Universidade de São Paulo Instituto de Matemática e Estatística Bacharelado em Ciência da Computação

Estruturas de dados retroativas Um estudo sobre Union-Find e ...

Felipe Castro de Noronha

Monografia Final

mac 499 — Trabalho de Formatura Supervisionado

Supervisora: Prof^a. Dr^a. Cristina Gomes Fernandes

O conteúdo deste trabalho é publicado sob a licença CC BY 4.0 (Creative Commons Attribution 4.0 International License) Dedico este trabalho a meus pais e todos aque $les\ que\ me\ ajudaram\ durante\ esta\ caminhada.$

Agradecimentos

Eu sou quem sou porque estou aqui.

Paul Atreides

Texto texto. Texto opcional.

Resumo

Felipe Castro de Noronha. Estruturas de dados retroativas: *Um estudo sobre Union-Find e ...*. Monografia (Bacharelado). Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2022.

Elemento obrigatório, constituído de uma sequência de frases concisas e objetivas, em forma de texto. Deve apresentar os objetivos, métodos empregados, resultados e conclusões. O resumo deve ser redigido em parágrafo único, conter no máximo 500 palavras e ser seguido dos termos representativos do conteúdo do trabalho (palavras-chave). Deve ser precedido da referência do documento. Texto texto

Palavras-chave: Palavra-chave1. Palavra-chave2. Palavra-chave3.

Abstract

Felipe Castro de Noronha. **Retroactive data structures:** *A study about Union-Find and.* Capstone Project Report (Bachelor). Institute of Mathematics and Statistics, University of São Paulo, São Paulo, 2022.

Keywords: Keyword1. Keyword2. Keyword3.

9

Sumário

Referências

1	Intr	rodução	1
	1.1	Retroatividade Parcial	1
	1.2	Retroatividade Total	1
2	Linl	k-Cut Trees	3
	2.1	Ideia	3
	2.2	Definições	3
	2.3	Operações	4
		2.3.1 Access	4
	2.4	Splay Trees	4
		2.4.1 Splay	5
		2.4.2 Split e Join	6
		2.4.3 Métodos auxiliares	7

Capítulo 1

Introdução

Estruturas de dados retroativas bla bla bla

- 1.1 Retroatividade Parcial
- 1.2 Retroatividade Total

Capítulo 2

Link-Cut Trees

Neste capítulo, apresentaremos a estrutura de dados Link-Cut Tree, introduzida por SLEATOR e TARJAN (1981). Esta árvore serve como base para as estruturas retroativas apresentadas nos próximos capítulos.

2.1 Ideia

A Link-Cut Tree é uma estrutura de dados que nos permite manter uma floresta de árvores enraizadas, onde os nós de cada árvore possuem um número arbitrário de filhos. Ademais, essa estrutura nos fornece o seguinte conjunto de operações:

- make_root(u): enraíza no vértice *u* a árvore que o contém.
- link(u, v, w): dado que os vértices u e v estão em árvores separadas, transforma v em raiz de sua árvore e o liga como filho de u, colocando peso w na nova aresta criada.
- cut(u, v): retira da árvore a aresta com pontas em u e v, efetivamente separando estes vértices e criando duas novas árvores.

Por último, a Link-Cut Tree possui a capacidade de realizar operações agregadas nos vértices, isto é, consultas acerca de propriedades de uma sub-árvore ou de um caminho entre dois vértices. Em particular, estamos interessados na rotina $maximum_edge(u, v)$, que nos informa o peso máximo de uma aresta no caminho entre os vértices u e v.

Todas essas operações consomem tempo $O(\log n)$ amortizado, onde n é o número de vértices na floresta.

2.2 Definições

Primeiramente, precisamos fazer algumas definições acerca da estrutura que vamos estudar.

Chamamos de árvores representadas as árvores genéricas que nossa estrutura sintetiza.

Para a representação que a Link-Cut Tree utiliza, internamente dividimos uma árvore representada em caminhos vértice-disjuntos, os chamados caminhos preferidos. Todo caminho preferido vai de um vértice a um ancestral deste vértice na arvore representada. Por conveniência, definimos o início de um caminho preferido como o vértice mais profundo contido nele.

Se uma aresta faz parte de um caminho preferido, a chamamos de aresta preferida. Ademais, mantemos a propriedade de que um vértice pode ter no máximo uma aresta preferida com a outra ponta em algum de seus filhos. Caso tal aresta exista, ela liga um vértice a seu filho preferido.

Finalmente, para cada caminho preferido, elegemos um vértice como seu identificador. A manutenção deste vértice será importante para a estrutura auxiliar que utilizaremos para manter os caminhos preferidos, dado que tais vértices serão responsáveis por guardar um ponteiro para o vértice do caminho preferido imediatamente acima do caminho que o contem.

TODO: colocar imagem de uma árvore representada e seus caminhos preferidos.

2.3 Operações

2.3.1 Access

2.4 Splay Trees

No artigo original, os autores utilizam uma árvore binária enviesada como estrutura para os caminhos preferidos. Porém, quatro anos depois, Sleator e Tarjan (1985) apresentaram a Splay Tree, que possibilita realizarmos as operações necessárias para a manipulação dos caminhos preferidos em tempo $O(\log n)$ amortizado, com uma implementação muito mais limpa do que a da versão original. Portanto, usaremos a Splay Tree como uma arvore auxiliar que cuida de manter os caminhos preferidos.

A Splay Tree é uma árvore binária de busca auto-ajustável, capaz de realizar as operações de inserção, deleção e busca. Em particular, para seu uso como árvore auxiliar, estamos interessados na sua operação *splay*, que traz um nó para a raiz da árvore através de sucessivas rotações. Mas antes de nos aprofundarmos neste método, examinaremos como os caminhos preferidos são representados aqui.

Primeiramente, em nosso uso, a ordenação dos nós na Splay Tree é dada pela profundidade destes na Link-Cut Tree. Note que, não guardamos explicitamente esses valores. Em vez disso, utilizamos a ideia de chave implícita, isto é, só nos preocupamos em manter a ordem relativa dos nós após as operações de separação e união das árvores. A contrapartida deste método é perda da capacidade de realizarmos buscas por chave na Splay Tree, porém não necessitamos dessa operação.

Ademais, para podermos lidar com os pesos nas arestas da Link-Cut Tree, fazemos com que cada aresta da árvore representada vire um nó na árvore auxiliar. Isso nos permite calcular eficientemente o peso máximo de uma aresta em um caminho preferido, dado que

podemos facilmente manter o peso máximo dos vértices em cada sub-árvore de uma Splay Tree.

TODO: colocar imagem de um preferred path e sua respectiva splay tree.

Além disso, como usamos a profundidade dos nós na árvore representada como chave para a árvore auxiliar, temos que todos os nós na sub-árvore esquerda da raiz de uma Splay Tree têm uma profundidade menor que a raiz, enquanto os nós á direita têm uma profundidade maior. Contudo, ao realizamos uma operação make_root(u), fazemos com que todos os nós que estavam acima de u na árvore representada se tornem parte de sua sub-árvore. Para isso, incluímos na Splay Tree um mecanismo para inverter a ordem de todos os nós de uma árvore auxiliar, efetivamente invertendo a orientação de um caminho preferido.

TODO: colocar imagem de uma Splay antes e depois da inversão, assim como sua árvore representada.

Com isso, os nós da árvore auxiliar têm os seguintes campos:

- parent: apontador para o pai na Splay Tree. Caso o nó em particular seja a raiz da árvore auxiliar, este campo armazena um ponteiro para o vértice que está logo acima do fim deste caminho preferido na árvore representada.
- left_child e right_child: apontadores para os filhos de um nó na Splay Tree.
- value: guarda o peso de uma aresta da árvore representada transformado em vértice na árvore auxiliar.
- is_reversed: valor booleano para sinalizar se a sub-árvore do nó esta com sua ordem invertida ou não, isto é, se todas as posições de filhos esquerdos e direitos estão invertidas nessa sub-árvore.
- max_subtree_value: guarda o valor máximo armazenado na sub-árvore do nó.

2.4.1 Splay

Com a estrutura apresentada, podemos partir para a explicação de sua principal operação, a *splay*. Em poucas palavras, este método é responsável por receber um nó e fazer com que ele vire a raiz da Splay Tree, através de diversas rotações. Em particular, podemos dizer que esta operação é responsável por transformar um vértice em identificador de seu caminho. Ademais, as operações de *splay* contribuem para diminuir a altura da árvore, melhorando o seu consumo de tempo.

TODO: Colocar figura de uma Splay antes e depois do Splay em uma folha

De modo a facilitarmos nossa explicação, chamamos parent o pai de um nó u e de grandparent o pai de parent. Primeiramente, recebemos um nó u da Splay Tree, e enquanto este nó não é raiz de nossa árvore, conduzimos a seguinte rotina:

- Verifico se parent é a raiz da árvore, caso positivo, vou para o último item.
- Caso contrario, propagaremos o valor booleano *is_reversed* de grandparent e em seguida o de parent, fazendo as devidas reversões caso necessárias. Isso nos fornece

a invariante de que iremos fazer a comparação a seguir entre os filhos corretos.

- Em seguida, checamos se grandparent, parent e *u* estão em uma orientação de *zig-zig*, *zag-zag* ou *zig-zag*, como exemplificadas na figura abaixo. Dependendo da orientação, fazemos uma rotação em *u* ou em parent, sempre com a ideia de diminuirmos em 1 a profundidade de *u*.
- Por último, fazemos uma rotação em *u*, o que o coloca na posição que inicialmente estava o nó grandparent.

TODO: Colocar figura mostrando configurações de zig-zig, zag-zag e zig-zags.

Ao sair da função *splay*, o nó *u* estará na raiz de sua árvore auxiliar. Além disso, seu valor booleano *is_reversed* estará nulo, pois as reversões já terão sido propagadas aos seus filhos, e seu *max_subtree_value* vai estar atualizado, contendo o maior valor presente na Splay Tree.

TODO: Colocar código ou pseudocódigo da função splay?

Agora, vamos olhar a função responsável por realizar as rotações. Basicamente ela pode ser fatorada em quatro partes:

- Primeiramente propagamos as reversões de grandparent, parent e *u*, garantindo que estaremos acessando e manipulando os filhos corretos destes respectivos nós.
- Em seguida, caso o parent não seja a raiz da Splay Tree, o trocamos de lugar com *u*, efetivamente colocando *u* como algum dos filhos de grandparent.
- Agora, basta colocarmos parent como algum dos filhos u, espelhando a orientação inicial em que u estava como filho de parent.
- Por último, recalculamos os valores máximos nas sub-árvores de parent e de u.

2.4.2 Split e Join

Temos também dois métodos importantes para a manutenção dos caminhos preferidos, split e join, responsáveis por separar e concatenar caminhos preferidos, respectivamente.

Primeiramente, o método split(u) recebe um nó u e separa o caminho preferido que contem este nó em dois, quebrando a conexão entre ele e seu filho preferido, caso exista. Note que, este método é destrutivo: ele remove tanto o ponteiro para o filho preferido de u quanto o ponteiro parent que tal filho possui para u. Logo, usamos essa rotina apenas para o método cut() da Link-Cut Tree.

De maneira complementar, temos a rotina join(u, v) que recebe dois nós, u e v — identificadores de seus caminhos e com v mais profundo que u na árvore representada — e concatena os respectivos caminhos preferidos, transformando a aresta $\{u,v\}$ em preferida. Com isso, separa u da parte mais profunda de seu caminho preferido inicial, deixando o identificador de tal caminho com um ponteiro para u.

2.4.3 Métodos auxiliares

Para finalizar, nossa Splay Tree possui quatro métodos auxiliares, o reverse_path, get_parent_path_node, get_path_end_node e get_maximum_path_value.

Com isso, temos todas as ferramentas necessárias para manipularmos a Splay Tree em seu uso como árvore auxiliar.

Referências

[SLEATOR e TARJAN 1981] Daniel D. SLEATOR e Robert Endre TARJAN. "A data structure for dynamic trees". Em: *Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing.* STOC '81. Milwaukee, Wisconsin, USA: Association for Computing Machinery, 1981, pgs. 114–122. ISBN: 9781450373920. DOI: 10.1145/800076.802464. URL: https://doi.org/10.1145/800076.802464 (citado na pg. 3).

[SLEATOR e TARJAN 1985] Daniel D. SLEATOR e Robert Endre TARJAN. "Self-adjusting binary search trees". Em: *J. ACM* 32.3 (jul. de 1985), pgs. 652–686. ISSN: 0004-5411. DOI: 10.1145/3828.3835. URL: https://doi.org/10.1145/3828.3835 (citado na pg. 4).