School of Computing and Information Systems The University of Melbourne COMP90049 Introduction to Machine Learning (Semester 1, 2021) Week 4

- 1. What is optimization? What is a "loss function"?
- 2. Given the following dataset, build a Naïve Bayes model for the given training instances.

ID	Outl	Temp	Humi	Wind	PLAY
A	s	h	n	F	N
В	s	h	h	T	N
C	O	h	h	F	Y
D	\mathbf{r}	m	h	F	Y
E	\mathbf{r}	c	\mathbf{n}	F	Y
F	r	С	n	T	N
G	0	m	n	T	?
Η	?	h	?	F	?

- 3. Using the Naïve Bayes model that you developed in question 2, classify the given test instances.
 - (i). No smoothing.
 - (ii). Using the "epsilon" smoothing method.
 - (iii). Using "Laplace" smoothing ($\alpha = 1$)
- 4. For the following set of classification problems, we want to design a Naive Bayes classification model.
 - (iv). You want to classify a set of images of animals in to 'cats', 'dogs', and 'others'.
 - (v). You want to classify whether each customer will purchase a product, given all the products (s)he has bought previously.

Answer the following questions for each problem:

- (1) what are the instances, what are the features (and values)?
- (2) explain which distributions you would choose to model the observations, and
- (3) explain the significance of the Naive Bayes assumption.