UJIAN PRAKTEK:

KELAS A: Hari Jum'at, 27 Desember 2019, jam 08.00-10.20, Ruang J.3.7

KELAS B: Hari Senin, 30 Desember 2019, Jam 08.00 -10.20, Ruang J.3.7

KELAS C: Hari Senin, 30 Desember 2019, Jam 10.20 – 12.00, Ruang J.3.7

KELAS D: Hari Selasa, 31 Desember 2019, Jam 08.00 -10.20, Ruang J.3.7

KELAS E: Hari Selasa, 31 Desember 2019, Jam 10.20 – 12.00, Ruang J.3.7

LAPORAN DIBAWA SAAT UJIAN PRAKTEK

KETENTUAN PROJECT AKHIR:

MINIMAL INPUT: 3 VARIABEL, SETIAP VARIABEL MIN 3 HIMPUNAN

OUTPUT = 1 VARIABEL

FIS menggunakan boostrap (mamdani, sugeno, tsukamoto)

Fuzzy database menggunakan PHP + my SQL

LAPORAN PROJECT AKHIR

MATA KULIAH: LOGIKA FUZZY

Judul << KELAYAKAN MENDAPAT BEASISWA DENGAN FIS (JAVASCRIPT) DAN DATABASE>>

NIM: 201751XXX NAMA: XXXX KELAS:

PROGDI : TEKNIK INFORMATIKA FAKULTAS TEKNIK

DAFTAR ISI:

1.	Fuzzy Inferensi Sistemxx							
	Jelaskan komponen-komponen Fuzzy							
	 Variabel 							
	 Himpunan 							
	 Semesta 							
	 Domain 							
	a. Mamdani							
	b. Sugeno							
	c. Tsukamoto							
2.	Fuzzy Data basexy							
	(+ perancangan sistem)							

1. FUZZY INFERENSI SYSTEM

jelaskan seperti yang sudah dipelajari

Metode Mamdani

Kerjakan sesuai tema yang saudara pilih

· Contoh: (Sumber: Sri Kusuma Dewi/Aplikasi Logika Fuzzy)

Suatu perusahaan makanan kaleng akan memproduksi makanan jenis ABC. Dari data 1 bulan terakhir, permintaan terbesar hingga mencapai 5000 kemasan/hari, dan permintaan terkecil sampai 1000 kemasan/hari. Persediaan barang digudang terbanyak sampai 600 kemasan/hari, dan terkecil pernah sampai 100 kemasan/hari. Dengan segala keterbatasannya, sampai saat ini, perusahaan baru mampu memproduksi barang maksimum 7000 kemasan/hari, serta demi efisiensi mesin dan SDM tiap hari diharapkan perusahaan memproduksi paling tidak 2000 kemasan. Apabila proses produksi perusahaan tersebut menggunakan 4 aturan fuzzy sbb:

- [R1] IF Permintaan TURUN And Persediaan BANYAK THEN Produksi Barang BERKURANG;
- {R2} IF Permintaan TURUN And Persediaan SEDIKIT THEN Produksi Barang BERKURANG;
- [R3] IF Permintaan NAIK <u>And</u> Persediaan BANYAK THEN Produksi Barang BERTAMBAH;
- [R4] IF Permintaan NAIK <u>And</u> Persediaan SEDIKIT THEN Produksi Barang BERTAMBAH;

Berapa kemasan makanan jenis ABC yang harus diproduksi, jika jumlah permintaan sebanyak 4000 kemasan, dan persediaan di gudang masih 300 kemasan?

.

......

Defuzzifikasi / Menghitung z akhir

 $\mu[z] = \begin{cases} 0.25 & , z < 3250 \\ (z - 2000) / 5000 & , 3250 \le z \le 5000 \\ 0.6 & , z > 5000 \end{cases}$

Menghitung z* menggunakan metode Centroid kontinyu

	DaerahA1	Daerah A2	Daerah A3				
Moment	$M1 = \int_{0}^{\infty} (0.25) z dz$	$M2 = \int_{-\infty}^{\infty} \frac{(z - 2000)}{5000} z dz$	M3= (0.6)zdz				
Monicine	$M1 = 0.125*z^{3}$	$M2 = \int_{0}^{\infty} (0.0002z^2 - 0.4z) dz$	M3=0.3*z*[
	M1=1320312.5	M2=0.000067z'-0.2z'	M3=7200000				
		M2=3187515.625					
	$A1 = \int_{0}^{\infty} 0.25 dz$	'f'(s-2000),	$A3 = \int_{0}^{\infty} (0.6) dz$				
Luas	A1=0.25* z ""	$A2 = \int_{0.00}^{0.00} \frac{(x-2000)}{5000} dx$	A3=0.6*z				
	A1=0.25*3250-0.25*0	A2 = ∫(±/5000 - 0.#)ds	A3=1200				
	A1=812.5	A2 = s ² A0000 - 0.4 s A2 = (5000 ² A0000 - 0.4 *5000)					
		-(3250°A0000 -0.4 *3250)					
	A2 = 743.75						

19

Defuzzifikasi / Menghitung z akhir

Menghitung z* menggunakan metode Centroid kontinyu

$$z^* = \frac{M1 + M2 + M3}{A1 + A2 + A3} = \frac{1320312.5 + 3187515.625 + 7200000}{812.5 + 743.75 + 1200} = 4247.74$$

Jadi, jumlah makanan jenis ABC yang harus diproduksi sebanyak **4248 kemasan.**

Menghitung z* menggunakan metode Mean of Maximum (MOM)

 $\label{lem:continuous} \mbox{Jadi, jumlah makanan jenis ABC} \mbox{yang harus diproduksi sebanyak } \textbf{6000 kemasan.}$

7/

Metode Sugeno

silahkah pilih orde 0 atau orde 1

Metode Tsukamoto

silahkan dikerjakan

2. FUZZY DATABASE

kerjakan seperti yang ada di PPT

- PERANCANGAN BASIS DATA

Pembentukan himpunan fuzzy untuk variabel usia karyawan

Usia karyawan dibagi menjadi 3 himpunan: MUDA, PAROBAYA, TUA

				Derajat Kenggotaan(µ[x])			
	NIP	Nama	Umur	MUDA	PARO BAYA	TUA	
	01	Susi	30	1	0	0	
	02	Adi	48	0	0.4	0.8	
	03	Tia	36	0.4	0.1	0	
	04	Lusi	37	0.3	0.2	0	
	05	Siska	42	0	0.7	0.2	
	06	Andy	39	0.1	0.4	0	
	07	Tutik	37	0.3	0.2	0	
	08	Yoga	32	0.8	0	0	
	09	Rina	35	0.5	0	0	
	10	Kiki	25	1	0	0	
500	-						

	ſο	,x≤40
$\mu_{TUA}[x] = 0$	x - 40	,x≤40 ,40≤x≤50 ,x≥50
	[1 10	,x≥50

6

....

Hasil Fuzzy Database Tahani

riasii r azzy Batabase ranam									
NIP	Nama	Derajat Kenggotaan Umur (µ[x])			Derajat Kenggotaan Masa Kerja (µ[y])		Derajat Kenggotaan Gaji (µ[z])		
		MUDA	PARO BAYA	TUA	BARU	LAMA	RENDAH	SEDANG	TINGGI
01	Susi	1	0	0	0.9	0	0.1	0.50	0
02	Adi	0	0.4	0.8	0	0.467	0	0.49	0.255
03	Tia	0.4	0.1	0	0.1	0.267	0	0	0.5
04	Lusi	0.3	0.2	0	1	0	0	0.92	0.04
05	Siska	0	0.7	0.2	0.3	0.133	0	0.90	0
06	Andy	0.1	0.4	0	0.2	0.200	0	0	0.6
07	Tutik	0.3	0.2	0	1	0	0	0.50	0.25
08	Yoga	0.8	0	0	1	0	0.5	0	0
09	Rina	0.5	0	0	1	0	0.13	0	0
10	Kiki	1	0	0	1	0	0	0	0

Contoh Query dari fuzzy database:

- 1. Siapa saja karyawan yang masih muda danmempunyai gaji tinggi?
- Siapa saja karyawan yang masih muda atau atau karyawan yang mempunyai gaji tinggi?
- Siapa saja karyawan yang masih muda tapi masa kerjanya sudah lama?
- 4. Siapa saja karyawan yang parobaya dan gajinya sedang, atau karyawan yang parobaya tapi masa kerjanya sudah lama?

Query 1: Siapa saja karyawan yang masih muda dan mempunyai gaji tinggi ?

select NAMA from KARYAWAN where (umur = "MUDA") and (gaji = "TINGGI")

NIP	Nama	Umur	0-1	Derajat Kenggotaan			
			Gaji	MUDA	TINGGI	MUDA & TINGGI	
01	Susi	30	750.000	1	0	0	
02	Adi	48	1.255.000	0	0.255	0	
03	Tia	36	1.500.000	0.4	0.5	0.4	
04	Lusi	37	1.040.000	0.3	0.04	0.04	
05	Siska	42	950.000	0	0	0	
06	Andy	39	1.600.000	0.1	0.6	0.1	
07	Tutik	37	1.250.000	0.3	0.25	0.25	
08	Yoga	32	550.000	0.8	0	0	
09	Rina	35	735.000	0.5	0	0	
10	Kiki	25	860.000	1	0	0	

Hasil query, karyawan bernama: Tia, Lusi, Andy, Tutik.