Solution to Tutorial #3 COMP 1210

Question 1

(a) Criven f(x) = 4x-16, we want to find which real x is "good" that is, will make f(x) real.

NOW, any XER it will make f(x) real. Thus, the "natural domain" is R.

Now, the range of fox) is (-00,00)

(b) (Tiven $f(x) = \sqrt{3x-6}$) We Set $3x-6 \ge 0$ to find the domain of f.

So, $x \in Domain f is <math>3x-6 \ge 0$; i.e, $x \ge 2$. So, $Domain f = \int x \in \mathbb{R}(x \ge 2)$ $= [2, \infty)$.

The Range of f is $\sqrt{3x-6} \ge 0$; i.e. Range $f = \{y \in \mathbb{R}: y \ge 0\}$

(c) Given $f(x) = \sqrt{2-x}$) We set $2-x \ge 0 \implies 2 \ge x$ which is the same

as $x \le 2$. So,

Domain $f = \int x \in \mathbb{R}$: $x \le 2$?

The Range of $f = \int y \in \mathbb{R}$: $y \ge 0$?

(d) Given $f(x) = \frac{2x}{(x-1)(3x+9)}$ we Set (x-1)(3x+9) = 0 to find the restriction on the domain; that is, x = 1 or x = -3. So, the domain of x = 1 or x = -3. That is, x = 1 or x = 1. That is, x = 1 or x = 1. That is, x = 1 or x = 1. That is, x = 1 or x = 1. The Range of x = 1 or x = 1.

(e) Given $f(x) = \frac{1}{\sqrt{x-3}}$, we need x-3>0; i.e, x>3. So, Domain $f = \left\{x \in \mathbb{R} : x>3\right\}$ Range $f(x) = \left\{y \in \mathbb{R} : y = \frac{1}{\sqrt{x-3}} : x>3\right\}$ $= \left\{y \in \mathbb{R} : y>0\right\}$

Now, $y = \frac{1}{\sqrt{x-3}} \Rightarrow y^2 = \frac{1}{x-3} > 0$ or oc-3 = 1. Therefore, x= 1/4373. Thus, I To. So, y2 >0; take

Question 2

(a) Given f(x)=x-3

Injective (1-1)

Suppose f(x) = f(y). Then x - 3 = y - 3. Therefore, oc=y. Hence fix 1-1.

Surjective (onto)

Suppose y ER (codomain) then y+3 ∈ R (domain). NOW, f(y+3) = y+3-3=y. Thus, of is onto.

Rough Work yer if f is onto $\exists x^* \in \mathbb{R}$ domain Such that $f(x^*) = x^* - 3 = y$. i.e, $x^* = y + 3 \in \mathbb{R}$. That is, x^* is in domain

(b) Criven
$$f(x) = 2x+3$$
.

Injective

Suppose f(x) = f(y). Then 2x + 3 = 2y + 3Thus, $2x = 2y \implies x = 2y$. Therefore, f is one-to-one.

Surjective

Suppose $y \in \mathbb{R}$ then $\frac{y-3}{2} \in \mathbb{R}$ domain and f(y-3) = 2(y-3) + 3 = y.

Therefore, f is onto.

(a) NOW, given $f(x): Z \longrightarrow Z$ and f(x) = x-3.

One-to-one

Suppose f(0) = f(y). Then x-3=y-3. Therefore x=y. Hence f is 1-1.

suppose y & 7 (codomain) Then y+3 EZ (domain) and f(y+3)=y. Thus, f is onto.

(1) Criven +(01) = 2x+3.

Ohe-to-one

Suppose f(x)=f(y) then 2x+3=2y+3. Thus 2x=2y or x=y. The refore, f is one-to-one.

Onto

Now, integers (Z) are in the codomain but there are no corresponding $x \in \mathbb{Z}$ (domain) at some instances such that f(x) = y. For example, $4 \in \mathbb{Z}$ (codomain) but there is no $x \in \mathbb{Z}$ (domain) Such that $f(x) = \varphi$.

Since $f(x) = 4 \Longrightarrow 2x + 3 = \varphi$.

That is, $x = \frac{1}{2} \notin \mathbb{Z}$. So, φ is not onto.

(a) Given
$$A = \{a, b, c\}$$
 and $B = \{1, 2, 3\}$.

Now, we have

$$A \times B = \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3),(b,3),(c,1),(c,3)\}$$

Now, the functions from A to B are given by

are given by
$$\begin{cases}
(a,1), (b,1), (c,1) = f_1 \\
(a,2), (b,2), (c,2) = f_2 \\
(a,3), (b,3), (c,3) = f_3 \\
(a,1), (b,1), (c,2) = f_4 \\
(a,1), (b,2), (c,1) = f_5 \\
(a,2), (b,1), (c,1) = f_6 \\
(a,1), (b,1), (c,3) = f_7
\end{cases}$$

 $t_8 = \{(a,1), (b,3), (c,1)\}$ $f_{q} = \{(a,3), (b,1), (c,1)\}$ $f_{(0)} = \{(0,3), (b,3), (c,2)\}$ $f_{11} = \{(0,3), (b,2), (c,3)\}$ $f_n = \{(a, 2), (b, 3), (c, 3)\}$ $f_{13} = \{(a_{1}3), (b_{1}3), (c_{1})\}$ $f_{14} = \{(0,3), (6,1), (c,3)\}$ $f_{15} = \{(0,1), (b,3), (c,3)\}$ $f_{16} = \{(a,2), (b,2), (c,1)\}$ $f_{11} = \{(a,z), (b,1), (42)\}$ $f_{18} = \{(a,1), (b,2), (c,2)\}$ $f_{19} = d(c_{1}, z), (b, z), (c, 3)$ $f_{20} = \{(a_1 z), (b_1 z), (c_1 z)\}$ $f_{21} = \{(a_1 z), (b_1 z), (c_1 z)\}$ $f_{22} = \{(a_{11}), (b_{12}), (c_{13})\}$ $f_{23} = \{(a, b), (b, 3), (c, 2)\}$

$$f_{24} = \{(a,3), (b,2), (c,1)\}$$
 $f_{25} = \{(a,2), (b,1), (c,3)\}$
 $f_{26} = \{(a,2), (b,3), (c,1)\}$
 $f_{27} = \{(a,3), (b,1), (c,2)\}$

Now, functions

 $f_{27} = \{(a,3), (b,1), (c,2)\}$

Are neither

injective Nor

surjective.

(b) Given $X = \{-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5\}$ and $f = \{(x, x^2): x \in X^2\}$. Now, f as a set of ordered pairs is given by $f = \{(-5, 25), (-4, 16), (-3, 9), (-2, 4), (-1, 1)\}$ $(0, 0), (5, 25), (4, 16), (3, 9), (2, 4), (1, 1)\}$

Injective

Now, f is not injective since f(-3) = 9 = f(3) and $-3 \neq 3$.

Surjective

Now, f is not surjective since

-4 EX but -4 is not a second

element of any ordered pair.

Also, any of the other numbers could

be used as an example for which the

Surjective property does not hold.

Criven f: A > B given by $f(x) = \frac{1}{2-x}$ and g: B > B be given by $g(x) = \frac{1}{5c+2}$. NOW, note that $x \in A$. Then $x \ge 0$

NOW, note that $x \in \mathbb{R}$. Then $x \ge 0$ and $f(x) = \frac{1}{2-x} > 0 \in \mathbb{B}$.

Thus, f(x) & B, Y > < & A and g of (x)

Is defined for all x & A.

Now, $g \circ f(x) = g(f(x)) = \frac{1}{f(x)+2}$ $= \frac{1}{\frac{1}{2-x}+2} = \frac{1}{\frac{5-2x}{2-x}}$

 $=\frac{2-x}{5-2x}=\frac{x-2}{2x-5}$

Now, suppose y is in range of gof.

Then (x = x-2, that is, x = 5y-2, a

Then $y = \frac{x-2}{2x-5}$; that is, $x = \frac{5y-2}{2y-1} \ge 0$.

X X X Y Y Y Y

Thus, $\frac{2}{5}$ $\angle y < \frac{1}{2}$. Hence, the range of 9 of $\in (\frac{2}{5})$ $\frac{1}{2}$.

Question 6

(a) Given $f(x) = \sqrt{x-1}$) $g(x) = \sqrt{x-2}$

Now, fogos=f(gas)= Jgos-1=

VIX-2-1. We note that

fog(x) is defined for x such that

 $\sqrt{x-2}$ -1 = 0; that is, $\sqrt{x-2} = 1$.

That is, fx: x = 39.

(b) Citiven $f(x) = \frac{1}{x-1}$ and $g(x) = \frac{x-1}{x+1}$.

Now, $f \circ g(x) = f(g(x)) = \frac{1}{g(x)-1} =$

 $\frac{1}{x-1} = \frac{x+1}{-2} = -\frac{1}{2}(x+1)$

(a) (tiven f(x) =-x-4.

Suppose f(x) = f(y). Then -x-4 = -y-4; that is, x = y and so f is one-to-one.

Now, let y = -x - 4 = x = -y - 4. Now, let $x^* = x = -y - 4$. Substituting, we have $f(x^*) = -(-y - 4) - 4 = y + 4 - 4$ = y.

... $f(x^*)=y$. Notice if $y \in \mathbb{R}$ then $x = -y - y \in \mathbb{R}$. So, $y \in \mathbb{R}$, $y \in \mathbb{R}$. Hence $f(x^*)=y$.

Now, to find the inverse we let y = f(x); i.e., y = -x-4. Now, interchanging variables: x = -y-4. Solving for y: y = -x-4. Therefore, f'(x) = -x-4. (b) Criven $f(x) = (x+1)^2$, $x \ge -1$. (7) Suppose $x,y \ge -1$ and f(x) = f(y). Then $(x+1)^2 = (y+1)^2 or$ $x^2 + 2x + 1 = y^2 + 2y + 1 = 3$ $x^{2}-y^{2}+2(x-y)=0$ (x-y)(x+y) + 2(x-y) = 0 = 0(x-y)(x+y+2) = 0. Case 2 Now, either (x-y)=0 or x+y+2=0Since x,y = -1 we have xty +2=0 \Leftrightarrow $x=-1=y\cdot Also, (x-y)=0 \Leftrightarrow$ X=y (Both cares imply that x=y) Thus, $(x \neq y)(x + y + z) = 0 \iff x = y$. Hence, f(x) is one-to-one.

We let $y = (x+1)^2$ and we have that $-\sqrt{y} = x+1$ or $\sqrt{y} = x+1 \Rightarrow x = \sqrt{y} - 1$ or $x = -\sqrt{y} - 1$. Since we must ensure that $x \in domain$; that is, $x \ge -1$. So, we choose $x^* = \sqrt{y} - 1$ and so $f(x^*) = (\sqrt{9} - x + x)^2 = (\sqrt{9})^2 = y$. So, $\forall y \in eodomain$, $\exists x^* = (\sqrt{9} - 1) \ge -1$ $\in domain$ Such that $f(x^*) = y$.

Therefore, f is outo.

To find the inverse, we let $y = (x+1)^2$ and so, $x = (y+1)^2$ when we interchange Variables. Now, Solving for y we obtain Hence, $f(x) = \sqrt{x} - 1$.

Given $A = \{x: x \ge 2\}$ and $B = \{x: x \ge 2-4\}$ and $f: A \longrightarrow B$.

Now, suppose f(x) = f(y) = 0 $x^2 - 4x = y^2 - 4y = 0$ $x^2 - y^2 - 4(x - y) = 0$ (x - y)(x + y) - 4(x - y) = 0 (x - y)(x + y - 4) = 0.

Either $x-y=0 \implies x=y \text{ or}$ $x+y-u=0 \iff x=y=2. \text{ Therefore,}$ $(x-y)(x+y-y) = 0 \iff x=y.$ That is, f is one-to-one.

Now, let $y = x^2 - 4x$ and we obtain $x^2 - 4x - y = 0$.

Using the quadratic formula: $x = -b \pm \sqrt{b^2 - 4ac}$, where a = 1,

b=-4 and c=-y, we have.

x= 4+ 116+49 2 = 2 ± 25 4+ 5 = 2± 14+9 Now, suppose y eB, then Jx= 2± 54+9 EA Such that f(x)=9. We choose x= 2+ J4ty: We choose $x = 2 + \sqrt{4+y} = 2$ So) $\forall y \geq -4$ $\exists x = 2 + \sqrt{4+y} \geq 2$ such that f(x*) =y. Hence, f is onto. Now, since we choose x = 2+ 54ty) we can deduce .f. (x). Nows it follows that y = 2 + Jatx and so, f'(x) = 2+ \(\frac{1}{4+xc}\) Since \(\frac{x}{2} = 2\)

seeing that xeA:

Question 9 We have that f: A -> B and 9: B -> C.

(a) Criven f: A -> B'and 9: B-> C. Suppose that fand gare injective and suppose $(g \circ f)(x) = (g \circ f)(y)$ for x, y e A. Then g[f(x)] = g[f(y)], but g injective implies that f(x) = f(y). Also, f injective implies that x = y. Thus, gofton is injective. (b) Given t: A > B and g: B > C. Let y e c. Now, 9 surjective implies that $\exists x, \in B \ni g(x_1) = y$. But X, EB and of Surjective implies that $\exists x \in A \ni f(x) = x, j \text{ that is,}$ $g(f(x)) = g(x_1) = y.$

Thus, g of is surjective. $\left(\frac{x}{x}\right)^{2}$

Given that f: A > B and C12 C2 CA and DSB

(a) Let $y \in f(C_1 \cap C_2) = \sum$ $\exists x \in C_1 \cap C_2$ such that f(x) = y. NOW, $x \in C_1$ and $x \in C_2$.

Thus, $y = f(x) \in f(C_1)$ and $y = f(x) \in f(C_2)$. Thus, $y \in f(C_1) \cap f(C_2)$.

Therefore, f(C, n c2) = f(C,) n f(C2).

(b) Let $y \in f[f'(D)]$. Then $\exists x \in f'(D)$ such that f(x) = y.

But $x \in f'(D) \Longrightarrow y = f(x) \in D$.

Therefore, $f[f'(D)] \subseteq D$.