 12 50.0 12 ... 83.0 1 27.0 1 14.0 1 81.0 1

79.0 1

Name: age, Length: 76, dtype: int64

80.0 116 70.0 112 60.0 71 90.0 53 100.0 25 50.0 5 110.0 140.0 1 180.0 1 120.0 1

Name: bp, dtype: int64

1.020 106

1.010 84

1.025 81

1.015 75

1.005 7

Name: sg, dtype: int64

0.0 199

1.0 44

2.0 43

3.0 43

4.0 24

5.0 1

Name: al, dtype: int64

0.0 290

2.0 18

3.0 14

4.0 13

1.0 13

5.0 3

Name: su, dtype: int64

normal 201

abnormal 47

Name: rbc, dtype: int64

normal 259

abnormal 76

Name: pc, dtype: int64

notpresent 354

present 42

Name: pcc, dtype: int64

notpresent 374

present 22

Name: ba, dtype: int64

99.0 10

93.0 9

100.0 9

107.0 8

131.0

••

288.0 1

182.0 1

84.0 1

256.0 1

226.0 1

Name: bgr, Length: 146, dtype: int64

46.0 15

25.0 13

19.0 11

40.0 10

50.0 9

..

176.0 1

145.0 1

92.0 1

322.0 1

186.0 1

Name: bu, Length: 118, dtype: int64

1.2 40

1.1 24

0.5 23

1.0 23

0.9 22

..

3.8 1

12.2 1

9.2 1

13.8 1

0.4 1

Name: sc, Length: 84, dtype: int64

135.0 40

140.0 25

141.0 22

139.0 21

138.0 20

142.0 20

137.0 19

150.0 17

136.0 17

147.0 13

145.0 11

132.0 10

146.0 10

131.0 9

144.0 9

133.0 8

130.0 7

134.0 6

143.0 4

124.0 3

127.0 3

122.0 2

113.0 2

120.0 2

125.0 2

128.0 2

114.0 2

126.0 1

163.0 1

115.0 1

129.0 1

4.5 1

104.0 1

111.0 1

Name: sod, dtype: int64

3.5 30

- 5.0 30
- 4.9 27
- 4.7 17
- 4.8 16
- 3.9 14
- 3.8 14
- 4.1 14
- 4.2 14
- 4.0 14
- 4.4 14
- 4.5 13
- 4.3 12
- 3.7 12
- 3.6 8
- 4.6 7
- 3.4 5
- 5.2 5
- 5.3 4
- 5.7 4
- 3.2 3
- 5.5 3
- 6.3 3
- 5.4 3
- 2.9 3
- 3.3 3

5.6 2

3.0 2

6.5 2

2.5 2

5.9 2

5.8 2

7.6 1

47.0 1

6.6 1

5.1 1

6.4 1

2.8 1

2.7 1

39.0 1

Name: pot, dtype: int64

15.0 16

10.9 8

13.6 7

13.0 7

9.8 7

..

6.8 1

8.5 1

7.3 1

12.8 1

17.6 1

Name: hemo, Length: 115, dtype: int64

41 21

52 21

44 19

48 19

40 16

43 14

42 13

45 13

32 12

36 12

33 12

50 12

28 12

34 11

37 11

30 9

29 9

35 9

46 9

31 8

24 7

39 7

26 6

38 5

53 4

51 4

49 4

47 4

54 4

25 3

27 3

22 3

19 2

23 2

15 1

21 1

17 1

20 1

¥t43 1

18 1

9 1

14 1

¥t? 1

16 1

Name: pcv, dtype: int64

9800 11

6700 10

9200 9

9600 9

7200 9

..

19100 1

¥t? 1

12300 1

14900 1

12700 1

Name: wc, Length: 92, dtype: int64

5.2 18

4.5 16

4.9 14

4.7 11

4.8 10

3.9 10

4.6 9

3.4 9

- 5.9 8
- 5.5 8
- 6.1 8
- 5.0 8
- 3.7 8
- 5.3 7
- 5.8 7
- 5.4 7
- 3.8 7
- 5.6 6
- 4.3 6
- 4.2 6
- 3.2 5
- 4.4 5
- 5.7 5
- 6.4 5
- 5.1 5
- 6.2 5
- 6.5 5
- 4.1 5
- 3.6 4
- 6.3 4
- 6.0 4
- 4.0 3
- 3.3 3

4 3

3.5 3

2.9 2

3.1 2

2.6 2

2.1 2

2.5 2

2.8 2

3.0 2

2.7 2

5 2

2.3 1

¥t? 1

2.4 1

3 1

8.0 1

Name: rc, dtype: int64

no 251

yes 147

Name: htn, dtype: int64

no 258

yes 134

¥tno 3

¥tyes 2

yes 1

Name: dm, dtype: int64

no 362

yes 34

¥tno 2

Name: cad, dtype: int64

good 317

poor 82

Name: appet, dtype: int64

no 323

yes 76

Name: pe, dtype: int64

no 339

yes 60

```
Name: ane, dtype: int64
248
ckd
notckd
             150
                2
ckd¥t
Name: classification, dtype: int64
_____
Remove unwanted columns
df.drop('id',axis=1,inplace=True)
Cleaning the Data values
# cleaning 'PCV'
df['pcv']=df['pcv'].apply(lambda x:x if type(x)==type(3.5) else x.replace('\(\frac{\pmathbf{t}}{43}\).replace('\(\frac{\pmathbf{t}}{13}\).replace('\(\frac{\pmathbf{t}}{13}\).replace('\(\frac{\pmathbf{t}}{13}\).
# cleaning "WC"
df['wc']=df['wc'].apply(lambda x:x if type(x)==type(3.5) else
x.replace('\(\frac{1}{4}\)', 'Nan').replace('\(\frac{1}{4}\)', '6200').replace('\(\frac{1}{4}\)', '8400'))
# cleaning "RC"
df['rc']=df['rc'].apply(lambda x:x if type(x)==type(3.5) else x.replace('¥t?','Nan'))
# cleaning "dm"
df['dm']=df['dm'].apply(lambda x:x if type(x)==type(3.5) else
```

```
x.replace('\text{\text{'}}tno','no').replace('\text{\text{'}}tyes').replace('\text{\text{yes'}},'yes'))
# cleaning "CAD"
df['cad']=df['cad'].apply(lambda x:x if type(x)==type(3.5) else x.replace('\text{\text{tno','no'}}))
# cleaning "Classification"
df['classification']=df['classification'].apply(lambda x:x if type(x)==type(3.5) else x.replace('ckd\t','ckd'))
mistyped=[['pcv','rc','wc']]
for i in mistyped:
     df[i]=df[i].astype('float')
# define categoricsl features
cat_cols=list(df.select_dtypes('object'))
cat_cols
['rbc',
 'pc',
 'pcc',
 'ba',
 'htn',
 'dm',
 'cad',
 'appet',
 'pe',
 'ane',
 'classification']
# define numeric features
```

```
num_cols=list(df.select_dtypes(['int64','float64']))
num_cols
['age',
 'bp',
 'sg',
 'al',
 'su',
 'bgr',
 'bu',
 'sc',
 'sod',
 'pot',
 'hemo',
 'pcv',
 'wc',
 'rc']
# Checking missing/Nan values
df.isnull().sum().sort_values(ascending=False)
rbc
                     152
                     131
rc
                      106
wc
                       88
pot
                       87
sod
pcv
                       71
                       65
рс
```

hemo	52				
su	49				
sg	47				
al	46				
bgr	44				
bu	19				
SC	17				
bp	12				
age	9				
ba	4				
рсс	4				
htn	2				
dm	2				
cad	2				
appet	1				
pe	1				
ane	1				
classification (
dtype: int64					
# Let's impute Nan Values with median in numeric features					
for col in num_cols:					
df[col]=df[col].fillna(df[col].median())					
# let's impute categorical features with most frequent value					
df['rbc'].fillna('normal',inplace=True)					
df['pc'].fillna('normal',inplace=True)					

```
df['pcc'].fillna('notpresent',inplace=True)
df['ba'].fillna('notpresent',inplace=True)
df['htn'].fillna('no',inplace=True)
df['dm'].fillna('no',inplace=True)
df['cad'].fillna('no',inplace=True)
df['appet'].fillna('good',inplace=True)
df['pe'].fillna('no',inplace=True)
df['ane'].fillna('no',inplace=True)
df.isna().sum().sort_values(ascending=False)
age
                      0
pot
                      0
                      0
ane
                      0
pe
                     0
appet
                      0
cad
dm
                      0
                      0
htn
                     0
rc
                      0
wc
                      0
pcv
hemo
                      0
sod
                      0
                      0
bp
                     0
SC
                      0
bu
```

```
bgr
                      0
ba
                      0
рсс
                      0
                      0
рс
rbc
                      0
su
                     0
al
                      0
sg
classification
                 0
dtype: int64
# Encode classification
df['classification']=df['classification'].map({'ckd':1,'notckd':0})
attr_count=df['classification'].value_counts()
attr_label=df['classification'].value_counts().index
# plot
fig,ax=plt.subplots(figsize=(14,6))
ax.pie(attr_count,explode=(0.1,0),labels=attr_label,autopct='%.2f%%',startangle=90)
ax.set_title("Classification ",fontsize=15)
plt.show()
fig,ax=plt.subplots(figsize=(7,70),ncols=1,nrows=14)
i=0
for col in num_cols:
```

```
sns.kdeplot(x=df[col],fill=True,alpha=1,ax=ax[i])
    ax[i].set_xlabel(' ')
    ax[i].set_ylabel(' ')
    ax[i].set_title(col,fontsize=21)
    i=i+1
plt.show()
# check skewness of the distribution
skew=[]
for col in num_cols:
    skew.append(round(df[col].skew(),3))
num_dist=pd.DataFrame({'features':num_cols,'skewness':skew})
num_dist
features
               skewness
0
       age
               -0.689
               1.602
1
       bp
2
               -0.333
       sg
3
       al
               1.180
4
               2.700
       su
5
               2.204
       bgr
6
       bu
               2.724
7
               7.666
       SC
8
       sod
               -7.929
9
       pot
               13.133
10
       hemo -0.377
```

```
11
       pcv
               -0.549
12
               2.002
       wc
13
       rc
               -0.330
plt.figure(figsize=(16,8))
plt.title('Correlation between All Numerical Features',size=15)
# create mask
mask=np.triu(np.ones_like(df.corr()))
# create colormap
colormap=sns.color_palette('Blues')
# plot heatmap
sns.heatmap(df.corr(),annot=True,cmap=colormap,mask=mask)
plt.show()
df.drop('pcv',axis=1,inplace=True)
num_cols.remove('pcv')
Target Relationship
tg_num_corr=[]
for col in num_cols:
    tg_num_corr.append(df[col].corr(df['classification']))
# create as DataFrame
```

```
# sort the DataFrmae by the absolute vaue of their correlation coefficient, descending
tg_num_df=tg_num_df.sort_values(by='correlation_w_target',ascending=False).reset_index(drop=True)
tg_num_df
numerical_predictor
                      correlation_w_target
0
       al
               0.531562
1
               0.379321
       bgr
2
       bu
               0.369393
3
       su
               0.294555
4
       bp
               0.293693
               0.291245
5
       SC
6
               0.227842
       age
7
       wc
               0.177571
8
       pot
               0.065218
9
       sod
               -0.334900
10
               -0.566163
       rc
11
               -0.659504
       sg
12
       hemo -0.726368
# display as figure
plt.figure(figsize=(7,5))
sns.barplot(x=tg_num_df['correlation_w_target'],y=tg_num_df['numerical_predictor'],color='#a2c9f4')
plt.xlabel('Correlation Coefficient')
plt.title('Numerical-Target Relationship',fontsize=12)
```

tg_num_df=pd.DataFrame({'numerical_predictor':num_cols,'correlation_w_target':tg_num_corr})

```
plt.show()
# set the figure
fig,ax=plt.subplots(ncols=1,nrows=14,figsize=(7,70))
i=0
for col in num_cols:
     sns.boxplot(data=df,x=col,ax=ax[i],palette='pastel')
     ax[i].set_title(col,fontsize=14)
     i=i+1
plt.show()
Encoding
df['rbc']=df['rbc'].map({'normal':0,'abnormal':1})
df['pc']=df['pc'].map({'normal':0,'abnormal':1})
df['pcc']=df['pcc'].map({'notpresent':0,'present':1})
df['ba']=df['ba'].map({'notpresent':0,'present':1})
df['htn']=df['htn'].map({'no':0,'yes':1})
df['dm']=df['dm'].map({'no':0,'yes':1})
df['cad']=df['cad'].map({'no':0,'yes':1})
df['pe']=df['pe'].map({'no':0,'yes':1})
df['ane']=df['ane'].map({'no':0,'yes':1})
df['appet']=df['appet'].map({'good':0,'poor':1})
Normalization
```

```
# scaling with MinMaxScaler
from sklearn.preprocessing import StandardScaler,MinMaxScaler
mm_scaler=MinMaxScaler()
df[num_cols]=mm_scaler.fit_transform(df[num_cols])
Model Building
from sklearn.model_selection import train_test_split
x=df.drop('classification',axis=1)
y=df['classification']
X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=0)
print("X_train size {} , X_test size {}".format(X_train.shape,X_test.shape))
X_train size (320, 23), X_test size (80, 23)
# Using GridSearchCV we find the best algorithm to this problem
from sklearn.model_selection import ShuffleSplit,GridSearchCV,StratifiedKFold
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
# Crete a function to find the best algo. for this problem
def find_best_model(x,y):
models={'Logistic_regression':{'model':LogisticRegression(solver='liblinear',penalty='l2',multi_class='aut
o'), 'parameter': {'C': [1,4,8]}},
'decision_tree':{'model':DecisionTreeClassifier(splitter='best'), 'parameter':{'criterion':['gini', 'entropy'], 'm
```

```
ax_depth':[5,7,13,15]}},
             'svm':{'model':SVC(gamma='auto'), 'parameter':{'kernel':['sigmoid', 'linear'], 'C':[1,5,10,15]}},
'random forest':{'model':RandomForestClassifier(criterion='gini'), 'parameter':{'max depth':[5,10,15], 'n
estimators':[1,3,5]}}}
    scores=[]
    cv_shuffle=StratifiedKFold(n_splits=10)
    for model_name,model_params in models.items():
gs=GridSearchCV(model params['model'],model params['parameter'],cv=cv shuffle,return train score
=False)
         gs.fit(x,y)
scores.append({'model':model name,'best parameters':gs.best params ,'score':gs.best score })
    return pd.DataFrame(scores,columns=['model','best_parameters','score'])
find_best_model(X_train,y_train)
model best_parameters
                               score
0
       Logistic_regression
                               {'C': 4} 0.975000
1
       decision_tree {'criterion': 'entropy', 'max_depth': 7}     0.981250
2
               {'C': 5, 'kernel': 'linear'} 0.978125
       svm
3
       random_forest {'max_depth': 15, 'n_estimators': 5}
                                                              0.993750
# Using cross_val_score for gaining average accuracy
from sklearn.model selection import cross val score
score=cross val score(RandomForestClassifier(max depth=15,n estimators=5),X train,y train,cv=10)
print("Average Accuracy Score {}".format(score.mean()))
Average Accuracy Score 0.98125
```

```
# Creating Random Forest model
rf=RandomForestClassifier(max_depth=5,n_estimators=5)
rf.fit(X_train,y_train)
RandomForestClassifier(max_depth=5, n_estimators=5)
Model Evaluation
# Creating a confusion matrix
from sklearn.metrics import confusion_matrix,classification_report,accuracy_score
y_pred=rf.predict(X_test)
cm=confusion_matrix(y_pred,y_test)
cm
array([[28, 4],
        [ 0, 48]], dtype=int64)
# Plotting the confusion matrix
plt.figure(figsize=(10,7))
p = sns.heatmap(cm, annot=True, cmap="Blues", fmt='g')
plt.title('Confusion matrix for RandomForest Model - Test Set')
plt.xlabel('Predicted Values')
plt.ylabel('Actual Values')
plt.show()
# Accuracy score
score=round(accuracy_score(y_test,y_pred),3)
print("Accuracy on the Test set: {}".format(score))
Accuracy on the Test set: 0.95
```

Classification report

print(classification_report(y_test,y_pred))

	precision	recall f1-	score sup	port
0	0.88	1.00	0.93	28
1	1.00	0.92	0.96	52
accuracy			0.95	80
	0.04	0.00	0.05	00
macro avg	0.94	0.96	0.95	80
weighted avg	0.96	0.95	0.95	80

Creating a confusion matrix for training set

y_train_pred=rf.predict(X_train)

cm=confusion_matrix(y_train,y_train_pred)

cm

array([[121, 1],

[3, 195]], dtype=int64)

Accuracy score

score=round(accuracy_score(y_train,y_train_pred),3)

print("Accuracy on training set: {}".format(score))

Accuracy on training set: 0.988

print(classification_report(y_train,y_train_pred))

precision recall f1-score support

0 0.98 0.99 0.98 122

1	0.99	0.98	0.99	198
accuracy			0.99	320
macro avg	0.99	0.99	0.99	320
weighted avg	0.99	0.99	0.99	320

Feature Selection

Top 10 Features

feature_scores=pd.DataFrame(rf.feature_importances_,columns=['Score'],index=X_train.columns).sort_values(by='Score',ascending=False)

top10_feature = feature_scores.nlargest(n=10, columns=['Score'])

plt.figure(figsize=(14,6))

g = sns.barplot(x=top10_feature.index, y=top10_feature['Score'])

p = plt.title('Top 10 Features with Random Forest')

p = plt.xlabel('Feature name')

p = plt.ylabel('Random Forest score')

p = g.set_xticklabels(g.get_xticklabels(), horizontalalignment='right')

Prediction

X_train=X_train[['hemo','rc','sg','al','sc','htn','sod','bp','wc','age']]

X_test=X_test[['hemo','rc','sg','al','sc','htn','sod','bp','wc','age']]

rf.fit(X_train,y_train)

RandomForestClassifier(max_depth=5, n_estimators=5)

```
# Prediction 1

# input parameter : Hemoglobin(hemo), Red Blood Cells(rc), Specific Gravity(sg), Albumin(al), Searum Creatinite(sc),

# Hypertension(htn), Sodium(sod), Blood Pressure(bp), White Blood Cells(wc), Age

prediction = rf.predict([[67.4,7.2,0.99,4,17.0,1,160.6,87,22089,36]])[0]

if prediction:
    print('Oops! You have Chronic Kidney Disease.')

else:
    print("Great! You don't have Chronic Kidney Disease.")

Oops! You have Chronic Kidney Disease.

print(prediction)

1

import pickle

pickle.dump(rf,open("model.pkl","wb"))
```