

AOL1482

100V N-Channel MOSFET

General Description

The AOL1482 combines advanced trench MOSFET technology with a low resistance package to provide extremely low $R_{\text{DS(ON)}}$. This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting.

Product Summary

 $\begin{array}{ll} V_{DS} & 100V \\ I_{D} \; (at \; V_{GS} \! = \! 10V) & 28A \\ R_{DS(ON)} \; (at \; V_{GS} \! = \! 10V) & < 37m\Omega \\ R_{DS(ON)} \; (at \; V_{GS} \! = \! 4.5V) & < 42m\Omega \end{array}$

100% UIS Tested 100% R_g Tested

UltraSO-8[™]
Top View Bottom View

Absolute Maximum Ratings T_A=25℃ unless otherwise noted Symbol Parameter Maximum Units Drain-Source Voltage V_{DS} 100 Gate-Source Voltage ±20 ٧ V_{GS} T_C=25℃ 28 Continuous Drain I_D Current T_C=100℃ 20 Α Pulsed Drain Current C 70 I_{DM} T_A=25℃ 4.5 Continuous Drain I_{DSM} Α T_A=70℃ 3.6 Current Avalanche Current C 35 I_{AS} , I_{AR} Α Avalanche energy L=0.1mH C $\mathsf{E}_{\mathsf{AS}},\,\mathsf{E}_{\mathsf{AR}}$ 61 mJ T_C=25℃ 75 W P_D T_C=100℃ Power Dissipation ^B 37 T_A=25℃ 1.9 $\mathsf{P}_{\mathsf{DSM}}$ W Power Dissipation ^A T_A=70℃ 1.2 Junction and Storage Temperature Range -55 to 175 ${\mathfrak C}$ T_J , T_{STG}

Thermal Characteristics									
Parameter		Symbol	Тур	Max	Units				
Maximum Junction-to-Ambient A	t ≤ 10s	D	24	30	°C/W				
Maximum Junction-to-Ambient AD	Steady-State	$R_{\theta JA}$	53	65	°C/W				
Maximum Junction-to-Case	Steady-State	$R_{\theta JC}$	1.5	2	C/W				

Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units			
STATIC PARAMETERS										
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V		100			V			
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =100V, V _{GS} =0V	T 5500			1	μΑ			
	Out Dallandary and	T _J =55℃				5				
I _{GSS}	Gate-Body leakage current	$V_{DS} = 0V, V_{GS} = \pm 20V$		4.0	0.4	100	nA			
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_{D}=250\mu A$		1.6	2.1	2.7	V			
I _{D(ON)}	On state drain current	V _{GS} =10V, V _{DS} =5V		70			Α			
R _{DS(ON)}		$V_{GS}=10V$, $I_{D}=10A$			30	37	mΩ			
	Static Drain-Source On-Resistance	1/ / 5// / 5//	T _J =125℃		59	71				
		V _{GS} =4.5V, I _D =10A			32	42	mΩ			
g _{FS}	Forward Transconductance	$V_{DS}=5V$, $I_{D}=10A$			45		S			
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.7	1	V			
Is	Maximum Body-Diode Continuous Current ^G					54	Α			
	PARAMETERS				-					
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =50V, f=1MHz		1300	1630	2000	pF			
C _{oss}	Output Capacitance			70	100	130	pF			
C_{rss}	Reverse Transfer Capacitance			30	50	70	pF			
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz		0.3	0.75	1.1	Ω			
SWITCHI	NG PARAMETERS									
Q _g (10V)	Total Gate Charge	-V _{GS} =10V, V _{DS} =50V, I _D =10A		26	34	44	nC			
Q _g (4.5V)	Total Gate Charge			14	18	22	nC			
Q_{gs}	Gate Source Charge			4	6	8	nC			
Q_{gd}	Gate Drain Charge			5	9	13	nC			
t _{D(on)}	Turn-On DelayTime	V_{GS} =10V, V_{DS} =50V, R_L =5 Ω , R_{GEN} =3 Ω			7		ns			
t _r	Turn-On Rise Time				7		ns			
t _{D(off)}	Turn-Off DelayTime				29		ns			
t _f	Turn-Off Fall Time				7		ns			
t _{rr}	Body Diode Reverse Recovery Time	I _F =10A, dI/dt=500A/μs		22	32	42	ns			
Q_{rr}	Body Diode Reverse Recovery Charge	_E I _F =10A, dI/dt=500A/μ	I_F =10A, dI/dt=500A/ μ s		200	260	nC			

A. The value of $R_{\theta JA}$ is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The Power dissipation P_{DSM} is based on $R_{\theta JA}$ and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it.

- D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to case $R_{\theta JC}$ and case to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using <300μs pulses, duty cycle 0.5% max.
- F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ =175°C. The SOA curve provides a single pulse ratin g.
- $\ensuremath{\mathsf{G}}.$ The maximum current rating is package limited.
- H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25 $^{\circ}$ C.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

Rev1 : April 2010 www.aosmd.com Page 2 of 6

B. The power dissipation P_D is based on $T_{J(MAX)}$ =175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =175°C. Ratings are based on low frequency and duty cycles to keep initial T_J =25°C.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Voltage (Note E)

Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

Figure 2: Transfer Characteristics (Note E)

Figure 4: On-Resistance vs. Junction Temperature (Note E)

Figure 6: Body-Diode Characteristics (Note E)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

