ARTIFICIAL INTELLIGENCE (E016330)
PROFESSOR: ALEKSANDRA PIZURICA
AY 2019/2020

NEURAL NETWORKS

Laurens Meeus, Nina Žižakić, Aleksandra Pižurica

CONVOLUTIONAL NEURAL NETWORK

$$y \approx f(x, w) = y^*$$

learnable, non-linear mapping

Pineapple: 88%

Kiwi: 7%

Apple: 3%

Banana: 1%

Pear: 1%

- Learnable linear transformations: convolving a kernel or weighted sum
- Non-linear activations: ReLU, Sigmoid, Softmax

GRADIENT DESCENT

$$y^* = f(x, w)$$

$$L = L(y, y^*)$$

$$\Delta L \approx \nabla_w(L) \cdot \Delta w$$

 $w_{n+1} = w_n - \gamma \nabla_w(L)$

prediction of the network *f* with weights *w* loss

first order approximation of ΔL

Size update limited by learning rate γ

TRAIN, VALIDATION & TEST SET

GHENT

UNIVERSITY

Start of training (underfit)

Both losses decrease.

High training epoch (overfit)

Training error converges
Validation error stops improving or gets worse

Training set: Train the models

Validation set: Model and

hyperparameter selection

Test set: Estimate generalisation

error

Stop training

OPTIMIZING HYPER PARAMETERS

Underfit (Bias)

Training error will be high Validation error ~ Training error

Overfit (Variance)

Training error will be low Validation error >> Training error

OVERVIEW ASSIGNMENT

Train neural networks using Keras and Google Colab

https://keras.io/

https://colab.research.google.com/

Get acquainted with the properties and variables in a neural network

- Picking the right performance metric
- Optimal hyperparameters search
- Running model on real life data

ASSIGNMENT

Ufora: B. Practicals/Practicals 3

In groups of 2

groups on Minerva

Send questions to

• ai@lists.ugent.be

Deadline

• December 13th, 2019 (23:59)

