R. W. HINTON ASSOCIATES METALLURGICAL CONSULTANTS

Metallurgical Engineering
Specifications
--Failure Analyses
Corrosion Solutions

5436 Spring Drive Center Valley, PA 18034-9300 610-967-2797 Fax 610-965-3583 E-mail: rwhinton@fast.net

101-SCBMA-Opinions
Bicycle Steerer Tube
Connections-Lockwood
v. Pacific Bicycle, et al
August 20, 2002

EXHIBIT

Mr. Michael P. Smith, Esq. Salsbury Clements Bekman Marder & Adkins, L. L. C. 300 West Pratt Street Suite 450 Baltimore, MD 21201

Re: Lockwood v. Pacific Cycle, et al WMN-02-2068 (Steerer Tube Connection)

Dear Mr. Smith.

After examining the Pacific Cycle manufactured bicycle in question at Mr. John Schubert's office earlier this year, I have the following technical opinions concerning the mechanical reliability and salety of the steel steerer tube connection:

- 1. The thin-walled, hollow-steel, steerer tube was mechanically press-fit and possibly thermally interference fit into the steerer tube fork crown. (Thermal expansion coefficients and elastic moduli of both steel and aluminum alloys are attached.) R. W. Hinton saw no evidence of either a welded joint or a chemically bonded joint.
- 2. The fork crown into which the steerer tube was inserted appears to be made of a nonferrous (non-steel) alloy such as, an aluminum alloy. The elastic gripping force of an aluminum alloy fork crown provides one-third the elastic gripping force of a steel fork crown of the same size.

 PLAINTIFF'S

101-SCBMA-Opinions Bicycle Steerer Tube Connections-Lockwood v. Pacific Bicycle, et al August 20, 2002

- In addition, an even weaker gripping force between the thin-walled hollow steel steerer tube, and the nonferrous alloy fork crown would be expected because the thin hollow tube yields (elastically) in compression. (Mechanical and physical properties of carbon steel and aluminum alloys are attached.)
- 4. No safety device or retightening device was found on the steerer tube fork crown to prevent the steerer tube of the bicycle from pulling out when the tube-to-fork crown mechanical bond becomes loose and the fork crown is worn from normal use. (A graph is attached that shows wear resistance of nonferrous alloys relative to American Iron and Steel Industry [AISI] 1010 sheet steel.)

In summary, the press-fit and /or the thermal interference fit between the thin-walled hollow steerer tube and the nonferrous (aluminum alloy) fork crown of the bicycle in question is inadequate, unsafe, and cannot be retightened or inspected.

As requested earlier of the manufacturer, dimensions (engineering drawings) and manufacturing specifications including the specified materials of construction would be required to further analyze the intended engineering and safety of this bicycle. In addition, a desired destructive test to determine the hardness and composition of the steerer tube and fork crown would enhance and make specific the engineering analyses contained herein.

The enclosed R. W. Hinton engineering analyses and resulting opinions are expressed to a reasonable degree of engineering certainty. If more information becomes available, R. W. Hinton will supplement this preliminary report.

Sincerely yours,

Robert W. Hinton, Ph. D., PE

alenth Honton

	Moduus of	of elasticity, E		Modulus of rigidity, G		D	Unit weight, w	3 .
Material	Mpsi	GPa	Mpsi	GPa	Poisson's ratio	lb/in³	Ib/ft³	kN/m ³
Aluminum (ell ellena)	,							
Berylling copper	10.3	71.0	3.80	26.2	0.334	0.098	169	26.6
Brass	18.0	124.0	7.0	48.3	0.285	0.297	513	80.6
Carbon steel	10.0	100.0	5.82	40.1	0.324	0.30	534	83.8
Cast iron arav	30.0 14 o	0.702	11.5	79.3	0.292	0.282	487	76.5
Conner	14.0	0.00	6.0	41.4	0.211	0.260	450	70.6
Donalas 6r	7.71	119.0	6.49	44.7	0.326	0.322	556	87.3
Glass	1.0	11.0	9.0	4.1	0.33	0.016	28	4.3
Inconel	210	46.2	2.7	18.6	0.245	0.094	162	25.4
ויייייין	5.7	214.0	11.0	75.8	0.290	0.307	530	83.3
Mappesium	J.J 6.5	36.5	1.9	13.1	0.425	0.411	710	111.5
Molyhdenim	70.7	44.8	2.4	16.5	0.350	0.065	112	17.6
Monel metal	46.0 26.0	331.0	17.0	117.0	0.307	0.368	636	100.0
Nickel eilver	20.0 19 5	179.0	9.5	65.5	0.320	0.319	551	9.98
Nick of steel	10.3	0./21	7.0	48.3	0.322	0.316	546	85.8
Phoenfor brosso	20.0	207.0	11.5	79.3	0.291	0.280	484	76.0
	10.1	111.0	0.9	41.4	0.349	0.295	510	80.1
Stanness steet (18-8)	7.79	190.0	10.6	73.1	0.305	0.280	484	76.0

ASM Motals Handbook

Linear Thermal Expansions of Metals and Alloys

THE NUMBERS in this table have been collected from the numerous articles and data sheets that record in detail the properties of metals in this Handbook. The values are collected here for the reader's convenience in making general comparisons. For more specific information concerning the expansion of SAE steels, the table

on page 309 should be consulted. Additional data for nonferrous metals and alloys will be found under item D6 in the data sheets. Values given here are for as-cast. as-wrought or as-annealed material. The effects of thermal treatment, temperature range and other factors are indicated in the various places mentioned above.

Metal	Temperature, deg Cent	Coefficient of Expansion per deg Cer	Temperatura	Coefficient of Expansion per deg Cent
Aluminum and Aluminum and Aluminum	minum Alloys	4	Iron and Iron Alloys	and the second
Aluminum (99.95%)	20 to 100	× 10-4 23.9	See also page 109	× 10-4
Wrought 25 99.0 Ai 35 1.2 Mn 115 5.5 Cu, 0.5 Pb, 0.5 Bi 24/7 143 4.4 Cu, 0.8 Xi, 0.8 Mn, 0.4 Mg 202/135 4 Cu, 0.5 Mn, 0.5 Mg 202/135 4 Cu, 2.5 Mi, 0.5 Mg	20 to 100 20 to 100 20 to 100	23.5 23.2 22.9 22.5	Pure Iron 20 Fe-C Alloys 0.06% C 20 to 100 - 0.22% C 20 to 100 - 0.40% C 20 to 100 low all 0.56% C 20 to 100 Low all 1.06% C 20 to 100 Steads 1.45% C 20 to 100	11.7 11.7 - 4.5 - 2.7 11.7 11.3 11.0 10.8
24 S 4.5 Cu, 1.5 Mg, 0.6 Mn. 25 S 4.5 Cu, 0.3 Mn, 0.8 Si 37 S 12.5 Si, 1.0 Mg, 0.9 Cu, 0.9 Ni A51 S 1.0 Si, 0.6 Mg, 0.25 Cr. 33 S 2.5 Mg, 0.25 Cr.	20 to 100 20 to 100 20 to 100 20 to 100	27.4 22.8 22.8 19.4 23.1 23.8	1.97% C 20 to 100 2.24% C 20 to 100 3.68% C 20 to 100 Invar Fe, 36 N1 13 Mn, 1.2 C	10.1 9.9 9.6 8.6 0 to 2 18 - (
7075 55 5.2 Mg. 0.1 Mn. 0.1 Cr	20 to 100 20 to 100 20 to 100 20 to 100	22.9 24.3 23.5 23.2	13 Cr. 0.35 C. 20 to 100 12.3 Cr. 0.4 Nl. 0.09 C. 20 to 100 17.7 Cr. 9.6 Nl. 0.05 C. 20 to 100 18 W. 4 Cr. 1 V. 0 to 100 Gray Cast Iron 0 to 100 Maileable Iron	10.0 5.4 X / D / 2 X/5 -16.5 11.2 - L, Z = / c / 10.5 12
108 4 Cu, 3 Si 113 7 Cu, 2 Si, 1.7 Zp	20 to 100	22.0 22.0 22.0	Lead and Lead Alloys	<u>-</u>
142 4 Cu, 2 Ni, 1.5 Mg 195 4.5 Cu 214 3.8 Mg 220 10 Mg 355 5 Si, 1.3 Cu, 6.5 Mg	20 to 100 20 to 100 20 to 100 20 to 100 20 to 100	22.0 22.5 23.0 24.0 24.5 22.0	Fure Lead (99.73%) 17 to 100 1% Antimonial Lead 20 to 100 Hard Lead 96 Pb, 4 Sb 20 to 100 Hard Lead 94 Pb, 8 Sb 20 to 100 8% Antimonial Lead 92 Pb, 8 Sb 20 to 100 Grid Metal 91 Pb, 8 Sb 20 to 100	29.3 28.8 27.8 27.2 26.7 26.4
A108 5.5 Si, 4.5 Cu A122 12 Si, 2.5 Ni, 1.2 Mg, 0.8 Cu B195 4.5 Cu, 2.5 Si 750 6.5 Si, 1 Cu, 1 Ni 13 12 Si	20 to 100 20 to 100 20 to 100 20 to 100 20 to 100	21.5 21.5 19.0 22.0 23.1 20.0	Lead-Base Babbitt 20 Ph, 15 Sb, 3 Sn 20 to 100 Lead-Base Babbitt 75 Pb, 15 Sb, 10 Sn 20 to 100 Tin-Lead Solder 95 Pb, 5 Sn 15 to 110 Tin-Lead Solder 80 Pb, 20 Sn 15 to 110 Half and Half 50 Pb, 50 Sn 15 to 110	24.0 19.8 28.7 26.5 23.4
85 5 Si, 4 Cu 218 8 Mg 360 9.5 Si, 0.5 Mg	20 to 100	21.0 23.7	Magnesium and Magnesium Alloys (*) Pure Magnesium (99,80%) (40	26
and the same same and an	20 to 100	19.5	Nickel and Nickel Alloys	•
Copper and Copp Pure Copper Electrolytic Tough Pitch Copper Deoxidized Copper	20 to 100	16.5 17.7 17.7	Pure Nickel (99.95 Ni + Co)	13.3 13.3 12.0 13.0
Wrought Gilding Metal, 95% Commercial Bronze, 20% Rew Brass, 85% Low Brass, 30% Cartridge Brass, 70% Muntz Metal Leaded Commercial Bronze	20 to 300 20 to 300 20 to 300	18.1 18.7 19.1 19.9 20.8	"S" Monel 29 Cu, 3 Al. 25 to 100 "S" Monel 30 Cu, 4 Si, 2 Fn. 21 to 100 Car' Monel 32 Cu, 4 Si Si, 9,2 Cu 55 to 100 Hastelloy A 20 Mo, 20 Fe 0 to 100 Hastelloy B 30 Mo, 5 Fe 0 to 100 Hastelloy C 17 Mo, 15 Cr, 5 W, 5 Fe 0 to 100 Hastelloy D 8 to 11 Si 2 Cr, 5 W, 5 Fe 0 to 100 Hastelloy D 8 to 11 Si 2 Cr, 5 W, 5 Fe 0 to 100	14.0 12.2 12.0 11.0 10.0 11.7 11.7
High-Leaded Brass Free-Cutting Brass Leaded Muntz Metal Forging Brass Architectural Branze	20 to 300 20 to 300 20 to 300 20 to 300 20 to 300	18.4 20.2 20.3 20.5 20.8 20.7 20.9	Inconel 14 Cr, 5 Fe	11.5 17.6 17.0 15.8 18.8
Naval Brass Manganese Bronze Aluminum Brass Phospher Bronze 1 25cm (F)	20 to 300 20 to 300 20 to 300	20.2 21.2 21.2 18.5 17.8	Pure Tin	23.0 21.6 24.7
Phosphor Bronze, 5% (A) Phosphor Bronze, 8% (C) Phosphor Bronze, 10% (D) Cupro-Nickel, 10% (D) Nickel Silver, 18% (A) Nickel Silver, 18% (B) Silicon Bronze, Type A	20 to 300 20 to 300 20 to 300 20 to 300	17.8 18.2 18.4 15.2 16.2 16.7	Pure Zinc 20 to 250 Zamak 3 4 Al. 0.04 Mg 20 to 100 Zamak 5 4 Al. 1 Cu. 0.04 Mg 20 to 100 Commercial Rolled Zinc 99 Za. 0.08 Pb 20 to 40 Commercial Rolled Zinc 0.06 Pb 0.06 Cd 20 to 40	39.7 27.4 27.4 32.5(h) 23.5(h)
Aluminum Bronze, 84. Beryllium Copper	. 20 to 300	/ 6 18.0]	20 to 40 Commercial Rolled Zinc 0.3 Pb, 0.3 Cd 20 to 98 20 to 98	22.(+) 33.9(h) 23.4(+)
Cast Leaded Tin Bronze	71 to 250	18,5	Miscellaneous Pure Metals	•
Leaded Tin Bronze Leaded Tin Bearing Bronze Ounce Metal Leaded Yellow Brazz High Strength Yellow Brazz Leaded Manganeze Bronze	. 21 to 260 . 21 to 260	19.1 21.6 19.8	Gadmtum 20 Chromium 20 Gobalt 20 to 100 Gold 20 Molybdenum 25 to 100 Bilver 0 to 100	20.8 6.2 12.7 14.2 4.9 19.7
Aluminum Bronze (89-1-10)	. 21 to 260		Fungsten 20	Ü

⁽a) For compositions of copper alloys, see page 24. (b) With the grain. (c) Across the grain. (d) Approximately the same for all commercial magnesium alloys.

	E	**************************************	1031	951				808	725		678	741	661	713	1193	088	764	764	751
	7 2 7	* 225 MP &	236	266	248	248	$248(36k_{s})$	253	227	250	290	572	254	260	306	387	289	289	250
		321MP4	355	358	318	318	318	363	415	354	496	969	392	441	547	995	454	454	. 476
9 9. 969		Hot-rolled	Hot-rolled	Hot-rolled	Hot-rolled	Hot-rolled	, Hot-rolled	Hot-rolled	Normalized	QT	QT	Hot-rolled	Annealed	Hot-rolled	Hot-rolled	Hot-rolled	Hot-rolled	Hot-rolled	Hot-rolled
ASM Metals Handbook 1.19 p. 969	rbon steels (AISI)			1	85 HB	85 HB	85.HB	82/99 HB	80 HB	100 HB:	118 HB	209 HB	108 HB	TH 601/CO1			128 HB	128 FIB	
ASM Metal	Material: Ca	1005		7001	0001		100	1000	1013	1010		. 1020	0701	1005	707	1030	000	1025	CCOT

MPA + 6.9 = Kai (1000ps, - Whimate tensiles kung! - tensile gieldskength

Table 2 Minimum tensile properties of selected aluminum casting alloys

			Tensile propertles			
	Strength	Ultimate tensile strength		Tensile		
Alloy	class	M. a	ks (vags;)	MPa	ksl(1000pr;)	elongallon, %
A356-T6(a)	1		38.0	193	28.0	V
A357.T6(a)	2	275	40.0	206	30.0) (
	, c	• • • • • • • • • • • • • • • • • • • •	45.0	241	35.0	, m
D357-T6/h)	Mondacionard		50.0	275	40.0	\$
	Pointes gnated		45	248	36	2
4.201.777.01	ioesignaled 1		20	275	40	
1-01-1 (a)	- (0.09	345	50.0	, m
3201-T7(c)	Nondecianated		60.0	345	50.0	\$
	Decionaled	30J 412) ()	330	48	2
	Cost Buston		8	345	50	3
a) Per MIL-A-2118	a) Per MIL-A-21180. (b) Per AMS 4241 (c) Per AMS	C) Per AMS 4242				
		71.71.01.17.19.16				

45M Handbook 1.19

כבוומווו חשותב

TOLLIBULOIL

חוות חבוות חוות חווכ חובה כיטיד

HSM"

Fig. 2 General relation between hardness and abrasive wear of miscellaneous materials. Wet 80-mesh Crystolon abrasive on cast-iron lap. Comparative wear resistance is the ratio of weight (treatment not given $Welss^{2}$ (From data by loss of specimen to weight loss of SAE 1010 steel also not given Wear type IIA1. Unit pressures