Genome assembly post-processing

Nadège Guiglielmoni

Read pre-processing

- Adapter trimming
- Read filtering: select longest/highest quality: Filtlong
- Read correction: reduce error rate of long reads
 - self correction: long reads only
 - hybrid correction: long reads & short reads

Assembly post-processing

- Polishing: reduce errors
- ► **Haplotig purging**: remove uncollapsed haplotypes
- Scaffolding: increase contiguity
- Gap filling: find missing sequences

Adineta vaga

Who Needs Sex (or Males) Anyway? Liza Gross, PloS Biology, 2007

Expected haploid size 102 Mb

Assembly process

Assembly output

HaploMerger2

HaploMerger2: rebuilding both haploid sub-assemblies from high-heterozygosity diploid genome assembly

Shengfeng Huang*, Mingjing Kang and Anlong Xu

Identifying and removing haplotypic duplication in primary genome assemblies

Dengfeng Guan^{1,2}, Shane A. McCarthy (b) ², Jonathan Wood³, Kerstin Howe (b) ³, Yadong Wang^{1,*} and Richard Durbin (b) ^{2,3,*}

purge_dups

Purge Haplotigs

Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies

Michael J. Roach 6, Simon A. Schmidt and Anthony R. Borneman

PacBio assemblies

Scaffolding approaches

Scaffolding: grouping and orienting contigs to build chromosome-level scaffolds

- Long reads
- Linked reads: barcoded short reads
- ► Hi-C

A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Rao et al., 2014

Summary Basic Statistics Per base sequence quality Per tile sequence quality Per sequence quality scores Per base sequence content Per sequence GC content Per base N content Sequence Length Distribution Sequence Duplication Levels Overrepresented sequences Adapter Content

The Hitchhiker's guide to Hi-C analysis: Practical guidelines. Lajoie et al., 2015

Contact genomics: scaffolding and phasing (meta)genomes using chromosome 3D physical signatures. Flot et al., 2015

High-throughput genome scaffolding from in vivo DNA interaction frequency

Noam Kaplan ☑ & Job Dekker ☑

dnaTri

Lachesis

Chromosome-scale scaffolding of *de novo* genome assemblies based on chromatin interactions

Joshua N Burton ☑, Andrew Adey, Rupali P Patwardhan, Ruolan Qiu, Jacob O Kitzman & Jay Shendure

High-quality genome (re)assembly using chromosomal contact data

Hervé Marie-Nelly ☑, Martial Marbouty, Axel Cournac, Jean-François Flot, Gianni Liti, Dante Poggi Parodi, Sylvie Syan, Nancy Guillén, Antoine Margeot, Christophe Zimmer ☑ & Romain Koszul ☑

GRAAL

De novo assembly of the *Aedes aegypti* genome using Hi-C yields chromosome-length scaffolds

3D-DNA

© Olga Dudchenko^{1,2,3,4}, Sanjit S. Batra^{1,2,3,*}, Arina D. Omer^{1,2,3,*}, Sarah K. Nyquist^{1,3}, © Marie Hoeger^{1,3}, Neva C. Durand¹,...

SALSA2

Integrating Hi-C links with assembly graphs for chromosome-scale assembly

Jay Ghurye, Arang Rhie, Brian P. Walenz, Anthony Schmitt, Siddarth Selvaraj, Mihai Pop, Adam M. Phillippy ☑, Sergey Koren ☑

instaGRAAL: chromosome-level quality scaffolding of genomes using a proximity ligation-based scaffolder

Lyam Baudry, Nadège Guiglielmoni, Hervé Marie-Nelly, Alexandre Cormier, Martial Marbouty, Komlan Avia, Yann Loe Mie, Olivier Godfroy, Lieven Sterck, J. Mark Cock, Christophe Zimmer, Susana M. Coelho & Romain Koszul

instaGRAAL

And in 2021

EndHiC: assemble large contigs into chromosomal-level scaffolds using the Hi-C links from contig ends

Sen Wang, Hengchao Wang, Fan Jiang, Angi Wang, Hangwei Liu, Hanbo Zhao, Boyuan Yang, Dong Xu, Yan Zhang, Wei Fan

Efficient iterative Hi-C scaffolder based on N-best neighbors

Dengfeng Guan^{1,2,4}, Shane A. McCarthy^{2,3}, Zemin Ning³, Guohua Wang^{1*}, Yadong Wang^{1*} and Richard Durbin^{2,3*}

YaHS: yet another Hi-C scaffolding tool

Chenxi Zhou¹, Shane A. McCarthy^{1, 2}, Richard Durbin^{1, 2}

www.dnazoo.org

Astrangia poculata (coral)

14 scaffolds

455 Mb

Hi-C contact map of Astrangia poculata

Adineta vaga (rotifer)

6 scaffolds

Who Needs Sex (or Males) Anyway? Liza Gross, PloS Biology, 2007

Hi-C contact map of Adineta vaga

"What coverage should I get?"

→ Arima recommends 200 millions pairs per Gb

Species	Size	# fragments	# Hi-C pairs	Hi-C mapping
Adineta vaga	101 Mb	30	55 millions	83%
Astrangia poculata	455 Mb	2995	723 millions	67%
Flaccisagitta enflata	929 Mb	6612	489 millions	37%
Mercenaria mercenaria	1.86 Gb	5118	455 millions	55%

And then...

- Gap filling: TGS-GapCloser...
- Polishing: using high-accuracy reads, HyPo, Racon...

Gap filling & Polishing

	Scaffolds	After TGS-Gapcloser	After HyPo
Flaccisagitta enflata	9,239	3,694	1,476
Norana najaformis	860	748	632
Lucinoma borealis	24,786	5,093	2,135

ASSEMBLY

reads

ATTTGTACG GTACGGACA GGACATAGTA

contig

ATTTGTACGGACATAGTA

