《常微分方程教程》1习题 2-2,5

叶卢庆 杭州师范大学理学院, 学号:1002011005 Email:h5411167@gmail.com 2013. 11. 3

习题 (2-2,5). 设微分方程

$$\frac{dy}{dx} = f(y),\tag{1}$$

其中 f(y) 在 y = a 的某邻域 (例如区间 $|y - a| \le \varepsilon$) 内连续, 且 f(y) = 0 当且仅当 y = a. 则在直线 y = a 上的每一点, 方程 (1) 的解是局部唯一的, 当且仅当瑕积分

$$|\int_{a}^{a\pm\varepsilon}\frac{dy}{f(y)}|=\infty.$$

注 1. 首先我得抱怨一下, 书上在给我做这个题目之前并没有介绍"局部唯一"是什么意思. 我将其理解成, 对于直线 y=a 上的任意一个点 (x_0,a) , 当 (x_0,a) 的邻域足够小的时候, 满足方程 (1) 的所有积分曲线中, 仅有一条积分曲线通过了 (x_0,a) (也就是仅有 y=a 通过了 (x_0,a)). 另外, 在本文里, 笔者规定所有的邻域都是圆形的.

证明. \Leftarrow : 当 $y \neq a$ 时, 我们把 (1) 化为

$$\frac{1}{f(y)}dy - dx = 0. (2)$$

¹丁同仁,李承治编著,高等教育出版社第二版.

对 (9) 进行积分, 得到通积分

$$\phi(x,y) \equiv \int \frac{1}{f(y)} dy - x + C = 0. \tag{3}$$

其中 C 是一个常数. 该通积分在 $y \neq a$ 时确定了 x 和 y 之间的函数关系 x = g(y). 在这里要注意, 虽然对于 $\frac{1}{f(y)}$ 来说, y = a 时是没意义的, 但是对于 $\phi(x,y) = 0$ 来说, y = a 时是可能有意义的. 设 $\mathcal{F}(y) = \int \frac{1}{f(y)} dy$, 根据 Newton-Leibniz 公式, 可得

$$\int_{a+\delta}^{a+\varepsilon} \frac{1}{f(y)} dy = \mathcal{F}(a+\varepsilon) - \mathcal{F}(a+\delta), \tag{4}$$

且

$$\int_{a-\delta}^{a-\varepsilon} \frac{1}{f(y)} dy = \mathcal{F}(a-\varepsilon) - \mathcal{F}(a-\delta). \tag{5}$$

结合通积分(3),可得式(4)和式(5)可以分别写成

$$\int_{a+\delta}^{a+\varepsilon} \frac{1}{f(y)} dy = (g(a+\varepsilon) - C) - (g(a+\delta) - C) = g(a+\varepsilon) - g(a+\delta).$$
 (6)

$$\int_{a-\delta}^{a-\varepsilon} \frac{1}{f(y)} dy = (g(a-\varepsilon) - C) - (g(a-\delta) - C) = g(a-\varepsilon) - g(a-\delta).$$
 (7)

由于

$$\left| \int_{a}^{a \pm \varepsilon} \frac{dy}{f(y)} \right| = \infty,$$

因此对于任意给定的正实数 M, 都存在相应的 $\delta_M \in (0, \varepsilon)$, 使得 $\forall \delta \in (0, \delta_M)$, 有

$$|g(a+\varepsilon) - g(a+\delta)| > M,$$
 (8)

$$|g(a-\varepsilon) - g(a-\delta)| > M. \tag{9}$$

也即对于积分曲线 (3) 上的点 (x_0,y_0) 来说, 当 $y_0 \in (a-\delta_M,a+\delta_M)\setminus\{a\}$ 时, 有 $|x_0-x'|>M$, 且 $|x_0-x''|>M$, 其中 $g(a+\varepsilon)=x',g(a-\varepsilon)=x''$. 因此积分曲线 $\phi(x,y)=0$ 与积分曲线 y=a 不相交, 否则设交于 (x_1,a) , 由于积分曲线 $\phi(x,y)=0$ 连续, 那么可得 $|x_1|$ 不是一个实数, 而是一个无穷大, 矛盾.

⇒: 若

$$|\int_a^{a\pm\varepsilon}\frac{dy}{f(y)}|\neq\infty,$$

则

$$\int_a^{a+\varepsilon} \frac{dy}{f(y)} = N_1, \int_a^{a-\varepsilon} \frac{dy}{f(y)} = N_2.$$

那么可得积分曲线 (3) 与积分曲线 y=a 交于 $x'+(N_1+C)$ 或 $x''+(N_2+C)$, 矛盾.