

A GESTURE – BASED TOOL FOR STERILE BROWSING OF RADIOLOGY IMAGES

NALAIYA THIRAN PROJECT BASED LEARNING

on

PROFESSIONAL READINESS FOR INNOVATION, EMPLOYABILITY AND ENTREPRENEURSHIP

A PROJECT REPORT

PRAISON SOLOMON V (19104129)
PUGAZHENDHI N (19104132)
VENKADESH R (19104169)
VIGNESH K (19104170)

BACHELOR OF COMPUTER SCIENCE AND ENGINEERING

HINDUSTHAN COLLEGE OF ENGINEERING AND TECHOLOGY

Approved by AICTE, New Delhi, Accredited with 'A' Grade by NAAC

(An Autonomous Institution, Affiliated to Anna University, Chennai)

COIMBATORE - 641 032

HINDUSTHAN COLLEGE OF ENGINEERING AND TECHOLOGY

Approved by AICTE, New Delhi, Accredited with 'A' Grade by NAAC

(An Autonomous Institution, Affiliated to Anna University, Chennai)

COIMBATORE – 641 032

INTERNAL MENTOR

TKP Rajagopal,

Assistant

Professor,

Department of Computer Science and

Engineering, Hindusthan College of

Engineering and Technology, Coimbatore-

641 032

INDUSTRY MENTOR

Pradeepthi

IBM

TABLE OF CONTENTS

CHAPTER NO	TITLE	PAGE NO
	ABSTRACT	1
1	INTRODUCTION	2
2	OBJECTIVE	3
	IDEATION PHASE	
	3.1 Literature Survey	
	3.2 Empathy Map	
3	3.3 Ideation	6
	3.4 Brainstorming	
	PROJECT DESIGN PHASE 1	
4	4.1 Proposed Solution	
	4.2 Problem Solution Fit	9
	4.3 Solution Architecture	
	PROJECT DESIGN PHASE 2	
5	5.1 Customer Journey Map	
	5.2 Solution Requirements	12
	5.3 Data Flow Diagrams	
	5.4 Technology Stack	
6	PROJECT PLANNING PHASE	
0	6.1 Prepare Milestone and Activity List	25

	6.2 Sprint Delivery Plan	
	PROJECT DEVELOPMENT PHASE	
	7.1 Project Development - Delivery of Sprint - 1	
7	7.2 Project Development - Delivery of Sprint - 2	
	7.3 Project Development - Delivery of Sprint - 3	33
	7.4 Project Development - Delivery of Sprint - 4	
8	CONCLUSION	56
9	REFERENCES	57
10	Github-Repo and Demonstration Link	58

Abstract

The use of doctor-computer interaction devices in the operation room (OR) requires new modalities that support medical imaging manipulation while allowing doctors' hands to remain sterile, supporting their focus of attention, and providing fast response times. This paper presents "Gestix," a vision-based hand gesture capture and recognition system that interprets in real-time the user's gestures for navigation and manipulation of images in an electronic medical record (EMR) database. Navigation and other gestures are translated to commands based on their temporal trajectories, through video capture. "Gestix" was tested during a brain biopsy procedure. In the in vivo experiment, this interface prevented the surgeon's focus shift and change of location while achieving a rapid intuitive reaction and easy interaction. Data from two usability tests provide insights and implications regarding human-computer interaction based on nonverbal conversational modalities.

CHAPTER 1

INTRODUCTION

Computer information technology is increasingly penetrating into the hospital domain. A major challenge involved in this process is to provide doctors with efficient, intuitive, accurate and safe means of interaction without affecting the quality of their work. Keyboards and pointing devices, such as a mouse, are today's principal method of human—computer interaction. However, the use of computer keyboards and mice by doctors and nurses in intensive care units (ICUs) is a common method for spreading infections. In this paper, we suggest the use of hand gestures as an alternative to existing interface techniques, offering the major advantage of sterility. Even though voice control also provides sterility, the noise level in the operating room (OR) deems it problematic.

In this work we refer to gestures as a basic form of non-verbal communication made with the hands. Psychological studies showed that young children use gestures to communicate before they learn to talk. Manipulation, as a form of gesticulation, is often used when people speak to each other about some object. Naturalness of expression, non-encumbered interaction, intuitiveness and high sterility are all good reasons to replace the current interface technology (e.g., keyboard, mouse, and joystick) with more natural interfaces.

The operation of the gesture interface was tested at the Washington Hospital Center in Washington, DC. Two operations were observed in the hospital's neurosurgery department and insights regarding the suitability of a hand gesture system was obtained. To our knowledge, this is the first time that a hand gesture recognition system was successfully implemented in an "in vivo" neurosurgical biopsy.

CHAPTER 2

OBJECTIVE

This paper presents a video-based hand gesture capture and recognition system used to manipulate magnetic resonance images (MRI) within a graphical user interface. A hand gesture vocabulary of commands was selected as being natural in the sense that each gesture is cognitively associated with the notion or command that is meant to represent it. For example, moving the hand left represents a "turn left" command.

CHAPTER 3: IDEATION PHASE

3.1 Literature Survey

Paper 1:

Bacterial contamination of computer keyboards in a teaching hospital.

Author: Schultz M, Gill J, Zubairi S, Huber R, Gordin F

https://pubmed.ncbi.nlm.nih.gov/12725363/

We tested 100 keyboards in 29 clinical for bacterial areas Ninety five contamination. microorganisms. were positive for Clostridium perfringens, Enterococcus (including Streptococcus, one vancomycin-resistant Enterococcus), Staphylococcus aureus, fungi, and gram-negative organisms isolated. were Paper 2:

Face Mouse: A Novel Human-Machine Interface for Controlling the Position of a Laparoscope

Author: Nishikawa A, Hosoi T, Koara K, Negoro D, Hikita A, Asano S, Kakutani H, Miyazaki F

https://ieeexplore.ieee.org/document/1236756

Robotic laparoscope positioners are now expected as assisting devices for solo surgery among endoscopic surgeons. In such robotic systems, (surgeon-robot) human-machine interface of the is it is the which importance because means by the communicates with and controls the robotic camera assistant. We have

designed a novel human-machine interface, called "FAce MOUSe", for controlling the position of a laparoscope.

Paper 3:

The NeuroStation- a highly accurate, minimally invasive solution to frameless stereotatic neurosurgery

Author: Smith KR, Frank KJ, Bucholz RD

https://pubmed.ncbi.nlm.nih.gov/7923044/

The NeuroStation is an image-guided neurosurgery workstation deliver frameless stereotaxy within ergonomic, designed to an integrated surgical environment. Generally, stereotaxy can provide the neurosurgeon with important intra-operative localization information using diagnostic images such as computerized tomography (CT) magnetic resonance imaging (MRI). To date, however, stereotaxy has not been widely accepted by neurosurgeons due procedural the to difficulties of incorporating conventional stereotaxy.

3.2 Empathy Map

3.2 Ideation

3.2 Problem Statement

Date	19 September 2022
Team ID	PNT2022TMID10032
Project Name	Project - A Gesture-based Tool for Sterile Browsing of Radiology Images
Maximum Marks	2 Marks
Who does the problem affect?	Different gestures can be predicted by this problem whose sterile images are uploaded and needed for the output.

What are the boundaries	Several health conditions, your		
of the problem?	lifestyle, and your age and family		
	history can increase your risk for heart		
	disease.		
What technology used to	Supervised and Un-supervised		
solve the issue?	machine learning, Data mining,		
	Computer vision with OpenCV, Python		
	web application interface - Flask,		
	Jupyter Notebook, IBM Cloud.		

Why is it important that
we fix the problem?

Predict if the patient suffers from different disease. The health professional enters the input values from the patient's health report. The data is fed into model which predicts different hand gestures based on the input values entered.

4. Project Design Phase-I

4.1 Proposed Solution - A Gesture-based Tool for Sterile Browsing of Radiology Images

Project Design Phase-I Proposed Solution

Date	02/11/2022
Team Id	PNT2022TMID10032
Project Name	Visualizing and Predicting Heart Diseases with an Interactive Dashboard
Maximum Marks	2 Marks

Proposed Solution Template:

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	To replicate sterile browsing skill in computers using image capture technology and classification techniques
2.	Idea / Solution description	A video based hand gesture capture and recognition system used to manipulate MRI within a graphical user interface

3.	Novelty / Uniqueness	By tracking the navigation and other gestures and translate to commands based on the temporal trajectories through video capture
4.	Social Impact / Customer Satisfaction	Doctors can analyse the image by having non-verbal communication
5.	Business Model (Revenue Model)	The business model of this system extracts intension and attention cues from the surgeon's behaviour. Hence, it is useful for the doctors and surgeons from any domain or region all over the world
6.	Scalability of the Solution	By adding few more gestures for manipulating the MRI images which are most essential for sterile browsing by doctors

4.2 Problem – Solution Fit

Date	05/11/2022
Team ID	PNT2022TMID10032
Project Name	Project - Visualizing and Predicting Heart Diseases with an Interactive Dashboard
Maximum Marks	2 Marks

Problem – Solution Fit Template:

The Problem-Solution Fit simply means that you have found a problem with your customer and that the solution you have realized for it actually solves the customer's problem. It helps entrepreneurs, marketers and corporate innovators identify behavioural patterns and recognize what would work and why.

Purpose:

- Solve complex problems in a way that fits the state of your customers.
- Succeed faster and increase your solution adoption by tapping into existing mediums and channels of behaviour.
- Sharpen your communication and marketing strategy with the right triggers and messaging.
- Increase touch-points with your company by finding the right problembehaviour fit and building trust by solving frequent annoyances, or urgent or costly problems.

Understand the existing situation in order to improve it for your target group.

5. PROJECT DESIGN PHASE 2

Project Title: A Gesture-based Tool for Sterile Browsing of Radiology Image Project Design Phase-I - Solution Fit Team ID PNT2022TMID10032 6. CUSTOMER CC 5. AVAILABLE SOLUTIONS 1. CUSTOMER SEGMENT(S) CS A video-based hand gesture capture and Neurology Doctors who analyzes As India is a developing country, the S recognition system used to manipulate MRI radiology images. technology growth is still in progress. In within a graphical user interface. fit into medical field also the implementation of A hand gesture vocabulary of commands are modern technology is growing. So, this selected such as 1-Resize, 2-Flip, 3-Rotate, 4concept is not aware among people in medical 8 Rectangle. field and the cost is also relatively high to deploy. RC BE 2. JOBS-TO-BE-DONE / PROBLEMS J&P 9. PROBLEM ROOT CAUSE 7. BEHAVIOUR The use of computer keyboards Neurology doctors face problem of The doctors/surgeons wish to browse and mice by doctors and nurses in spreading infection while using the image database. The hand is intensive care units (ICUs) is a computer keyboards and mouse in moved rapidly out of the neural area common method for spreading Intensive Care Unit(ICU) to view the so that a non-verbal interaction is infections. radiology images. possible to analyze the image. 3. TRIGGERS TR 10. YOUR SOLUTION 8. CHANNELS of BEHAVIOUR The use of hand gestures as an Since this is viewing the images to analyze the The image of the gesture captured in the alternative to existing interface details about the image both online and offline video frame is compared with the pre-trained technologies offers the advantage of modes are possible. model and the gesture is identified. This sterility.

5.1 Customer Journey Map - A Gesture-based Tool for Sterile Browsing of Radiology Images

Date	07/11/2022
Team ID	PNT2022TMID10032
	Visualizing and Predicting Heart
Project Name	Diseases with an Interactive Dash
	Board

Customer Journey Map:

The customer journey map is a visual representation of the steps a customer takes to complete a specific action, such as signing up for a product trial or subscribing to a newsletter. The more steps involved to complete the specific action, the more detailed the customer journey map will be.

Phases	Viewing the web page	Entering the web page	Exploring the web page	Exiting from web page
Steps	Explore the front view of the web page Read the introduction to know about the working	Sign up/Log in into the page using their email id, user name and password	Choose different hand gestures the gestures, for different purposes related to viewing images to viewing resize, rotate etc	Once using the web page leaving the page
Motivations	Feel excited to see the features	Have a user id and password of their own	Have remembera ble gesture for easy use	Feel satisfied with the features by exploring them
Actions	Enter into the wep page url to view the home page	Sign up the web page by entering the email id and creating user id and password if already signed up	Upload gestures for analyzing image (for sterile browsing)	Log out from web page after using them
Touchpoints	On entering web page there will be email id, contact number, Twitter account to contact company	On signing up there will be customer help option so that company can be contacted for any requirement	There will be a help option to clear doubts	There will be a review box were feedback of the web page can be posted.
Pain points	Feel easy to sign in and have an account	May feel uneasy to enter password and used id whenever they enter web page	May take some time to load the image and recognizing gesture	No issues on logging out

miro

5.2 Solution Requirements

Project Design Phase-II Solution Requirements (Functional & Non-functional)

Date	23/10/2022
Team ID	PNT2022TMID10032
Project Name	A Gesture-based Tool for Sterile Browsing of Radiology Images
Maximum Marks	4 Marks

Functional Requirements:

Following are the functional requirements of the proposed solution.

	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)	
FR-	User Registration	Registration through Gmail.	
FR- 2	User Confirmation	Confirmation via Email.	
FR-	User Sign up	Sign up using Gmail, user ID and password.	
FR- 4	User Login	Login using user ID and password.	
FR- 5	User Input	Setting unique hand gestures for easy and nonverbal communication.	
FR-	User Application	Input during usage of application to analyse the image via gestures.	

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

NF R	Non-Functional Requirement	Description	
No.	Kequirement		
NF	Usability	User friendly as the instructions are displayed to	
R-1		the user when they enter the home page. The page will load in a short duration.	
NF	Security	The user can only login with their user ID and	
R-2		password. The data will be protected from the unauthorized user	
NF	Reliability	The application will perform up to 80% without	
R-3		failure (in predicting the gesture)	
NF	Performance	The application will respond within short	
R-4		duration provided the reasonable network speed.	
NF	Availability	The application will be available as a web page.	
R-5		Like other websites this can be accessed with the	
		domain name. This is available as free service	
NF	Scalability	The application can be able to support the	
R-6		workload provided by the user to resize the	
		image to their convenience. By adding few more	
		gesturing for manipulation the MRI images which are most essential for sterile browsing by doctors	

5.3 Data Flow Diagrams and User Stories - Visualizing and Predicting Heart Diseases with an Interactive Dash Board

Data Flow Diagrams: Project Design Phase-II Data Flow Diagram & User Stories

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

Date	23/10/2022
Team ID	PNT2022TMID10032
Project Name	Project – A Gesture Based tool for sterile
	browsing of radiology images
Maximum Marks	4 marks

Flow:

- 1) User creates an account in the application.
- 2) User enters the medical records in the dashboard.
- 3) User can view the visualizations of trends in the form of graphs and charts for his/her medical records with the trained dataset.
- 4) User can view the accuracy of probability of occurrence of heart disease in the dashboard.

Data Flow Diagram:

Date	23/10/2022
Team ID	PNT2022TMID10032
Project Name	A Gesture-based Tool for Sterile Browsing of Radiology Images
Maximum Marks	4 Marks

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored

Flow

- User configures credentials for the Watson Natural Language Understanding service and starts the app.
- 2. User selects data file to process and load.
- 3. Apache Tika extracts text from the data file.
- 4. Extracted text is passed to Watson NLU for enrichment.
- 5. Enriched data is visualized in the UI using the D3.js library.

User Stories:

User	Functional	User	User	Acceptanc	Priorit	Releas
Type	Requireme	Story	Story /	e criteria	\mathbf{y}	e
	nt (Epic)	Numbe	Task			
		r				
Custome r (Doctor)	Medical image manipulatio n	USN-1	As a user, I can make use of medical image manipulati on and providing faster reponses at critical	I can access the image manipulati on data faster as before	High	Sprint-
			times			
		USN-2	As a user, This model has best ease of use— the system allows me to use just my hands as	I can achieve the set target in short span of time with ease of use	High	Sprint-

			a natural			
			work tool			
Custome	Gesture	USN-1	As a user,	I can use	High	Sprint-
r	commands		this	the		1
(Surgeo	operation in		prevents	browsing		
n)	real-		my focus	of data		
	time		shift and	with sterile		
			change of	postures		
			location			
			while			
			achieving a			
			rapid			
			intuitive			
			reaction			
			and easy			
			interaction.			
		USN-2	As a user,	I can	High	Sprint-
			this model	access the		1
			responds to	manipulate		
			the	d images		
			surgeon's	very fast		
			gesture	and		
			commands	intuitive		
			in real-time			
			(intuitive			
			and fast)			

5.3 Technology Stack

Date	23/10/2022
Team ID	PNT2022TMID10032
Project Name	A Gesture-based Tool for Sterile Browsing of Radiology Images
Maximum Marks	4 Marks

The architectural diagram of the model is as below and the Technology used is shown in table 1 & table 2

A Gesture- based tool for sterile browsing of Radiology Images

References:

https://www.researchgate.net/publication/351035037_Creating_domain_speci_fic_chatbot_using_IBM_Watson

Table-1: Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	How user	HTML, CSS,
		interacts with	JavaScript.
		application e.g.	
_		Web UI	
2.	Application Logic-	Upload image in an	Python
	1	application	
3.	Cloud Database	Database Service on	IBM DB2, IBM
		Cloud	Cloudant etc.
4.	Machine Learning	Purpose of Machine	Object
	Model	Learning Model	Recognition
			Model, etc.
5.	Infrastructure	Application	Local, Cloud
	(Server / Cloud)	Deployment on Local	Foundry,
		System / Cloud	Kubernetes, etc.
		Local Server	
		Configuration:	
		Cloud Server	
		Configuration:	
6.	Convolutional	Initialize the model	CNN Layer
	Neural Network		

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source	List the open-source	Tensor
	Frameworks	frameworks used	flow,Theano,
			RNN, pyTorch,
			Flask
2.	Scalable	Justify the scalability	Firewall and
	Architecture	of architecture (3 –	other security
		tier, Micro-services)	related softwares
3.	Availability	Justify the availability	Data, models,
		of application (e.g. use	operate at size,
		of load balancers,	speed,
		distributed servers etc.)	consistency and
			complexity
4.	Performance	The system responds to	Image and facial
		the user in a second	recognition,
		and the hardware and	speech
		software works well	recognition and
			real time
			captioning

References: https://www.ibm.com/cloud/architecture

6. PROJECT PLANNING

6.1 Milestone and Activity List

Date	23/10/2022
Team ID	PNT2022TMID10032
Project Name	A Gesture-based Tool for Sterile Browsing of Radiology Images

Activities:

S. No:	Milestone	Activities	Team Members
01.	Data	Download the Dataset	Vignesh K
	Collection		Pugazhendhi N
02.	Data	Image Pre-processing	Venkadesh R
	Collection		Praison Solomon V
03.	Data	Import the Image Data	Pugazhendhi N
	Collection	Generator Library	Venkadesh R
04.	Data	Configure Image Data	Vignesh K
	Collection	Generator	Praison Solomon V
		Class	
05.	Data	Apply Image Data	Vignesh K
	Collection	Generator	Venkadesh R

		Functionality to Trainset and Test set	
06.	Model Building	Import the Model Building Libraries	Pugazhendhi N Praison Solomon V
07.	Model Building	Initializing the Model	Pugazhendhi N Praison Solomon V
08.	Model Building	Adding CNN Layers	Vignesh K Pugazhendhi N
09.	Model Building	Adding Dense Layers	Venkadesh R Praison Solomon V
10.	Model Building	Configure the Learning Process	Pugazhendhi N Venkadesh R
11.	Model Building	Train The Model	Vignesh K Venkadesh R
12.	Model Building	Save the Model	Vignesh K Praison Solomon V
13.	Model Building	Test Model	Vignesh K Pugazhendhi N Venkadesh R Praison Solomon V
14.	Application Building	Create HTML Pages	Vignesh K Pugazhendhi N Venkadesh R Praison Solomon V
15.	Application Building	Build Python code	Vignesh K Pugazhendhi N Venkadesh R

			Praison Solomon V
16.	Application	Run the Application	Vignesh K
	Building		Pugazhendhi N
			Venkadesh R
			Praison Solomon V
17.	Train The	Register for IBM Cloud	Vignesh K
	Model on		Pugazhendhi N
	IBM		Venkadesh R
			Praison Solomon V
18.	Train The	Train Model on IBM	Vignesh K
	Model on		Pugazhendhi N
	IBM		Venkadesh R
			Praison Solomon V

6.2 Sprint Delivery Plan

Date	23/10/2022
Team ID	PNT2022TMID10032
Project Name	A Gesture-based Tool for Sterile Browsing of Radiology Images
Maximum marks	8 Marks

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points		Team Members
Sprint -1	Data Collection	USN-1	Download the Dataset	10	C	Venkadesh R Praison Solomon V
Sprint -1		USN-2	Image Preprocessing	10	_	Vignesh K Pugazhendhi N
Sprint -1		USN-3	Import and Configure the Image Data Generator Library and Class	10	_	Venkadesh R Praison Solomon V
Sprint -1		USN-4	Apply Image Data Generator	10	C	Venkadesh R Praison Solomon V

Sprint -2	Model Building	USN-5	Functionality to Train-Set and Test-Set Import the Model Building Libraries and Initializing	10	High	Vignesh K Pugazhendhi N
Sprint -2		USN-6	the Model Adding CNN Layers and Dense Layers		High	Venkadesh R Vignesh K
Sprint -2		USN-7	Configure the Learning Process	10	High	Pugazhendhi N Praison Solomon V
Sprint -2		USN-8	Train the Model, Save the Model and Test the Model	10	High	Praison Solomon V Pugazhendhi N
Sprint -3	Application Building	USN-9	Create Web Application using HTML, CSS, JavaScript	10	High	Venkadesh R Praison Solomon V
Sprint -3		USN-10	Build Python code	10	High	Venkadesh R Praison Solomon V

Sprint	Train The	USN-11	Register for	10	High	
-4	Model on		IBM Cloud			Vignesh K
	IBM					Pugazhendhi
						N
Sprint		USN-12	Train the	10	High	
-4			Model and			Pugazhendhi
			Test the			N
			Model and its			Venkadesh
			Overall			R
			Performance			

Project Tracker, Velocity & Burndown Chart: (4 Marks)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

Sprint	Total Score Points	Duration	Sprint Start Date	Sprint End Date (Planned)		Sprint Release Date(Actual)
Sprint -1	10	6 Days	24 Oct 2022	29 Oct 2022	10	29 Oct 2022
Sprint -2	10	6 Days	31 Oct 2022	05 Nov 2022	10	05 Nov 2022
Sprint -3	10	6 Days	07 Nov 2022	12 Nov 2022	10	12 Nov 2022
Sprint -4	10	6 Days	14 Nov 2022	19 Nov 2022	10	19 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day) .

Burndown Chart:

Road Map:

7 PROJECT DEVELOPMENT PHASE

7.1 Project Development - Delivery of Sprint - 1

Image Pre-processing

```
Team ID: PNT2022TMID10032
Project Title: A Gesture-based Tool for Sterile Browsing of Radiology Images.

IMAGE PREPROCESSING

In [40]: from google.colab import drive drive.mount('/content/drive')
Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

In [41]: from tensorflow.keras.preprocessing.image import ImageDataGenerator

In [42]: train_data_generator1 = ImageDataGenerator(rescale=1.0/255, horizontal_flip=True)
test_data_generator2 = ImageDataGenerator(rescale=1.0/255, horizontal_flip=True)

In [43]: train_data_generator2 = ImageDataGenerator(rescale=1.0/255, rotation_range=90)
test_data_generator3 = ImageDataGenerator(rescale=1.0/255, brightness_range=[0.2,1.0])
test_data_generator3 = ImageDataGenerator(rescale=1.0/255, brightness_range=[0.2,1.0])
test_data_generator3 = ImageDataGenerator(rescale=1.0/255, brightness_range=[0.2,1.0])
test_data_generator4 = ImageDataGenerator(rescale=1.0/255, zoom_range=[0.5,1.0])
```

```
trdatal = train_data_generator1.flow_from_directory('/content/drive/MyOrive/train-2022110670237292-001/train', target_size=(64,64), batch_size=(3), color_mo  
Found 594 images belonging to 6 classes.

In [48]: trdata2 = train_data_generator2.flow_from_directory('/content/drive/MyOrive/train-2022110670237292-001/train', target_size=(64,64), batch_size=(3), color_mo  
Found 594 images belonging to 6 classes.

In [49]: trdata3 = train_data_generator3.flow_from_directory('/content/drive/MyOrive/train-2022110670237292-001/train', target_size=(64,64), batch_size=(3), color_mo  
Found 594 images belonging to 6 classes.

In [50]: trdata4 = train_data_generator4.flow_from_directory('/content/drive/MyOrive/train-2022110670237292-001/train', target_size=(64,64), batch_size=(3), color_mo  
Found 594 images belonging to 6 classes.

In [51]: tsdata1 = test_data_generator1.flow_from_directory('/content/drive/MyOrive/train-2022110670237292-001/train', target_size=(64,64), batch_size=32, class_mode  
Found 594 images belonging to 6 classes.

In [52]: tsdata2 = test_data_generator2.flow_from_directory('/content/drive/MyOrive/test-2022110670238082-001/test', target_size=(64,64), batch_size=32, class_mode='
    Found 30 images belonging to 6 classes.

In [53]: tsdata3 = test_data_generator3.flow_from_directory('/content/drive/MyOrive/test-2022110670238082-001/test', target_size=(64,64), batch_size=32, class_mode='
    Found 30 images belonging to 6 classes.

In [54]: tsdata4 = test_data_generator4.flow_from_directory('/content/drive/MyOrive/test-2022110670238082-001/test', target_size=(64,64), batch_size=32, class_mode='
    Found 30 images belonging to 6 classes.
```

	{'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5}
In [56]:	<pre>print(trdata2.class_indices)</pre>
	{'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5}
In [57]:	<pre>print(trdata3.class_indices)</pre>
	{'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5}
In [58]:	<pre>print(trdata4.class_indices)</pre>
	{'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5}
In [59]:	<pre>print(tsdata1.class_indices)</pre>
	{'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5}
In [61]:	<pre>print(tsdata2.class_indices)</pre>
	{'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5}
In [62]:	<pre>print(tsdata3.class_indices)</pre>
	{'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5}
In [63]:	<pre>print(tsdata4.class_indices)</pre>
	{'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5}

Model Testing

Team ID: PNT2022TMID10032

Project Title: A Gesture-based Tool for Sterile Browsing of Radiology Images.

Model Testing

Found 594 images belonging to 6 classes. Found 30 images belonging to 6 classes.

Populating the interactive namespace from numpy and matplotlib

Out[31]: **(64, 64, 1)**

```
In [32]:
    from google.colab import drive
    drive.mount('/content/drive')
         Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).
In [33]: type(x)
Out[33]: numpy.ndarray
In [34]: #changing the shape
          x = np.expand_dims(x,axis = 0)
In [35]: x.shape
Out[35]: (1, 64, 64, 1)
In [36]:
          pred = model.predict(x)
          pred
         1/1 [======] - 0s 90ms/step
Out[36]: array([[1., 0., 0., 0., 0., 0.]], dtype=float32)
In [37]: x_test.class_indices
Out[37]: {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5}
In [38]: index=['0','1','2','3','4','5']
```

MODEL BUILDING

```
Team ID: PNT2022TMID10032
                Project Title: A Gesture-based Tool for Sterile Browsing of Radiology Images.
                Model Training
                Importing Packages
import numpy as np
import tensorflow
                  from tensorflow.keras.models import Sequential
                  from tensorflow.keras import layers from tensorflow.keras.layers import Dense,Flatten, Dropout
                  from tensorflow.keras.layers import Conv2D,MaxPooling2D
                  {\bf from\ keras.preprocessing.image\ import\ ImageDataGenerator}
                Image Data Argumentation
  In [5]: train_datagen = ImageDataGenerator(rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True)
                  test_datagen = ImageDataGenerator(rescale=1./255)
                Loading Our Data And Perform Data Argumentation
In [75]: x_test = test_datagen.flow_from_directory(r'/content/drive/MyDrive/train-20221106T023729Z-001/train', target_size=(64, 64), batch_size=3, color_mode='grax_train = train_datagen.flow_from_directory(r'/content/drive/MyDrive/test-20221106T023808Z-001/test', target_size=(64, 64), batch_size=3, color_mode='grax_train = train_datagen.flow_from_directory(r'/content/drive/MyDrive/test-20221106T023808Z-001/test', target_size=(64, 64), batch_size=3, color_mode='grax_train = train_datagen.flow_from_directory(r'/content/drive/MyDrive/test-20221106T023808Z-001/test', target_size=(64, 64), batch_size=3, color_mode='grax_train = train_datagen.flow_from_directory(r'/content/drive/MyDrive/test-20221106T023808Z-001/test')
                Found 594 images belonging to 6 classes.
                Found 30 images belonging to 6 classes.
```

```
In [76]:
         print(x_train.class_indices)
        {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5}
        Initializing The Model
         model=Sequential()
        Adding CNN Layers
In [78]:
         model.add(Conv2D(32, (3, 3), input_shape=(64, 64, 1), activation='relu'))
         model.add(MaxPooling2D(pool_size=(2, 2)))
In [79]:
         model.add(Conv2D(32, (3, 3), activation='relu'))
         model.add(MaxPooling2D(pool_size=(2, 2)))
In [80]:
         model.add(Flatten())
        Adding Dense Layers
In [81]:
         model.add(Dense(units=512, activation='relu'))
In [82]:
         model.add(Dense(units=6, activation='softmax'))
In [83]:
         model.summary()
In [90]: model.fit_generator(x_train,steps_per_epoch= len(x_train),
                           epochs= 25,
validation_data=x_test,
                           validation_steps=len(x_train))
         Epoch 1/25
         /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:4: UserWarning: `Model.fit_generator` is deprecated and will be removed in a future version.
         Please use `Model.fit`, which supports generators. after removing the cwd from sys.path.
         10/10 [=====
                                        ==] - 2s 108ms/step - loss: 0.0838 - accuracy: 0.9667 - val_loss: 4.8002 - val_accuracy: 0.3667
         Epoch 2/25
         10/10 [===
                                Fnoch 3/25
         10/10 [====
                                    ======] - 1s 90ms/step - loss: 0.1411 - accuracy: 0.9333 - val_loss: 2.1161 - val_accuracy: 0.6000
         Epoch 4/25
                                ========] - 1s 102ms/step - loss: 0.0870 - accuracy: 0.9667 - val_loss: 3.3258 - val_accuracy: 0.3667
         10/10 [===:
         Epoch 5/25
         10/10 [====
                                 =======] - 1s 86ms/step - loss: 0.0609 - accuracy: 0.9667 - val_loss: 4.7341 - val_accuracy: 0.3667
         Enoch 6/25
         10/10 [===:
                                        ===] - 1s 102ms/step - loss: 0.0070 - accuracy: 1.0000 - val_loss: 2.9502 - val_accuracy: 0.5667
         Epoch 7/25
         10/10 [===:
                                  =======] - 1s 87ms/step - loss: 0.0352 - accuracy: 0.9667 - val loss: 2.4555 - val accuracy: 0.6333
         Epoch 8/25
         10/10 [====
Epoch 9/25
                                ========] - 1s 92ms/step - loss: 0.0440 - accuracy: 0.9667 - val_loss: 3.2904 - val_accuracy: 0.5667
         10/10 [====
                              =========] - 1s 106ms/step - loss: 0.0055 - accuracy: 1.0000 - val_loss: 2.6798 - val_accuracy: 0.6667
         Enoch 10/25
         10/10 [====
                                Epoch 11/25
                       ==========] - 1s 86ms/step - loss: 0.0044 - accuracy: 1.0000 - val loss: 4.1461 - val accuracy: 0.5333
         10/10 [======
         Epoch 12/25
         10/10 [====
                              ========] - 1s 91ms/step - loss: 0.0031 - accuracy: 1.0000 - val_loss: 5.3703 - val_accuracy: 0.5667
         Epoch 13/25
         10/10 [=====
                      Epoch 14/25
```

```
10/10 [====
                          =========] - 1s 91ms/step - loss: 0.0031 - accuracy: 1.0000 - val_loss: 5.3703 - val_accuracy: 0.5667
        Epoch 13/25
        10/10 [=====
                         ===========] - 1s 107ms/step - loss: 0.0010 - accuracy: 1.0000 - val_loss: 3.1483 - val_accuracy: 0.6000
        Epoch 14/25
        10/10 [====
                                        ===] - 1s 92ms/step - loss: 0.0065 - accuracy: 1.0000 - val_loss: 3.0748 - val_accuracy: 0.5667
        Epoch 15/25
                             =======] - 1s 106ms/step - loss: 0.0016 - accuracy: 1.0000 - val_loss: 4.2850 - val_accuracy: 0.7000
        10/10 [=====
        Epoch 16/25
        10/10 [====
                                            - 1s 105ms/step - loss: 6.9349e-04 - accuracy: 1.0000 - val_loss: 6.7626 - val_accuracy: 0.5333
        Epoch 17/25
                                            - 1s 88ms/step - loss: 4.1833e-04 - accuracy: 1.0000 - val loss: 4.0649 - val accuracy: 0.4333
        10/10 [====
        Epoch 18/25
        10/10 [===
                                              1s 89ms/step - loss: 2.2985e-04 - accuracy: 1.0000 - val_loss: 6.8380 - val_accuracy: 0.5000
        Epoch 19/25
        10/10 [===
                                            - 1s 104ms/step - loss: 6.7672e-04 - accuracy: 1.0000 - val_loss: 5.0654 - val_accuracy: 0.5667
        Epoch 20/25
                                       ====] - 1s 89ms/step - loss: 8.1685e-04 - accuracy: 1.0000 - val loss: 2.6641 - val accuracy: 0.6667
        10/10 [====
        Epoch 21/25
        10/10 [====
                                  Epoch 22/25
        10/10 [====
                                            - 1s 92ms/step - loss: 3.6468e-04 - accuracy: 1.0000 - val loss: 6.2225 - val accuracy: 0.5333
        Epoch 23/25
        10/10 [====
                                 ========] - 1s 87ms/step - loss: 2.6394e-04 - accuracy: 1.0000 - val_loss: 2.2229 - val_accuracy: 0.7333
        Epoch 24/25
        10/10 [====
                                ========] - 1s 88ms/step - loss: 1.9120e-04 - accuracy: 1.0000 - val_loss: 7.6336 - val_accuracy: 0.5333
        Epoch 25/25
        10/10 [====
                                   =======] - 1s 88ms/step - loss: 1.4391e-04 - accuracy: 1.0000 - val_loss: 4.6080 - val_accuracy: 0.5000
Out[90]:
```

Save The Model

[n [91]: model.save('gesture.h5')

Model: "sequential_2"

Layer (type)	Output Shape	Param #
conv2d_4 (Conv2D)	(None, 62, 62, 32)	320
max_pooling2d_4 (MaxPooling 2D)	g (None, 31, 31, 32)	0
conv2d_5 (Conv2D)	(None, 29, 29, 32)	9248
max_pooling2d_5 (MaxPooling 2D)	g (None, 14, 14, 32)	0
flatten_2 (Flatten)	(None, 6272)	0
dense_10 (Dense)	(None, 512)	3211776
dense_11 (Dense)	(None, 6)	3078
Total params: 3,224,422 Trainable params: 3,224,422 Non-trainable params: 0		

Configure The Learning Process

In [88]: model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

Train The Model

7.2 Project Development - Delivery of Sprint - 2

Templates:

Home:

```
<!DOCTYPE html>
<html lang="en">
<head>
        <meta charset="utf-8">
  <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-</pre>
fit=no">
  <meta name="description" content="Start your development with Creative Design
landing page.">
  <meta name="author" content="Devcrud">
  <title>Hand Gesture Recognition</title>
  k rel="stylesheet" href="../static/vendors/themify-icons/css/themify-icons.css">
        <link rel="stylesheet" href="../static/css/creative-design.css">
<style>
.header {
 background: #efefef url(../static/imgs/3.jpg);
 background-size: cover;
 background-position: center center;
 background-repeat: no-repeat;
 text-align: center;
 color: white:
 position: relative;
 height: 598px;
 position: relative;
</style>
</head>
<body data-spy="scroll" data-target=".navbar" data-offset="40" id="home">
  <!-- Page Navbar -->
  <nav id="scrollspy" class="navbar page-navbar navbar-light navbar-expand-md fixed-
top" data-spy="affix" data-offset-top="20">
     <div class="container">
```

```
<a class="navbar-brand" href="#"><strong class="text-primary">Hand</strong>
<span class="text-dark">Gesture</span></a>
      <button class="navbar-toggler" type="button" data-toggle="collapse" data-
target="#navbarSupportedContent" aria-controls="navbarSupportedContent" aria-
expanded="false" aria-label="Toggle navigation">
        <span class="navbar-toggler-icon"></span>
      </button>
      <div class="collapse navbar-collapse" id="navbarSupportedContent">
         cli class="nav-item">
             <a class="nav-link" href="home.html">Home</a>
           cli class="nav-item">
             <a class="nav-link" href="intro.html">Introduction</a>
           class="nav-item">
             <a class="nav-link" href="index6.html">Predict</a>
           </div>
    </div>
  </nav><!-- End of Page Navbar -->
  <!-- Page Header -->
  <header id="home" class="header">
<img src="../static/imgs/11.png" style="width:1000px;height:600px;">
    <div class="overlay"></div>
    <div class="header-content">
      Image Processing Using Hand Gesture
      <h1>A Gesture-based Tool for Sterile Browsing of Radiology Images</h1>
    </div>
  </header><!-- End of Page Header -->
```

Index:

```
<!DOCTYPE html>
<html lang="en">
<head>
        <meta charset="utf-8">
  <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-</pre>
fit=no">
  <meta name="description" content="Start your development with Creative Design
landing page.">
  <meta name="author" content="Devcrud">
  <title>Hand Gesture Recognition</title>
  <link rel="stylesheet" href="../static/vendors/themify-icons/css/themify-icons.css">
        <link rel="stylesheet" href="../static/css/creative-design.css">
<style>
.header {
 background: #efefef url(../static/imgs/3.jpg);
 background-size: cover;
 background-position: center center;
 background-repeat: no-repeat;
 text-align: center;
 color: white;
 position: relative;
 height: 598px;
 position: relative;
</style>
</head>
<body data-spy="scroll" data-target=".navbar" data-offset="40" id="home">
  <!-- Page Navbar -->
  <nav id="scrollspy" class="navbar page-navbar navbar-light navbar-expand-md fixed-
top" data-spy="affix" data-offset-top="20">
     <div class="container">
       <a class="navbar-brand" href="#"><strong class="text-primary">Hand</strong>
<span class="text-dark">Gesture</span></a>
       <button class="navbar-toggler" type="button" data-toggle="collapse" data-
target="#navbarSupportedContent" aria-controls="navbarSupportedContent" aria-
expanded="false" aria-label="Toggle navigation">
         <span class="navbar-toggler-icon"></span>
```

```
</button>
      <div class="collapse navbar-collapse" id="navbarSupportedContent">
        class="nav-item">
             <a class="nav-link" href="home.html">Home</a>
          cli class="nav-item">
             <a class="nav-link" href="intro.html">Introduction</a>
          cli class="nav-item">
             <a class="nav-link" href="index6.html">Predict</a>
          </div>
    </div>
  </nav><!-- End of Page Navbar -->
  <!-- Page Header -->
  <header id="home" class="header">
<img src="../static/imgs/11.png" style="width:1000px;height:600px;">
    <div class="overlay"></div>
    <div class="header-content">
      Image Processing Using Hand Gesture
      <h1>A Gesture-based Tool for Sterile Browsing of Radiology Images</h1>
      <button class="btn btn-outline-light">Upload Image</button>
    </div>
  </header><!-- End of Page Header -->
```

Intro:

```
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
```

```
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-</pre>
fit=no">
  <meta name="description" content="Start your development with Creative Design
landing page.">
  <meta name="author" content="Devcrud">
  <title>Hand Gesture Recognition</title>
  <link rel="stylesheet" href="../static/vendors/themify-icons/css/themify-icons.css">
       <link rel="stylesheet" href="../static/css/creative-design.css">
<style>
.header {
 background: #efefef url(../static/imgs/1.jpg);
 background-size: cover;
 background-position: center center;
 background-repeat: no-repeat;
 text-align: center;
 color: white:
 position: relative;
 height: 598px;
 position: relative;
</style>
</head>
<body data-spy="scroll" data-target=".navbar" data-offset="40" id="home">
  <!-- Page Navbar -->
  <nav id="scrollspy" class="navbar page-navbar navbar-light navbar-expand-md fixed-
top" data-spy="affix" data-offset-top="20">
    <div class="container">
       <a class="navbar-brand" href="#"><strong class="text-primary">Hand</strong>
<span class="text-dark">Gesture</span></a>
       <div class="collapse navbar-collapse" id="navbarSupportedContent">
         class="nav-item">
              <a class="nav-link" href="home.html">Home</a>
           class="nav-item">
              <a class="nav-link" href="intro.html">Introduction</a>
           cli class="nav-item">
              <a class="nav-link" href="index6.html">Predict</a>
```

```
</div>
     </div>
  </nav><!-- End of Page Navbar -->
  <!-- Page Header -->
  <header id="home" class="header">
     <div class="overlay"></div>
     <div class="header-content">
       Image Processing Using Hand Gesture
       <h3 style="color:yellow;">A Gesture-based Tool for Sterile Browsing of
Radiology Images</h3>
                               < h4 >
                                         Hand Gesture recognition system provides us
with an innovative, natural, user-friendly way of interacting with the computer which
is more familiar to human beings. In our project, the hand region is extracted
from the background by using the Region of interest. Then, we will be predicted
the labels based on the CNN-trained model weights of hand gestures using that predicted
labels we apply if conditions to control some of the actions like reshaping, blurring, and
flip of the given image. <h4>
     </div>
  </header><!-- End of Page Header -->
  <!DOCTYPE html>
<html lang="en">
<head>
        <meta charset="utf-8">
  <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-</pre>
fit=no">
  <meta name="description" content="Start your development with Creative Design
landing page.">
  <meta name="author" content="Devcrud">
  <title>Hand Gesture Recognition</title>
  <link rel="stylesheet" href="../static/vendors/themify-icons/css/themify-icons.css">
        <link rel="stylesheet" href="../static/css/creative-design.css">
<style>
.header {
 background: #efefef url(../static/imgs/1.jpg);
 background-size: cover;
```

```
background-position: center center;
 background-repeat: no-repeat;
 text-align: center;
 color: white;
 position: relative;
 height: 598px;
 position: relative;
</style>
</head>
<body data-spy="scroll" data-target=".navbar" data-offset="40" id="home">
  <!-- Page Navbar -->
  <nav id="scrollspy" class="navbar page-navbar navbar-light navbar-expand-md fixed-
top" data-spy="affix" data-offset-top="20">
    <div class="container">
      <a class="navbar-brand" href="#"><strong class="text-primary">Hand</strong>
<span class="text-dark">Gesture</span></a>
      <div class="collapse navbar-collapse" id="navbarSupportedContent">
         cli class="nav-item">
             <a class="nav-link" href="home.html">Home</a>
           cli class="nav-item">
             <a class="nav-link" href="intro.html">Introduction</a>
           cli class="nav-item">
             <a class="nav-link" href="index6.html">Predict</a>
           </div>
    </div>
  </nav><!-- End of Page Navbar -->
  <!-- Page Header -->
  <header id="home" class="header">
    <div class="overlay"></div>
    <div class="header-content">
      Image Processing Using Hand Gesture
```

<h3 style="color:yellow;">A Gesture-based Tool for Sterile Browsing of Radiology Images</h3>

<h4> Hand Gesture recognition system provides us with an innovative, natural, user-friendly way of interacting with the computer which is more familiar to human beings. In our project, the hand region is extracted from the background by using the Region of interest. Then, we will be predicted the labels based on the CNN-trained model weights of hand gestures using that predicted labels we apply if conditions to control some of the actions like reshaping, blurring, and flip of the given image. <h4>

</div>
</header><!-- End of Page Header -->

7.3 Project Development - Delivery of Sprint – 3

Build Python Code

- Build flask file 'app.py' which is a web framework written in pythonfor server-side scripting.
- App starts running when "name constructor is called in main.
- render_template is used to return html file.
- "GET" method is used to take input from the user.
- "POST" method is used to display the output to theuser.
- Importing Libraries

```
from flask import Flask,render_template,request
# Flask-It is our framework which we are going to use to run/serve our application.
#request-for accessing file which was uploaded by the user on our application.
import operator
import cv2 # opencv library
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np

from tensorflow.keras.models import load_model#to load our trained model
import os
from werkzeug.utils import secure_filename
```

Run the Application:

At last, we will run our flask application

```
if __name__ == "__main__":
    # running the app
    app.run(debug=False)
```

Run The app in local browser

- Open anaconda prompt from the start menu
- Navigate to the folder where your python script is.
- Now type "python app.py" command

Navigate to the localhost where you can view your web page

```
(base) E:\>cd E:\PROJECTS\number-sign-recognition\Flask
(base) E:\PROJECTS\number-sign-recognition\Flask>python app.py
```

Then it will run on localhost:5000

```
* Serving Flask app "app" (lazy loading)

* Environment: production

WARNING: This is a development server. Do not use it in a production deployment.

Use a production WSGI server instead.

* Debug mode: off

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
```

7.4 Project Development - Delivery of Sprint - 4

Train Model On IBM:

```
import os, types
from ibm watson machine learning import APIClient
import pandas as pd
from botocore.client import Config
import ibm_boto3
from io import BytesIO
import zipfile
#Due to privacy concerns, I've not mentioned the API Keys and Endpoints Here
def iter (self): return 0
cos_client = ibm_boto3.client(service_name='s3',
  ibm_api_key_id=<api_key>,
  ibm_auth_endpoint=<end_point>,
  config=Config(signature version='oauth'),
  endpoint_url=<end_point_url>')
bucket = <bucket_name>
object key = <object key>
streaming_body_1 = cos_client.get_object(Bucket=bucket, Key=object_key)['Body']
unzip=zipfile.ZipFile(BytesIO(streaming_body_1.read()),'r')
filepaths=unzip.namelist()
for path in filepaths:
  unzip.extract(path)
train_datagen = ImageDataGenerator( rescale=1./255,
                     rotation_range=10.,
                     width shift range=0.1,
                     height_shift_range=0.1,
                     zoom range=0.2,
                     horizontal_flip=True
train_gen = train_datagen.flow_from_directory(
    r'/home/wsuser/work/Finger Dataset/train',
    target_size=(128,128),
```

```
color_mode='grayscale',
    batch size=32,
    classes=['0','1','2','3','4','5'],
    class_mode='categorical'
  )
test datagen = ImageDataGenerator( rescale=1./255 )
test_gen = test_datagen.flow_from_directory(
    r'/home/wsuser/work/Finger Dataset/test',
    target_size=(128,128),
    color_mode='grayscale',
    batch_size=32,
    classes=['0','1','2','3','4','5'],
    class_mode='categorical'
  )
model=Sequential()
model.add(BatchNormalization(input_shape = (128,128,1)))
model.add(Convolution2D(32, (3,3), activation ='relu', input_shape = (128, 128, 1)))
model.add(MaxPooling2D(pool_size=2))
model.add(Convolution2D(filters=6,kernel_size=4,padding='same',activation='relu'))
model.add(MaxPooling2D(pool_size=2))
model.add(Convolution2D(filters=128,kernel_size=3,padding='same',activation='relu'))
model.add(MaxPooling2D(pool_size=2))
model.add(Convolution2D(filters=128,kernel size=2,padding='same',activation='relu'))
model.add(MaxPooling2D(pool_size=2))
model.add(Flatten())
model.add(Dense(units=128,activation = 'relu'))
model.add(Dense(units = 64, activation = 'relu'))
model.add(Dense(units = 32, activation = 'relu'))
model.add(Dense(units = 6, activation = 'softmax'))
model.summary()
model.compile(optimizer='adam', loss = 'categorical_crossentropy',metrics = ['accuracy'])
model.fit_generator(train_gen,
            epochs=20,
            steps_per_epoch=18000//32,
            validation_data=test_gen,
            verbose = 1, validation steps=3600//32)
model.save('gesture.h5')
wml_credentials={
  "url": 'https://us-south.ml.cloud.ibm.com',
  "apikey": 'on6wVLLy-ERS74JlvyDrFdJ35GRaHzaCtKxejqR7euwG'
```

```
client=APIClient(wml_credentials)
def guid_from_space_name(client,space_name):
  space=client.spaces.get details()
  return(next(item for item in space['resources'] if
item['entity']['name']==space name)['metadata']['id'])
space_uid=guid_from_space_name(client,'Gesture_Deploy')
client.set.default_space(space_uid)
software_spec_uid=client.software_specifications.get_uid_by_name('tensorflow_rt22.1-
py3.9')
!tar -zcvf gesture_based_tool.tgz gesture.h5
model_details=client.repository.store_model(model='gesture_based_tool.tgz',meta_props
={
                          client.repository.ModelMetaNames.NAME:"Gesture Based
Tool",
                          client.repository.ModelMetaNames.TYPE:"tensorflow 2.7",
client.repository.ModelMetaNames.SOFTWARE SPEC UID:software spec uid
                           }
                         )
model_id=client.repository.get_model_id(model_details)
Footer
© 2022 GitHub, Inc.
Footer navigation
Terms
Privacy
Security
Status
Docs
Contact GitHub
Pricing
API
Training
```

```
Blog
About
import os, types
from ibm watson machine learning import APIClient
import pandas as pd
from botocore.client import Config
import ibm boto3
from io import BytesIO
import zipfile
#Due to privacy concerns, I've not mentioned the API Keys and Endpoints Here
def iter (self): return 0
cos_client = ibm_boto3.client(service_name='s3',
  ibm_api_key_id=<api_key>,
  ibm auth endpoint=<end point>,
  config=Config(signature_version='oauth'),
  endpoint_url=<end_point_url>')
bucket = <bucket name>
object key = <object key>
streaming body 1 = cos client.get object(Bucket=bucket, Key=object key)['Body']
unzip=zipfile.ZipFile(BytesIO(streaming_body_1.read()),'r')
filepaths=unzip.namelist()
for path in filepaths:
  unzip.extract(path)
train_datagen = ImageDataGenerator( rescale=1./255,
                     rotation range=10.,
                     width_shift_range=0.1,
                     height shift range=0.1,
                     zoom_range=0.2,
                     horizontal flip=True
train gen = train datagen.flow from directory(
    r'/home/wsuser/work/Finger Dataset/train',
    target_size=(128,128),
    color_mode='grayscale',
```

```
batch_size=32,
    classes=['0','1','2','3','4','5'],
    class_mode='categorical'
  )
test_datagen = ImageDataGenerator( rescale=1./255 )
test_gen = test_datagen.flow_from_directory(
    r'/home/wsuser/work/Finger Dataset/test',
    target size=(128,128),
    color_mode='grayscale',
    batch size=32,
    classes=['0','1','2','3','4','5'],
    class_mode='categorical'
  )
model=Sequential()
model.add(BatchNormalization(input_shape = (128,128,1)))
model.add(Convolution2D(32, (3,3), activation = 'relu', input_shape = (128, 128, 1)))
model.add(MaxPooling2D(pool_size=2))
model.add(Convolution2D(filters=6,kernel_size=4,padding='same',activation='relu'))
model.add(MaxPooling2D(pool_size=2))
model.add(Convolution2D(filters=128,kernel_size=3,padding='same',activation='relu'))
model.add(MaxPooling2D(pool size=2))
model.add(Convolution2D(filters=128,kernel_size=2,padding='same',activation='relu'))
model.add(MaxPooling2D(pool size=2))
model.add(Flatten())
model.add(Dense(units=128,activation = 'relu'))
model.add(Dense(units = 64, activation = 'relu'))
model.add(Dense(units = 32, activation = 'relu'))
model.add(Dense(units = 6, activation = 'softmax'))
model.summary()
model.compile(optimizer='adam', loss = 'categorical_crossentropy',metrics = ['accuracy'])
model.fit_generator(train_gen,
            epochs=20,
            steps_per_epoch=18000//32,
            validation_data=test_gen,
            verbose = 1, validation_steps=3600//32)
model.save('gesture.h5')
wml credentials={
  "url": 'https://us-south.ml.cloud.ibm.com',
  "apikey":'on6wVLLy-ERS74JlvyDrFdJ35GRaHzaCtKxejqR7euwG'
```

```
client=APIClient(wml_credentials)
def guid_from_space_name(client,space_name):
  space=client.spaces.get_details()
  return(next(item for item in space['resources'] if
item['entity']['name']==space_name)['metadata']['id'])
space_uid=guid_from_space_name(client,'Gesture_Deploy')
client.set.default_space(space_uid)
software_spec_uid=client.software_specifications.get_uid_by_name('tensorflow_rt22.1-
py3.9')
!tar -zcvf gesture_based_tool.tgz gesture.h5
model_details=client.repository.store_model(model='gesture_based_tool.tgz',meta_props
={
                          client.repository.ModelMetaNames.NAME:"Gesture Based
Tool",
                          client.repository.ModelMetaNames.TYPE:"tensorflow_2.7",
client.repository.ModelMetaNames.SOFTWARE_SPEC_UID:software_spec_uid
model_id=client.repository.get_model_id(model_details)
```

Conclusion:

In this project we developed a tool which recognises hand gestures and enables doctors to browse through radiology images using these gestures. This enables doctors and surgeons to maintain the sterility as they would not have to touch any mouse or keyboard to go through the images. This tool is also easy to use and is quicker than the regular method of using mouse/keyboard.

It can be used regardless of the users location since they don't have to be in contact with any device. It also does not require the user to have any device on them to use it.

Further this technology can be extended to other industries like it can be used by presenters, by teachers for show images in the classroom, etc.

References:

- 1. Schultz M, Gill J, Zubairi S, Huber R, Gordin F. "Bacterial contamination of computer keyboards in a teaching hospital," Infect Control Hosp. Epidemiol 2003;4(24):302-303. [PubMed] [Google Scholar]
- Nishikawa A, Hosoi T, Koara K, Negoro D, Hikita A, Asano S, Kakutani H, Miyazaki F, Sekimoto M, Yasui M, Miyake Y, Takiguchi S, Monden M. "Face MOUSe: A Novel Human-Machine Interface for Controlling the Position of a Laparoscope," IEEE Trans. on Robotics and Automation 2003;19(5):825-841. [Google Scholar]
- 3. Smith KR, Frank KJ, Bucholz RD. "The NeuroStation- a highly accurate, minimally invasive solution to frameless stereotatic neurosurgery," Comput Med Imaging Graph 1994;18:247-256. [PubMed] [Google Scholar]
- 4. Graetzel C, Fong TW, Grange S, Baur C. "A non-contact mouse for surgeon-computer interaction," Technol Health Care 2004;12(3):245-257. [PubMed] [Google Scholar]
- Kuno Y, Murashima T, Shimada N, Shirai Y. "Intelligent Wheelchair Remotely Controlled by Interactive Gestures." Proceedings of 15th International Conference on Pattern Recognition 2000;4:672-675. [Google Scholar]
- Starner T, Auxier J, Ashbrook D, Gandy M. "The Gesture Pendant: A Selfilluminating, Wearable, Infrared Computer Vision System for Home Automation Control and Medical Monitoring" Fourth Intl. Symp Wearable Comp 2000:87-94.
- 7. Wachs JP, Stern HI, Edan Y, et al. "Real-Time Hand Gesture Interface for Browsing Medical Images" Int. J Intel. Comp. Med. Sci. Image Proc 2007;1(3):175-185. [Google Scholar]
- Lewis JR. Psychometric evaluation of an after scenario questionnaire for computer usability studies: The ASQ SIGCHI Bulletin 1991;23:78-81.
 [Google Scholar]

Demonstration Link: https://youtu.be/Iiu90IDvp7U

Github Repo Link: https://github.com/IBM-EPBL/IBM-Project-

36502-1660295611