МІНІСТЕРСТВО ОСВІТИ І НАУКИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА»

Лабораторна робота №3 3 дисципліни «Математичні методи дослідження операцій»

Виконав: студент групи КН-210 Бурак Марко

Симплекс-метод у випадку, коли система має вигляд, зручний для його застосування

Завдання:

1.23

$$F = x_1 + x_2 \rightarrow \max$$

 $x_1 + x_2 \ge 1$
 $-5x_1 + x_2 \le 0$
 $-x_1 + 5x_2 \ge 0$
 $x_1 + x_2 \le 6$
 $x_1, x_2 \ge 0$.

Для роз'язання цієї задачі симплекс методом потрібно звести її спочатку до канонічного вигляду.

Канонічний вигляд полягає в тому, щоб функція прямувала до максимуму, а знак нерівності був завжди <=.

Спершу змінив у системі всі знаки нерівності

Результат:

(. 2 3
F=x+x2 = max
X1+X2 > 1
-5x,+x, so
-x,+5x, >0
Y, +x, <g< td=""></g<>
X, X2 >0
7- 7-0 = 18-8
x1+x2-> max
-x,-x2 5-1
-5x,+x2 60
Y,-5X2 60
X,+X266
and to a well

Тепер потрібно змінити нерівності на рівності, використаємо додаткові змінні для вирішення цього,у1,у2, та інші — це додатні числа, які формують рівність.

Тепер можна формувати таблицю коефіцієнтів, для цього застосую код у середовищі октаве.

```
format rat;

c = [-1 -1 0 0 0 0]'; b = [-1 0 0 6]';

A = [
-1 -1 1 0 0 0;
-5 1 0 1 0 0;

1 -5 0 0 1 0;

1 1 0 0 0 1];

basis = 3:6;

B = A(:,basis); cB = c(basis);

T = [B\A B\b; cB'*(B\A)-c' cB'*(B\b)]

col = glpk(c,A,b);

col(1)

col(2)
```

$$max = col(1) + col(2)$$

Цей скрипт дозволяє побачити початкову таблицю, в якості коефіцієнтів, проставляється всі значення при x1 x2 y1 y2 і т.д.

Початкова таблиця:

-1	-1	1	0	0	0	-1
-5	1	0	1	0	0	0
1	-5	0	0	1	0	0
1	1	0	0	0	1	6
-1	-1	0	0	0	0	0

Базисом приймаються такі коефіцієнти, які мають одну 1 та всі 0 у стовпці, у нашому випадку, базис -y1,y2,y3,y4, а останній стовпець - це стовпець вільних членів.

Далі проводимо арифметичні дії з мінімальними елементами, для отримання максимального значення функції.

Продовжуємо алгоритм, допоки не отримаємо оптимального плану, оптимальний план тоді, коли значення у останньому рядку є додатними.

Отримуємо програмно результат х2 та х1.

$$ans = 5$$

 $ans = 1$

Тобто в точці (5,1) функція набуває максимального значення, яке дорівнює $\max = 6$

Розв'язав цей метод вручну, спочатку сформував сипслекс-таблицю, за коефіцієнтами, нижні значення функції, це портилежні коефіцієнти.

Вибираємо провідний елемент, за провідним рядком та стовпцем.

Вибираємо мінімальний від'ємний елемент з нижніх значень, для провідного рядка, та мінімальне додатнє значення тета, для провідного стовпця.

Значення тета визначаємо з ділення значень В на кожен елемент порвідного стовпця.

Цей план не є оптимальним, адже наявні від'ємні значення у індексному рядку, більше того цей план не є допустимим, адже наявний від'ємний елемент у В.

Складаємо 2 таблицю, під нею представлю хід знаходження таблиці.

Також після формуванні симплекс-таблиці вибираю порвідний елемент, як у першій таблиці.

$a_{21} = a_{21} - \frac{-1 \cdot 1}{-1} = -$	-5-1=-6	
az= azs- == =1		
azic= 0	0=000	
a ₂₆ = 0	b2=01=	1
	Cosmo Mil	

$a_{31}=1-\frac{5}{-1}=6$	
$a_{32} = 0 - \frac{-5}{-1} = -5$	
a34 = 0 - 0 = 0	
Qg5 = 1-0=1	
a ₃₆ = 0	
b3=0-5=5	
$\alpha_{4} = 1 - \frac{1}{1} = 0$	
ang = 0 - 1 = 1	
ayy = 0	
@ly5=0	
a'46=1	
by= 6 -= = 5	
22=-1-1=0	
2,20	
2y201=1	
20-1=1	
	10/2

							5.01		,
	B	XI	XL	Xz	Xy	X5-	X6	0	
X2	1	1			0		0	1	,
Xy	-1	(-6)	0	1	1	0	0	(E)	4
X5	1.5	6		-5				5/6	
×6	5	0	0	1.	0	0	10	_	,
-2	(A)	0	0	-16	,0	0	2		
		1							*

Сформуємо 3 симплекс-таблицю, повторивши кроки такі як у другій.

7	$\alpha_{12}=1$
	Ce13=-16=-1+==-5
1	ajy = 1
T (A	Q,5 = 0
	016=0
	a32= 0 = = = = = = = = = = = = = = = =
10	(2'33 = -54 = -4
	(434 2)
	a'9521
	Q36 = 0
	b3=56z4
	03-5-629
	2 (= 2)
	a42=0 by=5
1	auz 21
	Ce 4420
	alus 20
	۵ م م م

Micha	nigpaxyreky ofpunalu Sezucke
piwekhar	ag sel bei znarenne b & gogasni

У індексному рядку наявні від'ємні значення, тому це не є оптимальний план.

4 симплекс таблиця

У цьому випадку всі значення індексного рядка є позитивні тому це оптимальний варіант.

Отримав ті ж значення, які були отримані з виконання програми.

Завдання було виконано правильно.

Висновок: На цій лабораторній роботі, я ознайомився з симплекс методом, за допомогою кого розв'язуються задачі лінійного програмування. Також навчився реалізовувати цей спосіб у середовищі Octave.