Statistics for Data Science -1 Lecture 5.2: Factorials

Usha Mohan

Indian Institute of Technology Madras

Learning objectives

- 1. Understand basic principles of counting.
- 2. Concept of factorials.
- Understand differences between counting with order (permutation) and counting without regard to order (combination).
- 4. Use permutations and combinations to answer real life applications.

Factorial

Example 3: Order of finishes in a race

➤ There are eight athletes who take part in a 100 m race. What are the possible ways the athletes can finish the race (assuming no ties)?

Example 3: Order of finishes in a race

- ► There are eight athletes who take part in a 100 m race. What are the possible ways the athletes can finish the race (assuming no ties)?
- ▶ First place any one of the 8 athletes; second any one of the remaining 7, and so on, the seventh place any one of the remaining 2, and finally the last place goes to the only one remaining.

Example 3: Order of finishes in a race

- ► There are eight athletes who take part in a 100 m race. What are the possible ways the athletes can finish the race (assuming no ties)?
- ► First place any one of the 8 athletes; second any one of the remaining 7, and so on, the seventh place any one of the remaining 2, and finally the last place goes to the only one remaining.
- ► Hence the total number of ways = $8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 40,320$

Factorial

Definition

The product of the first n positive integers (counting numbers) is called n factorial and is denoted n!. In symbols,

$$n! = n \times (n-1) \times \ldots \times 1$$

Remark

By convention 0! = 1

Example 4: Choosing shirts

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.

- 1. $5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$
- 2. Observe $5! = 5 \times 4!$

- 1. $5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$
- 2. Observe $5! = 5 \times 4!$
 - ► In general,

$$n! = n \times (n-1)!$$

- 1. $5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$
- 2. Observe $5! = 5 \times 4!$
 - ► In general,

$$n! = n \times (n-1)!$$

3. Observe $5! = 5 \times 4! = 5 \times 4 \times 3!$

- 1. $5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$
- 2. Observe $5! = 5 \times 4!$
 - ► In general,

$$n! = n \times (n-1)!$$

- 3. Observe $5! = 5 \times 4! = 5 \times 4 \times 3!$
 - ▶ In general, for $i \le n$ we have,

$$n! = n \times (n-1) \dots \times (n-i+1) \times (n-i)!$$

1.
$$\frac{6!}{3!}$$
 =

1.
$$\frac{6!}{3!} = \frac{6 \times 5 \times 4 \times 3!}{3!} = 6 \times 5 \times 4 = 120$$

1.
$$\frac{6!}{3!} = \frac{6 \times 5 \times 4 \times 3!}{3!} = 6 \times 5 \times 4 = 120$$

2.
$$\frac{6! \times 5!}{3! \times 4!} =$$

1.
$$\frac{6!}{3!} = \frac{6 \times 5 \times 4 \times 3!}{3!} = 6 \times 5 \times 4 = 120$$

2.
$$\frac{6! \times 5!}{3! \times 4!} = \frac{6 \times 5 \times 4 \times 3!}{3!} \frac{5 \times 4!}{4!} = 6 \times 5 \times 4 \times 5 = 600$$

3. Express $25 \times 24 \times 23$ in terms of factorials-

1.
$$\frac{6!}{3!} = \frac{6 \times 5 \times 4 \times 3!}{3!} = 6 \times 5 \times 4 = 120$$

2.
$$\frac{6! \times 5!}{3! \times 4!} = \frac{6 \times 5 \times 4 \times 3!}{3!} \frac{5 \times 4!}{4!} = 6 \times 5 \times 4 \times 5 = 600$$

3. Express $25 \times 24 \times 23$ in terms of factorials-

1.
$$\frac{6!}{3!} = \frac{6 \times 5 \times 4 \times 3!}{3!} = 6 \times 5 \times 4 = 120$$

2.
$$\frac{6! \times 5!}{3! \times 4!} = \frac{6 \times 5 \times 4 \times 3!}{3!} \frac{5 \times 4!}{4!} = 6 \times 5 \times 4 \times 5 = 600$$

3. Express $25 \times 24 \times 23$ in terms of factorials-

$$\frac{25\times24\times23\times22\times\ldots\times1}{22\times21\times\ldots\times1}=\frac{25!}{22!}$$

Section summary

- Introduced factorial notation.
- Simplifying expressions.