(Quelques) solutions exactes des équations de Navier-Stokes

Schéma	Hypothèses	Solution	Nom de l'écoulement
$\begin{array}{c c} & & & & \\ & & & & \\ h & & & & \\ & & & &$	$\frac{\partial \vec{u}}{\partial t} = \vec{0}$ $\frac{\partial \vec{u}}{\partial x} = \frac{\partial \vec{u}}{\partial z} = \vec{0}$	$\vec{u} = u(y) \vec{e}_x$ avec $u(y) = \frac{Uy}{h}$ $p = C^{te}$	Couette plan sans gradient de pression $(\partial p/\partial x = 0)$
$u(y)$ \vec{e}_x	$\frac{\partial \vec{u}}{\partial t} = \vec{0}$ $\frac{\partial \vec{u}}{\partial x} = \frac{\partial \vec{u}}{\partial z} = \vec{0}$	$\frac{dp}{dx} = C^{te} \text{et} \vec{u} = u(y) \vec{e}_x$ $\text{avec} u(y) = \frac{1}{2\mu} \frac{dp}{dx} y (h - y)$	Poiseuille plan
$h U \\ K \neq 1 \\ K \neq 0 \\ K \neq -1 \\ M \neq -1 \\ M \neq 0$ $u(y) \vec{e}_x$	$\frac{\partial \vec{u}}{\partial t} = \vec{0}$ $\frac{\partial \vec{u}}{\partial x} = \frac{\partial \vec{u}}{\partial z} = \vec{0}$	$\frac{dp}{dx} = C^{te} \text{et} \vec{u} = u(y) \vec{e}_x$ $\text{avec} u(y) = U \left[\frac{y}{h} - K \frac{y}{h} \left(1 - \frac{y}{h} \right) \right]$ $\text{où} K = \frac{h^2}{2\mu U} \frac{dp}{dx}$	Couette plan avec gradient de pression $(\partial p/\partial x \neq 0)$ = "Couette-Poiseuille"
	$\frac{\partial \vec{u}}{\partial t} = \vec{0}$ $\frac{\partial \vec{u}}{\partial x} = \frac{\partial \vec{u}}{\partial \theta} = \vec{0}$	$\frac{dp}{dx} = C^{te} \text{et} \vec{u} = u(r) \vec{e}_x$ $\text{avec} u(r) = -\frac{1}{4\mu} \frac{dp}{dx} \left(R^2 - r^2 \right)$	Poiseuille cylindrique
Ω_2 \vec{e}_{θ} \vec{e}_r R_1 R_2	$\frac{\partial \vec{u}}{\partial t} = \vec{0}$ $\frac{\partial \vec{u}}{\partial x} = \frac{\partial \vec{u}}{\partial \theta} = \vec{0}$ $\frac{\partial p}{\partial x} = 0$	$\vec{u} = v(r)\vec{e}_{\theta} \text{avec} v(r) = Ar + \frac{B}{r}$ $\text{où} A = \frac{\Omega_2 R_2^2 - \Omega_1 R_1^2}{R_2^2 - R_1^2}$ $\text{et} B = \frac{(\Omega_1 - \Omega_2) R_1^2 R_2^2}{R_2^2 - R_1^2}$	Couette cylindrique = "Couette-Taylor"
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{\partial \vec{u}}{\partial t} = \vec{0}$ $\frac{\partial \vec{u}}{\partial x} = \frac{\partial \vec{u}}{\partial z} = \vec{0}$	$\vec{u} = u(y)\vec{e}_x$ avec $u(y) = \frac{g \sin \alpha}{2\nu} y(2h - y)$ $p(y) = \rho g(h - y) \cos \alpha + P_a$	Film tombant
	$\frac{\partial \vec{u}}{\partial x} = \frac{\partial \vec{u}}{\partial z} = \vec{0}$ $\frac{\partial p}{\partial x} = 0$	$\vec{u} = u(y, t)\vec{e}_x$ avec $u(y, t) = U\left[1 - \operatorname{erf}\left(\frac{y}{2\sqrt{\nu t}}\right)\right]$ $\tau_p = \mu \left.\frac{\partial u}{\partial y}\right _{y=0} = -\rho U \sqrt{\frac{\nu}{\pi t}}$	Premier problème de Stokes
\vec{e}_y \vec{e}_x	$\frac{\partial \vec{u}}{\partial x} = \frac{\partial \vec{u}}{\partial z} = \vec{0}$ $\frac{\partial p}{\partial x} = 0$	$\vec{u} = u(y, t)\vec{e}_x$ $u(y, t) = Ue^{-y/\delta}\cos(\omega t - \frac{y}{\delta}); \ \delta = \sqrt{\frac{2\nu}{\omega}}$ $\tau_p = \mu \left. \frac{\partial u}{\partial y} \right _{y=0} = -\frac{\mu U\sqrt{2}}{\delta}\cos(\omega t - \pi/4)$	Second problème de Stokes