Technical Report 2019-2 Statistic ST121 Dosen: Dr. Andi Sunyoto, M.Kom

[Kelompok: Kel-01]

Prediksi Harga Saham Alphabert.Inc Menggunakan Metode Radial Basis Function Neural Network dan Exponentially-Weighted Moving Average

17.11.1321

Amadeus Pondera

Amadeus.purnacandra@students.amikom.ac.id

Departemen Informatika Universitas Amikom Yogyakarta

1. Introduction

Peran pasar modal di dunia ekonomi mulai dilembagakan. Saat ini salah satu pembelian saham pilihan modal yang sah, selain bentuk modal lain seperti uang, tanah, dan emas. Faktor rasional dan berbagai faktor irasional menjadi faktor penentu dalam pembelian saham. Faktor-faktor rasional yang biasa dikaitkan dengan analisis fundamental. Analisis fundamental tidak mempertimbangkan pola pergerakan saham di masa lalu tetapi mencoba menentukan nilai yang sesuai untuk suatu saham. Di pasar modal yang baik dan efisien, harga saham mencerminkan semua informasi dan informasi yang tersedia untuk pertukaran yang hanya bisa didapatkan dari kelompok tertentu. Tinggi dan harga saham yang rendah dipengaruhi oleh banyak faktor seperti kondisi dan kinerja perusahaan, risiko, dividen, bunga tingkat, kondisi ekonomi, kebijakan pemerintah, inflasi, penawaran dan permintaan serta banyak lagi. Karena mengantisipasi kemungkinan perubahan faktor di atas, harga saham bisa naik atau jatuh. Prediksi harga saham akan sangat berguna untuk investor untuk dapat melihat bagaimana prospek investasi stok perusahaan datang. Prediksi harga saham bias digunakan untuk mengantisipasi naik turunnya harga saham. Dengan prediksi harga saham, sangat membantu bagi investor dalam pengambilan keputusan. Dalam jurnal ini, penulis akan mengimplementasikan metode Radial Basis Function Neural Network di bidang keuangan untuk aplikasi memperkirakan harga saham dan membandingkan dengan metode Exponential Weighted Moving Average.

2. Literatur Review

Daftar literature penelitian yang menggunakan mode RBF dan Jaringan Syaraf Tiruan dengan tabel seperti pada Table 1.

Table 1 Daftar Pengguna metode RBF dan Jaringan Syaraf Tiruan

Author	Judul	Metode	Metode Evaluasi dan Hasil
Fajaryanti, J Computer, PS Wibowo	Stock Prices Forecast Using Radial Basis Function Neural Network[1]	Radial Basis function	RBF = 99%
RK, Dase DD, Pawar	Application of Artificial Neural Network for Stock Market Predictions: a Review of Literature[2]	Artificial Neural Network	MSE and MAD
Jandaghi, Gholamreza Tehrani, Reza Hosseinpour, Davoud Gholipour, Rahmatollah	Application of Fuzzy-neural networks in multi-ahead forecast of stock price[3]	Fuzzy-neural networks	R-square = 0.9952

3. Landasan teori

Prediksi pasar saham adalah dunia finansial daerah peramalan yang menarik banyak perhatian dari berbagai lingkaran, terutama para investor. Prediksi harga saham sangat berguna bagi investor untuk dapat melihat bagaimana stok dari investasi perusahaan di masa depan. Dengan menggunakan prediksi, itu sangat membantu investor dalam membuat keputusan.

Prediksi harga saham adalah kompleks interaksi antara pasar yang tidak stabil dan acak yang tidak diketahui faktor proses. Data dari harga saham dapat ditentukan berdasarkan seri waktu. Jika kami memiliki data harian dari periode tertentu, untuk

contoh: Xt (t = 1,2, ...) dari harga saham untuk periode berikutnya (t + 1) dapat diprediksi (waktu yang digunakan bisa dalam jam, harian, mingguan, bulanan atau tahunan). Untuk mendapatkan prediksi yang bagus, maka input dari beberapa aspek harga saham harus menjadi input di Jaringan Saraf setelah itu prinsip penimbangan bias diadaptasi untuk meminimalkan prediksi yang salah pada langkah pertama di masa depan.

Figure 1 Gambaran tentang pemprosesan data menggunakan jaringan syaraf tiruan (RBF)[4]

Dengan menggunakan penimbangan akhir, tindakan dilakukan untuk dilakukan meminimalkan kesalahan total untuk iterasi berikutnya. Karena itu, risiko keputusan Investor untuk menjual atau membeli saham bias diminimalkan. Langkah-langkah yang harus dilakukan dalam stok simulasi

perkiraan harga menggunakan Jaringan Saraf Tiruan:

- Mengumpulkan data harga stok
- Menentukan struktur Jaringan Saraf Tiruan yang akan dibangun (RBF)
- Melakukan pelatihan dan pengujian jaringan saraf yang dibangun menggunakan data yang ada

4. Metode Praktikum

4.1 Dataset

Dataset yang penulis gunakan ini adalah data saham Alphabet.inc (GOOG) dari Yahoo selama 125 hari terakhir, 1–1–2019 hingga 5–1–2019.

Tetapi Yahoo mungkin belum mencatat harga saham beberapa hari, sehingga jumlah catatan dalam kumpulan data mungkin kurang dari jumlah hari. Misalnya, tidak ada harga saham yang dicatat pada akhir pekan.

Berikut ini adalah sample dataset yang akan penulis gunakan Table 2.

Table 2 Dataset yang digunakan

Date	Open Price	High Price	Low Price	Close Price	Adj Close Price	Volume
/1	1016.570007	1052.319946	1015.710022	1045.849976	1045.849976	1532600
/2	1041	1056.97998	1014.070007	1016.059998	1016.059998	1841100
/3	1032.589966	1070.839966	1027.417969	1070.709961	1070.709961	2093900
/4	1071.5	1074	1054.76001	1068.390015	1068.390015	1981900
/5	1076.109985	1084.560059	1060.530029	1076.280029	1076.280029	1764900
/6	1081.650024	1082.630005	1066.400024	1074.660034	1074.660034	1199300
/7	1067.660034	1071.150024	1057.709961	1070.329956	1070.329956	1456400
/8	1063.180054	1063.775024	1048.47998	1057.189941	1057.189941	1520800
/9	1046.920044	1051.530029	1041.255005	1044.689941	1044.689941	1144300
/10	1050.170044	1080.050049	1047.339966	1077.150024	1077.150024	1463600

Figure 2 Data yang disajikan dalam bentuk grafik

4.2 Langkah Praktikum

A. Menggunakan Python pada Google Colaboratory sebagai Media Penelitian Google Collaboratory atau **Google Colab** merupakan tools yang berbasis cloud dan free untuk tujuan penelitian. Google colab dibuat dengan environment jupyter dan mendukung hampir semua library yang dibutuhkan dalam lingkungan pengembangan Artificial Intelegence (AI).Pada dasarnya google colab sama dengan **Jupyter Notebook** dan bisa dikatakan google colab adalah jupyter

notebook yang dijalankan secara online dan gratis yang menggunakan Bahasa pemprograman Python.

B. Import library Yang Dibutuhkan Dan Upload Dataset

```
from sklearn.svm import SVR
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from google.colab import files
uploaded = files.upload()
```

C. Mempersiapkan Data Training

Untuk menyiapkan data training, Penulis membuat data frame dengan mendapatkan semua data kecuali untuk baris terakhir yang akan penulis gunakan untuk menguji model nanti [Table 4], dan menyimpan data baru dengan baris terakhir hilang kembali ke 'df' [Table 5]. Dapat dilihat perbedaan dataset original Table 3 dengan dataset yang sudah diambil data terakhirnya Table 5.

Table 3 Dataset Original

	Dat e	Open Price	High Price	Low Price	Close Price	Adj Close Price	Volume
0	/1	1016.57000 7	1052.31994 6	1015.71002 2	1045.84997 6	1045.84997 6	153260 0
1	/2	1041.00000	1056.97998 0	1014.07000 7	1016.05999 8	1016.05999 8	184110 0
2	/3	1032.58996 6	1070.83996 6	1027.41796 9	1070.70996 1	1070.70996 1	209390 0
3	/4	1071.50000 0	1074.00000	1054.76001 0	1068.39001 5	1068.39001 5	198190 0
4	/5	1076.10998 5	1084.56005 9	1060.53002 9	1076.28002 9	1076.28002 9	176490 0
11 9	/12 0	1119.60998 5	1122.00000 0	1111.01001 0	1115.52002 0	1115.52002 0	139560 0
12 0	/12 1	1112.66003 4	1114.34997 6	1083.80004 9	1086.34997 6	1086.34997 6	154690 0

	Dat e	Open Price	High Price	Low Price	Close Price	Adj Close Price	Volume
12	/12	1086.50000	1092.96997	1072.23999	1079.80004	1079.80004	181090
1	2	0	1	0	9	9	0
12	/12	1084.00000	1087.09997	1075.29003	1076.01001	1076.01001	100430
2	3	0	6	9	0	0	0
12	/12	1076.39001	1081.00000	1073.36999	1080.91003	1080.91003	169320
3	4	5	0	5	4	4	0

Table 4 Data terakhir dari dataset yang diambil untuk menguji model

	Date	Open Price	High Price	Low Price	Close Price	Adj Close Price	Volume
123	/124	1076.390015	1081.0	1073.369995	1080.910034	1080.910034	1693200

Table 5 Dataset yang sudah disimpan kembali tanpa data terakhir

	Dat e	Open Price	High Price	Low Price	Close Price	Adj Close Price	Volume
0	/1	1016.57000 7	1052.31994 6	1015.71002 2	1045.84997 6	1045.84997 6	153260 0
1	/2	1041.00000 0	1056.97998 0	1014.07000 7	1016.05999 8	1016.05999 8	184110 0
2	/3	1032.58996 6	1070.83996 6	1027.41796 9	1070.70996 1	1070.70996 1	209390
3	/4	1071.50000 0	1074.00000	1054.76001 0	1068.39001 5	1068.39001 5	198190 0
4	/5	1076.10998 5	1084.56005 9	1060.53002 9	1076.28002 9	1076.28002 9	176490 0
11 8	/11 9	1109.23999 0	1124.10998 5	1108.07995 6	1121.88000 5	1121.88000 5	194760 0
11 9	/12 0	1119.60998 5	1122.00000 0	1111.01001 0	1115.52002 0	1115.52002 0	139560 0

	Dat e	Open Price	High Price	Low Price	Close Price	Adj Close Price	Volume
12	/12	1112.66003	1114.34997	1083.80004	1086.34997	1086.34997	154690
0	1	4	6	9	6	6	0
12	/12	1086.50000	1092.96997	1072.23999	1079.80004	1079.80004	181090
1	2	0	1	0	9	9	0
12	/12	1084.00000	1087.09997	1075.29003	1076.01001	1076.01001	100430
2	3	0	6	9	0	0	0

D. Membuat Data Variabel

Buat variabel yang akan digunakan sebagai data set independen dan dependen dengan mengaturnya sama dengan daftar kosong.

Dapatkan semua baris dari kolom Date menyimpannya ke dalam variabel yang disebut 'df_days' dan dapatkan semua baris dari kolom Adj Close Price dan simpan data ke dalam variabel. Buat data set independen 'X' dan simpan data dalam variabel 'day'.

Buat set data dependen 'y' dan simpan data dalam variabel 'adj_close_prices'. Keduanya dapat dilakukan dengan menambahkan data ke masing-masing daftar.

E. Implementasi Radian Basis Function Untuk Prediksi Saham

Rumus 1 Rumus Radian Basis Function-Neural Network

$$\varphi(\mathbf{x}) = \sum_{i=1}^N a_i \rho(||\mathbf{x} - \mathbf{c}_i||)$$

```
using a RBF kernel
rbf_svr = SVR(kernel='rbf', C=1000.0, gamma=0.15)
rbf_svr.fit(days, adj close prices)
```

Setelah dataset diubah menjadi data X dan Y, selanjutnya mulai proses pembandingan dengan Rumus 1 Rumus Radian Basis Function-Neural Network.

X : Vektor pelatihan, di mana n_samples adalah jumlah sampel dan n_fitur adalah jumlah fitur. Untuk kernel = "precomputed", bentuk X yang diharapkan adalah (n_samples, n_samples).

Y: Nilai target (label kelas dalam klasifikasi, bilangan real dalam regresi)

C : Bobot per sampel. Skala ulang C per sampel. Bobot yang lebih tinggi memaksa classifier untuk lebih menekankan poin-poin ini.

Table 6 Hasil Prediksi Menggunakan RBF

1045.849976	1016.059998	1070.709961	1068.390015	1076.280029
1074.660034	1070.329956	1057.189941	1044.689941	1077.150024
1080.969971	1089.900024	1098.26001	1070.52002	1075.569946
1073.900024	1090.98999	1070.079956	1060.619995	1089.060059
1116.369995	1110.75	1132.800049	1145.98999	1115.22998
1098.709961	1095.060059	1095.01001	1121.369995	1120.160034
1121.670044	1113.650024	1118.560059	1113.800049	1096.969971
1110.369995	1109.400024	1115.130005	1116.050049	1119.920044
1140.98999	1147.800049	1162.030029	1157.859985	1143.300049
1142.319946	1175.76001	1193.199951	1193.319946	1185.550049
1184.459961	1184.26001	1198.849976	1223.969971	1231.540039
1205.5	1193.	1184.619995	1173.02002	1168.48999
1173.310059	1194.430054	1200.48999	1205.920044	1215.
1207.150024	1203.839966	1197.25	1202.160034	1204.619995
1217.869995	1221.099976	1227.130005	1236.339966	1236.369995
1248.839966	1264.550049	1256.	1263.449951	1272.180054
1287.579956	1188.47998	1168.079956	1162.609985	1185.400024
1189.390015	1174.099976	1166.27002	1162.380005	1164.27002
1132.030029	1120.439941	1164.209961	1178.97998	1162.300049
1138.849976	1149.630005	1151.420044	1140.77002	1133.469971
1134.150024	1116.459961	1117.949951	1103.630005	1036.22998
1053.050049	1042.219971	1044.339966	1066.040039	1080.380005
1078.719971	1077.030029	1088.77002	1085.349976	1092.5
1103.599976	1102.329956	1111.420044	1121.880005	1115.52002
1086.349976	1079.800049	1076.01001		

Table 7 Grafik Hasil Prediksi Menggunakan RBF

F. Implementasi Exponential Weighted Moving Average Untuk Prediksi Harga Saham

Sebagai pembanding, penulis akan menggunakan model EWMA dengan rumus sebagai seperti Rumus 2 Exponential Weighted Moving Average :

Rumus 2 Exponential Weighted Moving Average

$$EWMA(t) = a * x(t) + (1-a) * EWMA(t-1)$$

Table 8 Hasil Prediksi Menggunakan EWMA

[1045.849976	1023.5074925	1056.18612454	1064.4237506
1072.36059812	1073.89566109	1071.51743692	1061.96431693
1050.44748119	1068.24947788	1076.7298545	1085.50998402
1094.01000667	1078.35001228	1076.49663463	1074.76556084
1085.58184703	1075.24725298	1065.49574765	1081.20528856
1104.64842619	1108.71614206	1124.77208002	1138.91735334
1123.12577111	1106.84856437	1098.98956079	1096.33652693
1113.02550564	1117.78185788	1120.37398196	1115.89134332
1117.67048711	1115.09019504	1103.01004568	1107.91667856
1108.90557552	1113.05519517	1115.05176439	1118.29728413
1133.42575471	1143.00861757	1155.68955852	1157.13650951
1147.9122025	1144.1840315	1165.23468383	1183.87819528
1190.17269576	1187.09093125	1185.33695108	1184.61899036
1194.10631412	1214.01541871	1225.6984989	1212.23283297
1199.41094432	1189.55031144	1178.53011715	1171.83669905
1172.81893902	1187.22634901	1196.06877634	1202.63628811
1210.8787627	1208.3929369	1205.35762297	1199.95254099
1201.424203	1203.554731	1213.09824033	1218.43273078
1224.23091359	1232.3036152	1235.01453507	1244.23148902
1257.77719567	1256.59239856	1261.16410019	1268.5080694
1281.22266047	1219.39420682	1185.18470627	1170.13489209
1180.3116467	1186.36389223	1178.18794808	1170.24266269
1165.0008909	1164.51364363	1142.85790054	1127.91259418
1152.11083873	1170.02359958	1164.87456586	1147.52483929
1148.9282831	1150.58945703	1144.04316568	1136.99436923
1135.09813908	1122.67268703	1119.52419634	1108.92806878
1060.46267626	1055.52092475	1046.65362225	1045.11118475
1059.06375425	1073.27458808	1076.90484336	1076.98830045
1084.84278015	1085.18091072	1090.06030357	1099.08675186
1101.24888795	1108.02965865	1117.26322288	1116.10108763
1096.26701321	1085.28903707	1079.10301902]	

Table 9 Grafik Hasil Prediksi Menggunakan EWMA

5. Hasil dan Analisa

Pada bagian ini, penulis menganalisis hasil prediksi program. Sebelum menganalisis hasilnya, penulis menguji sistem untuk dapatkan hasil dari data prediksi.

Radian Basis Function-Neural Network

- 1. MAPE = 0.25%
- 2. MSE = 44.51\$

Exponential Weighted Moving Average

- 1. MAPE = 0.41%
- 2. MSE = 41.27\$

Table 10 Perbandingan RBF dengan EWMA

6. Kesimpulan

Ada beberapa kesimpulan dari penelitian ini, yakni RBF Neural Network sepenuhnya dipengaruhi oleh arsitektur jaringan. Untuk melaksanakan RBF Neural Network dalam sistem ini, penulis memperlakukan data set sebagai deret waktu, di mana stok data yang ada di periode tertentu digunakan untuk memprediksi atau memperkirakan stok periode selanjutnya. Dan Neural Network mempelajari nilai stok masa sebelumnya untuk menentukan stok masa depan harga saham.

Seperti yang ditunjukkan dalam hasil, keakuratan data prediksidalam sistem yang menggunakan RBF hanya terdapat 0.25% error, yang artinya lebih akurat ketimbang EWMA yang mendapati 0.41% error. Itu berarti bahwa system yang menggunakan RBF ini cukup baik untuk memprediksi harga saham.

7. Daftar Pustaka

- [1] J. Fajaryanti, P. W.-I. J. of Computer, and undefined 2013, "Stock Prices Forecast Using Radial Basis Function Neural Network," *Search.Proquest.Com*, vol. 11, no. 3, pp. 21–29, 2013, [Online]. Available: http://search.proquest.com/openview/8b7f521dad09376878b620cb599d6ee3/1?pq-origsite=gscholar&cbl=616671.
- [2] D. RK and P. DD, "Application of Artificial Neural Network for Stock Market Predictions: a Review of Literature," *Int. J. Mach. Intell.*, vol. 2, no. 2, pp. 14–17, 2010, doi: 10.9735/0975-2927.2.2.14-17.
- [3] G. Jandaghi, R. Tehrani, D. Hosseinpour, and R. Gholipour, "Application of Fuzzy-neural networks in multi-ahead forecast of stock price," *African J. Bus. Manag.*, vol. 4, no. 6, pp. 903–914, 2010.

[4] B. B. Dp, R. J. Widodo, I. Z. Sutalaksana, and M. L. Singgih, "TEKNIK JARINGAN SYARAF TIRUAN FEEDFORWARD UNTUK PREDIKSI HARGA SAHAM PADA PASAR MODAL INDONESIA penelitian ini adalah: Harga Terendah Volume o . Pada lapisan sebagai berikut: terkontrol (supervised) dimana menggunakan Pelatihan Backpropagation merupak," pp. 33–37.