Assignment 8

https://github.com/jchryssanthacopoulos/quantum_information/tree/main/assignment_8

Quantum Information and Computing AA 2022–23

James Chryssanthacopoulos 9 January 2023

Real-Space Renormalization Group

- **Real-space renormalization group** algorithm can be used to compute ground-state energy E_0 of quantum Ising model with traverse field in one dimension
- Following steps are repeated until $|E_0^{(i+1)} E_0^i| < \epsilon$, where i is iteration number:
 - **1** Starting with Hamiltonian of system with N sites, \hat{H}_N , construct Hamiltonian by replicating system:

$$\hat{H}_{2N} = \hat{H}_N \otimes \mathbb{1}_N + \mathbb{1}_N \otimes \hat{H}_N + \hat{H}_{int}$$

where $\hat{H}_{\text{int}} = \hat{A}_N \otimes \hat{B}_N$ is interaction between left and right bipartitions, initialized to $\hat{A}_N = \mathbb{1}_{N-1} \otimes \sigma^x$, $\hat{B}_N = \sigma^x \otimes \mathbb{1}_{N-1}$. \hat{H}_N is initialized to Hamiltonian of Ising model with N sites

- 2 Diagonalize \hat{H}_{2N} , obtaining ground-state energy E_0^i . Construct projector onto 2^N eigenvectors with lowest energy, $P = \sum_{i=1}^{2^N} |E_i\rangle \langle E_i|$
- 3 Project operators into subspace spanned by chosen eigenvectors:

$$\hat{H}_N = P^{\dagger} \hat{H}_{2N} P, \quad \hat{A}_N = P^{\dagger} (\hat{A}_N \otimes \mathbb{1}_N) P, \quad \hat{B}_N = P^{\dagger} (\mathbb{1}_N \otimes \hat{B}_N) P$$

Implementation

Program computes ground-state energy given number of sites N, interaction strength λ , termination threshold ϵ , and maximum number of iterations

Results

■ Energy density, $e \equiv E_0/N$, computed using RSRG compared to mean-field result:

$$\mathsf{e}_\mathsf{MF} = \begin{cases} -1 - \lambda^2/4, & |\lambda| \leq 2 \\ -|\lambda|, & |\lambda| > 2 \end{cases}$$

- Energy densities are very similar, but deviate the most when $0 < |\lambda| < 2$, when external field is present but not strong enough to coordinate all spins
- Experiments showed that energy density doesn't change with N, as expected
- \blacksquare Number of iterations increases with N, except when field is weak

