Série Nº4: Formes linéaires et Formes quadratiques

Exercice 1

1. On désigne par S une matrice carrée symétrique à termes réels d'ordre n et par L une matrice colonne à n termes réels; on suppose que la matrice S est inversible.

On définit une application f de \mathbb{R}^n dans \mathbb{R} en posant pour toute matrice colonne X ayant n termes réels :

$$f(X) = X^T S X + 2L^T X + \delta.$$

- (a) Montrer qu'il existe une matrice colonne unique U telle que le changement de variable : X = U + Y transforme f(X) en la somme d'une forme quadratique en Y et d'une constante.
- (b) En déduire qu'il existe une matrice orthogonale P telle que si :

$$X = U + PZ$$

et si ξ_1, \ldots, ξ_n sont les termes de Z:

$$f(X) = \sum_{i=1}^{n} \rho_i \xi_i^2 + \varepsilon.$$

(c) En considérant la forme quadratique F définie sur \mathbb{R}^{n+1} par :

$$F(X,\theta) = X^T S X + 2L^T X \theta + \delta \theta^2$$

 $(X \text{ est la matrice des } n \text{ premières coordonnées et } \theta \text{ la } (n+1)$ -ième coordonnée d'un élément de \mathbb{R}^{n+1}), montrer que :

$$\varepsilon = \frac{\det \begin{pmatrix} S & L \\ L^T & \delta \end{pmatrix}}{\det(S)}$$

2. On considère l'application φ de \mathbb{R}^3 dans \mathbb{R} définie par :

$$\varphi(X) = 3(x^2 + y^2 + z^2) - 2(xy + yz = zx) - 4x - 4y + 4z,$$

où x,y,z désignent les termes de la matrices colonne X.

On sait qu'il existe une matrice colonne U et une matrice orthogonale P telles que si ξ_1, ξ_2, ξ_3 sont les termes de la matrice colonne $Z = P^{-1}(X - U)$

$$\varphi(X) = \sum_{i=1}^{3} \rho_i \xi_i^2 + \varepsilon.$$

Déterminer les nombres ρ_i , ρ_2 , ρ_3 et ε ; puis retruver la valeur de ε en déterminant la matrice U.

Exercice 2

On considère l'espace vectoriel E sur $\mathbb C$ des matrices colonnes X à termes complexes et on pose

$$||X||^2 = \bar{X}^T X.$$

On désigne par A une matrice carrée d'ordre n à termes complexes hermitienne, c'est-à-dire telle que $A^T = \bar{A}$ (on note \bar{X} et \bar{A} les matrices obtenues en remplaçant chaque terme de X ou de A par le nombre conjugué).

1. Montrer que si I est la matrice unité et α et β des nombres réels, alors :

$$\|(A - (\alpha + i\beta)I)X\|^2 = \|(A - \alpha I)X\|^2 + \beta^2 \|X\|^2$$

2. Retrouver ainsi que les valeurs propres de A sont réelles.

Exercice 3

- 1. On considère un espace euclidien E et un sous-espace vectoriel F de E, ces espaces étant de dimension finie ou non.
 - (a) On donne un vecteur x de E. En étudiant la distance de x au vecteur $x_0 + \lambda y$, montrer que la condition nécessaire et suffisante pour que x_0 soit de tous les vecteurs de F un de ceux dont la distance à x est minimum est que $x x_0$ soit orthogonal à tous les vecteurs de F.
 - (b) Montrer qu'il ne peut exister deux vecteurs de F dont la distance à x soit minimum.
 - (c) Montrer que si F est de dimension finie, alors il existe effectivement un vecteur x_0 de F dont la distance à x est minimum.
- 2. (a) Montrer que dans l'espace vectoriel sur \mathbb{R} des fonctions continues de $[0, 2\pi]$ dans \mathbb{R} , on peut définir un produit scalaire en posant : $(f,g) = \int_0^{2\pi} f(t)g(t)dt$. Quelle est la norme associée à ce produit scalaire? nous désignerons par E l'espace euclidien (de dimension infinie) ainsi obtenu.
 - (b) Montrer que dans E, les fonctions 1, $\cos(kt)$ et $\sin(ht)$ (k et h étant des entiers naturels arbitraires) sont deux à deux orthogonales.
 - (c) On prend pour F l'espace vectoriel des polynômes trigonométriques d'ordre n (c'est-àdire combinaisons linéaires de 1, $\cos(kt)$ et $\sin(ht)$, avec $k \ge n$ et $h \ge n$). Déterminer le polynôme Q dont la distance à une fonction f donnée est minimum.

Exercice 4

- 1. Soit E l'espace vectoriel réel dont les éléments sont les fonctions réelles définies sur $\mathbb R$ et indéfiniment dérivables.
 - (a) Montrer que les applications $f \mapsto f(0)$, $f \mapsto f''(1)$ et $f \mapsto \int_0^1 f(t)dt$ de E dans \mathbb{R} sont des formes linéaires sur E.
 - (b) Montrer que les applications $f\mapsto f(0)+1$ et $f\mapsto (f'(2))^2$ ne sont pas des formes linéaires.
- 2. Montrer que les applications $f:(x,y,z)\mapsto x+2y+3z$ et $g:(x,y,z)\mapsto x-2y+3z$ sont des formes linéaires sur \mathbb{R}^3 , et qu'elles sont linéairement indépendantes.
- 3. Montrer que l'application $f: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$, $((x, y, z), (x', y', z')) \mapsto xx' + yz'$ est une forme bilinéaire dégénérée. Trouver les noyaux des deux homomorphismes associés canoniquement à f. Déterminer le rang de l'application bilinéaire f.

Exercice 5

Soit $E = \mathbb{R}[x]$ l'espace vectoriel sur \mathbb{R} des fonctions polynômiale en x. Pour tout polynôme P, soit f_P l'application sur E qui associe, à tout polynôme Q, le nombre

$$f_P(Q) = \int_0^1 P(x)Q'(x)dx + \int_0^1 P'(x)Q(x)dx.$$

- 1. Montrer que f_P est une forme linéaire sur E.
- 2. Trouver les polynômes P de degré 3 tels que f_P soit orthogonale aux polynômes 1, x+1 et x^2+2 .