SIGNALS AND SYSTEMS USING MATLAB Chapter 4 — Frequency Analysis: The Fourier Series

L. F. Chaparro and A. Akan

Eigenfunctions

$$x(t)=e^{j\Omega_0t}, \quad -\infty < t < \infty, ext{ input to a causal and stable LTI system}$$
 steady state output $y(t)=e^{j\Omega_0t}H(j\Omega_0)$ $H(j\Omega_0)=\int_0^\infty h(\tau)e^{-j\Omega_0\tau}d\tau=H(s)|_{s=j\Omega_0}$ frequency response at Ω_0

$$x(t) = e^{j\Omega_0 t}$$
 is eigenfunction of LTI system

Example: RC circuit, voltage source be
$$v_s(t) = 4\cos(t + \pi/4)$$
, $R = 1 \Omega$, $C = 1$ F

transfer function
$$H(s) = \frac{V_c(s)}{V_s(s)} = \frac{1}{s+1}$$

$$H(j1)=rac{\sqrt{2}}{2} \angle -\pi/4$$
 frequency response at $\Omega_0=1$ steady-state $v_c(t)=4|H(j1)|\cos(t+\pi/4+\angle H(j1))=2\sqrt{2}\cos(t)$

Example: Low-pass filter using RC circuit Input $v_s(t) = 1 + \cos(10,000t)$ to series RC circuit (R = C = 1)

$$v_s(t)=v_c(t)+rac{dv_c(t)}{dt}$$
 if input $v_s(t)=e^{j\Omega t}$ output $v_c(t)=e^{j\Omega t}H(j\Omega)$, then in o.d.e.

$$e^{j\Omega t} = e^{j\Omega t} H(j\Omega)(1+j\Omega) \ \Rightarrow \ H(j\Omega) = rac{1}{1+j\Omega} = rac{1}{\sqrt{1+\Omega^2}} \ v_s(t) = \cos(0t) + \cos(10,000t) \ v_c(t) pprox 1 + rac{1}{10.000} \cos(10,000t - \pi/2) pprox 1$$

attenuates higher frequency component (i.e., low-pass filter)

Complex exponential Fourier series

Fourier Series of periodic signal x(t), of fundamental period T_0 , is infinite sum of ortho-normal complex exponentials of frequencies multiples of fundamental frequency $\Omega_0 = 2\pi/T_0$ (rad/sec) of x(t):

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{jk\Omega_0 t}$$
FS coefficients $X_k = \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} x(t) e^{-jk\Omega_0 t} dt$

 $\{e^{jk\Omega_0t}\}$ are ortho-normalFourier basis

$$egin{aligned} rac{1}{T_0} \int_{t_0}^{t_0+T_0} e^{jk\Omega_0 t} [e^{j\ell\Omega_0 t}]^* dt &= rac{1}{T_0} \int_{t_0}^{t_0+T_0} e^{j(k-\ell)\Omega_0 t} dt \ &= \left\{ egin{aligned} 0 & k
eq \ell & ext{orthogonal} \ 1 & k = \ell & ext{normal} \end{aligned}
ight.$$

Line spectrum

Parseval's power relation

$$P_x$$
: power of periodic signal $x(t)$ of fundamental period T_0 $P_x = rac{1}{T_0} \int_{t_0}^{t_0+T_0} |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |X_k|^2,$ for any t_0

- Periodic x(t) is represented in frequency by
 - Magnitude line spectrum $|X_k|$ vs $k\Omega_0$
 - Phase line spectrum $\angle X_k$ vs $k\Omega_0$
 - Power line spectrum $|X_k|^2$ vs $k\Omega_0$
- Real-valued periodic signal x(t), of fundamental period T_0 ,

$$X_k = X_{-k}^*$$
 or equivalently

(i)
$$|X_k| = |X_{-k}|$$
, i.e., magnitude $|X_k|$ is even function of $k\Omega_0$.

(ii)
$$\angle X_k = -\angle X_{-k}$$
, i.e., phase $\angle X_k$ is odd function of $k\Omega_0$

Trigonometric Fourier series

Real-valued, periodic signal x(t), of fundamental period T_0 ,

$$x(t) = \underbrace{X_0}_{dc-component} + 2 \sum_{k=1}^{\infty} \underbrace{|X_k| \cos(k\Omega_0 t + \theta_k)}_{k^{th} harmonic}$$
 $= c_0 + 2 \sum_{k=1}^{\infty} [c_k \cos(k\Omega_0 t) + d_k \sin(k\Omega_0 t)] \qquad \Omega_0 = \frac{2\pi}{T_0}$

Fourier coefficients $\{c_k, d_k\}$

$$c_k = rac{1}{T_0} \int_{t_0}^{t_0 + T_0} x(t) \cos(k\Omega_0 t) dt \qquad k = 0, 1, \cdots \ d_k = rac{1}{T_0} \int_{t_0}^{t_0 + T_0} x(t) \sin(k\Omega_0 t) dt \qquad k = 1, 2, \cdots$$

Sinusoidal basis functions $\{\sqrt{2}\cos(k\Omega_0t), \sqrt{2}\sin(k\Omega_0t)\},\ k=0,\pm 1,\cdots$, are orthonormal in $[0,\ T_0]$

Example: $x(t) = B + A\cos(\Omega_0 t + \theta)$ periodic of fundamental period T_0 trigonometric Fourier series: $X_0 = B$; $|X_1| = A/2$, $\angle X_1 = \theta$ exponential Fourier series:

$$egin{align} x(t) &= B + rac{A}{2} \left[e^{j(\Omega_0 t + heta)} + e^{-j(\Omega_0 t + heta)}
ight] \ X_0 &= B, \quad X_1 = rac{A e^{j heta}}{2}, \quad X_{-1} = X_1^* = rac{A e^{-j heta}}{2} \end{aligned}$$

Line spectrum of $x(t) = B + A\cos(\Omega_0 t)$ and of $y(t) = B + A\sin(\Omega_0 t)$ (right).

Fourier coefficients from Laplace

x(t), periodic of fundamental period T_0

period:
$$x_1(t) = x(t)[u(t - t_0) - u(t - t_0 - T_0)]$$
, any t_0

$$X_k = \frac{1}{T_0} \mathcal{L}[x_1(t)]_{s=jk\Omega_0} \quad \Omega_0 = \frac{2\pi}{T_0} \text{ (fundamental frequency)}, \quad k = 0, \pm 1, \cdots$$

Example:
$$x(t)$$
 periodic, $T_0 = 2$, $x_1(t) = u(t) - u(t-1)$
$$x(t) = \sum_{m=-\infty}^{\infty} x_1(t-2m) = \sum_{k=-\infty}^{\infty} X_k e^{jk\pi t}$$

$$X_k = \frac{1}{2} \mathcal{L} [x_1(t)]_{s=jk\pi} = \frac{1-e^{-jk\pi}}{jk\pi} = e^{-jk\pi/2} \frac{\sin(k\pi/2)}{k\pi/2}$$

Reflection and even and odd periodic signals

x(t) periodic of fundamental period T_0 , Fourier coefficients $\{X_k\}$

- Reflection: Fourier coefficients of x(-t) are $\{X_{-k}\}$
- Even x(t): $\{X_k\}$ are real

$$x(t) = X_0 + 2\sum_{k=1}^{\infty} X_k \cos(k\Omega_0 t)$$

Odd x(t): $\{X_k\}$ are imaginary

$$x(t) = 2\sum_{k=1}^{\infty} jX_k \sin(k\Omega_0 t)$$

• Any periodic signal x(t) then $x(t) = x_e(t) + x_o(t)$, $x_e(t)$ and $x_o(t)$ even and odd components

$$X_k = X_{ek} + X_{ok}$$
 $X_{ek} = 0.5[X_k + X_{-k}]$
 $X_{ok} = 0.5[X_k - X_{-k}]$

Example: periodic pulse train x(t), of fundamental period $T_0 = 1$

Integral formula:
$$X_k = \frac{1}{T_0} \int_{-T_0/4}^{3T_0/4} x(t) e^{-j\Omega_0 kt} dt = \frac{\sin(\pi k/2)}{(\pi k/2)}, \quad k \neq 0$$

$$X_0 = \frac{1}{T_0} \int_{-T_0/4}^{3T_0/4} x(t) dt = \int_{-1/4}^{1/4} 2dt = 1$$

blace transform:
$$x_1(t-0.25)=2[u(t)-u(t-0.5)], \;\; X_1(s)=2(e^{0.25s}-e^{-0.25s})$$
 $X_k=rac{1}{T_0}\mathcal{L}\left[x_1(t)
ight]|_{s=jk\Omega_0}=rac{\sin(\pi k/2)}{\pi k/2} \qquad k
eq 0$

 $x(t) = \sum_{k=-\infty}^{\infty} \frac{\sin(\pi k/2)}{(\pi k/2)} e^{jk2\pi t}$ Fourier series:

Top: period of x(t) and real X_k vs $k\Omega_0$; bottom magnitude and phase line spectra

Example: Non-symmetric periodic signals

$$z(t) = x(t+0.5)$$
, even, period: $z_1(t) = 2[u(t+0.5) - u(t-0.5)]$
 $Z_1(s) = \frac{2}{s}[e^{0.5s} - e^{-0.5s}]$
 $Z_k = \frac{1}{2} \frac{2}{jk\pi}[e^{jk\pi/2} - e^{-jk\pi/2}] = \frac{\sin(0.5\pi k)}{0.5\pi k}$ real-valued
 $z(t) = z(t-0.5) = \sum_k Z_k e^{jk\Omega_0(t-0.5)} = \sum_k \left[Z_k e^{-jk\pi/2} \right] e^{jk\pi t}$

 X_k complex since x(t) neither even nor odd

Even and odd components of the period of y(t), $-1 \le t \le 1$

$$y_{1e}(t) = \underbrace{\left[u(t+1) - u(t-1)\right]}_{\text{rectangular pulse}} + \underbrace{\left[r(t+1) - 2r(t) + r(t-1)\right]}_{\text{triangular pulse}}$$

$$y_{1o}(t) = \underbrace{\left[r(t+1) - r(t-1) - 2u(t-1)\right]}_{\text{triangular pulse}} - \underbrace{\left[u(t+1) - u(t-1)\right]}_{\text{rectangular pulse}}$$

$$Y_{ek} = \frac{1}{T_0} Y_{1e}(s) \big|_{s=jk\Omega_0} = \frac{1 - (-1)^k}{(k\pi)^2} \qquad k \neq 0, \quad Y_{e0} = 1.5$$

$$Y_{ok} = \frac{1}{T_0} Y_{1o}(s) \big|_{s=jk\Omega_0} = j\frac{(-1)^k}{k\pi} \qquad k \neq 0, \quad Y_{o0} = 0$$

$$Y_k = \begin{cases} Y_{e0} + Y_{o0} = 1.5 + 0 = 1.5 \\ Y_{ek} + Y_{ok} = (1 - (-1)^k)/(k\pi)^2 + j(-1)^k/(k\pi) & k \neq 0 \end{cases}$$

Example: Integration

$$y(t) = \int_{-\infty}^{t} x(t)dt$$

Integral does not exist if the dc is not zero

Convergence of Fourier series

For Fourier series of x(t) to converge, it should:

- be absolutely integrable,
- have a finite number of maxima, minima and discontinuities.

FS equals x(t) at every continuity point and $0.5[x(t+0_+)+x(t+0_-)]$ at every discontinuity point

Example: Approximate train of pulses with $x_2(t) = \alpha + \beta \cos(\Omega_0 t)$ by

$$\begin{aligned} & \text{Minimize} & \quad E_2 = \frac{1}{T_0} \int_{T_0} |x(t) - x_2(t)|^2 dt, \text{ w.r.t. } \alpha, \ \beta \\ & \quad \frac{dE_2}{d\alpha} = -\frac{1}{T_0} \int_{T_0} 2[x(t) - \alpha] dt = 0 \\ & \quad \frac{dE_2}{d\beta} = -\frac{1}{T_0} \int_{T_0} 2[x(t) \cos(\Omega_0 t) - \beta \cos^2(\Omega_0 t)] dt = 0 \\ & \quad \alpha = \frac{1}{T_0} \int_{T_0} x(t) dt, \\ & \quad \beta = \frac{2}{T_0} \int_{T_0} x(t) \cos(\Omega_0 t) dt \end{aligned}$$

Time and frequency shifting

Periodic signal x(t)

• Time-shifting: $x(\pm t_0)$ remains periodic of the same fundamental period

$$x(t) \leftrightarrow \{X_k\} \Rightarrow x(t \mp t_0) \leftrightarrow X_k e^{\mp jk\Omega_0 t_0} = |X_k| e^{j(\angle X_k \mp k\Omega_0 t_0)}$$
 only change in phase

- Frequency-shifting:
 - $x(t)e^{j\Omega_1t}$ is periodic of fundamental period T_0 if $\Omega_1=M\Omega_0$, for an integer $M\geq 1$,
 - for $\Omega_1 = M\Omega_0$, $M \ge 1$, the Fourier coefficients X_k are shifted to frequencies $k\Omega_0 + \Omega_1 = (k+M)\Omega_0$
 - the modulated signal is real-valued by multiplying x(t) by $\cos(\Omega_1 t)$.

Example: Modulating $cos(20\pi t)$ with

a periodic train of square pulses

$$x_1(t) = 0.5[1 + \operatorname{sign}(\sin(\pi t))] = \begin{cases} 1 \sin(\pi t) \ge 0 \\ 0 \sin(\pi t) < 0 \end{cases}$$

with a sinusoid

$$x_2(t)=\sin(\pi t).$$

Modulated square-wave $x_1(t)\cos(20\pi t)$ (left) and modulated cosine $x_2(t)\cos(20\pi t)$

Response of LTI systems to periodic signals

Periodic input x(t) of causal and stable LTI system, with impulse response h(t), by eigenfunction property of LTI systems

Fourier series
$$x(t) = X_0 + 2\sum_{k=1}^{\infty} |X_k| \cos(k\Omega_0 t + \angle X_k)$$
 $\Omega_0 = \frac{2\pi}{T_0}$ $y_{ss}(t) = X_0 |H(j0)| + 2\sum_{k=1}^{\infty} |X_k| |H(jk\Omega_0)| \cos(k\Omega_0 t + \angle X_k + \angle H(jk\Omega_0))$ where $H(jk\Omega_0) = |H(jk\Omega_0)| e^{j\angle H(jk\Omega_0)} H(s)|_{s=jk\Omega_0}$ frequency response of the system at $k\Omega_0$

Example: Low-pass filtering using RC circuit with

transfer function
$$H(s)=rac{1}{1+s/100}$$
 input $x(t)=\sum_{k=-\infty, \neq 0}^{\infty}rac{\sin(k\pi/2)}{k\pi/2}e^{j2k\pi t}$

Left: magnitude and phase response of the low-pass RC filter at harmonic frequencies. Right: response due to the train of pulses x(t). Actual signal values are given by the dashed line, and the filtered signal is indicated by the continuous line

Derivatives and integrals of Periodic Signals

• <u>Derivative</u>: Derivative dx(t)/dt of periodic signal x(t) is periodic of the same fundamental period. If $\{X_k\}$ are the coefficients of the Fourier series of x(t), the Fourier coefficients of dx(t)/dt are

$$jk\Omega_0X_k$$
, Ω_0 fundamental frequency of $x(t)$

• Integral: Zero-mean, periodic signal y(t) with Fourier coefficients $\{Y_k\}$,

integral
$$z(t) = \int_{-\infty}^{t} y(\tau) d\tau$$

$$Z_k = \frac{Y_k}{jk\Omega_0} \qquad k \text{ integer } \neq 0$$

$$Z_0 = -\sum_{m \neq 0} Y_m \frac{1}{jm\Omega_0} \qquad \Omega_0 = \frac{2\pi}{T_0}.$$

Example: Derivative

period of
$$x(t)$$
: $x_1(t) = 2r(t) - 4r(t - 0.5) + 2r(t - 1)$, $0 \le t \le 1$, $T_0 = 1$

$$g(t) = \frac{dx(t)}{dt} \implies X_k = \frac{G_k}{jk\Omega_0} \quad k \ne 0$$
period of $g(t)$: $g_1(t) = dx_1(t)/dt = 2u(t) - 4u(t - 0.5) + 2u(t - 1)$

$$X_k = \frac{G_k}{jk\Omega_0} = \frac{(-1)^{(k+1)} (\cos(\pi k) - 1)}{\pi^2 k^2}$$
 $k \neq 0$
 $X_0 = 0.5$ from plot of $x(t)$

Integral

$$x(t) = \int_{-\infty}^{t} g(\tau)d\tau, \quad (G_0 = 0)$$

$$X_k = \frac{G_k}{j\Omega_0 k} = \frac{(-1)^{(k+1)}(\cos(\pi k) - 1)}{\pi^2 k^2} \qquad k \neq 0$$

$$X_0 = -\sum_{m = -\infty, m \neq 0}^{\infty} \frac{G_m}{j2m\pi} = 0.5 \sum_{m = -\infty, m \neq 0}^{\infty} (-1)^{m+1} \left[\frac{\sin(\pi m/2)}{(\pi m/2)} \right]^2$$

Table 4.1 Basic Properties of Fourier Series

Signals and constants
$$x(t), y(t)$$
 periodic X_k, Y_k with period T_0, α, β
Linearity $\alpha x(t) + \beta y(t)$ $\alpha X_k + \beta Y_k$

Parseval's power relation

Differentiation

Integration

Time shifting

Symmetry

Multiplication

Frequency shifting

with period
$$\mathcal{T}_0, lpha, eta$$
 earity $lpha x(t) + eta y(t)$

 $\frac{dx(t)}{dt}$

 $x(t-\alpha)$

 $e^{jM\Omega_0t}x(t)$

z(t) = x(t)y(t)

x(t) real

with period
$$T_0, \alpha, \beta$$

$$\alpha x(t) + \beta y(t)$$

$$\alpha x(t) + \beta y(t)$$

$$P_{x} = \frac{1}{T_{0}} \int_{T_{0}} |x(t)|^{2} dt$$

with period
$$T_0, \alpha, \beta$$

$$\alpha x(t) + \beta y(t)$$

$$\alpha x(t) + \beta y(t)$$

 $\int_{-\infty}^t x(t')dt' \text{ only if } X_0 = 0$

 $P_{x} = \sum |X_{k}|^{2}$

 $ik\Omega_0X_k$

 $\frac{X_k}{jk\Omega_0}k\neq 0$

 $e^{-j\alpha\Omega_0}X_{k}$

 $|X_k| = |X_{-k}|$ even

 $\angle X_k = -\angle X_{-k}$ odd

 $Z_k = \sum_{m} X_m Y_{k-m}$

function of k

function of k

 X_{k-M}