Suppose that $X_1, X_2, ..., X_n$ is a random sample from the exponential distribution with rate $\lambda > 0$.

Derive a hypothesis test of size α for

$$H_0: \lambda = \lambda_0$$
 vs. $H_1: \lambda = \lambda_1$

where $\lambda_1 > \lambda_0$.

What statistic should we use?

One test has rejection rule:

$$\frac{1}{X} < \frac{\chi_{1-\alpha,2n}^2}{2n\lambda_0}$$

"Denote" this by

$$\alpha = P\left(\overline{X} < \frac{\chi_{1-\alpha,2n}^2}{2n\lambda_0}; \lambda_0\right)$$

$$= P\left(\begin{array}{c} \\ \\ \end{array}; \lambda_0 \right)$$

One another has rejection rule:

$$\min(X_1, X_2, ..., X_n) < \frac{-\ln(1 - \alpha)}{n\lambda_0}$$

"Denote" this by

$$\alpha = P\left(\min(X_1, X_2, \dots, X_n) < \frac{-\ln(1-\alpha)}{n\lambda_0}; \lambda_0\right)$$

$$= P\left(\begin{array}{c} \\ \\ \end{array}; \lambda_0 \right)$$

Consider "all" tests:

$$P(= \lambda_0) = \alpha$$

$$P(= \lambda_0) = \alpha$$

$$P(= ; \lambda_0) = \alpha$$

$$P(\mid ; \lambda_0) = \alpha$$

When H₁ is true:

$$P(= ; \lambda_1) = ?$$

$$P(=:\lambda_1)=?$$

$$P(=:\lambda_1)=?$$

$$P(\mid : \lambda_1) = ?$$

- Want these numbers
- to be large!!!

When H₁ is true:

$$P(\mid \mid ; \lambda_1) = ?$$

$$P(=:\lambda_1)=?$$

$$P(= : \lambda_1) = ?$$

$$P(=: \lambda_1) = ?$$

- The best test will
- be largest!!!

Tests are defined by rejection regions.

For example, when n=2:

Reject
$$H_0$$
 if $\overline{X} > 2.3$

$$\frac{X_1 + X_2}{2} > 2.3$$

$$\Leftrightarrow X_2 > 4.6 - X_1$$

Reject H_0 if (X_1, X_2) is in this region

$$H_0: \theta = \theta_0$$
 vs. $H_1: \theta = \theta_1$

$$P(=:\lambda_0)=\alpha$$

$$P(\overline{X} \in R_1; \lambda_0) = \alpha$$

$$P(\mid \beta \mid \lambda_0) = \alpha$$

$$P(\overline{X} \in R_2; \lambda_0) = \alpha$$

$$P(= \lambda_0) = \alpha$$

$$P(\overline{X} \in R_3; \lambda_0) = \alpha$$

$$P(\mid \boldsymbol{\lambda}_0) = \alpha$$

$$P(\overline{X} \in R_4; \lambda_0) = \alpha$$

$$P(\mid : \lambda_0) = \alpha$$

$$P(\overline{X} \in R_5; \lambda_0) = \alpha$$

$$H_0: \theta = \theta_0$$
 vs. $H_1: \theta = \theta_1$

Definition:

A test R^* is a best test of size/level α for the above hypotheses if

1.
$$P(\overline{X} \in \mathbb{R}^*; \theta_0) = \alpha$$
 and

2. If R represents any other test with

$$P(\overline{X} \in \mathbb{R}; \theta_0) = \alpha,$$

then

$$P(\overrightarrow{X} \in \mathbb{R}^*; \theta_1) \ge P(\overrightarrow{X} \in \mathbb{R}; \theta_1).$$

The Neyman-Pearson Lemma (setup)

Let $X_1, X_2, ..., X_n$ be a random sample from a distribution with pdf f which depends on an unknown parameter θ .

Write the joint pdf as

$$f(\overrightarrow{x}; \theta) \stackrel{\text{iiid}}{=} \prod_{i=1}^{n} f(x_i; \theta)$$

The Neyman-Pearson Lemma

$$H_0: \theta = \theta_0$$
 vs. $H_1: \theta = \theta_1$

The <u>best test</u> of size/level α is to reject H_0 , in favor of H_1 if $\overrightarrow{X} \in \mathbb{R}^*$ where

$$R^* = \left\{ \overrightarrow{x} : \frac{f(\overrightarrow{x}; \theta_0)}{f(\overrightarrow{x}; \theta_1)} \le c \right\}$$

For discrete $X_1, X_2, ..., X_n$

$$f(\vec{x}; \theta) = P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n; \theta)$$

$$R^* = \left\{ \overrightarrow{x} : \frac{f(\overrightarrow{x}; \theta_0)}{f(\overrightarrow{x}; \theta_1)} \le c \right\}$$

- If H₀ is true and H₁ is false, the ratio is large.
- If H_0 is false and H_1 is true, the ratio is small. This is when we should reject H_0 !

Example:

Suppose that $X_1, X_2, ..., X_n$ is a random sample from the exponential distribution with rate $\lambda > 0$.

Find the best test of size/level α for testing

$$H_0: \lambda = \lambda_0$$
 vs. $H_1: \lambda = \lambda_1$

where $\lambda_1 > \lambda_0$.

pdf:
$$f(x; \lambda) = \lambda e^{-\lambda x}$$

joint pdf:
$$f(\overrightarrow{x}; \lambda) \stackrel{\text{iid}}{=} \prod_{i=1}^{n} f(x_i; \lambda)$$

$$= \prod_{i=1}^{n} \lambda e^{-\lambda x_i} = \lambda^n e^{-\lambda \sum_{i=1}^{n} x_i}$$

"likelihood ratio":

$$f(\overline{\mathbf{X}}; \lambda_0)$$
 $f(\overline{\mathbf{X}}; \lambda_1)$

"likelihood ratio":

$$\frac{f(\overrightarrow{x}; \lambda_0)}{f(\overrightarrow{x}; \lambda_1)} = \frac{\lambda_0^n e^{-\lambda_0 \sum_{i=1}^n x_i}}{\lambda_1^2 e^{-\lambda_1 \sum_{i=1}^n x_i}}$$

$$= \left(\frac{\lambda_0}{\lambda_1}\right)^n e^{-(\lambda_0 - \lambda_1) \sum_{i=1}^n x_i}$$

The Neyman-Pearson Lemma says:

"Reject H_0 , in favor of H_1 , if

$$\left(\frac{\lambda_0}{\lambda_1}\right)^n e^{-(\lambda_0 - \lambda_1) \sum_{i=1}^n x_i} \le c$$

where c is to be determined."

The rejection rule

$$\left(\frac{\lambda_0}{\lambda_1}\right)^n e^{-(\lambda_0 - \lambda_1) \sum_{i=1}^n x_i} \le c$$

is equivalent to the rule

"Reject H_0 , in favor of H_1 , if

$$e^{-(\lambda_0-\lambda_1)\sum_{i=1}^n x_i} \leq \left(\frac{\lambda_1}{\lambda_0}\right)^n c$$
 This is a new constant.

The Neyman-Pearson Lemma says:

"Reject H_0 , in favor of H_1 , if

$$e^{-(\lambda_0-\lambda_1)\sum_{i=1}^n X_i} \leq c_1$$

where c₁ is to be determined."

$$e^{-(\lambda_0 - \lambda_1) \sum_{i=1}^n x_i} \le c_1$$

Taking the log of both sides, this is equivalent to

$$-(\lambda_0 - \lambda_1) \sum_{i=1}^{n} x_i \le c_2$$

(Neyman-Pearson says to reject H₀ if this happens.)

$$-(\lambda_0 - \lambda_1) \sum_{i=1}^n x_i \le c_2$$

Divide both sides by $-(\lambda_0 - \lambda_1)$.

Note that $\lambda_1 > \lambda_0$, so $-(\lambda_0 - \lambda_1) > 0$.

This means that the inequality won't flip.

n

$$\sum_{i=1}^{\infty} x_i \leq c_3$$

The Neyman-Pearson Lemma says:

"Reject H_0 , in favor of H_1 , if

$$\sum_{i=1}^{n} X_i \leq c_3$$

where c₃ is to be determined."

Let's find C3.

$$\alpha = P(Type I Error)$$

$$= P(Reject H_0 \lambda_0)$$

$$= P(\sum_{i=1}^{n} X_i < c_3; \lambda_0)$$

Wait a minute... this is equivalent to

$$=P(\overline{X}< c_4; \lambda_0)$$

where $c_4 = c_3/n$.

$$\alpha = P(\overline{X} < c_4; \lambda_0)$$

We already did this in the previous video!

$$c_4 = \frac{\chi_{1-\alpha,2n}^2}{2n\lambda_0}$$

Conclusion:

The best test of size α for

$$H_0: \lambda = \lambda_0$$
 vs. $H_1: \lambda = \lambda_1$

where
$$\lambda_1 > \lambda_0$$
,

is to reject H_0 , in favor of H_1 if

$$\frac{\chi^2}{X} < \frac{\chi^2_{1-\alpha,2n}}{2n\lambda_0}$$

Remember, R^* is the best test of size α if

$$P(\overrightarrow{X} \in \mathbb{R}^*; \theta_0) = \alpha$$

and
$$P(\overrightarrow{X} \in R^*; \theta_1) \ge P(\overrightarrow{X} \in R; \theta_1)$$

for any other test of size α .

$$P(\overrightarrow{X} \in R^*; \theta_1) \ge P(\overrightarrow{X} \in R; \theta_1)$$

Each of these tests has it's own power function.

$$\gamma_{R}(\theta) = P(Reject H_{0}; \theta)$$

$$= P(\overrightarrow{X} \in R; \theta)$$

$$P(\overrightarrow{X} \in R^*; \theta_1) \ge P(\overrightarrow{X} \in R; \theta_1)$$

becomes

$$\gamma_{\mathsf{R}}*(\theta_1) \geq \gamma_{\mathsf{R}}(\theta_1)$$

for any test described by R with

$$P(\overrightarrow{X} \in \mathbb{R}; \theta_0) = \alpha$$

The best test of has <u>highest power</u> when H₁ is true.

"Best Test"

"Most Powerful Test"