Outline
When Dinosaurs roamed the earth
Ready for RISC
CISC vs. RISC
Links

RISC vs CISC

Kate Ericson

August 30, 2006

When Dinosaurs roamed the earth Before video games existed And this means...

Ready for RISC

Orthogonality not so cool?

And then there was RISC

CISC vs. RISC

Head to head Real World

Links

Dawn of Time

- ▶ Before the advent of compilers, all programming was done in machine code or assembly.
 - To make programming easier, more and more complex instructions were created
 - ► These instructions were direct representations of high level functions in high level programming languages
 - This was deemed a good idea, since at the time, hardware design was easier than compiler design

Dawn of Time

- ► Computers had very little memory
 - ▶ This promoted a high density of information in programs
 - Instructions of variable size, instructions which perform multiple operations, and instructions that both moved data and performed data computations
 - ► The ability to pack instructions densely was considered more important than instruction decodability

Dawn of Time

- ► Register count was small
 - Bits in registers are more expensive than external memory, and would have been difficult to include in large numbers due to technology limitations
 - More registers require more instruction bits (so all registers can be addressed) - this would take up expensive RAM
 - ▶ In 1997, 1 MB of DRAM was about \$5,000

Summary of sorts

- ▶ Because of these reasons, instructions were designed to do as much work as possible.
 - One instruction could load up two numbers, add them, and store the result back to memory
 - ► Another version of that instruction would do the same, but store the result in a register
 - Yet another version would read one number from memory, the second from register, and write the result back to memory
- ► This design philosophy became known as CISC (Complex Instruction Set Computer).

Orthogonality

- ► The goal of the hour was to provide every possible variation of every instruction. This principle is known as "orthogonality"
- ► This leads to complexity on the CPU, but this was considered a fair trade-off since in theory it is possible to tune each command individually

Research

- ▶ In the late 1970s researchers at IBM (other places too, but we don't really care about them) demonstrated that the majority of the orthogonal instructions were being ignored.
 - ► Compilers were gaining steam, and they only had a limited ability to make full use of CISCs orthogonal capabilities
 - ► Extremely specific instructions were found to be slower than more general instructions doing the same thing

CPU speedup

- CPUs started to run faster than the memory they used
- ▶ In the late 1970s, it was already apparent that CPU and memory speed would grow further apart for at least the next decade
- To support the higher CPU speeds, more registers were needed
 - Additional registers would require more space on the chip
 - This space could be created by reducing the complexity of the CPU

Real World Backup

- Real world examples showed that most processors were over-designed
 - ▶ On average, 98% of the constants in a program will fit into 13 bits, while almost every CPU stored them in individual words
 - This suggests that the CPU should store the constants in unused bits of the instruction itself, decreasing the number of memory accesses
 - ▶ If this scheme is used, the operation needs to be small, so that there is enough room left in the 32 bit instruction to hold larger constants.

Real World Backup

- ► Real world programs spend most of their time executing simple operations
 - Focus was put on making these common operations as simple and fast as possible
 - The goal was to make instructions so simple, each could be fully completed in a single clock cycle.

- ► The focus on "reduced instructions" led to the result being called "reduced instruction set computer" (RISC)
- ► The term "reduced instruction set computer" is somewhat misleading-many are under the impression that there are fewer instructions in the processor's instruction set
- ▶ RISC designs often have huge command sets
- Over time, the old design technique became known as Complex Instruction Set Computer(CISC)

- Instead of a single complex instruction, code was implemented as a series of smaller instructions
 - ▶ This left more room in the instruction for data
- Unfortunately, this also meant that the total number of instructions that needed to be read from memory for any single program is larger, and takes longer.

More Speed

- ▶ In an attempt to speed up processors, the ideas of having pipelined and superscalar processors were conceived
- Both pipelined and superscalar designs required adding complexity to the CPU
 - ▶ Because of the streamlining of the RISC architecture, RISC chips easily took advantage of these new techniques
 - ► The complexity of CISC architecture kept CISC chips from immediately taking advantage of the new technology.

Side by Side

CISC

- Complexity found in hardware
- Memory-to-memory: load and store functionality found in a single instruction
- Less lines of code needed to provide same functionality

- Complexity on software side
- Register-to-Register: load and store are seperate instructions
- More instructions necessary to provide same functionality

Side by Side

CISC

- instructions not always the same size
- instructions are difficult to decode because instructions are not uniform
- to make use of pipelining, instructions need to be broken down to smaller components at processor level

- all instructions of a uniform size
- instructions are easier to decode because of how they are set up-ex: opcode will always be in the same place
- capable of using pipelining by design

Real World

- Where can I find these processor types?
 - ▶ Intel's x86 processors have CISC architecture
 - ▶ IBM's PowerPC processors have RISC architecture
- But Mac's don't use PowerPC processors anymore...
 - This is true however we can still find Power processors in Gamecubes
 - ▶ Wii
 - ► Xbox 360
 - Playstation 3
 - Other RISC processors can be found in other console and portable gaming systems
 - not to mention cellphones
 - and embedded chips in found in cars

Links

So which one's better?

- Good Question!
 - Right now this is still pretty much in the air. While the PC world is dominated by CISC processors, elsewhere mostly RISC processors are used.
 - You can usually start a flame war by strongly taking one side or the other
- But really now, which one is better?
 - Only time will be able to tell for this one

So which one's better?

- ► Some will claim that RISC is cheaper and faster, so it is the processor that will withstand the test of time
- Others say that RISC architecture puts too much of a burden on software, that the only way to go is to push complexity to the hardware with CISC processors, as they are becoming faster and cheaper
- Yet more believe that RISC and CISC processors will someday merge
 - Today's RISC chips support as many instructions as older CISC chips
 - ► CISC chips are using starting to use techniques that were associated with RISC chips

Sources Used

- A CPU: RISC vs CISC
- ► Complex instruction set computer
- RISC Architecture
- Reduced instruction set computer
- ▶ The Pentium 4 and the G4e: an Architectural Comparison