

PM: Product Management and Development Week 8 – Product Solution Design

Module Overview

Consumer Preferences

Explicit Response

- Rating scales (on 5-point or 7point scale)
- Rank Ordering
- · Constant Sum Scales
- Magnitude Estimation Scales
- Paired Comparisons
- Max-Diff Design
- Kano Method

Conjoint Analysis: Implicit Response

Quantify Product Benefits

- How much will consumers care about a fancy roof?
- How much will consumers be ready to pay more?
- What would be the market share of the launched product?

Conjoint Motivation

Target Segment and Existing Products

Target segment: ₹ 30,000

Product and Its Attributes

The explicit response function is used to understand the importance of different attributes.

Product Design and Value

A product should be designed keeping in mind important attributes.

Product + Improved attribute

How much extra money can be charged?

How much extra value do consumers derive?

Consumer Responses

Asking customers about the importance of different attributes is not sufficient.

Consumers will choose better features at the lowest prices.

Conjoint Analysis

Conjoint analysis helps develop cost-effective products that consumers value

Conjoint analysis:

- Is a systematic approach
- · Is a powerful marketing tool
- Is used for consumer non-durables
- Is used across all industries

Product and Attributes: Relationship

Example: Credit Card

Credit Card = APR + Interest rate + Brand + Credit limit

Various attributes help the customer choose among available products.

Benefits and Attributes

The conjoint analysis is about understanding consumer preferences.

Benefits and Attributes: Different Perspective

Product managers look at the attributes of the product differently than how consumers look at the benefits.

Conjoint Analysis

Conjoint analysis = Survey + Statistical technique

Create hypothetical products

Present it to customers Infer what is important

- · May or may not launch
- May or may not exist

- Ratings
- Choices

Overview of Conjoint Analysis

4 Steps of Conjoint Analysis

- Define a business problem
- Develop an attribute to study the problem

Attribute list formulation

Data collection

Create a survey Respondents
express the trade-offs
among product
features by rating,
sorting or choosing

Derive a set of preference values that reflects the trade-offs each respondent made

Data analysis

Market simulation

Create a market simulator - predicts how consumers choose among competing products and how consumers thinking changes with the features and price

Step 1: Attribute List Formulation

to identify the list of attributes

Identify the levels of attributes

that can be set in the market

Example: Attribute List Formulation

Step 1: Select Product Subset Using Factorial Design

Step 2: Select Sample from Target Segment

Step 2: Select Sample from Target Segment

Test Set	Rating (0-10) 8.2	
Profile 1		
Profile 2	7.3	
9 .		
Profile 18	4.3	

Step 3: Data Analysis

Customer Utility Function

Mathematical approximation of consumer's decision-making criterion

Step 4: Market Simulation

Managerially relevant questions:

- What will be the market share for new product?
- Will the new product eat the demand from other owned products?
- Will the product steal the demand from competitors?
- What should be the price to maximise profit?

Rating-Based Conjoint Analysis

Brand	Memory	Price	Ranking (Utility)
Apple	20	150	8
Samsung	20	150	7
Apple	10	150	6
Apple	20	200	5
Samsung	10	150	4
Samsung	20	200	3
Apple	10	200	2
Samsung	10	200	1

^{*8=}Most Preferred; 1=Least Preferred

Choice-Based Conjoint Analysis

All brand, product and company names are trademarks™ or registered® trademarks of their respective holders. Use of them does not imply any affiliation with, endorsement by, or association of any kind between them and program owners.

Selecting Attributes and Levels for Conjoint Analysis

Steps of Conjoint Analysis

· Identify the attributes and levels

- Design a survey
- Generate a list of benefits and important attributes

Attribute list formulation

Data collection

- What kind of data to collect?
- Understand the context
- Talk to customers to find out the important attributes

Macro Segmentation: Smartphone Example

Target Segment

- Budget constraints help identify the target segment.
- Different people operate under different budget constraints.

Relevant Attributes and Levels

Difference Between Attributes and Levels

Macro Segmentation: SUV Tyre Example

- Segment: households who go on road and adventure trips
- Identify the macro segment and offer a tyre of their choice.

Understanding Customer Needs

- Identify the customers' problem
- Use explicit response functions to shortlist attributes
- Choose attributes that are critically evaluated by the customer

Attributes That Matter

Customers

- Durability
- Brand
- Price
- Aesthetics

Product Managers

- Tread area
- Tyre ribs
- Shoulders
- Number of steel wires

Attributes That Customers Care About

Attributes for Brands

Designing a Conjoint Analysis

Product Attributes and Levels

How many Product Profiles?

3 x 3 x 3 x 2 = 54 different products can be synthesised

Ratings Based Conjoint

- Full design exercise requires lots of profiles and is difficult for people to rank order or rate the profiles.
- Fractional Factorial design using statistical software helps to reduce the number of profiles and is easier for people to complete the exercise

Coding Attributes and Levels for Factorial Design

Attribute 1	Attribute 2	
Level 0	Level 1	
Level 1	Level 2	
Level 2		
Attribute 3	Attribute 4	
Level 0	Level 0	
Level 1	Level 1	
Level 2	Level 2	

Optimised information obtained from the algorithm is as good as data gathered using a large number of profiles.

Profit	X1	X2	Х3
1	1	1	1
2	2	1	1
3	1	2	1
4	2	2	1
5	1	1	2

Select Profiles Using Factorial Design

A3	B3	C3	D2
Brand	Tread Life	Price	Side Wall
0	0	0	0
0	1	1	0
0	2	2	1
1	0	1	1
1	1	2	0
1	2	0	0
2	0	2	0
2	1	0	1
2	2	1	0
0	0	2	1
0	1	0	0
0	2	1	0
1	0	0	0
1	1	1	1
1	2	2	0
2	0	1	0
2	1	2	0
2	2	0	1
Sears - 0	30k - 0	\$50 - 0	White - 0
Goodyear - 1	40k - 1	\$60 - 1	Black - 1
Goodrich - 2	50k - 2	\$70 - 2	

Convert Factorial Profiles to Product Profiles

18 out of 54 potential profiles are selected by the fractional factorial design.

Profile	A3	B3	C3	D2
	Brand	Tread Life	Price	Side Wall
1	Sears	30k	\$50	White
2	Sears	40k	\$60	White
3	Sears	50K	\$70	Black
4	Goodyear	30k	\$60	Black
5	Goodyear	40k	\$70	White
6	Goodyear	50K	\$50	White
7	Goodrich	30k	\$70	White
8	Goodrich	40k	\$50	Black
9	Goodrich	50K	\$60	White
10	Sears	30k	\$70	Black
11	Sears	40k	\$50	White
12	Sears	50K	\$60	White
13	Goodyear	30k	\$50	White
14	Goodyear	40k	\$60	Black
15	Goodyear	50K	\$70	White
16	Goodrich	30k	\$60	White
17	Goodrich	40k	\$70	White
18	Goodrich	50K	\$50	Black

Data Collection

Step 1d: Convert Bundles into Product Profiles

Bundles	A3	B3	C3	D2	Customer Rating
	Brand	Tread Life	Price	Side Wall	
1	Sears	30k	\$50	White	5
2	Sears	40k	\$60	White	7
3	Sears	50k	\$70	Black	6
4	Goodyear	30k	\$60	Black	5
5	Goodyear	40k	\$70	White	7
6	Goodyear	50k	\$50	White	9
7	Goodrich	30k	\$70	White	0
8	Goodrich	40k	\$50	Black	3
9	Goodrich	50k	\$60	White	6
10	Sears	30k	\$70	Black	2
11	Sears	40k	\$50	White	8
12	Sears	50k	\$60	White	8
13	Goodyear	30k	\$50	White	6
14	Goodyear	40k	\$60	Black	7
15	Goodyear	50k	\$70	White	7
16	Goodrich	30k	\$60	White	2
17	Goodrich	40k	\$70	White	4
18	Goodrich	50k	\$50	Black	6

Rather than taking raw profiles directly to people, use creativity.

Step 2: Data Collection

To get realistic information, consumers must understand the context.

Step 2: Data Collection

Bundles	A3	B3	C3	D2	Customer Rating
	Brand	Tread Life	Price	Side Wall	
1	Sears	30k	\$50	White	5
2	Sears	40k	\$60	White	7
3	Sears	50k	\$70	Black	6
4	Goodyear	30k	\$60	Black	5
5	Goodyear	40k	\$70	White	7
6	Goodyear	50k	SA	White	9
7	Goodrich	30k	/0	White	0
8	Goodrich	40k	\$50	Black	3
9	Goodrich	50k	\$60	White	6
10	Sears	30k	570	Black	2
11	Sears	401		White	8
12	Sears	50k	\$60	White	8
13	Goodyear	30k	\$50	White	6
14	Goodyear	40k	\$60	Black	7
15	Goodyear	50k	\$70	White	7
16	Goodrich	30k	\$60	White	2
17	Goodrich	40k	\$70	White	4
18	Goodrich	50k	\$50	Black	6

The goal is for customers to understand the products better.

Step 2: Data Collection

Analysing the Data

Step 3: Data Analysis

Step 3: Data Analysis

- Sample size depends on the category and number of respondents.
- Rank ordering or rating information is available for each respondent.

Dummy Variable Regression

Card	A3	B3	C3	D2	Customer Rating
	Brand	Tread Life	Price	Side wall	
1	Sears	30k	\$50	White	5
2	Sears	40k	\$60	White	7
3	Sears	50k	\$70	Black	6
4	Goodyear	30k	\$60	Black	5
5	Goodyear	40k	\$70	White	7
6	Goodyear	50k	\$50	White	9
7	Goodrich	30k	\$70	White	0
8	Goodrich	40k	\$50	Black	3
9	Goodrich	50k	\$60	White	6
10	Sears	30k	\$70	Black	2
11	Sears	40k	\$50	White	8
12	Sears	50k	\$60	White	8
13	Goodyear	30k	\$50	White	6
14	Goodyear	40k	\$60	Black	7
15	Goodyear	50k	\$70	White	7
16	Goodrich	30k	\$60	White	2
17	Goodrich	40k	\$70	White	4
18	Goodrich	50k	\$50	Black	6

- Use regression method to analyse data.
- Run a regression for every respondent.

Dummy Variable Regression

Dummy Variable Regression

Run regression to estimate the "coefficient" β

Setting up the Regression

Rating	Sears	Goodyear	Mile40	Mile50	Price50	Price60	White
5	1	0	0	0	1	0	1
7	1	0	1	0	0	1	1
6	1	0	0	1	0	0	0
5	0	1	0	0	0	1	0
7	0	1	1	0	0	0	1
9	0	1	0	1	1	0	1
0	0	0	0	0	0	0	1
3	0	0	1	0	1	0	0
6	0	0	0	1	0	1	1
2	1	0	0	0	0	0	0
8	1	0	1	0	1	0	1
8	1	0	0	1	0	1	1
6	0	1	0	0	1	0	1
7	0	1	1	0	0	1	0
7	0	1	0	1	0	0	1
2	0	0	0	0	0	1	1
4	0	0	1	0	0	0	1
6	0	0	0	1	1	0	0

Compute "coefficient" β for every respondent

Regression Output

SUMMARY OUTPUT						
Regression St	atistics					
Multiple R	0.9253					
R Square	0.8562					
Adjusted R Square	0.8550					
Standard Error	0.8790					
Observations	900					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	7	4102.638333	586.09119	758.549155	0	
Residual	892	689.2016667	0.77264761			
Total	899	4791.84				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	0.11	0.0879	1.2514	0.2111	-0.0625	0.282
Sears	2.26	0.0718	31.4893	0.0000	2.1191	2.4009
Goodyear	2.97	0.0718	41.4893	0.0000	2.8291	3.1109
Mile40	2.48	0.0718	34.5082	0.0000	2.3358	2.617
Mile50	3.44	0.0718	47.9771	0.0000	3.3025	3.584
Price50	1.62	0.0718	22.6184	0.0000	1.4825	1.7642
Price60	1.37	0.0718	19.0422	0.0000	1.2258	1.507
White	1.25	0.0622	20.0306	0.0000	1.1230	1.367

Intuitive Interpretation of B Coefficients

The "coefficients" β are called the utility weights or "partworths."

$$R = \beta_0 + \beta_1 \times Sears + \beta_2 \times Goodyear + \beta_3 \times Miles_{40K} + \beta_4 \times Miles_{50K} + \beta_5 \times Price_{\$50} + \beta_6 \times Price_{\$60} + \beta_7 \times White + \varepsilon$$

- Helps to decipher the decision-making criteria of a respondent
- Is the mathematical equation of how respondents make purchasing decisions
- Is the intuitive interpretation of β coefficients
- · Is transformed into importance ratings

Interpreting \$\beta\$ Coefficients

Card	A3	B3	C3	D2	Customer Rating
	Brand	Tread Life	Price	Side wall	
1	Sears	30k	\$50	White	5
2	Sears	40k	\$60	White	7
3	Sears	50k	\$70	Black	6
4	Goodyear	30k	\$60	Black	5
5	Goodyear	40k	\$70	White	7
6	Goodyear	50k	\$50	White	9
7	Goodrich	30k	\$70	White	0
8	Goodrich	40k	\$50	Black	3
9	Goodrich	50k	\$60	White	6
10	Sears	30k	\$70	Black	2
11	Sears	40k	\$50	White	8
12	Sears	50k	\$60	White	8
13	Goodyear	30k	\$50	White	6
14	Goodyear	40k	\$60	Black	7
15	Goodyear	50k	\$70	White	7
16	Goodrich	30k	\$60	White	2
17	Goodrich	40k	\$70	White	4
18	Goodrich	50k	\$50	Black	6

Maximum and Minimum Partworth

β Coefficients for the Brand attribute

Consumer utility equation

$$+ 0 \times Miles_{30k} + 2.48 \times Miles_{40k} + 3.44 \times Miles_{50k}$$

+ other things (Error term)

Maximum and Minimum Partworth

For a single attribute, look at its maximum partworth and minimum partworth.

Consumer utility equation

$$0 \times Goodrich + 2.26 \times Sears + 2.97 \times Goodyear$$

+ $0 \times Miles_{30k} + 2.48 \times Miles_{40k} + 3.44 \times Miles_{50k}$
+ $0 \times Price_{\$70} + 1.62 \times Price_{\$50} + 1.37 \times Price_{\$60}$

+ other things (error term)

Maximum and Minimum Partworth

For a single attribute, look at its maximum partworth and minimum partworth.

Consumer utility equation

$$0 \times Goodrich + 2.26 \times Sears + 2.97 \times Goodyear$$

+ $0 \times Miles_{30k} + 2.48 \times Miles_{40k} + 3.44 \times Miles_{50k}$
+ $0 \times Price_{\$70} + 1.62 \times Price_{\$50} + 1.37 \times Price_{\$60}$
+ $0 \times Black + 1.25 \times White$
+ other things (error term)

Zero appears for every attribute as it is used as a base variable in dummy variable regression.

Attribute Normalisation

 I_{k} = Importance of attribute k

 $\overline{P_k}$ = The partworth for the most preferred level of attribute k

 P_{k} = The partworth for the least preferred level of attribute k

Attribute Importance Ratings

Maximum possible change in utility by just changing levels of this attribute

Attribute Importance Ratings

Importance ratings can be interpreted directly.

100%

Importance ratings are a measure of how much influence each attribute has on people's choices.

Purpose of the Exercise

Simulation and Market Share Estimation

Step 4: Market Simulation

Data collection

Define a business problem

 Develop an attribute to study the problem.

Attribute list formulation

Create a survey -Respondents express the trade-offs among product features by rating, sorting or choosing

Derive a set of preference values - reflects the trade-offs each respondent made.

> Data analysis

Market simulation

Create a market simulator - predicts how consumers choose among competing products and how consumers thinking changes with the features and price

Managerially Relevant Questions

Step 1: Calculating the Product Utility

Calculate the utility functions (U's) for each product (alternative in the market) for each respondent.

Partworths

```
0 \times Goodrich + 2.26 \times Sears + 2.9 \times Goodyear + 0 \times Miles_{30K} + 2.48 \times Miles_{40K} + 3.44 \times Miles_{50K} + 0 \times Price_{570} + 1.62 \times Price_{550} + 1.37 \times Price_{560} + 0 \times Black" "+1.25 \times White
```


Step 2: Calculating Choice Probability

Calculate choice probability for each respondent.

What is the probability of picking one product over the other two products?

Step 3: Calculating Market Share

Sum up choice probabilities to get market share.

Brand	Goodyear	Goodrich	Sears
Miles	40,000	30,000	50,000
Price	\$60	\$50	\$70
Colour	Black Void	White Void	Black Void

Goodrich wants to launch a new product with higher utility.

Product	Goodrich (Existing)	Goodrich (New)	
Utility	Low	High	
Price	\$50	\$50	
Colour	White Void	Black Void	

Calculate Product Utility

	Brand	Goodyear	Goodrich	Sears	Goodrich
	Miles	40,000	30,000	50,000	40,000
	Price	\$60	\$50	\$70	\$50
Partworth	Color	Black	White	Black	Black
Sears	2.26	0	0	1	0
Goodyear	2.97	1	0	0	0
Goodrich	0.00	0	1	0	1
Miles=40K	2.48	1	0	0	1
Miles=50K	3.44	0	0	1	0
Miles=60K	0.00	0	1	0	0
Price=\$50	1.62	0	1	0	1
Price=\$60	1.37	1	0	0	0
Price=\$70	0.00	0	0	1	0
Sidewall=White	1.25	0	1	0	0
Sidewall=Black	0.00	1	0	1	1
Utility		6.82	2.87	5.70	4.10

 $\begin{array}{lll} \textit{Un} = 0 \times \textit{Goodrich} & +2.26 \times \textit{Sears} & +2.97 \times \textit{Goodyear} \\ & +0 \times \textit{Miles} \\ & +0 \times \textit{Price} \\ & +0 \times \textit{Price} \\ & +0 \times \textit{Black} & +1.62 \times \textit{Price} \\ & +0 \times \textit{Black} & +1.25 \times \textit{White} \\ \end{array}$

Calculate Product Utility

	Brand	Goodyear	Goodrich	Sears	Goodrich
	Miles	40,000	30,000	50,000	40,000
	Price	\$60	\$50	\$70	\$50
Partworth	Color	Black	White	Black	Black
Sears	2.26	0	0	1	0
Goodyear	2.97	1	0	0	0
Goodrich	0.00	0	1	0	1
Miles=40K	2.48	1	0	0	1
Miles=50K	3.44	0	0	1	0
Miles=60K	0.00	0	1	0	0
Price=\$50	1.62	0	1	0	1
Price=\$60	1.37	1	0	0	0
Price=\$70	0.00	0	0	1	0
Sidewall=White	1.25	0	1	0	0
Sidewall=Black	0.00	1	0	1	1
Utility		6.82	2.87	5.70	4.10

Computing Product Utility

```
Un=0\times Goodrich +2.26\times Sears +2.97\times Goodyear +0\times Miles_{30K} +2.48\times Miles_{40K} +3.44\times Miles_{50K} +0\times Price_{570} +1.62\times Price_{550} +1.37\times Price_{560} +0\times Black +1.25\times White
```

Compute the utility for every product and then compute the probability shares.

$$U_{nj} = V_{nj} + \varepsilon_{nj},$$

$$P_{ni} = \text{Prob}(\varepsilon_{nj} - \varepsilon_{ni} < V_{ni} - V_{nj} \,\forall j \neq i)$$

$$P_{ni} = \int_{\varepsilon} I(\varepsilon_{nj} - \varepsilon_{ni} < V_{ni} - V_{nj} \,\forall j \neq i) f(\varepsilon_n) \, d\varepsilon_n$$

Choice Probability:
$$P_{ni} = \frac{\exp(U_{ni})}{\sum_{j \in I} \exp(U_{nj})}$$

Old Market

- Product A: $\exp(6.82)/\exp(6.82)+\exp(2.87)+\exp(5.70)=0.74$
- Product B: $\exp(2.87)/\exp(6.82)+\exp(2.87)+\exp(5.70)=0.01$
- Product C: $\exp(5.70)/\exp(6.82)+\exp(2.87)+\exp(5.70)=0.24$

New Market

- Product A: $\exp(6.82)/\exp(6.82)+\exp(2.87)+\exp(5.70)+\exp(4.10) = 0.71$
- Product B: $\exp(2.87)/\exp(6.82)+\exp(2.87)+\exp(5.70)+\exp(4.10) = 0.01$
- Product C: $\exp(5.70)/\exp(6.82)+\exp(2.87)+\exp(5.70)+\exp(4.10) = 0.23$
- New Product: $\exp(4.10)/\exp(6.82)+\exp(2.87)+\exp(5.70)+\exp(4.10)=0.05$

Multiple Respondents

Average probability across multiple respondents gives an idea of the market share.

Calculate New Market Share

Module Summary

Summary

price of the

product?

· Setting the price

· Setting different

levels of other

attributes

judgement helps to

make estimates

from the conjoint

analysis

Understanding Choice Context

What are the customers' motives?

What alternatives are available?

How do customers decide the product?

How do customers make choices?

