

COMP3600/6466 Algorithms

Lecture 13

S2 2016

Dr. Hassan Hijazi Prof. Weifa Liang

LCS continued

3. Compute the value of an optimal solution

Use memoization or bottom-up DP!

Let
$$X = \{x_1, x_2, \dots, x_m\}$$
 and $Y = \{y_1, y_2, \dots, y_n\}$ be the input sequences.

Let c[i,j] denote the length of an LCS of the sequences X_i and Y_j .

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1,j-1]+1 & \text{if } i,j > 0 \text{ and } x_i = y_j, \\ \max(c[i,j-1],c[i-1,j]) & \text{if } i,j > 0 \text{ and } x_i \neq y_j. \end{cases}$$

Bottom-Up Approach

3. Compute the value of an optimal solution

Use memoization or bottom-up DP!

What is the bottom(smallest) subproblem?

 (X_1, Y_1)

How many unique subproblems?

Two nested for loops

 $n \times m$

Number of nodes in the subproblem graph

How many sub-subproblems do I need to consider for a given subproblem?

If, elseif, else

At most 3

Number of edges connecting two nodes

Bottom-Up Approach

3. Compute the value of an optimal solution

```
LCS-LENGTH(X, Y)
                                                                   \Theta(1)
 1 m = X.length
                                                                   \Theta(1)
 2 \quad n = Y.length
                                                                   \Theta(nm)
   let b[1..m, 1..n] and c[0..m, 0..n] be new tables
                                                                   \Theta(m)
 4 for i = 1 to m
         c[i, 0] = 0
                                                                   \Theta(n)
   for i = 0 to n
         c[0, i] = 0
                                                                   \sum_{i}\sum_{j}c=c\times nm=\Theta(nm)
    for i = 1 to m
         for j = 1 to n
             if x_i == y_i
                                                                   i = 1 \ j = 1
10
                 c[i, j] = c[i-1, j-1] + 1
11
                 b[i, j] = "\\\"
12
13
             elseif c[i-1, j] > c[i, j-1]
                                                                   T(n,m) = \Theta(nm)
                 c[i, j] = c[i - 1, j]
14
                 b[i, i] = "\uparrow"
15
             else c[i, j] = c[i, j - 1]
16
17
                 b[i, i] = "\leftarrow"
18
     return c and h
```


Dynamic Programming

3. Compute the value of an optimal solution

	j	0	1	2	3	4	5	6
i		уј	С	A	С	С	G	G
0	хi							
1	A							
2	С							
3	G							
4	G							

Dynamic Programming

3. Compute the value of an optimal solution

	j	0	1	2	3	4	5	6
i		уj	С	A	С	С	G	G
0	хi	0	0	0	0	0	0	0
1	A	0	0-up	1-diag	1-left	1-left	1-left	1-left
2	С	0	1-diag	1-up	2-diag	2-diag	2-left	2-left
3	G	0	1-up	1-up	2-up	2-up	3-diag	3-diag
4	G	0	1-up	1-up	2-up	2-up	3-diag	4-diag

Dynamic Programming

3. Compute the value of an optimal solution

	j	0	1	2	3	4	5	6
i		уj	С	A	С	С	G	G
0	хi	0	0	0	0	0	0	0
1	A	0	0-up	1-diag	1-left	1-left	1-left	1-left
2	С	0	1-diag	1-up	2-diag	2-diag	2-left	2-left
3	G	0	1-up	1-up	2-up	2-up	3-diag	3-diag
4	G	0	1-up	1-up	2-up	2-up	3-diag	4-diag

Exercise 12.1

3. Compute the value of an optimal solution

	j	0	1	2	3	4	5	6
i		уј	С	A	G	С	A	G
0	хi							
1	A							
2	G							
3	G							
4	G							

Greedy!

greed

/gri:d/

noun

intense and selfish desire for something, especially wealth, power, or food.
"mercenaries who had allowed greed to overtake their principles"
synonyms: avarice, acquisitiveness, covetousness, rapacity, graspingness, cupidity, avidity, possessiveness, materialism; More

Greedy Algorithms!

Two key ingredients:

- 1. Optimal substructure
- 2. A unique choice per subproblem: The greedy one!

The greedy one:

The one that locally maximises/minimises your objective function

Take a decision that maximises/minimises your objective function NOW, ignore what might happen in the future.

Let's go back in time

Application 1: Rod Cutting Problem

length i	1	2	3	4	5	6	7	8	9	10
price p_i	1	5	8	9	10	17	17	20	24	30

Given a rod of length n meters and a table of prices p_i for $i \in \{1, 2, ..., n\}$, determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces.

Application 1: Rod Cutting Problem

The greedy decision:

The one that locally maximises/minimises your objective function

To fairly compare all decisions, you first need to convert them in per unit

Let
$$n=4$$

Greedy solution = cut 3 then cut 1 with total revenue = 8 + 1 = 9.

Optimal solution = cut 2 then cut 2 with total revenue = 5 + 5 = 10.

Application 2: Matrix Multiplication

Given the chain $A_1 \cdot A_2 \dots \cdot A_n$, fully parenthesise/split it in a way that minimises the number of scalar multiplications.

$$((A_1 \cdot A_2) \cdot (A_3 \cdot A_4))$$

$$(A_1 \cdot (A_2 \cdot (A_3 \cdot A_4)))$$

$$(A_1 \cdot ((A_2 \cdot A_3) \cdot A_4))$$

$$(((A_1 \cdot (A_2 \cdot A_3) \cdot A_4) \cdot A_4)$$

$$((A_1 \cdot (A_2 \cdot A_3)) \cdot A_4)$$

Application 2: Matrix Multiplication

Given the chain $A_1 \cdot A_2 \dots \cdot A_n$, fully parenthesise/split it in a way that minimises the number of scalar multiplications.

The greedy decision:

The one that locally maximises/minimises your objective function

The greedy decision:

Pick the pair that generates the minimal number of operations.

Let
$$A_1 = 5 \times 4$$
, $A_2 = 4 \times 2$ and $A_3 = 2 \times 4$.

The pair (A_2A_3) is locally minimal with $4 \times 2 \times 4 = 32$ operations.

But the overall solution $(A_1(A_2A_3))$ costs $32 + 5 \times 4 \times 4 = 132$ which is not better than $((A_1A_2)A_3)$ which costs $5 \times 4 \times 2 + 5 \times 2 \times 4 = 40 + 40 = 80$.

Application 3: Car Assembly

Problem statement: Assemble cars in a minimal amount of time

Equivalent to finding a shortest path from the start to the finish

Application 3: Car Assembly

Consider the case where $e_1 = 1$, $e_2 = 2$, $a_{1,1} = 999999$ and all other costs are 1.

Application 4: DNA Similarity or LCS

Definition: The similarity score of two sequences is the length of the longest common subsequence

Problem statement: Given two DNA strands, compute their similarity score

Example:

$$S_1 = ACCGGTAA$$

$$S_2 = GTCGCTTGT$$

Common subsequence 1 = CC

Common subsequence 2 = CGGT

Application 4: DNA Similarity or LCS

$$S_1 = \underline{A}CCGGTAA$$

$$S_2 = GTCGCTTGT$$

The greedy decision:

The one that locally maximises/minimises your objective function

The greedy decision:

Iterate on both sequences, every time we find a common element we add it to the solution.

Greedy solution: CGT

Optimal solution: CGGT

Application 5: The Activity-Selection

i	1	2	3	4	5	6	7	8	9	10	11
S_i	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	9	9	10	11	12	2 14	16

Activity i has a start time s_i and a finish time f_i

Problem: select a maximum-size subset of *mutually compatible* activities.

Activities a_i and a_j are **compatible** if $s_i \geq f_j$ or $s_j \geq f_i$.

Example: The subset $\{a_3, a_9, a_{11}\}$ consists of mutually compatible activities The subset $\{a_1, a_4, a_8, a_{11}\}$ is a better solution.

The Activity-Selection Problem

i	1	2	3	4	5	6	7	8	9	10	11	
Si	1	3	0	5	3	5	6	8	8	2	12	Increasing
f_i								11		14	16	finish time

Problem: select a maximum-size subset of mutually compatible activities.

Optimal substructure?

Introduce activities a_0 with $s_0 = f_0 = 0$ and a_{n+1} with $s_{n+1} = f_{n+1} = f_n$. Let $S_{i,j}$ denote the set of activities that start after the end of activity a_i and finish before the beginning of activity a_j .

Example:
$$S_{0,4} = \{a_1\}, S_{0,n+1} = \{a_1, \dots, a_n\}, S_{1,11} = \{a_4, a_6, a_7, a_8, a_9\}.$$

The Activity-Selection Problem

i	1	2	3	4	5	6	7	8	9	10	11	
							6			2	12	Increasing
f_i							10			14	16	finish time

Problem: select a maximum-size subset of mutually compatible activities.

Optimal substructure?

Let A_{ij} denote the maximum set of mutually compatible activities in S_{ij} .

Consider
$$a_k \in A_{ij}$$

It is easy to see that
$$A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$$
.

$$\implies |A_{ij}| = |A_{ik}| + |A_{kj}| + 1.$$

The Activity-Selection Problem

 a_k is not know in advance!

Let c[i,j] denote the size of an optimal solution to S_{ij}

$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset \\ \max_{a_k \in S_{ij}} \{c[i,k] + c[k,j] + 1\} & \text{if } S_{ij} \neq \emptyset \end{cases}$$

Optimal solution value = c[0, n+1]