INSTITUTO SUPERIOR DE ENGENHARIA DE COIMBRA

Departamento de Física e Matemática

Engenharia Informática (LEI, LEI-CE, LEI-PL)

 1^a Frequência de Métodos Estatísticos

23 de abril de 2018

Duração 1h30m

- o Indique na sua prova, obrigatoriamente, o código deste teste: F101.
- \circ Nas perguntas de escolha múltipla, indique apenas a opção escolhida. A cotação deste grupo será penalizada em 0,5 valores por cada duas respostas erradas.
- o Nas perguntas 5 e 6, justifique convenientemente as suas respostas.
- (1.0) 1. Os colaboradores de uma certa empresa podem dividir-se em dois grupos distintos: o grupo dos efetivos e o grupo dos ocasionais. Os efetivos representam 70% dos colaboradores. Verifica-se que 5/7 dos efetivos são especialistas em programação Java, enquanto que dos ocasionais, 60% não sabe programar Java. A empresa selecionou ao acaso, no universo dos seus colaboradores, um programador Java, para desenvolver um novo aplicativo para smartphones. A probabilidade daquele colaborador ser efetivo é igual a:

(A) $\frac{5}{7}$

(B) $\frac{5}{10}$

(C) $\frac{25}{31}$

(**D**) $\frac{125}{142}$

(1.0) 2. O guarda redes do *Pés de Chumbo F. C.* defende 10% das grandes penalidades. A final da taça vai ser decidida pela marcação de 5 grandes penalidades. A probabilidade de que o guarda redes defenda pelo menos uma grande penalidade na final da taça é igual a:

(A) 0.5905

(B) 0.4095

(C) 0.0815

(D) 0.0086

(1.0) 3. Suponha que são guardadas três moedas comemorativas num mealheiro onde já estão nove moedas comuns (as moedas têm todas o mesmo tamanho). Ao serem retiradas sucessivamente três moedas através da ranhura do mealheiro, a probabilidade de que saia no mínimo uma moeda comemorativa é:

(A) $\frac{5}{32}$

(B) $\frac{21}{55}$

(C) $\frac{37}{64}$

(D) $\frac{34}{55}$

(1.0) 4. Suponha que o número de portugueses que recorrem ao balcão de informações de um aeroporto, ao longo de uma hora, tem distribuição de *Poisson* de parâmetro 10. O número de estrangeiros que recorrem àquele balcão também tem distribuição de *Poisson*, de média 4 por hora, e é independente do número de portugueses. A probabilidade de que no máximo 20 pessoas recorram ao balcão durante uma hora é igual a:

(A) 0.9235

(B) 0.9521

(C) 0.9965

(D) 0.9984

(4.5) 5. Considere uma caixa contendo 3 bolas vermelhas, 4 bolas brancas e 5 bolas azuis. São selecionadas da caixa 3 bolas, ao acaso e sem reposição. Sejam X o número de bolas brancas e Y o número de bolas vermelhas escolhidas. A função de probabilidade conjunta de X e Y é dada por

	X	0	1	2	3
Y					
0		$\frac{10}{220}$	$\frac{40}{220}$	$\frac{30}{220}$	$\frac{4}{220}$
1		$\frac{30}{220}$	$\frac{60}{220}$	$\frac{18}{220}$	0
2		$\frac{15}{220}$	$\frac{12}{220}$	0	0
3		$\frac{1}{220}$	0	0	0

- (a) Calcule as funções de probabilidade marginais de X e de Y.
- (b) Calcule a função distribuição marginal de X.
- (c) Calcule a probabilidade de saírem mais bolas vermelhas do que bolas brancas.
- (d) Determine o valor esperado e a variância do número de bolas brancas extraídas.
- (e) Calcule a função de probabilidade condicionada de Y dado a saída de 1 bola branca.
- (1.5) 6. Sejam W e Z duas variáveis aleatórias discretas, de suportes finitos, tais que $cov(W,Z) = \alpha, V(W) = \beta$ e $V(Z) = \theta$, com $\alpha, \beta, \theta \in IR \setminus \{0\}$. Para Y = 2W, calcule, em função de α, β, θ :

(i) cov(Y, Z);

(ii) ρ_{WZ} ;

(iii) V(Y+Z).

INSTITUTO SUPERIOR DE ENGENHARIA DE COIMBRA

Departamento de Física e Matemática 1^a Frequência de Métodos Estatísti

Engenharia Informática (LEI, LEI-CE, LEI-PL)

 1^a Frequência de Métodos Estatísticos 23 de abril de 2018

Duração 1h30m

o Indique na sua prova, obrigatoriamente, o código deste teste: F102.

- \circ Nas perguntas de escolha múltipla, indique apenas a opção escolhida. A cotação deste grupo será penalizada em 0,5 valores por cada duas respostas erradas.
- o Nas perguntas 4 e 5, justifique convenientemente as suas respostas.
- (1.0) 1. Os colaboradores de uma certa empresa podem dividir-se em dois grupos distintos: o grupo dos efetivos e o grupo dos ocasionais. Os efetivos representam 70% dos colaboradores. Verifica-se que 5/10 dos colaboradores são efetivos e especialistas em programação Java, enquanto que dos ocasionais, 60% não sabe programar Java. A empresa selecionou ao acaso, no universo dos seus colaboradores, um programador Java, para desenvolver um novo aplicativo para smartphones. A probabilidade daquele colaborador não ser efetivo é igual a:

(A) $\frac{3}{10}$ (B) $\frac{3}{25}$ (C) $\frac{25}{31}$ (D) $\frac{6}{31}$

(1.0) 2. O guarda redes do *Pés de Chumbo F. C.* defende 10% das grandes penalidades. A final da taça vai ser decidida pela marcação de 5 grandes penalidades. A probabilidade de que o guarda redes defenda mais do que uma grande penalidade na final da taça é igual a:

(A) 0.5905 (B) 0.4095 (C) 0.0815 (D) 0.0086

(1.0) 3. Suponha que são guardadas três moedas comemorativas num mealheiro onde já estão nove moedas comuns (as moedas têm todas o mesmo tamanho). Ao serem retiradas sucessivamente três moedas através da ranhura do mealheiro, a probabilidade de que saia no mínimo uma moeda comemorativa é:

(A) $\frac{5}{32}$ (B) $\frac{21}{55}$ (C) $\frac{37}{64}$ (D) $\frac{34}{55}$

(1.0) 4. Suponha que o número de portugueses que recorrem ao balcão de informações de um aeroporto, ao longo de uma hora, tem distribuição de *Poisson* de parâmetro 10. O número de estrangeiros que recorrem àquele balcão também tem distribuição de *Poisson*, de média 4 por hora, e é independente do número de portugueses. A probabilidade de que no máximo 19 pessoas recorram ao balcão durante uma hora é igual a:

(A) 0.9235 (B) 0.9521 (C) 0.9965 (D) 0.9984

(4.5) 5. Considere uma caixa contendo 3 bolas vermelhas, 4 bolas brancas e 5 bolas azuis. São selecionadas da caixa 3 bolas, ao acaso e sem reposição. Sejam X o número de bolas brancas e Y o número de bolas vermelhas escolhidas. A função de probabilidade conjunta de X e Y é dada por

	X	0	1	2	3
Y					
0		$\frac{10}{220}$	$\frac{40}{220}$	$\frac{30}{220}$	$\frac{4}{220}$
1		$\frac{30}{220}$	$\frac{60}{220}$	$\frac{18}{220}$	0
2		$\frac{15}{220}$	$\frac{12}{220}$	0	0
3		$\frac{1}{220}$	0	0	0

- (a) Calcule as funções de probabilidade marginais de X e de Y.
- (b) Calcule a função distribuição marginal de Y.
- (c) Calcule a probabilidade de saírem mais bolas brancas do que bolas vermelhas.
- (d) Determine o valor esperado e a variância do número de bolas brancas extraídas.
- (e) Calcule a função de probabilidade condicionada de X dado a saída de 1 bola vermelha.
- (1.5) 6. Sejam W e Z duas variáveis aleatórias discretas, de suportes finitos, tais que $cov(W,Z) = \theta, V(W) = \beta$ e $V(Z) = \alpha$, com $\alpha, \beta, \theta \in IR \setminus \{0\}$. Para Y = 2W, calcule, em função de α, β, θ :

(i) cov(Y, Z); (ii) ρ_{WZ} ; (iii) V(Y + Z).