CHEM110 – Chapter 3 Chemical Reactions and Stoichiometry

Dr Erica Smith
Room 2.01 – Riggs C23
erica.smith@une.edu.au
02 6773 5130

3.5 Stoichiometry

Stoichiometry

 the mole-to-mole ratio linking substances involved in a chemical equation

$$2C_8H_{18}(I) + 25O_2(g) \rightarrow 16CO_2(g) + 18H_2O(g)$$

- Interpret in terms of molecules or on a molar scale
- Mole-to-mole relationships can be used to solve stoichiometry problems
- Equations must be balanced

Worked Example 3.8 – page 83

What amount of sodium phosphate, Na₃PO₄, can be made from 0.240 mol of NaOH by the following reaction?

$$2NaOH(aq) + H3PO4(aq) \rightarrow Na3PO4(aq) + 3H2O(I)$$

Worked Example 3.9 – page 85

Metallic iron can be made by the thermite reaction of aluminium with iron oxide, Fe_2O_3 . So much heat is generated that the iron forms in the liquid state. The equation is:

$$2AI(s) + Fe2O3(s) \rightarrow AI2O3(s) + 2Fe(I)$$

Assume that you need to product 86.0 g of Fe in a welding operation. What mass of both Fe_2O_3 and Al must be used for this operation, assuming all the Fe_2O_3 is converted to Fe.

 $C_2H_4 + H_2O$ C₂H₅OH ethene ethanol water before reaction after reaction

$$C_2H_4$$
 + H_2O \rightarrow C_2H_5OH

In THIS case →

- C₂H₄ is the LIMITING REACTANT
- H₂O is the EXCESS REACTANT

The calculated amount of product is always based on the limiting reactant

Worked Example 3.10 – page 87

Gold (II) hydroxide, Au(OH)₃, is used for electroplating gold onto other metals. It can be made by the following reaction:

 $2KAuCl_4(aq) + 3Na_2CO_3(aq) + 3H_2O(l) \rightarrow 2Au(OH)_3(s) + 6NaCl(aq) + 2KCl(aq) + 3CO_2(g)$ To prepare a fresh supply of $Au(OH)_3$, a chemist at an electroplating plant mixed 20.00 g of $KAuCl_4$ with 25.00 g of Na_2CO_3 (both dissolved in a large excess of water). What is the maximum mass of $Au(OH)_3$ that can form?

Which of these "reactions" has a limiting and excess reactant?

- A. 4 table tops and 16 table legs
- B. 1 table top and 4 table legs
- C. 10 table tops and 40 table legs
- D. 5 table tops 15 table legs

3.5 Percentage Yield

 Experimentally the amount of a product isolated falls short of the maximum amount

percentage yield =
$$\frac{\text{actual yield}}{\text{theoretical yield}} \times 100$$

- The calculation may be done in either grams or moles
 BUT units must be the same for both yields
- The actual yield can never be more than the theoretical yield

Worked Example 3.11 – page 88

A chemist sets up a synthesis of phosphorous trichloride, PCl_3 , by mixing 12.0 g of P with 35.0 g of Cl_2 and obtained 42.4 g of PCl_3 . The equation for the reaction is: $2P(s) + 3Cl_2(g) \rightarrow 2PCl_3(I)$

Calculate the percentage yield of this compound.

