

Unit 2 - Relations

Definition

"a is related to b by R"

"a is note related to b by R"

Example

Properties of Relation

Reflexive Relation

Non Reflexive relation

Irreflexive Relation

Irreflexive Relation....

```
(reflexive)
(irreflexive)
(reflexive)
(reflexive)
```


Symmetric Relation

Asymmetric relation.

(symmetric)

(symmetric)

Asymmetric Relation

Antisymmetric Relation

Transitive Relation

Equivalence Relation (RST)

i)

11)

<u>iii</u>)

Partial Ordered Relations (RAT)

Computer Recognition

REPRESENTATION OF RELATION FOR COMPUTER RECOGNITION

Tools for representation of a relation

1

2

Relation Matrix (Zero-One Matrix):

Relation Matrix (Zero-One Matrix)....

"Relation matrix"

"Zero-One Matrix"

Rows of the matrix corresponds to the elements in set A and columns corresponds to the elements in set B

Relation Matrix (Zero-One Matrix)....

$$M(R)=$$

	p	q
0		
1		
2		

Directed Graphs (Digraphs):

Edge set

Directed Graphs (Digraphs): Example:

Directed Graphs (Digraphs) :.....

Isolated Vertex

Self-loop

In-degree

<u>Out</u>

degree

Problems:

1.

1

Out-Degree	4	2	1	1

In-Degree 1 2 3 3

Problems :....

Problems...

Representation of properties of relation using Zero-One matrix

and digraph

Reflexive Relation:

Diagonal elements should be 1 i.e Mij = 1 (i=j)

Each vertex should have self loop

Irreflexive Relation:

None of the diagonal elements should be 1 i.e mij \neq 1(i=j) None of the vertex should have self loop

Symmetric Relation:

If mij = 1 then mji = 1

There should arrows in both the direction

Asymmetric Relation:

If mij = 1 then $mij \neq 1$

None of the pair of vertex should have bi-directional arrows

If mij = 1 then mji = 0 but mij = 1.(i=j)

None of the pair of vertex should have bi-directional arrows but any vertex

can have self loop

Transitive Relation:

If mik = 1 and mij =1 then mij = 1

If there is a path of length greater than 1 from vertex a to b, then there is path of length 1 from a to b

Problems:

Operations on Relations:

<u>Union of Relations</u>: $(R_1 \cup R_2)$

Intersection of Relations : $(R_1 \cap R_2)$

Complement of a Relation:

Converse of a Relation: R^c

Problem...

Problems..

Solution

Problems..

