第九周: 矩阵函数 (II) +内积空间 (I)

参考: 线性代数与几何(下)第十一章 11.3 第十章 10.1, 10.3 或高等代数学 第七章 7.8 第九章 9.1-9.2

矩阵指数函数

性质1. 设 $A, B \in M_n(\mathbb{C}), \exists AB = BA, \ \mathbb{M}e^A \cdot e^B = e^{A+B}.$

性质2. 给定Jordan块
$$J_0 = \lambda_0 I_r + N = \begin{pmatrix} \lambda_0 & 1 & & \\ & \lambda_0 & 1 & & \\ & & \ddots & \ddots & \\ & & & \ddots & 1 \\ & & & & \lambda_0 \end{pmatrix}_{r \times r}$$
, 则
$$e^{tJ_0} = e^{\lambda_0 t} (I_r + tN + \frac{t^2}{2}N^2 + \dots + \frac{t^{r-1}}{(r-1)!}N^{r-1}).$$

内积空间

定义: 设 $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , V 是数域 \mathbb{F} 上的向量空间. V 上一个内积 (inner product)是 $V \times V$ 上一个函数,对于 $(u,v) \in V \times V$,有一个取值 $\langle u,v \rangle \in \mathbb{F}$,满足:

- (1)线性性: $\langle \lambda_1 u_1 + \lambda_2 u_2, v \rangle = \lambda_1 \langle u_1, v \rangle + \lambda_2 \langle u_2, v \rangle$ 对于任意 $\lambda_1 \lambda_2 \in \mathbb{F}$ 和 $u_1, u_2, v \in \mathbb{F}$.
- (2)共轭对称性: $\langle u, v \rangle = \langle v, u \rangle$.
- (3)正定性:对于任意 $u \in \mathbb{F}$, $\langle u, u \rangle \geq 0$. $\langle u, u \rangle = 0$ 当且仅当 u = 0.

内积空间

- **例:** 1. $\forall u, v \in \mathbb{C}^n$,定义 $\langle u, v \rangle = u^T \overline{v}$. 这定义了 \mathbb{C}^n 上一个内积.
 - 2. 设V 是周期 2π 的复值函数全体,这是 \mathbb{C} 上的向量空间. 任意 $f(t), g(t) \in V$,定义

$$\langle f(t), g(t) \rangle = \int_0^{2\pi} f(t) \overline{g(t)} dt$$

这定义了V上一个内积.

内积空间

定义:一个带着内积结构的向量空间称为内积空间.实数域上内积空间称为欧式空间,复数域上的内积空间称为酉空间。

注:一个向量空间可以存在多个内积结构. 例如: \mathbb{C} 上标准内积是 $\langle z_1, z_2 \rangle = z_1 \overline{z_2}$

也可以定义新内积: $\langle z_1, z_2 \rangle = 2z_1\overline{z_2}$.

基本性质

设V是一个内积空间.

- (1) 任意 $v \in V$,定义长度(norm) $||v|| = \sqrt{\langle v, v \rangle}$.
- (2) 两个向量 $u, v \in V$ 是正交垂直的(orthogonal) 如果 $\langle u, v \rangle = 0$.
- (4) 设 $u, v \in V$ 且 $v \neq 0$. 则 存在 $c \in \mathbb{C}$,满足 u = cv + w 且 $\langle v, w \rangle = 0$. (5) 设 $u, v \in V$,则 $|\langle u, v \rangle| \leq ||u|| ||v||$.

标准正交基

定义 设V是一个内积空间, $\mathbf{B} = \{\mathbf{v}_1, \cdots, \mathbf{v}_n\} \subseteq V$ 满足

- (1) 任意 $v \in V$ 是 $\mathbf{v}_1, \dots, \mathbf{v}_n$ 的线性组合;
- (2) 有 $\langle v_i, v_j \rangle = 0$, if $i \neq j$, $\langle v_i, v_j \rangle = 1$, if i = j. 则 $\mathbf{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ 是线性无关的, 称为V 的一组标准正交基.

标准正交基

例1. 考虑带标准内积的酉空间 \mathbb{C}^n , $\mathbf{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ 是标准正交基当且仅当矩阵 $U = (\mathbf{v}_1, \dots, \mathbf{v})$ 是酉矩阵,即 $U^T\overline{U} = I_n$.

例2. 设 $\mathcal{P}_2(\mathbb{R}) = \{a_0 + a_1 x + a_2 x^2 \mid a_i \in \mathbb{R}\}$. 这是一个向量空间,定义内积:

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx.$$

则它成为一个欧式空间. 它有如下标准正交基:

$$\sqrt{\frac{1}{2}}, \sqrt{\frac{3}{2}}x, \sqrt{\frac{45}{8}}(x^2 - \frac{1}{3})$$

标准正交基

性质: 设 $e_1, \dots, e_k \in V$ 是标准正交的一组向量, 令

$$W = \{c_1e_1 + \dots + c_ke_k \mid c_i \in \mathbb{F}\} \subseteq V.$$

给定 $v \in V$, 则 $v_p = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_k \rangle e_k$ 满足

$$v_p \in W, v - v_p \perp W$$

向量 v_p 称为 v 在 W 上投影.

以下错误的陈述是

- 设 $A \in M_n(\mathbb{C}),$ 若 $A^2 = 0, 则 cos A = I_n.$
- 设 $A \in M_n(\mathbb{C}),$ 若 $A^2 = 0, 则 ln(I_n + A) = A.$
- 设 $A \in M_n(\mathbb{C})$, 若A是幂零阵,则sinA, cosA, $I_n + A$, e^A 均是可逆阵.