Region Segmentation

Computer Vision (CS0029)

Region Segmentation

- Segment image into set of regions occupied by objects
 - Then perform region shape analysis/recognition
- Group those pixels that are similar in some properties
 - Intensity, color, texture, motion, etc.
- Topic
 - Background subtraction
 - Morphology
 - Region growing

Simple Segmentation

- If object pixels in grayscale image have a higher/lower intensity than background pixel
 - Thresholding image yields binary image
 - E.g. object:1, background 0

Original image I

$$B[x, y] = \begin{cases} 1 & \text{if } I[x, y] > T \\ 0 & \text{otherwise} \end{cases}$$

Binary image B

Thresholds and Histograms

Distribution of graylevels can be used to determine binary threshold

- Histogram graphs number of pixel in the image with a particular graylevel, as a function of the possible graylevels
 - Find peaks and set threshold between peaks
 - Idea: the threshold is chosen such that the division in the histogram yields the largest reduction in standard deviation of the pixel intensities

Background Subtraction I

- If object is not uniformly brighter or darker than the background?
- Get the background image
- Subtract object image from background image
 - Difference highlights the object
 - Use abs or square of difference

Background Subtraction II

- How to choose the threshold?
 - Want the difference to be above noise level in images
- Obtain sequence of background images
 - Compute intensity mean(μ) and standard deviation(σ) for each pixel (across/through the background images)
- Check statistical distance (#stdev) of object pixels from background image

Background Subtraction III

- Color image?
 - $\sqrt{(I_R[x,y]-R_R[x,y])^2+(I_G[x,y]-R_G[x,y])^2+(I_B[x,y]-R_B[x,y])^2} > T$
 - Euclidean distance in 3D (RGB space)

•
$$\frac{(I_c[x,y] - \mu_c[x,y])^2}{\sigma_c^2[x,y]} > T_c^2$$

AND/OR result for each color channel

Better Model

Use the "covariance" of color information

RGB vector:
$$C_{x,y} = \begin{bmatrix} I_R[x,y], I_G[x,y], I_B[x,y] \end{bmatrix}^T$$

Background Mean vector: $M_{x,y} = \frac{1}{N} \sum_i C_{x,y}^i$
Covariance $K_{x,y} = \frac{1}{N} \sum_i (C_{x,y}^i - M_{x,y})(C_{x,y}^i - M_{x,y})^T$
matrix:

$$B[x,y] = \begin{cases} 1 & \text{if } [C_{x,y} - M_{x,y}]^T K_{x,y}^{-1} [C_{x,y} - M_{x,y}] > T^2 \\ 0 & \text{otherwise} \end{cases}$$
Multi-dimensional Mahalanobis Distance

Shadows

- May not want to select shadows in image as part of the object
 - Shadows due to change (lower) in intensity
 - But, still same chromaticity
- Normalize brightness of RGB space

•
$$R^n = \frac{R}{R+G+B}$$
 $G^n = \frac{G}{R+G+B}$ $B^n = \frac{B}{R+G+B}$

$$G^n = \frac{G}{R + G + B}$$

$$B^n = \frac{B}{R + G + B}$$

- Or convert RGB to YUV, HSV, or YIQ
 - Intensity and chrominance are decoupled
 - Perform previous method using chrominance channels

YUV Space

- Y: brightness
- U: Chrominance
- V: Chroma
- YUV color space
 - Decouples intensity and color
 - Y component provides all monochrome/intensity information
 - U and V components carry the color information

$$egin{array}{ll} Y &= 0.299*R + 0.587*G + 0.114*B \ U &= -0.169*R - 0.331*G + 0.5*B + 128 \ V &= 0.5*R - 0.419*G - 0.081*B + 128 \ \end{array}$$

$$egin{array}{ll} R &= Y + 1.13983*(V - 128) \ G &= Y - 0.39465*(U - 128) - 0.58060*(V - 128) \ B &= Y + 2.03211*(U - 128) \end{array}$$

*https://zh.wikipedia.org/wiki/YUV

HSV Space

Hue, saturation and lightness

Color conversion equation: https://en.wikipedia.org/wiki/HSL_and_HSV#To_RGB

Blue/Green Screening

- A subject is photographed in front of a evenly bright and pure blue/green background
- The compositing process, whether photographic or electronic, replaces all the blue/green in the picture with another image, known as the background plate

Why Green?

- Choose the color is rarely in the foreground
- Why not red, orange or yellow?
 - Human skin color is in between yellow and orange
- Video cameras most sensitive to green channel
 - Green channel is cleanest channel in most digital cameras today
 - Bayer Pattern filtering

 Pixel array records twice as many green pixel as red or blue (recording resolution is double)

Color filter array

Photosities with color filter

Multi-Model Background Modeling

- Static single distribution background models often too simplistic for long duration videos
- Have to consider for dynamic factors
 - Illumination changes
 - Moving scene elements
 - Objects that are stationary for significant durations
- Need to adapt overtime
- Use temporally adaptive Gaussian Mixture Model (GMM) for each pixel

SportVision: First-Down Line in American Football https://www.youtube.com/watch?v=10qm6eO6deU

Binary Image Morphology

- Useful once extract binary regions
 - E.g., from background subtraction
- Basic operations of binary morphology
 - Dilation
 - Erosion
 - Closing
 - Opening
- Binary image B
- Structuring element S
 - Smaller binary image or mask

Dilation

- Dilation operation enlarges a binary region
- Convolve S throughout B
 - If center of S touches binary 1-pixel in B, then S is OR-ed with region in B and place into output image

Erosion

- Erosion operation decreases size of binary region
- Convolve S throughout B
 - If every 1-pixel of S touches a binary 1-pixel in B, then center pixel of S is OR-ed with corresponding pixel in B and place into output image

Closing

- Closing operation closes up internal holes and eliminates bayes along boundary
- Perform dilation, then erosion

Opening

- Opening operation gets rid of small portions of the binary region that jut out from boundary into background region
- Perform erosion, then dilation

Dilation? Erosion?

Dilation? Erosion?

Raw Binary Image

Dilation? Erosion?

Dilation? Erosion?

Counting Objects

- So far, no notion of a distinct/separate object region
 - No selection of a region of pixels
- Segment binary image (after morphology)
 - Region growing
 - Connected components

Sequential Connected Components

- Steps (2 passes)
 - Scan binary image left-to-right, top-to-bottom
 - If unlabeled 1-pixel encountered, assign new label number according to rules

- Determine equivalent classes of labels
- In second pass, assign same label to all elements in equivalent class

Example

Binary image

1	1		1	1	1		1
1	1		1		1		1
1	1	1	1				1
							1
1	1	1	1		1		1
			1		1		1
1	1		1				1
1	1		1		1	1	1

After Pass 1

1	1		2	2	2		3
1	1		2		2		3
1	1	1	1				3
			_				3
4	4	4	4		5		3
			4		5		3
6	6		4				3
6	6		4		7	7	3
			I				

After Pass 2

1	1		1	1	1		3
1	1		1		1		3
1	1	1	1)			3
		/					3
4	4	4	4		5		3
			4		5		3
6	6		4				3
6	6		4		3	3	3

Equivalence classes:

(1,2)

(3,7)