Programa 7

Proceso Personal para el Desarrollo de Software

Este material fue realizado en base a material del curso "Personal Software Process for Engineers: Partl", dictado por The Software Engineering Institute (SEI)

Proceso Personal para el Desarrollo de Software

Instructivo para el Programa 7

Descripción

Descripción

El presente instructivo cubre los siguientes temas

Sección	Página
Requerimientos del Programa 7	3
Significación	6
Intervalos de Predicción	7
Instrucciones	8
Criterios de evaluación	9

Programa 7 Requerimientos

Requerimientos Programa 7

Utilizando PSP0.1, escribir un programa para

- calcular la correlación ente dos conjuntos de números x e y
- calcular la significación de la correlación
- calcular los parámetros de regresión lineal β_0 y β_1 para un conjunto de n pares de datos,
- dada una estimación x_k (ingresada por el usuario), calcular la proyección, y_k donde $y_k = \beta_0 + \beta_1 x_k$
- calcular el intervalo de predicción del 70% para esa estimación

Tabla 1 contiene datos históricos estimados y reales de 10 programas. Para el programa 11, el desarrollador ha estimado un tamaño de 386 LOC.

Tabla 2 contiene datos históricos estimados y reales de 4 programas de otro desarrollador. Para el programa 5, este desarrollador ha estimado un tamaño de 93 LOC.

Probar a fondo el programa. Como mínimo, correr los cuatro casos siguientes de la prueba.

- Test 1: Realizar los cálculos requeridos, utilizando <u>estimated proxy size</u> y <u>actual added and modified size</u> en la tabla 1. Utilice la estimación por proxy
 ^x/_k = 386
- Test 2: Realizar los cálculos requeridos, utilizando <u>estimated proxy size</u> y <u>actual development time</u> en la tabla 1. Utilice la estimación por proxy $x_k = 386$.
- Test 3: Realizar los cálculos requeridos, utilizando <u>estimated proxy size</u> y <u>actual added and modified size</u> en la tabla 2. Utilice la estimación por proxy x_k = 93.
- Test 4: Realizar los cálculos requeridos, utilizando <u>estimated proxy size</u> y <u>actual development time</u> en la tabla 2. Utilice la estimación por proxy $x_k = 93$.

Program Number	Estimated Proxy Size	Plan Added and Modified Size	Actual Added and Modified Size	Actual Development Hours
1	130	163	186	15.0
2	650	765	699	69.9
3	99	141	132	6.5
4	150	166	272	22.4
5	128	137	291	28.4
6	302	355	331	65.9
7	95	136	199	19.4
8	945	1206	1890	198.7
9	368	433	788	38.8
10	961	1130	1601	138.2

Tabla 1

Program Number	Estimated Proxy Size	Actual Added and Modified Size	Actual Development Hours
1	159.88	143	261
2	76.01	87	134
3	116.44	123	287
4	85.25	93	195

Tabla 2

Test	Parameter	Expected Value	Actual Value
Test 1	$r_{x,y}$	0.954496574	
	r^2	0.91106371	
	tail area	1.77517E-05	
	$oldsymbol{eta}_{\scriptscriptstyle 0}$	-22.55253275	
	$oldsymbol{eta}_{_1}$	1.727932426	
	\mathcal{Y}_k	644.4293838	
	Range	230.0017197	
	UPI (70%)-	874.4311035	
	LPI (70%)	414.427664	
Test 2	$r_{x,y}$	0.933306898	
	r^2	0.871061766	
	tail area	7.98203E-05	
	$oldsymbol{eta}_{0}$	-4.038881575	
	$oldsymbol{eta_1}$	0.16812665	
	${\cal Y}_k$	60.85800528	
	Range	27.55764748	
	UPI (70%)-	88.41565276	
	LPI (70%)	33.3003578	
Test 3	$r_{x,y}$	0.985246929	
	r^2	0.970711510	
	tail area	0.014753072	
	$oldsymbol{eta}_0$	36.737228871	
	$oldsymbol{eta}_{_1}$	0.6834203678	
	\mathcal{Y}_k	100.29532307	
	Range	8.737766816	
	UPI (70%)-	109.0330899	
	LPI (70%)	91.55755625	
Test 4	$r_{x,y}$	0.77064468	
	r^2	0.59389322	
	tail area	0.22935538	
	$oldsymbol{eta}_0$	66.03675249	
	$oldsymbol{eta_1}$	1.40055073	
	\mathcal{Y}_k	196.28797072	
	Range	85.24597984	
	UPI (70%)-	281.53395056	
	LPI (70%)	111.04199089	

Table 3

Significancia

Test de significancia

El test de significancia determina la probabilidad que una correlación fuerte sea al azar, y sea por lo tanto de ninguna significación práctica.

Por ejemplo, un conjunto con solamente dos puntos tendrá siempre $r^2 = 1$, pero esta correlación no es significativa.

Student t - Distribution

Calcular la significancia

El procedimiento para calcular la significación de la correlación es el siguiente

1. Calcular el valor *x*, tal que

$$x = \frac{|r_{x,y}| \sqrt{n-2}}{\sqrt{1 - r_{x,y}^{2}}}$$

donde

- $r_{x,y}$ es la correlación
- *n* es le número de puntos
- 2. Encontrar la probabilidad p integrando numéricamente la distribución t para n-2 grados de libertad, desde 0 to x.
- 3. Calcular el área de la cola como 1-2* p.
 (El área debajo de la curva desde -x a +x es dos veces el área a partir de 0 a x, o 2* p; el área restante en las colas superiores y más bajas es 1-2* p).

Un área de cola ≤ 0.05 es considerado fuerte evidencia de que existe una relación.

Un área de cola ≥ 0.2 indica que la relación es debida al azar.

Intervalo de Predicción

Intervalo de predicción

El intervalo de predicción, provee una extensión o rango probable alrededor de la estimación.

- Un intervalo del 70% determina una extensión dentro de la cual el valor real caerá el 70% de las veces
- No es un pronóstico, solamente una expectativa.
- Se aplica solamente si la estimación se comporta como los datos históricos.

Se calcula a partir de los mismos datos usados para calcular los parámetros de la regresión.

Procedimiento

Para calcular el intervalo de predicción, utilice los siguientes pasos.

- 1. Calcular *Range* para un intervalo del 70%.
- 2. Calcular UPI como $y_k + Range(70\%)$.
- 3. Calcular LPI como $y_k Range(70\%)$.

La formula para calcular el rango de predicción es

Range =
$$t(0.35, dof)\sigma \sqrt{1 + \frac{1}{n} + \frac{(x_k - x_{avg})^2}{\sum_{i=1}^{n} (x_i - x_{avg})^2}}$$

donde

- x son los datos históricos
- *n* es el número de datos históricos
- t(0.35, dof) es el valor de x para una distribución t con n 2 grados de libertad y p = 0.35

La fórmula para calcular la desviación estándar es

$$\sigma = \sqrt{\left(\frac{1}{n-2}\right)\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2}$$

donde

- x, y son los datos históricos
- n es el número de datos históricos

Instrucciones

Instrucciones

Antes de comenzar el programa 7, repasar el proceso PSP0.1 para asegurarse de comprenderlo. También, asegurarse de tener todas las entradas requeridas antes de comenzar con la fase de planificación.

Entregables

Cuando complete la etapa de postmortem, arme un archivo .zip para enviar al instructor, conteniendo lo siguiente.

El archivo .mdb con sus datos del ejercicio.

- Código fuente del programa.
- Impresión de pantalla de las pruebas realizadas mostrando el resultado de las mismas.
- Captura de pantalla de la salida del contador de LOC aplicada al ejercicio 7.
- Archivo de texto o documento que contenga la descripción de que clases/módulos/unidades del código construido contienen las distintas categorías (Added, Modified, Delete, etc). Utilizando el contador de LOC que muestra el tamaño de dichas unidades de código.

Ejemplo:

36 LOC Base -> Clase Base.java y muestre el tamaño de la clase utilizando el contador de LOCS aplicado a la clase.

3 LOC Deleted -> En la clase Base.java

10 LOC Modified -> En la clase Base.java

15 LOC Added -> En la clase Base.java

40 LOC Reused -> Clases LibUno.java, LibDos.java y muestre el tamaño de la las mismas utilizando el contador de LOCS aplicado ambas clases.

5 LOC New Reused -> agregadas en NuevaLib.java

Tenga en cuenta que:

- .- Deben programar de acuerdo a su estándar de codificación.
- .- Deben utilizar el mismo proceso que en el ejercicio anterior, PSP 0.1. Esto quiere decir que en planificación van a estimar la cantidad de LOC que esperan generar y si parten de algún LOC Base van a indicar cuántas líneas son. Luego, en postmortem, van a usar el contador de LOC que construyeron para contar la cantidad de LOC del ejercicio 7.

Criterios de evaluación para el programa 7

Criterios de Evaluación

Su reporte debe ser

• completo

Los datos de su proceso deben ser

- exactos
- precisos
- consistentes

Sugerencias

Recuerde entregar su reporte en fecha.

Mantenga la simplicidad del programa.

Si no está seguro de algo, consulte a su instructor

Debe producir y reportar sus propias estimaciones y datos reales, desarrollar su propio código y llevar adelante su propio juego de pruebas.