普通化学(乙)模拟试卷参考答案

课程	号: <u>771</u>	T0090 ,	开课学院:	化学系				
考试	试卷: A 卷	É√、B卷	(请在选定	项上打 √)				
考试	形式:闭	√、开卷(请在选定项	页上打 √),	允许带	科学计算器	<u> </u>	
考试	日期:	年月	月日, 考	肯试时间 :	120_分钟			
	诚信	考试,	沉え	 宇	台。村	绝讳	纪。	
					,			
考生姓名 	:	学号:			Ŕ:	任	:课教帅: _ 	
题序	_	=	111	四	五	六	七	总 分
得分								
评卷人								
本试卷可	能用到的数	数据: R = 8	3.314 J mol	⁻¹ K ⁻¹ ; F =	96500 C 1	nol ⁻¹ ;标准	È压力 p ^θ =1	.00 kPa
一、选排	¥题(单ì	先,每小 是	题 2 分,	共30分)				
(C) 1.	CaCl ₂ 、P	₂ O ₅ 等物质	常用作固体	本干燥剂,:	这是利用了	7其水溶液	的性质	
(A	()凝固点	下降 (B)沸点上	升	(C) 蒸气	压下降	(D) 渗	透压
(C) 2.	反应 CaO	$(s) + H_2O(1)$	= Ca(OH)	2(l) 在25°C	こ、标准状	态时为自然		温时逆反
应为自	1发反应,	表明该反应	<u> </u>					
$(A) \Delta_{\mathbf{r}} H^{\Theta}{}_{\mathbf{m}} > 0, \Delta_{\mathbf{r}} S^{\Theta}{}_{\mathbf{m}} < 0 $ $(B) \Delta_{\mathbf{r}} H^{\Theta}{}_{\mathbf{m}} > 0, \Delta_{\mathbf{r}} S^{\Theta}{}_{\mathbf{m}} > 0$								
$ (C) \Delta_{\mathbf{r}} H^{\Theta}{}_{\mathbf{m}} < 0, \Delta_{\mathbf{r}} S^{\Theta}{}_{\mathbf{m}} < 0 $								
(B) 3.	下列反应	中,熵值增	加最多的原	反应是	_0			
(A) $4Al(s) + 3O_2(g) = 2Al_2O_3(s)$ (B) $Ni(CO)_4(s) = Ni(s) + 4CO(g)$								
(C) $S(s) + H_2(g) = H_2S(g)$ (D) $MgCO_3(s) = MgO(s) + CO_2(g)$								
(B) 4.	己知下列	反应在 136	2 K 时的标	准平衡常数	汝:			
$H_2(g)$	$+(1/2)S_2(g)$	$g)\rightarrow H_2S(g)$		$K^{\ominus}_1 = 0.80$				
$3H_{2}($	g)+SO ₂ (g)-	\rightarrow H ₂ S(g)+2	$H_2O(g)$	$K^{\Theta}_2=1.8\times1$	10^4			
则反	应 4H ₂ (g) -	+ 2SO ₂ (g)-	$S_2(g) + 4H$	I ₂ O(g)在 13	62 K的 K [©]	⁹ =。		
(A	2.3×10 ⁴		(B) 5.1×1	108	(C) 4.3	$\times 10^{-5}$	(D) 2	2.0×10 ⁻⁹
(A) 5.	基元反应	CaCO ₃ (s)	\rightarrow CaO(s)	+ CO ₂ (g)的	反应速率プ	方程式为_	o	
(<i>A</i>	v = k	($\mathbf{B}) \ v = kc(0)$	CaCO ₃)	(C) $v = k^{-1}$	-1	(D) v=	$= kc(CO_2)$

(D) 6. 在 298.15K	,由下列三个反应的 $\Delta_{ m r}$	H^{Θ}_{m} 数据可求 $\Delta_{f}H^{\Theta}_{m}(C)$	H4,g),其值为。
C(石墨) -	$+ O_2(g) \rightarrow CO_2(g)$	$\Delta_{\rm r} H^{\Theta}_{\rm m} = -393.3$	5 kJ·mol ^{−1}
$H_2(g) + (1)$	$1/2$)O ₂ (g) \rightarrow H ₂ O(l)	$\Delta_{\rm r} H^{\Theta}{}_{\rm m} = -285.8$	8 kJ·mol ^{−1}
$CH_4(g) +$	$2O_2(g) \rightarrow CO_2(g) + 2H_2(g)$	O(1) $\Delta_r H_m^{\Theta} = -890.$	3 kJ·mol ^{−1}
(A) 211.0 kJ·m	ol ⁻¹ (B)无法确定	(C) 890 kJ·mol ⁻¹	(D) -74.8 kJ·mol ⁻¹
(A) 7. 在一恒压容	器中,在TK、100 kP	a 条件下,将 1.00 mol	A 和 2.00 mol B 混合,按
下式反应: A(g) + 2B	(g)→C(g)。达到平衡印	寸, B消耗了 20.0%, !	则反应的 $K^{\Theta}=$ 。
(A) 0.660	(B) 0.375	(C) 9.77	$\times 10^{-2}$ (D) 1.21
(A)8. 反应 2A+2B-	\rightarrow 3D 的 $E_a(\mathbb{E})=m$ kJ:	mol^{-1} , $E_{\mathbf{a}}$ (逆)= $n \text{ kJ mol}$	-1 ,则反应的 $\Delta_{ m r}H_{ m m}=$ 。
$(A) (m-n) kJ \cdot mol^{-1}$	$(B)(n-m) kJ \cdot mol^{-}$	$(C)(2m-3n)kJ\cdot mc$	ol^{-1} (D) $(3n-2m)kJ \cdot mol^{-1}$
(C) 9. 当化学反应	速率常数的自然对数 lı	nk 与热力学温度的倒数	τ1/T 作图时,直接影响直
线斜率的因素是	o		
(A) $\Delta_{\rm r}G_{\rm m}$	(B) $\Delta_r H_m$	(C) E_a	(D) 以上三项都有影响
(A) 10. 某反应的退	医率常数为 0.01 mol dn	n ⁻³ s ⁻¹ ,反应的初始浓度	E为 0.5 mol dm ⁻³ ,则反应
的半衰期为。			
(A) 25 s	(B) 69.3 s	(C) 200 s	(D) 50 s
(B) 11. OF ₂ 分子的	中心原子采取的杂化勃	L道为。	
(A) sp^2	(B) sp^3	(C) <i>sp</i>	(D) dsp^2
(D) 12. 下列各浓度	度相同的溶液,其 pH (直由大到小排列次序正	确的是。
(A) HAc, (HA	Ac+NaAc 且 HAc:NaAc	=1:1), NH ₄ Ac, NaAc	
(B) NaAc, (H	Ac+NaAc 且 HAc:NaA	$c=1:1)$, NH_4Ac , HAc	;
(C) NH ₄ Ac, N	JaAc,(HAc+NaAc 且]	HAc:NaAc=1:1), HAc	:
(D) NaAc, NI	H ₄ Ac,(HAc+NaAc 且]	HAc:NaAc=1:1), HAc	:
(D) 13. 浓度为 a m	iol.L ⁻¹ 的 Na ₂ S 溶液的质	质子平衡方程式是。	
(A) $c(Na^+) = a - c$	$C(H^+)$	(B) $c(HS^{-}) + 2c(H_2S)$	$+c(OH^{-})=a-c(H^{+})$
$(C) c(H^+) = c(H^-)$	HS^-)+ $c(OH^-)+2c(S^{2-})$	(D) $c(OH^-) = c(HS^-) +$	$c(H^+)+2c(H_2S)$
(D) 14. 某金属离子	生成的两种八面体配合	合物的磁距分别为 μ=4	4.90 B.M 和 μ=0 B.M,则
该金属离子可能是			
$(A) Cr^{3+}$	(B) Mn^{2+}	(C) Fe ³⁺	(D) Fe ²⁺
(B) 15. $ZnS(s) + 40$	$OH^{-} = [Zn(OH)_4]^{2-} + S^2$	一的标准平衡常数 K^{Θ} =	0
(A) $K_{sp}^{\Theta}(ZnS)$	$K_{\rm f}^{\Theta}([{\rm Zn}({\rm OH})_4]^{2^-})$	$(B) K_{sp}^{\Theta}(ZnS) \cdot K_{f}^{\Theta}([ZnS))$	$n(OH)_4]^{2-})$
(C) $K_{\rm f}^{\Theta}([{\rm Zn}({\rm C})$	$(\mathrm{OH})_4]^{2-}/K_{\mathrm{sp}}^{\Theta}(\mathrm{ZnS})$	(D) $K_{\text{sp}}^{\Theta}(\text{ZnS}) \cdot K_{\text{f}}^{\Theta}(\text{ZnS})$	$(OH)_4]^{2-}$ $\cdot K_{sp}^{\Theta}(Zn(OH)_2)$

二、简答题(20分)

- 1. (4分) 已知 $E^{\Theta}(\operatorname{Sn}^{4+}/\operatorname{Sn}^{2+}) = 0.15$ V, $E^{\Theta}(\operatorname{Fe}^{3+}/\operatorname{Fe}^{2+}) = 0.771$ V, $E^{\Theta}(\operatorname{Fe}^{2+}/\operatorname{Fe}) = -0.44$ V, $E^{\Theta}(\operatorname{O}_2/\operatorname{H}_2\operatorname{O}) = 1.23$ V,解释下列现象,并写出有关离子反应方程式。
 - (1) SnCl₂溶液长时间放置后,可失去还原性。
 - (2) 淡绿色 FeSO₄ 溶液存放后会变色。

解: (1)由于 $E^{\Theta}(O_2/H_2O) > E^{\Theta}(Sn^{4+}/Sn^{2+})$,SnCl₂ 溶液长期放置易被空气氧化成SnCl₄,从而失去还原性。 $O_2 + 2Sn^{2+} + 4H^+ = 2Sn^{4+} + 2H_2O$

(2)由于 $E^{\Theta}(O_2/H_2O) > E^{\Theta}(Fe^{3+}/Fe^{2+})$, $FeSO_4$ 溶 液 存 放后易被空气氧化成 Fe^{3+} ,溶液由淡 绿 色变为 Fe^{3+} 浅黄色。 $O_2 + 4Fe^{2+} + 4H^+ = 4Fe^{3+} + 2H_2O$

2. (10分)用价键理论和晶体场理论完成下表:

	配合物	CoF ₆ ³⁻	Co(NH ₃) ₆ ³⁺
	磁矩µ/B.M.	4.9	0
	未成对电子数 n	4	0
FA Falls were \ A	中心原子杂化轨道类型	$\mathrm{sp}^{3}\mathrm{d}^{2}$	d^2sp^3
价键理论	配合物类型	外轨型	内轨型
	t_{2g} 、eg 轨道电子排布	$(t_{2g})^4(e_g)^2$	$(t_{2g})^6(e_g)^0$
晶体场理论	配合物类型	高自旋	低自旋

3. (6分) 在下列空格中填入 ">、=或<" 符号:

键能: N ₂ O ₂	磁矩: O ₂ _>_ O ₂ ²⁻
沸点: HF HCl	标准熵 S [⊖] 298K: H ₂ O(l) <u><</u> H ₂ O(g)
键角: NH _{3>} H ₂ O	渗透压(等浓度): HAc 葡萄糖

三、(10 分) 在一定温度下 Ag_2CO_3 的分解反应为 $Ag_2CO_3(s) \rightarrow Ag_2O(s) + CO_2(g)$ 。假定反应 焓变和反应熵变均不随温度的变化而改变。

- (1) 估算 Ag₂CO₃(s)在标准状态下的最低分解温度;
- (2) 计算上述分解反应在 700 K 时的标准平衡常数。

已知 298.15 K 时相关物质的热力学数据如下所示:

	Ag ₂ O(s)	Ag ₂ CO ₃ (s)	CO ₂ (g)
$\Delta_{\rm f} H_{\rm m}^{\theta} / {\rm kJ \cdot mol}^{-1}$	-31.05	-505.8	-393.5
$S_{\rm m}^{\theta}/$ J·mol ⁻¹ ·K ⁻¹	121.3	167.4	213.7

解:

(a) $Ag_2CO_3(s) \rightarrow Ag_2O(s) + CO_2(g)$

$$\Delta_{r}H_{m}^{\theta} = \Delta_{f}H_{m}^{\theta}(Ag_{2}O) + \Delta_{f}H_{m}^{\theta}(CO_{2}) - \Delta_{f}H_{m}^{\theta}(Ag_{2}CO_{3})$$

$$= -31.05 - 393.5 + 505.8 = 81.25 \text{ kJ} \cdot \text{mol}^{-1}$$

$$\Delta_{r}S_{m}^{\theta} = S_{m}^{\theta}(Ag_{2}O) + S_{m}^{\theta}(CO_{2}) - S_{m}^{\theta}(Ag_{2}CO_{3})$$

$$\Delta_r S_m = S_m (Ag_2O) + S_m (CO_2) - S_m (Ag_2CO_3)$$

= 121.3 + 213.7 - 167.4 = 167.6 J·mol⁻¹·K⁻¹

$$\Delta_{r}G_{m}^{\theta} = \Delta_{r}H_{m}^{\theta} - T\Delta_{r}S_{m}^{\theta} \le 0$$

$$T \ge \frac{\Delta_{r}H_{m}^{\theta}}{\Delta_{r}S_{m}^{\theta}} = \frac{81.25 \times 10^{3}}{167.6} = 484.8 \text{ K}$$

所以 Ag₂CO₃(s)在标准状态下的最低分解温度为 484.8 K。

(b)

$$\Delta_r G_m^{\theta} = \Delta_r H_m^{\theta} - T \Delta_r S_m^{\theta} = 81.25 - 700 \times 167.6 \times 10^{-3} = -36.07 \text{ kJ} \cdot \text{mol}^{-1}$$

$$K^{\theta} = e^{-\frac{\Delta_r G_m^{\theta}}{RT}} = 492$$

四、(10 分) 已知反应 $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$ 在 318 K 时的反应速率常数 k_1 =4.98× 10^{-4} s⁻¹,反应的活化能 E_a =102 kJ·mol⁻¹。

- (1) 判断上述反应的反应级数:
- (2) 计算上述反应在 338 K 时的反应速率常数 k_2 和半衰期。

解

(a) 因为 k 的量纲为 s^{-1} ,所以该反应为一级反应。

(h)

$$\ln \frac{k_2}{k_1} = -\frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

$$k_2 = 4.88 \times 10^{-3} \text{ s}^{-1}$$

$$t_{1/2} = \frac{\ln 2}{k_2} = 142 \text{ s}$$

五、(10 分) 298.15 K 下,在 0.10 mol·L-1 的[Ag(NH₃)₂]+配离子溶液中加入 KCl 溶液,使 KCI 浓度达到 0.10 mol·L⁻¹,通过计算判断能否生成 AgCI 沉淀。

已知 298.15 K 时 $K_f^0([Ag(NH_3)_2]^+)=1.12\times10^7$, $K_{sp}^0(AgCl)=1.8\times10^{-10}$ 。

 $[Ag(NH_3)_2]^+ \rightarrow Ag^+ + 2NH_3$

0.10-x x 2x

$$\frac{1}{K_f^{\theta}\{[Ag(NH_3)_2]^+\}} = \frac{x \cdot (2x)^2}{0.10 - x} = \frac{1}{1.12 \times 10^7}$$

 $x = 1.3 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1}$

$$\therefore Q_i = \frac{c(Ag^+)}{c^{\theta}} \cdot \frac{c(Cl^-)}{c^{\theta}} = 1.3 \times 10^{-3} \times 0.10 = 1.3 \times 10^{-4} > K_{sp}^{\theta} \text{ (AgCl)}$$

:.能生成AgCl沉淀

六、(10 分) 已知 298.15 K 时 E^{θ} (Cu²⁺/Cu)=0.34 V, E^{θ} (Cu²⁺/Cu⁺)=0.16 V。

- (a) 计算 298.15 K 时 E^θ(Cu⁺/Cu);
- (b) 若 298.15 K 时 $K_{\rm sp}^{\ 0}$ (CuCl)=1.2×10⁻⁶,计算 298.15 K 时电极反应 CuCl(s)+e→Cu(s)+Cl⁻ 对应的标准电极电势。

解:

(a)

$$Cu^{2+}+2e \rightarrow Cu(s)$$
 (1) $E_1^{\theta}=0.34 \text{ V}$

(1)
$$E_1^{\theta} = 0.34 \text{ V}$$

$$Cu^{2+}+e \rightarrow Cu^{+}$$

Cu²⁺+2e
$$\rightarrow$$
Cu(s) (1) E_1° =0.34 V
Cu²⁺+e \rightarrow Cu⁺ (2) E_2^{θ} =0.16 V
Cu⁺+e \rightarrow Cu(s) (3) E_3^{θ}

$$Cu^++e \rightarrow Cu(s)$$

$$(3) \quad E_3^6$$

$$(1)-(2)=(3)$$

$$\Delta_{r}G_{m}^{\theta}(1) - \Delta_{r}G_{m}^{\theta}(2) = \Delta_{r}G_{m}^{\theta}(3)$$
$$-2E_{1}^{\theta}F + E_{2}^{\theta}F = -E_{3}^{\theta}F$$
$$E_{3}^{\theta} = 2E_{1}^{\theta} - E_{2}^{\theta} = 0.52 \text{ V}$$

即标准电极电势 E^θ(Cu⁺/Cu)=0.52 V

(b)

$$CuCl(s)+e \rightarrow Cu(s)+C\Gamma$$
 (4) E_4^{θ}

$$(4)$$
 F_{\cdot}^{θ}

$$CuCl(s) \rightarrow Cu^+ + Cl^-$$

(3)+(5)=(4)

$$\Delta_r G_m^{\theta}(3) + \Delta_r G_m^{\theta}(5) = \Delta_r G_m^{\theta}(4)$$

$$-E_3^{\theta}F - RT \ln K_{sp}^{\theta}(\text{CuCl}) = -E_4^{\theta}F$$

$$E_4^{\theta} = E_3^{\theta} + \frac{RT}{E} \ln K_{sp}^{\theta} (\text{CuCl}) = 0.17 \text{ V}$$

即电极反应 CuCl(s)+e→Cu(s)+ClT对应的标准电极电势为 0.17 V。

七、(10分) Carbon disulfide (CS₂) boils at 46.30 °C and has a density of 1.261 g·mL⁻¹.

- (1) When 0.250 mol of a nondissociating solute is dissolved in 400.0 mL of CS_2 , the solution boils at 47.46 °C. What is the molal boiling-point-elevation constant for CS_2 ?
- (2) When 5.39 g of a nondissociating unknown is dissolved in 50.0 mL of CS_2 , the solution boils at 47.08 °C. What is the molecular weight of the unknown?

Answer:

(1)

$$\Delta T_b = K_b b_B$$

$$b_B = \frac{n_B}{m_A} = \frac{0.250}{400 \times 1.261 \times 10^{-3}} = 0.50 \text{ mol/kg}$$

$$K_b = \frac{\Delta T_b}{b_B} = \frac{47.46 - 46.30}{0.50} = 2.32 \text{ K} \cdot \text{kg} \cdot \text{mol}^{-1}$$

(2)

$$b_B = \frac{n_B}{m_A} = \frac{5.39 / M_B}{50.0 \times 1.261 \times 10^{-3}}$$
$$\Delta T_b = K_b b_B = K_b \frac{5.39 / M_B}{50.0 \times 1.261 \times 10^{-3}} = 47.08 - 46.30$$
$$M_B = 254 \text{ g} \cdot \text{mol}^{-1}$$