Übungsblatt 0 – Lösungshinweise

(trigonometrische Funktionen, Teilmengen von $\mathbb{R} \times \mathbb{R}$)

Aufgabe 1

(a) Skizzieren Sie die Graphen der Sinus- und der Cosinusfunktion.

Graph der Sinus- und Cosinusfunktion:

(b) Zeichnen Sie $\sin(\varphi)$ und $\cos(\varphi)$ in folgende Zeichung ein.

(c) Rechnen Sie folgende Winkel vom Gradmaß ins Bogenmaß um.

Winkel im Gradmaß	0°	360°	90°	60°	36°	29°
Winkel im Bogenmaß	0	2π	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{5}$	$\frac{29}{360} \cdot 2\pi = \frac{29}{180}\pi$

(d) Rechnen Sie folgende Winkel vom Bogenmaß ins Gradmaß um.

Winkel im Bogenmaß	π	5π	$\frac{2\pi}{3}$	$\frac{\pi}{6}$	$\frac{\pi}{18}$	$\frac{2\pi}{17}$
Winkel im Gradmaß	180°	900°	120°	30°	10°	$\left(\frac{360}{17}\right)^{\circ}$

(e) Skizzieren Sie die Tangensfunktion.

(f) Geben Sie die Definitionsbereiche und Wertemengen von arcsin, arccos und arctan an.

$$\arcsin: [-1,1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2} \right],$$

$$\arccos: [-1, 1] \to [0, \pi],$$

$$\arctan: \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

Aufgabe 2

Bestimmen Sie folgende Funktionswerte.

(a)
$$\sin(-64\pi) = 0$$
 (b) $\cos(-64\pi) = 1$ (c) $\tan(-64\pi) = 0$

(b)
$$\cos(-64\pi) = 1$$

(c)
$$\tan(-64\pi) = 0$$

(d)
$$\sin(65\pi) = 0$$

(e)
$$\cos(65\pi) = -1$$

(f)
$$\tan (65\pi) = 0$$

(g)
$$\sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

(h)
$$\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

(i)
$$\tan\left(\frac{\pi}{4}\right) = 1$$

(d)
$$\sin(65\pi) = 0$$
 (e) $\cos(65\pi) = -1$ (f) $\tan(65\pi) = 0$ (g) $\sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ (h) $\cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ (i) $\tan(\frac{\pi}{4}) = 1$ (j) $\arctan(1) = \frac{\pi}{4}$ (k) $\arcsin(1) = \frac{\pi}{2}$ (l) $\arccos(1) = 0$

(k)
$$\arcsin(1) = \frac{\pi}{2}$$

$$(1) \quad \arccos(1) = 0$$

Aufgabe 3

Bestimmen Sie folgende Urbilder.

(a)
$$\sin^{-1}(\{1\})$$

(b)
$$\sin^{-1}(\{0\})$$

(a)
$$\sin^{-1}(\{1\})$$
 (b) $\sin^{-1}(\{0\})$ (c) $\sin^{-1}(\{-1\})$

(d)
$$\cos^{-1}(\{1\})$$

(e)
$$\cos^{-1}(\{0\})$$

(f)
$$\cos^{-1}(\{-1\})$$

(d)
$$\cos^{-1}(\{1\})$$
 (e) $\cos^{-1}(\{0\})$ (f) $\cos^{-1}(\{-1\})$ (g) $\tan^{-1}(\{1\})$ (h) $\tan^{-1}(\{0\})$ (i) $\tan^{-1}(\{-1\})$

(h)
$$\tan^{-1}(\{0\})$$

(i)
$$\tan^{-1}(\{-1\})$$

(a)
$$\sin^{-1}(\{1\}) = \{\frac{\pi}{2} + 2k\pi : k \in \mathbb{Z}\}$$

(b)
$$\sin^{-1}(\{0\}) = \{k\pi : k \in \mathbb{Z}\}\$$

(c)
$$\sin^{-1}(\{-1\}) = \left\{\frac{3\pi}{2} + 2k\pi : k \in \mathbb{Z}\right\}$$

(d)
$$\cos^{-1}(\{1\}) = \{2k\pi : k \in \mathbb{Z}\}$$

(e)
$$\cos^{-1}(\{0\}) = \left\{\frac{\pi}{2} + k\pi : k \in \mathbb{Z}\right\}$$

(f)
$$\cos^{-1}(\{-1\}) = \{(2k+1)\pi : k \in \mathbb{Z}\}\$$

(g)
$$\tan^{-1}(\{1\}) = \left\{\frac{\pi}{4} + k\pi : k \in \mathbb{Z}\right\}$$

(h)
$$\tan^{-1}(\{0\}) = \{k\pi : k \in \mathbb{Z}\}$$

(i)
$$\tan^{-1}(\{-1\}) = \{-\frac{\pi}{4} + k\pi : k \in \mathbb{Z}\}$$

Aufgabe 4

Skizzieren Sie folgende Teilmengen von $\mathbb{R} \times \mathbb{R}$.

(a)
$$M_1 = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x^2 + y^2 = 1\}$$

(b)
$$M_2 = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x^2 + y^2 = 4\}$$

(c)
$$M_3 = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x^2 + y^2 < 4\}$$

(d)
$$M_4 = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x^2 + y^2 < 4 \text{ und } x^2 + y^2 > 1\}$$

(e)
$$M_5 = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x = y\}$$

(f)
$$M_6 = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x \ge y\}$$

(g)
$$M_7 = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x = -2y\}$$

(h)
$$M_8 = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x \ge 2 \text{ und } y < 3\}$$

Aufgabe 5

Geben Sie folgende Teilmengen von $\mathbb{R} \times \mathbb{R}$ in Mengenschreibweise an, also in der Form

$$M = \{(x, y) \in \mathbb{R} \times \mathbb{R} : \text{ Eigenschaft von } x \text{ und } y\}.$$

$$A = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x = 0 \text{ oder } y = 0\}$$

$$B = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x = y \text{ oder } x = -y\}$$

 $C = \{(x,y) \in \mathbb{R} \times \mathbb{R} : -2 \le y \le 2\}$

$$D = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x^2 + y^2 > 1\}$$

Aufgabe 6

Machen Sie den Nenner rational (im Nenner soll also keine irrationale Zahl stehen).

(a)
$$\frac{1}{\sqrt{3} + \sqrt{5}}$$
 (b) $\frac{1}{\sqrt{3} - \sqrt{5}}$

Mit Hilfe der 3. binomischen Formel berechnen wir

(a)
$$\frac{1}{\sqrt{3} + \sqrt{5}} = \frac{1}{\sqrt{3} + \sqrt{5}} \cdot \frac{\sqrt{3} - \sqrt{5}}{\sqrt{3} - \sqrt{5}} = \frac{\sqrt{3} - \sqrt{5}}{3 - 5} = \frac{\sqrt{3} - \sqrt{5}}{-2}$$
,

(b)
$$\frac{1}{\sqrt{3}-\sqrt{5}} = \frac{1}{\sqrt{3}-\sqrt{5}} \cdot \frac{\sqrt{3}+\sqrt{5}}{\sqrt{3}+\sqrt{5}} = \frac{\sqrt{3}+\sqrt{5}}{3-5} = \frac{\sqrt{3}+\sqrt{5}}{-2}.$$