Inventory Control Formulas - (Q, R) System

Input Parameters

c: Unit cost (e.g., \$20)

k: Setup or ordering cost per order (e.g., \$100)

rho: Penalty cost per unit of unmet demand (e.g., \$20)

I: Annual interest rate (e.g., 0.25 for 25%)

L: Lead time in months (e.g., 4 months)

mu_L: Average demand during lead time (e.g., 500 units)

sigma_L: Standard deviation of lead time demand (e.g., 100)

L(z): Loss function value for z-score

F(z): Cumulative standard normal distribution value

1. Holding Cost Per Unit Per Year

h = I * c

(I: Interest rate, c: Unit cost)

2. Annual Demand

lambda = (12 / L) * mu L

(L: Lead time in months, mu_L: Demand during lead time)

3. Initial EOQ (Unconstrained Lot Size)

Q0 = sqrt(2 * k * lambda / h)

(k: Ordering cost, lambda: Annual demand, h: Holding cost)

4. Service Level & Z-Score

1 - F(R0) = (Q0 * h) / (rho * lambda)

(F(R0): Service level, rho: Penalty cost)

5. Reorder Point

 $R = mu_L + z * sigma_L$

(mu_L: Mean demand, sigma_L: Std dev of demand, z: z-score)

6. Safety Stock

 $SS = z * sigma_L$

Inventory Control Formulas - (Q, R) System

7. Expected Backorders per Cycle

$$n(R) = sigma_L * L(z)$$

(L(z): Loss function at z)

8. Adjusted EOQ (With Penalty Cost)

$$Q = sqrt[2 * lambda * (k + rho * n(R)) / h]$$

Performance Measures

- A. Time Between Orders: T = Q / lambda
- B. Holding Cost: $HC = h * (Q/2 + R mu_L)$
- C. Ordering Cost: OC = k * lambda / Q
- D. Penalty Cost: PC = (lambda / Q) * rho * n(R)
- E. % No Stockout: P = F(z)
- F. % Demand Not Met: P = n(R) / Q