GEMAct: a comprehensive actuarial package for non-life (re)insurance

Gabriele Pittarello
Sapienza, Università di Roma
gabriele.pittarello@uniroma1.it

Manfred Marvin Marchione Sapienza, Università di Roma manfredmarvin.marchione@uniroma1.it Edoardo Luini, Ph.D.

Credit Suisse

edoardo.luini@uniroma1.it

Table of contents

Introduction

- Why Python?
- Usage

Loss Model

- Discrete severity
- Discrete severity with GEMAct
- Aggregate loss Panjer recursion
- Distributions
- Aggregate loss FFT (1/2)
- Aggregate loss FFT (2/2)
- Aggregate loss with GEMAct
- Pricing models

Loss Reserve

- Loss reserves (1/2)
- Loss reserves (2/2)
- Fisher-Lange reserve with GEMAct

Risk aggregation

- Loss aggregation (1/2)
- Loss aggregation (2/2)
- The AEP algorithm in GEMAct

Why Python?

Programming language	Tiobe ranking	РуРІ	Stackoverflow	KDNuggets
Python	1	1	3	1
R	13	7	21	2
С	2	4	12	6
Java	3	2	5	4

Table 1: Programming language popularity according to different websites rating, February 2022.

Usage

pip install gemact

Listing 1: how to install GEMAct from the PyPi index.

Figure 1: GEMAct in the PyPi index.

Discrete severity

Given a continuous severity distribution with c.d.f. $F_Z(\cdot)$, an approximate discrete distribution can be constructed [2].

In order to discretize the severity distribution, a span h and an integer m are chosen and a probability f_j is assigned to each point $j \cdot h$, j = 0, ..., m.

Two different methods for determining the probabilities f_j are implemented in GEMAct:

1) Mass dispersal method

$$f_0 = F\left(\frac{h}{2}\right),$$
 $f_j = F_Z\left(j \cdot h + \frac{h}{2}\right) - F_Z\left(j \cdot h - \frac{h}{2}\right),$ $j = 1, \dots, m$

2) Local moment matching

$$f_0 = 1 - \frac{E[Z \wedge h]}{h}, \quad f_j = \frac{2 E[Z \wedge (i \cdot h)] - E[Z \wedge ((i-1) \cdot h)] - E[Z \wedge ((i+1) \cdot h)]}{h}, \quad j = 1, ..., m.$$

Discrete severity with GEMAct

```
1. import numpy as np
3. m = 100000 \#int
                                     Severity assumptions
4. h = 1. # float
5. d = 200 \# float
6. u = 5000 \# float
7. spar = {'a' : 2000, 'scale' : 1/2} # dict
8. severity = 'gamma' # str
10. Mysv = gemact. Severity(
11.
         spar=spar ,
        d=d ,
12.
                                     Data are then passed
13.
         u=u ,
                                     through Severity.
14.
    sdist=severity_,
15.
        m=m
16.
           h=h
17.)
18. massD = mysv.massDispersal()
19. localM = mysv.localMoments()
20.
                                                             Use the results to compute
21. meanMD = np.sum(massD['severity seq']*massD['fj'])
22. meanLM = np.sum(localM['severity seq']*localM['fj'])
                                                             the mean of the distribution.
23.
24. print (meanMD)
25. # 800.0
26. print (meanLM)
27. # 800.0
```

Listing 2: Severity discretization with GEMAct.

Aggregate loss – Panjer recursion

In the C.R.M. framework, assume that the frequency distribution belongs to the (a, b, 0) class, that is

$$p_k = \left(a + \frac{b}{k}\right) \cdot p_{k-1}$$
 $k = 1, 2, \dots, a, b \in \mathbb{R}$

where $p_k = P(N = k)$.

If the severity Z has an arithmetic distribution with $f_j = P(Z = jh)$, j = 0,1,..., then the following recursive formula holds:

$$g_k = \frac{1}{1 - af_0} \sum_{j=1}^k \left(a + \frac{bj}{k} \right) \cdot f_j \cdot g_{k-j}$$

where $g_k = P(\sum_{j=1}^N Z_j = k \cdot h)$.

Distributions

Distribution	GEMAct	SciPy
Zero-Truncated Poisson.	٧	×
Zero-Modified Poisson.	٧	×
Zero-Truncated Binomial.	٧	×
Zero-Modified Binomial.	٧	×
Zero-Truncated Geometric.	٧	×
Zero-Modified Gemetric.	٧	×
Zero-Truncated Negative Binomial.	٧	×
Zero-Modified Negative Binomial.	٧	×
Zero-Modified Logarithmic.	٧	×

Table 2: GEMAct enhances the number distributions available to Python users. See [2].

Aggregate loss - FFT (1/2)

Given the probabilities $f=(f_0,\ldots,f_m)$ of the arithmetic severity distribution, denote by $\hat{f}=(f_0,\ldots,f_m)$ the Discrete Fourier Transform of f.

The probabilities $g=(g_0,\dots,g_m)$ of the aggregate loss can be approximated by the inverse DFT of

$$\widehat{g} \coloneqq P_N(\widehat{f})$$

where $P_N(\cdot)$ is the probability generating function of the frequency N.

The ditribution of the aggregate loss can be computed efficiently by means of a Fast Fourier Transform algorithm.

Note: the product of DFTs is the DFT of the circular convolution $[H] \Rightarrow$ the procedure leads to aliasing error.

Aggregate loss - FFT (2/2)

A tilting procedure can be used to reduce the aliasing error [7]:

- 1. Set $f = (f_0, ..., f_m)$
- 2. Tilt the sequence: $f \to E_{\theta} f \coloneqq \left(e^{-\theta j} f_j\right)_{j=0,\dots,m}$ for a suitable $\theta > 0$
- 3. Calculate the DFT of the tilted sequence: $\widehat{E_{\theta}f}$
- 4. Calculate the inverse DFT of $P_N(\widehat{E_{\theta}f})$.
- 5. Untilt the obtained sequence by applying $E_{-\theta}$.

Pricing models

The notation for the pure reinsurance premium is P = E(X).

$$X' = \min(\max(0, X - L), (K + 1) \cdot m)$$

Given $X = \sum_{i=1}^{N} Y_i$, where:

$$Y_i = \min(\max(0, Z_i - l), m)$$

The following equation shows the reinsurance premium for excess of loss treaties from [4]. It is possible to obtain a plain-vanilla XL with $L=0, K=+\infty$ and c=0.

$$P = \frac{D_{LK}}{1 + \frac{1}{m} \sum_{k=1}^{K} c_k d_{L,k-1}}$$

Aggregate loss with GEMAct

```
1. frequency = 'poisson' #str
2. spar = {'a':6, 'scale':1/3} \#dict
3. severity = 'gamma' #str
4. d = .2 \#float
5. u = 5. #float
6. Fpar = {'mu':4} #dict
8. lm rec=gemact.LossModel(
                    method='recursive',
10.
                     fpar=fpar,
11.
                    fdist=frequency ,
12.
                     spar=spar,
13.
                    sdist=severity ,
14.
                     d=d,
15.
                    u=u ,
16.
                    m=int(1e+03),
17.
                    h=1,
18.
                    n=int(1e+05)
19.)
20.
21. print('RECURSIVE', lm rec.empiricalmoments())
22. RECURSIVE 7.19283615308811
```

```
lm fft=gemact.LossModel(
                     method='fft',
                     fpar=fpar,
                     fdist=frequency ,
                     spar=spar,
                     sdist=severity ,
                     d=d ,
                     u=u ,
                     m=int(1e+03),
10.
                     h=1,
11.
                     n=int(1e+05)
12.)
14. print('FFT', lm fft.empiricalmoments())
15. FFT 7.192555408630492
```

Listing 4: aggregate loss compute via Fast Fourier Transform.

Listing 3: aggregate loss compute via recursive formula.


```
lossm=gemact.LossModel(
2.
                  method='fft',
                  fpar={'mu':.5},
3.
                  fdist= 'poisson',
4.
                  spar={'loc':0,'scale': 83.33, 'c': 0.833},
5.
                  sdist='genpareto',
                                          XL upper priority.
6.
                  u=100,
7.
                  discretizationmethod='massdispersal',
8.
                  m=int(10000),
9.
                  h=.01,
10.
                  n=int(100000),
11.
                  L=0,
12.
                                      Aggregate conditions.
13.
                  K=1,
                  c=1)
14.
```

	value	parameter	Contractual limits
			=======================================
	0.0	d	deductible
	100.0	u	priority (severity)
	0	L	priority (aggregate)
	1	alphaqs	alpha (qs)
	1	K	reinstatements
977	24.	Р	Pure premium

Listing 5: Pricing with reinstatements, GEMAct implementation.

Figure 2 : Output of lossm.pricing()

Loss reserves (1/2)

GEMAct provides the first Python implementation of average cost methods for claims reserving, in which

$$P_{i,j} = n_{i,j} \cdot m_{i,j}.$$

It is also possible to compute the loss reserve by means of the collective risk model method in [6]:

$$X_{i,j} = \sum_{h=1}^{N_{i,j}} Z_{i,j,h}.$$

The model assumes:

- Frequency: $N_{i,j} \sim \text{Poisson}(\widehat{n_{i,j}} \cdot q)$, where q is distributed as a Gamma, and E[q] = 1.
- Severity: $E[Z_{i,j}] = m_{i,j}$ and $c_{Z_{i,j}} = \widehat{c_{Z_j}} \cdot r$, where r is distributed as a Gamma and E[r] = 1

Loss reserves (2/2)

class lossreserve.LossReserve(tail=False, claims_inflation=None, custom_alphas=None, custom_ss=None, reserving_method='fisherlange', ntr_stm=1000, mixingfpar=None, czf=None, setseed=42, mixingspar=None, **kwargs)

There is a unique class to compute the loss reserve in GEMAct: **reserving_method** allows to choose wheter to fit the reserve with the Fisher-Lange or the C.R.M. for claims reserving.

Triangular data should be provided as:

- *ip_tr* = (numpy.ndarray) Incremental payments triangle
- cp_tr = (numpy.ndarray) Cased payments triangle
- *in_tr* = (numpy.ndarray) Incurred number
- cn_tr = (numpy.ndarray) Cased number

Fisher-Lange reserve with GEMAct

```
1. # Fisher-Lange data
                                                                 GEMAct provides users with data to test
2. ip = gemact.gemdata.IPtriangle # numpy.ndarray
                                                                 the LossReserve class.
3. in = gemact.gemdata.in triangle # numpy.ndarray
4. cp = gemact.gemdata.cased amount triangle # numpy.ndarray
5. cn = gemact.gemdata.cased number triangle # numpy.ndarray
6. reported = gemact.gemdata.reported #numpy.ndarray
7. infl = gemact.gemdata.claims inflation # numpy.ndarray
8. rm = 'fisherlange' # str
9. tail = True #bool
10.
                                              Data are then passed through LossReserve.
11.lr = gemact.LossReserve(
12.
                  tail=tail ,
13.
                  incremental payments=ip ,
                  cased payments=cp ,
14.
15.
                  cased number=cn ,
                  reported claims=reported ,
16.
17.
                  incurred number=in ,
                  reserving method=rm ,
18.
                  claims inflation=infl
19.
20.)
21.
                            The self.claimsreserving() method allows to print out
22.lr.claimsreserving()
                             the computation.
```

Listing 6: loss reserve computed with the Fisher-Lange method.

time	ultimate FL	reserve FL
0.0	86841.0	1068.0
1.0	98161.954237115	1837.9542371150096
2.0	107140.16750863047	2133.1675086304704
3.0	117422.58617931853	2747.586179318526
4.0	122773.45583108162	4485.455831081627
5.0	138139.75521426514	6000.755214265135
6.0	148047.83900370973	9756.839003709756
7.0	145115.34662015972	15214.346620159751
8.0	146550.9374895417	21764.937489541713
9.0	155700.0816042082	33900.081604208186
10.0	164364.24141488288	52022.241414882876
11.0	164403.34082380703	104042.34082380703
FL reserve:	254973.706	

Figure 3: gemact.LossReserve has plenty of methods implemented to understand the estimates consistency, either visually or numerically.

On the left-hand side the results of gemact.LossReserve.claimsreserving(). On the right-hand-side the output of gemact.LossReserve.SSPlot(start_=7).

Loss aggregation - (1/2)

The following probability can be computed iteratively via the AEP algorithm, which is implemented for the first time in Python in the GEMAct package:

$$P[X_1 + \dots + X_d \le s] \approx P_n(s)$$

Assuming:

- $X = (X_1, ..., X_d)$ vector of strictly positive random components.
- The joint c.d.f. $H(x_1, ..., x_d) = P[X_1 \le x_1, ..., X_d \le x_d]$ is known or it can be computed numerically.

Loss aggregation - (2/2)

$$P[X_1 + \dots + X_d \le s] \approx P_n(s)$$

The AEP algorithm (2-dimensional case)

Define:

$$V_H[Q] = \int_Q dH \approx P[X_1 + X_2 \le s]$$

Figure 3: Picture from [1]. Geometrical interpretation of the 2-dimensional AEP first three steps. Blue parameters were added for sake of semplicity.

The AEP algorithm in GEMAct

```
1. la=gemact.LossAggregation(
2.
                          s la=1, The value of s P[X_1 + \cdots + X_d \le s]
3.
                          n la=7, Number of iterations: n in P_n(s)
4.
                          m1='genpareto',
                          mlpar={'loc':0,'scale':1/.9,'c':1/.9},
5.
6.
                          m2='genpareto',
                          m2par={'loc':0,'scale':1/1.8,'c':1/1.8},
7.
8.
                          copdist='qumbel',
                          coppar={ 'par':1.2} Copula to model the joint c.d.f.
9.
10.)
11.
                     The resulting probability is stored in the attribute out.
12.
13.print(la.out)
14.
15.#0.28329979582555087
```

m stands for marginals.
Parametersvare provided as dictionaries (GEMAct standard).

Listing 7: AEP algorithm application.

References

- 1. Arbenz, Philipp, Paul Embrechts and Giovanni Puccetti. "The AEP algorithm for the fast computation of the distribution of the sum of dependent random variables." Bernoulli 17 (2011): 562-591.
- 2. S.A. Klugman, H.H. Panjer and G.E. Willmot (1998): Loss Models: From Data to Decisions. Wiley, New York.
- 3. Fisher, Wayne H., Jeffrey T. Lange and John Balcarek. "Loss reserve testing: a report year approach." (1999).
- 4. Sundt, Bjørn. "On excess of loss reinsurance with reinstatements." Insurance Mathematics & Economics 12 (1993): 73.
- 5. Arbenz, Philipp, Paul Embrechts and Giovanni Puccetti. "The GAEP algorithm for the fast computation of the distribution of a function of dependent random variables." Stochastics 84 (2012): 569 597.
- 6. Ricotta, Alessandro and Gian Paolo Clemente. "An Extension of Collective Risk Model for Stochastic Claim Reserving ." (2016).
- 7. Embrechts, Paul and Marco Frei. "Panjer recursion versus FFT for compound distributions." Mathematical Methods of Operations Research 69 (2009): 497-508.

