Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Алтайский государственный технический университет им. И. И. Ползунова»

Факультет информал Кафедра приклад

Факультет информационных технологии Кафедра прикладной математики	
	Отчет защищен с оценкой
	Преподаватель (подпись) 2022 г.
Отчет	
по лабораторной работе № 7	
"Вычисление интегралов методом Монте-Карло"	
по дисциплине «Вычислительные алгоритмы»	
	Шинтяпин И.И.

Студенты гр. ПИ-92

Шульпов В.М.

Преподаватель, к.т.н.

Проскурин А.В.

Вычисление интегралов методом Монте-Карло

- 1. Вычислите определенный интеграл функции f(x) на отрезке [a,b] методом Симпсона и Монте-Карло.
- 2. Отобразите графически точки испытаний методом Монте-Карло.
- 3. Исследуйте зависимость точности от количества испытаний.
- 4. Задайте на плоскости произвольную фигуру. Найдите ее центр тяжести методом Монте-Карло, предполагая плотность равномерной.

Алгоритм

$$\int\limits_{x_{i-1}}^{x_i}f(x)\,dxpprox\int\limits_{x_{i-1}}^{x_i}L_{2,i}(x)\,dx=rac{h}{6}ig(f(x_{i-1})+4f(x_{i-1/2})+f(x_i)ig).$$
 Метод Симпсона Формула

Симпсона:

$$\int\limits_a^b f(x)\,dx pprox \sum\limits_{i=1}^n \int\limits_{x_{i-1}}^{x_i} f(x)\,dx$$

Метод Монте-Карло

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{N} \sum_{i=1}^{N} f(u_i)$$

N — количество испытаний, u — очередное случайное число принадлежащее отрезку [a,b] Поиск центра тяжести прямоугольного треугольника

Координаты центра тяжести находятся по таким формулам:

$$x_0 = \frac{\iint\limits_{D} x dx dy}{\iint\limits_{D} dx dy}, \quad y_0 = \frac{\iint\limits_{D} y dx dy}{\iint\limits_{D} dx dy}$$

Кратные интегралы находятся по формуле:

$$Ipprox Jrac{1}{n}\sum_{i=1}^{n}{}'F(\eta_i).$$

$$\sum_{i=1}^{n} {'F(\eta_i)}.$$

n – количество испытаний, ni – случайная точка принадлежащая параллелепипедусодержащему треугольник.

В эту сумму входят только те пі которые принадлежат области фигуры.

Тесты:

 $y=x*e^{(-x)}$

интегрирование от 0 до 2

50 точек

y = -x * x + 4

интегрирование от -2 до 2

 $Y=x^3$

Интегрирование от 0 до 4

50 точек

В методе Монте-Карло при увеличении числа точек, увеличивается точность вычисления интеграла. При маленьком количестве точек, мы можем получить весьма неверный результат, так как точки выбираются случайным образом.

Нахождение центра тяжести у фигуры (треугольника)

Код:

main.py

```
from integral import Integral
from monte_carlo import MonteCarlo
from simpson import Simpson
from drawer import show_graphics_for_monte_carlo, show_figure_for_finding_gravity_center
from figure_gravity_center import Figure
def main():
  n = 50 # количество точек
  integral = Integral() # создаем интеграл (подынтегральная функция, пределы присваиваются в классе)
  mc = MonteCarlo(integral, n) # создаем объект, вычисляющий интеграл методом Монте-Карло
  mc.get_integral_by_monte_carlo() # вычисляем интеграл
  print(mc.x_list)
  print(mc.y list)
  print(mc.random_y_list)
  print(f'\nMETOД MOHTE-КАРЛО')
  print(f'точек выше {mc.over_points_num}; точек ниже {mc.under_points_num}')
  print(f'часть, занимаемая графиком {mc.proportion}')
  print(f'площадь прямоугольника {mc.square_area}')
  print(f'интеграл (площадь фигуры под графиком) {mc.integral_value}')
  s = Simpson(integral, n, mc.x_list, mc.y_list)# создаем объект, вычисляющий интеграл методом Симпсона
  s.get_integral_by_simpson() # вычисляем интеграл
  print(f'\nMETOД СИМПСОНА')
  print(f'интеграл {s.integral_value}')
  graphic = {'x': mc.x_list, 'y': mc.y_list}
  under_points = {'x': mc.under_graphic_x_list, 'y': mc.under_graphic_y_list}
  over_points = { 'x': mc.over_graphic_x_list, 'y': mc.over_graphic_y_list}
  show_graphics_for_monte_carlo(graphic, under_points, over_points)
  figure = Figure()
  figure.find_gravity_center()
  print(f'\nHAXOДИМ ЦЕНТР ТЯЖЕСТИ У ФИГУРЫ (У ТРЕУГОЛЬНИКА)')
  print(f'центр тяжести фигуры {figure.gravity_center}')
  show_figure_for_finding_gravity_center({'x': figure.x_list, 'y': figure.y_list}, figure.gravity_center)
if __name__ == '__main__':
  main()
integral.py
from math import e, pow, sin, pi
class Integral:
  def init (self):
    self.lower limit = 0 # нижний предел интегрирования
    self.upper_limit = 4 # верхний предел интегрирования
    self.integrand = lambda x: pow(x, 3) #-x*x+4 #x*pow(e, -x) # подынтегральная функция
```

from random import uniform

```
class MonteCarlo:
  """ метод Монте-Карло """
  def __init__(self, integral, n):
    self.integral = integral # пределы интегрирования и подыинтегральная функция
    self.n = n \# количество точек
    self.x_list = [] # cnucok x-oe
    self.y_list = [] # cnucok y-ob
    self.min y = None # минимальный у из списка у list
    self.max y = None # максимальный у из списка у list
    self.under graphic x list = [] # координаты x точек находящихся ниже графика
    self.under graphic v list = [] # координаты v точек находящихся ниже графика
    self.over_graphic_x_list = [] # координаты x точек находящихся выше графика
    self.over_graphic_y_list = [] # координаты у точек находящихся выше графика
    self.under_points_num = 0 \# \kappaол-во точек, которые ниже графика
    self.over points num = 0 \# кол-во точек, которые выше графика
    self.square_area = 0 \# nлощадь nрямоугольника
    self.proportion = 0 # часть графика, которую он занимает в прямоугольнике
    self.integral_value = 0 \# nлощадь под графиком (значение интеграла)
  def get_integral_by_monte_carlo(self):
     """ вычисление определнного интеграла методом Монте-Карло на отрезке """
    self.__generate_n_x()
    self.__calculate_n_y()
    self.__find_min_max_y()
    self.__generate_n_y()
    self. get under over points()
    self. get square area()
    self. get integral value()
  def __generate_n_x(self):
     """ генерация координат х для п точек в интервале om lower limit до upper limit"""
    self.x list = [uniform(self.integral.lower limit, self.integral.upper limit) for in range(0, self.n)]
    self.x_list.sort()
  def __calculate_n_y(self):
     """ подсчет координат y=f(x) для п точек, где f(x) - подынтегральная функция """
    self.y list = [self.integral.integrand(x)  for x in self.x list]
  def __find_min_max_y(self):
       " нахождение минимального и максимального у в списке у list """
    self.min_y = min(self.y_list)
    self.max_y = max(self.y_list)
  def generate n y(self):
    """ генерация координат у для n точек в интервале от min у до max у"""
    self.random y list = [uniform(self.min y, self.max y) for in self.x list]
  def __get_under_over_points(self):
     """ нахождение точек, которые расположены под графиком """
    for rand y, y, x in zip(self.random y list, self.y list, self.x list):
       if rand_y < y:
         self.under_graphic_x_list.append(x)
         self.under_graphic_y_list.append(rand_y)
         self.under_points_num += 1
       else:
         self.over_graphic_x_list.append(x)
         self.over_graphic_y_list.append(rand_y)
         self.over points num += 1
```

```
def get square area(self):
     """ подсчет площади прямоугольника, в котором мы генерируем точки """
    x = abs(self.integral.lower limit) + abs(self.integral.upper limit)
    y = abs(self.min_y) + (self.max_y)
    self.square\_area = x * y
  def __get_integral_value(self):
     """ получение значения интеграла (площади под графиком) """
    self.proportion = self.under_points_num / (self.under_points_num + self.over_points_num)
    self.integral_value = self.square_area * self.proportion
simpson.py
class Simpson:
  """ метод Симпсона """
  def init (self, integral, n, x list, y list):
    self.func = integral.integrand # подыинтегральная функция
    self.min x = integral.lower limit
    self.max_x = integral.upper_limit # пределы интегрирования
    self.n = n \# количество точек
    self.x_list = x_list
    self.y_list = y_list
    self.integral\_value = 0
  def get_integral_by_simpson(self):
     """ вычисление определнного интеграла методом Симпсона на отрезке """
    h = (self.max_x - self.min_x) / self.n # waz
    _sum = self.func(self.min_x) + self.func(self.max_x)
    k = 0
    for i in range(1, self.n):
       k = 2 + 2 * (i \% 2)
       sum += k * self.func(self.min x + i * h)
     _{sum} *= h/3
    self.integral value = sum
figure_gravity_center.py
from random import uniform
class Figure:
  """ фигура, у которой находим центр тяжести """
  def __init__(self):
    # треугольник
    self.x_list = [0, 0, 6, 0]
    self.y_list = [0, 5, 0, 0]
    self.max_x = max(self.x_list)
    self.min_x = min(self.x_list)
    self.max y = max(self.y list)
    self.min_y = min(self.y_list)
    self.tries num = 100000 # кол-во испытаний
    self.gravity\_center = \{'x': 0, 'y': 0\}
  def find_gravity_center(self):
     """ нахождение центра тяжести """
    upx = upy = dow = 0 # upx - числитель в формуле поиска x центра тяжести, upy - то же самое, но для y,
    # dow - знаменатель для обеих формул
    for i in range(0, self.tries_num):
       x = uniform(self.min_x, self.max_x)
       y = uniform(self.min_y, self.max_y)
```

```
# проверка того, входит ли очередная точка в область фигуры if self.min_y < y < -x * (5/6) + 5:
    upx += x
    upy += y
    dow += 1
self.gravity_center['x'] = upx/dow
self.gravity_center['y'] = upy/dow
```

drawer.py

import matplotlib.pyplot as plt

```
def show_graphics_for_monte_carlo(graphic, under_points, over_points):
  """ графическое отображение испытаний методом Монте-Карло """
  fig, ax = plt.subplots()
  ax.plot(graphic['x'], graphic['y'], color='black')
  plt.scatter(over_points['x'], over_points['y'], color='red', s=10)
  plt.scatter(under_points['x'], under_points['y'], color='green', s=10)
  ax.set(xlabel='x', ylabel='f(x)',
      title='Испытания методом Монте-Карло')
  ax.grid()
  fig.savefig("test.png")
  plt.show()
def show_figure_for_finding_gravity_center(figure, gr_center_point):
  """ графическое отображение фигуры и ее центра тяжести """
  fig, ax = plt.subplots()
  ax.plot(figure['x'], figure['y'], color='black')
  plt.scatter(gr_center_point['x'], gr_center_point['y'], color='red', s=30)
  ax.set(xlabel='x', ylabel='f(x)',
      title='Нахождение центра тяжести')
  ax.grid()
  fig.savefig("test2.png")
  plt.show()
```

Вывод: как видно из тестов, метод Симпсона использовать явно предпочтительней, так как он сходится по времени при увеличении числа процессов так же, как и методы Монте-Карло, при этом точность вычисления остается выше и увеличивается стабильно. Для методов Монте-Карло такого эффекта не наблюдается, поэтому их разумно использовать только для быстрой оценки значения интеграла в особых случаях.