# **Naval Research Laboratory**

Washington, DC 20375-5320



NRL/MR/6390--16-9681

# Calculation of Vibrational and Electronic Excited-State Absorption Spectra of Arsenic-Water Complexes Using Density Functional Theory

L. Huang

S.G. Lambrakos

Center for Computational Materials Science Materials Science and Technology Division

A. Shabaev

George Mason University Fairfax, Virginia

L. Massa

Hunter College, City University of New York New York, New York

June 3, 2016

Approved for public release; distribution is unlimited.

# REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

| <b>1. REPORT DATE</b> ( <i>DD-MM-YYYY</i> ) 03-06-2016                                                                           | 2. REPORT TYPE NRL Memorandum Report      | 3. DATES COVERED (From - To)                                 |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------|
| 4. TITLE AND SUBTITLE                                                                                                            |                                           | 5a. CONTRACT NUMBER                                          |
| Calculation of Vibrational and Electron of Arsenic-Water Complexes Using De                                                      |                                           | 5b. GRANT NUMBER                                             |
|                                                                                                                                  |                                           | 5c. PROGRAM ELEMENT NUMBER                                   |
| 6. AUTHOR(S)                                                                                                                     |                                           | 5d. PROJECT NUMBER                                           |
| L. Huang, S.G. Lambrakos, A. Shabae                                                                                              | v, <sup>1</sup> and L. Massa <sup>2</sup> | 5e. TASK NUMBER                                              |
|                                                                                                                                  |                                           | <b>5f. WORK UNIT NUMBER</b> 63-4995-06                       |
| 7. PERFORMING ORGANIZATION NAMI<br>Naval Research Laboratory, Code 6394<br>4555 Overlook Avenue, SW<br>Washington, DC 20375-5320 | ` '                                       | 8. PERFORMING ORGANIZATION REPORT NUMBER  NRL/MR/639016-9681 |
| 9. SPONSORING / MONITORING AGENO<br>Office of Naval Research<br>One Liberty Center                                               | CY NAME(S) AND ADDRESS(ES)                | 10. SPONSOR / MONITOR'S ACRONYM(S) ONR                       |
| 875 North Randolph Street, Suite 1425<br>Arlington, VA 22203-1995                                                                |                                           | 11. SPONSOR / MONITOR'S REPORT NUMBER(S)                     |
| 12 DISTRIBUTION / AVAIL ARILITY STA                                                                                              | FEMENT                                    | I                                                            |

#### 12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

#### 13. SUPPLEMENTARY NOTES

<sup>1</sup>George Mason University, Department of Computation and Data Sciences, Fairfax, VA 22030

<sup>2</sup>Hunter College, City University of New York, New York, NY 10065

#### 14. ABSTRACT

Calculations are presented of vibrational and electronic excited-state absorption spectra for As-H<sub>2</sub>O complexes using density functional theory (DFT) and time-dependent density functional theory (TD-DFT). DFT and TD-DFT can provide interpretation of absorption spectra with respect to molecular structure for excitation by electromagnetic waves at frequencies within the IR and UV-visible ranges. The absorption spectrum corresponding to excitation states of As-H<sub>2</sub>O complexes consisting of relatively small numbers of water molecules should be associated with response features that are intermediate between that of isolated molecules and that of a bulk system. DFT and TD-DFT calculated absorption spectra represent quantitative estimates that can be correlated with additional information obtained from laboratory measurements and other types of theory based calculations. The DFT software GAUSSIAN was used for the calculations of excitation states presented here.

#### 15. SUBJECT TERMS

Excited states

IR and UV-visible spectra

| 16. SECURITY CLA                 | SSIFICATION OF:                          |                                     | 17. LIMITATION<br>OF ABSTRACT | 18. NUMBER<br>OF PAGES | 19a. NAME OF RESPONSIBLE PERSON<br>Samuel G. Lambrakos   |
|----------------------------------|------------------------------------------|-------------------------------------|-------------------------------|------------------------|----------------------------------------------------------|
| a. REPORT Unclassified Unlimited | b. ABSTRACT<br>Unclassified<br>Unlimited | c. THIS PAGE Unclassified Unlimited | Unclassified<br>Unlimited     | 59                     | 19b. TELEPHONE NUMBER (include area code) (202) 767-2601 |

# Contents

| Introduction1                                               |  |
|-------------------------------------------------------------|--|
| Analysis of Spectra2                                        |  |
| A Compilation of Spectra for As-H <sub>2</sub> O complexes3 |  |
| Conclusion3                                                 |  |
| Acknowledgments3                                            |  |
| References3                                                 |  |

#### Introduction

The present study examines properties of Arsenic-water (As-H<sub>2</sub>O) complexes and is based on significant progress in density functional theory (DFT), time-dependent density functional theory (TD-DFT), and associated software technology, which is sufficiently mature for the determination of dielectric response structure, and should actually provide complementary information to that obtained from experiment [1-7]. This complementary information should be in terms of the physical interpretation of spectral features with respect to molecular structure.

Previous studies have examined various properties of water molecules and their clusters [8-16]. As emphasized previously [17], the absorption spectrum of H<sub>2</sub>O clusters should be of significance for interpretation of absorption spectra associated with spectroscopic detection of chemicals, which are within an ambient water environment. Our studies of water clusters [17] showed that the calculations of ground state resonance structures, and absorption spectra at THz vibrational frequencies of IR spectra are correlated with experimental measurements. This paper presents calculations of vibrational and electronic excited state resonance structures associated with arsenic-water complexes consisting of relatively small numbers of water molecules using DFT and TD-DFT. Calculation of excited state resonance structure using DFT and TD-DFT can provide interpretation of absorption spectra with respect to molecular structure for excitation by electromagnetic waves at frequencies within IR and UV-visible ranges. The absorption spectrum of an As-H<sub>2</sub>O complex consisting of a given number of water molecules should be associated with response features that are intermediate between that of isolated molecules and that of a bulk lattice. In principle, these absorption spectra should provide quantitative estimates of spectral response features that can be correlated with additional information obtained from laboratory measurements and other types of theory based calculations, or conversely, adapted as constraints for the inverse analysis of experimentally measured absorption spectra. A significant aspect of using DFT and TD-DFT for the calculation of absorption spectra is that it adopts the perspective of computational physics, according to which a numerical simulation represents another source of "experimental" data. The absorption spectrum of As-H<sub>2</sub>O complexes should be of significance for interpretation of absorption spectra associated with detection in practice. This follows in that most environments associated with detection in practice include the presence of water in one form or another. These forms can range from isolated molecules in gas phase, molecular clusters, adsorbed surface layers, droplets and interface regions in liquid phase, and ice. Absorption spectra of molecular clusters consisting of water represent a separate regime for dielectric response with respect to electromagnetic wave excitation. This regime should be better quantified for improved interpretation of absorption spectra associated with systems that include water complexes as components.

A review the formal mathematical structure underlying DFT calculations, as well as the procedure for calculation of absorption spectra corresponding to vibrational states, has been given elsewhere [17]. The extension of DFT for the calculation of absorption spectra corresponding to electronic excitation states, which is the formalism of time-dependent density functional theory (TD-DFT), is described in reference [18].

The present study examines properties of As- $H_2O$  complexes using quantum-theory based calculations. These properties are the vibrational and electronic excited state absorption spectra of As- $H_2O$  complexes, which are calculated using DFT and TD-DFT. This study presents analysis of calculated spectra for As- $H_2O$  complexes based on comparison with calculated spectra for molecular clusters of  $H_2O$ , and a compilation of vibrational and electronic excited state absorption spectra for As- $H_2O$  complexes, which are for further analysis. The software GAUSSIAN09 (G09) [7] was used for the calculation of excited state structures.

# **Analysis of Spectra**

Presented in this section is a preliminary analysis of vibrational and electronic excited state absorption spectra for As-H<sub>2</sub>O complexes calculated using DFT and TD-DFT, which is based on comparison with calculated spectra for molecular clusters of H<sub>2</sub>O.

# Vibrational resonance structure of As-H<sub>2</sub>O complexes

Results of a computational investigation using DFT concerning As-H<sub>2</sub>O complexes are presented. These results include the relaxed or equilibrium configuration of the As-H<sub>2</sub>O complexes' ground-state oscillation frequencies and IR intensities for As-H<sub>2</sub>O complex geometries having stable structures, which are calculated by DFT. For these calculations geometry optimization and vibrational analysis was effected using the DFT model B3LYP [29, 30] and basis function 6-311+G(d) [31, 32]. These basis functions designate the 6-311G basis set supplemented by diffuse function: +, and polarization function: (d), having one set of d functions on heavy atoms [33]. A graphical representation of molecular geometries of As-H<sub>2</sub>O complexes consisting of 1 molecule of arsenic and 2, 5, and 24 water molecules are shown in Fig. (1). For comparison, relaxed water clusters without As are shown in Fig. (2). In response to the presence of As molecule, the positions of water molecules are rearranged at distances beyond of the nearest neighbors (See Fig. (2)). IR intensities as a function of frequency for As-H<sub>2</sub>O complexes consisting of 2, 5 and 24 water molecules are shown in Fig. (3). For comparison, Fig. 4 shows vibrational resonances for corresponding water clusters without As. With increased size of a cluster, the resonance structure broadens around single water molecule resonances, approximately 1700, 3425 and 3575 cm<sup>-1</sup>, as well as development of a low frequency band below the lowest resonance, approximately 1700 cm<sup>-1</sup>. Comparison of the vibrational spectra in Fig. 3 and Fig. 4, shows that resonance structure is modified by the presence of As for a wide range of frequencies.

#### Electronic excited state resonance structure of As-H<sub>2</sub>O complexes

Results of a computational investigation using TD-DFT concerning As- $H_2O$  complexes are presented. These results include the oscillator strength as a function of excitation energy (within the UV range) for different geometries of the interacting systems associated with stable structures, which are calculated by DFT as described above. The oscillator strength (UV intensity) as a function of excitation energy for the As- $H_2O$  complexes consisting of 2, 5 and 24 water molecules are shown in Figs. (5). The effect of the As molecule on the UV spectra can be seen by comparison with the electronic excitation spectrum of corresponding water clusters without As (see Fig. (6)). In the presence of As, a new line appears near 220 nm, below the absorption edge of water clusters (see Fig. (6)),

which is around 200 nm, and is red-shifted relative to the absorption of a single water molecule at 164 nm. This red-shifting is expected for the DFT calculations, which is not consistent with observed blue-shifting for liquid and ice phases compared to vapor [23,24]. Accordingly, DFT calculated band edge frequencies in clusters should be corrected by accounting for reduction in the binding energy of an electron-hole pair extending over near neighbor molecules [24].

## A Compilation of Spectra for As-H<sub>2</sub>O complexes

Presented in this section is a compilation of vibrational and electronic excited state absorption spectra for As-H<sub>2</sub>O complexes calculated using DFT and TD-DFT. Shown in Fig. (7) are molecular geometries of As-H<sub>2</sub>O complexes after geometry optimization, without the presence of a water solvent background. Given in Table 1 are DFT calculated IR spectra for the optimized geometries of As-H<sub>2</sub>O complexes shown in Fig. (7). Shown in Figs. (8) and (9) are IR and UV spectra, respectively, for the optimized geometries of As-H<sub>2</sub>O complexes shown in Fig. (7). Shown in Fig. (10) are molecular geometries of As-H<sub>2</sub>O complexes after geometry optimization, with the presence of a water solvent background. Given in Table 2 are DFT calculated IR spectra for the optimized geometries of As-H<sub>2</sub>O complexes shown in Fig. (10). Shown in Figs. (11) and (12) are IR and UV spectra, respectively, for the optimized geometries of As-H<sub>2</sub>O complexes shown in Fig. (10). Given in Tables 3 and 4 are energies for optimized geometries and excited states, respectively, of the As<sup>+3</sup> - nH<sub>2</sub>O clusters shown in Figs. (7) and (10).

#### Conclusion

The DFT and TD-DFT calculated absorption spectra given here provide information concerning molecular level dielectric response structure. The calculations of vibrational and excited state resonance structure associated with As-H<sub>2</sub>O complexes using DFT and TD-DFT, respectively, are meant to serve as reasonable estimates of molecular level response characteristics, providing interpretation of dielectric response features with respect to molecular structure, for subsequent adjustment relative to experimental measurements and additional constraints based on molecular structure theory. We have in this paper studied As-H<sub>2</sub>O complexes in order to quantify interpretation of their absorption spectra.

## Acknowledgments

Funding for this project was provided by the Office of Naval Research (ONR) through the Naval Research Laboratory's Basic Research Program. L.M.'s studies were funded by the U.S. Naval Research Laboratory (project # 47203-00 01) and by a PSC CUNY Award (project # 63842-00 41).

#### References

- [1] P. Hohenberg and W. Kohn, Phys. Rev. 136 (1964) B864.
- [2] W. Kohn and L. J. Sham, Phys. Rev. 140 (1964) A1133.
- [3] R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61 (1989) 689.

- [4] R. M. Martin, *Electronic Structures Basic Theory and Practical Methods*, Cambridge University Press, Cambridge 2004, p. 25.
- [5] J. W. Ochterski, Vibrational Analysis in Gaussian, help@gaussian.com, 1999.
- [6] A. D. Becke, J. Chem. Phys. 98 (1993) 5648.
- [7] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT, 2009.
- [8] M. W. Mahoney and W. L. Jorgensen, J. Chem. Phys. 112 (2000) 8910.
- [9] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey and M. L. Klein, J. Chem. Phys. 79 (1983) 926.
- [10] T. James, D. J. Wales, and J. Hernandez-Rojas, Chem. Phys. Lett. 415 (2005) 302.
- [11] D. J. Wales and M. P. Hodges, Chem. Phys. Lett. 286 (1998) 65-72.
- [12] Jer-Lai Kuo and W. F. Kuhs, J. Phys. Chem. B 110 (2006) 3697.
- [13] M. W. Mahoney and W. L. Jorgensen, J. Chem. Phys. 115 (2001) 10758.
- [14] S. Maheshwary, N. Patel, N. Sathyamurthy, A. D. Kulkarni and S. R. Gadre, J. Phys. Chem. A 105 (2001) 10525.
- [15] H. M. Lee, S. B. Suh, and K. S. Kima, J. Chem. Phys. 114 (2001) 10749.
- [16] X. Li, X. Xu, D. Yuang and X. Weng, Chem. Commun. 48 (2012) 9014.
- [17] L. Huang, S. G. Lambrakos, N. Bernstein, A. Shabaev, L. Massa, *Absorption Spectra of Water Clusters Calculated Using Density Functional Theory*, Naval Research Laboratory Memorandum Report NRL/MR/6390-13-9468 (2013).
- [18] A. Frisch, M. J. Frisch, F. R. Clemente and G. W. Trucks, Gaussian 09 User's Reference, Gaussian Inc., pp. 105-106 (2009).
- [19] B. Miehlich, A. Savin, H. Stoll and H. Preuss, Chem. Phys. Lett. 157 (1989) 200.
- [20] A. D. McLean and G. S. Chandler, J. Chem. Phys. 72 (1980) 5639.
- [21] T. Clark, J. Chandrasekhar, G. W. Spitznagel and P. V. R. Schleyer, J. Comp. Chem. 4 (1983) 294.
- [22] M. J. Frisch, J. A. Pople and J. S. Binkley, J. Chem. Phys., 80 (1984) 3265.
- [23] B. D. Bursulaya, J. Jeon, C.-N. Yang, and H. J. Kim, J. Phys. Chem. A, 104 (2000) 45.
- [24] P. H. Hahn, W. G. Schmidt, K. Seino, M. Preuss, F. Bechstedt, J. Bernholc, Phys. Rev.

Lett., 94 (2005) 037404.



Figure 1. Molecular geometries of As- $H_2\mathrm{O}$  complexes consisting of 2, 5 and 24 water molecules.



Figure 2. Molecular geometries of water molecule and water clusters 2, 5 and 24 molecules.



Figure 3. DFT calculated IR spectra for As- $H_2O$  complexes consisting of (a) 2, (b) 5 and (d) 24 water molecules.



Figure 4. DFT calculated IR spectra for water clusters consisting of (a) 2, (b) 5 and (c) 24 molecules.



Figure 5. TD-DFT calculated UV-Visible spectra for As- $H_2O$  complexes consisting of (a) 2, (b) 5 and (d) 24 water molecules.



Figure 6. TD-DFT calculated IR spectra for water clusters consisting of (a) 2, (b) 5 and (c) 24 molecules.



Figure 7a. As+3 2(H<sub>2</sub>O)



Figure 7b. As+3 3(H<sub>2</sub>O)



Figure 7c. As+3 4(H<sub>2</sub>O)



Figure 7d. As+3 5(H<sub>2</sub>O)



Figure 7e. As+3 6(H<sub>2</sub>O)



Figure 7f. As+3 7(H<sub>2</sub>O)



Figure 7g. As+3 15(H<sub>2</sub>O)



Figure 7h.  $As^{+3} 20(H_2O)$ 



Figure 7i. As+3 24(H<sub>2</sub>O)



Figure 7j. As+3 36(H<sub>2</sub>O)

Figure 7. Molecular geometries of As- $H_2O$  complexes consisting of 2, 3, 4, 5, 6, 7, 15, 20, 24 and 36 water molecules, without water background.

Table 1. DFT calculated IR spectra for As- $H_2O$  complexes consisting of 2, 3, 4, 5, 6, 7, 15, 20, 24 and 36 water molecules, without water background.

| $As^{+3}$ | 21 | $(H_2)$ | O)       |
|-----------|----|---------|----------|
| 113       | _  | 111     | $\sim$ 1 |

|    | Freq      | Intensity |
|----|-----------|-----------|
| 1  | 121.9329  | 0.0001    |
| 2  | 215.1462  | 9.545     |
| 3  | 290.8229  | 4.834     |
| 4  | 539.4944  | 35.2011   |
| 5  | 543.601   | 8.3828    |
| 6  | 673.0188  | 0.0022    |
| 7  | 721.7363  | 972.4701  |
| 8  | 821.0153  | 35.06     |
| 9  | 913.8271  | 81.0759   |
| 10 | 1676.8116 | 252.1859  |
| 11 | 1700.9889 | 116.032   |
| 12 | 3143.3518 | 1863.1696 |
| 13 | 3179.3958 | 1.5924    |
| 14 | 3232.6057 | 2.5087    |
| 15 | 3263.1218 | 1301.0389 |

 $As^{+3} 3(H_2O)$ 

|    | Freq      | Intensity |
|----|-----------|-----------|
| 1  | 118.8541  | 1.4453    |
| 2  | 124.7436  | 1.6233    |
| 3  | 201.5883  | 0.4904    |
| 4  | 208.4877  | 0.5273    |
| 5  | 209.9644  | 0.3490    |
| 6  | 361.6805  | 13.3450   |
| 7  | 449.6273  | 13.1701   |
| 8  | 452.0681  | 13.8033   |
| 9  | 498.5024  | 23.5960   |
| 10 | 571.5035  | 379.2382  |
| 11 | 626.7154  | 404.9844  |
| 12 | 627.2440  | 409.1182  |
| 13 | 828.0772  | 36.1948   |
| 14 | 829.3079  | 36.3902   |
| 15 | 863.5787  | 113.7884  |
| 16 | 1688.3257 | 173.3072  |
| 17 | 1688.3903 | 173.8160  |
| 18 | 1698.4294 | 58.2587   |
| 19 | 3366.9517 | 989.4841  |
| 20 | 3367.5376 | 989.5836  |

| 21 | 3399.7505 | 11.0189  |
|----|-----------|----------|
| 22 | 3450.5696 | 287.8543 |
| 23 | 3451.0181 | 285.7238 |
| 24 | 3455.5249 | 906.5205 |

As+3 4(H<sub>2</sub>O)

|    | Freq      | Intensity |
|----|-----------|-----------|
| 1  | 52.1709   | 0.0001    |
| 2  | 102.4299  | 0.7428    |
| 3  | 132.6806  | 1.6051    |
| 4  | 156.5802  | 0.0000    |
| 5  | 187.1399  | 2.1078    |
| 6  | 201.4429  | 1.3652    |
| 7  | 268.7141  | 0.6349    |
| 8  | 302.6066  | 11.1123   |
| 9  | 340.4676  | 104.6391  |
| 10 | 360.1412  | 1.4160    |
| 11 | 364.9940  | 0.0064    |
| 12 | 418.6682  | 7.1084    |
| 13 | 470.1066  | 10.0995   |
| 14 | 523.5901  | 3.3346    |
| 15 | 552.7140  | 491.3406  |
| 16 | 585.6903  | 0.0024    |
| 17 | 623.0650  | 937.5610  |
| 18 | 694.5346  | 3.6641    |
| 19 | 753.7066  | 205.8039  |
| 20 | 807.1002  | 0.0001    |
| 21 | 845.3121  | 133.8603  |
| 22 | 1696.0620 | 32.8934   |
| 23 | 1699.9362 | 234.6379  |
| 24 | 1719.5782 | 201.0074  |
| 25 | 1732.3770 | 7.9408    |
| 26 | 3497.8694 | 821.6705  |
| 27 | 3507.4446 | 194.3746  |
| 28 | 3524.2930 | 928.1411  |
| 29 | 3540.8145 | 0.2862    |
| 30 | 3573.5859 | 0.8973    |
| 31 | 3575.5718 | 693.1871  |
| 32 | 3598.8228 | 93.6955   |
| 33 | 3599.9368 | 709.8573  |

As+3 5(H<sub>2</sub>O)

|    |          |           | 120) |           |           |
|----|----------|-----------|------|-----------|-----------|
|    | Freq     | Intensity |      | Freq      | Intensity |
| 1  | 80.2462  | 0.6823    | 22   | 621.8316  | 13.8676   |
| 2  | 114.9133 | 6.3670    | 23   | 671.3808  | 1.3023    |
| 3  | 118.4635 | 0.0100    | 24   | 701.5650  | 16.7432   |
| 4  | 121.8905 | 3.6179    | 25   | 702.5217  | 271.3480  |
| 5  | 167.8491 | 1.1586    | 26   | 714.7262  | 222.9261  |
| 6  | 192.1586 | 1.1263    | 27   | 803.8887  | 95.8138   |
| 7  | 196.3583 | 5.3810    | 28   | 1630.9944 | 147.5339  |
| 8  | 200.7035 | 0.0000    | 29   | 1711.8732 | 157.5089  |
| 9  | 261.1971 | 5.3955    | 30   | 1714.1667 | 2.3067    |
| 10 | 296.4759 | 18.5600   | 31   | 1717.8260 | 202.0065  |
| 11 | 302.0874 | 32.4256   | 32   | 1723.6833 | 10.7513   |
| 12 | 309.2292 | 0.0025    | 33   | 3538.7717 | 381.7818  |
| 13 | 318.9975 | 2.1914    | 34   | 3587.3596 | 745.3990  |
| 14 | 327.5310 | 8.4687    | 35   | 3589.7039 | 1.2957    |
| 15 | 349.9291 | 0.2218    | 36   | 3592.5466 | 825.1451  |
| 16 | 465.4569 | 3.1030    | 37   | 3607.2654 | 17.7627   |
| 17 | 494.5114 | 336.6910  | 38   | 3631.8557 | 319.1275  |
| 18 | 517.8453 | 0.0046    | 39   | 3667.9380 | 0.0154    |
| 19 | 546.6506 | 0.0320    | 40   | 3668.5420 | 543.5193  |
| 20 | 547.6634 | 752.0324  | 41   | 3670.7732 | 29.3654   |
| 21 | 610.8941 | 434.7337  | 42   | 3671.7544 | 582.5576  |

As+3 6(H<sub>2</sub>O)

|    | Freq     | Intensity |    | Freq      | Intensity |
|----|----------|-----------|----|-----------|-----------|
| 1  | 33.5832  | 2.4531    | 27 | 495.8096  | 545.4608  |
| 2  | 36.3659  | 2.4223    | 28 | 625.8098  | 0.0000    |
| 3  | 38.1842  | 2.3875    | 29 | 626.4416  | 0.0000    |
| 4  | 90.9403  | 5.3733    | 30 | 627.4189  | 0.0000    |
| 5  | 91.5390  | 5.2511    | 31 | 630.4267  | 346.9003  |
| 6  | 92.1796  | 5.1072    | 32 | 631.5261  | 350.8729  |
| 7  | 93.6864  | 0.0000    | 33 | 632.4858  | 342.7031  |
| 8  | 94.5223  | 0.0000    | 34 | 1696.3207 | 133.7439  |
| 9  | 95.4602  | 0.0000    | 35 | 1696.4259 | 133.7909  |
| 10 | 220.6121 | 0.0177    | 36 | 1697.2426 | 133.4885  |
| 11 | 223.6503 | 0.0204    | 37 | 1700.9852 | 0.0000    |
| 12 | 273.2994 | 26.4986   | 38 | 1701.8242 | 0.0000    |
| 13 | 274.8800 | 25.8155   | 39 | 1714.6353 | 0.0000    |
| 14 | 275.9145 | 25.5428   | 40 | 3636.2222 | 631.3134  |
| 15 | 298.3789 | 0.0000    | 41 | 3636.2832 | 630.6878  |
| 16 | 300.4626 | 0.0000    | 42 | 3636.3716 | 631.1205  |

| 17 | 300.8256 | 0.0000   | 43 | 3636.6255 | 0.0000   |
|----|----------|----------|----|-----------|----------|
| 18 | 301.5099 | 0.0000   | 44 | 3636.7244 | 0.0000   |
| 19 | 301.6427 | 0.0000   | 45 | 3652.6226 | 0.0000   |
| 20 | 379.1797 | 0.0000   | 46 | 3722.9109 | 0.0000   |
| 21 | 438.1058 | 0.0802   | 47 | 3723.0183 | 0.0000   |
| 22 | 477.3677 | 0.0000   | 48 | 3723.1235 | 0.0000   |
| 23 | 478.7521 | 0.0000   | 49 | 3723.3323 | 494.5581 |
| 24 | 479.2849 | 0.0000   | 50 | 3723.4404 | 494.1480 |
| 25 | 494.3228 | 540.4916 | 51 | 3723.5457 | 494.7417 |
| 26 | 495.0788 | 548.5722 |    |           |          |

As+3 7(H<sub>2</sub>O)

| 1       27.2946       0.1178       31       643.5433       177.17         2       27.3586       2.5145       32       779.2277       38.40         3       67.2984       29.3713       33       876.9619       114.91         4       68.2261       17.8607       34       915.4143       265.96         5       71.7440       9.2266       35       955.3291       0.33         6       88.5915       1.8976       36       996.7834       411.21         7       111.4369       22.4966       37       1179.3818       215.04         8       125.0566       4.2461       38       1257.2511       276.35         9       134.9420       81.4700       39       1376.0216       32.53         10       156.9979       29.1986       40       1717.5659       17.08         11       160.6624       18.3096       41       1720.6215       3.57         12       172.4638       19.2064       42       1723.0979       4.61         13       191.5017       0.4809       43       1725.6124       148.48         14       194.2005       146.1466       44       1727.9495       96.92          |    | AS 17 (1120) |          |    |           |           |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------|----------|----|-----------|-----------|--|--|--|--|--|--|--|--|
| 2       27.3586       2.5145       32       779.2277       38.40         3       67.2984       29.3713       33       876.9619       114.91         4       68.2261       17.8607       34       915.4143       265.96         5       71.7440       9.2266       35       955.3291       0.33         6       88.5915       1.8976       36       996.7834       411.21         7       111.4369       22.4966       37       1179.3818       215.04         8       125.0566       4.2461       38       1257.2511       276.35         9       134.9420       81.4700       39       1376.0216       32.53         10       156.9979       29.1986       40       1717.5659       17.08         11       160.6624       18.3096       41       1720.6215       3.57         12       172.4638       19.2064       42       1723.0979       4.61         13       191.5017       0.4809       43       1725.6124       148.48         14       194.2005       146.1466       44       1727.9495       96.92         15       225.1129       21.8218       45       1728.3690       23          |    | ·            | •        |    | ·         | Intensity |  |  |  |  |  |  |  |  |
| 3       67.2984       29.3713       33       876.9619       114.91         4       68.2261       17.8607       34       915.4143       265.96         5       71.7440       9.2266       35       955.3291       0.33         6       88.5915       1.8976       36       996.7834       411.21         7       111.4369       22.4966       37       1179.3818       215.04         8       125.0566       4.2461       38       1257.2511       276.35         9       134.9420       81.4700       39       1376.0216       32.53         10       156.9979       29.1986       40       1717.5659       17.08         11       160.6624       18.3096       41       1720.6215       3.57         12       172.4638       19.2064       42       1723.0979       4.61         13       191.5017       0.4809       43       1725.6124       148.48         14       194.2005       146.1466       44       1727.9495       96.92         15       225.1129       21.8218       45       1728.3690       23.18         16       283.7962       374.8981       46       1749.8008       <      | 1  | 27.2946      | 0.1178   | 31 | 643.5433  | 177.1789  |  |  |  |  |  |  |  |  |
| 4       68.2261       17.8607       34       915.4143       265.96         5       71.7440       9.2266       35       955.3291       0.33         6       88.5915       1.8976       36       996.7834       411.21         7       111.4369       22.4966       37       1179.3818       215.04         8       125.0566       4.2461       38       1257.2511       276.35         9       134.9420       81.4700       39       1376.0216       32.53         10       156.9979       29.1986       40       1717.5659       17.08         11       160.6624       18.3096       41       1720.6215       3.57         12       172.4638       19.2064       42       1723.0979       4.61         13       191.5017       0.4809       43       1725.6124       148.48         14       194.2005       146.1466       44       1727.9495       96.92         15       225.1129       21.8218       45       1728.3690       23.18         16       283.7962       374.8981       46       1749.8008       127.50         17       331.8968       88.3227       47       2527.5771           |    | 27.3586      | 2.5145   | 32 | 779.2277  | 38.4059   |  |  |  |  |  |  |  |  |
| 5       71.7440       9.2266       35       955.3291       0.33         6       88.5915       1.8976       36       996.7834       411.21         7       111.4369       22.4966       37       1179.3818       215.04         8       125.0566       4.2461       38       1257.2511       276.35         9       134.9420       81.4700       39       1376.0216       32.53         10       156.9979       29.1986       40       1717.5659       17.08         11       160.6624       18.3096       41       1720.6215       3.57         12       172.4638       19.2064       42       1723.0979       4.61         13       191.5017       0.4809       43       1725.6124       148.48         14       194.2005       146.1466       44       1727.9495       96.92         15       225.1129       21.8218       45       1728.3690       23.18         16       283.7962       374.8981       46       1749.8008       127.50         17       331.8968       88.3227       47       2527.5771       5739.27         18       331.9417       0.4480       48       2570.1477        | 3  | 67.2984      | 29.3713  | 33 | 876.9619  | 114.9147  |  |  |  |  |  |  |  |  |
| 6       88.5915       1.8976       36       996.7834       411.21         7       111.4369       22.4966       37       1179.3818       215.04         8       125.0566       4.2461       38       1257.2511       276.35         9       134.9420       81.4700       39       1376.0216       32.53         10       156.9979       29.1986       40       1717.5659       17.08         11       160.6624       18.3096       41       1720.6215       3.57         12       172.4638       19.2064       42       1723.0979       4.61         13       191.5017       0.4809       43       1725.6124       148.48         14       194.2005       146.1466       44       1727.9495       96.92         15       225.1129       21.8218       45       1728.3690       23.18         16       283.7962       374.8981       46       1749.8008       127.50         17       331.8968       88.3227       47       2527.5771       5739.27         18       331.9417       0.4480       48       2570.1477       1408.54         19       388.4761       8.3252       49       2669.2229< | 4  | 68.2261      | 17.8607  | 34 | 915.4143  | 265.9611  |  |  |  |  |  |  |  |  |
| 7       111.4369       22.4966       37       1179.3818       215.04         8       125.0566       4.2461       38       1257.2511       276.35         9       134.9420       81.4700       39       1376.0216       32.53         10       156.9979       29.1986       40       1717.5659       17.08         11       160.6624       18.3096       41       1720.6215       3.57         12       172.4638       19.2064       42       1723.0979       4.61         13       191.5017       0.4809       43       1725.6124       148.48         14       194.2005       146.1466       44       1727.9495       96.92         15       225.1129       21.8218       45       1728.3690       23.18         16       283.7962       374.8981       46       1749.8008       127.50         17       331.8968       88.3227       47       2527.5771       5739.27         18       331.9417       0.4480       48       2570.1477       1408.54         19       388.4761       8.3252       49       2669.2229       2247.48         20       401.2909       54.2188       50       3273. | 5  | 71.7440      | 9.2266   | 35 | 955.3291  | 0.3359    |  |  |  |  |  |  |  |  |
| 8       125.0566       4.2461       38       1257.2511       276.35         9       134.9420       81.4700       39       1376.0216       32.53         10       156.9979       29.1986       40       1717.5659       17.08         11       160.6624       18.3096       41       1720.6215       3.57         12       172.4638       19.2064       42       1723.0979       4.61         13       191.5017       0.4809       43       1725.6124       148.48         14       194.2005       146.1466       44       1727.9495       96.92         15       225.1129       21.8218       45       1728.3690       23.18         16       283.7962       374.8981       46       1749.8008       127.50         17       331.8968       88.3227       47       2527.5771       5739.27         18       331.9417       0.4480       48       2570.1477       1408.54         19       388.4761       8.3252       49       2669.2229       2247.48         20       401.2909       54.2188       50       3273.4978       16.27         21       439.0588       10.6914       51       3366. | 6  | 88.5915      | 1.8976   | 36 | 996.7834  | 411.2122  |  |  |  |  |  |  |  |  |
| 9       134.9420       81.4700       39       1376.0216       32.53         10       156.9979       29.1986       40       1717.5659       17.08         11       160.6624       18.3096       41       1720.6215       3.57         12       172.4638       19.2064       42       1723.0979       4.61         13       191.5017       0.4809       43       1725.6124       148.48         14       194.2005       146.1466       44       1727.9495       96.92         15       225.1129       21.8218       45       1728.3690       23.18         16       283.7962       374.8981       46       1749.8008       127.50         17       331.8968       88.3227       47       2527.5771       5739.27         18       331.9417       0.4480       48       2570.1477       1408.54         19       388.4761       8.3252       49       2669.2229       2247.48         20       401.2909       54.2188       50       3273.4978       16.27         21       439.0588       10.6914       51       3366.0959       1473.86                                                           | 7  | 111.4369     | 22.4966  | 37 | 1179.3818 | 215.0447  |  |  |  |  |  |  |  |  |
| 10       156.9979       29.1986       40       1717.5659       17.08         11       160.6624       18.3096       41       1720.6215       3.57         12       172.4638       19.2064       42       1723.0979       4.61         13       191.5017       0.4809       43       1725.6124       148.48         14       194.2005       146.1466       44       1727.9495       96.92         15       225.1129       21.8218       45       1728.3690       23.18         16       283.7962       374.8981       46       1749.8008       127.50         17       331.8968       88.3227       47       2527.5771       5739.27         18       331.9417       0.4480       48       2570.1477       1408.54         19       388.4761       8.3252       49       2669.2229       2247.48         20       401.2909       54.2188       50       3273.4978       16.27         21       439.0588       10.6914       51       3366.0959       1473.86                                                                                                                                       | 8  | 125.0566     | 4.2461   | 38 | 1257.2511 | 276.3503  |  |  |  |  |  |  |  |  |
| 11       160.6624       18.3096       41       1720.6215       3.57         12       172.4638       19.2064       42       1723.0979       4.61         13       191.5017       0.4809       43       1725.6124       148.48         14       194.2005       146.1466       44       1727.9495       96.92         15       225.1129       21.8218       45       1728.3690       23.18         16       283.7962       374.8981       46       1749.8008       127.50         17       331.8968       88.3227       47       2527.5771       5739.27         18       331.9417       0.4480       48       2570.1477       1408.54         19       388.4761       8.3252       49       2669.2229       2247.48         20       401.2909       54.2188       50       3273.4978       16.27         21       439.0588       10.6914       51       3366.0959       1473.86                                                                                                                                                                                                                    | 9  | 134.9420     | 81.4700  | 39 | 1376.0216 | 32.5341   |  |  |  |  |  |  |  |  |
| 12       172.4638       19.2064       42       1723.0979       4.61         13       191.5017       0.4809       43       1725.6124       148.48         14       194.2005       146.1466       44       1727.9495       96.92         15       225.1129       21.8218       45       1728.3690       23.18         16       283.7962       374.8981       46       1749.8008       127.50         17       331.8968       88.3227       47       2527.5771       5739.27         18       331.9417       0.4480       48       2570.1477       1408.54         19       388.4761       8.3252       49       2669.2229       2247.48         20       401.2909       54.2188       50       3273.4978       16.27         21       439.0588       10.6914       51       3366.0959       1473.86                                                                                                                                                                                                                                                                                                | 10 | 156.9979     | 29.1986  | 40 | 1717.5659 | 17.0812   |  |  |  |  |  |  |  |  |
| 13     191.5017     0.4809     43     1725.6124     148.48       14     194.2005     146.1466     44     1727.9495     96.92       15     225.1129     21.8218     45     1728.3690     23.18       16     283.7962     374.8981     46     1749.8008     127.50       17     331.8968     88.3227     47     2527.5771     5739.27       18     331.9417     0.4480     48     2570.1477     1408.54       19     388.4761     8.3252     49     2669.2229     2247.48       20     401.2909     54.2188     50     3273.4978     16.27       21     439.0588     10.6914     51     3366.0959     1473.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11 | 160.6624     | 18.3096  | 41 | 1720.6215 | 3.5713    |  |  |  |  |  |  |  |  |
| 14     194.2005     146.1466     44     1727.9495     96.92       15     225.1129     21.8218     45     1728.3690     23.18       16     283.7962     374.8981     46     1749.8008     127.50       17     331.8968     88.3227     47     2527.5771     5739.27       18     331.9417     0.4480     48     2570.1477     1408.54       19     388.4761     8.3252     49     2669.2229     2247.48       20     401.2909     54.2188     50     3273.4978     16.27       21     439.0588     10.6914     51     3366.0959     1473.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12 | 172.4638     | 19.2064  | 42 | 1723.0979 | 4.6110    |  |  |  |  |  |  |  |  |
| 15     225.1129     21.8218     45     1728.3690     23.18       16     283.7962     374.8981     46     1749.8008     127.50       17     331.8968     88.3227     47     2527.5771     5739.27       18     331.9417     0.4480     48     2570.1477     1408.54       19     388.4761     8.3252     49     2669.2229     2247.48       20     401.2909     54.2188     50     3273.4978     16.27       21     439.0588     10.6914     51     3366.0959     1473.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13 | 191.5017     | 0.4809   | 43 | 1725.6124 | 148.4842  |  |  |  |  |  |  |  |  |
| 16       283.7962       374.8981       46       1749.8008       127.50         17       331.8968       88.3227       47       2527.5771       5739.27         18       331.9417       0.4480       48       2570.1477       1408.54         19       388.4761       8.3252       49       2669.2229       2247.48         20       401.2909       54.2188       50       3273.4978       16.27         21       439.0588       10.6914       51       3366.0959       1473.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14 | 194.2005     | 146.1466 | 44 | 1727.9495 | 96.9235   |  |  |  |  |  |  |  |  |
| 17     331.8968     88.3227     47     2527.5771     5739.27       18     331.9417     0.4480     48     2570.1477     1408.54       19     388.4761     8.3252     49     2669.2229     2247.48       20     401.2909     54.2188     50     3273.4978     16.27       21     439.0588     10.6914     51     3366.0959     1473.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15 | 225.1129     | 21.8218  | 45 | 1728.3690 | 23.1800   |  |  |  |  |  |  |  |  |
| 18     331.9417     0.4480     48     2570.1477     1408.54       19     388.4761     8.3252     49     2669.2229     2247.48       20     401.2909     54.2188     50     3273.4978     16.27       21     439.0588     10.6914     51     3366.0959     1473.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16 | 283.7962     | 374.8981 | 46 | 1749.8008 | 127.5055  |  |  |  |  |  |  |  |  |
| 19     388.4761     8.3252     49     2669.2229     2247.48       20     401.2909     54.2188     50     3273.4978     16.27       21     439.0588     10.6914     51     3366.0959     1473.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17 | 331.8968     | 88.3227  | 47 | 2527.5771 | 5739.2778 |  |  |  |  |  |  |  |  |
| 20     401.2909     54.2188     50     3273.4978     16.27       21     439.0588     10.6914     51     3366.0959     1473.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18 | 331.9417     | 0.4480   | 48 | 2570.1477 | 1408.5431 |  |  |  |  |  |  |  |  |
| 21 439.0588 10.6914 51 3366.0959 1473.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19 | 388.4761     | 8.3252   | 49 | 2669.2229 | 2247.4839 |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20 | 401.2909     | 54.2188  | 50 | 3273.4978 | 16.2750   |  |  |  |  |  |  |  |  |
| 22 440.2347 20.2706 52 3666.2578 362.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21 | 439.0588     | 10.6914  | 51 | 3366.0959 | 1473.8654 |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22 | 440.2347     | 20.2706  | 52 | 3666.2578 | 362.7159  |  |  |  |  |  |  |  |  |
| 23   448.1105   1.2816   53   3667.5322   433.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23 | 448.1105     | 1.2816   | 53 | 3667.5322 | 433.9402  |  |  |  |  |  |  |  |  |
| 24 453.4723 12.0943 54 3669.8171 9.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24 | 453.4723     | 12.0943  | 54 | 3669.8171 | 9.1475    |  |  |  |  |  |  |  |  |
| 25 496.4685 42.8844 55 3720.0549 49.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25 | 496.4685     | 42.8844  | 55 | 3720.0549 | 49.2258   |  |  |  |  |  |  |  |  |
| 26 498.9471 124.4539 56 3722.9688 112.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26 | 498.9471     | 124.4539 | 56 | 3722.9688 | 112.4754  |  |  |  |  |  |  |  |  |
| 27 503.9446 777.3667 57 3741.6587 308.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27 | 503.9446     | 777.3667 | 57 | 3741.6587 | 308.5476  |  |  |  |  |  |  |  |  |
| 28 529.0278 235.2419 58 3744.2410 150.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28 | 529.0278     | 235.2419 | 58 | 3744.2410 | 150.5281  |  |  |  |  |  |  |  |  |
| 29 557.4718 378.6260 59 3744.6062 657.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29 | 557.4718     | 378.6260 | 59 | 3744.6062 | 657.5589  |  |  |  |  |  |  |  |  |

| 30 | 613.2416 | 2.4568 | 60 | 3789.7961 | 181.1047 |
|----|----------|--------|----|-----------|----------|
|----|----------|--------|----|-----------|----------|

As+3 15(H<sub>2</sub>O)

|    | Frog     | Intoncity |     | Frog     |           | ° 15(.           | Freq      | Intoncity |     | Frog      | Intoncity |
|----|----------|-----------|-----|----------|-----------|------------------|-----------|-----------|-----|-----------|-----------|
|    | Freq     | Intensity | 2.4 | Freq     | Intensity | 67               | •         | Intensity | 400 | Freq      | Intensity |
| 1  | 21.7748  | 0.5885    | 34  | 254.3414 | 36.7957   | 67               | 668.2455  | 201.5173  | 100 | 1775.2606 | 136.3393  |
| 2  | 31.4092  | 1.1939    | 35  | 258.8140 | 4.5919    | 68               | 673.8940  | 50.0432   | 101 | 1796.3989 | 98.7515   |
| 3  | 36.7232  | 0.8972    | 36  | 269.3612 | 154.6916  | 69<br><b>-</b> 0 | 682.2879  | 128.0455  | 102 | 1828.2961 | 247.6664  |
| 4  | 42.9863  | 3.8355    | 37  | 282.5832 | 64.1988   | 70               | 706.8125  | 211.9441  | 103 | 2231.3513 | 2260.7878 |
| 5  | 48.9529  | 0.6487    | 38  | 325.0440 | 105.4648  | 71               | 762.7829  | 41.2636   | 104 | 2606.4470 | 2484.9001 |
| 6  | 54.2563  | 0.2469    | 39  | 333.8670 | 72.1568   | 72               | 767.3516  | 130.7586  | 105 | 2730.4927 | 1828.6000 |
| 7  | 57.2796  | 3.8245    | 40  | 346.2043 | 17.5702   | 73               | 777.2997  | 17.4902   | 106 | 2899.8030 | 1999.5959 |
| 8  | 61.8409  | 4.0321    | 41  | 381.8454 | 56.2926   | 74               | 813.2959  | 80.8607   | 107 | 2962.2466 | 1807.9385 |
| 9  | 68.9406  | 0.9217    | 42  | 390.4701 | 319.2003  | 75               | 845.1943  | 121.5948  | 108 | 3250.6243 | 386.0734  |
| 10 | 74.1299  | 0.9022    | 43  | 398.7773 | 56.1504   | 76               | 870.6986  | 485.8610  | 109 | 3274.1174 | 1022.9997 |
| 11 | 81.1355  | 2.0046    | 44  | 401.8239 | 30.7786   | 77               | 883.5528  | 137.0674  | 110 | 3427.7214 | 1079.8733 |
| 12 | 90.8351  | 1.4853    | 45  | 419.4186 | 13.4093   | 78               | 897.1777  | 309.5571  | 111 | 3429.0298 | 252.3512  |
| 13 | 95.3222  | 0.2493    | 46  | 429.9523 | 49.9352   | 79               | 924.0028  | 106.5853  | 112 | 3461.3142 | 228.9977  |
| 14 | 96.6173  | 1.9490    | 47  | 436.8747 | 32.1679   | 80               | 981.3914  | 116.4194  | 113 | 3466.6853 | 442.6014  |
| 15 | 106.4722 | 0.2118    | 48  | 440.8828 | 92.8036   | 81               | 1026.3170 | 209.6005  | 114 | 3496.4478 | 1002.6121 |
| 16 | 120.7118 | 0.6761    | 49  | 446.3902 | 10.4322   | 82               | 1030.0234 | 107.6784  | 115 | 3521.0381 | 1004.9267 |
| 17 | 121.9981 | 5.2033    | 50  | 455.9313 | 10.2093   | 83               | 1092.4189 | 129.0954  | 116 | 3539.7893 | 520.6955  |
| 18 | 127.2531 | 1.6855    | 51  | 466.5205 | 8.6734    | 84               | 1128.9388 | 219.5871  | 117 | 3548.8220 | 97.3483   |
| 19 | 138.4957 | 4.1136    | 52  | 490.3304 | 145.6285  | 85               | 1179.2942 | 106.3070  | 118 | 3575.0962 | 223.3816  |
| 20 | 145.2705 | 8.2402    | 53  | 499.6628 | 22.1216   | 86               | 1289.3363 | 215.4610  | 119 | 3680.3894 | 162.9019  |
| 21 | 152.1417 | 6.0175    | 54  | 504.5464 | 7.6265    | 87               | 1336.6538 | 92.5618   | 120 | 3744.0425 | 113.6093  |
| 22 | 159.9338 | 8.5863    | 55  | 531.5247 | 33.7619   | 88               | 1616.1250 | 103.5525  | 121 | 3769.5068 | 90.3258   |
| 23 | 164.3226 | 8.6670    | 56  | 535.2122 | 43.4069   | 89               | 1695.3168 | 42.5751   | 122 | 3771.4500 | 147.9481  |
| 24 | 168.0756 | 3.1883    | 57  | 544.7838 | 109.3062  | 90               | 1704.6752 | 101.8911  | 123 | 3774.6914 | 207.9796  |
| 25 | 173.0969 | 2.3862    | 58  | 550.8257 | 6.3721    | 91               | 1708.7004 | 112.4074  | 124 | 3782.1101 | 79.5982   |
| 26 | 182.1701 | 49.1190   | 59  | 574.3355 | 25.0623   | 92               | 1721.4930 | 34.9803   | 125 | 3787.1165 | 195.9538  |
| 27 | 195.2640 | 4.4089    | 60  | 581.2824 | 12.6718   | 93               | 1727.9373 | 186.2910  | 126 | 3790.7097 | 125.4452  |
| 28 | 200.1730 | 20.1165   | 61  | 590.5375 | 295.8192  | 94               | 1732.5436 | 73.6251   | 127 | 3792.9971 | 143.6032  |
| 29 | 212.8958 | 16.9500   | 62  | 592.5421 | 100.0730  | 95               | 1733.4402 | 208.2131  | 128 | 3801.8462 | 201.8807  |
| 30 | 220.7674 | 17.7531   | 63  | 600.1362 | 172.8089  | 96               | 1734.3087 | 57.2684   | 129 | 3804.7239 | 120.5247  |
| 31 | 231.6244 | 2.8179    | 64  | 612.5311 | 36.4037   | 97               | 1749.0583 | 14.3863   | 130 | 3825.7876 | 153.8602  |
| 32 | 235.7267 | 44.6643   | 65  | 621.4504 | 83.3461   | 98               | 1751.4373 | 73.6222   | 131 | 3837.3120 | 159.0305  |
| 33 | 242.0704 | 19.8718   | 66  | 646.8388 | 234.9585  | 99               | 1754.1760 | 169.0490  | 132 | 3857.9937 | 149.3164  |
|    |          | ļ         |     |          |           |                  | I .       |           |     |           |           |

As+3 20(H<sub>2</sub>O)

|    | Freq     | Intensity |    | Freq     | Intensity | , 20(1 | Freq      | Intensity |     | Freq      | Intensity |
|----|----------|-----------|----|----------|-----------|--------|-----------|-----------|-----|-----------|-----------|
| 1  | 15.6806  | 0.2777    | 46 | 243.0471 | 112.8256  | 91     | 689.3722  | 186.9725  | 136 | 1809.2108 | 160.0324  |
| 2  | 17.5745  | 1.0813    | 47 | 248.2719 | 19.5868   | 92     | 690.6630  | 65.3766   | 137 | 1892.5400 | 265.1630  |
| 3  | 25.5442  | 0.8881    | 48 | 260.5594 | 26.5164   | 93     | 717.2634  | 66.9354   | 138 | 2450.1514 | 2938.0127 |
| 4  | 37.2651  | 1.2120    | 49 | 266.4231 | 36.8865   | 94     | 744.5807  | 58.0799   | 139 | 2709.3264 | 926.4713  |
| 5  | 39.9414  | 0.0586    | 50 | 279.4226 | 177.4646  | 95     | 749.7878  | 78.0012   | 140 | 2784.3098 | 2028.8992 |
| 6  | 42.6652  | 3.5092    | 51 | 289.8252 | 77.5219   | 96     | 757.6064  | 187.5528  | 141 | 2812.9050 | 1739.9822 |
| 7  | 44.0597  | 0.3338    | 52 | 312.4328 | 99.4431   | 97     | 767.4091  | 21.3843   | 142 | 2892.4663 | 3835.3826 |
| 8  | 46.3815  | 0.7142    | 53 | 315.4920 | 78.9841   | 98     | 801.8222  | 105.3410  | 143 | 2982.3284 | 1437.3170 |
| 9  | 50.1288  | 1.6963    | 54 | 329.8141 | 26.0716   | 99     | 807.2735  | 98.7117   | 144 | 3059.3401 | 514.2514  |
| 10 | 55.4810  | 0.4877    | 55 | 340.3055 | 31.6741   | 100    | 824.3420  | 80.8786   | 145 | 3243.2114 | 1155.6260 |
| 11 | 57.0101  | 1.4108    | 56 | 340.6055 | 285.4521  | 101    | 862.3109  | 273.0102  | 146 | 3306.3228 | 1098.3239 |
| 12 | 63.5399  | 0.5451    | 57 | 350.8330 | 58.1556   | 102    | 865.3542  | 443.6188  | 147 | 3313.7449 | 509.2757  |
| 13 | 65.4262  | 1.0320    | 58 | 364.1090 | 24.1617   | 103    | 884.3472  | 45.4942   | 148 | 3333.6138 | 1360.2769 |
| 14 | 72.2291  | 0.5342    | 59 | 367.6239 | 60.0290   | 104    | 888.8495  | 101.2619  | 149 | 3402.3372 | 1016.2563 |
| 15 | 74.0037  | 1.2504    | 60 | 374.9191 | 19.2643   | 105    | 927.8866  | 225.5117  | 150 | 3408.7300 | 96.9728   |
| 16 | 77.9704  | 0.7586    | 61 | 401.3971 | 9.0547    | 106    | 970.7422  | 152.9288  | 151 | 3443.9019 | 825.6947  |
| 17 | 82.3388  | 2.1081    | 62 | 406.6597 | 23.8458   | 107    | 979.7673  | 70.9100   | 152 | 3452.3799 | 342.6637  |
| 18 | 86.2981  | 0.6410    | 63 | 418.5089 | 24.9009   | 108    | 1002.1777 | 152.4649  | 153 | 3491.9492 | 502.7393  |
| 19 | 94.4751  | 0.8562    | 64 | 421.1097 | 6.2261    | 109    | 1018.6153 | 183.7240  | 154 | 3510.4771 | 258.1131  |
| 20 | 96.7237  | 2.7937    | 65 | 428.8289 | 5.8890    | 110    | 1030.0323 | 213.3059  | 155 | 3536.7275 | 622.3220  |
| 21 | 98.6239  | 1.3039    | 66 | 433.2990 | 13.2097   | 111    | 1078.7467 | 147.6121  | 156 | 3556.2227 | 328.5725  |
| 22 | 109.5115 | 9.6760    | 67 | 439.6963 | 0.5160    | 112    | 1088.1298 | 122.2360  | 157 | 3578.5632 | 29.2012   |
| 23 | 117.7787 | 2.5487    | 68 | 453.2049 | 148.1174  | 113    | 1110.7247 | 153.0397  | 158 | 3579.6870 | 610.5163  |
| 24 | 119.5842 | 1.7055    | 69 | 475.5166 | 67.6310   | 114    | 1138.0688 | 153.9725  | 159 | 3598.3699 | 652.7500  |
| 25 | 130.3860 | 13.0760   | 70 | 485.6645 | 13.3885   | 115    | 1208.5477 | 94.7050   | 160 | 3644.5474 | 203.0024  |
| 26 | 132.8400 | 16.4563   | 71 | 489.1872 | 4.7595    | 116    | 1298.8879 | 169.3891  | 161 | 3648.5437 | 293.1607  |
| 27 | 140.2085 | 2.7582    | 72 | 505.6554 | 66.5270   | 117    | 1342.7242 | 335.5362  | 162 | 3650.2114 | 215.6688  |
| 28 | 143.2224 | 6.0806    | 73 | 513.8757 | 118.1147  | 118    | 1696.2584 | 131.4459  | 163 | 3754.7839 | 78.6404   |
| 29 | 153.5226 | 10.4535   | 74 | 514.6788 | 19.0399   | 119    | 1700.9406 | 33.4376   | 164 | 3781.4890 | 28.3806   |
| 30 | 156.5511 | 2.0349    | 75 | 517.0840 | 51.2268   | 120    | 1703.6373 | 87.5662   | 165 | 3793.0073 | 59.5699   |
| 31 | 159.0698 | 11.6021   | 76 | 525.2366 | 135.4170  | 121    | 1704.1772 | 58.8525   | 166 | 3798.3184 | 141.4747  |
| 32 | 165.4012 | 1.7470    | 77 | 542.7168 | 39.7939   | 122    | 1713.5968 | 61.0891   | 167 | 3807.9841 | 140.7067  |
| 33 | 171.8201 | 9.9842    | 78 | 565.7089 | 180.7170  | 123    | 1719.0287 | 39.3810   | 168 | 3809.4143 | 120.5661  |
| 34 | 173.7443 | 10.9547   | 79 | 573.4206 | 68.2040   | 124    | 1723.4664 | 191.9136  | 169 | 3812.1904 | 93.1774   |
| 35 | 185.5182 | 27.8598   | 80 | 579.8313 | 152.4841  | 125    | 1730.6964 | 119.8314  | 170 | 3815.5549 | 146.6635  |
| 36 | 188.7656 | 2.2012    | 81 | 586.9724 | 120.7701  | 126    | 1731.5750 | 172.7169  | 171 | 3817.6216 | 148.2150  |
| 37 | 199.4447 | 11.4062   | 82 | 604.8421 | 90.8676   | 127    | 1733.6876 | 184.6938  | 172 | 3818.4001 | 124.1258  |
| 38 | 202.7727 | 12.0789   | 83 | 608.8448 | 115.8938  | 128    | 1733.7979 | 18.2454   | 173 | 3839.9158 | 138.7402  |
| 39 | 205.7082 | 20.5878   | 84 | 611.7298 | 161.3786  | 129    | 1747.4985 | 17.9780   | 174 | 3847.6729 | 141.4337  |
| 40 | 218.3222 | 72.7580   | 85 | 615.6924 | 32.2587   | 130    | 1748.2578 | 57.8275   | 175 | 3853.8706 | 165.4266  |

| 41 | 221.9663 | 49.9775 | 86 | 628.9331 | 40.0545  | 131 | 1755.4734 | 102.4719 | 176 | 3860.8557 | 104.6106 |
|----|----------|---------|----|----------|----------|-----|-----------|----------|-----|-----------|----------|
| 42 | 225.2913 | 24.5628 | 87 | 643.2077 | 107.8900 | 132 | 1756.8550 | 49.9637  | 177 | 3874.4797 | 115.0030 |
| 43 | 228.3043 | 18.7493 | 88 | 657.8812 | 76.4540  | 133 | 1767.1278 | 2.6615   |     |           |          |
| 44 | 233.4156 | 34.6285 | 89 | 665.2930 | 383.2071 | 134 | 1773.0446 | 138.2307 |     |           |          |
| 45 | 238.9702 | 10.5474 | 90 | 679.0679 | 147.2139 | 135 | 1794.8252 | 112.1142 |     |           |          |

As+3 24(H<sub>2</sub>O)

|    | Freq     | Intensity |    | Freq     | Intensity |     | Freq      | Intensity |     | Freq      | Intensity |
|----|----------|-----------|----|----------|-----------|-----|-----------|-----------|-----|-----------|-----------|
| 1  | 13.3796  | 0.0854    | 55 | 257.7064 | 74.8738   | 109 | 717.7892  | 133.4267  | 163 | 1810.1610 | 11.1438   |
| 2  | 17.6168  | 0.8237    | 56 | 267.6863 | 66.4627   | 110 | 723.2850  | 77.5957   | 164 | 1835.3695 | 76.5422   |
| 3  | 26.5292  | 1.3699    | 57 | 272.1475 | 72.4900   | 111 | 731.0013  | 104.4801  | 165 | 1896.0793 | 319.9697  |
| 4  | 35.1107  | 2.1236    | 58 | 284.7564 | 12.4950   | 112 | 738.5616  | 71.9511   | 166 | 2371.5522 | 2077.7690 |
| 5  | 39.3614  | 4.1128    | 59 | 285.3606 | 58.6485   | 113 | 761.9628  | 30.0401   | 167 | 2563.3904 | 2666.5713 |
| 6  | 40.8185  | 0.0716    | 60 | 304.0190 | 52.8147   | 114 | 763.1367  | 95.3007   | 168 | 2589.0476 | 2152.8103 |
| 7  | 45.1282  | 0.0013    | 61 | 311.5912 | 13.4233   | 115 | 782.0099  | 408.2374  | 169 | 2674.6677 | 2435.2871 |
| 8  | 53.4435  | 0.0870    | 62 | 321.3554 | 5.8604    | 116 | 787.7006  | 237.8839  | 170 | 2845.2241 | 2095.0193 |
| 9  | 55.9359  | 0.2173    | 63 | 323.5086 | 26.3097   | 117 | 814.8787  | 7.0099    | 171 | 2908.2278 | 1798.5798 |
| 10 | 57.1979  | 5.2488    | 64 | 328.3089 | 33.0984   | 118 | 818.4987  | 103.0777  | 172 | 2947.1218 | 1247.2991 |
| 11 | 61.0336  | 0.5329    | 65 | 332.8359 | 101.9951  | 119 | 820.3943  | 106.0732  | 173 | 3190.8496 | 766.9843  |
| 12 | 66.1310  | 3.5503    | 66 | 338.2757 | 11.9913   | 120 | 825.8800  | 95.9504   | 174 | 3314.2234 | 403.6730  |
| 13 | 67.9573  | 1.3455    | 67 | 357.2548 | 75.4385   | 121 | 836.5977  | 62.9654   | 175 | 3358.0659 | 345.8841  |
| 14 | 72.1354  | 0.6409    | 68 | 369.5386 | 9.9281    | 122 | 868.8837  | 227.2453  | 176 | 3380.5298 | 424.7529  |
| 15 | 75.7471  | 0.5544    | 69 | 378.0419 | 24.5615   | 123 | 880.8064  | 57.9049   | 177 | 3397.3467 | 711.9899  |
| 16 | 79.1900  | 1.6354    | 70 | 387.7336 | 42.7608   | 124 | 888.7847  | 160.5753  | 178 | 3399.3503 | 492.1994  |
| 17 | 87.1607  | 2.6244    | 71 | 408.3910 | 2.4197    | 125 | 899.0733  | 186.5709  | 179 | 3425.6626 | 1157.0211 |
| 18 | 88.3064  | 0.7411    | 72 | 411.7740 | 6.5087    | 126 | 922.3788  | 85.5562   | 180 | 3437.5515 | 599.1726  |
| 19 | 95.7868  | 5.5286    | 73 | 413.0471 | 22.9742   | 127 | 931.2334  | 166.3924  | 181 | 3451.8508 | 981.3995  |
| 20 | 97.1800  | 1.0137    | 74 | 421.8634 | 16.3676   | 128 | 936.7377  | 291.5160  | 182 | 3465.0676 | 593.1556  |
| 21 | 101.5430 | 1.9114    | 75 | 427.2084 | 16.3944   | 129 | 956.0651  | 646.7192  | 183 | 3478.1790 | 234.1018  |
| 22 | 103.5540 | 0.3754    | 76 | 428.7655 | 30.7109   | 130 | 973.4122  | 214.9064  | 184 | 3489.6550 | 420.2721  |
| 23 | 105.1430 | 0.7668    | 77 | 441.4528 | 0.8771    | 131 | 995.3453  | 224.4277  | 185 | 3505.1084 | 791.9524  |
| 24 | 110.1684 | 3.7899    | 78 | 442.7459 | 28.1847   | 132 | 1030.4266 | 149.6150  | 186 | 3512.8442 | 329.3309  |
| 25 | 116.7365 | 3.5031    | 79 | 445.1599 | 21.4466   | 133 | 1044.8326 | 152.6562  | 187 | 3525.8008 | 461.1841  |
| 26 | 123.5580 | 10.5787   | 80 | 451.6979 | 71.6999   | 134 | 1061.5341 | 30.4028   | 188 | 3542.1299 | 534.6897  |
| 27 | 127.1487 | 9.2009    | 81 | 456.8710 | 72.3549   | 135 | 1076.1993 | 166.0209  | 189 | 3580.9541 | 301.3779  |
| 28 | 133.9465 | 3.3671    | 82 | 486.6558 | 6.4983    | 136 | 1142.5811 | 138.4159  | 190 | 3583.8848 | 107.0818  |
| 29 | 134.4247 | 26.5519   | 83 | 500.0794 | 155.3741  | 137 | 1147.2362 | 52.7693   | 191 | 3594.0171 | 176.6473  |
| 30 | 138.8358 | 0.4051    | 84 | 505.1557 | 52.0589   | 138 | 1199.9058 | 118.3565  | 192 | 3599.4021 | 688.6100  |
| 31 | 140.6668 | 15.4262   | 85 | 506.7812 | 145.3674  | 139 | 1264.1467 | 89.1320   | 193 | 3610.4700 | 503.9652  |
| 32 | 146.7824 | 30.9704   | 86 | 513.2432 | 41.7950   | 140 | 1349.2258 | 177.1215  | 194 | 3610.7803 | 146.3389  |
| 33 | 148.3793 | 2.3766    | 87 | 520.7268 | 36.1220   | 141 | 1397.2227 | 310.9044  | 195 | 3629.3296 | 282.6623  |
| 34 | 152.9513 | 3.5080    | 88 | 543.4525 | 14.5623   | 142 | 1695.8214 | 143.8182  | 196 | 3649.6982 | 256.6672  |

| 35 | 160.5720 | 2.4907  | 89  | 548.9702 | 51.7635  | 143 | 1699.5635 | 52.1994  | 197 | 3667.4749 | 322.3621 |
|----|----------|---------|-----|----------|----------|-----|-----------|----------|-----|-----------|----------|
| 36 | 166.6442 | 4.2087  | 90  | 556.4452 | 40.2195  | 144 | 1702.4572 | 4.9542   | 198 | 3698.2168 | 608.0537 |
| 37 | 170.4324 | 15.4718 | 91  | 567.5352 | 169.9506 | 145 | 1713.2198 | 97.2770  | 199 | 3699.4788 | 289.1845 |
| 38 | 173.0420 | 12.4386 | 92  | 570.0769 | 11.5660  | 146 | 1718.6533 | 124.0458 | 200 | 3756.5469 | 14.3984  |
| 39 | 177.1298 | 0.5124  | 93  | 578.8842 | 121.8426 | 147 | 1723.2638 | 111.0600 | 201 | 3756.9954 | 73.3964  |
| 40 | 183.3235 | 12.7011 | 94  | 581.2336 | 160.7122 | 148 | 1726.0597 | 73.9686  | 202 | 3812.4109 | 15.3463  |
| 41 | 186.1079 | 0.4097  | 95  | 584.0515 | 118.8026 | 149 | 1726.5970 | 64.8864  | 203 | 3813.5835 | 138.0585 |
| 42 | 193.8359 | 4.4604  | 96  | 591.9546 | 1.2093   | 150 | 1727.5269 | 136.5013 | 204 | 3813.7109 | 136.8984 |
| 43 | 195.5730 | 10.4795 | 97  | 599.3642 | 221.3279 | 151 | 1728.3647 | 104.9887 | 205 | 3816.3782 | 214.4808 |
| 44 | 200.2277 | 4.2868  | 98  | 609.3380 | 152.9386 | 152 | 1731.1390 | 135.1185 | 206 | 3816.5823 | 117.5129 |
| 45 | 202.1215 | 15.1500 | 99  | 613.1743 | 3.4643   | 153 | 1731.7668 | 119.1964 | 207 | 3818.3606 | 67.4201  |
| 46 | 215.1533 | 30.1959 | 100 | 618.8294 | 98.9268  | 154 | 1734.2784 | 21.9091  | 208 | 3821.8579 | 117.3209 |
| 47 | 219.0526 | 6.3705  | 101 | 625.8869 | 65.4961  | 155 | 1742.7740 | 70.1892  | 209 | 3826.2063 | 119.8921 |
| 48 | 223.3044 | 9.6841  | 102 | 645.9845 | 158.8204 | 156 | 1760.1848 | 93.2517  | 210 | 3829.7954 | 148.1452 |
| 49 | 225.7606 | 3.0717  | 103 | 650.4483 | 306.0678 | 157 | 1766.1995 | 158.9413 | 211 | 3841.4807 | 108.2093 |
| 50 | 228.1692 | 21.6016 | 104 | 655.0595 | 16.3569  | 158 | 1769.2115 | 88.2904  | 212 | 3843.7766 | 136.4028 |
| 51 | 236.7416 | 7.3496  | 105 | 664.6500 | 63.2705  | 159 | 1782.9594 | 194.9591 | 213 | 3850.5500 | 133.0775 |
| 52 | 237.7299 | 23.5300 | 106 | 671.9087 | 573.6432 | 160 | 1796.6754 | 31.4666  |     |           |          |
| 53 | 248.7955 | 15.4514 | 107 | 690.2520 | 96.5381  | 161 | 1802.0203 | 194.4309 |     |           |          |
| 54 | 253.1559 | 13.1855 | 108 | 704.7054 | 14.7984  | 162 | 1808.9791 | 181.9889 |     |           |          |

As+3 36(H<sub>2</sub>O)

|    | Freq    | Intensity |     | Freq     | Intensity |     | Freq     | Intensity |     | Freq      | Intensity |
|----|---------|-----------|-----|----------|-----------|-----|----------|-----------|-----|-----------|-----------|
| 1  | 21.1945 | 0.0392    | 82  | 253.3427 | 7.4271    | 163 | 730.9009 | 25.9001   | 244 | 1790.8651 | 27.6709   |
| 2  | 25.2446 | 0.2351    | 83  | 255.5532 | 35.7290   | 164 | 743.5515 | 72.0243   | 245 | 1792.5160 | 26.7398   |
| 3  | 30.5809 | 0.1451    | 84  | 259.1662 | 10.6871   | 165 | 749.8541 | 145.2969  | 246 | 1805.8381 | 15.1820   |
| 4  | 33.3375 | 0.1537    | 85  | 260.7739 | 84.8103   | 166 | 758.0769 | 142.3680  | 247 | 1809.0867 | 163.1361  |
| 5  | 33.7765 | 0.4638    | 86  | 263.6497 | 14.0207   | 167 | 759.7164 | 64.1597   | 248 | 1814.8054 | 83.0804   |
| 6  | 35.7093 | 0.1697    | 87  | 272.5931 | 118.1094  | 168 | 765.4753 | 73.9334   | 249 | 1880.9760 | 172.3666  |
| 7  | 38.7694 | 0.8008    | 88  | 273.7149 | 20.8322   | 169 | 775.9351 | 143.4215  | 250 | 2298.3728 | 2812.5955 |
| 8  | 39.1834 | 0.4264    | 89  | 274.9292 | 75.5785   | 170 | 782.5242 | 149.9557  | 251 | 2392.7859 | 2132.7002 |
| 9  | 41.3978 | 1.9176    | 90  | 279.5925 | 22.0260   | 171 | 788.9273 | 119.6760  | 252 | 2811.7830 | 3290.0259 |
| 10 | 42.9967 | 0.3833    | 91  | 287.2500 | 14.8235   | 172 | 789.9868 | 59.0005   | 253 | 2830.2561 | 298.9835  |
| 11 | 46.5131 | 1.4204    | 92  | 289.3551 | 16.2432   | 173 | 797.3202 | 140.8847  | 254 | 2883.1125 | 2881.0564 |
| 12 | 47.6857 | 2.6473    | 93  | 291.3328 | 52.5536   | 174 | 798.6889 | 354.7419  | 255 | 2901.5554 | 1538.8444 |
| 13 | 50.6973 | 0.8038    | 94  | 298.4433 | 118.4620  | 175 | 811.6470 | 89.9969   | 256 | 3013.6267 | 611.5072  |
| 14 | 53.9060 | 1.1348    | 95  | 304.3216 | 28.0646   | 176 | 818.4235 | 345.1515  | 257 | 3041.1252 | 483.3280  |
| 15 | 54.7472 | 1.8216    | 96  | 305.7489 | 70.2106   | 177 | 831.7926 | 85.2818   | 258 | 3064.6963 | 1729.6259 |
| 16 | 56.6067 | 0.2788    | 97  | 312.0739 | 28.9011   | 178 | 835.7442 | 348.5915  | 259 | 3096.2935 | 2099.7771 |
| 17 | 58.6857 | 0.4126    | 98  | 317.2798 | 80.1969   | 179 | 841.5125 | 70.1412   | 260 | 3104.3711 | 1626.4127 |
| 18 | 63.6717 | 3.2979    | 99  | 319.8781 | 75.8676   | 180 | 843.2790 | 121.7791  | 261 | 3168.9231 | 834.1947  |
| 19 | 65.3344 | 0.6357    | 100 | 332.4293 | 62.8634   | 181 | 850.4600 | 50.7982   | 262 | 3201.2251 | 945.2572  |

|    |          |         | ı   |          |          | ı   |           |          |     |           |           |
|----|----------|---------|-----|----------|----------|-----|-----------|----------|-----|-----------|-----------|
| 20 | 67.3515  | 1.3120  | 101 | 336.8376 | 12.2480  | 182 | 854.3214  | 23.8436  | 263 | 3280.4402 | 1366.7618 |
| 21 | 69.4085  | 0.2658  | 102 | 347.3063 | 19.8409  | 183 | 864.2537  | 49.8662  | 264 | 3324.6377 | 739.9585  |
| 22 | 70.5468  | 1.3152  | 103 | 370.9341 | 43.2646  | 184 | 871.4430  | 201.0522 | 265 | 3337.8677 | 468.4179  |
| 23 | 72.8416  | 2.0328  | 104 | 372.4847 | 36.0885  | 185 | 882.4036  | 304.1534 | 266 | 3345.5999 | 1167.7567 |
| 24 | 74.5276  | 0.7518  | 105 | 375.6657 | 7.5479   | 186 | 888.2569  | 20.3933  | 267 | 3350.6914 | 761.6975  |
| 25 | 77.0266  | 0.1848  | 106 | 383.8798 | 12.6986  | 187 | 908.7320  | 14.0249  | 268 | 3364.2666 | 480.8228  |
| 26 | 78.4312  | 0.3153  | 107 | 385.2386 | 12.6107  | 188 | 915.8900  | 140.3120 | 269 | 3377.1665 | 799.7071  |
| 27 | 80.6783  | 0.8476  | 108 | 388.0892 | 24.0008  | 189 | 926.2691  | 45.3952  | 270 | 3412.7974 | 860.8928  |
| 28 | 82.8482  | 0.7229  | 109 | 392.6111 | 5.6024   | 190 | 932.2836  | 751.3289 | 271 | 3420.8115 | 724.5559  |
| 29 | 83.8999  | 0.8218  | 110 | 394.8710 | 5.3192   | 191 | 946.4199  | 79.8088  | 272 | 3432.0012 | 317.5394  |
| 30 | 87.2901  | 1.1114  | 111 | 396.7638 | 33.8102  | 192 | 951.5992  | 175.6645 | 273 | 3447.2954 | 345.4579  |
| 31 | 88.6907  | 0.8059  | 112 | 412.6635 | 31.7707  | 193 | 956.3922  | 123.2532 | 274 | 3451.1096 | 454.5877  |
| 32 | 93.7821  | 4.0530  | 113 | 419.7995 | 70.6120  | 194 | 976.4851  | 72.4070  | 275 | 3455.1372 | 466.2496  |
| 33 | 95.4333  | 3.0692  | 114 | 423.3034 | 35.3173  | 195 | 985.8504  | 136.1778 | 276 | 3456.2368 | 627.4613  |
| 34 | 98.1782  | 0.6804  | 115 | 426.2058 | 79.8504  | 196 | 995.0315  | 48.5827  | 277 | 3461.5408 | 513.3464  |
| 35 | 100.4267 | 2.6057  | 116 | 430.1048 | 55.7186  | 197 | 1010.1855 | 24.0455  | 278 | 3466.1787 | 963.7542  |
| 36 | 101.5736 | 3.7605  | 117 | 439.5307 | 76.5018  | 198 | 1018.0413 | 233.2000 | 279 | 3482.4697 | 616.0438  |
| 37 | 103.6915 | 2.5066  | 118 | 441.9765 | 32.8934  | 199 | 1020.8259 | 117.0957 | 280 | 3490.3423 | 282.8244  |
| 38 | 107.4941 | 3.5789  | 119 | 446.4105 | 19.3503  | 200 | 1029.0808 | 270.3748 | 281 | 3495.1270 | 869.9085  |
| 39 | 109.0738 | 15.5766 | 120 | 454.7374 | 7.7567   | 201 | 1077.7521 | 55.1757  | 282 | 3501.7688 | 766.5783  |
| 40 | 116.0363 | 1.5588  | 121 | 456.0611 | 22.9670  | 202 | 1078.8827 | 132.8752 | 283 | 3505.4592 | 298.8603  |
| 41 | 117.7585 | 5.4459  | 122 | 462.7791 | 16.9966  | 203 | 1081.9727 | 150.8751 | 284 | 3522.2058 | 490.1756  |
| 42 | 120.6928 | 1.0558  | 123 | 466.7441 | 7.6734   | 204 | 1093.7926 | 40.9103  | 285 | 3541.2373 | 1089.0104 |
| 43 | 122.1151 | 2.1460  | 124 | 469.0827 | 19.0661  | 205 | 1103.4928 | 141.6601 | 286 | 3543.5571 | 56.3347   |
| 44 | 128.3423 | 5.0369  | 125 | 475.1816 | 45.7670  | 206 | 1127.3044 | 336.5521 | 287 | 3546.5403 | 330.8702  |
| 45 | 131.8387 | 1.6323  | 126 | 477.9818 | 28.7560  | 207 | 1136.2897 | 97.9282  | 288 | 3555.8020 | 414.3755  |
| 46 | 134.3430 | 38.9137 | 127 | 484.1191 | 27.7417  | 208 | 1160.9965 | 170.2413 | 289 | 3560.6975 | 428.8538  |
| 47 | 140.3052 | 9.4220  | 128 | 489.8287 | 61.9781  | 209 | 1176.7996 | 305.4186 | 290 | 3566.4214 | 1113.3698 |
| 48 | 143.5279 | 12.8061 | 129 | 492.0647 | 17.6707  | 210 | 1185.3416 | 118.7996 | 291 | 3570.8408 | 430.4417  |
| 49 | 145.1253 | 4.7692  | 130 | 509.5014 | 91.0554  | 211 | 1278.1860 | 109.2598 | 292 | 3578.4829 | 396.7320  |
| 50 | 145.5423 | 2.7219  | 131 | 515.9656 | 8.0936   | 212 | 1290.5867 | 69.5205  | 293 | 3593.0352 | 752.5378  |
| 51 | 153.2019 | 12.2694 | 132 | 516.9601 | 46.2784  | 213 | 1333.8218 | 326.4585 | 294 | 3597.0901 | 320.3497  |
| 52 | 157.5749 | 5.8275  | 133 | 523.9105 | 39.5528  | 214 | 1684.8550 | 7.8860   | 295 | 3615.2002 | 343.1382  |
| 53 | 162.3955 | 4.1175  | 134 | 527.2262 | 30.5546  | 215 | 1688.9547 | 28.3079  | 296 | 3623.5420 | 178.9618  |
| 54 | 164.5710 | 2.8935  | 135 | 529.2324 | 115.9746 | 216 | 1699.6863 | 145.6836 | 297 | 3638.6567 | 184.1653  |
| 55 | 168.7538 | 3.0915  | 136 | 540.5267 | 49.8267  | 217 | 1705.0067 | 63.0248  | 298 | 3670.1626 | 411.1499  |
| 56 | 169.2905 | 1.5575  | 137 | 545.8881 | 43.1617  | 218 | 1706.0767 | 158.0592 | 299 | 3678.0815 | 242.2075  |
| 57 | 175.5467 | 3.4489  | 138 | 554.5110 | 99.0643  | 219 | 1708.4515 | 54.2225  | 300 | 3681.8384 | 681.9995  |
| 58 | 177.5591 | 8.3144  | 139 | 557.4026 | 305.4085 | 220 | 1716.0745 | 5.6116   | 301 | 3682.6985 | 190.6398  |
| 59 | 181.3970 | 7.9740  | 140 | 561.2762 | 218.9672 | 221 | 1719.2037 | 122.2674 | 302 | 3695.5095 | 370.4041  |
| 60 | 184.1518 | 24.2177 | 141 | 575.2131 | 23.7857  | 222 | 1720.1775 | 156.3689 | 303 | 3807.0330 | 56.5216   |
| 61 | 186.3473 | 47.0133 | 142 | 586.0448 | 30.5020  | 223 | 1722.2738 | 44.8801  | 304 | 3810.7068 | 83.5553   |
|    |          |         |     |          |          |     |           |          |     |           | ·         |

| 65 | 197.4766 | 66.8506  | 146 | 602.8859 | 65.8534  | 227 | 1732.1735 | 181.0311 | 308 | 3817.7861 | 84.7713  |
|----|----------|----------|-----|----------|----------|-----|-----------|----------|-----|-----------|----------|
| 66 | 200.4129 | 15.8660  | 147 | 608.3292 | 32.5591  | 228 | 1736.8655 | 23.7594  | 309 | 3819.1836 | 105.4134 |
| 67 | 202.3675 | 6.7822   | 148 | 612.7506 | 47.3147  | 229 | 1742.8160 | 98.7875  | 310 | 3820.3982 | 135.3706 |
| 68 | 203.7219 | 12.0173  | 149 | 614.6777 | 21.4102  | 230 | 1745.4949 | 56.4170  | 311 | 3820.8550 | 95.4335  |
| 69 | 204.9958 | 93.7583  | 150 | 629.6055 | 271.4542 | 231 | 1746.3616 | 91.5790  | 312 | 3821.1941 | 109.9041 |
| 70 | 208.8729 | 44.6776  | 151 | 636.3116 | 107.1510 | 232 | 1748.0293 | 59.3741  | 313 | 3826.3247 | 140.3809 |
| 71 | 212.9289 | 18.0481  | 152 | 643.1618 | 30.1066  | 233 | 1749.2411 | 46.4114  | 314 | 3826.3694 | 68.4109  |
| 72 | 216.1458 | 117.0692 | 153 | 655.1141 | 90.2810  | 234 | 1753.1003 | 3.8287   | 315 | 3846.8372 | 83.1592  |
| 73 | 220.9400 | 15.6952  | 154 | 660.7387 | 160.1305 | 235 | 1755.1665 | 56.5913  | 316 | 3850.0251 | 107.5781 |
| 74 | 223.3002 | 57.3190  | 155 | 664.3084 | 116.6797 | 236 | 1757.4418 | 71.2052  | 317 | 3851.4609 | 121.0092 |
| 75 | 224.4590 | 113.1921 | 156 | 675.4431 | 100.8008 | 237 | 1760.4280 | 99.6595  | 318 | 3854.2466 | 119.9625 |
| 76 | 229.1303 | 36.0364  | 157 | 682.1953 | 196.7988 | 238 | 1762.9727 | 18.0400  | 319 | 3866.3125 | 166.4124 |
| 77 | 232.4080 | 10.9179  | 158 | 685.6861 | 31.2477  | 239 | 1765.2482 | 59.3934  | 320 | 3867.1082 | 96.5297  |
| 78 | 235.7849 | 18.3671  | 159 | 701.9610 | 7.8401   | 240 | 1766.5707 | 12.8104  | 321 | 3868.6436 | 145.5053 |
| 79 | 236.9076 | 10.9845  | 160 | 709.9515 | 21.0527  | 241 | 1775.5872 | 75.6657  |     |           |          |
| 80 | 247.4933 | 98.9895  | 161 | 723.1542 | 112.0123 | 242 | 1782.8850 | 7.5517   |     |           |          |
| 81 | 250.2338 | 32.4292  | 162 | 728.3499 | 45.3831  | 243 | 1784.4091 | 52.5698  |     |           |          |





















Figure 8. DFT calculated IR spectra for As- $H_2O$  complexes consisting of 2, 3, 4, 5, 6, 7, 15, 20, 24 and 36 water molecules, without water background. Intensity is in arbitrary units.



















Figure 9i. As+3 24(H<sub>2</sub>O)



Figure 9. TD-DFT calculated UV-Visible spectra for As-H<sub>2</sub>O complexes consisting of 2, 3, 4, 5, 6, 7, 15, 20, 24 and 36 water molecules, without water background. Intensity is in arbitrary units.



Figure 10a. As+3 2(H2O) in water



Figure 10b.  $As^{+3}$  4(H<sub>2</sub>O) in water



Figure 10c. As $^{+3}$  5(H $_2$ O) in water



Figure 10d As $^{+3}$  7(H $_2$ O) in water



Figure 10e. As $^{+3}$  15(H $_2$ O) in water



Figure 10f. As $^{+3}$  20(H $_2$ O) in water



Figure 10g.  $As^{+3}$  24( $H_2O$ ) in water



Figure 10h. As $^{+3}$  36(H $_2$ O) in water

Figure 10. Molecular geometries of As- $H_2O$  complexes consisting of 2, 4, 5, 7, 15, 20, 24 and 36 water molecules, with water background.

Table 2. DFT calculated IR spectra for As- $H_2O$  complexes consisting of 2, 3, 4, 5, 6, 7, 15, 20, 24 and 36 water molecules, with water background.

| $As^{+3} 2(H_2O) ii$ | n water |
|----------------------|---------|
|----------------------|---------|

|    | Freq      | Intensity |
|----|-----------|-----------|
| 1  | 310.3459  | 1.9609    |
| 2  | 398.8153  | 91.5356   |
| 3  | 507.2644  | 1.5124    |
| 4  | 596.5092  | 142.1594  |
| 5  | 602.5496  | 26.6922   |
| 6  | 603.6932  | 980.3323  |
| 7  | 781.0266  | 2.6026    |
| 8  | 964.9374  | 54.2390   |
| 9  | 1222.8208 | 179.0752  |
| 10 | 1731.3759 | 253.6584  |
| 11 | 1910.8838 | 77.1332   |
| 12 | 3421.2090 | 1503.6879 |
| 13 | 3451.6177 | 145.7432  |
| 14 | 3497.6753 | 212.0805  |
| 15 | 3509.2209 | 1214.9919 |
| 1  | 310.3459  | 1.9609    |
| 2  | 398.8153  | 91.5356   |
| 3  | 507.2644  | 1.5124    |
| 4  | 596.5092  | 142.1594  |
| 5  | 602.5496  | 26.6922   |
| 6  | 603.6932  | 980.3323  |
| 7  | 781.0266  | 2.6026    |
| 8  | 964.9374  | 54.2390   |
| 9  | 1222.8208 | 179.0752  |
| 10 | 1731.3759 | 253.6584  |
| 11 | 1910.8838 | 77.1332   |
| 12 | 3421.2090 | 1503.6879 |
| 13 | 3451.6177 | 145.7432  |
| 14 | 3497.6753 | 212.0805  |
| 15 | 3509.2209 | 1214.9919 |

 $As^{+3}$  4(H<sub>2</sub>O) in water

|   | Freq     | Intensity |
|---|----------|-----------|
| 1 | 122.4374 | 75.2791   |
| 2 | 166.4600 | 5.4119    |
| 3 | 183.9250 | 0.2910    |
| 4 | 211.6977 | 1.0529    |

| 5  | 241.4753  | 8.4426   |
|----|-----------|----------|
| 6  | 249.1060  | 25.2430  |
| 7  | 328.8628  | 4.4847   |
| 8  | 349.4935  | 142.6424 |
| 9  | 358.0970  | 247.8650 |
| 10 | 377.0110  | 0.1078   |
| 11 | 393.2487  | 103.1777 |
| 12 | 396.8150  | 0.0070   |
| 13 | 454.3663  | 471.4978 |
| 14 | 466.8746  | 187.3336 |
| 15 | 483.3830  | 421.5410 |
| 16 | 546.2039  | 210.7991 |
| 17 | 567.2067  | 372.5377 |
| 18 | 798.2560  | 15.9820  |
| 19 | 842.7018  | 157.3815 |
| 20 | 900.0974  | 0.9866   |
| 21 | 930.0350  | 163.9780 |
| 22 | 1705.1877 | 18.0100  |
| 23 | 1708.8710 | 330.1116 |
| 24 | 1740.6350 | 236.3790 |
| 25 | 1750.0554 | 13.8753  |
| 26 | 3612.0601 | 810.2934 |
| 27 | 3621.7771 | 90.9180  |
| 28 | 3656.1643 | 819.8918 |
| 29 | 3662.9500 | 31.8540  |
| 30 | 3694.9099 | 25.4630  |
| 31 | 3695.5481 | 830.2877 |
| 32 | 3743.2683 | 441.5243 |
| 33 | 3743.4641 | 337.9660 |

 $As^{+3} 5(H_2O)$  in water

|    | Freq     | Intensity |    | Freq      | Intensity |
|----|----------|-----------|----|-----------|-----------|
| 1  | 84.7701  | 5.5345    | 22 | 571.0698  | 57.3837   |
| 2  | 113.4038 | 93.7666   | 23 | 728.9128  | 6.0889    |
| 3  | 144.2610 | 2.3450    | 24 | 758.8940  | 141.0960  |
| 4  | 154.1359 | 4.7866    | 25 | 767.4748  | 16.6130   |
| 5  | 160.8287 | 3.8287    | 26 | 778.4788  | 143.6055  |
| 6  | 205.4510 | 3.0440    | 27 | 874.0480  | 103.0800  |
| 7  | 213.9755 | 1.1243    | 28 | 1622.8101 | 195.4386  |
| 8  | 233.5960 | 94.9829   | 29 | 1707.5718 | 159.6328  |
| 9  | 247.7790 | 77.6690   | 30 | 1711.2330 | 78.7840   |
| 10 | 278.4374 | 109.8983  | 31 | 1714.4097 | 267.4180  |

| 11 | 288.7020 | 22.4167  | 32 | 1716.0684 | 30.2032  |
|----|----------|----------|----|-----------|----------|
| 12 | 303.3710 | 106.1320 | 33 | 3631.0491 | 356.2760 |
| 13 | 327.6032 | 8.2020   | 34 | 3679.7876 | 665.0776 |
| 14 | 332.9644 | 80.4824  | 35 | 3682.5742 | 214.9621 |
| 15 | 355.9150 | 55.3490  | 36 | 3684.9031 | 423.5640 |
| 16 | 368.0694 | 862.0919 | 37 | 3691.3784 | 33.4087  |
| 17 | 393.6858 | 11.8297  | 38 | 3729.7915 | 429.9159 |
| 18 | 417.4260 | 481.8700 | 39 | 3766.2261 | 336.1250 |
| 19 | 501.1596 | 5.0318   | 40 | 3767.0554 | 271.9161 |
| 20 | 544.5419 | 575.3577 | 41 | 3780.5127 | 338.3952 |
| 21 | 550.5520 | 133.8080 | 42 | 3782.4209 | 309.9760 |

## $As^{+3}$ 7(H<sub>2</sub>O) in water

|    | Freq            | Intensity |    | Freq      | Intensity |
|----|-----------------|-----------|----|-----------|-----------|
| 1  | 13.9486         | 14.4543   | 31 | 654.9240  | 121.9824  |
| 2  | 31.7094 12.3640 |           | 32 | 745.4506  | 33.4683   |
| 3  | 43.5420         | 6.6020    | 33 | 818.7830  | 532.3500  |
| 4  | 61.1078         | 28.6051   | 34 | 1052.6010 | 66.7840   |
| 5  | 65.1764         | 36.4690   | 35 | 1105.2976 | 112.2598  |
| 6  | 88.3450         | 1.4780    | 36 | 1185.4330 | 508.4560  |
| 7  | 112.8655        | 17.1394   | 37 | 1326.1737 | 258.5215  |
| 8  | 116.7161        | 98.6621   | 38 | 1329.3992 | 171.4884  |
| 9  | 144.1950        | 88.6520   | 39 | 1400.7340 | 152.0680  |
| 10 | 151.5111        | 46.5477   | 40 | 1695.1440 | 1373.2533 |
| 11 | 182.6143        | 76.7184   | 41 | 1703.1754 | 155.9087  |
| 12 | 185.7550        | 134.2330  | 42 | 1720.6541 | 117.1510  |
| 13 | 189.9609        | 10.3340   | 43 | 1730.6566 | 61.4218   |
| 14 | 208.9397        | 80.4220   | 44 | 1732.5573 | 256.7027  |
| 15 | 239.9920        | 43.0660   | 45 | 1735.9730 | 158.6550  |
| 16 | 297.6398        | 467.2412  | 46 | 1747.2010 | 159.1852  |
| 17 | 310.3423        | 376.9247  | 47 | 1923.1865 | 7162.6670 |
| 18 | 335.4600        | 9.0930    | 48 | 1971.4020 | 2309.5610 |
| 19 | 372.8043        | 429.4904  | 49 | 2060.0930 | 2689.9985 |
| 20 | 404.3991        | 304.6592  | 50 | 3265.0520 | 36.7519   |
| 21 | 462.8440        | 345.5450  | 51 | 3339.5759 | 2219.2151 |
| 22 | 478.7692        | 45.6124   | 52 | 3712.3711 | 198.5530  |
| 23 | 490.1961        | 72.3713   | 53 | 3712.6829 | 134.9723  |
| 24 | 490.7810        | 219.0630  | 54 | 3717.5400 | 160.7410  |
| 25 | 502.0118        | 228.6708  | 55 | 3766.8406 | 18.4025   |
| 26 | 512.7051        | 12.6088   | 56 | 3767.6921 | 198.2226  |
| 27 | 529.5900        | 201.2540  | 57 | 3784.3621 | 330.7230  |
| 28 | 599.9254        | 378.2101  | 58 | 3784.9521 | 338.7678  |

| 29 | 614.3513 | 110.9928 | 59 | 3789.9189 | 332.2890 |
|----|----------|----------|----|-----------|----------|
| 30 | 616.6810 | 265.9930 | 60 | 3851.3689 | 188.3120 |

 $As^{+3}$  15(H<sub>2</sub>O) in water

|    | Freq     | Intensity |    | Freq     | Intensity |    | Freq      | Intensity |     | Freq      | Intensity |
|----|----------|-----------|----|----------|-----------|----|-----------|-----------|-----|-----------|-----------|
| 1  | 22.0200  | 4.0643    | 34 | 248.0471 | 24.2917   | 67 | 645.0310  | 175.7870  | 100 | 1753.4755 | 189.6519  |
| 2  | 28.9715  | 5.0476    | 35 | 264.6880 | 41.0827   | 68 | 678.7600  | 144.3885  | 101 | 1786.5377 | 111.9980  |
| 3  | 36.7270  | 2.9560    | 36 | 268.7560 | 26.9360   | 69 | 695.0150  | 47.5600   | 102 | 1844.8621 | 469.0280  |
| 4  | 42.3171  | 8.1232    | 37 | 283.5380 | 61.4860   | 70 | 710.1719  | 98.9445   | 103 | 2520.4668 | 2220.7634 |
| 5  | 49.5119  | 11.4296   | 38 | 302.1605 | 336.2341  | 71 | 746.2118  | 446.2172  | 104 | 2546.1865 | 3120.7783 |
| 6  | 49.9610  | 2.9270    | 39 | 311.1800 | 149.4280  | 72 | 779.0400  | 340.8910  | 105 | 2574.6201 | 3796.6570 |
| 7  | 60.3255  | 0.1202    | 40 | 314.3076 | 91.3806   | 73 | 806.6649  | 247.2880  | 106 | 2759.6387 | 2173.8181 |
| 8  | 67.2611  | 6.6618    | 41 | 325.2033 | 135.3859  | 74 | 812.3866  | 131.2118  | 107 | 3052.0476 | 3060.6704 |
| 9  | 73.2940  | 4.0160    | 42 | 343.9520 | 224.1800  | 75 | 845.2850  | 433.7460  | 108 | 3189.1230 | 1137.9430 |
| 10 | 79.3238  | 6.8700    | 43 | 372.7385 | 39.6979   | 76 | 860.7397  | 280.5087  | 109 | 3217.9912 | 1137.5955 |
| 11 | 81.2867  | 12.4495   | 44 | 376.3422 | 66.0209   | 77 | 873.3797  | 136.9377  | 110 | 3375.0271 | 394.6217  |
| 12 | 97.9400  | 5.2660    | 45 | 388.4770 | 49.0860   | 78 | 899.9620  | 173.5660  | 111 | 3382.3960 | 1100.9430 |
| 13 | 100.7437 | 2.6673    | 46 | 392.4137 | 32.1519   | 79 | 949.1265  | 256.1313  | 112 | 3412.4409 | 306.9538  |
| 14 | 116.6428 | 7.4322    | 47 | 398.3717 | 32.6077   | 80 | 961.2829  | 195.3883  | 113 | 3436.2002 | 1170.6689 |
| 15 | 122.6370 | 33.0930   | 48 | 405.5560 | 216.8350  | 81 | 983.8800  | 79.6890   | 114 | 3458.1919 | 1147.7350 |
| 16 | 127.2148 | 59.9727   | 49 | 410.1776 | 30.3093   | 82 | 1027.5432 | 201.2490  | 115 | 3480.1306 | 1037.1484 |
| 17 | 129.5719 | 22.9748   | 50 | 425.7847 | 32.8830   | 83 | 1101.5325 | 196.1046  | 116 | 3509.1272 | 564.3222  |
| 18 | 141.4350 | 22.9130   | 51 | 438.0100 | 26.6680   | 84 | 1105.9790 | 191.0840  | 117 | 3523.2690 | 218.0470  |
| 19 | 148.4290 | 18.1410   | 52 | 447.5549 | 35.6507   | 85 | 1259.8226 | 63.7430   | 118 | 3582.9153 | 577.0484  |
| 20 | 155.4750 | 5.6780    | 53 | 476.8390 | 47.0112   | 86 | 1288.4844 | 542.0081  | 119 | 3657.7312 | 270.3587  |
| 21 | 159.5670 | 17.1350   | 54 | 480.5860 | 345.6060  | 87 | 1326.2830 | 126.1190  | 120 | 3759.1770 | 374.5920  |
| 22 | 170.4215 | 62.5612   | 55 | 498.0970 | 28.1959   | 88 | 1664.9126 | 108.8153  | 121 | 3768.8201 | 245.4654  |
| 23 | 177.0466 | 36.8225   | 56 | 506.9851 | 6.0624    | 89 | 1683.5879 | 223.3683  | 122 | 3772.0493 | 24.0366   |
| 24 | 185.0240 | 58.1950   | 57 | 509.7370 | 12.1980   | 90 | 1704.1610 | 60.1250   | 123 | 3776.4871 | 31.1070   |
| 25 | 194.5941 | 18.6264   | 58 | 524.4334 | 300.1017  | 91 | 1705.2500 | 88.7983   | 124 | 3804.4280 | 140.6772  |
| 26 | 198.7263 | 1.2661    | 59 | 537.1786 | 151.0874  | 92 | 1706.2123 | 188.0747  | 125 | 3809.3403 | 91.9934   |
| 27 | 205.1650 | 64.3560   | 60 | 541.6560 | 65.1640   | 93 | 1712.6260 | 104.6730  | 126 | 3824.8740 | 120.2050  |
| 28 | 216.3643 | 18.2283   | 61 | 561.1920 | 94.1743   | 94 | 1717.1033 | 33.1679   | 127 | 3832.2852 | 122.4114  |
| 29 | 224.2701 | 116.7347  | 62 | 563.7473 | 79.4148   | 95 | 1721.4978 | 332.5624  | 128 | 3832.8926 | 96.6382   |
| 30 | 228.3250 | 33.5260   | 63 | 570.5620 | 240.2310  | 96 | 1726.1420 | 46.6270   | 129 | 3835.4829 | 127.4970  |
| 31 | 235.2815 | 66.2917   | 64 | 593.8496 | 289.2263  | 97 | 1733.8381 | 198.6040  | 130 | 3840.8999 | 127.4518  |
| 32 | 239.2221 | 12.3877   | 65 | 610.7896 | 595.6900  | 98 | 1739.7037 | 16.5310   | 131 | 3853.0952 | 184.8499  |
| 33 | 246.7520 | 26.9130   | 66 | 625.3590 | 232.5730  | 99 | 1747.9740 | 16.9640   | 132 | 3869.6121 | 136.9530  |

 $As^{+3}$  20( $H_2O$ ) in water

|    | Freq     | Intensity |    | Freq     | Intensity | 1120) | Freq      | Intensity |     | Freq      | Intensity |
|----|----------|-----------|----|----------|-----------|-------|-----------|-----------|-----|-----------|-----------|
| 1  | 22.7328  | 2.6820    | 46 | 251.1134 | 9.9921    | 91    | 705.0722  | 70.1862   | 136 | 1797.0988 | 105.4537  |
| 2  | 25.5510  | 3.7336    | 47 | 259.8604 | 26.7802   | 92    | 712.1164  | 34.3410   | 137 | 1898.9581 | 286.1329  |
| 3  | 25.9850  | 3.4880    | 48 | 262.0060 | 77.0320   | 93    | 713.4750  | 14.2110   | 138 | 2498.8730 | 3437.7590 |
| 4  | 36.2802  | 1.1828    | 49 | 264.8955 | 31.5648   | 94    | 740.8214  | 254.6259  | 139 | 2625.6506 | 2886.0586 |
| 5  | 40.1161  | 0.1737    | 50 | 271.5588 | 91.4238   | 95    | 746.0318  | 306.5470  | 140 | 2739.2837 | 2502.2361 |
| 6  | 46.7680  | 2.6090    | 51 | 274.3440 | 85.1950   | 96    | 770.1940  | 208.5390  | 141 | 2769.6421 | 1673.4730 |
| 7  | 49.1703  | 0.9458    | 52 | 283.6444 | 299.0880  | 97    | 777.2703  | 278.6079  | 142 | 2921.4514 | 4450.0942 |
| 8  | 51.5775  | 10.2533   | 53 | 292.5482 | 35.4071   | 98    | 811.5280  | 325.1259  | 143 | 3142.0764 | 2059.5176 |
| 9  | 53.9480  | 6.8940    | 54 | 300.3080 | 130.2480  | 99    | 821.7630  | 68.9550   | 144 | 3171.5669 | 549.5380  |
| 10 | 56.6812  | 2.6929    | 55 | 313.3203 | 96.3856   | 100   | 830.2788  | 542.0980  | 145 | 3177.8313 | 1012.0177 |
| 11 | 62.5899  | 3.0561    | 56 | 321.5598 | 82.3372   | 101   | 843.9240  | 296.5449  | 146 | 3267.0146 | 616.0350  |
| 12 | 67.8690  | 4.2600    | 57 | 328.7120 | 58.9430   | 102   | 872.3650  | 50.3380   | 147 | 3270.3879 | 1486.7620 |
| 13 | 70.7902  | 3.7266    | 58 | 330.8237 | 124.6607  | 103   | 889.2860  | 370.7800  | 148 | 3358.7876 | 693.4015  |
| 14 | 77.9766  | 4.9362    | 59 | 335.5340 | 177.4297  | 104   | 901.2254  | 258.5483  | 149 | 3389.9353 | 1167.0426 |
| 15 | 79.8880  | 1.2720    | 60 | 346.0010 | 151.5460  | 105   | 902.4310  | 211.1910  | 150 | 3414.1169 | 1400.5420 |
| 16 | 88.9634  | 12.7891   | 61 | 351.2238 | 148.3706  | 106   | 922.0578  | 46.5443   | 151 | 3416.4241 | 486.0630  |
| 17 | 90.0696  | 7.9269    | 62 | 364.4971 | 18.0494   | 107   | 974.2376  | 311.5997  | 152 | 3445.8591 | 1053.0894 |
| 18 | 98.1810  | 64.2360   | 63 | 369.2820 | 8.8830    | 108   | 979.2310  | 155.9220  | 153 | 3455.3220 | 634.5840  |
| 19 | 102.5353 | 0.8489    | 64 | 375.7131 | 30.9745   | 109   | 988.9820  | 276.9252  | 154 | 3469.9287 | 926.0406  |
| 20 | 106.2757 | 2.1363    | 65 | 384.5530 | 16.2436   | 110   | 997.9060  | 37.8252   | 155 | 3475.2114 | 847.4550  |
| 21 | 107.0160 | 7.3350    | 66 | 400.6570 | 22.0820   | 111   | 1033.5990 | 242.0080  | 156 | 3480.8201 | 186.6400  |
| 22 | 117.2152 | 11.7845   | 67 | 412.4215 | 80.2524   | 112   | 1070.7653 | 295.6234  | 157 | 3504.2812 | 483.7373  |
| 23 | 120.5784 | 9.9294    | 68 | 415.0391 | 80.2480   | 113   | 1074.2030 | 171.9815  | 158 | 3524.6958 | 665.1401  |
| 24 | 125.4800 | 9.9690    | 69 | 428.0340 | 201.4540  | 114   | 1120.8660 | 143.0760  | 159 | 3556.7290 | 397.7440  |
| 25 | 131.6903 | 1.8995    | 70 | 434.0880 | 22.9804   | 115   | 1231.0175 | 99.0663   | 160 | 3558.7151 | 891.7034  |
| 26 | 146.8893 | 10.9500   | 71 | 448.4134 | 102.5202  | 116   | 1298.0835 | 200.0848  | 161 | 3572.4751 | 430.4836  |
| 27 | 154.2750 | 33.9020   | 72 | 462.6650 | 130.1950  | 117   | 1369.5010 | 571.0960  | 162 | 3687.2610 | 256.4170  |
| 28 | 154.8540 | 5.8503    | 73 | 476.7602 | 108.7314  | 118   | 1665.2371 | 112.2808  | 163 | 3768.0095 | 65.0141   |
| 29 | 168.6358 | 36.5169   | 74 | 499.6907 | 97.2842   | 119   | 1690.2629 | 228.4111  | 164 | 3777.0801 | 20.6353   |
| 30 | 170.7480 | 2.9260    | 75 | 503.5590 | 78.3430   | 120   | 1694.6030 | 285.2940  | 165 | 3811.4751 | 108.9860  |
| 31 | 178.7289 | 103.8509  | 76 | 508.5900 | 65.5337   | 121   | 1696.2369 | 171.7614  | 166 | 3813.5603 | 146.9748  |
| 32 | 185.0917 | 1.5361    | 77 | 514.0555 | 45.9352   | 122   | 1700.8121 | 68.2060   | 167 | 3828.1921 | 116.2832  |
| 33 | 188.1630 | 9.3590    | 78 | 521.1720 | 312.4330  | 123   | 1702.2350 | 82.3120   | 168 | 3828.5229 | 92.5410   |
| 34 | 191.8654 | 6.6944    | 79 | 524.1003 | 364.1025  | 124   | 1708.4409 | 96.2444   | 169 | 3831.7249 | 121.3739  |
| 35 | 199.6023 | 24.7702   | 80 | 530.5449 | 233.6211  | 125   | 1708.6768 | 10.4480   | 170 | 3832.4673 | 128.0652  |
| 36 | 201.4610 | 1.8880    | 81 | 543.6140 | 292.6230  | 126   | 1714.3770 | 169.6890  | 171 | 3833.3291 | 92.5100   |
| 37 | 201.9812 | 75.2716   | 82 | 556.3988 | 128.0710  | 127   | 1718.8148 | 163.4387  | 172 | 3834.8982 | 128.1848  |
| 38 | 212.2144 | 25.8339   | 83 | 581.4472 | 86.4986   | 128   | 1721.2155 | 181.1402  | 173 | 3837.3816 | 155.4630  |
| 39 | 218.5750 | 15.7070   | 84 | 592.6570 | 118.5740  | 129   | 1725.5940 | 44.0460   | 174 | 3838.9629 | 55.6400   |
| 40 | 223.5605 | 9.4839    | 85 | 611.2485 | 233.5904  | 130   | 1731.7942 | 93.6953   | 175 | 3841.1028 | 125.2780  |

| 41 | 224.2640 | 158.1262 | 86 | 623.2261 | 305.7386 | 131 | 1734.9393 | 144.6243 | 176 | 3855.4856 | 174.2338 |
|----|----------|----------|----|----------|----------|-----|-----------|----------|-----|-----------|----------|
| 42 | 228.0750 | 81.0860  | 87 | 645.6950 | 287.5600 | 132 | 1738.4530 | 67.4150  | 177 | 3872.0071 | 114.2270 |
| 43 | 230.9852 | 29.6096  | 88 | 654.0047 | 176.5800 | 133 | 1772.4659 | 118.3503 |     |           |          |
| 44 | 236.0122 | 79.2030  | 89 | 674.4788 | 69.2606  | 134 | 1783.5123 | 188.7255 |     |           |          |
| 45 | 248.4870 | 261.0180 | 90 | 685.6250 | 179.4590 | 135 | 1784.3940 | 84.7440  |     |           |          |

 $As^{+3}$  24( $H_2O$ ) in water

|    | Freq     | Intensity |    | Freq     | Intensity |     | Freq      | Intensity |     | Freq      | Intensity |
|----|----------|-----------|----|----------|-----------|-----|-----------|-----------|-----|-----------|-----------|
| 1  | 14.2017  | 1.0317    | 55 | 250.5109 | 48.5828   | 109 | 728.6514  | 80.4712   | 163 | 1808.6642 | 24.1184   |
| 2  | 25.7885  | 5.1613    | 56 | 266.6409 | 19.2411   | 110 | 732.8235  | 154.9435  | 164 | 1812.5919 | 40.7639   |
| 3  | 32.8380  | 11.8270   | 57 | 269.8000 | 70.8920   | 111 | 744.6970  | 60.2160   | 165 | 1910.2980 | 391.8570  |
| 4  | 33.8264  | 2.0396    | 58 | 279.0565 | 79.4456   | 112 | 755.4205  | 449.6340  | 166 | 2465.3943 | 3707.6523 |
| 5  | 37.3090  | 4.0245    | 59 | 282.1558 | 23.2566   | 113 | 758.2993  | 152.8000  | 167 | 2574.8015 | 2635.3770 |
| 6  | 47.5920  | 0.5660    | 60 | 285.0510 | 82.5510   | 114 | 774.4400  | 387.3780  | 168 | 2634.3540 | 2730.8350 |
| 7  | 48.9547  | 1.9346    | 61 | 297.3394 | 87.3241   | 115 | 776.4038  | 639.5012  | 169 | 2729.2520 | 419.4479  |
| 8  | 54.6916  | 7.4781    | 62 | 301.2140 | 9.9424    | 116 | 788.7881  | 148.2621  | 170 | 2790.8013 | 6425.5913 |
| 9  | 61.0960  | 8.5210    | 63 | 304.4360 | 35.5680   | 117 | 798.7960  | 235.4890  | 171 | 3047.0249 | 483.3760  |
| 10 | 63.8487  | 0.9237    | 64 | 317.7882 | 27.7726   | 118 | 812.0188  | 443.0388  | 172 | 3054.3872 | 1496.4989 |
| 11 | 67.1733  | 3.2119    | 65 | 328.3785 | 73.9508   | 119 | 821.0519  | 80.9355   | 173 | 3144.7881 | 1720.7554 |
| 12 | 70.7710  | 2.5190    | 66 | 329.9260 | 46.9810   | 120 | 830.7750  | 205.1280  | 174 | 3222.1951 | 1178.9320 |
| 13 | 77.8247  | 0.7914    | 67 | 332.7968 | 175.1194  | 121 | 842.5180  | 20.9183   | 175 | 3306.9453 | 1425.6382 |
| 14 | 80.7868  | 0.9650    | 68 | 335.9467 | 109.2766  | 122 | 846.2717  | 438.5351  | 176 | 3363.5784 | 49.1957   |
| 15 | 81.6060  | 11.1510   | 69 | 342.9920 | 143.0110  | 123 | 869.0380  | 182.8950  | 177 | 3390.7581 | 90.8740   |
| 16 | 89.9484  | 7.2855    | 70 | 344.7633 | 163.2689  | 124 | 871.0725  | 137.4775  | 178 | 3400.3662 | 662.2757  |
| 17 | 95.8311  | 3.1576    | 71 | 351.8909 | 50.3819   | 125 | 878.8326  | 77.0342   | 179 | 3404.8625 | 883.6663  |
| 18 | 96.6880  | 2.6050    | 72 | 355.0520 | 97.7590   | 126 | 893.3250  | 43.2680   | 180 | 3417.0811 | 1048.6040 |
| 19 | 100.1475 | 8.2974    | 73 | 358.7200 | 65.0597   | 127 | 893.8323  | 1111.6849 | 181 | 3438.5605 | 794.6073  |
| 20 | 105.1829 | 6.3710    | 74 | 368.1919 | 18.0892   | 128 | 923.2586  | 242.3747  | 182 | 3445.5132 | 1473.3907 |
| 21 | 108.5690 | 10.0500   | 75 | 369.0930 | 82.6300   | 129 | 958.3610  | 274.6740  | 183 | 3450.3250 | 1038.7810 |
| 22 | 112.6006 | 8.8137    | 76 | 390.7689 | 10.8107   | 130 | 959.6902  | 171.6398  | 184 | 3474.3191 | 146.3118  |
| 23 | 113.6830 | 15.0618   | 77 | 392.5527 | 473.6518  | 131 | 978.5739  | 119.2082  | 185 | 3488.5176 | 1326.6505 |
| 24 | 117.4630 | 23.1690   | 78 | 407.3430 | 163.6590  | 132 | 991.3870  | 197.1820  | 186 | 3506.2900 | 564.0610  |
| 25 | 122.0653 | 19.6329   | 79 | 413.8909 | 30.4390   | 133 | 1028.4279 | 315.6357  | 187 | 3511.3516 | 969.5684  |
| 26 | 127.2464 | 17.7262   | 80 | 417.6869 | 31.2012   | 134 | 1064.1331 | 268.0008  | 188 | 3523.4490 | 201.8336  |
| 27 | 134.7890 | 17.2340   | 81 | 445.9280 | 1.6240    | 135 | 1081.4750 | 210.2900  | 189 | 3528.6931 | 576.5050  |
| 28 | 142.7716 | 12.4216   | 82 | 460.7603 | 12.4918   | 136 | 1103.6284 | 123.9532  | 190 | 3531.3552 | 732.0505  |
| 29 | 146.3124 | 13.6687   | 83 | 478.6425 | 140.4450  | 137 | 1106.9510 | 23.0934   | 191 | 3549.5459 | 671.0928  |
| 30 | 149.7700 | 5.6250    | 84 | 480.5110 | 189.4010  | 138 | 1137.2550 | 149.6130  | 192 | 3560.7971 | 541.6670  |
| 31 | 162.0632 | 59.2785   | 85 | 484.7551 | 209.8005  | 139 | 1288.2681 | 98.8317   | 193 | 3564.7004 | 307.4019  |
| 32 | 168.4493 | 26.5274   | 86 | 501.6628 | 42.4068   | 140 | 1332.8790 | 219.5172  | 194 | 3575.1558 | 418.9927  |
| 33 | 173.5060 | 54.7430   | 87 | 517.2720 | 254.2010  | 141 | 1390.1440 | 601.6420  | 195 | 3583.2971 | 103.0870  |
| 34 | 177.5603 | 18.7593   | 88 | 522.1080 | 101.1509  | 142 | 1659.7784 | 90.2364   | 196 | 3612.4087 | 1234.2498 |

| 2- | 404 7040 | 40.6600 | 00  | 504 7000 | 460 5040 | 4.40 | 4604 5000 | 406.0600 | 407 | 2640.0504 | 540,0005 |
|----|----------|---------|-----|----------|----------|------|-----------|----------|-----|-----------|----------|
| 35 | 181.7910 | 13.6633 | 89  | 531.7099 | 162.5318 | 143  | 1691.5300 | 106.3630 | 197 | 3618.0591 | 519.8895 |
| 36 | 185.5550 | 2.1130  | 90  | 533.2340 | 175.9400 | 144  | 1694.7400 | 95.3510  | 198 | 3626.4231 | 402.3360 |
| 37 | 187.2521 | 0.4465  | 91  | 536.7693 | 377.1931 | 145  | 1698.9015 | 178.4692 | 199 | 3635.4492 | 277.9594 |
| 38 | 189.7977 | 9.7170  | 92  | 547.9626 | 26.0703  | 146  | 1700.8860 | 134.0077 | 200 | 3759.9736 | 361.1179 |
| 39 | 190.3610 | 46.3540 | 93  | 550.9070 | 146.6840 | 147  | 1703.5740 | 228.0870 | 201 | 3767.3740 | 12.1800  |
| 40 | 201.9696 | 14.8485 | 94  | 555.4923 | 132.3223 | 148  | 1704.0363 | 137.0469 | 202 | 3773.0974 | 20.4296  |
| 41 | 205.0193 | 3.0827  | 95  | 556.8208 | 98.1031  | 149  | 1705.2087 | 107.9174 | 203 | 3831.8528 | 47.7574  |
| 42 | 205.6740 | 13.1020 | 96  | 565.6690 | 12.0530  | 150  | 1706.0380 | 106.7060 | 204 | 3832.8701 | 156.7250 |
| 43 | 207.1327 | 4.0269  | 97  | 579.5822 | 255.5509 | 151  | 1707.5494 | 90.2159  | 205 | 3832.9070 | 108.7202 |
| 44 | 213.2319 | 20.1740 | 98  | 593.6221 | 110.0504 | 152  | 1710.7617 | 133.0949 | 206 | 3832.9519 | 78.5190  |
| 45 | 214.9240 | 3.6520  | 99  | 605.0520 | 196.5780 | 153  | 1717.1670 | 240.1840 | 207 | 3835.4309 | 151.5700 |
| 46 | 215.2815 | 76.3563 | 100 | 615.4357 | 166.2663 | 154  | 1739.9039 | 66.6831  | 208 | 3836.4048 | 86.6670  |
| 47 | 221.1032 | 4.9973  | 101 | 618.9910 | 194.7149 | 155  | 1741.6335 | 130.0428 | 209 | 3836.4834 | 129.7846 |
| 48 | 222.1040 | 21.6040 | 102 | 634.7000 | 154.2750 | 156  | 1759.8610 | 248.3180 | 210 | 3839.2930 | 113.3920 |
| 49 | 229.7555 | 7.2105  | 103 | 636.6378 | 32.4809  | 157  | 1762.8643 | 228.5722 | 211 | 3843.8938 | 116.9961 |
| 50 | 231.5166 | 20.1507 | 104 | 653.1247 | 1.9644   | 158  | 1777.8760 | 84.6124  | 212 | 3853.6772 | 181.1506 |
| 51 | 234.9410 | 21.1410 | 105 | 659.0990 | 191.1480 | 159  | 1782.3420 | 289.4120 | 213 | 3856.7461 | 134.0990 |
| 52 | 236.7385 | 60.9919 | 106 | 664.5444 | 228.8697 | 160  | 1786.5148 | 46.2561  |     |           |          |
| 53 | 244.6696 | 90.2865 | 107 | 670.2556 | 72.5170  | 161  | 1790.3120 | 136.8970 |     |           |          |
| 54 | 246.3780 | 47.5570 | 108 | 702.9860 | 152.8650 | 162  | 1792.3970 | 232.3640 |     |           |          |

As+3 36(H<sub>2</sub>O) in water

|    | Freq    | Intensity |     | Freq     | Intensity |     | Freq     | Intensity |     | Freq      | Intensity |
|----|---------|-----------|-----|----------|-----------|-----|----------|-----------|-----|-----------|-----------|
| 1  | 19.6771 | 0.4983    | 82  | 249.8072 | 57.5413   | 163 | 738.5682 | 288.0563  | 244 | 1780.6012 | 74.0556   |
| 2  | 24.6653 | 1.1490    | 83  | 252.2362 | 34.9802   | 164 | 743.7054 | 131.4774  | 245 | 1785.1923 | 199.4649  |
| 3  | 32.3140 | 4.0690    | 84  | 256.8120 | 33.9800   | 165 | 747.1970 | 268.3360  | 246 | 1787.7371 | 8.4900    |
| 4  | 33.5021 | 0.2931    | 85  | 260.8237 | 37.9638   | 166 | 750.1766 | 319.4958  | 247 | 1804.4187 | 284.1520  |
| 5  | 35.5205 | 9.9648    | 86  | 263.9471 | 104.8378  | 167 | 753.0710 | 2.5886    | 248 | 1809.0754 | 65.7878   |
| 6  | 35.9600 | 0.8420    | 87  | 265.6860 | 0.8250    | 168 | 760.1830 | 286.6360  | 249 | 1868.8030 | 262.7900  |
| 7  | 37.1850 | 6.7014    | 88  | 268.2126 | 6.6879    | 169 | 772.0935 | 102.2269  | 250 | 2190.7559 | 1703.3398 |
| 8  | 39.9952 | 1.4689    | 89  | 269.9453 | 17.4359   | 170 | 775.1519 | 79.1612   | 251 | 2198.1501 | 5594.5605 |
| 9  | 42.8210 | 2.0260    | 90  | 276.7890 | 11.9770   | 171 | 779.3070 | 129.2660  | 252 | 2550.6179 | 3739.3931 |
| 10 | 43.7571 | 8.6431    | 91  | 281.2799 | 52.2304   | 172 | 784.7900 | 45.7679   | 253 | 2622.4333 | 3865.9954 |
| 11 | 47.6507 | 2.5457    | 92  | 284.3257 | 9.6622    | 173 | 792.4278 | 343.7888  | 254 | 2890.2974 | 2253.2266 |
| 12 | 49.7330 | 1.3500    | 93  | 285.1530 | 4.6260    | 174 | 798.8790 | 223.5130  | 255 | 3088.7329 | 1524.1340 |
| 13 | 51.3522 | 0.7832    | 94  | 293.1621 | 40.6886   | 175 | 805.5234 | 334.9443  | 256 | 3097.5071 | 1601.8737 |
| 14 | 55.7311 | 3.7554    | 95  | 293.7703 | 187.1853  | 176 | 807.0295 | 178.1903  | 257 | 3125.2781 | 1511.0625 |
| 15 | 57.3160 | 2.0110    | 96  | 296.5810 | 23.0740   | 177 | 811.5030 | 256.9570  | 258 | 3139.0779 | 2140.5400 |
| 16 | 59.3651 | 2.5836    | 97  | 299.7974 | 78.2039   | 178 | 815.2810 | 321.1842  | 259 | 3168.3308 | 1328.5989 |
| 17 | 60.9532 | 3.2026    | 98  | 308.2815 | 11.7766   | 179 | 820.7669 | 362.9967  | 260 | 3191.4878 | 1650.1298 |
| 18 | 63.6790 | 4.9150    | 99  | 314.0680 | 89.8180   | 180 | 839.5160 | 79.1940   | 261 | 3216.8879 | 2158.8760 |
| 19 | 67.4258 | 6.7349    | 100 | 322.2948 | 6.6298    | 181 | 842.8664 | 482.8153  | 262 | 3238.7122 | 2205.2605 |

| 20 | 70.0274  | 2.3654  | 101 | 326.6403 | 77.4555  | 182 | 848.2833  | 125.7783 | 263 | 3305.7400 | 609.7830  |
|----|----------|---------|-----|----------|----------|-----|-----------|----------|-----|-----------|-----------|
| 21 | 70.4980  | 0.6690  | 102 | 333.9100 | 18.8440  | 183 | 855.3410  | 364.1930 | 264 | 3325.5730 | 1557.1110 |
| 22 | 71.3594  | 1.6121  | 103 | 334.4050 | 6.5425   | 184 | 867.0940  | 60.9435  | 265 | 3327.4888 | 1357.1412 |
| 23 | 73.7637  | 6.5138  | 104 | 344.7240 | 50.7782  | 185 | 867.2416  | 137.6433 | 266 | 3338.2192 | 946.5598  |
| 24 | 76.2520  | 1.0720  | 105 | 349.2690 | 81.9150  | 186 | 875.6870  | 233.1270 | 267 | 3359.6331 | 1384.3459 |
| 25 | 76.6734  | 2.1729  | 106 | 351.7563 | 208.3189 | 187 | 881.4170  | 216.4619 | 268 | 3365.7437 | 2453.0366 |
| 26 | 79.6861  | 4.8628  | 107 | 354.3149 | 32.8163  | 188 | 883.8429  | 546.2430 | 269 | 3367.6567 | 285.2131  |
| 27 | 83.4030  | 12.0120 | 108 | 357.3600 | 14.9770  | 189 | 888.3690  | 290.8760 | 270 | 3381.1851 | 631.2800  |
| 28 | 85.1256  | 2.1165  | 109 | 360.3402 | 75.1008  | 190 | 895.7201  | 132.3294 | 271 | 3383.6934 | 1731.1801 |
| 29 | 86.6599  | 12.0269 | 110 | 364.6483 | 79.5861  | 191 | 899.7748  | 95.2430  | 272 | 3395.1687 | 1312.6451 |
| 30 | 89.4390  | 8.8000  | 111 | 378.0840 | 18.3120  | 192 | 911.1850  | 186.3340 | 273 | 3398.2720 | 275.6400  |
| 31 | 89.9205  | 29.2270 | 112 | 381.5349 | 27.9260  | 193 | 924.0786  | 298.8657 | 274 | 3402.3767 | 528.6182  |
| 32 | 93.6379  | 7.4776  | 113 | 382.4353 | 198.5466 | 194 | 930.4811  | 346.8707 | 275 | 3408.2307 | 1275.9774 |
| 33 | 95.3340  | 2.5100  | 114 | 383.3500 | 79.4610  | 195 | 938.1830  | 190.7920 | 276 | 3418.0869 | 883.1030  |
| 34 | 96.2594  | 8.7066  | 115 | 392.8745 | 154.2859 | 196 | 955.9567  | 547.1913 | 277 | 3423.7273 | 1224.3218 |
| 35 | 98.9272  | 57.8352 | 116 | 402.9685 | 221.0038 | 197 | 979.1648  | 47.0410  | 278 | 3429.7468 | 1095.9463 |
| 36 | 101.3050 | 5.9150  | 117 | 405.6220 | 101.5490 | 198 | 985.5610  | 161.8920 | 279 | 3434.0149 | 511.6060  |
| 37 | 103.5891 | 7.2290  | 118 | 406.0498 | 39.6168  | 199 | 991.7960  | 207.8667 | 280 | 3444.5249 | 1577.3380 |
| 38 | 106.9636 | 4.3640  | 119 | 406.8970 | 12.9749  | 200 | 1005.7799 | 431.7258 | 281 | 3445.5913 | 954.5905  |
| 39 | 112.5140 | 9.0070  | 120 | 416.4280 | 66.8830  | 201 | 1015.3240 | 161.7520 | 282 | 3450.6101 | 393.9460  |
| 40 | 115.5241 | 3.9340  | 121 | 423.7670 | 27.5216  | 202 | 1019.0890 | 222.7511 | 283 | 3455.8164 | 680.1103  |
| 41 | 119.7845 | 40.3441 | 122 | 436.6857 | 116.2858 | 203 | 1034.7419 | 81.5295  | 284 | 3475.8584 | 525.6533  |
| 42 | 123.5130 | 6.6460  | 123 | 442.8190 | 111.9930 | 204 | 1048.3560 | 93.9580  | 285 | 3478.7949 | 645.7120  |
| 43 | 126.6782 | 20.7357 | 124 | 445.0240 | 75.9348  | 205 | 1073.0201 | 366.0287 | 286 | 3483.1321 | 658.9233  |
| 44 | 133.9063 | 42.9059 | 125 | 455.9884 | 113.5682 | 206 | 1098.0201 | 125.9086 | 287 | 3493.6865 | 851.5375  |
| 45 | 136.8700 | 8.3380  | 126 | 458.0150 | 7.0030   | 207 | 1103.2170 | 122.2540 | 288 | 3496.9409 | 274.5840  |
| 46 | 138.8536 | 51.7778 | 127 | 460.9875 | 53.1592  | 208 | 1125.7050 | 211.5610 | 289 | 3501.5486 | 795.4073  |
| 47 | 141.9715 | 19.1888 | 128 | 487.6720 | 39.1449  | 209 | 1221.1475 | 371.3326 | 290 | 3502.0012 | 674.3003  |
| 48 | 145.6120 | 23.8080 | 129 | 496.3430 | 139.2590 | 210 | 1243.9919 | 46.2620  | 291 | 3505.4861 | 365.4470  |
| 49 | 149.7099 | 11.8454 | 130 | 500.4046 | 126.1911 | 211 | 1256.8208 | 133.4543 | 292 | 3512.8816 | 819.1910  |
| 50 | 153.1463 | 15.2930 | 131 | 505.4809 | 8.3420   | 212 | 1259.2700 | 156.6753 | 293 | 3515.1389 | 260.0555  |
| 51 | 154.5250 | 16.6590 | 132 | 512.9460 | 228.2730 | 213 | 1336.6840 | 573.6630 | 294 | 3526.6870 | 518.5590  |
| 52 | 163.0167 | 17.5664 | 133 | 515.5483 | 143.1296 | 214 | 1685.7751 | 146.3154 | 295 | 3539.7996 | 519.0452  |
| 53 | 166.1299 | 2.4863  | 134 | 518.1869 | 9.8126   | 215 | 1687.2028 | 215.9318 | 296 | 3576.8418 | 613.4624  |
| 54 | 172.4760 | 44.2960 | 135 | 518.4420 | 92.8600  | 216 | 1688.7800 | 139.0900 | 297 | 3580.8989 | 501.4390  |
| 55 | 173.9456 | 49.7127 | 136 | 519.8781 | 222.5267 | 217 | 1693.6707 | 170.1232 | 298 | 3583.0857 | 339.1714  |
| 56 | 176.2715 | 49.4221 | 137 | 534.7547 | 39.8737  | 218 | 1695.4563 | 162.2764 | 299 | 3588.2439 | 711.1633  |
| 57 | 179.6350 | 1.9550  | 138 | 537.4020 | 97.1810  | 219 | 1696.3530 | 20.2310  | 300 | 3618.5071 | 568.4570  |
| 58 | 184.8368 | 2.3108  | 139 | 545.9178 | 95.8243  | 220 | 1700.4124 | 62.9484  | 301 | 3619.6360 | 776.4284  |
| 59 | 192.3834 | 10.1405 | 140 | 550.2866 | 132.2253 | 221 | 1700.7264 | 152.1289 | 302 | 3622.3313 | 304.6964  |
| 60 | 192.6560 | 89.2870 | 141 | 556.3750 | 263.1200 | 222 | 1703.2130 | 36.3760  | 303 | 3815.9929 | 113.7100  |
| 61 | 193.9300 | 29.8672 | 142 | 561.9106 | 55.4014  | 223 | 1703.6350 | 93.1516  | 304 | 3818.8923 | 72.6558   |

| 62 | 200.2650 | 26.8740  | 143 | 577.9042 | 91.7492  | 224 | 1705.1198 | 160.3651 | 305 | 3823.2727 | 98.7666  |
|----|----------|----------|-----|----------|----------|-----|-----------|----------|-----|-----------|----------|
| 63 | 202.7130 | 42.3750  | 144 | 582.3040 | 142.2800 | 225 | 1706.6520 | 419.8960 | 306 | 3824.3210 | 104.6190 |
| 64 | 203.1749 | 91.8083  | 145 | 589.1821 | 203.4645 | 226 | 1712.8879 | 284.3308 | 307 | 3829.0957 | 78.8956  |
| 65 | 209.6890 | 33.1711  | 146 | 592.4445 | 183.8008 | 227 | 1716.0793 | 153.2960 | 308 | 3829.8862 | 92.7341  |
| 66 | 210.1890 | 36.8300  | 147 | 596.7210 | 104.5930 | 228 | 1719.3199 | 27.2200  | 309 | 3831.2280 | 114.7560 |
| 67 | 213.6759 | 188.6340 | 148 | 600.8943 | 37.8909  | 229 | 1723.9749 | 176.4478 | 310 | 3831.9355 | 111.6329 |
| 68 | 215.2144 | 201.7354 | 149 | 606.1501 | 290.4632 | 230 | 1727.0153 | 36.9269  | 311 | 3833.1169 | 76.2373  |
| 69 | 217.1210 | 196.6610 | 150 | 623.4690 | 190.2930 | 231 | 1728.3770 | 14.4850  | 312 | 3834.6130 | 129.5720 |
| 70 | 219.6852 | 20.3074  | 151 | 632.5252 | 165.5971 | 232 | 1730.7069 | 329.8794 | 313 | 3834.8501 | 93.9378  |
| 71 | 222.0340 | 116.8436 | 152 | 642.8821 | 81.7621  | 233 | 1731.9603 | 48.3422  | 314 | 3837.2874 | 70.5201  |
| 72 | 227.4790 | 7.1190   | 153 | 648.8770 | 59.3930  | 234 | 1735.3900 | 36.9980  | 315 | 3837.4319 | 103.6670 |
| 73 | 228.7731 | 59.7436  | 154 | 672.4621 | 134.7640 | 235 | 1736.5642 | 134.7800 | 316 | 3837.5420 | 71.8599  |
| 74 | 229.6847 | 25.3307  | 155 | 677.4510 | 74.3862  | 236 | 1737.2271 | 60.3113  | 317 | 3837.7876 | 112.3957 |
| 75 | 231.2720 | 109.9530 | 156 | 684.8550 | 292.5950 | 237 | 1739.9500 | 96.1080  | 318 | 3838.7229 | 115.5890 |
| 76 | 233.8869 | 154.9098 | 157 | 694.2168 | 196.5218 | 238 | 1747.5048 | 85.2535  | 319 | 3838.7273 | 35.9418  |
| 77 | 235.4701 | 24.1405  | 158 | 695.3825 | 14.2610  | 239 | 1749.3822 | 48.3816  | 320 | 3838.8960 | 142.2052 |
| 78 | 238.0270 | 37.2880  | 159 | 699.8950 | 325.5430 | 240 | 1751.0320 | 64.9550  | 321 | 3839.0049 | 117.9820 |
| 79 | 242.3257 | 57.6194  | 160 | 708.7212 | 151.0419 | 241 | 1762.4445 | 63.1930  |     |           |          |
| 80 | 244.6200 | 280.6857 | 161 | 722.3592 | 43.8998  | 242 | 1770.3820 | 54.8936  |     |           |          |
| 81 | 247.0740 | 29.7750  | 162 | 732.8540 | 183.2150 | 243 | 1776.5750 | 162.1620 |     |           |          |















Figure 11g.  $As^{+3}$  24( $H_2O$ ) in water



Figure 11. DFT calculated IR spectra for As-H<sub>2</sub>O complexes consisting of 2, 4, 5, 7, 15, 20, 24 and 36 water molecules, with water background. Intensity is in arbitrary units.









Figure 12d.  $As^{+3}$  7( $H_2O$ ) in water







Figure 12g. As $^{+3}$  24(H $_2$ O) in water



Figure 12h.  $As^{+3}$  36( $H_2O$ ) in water

Figure 12. TD-DFT calculated UV-Visible spectra for As- $H_2O$  complexes consisting of 2, 4, 5, 7, 15, 20, 24 and 36 water molecules, with water background. Intensity is in arbitrary units.

Table 3. Energies for optimized geometries of As<sup>+3</sup> - nH<sub>2</sub>O clusters.

| Complex                             | Energy of As-nH <sub>2</sub> O | Energy of As-nH <sub>2</sub> O in water |
|-------------------------------------|--------------------------------|-----------------------------------------|
| As <sup>+3</sup> 2H <sub>2</sub> O  | -2387.1959 a.u.                | -2388.0138 a.u.                         |
| As <sup>+3</sup> 3H <sub>2</sub> O  | -2463.8065 a.u.                |                                         |
| As <sup>+3</sup> 4H <sub>2</sub> O  | -2540.3547 a.u.                | -2541.0639 a.u.                         |
| As <sup>+3</sup> 5H <sub>2</sub> O  | -2616.8885 a.u.                | -2617.5571 a.u.                         |
| As <sup>+3</sup> 6H <sub>2</sub> O  | -2693.3986 a.u.                |                                         |
| As <sup>+3</sup> 7H <sub>2</sub> O  | -2769.9843 a.u.                | -2770.5404 a.u.                         |
| As+3 15H <sub>2</sub> O             | -3381.8344 a.u.                | -3382.3064 a.u.                         |
| As <sup>+3</sup> 20H <sub>2</sub> O | -3764.2247 a.u.                | -3764.6522 a.u.                         |
| As <sup>+3</sup> 24H <sub>2</sub> O | -4070.1132 a.u.                | -4070.5269 a.u.                         |
| As <sup>+3</sup> 36H <sub>2</sub> O | -4987.7749 a.u.                | -4988.1695 a.u.                         |

Table 4a. Excited states of  $As^{+3}$  -  $nH_2O$  clusters.

| Componds                           | Multiplicity-<br>Orbital symmetry | Excitation E | Oscillator<br>strength |
|------------------------------------|-----------------------------------|--------------|------------------------|
|                                    | Singlet-A                         | 219.29nm     | 0.0586                 |
|                                    | Singlet-A                         | 192.98nm     | 0.0226                 |
| As <sup>+3</sup> 2H <sub>2</sub> O | Singlet-A                         | 184.99nm     | 0.0519                 |
| As 2H <sub>2</sub> U               | Singlet-A                         | 167.68nm     | 0.0041                 |
|                                    | Singlet-A                         | 164.52nm     | 0.0000                 |
|                                    | Singlet-A                         | 152.92nm     | 0.0000                 |
|                                    | Singlet-A                         | 184.97nm     | 0.0404                 |
|                                    | Singlet-A                         | 184.84nm     | 0.0413                 |
| As <sup>+3</sup> 3H <sub>2</sub> O | Singlet-A                         | 171.53nm     | 0.0226                 |
| As 3H <sub>2</sub> U               | Singlet-A                         | 170.40nm     | 0.0029                 |
|                                    | Singlet-A                         | 167.75nm     | 0.0090                 |
|                                    | Singlet-A                         | 167.55nm     | 0.0095                 |
|                                    | Singlet-A                         | 188.72nm     | 0.0008                 |
|                                    | Singlet-A                         | 188.49nm     | 0.0000                 |
| As+3 4H2O                          | Singlet-A                         | 183.07nm     | 0.0100                 |
| As 4H <sub>2</sub> U               | Singlet-A                         | 181.73nm     | 0.0122                 |
|                                    | Singlet-A                         | 176.23nm     | 0.0352                 |
|                                    | Singlet-A                         | 175.27nm     | 0.0019                 |

|                                     | Singlet-A  | 205.08nm | 0.0289 |
|-------------------------------------|------------|----------|--------|
|                                     | Singlet-A  | 192.92nm | 0.0021 |
| As <sup>+3</sup> 5H <sub>2</sub> O  | Singlet-A  | 189.47nm | 0.0000 |
| As SH <sub>2</sub> U                | Singlet-A  | 187.46nm | 0.0566 |
|                                     | Singlet-A  | 185.75nm | 0.0574 |
|                                     | Singlet-A  | 180.41nm | 0.0000 |
|                                     | Singlet-AU | 190.25nm | 0.0561 |
|                                     | Singlet-AU | 190.17nm | 0.0605 |
| As <sup>+3</sup> 6H <sub>2</sub> O  | Singlet-AU | 190.10nm | 0.0526 |
| As on <sub>2</sub> O                | Singlet-AG | 188.43nm | 0.0000 |
|                                     | Singlet-AG | 188.31nm | 0.0000 |
|                                     | Singlet-AG | 188.02nm | 0.0000 |
|                                     | Singlet-A  | 174.88nm | 0.0399 |
|                                     | Singlet-A  | 173.88nm | 0.0004 |
| As <sup>+3</sup> 7H <sub>2</sub> O  | Singlet-A  | 167.07nm | 0.0106 |
| As /1120                            | Singlet-A  | 165.08nm | 0.1140 |
|                                     | Singlet-A  | 162.56nm | 0.0338 |
|                                     | Singlet-A  | 161.10nm | 0.0806 |
|                                     | Singlet-A  | 216.01nm | 0.0236 |
|                                     | Singlet-A  | 206.64nm | 0.0231 |
| As <sup>+3</sup> 15H <sub>2</sub> O | Singlet-A  | 202.01nm | 0.0138 |
| AS 15H <sub>2</sub> O               | Singlet-A  | 200.15nm | 0.0005 |
|                                     | Singlet-A  | 197.22nm | 0.0011 |
|                                     | Singlet-A  | 192.15nm | 0.0117 |
|                                     | Singlet-A  | 218.79nm | 0.0003 |
| As <sup>+3</sup> 20H <sub>2</sub> O | Singlet-A  | 217.76nm | 0.0253 |
| AS 20112O                           | Singlet-A  | 217.26nm | 0.0009 |
|                                     | Singlet-A  | 212.81nm | 0.0000 |
|                                     | Singlet-A  | 204.41nm | 0.0239 |
|                                     | Singlet-A  | 201.78nm | 0.0177 |
|                                     | Singlet-A  | 221.78nm | 0.0001 |
|                                     | Singlet-A  | 216.87nm | 0.0101 |
| As <sup>+3</sup> 24H <sub>2</sub> O | Singlet-A  | 210.95nm | 0.0051 |
| 15 241120                           | Singlet-A  | 209.62nm | 0.0007 |
|                                     | Singlet-A  | 205.71nm | 0.0463 |
|                                     | Singlet-A  | 203.55nm | 0.0030 |
|                                     | Singlet-A  | 198.73nm | 0.0000 |
|                                     | Singlet-A  | 193.69nm | 0.0000 |
| As <sup>+3</sup> 36H <sub>2</sub> O | Singlet-A  | 190.67nm | 0.0579 |
| 45 30H2U                            | Singlet-A  | 190.49nm | 0.0410 |
|                                     | Singlet-A  | 187.53nm | 0.1250 |
|                                     | Singlet-A  | 186.05nm | 0.0005 |

Table 4b. Excited states of  $\mathrm{As}^{+3}$  -  $\mathrm{nH}_2\mathrm{O}$  clusters in water background.

| Componds in water                            | Multiplicity-<br>Orbital<br>symmetry | Excitation E | Oscillator<br>strength |
|----------------------------------------------|--------------------------------------|--------------|------------------------|
|                                              | Singlet-A                            | 201.12nm     | 0.0561                 |
|                                              | Singlet-A                            | 180.51nm     | 0.0629                 |
| 4 +3 arr O !                                 | Singlet-A                            | 176.27nm     | 0.0247                 |
| As <sup>+3</sup> 2H <sub>2</sub> O in water  | Singlet-A                            | 153.21nm     | 0.0065                 |
|                                              | Singlet-A                            | 145.76nm     | 0.0009                 |
|                                              | Singlet-A                            | 139.70nm     | 0.0000                 |
|                                              | Singlet-A                            | 171.22nm     | 0.0237                 |
|                                              | Singlet-A                            | 168.81nm     | 0.0071                 |
| +1                                           | Singlet-A                            | 165.80nm     | 0.0196                 |
| As <sup>+3</sup> 4H <sub>2</sub> O in water  | Singlet-A                            | 165.10nm     | 0.0188                 |
|                                              | Singlet-A                            | 162.45nm     | 0.0818                 |
|                                              | Singlet-A                            | 160.93nm     | 0.0289                 |
|                                              | Singlet-A                            | 188.71nm     | 0.0546                 |
| As <sup>+3</sup> 5H <sub>2</sub> O in water  | Singlet-A                            | 176.82nm     | 0.1869                 |
|                                              | Singlet-A                            | 173.55nm     | 0.2518                 |
| As 5H <sub>2</sub> O in water                | Singlet-A                            | 167.30nm     | 0.0031                 |
|                                              | Singlet-A                            | 164.96nm     | 0.0011                 |
|                                              | Singlet-A                            | 161.51nm     | 0.0000                 |
|                                              | Singlet-A                            | 171.06nm     | 0.0023                 |
|                                              | Singlet-A                            | 170.31nm     | 0.0468                 |
| . 43                                         | Singlet-A                            | 165.68nm     | 0.00172                |
| As <sup>+3</sup> 7H <sub>2</sub> O in water  | Singlet-A                            | 162.22nm     | 0.1718                 |
|                                              | Singlet-A                            | 155.63nm     | 0.0107                 |
|                                              | Singlet-A                            | 154.58nm     | 0.0945                 |
|                                              | Singlet-A                            | 208.98nm     | 0.0765                 |
|                                              | Singlet-A                            | 192.00nm     | 0.0148                 |
| min collection of the                        | Singlet-A                            | 185.55nm     | 0.1547                 |
| As <sup>+3</sup> 15H <sub>2</sub> O in water | Singlet-A                            | 184.83nm     | 0.0008                 |
|                                              | Singlet-A                            | 181.58nm     | 0.0007                 |
|                                              | Singlet-A                            | 180.88nm     | 0.0106                 |
|                                              | Singlet-A                            | 211.31nm     | 0.0662                 |
|                                              | Singlet-A                            | 188.94nm     | 0.0285                 |
| . 11                                         | Singlet-A                            | 188.00nm     | 0.1147                 |
| As <sup>+3</sup> 20H <sub>2</sub> O in water | Singlet-A                            | 186.81nm     | 0.0238                 |
|                                              | Singlet-A                            | 181.24nm     | 0.0043                 |
|                                              | Singlet-A                            | 180.75nm     | 0.0037                 |
|                                              | Singlet-A                            | 210.29nm     | 0.0687                 |
|                                              | Singlet-A                            | 198.28nm     | 0.0046                 |
| 1 41 - 12 2                                  | Singlet-A                            | 192.88nm     | 0.0071                 |
| As <sup>+3</sup> 24H <sub>2</sub> O in water | Singlet-A                            | 190.91nm     | 0.0087                 |
|                                              | Singlet-A                            | 190.15nm     | 0.0031                 |
|                                              | Singlet-A                            | 189.15nm     | 0.0133                 |
|                                              | Singlet-A                            | 189.03nm     | 0.1638                 |
| As <sup>+3</sup> 36H <sub>2</sub> O in water | Singlet-A                            | 187.67nm     | 0.1897                 |
| Dozzo III WILLI                              | Singlet-A                            | 176.76nm     | 0.0021                 |