

PROJECT BACKGROUND

RESEARCH PROCESS

DESIGN PROTOTYPE

EVALUATION

CONCLUSION & FUTURE WORK

Outside Attack

Type of Attacks

- Outside Attack
- Inside Attack

Type of Attacks

- Outside Attack
- Inside Attack

Tampering and Eavesdropping the data

Approach Overview:

OpenStack-Barbican with SGX:
 Plugin TEE technology into KMS (Key Management Service)

Approach

Research Process

Lifecycle of Intel SGX Enclave

Intel SGX Mechanism:

- Enclave
- Attestation
- Sealing

- 1. Fnclave Launch
- 2. Attestation
- 3. Verification
- 4. Provisioning
- 5. Sealing/Unsealing

Research Process

Three Important Stages of Vault

Vault:

- Pluggable Backend Architecture
- Open Source
- AES-GCM for Data Being Stored
- Build for General Purpose
- Premium Service: HSM

Research Process

Three Important Stages of Vault

Vault:

- Pluggable Backend Architecture
- Open Source
- AES-GCM for Data Being Stored
- Build for General Purpose
- Premium Service: HSM

Vault-SGX

Vault Server

Unsealing Vault-SGX

- Keyring key is composed of Master key and Encryption Key
- AES_{Master_key} (Keyring key)
 - -> Initializing Vault
- AES_{Encryption_key}(Master Key)
 - -> Initializing Vault

Vault Server

Stored Data in Database

Vault Server

Contribution:

- AESNI-GCM in SGX
- Vault-SGX

Vault-SGX

Vault Server

OpenSSL vs. Our Solution [Without Intel SGX]

- Why OpenSSL > Our Solution (Throughput)?
- Why OpenSSL < Our Solution (Latency)?
- Why the throughput drops ?
 (Software Input Output Translation Lookaside Buffer)

Intel Solution vs. Our Solution [With Intel SGX]

- Why AESNI-GCM with SGX (Red Line) < AESNI-GCM (Blue Line) when execute small data (Throughput)?
- Why AESNI-GCM with SGX (Red Line) > AESNI-GCM (Blue Line) when execute large data (Throughput)?

Vault-SGX vs. Vault

	Vault	Vault SGX
Unsealing	0.073s	0.115s
Read	0.021s	0.040s
Write	0.020s	0.043s

Vault-SGX

Conclusion & Future Work

Ongoing:

- Vault-SGX
 - Remote Attestation
 - Enclave ID Register Service
- Deploy Vault-SGX on Kubernetes Cluster.

Extension:

ARM TrustZone

Q & A

Why we use cloud?

- Flexibility
- Efficiency
- Strategic Value

TCB of Intel SGX

TEE Solutions of the Different CPU vendor:

- Intel SGX
- ARM TrustZone
- AMD SEV

: TCB

Huge TCB in the ordinary devices

Intel SGX enable device

*TCB: Trusted Computing Base

Retrieved Data from Database

Vault Server

Attestation Mechanism:

- Local Attestation
- Remote Attestation

Local/Remote Attestation

Encrypted 4MB Data

- OpenSSL: 24MB
- Our Solution: 8MB

Memory Used


```
root@nuc7i5tee-NUC7i5BNK:~# free
                                                            buff/cache
                                                                          available
               total
                            used
                                         free
                                                    shared
           16183784
                          438168
                                     11309352
                                                    225344
                                                               4436264
                                                                           15102976
Mem:
            3906556
                                      3906556
Swap:
```

The total amount of memory used without data encryption processing.

AESNI-GCM (Shan) with 4MB data size.

The total amount of memory used when executing the AESNI-GCM (OpenSSL) with 4MB data size.

Memory Used

Encrypted 10 MB Data: OpenSSL: 64MB

```
top - 21:06:20 up 14 days, 8:52, 6 users, load average: 0,62, 0,36, 0,32
Tasks: 1 total, 1 running, 0 sleeping, 0 stopped, 0 zombie
%Cpu(s): 25,0 us, 0,1 sy, 0,0 ni, 74,9 id, 0,0 wa, 0,0 hi, 0,0 si, 0,0 st
KiB Mem : 16183784 total, 11224900 free, 521768 used, 4437116 buff/cache
KiB Swap: 3906556 total, 3906556 free, 0 used. 15018984 avail Mem

PID USER PR NI VIRT RES SHR S %CPU XMEM TIME+ COMMAND
30710 root 20 0 81176 65544 3792 R 100,0 0,4 0:30.69 openssl_10MB
```