Exercice 1: (05 pts)

Soient \mathbb{K} un corps commutatif, E un \mathbb{K} -e.v. de dimension finie $n \in \mathbb{N}^*$ et $B = (e_1, e_2, \dots, e_n)$ une base de E. On considère l'endomorphisme f de E définie par :

$$\forall k \in \{1, 2, \dots, n\}, \quad f(e_k) = e_k + \sum_{i=1}^n e_i.$$

1- Donner la matrice A associée à f relativement à la base B.

Solution:

$$A = \begin{pmatrix} 2 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 2 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 2 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & 1 & \cdots & 2 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 2 \end{pmatrix}.$$

2- Déterminer les sous-espaces propres de f.

Solution : Calculons le polynôme caractéristique de f.

$$P_f(X) = \begin{vmatrix} 2 - X & 1 & \cdots & 1 \\ 1 & 2 - X & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 2 - X \end{vmatrix} = \begin{vmatrix} n + 1 - X & 1 & \cdots & 1 \\ n + 1 - X & 2 - X & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ n + 1 - X & 1 & \cdots & 2 - X \end{vmatrix},$$

où nous avons remplacé la première colonne par la somme de toutes les colonnes. Maintenant notons par L_i , pour $1 \le i \le n$, les lignes du derniers déterminant et remplaçons L_i par $L_i - L_1$ pour $2 \le i \le n$. On obtient :

$$P_f(X) = \begin{vmatrix} n+1-X & 1 & 1 & \cdots & 1 & 1 \\ 0 & 1-X & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1-X & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1-X & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1-X \end{vmatrix} = (n+1-X)(1-X)^{n-1}.$$

D'où $Spec(f) = \{1_{(n-1)}, n+1\}.$

Calculons maintenant l'espace propre associé à 1. Pour cela, posons $g = f - \operatorname{Id}_E$ et échelonnons la matrice $A - I_n$ dont les colonnes sont données par $g(e_i)$ pour $1 \le i \le n$.

$$A - I_n = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & 0 \end{pmatrix},$$

où nous avons remplacé $g(e_i)$ par $g(e_i) - g(e_1) = g(e_i - e_1) = 0$ pour $2 \le i \le n$. On en déduit que $\operatorname{rg}(A - I_n) = 1$ et donc dim $E_1 = n - 1$ et $E_1 = \langle e_2 - e_1, e_3 - e_1, \dots, e_n - e_1 \rangle$. Posons maintenant $h = f - (n+1)\operatorname{Id}_E$ et regardons la matrice $A - (n+1)I_n$ dont les colonnes sont données par $h(e_i)$ pour $1 \le i \le n$.

$$A - (n+1)I_n = \begin{pmatrix} 1-n & 1 & \cdots & 1 \\ 1 & 1-n & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1-n \end{pmatrix} \sim \begin{pmatrix} 1-n & 1 & \cdots & 0 \\ 1 & 1-n & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 0 \end{pmatrix},$$

où nous avons remplacé $h(e_n)$ par $h(e_1) + h(e_2) + \cdots + h(e_n) = h(e_1 + e_2 + \cdots + e_n) = 0$. Donc le vecteur "non nul" $e_1 + e_2 + \cdots + e_n \in E_{n+1}$. Puisque n+1 est une valeur propre simple de f, alors dim $E_{n+1} = 1$. On en déduit que $E_{n+1} = \langle e_1 + e_2 + \cdots + e_n \rangle$.

3- En déduire que f est diagonalisable.

Solution: f diagonalisable car

$$\dim E_1 + \dim E_{n+1} = n = \dim E.$$

4- Donner une matrice diagonale D et une matrice inversible P telles que $D = P^{-1}AP$. Solution :

$$P = \begin{pmatrix} -1 & -1 & -1 & \cdots & -1 & 1 \\ 1 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 1 & 0 & \cdots & 0 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 0 & \cdots & 1 & 1 \end{pmatrix}, \qquad D = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 1 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & n+1 \end{pmatrix}.$$

5- Calculer le déterminant de f. L'endomorphisme f est-il inversible?

Solution : On sait que le déterminant de f est le produit de toutes ses valeurs propres, donc det f = n + 1. Puisque $n \in \mathbb{N}^*$, alors det $f \neq 0$, on en déduit que f est inversible.

Exercice 2:(10 pts)

Soit f l'endomorphime de \mathbb{R}^4 dont la matrice associée relativement à la base canonique $C=(e_1,e_2,e_3,e_4)$ de \mathbb{R}^4 est :

$$A = \left(\begin{array}{rrrr} 1 & 0 & 1 & -1 \\ -1 & 0 & -1 & -3 \\ 1 & 1 & 2 & 3 \\ 1 & 1 & 0 & 4 \end{array}\right).$$

1- Sans calculer le polynôme caractéristique de A, montrer que 1 et 2 sont des valeurs propres de f.

Solution : Pour montrer que λ est une valeur propre de A on peut montrer, par exemple, que $\det(A - \lambda I_4) = 0$ ou que $\operatorname{rg}(A - \lambda I_4) < 4$. Posons $g = f - \operatorname{Id}_{\mathbb{R}^4}$ et échelonnons la matrice $A - I_4$ dont les colonnes sont données par $g(e_i)$ pour $1 \le i \le 4$.

$$A - I_4 = \begin{pmatrix} 0 & 0 & 1 & -1 \\ -1 & -1 & -1 & -3 \\ 1 & 1 & 1 & 3 \\ 1 & 1 & 0 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & -4 & 0 & 0 \\ 1 & 4 & 0 & 0 \\ 0 & 3 & 1 & 0 \end{pmatrix},$$

où le vecteur nul est donné par $g(e_1) - g(e_2)$. On en déduit que $\operatorname{rg}(A - I_4) = 3$ et par conséquent 1 est une valeur propre de A.

Posons maintenant $h = f - 2 \operatorname{Id}_{\mathbb{R}^4}$ et échelonnons la matrice $A - 2I_4$ dont les colonnes sont données par $h(e_i)$ pour $1 \le i \le 4$.

$$A - 2I_4 = \begin{pmatrix} -1 & 0 & 1 & -1 \\ -1 & -2 & -1 & -3 \\ 1 & 1 & 0 & 3 \\ 1 & 1 & 0 & 2 \end{pmatrix} \sim \begin{pmatrix} -1 & 0 & 0 & 0 \\ -1 & -2 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix},$$

où le vecteur nul est donné par $h(e_1) - h(e_2) + h(e_3)$. On en déduit que $\operatorname{rg}(A - 2I_4) = 3$ et par conséquent 2 est une valeur propre de A.

2- Déterminer les vecteurs propres de f associés aux valeurs propres 1 et 2.

Solution : D'après l'échelonnement précédent, on a

$$E_1 = <(1, -1, 0, 0)>$$
 et $E_2 = <(1, -1, 1, 0)>$.

3- Soit u un vecteur propre de f associé à la valeur propre 2. Trouver des vecteurs v et w de \mathbb{R}^4 tels que f(v) = u + 2v et f(w) = v + 2w.

Solution: Posons u = (1, -1, 1, 0) et v = (x, y, z, t), alors

$$f(v) = u + 2v \iff \begin{cases} -x & + z - t = 1\\ -x - 2y - z - 3t = -1\\ x + y & + 3t = 1\\ x + y & + 2t = 0 \end{cases}$$

Les solutions sont $\{(x, -2 - x, 2 + x, 1) | x \in \mathbb{R}\}$. On peut prendre v = (-1, -1, 1, 1). Posons maintenant w = (x, y, z, t), alors

$$f(w) = v + 2w \iff \begin{cases} -x & + z - t = -1 \\ -x - 2y - z - 3t = -1 \\ x + y & + 3t = 1 \\ x + y & + 2t = 1 \end{cases}$$

Les solutions sont $\{(1+z,-z,z,0)|z\in\mathbb{R}\}$. On peut prendre w=(1,0,0,0).

4- Soit e un vecteur propre de f associé à la valeur propre 1. Montrer que B=(e,u,v,w) est une base de \mathbb{R}^4 .

Solution : D'après l'échelonnement dans la question $\mathbf{1}$, on peut prendre e=(1,-1,0,0). Pour montrer que B est une base de \mathbb{R}^4 , il suffit de montrer qu'elle est libre en échelonnant :

D'où B est libre et puisque $\operatorname{card}(B) = \dim \mathbb{R}^4 = 4$, alors B est une base de \mathbb{R}^4 .

5- Donner la matrice associée à f relativement à la base B.

Solution : On sais que f(e) = e, f(u) = 2u, f(v) = u + 2v et f(w) = v + 2w, d'où

$$M_B(f) = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{array}\right).$$

6- En déduire que A n'est pas diagonalisable.

Solution : D'après la question précédente, il est évident que $P_A(X) = (1-X)(2-X)^3$ et A n'est pas diagonalisable car 2 est une valeur propre de multiplicité 3 et on a vu, d'après la question **2** que dim $E_2 = 1$.

7- Notons par M la matrice associée à f relativement à la base B.

a- Décomposer M en somme d'une matrice Δ diagonale et d'une matrice N nilpotente. (Rappelons qu'une matrice S est nilpotente s'il existe $m \in \mathbb{N}^*$ tel que $S^m = 0$)

Solution: Posons

$$\Delta = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix} \quad \text{et} \quad N = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Alors

On a bien Δ diagonale, N nilpotente et $M = \Delta + N$.

b- Calculer M^n pour n entier naturel assez grand.

Solution: On a

$$\Delta N = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad \text{et} \quad N\Delta = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

d'où Δ et N commutent, on peut donc utiliser le binôme de Newton. Soit $n \geq 3,$ on a

$$M^{n} = (\Delta + N)^{n} = \sum_{k=0}^{n} C_{n}^{k} N^{k} \Delta^{n-k} = \Delta^{n} + nN \Delta^{n-1} + \frac{n(n-1)}{2} N^{2} \Delta^{n-2}.$$

On a

$$\Delta^n = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2^n & 0 & 0 \\ 0 & 0 & 2^n & 0 \\ 0 & 0 & 0 & 2^n \end{pmatrix},$$

$$N\Delta^{n-1} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2^{n-1} & 0 & 0 \\ 0 & 0 & 2^{n-1} & 0 \\ 0 & 0 & 0 & 2^{n-1} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 2^{n-1} & 0 \\ 0 & 0 & 0 & 2^{n-1} \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

$$N^{2}\Delta^{n-2} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2^{n-2} & 0 & 0 \\ 0 & 0 & 2^{n-2} & 0 \\ 0 & 0 & 0 & 2^{n-2} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2^{n-2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Donc

$$M^{n} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2^{n} & n2^{n-1} & n(n-1)2^{n-3} \\ 0 & 0 & 2^{n} & n2^{n-1} \\ 0 & 0 & 0 & 2^{n} \end{pmatrix}.$$

Exercice 3:(05 pts)

Soient $f \in \text{End}(\mathbb{R}^3)$, $C = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 et $A = M_C(f)$ définie par :

$$A = \left(\begin{array}{rrr} -2 & 1 & 1 \\ -4 & 1 & 3 \\ -2 & 1 & 1 \end{array}\right).$$

1- Calculer le polynôme caractéristique de A. En déduire A^3 .

Solution: $P_A(X) = -X^3$.

D'après le Théorème de Cayley-Hamilton on a $P_A(A) = 0$, on en déduit que $A^3 = 0$.

- **2-** Montrer qu'il existe un vecteur $u \in \mathbb{R}^3$ tel que $f^2(u) \neq 0$. $(f^2 = f \circ f)$ **Solution :** Raisonnons par l'absurde en supposant que : $\forall u \in \mathbb{R}^3 : f^2(u) = 0$ donc $f^2 \equiv 0$, i.e., $A^2 = 0$ mais un simple calcul montre que $A^2 \neq 0$ d'où une contradiction.
- **3-** Soit $u \in \mathbb{R}^3$ tel que $f^2(u) \neq 0$. Montrer que $B = (f^2(u), f(u), u)$ est une base de \mathbb{R}^3 . **Solution :** Puisque card $(B) = \dim \mathbb{R}^3 = 3$, il suffit de montrer que B est libre. Soient $\alpha, \beta, \gamma \in \mathbb{R}$ tels que

$$\alpha f^2(u) + \beta f(u) + \gamma u = 0. \tag{1}$$

En appliquant f à gauche et à droite de l'égalité (1), on obtient

$$\beta f^{2}(u) + \gamma f(u) = 0.$$
 (Car $f^{3}(u) = 0$ puisque $A^{3} = 0$) (2)

En appliquant f à gauche et à droite de l'égalité (2), on obtient

$$\gamma f^2(u) = 0. (3)$$

Puisque par hypothèse $f^2(u) \neq 0$, on en déduit que $\gamma = 0$ que l'on remplace dans (2), ce qui nous donne $\beta = 0$. Remplaçons maintenant $\gamma = \beta = 0$ dans (1), on en déduit que $\alpha = 0$ et donc B est libre.

4- Donner $M_B(f)$ la matrice associée à f relativement à la base B.

Solution:

$$M_B(f) = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right).$$