Khôlles: Semaine 17

- 22 - 26 Janvier 2024 -

Sommaire

1	Quest	tions de cours - Tout groupe	1
	1.1 I	Définition d'un point intérieur	1
	1.2 I	Définition d'un ouvert et d'un fermé	1
	1.3 U	Une boule ouverte est ouverte. (démo)	1
	1.4 8	Stabilité des ouverts par union et intersection finie. (démo)	2
		Définition de la frontière	2
	1.6	Caractérisation séquentielle des fermés. (donner un exemple)	2
	1.7 T	Γhéorème de Weierstrass et reformulation en termes de densité	3
	1.8 U	Un fermé d'un compact est un compact. (démo)	4
	1.9 I	mage d'un compact par une application continue. (démo)	4
	1.10 I	Définition d'une partie connexe par arcs	4
		Convexe implique connexe par arcs. (« démo »)	5
		mage d'un connexe par arcs par une application continue. (démo)	5
		Foutes les normes en dimension finie sont équivalentes. (l'écrire avec des quantificateurs)	5
		En dimension finie, tous les sev sont fermés. (démo)	6
2		tions de Cours - Groupes B et C	7
		Une boule fermée est fermée (démo)	7
		mage réciproque d'un ouvert par une application continue. (démo)	7
		mage réciproque d'un fermé par une application continue. (démo)	7
		Lipschitzien \Longrightarrow uniformément continue \Longrightarrow continue. (démo)	8
		Caractérisations des applications linéaires continues. (démo)	8
		Exemple d'application linéaire non continue. (démo)	9
	2.7 I	Définition d'une norme subordonnée.	9
	2.8 U	In segment est un compact. (démo vue en sup)	9
	2.9 I	Le produit cartésien de deux compacts est un compact (pour la topologie produit). (démo)	10
	2.10 I	L'intérieur d'un ensemble est un ouvert. (démo)	10
	2.11 ($\mathrm{GL}_n(\mathbb{R})$ est dense dans $\mathscr{M}_n(\mathbb{R})$. (démo HP)	11
	2.12 E	En dimension finie, toutes les applications linéaires sont continues. (démo)	11
		Exemple de sous-espace vectoriel non fermé	11
	2.14 @	$\mathcal{D}_n(\mathbb{R})$ est compact. (démo)	12
3	Onesi	tions de Cours - Groupe C	13
Ŭ	-	Fhéorème de Heine. (démo)	13
		L'adhérence d'un ensemble est un fermé. (démo)	13
		Foutes les normes en dimension finie sont équivalentes. (démo)	14
		Des normes équivalentes définissent les mêmes notions topologiques. (choisir une notion et le faire	17
		démontrer)	15
		Définitions équivalentes de la norme subordonnée. (démo)	15
		Exemple de fermé borné non compact. (démo)	16
		Dans (((C) l'ansamble des matrices diagonalisables est dans (démo HD)	16

1 Questions de cours - Tout groupe

1.1 Définition d'un point intérieur.

Définition: : Point intérieur à une partie

 $(E, \|\cdot\|)$ un \mathbb{K} -EVN. Soit $A \subset E$ et $a \in A$.

- On dit que a est intérieur à A si ∃r > 0, B_f(a,r) ⊂ A
 i.e, A est un voisinage de a
- On note $Å = \{\text{Points intérieurs à A}\}\$

1.2 Définition d'un ouvert et d'un fermé.

Définition:: Ouvert dans E

 $(E, \|\cdot\|)$ un \mathbb{K} -EVN. Soit $U \subset E$.

On dit que U est un ouvert dans E si : $\forall x \in U, \exists r > 0, B_f(x, r) \subset U$

Note:-

Dans la définition précédente : $B_f \iff B_o$

Définition: : Fermé dans E

 $(E, \|\cdot\|)$ un \mathbb{K} -EVN. Soit $F \subset E$.

On dit que F est un fermé dans E si F^c est un ouvert dans E

$$F^{c} = \{x \in E \mid x \notin F\}$$

1.3 Une boule ouverte est ouverte. (démo)

Proposition

 $(E, \|\cdot\|)$ un \mathbb{K} -EVN.

Dans E, une boule ouverte est ouverte.

Preuve:

Soit
$$a \in E$$
, $r > 0$. On note $U = B_o(a, r) = \{x \in E \mid ||x - a|| < r\}$

Soit
$$x \in U$$
: On note $r' = (r - ||x - a||) \times \frac{1}{2} > 0$

Alors,
$$B_f(x,r') \subset B_o(\alpha,r)$$
 car:

Soit
$$y \in B_f(x, r')$$
:

$$\begin{split} \|y - a\| &= \|y - x + x - a\| \\ &\leq \|y - x\| + \|x - a\| \\ &\leq r' + \|x - a\| = \frac{r + \|x - a\|}{2} < r \end{split}$$

Ainsi,
$$y \in B_o(a,r) \Longrightarrow B_f(x,r') \subset B_o(a,r)$$

1.4 Stabilité des ouverts par union et intersection finie. (démo)

Proposition

 $(E, \|\cdot\|)$ un \mathbb{K} -EVN. $(U_i)_{i \in I}$, famille d'ouverts.

- Alors, $\bigcup_{i \in I} U_i$ est un ouvert de E (L'ensemble des ouverts est stable par union quelconque)
- Soit $U_1, ..., U_n$ un nombre fini d'ouverts de E. Alors $\bigcap_{i=1}^n U_i$ est un ouvert de E. (L'ensemble des ouverts est stable par intersection <u>finie</u>).

Preuve:

On note
$$V = \bigcup_{i \in I} U_i$$
. Soit $a \in V$. Alors, $\exists i \in I, a \in U_i \Longrightarrow \exists r > 0$, $B_f(a,r) \subset U_i$. Donc $B_f(a,r) \subset V \Longrightarrow V$ est un ouvert. Notons $W = U_1 \cap U_2 \cap \cdots \cap U_n$. Soit $a \in W$. Alors, $\forall i \in [\![1,n]\!], a \in U_i$. Or, U_i est ouvert $\Longrightarrow \forall i \in [\![1,n]\!], \exists r_i > 0$, $B_f(a,r_i) \subset U_i$. Posons alors $r = \min_{i \in [\![1,n]\!]} \{r_i\} > 0$. Ainsi, $\forall i \in [\![1,n]\!], B_f(a,r) \subset B_f(a,r_i) \subset U_i$. Donc $B_f(a,r) \subset W \Longrightarrow W$ est ouvert.

1.5 Définition de la frontière.

Définition: : Frontière d'une partie

 $(E, \|\cdot\|)$ un \mathbb{K} -EVN. Soit $A \subset E$. On appelle Frontière de A (qu'on note ∂A ou FR(A)) l'ensemble $\overline{A} \setminus \mathring{A} = \overline{A} \cap \mathring{A}^c$

1.6 Caractérisation séquentielle des fermés. (donner un exemple)

Proposition

 $(E, \|\cdot\|)$ un \mathbb{K} -EVN. Soit $A \subset E$.

$$[A \text{ est Ferm\'e}] \iff [\forall (x_n)_n \in A^{\mathbb{N}}, \ x_n \to a \implies a \in A]$$

Preuve :

$$\Rightarrow$$
: Soit $(x_n)_n \in A^N$ telle que $x_n \to a$. Alors, par définition, $a \in \overline{A}$. Or, A fermé, donc $a \in A = \overline{A}$

<u>⇒</u>:

Montrons que $A = \overline{A} \iff A$ fermé : Soit $a \in \overline{A}$. $\exists (x_n)_n \in A^{\mathbb{N}}, x_n \to a$. Par hypothèse, $a \in A$, donc $\overline{A} = A \implies A$ fermé

Exemple

 $E = \mathbb{R}^3 + \|\cdot\|_{\infty}$. On note $H = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$ Montrons que H est un fermé pour E. Soit $(X_n) \in H^{\mathbb{N}}$ tq $x_n \to Y$.

Pour $n \in \mathbb{N}$, notons $X_n = (x_n \ y_n \ z_n)^T$, et $y = (a \ b \ c)^T$

 $X_n \to Y \text{ signifie } \|X_n - Y\|_\infty \to 0. \text{ Or, par d\'efinition de la norme infinie : } x_n \to a, y_n \to b, z_n \to c.$

De plus, $\forall n \in \mathbb{N}, X_n \in \mathbb{H} : x_n + y_n + z_n = 0 \Longrightarrow a + b + c = 0 \Longrightarrow y \in \mathbb{H} \Longrightarrow \mathbb{H}$ fermé.

1.7 Théorème de Weierstrass et reformulation en termes de densité.

Exemple

Théorème de Weierstraß:

 $\forall f \in \mathscr{C}^0([a,b],\mathbb{R}), \exists (P_n)_n \in \mathbb{R}[X]^{\mathbb{N}} \text{ telle que } (P_n) \text{ converge uniformément vers } f \text{ sur } [a,b].$

Posons alors $E = \mathscr{C}^0([a,b],\mathbb{R})$, ainsi que $P = \{g \in E \mid g \text{ polynomiale}\}$. Alors, d'après le théorème de Weierstraß, P est dense dans E.

1.8 Un fermé d'un compact est un compact. (démo)

Proposition

 $(E, \|\cdot\|)$ un \mathbb{K} -EVN. Soit $K \subset E$, compact.

L'intersection d'un compact et d'un fermé est un compact :

 $\forall F \subset E \text{ ferm\'e}, K \cap F \text{ est un compact}$

Ceci revient à dire qu'un fermé relatif d'un compact est un compact.

Preuve :

Soit
$$(x_n) \in (F \cap K)^{\mathbb{N}}$$
. Alors, $(x_n) \in F^{\mathbb{N}}$.
Or, K compact, donc $\exists \varphi : \mathbb{N} \to \mathbb{N}$, strictement croissante, $\exists \alpha \in K, \ x_{\varphi(n)} \to \alpha$.

Or, $(x_{\omega(n)}) \in F^{\mathbb{N}}$, donc par caractérisation séquentielle des fermés : $a \in F$. Ainsi, $a \in (F \cap K)$.

 $\exists \varphi : \mathbb{N} \to \mathbb{N}$, strictement croissante, $\exists \alpha \in (F \cap K), \ \chi_{\varphi(n)} \to \alpha \Longrightarrow (F \cap K)$ Compact

1.9 Image d'un compact par une application continue. (démo)

Proposition

L'image directe d'un compact par une application continue est un Compact.

Preuve :

 $(E,\|\cdot\|_E),(F,\|\cdot\|)_F$, deux \mathbb{K} -EVN. Soit $f:U\to F$, application \mathscr{C}^0 . Soit $K\subset E$ compact.

$$\forall (y_n) \in (f(K))^{\mathbb{N}}, \exists (x_n) \in K^{\mathbb{N}}, \forall n \in \mathbb{N}, f(x_n) = y_n.$$

Or, K est compact: $\exists \phi : \mathbb{N} \to \mathbb{N}$, strictement croissante, $\exists a \in E, \ x_{\phi(n)} \to a$.

Alors, par continuité de f, $f(x_{\phi(n)}) \rightarrow f(a)$. Ainsi, $y_{\phi(n)} \rightarrow f(a) \in f(K)$

1.10 Définition d'une partie connexe par arcs.

Définition

- Les classes d'équivalence de ${\mathcal R}$ s'appellent les composantes connexes par arcs de A
- On dit que A est connexe par arcs si R admet une unique classe d'équivalence. i.e:

$$\forall a,b \in A, \ a \mathscr{R}b, \ i.e \ \exists \gamma \begin{cases} [0;1] & \to A \\ t & \mapsto \gamma(t) \end{cases} \mathscr{C}^0, \ tq \ \gamma(0) = a \ et \ \gamma(1) = b$$

1.11 Convexe implique connexe par arcs. (« démo »)

Proposition

A convexe \Longrightarrow A connexe par arcs.

Preuve:

Par définition d'une partie convexe :
$$\forall a,b \in A, [a,b] \subset A$$
. i.e : $\forall t \in [0,1], \ ta + (1-t)b \in A$. Ainsi, en posant γ :
$$\begin{cases} [0;1] & \to A \\ t & \mapsto ta + (1-t)b \end{cases}$$
, nous avons γ $\mathscr{C}^0, \gamma(0) = a, \gamma(1) = b$

1.12 Image d'un connexe par arcs par une application continue. (démo)

Proposition

L'image directe d'un ensemble connexe par arcs par une application continue est connexe par arcs.

Preuve:

$$(E, \|\cdot\|_E), (F, \|\cdot\|_F), \text{ deux } \mathbb{K}\text{-EVN. Soit } f: U \to F, \text{ application } \mathscr{C}^0. \text{ Soit } A \subset U, \text{ connexe par arcs.}$$
 Soient $y_1, y_2 \in f(F), \exists x_1, x_2 \in A, \ y_1 = f(x_1) \text{ et } y_2 = f(x_2).$ Or, A est connexe par arcs : $\exists \gamma \ \mathscr{C}^0, \ \gamma(0) = x_1, \ \gamma(1) = x_2. \text{ Posons alors } \tilde{\gamma}: \begin{cases} [0;1] & \to f(A) \\ t & \mapsto f \circ \gamma(t) \end{cases}$ Alors, $\tilde{\gamma}$ est \mathscr{C}^0 par composition d'applications \mathscr{C}^0 . $\forall t \in [0,1], \tilde{\gamma}(t) \in f(A), \tilde{\gamma}(0) = y_1, \tilde{\gamma}(1) = y_2.$ Donc, $f(A)$ est connexe par arcs.

1.13 Toutes les normes en dimension finie sont équivalentes. (l'écrire avec des quantificateurs)

Théorème

 $(E, \|\cdot\|)$ un \mathbb{K} -EVN de Dimension finie.

Alors, toutes les normes sur E sont équivalentes : Soient $\|\cdot\|_{\alpha}$ et $\|\cdot\|_{b}$, deux normes sur E :

$$\exists \alpha, \beta > 0, \ \forall x \in E, \ \alpha \|x\|_{\alpha} \leq \|x\|_{b} \leq \beta \|x\|_{\alpha}$$

1.14 En dimension finie, tous les sev sont fermés. (démo)

Proposition

 $(E,\|\cdot\|)$ un $\mathbb{K}\text{-EVN}$ de Dimension finie. Soit $F\subset E,$ un SEV. Alors, F est fermé

Preuve:

Soit G, supplémentaire de F. Soit p, projection sur G de direction F. Alors, $F = Ker(p) = p^{-1}(\{0\})$. Or, $\{0\}$ est fermé, p est une application linéaire en dimension finie, donc est continue, donc $p^{-1}(\{0\}) = F$ est fermé.

6

2 Questions de Cours - Groupes B et C

2.1 Une boule fermée est fermée (démo)

Proposition

Une boule fermée est un fermé.

Preuve:

$$\begin{aligned} &\text{Soit } \alpha \subset E, r > 0. \text{ Posons } F = B_f(\alpha, r). \\ &\text{Soit } x \in F^c, \text{posons } r' = \frac{\|x - \alpha\| - r}{2} > 0 \text{ car } x \not \in F. \end{aligned}$$

Montrons que $B_f(x,r') \subset F^c$. Soit $y \in B_f(x,r')$.

$$\|y - a\| \le \|y - x\| + \|x - a\|$$

Or, par 2è I.T
$$||y - a|| \ge |||y - x|| - ||x - a|||$$

Ainsi,
$$\|y - a\| \ge \|x - a\| - r' = \frac{r + \|x - a\|}{2} > r \text{ car } \|x - a\| > r.$$

2.2 Image réciproque d'un ouvert par une application continue. (démo)

Voir ci-dessous.

2.3 Image réciproque d'un fermé par une application continue. (démo)

Proposition

- L'image réciproque d'un ouvert par une application continue est un ouvert.
- L'image réciproque d'un fermé par une application continue est un fermé.

i.e, $(E, \|\cdot\|_E)$, $(F, \|\cdot\|)_F$, deux \mathbb{K} -EVN. Soit $f: E \to F$, application \mathscr{C}^0 .

- $\forall U \subset E$ ouvert, $f^{-1}(U)$ est un ouvert.
- $\forall G \subset E$ fermé, $f^{-1}(G)$ est un fermé.

Preuve:

Soit $U \subset E$ ouvert. On note $V = f^{-1}(U)$. Montrons que V est ouvert :

$$\forall \alpha \in V : f(\alpha) \in U$$
. Or, U est un ouvert : $\exists r > 0, B_f(\alpha, r) \subset U$.
De plus, f est \mathscr{C}^0 en $\alpha : \forall \varepsilon > 0, \exists \eta > 0, \forall x \in B_f(\alpha, \eta), f(x) \in B_f(f(\alpha), \varepsilon)$.

Posons alors $\varepsilon = r > 0$, alors, $\exists \eta > 0, \forall x \in B_f(\alpha, \eta), f(x) \in B_f(f(\alpha), \varepsilon)$. Donc, $f(x) \in U$.

Donc, $\exists \eta > 0, x \in f^{-1}(U)$

Donc, $\exists r' > 0, B_f(a, r') \subset V : V \text{ est un ouvert.}$

Soit G un fermé. Montrons que $H = f^{-1}(G)$ est fermé : Par caractérisation séquentielle : Soit $(x_n)_n \in H^{\mathbb{N}}$ tq $x_n \to a$.

 $\forall n \in \mathbb{N}, x_n \in H \Longrightarrow f(x_n) \in G. \text{ Or, } x_n \to a \Longrightarrow f(x_n) \to f(a) \text{ par continuit\'e de f.}$ $\forall n \in \mathbb{N}, f(x_n) \in G \Longrightarrow f(a) \in G \text{ car } G \text{ est un ferm\'e.}$

Alors, $a \in H \Longrightarrow H$ fermé par caractérisation séquentielle.

2.4 Lipschitzien ⇒ uniformément continue ⇒ continue. (démo)

Proposition

f Lipschitzienne sur $A \Longrightarrow f$ uniformément continue sur $A \Longrightarrow f$ continue sur A.

Preuve :

$$\forall \epsilon > 0 \text{, on pose } \eta = \frac{\epsilon}{K} > 0 \text{. Alors, } \forall x,y \in A : \|x - y\|_E \leq \eta \implies \|f(x) - f(y))\|_F \leq k\eta = \epsilon$$

2.5 Caractérisations des applications linéaires continues. (démo)

Proposition

 $(E, \|\cdot\|_E), (F, \|\cdot\|)_F$, deux \mathbb{K} -EVN. $\varphi \in \mathcal{L}(E, F)$.

Nous avons équivalence entre :

- 1. φ est \mathscr{C}^0 sur E
- 2. φ est \mathscr{C}^0 en 0
- 3. ϕ est Lipschitzienne.
- 4. $\exists K \in \mathbb{R}_+, \forall x \in E, \|\varphi(x)\|_F \leq K\|x\|_F$

Preuve :

Nous avons naturellement: $1 \Longrightarrow 2$, $3 \Longrightarrow 4$, $3 \Longrightarrow 1$.

Montrons que $2 \Longrightarrow 1$: $\forall \alpha \in E$, on applique l'hypothèse a $x - \alpha$:

$$\forall \varepsilon > 0, \exists \eta > 0, \|x - \alpha - 0\|_{\mathsf{F}} \leq \eta \Longrightarrow \|\varphi(x - \alpha) - \varphi(0)\|_{\mathsf{F}} \leq \varepsilon$$

Or, ϕ est linéaire : Nous avons donc la continuité de ϕ sur E.

Montrons que 2 \Longrightarrow 3 : Pour $\varepsilon = 1$, $\exists \eta > 0$, $\forall x \in E$, $\|x - 0\|_E \le \eta \Longrightarrow \|\varphi(x) - 0\|_F \le 1$.

$$\forall y \in E, y \neq 0$$
: On pose $x = \frac{y}{\|y\|}$. Alors, $\|x\| = 1$.

Donc
$$\|\phi(\frac{y}{\|y\|}\eta)\| \le 1 : \frac{\eta}{\|y\|}\|\phi(y)\| \le 1.$$

Donc,
$$\|\phi(y)\| \leq \frac{1}{\eta} \|y\|$$
.

Nous avons également l'égalité avec y = 0.

Enfin, $2 \Longrightarrow 4$: En remplaçant y par y - x pour $x \in E$, nous avons $\|\varphi(y) - \varphi(x)\| \le K\|y - x\|$

Alors, $2 \Longrightarrow 4 \Longrightarrow 3 \Longrightarrow 1 \Longrightarrow 2$

2.6 Exemple d'application linéaire non continue. (démo)

Exemple

La dérivation n'est pas Continue : Posons D : $\begin{cases} \mathbb{R}[X] \to \mathbb{R}[X] \\ P \mapsto P' \end{cases}.$

D est évidemment linéaire, surjective mais non injective.

Si D était continue, nous aurions pour tout $n \in \mathbb{N}$, $P = X^n : \|nX^{n-1}\|_{\infty} \le K \|X^n\|_{\infty}$. Donc, $n \le K$ pour tout $n \in \mathbb{N}$, ce qui est absurde.

2.7 Définition d'une norme subordonnée.

Définition: : Norme subordonnée ou Norme triple

 $(E, \|\cdot\|_E), (F, \|\cdot\|)_F$, deux \mathbb{K} -EVN. $\varphi \in \mathcal{L}(E, F)$ CONTINUE. On notera $\varphi \in \mathcal{L}_c(E, F)$.

$$\varphi \, \mathscr{C}^0 \Longrightarrow \exists K \in \mathbb{R}_+, \, \forall x \in E, \, \|\varphi(x)\|_F \leq K \|x\|_E.$$

Le quotient $\frac{\|\phi(x)\|}{\|x\|}$ est borné pour tout $x \in E \setminus \{0\}$

On note alors
$$\|\phi\| := \sup_{\substack{x \in E \\ x \neq 0}} \frac{\|\phi(x)\|}{\|x\|}$$

Ainsi, $\|\cdot\|$ définit une norme sur $\mathcal{L}(E,F)$. On l'appelle norme subordonnée ou norme triple.

2.8 Un segment est un compact. (démo vue en sup)

Définition:: Compact

 $(E, \|\cdot\|_E)$, \mathbb{K} -EVN. Soit $K \subset E$.

On dit que K est compact s'il vérifie la propriété de Bolzano-Weierstraß:

i.e : Toute suite de $K^{\mathbb{N}}$ possède une suite extraite convergente dans K

 $i.e: \forall (x_n)_n \in K^{\mathbb{N}}, \exists \phi: \mathbb{N} \rightarrow \mathbb{N} \text{ strictement croissante, } \exists \alpha \in K, x_{\phi(n)} \xrightarrow[n \rightarrow +\infty]{} \alpha$

Exemple

 $E = \mathbb{R} + |\cdot|$. Soit $K = [a, b] \subset \mathbb{R}$.

Alors, K est compact d'après la propriété de Bolzano-Weierstraß, cas réel.

2.9 Le produit cartésien de deux compacts est un compact (pour la topologie produit). (démo)

Proposition

Le produit cartésien de deux compacts est un compact pour la topologie Produit.

Preuve:

```
(E, \|\cdot\|_E), (F, \|\cdot\|)_F, deux \mathbb{K}-EVN.
```

Si $(x,y) \in E \times F$, on note $||(x,y)|| = \max(||x||_E, ||y||_F)$.

Soient $K_1 \subset E$ et $K_2 \subset F$, deux compacts. Montrons que $K_1 \times K_2$ est un compact.

 $\forall (x_n,y_n)_n \in (K_1 \times K_2)^{\mathbb{N}}, \text{ alors, } (x_n)_n \in K_1^{\mathbb{N}}. \text{ Or, } K_1 \text{ est compact, il existe alors } \phi_1: \mathbb{N} \to \mathbb{N}, \text{ strictement croissante alors } \phi_1: \mathbb{N} \to \mathbb{N}, \text{ alors, } (x_n)_n \in K_1^{\mathbb{N}}.$ et $a \in K_1$ tels que $x_{\omega_1(n)} \to a$.

Alors $(y_{\phi_1(n)})$ est une suite dans K_2 , donc il existe $\phi_2 : \mathbb{N} \to \mathbb{N}$ strictement croissante et $b \in K_2$ tels que $y_{\varphi_2\circ\varphi_1(n)}\to b.$

De plus, $x_{\varphi_2 \circ \varphi_1(n)} \to a$. Dès lors :

 $(x_{\phi_2\circ\phi_1(n)},y_{\phi_2\circ\phi_1(n)}) \text{ admet } (\mathfrak{a},\mathfrak{b}) \text{ comme limite, et } (\mathfrak{a},\mathfrak{b}) \in K_1 \times K_2.$ Ainsi, $K_1 \times K_2$ est un compact.

2.10 L'intérieur d'un ensemble est un ouvert. (démo)

Proposition

Soit $(E, \|\cdot\|)$, un \mathbb{K} —E.V.N. Soit $A \subset E$.

Alors Å est un Ouvert.

Preuve:

Par définition, $\mathring{A} = \{x \in A \mid \exists r > 0, B_f(\alpha, r) \subset A\}$, donc pour tout $x \in \mathring{A}$, nous avons l'existence d'un Voisinage $V = B_f(x, \varepsilon) de x dans A$.

Alors $V' = B_f(x, \frac{\varepsilon}{2})$ est un voisinage de x dans Å, donc Å est ouvert.

2.11 $GL_n(\mathbb{R})$ est dense dans $\mathcal{M}_n(\mathbb{R})$. (démo HP)

Preuve :

Comme d'habitude, soit $A \in \mathcal{M}_n(\mathbb{R})$. Considérons la suite de matrices $A_n = A - \frac{1}{n}I_n$. Alors $\det(A_n) = (-1)^n \det(\frac{1}{n}I_n - A) = (-1)^n \chi_A(\frac{1}{n})$, ce qui est non-nul pour n assez grand, car A possède un nombre fini de valeurs propres. Ainsi, $A_n \to A$ et $(A_n)_n \in GL_n(\mathbb{R})^\mathbb{N}$ (en expurgeant le nombre fini de termes non-inversibles s'ils existent).

2.12 En dimension finie, toutes les applications linéaires sont continues. (démo)

Théorème

 $(E, \|\cdot\|_E)$: \mathbb{K} -EVN de DIMENSION FINIE. $(F, \|\cdot\|)_F$ un \mathbb{K} -EVN. $\varphi \in \mathbb{L}(E, F)$

Alors, E de dimension finie $\Longrightarrow \varphi$ est \mathscr{C}^0

Preuve:

Soit $B = (e_1, ..., e_n)$, base de E. Nous pouvons remplacer $\| \|_E$ par $\| \|_{\infty}$, car en dimension finie, toutes les normes sont équivalentes.

$$\forall x \in E, \exists x_1, \dots, x_n \in \mathbb{K}^n, x = \sum_{k=1}^n x_k e_k. \text{ Alors, } \|\varphi(x)\| = \|\sum_{k=1}^n x_k \varphi(e_k)\|.$$

Par inégalité triangulaire : $\|\phi(x)\| \le \sum_{k=1}^{n} \|x_k \phi(e_k)\| \le \|x\|_{\infty} \sum_{k=1}^{n} \|\phi(e_k)\|$.

Alors, $\exists K \in \mathbb{R}_+$, $\forall x \in E$, $\|\phi(x)\|_F \le K \|x\|_{\infty}$. Donc ϕ est continue.

2.13 Exemple de sous-espace vectoriel non fermé.

Exemple

Soit $E = \mathcal{C}^0([a,b],\mathbb{R})$. Soit $F = \{f \in E \mid f \text{ polynomiale }\}$ muni de $\|\cdot\|_{\infty}$.

Alors, F est un SEV de E. De plus, par théorème de Weierstraß, $\forall g \in E, \exists (P_n)_n \in F^{\mathbb{N}}, f$ converge uniformément vers g sur [a,b].

i.e, $\overline{F} = E : F$ n'est pas fermé.

2.14 $\mathcal{O}_n(\mathbb{R})$ est compact. (démo)

Preuve:

On rappelle : $\mathcal{O}_n(\mathbb{R})$ désigne l'ensemble des matrices orthogonales :

$$x \in \mathcal{O}_n(\mathbb{R}) \iff$$
 Les colonnes de M forment une Base Orthonormale $\iff M \cdot M^\top = I_n$

E étant de dimension finie (E = $\mathcal{M}_n(\mathbb{R})$), il suffit de montrer que $\mathcal{O}_n(\mathbb{R})$ est un fermé borné :

$$1. \ \forall M \in \mathcal{O}_n(\mathbb{R}), c_1, \ldots, c_n \text{ sont de norme } 1: \forall j \in [\![1]; n]\!], \sum_{k=1}^n m_{i,j}{}^2 = 1.$$

$$\implies \forall i,j \in [1;n]^2, |m_{i,j}| \le 1 \implies ||M||_{\infty} \le 1, \operatorname{donc} \mathcal{O}_n(\mathbb{R}) \text{ est born\'e.}$$

2. (V.1) Par caractérisation séquentielle :

$$\forall (M_p)_p \in \mathcal{O}_n(\mathbb{R})^{\mathbb{N}} \text{ tq } M_p \to a : \text{Montrons que } a \in \mathcal{O}_n(\mathbb{R}) :$$

 $M_p \to a \implies {M_p}^{\top} \to a^{\top} \implies {M_p} \cdot {M_p}^{\top} \to a \cdot a^{\top}$ (la transposition et le produit par une matrice sont des applications continues car linéaires en dimension finie).

Or,
$$\forall p \in \mathbb{N}$$
, $M_p \cdot M_p^{\top} = I_n \implies \alpha \alpha^{\top} = I_n \implies \alpha \in \mathcal{O}_n(\mathbb{R})$.

Donc $\mathcal{O}_n(\mathbb{R})$ est fermé

$$\text{2. (V.2) Posons } \phi_1 : \begin{cases} \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})^2 \\ M \mapsto (M, M^\top) \end{cases} \quad \text{et } \phi_2 : \begin{cases} \mathcal{M}_n(\mathbb{R})^2 \to \mathcal{M}_n(\mathbb{R}) \\ (A, B) \mapsto AB \end{cases}$$

Alors, ces deux applications sont continues car linéaire (et bilinéaire) en dimension finie. Posons alors $\psi = \phi_2 \circ \phi_1$

Alors,
$$\psi$$
 est constate égale à I_n sur $\mathcal{O}_n(\mathbb{R}) = \psi^{-1}(\{I_n\})$.

Or,
$$\{I_n\}$$
 est un fermé (= $B_f(I_n, 0)$), donc $\mathcal{O}_n(\mathbb{R})$ est un fermé.

3 Questions de Cours - Groupe C

3.1 Théorème de Heine. (démo)

Théorème de Heine

Une fonction \mathscr{C}^0 sur un compact y est uniformément continue.

Preuve:

 $(E, \|\cdot\|_E), (F, \|\cdot\|)_F$, deux \mathbb{K} -EVN. $K \subset E$ compact et $f: K \to F$ continue.

Montrons que $\forall \varepsilon > 0$, $\exists \eta > 0$, $\forall (x,y) \in K^2$, $||x-y||_E \le \eta \Longrightarrow ||f(x)-f(y)||_F \le \varepsilon$:

Si f n'est pas U.C sur K : $\exists \varepsilon > 0$, $\forall \eta > 0$, $\exists (x,y) \in K^2$, $\|x - y\|_E \le \eta$ et $\|f(x) - f(y)\|_F > \varepsilon$.

Posons alors $\forall n \in \mathbb{N}, \eta_n = \frac{1}{n} > 0$. Alors, $\exists (x_n, y_n) \in K^2 \text{ tq } \|x_n - y_n\|_E \le \frac{1}{n} \text{ et } \|f(x_n) - f(y_n)\|_F > \varepsilon$.

Alors, $(x_n)_n \in K^\mathbb{N}$ et K compact : $\exists \varphi : \mathbb{N} \to \mathbb{N}$, strictement croissante, et $a \in K$, $x_{\varphi(n)} \to a$.

Donc, $\|y_n - a\| = \|y_n - x_n + x_n - a\| \le \frac{1}{n} + \text{(une quantité qui tend vers 0)} \to 0$

Ainsi, $y_{\phi(\mathfrak{n})} \to \mathfrak{a} \Longrightarrow f(x_{\phi(\mathfrak{n})}) \to f(\mathfrak{a})$ et $f(y_{\phi(\mathfrak{n})}) \to f(\mathfrak{a})$ par continuité de f.

Donc, $\|f(x_{\varphi(n)}) - f(y_{\varphi(n)})\| \to 0$ et $\|f(x_{\varphi(n)}) - f(y_{\varphi(n)})\| > \epsilon$: Absurde.

3.2 L'adhérence d'un ensemble est un fermé. (démo)

Proposition

Soit $(E, \|\cdot\|)$, un \mathbb{K} -E.V.N. Soit $A \subset E$.

Alors \overline{A} est un fermé.

Preuve:

 $Soit\ (x_n)_n\in\overline{A}:=\bigcap_{\substack{F\ fermé\\A\subset F}}F.\ Supposons\ que\ x_n\to l.\ Alors,\ x_n\ \text{\'etant dans chaque ferm\'e contenant A, nous avons}$

 $\forall F \text{ ferm\'e avec } A \subset F, \ l \in F. \ Donc \ l \in \bigcap_{\substack{F \text{ ferm\'e} \\ A \subset F}} F \Longrightarrow l \in \overline{A} : \overline{A} \text{ est un ferm\'e}.$

3.3 Toutes les normes en dimension finie sont équivalentes. (démo)

Théorème

 $(E, \|\cdot\|_E)$: K-EVN de dimension finie.

Alors, toutes les normes sur E sont équivalentes.

i.e, soient $\|\cdot\|_{\alpha}$ et $\|\cdot\|_{b}$, deux normes sur E. Alors, $\exists \alpha, \beta > 0$, $\forall x \in E, \alpha \|x\|_{\alpha} \le \|x\|_{b} \le \beta \|x\|_{\alpha}$

Preuve:

On se ramène a \mathbb{K}^n . Soit $\|\cdot\|$, une norme sur E. Montrons que $\|\cdot\| \sim \|\cdot\|_{\infty}$:

Soit
$$\phi_1: \begin{cases} (E,\|\cdot\|_\infty) \to (E,\|\cdot\|) \\ x \mapsto x \end{cases}$$
 . Alors :

- φ est linéaire
- On note B = $(e_1, ..., e_n)$, base de E. Soit $x \in E : x = \sum_{k=1}^n x_k e_k$.

$$\|\varphi_1(x)\| = \|x\| = \|\sum_{k=1}^n x_k e_k\| \le \sum_{k=1}^n |x_k| \|e_k\| \le \|x\|_{\infty} \sum_{k=1}^n \|e_k\|.$$

Posons $K = \sum_{k=1}^{n} \|e_k\|$. Alors, $\forall x \in E$, $\|\varphi_1(x)\| \le K \|x\|_{\infty}$: φ_1 est Continue.

Posons maintenant ϕ_2 : $\begin{cases} (E,\|\|) \to (\mathbb{R},|\cdot|) \\ x \mapsto \|x\| \end{cases}$. Alors ϕ_2 est continue car 1- Lip.

Posons enfin $\psi = \varphi_2 \circ \varphi_1$. ψ est continue par composition.

On note $S(0,1) = \{x \in E \mid ||x||_{\infty} = 1\}$. Alors S(0,1) est un compact dans $(E,||\cdot||)$. (car est l'intersection de $B_f(0,1)$ et $B_o(0,1)^c$, respectivement compact et fermé).

Alors, ψ est bornée et atteint ses bornes sur S(0,1): $\exists \alpha, \beta \in \mathbb{R}_+$, $\forall x \in S(0,1)$, $\alpha \leq \psi(x) \leq \beta$.

De plus,
$$\exists x_1, x_2 \in S(0,1), \psi(x_1) = \alpha \text{ et } \psi(x_2) = \beta.$$

Alors,
$$\exists \alpha, \beta \ge 0$$
, $\forall x \in S(0,1)$, $\alpha \le ||x|| \le \beta$.
Et $\exists x_1, x_2 \in S(0,1)$, $\alpha = ||x_1||$ et $\beta = ||x_2||$

Si x_1 et $x_2 \in S(0,1)$, alors x_1 et $x_2 \neq 0 \Longrightarrow ||x_1||$ et $||x_2|| > 0 \Longrightarrow \alpha, \beta > 0$.

$$\forall x \in E, x \neq 0, \text{ nous avons } \frac{x}{\|x\|_{\infty}} \in S(0,1) \implies \alpha \leq \|\frac{x}{\|x\|_{\infty}}\| \leq \beta.$$

Ainsi, $\alpha \|x\|_{\infty} \le \|x\| \le \beta \|x\|_{\infty}$. Donc toutes les normes sont équivalentes par transitivité.

3.4 Des normes équivalentes définissent les mêmes notions topologiques. (choisir une notion et le faire démontrer)

Corollaire

Si E est un \mathbb{K} -EVN de dimension finie, toutes les normes sur E définissent la même topologie (même ouverts, fermés, adhérences, frontières ...), les mêmes suites et même continuité ...

Preuve:

Démerden sie sich!

3.5 Définitions équivalentes de la norme subordonnée. (démo)

Proposition

 $(\mathsf{E},\|\cdot\|_\mathsf{E}),(\mathsf{F},\|\cdot\|)_\mathsf{F},\,\text{deux}\,\,\mathbb{K}\text{-EVN et}\,\,\phi\in\mathscr{L}_c(\mathsf{E},\mathsf{F}).$

$$|\!|\!| \phi |\!|\!| = \sup_{B_f(0,1)} \!|\!| \phi(x) |\!|\!|_F = \sup_{S(0,1)} \!|\!| \phi(x) |\!|\!|_F$$

Preuve:

On note $\|\phi\|' = \sup_{B_f(0,1)} \|\phi(x)\|_F$ et $\|\phi\|'' = \sup_{S(0,1)} \|\phi(x)\|_F$.

Nous avons naturellement $S(0,1) \subset B_f(0,1) \Longrightarrow ||\!| \phi ||\!|' \leq |\!| \phi |\!| |\!|'.$

 $\forall x \in B_f(0,1): \|\phi(x)\|_F \leq \|\phi\| \|x\|_E \leq \|\phi\| \text{ car } x \in B_f(0,1).$

Ainsi, par passage au sup : $\|\varphi\|' \leq \|\varphi\|$.

Enfin, par définition de la borne sup : $\forall \varepsilon > 0$, $\exists x \in E$, $x \neq 0$ et $\frac{\|\varphi(x)\|_F}{\|x\|_E} > \|\varphi\| - \varepsilon$

En posant
$$y = \frac{x}{\|x\|_F}$$
, $\|\phi(y)\|_F = \frac{\|\phi(x)\|_F}{\|x\|_F} > \|\phi\| - \epsilon$.

Or, $\| \varphi \|'' \ge \| \varphi(y) \|_{F} \ge \| \varphi \| - \varepsilon$.

Ainsi, lorsque $\varepsilon \to 0$: $\|\varphi\|'' \ge \|\varphi\| \ge \|\varphi\|' \ge \|\varphi\|''$

D'où l'égalité.

3.6 Exemple de fermé borné non compact. (démo)

Exemple

Considérons $E=l^1$, l'espace des suites de norme finie (donc les suites bornées) muni de la norme $\|(u_n)\|=\sup_{n\in\mathbb{N}}|u_n|$. Alors en prenant $F=\{(u_n)\in E\mid \|(u_n)\|\leqslant 1\}$ est un Fermé Borné.

Or, la suite d'éléments $(\mathbb{I}_{\{n\}})_n$ (les suites ayant 1 en n et 0 ailleurs) est une suite ne comportant aucune sous-suite convergente. Donc F est un Fermé Borné non compact.

3.7 Dans $\mathcal{M}_n(\mathbb{C})$, l'ensemble des matrices diagonalisables est dense. (démo HP)

C.F La question "Dans $\mathcal{M}_n(\mathbb{C})$, toute matrice est limite d'une suite de matrices diagonalisables. (démo HP)" du Programme 7.

