GROUPE SCOLAIRE LA PERFECTION

DEVOIR LIBRE Nº1

NIVEAU SCO: 1SMBIOF

ANNEE SCO: 2022 /202

EXERCICE Nº1:

Soit f une fonction numérique définie sur [0,1] tel que :

a)
$$\forall x \in [0,1]$$
: On a $f(x) \in [0,1]$
b) $\forall x \in [0,1]$:

b)
$$\forall x \in [0,1]; \forall y \in [0,1]: |f(x) - f(y)| \ge |x - y|$$

1) Montrer que: $(f(0) = 0 \text{ et } f(1) = 1)$

1) Montrer que :
$$(f(0) = 0 \text{ et } f(1) = 1) \text{ ou } (f(1) = 0 \text{ et } f(0) = 1)$$

2) On suppose que : $f(0) = 0$: i) Montrer que :

2) On suppose que :
$$f(0) = 0$$
 et $f(1) = 1$) ou $(f(1) = 0$ et $f(0) = 1$)

ii) Déduire que : $\forall x \in [0,1] : f(x) \ge x$

ii) Déduire que : $\forall x \in [0,1]$: f(x) = x

EXERCICE N°2:

1) Montrer que:
$$(\forall x \in \mathbb{R} : x^3 + 2x - 1 = 0) \Rightarrow (\frac{1}{4} < x < \frac{1}{2});$$
2) Montrer que: $(\forall x \in \mathbb{R} : x^3 + 2x - 1 = 0) \Rightarrow (\frac{1}{4} < x < \frac{1}{2});$

2) Montrer que :
$$(|x| \le \frac{1}{2} et |y| \le 1) \Rightarrow (|4x^2y - x - y| \le \frac{17}{16})$$

3) Soit
$$x \in \mathbb{R}$$
; Montrer que: $(|x-1| \le \frac{1}{3} \Rightarrow \frac{3}{8}|x-1|) = (\frac{|x^2+1|}{x+1} - \frac{2}{3}| \le \frac{1}{2}|x-1|)$;

4) Soient x et y deux réels positifs tel que : x + y = 1 et n nombre naturel non nul :

a) Vérifier que :
$$\frac{x+y}{xy} \ge \frac{4}{x+y}$$
 puis déduire que : $\frac{1}{x^n} \cdot \frac{1}{y^n} \ge 4^n$;

b) Montrer que:
$$(1 + \frac{1}{x^n})(1 + \frac{1}{y^n}) \ge (1 + 2^n)^2$$
;

EXERCICE N°3:

1) a) Montrer que :
$$\forall (a,b) \in (\mathbb{R}^+)^2$$
; $\frac{a^2}{a+b} \ge \frac{3a-b}{4}$

b) Déduire que :
$$\forall (a, b, c) \in (\mathbb{R}^{+*})^3$$
; $\frac{a^2}{a+b} + \frac{b^2}{b+c} + \frac{c^2}{a+c} \ge \frac{a+b+c}{2}$

2) Soient $n \in \mathbb{N}$ et soit a_1 et a_2 et et a_n et b_1 et b_2 et et b_n nombres réels

Strictement positives tel que : $a_1 + a_2 + \cdots + a_n = b_1 + b_2 + \cdots + b_n$;

Montrer que
$$\frac{a_1^2}{a_1+b_1} + \frac{a_2^2}{a_2+b_2} + \dots + \frac{a_n^2}{a_n+b_n} \ge \frac{a_1+a_2+\dots+a_n}{2}$$

3) a) Montrer que : $\forall x \ge 3 : 2x^3 - 3x^2 - 3x - 1 \ge 0$ (Factoriser par x^3)

b) Montrer que : $\forall n \in \mathbb{N}^* \setminus \{1,2\} : 3n^3 \ge (n+1)^3$;

/c) Montrer que : $\forall n \geq 3$; $3^n \geq n^3$;

EXERCICE Nº4:

- 1) a) Montrer que : $\forall (a, b, c) \in \mathbb{R}^3$; $a^2 + b^2 + c^2 \ge ab + bc + ca$;
 - b) Déduire que : $\forall (a, b, c) \in \mathbb{R}^3$; $(a + b + c)^2 \ge 3(ab + bc + ca)$
- 2) Montrer que : $\forall (a, b, c, x, y, z) \in \mathbb{R}^6$; $(ax + by + cz)^2 \le (a^2 + b^2 + c^2)(x^2 + y^2 + z^2)$;

- 3) Soient x, y et z de \mathbb{R}^+ tels que : x + y + z = 1
 - a) Montrer que: $x\sqrt{y} + y\sqrt{z} + z\sqrt{x} \le \sqrt{xy + yz + zx}$;
 - b) Déduire que : $x\sqrt{y} + y\sqrt{z} + z\sqrt{x} \le \frac{\sqrt{3}}{3}$;

EXERCICE N°5:

1) Soit n un entier naturel.

On pose: $u_n = (n+1)(n+2) \dots (n+n)$ et $v_n = 1 \times 3 \times 5 \times \dots \times (2n-1)$ Montrer que : $\forall n \in \mathbb{N}^*$; $u_n = 2^n v_n$;

2) Soit n un entier naturel.

On pose: $u_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$ et $v_n = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2n-1} - \frac{1}{2n}$

Montrer que : $\forall n \in \mathbb{N}^* : u_n = v_n$;

3) Soit q un réel positif; a) Montrer que : $(\forall n \in \mathbb{N}^*)$: $(1+q)^n \ge 1 + nq$;

b) Déduire que : $(\forall n \in \mathbb{N}^*)$; $(1 - \frac{1}{n^2})^n (1 + \frac{1}{n}) < 1$;

4) Montrer que : $(\forall n \in \mathbb{N}^*)$: $[(3^{2n+1} + 4^{n+1} - 2(-1)^n)$ est divisible par 5].

5) Montrer que : $(\forall n \in \mathbb{N})$; $\sum_{k=0}^{n} (2k+1)^2 = \frac{(n+1)(2n+1)(2n+3)}{2}$

EXERCICE Nº6:

1) Soient a et b deux entiers naturels de même parités ;

a) Montrer que : 4 divise $(a^2 - b^2)$; b) Montrer que : $\sqrt{31} \notin \mathbb{Q}$;

2) On considère l'équation suivante; (E) : $x^8 - x^2 + 1 = 0$;

a) Montrer que l'équation (E) n'admet pas de solution dans N.

b) Montrer que l'équation n'admet pas de solution dans R.

3) Soient a, b et c de R; On considère les équations suivantes :

(E): $x^2 - 2ax + bc = 0$; (F): $x^2 - 2bx + ac = 0$ et (G): $x^2 - 2cx + ab = 0$;

Montrer que au moins l'une des équations (E), (F) et (G) admet une solution dans $\mathbb R$.

BON COURAGE

GROUPE SCOLAIRE

LA PERFECTION

DEVOIR SURVEILLE

Nº 1

NIVEAU SCO: 2BAC SMBF

ANNEE SCO: 2020 / 2021

EXERCICE Nº1:

- 1) Donner la valeur de vérité des assertions suivantes en justifiant votre réponse :
 - a) $((\forall x \in \mathbb{R}), (\exists y \in \mathbb{R}) : 3x + y = 5)) \Rightarrow ((\exists y \in \mathbb{R}) : (\forall x \in \mathbb{R}), (3x + y = 5)) \times$
 - b) $(\forall y \in \mathbb{R}), (\exists x \in \mathbb{R}) / x^2 xy y^2 = 0;$
- 2)a) Donner la négation de la proposition suivante :

$$(\forall x \in \mathbb{R}), (\exists (a,b) \in \mathbb{R}^2): (a \le x \Rightarrow b < x) \Rightarrow (a \ge b)$$
Montrer que la négation 1

b) Montrer que la négation de la proposition suivante $(P \Leftrightarrow Q)$ est $(P \Leftrightarrow Q)$

EXERCICE Nº2:

- 1) Montrer que: $(\forall x \in \mathbb{R}^*_+)$; $x + \frac{1}{x} \ge 2$;
- 2) Montrer que : $\forall (a, b, c) \in (\mathbb{R}_+^*)^3$; $(a + b + c)(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}) \ge 9$;
- 3) Déduire que : $\forall (a,b,c) \in (\mathbb{R}_+^*)^3$; $\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \ge \frac{3}{2}$;
- 4) Soient x et y de [1; $+\infty$ [; Montrer que: $(x \ne 1 \text{ ou } y \ne 1) \Rightarrow (x^2 + y^2 + xy x y 1 \ne 0)$;
- 5) a) Résoudre dans \mathbb{R} l'équation : $2x^2 |x 3| 18 = 0$;
 - b) Résoudre dans \mathbb{R} l'inéquation : $\sqrt{x^2 5x + 6} > x + 4$;

EXERCICE Nº3:

- 1) Soit $(a, b, c) \in [0,1]^3$; On pose A = ab et B = a(1-b) + b(1-a) et c = (1-a)(1-b); On suppose que: $A < \frac{4}{9}$ et $B < \frac{4}{9}$ et $c < \frac{4}{9}$;
- a) Montrer que : $B \ge 2(\sqrt{ab} ab)$
- b) Montrer que: $ab \sqrt{ab} + \frac{2}{9} > 0$ puis déduire $ab < \frac{1}{9}$;
- c) Montrer que: $c < \frac{4}{9} \implies \frac{5}{9} < a + b ab$;
- d) Déduire que : B $\geq \frac{4}{9}$; Que peut-on conclure?
- 2) a) Soit $(a,b) \in \mathbb{N}^2$; vérifier que : $(a^2 + b^2 est pair) \Leftrightarrow (les entiers a et b ont même parités);$
 - b) Montrer que : $\forall (a,b,c) \in \mathbb{N}^3 : a^2 + b^2 8c \neq 6$; (utiliser l'absurde)
- 3) Soient x; y et z trois nombres rationnels tel que: x(y+z) + y(z+x) + z(x+y) = 18; Montrer que: $(x \neq y \ ou \ y \neq z \ ou \ x \neq z)$; (utiliser l'absurde)

EXERCICE Nº4:

- Montrer par récurrence que : ∀ n ≥ 2; 6 divise [n (5n² + 1)];
- 2) Montrer par récurrence que : $(\forall n \ge 7)$; $2^n \ge n^2 + 5n$;
- 3) Montrer par récurrence que : $\forall n \in \mathbb{N}^*$; $S_n = \sum_{k=0}^n (-1)^k (n-k)^2 = \frac{n(n+1)}{2}$;

NIVEAU: IBACSMBIO ANNEE SCO: 2021/20

EXERCICE NI

- 1) a) Vérifier que : $\forall (x; y) \in (\mathbb{R}^{+*})^2 ; x + y \ge 2\sqrt{xy}$;
 - b) Montrer que: $\forall (a:b:c) \in (\mathbb{R}^{+*})^3; (\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 1) \Rightarrow (a-1)(b-1)(c-1) \ge 8;$
- 2) Soient x et y de l'intervalle [0;1] on pose : a = xy et b = x(1-y) + y(1-x);
 - a) Montrer que : $b \ge 2\sqrt{a} 2a$ b) Montrer que : $a \ge \frac{4}{9}$ ou $b \ge \frac{4}{9}$ (Absurde)
- 3) Montrer que: $(\forall (x;y) \in \mathbb{R}^2)$; $(2\sqrt{x^2+1}+3\sqrt{y^2+1}=5) \Leftrightarrow (x=y=0)$;
- 4) a) Montrer que: $(\forall (x;y) \in \mathbb{R}^2): (x^2 + xy + y^2 + 1 > 0);$
 - b) Déduire que : $(\forall (x;y) \in \mathbb{R}^2); (x \neq y) \Rightarrow (x^3 + x \neq y^3 + y);$
- 5) a) Montrer que: $(\forall n \in (\mathbb{N}^*); (9 \text{ divise } (16^n + 12 n 1));$
 - b) Montrer que: $(\forall n \in \mathbb{N}^*); \sum_{k=1}^{k=n} k (\frac{4}{5})^k = \frac{4 \times 5^{n+1} (5+n) \cdot 4^{n+1}}{5^n}$

EXERCICE N2

- 1) On considère les ensembles : $A = \left\{ \frac{-2p-1}{2p+2} / p \in \mathbb{N} \right\}$; B =
 - a) Montrer que: $A \subset C$; b) Montrer que: $A \subset A \cup B$;
- 2) On considère les ensembles : $E = \left\{ \frac{\pi}{2} + \frac{2k\pi}{2} \right\}$ $\in \mathbb{Z}$ Montrer que : $E \cap F = \Phi$:
- 3) Soient A; B et C trois parties d'un ensembles E;
- a) Montrer que: $A \subset C \Rightarrow A \cup (B \cap C) = (A \cup B) \cap C$;
 - b) Montrer que : $(A \cap C \neq \emptyset \text{ et } B \cap C =$ $\Phi) \Rightarrow (A \cap \bar{B} \neq \Phi);$
- $\mathbb{R} \times \mathbb{R} = \{x \in \mathbb{R} \mid x^2 2ax + b = 0\} \text{ et } H = \{x \in \mathbb{R} \mid x^2 2cx + d = 0\};$ 4) On considère les ensembles (

Avec a;b;c et a sont des réels tel que : b+d=ac;

Montrer que: $(x(x,y)) \in \mathbb{R}^{|y|} (x^2 + y^2 > xy)$; Puis déduire que : $G \neq \Phi$ ou $H \neq \Phi$;

- 5) On considere l'ensemble $K = \{(x; y) \in \mathbb{R}^2 / x^2 + y^2 3x + 3y \le \frac{-9}{4}\};$
- a) Justifier que $K \neq \Phi$; b) Montrer que : $K \subset [0;3] \times [-3;0]$; c) Est-ce que : $K = [0;3] \times [-3;0]$?

On considere l'application f de] 0; $+\infty$ [vers \mathbb{R} définie par : $f(x) = \frac{2x-1}{x^2}$;

- 1) a) Montrer que: $(\forall x \in]0; +\infty[); f(x) \le 1;$ b) Est-ce que f est surjective ? Justifier ;
- 2) a) Montrer que: $(\forall x \in [1; +\infty[); f(\frac{x}{2x-1}) = f(x); b)$ Est-ce que f est injective? Justifier;
- 3) Soit l'application g la restriction de l'application f sur $[1; +\infty[$;
 - a) montrer que : $(\forall y \in]0; 1[); 1-y-\sqrt{1-y} < 0;$
 - b) Montrer que g est bijective de $[1; +\infty[$ vers] 0; 1]; Puis exprimer $g^{-1}(x)$ en fonction de x de] 0; 1];
- 4) Résoudre dans]1; $+\infty$ [l'équation : $g(x-2\sqrt{x})=1$;
- LA REUSSITE EST UNE QUESTION DE VOLONTE' ET DE CONFIANCE EN SOI

LYCEE PRINCESSE

DEVOIR SURVEILLEE

LALLA AMINA

NI

NIVEAU SCO: 2BACSMB ANNEE SCO: 2021 / 2

EXERCICE NI

- 1) a) vérifier que : $(\forall x \in \mathbb{R})$, $1 + x^2 \ge 2x$
 - b) Soient a, b et c trois réels strictement positifs ; montrer que :

$$(a+b+c=3) \Rightarrow (\frac{1}{1+a^2} + \frac{1}{1+b^2} + \frac{1}{1+c^2} \ge \frac{3}{2};$$

- 2) Soient a; b et c les longueurs des côtés d'un triangle tel que : a + b + c = 1;
 - a) montrer que : $a < \frac{1}{2}$ et $b < \frac{1}{2}$ et $c < \frac{1}{2}$; (Vous pouvez utilisez l'absurde)
 - b) Vérifier que : $a^2 + b^2 + c^2 \frac{1}{2} = \left(a^2 \frac{a}{2}\right) + \left(b^2 \frac{b}{2}\right) + \left(c^2 \frac{c}{2}\right)$;
 - c) Déduire que : $a^2 + b^2 + c^2 < \frac{1}{2}$;
- 3) soient a et x deux réels tel que : $|a| \le 1$ et $|x| \le 1$;
 - a) Vêrifier que : $|ax^2 + x a| \le |a| |x^2 1| + |x|$;
 - b) déduire que : $|ax^2 + x a| \le -x^2 + |x| + 1$;
 - c) Montrer que : $|ax^2 + x a| \leqslant \frac{5}{4}$;
- 4) a) Soient x et y deux réels de l'intervalle [1; + ∞ [;

Montrer que: $(x \neq y) \Leftrightarrow (\sqrt{x} + \sqrt{x-1} \neq \sqrt{y} + \sqrt{y-1});$

- b) Montrer que: $(\forall x \in \mathbb{R})$; $(x^3 + 2x 1) = 0 \implies \frac{1}{4} < x < \frac{1}{2}$
- 5) Soient $(x,y) \in \mathbb{R}^2$; Montrer que: $(4\sqrt{x+1}+6\sqrt{2y+1}=x+2y+15) \Leftrightarrow (x=3\ et\ y=4)$
- 6) a) Montrer que: $(\forall n \in \mathbb{N})$; $(8 \text{ divise le nombre } 1 + 2 \times 3^n + 5^{n+1})$;
 - b) Pour tout $n \ de \ \mathbb{N}^* \setminus \{1\}$ on pose : $S_n = \sum_{k=1}^{k=n} (2^k \times 3^{k+1})$;

Montrer que: $(\forall n \in \mathbb{N}^* \setminus \{1\}): S_n = \frac{18}{5} (6^n - 1);$

EXERCICE N2

1) Soient A, B et C trois parties d'un ensemble non vide E; Etablir les implications suivantes;

$$\left\{ \begin{matrix} A \cap B = A \cap C \\ \bar{A} \cap B = \bar{A} \cap C \end{matrix} \right. \Rightarrow B = C \; ; \; \left\{ \begin{matrix} A \cup B = C \\ A \cap C = B \end{matrix} \right. \Rightarrow A = B = C \; ;$$

- 2) Soient les ensembles $A = \{(x,y) \in \mathbb{R}^2 / 4x y = 1\}$ et $B = \{(t+1; 4t+3), t \in \mathbb{R}\}$ Montrer que : A = B;
- Solvent les ensembles $A = \{ n \in \mathbb{Z} ; (|n-2| \ge 3 \Longrightarrow |n+2| < 2) \}$ et $B = \{ n \in \mathbb{N} ; \frac{2n^2 + 5n + 48}{2n + 3} \in \mathbb{N} \}$ a) Vérifier que : $\forall n \in \mathbb{N} ; \frac{2n^2 + 5n + 48}{2n + 3} = n + 1 + \frac{45}{2n + 3}$;
 - b) Déterminer en extension les ensembles suivants : E; F; $E \cap F$; $E \cup F$ et $E \triangle F$;
- 4) a) Soient les ensembles ; $A = \{\frac{2k+4}{2k-1}; k \in \mathbb{Z}\}$ et $B = \{\frac{8h+7}{5h-1}; h \in \mathbb{Z}\}$; Montrer que $A \cap B = \emptyset$;
 - b) Soient les ensembles : $E = \{\frac{2p+6}{2p+1}; p \in \mathbb{Z}\}$ et $F = \{\frac{5q+3}{8q-9}; q \in \mathbb{Z}\}$; Déterminer : $E \cap F$;

GROUPE SCOLAIRE SANAA DERIVABILITE ET APPLICATION

Exercice 1:

Étudier la dérivabilité de f en x_0 dans chacun des cas suivants, puis donner une interprétation géométrique :

$$\begin{cases} f(x) = x^2 \sin\left(\frac{1}{x}\right), x \neq 0 \\ f(0) = 0 \\ x_n = 0 \end{cases}$$

$$\begin{cases} f(x) = \arctan\left(\sqrt{x^2 - 1}\right), x \ge 1 \\ f(x) = (x - 1)\sqrt[3]{1 - x}, x < 1 \\ x_o = 1 \end{cases}$$

Exercice 2:

Soit f la fonction définie sur IR par :

$$\begin{cases} f(x) = 2x^2 + b; x \le 2 \\ f(x) = 2ax^3 + 11a; x > 2 \end{cases}$$

a et b deux nombres réels.

Déterminer a et b pour que f soit dérivable en 2

Exercice 3:

Montrer que :

$$(\forall x \in IR)$$
: $2\arctan(\sqrt{x^2+1}-x)+\arctan x=\frac{\pi}{2}$

Exercice 4:

Soit f la fonction définie sur $[3,+\infty[$ par :

$$f(x) = \sqrt[3]{x^3 - 3x^2}$$

- 1) Étudier la dérivabilité de f à droite de 3.
- 2) Montrer que f est dérivable sur $]3,+\infty[$, et calculer f'(x) pour tout $x \in]3,+\infty[$.
- 3) Dresser le tableau de variation de f
- 4)a-montrer que f est une bijection de $[3, +\infty[$ vers un intervalle J que l'on déterminera.
- b- Montrer que f^{-1} est dérivable en $2\sqrt[3]{2}$

et calculer
$$(f^{-1})'(2\sqrt[3]{2})$$

Exercice 5:

Soit f la fonction définie sur IR+ par:

$$f(x) = 3\sqrt[3]{x} - 4\sqrt[3]{x^2}$$

- 1) Calculer $\lim_{x \to +\infty} f(x)$
- 2) Étudier la dérivabilité de f à droite de 0, puis donner une interprétation géométrique.
- 3) Étudier les variations de f

Exercice 6:

Soit f la fonction définie par :

$$f(x) = \sqrt[3]{x - \arctan x}$$

- 1) Montrer que l'ensemble de définition de f est IR^+ .
- 2) a-Montrer que pour tout $x \in IR^+$:

$$x - \frac{x^3}{3} \le \arctan x \le x - \frac{x^3}{3} + \frac{x^5}{5}$$

- b- Etudier la dérivabilité de f à droite en 0, puis donner une interprétation géométrique.
- 3) Donner le tableau de variation de f
- 4) Montrer que f admet une fonction réciproque f^{-1} définie sur un intervalle J que l'on déterminera.

Exercice 7:

Soit $n \in IN$ et f_n la fonction définie sur $\mathbb R$

par :
$$f_n(x) = \sum_{k=0}^n \frac{1}{k+1} C_n^k x^{k+1}$$

- 1) Calculer f_n '(x) pour tout x de $\mathbb R$
- 2) En déduire la valeur de $\sum_{k=0}^{n} \frac{1}{k+1} C_n^k$

Prof: Asma OULBAZ Devoir surveillé N°B. SED A.Bac. SMF ExerciceO: Soit f la fonction numérique définie sur R par; $f(x) = (\sqrt{2} + \sqrt{3}) \cos^3 x + (\sqrt{2} - \sqrt{3}) \sin^2 x + 2 \sin x. \cos x$ $f(x) = (\sqrt{2} + \sqrt{3}) \cos^3 x + (\sqrt{2} - \sqrt{3}) \sin^2 x + \sin(2\pi) + \sqrt{2}$ 1) Montrer que: $\forall x \in \mathbb{R}$; $f(x) = \sqrt{3} \cos(2\pi) + \sin(2\pi) + \sqrt{2}$ 1) Calculer: $f(\frac{3+T}{8})$ et $f(-\frac{13T}{A2})$. 2) Calculer: $\forall x \in \mathbb{R}$; $f(x) = 2 \cos(2x - \frac{T}{6}) + \sqrt{2}$ 3) Vérifier que: $\forall x \in \mathbb{R}$; $f(x) = 2 \cos(2x - \frac{T}{6}) + \sqrt{2}$ 4) a. Résoudre dans \mathbb{R} l'équation: $f(x) \in \mathbb{R}$.	
Exercice 2: Soit g la fonction numérique définie sur IR; par: $g(z) = \cos(3z) + \cos(2x)$. 1) Calculer $g(\frac{T}{5})$. 2) Montrer que: $\forall z \in IR$; $\cos(3z) = 4 \cos^3 z - 3 \cos z$ 2) Montrer que: $\forall z \in IR$; $\cos(3z) = (1 + \cos x)(4 \cos^2 x - 2 \cos x - 1)$	5 2
Exercice 3: On considere la fonction h définie par: $h(x) = x^3 - 2x^2 + 2x + 1$ 1) Trouver un $\lambda \in \mathbb{R}$; tel que pour tout $x \in \mathbb{R}$; $ x < 1 \implies h(x) - 1 < \lambda x $ 2) Déterminer: lim $h(x)$ $ x \to 0 $	1,5

Prof: Asma OULBAZ Devoir surveillé N°B. SED A.Bac. SMF ExerciceO: Soit f la fonction numérique définie sur R par; $f(x) = (\sqrt{2} + \sqrt{3}) \cos^3 x + (\sqrt{2} - \sqrt{3}) \sin^2 x + 2 \sin x. \cos x$ $f(x) = (\sqrt{2} + \sqrt{3}) \cos^3 x + (\sqrt{2} - \sqrt{3}) \sin^2 x + \sin(2\pi) + \sqrt{2}$ 1) Montrer que: $\forall x \in \mathbb{R}$; $f(x) = \sqrt{3} \cos(2\pi) + \sin(2\pi) + \sqrt{2}$ 1) Calculer: $f(\frac{3+T}{8})$ et $f(-\frac{13T}{A2})$. 2) Calculer: $\forall x \in \mathbb{R}$; $f(x) = 2 \cos(2x - \frac{T}{6}) + \sqrt{2}$ 3) Vérifier que: $\forall x \in \mathbb{R}$; $f(x) = 2 \cos(2x - \frac{T}{6}) + \sqrt{2}$ 4) a. Résoudre dans \mathbb{R} l'équation: $f(x) \in \mathbb{R}$.	
Exercice 2: Soit g la fonction numérique définie sur IR; par: $g(z) = \cos(3z) + \cos(2x)$. 1) Calculer $g(\frac{T}{5})$. 2) Montrer que: $\forall z \in IR$; $\cos(3z) = 4 \cos^3 z - 3 \cos z$ 2) Montrer que: $\forall z \in IR$; $\cos(3z) = (1 + \cos x)(4 \cos^2 x - 2 \cos x - 1)$	5 2
Exercice 3: On considere la fonction h définie par: $h(x) = x^3 - 2x^2 + 2x + 1$ 1) Trouver un $\lambda \in \mathbb{R}$; tel que pour tout $x \in \mathbb{R}$; $ x < 1 \implies h(x) - 1 < \lambda x $ 2) Déterminer: lim $h(x)$ $ x \to 0 $	1,5

Exercice I

Contrôle

Exerece3

Calculer les limites suivantes

$ \lim_{x \to -1} \frac{3x^2 - 2x - 5}{5x^2 + 2x - 3} $	$\sqrt{\lim_{x\to 2} \frac{2x^2}{x^2}}$	-3x-2 -x-2	$ \int_{\substack{\lim_{t\to 1} \frac{\sqrt{x+1}-x+1}{x^2-9}}} \frac{\sqrt{x+1}-x+1}{x^2-9} $
$\lim_{x \to 3} \frac{\sqrt{x^2 - 9} - \sqrt{x + 11}}{\sqrt{x + 4} - \sqrt{14 - x}}$	$\lim_{x\to 0} \frac{2\tan x + \sin 3x}{x + \sin 2x} \checkmark$		$\sqrt{\lim_{x \to -\infty} \frac{2x - \sqrt{x^2 + 1}}{x + 2 - \sqrt{1 - x}}}$
$\lim_{x \to +\infty} \sqrt{4x^2 + x} - 2x$	r+1 √	lim tan 2	$x\sqrt{\sin x} - \sin x\sqrt{\tan x}$ $x^{1}\sqrt{x}$

Exercice 2

a et 6 deux réels. on considère la fonction 1 définie par :

$$\begin{cases} f(x) = \frac{(a-1)x^2 + (b+2)x - 1}{x - 1} & ; & x > 1 \\ f(x) = \frac{x + \sqrt{x} - 2}{x^2 - \sqrt{x}} & ; & 0 < x < 1 \end{cases}$$

1) (a) on suppose $a \neq 1$. Determiner la limite $\lim_{x \to a} f(x)$

 \sqrt{b} on suppose a = 1 étudier la limite $\lim_{x \to \infty} f(x)$

(2) pour quelle valeur de a et b a-l-on $\lim_{x \to +\infty} f(x) = 1$

3) a) déterminer suivant a et b la limite $\lim_{x\to 1} f(x)$

 \sqrt{b} montrer que $\lim_{x \to 1} f(x) = 1$

c) déterminer a et pour que admette une limite au point 1

On pose $F(x) = \sin^2\left(x + \frac{\pi}{8}\right) + \cos^2\left(x - \frac{\pi}{8}\right) - 1$

(1) calcular $F\left(\frac{\pi}{8}\right)$ of $F\left(\frac{-3\pi}{8}\right)$

2) (a) montrer que $2\sin^2\left(x+\frac{\pi}{8}\right) = 1 - \frac{\sqrt{2}}{2}(\cos 2x - \sin 2x)$

et $2\cos^2\left(x - \frac{\pi}{8}\right) = 1 + \frac{\sqrt{2}}{2}(\cos 2x + \sin 2x)$

 $\sqrt{\ell}$ en déduire que $F(x) = \frac{\sqrt{2}}{2} \sin 2x$

 \sqrt{c} résoudre dans \mathbb{R} l'équation $F(x) = \frac{1}{2}$

 $\sqrt{3}$ résoudre dans $[0;\pi]$ l'inéquation F(x) > 0

Exercice 4

Soil h la fonction telle que $h(x) = \sin(2x) E\left(\frac{1}{x}\right)$

1) montrer que $(\forall x \in \mathbb{R}^*)$ $|h(x) - 2| \le |\sin 2x| + \left|\frac{\sin 2x}{x} - 2\right|$

2) déduire que $\lim_{x\to 0} h(x) = 2$

3) montrer que $\lim_{x \to +\infty} h(x) = 0$

Bonus :

Calculer $\lim_{x \to 0} \frac{1 - \tan\left(\frac{\pi}{4} + 2x\right) \tan\left(\frac{\pi}{4} - x\right)}{x}$

(4pts) Q

Question de cours

Soit R la rotation de centre Ω et d'angle α et soient A; B deux points du plan avec A ≠ Ω;
 B ≠ Ω; A ≠ B; On pose R(A) = A'; R(B) = B' et on considère les points N; N' tel que
 ΩN = AB et R(N) = N'

(Ipts)

(a) Montrer que $\left(\overrightarrow{\Omega A}, \overrightarrow{\Omega B}\right) = \left(\overrightarrow{\Omega A'}, \overrightarrow{\Omega B'}\right)$ $[2\pi]$

(1pts)

(b) Montrer que (AB, A'B') = α [2π]
 2. Soit deux fonction définies au voisinage de a ∈ R tel que lim f(x) = +∞ et lim g(x) = +∞

(lpts)

(a) Montrer à l'aide de la définition que lim_{x→a} f(x) + g(x) = +∞
f(x)

(Ipts)

(b) Justifier avec des exemples pour quoi $\lim_{x\to a} \frac{f(x)}{g(x)}$ est une forme indéterminée

(4pts)

0.5pts

Déterminer D_f le domaine de définition de f.

(9pts)

Exercice 3

$$\sqrt{1. \text{ Montrer que } \lim_{x \to 0} \frac{\sqrt{x+1} - \sqrt{1-x}}{x}} = 1$$

(a) Vérifier que
$$(\forall x \neq 0) f(x) = \frac{2x^{m-n}}{\sqrt{x^m+1}+\sqrt{1-x^m}}$$

(b) Étudier la limite
$$\lim_{x\to 0} f(x)$$
 dans les cas suivants : $m>n$; $m=n$; $m< n$.

3. Montrer que
$$(\forall n \in \mathbb{N}^*)$$
 $\lim_{x \to 1} \frac{x^n - 1}{x - 1} = n$

4. Déduire que
$$(\forall n \in \mathbb{N}^*)$$
 $\lim_{x \to 1} \frac{x^{n+1} - 1}{x^n - 1} = \frac{n+1}{n}$

5. Montrer que
$$\lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x + \sqrt{x}}}}{\sqrt{x + 1}} = 1$$
 et que $\lim_{x \to +\infty} \frac{x + \cos x}{x + \sin x} = 1$

(3pts)

Exercice 2

Soit
$$f$$
 une fonction définie sur \mathbb{R}^* par :
$$\begin{cases} f(x) = (x^2 + x)E\left(\frac{1}{x}\right) & ; \ x > 0 \\ f(x) = \frac{\sqrt{1 + \sin(x)} - 1}{x} & ; \ x < 0 \end{cases}$$

1. Montrer que
$$(\forall x \in]0; +\infty[)-1-x^2 < f(x) \le x+1$$

$$\sqrt{2}$$
. En déduire que $\lim_{x\to 0^+} f(x)$

3. Montrer que
$$\lim_{x\to 0^-} f(x) = \frac{1}{2}$$

$$\sqrt{5}$$
. Montrer que $(\forall x \in]-\infty;0[)$ $\frac{\sqrt{2}-1}{x} \leq f(x) \leq -\frac{1}{x}$. En déduire $\lim_{x \to -\infty} f(x)$

$$\int_{x \to +\infty} 6. \text{ Montrer que } \lim_{x \to +\infty} f(x) = 0 \quad \text{(indication : prendre } x \in]1; +\infty[\)$$

EXERCICE 1 8 pts	
Toient f la fonction définie par : $f(x) = \frac{x}{\sqrt{x^2 - 3x + 2}}$ et (C) la courbe de f	
11) déterminer le domaine D, de la fonction 1	1 pts
12) calculer les limites $\lim_{x\to\infty} f(x)$ et $\lim_{x\to\infty} f(x)$ interpréter graphiquement les résultats obtenus	1.5 pts
13) calculer $\lim_{x\to 1} f(x)$ et $\lim_{x\to 2} f(x)$ puis interpréter graphiquement les résultats obtenus	
241 252	1.5 pts
4) a) montrer que f est dérivable sur D_f et que $(\forall x \in D_f)$ $f'(x) = \frac{-3x+4}{2\sqrt{(x^2-3x+2)^3}}$	pts
vb) étudier les variations de 1 puis donner le tableau de variation	1.5 pts
5) tracer la courbe (C)	1 pts
	. [
	.
EXERCICE 2 6 pts	
1) a) montrer par récurrence que $(\forall n \in \mathbb{N}^*)$ $21'' = 1 + 20n$ [100]	1.5 p
(b) déduire que 2021 2021 = 21 [100]	1 pts
2) a) décomposer en produit de facteurs premiers les entiers 2022 et 2025 🗸	.1.5
b) On considère dans N°2 l'équation (E) $(a \lor b)^2 - 3(a \land b)^2 = 2022$ et on pose	$d = a \wedge b$
(1) montrer que $(\exists (x,y) \in \mathbb{N}^{2})$ $d^{2}((xy)^{2}-3)=2022$	1 p
(62) déduire les solutions de (E)	1 p
EXERCICE 3 6pts	
Une URNE contient: 5 boules rouges numérolés: 1, 1, 1, 1, 0, 2	-
et 4 boules vertes numérotés : 1, 1, 0, , 2,	
On tire successivement et sans remise 3 boules de l'URNE	-
1) quel est le nombre de possibilité de ce tirage	1.5
2) dénombrer les ensembles suivants : A "Obtenir 3 boules de même couleur"	1.
/ - !! al l _ t _ t _ t t a samma école à 4 "	4
√B" 3 boules portent des numéros de somme égale à 4",	4" 1
V C " Virer 3 boules de même couleur ou portent des numéros de somme égale à	

Problème Devoire 5

Rappels et définitions : Soit I un intervalle de \mathbb{R} , on rappelle qu'une fonction $f: I \to \mathbb{R}$ est dite monotont si f est croissante ou décroissante.

On dit que f est convexe si elle vérifie :

$$\forall x, y \in I; \forall \lambda \in [0, 1]; \quad f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$$

Une partie A non vide de R est dite majorée s'il existe $M \in \mathbb{R}$ tel que pour tout $x \in A$, $x \leq M$. De même, on dira que f est majorée sur I s'il existe $M \in \mathbb{R}$ tel que pour tout $x \in I$, on a : $f(x) \leq M$. Soit A est une partie non vide de R. On suppose dans ce problème que si A est majoré, alors il existe l ∈ R b que :

$$\begin{cases} \forall x \in A; x \leq l \\ \forall \varepsilon > 0, \exists x_{\varepsilon} \in A \ / \ x_{\varepsilon} > l - \varepsilon. \end{cases}$$

Soit $a \in \mathbb{R}$, $I =]-\infty$, $a[f: I \to \mathbb{R}$ une fonction <u>croissante</u>.

V1. Soit ω ∈ I. Montrer qu'il existe l ∈ ℝ tel que $\lim_{x \to a} f(x) = l$

√2. Montrer que si f est non majorée, alors lim $_{x\to a^-} f(x) = +\infty$.

On suppose dans la suite que le résultat de la question 1 s'étend à $+\infty$ et pour toute fonction monotone, c'est à-dire si $f : \mathbb{R} \to \mathbb{R}$ monotone alors il existe $l \in \mathbb{R} \cup \{-\infty, +\infty\}$ tel que $\lim_{x \to +\infty} f(x) = l$.

Partie II

Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction convexe. Soit $x_0 \in \mathbb{R}$, on considère $g_{x_0} : \mathbb{R} \setminus \{x_0\} \to \mathbb{R}$ la fonction définie par :

$$g_{x_0}(x) = \frac{f(x) - f(x_0)}{x - x_0}$$

Montrer que g_{x0} est croissante.

- Déduire que si f est majorée, alors f est constante.
- Montrer que si h : R → R croissante et vérifiant lim h(x) = 0, alors pour tout x ∈ R : h(x) ≤ 0.

4. Application :

- (a) Montrer qu'il existe l∈ R∪ {+∞} tel que : lim_{x→+∞} f(x)/x = l.
- (b) On suppose que l∈ R. Montrer que la limite lim f(x) − lx existe. indication : considérer la fonction $g: x \mapsto f(x) - lx$ et montrer qu'elle est décroissante

Partie III

e plan est rapporté au repère orthonormal $(O; \vec{i}; \vec{j})$. Soit Ω le point de coordonné (3; 1). Considérons un poir I variant sur l'axe (Ox), d'abscisse x. Soit M' le point d'intersection de (ΩM) et l'axe (Oy). Posons f(x) = yi $y_{M'}$ désigne l'ordonné du point M'.

Déterminer l'ensemble de définition de la fonction f.

- Conjecturer les limites suivantes : lim_{x→+∞} f(x), lim_{x→-∞} f(x), lim_{x→3+} f(x), lim_{x→3-} f(x).
- Expliciter f(x) et retrouver les résultats précédents.