operations on random numbers

statistics and data analysis - (chapter 2)

Björn Malte Schäfer

Graduate School for Fundamental Physics

Fakultät für Physik und Astronomie, Universität Heidelberg

April 24, 2016

independent and conditional processes

contents

- distributions
- 2 sampling
- 3 cumulative
- 4 independent and conditional processes
- 6 combinations

repetition

- operations on sets
- probability
- expectation value, variance, covariance
- estimates and the law of large numbers
- Chebyshev-inequality

Cauchy-Schwarz inequality (geometric proof)

- imagine two vectors \vec{x} and \vec{y} : can you find a solution for $\vec{x} + \lambda \vec{y} = 0$?
 - ves, if they're parallel
 - no, if they're not parallel
- the norm of a vector is positive definite: if the norm is zero, the vectors are zero

$$\left| \vec{x} + \lambda \vec{y} \right| = 0 \quad \leftrightarrow \quad \vec{x} + \lambda \vec{y} = 0 \tag{1}$$

- compute $|\vec{x} \lambda \vec{y}|^2 = \vec{x}^2 + 2\lambda \vec{x}\vec{y} + \lambda^2 \vec{y}^2 = 0$
- find the solutions to the resulting quadratic equation

$$\lambda_{\pm} = \frac{-2\vec{x}\vec{y} \pm \sqrt{4(\vec{x}\vec{y})^2 - 4\vec{x}^2\vec{y}^2}}{2\vec{y}^2}$$
 (2)

where there can be only 1 or zero solutions, corresponding to the cases $\vec{x} \parallel \vec{y}$ and $\vec{x} \not\parallel \vec{y}$

Cauchy-Schwarz inequality (continuous distributions)

- the number of solutions for λ is determined by the square root:
 - $(\vec{x}\vec{y})^2 = \vec{x}^2\vec{y}^2$: vectors parallel, one solution
 - $(\vec{x}\vec{y})^2 \leq \vec{x}^2\vec{y}^2$: vectors not parallel, no solution
- combine both cases: Cauchy-Schwarz inequality

$$\left| \vec{x} \vec{y} \right| \le \sqrt{\vec{x}^2 \vec{y}^2} = \left| \vec{x} \right| \left| \vec{y} \right| \tag{3}$$

using the fact that the root is monotonic

discrete distributions:

$$\sigma_x^2 = \vec{x}^2 = \sum_i x_i^2 p(x_i)$$
 and $cov_{x,y} = \vec{x}\vec{y} = \sum_i \sum_i x_i y_j p(x_i, y_j)$ (4)

continuous distributions:

$$\sigma_x^2 = \vec{x}^2 = \int dx x^2 p(x)$$
 and $cov_{x,y} = \vec{x}\vec{y} = \int dx \int dy xy p(x,y)$ (5)

law of large numbers

- we saw that the mean as as estimate of the expectation value can be expected to be close to the expectation value in the limit of large sample sizes n
- typical behaviour:

$$\bar{x} = \frac{1}{n} \sum_{i} x_{i} \quad \rightarrow \quad \sigma_{\bar{x}} \propto \frac{1}{\sqrt{n}}$$
 (6)

still probabilistic, very large $\bar{x} \gg 0$ can (and will) occur!

law of large numbers in dice rolls

- let's build some intuition about the law of large numbers
- imagine rolling 2 dice simultaneously and look at the sum of points: in how many ways can you achieve a specific number of points: sum of points 3 6 combinations 1 2 3 4 5 6 5
- if you increase the number of dice, the distribution will fall off more rapidly: for 3 dice you've got one possibility of getting 3 points, but already 3 ways of getting 4 points.
- in comparison to the many realisations to roll a number of points close to the expectation value there are fewer possibilities to roll an extremely large or small number of points
- again, this is not excluded, but only gets unlikely with increasing n

combinations

- a random variable assigns a **value** to the random event which occurs at a certain probability
- it makes sense to quote directly the probability for a random variable
- the set of discrete values $p(x_i)$ or of the continuous values p(x) is called distribution
- we will assume that distributions are smooth functions
- the random variable value x with the largest probability is the most probable value

question

find the most probable value x of the distributions $p(x) \propto x^n \exp(-x)$ and $p(x) \propto x^n/(\exp(x) \pm 1)$ with integer n and positive x

operations on random numbers Björn Malte Schäfer

quote probability for:

 discrete random process: only a finite (countable) number of possible values for the random variable

$$p(x_i) \tag{7}$$

 continuous random process: random variabe lies within an interval (only integral statements would make sense)

$$p(x_a \le x \le x_b) = \int_{x_a}^{x_b} \mathrm{d}x \, p(x) \tag{8}$$

with the **probability density** p(x)

• be careful with distributions: often you'll see p(x)dx as the probability of x to be within an infinitesimal interval dx around x

question

what's the unit of the probability density p(x) if the random variable x is not dimensionless?

histograms

- construct an idea of the distribution from a list of data points
- Laplacian approximation of the probability p_i or $p(x_a \le x \le x_b)$ by number n_i of counts in the bin $x_a \le x \le x_b$ in $n = \sum_i n_i$ trials
- · one gets an estimate of the expectation value, not the value itself
- for understanding this, we need Poisson-statistics (see lecture 4!)

interpretation of histograms for continuous distributions

- be careful in interpreting histograms: the numbers of the *y*-axis make only sense for a given number of repetitions *n* and for a bin size Δx
- even though the ratio n_i/n is smaller than one, it is **not** the probability $p(x_a \le x \le x_b)$
- how many events in a bin $x_a \le x \le x_b$ do you expect?

$$n_i = n \int_{x_a}^{x_b} \mathrm{d}x \, p(x) \simeq n \, (x_b - x_a) p(x) \quad \to \quad p(x) \simeq \frac{1}{x_b - x_a} \frac{n_i}{n} \quad (9)$$

if the binning is chosen finely enough such that variations of p(x) don't matter and the approximation holds

rejection sampling

distributions

- distribution can be used for designing a random process that yields x-values at the probability p(x)
- computers provide uniformly distributed random numbers
- rejection sampling:
 - $\mathbf{1}$ draw a proposal value x
 - decide by a random experiment if you want to keep it:
 - a value x should occur with a probability p(x)
 - draw a second value a from an interval $0 \le a \le a_{\text{max}}$ and keep it if $a \le p(x)$, reject it if $p(x) < a < a_{\text{max}}$, $a_{\text{max}} = \max [p(x)]$

question

can you optimise rejection sampling such that the number of valid samples is large?

normalisation

- distributions are normalised as a consequence of the Kolmogorov axioms:
 - discrete distribution:

$$\sum_{i} p(x_i) = 1 \tag{10}$$

continuous distribution:

$$\int \mathrm{d}x \, p(x) = 1 \tag{11}$$

 but sometimes, distributions are normalised to a certain physical value: for example, the Planck-spectrum S(v)dv is normalised to yield the total power emitted by a black body

question

normalise the distributions $p(x) \propto x^n \exp(-x)$ and $p(x) \propto x^n/(\exp(x) - 1)$ with integer n and positive x

transformation of random variables

- suppose you know the distribution p(x)dx of a random distribution
- can you write down the distribution of a function v(x)?
- look at probability of each interval, which should be conserved by the mapping:

$$\int dy \, p(y) = \int dx \, p(y(x)) \frac{dy}{dx} \tag{12}$$

using integration by parts

• consequently: p(x)dx = p(y)dy if the above holds for any interval

question

what properties does the remapping $x \rightarrow y$ need to have?

 from every probability density p(x)dx one can construct the cumulative distribution P(x):

$$P(x) = \int_{-\infty}^{x} \mathrm{d}x' p(x') \tag{13}$$

• interpretation: probability of the random variable to be smaller than x

question

why is P(x) always monotonically increasing?

complementary cumulative distribution

the **complementary cumulative distribution** Q(x) is defined as the opposite.

$$Q(x) = \int_{x}^{+\infty} \mathrm{d}x' \, p(x') \tag{14}$$

which gives the probability of the random variable to be at least as large as x

obviously,

$$P(x) + Q(x) = 1 \tag{15}$$

if correctly normalised

question

design an algorithm for computing the cumulative distribution for a list of random numbers without histogramming them first!

Björn Malte Schäfer

quartiles and percentiles

• instead of p(x)dx or P(x) one often quotes percentiles:

$$P(x_a) = a\% ag{16}$$

 x_a is called the ath percentile

- it is customary to give quartiles, where a = 0.25, 0.5, 0.75
- or $n\sigma$ -intervals, in particular for symmetric distributions, containing 0.68, 0.95 or 0.99 of the total normalisation

cumulative distribution

cumulative, normalised distribution of 10³, 10⁴ draws from a Gaussian

question

how would you generate a cumulative distribution from data?

operations on random numbers Björn Malte Schäfer

qq-plots and percentiles

gaplot for 10^3 draws from a Gaussian

- with weak statistics, it is difficult to see the distribution due to the large Poisson noise in each bin entry → cumulative distribution works better
- some tools can plot the cumulative distribution with the y-axis rescaled such that the Gaussian distribution gives a straight line Björn Malte Schäfer

Gaussian probability density

Gaussian probability density

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right) \tag{17}$$

with variance σ^2

- many processes in Nature follow a Gaussian distribution
- reason: central limit theorem

question

verify the normalisation $\sqrt{2\pi\sigma^2}$ of the Gaussian probability density

question

show that the width of the Gaussian at half height is $2\sqrt{2}\ln(2)\sigma$

operations on random numbers Björn Malte Schäfer

Gaussian probability density

Gaussian density p(x)dx and cumulative P(x), variance $\sigma^2 = 1$

error function and Φ-function

• cumulative distribution $P(x) = \Phi(x)$ of a **unit Gaussian** with $\sigma^2 = 1$:

$$\Phi(x) = \int_{-\infty}^{x} dx' \, p(x') = \frac{1}{2} \left(1 + \operatorname{erf}(x/\sqrt{2}) \right)$$
 (18)

• the error function erf(x) is defined as

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x \mathrm{d}t \, \exp(-t^2)$$
 (19)

• the error function is a convenient way to express $n\sigma$ -intervals:

$$\int_{-n\sigma}^{+n\sigma} dx' \ p(x') = \operatorname{erf}(n/\sqrt{2})$$
 (20)

error function

Gaussian density p(x)dx and cumulative P(x), variance $\sigma^2 = 1$

• $\operatorname{erf}(n/\sqrt{2})$ are integrals of the Gaussian from $-n\sigma$ to $+n\sigma$

inversion sampling

- idea: map samples y from a known distribution to samples x if the relationship x(y) is known
- generate a random number y from the uniform unit interval
- map y onto $x = P^{-1}(y)$
- x is distributed according to p(x)dx:

$$x = P^{-1}(y) \to y = P(x) \to \frac{\mathrm{d}y}{\mathrm{d}x} = p(x) \to p(x)\mathrm{d}x = 1 \times \mathrm{d}y \tag{21}$$

meaning that x(y) is p(x)dx-distributed if y is uniformly distributed

- using that dP/dx = p(x) due to the fundamental theorem of calculus
 - advantage: every sample is valid
 - disadvantage: inversion might be difficult

question

why does the inversion $x = P^{-1}(y)$ always have a solution for x?

operations on random numbers Björn Malte Schäfer

x-value

cumulative distribution of a Gaussian probability density

- every interval dy gets squeezed or stretched into an interval dx
- amount of squeezing or stretching is proportional to p(x)

Björn Malte Schäfer operations on random numbers

independent random processes

 drawing two random number independently means that the probabilities of the two draws can be multiplied

$$p(x, y) = p(x) \times p(y) \tag{22}$$

for the **joint distribution** p(x, y) from the individual distributions for x and y

- this is called a **Markovian** process of length zero
- we will encounter correlated random variables and Markovian processes with a long memory

conditional random processes

- often, the outcome of a random experiment depends on a previous outcome: then, the two probabilties can **not** be multiplied
- in this case, the correlation coefficient is not zero and
- the distribution does not factorise
- instead:

$$p(x, y) = p(x|y) \tag{23}$$

which defines a Markovian process of length one

• what about Bayes' law? it does not matter if p(x, y) = p(y, x)

sum distribution

- let's combine two independent, indentically distributed random numbers x and y into a sum
- a certain fixed value s = x + y for the product can result from the entire range of x and y
- accumulate the total probability p_s for getting s: if x is the first number, the second number needs to be y = s - x so that the sum is s:

$$p_s(s) = \int dx \int dy \, p(x)p(y) \, \delta_D(s - x + y) = \int dx \, p(x)p(s - x) \quad (24)$$

 the sum distribution is the convolution of the two individual distributions

question

going back to the law of large numbers, do you see the convolution there?

product distribution

- let's combine two independent, identically distributed random numbers x and y to a product
- a certain fixed value q = x × y for the product can result from the entire range of x and y
- accumulate the total probability p_q for getting q: if x is the first number, the second number needs to be y = q/x so that the product is q:

$$p_q(q) = \int dx \int dy \, p(x)p(y) \, \delta_D(q - xy) = \int \frac{dx}{|x|} \, p(x)p(q/x) \tag{25}$$

with the Dirac- δ distribution

question

show that $\int dx \, \delta_D(\alpha x) = 1/\alpha$, then $\int dx \, p(x) \delta_D(\alpha x) = p(0)/\alpha$ and then the above relation

Gaussian product distribution

sampling

 combine two independent, identically Gaussian-distributed random numbers x, y to a product q = xy

$$p_q(q) = \frac{1}{2\pi\sigma^2} \int dx \int dy \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right) \delta_D(xy - q) = \frac{K_0(q/\sigma^2)}{\pi\sigma^2}$$
 (26)

with a Bessel function of the second kind

Gaussian product distribution (source: mathworld)

combinations

cumulative

ratio distribution

- let's combine two independent, identically distributed random numbers x and y to a ratio r = x/y
- in analogy to the product distribution, x as the first number needs to x/r for the second number such that the ratio is r:

$$p_r(r) = \int dx \int dy \, p(x)p(y) \, \delta_D(r - x/y) = \int dx \, |x| \, p(x)p(rx) \quad (27)$$

 combine two independent, identically Gaussian distributed random numbers x, y to a ratio r = x/y

$$p_r(r) = \frac{1}{2\pi\sigma^2} \int dy |y| \exp\left(-\frac{y^2}{2\sigma^2} \left[1 + r^2\right]\right)$$
 (28)

• with $\int y dy \exp(-\alpha y^2) = 1/(2\alpha)$ this becomes:

$$p_r(r) = \frac{1}{\pi} \frac{1}{1 + r^2} \tag{29}$$

this distribution is called the **Cauchy-distribution** and is mean!

the Cauchy-distribution

does not have a finite variance, and therefore, you can not apply the Chebyshev-inequality or the law of large numbers

Gaussian ratio distribution

Gaussian ratio distribution (source: mathworld)

cumulative

summary

- distributions and probability densities
- cumulative distributions
- transformations between random variables
- sampling of random numbers from a distribution
- Gaussian probability density and error function
- sum, product and ratio distribution