

UNIVERSIDADE ESTADUAL DO CEARÁ CENTRO DE CIÊNCIAS E TECNOLOGIA CURSO DE GRADUAÇÃO EM MATEMÁTICA

CÍCERO MOREIRA HITZSCHKY FILHO

UM ESTUDO INTRODUTÓRIO DA TEORIA DA MEDIDA E INTEGRAÇÃO DE LEBESGUE

CÍCERO MOREIRA HITZSCHKY FILHO

UM ESTUDO INTRODUTÓRIO DA TEORIA DA MEDIDA E INTEGRAÇÃO DE LEBESGUE

Trabalho de Conclusão de Curso apresentado ao Curso de Graduação em Matemática do Centro de Ciências e Tecnologia da Universidade Estadual do Ceará, como requisito parcial à obtenção do grau de Licenciatura em Matemática.

Orientador: Prof. Dr. Claudemir Silvino Leandro

CÍCERO MOREIRA HITZSCHKY FILHO

UM ESTUDO INTRODUTÓRIO DA TEORIA DA MEDIDA E INTEGRAÇÃO DE LEBESGUE

Trabalho de Conclusão de Curso apresentado ao Curso de Graduação em Matemática do Centro de Ciências e Tecnologia da Universidade Estadual do Ceará, como requisito parcial à obtenção do grau de Licenciatura em Matemática.

Aprovada em: 11/12/2023

BANCA EXAMINADORA

Prof. Dr. Claudemir Silvino Leandro (Orientador) Universidade Estadual do Ceará – UECE

Prof. Dr. Tiago Caúla Ribeiro Universidade Estadual do Ceará – UECE

Prof. Dr. Flávio Alexandre Falcão Nascimento Universidade Estadual do Ceará – UECE

Aos meus amados pais que foram a base sólida que me sustentou e as asas que me impulsionaram. Com amor e gratidão, dedico este trabalho a vocês, cujo apoio incondicional e compreensão transcendem qualquer barreira acadêmica.

AGRADECIMENTOS

A Deus, por todas as bênçãos que me concedeu nesta vida.

Aos meus professores de ensino médio Ellen Lima e Renato Castro pelo incentivo aos estudos.

Aos professores Leo Ivo da Silva Souza e Jose Eduardo Moura Garcez pelos conselhos e motivações acadêmicas.

Ao Prof. Dr. Nícolas Alcântara de Andrade por me apresentar esta maravilhosa teoria no curso de probabilidade e pelas sugestões neste trabalho.

Ao Prof. Dr. Claudemir Silvino Leandro pela exímia orientação deste trabalho.

A Banca Examinadora pelas dicas e sugestões do aprimoramento deste trabalho.

Ao Programa de Monitoria Acadêmica (PROMAC), que me possibilitou ser monitor da disciplina de Cálculo Diferencial e Integral I e III dando a oportunidade de aprofundar meus conhecimentos matemático e docênte.

Aos colegas da Universidade Estadual do Ceará (UECE) pelo companheirismo e ajuda nesta etapa da minha vida.

"Demore o tempo que for para decidir o que você quer da vida, e depois que decidir não recue ante nenhum pretexto, porque o mundo tentará te dissuadir."

(Friedrich Nietzsche)

RESUMO

A teoria da medida e da integração é um tema importante para o avanço nos estudos de matemática. Esta foi desenvolvida, inicialmente, por Bernhard Riemann (1826-1866), Georg Cantor (1845-1918) e Emile Borel (1871-1956) sendo generalizada posteriormente por Henri Lebesgue (1875-1941). A priori, seu desenvolvimento tinha o intuito de generalizar a integral de Riemann corrigindo o defeito de só valer para casos excepcionais com poucos pontos de descontinuidade. Nos dias atuais, possui aplicações nas mais diversas áreas tais como: Análise Funcional, Probabilidade, Estatística, Equações Diferenciais Parciais, dentre outras. Embora a teoria da integração de Lebesgue seja extremamente importante na atualidade não é comumente apresentada para alunos de graduação em ciências exatas. Dito isso, este trabalho visa abordar a teoria da medida e da integração de Lebesgue de maneira introdutória para alunos de graduação em ciências da natureza buscando expôr alguns dos resultados mais relevantes e elementares. Isso é feito utilizando uma metodologia de natureza básica com abordagem quantitativa através de uma revisão bibliográfica. Por meio dela, também conseguimos alcançar os seguintes objetivos específicos: definir a base do estudo da teoria da medida por meio dos espaços mensuráveis, conhecer a teoria da medida de maneira generalizada e descrever o processo da construção da integral de Lebesgue mediante o avanço da teoria da medida. Por fim, é sugerido uma proposta de exposição do tema abordado neste trabalho para alunos de graduação em ciências exatas.

Palavras-chave: teoria da medida; teoria da integração de Lebesgue; ensino de cálculo.

ABSTRACT

The theory of measure and integration is a crucial topic for advancing studies in mathematics.

Initially developed by Bernhard Riemann (1826-1866), Georg Cantor (1845-1918), and Emile

Borel (1871-1956), it was later generalized by Henri Lebesgue (1875-1941). Originally, its

development aimed to generalize Riemann's integral, addressing the limitation of only being

applicable to exceptional cases with few points of discontinuity. Nowadays, it finds applications

in diverse areas such as Functional Analysis, Probability, Statistics, Partial Differential Equati-

ons, among others. Despite its contemporary significance, Lebesgue integration theory is not

commonly introduced to undergraduate students in exact sciences. This work seeks to provide

an introductory overview of the theory of measure and Lebesgue integration for undergraduate

students in natural sciences, highlighting some of the most relevant and fundamental results. This

is achieved using a basic methodology with a quantitative approach through a literature review.

Through this review, we also attain the following specific objectives: define the foundational

aspects of measure theory through measurable spaces, comprehend the generalized theory of

measure, and elucidate the construction process of Lebesgue's integral through the progression

of measure theory. Finally, a proposal is suggested for presenting the topic covered in this work

to undergraduate students in exact sciences.

Keywords: measure theory; Lebesgue integration theory; calculus teaching.

LISTA DE ILUSTRAÇÕES

Figura 1 – Gráfico da função $g = \sum_{j=1}^4 a_j \chi_{E_j} \dots \dots \dots \dots \dots \dots \dots \dots$	11
Figura 2 – Área delimitada pelo gráfico da função $g = \sum_{i=1}^4 a_i \chi_{E_i} \dots \dots$	11
Figura 3 – Gráfico da função $f(x) = \operatorname{sen}(x) + 3$	16
Figura 4 – Integral da função ϕ_2	16
Figura 5 – Integral da função ϕ_4	16
Figura 6 – Integral da função ϕ_8	17
Figura 7 – Integral da função f	17
Figura 8 – Gráfico da função ϕ_1	18
Figura 9 – Gráfico da função ϕ_2	19

SUMÁRIO

1	TEORIA DA INTEGRAÇÃO	10
1.1	A Integral de Funções Simples	10
1.2	A Integral de Funções Não-Negativas	15
1.3	Funções Integráveis	25
	REFERÊNCIAS	30
	ÍNDICE	31

1 TEORIA DA INTEGRAÇÃO

Uma vez que já foram bem explorados os espaços mensuráveis e os espaços de medida, vamos abordar, nesta seção, a teoria da integração de Lebesgue. Iniciaremos por simples e iremos estendendo os conceitos aos poucos. Quando não houver menção contrária, (X,\mathscr{C},μ) será um espaço de medida. O conjunto de todas as funções $f:X\to \overline{\mathbb{R}}$ mensuráveis será simplesmente denotado por $M=M(X,\mathscr{C})$ e o conjunto das funções não negativas, que também são \mathscr{C} -mensuráveis será denotado por $M^+=M^+(X,\mathscr{C})$.

1.1 A Integral de Funções Simples

Iniciaremos tratando de casos particulares de integral e depois vamos expandindo. Com isso, iniciaremos entendendo a integral para funções simples.

Definição 1.1.1 Uma função real é dita **simples** quando possui apenas uma quantidade finita de valores.

Representaremos esse tipo de função de forma padronizada em todo o texto. Faremos isso por meio da seguinte forma

$$\varphi = \sum_{j=1}^{n} a_j \chi_{E_j}$$

onde $a_j \in \mathbb{R}$ e χ_{E_j} é a função característica do conjunto $E_j \in \mathscr{C}$. Nessa representação estamos supondo que cada $a_j \neq a_i$ quando $j \neq i$ e que $\bigcup_{j=1}^n E_j = X$, onde a sequência finita de conjuntos (E_n) formam uma partição do conjunto X.

Exemplo 1.1.2 Seja $g:[0,4] \to \mathbb{R}$ pondo

$$g(x) = \begin{cases} 1, & \text{se } x \in [0, 1) \\ 3, & \text{se } x \in [1, 2) \\ 4, & \text{se } x \in [2, 3) \\ 2, & \text{se } x \in [3, 4] \end{cases}$$

Claramente, g é uma função simples. Basta denotar $E_1 = [0,1)$, $E_2 = [1,2)$, $E_3 = [2,3)$, $E_4 = [3,4]$ e $a_i = i$ para $1 \le i \le 4$. Com isso, vemos que para $x \in [0,4]$

$$g(x) = 1 \cdot \chi_{[0,1)}(x) + 3 \cdot \chi_{[1,2)}(x) + 4 \cdot \chi_{[2,3)}(x) + 2 \cdot \chi_{[3,4]}(x)$$

Concluindo que
$$g = \sum_{j=1}^{4} a_j \chi_{E_j}$$
.

Figura 1 – Gráfico da função $g = \sum_{j=1}^4 a_j \chi_{E_j}$

Fonte: Elaborado pelo autor

O gráfico da função *g* é representado conforme a figura 1. Pensando na ideia de integral de Riemann apresentada em um primeiro curso de Cálculo Diferencial e Integral, podemos calcular a integral de *g* somando as áreas dos retângulos conforme ilustra a figura 2.

Figura 2 – Área delimitada pelo gráfico da função $g = \sum_{j=1}^4 a_j \chi_{E_j}$

Fonte: Elaborado pelo autor

Num olhar de medida vemos, basicamente, que o cartesiano entre o intervalo $(0, a_j)$ e o intervalo E_j correspondente onde j é o número de partições do domínio formam a área de retângulos 1 . A soma das áreas do retângulo, resultam na integral da função g. Com essa perspectiva intuitiva definimos a Integral de Lebesgue para funções simples:

Definição 1.1.3 Se φ é uma função simples de $M^+(X,\mathscr{C})$ com a representação $\varphi = \sum_{i=1}^n a_i \chi_{E_i}$,

Lembre que uma área é uma medida conforme o ??.

então a integral de Lebesgue da função φ com respeito à medida μ é o valor real estendido $\int \varphi d\mu = \sum_{j=1}^n a_j \mu(E_j).$

Para a Definição 1.1.3 empregamos a convenção que $0 \cdot (+\infty) = 0$. Isso é feito para garantir que a função identicamente nula tenha integral nula independentemente da medida ser finita ou não. A seguir, veremos propriedades elementares sobre a integral de funções simples.

Teorema 1.1.4 Se φ e ψ são funções simples do espaço $M^+(X,\mathscr{C})$ e $c \geq 0$ é uma constante real, então $\int c \varphi d\mu = c \int \varphi d\mu$ e $\int (\varphi + \psi) d\mu = \int \varphi d\mu + \int \psi d\mu$. Demonstração.

Representaremos as funções simples não negativas por $\varphi = \sum_{j=1}^{n} a_j \chi_{E_j}$ e $\psi =$

 $\sum_{k=1}^{m} b_k \chi_{F_k}$. Primeiro, mostraremos que vale a multiplicação por escalar. Assim, caso c = 0, o resultado é verdadeiro trivialmente. Supondo c > 0, temos que

$$\int c\varphi \ d\mu = \sum_{j=1}^n ca_j \mu(E_j) = c \sum_{j=1}^n a_j \mu(E_j) = c \int \varphi \ d\mu.$$

Com isso, concluímos que $\int c \varphi \ d\mu = c \int \varphi \ d\mu$.

Agora provaremos que a integral da soma é igual a soma das integrais. Assim, dadas as representações padrão de φ e ψ , vemos que

$$\varphi + \psi = \sum_{j=1}^{n} a_j \chi_{E_j} + \sum_{k=1}^{m} b_k \chi_{F_k}$$
 (1)

Como $\{E_n\}$ e $\{F_k\}$ são ambas partições de X, pela $\ref{eq:compart}$, temos que $E_j = \bigcup_{k=1}^m (E_j \cap F_k)$ e $F_k = \bigcup_{j=1}^n (E_j \cap F_k)$. Logo, $\chi_{E_j} = \sum_{k=1}^m \chi_{(E_j \cap F_k)}$ e $\chi_{F_k} = \sum_{j=1}^n \chi_{(E_j \cap F_k)}$. Substituindo na equação 1, obtemos

$$\begin{split} \sum_{j=1}^{n} a_{j} \chi_{E_{j}} + \sum_{k=1}^{m} b_{k} \chi_{F_{k}} &= \sum_{j=1}^{n} a_{j} \left(\sum_{k=1}^{m} \chi_{(E_{j} \cap F_{k})} \right) + \sum_{k=1}^{m} b_{k} \left(\sum_{j=1}^{n} \chi_{(E_{j} \cap F_{k})} \right) \\ &= \sum_{j=1}^{n} \sum_{k=1}^{m} a_{j} \chi_{(E_{j} \cap F_{k})} + \sum_{k=1}^{m} \sum_{j=1}^{n} b_{k} \chi_{(E_{j} \cap F_{k})} \\ &= \sum_{j=1}^{n} \sum_{k=1}^{m} \left(a_{j} \chi_{(E_{j} \cap F_{k})} + b_{k} \chi_{(E_{j} \cap F_{k})} \right) \\ &= \sum_{j=1}^{n} \sum_{k=1}^{m} (a_{j} + b_{k}) \chi_{(E_{j} \cap F_{k})}. \end{split}$$

Com isso, concluímos que

$$\varphi + \psi = \sum_{i=1}^n \sum_{k=1}^m (a_j + b_k) \chi_{E_j \cap F_k}.$$

Entretanto, essa representação não é, necessariamente, a representação padrão apresentada na Definição 1.1.3, pois nada garante, previamente, que $a_j + b_k$ sejam distintos para $j \in I_n$ e $k \in I_m$. Com isso, sejam c_h , com $h \in I_p$, números distintos do conjunto $\{a_j + b_k; \ (j,k) \in I_n \times I_m\}$ e G_h a união de todos os conjuntos $E_j \cap F_k \neq \emptyset$ tal que $a_j + b_k = c_h$. Assim,

$$G_h = \bigcup_{\substack{j,k \ a_j + b_k = c_h}} E_j \cap F_k$$

A notação utilizada acima indica que a soma é realizada sobre todos os índices j e k tais que $a_j + b_k = c_h$. Como $(E_j \cap F_k) \cap (E_l \cap F_p) = \emptyset$ para todo $j \neq l$ e $k \neq p$, temos que

$$\mu(G_h) = \mu\left(igcup_{\substack{j,k \ a_j+b_k=c_h}} E_j \cap F_k
ight) = \sum_{\substack{j,k \ a_j+b_k=c_h}} \mu(E_j \cap F_k)$$

Desta forma, conseguimos encontrar uma representação padrão que é dada por $\varphi + \psi = \sum_{h=1}^{p} c_h \chi_{G_h}$. Logo, temos que

$$\int (\varphi + \psi) d\mu = \sum_{h=1}^{p} c_h \mu(G_h) = \sum_{h=1}^{p} \sum_{\substack{j,k \\ a_j + b_k = c_h}} c_h \mu(E_j \cap F_k)$$

$$= \sum_{h=1}^{p} \sum_{\substack{j,k \\ a_j + b_k = c_h}} (a_j + b_k) \mu(E_j \cap F_k)$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{m} (a_j + b_k) \mu(E_j \cap F_k)$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{m} a_j \mu(E_j \cap F_k) + \sum_{j=1}^{n} \sum_{k=1}^{m} b_k \mu(E_j \cap F_k)$$

Pela ??, temos $\mu(E_j) = \sum_{k=1}^m \mu(E_j \cap F_k)$ e $\mu(F_k) = \sum_{j=1}^n \mu(E_j \cap F_k)$. Empregando estes resultados ao que foi desenvolvido anteriormente obtemos

$$\sum_{j=1}^{n} \sum_{k=1}^{m} a_{j} \mu(E_{j} \cap F_{k}) + \sum_{j=1}^{n} \sum_{k=1}^{m} b_{k} \mu(E_{j} \cap F_{k}) = \sum_{j=1}^{n} a_{j} \mu(E_{j}) + \sum_{k=1}^{m} b_{k} \mu(F_{k}) = \int \varphi d\mu + \int \psi d\mu$$

Segue que $\int (\varphi + \psi) d\mu = \int \varphi d\mu + \int \psi d\mu$ como queríamos.

Lema 1.1.5 Se μ é uma medida sobre X e fixamos um elemento A de \mathscr{C} , então a função λ definida por $\lambda(E) = \mu(A \cap E)$, $\forall E \in \mathscr{C}$ também é uma medida sobre X (BARTLE, 1995).

Demonstração.

Basta mostrar que λ satisfaz as condições impostas na $\ref{eq:condition}$. Com isso, se $E=\varnothing$, então

$$\lambda(\varnothing) = \mu(A \cap \varnothing) = \mu(\varnothing) = 0$$

Como A e E são elementos de \mathscr{C} , então $A\cap E$ também está em \mathscr{C} . Assim, por μ ser uma medida, temos que $\mu(A\cap E)\geq 0$ acarretando que $\lambda(E)\geq 0$. Por fim, tomemos uma sequência de elementos disjuntos (E_n) em \mathscr{C} . Se $A\cap E_j\neq\varnothing$ para algum $j\in\mathbb{N}$ não há o que fazer, pois $(A\cap E_j)\subset E_j\in\mathscr{C}$. Caso $A\cap E_j=\varnothing$ para todo $j\in\mathbb{N}$, então $\left(\bigcup_{n\in\mathbb{N}}E_n\right)\cap A=\varnothing$. Com isso,

$$\left(\bigcup_{n\in\mathbb{N}} E_n\right) \cap A = (E_1 \cup E_2 \cup \dots \cup E_n \cup \dots) \cap A$$

$$= (E_1 \cap A) \cup (E_2 \cap A) \cup \dots \cup (E_n \cap A) \cup \dots$$

$$= \bigcup_{n\in\mathbb{N}} (E_n \cap A)$$

Segue então que

$$\lambda\left(\bigcup_{n\in\mathbb{N}}E_n\right)=\mu\left(\left(\bigcup_{n\in\mathbb{N}}E_n\right)\cap A\right)=\mu\left(\bigcup_{n\in\mathbb{N}}(E_n\cap A)\right)=\sum_{j=1}^\infty\mu(E_j\cap A)=\sum_{j=1}^\infty\lambda(E_j)$$

Desta forma, concluímos que a função λ acima definida é uma medida.

Lema 1.1.6 Se $\mu_1,...,\mu_n$ são medidas sobre X e $a_1,...,a_n$ são números reais não negativos, então a função λ definida por $\lambda(E) = \sum_{j=1}^n a_j \mu_j(E), \forall E \in \mathscr{C}$ também é uma medida sobre X (BARTLE, 1995).

Demonstração.

Como μ_j é uma medida para todo $j \in I_n$ e cada a_j é maior ou igual à zero, temos que cada $a_j\mu_j(E) \geq 0$. Desta maneira, $\lambda(E) = \sum_{j=1}^n a_j\mu_j(E) \geq 0$. Além disso, podemos observar que $\lambda(\varnothing) = \sum_{j=1}^n a_j\mu_j(\varnothing) = 0$. Tomemos uma sequência disjunta (E_p) de elementos de $\mathscr C$. Logo,

$$\lambda\left(\bigcup_{p\in\mathbb{N}}E_p\right) = \sum_{j=1}^n a_j\mu_j\left(\bigcup_{p\in\mathbb{N}}E_p\right) = \sum_{j=1}^n a_j\left(\sum_{p=1}^\infty \mu_j(E_p)\right) = \sum_{p=1}^\infty \left(\sum_{j=1}^n a_j\mu_j(E_p)\right) = \sum_{p=1}^\infty \lambda(E_p)$$

Como λ satisfaz todas as condições impostas na ?? concluímos que λ é uma medida.

Teorema 1.1.7 Se ϕ é uma função simples com a representação padrão dada por $\phi = \sum_{j=1}^{n} a_j \chi_{E_j}$, então a função $\lambda : \mathscr{C} \to \overline{\mathbb{R}}$ definida por $\lambda(E) = \int \varphi \chi_E \, d\mu$ para todo $E \in \mathscr{C}$ é uma medida sobre \mathscr{C} (BARTLE, 1995).

Demonstração.

De maneira análoga ao Teorema 1.1.4 podemos verificar que $\varphi \chi_E = \sum_{j=1}^n a_j \chi_{E_j \cap E}$. Assim, temos que

$$\lambda(E) = \int \varphi \chi_E d\mu = \int \left(\sum_{j=1}^n a_j \chi_{E_j \cap E}\right) d\mu = \sum_{j=1}^n \left(a_j \int \chi_{E_j \cap E} d\mu\right) = \sum_{j=1}^n a_j \mu(E_j \cap E)$$

Pelo Lema 1.1.5 a aplicação que leva $E \to \mu(E_j \cap E)$ é uma medida para cada $j \in I_n$. Disso, concluímos que λ pode ser expressada por uma combinação linear de medidas sobre \mathscr{C} . Segue, pelo Lema 1.1.6, que λ também é uma medida sobre \mathscr{C} .

1.2 A Integral de Funções Não-Negativas

Até aqui trabalhos apenas com integrais de funções simples. Nesta seção, desejamos expandir o conceito de integral para uma função qualquer não negativa. Vale ressaltar que a perspectiva que traremos aqui é a de Lebesgue. Com o intuito de enfatizar a diferença da construção, vamos lembrar da construção feita por Riemann. Considere a função $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = \operatorname{sen}(x) + 3$. Claramente não é uma função simples, pois não possui uma quantidade finita de valores. Nosso objetivo, agora, é tentar calcular a integral dessa função com o que construímos até aqui. Para facilitar, observe o gráfico dessa função no intervalo [0,4] apresentado na figura 3.

Tomemos a função simples

$$\phi_2(x) = \sum_{i=1}^2 a_i \chi_{E_i}$$

onde $a_1 = f(0), a_2 = f(2); E_1 = [0,2)$ e $E_2 = [2,4]$. Assim, ao calcularmos sua integral, vemos não há preenchimento total da área delimitada pelo gráfico da função f, mas se aproxima com um erro conforme a figura 4.

Vamos escolher outra função simples ϕ_4 tal que $\phi_4 = \sum_{j=1}^4 a_j \chi_{E_j}$ onde $E_1 = [0,1), E_2 = [1,2), E_3 = [2,3), E_1 = [3,4], a_1 = f(0), a_2 = f(1), a_3 = f(3)$ e $a_4 = f(4)$. Desta forma, com o dobro de valores da função ϕ_2 escolhida anteriormente podemos observar que a integral de ϕ_4 ,

Figura 3 – Gráfico da função f(x) = sen(x) + 3

Fonte: Elaborado pelo autor

Figura 4 – Integral da função ϕ_2

Fonte: Elaborado pelo autor

Figura 5 – Integral da função ϕ_4

Fonte: Elaborado pelo autor

exibida na figura 5, mais se aproxima da integral da função f. Para finalizarmos esta ideia, dobremos a quantidade de valores e escolhamos outra função $\phi_8 = \sum_{j=1}^8 a_j \chi_{E_j}$ onde $E_1 = [0, 0.5), E_2 =$

[0.5,1), $E_3 = [1,1.5)$, $E_4 = [1.5,2)$, $E_5 = [2,2.5)$, $E_6 = [2.5,3)$, $E_7 = [3,2.5)$, $E_8 = [3.5,4]$ e $a_1 = f(0)$, $a_2 = f(0.5)$, $a_3 = f(1)$, $a_4 = f(1.5)$, $a_5 = f(2.5)$, $a_6 = f(3)$, $a_7 = f(3.5)$ e $a_8 = f(4)$. A integral da função ϕ_8 está representada na figura figura 6. Com isso, observamos

 $f(x) = \operatorname{sen} x + 3$ x -1 -1 1 2 3 4 x

Figura 6 – Integral da função ϕ_8

Fonte: Elaborado pelo autor

que quanto mais valores a função simples possui, mais ela se aproxima da função f. Assim, a área da função simples será próxima o suficiente da área delimitada pelo gráfico da função f. Ou seja, se tomarmos o supremo dessas funções obteremos a integral exposta na figura 7.

Figura 7 – Integral da função f

Fonte: Elaborado pelo autor

Agora, tomemos como exemplo a função $f(x)=x^2$, mas não invés de particionarmos o domínio da função, a função simples é construída conforme uma partição feita na imagem.

Assim, tomemos uma função ϕ_1 pondo

$$\phi_1(x) = \begin{cases} 0, & \text{se } 0 \le f(x) < 2^{-1} \\ 2^{-1}, & \text{se } 2^{-1} \le f(x) < 2 \cdot 2^{-1} \\ 1, & \text{se } f(x) \ge 1 \end{cases}$$

Note que a função ϕ_1 é simples, mas seus valores são escolhidos por meio da partição da imagem conforme explicitado na imagem da figura 8. Vamos aproximar a função f agora pela função

Figura 8 – Gráfico da função ϕ_1

Fonte: Elaborado pelo autor

simples ϕ_2 construída da seguinte forma:

$$\phi_2(x) = \begin{cases} 0, & \text{se } 0 \le f(x) < 2^{-2} \\ 2^{-2}, & \text{se } 2^{-2} \le f(x) < 2 \cdot 2^{-2} \\ 2 \cdot 2^{-2}, & \text{se } 2 \cdot 2^{-2} \le f(x) < 3 \cdot 2^{-2} \\ 3 \cdot 2^{-2}, & \text{se } 3 \cdot 2^{-2} \le f(x) < 4 \cdot 2^{-2} \\ 4 \cdot 2^{-2}, & \text{se } 4 \cdot 2^{-2} \le f(x) < 5 \cdot 2^{-2} \\ 5 \cdot 2^{-2}, & \text{se } 5 \cdot 2^{-2} \le f(x) < 6 \cdot 2^{-2} \\ 6 \cdot 2^{-2}, & \text{se } 6 \cdot 2^{-2} \le f(x) < 7 \cdot 2^{-2} \\ 7 \cdot 2^{-2}, & \text{se } 7 \cdot 2^{-2} \le f(x) < 8 \cdot 2^{-2} \\ 2, & \text{se } f(x) \ge 2 \end{cases}$$

Assim, na figura 9 está a comparação com o gráfico da função $f(x) = x^2$.

Dito isto, adiante formalizaremos que dada uma função $f \in M(X, \mathcal{C})$, então ela pode ser aproximada por uma sequência de funções simples conforme o teorema adiante.

Figura 9 – Gráfico da função ϕ_2

Fonte: Elaborado pelo autor

Teorema 1.2.1 (Aproximação Via Funções Simples) Se f é uma função não negativa em $M(X,\mathscr{C})$, então existe uma sequência de funções (φ_n) tal que $\phi \in M(X,\mathscr{C}), \forall n \in \mathbb{N}$ de forma que

- (i) Cada φ_n é uma função simples, isto é, possui apenas uma quantidade finita de valores reais;
- (ii) $0 \le \varphi_n(x) \le f(x)$ para todo $x \in X$ e $n \in \mathbb{N}$;
- (iii) $\lim_{n\to\infty} \varphi_n(x) = f(x)$ para todo $x \in X$.

Demonstração.

Vamos mostrar a existência das sequência por construção. Essa construção será realizada por meio de partições da imagem da seguinte maneira:

$$\varphi_n(x) = \begin{cases}
0, & \text{se } 0 \le f(x) < 2^{-n} \\
2^{-n}, & \text{se } 2^{-n} \le f(x) < 2 \cdot 2^{-n} \\
2 \cdot 2^{-n}, & \text{se } 2 \cdot 2^{-n} \le f(x) < 3 \cdot 2^{-n} \\
\vdots & \vdots \\
k \cdot 2^{-n}, & \text{se } k \cdot 2^{-n} \le f(x) < (k+1) \cdot 2^{-n} \\
\vdots & \vdots \\
n, & \text{se } f(x) \ge n
\end{cases}$$

Simplificadamente podemos escrever

$$\varphi_n(x) = \begin{cases} k \cdot 2^{-n}, & \text{se } k \cdot 2^{-n} \le f(x) < (k+1) \cdot 2^{-n}, \text{ para } k = 0, 1, 2, \dots, n2^n - 1 \\ n, & \text{se } f(x) \ge n \end{cases}$$

Com isso, podemos ver que φ_n é uma função simples e que $0 \le \varphi_n(x) \le f(x)$. Além disso, φ_n é uma mensurável para todo $n \in \mathbb{N}$, pois trata-se de uma sequência de um funções simples. Observe que dado $n \in \mathbb{N}$ temos que $\varphi_n(x) = k2^{-n}$ desde que $k2^{-n} \le f(x) < (k+1)2^{-n}$. Como $k2^{-n} + 2^{-n}$, percebemos que

$$k2^{-n} \le f(x) < (k+1)2^{-n} \Rightarrow k2^{-n} \le f(x) < k2^{-n} + 2^{-n}$$

$$\Rightarrow \phi_n(x) \le f(x) < \phi_n(x) + 2^{-n}$$

$$\Rightarrow \phi_n(x) - 2^{-n} \le f(x) < \phi_n(x) + 2^{-n}$$

$$\Rightarrow |f(x) - \phi_n(x)| < 2^{-n}.$$

Como
$$\lim_{n\to+\infty} 2^{-n} = 0$$
. Segue que $\lim_{n\to+\infty} \phi_n(x) = f(x)$.

Esse teorema nos mostra que dada qualquer função não negativa mensurável, podemos aproximar seus valores por funções simples de maneira que o limite dessa sequência de funções simples convergem para a função que tomamos inicialmente. Diante disso, nada mais natural que definir a integral de Lebesgue para funções não negativas quaisquer da maneira que segue

Definição 1.2.2 Se $f \in M^+(X, \mathcal{C})$, nós definimos a integral de f com respeito à medida μ , sendo o valor real estendido

$$\int f d\mu = \sup \int \varphi d\mu$$

Onde o supremo é sobre todas as funções simples $\varphi \in M(X, \mathscr{C})$ tal que $0 \le \varphi \le f(x)$ para todo $x \in X$ (BARTLE, 1995).

Definição 1.2.3 Se $f \in M(X, \mathcal{C})$ e $E \in \mathcal{C}$, então $f\chi_E \in M(X, \mathcal{C})$, definimos a integral de f sobre o conjunto E com respeito à medida μ como sendo o número real estendido

$$\int_E f d\mu = \int f \chi_E d\mu.$$

Agora desejamos realizar operações aritméticas com essa expansão da definição, conforme fizemos para a integral de funções simples. Para tal, precisamos mostrar a monoticidade da integral de funções não negativas tanto à respeito de uma outra função integral quanto à um conjunto. Isso faremos por meio dos lemas a seguir

Lema 1.2.4 Se f e g são elementos de $M^+(X,\mathscr{C})$ com $f \leq g$, então $\int f d\mu \leq \int g d\mu$. *Demonstração*.

Suponha que $\int f d\mu = \sup \varphi d\mu$ e $\int g d\mu = \sup \psi d\mu$ onde ψ, φ são funções simples não negativas tais que $\varphi \leq f$ e $\psi \leq g$. Sejam A e B os conjuntos das integrais de todas as funções simples que satisfazem $0 \leq \varphi \leq f$ e $0 \leq \psi \leq g$, respectivamente. Isto é,

$$A = \left\{ \sum_{j=1}^{n} a_{j} \mu(E_{j}); \ \phi = \sum_{j=1}^{n} a_{j} \chi_{E_{j}} \ e \ 0 \le \varphi(x) \le f(x) \right\}$$

e

$$B = \left\{ \sum_{k=1}^{m} b_k \mu(F_k); \ \phi = \sum_{k=1}^{m} b_k \chi_{F_k} \ e \ 0 \le \psi(x) \le g(x) \right\}$$

Por hipótese, $f \leq g$. Logo, $0 \leq \varphi(x) \leq f(x) \leq g(x)$ para todo $x \in X$ acarretando que $A \subset B$. Desta forma, $\sup_{A} \sum_{j=1}^{n} a_{j} \mu(E_{j}) \leq \sup_{B} \sum_{k=1}^{m} b_{k} \mu(F_{k})$. Portanto, $\int f d\mu \leq \int g d\mu$.

Lema 1.2.5 Se f é um elemento de $M^+(X,\mathscr{C})$ e $E,F\in\mathscr{C}$ com $E\subseteq F$, então

$$\int_{E} f d\mu \leq \int_{E} f d\mu.$$

Demonstração.

Como $E \subseteq F$, então $\chi_E \le \chi_F$. Assim, $f\chi_E \le f\chi_F$. Segue, pelo lema anterior que,

$$\int_{E} f d\mu = \int f \chi_{E} d\mu \leq \int f \chi_{F} d\mu = \int_{F} f d\mu.$$

Portanto, $\int_E f d\mu \le \int_E f d\mu$.

Teorema 1.2.6 (Teorema da Convergência Monótona) Se (f_n) é uma sequência monótona crescente de funções mensuráveis, não negativas, que converge para uma função f, então $\int f d\mu = \lim_{n \to \infty} \int f_n d\mu$

Demonstração.

Pelo ??, se temos uma sequência de funções mensuráveis que converge para uma função f, então f também é mensurável. Além disso, como (f_n) é crescente, então $f_n \leq f \ \forall n \in \mathbb{N}$. Seque, pelo Lema 1.2.4 que $\int f_n \ d\mu \leq \int f \ d\mu$ Para todo $n \in \mathbb{N}$. Desta maneira,

$$\lim_{n\to+\infty}\int f_n d\mu \leq \int f d\mu.$$

Por outro lado, sejam $\alpha \in \mathbb{R}$ tal que $0 < \alpha < 1$ e φ uma função simples mensurável tal que $0 \le \varphi \le f$. Tomando $n \in \mathbb{N}$ tais que $f_n(x) \ge \alpha \varphi(x)$, construa os conjuntos

$$A_n = \{x \in X; f_n(x) \ge \alpha \varphi(x)\}.$$

Com isso, podemos observar que cada $A_n \subset X$, $A_n \subseteq A_{n+1}$ e que $X = \bigcup_{n \in \mathbb{N}} A_n$. Desta maneira, usando o Lema 1.2.5 e Lema 1.2.4 temos que

$$\int_{A_n} \alpha \varphi d\mu \le \int_{A_n} f_n d\mu \le \int f_n d\mu. \tag{2}$$

Como (A_n) é uma sequência monótona crescente que a união é igual ao conjunto X, observamos que, pela $\ref{eq:conjunt}$ que para uma medida μ vale

$$\mu(X) = \mu\left(\bigcup_{n\in\mathbb{N}} A_n\right) = \lim_{n\to+\infty} \mu(A_n)$$

Só que pelo Teorema 1.1.7 $\int \varphi \chi_E d\mu$ é uma medida. Desta forma,

$$\lim_{n\to+\infty}\int_{A_n}\varphi d\mu=\lim_{n\to+\infty}\int\varphi\chi_{A_n}d\mu=\int\varphi\chi_Xd\mu=\int\varphi d\mu.$$

Substituindo isso na equação 2 obtemos

$$\alpha \int \varphi d\mu \leq \lim_{n \to +\infty} \int f_n d\mu$$
.

Como $\alpha \in (0,1)$ segue que

$$\int \varphi d\mu \leq \lim_{n \to +\infty} \int f_n d\mu.$$

Finalmente, por φ ser uma função não negativa simples arbitrária que satisfaz $0 \le \varphi \le f$, obtemos

$$\int f d\mu = \sup_{\varphi} \int \varphi d\mu \le \lim_{n \to +\infty} \int f_n d\mu.$$

Disso tudo,

$$\int f d\mu \leq \lim_{n \to +\infty} \int f_n d\mu \leq \int f d\mu.$$

Portanto, $\lim_{n\to+\infty}\int f_n d\mu = \int f d\mu$ como desejávamos.

O teorema anterior nos permite mostrar as operações aritméticas para integral de Lebesgue para funções não negativas quaisquer como apresentaremos adiante.

Corolário 1.2.7 Se $f \in M^+(X, \mathcal{C})$ e $c \geq 0$, então $cf \in M^+(X, \mathcal{C})$ e vale $\int cf d\mu = c \int f d\mu$. *Demonstração*.

Se o número real for zero, então o resultado sai de forma imediata. Suponha que c > 0. Assim, pelo Teorema 1.2.1, existe uma sequência de funções simples $\varphi_n \in M^+$ para todo $n \in \mathbb{N}$ que converge para a função f. Logo, a sequência $(c\varphi_n)$ converge para cf. Desta forma, ao aplicarmos o Teorema 1.1.4 e o Teorema 1.2.6, obtemos

$$\int cf d\mu = \lim_{n \to +\infty} \int c \varphi_n d\mu = \lim_{n \to +\infty} \left(c \cdot \int \varphi_n d\mu \right) = c \cdot \left(\lim_{n \to +\infty} \int \varphi_n d\mu \right) = c \int f d\mu.$$

Como queríamos demonstrar.

Demonstração.

Corolário 1.2.8 Se f e g são funções não negativas e $\mathscr C$ -mensuráveis, então a soma f+g também é uma função $\mathscr C$ -mensurável e vale $\int (f+g)d\mu = \int fd\mu + \int gd\mu$ (BARTLE, 1995). Demonstração.

Analogamente ao corolário anterior, tomemos duas sequências de funções simples (φ_n) e (ψ_n) ambas monótonas e crescentes tal que convergem, respectivamente, para f e g. Segue, pelo Teorema 1.1.4 e o Teorema 1.2.6 que

$$\int (f+g)d\mu = \lim_{n \to +\infty} \int (\varphi_n + \psi_n)d\mu = \lim_{n \to +\infty} \int \varphi_n d\mu + \lim_{n \to +\infty} \int \psi_n d\mu = \int f d\mu + \int g d\mu.$$

Note que os resultados tratam apenas de funções monótonas e nem sempre teremos essa condição "perfeita" para nossas sequências. Assim, o próximo resultado nos apresenta uma maneira de trabalhar com sequências que não são monótonas.

Teorema 1.2.9 (Lema de Fatou) Se (f_n) é uma sequência tal que $f_n \in M^+(X, \mathcal{C})$ para qualquer que seja $n \in \mathbb{N}$, então $\int (\liminf f_n) d\mu \leq \liminf \int f_n d\mu$ (BARTLE, 1995).

Tome a sequência $g_m = \inf_{n \in \mathbb{N}} \{f_m, f_{m+1}, ...\}$. Assim, enquanto $m \le n$ nós temos $g_m \le f_n$. Neste caso,

$$\int g_m d\mu \leq \int f_n d\mu.$$

Como (g_m) é crescente e converge para $\liminf f_n$, nós temos que

$$\int g_m d\mu \leq \liminf \int f_n d\mu.$$

Logo, pelo Teorema da Convergência Uniforme,

$$\int (\liminf f_n) d\mu = \lim \int g_m d\mu \leq \liminf \int f_n d\mu.$$

Corolário 1.2.10 Se $f \in M^+(X, \mathscr{C})$ e λ é definida sobre \mathscr{C} pondo $\lambda(E) = \int_E f d\mu$, então λ é uma medida.

Demonstração.

Uma vez que $f \geq 0$, obtemos que $\lambda(E) \geq 0$, por definição. Caso $E = \emptyset$, então $f\chi_E \equiv 0$ acarretando que $\lambda(\emptyset) = 0$. Por fim, tome (E_n) uma sequência disjunta do conjunto $\mathscr C$ e defina f_n pondo

$$f_n = \sum_{k=1}^n f \chi_{E_k}$$

Segue do Corolário 1.2.8 que

$$\int f_n d\mu = \int \left(\sum_{k=1}^n f \chi_{E_k}\right) d\mu = \sum_{k=1}^n \left(\int f \chi_{E_k}\right) d\mu = \sum_{k=1}^n \left(\int_{E_k} f\right) d\mu = \sum_{k=1}^n \lambda(E_k)$$

Corolário 1.2.11 Suponha que $f \in M^+(X, \mathcal{C})$. Então f(x) = 0 em quase todo ponto de X se, e somente se $\int f d\mu = 0$.

Demonstração.

Suponha f(x)=0 μ -q.t.p. Assim, se $E=\{x\in X: f(x)>0\}$, então $\mu(E)=0$. Tome a sequência $f_n=n\chi_E$. Dessa forma $f\leq \liminf_{n\in\mathbb{N}}f_n$. Segue, pelo Lema de Fatou que

$$0 \le \int f d\mu \le \int (\liminf f_n) d\mu \le \liminf \int f_n d\mu = 0.$$

Ou seja, $\int f d\mu = 0$. Reciprocamente, suponha que $\int f d\mu = 0$. Tome uma sequência de conjuntos $E_n = \left\{ x \in X. f(x) > \frac{1}{n} \right\}$ tal que $f \geq \left(\frac{1}{n}\right) \chi_{E_n}$. Assim, $\int f d\mu \geq \int \left(\frac{1}{n}\right) \chi_{E_n} d\mu$. Só que $\int \left(\frac{1}{n}\right) \chi_{E_n} d\mu = \frac{1}{n} \mu(E_n) \geq 0$. Segue que

$$0 = \int f d\mu \ge \frac{1}{n} \mu(E_n) \ge 0$$

Ou seja $\mu(E_n) = 0$ para todo $n \in \mathbb{N}$. Assim, todo E_n tem medida nula. Segue, pela ?? que o conjunto $\{x \in X; f(x) > 0\}$ tem medida nula, pois $\{x \in X; f(x) > 0\} = \bigcup_{n \in \mathbb{N}} E_n$.

Finalizaremos esta subseção apresentando um corolário do Teorema da Convergência Monótona que enfatiza claramente a diferença entre a Integral de Riemann e a Integral de Lebesgue.

Corolário 1.2.12 Se (g_n) é uma sequência de funções em $M^+(X, \mathcal{C})$, então

$$\int \left(\sum_{n=1}^{\infty} g_n\right) d\mu = \sum_{n=1}^{\infty} \left(\int g_n d\mu\right).$$

Demonstração.

O resultado sai imediatamente da aplicação do Teorema da Convergência Monótona considerando a sequência de funções $f_n \in M^+(X, \mathscr{C}) \ \forall \ n \in \mathbb{N}$ tais que $f_n = g_1 + \cdots + g_n$.

Pode ser que, até agora, tudo que definimos e discorremos não apresente diferença relevante da teoria da Integral de Riemann, a menos de sua construção. Para que não haja dúvidas que a teoria da integração de Lebesgue generaliza a teoria da integração Riemann, vamos mostrar um contraexemplo do Corolário 1.2.12 para a integral de Riemann. Seja $C = \mathbb{Q} \cap [0,1]$ e defina a sequência de funções $f_n : [0,1] \to \mathbb{R}$ definida por $f_n(x) = \chi_C$ para todo $n \in \mathbb{N}$. Desta forma, como C é enumerável, segue que $\int_0^1 f_n(x) dx = \int_0^1 \chi_C(x) dx = 0$. Com isso, $\sum_{n=1}^\infty \int_0^1 f_n(x) dx = 0$. Por outro lado, temos que $\sum_{n=1}^\infty f_n(x)$ não é integrável segundo Rienmann.

1.3 Funções Integráveis

Definimos anteriormente apenas integrais de funções não negativas com respeito à uma medida μ . Nesta estenderemos, finalmente, este conceito para uma função qualquer de valores reais estendidos. Com isso,

Definição 1.3.1 Seja $L=(X,\mathcal{C},\mu)$ a coleção de funções integráveis que consiste de todas as funções reais \mathcal{C} -mensuráveis $f:X\to\mathbb{R}$ tais que as funções f^+ e f^- são ambas integrais finitas com respeito à medida μ . Neste caso, nós definimos a integral de f com respeito à medida μ como $\int f d\mu = \int f^+ d\mu - \int f^- d\mu$ Se, por ventura, E for um elemento da σ -álgebra \mathcal{C} , então definimos $\int_E f d\mu = \int_E f^+ d\mu - \int_E f^- d\mu$ (BARTLE, 1995).

Isso é válido pelo seguinte teorema: "Para que uma função limitada $f:[a,b] \to \mathbb{R}$ seja integrável, é necessário e suficiente que o conjunto **D** dos seus pontos de descontinuidade tenha medida nula" (LIMA, 2019, p.344).

Teorema 1.3.2 Uma função mensurável f é um elemento de L se, e somente se, |f| é um elemento de L (BARTLE, 1995).

Demonstração.

Suponha que $f \in L$. Por definição, isso ocorre se, e somente se, as partes positiva e negativa de f são ambas elementos de M^+ e suas, respectivas integrais, são finitas. Devemos mostrar que

$$\int |f|d\mu = \int |f|^+ d\mu - \int |f|^- d\mu$$

Pela ??, $|f|^-=0$, $\log o \int |f|^- d\mu=0$. Pelo ?? temos que $|f|^+=|f|=f^++f^-$. Assim, $\int |f|^+ d\mu=\int (f^++f^-)d\mu$. Como $f^++f^-\in M^+(X,\mathscr{C})$, segue pelo corolário Corolário 1.2.8 que $\int (f^++f^-)d\mu=\int f^+ d\mu+\int f^- d\mu$, ou seja $\int |f|^+ d\mu$ é finita. Desta forma,

$$\int |f| d\mu = \int (f^+ + f^-) d\mu - 0 = \int |f|^+ d\mu - \int |f|^- d\mu$$

Logo, $|f| \in L$. A recíproca é totalmente análoga.

Corolário 1.3.3 Se $|f| \in L$, então $\left| \int f d\mu \right| \le \int |f| d\mu$ (BARTLE, 1995).

Demonstração.

Se $|f|\in L$, então $f\in L$ pelo teorema anterior. Logo $\int f^+d\mu$ e $\int f^-d\mu$ são finitas e não negativas. Desta forma

$$\left| \int f d\mu \right| = \left| \int f^+ d\mu - \int f^- d\mu \right| = \left| \int f^+ d\mu + \left(- \int f^- d\mu \right) \right|$$

$$\leq \left| \int f^+ d\mu \right| + \left| \left(- \int f^- d\mu \right) \right|$$

$$= \int f^+ d\mu + \int f^- d\mu$$

$$= \int (f^+ + f^-) d\mu$$

$$= \int |f| d\mu.$$

Portanto, $\left| \int f d\mu \right| \leq \int |f| d\mu$.

Corolário 1.3.4 Se f é mensurável, g é integrável e temos que $|f(x)| \le |g(x)|$ para todo x, então f é integrável e $\int |f| d\mu \le \int |g| d\mu$ (BARTLE, 1995).

Demonstração.

Se f é mensurável, então para uma medida μ definida sobre (X,\mathscr{C}) , tem-se que $f \in L$. Assim, pelo teorema Teorema 1.3.2 tem-se que |f| é integrável. Como |f| e |g| são função não negativas, segue pelo lema Lema 1.2.4 que $\int |f| d\mu \leq \int |g| d\mu$.

Teorema 1.3.5 Se $f,g \in L$ e $\alpha \in \mathbb{R}$. Então

- (a) A multiplicação por escalar $\alpha f \in L$ com $\int \alpha f d\mu = \alpha \int f d\mu$;
- (b) A soma $(f+g) \in L$ com $\int (f+g)d\mu = \int fd\mu + \int gd\mu$. Demonstração.
 - (a) Se $\alpha=0$, então $\alpha f=0$ em todo ponto de seu domínio. Assim, $\int \alpha f d\mu=0=\alpha\int f d\mu$. Se $\alpha>0$, então

$$lpha \int f d\mu = lpha \left(\int f^+ d\mu - \int f^- d\mu \right)$$

$$= lpha \int f^+ d\mu - lpha \int f^- d\mu$$

$$= \int lpha f^+ d\mu - \int lpha f^- d\mu.$$

Perceba que $\alpha f^+ = (\alpha f)^+$ e $\alpha f^- = (\alpha f)^-$. Disso,

$$\int lpha f^+ d\mu - \int lpha f^- d\mu = \int (lpha f)^+ d\mu - \int (lpha f)^- d\mu = \int lpha f d\mu.$$

Neste caso, $\alpha f \in L$ e temos $\alpha \int f d\mu = \int \alpha f d\mu$. O caso $\alpha < 0$ é totalmente análogo.

(b) Se $f,g \in L$, então $|f|,|g| \in L$ pelo teorema Teorema 1.3.2. Como $|f+g| \le |f| + |g|$, segue que $f+g \in L$ pelo corolário Corolário 1.3.4. Além disso, pelo lema ??, temos $f=f^+-f^-$ e $g=g^+-g^-$. Somando membro a membro, temos

$$f+g=f^+-f^-+g^+-g^-=f^++g^+-(f^-+g^-)$$

Como $(f^+ + g^+), (f^- + g^-)$ são funções integráveis não negativas, temos que

$$\int (f+g)d\mu = \int [f^{+} + g^{+} - (f^{-} + g^{-})]d\mu$$

Pelo corolário Corolário 1.2.8

$$\begin{split} \int [f^{+} + g^{+} - (f^{-} + g^{-})] d\mu &= \int (f^{+} + g^{+}) d\mu - \int (f^{-} + g^{-}) d\mu \\ &= \int f^{+} d\mu + \int g^{+} d\mu - \int f^{-} d\mu - \int g^{-} d\mu \\ &= \int f^{+} d\mu - \int f^{-} d\mu + \int g^{+} d\mu - \int g^{-} d\mu \\ &= \int f d\mu + \int g d\mu. \end{split}$$

Portanto,
$$\int (f+g)d\mu = \int fd\mu + \int gd\mu$$
.

Teorema 1.3.6 (Teorema da Convergência Dominada de Lebesgue) Seja (f_n) uma sequência de funções integráveis que converge em quase todo ponto para uma uma função real mensurável f. Se existir uma função integrável g tal que $|f_n| \leq g$ para todo $n \in \mathbb{N}$, então f é integrável e $\int f d\mu = \lim_{n \to +\infty} \int f_n d\mu \text{ (BARTLE, 1995)}.$ Demonstração.

Se (f_n) converge em quase todo ponto para a função f e $|f_n| \le g$ para cada $n \in \mathbb{N}$, então $f \le g$ em quase todo ponto. Como g é integrável, segue pelo Corolário 1.3.4 que f é integrável. Além disso, note que para todo $n \in \mathbb{N}$, temos

$$|f_n| \le g \Leftrightarrow f_n \le g \text{ ou } f_n \ge -g \Leftrightarrow g - f_n \ge 0 \text{ ou } g + f_n \ge 0$$

Caso tenhamos $g+f_n\geq 0$ podemos utilizar o Lema de Fatou e o Teorema 1.3.5 de forma que

$$\int g d\mu + \int f d\mu = \int (g+f) d\mu$$

$$\leq \liminf \int (g+f_n) d\mu$$

$$= \liminf \left(\int g d\mu + \int f_n d\mu \right)$$

$$= \int g d\mu + \liminf \int f_n d\mu$$

isso acarreta que

$$\int g d\mu + \int f d\mu \leq \int g d\mu + \liminf \int f_n d\mu.$$

Logo, $\int f d\mu \leq \liminf \int f_n d\mu$.

Caso ocorra $g - f_n \ge 0$, aplicamos novamente o Lema de Fatou e o teorema Teorema 1.3.5. Assim,

$$\int g d\mu - \int f d\mu = \int (g - f) d\mu \leq \liminf \int (g - f_n) d\mu \leq \int g d\mu + \liminf \int (-f_n) d\mu.$$

Lembre que $\liminf \int (-f_n)d\mu = -\limsup \int f_n d\mu$. Com isso,

$$\int g d\mu - \int f d\mu \le \int g d\mu + \liminf \int (-f_n) d\mu = \int g d\mu - \limsup \int f_n d\mu.$$

Desta forma, $\int f d\mu \ge \limsup \int f_n d\mu$. Disso tudo, observamos que

$$\limsup \int f_n d\mu \leq \int f d\mu \leq \liminf \int f_n d\mu.$$

Portanto, $\lim \int f_n d\mu = \int f d\mu$.

REFERÊNCIAS

BARTLE, R. G. **The Elements of Integration and Lebesgue Measure**. 1. ed. New York: Wiley-Interscience, 1995.

LIMA, E. L. Um Curso de Análise. 15. ed. Rio de Janeiro: IMPA, 2019. v. 1.

ÍNDICE

Função

simples, 10

Integral de Lebesgue

para funções simples, 12