PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

	interna	ILIONAL BUFEAU
INTERNATIONAL APPLICATION PUBLIS	HED (JNDER THE PATENT COOPERATION TREATY (PCT)
(51) International Patent Classification ⁶ :		(11) International Publication Number: WO 99/15647
C12N 15/11, 15/12, C07K 14/46, 19/00, 16/18, G01N 33/68, C12Q 1/68	A1	(43) International Publication Date: 1 April 1999 (01.04.99)
(21) International Application Number: PCT/AU (22) International Filing Date: 23 September 1998 (BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD,
(30) Priority Data: PO 9388 23 September 1997 (23.09.9) (71) Applicant (for all designated States except US): O INSTITUTE OF MEDICAL RESEARCH [AU/AL Vincent's Hospital, 384 Victoria Street, Darlinghu 2010 (AU).	GARVA U]; c/o S	St. BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN,
(72) Inventors; and (75) Inventors/Applicants (for US only): DALY, Rog [GB/AU]; 49 Gerard Street, Alexandria, NSW 20 SUTHERLAND, Robert, Lyndsay [AU/AU]; 20 Road, Lindfield, NSW 2070 (AU).)15 (AU	J).
(74) Agent: F.B. RICE & CO.; 605 Darling Street, Balma 2041 (AU).	ain, NS	w
(54) Title: A POTENTIAL EFFECTOR FOR THE GRB	7 FAM	ILY OF SIGNALLING PROTEINS
(57) Abstract		
A novel polynucleotide molecule is disclosed which Detection of the protein in a sample such as a homogenised for certain human cancers such as breast and prostate cancer	l tissue :	es a candidate effector protein for the Grb7 family of signalling proteins. sample should provide a useful tumour marker and/or prognostic indicator

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia	
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia	
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal	
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland	
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad	
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo	
вв	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan	
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan	
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey	
BG	Bulgaria	HU	Hungary	MI.	Mali	TT	Trinidad and Tobago	
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine	
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda	
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America	
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan	
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam	
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia	
СН	Switzerland	KG	Kyrgyzstan	NO	Norway '	zw	Zimbabwe	
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand			
СМ	Cameroon		Republic of Korea	PL	Poland			
CN	China	KR	Republic of Korea	PT	Portugal			
CU	Cuba	ΚZ	Kazakstan	RO	Romania			
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation			
DE	Germany	LI	Liechtenstein	SD	Sudan			
DK	Denmark	LK	Sri Lanka	SE	Sweden			
EE	Estonia	LR	Liberia	SG	Singapore			

1

A POTENTIAL EFFECTOR FOR THE GRB7 FAMILY OF SIGNALLING PROTEINS

Field of the Invention:

5

10

15

20

25

30

35

The present invention relates to a novel polynucleotide molecule encoding a candidate effector protein for the Grb7 family of signalling proteins. Detection of the encoded protein in a tissue sample should provide a useful tumour marker and/or prognostic indicator. Furthermore, antagonism of the interaction between Grb7 family members and the encoded protein should provide a novel treatment strategy for human diseases exhibiting aberrant receptor tyrosine kinase (RTK) signalling (e.g. cancer).

Background of the Invention

RTKs play a major role in the regulation of cellular growth, differentiation, motility and metabolism by converting an extracellular signal in the form of the binding of a specific hormone or growth factor to the activation of specific signalling pathways and hence modes of intracellular communication (Schlessinger and Ullrich, Neuron 9. 383-391, 1992). Activation of RTKs results in both autophosphorylation of the receptor and the phosphorylation of downstream targets on tyrosine residues. It has become evident over the last decade that key elements in receptor-substrate and other protein-protein interactions in RTK signalling are src homology (SH)2 domains. SH2 domains are conserved modules of approximately 100 amino acids found in a wide variety of signalling molecules which bind to short tyrosine-phosphorylated peptide sequences. The specificity of interaction is determined both by the nature of the amino acids flanking the phosphotyrosine residue in the target peptide and residues in the SH2 domain which interact with these sites (Pawson, Nature 373, 573-580, 1995).

SH2-domain containing proteins can be divided into two classes: those which possess a catalytic function (e.g. the cytoplasmic tyrosine kinase c-src and the tyrosine phosphatase SH-PTP2) and those which consist entirely of non-catalytic protein domains (eg Grb2), the adaptor sub-class. The function of the latter class is to link separate catalytic subunits to a tyrosine-

2

phosphorylated receptor or signalling intermediate. and other non-catalytic protein modules are often involved in these interactions. For example, SH3 and WW domains (conserved regions of approximately 50 and 40 amino acids, respectively) bind proline-rich peptide ligands. and pleckstrin homology domains (approximately 100 amino acids) interact with both specific phospholipid and protein targets (Pawson, 1995 supra).

5

10

15

20

25

30

35

The Grb7 family represents a family of SH2 domain-containing adaptors which currently contains three members: Grb7. 10 and 14 (Margolis et al, Proc. Natl. Acad. Sci. USA 89, 8894-8898, 1992: Stein et al. EMBO J 13, 1331-1340, 1994; Ooi et al, Oncogene 10, 1621-1630. 1995; Daly et al, J. Biol. Chem. 271, 12502-12510, 1996). These proteins share a common overall architecture, consisting of an N-terminal region containing a highly conserved proline-rich decapeptide motif, a central region harbouring a PH domain and a C-terminal SH2 domain. The central region of approximately 300 amino acids bears significant homology to the C. elegans protein mig10, which is required for long range neuronal migration in embryos, otherwise the Grb7 family and mig10 are structurally distinct. However, they exhibit differences in both SH2 selectivity towards RTKs (Janes et al, J. Biol. Chem. 272, 8490-8497, 1997) and tissue distribution. The family has therefore evolved to link particular receptors to downstream effectors in a tissuespecific manner. Interestingly, the genes encoding this family appear to have co-segregated with ERBB family genes during evolution. Thus GRB7, 10 and 14 are linked to ERBB2, ERBB1 (epidermal growth factor receptor) and ERBB4, respectively (Stein et al 1994 supra; Ooi et al, 1995 supra; Baker et al, Genomics 36, 218-220, 1996). The juxtaposition of GRB7 and ERBB2 leads to common co-amplification in human breast cancers. and since the two gene products are functionally linked, likely up-regulation of an undefined erbB2 signalling pathway. Furthermore, GRB14 also exhibits differential expression in human breast cancers (Daly et al, 1996 supra). These two proteins may therefore modulate RTK signalling in this disease.

In order to identify proteins which bind to this family and therefore identify candidate effectors, we performed a genetic screen using the yeast two hybrid system and Grb14 "bait". This application describes the cloning and characterization of a novel interacting protein, currently designated 2.2412.

10

15

20

25

30

35

Disclosure of the Invention:

Thus, in a first aspect, the present invention provides an isolated polynucleotide molecule encoding a candidate effector protein for the Grb7 family of signalling proteins, wherein the polynucleotide molecule comprises a nucleotide sequence having at least 75% sequence identity to that shown as SEQ ID NO: 1.

Preferably, the polynucleotide molecule comprises a nucleotide sequence having at least 85%, more preferably at least 95%, sequence identity to that shown as SEQ ID NO: 1. Most preferably, the polynucleotide molecule comprises a nucleotide sequence encoding a polypeptide comprising an amino acid sequence substantially corresponding to that shown as SEQ ID NO: 2.

In a preferred embodiment of the invention of the first aspect, the polynucleotide molecule comprises a nucleotide sequence which substantially corresponds to that shown as SEQ ID NO: 1.

The polynucleotide molecule may be a dominant negative mutant which encodes a gene product causing an altered phenotype by, for example, reducing or eliminating the activity of endogenous effector proteins of the Grb7 family of signalling proteins.

The polynucleotide molecule may be incorporated into plasmids or expression vectors (including viral vectors), which may then be introduced into suitable host cells such as bacterial, yeast, insect and mammalian host cells. Such host cells may be used to express the protein encoded by the polynucleotide molecule.

Accordingly, in a second aspect, the present invention provides a host cell transformed with the polynucleotide molecule of the first aspect.

In a third aspect, the present invention provides a method of producing a protein, comprising culturing the host cell of the second aspect under conditions suitable for the expression of the polynucleotide molecule and optionally recovering the protein.

Preferably, the host cell is mammalian or of insect origin. Where the cell is mammalian, it is presently preferred that it be a Chinese hamster ovary (CHO) cell or human embryonic kidney (HEK) 293 cell. Where the host cell is of insect origin, it is presently preferred that it be an insect Sf9 cell.

WO 99/15647

5

10

15

20

25

30

In a fourth aspect, the present invention provides a purified protein encoded by the polynucleotide molecule of the first aspect.

In a preferred embodiment of this aspect, the purified protein comprises an amino acid sequence substantially corresponding to that shown as SEQ ID NO: 2.

In a fifth aspect, the present invention provides a fusion protein comprising an amino acid sequence substantially corresponding to that shown as SEQ ID NO: 2.

Fusion proteins according to the fifth aspect may include an N-terminal fragment of a protein such as β -galactosidase to assist in the expression and selection of host cells expressing candidate effector protein, or may include a functional fragment of any other suitable protein to confer additional activity(ies).

In a sixth aspect, the present invention provides an antibody or fragment thereof which specifically binds to the protein of the fourth aspect.

The antibody may be monoclonal or polyclonal, however, it is presently preferred that the antibody is a monoclonal antibody. Suitable antibody fragments include Fab, F(ab')₂ and scFv.

In a seventh aspect, the present invention provides an oligonucleotide probe comprising a nucleotide sequence of at least 12 nucleotides, the oligonucleotide probe comprising a nucleotide sequence such that the oligonucleotide probe selectively hybridises to the polynucleotide molecule of the first aspect under high stringency conditions (Sambrook et al., Molecular Cloning: a Laboratory Manual, Second Edition. Cold Spring Harbor Laboratory Press).

In a preferred embodiment of this aspect, the oligonucleotide probe is labelled. In a further preferred embodiment of this aspect, the oligonucleotide probe comprises a nucleotide sequence of at least 18 nucleotides.

In an eighth aspect, the present invention provides a method of detecting in a sample the presence of an effector protein for the Grb7 family of proteins, the method comprising reacting the sample with an antibody or fragment thereof the sixth aspect, and detecting the binding of the antibody or fragment thereof.

15

20

25

30

35

The method of the eighth aspect may be conducted using any immunoassays well known in the art (e.g. ELISA). The sample may be, for example, a cell lysate or homogenate prepared from a tissue biopsy.

In a ninth aspect, the present invention provides a method of detecting in a sample the presence of mRNA encoding an effector protein for the Grb7 family of proteins, the method comprising reacting the sample with an oligonucleotide probe of the seventh aspect, and detecting the binding of the probe.

The method of the ninth aspect may be conducted using any hybridisation assays well known in the art (e.g. Northern blot). The sample may be a poly(A) RNA preparation or homogenate prepared from a tissue biopsy.

Grb7 family proteins exhibit differential expression in certain human cancers (particularly breast and prostate cancer) and may therefore be involved in tumour progression. Detection of the protein encoded by the cDNA 2.2412 in a sample should provide a useful tumour marker and/or prognostic indicator for these cancers. Furthermore, the interaction of Grb7 family members with 2.2412 may provide a novel target for therapeutic intervention.

It is to be understood that methods of detecting suitable agonists and methods of therapy utilising detected agonists also form part of the present invention.

The term "substantially corresponds" as used herein in relation to the nucleotide sequence shown as SEQ ID NO: 1 is intended to encompass minor variations in the nucleotide sequence which due to degeneracy in the DNA code do not result in a change in the encoded protein. Further, this term is intended to encompass other minor variations in the sequence which may be required to enhance expression in a particular system but in which the variations do not result in a decrease in biological activity of the encoded protein.

The term "substantially corresponding" as used herein in relation to the amino acid sequences shown as SEQ ID NO: 2 is intended to encompass minor variations in the amino acid sequences which do not result in a decrease in biological activity of the protein. These variations may include conservative amino acid substitutions. The substitutions envisaged are:-

G, A, V, I, L, M: D, E; N, Q; S, T; K, R, H: F, Y, W, H; and

P. Nα-alkalamino acids.

5

10

15

20

25

30

35

The terms "comprise", "comprises" and "comprising" as used throughout the specification are intended to refer to the inclusion of a stated step, component or feature of group of steps, components of features with or without the inclusion of a further step, component or feature or group of steps, components or features.

The invention will hereinafter be described with reference to the accompanying figure and the following. non-limiting example.

Brief description of the accompanying figure:

Figure 1 provides the nucleotide and amino acid (single letter code) sequence of 2.2412. Numbers refer to distances in base pairs. Ankyrin-type repeat sequences are underlined. An additional repeat sequence is indicated by italics. The stop codon is represented by an asterisk. The original cDNA clone 2.2412 isolated by the two hybrid screen spans nucleotides 694-2664 of this sequence.

Figure 2 provides a map of the 2.2412-binding region on Grb14. A. Structure of the deletion constructs used in the analysis. Gal4 DNA-BD fusion constructs encoding full length Grb14 (FL). the N-terminal (N). central region (C) and N-terminal + central region (N + C) were generated in the vector pAS2.1. B. Results of β -galactosidase activity assays following transformation of the above plasmids into yeast strain Y190 together with the original 2.2412 cDNA clone in pACT-2.

Example: CLONING AND CHARACTERISATION OF 2.2412

Yeast two hybrid screen

The yeast two hybrid system exploits protein-protein interactions to reconstitute a functional transcriptional activator which can then be detected using a gene reporter system (Fields and Sternglanz. TIG. 10. 286-292. 1994). The technique takes advantage of the properties of the Gal4 protein of the yeast S. cerevisiae. The Gal4 DNA binding domain (DNA-BD) or activation domain (AD) alone are incapable of inducing transcription. However, an interaction between two proteins synthesized as DNA-BD- and AD-fusions, respectively, brings the Gal4 domains into close proximity and results in

10

15

20

25

30

35

transcriptional activation of two reporter genes (HIS3 and LacZ) which can be monitored by growth on selective medium and biochemical assays.

A plasmid construct encoding a Gal4 DNA-BD-Grb14 fusion was generated as follows. The plasmid GRB14/pRcCMVF containing full length GRB14 cDNA (Daly et al, 1996) was restricted with HindIII and Klenow treated to create blunt ends, and then digested with Bcll to release three fragments of approximately 1.1, 4.2 and 1.7 kb. The 1.7 kb fragment was isolated and cloned into the Ndel (Klenow treated) and BamHI sites of the yeast expression vector pAS2.1 (Clontech) to generate GRB14/pAS2.1 containing an in-frame fusion of full length Grb14 with the GAL4 DNA-BD. This construct was introduced by electroporation into the yeast strain CG1945 (MATa, ura3-52, his3-200, ade2-101, lys2-801,trp1-901, leu2-3, 112, gal4-542, gal80-538, cyh^r2. LYS2::GAL1UAS-GAL1TATA-HIS3, URA3::GAL417mers(x3)-CYC1TATA-lacZ) selecting for tryptophan prototrophy. The expression of the fusion protein was verified by Western blot analysis with antibodies directed against the Flag epitope and the Gal4. DNA-BD. The recipient strain was then grown to mid-log phase and a human liver cDNA library in the vector pACT2 (Clontech) introduced using the LiAc procedure (Schiestl and Gietz, Curr. Genet. 16, 339-346. 1989). Transformants were then selected for tryptophan, leucine and histidine prototrophy in the presence of 5mM 3-aminotriazole.

From a screen of 1x10⁶ clones, 39 colonies were initially selected on synthetic complete (SC)-leu-his-trp +3AT medium and were then tested for β-galactosidase activity. 12 clones scored positive in the latter assay and were subjected to cycloheximide (CHX) curing to remove the bait plasmid by streaking out on SC-leu media containing 10ug/ml CHX (pAS2-1 contains the CYH2 gene which restores CHX sensitivity to CG1945 cells). This enabled confirmation of the bait dependency of LacZ activation and subsequent isolation of the pACT2 plasmids encoding interacting proteins by standard methodology (Philippsen et al, Methods in Enzymology 194, 170-177). Back transformations were then performed in which these pACT2 plasmids were introduced into CG1945 strains containing the bait plasmid (GRB14/pAS2-1) or constructs encoding non-related Gal4 DNA-BD fusions in order to confirm the specificity of the interactions.

The DNA sequences of the cDNA inserts were then obtained by cycle sequencing (f-mol kit. Promega) using pACT2-specific and/or clone-specific

25

30

35

primers. Based on their nucleotide sequences the 12 interacting clones were classified into 6 independent groups (see Table I).

TABLE I: Characterization of cDNA clones isolated by the yeast two hybrid screen.

	Class	No. of clones	Identity	Mean RLU (Liquid assay)	Colour intensity (Filter assay)
10	1	6	Nedd4	2.86x10 ⁶	++++
10	2	2	Htk	1.86×10^5	++
	3	1	2.2412	5.18×10^6	++++
	4	1	Proleosome	3.88×10^{2}	+/-
15	5	1	Somatostatin receptor	1.45x10 ³	+/-
13	6	1	L-arginine:glycine amidinotransferase	8.61x10 ²	+/-

The 12 clones exhibiting activation of both the HIS3 and lacZ reporter genes were divided into 6 groups by sequence analysis of their cDNA inserts. Results of β -galactosidase activity assays performed using two methodologies are shown. The liquid culture-derived method (Galacto-Light, TROPIX) is more quantitative: results are given in mean relative light units (RLU) and are normalized for the protein content of the samples. Blue/white screening of the cDNA clones was also performed using a colony lift filter assay (Clontech). The intensity of blue colour development over approximately 2h is scored from +/- (very weak) to ++++ (strong).

Six clones were partial cDNAs corresponding to Nedd4, a multidomain protein containing a calcium-dependent phospholipid binding (CaLB) domain, four WW domains and a C-terminal region homologous to the E6-AP carboxyl-terminus (Kumar et al, Biochem. Biophys. Res. Commun. 185. 1155-1161, 1992; Sudol et al J. Biol. Chem. 270, 14733-14741, 1995; Huibregtse et al Proc. Natl. Acad. Sci. USA 92, 2563-2567, 1995). The latter is likely to confer E3 ubiquitin-protein ligase activity on Nedd4. The pACT2 clones isolated encoded the CaLB domain together with the first 22 amino acids of the first WW domain.

Two clones encoded the intracellular region and part of the extracellular domain of Htk. which is a RTK of the Eph family (Bennett et al J. Biol. Chem. 269. 14211-14218. 1994). The recruitment of Grb14 by Htk is of interest for two reasons. First, the expression profile of both Htk and the murine homologue myk-1 are indicative of a potential role in mammary gland development and neoplasia (Andres et al Oncogene 9. 1461-1467. 1994: Berclaz et al Biochem. Biophys. Res. Comm. 226. 869-875. 1996). Second, Eph family members may be involved in the regulation of cell migration (Tessier-Lavigne, Cell 82, 345-348, 1995), which is intriguing given the homology of the Grb7 family to the C. elegans protein mig10 (Stein et al. 1994 supra).

A novel cDNA of 1971 bp. designated 2.2412. was also isolated. This clone encoded a polypeptide of 657 amino acids in frame with the Gal4 DNA-BD. The cDNA did not contain a stop codon, and this, together with the Northern analysis described below, indicated that it was incomplete. This DNA fragment was therefore used as a probe to screen a human placental cDNA library (5' STRETCH PLUS, Clontech, in \$\lambda\text{gt10}\$). This resulted in the isolation of two clones, designated clone 8 and clone 12. Clone 8 was approximately 2 kb and overlapped the original 2.2412 clone by 900 bp at the 3' end. This clone provided the carboxy-terminal end of the 2.2412 protein sequence (Figure 1). Clone 12 was approximately 3.5 kb and to date has provided an additional 692 bp of sequence information in the 5' direction. The nucleotide and protein sequence for 2.2412 provided by these overlapping clones is shown in Figure 1. Since a 5' initiation codon has yet to be identified the coding sequence still appears to be incomplete.

Further characterization of 2.2412

Database searches using the 2.2412 cDNA sequence revealed significant homology with a large number of proteins containing ankyrin-like repeats. These sequences were first identified as homologous regions between certain cell cycle regulatory proteins and the Drosophila protein Notch (Breeden and Nasmyth. *Nature* 329, 651-654, 1987) but subsequently they have been identified in a wide variety of other proteins where they are thought to function in protein-protein interactions (Bork. *Proteins* 17, 363-374, 1993). Subsequent analysis of the protein sequence identified 18 consecutive ankyrin repeats and an additional repetitive element (Figure 1). The ankyrin repeat region is followed by a stretch of approximately 40 amino

10

acids rich in serine residues. The remaining C-terminal region has a relatively high content of charged amino acids.

Northern analysis of 2.2412 mRNA expression

Northern blot analysis of multiple tissue northerns (Clontech) was performed using the original 2.2412 cDNA as a probe. This resulted in the detection of a single mRNA transcript of approximately 7 kb in all tissues examined with the exception of the kidney. Expression was particularly high in skeletal muscle and placenta. The size of this transcript compared to that of the 2.2412 clone indicates that the latter represents only a partial cDNA.

Genomic localization of the 2.2412 gene

Fluorescence in situ hybridization of the original 2.2412 cDNA to normal metaphases (Baker et al, 1996 supra) and reference to the FRA10A fragile site at 10q23.32 localized the gene to between chromosome 10q23.2 and proximal 10q23.32. Interestingly, deletions in the 10q22-25 region of chromosome 10 have been detected in a variety of human cancers including breast, prostate, renal, small cell lung and endometrial carcinomas, glioblastoma multiforme, melanoma and meningiomas, suggesting the presence of one or more tumour suppressive loci in this region (Li et al, Science 275, 1943-1947. 1997; Steck et al, Nature Genetics 15, 356-362. 1997, and references therein). Two candidate tumour suppressor genes have been identified in this region (MMAC1/PTEN and MXI1. Li et al 1997 supra; Steck et al 1997 supra; Albarosa et al, Hum. Genet. 95, 709-711. 1995).

25

30

35

20

5

10

15

Analysis of the interaction between 2.2412 and Grb7 family members

cDNAs encoding the full length and N- and C-terminal regions of the original 2.2412 cDNA clone (nucleotides 694-2664, 694-1614 and 1615-2664 of the sequence shown in Figure 1, respectively) were cloned into the vector pGEX4T2 (Pharmacia). The full length construct was generated by subcloning from the pACT2 clone as a NdeI fragment, whereas the shorter constructs were synthesized by directional cloning of PCR products. The corresponding GST-fusion proteins were purified from IPTG-induced bacterial cultures using glutathione-agarose beads (Smith and Johnson, Gene 67, 31-40, 1988). These immobilized fusion proteins were then incubated with lysates from cells expressing Flag epitope-tagged Grb14 (Daly et al, 1996).

15

20

25

30

supra) or human breast cancer cells expressing high levels of Grb7 (SK-BR-3: Stein et al, 1994) as described previously (Daly et al. 1996). Following washing, bound proteins were detected by Western blot analysis. The results indicated that 2.2412 bound specifically to both Grb14 and Grb7 in vitro, and that the N-terminal fusion protein bound more strongly than that derived from the C-terminus. These data, obtained using a different methodology for detecting protein-protein interactions to the yeast two hybrid system, confirm that 2.2412 interacts with Grb14. Furthermore, 2.2412 also binds Grb7. Consequently 2.2412 appears to represent a general effector for the Grb7 family.

Mapping of the 2.2412 binding region on Grb14

In order to identify the region of Grb14 that interacts with 2.2412, a series of Grb14 deletion mutants were generated by cloning PCR fragments synthesized using the appropriate flanking primers into the vector pAS2.1. These fragments spanned the following regions: N-terminus ("N". amino acids 1-110), the central region ("C") encompassing the mig10 homology and the "between PH and SH2" (BPS) domain (amino acids 110-437) and the Nterminal and central regions ("N + C", amino acids 1-437). These plasmids were individually transformed into the yeast strain Y190 (MATa, ura3-52, his3-200, ade2-101, lys2-801, trp1-901, leu2-3, 112, gal4A, gal80A, cyh^r2, LYS2::GAL1UAS-HIS3TATA-HIS3, URA3::GAL1UAS-GAL1TATA-lacZ) and expression of the appropriately sized Gal4 DNA-BD fusion proteins confirmed by Western blotting. Following transformation of the resulting yeast strains with the original 2.2412 cDNA clone in pACT-2, the strength of the interaction was determined by either liquid- or filter-based βgalactosidase assays. The results are presented in Figure 2, and demonstrate that the N-terminal region of Grb14 is not only required, but is also sufficient, for binding 2.2412. This supports the hypothesis that 2.2412 represents a general effector for the Grb7 family, since the N-terminal region of these proteins contains a highly conserved proline-rich motif which may mediate this interaction.

12

It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.

13

Sequence listings:

SEQUENCE LISTING

Applicant: Garvan Institute of Medical Research

Title of Invention: A potential effector for the Grb7 family of signalling proteins.

Current Application Number:

Current Filing Date:

Prior Application Number: PO9388

Prior Application Filing Date: 1997-09-23

Number of ID SEQ Nos: 2

Software: PatentIn Ver. 2.0

SEQ ID NO: 1 Length: 3400 Type: DNA

Organism: Homo sapiens

Sequence: 1

attectette ataatgeatg etettttggt catgetgaag tagteaatet eettttgega 60 catggtgcag accccaatgc tegagataat tggaattata etecteteca tgaagetgea 120 attaaaggaa agattgatgt ttgcattgtg ctgttacagc atggagctga gccaaccatc 180 cgaaatacag atggaaggac agcattggat ttagcagatc catctgccaa agcagtgctt 240 actggtgaat ataagaaaga tgaactctta gaaagtgcca ggagtggcaa tgaagaaaaa 300 atgatggctc tactcacacc attaaatgtc aactgccacg caagtgatgg cagaaagtca 360 actocattac atttggcage aggatataac agagtaaaga ttgtacaget gttactgcaa 420 catggacgtg atgtccatgc taaagataaa ggtgatctgg taccattaca caatgcctgt 480 tettatggte attatgaagt aactgaactt tiggteaage atggtggetg tgtaaatgea 540 atggactigt ggcaattcac tectetteat gaggeagett etaagaacag ggttgaagta 600 tgttctcttc tcttaagtta tggtgcagac ccaacactgc tcaattgtaa gaataaaagt 660 gctatagact tggctcccac accacagtta aaagaaagat tagcatatga atttaaaggc 720 cactcgttgc tgcaagctgc acgagaagct gatgttactc gaatcaaaaa acatctctct 780 ctggaaatgg tgaatttcaa gcatcctcaa acacatgaaa cagcattgca ttgtgctgct 840 qcatctccat atcccaaaag aaagcaaata tgtgaactgt tgctaagaaa aggagcaaac 900 atcaatgaaa agactaaaga attettgact cetetgeacg tggcatetga gaaageteat 960 aatgatgttg ttgaagtagt ggtgaaacat gaagcaaagg ttaatgctct ggataatctt 1020 ggtcagactt ctctacacag agctgcatat tgtggtcatc tacaaacctg ccgcctactc 1080 ctgagctatg ggtgtgatcc taacattata tcccttcagg gctttactgc tttacagatg 1140 ggaaatgaaa atgtacagca actcctccaa gagggtatct cattaggtaa ttcagaggca 1200 gacagacaat tgctggaagc tgcaaaggct ggagatgtcg aaactgtaaa aaaactgtgt 1260 actgttcaga gtgtcaactg cagagacatt gaagggcgtc agtctacacc acttcatttt 1320 gcagctgggt ataacagagt gtccgtggtg gaatatctgc tacagcatgg agctgatgtg 1380 catgctaaag ataaaggagg ccttgtacct ttgcacaatg catgttctta cggacattat 1440 gaagttgcag aacttcttgt taaacatgga gcagtagtta atgtagctga tttatggaaa 1500 tttacacctt tacatgaagc agcagcaaaa ggaaaatatg aaatttgcaa acttctgctc 1560 cagcatggtg cagaccctac aaaaaaaaac agggatggaa atactccttt ggatcttgtt 1620 aaagatggag atacagatat tcaagatctg cttaggggag atgcagcttt gctagatgct 1680 gccaagaagg gttgtttagc cagagtgaag aagttgtctt ctcctgataa tgtaaattgc 1740 egegatacce aaggeagaca tteaacacet ttacatttag eagetggtta taataattta 1800 gaagttgcag agtatttgtt acaacacgga gctgatgtga atgcccaaga caaaggagga 1860 cttattcctt tacataatgc agcatcttac gggcatgtag atgtagcagc tctactaata 1920

aagtataatg catctctcaa tgccacggac aaatgggctt tcacaccttt gcacgaagca 1980 gcccaaaagg gacgaacaca gctttgtgct ttgttgctag cccatggagc tgacccgact 2040 cttaaaaatc aggaaggaca aacaccttta gatttagttt cagcagatga tgtcagcgct 2100 cttctgacag cagccatgcc cccatctgct ctgccctctt gttacaagcc tcaagtgctc 2160 aatggtgtga gaagcccagg agccactgca gatgctctct cttcaggtcc atctagccca 2220 tcaagccttt ctgcagccag cagtcttgac aacttatctg ggagtttttc agaactgtct 2280 tcagtagtta gttcaagtgg aacagagggt gcttccagtt tggagaaaaa ggaggttcca 2340 ggagtagatt ttagcataac tcaattcgta aggaatcttg gacttgagca cctaatggat 2400 atatttgaga gagaacagat cactttggat gtattagttg agatggggca caaggagctg 2460 aaggagattg gaatcaatgc ttatggacat aggcacaaac taattaaagg agtcgagaga 2520 cttatctccg gacaacaagg tottaaccca tatttaactt tgaacacctc tggtagtgga 2580 acaattetta tagatetgte teetgatgat aaagagttte agtetgtgga ggaagagatg 2640 caaagtacag ttcgagagca cagagatgga ggtcatgcag gtggaatctt caacagatac 2700 aatattetea agatteagaa ggtttgtaac aagaaactat gggaaagata cacteacegg 2760 agaaaagaag tttctgaaga aaaccacaac catgccaatg aacgaatgct atttcatggg 2820 totoottttg tgaatgoaat tatooacaaa ggotttgatg aaaggoatgo gtacataggt 2880 ggtatgtttg gagctggcat ttattttgct gaaaactctt ccaaaaagcaa tcaatatgta 2940 tatggaattg gaggaggtac tgggtgtcca gttcacaaag acagatcttg ttacatttgc 3000 cacaggcage tgetettttg eegggtaace ttgggaaagt ettteetgea gtteagtgea 3060 atgaaaatgg cacattetee tecaggteat cacteagtea etggtaggee cagtgtaaat 3120 ggcctagcat tagctgaata tgttatttac agaggagaac aggcttatcc tgagtattta 3180 attacttacc agattatgag geetgaaggt atggtegatg gataaatagt tattttaaga 3240 aactaattee aetgaaceta aaateateaa ageageagtg geetetaegt tittaeteett 3300 tgctgaaaaa aaatcatctt gcccacaggc ctgtggcaaa aggataaaaa tgtgaacgaa 3360 gtttaacatt ctgacttgat aaagctttaa taatgtacag

SEQ ID NO: 2 Length: 1074 Type: PRT

Organism: Homo sapiens

Sequence: 2

Ile Pro Leu His Asn Ala Cys Ser Phe Gly His Ala Glu Val Val Asn

Leu Leu Arg His Gly Ala Asp Pro Asn Ala Arg Asp Asn Trp Asn

Tyr Thr Pro Leu His Glu Ala Ala Ile Lys Gly Lys Ile Asp Val Cys

Ile Val Leu Leu Gln His Gly Ala Glu Pro Thr Ile Arg Asn Thr Asp

Gly Arg Thr Ala Leu Asp Leu Ala Asp Pro Ser Ala Lys Ala Val Leu

Thr Gly Glu Tyr Lys Lys Asp Glu Leu Leu Glu Ser Ala Arg Ser Gly

Asn Glu Glu Lys Met Met Ala Leu Leu Thr Pro Leu Asn Val Asn Cys

His Ala Ser Asp Gly Arg Lys Ser Thr Pro Leu His Leu Ala Ala Gly

Tyr Asn Arg Val Lys Ile Val Gln Leu Leu Gln His Gly Arg Asp

Val His Ala Lys Asp Lys Gly Asp Leu Val Pro Leu His Asn Ala Cys

14	15					150					155					160
Se	er	Tyr	Gly	His	Tyr 165	Glu	Val	Thr	Glu	Leu 170	Leu	Val	Lys	His	Gly 175	Gly
Cy	ys	Val	Asn	Ala 180	Met	Asp	Leu	Trp	Gln 185	Phe	Thr	Pro	Leu	His 190	Glu	Ala
A.	la	Ser	Lys 195	Asn	Arg	Val	Glu	Val 200	Cys	Ser	Leu	Leu	Leu 205	Ser	Туr	Gly
A.	la	Asp 210	Pro	Thr	Leu	Leu	Asn 215	Cys	Lys	Asn	Lys	Ser 220	Ala	Ile	Asp	Leu
	la 25	Pro	Thr	Pro	Gln	Leu 230	Lys	Glu	Arg	Leu	Ala 235	Tyr	Glu	Phe	Lys	Gly 240
H	is	Ser	Leu	Leu	Gln 245	Ala	Ala	Arg	Glu	Ala 250	Asp	Val	Thr	Arg	Ile 255	Lys
L	ys	His	Leu	Ser 260	Leu	Glu	Met	Val	Asn 265	Phe	Lys	His	Pro	Gln 270	Thr	His
			275					280					285	Lys		
		290					295					300		Asn		
3	05					310					315			Lys		320
					325					330				Val	335	
		_		340					345					Tyr 350		
			355					360					365	Asp		
		370					375					380		Asn		
3	85					390					395			Ser		400
					405					410				Glu	415	
				420					425					11e 430		
			435					440					445	Arg		
		450					455					460		Ala		
L	ys	Gly	Gly	Leu	Val	Pro	Leu	His	Asn	Ala	Cys	Ser	Tyr	Gly	His	Tyr

465					470					475					480
Glu	Val	Ala	Glu	Leu 485	Leu	Val	Lys	His	Gly 490	Ala	Val	Val	Asn	Val 495	Ala
Asp	Leu	Trp	Lys 500	Phe	Thr	Pro	Leu	His 505	Glu	Ala	Ala	Ala	Lys 510	Gly	Lys
Tyr	Glu	Ile 515	Cys	Lys	Leu	Leu	Leu 520	Gln	His	Gly	Ala	Asp 525	Pro	Thr	Lys
Lys	Asn 530	Arg	Asp	Gly	Asn	Thr 535	Pro	Leu	Asp	Leu	Val 540	Lys	Asp	Gly	Asp
Thr 545	Asp	Ile	Gln	Asp	Leu 550	Leu	Arg	Gly	Asp	Ala 555	Ala	Leu	Leu	Asp	Ala 560
Ala	Lys	Lys	Gly	Cys 565	Leu	Ala	Arg	Val	Lys 570	Lys	Leu	Ser	Ser	Pro 575	Asp
Asn	Val	Asn	Cys 580	Arg	Asp	Thr	Gln	Gly 585	Arg	His	Ser	Thr	Pro 590	Leu	His
Leu	Ala	Ala 595	Gly	Tyr	Asn	Asn	Leu 600	Glu	Val	Ala	Glu	Tyr 605	Leu	Leu	Gln
His	Gly 610	Ala	Asp	Val	Asn	Ala 615	Gln	Asp	Lys	Gly	Gly 620	Leu	Ile	Pro	Leu
His 625	Asn	Ala	Ala	Ser	Tyr 630	Gly	His	Val	Asp	Val 635	Ala	Ala	Leu	Leu	Ile 640
Lys	Tyr	Asn	Ala	Ser 645	Leu	Asn	Ala	Thr	Asp 650	Lys	Trp	Ala	Phe	Thr 655	Pro
			Ala 660					665					670		
		675	Gly				680					685			
Pro	Leu 690	Asp	Leu	Val	Ser	Ala 695	Asp	Asp	Val	Ser	Ala 700	Leu	Leu	Thr	Ala
705			Pro		710					715					720
Asn	Gly	Val	Arg	Ser 725	Pro	Gly	Ala	Thr	Ala 730	Asp	Ala	Leu	Ser	Ser 735	Gly
Pro	Ser	Ser	Pro 740	Ser	Ser	Leu	Ser	Ala 745	Ala	Ser	Ser	Leu	Asp 750	Asn	Leu
Ser	Gly	Ser 755	Phe	Ser	Glu	Leu	Ser 760	Ser	Val	Val	Ser	Ser 765	Ser	Gly	Thr
Glu	Gly 770		Ser	Ser	Leu	Glu 775	Lys	Lys	Glu	Val	Pro 780	Gly	Val	Asp	Phe
Ser	Ile	Thr	Gln	Phe	Val	Arg	Asn	Leu	Gly	Leu	Glu	His	Leu	Met	Asp

WO 99/15647

785					790					795					800
Ile	Phe	Glu	Arg	Glu 805	Gln	Ile	Thr	Leu	Asp 810	Val	Leu	Val	Glu	Met 815	Gly
His	Lys	Glu	Leu 820	Lys	Glu	Ile	Gly	Ile 825	Asn	Ala	Tyr	Gly	His 830	Arg	His
Lys	Leu	Ile 835	Lys	Gly	Val	Glu	Arg 840	Leu	Ile	Ser	Gly	Gln 845	Gln	Gly	Leu
Asn	Pro 850	Tyr	Leu	Thr	Leu	Asn 855	Thr	Ser	Gly	Ser	Gly 860	Thr	Ile	Leu	Ile
Asp 865	Leu	Ser	Pro	Asp	Asp 870	Ьys	Glu	Phe	Gln	Ser 875	Val	Glu	Glu	Glu	Met 880
Gln	Ser	Thr	Val	Arg 885	Glu	His	Arg	Asp	Gly 890	Gly	His	Ala	Gly	Gly 895	Ile
Phe	Asn	Arg	Tyr 900	Asn	Ile	Leu	Lys	11e 905	Gln	Lys	Val	Cys	Asn 910	Lys	Lys
Leu	Trp	Glu 915	Arg	Tyr	Thr	His	Arg 920	Arg	Lys	Glu	Val	Ser 925	Glu	Glu	Asn
His	Asn 930	His	Ala	Asn	Glu	Arg 935	Met	Leu	Phe	His	Gly 940	Ser	Pro	Phe	Val
Asn 945	Ala	Ile	Ile	His	L ys 950	Gly	Phe	Asp	Glu	Arg 955	His	Ala	Tyr	Ile	Gly 960
Gly	Met	Phe	Gly	Ala 965	Gly	Ile	Tyr	Phe	Ala 970	Glu	Asn	Ser	Ser	Lys 975	Ser
Asn	Gln	Tyr	Val 980	Туr	Gly	Ile	Gly	Gly 985	Gly	Thr	Gly	Cys	Pro 990	Val	His
Lys	Asp	Arg 995	Ser	Cys	Tyr		Cys 1000	His	Arg	Gln	Leu :	Leu 1005	Phe	Cys	Arg
	Thr 1010	Leu	Gly	Lys		Phe 1 01 5	Leu	Gln	Phe	Ser	Ala 1020	Met	Lys	Met	Ala
His 1025		Pro	Pro		His 1030	His	Ser	Val	Thr	Gly 1035	Arg	Pro	Ser	Val	Asn 1040
Gly	Leu	Ala		Ala 1045	Glu	Tyr	Val	Ile	Tyr 1050	Arg	Gly	Glu	Gln	Ala 1055	Tyr
Pro	Glu		Leu 1060	Ile	Thr	Tyr	Gln	Ile 1065	Met	Arg	Pro	Glu	Gly 1070	Met	Val
Asp	Gly														

Claims:

5

10

15

25

- 1. An isolated polynucleotide molecule encoding a candidate effector protein for the Grb7 family of signalling proteins, wherein the polynucleotide molecule comprises a nucleotide sequence having at least 75% sequence identity to that shown as SEQ ID NO: 1.
- 2. A polynucleotide molecule according to claim 1, wherein the polynucleotide molecule comprises a nucleotide sequence having at least 85% sequence identity to that shown as SEQ ID NO: 1.
 - 3. A polynucleotide molecule according to claim 1, wherein the polynucleotide molecule comprises a nucleotide sequence having at least 95% sequence identity to that shown as SEQ ID NO: 1.
- 4. A polynucleotide molecule according to claim 1, wherein the polynucleotide molecule comprises a nucleotide sequence which substantially corresponds to that shown as SEQ ID NO: 1.
- 5. A host cell transformed with a polynucleotide molecule according to any one of the preceding claims.
 - 6. A host cell according to claim 5, wherein the host cell is a mammalian, insect, yeast or bacterial host cell.
 - 7. A method of producing a protein, comprising culturing the host cell of claim 5 or 6 under conditions suitable for the expression of the polynucleotide molecule and optionally recovering the protein.
- 30 8. A purified protein encoded by a polynucleotide molecule according to any one of claims 1 to 4.
 - 9. A purified protein according to claim 8, wherein the protein comprises an amino acid sequence substantially corresponding to that shown as SEQ ID NO: 2.

- 10. A fusion protein comprising an amino acid sequence substantially corresponding to that shown as SEQ ID NO: 2.
- 11. An antibody or fragment thereof which specifically binds to a proteinaccording to claim 8 or 9.
 - 12. An oligonucleotide probe comprising a nucleotide sequence of at least 12 nucleotides, the oligonucleotide probe comprising a nucleotide sequence such that the oligonucleotide probe selectively hybridises to the polynucleotide molecule of any one of claims 1 to 4 under high stringency conditions.
 - 13. An oligonucleotide probe according to claim 12. wherein the oligonucleotide probe comprises a nucleotide sequence of at least 18 nucleotides.

10

15

- 14. A method of detecting in a sample the presence of an effector protein for the Grb7 family of proteins, the method comprising reacting the sample with an antibody or fragment thereof according to claim 11.
- 15. A method of detecting in a sample the presence of mRNA encoding an effector protein for the Grb7 family of proteins, the method comprising reacting the sample with an oligonucleotide probe of claim 12 or 13.

GURE	
UUKE	

ATTCCTCTTCATAATGCATGCTCTTTTGGTCATGCTGAAGTAGTCAATCTCCTTTTGCGACATGGTGCAG $f I$ $f P$ $f L$ $f H$ $f N$ $f A$ $f C$ $f S$ $f F$ $f G$ $f H$ $f A$ $f E$ $f V$ $f V$ $f N$ $f L$ $f L$ $f R$ $f H$ $f G$ $f A$	70
ACCCCAATGCTCGAGATAATTGGAATTATACTCCTCTCCATGAAGCTGCAATTAAAGGAAAGATTGATGT D P N A R D N W N Y T P L H E A A I K G K I D V	140
TTGCATTGTGCTGTTACAGCATGGAGCTGAGCCAACCATCCGAAATACAGATGGAAGGACAGCATTGGAT C I V L L Q H G A E P T I R N T D G R T A L D	210
TTAGCAGATCCATCTGCCAAAGCAGTGCTTACTGGTGAATATAAGAAAGA	280
GGAGTGGCAATGAAGAAAAATGATGGCTCTACTCACACCATTAAATGTCAACTGCCACGCAAGTGATGG $f R \ \ S \ \ f G \ \ \ N \ \ E \ \ E \ \ K \ \ M \ \ A \ \ L \ \ L \ \ T \ \ P \ \ L \ \ N \ \ C \ \ H \ \ A \ \ S \ \ \ f \underline{D} \ \ \ f G$	350
CAGAAAGTCAACTCCATTACATTTGGCAGCAGGATATAACAGAGTAAAGATTGTACAGCTGTTACTGCAA $oldsymbol{ ext{R}}oldsymbol{ ext{K}}oldsymbol{ ext{S}}oldsymbol{ ext{T}}oldsymbol{ ext{P}}oldsymbol{ ext{L}}oldsymbol{ ext{L}}oldsymbol{ ext{Q}}oldsymbol{ ext{S}}oldsymbol{ ext{N}}oldsymbol{ ext{N}}oldsymbol{ ext{N}}oldsymbol{ ext{V}}oldsymbol{ ext{V}}oldsymbol{ ext{L}}oldsymbol{ ext{L}}oldsymbol{ ext{Q}}$	420
CATGGACGTGATGTCCATGCTAAAGATAAAGGTGATCTGGTACCATTACACAATGCCTGTTCTTATGGTC H G R D V H A K D K G D L V P L H N A C S Y G	490
ATTATGAAGTAACTGAACTTTTGGTCAAGCATGGTGGCTGTGTAAATGCAATGGACTTGTGGCAATTCAC H Y E V T E L L V K H G G C V N A M D L W Q F T	560
TCCTCTTCATGAGGCAGCTTCTAAGAACAGGGTTGAAGTATGTTCTCTTCTCTTAAGTTATGGTGCAGAC P L H E A A S K N R V E V C S L L L S Y G A D	630
CCAACACTGCTCAATTGTAAGAATAAAAGTGCTATAGACTTGGCTCCCACACCACACTTAAAAGAAAG	700
TAGCATATGAATTTAAAGGCCACTCGTTGCTGCAAGCTGCACGAGAAGCTGATGTTACTCGAATCAAAAA L A Y E F K G H S L L Q A A R E A D V T R I K K	770
ACATCTCTCTGGAAATGGTGAATTTCAAGCATCCTCAAACACATGAAACAGCATTGCATTGTGCTGCT H L S L E M V N F K H P Q T H E T A L H C A A	840
GCATCTCCATATCCCAAAAGAAAGCAAATATGTGAACTGTTGCTAAGAAAAGGAGCAAACATCAATGAAA A S P Y P K R K Q I C E L L L R K G A N I N E	910
AGACTAAAGAATTCTTGACTCCTCTGCACGTGGCATCTGAGAAAGCTCATAATGATGTTGTTGAAGTAGT K T K E F L T P L H V A S E K A H N D V V E V V	980
GGTGAAACATGAAGCAAAGGTTAATGCTCTGGATAATCTTGGTCAGACTTCTCTACACAGAGCTGCATAT V K H E A K V N A L D N L G Q T S L H R A A Y	1050
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1120
GCTTTACTGCTTTACAGATGGGAAATGAAAATGTACAGCAACTCCTCCAAGAGGGTATCTCATTAGGTAA G F T A L Q M G N E N V Q Q L L Q E G I S L G N	1190
	1260
ACTGTTCAGAGTGTCAACTGCAGAGACATTGAAGGGCGTCAGTCTACACCACTTCATTTTGCAGCTGGGT T V Q S V N C R D I E G R Q S T P L H F A A G	1330
ATAACAGAGTGTCCGTGGTGGAATATCTGCTACAGCATGGAGGTGATGTGCATGCTAAAGATAAAGGAGGYNR VSVVEYLLQHGAROVHAKDKGGG	1400
CCTTGTACCTTTGCACAATGCATGTTCTTACGGACATTATGAAGTTGCAGAACTTCTTGTTAAACATGGA L V P L H N A C S Y G H Y E V A E L L V K H G	1470
GCAGTAGTTAATGTAGCTGATTTATGGAAATTTACACCTTTACATGAAGCAGCAGCAAAAGGAAAATATG A V V N V A D L W K F T P L H E A A A K G K Y	1540
AAATTTGCAAACTTCTGCTCCAGCATGGTGCAGACCCTACAAAAAAAA	1610

GGATCTTGTTAAAGATGGAGATACAGATATTCAAGATCTGCTTAGGGGAGATGCAGCTTTGCTAGATGCT D L V K D G D T D I Q D L L R G D A A L L D A	1680
GCCAAGAAGGGTTGTTTAGCCAGAGTGAAGAAGTTGTCTCTCTGATAATGTAAATTGCCGCGATACCC A K K G C L A R V K K L S S P D N V N C R D T	1750
AAGGCAGACATTCAACACCTTTACATTTAGCAGCTGGTTATAATAATTTAGAAGTTGCAGAGTATTTGTT Q G \underline{R} \underline{H} \underline{S} \underline{T} \underline{P} \underline{L} \underline{H} \underline{L} \underline{A} \underline{A} \underline{G} \underline{Y} \underline{N} \underline{N} \underline{L} \underline{E} \underline{V} \underline{A} \underline{E} \underline{Y} \underline{L} \underline{L}	1820
ACAACACGGAGCTGATGTGAATGCCCAAGACAAAGGAGGACTTATTCCTTTACATAATGCAGCATCTTAC Q H G A D V N A Q D K G G L I P L H N A A S Y	1890
GGGCATGTAGATGAGCAGCTCTACTAATAAAGTATAATGCATCTCTCAATGCCACGGACAAATGGGCTT G H V D V A A L L I K Y N A S L N A T D K W A	1960
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2030
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2100
CTTCTGACAGCCATGCCCCCATCTGCTCTGCCCTCTTGTTACAAGCCTCAAGTGCTCAATGGTGTGA L L T A A M P P S A L P S C Y K P Q V L N G V	2170
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2240
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2310
GCTTCCAGTTTGGAGAAAAAGGAGGTTCCAGGAGTAGATTTTAGCATAACTCAATTCGTAAGGAATCTTG A S S L E K K E V P G V D F S I T Q F V R N L	2380
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2450
CAAGGAGCTGAAGGAGATTGGAATCAATGCTTATGGACATAGGCACAAACTAATTAAAGGAGTCGAGAGA K E L K E I G I N A Y G H R H K L I K G V E R	2520
CTTATCTCCGGACAACAAGGTCTTAACCCATATTTAACTTTGAACACCTCTGGTAGTGGAACAATTCTTA L I S G Q Q G L N P Y L T L N T S G S G T I L	2590
TAGATCTGTCTCCTGATGATAAAGAGTTTCAGTCTGTGGAGGAAGAGATGCAAAGTACAGTTCGAGAGCA I D L S P D D K E F Q S V E E E M Q S T V R E H	2660
CAGAGATGGAGGTCATGCAGGTGGAATCTTCAACAGATACAATATTCTCAAGATTCAGAAGGTTTGTAAC R D G G H A G G I F N R Y N I L K I Q K V C N	2730
AAGAAACTATGGGAAAGATACACTCACCGGAGAAAAGAAGTTTCTGAAGAAAACCACAACCATGCCAATG K K L W E R Y T H R R K E V S E E N H N H λ N	2800
AACGAATGCTATTTCATGGGTCTCCTTTTGTGAATGCAATTATCCACAAAGGCTTTGATGAAAGGCATGC E R M L F H G S P F V N A I I H K G F D E R H λ	2870
GTACATAGGTGGTATGTTTGGAGCTGGCATTTATTTTGCTGAAAACTCTTCCAAAAGCAATCAAT	2940
TATGGAATTGGAGGAGGTACTGGGTGTCCAGTTCACAAAGACAGATCTTGTTACATTTGCCACAGGCAGC Y G I G G T G C P V H K D R S C Y I C H R Q	3010
TGCTCTTTTGCCGGGTAACCTTGGGAAAGTCTTTCCTGCAGTTCAGTGCAATGAAAATGGCACATTCTCC L L F C R V T L G K S F L Q F S A M K M A H S P	3080
TCCAGGTCATCACTCAGTCACTGGTAGGCCCAGTGTAAATGGCCTAGCATTAGCTGAATATGTTATTTAC PGHHSVTGRPSVNGLALAEYVIY	
AGAGGAGAACAGGCTTATCCTGAGTATTTAATTACTTACCAGATTATGAGGCCTGAAGGTATGGTCGATG	3220
GATAAATAGTTATTTTAAGAAACTAATTCCACTGAACCTAAAATCATCAAAGCAGCAGCAGTGGCCTCTACGT	3290

3/4

TTTACTCCTTTGCTGAAAAAAATCATCTTGCCCACAGGCCTGTGGCAAAAGGATAAAAATGTGAACGAA 3360

GTTTAACATTCTGACTTGATAAAGCTTTAATAATGTACAG

4/4

Α

CONSTRUCT	STRUCTURE
N	PRO
c	
N + C	PRO
FL	PRO PH

CONSTRUCT (LIQUID ASSAY) (FILTER ASSAY)

PAS2.1 4
N 109 ++

C 3
N+C 194 +++

INTERNATIONAL SEARCH REPORT

International application No.

PCT/AU 98/00795

		1.01/11	0 70/00/75						
A.	CLASSIFICATION OF SUBJECT MATTER	R							
Int Cl ⁶ :	C12N 15/11, 15/12; C07K 14/46, 19/00, 16/18;	C12N 15/11, 15/12; C07K 14/46, 19/00, 16/18; G01N 33/68; C12Q 1/68							
According to	International Patent Classification (IPC) or to be	oth national classification and IPC							
В.	FIELDS SEARCHED								
Minimum docu See Electron	Minimum documentation searched (classification system followed by classification symbols) See Electronic Databases								
	searched other than minimum documentation to the e ic Databases	extent that such documents are included in t	the fields searched						
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) WPAT (DGENE) - SEQ.ID.NO:2; Genbank, EMBL, Swiss-prot, PIR - SEQ.ID.NO:1, SEQ.ID.NO:2; MEDLINE - Grb7, Grb#, growth factor receptor bound									
C.	DOCUMENTS CONSIDERED TO BE RELEVAN	rr							
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.						
Ā	Janes PW et al. (1997) "Structural determinant erbB2 receptor and the Src homology 2 domain Chemistry volume 272(13) pages 8490-8497. See entire document		1-15						
A	Keegen K and Cooper JA "Use of the two hybri the protein-tyrosine-phosphatase, SHPTP2, wit Grb7" Oncogene volume 12, pages 1537-1544. See entire document	ith another SH2-containing protein.							
	Further documents are listed in the continuation of Box C	See patent family and	nex						
* Special categories of cited documents: "A" . document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family									
	al completion of the international search	Date of mailing of the international search report							
4 November 19		1 1 NOV 1998							
AUSTRALIAN PO BOX 200	ng address of the ISA/AU PATENT OFFICE	Authorized officer							
WODEN ACT AUSTRALIA		JULIE CAIRNDUFF							
Facsimile No.: (02) 6285 3929	Telephone No.: (02) 6283 2545							