Sampling Distributions Continued Merlise Clyde

STA721 Linear Models

Duke University

September 13, 2016

Outline

Topics

- Student t Distributions
- Chi-squared Distributions

Readings: Christensen Apendix C, Chapter 1-2

Sampling Distribution of β

If
$$\mathbf{Y} \sim N(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_n)$$

Then $\hat{\boldsymbol{\beta}} \mid \sigma^2, \boldsymbol{\beta} \sim N(\boldsymbol{\beta}, \sigma^2(\mathbf{X}^T\mathbf{X})^{-1})$

Unknown σ^2

$$\hat{\beta}_j \mid \beta_j, \sigma^2 \sim \mathsf{N}(\beta, \sigma^2[(\mathbf{X}^T\mathbf{X})^{-1}]_{jj})$$

Unknown σ^2

$$\hat{\beta}_j \mid \beta_j, \sigma^2 \sim \mathsf{N}(\beta, \sigma^2[(\mathbf{X}^T\mathbf{X})^{-1}]_{jj})$$

If we substitute $\hat{\sigma}^2 = \mathbf{e}^t \mathbf{e}/(n - r(\mathbf{X}))$ in the above?

Unknown σ^2

$$\hat{\beta}_j \mid \beta_j, \sigma^2 \sim \mathsf{N}(\beta, \sigma^2[(\mathbf{X}^T\mathbf{X})^{-1}]_{jj})$$

If we substitute $\hat{\sigma}^2 = \mathbf{e}^t \mathbf{e}/(n - r(\mathbf{X}))$ in the above?

$$\frac{(\hat{\beta}_j - \beta_j)/\sigma\sqrt{[(\mathbf{X}^T\mathbf{X})^{-1}]_{jj}}}{\sqrt{\mathbf{e}^T\mathbf{e}/(\sigma^2(n-r(\mathbf{X}))}} \stackrel{\mathrm{D}}{=} \frac{N(0,1)}{\sqrt{\chi^2_{n-r(\mathbf{X})}/(n-r(\mathbf{X})}} \sim t(n-r(\mathbf{X}),0,1)$$

Need to show that $\mathbf{e}^T \mathbf{e} / \sigma^2$ has a χ^2 distribution and is independent of the numerator!

Central Student t Distribution

Definition

Let $Z \sim N(0,1)$ and $S \sim \chi^2_p$ with Z and S independent,

Central Student t Distribution

Definition

Let $Z \sim \mathsf{N}(0,1)$ and $S \sim \chi^2_p$ with Z and S independent, then

$$W = \frac{Z}{\sqrt{S/p}}$$

has a (central) Student t distribution with p degrees of freedom

Central Student t Distribution

Definition

Let $Z \sim N(0,1)$ and $S \sim \chi_p^2$ with Z and S independent, then

$$W = \frac{Z}{\sqrt{S/p}}$$

has a (central) Student t distribution with p degrees of freedom

See Casella & Berger or DeGroot & Schervish for derivation - nice change of variables and marginalization problem!

Chi-Squared Distribution

Definition

If $Z\sim {\rm N(0,1)}$ then $Z^2\sim \chi_1^2$ (A Chi-squared distribution with one degree of freedom)

Chi-Squared Distribution

Definition

If $Z\sim {\rm N}(0,1)$ then $Z^2\sim \chi_1^2$ (A Chi-squared distribution with one degree of freedom)

Density

$$f(x) = \frac{1}{\Gamma(1/2)} (1/2)^{-1/2} x^{1/2-1} e^{-x/2} \qquad x > 0$$

Chi-Squared Distribution

Definition

If $Z \sim N(0,1)$ then $Z^2 \sim \chi_1^2$ (A Chi-squared distribution with one degree of freedom)

Density

$$f(x) = \frac{1}{\Gamma(1/2)} (1/2)^{-1/2} x^{1/2-1} e^{-x/2} \qquad x > 0$$

$$\mathsf{E}[e^{itZ^2}] = \varphi(t) = (1 - 2it)^{-1/2}$$

If
$$Z_j \stackrel{\mathrm{iid}}{\sim} \mathsf{N}(0,1) \ j=1,\dots p$$
 then $X \equiv \mathbf{Z}^T \mathbf{Z} = \sum_j^p Z_j^2 \sim \chi_p^2$

If
$$Z_j \stackrel{\mathrm{iid}}{\sim} \mathsf{N}(0,1) \ j=1,\dots p$$
 then $X \equiv \mathbf{Z}^T \mathbf{Z} = \sum_j^p Z_j^2 \sim \chi_p^2$

$$\varphi_X(t) = \mathsf{E}[e^{it\sum_j^p Z_j^2}]$$

If
$$Z_j \stackrel{\mathrm{iid}}{\sim} \mathsf{N}(0,1) \ j=1,\dots p$$
 then $X \equiv \mathbf{Z}^T \mathbf{Z} = \sum_j^p Z_j^2 \sim \chi_p^2$

$$\varphi_X(t) = \mathbb{E}[e^{it\sum_j^p Z_j^2}]$$
$$= \prod_{j=1}^p \mathbb{E}[e^{itZ_j^2}]$$

If
$$Z_j \stackrel{\text{iid}}{\sim} \mathsf{N}(0,1) \ j=1,\dots p$$
 then $X \equiv \mathbf{Z}^T \mathbf{Z} = \sum_j^p Z_j^2 \sim \chi_p^2$

$$\varphi_X(t) = \mathbb{E}[e^{it\sum_j^p Z_j^2}]$$

$$= \prod_{j=1}^p \mathbb{E}[e^{itZ_j^2}]$$

$$= \prod_{j=1}^p (1 - 2it)^{-1/2}$$

If
$$Z_j \stackrel{\text{iid}}{\sim} \mathsf{N}(0,1) \ j=1,\dots p$$
 then $X \equiv \mathbf{Z}^T \mathbf{Z} = \sum_j^p Z_j^2 \sim \chi_p^2$

$$\varphi_{X}(t) = E[e^{it \sum_{j=1}^{p} Z_{j}^{2}}]$$

$$= \prod_{j=1}^{p} E[e^{it Z_{j}^{2}}]$$

$$= \prod_{j=1}^{p} (1 - 2it)^{-1/2}$$

$$= (1 - 2it)^{-p/2}$$

If
$$Z_j \stackrel{\text{iid}}{\sim} \mathsf{N}(0,1) \ j=1,\dots p$$
 then $X \equiv \mathbf{Z}^T \mathbf{Z} = \sum_j^p Z_j^2 \sim \chi_p^2$

Characteristic Function

$$\varphi_{X}(t) = E[e^{it \sum_{j=1}^{p} Z_{j}^{2}}]$$

$$= \prod_{j=1}^{p} E[e^{it Z_{j}^{2}}]$$

$$= \prod_{j=1}^{p} (1 - 2it)^{-1/2}$$

$$= (1 - 2it)^{-p/2}$$

A Gamma distribution with shape p/2 and rate 1/2, G(p/2, 1/2)

$$f(x) = \frac{1}{\Gamma(p/2)} (1/2)^{-p/2} x^{p/2-1} e^{-x/2}$$
 $x > 0$

Theorem

Let $\mathbf{Y} \sim N(\mu, \sigma^2 \mathbf{I}_n)$ with $\mu \in C(\mathbf{X})$ then if \mathbf{Q} is a rank k orthogonal projection on to $C(\mathbf{X})^{\perp}$, $(\mathbf{Y}^T \mathbf{Q} \mathbf{Y})/\sigma^2 \sim \chi_k^2$

Proof.

Theorem

Let $\mathbf{Y} \sim N(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ with $\boldsymbol{\mu} \in C(\mathbf{X})$ then if \mathbf{Q} is a rank k orthogonal projection on to $C(\mathbf{X})^{\perp}$, $(\mathbf{Y}^T \mathbf{Q} \mathbf{Y})/\sigma^2 \sim \chi_k^2$

Proof.

$$\mathbf{Y}^T \mathbf{Q} \mathbf{Y} = \mathbf{Y}^T \mathbf{U}_k \mathbf{U}_k^T \mathbf{Y}$$

Theorem

Let $\mathbf{Y} \sim N(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ with $\boldsymbol{\mu} \in C(\mathbf{X})$ then if \mathbf{Q} is a rank k orthogonal projection on to $C(\mathbf{X})^{\perp}$, $(\mathbf{Y}^T \mathbf{Q} \mathbf{Y})/\sigma^2 \sim \chi_k^2$

Proof.

$$\mathbf{Y}^{T}\mathbf{Q}\mathbf{Y} = \mathbf{Y}^{T}\mathbf{U}_{k}\mathbf{U}_{k}^{T}\mathbf{Y}$$
$$\mathbf{Z} = \mathbf{U}_{k}^{T}\mathbf{Y}/\sigma \sim N(\mathbf{U}_{k}^{T}\boldsymbol{\mu}, \mathbf{U}_{k}^{T}\mathbf{U}_{k})$$

Theorem

Let $\mathbf{Y} \sim N(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ with $\boldsymbol{\mu} \in C(\mathbf{X})$ then if \mathbf{Q} is a rank k orthogonal projection on to $C(\mathbf{X})^{\perp}$, $(\mathbf{Y}^T \mathbf{Q} \mathbf{Y})/\sigma^2 \sim \chi_k^2$

Proof.

$$\mathbf{Y}^{T}\mathbf{Q}\mathbf{Y} = \mathbf{Y}^{T}\mathbf{U}_{k}\mathbf{U}_{k}^{T}\mathbf{Y}$$

$$\mathbf{Z} = \mathbf{U}_{k}^{T}\mathbf{Y}/\sigma \sim N(\mathbf{U}_{k}^{T}\boldsymbol{\mu}, \mathbf{U}_{k}^{T}\mathbf{U}_{k})$$

$$\mathbf{Z} \sim N(\mathbf{0}, \mathbf{I}_{k})$$

Theorem

Let $\mathbf{Y} \sim N(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ with $\boldsymbol{\mu} \in C(\mathbf{X})$ then if \mathbf{Q} is a rank k orthogonal projection on to $C(\mathbf{X})^{\perp}$, $(\mathbf{Y}^T \mathbf{Q} \mathbf{Y})/\sigma^2 \sim \chi_k^2$

Proof.

$$\mathbf{Y}^{T}\mathbf{Q}\mathbf{Y} = \mathbf{Y}^{T}\mathbf{U}_{k}\mathbf{U}_{k}^{T}\mathbf{Y}$$

$$\mathbf{Z} = \mathbf{U}_{k}^{T}\mathbf{Y}/\sigma \sim N(\mathbf{U}_{k}^{T}\boldsymbol{\mu}, \mathbf{U}_{k}^{T}\mathbf{U}_{k})$$

$$\mathbf{Z} \sim N(\mathbf{0}, \mathbf{I}_{k})$$

$$\mathbf{Z}^{T}\mathbf{Z} \sim \chi_{k}^{2}$$

Theorem

Let $\mathbf{Y} \sim N(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ with $\boldsymbol{\mu} \in C(\mathbf{X})$ then if \mathbf{Q} is a rank k orthogonal projection on to $C(\mathbf{X})^{\perp}$, $(\mathbf{Y}^T \mathbf{Q} \mathbf{Y})/\sigma^2 \sim \chi_k^2$

Proof.

$$\mathbf{Y}^{T}\mathbf{Q}\mathbf{Y} = \mathbf{Y}^{T}\mathbf{U}_{k}\mathbf{U}_{k}^{T}\mathbf{Y}$$

$$\mathbf{Z} = \mathbf{U}_{k}^{T}\mathbf{Y}/\sigma \sim N(\mathbf{U}_{k}^{T}\boldsymbol{\mu}, \mathbf{U}_{k}^{T}\mathbf{U}_{k})$$

$$\mathbf{Z} \sim N(\mathbf{0}, \mathbf{I}_{k})$$

$$\mathbf{Z}^{T}\mathbf{Z} \sim \chi_{k}^{2}$$

Since
$$U^T\mathbf{Y}/\sigma \stackrel{\mathrm{D}}{=} \mathbf{Z}$$
, $\frac{\mathbf{Y}^T\mathbf{QY}}{\sigma^2} \sim \chi_k^2$

Residual Sum of Squares Example

Sum of Squares Error (SSE)

Let $\mathbf{Y} \sim \mathsf{N}(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ with $\boldsymbol{\mu} \in \mathcal{C}(\mathbf{X})$.

Because $\mu \in C(\mathbf{X})$, $\mathbf{I} - \mathbf{P}_{\mathbf{X}}$ is a projection on $C(\mathbf{X})^{\perp}$

Residual Sum of Squares Example

Sum of Squares Error (SSE)

Let $\mathbf{Y} \sim N(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ with $\boldsymbol{\mu} \in C(\mathbf{X})$.

Because $\mu \in \mathcal{C}(\mathbf{X})$, $\mathbf{I} - \mathbf{P}_{\mathbf{X}}$ is a projection on $\mathcal{C}(\mathbf{X})^{\perp}$

$$\frac{\mathbf{e}^T \mathbf{e}}{\sigma^2} = \mathbf{Y}^T \frac{(\mathbf{I}_n - \mathbf{P}_{\mathbf{X}})^2}{\sigma} \mathbf{Y} \sim \chi^2_{n-r(\mathbf{X})}$$

Estimated Coefficients and Residuals are Independent

If
$$\mathbf{Y} \sim \mathrm{N}(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_n)$$

Then $\mathrm{Cov}(\hat{\boldsymbol{\beta}}, \mathbf{e}) = \mathbf{0}$ which implies independence

Functions of independent random variables are independent (show characteristic functions or densities factor)

Putting it all together

$$\hat{\boldsymbol{\beta}} \sim \mathsf{N}(\boldsymbol{\beta}, \sigma^2(\mathbf{X}^T\mathbf{X})^{-1})$$

- $(\hat{\beta}_j \beta_j)/\sigma[(\mathbf{X}^T\mathbf{X})^{-1}]_{jj} \sim \mathsf{N}(0,1)$
- $\mathbf{e}^T \mathbf{e} / \sigma^2 \sim \chi^2_{n-r(\mathbf{X})}$
- $\hat{\beta}$ and **e** are independent

$$\frac{(\hat{\beta}_j - \beta_j)/\sigma[(\mathbf{X}^T\mathbf{X})^{-1}]_{jj}}{\sqrt{\mathbf{e}^T\mathbf{e}/(\sigma^2(n-r(\mathbf{X})))}} \sim t(n-r(\mathbf{X}),0,1)$$

Inference

• 95% Confidence interval: $\hat{eta}_j \pm t_{lpha/2} {\sf SE}(\hat{eta}_j)$

Inference

- 95% Confidence interval: $\hat{\beta}_j \pm t_{\alpha/2} {\sf SE}(\hat{\beta}_j)$ use qt(a, df) for t_a quantile
- derive from pivotal quantity $t=(\hat{\beta}_j-\beta_j)/\mathsf{SE}(\hat{\beta}_j)$ where $P(t\in(t_{\alpha/2},t_{1-\alpha/2}))=1-\alpha$

Pivotal Quantities and CI

Other Quantities

Linear Combinations: $\lambda^T \hat{\beta}$

Prostate Example

 $\label{eq:mass} \mbox{xtable(confint(prostate.lm)) from library(MASS) and library(xtable)}$

2.5 %	97.5 %
-1.91	3.25
0.41	0.76
0.12	0.79
-0.04	0.00
-0.01	0.22
0.28	1.25
-0.29	0.08
-0.27	0.36
-0.00	0.01
	-1.91 0.41 0.12 -0.04 -0.01 0.28 -0.29 -0.27

interpretation

- For a "1" unit increase in \mathbf{X}_j , expect \mathbf{Y} to increase by $\hat{\beta}_j \pm t_{\alpha/2} \mathrm{SE}(\hat{\beta}_j)$
- for log transforms

$$\mathbf{Y} = \exp(\mathbf{X}eta + \epsilon) = \prod \exp(\mathbf{X}_jeta_j)\exp(\epsilon)$$

- if $\mathbf{X} = \log(\mathbf{W}_j)$ then look at 2-fold or % increases in \mathbf{W} to look at multiplicative increase in median of \mathbf{Y}
- ifcavol increases by 10% then we expect PSA to increase by $1.10^{(Cl)} = (1.0398\%, 1.0751\%)$ or by 3.98 to 7.51 percent

For a 10% increase in cancer volume, we are 95% confident that the PSA levels will increase by approximately 4 to 7.5 percent.

Derivation

Fitted Values

Unknown Mean:
$$\mu_i = \mathbf{x}_i^T \boldsymbol{\beta}$$

Use predict function in ${\tt R}$