CLAIMS

What is claimed is:

	•
1	1. A processing system comprising:
2	an application processor having a first graphics interface;
3	a coprocessor having a second graphics interface to communicate pixel-
4	stream formatted graphics command data and pixel-stream formatted image data
5	with the application processor, the coprocessor also having a display interface to
6	provide display data to a graphics display; and
7	a high-speed datapath between the first graphics interface and the second
8	graphics interface.
1	2. The processing system of claim 1 wherein the first graphics interface
2	comprises first drivers to receive graphics command data from a processing core
3	of the application processor and to format the graphics command data into the
4	pixel-stream formatted graphics command data,
5	wherein the second graphics interface comprises second drivers to
6	reformat the pixel-stream formatted graphics command data back to the graphics
7	command data,
8	wherein the first drivers and the second drivers comprise at least one of
9	either hardware or software components, and
10	wherein the high-speed datapath comprises a pair of conductors to carry
11	high-speed digital differential signals.
1	3. The processing system of claim 1 wherein the coprocessor further
2	comprises a coprocessor processing core responsive to the graphics command data
3	and image data to generate the display data for the graphics display.
1	4. The processing system of claim 1 wherein the coprocessor comprises a
2	graphics accelerator to offload at least some graphics-processing operations from
3	the application processor, the graphics-processing operations including at least
4	one of two-dimensional (2D) graphics operations, three-dimensional (3D)

- 5 graphics operations, multimedia encoding and decoding operations, and display
- 6 refresh operations, the at least some graphics-processing operations indicated by
- 7 the graphics command data.
- 5. The processing system of claim 1 wherein the graphics command data
- 2 comprises commands to instruct the coprocessor to perform graphics-processing
- 3 operations including at least one of two-dimensional (2D) graphics operations,
- 4 three-dimensional (3D) graphics operations, multimedia encoding and decoding
- 5 operations, and display refresh operations.
- 6. The processing system of claim 1 further comprising a system bus and a
- 2 system memory, wherein the application processor has a memory controller to
- access the system memory over the system bus, and wherein the coprocessor has a
- 4 system memory interface to access the system memory over the system bus.
- 7. The processing system of claim 6 wherein the application processor
- 2 further comprises on-die memory therein, the application processor performs a
- 3 DMA transfer of graphics data from the on-die memory to the coprocessor over
- 4 the high-speed datapath, and the application processor refrains from transferring
- 5 the graphics data to the coprocessor over the system bus.
- 8. The processing system of claim 1 wherein the coprocessor is an
- 2 integrated part of the graphics display.
- 9. The processing system of claim 8 wherein the graphics display
- 2 comprises photodiodes to generate image data of a scanned image, and the
- 3 coprocessor converts the image data to pixel-stream formatted image data for
- 4 transfer over the high-speed datapath to the application processor.
- 1 10. The processing system of claim 1 wherein the display data describes
- 2 pixels of the graphics display in a per-pixel format, and wherein the pixel-stream
- 3 formatted image data comprises pixel data in a pixel format, and wherein the
- 4 pixel-stream formatted command data comprises command data in a pixel format.

1	11. The processing system of claim 1 wherein the coprocessor comprises
2	one of a graphics accelerator, a hardware accelerator, or a companion device.
1	12. The processing system of claim 1 further comprising:
2	an omnidirectional antenna to receive communication signals; and
3	a receiver to translate the communication signals to data signals for the
4	application processor, the communication signals including graphics data,
5	the application processor generates the graphics command data from the
6	received graphics data, and transfers the pixel-stream formatted graphics
7	command data over the high-speed datapath to the coprocessor, the coprocessor
8	reformats the pixel-stream formatted graphics command data and generates
9	display data for display by the graphics display.
1	13. The processing system of claim 12 comprising one of either a personal
2	digital assistant (PDA) or a wireless telephone.
1	14. The processing system of claim 1 comprising a general processing
2	system.
1	15. A communication device comprising:
2	an application processor having a first interface;
3	a coprocessor having a second interface to receive formatted command
4	data and formatted output data from the application processor, the coprocessor
5	also having an output interface to provide output data to an I/O device; and
6	a high-speed datapath to communicate the formatted command data and
7	formatted output data between the first interface and the second interface.
1	16. The device of claim 15 wherein the first interface comprises first
2	drivers to receive command data from a processing core of the application
3	processor and to format the command data into the formatted command data,
4	wherein the second interface comprises second drivers to reformat the

5

formatted command data back to the command data,

- 6 wherein the first drivers and the second drivers comprise hardware and 7 software components, and 8 wherein the high-speed datapath comprises a pair of conductors to carry 9 high-speed digital differential signals. 1 17. The device of claim 15 wherein the coprocessor further comprises a 2 coprocessor processing core responsive to the command data and output data to 3 generate the output data for the I/O device. 1 18. The device of claim 15 further comprising a system bus and a system 2 memory, and wherein the application processor has a memory controller to access 3 the system memory over the system bus, and wherein the coprocessor has a system 4 memory interface to access the system memory over the system bus. 1 19. The device of claim 18 wherein the application processor further 2 comprises on-die memory, the application processor performs a DMA transfer of 3 data from the on-die memory to the coprocessor over the high-speed datapath, and 4 the application processor refrains from transferring the data to the coprocessor 5 over the system bus. 1 20. The device of claim 15 wherein the I/O device includes RF circuitry to 2 interface with an antenna for communication of RF signals, the application 3 processor and coprocessor communicate at least one or either digitally encoded 4 data or digitally encoded voice signals over the high-speed datapath, wherein 5 wireless transceiver functions are allocated between the applications processor and
 - 21. A method comprising:

the coprocessor for wireless communications.

- 2 formatting graphics command data into a pixel-stream format;
- 3 sending the pixel-stream formatted graphics command data along with
- 4 pixel-stream formatted image data from a first graphics interface of an application
- 5 processor over a high-speed datapath to a second graphics interface of a
- 6 coprocessor;

6

1

7	reformatting the pixel-stream formatted graphics command data at the
8	coprocessor back to graphics command data; and
9	generating, by the coprocessor, display data for a graphics display from the
10	graphics command data and image data received over the high-speed datapath.
1	22. The method of claim 21 further comprising, prior to sending, buffering
2	the pixel-stream formatted graphics command data, and wherein sending
3	comprises programming a DMA descriptor to send the pixel-stream formatted
4	graphics command data from the buffer along with pixel-stream formatted image
5	data to the coprocessor.
1	23. The method of claim 21 further comprising refraining, by the
2	application processor, from sending the graphics command data along with pixel-
3	stream formatted image data to the coprocessor over a system bus.
1	24. The method of claim 21 wherein generating display data comprises
2	performing graphics-processing operations including at least one of two-
3	dimensional (2D) graphics operations, three-dimensional (3D) graphics
4	operations, multimedia encoding and decoding operations, and display refresh
5	operations.
1	25. A communication system comprising:
2	an omnidirectional antenna to receive communication signals;
3	a receiver to translate the communication signals to data signals; and
4	a processing system having an application processor and a coprocessor
5	coupled by a high-speed datapath,
6	wherein the application processor receives the data signals and generates
7	and sends data-stream formatted graphics command data and data-stream
8	formatted image data to the coprocessor over the high-speed datapath, the
9	conrocessor having a display interface to generate and to provide display data for

graphics display.

10

1	26. The system of claim 25 wherein the first graphics interface comprises
2	first drivers to receive graphics command data from a processing core of the
3	application processor and to format the graphics command data into the data-
4	stream formatted graphics command data,
5	wherein the second graphics interface comprises second drivers to
6	reformat the data-stream formatted graphics command data back to the graphics
7	command data,
8	wherein the first drivers and the second drivers comprise at least one of
9	either hardware or software components, and
10	wherein the high-speed datapath comprises a pair of conductors to carry
11	high-speed digital differential signals.
1	27. The system of claim 25 wherein the coprocessor further comprises a
2	coprocessor processing core responsive to the graphics command data and image
3	data to generate the display data for the graphics display.
1	29. The quotem of alaim 25 wherein the conressor comprises a graphical

28. The system of claim 25 wherein the coprocessor comprises a graphics accelerator to offload at least some graphics-processing operations from the application processor, the graphics-processing operations including at least one of two-dimensional (2D) graphics operations, three-dimensional (3D) graphics operations, multimedia encoding and decoding operations, and display refresh operations, the at least some graphics-processing operations indicated by the graphics command data.