Formeln S100 S105

Der bereitgestellte Text enthält keine spezifischen Seitennummern (100-105), daher kann ich keine Formeln speziell von diesen Seiten extrahieren. Stattdessen habe ich alle mathematischen Formeln und Definitionen aus dem gegebenen Text extrahiert. Hier sind sie:

Definition der Transposition einer Matrix:

$$A^{T} := \begin{bmatrix} A_{11} & A_{21} & \cdots & A_{m1} \\ A_{12} & A_{22} & \cdots & A_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{mn} \end{bmatrix}$$

Gleichung (6.10):

$$(A^T)^T = A$$

Definition des Matrix-Produkts:

$$C_{ij} := \sum_{s=1}^{m} A_{is} \cdot B_{sj}$$

Gleichung (6.11):

Beispiel für Matrix-Multiplikation:

$$\begin{bmatrix} 1 & 2 & & & \\ & 34 \cdot & & \\ & & & \end{bmatrix}$$

Rechenregeln für Matrizen (Satz 6.1):

$$A + B = B + A(b) \quad (A + B) + C = A + (B + C)(c) \quad a \cdot (A + B) = a \cdot A + a \cdot B(d) \quad (a + b) \cdot A = a \cdot A + b \cdot A(e) \quad (a + b) \cdot A$$

Definition der quadratischen Matrix (Definition 6.6):

$$A \in M(n, n, \mathbb{R})$$

Definition des Kommutators (Definition 6.7):

$$:= A \cdot B - B \cdot A$$

Gleichung (6.13):

$$=-[B,A]$$

Definition der symmetrischen und schiefsymmetrischen Matrix (Definition 6.8):

A ist symmetrisch, genau falls $A^T = A(b)$ A ist schiefsymmetrisch, genau falls $A^T = -A$

Definition der Nullmatrix (Definition 6.9):

$$0 = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

Gleichung (6.18):

$$A + 0 = A \quad \text{und} \quad 0 \cdot A = 0$$