Complex Variables (Exam #1)

Arden Rasmussen February 24, 2018

Contents

1	Complex Plane	1
	1.1 How do we represent complex number geometrically?	1
	1.2 What is meant under the following terms?	1
	1.3 Properties of modulus and conjugate	1
2	Basic Elementary Functions	1
3	Visualization of Functions	1
4	Riemann surfaces and branches of multivalued functions	1
5	Functions of complex variable defined through series	1
6	Holomorphic functions and Cauchy-Riemann equations	1

1 Complex Plane

1.1 How do we represent complex number geometrically?

Complex numbers are represented as two dimensional coordinates in a plane, with the x axis as the real part of the complex number and the y is the imaginary part of the complex number.

1.2 What is meant under the following terms?

- Re(z) This represents only the real portion of the complex number. For example if z = x + iy then Re(z) = x.
- Im(z) This represents only the imaginary portion of the complex number. For example if z = x + iy then Im(z) = y.
 - |z| This is the **modulus** of z, or the length. It is calculated as follows: if z = x + iy, then $|z| = \sqrt{x^2 + y^2}$.
 - \bar{z} This is the **conjugate** of z. It is found by flipping the sign of the imaginary part of z. So if z = x + iy, then $\bar{z} = x iy$.
- arg(z) This is the **argument** of z. It is the set of all angles that represent the position of the complex variable. Since every multiple of 2π is equal, then this is the set of all angles offset by some multiple of 2π .
- $\operatorname{Arg}(z)$ This is the **principle value** of the argument of z. It is a single value in the range $-\pi$ to π which represents the angle that the complex number is at in polar coordinates.
 - 1.3 Properties of modulus and conjugate
 - 2 Basic Elementary Functions
 - 3 Visualization of Functions
 - 4 Riemann surfaces and branches of multivalued functions
 - 5 Functions of complex variable defined through series
 - 6 Holomorphic functions and Cauchy-Riemann equations