EEE 425

Homework #4

Q1. A complex gate is given in the Figure where $\mu_n/\mu_p=1.5$.

- (a) Determine p_A , p_B , g_A , g_B for this gate given the sizing of the transistors.
- (b) Re-size the transistors such that the resistance of pull-up and pull-down paths equals to unit resistance.
- (c) Determine pA, pB, gA, gB for this gate given your sizes from part (b).

Q2. Three TG logic circuits are given below. Determine the truth table in the space given. If there is a contention, write X.

$$Z = \frac{R_u}{2} (25Cu) + \frac{R_u}{2} (19Cu) = 22 R_u C_u$$

 $td = 15 Ru Cu$

- Q3. A PG circuit is given in the Figure. Threshold voltage for transistors is 0.6V. Supply voltage is 2.5V.
 - (a) Determine the logic function, F
 - (b) Assuming A, B, C are primary inputs, size the transistors such that all paths from output to GND/VDD have Ru resistance. μ n/ μ p=2
 - (c) Draw the Elmore model for ABC: $101 \rightarrow 100$
 - (d) Determine the delay for ABC: 101→100 in terms of Ru, Cu.
 - (e) Find the voltage at node F for:

ABCX	VF
000	0.67
110	0
011	1.94
100	0.6

Q4

Segment 1

VDD

K/10

K/10

T 60f

T 60f

T 36f

 $T_{i} = 36f \times 1k + 60f \times 0.9k + 60f \times 0.8k + - +60f \times 0.1k$ $T_{i} = 36ps + 60ps (0.9 + 0.8 + 0.7 + - +0.1)$ $9 \times 10 = 4.5$

T= 306ps

Segment with Load

I 0.5k

I oisk To=8ps (this segment To 16f change)

T = 314ps t= 220ps

(B) 4 segments

First 2

 $T_1 = T_2 = 0.25k \times 24f(4+3+2+1) = 60ps$ 3rd segment

T3 = 18+x1k + 24+x (0,75k+0,50k+0,25k) = 54ps

4th segment identical to port (a)

$$T = (2 \times 60 + 54 + 8) ps = 182 ps$$
 $t = 127.4 ps$