August 23 - August 29, 2019 Maribor, Slovenia Day 1 Tasks

Covering
Greek (GRC)

T - Covering

Αν έχετε παίξει ποτέ tetris θα ξέρετε ότι ένα από τα σχήματα του παιχνιδιού είναι το ακόλουθο:

Ονομάζουμε αυτό το σχήμα ένα *T-tetromino*. Η λέξη *tetromino* είναι απλά ένας χαρακτηρισμός ενός συνδεδεμένου γεωμετρικού σχήματος που αποτελείται από 4 κελιά. Το κελί που σημειώνεται με \times , ονομάζεται κεντρικό κελί.

Η Μάνκα σχεδιάζει ένα ορθογώνιο πλέγμα με m γραμμές και n στήλες, και γράφει έναν αριθμό σε κάθε κελί. Οι γραμμές του πίνακα αριθμούνται από το 0 έως το m-1 και οι στήλες από το 0 έως το n-1. Επίσης, σημειώνει κάποια κελιά ως ειδικά, π.χ. χρωματίζοντας τα κόκκινα. Στην συνέχεια, ζητά από τη φίλη της, τη Νίκα, να τοποθετήσει σχήματα T-tetromino πάνω στο πλέγμα με τρόπο ώστε να ικανοποιούνται οι ακόλουθες συνθήκες:

- Το πλήθος των T-tetromino πρέπει να είναι το ίδιο με το πλήθος των ειδικών κελιών. Το κεντρικό κελί του κάθε T-tetromino, πρέπει να βρίσκεται πάνω σε κάποιο ειδικό κελί.
- Κανένα T-tetromino δεν πρέπει να επικαλύπτεται από άλλο.
- Όλα τα T-tetromino πρέπει να βρίσκονται ολόκληρα μέσα στο πλέγμα.

Σημειώστε ότι υπάρχουν 4 πιθανοί προσανατολισμοί για κάθε T-tetromino $(\top, \bot, \vdash, και \dashv)$.

Εάν οι προηγούμενες συνθήκες δεν μπορούν να ικανοποιηθούν, η Νίκα πρέπει να απαντάει *Νο*. Διαφορετικά, εάν μπορούν να ικανοποιηθούν, πρέπει να βρίσκει την τοποθέτηση των Τ-tetromino στο πλέγμα, έτσι ώστε το άθροισμα των αριθμών που βρίσκονται στα κελιά που καλύπτονται από τα Τ-tetromino να είναι το μεγαλύτερο δυνατό. Σε αυτή την περίπτωση, πρέπει να λέει στην Μάνκα το μέγιστο άθροισμα.

Γράψτε ένα πρόγραμμα για να βοηθήσετε την Νίκα, να λύσει τον γρίφο.

Είσοδος

Κάθε γραμμή περιέχει μία ακολουθία από ακέραιους που διαχωρίζονται μεταξύ τους από ένα κενό.

Η πρώτη γραμμή της εισόδου περιέχει τους ακέραιους m και n. Κάθε μία από τις ακόλουθες m γραμμές περιέχει n ακέραιους στο διάστημα [0,1000]. Ο j-οστός ακέραιος στην i-οστή γραμμή αντιπροσωπεύει τον αριθμό που είναι γραμμένος στο j-οστό κελί της i-οστής γραμμής του πλέγματος. Η επόμενη γραμμή περιέχει έναν ακέραιο $k \in \{1,\ldots,mn\}$. Μετά την γραμμή αυτή ακολουθούν k ακόμα γραμμές, κάθε μία από τις οποίες αποτελείται από 2 ακέραιους, $r_i \in \{0,\ldots,m-1\}$ και $c_i \in \{0,\ldots,n-1\}$ που αντιπροσωπεύουν την θέση του i-οστού ειδικού κελιού. (ο δείκτης της γραμμής και ο δείκτης της στήλης αντίστοιχα). Η λίστα με τα ειδικά κελιά δεν περιέχει διπλότυπα.

Έξοδος

Ένας ακέραιος αριθμός που είναι το μέγιστο δυνατό άθροισμα των αριθμών των κελιών που καλύπτονται από τα T-tetromino στο πλέγμα, ή No, αν δεν υπάρχει καμία έγκυρη τοποθέτηση των T-tetromino στο πλέγμα.

Περιορισμοί

• $1 < mn < 10^6$.

Υποπροβλήματα

- 5 points: $k \leq 1000$, για κάθε ζεύγος διακριτών ειδικών κελιών i και j, ισχύει ότι $|r_i-r_j|>2$ ή $|c_i-c_j|>2$.
- 10 points: $k \leq 1000$, για κάθε ζεύγος διακριτών ειδικών κελιών i και j, ισχύει ότι άν $|r_i-r_j| \leq 2$ και $|c_i-c_j| \leq 2$, τότε (r_i,c_i) και (r_j,c_j) τότε εφάπτονται κατά την πλευρά, ή πιο συγκεκριμένα η ακόλουθη πρόταση είναι αληθής $(|r_i-r_j|=1$ και $|c_i-c_j|=0)$ ή ($|r_i-r_j|=0$ και $|c_i-c_j|=1$).
- 10 points: $k \leq 1000$, για κάθε ζεύγος διακριτών ειδικών κελιών i και j, ισχύει ότι αν $|r_i-r_j| \leq 2$ και $|c_i-c_j| \leq 2$, τότε $|r_i-r_j| \leq 1$ και $|c_i-c_j| \leq 1$.
- 10 points: $k \le 1000$, όλα τα ειδικά κελιά βρίσκονται στην ίδια γραμμή.
- 15 points: $k \le 10$.
- 20 points: k < 1000.
- 30 points: κανένας πρόσθετος περιορισμός.

Παράδειγμα 1

Είσοδος

```
5 6
7 3 8 1 0 9
4 6 2 5 8 3
1 9 7 3 9 5
2 6 8 4 5 7
3 8 2 7 3 6
3
1 1
2 2
3 4
```

Έξοδος

```
67
```

Σχόλιο

Για να πετύχει το μέγιστο άθροισμα, η Νίκα μπορεί να τοποθετήσει τα tetromino ως ακολούθως:

- ⊢ στο κελί (1, 1);
- ⊢ στο κελί (2, 2);
- ⊥ στο κελί (3, 4).

Παράδειγμα 2

Είσοδος

```
5 6
7 3 8 1 0 9
4 6 2 5 8 3
1 9 7 3 9 5
2 6 8 4 5 7
3 8 2 7 3 6
3
1 1
2 2
3 3
```

Έξοδος

No