Newton's Method

6.006 Review Session

Problem Statement

 Given a function, f(x), find its zeros, i.e. all x such that:

$$f(x) = 0$$

A close approximation should be sufficient.

Newton's Method

- Idea: iteratively find better and better approximations.
 - Function should be "reasonably well-behaved".
- Newton's Method Steps:
 - Start with an approximation to the root x_0 .
 - Iterate using:

$$x_{n+1} = x_n - f(x_n) / f'(x_n)$$

Intuition

Use tangent line to get closer to the actual value of the solution.

Worked Example 1

- Approximate 1 / 2011 using Newton's method.
 - Let f(x) = 1/x 2011
 - Guess $x_0 = 0.0005$
 - Then $x_{i+1} = 2 x_i 2011 x_i^2$ (after simplifying).
 - Thus:
 - $x_1 = 0.00049725$
 - $x_2 = 0.0004972650418125$
 - Actual value: 0.00049726504226752855

Worked Example 2

- Approximate 2011^{0.5}
 - Let $f(x) = x^2 2011$
 - Guess $x_0 = 40$.
 - Then $x_{i+1} = 0.5 x_i + 1005.5 / x_i$
 - Thus:
 - $x_1 = 45.1375$
 - $x_2 = 44.845127734699531$
 - Actual value: 44.844174649557324