Homework 10

Math 123

Due April 21, 2023 by midnight

Name: George Chemmala

Topics covered: Ramsey theory, random graphs

Instructions:

- This assignment must be submitted on Gradescope by the due date.
- If you collaborate with other students (which is encouraged!), please mention this near the corresponding problems.
- Some problems from this assignment come from West's book, as indicated next to the problem. In some cases, the statements on this assignment differ slightly from the book.
- If you are stuck please ask for help (from me or your classmates). Occasionally problems may require ingredients not discussed in the course.
- You may freely use any fact proved in class. In general, you should provide proof for facts used that were not proved in class.

Problem 1. Prove R(4,4) > 17 using the 17-vertex graph described in class.¹

Solution. Let all the vertices be labeled from v_0 to v_16 . Now any vertex v_i is connected to $v_{i\pm 1}, v_{i\pm 2}, v_{i\pm 4}, v_{i\pm 8}$ where the labels are mod 17.

By rotational symmetry we can consider a vertex v_i . Any K_4 will correspond to v_i and 3 vertices from $\{v_{i\pm 1}, v_{i\pm 2}, v_{i\pm 4}, v_{i\pm 8}\}$. To simplify notation let $v_i = 0, v_{i\pm 1} = 1, v_{i\pm 2} = 2 \cdots$

Assuming we start with 0, we can notice if we choose 1 we are forced to choose at least one from $\{4,8\}$ but we cannot connect 1 to $\{4,8\}$ since they are either distance $3,7 \notin \{1,2,4,8\}$ away.

Therefore, we are forced to choose 2 and connect to 4, 8. However, 2 is a distance $6 \notin \{1, 2, 4, 8\}$ from 8.

Therefore, there exist no combination of 3 vertices that connect, so there exist no K_4 in the graph.

Now we must check the complement, where vertices are a distance 3, 5, 6, 7 away. We will use the same notation.

Assuming we start with 0 we can if we choose 3 we are forced to choose at least one from $\{5,7\}$ but we cannot connect 3 to $\{5,7\}$ since they are either distance $2,4 \notin \{3,5,6,7\}$ away.

Therefore, we are forced to choose 5 and connect to 6, 7. However, 5 is a distance $1, 2 \notin \{3, 5, 6, 7\}$ from 6, 7.

Therefore, there exist no combination of 3 vertices that connect, so there exist no K_4 in the graph.

¹17 vertices around a circle; connected a given vertex to the vertices distance 1, 2, 4, 8 away.

Problem 2. Fix a graph H with k vertices. Prove that almost every graph contains H as an induced subgraph.²

Solution. I'm a little confused what the problem is asking but:

The limit of

$$\binom{n}{k}(\frac{1}{2})^k$$

approaches infinity as n tends to infinity since $\binom{n}{k}$ grows faster than 2^k

²Recall: given a collection of vertices in a graph G, the induced subgraph is the subgraph consisting of those vertices and all the edges between them that belong to G.

³Hint: Decompose the vertices into groups of size k. Consider the event that one these groups spans H.

Problem 3. Recall that a graph G satisfies property (\star) if for any collection u_1, \ldots, u_p and v_1, \ldots, v_q of distinct vertices of G there exists a vertex z of G so that z is adjacent to all of the u_i and to none of the v_j . Let G_1, G_2 be graphs whose vertex sets are countably infinite. Prove that if G_1 and G_2 satisfy (\star) , then G_1 and G_2 are isomorphic.⁴

Solution. Suppose G_1 and G_2 satisfy (\star) and let the vertices of G_1 and G_2 be enumerated by x_1, x_2, \ldots and y_1, y_2, \ldots , respectively.

Let G_{1_i}, G_{2_i} be isomorphic subgraphs of G_1, G_2 . We will construct them by the following. By induction:

Base Case: (i = 1)

Here we have G_{1_1}, G_{2_1} , both consisting of one vertex each. It is clear that these two vertices are isomorphic since they are not connected to anything

Inductive Step: By the extension property, there exist $x_i \in G_1, y_i \in G_2$ that are connected to the vertex sets of G_{1_i}, G_{2_i} but not to the remaining vertices in G_1, G_2 . Since these vertices x_i, y_i are connected to vertices which are isomorphic to each other, they themselves must be isomorphic, and we can add them to G_{1_i}, G_{2_i} to get $G_{1_{i+1}}, G_{2_{i+1}}$

⁴Hint: Enumerate the vertices of G_1 and G_2 by x_1, x_2, \ldots and y_1, y_2, \ldots , respectively. Inductively define an isomorphism $f: V(G_1) \to V(G_2)$. On odd (resp. even) steps of the induction extend f so that the smallest unmatched vertex of $V(G_1)$ (resp. $V(G_2)$) is in the domain (resp. image) of f.

Problem 4. Prove that the Radio graph has the following "pigeonhole" property: For any partition of the vertex set $V = U_1 \cup \cdots \cup U_m$, there exists j so that the subgraph spanned by U_j is isomorphic to R.

Solution. Suppose all partitions G_1, \dots, G_m which correspond to vertex sets U_1, \dots, U_m are not Rado.

Since G_1 is not Rado, there exist subsets p, q of the vertex set U_1 where no vertex in G_1 is adjacent to p and not adjacent to q.

Since $G_2, \dots G_m$ are not Rado, there exist subsets w, r of the vertex set $U_2 \cup \dots \cup U_m$ where no vertex in the corresponding graph G' is adjacent to w and not adjacent to r.

Now we have sets $p \cup w$ and $q \cup r$ s.t. they are disjoint, so in G, which is Rado, there must be a vertex that connects to either $p \cup w$ or $q \cup r$. However, this vertex cannot be in either G_1 or the rest of the graphs by the above reasoning, so we have a contradiction.

Problem 5 (Bonus).	Create a meme	related to t	he course.	Please	$submit\ to$	the	campus wire	page
for everyone's enjoym	ent.							

Solution. https://campuswire.com/c/GCDD00E4D/feed/228

Submit a draft of your final project slides. See other document for instructions.