Note Title

17/05/2025

Esercizio 1 $u' = \frac{1}{u+t}$ u(0) = 5

Serve u+t ≠0, cioè u≠-t

Nel futuro la solusione cresce.

Esiste globalmente (nel futuro)

perché

 $u'(t) > \frac{1}{u(t)+t} \leq \frac{1}{5}$

no M(t) sta sotto la retta 5+ 1t. Questo esclude il BU

Qual è lieu u(t)? Dico de è 100

Se fosse $u(t) \rightarrow l \in \mathbb{R}$, allora $u'(t) = \frac{1}{u(t)+t} \ge \frac{1}{l+t}$

Ma allora integranolo

 $u(t) \ge u(0) + \int_{0}^{t} \frac{1}{2+s} ds = u(0) + \log(t+l) - \log l$ du du

Nel passato u ha BD perché per monotonia è costretta ad cucrociare la retta rossa.

~ 0 --- 0 -

Sensa co	sa vel passato.
	Se d∈ (-1,0), allora abbiamo BD sia nel guturo,
	Bia uel passato. Perché?
Vediamo	il futuro: se ci fosse esisteura globale, sarebbe -1 < u(t) ≤ d
e guiudi	ent) decrescerebbe e quiudi ent) avrebbe un limite
1 1	d]. Ma allora
er' (t	e questo uou può essere o
	e questo uou può essere 0 $1 + \infty$ 2 $1^{3}+1$
	L ³ +1
FATTO 7 S	e partiamo con d < -1, ancora una volba abbiamo BD
U.	el passato e uel futuro
	uo esi steura globale, allora u(t) → l ≤-1
dell'asint	a u'(t) -> e uou e possibile per il feorema
Parentesi	$f(x) = x^k$ primitiva $F(x) = \frac{x^{k+1}}{k+1}$
Quaudo ×	\rightarrow to abbiaus $\frac{F(x)}{\varphi(x)} \rightarrow +\infty$
	rimitiva batte la funcione all'impinito.
Questo è.	sempre vero? O ci sous casi in cui perole?
tutanto co	on $f(x) = e^x c^x i$ pareggio :

Proviaus con une funcione più du esponensiate

$$P(x) = e^{x^2} \quad \text{La sua primitiva e } F(x) = \int_0^x e^{t^2} dt$$

$$quella te. F(o) = 0$$

$$\lim_{x \to +\infty} \frac{F(x)}{P(x)} = \lim_{x \to +\infty} \frac{\int_0^x e^{t^2} dt}{e^{x^2}} = \lim_{x \to +\infty} \frac{e^{x^2}}{2x \cdot e^{x^2}} = 0$$

$$\text{Domando: une quanto pende?}$$

$$\text{Dico che } \int_0^x e^{t^2} dt \sim \frac{e^{x^2}}{2x} \quad \text{Jufatti}$$

$$\lim_{x \to +\infty} \frac{\int_0^x e^{t^2} dt}{2x} = \lim_{x \to +\infty} \frac{e^{x^2}}{2x^2} = 1 \quad \text{``}$$

$$\frac{\int_0^x e^{t^2} dt}{2x} = \lim_{x \to +\infty} \frac{e^{x^2}}{2x^2} = \frac{e^{x^2}}{2x^2} = 1 \quad \text{``}$$

$$\frac{\int_0^x e^{t^2} dt}{2x} = \lim_{x \to +\infty} \frac{e^{x^2}}{2x^2} = 1 \quad \text{``}$$

$$\frac{\int_0^x e^{t^2} dt}{2x} = \lim_{x \to +\infty} \frac{e^{x^2}}{2x^2} = 1 \quad \text{``}$$

$$\frac{\int_0^x e^{t^2} dt}{2x} = \lim_{x \to +\infty} \frac{e^{x^2}}{2x^2} = 1 \quad \text{``}$$

$$\frac{\int_0^x e^{t^2} dt}{2x} = \lim_{x \to +\infty} \frac{e^{x^2}}{2x^2} = 1 \quad \text{``}$$

$$\frac{\int_0^x e^{t^2} dt}{2x} = \lim_{x \to +\infty} \frac{e^{x^2}}{2x^2} = 1 \quad \text{``}$$

$$\frac{\int_0^x e^{t^2} dt}{2x} = \lim_{x \to +\infty} \frac{e^{x^2}}{2x^2} = 1 \quad \text{``}$$

$$\frac{\int_0^x e^{t^2} dt}{2x} = \lim_{x \to +\infty} \frac{e^{x^2}}{2x^2} = 1 \quad \text{``}$$

$$\frac{\int_0^x e^{t^2} dt}{2x} = \lim_{x \to +\infty} \frac{e^{x^2}}{2x^2} = 1 \quad \text{``}$$

$$\frac{\int_0^x e^{t^2} dt}{2x} = \lim_{x \to +\infty} \frac{e^{x^2}}{2x^2} = 1 \quad \text{``}$$

$$\frac{\int_0^x e^{t^2} dt}{2x} = \lim_{x \to +\infty} \frac{e^{x^2}}{2x^2} = 1 \quad \text{``}$$

$$\frac{\int_0^x e^{t^2} dt}{2x} = 1 \quad \text{``}$$

$$\frac{\int_0^x e^{t^2} dt}{2x$$