Decomposition Methods

Dr. Dingzhu Wen

School of Information Science and Technology (SIST)
ShanghaiTech University

wendzh@shanghaitech.edu.cn

April 1, 2024

Overview

- Introduction
- 2 Primal Decomposition
- 3 Dual Decomposition
- 4 Decomposition with Constraints
- 5 General Decomposition Structures

Separable Problems

An example of separable problems

min
$$f_1(\mathbf{x}_1) + f_2(\mathbf{x}_2)$$
,
s.t. $\mathbf{x}_1 \in \mathbb{S}_1$, $\mathbf{x}_2 \in \mathbb{S}_2$.

- We can solve for \mathbf{x}_1 and \mathbf{x}_2 separately (in parallel or in a distributed way).
- Even if they are solved sequentially, this gives advantage if computational effort is superlinear in problem size.
- Generalizes to any objective of form $\Psi(f_1, f_2)$ with Ψ nondecreasing (e.g., max).

Complicating Variables

Consider the problem

min
$$f_1(\mathbf{x}_1, \mathbf{y}) + f_2(\mathbf{x}_2, \mathbf{y})$$
.

- y is the complicating variable or coupling variable.
- When **y** is fixed, the problem is separable in \mathbf{x}_1 and \mathbf{x}_2 .
- x₁ and x₂ are private or local variables. y is a public or interface or boundary variable between the two subproblems

Primal Decomposition

Methodology: Fix \mathbf{y} and define:

Subproblem 1: $\min_{\mathbf{x}_1} f_1(\mathbf{x}_1, \mathbf{y})$, Subproblem 2: $\min_{\mathbf{f}_2} f_2(\mathbf{x}_2, \mathbf{y})$,

with optimal values $\phi_1(\mathbf{y})$ and $\phi_2(\mathbf{y})$.

Original problem is equivalent to **master problem**:

$$\min_{\mathbf{y}} \ \phi_1(\mathbf{y}) + \phi_2(\mathbf{y}).$$

This is called **primal decomposition**, since master problem manipulates primal (complicating) variables.

Primal Decomposition

Properties

- If original problem is convex, so is master problem.
- Can solve master problem using
 - bisection (if y is scalar),
 - gradient or Newton method (if $\{\phi_i\}$ are differentiable),
 - subgradient, cutting-plane, or ellipsoid method.
- Each iteration of master problem requires solving the two subproblems (in parallel).
- If master algorithm converges fast enough and subproblems are sufficiently easier to solve than original problem, we get savings.

Primal Decomposition Algorithm

Using subgradient algorithm for master:

Repeat

- Solve the subproblems (in parallel). Find \mathbf{x}_1 that minimizes $f_1(\mathbf{x}_1, \mathbf{y}_k)$, Find a subgradient $\mathbf{g}_1 \in \partial \phi_1(\mathbf{y}_k)$. Find \mathbf{x}_2 that minimizes $f_2(\mathbf{x}_2, \mathbf{y}_k)$, Find a subgradient $\mathbf{g}_2 \in \partial \phi_2(\mathbf{y}_k)$.
- Update complicating variable:

$$\mathbf{y}_{k+1} = \mathbf{y}_k - \eta_k (\mathbf{g}_1 + \mathbf{g}_2).$$

• Until convergence.

The step size η_k can be chosen in any of the standard ways.

An Example of Primal Decomposition

Settings

- ullet $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^{20}$, $y \in \mathbb{R}$,
- f_i are PWL (max of 100 affine functions).

An Example of Primal Decomposition

Primal decomposition (using bisection on y)

Optimization Problem: min $f_1(\mathbf{x}_1, \mathbf{y}) + f_2(\mathbf{x}_2, \mathbf{y})$. Step 1: Introduce new variables $\mathbf{y}_1, \mathbf{y}_2$

min
$$f(\mathbf{x}) = f_1(\mathbf{x}_1, \mathbf{y}_1) + f_2(\mathbf{x}_2, \mathbf{y}_2),$$

s.t. $\mathbf{y}_1 = \mathbf{y}_2.$

- y_1 , y_2 are local versions of complicating variable y.
- $\mathbf{y}_1 = \mathbf{y}_2$ is the consensus constraint.

Step 2: Form dual problem:

$$L(\mathbf{x}_1, \mathbf{x}_2, \mathbf{y}_1, \mathbf{y}_2) = f_1(\mathbf{x}_1, \mathbf{y}_1) + f_2(\mathbf{x}_2, \mathbf{y}_2) + \nu^T(\mathbf{y}_1 - \mathbf{y}_2),$$

which is separable and can minimize over $(\mathbf{x}_1, \mathbf{y}_1)$ and $(\mathbf{x}_2, \mathbf{y}_2)$ in parallel:

$$g_1(\nu) = \inf_{\mathbf{x}_1, \mathbf{y}_1} f_1(\mathbf{x}_1, \mathbf{y}_1) + \nu^T \mathbf{y}_1,$$

$$g_2(\nu) = \inf_{\mathbf{x}_2, \mathbf{y}_2} f_2(\mathbf{x}_2, \mathbf{y}_2) - \nu^T \mathbf{y}_2.$$

The dual problem is $\max_{\nu} g(\nu) = g_1(\nu) + g_2(\nu)$.

• A subgradient of -g is $\mathbf{y}_2 - \mathbf{y}_1$ (from solutions of subproblems).

Dual Decomposition Algorithm

Using subgradient algorithm for master:

- Repeat
 - Solve the subproblems (in parallel). Find $\mathbf{x}_1, \mathbf{y}_1$ that minimizes $f_1(\mathbf{x}_1, \mathbf{y}_1) + \boldsymbol{\nu}^T \mathbf{y}_1$, Find $\mathbf{x}_2, \mathbf{y}_2$ that minimizes $f_2(\mathbf{x}_2, \mathbf{y}_2) \boldsymbol{\nu}^T \mathbf{y}_2$,
 - Update complicating variable:

$$\boldsymbol{\nu}_{k+1} = \boldsymbol{\nu}_k - \eta_k (\mathbf{y}_2 - \mathbf{y}_1).$$

Until convergence.

The results are generally infeasible, i.e., $\mathbf{y}_2 \neq \mathbf{y}_1$.

Question: How to get feasible solution?

Dual Decomposition Algorithm

Finding Feasible Solutions

• Reasonable guess of feasible point from $(\mathbf{x}_1, \mathbf{y}_1)$ and $(\mathbf{x}_2, \mathbf{y}_2)$:

$$(\mathbf{x}_1, \bar{\mathbf{y}}), \qquad (\mathbf{x}_2, \bar{\mathbf{y}}), \qquad \bar{\mathbf{y}} = \frac{\mathbf{y}_1 + \mathbf{y}_2}{2}.$$

- Projection onto feasible set $\mathbf{y}_1 = \mathbf{y}_2$.
- Gives upper bound of solution: $p^* \leq f_1(\mathbf{x}_1, \bar{\mathbf{y}}) + f_2(\mathbf{x}_2, \bar{\mathbf{y}})$.
- A better feasible point: Replace $\mathbf{y}_1, \mathbf{y}_2$ with $\bar{\mathbf{y}}$ and solve primal subproblems:

$$\min_{\mathbf{x}_1} f_1(\mathbf{x}_1, \bar{\mathbf{y}}) \text{ and } \min_{\mathbf{x}_2} f_1(\mathbf{x}_2, \bar{\mathbf{y}}).$$

• Gives better (tighter) upper bound of solution.

An Example for Dual Decompostion

Settings

- \bullet $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^{20}$, $y \in \mathbb{R}$,
- f_i are PWL (max of 100 affine functions each).

An Example for Dual Decompostion

Dual decomposition convergence (using bisection on ν)

Interpretation

- y₁ is resources consumed by first unit,
- y₂ is resources generated by second unit,
- $\mathbf{y}_1 = \mathbf{y}_2$ is consistency condition: Supply equals demand,
- \bullet ν is a set of resource prices,
- Master algorithm adjusts prices at each step, rather than allocating resources directly (primal decomposition).

Recovering Primal Solutions from the Dual

- Iterates the dual decompostion algorithm till convergence.
- $\nu_k \rightarrow \nu^*$: Have price convergence,
- Subtlety: $\mathbf{y}_{1,k} = \mathbf{y}_{2,k}$ is not needed,
- The hammer: if $\{f_i\}$ are strictly convex, we have $\mathbf{y}_{1,k} = \mathbf{y}_{2,k}$,
- Master algorithm adjusts prices at each step, rather than allocating resources directly (primal decomposition).
- Can fix allocation, or add regularization terms.

Decomposition with Constraints

Optimization Problem:

$$\begin{aligned} & \text{min} & f_1(\mathbf{x}_1) + f_2(\mathbf{x}_2), \\ & \text{s.t.} & \mathbf{x}_1 \in \mathbb{S}_1, \ \mathbf{x}_2 \in \mathbb{S}_2, \\ & & \mathbf{h}_1(\mathbf{x}_1) + \mathbf{h}_2(\mathbf{x}_2) \leq \mathbf{0}, \end{aligned}$$

where \leq is element-wise operation.

Note: The problem has complicating constraints.

- $\{f_i\}$, $\{h_i\}$, and $\{S_i\}$ are convex.
- $h_1(x_1) + h_2(x_2) \le 0$ is a set of complicating or coupling constraints, involving both x_1 and x_2 .
- Can interpret coupling constraints as limits on resources shared between two subproblems.

Primal Decomposition with Constraints

For a given constant vector **c** and define

Subproblem 1 :
$$\min_{\mathbf{f}_1(\mathbf{x}_1), \\ \mathbf{s.t.} \ \mathbf{x}_1 \in \mathbb{S}_1, \qquad \mathbf{h}_1(\mathbf{x}_1) \leq \mathbf{c}.$$

Subproblem 2:
$$\min_{\mathbf{f}_2(\mathbf{x}_2),\\ \mathbf{s.t.}\ \mathbf{x}_2 \in \mathbb{S}_2, \qquad \mathbf{h}_2(\mathbf{x}_2) \leq -\mathbf{c}.$$

- c decides the resorce allocation between two subproblems.
- Denote $\phi_1(\mathbf{c})$ and $\phi_2(\mathbf{c})$ as the optimal value of the problems.
- Matser problem: $\min_{\mathbf{c}} \phi_1(\mathbf{c}) + \phi_2(\mathbf{c})$.
- Subporblems can be solved in parallel.

Primal Decoposition Algorithm (With Constraints)

Repeat

- Solve the subproblems (in parallel). Solve subproblem 1, finding \mathbf{x}_1 and λ_1 . Solve subproblem 2, finding \mathbf{x}_2 and λ_2 .
- Update resource allocation.

$$\mathbf{c}_{k+1} = \mathbf{c}_k - \eta_k (\lambda_2 - \lambda_1).$$

- Until convergence.
- λ_i is an optimal Lagrange multiplier associated with resource constraint in subproblems.
- $(\lambda_2 \lambda_1) \in \partial [\phi_1(\mathbf{c}) + \phi_2(\mathbf{c})].$
- All iterations are feasible when the subproblems are feasible.

Primal Decoposition Algorithm (With Constraints)

Theorem

Denote $p(\mathbf{z})$ as the optimal value of the following convex problem:

min
$$f(\mathbf{x})$$
,
s.t. $\mathbf{x} \in \mathbb{S}$, $\mathbf{h}(\mathbf{x}) \leq \mathbf{z}$,

where $\mathbf{z} \in \text{dom} p$. Let $\lambda(\mathbf{z})$ be an optimal dual variable vector associated with the constraint above. Then,

$$-\lambda(z) \in \partial p(z).$$

Proof: Consider another point $\tilde{\mathbf{z}} \in \text{dom} p$:

$$p(\tilde{\mathbf{z}}) = \sup_{\lambda > 0} \inf_{\mathbf{x}} \left[f(\mathbf{x}) + \lambda^T (\mathbf{h}(\mathbf{x}) - \tilde{\mathbf{z}}) \right],$$

Primal Decoposition Algorithm (With Constraints)

Proof(Continue): It follows that

$$p(\tilde{\mathbf{z}}) = \sup_{\lambda \geq 0} \inf_{\mathbf{x}} \left[f(\mathbf{x}) + \lambda^{T} (\mathbf{h}(\mathbf{x}) - \tilde{\mathbf{z}}) \right],$$

$$\geq \inf_{\mathbf{x}} \left[f(\mathbf{x}) + \lambda(\mathbf{z})^{T} (\mathbf{h}(\mathbf{x}) - \tilde{\mathbf{z}}) \right],$$

$$= \inf_{\mathbf{x}} \left[f(\mathbf{x}) + \lambda(\mathbf{z})^{T} (\mathbf{h}(\mathbf{x}) - \mathbf{z} + \mathbf{z} - \tilde{\mathbf{z}}) \right],$$

$$= \inf_{\mathbf{x}} \left[f(\mathbf{x}) + \lambda(\mathbf{z})^{T} (\mathbf{h}(\mathbf{x}) - \mathbf{z}) \right] + \lambda(\mathbf{z})^{T} (\mathbf{z} - \tilde{\mathbf{z}}),$$

$$= p(\mathbf{z}) - \lambda(\mathbf{z})^{T} (\tilde{\mathbf{z}} - \mathbf{z}).$$

This holds of all points $\tilde{\mathbf{z}} \in \mathrm{dom} p$. Hence, $-\lambda(\mathbf{z})$ is a subgradient of $p(\mathbf{z})$.

Dual Decomposition with Constraints

Optimization Problem:

$$\begin{aligned} & \text{min} & f_1(\mathbf{x}_1) + f_2(\mathbf{x}_2), \\ & \text{s.t.} & \mathbf{x}_1 \in \mathbb{S}_1, \ \mathbf{x}_2 \in \mathbb{S}_2, \\ & & \mathbf{h}_1(\mathbf{x}_1) + \mathbf{h}_2(\mathbf{x}_2) \leq \mathbf{0}, \end{aligned}$$

The Lagrangian function is

$$L = f_1(\mathbf{x}_1) + f_2(\mathbf{x}_2) + \boldsymbol{\lambda}^T \left[\mathbf{h}_1(\mathbf{x}_1) + \mathbf{h}_2(\mathbf{x}_2) \right],$$

= $\left[f_1(\mathbf{x}_1) + \boldsymbol{\lambda}^T \mathbf{h}_1(\mathbf{x}_1) \right] + \left[f_2(\mathbf{x}_2) + \boldsymbol{\lambda}^T \mathbf{h}_2(\mathbf{x}_2) \right].$

Dual Decomposition with Constraints

For fixed dual variables λ and define

Subproblem 1:
$$\min_{\mathbf{x}_1} f_1(\mathbf{x}_1) + \boldsymbol{\lambda}^T \mathbf{h}_1(\mathbf{x}_1),$$
 $\mathbf{x}_1 \in \mathbb{S}_1,$ $\min_{\mathbf{x}_1} f_2(\mathbf{x}_2) + \boldsymbol{\lambda}^T \mathbf{h}_2(\mathbf{x}_2),$

Subproblem 2:
$$\min_{\mathbf{x}_2} r_2(\mathbf{x}_2) + \lambda \cdot \mathbf{n}_2(\mathbf{x}_2),$$
s.t. $\mathbf{x}_2 \in \mathbb{S}_2$,

with optimal values $g_1(\lambda)$ and $g_2(\lambda)$.

Dual Decomposition with Constraints

Master Problem:

$$\max_{oldsymbol{\lambda}} \ g(oldsymbol{\lambda}) = g_1(oldsymbol{\lambda}) + g_2(oldsymbol{\lambda}).$$

Properties

- $-h_i(x_i^*) \in \partial(-g_i)(\lambda)$ with x_i^* being the optimal solutions of the subproblems.
- $-h_1(x_1^*) h_2(x_2^*) \in \partial(-g_1 g_2)(\lambda)$.
- ullet The master algorithm updates λ using this subgradient.

Dual Decomposition Algorithm (with Constraints)

Repeat

- Solve the subproblems (in parallel).
 Solve subproblem 1, finding an optimal x₁*.
 Solve subproblem 2, finding an optimal x₂*.
- Update dual variables.

$$\lambda_{k+1} = \max \{ \lambda_k - \eta_k (h_1(x_1^*) + h_2(x_2^*)), 0 \}.$$

- Until convergence.
- η_k is an appropriate step size.
- Iterations are not needed to be feasible.
- Can construct feasible primal variables using projection.

General Decomposition Structures

- Multiple subsystems,
- Variable and/or constraint coupling between subsets of subsystems,
- Represent as hypergraph with subsystems as vertices, coupling as hyperedges or nets,
- Without loss of generality, can assume all coupling is via consistency constraints.

A Simple Example

Simple example

- 3 subsystems, with private variables $x_1,\ x_2,\ x_3,$ and public variables $y_1,\ (y_2,y_3),$ and y_4
- 2 (simple) edges

$$\begin{array}{ll} \text{minimize} & f_1(x_1,y_1) + f_2(x_2,y_2,y_3) + f_3(x_3,y_4) \\ \text{subject to} & (x_1,y_1) \in \mathcal{C}_1, \quad (x_2,y_2,y_3) \in \mathcal{C}_2, \quad (x_3,y_4) \in \mathcal{C}_3 \\ & y_1 = y_2, \quad y_3 = y_4 \end{array}$$

A Complex Example

General Form

Optimization Problem:

$$\begin{aligned} & \text{min } & \sum_{i=1}^{K} f_i(\mathbf{x}_i, \mathbf{y}_i), \\ & \text{s.t. } & (\mathbf{x}_i, \mathbf{y}_i) \in \mathbb{S}_i, \quad 1 \leq i \leq K, \\ & \mathbf{y}_i = \mathbf{E}_i \mathbf{z}, \quad 1 \leq i \leq K. \end{aligned}$$

- Private variables \mathbf{x}_i , public variables \mathbf{y}_i .
- Net (hyperedge) variables z: z_i is common value of public variables in net i.
- Matrices **E**_i give netlist or hypergraph.

Primal Decomposition

Subproblems: $\phi_i(\mathbf{y}_i)$ is the optimal value of the subproblem

min
$$f_i(\mathbf{x}_i, \mathbf{y}_i)$$
,
s.t. $(\mathbf{x}_i, \mathbf{y}_i) \in \mathbb{S}_i$.

Master Problem:

min
$$\phi(\mathbf{z}) = \sum_{i=1}^K \phi_i(\mathbf{E}_i \mathbf{z}).$$

Subgradient of $\phi(\mathbf{z})$:

$$\mathbf{g} = \sum_{i=1}^K \mathbf{E}_i^T \mathbf{g}_i,$$

where $\mathbf{g}_i \in \partial \phi_i(\mathbf{E}_i \mathbf{z})$.

Primal Decomposition

Algorithm

- Repeat
 - Distribute net variables to subsystems: $\mathbf{y}_i = \mathbf{E}_i \mathbf{z}$, $1 \le i \le K$.
 - Optimal subsystems (in parallel). Solve the subproblem to find optimal \mathbf{x}_i and $\mathbf{g}_i \in \partial \phi_i(\mathbf{y}_i)$.
 - Collect and sum subgradients for each net: $\mathbf{g} = \sum_{i=1}^K \mathbf{E}_i^T \mathbf{g}_i$.
 - Update net variables: $\mathbf{z}_{k+1} = \mathbf{z}_k \eta_k \mathbf{g}$.
- Until convergence.

$$\min \sum_{i=1}^K f_i(\mathbf{x}_i, \mathbf{y}_i),$$

Optimization Problem:

s.t.
$$(\mathbf{x}_i, \mathbf{y}_i) \in \mathbb{S}_i$$
, $1 \le i \le K$, $\mathbf{y}_i = \mathbf{E}_i \mathbf{z}$, $1 \le i \le K$.

$$L = \sum_{i=1}^{K} f_i(\mathbf{x}_i, \mathbf{y}_i) + \sum_{i=1}^{K} \boldsymbol{\nu}_i^T (\mathbf{y}_i - \mathbf{E}_i \mathbf{z}),$$

Lagrange Function:

$$= \sum_{i=1}^K \left[f_i(\mathbf{x}_i, \mathbf{y}_i) + \boldsymbol{\nu}_i^T \mathbf{y}_i \right] - \sum_{i=1}^K \boldsymbol{\nu}_i^T \mathbf{E}_i \mathbf{z}.$$

To find the optimal solution, a necessary condition is to minimize over z:

$$\frac{\partial L}{\partial \mathbf{z}} = 0, \Rightarrow \sum_{i=1}^K \mathbf{E}_i \boldsymbol{\nu}_i = \mathbf{0}.$$

33 / 36

First, select $\{ \boldsymbol{\nu}_i \}$ that satisfies $\sum\limits_{i=1}^K \mathbf{E}_i \boldsymbol{\nu}_i = \mathbf{0}.$

Then, a subproblem can be written as

min
$$f_i(\mathbf{x}_i, \mathbf{y}_i) + \boldsymbol{\nu}_i^T \mathbf{y}_i$$
,
s.t. $(\mathbf{x}_i, \mathbf{y}_i) \in \mathbb{S}_i$,

whose optimal solution is denoted as $g_i(\nu_i)$ and the solved \mathbf{y}_i is a subgradient of $g_i(\nu_i)$.

Next, the master problem is

min
$$g(\{\nu_i\}) = \sum_{i=1}^K g_i(\nu_i),$$

s.t. $\sum_{i=1}^K \mathbf{E}_i \nu_i = \mathbf{0}.$

Algorithm

- Repeat
 - Optimize subsystems (in parallel). Solve subproblem to obtain $(\mathbf{x}_i, \mathbf{y}_i)$.
 - Compute average value of public variables over each net.

$$\hat{\mathbf{z}} = (\mathbf{E}^T \mathbf{E})^{-1} \mathbf{E}^T \sum_{i=1}^K \mathbf{y}_i.$$

Solve the subproblem to find optimal \mathbf{x}_i and $\mathbf{g}_i \in \partial \phi_i(\mathbf{y}_i)$.

• Update dual variables.

$$\boldsymbol{\nu}_{i,k+1} = \boldsymbol{\nu}_{i,k} - \eta_k (\mathbf{y}_i - \mathbf{E}_i \hat{\mathbf{z}}).$$

• Until convergence.

Thank you! wendzh@shanghaitech.edu.cn