Type Theory from a Computational Perspective Lecture 1

Bob Harper Carnegie Mellon University

July 16, 2018

1 Plan

- $1. \ \, {\rm Develop} \ {\rm type} \ {\rm theory} \ {\rm starting} \ {\rm with} \ {\rm computation}$
 - \rightarrow Theory of TRUTH (based on proof)
- 2. Contrast with formalisms
 - \rightarrow Theory of PROOF (formal proof)

2 The Idea

Start with a programming language

<u>Deterministic</u> operational semantics

Assume: Some idea of abstract syntax with bindings and scope (ie: sub for vars)

Forms of expression E

Two judgement forms:

- 1. E val means E is fully evaluated
- 2. $E \mapsto E'$ means one step of simplification of E

Derived notion: $E \Downarrow E_0$ or V means $E \mapsto^* E_0$ val

$$\frac{E \mapsto E'}{if(E_1, E_2)(E) \mapsto if(E_1, E_2)(E')} \tag{1}$$

$$\frac{1}{if(E_1, E_2)(\operatorname{tt}) \mapsto E_1} \tag{2}$$

$$\frac{1}{if(E_1, E_2)(ff) \mapsto E_2} \tag{3}$$

TYPES ARE SPECIFICATIONS OF BEHAVIOR!

Two principal forms of judgement (expression of knowledge)

A type and $M \in A$

- 1. behavioral (not structural)
- 2. both M and A here are programs

```
i.e.: Bool type; tt \in Bool; ff \in Bool Example: if M \in Bool and M_1, M_2 \in A with A type then if (M_1; M_2)(M) \in A Example: if (17; (GARBAGE))(tt) \in Nat, runs by simplifying to 17 \in Nat Example: if (Nat; Bool)(M) type when M \in Bool b/c any outcome for M induces a simplification to a type Example: if (17; tt)(M) \in if(Nat, Bool)(M)!
```

3 Key Idea: (Type-Indexed) Families of Types

```
a.k.a.: Dependent types Example:  \begin{split} & \text{seq(n) type when } n \in \text{Nat} \\ & \text{n: Nat} >> \text{seq(n) type} \to \text{Hypothetical/General Judgement} \\ & \text{Family of typese indexed by a type.} \end{split}
```

But how to express a function that takes a natural number and returns a sequence of that length?

```
f \in n: Nat \rightarrow Seq(n)
(\Pin: Nat. Seq(n))
```

SPECS/TYPES are programs

4 Critical Idea: <u>FUCTIONALITY</u>

Families (of types, of elements) must respect equality of indices. Example:

```
seq(2+2) "same_as" seq(4)

seq(if(17; 18)(M)) "same_as" if(seq(17); seq(18))(M)
```

4.1 Judgements

```
A \text{ type} \longrightarrow A \doteq A' \text{ (exact equality of types (?))}
M \in A \longrightarrow M \doteq M' \in A \text{ (exact equality of elements ("equi-satisfaction"))}
```

Example:

not: $2 \doteq 4 \in Nat$ is: $2 \doteq 4 \in Nat/2$ (evens)

Intention is thet if $M \doteq M' \in A$ and $A \doteq A'$ then $M \doteq M' \in A'$

5 Meaning Explanations a.k.a: Semantics (Computational)

- 1. $A \doteq A'$ means $A \Downarrow A_0$ val, $A' \Downarrow A'_0$ val, A_0 val $\doteq_0 A'_0$ val A_0 and A'_0 are equal type values

 Now, by definition:

 Bool val \doteq_0 Bool val (i.e.: Bool type₀)
- 2. $M \doteq M' \in A$ where A type (i.e.: $A \Downarrow A_0, A_0 \doteq_0 A_0$) means $M \Downarrow M_0$ and $M' \Downarrow M'_0$ and $M_0 \doteq_0 M'_0 \in A$ Equal values in a type value
- 3. $a:A>> B \doteq B'$ means if $M \doteq M' \in A$ then B[M/a] = B'[M'/a] "functionality"
- 4. $a:A>>N\doteq N'\in B$ means if $M\doteq M'\in A$ then $N[M/a]\doteq N'[M'/a]\in B[M/a]\doteq B[M'/a]$

5.1 Booleans

- 1. Bool \doteq_0 Bool or Bool type₀ or Bool is a type (names a type) Aside: Not going to say 17 type, could, but wont.
- 2. $M_0 \doteq M_0' \in_0$ Bool is the strongest (least,...) relation s.t. $tt \doteq_0 tt \in Bool$ (i.e.: $tt \in_0 Bool$) $ff \doteq_0 ff \in Bool$ (i.e.: $ff \in_0 Bool$)
 - (a) the stated conditions hold
 - (b) nothing else!

 $\begin{array}{l} \underline{\text{strongest:}} \ R \subseteq Exp \times Exp \\ \underline{\text{s.t.}} \ R(tt,\!tt) \ \text{and} \ R(f\!f,\!f\!f) \end{array}$

You must accept this as a valid definition.

Prop/Fact/Claim:

If $M \in \text{Bool and } A$ type and $M_1 \in A$ and $M_2 \in A$, then if $(M_1, M_2)(M) \in A$

 $\underline{\text{Proof}}$:

How to prove it? Key: Bool is least containing tt and ff Fix A type, $M_1 \in A$, $M_2 \in A$

if $M \in \text{Bool then if}(M_1, M_2)(M) \in A$ $M \in \text{Bool means } M \downarrow M_0 \text{ s.t. } M_0 = \text{tt or ff}$ Suffices to show both:

- 1. if $(M_1, M_2)(tt) \in A$
- 2. $if(M_1, M_2)(ff) \in A$
- 1. $if(M_1, M_2)(tt) \mapsto M_1 \in A$
- 2. $if(M_1, M_2)(ff) \mapsto M_2 \in A$

Lemma (Head Expansion or Reverse Execution):

If $M' \in A$ and $M \mapsto M'$ then $M \in A$

Can be proved using the definitions in terms of evaluation to canonical form

- 1. Bool is inductively defined
- 2. Typing is closed under head expansion