Part III-B: Artificial Intelligence Outline

Lecture by 熊庆宇 Note by THF

2024年10月30日

目录

1	智能	计算	1
	1.1	对物质适者生存能力的解读	1
	1.2	遗传算法	2
	1.3	蚁群算法	3
	1.4	机器学习	3
Le	ectur	re 10	10.24
No	tatio	on. A^* 算法的搜索效率: $h(n) \le h^*(n)$ 的前提下 $h(n)$ 越大越好	

1 智能计算

1.1 对物质适者生存能力的解读

时间维度: 进化智能 空间维度: 群体智能

Lecture 11 10.28

1.2 遗传算法

Notation. 如何模拟物种繁殖:

- 1. 种群中选择两个个体
- 2. 随机确定编码序列断裂点
- 3. 交换编码片段

基因发生突变的概率称为遗传算法的突变算子

Notation. 如何模拟竞争与选择: 适应度

Example. 求函数 $f(x) = x^2$ 的最大值, $x \in [0, 31], x \in \mathbb{Z}$ 使用 5 个二进制码表示取值: $0 \sim 31 \Rightarrow 0b00000 \sim 0b11111$ 定义 32 条染色体:

表 1: 染色体

	/,· _ , ,
X_o	X_b
0	0b00000
1	0b00001
31	0b11111

假设初始种群数量 N=4 ,随机产生 20 位的二进制串,每 5 个一组,得到 4 个初始个体

如: 0b**00110**10010**10011**01010

适应度函数为给定问题 $f(x) = x^2$

得到第一代种群: (0b10010, 0b10011), (0b10010, 0b10011): 避免近亲相交 令交叉概率 $P_s=1$,变异概率 $P_m=0.01$ (每五代变异一个基因),通过生 存数生成新的种群,配对后随机选择断裂点位交叉配对,完成第一代遗传: 第二代种群的适应度更高

生成第五代种群后,通过变异算子随机挑选一个基因进行改变 经过数代遗传后,种群趋于稳定,适应度不再提升: X=31

表 2: 选择算子

编号	个体编码	个体	适应度	$\frac{f}{\sum f}$	$\frac{4f}{\sum f}$	生存数		
S_1	00110	6	36	0.043	0.175	0		
S_2	10010	18	324	0.394	1.578	2		
S_3	10011	19	361	0.439	1.759	2		
S_4	01010	10	100	0.121	0.487	0		
	适应度总和		821	平均這	适应度	205.25		

表 3: 第一次交叉

交叉前	交叉后	个体	适应度	生存数
0b100 10	0b10011	19	361	1
0b100 11	0b10010	18	324	1
0b1 0010	0b10011	19	361	1
0b1 0011	0b10010	18	324	1
适	应度总和	$821 \Rightarrow 1370$		

1.3 蚁群算法

Notation. 蚂蚁的智能程度非常低,单个觅食随机性很大;但组合成群体后可以完成复杂的任务,且可以适应环境变化

模拟蚂蚁的选择路线时: 贪心原则

Example. 旅行商问题

1.4 机器学习

Definition. 学习:

系统改进其性能的过程(西蒙) 获取知识的过程(专家系统) 技能的获取(心理学家) 事物规律的发现过程