

New and Emerging Technologies and Trends

Combustion Modification-Implementation Challenges & Impact on Boiler performance wrt Indian Context

Speaker: Pankaj Kumar Gupta, General Manager Kumar Skandh, Senior Manager NTPC Ltd

NOx Control Technologies

Primary methods-Prevents the formation of **NOx**

- Combustion optimization
- Boiler tuning
- Low-NOx burners
- Separate OFA system

Secondary methods-Eliminate Primary NOx

- Selective Non-Catalytic Reduction (SNCR)
- Selective Catalytic Reduction (SCR)
- Hybrid-SCR

Context

- Most of the boilers installed before 31.12.2016 were designed for maximum NOx emission 260gm/GJ (750mg/NM3) as per world bank norm.
- Stringent Environmental norm notified in Dec 2015 wrt NOx
- As per new norm combustion modification will be required to get maximum NOx emission below 450 mg/NM3 level for all condition.
- NTPC envisaged around 50 boilers of 21000 MW for combustion modification. Combustion modification in around 25 boilers has already completed and implementation in balance units will be done during major overhaul of unit.
- In India, most of boilers are tangential fired (corner fired) boiler).

Status of CM in NTPC as on date

De-NOx -CM				
Status	Capacity (MW)			
Total Combustion Modification awarded, 50 units	21560			
Combustion Modification already Implemented (28 units)	13045			

O Digital Platform

Combustion Modification- Concept

 Precise mixing of fuel and air is used to keep the flame temperature low and to dissipate heat quickly using low excess air.

 Control the mixing of fuel and air, in effect automating low-excess-air firing or staged combustion.

O Digital Platform

COMBUSTION MODIFICATION – Details of various Suppliers

BHEL DESIGN FEATURE:

- Modify the existing TT burner & wind box system in the boiler.
- A "Newly developed TT burner and wind box design" along with BOFA (Bypass Over Fire Air) system introduced
- Around 30% of secondary air shall be distributed in the BOFA.
- Hot secondary air supply for BOFA system, shall be tapped from the hot secondary air duct connecting to the wind box.
- BOFA (Bottom) is placed at approx. 4-5 m above the top of wind box.

L&T MHPS Design features

LMB will utilize the existing system / equipment as much as possible. In addition, LMB will install additional AirPort (AA-port) around 4-5 m above the existing wind box. LMB will modify / retrofit the wind box by modifying all wind box nozzle tips (coal, oil, and aux) for all four corners, using the existing coal burner body and oil gun. Necessary modification as required for boiler water wall and secondary air duct shall also be carried out.

GE Design Features:

- Separated over fired Air (SOFA) dampers shall be in the range of 20% to 25% total air.
- %CCOFA shall be 10% to 12% as per the original design condition.
- SOFA wind boxes shall have 4 compartments.
- SOFA tips are designed for +/- 30 deg of vertical tilt & manually adjusted horizontal yaw of +/- 15 deg.
- SOFA wind boxes are in the corners directly above the main wind box to minimize potential formation of CO by covering maximum of furnace plan area.
- SOFA (Bottom) is placed at approx. 4-5 m above the top of wind box.
- Coal compartments will remain at their current location.

Limitations in Combustion Modification in existing Boilers vs New Units

- **Furnace Size Restriction**
- Mill Size Restriction
- Mill PF Pipe Restriction
- Fan and APH size Restriction
- Water circulation ratio

Increase in Unburnt Carbon in existing Boilers wrt Indian Coal context

Operational Challenges

 Difficult to maintain various parameters and performance at the level of pre modification- Like Windbox DP, Opening of Aux air dampers

O Digital Platform

CASE STUDY FOR ANALYSING PERFORMANCE AFTER COMBUSTION MODIFICATION

Before Modification- Base line Test

Delote Modification- pase life lest							
Description / Load	50% TMCR	TMCR TMCR		50% TMCR			
Mill combination	D-E-F- G	A to F	D to J	A-B-C- D			
	(Top)	(Bottom)	(Top)	(Bottom			
UBC heat loss in BA in %	0.39	0.16	0.08	0.06			
UBC heat loss in FA in %	0.71	0.36	0.36	0.24			
Total UBC heat Loss in %	1.10	0.52	0.44	0.30			
SH Spray in T/Hr	1038	3.2	28.2	0.0			
RH Spray in T/Hr	0.0	0.0	0.0				
NOX in Mg/NM3	Below 750 mg/NM3 for all conditions						

After Modification- PG Test

	50%	100%	100%	50%
		Botto		
Description	Тор	m	Тор	Bot
UBC heat loss in BA in				
%	0.43	0.47	0.40	0.51
UBC heat loss in FA in				
%	0.38	0.45	0.39	0.50
Total UBC heat Loss in	0.82	0.91	0.79	1.01
%				
	-0.28	0.39	0.35	0.71
Increase in UBC loss in	-0.26	0.57	0.55	0.71
% from baseline				
CH Constitution T/Ha	87.2	11.6	47.9	22.9
SH Spray in T/Hr				
	-16.6	8.4	19.7	21.1
Increase in SH spray in				
T/hr from Base line				
	0.0	0.0	0.0	0.0
RH Spray in T/Hr				
	Delays 400 mg/NM2 for all and tions			
NOX in Mg/NM3	Below 400 mg/NM3 for all conditions			
= . =				

Impact of Combustion Modification on **Boiler Parameters: Conclusion**

NOx Reduction

Unburnt Carbon Loss

SH & RH Spray Variation

Waterwall Corrosion

Impact on other parameters

Thank You

For discussions/suggestions/queries email: www.indiasmartgrid.org www.isgw.in

India Smart Grid Forum

CBIP Building, Malcha Marg, Chanakyapuri, Delhi-110021

Website: www.indiasmartgrid.org

