

Unit 01.02.03 CS 5220: COMPUTER COMMUNICATIONS

TCP/IP: Architecture and Routing Example

XIAOBO ZHOU, Ph.D.

Professor, Department of Computer Science

TCP/IP Protocol Suite

Internet Protocol (IP)

- Routers (gateways) interconnect different networks
- Host computers prepare IP packets and transmit them over their attached network
- Routers forward IP packets across networks
- Best-effort IP transfer service

Internet Addresses

- Hierarchical address: Net ID + Host ID
- IP packets routed according to Net ID
- Routers compute routing tables using distributed algorithm

Physical Addresses

- LANs assign physical addresses to physical attachment to the network
- The network uses its own address to transfer packets or frames to the appropriate destination
- IP address needs to be resolved to physical address at each IP network interface, by address resolution protocol (ARP)
- Example: Ethernet uses 48-bit addresses
 - Each NIC has globally unique physical address (called MAC address)
 - First 24 bits identify NIC manufacturer; second 24 bits are serial number

Example

	netid	hostid	Physical address
server	1	1	s
workstation	1	2	w
router	1	3	r
router	2	1	-
PC	2	2	-

Encapsulation

- Ethernet header contains:
 - source and destination physical addresses
 - network protocol type (e.g. IP)

Example: IP packet from workstation to server

- 1. IP packet has (1,2) IP address for source and (1,1) IP address for destination
- 2. IP table at workstation indicates (1,1) connected to same network, so IP packet is encapsulated in Ethernet frame with addresses w and s
- 3. Ethernet frame is broadcast by workstation NIC and captured by server NIC
- 4. NIC examines protocol type field and then delivers packet to its IP layer

Example: IP packet from server to PC

- 1. IP packet has (1,1) and (2,2) as IP source and destination addresses
- IP table at server indicates packet should be sent to router, so IP packet is encapsulated in Ethernet frame with addresses s and r
- 3. Ethernet frame is broadcast by server NIC and captured by router NIC

- 4. Router NIC examines protocol type field and delivers packet to its IP layer
- IP layer examines IP packet destination address and determines IP packet should be routed to (2,2)
- 6. Router's table indicates (2,2) is directly connected via PPP link
- 7. IP packet is encapsulated in PPP frame and delivered to PC
- 8. PPP at PC examines protocol type field and delivers packet to PC IP layer

Lesson Summary

- Encapsulation is key to layering
- Layers work together for routing

