Roll Number: 190070049

Name: Rathour Param Jitendrakumar

Course: Electronic Devices Lab

Course Code: EE236

## Q1) Part 1

| Body Bias   | Body Bias   | Peak Charging  | Peak Discharging | Delay Time   |
|-------------|-------------|----------------|------------------|--------------|
| NMOS (in V) | PMOS (in V) | Current (in A) | Current (in A)   | (in s)       |
| 0.3         | 3           | 6.913996e-04   | 5.975586e-04     | 6.585508e-10 |
| 0.1         | 3.2         | 6.918728e-04   | 5.970618e-04     | 6.612506e-10 |
| 0           | 3.3         | 6.893650e-04   | 5.945589e-04     | 6.652150e-10 |
| -0.5        | 3.8         | 6.728170e-04   | 5.792506e-04     | 6.885459e-10 |
| -1          | 4.3         | 6.590579e-04   | 5.669193e-04     | 7.085675e-10 |

For each of the above cases, I made rise time  $\approx$  fall time by varying W p

| W_p (in µm) | Rise Time (in s) | Fall Time (in s) |
|-------------|------------------|------------------|
| 2.855       | 1.128212e-09     | 1.128324e-09     |
| 2.868       | 1.136146e-09     | 1.136140e-09     |
| 2.8742      | 1.143771e-09     | 1.143708e-09     |
| 2.9075      | 1.185133e-09     | 1.185185e-09     |
| 2.942       | 1.220952e-09     | 1.220808e-09     |

If W\_p is fixed then let W\_p  $\approx$  W\_p\_0 = 2.8742 (W\_p\_avg = 2.88934) For this W\_p,

| Body Bias   | Body Bias   | Peak Charging  | Peak Discharging | Delay Time   |
|-------------|-------------|----------------|------------------|--------------|
| NMOS (in V) | PMOS (in V) | Current (in A) | Current (in A)   | (in s)       |
| 0.3         | 3           | 6.913996e-04   | 5.975586e-04     | 6.585508e-10 |
| 0.1         | 3.2         | 6.933391e-04   | 5.970618e-04     | 6.613078e-10 |
| 0           | 3.3         | 6.893650e-04   | 5.945589e-04     | 6.652150e-10 |
| -0.5        | 3.8         | 6.652463e-04   | 5.792434e-04     | 6.882675e-10 |
| -1          | 4.3         | 6.441193e-04   | 5.669057e-04     | 7.080215e-10 |

## Part 2 Peak Charging Current decreases (down the table) due to decreasing substrate voltage Peak Discharging Current decreases (down the table) due to increasing substrate voltage Delay time increases (down the table) as it is positively correlated with rise time and fall time and both increases as W\_p increases



Part 3

Vth remains almost same





0.3V and 3V for low power