Prof. Dr. Bernhard Drabant Duale Hochschule Baden-Württemberg Mannheim Fakultät Wirtschaft

Methoden und Verfahren

Konzepte, Algorithmen

Methoden und Verfahren – Konzepte und Algorithmen

Ziel dieses Kapitels

- Details einiger ausgewählter Methoden und Verfahren der Wissensgewinnung
 - Ideen
 - Konzepte
 - Algorithmen

Definition 1 (Abbildung).

X und Y seien zwei Mengen. Unter einer Abbildung (oder Funktion) f von X nach Y versteht man eine Zuordnungsvorschrift, die jedem Element $x \in X$ in eindeutiger Weise genau ein Element $y \in Y$ zuordnet. Das Element y wird mit f(x) bezeichnet: y = f(x). Das Element f(x) heißt Bild von x unter der Abbildung f.

X heißt Definitionsmenge, Y heißt Werte- oder Zielmenge.

Notationen:

$$f: \begin{cases} X \to Y \\ x \mapsto f(x) \end{cases}$$

oder in Kurzform $f: X \to Y$ oder $X \stackrel{f}{\to} Y$.

Bemerkung:

In dem Ausdruck f(x) heißt x das Argument der Abbildung f. Um zu betonen, dass in f(x) das Argument x beliebig in M gewählt werden darf, nennt man x Variable von f.

Beispiel

Sei die Abbildung $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ definiert durch

$$f(x,y) = (x-1)^2 + (y-2)^2$$

Diese Funktion lässt sich graphisch wie folgt darstellen:

Rechnen in \mathbb{R}^n

- 1. \mathbb{R}^n ist ein Vektorraum. Die Elemente \mathbf{x} in \mathbb{R}^n sind Vektoren $\mathbf{x} = (x_1, \dots, x_n)$ mit n Komponenten $x_j \in \mathbb{R}$, $j \in \{1, \dots, n\}$.
- 2. In \mathbb{R}^n können Vektoren **x** und **y** addiert oder mit einem Skalar $\lambda \in \mathbb{R}$ multipliziert werden:

$$\mathbf{x} + \mathbf{y} = (x_1 + y_1, \dots, x_n + y_n)$$

 $\lambda \cdot \mathbf{x} = (\lambda \cdot x_1, \dots, \lambda \cdot x_n)$

- 3. Jeder Vektor $\mathbf{x} \in \mathbb{R}^n$ hat eine euklidische Länge $\|\mathbf{x}\| = \sqrt{x_1^2 + \ldots + x_n^2}$
- 4. Zwei Elemente $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ haben den Abstand $d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} \mathbf{y}\|$

Rechnen in \mathbb{R}^n

Bemerkung

- ▶ $\mathbb{R}^n = \underbrace{\mathbb{R} \times \ldots \times \mathbb{R}}_{n \text{ fach}}$ ist das *n*-fache cartesische Produkt von \mathbb{R} .
- ▶ Sei $f: \mathbb{R}^n \to \mathbb{R}^m$ eine Abbildung. Wie für Abbildungen in \mathbb{R} können somit Stetigkeit und Differenzierbarkeit der Funktion f definiert werden.

Ableitung

Sei $f: \mathbb{R}^n \to \mathbb{R}$ eine differenzierbare Abbildung. Deren Ableitung $\frac{\partial f}{\partial x}$ ist ein n-dimensionaler Vektor, der komponentenweise definiert ist:

$$\left(\frac{\partial f}{\partial \mathbf{x}}\right)_i = \frac{\partial f}{\partial x_i}$$

wobei $\frac{\partial f}{\partial x_i}$ die gewöhnliche Ableitung nach der Variablen x_i ist und die anderen Variablen wie Konstanten behandelt werden.

Beispiel

Sei die Abbildung $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ gegeben durch

$$f(x,y) = (x-1)^2 + (y-2)^2$$

Diese Abbildung ist differenzierbar, und ihre Ableitung ist gegeben durch:

$$\left(\frac{\partial f}{\partial \mathbf{x}}\right) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

mit

$$\frac{\partial f}{\partial x} = 2(x-1)$$

$$\frac{\partial f}{\partial x} = 2(x - 1)$$
$$\frac{\partial f}{\partial y} = 2(y - 2)$$

Bemerkung:

- 1. Statt $\frac{\partial f}{\partial \mathbf{x}}$ wird gelegentlich die Notation $\partial_{\mathbf{x}} f$ oder ∇f (sprich: "nabla f") verwendet.
- 2. Statt $\frac{\partial f}{\partial x_i}$ wird gelegentlich die Notation $\partial_{x_i} f$ oder $\partial_i f$ verwendet.

Lokale Extrema von Abbildungen mehrerer Variablen

Sei $f : \mathbb{R}^n \to \mathbb{R}$ eine differenzierbare Abbildung. Eine notwendige Bedingung, dass f an der Stelle $\mathbf{x}_{(0)}$ einen Extremwert besitzt, ist gegeben durch

$$\frac{\partial f}{\partial \mathbf{x}}(\mathbf{x}_{(0)}) = \mathbf{0}$$

Der Punkt $\mathbf{x}_{(0)}$ heißt stationärer Punkt der Abbildung f.

Lokale Extrema von Abbildungen mehrerer Variablen

Sei $f: \mathbb{R}^n \to \mathbb{R}$ eine (zweimal) differenzierbare Abbildung. Die Matrix

$$H_f(\mathbf{x}) = \left(\partial_i \partial_j f\right)_{i,j}$$

heißt die Hesse-Matrix der Abbildung f.

Definition 2.

Der k. (führende) Hauptminor der Matrix $H_f(\mathbf{x})$ ist die Determinante der linken oberen $(k \times k)$ -Untermatrix von $H_f(\mathbf{x})$. Bezeichnung: $M_k(f)$.

Lokale Extrema von Abbildungen mehrerer Variablen

Sei $f: \mathbb{R}^n \to \mathbb{R}$ eine (zweimal) differenzierbare Abbildung und $H_f(\mathbf{x})$ die Hesse-Matrix von f. Sei außerdem $\mathbf{x}_{(0)}$ ein stationärer Punkt der Abbildung f.

Dann gilt eines der folgenden ausschließlichen Kriterien:

- (1) Alle Hauptminoren $M_k(f) > 0 \Rightarrow \mathbf{x}_{(0)}$ ist ein lokales Minimum von f.
- (2) Für alle Hauptminoren $M_k(f)$ gilt $(-1)^k M_k(f) > 0 \Rightarrow \mathbf{x}_{(0)}$ ist ein lokales Maximum von f.
- (3) $\det(H_f)(\mathbf{x}_{(0)}) \neq 0$ aber weder (1) noch (2) sind erfüllt $\Rightarrow \mathbf{x}_{(0)}$ ist ein Sattelpunkt von f.
- (4) Andernfalls ist keine Aussage möglich.

Übung

Sei die Abbildung $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ gegeben durch

$$f(x,y) = (x-1)^2 + (y-2)^2$$

Bestimmen Sie die lokale Extrema der Abbildung f.

Beachten Sie: $\mathbf{x}^2 = x^2 + y^2$

Übung

Sei die Abbildung $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ gegeben durch

$$f(x,y) = \mathbf{x}^2 \cdot (\mathbf{x}^2 - 1) + \frac{1}{2}$$

Diskutieren Sie die Abbildung f und bestimmen Sie deren lokale Extrema.

Beachten Sie: $\mathbf{x}^2 = x^2 + y^2$

Methode: Lineare Regression

Einfache lineare Regression betrachtet Datenpunkte

$$(x_1,y_1),\ldots,(x_n,y_n)$$

und nimmt an, dass das metrische Merkmal *y* linear vom metrischen Merkmal *x* abhängt

Das angenommene Modell hat somit die Form

Lineare Regression

Beispiel: Fahrzeuge mit x = Leistung, y = (inverser) Verbrauch

- Annahme
 - Inverser Verbrauch (= km pro Liter) y ist linear abhängig von der Leistung x eines Fahrzeugs

- Vorgehen:
 - 1. Annotierte Trainingsdaten $\{(x_1, y_1), \dots, (x_n, y_n)\}$ mit n Datensätzen bereitstellen
 - x_i: Leistung des Fahrzeugs j
 - ▶ y_i: inverser Verbrauch des Fahrzeugs j
 - 2. Teste, ob in den Trainingsdaten eine lineare Beziehung angenähert vorliegt
 - 3. Bestimme das optimale lineare Modell genauer die Parameter $\mathbf{w_0}$ und $\mathbf{w_1}$:

$$y = w_0 + w_1 x$$

Lineare Regression – (1) Trainingsdaten beschaffen

2 17.0 8 302 140 3449 11 1971 3 15.0 8 400 150 3761 10 1971 4 30.5 4 98 63 2051 17 1978 5 23.0 8 350 125 3900 17 1980 6 13.0 8 351 158 4363 13 1974 7 14.0 8 440 215 4312 9 1971 8 25.4 5 183 77 3530 20 1980 E 9 37.7 4 89 62 2050 17 1982 10 34.0 4 108 70 2245 17 1983 11 34.3 4 97 78 2188 16 1981 E 250 32.1 4 98 70 <	US Europe US US
2 17.0 8 302 140 3449 11 1971 3 15.0 8 400 150 3761 10 1971 4 30.5 4 98 63 2051 17 1978 5 23.0 8 350 125 3900 17 1980 6 13.0 8 351 158 4363 13 1974 7 14.0 8 440 215 4312 9 1971 8 25.4 5 183 77 3530 20 1980 E 9 37.7 4 89 62 2050 17 1982 10 34.0 4 108 70 2245 17 1983 11 34.3 4 97 78 2188 16 1981 E 250 32.1 4 98 70 <	US
3 15.0 8 400 150 3761 10 1971 4 30.5 4 98 63 2051 17 1978 5 23.0 8 350 125 3900 17 1980 6 13.0 8 351 158 4363 13 1974 7 14.0 8 440 215 4312 9 1971 8 25.4 5 183 77 3530 20 1980 E 9 37.7 4 89 62 2050 17 1982 10 34.0 4 108 70 2245 17 1983 11 34.3 4 97 78 2188 16 1981 E 250 32.1 4 98 70 2120 16 1981 E 251 24.0 4 121 <	
4 30.5 4 98 63 2051 17 1978 5 23.0 8 350 125 3900 17 1980 6 13.0 8 351 158 4363 13 1974 7 14.0 8 440 215 4312 9 1971 8 25.4 5 183 77 3530 20 1980 E 9 37.7 4 89 62 2050 17 1982 10 34.0 4 108 70 2245 17 1983 11 34.3 4 97 78 2188 16 1981 E	IIC
5 23.0 8 350 125 3900 17 1980 6 13.0 8 351 158 4363 13 1974 7 14.0 8 440 215 4312 9 1971 8 25.4 5 183 77 3530 20 1980 E 9 37.7 4 89 62 2050 17 1982 10 34.0 4 108 70 2245 17 1983 11 34.3 4 97 78 2188 16 1981 E </td <td>US</td>	US
6 13.0 8 351 158 4363 13 1974 7 14.0 8 440 215 4312 9 1971 8 25.4 5 183 77 3530 20 1980 E 9 37.7 4 89 62 2050 17 1982 10 34.0 4 108 70 2245 17 1983 11 34.3 4 97 78 2188 16 1981 E	US
7 14.0 8 440 215 4312 9 1971 8 25.4 5 183 77 3530 20 1980 E 9 37.7 4 89 62 2050 17 1982 10 34.0 4 108 70 2245 17 1983 11 34.3 4 97 78 2188 16 1981 E .	US
8 25.4 5 183 77 3530 20 1980 E 9 37.7 4 89 62 2050 17 1982 10 34.0 4 108 70 2245 17 1983 11 34.3 4 97 78 2188 16 1981 E <t< td=""><td>US</td></t<>	US
9 37.7 4 89 62 2050 17 1982 10 34.0 4 108 70 2245 17 1983 11 34.3 4 97 78 2188 16 1981 E	US
10 34.0 4 108 70 2245 17 1983 11 34.3 4 97 78 2188 16 1981 E	Europe
11 34.3 4 97 78 2188 16 1981 E <td>Japan</td>	Japan
250 32.1 4 98 70 2120 16 1981 251 24.0 4 121 110 2660 14 1974 E 252 36.4 5 121 67 2950 20 1981 E 253 13.0 8 350 145 3988 13 1974 254 23.5 6 173 110 2725 13 1982 255 24.0 4 113 95 2372 15 1971	Japan
250 32.1 4 98 70 2120 16 1981 251 24.0 4 121 110 2660 14 1974 E 252 36.4 5 121 67 2950 20 1981 E 253 13.0 8 350 145 3988 13 1974 254 23.5 6 173 110 2725 13 1982 255 24.0 4 113 95 2372 15 1971	Europe
251 24.0 4 121 110 2660 14 1974 E 252 36.4 5 121 67 2950 20 1981 E 253 13.0 8 350 145 3988 13 1974 254 23.5 6 173 110 2725 13 1982 255 24.0 4 113 95 2372 15 1971	
252 36.4 5 121 67 2950 20 1981 E 253 13.0 8 350 145 3988 13 1974 254 23.5 6 173 110 2725 13 1982 255 24.0 4 113 95 2372 15 1971	US
253 13.0 8 350 145 3988 13 1974 254 23.5 6 173 110 2725 13 1982 255 24.0 4 113 95 2372 15 1971	Europe
254 23.5 6 173 110 2725 13 1982 255 24.0 4 113 95 2372 15 1971	Europe
255 24.0 4 113 95 2372 15 1971	US
	US
	Japan
256 17.0 8 305 130 3840 15 1980	US
257 36.1 4 91 60 1800 16 1979	Japan
258 22.0 6 232 112 2835 15 1983	US
259 18.0 6 232 100 3288 16 1972	US
260 22.0 6 250 105 3353 15 1977	US

 Verschiedene Werte der Parameter w₀ und w₁ entsprechen verschiedenen Geraden

angenähert vorliegt lehung

 Wir benötigen ein Gütekriterium, um zu bestimmen, welche Gerade die beste ist

Für den Linearitätstest benötige wir folgende Größen (Mittelwert, Varianz, Standardabweichung):

Wir definieren den Mittelwert unserer Merkmale als

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

Die Varianz unserer Merkmale ist definiert als

$$\sigma_x^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$$
 $\sigma_y^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \bar{y})^2$

• Die Werte σ_x und σ_y heißen **Standardabweichung** der Merkmale x und y

 Kovarianz cov_{x,y} misst inwiefern die beiden Merkmale x und y zusammenhängen, d.h. sich in die gleiche Richtung bzw. entgegengesetzte Richtungen ändern

$$cov_{x,y} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

- Große Kovarianz deutet auf einen Zusammenhang hin
 - ein positiver Wert zeigt an, dass sich die beiden Merkmale in die gleiche Richtung ändern
 - ein negativer Wert zeigt an, dass sich die beiden Merkmale in entgegengesetzte Richtungen ändern

Pearsons Korrelationskoeffizient misst inwiefern ein linearer Zusammenhang zwischen zwei Merkmalen x und y besteht

$$cor_{x,y} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}} = \frac{cov_{x,y}}{\sigma_x \sigma_y}$$

- Pearsons Korrelationskoeffizient nimmt Werte in [-1,+1] an
 - Wert -1 zeigt negative lineare Korrelation an
 - Wert 0 zeigt keine lineare Korrelation an
 - Wert 1 zeigt positive lineare Korrelation an

Korrelationskoeffizient nach Pearson

23

ABER: Linearitätstest ist keine absolute Garantie für das Vorliegen einer linearen Beziehung!

 Alle vier Datensätze haben den gleichen Mittelwert, die gleiche Varianz, den gleichen Korrelationskoeffizienten sowie die gleiche optimale Regressionsgerade

Lege Gerade so, dass Abstände zu Trainingsdatenpunkten minimiert werden:

Verwende dafür

Mittlere Quadratische Abweichung (MQA)

$$\mathbf{MQA} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{Y_{i}} - \phi^{(\mathbf{X_{i}})})^{2} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{Y_{i}} - w_{0} - w_{1}\mathbf{X_{i}})^{2}$$

Ziel:

- Bestimme Parameter w₀ und w₁ in MQA(w₀, w₁) so, dass Straffunktion minimal wird.
- Optimierungsproblem der Abbildung MQA(w₀, w₁) in den Parametern w₀ und w₁:

$$\underset{\mathbf{w}_{0},\mathbf{w}_{1}}{\operatorname{argmin}} \qquad \left(\sum_{i=1}^{n} (\mathbf{Y}_{i} - \mathbf{w}_{0} - \mathbf{w}_{1} \mathbf{X}_{i})^{2} \right)$$

MQA für das Beispiel (Autodaten)

Optimale Parameterwerte w₀ und w₁ lassen sich im Fall der linearen Regression analytisch bestimmen:

■ Berechne die (partiellen) Ableitungen von MQA nach w₀ und w₁:

$$\frac{\partial (MQA)}{\partial W_0} = -\frac{2}{n} \sum_{i=1}^{n} (\mathbf{Y}_i - \mathbf{W}_0 - \mathbf{W}_1 \mathbf{X}_i)$$

$$\frac{\partial (MQA)}{\partial W_1} = -\frac{2}{n} \sum_{i=1}^{n} (\mathbf{Y}_i - \mathbf{W}_0 - \mathbf{W}_1 \mathbf{X}_i) \mathbf{X}_i$$

Ermittle gemeinsame Nullstelle(n) durch Lösen des Gleichungssystems

$$\frac{\partial (MQA)}{\partial W_0} = 0 \qquad \qquad \frac{\partial (MQA)}{\partial W_1} = 0$$

- Die beiden Gleichungen $\frac{\partial (MQA)}{\partial W_0} = 0$ und $\frac{\partial (MQA)}{\partial W_1} = 0$ lassen sich geschlossen lösen.
- Die stationäre Lösung $\mathbf{w}_{(0)} = (\mathbf{w}_0^*, \mathbf{w}_1^*)$ ist:

$$w_0^* = \frac{1}{n} \left(\sum_{i=1}^n y_i - w_1^* \sum_{i=1}^n x_i \right)$$

$$w_1^* = \frac{n \sum_{i=1}^n (x_i \cdot y_i) - \sum_{i=1}^n x_i \cdot \sum_{i=1}^n y_i}{n \sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2}$$

(Übungsaufgabe: Herleitung dieser Lösung)

Lineare Regression – (3) Bestimmung der Optimalen Parameter – Python / scikit-learn

```
import numpy as np
import pandas as pd
import os
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import linear model
# Konfiguration
FILE_DATA = os.path.join(...)
# Autodaten einlesen
cars = pd.read csv(FILE DATA)
# Verbrauchs- und Leistungswerte
mpg = cars.iloc[:,0].values
hpAR = cars.iloc[:,[3]].values
```

```
# Einfache lineare Regression
reg = linear_model.LinearRegression()
reg.fit(hpAR,mpg)
# Plot erstellen
g = sns.regplot(x=hpAR, y=mpg, fit_reg=False)
plt.plot(hpAR, reg.predict(hpAR), color='red')
plt.xlabel('Leistung [hp]')
plt.ylabel('Verbrauch [mpg]')
plt.show()
```

Lineare Regression – (3) Bestimmung der Optimalen Parameter – Python / scikit-learn

Optimale Parameter für die Beispieldaten:

•
$$w_0$$
* = 39,9359 w_1 * = -0,1578

$$w_1 * = -0, 1578$$

32

Zusammenfassung

- Verwendung der mittleren quadratischen Abweichung MQA zwischen eigentlichem Wert und Vorhersagefunktionswert (im Beispiel: lineares Modell)
- Ziel: Bestimme Parameter des Modells so, dass MQA minimal wird
 - Optimale Parameter sind stationäre Punkte dieses Minimierungsproblems
- Quadratische Abweichung: Parameter lassen sich analytisch bestimmen
 - das ist in der Regel nicht möglich für Beträge oder höhere Potenzen
- Lösung (lineares Modell): Regressionsgerade / Regressionsebene / Regressionshyperebene

Assoziations- und Musteranalyse

Assoziation

- Identifikation von Abhängigkeiten zwischen Objekten oder Attributen
- unüberwachtes Lernen / unsupervised learning
- Methoden:
 - Frequent Pattern Mining
 - Korrelationsanalysen
- Beispiele:
 - Warenkorbanalysen
 - Cross-Selling-Angebote

Assoziations- und Musteranalyse

Frequent Pattern Mining

- Mustererkennung in Produktmengen → "Muster in Warenkörben"
- Motivation: Finde inhärente Regelmäßigkeiten in Daten
 - Welche Produkte werden oft zusammen gekauft Bier und Windeln?
 - Welche Produkte werden mit einem Computer gekauft?
- Anwendungen
 - Warenkorbanalysen
 - Cross-Selling
 - Entwurf von Gruppen von Katalogen und Verkaufskampagnen

Grundlegendes Konzept: Häufige Artikel-Menge

Datenbank D

Tid	Warenkorb / Transaktion
10	Bier, Nüsse, Windeln
20	Bier, Kaffee, Windeln
30	Bier, Eier, Windeln
40	Bier, Eier, Milch, Nüsse
50	Eier, Kaffee, Milch, Nüsse

Artikel-Menge:

- $X = \{x_1, ..., x_k\}$. Menge von Artikeln aus vorgegebener Grundmenge (Sortiment) G
- Transaktion: Satz von Artikeln ("Warenkorb")
- Datenbank D: Liste von Transaktionen (mit ID)
- **support von X:** Relative Häufigkeit des Vorkommens der Artikel-Menge X in allen Transaktionen der Datenbank

$$support_{D}(X) = \frac{|\{ t \ Transaktion \in D \mid X \square t \}|}{|D|}$$

X heißt häufige Artikel-Menge, falls der support von X größer oder gleich einer bestimmten, festgelegten Support-Schwelle S ist:

$$support_D(X) \ge S$$

Grundlegendes Konzept: Häufige Artikel-Menge

Tid	Warenkorb / Transaktion
10	Bier, Nüsse, Windeln
20	Bier, Kaffee, Windeln
30	Bier, Eier, Windeln
40	Bier, Eier, Milch, Nüsse
50	Eier, Kaffee, Milch, Nüsse

Beispiel:

G = {Bier, Eier, Kaffee, Milch, Nüsse, Windeln, Orangen}

 $X = \{Bier, Windeln\}$

S = 0.5 (festgelegt)

- Somit: support_D(X) = 3/5 = 0.6
- Also: Artikel-Menge X ist häufig, weil support_D(X) \geq S

Assoziationsregeln

Assoziationsregeln

- durch Korrelationen zwischen gemeinsam auftretenden Artikel-Mengen X und Y festgelegt
- Für Assoziationsregeln sind (mindestens) folgende Korrelationsmaße relevant:
 - Support: Gewicht des gemeinsamen Auftretens
 - Konfidenz: Relatives Gewicht des gemeinsamen Auftretens

Assoziationsregeln

- Seien X und Y zwei Artikel-Mengen:
 - $X = \{x_1, ..., x_k\}, Y = \{y_1, ..., y_n\}$
 - $X \cup Y = \{x_1, ..., x_k, y_1, ..., y_n\}$ (Vereinigungsmenge von X und Y)
- Korrelationsmaße für Assoziationsregel zwischen X und Y

```
support_D(X \cup Y) = Gewicht des gemeinsamen Auftretens von X und Y
confidence_D(X,Y) = Relatives Gewicht des gemeinsamen Auftretens
= support_D(X \cup Y) / support_D(X)
(Anteil Transaktionen mit X, die auch Y enthalten)
```

- Dann gelte die **Assoziationsregel** X → Y ("Aus X folgt Y"), wenn
 - support_D $(X \cup Y)$ \geq S (festgelegte Support-Schwelle)
 - confidence_D $(X,Y) \ge C$ (festgelegte Konfidenzschwelle)

In der Sprache von Warenkörben:

X → Y heißt: "Wer X kauft, kauft (häufig) auch Y"

Tid	Warenkorb / Transaktion
10	Bier, Nüsse, Windeln
20	Bier, Kaffee, Windeln
30	Bier, Eier, Windeln
40	Bier, Eier, Milch, Nüsse
50	Eier, Kaffee, Milch, Nüsse

$$X \rightarrow Y$$

support_D $(X \cup Y) \ge S$
confidence_D $(X,Y) = \text{support}_D (X \cup Y) / \text{support}_D (X) \ge C$

- X = {Bier}, Y = {Windeln}
- Support-Schwelle: S = 0,5
- Konfidenzschwelle: C = 0,8
- Dann:
 - $X \cup Y = \{Bier, Windeln\}$
 - support_D $(X \cup Y) = 0.6$
 - confidence_D (X,Y) = 3/4 = 0.75
- Also gilt **nicht** die Assoziation X → Y

Tid	Warenkorb / Transaktion
10	Bier, Nüsse, Windeln
20	Bier, Kaffee, Windeln
30	Bier, Eier, Windeln
40	Bier, Eier, Milch, Nüsse
50	Eier, Kaffee, Milch, Nüsse

 $X \rightarrow Y$ support_D $(X \cup Y) \ge S$ confidence_D $(X,Y) = \text{support}_D (X \cup Y) / \text{support}_D (X) \ge C$

- X = {Windeln}, Y = {Bier}
- Support-Schwelle: S = 0,5
- Konfidenzschwelle: C = 0,8
- Dann:
 - $X \cup Y = \{Bier, Windeln\}$
 - support_D $(X \cup Y) = 0.6$
 - confidence_D (X,Y) = 3/3 = 1
- Also gilt die Assoziation X → Y

- Datenbank D mit 10.000 Transaktionen
- Artikel-Grundmenge (Sortiment) G = {Computer, Monitor, Maus, ...}
- Support-Schwelle S = 0,4
- Konfidenzschwelle C = 0,6

X = {Computer}

 $support_D(X) = 6.000/10.000 = 0,6$

 $Y = \{Monitor\}$

- $support_D(Y) = 7.500/10.000 = 0.75$
- $X \cup Y = \{Computer, Monitor\}$
- $support_D(X \cup Y) = 4.000/10.000 = 0,4$

- Dann:
 - support_D $(X \cup Y) = 0.4$
 - confidence_D (X,Y) = 2/3 = 0,66
 - confidence_D (Y,X) = 0.4/0.75 = 8/15 < 0.6
 - Also gilt die Assoziation X → Y aber nicht die Assoziation Y → X

$X \rightarrow Y$

 $support_{D}(X \cup Y) \ge S$ $confidence_{D}(X,Y) = support_{D}(X \cup Y) / support_{D}(X) \ge C$

$X \rightarrow Y$ $support_{D}(X \cup Y) \ge S$ $confidence_{D}(X,Y) = support_{D}(X \cup Y) / support_{D}(X) \ge C$

Zusammenfassung (drittes Beispiel)

- Wahrscheinlichkeit (Monitor)-Kauf = support_D (Y) = 0,75
- Wahrscheinlichkeit (Monitor & Computer)-Kauf = support_D (X \cup Y) = 0,4
- Wahrscheinlichkeit Monitorkauf bei Computerkauf = confidence_D (X,Y) = 0,66
- Da sowohl Support-Schwelle als auch Konfidenzschwelle überschritten, gilt also
 - X → Y und damit Aussage der Maschine: "Aus Computerkauf folgt Monitorkauf"

Aber:

Wahrscheinlichkeit Monitorkauf größer als Wahrscheinlichkeit Monitorkauf bei Computerkauf

Aussage der Maschine irreführend! Führt zu falschen Geschäftsentscheidungen.

Konsequenz: Support und Konfidenz oft nicht ausreichend

(!) Erweiterungen der Assoziationsregel "X → Y" notwendig

Erweiterte Assoziationsregeln

Erweiterte Assoziationsregel

 $X \Rightarrow Y$ [support, confidence, corr₁, ..., corr_n] ("Aus X folgt **stark** Y")

wenn

- support $_{D}(X \cup Y) \ge S$
- confidence $_{D}(X,Y) \ge C$
- $corr_1(X,Y)$ $\geq K_1$ (weiteres Korrelationsmaß mit Schwelle K_1)

. . .

- $\operatorname{corr}_{n}(X,Y)$ $\geq K_{n}$ (weiteres Korrelationsmaß mit Schwelle K_{n})
- Beispiel für solch ein weiteres Korrelationsmaß: lift

$$lift_D(X,Y) = \frac{support_D(X \cup Y)}{support_D(X) \times supportD(Y)} = \frac{confidence_D(X,Y)}{support_D(Y)}$$

- positive Korrelation: lift_D (X,Y) > 1
- neutrale Korrelation: lift_D (X,Y) ≈ 1
- negative Korrelation: lift_D (X,Y) < 1

Erweiterte Assoziationsregeln – Lift

Für unsere Zwecke relevant:

Erweiterte Assoziationsregel mit Lift

X ⇒ Y [support, confidence, lift] ("Aus X folgt stark Y")

wenn

- support $_D(X \cup Y) \ge S$
- confidence $_{D}(X,Y) \ge C$
- $\operatorname{lift}_{D}(X,Y) > 1$

mit vorgegebenen Schwellenwerten S (Support) und C (Confidence)

Übungsaufgabe: Ermitteln Sie, ob für folgendes Beispiel eine starke Assoziation $X \Rightarrow Y$ oder $Y \Rightarrow X$ vorliegt. (Beachten Sie: Es gilt die Assoziation $X \Rightarrow Y$ aber **nicht** die Assoziation $Y \Rightarrow X$)

- Datenbank D mit 10.000 Transaktionen
- Artikel-Grundmenge (Sortiment) G = {Computer, Monitor, Maus, ...}
- Support-Schwelle S = 0,4
- \blacksquare Konfidenzschwelle C = 0.6
- $X = \{Computer\}$
- $Y = \{Monitor\}$
- $X \cup Y = \{Computer, Monitor\}$

$$support_D(X) = 6.000/10.000 = 0.6$$

$$support_D(Y) = 7.500/10.000 = 0.75$$

$$support_D(X \cup Y) = 4.000/10.000 = 0,4$$

Frequent-Itemset-Bestimmung

■ Die Assoziationen X → Y und X ⇒ Y verwenden Korrelationsmaße, die auf der Ermittlung des Supports von Artikelmengen und der Bestimmung von deren Häufigkeit (frequent item sets) beruhen

Ziel: Bestimmung der häufigen Artikel-Mengen (**frequent item sets**) in einer Transaktionsdatenbank

Frequent-Itemset-Bestimmung – Apriori-Eigenschaft

Für Frequent-Itemset-Bestimmung verwende die Apriori-Eigenschaft:

Jede Untermenge einer häufigen Artikel-Menge ist häufig

Veranschaulichung der Apriori-Eigenschaft:

- Wenn X = {Bier, Nüsse, Windeln} häufige Artikel-Menge, dann auch {Bier, Nüsse}
- Denn jede Transaktion, die {Bier, Nüsse, Windeln} enthält, enthält auch {Bier, Nüsse}

Frequent-Itemset-Bestimmung – Apriori-Ausschlusseigenschaft

Aus Apriori-Eigenschaft folgt im Umkehrschluss die Apriori-Ausschlusseigenschaft.

Ist eine Untermenge X einer Artikel-Menge Y nicht häufig, dann ist auch die Artikel-Menge Y selbst nicht häufig.

Begründung dieser Aussage durch Widerspruch:

- Gegeben/Voraussetzung: X

 Y und X nicht häufig
- Annahme: Y häufig
- Aus Annahme folgt dann: X häufig wegen Apriori-Eigenschaft.
 - Aber nach Voraussetzung ist X nicht häufig!
 - Widerspruch!
- Schlussfolgerung: Annahme ist falsch und daher Y nicht häufig

Frequent-Itemset-Bestimmung – Apriori-Ausschneideprinzip

Apriori-Ausschlusseigenschaft führt zu Apriori-Ausschneideprinzip (Pruning Principle):

Wenn eine Artikel-Menge X nicht häufig ist, dann ist jede Obermenge von X nicht häufig und kann bei der Suche nach häufigen Artikelmengen verworfen werden.

Frequent-Itemset-Bestimmung – Apriori-Algorithmus

Verfahren zur Bestimmung häufiger Artikelmengen (Apriori-Algorithmus)

- beruht auf Apriori-Ausschneideprinzip (Pruning Principle)
- Notation: X ist **k-Artikel-Menge**, wenn $X = \{x_1, ..., x_k\}$ k Artikel enthält

Apriori-Algorithmus

- 1. Scanne die Transaktionsdatenbank, um alle häufigen 1-Artikel-Mengen zu bestimmen. Nehme die häufigen 1-Artikel-Mengen in der Menge L_1 auf.
- 2. Setze nun k = 1 und $L_k = L_1$
- Erzeuge aus L_k alle (k+1)-Artikel-Mengen, die nur häufige Artikel-Mengen aus L_k , L_{k-1} , ..., L_1 enthalten und nehme diese (k+1)-Artikel-Mengen in C_{k+1} auf. (Apriori-Ausschneideprinzip!)
- 4. Test jeden Kandidaten in C_{k+1} auf seine Häufigkeit.
- 5. Nehme die so ermittelten häufigen (k+1)-Artikel-Mengen in der Menge L_{k+1} auf.
- 6. Beende den Prozess, falls L_{k+1} die leere Menge ist.
- 7. Ansonsten setze k := k + 1 und fahre mit Schritt (3) fort.

Apriori-Algorithmus – Beispiel

Apriori-Algorithmus (Pseudo-Code)

```
C : Candidate itemsets
L : Frequent itemsets
input (database, threshold)
L = {frequent items};
FIS = L
 for (k = 1 ; L != \emptyset ; k++) do begin
    C = (k+1)-candidates generated from L and database
    if (C == \emptyset) break
    for each transaction t in database do
     increment count of all candidates in C that are contained in t
    L = (k+1)-candidates in C with support \geq threshold
    FIS = FIS \cup L
 end
return FIS
```

Frequent-Itemset-Bestimmung – Algorithmen

- Bekannte Vertreter von Frequent-Itemset-Algorithmen:
 - Apriori-Algorithmus
 - FPGrowth: Nutzt das Frequent-Pattern-Growth-Prinzip
 - ECLAT: Frequent Pattern Mining mit vertikalem Datenformat

• ...

Cluster-Analyse

Gruppen-/Cluster-Bildung

- Identifizierung von Gruppen oder Clustern gleichartiger Objekte
- auf Basis von Ähnlichkeitsmerkmalen
 - Objekte in Cluster mit möglichst ähnlichen Merkmalen einteilen
 - Objekte unterschiedlicher Cluster mit möglichst verschiedenen Merkmalen
- Eigenschaften und Merkmale für Clusterbildung i. a. nicht vorgegeben
- unüberwacht, Cluster-Bildung nur durch Datenanalyse ohne Prediktor-Variablen
- Methoden:
 - Cluster-Analysen wie k-Means, etc.
 - neuronale Netze

Anwendungsfelder für Cluster-Analyse

- Warenkorbanalysen: Muster von Warenkörben entdecken → Warenkorbgruppen
- Text Mining: Dokumenten-Clustering
- Ausreißerermittlung: Datenobjekte, die "weit weg" von jedem Cluster liegen
- Marketing:
 - Bestimmung unterschiedlicher Kundengruppen oder -segmente für das segmentspezifische Marketing
- Stadtplanung:
 - Identifikation von Häusergruppen nach Haustyp, Wert, Lage
- Klima: Atmosphärische und ozeanische Mustererkennung

Anwendungsfelder für Cluster-Analyse

- Datenreduktion
 - Vorbereitung für Klassifikationsanalyse und Regression
- Prognosen basierend auf Gruppen/Clusters
 - Bestimme characteristisches Muster (Klasse) pro Cluster

Cluster-Analyse

- Cluster-Analyse
 - Finde homogene Teilmengen (Cluster) von Objekten aus heterogener Gesamtheit von Objekten
 - Objekte innerhalb eines Cluster sind homogen
 - Objekte aus verschiedenen Clustern sind heterogen
 - Häufige Methode: Identifiziere Objekt-Merkmale, anhand derer sich Cluster bilden lassen.
 - Ähnlichkeit von Datenobjekten bezüglich dieser Merkmale

Einige Typen von Cluster-Methoden

- Partitionierung
 - Konstruktion von disjunkten Objektmengen
- Frequent-Pattern-basiert
 - Analyse von Frequent Patterns
 - "Warenkorbanalysen" Muster von Warenkörben
- Verbindungsbasiert
 - Bestimmung der Verbindungen/Assoziationen zwischen Objekten
 - stark zusammenhängende Objekte gehören zusammen → Netzwerkanalyse

..

Qualitätskriterien für Cluster-Methoden

- Erzeugung hochwertiger Cluster
 - hohe Intra-Cluster-Ähnlichkeit: Kohäsion
 - geringe/keine Inter-Custer-Ähnlichkeit
- Qualität der Methoden hängt ab von
 - Ähnlichkeitsmaß
 - Realisierung/Implementierung
 - Fähigkeit, viele oder alle versteckte Muster/Cluster zu entdecken
- Qualitätsfunktion zur Messung der Güte einer Cluster-Methode oder eines Clustering
 - Was bedeutet "ähnlich genug" oder "gut genug"?
 - Oft subjektive Kriterien

Vorbereitung einer Cluster-Analyse

- Merkmal-Auswahl
 - entsprechend der Aufgabe oder der Vorgaben
 - Minimierung von redundanter Information
- Festlegung eines Ähnlichkeitsmaßes
 - auf den Merkmalen
- Cluster-Kriterium
 - basierend auf Ähnlichkeitsmaß
- Geeignete Wahl eines Cluster-Algorithmen
- Validierung und Interpretation der Ergebnisse

Ähnlichkeitsmaße

- Distanzbasiert
 - in Form von Abstandsfunktionen/Metriken **d(J, K)** zwischen zwei Datenobjekten **J** und **K**
 - z. B. Euklidische Metrik, Straßennetzwerk, ...
 - i. a. Verwendung im partitionsbasierten Clustering
- Link-basiert
 - Dichte von Datenpunkten
 - Anzahl von Verbindungen/Links
 - i. a. Verwendung im verbindungsbasierten Clustering

Distanzbasierte Partitionierung

- Voraussetzung: Datenobjekte haben numerische Merkmalsvektoren
- Finde Partitionierung der Datenobjekte in *k* (a priori unbekannte) Clusters
 - so dass Summe S der (quadrierten) Abstände zu Cluster-Schwerpunkt c_i des Clusters C_i
 minimal ist (für alle i ∈ {1,..,k})

$$S = \sum_{i=1}^{k} \sum_{P \in C_i} (d(P, c_i))^2$$

Wichtiger Vertreter: k-Means-Algorithmus

k-Means-Algorithmus zur distanzbasierten Partitionierung

Vorgegeben: $k \in \mathbb{N}$ und Menge von Datenobjekten (Datenbank)

- 1. Partitioniere die Objekte in k nichtleere Clusters C_i , $i \in \{1, ... k\}$
- 2. Berechne die Schwerpunkte c_i jedes Clusters C_i aus den Datenobjekten dieses Clusters
- 3. Bilde neue Clusters C'_i durch Zuordnung jedes Datenobjektes zu dem ihm nähesten Punkt c_i
- 4. Fahre mit Schritt 2 fort, bis sich die Cluster nicht mehr verändern

Beispiel für Clustering durch k-Means-Algorithmus

Bewertung des k-Means-Algorithmus

Stärke

- Effizient mit Laufzeit 0(k* m* n* t)
 - ▶ k = # Clusters, m = # Datenobjekte, n = # Dimensionen, t = # Iterationen
 - Normalerweise k, t << m</p>

Schwächen

- Nur in n-dmensionalen numerischen bzw. metrischen Räumen anwendbar
- Cluster-Anzahl k muss vorab festgelegt werden
 - ▶ Erweiterter Algorithmus: Automatische Bestimmung eines "guten" k
- Empfindlich gegen Ausreißer:
 - Datenobjekt mit sehr großen Werten kann Clusterverteilung erheblich verzerren
- Algorithmus terminiert oft in einem lokalen Optimum
- Terminierung nicht immer gewährleistet!

Fragen?

Weiterhin viel Erfolg im Studium!

