	S'.	rud:	ENT	\mathbf{ID}	O	 	
-							

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 1, 2019/2020

PGC0225 - GENERAL CHEMISTRY

(Foundation in Life Sciences students only)

25 October 2019 9.00 a.m – 11.00 a.m

(2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This question paper consists of 5 pages with 5 questions only.
- 2. Answer ALL questions.
- 3. Please write all your answers in the answer booklet provided.
- 4. Distribution of marks for each question is given.
- 5. Calculator is permitted.

Instructions: Answer ALL questions.

Question 1 [10 marks]

a. Cisplatin, an anticancer agent used for the treatment of solid tumors, is prepared by the reaction of ammonia with potassium tetrachloroplatinate:

$$K_2PtCl_4 + 2 NH_3 \rightarrow Pt(NH_3)_2Cl_2 + 2 KCI$$

Potassium Cisplatin
tetrachloroplatinate

Assume that 10.0 g of K_2PtCl_4 , and 10.0 g of NH_3 are allowed to react. [Molar mass of: $K_2PtCl_4 = 415.3$ g/mol; $NH_3 = 17$ g/mol; $Pt(NH_3)_2Cl_2 = 300.1$ g/mol]

- (i) Which reactant is limiting, and which is in excess? [2 marks]
- (ii) How many grams of the excess reactant are consumed, and how many grams remain? [1 mark]
- (iii) How many grams of cisplatin are formed? [1 mark]
- b. Stomach acid, a dilute solution of HCl in water, can be neutralized by reaction with sodium hydrogen carbonate, NaHCO₃.
 - (i) Write the balanced equation for the chemical reaction mentioned above. [1 mark]
 - (ii) How many milliliters of 0.125 M NaHCO₃ solution are needed to neutralize 18.0 mL of 0.100 M HC1? [1 mark]
- c. Write unbalanced half-reactions (indicate the change of oxidation number) for the following net ionic equation: [2 marks]

$$Mn^{2+}(aq) + ClO_3^-(aq) \rightarrow MnO_2(s) + ClO_2(aq)$$

d. How much heat (in kilojoules) is evolved when 5.00 g of aluminum reacts with a stoichiometric amount of Fe₂O₃? [2 marks] [Atomic mass: Al = 27.0]

$$2 \text{ Al}(s) + \text{Fe}_2\text{O}_3(s) \rightarrow 2 \text{ Fe}(s) + \text{Al}_2\text{O}_3(s)$$
 $\Delta \text{H}^{\circ} = -852 \text{ kJ}$

Continued.....

HST/RSA 1/5

Question 2 [10 marks]

- a. What is the energy (in kilojoules per mole) of photons of radar waves with $v = 3.35 \times 10^8$ Hz? [Planck's constant, $h = 6.626 \times 10^{-34}$ J·s] [2 marks]
- b. State which of the following combinations of quantum numbers are not allowed. Explain your answer.

(i)
$$n = 3$$
, $l = 0$, $m_l = -1$ [2 × ½ mark]
(ii) $n = 4$, $l = 4$, $m_l = 0$ [2 × ½ mark]

- c. According to the aufbau principle, which orbital is filled immediately after each of the following in a multi-electron atom?
 - (i) 4s [½ mark] (ii) 3d [½ mark]
- d. Like the other halogens, astatine is a nonmetal. It is located in Group VII, after iodine. However, little is known about the chemistry of astatine (At) from direct observation, but reasonable predictions can be made.
 - (i) Is a statine likely to be a gas, liquid, or a solid? [½ mark] (ii) What colour is a statine likely to have? [½ mark] (iii) Is a statine likely to react with sodium? If so, what is the formula of the product?
- e. Write a balanced equation for the reaction of lithium with each of the following substances.
 - $\begin{array}{ccc} \text{(i) } H_2 & & \text{[1 mark]} \\ \text{(ii) } H_2 O & & \text{[1 mark]} \\ \text{(iii) } O_2 & & \text{[1 mark]} \end{array}$

Continued.....

 $[2 \times \frac{1}{2} \text{ mark}]$

Question 3 [10 marks]

a. What is the geometry around the central atom in each of the following molecular models? [4 × ½ mark]

b. Draw the Lewis structure of bromine pentafluoride.

[1 mark]

c. Aspirin has the following structure. Indicate the number of σ bonds and π bonds in the molecule, and state the hybridization of each carbon atom. [2 marks]

d. Identify the likely kinds of intermolecular forces in the following substances:

(i) HCl

[1 mark]

(ii) CH₃CH₃

[1 mark]

(iii) CH₃NH₂

[1 mark]

e. Substance X has a vapor pressure of 100 mm Hg at its triple point (48°C), a melting point of 50°C and a boiling point of 100°C at 760 mm Hg. Sketch the phase diagram for X, including labels for the different phases, the triple point, the melting point, and the boiling point.

[2 marks]

Continued......

HST/RSA 3/5

Question 4 [10 marks]

a. The iodide ion reacts with hypochlorite ion in the following way:

$$OCI^- + I^- \rightarrow OI^- + CI^-$$

This rapid reaction gives the following data:

Experiment	[OCI ⁻] (M)	[J ⁻] (M)	Initial Rate (M/s)
1	1.5×10^{-3}	1.5×10^{-3}	1.36 × 10 ⁻⁴
2	3.0×10^{-3}	1.5×10^{-3}	2.72 × 10 ⁻⁴
3	1.5×10^{-3}	3.0×10^{-3}	2.72 × 10 ⁻⁴

(i) Determine the rate law for this reaction.

[3 marks]

(ii) Calculate the rate constant.

[1 mark]

(iii) Calculate the rate when $[OCI^-] = 2.0 \times 10^{-3} M$ and $[I^-] = 5.0 \times 10^{-4} M$.

[1 mark]

b. Sucrose, C₁₂H₂₂O₁₁, reacts slowly with water in the presence of an acid to form two other sugars, glucose and fructose.

$$C_{12}H_{22}O_{11} + H_2O \rightarrow C_6H_{12}O_6$$
 (glucose) + $C_6H_{12}O_6$ (fructose)

The reaction is first order and has a rate constant of $6.2 \times 10^{-5} \text{ s}^{-1}$. Suppose that the initial concentration of sucrose in the solution is 0.40 M.

(i) What will the sucrose concentration be after 2 hours?

 $[1\frac{1}{2} \text{ marks}]$

(ii) How many minutes will it take for the sucrose concentration to drop to 0.30 M?

[1½ marks]

c. The equilibrium constant K_p for the decomposition of phosphorus pentachloride to phosphorus trichloride and molecular chlorine is found to be 1.05 at 250 °C. The reaction is shown below.

$$PCl_5(g) \longrightarrow PCl_3(g) + Cl_2(g)$$

- (i) If the equilibrium partial pressures of PCl₅ and PCl₃ are 0.875 atm and 0.463 atm, respectively, what is the equilibrium pressure of Cl₂ at 250 °C? [1½ marks]
- (ii) Write the expression for Kc for the above reaction.

[½ mark]

Continued.....

HST/RSA 4/5

Question 5 [10 marks]

- a. Nitric acid (HNO₃) is used in the production of fertilizer, dyes and drugs. Calculate the pH of a HNO₃ solution having a hydrogen ion concentration of 0.76 M. [1½ marks]
- b. What is the conjugate base of
 - (i) HClO₄

[½ mark]

(ii) PH₄⁺

[½ mark]

- c. A student prepared a 0.10~M solution of formic acid (HCOOH) and found its pH at 25° C to be 2.38.
 - (i) Write the ionization equation of formic acid forming H⁺ ions.

[1/2 mark]

(ii) Calculate K_a for formic acid at this temperature.

[4 marks]

- d. A sample of freshly pressed apple juice has a pOH of 10.24. Calculate the concentration of H⁺. [2 marks]
- e. Calculate the concentration of H⁺ in a solution in which the concentration of OH⁻ is 0.001 *M*. [1 mark]

End of Paper