1

Ánh xa tuyến tính

Câu 1: Ánh xa f(x, y, z) = (-z, y, -x) có phải là ánh xa tuyến tính không?

Câu 2: Tồn tại hay không ánh xạ tuyến tính $f: \mathbb{R}^4 \to \mathbb{R}^4$ thỏa mãn:

$$f(0,1,1) = (3,1,-2);$$
 $f(1,0,1) = (4,-1,1);$ $f(1,1,0) = (-3,2,1);$ $f(1,1,1) = (3,4,2)$

Câu 3: Cho ánh xa tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$

$$x(x_1, x_2, x_3) \to f(x) = (3x_1 + x_2 - x_3, 2x_1 + x_3)$$

- a) Tìm cơ sở và số chiều của Imf = span(f(E)), E là cơ sở chính tắc
- b) Tìm cơ sở và số chiều của Kerf

Câu 4: Cho ánh xạ tuyến tính $f: \mathbb{R}^4 \to \mathbb{R}^3$ xác định bởi f(x,y,z,t) = (x-y+z+t,x+2z-t,x+y+3z-3t)

- a) Tìm cơ sở và số chiều của Im f
- b) Tìm cơ sở và số chiều của $\operatorname{Ker} f$

Câu 5: Cho ánh xạ tuyến tính $f: \mathbb{R}^2 \to \mathbb{R}^3$. Cơ sở của \mathbb{R}^2 là $B = \{u_1 = (1,2); u_2 = (3,5)\}. f(u_1) = (1,1,2); f(u_2) = (4,2,1)$

- a) Cho $u_3 = (4, 5)$. Tim $f(u_3)$?
- b) Xác định biểu thức của f

Câu 6: Cho ánh x $\mathbf{a} \mathbb{R}^2 \to \mathbb{R}^2$

$$f(x,y) = (x+y, x-y)$$

Cho 2 cơ sở: E là cơ sở chính tắc và B=(v1=(1,1),v2=(1,0)). Tìm ma trận của ánh xạ tuyến tính với cơ sở B

Câu 7: Cho ánh xạ tuyến tính $f: \mathbb{R}^2 \to \mathbb{R}^2$, ma trận của f đối với cơ sở $F = (v_1 = (3; 1), v_2 = (1; 2))$

là
$$\begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$$
. Biểu thức của f là?

Câu 8: Cho ánh xạ $T: \mathbb{R}^2 \to \mathbb{R}$ thỏa mãn T(1,1) = 3 và T(0,1) = -2.

- a) Tìm công thức của T
- b) Tîm T(2, 8)
- c) Hỏi T có phải là đơn cấu không?

Câu 9: Cho ánh xạ $f: P_2[x] \rightarrow P_2[x]$

$$a_0 + a_1 x + a_2 x^2 \rightarrow (a_0 - 3a_1 + a_2) + (2a_0 + a_1 - 2a_2)x + (3a_0 - 2a_1 - a_2)x^2$$

Và vecto $p=1-mx+2x^2$. Xác định m để $p\in Imf=span(f(P))$

Câu 10: Cho ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$. Xác định m là f là một phép đẳng cấu với

$$f(x_1, x_2, x_3) = (x_1 - 2x_2 + x_3, x_1 + x_2 - x_3, mx_1 - x_2 + x_3)$$

Giá trị riêng, vécto riêng, chéo hoá ma trận

Câu 1. Tìm giá trị riêng và véc tơ riêng của ma trận $A=\begin{bmatrix}3&-1\\-3&-5\end{bmatrix}$

Câu 2. Chéo hoá ma trận
$$A = \begin{bmatrix} 3 & -1 \\ -3 & -5 \end{bmatrix}$$

Câu3: Tính
$$A^{2020}$$
 với $A=\begin{bmatrix} 3 & -1 \\ -3 & -5 \end{bmatrix}$

Câu 4:Cho toán tử tuyến tính
$$f: P_2[x] \to P_2[x]$$
 có ma trận $A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 1 & 3 \\ 1 & 4 & 5 \end{bmatrix}$ với cơ sở $B = (1; x; x^2)$

Tìm 1 cơ sở của $P_2[x]$ để ma trận của f có dạng chéo

Câu 5: Cho $f:V\to V$ là biến đổi tuyến tính. Giả sử $f^2=f*f:V\to V$ có giá trị riêng λ^2 . Chứng minh một trong 2 giá trị λ hoặc $-\lambda$ là giá trị riêng của f.

Ánh xạ tuyến tính + Chéo hóa ma trận

Câu 1: Cho ánh xạ $f: \mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi: $\forall u = (x; y; z) \in \mathbb{R}^3, f(u) = (x + z; y; x + z).$

- a) Chứng minh rằng f là ánh xạ tuyến tính.
- b) Tính hạng của f.
- c) Xác định ma trận A của ánh xạ tuyến tính f đối với cơ sở chính tắc của \mathbb{R}^3
- d) Ma trận A có chéo hóa được không? Nếu có hãy tìm ma trận P làm chéo hóa A

Câu 2: Tìm cơ sở của \mathbb{R}^3 để ma trận của $f: \mathbb{R}^3 \to \mathbb{R}^3$ có dạng chéo trong đó $f(x_1, x_2, x_3) = (2x_1 + x_2 + x_3, x_1 + 2x_2 + x_3, x_1 + x_2 + 2x_3)$

Câu 3: Ánh xạ tuyến tính: $f: \mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi $f(x_1, x_2, x_3) = (x_1 + x_2 + x_3, 2x_2 + x_3, 2x_2 + 3x_3)$ có chéo hóa được k?

Câu 4: Cho ánh xạ $T: \mathbb{R}^n \to \mathbb{R}^n$. Giả sử tồn tại ma trận A_{nxn} của ánh xạ T đối với 1 cặp cơ sở nào đó. Hỏi, nếu ma trận A có n giá trị riêng phân biệt thì A có chéo hóa được không?

Câu 5: Cho λ là trị riêng của toán tử tuyến tính T. Chứng minh rằng, với mọi đa thức f(t), ta đều có $f(\lambda)$ là trị riêng của f(T).

CLB HỐ TRỢ HỌC TẬP