Práctica Diseño VLSI 1: Entorno MicroWind2, Diseño Fullcustom y Semicustom

Objetivos: Que el alumno se familiarice con el entorno de diseño VLSI.

Al finalizar la misma el alumno debe:

- Saber definir la tecnología a utilizar para realizar el diseño (Cargar archivos *.RUL File->Select Foundry)
- Dominar la edición geométrica en planta de capas (Pozo n, Áreas de difusión N⁺, P⁺, Polisilicio, Contactos y Metales).
- Realizar e interpretar cortes verticales y representación 3D del diseño.
- Salva y lectura de Diseños en diferentes tecnologías.
- Realizar diseño de transistores nMos, pMos, e interpretar las curvas de funcionamiento.
- Que el alumno sea capaz de realizar diseños fullcustom y semicustom en Microwind2 de inversores, puertas NAND, NOR y aplicaciones, así como simular dichos circuitos y analizar los resultados.

Ejercicio 1: Ejecutar Microwind2, activar la tecnología que corresponda y completar la siguiente tabla:

Características	Tecnología 0.18 μm	Tecnología 0.25 μm
Lambda		
Longitud mínima del canal (en unidades Lambda)		
Longitud mínima del canal (en μm)		

Ejercicio 2: Ejecutar Microwind2, inicializar un nuevo diseño usando la tecnología de 0,12 μm.

- a) Dibujar las capas de materiales semiconductores o metales según muestra la figura 1. Guardar el diseño en una carpeta de trabajo con nombre: **P1_A_bak.msk** y **P1_A.msk**. Verificar las reglas de diseño y visualizar mediante cortes transversales (figura 2)
- b) Comprobar las dimensiones de las diferentes capas (figura 3), insertar Contactos N+Diff/Metal1, Polisilicio/Metal1, Metal1/Metal2, Guardar el nuevo diseño con nombre P1_B.msk y P1_B_bak.msk

Figura 1.

Figura 2.

Figura 3

Ejercicio 3: Para el diseño del circuito de la figura 4, en el cual R=2K5 y Vdd=2V se requiere un transistor nMOS con las características geométricas W/L= $8\lambda/2$ λ en tecnología de 0,12 μ m.

Figura 4

a) Diseñar mediante capas (Layouts) un transistor compatible con el transistor del circuito (P1_C.msk) Verificar las reglas de diseño. A continuación visualizar las gráficas (Id max vs Vgs) e (Id vs Vds).

(Copiar de la pantalla de Microwind2 a la zona de respuesta habilitada a continuación)

Layout nMOS:		

I	d (max) vs Vgs			

	Id vs Vds	
b)	Determinar y representar en la gráfica el val	or de Vth n:
c)	Delimitar en la grafica con una curva las zon transistor diseñado.	nas de funcionamiento (zona lineal y zona de saturación) del
d)	Cuál es la longitud del canal en µm del trans	sistor diseñado:
e)		estre toda la estructura del transistor (substrato, fuente, delo de fabricación en 3D. (Copiar de la pantalla a la zona figuras.
	Corte Transversal:	Modelo 3D

Comentario:			

 f) Completar la siguiente tabla considerando el circuito de la figura 4 y el transistor nMOS diseñado. (sugerencia: superponer la recta de carga del circuito en la gráfica de salida del transistor nMOS en MW2)

Vin (V	7)	Vout(V)	Id (μA)	Zona de Trabajo	En caso de Id>0:
					/Vds/>/Vgs-Vth/?
					(Si ó No)
0.3					
1.0					
2-0					

Ejercicio 4: En el circuito de la figura 5, en el cual Vdd=2V, el transistor pMOS tiene las características geométricas W/L=4 λ /2 λ en tecnología de 0,12 μ m.

Figura 5

a) Diseñar mediante capas (Layouts) un transistor compatible con el transistor del circuito (**P1_D.msk**) Verificar las reglas de diseño. A continuación visualizar las gráficas (Id max vs Vgs) e (Id vs Vds).

(Copiar de la pantalla de Microwind2 a la zona de respuesta habilitada a continuación)

Layout pMOS:	
Id (max) vs Vgs	
Id vs Vds	

a) Consultar las gráficas de funcionamiento del transistor, localizar el punto de trabajo en cada caso, y completar la siguiente tabla:

Vin (V)	Vout(V)	Vgs (V)	Vds (V)	Id (μA)	Zona de Trabajo	En caso de Id>0: /Vds/>/Vgs-Vth/?
0.2	0.5V					(Si ó No)
1.4	1.0V					
0.8	1.8V					

Ejercicio 5: Diseñar un inversor cMOS fullcustom en Microwind2, tecnología 50 nm, con nMOS W= 6λ L= 2λ, y pMOS W= 6λ L= 2λ para su funcionamiento en el rango de 0 a 2.5 V de tensión en la señal de entrada.
Utilizar la guía incluida en el archivo Layout_not.pdf y comprobar las reglas de diseño en cada paso.
a)- Captura del diseño geométrico:
b)- Simular el circuito inversor suministrando una señal senoidal de 2GHz, con amplitud de 1.25V con un desplazamiento de 1.25V.
Captura del diagrama de voltajes de simulación: (Visualizar al menos 2 períodos de la señal de entrada)

roonoiogia	ao oom	patadoroo		Dioono y	Ommanaore	711 V L O 11. 1	raotioa i o
c)- Captura de l	la función de	e transferencia	::				
1) C		. 11 1-	,	1.1.1			
d)- Completar l							
Voh	Vol	Vil max	Vih min	MR h	MR 1		
	T. 1.1	1 17 1 17	17				
		a de Verdad E		1			
	Casos 1	V Entrada	V Salida				
Leyenda:	2						
-	MR Marger	ı de Ruido, o	-output, i-inpu	ıt, h- high , l	-low, max- m	áximo, min-	mínimo
e)- Dibujar el e	squemático	del circuito si	mulado y los				
cada caso de la		rdad Eléctrica					
Circuito Esque	mático:		Caso 1:		C	Caso 2:	

Ejercicio 6: Diseñar 3 inversores semicustom	con las propiedades	que se indican a	continuación,	simular y
obtener las funciones de transferencia en cada	uno de ellos.			

Inversor 1: nMOS W= 4λ L= 2λ , y pMOS W= 24λ L= 2λ

Inversor 2: nMOS W= 4λ L= 2λ , y pMOS W= 4λ L= 2λ

Inversor 3: nMOS W= 24λ L= 2λ , y pMOS W= 4λ L= 2λ

Captura de Diseños

Inversor 1 Inversor 2 Inve	rsor 3
Función de Transferencia Inversor 1	

Función de Transferencia Inversor 2
Función de Transferencia Inversor 3
runcion de Fransferencia Inversor 3
Comparar las Funciones de Transferencia de los inversores y realizar conclusiones.

Ejercicio 7: En la figura 6 se presenta un diseño geométrico semicustom (W=8λ, L=2λ, 0,12 μm).

Figura 6

a) Analizar el diseño y obtener el circuito esquemático correspondiente

b) Simular con los siguientes valores y verificar su funcionalidad

Entrada A: tl = 0.115 ns tr = 0.025 ns th = 0.115 ns tf = 0.025 ns

Entrada B: tl = 0.255 ns tr = 0.025 ns th = 0.255 ns tf = 0.025 ns

Con valores de tensión High Level = 1.20 V y Low Level = 0.00 V.

Ejercicio 8: Utilizando una plantilla similar a la usada en la figura 8.a diseñar en MicroWind2 el circuito del esquemático de la figura 8.b (NOR CMOS de dos entradas) con tecnología semicustom de 0.18 μm con transistores pMOS W=8λ, L=2λ y nMOS W=4λ, L=2λ.

Figura 8.a

Figura 8.b Esquemático NOR – CMOS – dos entradas

a)- Captura del diseño geométrico:

b)- Simular el circuito con los siguientes datos para las señales de entrada:

Entrada A: tl = 0.115 ns tr = 0.025 ns th = 0.115 ns tf = 0.025 ns

Entrada B: tl = 0.255 ns tr = 0.025 ns th = 0.255 ns tf = 0.025 ns

Con valores de tensión High Level = 1.20 V y Low Level = 0.00 V.

	igrama de v	oltajes de sim	iulacion: (Visi	ializar al meno	os 2 períodos de la señal de entrada B)
) C 1	1 1 1	1 1 1/ / *	٠.٣	c :	
c)- Completar				que funciona co	orrectamente.
	_	la de Verdad		1	¬
	Casos 1	Entrada A	Entrada B	Salida	_
	2				
	3				
	1 4				\dashv
	4				
d) Dibujar el ci		ıl equivalente	para un caso o	londe la salida	del circuito es baja "Low".
d) Dibujar el ci		ıl equivalente	para un caso o	donde la salida	del circuito es baja "Low".
d) Dibujar el ci		ıl equivalente	para un caso o	donde la salida	del circuito es baja "Low".
d) Dibujar el ci		ıl equivalente	para un caso o	londe la salida	del circuito es baja "Low".
d) Dibujar el ci		l equivalente	para un caso o	donde la salida	del circuito es baja "Low".
d) Dibujar el ci		ıl equivalente	para un caso o	donde la salida	del circuito es baja "Low".
d) Dibujar el ci		ıl equivalente	para un caso o	donde la salida	del circuito es baja "Low".

Ejercicio 9: En la figura 9 se presenta un diseño geométrico fullcustom.

Figura 9

a) Analizar el diseño y obtener el circuito esquemático correspondiente

b)	b) Realizar las modificaciones necesarias al diseño acorde a la plantilla 8.a.				
	Captura del di	seño modificad	0:		
c)	Simular con lo	os siguientes va	lores y verifica	r su funcionalidad	
	Entrada A:	t1 = 0.115 ns	tr = 0.025 ns	th = 0.115 ns	tf = 0.025 ns
	Entrada B:	tl = 0.255 ns	tr = 0.025 ns	th = 0.255 ns	tf = 0.025 ns
	Con valores of	de tensión High	Level = 1.20	V y Low Level =	= 0.00 V.
Captura	a del diagrama	de voltajes de s	simulación: (V	isualizar al menos	2 períodos de la señal de entrada B)
Analiza	ar la funcionali	dad del circuito) :		

Ejercicio 10: En la figura 10 se presenta un diseño geométrico fullcustom (W=4λ, L=2λ, 0,18μm).

Figura 10

d) Analizar el diseño y obtener el circuito esquemático correspondiente

e)	Realizar las modificaciones necesarias al diseño acorde a la plantilla 8.a. Captura del diseño modificado:	

Simular con los siguientes valores y verificar su funcionalidad

tl = 0.115 ns tr = 0.025 ns th = 0.115 nsEntrada A: tf = 0.025 ns

tl = 0.255 ns tr = 0.025 ns th = 0.255 nsEntrada B: tf = 0.025 ns

Con valores de tensión High Level = 1.20 V y Low Level = 0.00 V.

Captura del diagrama de voltajes de simulación: (Visualizar al menos 2 períodos de la señal de entrada B)

W= 4λ , L= 2λ , 0,18 μ m).

Figura. 11

a)	Delimitar bloques funcionales y proponer un circuito esquemático (combinacional en lógica digital) para el mismo.

b) Obtener la función lógica simplificada:

c) Realizar el diseño semicustom utilizando las funciones lógicas adecuadas, simular y verificar el funcionamiento con:

Sel: tl = 0.535 ns tr = 0.025 ns th = 0.535 ns tf = 0.025 ns

In tl = 0.255 ns tr = 0.025 ns th = 0.255 ns tf = 0.025 ns

In 2: tl = 0.115 ns tr = 0.025 ns th = 0.115 ns tf = 0.025 ns

Con valores de tensión High Level = 1.20 V y Low Level = 0.00 V.

Captura de diagrama de simulación:
Verificar funcionamiento correcto: