Algebra Workshop

I. Find the least common denominator for each of the following options then add.

(i)	(i) <u> </u>		L	X		- 4			
	x24x	+4	•	2x2+	Ч×		Xs	-4	
5 4	-2	 L		 ×			3	٠	
1	2	. 1 -			-				

$$\frac{x-2}{(x-2)^2} + \frac{x}{2x(x+2)} + \frac{3}{(x-2)(x+2)}$$

$$\frac{1}{2(x+2)} + \frac{1}{2(x+2)} + \frac{3}{(x-2)(x+2)}$$

$$\frac{2(x+z)}{2(x-z)(x+z)} + \frac{(x-z)}{2(x-z)(x+z)} + \frac{3(z)}{2(x-z)(x+z)}$$

$$2(x+z) + (x-z) + 3(z)$$

$$\frac{3}{x^2} + \frac{x+2}{x^2+4} + \frac{4}{2x}$$

$$\frac{3}{x^2} + \frac{x+2}{x^2+4} + \frac{2 \cdot 2}{x^2}$$

$$\frac{3}{x^2} + \frac{x+z}{x^2+4} + \frac{2}{x}$$

factors:
$$(x),(x^2+4)$$

powers: $(x)^2(x^2+4)$

$$\frac{3(x^2+4)}{x^2(x^2+4)} + \frac{x^2(x+2)}{x^2(x^2+4)} + \frac{2(x)(x^2+4)}{x^2(x^2+4)}$$

$$\frac{3(x^2+4)+x^2(x+2)+2(x)(x^2+4)}{x^2(x^2+4)}$$

(iii)
$$\frac{2x}{x^3} + \frac{x+1}{x^2} + \frac{3}{x}$$

$$\frac{x \text{ does not cancel}}{(x) x^2} + \frac{x+1}{x^2} + \frac{3}{x}$$

$$\frac{2}{x} + \frac{x+1}{x^2} + \frac{3}{x}$$

$$\frac{2x}{x^2} + \frac{x+1}{x^2} + \frac{3x}{x^2}$$

I. Simplify the following fractions.

(i)
$$2(x+2)(x-3)^2 - 3(x-3)^2(x+2)^2$$

$$\frac{(ii) b \cdot (2x+4)^{5} (x^{2}+2x-8)^{2}}{(x^{2}+2x-8)^{4}} = 2(x^{2}+2x-8) (2x+4)^{6}$$

= term; to be a common factor it must appear in every term

common factor: (x-3)
lowest power: (x-3)2

$$(2)(x+2)(x+2)^{-}(x+2)^{2}$$