Unit 4: Artificial Neural Networks

F. J. Martín Mateos

A. Riscos Núñez

J. L. Ruiz Reina

Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

Artificial neurons: biological inspiration

- Artificial neural networks are a computational model inspired on their biological counterpart
- However, do not forget it is just a formal model:
 - Some features/properties of the biological systems are not captured in the computational model and viceversa
- Our approach is to use them as a mathematical model that is the base of powerful automated learning algorithms
 - Structure: directed graph (nodes are artificial neurons)

How a neural network works

- Each node or *unit* (*artificial neuron*), is connected to other units via *directed arcs* (modeling the *axon* → *dendrites* connection)
- Each arc $j \rightarrow i$ propagates the *output* of unit j (denoted a_j) which in turn is one of the *inputs* for unit i. The inputs and outputs are *numbers*
- Each arc $j \rightarrow i$ has an associated numerical weight w_{ji} which determines the strength and the sign of the connection (simulating a *synapse*)

How a neural network works

- Each unit calculates its output according to the received inputs
- The output of each unit is, in turn, used as one of the inputs of other neurons
 - The calculation performed by each unit is very simple, as we will see later on
- The network receives a series of external inputs (input units) and returns the output of some of its neurons, called output units

Calculation at each unit

• The output of a unit is: $a_i = g(\sum_{j=0}^n w_{ji}a_j)$

Where:

- g is the activation function
- The summation $\sum_{j=0}^{n} w_{ji} a_j$ (denoted by in_i) gathers all the outputs of units j connected with unit i
- Except for j = 0, which is considered as a virtual input $a_0 = -1$ and has a weight w_{0j} called *bias*

Bias and activation functions

- Intuitively, the bias weight w_{0i} of each unit is interpreted as the minimum amount that the sum of the received input signals has to reach in order to activate the unit
- The role of the activation function g is to "normalize" the output (usually to 1) upon activation. Besides, this ingredient allows that the network offers something more than a simple lineal function
- Frequently used activation functions:
 - Bipolar: $sgn(x) = \begin{cases} 1 & \text{si } x > 0 \\ -1 & \text{si } x \le 0 \end{cases}$
 - Threshold: $threshold(x) = \begin{cases} 1 & \text{si } x > 0 \\ 0 & \text{si } x \le 0 \end{cases}$
 - Sigmoid: $\sigma(x) = \frac{1}{1+e^{-x}}$
 - The sigmoid function is derivable and $\sigma'(x) = \sigma(x)(1 \sigma(x))$

Feed-forward neural networks

 A feed-forward neural network is an artificial neural network where connections between the units do not form a directed cycle (we focus on them in this unit)

Feed-forward neural networks

- Units in a feed-forward neural network are usually structured into layers, in such a way that each layer receives its inputs from units at the layer immediately before it
 - input layer, hidden layers and output layer
 - Multi-layer networks
- Other architectures: *recurrent* networks, where the output units provide feedback to the input units

Neural networks as classifiers

- A feed-forward neural network with n units on the input layer and m units on the output layer computes a function from Rⁿ into R^m
- Thus, it can be used as a classifier for sets in \mathbb{R}^n :
 - For Boolean classification, take m = 1 and:
 - If threshold or bipolar activation functions are used, then one of the outputs (e.g. 1) is interpreted as "YES" and the other one as "NO"
 - If sigmoid is used, then consider all output values over 0.5 as "YES" and any lower value as "NO"
 - In general, for classifiers with m possibles values, each output unit corresponds to a classification value; and then the unit having the higher output provides the classification

Neural networks and Learning

- Learning or training, in the framework of artificial neural networks, means searching adequate weights for the arcs, in order to get a desired behaviour (given by a training set)
- More precisely, in feed-forward neural networks, we usually follow the following supervised learning scheme
 - Given a training set $D = \{(\vec{x_d}, \vec{y_d}) : \vec{x_d} \in R^n, \vec{y_d} \in R^m, d = 1, \dots, k\}$
 - And given a structure of a network (number of layers and units per layer)
 - Find a set of weight values w_{ij} such that the function from R^n into R^m represented by the network provides the best fit with the examples in the training set
- We need a precise definition of "best fit"

Practical applications of neural networks

- For problems that can be expressed in terms of numbers (discrete or continuous)
- Usually suitable for domains with a huge amount of data, possibly with noise: cameras, microphones, digitalized images, etc
- We only care about the solution, not why it is so
- Problems where we can afford a long training time for the network
- And we want fast evaluation of new instances

ALVINN: an example of an application

- ANN trained to drive a car, at 70 Km/h, according to the visual perception received as input from its sensors
- \bullet Input of the network: The image of the road digitalized as an array of 30 \times 32 pixels. That is, 960 input data
- Output of the network: Indication about turning the wheel, encoded as a 30 component vector (from turn completely to the left, to keep straight, and then all the way to turn completely to the right)
- Structure: feed-forward network, input layer having 960 units, one hidden layer having 4 units and an output layer with 30 units

ALVINN: an example of an application

- Training: using a human driver, that drives the car again and again
- The visual sensors record the image seen by the driver (sequences of 960 data each)
- Other sensors record simultaneously the movements of the wheel
- After properly encoding all the gathered info, we have a number of different pairs of the form (\vec{x}, \vec{y}) , where $\vec{x} = (x_1, x_2, \dots, x_{960})$ and $\vec{y} = (y_1, y_2, \dots, y_{30})$, constitute examples of input/output for the network
- Goal: find the best values for w_{ji} associated to arcs $j \to i$ such that when the network receives \vec{x} , its output matches the corresponding value \vec{y} (or is the best possible approximation)

Examples of practical applications

- Classification
- Pattern recognition
- Optimization
- Prediction: weather, audience, etc
 - Speech recognition
 - Artificial vision, image recognition
- Constraint satisfaction
- Control (robots, cars, etc)
- Data compression
- Diagnosis

Perceptrons

- Let us first focus on the simplest case of neural network: feed-forward, just one input layer and one output layer.
 - Since each of the output units is independent, without loss of generality we can consider just one unit in the output layer
- This type of network is called perceptron
- A perceptron using threshold activation function is able to represent the basic Boolean functions:

Perceptrons: limitations

- A perceptron with n input units, weights $w_i (i=0,\ldots,n)$ and threshold (or bipolar) activation function, accepts those (x_1,\ldots,x_n) such that $\sum_{i=0}^n w_i x_i > 0$ (where $x_0 = -1$)
 - The equation $\sum_{i=0}^{n} w_i x_i = 0$ represents a hyperplane in R^n
 - That is, a Boolean function can only be represented by a threshold perceptron if there exists an hyperplane separating positive elements from negative elements (*linearly separable*)
- Perceptrons with sigmoid activation function have similar expressive limitations

Perceptrons: limitations

 For example, functions AND and OR are linearly separable, while XOR is not:

- Despite their expressive limitations, perceptrons have the advantage that there exists a simple training algorithm for perceptrons with threshold activation function
 - Able to find the suitable perceptron for any linearly separable training set

Algorithm for (threshold) Perceptron training

• Input: A training set D (with examples of the form (\vec{x}, y) , with $\vec{x} \in \mathbb{R}^n$ and $y \in \{0,1\}$), and a learning factor η

Algorithm

- 1) Consider randomly generated initial weights $\vec{w} \leftarrow (w_0, w_1, \ldots, w_n)$
- 2) Repeat until halting condition
 - 1) For each (\vec{x}, y) in the training set do
 - 1) Calculate $o = threshold(\sum_{i=0}^{n} w_i x_i)$ (with $x_0 = -1$) 2) For each w_i do: $w_i \leftarrow w_i + \eta(y o)x_i$
- 3) Return \vec{w}

Comments about the algorithm

- η is a positive constant, usually very small (e.g. 0.1), called *learning factor*, that moderates the weights update process
- At each iteration, if y = 1 and o = 0, then y o = 1 > 0, and therefore w_i corresponding to positive x_i will increase (and those corresponding to negative x_i will decrease). Thus, o (real output) will come closer to y (expected output)
- Analogously for o = 1 and y = 0
- When y = o, no w_i is modified
- For perceptrons with bipolar activation function, the algorithm is analogous

Comments about the algorithm

- Theorem: The previous algorithm converges on a finite number of steps to a weights vector \vec{w} that classifies correctly all training examples, provided that they are linearly separable and η is small enough (Minsky and Papert, 1969)
- Therefore, for the case of linearly separable training sets, the halting condition can be to have all examples correctly classified

Another training algorithm: the Delta rule

- When the training set is not linearly separable, the convergence of the previous algorithm is not guaranteed
- In this case, it will not be possible to find a perceptron able to return the expected output for *every* element of the training set
- We aim at least to minimize the squared error.

$$E(\vec{w}) = \frac{1}{2} \sum_{d} (y_d - o_d)^2 = \frac{1}{2} \sum_{d} [y_d - g(w_0 x_0 + w_1 x_1 + \dots + w_n x_n)]^2$$

- where g is the activation function, y_d is the expected output for the instance $(\vec{x}_d, y_d) \in D$, and o_d is the output returned by the perceptron
- Note that E is a function over \vec{w} , and the goal is to find a particular \vec{w} minimizing E
- In what follows, we refer to perceptrons having an activation function g being derivable (e.g. sigmoid)
- Thus, we discard threshold and bipolar perceptrons

Training algorithm by gradient descent

• Input: A training set D (with examples of the form (\vec{x}, y) , where $\vec{x} \in R^n$ and $y \in R$), a learning factor η and a derivable activation function g

Algorithm

- 1) Consider randomly generated initial weights $\vec{w} \leftarrow (w_0, w_1, \dots, w_n)$
- 2) Repeat until halting condition
 - 1) Initialize Δw_i to zero, for i = 0, ..., n
 - 2) For each $(x, y) \in D$,
 - 1) Calculate $in = \sum_{i=0}^{n} w_i x_i$ and o = g(in)
 - 2) For each i = 0, ..., n, do $\Delta w_i \leftarrow \Delta w_i + \eta(y o)g'(in)x_i$
 - 3) For each w_i do: $w_i \leftarrow w_i + \Delta w_i$
- 3) Return \vec{w}

The Delta rule

- It is a variant of the gradient descent method
- Instead of trying to minimize the squared error related to all examples in D, performs iterative improvements trying to reduce the squared error $E_d(\vec{w}) = \frac{1}{2}(y-o)^2$, with respect to each single example $(\vec{x},y) \in D$
 - In this way, $\frac{\partial E_d}{\partial w_i} = (y o)g'(in)(-x_i)$, and since $\Delta w_i = -\eta \frac{\partial E_d}{\partial w_i}$, we deduce that $\Delta w_i = \eta(y o)g'(in)x_i$, and therefore $w_i \leftarrow w_i + \eta(y o)g'(in)x_i$
 - This method for iteratively improving weights is known as Delta rule

Training perceptrons with the Delta rule

• Input: A training set D (with examples of the form (\vec{x}, y) , where $\vec{x} \in R^n$ and $y \in R$), a learning factor η and a derivable activation function g

Algorithm

- 1) Consider randomly generated initial weights $\vec{w} \leftarrow (w_0, w_1, \dots, w_n)$
- 2) Repeat until halting condition
 - 1) For each $(\vec{x}, y) \in D$
 - 1) Calculate $in = \sum_{i=0}^{n} w_i x_i$ and o = g(in)
 - 2) For each w_i do

$$w_i \leftarrow w_i + \eta(y - o)g'(in)x_i$$

3) Return \vec{w}

Particular cases of the Delta rule

- Perceptrons having a linear activation function:
 - In this case g'(in) = C (constant)
 - Therefore, the Delta rule is simply (adjusting η conveniently):

$$w_i \leftarrow w_i + \eta(y - o)x_i$$

- Perceptrons having sigmoid activation function:
 - In this case g'(in) = g(in)(1 g(in)) = o(1 o)
 - Therefore, the Delta rule is simply:

$$w_i \leftarrow w_i + \eta(y - o)o(1 - o)x_i$$

Some comments on the Delta rule

- Both gradient descent and the Delta rule are local search algorithms, which converge towards local minima for the error between obtained output and expected output
 - In the case of gradient descent, we decrease at each step following the gradient of the squared error associated to *all* examples
 - In the Delta rule, we decrease at each step following the gradient of the squared error associated to a single example
- ullet Having a small enough value for η , the gradient descent method converges (in general asymptotically) towards a local minimum of the global squared error

Some comments on the Delta rule (contd.)

- It has been proved that by using small enough values for η , the Delta rule gives an arbitrarily close approximation of the gradient descent
- ullet Delta rule updates the weights in a simpler way, although smaller values of η are needed. Besides, it is more likely to escape from local minima

Delta rule and threshold perceptrons

 The training rule for threshold perceptron and the Delta rule for training linear perceptrons seem apparently identical:

$$w_i \leftarrow w_i + \eta(y - o)x_i$$
, however:

- Their activation functions are different
- The **convergence** properties are different too:
 - Threshold: converges in a finite number of steps and reaches a perfect adjustment, provided that the training set is linearly separable
 - Delta rule: always converges asymptotically towards a local minimum of the squared error
- The **separation** properties are different as well:
 - Threshold: looks for a hyperplane that fully separates the data
 - Delta rule: looks for a regression model, the hyperplane (possibly smoothed with the sigmoid) that lies closest to the training data

(Feed-forward) Multi-layer networks

 As mentioned before, perceptrons have a limited expressive power. Let us therefore study multi-layer networks

figuras/rn-png-converted-to.png

- In a multi-layer network, units are arranged into layers, in such a
 way that each unit of each layer (except input layer) receive
 inputs from all units from the previous layer
 - Input layer is formed by input units
 - Output layer is formed by units who send their output outside
 - Hidden layers are all the remaining layers different from the input and output layers

Multi-layer networks: expressive power

- Combining multiple layers increases the network expressive power (provided that the activation function is not linear)
- That is, the amount of functions $f: \mathbb{R}^n \to \mathbb{R}^m$ which can be represented is increased

Figure 20.23 (a) The result of combining two opposite-facing soft threshold functions to produce a ridge. (b) The result of combining two ridges to produce a bump.

 Usually, a single hidden layer is enough for most of real applications

Multi-layer networks training

- Similarly to the perceptron case, we have a training set D such that each $(\vec{x}, \vec{y}) \in D$ shows the expected output $\vec{y} \in R^m$ for each input $\vec{x} \in R^n$
- We assume that the structure of the multi-layer network is given, the goal is to find the appropriate weights for the network in such a way that the function computed by the net fits in the best way the given examples
- Retropropagation algorithm: successive updates of the weights, following the same approach as the gradient descent for the perceptron

Multi-layer networks: notation

- Consider a neural network having L layers, with n units at the input layer, and m at the output layer
 - Layer 1 is the input one, and layer L is the output one
 - Each unit of layer l is connected with all units from layer l+1
- We assume that the activation function g is differentiable (usually the sigmoid)
- The weight associated with the arc from unit i to unit j is denoted by w_{ij}
- Given a training example $(\vec{x}, \vec{y}) \in D$:
 - Each component x_i from \vec{x} is associated with its corresponding input unit
 - For each unit k within the output layer, we denote by y_k the corresponding component of \vec{y} associated to this unit

Multi-layer networks: notation

- When computing the real output produced by the network when receiving as input an example \vec{x} , for each unit i we shall denote the input received by it as in_i , and the output of the unit as a_i .
- More precisely:
 - If i is an input unit (i.e., from layer 1), then $in_i = a_i = x_i$
 - If i is a unit within a layer $l \neq 1$, then $in_i = \sum_j w_{ji} a_j$ and $a_i = g(in_i)$ (where the sum is made over all units j from layer l-1)

Retropropagation algorithm: intuitive idea

- Given an example $(\vec{x}, \vec{y}) \in D$, for each unit i within the output layer, the weights of the incoming arcs to this unit is made similarly as with the Delta rule:
 - Let $\Delta_i = g'(in_i)(y_i a_i)$ (modified error in unit i)
 - Then $w_{ji} o w_{ji} + \eta a_j \Delta_i$
- However, it is not possible to do the same for hidden layers
 - The "expected output" is unknown

Retropropagation algorithm: intuitive idea

How to update weights of incoming arcs for hidden layers?

• **Idea**: go backwards, in order to calculate error Δ_j of a unit within layer l-1, we take into account errors of units within layer l (unit j is connected to all of them)

$$\Delta_j = g'(in_j) \sum_i w_{ji} \Delta_i$$
 $w_{kj} \to w_{kj} + \eta a_k \Delta_j$

- Intuitively, each unit *j* takes "responsibility" for the errors of the units where it sends its output
 - depending on weight of the connection

Retropropagation algorithm: intuitive idea

- The output of each unit is calculated by propagating values forward, but their errors are calculated backwards starting from the output layer (thus the name *retropropagation*)
- The retropropagation method can be formally justified as a gradient descent of the error, but we skip the proof

Retropropagation algorithm

• Input: A training set D (with examples of the form (\vec{x}, \vec{y}) , with $\vec{x} \in R^n$ and $\vec{y} \in R^m$), a learning factor η , a differentiable activation function g, and the structure of the *net*

Algorithm

- 1) Initialize the weights on the *net* (randomly, usually values close to zero, either positive or negative)
- 2) Repeat until halting condition
 - 1) For each example $(\vec{x}, \vec{y}) \in D$ do:
 - 1) Calculate the output a_i of each unit i, propagating values forward
 - 2) Calculate errors Δ_i of each unit i, and update weights w_{ii} , propagating values backwards
- 3) Return net
- In the following slides items 2.1.1) and 2.1.2) will be explained in detail

Forward propagation

2.1.1) forward propagation for an example $(\vec{x}, \vec{y}) \in D$

Procedure

- 1) For each node i within the input layer, $a_i \leftarrow x_i$
- 2) For each I from 2 to L do:
 - 1) for each node i in layer l do $in_i \leftarrow \sum_j w_{ji} a_j \qquad \text{(sum for each unit } j \text{ in layer } l-1\text{)}$ $a_i \leftarrow g(in_i)$
- Once the values in_i and a_i have been computed for an example $(\vec{x}, \vec{y}) \in D$, let us focus on the next step

Backwards propagation

2.1.2) backwards propagation of errors for an example $(\vec{x}, \vec{y}) \in D$, and weights update

Procedure

- 1) For each unit i within output layer, $\Delta_i \leftarrow g'(in_i)(y_i a_i)$
- 2) For each I from L-1 down to 1 do:
 - 1) for each node j in layer l do
 - 1) $\Delta_j \leftarrow g'(in_j) \sum_i w_{ji} \Delta_i$ (sum for each unit i in layer l+1
 - 2) for each node i in layer l+1 do $w_{ii} \leftarrow w_{ii} + \eta a_i \Delta_i$
- No need to calculate Δ_i for the input layer (I=1)
- Bias weights are updated after calculating each Δ_i , just like any other weight: $w_{0i} \leftarrow w_{0i} + \eta a_0 \Delta_i$ (where $a_0 = -1$)

Retropropagation with sigmoid units

- The most common case where retropropagation algorithm is applied involves a network having the sigmoid activation function
- Recall $\sigma(x) = \frac{1}{1+e^{-x}}$, and $\sigma'(x) = \sigma(x)(1-\sigma(x))$
- Therefore, when $g(x) = \sigma(x)$, we have $g'(in_i) = g(in_i)(1 g(in_i)) = a_i(1 a_i)$
- In this case, the error calculation in Step 2 is:
 - For the output layer, $\Delta_i \leftarrow a_i(1-a_i)(y_i-a_i)$
 - ullet For the hidden layers, $\Delta_j \leftarrow a_j (1-a_j) \sum_i w_{ji} \Delta_i$
- Notice that it is not necessary to store the values in_i from Step 1, since they are not used here

Retropropagation: a running example

 Let us consider a neural network with the following structure which uses the sigmoid as activation function:

- Let (x_1, x_2, x_3) be a given example with expected output (y_6, y_7)
- Let us assume that we have already calculated the output a_i for every unit i = 1, ..., 7

Retropropagation: a running example

Trace of the error retropropagation

Layer	Unit	Operations
Output	7	$\Delta_7 = a_7(1-a_7)(y_7-a_7)$
		$w_{0,7} \longleftarrow w_{0,7} + \eta a_0 \Delta_7$
	6	$\Delta_6 = a_6(1-a_6)(y_6-a_6)$
		$w_{0,6} \longleftarrow w_{0,6} + \eta a_0 \Delta_6$
Hidden	5	$\Delta_5 = a_5(1-a_5)[w_{5,6}\Delta_6 + w_{5,7}\Delta_7]$
		$w_{0,5} \longleftarrow w_{0,5} + \eta a_0 \Delta_5$
		$w_{5,6} \longleftarrow w_{5,6} + \eta a_5 \Delta_6$
		$w_{5,7} \longleftarrow w_{5,7} + \eta a_5 \Delta_7$
	4	$\Delta_4 = a_4(1-a_4)[w_{4,6}\Delta_6 + w_{4,7}\Delta_7]$
		$\textit{w}_{0,4} \longleftarrow \textit{w}_{0,4} + \eta \textit{a}_0 \Delta_4$
		$w_{4,6} \longleftarrow w_{4,6} + \eta a_4 \Delta_6$
		$w_{4,7} \longleftarrow w_{4,7} + \eta_{a_4} \Delta_7$
Input	3	$w_{3,4} \longleftarrow w_{3,4} + \eta a_3 \Delta_4$
		$w_{3,5} \longleftarrow w_{3,5} + \eta a_3 \Delta_5$
	2	$w_{2,4} \longleftarrow w_{2,4} + \eta a_2 \Delta_4$
		$w_{2,5} \longleftarrow w_{2,5} + \eta a_2 \Delta_5$
	1	$w_{1,4} \longleftarrow w_{1,4} + \eta a_1 \Delta_4$
		$w_{1,5} \longleftarrow w_{1,5} + \eta a_1 \Delta_5$

Momentum in retropropagation algorithm

- Retropropagation is a gradient descent method, and thus entails the problem of local minima
- A quite common variant of the retropropagation algorithm is to include an extra addend in the weight updating formula
- This new addend involves that each weight update takes into account the update performed in the previous step
- More precisely:
 - On the *n*-th iteration, weights are updated as follows: $w_{ji} \leftarrow w_{ji} + \Delta w_{ji}^{(n)}$ where $\Delta w_{ji}^{(n)} = \eta a_j \Delta_i + \alpha \Delta w_{ji}^{(n-1)}$
 - $0 < \alpha \le 1$ is a constant called *momentum*
- The momentum technique might be effective sometimes to escape from "small local minima", whereas the standard version of the algorithm could get stuck

Halting condition for retropropagation

- Notice that the algorithm might loop several times over the training set
 - Or could take a random example on each iteration
 - Or could even halt and then resume the training, but starting from learned weights

Examples of halting criteria

- Fixed number of iterations
- When error over the training set gets below a predetermined threshold
 - Risk of overfitting
 - independent test set, or cross-validation

Learning the network structure

- Retropropagation algorithm receives as input a fixed structure
- Which structure is suitable for each problem?
- In particular, here we need to decide the number of hidden layers, and how many units for each layer
- This problem is not fully solved yet
- Usually, the best structure is searched experimentally, measuring it over an independent test set
- Most of the times, a single hidden layer with a few units suffices to provide good results
- Larger networks involve higher risk of overfitting

Final comment Recurrent networks

Recurrent networks

- Short term memory
- Better modelization of the brain
- Harder to understand
- Directed graph (cycles allowed)
- Output of a unit is allowed to feed its own input
- Acts like a dynamic system
- May reach stability, or may exhibit oscillatory or chaotic behaviour

Bibliography

- Russell, S. and Norvig, P. Artificial Intelligence (A modern approach) (Third edition) (Prentice–Hall, 2010)
 - Ch. 18: "Learning from Examples"
- Russell, S. and Norvig, P. Artificial Intelligence (A modern approach) (Second edition) (Prentice Hall, 2003)
 - Ch. 20: "Statistical Learning" (available on-line at http://aima.cs.berkeley.edu/2nd-ed/newchap20.pdf)
- Mitchell, T.M. Machine Learning (McGraw-Hill, 1997)
 - Ch. 4: "Artificial Neural Networks"