Bienes diferenciados Organización Industrial

Licenciatura en Economía

Índice

Modelo sencillo

Cournot

Bertrand

Complementos y sustitutos estratégicos

Competencia monopolística

Localización

Intensidad competitiva

Diferenciación vertical

Publicidad y marcas

Comportamiento del consumidor y estrategias de las empresas

Presentación

- En general los productos no son homogéneos
- Puede ser por elementos exógenos (clima, ej. café) o endógenos (publicidad, reputación, etc.)
- Tipos de diferenciación:
 - ▶ Diferenciación horizontal: no existe acuerdo entre los consumidores respecto a la valoración de los bienes (ej. Fiat Palio y Opel Corsa, Game of thrones y Mad Men, helado de chocolate y helado de frutas, pollo o pescado)
 - ▶ Diferenciación vertical: los bienes tienen diferentes calidades (ej. Chery y Lamborgini; Blue Ray y DVD; TV 4k de 55 pulgadas y TV de tubo; etc.)

Índice

Modelo sencillo

Cournot

Bertrand

Complementos y sustitutos estratégicos

Competencia monopolística

Localización

Intensidad competitiva

Diferenciación vertical

Publicidad y marcas

Comportamiento del consumidor y estrategias de las empresas

Supuestos

- ightharpoonup Dos empresas (i=1,2) producen dos bienes diferenciados, producción tiene costo cero
- Las funciones inversas de demanda son:

$$p_1 = \alpha - \beta q_1 - \gamma q_2$$

$$p_2 = \alpha - \beta q_2 - \gamma q_1$$
(1)

 $con \alpha, \beta, \gamma > 0; \beta > \gamma$

- $ightharpoonup \gamma > 0$ los bienes son sustitutos¹
- ho $\beta > \gamma$ el efecto directo del bien es mayor al efecto cruzado (sustitutos imperfectos)

Demandas

▶ Invirtiendo las funciones inversas de demanda

$$q_1 = a - bp_1 + cp_2$$
$$q_2 = a + cp_1 - bp_2$$

$$\blacktriangleright$$
 con $a=\frac{\alpha(\beta-\gamma)}{\beta^2-\gamma^2};\,b=\frac{\beta}{\beta^2-\gamma^2};\,c=\frac{\gamma}{\beta^2-\gamma^2}$

Diferenciación de producto

- $lackbox{ }$ Medida de diferenciación de marca es: $\delta=\frac{\gamma}{\beta}$
 - Las marcas son altamente diferenciadas si $\delta \longrightarrow 0 \iff \gamma \longrightarrow 0 \iff c \longrightarrow 0$.
 - Las marcas son casi homogéneas si $\delta \longrightarrow 1 \iff \gamma \longrightarrow \beta \iff c \longrightarrow b$

Índice

Modelo sencillo

Cournot

CPO

$$\pi_i(q_1, q_2) = (\alpha - \beta q_i - \gamma q_j)q_i \quad i, j = 1, 2; i \neq j$$

$$R_i(q_j) = \frac{\alpha - \gamma q_j}{2\beta}$$

La diferenciación aumenta el poder de mercado

Si $\gamma \uparrow$ (los productos se hacen más similares) $\Rightarrow \downarrow \pi \downarrow p \downarrow q_i \downarrow q_i$

CPO

- $\pi_i(q_1, q_2) = (\alpha \beta q_i \gamma q_j)q_i \quad i, j = 1, 2; i \neq j$

$$R_i(q_j) = \frac{\alpha - \gamma q_j}{2\beta}$$

La diferenciación aumenta el poder de mercado

Si $\gamma \uparrow$ (los productos se hacen más similares) $\Rightarrow \downarrow \pi \downarrow p \downarrow q_i \downarrow q$

CPO gráfico

Índice

Modelo sencillo

Cournot

Bertrand

Complementos y sustitutos estratégicos

Competencia monopolística

Localización

Intensidad competitiva

Diferenciación vertical

Publicidad y marcas

Comportamiento del consumidor y estrategias de las empresas

◆□ト ◆圖ト ◆選ト ◆選ト

CPO

$$\pi_i(p_1, p_2) = (a - bp_i + cp_j)p_i \quad i, j = 1, 2; i \neq j$$

$$R_i(p_j) = \frac{a + cp_j}{2b}$$

$$p^b = \frac{a}{2b-c} = \frac{\alpha(\beta-\gamma)}{2\beta-\gamma}; \quad q^b_i = \frac{ab}{2b-c} = \frac{\alpha\beta}{(\beta+\gamma)(2\beta-\gamma)}$$

$$\pi^b_i = \frac{a^2b}{(2b-c)^2} = \frac{\alpha^2\beta(\beta-\gamma)}{(\beta+\gamma)(2\beta-\gamma)^2}; \quad i = 1, 2$$

CPO

- $\pi_i(p_1, p_2) = (a bp_i + cp_j)p_i \quad i, j = 1, 2; i \neq j$

$$R_i(p_j) = \frac{a + cp_j}{2b}$$

$$p^b = \frac{a}{2b-c} = \frac{\alpha(\beta-\gamma)}{2\beta-\gamma}; \quad q^b_i = \frac{ab}{2b-c} = \frac{\alpha\beta}{(\beta+\gamma)(2\beta-\gamma)}$$

$$\pi^b_i = \frac{a^2b}{(2b-c)^2} = \frac{\alpha^2\beta(\beta-\gamma)}{(\beta+\gamma)(2\beta-\gamma)^2}; \quad i = 1, 2$$

La diferenciación aumenta el poder de mercado

Si $\gamma \uparrow$ (los productos se hacen más similares) $\Rightarrow \downarrow \pi \downarrow p$

CPO gráfico

Índice

Modelo sencillo

Cournot

Bertrand

Complementos y sustitutos estratégicos

Competencia monopolística

Localización

Intensidad competitiva

Diferenciación vertical

Publicidad y marcas

Comportamiento del consumidor y estrategias de las empresas

Estrategia

- ▶ Juego simultáneo donde las empresas i = 1, 2 eligen sus acciones a_i
- $\pi_i(a_i, a_j)$ la función de beneficios de la empresa i, continua y dos veces diferenciable en a_i y a_j , con $\frac{\partial^2 \pi_i(a_i, a_j)}{(\partial a_i)^2} < 0$ (la función de beneficios es cóncava)
- Función de reacción de la empresa i es $R_i(a_j)$ y se cumple que $\frac{\partial \pi_i(R_i(a_j),a_j)}{\partial a_i}=0$
- La derivada parcial indica el efecto directo de una acción
- ► La derivada total muestra el efecto total: efecto directo + efecto **estratégico**

Desarrollo

$$\begin{array}{l} \blacktriangleright \ \, \text{Diferenciado:} \ \, d\left(\frac{\partial \pi_i(R_i(a_j),a_j)}{\partial a_i}\right) = \\ \frac{\partial \left(\frac{\partial \pi_i(R_i(a_j),a_j)}{\partial a_i}\right)}{\partial R_i} dR_i + \frac{\partial \left(\frac{\partial \pi_i(R_i(a_j),a_j)}{\partial a_i}\right)}{\partial a_j} da_j = 0 \end{array}$$

▶ como $a_i = R_i(a_j) \Rightarrow \frac{\partial^2 \pi_i}{\partial a^2} \frac{\partial R_i}{\partial a_i} + \frac{\partial^2 \pi_i}{\partial a_i \partial a_i} = 0$ donde $\frac{\partial R_i}{\partial a_i} \equiv R_i'$ es la pendiente de la curva de reacción de la empresa $i. \Rightarrow$

$$R_i' = -\frac{\frac{\partial^2 \pi_i(R_i(a_j), a_j)}{\partial a_i \partial a_j}}{\frac{\partial^2 \pi_i(R_i(a_j), a_j)}{\partial a_i^2}}$$

▶ El signo de $R_i^{'}$ depende de $\frac{\partial^2 \pi_i}{\partial a_i \partial a_i}$, dado que $\frac{\partial^2 \pi_i}{\partial a_i^2} < 0$

Definiciones

- Las acciones son **sustitutos estratégicos** si: $\frac{\partial^2 \pi_i}{\partial a_i \partial a_j} < 0$ Toda decisión agresiva llevada a cabo por una empresa conlleva una reacción menos agresiva (en dirección contraria) del rival.
- Las acciones son **complementos estratégicos** si: $\frac{\partial^2 \pi_i}{\partial a_i \partial a_j} > 0$ Toda decisión agresiva llevada a cabo por una empresa lleva a una reacción más agresiva (en la misma dirección) del rival.

Índice

Modelo sencillo

Cournot

Bertrand

Complementos y sustitutos estratégicos

Competencia monopolística

Localización

Intensidad competitiva

Diferenciación vertical

Publicidad y marcas

Comportamiento del consumidor y estrategias de las empresas

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

Introducción

- Características:
 - consumidores homogéneos que prefieren consumir una variedad de marcas
 - existe un número ilimitado de potenciales marcas
 - libre entrada de productores al mercado
- Utilidad: explica mercados donde existe variedad de empresas cuyos productos son similares pero no idénticos entre sí: ejlibros, películas, música o los restaurantes
- Distintos autores o películas son en sí mismo un monopolio
- Sin embargo, existe multiplicidad de autores de novelas, o de música clásica o pintores

Consumidores

 Consumidores: función de utilidad con preferencia por la variedad

$$u(q) = \sum_{j=1}^{N} q_j^{1 - \frac{1}{\alpha}}; \ \alpha > 1$$

La utilidad marginal del consumo cuando éste cae a cero es:

$$\frac{\partial u(q)}{\partial q_j} = \frac{\left(1 - \frac{1}{\alpha}\right)}{q_j^{\frac{1}{\alpha}}} \Rightarrow \lim_{q_j \to 0} \frac{\partial u(q)}{\partial q_j} = +\infty$$

⇒ el consumidor siempre estará dispuesto a dejar de consumir una unidad de otro bien, para pasar a consumir el bien cuyo consumo era nulo hasta el momento

Empresas

► Tecnología con RCE

$$CT_{j}(q_{j}) = \begin{cases} F + cq_{j} & \text{si } q_{j} > 0\\ 0 & \text{en otro caso} \end{cases}$$

Marcas diferenciadas indexadas por j = 1, ..., N

Solución consumidor

Consumidor

$$\begin{cases} \max_{q_1, \dots, q_N} & u(q) \\ s.a & \sum_{j=1}^N p_j q_j \le w \end{cases} \Rightarrow \mathcal{L} = \sum_{j=1}^N q_j^{1 - \frac{1}{\alpha}} - \lambda \left(\sum_{j=1}^N p_j q_j - w \right)$$

Solución consumidor (cont.)

Sustituyendo en la restricción presupuestal:

$$\sum_{j=1}^{N} p_{j} q_{j} = w \Leftrightarrow \sum_{j=1}^{N} p_{j} \left[\lambda p_{j} \left(\frac{\alpha}{\alpha - 1} \right) \right]^{-\alpha} = w \Leftrightarrow$$

$$\lambda^{-\alpha} \left(\frac{\alpha}{\alpha - 1} \right)^{-\alpha} \sum_{j=1}^{N} p_{j}^{1 - \alpha} = w \Leftrightarrow \lambda^{-\alpha} = w \left[\left(\frac{\alpha}{\alpha - 1} \right)^{-\alpha} \sum_{j=1}^{N} p_{j}^{1 - \alpha} \right]^{-1}$$

• Sustituimos λ en la ecuación de q_j de las CPO y obtenemos:

$$q_{j} = w \left[\left(\frac{\alpha}{\alpha - 1} \right)^{-\alpha} \cdot \sum_{j=1}^{N} p_{j}^{1 - \alpha} \right]^{-1} p_{j}^{-\alpha} \left(\frac{\alpha}{\alpha - 1} \right)^{-\alpha} \Leftrightarrow q_{j} = \frac{w p_{j}^{-\alpha}}{\sum_{j=1}^{N} p_{j}^{1 - \alpha}};$$

y a $\frac{w}{\sum\limits_{i=1}^{N}p_{j}^{1-\alpha}}$ lo llamaremos k

Solución consumidor (cont.)

La demanda de cada bien es:

$$q_j = \frac{k}{p_j^{\alpha}}$$

La elasticidad precio de la demanda:

$$\varepsilon = -\frac{\partial q_j}{\partial p_j} \frac{p_j}{q_j} = -\frac{-\alpha k p_j^{\alpha - 1}}{p_j^{2\alpha}} \frac{p_j}{\frac{k}{p_j \alpha}} = \frac{\alpha k p_j^{\alpha} p_j^{\alpha}}{p_j^{2\alpha} k} = \alpha$$

Equilibrio de las empresas

$$\qquad \qquad \boldsymbol{\pi}_j = p_j q_j - F - c q_j = (p_j - c) \frac{k}{p_i^{\alpha}} - F$$

► CPO
$$\frac{\partial \pi_j}{\partial p_j} = 0 = \frac{k}{p_j^{\alpha}} - (p_j - c) \frac{\alpha p_j^{\alpha-1} k}{p_j^{2\alpha}} \Leftrightarrow 1 = (p_j - c) \alpha \frac{1}{p_j} \Leftrightarrow \frac{p_j - c}{p_j} = \frac{1}{\alpha}$$

Existe poder de mercado sobre la marca

Equilibrio de competencia monopolística

Definición

El equilibrio de competencia monopolística es un vector de precios $(p_1^{cm}, \ldots, p_N^{cm})$ y una asignación $(q_1^{cm}, \ldots, q_N^{cm})$ tal que:

- los consumidores maximizan su utilidad sujeto a su restricción presupuestal
- 2. las empresas actúan como un monopolio sobre su marca
- existe libre entrada de marcas, lo que implica que cada empresa hace beneficios iguales a cero:

$$\pi_j(q_j^{cm}) = 0; \forall j = 1, ..., N$$

Solución

▶ **Precio** de equilibrio $\frac{p_j-c}{p_j}=\frac{1}{\alpha} \Leftrightarrow p_j=c\left(\frac{\alpha}{\alpha-1}\right)$. Sea $\beta=1-\frac{1}{\alpha}\Longrightarrow p_j^{cm}=\frac{c}{\beta}; \forall j=1,\ldots,N$

- ▶ La cantidad de equilibrio: $q_j^{cm} = \frac{k}{p_j^{\alpha}} = k \left(\frac{\beta}{c}\right)^{\alpha}; \forall j = 1, ..., N$
- $\begin{array}{l} \blacktriangleright \ \, \text{EN sim\'etrico} \ \, k = \frac{w}{\sum\limits_{j=1}^{N} p_{j}^{1-\alpha}} = \frac{w}{N\left(\frac{c}{\beta}\right)^{1-\alpha}} = \frac{w}{N}\left(\frac{\beta}{c}\right)^{1-\alpha} \Rightarrow q_{j}^{cm} = \\ k\left(\frac{\beta}{c}\right)^{\alpha} = \frac{w}{N}\left(\frac{\beta}{c}\right)^{1-\alpha}\left(\frac{\beta}{c}\right)^{\alpha} \Longrightarrow \end{array}$

$$q_j^{cm} = \frac{w}{N} \left(\frac{\beta}{c} \right); \forall j = 1, \dots, N$$

Solución (cont.)

- ▶ **Número** de empresas: $\pi_j(q_j^{cm}) = (p_j^{cm} c)q_j^{cm} F = 0 \Leftrightarrow \left(\frac{c}{\beta} c\right)\frac{w}{N}\left(\frac{\beta}{c}\right) F = 0 \Leftrightarrow F = \frac{w}{N}\left(1 \beta\right)$
- ► Recordemos que $\beta = 1 \frac{1}{\alpha} \Rightarrow (1 \beta) = \frac{1}{\alpha} \Rightarrow F = \frac{w}{\alpha N} \Rightarrow$

$$N^{cm} = \left| \frac{w}{F\alpha} \right|$$

Resultados

- ► Sólo un número finito de empresas producen en el mercado
- Si el costo fijo es alto, la variedad de marcas es baja:

$$\frac{\partial N^{cm}}{\partial F} = \frac{-\alpha w}{[F\alpha]^2} < 0$$

- ▶ Aumento en la competencia (mayor α) , un menor número de marcas disponibles: $\frac{\partial N^{cm}}{\partial \alpha} = \frac{-Fw}{[F\alpha]^2} < 0$
- Los consumidores sustituyen altos niveles de consumo de cada marca por un bajo nivel de consumo de muchas marcas

Equilibrio

Concentración y poder de mercado

- ► En el modelo de Cournot si $\uparrow N \Longrightarrow \downarrow (p CMg)$
- Aquí pasa al revés: mas concentración implica menor poder de mercado!
- ▶ $L=rac{p-c}{p}=rac{1}{lpha}$ y que $N=rac{w}{Flpha}\Longrightarrow$ despejando "burdamente" $lpha=rac{z}{N}$, donde $z=rac{w}{F}$
- Sustituyendo en $L = \frac{1}{\alpha} = \frac{N}{z} \Longrightarrow \text{si} \uparrow N$ (menor concentración) $\uparrow L$ (mayor poder de mercado)
- Explicación: a medida que hay más empresas, la curva de demanda se corre hacia abajo y el CMe aumenta!
- ► Por tanto, el precio tiene que aumentar para que la empresa no quiebre

Índice

Modelo sencillo

Cournot

Bertrand

Complementos y sustitutos estratégicos

Competencia monopolística

Localización

Intensidad competitiva

Diferenciación vertical

Publicidad y marcas

Comportamiento del consumidor y estrategias de las empresas

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

Presentación

- ► En este modelo los consumidores son heterogéneos debido a diferencias en gustos o ubicación física: cada consumidor tiene una preferencia distinta sobre la marca vendida en el mercado
- Dos interpretaciones de la localización:
 - 1. física de un consumidor particular
 - 2. características de la marca

Consumidores

- lacksquare L consumidores distribuidos en forma uniforme en una calle de distancia L
- Precio de reserva del consumidor es \bar{u} , costo de transporte de t por unidad de distancia
- t puede ser:
 - desplazamiento físico
 - desutilidad
- Excepto por su ubicación, los consumidores son todos idénticos
- ▶ Consumidores indexados por $x \in [0, L]$, en donde x indica la posición en calle

Utilidad y empresas

- Dos tiendas A, B ubicadas en distintos puntos de la calle
- ► En este marco definimos la utilidad como

$$U_x = \begin{cases} \bar{u} - p_A - t \, |x-a| & \text{si compra en A} \\ \bar{u} - p_B - t \, |x - (L-b)| & \text{si compra en B} \\ 0 & \text{si no consume} \end{cases}$$

- Los costos de producción son cero y no hay costos de instalar las tiendas
- Modelo en dos etapas:
 - Etapa 1: empresas eligen ubicación
 - Etapa 2: eligen el precio

Figura

Demanda

- ► Si se identifica al indiferente ⇒ los que estén a la izquierda van a preferir comprar en la tienda A y los de la derecha en B
- \triangleright Si \hat{x} es indiferente

$$|\bar{u} - p_A - t| \hat{x} - a| = |\bar{u} - p_B - t| (L - b - \hat{x})|$$

Despejando $\hat{x} \Rightarrow$ demanda de la tienda A

$$\hat{x} = \frac{p_B - p_A}{2t} + \frac{L - b + a}{2}$$

Demanda de la tienda $B \Rightarrow L - \hat{x} = \frac{p_A - p_B}{2t} + \frac{L + b - a}{2}$

Reacción empresas

$$lacksquare$$
 Beneficios $A \Rightarrow \pi_A = \left(rac{p_B - p_A}{2t} + rac{L - b + a}{2}
ight) p_A$

$$\qquad \qquad \textbf{CPO: } \max_{p_A} \pi_A \Rightarrow \frac{\partial \pi_A}{\partial p_A} = 0 = \frac{p_B - p_A + t(L - b + a)}{2t} - \frac{p_A}{2t} \Longleftrightarrow$$

$$p_A = \frac{p_B + t(L - b + a)}{2}$$

▶ Beneficios
$$B$$
 ⇒ $\pi_B = \left(\frac{p_A - p_B}{2t} + \frac{L + b - a}{2}\right) p_B$

► CPO:
$$\max_{p_B} \pi_B \Rightarrow \frac{\partial \pi_B}{\partial p_B} = 0 = \frac{p_A - p_B + t(L + b - a)}{2t} - \frac{p_B}{2t} \iff$$

$$p_B = \frac{p_A + t(L+b-a)}{2}$$

Equilibrio

Los precios de equilibrio son:

$$p_A = \frac{t(3L-b+a)}{3} \quad p_B = \frac{t(3L+b-a)}{3}$$

- Los precios son crecientes en t: aumenta la diferenciación de productos
- Las cantidades son

$$\hat{x}^h = \frac{3L - b + a}{6}$$
 $L - \hat{x}^h = \frac{3L + b - a}{6}$

▶ Beneficios: $\pi_A^h = \frac{t(3L-b+a)^2}{18}$ y $\pi_B^h = \frac{t(3L+b-a)^2}{18}$

Resultados

Teorema

En el modelo de ciudad lineal:

- 1. si ambas empresas están ubicadas en el mismo punto (o sea los productos son homogéneos), el único equilibrio es $p_A = p_B = 0$.
- 2. Existe un único equilibrio $(p_A^h, p_B^h, q_A^h, q_B^h) \iff$ las empresas no están ubicadas muy cerca una de la otra.

Demostración.

- 1.- si los productos son homogéneos, entonces es válido el análisis de Bertrand del capítulo de Oligopolio con bienes homogéneos
- 2.- Para esta demostración, pueden consultar las páginas 163-64 de Shy (1996)

Competencia en variedad y precio

Teorema

En el modelo de Hotelling de ciudad lineal con costos de transporte lineales, no existe equilibrio cuando las empresas compiten tanto en precios como en ubicaciones como estrategias.

Demostración.

(informal). Dados los beneficios, se cumple $\frac{\partial \pi_A}{\partial a} = \frac{t(3L+(a-b))}{9} > 0$ y $\frac{\partial \pi_B}{\partial b} = \frac{t(3L+(b-a))}{9} > 0$ Estas derivadas parciales indican que las

empresas incrementan sus beneficios si se mueven hacia el centro del segmento, pero a medida que se acercan al centro, el equilibrio no existe por la Proposición anterior

Índice

Modelo sencillo

Cournot

Bertrand

Complementos y sustitutos estratégicos

Competencia monopolística

Localización

Intensidad competitiva

Diferenciación vertical

Publicidad y marcas

Comportamiento del consumidor y estrategias de las empresa

Costos de transporte cuadrático

La función de utilidad es ahora:

$$U_x = \begin{cases} \bar{u} - p_A - t(x-a)^2 & \text{si compra en A} \\ \bar{u} - p_B - t(x-L+b)^2 & \text{si compra en B} \\ 0 & \text{si no consume} \end{cases}$$

► Ahora las empresas se posicionarán en los extremos del segmento (buscan la máxima diferenciación)

Intensidad de la competencia

- ► Cuando la intensidad de la competencia es baja ⇒ las empresas se localizan más cerca.
- ► Cuando la intensidad de la competencia es alta ⇒ las empresas se localizan más lejos.

Índice

Diferenciación vertical

Características

- Ahora existe acuerdo entre los consumidores respecto a la calidad de los productos
- Juego en dos etapas:
 - Etapa 1: las empresas eligen la calidad
 - Etapa 2: las empresas eligen el precio

Consumidores

- ▶ Calidad es un número $s_i \in [\underline{s}, \overline{s}] \subset \Re_+$
- Los consumidores acuerdan que es mejor una calidad mejor a una menor calidad
- Son heterogéneos en su evaluación de la calidad: la preferencia por la calidad es $\theta \in \left[\underline{\theta}, \overline{\theta}\right] \subset \Re_+$
- ightharpoonup Mayores θ indican mayor valoración de la calidad
- \blacktriangleright Cada consumidor demanda una unidad del producto, hay una masa $M=\overline{\theta}-\underline{\theta}$ de consumidores

Utilidad / Empresas

Utilidad indirecta del agente:

$$u_i = \begin{cases} r + \theta_i s_k - p_k & \text{ si compra el producto de calidad } k \\ 0 & \text{ en otro caso} \end{cases}$$

- ► El consumidor compra una única unidad del bien
- lacktriangle Dos empresas que producen las calidades s_1 y s_2 con $s_1 < s_2$
- Los precios en equilibrio de las empresas cumplen que $p_1, p_2 < r$ (todos los consumidores compran los bienes)
- ► El costo del producto es cero

Equilibrio de precio

- ▶ Dada la calidad de los productos s_1 y s_2 , con $s_1 < s_2$ existe un consumidor indiferente entre las calidades de los bienes $\hat{\theta}$
- \blacktriangleright Para este consumidor se cumple: $r-p_1+\widehat{\theta s}_1=r-p_2+\widehat{\theta s}_2$
- ▶ Despejando se obtiene $\widehat{\theta} = \frac{p_2 p_1}{s_2 s_1}$ para $\widehat{\theta} \in \left[\underline{\theta}, \overline{\theta}\right]$
- ▶ Los consumidores $\theta > \widehat{\theta}$ compran todos el producto de mayor calidad s_2 y a la inversa los $\theta < \widehat{\theta}$

Equilibrio de precio (cont.)

Las funciones de beneficio son $\pi_i = p_i q_i$ $\Longrightarrow \pi_1 = p_1 \left(\frac{p_2 - p_1}{s_2 - s_1} - \underline{\theta} \right) \text{ y } \pi_2 = p_2 \left(\overline{\theta} - \frac{p_2 - p_1}{s_2 - s_1} \right)$

▶ CPO (suponiendo una solución interior $\left(\overline{\theta}>2\underline{\theta}\right)$ se obtienen los precios de equilibrio:

$$p_1^* = \frac{1}{3} \left(\overline{\theta} - 2\underline{\theta} \right) (s_2 - s_1) \quad p_2^* = \frac{1}{3} \left(2\overline{\theta} - \underline{\theta} \right) (s_2 - s_1)$$

Resultado

- Los precios de ambas empresas son crecientes con la diferenciación $(s_2 s_1)$
 - 1. el precio de ambas empresas es creciente con la calidad de la empresa 2, y decrecientes con la de la 1
 - La existencia de una calidad menor impone una presión competitiva a la empresa de mayor calidad, en relación a si no estuviera

Posicionamiento de la calidad

- Funciones reducidas de beneficio $\pi_1 = p_1 \left(\frac{p_2 p_1}{s_2 s_1} \underline{\theta} \right)$ $= \frac{1}{3} \left(\overline{\theta} 2\underline{\theta} \right) (s_2 s_1) \left[\frac{\frac{1}{3} \left(2\overline{\theta} \underline{\theta} \right) (s_2 s_1) \frac{1}{3} \left(\overline{\theta} 2\underline{\theta} \right) (s_2 s_1)}{s_2 s_1} \underline{\theta} \right]$ $= \frac{1}{3} \left(\overline{\theta} 2\underline{\theta} \right) (s_2 s_1) \left[\frac{1}{3} \left(\overline{\theta} 2\underline{\theta} \right) \right] \Rightarrow$ $\pi_1 = \frac{1}{9} \left(\overline{\theta} 2\underline{\theta} \right)^2 (s_2 s_1)$
- ▶ Para la empresa 2, $\pi_2 = p_2 \left(\overline{\theta} \frac{p_2 p_1}{s_2 s_1}\right) = \frac{1}{9} \left(2\overline{\theta} \underline{\theta}\right)^2 (s_2 s_1)$
- ▶ A la empresa 1 para cualquier s_2 de la empresa 2, le conviene elegir $s_1 = \underline{\theta}$; a la inversa para al empresa 2 $s_2 = \overline{\theta}$

Modelo de diferenciación vertical

Las empresas relajan la competencia aumentando la diferenciación.

Posicionamiento de la calidad

- Funciones reducidas de beneficio $\pi_1 = p_1 \left(\frac{p_2 p_1}{s_2 s_1} \underline{\theta} \right)$ $= \frac{1}{3} \left(\overline{\theta} 2\underline{\theta} \right) (s_2 s_1) \left[\frac{\frac{1}{3} \left(2\overline{\theta} \underline{\theta} \right) (s_2 s_1) \frac{1}{3} \left(\overline{\theta} 2\underline{\theta} \right) (s_2 s_1)}{s_2 s_1} \underline{\theta} \right]$ $= \frac{1}{3} \left(\overline{\theta} 2\underline{\theta} \right) (s_2 s_1) \left[\frac{1}{3} \left(\overline{\theta} 2\underline{\theta} \right) \right] \Rightarrow$ $\pi_1 = \frac{1}{9} \left(\overline{\theta} 2\underline{\theta} \right)^2 (s_2 s_1)$
- ▶ Para la empresa 2, $\pi_2 = p_2 \left(\overline{\theta} \frac{p_2 p_1}{s_2 s_1}\right) = \frac{1}{9} \left(2\overline{\theta} \underline{\theta}\right)^2 (s_2 s_1)$
- ▶ A la empresa 1 para cualquier s_2 de la empresa 2, le conviene elegir $s_1 = \underline{\theta}$; a la inversa para al empresa 2 $s_2 = \overline{\theta}$

Modelo de diferenciación vertical

Las empresas relajan la competencia aumentando la diferenciación.

Índice

Modelo sencillo

Cournot

Bertrand

Complementos y sustitutos estratégicos

Competencia monopolística

Localización

Intensidad competitiva

Diferenciación vertical

Publicidad y marcas

Comportamiento del consumidor y estrategias de las empresas

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

La subjetividad de las diferencias

- Las características de algunos bienes no son objetivas para el consumidor
- Bienes de búsqueda (search goods): las características de pueden descubrir antes de la compra (ej. autos, computadoras)
- ▶ Bienes de **experiencia** (*experience goods*): las características sólo se descubren luego de consumir (ej. bebidas alcohólicas)
- Bienes de creencia (credence goods): son aquellos cuya calidad no puede determinarse aún después de consumir (ej. servicios legales o médicos)

Rol de la publicidad

- La publicidad puede ser:
- 1. Informativa: cuando establece la existencia del producto, sus características o los términos de venta
- 2. Persuasiva: cuando busca cambiar la percepción del consumidor sobre el producto
- La diferencia entre una y otra es tenue
- ➤ A veces se utiliza para dar una señal de la calidad del producto

Marca

- La marca está asociada a elementos sociales y sicológicos
- Los consumidores obtienen utilidad de: las características del producto + la imagen de marca
- Productos donde la marca es relevante: fragancias finas, algunos autos, refrescos
- La publicidad sirve para crear una imagen de marca
- ▶ Bronnenberg, Dube y Gentzkow (2012) muestran que el efecto marca es importante

Nivel de publicidad óptimo

- Supongamos empresas que compiten en cantidad y pueden realizar publicidad
- La publicidad aumenta la cantidad vendida, pero es costosa
- ightharpoonup Sea $\pi = (p-c) \times q(p,a) a$
- ► CPOp: $\frac{\partial \pi}{\partial p} = q(p,a) + (p-c)\frac{\partial q}{\partial p} = 0 \Longrightarrow \frac{(p-c)}{p} = \frac{1}{\epsilon}$
- ► CPOa: $\frac{\partial \pi}{\partial a} = (p-c)\frac{\partial q}{\partial a} = 1$ \Longrightarrow multiplicando ambos lados por $\frac{a}{na} \Longrightarrow \frac{(p-c)}{n} \frac{\partial q}{\partial a} \frac{a}{a} = \frac{a}{na}$
- lacksquare Sea $rac{\partial q}{\partial a}rac{a}{a}=\eta$, elasticidad de la demanda a la publicidad \Longrightarrow

$$\frac{\eta}{\varepsilon} = \frac{a}{pq}$$

Nivel de publicidad óptimo: interpretación

- \blacktriangleright El ratio publicidad / ingresos depende del efecto de la publicidad en la demanda $\eta,$ y de la elasticidad de la demanda al precio ε
- **E**n competencia perfecta $(\varepsilon \to \infty)$ el gasto en publicidad es 0
- ► En monopolio, si la publicidad sirve para "robar" ventas \Rightarrow $\eta=0$
- \Rightarrow la intensidad de la publicidad tiene una forma de U invertida respecto a la estructura de mercado

Competencia en precio y publicidad

- ► En general, la publicidad informativa tiende a disminuir la competencia en precio
 - ► Ej.: modelo de ciudad lineal si no se conocen las características del producto ⇒ es como si estuvieran en el mismo punto
- ► En general, la publicidad de precios intensifica la competencia en precio
 - ► Ej.: cuantos más precios conozca del producto, menor será el poder de mercado

Índice

Modelo sencillo

Cournot

Bertrand

Complementos y sustitutos estratégicos

Competencia monopolística

Localización

Intensidad competitiva

Diferenciación vertical

Publicidad v marcas

Comportamiento del consumidor y estrategias de las empresas

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

Costos de búsqueda

- ► Informarse sobre atributos de los productos, precio, o lugar de venta tiene costos
- Los costos de búsqueda permiten cobrar precios superiores al costo

Ofuscamiento y atributos envueltos

- Ofuscamiento: las empresas buscan oscurecer los términos de la venta
- ► Ej. buscan precio de pasaje en distintas compañías, pero luego les cobran por reservar asiento, subir maleta, etc.
- Cuando arrancas el precio puede ser más barato, al final de la búsqueda el más caro
- ► Atributos envueltos: las empresas ocultan los términos del contrato hasta que la compra se concreta
- ► Ej.: compras una habitación de hotel, pero el wifi se paga aparte

Costos de cambio

- Cambiar de producto a veces es costoso para el consumidor
- Ej.: pasar de Windows a Linux, de Word a Latex, de STATA a R, entre operadores de telefonía (cambiar número), cancelar el contrato en determinada fecha...
- Costos de cambio: es la combinación de barreras objetivas o subjetivas, monetarias o no monetarias al cambio entre marcas

Resumen

Por tanto

Si los consumidores no están perfectamente informados o no son completamente racionales, las empresas pueden ejercer poder de mercado