

Overview

Atmosphere

Speed

SRF: 152m/s

Control System

Inputs **Outputs** Speed Throttle Pitch Pitch • Heading Yaw Roll Roll origin Altitude y-axis (forward) z-axis x-axis (down) (right)

Neural Net

- Neural network to control the flight of a rocket
- Evolved using genetic algorithms
- Implements NEAT
 - Fast identification of global minimas (especially useful here)
 - Rewards innovation
 - Keeps balance between innovation, complexity and elitism.

Proposed Fitness Function - Orbital Flight

Fitness function rewards individuals that efficiently reach an orbit: if $\Delta V_{orbit} - \Delta V re$ is small, than an individual has higher fitness

Proposed Fitness Function - Problems

Calculating the ΔV for a given orbital trajectory is difficult.

It requires knowing the optimal path to reach that orbit (the problem we are trying to solve).

Alternative Fitness Function - Orbital Flight

Orbital Energy

Calculate the energy of the final orbit reached:

GPE + **KE** = Orbital Energy

Conservation of Energy

Kepler's second law of planetary motion

Fitness Function - Suborbital Flight

First considered: maximum altitude reached

Problem: escape velocity and vertical flight

Platform: Kerbal Space Program

Results

https://www.youtube.com/watch?v=R7UNbXu4Irs

