Notes on the function gsw_sigma1(SA,CT)

Potential density anomaly is defined by Eqn. (3.6.1) of IOC et al. (2010), namely

$$\sigma^{\Theta}(S_{A}, t, p, p_{r}) = \rho^{\Theta}(S_{A}, t, p, p_{r}) - 1000 \text{ kg m}^{-3}$$
$$= \hat{\rho}(S_{A}, \Theta, p_{r}) - 1000 \text{ kg m}^{-3}.$$
(1)

This function, $\mathbf{gsw_sigma1}(SA,CT)$, evaluates the potential density anomaly of seawater as a function of Absolute Salinity and Conservative Temperature, and with respect to a reference pressure p_r of 1000 dbar using the 48-term expression, $\hat{\rho}(S_A,\Theta,p)$ of the GSW function $\mathbf{gsw_rho}(SA,CT,p)$. This 48-term rational function expression for density and specific volume is discussed in McDougall and Barker (2013) and in appendix A.30 and appendix K of the TEOS-10 Manual (IOC *et al.* (2010)).

References

IOC, SCOR and IAPSO, 2010: The international thermodynamic equation of seawater – 2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English), 196 pp. Available from http://www.TEOS-10.org

McDougall T. J., and P. M. Barker, 2013: A computationally efficient 48-term expression for the density of seawater in terms of Conservative Temperature, and related properties of seawater. To be submitted to *Journal of Atmospheric ans Oceanic Technology*.

Here follows section 3.6 of the TEOS-10 manual (IOC et al. (2010)).

3.6 Potential density anomaly

Potential density anomaly, σ^{θ} or σ^{Θ} , is simply potential density minus 1000 kg m⁻³,

$$\sigma^{\theta}(S_{A}, t, p, p_{r}) = \sigma^{\Theta}(S_{A}, t, p, p_{r}) = \rho^{\theta}(S_{A}, t, p, p_{r}) - 1000 \text{ kg m}^{-3}$$

$$= \rho^{\Theta}(S_{A}, t, p, p_{r}) - 1000 \text{ kg m}^{-3}$$

$$= g_{P}^{-1}(S_{A}, \theta[S_{A}, t, p, p_{r}], p_{r}) - 1000 \text{ kg m}^{-3}.$$
(3.6.1)

Note that it is equally correct to label potential density anomaly as σ^{θ} or σ^{Θ} because both θ and Θ are constant during the isentropic and isohaline pressure change from p to p_r .