Sub Array Sum Problem

Time limit: 2000 ms Memory limit: 512 MB

Given an 1D array the sub array sum problem asks for the sum of some subarrays (also called intervals). In 2D the same problem can be modelled as a 2D matrix and sub matrix sums, in 3D we have cubes. We can generalize this problem for every dimension.

Given a d-dimensional array a of integers answer queries of getting the sum of d-dimensional subarray.

Standard input

The first line contains one integer d ($1 \le d \le 5$) which represents the number of dimensions of the array.

The second line contains d positive integers which represent a vector dim, each integer denoting the length of a dimension. The total size of the array is less than or equal to 10^5 , formally $1 \le \prod_{i=1}^d dim_i \le 10^5$.

The third line contains $\prod_{i=1}^d dim_i$ integers, the values of the array coming in lexicographical order of their indices.

The fourth line contains one integer q ($1 \le q \le 10^5$) the number of queries.

Each guery consists of two lines:

- First line of the query is a vector l of positive integers.
- Second line of the query is a vector r of positive integers.

Where:

- l is a d-tuple representing the coordinates of the lowest lexicographical index of the d-hyper rectangle.
- r is a d-tuple representing the coordinates of the highest lexicographical index of the d-hyper rectangle.
- ullet Both vectors l and r are 1-based coordinates and $1 \leq l_i \leq r_i \leq dim_i$, $orall i \mid 1 \leq i \leq d$

Standard output

For every query print the answer in a line, it guarantees the answer fit in a 32bit-signed integer.

Constraints and notes

- $1 \le d \le 5$
- $1 \le \prod_{i=1}^{\overline{d}} dim_i \le 10^5$
- The elements of a fit in 32-bit signed integers
- $1 \le q \le 10^5$

Input	Output	Explanation
1 5 1 2 3 4 5 3 1 1 1 5 3 5	1 15 12	In the first test case we have an 1D array. For the first query we have 1. For the second query we have 1+2+3+4+5=15. For the third query we have 3+4+5=12.
2 3 3 1 2 3 4 5 6 7 8 9	1 12	In the second test case we have a 2D array. For the first query we have 1.

For the second guery we have 1+2+4+5=12.