CSEE223 HW

Name:	

Date: _____

Boolean Laws and Expressions

1.	Rule #1		
		Anything <i>OR</i> -ed with its own compliment is equal to 1:	A
		Anything <i>AND</i> -ed with a 0 is equal to 0:	В
		Anything <i>AND</i> -ed with its own compliment is equal to 0:	C
		Anything <i>OR</i> -ed with a 1 is equal to 1:	D
2.	Rule #2		
		Anything <i>OR</i> -ed with a 0 is equal to itself:	A
		Anything <i>OR</i> -ed with itself is equal to itself:	В
		Anything <i>AND</i> -ed with a 1 is equal to itself:	C
		Anything <i>AND</i> -ed with itself is equal to itself:	D
3.	Rule #3		
		Anything <i>AND</i> -ed with itself is equal to itself:	A
		Anything <i>OR</i> -ed with a 0 is equal to itself:	В
		Anything <i>AND</i> -ed with a 1 is equal to itself:	C
		Anything <i>OR</i> -ed with itself is equal to itself:	D
4.	Rule #4		
		Anything <i>OR</i> -ed with its own compliment is equal to 1:	A
		Anything <i>AND</i> -ed with a 0 is equal to 0:	В
		Anything <i>AND</i> -ed with its own compliment is equal to 0:	C
		Anything <i>OR</i> -ed with a 1 is equal to 1:	D
5.	Rule #5		
		Anything <i>AND</i> -ed with itself is equal to itself:	A
		Anything <i>OR</i> -ed with a 0 is equal to itself:	В
		Anything <i>AND</i> -ed with a 1 is equal to itself:	С
		Anything OR-ed with itself is equal to itself	D

6.	Rule #6	
0.	Anything <i>AND</i> -ed with itself is equal to itself:	A
	Anything <i>OR</i> -ed with a 0 is equal to itself:	В
	Anything <i>AND</i> -ed with a 1 is equal to itself:	С
	Anything <i>OR</i> -ed with itself is equal to itself:	D
7.	Rule #7	
	Anything <i>OR</i> -ed with its own compliment is equal to 1:	A
	Anything AND-ed with a 0 is equal to 0:	В
	Anything <i>AND</i> -ed with its own compliment is equal to 0:	С
	Anything <i>OR</i> -ed with a 1 is equal to 1:	D
0	D 1 40	
8.	Rule #8	Λ
	Anything <i>OR</i> -ed with its own compliment is equal to 1:	A
	Anything AND advith its own compliment is equal to 0:	B C
	Anything <i>AND</i> -ed with its own compliment is equal to 0: Anything <i>OR</i> -ed with a 1 is equal to 1:	D
	Anyuning OR-eu with a 1 is equal to 1.	ע
9.	Rule #9	
'	A variable complimented twice will return to 0:	A
	A variable complimented twice will return to 1:	В
	A variable complimented twice will return to its original logic level:	С
	A variable complimented twice will return to itself:	D
10.	Rule #10	
	A + A'B = A + B	A
	A + AB' = A + B	В
	A' + A'B = A + B	C
	A + A'B' = A + B	D
11.	Rule #10	
11,	A' + AB = A' + B	A
	A + AB' = A + B	В
	A' + A'B = A + B	C
	A + A'B' = A + B	D

12. (A • B) + (C • D)		
Maxterm form:	A	
Sum-of-Products Form:	В	
Minterm form:	С	
Product-of-Sums Form:	D	
13. $(A + B) \cdot (C + D)$		
Maxterm form:	A	
Sum-of-Products Form:	В	
Minterm form:	С	
Product-of-Sums Form:	D	
<u>'</u>		
14. DeMorgans Theorem		
The grouping of several variables of <i>OR</i> -ed or <i>AND</i> -ed does not matter:	Α	
Method for expanding an equation containing <i>OR</i> s and <i>AND</i> s:	В	
The order of <i>OR</i> -ing or <i>AND</i> -ing does not matter:	С	
Converting an expression with an inversion over 2 or more variables to an		
expression with inversion bars over single variables:	D	
Α		
15. Associative Law:		
The grouping of several variables of <i>OR</i> -ed or <i>AND</i> -ed does not matter:	A	
Method for expanding an equation containing <i>OR</i> s and <i>AND</i> s:	В	
The order of <i>OR</i> -ing or <i>AND</i> -ing does not matter:	\overline{C}	
Converting an expression with an inversion over 2 or more variables to an		
expression with inversion bars over single variables:	D	
expression with inversion buts over single variables.		
16. Distributive Law		
The grouping of several variables of <i>OR</i> -ed or <i>AND</i> -ed does not matter:	A	
Method for expanding an equation containing <i>OR</i> s and <i>AND</i> s:	В	
The order of <i>OR</i> -ing or <i>AND</i> -ing does not matter:		
Converting an expression with an inversion over 2 or more variables to an		
expression with inversion bars over single variables:	D	
expression with inversion bars over single variables.		
17. Commutative Law		
	A	
The grouping of several variables of <i>OR</i> -ed or <i>AND</i> -ed does not matter: Method for expanding an equation containing <i>OR</i> s and <i>AND</i> s:		
Method for expanding an equation containing <i>OR</i> s and <i>AND</i> s:	<u>B</u>	
The order of <i>OR</i> -ing or <i>AND</i> -ing does not matter:		
Converting an expression with an inversion over 2 or more variables to an	D	
expression with inversion bars over single variables:		