

The bam-utils Software Package

Daniel Ortiz

5 Nov 2018

Table of Contents

- 1. Introduction
- 2. Package Overview
- 3. Main Tools and File Formats
- 4. Pipeline Example

Introduction

Introduction

- Executing bam file pipelines is a tedious task
 - Downloading of very large files
 - Combination of tools with different input requirements
 - Existence of dependencies between tools
 - Tools may need to be added or removed
 - Each tool has specific computational requirements
 - Pipeline may need to be executed for hundreds of files
 - Parallelism should be exploited when possible
 - ..
- bam-utils has been created as a highly portable, configurable and extensible solution

Package Overview

Package Dependencies

- Shell Bash
- Python
- Conda
- Database download clients
- Slurm Workload Manager (optional)

Package Installation

• Obtain the package using git:

```
git clone gitlab@fsupeksvr.irbbarcelona.pcb.ub.es:dortiz/bam-utils.git
```

• Change to the directory with the package's source code and type:

```
./reconf
./configure
make
make install
```

NOTE: use --prefix option of configure to install the package in a custom directory

Additional configure Options

- --with-icgcstor=DIR: sets location of ICGC's storage client
- --with-aspera=DIR: enables Aspera Connect download client
- --with-egadecrypt=DIR: location of EGA decryptor tool

Functionality

- Automate execution of pipelines for pairs of normal-tumor bam files in a highly configurable manner
- Automate processing of all of the normal-tumor samples of a dataset
- Handle file downloading as part of pipeline execution
- Keep track of which analysis steps of a pipeline for a pair of bam files have been completely executed and which haven't
- Specification of computational resources for each step

Execution Model

- bam-utils follows a simple execution model based on a file containing a list of analysis steps to be executed
- All of the steps defined in the list are by default executed simultaneously unless dependencies between them are specified
- This model requires the availability of a workload manager
- Otherwise, steps are executed sequentially

Supported Databases and Download Clients

- Databases
 - EGA
 - ICGC
- Download clients
 - aspc
 - icgc-storage-client
 - Amazon cloud
 - Collaboratory cloud
 - pyega3

Implemented Analysis Steps

- bam file downloading:
 - download_ega_{norm|tum}_bam
 - download_ega_asp_{norm|tum}_bam
 - download_aws_{norm|tum}_bam
 - download_collab_{norm|tum}_bam
- bam file manipulation:
 - sort_{norm|tum}_bam
 - index_{norm|tum}_bam
 - delete_bam_files

Implemented Analysis Steps

- Small Indels and Single Nucleotide Variant Callers:
 - manta_somatic
 - platypus_germline
 - strelka somatic
- Copy Number Variant Callers:
 - ascatngs
 - cnvkit
 - facets
 - wisecondorx
- MSI Analyzers:
 - msisensor

Main Tools and File Formats

Main Tools

- submit_bam_analysis
- query_ega_metadata
- query_icgc_metadata
- analyze_dataset

submit_bam_analysis

- Automates analysis of a normal-tumor sample pair
- Main input parameters:
 - -r <string>: file with reference genome
 - -n <string>: file with normal bam file
 - -t <string>: file with tumor bam file
 - -extn <string>: external database id of normal bam file
 - -extt <string>: external database id of tumor bam file
 - -a <string>: file with analysis steps to be performed
 - -o <string>: output directory

submit_bam_analysis

- Content of output directory:
 - data: directory containing the normal-tumor bam files
 - scripts: directory containing the scripts used for each analysis step
 - <analysis_step_name>: directory containing the results of the analysis step of the same name

query_ega_metadata

- Extracts information from EGA metadata
- Main input parameters:
 - -s <string>: file with sample information
 - -a <string>: file with analysis information
 - -t <string>: file with study information
 - -p <string>: file listing Aspera box content
 - -f <int>: output format

query_icgc_metadata

- Extracts information from ICGC metadata
- Main input parameters:
 - -d <string>: file with donor information
 - -a <string>: file with aws manifest
 - -t <string>: table file in json format
 - -f <int>: output format:

analyze_dataset

- Uses metadata information to automate analysis of a whole dataset
- Main input parameters:
 - -r <string>: file with reference genome
 - -m <string>: file with metadata, one entry per line
 - -a <string>: file with analysis steps to be performed
 - -p: only print the commands executing the analysis

The bam_utils_lib.sh Library

- Shell library containing functions used by the previously described tools
- Functions can be classified as follows:
 - Implementation of the package execution model
 - Automated creation of scripts executing analysis steps
 - Implementation of analysis steps

Additional Tools

- Reference genome operations:
 - filter_contig_from_genref
 - gen_bed_for_genome
- Data preparation for analysis steps:
 - convert_snppos_to_snpgcc
 - create_snv_pos_ascat
 - gen_wisecondorx_ref
- Reporting tools:
 - get_analysis_status

File Formats

- Analysis file: file describing all of the analysis steps to be carried out when processing a normal-tumor sample
- EGA/ICGC metadata: information regarding a whole dataset that is typically spread out in a set of files
- Analysis metadata: file providing all the information of a given dataset that is relevant to automate its analysis
- Analysis automation script: file with a sequence of commands automating the analysis of a dataset

Analysis File

• Entry format (one entry per line):

Step name, Slurm account, Slurm partition, CPUs, Memory limit, Time limit, Dependencies

• Dependency types: none, after, afterok, afternotok, afterany

EGA Metadata

- Sample information (Sample_File.map)
 - contains file name info
- Analysis information (Analisys_Sample_meta_info.map)
 - contains donor and phenotype information
- Study information (Study_analysis_sample.map)
 - contains EGA id information
- Aspera box content (dbox_content)

ICGC Metadata

- Donor information (donor.<study_name>.tsv)
 - contains gender information
- AWS manifest (manifest.aws-virginia.<code>.tsv)
 - contains object id, file name and donor id information
- JSON table file (icgc_table.json)
 - contains phenotype information

Analysis Metadata (EGA)

- Created with the query_ega_metadata tool
- Example entries:

```
EGAF00001664282 phenotype=Blood|Normal_blood gender=male ; EGAF00001664327 phenotype=Skin|
Tumour_metastasis_to_local_lymph_node gender=male ; EGAF00001664289 phenotype=Skin|
Tumour_metastasis_to_local_lymph_node gender=male ; EGAF00001664289 phenotype=Skin|
Tumour_metastasis_to_local_lymph_node gender=male

EGAF00001664356 phenotype=Skin|Tumour_metastasis_to_distant_location gender=male ; EGAF00001670533 phenotype=Blood|Normal_blood gender=male ; EGAF00001661538 phenotype=Skin|
Tumour_metastasis_to_local_lymph_node gender=male ...
```

Analysis Metadata (EGA Aspera)

- Created with the query_ega_metadata tool
- Example entries:
- EGAD00001003388/PART_2/EGAZ00001300436_20170516_AWS_MELA_3c3ed66c-1505-4614-ac9d-575a6713b06a.bam.crypt phenotype=Blood|Normal_blood gender=male ; EGAD00001003388/PART_3/ EGAZ00001300354_20170516_AWS_MELA_daf1ffd8-0a0f-4869-abc8-5be0b4fc1a21.bam.crypt phenotype=Skin| Tumour metastasis to local lwmbh node gender=male
- EGAD00001003388/PART_3/EGAZ00001303407_20170516_AWS_MELA_a197619e-f3e2-41f6-aef7-d1fadf3c1f5b.bam.crypt phenotype=Blood|Normal_blood gender=male ; EGAD00001003388/PART_2/
 EGAZ00001300389_20170516_AWS_MELA_3a9bf676-1a7b-4718-8396-fb36cc89b688.bam.crypt phenotype=Skin|
 Tumour_metastasis_to_local_lymph_node gender=male
- EGAD00001003388/PART_3/EGAZ00001300416_20170516_AWS_MELA_f64eba46-d8a1-46f2-ba66-1b509e16c946.bam.crypt
 phenotype=Skin|Tumour_metastasis_to_distant_location gender=male ; EGAD00001003388/PART_3/
 EGAZ00001303394_20170516_AWS_MELA_7bb66858-7533-4f96-9cd4-41aae2fe18b2.bam.crypt phenotype=Blood|
 Normal_blood gender=male

. . .

Analysis Metadata (ICGC)

- Created with the query_icgc_metadata tool
- Example entries:

```
34fa2369-424f-5886-9d23-6d19f8f15278 tumor female; d759d07f-330c-5d0c-bd28-af72147dfb17 normal female
284f1424-d250-59cf-b105-da277b061e4a normal female; e7e69d23-fb0d-5d3d-9027-ebf355053dbf tumor female
c42fffad-4ffd-59ba-93f1-2c573547369c normal female; 3a33ef20-dfd0-50b0-afc2-38de9a5baa32 tumor female
37f076d6-fa64-5b5d-a0d0-b5cd7428d4a2 normal female; 2c34270b-98d2-54b9-bdd3-068c6a9d858f tumor female
...
```

Analysis Automation Script

- Created with the analyze_dataset tool (-p option)
- At each entry (one per line), submit_bam_analysis tool is used to analyze a normal-tumor bam file pair
- Entry example:

/home/dortiz/bio/software/bam-utils/bin/submit_bam_analysis -r /home/dortiz/bio/data/genome_references/
refseq_hg19_filt.fa -extn d759d07f-330c-5d0c-bd28-af72147dfb17 -extt 34fa2369-424f-5886-9d23-6
d19f8f15278 -a /home/dortiz/bio/software/bam-utils/share/bam-utils/examples/basic_analysis_test.
csv -g XX -o /mnt/raid/dortiz/bio/tasks/bam_analysis_testing_pipelined/f759d07f-330c-5d0c-bd28af72147dfb17_34fa2369-424f-5886-9d23-6d19f8f15278 -cr /home/dortiz/bio/data/genome_references/
refseq_hg19_filt.fa.bed -sv /home/dortiz/bio/data/facets_info/00-common_all.vcf -sg /home/dortiz/
bio/data/ascatngs_info/r93/Snp@cCorrections_GRCh37_1000g.tsv -mc chrY -egastr 50 -egacred /home/
dortiz/bio/software/ega-download-client-python/dortiz_cred.json

Extending Package Functionality

- Creating a new pipeline step requires only two actions:
 - Add a function in bam_utils_lib.sh defining the step
 - Define a function in submit_bam_analysis.sh passing the input parameters
- Once the step is created, it can be executed within a pipeline by adding it into an analysis file

Extending Package Functionality: bam_utils_lib.sh

```
execute_cnvkit()
   # Initialize variables
   local_ref=$1
   local normalbam=$2
   local tumorbam=$3
   local_step_outd=$4
   local_cpus=$5
   # Activate conda environment
   conda activate cnvkit > ${local_step_outd}/conda_activate.log 2>&1 || exit 1
   # Run cnvkit
   cnvkit.py batch ${local_tumorbam} -n ${local_normalbam} -m wgs -f ${local_ref} -d ${local_step_outd}
         } -p ${local cpus} > ${local step outd}/cnvkit.log 2>&1 || exit 1
   # Deactivate conda environment
   conda deactivate > ${local_step_outd}/conda_deactivate.log 2>&1
   # Create file indicating that execution was finished
   touch ${local_step_outd}/finished
```

Extending Package Functionality: submit_bam_analysis.sh

```
get_pars_cnvkit()
{
    echo "$ref_u$normalbamu$tumorbamu${step_outd}u$cpus"
}
```

Whole Pipeline Example

Analysis File

```
download_ega_norm_bam dortiz normal_prio 1 2048 10:00:00 jobdeps=none
download_ega_tum_bam dortiz normal_prio 1 2048 10:00:00 jobdeps=none
sort norm bam dortiz normal prio 1 4G 10:00:00 jobdeps=afterok:download ega norm bam
sort_tum_bam dortiz normal_prio 1 4G 10:00:00 jobdeps=afterok:download_ega_tum_bam
index norm bam dortiz normal prio 1 1G 4:00:00 jobdeps=afterok:sort norm bam
index tum bam dortiz normal prio 1 1G 4:00:00 jobdeps=afterok:sort tum bam
manta_somatic dortiz normal_prio 8 3G 6:00:00 jobdeps=afterok:index_norm_bam,afterok:index_tum_bam
strelka_somatic dortiz normal_prio 8 6G 6:00:00 jobdeps=afterok:index_norm_bam,afterok:index_tum_bam,
      afterok:manta somatic
msisensor dortiz normal_prio 8 6G 5:00:00 jobdeps=afterok:index_norm_bam,afterok:index_tum_bam
facets dortiz normal_prio 1 20G 4:00:00 jobdeps=afterok:index_norm_bam,afterok:index_tum_bam
cnvkit dortiz normal_prio 8 8G 10:00:00 jobdeps=afterok:index_norm_bam,afterok:index_tum_bam
ascatngs dortiz normal_prio 8 25G 12:00:00 jobdeps=afterok:index_norm_bam,afterok:index_tum_bam
platypus_germline dortiz normal_prio 1 4G 5:00:00 jobdeps=afterok:index_norm_bam
delete bam files dortiz normal prio 1 1G 0:10:00 jobdeps=afterok:manta somatic.afterok:strelka somatic.
      afterok:msisensor.afterok:cnvkit.afterok:facets.afterok:ascatngs.afterok:platvpus germline
```

Pipeline

