Abstract

5

10.

15

The invention relates to a process for producing a catalyst for gas-phase oxidations, which comprises weighing a particulate inert support having a total mass of $M_{support}$ into a fluidized-bed apparatus, providing an aqueous suspension of a catalytically active material or sources therefor and a binder having a binder content of B_{susp} , fluidizing the inert support by introduction of a gas stream heated to a temperature of T_{gas} at a flow rate of Q_{gas} , and spraying the suspension at a rate of Q_{susp} onto the fluidized inert support. When Q_{gas} , Q_{susp} , B_{susp} , $M_{support}$ and T_{gas} are selected within the ranges

 $3000 \le Q_{gas} \text{ [m}^3/\text{h]} \le 9000,$ $2 \le B_{susp} \text{ [% by weight]} \le 18,$ $75 \le T_{gas} \text{ [°C]} \le 120$ 1000 ≤ Q_{susp} [g/min] ≤ 3500, 60 ≤ $M_{support}$ [kg] ≤ 240.

so that a parameter K defined as

 $K = 0.020~Q_{gas} - 0.055~Q_{susp} + 7.500~B_{susp} - 0.667~M_{support} + 2.069~T_{gas} - 7$ satisfies the relationship 127.5 $\leq K \leq$ 202, high-quality coatings can be produced and the formation of twins made up of support particles adhering to one another can be avoided.

AE 20030697

M/44253

TE/2202

September 26, 2003