第二章

并发进程

方 钰

主要内容

- 2.1 进程的基本概念
- 2.2 UNIX的进程
- 2.3 中断的基本概念及UNIX中断处理
- 2.4 进程通信

什么是中断?

一种设备控制方式

一种外设的数据传输方式

CPU不可能时刻查询外设的工作状态。。。

什么是中断? 一种设备控制方式

一种外设的数据传输方式

CPU不可能时刻查询外设的工作状态。。。

什么是中断?

一种设备控制方式

一种外设的数据传输方式

CPU不可能时刻查询外设的工作状态。。。

Q1>. CPU怎么知道外设的操作结束了?

中断的硬件机构

1. I/O结束后,设备向中断控制器发出中断请求。 中断控制器决定是否向CPU转发该请求。

中断的硬件机构

中断仲裁

If mask[n]==0 AND priority[n] > currentPriority

中断优先级(

处理机优先级

对不同的中断源,按重要性、紧迫程度分不同等级,并用一个正整数表示

反映CPU正在执行的中断处理的优先级 未执行中断服务子程序时: 0

中断控制器只向CPU转发更高级的中断请求

中断的硬件机构

2. 仲裁通过,中断控制器置INTR连线为高电平通知 CPU系统发生了中断。

中断的硬件机构

处理器在每条指令执行完毕后,立即检查INTR管脚。如果有中断请求,则立即回送ACK信号。

Tongji University, 2023 Fang Yu

中断的硬件机构 4. 得到ACK信号的中断控制器送中断号给CPU。清除INTR请求信号,向外设发送ACK信号表示中断请求已被处理。

什么是中断?

一种设备控制方式

一种外设的数据传输方式

CPU不可能时刻查询外设的工作状态。。。

1. 保证了CPU和设备 之间的并行操作

什么是中断?

一种设备控制方式

一种外设的数据传输方式

CPU不可能时刻查询外设的工作状态。。。

1. 保证了CPU和设备 之间的并行操作

Q2>.CPU接收到中断请求后会发生什么?

设想一下如果你的工作被打断, 你怎么办?

你觉得进程PB现在该怎么办?

通用寄存器
变量,中间计算结果,栈指针.....
EAX: 用来存放函数的返回值 堆栈指针
EBX、ECX、EDX、ESI、EDI、ESP、EBP
专用寄存器
EIP: 程序计数器 EFLAGS: 处理机状态字
CS、SS、DS、ES、FS、GS、SS: 段寄存器
.....

什么是中断?

一种设备控制方式

一种外设的数据传输方式

CPU不可能时刻查询外设的工作状态。。。

1. 保证了CPU和设备 之间的并行操作

i386硬件实施的中断隐指令

1. 关中断

i386硬件实施的中断隐指令

1. 关中断

2. 实施硬件现场保护(中断前核心寄存器的值)

i386硬件实施的中断隐指令

3. 查询并装入中断向量(门)

如何由<mark>中断号</mark>找到对应 的中断入口程序???

i386硬件实施的中断隐指令

3. 查询并装入中断向量(门)

Tongji University, 2023 Fang Yu

UNIX中进程的两种执行状态

用户态 User Mode

执行用户程序, 提供用户功能

核心态 Kernel Mode

> 执行内核程序, 提供系统功能

可以在一定时机相互转换

内核不是与用户 进程平行运行的 孤立的进程集合。

中断

在核心态下执行 内核代码的进程 完成了内核功能!

什么是中断?

一种设备控制方式

一种外设的数据传输方式

CPU不可能时刻查询外设的工作状态。。。

1. 保证了CPU和设备 之间的并行操作

2. 提供了进程执行 内核代码的机会

Tongji University, 2023 Fang Yu

i386硬件实施的中断隐指令

1. 关中断

2. 实施硬件现场保护(中断前核心寄存器的值)

i386硬件实施的中断隐指令

1. 关中断

2. 实施硬件现场保护(中断前核心寄存器的值)

中断发生时现运行进程在用户态运行

i386硬件实施的中断隐指令

1. 关中断

2. 实施硬件现场保护(中断前核心寄存器的值)

i386硬件实施的中断隐指令

1. 关中断

2. 实施硬件现场保护(中断前核心寄存器的值)

Fang Yu

Tongji University, 2023 Fang Yu

中断发生时现运行进程在用户态运行

什么是中断?

一种设备控制方式

一种外设的数据传输方式

CPU不可能时刻查询外设的工作状态。。。

1. 保证了CPU和设备 之间的并行操作

2. 提供了进程执行 内核代码的机会

Tongji University, 2023 Fang Yu

中断的硬件机构 4. 得到ACK信号的中断控制器送中断号给CPU。清除INTR请求信号,向外设发送ACK信号表示中断请求已被处理。

Fang Yu

中断发生时现运行进程在用户态运行

什么是中断?

一种设备控制方式

一种外设的数据传输方式

CPU不可能时刻查询外设的工作状态。。。

- 1. 保证了CPU和设备 之间的并行操作
- 2. 提供了进程执行 内核代码的机会
- 3. 多道程序并发的 硬件基础

(6):恢复现场和中断返回

核心栈

什么是中断?

一种设备控制方式

一种外设的数据传输方式

CPU不可能时刻查询外设的工作状态。。。

- 1. 保证了CPU和设备 之间的并行操作
- 2. 提供了进程执行 内核代码的机会
- 3. 多道程序并发的 硬件基础

Tongji University, 2023 Fang Yu

如何看待中断?

站在进程PA的角度:

执行

我要用外设

我正在执行自己的程序

执行

阻塞

CPU太快不等我

先把CPU让给别人

中断来了

被选为班

中断处理中我被叫醒

叫醒一个和我无关的进程

被迫执行内核代码

就绪

就绪

等下一次上台的机会

中断结束可能被剥夺CPU

如何看待中断?

1. 保证了CPU和设备 之间的并行操作 2. 提供了进程执行 内核代码的机会 3. 多道程序并发的 硬件基础

CPU

EFLAGS寄存器 中断标志位 IF

> Q3: 如果中断 关闭会发生什么?

如何看待中断?

1. 保证了CPU和设备 之间的并行操作 2. 提供了进程执行 内核代码的机会 3. 多道程序并发的 硬件基础

CPU

EFLAGS寄存器 中断标志位 IF

> Q3: 如果中断 关闭会发生什么?

本节小结:

- 中断的基本概念
- 2 UNIX中断的处理过程

E E03: 并发进程 (UNIX进程与中断)