

## Continuity

#### Continuity of a Function at a Point

Suppose f is a real function on a subset of the real numbers & let c be a point in the domain of f. Then f is continuous at c if

$$\lim f(x) = f(c)$$

#### Continuity of a Function in an Interval

Suppose f is a function defined on a closed interval [a,b], then for f to be continuous, it needs to be continuous at every point in [a,b] including the end points a & b.

Continuity of f at a,  $\lim_{x \to a} f(x) = f(a)$ 

Continuity of f at b,  $\lim_{x \to a} f(x) = f(b)$ 

A function which is not continuous at point x=c is said to be discontinuous at that point



### **Algebra of Continuous Functions**

**Theorem 1:** Suppose f & g be two real functions continuous at a real number c, Then

(1) f + g is continuous at x=c (3) f.g is continuous at x=c

(2) f - g is continuous at x=c (4) f/g is continuous at x=c, (provided  $g(c)\neq 0$ )

**Theorem 2:** Suppose f & g are real valued functions such that (fog) is defined at c. If g is continuous at c& if f is continuous at g(c), then (fog) is continuous at c.



# **Implicit Functions**

An equation of the form f(x, y) = 0 in which y is not expressible in terms of x is called an implicit function of x & y.

**Derivative of Implicit Functions** 

Let y=f(x, y), where f(x, y) be an implicit function of x & y. Firstly differentiate both sides of equation w.r.t x

Then take all terms involving  $\frac{dy}{dx}$  on L.H.S. & remaining terms on R.H.S. to get the required value.



## Differentiation of Inverse Trigonometric Functions

| f(x)                  | f´(x)                        | Domain of f |
|-----------------------|------------------------------|-------------|
| sin <sup>-1</sup> x   | $\frac{1}{\sqrt{1-x^2}}$     | (-1,1)      |
| cos <sup>-1</sup> X   | $\frac{-1}{\sqrt{1-x^2}}$    | (-1,1)      |
| tan <sup>-1</sup> x   | $\frac{1}{1+\chi^2}$         | R           |
| cot <sup>-1</sup> x   | $\frac{-1}{1 + \chi^2}$      | R           |
| sec <sup>-1</sup> x   | $\frac{1}{ x \sqrt{x^2-1}}$  | x >1        |
| cosec <sup>-1</sup> x | $\frac{-1}{ x \sqrt{x^2-1}}$ | x >1        |



#### **Mean Value Theorem**

If f:  $[a, b] \rightarrow R$  is continuous on [a, b] & differentiable on (a, b). Then there exists some c in (a, b) such that  $f'(c) = \frac{f(b) - f(a)}{b - a}$ 



The Mean value Theorem states that there is a point c in (a, b) such that the slope of the tangent at (c, f(c)) is same as the slope of the secant between (a, f(a)) and (b, f(b)) or there is a point c in (a, b) such that the tangent at (c, f(c)) is parallel to the secant between (a, f(a)) & (b, f(b))



### **Differentiability**

A function f is said to be differentiable at a point c in its domain, if its left hand & right hand derivatives exist at c are equal. Here at x = c,

Left Hand Derivative.

L.H.D. = 
$$\lim_{h\to 0} \frac{f(c-h)-f(c)}{-h} = Lf'(c)$$

Right Hand Derivative,

R.H.D. = 
$$\lim_{h\to 0} \frac{f(c+h)-f(c)}{h} = Rf'(c)$$

Theorem: If a function f is differentiable at a point c, then it is also continuous at that point. Therefore, every differentiable function is continuous, but the converse is not true.



# **Algebra of Derivatives**

Let u, v be the functions of X.

- (1) Sum and Difference Rule (u ± v) = u' ± v'
- (2) Leibnitz or Product Rule (uv) = u v'+ u'v
- (3) Quotient Rule  $\left(\frac{u}{v}\right) = \frac{u'v uv'}{v^2}$



## **Chain Rule**

If y is a function of u, u is a function of v & v is a function of x.

Then, 
$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dv} \times \frac{dv}{dx}$$



# CONTINUITY AND DIFFERENTIABILITY



# **Logarithmic Differentiation**

Logarithmic Differentiation is a very useful technique to differentiate functions of the form  $f(x)=[u(x)]^{v(x)}$ , where f(x) & u(x) are positive.

We apply logarithm (to base) on both sides to the above equation & then differentiate by using chain rule, in this way we can find f'(x). This process is called logarithmic

$$\frac{d}{dx}\left(e^{x}\right) = e^{x}, \frac{d}{dx}\left(\log x\right) = \frac{1}{x} & \frac{d}{dx}a^{x} = a^{x}\log a$$



#### **Derivatives of Functions In Parametric Form**

The set of equations x = f(t), y = g(t) is called the parametric form of an equation. Here,  $\frac{dy}{dx} = \frac{dy}{dx} / \frac{dt}{dt}$  or  $\frac{g(t)}{f(t)}$ 

Here,  $\frac{dy}{dx}$  is expressed in terms of parameter only without directly involving the main variables.



## **Second Order Derivative**

Let 
$$y = f(x)$$
, then  $\frac{dy}{dx} = f'(x)$ 

If f'(x) is differentiable, then we may differentiate it again w.r.t. x & get the second order derivative represented by:

$$\frac{d}{dx}\left(\frac{dy}{dx}\right) \text{ or } \frac{d^2y}{dx^2} \text{ or } f''(x) \text{ or } D^2y \text{ or } y'' \text{ or } y_2$$



# **Rolle's Theorem**

If f: [a, b]—R is continuous on [a, b]& differentiable on (a, b) such that f(a) = f(b), then there exists some c in (a, b) such that f'(c) = 0



In the above graph, the slope of tangent to the curve at least at one point becomes zero. The slope of tangent at any point on the graph of y = f(x) is nothing but the derivative of f(x) at that point.