Practical sheet 08 Computer networks - I

1.

(i) 2¹¹ - 2

(ii)

	Network address	Broadcast address	Subnet mask
Subnet 1	192.100.1.0	192.100.4.255	/22
Subnet 2	192.100.5.0	192.100.6.255	/23
Subnet 3	192.100.7.0	192.100.7.255	/24

Subnet 1

 $1024 = 2^{10}$

10 bits

Network address :- 192.100.0000 0001.0000 0000

Broadcast address :- 192.100.0000 0001.0000 0000 + 1023

192.100.0000 0100.1111 1111

Subnet 2

512 = 2^9

9 bits for host

Network address :- 192.100.0000 0101.0000 0000

Broadcast address :- 192.100.0000 0101.0000 0000 + 511

192.100.0000 0110.1111 1111

Subnet 3

 $256 = 2^8$

8 bits for host

Network address :- 192.100.0000 0111.0000 0000

Broadcast address :- 192.100.0000 0111.0000 0000 + 255 192.100.0000 1000. 1111 1111

(iii)

Total allocated = 2048

Remaining = 2048 - (1024 + 512 + 256) = 256

2.

(i) Total address space = $2^9 = 512$

Segment	Network address	etwork address Broadcast address	
LAN 1	10.55.210.0	10.55.210.255	/24
LAN 2	10.55.211.0	10.55.211.127	/25
LAN 3	10.55.211.128	10.55.211.192	/26
Leased line	10.55.211.192	10.55.211.195	/30

Address space = 10.55.1101 0010.0000 0000

LAN 1

256 = 2^8 8 bits

Network address = 10.55.210.0 Broadcast address = 10.55.210.255

LAN 2

128 = 2^7 7 bits Network address = 10.55.211.0 / 10.55.211.0000 0000 Broadcast address = 10.55.211.0111 1111/10.55.211.127

LAN 3

 $64 = 2^6$

6 bits

Network address = 10.55.211.128 Broadcast address = 10.55.211.1011 1111/10.55.211.191

Leased line

Hosts = 2

 $2^2 = 4$

2bits

Network address = 10.55.211.192/10.55.211.1100 0000 Broadcast address = 10.55.211.1100 0011/10.55.211.195

(ii)

Unallocated addresses = 512 - (256 + 128 + 64 + 4) = 60

3.

(i)

Segment	Network address Broadcast address		Subnet mask
LAN 1	212.42.144.0	212.42.155.255	/21
LAN 2	212.42.156.0	212.42.159.255	/22
LAN 3	212.42.160.0	212.42.160.255	/24

Total no.of addresses available = 2^12 = 4096

LAN 1

2048 = 2^11

11 bits

Network address = 212.42.1001 0000.0000 0000/212.42.144.0

Broadcast address = 212.42.155.255

LAN 2

 $1024 = 2^10$

10 bits

Network address = 212.42.156.0 Broadcast address = 212.42.1001 1111.1111 1111/ 212.42.159.255

LAN₃

256 = 2^8 8 bits

Network address = 212.42.160.0 Broadcast address = 212.42.160.255

4. Total no.of addresses allocated = 2^12 = 4096

Segment	Network address Broadcast address		Subnet mask
LAN 1	220.142.144.0	220.142.151.255	/21
LAN 2	220.142.152.0	220.142.153.255	/23
LAN 3	220.142.154.0	220.142.154.255	/24

LAN 1

2048 = 2¹¹ 11 bits needed

Network address :- 220.142.144.0 / 220.142.1001 0000.0000 0000 Broadcast address :- 220.142.1001 0111.1111 1111 / 220.142.151.255

LAN 2

512 = 2⁹ 9 bits needed

Network address :- 220.142.152.0

Broadcast address :- 220.142.1001 1001.1111 1111 / 220.142.153.255

LAN 3

 $256 = 2^8$

8 bits are needed

Network address :- 220.142.154.0 Broadcast address :- 220.142.154.255

(ii)

Unused addresses =
$$4096 - (512 + 256 + 2048)$$

= 1280

5. Addresses available = $2^15 = 32768$

Segment	Network address Broadcast address		Subnet mask
LAN 1	183.177.128.0	183.177.191.255	/18
LAN 2	183.177.192.0	183.177.207.255	/20
LAN 3	183.177.208.0	183.177.215.255	/21

```
LAN 1
```

183.177.128.0

 $16384 = 2^14$

Network address = 183.177.128.0 Broadcast address = 183.177.191.255

LAN 2

 $4096 = 2^12$

12 bits

Network address = 183.177.192.0 Broadcast address = 183.177.1100 1111.1111 1111 / 183.177.207.255

LAN 3

2048 = 2^11

11 bits

Network address = 183.177.208.0 Broadcast address = 183.177.1101 0111.1111 1111/ 183.177.215.255 Unallocated addresses = 32768 - (16384 + 4096 + 2048) = 10240

6. Total no. of addresses available = $2^9 = 512$

Segment	Network address	Broadcast address	Subnet mask
Subnet 1	100.2.0.0	100.2.0.255	/24
Subnet 2	100.2.1.0	100.2.1.127	/25
Subnet 3	100.2.1.128	100.2.1.191	/26
Subnet 4	100.2.1.192	100.2.1.195	/30

```
Subnet 1
```

 $256 = 2^8$

8 bits allocated

Network address = 100.2.0.0 Broadcast address = 100.2.0.255

Subnet 2

 $128 = 2^7$

7 bits allocated

Network address = 100.2.1.0 Broadcast address = 100.2.1.0111 1111/ 100.2.1.127

Subnet 3

64 = 2^6 6 bits

Network address = 100.2.1.128 Broadcast address = 100.2.1.1011 1111/ 100.2.1.191

Subnet 4

 $2^2 = 4$

2 bits

Network address = 100.2.1.192 Broadcast address = 100.2.1.195