Vision par Ordinateur : Indexation et recherche d'images CNN-based descriptors

Pre-trained CNNs

- AlexNet pre-trained on ImageNet for classification
- last fully connected layer (fc6): global descriptor of dimension
 k = 4096
- · nearest neighbors in ImageNet according to Euclidean distance

rizhevsky, Sutskever, Hinton. NIPS 2012. Imagenet Classification with Deep Convolutional Neural Networks.

Neural codes for image retrieval

- fine-tuning by softmax on 672 classes of 200k landmark photos
- outperforms VLAD and Fisher vectors on standard retrieval benchmarks, but still inferior to SIFT local descriptors

Babenko, Slesarev, Chigorin, Lempitsky. ECCV 2014. Neural codes for Image Retrieval.

CNN features Off-the-shelf

- For each image, extract multiple sub-patches of different sizes at different locations
- For each extracted sub-patch, its CNN representation is the L2 normalized output of the first fully connected layer (dim=4096)
- PCA dimensionality reduction → whitening →L2 renormalization (500-D)

A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, "Cnn features off-the-shelf: an astounding baseline for recognition," in 7 CVPD Workshops, 2014

Layer \$\mathcal{L}_{t}\$ Layer \$\mathcal{L}_{t}\$ Layer \$\mathcal{L}_{t}\$ Convolutional features \$\mathcal{F}^{t}\$ Convolutional features \$\mathcal{F}^{t}\$ Consider different layers of VGG-16 For each layer, VLAD encoding (k=100) L2-normalization, PCS-whitening (128-D)

 receptive fields of 5 components of MAC vectors that contribute most to image similarity

12

Regional max-pooling (R-MAC)

- VGG-16 last convolutional layer, k = 512
- fixed multiscale overlapping regions, spatial max-pooling
- L2-normalization, PCA-whitening, L2-normalization
- sum-pooling over all descriptors, L2-normalization

Tolias, Sicre and Jegou. ICLR 2016. Particular Object Retrieval with Integral Max-Pooling of CNN Activations.

Siamese architecture

- an input sample is a pair (x_i, x_j)
- both x_i , x_i go through the same function f with shared parameters θ
- Contrastive loss I_{ij} is measured on output pair $(y_i,\,y_j)$ and target t_{ij}

Chopra, Hadsell, Lecun, CVPR 2005. Learning a Similarity Metric Discriminatively, with Application to Face Verification.

Triplet architecture

- an input sample is a triplet
 (X_i, X⁺_i, X⁻_i)
- x_i, x⁺_i, x⁻_i go through the same function f with shared parameters
- loss l_i measured on output triplet $(y_i, \ y^+_i \ , \ y^-_i \)$

ang, Song, Leung, Rosenberg, Wang, Philbin, Chen, Wu. CVPR 2014. Learning Fine-Grained Image Similarity with Deep Ranking.