ME951 - Estatística e Probabilidade I

Parte 3

Notas de aula de ME414 produzidas pelos professores **Samara Kiihl**, **Tatiana Benaglia** e **Benilton Carvalho** modificadas e alteradas pela Profa. **Larissa Avila Matos**

Simetria e Assimetria da Distribuição

O formato da distribuição influencia se a média será maior ou menor do que a mediana.

Um valor extremamente grande na cauda direita, puxa a média para a direita.

Em geral, se o formato é:

- perfeitamente simétrico: média = mediana.
- assimétrico à direita: média > mediana.
- assimétrico à esquerda: média < mediana.

Simetria e Assimetria da Distribuição

Dispersão dos Dados

Considere dois conjuntos de dados:

$$A = \{10, 20, 30\}, \ \overline{x}_A = 20, \ s_A = 10.$$

$$B = \{10000, 10010, 10020\}, \ \overline{x}_B = 10010, \ s_B = 10.$$

Ambos têm o mesmo desvio padrão.

Se compararmos as escalas de cada conjunto de dados, poderíamos dizer que o segundo conjunto tem menor dispersão.

Por exemplo, a maior observação do conjunto $B,\,10020,\,$ é0.2% maior do que a menor observação, 10000.

A maior observação do conjunto $A,\ 30,\ {\rm \acute{e}}\ 3$ vezes maior do que a menor observação, 10.

Exemplo

Considere notas de 2 provas:

- Prova 1: 0 a 100. Média da turma: 70. Desvio padrão 1.
- Prova 2: 0 a 10. Média da turma: 7. Desvio padrão 1.

Neste caso, como as escalas são diferentes, não podemos tirar conclusões usando apenas o desvio padrão.

Coeficiente de Variação

Coeficiente de Variação (CV) =
$$\frac{s}{\bar{x}}$$

Exemplo: $A = \{10, 20, 30\}, \overline{x}_A = 20, s_A = 10.$

 $B = \{10000, 10010, 10020\}, \overline{x}_B = 10010, s_B = 10.$

$$CV_A = \frac{s_A}{\overline{x}_A} = 0.5$$
e $CV_B = \frac{s_B}{\overline{x}_B} \approx 0.0009.$

Exemplo: Prova 1: 0 a 100. Média da turma: 70. Desvio padrão 1.

Prova 2: 0 a 10. Média da turma: 7. Desvio padrão 1.

$$CV_1 = \frac{s_1}{\overline{x}_1} = 0.014 \text{ e } CV_2 = \frac{s_2}{\overline{x}_2} \approx 0.14.$$

Usando medidas de posição para descrever dispersão

Média e mediana: medidas de posição central.

Amplitude e desvio padrão: medidas de dispersão.

Há outros tipos de medida de posição para descrever a distribuição dos dados: **quartis** e **percentis**.

Quartis dividem os dados em 4 partes iguais: primeiro quartil (Q_1) , segundo quartil (Q_2) e o terceiro quartil (Q_3) .

O **p-ésimo percentil** é o valor tal que uma porcentagem ${\bf p}$ dos dados ficam abaixo dele.

Quartis

Para obter os quartis:

- Ordene os dados em ordem crescente.
- Encontre a mediana: Q_2 =mediana.
- Considere o subconjunto de dados abaixo da mediana. Q_1 é a mediana deste subconjunto de dados.
- Considere o subconjunto de dados acima da mediana. Q_3 é a mediana deste subconjunto de dados.

Exemplo: Quantidade de sódio (mg) em 20 cereais matinais

Para calcular Q1: calcula-se a mediana considerando apenas as 10 primeiras observações ordenadas:

0, 70, 125, 125,
$$\underbrace{140,150}_{Q_1=145}$$
, 170, 170, 180, **200**

Para calcular Q3: calcula-se a mediana considerando apenas as 10 últimas observações ordenadas:

200, 210, 210, 220,
$$\underbrace{220, 230}_{Q_3=225}$$
, 250, 260, 290, 290

Quartis e Assimetria

Os quartis também fornecem informação sobre o formato da distribuição.

A mediana Q_2 é 14. A distância entre Q_1 e Q_2 é 3, enquanto que a distância entre Q_2 e Q_3 é 4, indicando que a distribuição é assimétrica à direita.

Usando quartis para medir dispersão

A vantagem do uso de quartis sobre o desvio padrão ou a amplitude, é que os quartis são mais resistentes a dados extremos.

Intervalo interquartílico (IQ) =
$$Q_3 - Q_1$$
.

Representa 50% dos dados localizados na parte central da distribuição.

Esquema dos 5 números

Esquema dos 5 números

Notação: $x_{(1)}=$ mínimo, $x_{(n)}=$ máximo, onde $x_{(k)}$ é a k-ésima observação depois de ordenar os dados.

$$Q_2 = \begin{cases} x_{\left(\frac{n+1}{2}\right)}, & \text{se } n \text{ \'e impar} \\ \frac{x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2}+1\right)}}{2}, & \text{se } n \text{ \'e par} \end{cases}$$

Quartis e simetria da distribuição

Para uma distribuição simétrica ou aproximadamente simétrica:

- $Q_2 x_{(1)} \approx x_{(n)} Q_2$
- $Q_2 Q_1 \approx Q_3 Q_2$
- $Q_1 x_{(1)} \approx x_{(n)} Q_3$
- distâncias entre a mediana e Q_1 , Q_3 menores do que as distâncias entre os extremos e Q_1 , Q_3 .

Dados discrepantes (outliers)

Importante: examinar os dados para verificar se há observações discrepantes.

- Média e desvio padrão são muito afetados por observações discrepantes.
- Após detectar a observação discrepante, verificar se não é um erro de digitação ou um caso especial da sua amostra.
- Com poucos dados, podemos detectar um dados discrepante facilmente, apenas observando a sequência ordenada.
- Podemos usar o IQ como um critério mais geral de detecção de dados discrepantes.

Dados discrepantes (outliers)

Uma observação é um potencial outlier se está abaixo de $Q_1 - 1.5 \times IQ$ ou se está acima de $Q_3 + 1.5 \times IQ$.

Dizemos potencial outlier, pois se a distribuição tem cauda longa (à direita ou à esquerda), algumas observações irão cair no critério, apesar de não serem outliers.

O esquema dos 5 números forma a base do gráfico denominado ${f boxplot}.$

Primeiro passo: construir uma caixa que vai do primeiro ao terceiro quartil.

Segundo passo: construir uma linha no meio da caixa, na altura da mediana (Q_2) .

Terceiro passo: definir os limites para que uma observação seja considerada *outlier*.

Quarto passo: desenhar uma linha que saia da parte inferior da caixa e desça até o menor valor dos dados, mas que não ultrapasse os limites do critério de outliers. Desenhar uma linha que saia da parte superior da caixa e suba até o maior valor dos dados, mas que não ultrapasse os limites do critério de outliers. Outliers, quando existem, aparecem indicados separadamente no gráfico.

Exemplo: População, em 1000 habitantes, dos estados brasileiros

RR	325	MS	2079	PB	3444	PR	9564
AP	478	MT	2505	GO	5004	RS	10188
AC	558	RN	2777	SC	5357	BA	13071
TO	1158	AM	2813	MA	5652	RJ	14392
RO	1380	AL	2823	PA	6193	MG	17892
$_{ m SE}$	1785	PI	2844	\mathbf{CE}	7431	$_{\mathrm{SP}}$	37033
DF	2052	ES	3098	PE	7919		

27 estados, n é impar, mediana é $x_{\left(\frac{n+1}{2}\right)}=x_{\left(\frac{27+1}{2}\right)}=x_{(14)}=3098$ (ES).

A metade inferior dos dados: 13 observações. A mediana deste subconjunto é $Q_1=x_{(7)}=2052$ (DF).

A metade superior dos dados: 13 observações. A mediana deste subconjunto é $Q_3=x_{(21)}=7919$ (PE).

Exemplo: População dos estados brasileiros

$$IQ = Q_3 - Q_1 = 7919 - 2052 = 5867$$

 $Q_1 - 1.5 \times IQ = -6748.5$
 $Q_3 + 1.5 \times IQ = 16720$

Temos outliers?

População (em 1000 habitantes)

Exemplo: Quantidade de sódio (mg) em 20 cereais matinais

0, 70, 125, 125,
$$\underbrace{140, 150}_{Q_1=145}$$
, 170, 170, 180, **200 200**, 210, 210, 220, $\underbrace{220, 230}_{Q_3=225}$, 250, 260, 290, 290

$$IQ = Q_3 - Q_1 = 225 - 145 = 80$$

 $Q_1 - 1.5 \times IQ = 145 - 1.5 \times 80 = 25$
 $Q_3 + 1.5 \times IQ = 225 + 1.5 \times 80 = 345$

Exemplo: Sódio em cereais matinais

Outlier: observação menor do que 25 ou maior do que 345.

As linhas pontilhadas denotam o mínimo/máximo dos dados que estão na região entre $Q_1-1.5\times IQ$ e $Q_3+1.5\times IQ$.

A observação máxima dos dados, 290, está no intervalo, então a linha do lado direito vai até 290.

A observação mínima dos dados, 0, está fora do intervalo (outlier=0).

Desconsiderando o outlier, o valor mínimo dos dados é 70, que está no intervalo. Portanto, a linha do lado direito vai até 70.

Exemplo: Sódio em cereais matinais

Boxplot x Histograma

Boxplot não substitui o histograma e vice-versa.

Por exemplo, se a distribuição é bimodal, não observamos isso pelo boxplot.

Exemplo: Peso (em libras) de 64 alunas de educação física

$$\bar{x} = 133, Q_1 = 119, \text{mediana} = 131.5, Q_3 = 144.$$

Como interpretar os quartis?

- \blacksquare 25% das alunas pesa até 119 libras.
- \blacksquare 25% das alunas pesa mais do que 144 libras.
- \blacksquare 75% das alunas pesa até 144 libras.

Você acredita que a distribuição seja simétrica?

$$Q_2 - Q_1 \approx Q_3 - Q_2$$
 (?)
 $Q_2 - Q_1 = Q_3 - Q_2$
 $131.5 - 119 = 12.5$ $144 - 131.5 = 12.5$

Exemplo: Taxa de desemprego na UE em 2003

```
Taxa
               Pais
    8.3
            Bélgica
    6.0
          Dinamarca
    9.2
           Alemanha
    9.3
             Grécia
  11.2
            Espanha
    9.5
6
             França
    6.7
           Portugal
    4.4
            Holanda
9
    3.9
         Luxemburgo
10
   4.6
            Irlanda
11
   8.5
             Itália
12
   8.9
         Finlândia
   4.5
            Áustria
13
    6.0
             Suécia
14
15
   4.8 Reino Unido
```

Qual a amplitude?

 $Q_1, Q_3, \text{ mediana?}$

Desenhe um boxplot.

Exemplo: Taxa de desemprego na UE em 2003

Ordenando os dados:

Qual a amplitude?

$$11.2 - 3.9 = 7.3$$

$$Q_1 = 4.6, Q_3 = 9.2, \text{ mediana} = 6.7.$$

$$IQ = Q_3 - Q_1 = 4.6$$

$$Q_1 - 1.5 \times IQ = -2.3$$

$$Q_3 + 1.5 \times IQ = 16.1$$

O mínimo e o máximo pertencem ao intervalo (-2.3, 16.1), portanto as linhas pontilhadas terminam no máximo (11.2) e no mínimo (3.9).

Exemplo: Taxa de desemprego na UE em 2003

$$Q_1 = 4.6$$
, mediana $(Q_2)=6.7$, $Q_3 = 9.2$ e $IQ = 4.6$

Taxa de Desemprego

Exercício

Deseja-se comparar 3 técnicas cirúrgicas para a extração de dente de siso. Cada uma das técnicas foi aplicada em 20 pacientes e os resultados são apresentados a seguir.

Responda:

- Qual os valores aproximados para a mediana de cada técnica?
- 2 Qual é o intervalo interquartil? Conclusão?
- 3 Discuta a variabilidade do tempo de recuperação em cada técnica.
- 4 Se você é otimista, qual a técnica você escolheria?

