

NUMBER

NUMBER

PHYSICS 9702/22

Paper 2 AS Structured Questions

October/November 2011

1 hour

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
Total	

This document consists of 12 printed pages.

 $G = 6.67 \times 10^{-11} \,\mathrm{N}\,\mathrm{m}^2\,\mathrm{kg}^{-2}$

 $g = 9.81 \text{ m s}^{-2}$

Data

gravitational constant,

acceleration of free fall,

speed of light in free space,	$c = 3.00 \times 10^8 \mathrm{m s^{-1}}$
opoda di ligiti ili lido opado,	0 = 0.00 × 10 · mg
permeability of free space,	$\mu_0 = 4\pi \times 10^{-7} \mathrm{Hm^{-1}}$
permittivity of free space,	$\varepsilon_0 = 8.85 \times 10^{-12} \mathrm{F}\mathrm{m}^{-1}$
elementary charge,	$e = 1.60 \times 10^{-19} \mathrm{C}$
the Planck constant,	$h = 6.63 \times 10^{-34} \mathrm{Js}$
unified atomic mass constant,	$u = 1.66 \times 10^{-27} \text{ kg}$
rest mass of electron,	$m_{\rm e} = 9.11 \times 10^{-31} \rm kg$
rest mass of proton,	$m_{\rm p} = 1.67 \times 10^{-27} \rm kg$
molar gas constant,	$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
the Avogadro constant,	$N_{\rm A} = 6.02 \times 10^{23} {\rm mol}^{-1}$
the Boltzmann constant,	$k = 1.38 \times 10^{-23} \text{J K}^{-1}$

© UCLES 2011 9702/22/O/N/11

Formulae

uniformly accelerated motion,	$s = ut + \frac{1}{2}at^2$
	$v^2 = u^2 + 2as$

work done on/by a gas,
$$W = p\Delta V$$

gravitational potential,
$$\phi = -\frac{Gm}{r}$$

hydrostatic pressure,
$$p = \rho gh$$

pressure of an ideal gas,
$$p = \frac{1}{3} \frac{Nm}{V} < c^2 >$$

simple harmonic motion,
$$a = -\omega^2 x$$

velocity of particle in s.h.m.,
$$v = v_0 \cos \omega t$$

$$v = \pm \omega \sqrt{(x_0^2 - x^2)}$$

electric potential,
$$V = \frac{Q}{4\pi\varepsilon_0 r}$$

capacitors in series,
$$1/C = 1/C_1 + 1/C_2 + \dots$$

capacitors in parallel,
$$C = C_1 + C_2 + \dots$$

energy of charged capacitor,
$$W = \frac{1}{2}QV$$

resistors in series,
$$R = R_1 + R_2 + \dots$$

resistors in parallel,
$$1/R = 1/R_1 + 1/R_2 + \dots$$

alternating current/voltage,
$$x = x_0 \sin \omega t$$

radioactive decay,
$$x = x_0 \exp(-\lambda t)$$

decay constant,
$$\lambda = \frac{0.693}{t_{\scriptscriptstyle 1}}$$

Answer all the questions in the spaces provided.

For Examiner's Use

1 The variation with time *t* of the displacement s for a car is shown in Fig. 1.1.

Fig. 1.1

(a) Determine the magnitude of the average velocity between the times 5.0 s and 35.0 s.

(b) On Fig. 1.2, sketch the variation with time t of the velocity v for the car.

Fig. 1.2

[4]

© UCLES 2011

(a)	Defi	ine
	(i)	force,
		[1]
	(ii)	work done.
/ b \	Λ fo	[1]
(b)		Figure F acts on a mass m along a straight line for a distance s . The acceleration of the s is s and the speed changes from an initial speed s to a final speed s .
	(i)	State the work <i>W</i> done by <i>F</i> .
		[1]
	(ii)	Use your answer in (i) and an equation of motion to show that kinetic energy of a mass can be given by the expression
		kinetic energy = $\frac{1}{2}$ × mass × (speed) ² .
		[3]
(c)		esultant force of $3800\mathrm{N}$ causes a car of mass of $1500\mathrm{kg}$ to accelerate from an initial ed of $15\mathrm{ms^{-1}}$ to a final speed of $30\mathrm{ms^{-1}}$.
	(i)	Calculate the distance moved by the car during this acceleration.
		distance = m [2]
	(ii)	The same force is used to change the speed of the car from $30\mathrm{ms^{-1}}$ to $45\mathrm{ms^{-1}}$. Explain why the distance moved is not the same as that calculated in (i).

6 3 (a) Define (i) stress, (ii) strain. (b) Explain the term elastic limit. (c) Explain the term *ultimate tensile stress*. (d) (i) A ductile material in the form of a wire is stretched up to its breaking point. On Fig. 3.1, sketch the variation with extension *x* of the stretching force *F*.

Fig. 3.1

[2]

X

For Examiner's Use

© UCLES 2011 9702/22/O/N/11

0 0

	(ii)	On Fig. 3.2, sketch the variation with x of F for a brittle material up to its breaking point.	For Examiner's Use
		F A	USE
		Fig. 3.2	
		[1]	
(e)	(i)	Explain the features of the graphs in (d) that show the characteristics of ductile and brittle materials.	
		[2]	
	(ii)	The force <i>F</i> is removed from the materials in (d) just before the breaking point is reached. Describe the subsequent change in the extension for	
		1. the ductile material,	
		[1]	
		2. the brittle material.	
		[1]	

For Examiner's Use

				[1]
	o horizontal metal plates a kV is applied across the pla			potential difference of
+1.	5 kV		metal p	olate
		o Oil	drop	20 mm
	0 V		metal p	olate
		Fig. 4.1		
A c	harged oil drop of mass 5.0) × 10 ^{–15} kg is held s	tationary by the	e electric field.
(i)	On Fig. 4.1, draw lines to	represent the electr	ic field between	the plates. [2]
(ii)	Calculate the electric field	•		
	e	electric field strength	=	V m ⁻¹ [1]
(iii)	Calculate the charge on the	ne drop.		
	•	·		
		charge	=	C [4]
	The potential of the upper	plate is increased.	Describe and e	xplain the subsequent
(iv)				
(iv)	motion of the drop.			
(iv)				

© UCLES 2011 9702/22/O/N/11

5 A potentiometer circuit that is used as a means of comparing potential differences is shown in Fig. 5.1.

For Examiner's Use

Fig. 5.1

A cell of e.m.f. E_1 and internal resistance r_1 is connected in series with a resistor of resistance R_1 and a uniform metal wire of total resistance R_2 .

A second cell of e.m.f. E_2 and internal resistance r_2 is connected in series with a sensitive ammeter and is then connected across the wire at BJ. The connection at J is halfway along the wire. The current directions are shown on Fig. 5.1.

	(i)	between the currents I_1 , I_2 and I_3 ,
		[1]
	(ii)	between E_1 , R_1 , R_2 , r_1 , I_1 and I_2 in loop HBJFGH,
		[1]
	(iii)	between E_1 , E_2 , r_1 , r_2 , R_1 , R_2 , I_1 and I_3 in the loop HBCDJFGH.
		[2]
(b)		connection at J is moved along the wire. Explain why the reading on the ammeter nges.
		[0]

(a)	State the principle of superposition.
	[2]
	(a)

(b) An arrangement that can be used to determine the speed of sound in air is shown in Fig. 6.1.

Fig. 6.1

Sound waves of constant frequency are emitted from the loudspeaker L and are reflected from a point S on a hard surface.

The loudspeaker is moved away from S until a stationary wave is produced.

Explain how sound waves from L give rise to a stationary wave between L and S.

(c) A microphone connected to a cathode ray oscilloscope (c.r.o.) is positioned between L and S as shown in Fig. 6.1. The trace obtained on the c.r.o. is shown in Fig. 6.2.

Fig. 6.2

The time-base setting on the c.r.o. is $0.10\,\mathrm{ms\,cm^{-1}}$.

© UCLES 2011 9702/22/O/N/11

For Examiner's Use

(i)	Calculate the frequency of the sound wave.	For Examiner's Use
	frequency = Hz [2]	
(ii)	The microphone is now moved towards S along the line LS. When the microphone is moved 6.7 cm, the trace seen on the c.r.o. varies from a maximum amplitude to a minimum and then back to a maximum.	
	1. Use the properties of stationary waves to explain these changes in amplitude.	
	[1]	
	2. Calculate the speed of sound.	
	speed of sound = ms ⁻¹ [3]	
	Please turn over for Question 7.	

(ii) spontaneous, [1] (iii) random. [1] On Fig. 7.1, complete the charge and mass of α-particles, β-particles and γ-radiation. Give example speeds of α-particles and γ-radiation emitted by a laboratory source.		•	imental observations th	at SHOW Tadioactive C	decay is	
(ii) random.	(i	i) spontaneo	us,			
(ii) random.						
(ii) random.						[1]
On Fig. 7.1, complete the charge and mass of α -particles, β -particles and γ -radiation. Give example speeds of α -particles and γ -radiation emitted by a laboratory source.						
On Fig. 7.1, complete the charge and mass of α -particles, β -particles and γ -radiation. Give example speeds of α -particles and γ -radiation emitted by a laboratory source. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(ii	i) random.				
On Fig. 7.1, complete the charge and mass of α -particles, β -particles and γ -radiation. Give example speeds of α -particles and γ -radiation emitted by a laboratory source. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
On Fig. 7.1, complete the charge and mass of α -particles, β -particles and γ -radiation. Give example speeds of α -particles and γ -radiation emitted by a laboratory source. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						[1]
Give example speeds of α -particles and γ -radiation emitted by a laboratory source. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
charge 0 mass 4u speed up to 0.99c Fig. 7.1						
mass 4u up to 0.99 <i>c</i> Fig. 7.1	G	sive example s				.
speed up to 0.99 <i>c</i> Fig. 7.1	G	sive example s				.
Fig. 7.1	G				γ-radiation	C.
	G	charge	α-particle		γ-radiation	.
	G	charge mass	α-particle	β-particle	γ-radiation	C.
	G	charge mass	α-particle 4u	β-particle up to 0.99c	γ-radiation	C .
	G	charge mass	α-particle 4u	β-particle up to 0.99c	γ-radiation	[3]
		charge mass speed	α-particle 4u	β-particle up to 0.99c . 7.1	γ-radiation 0	[3]
		charge mass speed	α-particle 4u Fig	β-particle up to 0.99c . 7.1	γ-radiation 0	[3]
		charge mass speed	α-particle 4u Fig	β-particle up to 0.99c . 7.1	γ-radiation 0	[3]
		charge mass speed	α-particle 4u Fig	β-particle up to 0.99c . 7.1	γ-radiation 0	[3]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.