

context in which the apparatus and method of the present invention are practiced. In one embodiment the process shown in the flow charts of the Figures and in the computer program listings appended hereto are performed in a different order than that indicated.

It will also be understood that while a preferred embodiment of the invention is described 5 as being implemented in part on a stored program digital computer, the invention may also be implemented, in other embodiments, with special-purpose electronic circuits.

It will be further understood that other embodiments of the invention may be implemented using a different type of voting scheme, such as ballot box memory for example, than that shown herein for determining the most likely amount of tilt in the measured plane.

10 The following alpha-numbered paragraphs represent various embodiments and combinations according to various aspects of the present invention.

b7C
15 A1. One embodiment of the invention includes a machine-vision head for measuring a three-dimensional geometry of a device having a surface to be measured, including: a projector, the projector including: a first light source having a projection optical axis that intersects the device; a projection-imaging element positioned along the projection optical axis and spaced from the first light source; and a projection-pattern element positioned between the first light source and the projection imaging element along the projection optical axis, the projection-pattern element having a repeating sine-wave light-modulation pattern as measured along a line on the projection-pattern element; and an imager, the imager having a reception optical axis that intersects the 20 device substantially at the projection optical axis.

25 A2. Some embodiments include the machine-vision head according to alpha-numbered paragraph A1, wherein the projection-pattern element light-modulation pattern includes a repeating pattern of grid lines having substantially constant density along lines in a direction parallel to the grid lines and a sine-wave density along lines in a direction perpendicular to the grid lines.

A3. Some embodiments include the machine-vision head according to alpha-numbered paragraph A2, wherein the first light source includes a elongated incandescent filament having a dimension along a longitudinal axis substantially longer than a width, wherein the longitudinal

axis of the filament is substantially perpendicular to the projection optical axis and substantially parallel to the grid lines of the projection-pattern element.

A4. Some embodiments include the machine-vision head according to alpha-numbered paragraph A2, further including a projection mask having an elongated aperture having a dimension along a length axis substantially longer than a dimension along a width axis perpendicular to the length axis, and wherein the length axis is substantially parallel to the grid lines of the projection-pattern element.

A5. Some embodiments include the machine-vision head according to alpha-numbered paragraph A4, wherein the projection mask limits the projected light to less than about three sine-wave cycles of the sine-wave pattern.

A6. Some embodiments include the machine-vision head according to alpha-numbered paragraph A4, further including a projection-mask actuator operable to adjust a position of the projection mask.

A7. Some embodiments include the machine-vision head according to alpha-numbered paragraph A1, further including a light-intensity controller, coupled to receive intensity information regarding light output from the first light source, that outputs a control signal based on a measured intensity of light from the first light source.

A8. Some embodiments include the machine-vision head according to alpha-numbered paragraph A7, wherein the control signal is operatively coupled to the first light source to control light output based on the measured light intensity in a feedback manner.

A9. Some embodiments include the machine-vision head according to alpha-numbered paragraph A7, wherein the control signal is operatively coupled to the imager to control an amount of light received in an imaging cycle of the imager.

A10. Some embodiments include the machine-vision head according to alpha-numbered paragraph A1, further including a condensing imaging element positioned between the first light source and the projection-pattern element along the projection optical axis.

A11. Some embodiments include the machine-vision head according to alpha-numbered paragraph A1, further including a focussing reflector that substantially focusses an image of the first light source adjacent to the first light source.

A12. Some embodiments include the machine-vision head according to alpha-numbered paragraph A11, wherein the reception optical axis is oriented to be at substantially a right angle to a direction of scanning, and the projection optical axis is oriented to be at substantially a forty-five-degree angle to the direction of scanning.

5 A13. Some embodiments include the machine-vision head according to alpha-numbered paragraph A12, wherein a major plane of the projection-imaging element is oriented substantially perpendicular to the projection optical axis and a major plane of the projection-pattern element is oriented substantially perpendicular to the projection optical axis.

10 A14. Some embodiments include the machine-vision head according to alpha-numbered paragraph A1, further including a second light source that directs substantially unpatterned light onto the device, the second light source being activated to obtain two-dimensional intensity data about the device from the imager.

15 A15. One embodiment of the invention includes a machine-vision system for inspecting a device, including: (1) an inspection station, the inspection station including: (a) a projector, the projector including: a first light source having a projection optical axis that intersects the device; a projection-imaging element positioned along the projection optical axis and spaced from the first light source; and a projection-pattern element positioned between the first light source and the projection imaging element along the projection optical axis, the projection-pattern element having a repeating sine-wave light-modulation pattern as measured along a line on the projection-pattern element; and (b) an imager, the imager having a reception optical axis that intersects the device when the inspection station is in operation, the imager maintained in a substantially fixed relationship to the pattern projector, the imager including at least three lines of semiconductor imaging pixels; (2) a scanner mechanism that moves the imager relative to the device such that different portions of the device are successively imaged by the imager, wherein the first light source is activated in conjunction with the imager to obtain three-dimensional device geometry data regarding the device; and (3) a comparator coupled to the imager, the comparator comparing one or more characteristics of the acquired three-dimensional device geometry data with an intended predetermined geometry to produce a signal indicative of any device geometry departure of an actual device geometry from the intended predetermined geometry.

A16. Some embodiments include the system according to alpha-numbered paragraph A15, wherein the projection-pattern element light-modulation pattern includes a repeating pattern of grid lines having substantially constant density along lines in a direction parallel to the grid lines and a sine-wave density along lines in a direction perpendicular to the grid lines.

5 A17. Some embodiments include the system according to alpha-numbered paragraph A16, wherein the first light source includes a elongated incandescent filament having a dimension along a longitudinal axis substantially longer than a width, wherein the longitudinal axis of the filament is substantially perpendicular to the projection optical axis and substantially parallel to the grid lines of the projection-pattern element.

10 A18. Some embodiments include the system according to alpha-numbered paragraph A15, further including a projection mask having an elongated aperture having a dimension along a length axis substantially longer than a dimension along a width axis perpendicular to the length axis, and wherein the length axis is substantially parallel to the grid lines of the projection-pattern element.
b7c

15 A19. Some embodiments include the system according to alpha-numbered paragraph A18, wherein the projection mask limits the projected light to less than about three sine-wave cycles of the sine-wave pattern.

20 A20. Some embodiments include the system according to alpha-numbered paragraph A15, further including a light-intensity controller, coupled to receive intensity information regarding light output from the light source, that outputs a control signal based on a measured intensity of light from the light source, wherein the control signal is operatively coupled to the imager to control an amount of light received in an imaging cycle of the imager.

25 A21. Some embodiments include the system according to alpha-numbered paragraph A15, further including a focussing reflector that substantially focusses an image of the light source adjacent to the light source.

A22. Some embodiments include the system according to alpha-numbered paragraph A15, further including a condensing imaging element positioned between the first light source and the projection-pattern element along the projection optical axis.

A23. Some embodiments include the system according to alpha-numbered paragraph A15, wherein a major plane of the projection-imaging element is oriented substantially perpendicular to the projection optical axis and a major plane of the projection-pattern element is oriented substantially perpendicular to the projection optical axis.

5 A24. Some embodiments include the system according to alpha-numbered paragraph A15, further including a second light source that directs substantially unpatterned light onto the device, the second light source being activated in conjunction with the imager to obtain two-dimensional intensity data about the device from the imager.

10 A25. One embodiment of the invention includes a method for measuring a three-dimensional geometry of a device having a surface to be measured, including: projecting patterned light having a spatial-modulation pattern; the projecting pattern light including: (a) projecting substantially unpatterned light, (b) spatially modulating the unpatterened light with a sine-wave spatial modulation pattern to produce spatial-modulation patterned light, and (c) imaging the spatial-modulation patterned light onto the device; scanning the device within the spatial-modulation patterned light; and receiving reflected light from the device into at least three linear imager regions.
15
20

A26. Some embodiments include the method according to alpha-numbered paragraph A25, wherein the spatially modulating includes modulating with a repeating pattern of grid lines having substantially constant density along lines in a direction parallel to the grid lines and a sine-wave density along lines in a direction perpendicular to the grid lines.

A27. Some embodiments include the method according to alpha-numbered paragraph A26, wherein the projecting substantially unpatterned light source includes a elongated light beam, wherein a longitudinal axis of the beam is perpendicular to the direction of projection and parallel to the grid lines.

25 A28. Some embodiments include the method according to alpha-numbered paragraph A26, further including projection masking to an elongated aperture having a length axis substantially greater than a width axis, and wherein the length axis is substantially parallel to the grid lines of the pattern.

A29. Some embodiments include the method according to alpha-numbered paragraph A28, wherein the projection masking limits the projected light to less than about three sine-wave cycles of the sine-wave pattern.

5 A30. Some embodiments include the method according to alpha-numbered paragraph A28, further including adjusting a position of the projection masking.

A31. Some embodiments include the method according to alpha-numbered paragraph A25, further including generating a light-intensity control signal based on intensity information regarding the projected light.

10 A32. Some embodiments include the method according to alpha-numbered paragraph A31, further including controlling a light source to control light output based on the measured light intensity in a feedback manner.

15 A33. Some embodiments include the method according to alpha-numbered paragraph A31, further including controlling an imager to control an amount of light received in an imaging cycle of the imager.

20 A34. Some embodiments include the method according to alpha-numbered paragraph A25, further including condensing light onto the projection-pattern along the projection optical axis.

A35. Some embodiments include the method according to alpha-numbered paragraph A25, further including reflectively focussing to substantially focus an image of the light source adjacent to the light source.

25 A36. Some embodiments include the method according to alpha-numbered paragraph A25, wherein the reception optical axis is oriented to be at substantially a right angle to a direction of scanning, and the projection optical axis is oriented to be at substantially a forty-five-degree angle to the direction of scanning.

A37. One embodiment of the invention includes a machine-vision head for measuring a three-dimensional geometry of a device having a surface to be measured, including: a projector, the projector including: a first light source having a projection optical axis that intersects the device; a condensing imaging element positioned along the projection optical axis and spaced from the light source by a distance D_4 ; a projection imaging element positioned along the

projection optical axis and spaced from the condensing imaging element by a distance D_3 ; and a projection-pattern element 1 positioned along the projection optical axis and between the condensing imaging element and the projection imaging element and spaced from the projection imaging element by a distance D_2 , the projection-pattern element having a repeating light-modulation pattern that modulates light from the first light source to generate a patterned light useful for determining three-dimensional geometry of the device, wherein a projection-imaging-element-to-device distance D_1 and the distance D_2 are configured to focus an image of projection-pattern element at the surface of device, and the distance D_3 and the distance D_4 are configured so as focus an image of the light source onto the projection-pattern imaging element; and an imager, the imager having a reception optical axis that intersects the device substantially at the projection optical axis, the imager receiving the patterned light as reflected by the device.

A38. Some embodiments include the machine-vision head according to alpha-numbered paragraph A37, wherein the projection-pattern element light-modulation pattern includes a repeating pattern of grid lines having substantially constant density along lines in a direction parallel to the grid lines and a sine-wave density along lines in a direction perpendicular to the grid lines.

A39. Some embodiments include the machine-vision head according to alpha-numbered paragraph A37, wherein the first light source includes a elongated incandescent filament having a dimension along a longitudinal axis substantially longer than a width, wherein the longitudinal axis of the filament is substantially perpendicular to the projection optical axis and substantially parallel to a pattern feature of the projection-pattern element.

A40. Some embodiments include the machine-vision head according to alpha-numbered paragraph A39, further including a projection mask having an elongated aperture having a dimension along a length axis substantially longer than a dimension along a width axis perpendicular to the length axis, and wherein the length axis is substantially parallel to the pattern feature of the projection-pattern element.

A41. Some embodiments include the machine-vision head according to alpha-numbered paragraph A40, wherein the projection-pattern element light-modulation pattern includes a repeating pattern of grid lines having substantially constant density along lines in a direction

parallel to the grid lines and a sine-wave density along lines in a direction perpendicular to the grid lines, the pattern feature being the grid lines, and wherein the projection mask limits the projected light to less than about three sine-wave cycles of the sine-wave pattern.

5 A42. Some embodiments include the machine-vision head according to alpha-numbered paragraph A40, further including a projection-mask actuator operable to adjust a position of the projection mask.

10 A43. Some embodiments include the machine-vision head according to alpha-numbered paragraph A37, further including a light-intensity controller, coupled to receive intensity information regarding light output from the first light source, that outputs a control signal based on a measured intensity of light from the first light source.

A44. Some embodiments include the machine-vision head according to alpha-numbered paragraph A43, wherein the control signal is operatively coupled to the first light source to control light output based on the measured light intensity in a feedback manner.

15 A45. Some embodiments include the machine-vision head according to alpha-numbered paragraph A43, wherein the control signal is operatively coupled to the imager to control an amount of light received in an imaging cycle of the imager.

A46. Some embodiments include the machine-vision head according to alpha-numbered paragraph A37, further including a condensing imaging element positioned between the first light source and the projection-pattern element along the projection optical axis.

20 A47. Some embodiments include the machine-vision head according to alpha-numbered paragraph A37, further including a focussing reflector that substantially focusses an image of the first light source adjacent to the first light source.

25 A48. Some embodiments include the machine-vision head according to alpha-numbered paragraph A47, wherein the reception optical axis is oriented to be at substantially a right angle to a direction of scanning, and the projection optical axis is oriented to be at substantially a forty-five-degree angle to the direction of scanning.

A48. Some embodiments include the machine-vision head according to alpha-numbered paragraph A48, wherein a major plane of the projection-imaging element is oriented substantially

perpendicular to the projection optical axis and a major plane of the projection-pattern element is oriented substantially perpendicular to the projection optical axis.

A50. Some embodiments include the machine-vision head according to alpha-numbered paragraph A37, further including a second light source that directs substantially unpatterned light onto the device, the second light source being activated to obtain two-dimensional intensity data about the device from the imager.

A51. One embodiment of the invention includes a machine-vision system for inspecting a device, including: (1) an inspection station, the inspection station including: (a) a projector, the projector including a first light source having a projection optical axis that intersects the device, a condensing imaging element positioned along the projection optical axis and spaced from the light source by a distance D_4 , a projection imaging element positioned along the projection optical axis and spaced from the condensing imaging element by a distance D_3 , and a projection-pattern element 1 positioned along the projection optical axis and between the condensing imaging element and the projection imaging element and spaced from the projection imaging element by a distance D_2 , the projection-pattern element having a repeating light-modulation pattern that modulates light from the first light source to generate a patterned light useful for determining three-dimensional geometry of the device, wherein a projection-imaging-element-to-device distance D_1 and the distance D_2 are configured to focus an image of projection-pattern element at the surface of device, and the distance D_3 and the distance D_4 are configured so as focus an image of the light source onto the projection-pattern imaging element; and (b) an imager, the imager having a reception optical axis that intersects the device substantially at the projection optical axis, the imager receiving the patterned light as reflected by the device; (2) a scanner mechanism that moves the imager relative to the device such that different portions of the device are successively imaged by the imager, wherein the first light source is activated in conjunction with the imager to obtain three-dimensional device geometry data regarding the device; and (3) a comparator coupled to the imager, the comparator comparing one or more characteristics of the acquired three-dimensional device geometry data with an intended predetermined geometry to produce a signal indicative of any device geometry departure of an actual device geometry from the intended predetermined geometry.

A52. Some embodiments include the system according to alpha-numbered paragraph A51, wherein the projection-pattern element light-modulation pattern includes a repeating pattern of grid lines having substantially constant density along lines in a direction parallel to the grid lines and a sine-wave density along lines in a direction perpendicular to the grid lines.

5 A53. Some embodiments include the system according to alpha-numbered paragraph A52, wherein the first light source includes a elongated incandescent filament having a dimension along a longitudinal axis substantially longer than a width, wherein the longitudinal axis of the filament is substantially perpendicular to the projection optical axis and substantially parallel to the grid lines of the projection-pattern element.

10 A54. Some embodiments include the system according to alpha-numbered paragraph A51, further including a projection mask having an elongated aperture having a dimension along a length axis substantially longer than a dimension along a width axis perpendicular to the length axis, and wherein the length axis is substantially parallel to the grid lines of the projection-pattern element.

15 A55. Some embodiments include the system according to alpha-numbered paragraph A54, wherein the projection mask limits the projected light to less than about three sine-wave cycles of the sine-wave pattern.

20 A56. Some embodiments include the system according to alpha-numbered paragraph A51, further including a light-intensity controller, coupled to receive intensity information regarding light output from the light source, that outputs a control signal based on a measured intensity of light from the light source, wherein the control signal is operatively coupled to the imager to control an amount of light received in an imaging cycle of the imager.

25 A57. Some embodiments include the system according to alpha-numbered paragraph A51, further including a focussing reflector that substantially focusses an image of the light source adjacent to the light source.

A58. Some embodiments include the system according to alpha-numbered paragraph A51, further including a condensing imaging element positioned between the first light source and the projection-pattern element along the projection optical axis.

A59. Some embodiments include the system according to alpha-numbered paragraph A51, wherein a major plane of the projection-imaging element is oriented substantially perpendicular to the projection optical axis and a major plane of the projection-pattern element is oriented substantially perpendicular to the projection optical axis.

5 A60. Some embodiments include the system according to alpha-numbered paragraph A51, further including a second light source that directs substantially unpatterned light onto the device, the second light source being activated in conjunction with the imager to obtain two-dimensional intensity data about the device from the imager.

10 A61. One embodiment of the invention includes a method for measuring a three-dimensional geometry of a device having a surface to be measured, including: (a) projecting patterned light having a spatial-modulation pattern; the projecting pattern light including projecting substantially unpatterned light, spatially modulating the unpatterened light with a sine-wave spatial modulation pattern to produce spatial-modulation patterned light, and imaging the spatial-modulation patterned light onto the device; (b) scanning the device within the spatial-modulation patterned light; and (c) receiving reflected light from the device into at least three linear imager regions.

15 A62. Some embodiments include the method according to alpha-numbered paragraph A61, wherein the spatially modulating includes modulating with a repeating pattern of grid lines having substantially constant density along lines in a direction parallel to the grid lines and a sine-wave density along lines in a direction perpendicular to the grid lines.

20 A63. Some embodiments include the method according to alpha-numbered paragraph A62, wherein the projecting substantially unpatterned light source includes a elongated light beam, wherein a longitudinal axis of the beam is perpendicular to the direction of projection and parallel to the grid lines.

25 A64. Some embodiments include the method according to alpha-numbered paragraph A62, further including projection masking to an elongated aperture having a length axis substantially greater than a width axis, and wherein the length axis is substantially parallel to the grid lines of the pattern.

A65. Some embodiments include the method according to alpha-numbered paragraph A64, wherein the projection masking limits the projected light to less than about three sine-wave cycles of the sine-wave pattern.

5 A66. Some embodiments include the method according to alpha-numbered paragraph A65, further including adjusting a position of the projection masking.

A67. Some embodiments include the method according to alpha-numbered paragraph A66, further including generating a light-intensity control signal based on intensity information regarding the projected light.

10 A68. Some embodiments include the method according to alpha-numbered paragraph A67, further including controlling a light source to control light output based on the measured light intensity in a feedback manner.
b7

A69. Some embodiments include the method according to alpha-numbered paragraph A68, further including controlling an imager to control an amount of light received in an imaging cycle of the imager.

15 A70. Some embodiments include the method according to alpha-numbered paragraph A69, further including condensing light onto the projection-pattern along the projection optical axis.

20 A71. Some embodiments include the method according to alpha-numbered paragraph A61, further including reflectively focussing to substantially focus an image of the light source adjacent to the light source.

A72. Some embodiments include the method according to alpha-numbered paragraph A61, wherein the reception optical axis is oriented to be at substantially a right angle to a direction of scanning, and the projection optical axis is oriented to be at substantially a forty-five-degree angle to the direction of scanning.

25 A73. One embodiment of the invention includes a machine-vision system for inspecting a device, the machine-vision system including: a light source for propagating light to the device; an image detector that receives light from the device; a light sensor assembly receiving a portion of the light from the light source, the light sensor assembly producing an output responsive to the intensity of the light received at the light sensor assembly; and a controller for controlling the

amount of light received by the image detector, the controller controlling the amount of light within a desired range in response to the output from the light sensor.

A74. Some embodiments include the system of alpha-numbered paragraph A73 wherein the light sensor assembly further includes: a beam splitter positioned between the light source and the device; and a light sensor positioned to receive light from the beam splitter.
5

A75. Some embodiments include the system of alpha-numbered paragraph A74 wherein the beam splitter filters infrared light from the light source.

A76. Some embodiments include the system of alpha-numbered paragraph A73 further including a power supply which supplies power to the light source, the controller controlling the amount of light received by the image detector by controlling the amount of power output from the power supply.
10
11
12
13
14

A77. Some embodiments include the system of alpha-numbered paragraph A73 wherein the controller controls the amount of light received by the image detector by controlling the amount time the image detector receives light to acquire an image.

A78. Some embodiments include the system of alpha-numbered paragraph A73 wherein the image detector further includes an array of imaging pixels, wherein the controller controls the amount of light received by the image detector by controlling the amount time the array of imaging pixels receives light to acquire an image.
15
16
17
18
19

A79. Some embodiments include the system of alpha-numbered paragraph A78 further including a memory device which stores correction values for at least one of the pixels in the array of imaging pixels, wherein the value associated with the at least one of the pixels is corrected with a correction value stored in the memory.
20
21
22
23

A80. Some embodiments include the system of alpha-numbered paragraph A73 wherein the light sensor assembly further includes a photo diode.

A81. One embodiment of the invention includes a machine-vision system for inspecting a device, the machine-vision system including: a light source for propagating light to the device; an image detector that receives light from the device; and a cooling element attached to the imaging device, the cooling element removing heat produced by the image detector to keep the image detector within a selected temperature range.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
25161
25162
25163
25164
25165
25166
25167
25168
25169
25170
25171
25172
25173
25174
25175
25176
25177
25178
25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
25210
25211
25212
25213
25214
25215
25216
25217
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
25260
25261
25262
25263
25264
25265
25266
25267
25268
25269
25270
25271
25272
25273
25274
25275
25276
25277
25278
25279
25280
25281
25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
25298
25299
252100
252101
252102
252103
252104
252105
252106
252107
252108
252109
252110
252111
252112
252113
252114
252115
252116
252117
252118
252119
252120
252121
252122
252123
252124
252125
252126
252127
252128
252129
252130
252131
252132
252133
252134
252135
252136
252137
252138
252139
252140
252141
252142
252143
252144
252145
252146
252147
252148
252149
252150
252151
252152
252153
252154
252155
252156
252157
252158
252159
252160
252161
252162
252163
252164
252165
252166
252167
252168
252169
252170
252171
252172
252173
252174
252175
252176
252177
252178
252179
252180
252181
252182
252183
252184
252185
252186
252187
252188
252189
252190
252191
252192
252193
252194
252195
252196
252197
252198
252199
252200
252201
252202
252203
252204
252205
252206
252207
252208
252209
252210
252211
252212
252213
252214
252215
252216
252217
252218
252219
252220
252221
252222
252223
252224
252225
252226
252227
252228
252229
252230
252231
252232
252233
252234
252235
252236
252237
252238
252239
252240
252241
252242
252243
252244
252245
252246
252247
252248
252249
252250
252251
252252
252253
252254
252255
252256
252257
252258
252259
252260
252261
252262
252263
252264
252265
252266
252267
252268
252269
252270
252271
252272
252273
252274
252275
252276
252277
252278
252279
252280
252281
252282
252283
252284
252285
252286
252287
252288
252289
252290
252291
252292
252293
252294
252295
252296
252297
252298
252299
252300
252301
252302
252303
252304
252305
252306
252307
252308
252309
252310
252311
252312
252313
252314
252315
252316
252317
252318
252319
252320
252321
252322
252323
252324
252325
252326
252327
252328
252329
252330
252331
252332
252333
252334
252335
252336
252337
252338
252339
252340
252341
252342
252343
252344
252345
252346
252347
252348
252349
252350
252351
252352
252353
252354
252355
252356
252357
252358
252359
252360
252361
252362
252363
252364
252365
252366
252367
252368
252369
252370
252371
252372
252373
252374
252375
252376
252377
252378
252379
252380
252381
252382
252383
252384
252385
252386
252387
252388
252389
252390
252391
252392
252393
252394
252395
252396
252397
252398
252399
252400
252401
252402
252403
252404
252405
252406
252407
252408
252409
252410
252411
252412
252413
252414
252415
252416
252417
252418
252419
252420
252421
252422
252423
252424
252425
252426
252427
252428
252429
252430
252431
252432
252433
252434
252435
252436
252437
252438
252439
252440
252441
252442
252443
252444
252445
252446
252447
252448
252449
252450
252451
252452
252453
252454
252455
252456
252457
252458
252459
252460
252461
252462
252463
252464
252465
252466
252467
252468
252469
252470
252471
252472
252473
252474
252475
252476
252477
252478
252479
252480
252481
252482
252483
252484
252485
252486
252487
252488
252489
252490
252491
252492
252493
252494
252495
252496
252497
252498
252499
252500
252501
252502
252503
252504
252505
252506
252507
252508
252509
252510
252511
252512
252513
252514
252515
252516
252517
252518
252519
252520
252521
252522
252523
252524
252525
252526
252527
252528
252529
252530
252531
252532
252533
252534
252535
252536
252537
252538
252539
252540
252541
252542
252543
252544
252545
252546
252547
252548
252549
252550
252551
252552
252553
252554
252555
252556
252557
252558
252559
252560
252561
252562
252563
252564
252565
252566
252567
252568
252569
252570
252571
252572
252573
252574
252575
252576
252577
252578
252579
252580
252581
252582
252583
252584
252585
252586
252587
252588
252589
252590
252591
252592
252593
252594
252595
252596
252597
252598
252599
2525100
2525101
2525102
2525103
2525104
2525105
2525106
2525107
2525108
2525109
2525110
2525111
2525112
2525113
2525114
2525115
2525116
2525117
2525118
2525119
2525120
2525121
2525122
2525123
2525124
2525125
2525126
2525127
2525128
2525129
2525130
2525131
2525132
2525133
2525134
2525135
2525136
2525137
2525138
2525139
2525140
2525141
2525142
2525143
2525144
2525145
2525146
2525147
2525148
2525149
2525150
2525151
2525152
2525153
2525154
2525155
2525156
2525157
2525158
2525159
2525160
2525161
2525162
2525163
2525164
2525165
2525166
2525167
2525168
2525169
2525170
2525171
2525172
2525173
2525174
2525175
2525176
2525177
2525178
2525179
2525180
2525181
2525182
2525183
2525184
2525185
2525186
2525187
2525188
2525189
2525190
2525191
2525192
2525193
2525194
2525195
2525196
2525197
2525198
2525199
2525200
2525201
2525202
2525203
2525204
2525205
2525206
2525207
2525208
2525209
2525210
2525211
2525212
2525213
2525214
2525215
2525216
2525217
2525218
2525219
2525220
2525221
2525222
2525223
2525224
2525225
2525226
2525227
2525228
2525229
2525230
2525231
2525232
2525233
2525234
2525235
2525236
2525237
2525238
2525239
2525240
2525241
2525242
2525243
2525244
2525245
2525246
2525247
2525248
2525249
2525250
2525251
2525252
2525253
2525254
2525255
2525256
2525257
2525258
2525259
2525260
2525261
2525262
2525263
2525264
2525265
2525266
2525267
2525268
2525269
2525270
2525271
2525272
2525273
2525274
2525275
2525276
2525277
2525278
2525279
2525280
2525281
2525282
2525283
2525284
2525285
2525286
2525287
2525288
2525289
2525290
2525291
2525292
2525293
2525294
2525295
2525296
2525297
2525298
2525299
2525300
2525301
2525302
2525303
2525304
2525305
2525306
2525307
2525308
2525309
2525310
2525311
2525312
2525313
2525314
2525315
2525316
2525317
2525318
2525319
2525320
2525321
2525322
2525323
2525324
2525325
2525326
2525327
2525328
2525329
2525330
2525331
2525332
2525333
2525334
2525335
2525336
2525337
2525338
2525339
2525340
2525341
2525342
2525343
2525344
2525345
2525346
2525347
2525348
2525349
2525350
2525351
2525352
2525353
2525354
2525355
2525356
2525357
2525358
2525359
2525360
2525361
2525362
2525363
2525364
2525365
2525366
2525367
2525368
2525369
2525370
2525371
2525372
2525373
2525374
2525375
2525376
2525377
2525378
2525379
2525380
2525381
2525382
2525383
2525384
2525385
2525386
2525387
2525388
2525389
2525390
2525391
2525392
2525393
2525394
2525395
2525396
2525397
2525398
2525399
2525400
2525401
2525402
2525403
2525404
2525405
2525406
2525407
2525408
2525409
2525410
2525411
2525412
2525413
2525414
2525415
2525416
2525417
2525418
2525419
2525420
2525421
2525422
2525423
2525424
2525425
2525426
2525427
2525428
2525429
2525430
2525431
2525432
2525433
2525434
2525435
2525436
2525437
2525438
2525439
2525440
2525441
2525442
2525443
2525444
2525445
2525446
2525447
2525448
2525449
2525450
2525451
2525452
2525453
2525454
2525455
2525456
2525457
2525458
2525459
2525460
2525461
2525462
2525463
2525464
2525465
2525466
2525467
2525468
2525469
2525470
2525471
2525472
2525473
2525474
2525475
2525476
2525477
2525478
2525479
2525480
2525481
2525482
2525483
2525484
2525485
2525486<br

A82. Some embodiments include the system of alpha-numbered paragraph A81, wherein the cooling element is a thermoelectric semiconductor unit.

A83. Some embodiments include the system of alpha-numbered paragraph A81, wherein the image detector is an array of imaging pixels.

5 A84. Some embodiments include the system of alpha-numbered paragraph A81, wherein the image detector is an array of semiconductor imaging pixels, the thermoelectric semiconductor unit further including: a temperature sensor for sensing the temperature of the array of semiconductor imaging pixels; a cool portion attached to the array of semiconductor imaging pixels to form a thermally conductive path between the array of semiconductor imaging pixels and the thermoelectric semiconductor unit; a heat rejection portion; and a controller for controlling the amount of power input to the thermoelectric semiconductor to keep the image detector within a selected temperature range.

10 b2 A85. One embodiment of the invention includes a machine-vision system for inspecting a device, the machine-vision system including: a strobed light source for propagating light to the device; an image detector that receives light from the device, the image detector remaining in a fixed position with respect to the strobed light source; and translation element that moves the strobed light source and image detector with respect to the device.

15 A86. Some embodiments include the machine-vision system for inspecting a device of alpha-numbered paragraph A85 including a ring light source.

20 A87. Some embodiments include the machine-vision system for inspecting a device of alpha-numbered paragraph A85 further including a strobed light controller which controls the strobed light source to produce light having a first level and to produce light having a second level, the first level different from the first level.

25 A88. Some embodiments include the machine-vision system for inspecting a device of alpha-numbered paragraph A86 wherein the image detector further includes: an array of imaging pixels; and an imaging pixel controller which controls the amount of light received by the image detector by controlling the amount time the array of imaging pixels receives light to acquire an image.

A89. Some embodiments include the system of alpha-numbered paragraph A87 further including a memory device which stores correction values for at least one of the pixels in the array of imaging pixels, wherein the value associated with the at least one of the pixels is corrected with a correction value stored in the memory.

5 A90. Some embodiments include the system of alpha-numbered paragraph A87 further including a memory device which stores a first correction value associated with the first level of light from the strobed light source, and a second correction value associated with the second level of light from the strobed light source for at least one of the pixels in the array of imaging pixels, wherein the values associated with the at least one of the pixels is corrected with the first and second correction values stored in the memory.

10 A91. Some embodiments include the machine-vision system for inspecting a device of alpha-numbered paragraph A86 wherein the strobed light controller controls the strobed light source to produce light having a first level and alternated with light having a second level.

15 A92. Some embodiments include the machine-vision system for inspecting a device of alpha-numbered paragraph A86 including a strobed ring light source, the strobed light controller controlling the strobed light source and the strobed ring light source.

20 A93. Some embodiments include the machine-vision system for inspecting a device of alpha-numbered paragraph A92 wherein the strobed light controller controls the strobed ring light source to strobe alternatively with the strobed light at the first level and at the second level.

25 A94. Some embodiments include the machine-vision system for inspecting a device of alpha-numbered paragraph A86 wherein the image detector is included of a first line of pixels and a second line of pixels, the machine vision system further including a strobed ring light source, wherein the strobed light controller controls the strobed ring light source to produce light for the first line of pixels and the second line of pixels.

A95. One embodiment of the invention includes a method for acquiring physical information associated with of a device using a machine-vision station having a light source and having an image detector, the method including: projecting light from the light source to the device; receiving light reflected from the device into an image detector; and controlling the amount of light received at the image detector to a value within a desired range.

A96. Some embodiments include the method of alpha-numbered paragraph A95, wherein controlling the amount of light received at the image detector further includes: sensing the projected from the light source; and controlling the amount of power input to the light source in response to the value produced by the sensing step.

5 A97. Some embodiments include the method of alpha-numbered paragraph A95, wherein the image detector further includes an array of pixels which produce a signal dependent on the length of time the pixel is exposed to the reflected light, wherein the controlling the amount of light received at the image detector further includes sensing the projected from the light source; and controlling the length of time the image detector is exposed to reflected light in response to the value produced by the sensing step.

10² A98. Some embodiments include the method of alpha-numbered paragraph A95 wherein controlling the amount of light received at the image detector further includes sensing the reflected from the device and controlling the amount of power input to the light source in response to the value produced by the sensing step.

15 A99. Some embodiments include the method of alpha-numbered paragraph A24 wherein the image detector further includes an array of pixels which produce a signal dependent on the length of time the pixel is exposed to the reflected light, wherein controlling the amount of light received at the image detector further includes sensing the reflected from the device; and controlling the length of time the image detector is exposed to reflected light in response to the value produced by the sensing step.

20 A100. One embodiment of the invention includes a method for acquiring physical information associated with of a device using a machine-vision station having a light source and having an image detector, the method including projecting light from the light source to the device; receiving light reflected from the device into an image detector; and removing heat produced by the image detector to keep the image detector within a selected temperature range.

25 A101. Some embodiments include the method of alpha-numbered paragraph A29, wherein removing heat produced by the image detector further includes attaching a thermoelectric semiconductor unit to the image detector.

A102. One embodiment of the invention includes a method for acquiring physical information associated with of a device using a machine-vision station having a light source and having an image detector, the method including fixing the relationship between the light source and the image detector; moving the light source and the image detector with respect to the device; 5 projecting strobéd light from the light source to the device; and receiving light reflected from the device into an image detector.

A103. Some embodiments include the method of alpha-numbered paragraph A102 wherein the wherein projecting strobéd light from the light source to the device further includes: producing a first level of strobéd light from the light source; and producing a second level of strobéd light from the light source.

A104. Some embodiments include the method of alpha-numbered paragraph A103 further including producing a strobéd light from a ring light.

A105. Some embodiments include the method of alpha-numbered paragraph A104 wherein the wherein projecting strobéd light from the light source to the device further includes: producing a first level of strobéd light from the light source; producing a second level of strobéd light from the light source; and alternating the strobéd light of the first level with the strobéd light of the second level.

A106. One embodiment of the invention includes a manufacturing system, including: a semiconductor part fabrication unit that fabricates a part for a semiconductor device; and an 20 inspection station, the inspection station further including: (a) a light source projecting light onto the device; (b) an image detector which receives light reflected from the device, the image detector including a plurality of lines of semiconductor imaging pixels; (c) a light sensor assembly receiving a portion of the light from the light source, the light sensor assembly producing an output responsive to the intensity of the light received at the light sensor assembly; and (d) a 25 controller for controlling the amount of light received by the image detector, the controller controlling the amount of light within a desired range in response to the output from the light sensor.

A107. Some embodiments include the manufacturing system of alpha-numbered paragraph A106 wherein the inspection station further includes memory for storing correction values associated with at least one of the pixels in the image detector.

5 A108. Some embodiments include the manufacturing system of alpha-numbered paragraph A106, wherein the inspection station further includes a light source controller for producing strobed light of a first level and strobed light of a second level.

A109. Some embodiments include the manufacturing system of alpha-numbered paragraph A108 wherein the inspection station further includes a ring light.

10 A110. Some embodiments include the manufacturing system of alpha-numbered paragraph A106 wherein the inspection station further includes: a ring light; and a ring light controller for strobing the ring light, the ring light controller strobing the ring light for each of the plurality of lines of pixels in the image detector.

15 A111. One embodiment of the invention includes a machine-vision system for inspecting at least one device, the machine-vision system including a first inspection station, the first inspection station including: a surface for inspecting at least one device, the surface having an opening therein; an inspection device positioned on one side of the inspection surface; and an elevator that places at least one device within the opening in the surface from another side of the inspection surface opposite the one side of the inspection surface, the elevator presenting at least one device to the surface for inspecting at least one device.

20 A112. Some embodiments include the system of alpha-numbered paragraph A111, wherein the elevator further includes a compartment for holding at least one device, the elevator placing at least one device within the opening in the surface and presenting the device to the surface for inspecting the device.

25 A113. Some embodiments include the system of alpha-numbered paragraph A112, the first inspection station further including: a light source that propagates light to the device when the device is positioned on the surface for inspecting the device; and an image detector that receives light from the device.

A114. Some embodiments include the system of alpha-numbered paragraph A112 wherein the elevator and the compartment for holding a at least one device is aligned with the opening.

A115. Some embodiments include the system of alpha-numbered paragraph A111 wherein the elevator is aligned with the opening.

A116. Some embodiments include the system of alpha-numbered paragraph A111 further including a first tray for holding at least one device; a first tray for holding at least one device; a tray-transfer mechanism; and a second inspection station, the tray-transfer mechanism operating to move at least one device from the first inspection station to a second inspection station.
5

A117. Some embodiments include the system of alpha-numbered paragraph A116 wherein the tray-transfer mechanism further includes an inverting mechanism inverts the first tray and the second tray so as to position the at least one device within the second tray so that another side of the at least one device can be inspected.
10

A118. Some embodiments include the system of alpha-numbered paragraph A116 wherein one side of the at least one device is inspected at the first inspection position and wherein another side of the at least one device is inspected at the second inspection position.
15

A119. Some embodiments include the system of alpha-numbered paragraph A117 further including: a third inspection station; and a fourth inspection station, the tray-transfer device moving the device between the first and third inspection stations, and between the second and fourth inspection stations.
20

A120. Some embodiments include the system of alpha-numbered paragraph A119 wherein the inverting mechanism is positioned between the third inspection station and the second inspection station.
25

A121. One embodiment of the invention includes a machine-vision system for inspecting a plurality of devices positioned within a plurality of device-carrying trays, the machine-vision system including: a first slide clamp adapted to hold a first tray and a second tray, the first slide clamp moving the first tray from a first inspection station to a second inspection station, and moving the second tray from the second inspection station to a flip station; and a second slide clamp adapted to hold a third tray and a fourth tray, the second slide clamp moving the third tray from the flip station to a third inspection station, and moving the fourth tray from the third inspection station to a fourth station.
25

5

A122. Some embodiments include the machine-vision system of alpha-numbered paragraph A121 wherein the first slide clamp has two openings therein, each opening sized to receive one of the first device-carrying tray, or the second device-carrying tray, the first slide clamp further including: a registration surface for registering the a surface of one of the first device-carrying tray, or the second device-carrying tray; and a clamp for clamping one of the first device-carrying tray, or the second device-carrying tray in a desired position, the clamp positioned to clamp one of the first device-carrying tray, or the second device-carrying tray with respect to the two openings in the first slide clamp.

10

A123. Some embodiments include the machine-vision system of alpha-numbered paragraph A121 further including a machine-vision inspection head for scanning the devices within one of the first device-carrying tray, or the second device-carrying tray at the first inspection station, the inspection head further including: a light source that propagates light to the device when positioned on the surface for inspecting the device; and an image detector that receives light from the device.

15

A124. Some embodiments include the machine-vision system of alpha-numbered paragraph A121 wherein the first tray and a second tray have a substantially rectangular footprint, and wherein the first slide clamp moves at least one of the first tray and the second tray in a direction substantially parallel to the short sides of the at least one of the first tray and the second tray.

20

A125. Some embodiments include the machine-vision system of alpha-numbered paragraph A124 further including a picker for picking devices which fail inspection from a tray.

A126. Some embodiments include the machine-vision system of alpha-numbered paragraph A125 further including a source of devices that have passed inspection, the picker substituting devices that have passed inspection for the devices that have failed inspection.

25

A127. Some embodiments include the machine-vision system of alpha-numbered paragraph A125 further including a source of devices that have passed inspection and have not passed inspection, the picker substituting devices that have passed inspection from the source for the devices that have failed inspection to produce a fourth tray filled with devices all of which have not passed inspection.

A128. Some embodiments include the machine-vision system of alpha-numbered paragraph A127 further including: a first location for the devices that have failed inspection; and a second location for devices that have not passed inspection.

A129. One embodiment of the invention includes a machine-vision system for inspecting 5 a tray populated with a plurality of devices, the machine-vision system including: a first inspection station having a first inspection surface; a compartment positioned adjacent the first inspection station, the compartment holding a plurality of trays; and an elevator for elevating at least one of the trays from the compartment to the first inspection surface.

A130. Some embodiments include the machine-vision system for inspecting a tray 10 populated with a plurality of devices of alpha-numbered paragraph A19 wherein the first inspection surface has an opening therein, the opening accommodating one of the plurality of trays.
b2

A131. Some embodiments include the machine-vision system for inspecting a tray 15 populated with a plurality of devices of alpha-numbered paragraph A129 wherein the first inspection surface has an opening therein, the opening accommodating one of the plurality of trays, the trays having a rectangular shape, the machine-vision system further including finger elements positioned near the opening, the finger elements engaging the long dimension side of the tray.

A132. Some embodiments include the machine-vision system for inspecting a tray 20 populated with a plurality of devices of alpha-numbered paragraph A129 wherein the first inspection surface has an opening therein, the opening accommodating one of the plurality of trays, the trays having a rectangular shape, the machine-vision system further including finger elements positioned near the opening, the finger elements engaging the short dimension side of the tray.

A133. Some embodiments include the machine-vision system for inspecting a tray 25 populated with a plurality of devices of alpha-numbered paragraph A128 further including a second inspection station having a second inspection surface; an elevator for moving at least one of the trays from the between a first position at the second inspection surface and a second position away from the second inspection surface.

5

A134. Some embodiments include the machine-vision system for inspecting a tray populated with a plurality of devices of alpha-numbered paragraph A129 wherein the compartment further includes: a door which folds from a closed position to an open position; a first guide rail positioned on the inner surface of the door; and a second guide rail positioned on the inner surface of the door, the first guide rail and the second guide rail spaced to receive at least one tray so that the tray can be placed between the first and second guide rails and guided into the compartment.

10

A135. One embodiment of the invention includes a machine-vision system for inspecting a tray populated with a plurality of devices, the machine-vision system including: an inspection station including an inspection surface; means for determining if at least one of the plurality of devices in a tray at the inspection station does not pass an inspection test; and a failed device station for holding trays which hold devices having devices which have passed inspection and devices which have not passed inspection at which trays are formed in which all of the plurality of devices do not pass inspection.

15

A136. Some embodiments include the machine-vision system for inspecting a tray populated with a plurality of devices of alpha-numbered paragraph A135 further including a first picker for moving at least one of the plurality of devices between the inspection station and the failed device station.

20

A137. Some embodiments include the machine-vision system for inspecting a tray populated with a plurality of devices of alpha-numbered paragraph A136 wherein the first picker for moving at least one of the plurality of devices between the inspection station and the failed device station accommodates differently spaced devices within trays.

25

A138. Some embodiments include the machine-vision system for inspecting a tray populated with a plurality of devices of alpha-numbered paragraph A136 further including a second picker for moving at least one of the plurality of devices between the inspection station and the failed device station.

A139. Some embodiments include the machine-vision system for inspecting a tray populated with a plurality of devices of alpha-numbered paragraph A138 wherein the first picker and the second picker for moving at least one of the plurality of devices between the inspection station and the failed device station accommodates differently spaced devices within trays.

A140. Some embodiments include the machine-vision system for inspecting a tray populated with a plurality of devices of alpha-numbered paragraph A135 further including a compartment near the failed device station for housing trays in which all of the plurality of devices do not pass inspection.

5 A141. One embodiment of the invention includes a machine-vision system for inspecting a rectangular tray populated with a plurality of devices, the machine-vision system including: an inspection station including an inspection surface; and means for holding the rectangular tray which engage the sides of the tray with the shorter dimension.

10 A142. Some embodiments include the machine-vision system for inspecting a tray populated with a plurality of devices of alpha-numbered paragraph A141 wherein means for holding the rectangular tray which engage the sides of the tray with the shorter dimension includes a set of pins which engage detents in the shorter side of the tray.

15 A143. Some embodiments include the machine-vision system for inspecting a tray populated with a plurality of devices of alpha-numbered paragraph A142 wherein the pins force the tray to a datum registration surface.

A144. Some embodiments include the machine-vision system for inspecting a tray populated with a plurality of devices of alpha-numbered paragraph A141 further including means for moving the rectangular tray in a direction substantially parallel to the shorter dimension of the rectangular tray.

20 A145. Some embodiments include the machine-vision system for inspecting a tray populated with a plurality of devices of alpha-numbered paragraph A144 further including means for inspecting the rectangular tray in a direction substantially parallel to the longer dimension of the rectangular tray.

25 A146. One embodiment of the invention includes a machine-vision system for inspecting a rectangular tray populated with a plurality of devices, the machine-vision system including: an inspection station including an inspection surface; a 3D inspection device; and a 2D inspection device.

A147. Some embodiments include the machine-vision system for inspecting a tray populated with a plurality of devices of alpha-numbered paragraph A146 wherein the 3D device and 2D device inspect the inspection surface synchronously.

5 A148. Some embodiments include the machine-vision system for inspecting a tray populated with a plurality of devices of alpha-numbered paragraph A147 wherein the inspection surface holds a first tray and a second tray.

A149. Some embodiments include the machine-vision system for inspecting a tray populated with a plurality of devices of alpha-numbered paragraph A146 wherein the 3D device and 2D device inspect the inspection surface asynchronously.

10 A150. Some embodiments include the machine-vision system for inspecting a tray populated with a plurality of devices of alpha-numbered paragraph A149 wherein the inspection surface holds a first tray and a second tray.

15 A151. One embodiment of the invention includes a method for acquiring physical information associated with a plurality of devices placed in a tray, the method including: loading at least one tray into a compartment adjacent a first inspection station; and elevating the tray to the first inspection surface.

20 A152. Some embodiments include the method of alpha-numbered paragraph A151 further including: inspecting a first side of at least one of a plurality of devices within a first tray; moving the first tray to a flip station; and inspecting a second side of at least one of a plurality of devices within the second tray.

A153. Some embodiments include the method of alpha-numbered paragraph A152, further including removing at least one of a plurality of devices from the second tray if the at least one of a plurality of devices fails inspection.

25 A154. Some embodiments include the method of alpha-numbered paragraph A152 further including replacing at least one of a plurality of devices in the second tray that failed inspection with a device that passed inspection.

A155. One embodiment of the invention includes a machine-vision system for inspecting a device, the machine-vision system including: an initial inspection station, the initial inspection station including: a surface for inspecting the device, the surface having an opening therein; and an

elevator that places the device within the opening in the surface and presents the device to the surface for inspecting the device.

A156. Some embodiments include the system of alpha-numbered paragraph A155 wherein the elevator further includes a compartment for holding a plurality of devices, the elevator placing at least one of the plurality of devices within the opening in the surface and presenting the device to the surface for inspecting the device.

A157. Some embodiments include the system of alpha-numbered paragraph A156, the initial inspection station further including: a light source that propagates light to the device when the device is positioned on the surface for inspecting the device; and an image detector that receives light from the device.

A158. Some embodiments include the system of alpha-numbered paragraph A156 wherein the elevator and the compartment for holding a plurality of devices are aligned with the opening.

A159. Some embodiments include the system of alpha-numbered paragraph A155 wherein the elevator is aligned with the opening.

A160. Some embodiments include the system of alpha-numbered paragraph A155 further including a tray-transfer device that operates to move the device from the initial inspection station to a second inspection station.

A161. Some embodiments include the system of alpha-numbered paragraph A160 further including an inverting mechanism that operates to invert the device so that the another side of the device can be inspected.

A162. Some embodiments include the system of alpha-numbered paragraph A161 wherein one side of the device is inspected in the first inspection position and wherein another side of the device is inspected in the second inspection position.

A161. Some embodiments include the system of alpha-numbered paragraph A160 further including a third inspection station and a fourth inspection station, the tray-transfer device moving the device between the first and third inspection stations, and between the second and fourth inspection stations.

A162. Some embodiments include the system of alpha-numbered paragraph A9 wherein the inverting mechanism is positioned between the third inspection position and the second inspection position.

5 A163. One embodiment of the invention includes a machine-vision system for inspecting a plurality of devices positioned within a plurality of device-carrying trays, the machine-vision system including:

a first slide clamp for holding at least two trays, the slide clamp moving a first tray from a first inspection station to a second inspection station, and moving a second tray from the second inspection station to a flip station; and

10 a second slide clamp for holding at least two trays, the slide clamp moving a third tray from the flip station to a third inspection station, and moving a fourth tray from the third inspection station to a fourth station.

15 A164. Some embodiments include the machine-vision system of alpha-numbered paragraph A163 wherein the first slide clamp has two openings therein, each opening sized to receive a device-carrying tray, the first slide clamp further including:

a registration surface for registering the a surface of the device-carrying tray; and

a clamp for clamping the tray in a desired position, the clamp positioned to clamp the tray with respect to the opening in the slide clamp.

20 A165. Some embodiments include the machine-vision system of alpha-numbered paragraph A163 further including a machine-vision inspection head for scanning the devices within the trays at the first inspection station, the inspection head further including: a light source that propagates light to the device when positioned on the surface for inspecting the device; and an image detector that receives light from the device.

25 A166. Some embodiments include the machine-vision system of alpha-numbered paragraph A163 wherein the flip station further includes a mechanism for flipping the devices carried in a tray, the mechanism further including: a first jaw having a surface for receiving a tray; a second jaw having a surface for receiving a tray; a mover for moving the first jaw, a first tray having a plurality of devices, a second tray, and the second jaw into engagement with each other,

the first tray associated with the first jaw and the second tray associated with the second jaw; and a rotator for rotating the first and second jaw.

A167. Some embodiments include the machine-vision system of alpha-numbered paragraph A166 wherein the mover moves the first jaw in a direction substantially perpendicular to the surface for receiving a tray associated with the first jaw.

A168. Some embodiments include the machine-vision system of alpha-numbered paragraph A166 wherein the mover moves the first jaw and the second jaw in a direction substantially perpendicular to the surface for receiving a tray associated with the first jaw.

A169. Some embodiments include the machine-vision system of alpha-numbered paragraph A166 further including a picker for picking devices which fail inspection from a tray.

A170. Some embodiments include the machine-vision system of alpha-numbered paragraph A168 further including a source of devices that have passed inspection, the picker substituting devices that have passed inspection for the devices that have failed inspection.

A171. One embodiment of the invention includes a machine-vision system for inspecting a plurality of devices and for transferring the plurality of devices from being positioned in a first tray to being positioned in a second tray, the machine-vision system including: a first jaw having a surface for receiving the first tray; a second jaw having a surface for receiving the second tray; a mover for moving the first jaw, the first tray having a plurality of devices, the second tray, and the second jaw into engagement with each other, the first tray associated with the first jaw and the second tray associated with the second jaw; and a rotator for rotating the first and second jaw.

A172. Some embodiments include the machine-vision system of alpha-numbered paragraph A171 further including: a first conveyer for moving the first tray having a plurality of devices therein to the surface of the first jaw; and a second conveyer for moving the second tray having a plurality of devices therein from surface of the second jaw.

A173. Some embodiments include the machine-vision system of alpha-numbered paragraph A172 wherein one of the first or second jaws is capable of holding, in any position, a tray devoid of devices.

A174. One embodiment of the invention includes a machine-vision system for inspecting a tray populated with a plurality of devices, the machine-vision system including: a first inspection

station having a first inspection surface; a compartment positioned adjacent the first inspection station, the compartment holding a plurality of trays; and an elevator for elevating at least one of the trays from the compartment to the first inspection surface.

A175. Some embodiments include the machine-vision system for inspecting a tray

5 populated with a plurality of devices of alpha-numbered paragraph A174 wherein the first inspection surface has an opening therein, the opening accommodating one of the plurality of trays.

A176. Some embodiments include the machine-vision system for inspecting a tray

10 populated with a plurality of devices of alpha-numbered paragraph A174 wherein the first inspection surface has an opening therein, the opening accommodating one of the plurality of trays, the trays having a rectangular shape, the machine-vision system further including finger elements positioned near the opening, the finger elements engaging the long dimension side of the tray.

A177. Some embodiments include the machine-vision system for inspecting a tray

15 populated with a plurality of devices of alpha-numbered paragraph A174 wherein the first inspection surface has an opening therein, the opening accommodating one of the plurality of trays, the trays having a rectangular shape, the machine-vision system further including finger elements positioned near the opening, the finger elements engaging the short dimension side of the tray.

20 A178. Some embodiments include the machine-vision system for inspecting a tray

populated with a plurality of devices of alpha-numbered paragraph A174 further including a second inspection station having a second inspection surface; an elevator for moving at least one of the trays from the between a first position at the second inspection surface and a second position away from the second inspection surface.

25 A179. Some embodiments include the machine-vision system for inspecting a tray

populated with a plurality of devices of alpha-numbered paragraph A22 wherein the compartment further includes: a door which folds from a closed position to an open position; a first guide rail positioned on the inner surface of the door; a second guide rail positioned on the inner surface of

the door, the first guide rail and the second guide rail spaced to receive at least one tray so that the tray can be placed between the first and second guide rails and guided into the compartment.

A180. One embodiment of the invention includes a method for acquiring physical information associated with a plurality of devices placed in a tray, the method including loading at least one tray into a compartment adjacent a first inspection station; and elevating the tray to the first inspection surface.

A181. Some embodiments include the method of alpha-numbered paragraph A180 further including inspecting a first side of a device within a first tray; moving the tray to a flip station; flipping the devices and placing the flipped devices within a second tray; and inspecting a second side of the device within the second tray.

A182. Some embodiments include the method of alpha-numbered paragraph A181, further including removing a device from the second tray if it fails inspection.

A183. Some embodiments include the method of alpha-numbered paragraph A181, further including replacing a device in the second tray that failed inspection with a device that passed inspection.

A184. One embodiment of the invention includes a machine-vision system for inspecting a plurality of devices and for inverting the plurality of devices from being positioned in a first tray, the machine-vision system including: a first jaw having a surface for receiving the first tray; a second jaw having a surface; a mover for moving the first jaw, the first tray having a plurality of devices, and the second jaw into engagement with each other, the first tray associated with the first jaw; and a rotator for rotating the first and second jaw.

A185. Some embodiments include the machine-vision system of alpha-numbered paragraph A184 further including: a first conveyer for moving the first tray having a plurality of devices therein to the first jaw; and a second conveyer for moving the first tray having a plurality of devices therein from the first jaw.

A186. Some embodiments include the machine-vision system of alpha-numbered paragraph A184 wherein the first jaw is capable of holding, in any position, a tray devoid of devices.

A187. Some embodiments include the machine-vision system of alpha-numbered paragraph A184 further including: a slider for transferring the inverted devices from the second jaw into the first tray.

A188. One embodiment of the invention includes a machine-vision system for inspecting at least one device, the machine-vision system including: a first inspection station, wherein the first inspection station includes a surface for inspecting at least one device, the surface having an opening therein; an inspection device positioned on one side of the inspection surface; and an elevator that places at least one device within the opening in the surface from another side of the inspection surface opposite the one side of the inspection surface, the elevator presenting at least one device to the surface for inspecting at least one device.

A189. Some embodiments include the system of alpha-numbered paragraph A188 wherein the elevator further includes a compartment for holding at least one device, the elevator placing at least one device within the opening in the surface and presenting the device to the surface for inspecting the device.

A190. Some embodiments include the system of alpha-numbered paragraph A189, the first inspection station further including a light source that propagates light to the device when the device is positioned on the surface for inspecting the device; and an image detector that receives light from the device.

A191. Some embodiments include the system of alpha-numbered paragraph A189 wherein the elevator and the compartment for holding a at least one device is aligned with the opening.

A192. Some embodiments include the system of alpha-numbered paragraph A188 wherein the elevator is aligned with the opening.

A193. Some embodiments include the system of alpha-numbered paragraph A188 further including a first tray for holding at least one device; a first tray for holding at least one device; a tray-transfer mechanism; and a second inspection station, the tray-transfer mechanism operating to move at least one device from the first inspection station to a second inspection station.

A194. Some embodiments include the system of alpha-numbered paragraph A193 wherein the tray-transfer mechanism further includes an inverting mechanism inverts the first tray and the

second tray so as to position the at least one device within the second tray so that another side of the at least one device can be inspected.

A195. Some embodiments include the system of alpha-numbered paragraph A193 wherein one side of the at least one device is inspected at the first inspection position and wherein another 5 side of the at least one device is inspected at the second inspection position.

A196. Some embodiments include the system of alpha-numbered paragraph A194 further including a third inspection station; and a fourth inspection station, the tray-transfer device moving the device between the first and third inspection stations, and between the second and fourth inspection stations.

10 *63* A197. Some embodiments include the system of alpha-numbered paragraph A195 wherein the inverting mechanism is positioned between the third inspection station and the second inspection station.

15 A198. One embodiment of the invention includes a machine-vision system for inspecting a plurality of devices positioned within a plurality of device-carrying trays, the machine-vision system including: a first slide clamp adapted to hold a first tray and a second tray, the first slide clamp moving the first tray from a first inspection station to a second inspection station, and moving the second tray from the second inspection station to a flip station; and a second slide clamp adapted to hold a third tray and a fourth tray, the second slide clamp moving the third tray from the flip station to a third inspection station, and moving the fourth tray from the third 20 inspection station to a fourth station.

25 A199. Some embodiments include the machine-vision system of alpha-numbered paragraph A198 wherein the first slide clamp has two openings therein, each opening sized to receive one of the first device-carrying tray, or the second device-carrying tray, the first slide clamp further including: a registration surface for registering the a surface of one of the first device-carrying tray, or the second device-carrying tray; and a clamp for clamping one of the first device-carrying tray, or the second device-carrying tray in a desired position, the clamp positioned to clamp one of the first device-carrying tray, or the second device-carrying tray with respect to the two openings in the first slide clamp.

A200. Some embodiments include the machine-vision system of alpha-numbered paragraph A198 further including a machine-vision inspection head for scanning the devices within one of the first device-carrying tray, or the second device-carrying tray at the first inspection station, the inspection head further including: a light source that propagates light to the device when positioned on the surface for inspecting the device; and an image detector that receives light from the device.

5

100

28

A201. Some embodiments include the machine-vision system of alpha-numbered paragraph A198 wherein the first tray and a second tray have a substantially rectangular footprint, and wherein the first slide clamp moves at least one of the first tray and the second tray in a direction substantially parallel to the short sides of the at least one of the first tray and the second tray.

105

A202. Some embodiments include the machine-vision system of alpha-numbered paragraph A201 further including a picker for picking devices which fail inspection from a tray.

110

A203. Some embodiments include the machine-vision system of alpha-numbered paragraph A202 further including a source of devices that have passed inspection, the picker substituting devices that have passed inspection for the devices that have failed inspection.

115

20

A204. Some embodiments include the machine-vision system of alpha-numbered paragraph A202 further including a source of devices that have passed inspection and have not passed inspection, the picker substituting devices that have passed inspection from the source for the devices that have failed inspection to produce a fourth tray filled with devices all of which have not passed inspection.

A205. Some embodiments include the machine-vision system of alpha-numbered paragraph A204 further including: a first location for the devices that have failed inspection; and a second location for devices that have not passed inspection.

25

A206. One embodiment of the invention includes a machine-vision system for inspecting a tray populated with a plurality of devices, the machine-vision system including: a first inspection station having a first inspection surface; a compartment positioned adjacent the first inspection station, the compartment holding a plurality of trays; and an elevator for elevating at least one of the trays from the compartment to the first inspection surface.

A207. Some embodiments include the machine-vision system for inspecting a tray populated with a plurality of devices of alpha-numbered paragraph A206 wherein the first inspection surface has an opening therein, the opening accommodating one of the plurality of trays.

5 A208. Some embodiments include the machine-vision system for inspecting a tray populated with a plurality of devices of alpha-numbered paragraph A206 wherein the first inspection surface has an opening therein, the opening accommodating one of the plurality of trays, the trays having a rectangular shape, the machine-vision system further including finger elements positioned near the opening, the finger elements engaging the long dimension side of the tray.

10 A209. Some embodiments include the machine-vision system for inspecting a tray populated with a plurality of devices of alpha-numbered paragraph A206 wherein the first inspection surface has an opening therein, the opening accommodating one of the plurality of trays, the trays having a rectangular shape, the machine-vision system further including finger elements positioned near the opening, the finger elements engaging the short dimension side of the tray.

15 A210. Some embodiments include the machine-vision system for inspecting a tray populated with a plurality of devices of alpha-numbered paragraph A208 further including a second inspection station having a second inspection surface; an elevator for moving at least one of the trays from the between a first position at the second inspection surface and a second position away from the second inspection surface.

20 A211. Some embodiments include the machine-vision system for inspecting a tray populated with a plurality of devices of alpha-numbered paragraph A19 wherein the compartment further includes: a door which folds from a closed position to an open position; a first guide rail positioned on the inner surface of the door; and a second guide rail positioned on the inner surface of the door, the first guide rail and the second guide rail spaced to receive at least one tray so that the tray can be placed between the first and second guide rails and guided into the compartment.

25 A212. One embodiment of the invention includes a machine-vision system for inspecting a tray populated with a plurality of devices, the machine-vision system including: an inspection

station including an inspection surface; means for determining if at least one of the plurality of devices in a tray at the inspection station does not pass an inspection test; and a failed device station for holding trays which hold devices having devices which have passed inspection and devices which have not passed inspection at which trays are formed in which all of the plurality of devices do not pass inspection.

A213. Some embodiments include the machine-vision system for inspecting a tray populated with a plurality of devices of alpha-numbered paragraph A212 further including a first picker for moving at least one of the plurality of devices between the inspection station and the failed device station.

103
b2
A214. Some embodiments include the machine-vision system for inspecting a tray populated with a plurality of devices of alpha-numbered paragraph A213 wherein the first picker for moving at least one of the plurality of devices between the inspection station and the failed device station accommodates differently spaced devices within trays.

15
A215. Some embodiments include the machine-vision system for inspecting a tray populated with a plurality of devices of alpha-numbered paragraph A212 further including a second picker for moving at least one of the plurality of devices between the inspection station and the failed device station.

20
A216. Some embodiments include the machine-vision system for inspecting a tray populated with a plurality of devices of alpha-numbered paragraph A215 wherein the first picker and the second picker for moving at least one of the plurality of devices between the inspection station and the failed device station accommodates differently spaced devices within trays.

25
A217. Some embodiments include the machine-vision system for inspecting a tray populated with a plurality of devices of alpha-numbered paragraph A215 further including a compartment near the failed device station for housing trays in which all of the plurality of devices do not pass inspection.

A218. One embodiment of the invention includes a machine-vision system for inspecting a rectangular tray populated with a plurality of devices, the machine-vision system including: an inspection station including an inspection surface; and a holder mechanism that holds the rectangular tray and engages the sides of the tray with the shorter dimension.

A219. Some embodiments include the machine-vision system for inspecting a tray populated with a plurality of devices of alpha-numbered paragraph A218 wherein means for holding the rectangular tray which engage the sides of the tray with the shorter dimension includes a set of pins which engage detents in the shorter side of the tray.

5 A220. Some embodiments include the machine-vision system for inspecting a tray populated with a plurality of devices of alpha-numbered paragraph A219 wherein the pins force the tray to a datum registration surface.

10 A221. Some embodiments include the machine-vision system for inspecting a tray populated with a plurality of devices of alpha-numbered paragraph A218 further including means for moving the rectangular tray in a direction substantially parallel to the shorter dimension of the rectangular tray.

15 A222. Some embodiments include the machine-vision system for inspecting a tray populated with a plurality of devices of alpha-numbered paragraph A34 further including means for inspecting the rectangular tray in a direction substantially parallel to the longer dimension of the rectangular tray.

A223. One embodiment of the invention includes a machine-vision system for inspecting a rectangular tray populated with a plurality of devices, the machine-vision system including: an inspection station including an inspection surface; a 3D inspection device; and a 2D inspection device.

20 A224. Some embodiments include the machine-vision system for inspecting a tray populated with a plurality of devices of alpha-numbered paragraph A223 wherein the 3D device and 2D device inspect the inspection surface synchronously.

25 A225. Some embodiments include the machine-vision system for inspecting a tray populated with a plurality of devices of alpha-numbered paragraph A224 wherein the inspection surface holds a first tray and a second tray.

A226. Some embodiments include the machine-vision system for inspecting a tray populated with a plurality of devices of alpha-numbered paragraph A225 wherein the 3D device and 2D device inspect the inspection surface asynchronously.

A227. Some embodiments include the machine-vision system for inspecting a tray populated with a plurality of devices of alpha-numbered paragraph A226 wherein the inspection surface holds a first tray and a second tray.

A228. One embodiment of the invention includes a method for acquiring physical information associated with a plurality of devices placed in a tray, the method including: loading 5 at least one tray into a compartment adjacent a first inspection station; and elevating the tray to the first inspection surface.

A229. Some embodiments include the method of alpha-numbered paragraph A228 further including: inspecting a first side of at least one of a plurality of devices within a first tray; moving the first tray to a flip station; and inspecting a second side of at least one of a plurality of devices 10 within the second tray.

A230. Some embodiments include the method of alpha-numbered paragraph A229, further including removing at least one of a plurality of devices from the second tray if the at least one of a plurality of devices fails inspection.

A231. Some embodiments include the method of alpha-numbered paragraph A229, further including replacing at least one of a plurality of devices in the second tray that failed inspection 15 with a device that passed inspection.

A232. One embodiment of the invention includes a machine-vision system for inspecting a device, the machine-vision system including: a light source that propagates light to the device; a pattern that generates a moire pattern; an image detector that receives light from the device; a 20 light-sensor assembly that receives a portion of the light from the light source and that produces an output responsive to the intensity of the light received at the light-sensor assembly; and a computer and comparison system for manipulating a plurality of outputs from the light-sensor.

A233. Some embodiments include the system of alpha-numbered paragraph A232 wherein 25 the computer and comparison system for manipulating a plurality of outputs from the light-sensor is of sufficient granularity to allow the data obtained to be manipulated to detect various features.

A234. Some embodiments include the system of alpha-numbered paragraph A233 wherein the data can be used to determine coplanarity of features on a device.

A235. Some embodiments include the system of alpha-numbered paragraph A233 wherein the data can be used to determine warpage of a substrate on a device.

A236. Some embodiments include the system of alpha-numbered paragraph A233 wherein the data can be used to locate random features on a device.

5 A237. Some embodiments include the system of alpha-numbered paragraph A233 wherein the data can be used to locate features on a device that is randomly situated.

A238. Some embodiments include the system of alpha-numbered paragraph A233 further including: a mover that moves the light source and the device with respect to one another, and a detector that detects the velocity of the light source with respect to the device.

10 A239. Some embodiments include the system of alpha-numbered paragraph A238 further including a linear position encoder for specifying the times at which line scans are taken.

A240. Some embodiments include the system of alpha-numbered paragraph A239 wherein the computer and comparison system measures the distance over which a portion of the device moves over one or more line scans and determines the velocity of the device.

15 A241. Some embodiments include the system of alpha-numbered paragraph A233 wherein the pattern for generating the moire pattern includes a projection pattern element having a sine-wave element at the light source.

20 A242. Some embodiments include the system of alpha-numbered paragraph A233 wherein the pattern for generating the moire pattern includes: a first striped pattern; and a second striped pattern, the first striped pattern parallel to and offset from the plane of the second striped pattern, the first striped pattern and the second striped pattern positioned between the light source and the device.

25 A243. One embodiment of the invention includes a method for acquiring physical information associated with a device using a machine-vision station having a light source and having an image detector, the method including: projecting light from the light source to the device; producing a moire pattern at the device; gathering data with sufficient granularity such that a device can be randomly placed on an inspection surface for gathering data; and manipulating the gathered data with a computer and comparator to identify various features of the device.

A244. One embodiment of the invention includes a method for acquiring physical information associated with of a device using a machine-vision station having a light source and having an image detector, the method including: projecting light from the light source to the device; producing a moire pattern at the device; gathering data with sufficient granularity such that data can be gathered on randomly placed features on the device positioned on an inspection surface; and manipulating the gathered data with a computer and comparator to identify various features of the device.

A245. Some embodiments include the method of alpha-numbered paragraph A244 wherein manipulating the data can be used to determine coplanarity of a plurality of points on the device.

A246. Some embodiments include the method of alpha-numbered paragraph A244 wherein manipulating the data can be used to determine position of a fiducial mark on a device at two separate times, the method further including calculating the velocity of the device with respect to the light source using the measured position and time.

A247. Some embodiments include the method of alpha-numbered paragraph A244 wherein manipulating the data can be used to determine position of a feature on a device at a first scan time and at a second scan time, the method further including: encoding the position of the feature at the first scan time; encoding the position of the feature at the second scan time; and calculating the velocity of the device with respect to the light source using the measured position and time.

A248. One embodiment of the invention includes a machine-vision head for inspecting a device, including: (a) a pattern projector to provide projected illumination, the pattern projector including: a light source, the light source providing light propagating generally along a projection optical axis, the projection optical axis intersecting the device when the machine-vision head is in operation; a projection pattern element that spatially modulates the light and located so that the projection optical axis intersects the projection pattern element; and a pattern projector imaging element located so that the projection optical axis intersects the pattern projector imaging element; and (b) an imager, the imager having a reception optical axis, the reception optical axis intersecting the device when the machine-vision head is in operation, the imager maintained in a

substantially fixed relationship to the pattern projector, the imager including at least three lines of semiconductor imaging pixels; wherein a major plane of the projection pattern element, a major plane of the pattern projector imaging element, and a third plane are tilted one to another to substantially satisfy Schiempflog's condition that these three planes intersect at substantially one line.

A249. Some embodiments include the machine-vision head of alpha-numbered paragraph A248, wherein the third plane contains the reception optical axis or lies substantially parallel to the reception optical axis.

A250. Some embodiments include the machine-vision head of alpha-numbered paragraph A248, wherein the projection pattern element is maintained in a substantially fixed relationship to both the pattern projector and the imager when the machine-vision head is in operation.

A251. Some embodiments include the machine-vision head of alpha-numbered paragraph A2481, wherein the pattern projection element includes a pattern whose intensity along a line segment varies as a sine wave.

A252. One embodiment of the invention includes a machine-vision system for inspecting a device, including: (1) an inspection station, the inspection station including: (a) a pattern projector, the pattern projector including a light source, the light source providing light propagating generally along a projection optical axis, the projection optical axis intersecting the device when the inspection station is in operation, a projection pattern element that spatially modulates the light and located so that the projection optical axis intersects the projection pattern element, and a pattern projector imaging element located so that the projection optical axis intersects the pattern projector imaging element; and (b) an imager, the imager having a reception optical axis, the reception optical axis intersecting the device when the inspection station is in operation, the imager maintained in a substantially fixed relationship to the pattern projector, the imager including at least three lines of semiconductor imaging pixels; wherein a major plane of the projection pattern element, a major plane of the pattern projector imaging element, and a third plane are tilted one to another to substantially satisfy Schiempflog's condition that these three planes intersect at substantially one line, and wherein the imager provides acquired three-dimensional device geometry data regarding the device; (2) a comparator coupled to the imager,

the comparator comparing one or more characteristics of the acquired three-dimensional device geometry data with an intended predetermined geometry to produce a signal indicative of any device geometry departure of an actual device geometry from the intended predetermined geometry.

5 A253. Some embodiments include the system of alpha-numbered paragraph A252, wherein the third plane contains the reception optical axis or lies substantially parallel to the reception optical axis.

A254. Some embodiments include the system of alpha-numbered paragraph A252, wherein the projection pattern element is maintained in a substantially fixed relationship to both the pattern projector and the imager when the inspection station is in operation.

10 A255. Some embodiments include the system of alpha-numbered paragraph A252, wherein the pattern projection element includes a pattern whose intensity along a line segment varies as a sine wave.

15 A256. One embodiment of the invention includes a method for high-speed scanning phase measurement of a device at a machine-vision station to acquire physical information associated with the device, the method including: projecting light generally along a projection optical axis, the projection optical axis intersecting the device; spatially modulating the light with a projection pattern located so that the projection optical axis intersects the projection pattern; and imaging the spatially modulated light onto the device; and receiving light reflected from the device along a
20 reception optical axis with an imager maintained in a substantially fixed relationship to the projected spatially modulated light, the imager including at least three lines of semiconductor imaging pixels, the reception optical axis intersecting the device; generating data representing acquired three-dimensional device geometry data regarding the device from signals from the imager; wherein spatially modulating and imaging the spatially modulated light provide a light
25 pattern that is focused along a region of a third plane, wherein one of the at least three lines of semiconductor imaging pixels lies substantially within the third plane, and wherein a plane associated with the spatially modulating and a plane associated with the imaging the spatially modulated light, and a third plane are tilted one to another to substantially satisfy Schiempfug's

condition that these three planes intersect at substantially one line, and wherein the reception optical axis lies within the third plane or is substantially parallel to the third plane.

A257. Some embodiments include the method of alpha-numbered paragraph A256, wherein spatially modulating includes modulating with a pattern whose intensity along a line segment varies as a sine wave.

A258. Some embodiments include the method of alpha-numbered paragraph A256, further including comparing the acquired three-dimensional device geometry data with an intended predetermined geometry to produce a signal indicative of any device geometry departure of an actual device geometry from the intended predetermined geometry; and controlling a manufacturing operation of the device to compensate for the device-geometry departure.

A259. One embodiment of the invention includes a machine-vision head for inspecting a device, including: (a) a pattern projector, the pattern projector including: a light source, the light source providing light propagating generally along a projection optical axis, the projection optical axis intersecting the device when the machine-vision head is in operation; a projection pattern element that spatially modulates the light and located so that the projection optical axis intersects the projection pattern element; and a pattern projector imaging element located so that the projection optical axis intersects the pattern projector imaging element; and (b) an imager, the imager having a reception optical axis, the reception optical axis intersecting the device when the machine-vision head is in operation, the imager including: at least three lines of semiconductor imaging pixels; and a telecentric imaging element that focusses an image of the device onto the at least three lines of semiconductor imaging pixels.

A260. One embodiment of the invention includes a method for high speed, scanning phase measurement of a device at a machine-vision station to acquire physical information associated with the device, the method including: projecting light generally along a projection optical axis, the projection optical axis intersecting the device when the machine-vision head is in operation; spatially modulating the light with a projection pattern located so that the projection optical axis intersects the projection pattern; imaging the spatially modulated light onto the device; receiving light reflected from the device into an imager, the imager having a reception optical axis, the reception optical axis intersecting the device, the imager maintained in a substantially fixed

relationship to the pattern projector, the imager including three lines of semiconductor imaging pixels, wherein receiving includes telecentrically focussing an image of the device onto the at least three lines of semiconductor imaging pixels; and generating data representing acquired three-dimensional device geometry data regarding the device.

5 A261. Some embodiments include the method of alpha-numbered paragraph A260, further including: comparing the acquired three-dimensional device geometry data with an intended predetermined geometry to produce a signal indicative of any device geometry departure of an actual device geometry from the intended predetermined geometry; and controlling a manufacturing operation of the device to compensate for the device geometry departure, and
10 wherein spatially modulating includes modulating with a projection pattern whose intensity along a line segment varies as a sine wave.

A262. Some embodiments include the method of alpha-numbered paragraph A260, further including: blocking an infra-red component of the light.

15 A263. One embodiment of the invention includes a machine-vision head for inspecting a device, including: (a) a pattern projector, the pattern projector including a light source, the light source providing light propagating generally along a projection optical axis, the projection optical axis intersecting the device when the machine-vision head is in operation, a projection pattern element that spatially modulates the light and located so that the projection optical axis intersects the projection pattern element, and a telecentric pattern projector imaging element that focusses an
20 image of projection pattern element onto the device when the machine-vision head is in operation, and located so that the projection optical axis intersects the pattern projector imaging element; and (b) an imager, the imager having a reception optical axis, the reception optical axis intersecting the device when the machine-vision head is in operation.

25 A264. Some embodiments include the machine-vision head of alpha-numbered paragraph A263, wherein the imager further includes at least three lines of semiconductor imaging pixels, and wherein a major plane of the projection pattern element, a major plane of the pattern projector imaging element, and a third plane are tilted one to another to substantially satisfy Schiempfug's condition that these three planes intersect at substantially one line.

A265. One embodiment of the invention includes a machine-vision system for inspecting a device, the device having a first side and a second side, the machine-vision system including: a first inspection station for inspecting a first side of a device; a second inspection station for inspecting a second side of a device; and a tray-transfer device that operates to move the device from the first inspection station to the second inspection station, the tray-transfer device further including an inverting mechanism that operates to invert the device so that the first second side of the device can be inspected at the first inspection station and the second side of the device can be inspected at the second inspection station.

A266. Some embodiments include the system of alpha-numbered paragraph A265 wherein the inverting mechanism is positioned between the first inspection position and the second inspection position.

A267. Some embodiments include the machine-vision system of alpha-numbered paragraph A265 wherein the inverting mechanism further includes a mechanism for flipping the devices carried in a tray, the mechanism further including: a first jaw having a surface for receiving a first tray; a second jaw having a surface for receiving a second tray; a mover for moving the first jaw, the first tray having a plurality of devices, the second tray, and the second jaw into engagement with each other, the first tray associated with the first jaw and the second tray associated with the second jaw; and a rotator for rotating the first and second jaw.

A268. Some embodiments include the machine-vision system of alpha-numbered paragraph A267 wherein the mover moves the first jaw in a direction substantially perpendicular to the surface for receiving a tray associated with the first jaw.

A269. Some embodiments include the machine-vision system of alpha-numbered paragraph A267 wherein the mover moves the first jaw and the second jaw in a direction substantially perpendicular to the surface for receiving a tray associated with the first jaw.

A270. Some embodiments include the machine-vision system of alpha-numbered paragraph A267 wherein the inverting mechanism moves the plurality of devices to the second tray such that the second sides of a plurality of devices are presented for inspection.

A271. Some embodiments include the machine-vision system of alpha-numbered paragraph A267 wherein the rotator of the inverting mechanism moves the plurality of devices to the second tray such that the second sides of a plurality of devices are presented for inspection.

5 A272. Some embodiments include the machine-vision system of alpha-numbered paragraph A271 wherein the mover of the inverting mechanism is adapted to place the plurality of devices in the second tray at the second inspection station.

A273. Some embodiments include the machine-vision system of alpha-numbered paragraph A272 wherein the tray transfer device includes means for moving the second inspection station with respect to the inverting mechanism.

10 A274. Some embodiments include the machine-vision system of alpha-numbered paragraph A273 further including a picker for picking devices which fail inspection from the second tray.

15 A275. One embodiment of the invention includes a machine-vision system for inspecting a plurality of devices positioned within a plurality of device-carrying trays, the machine-vision system including: a first tray adapted to carry a plurality of devices; a second tray adapted to carry a plurality of devices; a flip station for flipping the plurality of devices carried in a first tray from a first inspection position in the first tray to a second inspection position in the second tray.

20 A276. Some embodiments include the machine-vision system of alpha-numbered paragraph A275 wherein the flip station further includes: a first jaw having a surface for receiving a first tray; a second jaw having a surface for receiving a tray; a mover for moving the first jaw, a first tray having a plurality of devices, a second tray, and the second jaw into engagement with each other, the first tray associated with the first jaw and the second tray associated with the second jaw; and a rotator for rotating the first and second jaw.

25 A277. Some embodiments include the machine-vision system of alpha-numbered paragraph A276 further including:

a first slide clamp for holding at least the first tray, the first slide clamp moving the first tray from a first inspection station to a flip station; and a second slide clamp for holding at least the second tray, the second slide clamp moving the second tray from the flip station to the second inspection station.

A278. Some embodiments include the machine-vision system of alpha-numbered paragraph A275 wherein the flip station further includes a mechanism for flipping the devices carried in a tray, the mechanism further including means for limiting the motion of the rotator.

5 A279. Some embodiments include the machine-vision system of alpha-numbered paragraph A276 wherein the mover moves the first jaw in a direction substantially perpendicular to the surface for receiving a tray associated with the first jaw.

A280. Some embodiments include the machine-vision system of alpha-numbered paragraph A276 wherein the mover moves the first jaw and the second jaw in a direction substantially perpendicular to the surface for receiving a tray associated with the first jaw.

10 A281. One embodiment of the invention includes a flipping mechanism for transferring a plurality of devices from a position in a first tray to a position in a second tray, the flipping mechanism including: a first jaw having a surface adapted to receive the first tray; a second jaw having a surface adapted to receive the second tray; a mover for moving the first jaw, the first tray, the second tray, and the second jaw into engagement with each other, the first tray associated with the first jaw and the second tray associated with the second jaw; and a rotator for rotating the first and second jaw.

15 A282. Some embodiments include the machine-vision system of alpha-numbered paragraph A281 wherein the mover can be controlled to remove the first tray from a first inspection surface.

20 A283. Some embodiments include the machine-vision system of alpha-numbered paragraph A281 wherein the mover can be controlled to place the second tray at a second inspection surface.

25 A284. One embodiment of the invention includes a method for acquiring physical information associated with a plurality of devices placed in a tray, the method including: inspecting a first side of a device within a first tray; removing the first tray from a first surface and placing the first tray at a flip station; moving a second tray to a position near the first tray; flipping the first tray and second tray to move the device from the first tray to the second tray and place the device in the second tray so that a second side of the device is presented in the second tray; and inspecting a second side of the device within the second tray.

A285. Some embodiments include the method of alpha-numbered paragraph A284, further including moving the second tray to a second inspection surface.

A286. One embodiment of the invention includes a machine-vision system for inspecting a plurality of devices and for inverting the plurality of devices from being positioned in a first tray, the machine-vision system including: a first jaw having a surface for receiving the first tray; a second jaw having a surface; a mover for moving the first jaw, the first tray having a plurality of devices, and the second jaw into engagement with each other, the first tray associated with the first jaw; and a rotator for rotating the first and second jaw.

A287. Some embodiments include the machine-vision system of alpha-numbered paragraph A286 further including: a first conveyer for moving the first tray having a plurality of devices therein to the first jaw; and a second conveyer for moving the first tray having a plurality of devices therein from the first jaw.

A288. Some embodiments include the machine-vision system of alpha-numbered paragraph A286 wherein the first jaw is capable of holding, in any position, a tray devoid of devices.

A289. Some embodiments include the machine-vision system of alpha-numbered paragraph A286 further including: a slider for transferring the inverted devices from the second jaw into the first tray.--

In the Claims

20 Please cancel claims 1-289 without prejudice, and add the following claims 290-326:

290. [New] A machine-vision head for measuring a three-dimensional geometry of a device having a surface to be measured, comprising:

a projector, the projector including:

a first light source having a projection optical axis that intersects the device;

25 a projection-imaging element positioned along the projection optical axis and spaced from the first light source; and