

Instrumentação e Análise de Dados Experimentais

Ano Letivo de 2017/18

Departamento de Física Elementos de Física

- 1

[2] M.C.Abreu, L.Matias e L.F. Peralta, *Em Física Experimental Uma introdução*, 1ªed, Editorial Presença, Lisboa, 1994.

(29 exemplares na biblioteca da UA)

Recomendações de leitura:

- Introdução (págs. 17-23)
- Leitura 1 Aquisição, Análise e Tratamento de Dados (págs. 85-98, 107-116, 121-130)
- Tabelas (págs. 275-286)
- [5] N.C. Barford, Experimental measurements: Precision, Error and Truth, 2^aEd, John Wiley & Sons, New York (1985). (1 exemplar na biblioteca da UA)
- [6] G. Almeida, Sistema Internacional de unidades (SI)-Grandezas e Unidades Física, terminologia, símbolos e recomendações, 1ªEd., Plátano Editora, Lisboa (1988).

Departamento de Física Elementos de Física 2017/2018

Objectivos das aulas de laboratório

Fornecer:

• Demonstrações de ideias teóricas em Física

Ex.: interferência da luz

- Familiaridade com aparelhos de medida
- Treino em como fazer experiência científicas

Departamento de Física Elementos de Física

3

Tratamento de dados

Como fazer experiências

- 1. Estabelecer fim pretendido (objectivos)
- 2. Planear: processo ou método, instrumentos, procedimentos
- 3. Registar dados (medidas)
- 4. Trabalhar dados (analisá-los e tratá-los) para obter resultados
- 5. Analisar e discutir os resultados
- 6. Avaliar a qualidade dos resultados tendo em conta o fim pretendido

Departamento

Elementos de Física 2017/2018

Exemplo de experiência

1. Objectivo

Medir comprimento de pista de bicicletas

2. Método experimental. Procedimentos

Usando uma bicicleta apetrechada com odómetro, cada um de três ciclistas pedala entre os traços que marcam início e fim da pista.

Cada ciclista faz 10 ensaios, registando o valor indicado em cada ensaio.

3. Dados

Ver Tabela 1.

Departamento de Física Elementos de Física

5

Tratamento de dados

3. Dados. Continuação

Tabela 1: Comprimento da pista medido com odómetro

Ciclista A	Ciclista B	Ciclista C
x = 0.1	x = 0.1	x = 0.1
(111)	(111)	(111)
600.2	620.0	589.7
593.3	612.4	585.2
582.6	570.0	598.3
584.6	600.8	597.7
586.2	607.2	592.0
590.6	585.8	590.3
591.6	603.8	590.6
587.3	588.6	587.0
593.2	596.4	583.6
592.3	582.2	585.1

erro instrumental

universidade de aveiro Departamento

Elementos de Física 2017/2018

Tratamento de <i>Dados</i> Tabe	la 2						
-	Cicl	ista A	Cicl	ista B	Cicli	sta C	
	$x \pm 0.1$ (m)	$d = x - \overline{x}$ (m)	$x \pm 0.1$ (m)	$d = x - \overline{x}$ (m)	x ± 0.1 (m)	$d = x - \overline{x}$ (m)	
5	600.2	+10.0	620.0	+23.3	589.7	-0.3	
	593.3	+3.1	612.4	+15.7	585.2	-4.8	
	582.6	-7.6	570.0	-26.7	598.3	+8.3	
	584.6	-5.6	600.8	+4.1	597.7	+7.7	
	586.2	-4.0	607.2	+10.5	592.0	+2.0	
	590.6	+0.4	585.8	-10.9	590.3	+0.3	
	591.6	+1.4	603.8	+7.1	590.6	+0.6	
	587.3	-2.9	588.6	-8.1	587.0	-3.0	
	593.2	+3.0	596.4	-0.3	583.6	-6.4	
<u> </u>	592.3	+2.1	582.2	-14.5	585.1	-4.9	
∑	$\sum_{i=1}^{N} x_i$ $i = 590.2$		596.7		590.0	, , , , , , , , , , , , , , , , , , ,	
universidade de aveiro Departamento de Física			mentos de	Física			7

Se N (número de mediçõe N < s de cada ciclista) fosse pequeno (digamos, N < 10), o valor experimental (X) do comprimento da pista obtido por cada ciclista seria dado pela média (\bar{x}) ; a incerta de X é dada pelo maior dos desvios ($\{Max\ d_i\}$).

$$X \pm \Delta X = \bar{x} \pm \{Max \ d_i\}$$

O valor experimental duma grandeza (X) nem sempre é dado pela média (\bar{x}) de medições diretas.

Mas, quando temos um número maior de medidas (digamos, $N \ge 10$), é mais razoável fazermos um tratamento estatístico mais sofisticado.

Departamento de Física Elementos de Física

Distribuição normal ou gaussiana

A distribuição de Gauss descreve o comportamento de um grande número de acontecimentos <u>aleatórios</u> com pequenas oscilações à esquerda e à direita do valor esperado.

É simétrica e apresenta uma forma característica de sino, dada por um expressão do tipo

$$P(x) dx = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

universidade de aveiro

Departamento

Elementos de Física

	População	Amostra	
	$(N \to \infty)$	(N pequeno)	
Média	μ	$ar{x}$	(melhor estimativa de μ)
Desvio-padrão	σ	σ_{N-1}	(melhor estimativa de σ)
Amostra: $\{x_i,, x_i\}$	ÃO da experiênci	ia	(melhor estimativa de σ)

Desvio-padrão da amostra:

$$\sigma_{N-1} = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N-1}}$$

$$\sigma_{N-1} \xrightarrow[N \to \infty]{} \sigma$$

(s não diminui quando N aumenta)

Desvio-padrão da <u>média</u> ≡ Erro-padrão da <u>amostra</u>:

$$\Delta \bar{x} = S_{N-1} \equiv \frac{\sigma_{N-1}}{\sqrt{N}}$$

$$S_{N-1} \xrightarrow[N \to \infty]{} 0$$

 $(S_{N-1}$ diminui quando N aumenta)

Departamento

Elementos de Física

17

Tratamento de dados

A MELHOR ESTIMATIVA do "verdadeiro valor" da grandeza que conseguimos numa experiência é X:

$$X \pm \Delta X = \bar{x} \pm \Delta \bar{x} = \bar{x} \pm S_{N-1}$$

Recorde que o valor experimental duma grandeza (X) nem sempre é dado pela média (\bar{x}) de medições diretas, como veremos na próxima aula.

Departamento

Elementos de Física 2017/2018

A qualidade de um resultado experimental $X \pm \Delta X$ é avaliada pela:

- incerteza experimental
 (pretende-se que ΔX/X seja pequena)
- proximidade com o valor esperado V (pretende-se que |V - X| seja pequena)

PRECISÃO

EXATIDÃO ("accuracy")

Mede "espalhamento" das medidas

Mede diferença entre X e V

Erros aleatórios

Erros sistemáticos

Reprodutibilidade

Falhas do modelo utilizado

Algarismos significativos

Expressa em percentagem

Departamento

Elementos de Física

21

Tratamento de dados

Como se avalia a precisão? Que significa "pequeno $\Delta X/X$ "?

No âmbito dos laboratórios de ensino, tipicamente considera-se que um erro relativo $\Delta X/X \leq 10\%$ (que corresponde a uma precisão $\geq 90\%$) é aceitável.

Exemplo: carga do eletrão

$$X \pm \Delta X = (1.6 \pm 0.1) \times 10^{-19} \text{ C} \Rightarrow \Delta X/X = 6 \%$$

Este resultado tem um precisão aceitável no âmbito dos laboratórios de ensino. Mas não quando comparado com o valor tabelado:

$$V \pm \Delta V = (1,60217662 \pm 0,00000001) \times 10^{-19} \text{ C} \Rightarrow \Delta V/V = 6 \times 10^{-7} \%$$

Departamento

Elementos de Física 2017/2018

Como avalia a exatidão? Que significa "|V - X| pequena"?

Exemplo: relógio de ponteiros

Se não se atrasa nem se adianta, é um relógio de precisão.

Se for um relógio de precisão e estiver regulado para a hora de verão, no inverno nunca indica a hora exata.

Se estiver "parado" (sem pilhas), dá sempre a hora "exata" duas vezes por dia.

Duas condições, simultaneamente

$$\frac{\Delta X}{X}$$
 o mais pequena possível

Departamento de Física Elementos de Física

23

Tratamento de dados

A probabilidade de V:

- estar contido no intervalo $[X \Delta X, X + \Delta X]$ é superior a 2/3.
- estar fora do intervalo [X 2ΔX, X + 2ΔX] é inferior a 5%.
- estar fora do intervalo $[X 3\Delta X, X + 3\Delta X]$ é praticamente nula.

68.27% entre [μ - σ , μ + σ] 95.45% entre [μ -2 σ , μ +2 σ] 99.73% entre [μ -3 σ , μ +3 σ]

Departamento de Física Elementos de Física 2017/2018

Para um resultado ser exato, tem de ser preciso.

Mas pode ser preciso e não ser exato.

universidade de aveiro Departamento de Física Elementos de Física

25

Tratamento de dados

Rejeição de observações

Será que todas as observações (medidas) feitas são de conservar?

- Usar de bom senso
- · Usar de pouca severidade.

Nota: apenas se devem rejeitar observações (medidas) quando o número total das mesmas N é elevado (tem significado estatístico)

Exemplo:

Uma dada medida x_i apresenta um desvio $d_i=|x_i-\bar{x}|\ > 3 \times \Delta \bar{x}$. É razoável rejeitar.

Então, recalculam-se $\bar{x} = \Delta \bar{x}$ sem aquele medida x_i

68.27% entre [μ - σ , μ + σ] 95.45% entre [μ - 2σ , μ + 2σ] 99.73% entre [μ - 3σ , μ + 3σ]

universidad de aveiro Departamento de Física Elementos de Física 2017/2018

Algarismos Significativos

Determinação do valor de uma grandeza:

- · Medição direta
- · Cálculos sobre grandezas medidas.

Valor numérico final

deve expressar imprecisão inerente: deve conter apenas

algarismos (fisicamente) significativos

Departamento de Física Elementos de Física

27

Tratamento de dados

Algarismos Significativos: aqueles cujos valores são conhecidos com certeza, mais o primeiro coberto pelo erro.

Exemplo: Ciclista A

Calculadora:
$$\left\{ \begin{array}{l} \overline{x} = 590,\!19~\text{m} \\ \\ \Delta \overline{x} = S_{N-1} = 1,\!628462124~\text{m} \end{array} \right.$$

Resultado final: $590 \pm 2 \text{ m}$

Departamento

Elementos de Física 2017/2018

Contagem de algarismos significativos:

- Da esquerda para a direita
- Começa-se pelo primeiro algarismo não-nulo
- Termina-se no primeiro algarismo afetado pela incerteza
- Zeros à esquerda do símbolo decimal não têm significado físico.
- Zeros à direita do símbolo decimal têm significado físico

Departamento

Elementos de Física

Valor	Nº de algarismos significativos	Observações
102 s 40 mm	3 2 ou 1 (?) ^{a)}	a) Representação ambígua pois o zero pode servir só para posicionar a vírgula (Não deve
4.0 cm	2	ser usada).
4 cm	1	
4×10^{1} mm	1	b) A redução de unidades deve
$0.520 \ s$	3	ser feita usando potências de base 10, para garantir que o n.º
0.061s	2	de algarismos significativos não é alterado.
2.48 kg	3 ^{b)}	
$2.48 \times 10^{3} g$	3 ^{b)}	
2480 g	3 ou 4 (?) a)	
$2.480\times10^{-3}kg$	4	
50000 m	1 ou 5 (?) a)	
$50.0 \times 10^3 \ km$	3	

Arredondamentos

- Ao truncar um número, se o primeiro algarismo desprezado for ≥ 5, o ultimo algarismo significativo que se considera deve ser incrementado de uma unidade.
- Nos cálculos intermédios, consideram-se sempre o maior número de algarismo possível para evitar erros de truncatura.

Exemplo:

Se se pretender indicar a área de um disco com 5 algarismos significativos, não se deve usar $\pi=3,14$.

Elementos de Física

31

Tratamento de dados

Exercício

Fazem-se 15 medidas do comprimento de um telemóvel com uma régua graduada em milímetros.

Erro de leitura: 0,5 mm \Rightarrow medidas podem ter algarismos significativos até à casa das décimas de mm..

Dados (cm):

15,20	15,20	15,25	15,15	15,35
15,25	15,20	15,25	15,15	15,20
15,10	15,30	15,10	15,25	15,25

Comentários:

- As oscilações que se observam são de natureza aleatória ∴ provavelmente distribuem-se de modo gaussiano.
- O número de medições, apesar de não ser muito grande, permite uma razoável aproximação àquela distribuição.

Departamento

Elementos de Física 2017/2018

Exercício (cont.)

Cálculos: $\bar{x} = 15,2133 \text{ cm}$

$$s = \sigma_{N-1} = 6.2396 \times 10^{-2} \text{ cm}$$

$$\Delta \bar{x} = S_{N-1} = \frac{\sigma_{N-1}}{\sqrt{N}} = 0.01611 \text{ cm}$$

Resultado final: $15,21 \pm 0,02$ cm

Comentários:

• Ao repetir a experiência 15 vezes ganhou-se precisão:

1 medida $\Delta X = 0.05$ cm (erro de leitura)

15 medidas $\Delta X = 0.02$ cm (erro estatístico)

 Dispersão dos valores tabelados (s = σ_{N-1} = 0,06) é maior que erro de leitura de uma só medição ∴ existem causas aleatórias que influenciam a medição.

universidade de aveiro Departamento de Física Elementos de Física

33

Tratamento de dados

Relações entre grandezas

Um dado fenómeno pode depender de diversas grandezas — p. ex., período de oscilação de pêndulo simples depende de 2:

$$T = 2\pi \sqrt{\frac{l}{g}}$$

As grandezas podem estar correlacionadas:

 Positivamente (as grandezas variam no mesmo sentido)

 Negativamente (as grandezas variam em sentidos contrários)

universidade de aveiro

Departamento

Elementos de Física 2017/2018

Gráficos

Seu interesse:

- · Visualizar como uma grandeza varia em relação a outra, evidenciando:
 - Se a relação é linear ou não.
 - Se a variação é rápida ou lenta.
 - Se existem descontinuidades
 - Se há grandes oscilações no comportamento dos valores experimentais.
- Determinar aproximadamente valores intermédios (interpolar) ou para além da gama de valores (extrapolar).

Departamento de Física Elementos de Física

35

Tratamento de dados

Como fazer um gráfico bem feito:

- Escolher as grandezas a representar em abcissa e em ordenada.
- Identificar cada eixo, na sua extremidade, pela designação da grandeza representada e da unidade utilizada, separadas pelo símbolo / (ou com a unidade entre parêntesis).
- Escolher criteriosamente as escalas de modo que o aspecto global seja harmonioso:
 - evitar a aglomeração ou dispersão excessiva dos pontos;
 - a precisão de marcação dos pontos nos dois eixos deve ser equivalente;
 - os eixos <u>não</u> têm de se intersectar obrigatoriamente na coordenada (0,0);
 - as escalas dos eixos <u>não</u> têm de ser obrigatoriamente da mesma natureza (se conveniente pode usar-se uma escala linear e a outra logarítmica);
 - se os valores são acompanhados de incertezas, estas devem ser representados no gráfico na forma de barras horizontais e verticais. As barras têm amplitude proporcional à incerteza de acordo com a escala, e marcam-se simetricamente a partir do valor;
- Dar um título sucinto ao gráfico.

Departamento de Física Elementos de Física 2017/2018

Vejamos as conclusões ou análises que cada um deles proporciona.

universidade de aveiro

Departamento

Elementos de Física

39

Tratamento de dados

Este gráfico permite prever uma relação linear entre as duas grandezas (linha a cheio) se bem que uma certa incerteza exista, como visualizado pelas linhas a tracejado, as quais são traçadas unindo as extremidades das barras de erro que mais se afastam da reta traçada.

A constante de proporcionalidade entre as duas grandezas pode ser calculada a partir do declive da reta traçada manualmente. O seu valor é dado por

$$a = \frac{y_1 - y_2}{x_1 - x_2}$$
 e a ordenada na origem por b .

universida de aveiro

Departamento

Elementos de Física 2017/2018

A partir do declive das retas de inclinação máxima e mínima traçadas considerando as barras de erro (retas a tracejado) pode calcular-se aproximadamente o erro nos parâmetros a e b dados respetivamente por

$$\frac{a_{max}-a_{min}}{2}$$
 e $\frac{b_{max}-b_{min}}{2}$

universidade de aveiro

Departamento de Física

Elementos de Física

41

Tratamento de dados

O gráfico do meio, desenhado sem as barras de erro, põe mais dúvidas ao traçado de uma curva. <u>As representações feitas que se limitam a unir os pontos experimentais são fantasiosas</u>. É pouco provável um dado fenómeno ter uma evolução tão tortuosa. Mesmo sem barras de erro pode-se prever que a variação mais justa seja a reta.

Departamento de Física Elementos de Física 2017/2018

O gráfico à direita mostra uma outra hipótese que só pode adquirir plausibilidade se forem determinados mais pontos na zona de comportamento irregular.

Departamento de Física Elementos de Física

43

Tratamento de dados

A função que melhor descreve o comportamento dos pontos experimentais obtém-se ANALITICAMENTE a partir da lei física que descreve o fenómeno (p. ex., $T=2\pi\sqrt{l/g}$) (se não a conhecermos a lei física, arbitramos uma função para a correlação entre x e y), determinando-se os parâmetros dessa função através de um processo estatístico de AJUSTE (em Inglês, fit).

Departamento

Elementos de Física 2017/2018

Situações mais frequentes de ajustes:

- · determinar o melhor valor de uma grandeza medida várias vezes
- determinar a constante de proporcionalidade: y = kx
- estabelecer uma relação entre duas grandezas a mais simples é linear, y = mx + b
- determinar os parâmetros de uma relação não-linear (como $y=a+bx^2$ ou $y=ke^{\alpha x}$) fazendo primeiro uma linearização (transformação de variável: y=a+bz, com $z\equiv x^2$; $\ln y=\ln k+\alpha x$)
- determinação de uma dependência funcional não-linearizável, do tipo $y=a+bx+cx^2$

Departamento de Física Elementos de Física

45

Tratamento de dados

Quando a relação entre duas ou mais grandezas é linear, o processo de estabelecer uma equação que as relacione designa-se REGRESSÃO LINEAR.

Tendo em atenção os dados experimentais da figura, a relação funcional apresentada é do tipo linear e o bom senso aconselha a que se trace uma reta que minimize a soma dos desvios absolutos dos pontos em relação à reta traçada. Mas, analiticamente, isto é mais complicado do que minimizar a soma dos quadrados dos desvios.

A técnica mais vulgarizada para determinar os parâmetros que melhor adaptam a equação aos valores disponíveis é o MÉTODO DOS MÍNIMOS QUADRADOS.

Elementos de Física 2017/2018

N.B.: No teste prático os estudantes têm de saber fazer a regressão linear numa calculadora.

Mas é conveniente que sejam capazes de usar o MS-Excel para fazer gráficos e regressões lineares durante as aulas de prática laboratorial (embora esta capacidade não seja avaliada).

Ver o manual "Tratamento dos dados experimentais usando Excel"

Elementos de Física

locar o d	curso	r na Iir	nha de con	nando e d	carregar e	m		
			C	TRL+SH	IIFT+ENT	ER.		
orá fic	ar cor	m 26 0	élulas sele	acionada	e proopch	idae:		
CIA IIU	ai cui	iii as c	ciulas sell	Scionaua	a preentn	iuas.		
	fx	{=LINE	EST(E2:E11,	D2:D11.TR	UE.TRUE)}			
		D	F	F	G	Н	1	J
	x		V	•		.,		
		0.01				4.043742	-0.00606	
		0.02	0.080404			0.194707	0.012081	
		0.03	0.1296			0.98179	0.017685	
		0.04	0.160809					
		0.05	0.2209					
		0.06	0.241213					
		0.07	0.281416					

m	4.043742	-0.00606	b	
Δm	0.194707	0.012081	Δb	
R^2	0.98179	0.017685		
				_
		1 1		

Propagação de erros

 G : grandeza que só podemos determinar medindo outras grandezas $\mathit{x}, \mathit{y}, \mathit{z}, \ldots$:

$$G = f(x, y, z, ...)$$

Exemplo: volume de uma sala

 $V = (comprimento) \times (largura) \times (altura) = c \times l \times a$

Essas outras grandezas são conhecidas com uma determinada incerteza:

$$x \pm \Delta x, y \pm \Delta y, z \pm \Delta z, ...$$

Estas incertezas vão "propagar-se" até G, ou seja, ΔG depende de Δx , Δy , Δz , ... Mas de que maneira? Qual é o "peso" de Δx , Δy , Δz , ... em ΔG ?

Elementos de Física 2017/2018

 ΔG = (maneira como G depende de x)× Δx + (maneira como G depende de y)× Δy + \cdots

A "maneira como G depende de x" representa-se por $\frac{\partial G}{\partial x}$, a derivada <u>parcial</u> em ordem a x. Calcula-se aplicando as regras de derivação em ordem a uma determinada variável, mas tratando as outras variáveis como constantes.

Exemplo: volume de uma sala

$$V = c \times l \times a$$

$$\frac{\partial V}{\partial c} = l \times a; \frac{\partial V}{\partial l} = c \times a; \frac{\partial V}{\partial a} = c \times l$$

$$\Delta V = (l \times a)\Delta c + (c \times a)\Delta l + (c \times l)\Delta a$$

Mas, em geral, as derivadas parciais podem ser positivas ou negativas...

Que implicações?

Departamento de Física Elementos de Física

55

Tratamento de dados

$$\Delta G = \left| \frac{\partial G}{\partial x} \right| \Delta x + \left| \frac{\partial G}{\partial y} \right| \Delta y + \left| \frac{\partial G}{\partial z} \right| \Delta x + \cdots$$

LIMITE SUPERIOR DO ERRO

Número de medições for pequeno (no limite, apenas uma medição)

A incerteza de x, y, z, etc. é dada (como já sabemos) por:

- Erro de leitura
- Maior desvio, $\{Max d_i\}$

A incerteza de *G* é dada pelo limite superior do erro.

universidade de aveiro Departam

Elementos de Física 2017/2018

• Número de medições grande (digamos, $N \ge 10$)

Podemos usar estatística e não precisamos de ser tão pessimistas a ponto de usar o limite superior do erro — é mais razoável usar o erro mais provável (ou erro estatístico ou erro-padrão):

$$\Delta G = \sqrt{\left|\frac{\partial G}{\partial x}\right|^2 \Delta x^2 + \left|\frac{\partial G}{\partial y}\right|^2 \Delta y^2 + \left|\frac{\partial G}{\partial z}\right|^2 \Delta z^2 + \cdots}$$

ERRO-PADRÃO

N.B.: Estamos a usar Δ para indicar quer o erro-padrão, quer o limite superior do erro, quer o erro estimado.

Departamento de Física Elementos de Física

57

Tratamento de dados

de Física

Casos particulares	Limite superior do erro	Erro-padrão
$G = x \pm y$	$\Delta G = \Delta x + \Delta y$	$\Delta G = \sqrt{\Delta x^2 + \Delta y^2}$
$G = x \cdot y$ $G = \frac{x}{y}$	$\frac{\Delta G}{ G } = \frac{\Delta x}{ x } + \frac{\Delta y}{ y }$	$\frac{\Delta G}{ G } = \sqrt{\left(\frac{\Delta x}{x}\right)^2 + \left(\frac{\Delta y}{y}\right)^2}$
$G = x^n$	$\frac{\Delta G}{ G } = n \frac{\Delta x}{ x }$	$\frac{\Delta G}{ G } = \sqrt{\left(n\frac{\Delta x}{x}\right)^2}$
$G = p \ln x$	$\Delta G = p \frac{\Delta x}{x}$	$\frac{\Delta G}{ G } = \sqrt{\left(p\frac{\Delta x}{x}\right)^2}$

2017/2018