CYBER 207 Applied Machine Learning for Cybersecurity

Week 6 Live Session Slides

Deep learning algorithm structured similar to the organization of neurons in the brain

A neural network is a series of algorithms that endeavors to recognize underlying relationships in a set of data through a process that mimics the way the human brain operates.

Neural networks can adapt to changing input; so the network generates the best possible result without needing to redesign the output criteria.

Neural Networks: History and Timeline

Neural Networks: Activation Functions

Neural Networks: Example (Property Valuation)

Neural Networks: Example (Property Valuation)

Neural Networks: Perceptron

OR		
I ₁	l ₂	out
0	0	0
0	1	1
1	0	1
1	1	1

Neural Networks: Perceptron (XOR)

h1

h2

X1	X2	Y	X1 AND ¬X2	rX1 AND X2	h1 OR h2
0	0	0	0	0	0
0	1	1	0	1	1
1	0	1	1	0	1
1	1	0	0	0	0

$$y = \begin{cases} 0, & \text{if } w \cdot x + b \le 0 \\ 1, & \text{if } w \cdot x + b > 0 \end{cases}$$

Neural Networks: Perceptron (XOR)

Neural Networks: Forward Propagation

Forwardpass

Chain Rule

Suppose you have a composite function:

$$h(x) = f(g(x))$$

and both f and g are differentiable functions.

Then the chain rule says that the derivative of h is the following product:

$$h'(x) = f'(g(x))g'(x)$$

The chain rule expressed with partial derivatives:

Neural Networks: Backpropagation

Backwardpass

Neural Networks: Perceptron (XOR)

X2	Y	
0	0	b ≤ 0
1	1	\rightarrow b + w2 > 0
0	1	\rightarrow b + w1 > 0
1	0	b + w1 + w2 ≤ 0
	0 1 0 1	X2 Y 0 0 1 1 0 1 1 0

$$y = \begin{cases} 0, & \text{if } w \cdot x + b \le 0 \\ 1, & \text{if } w \cdot x + b > 0 \end{cases}$$