Home Assignment 1

André Hedesand

October 2018

Foreword

If there is something fishy about my calculations, you can probably and hopefully find something that looks somewhat like it in the Collection of Formulas (CoF).

Solutions

1. (a) "Recursive systems are never stable"

False. Recursive systems are IIR systems e.g.

$$y(n) = \frac{1}{2}y(n-1) + x(n)$$

If we by stability mean BIBO stability we can simply prove that the system above is stable. The Z-transform of the system above is

$$Y(z) = \frac{1}{2}z^{-1}Y(z) + X(z) \Rightarrow Y(z)(1 - \frac{1}{2}z^{-1}) = X(z) \Rightarrow$$

$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-1}}X(z) = H(z)X(z) \Rightarrow H(z) = \frac{1}{1 - \frac{1}{2}z^{-1}} \longmapsto$$

$$h(n) = (\frac{1}{2})^n u(n)$$

By definition the system above is stable if $\sum_{n=0}^{\infty} |(\frac{1}{2})^n| < \infty$. This is true because $(\frac{1}{2})^n$ goes to zero when n goes to ∞ , which means that the sum converges.

(b) "A convolution of two sequences in the time domain corresponds to a multiplication of the Z transforms of the signals."

True. If we look at the definitions (from the CoF) and the statement:

$$\begin{array}{ll} \text{Statement:} & a(n) = b(n) * c(n) \longmapsto A(z) = B(z)C(z) \\ \text{Defenitions:} & b(n) * c(n) = \sum_k b(k)c(n-k) \\ & A(z) = \sum_n a(n)z^{-n} \end{array}$$

Using the definitions to get confirm the statement:

$$A(z) = \sum_{n} a(n)z^{-n} = \sum_{n} \left[\sum_{k} b(k)c(n-k) \right] z^{-n} = \sum_{k} b(k) \left[\sum_{n} c(n-k) \right] z^{-n} z^{k} z^{-k}$$
$$= \sum_{k} b(k)z^{-k} \sum_{n} c(n-k)z^{-(n-k)} = B(z)C(z)$$

(c) "An FIR filter is always stable."

True. A FIR filter is always BIBO stable and can be discribed with a difference equation:

$$y(n) = \sum_{k=0}^{N} a_k x(n-k)$$

The system is always stable as every $a_n < \infty$ and $N < \infty$

(d) "A first order IIR filter is stable iff the absolute value of the value of the factor in front of y(n-1) is greater than 1."

False. The opposite is true. We can prove this by contradiction: If we assume the statement above is true we get the following:

$$y(n) = Ay(n-1) + x(n), A > 1$$
 and
$$\sum_{k} |h(k)| < \infty$$

Here A denotes the "factor in front of y(n-1)".

Lets do the same steps as in 1a:

$$y(n) = Ay(n-1) + x(n) \Rightarrow h(n) = A^n u(n)$$

At last we get

$$\sum_{k} |h(k)| < \infty \Leftrightarrow \sum_{n=0}^{\infty} |A^{n}| < \infty \Leftrightarrow \infty < \infty$$

Here we get a contradiction which means the inital statement is false and the opposite is true. In other words; **False.**

- (e) "An IIR-filter is never a linear-phase system." **True.**It is well known that only FIR systems have the ability to have linear phase. For a system to have linear phase it needs a symmetric impulse response, an attribute a IIR cannot posses.
- 2. "A discrete-time system is described by the difference equation:"

$$y(n) - y(n-1) + \frac{2}{9}y(n-2) = x(n)$$

(a) "Determine the system function H(z) and the impulse response h(n) for the system and draw a pole-zero plot. Is the system stable?"

$$y(n) - y(n-1) + \frac{2}{9}y(n-2) = x(n) \longmapsto Y(z) - Y(z)z^{-1} + \frac{2}{9}Y(z)z^{-2} = X(z) \Rightarrow$$
$$Y(z)(1 - z^{1} + \frac{2}{9}z^{-2}) = X(z) \Rightarrow Y(z) = \frac{1}{1 - z^{-1} + \frac{2}{9}z^{-2}}X(z) = H(z)X(z)$$

Now we have the system function. To get the impulse response we just need to inverse transform the system function.

$$H(z) = \frac{1}{1 - z^{-1} + \frac{2}{9}z^{-2}} = \frac{z^2}{z^2 - z + \frac{2}{9}} = \frac{z^2}{(z - \frac{2}{3})(z - \frac{1}{3})} = 1 + \frac{z - \frac{2}{9}}{(z - \frac{2}{3})(z - \frac{1}{3})} = 1$$

$$\{PF\} 1 + \frac{\frac{4}{3}}{z - \frac{2}{9}} - \frac{\frac{1}{3}}{z - \frac{1}{9}} = 1 + z^{-1} \frac{\frac{4}{3}}{1 - \frac{2}{9}z^{-1}} - z^{-1} \frac{\frac{1}{3}}{1 - \frac{1}{9}z^{-1}}$$

Figure 1: Poles and zeros of the system

$$\longmapsto h(n) = \delta(n) + \frac{4}{3} \left(\frac{2}{3}\right)^{n-1} u(n-1) - \frac{1}{3} \left(\frac{1}{3}\right)^{n-1} u(n-1) = \delta(n) + \left(2\left(\frac{2}{3}\right)^n - \left(\frac{1}{3}\right)^n\right) u(n-1)$$

We can see that the system is stable in 2 ways: On the impulse response, where the potents of n is < 1 and in the graph, where the poles are inside the unit circle.

(b) "The following signal is the input signal to the system"

$$x(n) = 3(\frac{1}{2})^n u(n)$$

"where u(n) is the step function. Solve the difference equation by using the Z-transform, that is, determine a closed form expression for y(n)."

We know by definition that the output from the system is equal to the convolution of the input and the impulse response.

$$y(n) = h(n) * x(n) \Longleftrightarrow Y(z) = H(z)X(z)$$

When Y(z) is calculated, we've got our answer. $X(z)=3\frac{1}{1-\frac{1}{\pi}z^{-1}}$

$$H(z)X(z) = \frac{1}{(1 - \frac{1}{3}z^{-1})(1 - \frac{2}{3}z^{-1})} * 3\frac{1}{1 - \frac{1}{2}z^{-1}} = \{PF\} \left(-\frac{8}{5}\right) \frac{1}{1 - \frac{1}{3}z^{-1}} + \frac{22}{5} \frac{1}{1 - \frac{2}{3}z^{-1}} - \frac{14}{5} \frac{1}{1 - \frac{1}{2}z^{-1}} \longmapsto \\ \longmapsto y(n) = \left(\frac{22}{5} \left(\frac{2}{3}\right)^n - \frac{8}{5} \left(\frac{1}{3}\right)^n - \frac{14}{5} \left(\frac{1}{2}\right)^n\right) u(n)$$

We can se that the system is stable as every base in the potents of n are less than 1.

- 3. "The figures below show four pole-zero plots and four impulse responses."
 - (a) "Pair the correct plot A, B, C, D with the corresponding impulse response 1, 2, 3, 4."

(b) "Pair the correct plot A, B, C, D with the corresponding statement I, II, III, IV."