Funções Logaritmicas e Exponenciais

Irineu Lopes Palhares Junior

FCT/UNESP, irineu.palhares@unesp.br

Conteúdos

Informações sobre os conteúdos de limite e continuidade

- 1 Potência com exponente real
- 2 Logaritmo
- 3 O limite $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x$

Potência com exponente real

Em estudos passados definimos potência com expoente racional, $a^{\frac{m}{n}} = \sqrt[n]{a^m}$, e estudamos suas principais propriedades. Nesta seção, vamos definir potência com expoente real.

Observamos, inicialmente, que se f e g são duas funções definidas e contínuas em $\mathbb R$ tais que f(r)=g(r) para todo racional r, então f(x)=g(x) para todo real x, isto é, se duas funções contínuas em $\mathbb R$ coincidem nos racionais, então elas são iguais.

Seja, agora, a>0 e $a\neq 1$ um real qualquer. Se existirem funções f e g definidas e contínuas em $\mathbb R$ e tais que para todo racional r

$$f(r) = a^r e g(r) = a^r$$
 (1)

então f(x) = g(x) para todo x real. Isto significa que poderá existir no máximo uma função definida e contínua em \mathbb{R} e que coincide com a^r em todo racional r. O próximo teorema, garante-nos a existência de uma tal função.

Teorema

Theorem

Seja a > 0 e $a \neq 1$ um real qualquer. Existe uma única função f, definida e contínua em \mathbb{R} , tal que $f(r) = a^r$ para todo racional r.

Definição

Definition

Sejam a>0 e $a\neq 1$, e f como no teorema anterior. Definimos a potência de base a e expoente real x por

$$a^{x} = f(x). (2)$$

A função f, definida em \mathbb{R} , e dada por $f(x) = a^x$, a > 0 e $a \neq 1$, denomina-se função exponencial de base a.

Propriedades da função exponencial

Sejam a > 0, b > 0, $x \in y$ reais quaisquer; provaremos as seguintes propriedades:

- **1** $a^{x}a^{y} = a^{x+y}$.
- **2** $(a^x)^y = a^{xy}$.
- $(ab)^{x} = a^{x}b^{x}.$
- Se a > 1 e x < y, então $a^x < a^y$.
- **5** Se 0 < a < 1 e x < y, então $a^x > a^y$.

Propriedades

A propriedade (4) conta-nos que a função exponencial $f(x) = a^x$, a > 1, é estritamente crescente em \mathbb{R} . A (5) conta-nos que $f(x) = a^x$, 0 < a < 1, é estritamente decrescente em \mathbb{R} .

O gráfico de $f(x) = a^x$ tem o seguinte aspecto:

Figura 1: Comportamento da função exponencial

Exemplos

Example

Avalie $2^{\sqrt{2}}$

Example

Esboce o gráfico de

- a) $f(x) = 2^x$
- b) $f(x) = (\frac{1}{2})^x$

Example

Suponha a > 1. Verifique que

- a) $\lim_{x\to+\infty} a^x = +\infty$
- b) $\lim_{x\to-\infty} a^x = 0$

Teorema

Theorem

Sejam a > 0, a \neq 1, e β > 0 dois reais quaisquer. Então existe um única γ real tal que

$$\mathbf{a}^{\gamma} = \beta \tag{3}$$

Logaritmo

Sejam a>0, $a\neq 1$, e $\beta>0$ dois reais quaisquer. O único número real γ tal que

$$a^{\gamma} = \beta \tag{4}$$

denomina-se logaritmo de β na base a e indica-se por $\gamma = \log_a \beta$. Assim

$$\gamma = \log_{\mathbf{a}} \beta \Leftrightarrow \mathbf{a}^{\gamma} = \beta \tag{5}$$

Observe: $\log_a \beta$ somente está definido para $\beta > 0$, a > 0 e $a \neq 1$.

Exemplo

Example

Calcule.

- a) $\log_2 4$
- b) $\log_2 \frac{1}{2}$
- c) log₅ 1

Observação

Observação importante

$$a^{\gamma} = \beta \Leftrightarrow \gamma = \log_a \beta \tag{6}$$

assim

$$a^{\log_a \beta} = \beta \tag{7}$$

O logaritmo de β na base a é o expoente que se deve atribuir à base a para reproduzir β .

O logaritmo na base e é indicado por ln, assim, ln = \log_e . Temos então

$$y = \ln x \Leftrightarrow e^y = x. \tag{8}$$

Da observação acima, segue que, para todo x > 0

$$e^{\ln x} = x. (9)$$

Propriedades dos logaritmos

Sejam a>0, $a\neq 1$, b>0, $b\neq 1$, $\alpha>0$ e $\beta>0$ reais quaisquer. São válidas as seguintes propriedades:

- (Mudança de base)

$$\log_a \alpha = \frac{\log_b \alpha}{\log_b a}.\tag{10}$$

- $\bullet \ \ \mathsf{Se} \ \ \mathsf{0} < \mathsf{a} < 1 \ \mathsf{e} \ \ \alpha < \beta, \ \mathsf{ent} \ \mathsf{ao} \ \ \mathsf{log}_{\mathsf{a}} \ \alpha > \mathsf{log}_{\mathsf{a}} \ \beta.$

Observação

Seja a>0, $a\neq 1$. A função f dada por $f(x)=\log_a x$, x>0, denomina-se função logarítmica de base a.

A propriedade (5) conta-nos que se a>1, a função logarítmica $f(x)=\log_a x,\, x>0$, é estritamente crescente. Da propriedade (6) segue que se 0< a<1, a função logarítmica $f(x)=\log_a x,\, x>0$, é estritamente decrescente.

Exemplos

Example

Esboce o gráfico

- a) $f(x) = \log_2 x$.
- b) $f(x) = \log_{\frac{1}{2}} x$.

Example

Suponha a > 1. Calcule e justifique.

- a) $\lim_{x\to +\infty} \log_a x$.
- b) $\lim_{x\to 0^+} \log_a x$.

O limite $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x$

Já provamos que a sequência de termo geral $a_n = \left(1 + \frac{1}{n}\right)^n$ converge para o número e, isto é,

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n = e. \tag{11}$$

Vamos provar, agora, que

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = e. \tag{12}$$

Sejam n > 0 um natural qualquer e x > 0 um real qualquer.

$$n \le x < n+1 \Rightarrow \frac{1}{n} \ge \frac{1}{x} > \frac{1}{n+1} \Rightarrow 1 + \frac{1}{n} \ge 1 + \frac{1}{x} > 1 + \frac{1}{n+1}$$
 (13)

Continuação dos cálculos

daí

$$n \le x < n+1 \Rightarrow \left(1 + \frac{1}{n}\right)^{n+1} > \left(1 + \frac{1}{x}\right)^x > \left(1 + \frac{1}{n+1}\right)^n, \quad (14)$$

ou seja,

$$n \le x < n+1 \Rightarrow \left(1 + \frac{1}{n}\right)^n \frac{n+1}{n} > \left(1 + \frac{1}{x}\right)^x > \left(1 + \frac{1}{n+1}\right)^{n+1} \frac{n+1}{n+2}.$$
(15)

Como $\lim_{n\to+\infty}\left(1+\frac{1}{n}\right)^n\frac{n+1}{n}=\lim_{n\to+\infty}\left(1+\frac{1}{n+1}\right)^{n+1}\frac{n+1}{n+2}=e$, segue de (15) que

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = e. \tag{16}$$

Exemplos

Example

Verifique que $\lim_{x\to-\infty} \left(1+\frac{1}{x}\right)^x = e$.

Example

Verifique que

- a) $\lim_{h\to 0^+} (1+h)^{\frac{1}{h}} = e$
- b) $\lim_{h\to 0^-} (1+h)^{\frac{1}{h}} = e$.

Example

Mostre que $\lim_{h\to 0} \frac{e^h-1}{h} = 1$.