Distributed Data

Rob Vettor Monu Bambroo

Database per Microservice

Data – Monolithic Approach

- Monolithic apps favor a shared data store
- Typically, a relational database
- Straightforward to...
 - Query multiple tables
 - Invoke ACID transactions
- <u>Immediate consistency (database always consistent)</u>
- Single resource to manage
- Scales up, not out

Data – Microservices Approach

Each Microservice owns it own data

Access to data only through service API

- Database per microservice
- Each microservice, by definition, encapsulates its domain data into its own datastore
 - Services are loosely coupled and can evolve independently
 - Avoids data model conflicts and data coordination challenges
 - Reduces contention and competing read/write patterns

Distributed Data

- Architecture supports polyglot data multiple data technologies
 - Each service implements data store of choice for its workload
 - Separate stores...
 - Help guarantee proper bulkheads, or separation, between services
 - Resilient to upstream/downstream failures
 - Reduces contention and locking issues
 - Can scale independently

Querying Data Across Services

- Shopping Basket owns basket and lineItem data
- But, requires subset of product data and a computed discount value
- Other services own product and discount
- How can Shopping Basket get it?

Materialized View Pattern

- Best practice: ShoppingBasket maintains its own read model
- Contains copy of denormalized data owned by other services
- Decreases coupling and provides locality improves response time and reliability removes coupling

Materialized View Pattern – Close Up

 The target service (ShoppingBasket) maintains a local read model with denormalized data owned by Catalog service

We now have Duplicate Data

- Strategically duplicating data is a common practice in distributed cloud-native services
- However, one and only one service owns the data and its state (system of record)
- All other copies are read-only

Read Model Consistency

- Must maintain consistency between read models and their source
 - Read model never updates itself
 - Implement asynchronous (event-driven) messaging for synchronization

Transactions across Microservices

 How can we guarantee data consistency when modifying data across independent microservices?

Can we wrap the order creation process in an ACID transaction?

Saga Pattern

- Microservices do not support distributed transactions
- The Saga pattern can help enforce data consistency across microservices
 - Message-driven sequence of local transactions in which each service is sequentially updated
 - If a local transaction fails, the saga executes compensating transactions that undo updates made by preceding local transactions

Saga Pattern - Implementation

- Two common approaches...
 - Events/Choreography
 - Distributed decision making
 - Saga participants exchange events
 - Publish/subscribe pattern
 - Command/Orchestration
 - Centralize decision making
 - Saga orchestrator class coordinates
 - Command pattern

Saga Pattern – Choreography with Events

- Saga "participants" subscribe to events and respond accordingly
- Each step...
 - Performs an update operation
 - Commits local transaction
 - Publishes a corresponding event
- Each must happen atomically

Choreography Event Rollback

- What if a local transactions fails?
 - Invokes corresponding compensating transaction in reverse order to undo changes
 - Order is cancelled

Choreography – Benefits/Drawbacks

- No central coordination...
 - All participants are loosely-coupled
 - Must be programmed to respond to applicable events
 - Can be confusing to follow
- Simple plumbing
- Message broker guarantees resiliency -- buffers messages until operations execute
- Works well for simple transactions, but complex Sagas favor orchestration

Saga Pattern – Orchestration with Commands

- Orchestrator class directs operation
- Triggers each participant in an ordered sequence
- Invokes async/command messages using a queue and request/reply pattern
- Orchestrator processes reply message and proceeds to next step

Orchestration Event Rollback

- If any task fails, the orchestrator class receives failure reply and invokes compensating logic
- Sends compensating commands to each of the previous participants instructing it to rollback or cancel the previous operation
- Rollbacks are more straightforward with orchestration

Orchestration - Benefits/Drawbacks

- Centralizes orchestration
- Reduces participant complexity
 - Each executes commands as directed by orchestrator
 - Each sends a corresponding reply to report status
- Straightforward to implement, follow and test
- Complexity remains linear as more steps are added

Saga Pattern – Best Practices

- Design orchestrators that contain sequencing but no business logic
- Create a unique identifier for each transaction for traceability
- Make operations idempotent queues can deliver the same message twice
- Pass all data needed in the message or event avoid incurring unnecessary overhead querying data stores

Proposed Saga

High volume data in Cloud Native Applications

- Large cloud-native applications often support high-volume data requirements.
- In these scenarios, traditional data storage techniques can cause bottlenecks.
- For complex systems that deploy on a large scale, two patterns can help improve application performance:

CQRS

Event Sourcing

CQRS – Why?

• For most scenarios, read and write operations use the same data model and storage

However, high-volume scenarios might benefit from models that separate reads and writes

Known as "Command and Query Responsibility Segregation Pattern"

CQRS – Read operations

• To improve performance, read operations query against a highly denormalized data representation to *avoid* expensive table joins and locks

CQRS – Write operations

- The write operation, known as a command, updates against a fully normalized representation of data that guarantees consistency
- Complex business rules and domain logic are applied against write operations
- You might even impose tighter security on write operations than those exposing reads

CQRS – Syncing Models

- You then need to implement a mechanism to keep both representations in sync.
- The write model store must update the read model store.
- You introduce eventual consistency to the system.

CQRS

- Segregate operations that read data from those that update data
- Help maximize, responsiveness, performance, scalability and security
- But, increases complexity
- Introduces eventual consistency
- The write model store must update the read model store
- Can scale read and writes separately
- Common where the volume of reads typically far exceed that of writes
- CQRS applied to limited sections of the system based upon needs

