Chapitre 1 - Approche énergétique

Sciences Industrielles de

l'Ingénieur

Application

Application - Détermination de l'inertie équivalente de réducteurs

Savoirs et compétences :

Exercice 1 - Calcul de l'inertie équivalente d'un train simple

On donne un réducteur à train d'engrenages simple avec Z_1 , Z_2 , Z_3 et Z_4 le nombre de des des engrenages. On nomme k_1 le rapport de réduction de S_1 et S_2 avec et k_2 le rapport de réduction de S_2 et S_3 avec

On rappelle que pour les engrenages à denture droite d = mz avec d le diamètre primitif, m le module, z le nombre de dents du pignon. $\omega(1/0)$, $\omega(2/0)$ et $\omega(3/0)$ sont les vitesses de rotation de S_1 , S_2 et S_3 autour des axes $(O_1, \overrightarrow{x_g}), (O_2, \overrightarrow{x_g})$ et $(O_3, \overrightarrow{x_g})$. Le repère galiléen \mathcal{R}_g est lia au solide S_0 . Les liaisons pivots sont supposées parfaites. Les matrices d'inertie sont définies aux centres de masse $G_1 = O_1$, $G_2 = O_2$ et $G_3 = O_3$ associées aux solides S_1 ,

$$S_2$$
 et S_3 sont de la forme : $I_{O_i}(S_i) = \begin{pmatrix} A_i & 0 & 0 \\ 0 & B_i & 0 \\ 0 & 0 & C_i \end{pmatrix}_{O_i, R_i}$.

Question 1 Déterminer le rapport de réduction du train d'engrenages.

Question 2 Déterminer l'inertie équivalente du réducteur ramené à l'axe moteur.

1

Question 3 Déterminer la relation entre le couple d'entrée et le couple de sortie du réducteur.

Exercice 2 - Calcul de l'inertie équivalente d'un train épicycloïdal

On considère le train épicycloïdal suivant à trois satellites. Chacune des pièces est axisymétrique. On donne leurs matrices d'inertie:

$$\overline{\overline{I_A}}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathcal{R}_1} \quad \overline{\overline{I_B}}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathcal{R}_2}$$

$$\overline{\overline{I_A}}(3) = \begin{pmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{pmatrix}_{\mathcal{R}_3}$$

Question 1 Déterminer le rapport de réduction du train épicycloïdal.

Question 2 Déterminer l'inertie équivalente du train épicycloïdal.

Question 3 Déterminer le couple moteur (à appliquer sur l'arbre 1) nécessaire à la mise en mouvement de la charge sur l'arbre de sortie 3 sur lequel est appliqué un couple résistant.