Below several pairs of predicates are given. For each pair do the following:

- Identify the atomic assertions common to each pair of assertions and assign a variable to each of these assertions.
- Find logical expressions for each sentence in terms of the variables.
- Determine whether the first can be logically deduced from the second, and whether the second can be logically deduced from the first. Explain your answers.
- 1. (a) if n is prime or n+2 is prime, then n^2+2 is prime or n^2-2 is prime
 - (b) $n^2 + 2$ is non-prime and $n^2 2$ is non-prime implies n is non-prime and n + 2 is non-prime.

A := n is prime.

B := n + 2 is prime.

 $C := n^2 + 2$ is prime.

 $D := n^2 - 2$ is prime.

(a)
$$(A \lor B) \Rightarrow (C \lor D)$$

(b)
$$\neg C \land \neg D \Rightarrow \neg A \land \neg B$$

$$(A \lor B) \Rightarrow (C \lor D) \leftrightarrow \neg(C \lor D) \Rightarrow \neg(A \lor B)$$
 (Modus Tollens)
 $\neg C \land \neg D \Rightarrow \neg A \land \neg B \leftrightarrow \neg(C \lor D) \Rightarrow \neg(A \lor B)$ (DeMorgan's rule)

Therefore the two statements are logically equivalent.

- 2. (a) For all real numbers x, there is a real number y such that $y^2 + y + 10x = 0$ or $x \le 9$ and there is a real number z such that $z^2 + 2z + 15x = 0$.
 - (b) For all real numbers $x, x \le 9$ or there is both a real number y such that $y^2 + y + 10x = 0$ and a real number z such that $z^2 + 2z + 15x = 0$.

$$A(x,y) := y^2 + y + 10x = 0$$

$$B(x) := x \le 9$$

$$C(x,z) := z^2 + 2z + 15x = 0$$

(a)
$$(\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, (A(x, y) \lor B(x))) \land (\exists z \in \mathbb{R}, C(x, z))$$

(b)
$$(\forall x \in \mathbb{R}, B(x)) \lor (\exists y \in \mathbb{R}, \exists z \in \mathbb{R}, (A(x, y) \land C(x, z)))$$

- (b) cannot imply (a) as if A = T, B = T, C = F then $T \vee (T \wedge F) = T \vee F = T \not\Rightarrow (T \vee T) \wedge F = T \wedge F = F$. However (a) implies (b) as if $(\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, (A(x,y) \vee B(x))) \wedge (\exists z \in \mathbb{R}, C(x,z))$ is true then $(A \wedge B)$ is true. Since it is an or statement we can choose $\forall x \in RB(x)$ to be true. Since the highest level logical operator in (b) is an or, then B(x) = T satisfies the statement.
- 3. (a) f(x) > y and g(y) > x implies f(g(y)) > y and g(f(x)) > x.

(b) $f(g(y)) \le y$ implies $f(x) \le y$, and $g(f(x)) \le x$ implies $g(y) \le x$.

$$A(x, y) := f(x) > y$$

 $B(x, y) := g(y) > x$
 $C(y) := f(g(y)) > y$
 $D(x) := g(f(x)) > x$

(a)
$$(A(x,y) \land B(x,y)) \Rightarrow (C(y) \land D(x))$$

(b)
$$(\neg C(y) \Rightarrow \neg A(x,y)) \land (\neg D(x) \Rightarrow \neg B(x,y))$$

$$(a) \neg (A \land B) \lor (C \land D)$$
 (Implication definiton)

$$(a)((\neg A \lor \neg B) \lor C) \land ((\neg A \lor \neg B) \lor D \text{ (DeMorgan's rule)}$$

$$(a)(\neg A \lor (\neg B \lor C)) \land (\neg A \lor (\neg B \lor D))$$
 (or associativity)

$$(a)(A\Rightarrow (B\Rightarrow C)) \land (A\Rightarrow (B\Rightarrow D)) \ (b)(A\Rightarrow C) \land (B\Rightarrow D) \ (\text{Contrapositive})$$
 a does not logically imply b as in the case where A is true and the rest are false then $(T\land F)\Rightarrow (F\land F)=F\Rightarrow F=T\neq (T\Rightarrow (F\land F))\land (F\Rightarrow (F\land F))=(T\Rightarrow F)\land (F\Rightarrow F)=F\land T=F.$ However b implies a, as if $(A\Rightarrow C)\land (B\Rightarrow D)=T, (A\Rightarrow C)=T, (B\Rightarrow D)=T,$ then since we already know $(A\Rightarrow C)\Rightarrow (A\Rightarrow (B\Rightarrow C))$ from problem 2, then we have $T\land (A\Rightarrow T)=T\land (\neg A\lor T)=T\land T=T.$

- 4. In this pair of assertions, S, T, V, and W are all sets.
 - (a) $S \subseteq T$ if and only if $S \subseteq V$, or $S \subseteq T$ if and only if $W \subseteq T$
 - (b) $S \subseteq T$ if and only if $(S \subseteq T \text{ or } W \subseteq T)$.

$$A(S,T) := S \subseteq T$$

$$B(S,V) := S \subseteq V$$

$$C(T,W) := S \subseteq W$$

(a)
$$A(S,T) \Leftrightarrow B(S,V) \vee A(S,T) \Leftrightarrow C(T,W)$$

(b)
$$A(S,T) \Leftrightarrow (B(S,T) \vee C(T,W))$$

b doesn't imply a since if A = F, B = T, C = F, then $T \Leftrightarrow F \vee F \Leftrightarrow F = F \vee T = T \neq F \Leftrightarrow (T \vee F) = F \Leftrightarrow T = F$. However it does work the other way around, if we take (b) to be true then we have $A \Leftrightarrow (B \vee C)$. Since we have an or statement, then we can just take B out of it, and we're left with the statement $A \Leftrightarrow B$, which if substituted into a as true, then we get $T \vee A \Leftrightarrow C = T$.