1 Introduction

Data wrangling is the process of eliminating errors and integrating complex data sets to make them easier to access and analyze. Besides that, the process of data wrangling entails the restructuring, converting, and mapping of data from its initial raw data to a more refined one, to enhance its usability and value for various subsequent applications. For example, film producers can use data wrangling for market analysis, audience profiling, recommendation systems, and predictive modeling for box office success. It also enables data scientists and analysts to work with structured and clean data for more precise insights and decision-making in the cinema industry.

Next, the utilization of data-wrangling software has become an integral and essential component in the realm of data processing. It is because data wrangling tools can put together unstructured data in the required format, utilizing unprocessed data (the entry of quality data into the subsequent analysis is ensured by data manipulation that is precise) and removing noise or missing values from datasets (Simplilearn, 2023). Moreover, data wrangling provides a lot of benefits such as helping identify and handle errors, inconsistencies, missing values, and outliers in the data, resulting in higher data quality and reliability for analysis. Other than that, it also assists individuals in efficiently managing and analyzing extensive quantities of data, while facilitating the seamless exchange of data-flow methodologies.

2 Dataset Description

- The data should be in CSV format, contain at least 2 columns and more than 200 rows.
- Include the name and the link of the dataset of your choice in your report.
- Describe the dataset and justify your selection of dataset.
- Propose 4 interesting questions that you would like to know about the dataset.

2.1 Selected Dataset: Disney Movies 1937-2016 Gross Income

Total Gross of Disney movies.

2.2 Description of Dataset:

Walt Disney Studios is the foundation on which The Walt Disney Company was built. The Studios has produced more than 600 films since its debut film, Snow White and the Seven Dwarfs in 1937.

The dataset we apply in this project is Disney Movies from 1937 to 2016 Gross Income. This dataset contained various attributes of 579 films. It has 579 rows and 6 different relational columns which are movie title, release date, genre, mpaa rating, total gross income, and inflation adjusted gross income.

The following table shows names of the attributes and their details.

Attributes Name	Description
1. movie_title	Name of movie [str]
2. release_date	Released date of the movie [DD/MM/YYYY]
3. genre	Genre of the movie [str]
4. mpaa_rating	Motion Picture Association film rating system.
	[Not Rated, G, PG, PG-13, R]
5. total_gross	Total gross income of the movie [int]
6. inflation_adjusted_gross	Inflation adjusted total gross income [int]

2.3 Justification of selection of dataset:

Knowing the income of Disney movies can tell the details about their Studios when investing on their product, Disney movies. It can make informed financial decisions by knowing their movie income. Not only about investing, it providing insight into the future to the studio's management, whether its operations and profits are onaluable industry insight into the entertainment industry's trend and dynamics through analysis the financial issues of movies. Understanding financial performance of the Disney Studio can help investment and business decisions to those investors that consid track to increase or decrease the production quantity of specific movie's genre.

2.4 Four (4) Interesting Questions to know about the dataset:

- 1. What are the top 10 Disney movie by gross income?
- 2. Which genre of Disney movie is the most popular? / Which genre of movie has highest average of gross income?
- 3. Does Mpaa rating will affect the gross income of Disney Movie?
- 4. From 1937 to 2016, how much has Disney movie gross income grown each year?

3 Data Wrangling

3.1 Load the dataset into a data frame using Pandas.

3.1.1 Importing libraries

Libraries that will be used for this project.

```
[]: # Import libraries
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

from scipy.stats import zscore
from math import cos,pi
```

3.1.2 Reading dataset

Reading dataset using Panda's .read_csv() function.

```
[]: # Read data and store it in dataframe.
data = pd.read_csv('disney_movies.csv', header = 0)
display(data)
```

	movie_title	release_date	genre	mpaa_rating	١
0	Snow White and the Seven Dwarfs	1937-12-21	Musical	G	
1	Pinocchio	1940-02-09	Adventure	G	
2	Fantasia	1940-11-13	Musical	G	
3	Song of the South	1946-11-12	Adventure	G	
4	Cinderella	1950-02-15	Drama	G	
		•••	•••	•••	
574	The Light Between Oceans	2016-09-02	Drama	PG-13	
575	Queen of Katwe	2016-09-23	Drama	PG	
576	Doctor Strange	2016-11-04	Adventure	PG-13	
577	Moana	2016-11-23	Adventure	PG	
578	Rogue One: A Star Wars Story	2016-12-16	Adventure	PG-13	

	total_gross	inflation_adjusted_gross
0	184925485	5228953251
1	84300000	2188229052
2	83320000	2187090808
3	65000000	1078510579
4	85000000	920608730
	•••	
574	12545979	12545979
575	8874389	8874389
576	232532923	232532923
577	246082029	246082029
578	529483936	529483936

[579 rows x 6 columns]

3.2 Explore the number of rows and columns, ranges of values, etc.

3.2.1 Number of rows and columns

To get the number of rows and columns, .shape property is used to determine number of cells in each axis.

```
[]: # To obtain the number of lengths in each dimension, can be specified by index. data.shape
```

[]: (579, 6)

3.2.2 Information regarding dataset

.info() can be used to display all the information data at once.

```
[]: #To display information regarding dataset data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 579 entries, 0 to 578
Data columns (total 6 columns):
```

#	Column	Non-Null Count	Dtype
0	movie_title	579 non-null	object
1	release_date	579 non-null	object
2	genre	562 non-null	object
3	mpaa_rating	523 non-null	object
4	total_gross	579 non-null	int64
5	inflation_adjusted_gross	579 non-null	int64

dtypes: int64(2), object(4)
memory usage: 27.3+ KB

3.2.3 Duplicate data check

To check for any duplicated data in the dataset, by using duplicated().sum()

```
[]: #To check for any duplicate data data.duplicated().sum()
```

[]: 0

3.3 Apply data wrangling techniques that you have learnt to handle missing, incorrect, and invalid data.

3.3.1 Missing Data Handling

To check for any missing data in the dataset, isnull() is used. .sum() returns the number of isnull() where the row has missing value (is null).

```
[]: #Identify columns with missing values
print(f"Number of missing values before dropping missing data:\n{data.isnull().

→sum()}")
```

Number of missing values before dropping missing data:

movie_title 0
release_date 0
genre 17
mpaa_rating 56
total_gross 0
inflation_adjusted_gross 0

dtype: int64

```
[]: #Check rows with NA values.
display(data[data.isna().any(axis=1)])
```

	movie_title	release_date	genre	mpaa_rating	\
5	20,000 Leagues Under the Sea	1954-12-23	Adventure	NaN	
7	Sleeping Beauty	1959-01-29	Drama	NaN	
9	The Absent Minded Professor	1961-03-16	Comedy	NaN	
12	The Sword in the Stone	1963-12-25	Adventure	NaN	
14	Blackbeard's Ghost	1968-02-08	Comedy	NaN	
		•••	•••	•••	
185	It's Pat	1994-08-26	Comedy	NaN	
251	The War at Home	1996-11-20	NaN	R	
304	Endurance	1999-05-14	NaN	PG	
350	High Heels and Low Lifes	2001-10-26	NaN	R	
355	Frank McKlusky C.I.	2002-01-01	NaN	NaN	

	total_gross	inflation_adjusted_gross
5	28200000	528279994
7	9464608	21505832
9	25381407	310094574
12	22182353	153870834
14	21540050	138612686
	•••	•••
185	60822	125666
251	34368	65543
304	229128	380218
350	226792	337782
355	0	0

```
[66 rows x 6 columns]
```

We choose to drop the missing data, by using .dropna(). Check is there still any missing data again after dropping them.

Number of missing values before dropping missing data:

```
movie_title 0
release_date 0
genre 0
mpaa_rating 0
total_gross 0
inflation_adjusted_gross 0
```

dtype: int64

3.3.2 Outliers handling

To remove outliers, there are some visualizations that can help visualise the outliers, by using box plot, or histogram.

Visualizing outliers using Box Plot

```
#Defined the function for future easy references.
def createBoxPlot(data):
    box_plot = plt.figure(figsize = (10,5))
    sns.boxplot(data)
    box_plot.show()

createBoxPlot(data)
```

C:\Users\Fang\AppData\Local\Temp\ipykernel_22716\1733202113.py:7: UserWarning:
Matplotlib is currently using module://matplotlib_inline.backend_inline, which
is a non-GUI backend, so cannot show the figure.
box_plot.show()

Visualizing Outliers using Histograms

```
[]: #Creating histograms
def createHistogram(data, bins = 10):
          data.hist(figsize=(10,8), bins=bins)
createHistogram(data)
```


Using normal distributions to remove outliers Using normal distribution, we're removing rows with absolute z-score of more than 3.

```
[]: # List outliers which 'total_gross' column has abs z-scores which exceeds 3.
outliers = data[(abs(zscore(data.total_gross)) > 3)]
if 'z-index' not in outliers.columns:
    outliers.insert(outliers.shape[1]-1, 'z-index', zscore(data.total_gross))
display(outliers)
```

	movie_title i	release_date	genre	mpaa_rating	\
179	The Lion King	1994-06-15	Adventure	G	
384	Finding Nemo	2003-05-30	Adventure	G	
441	Pirates of the Caribbean: Dead Man'	2006-07-07	Adventure	PG-13	
499	Toy Story 3	2010-06-18	Adventure	G	
524	The Avengers	2012-05-04	Action	PG-13	
532	Iron Man 3	2013-05-03	Action	PG-13	
539	Frozen	2013-11-22	Adventure	PG	
558	Avengers: Age of Ultron	2015-05-01	Action	PG-13	

564	Star Wars Ep	. VII: The	Force Awakens	2015-12-18	Adventure	PG-13
567		T	he Jungle Book	2016-04-15	Adventure	PG
569	Ca	ptain Amer	ica: Civil War	2016-05-06	Action	PG-13
571			Finding Dory	2016-06-17	Adventure	PG
578	Rogu	e One: A S	tar Wars Story	2016-12-16	Adventure	PG-13
	total_gross	z-index	inflation_adju	sted_gross		
179	422780140	3.635542		761640898		
384	380529370	3.198510		518148559		
441	423315812	3.641083		544817142		
499	415004880	3.555116		443408255		
524	623279547	5.709462		660081224		
532	408992272	3.492923		424084233		
539	400738009	3.407543		414997174		
558	459005868	4.010252		459005868		
564	936662225	8.951020		936662225		
567	364001123	3.027545		364001123		
569	408084349	3.483532		408084349		
571	486295561	4.292531		486295561		
578	529483936	4.739261		529483936		

Visualizations after removing outliers After removing outliers, the result dataframe are as following, followed by the box plot and histogram.

```
[]: # Display result dataframe after removing outliers by removing intesected rows.

data = data.drop(index = outliers.index)

display(data)
createBoxPlot(data)
createHistogram(data)
```

	movie_title	release_date	genre	mpaa_rating	\
0	Snow White and the Seven Dwarfs	1937-12-21	Musical	G	
1	Pinocchio	1940-02-09	Adventure	G	
2	Fantasia	1940-11-13	Musical	G	
3	Song of the South	1946-11-12	Adventure	G	
4	Cinderella	1950-02-15	Drama	G	
		•••	•••	•••	
573	Pete's Dragon	2016-08-12	Adventure	PG	
574	The Light Between Oceans	2016-09-02	Drama	PG-13	
575	Queen of Katwe	2016-09-23	Drama	PG	
576	Doctor Strange	2016-11-04	Adventure	PG-13	
577	Moana	2016-11-23	Adventure	PG	

3	65000000	1078510579
4	85000000	920608730
	•••	•••
573	76233151	76233151
574	12545979	12545979
575	8874389	8874389
576	232532923	232532923
577	246082029	246082029

[500 rows x 6 columns]

C:\Users\Fang\AppData\Local\Temp\ipykernel_22716\1733202113.py:7: UserWarning: Matplotlib is currently using module://matplotlib_inline.backend_inline, which is a non-GUI backend, so cannot show the figure.

box_plot.show()

3.4 Perform any additional steps (e.g., parsing dates, creating additional columns, merging multiple datasets, etc.).

3.4.1 Parsing date column (release_date)

We chose to parse the date and split them into three new columns, that are:

- Year of release_date extracted and stored into release_year column,
- Month of release_date extracted and stored into release_month column, and
- Day of release_date extracted and stored into release_day column.

```
[]: # Parse the date from 'release_date' column and split it.
   data['release_date'] = pd.to_datetime(data['release_date'], format="%Y-%m-%d")
   # Add release day
   if 'release_day' not in data.columns:
        data.insert(1, 'release_day', data['release_date'].dt.day)
   # Add release month
   if 'release_month' not in data.columns:
        data.insert(1, 'release_month', data['release_date'].dt.month)
```

```
# Add release year
if 'release_year' not in data.columns:
    data.insert(1, 'release_year', data['release_date'].dt.year)
display(data)
```

1	•					
		movie	_title re	lease_year	release_month	\
0	Snow White a	nd the Seven	Dwarfs	1937	12	
1		Pin	occhio	1940	2	
2		Fa	ntasia	1940	11	
3		Song of the	South	1946	11	
4		Cind	erella	1950	2	
			•••	•••	***	
573		Pete's	•	2016	8	
574	The L	ight Between		2016	9	
575		Queen of		2016	9	
576		Doctor S	_	2016	11	
577			Moana	2016	11	
	release_day :	release_date	genre	mpaa_rating	total_gross	\
0	21	1937-12-21	Musical	G G		
1	9	1940-02-09	Adventure	G	84300000	
2	13	1940-11-13	Musical	G	83320000	
3	12	1946-11-12	Adventure	G	65000000	
4	15	1950-02-15	Drama	G	85000000	
		•••	•••	•••	•••	
573	12	2016-08-12	Adventure	PG	76233151	
574	2	2016-09-02	Drama	PG-13	12545979	
575	23	2016-09-23	Drama	PG	8874389	
576	4	2016-11-04	Adventure	PG-13		
577	23	2016-11-23	Adventure	PG	246082029	
	inflation_ad	insted gross				
0		5228953251				
1		2188229052				
2		2187090808				
3		1078510579				
4		920608730				
573		76233151				
574		12545979				
575		8874389				
576		232532923				
577		246082029				

[500 rows x 9 columns]

3.4.2 Feature Selection

Using Lasso Regression, the features are recorded as following:

```
[]: from sklearn.linear_model import LassoCV
     x = data.drop(['movie title', 'release date', 'genre', 'mpaa rating',,,
     s'total_gross', 'inflation_adjusted_gross'], axis = 1)
     y = data['total_gross']
     reg = LassoCV()
     reg.fit(x,y)
     print("Best alpha using built-in LassoCV: %f" % reg.alpha_)
     print("Best score using built-in LassoCV: %f" % reg.score(x,y))
     coef=pd.Series(reg.coef_, index=x.columns)
     print(f"\n{coef}")
     # The plot figure below shows which features are selected
     imp_coef = coef.sort_values()
     plt.rcParams['figure.figsize'] = (4.0, 5.0)
     imp_coef.plot(kind = "barh")
     plt.title("Feature importance using Lasso Model")
    Best alpha using built-in LassoCV: 115137337.610252
    Best score using built-in LassoCV: 0.000000
                     1.434555e-10
    release year
    release_month
                     0.000000e+00
    release_day
                    -0.000000e+00
    dtype: float64
[]: Text(0.5, 1.0, 'Feature importance using Lasso Model')
```



```
[]: print("Lasso picked " + str(sum(coef != 0))+" variables and eliminated the

oother " + str(sum(coef == 0)) + " variables.\n")

print(f"The selected features are: \n{coef[coef != 0]}")
```

Lasso picked 1 variables and eliminated the other 2 variables.

The selected features are: release_year 1.434555e-10 dtype: float64

Hence, only release_year is taken as the feature.

4 Exploratory Data Analysis

4.1 Compute the mean, sum, range and other interesting statistics for numeric columns.

There are several types of Exploratory Data Analysis (EDA) that can be done in this dataset. Those includes:

- The average gross income per movie,
- Gross/Inflation adjusted gross or count that are based on each Disney movie's release year, or
- Gross/Inflation adjusted gross or count that are based on each type of genre.

4.1.1 Summary Statistics on Gross Income per movie

We can compute the summary statistics on gross income per movie, using total_gross column and inflation_adjusted_gross, by using describe() method

The following method supresses the scientific notation of the values of the data. > .apply(lambda s: s.apply('{0:.5f}'.format))

	total_gross	inflation_adjusted_gross
count	500.0000	500.0000
mean	60646181.6260	117010079.7980
std	67432931.7377	296968001.7232
min	2815.0000	2984.0000
25%	15442085.7500	25515774.7500
50%	36773431.0000	57885202.0000
75%	80176773.2500	119168305.2500
max	356461711.0000	5228953251.0000

4.1.2 Gross income based on each year

We can summarize and aggregate the data by taking each unique rows of release_year, by using .groupby().agg() function. This will be stored as data_release.

```
total_gross
mean count sum
release_year
```

1937	184925485.0000	1.0000	184925485.0000
1940	83810000.0000	2.0000	167620000.0000
1946	65000000.0000	1.0000	65000000.0000
1950	85000000.0000	1.0000	85000000.0000
1955	93600000.0000	1.0000	93600000.0000

4.1.3 Gross income based on genre

Apart from that, we can also summarize and aggregate the data by taking each type of genre. This will be stored as data_genre.

	total_gross		
	mean	count	sum
genre			
Action	69472727.4375	32.0000	2223127278.0000
Adventure	107451380.9909	110.0000	11819651909.0000
Black Comedy	32514404.0000	3.0000	97543212.0000
Comedy	48088475.7901	162.0000	7790333078.0000
Concert/Performance	51728233.0000	2.0000	103456466.0000

5 Data Visualization

5.1 Explore distributions of numeric columns using histograms, etc.

5.1.1 Histograms

This command showed all the numeric columns of dataset in histogram. From the histogram below, we can observe that the histogram of release_year and release_date is normal histogram. For release_month, it is a bimodal histogram and release_day is non-normal histogram. Besides, total_gross and inflation_adjusted_gross is skewed right histogram.

```
[]: #histogram
      data.hist(figsize=(12,10))
[]: array([[<Axes: title={'center': 'release_year'}>,
                <Axes: title={'center': 'release_month'}>],
               [<Axes: title={'center': 'release_day'}>,
                <Axes: title={'center': 'release_date'}>],
               [<Axes: title={'center': 'total_gross'}>,
                <Axes: title={'center': 'inflation_adjusted_gross'}>]],
             dtype=object)
                                                                            release month
                            release year
           200
                                                            100
                                                            80
           150
                                                            60
           100
                                                            40
            50
                                                            20
                1940 1950 1960 1970 1980 1990 2000 2010
                                                                                            10
                            release day
                                                                             release date
            60
            50
                                                            150
            40
                                                            100
            30
            20
                                                            50
            10
             0
                               15
                                                                1940 1950 1960 1970 1980 1990 2000 2010 2020
                         10
                                     20
                                          25
                                                30
                             total_gross
                                                                         inflation_adjusted_gross
           250
                                                            500
           200
                                                            400
           150
                                                            300
           100
                                                            200
                                                            100
            50
             0
                                                             0
               0.0
                    0.5
                        1.0
                             1.5
                                  2.0
```

5.1.2 Distribution plot (total_gross)

We use distribution plot to graphically represent the distribution of total_gross variable. Distribution plot allows us to see the distribution of the data more visually than a normal histogram. From the graph below, we can know this is a skewed right histogram because majority of the data points are concentrated on the left side of the histogram. We can also know this is a positive skewed distribution by looking at the distribution line.

```
[]:  # Distribution plot (total_gross)
sns.set_style()
sns.distplot(data.total_gross)
```

C:\Users\Fang\AppData\Local\Temp\ipykernel_22716\2332603461.py:3: UserWarning:

'distplot' is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

```
sns.distplot(data.total_gross)
```

[]: <Axes: xlabel='total_gross', ylabel='Density'>

5.1.3 Distribution plot (inflation_adjusted_gross)

Same with above, we still use distribution plot to graphically represent the distribution of 'inflation_adjusted_gross' variable. As a result, we can know this is also a skewed right histogram and positive skewed distribution.

```
[]: # Distribution plot (inflation_adjusted_gross)
sns.distplot(data.inflation_adjusted_gross)
```

C:\Users\Fang\AppData\Local\Temp\ipykernel_22716\3166487301.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(data.inflation_adjusted_gross)

[]: <Axes: xlabel='inflation_adjusted_gross', ylabel='Density'>

5.2 Explore relationship between columns using scatter plots, bar charts, etc.

5.2.1 Scatter plot

We create scatter plot to explore the relationship between release year and gross income. The plot showed that there is no strong relationship between release year and gross income of movie.

```
[]: # Scatterplot
   data.plot(kind='scatter',x='release_year',y='total_gross')
   plt.xlabel('Release Year of Movie')
   plt.ylabel('Gross Income of Movie')
   plt.title('Relationship between release year and gross income')
```

[]: Text(0.5, 1.0, 'Relationship between release year and gross income')

5.2.2 Count plot (Genre)

By using countplot in this case, it can help us automatic count the number of movies per genre. So, we can simply and quickly know which genre of film does Disney produce the most. From the graph, it show that the comedy genre of movie is the most produced, while concert/performance genre of movie is the least produced by Disney.

```
[]: # Count plot (Genre)
     sns.countplot(x='genre',data=data,order=data['genre'].value_counts().index)
     plt.xlabel('Genre of Movie')
     plt.ylabel('Number of Movies')
     plt.xticks(rotation=85)
[]: (array([0,
                 1,
                     2,
                         3,
                              4,
                                  5, 6, 7, 8, 9, 10, 11]),
      [Text(0, 0, 'Comedy'),
      Text(1, 0, 'Adventure'),
      Text(2, 0, 'Drama'),
      Text(3, 0, 'Action'),
      Text(4, 0, 'Thriller/Suspense'),
```

```
Text(5, 0, 'Romantic Comedy'),
Text(6, 0, 'Documentary'),
Text(7, 0, 'Musical'),
Text(8, 0, 'Western'),
Text(9, 0, 'Horror'),
Text(10, 0, 'Black Comedy'),
Text(11, 0, 'Concert/Performance')])
```


5.2.3 Count plot (MPAA Rating)

In this case, countplot help us count the number of movies clustered by mpaa rating automatically. So, we can simply know Disney has produced the most PG rated film.

[]: Text(0, 0.5, 'Number of Movies')

5.2.4 Heatmap

We use heatmap to effectively shows the correlation between each numeric columns at the same time. By looking at the heatmap below, we can observe release_year, release_month, and inflation_adjusted_gross has a positive correlation with total gross income, while release_day has a negative correlation with gross income.

```
[]: # Heatmap
cor=data.corr()
plt.figure(figsize=(6,3))
sns.heatmap(cor, annot=True)
```

C:\Users\Fang\AppData\Local\Temp\ipykernel_22716\1596995075.py:2: FutureWarning:
The default value of numeric_only in DataFrame.corr is deprecated. In a future
version, it will default to False. Select only valid columns or specify the
value of numeric_only to silence this warning.
 cor=data.corr()

[]: <Axes: >

6 Discussion

Provide answers to the proposed 4 questions and justify your answers using data analytics.

6.1 What are the top 10 Disney movie by gross income?

To find out the Top 10 best selling Disney Movie, we use sort_values() function, sort it in descending order and then print the first 10 data. To make it more visualizable, we have show it in bar chart. From the barchart, we can simply know the movie, "Inside Out" is the best selling Disney movie then followed by Zootopia, Alice in Wonderland and so on.

```
[]: #1. What is the top 10 best selling Disney movie?
data.sort_values(by='total_gross', inplace=True, ascending=False)
data.head(10)
top_10_movies=data.head(10)
plt.figure(figsize=(8, 5))

plt.bar(top_10_movies['movie_title'], top_10_movies['total_gross'])
plt.xlabel('Movie Title')
plt.ylabel('Gross income')
plt.title('Top 10 Disney Movies by Inflation Adjusted Gross Income')

plt.xticks(rotation=80)
plt.show()
```


6.2 Which genre of Disney movie is the most popular? Which genre of movie has highest average of gross income?

To answer this question, we have use barplot to show the relationship between genre of movie and its gross income because the higher the gross income of a movie, represents the more popular it is. Then, looking at the following barplot, we can easily know that the adventure genre of movie is the most popular with the public because it earns the highest gross income.

```
[]: #2. Which genre of Disney Movie is the most popular?
#barplot
average_gross=data.groupby('genre')['total_gross'].mean().reset_index()
```

```
sns.barplot(x='genre',y='total_gross',data=average_gross)
plt.xlabel('Genre of Movie')
plt.ylabel('Average Gross Income')
plt.title('Genre vs Average Gross Income')
plt.xticks(rotation=80)
plt.show()
```

Genre vs Average Gross Income

6.3 Does Mpaa rating will affect the gross income of Disney Movie?

In order to answer this question, We are using 2 variables to compare the relationship between MPAA Rating and Average Gross Income of the movies. Based on the data analytic, PG-rated movies are the most produced by Disney compared to others rated movies. However, according to the histogram below, we observed that the most earning is the rating of G. This rating means all ages of audience admitted, so it has a wider audience compared to other ratings. Therefore, we can conclude that the mpaa rating will affect the gross income of Disney Movie.

6.4 From 1937 to 2016, how much has Disney movie gross income grown each year?

We apply 2 variables, release_year and total gross_income to display the trend and pattern of total gross income by release year. For this question we apply a line graph, blue line in the plot connects the data points for each year, showing the yearly growth in gross income. According to the line graph, we observed that the year between 1937 until 1984, It indicates a negative growth or a decrease in gross income compared to the previous year, the overall increase is not obvious. But the year after 1984 until 2016, it indicates a positive growth in gross income compared to the previous year. From the trend of line, the year between 1985 to 2016 has some fluctuations, but seen in their entirely, it has a consistently increasing line, it means that it suggests steady growth. In conclusion, the total gross income of Disney movies released in the years fluctuates, with increasing trend.

7 Conclusion

In conclusion, this data wrangling project which focused on analysing the gross income of Disney movies is a step in extracting meaningful insights from a diverse and complex dataset. Through some process such as data cleaning, organizing, and structuring, we have successfully prepared the data for in-depth analysis. Throughout this project, we have used some techniques to handle missing data and outliers to ensure the reliability and consistency of dataset. Besides, we have also used many ways including using histogram, box plot and many more to visualise the data pattern.

After completing the data wrangling phase, we have a well-structured dataset that is ready for further analysis. This clean and organised data will be used to exploring various aspects of Disney's movie income, such as trends over time and the impact of specific movie genre. Data wrangling has not only made the dataset suitable and easy for analysis but has also set the stage for creating informative data visualisations that will help stakeholders and decision-makers gain a deeper understanding of Disney's movie gross income patterns. Then, it can help them to make more accurate business decisions.

8 References

- (Dataset) Disney Movies 1937-2016 Gross Income (March 14, 2021). Retrieved from https://www.kaggle.com/datasets/rashikrahmanpritom/disney-movies-19372016-total-gross
- Simplilearn. (2023, Jun 6). What Is Data Wrangling? Benefits, Tools, Examples and Skills. Retrieved from https://www.simplilearn.com/data-wrangling-article