

CS 4390 Computer Networks

Network Layer
The Internet Protocol - Part II

NAT: Network Address Translation

all datagrams leaving local network have same single source NAT IP address: 138.76.29.7, different source port numbers

datagrams with source or destination in this network have 192.168.1/24 address for source, destination (as usual)

NAT – Motivation

Local network uses just one IP address as far as outside world is concerned:

- range of addresses not needed from ISP: just one IP address for all devices – alleviate IP addresses shortage!
- can change addresses of devices in local network without notifying outside world – ease of maintenance
- can change ISP without changing addresses of devices in local network
- devices inside local net NOT explicitly addressable,
 visible by outside world (a security plus)

NAT – Implementation

NAT router must:

- for outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #)
 - . . . remote clients/servers will respond using (NAT IP address, new port #) as destination addr
- for incoming datagrams: replace (NAT IP address, new port #)
 in dest fields of every incoming datagram with corresponding
 (source IP address, port #) stored in NAT table
- remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair

NAT - Example

NAT

- 16-bit port-number field:
 - -~60K simultaneous mappings with a single LANside address, after excluding the well known port numbers etc...!
- NAT is controversial:
 - -routers should only process up to layer 3
 - address shortage should instead be solved by IPv6

NAT Traversal Problem

- client wants to connect to server with address 192.168.1.2
 - server address 192.168.1.2 local to LAN (client can't use it as destination addr)
 - only one externally visible NATed address: 138.76.29.7
- solution1: statically configure NAT to forward incoming connection requests at given port to server
 - e.g., (123.76.29.7, port 2500)always forwarded to 192.168.1.2port 25000

NAT Traversal Problem

- solution 2: Universal Plug and Play (UPnP) Internet Gateway Device (IGD) Protocol. Allows NATed host to:
 - learn public IP address (138.76.29.7)
 - add/remove port mappings (with lease times)
 - i.e., automate static NAT port map configuration

NAT Traversal Problem

- solution 3: relaying (used in Skype)
 - NATed client establishes connection to relay
 - external client connects to relay
 - relay bridges packets between to connections

ICMP: Internet Control Message Protocol

- used by hosts & routers to communicate networklevel information
 - error reporting:
 unreachable host, network,
 port, protocol
 - echo request/reply (used by ping)
- network-layer "above" IP:
 - ICMP msgs carried in IP datagrams
- ICMP message: type, code plus first 8 bytes of IP datagram causing error

<u>Type</u>	<u>Code</u>	description		
0	0	echo reply (ping)		
3	0	dest. network unreachable		
3	1	dest host unreachable		
3	2	dest protocol unreachable		
3	3	dest port unreachable		
3	6	dest network unknown		
3	7	dest host unknown		
4	0	source quench (congestion		
		control - not used)		
8	0	echo request (ping)		
9	0	route advertisement		
10	0	router discovery		
11	0	TTL expired		
12	0	bad IP header		

Traceroute and ICMP

- source sends series of UDP segments to dest
 - first set has TTL =1
 - second set has TTL=2, etc.
 - unlikely port number
- when nth set of datagrams arrives to nth router:
 - router discards datagrams
 - and sends source ICMP messages (type 11, code 0)
 - ICMP messages includes name of router & IP address

when ICMP messages arrives, source records RTTs

stopping criteria:

- UDP segment eventually arrives at destination host
- destination returns ICMP "port unreachable" message (type 3, code 3)
- source stops

IPv6 – Motivation

- *initial motivation:* 32-bit address space soon to be completely allocated.
- additional motivation:
 - header format helps speed processing/forwarding
 - header changes to facilitate QoS

IPv6 datagram format:

- fixed-length 40 byte header
- no fragmentation allowed

IPv6 Datagram Format

priority: identify priority among datagrams in flow flow Label: identify datagrams in same "flow." (concept of flow" not well defined).

next header: identify upper layer protocol for data

ver	pri	flow label					
payload len			next hdr	hop limit			
source address (128 bits)							
destination address (128 bits)							
data							
◆							

IPv6 Other Changes from IPv4

- checksum: removed entirely to reduce processing time at each hop
- options: allowed, but outside of header, indicated by "Next Header" field
- ICMPv6: new version of ICMP
 - additional message types, e.g. "Packet Too Big"
 - multicast group management functions

Transition from IPv4 to IPv6

- not all routers can be upgraded simultaneously
 - no "flag days"
 - how will network operate with mixed IPv4 and IPv6 routers?
- tunneling: IPv6 datagram carried as payload in IPv4 datagram among IPv4 routers

Tunneling

Tunneling

Router Architecture Overview

two key router functions:

- run routing algorithms/protocol (RIP, OSPF, BGP)
- * forwarding datagrams from incoming to outgoing link

Input Port Functions

data link layer:

e.g., Ethernet see chapter 5

decentralizéd switching:

- given datagram dest., lookup output port using forwarding table in input port memory ("match plus action")
- goal: complete input port processing at 'line speed'
- queuing: if datagrams arrive faster than forwarding rate into switch fabric

Switching Fabrics

- transfer packet from input buffer to appropriate output buffer
- switching rate: rate at which packets can be transfer from inputs to outputs
 - often measured as multiple of input/output line rate
 - N inputs: switching rate N times line rate desirable
- three types of switching fabrics

Switching via Memory

first generation routers:

- traditional computers with switching under direct control of CPU
- packet copied to system's memory
- speed limited by memory bandwidth (2 bus crossings per datagram)

Switching via a Bus

- *datagram from input port memory to output port memory via a shared bus
- *bus contention: switching speed limited by bus bandwidth
- ❖ 32 Gbps bus, Cisco 5600: sufficient speed for access and enterprise routers

Switching via Interconnection Network

- overcome bus bandwidth limitations
- banyan networks, crossbar, other interconnection nets initially developed to connect processors in multiprocessor
- *advanced design: fragmenting datagram into fixed length cells, switch cells through the fabric.
- Cisco 12000: switches 60 Gbps through the interconnection network

Output Ports

- *buffering required when datagrams arrive from fabric faster than the transmission rate
- *scheduling discipline chooses among queued datagrams for transmission

Output Port Queuing

- buffering when arrival rate via switch exceeds output line speed
- queuing (delay) and loss due to output port buffer overflow!

How much Buffering?

 RFC 3439 rule of thumb: average buffering equal to "typical" RTT (say 250 msec) times link capacity

- e.g., C = 10 Gpbs link: 2.5 Gbit buffer
- recent recommendation: with N flows, buffering equal to

$$\frac{\mathsf{RTT} \cdot \mathsf{C}}{\sqrt{\mathsf{N}}}$$

Input Port Queuing

- fabric slower than input ports combined -> queuing may occur at input queues
 - queuing delay and loss due to input buffer overflow!
- Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward

output port contention:
only one red datagram can be
transferred.
lower red packet is blocked

one packet time later:
 green packet
 experiences HOL
 blocking