# Analog Electronic Circuits Project

#### January 2023

|   |   | A | В | С | D | Е | F | G | Н | I |
|---|---|---|---|---|---|---|---|---|---|---|
| ĺ |   | 9 | 3 | 2 | 0 | 5 | 6 | 7 | 2 | 4 |
| ĺ |   | 9 | 0 | 1 | 7 | 2 | 6 | 5 | 3 | 9 |
| Ì | 1 | 8 | 3 | 3 | 7 | 8 | 3 | 2 | 6 | 3 |

### 1 Circuit parameters

We have A and D one is even and the other is odd and thus the following circuit: After substituting the values





Figure 1: Frequency Response



of variables, we have

$$\begin{array}{ll} A = 63[dB] & f_1 = 8[kHz] & f_2 = 800[kHz] \\ M_1 = 20[\frac{dB}{dec}] & M_2 = -40[\frac{dB}{dec}] & R_{out} = 103[k\Omega] & (1) \\ R_{in} = 103[k\Omega] & \end{array}$$

All the transistors used had built-in capacitance zero, and  $|V_A| \to \infty$ , given  $r_0 \to \infty$  for all of them.

# 2 Design process

#### 2.1 Thought Process while designing

This is a general description of how we designed the amplifier. Exact calculations can be found in later parts.

#### 2.1.1 Step 1

We started with designing the differential stage. We tried to have symmetry with  $R_{C_1}$  and  $R_{C_2}$ . Then we looked to get the  $R_{in}$  we wanted. We set the  $R_{in}$  using  $r_{\pi}$  of the capacitor as per the equations described in detail later.  $r_{\pi}$  was dependent upon  $I_{c_{1,2}}$  and thus on  $R_r$ . Thus, we used the equation 16, and relation  $r_{\pi} = \frac{\beta}{g_m}$  to get  $g_m \to I_c \to I_{R_R} \to R_R = \frac{5-(-4.3)}{2\times I_{C_1}}$ . The required value comes out to be  $93[k\Omega]$ . Then, we started to manipulate the value of  $R_{C_1}$  and  $R_{C_2}$  such that we had collector voltage of  $Q_1$  and  $Q_2$  is 0.

#### 2.1.2 Step 2

Once we had our differential stage, we started by adding a single-ended stage. For each stage, we made sure that  $\frac{R_{C_i}}{R_{e_i}}$  was 1.2:1 and that we get 0[V] at the base of the next BJT(to reduce free variables and make calculations easier). Then, we calculated the required gain at each stage. At a stage, we would simulate the circuit to cross-check. In case, we realised that this is not enough for the gain we want, we would add another stage and repeat the process. It can be seen the highest gain for stages were obtained for  $R_c$  resistances  $205.6[k\Omega], 169.62[k\Omega], 30.396[k\Omega]$  as seen in Fig(2).



Figure 2: Full Circuit

#### 2.1.3 Step 3

We then realized that we needed a common collector stage at the load so that the low  $R_L$  does not kill our gain.

#### 2.1.4 Step 4

However, the amplification of the final stage is not high and our differential output was not capable of producing the full gain within the constraints. Thus, we had to add more stages.

#### 2.1.5 Step 5

The  $R_{out}$  had an influence of  $r_{\pi_{ce}}$  as can be seen in equations described later, which was in parallel with  $R_{e_2}$  (these two can be seen in our final circuit).  $r_{\pi_{ce}}$  could not be made high enough under the given constraints to get the needed  $R_{out}$ . Thus, we had to add a series resistance  $R_{q_1}$  as in the final circuit. However, this had an impact on our gain, and thus we needed another common collector stage.<sup>1</sup>

#### 2.1.6 Step 6

After that, we started to add capacitors that would contribute high and low poles at places easy to calculate. We choose positions where it is simple to calculate  $R_{net}$  using the test source method, of course ensuring positions of the capacitor contributed in the frequency range we wanted them to. After calculating the values, they were tested in the simulations and were altered by tiny amounts in order to get exactly -3[dB] at the poles.<sup>2</sup>

#### 2.2 Final Circuit

The circuit is as described in Fig(2) and the frequency response is as follows in Fig(1)

## 3 Large Signal Analysis

The values of resistances were chosen such that the BJTs will be in forward active mode. We will calculate the bias points for every BJT.

#### 3.1 $Q_{M_1}$

In DC analysis we have  $V_{E_{Q_1}}=-5$ , and a node connection of collector and base, so  $V_{B_{Q_1}}=V_{C_{Q_1}}=-4.3$ , because we assumed the BJT is in the forward active, there has to be a -0.7 voltage drop between base and emitter. So we get the current of  $I_{CE_{QM_1}}=\frac{5-(-4.3)}{93k}=0.1[mA]$  then we obtain

$$\begin{cases} I_{C_{M_1}} = 0.1[mA] \\ V_{B_{M_1}} = -4.3[V] \\ V_{C_{M_1}} = -4.3[V] \\ V_{E_{M_1}} = -5[V] \end{cases}$$
(2)

This gives us the following small signal parameters

$$\begin{cases} g_{m_{M_1}} = 4\left[\frac{mA}{V}\right] \\ r_{\pi_{M_1}} = 25[k\Omega] \end{cases}$$
 (3)

#### 3.2 $Q_{M_2}$

The  $Q_{M_1}$  is the current mirror of  $Q_{M_2}$ , so we have the same bias current  $I_{Q_{M_1}} = I_{Q_{M_2}} = 0.1[mA]$ . And the  $V_{B_{M_2}} = V_{B_{M_1}}[V] = -4.3[V], V_{E_{M_2}} = -5[V]$ , plus because of the  $V_{B_1} = 0[V]$ , with the -0.7 voltage drop, we obtain the  $V_{C_{M_2}} = -0.7[V]$ . As a result, we obtain the following.

 $<sup>^{1}</sup>$ In Fig(2), the function of the  $R_{ex}$  is only for the good result of OP analysis. We got  $r_{o_{6}}=0$  in the OP analysis instead of infinity. It also helped us reduce excess gain and hence more accurate result

 $<sup>^2</sup>$ If the pole was at a higher frequency, we increased the value of C slightly and vv.



Figure 3: Voltage and Currents

 $\begin{cases} I_{C_{M_2}} = 0.1[mA] \\ V_{B_{M_2}} = -4.3[V] \\ V_{C_{M_2}} = -0.7[V] \\ V_{E_{M_1}} = -5[V] \end{cases}$ (4)

This gives us the following small signal parameters

$$\begin{cases} g_{m_M 2} = 4\left[\frac{mA}{V}\right] \\ r_{\pi_M 2} = 25[k\Omega] \end{cases}$$
 (5)

## **3.3** $Q_1$ and $Q_2$

We discuss the differential pair together,  $V_{B_1}=V_{B_2}=0[V], V_{E_1}=V_{E_2}=-0.7[V],$  and because the  $I_{Q_{M_2}}=0.1[mA],$  by the symmetry we get  $I_{Q_1}=I_{Q_2}=0.05[mA],$  then we obtain  $V_{C_1}=V_{C_2}=5-I_{Q_1}R_{C_1}=0[V],$  then we obtain the following.

$$\begin{cases} I_{C_1} = I_{Q_2} = 0.05[mA] \\ V_{B_1} = V_{B_2} = 0[V] \\ V_{C_1} = V_{C_2} = 0[V] \\ V_{E_1} = V_{E_2} = -0.7[V] \end{cases}$$
(6)

This gives us the following small signal parameters

$$\begin{cases}
g_{m_1} = g_{m_2} = 2\left[\frac{mA}{V}\right] \\
r_{\pi_1} = r_{\pi_2} = 50[k\Omega]
\end{cases}$$
(7)

#### 3.4 $Q_3$

We have  $V_{B_{Q_3}} = V_{C_{Q_2}} = 0$ . Then, we have a 0.7[V] drop across BC of  $Q_3$ , which gives us  $V_{C_{Q_3}} = -0.7[V]$ .

The current is  $I_{Q_3}=\frac{-0.7-(-5)}{172k}=0.025[mA]$ . The same current flows from  $R_{C_3}$ . Then we calculate the voltage

drop across  $R_{C_3}$  to get  $V_{C_{Q_3}} = -0.14[V]$ 

$$\begin{cases} I_{C_3} = 0.025[mA] \\ V_{B_3} = 0[V] \\ V_{C_3} = -0.14[V] \\ V_{E_3} = -0.7[V] \end{cases}$$
(8)

This gives us the following small signal parameters

$$\begin{cases} g_{m_3} = 1\left[\frac{mA}{V}\right] \\ r_{\pi_3} = 100[k\Omega] \end{cases} \tag{9}$$

#### 3.5 $Q_4$

We perform similar calculations for  $Q_4$  and obtain

$$\begin{cases}
I_{C_4} = 0.03[mA] \\
V_{B_4} = -0.14[V] \\
V_{C_4} = -0.84[V] \\
V_{E_4} = -0.0886[V]
\end{cases}$$
(10)

This gives us the following small signal parameters

$$\begin{cases} g_{m_4} = 1.1728 \left[ \frac{mA}{V} \right] \\ r_{\pi_4} = 85.266 \left[ k\Omega \right] \end{cases}$$
 (11)

#### 3.6 $Q_5$

We perform similar calculations for  $Q_5$  and obtain

$$\begin{cases} I_{C_5} = 0.17018[mA] \\ V_{B_5} = 0.026[V] \\ V_{C_5} = -0.05[V] \\ V_{E_5} = -0.6733[V] \end{cases}$$
(12)

This gives us the following small signal parameters

$$\begin{cases} g_{m_5} = 6.807 \left[ \frac{mA}{V} \right] \\ r_{\pi_5} = 14.69 \left[ k\Omega \right] \end{cases}$$
 (13)

#### 3.7 $Q_6$

We perform similar calculations for  $Q_6$  and obtain

$$\begin{cases} I_{C_6} = 1.05 \times 10^{-2} [mA] \\ V_{B_6} = 0.05 [V] \\ V_{C_6} = 5 [V] \\ V_{E_6} = -0.7 [V] \end{cases}$$
(14)

This gives us the following small signal parameters

$$\begin{cases} g_{m_6} = 0.403 \left[ \frac{mA}{V} \right] \\ r_{\pi_6} = 232.56 \left[ k\Omega \right] \end{cases}$$
 (15)

Indeed, all the BJTs are in forward active mode ( $V_{CE} > 0.2$ ). The DC output can be seen in Fig(4)

We verified all the above calculations and small signal



Figure 4: DC  $V_{out}$ 

parameters in LTS pice as can be seen in Fig(5) and in Fig(3)

#### 4 $R_{in}$

Before trying to set the gain, we set the required  $R_{in}$ . We add a test source at  $V_{in}$  and look into  $Q_2$ . We see the following resistance<sup>3</sup>

$$R_{in} = r_{\pi_1} + (\beta + 1) \frac{r_{\pi_2}}{1 + \beta} \tag{16}$$

We get  $R_{in} \approx 103[k\Omega]$ . The test can be seen in Fig(6). A test source of 1[V] was added and current across it was measured. Thus, in log scale,  $R_{in}[dB] = -I[dB]$ . We get values close to 100.24, which corresponds with the required  $R_{in}$ .

#### $\mathbf{5}$ $R_{out}$

We now start to look at  $R_{out}$ . In the given circuit, we have

$$R_{out} = R_{e_2} || \left( R_{q_1} + \frac{r_{\pi_6} + R_{C_5}}{\beta + 1} \right)$$
 (17)

We get  $R_{out} \approx 103[k\Omega]$ 

| 1  | Semicono       | ductor Device | Operating | Points:       |           |          |
|----|----------------|---------------|-----------|---------------|-----------|----------|
| 2  |                |               | Bip       | olar Transist | ors       |          |
| 3  | Name:          | q6            | q5        | q4            | q2        | qm1      |
| 4  | Model:         | npn           | npn       | npn           | npn       | npn      |
| 5  | <pre>Ib:</pre> | 1.04e-07      | 1.66e-06  | 2.79e-07      | 4.84e-07  | 9.79e-07 |
| 6  | Ic:            | 1.04e-05      | 1.66e-04  | 2.79e-05      | 4.84e-05  | 9.79e-05 |
| 7  | Vbe:           | 6.56e-01      | 7.28e-01  | 6.82e-01      | 6.96e-01  | 7.14e-01 |
| 8  | Vbc:           | -5.04e+00     | 4.05e-02  | -3.15e-01     | -1.30e-01 | 0.00e+00 |
| 9  | Vce:           | 5.69e+00      | 6.87e-01  | 9.96e-01      | 8.26e-01  | 7.14e-01 |
| 10 | BetaDC:        | 1.00e+02      | 1.00e+02  | 1.00e+02      | 1.00e+02  | 1.00e+02 |
| 11 | Gm:            | 4.02e-04      | 6.42e-03  | 1.08e-03      | 1.87e-03  | 3.78e-03 |
| 12 | Rpi:           | 2.49e+05      | 1.56e+04  | 9.28e+04      | 5.34e+04  | 2.64e+04 |
| 13 | Rx:            | 0.00e+00      | 0.00e+00  | 0.00e+00      | 0.00e+00  | 0.00e+00 |
| 14 | Ro:            | 9.80e+98      | 5.39e+13  | 4.99e+19      | 3.97e+16  | 2.59e+14 |
| 15 | Cbe:           | 0.00e+00      | 0.00e+00  | 0.00e+00      | 0.00e+00  | 0.00e+00 |
| 16 | Cbc:           | 0.00e+00      | 0.00e+00  | 0.00e+00      | 0.00e+00  | 0.00e+00 |
| 17 | Cjs:           | 0.00e+00      | 0.00e+00  | 0.00e+00      | 0.00e+00  | 0.00e+00 |
| 18 | BetaAC:        | 1.00e+02      | 1.00e+02  | 1.00e+02      | 1.00e+02  | 1.00e+02 |
| 19 | Cbx:           | 0.00e+00      | 0.00e+00  | 0.00e+00      | 0.00e+00  | 0.00e+00 |
| 20 | Ft:            | 0.00e+00      | 0.00e+00  | 0.00e+00      | 0.00e+00  | 0.00e+00 |
| 21 |                |               |           |               |           |          |
| 22 | Name:          | qm2           | q3        | q1            |           |          |
| 23 | Model:         | npn           | npn       | npn           |           |          |
| 24 | <pre>Ib:</pre> | 9.79e-07      | 2.60e-07  | 4.85e-07      |           |          |
| 25 | Ic:            | 9.79e-05      | 2.56e-05  | 4.85e-05      |           |          |
| 26 | Vbe:           | 7.14e-01      | 6.79e-01  | 6.96e-01      |           |          |
| 27 | Vbc:           | -3.59e+00     | 4.54e-01  | -1.52e-01     |           |          |
| 28 | Vce:           | 4.30e+00      | 2.25e-01  | 8.48e-01      |           |          |
| 29 | BetaDC:        | 1.00e+02      | 9.84e+01  | 1.00e+02      |           |          |
| 30 | Gm:            | 3.78e-03      | 9.91e-04  | 1.87e-03      |           |          |
| 31 | Rpi:           | 2.64e+04      | 1.01e+05  | 5.33e+04      |           |          |
| 32 | Rx:            | 0.00e+00      | 0.00e+00  | 0.00e+00      |           |          |
| 33 | Ro:            | 4.90e+74      | 6.14e+06  | 9.11e+16      |           |          |
| 34 | Cbe:           | 0.00e+00      | 0.00e+00  | 0.00e+00      |           |          |
| 35 | Cbc:           | 0.00e+00      | 0.00e+00  | 0.00e+00      |           |          |
| 36 | Cjs:           | 0.00e+00      | 0.00e+00  | 0.00e+00      |           |          |
| 37 | BetaAC:        | 1.00e+02      | 1.00e+02  | 1.00e+02      |           |          |
| 38 | Cbx:           | 0.00e+00      | 0.00e+00  | 0.00e+00      |           |          |
| 39 | Ft:            | 0.00e+00      | 0.00e+00  | 0.00e+00      |           |          |
|    |                |               |           |               |           |          |

Figure 5: Operating Point Analysis for Small Signal Parameters



Figure 6:  $R_{in}$ 

# 6 DC Power Consumption

To calculate the DC power consumption, we measured the current across  $V_{cc}$  and  $V_{ee}$  as can be seen in Fig(8). Then we just use P = VI for both sources and obtain  $P = 4.295 \times 10^{-3} [W] << 0.1 [W]$ 

# 7 Gain

After setting  $R_{in}$  and  $R_{out}$ , we moved on to calculate the gain

<sup>&</sup>lt;sup>3</sup>In all small signal,  $V_A \to \infty$  and thus  $r_o \to \infty$ 



Figure 7:  $R_{out}$ 



Figure 8: Current across  $V_{cc}$  and  $V_{ee}$ 



Figure 9: Gain at each stage in Final Circuit

#### 7.1 Differential Gain

The differential gain is given by<sup>4</sup>

$$A_{diff} = \frac{1}{2} g_{m_2}(R_{C_2} || r_{\pi_3}) \approx 50(34[dB])$$
 (18)

#### 7.2 Common Emitter Stage Gain

The next three stages have the following gain

$$A_{cs_3} = -g_{m_3}(R_{C_3}||r_{\pi_4}) \approx -60.27(35.3[dB])$$

$$A_{cs_4} = -g_{m_4}(R_{C_4}||r_{\pi_5}) \approx -15.84(23.3[dB])$$

$$A_{cs_5} = -g_{m_5}(R_{C_5}||(r_{\pi_6} + (1+\beta)R_{q_1} + R_{e_2}||R_L))$$

$$\approx -211(45.5[dB])$$
(19)

#### 7.3 Common Collector Gain

$$A_{ce} = \frac{g_{m_6}(R_{q_1} + R_{e_2}||R_L)}{1 + g_{m_6}(R_{q_1} + R_{e_2}||R_L)} \frac{R_L||R_{e_2}}{(R_L||R_{e_2}) + R_{q_1}}$$
(20)

 $\approx 2.4 \times 10^{-4} (-73.7[dB]).$ 

Thus, we get our total gain  $A \approx 63[dB]$ 

# 8 Calculating Capacitor that contribute to $\omega_L$

The only capacitor that is influencing the slope near 8[kHz] is  $C_{e_1}$ .  $C_{e_2}$  helps to nullify the effects of zeros near 8[Hz], and  $C_{e_3}$  only serves to remove degeneration. These capacitors were given bigger values so that they help us remove generation without affecting the frequency response in the interested intervals.

#### 8.1 Calculating $C_{e_1}$

We replace  $C_{e_1}$  with a test source. The resistance seen by this test source is

$$R_{C_{e_1}}^{eff} = R_{e_1} || \left[ \frac{r_{\pi_3} + R_{C_2}}{\beta + 1} \right]$$
 (21)

Then, we have that  $\omega=2\pi(8[kHz])=\frac{1}{R_{C_{e_1}}^{eff}C_{e_1}}$ . Solving for  $C_{e_1}$  gives us  $C_{e_1}=0.85\times 10^{-8}[F]$ 

# 9 Calculating Capacitor that contribute to $\omega_H$

We now look at the frequency-dependent elements

#### 9.1 Calculating $C_3$

We replace  $C_3$  by a test source. The resistance seen by this test source is

$$R_{C_3}^{eff} = r_{\pi_5} || R_{C_4} \tag{22}$$

Then, we have that  $\omega = 2\pi (800[kHz]) = \frac{1}{R_{C_3}^{eff}C_3}$ . Solving for  $C_3$  gives us  $C_3 = 1.56 \times 10^{-11}[F]$ 

<sup>&</sup>lt;sup>4</sup>No Common Gain here (insignificant)

### 9.2 Calculating $C_2$

We replace  $C_2$  with a test source. The resistance seen by this test source is

$$R_{C_2}^{eff} = R_{C_5} ||[r_{\pi_6} + (\beta + 1)(R_{q_1} + R_L || R_{e_2})]$$
 (23)

Then, we have that  $\omega=2\pi(800[kHz])=\frac{1}{R_{C_2}^{eff}C_2}.$  Solving for  $C_2$  gives us  $C_2=5.2\times 10^{-12}[F]^{\frac{5}{5}}$ 

## 9.3 Bode Plot at 8[kHz] and 800[kHz]



Figure 10: Plot around 800[kHz]



Figure 11: Plot around 8[kHz]

We can easily see -3dB at  $f_L$  and -6dB at  $f_H$  drop as expected.

 $<sup>^5{\</sup>rm The}$  values of the capacitors were slightly altered in the final circuit in order to get more accurate results and solve the inaccuracy caused by rough calculations and assumptions