Contents

I	Ng	spice U	User's Manual	27		
1	Intr	oductio	n	33		
	1.1	Simula	ation Algorithms	34		
		1.1.1	Analog Simulation	34		
		1.1.2	Matrix solvers	34		
		1.1.3	Device Models for Analog Simulation	35		
		1.1.4	Digital Simulation	35		
		1.1.5	Mixed-Signal Simulation	35		
		1.1.6	Mixed-Level Simulation (Electronic and TCAD)	36		
	1.2	Suppo	rted Analyses	37		
		1.2.1	DC Analysis	38		
		1.2.2	AC Small-Signal Analysis	38		
		1.2.3	Transient Analysis	38		
		1.2.4	Pole-Zero Analysis	39		
		1.2.5	Small-Signal Distortion Analysis	39		
		1.2.6	Sensitivity Analysis	39		
		1.2.7	Noise Analysis	40		
		1.2.8	Periodic Steady State Analysis	40		
	1.3	Analys	sis at Different Temperatures	40		
		1.3.1	Introduction	40		
		1.3.2	Controlling the temperature	42		
	1.4	Conve	rgence	43		
		1.4.1	Voltage convergence criterion	43		
		1.4.2	Current convergence criterion	44		
		1.4.3	Convergence failure	44		

2	Circ	uit Description					
	2.1	Genera	al Structure and Conventions	45			
		2.1.1	Input file structure	45			
		2.1.2	Syntax check	45			
		2.1.3	Circuit elements (device instances)	46			
		2.1.4	Some naming conventions	47			
		2.1.5	Topological constraints	49			
	2.2	Dot co	mmands	49			
	2.3	Basic 1	lines	51			
		2.3.1	.TITLE line	51			
		2.3.2	.END Line	51			
		2.3.3	Comments	52			
		2.3.4	End-of-line comments	52			
		2.3.5	Continuation lines	52			
	2.4	.MOD	EL Device Models	53			
	2.5	.SUBC	CKT Subcircuits	54			
		2.5.1	.SUBCKT Line	54			
		2.5.2	.ENDS Line	55			
		2.5.3	Subcircuit Calls	55			
	2.6	.GLOE	BAL	56			
	2.7	.INCL	UDE	56			
	2.8	.LIB .		56			
	2.9	.PAR	AM Parametric netlists	57			
		2.9.1	.param line	57			
		2.9.2	Brace expressions in circuit elements:	58			
		2.9.3	Subcircuit parameters	58			
		2.9.4	Symbol scope	59			
		2.9.5	Syntax of expressions	59			
		2.9.6	Reserved words	63			
		2.9.7	A word of caution on the three ngspice expression parsers	63			
	2.10	.FUNC	2	63			
	2.11	.CSPA	RAM	64			
	2.12	.TEMF	2	64			
	2.13	.IF Co	ndition-Controlled Netlist	65			
	2.14	Parame	eters, functions, expressions, and command scripts	66			
		2.14.1	Parameters	66			
		2.14.2	Nonlinear sources	66			
		2.14.3	Control commands, Command scripts	66			

3	Circ	uit Elen	nents and Models	69
	3.1	About	netlists, device instances, models and model parameters	69
	3.2	Genera	d options	71
		3.2.1	Paralleling devices with multiplier m	71
		3.2.2	Instance and model parameters	73
		3.2.3	Model binning	73
		3.2.4	Initial conditions	73
	3.3	Elemen	ntary Devices	74
		3.3.1	Resistors	74
		3.3.2	Semiconductor Resistors	76
		3.3.3	Semiconductor Resistor Model (R)	76
		3.3.4	Resistors, dependent on expressions (behavioral resistor)	78
		3.3.5	Resistor with nonlinear r2_cmc or r3_cmc models	78
		3.3.6	Capacitors	79
		3.3.7	Semiconductor Capacitors	80
		3.3.8	Semiconductor Capacitor Model (C)	80
		3.3.9	Capacitors, dependent on expressions (behavioral capacitor)	81
		3.3.10	Inductors	83
		3.3.11	Inductor model	83
		3.3.12	Coupled (Mutual) Inductors	85
		3.3.13	Inductors, dependent on expressions (behavioral inductor)	85
		3.3.14	Capacitor or inductor with initial conditions	86
		3.3.15	Switches	87
		3.3.16	Switch Model (SW/CSW)	88
4	Volt	age and	Current Sources	91
	4.1	Indepe	ndent Sources for Voltage or Current	91
		4.1.1	Pulse	92
		4.1.2	Sinusoidal	93
		4.1.3	Exponential	94
		4.1.4	Piece-Wise Linear	94
		4.1.5	Single-Frequency FM	95
		4.1.6	Amplitude modulated source (AM)	95
		4.1.7	Transient noise source	96
		4.1.8	Random voltage source	97
		4.1.8	Random voltage source	

		4.1.9	External voltage or current input	98
		4.1.10	Arbitrary Phase Sources	98
		4.1.11	RF Port	99
	4.2	Linear	Dependent Sources	99
		4.2.1	Gxxxx: Linear Voltage-Controlled Current Sources (VCCS)	99
		4.2.2	Exxxx: Linear Voltage-Controlled Voltage Sources (VCVS)	100
		4.2.3	Fxxxx: Linear Current-Controlled Current Sources (CCCS)	100
		4.2.4	Hxxxx: Linear Current-Controlled Voltage Sources (CCVS)	100
		4.2.5	Polynomial Source Compatibility	101
5	Non	-linear l	Dependent Sources (Behavioral Sources)	103
	5.1	Bxxxx	:: Nonlinear dependent source (ASRC)	103
		5.1.1	Syntax and usage	103
		5.1.2	Special B-Source Variables time, temper, hertz	107
		5.1.3	par('expression')	107
		5.1.4	Piecewise Linear Function: pwl	107
	5.2	Exxxx:	non-linear voltage source	110
		5.2.1	VOL	110
		5.2.2	VALUE	111
		5.2.3	TABLE	111
		5.2.4	POLY	111
		5.2.5	LAPLACE	111
		5.2.6	FREQ	112
		5.2.7	AND/OR/NAND/NOR	113
	5.3	Gxxxx	: non-linear current source	113
		5.3.1	CUR	113
		5.3.2	VALUE	114
		5.3.3	TABLE	114
		5.3.4	POLY	114
		5.3.5	LAPLACE	114
		5.3.6	FREQ	115
		5.3.7	Example	115
	5.4	Debugg	ging a behavioral source	115
	5.5	POLY	Sources	116
		5.5.1	E voltage source, G current source	117
		5.5.2	F voltage source, H current source	117

6	Trai	nsmissio	on Lines	119
	6.1	Lossle	ss Transmission Lines	119
	6.2	Lossy	Transmission Lines	120
		6.2.1	Lossy Transmission Line Model (LTRA)	120
	6.3	Unifor	rm Distributed RC Lines	122
		6.3.1	Uniform Distributed RC Model (URC)	122
	6.4	KSPIC	CE Lossy Transmission Lines	123
		6.4.1	Single Lossy Transmission Line (TXL)	124
		6.4.2	Coupled Multiconductor Line (CPL)	124
7	Dev	ice Mod	lels	127
	7.1	Instanc	ce lines and .model lines	127
	7.2	Junctio	on Diodes	128
		7.2.1	Diode Model (D)	128
		7.2.2	Diode Equations	132
		7.2.3	Diode models available via OpenVAF/OSDI	136
	7.3	BJT .		137
		7.3.1	Bipolar Junction Transistors (BJTs)	137
		7.3.2	BJT Models (NPN/PNP)	138
		7.3.3	Gummel-Poon Models	138
		7.3.4	VBIC Model	144
		7.3.5	HICUM level 2 Model	145
		7.3.6	BJT models available via OpenVAF/OSDI	146
	7.4	JFETs		147
		7.4.1	Junction Field-Effect Transistors (JFETs)	147
		7.4.2	JFET Models (NJF/PJF)	148
		7.4.3	Basic model statement	148
		7.4.4	JFET level 1 model with Parker Skellern modification	148
		7.4.5	JFET level 2 Parker Skellern model	150
	7.5	MESF	ETs	152
		7.5.1	MESFET devices	152
		7.5.2	MESFET Models (NMF/PMF)	152
		7.5.3	Model by Statz e.a	152
		7.5.4	Model by Ytterdal e.a.	153
		7.5.5	hfet1 and hfet2	153

	7.6	MOSF	ETs
		7.6.1	MOSFET devices
		7.6.2	MOSFET models (NMOS/PMOS)
		7.6.3	BSIM Models
		7.6.4	BSIMSOI models (levels 10, 58, 55, 56, 57)
		7.6.5	SOI3 model (level 60)
		7.6.6	HiSIM models of the University of Hiroshima
		7.6.7	MOS models available via OpenVAF/OSDI
	7.7	Power	MOSFET model (VDMOS)
8	Miv	od-Mod	e and Behavioral Modeling with XSPICE 173
O	8.1		Model Element & .MODEL Cards
	0.1	8.1.1	Syntax
		8.1.2	Examples
		8.1.3	Search path for file input
		8.1.4	Code model location and assessment
	8.2		g Models
	0.2	8.2.1	Gain
		8.2.2	Summer
		8.2.3	Multiplier
		8.2.4	Divider
		8.2.5	Limiter
			Controlled Limiter
		8.2.7	PWL Controlled Source
		8.2.8	PWL Time Controlled Source with optional edge smoothing
		8.2.9	Filesource (PWL sourced from file)
		8.2.10	Multi_input_PWL_block
		8.2.11	Analog Switch
			Alternative Analog Switch
			Zener Diode
			Current Limiter
			Hysteresis Block
			Differentiator
			Integrator
			S-Domain Transfer Function 204

	8.2.19	PWL Transfer Function	.07
	8.2.20	Slew Rate Block	.09
	8.2.21	Inductive Coupling	10
	8.2.22	Magnetic Core	.11
	8.2.23	Controlled Sine Wave Oscillator	.15
	8.2.24	Controlled Triangle Wave Oscillator	16
	8.2.25	Controlled Square Wave Oscillator	.17
	8.2.26	Controlled One-Shot	.19
	8.2.27	Capacitance Meter	21
	8.2.28	Inductance Meter	22
	8.2.29	Memristor	.22
	8.2.30	2D table model	.23
	8.2.31	3D table model	.25
	8.2.32	Simple Diode Model	27
	8.2.33	Analog delay	.29
	8.2.34	Potentiometer	.30
8.3	Hybrid	Models	.32
	8.3.1	Digital-to-Analog Node Bridge	.32
	8.3.2	Analog-to-Digital Node Bridge	.33
	8.3.3	Bidirectional Analog/Digital Node Bridge	.35
	8.3.4	Controlled Digital Oscillator	.38
	8.3.5	Node bridge from digital to real with enable	.39
	8.3.6	A Z**-1 block working on real data	40
	8.3.7	A gain block for event-driven real data	40
	8.3.8	Node bridge from real to analog voltage	41
	8.3.9	Controlled PWM Oscillator	41
8.4	Digital	Models	43
	8.4.1	Buffer	45
	8.4.2	Inverter	45
	8.4.3	And	46
	8.4.4	Nand	47
	8.4.5	Or	47
	8.4.6	Nor	48
	8.4.7	Xor	48
	8.4.8	Xnor	49

		8.4.9	Tristate	249
		8.4.10	Pullup	251
		8.4.11	Pulldown	251
		8.4.12	D Flip Flop	252
		8.4.13	JK Flip Flop	254
		8.4.14	Toggle Flip Flop	256
		8.4.15	Set-Reset Flip Flop	258
		8.4.16	D Latch	260
		8.4.17	Set-Reset Latch	262
		8.4.18	State Machine	264
		8.4.19	Frequency Divider	267
		8.4.20	RAM	268
		8.4.21	Digital Source	271
		8.4.22	LUT	272
		8.4.23	General LUT	273
		8.4.24	D_process	275
		8.4.25	d_cosim	277
	8.5	Predefi	ned Node Types for event driven simulation	279
		8.5.1	Digital Node Type	279
		8.5.2	Real Node Type	279
		8.5.3	Int Node Type	280
		8.5.4	(Digital) Input/Output	280
	8.6	Autom	atic insertion of bridging devices	280
9	Voril	log-A C	ompact Device Models	283
,	9.1	Ü	ection	
	9.1		OpenVAF	
	9.2		o create and apply OpenVAF models	
	9.3	9.3.1	Preparing for simulation	
		9.3.1	OSDI/OpenVAF examples distributed with ngspice	
		9.3.2	OSDI/OpenVAI examples distributed with figspice	200
10	Digit	al Devi	ce Models	287
	10.1	U devi	ces (basic digital building blocks)	287
		10.1.1	General format	288
		10.1.2	List of devices available in ngspice (basic types)	288
		10.1.3	URC transmission line versus U devices	289

	10.2	Suppor	t for standard digital devices	289
	10.3	Digital	devices defined by a Hardware Description Language	290
		10.3.1	Using Verilator, Verilog, and code model d_cosim	290
		10.3.2	Using independent processes (e.g. C coded), pipes, and code model d_process	291
		10.3.3	Using Yosys to map digital Verilog onto basic code model cells	291
11	Anal	yses an	d Output Control (batch mode)	293
	11.1	Simula	tor Variables (.options)	293
		11.1.1	General Options	294
		11.1.2	OP and DC Solution Options	295
		11.1.3	AC Solution Options	297
		11.1.4	Transient Analysis Options	297
		11.1.5	ELEMENT Specific options	298
		11.1.6	Transmission Lines Specific Options	299
		11.1.7	Precedence of option and .options commands	299
	11.2	Initial (Conditions	299
		11.2.1	.NODESET: Specify Initial Node Voltage Guesses	299
		11.2.2	.IC: Set Initial Conditions	300
	11.3	Analys	es	300
		11.3.1	.AC: Small-Signal AC Analysis	300
		11.3.2	.DC: DC Transfer Function	302
		11.3.3	.DISTO: Distortion Analysis	302
		11.3.4	.NOISE: Noise Analysis	304
		11.3.5	.OP: Operating Point Analysis	305
		11.3.6	.PZ: Pole-Zero Analysis	306
		11.3.7	.SENS: DC or Small-Signal AC Sensitivity Analysis	307
		11.3.8	.SP S-Parameter Analysis	307
		11.3.9	.TF: Transfer Function Analysis	308
		11.3.10	O.TRAN: Transient Analysis	309
		11.3.11	Transient noise analysis (at low frequency)	309
		11.3.12	2.PSS: Periodic Steady State Analysis	313
	11.4	Measur	rements after AC, DC and Transient Analysis	314
		11.4.1	.meas(ure)	314
		11 4 2	hatch versus interactive mode	314

		11.4.3	General remarks	314
		11.4.4	Input	315
		11.4.5	Trig Targ	315
		11.4.6	Find When	317
		11.4.7	AVG MIN MAX PP RMS MIN_AT MAX_AT	318
		11.4.8	Integ	318
		11.4.9	param	319
		11.4.10	par('expression')	319
		11.4.11	Deriv	320
		11.4.12	2 More examples	320
	11.5	Safe O	perating Area (SOA) warning messages	321
		11.5.1	Resistor and Capacitor SOA model parameters	322
		11.5.2	Diode SOA model parameters	322
		11.5.3	BJT SOA model parameters	323
		11.5.4	MOS SOA model parameters	324
		11.5.5	VDMOS SOA model parameters	325
	11.6	Batch (Output	325
		11.6.1	.SAVE: Name vector(s) to be saved in raw file	325
		11.6.2	.PRINT Lines	326
		11.6.3	.PLOT Lines	327
		11.6.4	.FOUR: Fourier Analysis of Transient Analysis Output	327
		11.6.5	.PROBE: Save device node currents, device power dissipation, or differential voltages between arbitrary nodes	328
		11.6.6	par('expression'): Algebraic expressions for output	332
		11.6.7	.width	333
	11.7	Measur	ring current through device terminals	333
		11.7.1	Using the .probe command	333
		11.7.2	Adding a voltage source in series	333
		11.7.3	Using option 'savecurrents'	334
12	Start	ing ngs	pice	335
			ction	335
			to obtain ngspice	
			and line options for starting ngspice	
			g options	
		•		

12.4.1 Batch mode
12.4.2 Interactive mode
12.4.3 Control mode (Interactive mode with control file or control section) 339
12.5 Standard configuration file spinit
12.6 User defined configuration file .spiceinit
12.7 Environmental variables
12.7.1 Ngspice specific variables
12.7.2 Common environment variables
12.8 Memory usage
12.9 Simulation time
12.10Ngspice on multi-core processors using OpenMP
12.10.1 Introduction
12.10.2 Internals
12.10.3 Some results
12.10.4 Usage
12.10.5 Literature
12.11 Server mode option -s
12.12Pipe mode option -p
12.13Ngspice control via input, output fifos
12.14Compatibility
12.14.1 Compatibility mode
12.14.2 Missing functions
12.14.3 Devices
12.14.4 Controls and commands
12.14.5 PSPICE Compatibility mode
12.14.6 LTSPICE Compatibility mode
12.14.7 LTSPICE/PSPICE Compatibility mode
12.14.8 KiCad Compatibility mode
12.14.9 Spectre Compatibility mode
12.14.10HSPICE Compatibility mode
12.15Tests
12.16Tools for debugging a circuit netlist
12.16.1 options and initial conditions
12.16.2 set debug
12.16.3 set ngdebug
12.16.4 miscellaneous
12.17Reporting bugs and errors

13	Inter	ractive Interpreter	361
	13.1	Introduction	361
	13.2	Expressions, Functions, and Constants	362
	13.3	Plots	366
	13.4	Command Interpretation	367
		13.4.1 On the console	367
		13.4.2 Scripts	367
		13.4.3 Add-on to circuit file	367
	13.5	Commands	368
		13.5.1 Ac: Perform an AC, small-signal frequency response analysis	368
		13.5.2 Alias: Create an alias for a command	369
		13.5.3 Alter: Change a device or model parameter	369
		13.5.4 Altermod: Change model parameter(s)	371
		13.5.5 Alterparam: Change value of a global parameter	372
		13.5.6 Asciiplot: Plot values using old-style character plots	373
		13.5.7 Aspice*: Asynchronous ngspice run	373
		13.5.8 Bg_ctrl**: suspend running controls until bg_run has finished	373
		13.5.9 Bg_halt**: halt a run	373
		13.5.10 Bg_run**: Run analysis from the input file in the background thread	374
		13.5.11 Bug: Output URL for ngspice bug tracker	374
		13.5.12 Cd: Change directory	374
		13.5.13 Cdump: Dump the control flow to the screen	374
		13.5.14 Circbyline: Enter a circuit line by line	375
		13.5.15 Codemodel: Load an XSPICE code model library	376
		13.5.16 Compose: Compose a vector	377
		13.5.17 Cutout: Cut out a section of all vectors in a tran plot	378
		13.5.18 Dc: Perform a DC-sweep analysis	378
		13.5.19 Define: Define a function	378
		13.5.20 Deftype: Define a new type for a vector or plot	379
		13.5.21 Delete: Remove a trace or breakpoint	379
		13.5.22 Destroy: Delete an output data set	379
		13.5.23 Devhelp: information on available devices	380
		13.5.24 Diff: Compare vectors	381
		13.5.25 Display: List known vectors and types	381
		13.5.26 Echo: Print text	381

13.5.27 Edit*: Edit the current circuit
13.5.28 Edisplay: Print a list of all the event nodes
13.5.29 Eprint: Print an event driven node
13.5.30 Eprvcd: Dump nodes in VCD format
13.5.31 Esave: Save a set of event node outputs
13.5.32 Fclose: close an open file handle
13.5.33 FFT: fast Fourier transform of vectors
13.5.34 Fopen: open a text file
13.5.35 Fourier: Perform a Fourier transform
13.5.36 Fread: read into a variable from a text file
13.5.37 Getcwd: Print the current working directory
13.5.38 Gnuplot: Graphics output via gnuplot
13.5.39 Hardcopy: Save a plot to a file for printing
13.5.40 Help: Print summaries of Ngspice commands
13.5.41 History: Review previous commands
13.5.42 Inventory: Print circuit inventory
13.5.43 Iplot*: Incremental plot
13.5.44 Jobs*: List active asynchronous ngspice runs
13.5.45 Let: Assign a value to a vector
13.5.46 Linearize: Interpolate to a linear scale
13.5.47 Listing: Print a listing of the current circuit
13.5.48 Load: Load rawfile data
13.5.49 Mc_source: Reload the circuit netlist from an internal storage 394
13.5.50 Meas: Measurements on simulation data
13.5.51 Mdump: Dump the matrix values to a file (or to console)
13.5.52 Mrdump: Dump the matrix right hand side values to a file (or to console) 395
13.5.53 Noise: Noise analysis
13.5.54 Op: Perform an operating point analysis
13.5.55 Option: Set a ngspice option
13.5.56 Plot*: Plot vectors on the display
13.5.57 Pre_ <command/> : execute commands prior to parsing the circuit 399
13.5.58 Pre_OSDI: load a *.osdi compact device model shared library 399
13.5.59 Print: Print values
13.5.60 Psd: power spectral density of vectors
13.5.61 Quit: Leave Ngspice

13.5.62 Rehash: Reset internal hash tables
13.5.63 Remcirc: Remove the current circuit
13.5.64 Remzerovec: Remove zero length vectors
13.5.65 Reset: Reset an analysis
13.5.66 Reshape: Alter the dimensionality or dimensions of a vector 402
13.5.67 Resume: Continue a simulation after a stop
13.5.68 Rspice*: Remote ngspice submission
13.5.69 Run: Run analysis from the input file
13.5.70 Rusage: Resource usage
13.5.71 Save: Save a set of outputs
13.5.72 Sens: Run a sensitivity analysis
13.5.73 Set: Set the value of a variable
13.5.74 Setcs: Set the value of a variable, case preserved
13.5.75 Setcirc: Change the current circuit
13.5.76 Setplot: Switch the current set of vectors
13.5.77 Setscale: Set the scale vector for the current plot
13.5.78 Setseed: Set the seed value for the random number generator 408
13.5.79 Settype: Set the type of a vector
13.5.80 Shell: Call the command interpreter
13.5.81 Shift: Alter a list variable
13.5.82 Show: List device state
13.5.83 Showmod: List model parameter values
13.5.84 Snload: Load the snapshot file
13.5.85 Snsave: Save a snapshot file
13.5.86 Source: Read a ngspice input file
13.5.87 Sp: S-Parameter Analysis
13.5.88 Spec: Create a frequency domain plot
13.5.89 Status: Display breakpoint information
13.5.90 Step: Run a fixed number of time-points
13.5.91 Stop: Set a breakpoint
13.5.92 Strcmp: Compare two strings
13.5.93 Strslice: Extract a substring
13.5.94 Strstr: Find a substring
13.5.95 Sysinfo: Print system information
13.5.96 Tf: Run a Transfer Function analysis

	13.5.97 Trace: Trace nodes	417
	13.5.98 Tran: Perform a transient analysis	417
	13.5.99 Transpose: Swap the elements in a multi-dimensional data set	418
	13.5.10@nalias: Retract an alias	418
	13.5.10 Undefine: Retract a definition	418
	13.5.102 Unlet: Delete the specified vector(s)	418
	13.5.103Unset: Clear a variable	419
	13.5.104Version: Print the version of ngspice	419
	13.5.105Where: Identify troublesome node or device	420
	13.5.106Wrdata: Write data to a file (simple table)	421
	13.5.10 Write: Write data to a file (Spice3f5 format)	421
	13.5.108Wrnodev: Write node voltage values to a file (.ic=xx format)	422
	13.5.109Wrs2p: Write scattering parameters to file (Touchstone® format)	423
13.6	Control Structures	423
	13.6.1 While - End	423
	13.6.2 Repeat - End	424
	13.6.3 Dowhile - End	425
	13.6.4 Foreach - End	425
	13.6.5 If - Then - Else	426
	13.6.6 Label	426
	13.6.7 Goto	426
	13.6.8 Continue	427
	13.6.9 Break	427
13.7	Internally predefined variables	427
13.8	Scripts	435
	13.8.1 Variables	436
	13.8.2 Vectors	437
	13.8.3 Assessing vectors in subcircuits	437
	13.8.4 Commands	438
	13.8.5 control structures	438
	13.8.6 Example script 'spectrum'	442
	13.8.7 Example script for random numbers	444
	13.8.8 Parameter sweep	445
	13.8.9 Output redirection	445
13.9	Scattering parameters (S-parameters)	447

13.9.1 Intro	447
13.9.2 S-parameter measurement basics	447
13.9.3 Usage of .sp and sp	149
13.9.4 Usage of the script	449
13.10Using shell variables	449
13.11MISCELLANEOUS	450
13.12Bugs	450
14 Ngspice User Interfaces	451
14.1 MS Windows Graphical User Interface	451
14.2 MS Windows Console	
14.3 Linux	454
14.4 CygWin	454
14.5 Error handling	455
14.6 Output-to-file options	455
14.6.1 Graphics files	455
14.6.2 Tabulated files	461
14.7 Gnuplot	464
14.7.1 Using Gnuplot to produce 1D graphs of (electrical) simulation results . 4	464
14.7.2 Using gnuplot to produce 2D contour plots for Cider	465
14.8 Integration with CAD software and 'third party' GUIs	469
14.8.1 KiCad	469
14.8.2 Xschem	469
14.8.3 Ques-S	469
14.8.4 GNU Spice GUI	469
14.8.5 XCircuit	470
14.8.6 GEDA	470
14.8.7 MSEspice	470
14.8.8 GNU Octave	470
15 ngspice as shared library or dynamic link library	47 1
15.1 Compile options	471
15.1.1 How to get the sources	471
15.1.2 Linux, MINGW, CYGWIN	471
15.1.3 MS Visual Studio	472
15.2 Linking shared agenice to a calling application	472

		15.2.1 Linking during creating the caller	2
		15.2.2 Loading at runtime	'2
	15.3	Shared ngspice API	'2
		15.3.1 structs and types defined for transporting data	'2
		15.3.2 Exported functions	′4
		15.3.3 Callback functions	'7
	15.4	General remarks on using the API	30
		15.4.1 Loading a netlist	30
		15.4.2 Running the simulation	32
		15.4.3 Accessing data	32
		15.4.4 Altering model or device parameters	3
		15.4.5 Output	34
		15.4.6 Error handling	34
	15.5	Example applications	34
	15.6	ngspice parallel	34
		15.6.1 Go parallel!	35
		15.6.2 Additional exported functions	6
		15.6.3 Additional callback functions	;7
		15.6.4 Parallel ngspice example	8
16	TCI	spice 48	20
		tclspice framework	
		telspice documentation	
		spicetoblt	
		Running TCLspice	
		examples	
	10.5	16.5.1 Active capacitor measurement	
		16.5.2 Optimization of a linearization circuit for a Thermistor	
		16.5.3 Progressive display	
	16.6		
	10.0	Compiling	
		16.6.1 Linux	
	167		
	10.7	MS Windows 32 Bit binaries	ソ

17	Exar	nple Circuits	501
	17.1	AC coupled transistor amplifier	501
	17.2	Differential Pair	507
	17.3	MOSFET Characterization	507
	17.4	RTL Inverter	507
	17.5	Four-Bit Binary Adder (Bipolar)	508
	17.6	Four-Bit Binary Adder (MOS)	510
	17.7	Transmission-Line Inverter	511
18	Stati	stical circuit analysis	513
	18.1	Introduction	513
		Using random param(eters)	
	18.3	Behavioral sources (B, E, G, R, L, C) with random control	515
	18.4	ngspice control language	516
	18.5	Monte-Carlo Simulation	517
		18.5.1 Varying model or instance parameters	518
		18.5.2 Using the ngspice control language	518
	18.6	Data evaluation with Gnuplot	520
19	Circ	uit optimization with ngspice	523
	19.1	Optimization of a circuit	523
	19.2	ngspice optimizer using ngspice scripts	524
	19.3	ngspice optimizer using telspice	524
	19.4	ngspice optimizer using a Python script	524
	19.5	ngspice optimizer using ASCO	524
		19.5.1 Three stage operational amplifier	525
		19.5.2 Digital inverter	526
		19.5.3 Bandpass	528
		19.5.4 Class-E power amplifier	528
20	Note	s	529
	20.1	Glossary	529
	20.2	Acronyms and Abbreviations	530
	20.3	To Do	531