Internet Appendix:

"Optimal Portfolio Choice with Estimation Risk: No Risk-free Asset Case"

Raymond Kan, Xiaolu Wang and Guofu Zhou

November 2020

A. Derivation of the BS Rule

Motivated by a shrinkage consideration and a Bayesian analysis, Jorion (1986, 1991) develops the following estimator of μ ,

$$\hat{\mu}_{BS,t} = \frac{v_t}{N+2+v_t} \hat{\mu}_t + \frac{N+2}{N+2+v_t} 1_N \hat{\mu}_{g,t}$$
 (IA.1)

with

$$\mathbf{v}_t = (h - N - 2)\hat{\mathbf{\psi}}_t^2. \tag{IA.2}$$

The empirical Bayes-Stein estimator of the covariance matrix Σ is given by ¹

$$\hat{\Sigma}_{BS,t} = \left(\frac{h+1+\lambda_t}{h+\lambda_t}\right) \frac{h}{h-N-2} \hat{\Sigma}_t + \frac{\lambda_t}{(h-N-2)(h+1+\lambda_t)} \frac{1_N 1_N'}{1_N' \hat{\Sigma}_t^{-1} 1_N}$$
(IA.3)

with

$$\lambda_t = \frac{h(N+2)}{v_t}. (IA.4)$$

Therefore, the empirical Bayes-Stein estimator of the optimal portfolio weights is

$$\hat{w}_{BS,t} = \frac{\hat{\Sigma}_{BS,t}^{-1} 1_N}{1_N' \hat{\Sigma}_{BS,t}^{-1} 1_N} + \frac{1}{\gamma} \hat{\Sigma}_{BS,t}^{-1} \left(\hat{\mu}_{BS,t} - 1_N \frac{1_N' \hat{\Sigma}_{BS,t}^{-1} \hat{\mu}_{BS,t}}{1_N' \hat{\Sigma}_{BS,t}^{-1} 1_N} \right).$$
(IA.5)

Using Sherman-Morrison formula, we get

$$\hat{\Sigma}_{BS,t}^{-1} = \frac{(h+\lambda_t)(h-N-2)}{h(h+1+\lambda_t)} \hat{\Sigma}_t^{-1} - \frac{\hat{\Sigma}_t^{-1} \mathbf{1}_N \mathbf{1}_N' \hat{\Sigma}_t^{-1}}{\mathbf{1}_N' \hat{\Sigma}_t^{-1} \mathbf{1}_N} \frac{(h+\lambda_t)^2 \lambda_t (h-N-2)}{h(h+1+\lambda_t) [h(h+1+\lambda_t)^2 + (h+\lambda_t) \lambda_t]}.$$
(IA.6)

Plug the above expression into (IA.5), we can rewrite $\hat{w}_{BS,t}$ as

$$\hat{w}_{BS,t} = \hat{w}_{g,t} + \frac{g_4(\hat{\psi}_t^2)}{\gamma} \hat{w}_{z,t},$$
(IA.7)

where

$$g_4(\hat{\psi}_t^2) = \frac{(h-N-2)^2 \hat{\psi}_t^2}{(h+1)(h-N-2)\hat{\psi}_t^2 + h(N+2)}.$$
 (IA.8)

¹See Kan and Zhou (2007) for details.

B. Detailed Proof of Proposition 1

Let $P = [v, \eta, P_1]$ be an $N \times N$ orthonormal matrix with its first two columns as

$$v = \frac{\Sigma^{-\frac{1}{2}} 1_N}{\left(1_N' \Sigma^{-1} 1_N\right)^{\frac{1}{2}}} = \sigma_g \Sigma^{-\frac{1}{2}} 1_N, \tag{IA.9}$$

$$\eta = \frac{(I_N - vv')\Sigma^{-\frac{1}{2}}\mu}{\left[\mu'\Sigma^{-\frac{1}{2}}(I_N - vv')\Sigma^{-\frac{1}{2}}\mu\right]^{\frac{1}{2}}} = \frac{\Sigma^{-\frac{1}{2}}(\mu - 1_N\mu_g)}{\psi}.$$
 (IA.10)

Define

$$z = \sqrt{h}P'\Sigma^{-\frac{1}{2}}\hat{\mu}_t \sim \mathcal{N}\left(\begin{bmatrix} \sqrt{h}\theta_g\\ \sqrt{h}\psi\\ 0_{N-2} \end{bmatrix}, I_N\right), \tag{IA.11}$$

$$W = hP'\Sigma^{-\frac{1}{2}}\hat{\Sigma}_t \Sigma^{-\frac{1}{2}} P \sim \mathcal{W}_N(h-1, I_N), \tag{IA.12}$$

where $\mathcal{W}_N(h-1,I_N)$ is a Wishart distribution with h-1 degrees of freedom and covariance matrix I_N , and z and W are independent of each other. Write $z'z=z_1^2+z_2^2+u_0$, where $z_1\sim\mathcal{N}(\sqrt{h}\theta_g,1)$, $z_2\sim\mathcal{N}(\sqrt{h}\psi,1)$, $u_0\sim\chi_{N-2}^2$, and they are independent of each other.

With the definition of z and W, we can write

$$\hat{\psi}_t^2 = \hat{\mu}_t' \hat{\Sigma}_t^{-1} \hat{\mu}_t - \frac{(1_N' \hat{\Sigma}_t^{-1} \hat{\mu}_t)^2}{1_N' \hat{\Sigma}_t^{-1} 1_N} = z' W^{-1} z - \frac{(e_1' W^{-1} z)^2}{e_1' W^{-1} e_1}, \tag{IA.13}$$

$$\mu_{z,t} = \hat{w}'_{z,t} \mu = \sqrt{h} \psi \left(e'_2 W^{-1} z - \frac{e'_1 W^{-1} e_2 e'_1 W^{-1} z}{e'_1 W^{-1} e_1} \right), \tag{IA.14}$$

$$\mu_{g,t} = \hat{w}'_{g,t}\mu = \mu_g + \sigma_g \psi \frac{e'_1 W^{-1} e_2}{e'_1 W^{-1} e_1},$$
(IA.15)

$$\sigma_{z,t}^2 = \hat{w}_{z,t}' \Sigma \hat{w}_{z,t} = hz'W^{-2}z + \frac{h(e_1'W^{-1}z)^2 e_1'W^{-2}e_1}{(e_1'W^{-1}e_1)^2} - \frac{2h(e_1'W^{-1}z)(e_1'W^{-2}z)}{e_1'W^{-1}e_1}, \quad (IA.16)$$

$$\sigma_{g,t}^2 = \hat{w}_{g,t}' \Sigma \hat{w}_{g,t} = \frac{\sigma_g^2 e_1' W^{-2} e_1}{(e_1' W^{-1} e_1)^2},\tag{IA.17}$$

$$\sigma_{gz,t} = \hat{w}'_{g,t} \Sigma \hat{w}_{z,t} = \sqrt{h} \sigma_g \left[\frac{e'_1 W^{-2} z}{e'_1 W^{-1} e_1} - \frac{e'_1 W^{-2} e_1 e'_1 W^{-1} z}{(e'_1 W^{-1} e_1)^2} \right], \tag{IA.18}$$

where $e_1 = [1, 0'_{N-1}]'$ and $e_2 = [0, 1, 0'_{N-2}]'$. Therefore, the exact distribution of $r_{t+1}(\tilde{c}) = \hat{w}'_t(\tilde{c})'r_{t+1}$ depends on the following eight terms: $e'_1W^{-1}e_1$, $e'_1W^{-1}z$, $z'W^{-1}z$, $e'_2W^{-1}e_1$, $e'_2W^{-1}z$, $e'_1W^{-2}e_1$, $e'_1W^{-2}e_1$, $e'_1W^{-2}e_1$, and $z'W^{-2}z$.

Define an $N \times N$ orthonormal matrix $Q = [e_1, \xi, \iota, Q_0]$ with its first three columns being e_1 ,

$$\xi = \frac{(I_N - e_1 e_1')z}{\left[z'(I_N - e_1 e_1')z\right]^{\frac{1}{2}}} = \frac{(I_N - e_1 e_1')z}{\sqrt{z_2^2 + u_0}},$$
(IA.19)

$$i = \frac{(I_N - e_1 e_1' - \xi \xi') e_2}{\left[e_2' (I_N - e_1 e_1' - \xi \xi') e_2\right]^{\frac{1}{2}}} = \frac{(I_N - \xi \xi') e_2}{\sqrt{u_0/(z_2^2 + u_0)}} = \frac{\sqrt{z_2^2 + u_0} e_2 - z_2 \xi}{\sqrt{u_0}},$$
 (IA.20)

and denote $Q_1 = [\iota, Q_0]$. Let

$$A = (Q'W^{-1}Q)^{-1} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \sim \mathcal{W}_N(h-1, I_N),$$
 (IA.21)

where A_{11} is the upper left 2 × 2 submatrix of A. Using Theorem 3.2.10 of Muirhead (1982), we have

$$A_{11\cdot 2} \equiv A_{11} - A_{12}A_{22}^{-1}A_{21} \sim \mathcal{W}_2(h - N + 1, I_2), \tag{IA.22}$$

$$\operatorname{vec}(y) \equiv \operatorname{vec}(-A_{22}^{-\frac{1}{2}}A_{21}) \sim \mathcal{N}(0_{2N-4}, I_{2N-4}), \tag{IA.23}$$

$$A_{22} \sim \mathcal{W}_{N-2}(h-1, I_{N-2}),$$
 (IA.24)

and they are independent of each other. Theorem 3.1 and Corollary 3.1 in Dickey (1967) suggest that

$$A_{22}^{-\frac{1}{2}}y = xL^{-1}, (IA.25)$$

where $x \equiv [x_1, x_2]$ is an $(N-2) \times 2$ matrix of independent standard normal random variables, L is a lower diagonal matrix such that $LL' \sim \mathcal{W}_2(h-N+3, I_2)$, and x and L are independent of each other.

Note that the first five terms needed, i.e., $e'_1W^{-1}e_1$, $e'_1W^{-1}z$, $z'W^{-1}z$, $e'_2W^{-1}e_1$, $e'_2W^{-1}z$, can be obtained from z together with the elements in the upper left 3×2 submatrix of A^{-1} , i.e., $A^{-1}_{11\cdot 2}$ and

$$[h_1, h_2] \equiv \iota' W^{-1}[e_1, \xi] = \varepsilon_1' Q_1' W^{-1}[e_1, \xi] = \varepsilon_1' x L^{-1} A_{11 \cdot 2}^{-1} = [x_{11}, x_{21}] L^{-1} A_{11 \cdot 2}^{-1}, \qquad (IA.26)$$

where $\varepsilon_1 = [1, 0'_{N-3}]'$, and $x_{11} \sim \mathcal{N}(0, 1)$ and $x_{21} \sim \mathcal{N}(0, 1)$ being the first element of x_1 and x_2 , respectively. To obtain the expressions for the remaining three terms that involve W^{-2} , we use the following identity

$$\left[\begin{array}{cc}e_1'W^{-2}e_1 & e_1'W^{-2}\xi\\e_1'W^{-2}\xi & \xi'W^{-2}\xi\end{array}\right] = \left[\begin{array}{c}e_1'\\\xi'\end{array}\right]W^{-1}\left([e_1,\,\xi]\left[\begin{array}{c}e_1'\\\xi'\end{array}\right] + Q_1Q_1'\right)W^{-1}[e_1,\,\xi]$$

$$= A_{11\cdot 2}^{-2} + A_{11\cdot 2}^{-1} (y' A_{22}^{-1} y) A_{11\cdot 2}^{-1}$$

= $A_{11\cdot 2}^{-2} + A_{11\cdot 2}^{-1} (L^{-1})' x' x L^{-1} A_{11\cdot 2}^{-1}$. (IA.27)

Write

$$x'x = \begin{bmatrix} x_{11}^2 & x_{11}x_{21} \\ x_{11}x_{21} & x_{21}^2 \end{bmatrix} + C,$$
 (IA.28)

where $C \sim \mathcal{W}_2(N-3, I_2)$. Applying the Bartlett decomposition to $A_{11\cdot 2}$, L, and C, we are able to obtain individual elements in $A_{11\cdot 2}^{-1}$, (IA.26), and (IA.27).

Based on the Bartlett decomposition, we can write

$$A_{11\cdot 2} = \begin{bmatrix} v_1 + a^2 & -a\sqrt{v_2} \\ -a\sqrt{v_2} & v_2 \end{bmatrix},$$
 (IA.29)

where $v_1 \sim \chi^2_{h-N}$, $v_2 \sim \chi^2_{h-N+1}$, and $a \sim \mathcal{N}(0,1)$, all of which are independent of each other. Taking the inverse of $A_{11\cdot 2}$ and using the inverse of partitioned matrix formula to (IA.21), we obtain

$$\begin{bmatrix} e_1'W^{-1}e_1 & e_1'W^{-1}\xi \\ e_1'W^{-1}\xi & \xi'W^{-1}\xi \end{bmatrix} = A_{11\cdot 2}^{-1} = \begin{bmatrix} \frac{1}{\nu_1} & \frac{a}{\nu_1\sqrt{\nu_2}} \\ \frac{a}{\nu_1\sqrt{\nu_2}} & \frac{1}{\nu_2} + \frac{a^2}{\nu_1\nu_2} \end{bmatrix}.$$
 (IA.30)

It follows that

$$e_1'W^{-1}e_1 = \frac{1}{v_1},$$
 (IA.31)

$$e_1'W^{-1}\xi = \frac{a}{v_1\sqrt{v_2}},$$
 (IA.32)

$$\xi'W^{-1}\xi = \frac{1}{v_2} + \frac{a^2}{v_1v_2}. ag{IA.33}$$

Using the definition of ξ , we obtain

$$e_1'W^{-1}\xi = \frac{e_1'W^{-1}z - e_1'W^{-1}e_1z_1}{\sqrt{z_2^2 + u_0}} = \frac{a}{v_1\sqrt{v_2}}$$

$$\Rightarrow e_1'W^{-1}z = \frac{a\sqrt{z_2^2 + u_0}}{v_1\sqrt{v_2}} + \frac{z_1}{v_1},$$
(IA.34)

and

$$\xi'W^{-1}\xi = \frac{z'(I_N - e_1e_1')W^{-1}(I_N - e_1e_1')z}{z_2^2 + u_0} = \frac{1}{v_2} + \frac{a^2}{v_1v_2}$$

$$\Rightarrow z'W^{-1}z = \frac{z_2^2 + u_0}{v_2} + \frac{1}{v_1} \left(\frac{a\sqrt{z_2^2 + u_0}}{\sqrt{v_2}} + z_1 \right)^2.$$
 (IA.35)

Using (IA.31), (IA.34), and (IA.35), we get

$$\hat{\psi}_t^2 = z'W^{-1}z - \frac{(e_1'W^{-1}z)^2}{e_1'W^{-1}e_1} = \frac{z_2^2 + u_0}{v_2}.$$
 (IA.36)

Using again the Bartlett decomposition, we can write

$$L = \begin{bmatrix} \sqrt{w_1} & 0\\ -b & \sqrt{w_2} \end{bmatrix}, \tag{IA.37}$$

with $w_1 \sim \chi^2_{h-N+3}$, $w_2 \sim \chi^2_{h-N+2}$, and $b \sim \mathcal{N}(0,1)$, and they are independent of each other. Taking the inverse of L, we obtain

$$L^{-1} = \begin{bmatrix} \frac{1}{\sqrt{w_1}} & 0\\ \frac{b}{\sqrt{w_1 w_2}} & \frac{1}{\sqrt{w_2}} \end{bmatrix}.$$
 (IA.38)

We can express h_1 and h_2 in (IA.26) as

$$h_1 = \frac{1}{v_1} \left(\frac{x_{11}}{\sqrt{w_1}} + \frac{bx_{21}}{\sqrt{w_1 w_2}} + \frac{ax_{21}}{\sqrt{v_2 w_2}} \right), \tag{IA.39}$$

$$h_2 = \frac{a}{\sqrt{v_2}} h_1 + \frac{x_{21}}{v_2 \sqrt{w_2}}. (IA.40)$$

Using the definition of ι , (IA.26), (IA.31), (IA.32), and (IA.33), we have

$$e_2'W^{-1}e_1 = \frac{\sqrt{u_0}}{\sqrt{z_2^2 + u_0}}h_1 + \frac{e_1'W^{-1}\xi}{\sqrt{z_2^2 + u_0}}z_2 = \frac{\sqrt{u_0}}{\sqrt{z_2^2 + u_0}}h_1 + \frac{az_2}{v_1\sqrt{v_2}\sqrt{z_2^2 + u_0}},$$
 (IA.41)

$$e_2'W^{-1}z = \sqrt{u_0}h_2 + e_2'W^{-1}e_1z_1 + \xi'W^{-1}\xi z_2$$

$$= \frac{a\sqrt{u_0}}{\sqrt{v_2}}h_1 + \frac{x_{21}\sqrt{u_0}}{v_2\sqrt{w_2}} + e_2'W^{-1}e_1z_1 + \left(\frac{1}{v_2} + \frac{a^2}{v_1v_2}\right)z_2.$$
(IA.42)

Substituting these two expressions and (IA.31), (IA.34) in (IA.14) and (IA.15), we obtain

$$\mu_{z,t} = \frac{\sqrt{h}\psi}{v_2} \left(\frac{x_{21}\sqrt{u_0}}{\sqrt{w_2}} + z_2 \right),$$
(IA.43)

$$\mu_{g,t} = \mu_g + \frac{\sigma_g \psi}{\sqrt{z_2^2 + u_0}} \left(y_1 \sqrt{u_0} + \frac{a z_2}{\sqrt{v_2}} \right),$$
(IA.44)

where

$$y_1 = \frac{x_{11}}{\sqrt{w_1}} + \frac{bx_{21}}{\sqrt{w_1 w_2}} + \frac{ax_{21}}{\sqrt{v_2 w_2}}.$$
 (IA.45)

Next, using the Bartlett decomposition to C in (IA.28), we can write

$$C = \begin{bmatrix} s_1 + c^2 & c\sqrt{s_2} \\ c\sqrt{s_2} & s_2 \end{bmatrix}, \tag{IA.46}$$

where $s_1 \sim \chi^2_{N-4}$, $s_2 \sim \chi^2_{N-3}$, and $c \sim \mathcal{N}(0,1)$, and they are independent of each other.² Substituting (IA.28), (IA.30), and (IA.38) in (IA.27) and after simplification, we obtain

$$e'_{1}W^{-2}e_{1} = \frac{1}{v_{1}^{2}} \left(y_{1}^{2} + y_{2}^{2} + 1 + \frac{s_{1}}{w_{1}} + \frac{a^{2}}{v_{2}} \right),$$

$$\xi'W^{-2}\xi = \left(\frac{ay_{1}}{v_{1}\sqrt{v_{2}}} + \frac{x_{21}}{v_{2}\sqrt{w_{2}}} \right)^{2} + \frac{a^{2}}{v_{1}^{2}v_{2}} \left(1 + \frac{s_{1}}{w_{1}} \right) + \left(\frac{ay_{2}}{v_{1}\sqrt{v_{2}}} + \frac{\sqrt{s_{2}}}{v_{2}\sqrt{w_{2}}} \right)^{2} + \left(\frac{1}{v_{2}} + \frac{a^{2}}{v_{1}v_{2}} \right)^{2},$$
(IA.48)

$$e_1'W^{-2}\xi = \frac{a}{v_1^2\sqrt{v_2}}\left(y_1^2 + y_2^2 + 1 + \frac{s_1}{w_1} + \frac{a^2}{v_2}\right) + \frac{x_{21}y_1}{v_1v_2\sqrt{w_2}} + \frac{\sqrt{s_2}y_2}{v_1v_2\sqrt{w_2}} + \frac{a}{v_1v_2^{\frac{3}{2}}},$$
 (IA.49)

where

$$y_2 = \frac{c}{\sqrt{w_1}} + \frac{b\sqrt{s_2}}{\sqrt{w_1 w_2}} + \frac{a\sqrt{s_2}}{\sqrt{v_2 w_2}}.$$
 (IA.50)

With these expressions, we can write

$$e'_{1}W^{-2}z = \sqrt{z_{2}^{2} + u_{0}}(e'_{1}W^{-2}\xi) + z_{1}(e'_{1}W^{-2}e_{1})$$

$$= \frac{y_{3}}{v_{1}}\left(y_{1}^{2} + y_{2}^{2} + 1 + \frac{s_{1}}{w_{1}} + \frac{a^{2}}{v_{2}}\right) + \frac{\hat{\psi}_{t}}{v_{1}\sqrt{v_{2}}}\left(\frac{x_{21}y_{1} + \sqrt{s_{2}}y_{2}}{\sqrt{w_{2}}} + \frac{a}{\sqrt{v_{2}}}\right), \qquad (IA.51)$$

$$z'W^{-2}z = (z_{2}^{2} + u_{0})(\xi'W^{-2}\xi) + 2z_{1}(e'_{1}W^{-2}z) - z_{1}^{2}(e'_{1}W^{-2}e_{1})$$

$$= \left(1 + \frac{s_{1}}{w_{1}}\right)y_{3}^{2} + \left(\frac{ay_{3} + \hat{\psi}_{t}}{\sqrt{v_{2}}}\right)^{2} + \left(y_{1}y_{3} + \frac{x_{21}\hat{\psi}_{t}}{\sqrt{v_{2}w_{2}}}\right)^{2} + \left(y_{2}y_{3} + \frac{\sqrt{s_{2}}\hat{\psi}_{t}}{\sqrt{v_{2}w_{2}}}\right)^{2} \qquad (IA.52)$$

with

$$y_3 = e_1' W^{-1} z = \frac{a\hat{\psi}_t + z_1}{v_1}.$$
 (IA.53)

We then obtain

$$\sigma_{g,t}^2 = \sigma_g^2 \left(y_1^2 + y_2^2 + 1 + \frac{s_1}{w_1} + \frac{a^2}{v_2} \right), \tag{IA.54}$$

²Note that when N = 3, C is a zero matrix and we set $s_1 = 0$, $s_2 = 0$, and c = 0.

$$\sigma_{z,t}^2 = \frac{h\hat{\psi}_t^2}{v_2} \left(1 + \frac{x_{21}^2 + s_2}{w_2} \right),\tag{IA.55}$$

$$\sigma_{gz,t} = \frac{\sqrt{h}\sigma_g \hat{\psi}_t}{\sqrt{v_2}} \left(\frac{a}{\sqrt{v_2}} + \frac{x_{21}}{\sqrt{w_2}} y_1 + \frac{\sqrt{s_2}}{\sqrt{w_2}} y_2 \right).$$
 (IA.56)

Using (IA.43), (IA.44), (IA.54), (IA.55), and (IA.56), we obtain

$$\mu_{t}(\tilde{c}) = \mu_{g,t} + \frac{\tilde{c}}{\gamma}\mu_{z,t}$$

$$= \mu_{g} + \frac{\sigma_{g}\psi}{\hat{\psi}_{t}} \left(\frac{\sqrt{u_{0}}y_{1}}{\sqrt{v_{2}}} + \frac{az_{2}}{v_{2}}\right) + \frac{\tilde{c}\sqrt{h}\psi}{\gamma v_{2}} \left(\frac{x_{21}\sqrt{u_{0}}}{\sqrt{w_{2}}} + z_{2}\right), \qquad (IA.57)$$

$$\sigma_{t}^{2}(\tilde{c}) = \sigma_{g,t}^{2} + \frac{\tilde{c}^{2}}{\gamma^{2}}\sigma_{z,t}^{2} + \frac{2\tilde{c}}{\gamma}\sigma_{gz,t}$$

$$= \sigma_{g}^{2} \left(y_{1}^{2} + y_{2}^{2} + 1 + \frac{s_{1}}{w_{1}} + \frac{a^{2}}{v_{2}}\right) + \frac{\tilde{c}^{2}h\hat{\psi}_{t}^{2}}{\gamma^{2}v_{2}} \left(1 + \frac{x_{21}^{2} + s_{2}}{w_{2}}\right)$$

$$+ \frac{2\tilde{c}\sqrt{h}\sigma_{g}\hat{\psi}_{t}}{\gamma\sqrt{v_{2}}} \left(\frac{a}{\sqrt{v_{2}}} + \frac{x_{21}y_{1}}{\sqrt{w_{2}}} + \frac{\sqrt{s_{2}}y_{2}}{\sqrt{w_{2}}}\right). \qquad (IA.58)$$

This completes the proof.

C. Expected Out-of-Sample Utility Comparison

Tables IA.1 to IA.3 theoretically assess the portfolios in terms of expected out-of-sample utility, with parameters calibrated using the 10 momentum portfolios over the period of 1927/1-2018/12. Five different estimation windows are examined (i.e., h = 120, 240, 360, 480, and 600), and the risk aversion is set to $\gamma = 3$. Different distributional assumptions are made for the three tables. In Table IA.1, the returns of the risky assets are assumed to follow a multivariate normal distribution, and the returns are i.i.d. over time. In Table IA.2, the asset returns are assumed to follow a multivariate t-distribution with five degrees of freedom, and the returns are i.i.d. over time. Under the multivariate t-distribution, the returns of the risky assets have fat tails, which is often what we find in actual data. In Table IA.3, asset returns are generated based on an empirical distribution from actual data using the block bootstrap procedure proposed in Politis and Romano (1994) with the expected length of the block set to 10 months. Note that applying this procedure to stationary data, the resampled data keep the stationary properties. In order to have a proper comparison across

³Tu and Zhou (2004), among others, show that t-distribution fits financial data well despite ignoring skewness.

the three distributional assumptions, we set the mean and covariance matrix under the multivariate normal and the multivariate t to be the same as the sample mean and the sample covariance matrix based on the actual data. The expected out-of-sample utilities of the invariant optimal portfolios rules in Table IA.1 are computed based on Lemma 1 and Proposition 2 in the paper. The remaining expected out-of-sample utilities in the three tables are obtained based on 10,000 simulations.

Note that the expected out-of-sample utility of the normalized KZ 3-fund rule ($\hat{w}_{KZ3,t}$) is not reported because it does not exist as shown in Section 3.5.3. In addition, the expected out-of-sample utility of KO_{BT} is not reported because we do not impose any factor structure in the simulations.

D. Additional Empirical Results

Additional empirical results are presented here.

Tables IA.4 to IA.12 report the results assuming no transaction costs for (i) h = 240 and $\gamma = 3$, (ii) h = 120 and $\gamma = 5$, and (iii) h = 240 and $\gamma = 5$. Tables IA.4 to IA.6 present CER results; Tables IA.7 to IA.9 present Sharpe ratio results; and Tables IA.10 to IA.12 present turnover results.

Tables IA.13 to IA.18 report the results assuming transaction costs of 20 bps for (i) h = 240 and $\gamma = 3$, (ii) h = 120 and $\gamma = 5$, and (iii) h = 240 and $\gamma = 5$. Tables IA.13 to IA.15 present CER results; and Tables IA.16 to IA.18 present Sharpe ratio results.

Tables IA.19 to IA.26 report the results assuming transaction costs of 10 bps for (i) h = 120 and $\gamma = 3$, (ii) h = 240 and $\gamma = 3$, (iii) h = 120 and $\gamma = 5$, and (iv) h = 240 and $\gamma = 5$. Tables IA.19 to IA.22 present CER results; and Tables IA.23 to IA.26 present Sharpe ratio results.

Tables IA.27 to IA.34 report the results assuming transaction costs of 50 bps for (i) h = 120 and $\gamma = 3$, (ii) h = 240 and $\gamma = 3$, (iii) h = 120 and $\gamma = 5$, and (iv) h = 240 and $\gamma = 5$. Tables IA.27 to IA.30 present CER results; and Tables IA.31 to IA.34 present Sharpe ratio results.

Table IA.1: Expected Out-of-Sample Utility – 10 Risky Assets with Normal Distribution

This table reports the expected out-of-sample utilities of the portfolios for different estimation windows (h=120, 240, 360, 480, 600). The returns of the risky assets are assumed to follow a multivariate normal distribution with parameter values estimated using excess monthly returns of the 10 momentum portfolios over the period of 1927/1–2018/12. The expected out-of-sample utilities of the invariant optimal portfolio rules are computed based on Lemma 1 and Proposition 2. The expected out-of-sample utilities of the remaining portfolios are obtained based on 10,000 simulations. The risk aversion is set to $\gamma=3$. We set $\eta=4$ for the timing strategies KO_{VT} and KO_{RT} .

h	120	240	360	480	600
w^*	0.0111	0.0111	0.0111	0.0111	0.0111
	Inva	riant Optimal	Portfolio Rule	es	
$ \hat{w}_{q,t} $	0.0063	0.0077	0.0083	0.0088	0.0091
$\hat{w}_{p,t}$	-0.0063	0.0036	0.0063	0.0076	0.0084
$\hat{w}_{u,t}$	-0.0033	0.0043	0.0066	0.0078	0.0085
$\hat{w}_{BS,t}$	0.0054	0.0076	0.0084	0.0089	0.0092
	Rules with Sh	nrinkage Cova	riance Matrix	Estimators	
$\hat{w}_{q,t}^{LW2004}$	0.0073	0.0080	0.0085	0.0089	0.0092
$\hat{w}_{p,t}^{LW2004}$	0.0014	0.0056	0.0073	0.0082	0.0087
$\hat{w}_{q,t}^{LW2017}$	0.0068	0.0078	0.0084	0.0088	0.0092
$\hat{w}_{p,t}^{LW2004}$	-0.0030	0.0043	0.0066	0.0078	0.0085
	Rules with Ma	cKinlay-Pásto	or Single Factor	or Structure	
$\hat{w}_{q,t}^{MP}$	0.0081	0.0081	0.0080	0.0079	0.0078
$\hat{w}_{p,t}^{MP}$	0.0044	0.0056	0.0059	0.0061	0.0063
	Rule	with No-Short	-Sale Constrai	ints	
$\hat{w}_{p,t}^{NS}$	0.0049	0.0053	0.0055	0.0056	0.0057
	Other R	ules from Por	tfolio Optimiz	ation	
$\hat{w}_{g,t}$	0.0059	0.0061	0.0061	0.0061	0.0061
$\hat{w}_{g,t}^{NS}$	0.0038	0.0038	0.0038	0.0039	0.0039
		Non-Optimiza	ation Rules		
1/N	0.0010	0.0010	0.0010	0.0010	0.0010
KO_{VT}	0.0033	0.0033	0.0033	0.0033	0.0033
KO_{RT}	0.0044	0.0046	0.0046	0.0047	0.0047

Table IA.2: Expected Out-of-Sample Utility – 10 Risky Assets with Multivariate t Distribution

This table reports the expected out-of-sample utilities of the portfolios for different estimation windows (h = 120, 240, 360, 480, 600). The returns of the risky assets are assumed to follow a multivariate t distribution with five degrees of freedom. The parameter values are estimated using excess monthly returns of the 10 momentum portfolios over the period of 1927/1-2018/12. The expected out-of-sample utilities of the portfolios are obtained based on 10,000 simulations. The risk aversion is set to $\gamma = 3$. We set $\eta = 4$ for the timing strategies KO_{VT} and KO_{RT} .

h	120	240	360	480	600
w^*	0.0111	0.0111	0.0111	0.0111	0.0111
	Inva	riant Optimal	Portfolio Rule	es	
$\hat{w}_{q,t}$	0.0059	0.0075	0.0082	0.0087	0.0090
$\hat{w}_{p,t}$	-0.0088	0.0027	0.0059	0.0073	0.0081
$\hat{w}_{u,t}$	-0.0053	0.0035	0.0062	0.0075	0.0082
$\hat{w}_{BS,t}$	0.0049	0.0073	0.0083	0.0088	0.0091
	Rules with Sh	rinkage Covai	riance Matrix	Estimators	
$\hat{w}_{q,t}^{LW2004}$	0.0075	0.0082	0.0087	0.0090	0.0093
$\hat{w}_{p,t}^{LW2004}$	0.0035	0.0066	0.0078	0.0085	0.0089
$\hat{w}_{q,t}^{LW2017}$	0.0065	0.0077	0.0083	0.0088	0.0091
$\hat{w}_{p,t}^{LW2017}$	-0.0047	0.0036	0.0062	0.0075	0.0082
	Rules with Ma	cKinlay-Pásto	or Single Facto	or Structure	
$\hat{w}_{q,t}^{MP}$	0.0084	0.0083	0.0082	0.0081	0.0079
$\hat{w}_{p,t}^{MP}$	0.0042	0.0054	0.0058	0.0061	0.0062
	Rule v	vith No-Short-	-Sale Constrai	nts	
$\hat{w}_{p,t}^{NS}$	0.0049	0.0053	0.0055	0.0056	0.0057
	Other R	ules from Port	folio Optimiz	ation	
$\hat{w}_{g,t}$	0.0057	0.0059	0.0060	0.0060	0.0061
$\hat{w}_{g,t}^{NS}$	0.0037	0.0038	0.0038	0.0038	0.0038
		Non-Optimiza	ation Rules		
1/N	0.0010	0.0010	0.0010	0.0010	0.0010
KO_{VT}	0.0033	0.0033	0.0033	0.0033	0.0033
KO_{RT}	0.0044	0.0046	0.0046	0.0047	0.0047

Table IA.3: Expected Out-of-Sample Utility – 10 Risky Assets with Empirical Distribution

This table reports the expected out-of-sample utilities of the portfolios for different estimation windows (h = 120, 240, 360, 480, 600). The returns of the risky assets are resampled from the excess monthly returns of the 10 momentum portfolios over the period of 1927/1–2018/12, using the block bootstrap procedure of Politis and Romano (1994) with the expected length of the block set to 10 months. The expected out-of-sample utilities of the portfolios are obtained based on 10,000 simulations. The risk aversion is set to $\gamma = 3$. We set $\eta = 4$ for the timing strategies KO_{VT} and KO_{RT} .

h	120	240	360	480	600
w^*	0.0111	0.0111	0.0111	0.0111	0.0111
	Inva	riant Optimal l	Portfolio Rule	s	
$\left[\hat{w}_{q,t} ight]$	0.0035	0.0064	0.0076	0.0082	0.0087
$\hat{w}_{p,t}$	-0.0189	-0.0006	0.0041	0.0061	0.0072
$\hat{w}_{u,t}$	-0.0131	0.0006	0.0045	0.0063	0.0074
$\hat{w}_{BS,t}$	0.0018	0.0061	0.0076	0.0083	0.0087
	Rules with Sh	nrinkage Covar	riance Matrix	Estimators	
$\hat{w}_{q,t}^{LW2004}$	0.0065	0.0077	0.0084	0.0088	0.0091
$\hat{w}_{p,t}^{LW2004}$	-0.0015	0.0050	0.0071	0.0080	0.0086
$\hat{w}_{q,t}^{LW2017}$	0.0046	0.0067	0.0077	0.0083	0.0087
$\hat{w}_{p,t}^{LW2017}$	-0.0134	0.0004	0.0045	0.0063	0.0074
	Rules with Ma	acKinlay-Pásto	or Single Facto	or Structure	
$oxed{\hat{w}_{q,t}^{MP}}$	0.0061	0.0068	0.0070	0.0071	0.0071
$\hat{w}_{p,t}^{MP}$	0.0023	0.0039	0.0046	0.0050	0.0053
	Rule	with No-Short-	Sale Constrain	nts	
$\hat{w}_{p,t}^{NS}$	0.0050	0.0054	0.0055	0.0056	0.0057
	Other R	ules from Port	folio Optimiza	ation	
$\hat{w}_{g,t}$	0.0042	0.0049	0.0053	0.0055	0.0056
$\hat{w}_{g,t}^{NS}$	0.0029	0.0033	0.0034	0.0035	0.0036
		Non-Optimiza	tion Rules		
1/N	0.0010	0.0010	0.0010	0.0010	0.0010
KO_{VT}	0.0028	0.0030	0.0031	0.0031	0.0032
KO_{RT}	0.0041	0.0044	0.0045	0.0045	0.0046

Table IA.4: CER Comparison: h = 240 and $\gamma = 3$

This table reports the certainty equivalent returns of the portfolios studied in this paper with h = 240 and $\gamma = 3$, based on the eight datasets containing excess monthly returns. The four newly obtained optimal combining portfolios, i.e., $\hat{w}_{q,t}$, $\hat{w}_{q,t}^{LW2004}$, $\hat{w}_{q,t}^{LW2017}$, and $\hat{w}_{q,t}^{MP}$, are highlighted with a box around. In the three categories to which the four new portfolios belong, one-sided tests are conducted to assess the value of using the newly derived optimal combining coefficient \hat{c}_t , and the *p*-values are reported in *italics*. For the portfolios in the remaining three categories, one-sided tests are conducted to compare them with the four newly obtained portfolios, and the corresponding *p*-values are reported in the four rows below the portfolio CER. We set $\eta = 4$ for the timing strategies KO_{VT} , KO_{RT} , and KO_{BT} .

	Momentum $N = 10$	Size-B/M $N = 25$	$ IVOL \\ N = 10 $	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) N = 46	Industry $N = 49$	Stocks $N = 100$
w^*	0.0145	0.0223	0.0171	0.0246	0.0262	0.0813	0.0290	0.0392
			Invariant (Optimal Port	folio Rules			
$\hat{w}_{q,t}$	0.0110	0.0119	0.0056	0.0107	0.0143	-0.0893	0.0015	0.0014
$\hat{w}_{p,t}$	0.0039	-0.0077	-0.0039	-0.0193	0.0007	-0.5314	-0.1030	-0.2697
r ·	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\hat{w}_{u,t}$	0.0053	-0.0009	-0.0018	-0.0113	0.0039	-0.2970	-0.0624	-0.0945
,	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\hat{w}_{BS,t}$	0.0107	0.0103	0.0050	0.0065	0.0129	-0.1920	-0.0123	-0.0117
,	0.09	0.06	0.03	0.01	0.08	0.00	0.00	0.00
		Rules	with Shrinka	ge Covarianc	e Matrix Estin	nators		
$\hat{w}_{q,t}^{LW2004}$	0.0125	0.0133	0.0086	0.0111	0.0156	0.0076	0.0024	0.0029
$\hat{w}_{p,t}^{LW2004}$	0.0088	0.0082	0.0044	-0.0095	0.0102	-0.1800	-0.0675	-0.1293
1 /	0.01	0.04	0.00	0.00	0.06	0.00	0.00	0.00
$\hat{w}_{q,t}^{LW2017}$	0.0117	0.0128	0.0063	0.0111	0.0154	-0.0273	0.0024	0.0037
$\hat{w}_{p,t}^{LW2017}$	0.0053	-0.0015	-0.0021	-0.0130	0.0049	-0.3152	-0.0677	-0.0780
· · p,t	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00
		Rules	with MacKinl	lay-Pástor Si	ngle Factor Str	ucture		
$\hat{w}_{q,t}^{MP}$	0.0064	0.0050	0.0060	0.0087	0.0066	0.0063	0.0045	0.0049
$\hat{w}_{p,t}^{MP}$	0.0050	0.0030	0.0023	0.0030	0.0036	0.0030	0.0024	0.0015
Ρ,	0.01	0.08	0.00	0.00	0.00	0.02	0.19	0.14
			Rule with N	No-Short-Sale	Constraints			
$\hat{w}_{p,t}^{NS}$	0.0068	0.0054	0.0035	0.0052	0.0050	0.0061	0.0005	0.0028
P 3"	0.11	0.02	0.30	0.07	0.04	1.00	0.35	0.75
	0.03	0.00	0.05	0.03	0.01	0.47	0.20	0.49
	0.07	0.01	0.23	0.04	0.02	0.88	0.20	0.32
	0.63	0.61	0.00	0.01	0.10	0.47	0.04	0.20

Table IA.4: CER Comparison: h = 240 and $\gamma = 3$ (Cont'd)

	Momentum $N = 10$	Size-B/M $N = 25$	$ IVOL \\ N = 10 $	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
			Other Rules	from Portfo	lio Optimizatio	on		
$\hat{w}_{g,t}$	0.0056	0.0070	0.0029	0.0081	0.0075	0.0084	0.0022	0.0016
8,*	0.07	0.05	0.27	0.22	0.08	1.00	0.65	0.87
	0.01	0.00	0.05	0.14	0.01	0.52	0.45	0.00
	0.04	0.02	0.21	0.16	0.04	0.90	0.45	0.00
	0.16	0.98	0.00	0.22	0.77	0.84	0.09	0.03
$\hat{w}_{g,t}^{NS}$	0.0039	0.0046	0.0047	0.0058	0.0042	0.0056	0.0043	0.0042
8,1	0.03	0.01	0.42	0.10	0.03	1.00	0.91	0.99
	0.00	0.00	0.11	0.05	0.00	0.46	0.86	0.92
	0.02	0.00	0.34	0.07	0.01	0.88	0.86	0.74
	0.00	0.29	0.01	0.00	0.00	0.33	0.46	0.31
$\hat{w}_{KZ3,t}$	-0.0472	0.0095	-0.7265	0.0108	0.0142	-11.6738	0.0022	0.0012
·· KZJ,i	0.00	0.15	0.00	0.52	0.49	0.00	0.90	0.22
	0.00	0.01	0.00	0.41	0.30	0.00	0.35	0.00
	0.00	0.05	0.00	0.42	0.34	0.00	0.37	0.00
	0.00	0.99	0.00	0.91	0.97	0.00	0.14	0.01
			Nor	n-Optimizati	on Rules			
1/N	0.0030	0.0043	0.0027	0.0038	0.0023	0.0019	0.0039	0.0044
,	0.02	0.01	0.25	0.05	0.02	0.99	0.81	0.96
	0.00	0.00	0.04	0.02	0.00	0.40	0.73	0.84
	0.01	0.00	0.20	0.03	0.01	0.85	0.73	0.70
	0.00	0.25	0.00	0.00	0.00	0.07	0.41	0.41
KO_{VT}	0.0040	0.0047	0.0047	0.0051	0.0039	0.0049	0.0045	0.0044
	0.03	0.02	0.41	0.08	0.03	1.00	0.90	0.99
	0.00	0.00	0.11	0.04	0.00	0.45	0.86	0.92
	0.02	0.00	0.34	0.05	0.01	0.87	0.86	0.80
	0.00	0.34	0.01	0.00	0.00	0.22	0.50	0.36
KO_{RT}	0.0053	0.0051	0.0043	0.0055	0.0051	0.0063	0.0039	0.0036
	0.05	0.02	0.37	0.08	0.04	1.00	0.86	0.92
	0.01	0.00	0.08	0.04	0.01	0.48	0.80	0.70
	0.03	0.01	0.30	0.05	0.02	0.89	0.79	0.48
	0.05	0.55	0.01	0.00	0.04	0.51	0.36	0.23
KO_{BT}	0.0056	0.0053	0.0034	0.0046	0.0045	0.0060	0.0036	0.0036
DI	0.06	0.02	0.31	0.06	0.04	1.00	0.76	0.89
	0.01	0.00	0.06	0.03	0.01	0.47	0.68	0.67
	0.04	0.01	0.24	0.04	0.02	0.88	0.68	0.47
	0.08	0.59	0.01	0.00	0.02	0.44	0.35	0.25

Table IA.5: CER Comparison: h = 120 and $\gamma = 5$

This table reports the certainty equivalent returns of the portfolios studied in this paper with h=120 and $\gamma=5$, based on the eight datasets containing excess monthly returns. The four newly obtained optimal combining portfolios, i.e., $\hat{w}_{q,t}$, $\hat{w}_{q,t}^{LW2004}$, $\hat{w}_{q,t}^{LW2017}$, and $\hat{w}_{q,t}^{MP}$, are highlighted with a box around. In the three categories to which the four new portfolios belong, one-sided tests are conducted to assess the value of using the newly derived optimal combining coefficient \hat{c}_t , and the *p*-values are reported in *italics*. For the portfolios in the remaining three categories, one-sided tests are conducted to compare them with the four newly obtained portfolios, and the corresponding *p*-values are reported in the four rows below the portfolio CER. We set $\eta=4$ for the timing strategies KO_{VT} , KO_{RT} , and KO_{BT} .

	Momentum $N = 10$	Size-B/M $N = 25$	IVOL $N = 10$	OP-Inv $N=25$	NM-V (LT) $N = 16$	NM-V (All) N = 46	Industry $N = 49$	Stocks $N = 100$
w^*	0.0084	0.0128	0.0066	0.0156	0.0165	0.0722	0.0133	0.0180
W	0.0064	0.0126				0.0722	0.0133	0.0100
			Invariant (Optimal Port	folio Rules			
$\hat{w}_{q,t}$	0.0061	0.0069	0.0037	0.0037	0.0053	0.0165	0.0007	-0.0119
$\hat{w}_{p,t}$	-0.0035	-0.0371	-0.0086	-0.0426	-0.0161	-0.7351	-0.2407	-16.2490
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\hat{w}_{u,t}$	-0.0005	-0.0160	-0.0047	-0.0218	-0.0087	-0.1808	-0.0774	-0.4529
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\hat{w}_{BS,t}$	0.0055	0.0026	0.0027	-0.0010	0.0032	-0.0827	-0.0133	-0.0791
	0.02	0.00	0.00	0.00	0.02	0.00	0.00	0.00
		Rules	with Shrinka	ge Covarianc	e Matrix Estim	nators		
$\hat{w}_{q,t}^{LW2004}$	0.0076	0.0077	0.0058	0.0057	0.0067	0.0428	0.0029	0.0006
$\hat{w}_{p,t}^{LW2004}$	0.0046	0.0006	0.0025	-0.0126	0.0013	-0.0248	-0.0744	-0.3149
P ;*	0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00
$\hat{w}_{q,t}^{LW2017}$	0.0071	0.0083	0.0047	0.0059	0.0062	0.0473	0.0033	0.0018
$\hat{w}_{p,t}^{LW2017}$	-0.0000	-0.0112	-0.0041	-0.0161	-0.0079	-0.1198	-0.0721	-0.1577
P , ι	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		Rules	with MacKinl	lay-Pástor Si	ngle Factor Str	ucture		
$\hat{w}_{q,t}^{MP}$	0.0024	0.0012	0.0028	0.0051	0.0017	0.0057	0.0028	0.0034
$\hat{w}_{p,t}^{MP}$	0.0023	0.0009	0.0009	0.0016	-0.0008	0.0022	0.0019	0.0001
P, i	0.46	0.40	0.01	0.01	0.00	0.01	0.26	0.04
			Rule with N	No-Short-Sale	e Constraints			
$\hat{w}_{p,t}^{NS}$	0.0031	0.0026	0.0016	0.0022	0.0016	0.0059	-0.0006	-0.0014
$_{p,\iota}$	0.07	0.02	0.20	0.26	0.09	0.21	0.29	1.00
	0.00	0.00	0.00	0.03	0.00	0.00	0.04	0.15
	0.02	0.00	0.07	0.03	0.03	0.00	0.03	0.04
	0.73	0.83	0.11	0.04	0.47	0.53	0.09	0.02

Table IA.5: CER Comparison: h = 120 and $\gamma = 5$ (Cont'd)

	Momentum $N = 10$	Size-B/M $N = 25$	IVOL $N = 10$	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
			Other Rules	s from Portfo	lio Optimizatio	on		
$\hat{w}_{g,t}$	0.0032	0.0043	0.0007	0.0032	0.0034	0.0020	0.0009	-0.0112
8,5	0.07	0.06	0.12	0.37	0.18	0.13	0.59	0.98
	0.00	0.00	0.00	0.01	0.01	0.00	0.01	0.00
	0.02	0.00	0.04	0.01	0.07	0.00	0.01	0.00
	0.85	1.00	0.00	0.02	0.93	0.03	0.11	0.00
$\hat{w}_{g,t}^{NS}$	0.0014	0.0023	0.0026	0.0032	0.0005	0.0046	0.0029	0.0015
g,ι	0.01	0.01	0.34	0.41	0.04	0.18	0.93	1.00
	0.00	0.00	0.02	0.07	0.00	0.00	0.53	0.80
	0.00	0.00	0.17	0.06	0.01	0.00	0.38	0.33
	0.15	0.83	0.43	0.07	0.14	0.24	0.56	0.05
$\hat{w}_{KZ3,t}$	-1.3529	-0.0397	-2.0209	-0.0687	-1.0198	-2.3263	-0.1979	-0.0689
RZ3,i	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			Noi	n-Optimizati	on Rules			
1/N	0.0002	0.0006	-0.0008	0.0013	-0.0005	-0.0015	0.0017	0.0006
	0.00	0.00	0.05	0.16	0.03	0.09	0.67	1.00
	0.00	0.00	0.00	0.01	0.00	0.00	0.25	0.48
	0.00	0.00	0.01	0.01	0.01	0.00	0.19	0.18
	0.05	0.38	0.01	0.01	0.10	0.00	0.29	0.04
KO_{VT}	0.0015	0.0023	0.0025	0.0027	0.0008	0.0030	0.0036	0.0025
	0.02	0.01	0.32	0.33	0.05	0.15	0.96	1.00
	0.00	0.00	0.01	0.04	0.00	0.00	0.74	0.95
	0.00	0.00	0.16	0.04	0.01	0.00	0.62	0.79
	0.18	0.81	0.37	0.04	0.24	0.07	0.73	0.19
KO_{RT}	0.0024	0.0018	0.0010	0.0029	0.0018	0.0042	0.0020	-0.0000
	0.03	0.01	0.15	0.36	0.10	0.17	0.76	1.00
	0.00	0.00	0.00	0.05	0.00	0.00	0.26	0.31
	0.01	0.00	0.05	0.05	0.04	0.00	0.18	0.08
	0.50	0.66	0.07	0.07	0.53	0.22	0.33	0.02
KO_{BT}	0.0026	0.0018	-0.0000	0.0027	0.0024	0.0033	0.0021	0.0008
	0.05	0.01	0.09	0.33	0.15	0.16	0.73	1.00
	0.00	0.00	0.00	0.05	0.01	0.00	0.31	0.54
	0.01	0.00	0.03	0.05	0.07	0.00	0.24	0.23
	0.60	0.65	0.02	0.05	0.66	0.12	0.35	0.05

Table IA.6: CER Comparison: h = 240 and $\gamma = 5$

This table reports the certainty equivalent returns of the portfolios studied in this paper with h = 240 and $\gamma = 5$, based on the eight datasets containing excess monthly returns. The four newly obtained optimal combining portfolios, i.e., $\hat{w}_{q,t}$, $\hat{w}_{q,t}^{LW2004}$, $\hat{w}_{q,t}^{LW2017}$, and $\hat{w}_{q,t}^{MP}$, are highlighted with a box around. In the three categories to which the four new portfolios belong, one-sided tests are conducted to assess the value of using the newly derived optimal combining coefficient \hat{c}_t , and the *p*-values are reported in *italics*. For the portfolios in the remaining three categories, one-sided tests are conducted to compare them with the four newly obtained portfolios, and the corresponding *p*-values are reported in the four rows below the portfolio CER. We set $\eta = 4$ for the timing strategies KO_{VT} , KO_{RT} , and KO_{BT} .

	Momentum $N = 10$	Size-B/M $N = 25$	$ IVOL \\ N = 10 $	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) N = 46	Industry $N = 49$	Stocks $N = 100$
w^*	0.0096	0.0150	0.0108	0.0164	0.0178	0.0518	0.0186	0.0250
			Invariant (Optimal Port	folio Rules			
$\hat{w}_{q,t}$	0.0074	0.0087	0.0037	0.0079	0.0104	-0.0518	0.0006	-0.0004
$\hat{w}_{p,t}$	0.0031	-0.0028	-0.0019	-0.0105	0.0024	-0.3173	-0.0614	-0.1599
P ;*	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\hat{w}_{u,t}$	0.0040	0.0012	-0.0007	-0.0056	0.0043	-0.1765	-0.0372	-0.0561
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\hat{w}_{BS,t}$	0.0072	0.0078	0.0034	0.0053	0.0096	-0.1135	-0.0075	-0.0076
55,1	0.08	0.08	0.03	0.01	0.09	0.00	0.00	0.00
		Rules	s with Shrinka	ge Covarianc	e Matrix Estim	nators		
$\hat{w}_{q,t}^{LW2004}$	0.0083	0.0094	0.0055	0.0083	0.0113	0.0070	0.0016	0.0016
$\hat{w}_{p,t}^{LW2004}$	0.0061	0.0067	0.0029	-0.0044	0.0082	-0.1054	-0.0400	-0.0762
Ρ,	0.01	0.06	0.00	0.00	0.06	0.00	0.00	0.00
$\hat{w}_{q,t}^{LW2017}$	0.0078	0.0093	0.0042	0.0083	0.0111	-0.0142	0.0018	0.0025
$\hat{w}_{p,t}^{LW2017}$	0.0040	0.0009	-0.0008	-0.0066	0.0049	-0.1869	-0.0402	-0.0455
P , ι	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00
		Rules	with MacKin	lay-Pástor Si	ngle Factor Str	ucture		
$\hat{w}_{q,t}^{MP}$	0.0047	0.0026	0.0048	0.0077	0.0063	0.0057	0.0029	0.0031
$\hat{w}_{p,t}^{MP}$	0.0042	0.0030	0.0033	0.0053	0.0047	0.0048	0.0027	0.0031
Ρ,ν	0.14	0.70	0.02	0.01	0.00	0.20	0.44	0.50
			Rule with N	No-Short-Sale	Constraints			
$\hat{w}_{p,t}^{NS}$	0.0040	0.0030	0.0028	0.0038	0.0031	0.0036	0.0000	0.0015
• /	0.06	0.00	0.35	0.05	0.02	0.99	0.38	0.83
	0.01	0.00	0.07	0.02	0.00	0.40	0.17	0.49
	0.04	0.00	0.27	0.03	0.01	0.85	0.15	0.26
	0.27	0.62	0.01	0.01	0.01	0.26	0.08	0.22

Table IA.6: CER Comparison: h = 240 and $\gamma = 5$ (Cont'd)

	Momentum $N = 10$	Size-B/M $N = 25$	$ IVOL \\ N = 10 $	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
			Other Rules	from Portfo	lio Optimizatio	on		
$\hat{w}_{g,t}$	0.0040	0.0057	0.0017	0.0066	0.0061	0.0070	0.0010	-0.0002
0,7	0.06	0.05	0.22	0.26	0.07	1.00	0.63	0.81
	0.01	0.00	0.03	0.16	0.01	0.50	0.24	0.00
	0.04	0.02	0.16	0.18	0.04	0.90	0.22	0.00
	0.16	1.00	0.00	0.08	0.42	0.72	0.13	0.02
$\hat{w}_{g,t}^{NS}$	0.0022	0.0030	0.0035	0.0043	0.0023	0.0044	0.0032	0.0031
g,ι	0.01	0.00	0.46	0.08	0.01	1.00	0.95	1.00
	0.00	0.00	0.15	0.04	0.00	0.42	0.88	0.95
	0.01	0.00	0.39	0.05	0.01	0.86	0.86	0.77
	0.00	0.69	0.04	0.01	0.00	0.26	0.58	0.49
$\hat{w}_{KZ3,t}$	-0.0977	0.0067	-1.2021	0.0083	0.0078	-19.6338	0.0003	-0.0007
·· KZ5,t	0.00	0.06	0.00	0.67	0.14	0.00	0.26	0.14
	0.00	0.00	0.00	0.51	0.09	0.00	0.03	0.00
	0.00	0.02	0.00	0.50	0.08	0.00	0.03	0.00
	0.00	0.99	0.00	0.64	0.65	0.00	0.11	0.01
			Nor	-Optimizati	on Rules			
1/N	0.0010	0.0019	0.0002	0.0019	-0.0002	-0.0010	0.0020	0.0029
,	0.01	0.00	0.11	0.02	0.00	0.99	0.72	0.96
	0.00	0.00	0.01	0.01	0.00	0.29	0.56	0.80
	0.00	0.00	0.07	0.01	0.00	0.77	0.54	0.60
	0.00	0.33	0.00	0.00	0.00	0.04	0.35	0.45
KO_{VT}	0.0022	0.0029	0.0033	0.0035	0.0018	0.0033	0.0033	0.0033
	0.01	0.00	0.43	0.05	0.01	0.99	0.92	1.00
	0.00	0.00	0.13	0.02	0.00	0.39	0.85	0.95
	0.01	0.00	0.35	0.03	0.00	0.85	0.83	0.82
	0.00	0.63	0.03	0.00	0.00	0.18	0.58	0.56
KO_{RT}	0.0033	0.0032	0.0027	0.0038	0.0031	0.0046	0.0026	0.0021
	0.03	0.01	0.34	0.06	0.02	1.00	0.87	0.93
	0.00	0.00	0.07	0.03	0.00	0.43	0.73	0.66
	0.02	0.00	0.26	0.03	0.01	0.87	0.71	0.38
	0.04	0.67	0.01	0.00	0.00	0.35	0.42	0.28
KO_{BT}	0.0036	0.0030	0.0012	0.0028	0.0022	0.0040	0.0016	0.0019
ы	0.05	0.01	0.18	0.03	0.01	0.99	0.66	0.89
	0.01	0.00	0.03	0.01	0.00	0.41	0.49	0.59
	0.03	0.00	0.13	0.02	0.01	0.86	0.47	0.34
	0.09	0.62	0.00	0.00	0.00	0.28	0.29	0.27

Table IA.7: Sharpe Ratio Comparison: h = 240 and $\gamma = 3$

This table reports the Sharpe ratio of the portfolios studied in this paper with h=240 and $\gamma=3$, based on the eight datasets containing excess monthly returns. The four newly obtained optimal combining portfolios, i.e., $\hat{w}_{q,t}$, $\hat{w}_{q,t}^{LW2004}$, $\hat{w}_{q,t}^{LW2017}$, and $\hat{w}_{q,t}^{MP}$, are highlighted with a box around. In the three categories to which the four new portfolios belong, one-sided tests are conducted to assess the value of using the newly derived optimal combining coefficient \hat{c}_t , and the p-values are reported in *italics*. For the portfolios in the remaining three categories, one-sided tests are conducted to compare them with the four newly obtained portfolios, and the corresponding p-values are reported in the four rows below the portfolio Sharpe ratio. We set $\eta=4$ for the timing strategies KO_{VT} , KO_{RT} , and KO_{BT} .

	Momentum	Size-B/M	IVOL	OP-Inv	NM-V (LT)	NM-V (All)	Industry	Stocks
	N = 10	N = 25	N = 10	N=25	N = 16	N = 46	N = 49	N = 100
w^*	0.2982	0.3691	0.3214	0.3868	0.4005	0.6991	0.4181	0.4856
			Invariant C	Optimal Port	folio Rules			
$\hat{w}_{q,t}$	0.2638	0.2675	0.2335	0.2533	0.2932	0.4070	0.1033	0.0963
$\hat{w}_{p,t}$	0.2517	0.2461	0.2264	0.1898	0.2578	0.3907	0.0370	-0.0476
1 /	0.03	0.02	0.15	0.00	0.00	0.01	0.05	0.01
$\hat{w}_{u,t}$	0.2534	0.2509	0.2275	0.1950	0.2613	0.3938	0.0408	-0.0397
,	0.05	0.05	0.19	0.00	0.00	0.02	0.06	0.01
$\hat{w}_{BS,t}$	0.2631	0.2637	0.2331	0.2246	0.2835	0.4013	0.0574	-0.0050
,	0.34	0.23	0.42	0.00	0.03	0.00	0.07	0.02
		Rules	with Shrinkag	ge Covarianc	e Matrix Estim	nators		
$\hat{w}_{q,t}^{LW2004}$	0.2745	0.2935	0.2356	0.2635	0.3178	0.4627	0.1200	0.1337
$\hat{w}_{p,t}^{LW2004}$	0.2647	0.2704	0.2306	0.1969	0.2733	0.4394	0.0297	-0.0439
P ,*	0.06	0.03	0.25	0.00	0.00	0.00	0.02	0.00
$\hat{w}_{q,t}^{LW2017}$	0.2700	0.2780	0.2342	0.2612	0.3052	0.4464	0.1203	0.1577
$\hat{w}_{p,t}^{LW2017}$	0.2595	0.2575	0.2278	0.1975	0.2674	0.4285	0.0230	-0.0406
P,i	0.05	0.03	0.18	0.00	0.00	0.00	0.01	0.00
		Rules	with MacKinla	ay-Pástor Si	ngle Factor Str	ucture		
$\hat{w}_{q,t}^{MP}$	0.2107	0.1819	0.2192	0.2884	0.2243	0.2387	0.1757	0.1800
$\hat{w}_{p,t}^{MP}$	0.1744	0.1399	0.1215	0.1339	0.1467	0.1356	0.1216	0.1120
P , ι	0.00	0.05	0.00	0.00	0.00	0.01	0.17	0.14
			Rule with N	o-Short-Sale	e Constraints			
$\hat{w}_{p,t}^{NS}$	0.2066	0.1823	0.1454	0.1824	0.1758	0.1933	0.0833	0.1318
r y	0.06	0.02	0.01	0.10	0.04	0.01	0.35	0.78
	0.03	0.00	0.01	0.06	0.01	0.00	0.23	0.48
	0.04	0.01	0.01	0.07	0.02	0.00	0.23	0.27
	0.42	0.51	0.00	0.00	0.05	0.22	0.04	0.18

Table IA.7: Sharpe Ratio Comparison: h = 240 and $\gamma = 3$ (Cont'd)

	Momentum $N = 10$	Size-B/M $N = 25$	$ IVOL \\ N = 10 $	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
			Other Rules	from Portfo	lio Optimizatio	on		
$\hat{w}_{g,t}$	0.1999	0.2472	0.1352	0.2657	0.2565	0.2809	0.1158	0.1018
87	0.05	0.30	0.01	0.60	0.28	0.08	0.62	0.88
	0.03	0.10	0.01	0.52	0.14	0.02	0.45	0.00
	0.04	0.21	0.01	0.54	0.21	0.03	0.45	0.00
	0.29	1.00	0.00	0.11	0.86	0.76	0.10	0.03
$\hat{w}_{g,t}^{NS}$	0.1562	0.1762	0.1874	0.2067	0.1624	0.2117	0.1795	0.1756
8,1	0.01	0.02	0.12	0.21	0.03	0.02	0.94	0.99
	0.00	0.00	0.10	0.15	0.01	0.00	0.91	0.95
	0.00	0.01	0.12	0.17	0.02	0.01	0.90	0.79
	0.00	0.36	0.03	0.00	0.00	0.27	0.54	0.45
$\hat{w}_{KZ3,t}$	0.1276	0.2586	-0.0191	0.2906	0.2977	0.0943	0.1154	0.0920
KZ5,i	0.00	0.36	0.00	0.95	0.56	0.00	0.88	0.23
	0.00	0.06	0.00	0.90	0.27	0.00	0.36	0.00
	0.00	0.21	0.00	0.89	0.41	0.00	0.38	0.00
	0.03	0.98	0.00	0.52	0.89	0.06	0.12	0.01
			Nor	ı-Optimizati	on Rules			
1/N	0.1352	0.1608	0.1280	0.1527	0.1217	0.1152	0.1552	0.1715
	0.00	0.01	0.01	0.05	0.01	0.00	0.80	0.96
	0.00	0.00	0.01	0.03	0.00	0.00	0.73	0.83
	0.00	0.00	0.01	0.04	0.01	0.00	0.73	0.64
	0.00	0.19	0.00	0.00	0.00	0.03	0.36	0.43
KO_{VT}	0.1575	0.1749	0.1810	0.1872	0.1536	0.1823	0.1809	0.1827
	0.01	0.02	0.10	0.13	0.03	0.01	0.92	0.99
	0.00	0.00	0.07	0.09	0.01	0.00	0.89	0.95
	0.00	0.01	0.09	0.10	0.02	0.00	0.88	0.83
	0.00	0.35	0.01	0.00	0.00	0.13	0.55	0.53
KO_{RT}	0.1847	0.1823	0.1663	0.1963	0.1815	0.2153	0.1616	0.1517
	0.02	0.03	0.04	0.16	0.05	0.02	0.88	0.92
	0.01	0.00	0.03	0.11	0.02	0.00	0.82	0.69
	0.02	0.01	0.04	0.12	0.03	0.01	0.82	0.43
	0.05	0.51	0.00	0.00	0.01	0.32	0.38	0.25
KO_{BT}	0.1919	0.1822	0.1425	0.1730	0.1659	0.2010	0.1473	0.1492
	0.04	0.03	0.02	0.09	0.04	0.02	0.76	0.89
	0.02	0.00	0.01	0.06	0.01	0.00	0.68	0.65
	0.02	0.01	0.02	0.07	0.02	0.01	0.68	0.41
	0.10	0.51	0.00	0.00	0.01	0.24	0.30	0.26

Table IA.8: Sharpe Ratio Comparison: h = 120 and $\gamma = 5$

This table reports the Sharpe ratio of the portfolios studied in this paper with h=120 and $\gamma=5$, based on the eight datasets containing excess monthly returns. The four newly obtained optimal combining portfolios, i.e., $\hat{w}_{q,t}$, $\hat{w}_{q,t}^{LW2004}$, $\hat{w}_{q,t}^{LW2017}$, and $\hat{w}_{q,t}^{MP}$, are highlighted with a box around. In the three categories to which the four new portfolios belong, one-sided tests are conducted to assess the value of using the newly derived optimal combining coefficient \hat{c}_t , and the p-values are reported in *italics*. For the portfolios in the remaining three categories, one-sided tests are conducted to compare them with the four newly obtained portfolios, and the corresponding p-values are reported in the four rows below the portfolio Sharpe ratio. We set $\eta=4$ for the timing strategies KO_{VT} , KO_{RT} , and KO_{BT} .

	Momentum $N = 10$	Size-B/M	IVOL N. 10	OP-Inv	NM-V (LT)	NM-V (All)	Industry $N = 49$	Stocks $N = 100$
.		N=25	N = 10	N=25	N = 16	N = 46		
w^*	0.2903	0.3584	0.2581	0.3947	0.4060	0.8500	0.3658	0.4244
			Invariant C	Optimal Port	folio Rules			
$\hat{w}_{q,t}$	0.2663	0.2667	0.2511	0.2061	0.2392	0.5853	0.1265	0.0289
$\hat{w}_{p,t}$	0.2543	0.2162	0.2459	0.1617	0.2057	0.5649	0.0667	-0.0478
1 /	0.13	0.00	0.29	0.05	0.07	0.06	0.10	0.08
$\hat{w}_{u,t}$	0.2575	0.2261	0.2472	0.1705	0.2112	0.5699	0.0764	-0.0399
	0.18	0.01	0.33	0.08	0.09	0.09	0.12	0.08
$\hat{w}_{BS,t}$	0.2664	0.2512	0.2517	0.1927	0.2320	0.5776	0.0968	-0.0345
	0.51	0.04	0.58	0.19	0.23	0.11	0.18	0.06
		Rules	with Shrinkag	ge Covarianc	e Matrix Estim	nators		
$\hat{w}_{q,t}^{LW2004}$	0.2755	0.2836	0.2467	0.2379	0.2597	0.6964	0.1702	0.1103
$\hat{w}_{p,t}^{LW2004}$	0.2712	0.2606	0.2456	0.1988	0.2321	0.6631	0.0840	-0.0091
Ρ,	0.35	0.14	0.46	0.10	0.14	0.04	0.04	0.01
$\hat{w}_{q,t}^{LW2017}$	0.2748	0.2889	0.2522	0.2438	0.2494	0.6955	0.1804	0.1388
$\hat{w}_{p,t}^{LW2017}$	0.2679	0.2533	0.2505	0.2067	0.2150	0.6680	0.0887	-0.0015
p,ι	0.25	0.03	0.43	0.10	0.07	0.04	0.03	0.00
		Rules	with MacKinla	ay-Pástor Si	ngle Factor Str	ucture		
$\hat{w}_{q,t}^{MP}$	0.1707	0.1429	0.1689	0.2275	0.1458	0.2439	0.1686	0.1849
$\hat{w}_{p,t}^{MP}$	0.1712	0.1360	0.1281	0.1452	0.0976	0.1548	0.1459	0.1204
p,ι	0.52	0.39	0.01	0.01	0.01	0.01	0.26	0.06
			Rule with N	o-Short-Sale	e Constraints			
$\hat{w}_{p,t}^{NS}$	0.1917	0.1756	0.1443	0.1651	0.1631	0.2429	0.1271	0.1101
$_{P},_{\iota}$	0.01	0.01	0.00	0.17	0.05	0.00	0.51	0.95
	0.00	0.00	0.00	0.03	0.00	0.00	0.13	0.50
	0.00	0.00	0.00	0.02	0.02	0.00	0.08	0.23
	0.82	0.86	0.14	0.05	0.70	0.49	0.20	0.05

Table IA.8: Sharpe Ratio Comparison: h = 120 and $\gamma = 5$ (Cont'd)

	Momentum $N = 10$	Size-B/M $N = 25$	$ IVOL \\ N = 10 $	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
			Other Rules	from Portfo	olio Optimizatio	on		
$\hat{w}_{g,t}$	0.1823	0.2085	0.1088	0.1813	0.1843	0.1478	0.1227	0.0369
0,1	0.00	0.02	0.00	0.20	0.08	0.00	0.42	0.96
	0.00	0.00	0.00	0.01	0.01	0.00	0.01	0.01
	0.00	0.00	0.00	0.01	0.04	0.00	0.01	0.00
	0.76	1.00	0.00	0.02	0.92	0.03	0.12	0.00
$\hat{w}_{g,t}^{NS}$	0.1450	0.1595	0.1639	0.1816	0.1236	0.2188	0.1717	0.1291
5,1	0.00	0.00	0.00	0.28	0.01	0.00	0.89	0.99
	0.00	0.00	0.00	0.06	0.00	0.00	0.52	0.76
	0.00	0.00	0.00	0.05	0.00	0.00	0.38	0.32
	0.09	0.74	0.40	0.07	0.18	0.26	0.54	0.03
$\hat{w}_{KZ3,t}$	0.0640	0.1081	-0.0086	0.0361	-0.0292	-0.1277	0.0075	-0.0191
1120,	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.11
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.01	0.20	0.00	0.00	0.00	0.00	0.00	0.00
			Nor	n-Optimizati	on Rules			
1/N	0.1276	0.1484	0.1224	0.1426	0.1209	0.1034	0.1527	0.1205
	0.00	0.00	0.00	0.09	0.01	0.00	0.70	0.97
	0.00	0.00	0.00	0.01	0.00	0.00	0.34	0.61
	0.00	0.00	0.00	0.01	0.00	0.00	0.25	0.29
	0.05	0.56	0.06	0.01	0.24	0.01	0.36	0.05
KO_{VT}	0.1466	0.1636	0.1619	0.1704	0.1338	0.1751	0.1902	0.1584
	0.00	0.00	0.00	0.21	0.02	0.00	0.94	1.00
	0.00	0.00	0.00	0.04	0.00	0.00	0.74	0.95
	0.00	0.00	0.00	0.04	0.01	0.00	0.62	0.79
	0.12	0.77	0.37	0.04	0.33	0.07	0.73	0.16
KO_{RT}	0.1695	0.1651	0.1438	0.1768	0.1665	0.2046	0.1534	0.1078
	0.00	0.00	0.00	0.24	0.06	0.00	0.74	0.95
	0.00	0.00	0.00	0.05	0.01	0.00	0.31	0.47
	0.00	0.00	0.00	0.04	0.03	0.00	0.21	0.16
	0.48	0.75	0.17	0.07	0.73	0.20	0.36	0.02
KO_{BT}	0.1747	0.1670	0.1274	0.1713	0.1737	0.1859	0.1585	0.1282
	0.00	0.00	0.00	0.22	0.09	0.00	0.75	0.97
	0.00	0.00	0.00	0.05	0.02	0.00	0.39	0.69
	0.00	0.00	0.00	0.04	0.05	0.00	0.30	0.37
	0.59	0.76	0.07	0.06	0.80	0.12	0.41	0.06

Table IA.9: Sharpe Ratio Comparison: h = 240 and $\gamma = 5$

This table reports the Sharpe ratio of the portfolios studied in this paper with h=240 and $\gamma=5$, based on the eight datasets containing excess monthly returns. The four newly obtained optimal combining portfolios, i.e., $\hat{w}_{q,t}$, $\hat{w}_{q,t}^{LW2004}$, $\hat{w}_{q,t}^{LW2017}$, and $\hat{w}_{q,t}^{MP}$, are highlighted with a box around. In the three categories to which the four new portfolios belong, one-sided tests are conducted to assess the value of using the newly derived optimal combining coefficient \hat{c}_t , and the p-values are reported in italics. For the portfolios in the remaining three categories, one-sided tests are conducted to compare them with the four newly obtained portfolios, and the corresponding p-values are reported in the four rows below the portfolio Sharpe ratio. We set $\eta=4$ for the timing strategies KO_{VT} , KO_{RT} , and KO_{BT} .

	Momentum $N = 10$	Size-B/M $N = 25$	$IVOL \\ N = 10$	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
w^*	0.3098	0.3897	0.3288	0.4062	0.4252	0.7213	0.4326	0.5011
			Invariant C	Optimal Port	folio Rules			
$ \hat{w}_{q,t} $	0.2825	0.2958	0.2457	0.2810	0.3226	0.4206	0.1149	0.0986
$\hat{w}_{p,t}$	0.2717	0.2704	0.2385	0.2162	0.2853	0.3991	0.0465	-0.0405
P,	0.07	0.03	0.16	0.00	0.01	0.00	0.08	0.01
$\hat{w}_{u,t}$	0.2735	0.2768	0.2397	0.2231	0.2898	0.4040	0.0525	-0.0272
24,2	0.09	0.06	0.19	0.00	0.01	0.01	0.09	0.01
$\hat{w}_{BS,t}$	0.2820	0.2927	0.2453	0.2568	0.3140	0.4128	0.0763	0.0247
· B5,i	0.38	0.30	0.42	0.01	0.06	0.00	0.12	0.03
		Rules	with Shrinkag	ge Covarianc	e Matrix Estin	nators		
$\hat{w}_{q,t}^{LW2004}$	0.2905	0.3131	0.2468	0.2883	0.3434	0.4806	0.1364	0.1356
$\hat{w}_{p,t}^{LW2004}$	0.2844	0.2974	0.2432	0.2253	0.3055	0.4506	0.0438	-0.0312
<i>P</i> ,*	0.19	0.15	0.31	0.00	0.02	0.00	0.03	0.00
$\hat{w}_{q,t}^{LW2017}$	0.2882	0.3045	0.2463	0.2879	0.3345	0.4613	0.1394	0.1593
$\hat{w}_{p,t}^{LW2017}$	0.2793	0.2824	0.2400	0.2248	0.2966	0.4378	0.0378	-0.0225
<i>P</i> ,*	0.11	0.05	0.20	0.00	0.01	0.00	0.02	0.00
		Rules	with MacKinla	ay-Pástor Si	ngle Factor Str	ucture		
$\widehat{w}_{q,t}^{MP}$	0.2163	0.1693	0.2217	0.2956	0.2580	0.2451	0.1719	0.1794
$\hat{w}_{p,t}^{MP}$	0.2066	0.1796	0.1833	0.2333	0.2159	0.2286	0.1648	0.1779
P	0.14	0.70	0.02	0.01	0.00	0.27	0.43	0.49
			Rule with N	o-Short-Sale	Constraints			
$\hat{w}_{p,t}^{NS}$	0.2059	0.1787	0.1670	0.1956	0.1821	0.1967	0.1054	0.1447
F ,*	0.01	0.00	0.01	0.04	0.01	0.01	0.42	0.85
	0.00	0.00	0.00	0.02	0.00	0.00	0.24	0.59
	0.01	0.00	0.01	0.02	0.01	0.00	0.21	0.35
	0.32	0.63	0.01	0.00	0.01	0.25	0.09	0.24

Table IA.9: Sharpe Ratio Comparison: h = 240 and $\gamma = 5$ (Cont'd)

	Momentum $N = 10$	Size-B/M $N = 25$	$IVOL \\ N = 10$	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
			Other Rules	from Portfo	olio Optimizatio	on		
$\hat{w}_{g,t}$	0.1999	0.2472	0.1352	0.2657	0.2565	0.2809	0.1158	0.1018
87	0.01	0.07	0.00	0.34	0.10	0.05	0.51	0.87
	0.00	0.01	0.00	0.25	0.03	0.01	0.22	0.00
	0.00	0.04	0.00	0.27	0.06	0.02	0.20	0.00
	0.15	1.00	0.00	0.08	0.48	0.72	0.11	0.03
$\hat{w}_{g,t}^{NS}$	0.1562	0.1762	0.1874	0.2067	0.1624	0.2117	0.1795	0.1756
5,1	0.00	0.00	0.05	0.07	0.01	0.01	0.93	0.99
	0.00	0.00	0.03	0.04	0.00	0.00	0.87	0.94
	0.00	0.00	0.04	0.05	0.00	0.00	0.85	0.77
	0.00	0.62	0.05	0.01	0.00	0.28	0.57	0.46
$\hat{w}_{KZ3,t}$	0.1276	0.2586	-0.0191	0.2906	0.2977	0.0943	0.1154	0.0920
1123,1	0.00	0.04	0.00	0.75	0.20	0.00	0.52	0.16
	0.00	0.00	0.00	0.57	0.08	0.00	0.09	0.00
	0.00	0.02	0.00	0.57	0.11	0.00	0.09	0.00
	0.02	0.99	0.00	0.44	0.75	0.05	0.14	0.01
			Nor	ı-Optimizati	on Rules			
1/N	0.1352	0.1608	0.1280	0.1527	0.1217	0.1152	0.1552	0.1715
	0.00	0.00	0.00	0.01	0.00	0.00	0.76	0.95
	0.00	0.00	0.00	0.01	0.00	0.00	0.64	0.82
	0.00	0.00	0.00	0.01	0.00	0.00	0.62	0.63
	0.00	0.39	0.00	0.00	0.00	0.05	0.39	0.44
KO_{VT}	0.1575	0.1749	0.1810	0.1872	0.1536	0.1823	0.1809	0.1827
	0.00	0.00	0.04	0.04	0.01	0.01	0.91	0.99
	0.00	0.00	0.02	0.02	0.00	0.00	0.84	0.94
	0.00	0.00	0.03	0.03	0.00	0.00	0.83	0.82
	0.00	0.59	0.03	0.00	0.00	0.17	0.58	0.54
KO_{RT}	0.1847	0.1823	0.1663	0.1963	0.1815	0.2153	0.1616	0.1517
	0.00	0.00	0.01	0.04	0.01	0.02	0.84	0.91
	0.00	0.00	0.01	0.03	0.00	0.00	0.73	0.67
	0.00	0.00	0.01	0.03	0.01	0.00	0.71	0.41
	0.04	0.68	0.01	0.00	0.00	0.33	0.41	0.26
KO_{BT}	0.1919	0.1822	0.1425	0.1730	0.1659	0.2010	0.1473	0.1492
	0.01	0.00	0.00	0.02	0.01	0.01	0.71	0.88
	0.00	0.00	0.00	0.01	0.00	0.00	0.58	0.64
	0.00	0.00	0.00	0.01	0.00	0.00	0.56	0.39
	0.09	0.67	0.01	0.00	0.00	0.26	0.33	0.26

Table IA.10: Turnover Comparison: h = 240 and $\gamma = 3$

This table reports the average turnover of the portfolios studied in this paper for h=240 and $\gamma=3$, based on the eight datasets containing excess monthly returns. The four newly obtained optimal combining portfolios, i.e., $\hat{w}_{q,t}$, $\hat{w}_{q,t}^{LW2004}$, $\hat{w}_{q,t}^{LW2017}$, and $\hat{w}_{q,t}^{MP}$, are highlighted with a box around. We set $\eta=4$ for the timing strategies KO_{VT} , KO_{RT} , and KO_{BT} .

	Momentum $N = 10$	Size-B/M $N = 25$	$ IVOL \\ N = 10 $	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
w^*	0.5643	2.3389	1.3349	1.7150	2.2983	13.2954	2.7622	5.5998
			Invariant C	Optimal Port	folio Rules			
$\hat{w}_{q,t}$	1.5898	2.5971	2.1918	1.3065	2.3671	60.8614	0.6770	0.7790
$\hat{w}_{p,t}$	2.9732	9.1974	4.3206	5.4093	5.7180	103.6842	11.7600	42.5524
$\hat{w}_{u,t}$	2.7289	12.4310	3.8001	4.4552	5.0331	79.0638	12.5009	11.0304
$\hat{w}_{BS,t}$	1.6935	3.8382	2.3596	2.1463	2.8786	71.9258	2.3339	2.4122
		Rules	with Shrinkag	ge Covariano	e Matrix Estim	nators		
$\hat{v}_{q,t}^{LW2004}$	1.0934	1.4682	1.1609	1.0130	1.2519	16.0434	0.4753	0.4751
$\hat{w}_{p,t}^{LW2004}$	1.9882	4.5987	2.1390	4.0265	2.8388	41.5159	23.0794	13.6581
,LW2017 q,t	1.4956	2.1188	1.9549	1.0724	2.0060	21.2100	0.4467	0.3269
$\hat{w}_{p,t}^{LW2017}$	2.8020	7.5444	6.4697	4.3667	4.7480	83.6182	32.7216	6.6684
		Rules	with MacKinla	ay-Pástor Si	ngle Factor Str	ucture		
$\hat{w}_{q,t}^{MP}$	0.0939	0.1046	0.0915	0.1262	0.1011	0.1514	0.1302	0.1910
$\hat{w}_{p,t}^{MP}$	0.1163	0.1463	0.1059	0.1399	0.1165	0.1433	0.1009	0.1594
			Rule with No	o-Short-Sale	e Constraints			
$\hat{w}_{p,t}^{NS}$	0.0546	0.1521	0.1291	0.0992	0.0731	0.0720	0.1582	0.1758
			Other Rules fr	om Portfolio	Optimization			
$\hat{w}_{g,t}$	0.1642	0.4071	0.1506	0.2569	0.2607	0.7914	0.3669	0.7731
$\hat{w}_{g,t}^{NS}$	0.0520	0.0402	0.0021	0.0497	0.0340	0.0202	0.0484	0.1030
$\hat{w}_{KZ3,t}$	6.4030	1.4097	104.1208	0.6408	2.0696	260.2764	0.6673	0.8318
			Non-C	Optimization	Rules			
1/N	0.0175	0.0174	0.0167	0.0205	0.0200	0.0259	0.0358	0.0627
KO_{VT}	0.0191	0.0213	0.0129	0.0228	0.0218	0.0261	0.0332	0.0567
KO_{RT}	0.0344	0.0358	0.0347	0.0450	0.0418	0.0381	0.0667	0.0939
KO_{BT}	0.0208	0.0214	0.0237	0.0287	0.0245	0.0298	0.0449	0.0897

Table IA.11: Turnover Comparison: h = 120 and $\gamma = 5$

This table reports the average turnover of the portfolios studied in this paper for h=120 and $\gamma=5$, based on the eight datasets containing excess monthly returns. The four newly obtained optimal combining portfolios, i.e., $\hat{w}_{q,t}$, $\hat{w}_{q,t}^{LW2004}$, $\hat{w}_{q,t}^{LW2017}$, and $\hat{w}_{q,t}^{MP}$, are highlighted with a box around. We set $\eta=4$ for the timing strategies KO_{VT} , KO_{RT} , and KO_{BT} .

	Momentum $N = 10$	Size-B/M $N = 25$	$IVOL \\ N = 10$	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
w^*	0.2475	0.8561	0.2984	0.7594	0.9293	8.2565	0.7358	2.1485
			Invariant C	ptimal Port	folio Rules			
$\hat{w}_{q,t}$	1.0533	2.0343	1.3660	1.1844	1.5640	15.2358	0.9988	3.8203
$\hat{w}_{p,t}$	2.3196	9.3569	3.0018	6.3760	4.9571	231.9536	27.9468	1193.0736
$\hat{w}_{u,t}$	2.0324	6.5593	2.5981	4.4980	3.9968	55.9490	7.8311	158.9246
$\hat{w}_{BS,t}$	1.2118	3.4518	1.5923	2.2009	2.1933	33.9272	2.9245	11.8837
		Rules	with Shrinkag	e Covarianc	e Matrix Estim	aators		
$\hat{v}_{q,t}^{LW2004}$	0.5486	0.7874	0.5713	0.7039	0.6006	2.5542	0.4356	0.6079
$\hat{w}_{p,t}^{LW2004}$	1.1753	3.1736	1.2498	3.4133	1.7825	18.1305	6.4298	20.9817
,LW2017 q,t	0.8946	1.2664	1.0957	0.7454	1.1631	4.3962	0.4146	0.3826
$\hat{w}_{p,t}^{LW2017}$	1.9522	5.3637	2.3844	3.7441	3.5111	29.2779	5.9121	8.6639
		Rules	with MacKinla	ny-Pástor Sii	ngle Factor Str	ucture		
$\hat{w}_{q,t}^{MP}$	0.1303	0.1706	0.1202	0.1963	0.1689	0.2093	0.1510	0.2161
$\hat{w}_{p,t}^{MP}$	0.1515	0.1788	0.1415	0.2141	0.1886	0.2093	0.1292	0.1655
			Rule with No	o-Short-Sale	e Constraints			
$\hat{w}_{p,t}^{NS}$	0.1069	0.2066	0.1262	0.1786	0.1432	0.0897	0.2106	0.2579
		•	Other Rules fr	om Portfolio	Optimization			
$\hat{w}_{g,t}^{NS}$	0.0817	0.0691	0.0088	0.0774	0.0559	0.0375	0.0733	0.1440
$\hat{w}_{g,t}$	0.2770	0.7665	0.2640	0.5413	0.4911	1.5337	0.8227	3.7827
$\hat{w}_{KZ3,t}$	30.5852	16.5565	55.9217	8.5546	28.0002	181.5043	8.4783	274.6183
			Non-C	ptimization	Rules			
1/N	0.0176	0.0182	0.0172	0.0199	0.0197	0.0227	0.0341	0.0648
KO_{VT}	0.0281	0.0309	0.0188	0.0353	0.0347	0.0373	0.0481	0.0706
KO_{RT}	0.0746	0.0767	0.0886	0.1086	0.0959	0.0832	0.1369	0.1591
KO_{BT}	0.0346	0.0319	0.0383	0.0489	0.0373	0.0414	0.0710	0.1358

Table IA.12: Turnover Comparison: h = 240 and $\gamma = 5$

This table reports the average turnover of the portfolios studied in this paper for h=240 and $\gamma=5$, based on the eight datasets containing excess monthly returns. The four newly obtained optimal combining portfolios, i.e., $\hat{w}_{q,t}$, $\hat{w}_{q,t}^{LW2004}$, $\hat{w}_{q,t}^{LW2017}$, and $\hat{w}_{q,t}^{MP}$, are highlighted with a box around. We set $\eta=4$ for the timing strategies KO_{VT} , KO_{RT} , and KO_{BT} .

	Momentum $N = 10$	Size-B/M $N = 25$	$IVOL \\ N = 10$	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) N = 46	Industry $N = 49$	Stocks $N = 100$
w^*	0.2626	1.0338	0.5608	0.6811	0.9543	5.4053	1.1494	2.8261
			Invariant C	Optimal Port	folio Rules			
$\hat{w}_{q,t}$	0.7675	1.3849	0.9509	0.7433	1.1548	15.2409	0.4977	0.7744
$\hat{w}_{p,t}$	1.2916	3.8703	1.6369	2.4311	2.4655	64.0318	7.0337	11.7102
$\hat{w}_{u,t}$	1.2060	3.2709	1.5217	2.0709	2.2037	34.9381	3.1032	4.8430
$\hat{w}_{BS,t}$	0.8096	1.9044	1.0241	1.1219	1.3614	23.6888	1.2103	1.4759
		Rules	s with Shrinkag	ge Covarianc	e Matrix Estim	ators		
$\hat{w}_{q,t}^{LW2004}$	0.5349	0.8141	0.5420	0.5860	0.6611	5.5489	0.3550	0.4732
$\widehat{w}_{p,t}^{LW2004}$	0.8791	2.1245	0.9323	1.8673	1.3271	36.0343	3.1979	5.1253
$\hat{w}_{q,t}^{LW2017}$	0.7194	1.1394	0.8455	0.6144	0.9967	8.3985	0.3346	0.3262
$\hat{w}_{p,t}^{LW2017}$	1.2095	3.1173	1.4557	1.9775	2.0840	27.8413	3.1543	2.9278
		Rules	with MacKinla	ay-Pástor Si	ngle Factor Str	ucture		
$\widehat{w}_{q,t}^{MP}$	0.0897	0.1154	0.0918	0.1423	0.1107	0.1803	0.1352	0.1920
$\hat{w}_{p,t}^{MP}$	0.0840	0.0922	0.0789	0.1106	0.1018	0.1494	0.0860	0.0999
			Rule with N	o-Short-Sale	Constraints			
$\hat{w}_{p,t}^{NS}$	0.0573	0.1257	0.0664	0.0993	0.0748	0.0831	0.1468	0.1702
			Other Rules fr	om Portfolio	Optimization			
$\hat{w}_{g,t}$	0.1642	0.4071	0.1506	0.2569	0.2607	0.7914	0.3669	0.7731
$\hat{w}_{g,t}^{NS}$	0.0520	0.0402	0.0021	0.0497	0.0340	0.0202	0.0484	0.1030
$\hat{w}_{KZ3,t}$	6.4030	1.4097	104.1208	0.6408	2.0696	260.2764	0.6673	0.8318
			Non-C	Optimization	Rules			
1/N	0.0175	0.0174	0.0167	0.0205	0.0200	0.0259	0.0358	0.0627
KO_{VT}	0.0191	0.0213	0.0129	0.0228	0.0218	0.0261	0.0332	0.0567
KO_{RT}	0.0344	0.0358	0.0347	0.0450	0.0418	0.0381	0.0667	0.0939
KO_{BT}	0.0208	0.0214	0.0237	0.0287	0.0245	0.0298	0.0449	0.0897

Table IA.13: CER Comparison with 20 bps Transaction Costs: h = 240 and $\gamma = 3$

This table reports the CER of the portfolios studied in this paper with h = 240, $\gamma = 3$, and a transaction cost of 20 bps, based on the eight datasets containing excess monthly returns. The four newly obtained optimal combining portfolios, i.e., $\hat{w}_{q,t}$, $\hat{w}_{q,t}^{LW2004}$, $\hat{w}_{q,t}^{LW2017}$, and $\hat{w}_{q,t}^{MP}$, are highlighted with a box around. In the three categories to which the four new portfolios belong, one-sided tests are conducted to assess the value of using the newly derived optimal combining coefficient \hat{c}_t , and the *p*-values are reported in *italics*. For the portfolios in the remaining three categories, one-sided tests are conducted to compare them with the four newly obtained portfolios, and the corresponding *p*-values are reported in the four rows below the portfolio CER. We set $\eta = 4$ for the timing strategies KO_{VT} , KO_{RT} , and KO_{BT} .

	Momentum $N = 10$	Size-B/M $N = 25$	$ IVOL \\ N = 10 $	$ OP-Inv \\ N = 25 $	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
w^*	0.0134	0.0176	0.0144	0.0212	0.0218	0.0539	0.0233	0.0275
			Invariant (Optimal Port	folio Rules			
$\hat{w}_{q,t}$	0.0077	0.0069	0.0015	0.0081	0.0096	-1.1287	0.0002	-0.0002
$\hat{w}_{p,t}$	-0.0025	-0.0265	-0.0130	-0.0294	-0.0107	-0.9141	-0.1298	-0.4326
P,1	0.00	0.00	0.00	0.00	0.00	0.95	0.00	0.00
$\hat{w}_{u,t}$	-0.0005	-0.1645	-0.0094	-0.0197	-0.0061	-0.6905	-0.1370	-0.1183
44,4	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
$\hat{w}_{BS,t}$	0.0072	0.0028	0.0006	0.0024	0.0072	-0.6938	-0.0169	-0.0166
20,	0.01	0.00	0.00	0.00	0.01	1.00	0.00	0.00
		Rules	with Shrinka	ge Covarianc	e Matrix Estim	nators		
$\hat{w}_{q,t}^{LW2004}$	0.0103	0.0104	0.0063	0.0092	0.0131	-0.0309	0.0015	0.0019
$\hat{w}_{p,t}^{LW2004}$	0.0046	-0.0011	0.0001	-0.0170	0.0047	-0.2557	-0.6562	-0.1626
Ρ,	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00
$\hat{w}_{q,t}^{LW2017}$	0.0086	0.0087	0.0026	0.0091	0.0114	-0.0635	0.0015	0.0030
$\hat{w}_{p,t}^{LW2017}$	-0.0007	-0.0177	-0.0626	-0.0210	-0.0046	-0.9302	-1.5734	-0.0930
p,i	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		Rules	with MacKinl	lay-Pástor Si	ngle Factor Str	ucture		
$\hat{w}_{q,t}^{MP}$	0.0063	0.0048	0.0059	0.0084	0.0064	0.0060	0.0042	0.0045
$\hat{w}_{p,t}^{MP}$	0.0047	0.0027	0.0021	0.0027	0.0033	0.0027	0.0022	0.0011
p,ι	0.01	0.07	0.00	0.00	0.00	0.02	0.20	0.14
			Rule with N	No-Short-Sale	e Constraints			
$\hat{w}_{p,t}^{NS}$	0.0067	0.0051	0.0032	0.0050	0.0048	0.0059	0.0002	0.0025
17,4	0.38	0.29	0.66	0.20	0.18	1.00	0.51	0.89
	0.11	0.01	0.16	0.10	0.02	0.95	0.29	0.61
	0.28	0.11	0.56	0.11	0.09	0.99	0.28	0.38
	0.65	0.58	0.00	0.01	0.11	0.49	0.04	0.20

Table IA.13: CER Comparison with 20 bps Transaction Costs: h = 240 and $\gamma = 3$ (Cont'd)

	Momentum $N = 10$	Size-B/M $N = 25$	$IVOL \\ N = 10$	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
			Other Rules	from Portfo	lio Optimizatio	on		
$\hat{w}_{g,t}$	0.0053	0.0062	0.0026	0.0076	0.0069	0.0069	0.0015	0.0000
0,1	0.25	0.42	0.60	0.44	0.29	1.00	0.77	0.88
	0.05	0.03	0.13	0.29	0.05	0.95	0.51	0.00
	0.17	0.18	0.50	0.32	0.17	1.00	0.49	0.00
	0.13	0.93	0.00	0.13	0.67	0.66	0.05	0.00
$\hat{w}_{g,t}^{NS}$	0.0038	0.0046	0.0047	0.0057	0.0042	0.0056	0.0042	0.0040
5,1	0.15	0.24	0.78	0.26	0.16	1.00	0.97	1.00
	0.02	0.01	0.30	0.15	0.02	0.95	0.94	0.98
	0.10	0.09	0.70	0.17	0.08	0.99	0.94	0.89
	0.00	0.36	0.02	0.01	0.00	0.39	0.50	0.36
$\hat{w}_{KZ3,t}$	-0.1193	0.0066	-6.1266	0.0095	0.0100	-27.3953	0.0009	-0.0005
1120,	0.00	0.46	0.00	0.75	0.55	0.00	0.91	0.11
	0.00	0.01	0.00	0.58	0.11	0.00	0.14	0.00
	0.00	0.15	0.00	0.59	0.30	0.00	0.16	0.00
	0.00	0.84	0.00	0.75	0.81	0.00	0.06	0.00
			Nor	n-Optimizati	on Rules			
1/N	0.0030	0.0042	0.0026	0.0038	0.0023	0.0018	0.0039	0.0043
	0.11	0.22	0.60	0.14	0.11	1.00	0.91	0.99
	0.02	0.01	0.14	0.07	0.01	0.92	0.84	0.94
	0.07	0.08	0.50	0.08	0.05	0.99	0.83	0.82
	0.00	0.30	0.00	0.00	0.00	0.08	0.44	0.46
KO_{VT}	0.0039	0.0047	0.0046	0.0051	0.0038	0.0048	0.0044	0.0043
	0.16	0.26	0.77	0.22	0.15	1.00	0.97	1.00
	0.03	0.01	0.30	0.11	0.02	0.94	0.94	0.99
	0.10	0.10	0.69	0.14	0.07	0.99	0.93	0.92
	0.00	0.42	0.02	0.00	0.00	0.26	0.55	0.44
KO_{RT}	0.0052	0.0051	0.0042	0.0054	0.0050	0.0063	0.0037	0.0034
	0.24	0.30	0.74	0.23	0.20	1.00	0.95	0.99
	0.05	0.01	0.25	0.12	0.03	0.95	0.90	0.86
	0.17	0.12	0.65	0.15	0.10	0.99	0.89	0.63
	0.07	0.61	0.01	0.00	0.05	0.56	0.39	0.26
KO_{BT}	0.0055	0.0052	0.0033	0.0046	0.0045	0.0059	0.0035	0.0034
	0.27	0.31	0.66	0.18	0.18	1.00	0.88	0.98
	0.06	0.02	0.19	0.09	0.02	0.95	0.79	0.83
	0.19	0.13	0.57	0.11	0.09	0.99	0.78	0.61
	0.12	0.65	0.01	0.00	0.03	0.48	0.37	0.29

Table IA.14: CER Comparison with 20bps Transaction Costs: h = 120 and $\gamma = 5$

This table reports the CER of the portfolios studied in this paper with h = 120, $\gamma = 5$, and a transaction cost of 20 bps, based on the eight datasets containing excess monthly returns. The four newly obtained optimal combining portfolios, i.e., $\hat{w}_{q,t}$, $\hat{w}_{q,t}^{LW2004}$, $\hat{w}_{q,t}^{LW2017}$, and $\hat{w}_{q,t}^{MP}$, are highlighted with a box around. In the three categories to which the four new portfolios belong, one-sided tests are conducted to assess the value of using the newly derived optimal combining coefficient \hat{c}_t , and the *p*-values are reported in *italics*. For the portfolios in the remaining three categories, one-sided tests are conducted to compare them with the four newly obtained portfolios, and the corresponding *p*-values are reported in the four rows below the portfolio CER. We set $\eta = 4$ for the timing strategies KO_{VT} , KO_{RT} , and KO_{BT} .

	Momentum $N = 10$	Size-B/M $N = 25$	$ IVOL \\ N = 10 $	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
w^*	0.0079	0.0111	0.0060	0.0141	0.0146	0.0556	0.0118	0.0138
			Invariant	Optimal Port	folio Rules			
$\hat{w}_{q,t}$	0.0041	0.0029	0.0011	0.0013	0.0022	-0.0060	-0.0013	-0.0197
$\hat{w}_{p,t}$	-0.0081	-0.0561	-0.0143	-0.0557	-0.0257	-64.1704	-0.4309	-781.6416
<i>P</i>)*	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\hat{w}_{u,t}$	-0.0046	-0.0292	-0.0096	-0.0310	-0.0165	-0.5832	-0.0938	-49.9908
,	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\hat{w}_{BS,t}$	0.0031	-0.0042	-0.0003	-0.0054	-0.0011	-0.1359	-0.0191	-0.1068
,-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		Rules	s with Shrinka	ge Covariano	ce Matrix Estin	nators		
$\hat{w}_{q,t}^{LW2004}$	0.0065	0.0061	0.0047	0.0042	0.0055	0.0384	0.0020	-0.0006
$\hat{w}_{p,t}^{LW2004}$	0.0023	-0.0058	0.0001	-0.0195	-0.0023	-0.0591	-0.0915	-0.3776
P)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\hat{w}_{q,t}^{LW2017}$	0.0053	0.0058	0.0026	0.0045	0.0038	0.0402	0.0024	0.0010
$\hat{w}_{p,t}^{LW2017}$	-0.0039	-0.0218	-0.0087	-0.0236	-0.0148	-0.1536	-0.0870	-0.1835
P)*	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		Rules	with MacKin	lay-Pástor Si	ngle Factor Str	ructure		
$\hat{w}_{q,t}^{MP}$	0.0021	0.0008	0.0025	0.0047	0.0014	0.0052	0.0025	0.0030
$\hat{w}_{p,t}^{MP}$	0.0020	0.0005	0.0006	0.0012	-0.0012	0.0017	0.0016	-0.0002
<i>P</i> >	0.42	0.39	0.01	0.01	0.00	0.01	0.27	0.04
			Rule with N	No-Short-Sale	e Constraints			
$\hat{w}_{p,t}^{NS}$	0.0029	0.0022	0.0013	0.0019	0.0013	0.0057	-0.0010	-0.0019
r *	0.28	0.37	0.53	0.59	0.37	0.83	0.55	1.00
	0.01	0.00	0.01	0.09	0.01	0.00	0.06	0.25
	0.10	0.02	0.27	0.09	0.14	0.00	0.04	0.06
	0.74	0.82	0.10	0.04	0.48	0.57	0.08	0.02

Table IA.14: CER Comparison with 20 bps Transaction Costs: h = 120 and $\gamma = 5$ (Cont'd)

	Momentum $N = 10$	Size-B/M $N = 25$	$ IVOL \\ N = 10 $	$ OP-Inv \\ N = 25 $	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
			Other Rule	s from Portfo	olio Optimizatio	on		
$\hat{w}_{g,t}$	0.0027	0.0028	0.0001	0.0021	0.0024	-0.0011	-0.0007	-0.0189
0,	0.24	0.48	0.35	0.69	0.53	0.66	0.74	0.98
	0.00	0.00	0.00	0.03	0.01	0.00	0.00	0.00
	0.08	0.01	0.14	0.03	0.22	0.00	0.00	0.00
	0.75	0.96	0.00	0.00	0.82	0.00	0.02	0.00
$\hat{w}_{g,t}^{NS}$	0.0013	0.0021	0.0026	0.0031	0.0004	0.0046	0.0028	0.0012
5,1	0.10	0.35	0.73	0.79	0.25	0.81	1.00	1.00
	0.00	0.00	0.08	0.23	0.00	0.00	0.79	0.97
	0.02	0.01	0.49	0.22	0.07	0.00	0.65	0.58
	0.17	0.87	0.54	0.10	0.19	0.32	0.61	0.06
$\hat{w}_{KZ3,t}$	-1.2884	-0.2714	-5.8371	-0.2090	-2.3629	-8.5170	-0.2271	-404.1970
RZ5,i	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			No	n-Optimizati	on Rules			
1/N	0.0002	0.0005	-0.0008	0.0012	-0.0005	-0.0015	0.0016	0.0004
,	0.04	0.16	0.24	0.48	0.18	0.64	0.90	1.00
	0.00	0.00	0.00	0.06	0.00	0.00	0.41	0.76
	0.01	0.00	0.08	0.06	0.05	0.00	0.33	0.33
	0.06	0.44	0.01	0.02	0.14	0.01	0.34	0.06
KO_{VT}	0.0015	0.0022	0.0024	0.0027	0.0007	0.0029	0.0035	0.0023
, 1	0.11	0.38	0.70	0.72	0.30	0.77	1.00	1.00
	0.00	0.00	0.07	0.18	0.00	0.00	0.91	1.00
	0.03	0.02	0.46	0.17	0.10	0.00	0.83	0.94
	0.25	0.86	0.46	0.07	0.31	0.10	0.78	0.27
KO_{RT}	0.0022	0.0017	0.0009	0.0027	0.0016	0.0040	0.0017	-0.0003
1(1	0.19	0.29	0.46	0.73	0.41	0.79	0.95	1.00
	0.00	0.00	0.01	0.18	0.02	0.00	0.41	0.57
	0.06	0.01	0.21	0.17	0.18	0.00	0.30	0.14
	0.55	0.70	0.08	0.08	0.56	0.26	0.33	0.02
KO_{BT}	0.0026	0.0018	-0.0001	0.0026	0.0023	0.0032	0.0019	0.0005
~ <i>D1</i>	0.23	0.31	0.32	0.70	0.51	0.77	0.93	1.00
	0.00	0.00	0.00	0.18	0.05	0.00	0.47	0.77
	0.08	0.02	0.13	0.17	0.27	0.00	0.38	0.36
	0.67	0.71	0.03	0.08	0.72	0.16	0.38	0.06

Table IA.15: CER Comparison with 20 bps Transaction Costs: h = 240 and $\gamma = 5$

This table reports the CER of the portfolios studied in this paper with h=240, $\gamma=5$, and a transaction cost of 20 bps, based on the eight datasets containing excess monthly returns. The four newly obtained optimal combining portfolios, i.e., $\hat{w}_{q,t}$, $\hat{w}_{q,t}^{LW2004}$, $\hat{w}_{q,t}^{LW2017}$, and $\hat{w}_{q,t}^{MP}$, are highlighted with a box around. In the three categories to which the four new portfolios belong, one-sided tests are conducted to assess the value of using the newly derived optimal combining coefficient \hat{c}_t , and the *p*-values are reported in *italics*. For the portfolios in the remaining three categories, one-sided tests are conducted to compare them with the four newly obtained portfolios, and the corresponding *p*-values are reported in the four rows below the portfolio CER. We set $\eta=4$ for the timing strategies KO_{VT} , KO_{RT} , and KO_{BT} .

	Momentum $N = 10$	Size-B/M $N = 25$	IVOL $N = 10$	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
w^*	0.0090	0.0129	0.0097	0.0150	0.0160	0.0407	0.0163	0.0191
			Invariant (Optimal Port	folio Rules			
$\hat{w}_{q,t}$	0.0058	0.0060	0.0020	0.0064	0.0081	-0.0854	-0.0004	-0.0019
$\hat{w}_{p,t}$	0.0004	-0.0103	-0.0050	-0.0151	-0.0025	-2.1217	-0.0969	-0.1870
P ,*	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\hat{w}_{u,t}$	0.0015	-0.0052	-0.0035	-0.0096	-0.0001	-0.4767	-0.0431	-0.0661
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\hat{w}_{BS,t}$	0.0055	0.0041	0.0015	0.0031	0.0069	-0.1917	-0.0098	-0.0106
,-	0.02	0.00	0.00	0.00	0.02	0.00	0.00	0.00
		Rules	with Shrinka	ge Covarianc	e Matrix Estim	nators		
$\hat{w}_{q,t}^{LW2004}$	0.0072	0.0078	0.0044	0.0071	0.0100	-0.0020	0.0009	0.0006
$\hat{w}_{p,t}^{LW2004}$	0.0043	0.0025	0.0011	-0.0080	0.0056	-0.9684	-0.0463	-0.0870
P)	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00
$\hat{w}_{q,t}^{LW2017}$	0.0064	0.0070	0.0026	0.0071	0.0092	-0.0267	0.0011	0.0018
$\hat{w}_{p,t}^{LW2017}$	0.0015	-0.0051	-0.0036	-0.0103	0.0008	-0.3235	-0.0468	-0.0516
P,i	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		Rules	with MacKinl	ay-Pástor Si	ngle Factor Str	ucture		
$\hat{w}_{q,t}^{MP}$	0.0045	0.0024	0.0046	0.0074	0.0061	0.0053	0.0027	0.0027
$\hat{w}_{p,t}^{MP}$	0.0041	0.0028	0.0032	0.0050	0.0044	0.0045	0.0025	0.0029
Ρ,	0.15	0.71	0.02	0.01	0.00	0.22	0.46	0.54
			Rule with N	lo-Short-Sale	e Constraints			
$\hat{w}_{p,t}^{NS}$	0.0039	0.0027	0.0026	0.0036	0.0029	0.0034	-0.0003	0.0012
P 3*	0.19	0.06	0.61	0.13	0.07	1.00	0.52	0.94
	0.04	0.00	0.16	0.06	0.01	0.66	0.24	0.63
	0.13	0.02	0.51	0.07	0.03	0.96	0.21	0.33
	0.30	0.61	0.01	0.01	0.01	0.28	0.08	0.23

Table IA.15: CER Comparison with 20 bps Transaction Costs: h = 240 and $\gamma = 5$ (Cont'd)

	Momentum $N = 10$	Size-B/M $N = 25$	$ IVOL \\ N = 10 $	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
			Other Rules	from Portfo	lio Optimizatio	on		
$\hat{w}_{g,t}$	0.0037	0.0049	0.0014	0.0061	0.0056	0.0054	0.0002	-0.0018
8,5	0.16	0.27	0.41	0.43	0.20	1.00	0.71	0.81
	0.03	0.01	0.07	0.27	0.03	0.72	0.23	0.00
	0.10	0.10	0.31	0.29	0.10	0.98	0.20	0.00
	0.11	0.99	0.00	0.04	0.31	0.52	0.08	0.00
$\hat{w}_{g,t}^{NS}$	0.0020	0.0030	0.0035	0.0042	0.0023	0.0043	0.0031	0.0029
8,1	0.06	0.08	0.73	0.18	0.05	1.00	0.98	1.00
	0.01	0.00	0.31	0.09	0.00	0.69	0.95	0.99
	0.03	0.02	0.65	0.11	0.02	0.97	0.93	0.91
	0.00	0.75	0.06	0.01	0.00	0.31	0.62	0.54
$\hat{w}_{KZ3,t}$	-0.2094	0.0037	-10.0634	0.0070	0.0035	-45.4892	-0.0010	-0.0023
KZ3,i	0.00	0.04	0.00	0.74	0.03	0.00	0.11	0.07
	0.00	0.00	0.00	0.44	0.01	0.00	0.00	0.00
	0.00	0.00	0.00	0.47	0.01	0.00	0.00	0.00
	0.00	0.76	0.00	0.39	0.26	0.00	0.05	0.00
			Nor	n-Optimizati	on Rules			
1/N	0.0010	0.0019	0.0002	0.0018	-0.0002	-0.0011	0.0019	0.0027
	0.03	0.04	0.26	0.06	0.02	1.00	0.83	0.99
	0.00	0.00	0.03	0.02	0.00	0.53	0.67	0.92
	0.02	0.01	0.19	0.03	0.01	0.93	0.65	0.74
	0.00	0.38	0.00	0.00	0.00	0.05	0.38	0.50
KO_{VT}	0.0022	0.0029	0.0032	0.0034	0.0018	0.0032	0.0032	0.0032
	0.06	0.08	0.69	0.13	0.05	1.00	0.97	1.00
	0.01	0.00	0.27	0.06	0.00	0.65	0.92	0.99
	0.04	0.02	0.61	0.08	0.02	0.96	0.91	0.93
	0.00	0.69	0.05	0.00	0.00	0.21	0.63	0.64
KO_{RT}	0.0032	0.0031	0.0026	0.0038	0.0030	0.0046	0.0024	0.0019
	0.12	0.09	0.60	0.15	0.08	1.00	0.94	0.99
	0.02	0.00	0.17	0.07	0.01	0.69	0.84	0.83
	0.08	0.03	0.50	0.08	0.04	0.97	0.82	0.53
	0.06	0.72	0.02	0.01	0.00	0.39	0.45	0.32
KO_{BT}	0.0036	0.0030	0.0012	0.0028	0.0022	0.0039	0.0015	0.0017
<i>D1</i>	0.16	0.09	0.39	0.09	0.06	1.00	0.78	0.98
	0.03	0.00	0.07	0.04	0.01	0.67	0.60	0.77
	0.10	0.03	0.30	0.05	0.02	0.97	0.58	0.47
	0.12	0.67	0.01	0.00	0.00	0.31	0.32	0.31

Table IA.16: Sharpe Ratio Comparison with 20 bps Transaction Costs: h = 240 and $\gamma = 3$

This table reports the Sharpe ratio of the portfolios studied in this paper with h=240, $\gamma=3$, and a transaction cost of 20 bps, based on the eight datasets containing excess monthly returns. The four newly obtained optimal combining portfolios, i.e., $\hat{w}_{q,t}$, $\hat{w}_{q,t}^{LW2004}$, $\hat{w}_{q,t}^{LW2017}$, and $\hat{w}_{q,t}^{MP}$, are highlighted with a box around. In the three categories to which the four new portfolios belong, one-sided tests are conducted to assess the value of using the newly derived optimal combining coefficient \hat{c}_t , and the *p*-values are reported in *italics*. For the portfolios in the remaining three categories, one-sided tests are conducted to compare them with the four newly obtained portfolios, and the corresponding *p*-values are reported in the four rows below the portfolio Sharpe ratio. We set $\eta=4$ for the timing strategies KO_{VT} , KO_{RT} , and KO_{BT} .

	Momentum $N = 10$	Size-B/M $N = 25$	IVOL $N = 10$	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
w^*	0.2844	0.3253	0.2944	0.3573	0.3619	0.5762	0.3743	0.4092
			Invariant C	ptimal Port	folio Rules			
$\hat{w}_{q,t}$	0.2337	0.2133	0.2001	0.2211	0.2451	0.0532	0.0748	0.0597
$\hat{w}_{p,t}$	0.2108	0.1493	0.1737	0.1348	0.1903	0.1001	-0.0479	-0.2235
P ;*	0.00	0.00	0.00	0.00	0.00	0.77	0.00	0.00
$\hat{w}_{u,t}$	0.2144	0.0517	0.1798	0.1445	0.1976	0.1067	-0.0567	-0.1311
,-	0.00	0.00	0.00	0.00	0.00	0.81	0.01	0.00
$\hat{w}_{BS,t}$	0.2320	0.1994	0.1979	0.1866	0.2322	0.0888	0.0157	-0.0605
,	0.16	0.00	0.13	0.00	0.01	0.73	0.03	0.01
		Rules	with Shrinkag	ge Covarianc	e Matrix Estim	nators		
$\hat{w}_{q,t}^{LW2004}$	0.2512	0.2527	0.2127	0.2356	0.2857	0.3440	0.0975	0.1082
$\hat{w}_{p,t}^{LW2004}$	0.2337	0.2053	0.1981	0.1502	0.2300	0.2830	-0.0617	-0.1382
P ;*	0.00	0.00	0.02	0.00	0.00	0.01	0.01	0.00
$\hat{w}_{q,t}^{LW2017}$	0.2415	0.2311	0.2029	0.2334	0.2619	0.3308	0.0991	0.1390
$\hat{w}_{p,t}^{LW2017}$	0.2204	0.1704	0.0988	0.1501	0.2074	0.1204	-0.0601	-0.1015
Ρ,	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
		Rules v	with MacKinla	ay-Pástor Sii	ngle Factor Str	ucture		
$\hat{w}_{q,t}^{MP}$	0.2064	0.1769	0.2142	0.2816	0.2192	0.2295	0.1689	0.1708
$\hat{w}_{p,t}^{MP}$	0.1697	0.1351	0.1174	0.1280	0.1416	0.1284	0.1170	0.1064
Ρ,	0.00	0.05	0.00	0.00	0.00	0.01	0.18	0.15
			Rule with No	o-Short-Sale	e Constraints			
$\hat{w}_{p,t}^{NS}$	0.2046	0.1762	0.1393	0.1780	0.1727	0.1905	0.0767	0.1247
F /	0.22	0.19	0.06	0.22	0.14	0.94	0.51	0.92
	0.10	0.03	0.02	0.14	0.04	0.05	0.34	0.65
	0.16	0.09	0.05	0.15	0.09	0.07	0.32	0.37
	0.47	0.49	0.00	0.00	0.05	0.25	0.04	0.19

Table IA.16: Sharpe Ratio Comparison with 20 bps Transaction Costs: h=240 and $\gamma=3$ (Cont'd)

	Momentum	Size-B/M	IVOL	OP-Inv	NM-V (LT)	NM-V (All)	Industry	Stocks
	N = 10	N = 25	N = 10	N = 25	N = 16	N = 46	N = 49	N = 100
			Other Rules	from Portfo	olio Optimizatio	on		
$\hat{w}_{g,t}$	0.1917	0.2248	0.1265	0.2526	0.2423	0.2386	0.0951	0.0657
	0.14	0.62	0.05	0.75	0.48	0.98	0.69	0.90
	0.06	0.22	0.02	0.65	0.22	0.11	0.47	0.00
	0.10	0.43	0.04	0.66	0.37	0.14	0.46	0.00
	0.22	0.98	0.00	0.06	0.79	0.56	0.05	0.00
$\hat{w}_{g,t}^{NS}$	0.1537	0.1741	0.1873	0.2041	0.1608	0.2106	0.1767	0.1694
8,"	0.03	0.19	0.37	0.38	0.11	0.96	0.98	1.00
	0.01	0.03	0.25	0.28	0.03	0.07	0.96	0.99
	0.02	0.10	0.34	0.30	0.07	0.10	0.96	0.91
	0.00	0.43	0.05	0.00	0.00	0.33	0.58	0.48
$\hat{w}_{KZ3,t}$	0.0529	0.2034	-0.1116	0.2653	0.2448	-0.0598	0.0852	0.0533
	0.00	0.34	0.00	0.97	0.50	0.09	0.84	0.13
	0.00	0.01	0.00	0.92	0.10	0.00	0.17	0.00
	0.00	0.13	0.00	0.91	0.29	0.00	0.19	0.00
	0.00	0.77	0.00	0.32	0.66	0.00	0.05	0.00
			Nor	n-Optimizati	on Rules			
1/N	0.1345	0.1601	0.1274	0.1518	0.1209	0.1142	0.1536	0.1683
,	0.01	0.12	0.05	0.13	0.05	0.74	0.90	0.99
	0.00	0.01	0.02	0.08	0.01	0.01	0.84	0.94
	0.01	0.06	0.04	0.09	0.03	0.02	0.83	0.78
	0.00	0.25	0.00	0.00	0.00	0.04	0.39	0.48
KO_{VT}	0.1566	0.1739	0.1803	0.1861	0.1526	0.1809	0.1791	0.1794
	0.04	0.19	0.31	0.28	0.10	0.92	0.97	1.00
	0.01	0.03	0.19	0.19	0.03	0.05	0.95	0.99
	0.02	0.10	0.28	0.21	0.06	0.06	0.94	0.94
	0.00	0.43	0.02	0.00	0.00	0.16	0.59	0.60
KO_{RT}	0.1832	0.1807	0.1646	0.1940	0.1797	0.2134	0.1579	0.1469
	0.10	0.23	0.18	0.32	0.17	0.96	0.95	0.99
	0.04	0.04	0.10	0.22	0.05	0.08	0.91	0.86
	0.07	0.12	0.16	0.24	0.11	0.11	0.90	0.59
	0.07	0.57	0.01	0.00	0.02	0.37	0.41	0.29
KO_{BT}	0.1910	0.1813	0.1415	0.1716	0.1649	0.1997	0.1453	0.1449
	0.14	0.23	0.08	0.20	0.13	0.94	0.87	0.98
	0.06	0.04	0.04	0.13	0.04	0.07	0.79	0.82
	0.10	0.13	0.07	0.15	0.08	0.09	0.78	0.56
	0.14	0.58	0.00	0.00	0.01	0.28	0.33	0.29

Table IA.17: Sharpe Ratio Comparison with 20 bps Transaction Costs: h = 120 and $\gamma = 5$

This table reports the Sharpe ratio of the portfolios studied in this paper with h=120, $\gamma=5$, and a transaction cost of 20 bps, based on the eight datasets containing excess monthly returns. The four newly obtained optimal combining portfolios, i.e., $\hat{w}_{q,t}$, $\hat{w}_{q,t}^{LW2004}$, $\hat{w}_{q,t}^{LW2017}$, and $\hat{w}_{q,t}^{MP}$, are highlighted with a box around. In the three categories to which the four new portfolios belong, one-sided tests are conducted to assess the value of using the newly derived optimal combining coefficient \hat{c}_t , and the *p*-values are reported in *italics*. For the portfolios in the remaining three categories, one-sided tests are conducted to compare them with the four newly obtained portfolios, and the corresponding *p*-values are reported in the four rows below the portfolio Sharpe ratio. We set $\eta=4$ for the timing strategies KO_{VT} , KO_{RT} , and KO_{BT} .

	Momentum	Size-B/M	IVOL	OP-Inv	NM-V (LT)	NM-V (All)	Industry	Stocks
	N = 10	N = 25	N = 10	N = 25	N=16	N=46	N = 49	N = 100
w^*	0.2817	0.3328	0.2471	0.3757	0.3827	0.7496	0.3442	0.3748
			Invariant C	Optimal Port	folio Rules			
$\hat{w}_{q,t}$	0.2376	0.2028	0.2196	0.1636	0.1879	0.4521	0.0814	-0.0725
$\hat{w}_{p,t}$	0.2138	0.1074	0.1989	0.0850	0.1307	-0.0172	-0.0861	-0.1420
1 /	0.01	0.00	0.01	0.00	0.01	0.00	0.00	0.11
$\hat{w}_{u,t}$	0.2190	0.1305	0.2029	0.1029	0.1419	0.2254	-0.0052	-0.0751
,	0.03	0.00	0.03	0.01	0.01	0.00	0.02	0.48
$\hat{w}_{BS,t}$	0.2357	0.1739	0.2169	0.1388	0.1743	0.3830	0.0350	-0.1688
,	0.25	0.00	0.17	0.05	0.08	0.00	0.08	0.01
		Rules	with Shrinkag	ge Covarianc	e Matrix Estim	nators		
$\hat{w}_{q,t}^{LW2004}$	0.2567	0.2485	0.2281	0.2077	0.2335	0.6524	0.1460	0.0775
$\hat{w}_{p,t}^{LW2004}$	0.2443	0.1981	0.2169	0.1423	0.1909	0.5440	0.0160	-0.1239
1 /	0.13	0.01	0.13	0.01	0.05	0.00	0.00	0.00
$\hat{w}_{q,t}^{LW2017}$	0.2490	0.2418	0.2246	0.2130	0.2072	0.6369	0.1574	0.1170
$\hat{w}_{p,t}^{LW2017}$	0.2314	0.1739	0.2095	0.1498	0.1534	0.5355	0.0256	-0.0687
p,i	0.05	0.00	0.06	0.02	0.01	0.00	0.00	0.00
		Rules v	with MacKinla	ay-Pástor Si	ngle Factor Str	ucture		
$\hat{w}_{q,t}^{MP}$	0.1653	0.1357	0.1628	0.2175	0.1379	0.2329	0.1609	0.1742
$\hat{w}_{p,t}^{MP}$	0.1651	0.1283	0.1215	0.1352	0.0894	0.1444	0.1392	0.1133
Ρ,	0.49	0.38	0.01	0.01	0.01	0.01	0.26	0.07
			Rule with No	o-Short-Sale	e Constraints			
$\hat{w}_{p,t}^{NS}$	0.1876	0.1672	0.1384	0.1574	0.1578	0.2393	0.1195	0.1006
r y	0.05	0.16	0.01	0.44	0.26	0.00	0.80	1.00
	0.00	0.00	0.00	0.09	0.02	0.00	0.24	0.72
	0.02	0.01	0.00	0.08	0.13	0.00	0.16	0.33
	0.84	0.85	0.14	0.05	0.73	0.55	0.20	0.06

Table IA.17: Sharpe Ratio Comparison with 20 bps Transaction Costs: h=120 and $\gamma=5$ (Cont'd)

	Momentum	Size-B/M	IVOL	OP-Inv	NM-V (LT)	NM-V (All)	Industry	Stocks
	N = 10	N = 25	N = 10	N=25	N = 16	N = 46	N = 49	N = 100
			Other Rules	from Portfo	olio Optimizatio	on		
$\hat{w}_{g,t}$	0.1696	0.1702	0.0942	0.1554	0.1597	0.0681	0.0816	-0.0641
37	0.01	0.12	0.00	0.39	0.23	0.00	0.50	0.96
	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00
	0.00	0.00	0.00	0.01	0.09	0.00	0.00	0.00
	0.60	0.91	0.00	0.00	0.79	0.00	0.02	0.00
$\hat{w}_{g,t}^{NS}$	0.1414	0.1563	0.1634	0.1778	0.1211	0.2167	0.1675	0.1209
8,4	0.00	0.10	0.04	0.63	0.08	0.00	0.99	1.00
	0.00	0.00	0.01	0.20	0.00	0.00	0.78	0.95
	0.00	0.00	0.03	0.18	0.03	0.00	0.64	0.57
	0.11	0.79	0.51	0.10	0.24	0.34	0.58	0.04
$\hat{w}_{KZ3,t}$	-0.0185	-0.0531	-0.0790	-0.0386	-0.0778	-0.2694	-0.0509	-0.0435
1123,	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.70
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			Nor	n-Optimizati	on Rules			
1/N	0.1269	0.1477	0.1217	0.1418	0.1202	0.1026	0.1512	0.1175
1/11	0.00	0.08	0.00	0.32	0.10	0.00	0.92	1.00
	0.00	0.00	0.00	0.06	0.00	0.00	0.55	0.87
	0.00	0.01	0.00	0.05	0.04	0.00	0.44	0.51
	0.07	0.63	0.08	0.02	0.30	0.01	0.41	0.07
KO_{VT}	0.1453	0.1622	0.1610	0.1687	0.1323	0.1732	0.1875	0.1544
110 V I	0.00	0.14	0.04	0.55	0.13	0.00	1.00	1.00
	0.00	0.00	0.01	0.15	0.00	0.00	0.91	1.00
	0.00	0.01	0.03	0.14	0.05	0.00	0.83	0.94
	0.16	0.83	0.47	0.07	0.42	0.10	0.77	0.23
KO_{RT}	0.1664	0.1622	0.1402	0.1718	0.1629	0.2008	0.1469	0.1004
II O KI	0.01	0.14	0.01	0.58	0.30	0.00	0.94	1.00
	0.00	0.00	0.00	0.16	0.03	0.00	0.51	0.75
	0.00	0.01	0.01	0.14	0.16	0.00	0.38	0.29
	0.52	0.79	0.19	0.09	0.77	0.25	0.37	0.02
KO_{BT}	0.1733	0.1658	0.1259	0.1691	0.1723	0.1840	0.1554	0.1221
O D I	0.02	0.17	0.01	0.55	0.38	0.00	0.133	1.00
	0.00	0.00	0.00	0.16	0.06	0.00	0.59	0.89
	0.01	0.02	0.00	0.15	0.23	0.00	0.48	0.56
	0.66	0.81	0.10	0.19	0.85	0.16	0.45	0.08

Table IA.18: Sharpe Ratio Comparison with 20 bps Transaction Costs: h = 240 and $\gamma = 5$

This table reports the Sharpe ratio of the portfolios studied in this paper with h = 240, $\gamma = 5$, and a transaction cost of 20 bps, based on the eight datasets containing excess monthly returns. The four newly obtained optimal combining portfolios, i.e., $\hat{w}_{q,t}$, $\hat{w}_{q,t}^{LW2004}$, $\hat{w}_{q,t}^{LW2017}$, and $\hat{w}_{q,t}^{MP}$, are highlighted with a box around. In the three categories to which the four new portfolios belong, one-sided tests are conducted to assess the value of using the newly derived optimal combining coefficient \hat{c}_t , and the *p*-values are reported in *italics*. For the portfolios in the remaining three categories, one-sided tests are conducted to compare them with the four newly obtained portfolios, and the corresponding *p*-values are reported in the four rows below the portfolio Sharpe ratio. We set $\eta = 4$ for the timing strategies KO_{VT} , KO_{RT} , and KO_{BT} .

	Momentum $N = 10$	Size-B/M $N = 25$	IVOL $N = 10$	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
w^*	0.3007	0.3600	0.3116	0.3882	0.4005	0.6389	0.4036	0.4380
			Invariant C	Optimal Port	folio Rules			
$\hat{w}_{q,t}$	0.2609	0.2528	0.2229	0.2559	0.2873	0.2962	0.0900	0.0623
$\hat{w}_{p,t}$	0.2442	0.2053	0.2075	0.1768	0.2386	0.0531	-0.0332	-0.1344
<i>P</i> ,*	0.01	0.00	0.02	0.00	0.00	0.00	0.01	0.00
$\hat{w}_{u,t}$	0.2469	0.2157	0.2095	0.1860	0.2451	0.1596	0.0059	-0.0939
	0.02	0.00	0.03	0.00	0.00	0.00	0.03	0.00
$\hat{w}_{BS,t}$	0.2598	0.2434	0.2212	0.2273	0.2766	0.2453	0.0428	-0.0241
,	0.25	0.05	0.18	0.00	0.03	0.00	0.07	0.01
		Rules	with Shrinkag	ge Covarianc	e Matrix Estim	nators		
$\hat{w}_{q,t}^{LW2004}$	0.2739	0.2813	0.2305	0.2667	0.3193	0.4233	0.1171	0.1102
$\hat{w}_{p,t}^{LW2004}$	0.2633	0.2494	0.2209	0.1910	0.2737	0.1080	-0.0034	-0.0917
P , ι	0.07	0.02	0.10	0.00	0.00	0.00	0.01	0.00
$\hat{w}_{q,t}^{LW2017}$	0.2677	0.2674	0.2250	0.2662	0.3026	0.3894	0.1212	0.1407
$\hat{w}_{p,t}^{LW2017}$	0.2532	0.2262	0.2112	0.1907	0.2546	0.2607	-0.0090	-0.0672
P , ι	0.02	0.00	0.03	0.00	0.00	0.00	0.00	0.00
		Rules	with MacKinla	ay-Pástor Si	ngle Factor Str	ucture		
$\hat{w}_{q,t}^{MP}$	0.2122	0.1642	0.2168	0.2883	0.2522	0.2355	0.1649	0.1702
$\hat{w}_{p,t}^{MP}$	0.2027	0.1754	0.1794	0.2274	0.2108	0.2195	0.1600	0.1726
p,i	0.14	0.71	0.02	0.01	0.00	0.28	0.45	0.52
			Rule with N	o-Short-Sale	Constraints			
$\hat{w}_{p,t}^{NS}$	0.2036	0.1731	0.1634	0.1910	0.1788	0.1934	0.0985	0.1369
• /	0.04	0.02	0.04	0.09	0.04	0.13	0.57	0.96
	0.01	0.00	0.01	0.05	0.01	0.01	0.33	0.74
	0.03	0.01	0.03	0.05	0.02	0.02	0.30	0.46
	0.35	0.62	0.01	0.00	0.01	0.28	0.09	0.25

Table IA.18: Sharpe Ratio Comparison with 20 bps Transaction Costs: h=240 and $\gamma=5$ (Cont'd)

	Momentum	Size-B/M	IVOL	OP-Inv	NM-V (LT)	NM-V (All)	Industry	Stocks
	N = 10	N=25	N = 10	N = 25	N = 16	N = 46	N = 49	N = 100
			Other Rules	from Portfo	olio Optimizatio	on		
$\hat{w}_{g,t}$	0.1917	0.2248	0.1265	0.2526	0.2423	0.2386	0.0951	0.0657
8)	0.02	0.19	0.01	0.46	0.19	0.25	0.57	0.89
	0.01	0.02	0.00	0.34	0.05	0.01	0.20	0.00
	0.01	0.09	0.01	0.35	0.12	0.04	0.18	0.00
	0.10	0.99	0.00	0.04	0.36	0.52	0.07	0.00
$\hat{w}_{g,t}^{NS}$	0.1537	0.1741	0.1873	0.2041	0.1608	0.2106	0.1767	0.1694
5,1	0.00	0.02	0.15	0.15	0.02	0.17	0.98	1.00
	0.00	0.00	0.09	0.09	0.00	0.01	0.94	0.99
	0.00	0.01	0.14	0.10	0.01	0.02	0.93	0.90
	0.00	0.68	0.07	0.01	0.00	0.33	0.61	0.49
$\hat{w}_{KZ3,t}$	0.0529	0.2034	-0.1116	0.2653	0.2448	-0.0598	0.0852	0.0533
KZ5,i	0.00	0.01	0.00	0.74	0.08	0.00	0.34	0.08
	0.00	0.00	0.00	0.46	0.01	0.00	0.02	0.00
	0.00	0.00	0.00	0.48	0.03	0.00	0.02	0.00
	0.00	0.85	0.00	0.24	0.45	0.00	0.07	0.00
			Nor	n-Optimizati	on Rules			
1/N	0.1345	0.1601	0.1274	0.1518	0.1209	0.1142	0.1536	0.1683
	0.00	0.01	0.01	0.03	0.01	0.03	0.87	0.99
	0.00	0.00	0.00	0.02	0.00	0.00	0.75	0.93
	0.00	0.00	0.01	0.02	0.00	0.00	0.73	0.77
	0.00	0.45	0.00	0.00	0.00	0.07	0.42	0.49
KO_{VT}	0.1566	0.1739	0.1803	0.1861	0.1526	0.1809	0.1791	0.1794
	0.00	0.03	0.12	0.09	0.02	0.11	0.97	1.00
	0.00	0.00	0.06	0.05	0.00	0.01	0.92	0.99
	0.00	0.01	0.10	0.06	0.01	0.01	0.90	0.93
	0.00	0.65	0.05	0.00	0.00	0.21	0.62	0.61
KO_{RT}	0.1832	0.1807	0.1646	0.1940	0.1797	0.2134	0.1579	0.1469
	0.01	0.03	0.05	0.11	0.04	0.19	0.93	0.98
	0.00	0.00	0.02	0.06	0.01	0.01	0.84	0.85
	0.01	0.01	0.04	0.07	0.02	0.03	0.82	0.57
	0.06	0.72	0.02	0.01	0.00	0.37	0.44	0.29
KO_{BT}	0.1910	0.1813	0.1415	0.1716	0.1649	0.1997	0.1453	0.1449
2.	0.02	0.04	0.02	0.06	0.03	0.16	0.83	0.97
	0.01	0.00	0.01	0.03	0.00	0.01	0.70	0.81
	0.01	0.01	0.02	0.04	0.01	0.02	0.67	0.55
	0.12	0.71	0.01	0.00	0.00	0.30	0.36	0.30

Table IA.19: CER Comparison with 10 bps Transaction Costs: h = 120 and $\gamma = 3$

This table reports the CER of the portfolios studied in this paper with h = 120, $\gamma = 3$, and a transaction cost of 10 bps, based on the eight datasets containing excess monthly returns. The four newly obtained optimal combining portfolios, i.e., $\hat{w}_{q,t}$, $\hat{w}_{q,t}^{LW2004}$, $\hat{w}_{q,t}^{LW2017}$, and $\hat{w}_{q,t}^{MP}$, are highlighted with a box around. In the three categories to which the four new portfolios belong, one-sided tests are conducted to assess the value of using the newly derived optimal combining coefficient \hat{c}_t , and the *p*-values are reported in *italics*. For the portfolios in the remaining three categories, one-sided tests are conducted to compare them with the four newly obtained portfolios, and the corresponding *p*-values are reported in the four rows below the portfolio CER. We set $\eta = 4$ for the timing strategies KO_{VT} , KO_{RT} , and KO_{BT} .

	Momentum $N = 10$	Size-B/M $N = 25$	$ IVOL \\ N = 10 $	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
w^*	0.0125	0.0176	0.0101	0.0226	0.0235	0.0944	0.0188	0.0252
			Invariant	Optimal Port	folio Rules			
$\hat{w}_{q,t}$	0.0078	0.0067	0.0036	0.0041	0.0053	0.0010	0.0009	-0.0108
$\hat{w}_{p,t}$	-0.0113	-1.4146	-0.0211	-0.0892	-0.0374	-5.6637	-0.7202	-177.9997
Ρ,	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\hat{w}_{u,t}$	-0.0056	-0.0434	-0.0150	-0.0462	-0.0228	-1.7916	-0.3289	-2.7185
,.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\hat{w}_{BS,t}$	0.0064	-0.0037	0.0013	-0.0058	0.0007	-0.2307	-0.0265	-0.1632
,-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		Rules	with Shrinka	ge Covariano	ce Matrix Estin	nators		
$\hat{w}_{q,t}^{LW2004}$	0.0110	0.0099	0.0090	0.0072	0.0090	0.0652	0.0036	0.0014
$\hat{w}_{p,t}^{LW2004}$	0.0046	-0.0076	0.0022	-0.0292	-0.0022	-0.1444	-0.1424	-5.0378
1)	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00
$\hat{w}_{q,t}^{LW2017}$	0.0096	0.0102	0.0060	0.0076	0.0073	0.0696	0.0040	0.0026
$\hat{w}_{p,t}^{LW2017}$	-0.0048	-0.0327	-0.0120	-0.0357	-0.0207	-0.8689	-0.2050	-0.3251
Ρ,	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		Rules	with MacKin	lay-Pástor Si	ngle Factor Str	ructure		
$\hat{w}_{q,t}^{MP}$	0.0046	0.0034	0.0034	0.0061	0.0028	0.0064	0.0042	0.0048
$\hat{w}_{p,t}^{MP}$	0.0036	-0.0005	-0.0012	-0.0018	-0.0020	-0.0015	0.0011	-0.0031
P 7º	0.13	0.02	0.00	0.00	0.00	0.00	0.08	0.00
			Rule with N	No-Short-Sale	e Constraints			
$\hat{w}_{p,t}^{NS}$	0.0059	0.0047	0.0026	0.0043	0.0047	0.0090	0.0001	-0.0003
1 7	0.27	0.25	0.40	0.53	0.43	0.65	0.37	1.00
	0.01	0.00	0.00	0.10	0.04	0.00	0.06	0.24
	0.10	0.01	0.17	0.09	0.21	0.00	0.05	0.10
	0.86	0.81	0.21	0.14	0.86	0.87	0.07	0.03

Table IA.19: CER Comparison with 10 bps Transactions Costs: h = 120 and $\gamma = 3$ (Cont'd)

	Momentum $N = 10$	Size-B/M $N = 25$	$ IVOL \\ N = 10 $	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
			Other Rules	s from Portfo	lio Optimizatio	on		
$\hat{w}_{g,t}$	0.0048	0.0052	0.0017	0.0044	0.0045	0.0019	0.0017	-0.0094
8,5	0.18	0.28	0.33	0.56	0.40	0.52	0.70	0.99
	0.00	0.00	0.00	0.06	0.02	0.00	0.03	0.00
	0.06	0.01	0.13	0.05	0.17	0.00	0.02	0.00
	0.60	0.96	0.03	0.03	0.92	0.01	0.05	0.00
$\hat{w}_{g,t}^{NS}$	0.0034	0.0040	0.0040	0.0048	0.0025	0.0059	0.0041	0.0025
g,ι	0.10	0.18	0.54	0.60	0.23	0.59	0.95	1.00
	0.00	0.00	0.02	0.14	0.00	0.00	0.65	0.89
	0.03	0.00	0.30	0.13	0.07	0.00	0.53	0.45
	0.09	0.72	0.78	0.14	0.35	0.34	0.47	0.02
$\hat{w}_{KZ3,t}$	-0.7290	-0.0535	-1.8834	-0.0765	-0.9672	-2.6787	-0.1287	-60.8810
·· KZ5,t	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			No	n-Optimizati	on Rules			
1/N	0.0026	0.0036	0.0022	0.0034	0.0022	0.0013	0.0038	0.0023
	0.07	0.16	0.37	0.42	0.22	0.50	0.88	1.00
	0.00	0.00	0.01	0.06	0.01	0.00	0.54	0.75
	0.02	0.01	0.16	0.06	0.08	0.00	0.46	0.41
	0.06	0.55	0.18	0.04	0.34	0.01	0.42	0.07
KO_{VT}	0.0035	0.0043	0.0041	0.0045	0.0029	0.0046	0.0048	0.0037
	0.10	0.21	0.55	0.55	0.27	0.57	0.98	1.00
	0.00	0.00	0.02	0.12	0.01	0.00	0.83	0.98
	0.03	0.01	0.30	0.11	0.10	0.00	0.74	0.89
	0.13	0.78	0.78	0.09	0.54	0.12	0.69	0.13
KO_{RT}	0.0046	0.0045	0.0034	0.0048	0.0045	0.0060	0.0037	0.0017
	0.16	0.23	0.48	0.59	0.42	0.60	0.91	1.00
	0.00	0.00	0.01	0.13	0.03	0.00	0.51	0.59
	0.05	0.01	0.24	0.12	0.20	0.00	0.41	0.23
	0.51	0.76	0.48	0.16	0.86	0.42	0.38	0.02
KO_{BT}	0.0049	0.0046	0.0026	0.0046	0.0049	0.0053	0.0040	0.0026
	0.19	0.25	0.40	0.57	0.46	0.58	0.90	1.00
	0.00	0.00	0.01	0.13	0.05	0.00	0.58	0.79
	0.06	0.01	0.19	0.12	0.25	0.00	0.51	0.49
	0.64	0.78	0.25	0.14	0.92	0.26	0.46	0.08

Table IA.20: CER Comparison with 10 bps Transaction Costs: h = 240 and $\gamma = 3$

This table reports the CER of the portfolios studied in this paper with h = 240, $\gamma = 3$, and a transaction cost of 10 bps, based on the eight datasets containing excess monthly returns. The four newly obtained optimal combining portfolios, i.e., $\hat{w}_{q,t}$, $\hat{w}_{q,t}^{LW2004}$, $\hat{w}_{q,t}^{LW2017}$, and $\hat{w}_{q,t}^{MP}$, are highlighted with a box around. In the three categories to which the four new portfolios belong, one-sided tests are conducted to assess the value of using the newly derived optimal combining coefficient \hat{c}_t , and the *p*-values are reported in *italics*. For the portfolios in the remaining three categories, one-sided tests are conducted to compare them with the four newly obtained portfolios, and the corresponding *p*-values are reported in the four rows below the portfolio CER. We set $\eta = 4$ for the timing strategies KO_{VT} , KO_{RT} , and KO_{BT} .

	Momentum $N = 10$	Size-B/M $N = 25$	IVOL N = 10	$ OP-Inv \\ N = 25 $	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
w^*	0.0139	0.0200	0.0158	0.0229	0.0240	0.0678	0.0262	0.0334
			Invariant (Optimal Port	folio Rules			
$\hat{w}_{q,t}$	0.0094	0.0094	0.0036	0.0094	0.0120	-0.3717	0.0009	0.0006
$\hat{w}_{p,t}$	0.0007	-0.0166	-0.0081	-0.0243	-0.0050	-0.6494	-0.1155	-0.3305
P ;*	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\hat{w}_{u,t}$	0.0025	-0.0453	-0.0054	-0.0155	-0.0011	-0.4031	-0.0830	-0.1061
,.	0.00	0.00	0.00	0.00	0.00	0.27	0.00	0.00
$\hat{w}_{BS,t}$	0.0089	0.0066	0.0029	0.0044	0.0101	-0.3243	-0.0146	-0.0142
25,	0.03	0.00	0.01	0.00	0.02	0.85	0.00	0.00
		Rules	with Shrinka	ge Covarianc	e Matrix Estim	nators		
$\hat{w}_{q,t}^{LW2004}$	0.0114	0.0118	0.0075	0.0101	0.0143	-0.0070	0.0019	0.0024
$\hat{w}_{p,t}^{LW2004}$	0.0067	0.0036	0.0022	-0.0132	0.0074	-0.2111	-0.2137	-0.1452
1)	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00
$\hat{w}_{q,t}^{LW2017}$	0.0102	0.0108	0.0045	0.0101	0.0134	-0.0425	0.0020	0.0034
$\hat{w}_{p,t}^{LW2017}$	0.0024	-0.0088	-0.0197	-0.0170	0.0002	-0.4729	-0.4427	-0.0854
P , ι	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		Rules	with MacKinl	lay-Pástor Si	ngle Factor Str	ucture		
$\hat{w}_{q,t}^{MP}$	0.0063	0.0049	0.0060	0.0085	0.0065	0.0061	0.0043	0.0047
$\hat{w}_{p,t}^{MP}$	0.0048	0.0028	0.0022	0.0028	0.0035	0.0029	0.0023	0.0013
$P^{,\iota}$	0.01	0.08	0.00	0.00	0.00	0.02	0.19	0.14
			Rule with N	No-Short-Sale	e Constraints			
$\hat{w}_{p,t}^{NS}$	0.0067	0.0052	0.0033	0.0051	0.0049	0.0060	0.0004	0.0027
<i>P</i> ;*	0.22	0.10	0.47	0.12	0.09	1.00	0.43	0.83
	0.06	0.00	0.09	0.06	0.01	0.72	0.25	0.55
	0.16	0.03	0.38	0.07	0.04	0.96	0.24	0.35
	0.64	0.60	0.00	0.01	0.10	0.48	0.04	0.20

Table IA.20: CER Comparison with 10 bps Transactions Costs: h = 240 and $\gamma = 3$ (Cont'd)

	Momentum $N = 10$	Size-B/M $N = 25$	$ IVOL \\ N = 10 $	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
			Other Rules	from Portfo	olio Optimizatio	on		
$\hat{w}_{g,t}$	0.0055	0.0066	0.0027	0.0079	0.0072	0.0077	0.0019	0.0008
87	0.14	0.18	0.42	0.32	0.17	1.00	0.71	0.88
	0.03	0.01	0.08	0.21	0.03	0.75	0.48	0.00
	0.09	0.07	0.34	0.23	0.09	0.97	0.47	0.00
	0.14	0.97	0.00	0.17	0.72	0.76	0.07	0.01
$\hat{w}_{g,t}^{NS}$	0.0039	0.0046	0.0047	0.0058	0.0042	0.0056	0.0043	0.0041
5,1	0.07	0.07	0.60	0.17	0.08	1.00	0.95	1.00
	0.01	0.00	0.19	0.09	0.01	0.72	0.91	0.96
	0.04	0.02	0.52	0.11	0.04	0.96	0.91	0.83
	0.00	0.32	0.02	0.00	0.00	0.36	0.48	0.33
$\hat{w}_{KZ3,t}$	-0.0782	0.0081	-2.1757	0.0101	0.0121	-16.4941	0.0015	0.0003
H25,i	0.00	0.28	0.00	0.64	0.52	0.00	0.90	0.16
	0.00	0.01	0.00	0.49	0.19	0.00	0.23	0.00
	0.00	0.09	0.00	0.50	0.32	0.00	0.26	0.00
	0.00	0.96	0.00	0.84	0.92	0.00	0.09	0.01
			Nor	ı-Optimizati	on Rules			
1/N	0.0030	0.0042	0.0026	0.0038	0.0023	0.0018	0.0039	0.0044
	0.05	0.07	0.41	0.08	0.05	1.00	0.86	0.98
	0.01	0.00	0.08	0.04	0.01	0.65	0.79	0.90
	0.03	0.02	0.33	0.05	0.02	0.94	0.78	0.76
	0.00	0.27	0.00	0.00	0.00	0.08	0.42	0.44
KO_{VT}	0.0039	0.0047	0.0046	0.0051	0.0039	0.0049	0.0045	0.0044
	0.07	0.08	0.60	0.13	0.07	1.00	0.94	1.00
	0.01	0.00	0.19	0.07	0.01	0.70	0.90	0.97
	0.05	0.03	0.51	0.08	0.03	0.96	0.90	0.87
	0.00	0.38	0.02	0.00	0.00	0.24	0.53	0.40
KO_{RT}	0.0052	0.0051	0.0042	0.0054	0.0051	0.0063	0.0038	0.0035
	0.12	0.10	0.56	0.14	0.10	1.00	0.92	0.96
	0.02	0.00	0.15	0.07	0.01	0.73	0.86	0.79
	0.08	0.03	0.47	0.09	0.05	0.96	0.85	0.55
	0.05	0.58	0.01	0.00	0.04	0.53	0.37	0.25
KO_{BT}	0.0055	0.0053	0.0034	0.0046	0.0045	0.0059	0.0035	0.0035
	0.14	0.11	0.48	0.11	0.09	1.00	0.83	0.95
	0.03	0.00	0.11	0.05	0.01	0.72	0.74	0.76
	0.09	0.04	0.39	0.07	0.04	0.96	0.73	0.54
	0.10	0.62	0.01	0.00	0.03	0.46	0.36	0.27

Table IA.21: CER Comparison with 10 bps Transaction Costs: h = 120 and $\gamma = 5$

This table reports the CER of the portfolios studied in this paper with h = 120, $\gamma = 5$, and a transaction cost of 10 bps, based on the eight datasets containing excess monthly returns. The four newly obtained optimal combining portfolios, i.e., $\hat{w}_{q,t}$, $\hat{w}_{q,t}^{LW2004}$, $\hat{w}_{q,t}^{LW2017}$, and $\hat{w}_{q,t}^{MP}$, are highlighted with a box around. In the three categories to which the four new portfolios belong, one-sided tests are conducted to assess the value of using the newly derived optimal combining coefficient \hat{c}_t , and the *p*-values are reported in *italics*. For the portfolios in the remaining three categories, one-sided tests are conducted to compare them with the four newly obtained portfolios, and the corresponding *p*-values are reported in the four rows below the portfolio CER. We set $\eta = 4$ for the timing strategies KO_{VT} , KO_{RT} , and KO_{BT} .

	Momentum $N = 10$	Size-B/M $N = 25$	$ IVOL \\ N = 10 $	$ OP-Inv \\ N = 25 $	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
w^*	0.0082	0.0119	0.0063	0.0148	0.0156	0.0640	0.0126	0.0160
			Invariant	Optimal Po	rtfolio Rules			
$\hat{w}_{q,t}$	0.0051	0.0049	0.0024	0.0025	0.0038	0.0060	-0.0003	-0.0158
$\hat{w}_{p,t}$	-0.0058	-0.0464	-0.0114	-0.0491	-0.0209	-16.7665	-0.3032	-208.9235
P)*	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\hat{w}_{u,t}$	-0.0025	-0.0225	-0.0071	-0.0264	-0.0126	-0.2972	-0.0855	-12.8386
,	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\hat{w}_{BS,t}$	0.0043	-0.0008	0.0012	-0.0032	0.0011	-0.1031	-0.0162	-0.0916
	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		Rul	es with Shrink	age Covariai	nce Matrix Esti	mators		
$\hat{w}_{q,t}^{2004}$	0.0070	0.0069	0.0052	0.0050	0.0061	0.0406	0.0025	0.0000
$\hat{w}_{p,t}^{2004}$	0.0035	-0.0026	0.0013	-0.0160	-0.0005	-0.0377	-0.0817	-0.3399
1,	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00
$\widehat{w}_{q,t}^{2017}$	0.0062	0.0070	0.0037	0.0052	0.0050	0.0438	0.0028	0.0014
$\hat{w}_{p,t}^{2017}$	-0.0020	-0.0165	-0.0064	-0.0198	-0.0113	-0.1343	-0.0786	-0.1687
p,ι	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		Rule	s with MacKir	nlay-Pástor S	Single Factor S	tructure		
$\hat{w}_{q,t}^{MP}$	0.0023	0.0010	0.0026	0.0049	0.0015	0.0055	0.0026	0.0032
$\hat{w}_{p,t}^{MP}$	0.0022	0.0007	0.0008	0.0014	-0.0010	0.0020	0.0018	-0.0000
Ρ,	0.44	0.40	0.01	0.01	0.00	0.01	0.27	0.04
			Rule with	No-Short-Sa	le Constraints			
$\hat{w}_{p,t}^{NS}$	0.0030	0.0024	0.0015	0.0021	0.0014	0.0058	-0.0008	-0.0017
P ;*	0.15	0.11	0.35	0.42	0.20	0.49	0.41	1.00
	0.00	0.00	0.00	0.05	0.01	0.00	0.05	0.19
	0.05	0.00	0.15	0.05	0.07	0.00	0.03	0.05
	0.74	0.83	0.10	0.04	0.48	0.55	0.08	0.02

Table IA.21: CER Comparison with 10 bps Transactions Costs: h = 120 and $\gamma = 5$ (Cont'd)

	Momentum $N = 10$	Size-B/M $N = 25$	$ IVOL \\ N = 10 $	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
			Other Rule	s from Portfo	olio Optimizatio	on		
$\hat{w}_{g,t}$	0.0029	0.0036	0.0004	0.0027	0.0029	0.0005	0.0001	-0.0150
87	0.14	0.20	0.22	0.53	0.34	0.33	0.67	0.98
	0.00	0.00	0.00	0.02	0.01	0.00	0.00	0.00
	0.04	0.00	0.08	0.02	0.13	0.00	0.00	0.00
	0.80	0.99	0.00	0.01	0.88	0.00	0.05	0.00
$\hat{w}_{g,t}^{NS}$	0.0014	0.0022	0.0026	0.0032	0.0005	0.0046	0.0029	0.0013
5,1	0.04	0.09	0.53	0.62	0.11	0.45	0.98	1.00
	0.00	0.00	0.04	0.13	0.00	0.00	0.67	0.91
	0.01	0.00	0.31	0.12	0.03	0.00	0.51	0.45
	0.16	0.85	0.49	0.08	0.17	0.28	0.58	0.05
$\hat{w}_{KZ3,t}$	-1.2266	-0.0888	-3.0966	-0.1260	-1.5811	-4.2635	-0.2103	-101.2831
RZ5,i	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			No	n-Optimizati	on Rules			
1/N	0.0002	0.0006	-0.0008	0.0012	-0.0005	-0.0015	0.0017	0.0005
,	0.02	0.03	0.12	0.30	0.08	0.28	0.81	1.00
	0.00	0.00	0.00	0.03	0.00	0.00	0.33	0.63
	0.00	0.00	0.04	0.03	0.02	0.00	0.25	0.25
	0.05	0.41	0.01	0.01	0.12	0.00	0.31	0.05
KO_{VT}	0.0015	0.0023	0.0025	0.0027	0.0008	0.0030	0.0036	0.0024
, -	0.05	0.10	0.51	0.53	0.14	0.40	0.99	1.00
	0.00	0.00	0.03	0.09	0.00	0.00	0.84	0.99
	0.01	0.00	0.29	0.09	0.04	0.00	0.74	0.88
	0.21	0.84	0.41	0.05	0.28	0.08	0.76	0.23
KO_{RT}	0.0023	0.0017	0.0009	0.0028	0.0017	0.0041	0.0019	-0.0002
	0.09	0.08	0.28	0.55	0.23	0.44	0.88	1.00
	0.00	0.00	0.00	0.10	0.01	0.00	0.33	0.44
	0.02	0.00	0.11	0.10	0.09	0.00	0.23	0.10
	0.52	0.68	0.08	0.08	0.54	0.24	0.33	0.02
KO_{BT}	0.0026	0.0018	-0.0001	0.0026	0.0023	0.0033	0.0020	0.0007
DI	0.11	0.09	0.18	0.52	0.31	0.41	0.85	1.00
	0.00	0.00	0.00	0.10	0.03	0.00	0.39	0.66
	0.03	0.00	0.06	0.10	0.14	0.00	0.31	0.29
	0.63	0.68	0.02	0.07	0.69	0.14	0.37	0.06

Table IA.22: CER Comparison with 10 bps Transaction Costs: h = 240 and $\gamma = 5$

This table reports the CER of the portfolios studied in this paper with h = 240, $\gamma = 5$, and a transaction cost of 10 bps, based on the eight datasets containing excess monthly returns. The four newly obtained optimal combining portfolios, i.e., $\hat{w}_{q,t}$, $\hat{w}_{q,t}^{LW2004}$, $\hat{w}_{q,t}^{LW2017}$, and $\hat{w}_{q,t}^{MP}$, are highlighted with a box around. In the three categories to which the four new portfolios belong, one-sided tests are conducted to assess the value of using the newly derived optimal combining coefficient \hat{c}_t , and the *p*-values are reported in *italics*. For the portfolios in the remaining three categories, one-sided tests are conducted to compare them with the four newly obtained portfolios, and the corresponding *p*-values are reported in the four rows below the portfolio CER. We set $\eta = 4$ for the timing strategies KO_{VT} , KO_{RT} , and KO_{BT} .

	Momentum $N = 10$	Size-B/M $N = 25$	$ IVOL \\ N = 10 $	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
w^*	0.0093	0.0140	0.0103	0.0157	0.0169	0.0463	0.0175	0.0221
			Invariant	Optimal Port	folio Rules			
$\hat{w}_{q,t}$	0.0066	0.0074	0.0029	0.0072	0.0093	-0.0635	0.0001	-0.0011
$\hat{w}_{p,t}$	0.0018	-0.0065	-0.0034	-0.0128	-0.0001	-0.7778	-0.0722	-0.1729
P ;•	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\hat{w}_{u,t}$	0.0028	-0.0019	-0.0021	-0.0076	0.0021	-0.2738	-0.0401	-0.0611
,.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\hat{w}_{BS,t}$	0.0064	0.0060	0.0025	0.0042	0.0082	-0.1361	-0.0086	-0.0091
· B5,i	0.04	0.01	0.01	0.00	0.04	0.00	0.00	0.00
		Rules	s with Shrinka	ge Covariano	ce Matrix Estin	nators		
$\hat{w}_{q,t}^{LW2004}$	0.0078	0.0086	0.0049	0.0077	0.0106	0.0026	0.0013	0.0011
$\hat{w}_{p,t}^{LW2004}$	0.0052	0.0046	0.0020	-0.0062	0.0069	-0.3548	-0.0429	-0.0816
1 /	0.00	0.01	0.00	0.00	0.03	0.00	0.00	0.00
$\hat{w}_{q,t}^{LW2017}$	0.0071	0.0082	0.0034	0.0077	0.0101	-0.0200	0.0014	0.0022
$\hat{w}_{p,t}^{LW2004}$	0.0028	-0.0021	-0.0022	-0.0085	0.0029	-0.2353	-0.0431	-0.0486
P , ι	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		Rules	with MacKin	lay-Pástor Si	ngle Factor Str	ructure		
$\hat{w}_{q,t}^{MP}$	0.0046	0.0025	0.0047	0.0076	0.0062	0.0055	0.0028	0.0029
$\hat{w}_{p,t}^{MP}$	0.0042	0.0029	0.0033	0.0052	0.0045	0.0047	0.0026	0.0030
·· p,t	0.14	0.70	0.02	0.01	0.00	0.21	0.45	0.52
			Rule with N	No-Short-Sale	e Constraints			
$\hat{w}_{p,t}^{NS}$	0.0040	0.0028	0.0027	0.0037	0.0030	0.0035	-0.0001	0.0013
. ,	0.12	0.02	0.47	0.08	0.04	1.00	0.45	0.90
	0.02	0.00	0.11	0.04	0.00	0.53	0.21	0.56
	0.08	0.00	0.38	0.04	0.02	0.92	0.18	0.30
	0.28	0.61	0.01	0.01	0.01	0.27	0.08	0.23
				45				

Table IA.22: CER Comparison with 10 bps Transactions Costs: h = 240 and $\gamma = 5$ (Cont'd)

	Momentum $N = 10$	Size-B/M $N = 25$	$ IVOL \\ N = 10 $	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
			Other Rules	from Portfo	lio Optimizatio	on		
$\hat{w}_{g,t}$	0.0038	0.0053	0.0015	0.0063	0.0058	0.0062	0.0006	-0.0010
8,5	0.10	0.13	0.31	0.34	0.13	1.00	0.67	0.81
	0.02	0.01	0.05	0.21	0.02	0.61	0.23	0.00
	0.06	0.05	0.23	0.23	0.06	0.95	0.21	0.00
	0.14	1.00	0.00	0.06	0.36	0.63	0.10	0.01
$\hat{w}_{g,t}^{NS}$	0.0021	0.0030	0.0035	0.0042	0.0023	0.0043	0.0032	0.0030
g,ι	0.03	0.02	0.60	0.12	0.03	1.00	0.97	1.00
	0.00	0.00	0.22	0.06	0.00	0.55	0.92	0.98
	0.02	0.01	0.52	0.08	0.01	0.93	0.90	0.85
	0.00	0.72	0.05	0.01	0.00	0.29	0.60	0.51
$\hat{w}_{KZ3,t}$	-0.1453	0.0052	-3.5480	0.0076	0.0057	-27.4940	-0.0004	-0.0015
RZ5,i	0.00	0.05	0.00	0.71	0.07	0.00	0.17	0.10
	0.00	0.00	0.00	0.48	0.03	0.00	0.01	0.00
	0.00	0.01	0.00	0.48	0.03	0.00	0.01	0.00
	0.00	0.93	0.00	0.51	0.45	0.00	0.07	0.01
			Nor	n-Optimizati	on Rules			
1/N	0.0010	0.0019	0.0002	0.0019	-0.0002	-0.0010	0.0020	0.0028
	0.01	0.01	0.17	0.03	0.01	1.00	0.78	0.99
	0.00	0.00	0.02	0.01	0.00	0.40	0.62	0.87
	0.01	0.00	0.12	0.02	0.00	0.86	0.59	0.67
	0.00	0.36	0.00	0.00	0.00	0.04	0.36	0.48
KO_{VT}	0.0022	0.0029	0.0033	0.0035	0.0018	0.0033	0.0032	0.0033
	0.03	0.02	0.56	0.08	0.02	1.00	0.95	1.00
	0.00	0.00	0.19	0.04	0.00	0.52	0.89	0.98
	0.02	0.01	0.48	0.05	0.01	0.92	0.87	0.89
	0.00	0.66	0.04	0.00	0.00	0.19	0.61	0.60
KO_{RT}	0.0032	0.0031	0.0026	0.0038	0.0031	0.0046	0.0025	0.0020
	0.07	0.03	0.46	0.09	0.04	1.00	0.91	0.97
	0.01	0.00	0.11	0.04	0.00	0.56	0.79	0.75
	0.04	0.01	0.37	0.05	0.02	0.93	0.77	0.45
	0.05	0.70	0.01	0.00	0.00	0.37	0.44	0.30
KO_{BT}	0.0036	0.0030	0.0012	0.0028	0.0022	0.0040	0.0016	0.0018
<i>D1</i>	0.09	0.03	0.27	0.06	0.03	1.00	0.72	0.95
	0.02	0.00	0.04	0.02	0.00	0.54	0.55	0.68
	0.06	0.01	0.20	0.03	0.01	0.92	0.52	0.40
	0.10	0.64	0.00	0.00	0.00	0.29	0.30	0.29

Table IA.23: Sharpe Ratio Comparison with 10 bps Transaction Costs: h = 120 and $\gamma = 3$

This table reports the Sharpe ratio of the portfolios studied in this paper with h=120, $\gamma=3$, and a transaction cost of 10 bps, based on the eight datasets containing excess monthly returns. The four newly obtained optimal combining portfolios, i.e., $\hat{w}_{q,t}$, $\hat{w}_{q,t}^{LW2004}$, $\hat{w}_{q,t}^{LW2017}$, and $\hat{w}_{q,t}^{MP}$, are highlighted with a box around. In the three categories to which the four new portfolios belong, one-sided tests are conducted to assess the value of using the newly derived optimal combining coefficient \hat{c}_t , and the *p*-values are reported in *italics*. For the portfolios in the remaining three categories, one-sided tests are conducted to compare them with the four newly obtained portfolios, and the corresponding *p*-values are reported in the four rows below the portfolio Sharpe ratio. We set $\eta=4$ for the timing strategies KO_{VT} , KO_{RT} , and KO_{BT} .

	Momentum $N = 10$	Size-B/M $N = 25$	IVOL $N = 10$	$ OP-Inv \\ N = 25 $	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
w^*	0.2758	0.3258	0.2464	0.3688	0.3758	0.7555	0.3359	0.3894
			Invariant C	ptimal Porti	folio Rules			
$ \hat{w}_{q,t} $	0.2335	0.2095	0.2230	0.1655	0.1910	0.4893	0.0946	-0.0278
$\hat{w}_{p,t}$	0.2096	0.0023	0.2042	0.0860	0.1374	0.0958	-0.0881	-0.1364
<i>P</i> , <i>i</i>	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.03
$\hat{w}_{u,t}$	0.2145	0.1411	0.2030	0.1075	0.1475	0.1974	-0.0417	-0.1979
22,2	0.02	0.00	0.01	0.00	0.01	0.00	0.00	0.00
$\hat{w}_{BS,t}$	0.2310	0.1804	0.2199	0.1385	0.1765	0.4216	0.0441	-0.1292
,	0.20	0.00	0.13	0.02	0.07	0.00	0.05	0.01
		Rules	with Shrinkag	ge Covarianc	e Matrix Estim	nators		
$\hat{w}_{q,t}^{LW2004}$	0.2568	0.2611	0.2335	0.2119	0.2418	0.6661	0.1525	0.0929
$\hat{w}_{p,t}^{LW2004}$	0.2365	0.1985	0.2187	0.1418	0.1855	0.5199	0.0240	-0.1231
r ··	0.02	0.00	0.07	0.00	0.01	0.00	0.00	0.00
$\hat{w}_{q,t}^{LW2017}$	0.2461	0.2496	0.2286	0.2161	0.2098	0.6504	0.1617	0.1273
$\hat{w}_{p,t}^{LW2017}$	0.2265	0.1792	0.2140	0.1494	0.1559	0.3469	0.0004	-0.0782
P ,*	0.02	0.00	0.05	0.00	0.00	0.00	0.00	0.00
		Rules v	with MacKinla	ay-Pástor Sii	ngle Factor Str	ucture		
$\hat{w}_{q,t}^{MP}$	0.1671	0.1433	0.1447	0.2153	0.1306	0.2290	0.1662	0.1796
$\hat{w}_{p,t}^{MP}$	0.1494	0.0883	0.0666	0.0603	0.0472	0.0583	0.0964	0.0596
<i>P</i> ,•	0.12	0.04	0.00	0.00	0.00	0.00	0.08	0.01
			Rule with No	o-Short-Sale	Constraints			
$\hat{w}_{p,t}^{NS}$	0.1886	0.1688	0.1261	0.1604	0.1674	0.2484	0.0963	0.0900
1 /	0.09	0.15	0.00	0.46	0.32	0.00	0.51	0.99
	0.01	0.00	0.00	0.12	0.04	0.00	0.08	0.47
	0.04	0.01	0.00	0.11	0.20	0.00	0.06	0.18
	0.83	0.80	0.20	0.07	0.87	0.65	0.09	0.03

Table IA.23: Sharpe Ratio Comparison with 10 bps Transactions Costs: h=120 and $\gamma=3$ (Cont'd)

	Momentum	Size-B/M	IVOL	OP-Inv	NM-V (LT)	NM-V (All)	Industry	Stocks
	N = 10	N = 25	N = 10	N = 25	N = 16	N = 46	N = 49	N = 100
			Other Rules	from Portfo	olio Optimizatio	on		
$\hat{w}_{g,t}$	0.1760	0.1894	0.1015	0.1684	0.1720	0.1080	0.1022	-0.0138
37	0.05	0.28	0.00	0.53	0.35	0.00	0.60	0.97
	0.01	0.01	0.00	0.10	0.04	0.00	0.03	0.00
	0.02	0.03	0.00	0.09	0.20	0.00	0.02	0.00
	0.69	0.97	0.03	0.02	0.93	0.01	0.05	0.00
$\hat{w}_{g,t}^{NS}$	0.1432	0.1579	0.1637	0.1797	0.1224	0.2178	0.1696	0.1250
8,4	0.01	0.10	0.05	0.62	0.10	0.00	0.97	1.00
	0.00	0.00	0.02	0.23	0.00	0.00	0.71	0.89
	0.00	0.01	0.04	0.21	0.05	0.00	0.60	0.46
	0.10	0.74	0.82	0.10	0.35	0.37	0.54	0.03
$\hat{w}_{KZ3,t}$	0.0246	-0.0021	-0.0577	-0.0104	-0.0593	-0.2394	-0.0222	-0.0437
1120,1	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.39
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			Nor	n-Optimizati	on Rules			
1/N	0.1272	0.1481	0.1221	0.1422	0.1205	0.1030	0.1519	0.1190
,	0.00	0.07	0.01	0.33	0.11	0.00	0.87	1.00
	0.00	0.00	0.00	0.07	0.01	0.00	0.49	0.77
	0.00	0.01	0.00	0.07	0.05	0.00	0.41	0.40
	0.06	0.56	0.20	0.02	0.37	0.01	0.37	0.06
KO_{VT}	0.1459	0.1629	0.1614	0.1695	0.1331	0.1742	0.1888	0.1564
- / 1	0.01	0.13	0.05	0.53	0.15	0.00	0.99	1.00
	0.00	0.00	0.01	0.17	0.01	0.00	0.86	0.98
	0.00	0.01	0.03	0.16	0.07	0.00	0.79	0.89
	0.14	0.78	0.79	0.06	0.54	0.08	0.74	0.19
KO_{RT}	0.1680	0.1636	0.1420	0.1743	0.1647	0.2027	0.1501	0.1041
- 1(1	0.03	0.13	0.02	0.57	0.31	0.00	0.90	1.00
	0.00	0.00	0.00	0.19	0.04	0.00	0.47	0.63
	0.01	0.01	0.01	0.17	0.18	0.00	0.37	0.22
	0.52	0.75	0.46	0.10	0.86	0.26	0.35	0.02
KO_{BT}	0.1740	0.1664	0.1267	0.1702	0.1730	0.1850	0.1569	0.1252
- ~ D1	0.05	0.15	0.01	0.54	0.37	0.00	0.89	1.00
	0.01	0.00	0.00	0.18	0.07	0.00	0.54	0.81
	0.02	0.02	0.00	0.17	0.24	0.00	0.46	0.47
	0.65	0.77	0.25	0.08	0.92	0.15	0.41	0.07

Table IA.24: Sharpe Ratio Comparison with 10 bps Transaction Costs: h = 240 and $\gamma = 3$

This table reports the Sharpe ratio of the portfolios studied in this paper with h = 240, $\gamma = 3$, and a transaction cost of 10 bps, based on the eight datasets containing excess monthly returns. The four newly obtained optimal combining portfolios, i.e., $\hat{w}_{q,t}$, $\hat{w}_{q,t}^{LW2004}$, $\hat{w}_{q,t}^{LW2017}$, and $\hat{w}_{q,t}^{MP}$, are highlighted with a box around. In the three categories to which the four new portfolios belong, one-sided tests are conducted to assess the value of using the newly derived optimal combining coefficient \hat{c}_t , and the *p*-values are reported in *italics*. For the portfolios in the remaining three categories, one-sided tests are conducted to compare them with the four newly obtained portfolios, and the corresponding *p*-values are reported in the four rows below the portfolio Sharpe ratio. We set $\eta = 4$ for the timing strategies KO_{VT} , KO_{RT} , and KO_{BT} .

	Momentum	Size-B/M	IVOL	OP-Inv	NM-V (LT)	NM-V (All)	Industry	Stocks
	N = 10	N = 25	N = 10	N = 25	N = 16	N = 46	N = 49	N = 100
w^*	0.2913	0.3473	0.3079	0.3721	0.3813	0.6382	0.3963	0.4479
			Invariant C	Optimal Port	folio Rules			
$ \hat{w}_{q,t} $	0.2488	0.2406	0.2170	0.2373	0.2692	0.1909	0.0891	0.0780
$\hat{w}_{p,t}$	0.2313	0.1986	0.2008	0.1624	0.2241	0.2483	-0.0058	-0.1465
Ρ,	0.00	0.00	0.01	0.00	0.00	0.89	0.01	0.00
$\hat{w}_{u,t}$	0.2339	0.1356	0.2041	0.1699	0.2295	0.2546	-0.0156	-0.0858
	0.01	0.00	0.03	0.00	0.00	0.92	0.01	0.00
$\hat{w}_{BS,t}$	0.2476	0.2319	0.2157	0.2057	0.2579	0.2440	0.0366	-0.0328
	0.24	0.04	0.25	0.00	0.01	0.88	0.04	0.01
		Rules	with Shrinkag	ge Covarianc	e Matrix Estim	nators		
$\hat{w}_{q,t}^{LW2004}$	0.2629	0.2732	0.2242	0.2496	0.3018	0.4100	0.1088	0.1210
$\hat{w}_{p,t}^{LW2004}$	0.2493	0.2380	0.2145	0.1737	0.2517	0.3646	-0.0454	-0.0919
<i>P</i> ?	0.01	0.00	0.09	0.00	0.00	0.00	0.00	0.00
$\hat{w}_{q,t}^{LW2017}$	0.2558	0.2547	0.2188	0.2473	0.2836	0.3922	0.1097	0.1483
$\hat{w}_{p,t}^{LW2017}$	0.2400	0.2154	0.1654	0.1739	0.2375	0.2772	-0.0526	-0.0712
p,ι	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.00
		Rules v	with MacKinla	ay-Pástor Si	ngle Factor Str	ucture		
$\hat{w}_{q,t}^{MP}$	0.2085	0.1794	0.2167	0.2850	0.2217	0.2341	0.1723	0.1754
$\hat{w}_{p,t}^{MP}$	0.1721	0.1375	0.1194	0.1309	0.1442	0.1320	0.1193	0.1092
<i>P</i> ;•	0.00	0.05	0.00	0.00	0.00	0.01	0.17	0.15
			Rule with No	o-Short-Sale	Constraints			
$\hat{w}_{p,t}^{NS}$	0.2056	0.1792	0.1424	0.1802	0.1743	0.1919	0.0800	0.1283
<i>P</i> 7	0.12	0.07	0.03	0.15	0.08	0.50	0.43	0.86
	0.05	0.01	0.01	0.09	0.02	0.01	0.28	0.57
	0.09	0.04	0.02	0.11	0.05	0.02	0.27	0.32
	0.44	0.50	0.00	0.00	0.05	0.23	0.04	0.19

Table IA.24: Sharpe Ratio Comparison with 10 bps Transactions Costs: h=240 and $\gamma=3$ (Cont'd)

	Momentum	Size-B/M	IVOL	OP-Inv	NM-V (LT)	NM-V (All)	Industry	Stocks
	N = 10	N = 25	N = 10	N = 25	N = 16	N = 46	N = 49	N = 100
			Other Rules	from Portfo	olio Optimizatio	on		
$\hat{w}_{g,t}$	0.1958	0.2360	0.1309	0.2592	0.2494	0.2598	0.1054	0.0837
37	0.09	0.45	0.02	0.68	0.37	0.79	0.66	0.89
	0.04	0.15	0.01	0.59	0.18	0.04	0.46	0.00
	0.06	0.31	0.02	0.60	0.29	0.06	0.46	0.00
	0.26	0.99	0.00	0.08	0.83	0.66	0.07	0.01
$\hat{w}_{g,t}^{NS}$	0.1550	0.1752	0.1873	0.2054	0.1616	0.2112	0.1781	0.1725
8,4	0.01	0.07	0.23	0.29	0.06	0.59	0.96	1.00
	0.01	0.01	0.16	0.21	0.02	0.02	0.94	0.98
	0.01	0.03	0.21	0.23	0.04	0.03	0.93	0.86
	0.00	0.40	0.04	0.00	0.00	0.30	0.56	0.47
$\hat{w}_{KZ3,t}$	0.0861	0.2310	-0.1001	0.2780	0.2714	0.0018	0.1003	0.0726
	0.00	0.35	0.00	0.96	0.53	0.01	0.86	0.17
	0.00	0.03	0.00	0.91	0.17	0.00	0.25	0.00
	0.00	0.16	0.00	0.90	0.35	0.00	0.28	0.00
	0.00	0.92	0.00	0.42	0.79	0.01	0.08	0.01
			Nor	n-Optimizati	on Rules			
1/N	0.1348	0.1604	0.1277	0.1522	0.1213	0.1147	0.1544	0.1699
-/	0.01	0.04	0.02	0.09	0.02	0.22	0.86	0.98
	0.00	0.00	0.01	0.05	0.01	0.00	0.79	0.89
	0.00	0.02	0.02	0.06	0.01	0.00	0.78	0.72
	0.00	0.22	0.00	0.00	0.00	0.03	0.37	0.46
KO_{VT}	0.1571	0.1744	0.1806	0.1867	0.1531	0.1816	0.1800	0.1810
v 1	0.02	0.07	0.18	0.20	0.05	0.46	0.95	1.00
	0.01	0.01	0.12	0.14	0.02	0.01	0.92	0.98
	0.01	0.03	0.17	0.15	0.03	0.02	0.92	0.90
	0.00	0.39	0.01	0.00	0.00	0.15	0.57	0.57
KO_{RT}	0.1840	0.1815	0.1655	0.1951	0.1806	0.2144	0.1597	0.1493
K1	0.05	0.09	0.10	0.23	0.10	0.60	0.92	0.96
	0.02	0.01	0.06	0.16	0.03	0.02	0.87	0.79
	0.03	0.04	0.09	0.18	0.06	0.03	0.87	0.51
	0.06	0.54	0.00	0.00	0.02	0.34	0.39	0.27
KO_{BT}	0.1914	0.1818	0.1420	0.1723	0.1654	0.2004	0.1463	0.1471
- ~ D1	0.08	0.09	0.04	0.14	0.07	0.54	0.82	0.95
	0.03	0.01	0.02	0.09	0.02	0.01	0.74	0.75
	0.05	0.05	0.03	0.10	0.04	0.02	0.73	0.49
	0.12	0.54	0.00	0.00	0.01	0.26	0.32	0.28

Table IA.25: Sharpe Ratio Comparison with 10 bps Transaction Costs: h = 120 and $\gamma = 5$

This table reports the Sharpe ratio of the portfolios studied in this paper with h=120, $\gamma=5$, and a transaction cost of 10 bps, based on the eight datasets containing excess monthly returns. The four newly obtained optimal combining portfolios, i.e., $\hat{w}_{q,t}$, $\hat{w}_{q,t}^{LW2004}$, $\hat{w}_{q,t}^{LW2017}$, and $\hat{w}_{q,t}^{MP}$, are highlighted with a box around. In the three categories to which the four new portfolios belong, one-sided tests are conducted to assess the value of using the newly derived optimal combining coefficient \hat{c}_t , and the *p*-values are reported in *italics*. For the portfolios in the remaining three categories, one-sided tests are conducted to compare them with the four newly obtained portfolios, and the corresponding *p*-values are reported in the four rows below the portfolio Sharpe ratio. We set $\eta=4$ for the timing strategies KO_{VT} , KO_{RT} , and KO_{BT} .

	Momentum $N = 10$	Size-B/M $N = 25$	IVOL $N = 10$	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
w^*	0.2860	0.3457	0.2526	0.3852	0.3944	0.8004	0.3550	0.4001
			Invariant C	Optimal Port	folio Rules			
$\hat{w}_{q,t}$	0.2520	0.2349	0.2355	0.1849	0.2136	0.5221	0.1040	-0.0220
$\hat{w}_{p,t}$	0.2341	0.1620	0.2226	0.1233	0.1683	0.0557	-0.0184	-0.1442
Ρ,	0.04	0.00	0.08	0.01	0.02	0.00	0.01	0.01
$\hat{w}_{u,t}$	0.2383	0.1784	0.2251	0.1367	0.1766	0.4035	0.0355	-0.0780
,-	0.08	0.00	0.12	0.03	0.04	0.00	0.06	0.16
$\hat{w}_{BS,t}$	0.2511	0.2127	0.2344	0.1658	0.2032	0.4873	0.0659	-0.1035
	0.37	0.01	0.35	0.10	0.15	0.00	0.12	0.02
		Rules	with Shrinkag	ge Covarianc	e Matrix Estim	nators		
$\hat{w}_{q,t}^{LW2004}$	0.2661	0.2661	0.2374	0.2228	0.2466	0.6749	0.1581	0.0939
$\hat{w}_{p,t}^{LW2004}$	0.2578	0.2294	0.2313	0.1706	0.2115	0.6095	0.0500	-0.0681
P	0.23	0.04	0.27	0.04	0.09	0.00	0.01	0.00
$\hat{w}_{q,t}^{LW2017}$	0.2620	0.2654	0.2385	0.2284	0.2284	0.6668	0.1689	0.1279
$\hat{w}_{p,t}^{LW2017}$	0.2497	0.2137	0.2302	0.1783	0.1843	0.6048	0.0572	-0.0358
p,i	0.12	0.00	0.19	0.04	0.03	0.00	0.01	0.00
		Rules v	with MacKinla	ay-Pástor Si	ngle Factor Str	ucture		
$\hat{w}_{q,t}^{MP}$	0.1680	0.1393	0.1658	0.2225	0.1419	0.2384	0.1648	0.1796
$\hat{w}_{p,t}^{MP}$	0.1682	0.1322	0.1248	0.1402	0.0935	0.1496	0.1426	0.1168
<i>P</i> ,•	0.51	0.38	0.01	0.01	0.01	0.01	0.26	0.06
			Rule with No	o-Short-Sale	e Constraints			
$\hat{w}_{p,t}^{NS}$	0.1896	0.1714	0.1413	0.1613	0.1605	0.2411	0.1233	0.1054
r 7*	0.02	0.04	0.00	0.29	0.13	0.00	0.67	1.00
	0.00	0.00	0.00	0.05	0.01	0.00	0.18	0.61
	0.01	0.00	0.00	0.04	0.06	0.00	0.12	0.28
	0.83	0.85	0.14	0.05	0.72	0.52	0.20	0.05

Table IA.25: Sharpe Ratio Comparison with 10 bps Transactions Costs: h=120 and $\gamma=5$ (Cont'd)

	Momentum $N = 10$	Size-B/M $N = 25$	$IVOL \\ N = 10$	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
			Other Rules	from Portfo	lio Optimizatio	on		
$\hat{w}_{g,t}$	0.1760	0.1894	0.1015	0.1684	0.1720	0.1080	0.1022	-0.0138
5,4	0.01	0.05	0.00	0.29	0.14	0.00	0.46	0.96
	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00
	0.00	0.00	0.00	0.01	0.06	0.00	0.00	0.00
	0.69	0.98	0.00	0.01	0.86	0.01	0.05	0.00
$\hat{w}_{g,t}^{NS}$	0.1432	0.1579	0.1637	0.1797	0.1224	0.2178	0.1696	0.1250
g,ι	0.00	0.02	0.02	0.45	0.03	0.00	0.96	1.00
	0.00	0.00	0.00	0.12	0.00	0.00	0.66	0.88
	0.00	0.00	0.01	0.10	0.01	0.00	0.51	0.44
	0.10	0.77	0.46	0.08	0.21	0.30	0.56	0.03
$\hat{w}_{KZ3,t}$	0.0246	-0.0021	-0.0577	-0.0104	-0.0593	-0.2394	-0.0222	-0.0437
1123,1	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.35
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			Nor	n-Optimizati	on Rules			
1/N	0.1272	0.1481	0.1221	0.1422	0.1205	0.1030	0.1519	0.1190
	0.00	0.01	0.00	0.18	0.04	0.00	0.84	1.00
	0.00	0.00	0.00	0.03	0.00	0.00	0.44	0.76
	0.00	0.00	0.00	0.03	0.01	0.00	0.34	0.39
	0.06	0.60	0.07	0.02	0.27	0.01	0.39	0.06
KO_{VT}	0.1459	0.1629	0.1614	0.1695	0.1331	0.1742	0.1888	0.1564
	0.00	0.03	0.01	0.36	0.05	0.00	0.98	1.00
	0.00	0.00	0.00	0.08	0.00	0.00	0.84	0.98
	0.00	0.00	0.01	0.07	0.02	0.00	0.74	0.88
	0.14	0.80	0.42	0.05	0.38	0.08	0.75	0.19
KO_{RT}	0.1680	0.1636	0.1420	0.1743	0.1647	0.2027	0.1501	0.1041
	0.00	0.03	0.00	0.40	0.15	0.00	0.86	1.00
	0.00	0.00	0.00	0.09	0.01	0.00	0.41	0.62
	0.00	0.00	0.00	0.08	0.08	0.00	0.29	0.22
	0.50	0.77	0.18	0.08	0.75	0.22	0.36	0.02
KO_{BT}	0.1740	0.1664	0.1267	0.1702	0.1730	0.1850	0.1569	0.1252
	0.01	0.04	0.00	0.37	0.21	0.00	0.86	1.00
	0.00	0.00	0.00	0.09	0.03	0.00	0.49	0.81
	0.00	0.00	0.00	0.08	0.12	0.00	0.39	0.47
	0.63	0.79	0.09	0.07	0.83	0.14	0.43	0.07

Table IA.26: Sharpe Ratio Comparison with 10 bps Transaction Costs: h = 240 and $\gamma = 5$

This table reports the Sharpe ratio of the portfolios studied in this paper with h=240, $\gamma=5$, and a transaction cost of 10 bps, based on the eight datasets containing excess monthly returns. The four newly obtained optimal combining portfolios, i.e., $\hat{w}_{q,t}$, $\hat{w}_{q,t}^{LW2004}$, $\hat{w}_{q,t}^{LW2017}$, and $\hat{w}_{q,t}^{MP}$, are highlighted with a box around. In the three categories to which the four new portfolios belong, one-sided tests are conducted to assess the value of using the newly derived optimal combining coefficient \hat{c}_t , and the *p*-values are reported in *italics*. For the portfolios in the remaining three categories, one-sided tests are conducted to compare them with the four newly obtained portfolios, and the corresponding *p*-values are reported in the four rows below the portfolio Sharpe ratio. We set $\eta=4$ for the timing strategies KO_{VT} , KO_{RT} , and KO_{BT} .

	Momentum	Size-B/M	IVOL	OP-Inv	NM-V (LT)	NM-V (All)	Industry	Stocks
	N = 10	N = 25	N = 10	N = 25	N = 16	N = 46	N = 49	N = 100
w^*	0.3053	0.3749	0.3202	0.3972	0.4129	0.6804	0.4182	0.4701
			Invariant C	Optimal Port	folio Rules			
$\hat{w}_{q,t}$	0.2717	0.2744	0.2344	0.2685	0.3050	0.3641	0.1025	0.0805
$\hat{w}_{p,t}$	0.2580	0.2380	0.2231	0.1965	0.2620	0.1902	0.0041	-0.0879
$\cdots p$, ι	0.03	0.00	0.06	0.00	0.00	0.00	0.02	0.00
$\hat{w}_{u,t}$	0.2602	0.2464	0.2247	0.2046	0.2675	0.2806	0.0293	-0.0606
·· u,i	0.04	0.01	0.08	0.00	0.01	0.00	0.05	0.01
$\hat{w}_{BS,t}$	0.2709	0.2681	0.2333	0.2421	0.2953	0.3373	0.0595	0.0003
25,	0.31	0.14	0.29	0.01	0.04	0.00	0.09	0.02
		Rules	with Shrinkag	ge Covarianc	e Matrix Estim	nators		
$\hat{w}_{q,t}^{LW2004}$	0.2822	0.2972	0.2387	0.2775	0.3314	0.4525	0.1268	0.1229
$\hat{w}_{p,t}^{LW2004}$	0.2738	0.2735	0.2321	0.2082	0.2896	0.2461	0.0203	-0.0616
P^{i}	0.12	0.05	0.19	0.00	0.01	0.00	0.01	0.00
$\hat{w}_{q,t}^{LW2017}$	0.2780	0.2860	0.2357	0.2770	0.3186	0.4265	0.1303	0.1500
$\hat{w}_{p,t}^{LW2017}$	0.2663	0.2545	0.2257	0.2078	0.2757	0.3533	0.0144	-0.0449
p,ι	0.05	0.01	0.09	0.00	0.00	0.00	0.01	0.00
		Rules	with MacKinla	ay-Pástor Si	ngle Factor Str	ucture		
$\hat{w}_{q,t}^{MP}$	0.2142	0.1667	0.2193	0.2920	0.2551	0.2403	0.1684	0.1748
$\hat{w}_{p,t}^{MP}$	0.2047	0.1775	0.1813	0.2304	0.2134	0.2240	0.1624	0.1753
<i>P</i> ;•	0.14	0.71	0.02	0.01	0.00	0.28	0.44	0.50
			Rule with N	o-Short-Sale	e Constraints			
$\hat{w}_{p,t}^{NS}$	0.2048	0.1759	0.1652	0.1933	0.1805	0.1951	0.1020	0.1408
P ;*	0.02	0.01	0.02	0.06	0.02	0.03	0.50	0.92
	0.01	0.00	0.01	0.03	0.00	0.00	0.28	0.67
	0.01	0.00	0.02	0.04	0.01	0.01	0.25	0.41
	0.34	0.63	0.01	0.00	0.01	0.27	0.09	0.24

Table IA.26: Sharpe Ratio Comparison with 10 bps Transactions Costs: h=240 and $\gamma=5$ (Cont'd)

	Momentum	Size-B/M	IVOL	OP-Inv	NM-V (LT)	NM-V (All)	Industry	Stocks
	N = 10	N=25	N = 10	N=25	N = 16	N = 46	N = 49	N = 100
			Other Rules	from Portfo	olio Optimizatio	on		
$\hat{w}_{g,t}$	0.1958	0.2360	0.1309	0.2592	0.2494	0.2598	0.1054	0.0837
37	0.01	0.12	0.00	0.40	0.14	0.11	0.54	0.88
	0.00	0.02	0.00	0.29	0.04	0.01	0.21	0.00
	0.01	0.06	0.00	0.31	0.09	0.02	0.19	0.00
	0.12	1.00	0.00	0.06	0.42	0.62	0.09	0.01
$\hat{w}_{g,t}^{NS}$	0.1550	0.1752	0.1873	0.2054	0.1616	0.2112	0.1781	0.1725
8,4	0.00	0.01	0.09	0.10	0.01	0.05	0.96	1.00
	0.00	0.00	0.05	0.06	0.00	0.00	0.91	0.97
	0.00	0.00	0.08	0.07	0.01	0.01	0.90	0.85
	0.00	0.65	0.06	0.01	0.00	0.30	0.59	0.48
$\hat{w}_{KZ3,t}$	0.0861	0.2310	-0.1001	0.2780	0.2714	0.0018	0.1003	0.0726
	0.00	0.02	0.00	0.75	0.13	0.00	0.43	0.12
	0.00	0.00	0.00	0.51	0.03	0.00	0.05	0.00
	0.00	0.00	0.00	0.52	0.06	0.00	0.04	0.00
	0.00	0.96	0.00	0.34	0.61	0.00	0.10	0.01
			Nor	n-Optimizati	on Rules			
1/N	0.1348	0.1604	0.1277	0.1522	0.1213	0.1147	0.1544	0.1699
,	0.00	0.00	0.00	0.02	0.00	0.01	0.82	0.98
	0.00	0.00	0.00	0.01	0.00	0.00	0.70	0.88
	0.00	0.00	0.00	0.01	0.00	0.00	0.67	0.70
	0.00	0.42	0.00	0.00	0.00	0.06	0.40	0.46
KO_{VT}	0.1571	0.1744	0.1806	0.1867	0.1531	0.1816	0.1800	0.1810
, 1	0.00	0.01	0.07	0.06	0.01	0.03	0.94	1.00
	0.00	0.00	0.04	0.03	0.00	0.00	0.88	0.97
	0.00	0.00	0.06	0.04	0.01	0.01	0.87	0.88
	0.00	0.62	0.04	0.00	0.00	0.19	0.60	0.57
KO_{RT}	0.1840	0.1815	0.1655	0.1951	0.1806	0.2144	0.1597	0.1493
	0.01	0.01	0.03	0.07	0.02	0.06	0.89	0.96
	0.00	0.00	0.01	0.04	0.00	0.01	0.79	0.77
	0.00	0.00	0.02	0.05	0.01	0.01	0.76	0.49
	0.05	0.70	0.01	0.00	0.00	0.35	0.43	0.27
KO_{BT}	0.1914	0.1818	0.1420	0.1723	0.1654	0.2004	0.1463	0.1471
<i>D</i> 1	0.01	0.01	0.01	0.04	0.02	0.04	0.78	0.94
	0.00	0.00	0.00	0.02	0.00	0.00	0.64	0.73
	0.01	0.00	0.01	0.02	0.01	0.01	0.62	0.47
	0.10	0.69	0.01	0.00	0.00	0.28	0.35	0.28

Table IA.27: CER Comparison with 50 bps Transaction Costs: h = 120 and $\gamma = 3$

This table reports the CER of the portfolios studied in this paper with h = 120, $\gamma = 3$, and a transaction cost of 50 bps, based on the eight datasets containing excess monthly returns. The four newly obtained optimal combining portfolios, i.e., $\hat{w}_{q,t}$, $\hat{w}_{q,t}^{LW2004}$, $\hat{w}_{q,t}^{LW2017}$, and $\hat{w}_{q,t}^{MP}$, are highlighted with a box around. In the three categories to which the four new portfolios belong, one-sided tests are conducted to assess the value of using the newly derived optimal combining coefficient \hat{c}_t , and the *p*-values are reported in *italics*. For the portfolios in the remaining three categories, one-sided tests are conducted to compare them with the four newly obtained portfolios, and the corresponding *p*-values are reported in the four rows below the portfolio CER. We set $\eta = 4$ for the timing strategies KO_{VT} , KO_{RT} , and KO_{BT} .

	Momentum $N = 10$	Size-B/M $N = 25$	$IVOL \\ N = 10$	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) N = 46	Industry $N = 49$	Stocks $N = 100$
w^*	0.0103	0.0099	0.0075	0.0152	0.0142	-0.0075	0.0119	0.0080
			Invariant	Optimal Por	tfolio Rules			
$\hat{w}_{q,t}$	-0.0003	-0.0075	-0.0097	-0.0037	-0.0062	-0.1847	-0.0041	-0.0268
$\hat{w}_{p,t}$	-0.0328	-33.2265	-0.0569	-0.1956	-0.0847	-99.1853	-5.7917	-3762.8829
Ρ,	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\hat{w}_{u,t}$	-0.0235	-0.1147	-0.0703	-0.0897	-0.0578	-34.4228	-4.2450	-45.9927
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\hat{w}_{BS,t}$	-0.0032	-0.0312	-0.0169	-0.0226	-0.0165	-1.4718	-0.0494	-0.6785
55,1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		Rule	s with Shrink	age Covarian	ce Matrix Estir	nators		
$\hat{w}_{q,t}^{LW2004}$	0.0069	0.0048	0.0047	0.0028	0.0049	0.0469	0.0016	-0.0011
$\hat{w}_{p,t}^{LW2004}$	-0.0053	-0.0361	-0.0091	-0.0598	-0.0165	-1.9669	-0.2475	-107.4774
P , ι	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\hat{w}_{q,t}^{LW2017}$	0.0026	0.0018	-0.0045	0.0028	-0.0009	0.0379	0.0020	0.0011
$\hat{w}_{p,t}^{LW2017}$	-0.0228	-0.0916	-0.0402	-0.0709	-0.0511	-15.9465	-1.6634	-1.0395
P , ι	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		Rules	s with MacKir	nlay-Pástor S	ingle Factor St	ructure		
$\hat{w}_{q,t}^{MP}$	0.0040	0.0027	0.0029	0.0053	0.0022	0.0056	0.0036	0.0039
$\hat{w}_{p,t}^{MP}$	0.0027	-0.0017	-0.0021	-0.0031	-0.0030	-0.0027	0.0004	-0.0043
P , ι	0.06	0.01	0.00	0.00	0.00	0.00	0.07	0.00
			Rule with	No-Short-Sal	e Constraints			
$\hat{w}_{p,t}^{NS}$	0.0054	0.0038	0.0019	0.0035	0.0041	0.0088	-0.0008	-0.0013
<i>P</i> ?	0.97	1.00	1.00	0.99	1.00	1.00	0.89	1.00
	0.25	0.27	0.12	0.62	0.36	0.00	0.16	0.45
	0.83	0.80	0.96	0.61	0.93	0.00	0.12	0.14
	0.89	0.76	0.16	0.14	0.87	0.92	0.06	0.02

Table IA.27: CER Comparison with 50 bps Transactions Costs: h = 120 and $\gamma = 3$ (Cont'd)

	Momentum $N = 10$	Size-B/M $N = 25$	$IVOL \\ N = 10$	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
			Other Rule	s from Portf	olio Optimizati	ion		
$\hat{w}_{g,t}$	0.0037	0.0021	0.0007	0.0022	0.0025	-0.0042	-0.0016	-0.0250
07	0.89	1.00	0.99	0.99	0.99	1.00	0.96	1.00
	0.08	0.03	0.06	0.39	0.12	0.00	0.00	0.00
	0.64	0.57	0.91	0.39	0.88	0.00	0.00	0.00
	0.36	0.27	0.01	0.00	0.62	0.00	0.00	0.00
$\hat{w}_{g,t}^{NS}$	0.0031	0.0037	0.0040	0.0045	0.0023	0.0057	0.0038	0.0020
8,"	0.84	1.00	1.00	1.00	0.99	1.00	1.00	1.00
	0.06	0.25	0.39	0.79	0.13	0.00	0.98	1.00
	0.55	0.81	0.99	0.77	0.83	0.00	0.94	0.88
	0.15	0.83	0.92	0.25	0.54	0.55	0.57	0.04
$\hat{w}_{KZ3,t}$	-1.6036	-0.9985	-14.5431	-0.3822	-3.6827	-21.5163	-0.1987	-1514.4328
ŕ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			No	n-Optimizat	ion Rules			
1/N	0.0026	0.0035	0.0021	0.0033	0.0021	0.0012	0.0037	0.0021
	0.80	1.00	1.00	0.98	0.98	1.00	1.00	1.00
	0.05	0.26	0.17	0.58	0.15	0.00	0.88	0.98
	0.49	0.76	0.95	0.57	0.80	0.00	0.81	0.78
	0.12	0.68	0.29	0.09	0.49	0.03	0.52	0.13
KO_{VT}	0.0034	0.0042	0.0040	0.0043	0.0028	0.0044	0.0046	0.0034
	0.87	1.00	1.00	1.00	0.99	1.00	1.00	1.00
	0.08	0.35	0.39	0.76	0.19	0.00	0.99	1.00
	0.60	0.85	0.99	0.73	0.87	0.00	0.98	1.00
	0.27	0.90	0.91	0.21	0.72	0.23	0.79	0.29
KO_{RT}	0.0043	0.0041	0.0030	0.0043	0.0041	0.0057	0.0031	0.0011
	0.92	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	0.13	0.36	0.25	0.76	0.37	0.00	0.87	0.94
	0.71	0.84	0.98	0.74	0.94	0.00	0.79	0.49
	0.63	0.83	0.55	0.23	0.90	0.53	0.39	0.03
KO_{BT}	0.0048	0.0045	0.0024	0.0044	0.0048	0.0051	0.0037	0.0021
	0.94	1.00	1.00	0.99	1.00	1.00	1.00	1.00
	0.18	0.43	0.20	0.76	0.47	0.00	0.89	0.98
	0.75	0.86	0.96	0.74	0.95	0.00	0.83	0.77
	0.81	0.87	0.36	0.25	0.96	0.39	0.53	0.12

Table IA.28: CER Comparison with 50 bps Transaction Costs: h = 240 and $\gamma = 3$

This table reports the CER of the portfolios studied in this paper with h = 240, $\gamma = 3$, and a transaction cost of 50 bps, based on the eight datasets containing excess monthly returns. The four newly obtained optimal combining portfolios, i.e., $\hat{w}_{q,t}$, $\hat{w}_{q,t}^{LW2004}$, $\hat{w}_{q,t}^{LW2017}$, and $\hat{w}_{q,t}^{MP}$, are highlighted with a box around. In the three categories to which the four new portfolios belong, one-sided tests are conducted to assess the value of using the newly derived optimal combining coefficient \hat{c}_t , and the *p*-values are reported in *italics*. For the portfolios in the remaining three categories, one-sided tests are conducted to compare them with the four newly obtained portfolios, and the corresponding *p*-values are reported in the four rows below the portfolio CER. We set $\eta = 4$ for the timing strategies KO_{VT} , KO_{RT} , and KO_{BT} .

	Momentum $N = 10$	Size-B/M $N = 25$	$IVOL \\ N = 10$	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) N = 46	Industry $N = 49$	Stocks $N = 100$
w^*	0.0116	0.0105	0.0104	0.0161	0.0150	0.0104	0.0146	0.0085
			Invariant (Optimal Port	folio Rules			
$\hat{w}_{q,t}$	0.0027	-0.0010	-0.0051	0.0043	0.0025	-6.2476	-0.0018	-0.0026
$\hat{w}_{p,t}$	-0.0127	-0.0634	-0.0315	-0.0451	-0.0283	-2.5879	-0.1837	-0.9869
p,i	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
$\hat{w}_{u,t}$	-0.0096	-0.9706	-0.0230	-0.0326	-0.0215	-2.6407	-0.4993	-0.1577
· · u,ı	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
$\hat{w}_{BS,t}$	0.0018	-0.0091	-0.0065	-0.0039	-0.0015	-3.2243	-0.0238	-0.0240
,, B3,t	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
		Rules	s with Shrinka	ge Covarianc	e Matrix Estin	nators		
$\hat{w}_{q,t}^{LW2004}$	0.0069	0.0060	0.0028	0.0062	0.0094	-0.1581	0.0000	0.0005
$\hat{w}_{p,t}^{LW2004}$	-0.0020	-0.0156	-0.0068	-0.0286	-0.0038	-0.4709	-3.7612	-0.2240
Ρ,	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\hat{w}_{q,t}^{LW2017}$	0.0039	0.0024	-0.0035	0.0059	0.0054	-0.1605	0.0002	0.0021
$\hat{w}_{p,t}^{LW2017}$	-0.0103	-0.0536	-0.3433	-0.0334	-0.0190	-4.1000	-9.4988	-0.1167
Ρ,	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		Rules	with MacKin	lay-Pástor Si	ngle Factor Str	ucture		
$\hat{w}_{q,t}^{MP}$	0.0060	0.0045	0.0056	0.0080	0.0061	0.0055	0.0038	0.0039
$\hat{w}_{p,t}^{MP}$	0.0044	0.0022	0.0017	0.0023	0.0030	0.0023	0.0019	0.0007
<i>P</i> ,•	0.01	0.06	0.00	0.00	0.00	0.03	0.21	0.15
			Rule with N	No-Short-Sale	e Constraints			
$\hat{w}_{p,t}^{NS}$	0.0065	0.0046	0.0028	0.0047	0.0046	0.0057	-0.0003	0.0020
1,	0.86	0.95	0.97	0.54	0.66	1.00	0.73	0.98
	0.45	0.29	0.50	0.32	0.12	1.00	0.45	0.77
	0.78	0.76	0.95	0.36	0.44	1.00	0.42	0.48
	0.69	0.53	0.00	0.01	0.12	0.52	0.04	0.21

Table IA.28: CER Comparison with 50 bps Transactions Costs: h = 240 and $\gamma = 3$ (Cont'd)

	Momentum $N = 10$	Size-B/M $N = 25$	$ IVOL \\ N = 10 $	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
			Other Rules	from Portfo	lio Optimizatio	on		
$\hat{w}_{g,t}$	0.0048	0.0050	0.0021	0.0069	0.0062	0.0045	0.0004	-0.0023
8,5	0.72	0.98	0.95	0.79	0.77	1.00	0.90	0.90
	0.25	0.33	0.42	0.60	0.19	1.00	0.59	0.00
	0.60	0.82	0.91	0.62	0.57	1.00	0.55	0.00
	0.08	0.70	0.00	0.04	0.51	0.31	0.02	0.00
$\hat{w}_{g,t}^{NS}$	0.0037	0.0044	0.0047	0.0056	0.0041	0.0055	0.0041	0.0037
g,ι	0.60	0.95	0.99	0.64	0.61	1.00	1.00	1.00
	0.16	0.27	0.72	0.43	0.11	1.00	0.99	1.00
	0.47	0.75	0.98	0.46	0.40	1.00	0.99	0.98
	0.00	0.47	0.06	0.01	0.00	0.50	0.57	0.43
$\hat{w}_{KZ3,t}$	-0.3026	0.0021	-32.9888	0.0076	0.0033	-96.5848	-0.0011	-0.0030
RZ3,i	0.00	0.92	0.00	0.95	0.61	0.00	0.92	0.04
	0.00	0.01	0.00	0.81	0.01	0.00	0.02	0.00
	0.00	0.45	0.00	0.81	0.24	0.00	0.03	0.00
	0.00	0.10	0.00	0.38	0.25	0.00	0.01	0.00
			Nor	n-Optimizati	on Rules			
1/N	0.0030	0.0042	0.0026	0.0037	0.0022	0.0017	0.0037	0.0041
	0.53	0.93	0.96	0.45	0.48	1.00	0.98	1.00
	0.12	0.25	0.47	0.25	0.06	1.00	0.94	0.99
	0.40	0.71	0.92	0.28	0.28	1.00	0.93	0.93
	0.00	0.39	0.00	0.00	0.00	0.10	0.49	0.54
KO_{VT}	0.0039	0.0046	0.0046	0.0050	0.0038	0.0047	0.0043	0.0042
	0.62	0.95	0.99	0.58	0.59	1.00	1.00	1.00
	0.18	0.29	0.71	0.36	0.10	1.00	0.99	1.00
	0.50	0.76	0.98	0.40	0.38	1.00	0.98	0.99
	0.00	0.56	0.05	0.00	0.00	0.34	0.62	0.56
KO_{RT}	0.0051	0.0050	0.0041	0.0053	0.0049	0.0061	0.0035	0.0032
	0.75	0.96	0.99	0.61	0.67	1.00	0.99	1.00
	0.28	0.34	0.65	0.39	0.14	1.00	0.98	0.97
	0.63	0.80	0.97	0.42	0.46	1.00	0.97	0.81
	0.11	0.69	0.02	0.01	0.08	0.63	0.43	0.32
KO_{BT}	0.0054	0.0052	0.0033	0.0045	0.0044	0.0058	0.0034	0.0031
Д.	0.78	0.97	0.97	0.52	0.63	1.00	0.97	1.00
	0.32	0.37	0.55	0.31	0.13	1.00	0.91	0.96
	0.67	0.81	0.95	0.35	0.42	1.00	0.89	0.78
	0.21	0.74	0.01	0.00	0.05	0.55	0.42	0.34

Table IA.29: CER Comparison with 50 bps Transaction Costs: h = 120 and $\gamma = 5$

This table reports the CER of the portfolios studied in this paper with h = 120, $\gamma = 5$, and a transaction cost of 50 bps, based on the eight datasets containing excess monthly returns. The four newly obtained optimal combining portfolios, i.e., $\hat{w}_{q,t}$, $\hat{w}_{q,t}^{LW2004}$, $\hat{w}_{q,t}^{LW2017}$, and $\hat{w}_{q,t}^{MP}$, are highlighted with a box around. In the three categories to which the four new portfolios belong, one-sided tests are conducted to assess the value of using the newly derived optimal combining coefficient \hat{c}_t , and the *p*-values are reported in *italics*. For the portfolios in the remaining three categories, one-sided tests are conducted to compare them with the four newly obtained portfolios, and the corresponding *p*-values are reported in the four rows below the portfolio CER. We set $\eta = 4$ for the timing strategies KO_{VT} , KO_{RT} , and KO_{BT} .

	Momentum $N = 10$	Size-B/M $N = 25$	$ IVOL \\ N = 10 $	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
w^*	0.0072	0.0085	0.0051	0.0119	0.0119	0.0293	0.0096	0.0069
			Invariant	Optimal Por	tfolio Rules			
$ \hat{w}_{q,t} $	0.0009	-0.0032	-0.0028	-0.0022	-0.0025	-0.0520	-0.0043	-0.0318
$\hat{w}_{p,t}$	-0.0151	-0.0874	-0.0234	-0.0766	-0.0407	-394.6175	-1.2048	-4780.0582
<i>P</i> ?	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\hat{w}_{u,t}$	-0.0107	-0.0498	-0.0173	-0.0452	-0.0285	-2.4581	-0.1205	-310.0468
· · u,ı	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\hat{w}_{BS,t}$	-0.0005	-0.0147	-0.0049	-0.0121	-0.0077	-0.3091	-0.0281	-0.1693
<i>w B</i> 5, <i>t</i>	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		Rule	s with Shrinka	age Covarian	ce Matrix Estir	nators		
$\hat{w}_{q,t}^{LW2004}$	0.0048	0.0037	0.0030	0.0021	0.0036	0.0317	0.0007	-0.0024
$\hat{w}_{p,t}^{LW2004}$	-0.0013	-0.0157	-0.0037	-0.0300	-0.0078	-0.1743	-0.1360	-0.5665
<i>P</i> ,*	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\hat{w}_{q,t}^{LW2017}$	0.0026	0.0020	-0.0005	0.0022	0.0003	0.0290	0.0012	-0.0001
$\hat{w}_{p,t}^{LW2017}$	-0.0099	-0.0383	-0.0159	-0.0350	-0.0254	-0.2403	-0.1226	-0.2515
P , ι	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		Rules	with MacKir	nlay-Pástor S	ingle Factor Str	ructure		
$\hat{w}_{q,t}^{MP}$	0.0017	0.0003	0.0022	0.0041	0.0009	0.0046	0.0020	0.0023
$\hat{w}_{p,t}^{MP}$	0.0016	-0.0000	0.0002	0.0005	-0.0017	0.0011	0.0013	-0.0007
P , ι	0.37	0.38	0.00	0.01	0.00	0.01	0.29	0.05
			Rule with l	No-Short-Sal	e Constraints			
$\hat{w}_{p,t}^{NS}$	0.0026	0.0016	0.0010	0.0013	0.0009	0.0054	-0.0016	-0.0027
F /*	0.80	0.99	0.94	0.94	0.89	1.00	0.88	1.00
	0.06	0.04	0.08	0.33	0.07	0.00	0.12	0.44
	0.51	0.39	0.76	0.32	0.59	0.00	0.08	0.09
	0.76	0.80	0.10	0.05	0.50	0.63	0.07	0.01

Table IA.29: CER Comparison with 50 bps Transactions Costs: h = 120 and $\gamma = 5$ (Cont'd)

	Momentum $N = 10$	Size-B/M $N = 25$	IVOL $N = 10$	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
			Other Rule	es from Portf	olio Optimizati	on		
$\hat{w}_{g,t}$	0.0018	0.0005	-0.0006	0.0005	0.0009	-0.0058	-0.0032	-0.0309
8,5	0.68	0.99	0.80	0.96	0.95	1.00	0.89	0.99
	0.02	0.00	0.01	0.07	0.02	0.00	0.00	0.00
	0.35	0.10	0.48	0.08	0.63	0.00	0.00	0.00
	0.55	0.56	0.00	0.00	0.52	0.00	0.00	0.00
$\hat{w}_{g,t}^{NS}$	0.0010	0.0019	0.0026	0.0029	0.0003	0.0044	0.0026	0.0007
8,1	0.52	0.99	0.99	0.99	0.86	1.00	1.00	1.00
	0.01	0.06	0.38	0.68	0.03	0.00	0.97	1.00
	0.22	0.47	0.92	0.65	0.49	0.00	0.92	0.88
	0.22	0.91	0.70	0.16	0.29	0.45	0.68	0.08
$\hat{w}_{KZ3,t}$	-2.6027	-1.6198	-24.0469	-0.6126	-6.0322	-35.1755	-0.3043	-2523.1372
·· KZJ,i	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
				on-Optimizat				
				_				
1/N	0.0001	0.0005	-0.0009	0.0012	-0.0006	-0.0016	0.0015	0.0002
	0.36	0.94	0.76	0.92	0.74	1.00	1.00	1.00
	0.00	0.02	0.02	0.31	0.03	0.00	0.68	0.96
	0.13	0.22	0.44	0.31	0.37	0.00	0.57	0.61
	0.10	0.54	0.02	0.04	0.20	0.01	0.40	0.10
KO_{VT}	0.0014	0.0021	0.0024	0.0026	0.0006	0.0028	0.0034	0.0021
	0.59	1.00	0.98	0.98	0.88	1.00	1.00	1.00
	0.02	0.10	0.34	0.60	0.05	0.00	0.99	1.00
	0.28	0.53	0.91	0.58	0.55	0.00	0.97	1.00
	0.36	0.92	0.60	0.13	0.43	0.16	0.84	0.43
KO_{RT}	0.0020	0.0014	0.0006	0.0024	0.0013	0.0037	0.0013	-0.0008
	0.71	0.98	0.91	0.98	0.92	1.00	1.00	1.00
	0.03	0.05	0.06	0.56	0.11	0.00	0.67	0.87
	0.39	0.37	0.69	0.54	0.66	0.00	0.54	0.29
	0.61	0.75	0.10	0.12	0.61	0.33	0.34	0.02
KO_{BT}	0.0024	0.0017	-0.0002	0.0024	0.0022	0.0031	0.0017	0.0001
	0.77	0.99	0.83	0.98	0.95	1.00	1.00	1.00
	0.06	0.09	0.04	0.57	0.23	0.00	0.72	0.95
	0.48	0.43	0.55	0.55	0.77	0.00	0.62	0.58
	0.78	0.79	0.04	0.13	0.80	0.23	0.43	0.08

Table IA.30: CER Comparison with 50 bps Transaction Costs: h = 240 and $\gamma = 5$

This table reports the CER of the portfolios studied in this paper with h = 240, $\gamma = 5$, and a transaction cost of 50 bps, based on the eight datasets containing excess monthly returns. The four newly obtained optimal combining portfolios, i.e., $\hat{w}_{q,t}$, $\hat{w}_{q,t}^{LW2004}$, $\hat{w}_{q,t}^{LW2017}$, and $\hat{w}_{q,t}^{MP}$, are highlighted with a box around. In the three categories to which the four new portfolios belong, one-sided tests are conducted to assess the value of using the newly derived optimal combining coefficient \hat{c}_t , and the *p*-values are reported in *italics*. For the portfolios in the remaining three categories, one-sided tests are conducted to compare them with the four newly obtained portfolios, and the corresponding *p*-values are reported in the four rows below the portfolio CER. We set $\eta = 4$ for the timing strategies KO_{VT} , KO_{RT} , and KO_{BT} .

	Momentum $N = 10$	Size-B/M $N = 25$	$ IVOL \\ N = 10 $	OP-Inv N = 25	NM-V (LT) N = 16	NM-V (All) N = 46	Industry $N = 49$	Stocks $N = 100$
w^*	0.0082	0.0098	0.0080	0.0130	0.0132	0.0232	0.0127	0.0092
			Invariant (Optimal Porti	folio Rules			
$\hat{w}_{q,t}$	0.0034	0.0019	-0.0007	0.0043	0.0046	-0.2130	-0.0019	-0.0043
$\hat{w}_{p,t}$	-0.0036	-0.0223	-0.0098	-0.0221	-0.0100	-11.4542	-0.2536	-0.2356
·· p,i	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\hat{w}_{u,t}$	-0.0023	-0.0151	-0.0080	-0.0155	-0.0068	-1.7194	-0.0526	-0.0816
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\hat{w}_{BS,t}$	0.0030	-0.0016	-0.0014	-0.0002	0.0028	-0.5563	-0.0134	-0.0151
25,1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		Rules	with Shrinka	ge Covarianc	e Matrix Estim	nators		
$\hat{w}_{q,t}^{LW2004}$	0.0056	0.0054	0.0028	0.0054	0.0080	-0.0171	-0.0001	-0.0009
$\hat{w}_{p,t}^{LW2004}$	0.0015	-0.0040	-0.0017	-0.0133	0.0016	-4.9935	-0.0600	-0.1039
P , ι	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\hat{w}_{q,t}^{LW2017}$	0.0041	0.0037	0.0001	0.0053	0.0062	-0.0517	0.0001	0.0009
$\hat{w}_{p,t}^{LW2017}$	-0.0023	-0.0146	-0.0079	-0.0159	-0.0055	-0.8272	-0.0632	-0.0610
p,i	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		Rules	with MacKin	lay-Pástor Sii	ngle Factor Str	ucture		
$\hat{w}_{q,t}^{MP}$	0.0042	0.0020	0.0044	0.0070	0.0057	0.0048	0.0023	0.0022
$\hat{w}_{p,t}^{MP}$	0.0038	0.0026	0.0029	0.0047	0.0041	0.0041	0.0023	0.0026
<i>P</i> ,•	0.16	0.74	0.03	0.01	0.00	0.25	0.50	0.60
			Rule with N	No-Short-Sale	Constraints			
$\hat{w}_{p,t}^{NS}$	0.0037	0.0023	0.0024	0.0033	0.0027	0.0031	-0.0007	0.0006
r %	0.55	0.58	0.90	0.35	0.29	1.00	0.72	0.99
	0.17	0.03	0.42	0.17	0.03	0.94	0.37	0.81
	0.43	0.25	0.84	0.20	0.15	1.00	0.32	0.45
	0.33	0.60	0.01	0.01	0.01	0.31	0.07	0.24

Table IA.30: CER Comparison with 50 bps Transactions Costs: h = 240 and $\gamma = 5$ (Cont'd)

	Momentum $N = 10$	Size-B/M $N = 25$	IVOL $N = 10$	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
			Other Rules	from Portfo	lio Optimizatio	on		
$\hat{w}_{g,t}$	0.0032	0.0036	0.0009	0.0053	0.0048	0.0030	-0.0009	-0.0042
8,5	0.45	0.83	0.74	0.70	0.52	1.00	0.82	0.82
	0.10	0.09	0.18	0.48	0.08	0.94	0.22	0.00
	0.32	0.49	0.62	0.51	0.31	1.00	0.17	0.00
	0.06	0.94	0.00	0.02	0.17	0.23	0.03	0.00
$\hat{w}_{g,t}^{NS}$	0.0019	0.0028	0.0035	0.0040	0.0021	0.0043	0.0030	0.0026
8,1	0.26	0.67	0.96	0.46	0.25	1.00	1.00	1.00
	0.04	0.06	0.64	0.27	0.02	0.95	0.99	1.00
	0.17	0.34	0.92	0.30	0.12	1.00	0.98	0.99
	0.00	0.82	0.12	0.01	0.00	0.40	0.68	0.61
$\hat{w}_{KZ3,t}$	-0.5021	-0.0009	-54.6254	0.0051	-0.0034	-160.2845	-0.0030	-0.0049
·· KZ5,t	0.00	0.02	0.00	0.83	0.00	0.00	0.01	0.02
	0.00	0.00	0.00	0.34	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.42	0.00	0.00	0.00	0.00
	0.00	0.06	0.00	0.11	0.01	0.00	0.01	0.00
			Nor	n-Optimizati	on Rules			
1/N	0.0009	0.0018	0.0001	0.0018	-0.0003	-0.0011	0.0018	0.0026
	0.16	0.49	0.62	0.20	0.12	1.00	0.94	1.00
	0.02	0.03	0.12	0.09	0.01	0.88	0.81	0.99
	0.10	0.21	0.50	0.10	0.05	1.00	0.78	0.88
	0.00	0.46	0.00	0.00	0.00	0.06	0.43	0.57
KO_{VT}	0.0021	0.0028	0.0032	0.0034	0.0017	0.0032	0.0031	0.0030
	0.29	0.66	0.94	0.37	0.22	1.00	1.00	1.00
	0.05	0.06	0.58	0.20	0.02	0.94	0.98	1.00
	0.20	0.34	0.90	0.23	0.11	1.00	0.97	0.99
	0.01	0.78	0.08	0.01	0.00	0.27	0.70	0.74
KO_{RT}	0.0031	0.0030	0.0025	0.0036	0.0029	0.0044	0.0023	0.0016
	0.44	0.69	0.90	0.40	0.32	1.00	0.99	1.00
	0.10	0.08	0.43	0.22	0.04	0.95	0.94	0.96
	0.32	0.37	0.84	0.25	0.17	1.00	0.93	0.73
	0.08	0.78	0.02	0.01	0.01	0.45	0.50	0.38
KO_{BT}	0.0035	0.0029	0.0011	0.0027	0.0021	0.0039	0.0014	0.0015
<i>D1</i>	0.51	0.67	0.75	0.28	0.25	1.00	0.91	1.00
	0.14	0.08	0.22	0.14	0.03	0.94	0.75	0.93
	0.39	0.36	0.65	0.16	0.13	1.00	0.72	0.66
	0.18	0.74	0.01	0.00	0.00	0.37	0.36	0.36

Table IA.31: Sharpe Ratio Comparison with 50 bps Transaction Costs: h = 120 and $\gamma = 3$

This table reports the Sharpe ratio of the portfolios studied in this paper with h=120, $\gamma=3$, and a transaction cost of 50 bps, based on the eight datasets containing excess monthly returns. The four newly obtained optimal combining portfolios, i.e., $\hat{w}_{q,t}$, $\hat{w}_{q,t}^{LW2004}$, $\hat{w}_{q,t}^{LW2017}$, and $\hat{w}_{q,t}^{MP}$, are highlighted with a box around. In the three categories to which the four new portfolios belong, one-sided tests are conducted to assess the value of using the newly derived optimal combining coefficient \hat{c}_t , and the *p*-values are reported in *italics*. For the portfolios in the remaining three categories, one-sided tests are conducted to compare them with the four newly obtained portfolios, and the corresponding *p*-values are reported in the four rows below the portfolio Sharpe ratio. We set $\eta=4$ for the timing strategies KO_{VT} , KO_{RT} , and KO_{BT} .

	Momentum $N = 10$	Size-B/M $N = 25$	IVOL $N = 10$	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
w^*	0.2483	0.2501	0.2132	0.3055	0.2988	0.4175	0.2716	0.2625
			Invariant (Optimal Port	folio Rules			
$\hat{w}_{q,t}$	0.1579	0.0529	0.1278	0.0605	0.0570	0.0597	-0.0048	-0.2267
$\hat{w}_{p,t}$	0.0964	-0.0459	0.0615	-0.1304	-0.0750	-0.1922	-0.2239	-0.1315
P 7*	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.95
$\hat{w}_{u,t}$	0.1093	-0.1106	0.0518	-0.0727	-0.0418	-0.0802	-0.1090	-0.2103
22,2	0.00	0.00	0.00	0.00	0.00	0.01	0.04	0.62
$\hat{w}_{BS,t}$	0.1498	-0.0125	0.1106	0.0054	0.0257	-0.0883	-0.1012	-0.2344
_~,	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.44
		Rules	with Shrinka	ge Covarianc	e Matrix Estim	nators		
$\hat{w}_{q,t}^{LW2004}$	0.2067	0.1699	0.1842	0.1342	0.1722	0.5456	0.0981	0.0274
$\hat{w}_{p,t}^{LW2004}$	0.1642	0.0360	0.1384	-0.0076	0.0800	0.0613	-0.1482	-0.1271
Ρ,	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\hat{w}_{q,t}^{LW2017}$	0.1781	0.1321	0.1458	0.1370	0.1002	0.4810	0.1100	0.0838
$\hat{w}_{p,t}^{LW2017}$	0.1258	-0.0409	0.0892	-0.0066	-0.0112	-0.0576	-0.0923	-0.2041
Ρ,	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		Rules	with MacKinl	ay-Pástor Si	ngle Factor Str	ucture		
$\hat{w}_{q,t}^{MP}$	0.1551	0.1285	0.1312	0.1952	0.1144	0.2071	0.1508	0.1581
$\hat{w}_{p,t}^{MP}$	0.1330	0.0704	0.0513	0.0383	0.0281	0.0380	0.0815	0.0432
Ρ,	0.07	0.04	0.00	0.00	0.00	0.00	0.08	0.01
			Rule with N	lo-Short-Sale	Constraints			
$\hat{w}_{p,t}^{NS}$	0.1809	0.1504	0.1110	0.1445	0.1570	0.2441	0.0831	0.0732
Γ',"	0.76	0.99	0.32	0.96	0.97	1.00	0.97	1.00
	0.19	0.27	0.01	0.59	0.36	0.00	0.36	0.86
	0.54	0.69	0.16	0.57	0.88	0.00	0.26	0.40
	0.88	0.77	0.18	0.09	0.91	0.78	0.10	0.04

Table IA.31: Sharpe Ratio Comparison with 50 bps Transactions Costs: h=120 and $\gamma=3$ (Cont'd)

	Momentum	Size-B/M	IVOL	OP-Inv	NM-V (LT)	NM-V (All)	Industry	Stocks
	N = 10	N = 25	N = 10	N = 25	N = 16	N = 46	N = 49	N = 100
			Other Rules	from Portfo	lio Optimizatio	on		
$\hat{w}_{g,t}$	0.1505	0.1127	0.0722	0.1163	0.1227	-0.0509	0.0199	-0.2106
37	0.42	0.96	0.08	0.92	0.92	0.06	0.80	0.98
	0.04	0.02	0.00	0.30	0.10	0.00	0.00	0.00
	0.22	0.27	0.03	0.28	0.69	0.00	0.00	0.00
	0.40	0.25	0.00	0.00	0.62	0.00	0.00	0.00
$\hat{w}_{g,t}^{NS}$	0.1360	0.1514	0.1627	0.1721	0.1174	0.2135	0.1611	0.1085
8,4	0.28	0.99	0.83	0.99	0.87	0.98	1.00	1.00
	0.02	0.28	0.25	0.81	0.11	0.00	0.98	1.00
	0.13	0.70	0.68	0.78	0.63	0.00	0.95	0.88
	0.15	0.84	0.94	0.21	0.56	0.57	0.63	0.05
$\hat{w}_{KZ3,t}$	-0.1050	-0.0845	-0.0932	-0.0761	-0.1034	-0.2780	-0.1239	-0.0433
1125,	0.00	0.00	0.00	0.01	0.01	0.00	0.01	1.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			Nor	n-Optimizati	on Rules			
1/N	0.1258	0.1468	0.1208	0.1405	0.1191	0.1013	0.1490	0.1130
,	0.21	0.99	0.43	0.94	0.86	0.71	1.00	1.00
	0.01	0.26	0.04	0.55	0.14	0.00	0.88	0.99
	0.09	0.64	0.26	0.53	0.64	0.00	0.82	0.82
	0.12	0.71	0.35	0.06	0.56	0.02	0.48	0.12
KO_{VT}	0.1434	0.1602	0.1596	0.1662	0.1301	0.1704	0.1834	0.1484
, -	0.35	1.00	0.80	0.98	0.91	0.94	1.00	1.00
	0.04	0.38	0.23	0.76	0.18	0.00	0.99	1.00
	0.18	0.77	0.65	0.73	0.72	0.00	0.98	1.00
	0.28	0.90	0.91	0.17	0.74	0.18	0.83	0.36
KO_{RT}	0.1617	0.1578	0.1349	0.1644	0.1574	0.1951	0.1373	0.0894
- 1(1	0.54	1.00	0.58	0.99	0.97	0.97	1.00	1.00
	0.08	0.36	0.07	0.76	0.37	0.00	0.88	0.97
	0.32	0.75	0.38	0.73	0.88	0.00	0.79	0.57
	0.64	0.83	0.56	0.16	0.92	0.38	0.37	0.03
KO_{BT}	0.1711	0.1640	0.1237	0.1659	0.1701	0.1812	0.1507	0.1128
~ D1	0.64	1.00	0.46	0.1033	0.98	0.95	1.00	1.00
	0.14	0.43	0.04	0.76	0.48	0.00	0.89	0.99
	0.42	0.79	0.28	0.73	0.91	0.00	0.83	0.81
	0.82	0.87	0.39	0.18	0.96	0.27	0.50	0.11

Table IA.32: Sharpe Ratio Comparison with 50 bps Transaction Costs: h = 240 and $\gamma = 3$

This table reports the Sharpe ratio of the portfolios studied in this paper with h=240, $\gamma=3$, and a transaction cost of 50 bps, based on the eight datasets containing excess monthly returns. The four newly obtained optimal combining portfolios, i.e., $\hat{w}_{q,t}$, $\hat{w}_{q,t}^{LW2004}$, $\hat{w}_{q,t}^{LW2017}$, and $\hat{w}_{q,t}^{MP}$, are highlighted with a box around. In the three categories to which the four new portfolios belong, one-sided tests are conducted to assess the value of using the newly derived optimal combining coefficient \hat{c}_t , and the *p*-values are reported in *italics*. For the portfolios in the remaining three categories, one-sided tests are conducted to compare them with the four newly obtained portfolios, and the corresponding *p*-values are reported in the four rows below the portfolio Sharpe ratio. We set $\eta=4$ for the timing strategies KO_{VT} , KO_{RT} , and KO_{BT} .

	Momentum $N = 10$	Size-B/M $N = 25$	IVOL $N = 10$	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
w^*	0.2636	0.2588	0.2536	0.3124	0.3029	0.3878	0.3085	0.2905
			Invariant C	Optimal Port	folio Rules			
$\hat{w}_{q,t}$	0.1883	0.1296	0.1475	0.1722	0.1724	-0.0671	0.0319	0.0051
$\hat{w}_{p,t}$	0.1494	0.0050	0.0905	0.0504	0.0886	-0.1830	-0.1621	-0.3273
I 7	0.00	0.00	0.00	0.00	0.00	0.06	0.00	0.00
$\hat{w}_{u,t}$	0.1557	-0.0242	0.1052	0.0674	0.1015	-0.1252	-0.0983	-0.2593
	0.00	0.00	0.00	0.00	0.00	0.20	0.02	0.00
$\hat{w}_{BS,t}$	0.1852	0.1004	0.1426	0.1287	0.1547	-0.1067	-0.0472	-0.1428
- ,	0.03	0.00	0.01	0.00	0.00	0.28	0.00	0.00
		Rules	with Shrinkag	ge Covarianc	e Matrix Estin	nators		
$\hat{w}_{q,t}^{LW2004}$	0.2160	0.1905	0.1776	0.1932	0.2370	0.1448	0.0636	0.0702
$\hat{w}_{p,t}^{LW2004}$	0.1868	0.1068	0.1482	0.0787	0.1643	0.0384	-0.0697	-0.2604
Ρ,ν	0.00	0.00	0.00	0.00	0.00	0.01	0.03	0.00
$\hat{w}_{q,t}^{LW2017}$	0.1984	0.1588	0.1536	0.1909	0.1964	0.1336	0.0671	0.1110
$\hat{w}_{p,t}^{LW2017}$	0.1616	0.0391	0.0089	0.0772	0.1168	-0.0931	-0.0635	-0.1886
P , ι	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.00
		Rules v	with MacKinla	ay-Pástor Si	ngle Factor Str	ucture		
$\hat{w}_{q,t}^{MP}$	0.2000	0.1695	0.2067	0.2713	0.2115	0.2156	0.1586	0.1570
$\hat{w}_{p,t}^{MP}$	0.1627	0.1278	0.1112	0.1191	0.1340	0.1174	0.1101	0.0980
Ρ,	0.00	0.05	0.00	0.00	0.00	0.01	0.19	0.17
			Rule with No	o-Short-Sale	Constraints			
$\hat{w}_{p,t}^{NS}$	0.2016	0.1669	0.1301	0.1714	0.1680	0.1864	0.0668	0.1141
P 7º	0.64	0.81	0.32	0.49	0.47	1.00	0.74	0.99
	0.34	0.27	0.09	0.34	0.14	0.68	0.53	0.84
	0.53	0.58	0.27	0.36	0.33	0.72	0.50	0.53
	0.53	0.46	0.00	0.00	0.06	0.31	0.04	0.21

Table IA.32: Sharpe Ratio Comparison with 50 bps Transactions Costs: h=240 and $\gamma=3$ (Cont'd)

	Momentum	Size-B/M	IVOL	OP-Inv	NM-V (LT)	NM-V (All)	Industry	Stocks
	N = 10	N = 25	N = 10	N = 25	N = 16	N = 46	N = 49	N = 100
			Other Rules	from Portfo	olio Optimizatio	on		
$\hat{w}_{g,t}$	0.1793	0.1912	0.1135	0.2328	0.2209	0.1746	0.0640	0.0119
0,-	0.41	0.95	0.22	0.90	0.79	1.00	0.79	0.93
	0.17	0.51	0.06	0.81	0.39	0.64	0.50	0.00
	0.31	0.80	0.18	0.82	0.66	0.69	0.47	0.00
	0.14	0.82	0.00	0.02	0.63	0.25	0.02	0.00
$\hat{w}_{g,t}^{NS}$	0.1500	0.1711	0.1871	0.2003	0.1584	0.2088	0.1723	0.1601
g,ι	0.19	0.83	0.84	0.69	0.42	1.00	1.00	1.00
	0.06	0.32	0.60	0.55	0.12	0.76	0.99	1.00
	0.13	0.61	0.80	0.57	0.29	0.80	0.99	0.99
	0.00	0.54	0.12	0.01	0.00	0.44	0.63	0.53
$\hat{w}_{KZ3,t}$	-0.0074	0.1218	-0.1148	0.2268	0.1642	-0.1297	0.0394	-0.0047
· KZ5,i	0.00	0.38	0.00	0.99	0.40	0.24	0.77	0.05
	0.00	0.00	0.00	0.95	0.01	0.00	0.03	0.00
	0.00	0.06	0.00	0.94	0.15	0.00	0.04	0.00
	0.00	0.10	0.00	0.10	0.22	0.00	0.01	0.00
	0.00	0.10	0.00	0.10	9.22	0.00	0.01	0.00
			Nor	n-Optimizati	on Rules			
1/N	0.1333	0.1590	0.1264	0.1503	0.1197	0.1127	0.1512	0.1636
	0.11	0.74	0.31	0.36	0.24	0.97	0.98	1.00
	0.03	0.23	0.11	0.24	0.05	0.37	0.94	0.99
	0.07	0.50	0.26	0.26	0.15	0.42	0.93	0.92
	0.00	0.33	0.00	0.00	0.00	0.05	0.45	0.55
KO_{VT}	0.1553	0.1724	0.1792	0.1844	0.1511	0.1790	0.1763	0.1743
	0.22	0.83	0.79	0.58	0.38	1.00	1.00	1.00
	0.07	0.33	0.52	0.44	0.11	0.64	0.99	1.00
	0.16	0.62	0.74	0.46	0.26	0.68	0.98	0.99
	0.00	0.56	0.05	0.00	0.00	0.23	0.66	0.69
KO_{RT}	0.1809	0.1783	0.1620	0.1906	0.1768	0.2106	0.1524	0.1396
	0.42	0.87	0.64	0.63	0.53	1.00	0.99	1.00
	0.18	0.38	0.34	0.48	0.18	0.76	0.98	0.97
	0.33	0.68	0.59	0.50	0.39	0.80	0.97	0.80
	0.11	0.66	0.01	0.00	0.04	0.46	0.45	0.34
KO_{BT}	0.1895	0.1800	0.1400	0.1696	0.1633	0.1977	0.1423	0.1383
DI	0.51	0.87	0.43	0.48	0.45	1.00	0.96	1.00
	0.24	0.40	0.18	0.34	0.14	0.71	0.91	0.96
	0.41	0.69	0.37	0.36	0.32	0.75	0.90	0.77
	0.24	0.68	0.00	0.00	0.02	0.37	0.38	0.35

Table IA.33: Sharpe Ratio Comparison with 50 bps Transaction Costs: h = 120 and $\gamma = 5$

This table reports the Sharpe ratio of the portfolios studied in this paper with h=120, $\gamma=5$, and a transaction cost of 50 bps, based on the eight datasets containing excess monthly returns. The four newly obtained optimal combining portfolios, i.e., $\hat{w}_{q,t}$, $\hat{w}_{q,t}^{LW2004}$, $\hat{w}_{q,t}^{LW2017}$, and $\hat{w}_{q,t}^{MP}$, are highlighted with a box around. In the three categories to which the four new portfolios belong, one-sided tests are conducted to assess the value of using the newly derived optimal combining coefficient \hat{c}_t , and the *p*-values are reported in *italics*. For the portfolios in the remaining three categories, one-sided tests are conducted to compare them with the four newly obtained portfolios, and the corresponding *p*-values are reported in the four rows below the portfolio Sharpe ratio. We set $\eta=4$ for the timing strategies KO_{VT} , KO_{RT} , and KO_{BT} .

	Momentum $N = 10$	Size-B/M $N = 25$	$IVOL \\ N = 10$	OP-Inv N = 25	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
w^*	0.2688	0.2942	0.2305	0.3468	0.3473	0.5924	0.3116	0.2952
			Invariant (Optimal Port	folio Rules			
$\hat{w}_{q,t}$	0.1941	0.1053	0.1707	0.0996	0.1102	0.2153	0.0135	-0.2197
$\hat{w}_{p,t}$	0.1526	-0.0538	0.1269	-0.0290	0.0170	-0.0624	-0.1792	-0.1393
P ;*	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.92
$\hat{w}_{u,t}$	0.1608	-0.0128	0.1350	0.0020	0.0370	-0.0492	-0.1251	-0.0729
· · u,i	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.99
$\hat{w}_{BS,t}$	0.1892	0.0568	0.1634	0.0579	0.0871	0.0592	-0.0573	-0.3203
**B3,t	0.04	0.00	0.00	0.00	0.01	0.00	0.02	0.01
		Rules	with Shrinka	ge Covarianc	e Matrix Estin	nators		
$\hat{w}_{q,t}^{LW2004}$	0.2284	0.1955	0.1999	0.1623	0.1941	0.5802	0.1097	0.0284
$\hat{w}_{p,t}^{LW2004}$	0.2037	0.1042	0.1735	0.0576	0.1291	0.3196	-0.0739	-0.2525
P , ι	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00
$\hat{w}_{q,t}^{LW2017}$	0.2100	0.1702	0.1822	0.1666	0.1435	0.5393	0.1228	0.0844
$\hat{w}_{p,t}^{LW2017}$	0.1764	0.0539	0.1467	0.0642	0.0606	0.3031	-0.0613	-0.1516
p,i	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		Rules v	with MacKinl	ay-Pástor Si	ngle Factor Str	ucture		
$\hat{w}_{q,t}^{MP}$	0.1572	0.1249	0.1537	0.2026	0.1259	0.2162	0.1494	0.1581
$\hat{w}_{p,t}^{MP}$	0.1559	0.1168	0.1115	0.1203	0.0771	0.1287	0.1290	0.1027
<i>P</i> ,•	0.45	0.37	0.01	0.01	0.01	0.01	0.28	0.09
			Rule with N	lo-Short-Sale	e Constraints			
$\hat{w}_{p,t}^{NS}$	0.1816	0.1545	0.1295	0.1459	0.1498	0.2338	0.1080	0.0863
1,	0.34	0.92	0.10	0.86	0.80	0.61	0.98	1.00
	0.03	0.06	0.00	0.33	0.11	0.00	0.48	0.93
	0.16	0.31	0.04	0.30	0.56	0.00	0.35	0.52
	0.86	0.83	0.14	0.06	0.77	0.63	0.20	0.06

Table IA.33: Sharpe Ratio Comparison with 50 bps Transactions Costs: h = 120 and $\gamma = 5$ (Cont'd)

Momentu				NM-V (LT)	NM-V (All)	Industry	Stocks
N =	N = 10	25 N=1	$0 \qquad N = 25$	N = 16	N = 46	N = 49	N = 100
		Other R	ules from Portf	olio Optimizati	on		
$\hat{w}_{g,t}$ 0.15	0.11	27 0.072	2 0.1163	0.1227	-0.0509	0.0199	-0.2106
0.	07 0.	61 0.0	0 0.72	0.63	0.00	0.63	0.97
0.	00 0.	0.0	0.03	0.01	0.00	0.00	0.00
0.	02 0.	0.0	0.03	0.28	0.00	0.00	0.00
0.	34 0.	31 0.0	0.00	0.45	0.00	0.00	0.00
$\hat{w}_{g,t}^{NS}$ 0.13	60 0.15	14 0.162	7 0.1721	0.1174	0.2135	0.1611	0.1085
0.	04 0.	90 0.4	0.96	0.56	0.49	1.00	1.00
0.	00 0.	0.0	8 0.61	0.02	0.00	0.97	1.00
0.	01 0.	28 0.2	7 0.56	0.28	0.00	0.92	0.88
0.	<i>13 0</i> .	85 0.6	7 0.16	0.36	0.47	0.64	0.05
-0.10	-0.08	-0.093	2 -0.0761	-0.1034	-0.2780	-0.1239	-0.0433
		00 0.0		0.00	0.00	0.01	1.00
0.	00 0.	00 0.0	0.00	0.00	0.00	0.00	0.10
		00 0.0		0.00	0.00	0.00	0.01
		0.0		0.00	0.00	0.00	0.00
			Non-Optimizat	ion Rules			
1/ <i>N</i> 0.12	58 0.14		-	0.1191	0.1013	0.1490	0.1130
		86 0.0		0.1191	0.1013	1.00	1.00
		06 0.0		0.04	0.00	0.83	0.99
0. 0.		26 0.0		0.04	0.00	0.83	0.99
0. 0.		73 0.1		0.31	0.00	0.50	0.01
O_{VT} 0.14				0.1301	0.02	0.1834	0.12
		93 0.3		0.1301	0.1704	1.00	1.00
		10 0.0		0.05	0.00	0.99	1.00
0. 0.		38 0.2		0.39	0.00	0.97	1.00
		90 0.6		0.56	0.16	0.83	0.36
O_{RT} 0.16				0.1574	0.1951	0.1373	0.0894
		92 0.134		0.1374	0.1931	1.00	1.00
0.		10 0.0		0.16	0.00	0.79	0.97
		36 0.0		0.62	0.00	0.67	0.57
							0.03
							0.03
							1.00
							0.99
							0.99
							0.81
O_{BT} 0.17 0. 0. 0. 0. 0.		11 0.16 23 0. 02 0. 10 0.	11 0.1640 0.123 23 0.94 0.1 02 0.15 0.0 10 0.43 0.0	11 0.1640 0.1237 0.1659 23 0.94 0.10 0.93 02 0.15 0.01 0.54 10 0.43 0.05 0.49	11 0.1640 0.1237 0.1659 0.1701 23 0.94 0.10 0.93 0.89 02 0.15 0.01 0.54 0.27 10 0.43 0.05 0.49 0.72	11 0.1640 0.1237 0.1659 0.1701 0.1812 23 0.94 0.10 0.93 0.89 0.32 02 0.15 0.01 0.54 0.27 0.00 10 0.43 0.05 0.49 0.72 0.00	11 0.1640 0.1237 0.1659 0.1701 0.1812 0.1507 23 0.94 0.10 0.93 0.89 0.32 1.00 02 0.15 0.01 0.54 0.27 0.00 0.85 10 0.43 0.05 0.49 0.72 0.00 0.75

Table IA.34: Sharpe Ratio Comparison with 50 bps Transaction Costs: h = 240 and $\gamma = 5$

This table reports the Sharpe ratio of the portfolios studied in this paper with h=240, $\gamma=5$, and a transaction cost of 50 bps, based on the eight datasets containing excess monthly returns. The four newly obtained optimal combining portfolios, i.e., $\hat{w}_{q,t}$, $\hat{w}_{q,t}^{LW2004}$, $\hat{w}_{q,t}^{LW2017}$, and $\hat{w}_{q,t}^{MP}$, are highlighted with a box around. In the three categories to which the four new portfolios belong, one-sided tests are conducted to assess the value of using the newly derived optimal combining coefficient \hat{c}_t , and the *p*-values are reported in *italics*. For the portfolios in the remaining three categories, one-sided tests are conducted to compare them with the four newly obtained portfolios, and the corresponding *p*-values are reported in the four rows below the portfolio Sharpe ratio. We set $\eta=4$ for the timing strategies KO_{VT} , KO_{RT} , and KO_{BT} .

	Momentum $N = 10$	Size-B/M $N = 25$	IVOL $N = 10$	$ OP-Inv \\ N = 25 $	NM-V (LT) $N = 16$	NM-V (All) $N = 46$	Industry $N = 49$	Stocks $N = 100$
w^*	0.2870	0.3149	0.2858	0.3608	0.3628	0.5117	0.3598	0.3381
			Invariant C	Optimal Port	folio Rules			
$ \hat{w}_{q,t} $	0.2283	0.1871	0.1877	0.2178	0.2340	0.0942	0.0525	0.0081
$\hat{w}_{p,t}$	0.2029	0.1058	0.1598	0.1168	0.1680	-0.0670	-0.0912	-0.2648
<i>P</i> , <i>i</i>	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00
$\hat{w}_{u,t}$	0.2067	0.1226	0.1634	0.1297	0.1778	-0.0363	-0.0643	-0.1924
22,2	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00
$\hat{w}_{BS,t}$	0.2263	0.1681	0.1841	0.1824	0.2203	0.0209	-0.0078	-0.0968
,	0.11	0.00	0.02	0.00	0.01	0.00	0.03	0.00
		Rules	with Shrinkag	ge Covarianc	e Matrix Estim	nators		
$\hat{w}_{q,t}^{LW2004}$	0.2488	0.2330	0.2059	0.2340	0.2829	0.3311	0.0881	0.0724
$\hat{w}_{p,t}^{LW2004}$	0.2317	0.1769	0.1873	0.1389	0.2257	-0.0274	-0.0711	-0.1807
I /	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00
$\hat{w}_{q,t}^{LW2017}$	0.2370	0.2107	0.1925	0.2332	0.2545	0.2680	0.0937	0.1128
$\hat{w}_{p,t}^{LW2017}$	0.2141	0.1403	0.1672	0.1388	0.1911	0.0425	-0.0737	-0.1335
P ,*	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		Rules v	with MacKinla	ay-Pástor Si	ngle Factor Str	ucture		
$\hat{w}_{q,t}^{MP}$	0.2060	0.1564	0.2096	0.2773	0.2436	0.2209	0.1545	0.1564
$\hat{w}_{p,t}^{MP}$	0.1969	0.1691	0.1734	0.2186	0.2032	0.2058	0.1528	0.1648
Ρ,	0.15	0.74	0.03	0.02	0.00	0.29	0.48	0.57
			Rule with No	o-Short-Sale	Constraints			
$\hat{w}_{p,t}^{NS}$	0.2002	0.1647	0.1580	0.1840	0.1738	0.1884	0.0880	0.1253
1 /	0.20	0.28	0.19	0.24	0.16	0.85	0.77	1.00
	0.06	0.02	0.06	0.13	0.02	0.06	0.50	0.90
	0.14	0.11	0.15	0.14	0.09	0.19	0.45	0.63
	0.40	0.62	0.01	0.01	0.01	0.33	0.09	0.26

Table IA.34: Sharpe Ratio Comparison with 50 bps Transactions Costs: h=240 and $\gamma=5$ (Cont'd)

	Momentum	Size-B/M	IVOL	OP-Inv	NM-V (LT)	NM-V (All)	Industry	Stocks
	N = 10	N = 25	N = 10	N = 25	N = 16	N = 46	N = 49	N = 100
			Other Rules	from Portfo	olio Optimizatio	on		
$\hat{w}_{g,t}$	0.1793	0.1912	0.1135	0.2328	0.2209	0.1746	0.0640	0.0119
07	0.07	0.55	0.03	0.66	0.40	0.84	0.66	0.92
	0.01	0.07	0.01	0.49	0.09	0.03	0.18	0.00
	0.04	0.27	0.02	0.50	0.25	0.13	0.15	0.00
	0.05	0.91	0.00	0.02	0.20	0.23	0.03	0.00
$\hat{w}_{g,t}^{NS}$	0.1500	0.1711	0.1871	0.2003	0.1584	0.2088	0.1723	0.1601
8,4	0.02	0.34	0.49	0.36	0.12	0.90	1.00	1.00
	0.00	0.04	0.28	0.23	0.02	0.09	0.99	1.00
	0.01	0.15	0.44	0.25	0.06	0.25	0.98	0.98
	0.00	0.75	0.13	0.01	0.00	0.42	0.66	0.54
$\hat{w}_{KZ3,t}$	-0.0074	0.1218	-0.1148	0.2268	0.1642	-0.1297	0.0394	-0.0047
1120,1	0.00	0.00	0.00	0.74	0.01	0.00	0.13	0.03
	0.00	0.00	0.00	0.29	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.34	0.00	0.00	0.00	0.00
	0.00	0.18	0.00	0.06	0.09	0.00	0.01	0.00
			Nor	n-Optimizati	on Rules			
1/N	0.1333	0.1590	0.1264	0.1503	0.1197	0.1127	0.1512	0.1636
1/11	0.01	0.25	0.07	0.1303	0.05	0.58	0.96	1.00
	0.00	0.02	0.02	0.06	0.01	0.01	0.88	0.99
	0.00	0.10	0.05	0.07	0.02	0.06	0.86	0.91
	0.00	0.53	0.01	0.00	0.00	0.09	0.48	0.56
KO_{VT}	0.1553	0.1724	0.1792	0.1844	0.1511	0.1790	0.1763	0.1743
ROVI	0.03	0.1724	0.41	0.26	0.10	0.82	0.1703	1.00
	0.00	0.04	0.21	0.16	0.02	0.05	0.98	1.00
	0.01	0.16	0.35	0.17	0.05	0.17	0.97	0.99
	0.00	0.74	0.08	0.01	0.00	0.26	0.69	0.70
KO_{RT}	0.1809	0.1783	0.1620	0.1906	0.1768	0.2106	0.1524	0.1396
RO_{KI}	0.09	0.41	0.24	0.29	0.18	0.90	0.98	1.00
	0.02	0.06	0.09	0.18	0.03	0.10	0.94	0.97
	0.05	0.20	0.19	0.19	0.10	0.27	0.92	0.79
	0.09	0.78	0.03	0.01	0.01	0.44	0.48	0.35
KO_{BT}	0.1895	0.1800	0.1400	0.1696	0.1633	0.1977	0.1423	0.1383
IIO BI	0.13	0.1600	0.11	0.1030	0.1033	0.1577	0.1423	1.00
	0.13	0.43	0.11	0.10	0.13	0.08	0.84	0.95
	0.04	0.22	0.09	0.10	0.02	0.23	0.82	0.76
	0.18	0.22	0.01	0.00	0.00	0.37	0.41	0.35