3.2. DISTRIBUCIONES DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS

BINOMIAL			
3.2.01	Parámetros	n p	
3.2.02	Función de probabilidad de masa	$B(x;n,p) = \binom{n}{x} p^x q^{n-x} \qquad \text{siendo } q = 1-p$ $x = 0, 1, 2,, n$	
3.2.03	Esperanza	n.p	
3.2.04	Varianza	n.p.q	
HIPERGEOMÉTRICA			
3.2.05	Parámetros	n M N	
3.2.06	Función de probabilidad de masa	$h(x; n, M, N) = \frac{\binom{M}{x} \binom{N - M}{n - x}}{\binom{N}{n}}$ $x = 0, 1,, n si \ n \le M$ $x = 0, 1,, M si \ n \ge M$	
3.2.07	Esperanza	$n.\frac{M}{N}$	
3.2.08	Varianza	$\frac{N-n}{N-1} \cdot n \cdot \frac{M}{N} \left(1 - \frac{M}{N} \right)$	
BINOMIAL NEGATIVA			
3.2.09	Parámetros	r p	
3.2.10	Función de probabilidad de masa	$nb(x;r,p) = {x-1 \choose r-1} p^r q^{x-r} \qquad siendo \ q = 1-p x = r, r+1, r+2,$	

Fórmulas 6 Estadística Técnica

3.2.11	Esperanza	$\frac{r}{p}$	
3.2.12	Varianza	$\frac{r.q}{p^2}$	
GEOMÉTRICA			
3.2.13	Parámetro	p	
3.2.14	Función de probabilidad de masa	$p \cdot q^{x-1}$ siendo $q = 1-p$ x = 1, 2, 3,	
3.2.15	Esperanza	$\frac{1}{p}$	
3.2.16	Varianza	$\frac{q}{p^2}$	
POISSON			
3.2.17	Parámetro	λ	
3.2.18	Función de probabilidad de masa	$p(x;\lambda) = \frac{e^{-\lambda} \cdot \lambda^{x}}{x!} \qquad para \ \lambda > 0$ $x = 0, 1, 2, \dots$	
3.2.19	Esperanza	λ	
3.2.20	Varianza	λ	