Lista 2 Entregar 1, 4, 5, 6 e 7

- 1. Quais dos seguintes conjuntos são subespaços vetoriais? Em caso afirmativo exiba uma base deste subespaço.
 - (a) Vetores do plano 2x + y z = 0
 - (b) Combinações lineares de $u=(1,0,-1), \ v=(-1,1,1)$ e w=(-1,3,1) , ou seja, $ger(u,v,w)=\{z\in\mathbb{R}^3/z=a\cdot u+b\cdot v+c\cdot w\}$
 - (c) Vetores de \mathbb{R}^n cuja primeira coordenada é igual a 1.
 - (d) Vetores de \mathbb{R}^n cujas coordenadas formam uma progressão aritmética
 - (e) Vetores de \mathbb{R}^n cujas coordenadas formam uma progressão geométrica
 - (f) Matrizes $m \times n$ anti-simétricas (A é anti-simétrica se $A^T = -A$)
 - (g) Os polinômios de grau até 3 que têm pelo menos duas raízes $x_0 = 1$ e $x_1 = 2$
- 2. (Poole seção 2.4) Exercícios: 1, 7, 20, 42
- 3. (Poole seção 3.5) Exercícios: 13, 15, 25, 27, 35, 37
- 4. Um subconjunto V de um espaço vetorial E é chamado de variedade afim quando a reta que une dois pontos quaisquer de V está contida em V. Ou seja, $x, y \in V$, $t \in \mathbb{R} \Rightarrow (1-t)x + ty \in V$.
 - (a) Mostre que o conjunto das soluções de um sistema linear $A \cdot x = b$ é uma variedade afim.
 - (b) A translação de um conjunto $C \subset E$ pelo vetor $u \in E$ é o conjunto $C + u = \{v + u, v \in C\}$. Mostre que a translação de uma variedade afim V por -u, com $u \in V$, é um subespaço de E.
 - (c) Mostre que o conjunto das soluções de $A \cdot x = b$ é $N(A) + x_p$, onde $N(A) = \{x/A \cdot x = 0\}$ e x_p é um vetor qualquer que satisfaz $A \cdot x = b$.
- 5. Exiba matrizes 2×2 com os seguintes núcleos (espaço nulo) e imagens (espaço coluna):
 - (a) Núcleo: reta y = x. Imagem: reta y = 2x
 - (b) Núcleo: reta y = 3x. Imagem: também a reta y = 3x.
- 6. Se $\beta = [u, v]$, onde u = (1, 1) e v = (2, 1) e w tem coordenadas (3, 5) na base β , quais são as coordenadas de w na base canônica?
- 7. O arquivo MatrizIncidencia.csv que acompanha esta lista contém a matriz de incidência de uma rede direcionada (grafo), onde cada linha representa uma aresta e cada coluna um vértice. Se $A_{ij} = 1$ então a aresta i se inicia no vértice j. Se $A_{ij} = -1$ então a aresta i termina no vértice j. Deste modo em cada linha i há apenas uma entrada igual a 1 e uma entrada igual a -1 e todos demais elementos desta linha são iguais a zero.
 - (a) Encontre uma base para o núcleo da matriz de incidência. Você pode usar um pacote computacional, claro!
 - (b) Descreva quantas componentes conexas esta rede possui e quais são os vértices que pertencem a cada componente.