

Capstone Project Airline Passenger Referral Prediction

By

Ankit Patil Naga Sai Kiran Saugata Deb Shreyash Movale

Table of Contents

- Objective
- Process Flow
 - i. Data Insight
 - ii. Exploratory data Analysis
 - iii. Feature Engineering
 - iv. Model building
 - V. Model Explainability
- Conclusion

Objective

- The data includes airline reviews from 2006 to 2019 for popular airlines around the world with multiple choice and free text questions.
- Data is scrapped in Spring 2019. The main objective is to predict whether passengers will refer the airline to their friends.
- to predict whether passengers will refer the airline to their friends

Process Flow

The process from getting the data to drawing the conclusion is as follows:

Data Insights

- The data set has 16 variables, in which 'recommended' is a Dependent variable and the rest are independent variables.
- The size of the data is (131895,17)
 i.e., we have 131895 rows with 17 columns
- There are lots of null values and duplicates in the data set so we must have to clean the data first.
- Data Set is a mixture of categorical and numerical data so we have to arrange and encode the data before feeding it to the ML model.

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 131895 entries, 0 to 131894
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	airline	65947 non-null	object
1	overall	64017 non-null	float64
2	author	65947 non-null	object
3	review_date	65947 non-null	object
4	customer_review	65947 non-null	object
5	aircraft	19718 non-null	object
6	traveller_type	39755 non-null	object
7	cabin	63303 non-null	object
8	route	39726 non-null	object
9	date_flown	39633 non-null	object
10	seat_comfort	60681 non-null	float64
11	cabin_service	60715 non-null	float64
12	food_bev	52608 non-null	float64
13	entertainment	44193 non-null	float64
14	ground_service	39358 non-null	float64
15	value_for_money	63975 non-null	float64
16	recommended	64440 non-null	object
dtyp	es: float64(7), o	bject(10)	

Feature Description:-

Airline: Name of the airline.

overall: Overall point is given to the trip between 1 to 10.

author: Author of the trip

Review date: Date of the Review customer review: Review of the customers in free text format

Customer Review: Feedback shared by the customers

Aircraft: Type of the aircraft

Traveler Type: Type of traveler (e.g. business, leisure)

Cabin: Cabin

Flight date: Date on which The flight has flown

Route: Route taken by flight

Seat comfort: Rated between 1-5 cabin service: Rated between 1-5 Food-Bey: Rated between 1-5

entertainment: Rated between 1-5Ground service: Rated between 1-5Value for money: Rated between 1-5

Recommended: The passenger has referred his friend or not.

EDA for Cabin, Airlines Company and Aircraft Carrier has been done which showed the following output.

No of customers vs Aircrafts

- We can see there are 4 classes present in the Traveller type feature. Also, we can notice that Solo Leisure has the highest value count. From this, we can conclude that most people who travel by airline travel in solo. Followed by College then Family. A very small percentage of people prefer flying for business.
- In recommended plot we can see that the Dependent feature 'recommended' has balanced data in its classes Yes and No.

- Here we can see that
 people have flown
 most frequently in the
 months June to August
 and in December and
 January.
- Least frequently in the month of February.

Variation of Traveller type feature with recommendation:

- We can see that people have given both 1 or 0 which we
 will consider from now on as positive and negative
 recommendation so to interpret it effectively to the solo
 leisure. This may because of the poor infrastructure or the
 service received by the people
- In Traveller type we can see that both the recommendation trend as of yes or no increases from business to couple leisure and decreases to family then again increases high in solo leisure. Which indicate people prefer solo leisure higher than any of the other leisure.

Variation of Traveller type feature with Cabin:

- For Business class, more number of customers have recommended airlines as compared to non recommendations.
- Whereas this scenario reverses for Economy class i.e. more customers have not recommended
- We can say that customers who have travelled from business class are satisfied with airline's services whereas those who travelled from economy class are less satisfied with services hence the less recommendation

Variation of Traveller type feature with overall rating:

- From overall rating vs recommended graph we can see which is perfectly understandable that non recommendation has been given to the overall rating of 1.0 and high positive recommendation has been given to the overall rating of 10
- In overall rating we can experience the positive recommendation increases with the overall rating and non recommendation on the same decreases.

Variation of Traveller type feature with seat comfort :

- In seat comfort people has given highest positive recommended to the seat of class 5 as compared to very low negative recommendation to the same. Also we can see seat of class 1 have been given highest negative recommendation as compare to its positive recommendation
- In seat comfort we can see as the positive recommendation increases with the overall rating and also negative recommendation on the same decreases also we can an intersection in seat comfort rating 3.0 where we can see similar positive and negative recommendation.

Variation of Traveller type feature with Cabin Service :

- In cabin service rating people has given highest recommendation to rating to cabin service rating 5 as compare to its counterpart. From this we can conclude that cabin service is doing pretty good.
- In cabin service we can see same as the positive recommendation increases with the overall rating and also negative recommendation on the same decreases also we can an intersection in cabin service rating 3.5 where we can see similar positive and negative recommendation

Variation of Traveller type feature with Food Bev:

- In food and beverage rating people have given highest negative recommendation to rating 1.0 from this we can conclude that airline service has to improve their food delivery and quality service.
- In food service we can see same as the positive recommendation increases with the overall rating and also negative recommendation on the same decreases also we can an intersection in food service rating close to 3.0 where we can see similar positive and negative recommendation.

Variation of Traveller type feature with Entertainment:

- In entertainment also we can see most people has given highest negative recommendation to entertainment rating 1 which shows that airline has to improve their entertainment system as well.
- In Entertainment service too we can see same as the
 positive recommendation increases with the overall rating
 and also negative recommendation on the same decreases
 also we can an intersection in Entertainment service rating
 between 2.5 and 3.0 where we can see similar positive and
 negative recommendation.

Variation of Traveller type feature with Ground Service:

- In ground service also we can see most people has given highest negative recommendation to ground service rating 1 which shows that airline has to improve their ground service.
- In Ground service also we can see same as the positive recommendation increases with the overall rating and also negative recommendation on the same decreases also we can an intersection in Ground service rating close 3.0 where we can see similar positive and negative recommendation.

Variation of Traveller type feature with Value for Money:

- In ground service also we can see most people has given highest negative recommendation to ground service rating 1 which shows that airline has to improve their ground service.
- In Ground service also we can see same as the positive recommendation increases with the overall rating and also negative recommendation on the same decreases also we can an intersection in Ground service rating close 3.0 where we can see similar positive and negative recommendation.

NLP(Natural Language Processing):

- We have used vader sentiment in NLP so to convert sentiments in customer review into score so to have our model prediction.
- We have also created new feature numeric review so to store sentiment score we have retrieved using sentiment analysis from customer review feature.
- After storing numeric value in range of -1 to 1 in column numeric review, we have dropped original review column

رئ

- 0.95

-0.90

- 0.85

- 0.80

-0.75

-0.70

-0.65

- 0.60

Correlation Plot

- Target Variable is highly positively correlated with Overall rating, Value for money and ground service
- These 3 features are most important factor for Recommendation therefore more focus should be given for improving those.
- Other ratings such as Cabin service, food and beverages, entertainment are also highly correlated with the recommendations

Feature Engineering

- Mapped recommend column for not recommended to 0, for recommended to
- Dropped author, aircraft, review_date, route,travel_month
- Dummy columns for categorical features which are airline, cabin, traveler type

Model Building

Logistic Regression

Accuracy	0.9564		
Precision	0.9547		
Recall	0.9535		
F1	0.9541		
ROC AUC	0.9563		

Random Forest

Accuracy	0.9572		
Precision	0.9504		
Recall	0.9591		
F1	0.9547		
ROC AUC	0.9569		

Model Building

Support Vector Classifier

Accuracy	0.9568		
Precision	0.9527		
Recall	0.9561		
F1	0.9544		
ROC AUC	0.9566		

XGBoost

Accuracy	0.9570		
Precision	0.9510		
Recall	0.9582		
F1	0.9546		
ROC AUC	0.9567		

Model Explainability:

SHAP:

 In Shap JS summary we can see positive features overall, value for money,numeric_review combined red color block pushes the prediction toward right over base value and causing positive model prediction and it is common for all model.

-0.07726

0.1227

cabin service = 2 | numeric review = -0.9246 | value for money = 2

In Shap summary scatter plot we can see in scatter plot high overall, value for money, numeric_review, cabin service, ground_service positive features and low airline_British_airways is increasing positive prediction and it is common for all models. Also we can see that overall, value for money, numeric_review, cabin service, ground_service has high shap feature value.

overall = 1

Conclusion

- We observed that people gave high positive recommendation to economic class in cabin.
 From this we can conclude that people are satisfied for services in economy class, this exactly opposite for business class, since customers from business class have least recommended airlines
- From month vs no. of recommendation. We can see that people tend to travel most in the month of June-August and December January this may be because of Christmas holidays.
- From overall rating vs recommended graph we can see which is perfectly understandable that non recommendation has been given to the overall rating of 1.0 and high positive recommendation has been given to the overall rating of 10 which is similar for all the other types of ratings

Conclusion

- 1. From the table with accuracy values sorted, we can see that XGBoost followed by Random Forest is giving highest accuracy.
- 2. Since our target variable had balanced classes, we have good recall as well as precision for all the models, still to verify we calculated F1 scores
- 3. Support Vector Model requires highest amount of time to build the model, which is almost 10 times more than the time required for XGBoost

Model	Accuracy	Recall	Precision	f1-score	roc_auc_score	Time
XGBoost	0.957082	0.951022	0.958282	0.954638	0.956792	10.375130
Random Forest	0.956998	0.950846	0.958274	0.954545	0.956704	22.405438
SVM	0.956831	0.952784	0.956153	0.954465	0.956637	98.100118
Logistic Regression	0.956413	0.954722	0.953546	0.954133	0.956332	12.586273

4. In Shap summary scatter plot we can see that shap value is high for overall, value for money, numeric_review, cabin service, ground_service which is increasing positive prediction and it is common for all models

Thank you