Contenidos

Un breve recorrido por los sistemas operativos El sistema informático y la organización La figura del administrador de sistemas Superusuario dentro del sistema Referencias

Programación y Administración de Sistemas

1. Introducción a la Administración de Sistemas

Pedro Antonio Gutiérrez

Asignatura "Programación y Administración de Sistemas"

2º Curso Grado en Ingeniería Informática

Escuela Politécnica Superior

(Universidad de Córdoba)

pagutierrez@uco.es

10 de febrero de 2015

Contenidos

Un breve recorrido por los sistemas operativos El sistema informático y la organización La figura del administrador de sistemas Superusuario dentro del sistema Referencias

- 1 Un breve recorrido por los sistemas operativos
 - Generaciones de los sistemas operativos
 - Sistemas operativos más usuales
- El sistema informático y la organización
 - El sistema informático
 - El Departamento de Informática
- 3 La figura del administrador de sistemas
 - Rol
 - Tareas detalladas
 - Estrategias
 - Software libre para la administración de sistemas
- Superusuario dentro del sistema
 - De usuario a superusuario
 - Comunicación con el resto de usuarios
- 6 Referencias

Generaciones de los sistemas operativos

Primera generación (1945-1955)

- Ordenadores muy voluminosos, tarjetas perforadas.
- No necesitaban Sistema Operativo (SO), el operario introducía la tarjeta con el código correspondiente.

Segunda generación (1955-1968)

- Aparecen los transistores, los ordenadores disminuyen de tamaño y se puede empezar a pensar en SOs.
- Lenguaje de Control de Tareas (JCL).
- Lenguajes de alto nivel y de bajo nivel (assembler).
- Se comienza a hablar de superusuarios y de usuarios.
- Dispositivos de entrada/salida (cintas magnéticas...).

Generaciones de los sistemas operativos

Tercera generación (1968-1981)

- Aparecen los circuitos integrados (Large Scale Integration, LSI), que incluyen multitud de componentes electrónicos.
- Comienzan a aparecer equipos de propósito general.
- Nuevos conceptos: escalabilidad, multiprogramación, discos duros.
- Multiprogramación → buffering, gestión de procesos en el SO...
- Infrautilización de los ciclos de CPU ightarrow sistemas de tiempo compartido.

Generaciones de los sistemas operativos

Cuarta generación (1981-2001)

- Aparecen los Very Large Scale Integration, VLSI, y los microprocesadores.
- Conectividad de dispositivos (Plug and play).
- Aplicaciones cliente/servidor.
- Máquinas virtuales, porciones virtuales...

Quinta generación

 Tendencia a que los ordenadores los puedan manejar personas no expertas en la informática.

Sistemas operativos más usuales

- Mac OS: es el nombre del primer sistema operativo de Apple para los ordenadores Macintosh.
- Windows: Es un sistema operativo gráfico para ordenadores personales cuyo propietario es la empresa Microsoft.
- UNIX: Es un sistema operativo, multitarea y multiusuario; desarrollado en principio por un grupo de empleados de los laboratorios Bell de AT&T.

Sistemas operativos más usuales

• ¿Qué es GNU/Linux?

- Es un Sistema Operativo libre.
 - Surgió como reimplementación y reelaboración de UNIX.
 - Se acoge al estándar POSIX.
 - No es la única alternativa libre a UNIX (FreeBSD, OpenBSD, NetBSD...), pero si la más popular.
- Creado y mantenido por voluntarios.
- Código abierto → Se puede conocer, modificar y extender.
- Gratuito.

Sistemas operativos más usuales

• ¿Qué es GNU/Linux?

- GNU es un alternativa libre al Sistema Operativo UNIX, diseñado por Richard Stallman (1983).
- El núcleo fue diseñado por el finlandés Linus Torvalds (1991).
- Se unieron y formaron GNU/Linux.
- Controversia: http://es.wikipedia.org/wiki/ Controversia_por_la_denominaci%C3%B3n_GNU/Linux

El sistema informático

Ópticas posibles del Sistema Informático de una organización

- Para la organización: es un departamento como cualquier otro, con unos recursos disponibles para el resto de departamentos.
- Para los informáticos: es un conjunto de servidores, redes y ordenadores personales para "hacer cosas".
- Para los usuarios: es una herramienta más que proporciona la organización para mejorar su tarea.
- Para la dirección: lo usan como una gran base de datos para hacer consultas que pueden ayudarles en la toma de decisiones.

El Departamento de Informática

 El Departamento de Informática (o Departamento de Tecnologías de la Información, término algo más general), se encarga de mantener y gestionar el Sistema Informático.

El Departamento de Informática

- Sistema Informático Físico:
 - Hardware:
 - Servidores: múltiples servidores especializados → + control, riesgo de fallos.
 - Ordenadores Personales (PCs): prácticamente uno por trabajador.
 - Cableado y electrónica de red: tanto los cables, como la electrónica de control de la red (concentradores, encaminadores, cortafuegos y conmutadores).
 - Software:
 - Sistemas Operativos: se debe hacer distinción entre el SO de los servidores y el de los PCs.
 - Software empresarial de base.
 - Aplicaciones específicas.
- Personal: Responsable de Informática y Personal Técnico.

El Departamento de Informática

Funciones del Departamento de Informática

 Todas estas funciones se suelen cubrir con una o, como mucho, dos personas.

Administración de servidores

• Instalar, mantener y reparar los servidores que prestan los servicios del sistema informático de la organización.

Administración de usuarios

- Atención de las necesidades de los usuarios.
- Mantenimiento de sus equipos de sobremesa (microinformática).
- Parte más "visible" de sus funciones.

Administración de la red

- Responsabilidad sobre la parte física de la red.
- Asegurar que se encuentra en buen funcionamiento y que llega, de forma óptima, a todos los puntos de la organización.

Administración de los datos

- Mantener la integridad de la información de la organización.
- La información debería de estar en los servidores (aunque a veces se encuentra distribuida por todo el sistema).
- ¿Minería de datos?.

Administración de la web

- Mantenimiento del servidor web y, muchas veces, del contenido de la web.
- Homogeneidad global.

Administración de la seguridad

- La seguridad informática es compleja:
 - Desde la seguridad de la información existente,
 - hasta la protección física del equipamiento contra robos, incendios...
- Tarea presente en todas las funciones.

Desarrollo

- Una organización suele necesitar software específico.
- A veces, en lugar de comprarlo, se desarrolla.
- Esta asignatura no cubre este aspecto, en todo caso, cubriría su implantación.

Responsable de Informática

- Es el enlace entre:
 - las necesidades de la empresa,
 - y el trabajo que se lleva a cabo en el departamento.
- Decide: qué software comprar (o si se hace a medida y cómo), servidores necesarios, ordenadores y red de comunicaciones...

UCO

- Área de Sistemas: servidores, correo, comunicaciones...
- Área de Gestión: usuarios, licencias de software, web, sigma...

Interdependencia

- Cada función → tareas definidas.
- Sin embargo, no son independientes, sino que tienen que trabajar coordinadas.
- Las funciones tienen intersecciones en algunos puntos.
- Algunas tareas tienen que estar mezcladas para conseguir una gestión, un servicio y una atención al usuario en las mejores condiciones posibles.

Ejemplo

- ¿Dar de alta a un usuario en los servidores es una tarea para el administrador de usuarios o para el administrador de servidores?
 - Si es la misma persona quien hace las dos funciones, no hay problema.
 - Si no lo es, se tiene que decidir quién se encarga:
 - En caso de que lo haga la persona que administra los servidores, se ha dividido la tarea de dar de alta a los usuarios (y todo lo que comporta) en diversas personas. Hay que valorar si vale la pena.
 - Si sólo lo hace la persona que administra a los usuarios, entonces "manipulará" los servidores para hacerlo. Hay que valorar si ello es prudente.

Administrador de Sistemas

Un Administrador de Sistemas es la persona que tiene la responsabilidad de implementar, configurar, mantener, monitorizar, documentar y asegurar el correcto funcionamiento de un sistema informático, o algún aspecto de éste.

El Administrador del Sistemas tiene por objeto garantizar el tiempo de actividad (uptime), rendimiento, uso de recursos y la seguridad de los servidores que administra de forma proactiva.

Fuente: http://es.wikipedia.org/wiki/Administrador_de_sistemas

El administrador de sistemas

Administrador de sistemas

- Persona con el poder y la responsabilidad de establecer:
 - acciones,
 - procedimientos,
 - y normas,

para lograr que el sistema informático sea:

- eficiente,
- seguro,
- fiable,
- y amigable.
- Cualidades:

Autoridad + responsabilidad + servicio + cooperación

El administrador de sistemas

- Dedicación del Administrador de sistemas:
 - Idealmente → Una persona encargada solo de la administración.
 - Generalmente → Comparte la labor de administración con otro tipo de trabajo.
- Labores del Administrador de sistemas:
 - Idealmente → sería uno de los miembros del Departamento de Informática.
 - Generalmente → puede hacer todo o casi todo el trabajo del Departamento de Informática:
 - Atender al teléfono, al fax, administrar los ordenadores...
 - Ordenar pedidos, atender a los usuarios, desarrollar software, reparar hardware, reírse de los chistes del jefe...

El administrador de sistemas

- ¿Qué se espera del administrador?
 - Amplios conocimientos de todo el sistema: hardware, software, datos, usuarios...
 - Capacidad reconocida para tomar decisiones.
 - Ambición y espíritu de superación.
 - Eficacia y moral irreprochables.
 - Responsabilidad: se trabaja con datos muy importantes, hay un jefe por encima...

Tareas detalladas: nivel más hardware

- Planificar y administrar el entorno físico:
 - Diseñar la habitación, especificar el sistema de refrigeración, las conexiones de energía, el control del entorno (alarma contraincendios, seguridad física...).
- Planificar los cortes de suministro para realizar actualizaciones o para administrar los dispositivos.
- Localizar, reparar y reemplazar componentes defectuosos (a nivel hardware).
- Configurar y mantener la conectividad entre los hosts (redes):
 - Monitorización.
 - Resolución de problemas.
 - Calidad de servicio.
- Instalar y mantener dispositivos del sistema, hardware y drivers. Especificar dispositivos soportados.

Tareas detalladas: mantenimiento *software* y documentación

- Mantenimiento software:
 - Instalación y configuración de sistemas operativos.
 - Detección de problemas en el software y reparación.
 - Configurar y mantener aplicaciones de negocio:
 - Aplicaciones propias (p.ej. Sigma en la UCO).
 - e-mail.
 - Agendas, calendarios...
- Documentación:
 - Documentar todo el sistema.
 - Mantener documentos sobre configuraciones locales y políticas locales.

Tareas detalladas: soporte a usuarios

- Formar a los usuarios en el manejo del software y en seguridad.
- Ayudar a los usuarios y proporcionar soporte.
- Establecer un sistema de rastreo de problemas para contestar las cuestiones de los usuarios (sistema Hermes de la UCO, notificación de incidencias).
- Asegurar que los usuarios tiene acceso a toda la documentación.

Tareas detalladas: servicios

- Instalar y mantener las cuentas de usuario, desarrollar políticas de uso aceptables y de nombrado de usuarios, instalar/configurar/administrar servicio de nombres, manejar las licencias de software...
- Determinar los requisitos software, los parches a instalar, los servicios a proporcionar y cuáles deshabilitar.
- Configurar los servicios de red (con sus políticas y sus requisitos de seguridad):
 - Impresión, ficheros compartidos, servicio de nombres...
- Instalar, configurar y administrar servidores web.

Tareas detalladas: seguridad

- Determinar cuotas de disco, políticas de manejo del espacio y monitorizar los ficheros de log.
- Configurar y manejar la seguridad del sistema:
 - Seguridad para aplicaciones de negocio.
 - Lectura de listas de correo de seguridad y de notificaciones CERT, SNORT (reglas firewall liberadas, pago por alertas inmediatas).
 - Instalar y configurar firewall para limitar el acceso de intrusos.
 - Recabar evidencias en caso de intrusión y limpiar el rastro.

Tareas detalladas: copias de seguridad

- Configurar y mantener backups del sistema:
 - Determinar la estrategia y las políticas de copias de seguridad.
 - Configurar el software de copia.
 - Realizar/automatizar copias.
 - Mantener logs.
 - Comprobar la integridad de las copias.
 - Determinar planes de supervivencia a catástrofes.
 - Realizar restauraciones.

El administrador de sistemas

- Estrategia del Administrador de sistemas al realizar una tarea:
 - Planearlo antes de hacer los cambios, haciendo un estudio detallado de los pasos que hay que realizar.
 - 4 Hacer los cambios reversibles, haciendo copia de seguridad del sistema o de los ficheros de configuración a modificar.
 - 3 Realizar los cambios de forma incremental, probándolos si fuese posible (más fácil localizar los fallos).
 - Probarlo, probarlo, probarlo, ..., antes de hacerlo público.
 - Onocer realmente cómo trabajan las cosas.
- Cuando se realice cualquier modificación:
 - Precaución antes de...
 - Probarlo después de...

El administrador de sistemas

- Es una buena idea disponer de un cuaderno de bitácora:
 - En el se registran todos los cambios realizados sobre la configuración del sistema.
 - Sirve para uno mismo y para los demás.
- La mayoría de las veces tendremos que editar múltiples ficheros de configuración, para lo que necesitaremos un editor de texto.
 - vi (o su versión mejorada vim) es un editor estándar, que podremos encontrar en cualquier sistema GNU/Linux.
 - pico es más simple de utilizar.
 - Muchas veces solo podremos acceder al servidor por conexión ssh, en modo consola, por lo que no podremos utilizar editores gráficos como gedit.

Ventajas del software libre en administración de sistemas

- Libertad de uso, modificación y redistribución:
 - podemos instalarlo en tantas máquinas como queramos.
 - podemos adaptarlo a nuestras necesidades o las del cliente.
 - podemos revisar el código y corregir errores sin esperar a que lo haga el desarrollador.
 - corrección mas rápida y eficiente de fallos, y rápida resolución de dudas y problemas, gracias al modelo bazar¹ y a las fuertes comunidades que tiene detrás.
- Independencia tecnológica: no nos atamos a ningún proveedor en particular.
- Ausencia de secretismo tecnológico y de patentes (seguridad jurídica).
- Fiabilidad y rendimiento.

http://es.wikipedia.org/wiki/La_catedral_y_el_bazar

Ventajas del software libre en administración de sistemas

- Formatos estándar: facilitan la interoperabilidad.
- Métodos simples y unificados de gestión de software (p.ej apt-get): las distribuciones evitan tener que acudir a buscar software de fuentes dudosas.
- Inmensa variedad de soluciones muy maduras: el software libre nace en entornos de servidores.
- Demanda de técnicos FLOSS en expansión, gracias a la creciente adopción por parte de las AAPP y de grandes empresas tecnológicas (Google, IBM, Sun/Oracle, etc.).
- Sistemas potencialmente más seguros: hackers y empresas de seguridad de todo el mundo puedan auditar los programas.
- Aspectos económicos: más de mil millones de euros en licencias de Microsoft en España anuales (2006).

Uso de software libre en administración de sistemas

- El mercado suele medirse por unidades vendidas o por beneficios.
- Difícil de de evaluar para el caso del FLOSS: sistemas libres son a menudo obtenidos sin coste e instalados sin contratar soporte.
- Muchas veces se instalan en máquinas que no fueron compradas con software libre precargado.
- El método que se usa suele ser mediante acceso a máquinas públicamente accesibles (como servidores web).
- Problema: este método no contempla las máquinas no accesibles públicamente.

Uso de software libre en administración de sistemas

Software libre en servidores web.

Source	Date	Method	Unix, Unix-like				Microsoft		
			All	Linux	BSD	Unknown	Windows	References	
W3Techs	Feb 2014	Units (Web)	67.4%	38.6%	1.0%	27.77%	32.6%	[31][32]	
Security Space	Nov 2012	Units (Web)	62-82%	58-78%	>4%		18-38%	[33][34]	

Note

W3Techs from June 2013 checking daily the top 10 million Web servers but W3Techs definition of "website" differs a bit from Alexa's definition, the "top 10 million" websites are actually fewer than 10 million. However, this has no statistical significance. [35]

Fuente:

http://en.wikipedia.org/wiki/Usage_share_of_operating_systems

 Software libre en la administración pública. http://es.wikipedia.org/wiki/ Software_libre_en_la_Administraci%C3%B3n_P%C3%BAblica

Uso de software libre en equipos informáticos

Category	Source	Date	Linux based	Mac and other Unix	In-house	Windows	Other
Desktop, laptop, netbook	Net Applications ^[43]	Dec 2014	1.34% (Ubuntu, etc.)	7.21% (OS X)		91.45% (7, 8, XP, Vista)	
Smartphone, tablet, handheld game console	StatCounter Global Stats ^[44]	Dec 2014	53.86% (Android)	31.10% (iOS)		1.87% (WP8, RT)	13.17%
Server (web)	W3Techs ^[45]	Sep 2014	36.72% (Debian, Ubuntu, CentOS, RHEL, Gentoo)	30.18% (FreeBSD, HP-UX, Solaris, OS X Server)		33.10% (W2K3, W2K8, W2K12)	
Supercomputer	TOP500 ^[42]	Nov 2014	97.0% (Custom)	2.4% (AIX)		0.2%	0.2%
Mainframe	Gartner ^[39]	Dec 2008	28% (SLES, RHEL)	72% (z/OS) UNIX System Services			
Gaming console	Nintendo, Sony, Microsoft, Ouya ^[46]	Jun 2013	0% (SteamOS, Android)	29.6% (PS3)	40.9% (Wii)	29.5% (Xbox)	
Embedded	UBM Electronics[47]	Mar 2012	29.44% (Android, Other)	4.29% (QNX)	13.5%	11.65% (WCE 7)	41.1%
Real time	NewTechPress ^[48]	Nov 2011	19.3% (Android)		20.1%	35.8% (XPE, WCE)	24.8%

Fuente: http://en.wikipedia.org/wiki/Usage_share_of_operating_systems

Desventajas del software libre

- Necesidad de una formación especializada: la gente se suele (o solía) formar con SO privativos.
- Ausencia de interfaces visuales, ya que suelen ser privativas.
- No siempre hay soporte para todo tipo de hardware (patentes, drivers y especificaciones privativas).
- ¿Mayor mercado laboral en sistemas privativos? (en otros sectores, no en administración de sistemas).

Interfaces gráficas de usuario

- Muchas distribuciones traen GUIs o herramientas visuales propias.
 - Son útiles y facilitan las tareas, sobre todo para sysadmins noveles.
 - Suelen ser propietarias.
 - O nos hacen dependientes de una distribución en concreto.
 - A veces poseen oscuros detalles en la forma de gestionar los recursos.
- Vamos a estudiar siempre la tecnología y métodos subyacentes, incluyendo ficheros de configuración, comandos, etc...
 - Estos suelen ser comunes a todas las distribuciones, incluso a todos los sistemas Unix.
 - La configuración manual es mejor: más rápida, más flexible, más fiable, más potente y más *scriptable*.

Inciso: ¿cómo promover el software libre?

- La gratuidad no es el punto fuerte del software libre.
- Insistir en la gratuidad supone minusvalorar el resto de ventajas (y es injusto para la gente que lo crea y lo mantiene).
- No se debe comenzar hablando de dinero a los que toman las decisiones.
- No hablar del FLOSS en abstracto ("Linux es mejor"): mejor estudiar costes de migración y tratar de cubrir necesidades concretas que no están cubiertas o mejorar lo que hay.
- No hay que ser impaciente: dejar que el software libre crezca con los clientes, introduciendo mejoras de forma progresiva.

El superusuario o administrador

- El administrador o superusuario es el usuario que tiene siempre todos los privilegios sobre cualquier fichero, instrucción u orden del sistema.
- En GNU/Linux ese usuario es root, que pertenece al grupo root:
 - Directorio HOME: /root (o / en modo monousuario).
 - Si estamos en el sistema utilizando cualquier otro usuario, ¿cómo podemos convertirnos en administrador?
 - Salir de la sesión y entrar utilizando root como nombre de usuario (deshabilitado por defecto en algunos entornos).
 - Utilizar el comando su → nos pedirá la contraseña de root y abrirá una shell donde tendremos privilegios de administración.

El superusuario o administrador

```
pagutierrez@TOSHIBA:~$ whoami
pagutierrez
pagutierrez@TOSHIBA:~$ su
Contraseña:
root@TOSHIBA:/home/pagutierrez# whoami
root
```


La herramienta sudo

- sudo permite a otros usuarios ejecutar órdenes como si fuesen el administrador.
 - /etc/sudoers ⇒ fichero de configuración
 - Fichero de solo lectura, incluso para root.
 - En él estableceremos "quién puede ejecutar qué y cómo" desde sudo.

La herramienta sudo

Referencias

 visudo ⇒ orden para modificar el fichero de configuración /etc/sudoers.

```
# Especificación de privilegios de usuario
root ALL=(ALL:ALL) ALL
# Los miembros del grupo sudo podrán ejecutar cualquier
comando
# %sudo ALL=(ALL:ALL) ALL
```

sudo orden ⇒ pide contraseña del usuario.

Comunicación con el resto de usuarios

- El administrador debe comunicarse con el resto de usuarios:
 - write: enviar un mensaje a un usuario
 - talk: conversar con un usuario, incluso aunque esté en otra máquina GNU/Linux.
 - mesg [y/n]: habilitar/deshabilitar la llegada de mensajes al terminal
 - wall: mandar un mensaje a todos los usuarios del sistema.
 - Fichero /etc/motd: contiene el mensaje del día que se imprime justo después de entrar al sistema (en modo texto).
 - Fichero \$HOME/.hushlogin ⇒ permite evitar el mensaje del día.
 - Fichero /etc/issue: contiene el mensaje que se muestra antes del login, normalmente muestra la versión de Linux (en modo texto).

Contenidos

Un breve recorrido por los sistemas operativos La figura del administrador de sistemas Superusuario dentro del sistema Referencias

Referencias

Essential system administration

O'Reilly and Associates, 2001.

Miguel Vidal y José Castro

El software libre y la administración de sistemas

http://rodrigoaguilera.net/sites/rodrigoaguilera.

net/files/miscelanea/sysadmin.pdf

Tema 1

Contenidos
Un breve recorrido por los sistemas operativos
El sistema informático y la organización
La figura del administrador de sistemas
Superusuario dentro del sistema

Programación y Administración de Sistemas

Referencias

1. Introducción a la Administración de Sistemas

Pedro Antonio Gutiérrez

Asignatura "Programación y Administración de Sistemas"

2º Curso Grado en Ingeniería Informática

Escuela Politécnica Superior

(Universidad de Córdoba)

pagutierrez@uco.es

10 de febrero de 2015

