Collective minimum contributions to address the ratchet effect in the private provision of public goods

Carlo Galliera,b

joint work with Marius Alt^b, Martin Kesternich^{b,c}, and Bodo Sturm^{b,d}

^a Free University of Bozen-Bolzano

^b ZEW – Leibniz Centre for European Economic Research

^c Kassel University

^d Leipzig University of Applied Sciences

Motivation | Background

Paris agreement UNFCCC (2015, Article 3)

> Global action plan to limit global warming to well below 2°C

Nationally determined contributions

- > Pros: Eased entry-into force of the agreement
- > Cons: Commitments fell short of achieving the 2°C goal!

Ratchet-up mechanism

- > Gradually increase parties' commitments over time
- > Ensure that the 2°C goal will be achieved

Motivation | Ratchet-up mechanism

What does the ratchet-up mechanism do?

Source: IGES

'As nationally determined contributions to the global response to climate change, all Parties are to undertake and communicate efforts [...] the efforts of all Parties will present progression over time [...]'

Motivation | Ratchet effect

Why does the ratchet-up mechanism need an amendment?

Chaudhuri (1998, JEBO), Charness et al. (2011, JOLE)...

> Ratchet effect: Agents strategically restrict their true capacity, because they anticipate that higher levels of output will be met with increased requirements more lit ...

UNEP (2021) ...

> Commitments are still too low to reach the 2°C goal. Majority of updated NDCs do not meet the ratcheting condition stock take

Gallier & Sturm (2021, JEBO)

> Ratchet-up mechanism increases the risk of being free-ridden and decreases public good provision details...

Motivation | This paper

How to counteract the ratchet effect?

Collective minimum contributions

Following the principle of the *lowest common denominator* Orzen (2008, DP), Dannenberg et al. (2014, Economica) ...

How do collective minimum contributions work?

- > Agents propose a collective minimum contribution
- > Required to contribute at least the lowest common denominator of all proposals

• Why should they counteract the ratchet effect?

- > Reduce the risk of being free-ridden
- > Parties retain *sovereign* by possessing veto power

Motivation | Research questions

- O Do collective minimum contributions counteract the ratchet effect?
- O Does the effect depend on whether collective minimum contributions are **binding** or **non-binding**?

Exp. design: Cumulative public goods game

Duffy et al. (2007, JPubE) ...

Public good needs time to accumulate and provide benefits

- > n identical individuals, $i \in \{1, \dots, n\}$
- \gt In each period $t \in \{1, \cdots, T\}$
 - > i receives an endowment of w
 - \rightarrow i decides upon contribution to public good $g_{i,t}$
 - $G_t = \sum_{j=1}^n g_{j,t}$ is the sum of public good contributions in t
 - > individual payoff of $\pi_{i,t}(w g_{i,t}, G_t)$
- **②** 'Payday is at the end!' At the end of *T*, *i* consumes the cumulated benefits of what is left in her private account and what has been contributed to the public good:

$$\Pi_i = \sum_{t=1}^T \pi_{i,t}(w - g_{i,t}, G_t)$$

more formally ..

Exp. design: Cumulative public goods game

$$\Pi_i = \sum_{i=1}^T \pi_{i,t}(w - g_{i,t}, G_t)$$

more formally

Exp. design: Structure

Exp. design: Collective-choice stage

In Period 0, all players propose a public good contribution level.

The *lowest common denominator* of all proposals sets the collective minimum contribution

- → Individual proposals: $\tilde{g}_i \in \{0, w\}$
- \gt Set of proposals: $\tilde{\mathbf{g}} = \{\tilde{g}_1, \dots, \tilde{g}_n\}$
- > Collective minimum contribution: $g_{min} = min\{\tilde{\mathbf{g}}\}\$

► Non-binding collective minimum contribution

> In Period 1, players can freely decide upon their contributions to the public good, i.e.,

$$0 \le g_{i,1} \le w$$

▶ Binding collective minimum contribution

> In Period 1, players have to contribute at least the collective minimum contribution, i.e.,

$$g_{min} \leq g_{i,1} \leq w$$

Exp. design: Contribution stage

From $\operatorname{Period} 1$ onward, players have to decide about their individual contributions to the public good

- ► Voluntary contribution mechanism
 - > Players can freely decide upon their contributions:

$$0 \leq g_{i,t} \leq w \ \forall t \geq 1$$

- Ratchet-up mechanism
 - > Each contribution at least as high as the previous:

$$0 \le g_{i,1} \le w$$
 and $g_{i,t-1} \le g_{i,t} \le w \ \forall t > 1$

Voluntary contribution mechanism (BASE)

- **✗** No collective minimum contribution
- ✗ No ratchet-up mechanism
- Players can freely decide upon their contributions:

$$0 \leq g_{i,t} \leq w \ \forall t \geq 1$$

Voluntary contribution mechanism (BASE)

- X No collective minimum contribution
- ★ No ratchet-up mechanism
- Players can freely decide upon their contributions:

$$0 \le g_{i,t} \le w \ \forall t \ge 1$$

Ratcheting (RAT)

- X No collective minimum contribution
- + Ratchet-up mechanism
- Each contribution at least as high as the previous:

$$0 \le g_{i,1} \le w$$
 and $g_{i,t-1} \le g_{i,t} \le w \ \forall t > 1$

Non-binding minimum ratcheting (NBminRAT)

- + Non-binding collective minimum contribution
- + Ratchet-up mechanism
- Non-binding collective minimum & each contribution at least as high as the previous:

$$0 \le g_{i,1} \le w$$
 and $g_{i,t-1} \le g_{i,t} \le w \ \forall t > 1$

Non-binding minimum ratcheting (NBminRAT)

- + Non-binding collective minimum contribution
- + Ratchet-up mechanism
- Non-binding collective minimum & each contribution at least as high as the previous:

$$0 \leq g_{i,1} \leq w$$
 and $g_{i,t-1} \leq g_{i,t} \leq w \ \forall t > 1$

Binding minimum ratcheting (BminRAT)

- + Binding collective minimum contribution
- + Ratchet-up mechanism
- ➡ Binding collective minimum & each contribution at least as high as the previous:

$$g_{min} \leq g_{i,1} \leq w$$
 and $g_{i,t-1} \leq g_{i,t} \leq w \ \forall t > 1$

Hypotheses

Purely self-interested & rational players

Hypothesis 1. Players in **BminRat** will contribute **more** to the public good than those in **RAT**

$$g_{i,t}^{BminRAT^*} > g_{i,t}^{RAT^*}$$

Hypothesis 2. Players in **NBminRAT** will contribute **as much** to the public good as those in **RAT**

$$g_{i,t}^{NBminRAT^*} = g_{i,t}^{RAT^*}$$

Results | How to ...

Outcome: Cooperation rate $c_{i,t} = (\frac{g_{i,t} - g_{i,t}^*}{g_{i,t}^\circ - g_{i,t}^*}) * 100\%$

- ightharpoonup Nash equilibrium $g_{i,t}^* \Rightarrow c_{i,t} = 0\%$
- → Social optimum $g_{i,t}^{\circ} \Rightarrow c_{i,t} = 100\%$

Results | Ratchet effect ... plausibility check ...

Obs. 0. Ratcheting is (still) detrimental. Overall, cooperation rates in **RAT** are **lower** than those in **BASE** (p = 0.0105)

Results | Overview

Results | Cooperation rates

Obs. 1. Overall, cooperation rates in **BminRAT** are **higher** than those in **RAT** (p = 0.0002)

Results | Cooperation rates

- **Obs. 2**. Cooperation rates in **NBminRAT** are not different from those in **RAT**
- **Obs.** 3. Overall, cooperation rates in **BminRAT** are **higher** than those in **NBminRAT** (p = 0.0239)

Results | Decomposition

Why does BminRAT work and NBminRAT not?

Cooperation rate	Minimum cooperation rate	Excess cooperation rate			
Panel A. NBminRAT					
24.23*** (6.115)	20.95*** (6.778)	3.28 (4.634)			
Panel B. BminRAT					
43.96*** (5.736)	32.12*** (6.633)	11.84*** (2.192)			
Panel C. Difference between BminRAT and NBminRAT					
19.73** (8.384)	11.17 (9.484)	8.56 (5.126)			
	·	·			

Results | Minimum cooperation rates

Obs. 4. Minimum cooperation rates in **BminRAT** are **higher** than those in **NBminRAT** in Phase III (p = 0.0269) and IV (p = 0.0553)

Results | Excess cooperation rates

Obs. 5. Excess cooperation rates in **BminRAT** are **higher** than those in **NBminRAT** in Phase V (p = 0.0050)

Results | Non-compliance with minimum contributions

Overall	Phase II	Phase III	Phase IV	Phase V	
Panel A. Minimum cooperation rates					
-0.08*** (0.026)	-0.024 (0.065)	-0.112** (0.045)	-0.094** (0.044)	-0.084 (0.057)	
Panel B. Excess cooperation rates					
-9.842*** (2.489)	-13.664* (7.246)	-7.090* (4.092)	-6.209 (3.849)	-14.162*** (4.759)	

⊙ Obs. 6. In **NBminRAT**, non-compliant group members cause others do reduce minimum and excess cooperation rates

Summary & conclusion

Ratchet effect: Ratchet-up mechanism decreases efficiency

- **Obligation** Binding collective minimum contributions
 - > Reduce the risk of being free-ridden
 - > Counteract the ratchet effect
 - > **BUT**: Hardly feasible at international level
- Non-binding collective minimum contributions
 - > At the beginning (Phase I), promote cooperation
 - > **BUT**: Non-compliance reduces cooperation over time
 - > Overall: Do not counteract the ratchet effect
- ♠ Ratchet-up mechanism: No easy fix, because of the lack of enforceable commitments at the international level

Thank you!

If you have questions or comments, please let me know

Appendix

Related Literature

Minimum contribution levels in social dilemmas

Static minimum contribution levelsAndreoni (1993), Eckel et al. (2005), Gronberg et al. (2012) ...

- Decisions do not have dynamic implications for future minimum contribution levels
- Do not completely crowd out voluntary contributions and increase public good provision

Dynamic minimum contribution levelsDorsey (1992), Kurzban et al. (2001), Gallier & Sturm (2021) ...

- Decisions act as benchmark for future contribution levels
- Set incentive to strategically restrict contributions and can decrease overall public good provision

Related Literature

Chaudhuri (1998), Charness et al. (2011)...

• Agents subject to performance pay strategically restrict their true capacity, because they anticipate that higher levels of output will be met with increased requirements

Related Literature

Chaudhuri (1998), Charness et al. (2011)...

• Agents subject to performance pay strategically restrict their true capacity, because they anticipate that higher levels of output will be met with increased requirements

Amano & Ohashi (2018)

• Firms (Japanese televisions) strategically hold back on energy efficiency to be able to continue less efficient products for the foreseeable future

Related literature

Dorsey (1992), Kurzban et al. (2001)

If contributions can be constantly revised, ratcheting

- decreases the risk of being exploited
- increases overall public good provision

Related literature

Dorsey (1992), Kurzban et al. (2001)

If contributions can be constantly revised, ratcheting

- decreases the risk of being exploited
- increases overall public good provision

Gallier & Sturm (2021)

If contributions cannot be constantly revised, ratcheting

- increases the risk of being exploited
- decreases overall public good provision

Motivation

2021 United Nations Climate Change Conference (COP26)

Source: CAT

• Nationally determined contributions: Ratcheting condition is not met sufficiently

Motivation

Gallier & Sturm (2021, JEBO)

Ratchet effect: Ratcheting is detrimental

- Ratcheting increases the risk of being free-ridden
- **ᢒ** Ratcheting decreases overall public good provision

Exp. design: Cumulative public goods game

At the end of period T:

$$\Pi_{i} = \sum_{t=1}^{T} \pi_{i,t}(w - g_{i,t}, G_{t})$$

$$= \sum_{t=1}^{T} \psi(w - g_{i,t}) + \sum_{t=1}^{T} \phi(G_{t}) - \sum_{t=1}^{T} \tau$$

$$= \alpha \sum_{t=1}^{T} (w - g_{i,t}) - \beta \sum_{t=1}^{T} (w - g_{i,t})^{2} + \gamma \sum_{t=1}^{T} G_{t} - \sum_{i=1}^{T} \tau$$
with
$$0 \le g_{i,t} \le w$$
and
$$\alpha, \beta, \gamma, \tau > 0 \text{ with } \gamma < \alpha$$

Exp. design: cumulative public goods game

$$\Pi_i = \sum_{i=1}^T \pi_{i,t}(w - g_{i,t}, G_t)$$

Social optimum

$$G_i^{\circ} = \sum_{t=1}^{\infty} g_{i,t}^{\circ}$$

$$= T(w + \frac{n\gamma - \alpha}{2\beta})$$

Nash equilibrium

$$G_i^* = \sum_{t=1}^r g_{i,t}^*$$
$$= T(w + \frac{\gamma - \alpha}{2\beta})$$

back

Procedure (aka the odyssey)

#1 - June 2020

- MaXLab
- </>> z-Tree
- Covid first wave

#2 - November 2020

- **m** MaXLab
- </>> z-Tree
- Hygiene concept
- Covid second wave

#3 - July 2021

- Fully online
- </> o-Tree

#4 - October 2021

- Fully online
- </> o-Tree

#5 - February 2022

- Fully online
- </> o-Tree

Procedure | Overview

Treatment	Ratchet-up mechanism	Collective minimum contribution	
BASE	×	×	39 ²³
RAT	+	×	37 ⁴³
NBminRAT	+	non-binding	18
BminRAT	+	binding	22
		Total	116

Recycled base and weakR data from Gallier & Sturm (2021):

→ BASE: 30 *base* + 9 NEW

→ RAT: 27 weakR + 10 NEW

Procedure

Treatments	Period	G&S (2021)	NEW	<i>p</i> -value				
Panel A. base vs. BASE								
	Avg.	0.3981	0.3238	0.4971				
	1	0.4942	0.4298	0.6127				
	2	0.4410	0.3621	0.5365				
	3	0.4152	0.3514	0.5965				
	4	0.3535	0.2784	0.4454				
	5	0.2866	0.1973	0.2815				
Panel B. weakR vs. RAT								
	Avg.	0.2234	0.3021	0.4476				
	1	0.1125	0.2246	0.2964				
	2	0.1799	0.2710	0.3812				
	3	0.2299	0.3078	0.4635				
	4	0.2708	0.3373	0.5189				
	5	0.3237	0.3699	0.6508				

♦ G&S (2021) vs. NEW: It makes no difference

Power analysis: priors & calculation

Ratchet-up mechanism

Gallier & Sturm (2021). With ratcheting:

- \bullet Avg. contribution of ≈ 32
- \odot Standard deviation of ≈ 13

Collective minimum contribution

Dannenberg et al. (2014). With minimum contribution stage:

Effect size of 80 %

Calculation

- Resources: pwr package for R
- Two-sample t test (two sided, equal standard deviation)
- Effect sizes between: 1 % and 100 %

Power analysis: results

 \odot 20 groups per treatment sufficient to detect an effect size of more than 35 %

(Very) First results | Contributions

BminRAT vs. BASE: Short- & long-run

			Period			
	1	2	3	4	5	Avg.
Panel	A. Phase 1					
	-22.4161***	-8.1756	-5.2925	4.1282	10.7716	-4.1969
Panel B. Phase 2						
	-20.1395**	-10.7972	-6.3213	3.2432	12.3714	-4.3287
Panel	C. Phase 3					
	2.0400	13.2615	16.1445	26.4068***	30.9856***	17.7677**
Panel	D. Phase 4					
	11.9410	16.7957*	21.7910**	27.2828***	38.5124***	23.2647***
Panel E. Phase 5						
	8.7432	14.4079	21.7117**	28.1197***	43.8353***	23.3636**
Panel F. Avg.						
	-3.9663	5.0984	9.6067	17.8361***	27.2953***	11.1740*

Especially in the long-run – in late Periods of late Phases – cooperation rates in BminRAT are higher than those in BASE

Thank you!