

# 영상 분할

미디어기술콘텐츠학과 강호철

## **Computer Vision Task**

#### Classification



CAT

No spatial extent

#### Semantic Segmentation



TREE, SKY

No objects, just pixels

# Object Detection



DOG, DOG, CAT

# Instance Segmentation



DOG, DOG, CAT

Multiple Object

This image is CC0 public doma







Deep learning is necessary



## Semantic Segmentation

Label each pixel in the image with a category label

Don't differentiate instances, only care about pixels













- ■개념
  - 입력 영상에서 픽셀 단위로 배경 및 객체를 구하는 작업
  - 영상의 밝기 값, 컬러, 텍스쳐, gradient 등 정보를 이용

#### ■ 방법

- Thresholding
- Region growing
- Watershed
- Meanshift
- Active contour model
- K-Means clustering
- •



Objected Image



Segmented Image





Objected Image



Segmented Image



Image



Segmentation



Region Merging







#### Edge-based method

- Edge detectors
- Classical / geodesic active contours
- Active shape models

#### Region-based method

- Region growing
- Active contour models without edge
- Statistical/clustering techniques
- MRF-based techniques
- Active appearance models

#### Hybrid method

- Other active contour models
- Graph-based techniques
- Level set methods



- Connected threshold
  - Evaluate intensity value inside a specific interval I(X) ∈ [lower, upper]





Results for various interval









- Otsu threshold
  - Minimize the error of misclassification
  - Find a threshold that classifies the image into two clusters
  - Minimize the within class variance
  - Maximize the between class variance
  - The weighted within class variance

$$\sigma_w^2(t) = q_1(t)\sigma_1^2(t) + q_2(t)\sigma_2^2(t)$$

The class probabilities

$$q_1(t) = \sum_{i=1}^{t} P(i)$$
  $q_2(t) = \sum_{i=t+1}^{l} P(i)$ 



- Otsu threshold
  - Class means

$$\mu_1(t) = \sum_{i=1}^{t} \frac{iP(i)}{q_1(t)}$$
 $\mu_2(t) = \sum_{i=t+1}^{I} \frac{iP(i)}{q_2(t)}$ 

Individual class variances

$$\sigma_1^2(t) = \sum_{i=1}^t [i - \mu_1(t)]^2 \frac{P(i)}{q_1(t)} \qquad \sigma_2^2(t) = \sum_{i=t+1}^I [i - \mu_2(t)]^2 \frac{P(i)}{q_2(t)}$$

$$\sigma_2^2(t) = \sum_{i=t+1}^{I} [i - \mu_2(t)]^2 \frac{P(i)}{q_2(t)}$$

■ Minimize  $\sigma_w^2(t)$ 



- Otsu threshold
  - Class means

$$\mu_1(t) = \sum_{i=1}^{t} \frac{iP(i)}{q_1(t)}$$
 $\mu_2(t) = \sum_{i=t+1}^{t} \frac{iP(i)}{q_2(t)}$ 



Individual class variances

$$\sigma_1^2(t) = \sum_{i=1}^t [i - \mu_1(t)]^2 \frac{P(i)}{q_1(t)}$$

$$\sigma_1^2(t) = \sum_{i=1}^t [i - \mu_1(t)]^2 \frac{P(i)}{q_1(t)} \qquad \sigma_2^2(t) = \sum_{i=t+1}^I [i - \mu_2(t)]^2 \frac{P(i)}{q_2(t)}$$

■ Minimize  $\sigma_w^2(t)$ 





Original image

Result image

- Otsu threshold
  - Apply to Dental CT





- Iterative Otsu threshold
  - Apply to Dental CT











## Thresholding for Color Image

- 색상 범위 지정에 의한 영역 분할
  - RGB → HSV
  - cv2.inRange(src, lowerb, upperb[,dst])

$$dst(x,y) =$$
 
$$\begin{cases} 255 & lowerb(x,y) \le src(x,y) \le upperb(x,y) \% \\ 0 & 그 외 \end{cases}$$

■ 손 얼굴 등 피부 검출 분할에 유용함





출처: https://wjddyd66.github.io/opencv/OpenCV(6)/#%EC%BB%AC%EB%9F%AC-%EB%B2%94%EC%9C%84%EC%97%90-%EC%9D%98%ED%95%9C-%EC%98%81%EC%97%AD-%EB%B6%84%ED%95%A0



- Seed Region Growing
  - Algorithm
    - T: the set of all pixels which are on the borders of the regions

$$T = \left\{ x \notin \bigcup_{i=1}^{n} A_i \mid N(x) \cap \bigcup_{i=1}^{n} A_i \neq 0 \right\}$$

■ Distance: the measure which says how far the intensity of the regard  $\sigma_w^2(t)$  is from the intensity mean value of those regions

$$\delta(x) = g(x) - mean_{y \in A_i(x)} [g(y)]$$

Its minimal distance form the neighboring regions as :

$$\delta\left(z\right) = \min_{x \in T} \left\{\delta\left(x\right)\right\}$$



#### Seed Region Growing

#### Example

- Start with a single pixel (seed) and add new pixels slowly
- (1) Choose the seed pixel
- (2) Check the neighboring pixels and add them to the region if they are similar to the seed
- (3) Repeat step 2 for each of the newly added pixels; stop if no more pixels can be added.

Seed point

| 10 | 11  | 10 | 9  | П  |  |
|----|-----|----|----|----|--|
| 18 | 20  | 19 | 18 | 12 |  |
| 14 | 15  | 15 | 19 | 13 |  |
| 2  | 2   | I  | 14 | 14 |  |
| ı  | 3   | 2  | 10 | 16 |  |
| 2  | 2 2 |    | 11 | 18 |  |
| 3  | ı   | 2  | 12 | 19 |  |



- Seed Region Growing
  - Example
    - Add pixels whose distance is smaller than threshold
    - Add pixels whose mean of region is smaller than threshold

| 10             | П        | 10         | 9  | 11 |  |
|----------------|----------|------------|----|----|--|
| 18             | 20       | 19         | 18 | 12 |  |
| 14             | 15       | 15         | 19 | 13 |  |
| 2              | 7        | I          | 14 | 14 |  |
| I <del>←</del> | -(3)-    | <b>→</b> 2 | 10 | 16 |  |
| 2              | <u>¥</u> | I          | 11 | 18 |  |
| 3              | I        | 2          | 12 | 19 |  |



| 10 | Ш  | 10 | 9  | 11 |  |
|----|----|----|----|----|--|
| 18 | 20 | 19 | 18 | 12 |  |
| 14 | 15 | 15 | 19 | 13 |  |
| 2  | 2  | ı  | 14 | 14 |  |
| 1  | 3  | 2  | 10 | 16 |  |
| 2  | 2  | I  | 11 | 18 |  |
| 3  | ı  | 2  | 12 | 19 |  |



- Seed Region Growing
  - Apply to Dental CT





- Seed Region Growing
  - cv2.floodFill
    - (image, mask, seedPoint, newVal[, loDiff[, upDiff[, flags]]])

#### parameter

- image: Input
- seedPoint: starting Point
- newVal: 안을 채울 새로운 Pixel 값
- IoDiff: 현재 Pixel과의 차이의 최소값
- upDiff: 현재 Pixel과의 차이의 최대값

#### return

- mask: 지정한 조건으로 이미지를 채운값
- rect: mask의 바운딩 사각형
- seed point로 부터 픽셀 채우기

$$src(x', y') - loDiff \le src(x, y) \le src(x', y') + upDiff$$



### In Topography

- The area of land where all of the water that is under it of drains off of it goes into the same place.



#### In Image









The sequence of Watershed Segmentation



#### Advantage

- Fast, Simple, Intuitive
- Produce a complete division of the image in separated regions
- Able to use when the contrast is poor
- Provide closed contours

### Disadvantage

- Sensitivity to noise
- Oversegmentation



#### Advantage

- Fast, Simple, Intuitive
- Produce a complete division of the image in separated regions
- Able to use when the contrast is poor
- Provide closed contours

### Disadvantage

- Sensitivity to noise
  - → need to pre-processing (Noise reduction)
- Oversegmentation
  - → need to post-processing (Region merging)



- Immersion simulation
  - 영상을 gray scale로 변환
    - 각 픽셀의 밝기 값을 높고 낮음으로 구 분할 수 있음
  - 지형의 높낮이로 가정하여 높은 부분을 봉우리, 낮은 부분을 계곡으로 표현
  - 지형 간 섞이지 않도록 댐을 세움
  - cv2.watershed(images, markers)





### **Rain Simulation**



Fig. 9. From left to right, top to down (a, b, c, d): (a) Original image, (b) detection of minima and steepest descending paths carried out in step 1 of the algorithm, (c) output matrix after step 1, (d) output matrix after step 2.



■ Immersion sim. vs. Rain sim.

| 10 | 10 | 12 | 14 | 20 | 20 | 15 | 13 | 11 | 11 |
|----|----|----|----|----|----|----|----|----|----|
| 10 | 10 | 12 | 14 | 20 | 20 | 15 | 13 | 11 | 11 |
| 12 | 12 | 12 | 14 | 20 | 20 | 15 | 13 | 13 | 13 |
| 14 | 14 | 14 | 14 | 20 | 20 | 15 | 15 | 15 | 15 |
| 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
| 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
| 18 | 18 | 18 | 18 | 20 | 20 | 19 | 19 | 19 | 19 |
| 17 | 17 | 17 | 18 | 20 | 20 | 19 | 18 | 18 | 18 |
| 15 | 15 | 17 | 18 | 20 | 20 | 19 | 18 | 17 | 17 |
| 15 | 15 | 17 | 18 | 20 | 20 | 19 | 18 | 17 | 17 |

| 10 | 10 | 12 | 14 | 20 | 20 | 15 | 13 | 11 | 11 |
|----|----|----|----|----|----|----|----|----|----|
| 10 | 10 | 12 | 14 | 20 | 20 | 15 | 13 | 11 | 11 |
| 12 | 12 | 12 | 14 | 20 | 20 | 15 | 13 | 13 | 13 |
| 14 | 14 | 14 | 14 | 20 | 20 | 15 | 15 | 15 | 15 |
| 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
| 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
| 18 | 18 | 18 | 18 | 20 | 20 | 19 | 19 | 19 | 19 |
| 17 | 17 | 17 | 18 | 20 | 20 | 19 | 18 | 18 | 18 |
| 15 | 15 | 17 | 18 | 20 | 20 | 19 | 18 | 17 | 17 |
| 15 | 15 | 17 | 18 | 20 | 20 | 19 | 18 | 17 | 17 |

Immersion Rainfall



## 피라미드 기반 분할

- 피라미드 영상
  - 원본 영상을 단계적으로 축소하여 피라미드 형성
    - 템플릿 매칭 시 스케일이 다른 경우 용이하게 사용
    - 물체 비교 및 매칭에 사용
  - 대표적으로 가우시안 피라미드 사용
    - cv2.pyrDown
    - cv2.pyrUp



출처: https://en.wikipedia.org/wiki/Pyramid\_(image\_processing)



## 피라미드 기반 분할

- MeanShift
  - 데이터 분포의 무게중심을 찾는 방법
    - 자신의 주변에서 가장 데이터가 밀집된 방향으로 이동
      - ROI 설정 (radius)
      - ROI에서 가장 밀도가 큰 곳을 찾고 중심으로 설정
      - 중심을 기존으로 ROI 다시 설정
      - 중심 위치의 변화가 없을 때 까지 위의 단계 반복
  - 영상 분할 뿐만 아니라 잡음 제거에도 사용
  - cv2.pyrMeanShiftFiltering
    - (src, sp, sr[, dst[, maxLevel[, termcrit]]])  $\rightarrow$  dst
      - src The source 8-bit, 3-channel image.
      - dst The destination image of the same format and the same size as the source.
      - sp The spatial window radius.
      - sr The color window radius.
      - maxLevel Maximum level of the pyramid for the segmentation.
      - termcrit Termination criteria: when to stop meanshift iterations.





## 피라미드 기반 분할

#### MeanShift



$$\begin{split} &(x,y): X - \mathtt{sp} \leq x \leq X + \mathtt{sp}, Y - \mathtt{sp} \leq y \leq Y + \mathtt{sp}, \| (R,G,B) - (r,g,b) \| \leq \mathtt{sr} \\ &(X,Y) \; (X',Y'), (R,G,B) \; (R',G',B'). \\ &I(X,Y) < -(R*,G*,B*) \end{split}$$



### **General Curve Evolution**

#### Curve Define

- Explicit
  - Representation one explicitly writes down the points that belong to the interface
  - $C = \{ Pi = (xi, yi), i = 1, 2, 3, ..., N \}$  or
  - C(s) = (x(s), y(s))



Curve (interface)



### **General Curve Evolution**

#### Curve Define

- Explicit
  - Representation one explicitly writes down the points that belong to the interface
  - $C = \{ Pi = (xi, yi), i = 1, 2, 3, ..., N \}$  or



- Explicit curve model
  - Kass et al, IJCV, 1987
  - Concept
    - Giving an image  $u_0: \Omega \to \Re$
    - Evolve a curve C to detect objects in u<sub>0</sub>





- Explicit curve model
  - Kass et al, IJCV, 1987
  - Concept
    - Giving an image  $u_0: \Omega \to \Re$
    - Evolve a curve C to detect objects in u<sub>0</sub>
  - Snake model
    - Energy function

$$E[(C)(p)] = \alpha \int_0^1 E_{int}(C(p)) dp \ + \ \beta \int_0^1 E_{img}(C(p)) dp \ + \ \gamma \int_0^1 E_{con}(C(p)) dp$$
 internal energy external energy



Explicit curve model





#### Result



Initial contour



Final contour





#### Pros.

- ▶ Low complexity, fast
- Can account for open as well as closed structures
- ▶ Flexible energy function
- ▶ Easy to implementation using Euler method

$$x(t + \Delta t) = x(t) + \Delta t \dot{x}(t)$$



#### Cons.

- Sensitive to the initial conditions
- ▶ Sensitive to noise
- Difficult to handle topology changing
- ▶ Difficult to segment a concave region









## Clustering

- 개념
  - 클래스 정보 없이 입력 데이터가 비슷한 것끼리 클래스로 나누는 작업
- 2차원 입력 데이터
  - 입력 데이터 X 사용
  - 클래스 데이터 T는 사용하지 않음





## Clustering

- 특성
  - 주관적인 판단에 따라 결과가 달라짐
    - 클러스터링 결과의 품질은 응용이 처한 상황과 요구사항에 따라 다름



(a) 샘플 집합

(b) 세 가지 군집화 결과를 어떻게 평가할까?



#### ■ 알고리즘

#### 알고리즘 [10.4] *k*-means 알고리즘

입력: 샘플 집합  $X = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N\}$ , 군집의 개수 k

출력: 군집 해 C

알고리즘:

- 1. k 개의 군집 중심  $Z = \{z_1, z_2, ..., z_k\}$ 를 초기화 한다.
- 2. while (TRUE) {
- 3. **for**  $(i = 1 \text{ to } N) \mathbf{x}_i$ 를 가장 가까운 군집 중심에 배정한다.
- if (이 배정이 이전 루프의 배정과 같음) break;
- 5. for (j=1 to k)  $\mathbf{z}_i$ 에 배정된 샘플의 평균으로  $\mathbf{z}_i$ 를 대치한다.
- 6. }



#### ■ 예제

7개 샘플을 *k*=3개의 군집으로 만드는 상황

$$\mathbf{x}_1 = (18,5)^T$$
,  $\mathbf{x}_2 = (20,9)^T$ ,  $\mathbf{x}_3 = (20,14)^T$ ,  $\mathbf{x}_4 = (20,17)^T$ ,  $\mathbf{x}_5 = (5,15)^T$ ,  $\mathbf{x}_6 = (9,15)^T$ ,  $\mathbf{x}_7 = (6,20)^T$ 

초기화에 의해  $\{\mathbf{x}_1\}$ 은  $\mathbf{z}_1$ (그림 10.12(a)),  $\{\mathbf{x}_2\}$ 은  $\mathbf{z}_2$  라인 5에 의해  $\mathbf{z}_1 = \mathbf{x}_1 = (18,5)^T$  (그림 10.12(b)),  $\mathbf{z}_2 = \mathbf{x}_2 = (20,9)^T$ 

$$\{x_3, x_4, x_5, x_6, x_7\} \stackrel{\circ}{\leftarrow} z_3$$

 $\mathbf{z}_3 = (\mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_5 + \mathbf{x}_6 + \mathbf{x}_7)/5 = (12, 16.2)^{\mathrm{T}}$ 



그림 10.12 k-means의 동작 예

#### 예제

두 번째 루프를 실행하면 
$$\{x_1\}$$
은  $z_1$  (그림  $10.12(c)$ ),  $\{x_2,x_3,x_4\}$ 은  $z_2$   $\{x_5,x_6,x_7\}$ 은  $z_3$  
$$z_1=x_1=(18,5)^T$$
 
$$z_2=(x_2+x_3+x_4)/3=(20,13.333)^T$$
 
$$z_3=(x_5+x_6+x_7)/3=(6.667,16.667)^T$$

세 번째 루프는 그 이전과 결과가 같다. 따라서 멈춘다.

결국 출력은

$$C = \{\{\mathbf{x}_1\}, \{\mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4\}, \{\mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7\}\}$$



#### Apply to image

- K개의 object로 구별함
- 입력 데이터: *u*=[*I<sub>R</sub>*(*x*,*y*),*I<sub>G</sub>*(*x*,*y*),*I<sub>B</sub>*(*x*,*y*)]
- $L_2$  norm를 이용하여 픽셀과 픽셀 사이 거리 측정  $D(u_i,u_j|L^2)=||u^i-u^j||^2$

#### ■ 알고리즘

- 랜덤으로 K개의 centroids 설정
- 각 픽셀과 centroid와 거리 계산 및 cluster 설정  $j=argmin_j ||u^i-C||_{j2}$
- 새로운 centroids 계산  $C_j = \sum_{u^i \in S_j} u^i$
- 위의 과정 반복



#### ■ 구현

cv2.kmeans(data, K, bestLabels, criteria, attemps, flags[,centers]

#### parameter

- src: input
- K: 클러스터 개수
- criteria: 반복 회수 종료 시점 정의
- ateempts: 알고리즘 시도하는 회수, 서로다른 시도 횟수 중 최적을 레이블링 경과를 bestLabels에 저장하여 반환
- flags: K개의 클러스터 중심을 초기화하는 방법을 명시한다.
- cv2.KMEANS RANDOM CENTERS: 난수를 사용하여 설정
- cv2.KMEANS PP CENTERS: Arthur and Vassivitskii에 의해 제안 방법
- cv2.KMEANS\_USE\_INITIAL\_LABELS: 처음 시도에는 사용자가 제공한 레이블을 사용하고, 다음 시도부터는 난수를 이용하여 임의로 설정



#### Result





Image Segmentation when K=3





Image Segmentation when K=7





Image Segmentation when K=6





Image Segmentation when K=6





## 참고자료

- OpenCV4로 배우는 컴퓨터 비전과 머신러닝
  - 황선규 지음
  - 길벗출판사, 2019
- Python으로 배우는 OpenCV 프로그래밍
  - 김동근 지음
  - 가메출판사, 2018
- 파이썬으로 배우는 머신러닝의 교과서
  - 이토마코토 지음, 박광수 옮김
  - 한빛미디어, 2018
- 패턴인식
  - 오일석 지음
  - 교보문고, 2008

