

NOVEMBER 2002

GCE Advanced Subsidiary Level

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT:9702/2

PHYSICS (STRUCTURED QUESTIONS (AS))

Page 1 of 3	Mark Scheme	Syllabus	Paper
	AS Level Examinations – November 2002	9702	2

1	(a) (i) (ii)	mass / volume (ratio must be clear)		[2]
	(b)	v has unit of m s ⁻¹ p/ρ has unit of kg m ⁻¹ s ⁻² / kg m ⁻³ (no e.c.f. from (a)) $\sqrt{(p/\rho)}$ has unit of m s ⁻¹ LHS = RHS so γ has no unit	M1 A1	[3]
2-	(a)	1.6 ± 0.2 cm	B1	[1]
	(b)	1.6 / 50 = 0.032(ignore any uncertainties)	B1	[1]
	(c)	idea of adding fractional uncertainties (0.2 / 1.6) + (0.1 / 50)	C 1	
		= 0.127 OR 12.7%(-2 marks if uncertainties not added) actual uncertainty = (±) 0.004 (do not allow more than 2 sig. fig)		[3]
3	(a)	$v^2 = u^2 + 2as$ OR use of triangle etc $4.0^2 = 2 \times 9.8 \times s$ OR $s = \frac{1}{2} \times 4.0 \times 0.4$ s = 0.82 m OR 0.80 m		[2]
	(b)	$\Delta p = m(v - u)$ OR $p = mv$ speeds are 4.2 m s ⁻¹ and 3.6 m s ⁻¹ $\Delta p = 0.045 (4.2 + 3.6) (2/4 \text{ only if speeds not added})$ $= 0.35 \text{ N s}$ (1 mark only if only one speed used)	C1 C1	[4]
	(c)	any time between 0.14 s and 0.17 s force = $\Delta p / \Delta t = 0.35 / 0.14$ (allow e.c.f.) = 2.5 N		[2]
4	(a)	force × distance <u>moved</u>	M1 Al	[2]
	(b)	weight / force = mg		[2]

Page 2 of 3	Mark Scheme	Syllabus	Paper
	AS Level Examinations – November 2002	9702	2

5	(a)	displacement & direction of energy travel normal to one another	B1	[1]
	(b) (i)	phase angle of 60° correct (need to see $1\frac{1}{2}$ wavelengths) lags behind T_1		[2]
	(ii)	waves must be in same place (at same time)		[2]
	2.	- ½A (allow e.c.f.)	B1	[3]
6	(a) (i)	arrow in upward direction, foot near P	B1	
	(ii)	curved path consistent with (i) between plates	B1 B1	[3]
	(b)	E = V/d = $400/(0.8 \times 10^{-2})$ = $5.0 \times 10^4 \text{ V m}^{-1}$ (allow 1 sig fig)	C1 A1	[2]
	(c) (i)	$F = Eq $ = $5.0 \times 10^4 \times 1.6 \times 10^{-19}$	C1	[-]
	(ii)	$a = F/m$ = $(8.0 \times 10^{-15})/(9.1 \times 10^{-31})$	A1 C1	
		= $8.8. \times 10^{15} \mathrm{m s^{-2}}$ (allow 1 sig fig and e.c.f.)	A1	[4]
	(d)	because $F_{\rm E}$ is normal to <u>horizontal</u> motion no effect	M1 A1	[2]

Page 3 of 3	Mark Scheme	Syllabus	Paper	1
	AS Level Examinations – November 2002	9702	2	1

7 (a) (i)	e.m.f. = energy / charge		·
	= 8.9 V	A1	
(ii)	current = $\Delta Q / \Delta t$	C 1	
	$= 0.14 \text{ A} \qquad \dots$	A1	[4]
(b) (i)	energy $\propto R$ (or formula)	C1	
	$= 3.7 \times 10^4 \text{ J}$		
(ii)	energy dissipated in internal resistance (of battery)	B1	[4]
8 (a)	shows nucleon number as 220		503
	shows proton number as 87	BI	[2]
(b)	shows products as ⁴ ₂ He OR ⁴ ₂ α	B1	
	and 216 At(allow e.c.f. from (a))	B1	[2]
		.ek	
9 (a) (i)	stress = F / A		
	= $1.47 \times 10^7 \text{Pa}$ (do not allow 1 sig fig)	A1	
(ii)	$stress = E \times strain \dots$	C1	
	$1.47 \times 10^7 = 7.1 \times 10^{10} \times (\Delta l / 1.8)$ $\Delta l = 0.37 \text{ mm}$	Al	[4]
(b)	$P = aI/A OP P \propto I$	CI	
(b)	$R = \rho l/A$ OR $R \propto L$ so, $\Delta R/R = \Delta l/l$	C1 C1	
	$\Delta R = (3.7 \times 10^{-4} / 1.8) \times 0.03 = 6.2 \times 10^{-6} \Omega$		[3]
	May calculate $\rho = 2.833 \times 10^{-8} \Omega$ m giving new R as $3.0006167 \times 10^{-2} \Omega$ hence ΔR - full credit possible		
	However, if rounds off ρ as $2.83 \times 10^{-8} \Omega$ m, then $R_{\text{new}} < R_{\text{old}}!$ Allow 1 mark only for $R \propto L$		