README

This project is based on the <u>BLIP</u> and <u>SMILE</u> repositories. It fine-tunes an image captioning model using the Flickr8k dataset and provides a demo through Streamlit.

Semipermeable

Max mum

ikelihood Estimation

- Enhancing Image Captioning through Richness Optimization
- Configuration File Updates: Added the configs/caption_flickr8k.yaml file for configurations tailored to the Flickr8k dataset.
- Custom Data Loader: Added the data/flickr8k dataset.py file to handle the Flickr8k dataset.
- Evaluation Function Modifications: Adjusted evaluation methods for the Flickr8k datase
- FGroup 7t Modifications: Updated train_caption.py to support fine-tuning with the Flickr8k dataset.
- Streamlit Demo: Added the appropriile to provide an image captioning demo using the trained model.

 Kim Dan / Lee Heungkyu / Jung Jiwon
- 2. Flickr8k Dataset Download and Fine-tuning Process

Publish a Python Package to PyPI on

https://github.com/heungkyulee/SMILE_Flickr8k

SLSA Generic
Generator
Generate SLSA3 provenance for your
existing release workflows

Pylint
Configure
Lint a Python application with pylint.

More workflows

lismiss suggestions

Training Overview

Model Architecture

Hyperparameters

Processing

Training

Results

Dataset Preparation & Pre-

1. Paper Review

- Problems of Existing Image
 - Captioning
- **SMILE**
- Paper Summary

- 2. Training Process
 - Demo
 - Results
 - Challenges & Solutions
 - Limitations

Paper Review

https://github.com/heungkyulee/SMILE_Flickr8k

https://github.com/heungkyulee/SMILE_Flickr8k

Existing MLE(Maximum Likelihood Estimation) based models produce overly generic and simple captions.

- Human
- A woman holding a birthday cake with lit candles

MLE-based models

A woman holding a cake with lit candles

SMILE based models can produce richer context than existing image captioning models.

SMILE(Semipermeable Maximum Likelihood Estimation)

Optimization Conflicts

Richness Optimization

Conciseness Optimization

A woman holding a birthday cake with lit candles

MLE-based models

A woman holding a cake with lit candles

SMILE

A pretty young lady that has some kind of white frosted birthday cake with lots of lit candles on top of it, surrounded by several other people looking onwardly at something in the distance.

SMILE(Semipermeable Maximum Likelihood Estimation)

This project is based on the <u>BLIP</u> and <u>SMILE</u> repositories. It fine-tunes an image captioning model using the Flickr8k dataset and provides a demo through Streamlit.

Table of Contents

Z. FIICKTOK Dataset Download and Fine-tuning Proces

Key Ideas

- Preserve Richness Optimization
- •he Block Conciseness Optimization
- Dataset Support: Replaced the COCO dataset with the Flickr8k datase
- Configuration File Updates: Added the configs/caption_flickr8k.yaml file for Flickr8k dataset.
- Custom Data Loader: Added the data/flickr8k dataset.py file to handle the Flickr8k dataset.
- Evaluation Function Modifications: Adjusted evaluation methods for the Flickr8k dataset
- Fine-tuning Script Modifications: Updated train_caption.py to support fine-tuning with the Flickr8k dataset
- Streamlit Demo: Added the app.py file to provide an image captioning demo using the trained model

2. Flickr8k Dataset Download and Fine-tuning Process

How It Works

- During training, the model predicts within a subset of the vocabulary
- **Penalizes concise predictions** while allowing richer descriptions.

SLSA Generic

Configure

Paper Summary

What they used

Base Model

•BLIP

Dataset

•MSCOCO

•Flickr30K

Results

	Se	Linguistic		
Method	Descrip.	Acc.	F1	Flu.
CapEnrich	3.89	4.39	4.12	4.36
BLIP	3.41	4.57	3.91	4.91
BLIP- \mathcal{L}_{SMILE}	4.67	4.05	4.34	4.75
Human	3.53	4.53	3.97	4.87

		0 /						
Row Basic Model	Basic Model		Caption	Lexical	Self-Retrieval		CLIPScore	PPL
	Training L	Length	Diveristy	R@1	R@5			
1	F.S.	-	9.6	0.6	1.9	6.3	73.9	56.2
2		$\mathcal{L}_{ ext{SMILE}}$	15.4	0.7	0.7	2.5	63.7	86.7
3	PT	-	5.8	1.0	2.7	8.6	74.6	573.4
4		$\mathcal{L}_{ ext{SMILE}}$	22.5	4.9	8.5	20.1	73.5	113.7
5		-	10.0	1.4	6.7	16.6	77.2	95.8
6	PT+FT	$\mathcal{L}_{ ext{MLE}}$	10.0	1.4	6.5	16.6	77.2	67.6
7		$\mathcal{L}_{ ext{SMILE}}$	22.3	4.5	10.0	24.5	75.0	95.6

This project is based on the <u>BLIP</u> and <u>SMILE</u> repositories. It fine-tunes an image captioning model using the Flickr8l dataset and provides a demo through Streamlit.

Conclusions

- Addresses the shortcomings of MLE by guiding models to produce richer, more detailed captions.
- Simple and compatible with existing models
- Project Modifications

The following changes were made from the original GitHub repositories:

Limitations

- Limited applicability to large-scale text generation tasks.
- Relies on the quality and richness of the training dataset.

2. Flickr8k Dataset Download and Fine-tuning Process

Training Process

This project is based on the <u>BLIP</u> and <u>SMILE</u> repositories. It fine-tunes an image captioning model using the Flickr8k dataset and provides a demo through Streamlit.

https://github.com/heungkyulee/SMILE_Flickr8k

Dataset Preparation & Pre-Processing

Tokenizing

BERT Tokenizer

Image Processing

• ViT(Vision Transformer)

[] README

This project is based on the <u>BLIP</u> and <u>SMILE</u> repositories. It fine-tunes an image captioning model using the Flickr8k dataset and provides a demo through Streamlit.

Table of Contents

Learning Rate 0.0001

- 2. Flickr8k Dataset Download and Fine-tuning Process
- 3. Running the Demo with Streamli

Batch Size

16

1. Project Modifications

Epochs

5

The following changes were made from the original GitHub repositories:

Dataset Support: Replaced the COCO de Max LR Flickr8k dataset

1e-4

1e-6

- Configuration File Updates: Added the configs/caption_flickr8k.yaml file for configurations tailored to the Flickr8k dataset.
- Custom Data Loader: Added the Idata/finish LIR set, py file to handle the Flickr8k dataset.
- Evaluation Function Modifications: Adjusted evaluation methods for the Flickr8k dataset.
- Fine-tuning Script Modifications: Updated train caption.py to support fine-tuning with the Flickr8k dataset.
- Streamlit Demo: Added the app.py file to provide an image captioning demo using the trained model.

Flickr8k Dataset Download and Fine-tuning Process

https://github.com/heungkyulee/SMILE_Flickr8k

Pylint Configure

Lint a Python application with pylint.

Mara worldlowe

lismiss suggestions

SLSA Generic Configure generator Generate SLSA3 provenance for your existing release workflows

Training (x60, 5 epochs, 12min/epoch)

This project is based on the BLIP and SMILE repositories. It fine-tunes an image captioning model using the Flickr8k

2. Flickr8k Dataset Download and Fine-tuning Process

Fine-Tuning Result Analysis

Metric	Description	Base Model		
Wetrie	Description	blip_base	blip_smile_base	
Caption Length (Cap.Len.)	The average length of generated captions in terms of word count	11.24	23.33	
Lexical Diversity (Lex.Div.)	The ratio of unique words to total words in generated captions, reflecting vocabulary richness	0.06	4.33	
Recall@1 (R@1)	The percentage of cases where the correct caption is retrieved as the top result in imagetext matching.	10.18%	12.62%	
Recall@5 (R@5)	The percentage of cases where the correct caption is among the top 5 results in image-text matching	28.75%	29.52%	
ClipScore	The semantic similarity score between images and captions based on CLIP, expressed as a percent	30.27%	73.23%	
Perplexity (PPL)	A measure of language model fluency and predictaglity ; lower values indicate better performance	24792.13	110.34	

SLSA Generic

Generate SLSA3 provenance for you

Pylint

Configure

Lint a Python application with pylint.

More workflows

Dismiss suggestions

SMILE-based Image Captioning Project

This project is based on the <u>BLIP</u> and <u>SMILE</u> repositories. It fine-tunes an image captioning model using the Flickr8k dataset and provides a demo through Streamlit.

Table of Contents

- 1. Project Modifications
- 2. Flickr8k Dataset Download and Fine-tuning Process
- 3. Running the Demo with Streamling

Demo

1. Project Modifications

The following changes were made from the original GitHub repositories:

- Dataset Support: Replaced the COCO dataset with the Flickr8k dataset.
- Configuration File Updates: Added the configs/caption_flickr8k.yaml file for configurations tailored to the Flickr8k dataset.
- Custom Data Loader: Added the data/flickr8k dataset.py file to handle the Flickr8k dataset.
- Evaluation Function Modifications: Adjusted evaluation methods for the Flickr8k dataset
- Fine-tuning Script Modifications: Updated train_caption.py to support fine-tuning with the Flickr8k dataset.
- Streamlit Demo: Added the app.py file to provide an image captioning demo using the trained model.

2. Flickr8k Dataset Download and Fine-tuning Process

https://github.com/heungkyulee/SMILE_Flickr8k

Demo QR Code

Demo Video Project

This project is based on the BLIP and SMILE repositories. It fine-tunes an image captioning model using the Flickr8k

2. Flickrok Dataset Download and Fine-tuning Process

Results

Familiar Images

Unfamiliar Images

SMILE(Ours)

an asian woman wearing a white tank top and holding up some fresh minty leaves to show off her natural beautyitangem

SMILE(Ours)

an orange, white and blue rocket surrounded by small stars that appear to be moving away from the vieweregale sourcerlingian

SMILE(Ours)

a graph showing the percentage of performance in each race

SMILE(Ours)

an empty bottle with the label removed from it

BLIP Base

an asian woman with blue eyes

BLIP Base

a rocket ship in the desert

BLIP Base

a graph showing the performance of tasks by execution time

BLIP Base

a bottle of ala body mist

Capfilt Large

an asian woman with long brown hair and blue eyes

Capfilt Large

a rocket with planets in the background

Capfilt Large

a bar chart with the percentage of performance

Capfilt Large

a bottle of d'alba body oil

Challenges & Solutions

This project is based on the <u>BLIP</u> and <u>SMILE</u> repositories. It fine-tune dataset and provides a demo through Streamlit.

Challenges

Project Issues

- Dependency conflicts
- Dataset mismatches
- Configuration, preprocessing, evaluation, and GPU environment inconsistencies

Solutions

Fix Project Issues

- Matched dependencies
- Custom COCO-style annotations compatible with Flickr8K
- Customized settings and training code for single GPU environments

Now

Successful Project Result

 Successfully trained on Flickr8K dataset in a local computing environment

https://github.com/heungkyulee/SMILE_Flickr8k

Prolonged Training Time

 Training took over 4 hours using the cloned project setup

- **Optimize Training Time**
 - Reduced image size(384 -> 224)
 - Increased workers(8 -> 16)
 - Switched to smaller dataset(MSCOCO -> Flickr8K)

95% Reduced Training Time

 Reduced training time to 12 minutes per epoch

Slow Model Loading for Demo

• Initial model loading without a server exceeded 10 minutes per client.

Optimize Model Loading Time

Applied port forwarding and caching techniques

99% Reduced Model Loading Time

Reduced initial model load time from 10 minutes to just a few seconds

This project is based on the <u>BLIP</u> and <u>SMILE</u> repositories. It fine-tunes an image captioning model using the Flickr8k dataset and provides a demo through Streamlit.

Text Quality

• Descriptions are richer compared to BLIP and Base Models, but long texts degrade in quality toward the end.

Flickr8k Dataset Download and Fine-tuning Process

Running the Demo with Streamlit

Object and Dataset Limitations

- Poor performance when handling two or more objects or non-Flickr8K images.
 - Limited by Flickr8K dataset and insufficient annotations
- Dataset Support: Replaced the COCO dataset with the Flickr8k dataset
- Configuration File Updates: Added the configs/caption flickrek.vaml file for configurations tailored to the

Demo Setup Constraints

- Unable to upload the model via Github or GLF.
- Relied on inefficient local port forwarding for demonstration.
- Future goal: Explore AWS Bedrock or similar services for better scalability.

2. Flickr8k Dataset Download and Fine-tuning Process

A&Q

- Fine-tuning Script Modifications: Updated "train_caption.py" to supp Group 7
- Kim Dan / Lee Heungkyu / Jung Jiwon

https://github.com/heungkyulee/SMILE_Flickr8k