2. err =
$$\Sigma$$
lr(label = x , Zavulon $\neq x$)
= Σ W ; $(1-W$; $)$ = Σ W ; $-W$; Σ Σ W ; $-W$; Σ

Problem 2

1.
$$x = 1,4 \ Y = 1 \ h(x) = 1, x = 2,3,4$$

 $x = 2,3 \ Y = 0 \ h(x) = 0, x = 1$

$$err_{p_i}h(x) = \frac{3}{4}$$

2.
$$h_4(x) = 1 if x > 4$$
 and 0 o.w.

$$x = 1,4 \quad Y = 1 \quad h(x) = 1 \quad x = 4$$

 $x = 2,3 \quad Y = 0 \quad h(x) = 0 \quad x = 1,2,3$

We do have a non-zero bias when the concept class is C and the data distribution D₁.

3.
$$err_{0_{2}}h(x) = \sum P_{r}(Y=0,h(x)=1,X=i) + \sum P_{r}(Y=1,h(x)=0,X=i)$$

$$= (8/16)(1)(1/4) + (7/16)(1)(1/4) + (6/16)(1)(1/4)$$

$$+ (1/16)(1)(1/4) = \frac{22}{40} err_{h}(x) = \frac{22}{46}$$

$$h_{4}(x) = 1 \text{ if } x > 4 \text{ and } 0 \text{ o.w.}$$

$$err_{p_{2}}h_{4}(x) = \sum P_{r}(Y=1,h(x)=0,X=i)$$

$$= (1/16)(1)(1/4) + (1/16)(1)(1/4) = \frac{10}{40}$$

We have a non-zero bias when the concept class is C and distribution D_2 .

Problem 3

107.50	Train error	Testerror
	. 136	. 64
7	. 204	. 47
10	. 556	. 23
15	. 458	. 4033
20	. 186	. 1567

Words	Train	Test
1	remember	remember
2	lack	france
3	france	lack
4	universite	html.
5	monday	linguist
6	editor	title ,
7	otherwise	england
8	•	clearly
9	ling marker	universite
10	linguist	reach
	J	