3,5,2

 $F(0,1) P = \overline{F}(0,1)$, $E(1|1-1] P = \overline{E}(1|1)$, $F(1,1) P = \overline{F}(1,1)$

$$\begin{bmatrix} 1 & w & w^2 & \cdots & w^{h-1} \end{bmatrix} p = \begin{bmatrix} 1 & w^1 & w^2 & \cdots & w^{1-h} \end{bmatrix}$$

Since wis a root of unity, w"=1.

$$W^{-1} = W^{-1}$$
 $W^{-2} = W^{-1}$
 $W^{-3} = W^{-1}$

It is clear that the oth column stayed same, let column swapped with (4-11th column, 2nd => (N-2)th, soon and so forth.

$$\sqrt{W_{128}} = e^{\frac{1}{128} \cdot \frac{\pi}{2}} = e^{\frac{3\pi}{128}} = W_{256}$$

$$W_{128} = e^{\frac{3\pi}{128}} = W_{69}$$

42 2. A 3×3 has det (A) = -1.

Find det $(\frac{1}{2}A)$, det (-A), det (A^2) , det (A^{-1}) $det(\frac{1}{2}A) = (\frac{1}{2})^3 - (-1) = (-\frac{1}{8})$

 $det(-A) = det(-1 \cdot A) = det(-1) \cdot det(A) = -1 \cdot -1 = [1]$ $det(A^{2}) = det(A) \cdot det(A) = [1]$ $det(A^{-1}) = \frac{1}{det(A)} = [-1]$

4.2 4.
$$A = \begin{bmatrix} 1 & 2 & -2 & 6 \\ 2 & 3 & -4 & 1 \\ -1 & -2 & 0 & 2 \\ 0 & 2 & 5 & 3 \end{bmatrix}$$

$$B = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & -2 \end{bmatrix}$$

$$C = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & -2 \\ 0 & -1 & 2 & -1 \end{bmatrix}$$
exchanged

$$det(A) = \begin{vmatrix} 1 & 2 & -2 & 0 \\ 0 & -1 & 0 & 1 & | r_2 - 2r_1 \\ 0 & 0 & -2 & 2 & | r_3 4r_1 \\ 0 & 0 & 5 & 5 & | r_{e+2}r_2 \end{vmatrix}$$

$$det(B) = \begin{cases} -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{cases} \xrightarrow{r_3 \leftrightarrow q_1} \xrightarrow{r_3 \leftrightarrow q_2} \xrightarrow{r_3 \leftrightarrow q_2} \xrightarrow{r_3 \leftrightarrow q_3} \xrightarrow{r_3 \to q_3} \xrightarrow{r_$$

= [[]

4.2 6

humber of changes

Exchange 11th row with 1st row,

If n is even # exchange = $\frac{h}{2}$ n is odd, # exchange = $\frac{h}{2}$ $\Rightarrow \left[\frac{u}{2}\right] \longrightarrow floor function$ deap = (-1)

Or if we exchange nows sequentially. $n \leftrightarrow n-1$, $n \leftrightarrow n-1$, $n \leftrightarrow n-1$, $n \leftrightarrow n-1$, $n \leftrightarrow n-1$ $+ \exp(henge) = (n-1)+(n-2)+(n-3)+(n-3)+(n-1)$ $= \frac{n \cdot (n-1)}{n-1}$ $= \frac{n^2-n}{n-1}$

 $\det P = \begin{pmatrix} n^2 - n \\ -1 \end{pmatrix}^{\frac{n^2 - n}{2}}$

$$\frac{\det B}{B} = \frac{1 \cdot \begin{vmatrix} 0 & 3 & 5 \\ 6 & 7 & 9 \\ 0 & 0 & 1 \end{vmatrix}}{-2 \cdot \begin{vmatrix} 6 & 7 & 8 \\ 6 & 7 & 8 \\ 0 & 0 & 0 \end{vmatrix}}$$

$$= \frac{-3 \cdot 6}{-18}$$

$$\begin{bmatrix}
1 & 1 & 1 & 1 \\
6 & 1 & 1 & 1 \\
0 & 1 & 2 & 2 \\
0 & 1 & 2 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
r_2 - r_1 \\
r_3 - r_1 \\
r_4 - r_1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
v_3 - v_2 \\
v_{\psi} - v_{\psi}
\end{bmatrix}$$

$$L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ \end{bmatrix}; \begin{cases} 1, 1, 1, 1 \\ 1, 1 & 1 \\ \end{bmatrix}$$

$$D) A = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 6 & 6 & 6 \\ 2 & 6 & 8 & 8 \\ 2 & 6 & 8 & 10 \end{bmatrix} = LU, \quad U = \begin{bmatrix} 2 & 2 & 22 \\ 0 & 4 & 49 \\ 0 & 0 & 22 \\ 0 & 0 & 02 \end{bmatrix}, \quad L = \begin{bmatrix} 10000 \\ 11100 \\ 11110 \\ 11111 \end{bmatrix}$$

$$A_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 . Let $A = -1$

$$r_{n} \rightarrow r_{n} - \frac{x_{n}}{x_{j}} r_{j} = \begin{bmatrix} 0 & 0 & \cdots & 0 & \cdots & 1 \end{bmatrix}$$

$$r_{n-1} - 7 r_{n-1} - \frac{x_{n-1}}{x_{5}} \cdot r_{5} = \left[6 \ 0 \ \cdots \ 0 \cdots \ 1 \ 0 \right].$$

$$AM = \begin{bmatrix} a_{11} - a_{13} - a_{1n} \\ a_{51} - a_{53} - a_{5n} \end{bmatrix}$$

$$\begin{bmatrix} a_{i,1} & \cdots & a_{i,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{bmatrix} \qquad \begin{aligned} m_{i,j} &= a_{n,j} \\ m_{i,j} &= b_{i,j} \\ \vdots \\ a_{n,j} &\cdots & a_{n,n} \end{aligned}$$

$$= \begin{bmatrix} a_{11} & \cdots & b_{1} & \cdots & a_{74} \\ \vdots & \vdots & \vdots & \vdots \\ a_{11} & \cdots & b_{11} & \cdots & a_{74} \end{bmatrix}$$

$$x_j = \frac{\det(B_j)}{\det(A_j)}$$

$$m_i = b_i$$

44 6

In n-dimensional space, if canh rector is scaled by factor of 3, the total volume is scaled by 3ⁿ.

Since the determinant represents the total volume constructed by these now vectors in A, the determinent would also be scaled by 3ⁿ.