BENRAN HU

benranh@andrew.cmu.edu | zymk9.github.io | +1 (412) 224-7539 | Pittsburgh, US

EDUCATION

Carnegie Mellon University

Master of Science in Computer Science

Pittsburgh, PA

Dec 2024 (Expected)

Hong Kong University of Science and Technology

Bachelor of Science in Data Science and Technology, and in Computer Science

Hong Kong SAR

Jun 2023

Achieved CGA: 4.14/4.30, Major CGA: 4.19/4.30.

RESEARCH EXPERIENCE

NeRF Instance Segmentation [ICCV'23] |

Advisors: Prof. Chi-Keung Tang and Prof. Yu-Wing Tai

HKUST, Hong Kong SAR

Dec 2022 - Jul 2023

• Proposed one the first 3D instance segmentation methods in NeRFs by optimizing a Neural Instance Field.

Shading Reprojection Scheduling

Advisor: Prof. Pedro Sander

HKUST, Hong Kong SAR

Sep 2022 - Present

• Maximized rendering quality under performance constraints by scheduling temporal reprojection of shading based on error prediction.

Object Detection in NeRF [CVPR'23] | 🕒

Advisors: Prof. Chi-Keung Tang and Prof. Yu-Wing Tai

HKUST, Hong Kong SAR

May 2022 - Nov 2022

 Proposed the first significant 3D object detection method in Neural Radiance Fields and created the first dataset for NeRF 3D object detection.

Perception-Driven VR Rendering

Advisor: Prof. Pedro Sander

HKUST, Hong Kong SAR

Sep 2021 - Sep 2022

• Devised a perception-driven rendering algorithm for VR utilizing binocular fusion and reprojection to improve rendering performance while minimizing visual quality loss.

PUBLICATIONS

Yichen Liu*, **Benran Hu***, Junkai Huang*, Yu-Wing Tai, and Chi-Keung Tang. Instance Neural Radiance Field. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, October 2023.

Benran Hu*, Junkai Huang*, Yichen Liu*, Yu-Wing Tai, and Chi-Keung Tang. NeRF-RPN: A general framework for object detection in NeRFs. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2023.

TECHNICAL PROJECTS

Metarenderer O

- Developed a rendering playground for introductory graphics courses based on three.js and WebGL, featuring interactive experiments of camera and shading models, lighting and illumination, culling, textures, and shadow mapping.
- Implemented PCSS, microfacet materials, and PRT with interreflection and glossy BRDF.

Geometry Processing Pipeline

• Implemented the whole pipeline from shape acquisition to rigged models, including surface reconstruction, mesh smoothing, mesh parametrization, mesh deformation, skinning, and skeletal animation.

Trace (2)

• Implemented a CPU renderer supporting path tracing, microfacet materials, and photon mapping.