UNIVERSIDAD GALILEO

Ingeniería en Sistemas Programación VI (Base de Datos)

HOJA DE TRABAJO 8

Conteste con sus propias palabras las siguientes preguntas

- 1. ¿Cuándo dos calendarizaciones son equivalentes en conflictos? Hacen lo mismo y estan en el mismo orden
- 2. ¿Qué es el Lock Manager? Es el que se encarga de manejar las transacciones y bloqueos.
- **3.** ¿En que consiste el problema del fantasma? Cuando se bloquea información y otro trabaja sobre el al mismo tiempo y no se obtendra el resultado que se necesita.
- **4.** ¿En que consiste el control de concurrencia optimista? En realizar una copia privada de los cambios "dev" y validar contra "producción" si existe un cambio para luego poder pasar los cambios de dev a prod.
- 5. Dibuje un ejemplo de una grafica de precedencia

Resuelva los siguientes problemas

1. Considere una base de datos que esta organizada en la siguiente jerarquía de objetos: La base de datos es un objeto (D) y contiene dos archivos F1 y F2, cada uno de estos contiene 1000 paginas (P1....P1000 y P1001...P2000 respectivamente). Cada pagina contiene 100 registros y los registros están identificados como p:i , donde p es el identificado de pagina y i es el la ubicación del registro en esa pagina. El bloqueo de ganularidad múltiple es usado con bloqueos S, X, IS, IX y SIX. Para cada una de las siguientes operación indique la secuencia de bloqueo que debe ser generada por la transacción:

F1: P1- P1000 F2: P1001 - P2000

- Leer registros P1200:5

IS(D)	
IS(F2)	
S(P1200:5)	

- Leer registros P1200:98 al P1205:2

IS(D)
IS(f2)
S(P1200:98)
S(P1200:99)
S(P1200:100)
S(P1201)
S(P1202)
S(P1205:01)
S(P1205:02)

- Leer todos los registros de las paginas en el archivo F1

IS(D)
IS(F1)

- Leer de la pagina P500 a la P520

IS(D)
IS(F1)
S(P500)
S(P501)
...
S(520)

- Leer de la pagina P10 a la pagina P980

IS(D)
IS(F1)
S(P10)
S(P11)
....
S(P980)

	únicamente después de leer F1.
IX(D)	
IX(F1)	
X(P1)	
X(P10)	
Eliminar el r	egistro P1200:98 (el cual es una escritura a ciegas)
Eliminar el r	egistro P1200:98 (el cual es una escritura a ciegas)
Eliminar el r	egistro P1200:98 (el cual es una escritura a ciegas)

X(P1:1)
...
X(P1:1000:1)
IX(F2)
X(P1001:1)

IX(F1)

- Eliminar todos los registros

X(P(2000:1)

IX(D)
X(F1)
X(F2)

-

2. Considere el siguiente árbol

Describa los pasos involucrados en realizara cada una de las siguientes operaciones

- Buscar la entrada de datos 40*

- Buscar todas las entradas de datos k^* donde $k \le 40$

S(A)
S(B), S(C)
U(A)
S(D), S(E), U(B)
S(F), S(G), U(C)
S(H), S(I), U(D)
S(J), S(K), U(E)

S(L), S(M), U(F)
S(N), S(O), U(G)
U(H), Y(I), U(J), U(K), U(L), U(M), U(N), U(O)

- Insertar la entrada de datos 62*

X(A)
$X(C) \rightarrow Tiene espacio$
U(A)
X(G)
X(P)
U(C)
Inserto el 62*

- Insertar la entrada de datos 40*

X(A)
x(c)
u(a)
x(g)
x(o) → Toca dividir por que ya esta lleno

- Insertar las entradas de datos 62* y 75*

X(A)
$X(C) \rightarrow Tiene espacio$
U(A)
X(G)
X(P)
U(C)
Inserto el 62*
U(G)
u(p)
x(a)
x(c)
u(a)
x(g)
$x(p) \rightarrow Toca dividir por que ya esta lleno$