UNION

Let A and B be subsets of a universal set U. The union of sets A and B is the set of all elements in U that belong to A or to B or to both, and is denoted $A \cup B$.

Symbolically:

$$A \cup B = \{x \in U \mid x \in A \text{ or } x \in B\}$$

UNION

EXAMPLE:

Let

$$U = \{a, b, c, d, e, f, g\}$$

 $A = \{a, c, e, g\}$
 $B = \{d, e, f, g\}$

Then

$$A \cup B = \{a, c, e, g\} \cup \{d, e, f, g\}$$

= \{a, c, d, e, f, g\}

 $A \cup B$

REMARK

- 1. $A \cup B = B \cup A$
- 2. $A \subseteq A \cup B$ and $B \subseteq A \cup B$

MEMBERSHIP TABLE FOR

 $A \cup B$

A	В	A∪B
1	1	1
1	0	1
0	1	1
0	0	0

INTERSECTION

Let A and B subsets of a universal set U. The intersection of sets A and B is the set of all elements in U that belong to both A and B and is denoted $A \cap B$.

Symbolically:

$$A \cap B = \{x \in U \mid x \in A \text{ and } x \in B\}$$

INTERSECTION

EXMAPLE

Let
$$U = \{a, b, c, d, e, f, g\}$$

 $A = \{a, c, e, g\}$
 $B = \{d, e, f, g\}$

Then

$$A \cap B = \{a, c, e, g\} \cap \{d, e, f, g\}$$

= $\{e, g\}$

VENN DIAGRAM

REMARK

- 1. $A \cap B = B \cap A$
- 2. $A \cap B \subseteq A$ and $A \cap B \subseteq B$
- 3. If $A \cap B = \emptyset$

then A & B are called disjoint sets.

MEMBERSHIP TABLE FOR

 $A \cap B$

Α	В	A∩B
1	1	1
1	0	0
0	1	0
0	0	0

SET DIFFERENCE

Let A and B be subsets of a universal set U. The difference of "A and B" (or relative complement of B in A) is the set of all elements in U that belong to A but not to B, and is denoted A - B or $A \setminus B$.

Symbolically:

 $A - B = \{x \in U \mid x \in A \text{ and } x \notin B\}$

SET DIFFERENCE

EXMAPLE

Let
$$U = \{a, b, c, d, e, f, g\}$$

 $A = \{a, c, e, g\}$
 $B = \{d, e, f, g\}$

Then

$$A - B = \{a, c, e, g\} - \{d, e, f, g\}$$

= $\{a, c\}$

VENN DIAGRAM

REMARKS:

- A B is shaded
- 1. $A B \neq B A$
- 2. $A B \subseteq A$
- 3. A B, $A \cap B$ and B A are mutually disjoint sets.

MEMBERSHIP TABLE FOR

A - B

A	В	A - B
1	1	0
1	0	1
0	1	0
0	0	0

COMPLEMENT

Let A be a subset of universal set U. The complement of A is the set of all element in U that do not belong to A, and is denoted A^c, A or A'

Symbolically:

$$A' = \{ x \in U \mid x \notin A \}$$

COMPLEMENT

EXMAPLE

Let
$$U = \{a, b, c, d, e, f, g\}$$

 $A = \{a, c, e, g\}$

Then

$$A' = \{a, b, c, d, e, f, g\} - \{a, c, e, g\}$$

= $\{b, d, f\}$

VENN DIAGRAM

REMARKS:

1.
$$A' = U - A$$

2.
$$A \cap A' = \emptyset$$

3.
$$A \cup A' = U$$

MEMBERSHIP TABLE FOR

A'

А	A'
1	0
0	1

EXERCISE

Let
$$U = \{1, 2, 3, ..., 10\}$$

 $X = \{1, 2, 3, 4, 5\}$
 $Y = \{y \mid y = 2 \text{ x, x } \in X\}$
 $Z = \{z \mid z^2 - 9 \text{ z} + 14 = 0\}$

Enumerate:

$$(i)X \cap Y$$

$$(ii)Y \cup Z$$

$$(iii)X - Z$$

$$(v)X'-Z'$$

$$(vi)(X-Z)'$$

Given

$$U = \{1, 2, 3, ..., 10\}$$

$$X = \{1, 2, 3, 4, 5\}$$

$$Y = \{y \in U \mid y = 2 \text{ x, x } \in X\}$$
$$= \{2, 4, 6, 8, 10\}$$

$$Z = \{z \in U \mid z^2 - 9z + 14 = 0\}$$
$$= \{2, 7\}$$

(i)
$$X \cap Y = \{1, 2, 3, 4, 5\} \cap \{2, 4, 6, 8, 10\}$$

= $\{2, 4\}$

(ii)
$$Y \cup Z = \{2, 4, 6, 8, 10\} \cup \{2, 7\}$$

= $\{2, 4, 6, 7, 8, 10\}$

(iii)
$$X - Z = \{1, 2, 3, 4, 5\} - \{2, 7\}$$

= $\{1, 3, 4, 5\}$

(iv)
$$Y' = U - Y$$

= $\{1, 2, 3, ..., 10\} - \{2, 4, 6, 8, 10\}$
= $\{1, 3, 5, 7, 9\}$
(v) $X' - Z'$
= $\{6, 7, 8, 9, 10\} - \{1, 3, 4, 5, 6, 8, 9, 10\}$
= $\{7\}$
(vi) $(X - Z)'$
= $U - (X - Z)$
= $\{1, 2, 3, ..., 10\} - \{1, 3, 4, 5\}$
= $\{2, 6, 7, 8, 9, 10\}$

EXERCISE

$$U = \{x \in U \mid x \in Z, 0 \le x \le 10\}$$

$$P = \{x \in U \mid x \text{ is a prime number}\}\$$

$$Q = \{x \in U \mid x^2 < 70\}$$

- (i) Draw a Venn diagram for the above
- (ii) List the elements in $P^c \cap Q$

$$U = \{x \in U \mid x \in Z, 0 \le x \le 10\}$$

= \{0, 1, 2, 3, \ldots, 10\}

$$P = \{x \in U \mid x \text{ is a prime number}\}\$$
$$= \{2, 3, 5, 7\}$$

$$Q = \{x \in U \mid x^2 < 70\}$$

= \{0, 1, 2, 3, 4, 5, 6, 7, 8\}

VENN DIAGRAM

ELEMENTS OF

(ii)
$$P' \cap Q$$

$$P' = U - P$$
= {0, 1, 2, 3, ..., 10} - {2, 3, 5, 7}
= {0, 1, 4, 6, 8, 9, 10}
and
$$P' \cap Q$$
= {0, 1, 4, 6, 8, 9, 10} \cap {0, 1, 2, 3, 4, 5, 6, 7, 8}
= {0, 1, 4, 6, 8}

EXERCISE

Let
$$U = \{1, 2, 3, 4, 5\}$$
 $C = \{1, 3\}$

Where A and B are non empty sets. Find A in each of the following:

(i)
$$A \cup B = U$$
 $A \cap B = \emptyset$ and $B = \{1\}$

EXERCISE

(ii)
$$A \subset B$$
 and $A \cup B = \{4, 5\}$

(iii)
$$A \cap B = \{3\}$$
 $A \cup B = \{2, 3, 4\}$
and $B \cup C = \{1,2,3\}$

(iv) A and B are disjoint, B and C are disjoint, and the union of A and B is the set {1, 2}.

(i)
$$A \cup B = U$$
 $A \cap B = \emptyset$ and $B = \{1\}$

SOLUTION:

Since
$$A \cup B = U$$

= $\{1, 2, 3, 4, 5\}$
and $A \cap B = \emptyset$

Therefore
$$A = B'$$

= $\{1\}'$
= $\{2, 3, 4, 5\}$

(ii)
$$A \subset B$$
 and $A \cup B = \{4, 5\}$ also $C = \{1, 3\}$

SOLUTION:

When
$$A \subset B$$

then $A \cup B = B$
 $= \{4, 5\}$

Also A being a proper subset of B implies

$$A = \{4\}$$
 or $A = \{5\}$

Solution contd...

(iii)
$$A \cap B = \{3\}$$
 $A \cup B = \{2, 3, 4\}$
and $B \cup C = \{1,2,3\}$ Also $C = \{1,3\}$

$$A = \{3, 4\}$$
 $B = \{2, 3\}$

Solution contd...

(iv)
$$A \cap B = \emptyset$$
 $B \cap C = \emptyset$
 $A \cup B = \{1, 2\}$ Also $C = \{1, 3\}$

EXERCISE

- (i) $(A \cap B) \cap C'$ (ii) $A' \cup (B \cup C)$
- (iii) $(A-B) \cap C$ (iv) $(A \cap B') \cup C'$

(i) $(A \cap B) \cap C'$

$$(A \cap B) \cap C' = \{2\}$$

 $(ii)A' \cup (B \cup C)$

$$A' \cup (B \cup C) = \{2, 3, 4, 5, 6, 7, 8\}$$

 $(iii)(A - B) \cap C$

$$(A - B) \cap C = \{4\}$$

(iv) $(A \cap B') \cup C'$

$$(A \cap B') \cup C' = \{1,2,3,4,8\}$$