T	Sciences et Technologies de l'Industrie et du Développeme	Technologies de l'Industrie et du D éveloppement D urable	
Lycée du Pays	INNOVATION TECHNOLOGIQUE		2 D
de Soule	Introduction démarche de projet	P2	IT

INITIATION ARDUINO

1. Introduction

On souhaite réaliser un circuit électrique simple pour alimenter une Led de couleur en tenant compte de ses principales caractéristiques.

Certains éléments du circuit sont à déterminer préalablement. Des mesures à l'aide d'un multimètre sont à effectuer pour vérifier les grandeurs électriques mises en jeux.

On souhaite ensuite commander l'allumage de la Led à partir d'une carte Arduino puis proposer d'autres montages avec différents modes de fonctionnement.

2. Contraintes de réalisation

- Alimentation des circuits en + 5 V continu à partir de la carte Arduino.
- Leds de couleur rouge diamètre 5 mm.
- Résistances 1/4 W.
- Carte Arduino Uno.
- Logiciel de programmation Arduino.

3. Remarques

- Toutes les réponses doivent être justifiées.
- Tous documents autorisés.

ATTENTION : TOUS LES MONTAGES DOIVENT ÊTRE RÉALISÉS HORS TENSION ET VÉRIFIÉS PAR LE PROFESSEUR AVANT LA MISE SOUS TENSION

P2 Initiation Arduino.docx 1/9

4. Notions de base

Loi d'ohm:

La tension U aux bornes d'un conducteur ohmique est égale au produit de sa résistance R par l'intensité I du courant qui le traverse.

$$U = RI$$

U: Tension en volts

R : Résistance en ohms

I : Courant en ampères

Loi des mailles :

Dans une maille quelconque d'un réseau la somme algébrique des différences de potentiel le long de la maille est constamment nulle.

$$U_{ad} - U_{ab} - U_{bc} - U_{cd} = 0$$

Loi des nœuds:

La somme des intensités des courants qui entrent par un nœud est égale à la somme des intensités des courants qui sortent du même nœud.

$$11 + 12 + 13 = 14$$

5. Montage initial

6. Matériel nécessaire

Une carte Arduino Uno	Un câble USB	Une breadboard	
Un multimètre	Un lot de résistances 1/4 W	Trois Leds rouges	
Des fils de couleur	Un grippe-fil noir	Un grippe-fil rouge	

P2 Initiation Arduino.docx 2/9

7. Carte Arduino Uno

8. Breadboard

P2 Initiation Arduino.docx 3/9

9. Travail demandé

Étape n°1 : Calculs préliminaires.

À l'aide du montage initial et des informations à votre disposition :

- Déterminer l'expression de la tension UR en fonction des tensions UA et UL.
- Calculer la tension UR sachant que la tension UL est de 2,1 V lorsque la Led est alimentée.
- Déterminer la valeur de la résistance R pour un courant IF de 15 mA.

Étape n°2 : Choix de la résistance.

- Donner, à partir des ressources disponibles sur internet, le code couleur des résistances.

Ressource internet:

Code couleur résistance ...

- Choisir, à l'aide du code couleur, la résistance R dans le lot mis à votre disposition (prendre la valeur la plus proche par excès).
- Compléter le schéma de montage fourni sur le document réponse pour vérifier la valeur de la résistance R choisie à l'aide d'un ohmmètre.
- Préciser si le montage doit être sous tension ou non.
- Faire vérifier votre schéma par le professeur.
- Réaliser votre montage.

STOP

FAIRE VÉRIFIER PAR LE PROFESSEUR

- Vérifier la valeur de la résistance R choisie à l'aide de l'ohmmètre.

Étape n°3 : Montage initial.

- Après avoir vérifié, **en présence du professeur**, la mise **hors tension** de la carte Arduino, réaliser le montage ci-dessous.

- Vérifier le bon fonctionnement de votre montage.
- Donner le rôle de la carte Arduino dans ce cas.

P2 Initiation Arduino.docx 4/9

Étape n°4: Mesure de la tension UR.

- Compléter le schéma de montage fourni sur le document réponse pour mesurer la tension UR aux bornes de la résistance.
- Faire vérifier votre schéma par le professeur.
- Après avoir vérifié, **en présence du professeur**, la mise **hors tension** de la carte Arduino, réaliser votre montage.

STOP

FAIRE VÉRIFIER PAR LE PROFESSEUR

- Mesurer la tension UR aux bornes de la résistance.
- Comparer la valeur obtenue avec la valeur calculée précédemment et conclure.

Étape n°5: Mesure du courant IF.

- Compléter le schéma de montage fourni sur le document réponse pour mesurer le courant IF dans le circuit lorsque la Led est alimentée.
- Faire vérifier votre schéma par le professeur.
- Après avoir vérifié, **en présence du professeur**, la mise **hors tension** de la carte Arduino, réaliser votre montage.

STOP

FAIRE VÉRIFIER PAR LE PROFESSEUR

- Mesurer le courant IF dans le circuit.
- Comparer la valeur obtenue avec la valeur attendue et conclure.

Étape n°6: Programmation initiale.

- Après avoir vérifié, **en présence du professeur**, la mise **hors tension** de la carte Arduino, réaliser le montage ci-dessous.

Montage

Programme

```
void setup() {
  // put your setup code here, to run once:
  pinMode(7,0UTPUT);
}

void loop() {
  // put your main code here, to run repeatedly:
  digitalWrite(7,HIGH);
}
```

STOP

FAIRE VÉRIFIER PAR LE PROFESSEUR

- Saisir le programme fourni sur le logiciel Arduino.
- Télécharger ou téléverser le programme dans la carte Arduino.
- Faire valider le fonctionnement de votre programme par le professeur.
- Donner le rôle de la carte Arduino dans ce cas.

P2 Initiation Arduino.docx 5/9

Étape n°7 : Clignotement de la Led.

- Modifier le programme initial à partir du programme ci-dessous.

Montage (identique précédent)

Programme

```
void setup() {
    // put your setup code here, to run once:
    pinMode(7,OUTPUT);
}

void loop() {
    // put your main code here, to run repeatedly:
    digitalWrite(7,HIGH);
    delay(500);
    digitalWrite(7,LOW);
    delay(500);
}
```

- Télécharger ou téléverser le nouveau programme dans la carte Arduino.
- Faire valider le fonctionnement de votre programme par le professeur.
- Donner, à partir des ressources disponibles sur internet, la signification des termes setup, pinMode, loop, digitalWrite et delay.
- Préciser la syntaxe utilisée pour les termes pinMode, digitalWrite et delay.
- Donner la signification des termes HIGH et LOW.
- Compléter l'organigramme fourni sur le document réponse avec les lignes du programme correspondantes aux différents états.

Ressource internet:

https://www.arduino.cc/reference/en/

Étape n°8 : Clignotement simultané de 3 Leds.

- Proposer un schéma de montage sur le document réponse fourni pour alimenter et faire clignoter simultanément 3 Leds rouges avec la carte Arduino (**Attention**: il est nécessaire d'utiliser une sortie différente pour chaque Led).
- Faire vérifier votre schéma par le professeur.
- Après avoir vérifié, **en présence du professeur**, la mise **hors tension** de la carte Arduino, réaliser votre montage.

STOP

FAIRE VÉRIFIER PAR LE PROFESSEUR

- Saisir votre programme sur le logiciel Arduino pour obtenir le fonctionnement souhaité.
- Télécharger ou téléverser le nouveau programme dans la carte Arduino.
- Faire valider le fonctionnement de votre programme par le professeur.

Étape n°9 : Clignotement alterné des 3 Leds.

- Modifier votre programme sur le logiciel Arduino pour obtenir le clignotement des Leds les unes après les autres.
- Télécharger ou téléverser le nouveau programme dans la carte Arduino.
- Faire valider le fonctionnement de votre programme par le professeur.
- Proposer un organigramme correspondant au fonctionnement observé.

Étape n°10 : Ajout d'un bouton poussoir.

- Après avoir vérifié, **en présence du professeur**, la mise **hors tension** de la carte Arduino, réaliser le montage ci-dessous.

Montage avec bouton poussoir

Remarque:

Il est conseillé de vérifier le bouton poussoir et la résistance de 10 k Ω avec un ohmmètre avant de réaliser le montage (hors tension).

Programme

```
int switchState = 0;
void setup() {
  // put your setup code here, to run once:
  pinMode(2,INPUT);
  pinMode(7,0UTPUT);
void loop() {
  // put your main code here, to run repeatedly:
  switchState = digitalRead(2);
  if(switchState == HIGH) {
  digitalWrite(7,HIGH);
  delay(500);
  digitalWrite(7,LOW);
  delay(500);
  else {
 digitalWrite(7,LOW);
}
```

STOP

FAIRE VÉRIFIER PAR LE PROFESSEUR

- Saisir le programme fourni sur le logiciel Arduino.
- Télécharger ou téléverser le programme dans la carte Arduino.
- Faire valider le fonctionnement du bouton poussoir par le professeur.

P2 Initiation Arduino.docx 7/9

Étape n°11: Application.

On souhaite réaliser une signalisation de chantier lumineuse à l'aide des 3 Leds précédentes et du bouton poussoir. Le fonctionnement attendu est décrit par l'organigramme ci-dessous :

- Proposer un schéma de montage sur le document réponse fourni pour le fonctionnement souhaité.
- Faire vérifier votre schéma par le professeur.
- Après avoir vérifié, **en présence du professeur**, la mise **hors tension** de la carte Arduino, réaliser votre montage.

STOP FAIRE VÉRIFIER PAR LE PROFESSEUR

- Saisir votre programme sur le logiciel Arduino pour obtenir le fonctionnement souhaité.
- Télécharger ou téléverser le programme dans la carte Arduino.
- Faire valider le fonctionnement de votre programme par le professeur.
- Proposer éventuellement une solution pour remplacer le bouton poussoir et permettre un fonctionnement autonome.

P2 Initiation Arduino.docx 8/9

10. Restitution orale

Réaliser le support informatique de présentation orale de la partie application uniquement (signalisation de chantier lumineuse).

Contenu:

Présentation succincte de la partie application.

Solution retenue avec schéma de montage et programme.

Difficultés rencontrées.

Proposition de solution pour rendre le fonctionnement autonome.

Bilan du projet.

P2 Initiation Arduino.docx 9/9