FACULTY OF PHYSICAL SCIENCES UNIVERSITY OF BENIN, BENIN CITY

CA 2022/2023 SESSION

COURSE TITLE: Linear Algebra (MTH 230)

- In a certain gathering of 200 students 50% of them like Commerce while 87% of them like Social Studies. How many students 50% of them like Commerce while 87% of them like Social Studies. How many students like both Social Studies and Commerce (a) 70 (b) 74 (c) 50 (d) 60 (e) None of the above
- $A = \{1, 2, 3, 6, 8\}$ $B = \{2, 5, 6, 7, 9\}$ and $C = \{5, 7, 6, 9\}$. $(A-B)\cup(B-A)$ (a) $\{1,3,5,7,8\}$ (b) $\{1,3,7\}$ (c) $\{1,3,5,7,8,9\}$ (d) $\{5,7,9\}$ (e) None of the above 2.
- Given vectors u = (1,2,-1), v = (6,4,2) and w = (9,2,7) in IR^3 . Which of the following is correct? (a) w is linearly independent on the vectors u and v (b) w is a linear combination of the vectors u and v of the vectors u and v (c) (n) and (b) (d) w is a linear transformation of the vectors u and v
- A mapping θ is said to be Onto if and only if θ (a) every element in the co-domain is an image from the decodors in image from the domain (b) some elements in the co-domain are image from the domain (c) no element in the co-domain are image from the domain (d) (a) and (c) (e) None of the
- Let $f:V\to W$ be a function from the vector space V to the vector space W. f is a linear transformation if and only if (a) f(x+y) = f(x) + f(y) and k f(x) = f(kx) \forall vectors x and $y \in V$ and k, a scalar (b) f(x+y) = f(x) + f(y) \forall vectors x and $y \in V$ (c) $f(x+y)=k f(x) \ \forall \ \text{vectors} \ x \ \text{and} \ y \in V$ (d) k f(x)=f(kx) where k is a scalar (e) None of the above
- Let $U = \{x : x \text{ is a real number}\}\$ be the universal set and let $A = \{a : a \text{ is a Natural numbers}\}\$ $B = \{b : b \text{ is an even numbers}\}$. Find $(A - B) \cup (B - A)$ (a) $(A - B) \cup (B - A) = \{\text{Set of natural } a\}$ (b) $(A-B) \cup (B-A) = \{\text{set of positive rational numbers}\}$ $(A-B) \cup (B-A) = \{\text{set of Negative integers}\}\$ (d) (b) and (c) (e) None of the above
- Consider the sets $X = \{2,3,4,7\}$ $Y = \{3,5,4,8\}$ $Z = \{5,6,9\}$. Find $(Z/Y) \cup (X/Y)$. (a) $(Z/Y) \cup (X/Y) = \{2,3,6,7,5\}$ (b) $(Z/Y) \cup (X/Y) = \{3,6,7\}$ (c) $(Z/Y) \cup (X/Y) = \{2,3,6,7,9\}$ (d) $(Z/Y) \cup (X/Y) = \{5,6,9\}$ (e) None of the above
- Which of the following is correct about vectors $v_1 = (1,1,2)$, $v_2 = (1,0,1)$ and $v_3 = (2,1,3)$ in (a) v_1, v_2 and v_3 spans IR^3 (b) v_1 and v_3 spans IR^3 (c) v_1 and v_2 spans IR^3 (d) v_1, v_2 and v_3 does not span IR³ (e) None of the above
- Given the vectors w = (4,-1,8), u = (2,4,-1) and v = (6,4,-5). Which of the following statements is correct? (a) wis not a linear combination of the vectors u and v (b) wis a linear combination of the vectors u and v (c) w is linearly dependent on the vectors u and v(d) (b) and (c)
- 10. The function $T: \mathbb{R}^2 \to \mathbb{R}^2$ subject to T(x, y) = (x + y, x y + 3) is not a linear transformation because? (a) T(x+y) = T(x) + T(y) (b) $T(x+y) \neq T(x) + T(y)$ and $kT(x) \neq T(kx)$ for $k \in IR$ (c) kT(x) = T(kx) for $k \in IR$ (d) All of the above (e) None of the above
- 11. Which of the following is true about vectors $v_1 = (1,2,1)$, $v_2 = (2,9,0)$ and $v_3 = (3,3,4)$ in IR^3 (a) v_1, v_2 and v_3 does not span IR³ (b) v_1 and v_3 spans IR³ (c) v_1, v_2 and v_3 spans IR³ (d) v_1, v_2 and v_3 spans IR² (e) None of the above RI+4RZ-12

Linear Algebra (MTH 230)

CA 2023

- 12. Find the scalars x, y, z in v (x) $y_{1} + zu_{1}$ with that v (3,7,4), $u_{1} = (2,3,7)$ and $u_{2} = (3,5,6)$ in IR³
 (b) x = 4 y = 2 z = 3 (c) None of the above 13. Let V = 2 z = 3 (d) x = 2 y = 4 z = 3 (e) None of the above basis for V if and only to basis for V if and only to
- basis for V if and only if? (a) S is linearly independent and S spans V (b) S is linearly independent (c) S is linearly independent and S spans V (c) bloom of the above
- basis for V if and only if? (a) S is linearly independent and S spans V (b) S is linearly independent and S spans V (c) None of the above independent (c) S is linearly dependent (d) S does not span V (e) None of the above S and S is linearly dependent and S spans V (b) S is linearly independent and S spans V (c) None of the above S and S is linearly dependent and S spans V (c) None of the above S and S is linearly dependent and S spans V (c) None of the above S and S is linearly dependent and S is linearly independent and S spans V (e) None of the above S and S is linearly dependent and S is linearly independent and S spans V (b) S is linearly independent and S spans V (c) None of the above S and C is linearly dependent and S is linearly independent and S spans V (c) None of the above S and C is linearly independent and S spans V (c) None of the above S and C is linearly independent and S spans V (c) None of the above S and C is linearly independent and S spans V (c) None of the above S and C is linearly independent and S is linearly indep (a) M is a linear combination of A, B and C
 (b) M is not a linear combination of Λ, B and C
 (c) A, B and C are linear to the linear combination of Λ, B and C (c) A, B and C are linearly independent (d) A, B and C are linearly dependent (e) None of the above
- 15. Determine whether the vectors $v_1 = (1,-2,3)$, $v_2 = (5,6,-1)$ and $v_3 = (3,2,1)$ are linearly dependent of the vectors $v_1 = (1,-2,3)$, $v_2 = (5,6,-1)$ and $v_3 = (3,2,1)$ are linearly dependent or linearly independent (a) v_1 and v_2 are linearly independent (b) v_1, v_2 and v_3 are linearly dependent (c) v_1, v_2 and v_3 are linearly independent (d) All of the above
- 16. What values of scalars a, b and c in au+bv+cw=0 would make the vectors u=(1,2,3), v = (2,5,7), w = (1,3,5) linearly independent (a) a = 2 b = 5 c = 0 (b) a = 0 b = 2 c = 10(c) a = -1 b = 3 c = 2 (d) a = 0 b = 0, c = 0 (e) None of the above
- 17. Let $\theta: X \to Y$ from a set X to a set Y be an Onto map, then Y is called? (a) Range (b) Surjective (c) Bijective (d) One-to-one (e) None of the above
- 18. An infinite set is called countable if and only if (a) there exist a surjective correspondence between it and the set of Natural numbers (b) there exist a One-to-one correspondence between it and the set of Natural numbers (c) there exist a One-to-one correspondence between it and the set of Integers (d) there exist a bijective correspondence between it and
- the set of rational numbers (e) None of the above 19. Two sets A and B can have the same number of Element if they are (a) Complex (d) Equal (d) Rational (e) None of the above (c) Onto
- 20. A mapping that is both injective and surjective is called (a) Surjective (b) Into
- 21. Let $v_1 = (3,2,1)$, $v_2 = (3,8,0)$, $v_3 = (2,2,6)$, and $S = \{v_1, v_2, v_3\}$ then (a) S is a Basis for IR³ (d) Bijective (e) None of the above 4 (b) S is a Basis for IR2 (c) S is not a Basis for IR3 (d) S is not a Basis for IR2 (e) None
- 22. An Injective mapping is also called: (a) Onto (b) One-to-one (c) Into (d) Bijective (e) None of the above
- 23. A Surjective mapping is (a) Bijective (b) Into (c) Onto (d) One-to-one (e) None of the above
- 24. If $A = \begin{bmatrix} 2 & 1 & 3 \\ 0 & 4 & 5 \\ 2 & 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 & 3 \\ 0 & 1 & 2 \\ 1 & 4 & y \end{bmatrix}$. Find the value of y if |AB| = 48 (a)-12(b) 8(c) 12 (d) 6
 - (e) none of the above
- Find the eigenvalues of A if $A = \begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix}$ (a) 7 and 3 (b) 2 and 3 (c) 1 and 3 (d) 0 and 3 (e) none of the above

26. Determine
$$A^{-1}$$
 if $A = \begin{bmatrix} 2 & -1 & 3 \\ 1 & 3 & -1 \\ 2 & -2 & 5 \end{bmatrix}$
(a) $\frac{1}{9} \begin{bmatrix} 13 & 1 & -8 \\ -7 & 4 & -5 \\ -8 & 2 & 7 \end{bmatrix}$
(b) $\frac{1}{20} \begin{bmatrix} 13 & -1 & -8 \\ -7 & 4 & 5 \\ -8 & 2 & 7 \end{bmatrix}$
(c) $\frac{1}{6} \begin{bmatrix} 3 & -1 & -8 \\ 6 & -4 & 6 \\ -8 & 2 & 7 \end{bmatrix}$
(d) $\frac{1}{7} \begin{bmatrix} 13 & -1 & -8 \\ -7 & 4 & 8 \\ -8 & 2 & 7 \end{bmatrix}$
(e) None of the above.

- 27. A square matrix A is Symmetric if (a) $A = -A^T$ (b) $A = A^{-1}$ (c) $A = A^T$ (d) $A = -A^{-1}$
- Find the eigenvalues of the matrix $A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 2 & 1 \\ -2 & 1 & -1 \end{bmatrix}$ (a)-1, 1, and 2 (b) 3, 2, and 6

(c) -1, 2, and -2 (d) -1, 5, and -2 (e)none of the above

- 29. A square matrix A is Skew Symmetric if (a) $A = A^T$ (b) $A = -A^T$ (c) $A = A^{-1}$ (d) $A = -A^{-1}$ (e) none of the above.
- 30. If equation $x_1^2 + 4x_1x_2 3x_1x_3 + x_2^2 + 4x_2x_3 x_3^2$ is expressed in the form $x^T Ax$ Find A (a)

$$\begin{bmatrix} 2 & 0 & 1 \\ 7 & 3 & 3 \\ -1 & 1 & 2 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 1 & 2 & -1.5 \\ 2 & 1 & 2 \\ -1.5 & 2 & -1 \end{bmatrix}$$
 (c)
$$\begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -3 \\ 1 & 0 & -1 \end{bmatrix}$$
 (d)
$$\begin{bmatrix} 1 & 3 & 0 \\ 5 & 1 & -9 \\ 1 & 0 & -1 \end{bmatrix}$$
 (e)none of the

above.

31. Determine the solution to these set of equations using Gaussian elimination method

$$\begin{bmatrix} 1 & 2 & -3 \\ 2 & -1 & -1 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 11 \\ -5 \end{bmatrix}$$
 (a) 2,-4, and -3 (b) 2, -3, and 5 (c)-3, 4, and 0 (d) 6, 1 and 12

(e) none of the above

32. A system of linear equations is inconsistent if (a) it has one solution (b) Infinite number of solutions (c) No solution (d) It cannot represent a real life system (e) None of the above

33. Find
$$|A|$$
 if $A = \begin{bmatrix} 5 & 2 & 1 \\ 0 & 6 & 3 \\ 8 & 4 & 7 \end{bmatrix}$ (a)150 (b) 20(c) 100(d) 120(e) none of the above.

34. Determine the inverse of A if A = $\begin{vmatrix} 2 & 7 & 4 \\ 3 & 1 & 6 \\ 5 & 0 & 8 \end{vmatrix}$ \(\frac{1}{28} \) \(\frac{8}{28} \) \(\frac{5}{28} \) \(-6 & -4 & 0 \) \(-5 & -35 & -19 \)

Linear Algebra (MTH 230)

CA 2023

35. If
$$A = \begin{bmatrix} 2 & 3 & 5 & 3 \\ 1 & -2 & -3 & 2 \\ 6 & 5 & 4 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}$ Find AB (a) $\begin{bmatrix} 2 & 1 & 3 \\ 1 & 0 & 1 \\ 7 & 2 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 7 & 5 \\ -2 & -3 \\ 10 & 4 \end{bmatrix}$ (c) none of the above $\begin{bmatrix} 8 & 1 \\ 1 & 1 \\ 12 & -5 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 8 \\ 2 & 9 \\ 3 & 1 \end{bmatrix}$ (e) none of the above $\begin{bmatrix} 3 & 2 & 5 \\ 3 & 1 \end{bmatrix}$ (c) and (d) 30 (e) none of the above

- 36. Find the determinant of $A = \begin{pmatrix} 3 & 2 & 5 \\ 4 & 7 & 9 \\ 2 & 8 & 6 \end{pmatrix}$ (a) 10 (b) -12 (c) 40 (d) 30 (e) none of the above
- 37. A matrix is singular if (a)|A| = 0 (b) |A| < 0 (c) |A| = 2 (d) |A| > 0 (e) none of the above.
- 38. If $A = \begin{bmatrix} 1 & x & 1 \\ 3 & -4 & -2 \\ 5 & 3 & 5 \end{bmatrix}$ find the value of x if $|A| = -35(a) \ 0(b) 2(c) 3(d) 5$ (e) None of the above.
- 39. Find the Adjoint of A if A = $\begin{bmatrix} 2 & 3 & 5 \\ 4 & 1 & 6 \\ 1 & 4 & 0 \end{bmatrix}$ (a) $\begin{bmatrix} 20 & -24 & 11 \\ 7 & 2 & 4 \\ 15 & -5 & -10 \end{bmatrix}$ (b) $\begin{bmatrix} -24 & 20 & 13 \\ 6 & -5 & 8 \\ 15 & -5 & -10 \end{bmatrix}$
 - (e) $\begin{bmatrix} -24 & 11 & 15 \\ 0 & -3 & 4 \\ 14 & -6 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 30 & 10 & 7 \\ -1 & 2 & 3 \\ 15 & -5 & 10 \end{bmatrix}$ (e) None of the above.
- -2y+z=11. Find $z^2+(y)^2-x$ (a) $\frac{13}{2}$ (b) $\frac{1}{4}$ (c) $\frac{3}{2}$ Solve the system of equations
 - $(d) \frac{5}{7} (e) 9$
- Which of the following is/are not true? (a) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (b) $A B = A \cap B'$ (c) $(A \cap B)' = A' \cup B'$ (d) If \cup is the universal set then $B' = \{t : t \in B, t \notin \cup\}$ (e) None of the above
- Consider the set $A = \{1, 2, 3, 5, 7\}$, $B = \{0, 3, 6, 7, 9\}$ and $C = \{4, 5, 6, 8\}$. Determine $(A-B) \cup (B-A)$ (a) $\{1,2,7,1\}$ (b) $\{0,6,9,1\}$ (c) $\{\phi\}$ (d) $\{0,1,2,5,6,9\}$ (e) None of the above 42.
- A relation from a set E to a set F is a subset of (a) $E \cap F$ (b) $E \cup F$ (c) $E \times F$ (d) $E \cap F$ (e) None of the 43. above
- Let A = {a, c} and B = {a, b, e, f}. What is n(A x B) (a) 16 (b) 6 (c) 8 (d) 4 (e) None of the above 44.
- Which of the following is not a linear transformation from IR^3 to IR^3 ? (a) T (x, y, z) = (x, 2y, 3x y) (b) T (x, y, z) = (0, 0, 0) (c) T (x, y, z) = (x, 2y, 5z) (d) \hat{T} (x, y, z) = (1, x, z) (e) None of the above
- Which of the following is not true? (a) If $T:U\to V$ is any linear transformation from U to V, 46. then T(x,y) = T(x)T(y) for all vectors. (b) The set A of all linear transformations of a vector space Linear Algebra (MTH 230) CA 2023

into itself is also a vector space. (c) The set T of all linear transformations of a vector space into itself. (d) The set A of all linear transformations of a vector space into itself is a ring with respect to addition and multiplication.(e) None of the above

- $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that T(x, y, z) = (-x, y z, x 1) is not a linear map because it is: (a) Not additive (b) Not well defined (c) Neither homogeneous nor additive (d) Not closed with respect to x, y and z (e) None of the above
- Given a 2 x 3 column vector $A = \begin{bmatrix} 0 & 1 \\ -2 & 2 \\ 1 & 0 \end{bmatrix}$, then the linear transformation $T: IR^2 \to IR^3$ is 48.

defined by (a) T(x,y) = (-2x+z, x+2y) (b) T(x,y) = (x+2y,2x+y,0)(d) T(x, y) = (y, -2x + 2y, x) (d) T(x, y) = (-x + 3y) (e) None of the above

- 49. Suppose $f: IR^n \to IR^m$ is linear, then (a) The kernel of f is a subspace of IR^n (b) The range of f is a subspace of $IR^m(c) f(u + v) = f(u) + f(v)$ for all $u, v, \in IR^n(d) f(ku) = k f(u)$ for all $u \in IR^n$ and k, a scale (e) None of the above
- 50. Which of the following function is not a linear transformation (a) $f: IR^3 \rightarrow IR^2$ such that $f(x, y, z) = (x, -y, -z)^2$ (b) $f: IR^3 \to IR^3$ such that f(x, y, z) = (x, y, z) + (0, -1, 0) (c) $h: IR^2 \to IR^2$ such that h (x, y) = (2x, y-x) (d) $t: IR^3 \rightarrow IR^3$ such that t(x, y, z) = (x+y, y-z, x) (e) None of the
- Which of the following statements is incorrect? (a) The empty set is a subspace of every vector 51. space (b) Every subspace of a vector space is also a vector space (c) Every vector space is an additive abelian group (d) Every vector space is also a subspace (e) None of the above
- Which of the following is a vector space? (a) The set V of all m x n matrices with real entries 52. together with the operation of matrix addition and scalar multiplication. (b) The points on a plane V through the origin in IR³ with addition and scalar multiplication (c) The points on a line passing through the origin in IR2 with addition and scalar multiplication_(d) All of the above (e) None of the above
- Which of these vector space is finite dimensional even though it does not have a linearly 53. independent set and therefore no basis? (a) The n-dimensional vector space (b) The zero vector space (c) The countable dimensional vector space (d) The infinite dimensional space (e) None of
- Let V be a vector space, then (i) The set IR of real numbers is an element of V (ii) The set S of all 54. linear combinations of the subspaces of V is also a subspace of V (iii) V is an additive group that is also commutative: (a) (i) and (iii) only (b) (ii) only (c) (ii) and (iii) only (d) (i), (ii) and (iii)
- Which of these is not a vector space? 55. has a solution (b) The set of vectors with positive entries (c) The vector V consisting of the single object zero (d) The set $V = IR^n$ with standard operations of addition and scalar multiplication. None of the above

Linear Algebra (MTH 230)