

Game of Stones ☆

209/563 challenges solved

Rank: 1022 | Points: 5475.31 (!)

Problem

Submissions

Leaderboard

Editorial

RATE THIS CHALLENGE

Two players called P1 and P2 are playing a game with a starting number of stones. Player 1 always plays first, and the two players move in alternating turns. The game's rules are as follows:

- In a single move, a player can remove either **2**, **3**, or **5** stones from the game board.
- If a player is unable to make a move, that player loses the game.

Given the starting number of stones, find and print the name of the winner. P1 is named <code>First</code> and P2 is named Second. Each player plays optimally, meaning they will not make a move that causes them to lose the game if a winning move exists.

For example, if n=4, P1 can make the following moves:

- P1 removes 2 stones leaving 2. P2 will then remove 2 stones and win.
- P1 removes 3 stones leaving 1. P2 cannot move and loses.

P1 would make the second play and win the game.

Function Description

Complete the gameOfStones function in the editor below. It should return a string, either First or Second. gameOfStones has the following parameter(s):

• n: an integer that represents the starting number of stones

Input Format

The first line contains an integer $m{t}$, the number of test cases.

Each of the next t lines contains an integer n, the number of stones in a test case.

Constraints

• $1 \le n, t \le 100$

Output Format

On a new line for each test case, print First if the first player is the winner. Otherwise print Second.

Sample Input

8

1 2

Sample Output

Second

First

First

First

First

First

Second

First

Explanation

In the sample, we have t=8 testcases.

If n=1, P1 can't make any moves and loses the game.

If n = 2, P1 removes 2 stones and wins the game.

If n=3, P1 removes 2 stones in their first move, leaving 1 stone on the board and winning the game.

If n=4, P1 removes 3 stones in their first move, leaving 1 stone on the board and winning the game.

If n=5, P1 removes all 5 stones from the game board, winning the game.

If n=6, P1 removes 5 stones in their first move, leaving 1 stone on the board and winning the game.

If n=7, P1 can make any of the following three moves:

- 1. Remove $\bf 2$ stones, leaving $\bf 5$ stones on the board. $\bf \it P\bf 2$ then removes $\bf \it 5$ stones, winning the game.
- 2. Remove $\bf 3$ stones, leaving $\bf 4$ stones on the board. $\bf {\it P2}$ then removes $\bf 3$ stones, leaving $\bf 1$ stone left on the board and winning the game.
- 3. Remove ${f 5}$ stones, leaving ${f 2}$ stones on the board. ${m P2}$ then removes the ${f 2}$ remaining stones and wins the game.

All possible moves result in P2 winning.

If n=10, P1 can remove either 2 or 3 stones to win the game.