

Busan science high school

2023 Ocean ICT Festival 2023 **BOIF**

B

Youtube 영상 QR

노이즈 캔슬링을 이용한 해양 소음 저감

1. 작품 목적

<러시아 공사관> 3115 이상민 3116 장현준

해양 생태계에는 많은 해양생물이 살고 있다. 해양생물은 물속에서 소리에 의존해 생활 하는데, 예를 들어 고래류는 음파를 통해 길을 찾거나 다른 개체와 소통하고, 흰동가리는 치어일 때 앞을 못 보는 상태로 바다를 표류하면서 소리에 의존해 서식할 만한 산호초를 찾는다. 그러나 최근 인간이 만드는 소음이 해양생물의 삶에 필수적인 소리의 전달을 방 해하고, 해양생물에게 소음공해로 작용해 기존 서식지에서 생물들을 쫓아내는 경우가 발 생하고 있다. 이런 해양 소음공해는 해양생물의 행동, 생리적 특성, 생식활동을 변화시키 고 심하면 죽음을 유발할 수 있다. 따라서 우리는 이번 Ocean ICT 프로젝트를 통해서 해 양생물에 유해한 소음공해를 파악하고, 노이즈 캔슬링을 통해 각종 소음을 저감시키고자 한다.

2. 융합 분야

수학의정석 수학 I 홍성대지음 수학

3. 이론적 배경

가. 푸리에 변환

푸리에 변환은 음파 신호를 여러 진동수의 성분으로 분해하기 위해 사용되는 수학적 기법이다. 우리의 프로젝트에서는 입력 받은 음성 파일을 푸리에 변환을 통해 데이터화 시킴으로써 알 고리즘이 진행된다.

나. 액티브 노이즈 캔슬링

액티브 노이즈 캔슬링은 마이크에서 주변의 소리를 받아오고 소리에 대한 파동의 위상을 반대로 반전시킨 후, 반전시킨 소리 를 스피커로 쏘아 주변의 소음에 상쇄 간섭을 일으켜 소음을 저 감시키는 기술이다.

4. 전체 알고리즘

#1 소음에 해당하는 음성 파일을 푸리에 변환 을 통해 주파수 형태로 저장 # 데이터 저장을 위한 빈 데이터프레임 생성

```
writer = pd.ExcelWriter('data.xlsx',engine='openpyxl')
# 음성 파일 로드
for foldername in folder:
   for filename in os.listdir(foldername):
       if filename.endswith(".mp3"):
          file_path = os.path.join(foldername, filename)
          data, sample_rate = librosa.load(file_path)
          # 푸리에 변환 계산
          Y = np.fft.fft(data) / len(data)
           # 주파수 축 생성
          frg = np.fft.fftfreg(len(data), d=1/sample_rate)
          # 양쪽 반대편 주파수를 대칭으로 만들기
          Y = Y[:len(data) // 2]
          Y = np.abs(Y)
          frq = frq[:len(data) // 2]
          max_Y = np.max(Y)
          Y = (Y/max_Y)*max_value
           # 특정 크기 이상의 주파수 추출
           threshold = 0.003 # 추출하려는 최소 크기
           indices = np.where(np.abs(Y) >= threshold) # 특정 크기 이상의 주파수에 해당하는 인덱스 추출
           frequencies = frq[indices] # 주파수 성분에 해당하는 주파수 값 추출
           magnitudes = np.abs(Y[indices]) # 주파수 성분 크기 추출
           Xcoordinate=np.append(Xcoordinate,np.array(frequencies))
           Ycoordinate=np.append(Ycoordinate,np.array(magnitudes))
      x=Xcoordinate
      y=Ycoordinate
       Xcoordinate=np.delete(Xcoordinate, np.where(Xcoordinate>=0))
       Ycoordinate=np.delete(Ycoordinate, np.where(Ycoordinate>=0))
       # 데이터프레임에 데이터 추가
       df = pd.DataFrame({'Frequency': x, 'Magnitude': y})
       # 데이터프레임을 엑셀 파일로 저장
       df.to_excel(writer, sheet_name=filename, index=False, encoding='utf-8')
      writer.save()
       df.drop(df.index, inplace=True)
```

#3 감지한 음성이 소음에 해당할 경우, 상쇄 파 동 발생(노이즈 캔슬링)

```
Y = np.fft.fft(data) / len(data)
   frq = np.fft.fftfreq(len(data), d=1/sample_rate)
   Y = Y[:len(data) // 2]
   Y=np.abs(Y)
   frq = frq[:len(data) // 2]
   # 역푸리에 변환 수행
   ifft_result = np.fft.ifft(Y)
   \max Y = np.\max(Y)
   Y = (Y/max_Y)*max_value
   # 특정 크기 이상의 주파수 추출
   threshold = 0.003 # 추출하려는 최소 크기
   indices = np.where(np.abs(Y) >= threshold) # 특정 크기 이상의 주파수에 해당하는 인덱스 추출
   frequencies = frq[indices] # 주파수 성분에 해당하는 주파수 값 추출
   magnitudes = np.abs(Y[indices]) # 주파수 성분 크기 추출
   Xcoordinate = np.append(Xcoordinate,np.array(frequencies))
   Ycoordinate = np.append(Ycoordinate,np.array(magnitudes))
else: continue
x = Xcoordinate
y = Ycoordinate
Xcoordinate = np.delete(Xcoordinate, np.where(Xcoordinate >= 0))
Ycoordinate = np.delete(Ycoordinate, np.where(Ycoordinate >= 0))
#모든 주파수 성분을 합산하여 파동 함수의 방정식 구성
wave_function = 0
offset_function1 = 0
distruc = 0
T = np.linspace(0, 60, len(ifft_result))
t = symbols('t')
while True:
   for i in range(len(x)):
       wave_equation = y[i] * sin(float(2) * pi * x[i] * t + rd.random())
       wave_equation1 = wave_equation.subs(t,T[i])
       distrucsquare = round((ifft_result[i] + wave_equation1),3)**2
       wave_function += wave_equation
       offset_equation = round(y[i]) * sin(float(2) * round(pi) * round(x[i]) * t + round(rd.random()))
       offset_equation1 = offset_equation.subs(t,round(T[i]))
       offset_function1 += offset_equation1
       wave_equation = 0
       offset_equation = 0
       distruc += distrucsquare
   MSE = distruc / Ien(x)
   offset_function = (-1)*wave_function
   wave_function = 0
   distruc = 0
   if MSE < 10**(-5):
       print(f"<<{filename}의 역위상 파동 함수 방정식>>₩n", offset_function)
       print("MSE:", MSE)
       break
       offset_function1 = 0
       cont inue
```

#2 감지한 음성의 소음 여부 판단 # Excel 파일 경로

```
file_path = 'data.xlsx'
 # Excel 파일에서 모든 시트 읽어오기
xls = pd.ExcelFile(file path)
 sheet_names = xls.sheet_names
 for sheet_name in sheet_names:
    word.append(sheet_name)
    df = pd.read_excel(file_path, sheet_name=sheet_name)
    # Frequency 열의 데이터를 x 축으로 설정
    x = df['Frequency']
     # Amplitude 열의 데이터를 v 축으로 설정
    y = df['Magnitude']
    # 선형근사
    plt.scatter(x, y)
    plt.plot(X,y_pred,c='r')
    plt.xlabel('Frequency')
    plt.ylabel('Magnitude')
    plt.xlim([0,2500])
    plt.ylim([0.003,0.0105])
    plt.title(sheet_name) # 시트 이름으로 그래프 제목 설정
    plt.show()
     if len(x) > len(y_pred):
        y1 = y[:len(y_pred)]
        y_pred1 = y_pred
    else:
        y_pred1 = y_pred[:len(x)]
    # 근사값 계산 및 근평균오차 계산
    mean_squared_error = np.mean((y1 - y_pred1) ** 2) # 근평균오차 계산
    error_difference = abs(Posterror-mean_squared_error)
    print("Mean Squared Error:", mean_squared_error)
    print("Error Difference:",error_difference)
    errors.append(error_difference)
    print('-'*70)
print('*'*70,'₩n₩n')
a = errors.index(min(errors))
b = word[a]
 if b in os.listdir(folder_path11):
    whatdidyousay.append(b)
else : continue
errors.clear()
                                       # 역위상 음파 생성 및 출력
offset_function_np = lambdify(t,offset_function, modules=["numpy"])
                                                     [['airguns.mp3']
audio_data = offset_function_np(T)
```


print("******음파 발생 시작******") sd.play(audio_data, sample_rate)

print("******음파 발생 종료******")

-0.00303056132001194*sin(780.70770527317*pi*t + 0.331475274922831) - 0.00319502444017386*sin(784.254624230461*pi*t + 0.07057402190 87883) - 0.00371658066083999*sin(833.371741095548*pi*t + <math>0.356048459942178) - 0.00324970079469514*sin(836.880106585911*pi*t + <math>0.609754674863154) - 0.00316466138911196*sin(837.728282858307*pi*t + 0.74631676925624) - 0.00315966514057746*sin(838.730672998411*pi*t + 0.0415883350812709) - 0.00350963203281544*sin(866.527722652828*pi*t + 0.496027610712097) - 0.00320948601937043*sin(882.02621635751* pi*t + 0.360856589850208) - 0.00550848060030925MSE: 9.e-6

4. 기대효과

- 1. 해양소음을 파악하여, 해양생물의 서식지를 보호하는 방법을 모색해볼 수 있다.
- 2. 프로그램을 이용한 장치를 제작해 실제 해양에서 발생하는 소음을 제거할 수 있을 것이다.
- 3. 노이즈캔슬링의 원리를 적용해 실생활에서 발생하는 다양한 소음공해를 저감시키는 프로그램을 제작할 수 있을 것이다.

5. 고찰 및 소감

보고자 한다.

장현준 해양 소음 관련 데이터를 수집하는 등 정보과학 시간에 학습했던 지식을 활용함으 로써 바다 생태계를 보호하고, 더 나아가 양식장 등 실제 어업 현장에서 큰 도움이 될 수 있는 기술에 대해 알아보고 실제로 만들어 보았다는 점이 뿌듯했다. 이번 프 로젝트를 더 확장시켜 아두이노 등의 하드웨어로 구현을 하는 등 후속 연구를 해

역위상 음파를 이용해 외부소음을 차단하는 노이즈 캔슬링의 원리를 적용

해 해양소음을 저감 해보자는 아이디어로 시작해서 음성인식 기술까지 적 용하게 된 탐구 과정이 재미있었다. 수학과 물리적 원리를 적용해 역위상 파동함수를 만들어내는 결과까지 성공적으로 얻어낸 것 같아서 의미 있었 던 프로젝트였다. 파동함수가 복잡해 위상차를 근사적으로 구해서 정확한 음파를 만들어내지는 못한 점이 아쉽고, 후속연구로 보다 정확한 결과를 실 제로 출력하는 장치를 만들어 볼 것이다.