Decision Trees

Conceptual Overview

Decision Trees | Statistical Decision Theory | K-Nearest Neighbor

- Statistical Decision Theory
 - The best prediction of Y at an point X=x is the conditional mean. (L2 loss)
- knn
 - At each point x, approximate y by averaging all y_i with input x_i near x
 - Near x = k nearest neighbors
 - Locally constant approximation
- Decision Tree
 - At each point x, approximate y by averaging all y_i with input x_i near x
 - Near x = Region in which x lies | Find the region optimally
 - Locally constant approximation
 - M5 variant of decision tree embeds linear regression in each leaf

Decision Trees

Versatility

- Can be used for classification, regression & clustering
- Effectively handle missing values.
- Can be adapted to streaming data.

Interpretability

- Easy to understand / present / visualize
- Human interpretable rules
- Allow post processing: Rules systems

Predictive Accuracy

- Not so great.
- But: Bagging, Boosting, Random Forests

Model Stability

- High Variance: Strong dependence on training set.
- But: Bagging, Boosting, Random Forests

Building & Using Trees

Build

- Think: "If, Then" rules specified in the feature space.
- Greedily divide (binary split) the feature space into distinct, non-overlapping regions

Use

- Every observation mapped to a leaf node assigned the label most commonly occurring in that leaf (Classification)
- Every observation mapped to a leaf node assigned the mean of the samples in the leaf (Regression)
- "Natural" clustering given the target variable.

Decision Trees: Continuous splitting of the feature spaces

In Feature Space

- The feature space contains all data
- Divided regions contain "homogeneous" data subsets
- Region boundaries define regions (homogeneous data)

As a Tree

- Root contains all data
- Leaves contain "homogeneous" data subsets
- Paths along branches define leaves (homogeneous data)

Decision Trees: Key Variations

- How to split?
 - What criteria should be used to evaluate a split?
 - What is the split trying to achieve?
 - How do you measure the homogeneity of a subset?
 - In Classification / Regression
 - Supervised Clustering
- When to stop splitting (Avoiding overfitting)
 - Maximum depth / height
 - Minimum number of nodes
 - Grow & Prune
 - Complexity Parameter : Penalty parameter for # nodes
- Other Variations
 - Handling missing values
 - Different category, surrogate splits etc.
 - More than two child nodes
 - One variable appears only once in the tree

- Algorithm names
 - CART
 - C4.5
 - C5.0
 - CHAID
 - ID3
 - ...

Choosing the Split - Classification

What is a good split?

- Among all possible splits (all features, all split points)
- Which split maximizes gain / minimizes error (Greedy)
- Information Gain / Impurity reduction.

t₁ t₂ t₃ •

Choosing feature, split-point

- Cluster "homogeneous" data (subset of data)
- What is a good split measure?
 - Classification Error $1 \max p_j$
 - Gini Index $p_1(1-p_2)+p_2(1-p_1)$
 - Entropy $p_1 \log(p_1) + p_2 \log(p_2)$

$$i(t_1) = 1 - \max\{p_g, p_r\} = 1 - \max\{\frac{3}{3}, \frac{0}{3}\} = 0$$

$$i(t_2) = 1 - \max\{p_g, p_r\} = 1 - \max\{\frac{0}{4}, \frac{4}{4}\} = 0$$

$$i(t_3) = 1 - \max\{p_g, p_r\} = 1 - \max\{\frac{2}{3}, \frac{1}{3}\} = 0.33$$

Impurity = Classification Error Rate

Class 1	$n(t_1) = 60$	p ₁ = 0.3
Class 2	$n(t_2) = 100$	$p_2 = 0.5$
Class 3	$n(t_3) = 40$	$p_3 = 0.2$
Total	n(t) = 200	1

$$i(t) = 1 - (0.5) = 0.5$$

Class 1	n(t ₁) = 10	$p_1 = 0.07$
Class 2	$n(t_2) = 100$	$p_2 = 0.66$
Class 3	$n(t_3) = 40$	$p_3 = 0.27$
Total	n(t) = 150	1

$$i(t_L) = 1 - 0.66 = 0.33$$

t _L	t _R

150	50
${200} \times 0.33 +$	$\frac{1}{200} \times 0 = 0.25$

Class 1	n(t ₁) = 50	p ₁ = 1.0
Class 2	$n(t_2) = 0$	$p_2 = 0.0$
Class 3	$n(t_3) = 0$	$p_3 = 0.0$
Total	n(t) = 50	1

$$i(t_R) = 1 - 1.0 = 0$$

$$\Delta i(s,t) = 0.5 - 0.25 = 0.25$$

Impurity = Classification Error Rate (cont'd)

Impurity = Gini Index

Impurity = Cross Entropy

Decision Tree

- Function Approximation formulation
- Choosing feature, split-point
 - Cluster "homogeneous" data (subset of data)
 - What is a good split measure?
 - Classification Error $1 \max p_j$
 - Gini Index $p_1(1-p_2)+p_2(1-p_1)$
 - Entropy $p_1 \log(p_1) + p_2 \log(p_2)$
 - CART, C4.5, CHAID, ID3 variants

- When to stop splitting (Avoiding overfitting)
 - Grow & Prune
 - Complexity Parameter : Penalty for # nodes

$$f(X) = \sum_{m=1}^{|T|} c_m \cdot 1_{(X \in R_m)}$$
 Decision Tree

$$f(X) = \beta_0 + \sum_{j=1}^p X_j \beta_j$$
 Linear Regression

$$N_m = \#\{x_i \in R_m\}$$

$$\hat{c}_m = \frac{1}{N_m} \sum_{x_i \in R_m} y_i$$

$$Q_m(T) = \frac{1}{N_m} \sum_{x_i \in R_m} (y_i - \hat{c}_m)^2$$

$$C_{\alpha}(T) = \sum_{m=1}^{|T|} N_m Q_m(T) + \alpha |T|$$

Choosing the Split - Regression

What is a good split?

- Among all possible splits (all features, all split points)
- Which split maximizes gain / minimizes error (Greedy)

 $\hat{y}_{R_1} = 226$

Ri

 $\sum_{i \in R_1} (y_i - \hat{y}_{R_1})^2$

Information Gain / Impurity reduction

• What is a good split measure? • Squared Sum of Errors $\sum_{i \in I} (\hat{y}_L - y_{i,L})^2 + \sum_{i \in R} (\hat{y}_R - y_{i,R})^2$

minimize
$$\left\{ \sum_{j=1}^{J} \sum_{i \in R_j} \left(y_i - \hat{y}_{R_j} \right)^2 \right\}$$

(Additional) Advantages of splitting

Splits: Branches for homogenizing data

- Alternative splits evaluated at build-time
- If an alternative split ~ actual split, use the alternative split at prediction time if variable missing.

Surrogate splits handle missing values

- Alternative splits evaluated at build-time
- If an alternative split ~ actual split, use the alternative split at prediction time if variable missing.

Feature Importance

- Reduction in Optimization Criteria due to splits containing feature.
- Features which appear higher and more often more important.

All models must guard against Overfitting ...

When to stop splitting?

When will we be "forced" to stop?

- When all nodes are pure (homogeneous leaves)
- These trees can be very deep: Overfitting
- Good trees don't over-fit!

Building a good tree?

- Reduction / Gain in optimization criteria
- But tree building is greedy!
- Current split gain < Future split gain (Gotcha!)

Early Stopping

- Information Gain < Threshold
- Minimum Instances per Node
- Maximum Tree Depth

Alternate

Grow & Prune...

Split & Merge: Grow & Prune

Key !dea

- Grow deep trees first (Greedy split workaround)
- Prune low gain branches.

What is a good tree?

- When to stop pruning?
- Overfitting measure: number of leaves, depth of tree

Cost Complexity Tradeoff

- Cost of pruning: Increase in Impurity
- Reduction in Complexity : Shorter trees, Fewer leaves

Optimal Tradeoff

- Parameter trading off cost complexity
- Try different values: choose one based on performance on test data

Decision Trees vs. Linear Regression (Separating Hyperplane)

- Linear Regression
 - Linear: y is a linear combination of its features
 - The separating boundary is a hyperplane
- Decision Tree
 - The separating boundary is piecewise linear along one of the features
 - Keep splitting the feature spaces till variance in the dependent variable is low enough
- Y = f(X)

Decision Trees: Summary

Splits = Branching

Split = Feature, Split point

Information gain (Entropy) = Colour

In the dominant intensity bin

Leaf Distribution = Data Homogeneity

Some leaves are better than others

Praphul Chandra

Insofe

Bangalore, Hyderabad