#### Quantum Development – Microsoft's QDK

```
tate of one qubit to a target qubit by using

    AdiabaticIsing

▶ BitFlipCode
DatabaseSearch
H2SimulationCmdLine
▶ H2SimulationGUI
HubbardSimulation
IntegerFactorization
                                                        operation Teleport(msg : Qubit, there : Qubit) : () {
IsingGenerators
IsingPhaseEstimation
IsingTrotterEvolution
                                                                 using (register = Qubit[1]) {
Measurement
                                                                      // Ask for an auxiliary qubit that we can use to prepare
PhaseEstimation
                                                                      let here = register[0];
▶ PythonInterop

    SimpleAlgorithms

    SimpleIsing

                                                                      H(here);

    Teleportation

                                                                      CNOT(here, there);
                                                                      CNOT(msg, here);

    App.config

                                                                      H(msg);
 Program.cs
 README.md
  TeleportationSample.csproj
                                                                      if (M(msg) == One) { Z(there); }
  F TeleportationSample.qs
                                                                      if (M(here) == One) { X(there); }
▶ UnitTesting
(I) README.md
                                                                      Reset(here);
```

# Measuring a qubit 1 with probability $|\beta|^2$ |1> 0 0 with probability $|\alpha|^2$ $\alpha |0\rangle + \beta |1\rangle$

#### Measuring a qubit

```
operation M (qubit : Qubit) : Result
```





```
operation X (qubit : Qubit) : ()
```





| Input          | Output      |
|----------------|-------------|
| 00 <b>&gt;</b> | <b> 00 </b> |

 $|0\rangle|00\rangle|0\rangle$  control target

00>



| Input          | Output         |
|----------------|----------------|
| 00 <b>)</b>    | 00 <b>&gt;</b> |
| 01 <b>&gt;</b> | 01 <b>&gt;</b> |

|01**)**control target

01)



| Input          | Output         |
|----------------|----------------|
| 00 <b>)</b>    | 00 <b>)</b>    |
| 01 <b>&gt;</b> | 01 <b>&gt;</b> |
| 10)            | 11)            |

control target



| Input          | Output         |
|----------------|----------------|
| 00 <b>)</b>    | <b> 00 </b>    |
| 01 <b>&gt;</b> | 01 <b>&gt;</b> |
| 10)            | 11)            |
| 11 <b>)</b>    | 10 <b>)</b>    |

|11) control target |10>

```
operation CNOT (control : Qubit, target : Qubit) : ()
```



#### Quantum Operations - Z

$$|0\rangle \longrightarrow |0\rangle$$

$$|1\rangle \longrightarrow -|1\rangle$$

| Input | Output        |
|-------|---------------|
| 0)    | <b> 0&gt;</b> |
| 1>    | - 1>          |

#### Quantum Operations – Z

```
operation Z (qubit : Qubit) : ()
```

```
___Z__
```

#### Quantum Operations - Hadamard



#### Quantum Operations - Hadamard



#### Quantum Operations – Hadamard

```
operation H (qubit : Qubit) : ()
```



#### Our Toolbox:

NOT

| Input         | Output        |
|---------------|---------------|
| <b> 0&gt;</b> | <b> 1&gt;</b> |
| <b> 1&gt;</b> | 0)            |

CNOT

| Input          | Output         |
|----------------|----------------|
| 00 <b>)</b>    | 00 <b>)</b>    |
| 01 <b>&gt;</b> | 01 <b>&gt;</b> |
| 10)            | 11 <b>)</b>    |
| 11)            | 10 <b>&gt;</b> |

7

| Input         | Output        |
|---------------|---------------|
| <b> 0&gt;</b> | <b> 0&gt;</b> |
| <b> 1&gt;</b> | - 1>          |

Hadamard

| Input         | Output                                                                                  |
|---------------|-----------------------------------------------------------------------------------------|
| <b> 0&gt;</b> | $\frac{1}{\sqrt{2}}\left 0\right\rangle + \frac{1}{\sqrt{2}}\left 1\right\rangle$       |
| <b> 1&gt;</b> | $\frac{1}{\sqrt{2}} \left  0 \right\rangle - \frac{1}{\sqrt{2}} \left  1 \right\rangle$ |

# Entanglement

$$\frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$$

$$|0\rangle - H$$

| Input | Output                                                                            |
|-------|-----------------------------------------------------------------------------------|
| 0)    | $\frac{1}{\sqrt{2}}\left 0\right\rangle + \frac{1}{\sqrt{2}}\left 1\right\rangle$ |
| 1>    | $\frac{1}{\sqrt{2}}  0\rangle - \frac{1}{\sqrt{2}}  1\rangle$                     |

#### Entanglement



| Input          | Output         |
|----------------|----------------|
| 00 <b>&gt;</b> | <b> 00 </b>    |
| 01 <b>&gt;</b> | 01 <b>&gt;</b> |
| 10 <b>&gt;</b> | 11 <b>)</b>    |
| 11 <b>&gt;</b> | 10 <b>&gt;</b> |

# Entanglement - Summary

$$|00\rangle \longrightarrow \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$$

#### Quantum Teleportation - Motivation

 $|\psi\rangle$  Physically?

O) Classically?

Quantum teleportation!

$$|\psi\rangle$$

$$|0\rangle - H$$

$$|0\rangle$$

Step 0: Entangle our qubits

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

$$|0\rangle$$

$$|0\rangle$$

Step 1: Entangle my qubit with the state to be sent

$$\frac{1}{2}[|00\rangle(\alpha|0\rangle + \beta|1\rangle) + |01\rangle(\alpha|1\rangle + \beta|0\rangle) + |10\rangle(\alpha|0\rangle - \beta|1\rangle) + |11\rangle(\alpha|1\rangle - \beta|0\rangle)]$$



Step 2: Measure the first two qubits (mine, message)

$$\frac{1}{2}[|00\rangle(\alpha|0\rangle + \beta|1\rangle) + |01\rangle(\alpha|1\rangle + \beta|0\rangle) + |10\rangle(\alpha|0\rangle - \beta|1\rangle) + |11\rangle(\alpha|1\rangle - \beta|0\rangle)]$$
Do nothing
$$|00\rangle(\alpha|0\rangle + \beta|1\rangle)$$

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

$$\frac{1}{2}[|00\rangle(\alpha|0\rangle + \beta|1\rangle) + \underline{|01\rangle(\alpha|1\rangle + \beta|0\rangle)} + |10\rangle(\alpha|0\rangle - \beta|1\rangle) + |11\rangle(\alpha|1\rangle - \beta|0\rangle)]$$

$$\text{Apply a NOT gate}$$

$$|01\rangle(\alpha|1\rangle + \beta|0\rangle)$$

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

$$\frac{1}{2}[|00\rangle(\alpha|0\rangle + \beta|1\rangle) + |01\rangle(\alpha|1\rangle + \beta|0\rangle) + |10\rangle(\alpha|0\rangle - \beta|1\rangle) + |11\rangle(\alpha|1\rangle - \beta|0\rangle)]$$
Apply a Z gate
$$|10\rangle(\alpha|0\rangle - \beta|1\rangle)$$

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

$$\frac{1}{2}[|00\rangle(\alpha|0\rangle + \beta|1\rangle) + |01\rangle(\alpha|1\rangle + \beta|0\rangle) + |10\rangle(\alpha|0\rangle - \beta|1\rangle) + |11\rangle(\alpha|1\rangle - \beta|0\rangle)]$$
Apply a Z gate and a NOT gate
$$|11\rangle(\alpha|1\rangle - \beta|0\rangle)$$

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

#### Quantum Teleportation - Summary

| Measurement    | Operation    |
|----------------|--------------|
| 00 <b>)</b>    | Do nothing   |
| 01 <b>&gt;</b> | Apply NOT    |
| 10 <b>&gt;</b> | Apply Z      |
| 11 <b>&gt;</b> | Apply NOT, Z |

Step 4: Apply the gates

# Quantum Teleportation – Code!



# Q&A?

- Q. Do you follow Microsoft Quantum on Twitter?
- A. No? Go to aka.ms/QuantumTwitter

- Q. Do you receive the Microsoft Quantum newsletter?
- A. No? Go to aka.ms/QuantumNewsletter

- Q. Interested in learning more about quantum computing from the ground up?
- A. Yes? Go to aka.ms/QuantumAdventures



Anita Ramanan | Frances Tibble https://aka.ms/quantumadventures @whywontitbuild | @frances\_tibble anraman@microsoft.com | frtibble@microsoft.com