

NPTEL ONLINE CERTIFICATION COURSE

Post Hoc Analysis(Tukey's test)

Dr. A. Ramesh

DEPARTMENT OF MANAGEMENT STUDIES

Lecture Objectives

After completing this lecture, you should be able to:

Use Tukey's test and LSD Test to identify specific differences between means

Designing engineering experiments

- Experimental design methods are also useful in engineering design activities, where new products are developed and existing ones are improved
- By using designed experiments, engineers can determine which subset of the process variables has the greatest influence on process performance

Designing engineering experiments

- The results of an experiment can lead to
 - 1. Improved process yield
 - Reduced variability in the process and closer conformance to nominal or target requirements
 - 3. Reduced design and development time
 - 4. Reduced cost of operation

Designing engineering experiments

- Every experiment involves a sequence of activities:
 - 1. Conjecture—the original hypothesis that motivates the experiment
 - **2. Experiment**—the test performed to investigate the conjecture
 - **3. Analysis**—the statistical analysis of the data from the experiment
 - 4. Conclusion—what has been learned about the original conjecture from the experiment. Often the experiment will lead to a revised conjecture, and a new experiment, and so forth

- A manufacturer of paper that is used for making grocery bags is interested in improving the tensile strength of the product
- Product engineer thinks that tensile strength is a function of the hardwood concentration in the pulp and that the range of hardwood concentrations of practical interest is between 5 and 20%.

- A team of engineers responsible for the study decides to investigate four levels of hardwood concentration: 5%, 10%, 15%, and 20%.
- They decide to make up six test specimens at each concentration level, using a pilot plant.
- All 24 specimens are tested on a laboratory tensile tester, in random order.
 The data from this experiment are shown in Table

Tensile Strength of Paper (psi)

Hardwood			Total	Avg				
Concentration (%)	1	2	3	4	5	6		
5	7	8	15	11	9	10	60	10.00
10	12	17	13	18	19	15	94	15.67
15	14	18	19	17	16	18	102	17.00
20	19	25	22	23	18	20	127	21.17
							383	15.96


```
In [3]: fivepercent= [7,8,15,11,9,10]
    tenpercent=[12,17,13,18,19,15]
    fifteenpercent=[14,18,19,17,16,18]
    twentypercent=[19,25,22,23,18,20]

box_plot_data=[fivepercent,tenpercent,fifteenpercent,twentypercent]
    plt.boxplot(box_plot_data)
    plt.show()
```


Typical Data for Single Factor Experiment

Treatmen	t	Observ	ations		Totals	Averages
1	\mathbf{y}_{11}	y ₁₂	•••	y_{1n}	$y_{1.}$	у _{1.}
2	y ₂₁	y ₂₃	•••	y_{2n}	У _{2.}	у _{2.}
	•	•	•••	•	•	
	•	•	•••	•	•	•
	•	•	•••	•	•	•
a	\mathbf{y}_{a1}	y_{a2}	•••	\mathbf{y}_{an}	\mathbf{y}_{a}	у _{а.}
					у	y

Sum of Squares

Total sum of squares =
$$SS_T = \sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - y_{..})^2$$

Treatment sum of squares =
$$SS_{Treatments} = n \sum_{i=1}^{a} (y_{i.} - y_{...})^2$$

Error sum of Squares =
$$SSE = \sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - y_{j.})^2$$

ANOVA with Equal Sample Sizes

$$SST = \sum_{i=1}^{a} \sum_{j=1}^{n} y_{ij}^{2} - \frac{y^{2}..}{N}$$

SSTreatments =
$$\frac{1}{n} \sum_{i=1}^{a} y_{i}^{2} - \frac{y^{2}}{N}$$

N = an = No. of Treatments x no. of sample size = Total no. of Sample Size

ANOVA with unequal Sample Sizes

$$SST = \sum_{i=1}^{a} \sum_{j=1}^{n} y_{ij}^{2} - \frac{y^{2}..}{N}$$

$$SSTreatments = \sum_{i=1}^{a} \frac{y_{i}^{2}}{n_{i}} - \frac{y^{2}}{N}$$

N = an = No. of Treatments x no. of sample size = Total no. of Sample Size

- Consider the paper tensile strength experiment described.
- We can use the analysis of variance to test the hypothesis that different hardwood concentrations do not affect the mean tensile strength of the paper.
- The hypotheses are
- Ho: $\tau_1 = \tau_2 = \tau_3 = \tau_4 = 0$
- H1: $\tau_i \neq 0$ for at least one i

- We will use $\alpha = 0.01$.
- The sums of squares for the analysis of variance are computed are as follows:

$$SS_{T} = \sum_{i=1}^{4} \sum_{j=1}^{6} y_{ij}^{2} - \frac{y_{i}^{2}}{N}$$

$$= (7)^{2} + (8)^{2} + \dots + (20)^{2} - \frac{(383)^{2}}{24} = 512.96$$

$$SS_{\text{Treatments}} = \sum_{i=1}^{4} \frac{y_{i}^{2}}{n} - \frac{y_{i}^{2}}{N}$$

$$= \frac{(60)^{2} + (94)^{2} + (102)^{2} + (127)^{2}}{6} - \frac{(383)^{2}}{24} = 382.79$$

$$SS_{E} = SS_{T} - SS_{\text{Treatments}}$$

$$= 512.96 - 382.79 = 130.17$$

ANOVA Table

Sources of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F
Treatments	SS Treatments	a-1	MS Treatments	MS Treatments / MSE
Error	SSE	a(n-1)	MSE	
Total	SST	an-1		

The ANOVA is summarized as follow

Source of Variation	Sum of Squares	Degrees of freedom	Mean Square	Fo		P-value	
Hardwood concentrati on	382.79	3	127.6	19.6		3.59 E-6	
Error	130.17	20	6.51	I	n [9]	: from scipy impo	rt stats
Total	512.96	23			ut[9]	1-scipy.stats.f	.cdf(19.6, 3, 20)

• Since $f_{0.01,3,20} = 4.94$, we reject H_0 and conclude that hardwood concentration in the pulp significantly affects the mean strength of the paper

```
In [32]: scipy.stats.f.ppf(1-0.01, dfn=3, dfd=20)
```

Out[32]: 4.938193382310539


```
In [23]: scipy.stats.f_oneway(fivepercent,tenpercent,fifteenpercent,twentypercent)
Out[23]: F_onewayResult(statistic=19.605206999573184, pvalue=3.5925782584743027e-06)
```



```
In [1]: import pandas as pd
         import numpy as np
         import scipy
         import statsmodels.api as sm
         from statsmodels.formula.api import ols
In [3]: df = pd.read excel('concentration.xlsx')
         df
Out[3]:
            concentration5 concentration10 concentration15 concentration20
                                     12
                                                                  19
         0
                       7
                                                   14
                       8
                                     17
                                                    18
                                                                  25
                      15
                                     13
                                                    19
                                                                  22
                      11
                                     18
                                                    17
                                                                  23
                                                    16
                                                                  18
                       9
                                     19
          5
                      10
                                     15
                                                    18
                                                                  20
```


Out[7]: OLS Regression Results

Dep. Variable	. va	alue	R-squa	ared:	0.746		
Model	: (OLS A	lj. R-squa	ared:	0.708		
Method	: Least Squa	ares	F-stati	istic:	19.61		
Date	Tue, 27 Aug 2	019 Prol	b (F-statis	stic): 3	.59e-06		
Time	15:03	3:38 Lo	g-Likelih	ood:	-54.344		
No. Observations	:	24		AIC:	116.7		
Df Residuals		20		BIC:	121.4		
Df Model	:	3					
Covariance Type	nonrol	bust					
		coef	std err	1	P> t	[0.025	0.975]
	Intercept	15.6667	1.041	15.042	0.000	13.494	17.839
C(treatments)[T.c	oncentration15]	1.3333	1.473	0.905	0.376	-1.739	4.406
C(treatments)[T.c	oncentration20]	5.5000	1.473	3.734	0.001	2.428	8.572
C(treatments)[T.	concentration5]	-5.6667	1.473	-3.847	0.001	-8.739	-2.594
Omnibus:	0.929 Durbir	n-Watson:	2.181				
Prob(Omnibus):	0.628 Jarque-l	Bera (JB):	0.861				
Skew:	0.248	Prob(JB):	0.650				
Kurtosis:	2.215	Cond. No.	4.79				

Multiple Comparisons Following the ANOVA

- When the null hypothesis is rejected in the ANOVA, we know that some of the treatment or factor level means are different
- ANOVA doesn't identify which means are different
- Methods for investigating this issue are called multiple comparisons methods

Fisher's least significant difference (LSD) method

• The Fisher LSD method compares all pairs of means with the null hypotheses $H_0: \mu_i = \mu_j$ (for all $i \neq j$) using the t-statistic

$$t_0 = \frac{\overline{y_{i^*}} - \overline{y_{j^*}}}{\sqrt{\frac{2MS_E}{n}}}$$

Fisher's least significant difference (LSD) method

 Assuming a two-sided alternative hypothesis, the pair of means i and j would be declared significantly different if

$$\left| \overline{y_{i^*}} - \overline{y_{j^*}} \right| > LSD$$

where LSD, the least significant difference, is

$$LSD = t_{\alpha/2, a(n-1)} \sqrt{\frac{2MS_E}{n}}$$

Fisher's least significant difference (LSD) method

If the sample sizes are different in each treatment, the LSD is defined as

$$LSD = t_{\alpha/2, N-a} \sqrt{MS_E \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$$

Problem: LSD method

We will apply the Fisher LSD method to the hardwood concentration experiment. There are a = 4 means, n = 6, MSE = 6.51, and $t_{0.025,20}$ = 2.086. The treatment means are

$$\bar{y}_1$$
. = 10.00 psi
 \bar{y}_2 . = 15.67 psi
 \bar{y}_3 . = 17.00 psi
 \bar{y}_4 . = 21.17 psi

Problem: LSD method

The value of LSD is:

$$LSD = t_{0.025,20} \sqrt{\frac{2MS_E}{n}} = 2.086 \sqrt{\frac{2(6.51)}{6}} = 3.07$$

• Therefore, any pair of treatment averages that differs by more than 3.07 implies that the corresponding pair of treatment means are different.


```
In [8]:
          aov_table = sm.stats.anova_lm(model, typ=1)
          aov_table
 Out[8]:
                        df
                                                           PR(>F)
                              sum_sq
                                       mean_sq
          C(treatments)
                       3.0 382.791667 127.597222 19.605207 0.000004
              Residual 20.0 130.166667
                                       6.508333
                                                    NaN
                                                             NaN
          LSD
In [39]:
          import math
          t = -1*scipy.stats.t.ppf(0.025,20)
          n=6
          MSE = 6.508333
          lsd = t*math.sqrt(2*MSE/n)
          lsd
Out[39]: 3.072422588325206
```


Problem: LSD method

The comparisons among the observed treatment averages are as follows:

$$4 \text{ vs. } 1 = 21.17 - 10.00 = 11.17 > 3.07$$
 $4 \text{ vs. } 2 = 21.17 - 15.67 = 5.50 > 3.07$
 $4 \text{ vs. } 3 = 21.17 - 17.00 = 4.17 > 3.07$
 $3 \text{ vs. } 1 = 17.00 - 10.00 = 7.00 > 3.07$
 $3 \text{ vs. } 2 = 17.00 - 15.67 = 1.33 < 3.07$
 $2 \text{ vs. } 1 = 15.67 - 10.00 = 5.67 > 3.07$

The Tukey-Kramer Test for Post Hoc analysis

- Tells which population means are significantly different
- Done after rejection of equal means in ANOVA
- Allows pair-wise comparisons
- Compare absolute mean differences with critical range

The Tukey-Kramer Test for Post Hoc analysis

• Determine is there any significant difference between the means

• is $\mu_1 = \mu_2 \neq \mu_3$

Tukey-Kramer Critical Range

Critical Range =
$$Q_U \sqrt{\frac{\text{MSW}}{2} \left(\frac{1}{n_j} + \frac{1}{n_{j'}} \right)}$$

where:

 Q_U = Value from Studentized Range Distribution with c and n - c degrees of freedom for the desired level of α

MSW = Mean Square Within n_i and $n_{i'}$ = Sample sizes from groups j and j'

Problem: Tukey- Kramer test

Tensile Strength of Paper (psi)

Hardwood	Observations						Total	Avg
Concentratio n (%)	1	2	3	4	5	6		
5	7	8	15	11	9	10	60	10.00
10	12	17	13	18	19	15	94	15.67
15	14	18	19	17	16	18	102	17.00
20	19	25	22	23	18	20	127	21.17
							383	15.96

The Tukey-Kramer Procedure

1. Compute absolute mean differences:

$$\begin{aligned} |\overline{x}_{1} - \overline{x}_{2}| &= |10.00 - 15.67| = 5.67 \\ |\overline{x}_{1} - \overline{x}_{3}| &= |10.00 - 17.00| = 7 \\ |\overline{x}_{2} - \overline{x}_{3}| &= |15.67 - 17.00| = 1.33 \\ |\overline{x}_{1} - \overline{x}_{4}| &= |10.00 - 21.17| = 11.17 \\ |\overline{x}_{2} - \overline{x}_{4}| &= |15.67 - 21.17| = 5.5 \\ |\overline{x}_{3} - \overline{x}_{4}| &= |17.00 - 21.17| = 4.17 \end{aligned}$$

2. Find the Q_U value from the table with c = 4 and (n - c) = (24 - 4) = 20degrees of freedom for the desired level of α (α = .05 used here):

$$Q_{U} = 3.96$$

Error Term	2	3	4	5	6	7	3	9	10
5	3.64	4.60	5.22	5.67	6.03	6.33	6.58	6.80	6.99
	5.70	6.98	7.80	8.42	8.91	9.32	9.67	9.97	10.24
6	3.46	4.34	4.90	5.30	5.63	5.90	6.12	6.32	6.49
	5.24	6.33	7.03	7.56	7.97	8.32	8.61	8.87	9.10
7	3.34	4.16	4.68	5.06	5.36	5.61	5.82	6.00	6.16
	4.95	5.92	6.54	7.01	7.37	7.68	7.94	8.17	8.37
8	3.26	4.04	4.53	4.89	5.17	5.40	5.60	5.77	5.92
	4.75	5.64	6.20	6.62	6.96	7.24	7.47	7.68	7.86
9	3.20	3.95	4.41	4.76	5.02	5.24	5.43	5.59	5.74
	4.60	5.43	5.96	6.35	6.66	6.91	7.13	7.33	7.49
10	3.15	3.88	4.33	4.65	4.91	5.12	5.30	5.46	5.60
	4.48	5.27	5.77	6.14	6.43	6.67	6.87	7.05	7.21
11	3.11	3.82	4.26	4.57	4.82	5.03	5.20	5.35	5.49
	4.39	5.15	5.62	5.97	6.25	6.48	6.67	6.84	6.99
12	3.08	3.77	4.20	4.51	4.75	4.95	5.12	5.27	5.39
	4.32	5.05	5.50	5.84	6.10	6.32	6.51	6.67	6.81
13	3.06	3.73	4.15	4.45	4.69	4.88	5.05	5.19	5.32
	4.26	4.96	5.40	5.73	5.98	6.19	6.37	6.53	6.67
14	3.03	3.70	4.11	4.41	4.64	4.83	4.99	5.13	5.25
	4.21	4.89	5.32	5.63	5.88	6.08	6.26	6.41	6.54
15	3.01	3.67	4.08	4.37	4.59	4.78	4.94	5.08	5.20
	4.17	4.84	5.25	5.56	5.80	5.99	6.16	6.31	6.44
16	3.00	3.65	4.05	4.33	4.56	4.74	4.90	5.03	5.15
	4.13	4.79	5.19	5.49	5.72	5.92	6.08	6.22	6.35
17	2.98	3.63	4.02	4.30	4.52	4.70	4.86	4.99	5.11
	4.10	4.74	5.14	5.43	5.66	5.85	6.01	6.15	6.27
18	2.97	3.61	4.00	4.28	4.49	4.67	4.82	4.96	5.07
	4.07	4.70	5.09	5.38	5.60	5.79	5.94	6.08	6.20
19	2.96 4.05	3.59 4.67	3.98	4.25 5.33	4.47 5.55	4.65 5.73	4.79 5.89	4.92 6.02	5.04 6.14
20	2.95 4.02	3.58 4.64	3.96	4.23 (5.29	4.45 5.51	4.62 5.69	4.77 5.84	4.90 5.97	5.01 6.09

Q table: The critical values for q corresponding to alpha = .05 (top) and alpha = .01 (bottom)

Source of Variation	Sum of Squares	Degrees of freedom	Mean Square	Fo	P-value
Hardwood concentrati on	382.79	3	127.6	19.6	3.59 E-6
Error	130.17	20	6.51		
Total	512.96	23			

3. Compute Critical Range:

Critical Range =
$$Q_U \sqrt{\frac{MSW}{2} \left(\frac{1}{n_j} + \frac{1}{n_{j'}}\right)} = 3.96 \sqrt{\frac{6.51}{2} \left(\frac{1}{6} + \frac{1}{6}\right)} = 4.124$$

4. Compare:

$$\begin{aligned} &|\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{2}| = |10.00 - 15.67| = 5.67 \\ &|\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{3}| = |10.00 - 17.00| = 7 \\ &|\overline{\mathbf{x}}_{2} - \overline{\mathbf{x}}_{3}| = |15.67 - 17.00| = 1.33 \\ &|\overline{\mathbf{x}}_{1} - \overline{\mathbf{x}}_{4}| = |10.00 - 21.17| = 11.17 \\ &|\overline{\mathbf{x}}_{2} - \overline{\mathbf{x}}_{4}| = |15.67 - 21.17| = 5.5 \\ &|\overline{\mathbf{x}}_{3} - \overline{\mathbf{x}}_{4}| = |17.00 - 21.17| = 4.17 \end{aligned}$$

5. Other then $|\overline{x}_2 - \overline{x}_3|$, all of the absolute **mean differences are greater than critical range.** Therefore there is significant difference between each pair of means, except 10% concentration and 15% concentration at the 5% level of significance.

Jupyter code

```
In [53]: from statsmodels.stats.multicomp import pairwise_tukeyhsd
    from statsmodels.stats.multicomp import MultiComparison
    mc = MultiComparison(data_r1['value'], data_r1['treatments'])
    mcresult = mc.tukeyhsd(0.05)
    mcresult.summary()
```

Out[53]: Multiple Comparison of Means - Tukey HSD,FWER=0.05

group1	group2	meandiff	lower	upper	reject
concentration10	concentration15	1.3333	-2.7894	5.4561	False
concentration10	concentration20	5.5	1.3773	9.6227	True
concentration10	concentration5	-5.6667	-9.7894	-1.5439	True
concentration15	concentration20	4.1667	0.0439	8.2894	True
concentration15	concentration5	-7.0	-11.1227	-2.8773	True
concentration20	concentration5	-11.1667	-15.2894	-7.0439	True

- Following table shows observed tensile strength (lb/in square) of different clothes having different weight percentage of cotton.
- Check whether having different weight percentage of cotton, plays any role in tensile strength (lb/in square) of clothes.

Weight Percentage of cotton	Ob	served te	Total	Average			
	1	2	3	4	5		
15	7	7	15	11	9	49	9.8
20	12	17	12	18	18	77	15.4
25	14	18	18	19	19	88	17.6
30	19	25	22	19	23	108	21.6
35	7	10	11	15	11	54	10.8
						Grand total=376	Grand mean= 15.004

• SSA = $5 (9.8 - 15.04)^2 + 5 (15.4 - 15.04)^2 + 5 (17.6 - 15.04)^2 + 5 (21.6-15.04)^2 + 5 (10.8-15.04)^2 = 475.76$

SST = 636.96

SSE = 636.96 - 475.76 = 161.20

Sources of variation	Sum of squares	Degrees of freedom	Mean square	F-value
Cotton weight percentage	475.76	4	118.94	14.76
Error	161.20	20	8.06	
Total	639.96	24		

- When alpha = .05, $F_{(0.05,4,20)} = 2.87$
- Reject Ho

```
In [17]: scipy.stats.f.ppf(1-0.05, dfn=4, dfd=20)
```

Out[17]: 2.8660814020156584

Error Term	2	3	4	5	6	7	3	9	10
5	3.64	4.60	5.22	5.67	6.03	6.33	6.58	6.80	6.99
	5.70	6.98	7.80	8.42	8.91	9.32	9.67	9.97	10.24
6	3.46	4.34	4.90	5.30	5.63	5.90	6.12	6.32	6.49
	5.24	6.33	7.03	7.56	7.97	8.32	8.61	8.87	9.10
7	3.34	4.16	4.68	5.06	5.36	5.61	5.82	6.00	6.16
	4.95	5.92	6.54	7.01	7.37	7.68	7.94	8.17	8.37
8	3.26	4.04	4.53	4.89	5.17	5.40	5.60	5.77	5.92
	4.75	5.64	6.20	6.62	6.96	7.24	7.47	7.68	7.86
9	3.20	3.95	4.41	4.76	5.02	5.24	5.43	5.59	5.74
	4.60	5.43	5.96	6.35	6.66	6.91	7.13	7.33	7.49
10	3.15	3.88	4.33	4.65	4.91	5.12	5.30	5.46	5.60
	4.48	5.27	5.77	6.14	6.43	6.67	6.87	7.05	7.21
11	3.11	3.82	4.26	4.57	4.82	5.03	5.20	5.35	5.49
	4.39	5.15	5.62	5.97	6.25	6.48	6.67	6.84	6.99
12	3.08	3.77	4.20	4.51	4.75	4.95	5.12	5.27	5.39
	4.32	5.05	5.50	5.84	6.10	6.32	6.51	6.67	6.81
13	3.06	3.73	4.15	4.45	4.69	4.88	5.05	5.19	5.32
	4.26	4.96	5.40	5.73	5.98	6.19	6.37	6.53	6.67
14	3.03	3.70	4.11	4.41	4.64	4.83	4.99	5.13	5.25
	4.21	4.89	5.32	5.63	5.88	6.08	6.26	6.41	6.54
15	3.01	3.67	4.08	4.37	4.59	4.78	4.94	5.08	5.20
	4.17	4.84	5.25	5.56	5.80	5.99	6.16	6.31	6.44
16	3.00	3.65	4.05	4.33	4.56	4.74	4.90	5.03	5.15
	4.13	4.79	5.19	5.49	5.72	5.92	6.08	6.22	6.35
17	2.98	3.63	4.02	4.30	4.52	4.70	4.86	4.99	5.11
	4.10	4.74	5.14	5.43	5.66	5.85	6.01	6.15	6.27
18	2.97	3.61	4.00	4.28	4.49	4.67	4.82	4.96	5.07
	4.07	4.70	5.09	5.38	5.60	5.79	5.94	6.08	6.20
19	2.96 4.05	3.59 4.67	3.98 5.05	4.25	4.47 5.55	4.65 5.73	4.79 5.89	4.92 6.02	5.04 6.14
20	2.95 4.02	3.58 4.64	3.96 5.02	4.23	4.45 (5.51	4.62 5.69	4.77 5.84	4.90 5.97	5.01 6.09

Q table: The critical values for q corresponding to alpha = .05 (top) and alpha = .01 (bottom)

$$T_{\alpha} = q_{\alpha}(c, n - c) \sqrt{\frac{MS_E}{n}}$$

$$\alpha = 0.05$$

$$q_{0.05}(5,20) = 4.23$$

$$q_{0.05}(5,20) = 4.23$$

$$T_{0.05} = 4.23\sqrt{\frac{8.06}{5}} = 5.37$$

Any pair of treatment averages that differ in absolute value by more than 5.37 would imply that the corresponding pair of population means are significantly different.

$$\overline{y_1} - \overline{y_2} = |9.8 - 15.4| = 5.6^*$$

$$\overline{y}_{1} - \overline{y}_{3} = |9.8 - 17.6| = 7.8^{*}$$

$$\overline{y_1} - \overline{y_4} = |9.8 - 21.6| = 11.8^*$$

$$\overline{y}_{1} - \overline{y}_{5} = |9.8 - 10.8| = 1$$

Starred values indicate pairs of means that are significantly different.

$$\overline{y}_{2} - \overline{y}_{3} = |15.4 - 17.6| = 2.2$$

$$\overline{y_2} - \overline{y_4} = |15.4 - 21.6| = 6.2^*$$

$$\overline{y_2} - \overline{y_5} = |15.4 - 10.8| = 4.6$$

$$\overline{y_3} - \overline{y_4} = |17.6 - 21.6| = 4$$

$$\overline{y}_{3} - \overline{y}_{5} = |17.6 - 10.8| = 6.8^*$$

$$\overline{y_4} - \overline{y_5} = |21.6 - 10.8| = 10.8*$$

Jupyter code

```
In [2]: df3 = pd.read_excel('C:/Users/Somi/Documents/cotton weight.xlsx')
In [12]: data1 = pd.melt(df3.reset_index(), id_vars=['index'], value_vars=['cotwt.15','cotwt.20','cotwt.25','cotwt.30','cotwt.35'])
data1.columns = ['id', 'treatments', 'value']
```


Jupyter Code

```
In [16]: mc = MultiComparison(data1['value'], data1['treatments'])
    mcresults = mc.tukeyhsd(0.05)
    mcresults.summary()
```

Out[16]:

Multiple Comparison of Means - Tukey HSD,FWER=0.05

group1	group2	meandiff	lower	upper	reject
cotwt.15	cotwt.20	5.6	0.2266	10.9734	True
cotwt.15	cotwt.25	7.8	2.4266	13.1734	True
cotwt.15	cotwt.30	11.8	6.4266	17.1734	True
cotwt.15	cotwt.35	1.0	-4.3734	6.3734	False
cotwt.20	cotwt.25	2.2	-3.1734	7.5734	False
cotwt.20	cotwt.30	6.2	0.8266	11.5734	True
cotwt.20	cotwt.35	-4.6	-9.9734	0.7734	False
cotwt.25	cotwt.30	4.0	-1.3734	9.3734	False
cotwt.25	cotwt.35	-6.8	-12.1734	-1.4266	True
cotwt.30	cotwt.35	-10.8	-16.1734	-5.4266	True

Thank you

