TD 3 - Algèbre multilinéaire

Soient E, F, G trois k-espaces vectoriels. On pose L(E, F; G) l'espace des applications bilinéaires $E \times F \to G$. L'espace vectoriel $E \otimes F$ est caractérisé par la propriété suivante :

Il existe une application bilinéaire $\Phi: E \times F \to E \otimes F$ telle que l'application

$$\begin{array}{ccc} \operatorname{Hom}_k(E \otimes F, G) & \longrightarrow & L(E, F; G) \\ \varphi & \longmapsto & \varphi \circ \Phi \end{array}$$

est un isomorphisme de k-espaces vectoriels.

Autrement dit, si l'on note $\Phi(v, w) =: v \otimes w$, on obtient que, pour toute application bilinéaire $\varphi : E \times F \to G$, il existe une unique application linéaire $\widetilde{\varphi} : E \otimes F \to G$ telle que $\widetilde{\varphi}(v \otimes w) = \varphi(v, w)$.

On dit que $v \otimes w$ est un tenseur pur. On note toutefois qu'un élément de $E \otimes F$ n'est pas toujours un tenseur pur, mais une combinaison linéaire de tenseurs purs.

Exercice 1. Soient E, F, G, F_1, F_2 des k-espaces vectoriels.

- 1. Soit $E \boxtimes F$, Ψ un espace vectoriel satisfaisant la même du produit tensoriel. On pose $\Psi(v, w) =: v \boxtimes w$. Montrer que l'application $E \otimes F \to E \boxtimes F$ envoyant $v \otimes w$ sur $v \boxtimes w$ est bien définie et est un isomorphisme de k-espaces vectoriels.
- 2. Montrer que $E \otimes F \simeq F \otimes E$.
- 3. Montrer que $(E \otimes F) \otimes G = E \otimes (F \otimes G)$.
- 4. Montrer que $E \otimes (F_1 \oplus F_2) = (E \otimes F_1) \oplus (E \otimes F_2)$.

Exercice 2. (Base d'un produit tensoriel)

Soient E, F deux k-espaces vectoriels, et soient $\{e_i\}_{i\in I}$ et $\{f_j\}_{j\in J}$ des bases respectives de E et F.

1. On considère $\{e_i^*\}_{i\in I}$ et $\{f_j^*\}_{j\in J}$ les familles duales de $\{e_i\}$ et $\{f_j\}$. Montrer que l'application définie par

$$\varphi_{i,j}: E \times F \longrightarrow k$$

$$(u,v) \longmapsto e_i^*(u)f_i^*(v)$$

est une application bilinéaire, telle que $\varphi_{i,j}(e_k, f_\ell) = \delta_{(i,j),(k,l)}$.

- 2. En déduire une application linéaire $\widetilde{\varphi_{i,j}}: E \otimes F \to k$, telle que $\widetilde{\varphi_{i,j}}(e_k \otimes f_\ell) = \delta_{(i,j),(k,\ell)}$.
- 3. En déduire que la famille $\{e_i \otimes_k f_j\}_{(i,j) \in I \times J}$ est une famille libre de $E \otimes_k F$.
- 4. Montrer que la famille $\{e_i \otimes_k f_j\}_{(i,j) \in I \times J}$ engendre tous les tenseurs purs de $E \otimes F$.
- 5. En déduire que $k^n \otimes k^m$ est isomorphe à k^{mn} et à $\mathcal{M}_{n,m}(k)$.
- 6. En déduire que $k[X] \otimes_k k[Y] \simeq k[X,Y]$ en tant que k-espace vectoriel. Quels sont les tenseurs purs de $k[X] \otimes_k k[Y]$ vus dans k[X,Y]?

Exercice 3. Soit L une extension de corps de k. Montrer que $L[X] \simeq L \otimes k[X]$ en tant que L-espace vectoriel.

Exercice 4. Exceptionnellement, on regarde du produit tensoriel entre des modules, et pas seulement entre des espaces vectoriels. Soit $n \in \mathbb{N}^*$ un entier,

- 1. Soit $k \in \mathbb{Z}/n\mathbb{Z}$. Montrer que n. $\left(\frac{a}{b} \otimes k\right) = 0$ dans $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z}$.
- 2. En utilisant $1 = \frac{n}{n}$, montrer que tout tenseur pur de $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z}$ est nul.
- 3. En déduire que $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z} = \{0\}.$