The basics of ConvNets

测验, 10 个问题

1 point

1。

What do you think applying this filter to a grayscale image will do?

$$\begin{bmatrix} 0 & 1 & -1 & 0 \\ 1 & 3 & -3 & -1 \\ 1 & 3 & -3 & -1 \\ 0 & 1 & -1 & 0 \end{bmatrix}$$

- Detect horizontal edges
- Detect image contrast
- Detect vertical edges
- Detect 45 degree edges

1 point

 2_{\circ}

Suppose your input is a 300 by 300 color (RGB) image, and you are not using a convolutional network. If the first hidden layer has 100 neurons, each one fully connected to the input, how many parameters does this hidden layer have (including the bias parameters)?

- 9,000,001
- 9,000,100
- 27,000,001
- 27,000,100

The basics of ConvNets

测验,	10	个问题
//\J J/		1 1 2 7

point

3。

Suppose your input is a 300 by 300 color (RGB) image, and you use a convolutional layer with 100 filters that are each 5x5. How many parameters does this hidden layer have (including the bias parameters)?

	2501
--	------

()	2600

1 point

4。

You have an input volume that is 63x63x16, and convolve it with 32 filters that are each 7x7, using a stride of 2 and no padding. What is the output volume?

()	161	16x32
\ /	IOX	IOXろ∠

29x29x16

29x29x32

16x16x16

1 point

5。

You have an input volume that is 15x15x8, and pad it using "pad=2." What is the dimension of the resulting volume (after padding)?

	9x19x1	2
--	--------	---

1 point 8。

Because pooling layers do not have parameters, they do not The basics of the propagation (derivatives) calculation.

1110 0 0 0 1 0 0	anect	ne backpropagation (derivatives) calculation.
测验, 10 个问题	\bigcirc	True
		False
	1 point	
	0	
	using c statem	re we talked about "parameter sharing" as a benefit of onvolutional networks. Which of the following ents about parameter sharing in ConvNets are true? all that apply.)
		It allows gradient descent to set many of the parameters to zero, thus making the connections sparse.
	\checkmark	It reduces the total number of parameters, thus reducing overfitting.
	\checkmark	It allows a feature detector to be used in multiple locations throughout the whole input image/input volume.
		It allows parameters learned for one task to be shared even for a different task (transfer learning).
	1 point	
	10 _o	
	In lectu	re we talked about "sparsity of connections" as a of using convolutional layers. What does this mean?
		Regularization causes gradient descent to set many of the parameters to zero.
	\bigcirc	Each layer in a convolutional network is connected only to two other layers

The basics	of Con	Each activation in the next layer depends on only a small number of activations from the previous layer. ${ m nvNets}$	
测验, 10 个问题		Each filter is connected to every channel in the previous layer.	
	<u> </u>	我(伟臣 沈)了解提交不是我自己完成的作业 将永远不会 通过此课程或导致我的 Coursera 帐号被关闭。 了解荣誉准则的更多信息	
		Submit Quiz	
	-		

