Graphs & Graph Algorithms

CSC 106 Ulrike Stege

Graphs

When do we use graphs?

- When the data contains information about the relationship between items
- Evolutionary relationships
- Biological networks (e.g., protein interaction networks)
- Social networks
- (Computer) networks
- Visibility graphs (e.g. as support for understanding a program)
- etc

Graphs consist of

- Vertices (also called nodes)
- that are connected by edges or arcs
- Graphs can be
 - weighted or unweighted
 - o directed or undirected

A graph G=(V,E)

- G's vertex set is denoted V
- G's edge set is denoted E
- An edge connecting vertices a and b is denoted by pair (a,b)

1

2

Unweighted, undirected graph

Directed Graphs

Edges are also called arcs

An arrow denotes the direction of the arc

Pairs in the edge/ arc set are thenordered pairs

A directed graph G=(V,A)

1

2

Unweighted, directed graph

How does G=(V,E) look like?

Det the undirected graph G = (V,E) be defined as follows.

 \odot E = {(1,2), (2,3), (5,4), (1,5), (3,4), (2,4)}

How does G=(V,E) look like?

Det the directed graph G = (V,A) be defined as follows.

$$> V = \{1,2,3,4,5\}$$

 $A = \{(1,2), (2,3), (5,4), (1,5), (3,4), (2,4)\}$

Undirected graphs can be connected or disconnected

Undirected graphs can be connected or disconnected

Undirected graphs can be connected or disconnected

Connected and disconnected graphs

- An undirected graph is **connected** if for any pair u and v of nodes in the graph there is a path of edges that leads from u to v.
- An undirected graph is called disconnected if it is not connected.

Is this graph connected?

Draw the undirected graph G = (V,E) with

$$V = \{1,2,3,4,5\}$$

 \odot E = {(1,3), (2,4), (1,5), (3,5)}

Problem: Want to minimize cost of wire, wiring, maintenance

Idea: Minimize the overall wire-length!

Minimized Wiring

What network minimizes the wiring length?

- A shortest spanning network
- A network or graph is spanning or connected if we can walk from every of its vertices to every other vertex
- A spanning network is shortest if it is a spanning network where the sum of the edge lengths is smallest

What does such a shortest spanning network look like?

- Such a network is a tree:
 - that is, the network/graph is cycle-free
- It is called a minimum spanning tree

Graph Algorithm 1: How do we reach a solution?

Step 1: Build graph. <u>Vertices</u> are the houses, <u>edges</u> are where connections between houses are possible.

How do we reach a solution?

Step 2: Measure the lengths of the possible connections.

A weighted undirected graph

How much wire (in overall length) is necessary to have all vertices connected?

Select edges that result in such a best network!

Step 3: Look for a shortest (non-selected edge) and choose it if it is a good choice

Cost of the minimum spanning tree:

$$1+2+2+3+3+4+4+5+5+8 = 37$$

What algorithm did we use?

- We collect edges in an initially empty set M
- while we have not (yet) selected a spanning network do
 - pick a shortest edge e that has not been investigated yet
 - if adding this edge to M would yield a cycle then reject e (and don't consider it again)
 - else add e to M

The algorithm

- builds a minimum spanning tree
- is a greedy algorithm (it uses an algorithm design technique called greedy; every step in the algorithm is composed of a local optimal choice)
- Running time for an efficient implementation: O(|E| log |V|)
- o is called Kruskal's algorithm
- named after Joseph Kruskal (1928-2010)

MST origin

- Otakar Borouvka (1899-1995) described in 1926 the first minimum spanning tree algorithm for finding a most economical construction for an electrical-power network
- Example where a concrete Engineering problem turned into a key problem in Computer Science

Other Minimum Spanning Tree Applications!

- Cheapest way to connect a set of terminals
- Routing problems
- Web services
- Skype network
- Music distribution
- Power distribution
- Wire routing on printed circuit boards
- Sewer pipe layout
- Road planning
- Gene evolution (gene mutations)
- Subroutine for many other algorithms

ANOTHER APPLICATION OF GRAPHS: EVOLUTIONARY TREES

HOW DID LIFE EVOLVE?

Tree of Life Proto-genome Archaea Eubacteria Eukaryotae Dictyosteliida Amoebidae Eukaryota crown group Vividiplantae Fungi/Metazoa and 10 other Charophyta/Embryophyta groups Metazoa Fungi Chlorophyta Embryophyta Charophyta (higher plants) Coelomata Bryophyta vascular plants Deuterostomia $/ | \setminus$ Protostomia and others... seed plants Anthropoda Insecta Filicophyta Equisetophyta Crustacea bony vertebrates Pterygota Magnoliophyla Chelicerata Actinopterygii Amniota Magnoliopsida Liliopsida Sauropsida Dinosauria

WHAT IS THE EVOLUTIONARY TREE FOR THESE SPECIES?

tortoise

turtle

rat

mouse

carrot

A POSSIBLE EVOLUTIONARY TREE FOR THESE SPECIES

Bug Mutation: How did the bugs evolve??

Goal: Given an evolutionary "tree skeleton" for several organisms, determine the evolutionary change necessary to explain the evolution of the organisms

We call this problem the small parsimony problem.

Given these bugs ...

Which Evolutionary Tree is more likely (parsimonious)?

Parsimony Score: 5

Parsimony Score: 4

Clicker question: What is the score of this tree?

A: 3

B: 4

C: 5

D: 6

E: 7

A most parsimonious tree follows the principle of Occam's Razor

In Science, we often follow the principle of

Occam's Razor:

When competing hypotheses are equal in other respects, the Occam's razor principle recommends the selection of a hypothesis that introduces fewest assumptions while still sufficiently answering the question.

Find most parsimonious ancestors for this suggested tree topology!!

What is a postorder traversal of a tree?

What is a preorder traversal?

Step 2: Do a preorder traversal of the tree and decide on features.

What is the score?

Score: 5

- Traverse tree in postorder
 - Leafs:
 - · label with the organism's features
 - Ancestors:
 - if the features of children intersect, label with intersection
 - · else label with union of children's features
- Traverse tree in preorder
 - root:
 - pick any labelled feature arbitrarily
 - others:
 - pick label that matches parent feature
 - if none, pick any arbitrarily

Your turn! Use Fitch's Algorithm to determine the ancestors

- Leafs: label with the organism's features
- Ancestors:
 - if the features of children intersect, label with intersection
 - else label with union of children's features

- Leafs: label with the organism's features
- Ancestors:
 - if the features of children intersect, label with intersection
 - else label with union of children's features

- Leafs: label with the organism's features
- Ancestors:
 - if the features of children intersect, label with intersection
 - else label with union of children's features

- Leafs: label with the organism's features
- Ancestors:
 - if the features of children intersect, label with intersection
 - else label with union of children's features

- Leafs: label with the organism's features
- Ancestors:
 - if the features of children intersect, label with intersection
 - else label with union of children's features

- Leafs: label with the organism's features
- Ancestors:
 - if the features of children intersect, label with intersection
 - else label with union of children's features

- Leafs: label with the organism's features
- Ancestors:
 - if the features of children intersect, label with intersection
 - else label with union of children's features

- root: pick any labelled feature arbitrarily
- others:
 - pick label that matches parent feature
 - if none, pick any arbitrarily else label with union of children's features

- root: pick any labelled feature arbitrarily
- others:
 - pick label that matches parent feature
 - if none, pick any arbitrarily else label with union of children's features

- root: pick any labelled feature arbitrarily
- others:
 - pick label that matches parent feature
 - if none, pick any arbitrarily else label with union of children's features

- root: pick any labelled feature arbitrarily
- others:
 - pick label that matches parent feature
 - if none, pick any arbitrarily else label with union of children's features

What is the score?

Parsimony problems

- Small Parsimony problem (as above)
 - · tree topology is known
 - Goal: How many evolutionary changes did occur?
 - solvable in polynomial time (e.g., Fitch's algorithm)
- Large Parsimony problem
 - tree topology is unknown
 - · Goal: Find Most Parsimonias Tree
 - NP-complete, that is it's not solvable in polynomial time unless P=NP

We'll talk about P, NP, and NP-completeness (and how you can win \$1,000,000) on Monday

Thank you!

My email: stege@cs.uvic.ca My office: ECS 624