FRUZSINA J AGOCS

 $(+44)07835293746 \Leftrightarrow fa325@cam.ac.uk \Leftrightarrow web$

Gonville and Caius college \diamond CB2 1TA Cambridge, UK

Kavli Institute for Cosmology & Madingley road, CB3 0HA Cambridge, UK

EDUCATION

PhD in Theoretical and Computational Cosmology

October 2017 - Present

University of Cambridge

For my PhD, I developed and implemented a novel numerical method to solve ordinary differential equations with highly oscillatory solutions efficiently. Using this method can give a significant speed-up in the forward-modelling of the Cosmic Microwave Background, allowing easier inference of the conditions before the onset of inflation.

Additional Part III courses taken include: Astrostatistics (Bayesian statistics with applications in Astrophysics), Machine Learning and Algorithms for Data Mining, Probabilistic Machine Learning, Cosmology, Advanced Cosmology

MSc in Theoretical and Experimental Physics

2016 - 2017

Gonville and Caius college, University of Cambridge

 1^{st} class

Awarded the Duncan Bruce memorial prize for Physics

BA in Natural Sciences

2013 - 2016

Gonville and Caius college, University of Cambridge Specialised in Physics and Mathematics

 1^{st} class

Awarded Senior Scholarship

EXPERIENCE

Kokoon Technology Ltd.

July - September 2016, July - August 2017

Research Engineer

London, UK

I worked on the 5-stage classification of sleep based on data from a skull electroencephalogram and an accelerometer, using machine learning techniques such as random forests and support vector machines.

Institute of Astronomy, University of Cambridge

Research student

June - September 2015 Cambridge, UK

To better understand the mechanism of accretion in supermassive black holes, I wrote a program that (with or without user supervision) subtracts contamination from the hosting galaxy from the spectral energy distribution of such objects.

TECHNICAL SKILLS

Programming Python, C++, MATLAB

Version control git

Editing LATEX, vim

Computer algebra Maple, Mathematica
OS Linux, Mac OS, Windows

PUBLICATIONS

- F. J. Agocs, W. J. Handley, A. N. Lasenby, M. P. Hobson. An efficient numerical method for oscillatory differential equations, with physical applications (in prep.)
- F. J. Agocs, W. J. Handley, A. N. Lasenby, M. P. Hobson. Investigating the gauge-invariance of quantum initial conditions for inflation (in prep.)

TALKS AND POSTERS

KICC10: 10 th year anniversary of Kavli Institute for Cosmology, Cambridge (poster)	Sept 2019
Seminar, Kavli Institute for Cosmology, Cambridge (talk)	Oct 2018
Efficient numerical solutions for oscillatory differential equations	
CDT Summer school in machine learning, University College London (poster)	July 2018
Seminar, Battcock Centre, University of Cambridge (talk)	June 2017
The Runge-Kutta-Wentzel-Kramers-Brillouin method and the primordial Universe	

REFEREES

Prof. Mike Hobson (PhD supervisor)

Cavendish Astrophysics Group, CB3 0HA Cambridge, mph@mrao.cam.ac.uk

Dr. William Handley (PhD and Masters project supervisor)

Cavendish Astrophysics Group and Kavli Institute for Cosmology, CB3 0HA Cambridge, wh260@cam.ac.uk

Prof. Anthony Lasenby (PhD supervisor)

Cavendish Astrophysics Group and Kavli Institute for Cosmology, CB3 0HA Cambridge, a.n.lasenby@mrao.cam.ac.uk