

WB03A-8684H2V1

Wi-Fi4 and BLE5
IOT双模模组规格书

WB03A-8684H2V1

模组规格书

公司地址: 中国深圳市光明区马田街道薯田埔社 区第四工业区埃迪蒙托工业园第一栋602

网址: www.phaten.com

客户确认

公司名称	
职位	
签字	
日期	
飞腾云	

版本记录

版本	日期	修订内容	修订人	审批
V1.0	2024/05/14	首版	宋瑞霞	姜强玲

目录

1	产品介绍	5
	1.2 产品特性	5
	1.3 规格描述	6
	1.4 绝对电气参数	6
	1.5 正常工作条件	6
2	· 射频参数	. 7
	2.1 Wi-Fi射频性能	7
	2.2 蓝牙技术指标	8
3	天线信息	. 9
	3.1天线类型	9
	3.2天线设计注意事项	9
4	管脚定义	10
	4.1 管脚布局	.10
	4.2 管脚描述	. 11
5	;模组尺寸和 PCB 封装图形	12
	5.1 模组尺寸	. 12
6	产品包装信息	13
7	[,] 生产指导	14
	7.1 生产指南	. 14
	7.2 推荐炉温曲线	. 14
	7.3 储存条件	. 15

1、产品介绍

1.1 产品描述

WB03A-8684H2V1是一款低功耗嵌入式Wi-Fi4 and BLE5 IOT双模模组。它由一个高集成度的无线射频芯片ESP8684和少量外围器件构成,支持STA/AP/STA+AP工作模式,并同时支持低功耗蓝牙连接。

WB03A-8684H2V1内置运行速度最高可到120MHz的32-bit MCU,1T1R WLAN,272 KB SRAM及内置 2MB Flash和丰富的外设资源。

WB03A-8684H2V1是一个RTOS 平台,集成了所有Wi-Fi MAC以及TCP/IP协议的函数库。用户可以基于这些开发满足自己需求的嵌入式Wi-Fi 产品。

1.2 产品特性

- 内置低功耗32-bit MCU,可以兼作应用处理器
- 主频支持120MHz
- 工作电压: 3V to 3.6V
- Wi-Fi 连通性
 - IEEE 802.11 b/g/n
 - Channel 1-14@2.4GHz(CH1-11 for US/CA, CH1-13 for EU/CN, CH1-14 for JP)
 - 支持WEP/WPA/WPA2/WPA2 PSK(AES)和WPA3安全模式
 - 支持STA/AP/STA+AP工作模式
 - 支持蓝牙, SmartConfig以及AP两种配网方式(包括Android和IOS设备)
- PCB板载天线
- 工作温度: -40℃ to 105℃
- 蓝牙连通性
 - 低功耗蓝牙BLE5
 - 完整的蓝牙共存接口

1.3 规格描述

产品名称	WB03A-8684H2V1
产品描述	Wi-Fi4 and BLE5 IOT双模模组
封装类型	SMT邮票孔/插针孔
环保说明	所有硬件部件完全符合欧盟RoHS指令

1.4 绝对电气参数

参数	描述	最小值	最大值	单位
Ts	存储温度	-40	150	°C
VBAT	供电电压	-0.3	3.6	V
静电释放电压(人体模型)	TAMB -25°C	-2	2	KV
静电释放电压(机器模型)	TAMB -25°C	-500	500	V

1.5 正常工作条件

参数	描述	最小值	标准值	最大值	单位
Та	工作温度	-40	1	105	°C
VBAT	工作电压	3	3.3	3.6	V
VOL	IO低电平输出	-		0.1×VDD1	V
VOH	IO高电平输出	0.8×VDD1	-	-	V
I	IO驱动电流	-	40	-	mA

1.6 射频功耗

TX连续发送时功耗

工作状态	模式	平均值	峰值	单位
TX	802.11b@1Mbps +20.5dBm	-	373	mA
TX	802.11g@54Mbps +18.5dBm	-	321	mA
TX	802.11n@HT20 MCS7 +17.5dBm	-	300	mA

RX连续接收时功耗

工作状态	模式	接收模式	平均值	峰值	单位
RX	802.11b/g/n@HT20	连续接收	ı	66	mA

2、射频参数

2.1 Wi-Fi射频性能

Wi-Fi基本射频性能

产品特性	产品描述
无线标准	IEEE 802.11 b/g/n
工作频率	2.400 GHz ~ 2.4835 GHz (2.4 GHz ISM Band)
调制方法	DSSS,DBPSK, DQPSK, CCK and OFDM (BPSK/QPSK/16-QAM/ 64-QAM)
Wi-Fi通道	Channel 1-14@2.4GHz(CH1-11 for US/CA, CH1-13 for EU/CN, CH1-14 for JP)
天线类型	PCB板载天线

Wi-Fi发射性能

TX	最小值	典型值	最大值模式	单位
802.11b@1Mbps EVM≤-24dB	-	20.5	ı	dBm
802.11b@11Mbps EVM≤-24dB	-	20.5	ı	dBm
802.11g@54Mbps EVM≤-30dB	-	18.5	ı	dBm
802.11n@HT20 MCS7 EVM≤-32dB	-	17.5	-	dBm
频偏误差	-12	-	12	ppm

Wi-F接收性能

RX	典型值	单位
802.11b@1Mbps PER≤10%	-99	dBm
802.11g@54Mbps PER≤10%	-76	dBm
802.11n@HT20 MCS7 PER≤10%	-73.4	dBm

2.2 蓝牙技术指标

蓝牙基本规格

产品特性	产品描述
蓝牙规格	BLE5
工作频率	2.402~2.480GHz

蓝牙发射性能

TX	最小值	典型值	最大值	单位
发射功率	-24	1	20	dBm
连接速率	-	1	-	Mbps
频率误差	-75	1	75	KHz

蓝牙接收性能

RX	典型值	单位
灵敏度@ PER≤1%	≤-85	dBm

3、天线信息

3.1 天线类型

PCB板载天线

3.2 天线设计注意事项

当Wi-Fi模组上使用PCB 板载天线时,为确保Wi-Fi 性能的最优化,建议模组天线部分和其他金属件距离至少在15mm 以上。用户PCB 板在天线区域勿走线甚至覆铜,以免影响天线性能。

Do not place any metal in the red area above the antenna. The recommended diameter of the circular arc is greater than 3 cm.

4、管脚定义

4.1 管脚布局

4.2 管脚描述

序号	名称	类型	功能	
1	IO0	I/O/T	GPIO0, ADC1_CH0	
2	IO1	I/O/T	GPIO1, ADC1_CH1	
3	EN	I	高电平: 芯片使能; 低电平: 芯片关闭; 内部默认已上拉。	
4	102	I/O/T	GPIO2, ADC1_CH2, FSPIQ	
6	IO5	I/O/T	GPIO5, FSPIWP, MTDI, LED PWM	
7	106	I/O/T	GPIO6, FSPICLK, MTCK, LED PWM	
8	3V3	Р	供电	
9	NC		空管脚	
10	NC		空管脚	
11	NC		空管脚	
12	IO18	I/O/T	GPIO18	
5	104	I/O/T	GPIO4, ADC1_CH4, FSPIHD, MTMS, LED PWM	
13	NC		空管脚	
14	NC		空管脚	
15	GND	Р	接地	
16	107	I/O/T	GPIO7, FSPID, MTDO, LED PWM	
17	IO8	I/O/T	GPIO8	
18	IO9	I/O/T	GPIO9	
19	IO10	I/O/T	GPIO10, FSPICS0, LED PWM	
20	IO3	I/O/T	GPIO3, ADC1_CH3, LED PWM	
21	RXD0	I/O/T	GPIO19, U0RXD	
22	TXD0	I/O/T	GPIO20, U0TXD	
23	GND	Р	接地	

5、模组尺寸和 PCB 封装图形

5.1 模组尺寸

PCB尺寸: 24±0.3(L)X16±0.3(W)X0.8±0.1(H)

6、产品包装信息

托盘+外箱包装

7、生产指导

7.1 生产指南

- 1. 出厂的可贴可插封装模组根据客户底板设计方案选择组装方式,底板设计为贴片封装时使用SMT贴片制程进行生产,如果底板设计为插件封装时使用波峰焊制程进行生产。模组产品拆开包装后建议在24小时内完成焊接,否则需放置在湿度不超过10%RH的干燥柜内,或重新进行真空包装并记录暴露时间,总暴露时间不超过168小时。
 - (SMT 制程) SMT 贴片所需仪器或设备:
 - 贴片机 / SPI / 回流焊 / 炉温测试仪 / AOI
 - (波峰焊制程) 波峰焊所需的仪器或设备:
 - 波峰焊设备 / 波峰焊接治具 / 恒温烙铁 / 锡条、锡丝、助焊剂
 - 炉温测试仪
 - 烘烤所需仪器或设备:
 - 柜式烘烤箱 / 防静电耐高温托盘 / 防静电耐高温手套
- 2. 出厂的模组存储条件如下:
 - •防潮袋必须储存在温度 < 40℃、湿度 < 90% RH 的环境中。
 - •干燥包装的产品,保质期为从包装密封之日起12个月的时间。
 - 密封包装内装有湿度指示卡, 如右图:

- 3. 出厂的模组当出现可能受潮的情况下需要进行烘烤:
 - 拆封前发现真空包装袋破损
 - 拆封后发现包装袋内没有湿度指示卡
 - 拆封后如果湿度指示卡读取到10% 及以上色环变为粉色
 - 拆封后总暴露时间超过168小时
 - 从首次密封包装之日起超过12个月
- 4. 如果暴露时间超过168 小时未经过烘烤,不建议使用回流焊或波峰焊接工艺焊接此批次模组,因模组为3 级湿敏器件超过允许的暴露时间产品可能受潮,进行高温焊接时可能会导致器件失效或焊接不良。
- 5. 在整个生产过程中请对模组进行静电放电(ESD)保护。
- 6. 为了确保产品合格率,建议使用SPI和AOI测试设备来监控锡膏印刷和贴装品质。2024/05/16 14:47

7.2 推荐炉温曲线

请根据制程选择相应的焊接方式,SMT 参考回流焊接炉温曲线推荐,波峰焊制程参考波峰焊接炉温曲线推荐。设定炉温与实测炉温有一定差距,本文所示温度均为实测温度。

方式一: SMT 制程 (SMT 回流焊接推荐炉温曲线)

请参考回流焊炉温曲线要求进行炉温设定,回流焊温度曲线如下图所示:

- A: 温度轴
- •B: 时间轴
- •C: 合金液相线温度区间为217-220℃
- D: 升温斜率为1-3℃/S
- E: 恒温时间为60-120S; 恒温温度区间为150-200℃
- F: 液相线以上时间为50-70S
- •G: 峰值温度为235-245°C
- H: 降温斜率为1-4°C/S

注意: 以上推荐曲线以SAC305 合金焊膏为例; 其他合金

焊膏请按焊膏规格书推荐炉温曲线设置。

方式二: 波峰焊制程(波峰焊接炉温曲线)

请参考波峰焊接炉温建议进行炉温设定,峰值温度260°C±5°C,波峰焊接温度曲线如下图所示:

DIP Type Product Pass Wavesolder Graph Entrance to solder Exit from solder Flux zone Preheat zone Solder Wave Peak 260°C Temp. max. 260°C 200°C Approx.PCB Max 145°C 150°C **TEMPERATURE** 100°0 50°0 PCB top-side temperature

波峰焊接炉温曲线建议/手工补温建议 预热温度 80-130°C 75-100S 预热时间 波峰接触时间 3-5S 锡缸温度 260±5°C 升温斜率 ≤2°C/S 降温斜率 ≤6°C/S 360°C±20 焊接温度 焊接时间 小于3S/点

7.3 储存条件

警示 本隔潮袋装有 潮湿敏感器件

等级 (MSL) 3 如果缺省,

 经计算密封袋内器件的保存期限:在<40 ℃及<90%相对湿度 (RH)条件下为12 个月

- 3. 打开袋后,将要采用再流焊接或者其它高温工艺加工的器件必须
 - a) 在车间环境≤30°C/60% RH条件下,在 168 小时 内贴装,或

 小时内贴装,或
 - b) 按照J-STD-033贮存
- 4. 贴装前,器件要求烘烤,如果:
 - a) 在23±5°C下读取时,对于等级为2a-5a级的器件,湿度指示卡读数>10%;或者对于等级为2级的器件,湿度指示卡读数>60%
 - b) 上述的3a或者3b条件不满足
- 如果要求烘烤,参见IPC/JEDEC J-STD-033中的烘烤程序。
 注1: IPC/JEDEC J-STD-020模定了等級和封裝本体温度