SISTEMAS MULTIMÍDIA ÁUDIO 2

Prof.: Danilo Coimbra

(coimbra.danilo@ufba.br)

- Princípios de digitalização
 - □ Para que sistemas computacionais processem e comuniquem sinais de áudio, as ondas mecânicas precisam ser transformadas em elétricas e então em digitais
 - Duas transformações

- Eletrônica
 - Conversão de ondas mecânicas em sinais elétricos
- 虛 Digital
 - Conversão de sinais elétricos em bits

- Frequência: Número de ciclos que as partículas realizam em um segundo (medida em Hertz – Hz)
- Amplitude: diferença entre os máximos valores positivos e negativos do sinal de áudio (magnitude)
 - Comum ser expressa observando-se a voltagem (decibéis dB)

- Conversão analógico-digital
 - Sinal de áudio possui duas dimensões: voltagem e tempo. Elas serão digitalizadas através de três processos:

Amostragem: realiza leituras periódicas e instantâneas da voltagem em espaços de tempo uniformes

- Quantização: converte os valores analógicos amostrados em valores digitais
- Codificação

Amostragem

- O processo de amostragem nada mais é que a obtenção de amostras de um sinal contínuo, em <u>instantes de tempo</u> <u>igualmente espaçados</u>
- Nesta etapa um conjunto de valores analógicos é amostrado em intervalos temporais de periodicidade constante
 - A frequência de relógio é chamada de taxa de amostragem ou frequência de amostragem
 - O valor amostrado é mantido constante até o próximo intervalo
 - Dentro de cada intervalo, a amostra tem apenas um valor (discreto no tempo)

- O quanto deve ser amostrado?
 - Reconstruir exatamente o sinal
 - é necessário infinitas amostras!

- Se utilizarmos poucas amostras?
 - O sinal ficará distorcido

Ou seja, não é capturado corretamente o formato real do sinal

- O quanto deve ser amostrado?
- Uso do teorema de Nyquist
 - "Para obter uma representação precisa de um sinal analógico, sua amplitude deve ser amostrada a uma taxa mínima igual ou superior ao dobro da componente de mais alta freqüência presente no sinal"
 - Taxa de Nyquist
- A partir deste teorema, Sony e Philips estabeleceram uma taxa de amostragem de 44.1 KHz quando conceberam o CD-DA. Por quê?

- O quanto deve ser amostrado?
- Uso do teorema de Nyquist
 - "Para obter uma representação precisa de um sinal analógico, sua amplitude deve ser amostrada a uma taxa mínima igual ou superior ao dobro da componente de mais alta freqüência presente no sinal"
 - Taxa de Nyquist
 - Ex. Se a freqüência mais alta do sinal é de 20KHz, para que a reconstrução seja precisa, a amostragem deve ser realizada a 40KHz, ou 40 Ksps.
 - sps = samples per second

- E quando não é respeitado o teorema de Nyquist?
 - **□** Ex.:
 - Sinal = 6KHz
 - Amostragem a 8KHz

- E quando não é respeitado o teorema de Nyquist?
 - □ Teorema de Nyquist = 2*6 = 12KHz amostragem (mínimo)

Processo pelo qual os valores analógicos das amostras tomadas da amplitude do sinal <u>são</u> convertidos em valores digitais

- Para reconstruir exatamente o sinal:
- Necessidade de um número infinito de bits

- Usando um número finito de bits:
- Representa-se cada amostra através de um número correspondente de níveis discretos

- Refere-se ao número de bits usados para representar cada amostra
- Uma amostra representada por apenas um bit poderia receber apenas dois valores: "0" ou "1"
- Já uma representação com 3 bits poderia receber 8 valores diferentes (2³=8): 000, 001, 010, 100, 110, 101, 011, 111
- Um CD tem uma resolução de 16 bits o que permite uma resolução binária com 65.534 valores.

1000 1010 0110 0011 0011 0111 1010 0111 0100 0010 0110 1010 1000 0100 0010

- Exemplo
- □ Voz humana varia de 300 a 3.300 Hz
- 4KHz: frequência da linha telefônica analógica
 - Taxa da amostragem 8KHz (qualidade de telefone)
- Se considerarmos um CD de 8 bits
 - 8.000 Hz * 8 bits = 64.000bps ou 64Kbps

Amostragem e Quantização

- □ a) amostragem:
- Amostra o sinal analógico em função da dimensão do tempo
- b) quantização:
- Amostra o sinal analógico em função da dimensão da amplitude

Amostragem e Quantização

- Taxa comuns de amostragem
 - 8.000Hz, 16.000Hz, 22.050Hz e 44.100Hz (CD)
- Números comuns de bits por amostra
 - □ 4, 8, 16 e 24
- Canais de som
 - □ 1(mono), 2(estereo), 3, 5, 7
- 🖢 Qualidade de CD
 - □ Amostras a 44.100Hz (44,1 KHz), 16 bits por amostra e 2 canais de som (stereo)

- Circuito que realiza amostragem e quantização
 - Conversor analógico digital (analog to digital converter -ADC)
- Caminho inverso: DAC

- Após a captura
 - os dados amostrados e quantizados devem ser "guardados" em algum formato mídia de representação
 - Exemplo: WAV e MP3

Na prática

- Quantos bytes serão necessários para transmitir 1
 segundo de áudio, capturado com qualidade de CD?
 - □ Taxa de amostragem: 44100 Hz e 16 bits e som estereo

Na prática

- Quantos bytes serão necessários para transmitir 1
 segundo de áudio, capturado com qualidade de CD?
 - □ Taxa de amostragem: 44100 Hz e 16 bits e som estéreo
 - 1(segundo) * 44.100 (taxa de amostragem) * 2 (bytes por amostra) * 2 (som estéreo) = 176.400 bytes (*8 bits)

1,41Mbps! -> largura de banda (bandwidth)

Codificação

 Consiste em associar um conjunto de dígitos binários (code-word) a cada valor quantificado

Codificações

Características de formatos para áudio digital

FORMATO	FREQ. DE AMOSTR. (KHz)	DIMENSÃO AMOSTRA (BITS)	QUANTIF.	CANAIS	DÉBITO BINÁRIO (KBIT/S)	MÉTODO (CODEC)	QUALIDADE
CD-DA	44,1	16	Linear	2	705/canal	PCM	Alta
DAT	48	16	Linear	2	768/canal	PCM	Alta
G.721	8	8	Linear	1	32/canal	ADPCM	Média
ALAW/ HAW	8	8	Não linear (logarítmica)	1	64/canal	РСМ	Telefónica
WAV	44,1	16	Linear	2	705/canal	PCM	Alta
WMA	8 - 96	24	Não uniforme	6 (5.1)	32 - 768	WMA, WMA Pro, WMA Lossless e WMA Voice	Telefónica a alta
мРЗ	32, 44,1 e 48	16	Não uniforme	2	32 - 320	MPEG-1 Audio Layer III	Média a alta
AAC	8 - 96	24	Não uniforme	48	De 8 até 576/canal	LC-AAC, Main, SSR- AAC	Telefónica a alta
MP4	8 - 96	24	Não uniforme	48	De 8 até 576/canal	LC-AAC, Main, SSR- AAC, HE- AAC, MP1, MP2, MP3	Telefónica a alta
Ogg Vorbis	8 - 192	24	Não uniforme	255	45 - 500	Vorbis	Telefónica a alta
REAL AUDIO	8 - 96	24	Não uniforme	Variável	Variável	VSELP, LD- CELP, Dolby AC3, ATRAC3, LC-AAC, HE-AAC.	Telefónica a alta

Débito binário= Taxa de bit (bit rate)

sample rate) * (bit depth) * (number of channels) = kbits per second

Codificações

- CD-DA (Compact Disc-Digital Audio) e IFF (Audio Interchange File Format)
 - □ São padrões de codificação sem qualquer compressão

- WAV e AIFF são flexíveis
 - Suporta qualquer combinação de variáveis da tabela anterior
 - Também suportam codificações com perdas

- Modulação por Código de Pulso (em inglês, Pulsecode Modulation)
 - Método mais conhecido para representar digitalmente amostras de sinais analógicos

A técnica PCM foi patenteada, em 1939, por Alec.
 Reeves, quando era engenheiro da ITT¹ na França

- Digitalização por meio de amostragem e quantização
 - Muito utilizado em telefonia
 - 8000Hz e 8bits = 64kbps
- Amostragem em intervalos regulares

- Limitações:
 - Erro de quantização
 - Aliasing caso teorema de Nyquist não seja satisfeito

Erro de quantização

- □ Cenário: pulsos elétricos de 0 255 volts
 - 8 bits (256 valores)
- □ Um pulso de 147,39√?
 - Não é possível representar 147,39 com 8 bits

Erro de quantização

- Pequenos desvios em relação a amostra original do sinal
- □ Teremos um erro de -0,39V
 - se considerarmos nível 147
- □ ou +0,61 V
 - Se considerarmos nível 148

- Esta falta ou excesso no valor do sinal provoca o surgimento de um sinal aleatório
 - Ruído de quantização

Erro de quantização

 Pode ser reduzido se aumentarmos o número de níveis de quantização existentes entre os limites da variação da voltagem

Codificação – Differential PCM (DPCM)

- Amostras adjacentes de áudio são parecidas
 - □ Diferenças entre os sinais são mínimas
 - □ Tira a redundância do sinal do PCM

- DPCM faz previsão da amostra seguinte e codifica apenas a diferença e transmite
 - Analisa a amostra atual e a anterior
 - Mudanças bruscas entre amostras adjacentes causam distorções

Codificação – Differential PCM (DPCM)

- Menor quantidade de bits necessários para codificar os valores
 - Normalmente, salva-se 1 bit para cada amostra
 - Sinal de voz: redução de 64 kbps (PCM) para 56 kbps (DPCM)

Codificação – ADPCM

Adaptative Differential Pulse Code Modulation

- Os níveis de quantização variam com o tempo
 - De modo a acompanhar a amplitude do sinal
 - Baseadas nas amostras passadas do sinal
- Objetivo da técnica adaptativa:
 - Redução na faixa dinâmica do sinal para obter uma redução na taxa final de transmissão

- Sinal de voz apresenta uma correlação entre amostras sucessivas
 - Amplitude do sinal não varia muito de uma amostra pra outra

Codificação – ADPCM

- Ou seja, o modelo ADPCM analisa as diferenças DPCM:
 - Se a diferença entre sinais é pequena, o ADPCM aumenta o tamanho dos níveis de quantização
 - Se a diferença é grande, o ADPCM diminui os níveis de quantização
 - Adapta os níveis de quantização para o tamanho da diferença dos sinais

Codificação — ADPCM

Em suma:

- Utilização de número variável de bits para codificação das diferenças
 - Menos bits → maiores diferenças
 - Mais bits → menores diferenças
- O ADPCM diminui a taxa de bits da voz para 32kbps,
 metade da modulação PCM
 - Ainda mantendo a mesma qualidade de voz (inteligibilidade)

Codificação — PCM Logarítmico

- Amostras de baixa amplitude são amostradas com maior precisão do que as de alta amplitude
 - Os humanos são menos sensíveis a mudanças de intensidade do som do que em relação a períodos de silêncio
- Solução: amostrar mais "densamente" as baixas amplitudes e menos "densamente" as amplitudes mais altas (menos bits no total)
 - Comportamento da escala logarítmica
 - 🗖 Quantização não linear da amplitude do sinal

Codificação — PCM Logarítmico

- Quantização não linear da amplitude do sinal
 - O número de bits diminui logaritmicamente com o nível do sinal amostrado
 - Amostras de baixa amplitude são amostras com mais precisão do que as de alta amplitude

É uma tecnologia de compressão para sinais de áudio baseada nas imperfeições da audição humana

- Técnica de compressão com perda
 - Bits decodificados não resultam numa cópia idêntica do som original antes da compressão

Objetivo:

Ter um fluxo de bits decodificado que soa exatamente (ou o máximo possível) do áudio original enquanto tenta comprimir o arquivo o máximo possível

Modelo psico-acústico

- Sensibilidade da audição
- Mascaramento de frequência
- Mascaramento temporal

- Sensibilidade da audição
 - A sensibilidade do ouvido humano não á a mesma para todas as frequências
 - Intervalo entre 20Hz e 20kHz
 - Último valor vai decrescendo a medida que ficamos velhos
 - Ouvido é mais sensível para frequências entre 500Hz e 5kHz
 - Sensibilidade diminui acima e abaixo desses valores
 - Ou seja, som a 10Hz deve ser mais alto que um som de 1kHz

Sensibilidade da audição

= Hearing sensitivity of the human ear

Sensibilidade da audição

- Mascaramento de frequência
 - Um som/tom audível pode tornar outro som inaudível
 - Dois ou mais sons diferentes o estimulam simultaneamente num curto intervalo de tempo e isso consiste no apagamento parcial ou total de algumas componentes do sinal de áudio
 - Um som pode simplesmente, apagar o outro ou então aumentar o seu limiar de audição.

- Mascaramento de frequência
 - Som alto pode tornar sons baixos ináudivels
 - Resulta no lavantamento do limiar da audição

- Mascaramento temporal
 - □ Após ouvir um som alto, demorará alguns instantes (~10 milisegundos) até que o ouvido possa se recuperar e perceber um som mais baixo

Codificação – MP3

Definida pela norma MPEG-1 Audio Layer 3

- Utiliza um modelo psico-acústico complexo
- Elimina as frequências que o ouvido humano não consegue captar
 - Estima o que se pode reduzir, atenuando também a quantidade de informação do sinal áudio
 - sem que se torne perceptível para o ouvido humano

Codificação – MP3

MPEG-1 Audio Layer 3

- Na prática
 - Algumas partes do áudio são mais fáceis de comprimir, nomeadamente os momentos de silêncio ou música com apenas alguns instrumentos
 - outras, são mais difíceis de comprimir

- Compressão com perda
 - As perdas não são perceptíveis
- Som de alta qualidade e arquivos até 12 vezes menores

Codificação – AAC

Advanced Audio Coding

- Melhor qualidade que o MP3 a taxas de bits similares
 - Foi criado com o objetivo de atingir maior qualidade que o MP3
 - Utiliza os mesmos padrões base de codificação que o MP3 (baseado em codificação perceptual)
 - mas usa novas ferramentas de codificação de forma a conseguir taxas de transmissão mais baixas mantendo a qualidade
 - Ganhou popularidade com a empresa Apple, adotando como codificação padrão de seus arquivos de áudio
 - Apesar de suportarem MP3
 - Nintendo DSi e Wii, PSP (Playstation), Sony Walkman e Android

Codificação – AAC

Advanced Audio Coding

- Parte integrante do MPEG-2 e MPEG-4
- Melhorias:
 - Maiores taxas de amostragem (AAC: 8 a 96 kHz; MP3: 16 a 48 kHz)
 - Até 48 canais (MPEG-1 : 2 canais; MPEG-2: 5.1 canais)
 - Taxa de bits arbitrária e tamanho variável de amostragem
 - Extensível para aumentar eficiência da compressão
 - Melhor e mais simplificado banco de filtros

Codificação – AAC

Advanced Audio Coding

- Se comparado ao AAC <u>a taxas superiores a 128kbps</u>, verifica-se que o MP3 apresenta uma qualidade semelhante ao AAC
 - A maior diferença entre eles ocorre para taxas binárias menores que 128kbps, onde o AAC tem desempenho melhor que o MP3

Codificação – FLAC

Free Lossless Audio Codec

- Codec para compressão de áudio sem perda
 - Formato de código aberto
- Taxa de compressão de 30 a 50%
 - □ ZIP: 10 a 20%
- Características:
 - Predição linear para gerar dados residuais
 - Codificação por carreira para blocos de amostras idênticas (e.g. passagens silenciosas)
 - Possibilita fazer decodificação rápida e streaming

Codificação – Vorbis

- Codec lossy (com perda) em código aberto iniciado em 1993
- Usado em conjunto com o container OGG
- Taxa de amostragem de 8 kHz até 192 kHz
- Até 255 canais de áudio
- Baseado na Transformada Discreta do Cosseno Modificada (MDCT)
 - Conversão dos dados do domínio temporal para o domínio da frequência
 - 🗖 Quantização e codificação por <u>entropia</u>

Codificação – Vorbis

- Muito utilizado para serviços de streaming de áudio/música de alta qualidade e definição
 - Spotify

Áudio Binaural

- Técnica que permite uma sensação de imersão muito maior no áudio que está sendo transmitido
 - Conhecida como áudio 3D
 - Tecnologia antiga
- Utilizando um molde de cabeça, é colocado dois microfones nas orelhas que transferem o som aue nos

rodeia

Capta a localização
 e a distância que está de cada
 ouvido

Áudio Binaural

 Como temos uma cabeça entre nossos dois ouvidos, conseguimos <u>distinguir de onde vem o som</u> pela <u>microdiferença entre a captação de um ouvido e de outro</u>

Ao ser transferido para o computador esse áudio é editado para ser ouvido em 360°

Áudio Binaural

- Exemplos
 - Créditos do filme Monstros S.A.
 - Lou Reed gravou três albuns com essa técnica (fim da década de 70)
 - "Street Hassle", "Live: Take No Prisoners" e "The Bells"
 - Pink Floyd (1983)
 - The Final Cut: explosão 3D na musica "Get Your Filthy Hands Off My Desert"
 - Pearl Jam (2000)
 - Música "of the Girl", trilha do filme "Os fracos não tem vez".

Referências

Li, Z.-N.; Drew, M.S. Fundamentals of Multimedia. Pearson/Prentice Hall. 2004. ISBN-10: 0-13-061872-1

- Luther, A. C. Using Digital Video. AP Professional, 1995.
- Halsall, F. Multimedia Communications: Applications,
 Networks, Protocols, and Standards, Addison-Wesley
 Publishing, 2001. ISBN: 0201398184. Capítulos 2 e 4.
- Ribeiro N. Multimédia e tecnologias interativas. FCA-Editora Informática; 2012.