Lecture 3 Autoregressive Distributed Lag Models

An autoregressive distributed lag (ARDL) model is one that contains both lagged x_t 's and lagged y_t 's

 $y_{t} = \delta + \delta_{0} x_{t} + \delta_{1} x_{t-1} + \dots + \delta_{q} x_{t-q} + \theta_{1} y_{t-1} + \dots + \theta_{p} y_{t-p} + v_{t}$

– Two examples:

ADRL(1,1): $INF_t = 0.3336 + 0.5593INF_{t-1} - 0.6882DU_t + 0.3200DU_{t-1}$

ADRL(1,0): $INF_t = 0.3548 + 0.5282INF_{t-1} - 0.4909DU_t$

■ An ARDL model can be transformed into one with only lagged *x*'s which go back into the infinite past:

$$y_t = \alpha + \beta_0 x_t + \beta_1 x_{t-1} + \beta_2 x_{t-2} + \beta_3 x_{t-3} + \dots + e_t$$

$$=\alpha+\sum_{s=0}^{\infty}\beta_{s}x_{t-s}+e_{t}$$

This model is called an infinite distributed lag model

- \blacksquare Four possible criteria for choosing p and q:
 - 1. Has serial correlation in the errors been eliminated?
 - 2. Are the signs and magnitudes of the estimates consistent with our expectations from economic theory?
 - 3. Are the estimates significantly different from zero, particularly those at the longest lags?
 - 4. What values for *p* and *q* minimize information criteria such as the *AIC* and *SC*?

■ The Akaike information criterion (AIC) is:

Eq. 9.54

$$AIC = \ln\left(\frac{SSE}{T}\right) + \frac{2K}{T}$$

where K = p + q + 2

■ The Schwarz criterion (SC), also known as the Bayes information criterion (BIC), is:

Eq. 9.55

$$SC = \ln\left(\frac{SSE}{T}\right) + \frac{K\ln(T)}{T}$$

- Because $K \ln(T)/T > 2K/T$ for $T \ge 8$, the SC penalizes additional lags more heavily than does the AIC

9.6.1 The Phillips Curve

■ Consider the previously estimated ARDL(1,0) model:

Eq. 9.56

 $INF_{t} = 0.3548 + 0.5282INF_{t-1} - 0.4909DU_{t}, \text{ obs} = 90$ (se) (0.0876) (0.0851) (0.1921)

FIGURE 9.9 Correlogram for residuals from Phillips curve ARDL(1,0) model

9.6.1 The Phillips Curve

Table 9.3 *p*-values for LM Test for Autocorrelation

9.6.1 The Phillips Curve

Lag	<i>p</i> -value
1	0.0421
2	0.0772
3	0.1563
4	0.0486
5	0.0287

9.6.1 The Phillips Curve

■ For an ARDL(4,0) version of the model:

Eq. 9.57

 $INF_{t} = 0.1001 + 0.2354INF_{t-1} + 0.1213INF_{t-2} + 0.1677INF_{t-3}$ (se) (0.0983) (0.1016) (0.1038) (0.1050) $+0.2819INF_{t-4} - 0.7902DU_{t}$ (0.1014) (0.1885) obs = 87

9.6.1 The Phillips Curve

■ Inflation is given by:

 $INF_{t}^{E} = 0.1001 + 0.2354INF_{t-1} + 0.1213INF_{t-2} + 0.1677INF_{t-3} + 0.2819INF_{t-4}$

Table 9.4 AIC and SC Values for Phillips Curve ARDL Models

9.6.1 The Phillips Curve

p	q	AIC	SC	p	q	AIC	SC
1	0	-1.247	-1.160	1	1	-1.242	-1.128
2	0	-1.290	-1.176	2	1	-1.286	-1.142
3	0	-1.335	-1.192	3	1	-1.323	-1.151
4	0	-1.402	-1.230	4	1	-1.380	-1.178
5	0	-1.396	-1.195	5	1	-1.373	-1.143
6	0	-1.378	-1.148	6	1	-1.354	-1.096
1							

> 9.6.2 Okun's Law

> > ■ Recall the model for Okun's Law:

Eq. 9.58

 $DU_t = 0.5836 - 0.2020G_t - 0.1653G_{t-1} - 0.0700G_{t-2}, \text{ obs} = 96$ (se) (0.0472) (0.0324) (0.0335) (0.0331)

FIGURE 9.10 Correlogram for residuals from Okun's law ARDL(0,2) model

9.6.2 Okun's Law

Table 9.5 AIC and SC Values for Okun's Law ARDL Models

9.6.2 Okun's Law

(p, q)	AIC	SC	(p, q)	AIC	SC	(p, q)	AIC	SC
(0,1)	-3.436	-3.356	(1,1)	-3.588	-3.480	(2,1)	-3.569	-3.435
(0,2)	-3.463	-3.356	(1,2)	-3.568	-3.433	(2,2)	-3.548	-3.387
(0,3)	-3.442	-3.308	(1,3)	-3.561	-3.400	(2,3)	-3.549	-3.361

> 9.6.2 Okun's Law

> > ■ Now consider this version:

Eq. 9.59

 $DU_t = 0.3780 + 0.3501DU_{t-1} - 0.1841G_t - 0.0992G_{t-1}$, obs = 96 (se) (0.0578)(0.0846) (0.0307) (0.0368)

Chapter 9: Regression with Time Series Data:

Stationary Variables

9.6.3 Autoregressive Models

An autoregressive model of order p, denoted AR(p), is given by:

$$y_{t} = \delta + \theta_{1} y_{t-1} + \theta_{2} y_{t-2} + \dots + \theta_{p} y_{t-p} + v_{t}$$

9.6.3 Autoregressive Models

■ Consider a model for growth in real GDP:

$$G_t = 0.4657 + 0.3770G_{t-1} + 0.2462G_{t-2}$$

(se)(0.1433) (0.1000) (0.1029) obs = 96

FIGURE 9.11 Correlogram for residuals from AR(2) model for GDP growth

9.6.3 Autoregressive Models

Table 9.6 AIC and SC Values for AR Model of Growth in U.S. GDP

9.6.3 Autoregressive Models

Order (p)	1	2	3	4	5
AIC	-1.094	-1.131	-1.124	-1.133	-1.112
SC	-1.039	-1.049	-1.015	-0.997	-0.948

- We consider forecasting using two different models:
 - 1. AR model
 - 2. ARDL model

9.7.1 Forecasting with an AR Model

Consider an AR(2) model for real GDP growth:

Eq. 9.62

$$G_{t} = \delta + \theta_{1}G_{t-1} + \theta_{2}G_{t-2} + v_{t}$$

■ The model to forecast G_{T+1} is:

$$G_{T+1} = \delta + \theta_1 G_T + \theta_2 G_{T-1} + v_{T+1}$$

■ The growth values for the two most recent quarters are:

$$G_T = G_{2009Q3} = 0.8$$

 $G_{T-1} = G_{2009Q2} = -0.2$

■ The forecast for G_{2009O4} is:

$$\hat{G}_{T+1} = \hat{\delta} + \hat{\theta}_1 G_T + \hat{\theta}_2 G_{T-1}$$

$$= 0.46573 + 0.37700 \times 0.8 + 0.24624 \times (-0.2)$$

$$= 0.7181$$

9.7.1 Forecasting with an AR Model

■ For two quarters ahead, the forecast for G_{2010Q1} is:

Eq. 9.64

$$\hat{G}_{T+2} = \hat{\delta} + \hat{\theta}_1 G_{T+1} + \hat{\theta}_2 G_T$$

$$= 0.46573 + 0.37700 \times 0.71808 + 0.24624 \times 0.8$$

$$= 0.9334$$

■ For three periods out, it is:

 $\hat{G}_{T+3} = \hat{\delta} + \hat{\theta}_1 G_{T+2} + \hat{\theta}_2 G_{T+1}$ $= 0.46573 + 0.37700 \times 0.93343 + 0.24624 \times 0.71808$ = 0.9945

9.7.1 Forecasting with an AR Model

- Summarizing our forecasts:
 - Real GDP growth rates for 2009Q4, 2010Q1, and 2010Q2 are approximately 0.72%, 0.93%, and 0.99%, respectively

9.7.1 Forecasting with an AR Model

■ A 95% interval forecast for *j* periods into the future is given by:

$$\hat{G}_{T+j} \pm t_{(0.975,df)} \hat{\sigma}_j$$

where $\hat{\sigma}_j$ is the standard error of the forecast error and df is the number of degrees of freedom in the estimation of the AR model

9.7.1 Forecasting with an AR Model

■ The first forecast error, occurring at time T+1, is:

$$u_1 = G_{T+1} - \hat{G}_{T+1} = (\delta - \hat{\delta}) + (\theta_1 - \hat{\theta}_1)G_T + (\theta_2 - \hat{\theta}_2)G_{T-1} + v_{T+1}$$

■ Ignoring the error from estimating the coefficients, we get:

$$u_1 = v_{T+1}$$

9.7.1 Forecasting with an AR Model

■ The forecast error for two periods ahead is:

Eq. 9.67

$$u_2 = \theta_1 \left(G_{T+1} - \hat{G}_{T+1} \right) + v_{T+2} = \theta_1 u_1 + v_{T+2} = \theta_1 v_{T+1} + v_{T+2}$$

■ The forecast error for three periods ahead is:

$$u_3 = \theta_1 u_2 + \theta_2 u_1 + v_{T+3} = (\theta_1^2 + \theta_2) v_{T+1} + \theta_1 v_{T+2} + v_{T+3}$$

9.7.1 Forecasting with an AR Model

■ Because the v_t 's are uncorrelated with constant variance σ_v^2 , we can show that:

$$\sigma_{1}^{2} = \text{var}(u_{1}) = \sigma_{v}^{2}$$

$$\sigma_{2}^{2} = \text{var}(u_{2}) = \sigma_{v}^{2} (1 + \theta_{1}^{2})$$

$$\sigma_{3}^{2} = \text{var}(u_{3}) = \sigma_{v}^{2} ((\theta_{1}^{2} + \theta_{2})^{2} + \theta_{1}^{2} + 1)$$

Table 9.7 Forecasts and Forecast Intervals for GDP Growth

9.7.1 Forecasting with an AR Model

Quarter	Forecast \hat{G}_{T+j}	Standard Error of Forecast Error $(\hat{\sigma}_j)$	Forecast Interval $(\hat{G}_{T+j} \pm 1.9858 \times \hat{\sigma}_j)$
2009Q4 (j = 1)	0.71808	0.55269	(-0.379, 1.816)
$2010Q1 \ (j=2)$	0.93343	0.59066	(-0.239, 2.106)
$2010Q2 \ (j=3)$	0.99445	0.62845	(-0.254, 2.242)

9.7.2 Forecasting with an ARDL Model

■ Consider forecasting future unemployment using the Okun's Law ARDL(1,1):

Eq. 9.69

$$DU_{t} = \delta + \theta_{1}DU_{t-1} + \delta_{0}G_{t} + \delta_{1}G_{t-1} + V_{t}$$

■ The value of DU in the first post-sample quarter is:

Eq. 9.70

$$DU_{T+1} = \delta + \theta_1 DU_T + \delta_0 G_{T+1} + \delta_1 G_T + v_{T+1}$$

- But we need a value for G_{T+1}

- Now consider the *change* in unemployment
 - Rewrite Eq. 9.70 as:

$$U_{T+1} - U_{T} = \delta + \theta_{1} (U_{T} - U_{T-1}) + \delta_{0} G_{T+1} + \delta_{1} G_{T} + v_{T+1}$$

- Rearranging:

$$\begin{split} \boldsymbol{U}_{T+1} &= \delta + \left(\theta_1 + 1\right) \boldsymbol{U}_T - \theta_1 \boldsymbol{U}_{T-1} + \delta_0 \boldsymbol{G}_{T+1} + \delta_1 \boldsymbol{G}_T + \boldsymbol{v}_{T+1} \\ &= \delta + \theta_1^* \boldsymbol{U}_T + \theta_2^* \boldsymbol{U}_{T-1} + \delta_0 \boldsymbol{G}_{T+1} + \delta_1 \boldsymbol{G}_T + \boldsymbol{v}_{T+1} \end{split}$$

9.7.2 Forecasting with an ARDL Model

- For the purpose of computing point and interval forecasts, the ARDL(1,1) model for a change in unemployment can be written as an ARDL(2,1) model for the level of unemployment
 - This result holds not only for ARDL models where a dependent variable is measured in terms of a change or difference, but also for pure AR models involving such variables