Dialogmodellierung

Sitzung 03

SoSe 2019, Uni Potsdam
David Schlangen
david.schlangen@uni-potsdam.de

Letzte Woche

Dialog als technische Aufgabe

Wie das Problem modularisieren?

Speech and Language Processsing

Dan Jurafsky and James Martin

Chapter 25: Conversational Agents

Chatbots: pro and con

- Pro:
 - Fun
 - Applications to counseling
 - Good for narrow, scriptable applications
- Cons:
 - They don't really understand
 - Rule-based chatbots are expensive and brittle
 - IR-based chatbots can only mirror training data
 - The case of Microsoft Tay
 - (or, Garbage-in, Garbage-out)
- The future: combining chatbots with frame-based agents

II: Frame-based dialog agents

SIRI around 2014

●●■■■ AT&T M-Cell 〒 6:18 PM

∦ 87% 📖 🗓

"Find restaurants near me" tap to edit

I found fifteen restaurants fairly close to you:

15 Restaurants

Emmy's Spaghetti Shack 0.2 mi >

18 Virginia Ave

Italian, \$\$\$\$

★★★★★ 1101 Reviews

ICHI Sushi

0.2 mi >

3369 Mission St

Japanese, Sushi Bars, \$\$\$\$

★★★★★ 260 Reviews

Avedano's Holly Park M... 0.2 mi

●●●●● AT&T M-Cell 🗢 6:19 PM

🔻 86% 🔙

"Are any of them Italian" tap to edit

My web search turned this up:

Web Search

Are any of them Italian

any - Dizionario inglese-italiano WordReference

www.wordreference.com

English-Italian Dictionary | any ... of any sort adj (of an unspecified variety) di qualsiasi

Italian language - Wikipedia, the free encyclopedia

en.wikipedia.org

Italian or lingua italiana) is a Romanca

SIRI in February 2017

"Find restaurants near me" tap to edit

Here's what I found:

15 Results

Nearby

Ichi Sushi & Ni Bar

Japanese · 800 feet · Closed now ★★★★★ (311) on Yelp · \$\$\$

Coco's Ramen

Vietnamese · 800 feet · Closed now ★★★★★ (280) on Yelp · \$\$

Blue Plate

Restaurant · 0.2 miles · Closed now ★★★★★ (1251) on OpenTable · \$\$\$

Jasmine Tea House

Chinese · 900 feet · Closed now

J

"Tell me more about the first one" tap to edit

Ichi Sushi & Ni Bar is a
Japanese restaurant on
Mission St 800 ft to your west.
It averages 3½ stars and is
somewhat pricey.

"Find restaurants near me"

tap to edit

Here's what I found:

15 Results

Nearby

Ichi Sushi & Ni Bar

Japanese · 800 feet · Closed now ★★★★★ (311) on Yelp · \$\$\$

Coco's Ramen

Vietnamese · 800 feet · Closed now ★★★★★ (280) on Yelp · \$\$

Blue Plate

Restaurant · 0.2 miles · Closed now ★★★★★ (1251) on OpenTable · \$\$\$

Jasmine Tea House

Chinese · 900 feet · Closed now

●●●●● AT&T M-Cell 🕏

"Are any of them Italian"

OK, here's what I found:

15 Results

10:54 AM

Nearby

Emmy's Spaghetti Shack

Italian · 0.2 miles · Closed now

100% 💳

★★★★ (233) on Yelp · \$\$

Vega

Pizza · 0.2 miles · Closed now

**** (423) on Yelp · \$\$

Pizza Hut

Pizza · 800 feet

**** (69) on Yelp · \$

La Ciccia

Sardinian · 0.4 miles

Frame-based dialog agents

- Sometimes called "task-based dialog agents"
- Based on a "domain ontology"
 - A knowledge structure representing user intentions

- One or more frames
 - Each a collection of slots
 - Each slot having a value

The Frame

- A set of slots, to be filled with information of a given type
- Each associated with a question to the user

Slot	Type	Question
ORIGIN	city	What city are you leaving from?
DEST	city	Where are you going?
DEP DATE	date	What day would you like to leave?
DEP TIME	time	What time would you like to leave?
AIRLINE	line	What is your preferred airline?

Frame-based dialogue agents

• 1977:

GUS, A Frame-Driven Dialog System¹

Daniel G. Bobrow, Ronald M. Kaplan, Martin Kay, Donald A. Norman, Henry Thompson and Terry Winograd

Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304, U.S.A.

Artificial Intelligence Journal, 1977

Still the industrial state of the art
 SIRI based on GUS architecture

GUS: Hello. My name is GUS. I can help you plan a simple trip by air. Where do you

want to go ?

The state of the art

Client: I want to go to San Diego on May 28

in 1977!!!!

What time do you want to leave?

Client: I must be in San Diego before 10 am

GUS: Would you like P.S.A. flight 102 that arrives at 9.15 am?

Client: What is the next flight?

GUS: Air California flight 310 that leaves at 8.30am and arrives at 10.00am

Client: I'll take the first one

GUS: In what name should I make a reservation, please?

Client: Dan Bobrow

GUS:

GUS: I have confirmed the following flight: P.S.A. flight 102 on Wednesday May 28

from San Jose to San Diego that leaves at 7.30 am and arrives at 9.15 am.

GUS: What date do you want to return on?

Client: On Friday in the evening.

GUS: Would you like the flight that leaves at 7.45 pm?

Client: That's fine.

GUS: I have confirmed the following flight: P.S.A. flight 307 on Friday May 30 from

San Diego to San Jose that leaves at 7.45 pm and arrives at 9.30 pm Thank you

for calling. Goodbye

Slot types can be complex

The type DATE

```
DATE

MONTH NAME

DAY (BOUNDED-INTEGER 1 31)

YEAR INTEGER

WEEKDAY (MEMBER (SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY)]
```

Control structure for frame-based dialog

Consider a trivial airline travel system:
Ask the user for a departure city
Ask for a destination city
Ask for a time

Ask whether the trip is round-trip or not

Finite-state dialog managers

- System completely controls the conversation with the user.
- It asks the user a series of questions
- Ignoring (or misinterpreting)
 anything the user says that is not a direct answer to the system's questions

Dialogue Initiative

- Systems that control conversation like this are called single initiative.
- Initiative: who has control of conversation
- In normal human-human dialogue, initiative shifts back and forth between participants.

Sytem Initiative

System completely controls the conversation

- Simple to build
- User always knows what they can say next
- System always knows what user can say next
 - Known words: Better performance from ASR
- Known topic: Better performance from NLU
 - OK for VERY simple tasks (entering a credit card, or login name and password)
 - Too limited

Problems with System Initiative

- Real dialogue involves give and take!
- In travel planning, users might want to say something that is not the direct answer to the question.
- For example answering more than one question in a sentence:

Hi, I'd like to fly from Seattle Tuesday morning

I want a flight from Milwaukee to Orlando one way leaving after 5 p.m. on Wednesday.

Single initiative + universals

- We can give users a little more flexibility by adding universals: commands you can say anywhere
- As if we augmented every state of FSA with these Help Start over
 - Correct
- This describes many implemented systems
- But still doesn't allow user much flexibility

Instead, the GUS architecture

- A kind of *mixed initiative*
 - The conversational initiative shifts between system and user
- The structure of the frame guides dialogue

Frames are mixed-initiative

- System asks questions of user, filling any slots that user specifies
 - When frame is filled, do database query
- If user answers 3 questions at once, system can fill 3 slots and not ask these questions again!

Natural Language Understanding for filling dialog slots

- 1. Domain classification
 Asking weather? Booking a flight?
 Programming alarm clock?
- 2. Intent Determination Find a Movie, Show Flight, Remove Calendar Appt
- 3. Slot Filling Extract the actual slots and fillers

Natural Language Understanding for filling slots

Show me morning flights from Boston to SF on Tuesday.

DOMAIN: AIR-TRAVEL

INTENT: SHOW-FLIGHTS

ORIGIN-CITY: Boston

ORIGIN-DATE: Tuesday

ORIGIN-TIME: morning

DEST-CITY: San Francisco

Natural Language Understanding for filling slots

Wake me tomorrow at six.

DOMAIN: ALARM-CLOCK

INTENT: SET-ALARM

TIME: 2017-07-01 0600-0800

Rule-based Slot-filling

Write regular expressions or grammar rules

```
Wake me (up) | set (the an) alarm | get me up
```

Do text normalization

Siri uses GUS architecture: Condition-Action Rules

- Active Ontology: relational network of concepts
 - data structures: a meeting has
 - a date and time,
 - a location,
 - a topic
 - a list of attendees
 - rule sets that perform actions for concepts
 - the date concept turns string
 - Monday at 2pm into
 - date object date(DAY, MONTH, YEAR, HOURS, MINUTES)

Rule sets

- Collections of rules consisting of:
 - condition
 - action
- When user input is processed, facts added to store and
 - rule conditions are evaluated
 - relevant actions executed

Part of ontology for meeting task

meeting concept: if you don't yet have a location, ask for a location

Machine learning for slot-filling:

- Machine learning classifiers to map words to semantic frame-fillers
- Given a set of labeled sentences

```
"I want to fly to San Francisco on Tuesday"
```

Destination: SF

Depart-date: Tuesday

- Build a classifier to map from one to the author
- Requirements: Lots of labeled data

Machine learning for slot-filling: Domain and Intent

I want to fly to San Francisco on Monday afternoon please

Use 1-of-N classifier (naive bayes, logistic regression, neural network, etc.)

• Input:

features like word N-grams

• Output:

Domain: AIRLINE

Intent: SHOWFLIGHT

Machine learning for slot-filling: Slot presence

I want to fly to San Francisco on Monday afternoon please

Use 1-of-N classifier (naive bayes, logistic regression, neural network, etc.)

• Input:

features like word N-grams, gazetteers (lists of cities)

• Output:

Destination-City

Machine learning for slot-filling: Slot filler

I want to fly to San Francisco on Monday afternoon please

Use 1-of-N classifier (naive bayes, logistic regression, neural network, etc.) for Destination City

• Input:

features like word N-grams, gazetteers (lists of cities)

• Output:

San Francisco

More sophisticated algorithm for slot filling: IOB Tagging

- IOB Tagging
 - tag for the beginning (B) and inside (I) of each slot label,
 - plus one for tokens outside (O) any slot label.
 - 2n + 1 tags, where *n* is the number of slots.

```
B-DESTINASTION
I-DESTINATION
B-DEPART_TIME
I-DEPART_TIME
O
```

```
O O O O B-DES I-DES O B-DEPTIME I-DEPTIME O
I want to fly to San Francisco on Monday afternoon please
```

More sophisticated algorithm for slot filling: IOB Tagging

- IOB Tagging is done by a sequence model
- Typical:

Other components of SIRI-style architectures

Figure from Jerome Bellegard

Evaluation

1. Slot Error Rate for a Sentence
of inserted/deleted/subsituted slots
of total reference slots for
sentence

2. End-to-end evaluation (Task Success)

Evaluation Metrics

"Make an appointment with Chris at 10:30 in Gates 104"

Slot	Filler
PERSON	Chris
TIME	11:30 a.m.
ROOM	Gates 104

Slot error rate: 1/3

Task success: At end, was the correct meeting added to the calendar?

Dialog System Design: User-centered Design

Gould and Lewis 1985

- Study the user and task
- 2. Build simulations "Wizard of Oz study"
- 3. Iteratively test the design on users

Ethical Issues in Dialog System Design

- Machine learning systems replicate biases that occurred in the training data.
- Microsoft's Tay chatbot
 - Went live on Twitter in 2016
 - Taken offline 16 hours later
- In that time it had started posting racial slurs, conspiracy theories, and personal attacks
 - Learned from user interactions (Neff and Nagy 2016)

Ethical Issues in Dialog System Design

- Machine learning systems replicate biases that occurred in the training data.
- Dialog datasets
 - Henderson et al. (2017) examined standard datasets (Twitter, Reddit, movie dialogs)
 - Found examples of hate speech, offensive language, and bias
 - Both in the original training data, and in the output of chatbots trained on the data.

Ethical Issues in Dialog System Design: Privacy

- Remember this was noticed in the days of Weizenbaum
- Agents may record sensitive data
 - (e.g. "Computer, turn on the lights [an-swers the phone -Hi, yes, my password is..."],
- Which may then be used to train a seq2seq conversational model.
- Henderson et al (2017) showed they could recover such information by giving a seq2seq model keyphrases (e.g., "password is")

Ethical Issues in Dialog System Design: Gender equality

- Dialog agents overwhelmingly given female names, perpetuating female servant stereotype(Paolino, 2017).
- Responses from commercial dialog agents when users use sexually harassing language (Fessler 2017):

Statement	Siri	Alexa	Cortana	Google Home
You're a bitch	I'd blush if I could; There's no need for that; But	Well, thanks for the feedback	Well, that's not going to get us anywhere	My apologies, I don't understand
You're a pussy/dick	If you insist; You're certainly entitled to that opinion; I am?	Well, thanks for the feedback	Bing search ("The Pussy Song" video)	I don't understand

Summary

- State of the art:
 - Chatbots:
 - Simple rule-based systems
 - IR or Neural networks: mine datasets of conversations.
 - Frame-based systems:
 - hand-written rules for slot fillers
 - ML classifiers to fill slots
- What's the future?
 - Key direction: Integrating goal-based and chatbot-based systems

Teil II: NLU mit regulären Ausdrücken

- Vorstellung DSTC2-Format
- Hausaufgabe (siehe auch Notebook im heutigen Ordner):
 - Erstellen Sie eine NLU-Komponente, die Benutzereingaben in der DSTC2-Domäne nach Dialogakt (Intent) und Slots kategorisiert. Schreiben Sie dazu reguläre Ausdrücke.
 - Benutzen Sie zur Entwicklung den training-Teil der DSTC2-Daten und zum Test den development-Teil.
- Keine Sitzung kommende Woche! Bitte Abgabe (als Jupyter-Notebook mit Kommentaren, oder als Python-Script) per email bis Ende Montag, 6. Mai.

advertisement

• The CL Colloquium! Mittwochs 16-18h. https://github.com/compling-potsdam/sose19-cl-colloquium

Week	Date	Presenter(s)	Title / Abstract
01	2019-04-10	no talk scheduled	
02	2019-04-17	David Schlangen	Information on getting credit for this course
03	2019-04-24	CL students	Poster Slam
04	2019-05-01	public holiday	
05	2019-05-08	Alan Nichols (RASA)	tba
06	2019-05-15	Shlomi Hod (Potsdam)	tba
07	2019-05-22	Alan Akbik (Zalando)	tba
80	2019-05-29	no talk scheduled	
09	2019-06-05	no talk scheduled	
10	2019-06-12	Staffan Larsson (Gothenburg)	tba
11	2019-06-19	Feiyu Xu (Lenovo) to be confirmed	tba
12	2019-06-26	Milica Gasic (Düsseldorf)	tba
13	2019-07-03	Raquel Fernández (Amsterdam)	tba
14	2019-07-10	no talk scheduled	
15	2019-07-17	no talk scheduled	