

By Hayley Paziewski, Jérémy Etcheverry, Alexis Tessier, Mickaël Testa & Castagnet Florian

26/11/2013

Problematic

- Use mobility model that most closely matches the results of real-world scenario.

Introduction

- MANET
 - -Mobile Ad Hoc Network
 - -Networks of mobile entities
 - -Collect, process and transmit data
- UAV
 - -Application of mobility models with UAVs
- 2 differents mobility models
 - -Random Waypoint
 - -Distributed Pheromone Repel

Scenarios

- Objectives
 - -Scan area in a limited time
 - Scan the entire area regularly, but at least once every hour
- Characteristics
 - -Square with a side length of 30 Km
 - -10 UAVs per run
 - -Fixed wing aircraft
 - -UAVs start at the middle of south edge

Scenarios

- Requirements
 - -UAVs are autonomous
 - -Regularly scans
 - -Randomness element in mobility models
 - -Data must be returned to the C&C
 - -Lost or unaivalable UAVs is not important
 - -Communication bandwidth is limited

Properties

- Min an Max air speed and can't changed direction in an instant
- No collisions thanks to altitude adjustements
- Flight altitude: 3500 meters (11 000 feet)
- Flight speed: 150 km/h (41.7 m/s, 81.0 knots)
- Turn radius: 500 meters
- Infinite bandwidth between 2 UAV's within 8000m
- Scan zone 2000x1000 m

Random Mobility Model

Table 1. UAV random action table.

	Probability of action		
Last action	Turn left	Straight	Turn right
		ahead	
Straight ahead	10%	80%	10%
Turn left	70%	30%	0%
Turn right	0%	30%	70%

- Pheromone models
 - -One pheromone map per UAV
 - -Marks the areas when they have been scanned
 - Broadcast regularly a local area pheromone map

• Pheromone models

Figure 2. Pheromone search pattern

Table 2. UAV pheromone action table.

Probability of action				
Turn left	Straight ahead	Turn right		
(Total - Left) /	(Total – Center) /	(Total - Right) /		
(2 * Total)	(2 * Total)	(2 * Total)		

- Scan coverage
- Scan charateristic
- Communication

Scan Coverage

- Theory: 900km² in 18 min
- Prevision : 40 min because of several turnings
- Rapidity of scanning: 0,083 km²/s per UAV

Figure 3. Random mobility coverage

Figure 4. Pheromone mobility coverage.

Scan characteristic

Both models manage quite well to avoid rescanning a recently scanned area

Table 3. Never scanned area

	Max	Median	Min
Random	16.2%	3.2%	0.5%
Pheromone	0.21%	0.03%	0.01%

Pheromone > Random

Figure 5. Random mobility

Figure 6. Pheromone mobility

Communication

- Low constant connectivity
- More UAVs for a fully network connected

Figure 7. Random. Number of UAVs in contact with C&C (max, average, min).

Figure 8. Pheromone. Number of UAVs in contact with C&C (max, average, min).

Conclusion

➤ Pheromone model good scan bad connectivity