1	2	3	4	5	Calificación

Nombre y apellido:	
N° de libreta:	

Cálculo Avanzado

Segundo parcial - 12/07/13

- 1) Sean X;Y;Z espacios métricos, X compacto. Sea $f:X\to Y$ una función continua y sobreyectiva, y sea $g:Y\to Z$ una función. Probar que si $g\circ f:X\to Z$ es continua, entonces g es continua.
- 2) a) Sea E un espacio normado sobre \mathbb{R} y sea $H \subset E$ un hiperplano. Probar que si H es separable, entonces E es separable.
 - b) Sea c el espacio de sucesiones convergentes de números reales, provisto de la norma infinito. ¿Es c un espacio métrico separable?
- 3) Sean E y F espacios normados y sea $T: E \to F$ un operador lineal con la siguiente propiedad: para toda sucesión $(x_n)_{n\in\mathbb{N}} \subset E$ que converge a 0, la sucesión $(Tx_n)_{n\in\mathbb{N}} \subset F$ es acotada. Probar que T es continuo.
- 4) Sea H un espacio de Hilbert y sea $T: H \to H$ un operador lineal. Probar que

$$||T|| = \sup_{||x|| = ||y|| = 1} |\langle y, Tx \rangle|.$$

5) Sea (X, d) un espacio métrico completo, y sea $T: X \to X$ una función continua con la siguiente propiedad: para todos $x, y \in X$, la serie $\sum_{n=1}^{\infty} d(T^n(x), T^n(y))$ es convergente. Probar que T tiene un único punto fijo.

Justifique todas las respuestas