1. (Durrett 2.2.2) We assume that r is a real valued function, i.e. that $r(0) \in \mathbb{R}$ is not infinity. Then

$$0 \le E\left[\left(\frac{S_n}{n}\right)^2\right] = \frac{1}{n^2} \left(\sum_{1}^n EX_j^2 + 2\sum_{\substack{1 \le j \le n \\ 1 \le i < j}} EX_iX_j\right) \le \frac{1}{n^2} \left(nr(0) + 2\sum_{\substack{1 \le j \le n \\ 1 \le i < j}} |r(i-j)|\right)$$
$$= \frac{r(0)}{n} + \frac{2}{n^2} \left(\sum_{j=1}^{n-1} (n-j)|r(j)|\right)$$

The term $r(0)/n \to 0$, so it suffices to check that $\frac{1}{n^2} \left(\sum_{j=1}^{n-1} (n-j) |r(j)| \right) \to 0$. So take $\epsilon > 0$, then for $N \in \mathbb{N}$ we have $j \geq N$ implies $|r(j)| < \epsilon/2$, then for M > N,

$$\frac{1}{M^2} \sum_{j=N}^{M-1} (M-j)|r(j)| < \frac{1}{M^2} (M-N-1)(M-N) \frac{\epsilon}{2} \le \epsilon/2$$

Now we can take M sufficiently large so that $\frac{1}{M} \sum_{1}^{N-1} |r(j)| < \epsilon/2$, then combining these inequalities, for any $K \ge M$ we get

$$\begin{split} \frac{1}{K^2} \sum_{1}^{K-1} (K-j) |r(j)| &= \frac{1}{K^2} \sum_{N}^{K-1} (K-j) |r(j)| + \frac{1}{K^2} \sum_{1}^{N-1} (K-j) |r(j)| < \epsilon/2 + \frac{1}{K} \sum_{1}^{N-1} |r(j)| \\ &\leq \epsilon/2 + \frac{1}{M} \sum_{1}^{N-1} |r(j)| < \epsilon \end{split}$$

So indeed by squeeze theorem we find that $E\left[\left(\frac{S_n}{n}\right)^2\right] \xrightarrow{L^2} 0$, and L^2 convergence implies convergence in probability.

2. (Durrett 2.2.8) In order to invoke the weak law of traingular arrays, we need to check the conditions. (i) - $\sum_{1}^{n} P(X_k > b_n) \to 0$.

$$P(X_k > b_n) = \sum_{m(n)}^{\infty} p_j = \le 2^{-m(n)} \sum_{0}^{\infty} \frac{1}{2^j (m(n) + j + 1)(m(n) + j)} \le 2^{-m(n)} m(n)^{-3/2} \frac{1}{\sqrt{m(n)}} \sum_{0}^{\infty} 2^{-j} < \frac{2}{n\sqrt{m(n)}}$$

So that

$$\sum_{1}^{n} P(X_k > b_n) < \frac{2}{\sqrt{m(n)}} \stackrel{n \to \infty}{\longrightarrow} 0$$

(ii) -
$$\frac{1}{\mathbf{b}_n^2} \sum_{1}^{n} \mathbf{E} \overline{\mathbf{X}}_{n,k}^2 \to \mathbf{0}$$
, where $\overline{X}_{n,k} = X_k \mathbf{1}_{\{|X_k| \leq b_n\}}$

$$\begin{split} E\overline{X}_{n,k}^2 &= \left(\sum_{1}^{2^{m(n)}} p_k(2^k - 1) - p_0\right)^2 = p_0^2 - 2p_0 \left(\sum_{1}^{2^{m(n)}} \frac{1}{k(k+1)} - p_k\right) + \left(\sum_{1}^{2^{m(n)}} p_k(2^k - 1)\right)^2 \\ &\leq p_0^2 + \left(\sum_{1}^{2^{m(n)}} \frac{1}{k(k+1)} - p_k\right)^2 \leq p_0^2 + \left(\sum_{1}^{2^{m(n)}} \frac{1}{k(k+1)}\right)^2 \leq 1 + 1 = 2 \end{split}$$

And hence,

$$\frac{1}{b_n^2} \sum_{1}^{n} E \overline{X}_{n,k}^2 \le \frac{2n}{b_n^2} = \frac{2n}{2^{-2m(n)}} < \frac{2m(n)^{3/2}}{2^{-m(n)}} \overset{n \to \infty}{\longrightarrow} 0$$

Now we want to obtain workable expressions to explain the asymptotic behaviour, we obtain the following expression for $\sum_{1}^{n} E\overline{X}_{n,k}$