	Examen				
ESPIT Se former autrement	Semestre: 1 2 Session: Principale Rattrapage				
Module : Fondements des réseaux	Κ				
Enseignant(s): Z. Ben Ahmed, O	. Chabbouh, M. Chekir, Z. Tahri, A. Zemzem				
Classe(s): 2A, 2P					
Documents autorisés : NON	Nombre de pages : 4				
Calculatrice autorisée : OUI	Internet autorisée : NON				
Date: 21/05/2019 Heure: 10	bh30 Durée: 1h30				

Exercice 1 (6 points)

DNS

Soit la topologie suivante, le PCO désire communiquer avec le serveur FTP.

Exercice 2 (6 points)

Un client de messagerie F transfère un message électronique de 4000 octets de données vers un serveur distant en utilisant trois voies de communication successives selon la figure ci-après. On considère que tous les entêtes ajoutés par les différentes couches de protocoles traversées audessus de la couche IP font partie des 4000 octets. Dans les datagrammes IP l'entête est un entête standard de 20 octets (il n'y a pas d'options rajoutées en extensions dans les entêtes IP). La taille totale est donc de 4020 octets.

- 1) Afin d'acheminer le message vers le serveur, une fragmentation est nécessaire. Donnez le nombre de fragments pour chaque partie du réseau (réseau R1, LS et réseau R2).
 - a. Donnez le nombre de fragments dans la zone réseau R1
 - b. Donnez le nombre de fragments dans la zone LS
 - c. Donnez le nombre de fragments dans la zone réseau R2
- Donnez la taille du dernier fragment de chaque zone en octets.

 la taille du dernier fragment de la zone R1......

 la taille du dernier fragment de la zone LS

 la taille du dernier fragment de la zone R2
- 3) Pour la zone réseau R1 donnez pour chaque fragment le contenu des champs Flag et fragment Offset (décalage du fragment). NB : Remplir le nombre de lignes nécessaires dans ce tableau :

N° du Fragment	Champs Flag	Fragment Offset
1		
2		

o Entre les routeurs intermédiaires o Le PC source et le PC destinataire

Questior	ns à choix multiple (8 points)
1.	Les serveurs DNS permettent :
0	D'associer à un nom de domaine une adresse IP
0	D'associer à un nom de machine une adresse IP
0	A un internaute d'utiliser directement les adresses IP
0	De garder en mémoire les pages web fréquemment consultées par l'internaute
2.	Qui envoie la page d'accueil lors de la connexion d'un internaute à un serveur web?
0	Le protocole UDP
0	Le serveur DNS local
0	Le navigateur Web
0	Le serveur Web
3.	Quels sont les protocoles utilisés lorsque vous relevez votre courrier ?
0	TCP
0	UDP
0	POP3
0	SMTP
	Sur un réseau Ethernet utilisant les protocoles TCP/UDP, à quel niveau est réalisé le trôle de flux ?
0	Niveau physique
	Niveau IP
0	Niveau TCP
0	Niveau UDP
5.	Concernant les numéros de port, quelles sont les affirmations exactes ?
0	Les numéros de port réservés à des services et applications « assignés » par l'ICANN
0	Un port client est toujours inférieur à 1024
0	Ils permettent de référencer les applications
6.	Une connexion TCP est établie entre :
0	Le PC source et le modem ADSL

- 7. Lors d'un transfert de données utilisant TCP, quel numéro de séquence peut transmettre l'émetteur s'il vient de recevoir un numéro d'acquittement à 1024 ?
 - 0 1025
 - 0 1024
 - o **1026**
 - 0 2048
- 8. Un émetteur qui vient de recevoir un segment TCP avec une valeur de Window de 2048 peut envoyer :
 - o 2048 segments de suite
 - o Deux segments de 1024 octets chacun
 - o Un segment de 2048 octets
 - o Un segment de 1024 octets

Annexe

En-tête IP

0	16 31						
Version	HLEN	TOS Total length					
IPID			Flags	Flags Fragment Offset			
T	TTL Protocol 4			Checksum			
Source Address							
Destination Address							
Options Padding					Padding		
DATA							

En-tête TCP

0							1	6	32bits
	Port Source				Port Destination				
	Numéro de sé					quence			
	Accusé de réc						ception		
Data Offset	Réservé	U	A	A P R S F Fenêtre					
	Checksum					Pointeur données urgentes			
	Option					Bourrage			
	Data								

En-tête UDP

0	16 31 bits				
UDP SOURCE PORT	UDP DESTINATION PORT				
MESSAGE LENGTH	CHECKSUM				
DATA					