1 Введение в теорию вероятности

Теория вероятности — раздел математики изучающие случайные события, величины их свойства и операции над ними

Самые ранние работы по теории вероятности относятся к 17 в. Важный вклад в теорию вероятности внёс Якоб Бернули, он дал доказательство закона больших чисел в простейшим случаи производимых испытаний

В первой половине 19 в. теория вероятности начинает применятся к анализу ошибок поведения, во второй половине 19 в. были доказаны законы больших чисел, центрально предельная теорема а также разработана теория цепей.

Современный вид теория вероятности получила благодаря аксиоматизации предложений Андрея Hиколаевичем Колмогоровым

В результате теория вероятности пробрела строгий математический вид и окончательно стала восприниматься как один из разделов математики

2 Испытания и события. Виды испытаний событий. Операции объединения и пересечения событий, их свойства.

2.1 Испытания и события

Испытания — осуществление некоторого комплекса условий, в результате которого непременно произойдёт какое либо событие.

Случайное событие — событие которое может произойти или не произойти в результате испытания.

Достоверное событие — событие, которое обязательно произойдёт в результате данного испытания

Невозможные события — события которые некогда не произойдут в результате данного испытания.

Несовместимые события — события, которые не могут появится одновременно в результате данного испытания

Если событие могут произойти одновременно, то они называются **совместимыми**.

Равновозможные события — события которые имеют одинаковый шанс произойти в результате данного испытания

Множество, элементами — которого являются все несовместимые, равновозможные исходы данного испытания, называют *пространством элементарных исходов*.

2.2 Классическое определение вероятности

Вероятностью события, называется отношения числа элементарных исходов благоприядстующиму данному событию(m) к числу всех равновозможных исходов опыта, в котором может появится это событие.

Вероятность события A обозначают обозначают P(A), здесь P — первая буква французского слова Probability (пер. случайность). В соатведствии с определением

$$P(A) = \frac{m}{n}$$

m — число элементарных исходов, благоприядствующих событию $oldsymbol{A}$

n – число всех равновозможных элементарных исходов опыта образующие полную группу событий.

Это определение называется *классическим* она возникла на начальном этапе развития теории вероятности.

Вероятность событий имеет следующие свойства

1. Вероятность достоверного события равна 1. Обозначим достоверное событие буквой ${\bf U}$. Для достоверного события ${\bf m}={\bf n},$ поэтому

$$P(U) = 1$$

2. Вероятность невозможного события равна 0. Обозначим невозможное событие буквой ${\bf V}$. Для невозможных событий ${\bf m}=0$, поэтому

$$P(V) = 0$$

3. Вероятность случайного события выражается положительным числом меньше 1. Поскольку для события **A** выполняется неравенство:

или

$$0 < \frac{m}{n} < 1$$

то,

4. Вероятность любого случайного события ${\bf B}$ удостоверяет неравенство

$$0 \le P(B) \le 1$$

Пример решения задачи

Задача. В урне 10 одинаковых по массе и размеру шаров из которых 6 голубых и 4 красных. Из урны извлекают один шар. Какова вероятность того, что извлеченный шар окажется голубым

Решение. Событие извлечение шара голубым является событием. Пусть это событие называется **A**. Дальнейшие испытание имеет 10 элементарных исходов из которых 6 является благоприятными.

$$P(A) = \frac{6}{10} = 0, 6 = 60\%$$

Ответ: Вероятность изъятия шара голубого цвета равна 60%.

3 Комбинаторика и вероятность. Статистическое определение вероятности. Геометрические вероятности

Комбинаторика изучает, способы подсчёта числа элементов в конечных множествах

Формулы комбинаторики используют при непосредственном вычислении вероятности.

3.1 Перестановки

Множество элементов состоящих из одних и тех-же различных элементов и отличающихся друг от друга только их порядком называются перестановками этих элементов

Число всевозможных перестановок из n элементов обозначается через P_n — это число равно n!.

$$P_n = n!$$

 Γ де n! — это произведение последовательно умноженных чисел от 1 до n.

Это используют для конечного множества Для пустого множества факториал равен 1.

$$0! = 1$$

3.2 Размещения

Размещением называется множество составленным из n различных элементов по m элементов, которые отличают-

ся либо составом элементов либо порядком элемента Число всех возможных размещений определяется формулой:

$$A_n^m = n(n-1)(n-2)...(n-m+1)$$

3.3 Сочетания

Сочетаниями из п различных элементов по m, называется множеством содержащих m элементов из числа n заданных, и которые отличаются хотя бы одним элементом. Число сочитаний n элементов по m обозначается C_n^m и выражается следующим образом:

$$C_n^m = \frac{n!}{m!(n-m)!}$$

По переведённым формулам предполагают, что

$$C_n^0 = 1$$

Отметим что число перестановок, размещений и сочетаний связаны равенством

$$C_n^m = \frac{A_n^m}{P_m}$$

Классическое определение вероятности предполагает, что все элементарные исходы равновозможные.

3.4 Частота

Относительной частотой событий называют отношение числа опытов, в которах появились эти события к числу всех произведённых опытов, и обознается:

$$W(A) = \frac{m}{n}$$

 ${\rm m}-{\rm число}$ опытов где проявилось событие, ${\rm n}-{\rm число}$ произведённых опытов.

Вероятность события называется число, около которого группируется значение частоты данного события в различных сериях большого числа испытаний.

Эти определение вероятности называется статистическим определением теории вероятности.