lab3 2

November 24, 2023

1 Comparing Interpolation Techniques for Predicting Temperature Trends

1.0.1 GIS 5571 Lab 3 part2

Tzu Yu Ma

```
November 28
[47]: import requests
                     import os
                     import pandas as pd
                     import arcpy
                     from arcpy.sa import *
[96]: # Set the workspace
                     arcpy.env.workspace = r"D:\fall2023\arc1\lab3\lab3_2\lab3_2\lab3_2.gdb"
[37]: url = "https://ndawn.ndsu.nodak.edu/table.csv?
                         \Rightarrow \texttt{station=78\&station=111\&station=98\&station=162\&station=174\&station=142\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&station=164\&st
                     response = requests.get(url)
[39]: folder = r"D:\fall2023\arc1\lab3\lab3_2\data"
                     if not os.path.exists(folder):
                                   os.makedirs(folder)
[92]: file_path = r"D:\fall2023\arc1\lab3\lab3_2\data\tmp_monthly.csv"
                     with open(file_path, "wb") as file:
                                   file.write(response.content)
[85]: tmp_monthly = pd.read_csv(file_path, header = 4)
                     tmp_monthly
[85]:
                                       Unnamed: 0
                                                                                                                                 deg.1 ... Unnamed: 6 Degrees F Unnamed: 8
                                                                                                    deg
                                                               Ada 47.32119 -96.51406 ...
                                                                                                                                                                                                                            53.361
                                                                                                                                                                                                                                                                                  NaN
                                                                                                                                                                                                  23
                     1
                                                                Ada 47.32119 -96.51406 ...
                                                                                                                                                                                                                            43.086
                                                                                                                                                                                                  24
                                                                                                                                                                                                                                                                                  NaN
```

```
2
                                                 25
                                                        39.637
                                                                       NaN
            Ada 47.32119 -96.51406 ...
3
            Ada 47.32119 -96.51406 ...
                                                 26
                                                        36.737
                                                                       NaN
4
            Ada 47.32119 -96.51406 ...
                                                        25.152
                                                                       NaN
                                                 27
5785
        Zeeland 46.01351 -99.68768
                                                 17
                                                        31.253
                                                                       NaN
5786
        Zeeland 46.01351 -99.68768
                                                        40.014
                                                                       NaN
                                                 18
        Zeeland 46.01351 -99.68768 ...
                                                        43.477
                                                                       NaN
5787
                                                19
5788
        Zeeland 46.01351 -99.68768 ...
                                                20
                                                        39.172
                                                                       NaN
5789
        Zeeland 46.01351 -99.68768 ...
                                                 21
                                                                       NaN
                                                        29.059
```

[5790 rows x 9 columns]

```
[87]: tmp_monthly.rename(columns={'Unnamed: 0':'Station Name', 'deg':'Latitude', 'deg.

→1':'Longitude', 'Degrees F':'Avg'}, inplace=True)

tmp_monthly['MAX'] = tmp_monthly['Avg']

tmp_monthly['MIN'] = tmp_monthly['Avg']

tmp_monthly
```

[87]:	Stat	ion Name	Latitude	Longitude	ft	•••	Avg	Unnamed: 8	MAX
	MIN								
	0	Ada	47.32119	-96.51406	910		53.361	NaN	53.361
	53.361								
	1	Ada	47.32119	-96.51406	910	•••	43.086	NaN	43.086
	43.086								
	2	Ada	47.32119	-96.51406	910	•••	39.637	NaN	39.637
	39.637								
	3	Ada	47.32119	-96.51406	910	•••	36.737	NaN	36.737
	36.737		45 00440	00 54400	0.4.0		05 450		05.450
	4	Ada	47.32119	-96.51406	910	•••	25.152	NaN	25.152
	25.152								
	•••	•••	•••		•••		•••	•••	
	 E70E	711	46 01351	00 60760	2070		21 052	N - N	21 052
	31.253	Zeerand	46.01351	-99.68768	2070	•••	31.253	Nan	31.253
	5786	700land	/6 013E1	-00 69769	2070		40 014	NaN	40 014
	40.014	Zeerand	40.01331	-99.00700	2010	•••	40.014	Ivaiv	40.014
	5787	7eeland	46 01351	-99 68768	2070		43 477	NaN	43 477
	43.477	Zoorana	10.01001	00.00700	2010	•••	10.111	ivaiv	10.111
	5788	Zeeland	46.01351	-99.68768	2070		39.172	NaN	39.172
	39.172								
	5789	Zeeland	46.01351	-99.68768	2070	•••	29.059	NaN	29.059
	29.059								

[5790 rows x 11 columns]

```
[88]: # Drop specific columns (4, 5, 6, 7, and 9) columns_to_drop = [3, 4, 5, 6, 8]
```

```
tmp monthly = tmp_monthly.drop(columns=tmp_monthly.columns[columns_to_drop])
       # Reset the index after dropping columns
      tmp_monthly2 = tmp_monthly.reset_index(drop=True)
[89]: df_tmp = tmp_monthly2.to_csv(r"D:
       →\fall2023\arc1\lab3\lab3_2\data\tmp_monthly_clean.csv")
[90]: df tmp = r"D:\fall2023\arc1\lab3\lab3 2\data\tmp monthly_clean.csv"
       # Output feature class
      out_feature_class = r"D:\fall2023\arc1\lab3\lab3_2\lab3_2\lab3_2.gdb\stations"
      X field = "Longitude"
      Y_field = "Latitude"
      coordinate_system = arcpy.SpatialReference(4326) # Example: WGS 1984
       # Create an XY event layer
      arcpy.management.XYTableToPoint(df_tmp, out_feature_class, X_field, Y_field)
[90]: <Result 'D:\\fall2023\\arc1\\lab3_2\\lab3_2\\lab3_2.gdb\\stations'>
[91]: # Input feature class
      input_feature_class = "stations"
       # Output dissolved feature class
      output_feature_class = "TMP_stations"
      # Dissolve based on the "Avg" field using the MEAN statistic
      arcpy.management.Dissolve(input_feature_class, output_feature_class,_u
        →["Station_Name"], "Avg MEAN; MAX MAX; MIN MIN" )
[91]: <Result 'D:\\fall2023\\arc1\\lab3_2\\lab3_2\\lab3_2.gdb\\TMP_stations'>
      IDW / Kriging / Global Polynomial Interpolation
[122]: def interpolation_methods(feature_class, values):
          for value in values:
               IDW = Idw(feature_class, value)
              IDW.save(f"IDW_{value}")
              Kriging_tool = Kriging(feature_class, value, KrigingModelOrdinary())
              Kriging_tool.save(f"Kriging_{value}")
               GPI = arcpy.ga.GlobalPolynomialInterpolation(feature_class, value, __
        →out_raster=f"GPI_{value}")
```

interpolation_methods("TMP_stations", ["MEAN_Avg", "MAX_MAX", "MIN_MIN"])