NAMA : IMAM ARDI PERDANA

NIM :24241020

KELAS :PTI A

MATKUL :STRUKTUR DATA

MODUL 2

Percobaan 1: Array

Praktek 1

```
Percobaan 1 array > aray.py > ...

1  # Praktek 1 : Membuat array

2  # impor library numpy

3  import numpy as np

4

5  # membuat array dengan numpy

6  nilai_siswa = np.array([85, 55, 40, 90])

7

8  # akses data pada array

9  print(nilai_siswa[3])
```

Hasil ouput

```
PS E:\algoritma\Tugas-semester-2\Model 2> & C:/Users/USER/Apmodel 2/Percobaan 1 array/aray.py"

90
PS E:\algoritma\Tugas-semester-2\Model 2>
```

Penjelasanya:

Baris 1:

bahwa baris berikutnya akan mengimpor library NumPy, yang digunakan untuk operasi dan array.

Baris 2:

Mengimpor library NumPy dan memberi alias np supaya lebih ringkas saat digunakan. Setelah Bisa menggunakan np.array() untuk membuat array,bukan menulis numpy.array().

Baris 3:

menjelaskan bahwa baris di bawah akan membuat array menggunakan NumPy.

Baris 4:

Membuat sebuah array NumPy berisi nilai siswa: 85, 55, 40, dan 90. Array ini disimpan dalam Variable.

Praktek 2

```
# Praktek 2 : Mengakses, Mengubah, dan Cek Ukuran dan Dimensi Array
     # impor libaray numpy
    import numpy as np
    # membuat array dengan numpy
    nilai_siswa_1 = np.array([75, 65, 45, 80])
    nilai_siswa_2 = np.array([[85, 55, 40], [50, 40, 99]])
    print(nilai_siswa_1[0])
    print(nilai_siswa_2[1][1])
    # mengubah nilai elemen array
    nilai_siswa_1[0] = 88
    nilai_siswa_2[1][1] = 70
    # cek perubahannya
   print(nilai_siswa_1[0])
    print(nilai_siswa_2[1][1])
   print("Ukuran Array : ", nilai_siswa_1.shape)
    print("Ukuran Array : ", nilai_siswa_2.shape)
   print("Dimensi Array : ", nilai_siswa_2.ndim)
35
```

Hasil ouput

```
PS E:\algoritma\Tugas-semester-2\Model 2> & C:/Users/USER/AppData/Local
Model 2/Percobaan 1 array/aray.py"

90

75

40

88

70

Ukuran Array : (4,)

Ukuran Array : (2, 3)

Dimensi Array : 2

PS E:\algoritma\Tugas-semester-2\Model 2>
```

Penjelasanya:

Baris 1

yang menunjukkan bahwa baris selanjutnya akan mengimpor library NumPy

Baris 2

Mengimpor library NumPy dan memberinya alias np agar lebih ringkas saat digunakan dalam Kode.

Baris 3

bahwa kita akan membuat array menggunakan NumPy.

Baris 4

Membuat array 1 dimensi dengan 4 elemen, lalu disimpan ke variabel nilai_siswa_1.

Baris 5

Membuat array 2 dimensi (seperti matriks 2x3) yang disimpan dalam nilai_siswa_2.

Yang menandai bahwa kita akan mengakses nilai-nilai dalam array.

Baris 7

Menampilkan elemen pertama dari nilai_siswa_1, yaitu 75.

Baris 8

Menampilkan baris ke-2, kolom ke-2 dari nilai_siswa_2, yaitu 40.

Baris 9

bahwa kita akan mengubah isi array.

Baris 10

Mengubah elemen pertama dari nilai_siswa_1 menjadi 88

Baris 11

Mengubah elemen baris ke-2, kolom ke-2 dari nilai_siswa_2 menjadi 70.

Baris 12

bahwa kita akan melihat apakah perubahan berhasil.

Baris 13

Menampilkan elemen pertama dari nilai_siswa_1 yang sekarang sudah diubah menjadi 88.

Baris 14

Menampilkan nilai pada nilai_siswa_2[1][1] yang sekarang menjadi 70.

Baris 15

bahwa kita akan mengecek bentuk dan dimensi array.

Baris 16

Menampilkan ukuran (jumlah elemen per dimensi) dari nilai_siswa_1. Hasil: (4,) → array 1 dimensi dengan 4 elemen.

Baris 17

Menampilkan ukuran dari nilai_siswa_2.

Hasil: $(2, 3) \rightarrow \text{array 2 dimensi, 2 baris dan 3 kolom.}$

Baris 18

Menampilkan jumlah dimensi dari nilai_siswa_2, yaitu 2 (karena bentuknya seperti tabel/barisKolom).

Praktek 3

```
# Praktek 3 : Operasi Aritmatika Pada Array
    # impor library numpy
40
    import numpy as np
    # membuat array
    a = np.array([1, 2, 3])
    b = np.array([4, 5, 6])
    # menggunakan operasi penjumlahan pada 2 array
                       # array([5, 7, 9])
    print(a + b)
    # Indexing dan Slicing pada Array
    arr = np.array([10, 20, 30, 40])
    print(arr[1:3]) # array([20, 30])
53
54
    # iterasi pada array
55 \vee for x in arr:
         print(x)
```

Hasil outpunya

```
[5 7 9]
[20 30]
10
20
30
40
PS E:\algoritma\Tugas-semester-2\Model 2>
```

Penjelasannya:

Baris 1

Komentar yang menjelaskan bahwa library NumPy akan diimpor.

Baris 2

Mengimpor library NumPy dan memberi alias np supaya lebih singkat saat digunakan.

Baris 3

bahwa kita akan membuat array NumPy.

Baris 4

Membuat array a dengan elemen [1, 2, 3].

Baris 5

Membuat array b = np.array([4, 5, 6])

Baris 6

bahwa kita akan melakukan penjumlahan antar array

Baris 7

Menambahkan array a dan b secara elemen (element-wise): [1+4, 2+5, 3+6] \rightarrow [5, 7, 9].

Baris 8

bahwa baris berikut akan menunjukkan teknik mengambil sebagian isi array.

Membuat array arr dengan 4 elemen: [10, 20, 30, 40]

Baris 10

Mengambil elemen dari indeks ke-1 hingga sebelum ke-3 (slicing): arr[1:3] \rightarrow [20, 30].

Baris 11

bahwa kita akan melakukan iterasi (perulangan) pada elemen array

Baris 12-13

for x in arr: print(x)

Melakukan loop untuk mencetak setiap elemen dalam array arr.

Percobaan 2: Traversal, Insertion, Deletion

Praktek 4

```
Percobaan 2 Traversal, Insertion, Deletion >  Traversal, Insertion, Deletion.py > ...

1  # Praktek 4 : Linear Traversal

2  # membuat array

3  arr = [1, 2, 3, 4, 5]

4

5  # Linear Traversal ke tiap elemen arr

6  print("Linear Traversal: ", end=" ")

7  > for i in arr:

8  print(i, end=" ")

9  print()
```

Hasil outpunya

```
PS E:\algoritma\Tugas-semester-2\Model 2> & C:/Users/US
Model 2/Percobaan 2 Traversal, Insertion, Deletion/Trav
Linear Traversal: 1 2 3 4 5
PS E:\algoritma\Tugas-semester-2\Model 2>
```

Penjelsanyan:

Baris 1

Komentar yang menjelaskan bahwa kamu akan membuat array (dalam bentuk list di Python, Bukan numpyarray).

Baris 2

Membuat list bernama arr yang berisi lima elemen: [1, 2, 3, 4, 5].

Baris 3

Komentar bahwa kamu akan melakukan traversal linear, yaitu mengunjungi dan memproses Elemen satu persatu dari ke kiri ke kanan.

Mencetak teks "Linear Traversal: " tanpa pindah ke baris baru (karena end=" " membuat kursor Tetap dibaris yang sama dan menambahkan spasi).

Baris 5-6

for i in arr: print(i, end="

print(i, end=" ") mencetak setiap elemen diikuti oleh spasi, bukan pindah baris.

Baris 7

Mencetak baris kosong untuk pindah ke baris baru setelah selesai Mencetak semua elemen baru.

Linear Traversal: 1 2 3 4 5

Teks "Linear Traversal: " dicetak terlebih dahulu.

Kemudian setiap elemen 1 2 3 4 5 dicetak di baris yang sama, dipisahkan oleh spasi. Setelah selesai, baris kosong ditambahkan dengan print() untuk menjaga format tampilan.

Praktek 5

```
# Praktek 5 : Reverse Traversal
# membuat array
arr = [1, 2, 3, 4, 5]

# Reverse Traversal dari elemen akhir
print("Reverse Traversal: ", end="")
for i in range(len(arr) - 1, -1, -1):
print(arr[i], end=" ")
print()
```

Hasil outpunya

```
Reverse Traversal: 5 4 3 2 1
PS E:\algoritma\Tugas-semester-2\Model 2>
```

Penjelasnya:

Baris 1

Komentar bahwa kamu akan membuat array (list) di baris berikutnya.

Baris 2

Membuat list arr yang berisi lima elemen dari 1 sampai 5.

Baris 3

Komentar bahwa kamu akan mencetak elemen dari list arr secara terbalik (dari belakang Ke depan.

Mencetak teks "Reverse Traversal: " tanpa pindah baris karena end="" menjaga agar output Selanjutnya dicetak dibaris yang sama.

Baris 5

len(arr) - 1 = 4 \rightarrow indeks terakhir (karena jumlah elemen 5 dan indeks mulai dari 0).

- -1 adalah batas akhir (exclusive) \rightarrow berarti iterasi akan berhenti sebelum mencapai indeks -1, Alias berhenti di 0
- -1 adalah langkah (step) \rightarrow artinya mundur satu per satu. Jadi, range(4, -1, -1) menghasilkan urutan indeks: 4, 3, 2, 1, 0

Baris 6

Untuk setiap indeks i, ambil elemen arr[i] lalu cetak di baris yang sama, dipisahkan dengan spasi.

Baris 7

Pindah ke baris baru setelah mencetak semua elemen, agar output rapi.

Praktek 7

```
# Praktek 7 : Linear Traversal dengan Metode While
# membuat array
arr = [1, 2, 3, 4, 5]

# mendeklarasikan nilai awal
n = len(arr)
i = 0

print("Linear Traversal using while loop: ", end=" ")
# Linear Traversal dengan while
while i < n:
    print(arr[i], end=" ")
    i += 1
print()</pre>
```

Hasil ouputnya

```
Linear Traversal using while loop: 1 2 3 4 5
PS E:\algoritma\Tugas-semester-2\Model 2>
```

Penjelasanya:

Baris 1

bahwa kamu akan membuat array (list).

Baris 2

Membuat list arr berisi 5 elemen: [1, 2, 3, 4, 5].

Baris 3

bahwa variabel-variabel awal akan didefinisikan.

n menyimpan panjang (jumlah elemen) dari array arr, yaitu 5.

Baris 5

Variabel i digunakan sebagai indeks awal untuk perulangan. Dimulai dari 0 (indeks pertama Array.

Baris 6

Mencetak teks pembuka, tanpa pindah baris, karena end=" " menjaga agar output berikutnya Tetep di baris yang sama

Baris 7

akan menggunakan perulangan while untuk traversal.

Baris 8-10

Perulangan akan berjalan selama i kurang dari n (panjang array). arr[i] mencetak elemen ke-i dari array.

end=" " agar semua elemen dicetak dalam satu baris, dipisahkan spasi. i += 1 menaikkan indeks agar pindah ke elemen berikutnya.

Loop ini mencetak 1 2 3 4 5

Baris 11

Pindah ke baris baru setelah selesai mencetak elemen array.

Praktek 8

```
# Praktek 8 : Reverse Traversal dengan Metode While
# membuat array
arr = [1, 2, 3, 4, 5]

# mendeklarasikan nilai awal
start = 0
end = len(arr) - 1

print("Reverse Traversal using while loop: ", end=" ")
# Reverse Traversal dengan while

while start < end:
    # mengubah indeks array
    arr[start], arr[end] = arr[end], arr[start]
    start += 1
    end -= 1
print(arr)</pre>
```

Hasil ouputnya

```
Reverse Traversal using while loop: [5, 4, 3, 2, 1]
PS E:\algoritma\Tugas-semester-2\Model 2>
```

Penjelasanya:

Baris 1

membuat sebuah array (list).

Membuat list bernama arr berisi elemen [1, 2, 3, 4, 5].

Baris 3

menetapkan variabel awal untuk indeks traversal.

Baris 4-5

start diset ke indeks pertama (0).

end diset ke indeks terakhir (len(arr) - 1 = 4).

Variabel ini akan digunakan untuk menukar elemen dari ujung ke tengah.

Baris 6

Mencetak teks sebagai keterangan, tanpa pindah ke baris baru (end="").

Baris 7

melakukan pembalikan isi array dengan perulangan while.

Baris 8–11

Loop akan terus berjalan selama start < end. Di dalam loop:

Elemen pada posisi start dan end ditukar (swap).

Kemudian start maju ke kanan (+1) dan end mundur ke kiri (-1).

Proses ini membalik urutan elemen dari luar ke dalam.

- 1. start=0, end=4: tukar 1 dan 5 \rightarrow [5, 2, 3, 4, 1]
- 2. start=1, end=3: tukar 2 dan $4 \rightarrow [5, 4, 3, 2, 1]$
- 3. start=2, end=2: kondisi start < end sudah tidak terpenuhi, loop berhenti.

Baris 12

Mencetak isi array setelah dibalik. Hasil akhirnya:

```
[5, 4, 3, 2, 1]
```

Praktek 8

```
# Praktek 9 : Insertion pada akhir elemen array
# membuat array
arr = [12, 16, 20, 40, 50, 70]

# cetak arr sebelum penyisipan
print("Array Sebelum Insertion : ", arr)

# cetak panjang array sebelum penyisipan
print("Panjang Array : ", len(arr))

# menyisipkan array di akhir elemen menggunakan .append()
arr.append(26)

# cetak arr setelah penyisipan
print("Array Setelah Insertion : ", arr)

# cetak panjang array setelah penyisipan
print("Panjang Array : ", len(arr))
```

Hasil ouputnya

Array Sebelum Insertion: [12, 16, 20, 40, 50, 70]

Panjang Array: 6

Array Setelah Insertion: [12, 16, 20, 40, 50, 70, 26]

Panjang Array: 7

PS E:\algoritma\Tugas-semester-2\Model 2>

Penjelasannya:

Baris 1

membuat array (dalam Python disebut list).

Baris 2

Membuat list arr dengan 6 elemen angka: [12, 16, 20, 40, 50, 70]

Baris 3

mencetak isi array sebelum elemen baru disisipkan.

Baris 4

Mencetak isi list arr sebelum ada perubahan:

Output: Array Sebelum Insertion : [12, 16, 20, 40, 50, 70]

Baris 5

mencetak jumlah elemen list sebelum penambahan.

Baris 6

Menggunakan len(arr) untuk menghitung jumlah elemen, yaitu 6.

Output: Panjang Array: 6

Baris 7

menambahkan elemen di akhir list dengan fungsi .append().

Baris 8

Menambahkan angka 26 ke akhir list arr.

List berubah menjadi: [12, 16, 20, 40, 50, 70, 26]

Baris 9

mencetak array setelah penambahan elemen.

Baris 10

Mencetak isi array setelah peambahan output: array setelah insertion : [12, 16, 20, 40, 50, 70, 26]

Baris 11

mencetak jumlah elemen setelah penambahan.

Baris 12

Mencetak jumlah elemen saat ini, yaitu 7.

Output: Panjang Array: 7

Praktek 10

```
# Praktek 10 : Insertion pada tengah elemen array
# membuat array
arr = [12, 16, 20, 40, 50, 70]

# cetak arr sebelum penyisipan
print("Array Sebelum Insertion : ", arr)

# cetak panjang array sebelum penyisipan
print("Panjang Array : ", len(arr))

# menyisipkan array pada tengah elemen menggunakan .insert(pos, x)
arr.insert(4, 5)

# cetak arr setelah penyisipan
print("Array Setelah Insertion : ", arr)

# cetak panjang array setelah penyisipan
print("Panjang Array : ", len(arr))
```

Hasil ouputnya

```
Array Sebelum Insertion : [12, 16, 20, 40, 50, 70]

Panjang Array : 6

Array Setelah Insertion : [12, 16, 20, 40, 5, 50, 70]

Panjang Array : 7

PS E:\algoritma\Tugas-semester-2\Model 2>
```

Penjelasannya:

Baris 1

membuat array (dalam Python disebut list).

Baris 2

Membuat list arr dengan 6 elemen angka: [12, 16, 20, 40, 50, 70]

Baris 3

mencetak isi array sebelum elemen baru disisipkan.

Baris 4

Mencetak isi list arr sebelum ada perubahan:

Output:

Array Sebelum Insertion: [12, 16, 20, 40, 50, 70]

Baris 5

mencetak jumlah elemen list sebelum penambahan.

Baris 6

Menggunakan len(arr) untuk menghitung jumlah elemen, yaitu 6.

Output:

Panjang Array: 6

Baris 7

menambahkan elemen di akhir list dengan fungsi .append().

Baris 8

Menambahkan angka 26 ke akhir list arr.

List berubah menjadi: [12, 16, 20, 40, 50, 70, 26]

Baris 9

mencetak array setelah penambahan elemen.

Baris 10

Mencetak isi array setelah peambahan output: array setelah insertion : [12, 16, 20, 40, 50, 70, 26]

Baris 11

mencetak jumlah elemen setelah penambahan.

Baris 12

Mencetak jumlah elemen saat ini, yaitu 7.

Output:

Panjang Array: 7

Praktek lanjutan 10

```
# jika tidak menggunakan fungsi .insert()
# membuat array dan cetak array
arr = [12, 16, 20, 40, 50, 70]
print("Array Sebelum Penyisipan : " , arr)

# Deklarasi elemen tengah yang disisipkan
pos = 4

# Deklarasi nilai yang akan disisipkan
x = 5

# menambah elemen dummy agar menambah panjang array
arr.append(0) # arr = [12, 16, 20, 40, 50, 70, 0]

# melakukan pergeseran elemen mulai dari belakang
for i in range(len(arr) - 2, pos-1, -1):
    arr[i + 1] = arr[i]

# memasukkan nilai x pada elemen yang diinginkan
arr[pos] = x

# Cetak array baru
print("Array Sesudah Penyisipan : ", arr)
```

Hasil ouputnya

Array Sebelum Penyisipan : [12, 16, 20, 40, 50, 70]
Array Sesudah Penyisipan : [12, 16, 20, 40, 5, 50, 70]
PS E:\algoritma\Tugas-semester-2\Modul 2>

Penjelasannya:

Baris 1

Komentar bahwa kode tidak menggunakan fungsi .insert() bawaan Python.

Baris 2

Komentar bahwa kode akan membuat array dan mencetaknya.

Baris 3

Membuat array/list bernama arr yang berisi angka: 12, 16, 20, 40, 50, 70.

Baris 4

Mencetak isi array sebelum penyisipan dilakukan.

Baris 5

Komentar bahwa akan ditentukan posisi penyisipan elemen baru di tengah array.

Baris 6

Menetapkan nilai pos = 4, artinya elemen baru akan disisipkan di indeks ke-4.

Baris 7

Komentar bahwa akan ditentukan nilai yang akan disisipkan.

Baris 8

Menetapkan nilai x = 5, yaitu nilai yang akan disisipkan ke dalam array.

Baris 9

Komentar bahwa panjang array akan ditambah dengan elemen dummy agar bisa digeser.

Baris 10

Menambahkan elemen dummy 0 ke akhir array untuk memberi ruang penyisipan.

Baris 11

Komentar bahwa elemen-elemen akan digeser dari belakang ke depan.

Baris 12

Melakukan perulangan dari indeks sebelum elemen dummy sampai ke posisi sisip, secara mundur.

Baris 13

Menggeser elemen satu posisi ke kanan untuk memberi ruang di posisi pos.

Baris 14

Komentar bahwa nilai baru akan dimasukkan ke posisi yang telah disediakan.

Baris 15

Menyisipkan nilai x (yaitu 5) ke dalam array pada indeks ke-4.

Baris 16

Komentar bahwa array baru akan dicetak setelah penyisipan.

Mencetak isi array setelah elemen baru berhasil disisipkan.

Praktek 11

```
# Praktek 11 : Menghapus array
# membuat array
a = [10, 20, 30, 40, 50]
print("Array Sebelum Deletion : ", a)

# menghapus elemen array pertama yang nilainya 30
a.remove(30)
print("Setelah remove(30):", a)

# menghapus elemen array pada index 1 (20)
popped_val = a.pop(1)
print("Popped element:", popped_val)
print("Setelah pop(1):", a)

# Menghapus elemen pertama (10)
del a[0]
print["Setelah del a[0]:", a)
```

Hasil ouputnya

```
Array Sebelum Deletion : [10, 20, 30, 40, 50]
Setelah remove(30): [10, 20, 40, 50]
Popped element: 20
Setelah pop(1): [10, 40, 50]
Setelah del a[0]: [40, 50]
PS E:\algoritma\Tugas-semester-2\Modul 2>
```

Penjelasannya:

Baris 1

Komentar judul praktek: "Praktek 11: Menghapus array".

Baris 2

Komentar bahwa akan membuat array terlebih dahulu.

Baris 3

Membuat array a berisi lima elemen: 10, 20, 30, 40, dan 50.

Baris 4

Mencetak array sebelum dilakukan penghapusan elemen.

Baris 5

Komentar bahwa akan menghapus elemen pertama yang bernilai 30 (berdasarkan nilai, bukan indeks).

Baris 6

Menghapus elemen bernilai 30 menggunakan method .remove(30).

Baris 7

Mencetak array setelah elemen 30 dihapus.

Komentar bahwa akan menghapus elemen berdasarkan indeks, yaitu elemen pada indeks ke-1 (yaitu 20 setelah 30 dihapus).

Baris 9

Menghapus dan menyimpan elemen di indeks ke-1 menggunakan .pop(1).

Baris 10

Mencetak elemen yang telah di-pop (dihapus dan disimpan ke variabel).

Baris 11

Mencetak array setelah penghapusan elemen dengan .pop().

Baris 12

Komentar bahwa akan menghapus elemen pertama (yang sekarang bernilai 10).

Baris 13

Menghapus elemen pertama menggunakan perintah del.

Baris 14

Mencetak array setelah elemen pertama dihapus menggunakan del.

Praktek 12

Hasil ouputnya

```
PS E:\algoritma\Tugas-semester-2\Modul 2> & C:/Users/USER/AppData/Local/Programs/Python/Python
Modul 2/Percobaan 3 Matriks atau Array 2 dan 3 Dimensi/Matriks atau Array 2 dan 3 Dimensi.py"
9
PS E:\algoritma\Tugas-semester-2\Modul 2>
```

Penjelasannya:

Baris 1

Komentar judul praktek: Praktek 12: Membuat Matriks 2 Dimensi.

Baris 2

Komentar bahwa program akan mengimpor library NumPy.

Baris 3

Mengimpor library NumPy dan memberi alias np agar lebih ringkas saat digunakan.

Komentar bahwa akan membuat matriks menggunakan fungsi dari NumPy.

Baris 5

Membuat array 2 dimensi (matriks) dengan 3 baris dan 3 kolom:

- Baris 1: [1, 2, 3]
- Baris 2: [4, 5, 6]
- Baris 3: [7, 8, 9]
 Array ini disimpan dalam variabel matriks_np.

Baris 6

Mengakses dan mencetak elemen pada baris ke-3 dan kolom ke-3 dari matriks, yaitu 9.

(Penulisan indeks dimulai dari 0, sehingga matriks_np[2][2] menunjuk ke elemen baris ke-3 dan kolom ke-3.)

Praktek 13

```
# Praktek 13 : Operasi Penjumlahan Matriks dengan list
# Program penjumlahan matriks yang dibuat dari list
X = [[12,7,3],
    [4,5,6],
    [7,8,9]]
Y = [[5,8,1],
    [6,7,3],
    [4,5,9]]
result = [[0,0,0],
         [0,0,0],
         [0,0,0]]
# proses penjumlahan dua matriks menggunakan nested loop
# mengulang sebanyak row (baris)
for i in range(len(X)):
  # mengulang sebanyak column (kolom)
  for j in range(len(X[0])):
       result[i][j] = X[i][j] + Y[i][j]
print("Hasil Penjumlahan Matriks dari LIST")
# cetak hasil penjumlahan secara iteratif
for r in result:
  print(r)
```

Hasil ouputnya

```
Hasil Penjumlahan Matriks dari LIST
[17, 15, 4]
[10, 12, 9]
[11, 13, 18]
PS E:\algoritma\Tugas-semester-2\Modul 2>
```

Penjelasannya:

Komentar judul praktek: Praktek 13: Operasi Penjumlahan Matriks dengan list.

Baris 2

Komentar bahwa program akan melakukan penjumlahan dua buah matriks yang didefinisikan menggunakan struktur data list.

Baris 3 - 6

Membuat matriks X yang terdiri dari 3 baris dan 3 kolom:

- Baris 1: [12, 7, 3]
- Baris 2: [4, 5, 6]
- Baris 3: [7, 8, 9]

Baris 7 - 10

Membuat matriks Y yang juga terdiri dari 3 baris dan 3 kolom:

- Baris 1: [5, 8, 1]
- Baris 2: [6, 7, 3]
- Baris 3: [4, 5, 9]

Baris 11 - 14

Membuat matriks result dengan ukuran yang sama seperti X dan Y, berisi nilai awal 0 sebagai tempat untuk menyimpan hasil penjumlahan.

Baris 15

Komentar bahwa akan dilakukan proses penjumlahan dua matriks menggunakan perulangan bertingkat (nested loop).

Baris 16

Melakukan perulangan untuk setiap baris (row) dalam matriks menggunakan range(len(X)).

Baris 17

Melakukan perulangan untuk setiap kolom dalam satu baris menggunakan range(len(X[0])).

Baris 18

Melakukan penjumlahan elemen dari matriks X dan Y pada indeks [i][j] lalu menyimpannya ke result[i][j].

Baris 20

Mencetak judul dari hasil penjumlahan matriks.

Baris 23

Melakukan pencetakan isi dari matriks result satu baris per iterasi.

Praktek 14

```
# Praktek 14 : Operasi Penjumlahan Matriks dengan numpy
import numpy as np
# Membuat matriks dengan numpy
X = np.array([
    [12,7,3],
    [4,5,6],
    [7,8,9]])
Y = np.array(
   [[5,8,1],
    [6,7,3],
    [4,5,9]])
# Operasi penjumlahan dua matrik numpy
result = X + Y
# cetak hasil
print("Hasil Penjumlahan Matriks dari NumPy")
print(result)
```

Hasil ouputnya

```
Hasil Penjumlahan Matriks dari NumPy
[[17 15 4]
[10 12 9]
[11 13 18]]
PS E:\algoritma\Tugas-semester-2\Modul 2>
```

Penjelasannya:

Baris 1

Komentar judul praktek: *Praktek 14: Operasi Penjumlahan Matriks dengan NumPy*.

Baris 2

Komentar bahwa akan mengimpor library numpy.

Baris 3

Mengimpor library numpy dengan alias np.

Membuat Matriks dengan NumPy

Baris 5

Komentar bahwa akan membuat matriks menggunakan NumPy.

Baris 6 - 9

Membuat matriks X yang berisi:

- Baris 1: [12, 7, 3]
- Baris 2: [4, 5, 6]
- Baris 3: [7, 8, 9]

Baris 10 - 13

Membuat matriks Y yang berisi:

- Baris 1: [5, 8, 1]
- Baris 2: [6, 7, 3]

• Baris 3: [4, 5, 9]

Operasi Penjumlahan

Baris 15

Komentar bahwa akan dilakukan penjumlahan dua buah matriks.

Baris 16

Melakukan penjumlahan langsung antara X dan Y menggunakan operator +. Karena menggunakan NumPy, operasi ini dilakukan secara elemen-wise (elemen per elemen).

Menampilkan Hasil

Baris 18

Komentar bahwa hasil akan dicetak ke layar.

Baris 19

Mencetak judul hasil penjumlahan matriks.

Baris 20

Mencetak isi dari matriks hasil (result).

Praktek 15

```
# Praktek 15 : Operasi Pengurangan Matriks dengan numpy
# impor library numpy
import numpy as np
# Membuat matriks dengan numpy
X = np.array([
   [12,7,3],
    [4,5,6],
    [7,8,9]])
Y = np.array(
    [[5,8,1],
    [6,7,3],
    [4,5,9]])
# Operasi pengurangan dua matrik numpy
result = X - Y
# cetak hasil
print("Hasil Pengurangan Matriks dari NumPy")
print(result)
```

Hasil ouputnya

```
Hasil Pengurangan Matriks dari LIST
[[ 7 -1 2]
[-2 -2 3]
[ 3 3 0]]
```

Penjelasannya:

Komentar judul praktek: *Praktek 15: Operasi Pengurangan Matriks dengan NumPy*.

Baris 2

Komentar bahwa akan mengimpor library numpy.

Baris 3

Mengimpor library numpy dengan nama alias np, yang umum digunakan.

Membuat Matriks dengan NumPy

Baris 5

Komentar bahwa akan dibuat dua buah matriks.

Baris 6 - 9

Membuat matriks X dengan isi:

- Baris 1: [12, 7, 3]
- Baris 2: [4, 5, 6]
- Baris 3: [7, 8, 9]

Baris 10 - 13

Membuat matriks Y dengan isi:

- Baris 1: [5, 8, 1]
- Baris 2: [6, 7, 3]
- Baris 3: [4, 5, 9]

Operasi Pengurangan

Baris 15

Komentar bahwa akan dilakukan pengurangan dua buah matriks.

Baris 16

Melakukan operasi pengurangan elemen per elemen: result = X - Y.

Menampilkan Hasil

Baris 18

Komentar bahwa hasil akan ditampilkan di layar.

Baris 19

Mencetak teks judul hasil pengurangan.

Baris 20

Mencetak matriks hasil pengurangan (result).

Praktek 16

```
# Praktek 16 : Operasi Perkalian Matriks dengan numpy
# impor library numpy
import numpy as np
# Membuat matriks dengan numpy
X = np.array([
    [12,7,3],
    [4,5,6],
    [7,8,9]])
Y = np.array(
    [[5,8,1],
    [6,7,3],
    [4,5,9]])
# Operasi perkalian dua matrik numpy
result = X * Y
print("Hasil Perkalian Matriks dari list")
print(result)
```

Hasil ouputnya

```
Hasil Perkalian Matriks dari list
[[60 56 3]
  [24 35 18]
  [28 40 81]]
PS E:\algoritma\Tugas-semester-2\Modul 2>
```

Penjelasannya:

Baris 1

Komentar judul: Praktek 16: Operasi Perkalian Matriks dengan NumPy.

Baris 2

Komentar bahwa akan digunakan pustaka numpy.

Baris 3

Mengimpor library numpy dan memberi alias np (singkatan umum).

Membuat Matriks

Baris 5

Komentar bahwa akan dibuat dua matriks.

Baris 6-9

Membuat matriks X:

[[12, 7, 3],

[4, 5, 6],

[7, 8, 9]]

Baris 10-13

Membuat matriks Y:

[[5, 8, 1],

[6, 7, 3],

[4, 5, 9]]

Operasi Perkalian Elemen-wise (Hadamard Product)

Baris 15

Komentar bahwa akan dilakukan operasi perkalian.

Baris 16

result = X * Y

Melakukan perkalian elemen-wise, artinya setiap elemen pada posisi yang sama di kedua matriks dikalikan:

```
result[0][0] = 12 * 5 = 60
result[0][1] = 7 * 8 = 56
result[0][2] = 3 * 1 = 3
```

Baris 18

Komentar untuk menampilkan hasil.

Baris 19

print("Hasil Perkalian Matriks dari list")

Teks ini sebenarnya kurang tepat karena operasi ini menggunakan NumPy, bukan list biasa. Sebaiknya ditulis:

print("Hasil Perkalian Matriks dari NumPy")

Baris 20

print(result)

Menampilkan hasil perkalian elemen-wise.

Praktek 17

```
# Praktek 17 : Operasi Pembagian Matriks dengan numpy
# impor library numpy
import numpy as np
# Membuat matriks dengan numpy
X = np.array([
    [12,7,3],
    [4,5,6],
    [7,8,9]])
Y = np.array(
    [[5,8,1],
    [6,7,3],
    [4,5,9]])
# Operasi pembagian dua matrik numpy
result = X / Y
# cetak hasil
print("Hasil Pembagian Matriks dari NumPy")
print(result)
```

Hasil ouputnya

Penjelasannya:

Baris 1:

Program ini diberi judul "Praktek 17: Operasi Pembagian Matriks dengan NumPy", yang menunjukkan bahwa praktek ini bertujuan mempelajari cara melakukan pembagian antar elemen matriks menggunakan library NumPy.

Baris 2:

Baris ini hanya komentar yang menjelaskan bahwa di bawah ini akan dilakukan proses impor pustaka NumPy.

Baris 3:

Pustaka NumPy diimpor dan diberi alias np. NumPy adalah library Python yang sangat umum digunakan untuk operasi matematika, terutama pengolahan array dan matriks.

Baris 4:

Komentar ini memberi tahu bahwa setelah ini program akan membuat matriks menggunakan NumPy.

Baris 5-9:

Pada bagian ini dibuat sebuah matriks bernama X yang berukuran 3 baris dan 3 kolom. Matriks ini berisi nilai-nilai angka sebagai data awal yang nantinya akan dibagi.

Baris 10-14:

Dibuat lagi sebuah matriks lain bernama Y dengan ukuran yang sama yaitu 3x3. Matriks ini berfungsi sebagai penyebut dalam operasi pembagian antar elemen.

Baris 15:

Komentar yang menjelaskan bahwa di bawah ini akan dilakukan operasi pembagian antar dua matriks.

Baris 16:

Program melakukan pembagian antar elemen yang sesuai posisi antara matriks X dan Y. Misalnya, elemen baris pertama kolom pertama di X dibagi dengan elemen baris pertama kolom pertama di Y, dan seterusnya. Hasil dari pembagian disimpan dalam variabel baru bernama result.

Baris 17:

Komentar bahwa bagian berikutnya akan mencetak hasil ke layar.

Baris 18:

Program mencetak teks "Hasil Pembagian Matriks dari NumPy" ke layar sebagai keterangan dari hasil yang ditampilkan.

Baris 19:

Program mencetak isi dari variabel result, yaitu hasil pembagian dari setiap elemen antara matriks X dan Y.

Praktek 18

```
# Praktek 18 : transpose()
 # impor library numpy
 import numpy as np
 # membuat matriks
/ matriks_a = np.array([
     [1, 2, 3],
     [4, 5, 6],
    [7, 8, 9]
 # cetak matriks
 print("Matriks Sebelum Transpose")
 print(matriks_a)
# transpose matriks_a
balik = matriks_a.transpose()
 # cetak matriks setelah dibalik
 print("Matriks Setelah Transpose")
print(balik)
```

Hasil ouputnya

```
Matriks Sebelum Transpose
[[1 2 3]
  [4 5 6]
  [7 8 9]]

Matriks Setelah Transpose
[[1 4 7]
  [2 5 8]
  [3 6 9]]

PS E:\algoritma\Tugas-semester-2\Modul 2>
```

Penjelasannya:

Baris 1:

Program diberi judul "Praktek 18: transpose()", yang menunjukkan bahwa tujuan utama adalah mempelajari bagaimana melakukan transpose pada matriks.

Baris 2:

Komentar bahwa program akan mengimpor pustaka NumPy.

Baris 3:

Library NumPy diimpor dan diberi alias np agar pemanggilan fungsinya lebih ringkas dan mudah digunakan.

Baris 4:

Komentar bahwa baris berikutnya akan membuat sebuah matriks.

Baris 5-9:

Dibuat sebuah matriks bernama matriks_a dengan ukuran 3 baris dan 3 kolom, yang berisi angka-angka dari 1 hingga 9. Matriks ini adalah data awal yang akan di-transpose.

Baris 10:

Komentar bahwa bagian ini akan mencetak matriks sebelum dilakukan transpose.

Baris 11-12:

Program menampilkan teks "Matriks Sebelum Transpose", kemudian mencetak isi dari matriks_a ke layar agar terlihat bentuk awal matriks.

Baris 13:

Komentar yang menjelaskan bahwa bagian ini akan melakukan proses transpose terhadap matriks.

Baris 14:

Program melakukan transpose terhadap matriks_a, yaitu menukar baris menjadi kolom dan kolom menjadi baris. Hasilnya disimpan ke variabel baru bernama balik.

Baris 15:

Komentar bahwa bagian ini akan mencetak matriks setelah dilakukan proses transpose.

Baris 16-17:

Program mencetak teks "Matriks Setelah Transpose", lalu menampilkan isi dari variabel balik, yaitu hasil dari transpose matriks.

Praktek 19

```
# Praktek 19 : reshape()
# impor library numpy
import numpy as np
arr_1d = np.array([50, 70, 89, 99, 103, 35])
# cetak matriks sebelum reshape
print("Matriks Sebelum Reshape"
                                    (property) shape: _Shape
print(arr_1d)
print("Ukuran Matriks : ", arr_1d.shape)
print("\n")
# mengubah matriks menjadi ordo 3 x 2
ubah = arr_1d.reshape(3, 2)
# cetak matriks setelah reshape ke ordo 3 x 2
print("Matriks Setelah Reshape")
print(ubah)
print("Ukuran Matriks : ", ubah.shape)
```

Hasil ouputnya

```
Matriks Sebelum Reshape
[ 50 70 89 99 103 35]
Ukuran Matriks : (6,)

Matriks Setelah Reshape
[[ 50 70]
[ 89 99]
[ 103 35]]
Ukuran Matriks : (3, 2)
PS E:\algoritma\Tugas-semester-2\Modul 2>
```

Penjelasannya:

Baris 1:

Judul program ditulis sebagai "Praktek 19: reshape()", yang menunjukkan bahwa program ini membahas tentang cara mengubah bentuk (dimensi) array menggunakan fungsi reshape() dari NumPy.

Baris 2:

Komentar bahwa bagian berikutnya akan mengimpor library NumPy.

Baris 3:

Library NumPy diimpor dengan alias np agar lebih praktis saat digunakan dalam kode.

Baris 4:

Komentar bahwa di bawah ini akan dibuat sebuah array satu dimensi.

Baris 5:

Dibuat array satu dimensi bernama arr_1d yang berisi enam elemen numerik. Ini adalah array awal sebelum diubah bentuknya (reshape).

Baris 6:

Komentar bahwa bagian ini akan mencetak isi array sebelum diubah bentuknya.

Baris 7-9:

Program mencetak teks "Matriks Sebelum Reshape", menampilkan isi array arr_1d, dan menampilkan ukuran array tersebut dengan properti .shape. Ukuran awal array adalah (6,) karena satu dimensi dengan enam elemen.

Baris 10:

Mencetak baris kosong (newline) agar hasil di layar lebih rapi dan mudah dibaca.

Baris 11:

Komentar bahwa bagian ini akan mengubah bentuk (reshape) array dari 1 dimensi menjadi array 2 dimensi berukuran 3 baris dan 2 kolom.

Baris 12:

Fungsi .reshape(3, 2) digunakan untuk mengubah array arr_1d menjadi array dua dimensi dengan ukuran 3x2. Hasilnya disimpan ke variabel ubah.

Baris 13:

Komentar bahwa bagian ini akan mencetak hasil reshape ke layar.

Baris 14-15:

Program mencetak teks "Matriks Setelah Reshape", menampilkan isi array setelah diubah bentuknya, dan mencetak ukurannya menggunakan .shape, yang kini akan menjadi (3, 2).

Praktek 20

Hasil ouputnya

```
Vektor Baris
[1 2 3]
vektor Kolom
[[1]
  [2]
  [3]]
Vektor Kolom dengan transpose()
[[1]
  [2]
  [3]]
PS E:\algoritma\Tugas-semester-2\Modul 2>
```

Penjelasannya:

Baris 1:

Judul program ditulis sebagai "Praktek 20: Vektor" yang menunjukkan bahwa praktik ini berfokus pada pembuatan dan manipulasi vektor dalam NumPy.

Baris 2:

Komentar bahwa bagian berikutnya akan membuat vektor baris.

Baris 3:

vek_1 adalah vektor baris, dibuat menggunakan np.array([1, 2, 3]). Artinya, array ini terdiri dari satu baris dan tiga kolom (bentuk 1x3).

Baris 5:

Komentar bahwa bagian ini akan membuat vektor kolom.

Baris 6-8:

vek_2 adalah vektor kolom, dibuat sebagai array dua dimensi dengan masingmasing elemen diletakkan dalam satu baris terpisah, sehingga membentuk kolom. Bentuk array-nya adalah 3x1.

Baris 9:

Komentar alternatif untuk membuat vektor kolom menggunakan metode transpose.

Baris 10:

vek_3 dibuat dari array [1, 2, 3] yang ditranspose (.T), sehingga dari bentuk baris (1x3) diubah menjadi kolom (3x1).

Baris 12:

Mencetak judul: "Vektor Baris".

Baris 13:

Mencetak isi dari vek_1, yaitu vektor baris.

Baris 14:

Mencetak judul: "Vektor Kolom".

Baris 15:

Mencetak isi dari vek_2, yaitu vektor kolom yang dibuat langsung sebagai array 2 dimensi.

Baris 16:

Mencetak judul: "Vektor Kolom dengan transpose()".

Baris 17:

Mencetak isi dari vek_3, yaitu vektor kolom yang dibentuk dari vektor baris dengan cara transpose.

Praktek 21

```
# Praktek 21 : Flatten()
# impor library numpy
import numpy as np
# membuat matriks
matriks_a = np.array([
   [1, 2, 3],
    [4, 5, 6],
    [7, 8, 9]
1)
print("Matriks Awal")
print(matriks_a)
print("Ukuran : ", matriks_a.shape)
print("\n")
jd_vektor = matriks_a.flatten()
# cetak vektor
print("Hasil Konversi Matriks ke Vektor")
print(jd_vektor)
print("Ukuran : ", jd_vektor.shape)
```

Hasil ouputnya

```
Matriks Awal

[[1 2 3]

[4 5 6]

[7 8 9]]

Ukuran : (3, 3)

Hasil Konversi Matriks ke Vektor

[1 2 3 4 5 6 7 8 9]

Ukuran : (9,)

PS E:\algoritma\Tugas-semester-2\Modul 2>
```

Penjelasannya:

Baris 1:

Judul praktik ditulis sebagai "Praktek 21: Flatten()", yang menjelaskan bahwa fokusnya adalah penggunaan fungsi .flatten() pada array NumPy.

Baris 2-3:

Mengimpor library numpy dengan alias np untuk digunakan dalam pengolahan array.

Baris 5:

Komentar bahwa bagian ini digunakan untuk membuat matriks.

Baris 6-10:

Membuat array dua dimensi bernama matriks_a dengan bentuk 3 baris dan 3 kolom:

[[1, 2, 3],

[4, 5, 6],

[7, 8, 9]]

Baris 12:

Mencetak judul "Matriks Awal".

Baris 13:

Menampilkan isi dari matriks_a (sebelum diubah).

Baris 14:

Menampilkan ukuran (shape) dari matriks menggunakan matriks_a.shape, yang akan menghasilkan (3, 3).

Baris 15:

Memberikan baris kosong agar hasil cetakan lebih rapi.

Baris 17:

Membuat array baru jd_vektor dari matriks_a dengan metode .flatten(), yaitu mengubah array 2 dimensi menjadi array 1 dimensi (vektor).

Contoh hasil: [1 2 3 4 5 6 7 8 9]

Baris 19:

Mencetak judul "Hasil Konversi Matriks ke Vektor".

Baris 20:

Menampilkan isi dari jd_vektor, yaitu hasil dari proses flattening.

Baris 21:

Menampilkan ukuran jd_vektor dengan .shape, yang akan menjadi (9,) karena array-nya sekarang 1 dimensi dengan 9 elemen.