1 信息论的一个例子 [1]

1000 桶水, 其中一桶有毒, 猪喝毒水后会在 15 分钟内死去, 想用一个小时找到这桶毒水, 至少需要几头猪?

这道题看起来像是一道算法题,本质上却是披着羊皮的信息论问题。解答这道题并不是我的目的, 我的目的是用信息论的思维来思考,达到触类旁通,一通百通。

用信息论去思考的另一个好处就是,<mark>信息论给了这类问题的一个边界,让我们在边界范围内思考问题。</mark>很难想象,70 多年前的香农已经用严格的理论证明为这类问题设定了一个极限,任何想逾越这个极限去解决问题的人最后都会被证明是徒劳的。

这也是理论武装头脑的好处,当别人还在尝试是否有更优的解法时,你可以直接给出最优答案,用信息论降维打击。即使我可能暂时无法想出具体的方案,但我知道这类问题的一个理论极限在哪里,没有必要为超越极限做无用功。

1.1 信息熵

1.1.1 热力学中的熵

熵的概念最早起源于物理学,用于度量一个热力学系统的无序程度,也就是系统混乱程序。 熵增定律指出:在一个孤立系统里,如果没有外力做功,其总混乱度(熵)会不断增大。

1.1.2 信息论中的熵

在信息论中, 熵的概念和热力学中是类似的, 描述的是"信息的不确定程度"。

• 热力学熵:系统的混乱程度

• 信息熵: 信息的不确定性的度量

所以信息中的不确定性类似于热力学中系统的混乱程度。也就是说,信息的不确定程度越大,信息 熵也就越大。那什么样的信息不确定程度大呢?

比如抛一枚硬币,如果我来猜正反的话,那么我基本只能靠瞎蒙,因为不确定程度很大,正反的概率都是 0.5。对于抛一次硬币猜正反这类事件来说,它的不确定程度很大,信息熵也很大。

如果中国男足和巴西男足比赛,让我来猜胜负,那么我几乎可以断言,巴西队一定会赢。也就是巴西队和中国队胜负这个事件的不确定程度很小,信息熵也就很小。如果比赛前我告诉你一条信息"巴西队肯定会赢",那么这条信息的信息量几乎为零,因为这条信息并没有降低信息的不确定度。

1.1.3 信息、信息熵、信息量的关系

上面提到了信息熵、信息、信息量,它们之间的比较如下:

- 凡是在一种情况下能减少不确定性的任何事物都叫信息,否则叫作废话。比如经常会碰到有人絮絮叨叨,不知所云,说了好久不知道要表达什么。从信息论的角度来看,这些话就不包含信息。
 - 信息熵是一个绝对值,用来衡量信息不确定程度的绝对大小。
- **信息量**是一个相对值,表示的是在给出一条信息后,信息熵前后的减小值。如果信息熵减小的越大,说明这条信息的信息量越大。比如福彩 35 选 7,如果有人直接告诉你这 7 个数字,那么这条信息的信息量就超级大,因为它直接将信息熵降为 0。

1.1.4 信息熵的定量表述

香农把随机变量 X 的熵值 定义如下:

$$H(X) = -\sum_{i} P(x_i) \log_b P(x_i)$$

b 是对数所使用的底。当 b=2,熵的单位是 bit。

P 为 X 的概率质量函数 (probability mass function), 我们可以理解为事件 x_i 发生的概率。

公式看起来可怕,其实非常简单。让我们用抛硬币来举例,"抛一次硬币得到正面或者反面"这个随机变量 X 的信息熵为:

$$H(X) = -(\frac{1}{2}\log_2\frac{1}{2} + \frac{1}{2}\log_2\frac{1}{2}) = -\log_2\frac{1}{2} = 1$$

也就是抛一次硬币是正面还是反面这个事件的信息熵只需要 1 bit,也就是只需要用 1 位的二进制数就可以表示这个信息大小。也就是说,在计算机中,我们给抛硬币这个事件进行编码,只需要 1 个 bit 的信息就可以描述了,比如 0 带代表反面,1 代表正面。

1.1.5 题目的简化版本

在我们学习了信息熵的知识以后,让我们再来看题目。原题其实略微复杂一些,先将题目简化一下: 1000 桶水,其中一桶有毒,猪喝毒水后会在 15 分钟内死去,想用 15 分钟内找到这桶毒水,至少需要几头猪?

首先,"1000 桶水其中有一桶有毒"可以用随机变量 X 来描述(X = i 表示第 i 桶水有毒),那么这个随机变量 X 的信息熵为:

$$H(X) = -\sum_{i}^{N} P(X_i) \log_2 P(X_i) = -\sum_{i}^{1000} \frac{1}{1000} \log_2 \frac{1}{1000} = -\log_2 \frac{1}{1000} = 9.966$$

也就是说,在计算机中,我们给"哪通水有毒"这个事件进行编码,只需要 10 个 bit 的信息就可以描述了,比如 0000000001 代表第一桶水有毒。

1 只猪喝水以后的要么活着,要么死去,一共有两种状态,所以"1 只猪喝完水以后的状态"这个随机变量 Y 的信息熵为

$$H(Z) = -(\frac{1}{2}\log_2\frac{1}{2} + \frac{1}{2}\log_2\frac{1}{2}) = -\log_2\frac{1}{2} = 1$$

n 只猪喝完水会有 2^n 种状态,即"n 只猪喝完水以后的状态" 这个随机变量 Y 的信息熵为:

$$H(Y) = \sum_{i=1}^{2^n} P(y_i)I(y_i) = -\sum_{i=1}^{2^n} \frac{1}{2^n} \log_2 \frac{1}{2^n} = -\log_2 \frac{1}{2^n} = n$$

所以,按照题目要求,如果至少需要 n 头猪能够找到这桶毒水,那么随机变量 Y 的信息熵必须要大于随机变量 X 的信息熵,也就是 H(Y) >= H(X),即 n >= 9.966,所以 n = 10。

其实,上面的信息熵计算的简化版本可以写成如下更好理解的形式:

$$2^n > = 1000$$

同样可以解得 n=10 , 虽然形式简单, 但我们一定要记住它背后的原理是信息熵。

1.1.6 简化后题目的具体方案

10	9	8	7	6	5	4	3	2	1
1	1	1	1	1	1	1	1	1	1
								1	
512	256	128	64	32	16	8	4	2	1
513	257	129	65	33	17	9	5	3	3
514	258	130	66	34	18	10	6	6	5
515	259	131	67	35	19	11	7	7	7
516	260	132	68	36	20	12	12	10	9
517	261	133	69	37	21	13	13	11	11
518	262	134	70	38	22	14	14	14	13
519	263	135	71	39	23	15	15	15	15
520	264	136	72	40	24	24	20	18	17
10 (9) 8 7 (6) 5 (4) (3 知乎@萬华栋)									

Figure 1: 编码方式

我们将 1000 桶水按照 2 进制编码,如图第一行,需要 10 位二进制数。于是有

• 第 1 桶水对应上图最右侧位置 1 的数字是 1, 其它数字都是 0, 也就是 00000 00001b, 其中 b 代表二进制数。

- 第 10 桶水对应上图位置 4 和位置 2 的数字是 1, 其它数字都是 0, 也就是 00000 01010b。
- 同理,任意一桶水,都可以对应上面唯一的一个二进制数。

于是, 我按照如下方案让猪进行喝水, 如上图所示:

- 1 号猪喝位置 1 的数字是 1 的水,也就是 1、3、5、7、9 ...
- 2 号猪喝位置 2 的数字是 1 的水,也就是 2、3、6、7、10 ...

•

如果 15 分钟后 1, 3, 5 号猪被毒死,那么对应的二进制编码就是 00000 10101b,也就是 21 号水桶有毒。更一般的,猪死的任何一种排列方式都对应了二进制的唯一编码。

1.1.7 原题目

1000 桶水, 其中一桶有毒, **猪喝毒水后会在 15 分钟内死去, 想用一个小时找到这桶毒水**, 至少需要几头猪?

有了前面简化的版本的理解, 我们容易得知

" 1000 桶水其中有一桶有毒"这个随机变量 X 的信息熵为:

$$H(X) = -\log_2 \frac{1}{1000} = 9.966$$

而对于猪的状态就不太一样了,我们可以想象一下,一只猪在一个小时内会有几种状态?

- 在第 0 分钟的时候喝了一桶水以后, 第 15 分钟死去。
- 第 15 分钟依然活着,喝了一桶水以后,第 30 分钟死去。
- 第 30 分钟依然活着,喝了一桶水以后,第 45 分钟死去。
- 第 45 分钟依然活着,喝了一桶水以后,第 60 分钟死去。
- 第 45 分钟依然活着,喝了一桶水以后,第 60 分钟依然活着。

可见,1 只猪 1 个小时以后会有 5 种状态,所以" 1 只猪 1 个小时后的状态"这个随机变量 Z 的信息熵为:

$$H(Z) = -(5 \times \frac{1}{5} \log_2 \frac{1}{5}) = \log_2 5 = 2.3219$$

n 只猪 1 个小时后会有 5^n 种状态,即"n 只猪 1 个小时以后的状态" 这个随机变量 Y 的信息熵为:

$$H(Y) = \sum_{i=1}^{5^n} P(y_i)I(y_i) = -\sum_{i=1}^{5^n} \frac{1}{5^n} \log_2 \frac{1}{5^n} = -\log_2 \frac{1}{5^n} = n \log_2 5 = 2.3219n$$

所以,按照题目要求,如果至少需要 n 头猪能够找到这桶毒水,那么随机变量 Y 的信息熵必须要大于随机变量 X 的信息熵,也就是: H(Y) >= H(X),即 n >= 9.966/2.3219 = 4.292,所以 n = 5。

事实上,对于 n=5来说,不仅可以检测 1000 桶水,甚至检测 3000 桶水都是没有问题的。有兴趣的童鞋可以试着计算一下。

到此,香农给了我们一个理论极限,但是具体的方案还是需要我们自己进行构造。得出 n=5 是依靠我们的理论功底,而得出具体的方案就是我们的工程水平了。

根据前面简化版本的二进制编码方式的思路, 我们是不是可以利用猪的 5 种状态构造一个 5 进制编码方式呢?如下图所示。

Figure 2: 编码方式

首先,将 1000 桶水按照 5 进制编码的方式排列,如上图所示,需要 5 位 5 进制数。然后按照如下方案让猪进行喝水,如上图所示:

- 1 号猪第 0 分钟喝位置 1 的数字是 1 的水,如图所示,也就是 1、6、11、16、21...
- 如果第 15 分钟活着,喝位置 1 的数字是 2 的水,如图所示,也就是 2、7、12、17、22...
- 如果第 30 分钟活着,喝位置 1 的数字是 3 的水,如图所示,也就是 3、8、13、18、23...
- 如果第 45 分钟活着,喝位置 1 的数字是 4 的水,如图所示,也就是 4、9、14、19、24...
- 类似的, 2号猪喝位置 2的水...

上面,猪的编号代表 5 进制编码数字所在的位数, 1 号猪代表最末位, 5 号猪代表最高位。而第几分钟死代表当前位数的权重, 15 分钟死表示权重是 1,30 分钟死表示权重是 2, ...,60 分钟死表示权重是 4,60 分钟依然活着表示权重是 0。

如果 1 号猪第 30 分钟死了, 2 号猪第 15 分钟死了, 3 号猪第 45 分钟死了, 4, 5 号都活到了最后。 则毒水对应的 5 进制编码是

$$0 \times 5^4 + 0 \times 5^3 + 3 \times 5^3 + 1 \times 5^2 + 2 \times 5^0 = 82$$

也就是第82桶水有毒。

References

[1] "1000 桶水, 其中一桶有毒,猪喝毒水后会在 15 分钟内死去,想用一个小时找到这桶毒水,至少需要几头猪." [Online]. Available: https://daily.zhihu.com/story/9724781