Wiktor Kuchta

5/5d

Załóżmy, że $K\subseteq L_1, L_2\subseteq \hat{K}$ i $K\subseteq L_i$ są skończonymi rozszerzeniami Galois i $L_1\cap L_1=K.$

Niech $f: G(L_1L_2/K) \to G(L_1/K) \times G(L_2/K), f(\varphi) = (\varphi|_{L_1}, \varphi|_{L_2}).$

Jeśli $f(\varphi)=id$, to φ jest identycznością na L_1 i L_2 . Każdy element L_1L_2 to jakaś kombinacja liniowa L_1 nad L_2 , więc z homomorficzności φ też ją ustala. Zatem f jest różnowartościowa.

Z (c) wiemy, że każdy $\varphi_1 \in G(L_1/K)$ się rozszerza do $\varphi_1' \in G(L_1L_2/L_2)$. W szczególności $\varphi_1' \in G(L_1L_2/K)$ i $f(\varphi_1') = (\varphi_1, id_{L_2})$. To pokazuje, że oś $G(L_1/K) \times \{id_{L_2}\}$ jest w obrazie f i analogicznie dla $\{id_{L_1}\} \times G(L_2/K)$, więc f jest surjekcją.

Zatem f jest izomorfizmem.