Numerical Simulation of Compressible Flows with Immersed Boundaries Using Discontinuous Galerkin Methods

Bachelor thesis by Simone Stange Prof. Dr.-Ing. habil. Martin Oberlack Betreuer: Dr.-Ing Björn Müller

Outline

- Introduction and Fundamentals
 - Introduction
 - The Discontinuous Galerkin Method
 - The Immersed Boundary Method
- Verification of BoSSS for Inviscid Flows
 - Robustness
 - Convergence
- 8 Evaluation of BoSSS for Viscid Flows
 - Theory
 - Simulations
- 4 Conclusion and Outlook

- Introduction and Fundamentals
 - Introduction
 - The Discontinuous Galerkin Method
 - The Immersed Boundary Method
- Verification of BoSSS for Inviscid Flows
 - Robustness
 - Convergence
- 3 Evaluation of BoSSS for Viscid Flows
 - Theory
 - Simulations
- 4 Conclusion and Outlook

Introduction

kurzes blabla

Flow Properties

- Compressible flow
- Ideal gas
 - ► Heat capacity ratio $\gamma = \frac{c_p}{c_V} = 1.4$
- Newtonian fluid

Stress tensor
$$\tau_{ij} = \mu \left[\left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{2}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij} \right]$$

- Mach number Ma = $\frac{v_{\infty}}{a_{\infty}}$ = 0.2
- ${\bf P} \ \, {\rm Reynolds \; number \; Re} = \frac{\rho_{\infty} \, V_{\infty} L}{\mu_{\infty}} \propto \frac{{\rm inertia \; forces}}{{\rm viscous \; forces}}$
- Prandtl number $\Pr = \frac{\mu_{\infty} c_p}{k_{\infty}} \propto \frac{\text{viscous diffusion rate}}{\text{thermal diffusion rate}}$

Non-dimensional 2D Compressible Navier-**Stokes Equations**

- ▶ 2D
- Non-dimensional conserved flow variables: density ρ , momentum ρu , ρv , energy ρE

$$\frac{\partial U}{\partial t} + \left(\frac{\partial F_c^x(U)}{\partial x} + \frac{\partial F_c^y(U)}{\partial y} \right) - \left(\frac{\partial F_v^x(U, \nabla U)}{\partial x} + \frac{\partial F_v^y(U, \nabla U)}{\partial y} \right) = 0$$

$$U = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \rho E \end{pmatrix} \quad F_c^x = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho uv \\ u(\rho E + p) \end{pmatrix} \quad F_c^y = \begin{pmatrix} \rho v \\ \rho uv \\ \rho v^2 + p \\ v(\rho E + p) \end{pmatrix} \qquad \begin{array}{c} \rightarrow \quad \text{Temporal derivative} \\ \rightarrow \quad \text{Convective fluxes} \\ \rightarrow \quad \text{Viscous fluxes} \\ \end{array}$$

$$F_{v}^{x} = \frac{1}{\mathsf{Re}} \left(\begin{array}{c} 0 \\ \tau_{xx} \\ \tau_{xy} \\ \tau_{xx}u + \tau_{xy}v + \frac{\gamma}{\mathsf{Pr}(\gamma - 1)}\kappa\frac{\partial T}{\partial x} \end{array} \right) \quad F_{v}^{y} = \frac{1}{\mathsf{Re}} \left(\begin{array}{c} 0 \\ \tau_{xy} \\ \tau_{yy} \\ \tau_{xy}u + \tau_{yy}v + \frac{\gamma}{\mathsf{Pr}(\gamma - 1)}\kappa\frac{\partial T}{\partial y} \end{array} \right)$$

The Discontinuous Discretisation

Galerkin

Space

rigure: Companson or r Livi, r vivi and Da

DG space discretisation Vorgehen, Bildchen, fluxes

The Immersed Boundary Method

- Division into
 - the physical region:

$$\mathcal{A} = \{\vec{x} \in \Omega_h : \varphi(\vec{x}) > 0\},\$$

• the void region:
$$\mathcal{B} = \{\vec{x} \in \Omega_h : \varphi(\vec{x}) < 0\},\$$

the immersed boundary:

$$\mathcal{I} = \{ \vec{\mathbf{x}} \in \Omega_h : \varphi(\vec{\mathbf{x}}) = \mathbf{0} \}$$

Figure: Cut cell with physical (red) and void region (white) [3]

Restrict problem domain to physical region:

$$\int\limits_{\mathcal{A}_{i}} \frac{\partial c_{i}}{\partial t} \Phi_{i,j} \, dV + \sum_{e=1}^{E_{i}} \int\limits_{\mathcal{E}_{i,e}^{\mathcal{A}}} f\left(c^{-}, c^{+}, \mathbf{n}\right) \Phi_{i,j} \, dA + \int\limits_{\mathcal{I}_{i}} f\left(c^{-}, c^{+}, \mathbf{n}_{\mathcal{I}}\right) \Phi_{i,j} \, dA - \int\limits_{\mathcal{A}_{i}} \mathbf{f}\left(c_{i}\right) \cdot \nabla \Phi_{i,j} \, dV = 0$$

- Solution via explicit Euler time discretisation
 - Time step size depends on cell with smallest volume
 - → Cell agglomeration

Cell Agglomeration

- Agglomeration threshold $0 < \alpha < 1$
- Cells $\mathcal{K}_s^{\text{src}}$ with $\operatorname{frac}(\mathcal{A}_i) = \frac{\operatorname{meas}(\mathcal{A}_i)}{\operatorname{meas}(\mathcal{K}_i)} \leq \alpha$ get agglomerated to neighbouring cell $\mathcal{K}_s^{\text{tar}}$
- Neighbouring cells are weakly coupled via fluxes
 ⇒ basis Φ_i can be extended from the target cell into the source cell

Figure: Cell agglomeration for $\alpha = 0.3$

- 1 Introduction and Fundamentals
 - Introduction
 - The Discontinuous Galerkin Method
 - The Immersed Boundary Method
- Verification of BoSSS for Inviscid Flows
 - Robustness
 - Convergence
- 3 Evaluation of BoSSS for Viscid Flows
 - Theory
 - Simulations
- 4 Conclusion and Outlook

Problem Specification

- > Supersonic inlet
- > Adiabatic slip wall
- ► Flow properties:
 - Symmetrical flow
 - Isentropic inviscid flow with

$$\frac{p}{q^{\gamma}} = \text{const}$$

$$\rightarrow$$
 Entropy $s = 0$

Domain: Figure: Mesh with 64 Cells per Direction

- ▶ $0 \le y \le 40$
- -40 < x < 40
- ► Cylinder with radius r = 1 at (0, 0)
 - → Level set $\varphi = x^2 + y^2 1$ set as adiabatic slip wall

Robustness Study - Preparation

- ▶ Variation of polynomial degree $1 \le P \le 3$
- Variation of position of the cylinder's centre point from −0.075 to +0.075 with step size 0.015
 - → Level set $\varphi = (x \text{shift})^2 + y^2 1$
- Mesh as shown before (64 cells per direction)
- ► Constant agglomeration threshold $\alpha = 0.5$
 - → several different cell agglomerations occur

Aim: Proving the robustness of the solver

Robustness Study - Evaluation

- Constant error of entropy for degrees 1 and 2
 - → Only slight influence by cell agglomeration
- ► Large error differences for degree 3
 - For some cases huge effort in getting calculations to work (early breakup)
 - Discordant cases should be examined more closely

Figure: Convergence Plot

→ Sufficiently robust for lower degrees, higher degree calculations strongly influenced by cell agglomeration

Comvergence Study – Preparation

- ▶ Variation of polynomial degree 0 < P < 4</p>
- Variation of mesh size: 32, 64 and 128 cells per direction
- Constant level set $\varphi = x^2 + y^2 1$
- ▶ Constant agglomeration threshold $\alpha = 0.3$

Aim: Proving convergence rate of $\mathcal{O}(h^{P+1})$

Convergence Study – Evaluation

Figure: Convergence Plot

Ergebnisse, Plot

- 1 Introduction and Fundamentals
 - Introduction
 - The Discontinuous Galerkin Method
 - The Immersed Boundary Method
- 2 Verification of BoSSS for Inviscid Flows
 - Robustness
 - Convergence
- 3 Evaluation of BoSSS for Viscid Flows
 - Theory
 - Simulations
- 4 Conclusion and Outlook

Theory - Viscid Flow Around a Cylinder

- ► Re ≤ 40 − 50: laminar steady regime
- 40 − 50 ≤ Re ≤ 190: laminar vortex shedding (Kármán vortex street)
- ▶ 190 ≤ Re: increasing 3D effects
- Characteristic values:
 - ► Coefficient of drag C_D
 - Coefficient of lift C_i
 - Wake separation length W*
 - Strouhal number (frequency of vortex shedding)

Figure: Laminar steady regime [4]

Figure: Kármán Vortex Street [4]

Simulation Properties

- Domain:
 - -20 < x < 20
 - ► -20 < y < 20
 - ► Cylinder with radius r = 0.5 at (0, 0)
 - → Level set $\varphi = x^2 + y^2 0.25$ set as isothermal wall
- Variation of mesh size: 40, 60 and 80 cells per direction
- ▶ Variation of polynomial degree $1 \le P \le 3$
- ► Constant agglomeration threshold α = 0.3
- > Supersonic inlet
- Isothermal wall

Figure: Coarsest mesh with 40×40 cells

Compared Values

- Steady flow simulations for Re = 20 and Re = 40:
 - Coefficient of drag C_D
 - Wake separation length W*
 - \rightarrow found from evaluating x at y = 0 where x-velocity u = 0
- Unsteady flow simulations for Re = 100 and Re = 200:
 - Coefficient of drag C_D
 - Coefficient of lift C_L
 - St found from evaluating frequency of C_L

$$C_D = \frac{d}{q_{\infty} L_{\infty}}$$

$$C_L = \frac{l}{q_{\infty} L_{\infty}}$$

$$\mathsf{St} = \frac{\mathsf{f} \mathsf{L}_{\infty}}{\mathsf{V}_{\infty}}$$

d: drag force

1: lift force

 q_{∞} : dynamic pressure

 L_{∞} : cylinder diameter

 V_{∞} : flow velocity

Simulation at Re = 20 I

Re = 20	Source	2D/3D	W*	C_D
Numerical – Incompressible	Dennis and Chang	2D	0.94	2.05
	Fornberg	2D	0.91	2.00
	Linnick and Fasel	2D	0.93	2.06
Experimental	Coutanceau and Bouard	-	0.93	-
	Tritton	-	-	2.09
Numerical – Compressible	Brehm, Hader and Fasel (Ma = 0.1)	3D	0.96	2.02
	Ayers	2D	0.975	2.06
	Present Results:	2D	0.928	2.136

Simulation at Re = 20 II

- hier
- kommt
- beschreibung hin

Simulation at Re = 40 I

Re = 40	Source	2D/3D	W*	C_D
Numerical – Incompressible	Dennis and Chang	2D	2.35	1.52
	Fornberg	2D	2.24	1.50
	Linnick and Fasel	2D	2.28	1.54
Experimental	Coutanceau and Bouard	-	2.13	-
	Tritton	-	-	1.59
Numerical – Compressible	Brehm, Hader and Fasel (Ma = 0.1)	3D	2.26	1.51
	Ayers	2D	2.250	1.605
	Present Results:	2D	2.201	1.608

Simulation at Re = 40 II

- hier
- kommt
- beschreibung hin

Comparison of Re = 20 and Re = 40

	W*	C_D
Re = 20	0.928	2.136
Re = 40	2.201	1.608

Simulation at Re = 100 I

Re = 100	Source	2D/3D	St	C_D	C_L
	Gresho, Chan, Lee, et al.	2D	0.18	1.76	-
Numerical – Incompressible	Linnick and Fasel (λ = 0.056)	2D	0.169	$\textbf{1.38} \pm \textbf{0.010}$	±0.337
	Linnick ad Fasel (λ = 0.023)	2D	0.1696	$\textbf{1.34} \pm \textbf{0.009}$	±0.333
	Persillon and Braza	2D	0.165	1.253	-
	Saiki and Biringen	2D	0.171	1.26	-
	Persillon and Braza	3D	0.164	1.240	-
	Liu, Zheng and Sung	3D	0.165	1.35 ± 0.012	±0.339
Experimental	Berger and Wille	-	0.16 - 0.17	-	-
Experimental	Clift, Grace and Weber	-	-	1.24	-
	Williamson	-	0.164	-	-
Missandard	Brehm, Hader and Fasel (Ma = 0.1)	3D	0.165	$\textbf{1.32} \pm \textbf{0.01}$	±0.32
Numerical – Compressible	Ayers	2D	0.167	1.371 ± 0.011	±0.333
	Present Results:	2D	0.1669	$\textbf{1.3593} \pm \textbf{0.00805}$	±0.3291

Simulation at Re = 100 II

- hier
- kommt
- beschreibung hin

Simulation at Re = 200 I

Re = 200	Source	2D/3D	St	C _D	C_L
	Belov, Martinelli and Jameson	2D	0.193	1.19 ± 0.042	±0.64
Numerical – Incompressible	Gresho, Chan, Lee et al.	2D	0.21	1.76	-
	Linnick and Fasel (λ = 0.056)	2D	0.199	$\textbf{1.37} \pm \textbf{0.046}$	±0.70
	Linnick and Fasel (λ = 0.023)	2D	0.197	$\textbf{1.34} \pm \textbf{0.044}$	±0.69
	Miyake, Sakamoto, Tokunaga et al.	2D	0.196	$\textbf{1.34} \pm \textbf{0.043}$	±0.67
	Persillon and Braza	2D	0.198	1.321	-
	Saiki and Biringen	2D	0.197	1.18	-
	Persillon and Braza	3D	0.181	1.306	-
	Liu, Zheng and Sung	3D	0.192	1.31 ± 0.049	±0.69
Experimental	Berger and Wille	-	0.18 - 0.19	-	-
Lxperimental	Clift, Grace and Weber	-	-	1.16	-
	Williamson	-	0.181	-	-
Numerical – Compressible	Brehm, Hader and Fasel (Ma = 0.1)	3D	0.192	$\textbf{1.3} \pm \textbf{0.04}$	±0.66
	Ayers	2D	0.201	1.371 ± 0.011	±0.70
	Present Results:	2D	0.2002	1.344 ± 0.0462	±0.6887

Simulation at Re = 200 II

- hier
- kommt
- beschreibung hin

Simulation at Re = 200 III

re 200 tabelle, plot, lift over time, vorticity

Comparison of Re = 100 and Re = 200 I

Comparison of Re = 100 and Re = 200 II

	St	C_D	C_L
Re = 100	0.1669	1.359 ± 0.00805	±0.3291
Re = 200	0.2002	1.344 ± 0.0462	±0.6887

- 1 Introduction and Fundamentals
 - Introduction
 - The Discontinuous Galerkin Method
 - The Immersed Boundary Method
- 2 Verification of BoSSS for Inviscid Flows
 - Robustness
 - Convergence
- 3 Evaluation of BoSSS for Viscid Flows
 - Theory
 - Simulations
- 4 Conclusion and Outlook

Summary

conclusion

Outlook

future works

The End

ende, fragen

Bibliography I

- [1] [Müller, 2014] B. Müller Methods for higher order numerical simulations of complex inviscid fluids with immersed boundaries PhD thesis, TU Darmstadt, 2014.
- [2] [Ayers, 2015] L. F. Ayers Validation of a discontinuous Galerkin based compressible CFD solver Bachelor thesis, TU Darmstadt, 2015.
- [3] [Müller, 2016] B. Müller, S. Krämer-Eis, F. Kummer et al. A high-order Discontinuous Galerkin method for compressible flows with immersed boundaries International Journal of Numerical Methods in Engineering, 2016, submitted.

Bibliography II

[4] [Williamson, 1996] C. H. Williamson Vortex dynamics in the cylinder wake Annual review of fluid mechanics, 1996.

alle tabellen und graphen die man brauchen könnte in anhang