David Infante Casas Pablo Rodríguez Vargas

Algorítmica – Práctica 1 – Ejercicio 1 - 2ºD

1.- Ordenación por Burbuja:

- Código Fuente:

- Hardware:

Procesador: Intel® CoreTM i5-3350P CPU @ $3.10\text{GHz} \times 4$ Memoria RAM: 8GB

- Sistema Operativo:

Ubuntu 14.04

- Compilador Utilizado:

$$g++-std=c++11$$

- a) Caso Mejor:
 - Eficiencia Teórica:

$$T_m(n) = 2 + \sum_{i=0}^{n} (4 + 1 + 2 + 2) + 4$$

= 9n + 6

- Eficiencia empírica:

- Ajuste:

$$f(x) = a*x - b$$

fit $f(x)$ "time_mejor.dat" via a, b
plot "time_mejor.dat", $f(x)$

b) Caso Peor:

- Eficiencia Teórica:

$$\begin{split} T_p(n) &= 2 + \Sigma_{i=0}^n (4 + 1 + \Sigma_{i=0}^{n-1} (2 + 6) + 2) + 4 \\ &= 15n^2 - 11n + 6 \end{split}$$

$$f(x) = 15*x**2 - 11*x + 6$$

plot $f(x)$

- Eficiencia empírica:

- Ajuste:

$$f(x) = a*x**2 + b*x - c$$

fit $f(x)$ "time_peor.dat" via a, b, c
plot "time_peor.dat", $f(x)$

c) Caso Promedio:

- Eficiencia Teórica:

$$\begin{split} T_{1/2}(n) &= 2 + \sum_{i=0}^{n/2} (4 + 1 + \sum_{i=0}^{(n-1)/2} (2 + 6) + 2) + 4 \\ &= 2n^2 - 7/2n + 6 \end{split}$$

$$f(x) = 2*x**2 - (7/2)*x + 6$$
 plot $f(x)$

- Eficiencia empírica:

plot "time_promedio.dat"

- Ajuste:

f(x) = a*x**2 + b*x - cfit f(x) "time_promedio.dat" via a, b, c plot "time_promedio.dat", f(x)

