Métodos de Solución de Ecuaciones

Alumno

Fernando José Mamani Machaca

Docente

Fred Torres Cruz

21 de enero de 2025

Introducción

Este informe presenta la implementación de una aplicación interactiva para resolver sistemas de ecuaciones lineales. El objetivo es comparar y analizar tres métodos diferentes de resolución:

- Método de Cramer
- Método de Gauss-Jordan
- Método de Sustitución

La aplicación está diseñada utilizando Python y Streamlit, ofreciendo una interfaz intuitiva para el usuario y visualizaciones interactivas.

Descripción de la Aplicación

La aplicación permite a los usuarios ingresar sistemas de ecuaciones en un formato específico y proporciona las siguientes características:

- Resolución paso a paso de los sistemas de ecuaciones.
- Visualización de las matrices involucradas en el cálculo.
- Comparación de resultados obtenidos por diferentes métodos.
- Exportación de los resultados en formato CSV.

Formato de Entrada

El usuario debe ingresar las ecuaciones en el siguiente formato:

$$2x1 + 3x2 = 18$$

 $x1 - x2 = 1$

Donde:

- Los coeficientes pueden ser números enteros o decimales.
- Los términos deben separarse con los signos -.º ".

Métodos Implementados

Método de Cramer

Este método utiliza determinantes para calcular las soluciones de un sistema de ecuaciones lineales. La solución para cada variable se obtiene como:

$$x_i = \frac{\det(A_i)}{\det(A)}$$

Donde A_i es la matriz A con la columna i reemplazada por el vector b.

Método de Gauss-Jordan

El método de Gauss-Jordan convierte la matriz aumentada del sistema en su forma reducida por filas, resolviendo directamente las incógnitas:

Matriz aumentada :
$$[A|b] \rightarrow [I|x]$$

Método de Sustitución

Este método utiliza dos etapas:

- 1. Triangulación para transformar la matriz en forma triangular superior.
- 2. Sustitución hacia atrás para calcular los valores de las incógnitas.

Visualización y Comparación

La aplicación ofrece representaciones visuales de las matrices y los pasos intermedios para cada método, utilizando la biblioteca Plotly. Además, se genera una tabla comparativa con las soluciones obtenidas por los tres métodos.

Exportación de Resultados

Los resultados pueden exportarse en formato CSV para un análisis posterior. Esto incluye las soluciones obtenidas y detalles adicionales de los cálculos.

Enlaces Útiles

- Repositorio en GitHub: https://github.com/fernando-la-locura/MetodosDeOptimizaciogit
- Aplicación en Streamlit: https://metodosdeoptimizacion-hshv6eqywtqvsmna3y6du2. streamlit.app/

Conclusión

La aplicación desarrollada es una herramienta práctica para resolver y analizar sistemas de ecuaciones lineales. Su interfaz intuitiva y las visualizaciones interactivas la hacen accesible tanto para estudiantes como para profesionales.