简单易懂的质数筛法

过时数论魔法

陈牧歌

北京大学

2018年5月13日

前言

- ▶ Q: 你是谁? 没听过呀
- ► A: 半吊子大三生,没打过 APIO, CTSC 也没拿过奖的 不知名前 OI 选手
- ▶ Q: 你要讲什么?
- ▶ A: 小学必修的质数筛法的一点点拓展呢
- ▶ Q: 为啥讲这个呢?
- ▶ A: 过气选手只会这个了, 惨兮兮。

内容安排

内容比较简单轻松,希望大家不要掉线

- ▶ Eratosthenes 筛法介绍
- ▶ "杜教筛"与"洲阁筛"科普
- ▶ yet another 扩展 Eratosthenes 筛

其实参加过 CTSC 的同学可能已经发现了,本次讲课与朱 震霆同学的《一些特殊的数论函数求和问题》大量重合

什么是 Eratosthenes 筛

- ▶ Eratosthenes 筛是人类历史记录下最古算法之一
- ▶ 用于找出一定范围内 ([1,n]) 的所有质数
- ▶ 根据定义,任一合数都是某个大于1的数的倍数
- ▶ 从 2 开始,将每个数的各个倍数,标记成合数
- ▶ 范围内所有未被标记的数,就是所求的全部素数

```
for (int i = 2; i <= n; i++)
  isPrime[i] = true;
for (int i = 2; i <= n; i++)
  for (int j = i+i; j <= n; j+=i)
    isPrime[j] = false;
I</pre>
```

简单优化#1

- ▶ 任一合数都是某个质数的倍数
- ▶ 所以只需要用质数去筛即可。

```
for (int i = 2; i <= n; i++)
  isPrime[i] = true;
for (int i = 2; i <= n; i++)
  if (isPrime[i]) {
    for (int j = i+i; j <= n; j+=i)
      isPrime[j] = false;
  }
T</pre>
```

复杂度是多少?

简单优化 #1续

- ▶ 容易知道复杂度就是 $\sum_{p \le n} \lfloor \frac{n}{p} \rfloor$, 其中 p 是质数
- ▶ 问题是怎么简化求和式,如果具有一定的微积分知识, 就能证明 $\sum_{p \le n} \lfloor \frac{n}{p} \rfloor = \Theta(n \log \log n)$
- ▶ 即 Mertens 第二定理。
- ▶ 证明后面有时间再证。反正今天复杂度证明不差这一个(笑)。

简单优化 # 2

- ▶ 事实上一个 n 以内的数若是合数,必然有不大于 \sqrt{n} 的约数
- ▶ 且若发现一个质数 p,也不应该从 2*p 开始筛起,应该从 p*p 筛起,因为更小的合数已经被别的质数筛掉了。

```
for (int i = 2; i <= n; i++)
  isPrime[i] = true;
for (int i = 2; i*i <= n; i++)
  if (isPrime[i]) {
    for (int j = i*i; j <= n; j+=i)
      isPrime[j] = false;
  }
for [j]</pre>
```

继续优化可以导出所谓的"线形筛"

SPOJ PRIME1¹

- ▶ 输出在区间 [*m*,*n*] 内的所有质数
- ▶ $1 \le m \le n \le 10^9$
- ▶ $n m \le 100000$

¹http://www.spoj.com/problems/PRIME1/

SPOJ PRIME1

- ▶ 暴力筛出 [1,n] 内的所有质数显然时空都不可接受
- ▶ 注意到 *n m* < 100000 这一条件,区间很小
- ▶ 预处理出 \sqrt{n} 以内的所有质数,将它们在 [m,n] 里的倍数都划去,剩下的就是质数
- ▶ 时间复杂度为 $\sum_{p \leq \sqrt{n}} \frac{100000}{p}$,可以通过此题

Euler 筛(线性筛)

- ► 之前的筛法,一个合数会被筛去多次(被它的每个质 因数筛一次)
- ▶ 如果我们能保证每个合数只被筛一次,就能得到时间 复杂度为线性的筛法。
- ► Euler 筛就是这样的筛法,它保证每个合数只被其最小 质因数筛去。

```
for (int i = 2; i <= n; i++) {
   if (isPrime[i]) prime.push_back(i);
   for (int j = 0; j < prime.size(); j++) {
     if (i * prime[j] > N) break;
     isPrime[i * prime[j]] = false;
     if (i % prime[j] == 0) break;
   }
}
```

正确性与复杂度证明

- 将[1,n]中的每个数抽象 成一个图的节点,我们 可以建立一棵有根树。
- ▶ 对于每个数 u,找出最小的质数 p,使得 p|u。
- ▶ 设定 u/p 为 u 的父节点
- ► 容易发现对于 Euler 筛实 际上就是枚举每个节点, 标记其直接子节点为合 数
- ▶ 复杂度立即得证为 *O*(*n*)

筛法与积性函数

- ▶ 以排除合数的思路求质数,线性即为最优复杂度了。
- ▶ 因为合数的数目也是 O(n) 的,全部筛去至少要 O(n) 的时间。
- ▶ 但是筛法不仅能用来求素数,还能用来求一个积性函数给定范围内的所有值。

积性函数

- ▶ 对于定义域在 \mathbb{N}^+ 上的函数 f
- ▶ 若满足对于任意互质正整数对 (a,b) 均有 $f(a \times b) = f(a) \times f(b)$
- ightharpoonup 则称 f 为积性函数
- ▶ 对于任意大于 1 的整数 N, 设 $N = \prod p_i^{q_i}$, 其中 p_i 为互不相同的质数。
- ▶ 那么容易得到 $f(N) = f(\prod p_i^{q_i}) = \prod f(p_i^{q_i})$
- ▶ 常见的积性函数: 常函数 1(n)、单位函数 id(n)、欧拉函数 $\varphi(n)$ 、莫比乌斯函数 $\mu(n)$ 、约数函数 $\sigma_x(n)$

如何使用筛法求积性函数

- ▶ 求积性函数 f 的关键在于如何快速求 $f(p^k)$
- ▶ euler 筛过程中,在筛掉 n 的时候我们也得到了 n 的最小质因数 p
- ▶ 我们希望知道 p 在 n 中的次数 k,这样就能利用 $f(n) = f(p^k) f\left(\frac{n}{p^k}\right)$ 求出 f(n)
- ▶ 令 n = pm, 那么如果 $p \nmid m$, 则 p 在 n 的次数为 1
- ▶ 若 $p \mid m$,那么 p 也是 m 的最小质因数,p 在 n 的次数为 p 在 m 的次数 +1
- ▶ 在筛法时记录每个数的最小质因数的次数,就能算出 新筛去合数的最小质因数次数。
- ▶ 若 $f(p^k)$ 可以在 O(1) 时间算得,我们可以用 O(n) 的 线性时间求一个积性函数的点值

另一道水题2

- ▶ 给定整数 N, 求 $1 \le x, y \le N$ 且 Gcd(x, y) 为素数的数 对 (x,y) 有多少对.
- ► $N < 10^7$
- ▶ 欢迎秒题

¹https://www.lydsy.com/JudgeOnline/problem.php?id=2818

解答

- ▶ 统计 gcd 为素数的对, 考虑枚举素数 p, 计算 gcd 恰好 为 p 的数对个数
- ▶ 实际上就是 $\sum_{p} \sum_{i=1}^{\lfloor N/p \rfloor} \sum_{j=1}^{\lfloor N/p \rfloor} [gcd(i,j) = 1]$
- ▶ 统计一定范围内互质数对个数?
- ▶ 欧拉函数定义: $\varphi(n)$ 为 [1,n] 内与 n 互质数字个数,即 $\varphi(j) = \sum_{i=1}^{j} [gcd(i,j) = 1]$
- ▶ 那么显然 $\sum_{i=1}^{\lfloor N/p \rfloor} \sum_{j=1}^{\lfloor N/p \rfloor} [gcd(i,j)=1] = -1 + 2\sum_{i=1}^{\lfloor N/p \rfloor} \varphi(i)$ (减 1 是 因为 (1,1) 被统计了两次)
- ▶ 欧拉函数是积性函数,用 euler 筛预处理出点值,求前 缀和。枚举质数求和即可在 O(n) 时间解决问题。

上古魔法第一课: 杜教筛

- ▶ 设 f(n) 是一个数论函数,需要计算 $S(n) = \sum_{i=1}^{n} f(i)$
- ▶ n 可能很大,例如 $n < 10^{11}$
- ▶ 显然求出所有 f(i) 再求和的 O(n) 做法行不通了

一个简单的例子

$$\sum_{i=1}^{n} \sigma_{1}(i), n \leq 10^{12}$$

▶ 其中

$$\sigma_1(n) = \sum_{d|n} d = \sum_{i=1}^n [i|n] \cdot i$$

▶ 即求前 n 个正整数的约数之和,例如 6 的约数有 1,2,3,6,故 $\sigma_1(6) = 12$

一个简单的例子

$$\sum_{i=1}^{n} \sigma_{1}(i), n \leq 10^{12}$$

▶ 其中

$$\sigma_1(n) = \sum_{d|n} d = \sum_{i=1}^n [i|n] \cdot i$$

- ▶ 即求前 n 个正整数的约数之和,例如 6 的约数有 1,2,3,6,故 $\sigma_1(6) = 12$
- ▶ 推导一下发现

$$\sum_{i=1}^{n} \sigma_{1}(i) = \sum_{i=1}^{n} \sum_{j=1}^{n} [j|i] \cdot j = \sum_{i=1}^{n} i \cdot \sum_{j=1}^{n} [i|j] = \sum_{i=1}^{n} i \cdot \lfloor \frac{n}{i} \rfloor$$

▶ 本质上来说这一步转换实际上是枚举每个数,算出它 是多少个数的约数,算贡献。

前置知识

▶ 这个求和式是可以在 $O(\sqrt{n})$ 的时间内求的

$$\sum_{i=1}^{n} i \cdot \lfloor \frac{n}{i} \rfloor$$

- ▶ 理由是因为 $|\frac{n}{i}|$ 取值最多只有 $2\sqrt{n}$ 种不同的取值:
- ▶ 对于 $1 \le i \le \sqrt{n}$,由于 i 总共就 \sqrt{n} 种取值,所以 $\lfloor \frac{n}{i} \rfloor$ 不可能超过 \sqrt{n} 种
- ▶ 对于 $\sqrt{n} < i \le n$ 由于 $n/i < n/\sqrt{n} = \sqrt{n}$,所以 $\lfloor \frac{n}{i} \rfloor \le \sqrt{n}$,取值不可能超过 \sqrt{n} 种
- ▶ 那么求和式就相当于有很多区间 $[l_k, r_k]$,其中 $\forall i \in [l_k, r_k]$, $\lfloor \frac{n}{i} \rfloor$ 取值相同,这一段的值可以用等差数 列求和公式 O(1) 求得 (怎么求 $[l_k, r_k]$ 这样的段的起点 终点?)
- ▶ 总段数不超过 $O(\sqrt{n})$,所以复杂度是 $O(\sqrt{n})$

又一前置知识: 狄利克雷卷积

- ▶ 线性筛求积性函数只能算一个简单技巧, OI 比赛中一般不会有这么裸的题。
- ▶ 实际上毒瘤出题人都会给一个式子,要求选手用深厚的数学功底简化,推出积性函数相关的式子。
- ▶ 这个时候可能就需要莫比乌斯反演与狄利克雷卷积相 关知识解题,题目变种多,公式鬼畜,解题愉悦
- ▶ 狄利克雷卷积定义: 针对两个函数的运算 *

$$f * g(n) = \sum_{d \mid n} f(d) \cdot g(\frac{n}{d})$$

抽象:杜教筛到底是什么

- ▶ 设 f(n) 是一个数论函数,需要计算 $F(n) = \sum_{i=1}^{n} f(i)$
- ▶ 若有数论函数 g,h 使得 f*g=h
- ▶ 令 F,G,H 为 f,g,h 的前缀和
- ▶ 我们有

$$H(x) = \sum_{n \le x} h(n) = \sum_{n \le x} \sum_{d \mid n} f(d)g(n/d)$$

$$= \sum_{d=1}^{x} \sum_{n=1}^{\lfloor x/d \rfloor} f(d)g(n)$$

$$= \sum_{n \le x} f(n)G(\lfloor x/n \rfloor) = \sum_{n \le x} g(n)F(\lfloor x/n \rfloor)$$

$$g(1)F(n) = H(n) - \sum_{i=2}^{n} g(i)F(\lfloor n/i \rfloor)$$
(1)

简单分析

$$g(1)F(n) = H(n) - \sum_{i=2}^{n} g(i)F(\lfloor n/i \rfloor)$$

- ▶ 注意到求和式的右边出现了刚刚提到的只有 $O(\sqrt{n})$ 种取值的 $\lfloor n/i \rfloor$
- ▶ 如果我们能够快速求出 H(x), G(x) 就可以快速求出 F(x)

naive 杜教筛

 $F(n) = H(n) - \sum_{i=2}^{n} g(i) F(\lfloor n/i \rfloor)$ 不妨假设 G(n)H(n) 可以在 O(1) 的时间内求出

▶ 一个小结论:

$$\lfloor \lfloor n/i \rfloor / j \rfloor = \lfloor n/(ij) \rfloor$$

- ▶ 这个结论说明,假设我们暴力递归求 F(n),用更小的 $F(\lfloor n/i \rfloor)$ 的值来求,更小的 $F(\lfloor n/i \rfloor)$ 又需要 $F(\lfloor |n/i \rfloor/j \rfloor)$ 来求时……
- ▶ 需要求的 F(x) 的值,即参数 x 的种类数,同样不超过 |n/i| 种类数
- ▶ 记忆化所有求过的结果, 直接递归记忆化搜索,复杂度为 $O(n^{3/4})$ 。

复杂度证明

网上能找到的复杂度证明大多含糊不清。 有的复杂度证明表示直接递归,算复杂度时「只需要展开一层就可以了,更深层的复杂度都是高阶小量」,我不懂。 这里给出一个稍微清晰一点的证明(类似动态规划复杂度 分析):

- ▶ 递归求 $F(k) = H(k) \sum_{i=2}^{k} g(i) F(\lfloor k/i \rfloor)$ 时,需要的循环次数为 $O(\sqrt{k})$ 次,即单次转移代价。
- ▶ 由于我们已经知道递归求 F(x) 过程中,x 的可能取值 $x = \lfloor \lfloor \lfloor n/i \rfloor / j \rfloor / \cdots / k \rfloor$ 必然是 $\lfloor n/i \rfloor$ 的某一个
- lackbrace [n/i] 的取值总共只有 $O(\sqrt{n})$ 种可能,即状态总数 $O(\sqrt{n})$ 个,且状态空间即 [n/i] 的不同取值

那么枚举所有不同取值 x,其转移代价都是 \sqrt{x} 于是总复杂度为 $\sum_{i=1}^{\sqrt{n}} \sqrt{i} + \sqrt{n/i}$

复杂度证明 (续)

$$\sum_{i=1}^{\sqrt{n}} \sqrt{i} + \sqrt{n/i}$$

显然后半部分比前半部分大,所以只需要估计

$$\sum_{i=1}^{\sqrt{n}} \sqrt{n/i}$$

由一些微积分知识我们有

$$\sum_{i=1}^{\sqrt{n}} \sqrt{n/i} = O\left(\int_0^{\sqrt{n}} \sqrt{n/i}\right) = O\left(n^{3/4}\right)$$

对杜教筛的简单优化

- ▶ 打表
- ▶ 注意到实际上由于线性筛的存在,我们可以先预处理 出一段 f(n) 在 [1,z] 前缀和
- ▶ 在递归到求 $x \le z$ 的 F(x) 时,就不再递归,直接 O(1) 返回对应值。
- ▶ 预处理复杂度 *O*(z)
- ▶ 我们仅需要对 x > z 的 x 递归算 F(x),这样的 x 是由 $i \le n/z$ 这样的 $\lfloor n/i \rfloor$ 产生的。
- ▶ 所以递归的复杂度,参考之前的复杂度分析,为 $O(\sum_{i=1}^{n/z} \sqrt{n/i})$
- ▶ 总复杂度 $O(z + \sum_{i=1}^{n/z} \sqrt{n/i})$
- $\sum_{i=1}^{n/z} \sqrt{n/i} = O(\frac{n}{\sqrt{z}})$,令 $z = n/\sqrt{z} = n^{2/3}$,则复杂度为 $O(n^{2/3})$

简单练习

求

$$\sum_{i=1}^{n} \varphi(i), n \le 10^{11}$$

- ▶ Hint: $\sum_{d|n} \varphi(d) = n$
- ▶ 杜教筛要找到函数 g,h, f*g=h
- ▶ 从而用 $F(n) = H(n) \sum_{i=2}^{n} g(i) F(\lfloor n/i \rfloor)$ 递归求 F(n)
- ▶ 能否根据提示给出 g,h 与 F 的递归式?

简单练习

求

$$\sum_{i=1}^{n} \varphi(i), n \le 10^{11}$$

- ▶ Hint: $\sum_{d|n} \varphi(d) = n$
- ▶ 杜教筛要找到函数 g,h, f*g=h
- ▶ 从而用 $F(n) = H(n) \sum_{i=2}^{n} g(i) F(\lfloor n/i \rfloor)$ 递归求 F(n)
- ▶ 能否根据提示给出 g,h 与 F 的递归式?
- ▶ 显然, g = 1, h = id, 即 g(x) = 1, h(x) = x
- ▶ 那么 G(x) = x, H(x) = x(x+1)/2

$$F(n) = \sum_{i=1}^{n} \varphi(i) = \frac{n(n+1)}{2} - \sum_{i=2}^{n} F(\lfloor n/i \rfloor)$$

对杜教筛的简单优化

- ▶ 打表
- ▶ 注意到实际上由于线性筛的存在,我们可以先预处理 出一段 f(n) 在 [1,z] 前缀和
- ▶ 在递归到求 $x \le z$ 的 F(x) 时,就不再递归,直接 O(1) 返回对应值。
- ▶ 预处理复杂度 *O*(z)
- ▶ 我们仅需要对 x > z 的 x 递归算 F(x),这样的 x 是由 $i \le n/z$ 这样的 $\lfloor n/i \rfloor$ 产生的。
- ▶ 所以递归的复杂度,参考之前的复杂度分析,为 $O(\sum_{i=1}^{n/z} \sqrt{n/i})$
- ▶ 总复杂度 $O(z + \sum_{i=1}^{n/z} \sqrt{n/i})$
- $\sum_{i=1}^{n/z} \sqrt{n/i} = O(\frac{n}{\sqrt{z}})$,令 $z = n/\sqrt{z} = n^{2/3}$,则复杂度为 $O(n^{2/3})$

另一道练习题

$$\sum_{i=1}^n \mu(i)$$

另一道练习题解

- ▶ 注意到 $\sum_{d|n} \mu(d) = [n=1]$
- ▶ g = 1, h = e 即为所求的 h, g 函数

又一道练习题

$$\sum_{i=1}^{n} \mu(i)i^2$$

又一道练习题

$$\Rightarrow \Leftrightarrow g(i) = i^2$$

▶
$$\mathbb{U}$$
 $g * f(n) = \sum_{d|n} \mu(d) d^2 \cdot \left(\frac{n}{d}\right)^2 = \sum_{d|n} \mu(d) = [n = 1]$

杜教筛的局限性

- ▶ 显然杜教筛最大的限制就是要找到函数 g,h 使得 f*g=h
- ▶ 这样的函数并不好找
- ▶ 需要一定的经验和数学直觉和大量草稿纸
- ▶ 针对这一问题,扩展埃氏筛可以给出一个较优的解决 方案

扩展 Eratosthenes 筛

- ▶ 由任之洲同学于 2016 年集训队论文首次引入 OI 界
- ▶ 可以用于解决较一般情况下的积性函数求和问题。
- ▶ 函数 f(x) 为积性函数。且 $f(p^k)$ 为关于 p,k 的多项式
- ▶ 复杂度为 $O\left(\frac{n^{3/4}}{\log n}\right)$
- ▶ 俗称"洲阁筛",本质上为 Eratosthenes 筛的一点拓展

从一个例子看起

- $\phi(n,d) = \prod_{i=1}^{k} (p_i^{c_i} + d)$
- $\phi(1,d) = 1$
- ▶ 对给定 n,d 求

$$\sum_{i=1}^{n} \phi(i,d)$$

• 我们记 $\phi(p) = G(p) = p + d, \phi(p^c) = T(p^c) = p^c + d$

简单推导

- ▶ 注意到对于 $x \le n$, x 最多只能拥有一个大于 \sqrt{n} 的质 因子
- ▶ 那么考虑将 $\sum_{i=1}^{n} \phi(i)$ 拆成两部分计算:有大因子的, 没有大因子的。

$$\sum_{i=1}^n \phi(i) = \sum_{\substack{x \leq n, \\ x \not \exists f
entroloop + T
otag }} \phi(x) \left(1 + \sum_{\substack{\sqrt{n}$$

- ▶ 注意到括号内的取值只与 [n/r] 取值有关
- ▶ 故可以按照 $\lfloor \frac{n}{r} \rfloor$ 取值将 $\phi(x)$ 分段

设 $y = \lfloor \frac{n}{r} \rfloor$, 即对每段分别计算

$$\sum_{\substack{\sqrt{n} 为质数}} G(p)$$
与 $\sum_{\substack{\lfloor \frac{n}{x} \rfloor = y \\ x 沒有大于 \sqrt{n}$ 素因子}} \phi(x)

第一部分

$$\sum_{\stackrel{\sqrt{n}$$

- G(p) = p + c
- ▶ 设不超过 \sqrt{n} 的素数有 m 个,依次为 p_1, \dots, p_m
- ▶ 设 g[i][j] 为 [1,j] 与前 i 个素数互质的所有数之和, g[0][j] = j(j+1)/2
- ▶ [1,j] 里与前 i-1 个素数互质且为 p_i 倍数的数的和为 $p_i g[i-1][\lfloor \frac{j}{p_i} \rfloor]$
- ▶ 所以 $g[i][j] = g[i-1][j] p_i g[i-1][\lfloor \frac{j}{p_i} \rfloor]$
- ▶ g[m][j]-1 即为 [1,j] 范围内大于 \sqrt{n} 的质数之和。
- ▶ 用类似的方法可以算出 [1,j] 范围内大于 \sqrt{n} 的质数的 k 次幂之和
- ▶ 注意到我们需要计算的 j 均为 $\lfloor \frac{n}{i} \rfloor$, 共有 \sqrt{n} 个

第一部分的暴力

$$g[i][j] = g[i-1][j] - p_i g[i-1][\lfloor \frac{j}{p_i} \rfloor]$$

- ▶ 一个结论: [1,n] 内的素数个数为 $O(n/\log n)$ 级别
- ▶ 单次状态转移的复杂度为 O(1)
- ▶ 考虑有效状态数即可算出复杂度
- ▶ 注意到第二维度一定是 |n/x| 的形式
- ▶ 其中对于 $\lfloor n/x \rfloor > \sqrt{n}$ 的第二维度,第一维度需要转移 \sqrt{n} 内的所有质数
- ▶ 对于 $\lfloor n/x \rfloor \le \sqrt{n}$,第一维度只需要转移 n/x 内的所有 质数
- ▶ 所以总复杂度为

$$\sum_{i=1}^{\sqrt{n}} O\left(\frac{i}{\log i}\right) + \sum_{i=1}^{\sqrt{n}} O\left(\frac{\sqrt{n}}{\log \sqrt{n}}\right) \approx O\left(\frac{n}{\log n}\right)$$

第一部分的优化

$$g[i][j] = g[i-1][j] - p_i g[i-1][\lfloor \frac{j}{p_i} \rfloor]$$

- ▶ 朴素 *O*(n/logn) 太慢
- ▶ 进行一些有理有据的「常数优化」
- ▶ 若 $p_{i+1} > j$,那么 g[i][j] = 1

第一部分的优化

$$g[i][j] = g[i-1][j] - p_i g[i-1][\lfloor \frac{j}{p_i} \rfloor]$$

- ▶ 朴素 *O*(n/logn) 太慢
- ▶ 进行一些有理有据的「常数优化」
- ▶ 若 $p_{i+1} > j$,那么 g[i][j] = 1
- ▶ 若 $p_i^2 > j \ge p_i$,则 $k = \lfloor \frac{j}{p_i} \rfloor < p_i, g[i-1][k] = 1$ 。 所以 $g[i][j] = g[i-1][j] p_i$

第一部分的优化

$$g[i][j] = g[i-1][j] - p_i g[i-1][\lfloor \frac{j}{p_i} \rfloor]$$

- ▶ 朴素 *O*(n/logn) 太慢
- ▶ 进行一些有理有据的「常数优化」
- ▶ 若 $p_{i+1} > j$,那么 g[i][j] = 1
- ▶ 若 $p_i^2 > j \ge p_i$,则 $k = \lfloor \frac{j}{p_i} \rfloor < p_i, g[i-1][k] = 1$ 。 所以 $g[i][j] = g[i-1][j] p_i$
- ▶ 计算时可以不用计算 $p_i^2 > j$ 的 i, 并记录对于每个 j 最后一次有效转移时的 i, 在计算别的 g[i'][j'] 用到 g[i][j] 时一并计算 (减去对应的素数之和)
- ▶ 那么对于 $\lfloor n/x \rfloor$ 只需要转移不超过 $\lfloor n/x \rfloor$ 的素数

优化后的第一部分复杂度

$$g[i][j] = g[i-1][j] - p_i g[i-1][\lfloor \frac{j}{p_i} \rfloor]$$

- ▶ 那么对于 |n/x| 只转移不超过 |n/x| 的素数
- ▶ 总复杂度为

$$\sum_{i=1}^{\sqrt{n}} O\left(\frac{\sqrt{i}}{\log \sqrt{i}}\right) + \sum_{i=1}^{\sqrt{n}} O\left(\frac{\sqrt{n/i}}{\log \sqrt{n/i}}\right) \approx O\left(\frac{n^{3/4}}{\log n}\right)$$

第二部分

$$\sum_{\stackrel{\lfloor \frac{n}{4} \rfloor = y}{x \wr 2 + \sqrt{n}} \land n \wr n} \phi(x)$$

- ▶ 相当于求只有前 m 种素因子的满足 $\lfloor \frac{n}{x} \rfloor = y$ 的 $\phi(x)$ 的 和 f[m][y]
- ▶ 设 f[i][j] 为只包含前 i 种素因子,且 $\lfloor \frac{n}{x} \rfloor = j$ 的 $\phi(x)$ 之和
- ▶ 注意到 j 的取值同样只有 $O(\sqrt{n})$ 种。
- ▶ 考虑由 f[i-1][j] 用质数 p_i 转移,枚举转移幂次 c,设 $l = \lfloor \frac{j}{p_i^c} \rfloor$,对 f[i][l] 的贡献为 $\phi(p_i^c)f[i-1][j]$

第二部分的暴力

$$\sum_{\stackrel{\lfloor \frac{n}{x} \rfloor = y}{x \not\ni f + \sqrt{n}}} \phi(x)$$

- 同样计算状态转移代价与状态数,考虑每个 [n/x] 有多少质数用来转移
- ▶ 枚举 c 对于每个 $\lfloor \frac{n}{x} \rfloor$ 的可能取值数。
- $h(n) = \sum_{k=2}^{\lfloor \log_2 n \rfloor} O\left(n^{1/k}\right) \approx O(\sqrt{n})$
- ▶ 则复杂度为

$$\sum_{i=1}^{\sqrt{n}} O\left(\frac{i+h(i)}{\log i}\right) + \sum_{i=1}^{\sqrt{n}} O\left(\frac{\sqrt{n}+h(n/i)}{\log \sqrt{n}}\right) \approx O\left(\frac{n}{\log n}\right)$$

▶ 依旧需要一些优化

第二部分的优化

- ▶ 考虑省去 $p_i^2 > j$ 的运算
- ▶ 设 $y = \lfloor \frac{n}{x} \rfloor$, 若 $y \leq \sqrt{n}$, 那么这个情况下

$$1+\sum_{\stackrel{\sqrt{n}$$

- ▶ 当 $p_i^2 > y$ 时, $\lfloor yp_i < p_i \le \sqrt{n}$,所以 y 至多用一次 p_i 去更新且更新完的结果对答案贡献倍率一定为 1
- ▶ 所以对于质数 p_i ,,只转移 $y \ge p_i^2$,设 $l = \lfloor \frac{j}{p_i^c} \rfloor$,如果 $l < p_i^2$,那么之后不对 g[i][l] 进行转移,所以在这个时候计算 g[i][l] 对最终答案的贡献,即统计 $[p_{i+1}, l]$ 范围内的 G(p) 之和,维护每个状态最后一次转移时的 p_i ,统计被忽略的一段 G(p) 之和
- ▶ 用类似的复杂度分析技巧可以估计出复杂度为 $O\left(\frac{n^{3/4}}{\log n}\right)$

第二部分优化后的复杂度分析

- ▶ 枚举 c 对于每个 $\lfloor \frac{n}{x} \rfloor$ 的可能 (p,c) 取值数(即转移分 支个数)。
- ▶ $h(n) = \sum_{k=2}^{\lfloor \log_2 n \rfloor} O\left(n^{1/k}\right) \approx O(\sqrt{n})$ 表示 $c \ge 2$ 时的转移分支个数
- ▶ 由于我们省去了 $p_i^2 > j$ 的考虑,那么就省去了第一层 c = 1 过全部 j 以内素数的问题。
- ▶ 则复杂度从

$$\sum_{i=1}^{\sqrt{n}} O\left(\frac{i+h(i)}{\log i}\right) + \sum_{i=1}^{\sqrt{n}} O\left(\frac{\sqrt{n}+h(n/i)}{\log \sqrt{n}}\right) \approx O\left(\frac{n}{\log n}\right)$$

▶ 变为

$$\sum_{i=1}^{\sqrt{n}} O\left(\frac{h(i)}{\log i}\right) + \sum_{i=1}^{\sqrt{n}} O\left(\frac{h(n/i)}{\log \sqrt{n}}\right) \approx O\left(\frac{n^{3/4}}{\log n}\right)$$

洲阁筛总结

- ightharpoonup 对求和函数形态要求较低,可以在 $O\left(\frac{n^{3/4}}{\log n}\right)$ 解决大量积性函数求和问题。
- ▶ 有一点点难写,推导记忆有一定难度。
- > 常数大
- ▶ 我知道你们都早就会了

yet another 扩展 Eratosthenes 筛

- ▶ 由 Min_25(山之内宏彰) 提出
- ▶ 好想好写不好证
- ▶ 复杂度,不严谨地,可以认为是 $O\left(\frac{n^{3/4}}{\log n}\right)$,但是常数小很多。
- ▶ 可能的别称: Min_25 筛
- ▶ 今天讲课的动机,之所以讲筛法也就是为了科普这个

简单转换

- ▶ 依旧是对一个积性函数 f 求前缀和 $S = \sum_{i=1}^{n} f(i)$
- ▶ 积性函数在 p^c 的取值是一个多项式
- ▶ 令 $minprime_i$ 表示能整除 i 的最小质数,即 i 的最小质 因数。
- ▶ 于是

$$\sum_{i=1}^n f(i) = 1 + \sum_{\substack{2 \leq p^c \leq n, \\ p \not\equiv f_0 \not\equiv 0}} f(p^c) \left(1 + \sum_{\substack{\substack{minprime_x > p \\ 2 \leq x \leq \lfloor \frac{n}{p^c} \rfloor}}} f(x) \right)$$

▶ 即提出最小质因子加速计算。

简单转换

- ▶ 注意到显然对于合数 i 有 $minprime_i \leq \sqrt{n}$,
- ▶ 所以可以拆成

▶ 能快速求 $g_{n,m}, h_n$ 就能快速求 $\sum f_i$

简单递归

$$g_{n,m} = \sum_{\substack{\substack{minprime_x > m \\ 2 \le x \le n}}} f(x)$$

$$= \sum_{\substack{p^c \le n, \\ p \not\equiv f \otimes b \\ m p \\ 2 \le x \le \lfloor \frac{n}{p^c} \rfloor}} f(x) \right) + \sum_{\substack{p \not\equiv f \otimes b \\ \sqrt{n}
$$= \sum_{\substack{p^c \le n, \\ p \not\equiv f \otimes b \\ m
$$(2)$$$$$$

 $g_{n,0}$ 即为所求解。

做法

假设我们已经对所有i求出了 h_i ,那么直接按照式子递归暴力求 $g_{n,0}$ 即可。

注意到有用的 h_i 一定满足存在正整数 m 使得 $\lfloor \frac{n}{m} \rfloor = i$ 。取值共有 $O(\sqrt{n})$ 个。假设 f(p) 为一个低次多项式,那么可以对不同次数分别算其对 h_n 的贡献。 故只需考虑

$$h_i = \sum_{{p \in \mathbb{J}} \atop 2$$

我们可以定义

$$h'_{ij} = \sum_{\substack{p \in \mathbb{Q} \ \text{ymin prime}_p > p_j \ 2$$

参考筛法,有

$$h'_{ij} = h'_{i,j-1} - p_j^k \left(h'_{\lfloor i/p_j \rfloor, j-1} - h'_{p_j-1, j-1} \right)$$

做法解释

筛出所有需要求解的 h,然后利用递归式求解,就得到了 一个好写代码常数小的积性函数求和代码。 对筛法的解释可以参考一个例子 定义 $h_i = \sum_{p \le i} p^2$, 则 $h_2 = 2^2, h_3 = 2^2 + 3^2, h_6 = 2^2 + 3^2 + 5^2$ 算法过程,一开始实际上是 $h_2 = 2^2, h_3 = 2^2 + 3^2, h_6 = 2^2 + 3^2 + 4^2 + 5^2 + 6^2$ 第一步将2的平方以上倍数筛去. $h_6 = h_6 - 2^2(h_3 - h_1) = h_6 - 2^2(2^2 + 3^2) = h_6 - (4^2 + 6^2)$, \square 删去当前求和序列中,最小质因数为2的和式。 第二步将 3 的平方以上倍数筛去,由于 $6 < 3^2$,未达成筛 去条件 (我们是从 p^2 开始筛的)。 所以最终有 $h_6 = 2^2 + 3^2 + 5^2$

复杂度分析

- ▶ 筛法部分的复杂度与洲阁筛非常相似(同样的 $p^2 > n$ 就跳过操作)
- ▶ 但是自然很多
- ▶ 容易证明复杂度也是

$$\sum_{i=1}^{\sqrt{n}} O\left(\frac{\sqrt{i}}{\log \sqrt{i}}\right) + \sum_{i=1}^{\sqrt{n}} O\left(\frac{\sqrt{n/i}}{\log \sqrt{n/i}}\right) \approx O\left(\frac{n^{3/4}}{\log n}\right)$$

- ▶ 暴力递归求 $g_{n,0}$ 这部分的时间复杂度较难分析,总体的复杂度当前只能证明其复杂度可能是近线性的 $\Theta(n^{1-\varepsilon})$,但实际表现非常优秀,我们可以证明在 $n \leq 10^{13}$ 的时候,运算次数不超过 $O\left(\frac{n^3/4}{\log n}\right)$
- ▶ 该部分复杂度证明略

筛法部分正确性证明

- ▶ 具体来说,筛法部分实际上是:
- ▶ 对于求 h_i ,采用欧拉筛法的思想,初始时将每个数都 视为质数,将 f_j ,2 \leq j \leq i 全部加到 h_i 中。然后从小 到大遍历每一质数 p ,令 i 从 n 开始,从大到小执行 以下操作:

$$h_i - = (h_{\lfloor \frac{i}{p} \rfloor} - h_{p-1}) f(p)$$

直到 $i < p^2$

▶ 我们注意到每执行完一个质数 p,对于每个 i, h_i 扣除 且仅扣除了所有满足 x 为合数且 $minprime_x \le p$ 的 f(x)。这一点可以用循环不变式归纳证明。

DIVCNT3³

约数个数 $\sigma_0(n)$ 函数为 n 的正约数个数

$$S_3(n) = \sum_{i=1}^n \sigma_0(i^3)$$

.

给定 $N \le 10^1 1$,10000 组询问,求 $S_3(n)$

¹http://www.spoj.com/problems/DIVCNT3/

DIVCNT3 解法

- ▶ 显然 $f(x) = \sigma_0(x^3)$, 那么 $f(p^k) = \sigma_0(p^{3k}) = 3k + 1$ 为 低次多项式
- ▶ 直接套用 Min_25 筛即可

【UR #13】 Sanrd⁴

f(n) = n的次大质因子 这里的次大为可重集的次大, 即 40 = 2 * 2 * 2 * 5, 则 f(40) = 2特别的 f(p) = f(1) = 0给定 $N \leq 10^{1}1$,求 $\sum_{i=1}^{n} f(i)$

¹http://uoj.ac/problem/188

Sanrd 解法

- ▶ 这里的 f 并不是积性函数,但不妨碍我们套用 Min_25 筛
- ▶ 令 $g_{n,m}$ 为 n 以内,最小质因数大于 p_m 的 f(i) 之和
- ▶ 转化为

$$\sum_{\substack{p^c \leq n, \\ p \not\in \S_0 \\ m 1] p + p([\mathsf{p}+1,\mathsf{n}/\mathsf{p}] \ \mathsf{内的质数个数}) + g_{\lfloor rac{p^c}{p^c} \rfloor,p}
ight)$$

▶ 直接得解

Min_25 筛的局限性

- ▶ 在筛 h_i 时,要求 f_i 为完全积性。
- ▶ 例如 μ 就不可以用 Min_25 筛的方法来求
- ▶ 初始 $h_4 = \mu(2) + \mu(3) + \mu(4) = -2$
- ▶ 筛去 2 后 $h_4 = h_4 \mu(2)(h_2 h_1) = h_4 \mu(2)^2 = -3$ 错误

引用及参考代码

- https://zhuanlan.zhihu.com/p/33544708
- ▶ 《一些特殊的数论函数求和问题》 朱震霆
- ▶ 《积性函数的几种求法》任之洲
- http://www.spoj.com/problems/TEES/

https://gist.github.com/zimpha/25929b668aed23a8607d233d69

陈牧歌