Biodegradable Solid Polymeric Materials (continued)

Last time: chemistry and physical chemistry of degrading polymeric solids for biomaterials

Today: Factors controlling polymer degradation rates

Theory of polymer erosion

Reading: F. von Burkersroda et al., 'Why degradable polymers undergo surface erosion or bulk

erosion,' Biomaterials 23, 4221-4231 (2002)

Supplementary Reading: R.J. Young and P.A. Lovell, "Introduction to Polymers," ch. 4 *Polymer Structure* pp. 241-

309 (crystallization of polymers, Tm, glass transition, etc.)

Last time

Last time

Physical chemistry of hydrolysis: structure influences mechanism of erosion as well as overall rate

Mechanisms of dissolution:

Factors controlling solid polymer degradation rates

(2) Effect of polymer hydrophobicity on solid polymer erosion rate

Figure by MIT OCW.

OH

n = 6: 1,6-bis(o-carboxyphenoxy)hexane (o-CPH)

(3) Steric effects controlling polymer hydrolysis rates

Local structure

Glass transition (Tg)

(4) Production of autocatalytic products

Polyesters:

Hydrolysis rate theory

No acid catalysis:

Relationship to molecular weight (M):

Mechanisms of hydrolysis: polyesters

acid-catalyzed hydrolysis:

Mechanisms of hydrolysis: polyesters

Base-catalyzed hydrolysis:

(saponification)

Nucleophilic substitution at acyl carbon

Rate of chain cleavage

Autocatalysis of chain degradation:

(5) Phase separation

Semicrystalline polymers:

2 (or more) immiscible components:

Crystallinity and Phase Separation Effects.

- •Zong, 1999
- •Shakesheff, K.M., M. C. Davies, C. J. Roberts, S. B. J. Tendler, A. G. Shard, and A. Domb. "In Situ Atomic Force Microscophy Imaging of Polymer Degradation in an Aqueous Environment." *Langmuir* 10 (1994): 4417-4419.

Crystalline regions resist hydrolysis

Figure 4. Selected WAXD profiles for the crystalline (a) PGA and (b) PGA-co-PLA samples during in vitro degradation.

Figure by MIT OCW.

(Zong 1999)

Crystalline regions resist hydrolysis

Figure 10. Schematic diagram of in vitro degradation mechanism in the dual lamellar stacks model of semicrystalline samples.

(Zong 1999)

Figure removed for copyright reasons.

Please see:

Figure 2 in Shakesheff, K. M., M. C. Davies, C. J. Roberts, S. B. J. Tendler, A. G. Shard, and A. Domb. "In Situ Atomic Force Microscophy Imaging of Polymer Degradation in an Aqueous Environment." *Langmuir* 10 (1994): 4417-4419.

(5) Phase separation: Hydrolysis in polymer blends

Blends of hydrophilic and hydrophobic polymers

Amorphous state - miscible

Incompatible crystal lattices

e.g. poly(lactide)/poly(ethylene oxide)

Blends of poly(L-lactide) with poly(ethylene oxide)

Constrained mass loss: PLLA-b-PEO-b-PLLA triblock copolymers

Summary of factors controlling solid polymer degradation rates:

Bulk vs. surface erosion: how do we predict it?

Bulk erosion

Surface erosion

Figures removed for copyright reasons.

Please see:

Fig. 8(b) in Lu, L., C. A. Garcia, and A. G. Mikos. "In Vitro Degradation of Thin Poly(DL-lactic-coglycolic acid) Films." *J Bio Med Mater Res* 46 (1999): 236-44.

Images of Surface Erosion removed due to copyright restrictions.

Fig. 6(d) in Agrawal, C. M., and K. A. Athanasiou. "Technique to Control pH in Vicinity of Biodegrading PLA-PGA Implants." *J Biomed Mater Res* 38 (1997): 105-14.

Göpferich theory of polymer erosion

 If polymer is initially water-insoluble, and hydrolysis is the only mechanism of degradation, then two rates dominate erosion behavior:

Rate of water diffusion into polymer matrix

Figure by MIT OCW.

Rate of chain cleavage

Further Reading

- 1. Gopferich, A. & Langer, R. Modeling of Polymer Erosion. *Macromolecules* **26**, 4105-4112 (1993).
- 2. Gopferich, A. Polymer bulk erosion. *Macromolecules* **30**, 2598-2604 (1997).
- 3. Gopferich, A. Mechanisms of polymer degradation and erosion. *Biomaterials* **17**, 103-14 (1996).
- 4. von Burkersroda, F., Schedl, L. & Gopferich, A. Why degradable polymers undergo surface erosion or bulk erosion. *Biomaterials* **23**, 4221-31 (2002).
- 5. Agrawal, C. M. & Athanasiou, K. A. Technique to control pH in vicinity of biodegrading PLA-PGA implants. *J Biomed Mater Res* **38**, 105-14 (1997).
- 6. Lu, L., Garcia, C. A. & Mikos, A. G. In vitro degradation of thin poly(DL-lactic-co-glycolic acid) films. *J Biomed Mater Res* **46**, 236-44 (1999).
- 7. Tsuji, H. & Nakahara, K. Poly(L-lactide). IX. Hydrolysis in acid media. *Journal of Applied Polymer Science* **86**, 186-194 (2002).
- 8. Atkins, P. *The Elements of Physical Chemistry* (W.H. Freeman, New York, 1997).
- 9. Pitt, C. G., Marks, T. A. & Schindler, A. in *Controlled Release of Bioactive Materials* (ed. Baker, R. W.) 19-43 (Academic Press, New York, 1980).
- 10. Albertsson, A. C. & Varma, I. K. in Degradable Aliphatic Polyesters 1-40 (2002).
- 11. Stridsberg, K. M., Ryner, M. & Albertsson, A. C. in *Degradable Aliphatic Polyesters* 41-65 (2002).
- 12. Barrera, D. A., Zylstra, E., Lansbury, P. T. & Langer, R. Synthesis and RGD peptide modification of a new biodegradable copolymer: poly(lactic acid-co-lysine). *J. Am. Chem. Soc.* **115**, 11010-11011 (1993).
- 13. Barrera, D. A., Zylstra, E., Lansbury, P. T. & Langer, R. Copolymerization and degradation of poly(lactic acid-colysine). *Macromolecules* **28**, 425-432 (1995).
- 14. Cook, A. D. et al. Characterization and development of RGD-peptide-modified poly(lactic acid-co-lysine) as an interactive, resorbable biomaterial. *J Biomed Mater Res* **35**, 513-23 (1997).
- 15. Ivin, K. J. *Ring-opening polymerization* (Elsevier, London, 1984).
- 16. Burkoth, A. K. & Anseth, K. S. A review of photocrosslinked polyanhydrides: in situ forming degradable networks. *Biomaterials* **21**, 2395-404 (2000).
- 17. Burkoth, A. K., Burdick, J. & Anseth, K. S. Surface and bulk modifications to photocrosslinked polyanhydrides to control degradation behavior. *J Biomed Mater Res* **51**, 352-9 (2000).