Homework 4 for **MATH 497A**, Introduction to Ramsey Theory

Due: Monday September 19

Problem 1

Upper Bounds for Ramsey's Theorem

From the various proofs of Ramsey's Theorem, try to extract an upper bound (as sharp as you can) on R(p;k;r). Recall that R(p;k;r) is the least N such that

$$N \to (k)_r^p$$
.

Problem 2

Failure of Ramsey's Theorem for ω -subsets

If X is an infinite set, let $[X]^{\omega}$ be the set of denumerable subsets of X, i.e. $[X]^{\omega} = \{A \subseteq X : A \text{ is countably infinite}\}$. Show that for any infinite set X there exists a 2-coloring c of $[X]^{\omega}$ with no infinite homogenous set.

Problem 3

Cardinalities

Show that $|\mathcal{P}(\mathbb{N})| \leq |\mathbb{R}|$. Show further, without using the Cantor-Schröder-Bernstein Theorem, that |(0,1)| = |[0,1]|.

Problem 4

Uncountabiliy of the Real Numbers

Use the completeness of \mathbb{R} to give a different proof of its uncountability: For every sequence (a_n) of natural numbers and for any non-empty interval I, there exists a point $p \in I$ such that $p \neq a_n$ for all n. Use completeness in the following form:

For any nested sequence $I_1 \supseteq I_2 \supseteq I_3 \supseteq \dots$ of closed, non-empty intervals in \mathbb{R} , the intersection $\bigcap_n I_n$ is not empty.

(Do you need the Axiom of Choice here?)

Problem 5

Isomorphism of Linear Orders

A linear order (P, <) is *dense* if for any $x, y \in P$ with x < y there exists $z \in P$ such that x < z < y. Moreover, (P, <) has *no endpoints* if for any $x \in P$ there exists a $y, z \in P$ such that y < x < z.

Show that any infinite countable, dense linear order with no endpoints is isomorphic to \mathbb{Q} (with the standard ordering).