ECON20110 (W25): The Elements of Economic Analysis II Honors

Lecturer: Ryan Fang
Notes by: Aden Chen

Tuesday 7th January, 2025

Contents

1 Review 3

Last updated: Tuesday 7th January, 2025.

1 Review

1.1 Constrained Maximization

E.g.,

$$\max_{\mathbf{x}} U(\mathbf{x}, \boldsymbol{\theta})$$
 s.t. $G(\mathbf{x}, \boldsymbol{\theta}) \ge 0$.

Solving a whole class of optimization problems parameterized by $\tilde{\theta}$ generates two functions:

- The solution function
- The Value function

Results like the envelope theorem relates these two functions.

1.2 The Kuhn-Tucker Theorem

Consider the maximization function $\max_x f(x)$. The first order condition gives $f'(x^*) = 0$. Now suppose that x_1 is such that $f'(x_1) > 0$. We may be temped to argue that x_1 is not a solution since we can increase f by increasing the value of x, but this assumes that x is in the interior of the domain. Thus the first order condition addresses only interior solutions. The Kuhn-Tucker theorem addresses this issue.

Theorem 1.1 (Kuhn-Tucker). The FOCs for the constrained optimization problem

$$\max_{\mathbf{x}} U(\mathbf{x}, \boldsymbol{\theta})$$
 s.t. $G(\mathbf{x}, \boldsymbol{\theta}) \ge 0$.

are:

- for each i = 1, ..., n: $\partial \mathcal{L}/\partial x_i \leq 0$ and $x_i \geq 0$, with complementary slackness;
- $\partial \mathcal{L}/\partial \lambda \geq 0$ and $\lambda \geq 0$, with complementary slackness.