Due: Sep 13, 2021

See the canvas assignment page for detailed instructions on submitting your work.

- 1. Consider the first-order ODE, $\frac{dy}{dt} = y^2 4$.
 - (a) Verify that $y = 2 \cdot \frac{1 Ce^{4t}}{1 + Ce^{4t}}$ is a family of solutions to the ODE (*C* is any constant).
 - (b) For each of the initial conditions, y(0) = 0 and y(0) = 4, answer the following questions:
 - find the (unique) solution, $y = \phi(t)$, satisfying the initial condition and determine its existence interval (a, b);
 - Evaluate the limit of the solution as t approaches the end points of the existence interval. That is, evaluate $\lim_{t\to a^+} \phi(t)$ and $\lim_{t\to b^-} \phi(t)$.
- 2. Solve the initial value problem (IVP) and determine the largest interval on which the solution is defined (the *existence interval*).

$$\frac{dy}{dt} = 3y^{4/3}, \quad y(0) = 1/8$$

- 3. Consider the first-order ODE, $(x^2 y)\frac{dy}{dx} + 2xy = 0$ and the function $F(x, y) = -2x^2y + y^2$.
 - (a) The figure on the following page shows a sample of level curves, F(x, y) = C. Label each of the curves with the appropriate (integer) value of C.
 - (b) Verify that the equation F(x, y) = C is an *implicit* solution to the differential equation, for any constant C.
 - (c) Identify the curve in the figure that appears to be the solution to the ODE satisfying y(1) = -1 and express the solution in explicit form, $y = \phi(x)$.

