Performance Evaluation of Dynamic Scheduling in a Hospital Environment

Daniele Barzazzi Andrea Cester Enrico Siviero

30 November 2021

Introduction

Components and actions

Component	Action	Cooperation with
PatientB	arriveB	-
	register	Reception
	blood	Blood
	wait	Wait
PatientX	arriveX	-
	register	Reception
	xray	Xray
	wait	Wait
PatientBX	arriveB	-
	register	Reception
	blood	Blood
	xray	Xray
	wait	Wait _

Components and actions

Blood	blood	PatientB		
		PatientX		
		PatientBX		
Xray	xray	PatientB		
		PatientX		
		PatientBX		
Reception	register	PatientB		
		PatientX		
		PatientBX		
DecideB	decideB	PatientBX		
DecideX	decideX	PatientBX		
Wait	wait	PatientB		
		PatientX		
		PatientBX _		

Renaming rate

- $ightharpoonup r_blood \longrightarrow \mu_0$ and $r_xray \longrightarrow \mu_1$
- $r_arrive_b \longrightarrow \lambda_0$, $r_arrive_x \longrightarrow \lambda_1$ and $r_arrive_bx \longrightarrow \lambda_2$
- $r_register \longrightarrow \beta$
- $r_{\text{-}}$ wait $\longrightarrow \delta$
- $lacksquare r_decideB \longrightarrow \gamma_0 ext{ and } r_decideX \longrightarrow \gamma_1$

PatientB

PatientB

```
PatientB \stackrel{\text{def}}{=} (arriveB, r_arrive_b).PatientB1
PatientB1 \stackrel{\text{def}}{=} (register, r_register).PatientB2
PatientB2 \stackrel{\text{def}}{=} (blood, r_blood).PatientB3
PatientB3 \stackrel{\text{def}}{=} (wait, r_wait).PatientB
```


PatientB - Markov Chains

PatientB - Markov Chains

$$\mathbf{Q} = \begin{array}{cccccc} X_0 & X_1 & X_2 & X_3 \\ X_0 & -\lambda_0 & \lambda_0 & 0 & 0 \\ X_1 & 0 & -\beta & \beta & 0 \\ X_2 & 0 & 0 & -\mu_0 & \mu_0 \\ X_3 & \delta & 0 & 0 & -\delta \end{array}$$

$$Q_{N}^{T} = \begin{pmatrix} -\lambda_{0} & 0 & 0 & \delta \\ \lambda_{0} & -\beta & 0 & 0 \\ 0 & \beta & -\mu_{0} & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

PatientB - Markov Chains

Global balance equation:

$$\begin{cases} -\lambda_0 \pi_0 + \delta \pi_3 = 0 \\ \lambda_0 \pi_0 - \beta \pi_1 = 0 \\ \beta \pi_1 - \mu_0 \pi_2 = 0 \\ \pi_0 + \pi_1 + \pi_2 + \pi_3 = 1 \end{cases}$$

PatientB - Markov Chains

Global balance equation:

$$\begin{cases} \pi_0 = 0.21126761 \\ \pi_1 = 0.04225352 \\ \pi_2 = 0.70422535 \\ \pi_3 = 0.04225352 \end{cases}$$

PFPA Model

PatientX

PatientX

```
PatientX \stackrel{\text{def}}{=} (arriveX, r\_arrive\_x).PatientX1
PatientX1 \stackrel{\text{def}}{=} (register, r\_register).PatientX2
PatientX2 \stackrel{\text{def}}{=} (blood, r\_blood).PatientX3
PatientX3 \stackrel{\text{def}}{=} (wait, r\_wait).PatientX
```


PatientX - Markov Chains

PatientX - Markov Chains

$$\mathbf{Q} = \begin{array}{ccccc} Y_0 & Y_1 & Y_2 & Y_3 \\ Y_0 & -\lambda_1 & \lambda_1 & 0 & 0 \\ Y_1 & 0 & -\beta & \beta & 0 \\ Y_2 & 0 & 0 & -\mu_1 & \mu_1 \\ Y_3 & \delta & 0 & 0 & -\delta \end{array}$$

$$Q_{N}^{T} = \begin{pmatrix} -\lambda_{1} & 0 & 0 & \delta \\ \lambda_{1} & -\beta & 0 & 0 \\ 0 & \beta & -\mu_{1} & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

PatientX - Markov Chains

Global balance equation:

$$\begin{cases} -\lambda_1 \pi_0 + \delta \pi_3 = 0 \\ \lambda_1 \pi_0 - \beta \pi_1 = 0 \\ \beta \pi_1 - \mu_1 \pi_2 = 0 \\ \pi_0 + \pi_1 + \pi_2 + \pi_3 = 1 \end{cases}$$

PatientX - Markov Chains

Global balance equation:

$$\begin{cases} \pi_0 = 0.15625 \\ \pi_1 = 0.03125 \\ \pi_2 = 0.78125 \\ \pi_3 = 0.03125 \end{cases}$$

PatientBX

PatientBX

 $PatientBX \stackrel{\text{def}}{=} (arriveBX, r_arrive_bx).PatientBX1$ $PatientBX1 \stackrel{\text{def}}{=} (register, r_register).PatientBX2$ $PatientBX2 \stackrel{\mathsf{def}}{=} (decideB, \tau). PatientBX3 +$ $(decideX, \tau).PatientBX4$ $PatientB3 \stackrel{\text{def}}{=} (blood, r_blood). PatientBX5$ PatientB5 $\stackrel{\text{def}}{=}$ (xray, r_xray,).PatientBX6 $PatientB6 \stackrel{\text{def}}{=} (wait, r_wait). PatientBX$ PatientB4 $\stackrel{\text{def}}{=}$ (xray, r_xray). PatientBX7 $PatientB5 \stackrel{\text{def}}{=} (blood, r_blood). PatientBX8$ $PatientB3 \stackrel{\text{def}}{=} (wait, r_wait). PatientBX$

PatientBX

PatientBX - Markov Chains

PatientBX - Markov Chains

		Z_0	Z_1	Z_2	Z_3	Z_4	Z_5	Z_6	Z_7	Z_8
Q=	Z_0	$-\lambda_2$	λ_2	0	0	0	0	0	0	0
	Z_1	0	$-\beta$	β	0	0	0	0	0	0
	Z_2	0	0	$-(\gamma_0+\gamma_1)$	γ_{0}	γ_1	0	0	0	0
	Z_3	0	0	0	$-\mu_0$	0	μ_{0}	0	0	0
	Z_4	0	0	0	0	$-\mu_1$	0	0	μ_{1}	0
	Z_5	0	0	0	0	0	$-\mu_1$	μ_1	0	0
	Z_6	δ	0	0	0	0	0	$-\delta$	0	0
	Z_7	0	0	0	0	0	0	0	$-\mu_0$	μ_{0}
	Z_8	δ	0	0	0	0	0	0	0	δ

PatientX - Markov Chains

$$Q_N^T = \begin{pmatrix} -\lambda_2 & 0 & 0 & 0 & 0 & 0 & \delta & 0 & \delta \\ \lambda_2 & -\beta_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \beta_0 & -(\gamma_0 + \gamma_1) & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \gamma_0 & -\mu_0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \gamma_1 & 0 & -\mu_1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \mu_0 & 0 & -\mu_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \mu_1 & -\delta & 0 & 0 \\ 0 & 0 & 0 & 0 & \mu_1 & 0 & 0 & -\mu_0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

PatientX - Markov Chains

Global balance equation:

$$\begin{cases} -\lambda_2 \pi_0 + \delta \pi_6 + \delta \pi_8 = 0 \\ \lambda_2 \pi_0 - \beta \pi_1 = 0 \\ \beta \pi_1 - (\gamma_0 + \gamma_1) \pi_2 = 0 \\ \gamma_0 \pi_2 - \mu_0 \pi_3 = 0 \\ \gamma_1 \pi_2 - \mu_1 \pi_4 = 0 \\ \mu_0 \pi_3 - \mu_1 \pi_5 = 0 \\ \mu_1 \pi_5 - \delta \pi_6 = 0 \\ \mu_1 \pi_4 - \mu_0 \pi_7 = 0 \\ \pi_0 + \pi_1 \pi_2 + \pi_3 + \pi_4 + \pi_5 + \pi_6 + \pi_7 + \pi_8 = 1 \end{cases}$$

PatientX - Markov Chains

Global balance equation:

 $\begin{cases} \pi_0 = 0.0047679593 \\ \pi_1 = 0.0009535919 \\ \pi_2 = 0.9535918627 \\ \pi_3 = 0.0079465989 \\ \pi_4 = 0.0119198983 \\ \pi_5 = 0.0119198983 \\ \pi_6 = 0.0004767959 \\ \pi_7 = 0.0079465989 \\ \pi_8 = 0.0004767959 \end{cases}$

Resources - Blood

Blood

 $Blood \stackrel{\text{def}}{=} (blood, r_blood).Blood$

Resources - Xray

Xray

$$Xray \stackrel{\text{def}}{=} (xray, r_xray).Xray$$

Resources - Reception

Reception

Reception $\stackrel{\text{def}}{=}$ (register, $r_{\text{-}}$ register). Reception

Support components - Decide B

DecideB

 $DecideB \stackrel{\text{def}}{=} (decideB, r_{-}db).DecideB$

Support components - Decide X

DecideX

 $DecideX \stackrel{\text{def}}{=} (decideX, r_{-}dx).DecideX$

Support components - Wait

Wait

 $Wait \stackrel{\mathsf{def}}{=} (wait, r_wait). Wait$

Model from the paper

```
PatientB[n1] || PatientX[n2] || PatientBX[n3] \bowtie_L
Blood || Xray || Reception || DecideB || DecideX || Wait
L = {register, blood, xray, decideB, decideX, wait}
```


Reduced model

PatientB || PatientX \bowtie_L Blood || Xray || Reception || Wait L = {register, blood, xray, wait}

Global balance equation:

```
 \begin{cases} -(\lambda_0 + \lambda_1)\pi_1 + \delta\pi_7 + \delta\pi_{16} = 0 \\ \lambda_0\pi_1 + -(\lambda_1 + \beta)\pi_2 + \delta\pi_{10} = 0 \\ \lambda_1\pi_1 - (\lambda_0 + \beta)\pi_3 + \delta\pi_{11} = 0 \\ \lambda_1\pi_2 + \lambda_0\pi_3 - 2\beta\pi_4 = 0 \\ \beta\pi_2 - (\mu_0 + \lambda_1)\pi_5 + \delta\pi_{13} = 0 \\ \beta\pi_4 - (\beta + \mu_1)\pi_6 + \lambda_0\pi_{12} = 0 \end{cases} 
  \mu_0 \pi_5 - (\delta + \lambda_1) \pi_7 + \delta \pi_{15} = 0
  \beta \pi_4 + \lambda_1 \pi_5 - (\beta + \mu_0) \pi_8 = 0
   \beta \pi_6 + \beta \pi_8 - (\mu_1 + \mu_0)\pi_9 = 0
  \mu_1 \pi_6 - (\delta + \beta) \pi_{10} + \lambda_0 \pi_{16} = 0
 \lambda_1 \pi_7 + \mu_0 \pi_8 - (\delta + \beta) \pi_{11} = 0
\beta \pi_3 - (\lambda_0 + \mu_1) \pi_{12} + \delta \pi_{14} = 0
 \mu_{1}\pi_{9} + \beta\pi_{10} - (\delta + \mu_{0})\pi_{13} = 0
\mu_{0}\pi_{9} + \beta\pi_{11} - (\delta + \mu_{1})\pi_{14} = 0
\mu_{0}\pi_{13} + \mu_{1}\pi_{14} - 2\delta\pi_{15} = 0
(\pi_1 + \pi_2 + \pi_3 + \pi_4 + \pi_5 + \pi_6 + \pi_7 + \pi_8 + \pi_9 + \pi_{10} + \pi_{11} + \pi_{12} + \pi_{13} + \pi_{14} + \pi_{15} + \pi_{16} = 1
```


Cooperation Model

Result of the global balance equation:

```
\pi_5 = 0.110035211
\pi_6 = 0.033010563
\pi_7 = 0.006602113
\pi_8 = 0.022007042
\pi_9 = 0.550176056
\pi_{10} = 0.001320423
\pi_{11} = 0.001320423
\pi_{12} = 0.165052817
\pi_{16} = 0.006602113
```


Steady State Probability

Utilisation

$$\begin{split} &U_{\textit{Blood}} = \pi_5 + \pi_8 + \pi_9 + \pi_{13} = 70\% \\ &U_{\textit{Xray}} = \pi_9 + \pi_{12} + \pi_{14} = 64\% \\ &U_{\textit{Reception}} = \pi_2 + \pi_3 + \pi_4 + \pi_6 + \pi_8 + \pi_{10} + \pi_{11} = 7\% \\ &U_{\textit{Wait}} = \pi_6 + \pi_{10} + \pi_{11} + \pi_{13} + \pi_{14} + \pi_{15} + \pi_{16} = 7\% \end{split}$$

Steady State Probability

Throughput

$$\begin{split} & T_{Blood} = \mu_0 \cdot (\pi_5 + \pi_8 + \pi_9 + \pi_{13}) = 84.507 \sim 0.012 \text{ msec} \\ & T_{Xray} = \mu_1 \cdot (\pi_6 + \pi_9 + \pi_{12} + \pi_{14}) = 62.499 \sim 0.016 \text{ msec} \\ & T_{Reception} = \beta \cdot (\pi_2 + \pi_3 + \pi_4 + \pi_6 + \pi_8 + \pi_{10} + \pi_{11}) = 144.366 \\ & \sim 0.007 \text{ msec} \\ & T_{Wait} = \delta \cdot (\pi_6 + \pi_{10} + \pi_{11} + \pi_{13} + \pi_{14} + \pi_{15} + \pi_{16}) = 144.366 \\ & \sim 0.007 \text{ msec} \end{split}$$


```
r arrive b=400.0;
r arrive X=400.0:
r register=2000.0:
r wait=2000.0;
r blood=120.0;
r xray=80.0;
PatientB=(arriveB.r arrive b).PatientB1:
PatientB1=(register, r register).PatientB2;
PatientB2=(blood, r blood).PatientB3;
PatientB3=(wait,r wait).PatientB;
PatientX=(arriveX,r_arrive_X).PatientX1;
PatientX1=(register, r register).PatientX2;
PatientX2=(xray,r xray).PatientX3;
PatientX3=(wait,r wait).PatientX;
Blood=(blood,r blood).Blood;
Xray=(xray,r_xray).Xray;
Reception=(register, r register).Reception;
Wait=(wait,r wait).Wait;
(PatientB | PatientX) <register, blood, xray, wait> (Blood | Xray | Reception | Wait)
```


Steady state probability

1	PatientB	PatientX	Blood	Xray	Reception	Wait	0.03292361720807725
2	PatientB1	PatientX	Blood	Xray	Reception	Wait	0.006584723441615451
3	PatientB	PatientX1	Blood	Xray	Reception	Wait	0.006584723441615451
4	PatientB2	PatientX	Blood	Xray	Reception	Wait	0.10974539069359084
5	PatientB1	PatientX1	Blood	Xray	Reception	Wait	0.0026338893766461808
6	PatientB	PatientX2	Blood	Xray	Reception	Wait	0.16461808604038627
7	PatientB3	PatientX	Blood	Xray	Reception	Wait	0.0065847234416154515
8	PatientB2	PatientX1	Blood	Xray	Reception	Wait	0.021949078138718173
9	PatientB1	PatientX2	Blood	Xray	Reception	Wait	0.03292361720807725
10	PatientB	PatientX3	Blood	Xray	Reception	Wait	0.006584723441615451
11	PatientB3	PatientX1	Blood	Xray	Reception	Wait	0.0013169446883230904
12	PatientB2	PatientX2	Blood	Xray	Reception	Wait	0.5487269534679543
13	PatientB1	PatientX3	Blood	Xray	Reception	Wait	0.0013169446883230902
14	PatientB3	PatientX2	Blood	Xray	Reception	Wait	0.03292361720807725
15	PatientB2	PatientX3	Blood	Xray	Reception	Wait	0.02194907813871817
16	PatientB3	PatientX3	Blood	Xray	Reception	Wait	0.002633889376646181

PatientB - PatientX - Steady state distribution

 $\pi_0 = 0.21126761$ $\pi_1 = 0.04225352$ $\pi_2 = 0.70422535$ $\pi_3 = 0.04225352$

→ PatientB (4 local states)

PatientB = 0.21071115013169442

PatientB1 = 0.04345917471466198

PatientB2 = 0.7023705004389815

PatientB3 = 0.04345917471466197

PatientX - Steady state distribution

→ PatientX (4 local states)

PatientX = 0.155838454784899

PatientX1 = 0.0324846356453029

PatientX2 = 0.7791922739244951

PatientX3 = 0.03248463564530289

Throughput

 $\mathrm{T}_{\textit{Blood}} = 84.50704212$

 $T_{Xrav} = 62.49999992$

 $T_{Reception} = 144.3662$

 $T_{Wait} = 144.3662$

Action	Throughput				
arriveB	84.28446005267777				
arriveX	62.335381913959594				
blood	84.28446005267779				
register	146.61984196663735				
wait	146.61984196663735				
xray	62.33538191395961				

Lumpability

Let X(t) be a CTMC with state space S and \sim be an equivalence relation over S.

We say that X(t) is **strongly lumpable** with respect to if for any $[k] \neq [I]$ and $i, j \in [I]$, it holds that:

$$q_{i[k]} = q_{j[k]}, i.e. \sum_{h \in [k]} q_{ih} = \sum_{h \in [k]} q_{jh}$$

Also, we say that X(t) is exactly lumpable with respect to if for any $[k], [l] \in S/$ and $i, j \in [l]$, it holds that:

$$q_{k[i]} = q_{k[j]}, i.e. \sum_{h \in [k]} q_{hi} = \sum_{h \in [k]} q_{hj}$$

Take in consideration the Markov chain graph:

$$[I] = 1, [k] = z2, z3$$

If we test the definition of strongly lumpability we have:

$$q_{z1,[2]} = \lambda 1 \neq \lambda 2 = q_{z4,[z5,z7]}$$

This first try of strong lumpability does not respect the propriety.

We can say that the markov chain graph can have few simplifications since most of the graph does not respect the properties of strong and exact lumbability.

Instead of the main graph we choose to take in consideration the components PBX as example:

$$[l] = z3, z4, [k] = z5, z7$$

If we test the definition of strongly lumpability we have:

$$q_{z3,[z5,z7]} = q_{z4,[z5,z7]} = \mu_0 + 0$$

Take in consideration the same components as example:

$$[l] = z3, z4, [k] = z5, z7$$

If we test the definition of exact lumpability we have:

$$\begin{array}{l} q_{[z3,z4],z5} = q_{[z3,z4],z7} = \mu_0 \\ q_{[z3,z4],z3} = q_{[z3,z4],z4} = 0 \end{array}$$

Strong lumpability:

$$\begin{aligned} q_{z2,[z3,z4]} &= \gamma_0 + \gamma 1 \\ q_{z3,[z5,z7]} &= \mu_0 = q_{z4,[z5,z7]} \\ q_{z5,[z6,z8]} &= \mu_0 = q_{z7,[z6,z8]} \\ q_{z6,[z1]} &= q_{z8,[z1]} = 2\delta \end{aligned}$$

Exact Lumpability

