પ્રશ્ન ૧(આ) [3 ગુણ]

કમ્પ્યુટરના મુખ્ય ઘટકોની થયાર્ કરો.

જવાબ:

કોષ્ટક: કમ્પ્યુટરના મુખ્ય ઘટકો

ยรร	รเช้	ઉદાહરણ
ઇનપુટ યુનિટ	ડેટા અને સૂચનાઓ પ્રાપ્ત કરે	કીબોર્ડ, માઉસ
સીપીયુ	ડેટા પ્રોસેસ કરે અને કંટ્રોલ કરે	Intel i5, AMD Ryzen
મેમરી	ડેટા અસ્થાયી/કાયમી સંગ્રહ કરે	RAM, હાર્ડ ડિસ્ક
આઉટપુટ યુનિટ	પ્રોસેસ કરેલા પરિણામો દર્શાવે	મોનિટર, પ્રિન્ટર

મુખ્ય ઘટકો:

• **હાર્ડવેર**: ભૌતિક ભાગો જેવા કે CPU, RAM, મધરબોર્ડ

• સોફ્ટવેર: પ્રોગ્રામ્સ અને ઓપરેટિંગ સિસ્ટમ

• ડેટા: કમ્પ્યુટર દ્વારા પ્રોસેસ થતી માહિતી

મેમરી ટ્રીક: "ઇનપુટ સીપીયુ મેમરી આઉટપુટ"

પ્રશ્ન ૧(બ) [૪ ગુણ]

વેબ બ્રાઉઝર અને તેનો પ્રકાર સમજાવો.

જવાબ:

વેબ બ્રાઉઝર એ એવો સોફ્ટવેર છે જે ઇન્ટરનેટથી વેબ પૃષ્ઠોને ઍક્સેસ કરે અને દર્શાવે છે.

કોષ્ટક: વેબ બ્રાઉઝરના પ્રકારો

બ્રાઉઝર પ્રકાર	વિશેષતાઓ	ઉદાહરણો
ગ્રાફિકલ	GUI ઇન્ટરફેસ, મલ્ટિમીડિયા સપોર્ટ	Chrome, Firefox
ટેક્સ્ટ-આધારિત	કમાન્ડ લાઇન, ઝડપી લોડિંગ	Lynx, Links
મોબાઇલ	ટચ ઇન્ટરફેસ, ફોન માટે અનુકૂલિત	Safari Mobile, Chrome Mobile

વિશેષતાઓ:

• નેવિગેશન: આગળ, પાછળ, રિફ્રેશ બટન્સ

• બુકમાર્ક્સ: પ્રિય વેબસાઇટ્સ સેવ કરો

• ટેલ્સ: એક વિન્ડોમાં બહુવિદ્ય પૃષ્ઠો

• **સિક્યોરિટી**: HTTPS સપોર્ટ, પોપઅપ બ્લોકર્સ

મેમરી ટ્રીક: "બ્રાઉઝ કરો સલામત રીતે ઓનલાઇન"

પ્રશ્ન ૧(સ) [७ ગુણ]

LAN, MAN અને WAN ને ઉદાહરણો સાથે સમજાવો.

જવાબ:

કોષ્ટક: નેટવર્ક પ્રકારોની સરખામણી

નેટવર્ક	કવરેજ	સ્પીડ	ઉદાહરણ	ખર્ચ
LAN	બિલ્ડિંગ/કેમ્પસ	ઊંચી (100Mbps-1Gbps)	ઓફિસ નેટવર્ક	ઓછો
MAN	શહેર/મેટ્રોપોલિટન	મધ્યમ (10-100Mbps)	કેબલ ટીવી નેટવર્ક	મધ્યમ
WAN	દેશ/વૈશ્વિક	બદલાતી (1-100Mbps)	ઇન્ટરનેટ	વધુ

વિસ્તૃત સમજાવટ:

LAN (Local Area Network):

• કવરેજ: બિલ્ડિંગ કે નાના વિસ્તારમાં

• **ટે**รनोલોજી: Ethernet, Wi-Fi

• ઉદાહરણ: કમ્પ્યુટર લેબ, ઘરેલું નેટવર્ક

MAN (Metropolitan Area Network):

• કવરેજ: શહેર કે મેટોપોલિટન વિસ્તાર

• ટેકનોલોજી: ફાઇબર ઓપ્ટિક, માઇક્રોવેવ

• ઉદાહરણ: શહેરવ્યાપી કેબલ ઇન્ટરનેટ

WAN (Wide Area Network):

• કવરેજ: બહુવિધ શહેરો/દેશો

• ટેકનોલોજી: સેટેલાઇટ, ફાઇબર ઓપ્ટિક

• **ઉદાહરણ**: ઇન્ટરનેટ, બેંક ATM નેટવર્ક

આકૃતિ:

મેમરી ટ્રીક: "લોકલ મેટ્રો વર્લ્ડ" (LAN-MAN-WAN)

પ્રશ્ન ૧(સ અથવા) [૭ ગુણ]

ડોસ અને યુનિક્સ ઓપરેટિંગ સિસ્ટમ વચ્ચે તફાવત લખો.

જવાબ:

કોષ્ટક: DOS વિ Unix સરખામણી

વિશેષતા	DOS	Unix
ઇન્ટરફેસ	કમાન્ડ લાઇન (ટેક્સ્ટ-આધારિત)	કમાન્ડ લાઇન + GUI
મલ્ટિ-યુઝર	સિંગલ યુઝર	મલ્ટિ-યુઝર સપોર્ટ
મલ્ટિટાસ્કિંગ	મર્યાદિત	સંપૂર્ણ મલ્ટિટાસ્કિંગ
સિક્યોરિટી	મૂળભૂત	અદ્યતન સિક્યોરિટી
ફાઇલ સિસ્ટમ	FAT16/FAT32	વિવિધ (ext3, ext4)
કિંમત	કોમર્શિયલ (Microsoft)	ફ્રી/ઓપન સોર્સ વેરિયન્ટ્સ

મુખ્ય તફાવતો:

DOS (Disk Operating System):

• **આર્કિટેક્ચર**: 16-bit, સિંગલ-યુઝર

• મેમરી: 640KB પરંપરાગત મેમરી મર્યાદા

• કમાન્ડ્સ: DIR, COPY, DEL

• **ફાઇલ નેમિંગ**: 8.3 ફોર્મેટ મર્યાદા

Unix:

• **આર્કિટેક્ચર**: 32/64-bit, મલ્ટિ-યુઝર

• મેમરી: અદ્યતન મેમરી મેનેજમેન્ટ

• **इमान्ड्स**: ls, cp, rm, grep

• ફાઇલ નેમિંગ: કેસ-સેન્સિટિવ, લાંબા નામો

ઉદાહરણો:

• **DOS**: MS-DOS, PC-DOS

• Unix: Linux, Solaris, AIX

મેમરી ટ્રીક: "DOS સરળ, Unix શક્તિશાળી" (સિંગલ વિ મલ્ટિ-યુઝર)

પ્રશ્ન ર(આ) [3 ગુણ]

ઓપરેટિંગ સિસ્ટમના લક્ષણોની યાદી આપો.

જવાબ:

કોષ્ટક: ઓપરેટિંગ સિસ્ટમની વિશેષતાઓ

વિશેષતા	વર્ણન
પ્રોસેસ મેનેજમેન્ટ	પ્રોગ્રામ એક્ઝિક્યુશન કંટ્રોલ કરે
મેમરી મેનેજમેન્ટ	RAM કાર્યક્ષમ રીતે વહેંચે
ફાઇલ મેનેજમેન્ટ	ડેટા સ્ટોરેજ વ્યવસ્થિત કરે
ડિવાઇસ મેનેજમેન્ટ	હાર્ડવેર ડિવાઇસો કંટ્રોલ કરે

મુખ્ય વિશેષતાઓ:

• યુઝર ઇન્ટરફેસ: GUI અથવા કમાન્ડ લાઇન

• સિક્યોરિટી: યુઝર ઓથેન્ટિકેશન, ઍક્સેસ કંટ્રોલ

• મલ્ટિટાસ્કિંગ: એકસાથે બહુવિધ પ્રોગ્રામ્સ ચલાવો

• **રિસોર્સ ઍલોકેશન**: CPU, મેમરી વિતરણ

મેમરી ટીક: "પ્રોસેસ મેમરી ફાઇલ ડિવાઇસ"

પ્રશ્ન ર(બ) [૪ ગુણ]

હાફ ડુપ્લેક્સ અને ફુલ ડુપ્લેક્સ ટ્રાન્સમિશન મોડ્સ વ્યાખ્યાયિત લખો.

જવાબ:

કોષ્ટક: ટ્રાન્સમિશન મોડ્સની સરખામણી

મોડ	દિશા	ઉદાહરણ	કાર્યક્ષમતા
હાફ ડુપ્લેક્સ	દ્વિદિશીય (એક સમયે એક)	વોકી-ટોકી	મધ્યમ
ફુલ ડુપ્લેક્સ	દ્વિદિશીય (એકસાથે)	ટેલિફોન	ઊંચી

વ્યાખ્યાઓ:

હાફ ડુપ્લેક્સ:

• ક્રોમ્યુનિકેશન: બે-તરફી પણ એકસાથે નહીં

• **ઉદાહરણ**: રેડિયો કોમ્યુનિકેશન, જૂના Ethernet hubs

• મર્યાદા: વારો લેવાની જરૂર

કુલ ડુપ્લેક્સ:

• કોમ્યુનિકેશન: બે-તરફી એકસાથે

• **ઉદાહરણ**: આધુનિક Ethernet, ટેલિફોન કૉલ્સ

• ફાયદો: રાહ જોવાનો સમય નથી

આકૃતિ:

```
હાફ ડુપ્લેક્સ:
A ----> B (A મોકલે)
A <---- B (B મોકલે – A રાહ જુએ)
કુલ ડુપ્લેક્સ:
A <---> B (બંને એકસાથે મોકલે/મેળવે)
```

મેમરી ટ્રીક: "હાફ રાહ જુએ, ફુલ વહે છે" (હાફ=રાહ, ફુલ=એકસાથે)

પ્રશ્ન ર(સ) [७ ગુણ]

ઓપન સોર્સ અને પ્રોપરાઇટરી સોફ્ટવેર વચ્ચેનો તફાવત.

જવાબ:

કોષ્ટક: ઓપન સોર્સ વિ પ્રોપરાઇટરી સોફ્ટવેર

પાસા	ઓપન સોર્સ	પ્રોપરાઇટરી
સોર્સ કોડ	ફ્રીમાં ઉપલબ્ધ	છુપાયેલો/સુરક્ષિત
કિંમત	સામાન્ય રીતે ફ્રી	પેઇડ લાઇસન્સ
મોડિફિકેશન	મંજૂર	પ્રતિબંધિત
સપોર્ટ	કોમ્યુનિટી-આધારિત	વેન્ડર સપોર્ટ
સિક્યોરિટી	ટ્રાન્સપેરન્ટ	સિક્યોરિટી through obscurity
ઉદાહરણો	Linux, Firefox, Apache	Windows, MS Office

વિસ્તૃત સરખામણી:

ઓપન સોર્સ સોફ્ટવેર:

• વ્યાખ્યા: સોર્સ કોડ જાહેરમાં ઉપલબ્ધ

• **લાઇસન્સિંગ**: GPL, MIT, Apache લાઇસન્સ

• ફાયદા: ખર્ચ-અસરકારક, કસ્ટમાઇઝેબલ, પારદર્શક

• **G**ียเ_รี่จะยน์: LibreOffice, GIMP, MySQL

પ્રોપરાઇટરી સોક્ટવેર:

• વ્યાખ્યા: વ્યક્તિ/કંપની દ્વારા માલિકી

• લાઇસન્સિંગ: End User License Agreement (EULA)

• ફાયદા: વ્યાવસાયિક સપોર્ટ, ગેરેંટીશુદા અપડેટ્સ

• **G**ียเ**๔ะย**เ้า: Adobe Photoshop, Oracle Database

ફાયદા અને નુકસાનો:

ઓપન સોર્સ ફાયદા: ફ્રી, લવથીક, કોમ્યુનિટી સપોર્ટ ઓપન સોર્સ નુકસાન: મર્યાદિત વ્યાવસાયિક સપોર્ટ

પ્રોપરાઇટરી ફાયદા: વ્યાવસાયિક સપોર્ટ, વોરન્ટી પ્રોપરાઇટરી નુકસાન: મોંઘું, વેન્ડર લોક-ઇન

મેમરી ટ્રીક: "ઓપન = જોવા માટે ફ્રી, પ્રોપરાઇટરી = વાપરવા માટે પૈસા આપો"

પ્રશ્ન ર(આ અથવા) [3 ગુણ]

RAM અને ROM વચ્ચે તફાવત લખો.

જવાબ:

કોષ્ટક: RAM વિ ROM સરખામણી

વિશેષતા	RAM	ROM
પૂર્ણ નામ	Random Access Memory	Read Only Memory
વોલેટિલિટી	વોલેટાઇલ (ડેટા ગુમાવે)	નોન-વોલેટાઇલ (ડેટા જાળવે)
ઍ ક્સે સ	રીડ/રાઇટ	ફક્ત રીડ
સ્પીડ	ખૂબ ઝડપી	RAM કરતાં ધીમી

મુખ્ય તફાવતો:

• હેતુ: RAM અસ્થાયી સ્ટોરેજ માટે, ROM કાયમી માટે

• કિંમત: RAM પ્રતિ GB વધુ મોંઘી

• **વપરાશ**: RAM પ્રોગ્રામ્સ માટે, ROM ફર્મવેર માટે

મેમરી ટ્રીક: "RAM દોડે, ROM યાદ રાખે" (અસ્થાયી વિ કાયમી)

પ્રશ્ન ર(બ અથવા) [૪ ગુણ]

ઉદાહરણ સાથે AND લોજિક ગેટ સમજાવો.

જવાબ:

AND ગેટ વ્યાખ્યા: આઉટપુટ ત્યારે જ HIGH આવે જ્યારે બધા ઇનપુટ્સ HIGH હોય.

ટ્રુથ ટેબલ:

ઇનપુટ A	ઇનપુટ B	આઉટપુટ (A AND B)
0	0	0
0	1	0
1	0	0
1	1	1

સિમ્બોલ:

ઉદાહરણ ઍપ્લિકેશન્સ:

• **સિક્યોરિટી સિસ્ટમ**: દરવાજો ચાવી AND કાર્ડ બંનેથી ખુલે

• કાર સ્ટાર્ટિંગ: એન્જિન યાવી AND બ્રેક પર પગ બંનેથી ચાલે

• **બુલિયન એક્સપ્રેશન**: Y = A · B અથવા Y = A _^ B

વાસ્તવિક જીવનનું ઉદાહરણ: વોશિંગ મશીન ત્યારે જ ચાલે જ્યારે દરવાજો બંધ હોય AND પાવર બટન દબાયેલ હોય.

મેમરી ટ્રીક: "બધા ઇનપુટ્સ સાચા = આઉટપુટ સાચો"

પ્રશ્ન ર(સ અથવા) [७ ગુણ]

ઈથરનેટ કેબલ કલર કોડ સમજાવો.

જવાબ:

સ્ટાન્ડર્ડ: TIA/EIA-568B કલર કોડ

કોષ્ટક: વાયર કલર સિક્વન્સ

પિન	રંગ	รเช้
1	વાઇટ/ઓરેન્જ	ટ્રાન્સમિટ+
2	ઓરેન્જ	ટ્રાન્સમિટ-
3	વાઇટ/ગ્રીન	રિસીવ+
4	બ્લુ	વાપરતા નથી
5	વાઇટ/બ્લુ	વાપરતા નથી
6	ગ્રીન	રિસીવ-
7	વાઇટ/બ્રાઉન	વાપરતા નથી
8	બ્રાઉન	વાપરતા નથી

કેબલના પ્રકારો:

સ્ટ્રેઇટ-થ્રુ કેબલ (568B બંને છેડે):

• વપરાશ: કમ્પ્યુટર થી સ્વિય/હબ

• કલર સિક્વન્સ: બંને છેડે સમાન

ક્રોસ-ઓવર કેબલ (568A એક છેડે, 568B બીજે):

• વપરાશ: કમ્પ્યુટર થી કમ્પ્યુટર સીધું

• **પિન્સ સ્વેપ**: 1↔3, 2↔6

વાયરિંગ આકૃતિ:

RJ-45 કનેક્ટર (568B):

પિન 1: વાઇટ/ઓરેન્જ

પિન 2: ઓરેન્જ

પિન 3: વાઇટ/ગ્રીન

પિન 4: બ્લુ

पिन 5: पाध्ट/ज्सु

પિન 6: ગ્રીન

પિન 7: વાઇટ/બ્રાઉન

પિન 8: બ્રાઉન

તૈયારીના પગલાં:

1. બાહ્ય જેકેટ સ્ટ્રિપ કરો (1 ઇંચ)

2. વાયર્સને કલર ક્રમમાં ગોઠવો

3. વાયર્સને સરખી કાપો

4. RJ-45 કનેક્ટરમાં નાખો

5. ક્રિમ્પિંગ ટૂલથી ક્રિમ્પ કરો

મેમરી ટ્રીક: "વાઇટ ઓરેન્જ, ઓરેન્જ, વાઇટ ગ્રીન, બ્લુ, વાઇટ બ્લુ, ગ્રીન, વાઇટ બ્રાઉન, બ્રાઉન"

પ્રશ્ન 3(આ) [3 ગુણ]

વાયર્ડ અને વાયરલેસ કોમ્યુનિકેશનની સરખામણી લખો.

જવાબ:

કોષ્ટક: વાયર્ડ વિ વાયરલેસ કોમ્યુનિકેશન

પાસા	વાયર્ડ	વાયરલેસ
માધ્યમ	કેબલ્સ (કોપર/ફાઇબર)	રેડિયો તરંગો/ઇન્ફ્રારેડ
સ્પીડ	વધુ (100Gbps સુધી)	ઓછી (1Gbps સુધી)
સિક્યોરિટી	વધુ સુરક્ષિત	ઓછી સુરક્ષિત
મોબિલિટી	મર્યાદિત	ઊંચી મોબિલિટી
કિંમત	વધુ ઇન્સ્ટોલેશન	ઓછી ઇન્સ્ટોલેશન
ઇન્ટરફેરન્સ	ન્યૂનતમ	સિગ્નલ ઇન્ટરફેરન્સ

મુખ્ય મુદ્દા:

• **વાયર્ડ**: વિશ્વસનીય, ઝડપી, સુરક્ષિત પણ મર્યાદિત મોબિલિટી

• વાયરલેસ: મોબાઇલ, લવચીક પણ સિક્યોરિટીની ચિંતા

મેમરી ટ્રીક: "વાયર્સ ઝડપી, વાયરલેસ મુક્ત" (સ્પીડ વિ મોબિલિટી)

પ્રશ્ન ૩(બ) [૪ ગુણ]

કમ્પ્યુટર સિસ્ટમના વિવિદ્ય પ્રકારોની ચર્ચા કરો.

જવાબ:

કોષ્ટક: કમ્પ્યુટર સિસ્ટમના પ્રકારો

увіз	સાઇઝ	પ્રોસેસિંગ પાવર	ઉદાહરણ
સુપરકમ્પ્યુટર	રૂમ-સાઇઝ્ડ	અત્યંત ઊંચી	હવામાન આગાહી
મેઇનફ્રેમ	મોટી કેબિનેટ	ખૂબ ઊંચી	બેંક ટ્રાન્ઝેક્શન્સ
મિનિકમ્પ્યુટર	ડેસ્ક-સાઇઝ્ડ	મધ્યમ	નાના બિઝનેસ
માઇક્રોકમ્પ્યુટર	ડેસ્કટોપ/લેપટોપ	ઓછીથી મધ્યમ	વ્યક્તિગત વપરાશ

વર્ગીકરણ:

સાઇઝ અને પાવર દ્વારા:

• સુપરકમ્પ્યુટર: વૈજ્ઞાનિક ગણતરીઓ, સંશોધન

• મેઇનફ્રેમ: મોટી સંસ્થાઓ, એકસાથે વધારે યુઝર્સ

• પર્સનલ કમ્પ્યુટર: વ્યક્તિગત યુઝર્સ, ઓફિસ વર્ક

• એમ્બેડેડ સિસ્ટમ્સ: યોક્કસ કાર્યો (વોશિંગ મશીન)

હેતુ દ્વારા:

• જનરલ પર્પઝ: બહુમુખી, બહુવિધ ઍપ્લિકેશન્સ

• સ્પેશિયલ પર્પઝ: સમર્પિત કાર્યો (ATM, ગેમિંગ કન્સોલ)

મેમરી ટ્રીક: "સુપર મેઇન મિની માઇક્રો" (ઘટતા સાઇઝનો ક્રમ)

પ્રશ્ન 3(સ) [७ ગુણ]

TDM, FDM, OFDM પર ટૂંકી નોંધ લખો.

જવાબ:

કાર્યક્ષમ કોમ્યુનિકેશન માટે મલ્ટિપ્લેક્સિંગ તકનીકો

કોષ્ટક: મલ્ટિપ્લેક્સિંગ સરખામણી

તકનીક	વિભાજન પદ્ધતિ	ઍપ્લિકેશન	ફાયદો
TDM	સમય સ્લોટ્સ	ડિજિટલ ટેલિફોની	સરળ અમલીકરણ
FDM	ફ્રીક્વન્સી બેન્ડ્સ	રેડિયો/ટીવી બ્રોડકાસ્ટિંગ	એકસાથે ટ્રાન્સમિશન
OFDM	બહુવિધ કેરિયર્સ	Wi-Fi, 4G/5G	ઊંચા ડેટા રેટ્સ

ટાઇમ ડિવિઝન મલ્ટિપ્લેક્સિંગ (TDM):

• સિદ્ધાંત: દરેક યુઝરને નિશ્ચિત સમય સ્લોટ મળે

• અમલીકરણ: અનુક્રમિક ડેટા ટ્રાન્સમિશન

• **ઉદાહરણ**: ડિજિટલ ટેલિફોન સિસ્ટમ્સ, GSM

• ફાયદો: બેન્ડવિડ્થનો કાર્યક્ષમ ઉપયોગ

ફ્રીક્વન્સી ડિવિઝન મલ્ટિપ્લેક્સિંગ (FDM):

• સિદ્ધાંત: દરેક યુઝરને અનન્ય ફ્રીક્વન્સી બેન્ડ મળે

• અમલીકરણ: એકસાથે ટ્રાન્સમિશન

• **ઉદાહરણ**: FM રેડિયો, કેબલ ટીવી

• ફાયદો: ટાઇમિંગ કોઓર્ડિનેશનની જરૂર નથી

ઓર્થોગોનલ ફ્રીક્વન્સી ડિવિઝન મલ્ટિપ્લેક્સિંગ (OFDM):

• સિદ્ધાંત: બહુવિધ ઓર્થોગોનલ સબકેરિયર્સ

• અમલીકરણ: પેરેલલ ડેટા સ્ટ્રીમ્સ

• **G**ยเ**๔ะย**: Wi-Fi (802.11), LTE, DSL

• ફાયદો: ઊંચી સ્પેક્ટ્રલ કાર્યક્ષમતા, ઇન્ટરફેરન્સ સામે મજબૂત

આકૃતિ:

ઍપ્લિકેશન્સ:

• TDM: ISDN, T1/E1 લાઇન્સ

• FDM: એનાલોગ ટીવી, રેડિયો

• **OFDM**: આધુનિક વાયરલેસ સિસ્ટમ્સ

મેમરી ટ્રીક: "સમય ફ્રીક્વન્સી ઓર્થોગોનલ" (TDM-FDM-OFDM)

પ્રશ્ન ૩(આ અથવા) [૩ ગુણ]

FSK અને PSK ની ચર્ચા કરો.

જવાબ:

ડિજિટલ મોક્યુલેશન તકનીકો

કોષ્ટક: FSK વિ PSK

પાસા	FSK	PSK
પેરામીટર	ફ્રીક્વન્સી	ફેઝ
કોમ્પ્લેક્સિટી	સરળ	જટિલ
નોઇઝ ઇમ્યુનિટી	સારી	ઉત્તમ
બેન્ડવિડ્થ	વધુ	ઓછી

FSK (Frequency Shift Keying):

• **સિદ્ધાંત**: 0 અને 1 માટે અલગ ફ્રીક્વન્સીઝ

• અમલીકરણ: '0' માટે f1, '1' માટે f2

• **ઉદાહરણ**: કમ્પ્યુટર મોડેમ્સ, RFID

PSK (Phase Shift Keying):

• સિદ્ધાંત: ફેઝ ચેન્જેસ ડેટા દર્શાવે

• અમલીકરણ: '0' માટે 0°, '1' માટે 180°

• **ઉદાહરણ**: Wi-Fi, સેટેલાઇટ કોમ્યુનિકેશન

મેમરી ટ્રીક: "ફ્રીક્વન્સી શિફ્ટ, ફેઝ શિફ્ટ" (FSK-PSK)

પ્રશ્ન ૩(બ અથવા) [૪ ગુણ]

મલ્ટિટાસ્કિંગ અને મલ્ટિપ્રોગ્રામિંગ OS વચ્ચે તકાવત લખો.

જવાબ:

કોષ્ટક: મલ્ટિટાસ્કિંગ વિ મલ્ટિપ્રોગ્રામિંગ

વિશેષતા	મલ્ટિટાસ્કિંગ	મલ્ટિપ્રોગ્રામિંગ
યુઝર ઇન્ટરેક્શન	ઇન્ટરેક્ટિવ	બેચ પ્રોસેસિંગ
રિસ્પોન્સ ટાઇમ	ઝડપી	ધીમી
CPU શેરિંગ	ટાઇમ સ્લાઇસિંગ	જોબ સ્વિચિંગ
ઉદાહરણ	Windows, Linux	પ્રારંભિક મેઇનફ્રેમ્સ

મલ્ટિટાસ્કિંગ:

• વ્યાખ્યા: બહુવિધ કાર્યો દેખીતી રીતે એકસાથે ચાલે

• પદ્ધતિ: ઝડપી સ્વિચિંગ સાથે ટાઇમ શેરિંગ

• યુઝર અનુભવ: ઇન્ટરેક્ટિવ, પ્રતિસાદી

• પ્રકારો: પ્રીએમ્પ્ટિવ, કોઓપરેટિવ

મલ્ટિપ્રોગ્રામિંગ:

• વ્યાખ્યા: મેમરીમાં બહુવિધ પ્રોગ્રામ્સ

• **પદ્ધતિ**: I/O ઓપરેશન્સ દરમિયાન CPU સ્વિય કરે

• યુઝર અનુભવ: બેચ જોબ પ્રોસેસિંગ

• **હેતુ**: CPU ઉપયોગિતા સુધારો

મેમરી ટ્રીક: "ટાસ્ક્સ ઇન્ટરેક્ટિવ, પ્રોગ્રામ્સ બેચ્ડ"

પ્રશ્ન ૩(સ અથવા) [७ ગુણ]

નેટવર્ક ટોપોલોજી પર ટૂંકી નોંધ લખો.

જવાબ:

નેટવર્ક ટોપોલોજીના પ્રકારો અને લાક્ષણિકતાઓ

કોષ્ટક: ટોપોલોજી સરખામણી

ટોપોલોજી	માળખું	ફાયદા	નુકસાન	કિંમત
બસ	રેખીય	સરળ, કિફાયતી	સિંગલ પોઇન્ટ ફેઇલ્યુર	ઓછી
સ્ટાર	સેન્ટ્રલ હબ	ટ્રબલશૂટિંગ સરળ	હબ ફેઇલ થાય તો બધાને અસર	મધ્યમ
િરંગ -	વર્વુળાકાર	સમાન ઍક્સેસ	બ્રેક નેટવર્કને અસર કરે	મધ્યમ
મેશ	આંતર-જોડાયેલ	ઊંચી વિશ્વસનીયતા	જટિલ, મોંઘું	ઊંચી
હાઇબ્રિડ	મિશ્રિત	લવચીક	જટિલ મેનેજમેન્ટ	બદલાતી

વિસ્તૃત વર્ણનો:

બસ ટોપોલોજી:

• માળખું: સિંગલ બેકબોન કેબલ

• ટર્મિનેશન: બંને છેડે જરૂરી

• **ઉદાહરણ**: มเช่เคร Ethernet (10BASE2)

• ફેઇલ્યુર ઇમ્પેક્ટ: કેબલ તૂટે તો આખું નેટવર્ક બંધ

સ્ટાર ટોપોલોજી:

• માળખું: સેન્ટ્રલ સ્વિચ/હબ સાથે સ્પોક્સ

• સ્કેલેબિલિટી: નોડ્સ ઉમેરવા/દૂર કરવા સરળ

• ઉદાહરણ: આધુનિક Ethernet નેટવર્ક્સ

• ફેઇલ્યુર ઇમ્પેક્ટ: ફક્ત અસરગ્રસ્ત નોડ ફેઇલ થાય

રિંગ ટોપોલોજી:

• માળખું: વર્તુંળમાં નોડ્સ જોડાયેલ

• ડેટા ફ્લો: એકદિશીય ટોકન પેસિંગ

• **G**ียเ_รีย: Token Ring, FDDI

• ફેઇલ્યુર ઇમ્પેક્ટ: સિંગલ બ્રેક નેટવર્ક બંધ કરે

મેશ ટોપોલોજી:

• માળખું: દરેક નોડ બીજા બધા સાથે જોડાયેલ

• પ્રકારો: ફુલ મેશ, પાર્શિયલ મેશ

• **ઉદાહરણ**: ઇન્ટરનેટ બેકબોન, મિલિટરી નેટવક્સ્

• વિશ્વસનીયતા: બહુવિધ પાથ ઉપલબ્ધ

હાઇબ્રિડ ટોપોલોજી:

• માળખું: ટોપોલોજીઓનું મિશ્રણ

• ઉદાહરણ: સ્ટાર-બસ, સ્ટાર-રિંગ

• લવચીકતા: દરેક પ્રકારની શ્રેષ્ઠ વિશેષતાઓ

आङ्गति:

પસંદગીના માપદંડો:

• કિંમત: બસ < સ્ટાર < રિંગ < મેશ

• વિશ્વસનીયતા: બસ < રિંગ < સ્ટાર < મેશ

• સ્કેલેબિલિટી: રિંગ < બસ < સ્ટાર < મેશ

મેમરી ટ્રીક: "બસ સ્ટાર રિંગ મેશ હાઇબ્રિડ" (વધતી જટિલતા)

પ્રશ્ન ૪(આ) [૩ ગુણ]

સ્વિય સમજાવો.

જવાબ:

નેટવર્ક સ્વિચ વ્યાખ્યા અને કાર્યો

કોષ્ટક: સ્વિચની લાક્ષણિકતાઓ

વિશેષતા	વર્ણન
รเข้	LAN માં ડિવાઇસો કનેક્ટ કરે
લેચર	ડેટા લિંક લેયર (લેયર 2)
પદ્ધતિ	MAC એડ્રેસ લર્નિંગ
કોલિઝન	કોલિઝન દૂર કરે

મુખ્ય વિશેષતાઓ:

• MAC એડ્રેસ ટેબલ: ડિવાઇસ એડ્રેસ શીખે અને સ્ટોર કરે

• કુલ ડુપ્લેક્સ: એકસાથે મોકલવું/મેળવવું

• ડેડિકેટેડ બેન્ડવિડ્થ: દરેક પોર્ટને સંપૂર્ણ બેન્ડવિડ્થ મળે

• VLAN સપોર્ટ: વર્ચ્યુઅલ નેટવર્ક સેગ્નિગેશન

કાર્યો:

• ફ્રેમ ફોરવર્ડિંગ: થોક્કસ પોર્ટને ડેટા મોકલે

• **એડેસ લર્નિંગ**: MAC એડેસ ટેબલ બનાવે

• લૂપ પ્રિવેન્શન: સ્પેનિંગ ટ્રી પ્રોટોકોલ

મેમરી ટ્રીક: "સ્વિય MAC એડ્રેસ શીખે"

પ્રશ્ન ૪(બ) [૪ ગુણ]

સાયબરથ્રેટને ઉદાહરણ સાથે વ્યાખ્યાયિત કરો.

જવાબ:

સાયબરશ્રેટ વ્યાખ્યા: કમ્પ્યુટર સિસ્ટમને નુકસાન, વિક્ષેપ અથવા અનધિકૃત પ્રવેશ મેળવવાનો દુષ્ટ પ્રયાસ.

કોષ્ટક: સાયબરથેટના પ્રકારો

уѕіг	પદ્ધતિ	ઉદાહરણ	અસર
મેલવેર	દુષ્ટ સોફ્ટવેર	વાયરસ, ટ્રોજન	ડેટા કરપ્શન
ફિશિંગ	નકલી ઇમેઇલ્સ/વેબસાઇટ્સ	નકલી બેંક ઇમેઇલ્સ	આઇડેન્ટિટી ચોરી
રેન્સમવેર	ફાઇલો એન્ક્રિપ્ટ કરે	WannaCry એટેક	આર્થિક નુકસાન
DDoS	ટ્રાફિક ઓવરલોડ	સર્વર ફ્લડિંગ	સેવા ડિસરપ્શન

ઉદાહરણ - ફિશિંગ એટેક:

• પદ્ધતિ: "બેંક" તરફથી નકલી ઇમેઇલ

• વિનંતી: લૉગિન ક્રેડેન્શિયલ્સ

• પરિણામ: એકાઉન્ટ કોમ્પ્રોમાઇઝ

• પ્રિવેન્શન: મોકલનારની પ્રામાણિકતા ચકાસો

સામાન્ય સંકેતો:

• શંકાસ્પદ ઇમેઇલ્સ: અજાણ્યા મોકલનારા, તાત્કાલિક વિનંતીઓ

• અસામાન્ય સિસ્ટમ વર્તન: ધીમી કામગીરી, પોપઅપ્સ

• અનધિકૃત પ્રવેશ: બદલાયેલા પાસવર્ડ્સ, નવી ફાઇલો

મેમરી ટ્રીક: "સાયબર ક્રિમિનલ્સ ચેઓસ ક્રિએટ કરે" (ખતરાઓ નુકસાન કરે)

પ્રશ્ન ૪(સ) [७ ગુણ]

TCP/IP અને OSI નેટવર્કિંગ મોડલ્સની સરખામણી કરો.

જવાબ:

કોષ્ટક: TCP/IP વિ OSI મોડલ સરખામણી

OSI લેયર	OSI รเช้	TCP/IP लेथर	TCP/IP รเช่
એપ્લિકેશન	યુઝર ઇન્ટરફેસ	એપ્લિકેશન	યુઝર સેવાઓ
પ્રેઝન્ટેશન	ડેટા ફોર્મેટિંગ	એપ્લિકેશન	(સંયુક્ત)
સેશન	સેશન મેનેજમેન્ટ	એપ્લિકેશન	(સંયુક્ત)
ટ્રાન્સપોર્ટ	વિશ્વસનીય ડિલિવરી	ટ્રાન્સપોર્ટ	એન્ડ-ટુ-એન્ડ ડિલિવરી
નેટવર્ક	રાઉટિંગ	ઇન્ટરનેટ	IP એડ્રેસિંગ
ડેટા લિંક	ફ્રેમ હેન્ડલિંગ	નેટવર્ક એક્સેસ	ફિઝિકલ ટ્રાન્સમિશન
ફિઝિકલ	ઇલેક્ટ્રિકલ સિગ્નલ્સ	નેટવર્ક એક્સેસ	(સંયુક્ત)

મુખ્ય તફાવતો:

OSI મોડલ (7 લેયર્સ):

• હેતુ: થિયોરેટિકલ રેફરન્સ મોડલ

• **ડેવલપમેન્ટ**: ISO સ્ટાન્ડર્ડ

• લેચર્સ: સ્પષ્ટ રીતે અલગ કાર્યો

• વપરાશ: શિક્ષણ, ટ્રબલશૂટિંગ

TCP/IP મોડલ (4 લેચર્સ):

• હેતુ: પ્રેક્ટિકલ અમલીકરણ

• **ડેવલપમેન્ટ**: DARPA/ઇન્ટરનેટ

• **લेयर्स**: संयुक्त डार्यक्षमता

• વપરાશ: ઇન્ટરનેટ, વાસ્તવિક નેટવર્ક્સ

ફાયદા:

OSI મોડલ:

• સ્ટાન્ડડાંઇઝેશન: યુનિવર્સલ રેફરન્સ

• ટ્રબલશૂટિંગ: લેયર-બાય-લેયર વિશ્લેષણ

• શિક્ષણ: સ્પષ્ટ કન્સેપ્ટ સેપરેશન

TCP/IP મોડલ:

• સરળતા: ઓછી લેયર્સ

• પ્રેક્ટિકલિટી: ઇન્ટરનેટ-પ્રુવન

• લવચીકતા: પ્રોટોકોલ ઇન્ડિપેન્ડન્સ

પ્રોટોકોલ ઉદાહરણો:

• OSI: કન્સેપ્ય્યુઅલ ફ્રેમવર્ક

• TCP/IP: HTTP, FTP, TCP, UDP, IP

આકૃતિ:

મેમરી ટ્રીક: "OSI પરફેક્ટ થિયોરી, TCP/IP પ્રેક્ટિકલ રિયાલિટી"

પ્રશ્ન ૪(આ અથવા) [૩ ગુણ]

સાયબર સુરક્ષાના મુખ્ય ઉદ્દેશો લખો.

જવાબ:

કોષ્ટક: સાયબર સિક્યોરિટી ઉદ્દેશ્યો (CIA ટ્રાયડ)

ઉદ્દેશ્ય	વર્ણન	ઉદાહરણ
ગુપ્તતા (Confidentiality)	અનધિકૃત ઍક્સેસથી ડેટા સુરક્ષિત કરો	એન્ક્રિપ્શન, પાસવર્ડ્સ
અખંડતા (Integrity)	ડેટાની ચોકસાઈ અને સંપૂર્ણતા સુનિશ્ચિત કરો	ડિજિટલ સિગ્નેયર્સ, ચેકસમ્સ
ઉપલબ્ધતા (Availability)	સિસ્ટમની પહોંચ સુનિશ્ચિત કરો	બેકઅપ સિસ્ટમ્સ, રિડન્ડન્સી

વધારાના ઉદ્દેશ્યો:

• ઓથેન્ટિકેશન: યુઝર આઇડેન્ટિટી ચકાસો

• ઓથોરાઇઝેશન: ઍક્સેસ રાઇટ્સ કંટ્રોલ કરો

• નોન-રિપ્યુડિએશન: ક્રિયાઓનો ઇનકાર અટકાવો

મેમરી ટ્રીક: "CIA ડેટાને પ્રોટેક્ટ કરે" (Confidentiality-Integrity-Availability)

પ્રશ્ન ૪(બ અથવા) [૪ ગુણ]

નેટવર્કિંગમાં વપરાતા નવિવિદ્ય પ્રકારના નેટવર્કિંગ ઉપકરણોની યાદી બનાવો.

જવાબ:

કોષ્ટક: નેટવર્કિંગ ઉપકરણો

ઉપકરણ	લેયર	รเช่	ઉદાહરણ વપરાશ
હબ	ફિઝિકલ	સિગ્નલ રિપીટર	લેગસી નેટવર્ક્સ
સ્વિય	ડેટા લિંક	ફ્રેમ ફોરવર્ડિંગ	LAN કનેક્ટિવિટી
રાઉટર	નેટવર્ક	પેકેટ રાઉટિંગ	ઇન્ટરનેટ કનેક્શન
બ્રિજ	ડેટા લિંક	નેટવર્ક સેગ્મેન્ટેશન	LAN એક્સટેન્શન
ગેટવે	ઓલ લેયર્સ	પ્રોટોકોલ કન્વર્ઝન	નેટવર્ક ઇન્ટરકનેક્શન
રિપીટર	ફિઝિકલ	સિગ્નલ એમ્પ્લિફિકેશન	કેબલ એક્સટેન્શન
એક્સેસ પોઇન્ટ	ડેટા લિંક	વાયરલેસ કનેક્ટિવિટી	Wi-Fi નેટવર્ક્સ
ફાયરવોલ	નેટવર્ક+	સિક્યોરિટી ફિલ્ટરિંગ	નેટવર્ક પ્રોટેક્શન

કાર્યો:

• કનેક્ટિવિટી: હબ, સ્વિય, બ્રિજ

• રાઉટિંગ: રાઉટર, ગેટવે

• સિક્યોરિટી: ફાયરવોલ, પ્રોક્સી

• વાયરલેસ: એક્સેસ પોઇન્ટ, વાયરલેસ રાઉટર

મેમરી ટ્રીક: "હબ્સ સ્વિચ રાઉટ બ્રિજ ગેટવે"

પ્રશ્ન ૪(સ અથવા) [૭ ગુણ]

વિવિદ્ય પ્રકારના સુરક્ષા હુમલાઓ લખો.

જવાબ:

સિક્યોરિટી એટેક્સનું વર્ગીકરણ

કોષ્ટક: એટેક પ્રકારો અને લાક્ષણિકતાઓ

એટેક પ્રકાર	પદ્ધતિ	લક્ષ્ય	ઉદાહરણ	પ્રિવેન્શન
પેસિવ	છૂપું સાંભળવું	માહિતી	ટ્રાફિક એનાલિસિસ	એન્ક્રિપ્શન
એક્ટિવ	સિસ્ટમ મોડિફિકેશન	અખંડતા	ડેટા ઓલ્ટરેશન	ઓથેન્ટિકેશન
ફિઝિકલ	હાર્ડવેર ઍક્સેસ	ઉપકરણ	ડિવાઇસ ચોરી	ફિઝિકલ સિક્યોરિટી
સોશિયલ એન્જિનિયરિંગ	મનુષ્ય મેનિપ્યુલેશન	યુઝર્સ	ફિશિંગ	યુઝર એજ્યુકેશન

વિસ્તૃત એટેક કેટેગરીઝ:

1. નેટવર્ક એટેક્સ:

• મેન-ઇન-ધ-મિડલ: કોમ્યુનિકેશન ઇન્ટરસેપ્ટ કરો

• DDoS: સર્વરને ટ્રાફિકથી ભરાવો

• પેકેટ સ્નિફિંગ: નેટવર્ક ડેટા કેપ્યર કરો

• IP સ્પૂર્ફિંગ: નકલી સોર્સ એડ્રેસ

2. એપ્લિકેશન એટેક્સ:

• **SQL ઇન્જેક્શન**: ડેટાબેઝ મેનિપ્યુલેશન

• ક્રોસ-સાઇટ સ્ક્રિપ્ટિંગ (XSS): વેબ વલ્નરેબિલિટી

• બફર ઓવરફ્લો: મેમરી કરપ્શન

• ઝીરો-ડે એક્સપ્લોઇટ્સ: અજાણ્યા વલ્નરેબિલિટીઝ

3. મેલવેર એટેક્સ:

• વાયરસ: સેલ્ફ-રેપ્લિકેટિંગ કોડ

• વોર્મ: નેટવર્ક-સ્પ્રેડિંગ મેલવેર

• ટ્રોજન: છદ્મવેશી દુષ્ટ સોફ્ટવેર

• રેન્સમવેર: પેમેન્ટ માટે ડેટા એન્ક્રિપ્શન

4. સોશિયલ એન્જિનિયરિંગ:

• ફિશિંગ: નકલી ઇમેઇલ્સ/વેબસાઇટ્સ

• પ્રીટેક્સ્ટિંગ: ખોટા સિનારિયો

• બેટિંગ: દુષ્ટ ડાઉનલોડ્સ

• ટેઇલગેટિંગ: ફિઝિકલ ઍક્સેસ ફોલોઇંગ

5. ક્રિપ્ટોગ્રાફિક એટેક્સ:

• બ્રુટ ફોર્સ: બધા કોમ્બિનેશન્સ ટ્રાય કરો

• ડિક્શનરી એટેક: કોમન પાસવર્ડ્સ

• રેઇનબો ટેબલ્સ: પ્રી-કમ્પ્યુટેડ હેશેસ

• **સાઇડ-ચેનલ**: ઇન્ફોર્મેશન લીકેજ

એટેક વેક્ટર્સ:

• એક્સટર્નલ: ઇન્ટરનેટ-આધારિત એટેક્સ

• ઇન્ટર્નલ: ઇનસાઇડર થ્રેટ્સ

• ફિઝિકલ: ડાયરેક્ટ હાર્ડવેર ઍક્સેસ

• **વાયરલેસ**: Wi-Fi વલ્નરેબિલિટીઝ

પ્રિવેન્શન સ્ટ્રેટેજીઝ:

• ટેકનિકલ: ફાયરવોલ્સ, એન્ટિવાયરસ, એન્ક્રિપ્શન

• એડમિનિસ્ટ્રેટિવ: પોલિસીઝ, પ્રોસીજર્સ

• ફિઝિકલ: લોક્સ, સર્વેલન્સ

• એજ્યુકેશન: યુઝર અવેરનેસ ટ્રેનિંગ

મેમરી ટ્રીક: "નેટવર્ક એપ્લિકેશન મેલવેર સોશિયલ ક્રિપ્ટો" (એટેક કેટેગરીઝ)

પ્રશ્ન ૫(આ) [3 ગુણ]

(5AB.4) હેક્સાડેસિમલ સંખ્યાની બાઈનરી ગણતરી કરો.

જવાબ:

હેક્સાડેસિમલ થી બાઈનરી કન્વર્ઝન

પદ્ધતિ: દરેક હેક્સ ડિજિટને 4-બિટ બાઈનરીમાં કન્વર્ટ કરો

કોષ્ટક: હેક્સ થી બાઈનરી કન્વર્ઝન

હેક્સ ડિજિટ	બાઈનરી	હેક્સ ડિજિટ	બાઈનરી
5	0101	В	1011
А	1010	4	0100

સ્ટેપ-બાય-સ્ટેપ કન્વર્ઝન:

- $5 \rightarrow 0101$
- A → 1010
- B → 1011
- . → . (દશાંશ બિંદુ)
- 4 → 0100

અંતિમ જવાબ: (5AB.4)₁₆ = (010110101011.0100)₂

સરળીકૃત: (10110101011.01)₂ મેમરી ટ્રીક: "દરેક હેક્સ = 4 બિટ્સ"

પ્રશ્ન ૫(બ) [૪ ગુણ]

Digi-Locker, e-rupi ની મુખ્ય વિશેષતાઓની યાદી બનાવો.

જવાબ:

કોષ્ટક: ડિજિટલ પ્લેટફોર્મ વિશેષતાઓ

પ્લેટફોર્મ	હેતુ	મુખ્ય વિશેષતાઓ	ફાયદા
Digi-Locker	ડોક્યુમેન્ટ સ્ટોરેજ	ક્લાઉડ સ્ટોરેજ, ડિજિટલ સર્ટિફિકેટ્સ	પેપરલેસ વેરિફિકેશન
e-RUPI	ડિજિટલ પેમેન્ટ	QR/SMS વાઉચર, પ્રી-પેઇડ	ટાર્ગેટેડ વેલ્ફેર ડિલિવરી

Digi-Locker વિશેષતાઓ:

• **ડિજિટલ વોલેટ**: ક્લાઉડમાં ડોક્યુમેન્ટ્સ સ્ટોર કરો

• ઓથેન્ટિકેશન: આધાર-આધારિત વેરિફિકેશન

• ઇન્ટિગ્રેશન: સરકારી વિભાગોનો ઍક્સેસ

• **શેરિંગ**: સુરક્ષિત ડોક્યુમેન્ટ શેરિંગ

e-RUPI વિશેષતાઓ:

• પ્રીપેઇડ વાઉચર: હેતુ-વિશિષ્ટ પેમેન્ટ્સ

• **કોન્ટેક્ટ-લેસ**: QR કોડ/SMS આધારિત

• સિક્યોરિટી: કોઈ વ્યક્તિગત/બેંક વિગતો શેર નથી

• વપરાશ: હેલ્થકેર, એજ્યુકેશન, વેલ્ફેર સ્કીમ્સ

મેમરી ટ્રીક: "Digi સ્ટોર કરે, e-RUPI પેમેન્ટ કરે" (સ્ટોરેજ વિ પેમેન્ટ)

પ્રશ્ન ૫(સ) [७ ગુણ]

કમ્પ્યુટર સિસ્ટમની વિવિદ્ય પેઢીઓનું વર્ણન કરો.

જવાબ:

કમ્પ્યુટર પેઢીઓનું ઉત્ક્રાંતિ

કોષ્ટક: કમ્પ્યુટર પેઢીઓની સરખામણી

પેઢી	સમયગાળો	ટેકનોલોજી	સાઇઝ	સ્પીડ	ઉદાહરણો
પ્રથમ	1940-1956	વેક્યુમ ટ્યુબ્સ	રૂમ-સાઇઝ્ડ	ધીમી	ENIAC, UNIVAC
બીજી	1956-1963	ટ્રાન્ઝિસ્ટર્સ	नानी	ઝડપી	IBM 1401, CDC 1604
જીદિ	1964-1971	ઇન્ટિગ્રેટેડ સર્કિટ્સ	ડેસ્ક-સાઇઝ્ડ	વધુ ઝડપી	IBM 360, PDP-8
ચોથી	1971-1980s	માઇક્રોપ્રોસેસર્સ	પર્સનલ	ખૂબ ઝડપી	Intel 4004, Apple II
પાંચમી	1980ร-գต์หเส	AI/પેરેલલ પ્રોસેસિંગ	પોર્ટેબલ	અત્યંત ઝડપી	આધુનિક PCs, સ્માર્ટફોન્સ

વિસ્તૃત વર્ણન:

પ્રથમ પેઢી (1940-1956):

• ટેકનોલોજી: લોજિક/મેમરી માટે વેક્યુમ ટ્યુબ્સ

• **પ્રોગ્રામિંગ**: મશીન લેન્ગ્વેજ, પંચ કાર્ડ્સ

• લાક્ષણિકતાઓ: મોટા, મોંઘા, અવિશ્વસનીય

• ગરમી: ભારે ગરમી ઉત્પન્ન કરતા

• **G**ียเ**๔ะย**์ก: ENIAC (30 2न), UNIVAC I

બીજી પેઢી (1956-1963):

• ટેકનોલોજી: વેક્યુમ ટ્યુબ્સની જગ્યાએ ટ્રાન્ઝિસ્ટર્સ

• પ્રોગ્રામિંગ: એસેમ્બલી લેન્ગ્વેજ, FORTRAN, COBOL

• સુધારા: નાના, ઝડપી, વધુ વિશ્વસનીય

• મેમરી: મેગ્નેટિક કોર મેમરી

• **G**ะเ**ยะย**์ก: IBM 1401, Honeywell 400

ત્રીજી પેઢી (1964-1971):

• ટેકનોલોજી: ઇન્ટિગ્રેટેડ સર્કિટ્સ (ICs)

• **પ્રોગ્રામિંગ**: હાઇ-લેવલ લેન્ગ્વેજેસ

• વિશેષતાઓ: ઓપરેટિંગ સિસ્ટમ્સ, મલ્ટિપ્રોસેસિંગ

• સાઇઝ: મિની-કમ્પ્યુટરનો ઉદભવ

• **G**ะเ**๔ะย**เ้า: IBM System/360, PDP-8

યોથી પેઢી (1971-1980s):

• ટેકનોલોજી: માઇક્રોપ્રોસેસર્સ (ચિપ પર CPU)

• ડેવલપમેન્ટ: પર્સનલ કમ્પ્યુટર્સનો જન્મ

• **વિશેષતાઓ**: GUI, નેટવર્કિંગ ક્ષમતાઓ

• સ્ટોરેજ: ફ્લોપી ડિસ્ક્સ, હાર્ડ ડ્રાઇવ્સ

• **G**ียเ_รียยาเ: Intel 8080, Apple II, IBM PC

પાંચમી પેઢી (1980s-વર્તમાન):

• **ટેકનોલોજી**: AI, પેરેલલ પ્રોસેસિંગ, VLSI

• વિશેષતાઓ: ઇન્ટરનેટ, મલ્ટિમીડિયા, મોબાઇલ કમ્પ્યુટિંગ

• **લાક્ષણિકતાઓ**: યુઝર-ફ્રેન્ડલી, પોર્ટેબલ, શક્તિશાળી

• વર્તમાન: સ્માર્ટફોન્સ, ટેબલેટ્સ, ક્લાઉડ કમ્પ્યુટિંગ

• ઉદાહરણો: આધુનિક લેપટોપ્સ, સ્માર્ટફોન્સ, સુપરકમ્પ્યુટર્સ

પેઢી દ્વારા મુખ્ય નવીનતાઓ:

• 1મી: ઇલેક્ટ્રોનિક કમ્પ્યુટિંગ

• 2જી: સ્ટોર્ડ પ્રોગ્રામ્સ

• 3જી: ઓપરેટિંગ સિસ્ટમ્સ

• 4થી: પર્સનલ કમ્પ્યુટિંગ

• **5મી**: ઇન્ટરનેટ અને Al

આકૃતિ:

કમ્પ્યુટર પેઢીઓ

મેમરી ટ્રીક: "વેક્યુમ ટ્રાન્ઝિસ્ટર IC માઇક્રો AI" (ટેકનોલોજી પ્રોગ્રેશન)

પ્રશ્ન ૫(આ અથવા) [૩ ગુણ]

ઉદાહરણ સાથે ડેટા અને ઇન્ફોર્મેશન વચ્ચેનો તફાવત લખો.

જવાબ:

કોષ્ટક: ડેટા વિ ઇન્ફોર્મેશન

પાસા	ìsટા	ઇન્ફોર્મેશન
વ્યાખ્યા	કાચા તથ્યો/આંકડા	પ્રોસેસ કરેલો ડેટા
અર્થ	કોઈ સંદર્ભ નથી	સંદર્ભ ધરાવે
ઉદાહરણ	85, 92, 78	સરેરાશ સ્ક્રોર: 85%
હેતુ	પ્રોસેસિંગ માટે ઇનપુટ	નિર્ણય માટે આઉટપુટ

ઉદાહરણો:

• ડેટા: વિદ્યાર્થીના ગુણ (85, 92, 78, 88)

• ઇન્ફોર્મેશન: વર્ગની સરેરાશ 85.75% છે

લાક્ષણિકતાઓ:

• ડેટા: અવ્યવસ્થિત, કાર્યો, પ્રોસેસિંગની જરૂર

• **ઇન્ફોર્મેશન**: વ્યવસ્થિત, અર્થપૂર્ણ, નિર્ણયો માટે ઉપયોગી

મેમરી ટ્રીક: "ડેટા કાર્યો, ઇન્ફોર્મેશન રિફાઇન્ડ"

પ્રશ્ન ૫(બ અથવા) [૪ ગુણ]

એનાલોગ મોડ્યુલેશન અને ડિજિટલ મોડ્યુલેશનની સરખામણી કરો.

જવાબ:

કોષ્ટક: એનાલોગ વિ ડિજિટલ મોક્યુલેશન

વિશેષતા	એનાલોગ મોડ્યુલેશન	ડિજિટલ મોક્યુલેશન	
સિગ્નલ પ્રકાર	કન્ટિન્યુઅસ	ડિસ્ક્રીટ (0s અને 1s)	
નોઇઝ ઇમ્યુનિટી	નબળી	 ਰਿਜ਼ਮ	
બેન્કવિડ્થ	ઓછી	વધુ	
ક્વોલિટી	અંતર સાથે ઘટે	ક્વોલિટી જાળવે	
ઉદાહરણો	AM, FM રેડિયો	FSK, PSK, QAM	

એનાલોગ મોડ્યુલેશન:

• પ્રકારો: AM (એમ્પ્લિટ્યુડ), FM (ફ્રીક્વન્સી), PM (ફ્રેઝ)

• ઍપ્લિકેશન્સ: રેડિયો બ્રોડકાસ્ટિંગ, એનાલોગ ટીવી

• ફાયદા: સરળ, ઓછી બેન્ડવિડ્થ

• **નુકસાન**: નોઇઝ સંવેદનશીલ, ક્વોલિટી લોસ

ડિજિટલ મોડ્યુલેશન:

• **มรเ**: ASK, FSK, PSK, QAM

• **ઍપ્લિકેશન્સ**: Wi-Fi, સેલ્યુલર, સેટેલાઇટ

• ફાયદા: નોઇઝ રેઝિસ્ટન્ટ, એરર કરેક્શન

• નુકસાન: જટિલ, વધુ બેન્ડવિડ્થ

મેમરી ટ્રીક: "એનાલોગ સરળ, ડિજિટલ સ્માર્ટ"

પ્રશ્ન ૫(સ અથવા) [७ ગુણ]

IPv4 માં IP સરનામાની શ્રેણીની ચર્ચા કરો.

જવાબ:

IPv4 એડ્રેસ રેન્જ અને વર્ગીકરણ

કોષ્ટક: IPv4 એડ્રેસ ક્લાસેસ

ક્લાસ	રેન્જ	ડિફોલ્ટ સબનેટ	નેટવર્ક્સ	પ્રતિ નેટવર્ક હોસ્ટ્સ	વપરાશ
Α	1.0.0.0 - 126.0.0.0	/8 (255.0.0.0)	126	16,777,214	મોટી સંસ્થાઓ
В	128.0.0.0 - 191.255.0.0	/16 (255.255.0.0)	16,384	65,534	મધ્યમ સંસ્થાઓ
С	192.0.0.0 - 223.255.255.0	/24 (255.255.255.0)	2,097,152	254	નાની સંસ્થાઓ
D	224.0.0.0 - 239.255.255.255	N/A	N/A	N/A	મલ્ટિકાસ્ટ
E	240.0.0.0 - 255.255.255	N/A	N/A	N/A	રિઝર્વ્ડ/એક્સપેરિમેન્ટલ

સ્પેશિયલ એડ્રેસ રેન્જ:

પ્રાઇવેટ IP રેન્જ (RFC 1918):

• **ક્લાસ A**: 10.0.0.0 - 10.255.255.255 (/8)

• **sai B**: 172.16.0.0 - 172.31.255.255 (/12)

• **SGIN C**: 192.168.0.0 - 192.168.255.255 (/16)

રિઝર્વ્ડ એડેસેસ:

• **ผุนผ่ร**: 127.0.0.0 - 127.255.255.255

• **ติ่ร-ตìรต**: 169.254.0.0 - 169.254.255.255

• બ્રોડકાસ્ટ: x.x.x.255 (સબનેટનું છેલ્લું એડ્રેસ)

• નેટવર્ક: x.x.x.0 (સબનેટનું પ્રથમ એડ્રેસ)

એડ્રેસ સ્ટક્ચર:

• **કુલ IPv4 સ્પેસ**: 4,294,967,296 એડ્રેસેસ (2³²)

• ફોર્મેટ: ડોટેડ ડેસિમલમાં 32-બિટ એડ્રેસ

સબનેટ ગણતરીનું ઉદાહરણ:

• સબનેટ માસ્ક: 255.255.255.0

• હોસ્ટ રેન્જ: 192.168.1.1 - 192.168.1.254

• **બ્રોડકાસ્ટ**: 192.168.1.255

CIDR નોટેશન:

• /8: 255.0.0.0 (ક્લાસ A ડિફોલ્ટ)

• /16: 255.255.0.0 (ક્લાસ B ડિફોલ્ટ)

• /24: 255.255.255.0 (ક્લાસ C ડિફોલ્ટ)

• **/30**: 255.255.255.252 (પોઇન્ટ-ટુ-પોઇન્ટ લિંક્સ)

IPv4 એક્ઝોશન:

• સમસ્યા: મર્યાદિત એડ્રેસ સ્પેસ

• **સોલ્યુશન**: IPv6 (128-બિટ એડ્રેસેસ)

• અસ્થાયી ઉકેલો: NAT, CIDR, પ્રાઇવેટ એડ્રેસિંગ

આકૃતિ:

ઍપ્લિકેશન્સ:

• **પબ્લિક IPs**: ઇન્ટરનેટ રાઉટિંગ

• પ્રા**ઇવેટ IPs**: ઇન્ટર્નલ નેટવર્ક્સ

• મલ્ટિકાસ્ટ: વન-ટુ-મેની કોમ્યુનિકેશન

• લૂપબેક: લોકલ ટેસ્ટિંગ

મેમરી ટ્રીક: "A બિગ કંપની ડિલિવર્ડ એવરીથિંગ" (ક્લાસેસ A-B-C-D-E)