Week 07 IVLE Quiz

- 1. Let u, v, w be vectors in \mathbb{R}^3 . Which of the following statements below is/are always true?
 - (I) $\{u+v, u-v, v-w, 2w\}$ is a linearly dependent set.
 - (II) $\{u, v, v w\}$ is a linearly independent set.
 - (III) If $a\mathbf{u} + b\mathbf{v} + c\mathbf{w} = \mathbf{0}$ has non trivial solutions, then \mathbf{u} is a linear combination of \mathbf{v} and \mathbf{w} .
 - (A) (I) only.
 - (B) (II) and (III) only.
 - (C) (III) only.
 - (D) None of the given combinations is correct.

Answer: (A). (I) is correct because any set of 4 or more vectors in \mathbb{R}^3 is always linearly dependent. (II) may not be correct, because, for example one of the vectors, say \boldsymbol{u} is the zero vector. (III) may not be correct, for example, when $\boldsymbol{u} = (1,0,0)$, $\boldsymbol{v} = (0,1,0)$, $\boldsymbol{w} = (0,2,0)$. Then $0\boldsymbol{u} - 2\boldsymbol{v} + \boldsymbol{w} = \boldsymbol{0}$ but yet \boldsymbol{u} is not a linear combination of \boldsymbol{v} and \boldsymbol{w} .

- 2. If it is known that span $\{u_1, u_2, u_3\}$ represents a plane in \mathbb{R}^3 , how many of the statements below is/are deinitely false?
 - (I) $\{u_2, u_3\}$ is a linearly dependent set.
 - (II) The plane passes through the origin.
 - (III) u_1 is a scalar multiple of u_2 .
 - (IV) $c_1 \mathbf{u_1} + c_2 \mathbf{u_2} + c_3 \mathbf{u_3} = \mathbf{0}$ has only the trivial solution.
 - (A) Exactly one.
 - (B) Exactly two.
 - (C) Exactly three.
 - (D) All four.

Answer: (A). Since we are told that span $\{u_1, u_2, u_3\}$ is a plane, it means that there is exactly one redundant vector among the 3, but we do not know which one. (I) may not be false because it is possible that u_2 is a multiple of u_3 . (II) is definitely true since the plane is a linear span (which always contain the origin). (III) may not be false because u_1 may indeed be a multiple of u_2 (which means that u_2 and u_3 are independent of each other). (IV) is definitely false because u_1, u_2, u_3 are linearly dependent.

3. How many of the following sets is/are a basis for \mathbb{R}^4 ?

$$S_1 = \{(1,0,0,0), (0,0,0,1), (0,1,0,0), (0,0,1,0)\};$$

$$S_2 = \{(1,1,1,1), (0,1,1,1), (0,0,1,1)\};$$

$$S_3 = \{(1,1,1,1), (1,1,0,0), (0,0,1,1), (2,2,1,1)\}.$$

- (A) None
- (B) Exactly one
- (C) Excatly two
- (D) All three

Answer: (B). S_3 cannot be a basis for \mathbb{R}^4 since it has only 3 vectors (which cannot span \mathbb{R}^4 . S_2 is a linearly dependent set since (1,1,1,1) = (1,1,0,0) + (0,0,1,1). S_1 is a basis for \mathbb{R}^4 , in fact this is the standard basis for \mathbb{R}^4 .

- 4. Suppose $S = \{v_1, v_2, v_3\}$ is a basis for a subspace V of \mathbb{R}^4 . Let \boldsymbol{w} be a non zero vector in V. Which of the following **cannot** be the coordinate vector of \boldsymbol{w} relative to S?
 - (I) (0,0,0)
 - (II) (-1,1,3)
 - (III) (2, -1, 3, 1)
 - (A) (I) only.
 - (B) (II) only
 - (C) (I) and (III) only
 - (D) None of the given combinations is correct.

Answer: (C). (I) cannot be the coordinate vector of \boldsymbol{w} relative to S because \boldsymbol{w} is not the zero vector. (III) cannot be the coordinate vector of \boldsymbol{w} relative to S because the basis S has 3 vectors so any coordinate vector relative to S has 3 components. (II) is the only possible coordinate vector.

5. Consider the matrix \mathbf{A} and its row-echelon form.

$$\mathbf{A} = \begin{pmatrix} 1 & -2 & -1 & -1 \\ -1 & 3 & 3 & 0 \\ 2 & 1 & 8 & 3 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -2 & -1 & -1 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 10 \end{pmatrix}.$$

Suppose the first 3 columns of A are vectors u_1, u_2, u_3 respectively and the last column of A is v. Which of the following statements is/are definitely true?

- (I) $S = \{u_1, u_2, u_3\}$ is a basis for span(S).
- (II) \boldsymbol{v} belongs to span(S).

- (III) The reduced row-echelon form of \boldsymbol{A} will allow us to find the coordinate vector of \boldsymbol{v} relative to S.
- (A) Only (II) is true.
- (B) Only (I) and (III) are true.
- (C) Only (II) and (III) are true.
- (D) None of the given combination given is correct.

Answer: (D). From the row-echelon form, we see that v is not a linear combination of u_1 , u_2 and u_3 . Thus (II) is incorrect. It is also clear from the row-echelon form that u_1 , u_2 and u_3 are linearly dependent, so S cannot be a basis, meaning (I) is incorrect. (III) is also incorrect since S is not even a basis in the first place.