Teorema de Artin–Wedderburn

Pablo Brianese

7 de octubre de 2021

Teorema 1 (Lema de Zorn). Si A es un conjunto parcialmente ordenado novacío tal que toda cadena en A tiene una cota superior en A, entonces A contiene un elemento maximal.

Teorema 2. Sea R un anillo con identidad. Las siguientes condiciones sobre un R-módulo unitario F son equivalentes:

- 1. F tiene una base novacía;
- 2. F es la suma directa (interna) de una famile de R-módulos cíclicos, cada uno de los cuales es isomorfo (como R-módulo izquierdo) a R;
- 3. F es isomorfo (como R-módulo) a una suma directa de copias del R-módulo izquierdo R;
- 4. existe un conjunto novacío X y una función $i: X \to F$ con la siguiente propiedad: dado un R-módulo unitario A y una función $f: X \to A$, existe un único homomorfismo de R-módulos $\bar{f}: F \to A$ tal que $\bar{f}i = f$. En otras palabras, F es un objeto libre en la categoría de R-módulos unitarios.

Un módulo unitario F sobre un anillo R con identidad, que satisface las condiciones del teorema, recibe el nombre de R-módulo libre sobre el conjunto X. La cuarta propiedad hace de F un objeto libre en la categoría formada por los

Teorema 3. Todo espacio vectorial V sobre un anillo de división D tiene una base y es por tanto un D-módulo libre. Con mayor generalidad, cada subconjunto linealmente independiente de V está contenido en una base de V.

Teorema 4. Sean A y B ambos R-módulos.

- 1. el conjunto $\operatorname{Hom}_R(A,B)$ formado por los homomorfismos de R-módulos $A \to B$ es un grupo abeliano con $f+g:A\to B$ dada por $a\mapsto f(a)+g(a)$. El elemento identidad es la aplicación nula.
- 2. $\operatorname{Hom}_R(A, A)$ es un anillo con identidad, donde la multiplicación es la composición de funciones. $\operatorname{Hom}_R(A, A)$ es el anillo de endomorfismos de A.
- 3. A es un $\operatorname{Hom}_R(A,A)$ -módulo izquierdo con $fa=f(a) \ (\forall a\in A) \ (\forall f\in \operatorname{Hom}_R(A,A))$.

Teorema 5. Sea R un anillo con identidad y E un R-módulo izquierdo libre con una base finita de n elementos. Entonces existe un isomorfismo de anillos

$$\operatorname{Hom}_R(E, E) \simeq \operatorname{Mat}_n(R^{\operatorname{op}})$$
 (1)

En particular, este isomorfismo existe para todo espacio vectorial E sobre un anillo de división R con dimensión n, en cuyo caso $R^{\rm op}$ también es un anillo de división.

Observación 1. Cuando R es conmutativo $R = R^{op}$. La fórmula del teorema resulta $\operatorname{Hom}_R(E,E) \simeq \operatorname{Mat}_n R$.

Proposición 1. Sea R un anillo con identidad, y S el anillo formado por todas las matrices $n \times n$ sobre R. Dentro de S podemos encontrar las matrices E_{rs} , donde $r, s \in \{1, \ldots, n\}$, y E_{rs} tiene 1_R como entrada (r, s) y θ en as demás posiciones. Para toda matriz $A = (a_{ij})$ en S

$$E_{pr}AE_{sq} = a_{rs}E_{pq} \tag{2}$$

Demostración. Es un cálculo directo.

Proposición 2. Si D es un anillo de división y $R = \operatorname{Mat}_n D$. Entonces, para toda matriz $A \in R$, RA es un ideal izquierdo de R y AR es un ideal derecho de R

Demostración. No requiere mucho razonamiento, es un cálculo directo.

Teorema 6. Si D es un anillo de división y $R = \operatorname{Mat}_n D$, entonces el ideal $RE_{j_0j_0}$ está formado por todas las matrices $A \in R$ tales que $\operatorname{Col}_j A = 0$ $(\forall j \neq j_0)$.

Demostración. Fijemos $j_0 \in \{1, \ldots, n\}$, y escribamos $E = E_{j_0 j_0}$, I = RE. Afirmamos que $I' = \{A \in R : \operatorname{Col}_j A = 0 \ (\forall j \neq j_0)\}$ es igual a I. Lo demostraremos usando que para toda matriz $a = (a_{ij})_{ij}$ en R

$$aE_{j_0j_0} = I_n aE_{j_0j_0} = \sum_{i=1}^n E_{ii} aE_{j_0j_0} = \sum_{i=1}^n a_{ij_0} E_{ij_0}$$
(3)

Si $A \in I$, entonces existe $a \in R$ con A = aE. Luego $A = \sum_{i=1}^{n} a_{ij_0} E_{ij_0}$ pertenece a I'. Recíprocamente, si $A \in I'$, entonces $A = (A_{ij})_{ij}$ puede escribirse como $A = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} E_{ij} = \sum_{i=1}^{n} A_{ij_0} E_{ij_0} = AE_{j_0j_0}$.

Teorema 7. Sean D un anillo de división $y R = \text{Mat}_n D$. Entonces son simples los R-submódulos izquierdos de R

$$RE_{jj} (j \in \{1, \dots, n\}) (4)$$

Demostración. Fijemos $j_0 \in \{1, ..., n\}$, y escribamos $E = E_{j_0 j_0}$, I = RE.

Afirmamos que I es minimal. Supongamos que J es un submódulo nonulo de I. Entonces existe $a \in J \setminus 0$. Porque $a \in I$ se sigue $a = \sum_{i=1}^n a_{ij_0} E_{ij_0}$. $a \neq 0$ implica que $a_{i_0j_0} \neq 0$ para un $i_0 \in \{1,\ldots,n\}$. Porque D es un anillo de división, existe una matriz elemental de transformación M, que actúa sobre a multiplicando (por izquierda) su fila i_0 por el elemento $a_{i_0j_0}^{-1} \in D$. Entonces $Ma = 1_D E_{i_0j_0} + \sum_{i \neq i_0} a_{ij_0} E_{ij_0}$. Luego, existen matrices elementales de transformación A_i ($i \in \{1,\ldots,n\} \setminus i_0$), que actúan sobre a sumando a la fila i-ésima el producto (por izquierda) de $-a_{ij_0}$ con la fila i_0 -ésima. Entonces $A_1 \cdots A_n M a = 1_D E_{i_0j_0}$ (donde definimos $A_{i_0} = I_n$ para mejorar la notación). Finalmente, para cada $i \in \{1,\ldots,n\}$, existe una matriz elemental de transformación P_i que actúa sobre a permutando las filas i e i_0 . De ese modo $P_i A_1 \cdots A_n M a = 1_D E_{ij_0}$. Por lo tanto $1_D E_{ij_0} \in J$ para todo $i \in \{1,\ldots,n\}$. Eso implica que $I = \sum_{i=1}^n D E_{ij_0} \subseteq J$. En conclusión J = I.

Argumentos análogos demuestran que

Teorema 8. Si D es un anillo de división y $R = \operatorname{Mat}_n D$, entonces el ideal $E_{i_0i_0}R$ está formado por todas las matrices $A \in R$ tales que $\operatorname{Fila}_i A = 0$ $(\forall i \neq i_0)$.

Demostración. Fijemos $i_0 \in \{1, \ldots, n\}$, y escribamos $E = E_{i_0 i_0}$, I = ER. Afirmamos que $I' = \{A \in R : \text{Fila}_i A = 0 \ (\forall i \neq i_0)\}$ es igual a I. Lo demostraremos usando que para toda matriz $a = (a_{ij})_{ij}$ en R

$$E_{i_0 i_0} a = E_{i_0 i_0} a I_n = \sum_{j=1}^n E_{i_0 i_0} a E_{jj} = \sum_{j=1}^n a_{i_0 j} E_{i_0 j}$$
 (5)

Si $A \in I$ entonces existe $a \in R$ con A = Ea. Luego $A = \sum_{j=1}^{n} a_{i_0 j} E_{i_0 j}$ pertenece a I'. Recíprocamente, si $A \in I'$ entonces $A = (A_{ij})_{ij}$ puede escribirse como $A = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} E_{ij} = \sum_{j=1}^{n} A_{i_0 j} E_{i_0 j} = E_{i_0 i_0} A$.

Teorema 9. Sean D un anillo de división $y R = \text{Mat}_n D$. Entonces son simples los R-submódulos derechos de R

$$E_{ii}R \qquad (i \in \{1, \dots, n\}) \tag{6}$$

Demostración. Fijemos $i_0 \in \{1, ..., n\}$, y escribamos $E = E_{i_0 i_0}$, I = ER.

Afirmamos que I es minimal. Supongamos que J es un submódulo nonulo de I. Entonces existe $a \in J \setminus 0$. Porque $a \in I$ se sigue $a = \sum_{j=1}^n a_{ioj} E_{ioj}$. $a \neq 0$ implica que $a_{i_0j_0} \neq 0$ para un $j_0 \in \{1,\ldots,n\}$. Porque D es un anillo de división, existe una matriz elemental de transformación M, que actúa sobre a multiplicando (por derecha) su columna j_0 por el elemento $a_{i_0j_0}^{-1} \in D$. Entonces $aM = E_{i_0j_0}1_D + \sum_{j\neq j_0} a_{i_0j}E_{i_0j}$. Luego, existen matrices elementales de transformación A_j ($j \in \{1,\ldots,n\} \setminus j_0$), que actúan sobre a sumando a la columna j-ésima el producto (por derecha) de $-a_{i_0j}$ con la columna j_0 -ésima. Entonces $aMA_1\cdots A_n = E_{i_0j_0}1_D$ (donde definimos $A_{j_0} = I_n$ para mejorar la notación). Finalmente, para cada $j \in \{1,\ldots,n\}$, existe una matriz elemental de transformación P_j que actúa sobre a permutando las columnas j y j_0 . De ese modo $aMA_1\cdots A_nP_j = E_{i_0j}1_D$. Por lo tanto $E_{i_0j}1_D \in J$ para todo $i \in \{1,\ldots,n\}$. Eso implica que $I = \sum_{j=1}^n E_{i_0j}D \subseteq J$. En conclusión J = I.

Teorema 10. Sea $M_0 = 0$ y para $i \in \{1, ..., n\}$ sea $M_i = R(E_{11} + \cdots + E_{ii})$. Afirmamos que cada M_i es un ideal izquierdo de R y que $M_i/M_{i-1} \simeq RE_{ii}$. Por eso $R = M_n \supseteq M_{n-1} \supseteq \cdots \supseteq M_1 \supseteq M_0 = 0$ es una serie de composicón de R-módulos izquierdos.

Demostración. Notar que $M_i \subseteq RE_{11} + \cdots + RE_{ii}$. Luego $\operatorname{Col}_j A = 0 \ (\forall j \in \{i+1,\ldots,n\})$ para toda $A \in M_i$.

Notar que si $A \in M_i$ con $A = r(E_{11} + \cdots + E_{ii})$ para un $r \in R$, entonces

 $AE_{ii} = rE_{ii}$. En efecto

$$AE_{ii} = r(E_{11} + \dots + E_{ii})E_{ii} \tag{7}$$

$$= r(E_{11}E_{ii} + \dots + E_{i-1,i-1}E_{ii} + E_{ii}^2)$$
(8)

$$= r(0 + \dots + 0 + E_{ii}) \tag{9}$$

$$= rE_{ii} \tag{10}$$

Por este motivo $A + M_{i-1} = AE_{ii} + M_{i-1}$. Calculamos

$$A + M_{i-1} = r(E_{11} + \dots + E_{ii}) + M_{i-1}$$
(11)

$$= r(E_{11} + \dots + E_{i-1,i-1}) + rE_{ii} + M_{i-1}$$
(12)

$$= rE_{ii} + M_{i-1} (13)$$

$$= AE_{ii} + M_{i-1} \tag{14}$$

Supongamos que $A+M_{i-1}=B+M_{i-1}$. Entonces $AE_{ii}+M_{i-1}=BE_{ii}+M_{i-1}$. Escribamos $C=(A-B)E_{ii}$. Por un lado $C\in M_{i-1}$ y por el otro $C\in RE_{ii}$. El primer dato implica $\operatorname{Col}_jC=0$ para $j\in\{1,\ldots,n\}$. El segundo dato implica $\operatorname{Col}_jC=0$ para $j\in\{1,\ldots,n\}\setminus i$. Luego C=0. Es decir $AE_{ii}=BE_{ii}$.

Esto nos permite definir una función $\phi: M_i/M_{i-1} \to RE_{ii}$ dada por $A+M_{i-1} \mapsto AE_{ii}$. Así definida, es un homomorfismo de R-módulos.

Es además un monomorfismo. Si $\phi(A + M_{i-1}) = 0$ entonces $AE_{ii} = 0$ y $\operatorname{Col}_i A = 0$. Además, $A \in M_i$ implica $\operatorname{Col}_j A = 0$ ($\forall j > i$). Luego $\operatorname{Col}_j A = 0$ ($\forall j \in \{i, \dots, n\}$), y $A \in M_{i-1}$. Entonces $A + M_{i-1} = 0 + M_{i-1}$.

También es un epimorfismo. Dado $AE_{ii} \in RE_{ii}$, tenemos $AE_{ii} \in M_i$. Calculamos $\phi(AE_{ii} + M_{i-1}) = (AE_{ii})E_{ii} = AE_{ii}^2 = AE_{ii}$. Por lo tanto $AE_{ii} \in \text{Im } \phi$. Concluímos que $\phi: M_i/M_{i-1} \to RE_{ii}$ es un isomorfismo.

Teorema 11. Sea $M_0 = 0$ y para $i \in \{1, ..., n\}$ sea $M_i = (E_{11} + \cdots + E_{ii})R$. Afirmamos que cada M_i es un ideal derecho de R y que $M_i/M_{i-1} \simeq E_{ii}R$. Por eso $R = M_n \supseteq M_{n-1} \supseteq \cdots \supseteq M_1 \supseteq M_0 = 0$ es una serie de composición de R-módulos derechos.

Demostración. Notar que $M_{i_0} \subseteq E_{11}R + \cdots + E_{i_0i_0}R$. Luego Fila_i $A = 0 \ (\forall i \in \{i_0 + 1, \ldots, n\})$ para toda $A \in M_{i_0}$.

Notar que se $A \in M_{i_0}$ con $A = (E_{11} + \cdots + E_{i_0 i_0})r$ para un $r \in R$, entonces $E_{i_0 i_0} A = E_{i_0 i_0} r$. En efecto

$$E_{i_0 i_0} A = E_{i_0 i_0} (E_{11} + \dots + E_{i_0 i_0}) r \tag{15}$$

$$= (E_{i_0 i_0} E_{11} + \dots + E_{i_0 i_0} E_{i_0 - 1, i_0 - 1} + E_{i_0 i_0}^2) r$$
(16)

$$= (0 + \dots + 0 + E_{i_0 i_0})r \tag{17}$$

$$=E_{i_0i_0}r\tag{18}$$

Por este motivo $A + M_{i_0-1} = AE_{i_0i_0} + M_{i_0-1}$. Calculamos

$$A + M_{i_0-1} = (E_{11} + \dots + E_{i_0 i_0})r + M_{i_0-1}$$
(19)

$$= (E_{11} + \dots + E_{i_0-1,i_0-1})r + E_{i_0i_0}r + M_{i_0-1}$$
 (20)

$$=E_{i_0i_0}r + M_{i_0-1} (21)$$

$$=E_{i_0i_0}A + M_{i_0-1} (22)$$

Supongamos que $A+M_{i_0-1}=B+M_{i_0-1}$. Entonces $E_{i_0i_0}A+M_{i_0-1}=E_{i_0i_0}B+M_{i_0-1}$. Escribamos $C=E_{i_0i_0}(A-B)$. Por un lado $C\in M_{i_0-1}$ y por el otro $C\in E_{i_0i_0}R$. El primer dato implica $\mathrm{Fila}_iC=0$ para $i\in\{i_0,\ldots,n\}$. El segundo dato implica $\mathrm{Fila}_iC=0$ para $i\in\{1,\ldots,n\}\setminus i_0$. Luego C=0. Es decir $E_{i_0i_0}A=E_{i_0i_0}B$.

Esto nos permite definir una función $\phi: M_{i_0}/M_{i_0-1} \to E_{i_0i_0}R$ dada por $A+M_{i_0-1}\mapsto E_{i_0i_0}A$. Así definida, es un homomorfismo de R-módulos.

Es además un monomorfismo. Si $\phi(A+M_{i_0-1})=0$ entonces $E_{i_0i_0}A=0$ y Fila $_{i_0}A=0$. Además $A\in M_{i_0}$ implica Fila $_iA=0$ ($\forall i\in\{i_0,\ldots,n\}$), y $A\in M_{i_0-1}$. Entonces $A+M_{i_0-1}=0+M_{i_0-1}$.

También es un epimorfismo. Dado $E_{i_0i_0}A \in E_{i_0i_0}R$, tenemos $E_{i_0i_0}A \in M_i$. Calculamos $\phi(E_{i_0i_0}A+M_{i_0-1})=E_{i_0i_0}(E_{i_0i_0}A)=E_{i_0i_0}^2A=E_{i_0i_0}A$. Por lo tanto $E_{i_0i_0}A \in \operatorname{Im} \phi$. Concluímos que $\phi: M_{i_0}/M_{i_0-1} \to E_{i_0i_0}R$ es un isomorfismo. \square

Teorema 12. Sea R un anillo con identidad y S el anillo formado por todas las matrices $n \times n$ sobre R. J es un ideal de S si y solo si J es el anillo formado por todas las matrices $n \times n$ sobre I para algún ideal I en R.

Demostración. Sea J un ideal de S. Sea I el conjunto formado por todos los elementos de R que aparecen como entrada (1,1) de alguna matriz en J. Si $aE \in J$ donde $a \in R$ y $E = E_{11} \in S$, entonces $a \in I$. La afirmación recíproca también es verdadera. Notar que si $a \in I$, entonces existe $A = (a_{ij})$ en J con $a_{11} = a$. Al ser J un ideal (bilátero), tenemos $EAE \in J$. Pero EAE = aE. Entonces $aE \in J$. Hemos probado que $a \in I$ si y solo si $aE \in J$.

Afirmamos que I es un ideal. En efecto, $0 \in J$ porque J es un ideal. Luego $0 \in I$ por definición de I. Por otra parte, si $a,b \in I$, entonces $aE,bE \in J$. Pero J es un ideal. Entonces $(a+b)E=aE+bE \in J$. Luego $a+b \in I$. Para finalizar consideramos $r \in R$ y $a \in I$. Entonces $rE \in S$ y $aE \in J$. Pero J es un ideal. Entonces

$$(ra)E = (ra)E^2 = (rE)(aE) \in J$$
(23)

$$(ar)E = (ar)E^2 = (aE)(rE) \in J \tag{24}$$

Luego $ra, ar \in I$.

Afirmamos que $M_n(I) = J$. Sea $A = (a_{ij})$ una matriz en S. Comenzamos suponiendo $A \in J$. Consideremos $i, j \in \{1, \ldots, n\}$. Porque J es un ideal, $a_{rs}E = E_{1r}AE_{s1} \in J$. Luego $a_{rs} \in I$. Porque i, j eran arbitrarios, se deduce $A \in M_n(I)$. Recíprocamente, suponemos que $A = (a_{ij}) \in M_n(I)$. Consideramos $i, j \in \{1, \ldots, n\}$. Por hipótesis $a_{ij} \in I$. Luego $a_{ij}E \in J$. Porque J es un ideal,

se deduce $E_{i1}(a_{ij}E)E_{1j} \in J$ mientras $E_{i1}(a_{ij}E)E_{1j} = a_{ij}E_{ij}$. Porque i, j eran arbitrarios, usando que J está cerrado bajo suma, se deduce $A = \sum_{ij} a_{ij}E_{ij} \in J$.

Teorema 13. Sea S el anillo formado por todas las matrices sobre un anillo de división D.

- 1. S no tiene ideales propios (es decir, 0 es un ideal maximal).
- 2. S tiene divisores de cero. Consecuentemente,
 - a) $S \simeq S/0$ no es un anillo de división y
 - b) 0 es un ideal primo a pesar de no satisfacer la condición $ab \in I \rightarrow a \in I$ o $b \in I$ $(\forall a, b \in S)$

Demostración. 1. Si J es un ideal de S, entonces J es el anillo formado por todas las matrices $n \times n$ sobre I para algún ideal I en D. Pero D es un anillo de división, no tiene ideales propios. Luego I=0 o I=D, concluyendo que J=0 o J=S.

Demostración. 2 Para encontrar divisores de cero basta observar la fórmula $E_{r_1s_1}E_{r_2s_2} = \delta_{r_1r_2}\delta_{s_1s_2}E_{r_1r_2}$.

Definición 1. Un módulo (izquierdo) A sobre un anillo R es simple (o irreducible) si $RA \neq 0$ y A no tiene submódulos propios. Un anillo R es simple si $R^2 \neq 0$ y R no tiene ideales (bilaterales) propios.

Proposición 3. Todo módulo simple A es cíclico; de hecho, A = Ra para todo $a \in A$ nonulo.

Demostración. Ambos Ra (con $a \in A$ nonulo) y $B = \{c \in A : Rc = 0\}$ son submódulos de A, de aquí que por simplicidad cada uno de ellos sea igual a 0 o A. También por simplicidad $RA \neq 0$, esto implica $B \neq A$ y B = 0. Luego $a \notin B$ y $Ra \neq 0$. En conclusión Ra = A.

Teorema 14. Sea B un subconjunto de un módulo izquierdo sobre un anillo R. Entonces $A(B) = \{r \in R \mid rb = 0(\forall b \in B)\}$ es un ideal izquierdo de R. Si B es un submódulo de A, entonces A(B) es un ideal.

 $\mathcal{A}(B)$ es el aniquilador (izquierdo) de B. El aniquilador derecho de un módulo derecho se define análogamente.

Definición 2. Un módulo (izquierdo) A es fiel si su aniquilador (izquierdo) A(A) es θ . Un anillo R es primitivo (izquierdo) si existe un R-módulo simple g fiel.

Los anillos primitivos derechos se definen análogamente. Sí existen anillos primitivos derechos que no son primitivos izquierdos. De aquí en más *primitivo* siempre significará *primitivo izquierdo*. Sin embargo, todos los resultados probados para anillos primitivos izquierdos son verdaderos, mutatis mutandis, para anillos primitivos derechos.

Definición 3. Sea V un espacio vectorial izquierdo sobre un anillo de división D. Un subanillo R del anillo de endomorfismos $\operatorname{Hom}_D(V,V)$ es un anillo denso de endomorfismos de V (o un subanillo denso de $\operatorname{Hom}_D(V,V)$) si para todo entero positivo n, cada subconjunto linealmente independiente $\{u_1,\ldots,u_n\}$ de V y cada subconjunto arbitrario $\{v_1,\ldots,v_n\}$ de V, existe $\theta \in R$ tal que $\theta(u_i) = v_i$ $(\forall i \in \{1,\ldots,n\})$.

Lema 1. Sea A un módulo simple sobre un anillo R. Consideramos A como un espacio vectorial sobre el anillo de división $D = \operatorname{Hom}_R(A, A)$. Si V es un subespacio finito-dimensional del D-espacio vectorial A y $a \in A \setminus V$, entonces existe $r \in R$ tal que $ra \neq 0$ y rV = 0.

Demostración. La prueba es por inducción sobre $n=\dim_D V$. Comenzamos por el caso base. Si n=0, entonces V=0 y $a\neq 0$. Porque A es simple, $a\neq 0$ implica Ra=A. Consecuentemente existe $r\in R$ tal que $ra=a\neq 0$ y rV=r0=0.

En el paso inductivo, supongamos $\dim_D V = n > 0$ y que el teorema es verdadero para dimensiones menores a n. Sea $\{u_1, \ldots, u_{n-1}, u\}$ una D-base de V y sea W el subespacio (n-1)-dimensional generado por $\{u_1, \ldots, u_{n-1}\}$ (siendo W = 0 cuando n = 1). Entonces $V = W \oplus Du$ (suma directa de espacios vectoriales). Nuestra hipótesis inductiva tiene dos consecuencias importantes:

- 1. para todo $v \in A \setminus W$ existe $r \in R$ tal que $ru \neq 0$ y rW = 0;
- 2. para todo $v \in A$, si rv = 0 para todo $r \in R$ entonces $v \in W$.

La primera consecuencia implica que existe $r \in R$ tal que $ru \neq 0$ y rW = 0. Pero rW = 0 si y solo si $r \in \mathcal{A}(W)$, siendo $I = \mathcal{A}(W)$ un ideal izquierdo de R. Además $ru \in Iu \setminus 0$, siendo Iu un submódulo de A. Por simplicidad, este submódulo nonulo debe ser Iu = A.

Para terminar el argumento inductivo, debemos encontrar $r \in R$ tal que $ra \neq 0$ y rV = 0. Si no existe tal r, entonces podemos definir una aplicación $\theta: A \to A$ como sigue. Para $ru \in Iu = A$ definimos $\theta(ru) = ra \in A$. Afirmamos que θ está bien definida. Sean $r_1, r_2 \in I$ tales que $r_1u = r_2u$. Por hipótesis $(r_1 - r_2)a = 0$ o $(r_1 - r_2)V \neq 0$. Ahora bien, porque $r_1 - r_2 \in I = \mathcal{A}(W)$ tenemos $(r_1 - r_2)W = 0$; y porque $D = \operatorname{Hom}_D(A, A)$, para cada $d \in D$ tenemos $(r_1 - r_2)(d \cdot u) = (r_1 - r_2)d(u) = d((r_1 - r_2)u) = d(0) = 0$. Juntos, estos dos datos implican $(r_1 - r_2)V = (r_1 - r_2)(W \oplus Du) = 0$. Consecuentemente, por hipótesis $(r_1 - r_2)a = 0$. Por lo tanto $\theta(r_1u) = r_1a = r_2a = \theta(r_2u)$. Podemos mostrar que $\theta \in \operatorname{Hom}_D(A, A) = D$. Luego para cada $r \in I$, $0 = \theta(ru) - ra = r\theta(u) - ra = r(\theta(u) - a)$. De aquí que $\theta(u) - a \in W$, por la segunda consecuencia de la hipótesis inductiva. Consecuentemente $a = \theta u - (\theta u - a) \in Du + W = V$, lo cual contradice el hecho $a \notin V$. Por lo tanto, existe $r \in R$ tal que $ra \neq 0$ y rV = 0.

Teorema 15 (de Densidad de Jacobson). Sea R un anillo primitivo y A un R-módulo simple y fiel. Considerar A como espacio vectorial sobre el anillo de división $\operatorname{Hom}_R(A,A) = D$. Entonces R es isomorfo a un anillo denso de endomorfismos de D-espacio vectorial A.

Demostración. Para cada $r \in R$ la aplicación $\alpha_r : A \to A$ dada por $\alpha_r(a) = ra$ es facilmente identificada como un D-endomorfismo de A: esto es, $\alpha_r \in \operatorname{Hom}_D(A,A)$. Además para todo par $r,s \in R$ se verifican $\alpha_{(r+s)} = \alpha_r + \alpha_s$ y $\alpha_{rs} = \alpha_r \alpha_s$. Consecuentemente la aplicación $\alpha : R \to \operatorname{Hom}_D(A,A)$ definida por $\alpha(r) = \alpha_r$ es un homomorfismo de anillos bien definido. Dado que A es un R-módulo fiel, $\alpha_r = 0$ si y solo si $r \in \mathcal{A}(A) = 0$. De aquí que α es un monomorfismo, y R es isomorfo al subanillo Im α de $\operatorname{Hom}_D(A,A)$.

Definición 4. Decimos que un módulo A satisface la condición de la cadena ascendente (ACC) sobre submódulos (o decimos que es noetheriano) si para toda cadena $A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots$ de submódulos de A, existe un entero m tal que $B_i = B_m$ para todo $i \geq m$.

Si un anillo R es pensado como módulo izquierdo (resp. derecho) sobre si mismo, entonces es facil ver que los submódulos de R son precisamente los ideales izquierdos (resp. derechos) de R. Consecuentemente, en este caso se acostumbra hablar de condiciones de cadena sobre ideales (izquierdos o derechos) en lugar de submódulos.

Definición 5. Un anillo R es noetheriano izquierdo (resp. derecho) si R satisface la condición de la cadena ascendente sobre ss ideales izquierdos (resp. derechos). Se dice que R es noetheriano si R es noetheriano izquierdo y derecho a la vez.

Un anillo R es artiniano izquierdo (resp. derecho) si R satisface la condición de la cadena descendiente sobre sus ideales izquierdos (resp. derechos). Se dice que R es artiniano si R es artiniano izquierdo y derecho a la vez.

Definición 6. Un módulo A satisface la condición maximal [resp. minimal] sobre submódulos si todo conjunto novacío de submódulos de A contiene un elemento maximal [resp. minimal] (con respecto al orden dado por la inclusión de conjuntos).

Teorema 16. Un módulo satisface la condición de la cadena ascendente [resp. descencendente] sobre submódulos si y solo si satisface la condición maximal [resp. minimal] sobre submódulos.

Demostración. Supongamos que el módulo A satisface la condición minimal sobre submódulos y que $A_1 \supseteq A_2 \supseteq \cdots$ es una cadena de submódulos. Entonces el conjunto $\{A_i \mid i \geq 1\}$ tiene un elemento minimal, digamos A_n . Consecuentemente, para $i \geq n$ tenemos $A_n \supseteq A_i$ por hipótesis y $A_n \subseteq A_i$ por minimalidad, luego $A_i = A_n$ para todo $i \geq n$. Por lo tanto, A satisface la condición descendiente de la cadena.

Recíprocamente supongamos que A satisface la condición de la cadena descendente, y S es un conjunto novacío de submódulos de A. Entonces existe $B_0 \in S$. Si S no tiene elemento minimal, entonces para todo submódulo B en S existe al menos un submódulo B' en S tal que $B \supset B'$. Para cada B en S, elegimos uno de estos B' (Axioma de Elección). Esta elección define una función $f:S \to S$ mediante $B \mapsto B'$. Por el Teorema de la Recursión, existe una función $\phi:\mathbb{N} \to S$ tal que $\phi(0) = B_0$ y $\phi(n+1) = f(\phi(n))$ ($\forall n \in \mathbb{N}$). Por tanto si $B_n = \phi(n)$ ($\forall n \in \mathbb{N}$), entonces $B_0 \supset B_1 \supset \cdots$ es una cadena descendiente que viola la condición descendiente de la cadena. Por lo tanto, S debe tener un elemento minimal. Concluímos que A satisface la condición minimal.

La prueba para las condiciones de la cadena ascendente y maximal es análoga. $\hfill\Box$

Teorema 17. Sea R un anillo denso de endomorfismos de un espacio vectorial V sobre un anillo de división D. Entonces R es artiniano izquierdo [resp. derecho] si y solo si $\dim_D V$ es finita, en cuyo caso $R = \operatorname{Hom}_D(V, V)$.

Demostración. Si R es artiniano izquierdo, y $\dim_D V$ es infinita, entonces existe un subconjunto de V linealmente independiente e infinito (numerable) $\{u_1,u_2,\dots\}$. Por el Ejercicio IV.1.7 V es un $\operatorname{Hom}_D(V,V)$ -módulo izquierdo y por tanto un R-módulo izquierdo (recordar que $R\subseteq \operatorname{Hom}_D(V,V)$). Para cada n sea I_n el aniquilador izquierdo en R del conjunto $\{u_1,\dots,u_n\}$. Por el Teorema 1.4 $I_1\supseteq I_2\supseteq\cdots$ es una cadena descendente de ideales izquierdos de R. Sea w un elemento nonulo de V, no importa cual de ellos sea (podría ser u_1 , por ejemplo). Dado que $\{u_1,\dots,u_{n+1}\}$ es linealmente independiente (para cada n) y R es denso, existe $\theta\in R$ tal que $\theta u_i=0$ ($\forall i\in\{1,\dots,n\}$) y $\theta u_{n+1}=w\neq 0$. Consecuentemente $\theta\in I_n$ pero $\theta\notin I_{n+1}$. Por lo tanto $I\supset I_2\supset\cdots$ es una cadena estrictamente descencendente, su existencia lleva a una contradicción. Luego $\dim_D V$ es finita.

Recíprocamente, si $\dim_D V$ es finita, entonces V tiene una base finita $\{v_1,\ldots,v_m\}$. Si f es un elemento de $\mathrm{Hom}_D(V,V)$, entonces f está completamente determinado por su acción sobre v_1,\ldots,v_m por los teoremas IV.2.1 y IV.2.4. Dado que R es denso, existe $\theta \in R$ tal que $\theta v_i = fv_i \ \forall i \in \{1,\ldots,m\}$. Luego $f = \theta \in R$. Por lo tanto $\mathrm{Hom}_D(V,V) = R$. Pero $\mathrm{Hom}_D(V,V)$ es artiniano por el Teorema VII.1.4 y el corolario VIII.1.12.

Teorema 18 (de Densidad de Jacobson). Sea R un anillo primitivo y A un R-módulo simple y fiel. Considerar A como espacio vectorial sobre el anillo de división $\operatorname{Hom}_R(A,A) = D$. Entonces R es isomorfo a un anillo denso de endomorfismos del D-espacio vectorial A.

Demostración. Para cada $r \in R$ la aplicación $\alpha_r : A \to A$ dada por $\alpha_r(a) = ra$ es facilmente identificada como un D-endomorfismo de A: esto es, $\alpha_r \in$

 $\operatorname{Hom}_D(A,A)$. Además $\alpha_{(r+s)}=\alpha_r+\alpha_s$ y $\alpha_{rs}=\alpha_r\alpha_s$ para todo par $r,s\in R$. Consecuentemente la aplicación $\alpha:R\to\operatorname{Hom}_D(A,A)$ definida por $\alpha(r)=\alpha r$ es un homomorfismo de anillos bien definido. Dado que A es un R-módulo fiel, $\alpha_r=0$ si y solo si $r\in \mathcal{A}(A)=0$. De aquí que α es un monomorfismo, y R es isomorfo al subanillo $\operatorname{Im} \alpha$ de $\operatorname{Hom}_D(A,A)$.

Para completar la prueba debemos mostrar que $\operatorname{Im} \alpha$ es un subanillo denso de $\operatorname{Hom}_D(A,A)$. Sea $U=\{u_1,\ldots,u_n\}$ un subconjunto D-linealmente independiente de A; y sea $\{v_1,\ldots,v_n\}$ un subconjunto arbitrario de A. Debemos encontrar $\alpha_r \in \operatorname{Im} \alpha$ tal que $\alpha_r(u_i)=v_i$ ($\forall i\in\{1,\ldots,n\}$). Para cada i sea V_i el D-subespacio de A generado por $\{u_j:j\neq i\}$. Dado que U es linealmente independiente, $u_i\notin V_i$. Consecuentemente, por el lema 1.11 existe $r_i\in R$ tal que $r_iu_i\neq 0$ y $r_iV_i=0$. Después aplicamos el lema 1.11 al subespacio nulo y al elemento nonulo r_iu_i : existe $s_i\in R$ tal que $s_ir_iu_i\neq 0$ y $s_i0=0$. Siendo $s_ir_iu_i\neq 0$, el R-submódulo $R(r_iu_i)$ de A en nonulo, luego $R(r_iu_i)=A$ por simplicidad. Por esto existe $t_i\in R$ tal que $t_ir_iu_i=v_i$. Sea $r=t_1r_1+t_2r_2+\cdots+t_nr_n\in R$. Recordar que $u_i\in V_j$ para $i\neq j$, luego $t_jr_ju_i\in t_j(r_jV_i)=t_j0=0$. Consecuentemente $\alpha_r(u_i)=(t_1r_1+\cdots+t_nr_n)u_i=t_ir_iu_i=v_i$. Por lo tanto $\operatorname{Im}\alpha$ es un anillo denso de endomorfismos del D-espacio vectorial A.

Definición 7. Una serie subnormal de un grupo G es una cadena de subgrupos $G = G_0 \geq G_1 \geq \cdots \geq G_n = \langle e \rangle$ tal que G_{i+1} es normal en G_i para $1 \leq i \leq n$. Los factores de la serie son los grupos cociente G_i/G_{i+1} . La longitud de la serie es el número de inclusiones estrictas (alternativamente, el número de factores con orden mayor a 1). Una serie subnormal es una serie de composición si cada factor G_i/G_{i+1} es simple.

Una serie normal para un módulo A es una cadena de submódulos: $A = A_0 \supseteq A_1 \supseteq A_2 \supseteq \cdots \supseteq A_n$. Los factores de la serie son los módulos cociente A_i/A_{i+1} $(0 \le i < n)$. La longitud de la serie es el número de inclusiones propias (igual al número de factores notriviales). Uni refinamiento propio es un refinamiento con longitud mayor a la serie original. Dos series normales son equivalentes si existe una correspondencia uno-a-uno entre los factores notriviales tal que factores correspondientes sean isomorfos. De tal modo, series equivalentes tienen igual longitud. Una serie de composición para A es una serie normal $A = A_0 \supseteq A_1 \supseteq A_2 \supseteq \cdots \supseteq A_n = 0$ tal que cada factor A_k/A_{k+1} $(0 \le k < n)$ es un módulo nonulo sin submódulos propios. Si R es unitario, decimos que un módulo unitario sin submódulos propios es simple.

La Teoría de Series Normales y Subnormales para grupos puede trasladarse al caso de los módulos. Como consecuencia de esta tenemos el siguiente teorema.

Teorema 19. Caulesquiera dos series normales de un módulo A tienen refinamientos que son equivalentes. Caulesquiera dos series de composición de A son equivalentes.

Teorema 20 (de Artin-Wedderburn). Las siguientes condiciones sobre un anillo artiniano izquierdo R son equivalentes.

1. R es simple;

- 2. R es primitivo;
- 3. R es isomorfo al anillo de endomorfismos de un espacio vectorial nonulo sobre un anillo de división D;
- para algún entero positivo n, R es isomorfo al anillo formado por las matrices n × n sobre un anillo de división.

Demostración. $1 \Rightarrow 2$. Primero observamos que $I = \{r \in R \mid Rr = 0\}$ es un ideal de R, con la propiedad IR = 0. Pero R es simple: no tiene ideales propios, por lo cual I = R o I = 0; y $RR \neq 0$, por lo cual I = 0.

Consideremos el conjunto \mathcal{S} formado por todos los ideales izquierdos nonulos de R. Dado que R es artiniano izquierdo, satisface la condición de la cadena descendiente sobre ideales izquierdos. En particular, para toda sucesión $\{S_i\}_{i\in\mathbb{N}}$ en \mathcal{S} con $S_0\supseteq S_1\supseteq S_2\supseteq \cdots$, existe un $m\in\mathbb{N}$ tal que $S_m=S_i$ para todo $i\geq m$. El Lema de Zorn permite deducir de esto la existencia de un elemento minimal $J\in\mathcal{S}$, tal que $J\supseteq J'\to J=J'$ para todo $J'\in\mathcal{S}$. Esta minimalidad hace que J no tenga R-submódulos propios (un R-submódulo de J es un ideal izquierdo de R contenido en J).

Afirmamos que el aniquilador izquierdo $\mathcal{A}(J)$ de J en R es cero. De otro modo $\mathcal{A}(J)=R$ por simplicidad y Ru=0 para cada $u\in J$ nonulo. Consecuentemente, cada uno de estos u nonulos pertenece a I=0, lo cual es una contradicción. Por lo tanto $\mathcal{A}(J)=0$ y $RJ\neq 0$. En conclusión, J es un R-módulo simple y fiel, y R es primitivo.

 $2 \Rightarrow 3$ Por el Teorema de Densidad de Jacobson ??, R es isomorfo a un anillo denso T compuesto por endomorfismos de un espacio vectorial V sobre un anillo de división D. Porque R es artiniano izquierdo, $R \simeq T = \operatorname{Hom}_D(V, V)$ por el teorema ??.

 $3 \Leftrightarrow 4$ Teorema $\ref{Teorema}$

 $4 \Leftrightarrow 1$ Ejercicio ??