CHAPTER 10

Variable Selection and Model Building

Introduction

Model-Building Problem

- "Conflicting" goals in regression model building:
 - Want as many regressors as possible so that the "information content" in the variables will influence \hat{y}
 - Want as few regressors as necessary because the variance of \hat{y} will increase as the number of regressors increases and more regressors can cost more money in data collection/model maintenance
- Need to find a compromise that leads to the best regression equation

Introduction

- Notes on Variable selection techniques
 - None of the variable selection techniques can guarantee the best regression equation for the dataset of interest
 - The techniques may very well give different results
 - Complete reliance on the algorithm for results is to be avoided
 - Other valuable information such as experience with and knowledge of the data and problem should be utilized

Introduction

Consequences of Deleting Variables

- Improves the precision of the parameter estimates of retained variables
- Improves the precision of the variance of the predicted response
- Can induce bias into the estimates of coefficients and variance of predicted response

Criteria for Evaluating Subset Regression Models

- Coefficient of Multiple Determination
 - For a model with p terms:

$$R_p^2 = \frac{SS_R(p)}{SS_T} = 1 - \frac{SS_{Res}(p)}{SS_T}$$

 $_{\circ}$ Large values of R_{ρ}^{2} are preferred, and adding terms will increase this value

R code

- n=30
- x=rnorm(n)
- y=1+2*x+rnorm(n)
- summary(lm(y~x))
- x2=rnorm(n)
- summary(Im(y~x+x2))
- x3=rnorm(n)
- summary($Im(y\sim x+x2+x3)$)
- x4=rnorm(n)
- summary($Im(y\sim x+x2+x3+x4)$)

Coefficient of Multiple Determination

Figure 10.1 Plot of R_p^2 versus p.

Criteria for Evaluating Subset Regression Models

- Adjusted R²
 - For a model with p terms:

$$R_{\text{Adj},p}^2 = 1 - \left(\frac{n-1}{n-p}\right)(1-R_p^2)$$

- This value will not necessarily increase as additional terms are introduced into the model
- Large values of adjusted R² are preferred

R code

- n=30
- x=rnorm(n)
- y=1+2*x+rnorm(n)
- summary(lm(y~x))
- x2=rnorm(n)
- summary(Im(y~x+x2))
- x3=rnorm(n)
- summary($Im(y\sim x+x2+x3)$)
- x4=rnorm(n)
- summary($Im(y\sim x+x2+x3+x4)$)

Criteria for Evaluating Subset Regression Models

- Residual Mean Square
 - The MS_{Res} for a subset regression model is

$$MS_{\text{Res}}(p) = \frac{SS_{\text{Res}}(p)}{n-p}$$

- \circ $MS_{Res}(p)$ increases as p increases, in general
- The increase in $MS_{Res}(p)$ occurs when the reduction in $SS_{Res}(p)$ from adding a regressor to the model is not sufficient to compensate for the loss of one degree of freedom.
- \circ Small values of $MS_{Res}(p)$ are preferred

R code

- n=30
- x=rnorm(n)
- y=1+2*x+rnorm(n)
- m1=lm(y~x)
- MSRes1=sum(m1\$residuals^2)/(n-2)
- x2=rnorm(n)
- $m2=Im(y\sim x+x2)$
- MSRes2=sum(m2\$residuals^2)/(n-3)
- x3=rnorm(n)
- m3=lm(y~x+x2+x3)
- MSRes3=sum(m3\$residuals^2)/(n-4)
- x4=rnorm(n)
- m4=lm(y~x+x2+x3+x4)
- MSRes4=sum(m3\$residuals^2)/(n-5)
- MSRes1
- MSRes2
- MSRes3
- MSRes4
- summary(m1)
- summary(m2)
- summary(m3)
- summary(m4)

Residual Mean Square

Figure 10.2 Plot of $MS_{Res}(p)$ versus p.

Criteria for Evaluating Subset Regression Models

Mallow's C_p Statistic

$$C_p = \frac{SS_{\text{Res}}(p)}{\hat{\sigma}^2} - n + 2p$$

- \circ C_p is a measure of variance in the fitted values and (bias)²
- \circ $C_p >> p$, then significant bias
- $_{\circ}$ Small C_{p} values near p are desirable
- \circ Negative values of C_p could result because the MSE for the full model overestimates the true σ^2

R code

- library(leaps)
- n=100000
- x=rnorm(n)
- y=1+2*x+rnorm(n)
- m1=lm(y~x)
- x2=rnorm(n)
- $m2=Im(y\sim x+x2)$
- x3=rnorm(n)
- $m3=Im(y\sim x+x2+x3)$
- x4=rnorm(n)
- $m4=Im(y\sim x+x2+x3+x4)$
- leaps(x=cbind(x,x2,x3,x4), y=y, method="Cp")

Mallow's C_p Statistic

Figure 10.3 A C_p plot.

Criteria for Evaluating Subset Regression Models

- AIC and BIC Criteria
 - AIC: Akaike's Information Criterion
 - BIC: Schwarz' Bayesian Criterion
 - \circ AIC = $n \ln (SS_{Res}/n) + 2p$
 - \circ BIC_{Sch} = $n \ln (SS_{Res}/n) + p \ln(n)$
 - Search for models with small values
 - Commonly used for more complicated modeling situations

R code

- library(leaps)
- n=1000000
- x=rnorm(n)
- y=1+2*x+rnorm(n)
- m1=lm(y~x)
- x2=rnorm(n)
- $m2=Im(y\sim x+x2)$
- x3=rnorm(n)
- $m3=Im(y\sim x+x2+x3)$
- x4=rnorm(n)
- $m4=Im(y\sim x+x2+x3+x4)$
- leaps(x=cbind(x,x2,x3,x4), y=y, method="Cp")
- extractAIC(m1)
- extractAIC(m1, k = log(n))

Criteria for Evaluating Subset Regression Models

- Uses of Regression and Model Evaluation Criteria
 - Regression equations may be used to make predictions
 - Minimizing the MSE for prediction may be an important criterion
 - The PRESS statistic can be used for comparisons of candidate models

$$PRESS_{p} = \sum_{i=1}^{n} \left(y_{i} - \hat{y}_{(i)} \right)^{2}$$
$$= \sum_{i=1}^{n} \left(\frac{e_{i}}{1 - h_{ii}} \right)^{2}$$

Small values of PRESS are preferred

Computational Techniques for Variable Selection

All Possible Regressions

- Assume the intercept term is in all equations
- If there are K regressors, we would investigate 2^K possible regression equations
- Use the criteria discussed to determine some candidate models
- Complete regression analysis on candidate models

113.3

109.4

Example 10.1 Hald Cement Data

Observation					
i	y_i	x_{i1}	x_{i2}	x_{i3}	x_{i4}
1	78.5	7	26	6	60
2	74.3	1	29	15	52
3	104.3	11	56	8	20
4	87.6	11	31	8	47
5	95.9	7	52	6	33
6	109.2	11	55	9	22
7	102.7	3	71	17	6
8	72.5	1	31	22	44
9	93.1	2	54	18	22
10	115.9	21	47	4	26
11	83.8	1	40	23	34

TABLE 10.1 Summary of All Possible Regressions for the Hald Cement Data

Number of Regressors in Model	P	Regressors in Model	$SS_{Rac}(p)$	R_p^2	$R^2_{Adj,p}$	$MS_{Res}(p)$	С,
None	1	None	2715.7635	0	0	226.3136	442.92
1	2	x_1	1265.6867	0.53395	0.49158	115.0624	202.55
1	2	x2	906.3363	0.66627	0.63593	82.3942	142.49
1	2	x3	1939.4005	0.28587	0.22095	176.3092	315.16
1	2	X4	883.8669	0.67459	0.64495	80.3515	138.73
2	3	x_1x_2	57.9045	0.97868	0.97441	5.7904	2.68
2	3	x_1x_3	1227.0721	0.54817	0.45780	122.7073	198.10
2	3	x_1x_4	74.7621	0.97247	0.96697	7.4762	5.50
2	3	x_2x_3	415.4427	0.84703	0.81644	41.5443	62.44
2	3	x_3x_4	868.8801	0.68006	0.61607	86.8880	138.23
2	3	x3x4	175.7380	0.93529	0.92235	17.5738	22.37
3	4	$x_1x_2x_3$	48.1106	0.98228	0.97638	5.3456	3.04
3	4	$x_1x_2x_4$	47.9727	0.98234	0.97645	5.3303	3.02
3	4	$x_1x_3x_4$	50.8361	0.98128	0.97504	5.6485	3.50
3	4	$x_3x_3x_4$	73.8145	0.97282	0.96376	8.2017	7.34
4	5	$x_1x_3x_3x_4$	47.8636	0.98238	0.97356	5.9829	5.00

TABLE 10.2 Least-Squares Estimates for All Possible Regressions (Hald Cement Data)

Variables in Model	$\hat{\beta}_0$	$\hat{\beta}_1$	$\hat{\beta}_2$	$\hat{\boldsymbol{\beta}}_3$	$\hat{\beta}_4$
x ₁	81.479	1.869			
x ₂	57.424		0.789		
x ₃	110.203			-1.256	
X4	117.568				-0.738
x ₁ x ₂	52.577	1.468	0.662		
x_1x_3	72.349	2.312		0.494	
X ₁ X ₄	103.097	1.440			-0.614
x ₃ x ₃	72.075		0.731	-1.008	
X2X4	94.160		0.311		-0.457
X3X4	131.282			-1.200	-0.724
$x_1x_2x_3$	48.194	1.696	0.657	0.250	
X1X2X4	71.648	1.452	0.416		-0.237
X3X3X4	203.642		-0.923	-1.448	-1.557
X1X3X4	111.684	1.052		-0.410	-0.643
$x_1x_2x_3x_4$	62.405	1.551	0.510	0.102	-0.144

TABLE 10.3 Matrix of Simple Correlations for Hald's Data in Example 10.1

	x_1	x2	x3	X4	у
<i>x</i> ₁	1.0				
x_2	0.229	1.0			
x_3	-0.824	-0.139	1.0		
x_4	-0.245	-0.973	0.030	1.0	
y	0.731	0.816	-0.535	-0.821	1.0

TABLE 10.4 Comparisons of Two Models for Hald's Cement Data

Observation	$\hat{y} = 52.58 + 1.468x_1 + 0.662x_2^a$			$\hat{y} = 71.65 + 1.452x_1 + 0.416x_2 - 0.237x_4$		
i	eį	ha	$[e/(1-h_i)]^2$	e_i	h _a	$[e/(1-h_z)]^2$
1	-1.5740	0.25119	4.4184	0.0617	0.52058	0.0166
2	-1.0491	0.26189	2.0202	1.4327	0.27670	3.9235
3	-1.5147	0.11890	2.9553	-1.8910	0.13315	4.7588
4	-1.6585	0.24225	4.7905	-1.8016	0.24431	5.6837
5	-1.3925	0.08362	2.3091	0.2562	0.35733	0.1589
6	4.0475	0.11512	20.9221	3.8982	0.11737	19.5061
7	-1.3031	0.36180	4.1627	-1.4287	0.36341	5.0369
8	-2.0754	0.24119	7.4806	-3.0919	0.34522	22.2977
9	1.8245	0.17195	4.9404	1.2818	0.20881	2.6247
10	1.3625	0.55002	9.1683	0.3539	0.65244	1.0368
11	3.2643	0.18402	16.0037	2.0977	0.32105	9.5458
12	0.8628	0.19666	1.1535	1.0556	0.20040	1.7428
13	-2.8934	0.21420	13.5579	-2.2247	0.25923	9.0194
		PRESS x ₁ , x	$t_2 = 93.8827$		PRESS x_1 ,:	$x_2, x_4 = 85.3516$

 $^{{}^{}a}R_{Prediction}^{2} = 0.9654, VIF_{1} = 1.05, VIF_{2} = 1.06.$

 $^{^{}b}R_{Prediction}^{2} = 0.9684$, $VIF_{1} = 1.07$, $VIF_{2} = 18.78$, $VIF_{4} = 18.94$.

Best Subsets Regression: y versus x1, x2, x3, x4

Response is y

					200	×	30	×
Vars	R-Sq	R-Sq(adj)	C-p	s	1	2	3	4
1	67.5	64.5	138.7	8.9639				х
1	66.6	63.6	142.5	9.0771		X		
1	53.4	49.2	202.5	10.727	х			
1	28.6	22.1	315.2	13.278			X.	
2	97.9	97.4	2.7	2.4063	X	х		
2	97.2	96.7	5.5	2.7343	x			x
2	93.5	92.2	22.4	4.1921			х	X
2	84.7	81.6	62.4	6.4455		х	х	
2	68.0	61.6	138.2	9.3214		х		x
3	98.2	97.6	3.0	2.3087	х	х		х
3	98.2	97.6	3.0	2.3121	x	х	х	
3	98.1	97.5	3.5	2.3766	X		X	Х
3	97.3	96.4	7.3	2.8638		х	X	X
4	98.2	97.4	5.0	2.4460	x	х	х	x

Figure 10.7 Computer output (Minitab) for Furnival and Wilson all-possible-regression algorithm.

Computational Techniques for Variable Selection

- Stepwise Regression Methods
 - 1. Forward Selection
 - 2. Backward Elimination
 - 3. Stepwise Regression (combination of forward and backward)

Stepwise Regression Methods

Forward Selection

- Procedure is based on the idea that no variables are in the model originally, but are added one at a time
- The first regressor selected to be entered into the model is the one with the highest correlation with the response
- If the F statistic corresponding to the model containing this variable is significant (larger than some predetermined value, F_{in}), then that regressor is left in the model
- The second regressor examined is the one with the largest partial correlation with the response. If the Fstatistic corresponding to the addition of this variable is significant, the regressor is retained
- This process continues until all regressors are examined

Forward Selection

Stepwise Regression: y versus x1, x2, x3, x4 Forward selection. Alpha-to-enter: 0.25 Response is y on 4 predictors, with N = 13 Step 117.57 103.10 71.65 Constant -0.738 -0.614 -0.237 x4T-Value -4.77 -12.62 -1.37 P-Value 0.001 0.000 0.205 1.44 1.45 $\times 1$ T-value 10.40 12.41 P-Value 0.000 0.000 x20.42T-Value 2.24 R-Value 0.052 8 8.96 2.73 2.31 R- Sq 67.45 97.25 98.23R-Sq(adj) 64.50 96.70 97.64 Mallows C-p 138.7 5.5 3.0

Figure 10.8 Forward selection results from Minitab for the Hald cement data.

Stepwise Regression Methods

Backward Elimination

- Procedure is based on the idea that all variables are in the model originally and examined one at a time and removed if not significant
- The partial F statistic is calculated for each variable as if it were the last one added to the model
- The regressor with the smallest F statistic is examined first and will be removed if this value is less than some predetermined value F_{out}
- If this regressor is removed, then the model is refit with the remaining regressor variables and the partial F statistics calculated again
- The regressor with the smallest partial F statistic will be removed if that value is less than F_{out}.
- The process continues until all regressors are examined

Backward Elimination

Stepwise Regression: y versus x1, x2, x3, x4 Backward elimination. Alpha-to-Remove: 0.1 Response is y on 4 predictors, with N = 13 Step 1 2 3 Constant 62.41 71.65 52.58 1.55 1.45 1.47 x1T-Value 2.08 12.41 12.10 0.071 0.000 P-Value 0.000 0.510 0.416 0.662 x2T-Value 0.70 2.24 14.44 0.052 P-Value 0.501 0.000 0.10 $\times 3$ T-Value 0.14 P-Value 0.896 -0.14 -0.24 $\times 4$ T-Value -0.20 -1.37 P-Value 0.844 0.205 2.45 2.31 \mathbf{s} 2.41 97.87 R-Sq 98.24 98.23 R-Sq(adj) 97.36 97.64 97.44 Mallows C-p 5.0 2.7 3.0

Figure 10.9 Backward selection results from Minitab for the Hald cement data.

Stepwise Regression Methods

Stepwise Regression

- This procedure is a modification of forward selection
- The contribution of each regressor variable that is put into the model is reassessed by way of its partial F statistic
- A regressor that makes it into the model, may also be removed it if is found to be insignificant with the addition of other variables to the model
- If the partial F-statistic is less than F_{out}, the variable will be removed.
- Stepwise requires both an F_{in} value and F_{out} value

Stepwise Regression

Stepwise Regre	ssion: y ve	rsus x1, x2	, x3, x4	
Alpha-to-Ente	r: 0.15 Al	pha-to-Remo	ve: 0.15	
Response is y	on 4 predic	tors, with	N = 13	
Step	1	2	3	4
Constant	117.57	103.10	71.65	52.58
x4	-0.738	-0.614	-0.237	
T- Value	-4.77	-12.62	-1.37	
P-Value	0.001	0.000	0.205	
×1		1.44	1.45	1.47
T- Value		10.40	12.41	12.10
P- Value		0.000	0.000	0.000
x2			0.416	0.662
T- Value			2.24	14.44
P- Value			0.052	0.000
S	8.96	2.73	2.31	2.41
R- Sq	67.45	97.25	98.23	97.87
R-Sq(adj)	64.50	96.70	97.64	97.44
Mallows C-p	138.7	5.5	3.0	2.7

Figure 10.10 Stepwise selection results from Minitab for the Hald cement data.

Computational Techniques for Variable Selection

Stepwise Regression Methods

- No one model may be the "best"
- The three stepwise techniques could result in different models
- Inexperienced analysts may use the final model simply because the procedure spit it out.

Strategy for Regression Model Building

Figure 10.11 Flowchart of the model-building process.

R code

- library(MASS)
- asphalt <- read.csv("data-table-10-5 (Asphalt).csv",h=T)
- temp <- $Im(y\sim x1+x2+x3+x4+x5+x6, data=asphalt)$
- step <- stepAIC(temp, direction="both")
- step\$anova
- library(leaps)
- temp <regsubsets(y~x1+x2+x3+x4+x5+x6,data=asphalt,nbest=1 0)
- summary(temp)
- plot(temp)