Algorytmy macierzowe - Drugi zestaw zadań

Jakub Frączek

Kacper Garus

30 października 2024

Spis treści

1	W_{S^1}	tęp	3
2	Dai	ne techniczne	3
	2.1	Hardware	3
	2.2	Software	3
3	Rel	kurencyjne odwracanie macierzy	3
	3.1	Opis teoretyczny	3
	3.2	Pseudokod	4
	3.3	Implementacja	4
4	Rel	kurencyjna LU faktoryzacja	5
	4.1	Opis teoretyczny	5
	4.2	Pseudokod	6
	4.3	Implementacja	7
5	Rel	kurencyjna eliminacja Gaussa	7
	5.1	Opis teoretyczny	7
	5.2	Pseudokod	8
	5.3	Implementacja	9
6	Rel	kurencyjne liczenie wyznacznika macierzy	10
7	Opi	is teoretyczny	10
	7.1	Pseudokod	10
	7.2	Implementacja	10
8	Por	niar liczby operacji zmiennoprzecinkowych i czasów wyko-	
	nan	iia	11
	8.1	Rekurencyjne odwracanie macierzy	11
	8.2	Rekurencyjna LU faktoryzacja	13
	8.3	Rekurencyjna eliminacja Gaussa	15
	8.4	Rekurencyjne liczenie wyznacznika macierzy	17

9	Porównanie liczby operacji zmiennoprzecikowych i czasów wykonania	18
10	Oszacowanie złożoności obliczeniowej	20
11	Porównanie wyników z Octave	20
	11.1 Rekurencyjne odwracanie macierzy	20
	11.2 Rekurencyjna LU faktoryzacja	21
	11.3 Rekurencyjna eliminacja Gaussa	21
	11.4 Rekurencyjne liczenie wyznacznika	22
12	Wnioski	23
13	Źródła	23

1 Wstęp

Tematem zadania było wygenerowanie losowych macierzy o wartościach z przedziału otwartego (0.00000001, 1.0), a następnie zaimplementowanie algorytmów:

- 1. Rekurencyjnego odwracania macierzy
- 2. Rekurencyjnej LU faktoryzacji
- 3. Rekurencyjnej eliminacji Gaussa
- 4. Rekurencyjnego liczenia wyznacznika

Następnie zliczyć liczbę operacji zmienno-przecinkowych dokonaną podczas mnożenia macierzy. Algorytmy miały zostać zaprojektowane tak, aby przyjmować macierze o dowolnych wymiarach.

2 Dane techniczne

2.1 Hardware

Testy algorytmów zostały wykonane na komputerze z zainstalowaną 64 bitową wersją windowsa 11. Wykorzystany procesor to Intel Core i5-9300H.

2.2 Software

Algorytmy zostały zaimplementowane w języku Python i przetestowane na wersji 3.11.9. Wykorzystane biblioteki to:

- 1. sys
- 2. os
- 3. numpy
- 4. matplotlib
- 5. time

3 Rekurencyjne odwracanie macierzy

3.1 Opis teoretyczny

Algorytm odwracania macierzy polega na podzieleniu macierzy na 4 podmacierze. Następnie zgodnie ze wzorem:

$$\begin{bmatrix} A_{11}^{-1} + A_{11}^{-1} A_{12} S_{22}^{-1} A_{21} A_{11}^{-1} - A_{11}^{-1} A_{12} S_{22}^{-1} \\ - S_{21}^{-1} A_{21} A_{11}^{-1} & S_{22}^{-1} \end{bmatrix}$$

Wywołujemy rekurencyjnie funckję odwracania, a w miejcach, gdzie występuje mnożenie macierzy korzystamy z algorytmu Strassena zaimplementowanego na poprzednim laboratorium.

3.2 Pseudokod

```
Funkcja inverse(A)
    Jeżeli rozmiar(A) == 1
        Jeżeli A == 0
            Zwroć 0
        W przeciwnym wypadku
            Zwróć 1/A
    S = kształt macierzy A
    A = macierz A uzupełniona do parzystego kształtu zerami
    środek = dzielenie_całkowite(rozmiar(A[0]), 2)
    a11 = Wiersze od 0 do środek, Kolumny od 0 do środek z macierzy A
    a12 = Wiersze od 0 do środek, Kolumny od środek do n z macierzy A
    a21 = Wiersze od środek do n, Kolumny od 0 do środek z macierzy A
    a22 = Wiersze od środek do n, Kolumny od środek do n z macierzy A
    a11_inv = inverse(a11)
    s22 = a22 - a21*a11_inv*a12
    s22_{inv} = inverse(s22)
    c11 = a11_inv + a11_inv * a12 * s22_inv * a21 * a11_inv
    c12 = -a11_{inv} * a12 * s22_{inv}
    c21 = -s22_{inv} * a21 * a11_{inv}
    c22 = s22_{inv}
    C = złóż macierz z c11, c12, c21, c22
    C = macierz C przycięta do kształtu S
    Zwróć macierz C
```

3.3 Implementacja

Algorytm postanowiliśmy zaimplementować w języku Python:

```
def recursive_inverse(a):
    if np.size(a[0]) == 1:
       return a if a[0, 0] == 0 else np.array([[1 / a[0, 0]]])
    original_shape = a.shape
    a = pad_matrix_even(a)
    n = np.size(a[0])
    mid = n // 2
    a11 = a[:mid, :mid]
    a12 = a[:mid, mid:]
    a21 = a[mid:, :mid]
    a22 = a[mid:, mid:]
    a11inv = recursive_inverse(a11)
    s22 = a22 - strassen(strassen(a21, a11inv), a12)
    s22inv = recursive_inverse(s22)
    b11 = a11inv + strassen(
        strassen(strassen(a11inv, a12), s22inv), a21), a11inv
    )
    b12 = -strassen(strassen(a11inv, a12), s22inv)
    b21 = -strassen(strassen(s22inv, a21), a11inv)
    b22 = s22inv
    return unpad_matrix(
       np.vstack((np.hstack((b11, b12)), np.hstack((b21, b22)))), original_shape
```

4 Rekurencyjna LU faktoryzacja

4.1 Opis teoretyczny

Rekurencyjna eliminacja Gaussa polega na podzieleniu macierzy na 4 podmacierze, a następnie obliczenie ich zawartości według wzoru:

$$LU = \begin{bmatrix} L_{11} & 0 \\ L_{21} & L_{22} \end{bmatrix} \begin{bmatrix} U_{11} & U_{12} \\ 0 & U_{22} \end{bmatrix} = \begin{bmatrix} L_{11} & 0 \\ A_{21}U_{11}^{-1} & L_s \end{bmatrix} \begin{bmatrix} U_{11} & L_{11}^{-1}A_{12} \\ 0 & U_s \end{bmatrix}$$
(1)

- 1. Obliczenie rekurencyjnie $[L_{11}, U_{11}] = LU(A_{11})$
- 2. Obliczenie rekurencyjnie $U_{11}^{-1} = \text{inverse}(U_{11})$

```
3. Obliczenie L_{21} = A_{21}U_{11}^{-1}
```

- 4. Obliczenie rekurencyjnie $L_{11}^{-1} = \text{inverse}(L_{11})$
- 5. Obliczenie $U_{12} = L_{11}^{-1} A_{12}$
- 6. Obliczenie $L_{22} = S = A_{22} A_{21}U_{11}^{-1}L_{11}^{-1}A_{12}$
- 7. Obliczenie rekurencyjnie $[L_s, U_s] = LU(S)$
- 8. $U_{22} = U_s$
- 9. $L_{22} = L_s$

4.2 Pseudokod

```
Funkcja LU(A)
    Jeżeli rozmiar(A) == 1
        Zwróć 1, a
    S = kształt macierzy A
    A = macierz A uzupełniona do parzystego kształtu zerami
    środek = dzielenie_całkowite(rozmiar(A[0]), 2)
    a11 = Wiersze od 0 do środek, Kolumny od 0 do środek z macierzy A
    a12 = Wiersze od 0 do środek, Kolumny od środek do n z macierzy A
    a21 = Wiersze od środek do n, Kolumny od 0 do środek z macierzy A
    a22 = Wiersze od środek do n, Kolumny od środek do n z macierzy A
    111, u11 = LU(a11)
    u11_inv = inverse(u11)
    121 = a21 * u11_inv
    111_inv = inverse(111)
    u12 = 111_{inv} * a12
    s = a22 - a21 * u11_inv * l11_inv * a12
    122, u22 = LU(s)
    112 = macierz zer w kształcie macierzy a11
    u21 = macierz zer w kształcie macierzy a11
    L = złóż macierz z 111, 112, 121, 122 i przytnij ją do kształtu S
    U = złóż macierz z u11, u12, u21, u22 i przytnij ją do kształtu S
    Zwróć L, U
```

4.3 Implementacja

Algorytm LU faktoryzacji również został zaimplementowany w języku Python:

```
def recursive_LU(a):
    if np.size(a[0]) == 1:
        return np.array([[1]]), a
    original_shape = a.shape
    a = pad_matrix_even(a)
    n = np.size(a[0])
    mid = n // 2
    a11 = a[:mid, :mid]
    a12 = a[:mid, mid:]
    a21 = a[mid:, :mid]
    a22 = a[mid:, mid:]
    111, u11 = recursive_LU(a11)
    u11inv = recursive_inverse(u11)
    121 = strassen(a21, u11inv)
    111inv = recursive_inverse(111)
    u12 = strassen(111inv, a12)
    s = a22 - strassen(strassen(strassen(a21, u11inv), 111inv), a12)
    122, u22 = recursive_LU(s)
    1 = unpad_matrix(
        np.vstack((np.hstack((111, np.zeros(111.shape))), np.hstack((121, 122)))),
        original_shape,
    )
    u = unpad_matrix(
        np.vstack((np.hstack((u11, u12)), np.hstack((np.zeros(111.shape), u22)))),
        original_shape,
    return 1, u
```

5 Rekurencyjna eliminacja Gaussa

5.1 Opis teoretyczny

Rekurencyjna eliminacja Gaussa jest opisana następującym wzore

$$\begin{bmatrix} C_{11} & C_{12} \\ 0 & C_{22} \end{bmatrix} = \begin{bmatrix} U_{11} & L_{11}^{-1}A_{12} \\ 0 & U_{s} \end{bmatrix} = \begin{bmatrix} RHS_{1} \\ RHS_{2} \end{bmatrix} = \begin{bmatrix} L_{11}^{-1}b_{1} \\ L_{s}^{-1}b_{2} - L_{s}^{-1}A_{21}U_{11}^{-1}L_{11}^{-1}b_{1} \end{bmatrix}$$

- 1. Oblicz rekurencyjnie $[L_{11}, U_{11}] = LU(A_{11})$.
- 2. Oblicz rekurencyjnie $L_{11}^{-1} = \text{inverse}(L_{11}).$
- 3. Oblicz rekurencyjnie $U_{11}^{-1} = \text{inverse}(U_{11}).$
- 4. Oblicz $S = A_{22} A_{21}U_{11}^{-1}L_{11}^{-1}A_{12}$.
- 5. Oblicz rekurencyjnie $[L_S, U_S] = LU(S)$.
- 6. Ustal $C_{11} = U_{11}$, $C_{12} = L_{11}^{-1} A_{12}$, $C_{22} = U_S$.
- 7. Oblicz $RHS_1 = L_{11}^{-1}b_1$.
- 8. Oblicz $RHS_2 = L_S^{-1}b_2 L_S^{-1}A_{21}U_{11}^{-1}L_{11}^{-1}b_1$.

5.2 Pseudokod

```
Funkcja Gauss(A, b)
    SA = kształt macierzy A
    A = macierz A uzupełniona do parzystego kształtu zerami
    środek = dzielenie_całkowite(rozmiar(A[0]), 2)
    a11 = Wiersze od 0 do środek, Kolumny od 0 do środek z macierzy A
    a12 = Wiersze od 0 do środek, Kolumny od środek do n z macierzy A
    a21 = Wiersze od środek do n, Kolumny od 0 do środek z macierzy A
    a22 = Wiersze od środek do n, Kolumny od środek do n z macierzy A
    Sb = kształt wektora b
    b = wektor b uzupełniony do parzystej długości zerami
    b1 = wektor b od początku do środka
    b2 = wektor b od środka do końca
    111, u11 = LU(a11)
    111_inv = inverse(111)
    u11_inv = inverse(u11)
    s = a22 - a21 * u11_inv * l11_inv * a12
    ls, us = LU(s)
    ls_inv = inverse(ls)
    c11 = u11
    c12 = l11_{inv} * a12
    c21 = macierz zer w kształcie macierzy a11
```

```
c22 = us

LHS = złóż macierz z c11, c12, c21, c22 i przytnij ją do kształtu SA

RHS1 = l11_inv * b1

RHS2 = ls_inv * b2 - ls_inv * a21 * u11_inv * l11_inv * b1

RHS = złóż wektor z wektorów RHS1 i RHS2, przytnij go do kształtu Sb

Zwróć LHS, RHS
```

5.3 Implementacja

Algorytm eliminacji Gaussa również został zaimplementowany w języku Python:

```
def recursive_Gauss(a, b):
    original_shape_a = a.shape
    a = pad_matrix_even(a)
    n = np.size(a[0])
    mid = n // 2
    a11 = a[:mid, :mid]
    a12 = a[:mid, mid:]
    a21 = a[mid:, :mid]
    a22 = a[mid:, mid:]
    original_shape_b = b.shape
    b = pad_vector_even(b)
    b1 = b[:mid]
    b2 = b[mid:]
    111, u11 = recursive_LU(a11)
    111inv = recursive_inverse(111)
    u11inv = recursive_inverse(u11)
    s = a22 - strassen(strassen(strassen(a21, u11inv), 111inv), a12)
    ls, us = recursive_LU(s)
    lsinv = recursive_inverse(ls)
    c11 = u11
    c12 = strassen(l11inv, a12)
    c21 = np.zeros(c12.shape)
    c22 = us
```

```
lhs = unpad_matrix(
          np.vstack((np.hstack((c11, c12)), np.hstack((c21, c22)))), original_shape_a
)

rhs1 = matrice_vector_mult(l11inv, b1)
rhs2 = matrice_vector_mult(lsinv, b2) - matrice_vector_mult(
          strassen(strassen(strassen(lsinv, a21), u11inv), l11inv), b1
)

rhs = unpad_vector(np.hstack((rhs1, rhs2)), original_shape_b)
return lhs, rhs
```

6 Rekurencyjne liczenie wyznacznika macierzy

7 Opis teoretyczny

Wyznacznik macierzy obliczany jest zgodnie z podanym wzorem:

```
\det(A) = l_{11} \cdot \ldots \cdot l_{nn} \cdot u_{11} \cdot \ldots \cdot u_{nn} = (l_{ii} = 1) = u_{11} \cdot \ldots \cdot u_{nn}
```

Gdzie: - l_{ii} to przekątna macierzy L - u_{ii} to przekątna macierzy U

7.1 Pseudokod

```
Funkcja determinant(A)
  L, U = LU(A)
  det = 1
  Dla u = element przekątnej macierzy U
      det = det * u
Zwróć det
```

7.2 Implementacja

Algorytm eliminacji Gaussa również został zaimplementowany w języku Python:

```
def recursive_determinant(a):
    l,u=recursive_LU(a)
    det=1
    for i in range(u.shape[0]):
        det*=u[i,i]
```

8 Pomiar liczby operacji zmiennoprzecinkowych i czasów wykonania

Podobnie jak w laboratorium pierwszym zliczanie operacji zmiennoprzecinkowych osiągnęliśmy poprzez napisanie klasy dziedziczące po float'cie oraz przeciążenie metod realizujących operacje zmiennoprzecinkowe, tak aby oprócz wykonania operacji aktualizowały one licznik.

8.1 Rekurencyjne odwracanie macierzy

Najpierw przeprowadziliśmy pomiary dla algorytmu rekurencyjnego odwracania macierzy. W tabeli poniżej znajdują się przykładowe wyniki dla wybranych rozmiarów macierzy.

Rozmiar macierzy	Mnożenie	Dodawanie	Odejmowanie
2	10	1	1
50	233464	797025	385105
100	1634636	5749410	2782226
150	10984987	33548648	15498120
200	11444476	40928120	19831800
250	11528902	44626863	22236885

Poniżej znajduje się wykres prezentujący sumę operacji zmiennoprecinkowych dla rozmiarów macierzy od 1 do 250.

Rysunek 1: Wykres sumarycznej liczba FLOPS'ów dla rekurencyjnego odwracania macierzy

Finalnie sporzadziliśmy wykres czasu działania od rozmiaru macierzy.

Rysunek 2: Wykres czasu wykonania w zalezności od rozmiaru macierzy dla rekurencyjnego odwracania macierzy

8.2 Rekurencyjna LU faktoryzacja

Po przeprowadzeniu pomiarów sporządziliśmy tabelę zawierającą liczby FLOPS'ów dla wybranych rozmiarów macierzy.

Rozmiar macierzy	Mnożenie	Dodawanie	Odejmowanie
2	5	0	1
50	207393	663721	319537
100	1455057	4890885	2351520
150	9653187	28923656	13298213
200	10198893	35230231	16940640
250	10359973	38275181	18897262

Poniżej znajduje się wykres prezentujący sumę operacji zmiennoprecinkowych dla rozmiarów macierzy od 1 do 250.

Rysunek 3: Wykres sumarycznej liczba FLOPS'ów dla rekurencyjnej LU faktoryzacji

Na końcu sporzadziliśmy wykres czasu działania od rozmiaru macierzy.

Rysunek 4: Wykres czasu wykonania w zalezności od rozmiaru macierzy dla rekurencyjnej LU faktoryzacji

8.3 Rekurencyjna eliminacja Gaussa

Pnownie po przeprowadzeniu pomiarów sporządziliśmy tabelę zawierającą liczby FLOPS'ów dla wybranych rozmiarów macierzy.

Rozmiar macierzy	Mnożenie	Dodawanie	Odejmowanie
2	8	0	1
50	275250	880253	423244
100	1924281	6464124	3105401
150	12725180	38129527	17525345
200	13464465	46480441	22338954
250	13698407	50537636	24936894

Poniżej znajduje się wykres prezentujący sumę operacji zmiennoprecinkowych dla rozmiarów macierzy od 1 do 250.

Rysunek 5: Wykres sumarycznej liczba FLOPS'ów dla rekurencyjnej eliminacji Gaussa

Finalnie sporzadziliśmy wykres czasu działania od rozmiaru macierzy.

Rysunek 6: Wykres czasu wykonania w zalezności od rozmiaru macierzy dla rekurencyjnej eliminacji Gaussa

8.4 Rekurencyjne liczenie wyznacznika macierzy

 Tak jak poprzednio sporządziliśmy tabelę zawierającą liczby FLOPS'ów dla wybranych rozmiarów macierzy.

Rozmiar macierzy	Mnożenie	Dodawanie	Odejmowanie
2	7	0	1
50	207443	663721	319537
100	1455157	4890885	2351520
150	9653337	28923656	13298213
200	10199093	35230231	16940640
250	10360223	38275181	18897262

Poniżej znajduje się wykres prezentujący sumę operacji zmienno
precinkowych dla rozmiarów macierzy od 1 do 250.

Rysunek 7: Wykres sumarycznej liczba FLOPS'ów dla rekurencyjnego liczenia wyznacznika

Finalnie sporzadziliśmy wykres czasu działania od rozmiaru macierzy.

Rysunek 8: Wykres czasu wykonania w zalezności od rozmiaru macierzy dla rekurencyjnego liczenia wyznacznika

9 Porównanie liczby operacji zmiennoprzecikowych i czasów wykonania

Zdecydowaliśmy się również sporządzić wykresy obrazujące jak ma się liczba operacji zmiennoprzecinkowych między sobą dla rozważanych algorytmów i to samo zrobić dla czasów wykonania.

Porównanie liczby operacji zmiennoprzecinkowych:

Rysunek 9: Porównanie sumarycznej liczby FLOPS'ów dla wszyskich rozważanych algorytmów

Porównanie czasów działania:

Rysunek 10: Porównanie czasów działania dla wszyskich rozważanych algorytmów

10 Oszacowanie złożoności obliczeniowej

Z powodu wykorzystania algorytmu Strassena w algorytmach rekurencyjnych spodziewaliśmy się otrzymać złożoność obliczeniową w okolicach $n^{2.81}$. Aby potwierdzić nasze przypuszczenia postanowiliśy dopasować krzywą tej złożoności do otrzymanych wykresów czasów wykonania.

Rysunek 11: Dopasowanie krzywej złożoności do wykresu czasu działania rekurencyjnego odwracania macierzy

Rysunek 13: Dopasowanie krzywej złożoności do wykresu czasu działania rekurencyjnej eliminacji Gaussa

Rysunek 12: Dopasowanie krzywej złożoności do wykresu czasu działania rekurencyjnej LU faktoryzacji

Rysunek 14: Dopasowanie krzywej złożoności do wykresu czasu działania rekurencyjnego liczenia wyznacznika macierzy

Jak widać na powyższych wykresach nasze przypuszczenia się potwierdziły.

11 Porównanie wyników z Octave

11.1 Rekurencyjne odwracanie macierzy

Przeprowadziliśmy testy dla macierzy:

$$A = \begin{bmatrix} 1.12 & 6.31 & 3.52 & 5.31 & 3.23 \\ 2.43 & 5.23 & 7.43 & 6.54 & 2.22 \\ 0.76 & 4.98 & 7.86 & 4.00 & 7.43 \\ 9.99 & 4.33 & 5.44 & 3.45 & 2.45 \\ 6.43 & 5.44 & 3.23 & 1.23 & 2.67 \end{bmatrix}$$

Otrzymane wyniki to:

```
-8.4689e-02 -1.7002e-02

1.0608e-01 -7.5664e-02

2.7350e-01 3.7129e-02

-1.1230e-01 -3.1221e-02

-2.9131e-01 1.6457e-01
                                                                                                                                                                                   6.00245146 6.16607761 -0.07566418 -0.23734449 6.33717916]
-0.30839429 0.2735043 0.03712922 -0.151527 0.18138766]
2.8284e-02
                                                                                                   1.5894e-01
                                                                                                1.5894e-01
-2.3734e-01
-1.5153e-01
2.4472e-01
1.7137e-01
                                                                                                                                 3.3718e-01
1.8139e-01
-3.8282e-01
-2.0541e-01
2.4515e-03
```

Octave

Rysunek 15: Wyniki dla odwracania Rysunek 16: Wyniki dla odwracania macierzy otrzymane z wykorzystaniem macierzy otrzymane z wykorzystaniem własnej implementacji

Jak widać wyniki są takie same.

Rekurencyjna LU faktoryzacja 11.2

Ponownie wykorzystaliśmy macierz z poprzedniego podpunktu. Otrzymane wyniki:

```
0.67857143 -0.08252688
8.91964286 6.14068618
5.74107143 3.63883407
1.0000
0.1121
           1.0000
                             0
                                         0
                                                     0
0.0761
           0.7984
                       1.0000
                                                     0
                                         0
0.6436
           0.4555
                      -0.3117
                                   1.0000
0.2432
                                  -0.7051
9.9900
           4.3300
                                   3.4500
                                              2.4500
                       5.4400
           5.8246
                       2.9101
                                   4.9232
                                              2.9553
                       5.1226
                                 -0.1934
                                               4.8839
      0
                  0
                             0
                                 -3.2933
                                              1.2695
                             0
                                             -3.4327
```

Rysunek 17: Wyniki dla lu faktoryzacji Rysunek 18: Wyniki dla lu faktoryzacji macierzy otrzymane z wykorzystaniem macierzy otrzymane z wykorzystaniem Octave

własnej implementacji

Wyniki się nie zgadzają.

Rekurencyjna eliminacja Gaussa 11.3

Testy zostały przeprowadzone dla tej samej macierzy A oraz wektora b:

$$\mathbf{b} = \begin{bmatrix} 1.23 \\ 2.12 \\ 7.54 \\ 8.55 \\ 3.45 \end{bmatrix}$$

Oto otrzymane wyniki:

Upper Triangular Matrix: Columns 1 through 5: 1.1200 6.3100 3.5200 5.3100 -4.9808 -0.0143 -4.7879 4.8431 5.4543 -13.3923 24.9596 -4.8683 Column 6: 1.2300 -0.5487 6.6601 31.0901 -7.7420

-8.46044643 -0.20714286 -4.98080357 -4.78794643] 5.45433372 -0.01426449 4.84307998] 0. -13.39230994 24.95957041 -4.8683485] 0.54866071 6.66007788 31.0900754 -7.74198382]

macierzy otrzymane z wykorzystaniem Octave

Rysunek 19: Wyniki dla lu faktoryzacji Rysunek 20: Wyniki dla lu faktoryzacji macierzy otrzymane z wykorzystaniem własnej implementacji

Jak widać na powyższych rysunkach wyniki się zgadzają

11.4 Rekurencyjne liczenie wyznacznika

Test został przeprowadzony na macierzy A opisanej powyżej. Oto otrzymane wyniki:

>> determinant -3369.7 >>

-3369.6916398120434

macierzy otrzymane z wykorzystaniem macierzy otrzymane z wykorzystaniem Octave

Rysunek 21: Wyniki dla lu faktoryzacji Rysunek 22: Wyniki dla lu faktoryzacji własnej implementacji

Wynik uzyskany z Octave został zaokraglony, ale i tak można stwierdzić, że nasza metoda jest poprawna.

12 Wnioski

- Algorytm Strassena okazuje się bardzo przydatny przy implementacji opisanych algorytmów
- Octave jest dość intuicyjne i posiada sporo wbudowanych funkcji, które pozwalają wykonywać podstawowe operacje macierzowe.
- Podejście rekurencyjne sprawia, że implementacja rozważanych algorytmów jest dość intuicyjna i prosta.
- $\bullet\,$ Mimo złożoności rzędu $n^{2.81}$ algorytmy wykonują się BARDZO długo dla macierzy o rozmiarach liczonych w setkach.
- Po porównaniu wyników naszych algorytmów z Octave, przekonaliśmy się, że nasza implementacja jest poprawna.

13 Źródła

- 1. Wykład z kursu "Algorytmy Macierzowe"
- 2. Dokumentacja Octave https://docs.octave.org/latest/