WEEK 1 NOTES

About the Course, Intro

- · Course is not language specific and uses pseudo code
- Intent is to give understanding of algorithms, data structures, big O notation, which is invaluable for all software
 engineers and especially in the coding interview
- · Provides an example of long form multiplication being an algorithm
 - Not only one way to do it, an alternative is Karatsuba Multiplication
- · Most important point of algorithms:
 - o ALWAYS ASK: CAN WE DO BETTER?

Merge Sort

- · Merge Sort is a good algorithm to introduce divide & conquer
 - An improvement over Selection sort, Insertion sort, and Bubble sort
- · How merge sort works
 - o Take a list / array of numbers, split that in half
 - o Then take each half and run recursive sorting calls on each, sorting them
 - Then merge the two halves together
- Pseudocode for Merge sort
 - \circ For k = 1 to n
 - If A(I) < B(j)
 - C(k) = A(i)
 - i++
 - Else [B(j) < A(i)]
 - C(k) = B(j)
 - j++
 - o End
- Running Time of Merge (Big O)
 - o 6n log2(n) + 6n operations

Running Time of Merge Sort

Claim: Merge Sort requires

 $\leq 6n\log_2 n + 6n$ operations

to sort n numbers.

Recall : = $\log_2 n$ is the # of times you divide by 2 until you get down to 1

Guiding Principles

- 1. We will be using "Worst case analysis" for big O runtime analysis
 - A. This is best for general purpose without knowing anything about the underlying data or use case
 - B. In the real world, if this is a critical algorithm for your business, then you will also want to analyze the underlying data and use case, but for our purpose in this course it's not required
- 2. We won't pay much attention to constant factors, lower order terms
 - A. Similarly, this is easier to manage and we lose very little predictive power. But for real life critical algorithms, you will want to also look into the constant terms
- 3. Asymptotic Analysis: focus on running time for large input sizes of n vs small input sizes
 - A. Smaller input sizes are usually trivial for modern computers to handle, so we should really only be optimizing for large inputs
- · What is a fast algorithm?
 - o As close to O(1) as possible
 - O(1) = 1 step
 - O (logn) = grows at the log of n (less than linear)
 - ► O(n) = linear
 - ► O(n^2) = exponential

Asymptotic Analysis

- · The Gist
 - Asymptotic Analysis = "Big Oh" notation
 - o Provides a standardized vocabulary analysis of performance of algorithms
 - Allows to differentiate between better and worse approaches to sorting, searching, etc.
 - o High-level idea
 - Ignores constant factors and lower order terms
 - · As data grows in size, constants and lower order terms become more and more irrelevant
 - Also simplifies things for rapid analysis
 - Example searching array for an integer
- · Big-Oh notation
 - Formal definition:
 - T(n) = O(f(n)) if and only if there exist constants c, n0 > 0 such that
 - T(n) <= c * f(n)
 - for all n >= n0
 - · Warning: c, n0 cannot depend on n

Big-Oh: Formal Definition

 $Picture \ T(n) = O(f(n))$

Formal Definition : T(n) = O(f(n)) if and only if there exist constants $c, n_0 > 0$ such that

$$T(n) \le c \cdot f(n)$$

For all $n \geq n_0$

Warning: c, n_0 cannot depend on n

Example #1

<u>Claim</u>: if $T(n) = a_k n^k + ... + a_1 n + a_0$ then

$$T(n) = O(n^k)$$

<u>Proof</u>: Choose $n_0 = 1$ and $c = |a_k| + |a_{k-1}| + ... + |a_1| + |a_0|$ Need to show that $\forall n \geq 1, T(n) \leq c \cdot n^k$ We have, for every $n \geq 1$,

$$T(n) \le |a_k|n^k + \dots + |a_1|n + |a_0|$$

 $\le |a_k|n^k + \dots + |a_1|n^k + |a_0|n^k$
 $= c \cdot n^k$

Example #2

<u>Claim</u>: for every $k \ge 1$, n^k is not $O(n^{k-1})$

 $\underline{\text{Proof}}$: by contradiction. Suppose $n^k = O(n^{k-1})$ Then there exist constants c, n_0 such that

$$n^k \le c \cdot n^{k-1} \quad \forall n \ge n_0$$

But then [cancelling n^{k-1} from both sides]:

$$n \leq c \quad \forall n \geq n_0$$

Which is clearly False [contradiction].

- Big Omega and Theta
 - o Close relatives but less popular than Big-Oh notation
 - Omega = upper bound
 - Theta = lower bound
- · Little-Oh notation
 - Not used often
 - o Simply says that one function grows faster than another

Omega Notation

$$T(n) \ge c \cdot f(n) \quad \forall n \ge n_0$$
.

Picture

$$T(n) = \Omega(f(n))$$

Theta Notation

<u>Definition</u>: $T(n) = \theta(f(n))$ if and only if

T(n) = O(f(n)) and $T(n) = \Omega(f(n))$

Equivalent : there exist constants c_1, c_2, n_0 such that

$$c_1 f(n) \le T(n) \le c_2 f(n)$$

$$\forall n \geq n_0$$