Simulating Learning in Generated Environments

•••

Austin Barner, Vihan Garg, Zakk Loveall

Background

- Wanted to simulate creatures in environments
 - Similar to Conway's Game of Life
- Needed to break our problem into pieces
- Realized one goal was creature behavior
 - Movement algorithms
- Another goal was world generation
 - Creatures need environments to traverse
 - Learning to traverse unique environments

Implementation

- Decided on Unity to do our project
 - Provides UI
 - A lot of resources
- Split our project into two parts
 - World generation
 - Mimic an actual environment
 - Meaningful movement behavior
 - Mimic creature learning

World Generation

- Utilize Open Simplex Noise
 - Derived from Perlin Noise
- These algorithms allow for 'natural' looking terrain generation
 - N-dimensional
 - Pseudo-random
 - Seed-based
- These algorithms are commonly used in video games
 - Minecraft

Example perlin noise vs random noise map:

 $Image\ source: https://brandenstrochinsky.blogspot.com/2015/05/random-map-generator.html$

World Look and Feel

Seed: 1805235358 Seed: 317055230 Seed: 564933020

Movement Algorithm

- Goal was to simulate learning
- Ant Colony Optimization
 - Simulate learning behavior
 - Good for finding paths through graphs
 - Our terrain was a glorified graph
 - Give the ants food source to work towards

Steps for Implementation

- Drop Pheromones
 - Pheromone strength associated with tile
- Dual pheromone system
 - Avoid clustering
 - o Encourage exploration
- Following pheromone trails
 - Ants will follow pheromone trails
 - Alpha evaporate over time
- Find Food
 - Use alpha pheromone trail for food location
 - Use beta pheromone trail to determine density

Image was cropped

Ant Movement Demonstration

Challenges

- Team Challenges
 - Defining scale/scope
 - Finding best solution to problem
 - Agreeing on ideas
- Search Algorithms
 - A* search algorithm
 - Neural network based learning
 - o Genetic learning
- Many issues with these
 - Too simple
 - Too complex
 - Not applicable

Future Work

- Learning-based simulations
- Potential games to be made
 - Tower defense games
 - A life simulator game
- More complex behavior
 - Fighting or foraging
- More complex creature structure
 - o Evolves based on weak points
- More complex environments
 - Add water or trees
- Completely fix clustering problem
 - o Improve beta pheromone handling

Conclusions

- Learned a lot
 - Compromise
 - Trial and error
- We can mimic evolution-based learning
 - Ants were able to follow pheromone trails to food
- Our generated environment did work
 - o Environment simulated what we wanted it to

Sources:

- <u>http://www.ludowaltman.nl/slm/</u>
- https://gamedev.stackexchange.com/questions/173190/how-to-make-procedurally-g enerated-terrain-look-realistic
- https://www.geeksforgeeks.org/search-algorithms-in-ai/
- https://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms
- https://experiments.withgoogle.com/conway-game-of-life

Questions?