Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования

«Курский государственный университет» Кафедра программного обеспечения и администрирования информационных систем

Направление подготовки: 02.03.03 Математическое обеспечение и администрирование информационных систем Профиль: Проектирование информационных систем и баз данных Форма обучения очная

Отчет по лабораторной работе №8.2

«Синтез микропрограммного автомата с программируемой логикой по граф-схеме алгоритма»

дисциплина «Прикладная теория цифровых автоматов»

вариант 9

Выполнил:

студент группы 213.1

Козявин М.С.

Проверил:

к.т.н., профессор кафедры ПОиАИС

Бабкин Е.А.

Цель работы: приобретение практических навыков по проектированию микропрограммных автоматов с программируемой логикой (МПА ПЛ).

Задания:

- 1. В соответствии с номером варианта выбрать ГСА.
- 2. Определить формат микрокоманды.
- 3. Выполнить разметку вершин микропрограммы и предварительно закодировать адреса микрокоманд.
- 4. Закодировать микрооперации.
- 5. Закодировать логические условия.
- 6. Закодировать микропрограмму.

Вариант: 9

Будем использовать структуру МПА с естественной адресацией и смешанным кодированием в поле микроопераций (поле Y).

Разметка вершин микропрограммы

Кодирование адресов микрокоманд

A	Код
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Множество микроопераций Y, используемых в заданной ГСА —

$$Y = \{y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8\}$$

Мощность множества — |Y| = 8

При горизонтальном кодировании поле микроопераций будет занимать 8 разрядов.

Вертикальное кодирование невозможно т.к. за один такт могут использоваться 2 микрооперации.

Попробуем воспользоваться разбиением множества Y на подмножества несовместимых микроопераций используя метод прямого включения.

Разбиение множества операций

Т. к. в одной операторной вершине находится максимум 2 микрооперации количество подмножеств $\mathbf{s} = \mathbf{2}$.

Распределив все операции так, чтобы размер множеств был минимальным и при этом операции в разных множествах были совместимы друг с другом.

$$Y_1 = \{y_1, y_2, y_5, y_7\}$$

 $Y_2 = \{y_3, y_4, y_6, y_8\}$

Так же необходимо добавить микрооперацию свидетельствующую об окончании выполнения алгоритма y_k в любое из множеств и пустую микрооперацию ϕ во все множества

$$Y_1 = \{\emptyset, y_1, y_2, y_5, y_7, y_k\} \quad \log_2 6 \approx \log_2 8 = 3$$

 $Y_2 = \{\emptyset, y_3, y_4, y_6, y_8\} \quad \log_2 5 \approx \log_2 8 = 3$

Если перенести y_8 в Y_1 то при кодировании разрядность поля Y_2 уменьшится, а Y_1 не изменится. Это позволит сократить микрокоманду на 1 разряд.

$$Y_1 = \{\emptyset, y_1, y_2, y_5, y_7, y_8, y_k\} \quad \log_2 7 \approx \log_2 8 = 3$$

$$Y_2 = \{\emptyset, y_3, y_4, y_6\} \quad \log_2 4 = 2$$

Кодирование микроопераций

Код	Y ₁	Код	<i>Y</i> ₂
Ø	000	Ø	00
<i>y</i> ₁	001	y_3	01
y_2	010	y ₄	10
y_5	011	y ₆	11
y ₇	100		
<i>y</i> ₈	101		
y_k	110		

Кодирование логических условий

При кодировании логических условий к множеству условий добавляются два условия (Const «0» и Const «1») необходимых для микропрограммирования переходов между микрокомандами.

Код	x
00	Const «0»
01	x_1
10	x_2
11	Const «1»

Кодирование микропрограммы

Формат микрокоманды

						Начало
Адрес	<i>Y</i> ₁	<i>Y</i> ₂	x	i	A_1	y ₂ 1
0	000	00	00	0	xxxx	y1, y3 2
1	010	00	00	0	XXXX	↑ y ₄ 3
2	001	01	00	0	xxxx	y ₅ ,y ₃ 4
3	000	10	00	0	xxxx	
4	011	01	01	1	0100	x ₁
5	000	11	00	0	xxxx	y ₆ 5
6	100	00	00	0	xxxx	
7	011	01	10	1	0011	У7 6
8	101	00	00	0	xxxx	y ₅ ,y ₃ 7
9	110	00	00	0	XXXX	0 x_2
L		1	1	1	l	У8 8
						Ук Конец 9

Заключение

Кодирование микропрограммы выполнено, она соответствует ГСА. Следовательно все вычисления верны.