演算法簡單說明 兩倍放大-SRLUT

演算法簡單說明

$$\begin{split} P_{000} &= \text{LUT}[M_{\text{x}}][M_{\text{y}}][M_{\text{z}}] \\ P_{001} &= \text{LUT}[M_{\text{x}}][M_{\text{y}}][M_{\text{z}}+1] \\ P_{010} &= \text{LUT}[M_{\text{x}}][M_{\text{y}}][M_{\text{z}}] \\ P_{011} &= \text{LUT}[M_{\text{x}}][M_{\text{y}}][M_{\text{z}}+1] \\ P_{100} &= \text{LUT}[M_{\text{x}}+1][M_{\text{y}}][M_{\text{z}}] \\ P_{101} &= \text{LUT}[M_{\text{x}}+1][M_{\text{y}}][M_{\text{z}}+1] \\ P_{110} &= \text{LUT}[M_{\text{x}}+1][M_{\text{y}}+1][M_{\text{z}}] \\ P_{111} &= \text{LUT}[M_{\text{x}}+1][M_{\text{y}}+1][M_{\text{z}}+1] \end{split}$$

四面體插補,用Lx,Ly,Lz大小決定哪個case,決定wo~w3及要到LUT取的O0~O3 我做的是長寬都x2放大,所以1個像素放大後會得到4個值

MOR = out0 = O0[31:24]*W0 + O1[31:24]*W1 + O2[31:24]*W2 + O3[31:24]*W3;

M1R = out1 = O0[23:16]*W0 + O1[23:16]*W1 + O2[23:16]*W2 + O3[23:16]*W3;

M2R = out2 = O0[15:8]*W0 + O1[15:8]*W1 + O2[15:8]*W2 + O3[15:8]*W3;

M3R = out3 = O0[7:0]*W0 + O1[7:0]*W1 + O2[7:0]*W2 + O3[7:0]*W3;

Case	Condition	w_0	w_1	w_2	w_3	O_0	O_1	O_2	O_3
1	$L_{\rm x} > L_{\rm y} > L_{\rm z}$	$W-L_{\mathrm{x}}$	$L_{\rm x}$ – $L_{\rm y}$	$L_{\rm y}$ $ L_{\rm z}$	L_{z}	P_{000}	P_{100}	P_{110}	P_{111}
2	$L_{\mathrm{x}} > L_{\mathrm{z}} \ge L_{\mathrm{y}}$	$W-L_{ m x}$	$L_{\rm x}-L_{\rm z}$	$L_{z}-L_{y}$	$L_{ m y}$	P_{000}	P_{100}	P_{101}	P_{111}
3	$L_{\rm z} \ge L_{\rm x} > L_{\rm y}$	$W-L_{z}$	$L_{z}-L_{x}$	$L_{\mathrm{x}} - L_{\mathrm{y}}$	L_{y}	P_{000}	P_{001}	P_{101}	P_{111}
4	$L_{\rm z} > L_{\rm y} \ge L_{\rm x}$	$W-L_{z}$	$L_{z}-L_{y}$	$L_{\rm y}-L_{\rm x}$	L_{x}	P_{000}	P_{001}	P_{011}	P_{111}
5	$L_{\rm y} \ge L_{\rm z} > L_{\rm x}$	$W-L_{ m y}$	$L_{ m y}$ $ L_{ m z}$	$L_{z}-L_{x}$	$L_{\rm x}$	P_{000}	P_{010}	P_{011}	P_{111}
6	$L_{\rm y} \ge L_{\rm x} \ge L_{\rm z}$	$W-L_{\mathrm{y}}$	$L_{\rm y}-L_{\rm x}$	$L_{\rm x}-L_{\rm z}$	L_{z}	P_{000}	P_{010}	P_{110}	P_{111}

硬體整體架構圖

Direction_Calculator_Y_8: 用來作四面體插補

Direction_Calculator_Y_8

Direction_Calculator_Y_8

Direction_Calculator_Y_8

Rotational_Ensemble_calculator_Y_8_C.v

