Outlier Detection

Contents of this Chapter

Introduction

Extreme value analysis [Aggarwal section 8.3]

Probabilistic methods [section 8.3]

Clustering-based methods [section 8.4]

Distance-based methods [section 8.5]

Density-based methods [section 8.6]

Overview

"An outlier is an observation which deviates so much from the other observations as to arouse suspicions that it was generated by a different mechanism." (Hawkins)

- Clustering discovers groups of similar objects. Outlier detection seeks individual objects that are different from all clusters.
- Most outlier detection methods create a model of normal patterns. Outliers are the objects that do not fit within this normal model.
- Objects get assigned an outlier score: the higher, the more likely the object is an outlier.
- Outlier detection is unsupervised, i.e. we have no examples of outliers.

Overview

Outliers are also referred to as anomalies, abnormalities, discordants, deviants.

Applications of outlier detection

- Data cleaning remove outliers.
- Fraud detection abnormal behavior may indicate fraud.
- Network intrusion detection abnormal traffic may indicate intrusion.

Introduction Overview

- If examples of outliers are available, can formulate the problem as a classification task.
- •Supervised classification tends to be more accurate than unsupervised outlier detection, but it cannot adjust so well to changing patterns of normal data and outliers.
- •Two alternative tasks of outlier detection:
 - (1) Detect all outliers convert outlier score into a Boolean decision.
 - (2) Rank objects in decreasing order of their outlier score typically, only interested in top k outlier scores.

Types of Outliers

- Point outliers
- Contextual outliers
- Collective outliers

→ Most methods detect point outliers.

Point Outliers

Point outlier

An individual object that deviates significantly from the rest of the

data set.

Contextual Outliers

Contextual outlier

An individual object that deviates significantly from its context within the data set.

Collective Outliers

Collective outliers

A set of related objects that deviates significantly from the data set.

Extreme Value Analysis

Method

• Assume that all data has been generated from a probability distribution of known type, e.g. Gaussian distribution:

$$P(x) = \frac{1}{\sqrt{(2\pi)^d \mid \sum \mid}} e^{\frac{1}{2} \cdot (x - \mu)^T \cdot (\sum)^{-1} \cdot (x - \mu)}$$

- Parameters of the distribution known from domain knowledge or estimated from data.
- Outlier: object within tail of probability distribution.
- → Data may not follow the assumed distribution!

Extreme Value Analysis

Method

• Z-number as outlier score

$$z = \frac{x - \mu}{\sigma}$$

•If the absolute value of the Z – number is greater than 3, the object is considered as an extreme value (outlier).

Extreme Value Analysis

Histogram-based Method

- Non-parametric, i.e. does not assume a given probability distribution.
- Outlier: object that has less than t% other objects with more extreme values.

→ Hard to choose an appropriate bin size for histogram.

Probabilistic Outlier Detection

Method

- Generalizes Extreme Value Analysis.
- Assume that data has been generated from a mixture of multiple probability distributions.

$$P(x) = \sum_{i=1}^{k} P(C_i) \cdot P(x \mid C_i)$$

- Often, assume a mixture of k Gaussians.
- Outliers are defined as those objects that are highly unlikely to be generated by this model.

316

Clustering-based Outlier Detection

Method

- Assumption
 - Normal objects belong to large clusters, while outliers do not belong to any of the clusters or form very small clusters.
- Density-based clustering
 Outliers are not included in any cluster.
 outlier score: (depends on) density in neighborhood
- Distance-based clustering
 - Outliers are objects with largest distances from cluster representative.
 - outlier score: distance from nearest cluster representative
- → Result depends on chosen clustering algorithm.

Introduction

- Outliers data are far away from the "crowded regions".
- Approach 1

Count percentage of objects within given distance r, the fewer objects, the higher the outlier score.

•Approach 2 Compute distance to *k*th-nearest neighbor, the higher the distance, the higher the outlier score.

Methods

• Definition 1: o is distance-based outlier

$$\frac{\|\{\boldsymbol{o}'|dist(\boldsymbol{o},\boldsymbol{o}')\leq r\}\|}{\|D\|}\leq \pi,$$

Definition 2: o is distance-based outlier

$$knn_dist(o) \ge \omega$$

knn_dist(*o*) is the distance from *o* to its *k*th-nearest neigbor.

 \rightarrow There can be multiple objects that have $knn_dist(o)$ from o.

Challenges

- How to set the parameters of the method?
 Results depend on proper parameter setting.
- How to efficiently retrieve the neighborhood of an object? Without suitable index support, complexity is O(n).
- How to efficiently score only the top outliers? Reduce the time required for the *k*-nearest neighbor distance computations by ruling out objects quickly that are obviously non-outliers (even with approximate computation).

Challenges

• How to deal with locally different densities?

The nearest neighbor distance of many objects in the sparser cluster C_1 is at least as large as the nearest neighbor distance of outlier p_2 .

Local Outlier Factor

- •Relevant distance of objects should be computed in a normalized way, relative to its local distance distribution.
- Inspiration from OPTICS algorithm.
- Reachability distance of object p relative to object o

$$R_k(p,o) = \max\{dist(p,o),knn_dist(o)\}$$

- •If o is in dense region and the distance between o and p is large, the reachability distance of p to o is the actual distance.
- •If the distance between p and o is small, then the reachability distance is "smoothed out" by the k-nearest neighbor distance of o.

Local Outlier Factor

• Average reachability distance of object *p* to its neighboring objects

objects
$$\sum_{o \in L_k(p)} R_k(p, o) / L_k(p)$$

where $L_k(p)$ contains all objects within kNN distance from p

• Local Outlier Factor: mean ratio of $AR_k(p)$ and $AR_k(o)$ for o in the neigborhood of p.

$$LOF_k(p) = \frac{\sum_{o \in L_k(p)} AR_k(p) / AR_k(o)}{|L_k(p)|}$$

Local Outlier Factor

- LOF values for the objects in a cluster are often close to 1 when the cluster objects are homogeneously distributed.
- LOF values of outliers will be much higher, the more the density of the object deviates from its neigborhood.
- How to determine the parameter k?
 k too small: not robust enough
 k too large: not local enough
- If some outlier p is known, choose k that maximizes value of LOFk (p).
- → LOF detects contextual outliers

Kernel Density Estimation

- Non-parametric method, i.e. makes no assumption on the data distribution.
- Estimate the density in a neigborhood by the mean influence of all objects x_i on that neigborhood.
- Influence measured by kernel function K_h .
- Density at a given point in the data space is estimated as the sum of the smoothed values of kernel functions:

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} K_h(x - x_i)$$

Kernel Density Estimation

- Kernel functions define the relevant neigborhood of a point in data space.
- For most smooth kernel functions, with increasing data set size, the estimate converges to the true density.
- Gaussian kernel

$$K_h(x - x_i) = \left(\frac{1}{\sqrt{2\pi} \cdot h}\right)^d e^{-\|x - x_i\|^2 / (2h^2)}$$

• Which kernel function? Which kernel width *h*?

Kernel Density Estimation

- The density at each object is computed without including the object itself.
- Outlier score: (depends on) the density estimate.
- Low values of the density indicate greater tendency to be an outlier.

Discussion

- Kernel density estimation does not require data to follow a known distribution.
- Is usually robust to the choice of the kernel width h.
- Does not work well for high-dimensional data accuracy of the density estimation degrades with increasing dimensionality.
- Does not work well if local density varies greatly kernel width is global.