PCT/EP95 / 01099 BUND REPUBLIK DEL SCHLAND

REC'D 2 4 APR 1995 WIPO PCT

81718377

Bescheinigung

Die BASF Aktiengesellschaft in 67056 Ludwigshafen hat eine Patentanmeldung unter der Bezeichnung

"Verwendung von Carbonsäurederivaten als Arzneimittel"

am 31. März 1994 beim Deutschen Patentamt eingereicht.

Das angeheftete Stück ist eine richtige und genaue Wiedergabe der ursprünglichen Unterlage dieser Patentanmeldung.

Die Anmeldung hat im Deutschen Patentamt vorläufig die Symbole A 61 K 31/505 und A 61 K 31/53 der Internationalen Patentklassifikation erhalten.

München, den 6. März 1995

Der Präsident des Deutschen Patentamts

Im Auftrag

< 35

Röske

Aktenzeichen: P 44 11 225.4

PRIORITY DOCUMENT

Patentanspruch

Verwendung von Carbonsäurederivaten der Formel I 5

10
$$R^{6} = Z - CH - Y - X$$

$$R^{5} = R$$

$$R^{3}$$

in der R eine Formylgruppe, eine Gruppe CO_2H oder einen zu COOH 15 hydrolysierbaren Rest bedeutet und die übrigen Substituenten folgende Bedeutung haben:

- R² Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy oder C_1 - C_4 -Alkylthio;
- X Stickstoff oder CR14, wobei R14 Wasserstoff bedeutet oder zusammen mit R3 eine 3- bis 4-gliedrige Alkylen- oder Alkenylenkette bildet, in der jeweils eine Methylengruppe durch Sauerstoff ersetzt ist;
 - R^3 Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy, C_1 - C_4 -Alkylthio oder R^3 ist mit R^{14} wie oben angegeben zu einem 5- oder 6-gliedrigen Ring verknüpft;
- 30 R⁴ eine C₁-C₁₀-Alkylgruppe, welche ein bis fünf Halogenatome und/oder einen der folgenden Reste tragen kann: C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Cyano, C₁-C₈-Alkylcarbonyl, C₁-C₈-Alkoxy-carbonyl, Phenyl, Phenoxy oder Phenylcarbonyl, wobei die Phenylreste ihrerseits ein bis fünf Halogenatome und/oder einen bis drei der folgenden Reste tragen können: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und/oder C₁-C₄-Alkylthio;

40

20

25

45 224/94 Dp/gb 29.03.1994

Q

30

35

eine C_1 - C_{10} -Alkylgruppe, welche ein bis fünf Halogenatome tragen kann und einen der folgenden Reste trägt: ein fünfgliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome und/oder ein Schwefel- oder Sauerstoffatom, welcher ein bis vier Halogenatome und/oder einen bis zwei der folgenden Reste tragen kann: $C_1-C_4-Alkyl$, $C_1-C_4-Halogenalkyl$, C_1-C_4- Alkoxy, C_1 - C_4 -Halogenalkoxy, C_1 - C_4 -Alkylthio und/oder Phenyl;

940224

eine C_3 - C_{12} -Cycloalkyl- oder C_3 - C_{12} -Cycloalkenylgruppe, die ein 10 Sauerstoff- oder Schwefelatom enthalten kann und ein bis fünf Halogenatome und/oder einen der folgenden Reste tragen kann: $C_1-C_4-Alkyl$, $C_1-C_4-Alkoxy$, $C_1-C_4-Alkyl$ thio, Cyano, $C_1-C_8-Alkyl$ carbonyl, C1-C8-Alkoxycarbonyl, Phenyl, Phenoxy oder Phenylcarbonyl, wobei die Phenylreste ihrerseits ein bis fünf 15 Halogenatome und/oder einen bis drei der folgenden Reste tragen können: $C_1-C_4-Alkyl$, $C_1-C_4-Halogenalkyl$, $C_1-C_4-Alkoxy$, C_1-C_4 -Halogenalkoxy und/oder C_1-C_4 -Alkylthio;

eine C₃-C₆-Alkenyl- oder eine C₃-C₆-Alkinylgruppe, welche je-20 weils ein bis fünf Halogenatome und/oder einen der folgenden Reste tragen kann: $C_1-C_4-Alkyl$, $C_1-C_4-Alkoxy$, $C_1-C_4-Alkylthio$, Cyano, C_1 - C_8 -Alkylcarbonyl, C_1 - C_8 -Alkoxycarbonyl, Phenyl, Phenoxy oder Phenylcarbonyl, wobei die Phenylreste ihrerseits ein bis fünf Halogenatome und/oder einen bis drei der folgen-25 den Reste tragen können: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, $C_1-C_4-Alkoxy$, $C_1-C_4-Halogenalkoxy$ und/oder $C_1-C_4-Alkylthio$;

ein fünf- oder sechsgliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome und/oder ein Schwefel- oder Sauerstoffatom, welcher ein bis vier Halogenatome und/oder einen bis zwei der folgenden Reste tragen kann: C₁-C₄-Alkyl, $C_1-C_4-Halogenalkyl$, $C_1-C_4-Alkoxy$, $C_1-C_4-Halogenalkoxy$, C1-C4-Alkylthio, Phenyl, Phenoxy oder Phenylcarbonyl, wobei die Phenylreste ihrerseits ein bis fünf Halogenatome und/oder einen bis drei der folgenden Reste tragen können: C1-C4-Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy und/oder $C_1-C_4-Alkylthio;$

Phenyl oder Naphthyl, die durch einen oder mehrere der 40 folgenden Reste substituiert sein können: Halogen, Nitro, Cyano, Hydroxy, $C_1-C_4-Alkyl$, $C_1-C_4-Halogenalkyl$, $C_1-C_4-Alkoxy$, $C_1-C_4-Halogenalkoxy$, Phenoxy, $C_1-C_4-Alkylthio$, Amino, $C_1-C_4-Alkylamino$ oder $C_1-C_4-Dialkylamino$;

45 R4 und R5 bilden zusammen mit dem benachbarten Kohlenstoffatom einen 3- bis 8-gliedrigen Ring, der ein Sauerstoff- oder Schwefelatom enthalten kann und einen bis drei der folgenden

Reste tragen kann: C_1 - C_4 -Alkyl, Halogen, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy und/oder C_1 - C_4 -Akylthio;

- R⁵ Wasserstoff, C₁-C₄-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₃-C₈-Cycloalkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxyalkyl, C₁-C₄-Alkylthioalkyl, Phenyl oder R⁵ ist mit R⁴ wie oben angegeben zu einem 3- bis 8-gliedrigen Ring verknüpft;
- R⁶ C₁-C₈-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl oder C₃-C₈-Cyclo-alkyl, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: Halogen, Nitro, Cyano, C₁-C₄-Alkoxy, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkylamino, Di-C₁-C₄-Alkylamino, Phenyl, ein- oder mehrfach, z.B. ein bis dreifach durch Halogen, Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Alkylthio substituiertes Phenyl oder Phenoxy;
- Phenyl oder Naphthyl, die jeweils durch einen oder mehrere der folgenden Reste substituiert sein können: Halogen, Nitro, Cyano, Hydroxy, Amino, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Phenoxy, C₁-C₄-Alkylthio, C₁-C₄-Alkylamino oder C₁-C₄-Dialkylamino;

ein fünf- oder sechsgliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome und/oder ein Schwefel- oder Sauerstoffatom, welcher ein bis vier Halogenatome und/oder einen bis zwei der folgenden Reste tragen kann: C1-C4-Alkyl,

- C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, Phenyl, Phenoxy oder Phenylcarbonyl, wobei die Phenylreste ihrerseits ein bis fünf Halogenatome und/oder einen bis drei der folgenden Reste tragen können: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und/oder C₁-C₄-Alkylthio;
 - Y Schwefel oder Sauerstoff oder eine Einfachbindung;
 - Z Schwefel oder Sauerstoff;
 - zur Herstellung von Arzneimitteln.

40

Verwendung von Carbonsäurederivaten als Arzneimittel

Beschreibung

5

Die vorliegende Erfindung betrifft die Verwendung bestimmter Carbonsäuredrivate als Arzneimittel.

- Endothelin ist ein aus 21 Aminosäuren aufgebautes Peptid, das 10 von vaskulärem Endothel synthetisiert und freigesetzt wird. Endothelin existiert in drei Isoformen, ET-1, ET-2 und ET-3. Im Folgenden bezeichnet "Endothelin" oder "ET" eine oder alle Isoformen von Endothelin. Endothelin ist ein potenter Vasokonstriktor und hat einen starken Effekt auf den Gefäßtonus. Es 15 ist bekannt, daß diese Vasokonstriktion von der Bindung von Endothelin an seinen Rezeptor verursacht wird (Nature, 332, 411-415, 1988; FEBS Letters, 231, 440-444, 1988 und Biochem. Biophys. Res. Commun., 154, 868-875, 1988).
- 20 Erhöhte oder abnormale Freisetzung von Endothelin verursacht eine anhaltende Gefäßkontraktion in peripheren, renalen und zerebralen Blutgefäßen, die zu Krankheiten führen kann. Wie in der Literatur berichtet, wurden erhöhte Plasmaspiegel von Endothelin gefunden bei Patienten mit Hypertonie, akutem Myokardinfarkt, pulmonärer
- 25 Hypertonie, Raynaud-Syndrom, Atherosklerose und in den Atemwegen von Asthmatikern (Japan J. Hypertension, 12, 79 (1989), J. Vascular Med. Biology 2, 207 (1990), J. Am. Med. Association 264, 2868 (1990)).
- 30 Demnach sollten Substanzen, die spezifisch die Bindung von Endothelin an den Rezeptor inhibieren, auch die obengenannten verschiedenen physiologischen Effekte von Endothelin antagonisieren und daher wertvolle Pharmaka darstellen.
- 35 Es wurde nun gefunden, daß bestimmte Carbonsäurederivate gute Hemmstoffe für Endothelinrezeptoren sind.
- Gegenstand der Erfindung ist die Verwendung von Carbonsäurederivaten mit der im folgenden beschriebenen Formel I zur Herstellung 40 von Arzneimitteln, insbesondere zur Herstellung von Hemmstoffen
 - für Endothelinrezeptoren.

Carbonsaurederivate der allgemeinen Formel I

10

5

in der R eine Formylgruppe, eine Gruppe CO_2H oder einen zu COOH hydrolysierbaren Rest bedeutet und die übrigen Substituenten folgende Bedeutung haben:

- 15 R² Halogen, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy oder C_1-C_4 -Alkylthio;
- X Stickstoff oder CR¹⁴, wobei R¹⁴ Wasserstoff bedeutet oder zusammen mit R³ eine 3- bis 4-gliedrige Alkylen- oder
 Alkenylenkette bildet, in der jeweils eine Methylengruppe durch Sauerstoff ersetzt ist;
 - R³ Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy, C_1 - C_4 -Alkylthio oder R³ ist mit R¹⁴ wie oben angegeben zu einem 5- oder 6-gliedrigen Ring verknüpft;
- eine C₁-C₁₀-Alkylgruppe, welche ein bis fünf Halogenatome und/oder einen der folgenden Reste tragen kann: C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Cyano, C₁-C₈-Alkylcarbonyl, C₁-C₈-Alkoxy-carbonyl, Phenyl, Phenoxy oder Phenylcarbonyl, wobei die Phenylreste ihrerseits ein bis fünf Halogenatome und/oder einen bis drei der folgenden Reste tragen können: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und/oder C₁-C₄-Alkylthio;

35

40

25

eine C_1 - C_{10} -Alkylgruppe, welche ein bis fünf Halogenatome tragen kann und einen der folgenden Reste trägt: ein fünfgliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome und/oder ein Schwefel- oder Sauerstoffatom, welcher ein bis vier Halogenatome und/oder einen bis zwei der folgenden Reste tragen kann: C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkylthio und/oder Phenyl;

eine C_3-C_{12} -Cycloalkyl- oder C_3-C_{12} -Cycloalkenylgruppe, die ein Sauerstoff- oder Schwefelatom enthalten kann und ein bis fünf Halogenatome und/oder einen der folgenden Reste tragen kann: C_1-C_4 -Alkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthio, Cyano, C_1-C_8 -Alkyl-

10

15

20

30

35

carbonyl, C_1-C_8 -Alkoxycarbonyl, Phenyl, Phenoxy oder Phenylcarbonyl, wobei die Phenylreste ihrerseits ein bis fünf Halogenatome und/oder einen bis drei der folgenden Reste tragen können: C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy und/oder C_1-C_4 -Alkylthio;

eine C_3 - C_6 -Alkenyl- oder eine C_3 - C_6 -Alkinylgruppe, welche jeweils ein bis fünf Halogenatome und/oder einen der folgenden Reste tragen kann: C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio, Cyano, C_1 - C_8 -Alkylcarbonyl, C_1 - C_8 -Alkoxycarbonyl, Phenyl, Phenoxy oder Phenylcarbonyl, wobei die Phenylreste ihrerseits ein bis fünf Halogenatome und/oder einen bis drei der folgenden Reste tragen können: C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy und/oder C_1 - C_4 -Alkylthio;

ein fünf- oder sechsgliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome und/oder ein Schwefel- oder Sauerstoffatom, welcher ein bis vier Halogenatome und/oder einen bis zwei der folgenden Reste tragen kann: $C_1-C_4-Alkyl$, $C_1-C_4-Halogenalkyl$, $C_1-C_4-Alkoxy$, $C_1-C_4-Halogenalkoxy$,

C₁-C₄-Alkylthio, Phenyl, Phenoxy oder Phenylcarbonyl, wobei die Phenylreste ihrerseits ein bis fünf Halogenatome und/oder einen bis drei der folgenden Reste tragen können: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und/oder C₁-C₄-Alkylthio;

Phenyl oder Naphthyl, die durch einen oder mehrere der folgenden Reste substituiert sein können: Halogen, Nitro,-Cyano, Hydroxy, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Phenoxy, C₁-C₄-Alkylthio, Amino, C₁-C₄-Alkylamino oder C₁-C₄-Dialkylamino;

 R^4 und R^5 bilden zusammen mit dem benachbarten Kohlenstoffatom einen 3- bis 8-gliedrigen Ring, der ein Sauerstoff- oder Schwefelatom enthalten kann und einen bis drei der folgenden Reste tragen kann: C_1 - C_4 -Alkyl, Halogen, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy und/oder C_1 - C_4 -Akylthio;

- R⁵ Wasserstoff, C₁-C₄-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl,
 C₃-C₈-Cycloalkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxyalkyl,
 C₁-C₄-Alkylthioalkyl, Phenyl oder R⁵ ist mit R⁴ wie oben angegeben zu einem 3- bis 8-gliedrigen Ring verknüpft;
- R⁶ C₁-C₈-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl oder C₃-C₈-Cycloalkyl, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: Halogen, Nitro, Cyano, C₁-C₄-Alkoxy, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy, C₁-C₄-Alkylthio,

 $C_1-C_4-Halogenalkoxy$, $C_1-C_4-Alkylcarbonyl$, $C_1-C_4-Alkoxycarbonyl$, $C_1-C_4-Alkylamino$, $Di-C_1-C_4-alkylamino$, Phenyl, ein- oder mehrfach, z.B. ein bis dreifach durch Halogen, Nitro, Cyano, $C_1-C_4-Alkyl$, $C_1-C_4-Halogenalkyl$, $C_1-C_4-Alkoxy$, $C_1-C_4-Halogenalkyl$, $C_1-C_4-Alkyl$, oder $C_1-C_4-Alkyl$, C_1

Phenyl oder Naphthyl, die jeweils durch einen oder mehrere der folgenden Reste substituiert sein können: Halogen, Nitro, Cyano, Hydroxy, Amino, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Phenoxy, C₁-C₄-Alkylthio, C₁-C₄-Alkylamino oder C₁-C₄-Dialkylamino;

ein fünf- oder sechsgliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome und/oder ein Schwefel- oder Sauerstoffatom, welcher ein bis vier Halogenatome und/oder einen bis zwei der folgenden Reste tragen kann: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, Phenyl, Phenoxy oder Phenylcarbonyl, wobei die Phenylreste ihrerseits ein bis fünf Halogenatome und/oder einen bis drei der folgenden Reste tragen können: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und/oder C₁-C₄-Alkylthio;

- 25 Y Schwefel oder Sauerstoff oder eine Einfachbindung;
 - Z Schwefel oder Sauerstoff;

Die Herstellung der erfindungsgemäßen Verbindungen geht aus von 30 den Epoxiden IV, die man in allgemein bekannter Weise, z.B. wie in J. March, Advanced Organic Chemistry, 2nd ed., 1983, S. 862 und S. 750 beschrieben, aus den Aldehyden bzw. Ketonen II oder den Olefinen III erhält:

Carbonsaurederivate der allgemeinen Formel VI können hergestellt werden, indem man die Epoxide der allgemeinen Formel IV (z.B. mit $R = ROOR^{10}$) mit Alkoholen oder Thiolen der allgemeinen Formel V, in der R^6 und Z die in Anspruch 1 genannte Bedeutung haben, zur 5 Reaktion bringt.

$$10 + R^{6}ZH \longrightarrow R^{6} Z \longrightarrow CH \longrightarrow OH VI$$

$$V \longrightarrow R^{6} Z \longrightarrow CH \longrightarrow OH VI$$

Dazu werden Verbindungen der allgemeinen Formel IV mit einem Überschuß der Verbindungen der Formel V, z.B. 1,2-7, bevorzugt 15 2-5 Moläquivalenten, auf eine Temperatur von 50 - 200°C, bevorzugt 80 - 150°C, erhitzt.

Die Reaktion kann auch in Gegenwart eines Verdünnungsmittels erfolgen. Zu diesem Zweck können sämtliche gegenüber den ver20 wendeten Reagenzien inerte Lösungsmittel verwendet werden.

Beispiele für solche Lösungsmittel beziehungsweise Verdünnungsmittel sind Wasser, aliphatische, alicyclische und aromatische Kohlenwasserstoffe, die jeweils gegebenenfalls chloriert sein 25 können, wie zum Beispiel Hexan, Cyclohexan, Petrolether, Ligroin, Benzol, Toluol, Xylol, Methylenchlorid, Chloroform, Kohlenstofftetrachlorid, Ethylenchlorid und Trichlorethylen, Ether, wie zum Beispiel Diisopropylether, Dibutylether, Propylenoxid, Dioxan und Tetrahydrofuran, Ketone, wie zum Beispiel Aceton, Methylethyl-30 keton, Methylisopropylketon und Methylisobutylketon, Nitrile, wie zum Beispiel Acetonitril und Propionitril, Alkohole, wie zum Beispiel Methanol, Ethanol, Isopropanol, Butanol und Ethylenglycol, Ester, wie zum Beispiel Ethylacetat und Amylacetat, Säureamide, wie zum Beispiel Dimethylformamid und Dimethylacetamid, Sulfoxide 35 und Sulfone, wie zum Beispiel Dimethylsulfoxid und Sulfolan, und Basen, wie zum Beispiel Pyridin.

Die Reaktion wird dabei bevorzugt in einem Temperaturbereich zwischen 0°C und dem Siedepunkt des Lösungsmittels bzw. Lösungs-40 mittelgemisches durchgeführt.

Die Gegenwart eines Reaktionskatalysators kann von Vorteil sein. Als Katalysatoren kommen dabei starke organische und anorganische Säuren sowie Lewissäuren in Frage. Beispiele hierfür sind unter anderem Schwefelsäure, Salzsäure, Trifluoressigsäure, Bortrifluorid-Etherat und Titan(IV)-Alkoholate.

Die erfindungsgemäßen Verbindungen, in denen Y Sauerstoff bedeutet und die restlichen Substituenten die unter der allgemeinen Formel I angegebenen Bedeutung haben, können beispielsweise derart hergestellt werden, daß man die Carbonsäurederivate der 5 allgemeinen Formel VI, in denen die Substituenten die angegebene Bedeutung haben, mit Verbindungen der allgemeinen Formel VII,

10
$$VI + R \stackrel{15}{\longrightarrow} X$$

$$N = X$$

$$X$$

$$R^{3}$$

$$VII$$

in der R¹⁵ Halogen oder R¹⁶-SO₂- bedeutet, wobei R¹⁶ C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl oder Phenyl sein kann, zur Reaktion bringt.

20 Die Reaktion findet bevorzugt in einem der oben genannten inerten Verdünnungsmittel unter Zusatz einer geeigneten Base, d.h. einer Base, die eine Deprotonierung des Zwischenproduktes VI bewirkt, in einem Temperaturbereich von Raumtemperatur bis zum Siedepunkt des Lösungsmittels statt.

25

Als Base kann ein Alkali- oder Erdalkalimetallhydrid wie Natriumhydrid, Kaliumhydrid oder Calciumhydrid, ein Carbonat wie Alkalimetallcarbonat, z.B. Natrium- oder Kaliumcarbonat, ein Alkalioder Erdalkalimetallhydroxid wie Natrium- oder Kaliumhydroxid, eine metallorganische Verbindung wie Butyllithium oder ein Alkaliamid wie Lithiumdiisopropylamid dienen.

Die erfindungsgemäßen Verbindungen, in denen Y Schwefel bedeutet und die restlichen Substituenten die unter der allgemeinen Formel 35 I angegebene Bedeutung haben, können beispielsweise derart hergestellt werden, daß man Carbonsäurederivate der allgemeinen Formel VIII, die in bekannter Weise aus Verbindungen der allgemeinen Formel VI erhältlich sind und in denen die Substituenten die oben angegebene Bedeutung haben, mit Verbindungen der allgemeinen Formel IX, in der R², R³ und X die unter der allgemeinen Formel I angegebene Bedeutung haben, zur Reaktion bringt.

5 R
$$\stackrel{6}{-}$$
 Z $\stackrel{R}{-}$ CH $\stackrel{O}{-}$ OSO₂R $\stackrel{16}{-}$ HS $\stackrel{N}{-}$ N

VIII

10

Die Reaktion findet bevorzugt in einem der oben genannten inerten Verdünnungsmittel unter Zusatz einer geeigneten Base, d.h. eine Base, die eine Deprotonierung des Zwischenproduktes IX bewirkt, in einem Temperaturbereich von Raumtemperatur bis zum Siedepunkt des Lösungsmittels statt.

Als Base können neben den oben genannten auch organische Basen wie tertiäre Amine, z.B. Triethylamin, Pyridin, Imidazol oder 20 Diazabicycloundecan dienen.

Verbindungen der Formel I können auch dadurch hergestellt werden, daß man von den entsprechenden Carbonsäuren, d. h. Verbindungen der Formel I, in denen R¹ Hydroxyl bedeutet, ausgeht und diese zunächst auf übliche Weise in eine aktivierte Form wie ein Halogenid, ein Anhydrid oder Imidazolid überführt und dieses dann mit einer entsprechenden Hydroxylverbindung HOR¹0 umsetzt. Diese Umsetzung läßt sich in den üblichen Lösungsmitteln durchführen und erfordert oft die Zugabe einer Base, wobei die oben genannten in Betracht kommen. Diese beiden Schritte lassen sich beispielsweise auch dadurch vereinfachen, daß man die Carbonsäure in Gegenwart eines wasserabspaltenden Mittels wie eines Carbodiimids auf die Hydroxylverbindung einwirken läßt.

- 35 Außerdem können Verbindungen der Formel I auch dadurch hergestellt werden, daß man von den Salzen der entsprechenden Carbonsäuren ausgeht, d. h. von Verbindungen der Formel I, in denen R für eine Gruppe COR¹ und R¹ für OM stehen, wobei M ein Alkalimetallkation oder das Äquivalent eines Erdalkalimetallkations
- 40 sein kann. Diese Salze lassen sich mit vielen Verbindungen der Formel R¹-A zur Reaktion bringen, wobei A eine übliche nucleofuge Abgangsgruppe bedeutet, beispielsweise Halogen wie Chlor, Brom, Iod oder gegebenenfalls durch Halogen, Alkyl oder Halogenalkyl substituiertes Aryl- oder Alkylsulfonyl wie z.B. Toluolsulfonyl
- 45 und Methylsulfonyl oder eine andere äquivalente Abgangsgruppe. Verbindungen der Formel R¹-A mit einem reaktionsfähigen Substituenten A sind bekannt oder mit dem allgemeinen Fachwissen leicht

zu erhalten. Diese Umsetzung läßt sich in den üblichen Lösungsmitteln durchführen und wird vorteilhaft unter Zugabe einer Base, wobei die oben genannten in Betracht kommen, vorgenommen.

5 Der Rest R in Formel I ist breit variabel. Beispielsweise steht R für eine Gruppe

O || C-R¹

10

in der R1 die folgende Bedeutung hat:

a) Wasserstoff;

15

- b) eine Succinylimidoxygruppe;
- ein über ein Stickstoffatom verknüpfter 5-gliedriger Heteroaromat wie Pyrrolyl, Pyrazolyl, Imidazolyl und Triazolyl, welcher ein bis zwei Halogenatome, insbesondere Fluor und Chlor und/oder ein bis zwei der folgenden Reste tragen kann:

C₁-C₄-Alkyl wie Methyl, Ethyl, 1-Propyl, 2-Propyl, 2-Methyl-2-propyl, 2-Methyl-1-propyl, 1-Butyl, 2-Butyl;

25

30

35

C₁-C₄-Halogenalkyl, insbesondere C₁-C₂-Halogenalkyl wie beispielsweise Fluormethyl, Difluormethyl, Trifluormethyl, Chlordifluormethyl, Dichlorfluormethyl, Trichlormethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl und Pentafluorethyl;

C₁-C₄-Halogenalkoxy, insbesondere C₁-C₂-Halogenalkoxy wie Difluormethoxy, Trifluormethoxy, Chlordifluormethoxy, 1-Fluorethoxy, 2-Fluorethoxy, 2,2-Difluorethoxy, 1,1,2,2-Tetrafluorethoxy, 2,2,2-Trifluorethoxy, 2-Chlor-1,1,2-trifluorethoxy und Pentafluorethoxy, insbesondere Trifluormethoxy;

C₁-C₄-Alkoxy wie Methoxy, Ethoxy, Propoxy, 1-Methylethoxy, Butoxy, 1-Methylpropoxy, 2-Methylpropoxy, 1,1-Dimethylethoxy, insbesondere Methoxy, Ethoxy, 1-Methylethoxy;

 $C_1-C_4-Alkylthio$ wie Methylthio, Ethylthio, Propylthio, 1-Methylethylthio, Butylthio, 1-Methylpropylthio, 2-Methylpropylthio, 1,1-Dimethylethylthio, insbesondere Methylthio und Ethylthio;

5

d) R1 ferner ein Rest

10

in dem m für 0 oder 1 steht und R^7 und R^8 , die gleich oder unterschiedlich sein können, die folgende Bedeutung haben:

15

45

Wasserstoff

 $C_1-C_8-Alkyl$, insbesondere $C_1-C_4-Alkyl$ wie oben genannt;

20 C₃-C₆-Alkenyl wie 2-Propenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2-Methyl-3-butenyl, 3-Methyl-3-butenyl, 25 1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-2-propenyl, 1-Ethyl-2-propenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-2-pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 30 1-Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 4-Methyl-4-pentenyl, 1,1-Dimethyl-2-butenyl, 1,1-Dimethyl-3-butenyl, 1,2-Dimethyl-2-butenyl, 1,2-Dimethyl-3-butenyl, 1,3-Dimethyl-2-butenyl, 1,3-Dimethyl-3-butenyl, 35 2,2-Dimethyl-3-butenyl, 2,3-Dimethyl-2-butenyl, 2,3-Dimethyl-3-butenyl, 1-Ethyl-2-butenyl, 1-Ethyl-3-butenyl, 2-Ethyl-2-butenyl, 2-Ethyl-3-butenyl, 1,1,2-Trimethyl-2-propenyl, 1-Ethyl-1-methyl-2-propenyl und 1-Ethyl-2-methyl-2-propenyl, insbesondere 2-Propenyl, 2-Butenyl, 3-Methyl-2-butenyl und 3-Methyl-2-pentenyl; 40

C₃-C₆-Alkinyl wie 2-Propinyl, 2-Butinyl, 3-Butinyl, 1-Methyl-2-propinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 1-Methyl-2-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 1-Methyl-2-pentinyl, 1-Methyl-2-pentinyl, 1-Methyl-3-pentinyl,

15

20

25

35

1-Methyl-4-pentinyl, 2-Methyl-3-pentinyl,
2-Methyl-4-pentinyl, 3-Methyl-4-pentinyl,
4-Methyl-2-pentinyl, 1,1-Dimethyl-2-butinyl,
1,1-Dimethyl-3-butinyl, 1,2-Dimethyl-3-butinyl,
2,2-Dimethyl-3-butinyl, 1-Ethyl-2-butinyl, 1-Ethyl-3-butinyl,
2-Ethyl-3-butinyl und 1-Ethyl-1-methyl-2-propinyl, vorzugsweise 2-Propinyl, 2-Butinyl, 1-Methyl-2-propinyl und
1-Methyl-2-butinyl, insbesondere 2-Propinyl

940224

C₃-C₈-Cycloalkyl, wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl und Cycloheptyl, Cyclooctyl, wobei diese Alkyl-, Cycloalkyl-, Alkenyl- und Alkinylgruppen jeweils ein bis fünf Halogenatome, insbesondere Fluor oder Chlor und/oder ein bis zwei der folgenden Gruppen tragen können:

 $C_1-C_4-Alkyl$, $C_1-C_4-Alkoxy$, $C_1-C_4-Alkylthio$, $C_1-C_4-Halogenalkoxy$ wie vorstehend genannt, $C_3-C_6-Alkenyloxy$, $C_3-C_6-Alkenyloxy$, $C_3-C_6-Alkinyloxy$, $C_3-C_6-Alkinyloxy$, $C_3-C_6-Alkinyloxy$, wobei die in diesen Resten vorliegenden Alkenyl- und Alkinylbestandteile vorzugsweise den oben genannten Bedeutungen entsprechen;

C₁-C₄-Alkylcarbonyl wie insbesondere Methylcarbonyl, Ethylcarbonyl, Propylcarbonyl, 1-Methylethylcarbonyl, Butylcarbonyl, 1-Methylpropylcarbonyl, 2-Methylpropylcarbonyl, 1,1-Dimethylethylcarbonyl;

 C_1 - C_4 -Alkoxycarbonyl wie Methoxycarbonyl, Ethoxycarbonyl, Propyloxycarbonyl, 1-Methylethoxycarbonyl, Butyloxycarbonyl, 1-Methylpropyloxycarbonyl, 2-Methylpropyloxycarbonyl,

30 1,1-Dimethylethoxycarbonyl;

 C_3-C_6 -Alkenylcarbonyl, C_3-C_6 -Alkinylcarbonyl, C_3-C_6 -Alkenyloxycarbonyl und C_3-C_6 -Alkinyloxycarbonyl, wobei die Alkenyl- bzw. Alkinylreste vorzugsweise, wie voranstehend im einzelnen aufgeführt, definiert sind;

Phenyl, gegebenenfalls ein- oder mehrfach, z.B. einbis dreifach substituiert durch Halogen, Nitro, Cyano,
C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy oder C₁-C₄-Alkylthio wie beispielsweise 2-Fluorphenyl,
3-Chlorphenyl, 4-Bromphenyl, 2-Methylphenyl, 3-Nitrophenyl,
4-Cyanophenyl, 2-Trifluormethylphenyl, 3-Methoxyphenyl,
4-Trifluorethoxyphenyl, 2-Methylthiophenyl, 2,4-Dichlorphenyl, 2-Methoxy-3-methylphenyl, 2,4-Dimethoxyphenyl,
2-Nitro-5-cyanophenyl, 2,6-Difluorphenyl;

 $Di-C_1-C_4-Alkylamino$ wie insbesondere Dimethylamino, Dipropylamino, N-Propyl-N-methylamino, N-Propyl-N-ethylamino, Diisopropylamino, N-Isopropyl-N-methylamino, N-Isopropyl-N-ethylamino, N-Isopropyl-N-propylamino;

5

 R^7 und R^3 ferner Phenyl, das durch einen oder mehrere, z.B. ein bis drei der folgenden Reste substituiert sein kann: Halogen, Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy oder C_1 - C_4 -Alkylthio, wie insbesondere oben genannt;

insbesondere ober

oder R^7 und R^8 bilden gemeinsam eine zu einem Ring geschlossene, optionell substituierte, z.B. durch C_1 - C_4 -Alkyl substituierte C_4 - C_7 -Alkylenkette, die ein Heteroatom, ausgewählt aus der Gruppe Sauerstoff, Schwefel oder Stickstoff, enthalten kann wie $-(CH_2)_4$ -, $-(CH_2)_5$ -, $-(CH_2)_6$ -, $-(CH_2)_7$ -, $-(CH_2)_2$ -O- $-(CH_2)_2$ -, $-(CH_2)_3$ -, $-(CH_2)_2$ -O- $-(CH_2)_3$ -, $-(CH_2)_3$ -,

20 e) R1 ferner eine Gruppe

25

15

in der k die Werte 0, 1 und 2, p die Werte 1, 2, 3 und 4 annehmen und R^9 für

C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl oder gegebenenfalls substituiertes Phenyl steht, wie insbesondere oben genannt.

- f) R1 ferner ein Rest OR10, worin R10 bedeutet:
- Wasserstoff, das Kation eines Alkalimetalls wie Lithium,
 Natrium, Kalium oder das Kation eines Erdalkalimetalls wie
 Calcium, Magnesium und Barium oder ein umweltverträgliches
 organisches Ammoniumion wie tertiäres C₁-C₄-Alkylammonium oder
 das Ammoniumion;

40

 $C_3-C_8-Cycloalkyl$ wie vorstehend genannt, welches ein bis drei $C_1-C_4-Alkylgruppen$ tragen kann;

C₁-C₈-Alkyl wie insbesonder Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 1,2-Dimethylpropyl, 1,1-Dimethylpropyl, 2,2-Dimethylpropyl,

1-Ethylpropyl, Hexyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,3-Dimethylbutyl, 1,1-Dimethylbutyl, 2,2-Dimethylbutyl, 3,3-Dimethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethylbutyl, 2-Ethylbutyl, 1-Ethyl-2-methylpropyl, welches ein bis fünf Halogenatome, insbesondere Fluor und Chlor und/oder einen der folgenden Reste tragen kann:

- C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Cyano, C₁-C₄-Alkylcarbonyl, C₃-C₈-Cycloakyl, C₁-C₄-Alkoxycarbonyl, Phenyl, Phenoxy oder Phenylcarbonyl, wobei die aromatischen Reste ihrerseits jeweils ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste tragen können: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und/oder C₁-C₄-Alkylthio, wie insbesondere oben genannt;
- eine C₁-C₈-Alkylgruppe wie vorstehend genannt, welch ein bis fünf Halogenatome, insbesonder Fluor und/oder Chlor tragen

 20 kann und einen der folgenden Reste trägt: ein 5-gliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome, oder ein 5-gliedriger Heteroaromat enthaltend ein Stickstoffatom und ein Sauerstoff- oder Schwefelatom, welcher ein bis vier Halogenatome und/oder ein bis zwei der folgenden Reste tragen kann:

Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, Phenyl, C₁-C₄-Halogenalkoxy und/oder C₁-C₄-Alkylthio. Insbesondere seien genannt: 1-Pyrazolyl, 3-Methyl-1-pyrazolyl, 4-Methyl-1-pyrazolyl, 3,5-Dimethyl-1-pyrazolyl, 3-Phenyl-1-pyrazolyl, 4-Phenyl-1-pyrazolyl, 4-Chlor-1-pyrazolyl, 4-Brom-1-pyrazolyl, 1-Imidazolyl, 1-Benzimidazolyl, 1,2,4-Triazol-1-yl, 3-Methyl-1,2,4-triazol-1-yl, 5-Methyl-1,2,4-triazol-1-yl, 1-Benztriazolyl, 3-Isopropylisoxazol-5-yl, 3-Methylisoxazol-5-yl, 0xazol-2-yl, Thiazol-2-yl, Imidazol-2-yl, 3-Ethylisoxazol-5-yl, 3-Phenylisoxazol-5-yl, 3-tert.-Butylisoxazol-5-yl;

eine C₂-C₆-Alkylgrupe, welche in der 2-Position einen der folgenden Reste trägt: C₁-C₄-Alkoxyimino, C₃-C₆-Alkinyloxyimino, C₃-C₆-Halogenalkenyloxyimino oder Benzyloxyimino;

eine C_3 - C_6 -Alkenyl- oder eine C_3 - C_6 -Alkinylgruppe, wobei diese Gruppen ihrerseits ein bis fünf Halogenatome tragen können;

20

25

40

45

 R^{10} ferner ein Phenylrest, welcher ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste tragen kann: Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy und/oder C_1 - C_4 -Alkylthio, wie insbesondere oben genannt;

ein über ein Stickstoffatom verknüpfter 5-gliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome, welcher ein
bis zwei Halogenatome und/oder ein bis zwei der folgenden

Reste tragen kann: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl,
C₁-C₄-Alkoxy, Phenyl, C₁-C₄-Halogenalkoxy und/oder
C₁-C₄-Alkylthio. Insbesondere seien genannt: 1-Pyrazolyl,
3-Methyl-1-pyrazolyl, 4-Methyl-1-pyrazolyl,
3,5-Dimethyl-1-pyrazolyl, 3-Phenyl-1-pyrazolyl,
4-Phenyl-1-pyrazolyl, 4-Chlor-1-pyrazolyl,
4-Brom-1-pyrazolyl, 1-Imidazolyl, 1-Benzimidazolyl,
1,2,4-Triazol-1-yl, 3-Methyl-1,2,4-triazol-1-yl,
5-Methyl-1,2,4-triazol-1-yl, 1-Benztriazolyl, 3,4-Dichlor-imidazol-1-yl;

R10 ferner ein Gruppe

$$--N = C <_{R}^{R}^{11}$$

worin R^{11} und R^{12} , die gleich oder verschieden sein können, bedeuten:

30 $C_1-C_8-Alkyl$, $C_3-C_6-Alkenyl$, $C_3-C_6-Alkinyl$, $C_3-C_8-Cycloalkyl$, wobei diese Reste einen $C_1-C_4-Alkoxy$, $C_1-C_4-Alkylthio$ und/oder einen gegebenenfalls substituierten Phenylrest, wie insbesondere vorstehend genannt, tragen können;

Phenyl, das durch einen oder mehrere, z.B. einen bis drei der folgenden Reste substituiert sein kann: Halogen, Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy oder C_1 - C_4 -Alkylthio, wobei diese Reste insbesondere den oben genannten entsprechen;

oder R^{11} und R^{12} bilden gemeinsam eine C_3 - C_{12} -Alkylenkette, welche ein bis drei C_1 - C_4 -Alkylgruppen tragen und ein Heteroatom aus der Gruppe Sauerstoff, Schwefel und Stickstoff enthalten kann, wie insbesondere bei R^7 und R^8 genannt.

g) Ri ferner ein Rest

5

35

worin R13 bedeutet:

- 10 $C_1-C_4-Alkyl$, $C_3-C_6-Alkenyl$, $C_3-C_6-Alkinyl$, $C_3-C_8-Cycloalkyl$ wie insbesondere vorstehend genannt, wobei diese Reste einen $C_1-C_4-Alkoxy-$, $C_1-C_4-Alkylthio-$ und/oder einen Phenylrest wie oben genannt tragen können;
- Phenyl, gegebenenfalls substituiert, insbesondere wie vorstehend genannt.

Im Hinblick auf die biologische Wirkung sind Carbonsäurederivate der allgemeinen Formel I bevorzugt, in denen die Substituenten 20 folgende Bedeutung haben:

- R² die bei R¹ im einzelnen genannten C_1 - C_4 -Alkyl-, C_1 - C_4 -Halogen-alkyl-, C_1 - C_4 -Alkoxy-, C_1 - C_4 -Halogenalkoxy-, C_1 - C_4 -Alkylthio-gruppen und Halogenatome, insbesondere Chlor, Methyl,
- Methoxy, Ethoxy, Difluormethoxy, Trifluormethoxy, besonders bevorzugt Methoxy;
 - X Stickstoff oder CR14, worin
- 30 R¹⁴ Wasserstoff bedeutet oder zusammen mit R³ eine 4- bis 5-gliedrige Alkylen- oder Alkenylenkette bildet, in der jeweils eine Methylengruppe durch Sauerstoff ersetzt ist wie -CH₂-CH₂-O-, -CH=CH-O-, -CH₂-CH₂-CH₂-O-, -CH=CH-CH₂O-, insbesondere Wasserstoff und -CH₂-CH₂-O-;
- R³ die bei R¹ genannten C₁-C₄-Alkyl-, C₁-C₄-Halogenalkyl-, C₁-C₄-Alkoxy-, C₁-C₄-Halogenalkoxy-, C₁-C₄-Alkylthiogruppen und Halogenatome, insbesondere Chlor, Methyl, Methoxy, Ethoxy, Difluormethoxy, Trifluormethoxy oder mit R¹⁴ wie oben genannt zu einem 5- oder 6-gliedrigen Ring verknüpft ist, besonders bevorzugt steht R³ für Methoxy;
- R⁴ C₁-C₁₀-Alkyl wie bei R¹ im einzelnen genannt, welches ein bis fünf Halogenatome wie Fluor, Chlor, Brom, Jod, insbesondere
 45 Fluor und Chlor und/oder einen der folgenden Reste tragen kann: Alkoxy, Alkylthio, Cyano, Alkylcarbonyl, Alkoxy-

carbonyl, Phenyl, Phenoxy, Phenylcarbonyl wie im allgemeinen und besonderen bei R¹ genannt;

- C₁-C₁₀-Alkyl wie vorstehend genannt, welches ein bis fünf Halogenatome wie vorstehend genannt, insbesondere Fluor und Chlor, tragen kann und einen ggf. substituierten 5-gliedrigen Heteroaromaten, wie voranstehend für R¹ genannt, trägt;
- C₃-C₁₂-Cycloalkyl, insbesondere C₃-C₇-Cycloalkyl oder 10 $C_3-C_{12}-Cycloalkenyl$, insbesondee $C_4-C_7-Cycloalkenyl$, wobei im gesättigten oder ungesättigten Ring eine Methylengruppe durch ein Sauerstoff- oder Schwefelatom ersetzt sein kann, wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Tetrahydrofuranyl, Tetrahydrothienyl, Tetrahydro-15 pyranyl, Tetrahydrothiopyranyl, Cyclopropenyl, Dihydrofuranyl, Dihydrothienyl, Dihydropyranyl, Dihydrothiopyranyl, wobei die Cycloalkyl- bzw. Cycloalkenylreste substituiert sein können durch ein bis fünf Halogenatome wie vorstehend genannt, insbesondere Fluor oder Chlor und/oder einen der 20 folgende Reste: $C_1-C_4-Alkyl$, $C_1-C_4-Alkoxy$, $C_1-C_4-Alkylthio$, Cyano, C_1-C_8 -Alkylcarbonyl, C_1-C_8 -Alkoxycarbonyl, Phenyl, Phenoxy, Phenylcarbonyl wie im allgemeinen und besonderen oben genannt;
- C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl wie bei R^1 genannt, welche ein bis fünf Halogenatome wie vorstehend genannt, insbesondere Fluor und Chlor und/oder einen der folgenden Reste tragen können:
- 30 $C_1-C_4-Alkyl$, $C_1-C_4-Alkoxy$, $C_1-C_4-Alkylthio$, Cyano, $C_1-C_8-Alkyl-carbonyl$, $C_1-C_8-Alkoxycarbonyl$, Phenyl, Phenoxy, Phenyl-carbonyl wie im allgemeinen und besonderen oben genannt;
- ein 5- oder 6-gliedriges Heteroaryl wie Furyl, Thienyl,

 Pyrryl, Pyrazolyl, Imidazolyl, Triazolyl, Isoxazolyl,
 Oxazolyl, Isothiazolyl, Thiazolyl, Thiadiazolyl, Pyridyl,
 Pyrimidinyl, Pyrazinyl, Pyridazinyl, Triazinyl, beispielsweise 2-Furanyl, 3-Furanyl, 2-Thienyl, 3-Thienyl,
 3-Isoxazolyl, 4-Isoxazolyl, 5-Isoxazolyl, 3-Isothiazolyl,
- 4-Isothiazolyl, 5-Isothiazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazolyl, 2-Imidazolyl, 4-Imidazolyl, 5-Imidazolyl, 2-Pyrrolyl, 3-Pyrrolyl, 3-Pyrrolyl, 3-Pyrazolyl, 4-Pyrazolyl, 5-Pyrazolyl, 2-Pyridyl, 3-Pyridyl, 4-Pyridyl,
- Oxa-2,4-diazolyl, Oxa-3,4-diazoylyl, Thia-2,4-diazolyl, Thia-3,4-diazolyl und Triazolyl, wobei die Heteroaromaten ein bis fünf Halogenatome wie vorstehend genannt, insbesondere

Fluor und Chlor und/oder einen bis drei der folgenden Reste tragen können:

- C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Cyano, Nitro, C₁-C₈-Alkylcarbonyl, C₁-C₈-Alkoxycarbonyl, Phenyl, Phenoxy, Phenylcarbonyl wie im allgemeinen und besonderen oben genannt;
- R⁴ ferner Phenyl oder Naphthyl, die durch einen oder mehrere,
 z.B. einen bis drei der folgenden Reste substituiert sein
 können: Halogen, Nitro, Cyano, Hydroxy, Mercapto, Amino,
 C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Alkylamino, Di-C₁-C₄-alkylamino,
 C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkoxycarbonyl, insbesondere wie
 bei R⁷ und R⁸ genannt, sowie beispielsweise 3-Hydroxyphenyl,
 4-Dimethylaminophenyl, 2-Mercaptophenyl, 3-Methoxycarbonylphenyl, 4-Acetylphenyl, 1-Naphthyl, 2-Naphthyl,
 3-Brom-2-naphthyl, 4-Methyl-1-naphthyl, 5-Methoxy-1-naphthyl,
 6-Trifluormethyl-1-naphthyl, 7-Chlor-1-naphthyl,
- 8-Hydroxy-1-naphthyl;

- oder R⁴ bildet mit R⁵ zusammen mit dem benachbarten Kohlenstoffatom einen 3- bis 6-gliedrigen Ring, der ein Sauerstoffoder Schwefelatom enthalten kann und unsubstituiert ist oder je nach Ringgröße einen bis drei der folgenden Reste trägt: C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio wie im allgemeinen und besonderen oben genannt;
- 30 R⁵ Wasserstoff, C₁-C₄-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₃-C₈-Cycloalkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxyalkyl, C₁-C₄-Alkylthioalkyl oder Phenyl wie insbesondere vorstehend bei R⁴ genannt;
- 35 R⁶ C₁-C₈-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl oder C₃-C₈-Cycloalkyl wie insbesondere oben genannt, wobei diese Reste jeweils ein-oder mehrfach substituiert sein können durch: Halogen, Nitro, Cyano, C₁-C₄-Alkoxy, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylcarbonyl,
- C₁-C₄-Alkoxycarbonyl, C₁-C₄-Alkylamino, Di-C₁-C₄-alkylamino oder gegebenenfalls substituiertes Phenyl oder Phenoxy, wie insbesondere vorstehend genannt;
 - Phenyl oder Naphthyl, das durch einen oder mehreren der folgenden Reste substituiert sein kann: Halogen, Nitro, Cyano, Hydroxy, Amino, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Phenoxy, C₁-C₄-Alkylthio, C₁-C₄-Akylamino

oder C_1 - C_4 -Dialkylamino, wie insbesondere bei R^7 und R^4 genannt;

- ein fünf- oder sechsgliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome und/oder ein Schwefel- oder Sauerstoffatom, welcher ein bis vier Halogenatome und/oder einen bis zwei der folgenden Reste tragen kann: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, Phenyl, Phenoxy oder Phenylcarbonyl, wobei die Phenylreste ihrerseits ein bis fünf Halogenatome und/oder einen bis drei der folgenden Reste tragen können: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und/oder C₁-C₄-Alkylthio, wie insbesondere bei R⁴ genannt;
- 15 Y Schwefel, Sauerstoff oder eine Einfachbindung
 - Z Schwefel oder Sauerstoff.
- Besonders bevorzugt sind Verbindungen der Formel I, in der \mathbb{R}^2 20 und \mathbb{R}^3 Methoxy und X CH bedeuten. Weiterhin bevorzugt sind Verbindungen der Formel I, in der \mathbb{R}^2 und \mathbb{R}^3 Methoxy, X CH, Y und Z Sauerstoff und \mathbb{R}^5 C₁-C₄-Alkyl bedeuten. Bevorzugter Rest im Fall von \mathbb{R}^1 ist die Gruppe \mathbb{C}^{10} , wobei \mathbb{R}^{10} Wasserstoff oder C₁-C₄-Alkyl bedeutet.

 R^4 steht besonders bevorzugt für C_1 - C_4 -Alkyl, gegebenenfalls substituiertes Phenyl oder einen aromatischen heterocyclischen Rest enthaltend ein Heteroatom wie Furyl oder Thienyl.

30 R_6 steht besonders bevorzugt für Phenyl, ggf. 1 - 3fach substituiert durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkylthio.

Beispiele für bevorzugte Verbindungen sind in der nachfolgenden 35 Tabelle aufgeführt.

Besonders bevorzugt werden die Verbindungen 4.42 und 4.58 (Beispiel 10, Tab. 4) für die erfindungsgemäße Verwendung eingesetzt.

40

R1	R4	R5	R6	\mathbb{R}^2	\mathbb{R}^3	X	Y	2
НО	Phenyl	Methy1	Methy1	6СН3	0СН3	СН	S	S
Ю	Pheny1	Met hy l	Methy1	6СН3	0СН3	СН	0	S
осн ₃	Phenyl	Methy1	Met hy l	6СН3	0СН3	СН	S	S
НО	Pheny 1	i-Propyl	Methyl	6СН3	осн3	СН	0	0
ОСН3	2-Fluorphenyl	Ethyl	Methy1	осн3	OCH ₃	СН	0	0
OC ₂ H ₅	3-Chlorphenyl	Propy1	Methyl	осн3	осн3	Z	0	0
ON (CH ₃) ₂	4-Bromphenyl	i-Propyl	Methy1	\mathtt{CF}_3	CF_3	СН	S	0
ON=C (CH ₃) ₂	2-Thienyl	Methyl	Met hy l	OCF_3	OCF_3	СН	0	S
HNSO ₂ C ₆ H ₅	3-Thienyl	Met hy 1	Метһуl	СН3	CH_3	СН	0	0
NH Pheny 1	2-Furyl	Methyl	Methy1	c1	c_1	СН	0	
ONa	3-Fury1	Methyl	Methy1	осн ₃	-ОСН ₂ -СН ₂ -	-СН2-	S	0
0-сн2-с=сн	Pheny1	Ethyl	Ethyl	осн ₃	\mathtt{CF}_3	СН	0	0
НО	Phenyl	Propy1	Propy1	ОСН3	OCF_3	СН	0	S
осн ₃	Phenyl	i-Propyl	i-Propyl	осн ₃	СН3	СН	0	
OC2H5	Phenyl	Methyl	s-Butyl	ОСН ₃	c1	СН	S	0
ON (CH ₃) ₂	2-Methylphenyl	Methyl	Methyl	осн ₃	ОСН3	СН	0	0
ON (CH ₃) ₂	3-Methoxyphenyl	Met hy l	Methyl	осн ₃	OCH_3	СН	0	0
ON=C (CH ₃) ₂	4-Nitrophenyl	Met hy l	Methyl	осн ₃	осн ₃	СН	0	0
NHPheny1	2-Oxazolyl	Methyl	Methyl	CF_3	CF_3	z	S	0

R1	R4	R ⁵	R6	R ²	R ³	×	λ	2
ONa	4-0xazoly1	Methyl	Propen-3-yl	OCF_3	OCF_3	N	0	S
0-сн2-с≡сн	5-Oxazolyl	Met hy 1	Propin-3-yl	СН3	СН3	Z	0	0
НО	3-Isoxazolyl	Methy1	Cyclopentyl	C1	c1	Z	0	0
OCH ₃	4-Isoxazolyl	Methyl	Cyclohexyl	OCH ₃	-0-CH ₂ -CH ₂	2-CH ₂ -	0	0
OC2H5	5-Isoxazolyl	Methyl	Cyclopropylmethyl	осн ³	CF_3	N	S	0
ON (CH ₃) ₂	Phenyl	Methy1	1-Phenylpropin-3-yl	осн ³	OCF3	N	0	S
ON=C (CH ₃) ₂	2-Hydroxyphenyl	Met hy l	Methyl	осн3	CH ₃	Z	0	0
ONSO ₂ C ₆ H ₅	3-Trifluormethylphenyl	Methyl	Methyl	OCH ₃	C1	Z	0	0
NHPheny1	4-Dimethylaminophenyl	Met hy l	Methyl	OCH ₃	осн ³	СН	S	
ONa	2-Imidazolyl	Ethyl	Methy1	OCH ₃	осн ₃	СН	S	S
O-CH ₂ -C≡CH	4-Imidazolyl	Propy1	Methy1	OCH ₃	осн ₃	Z	S	S
Ю	3-Pyrazolyl	i-Propyl	Methy1	\mathbb{CF}_3	CF_3	СН	0	S
осн ₃	4-Pyrazolyl	Methyl	Methy1	ocF_3	OCF_3	СН	0	0
OC ₂ H ₅	Phenyl	Met hy l	Trifluorethyl	${\sf CH}_3$	СН3	СН	0	0
ON (CH ₃) ₂	Phenyl	Met hy 1	Benzy1	c1	C1	СН	0	0
ON (CH ₃) ₂	Phenyl	Methyl	2-Methoxyethyl	OCH ₃	-0-CH ₂ -CH ₂ -	2-CH2-	S	٥
ON=C (CH ₃) ₂	Phenylpropyl	Methyl	3-Methoxycarbonyl-	OCH ₃	\mathbb{CF}_3	z	S	S
NH-Pheny1	2-Pyridyl	Methyl	2-Chlorethyl	осн ³	OCF_3	Z	S	S
ONa	3-Pyridyl	Methy1	Methyl	OCH ₃	CH_3	Z	0	o
O-CH ₂ -C≡CH	4-Pyridyl	Methyl	Methy1	осн3	C1	z	0	0
осн	Phenyl	CH ₃	Pheny1	€н20	ОСН ₃	СН	0	0
, l								

\mathbb{R}^1	R4	R ⁵	R6	\mathbb{R}^2	\mathbb{R}^3	×	Y	Z
НО	Pheny1	СН3	Pheny l	ОСН ₃	ОСН ³	СН	0	0
НО	Phenyl	СН3	Pheny1	OCH ₃	-0-СН	-0-CH ₂ -CH ₂ -	0	0
НО	Pheny1	СН3	Phenyl	0СН3	ОСН ³	N	0	0
НО	Pheny1	СН3	Pheny l	осн ³	0СН3	СН	S	0
НО	Pheny1	CH ₃	Pheny l	осн3	ОСН ³	СН	S	S
НО	Pheny1	СН3	Pheny l	осн ³	ОСН ³	СН	0	S
НО	Pheny1	н	Pheny l	осн3	осн3	СН	0	0
НО	Pheny1	i-Propyl	Pheny l	осн3	осн3	СН	0	0
НО	CH ₃	СН3	Pheny l	осн ₃	осн3	СН	0	0
НО	- (CH ₂) 5-		Pheny 1	Pheny1	ОСН ³	СН	0	0
НО	Pheny1	СН3	2-Thiazolyl	осн3	OCH_3	СН	0	0
НО	2-Thienyl	СН3	Pheny l	осн3	0СН3	СН	0	0
осн	2-Fluorphenyl	Ethyl	Pheny1	0СН3	осн3	СН	0	0
OC ₂ H ₅	3-Chlorphenyl	Propyl	Pheny l	осн3	осн3	N	0	0
ON (CH ₃) ₂	4-Bromphenyl	i-Propyl	Pheny l	CF_3	CF_3	СН	S	0
ON=C (CH ₃) ₂	2-Thienyl	Methyl	Pheny l	OCF_3	OCF_3	СН	0	S
NH-SO ₂ -C ₆ H ₅	3-Thienyl	Methy1	Pheny l	CH_3	CH ₃	СН	0	0
NHPhenyl	2-Fury1	Methyl	Phenyl	c1	C1	СН	0	0
ONa	3-Fury1	Met hy l	Phenyl	осн3	-0-СН2-СН2	2-CH2-	S	0
0-сн₂≡сн	Pheny1	Ethyl	2-Fluorphenyl	осн3	CF_3	СН	0	0
НО	Pheny1	Propy1	3-Chlorphenyl	осн3	OCF_3	СН	0	S

	0	0	0	0	0	0	S	0	0	0	0	S	0	0	0	S	S	S	0	0	0	
•	0	S	0	0	0	S	0	0	0	0 -	လ	0	0	0	S	လ	S	0	0	0	0	
ų.	СН	СН	СН	СН	СН	N	Z	N	Z	-0-CH ₂ -CH ₂ -	Z	z	z	Z	СН	СН	z	СН	СН	СН	СН	
W.	CH ₃	C1	0СН3	OCH ₃	OCH ₃	CF_3	OCF_3	СН3	c1	-0-CF	CF_3	$0CF_3$	СН3	C1	OCH ₃	0СН3	ОСН3	CF_3	OCF_3	СН3	C]	
, W	осн3	осн3	осн3	осн3	осн3	CF_3	OCF3	СН3	C 1	осн3	осн3	осн3	осн3	осн ³	осн3	осн ³	OCH ₃	CF_3	OCF_3	СН3	c1	
Жŝ	4-Bromphenyl	4-Thiazolyl	Pheny 1	Pheny 1	Pheny 1	Pheny 1	2-Methylphenyl	3-Methoxyphenyl	4-Nitrophenyl	3-Imidazolyl	4-Imidazolyl	2-Pyrazolyl	Pheny 1	Pheny 1	Pheny 1	Pheny l	Pheny l	Pheny 1	Pheny l	2-Dimethylaminophenyl	3-Hydroxyphenyl	
R ⁵	i-Propyl	Met hy 1	Met hy 1	Met hy l	Methyl	Methyl	Methy1	Methyl	Methyl	Methyl	Methyl	Methyl	Methyl	Met hy l	Methyl	Ethyl	Propyl	i-Propyl	Methyl	Methy1	Met hy l	
R4	Phenyl	Pheny1	2-Methylphenyl	3-Methoxyphenyl	4-Nitrophenyl	Methy1	Methyl	Methyl	Methyl	Pheny1	Pheny1	Pheny 1	2-Hydroxyphenyl	3-Trifluormethylphenyl	4-Dimethylaminophenyl	3-Imidazolyl	4-Imidazolyl	3-Pyrazolyl	4-Pyrazolyl	Phenyl	Phenyl	
\mathbb{R}^1	осн3	0C2H5	ON (CH $_3$) $_2$	ON=C (CH ₃) 2	NH-SO-C ₆ H ₅	NHPheny1	ONa	о-сн₂-с≡сн	Ю	осн3	0C2H5	ON (CH ₃) ₂	ON=C (CH ₃) ₂	NH-SO ₂ -C ₆ H ₅	NHPheny 1	ONa	0-СН2-С≡СН	Ю	осн ₃	oc ₂ H ₅	ON (CH ₃) ₂	

							I	l
\mathbb{R}^1	\mathbb{R}^4	R ⁵	R6	\mathbb{R}^2	\mathbb{R}^3	Х	Y	2
ON=C(CH ₃) ₂ Pheny l	Phenyl	Methy1	4-Trifluormethylphenyl OCH ₃	осн ³	-0-СН	-0-CH ₂ -CH ₂ - S	S	0
NH-SO ₂ -C ₆ H ₅ Phenyl	Phenyl	Methy1	2-Oxazolyl	осн ³	CF_3	N	S	S
NH-Pheny l	2-Pyridyl	Methy1	4-Isoxazolyl	осн3	OCF_3	N	S	S
ONa	3-Pyridyl	Methyl	Pheny l	OCH ₃	CH ₃	Z	0	0
O-CH ₂ -C≡CH 4-Pyridy1	4-Pyridyl	Methyl	Pheny 1	осн ₃	C1	Z	0	0

Die Verbindungen der vorliegenden Erfindung bieten ein neues therapeutisches Potential für die Behandlung von Hypertonie, pulmonalem Hochdruck, Myokardinfarkt, Angina Pectoris, akutem 5 Nierenversagen, Niereninsuffizienz, zerebralen Vasospasmen, zerebraler Ischämie, Subarachnoidalblutungen, Migräne, Asthma, Atherosklerose, endotoxischem Schock, Endotoxin-induziertem Organversagen, intravaskulärer Koagulation, Restenose nach Angioplastie und Cyclosporin-induziertem Nierenversagen, bzw.

Die gute Wirkung der Verbindungen läßt sich in folgenden Versuchen zeigen:

15 Rezeptorbindungsstudien

Für Bindungsstudien wurden klonierte humane ET_A -Rezeptor-exprimierende CHO-Zellen und Meerschweinchen-Kleinhirnmembranen mit > 60 % ET_B - im Vergleich zu ET_A -Rezeptoren eingesetzt.

20

Membranpräparation

Die ET_A-Rezeptor-exprimierenden CHO-Zellen wurden in F₁₂-Medium mit 10 % fötalem Kälberserum, 1 % Glutamin, 100 E/ml Penicillin 25 und 0,2 % Streptomycin (Gibco BRL, Gaithersburg, MD, USA) vermehrt. Nach 48 h wurden die Zellen mit PBS gewaschen und mit 0,05 % trypsinhaltiger PBS 5 min inkubiert. Danach wurde mit F₁₂-Medium neutralisiert und die Zellen durch Zentrifugation bei 300 x g gesammelt. Zur Lyse der Zellen wurde kurz das Pellet mit 30 Lysispuffer (5 mM Tris-HCl, pH 7,4 mit 10 % Glycerin) gewaschen und danach in einer Konzentration von 10⁷-Zellen/ml Lysispuffer 30 min bei 4°C inkubiert. Die Membranen wurden bei 20.000 x g 10 min zentrifugiert und das Pellet in flüssigem Stickstoff gelagert.

35

Meerschweinchenkleinhirne wurden im Potter-Elvejhem-Homogenisator homogenisiert und durch differentielle Zentrifugation 10 min bei 1.000 x g und wiederholte Zentrifugation des Überstandes 10 min bei 20.000 x g gewonnen.

40

Bindungstests

Für den ET_A - und ET_B -Rezeptorbindungstest wurden die Membranen in Inkubationspuffer (50 mM Tris-HCl, pH 7,4 mit 5 mM MnCl₂, 40 µg/ml 45 Bacitracin und 0,2 % BSA) in einer Konzentration von 50 µg Protein pro Testansatz suspendiert und bei 25°C mit 25 pM [125J]-ET₁ (ET_A -Rezeptortest) oder 25 pM [125J]-RZ₃ (ET_B -Rezeptortest) in

Anwesenheit und Abwesenheit von Testsubstanz inkubiert. Die unspezifische Bindung wurde mit 10⁻⁷ M ET₁ bestimmt. Nach 30 min wurde der freie und der gebundene Radioligand durch Filtration über GF/B Glasfaserfilter (Whatman, England) an einem Skatron- Zellsammler (Skatron, Lier, Norwegen) getrennt und die Filter mit eiskaltem Tris-HCl-Puffer, pH 7,4 mit 0,2 % BSA gewaschen. Die auf den Filtern gesammelte Radioaktivität wurde mit einem Packard 2200 CA Flüssigkeitszintillationszähler quantifiziert.

10 Die Bestimmung der K_i -Werte erfolgte über nichtlineare Regressionsanalyse mit dem Programm LIGAND.

In Tabelle A ist die in der Versuchsanordnung ermittelte Wirkung von Verbindungen der Formel I als K_i -Wert [mol/l] angegeben.

Tabelle A

15

20

Verbindung K_i [mol/1]ET-AET-B4.42 $2.5 \cdot 10^{-7}$ $3.0 \cdot 10^{-6}$ 4.58 $1.6 \cdot 10^{-7}$ $4.7 \cdot 10^{-6}$

Funktionelles in vitro-Testsystem für die Suche nach Endothelinrezeptor (Subtyp A)-Antagonisten

Dieses Testsystem ist ein funktioneller, auf Zellen basierender Test für Endothelinrezeptoren. Bestimmte Zellen zeigen, wenn sie mit Endothelin 1 (ET1) stimuliert werden, einen Anstieg der intrazellulären Calciumkonzentration. Dieser Anstieg kann in intakten Zellen, die mit Calcium-sensitiven Farbstoffen beladen wurden, gemessen werden.

- Aus Ratten isolierte 1-Fibroblasten, bei denen ein endogener Endothelinrezeptor vom A-Subtyp nachgewiesen wurde, wurden mit dem Fluoreszenzfarbstoff Fura 2-an wie folgt beladen: Nach Trypsinierung wurden die Zellen in Puffer A (120 mM NaCl, 5 mM KCl, 1,5 mM MgCl₂, 1 mM CaCl₂, 25 mM HEPES, 10 mM Glucose, pH 7,4) bis zu einer Dichte von 2 x 10⁶/ml resuspendiert und in 30 min bei 37°C im Dunkeln mit Fura 2-am (2 µM), Pluronics F-127 (0,04 %) und DMSO (0,2 %) inkubiert. Danach wurden die Zellen zweimal mit Puffer A gewaschen und zu 2 x 10⁶/ml resuspendiert.
- Das Fluoreszenzsignal von 2 x 10⁵ Zellen pro ml bei Ex/Em 380/510 wurde bei 30°C kontinuierlich registriert. Zu den Zellen wurden die Testsubstanzen und nach einer Inkubationszeit von 3 min ET1 wurde die maximale Änderung der Fluoreszenz bestimmt. Die Antwort

der Zellen auf ET1 ohne vorherige Zugabe einer Testsubstanz diente als Kontrolle und wurde gleich 100 % gesetzt.

In Tabelle B ist die in der Versuchsanordnung ermittelte Wirkung 5 von Verbindungen der Formel I als IC_{50} -Wert [mol/1] angegeben.

Tabelle B

10

Verbindung	IC ₅₀ [mol/1]
4.42	7,4 · 10 ⁻⁷
4.58	1,0 · 10 ⁻⁶

Testung der ET-Antagonisten in vivo

- Männliche 250 300 g schwere SD-Ratten wurden mit Amobarbital narkotisiert, künstlich beatmet, vagotomisiert und despinalisiert. Die Arteria carotis und Vena jugularis wurden kathetisiert.
- In Kontrolltieren führt die intravenöse Gabe von 1 μ g/kg ET1 zu einem deutlichen Blutanstieg, der über einen längeren Zeitraum anhält.
- Den Testtieren wurde 5 min vor der ET1 Gabe die Testverbindungen i.v. injiziert (1 ml/kg). Zur Bestimmung der ET-antagonistischen Eigenschaften wurde der Blutdruckanstieg in den Testtieren mit dem in den Kontrolltieren verglichen.
- Endothelin-1 induzierter "sudden death" an Mäusen 30

Das Testprinzip besteht in der Hemmung des durch Endothelin verursachten plötzlichen Herztodes der Maus, der wahrscheinlich durch Verengung der Herzkranzgefäße bedingt ist, durch Vorbehandlung mit Endothelin-Rezeptorantagonisten. Nach intravenöser Injektion von 10 nmol/kg Endothelin im Volumen von 5 ml/kg Körpergewicht kommt es innerhalb weniger Minuten zum Tod der Tiere.

Die letale Endothelin-1 Dosis wird jeweils an einem kleinen Tierkollektiv überprüft. Wird die Prüfsubstanz intravenös appliziert,
erfolgt meist 5 min danach die im Referenzkollektiv letale Endothelin-1 Injektion. Bei anderen Applikationsarten verlängern sich
die Vorgabezeiten, gegebenenfalls bis zu mehreren Stunden.

Di Überlebensrate wird dokumentiert und effektive Dosen, die 50 % der Tiere 24 h oder länger gegen den Endothelin-Herztod schützen (ED 50) werden ermittelt.

5 Funktioneller Gefäßtest für Endothelin-Rezeptorantagonisten

An Aortensegmenten des Kaninchens wird nach einer Vorspannung von 2 g und einer Relaxationszeit von 1 h in Krebs-Henseleitlösung bei 37°C und einem pH-Wert zwischen 7,3 und 7,4 zunächst eine 10 K+-Kontraktur ausgelöst. Nach Auswaschen wird eine Endothelin-Dosiswirkungskurve bis zum Maximum erstellt.

Potentielle Endothelin-Anta onisten werden an anderen Präparaten des gleichen Gefäßes 15 min vor Beginn der Endothelin-Dosis
15 wirkungskurve appliziert. Die Effekte des Endothelins werden in % der K+-Kontraktur berechnet. Bei wirksamen Endothelin-Antagonisten kommt es zur Rechtsverschiebung der Endothelin-Dosiswirkungskurve.

- 20 Die erfindungsgemäßen Verbindungen können in üblicher Weise oral oder parenteral (subkutan, intravenös, intramuskulär, intraperotoneal) verabfolgt werden. Die Applikation kann auch mit Dämpfen oder Sprays durch den Nasen-Rachenraum erfolgen.
- 25 Die Dosierung hängt vom Alter, Zustand und Gewicht des Patienten sowie von der Applikationsart ab. In der Regel beträgt die tägliche Wirkstoffdosis zwischen etwa 0,5 und 50 mg/kg Körpergewicht bei oraler Gabe und zwischen etwa 0,1 und 10 mg/kg Körpergewicht bei parenteraler Gabe.

Die neuen Verbindungen können in den gebräuchlichen galenischen Applikationsformen fest oder flüssig angewendet werden, z.B. als Tabletten, Filmtabletten, Kapseln, Pulver, Granulate, Dragees, Suppositorien, Lösungen, Salben, Cremes oder Sprays. Diese werden

- 35 in üblicher Weise hergestellt. Die Wirkstoffe können dabei mit den üblichen galenischen Hilfsmitteln wie Tablettenbindern, Füllstoffen, Konservierungsmitteln, Tablettensprengmitteln, Fließreguliermitteln, Weichmachern, Netzmitteln, Dispergiermitteln, Emulgatoren, Lösungsmitteln, Retardierungsmitteln, Antioxidantien
- 40 und/oder Treibgasen verarbeitet werden (vgl. H. Sucker et al.: Pharmazeutische Technologie, Thieme-Verlag, Stuttgart, 1991). Die so erhaltenen Applikationsformen enthalten den Wirkstoff normalerweise in einer Menge von 0,1 bis 90 Gew.-%.

Synthesebeispiele

Synthese von Verbindungen der allgemeinen Formel VI

5 Beispiel 1
3-Methoxy-3-(3-methoxyphenyl)-2-hydroxybuttersäuremethylester

19.5 g (88 mmol) 3-(3-Methoxyphenyl)-2,3-epoxybuttersäuremethylester werden in 200 ml absolutem Methanol gelöst und mit 0,1 ml

10 Bortrifluorid-Etherat versetzt. Man rührt 12 Stunden bei Raumtemperatur und destilliert das Lösungsmittel ab. Der Rückstand
wird in Essigester aufgenommen, mit Natriumbicarbonat-Lösung
und Wasser gewaschen und über Natriumsulfat getrocknet. Nach
Abdestillieren des Lösungsmittels verbleiben 21,1 g eines schwach
15 gelben Öls.

Ausbeute: 94 % (Diastereomerengemisch 1:1)

Beispiel 2

20 3-Benzyloxy-3-phenyl-2-hydroxybuttersäuremethylester

in 150 ml Benzylalkohol gelöst und mit 0,5 ml konzentrierter Schwefelsäure versetzt. Man rührt 6 Stunden bei 50°C und läßt 25 auf Raumtemperatur abkühlen. Nach Neutralisation mit Natriumbicarbonat-Lösung destilliert man den überschüssigen Benzylalkohol am Hochvakuum ab und reinigt den Rückstand durch Flash-Chromatographie an Kieselgel mit n-Hexan/Essigester 9:1. Nach Abdestillieren des Lösungsmittels verbleiben 6,5 g eines farb-30 losen Öls.

9,6 g (50 mmol) 3-Phenyl-2,3-epoxybuttersauremethylester werden

Ausbeute: 43 % (Diastereomerengemisch 3:2)

Analog wurden alle in Tabelle 1 genannten Verbindungen her-35 gestellt.

28

Tabelle 1: Zwischenprodukte der Formel VI mit $R^1 = CH_3$

	Nr.	R ⁶	R ⁴			(
				R ⁵	DV*	Fp.[°C]
	1.1	Methyl	3-Methoxyphenyl	Methyl	1:1	Öl
10	1.2	Benzyl	Phenyl	Methyl	3:2	Öl
	1.3	Methyl	2-Fluorphenyl	Methyl	1:1	ð1
	1.4	Methyl	4-i-Propylphenyl	Methyl		
	1.5	Methyl	2-Methylphenyl	Methyl	2:1	Öl
15	1.6	Methyl	3-Methylphenyl	Methyl		
	1.7	Methyl	4-Methylphenyl	Methyl	3:2	Ō1
	1.8	Methyl	3-Nitrophenyl	Methyl		
	1.9	Methyl	4-Bromphenyl	Methyl	3:1	Ō1
	1.10	Methyl	2-Furyl	Methyl		·
20	1.11	Methyl	3-Furyl	Methyl		
	1.12	Methyl	2-Thienyl	Methyl		
	1.13	Methyl	3-Thienyl	Methyl		
	1.14	Methyl	2-Pyridyl	Methyl		
25	1.15	Methyl	3-Pyridyl	Methyl		
	1.16	Methyl	4-Pyridyl	Methyl		
	1.17	Methyl	2-Thiazolyl	Methyl		
	1.18	Methyl	3-Isoxazolyl	Methyl		
30	1.19	Methyl	4-Imidazolyl	Methyl		
	1.20	Methyl	2-Pyrazolyl	Methyl		
	1.21	Methyl	4-Chlorphenyl	Methyl	2:1	Öl
	1.22	Benzyl	3-Methylphenyl	Methyl	1:1	Ö1
25	1.23	Methyl	4-Fluorphenyl	Methyl	1:1	Ō1
35	1.24	Benzyl	4-Bromphenyl	Methyl	1:1	Ō1
	1.25	Benzyl	4-Chlorphenyl	Methyl	3:2	Ō1
	1.26	Benzyl	4-Fluorphenyl	Methyl	1:1	Ŏ1
	1.27	Methyl	Phenyl	Ethyl	1:1	Ö1
40	1.28	Methyl	3-Nitrophenyl	Methyl	2:1	Ō1
	1.29	Ethyl	4-Methylphenyl	Methyl	1:1	Ö1 .
	1.30	Benzyl	4-Methylphenyl	Methyl	1:1	Ö1
	1.31	Benzyl	Phenyl	Ethyl	1:0	01
45	1.32	4-Fluor-	Phenyl	Methy1	1:1	01
		benzyl				
•						

^{*} Diastereomerenverhältnis

Synthese von Verbindungen der allgemeinen Formel I:

Beispiel 3:

3-Benzyloxy-3-phenyl-2-(4,6-dimethoxypyrimidin-2-yl)oxybutter-5 säure-methylester

3 g (10 mmol) 3-Benzyloxy-3-phenyl-2-hydroxybuttersäuremethylester (Verb. 1.1) werden in 40 ml Dimethylformamid gelöst und mit 0,3g (12mmol) Natriumhydrid versetzt. Man rührt 1 Stunde und gibt dann 2,2 g (10 mmol) 4,6-Dimethoxy-2-methylsulfonylpyrimidin zu. Nach 24 Stunden Rühren bei Raumtemperatur wird vorsichtig mit 10 ml Wasser hydrolisiert, mit Essigsäure ein pH-Wert von 5 eingestellt und das Lösungsmittel am Hochvakuum abdestilliert. Der Rückstand wird in 100 ml Essigester aufgenommen, mit Wasser 15 gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel abdestilliert. Der Rückstand wird mit 10 ml Methyl-t-butylether versetzt und der gebildete Niederschlag abgesaugt. Nach dem Trocknen verbleiben 2,4g eines weißen Pulvers.

20 Ausbeute: 55 % (Diastereomerengemisch 1:1) Fp.: 115 - 117°C

Beispiel 4

3-Benzyloxy-3-phenyl-2-(4,6-dimethoxypyrimidin-2-yl)oxybutter25 säure

1,4 g (3 mmol) 3-Benzyloxy-3-phenyl-2-(4,6-dimethoxypyrimidin-2-yl)-oxybuttersäuremethylester (Bsp. 3) werden in 20 ml Methanol und 20 ml Tetrahydrofuran gelöst und mit 3,7 g 10 % NaOH-Lösung 30 versetzt. Man rührt 6 Stunden bei 60°C und 12 Stunden bei Raumtemperatur, destilliert die Lösungsmittel im Vakuum ab und nimmt den Rückstand in 100 ml Wasser auf. Nun wird mit Essigester zur Entfernung von nicht umgesetztem Ester extrahiert. Anschließend stellt man die Wasserphase mit verdünnter Salzsäure auf pH 1-2 35 und extrahiert mit Essigester. Nach Trocknen über Magnesiumsulfat und Abdestillieren des Lösungsmittels wird der Rückstand mit wenig Aceton versetzt und der gebildete Niederschlag abgesaugt. Nach dem Trocknen verbleiben 1,2 g eines weißen Pulvers.

40 Ausbeute: 88 %

Fp.: 165°C (Zersetzung, Diastereomerengemisch 3:2)

buttersäuremethylester

eines weißen Pulvers.

30

Beispiel 5
3-Benzyloxy-3-phenyl-2-[(4,6-dimethoxypyrimidin-2-yl)thio]-

5 11 g (25 mmol) 3-Benzyloxy-3-phenyl-2-hydroxybuttersäuremethylester (Verb. 1.1) werden in 50 ml Dichlormethan gelöst, 3 g (30 mmol) Triethylamin zugegeben und unter Rühren 3,2 g (28 mmol) Methansulfonsäurechlorid zugetropft. Man rührt 2 Stunden bei Raumtemperatur, wäscht mit Wasser, trocknet über Magnesiumsulfat 10 und engt im Vakuum ein. Der Rückstand wird in DMF aufgenommen und bei 0°C zu einer Suspension von 12,9 g (75 mmol) 4,6-Dimethoxy-pyrimidin-2-thiol und 8,4 g (100mmol) Natriumhydrogencarbonat in 100 ml DMF getropft. Nach 2 Stunden Rühren bei Raumtemperatur und weiteren 2 Stunden bei 60°C gießt man auf 1 l Eiswasser und saugt 15 den entstandenen Niederschlag ab. Nach Trocknen verbleiben 3,2 g

Ausbeute: 29 % (Diastereomerengemisch 1:1)

20 Analog den obigen Beispielen wurden die in Tabelle 2 genannten Verbindungen hergestellt.

25

30

35

Nr.	R6	R4	R5	λ	R1	Diastereomere	Fp. (°C)	
2.1	Benzyl	Pheny 1	Methy1	0	0СН3	1:1	115-117	
2.2	Benzyl	Phenyl	Methy1	0	но	3:2	165 (Zers.)	
2.3	Benyzl	Pheny 1	Methy1	S	осн ₃	1:1		
2.4	Benyzl	Pheny1	Methy1	S	НО			
2.5	Methyl	2-Fluorphenyl	Methy1	0	осн ₃	1:1	126-128	
2.6	Methy1	2-Fluorphenyl	Methy1	0	но	2:1	185-186	
2.7	Methyl	3-Methoxyphenyl	Methy1	0	осн3	1:0 (5:1)	131-132 (93-95)	
2.8	Methy1	3-Methoxyphenyl	Methyl	0	ОН	1:0	187-189	
2.9	Methyl	4-i-Propylphenyl	Methyl	0	осн ₃			
2.10	Methyl	4-i-Propylphenyl	Methy1	0	ОН			
2.11	Methyl	2-Methylphenyl	Methyl	0	осн ₃	3:1	122-124	
2.12	Methyl	2-Methylphenyl	Methy1	0	ОН	1:1	135-137	

OCH ₃ 1:1 OH 1:1 OCH ₃ 1:1 OCH ₃ 1:1 OCH ₃ 1:0 OCH ₃ 1:0 OCH ₃ 2:1 OCH ₃ 2:1 OCH ₃ CCH ₃ OCH ₃ CCCH ₃			R ⁵	χ	\mathbb{R}^1	Diastereomere	Fp. (°C)
OCH3 1:1 OCH3 1:1 OCH3 1:0 OCH3 1:0 OCH3 1:0 OCH3 1:0 OCH3 1:0 OCH3 1:0 OCH3 1:1	3-Methylphenyl Methyl	Methy]		0	ОСН ³	1:1	105-110
OCH3 1:1 OH 1:1 OCH3 1:0 OCH3 1:0 OCH3 1:0 OCH3 1:0 OCH3 1:1 OCH43 1:1 <	3-Methylphenyl Methyl	Methy1		0	но	1:1	130-132
OCH ₃ 1:1 OCH ₃ 1:0 OCH ₃ 1:0 OCH ₃ 1:0 OCH ₃ 0CH ₃ OCH ₃ 2:1 OCH ₃ 2:1 OCH ₃ CCH ₃	4-Methylphenyl Methyl	Methy1		0	6н20	1:1	99-102
OCH3 1:0 OCH3 1:0 OCH3 1.0 OCH3 1.0 OCH3 2:1 OCH3 1.0 OCH43 1.0 OCH43 1.0 OCH43 1.0 OCH44 1.0 OCH45 1.0 OCH46 1.0 <td>4-Methylphenyl Methyl</td> <td>Methy1</td> <td></td> <td>0</td> <td>но</td> <td>1:1</td> <td>145-147</td>	4-Methylphenyl Methyl	Methy1		0	но	1:1	145-147
OH 1:0 OCH3 CH3 OCH3 CH3 OCH3 CH3 OCH3 CH3 OCH3 CH3 OCH3 CCH3	4-Bromphenyl Methyl	Met hy 1		0	осн ₃	1:0	148-150
OCH3 OH OCH3 CH3 OCH3 CH3 OCH3 2:1 OCH3 CH3 OCH3 CH3 OCH3 CCH3 OCH4 CCH3 OCH3 CCH3	4-Bromphenyl Methyl	Methyl		0	но	1:0	189-190
OCH3 OCH3 OCH3 OCH3 OCH3 OCH3 OCH3 OCH3	2-Furyl Methyl	Methy1		0	осн ₃		
OCH ₃	2-Furyl Methyl	Methy1		0	ОН		
OCH ₃	3-Furyl Methyl	Methy1		0	осн ₃		
OCH3 2:1 OCH3 2:1 OCH3 2:1 OCH3 CCH3	3-Furyl Methyl	Methy1		0	но		
OCH ₃ 2:1 OCH ₃ 2:1 OCH ₃	2-Thienyl Methyl	Met hy 1		0	осн3		
OCH ₃	2-Thienyl Methyl	Methy1		0	НО		
OCH ₃	2-Pyridyl Methyl	Methy1		0	осн3	2:1	Öl
	2-Pyridyl Methyl	Methy1		0	ONa		175-176
	3-Pyridyl Methyl	Methyl		0	осн ₃		
	3-Pyridyl Methyl	Methy1		0	ОН		
	4-Pyridyl Methyl	Methy1		0	осн ₃	-	
	4-Pyridyl Methyl	Methy1		0	ОН		
	3-Chlorphenyl Methyl	Methy1		0	осн ₃		
	3-Chlorphenyl Methyl	Methyl		0	ЮН		
	2-Thiazolyl Methyl	Methy1		0	ОСН ₃		

											33										
Fp. (°C)								112-114		115-120	143-145	122-125	170-172	94- 95	154-156	125-127	206-207	95-100	140-142	95- 98	153-154
Diastereomere								1:1		4:1	2:1	1:1	3:1	1:1	1:1	1:1	5:1	1:0	1:0	1:1	4:1
\mathbb{R}^1	но	осн3	НО	осн3	НО	осн3	но	OCH ₃	но	осн3	. но	осн3	но	осн ₃	НО	осн3	но	осн ₃	но	осн ₃	НО
¥	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R5	Methy1	Methy1	Methy1	Methy1	Methy1	Methy1	Methy1	Methy1	Methy1	Methy]	Methy1	Methyl	Methy1	Methy1	Methy1	Methy1	Methy1	Ethyl	Ethy1	Methy1	Methy1
R4	2-Thiazolyl	3-Isoxazolyl	3-Isoxazolyl	4-Imidazolyl	4-Imidazolyl	2-Pyrazolyl	2-Pyrazolyl	4-Chlorphenyl	4-Chlorphenyl	2-Fluorphenyl	2-Fluorphenyl	4-Fluorphenyl	4-Fluorphenyl	3-Methylphenyl	3-Methylphenyl	4-Chlorphenyl	4-Chlorphenyl	Pheny 1	Pheny l	4-Fluorphenyl	4-Fluorphenyl
R6	Methyl	Methyl	Methyl	Methyl	Methyl	Methyl	Methyl	Benzyl	Benzyl	i-Propyl	i-Propyl	Methyl	Methyl	Benzyl	Benzyl	Methyl	Methyl	Methyl	Methyl	Benzyl	Benzvl
Nr.	2.34	2.35	2.36	2.37	2.38	2.39	2.40	2.41	2.42	2.43	2.44	2.45	2.46	2.47	2.48	2.49	2.50	2.51	2.52	2.53	2.54

											34										
Fp. (°C)	152-153	160-162	158-160	203-204	129-130	200-201	78- 79	156-158	Öl	158-159	110-112	92- 93	117-119	Ö1	ري	10	Ö1	Öl 172-174	01 01 172-174 60- 61	01 01 172-174 60- 61 104-106	01 01 172-174 60- 61 104-106 153-154
Diastereomere	1:0	7:3	9:1	1:0	1:0	1:0	1:1	1:1	1:1	4:1	1:0	1:0	1:0	1:1	1.1	+ • +	1:1	1:1	1:1 1:0 1:0	1:1 1:0 -	1:1 1:0 - 1:0
R1	0СН ₃	НО	осн	НО	осн ₃	НО	осн3	ОН	осн ₃	НО	осн ₃	НО	осн ₃	но	осн		ОН	ОН ОСН ₃	он осн ₃ он	OH ОСН ₃ ОН ОСН ₃	ОН ОСН ₃ ОН ОСН ₃
≻	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0 0	0 0 0	0 0 0 0	00000
RS	Methy1	Methy1	Methy1	Methyl	Methy1	Methy1	Methy1	Methy1	Methyl	Methy1	Ethyl	Ethyl	Methyl	Methyl	н		×	H Methyl	H Methyl Methyl	H Methyl Methyl	H Methyl Methyl Methyl Methyl
R4	Phenyl	Pheny 1	Pheny 1	Pheny 1	2-Fluorphenyl	2-Fluorphenyl	4-Bromphenyl	4-Bromphenyl	4-Methylphenyl	4-Methylphenyl	Pheny l	Pheny l	4-Methylphenyl	4-Methylphenyl	2-Furyl	. = 0	2-Fury1	2-Fury1 Pheny1	z-ruryı Phenyl Phenyl	2-Fury1 Pheny1 Pheny1 4-Brompheny1	the phe
R6	4-Fluorbenzyl	4-Fluorbenzyl	4-Brombenzyl	4-Brombenzyl	Benzyl	Benzyl	Benzyl	Benzyl	Benzyl	Benzyl	Benzyl	Benzyl	Et hy 1	Ethyl	Methyl	Wathyl	Meculy 4	4-Chlorbenzyl	4-Chlorbenzyl 4-Chlorbenzyl	4-Chlorbenzyl 4-Chlorbenzyl 2-Butyl	4-Chlorbenzyl 4-Chlorbenzyl 2-Butyl
Nr.	2.55	2.56	2.57	2.58	2.59	2.60	2.61	2.62	2.63	2.64	2.65	2.66	2.67	2.68	2.69	2.70		2.71	2.71	2.71	2.72 2.73 2.74

	1										35										
Fp. (°C)	104-105	101-102	165-172	112-113	02 -89	80-82	Öl	112-113	60- 61	125-130	133-135	86-87	155	138-140	147-149	0el	131-135	151-152	0e1	170-173	160-162
Diastereomere	9:1	1:1	1:1	1:0	4:1	1:1	1:1	0:1	0:1	1:3	0:1	3:1	1:0	0:1	1:0	1:1	1:1	2:1	1:1	2:1	1:0
\mathbb{R}^1	но	осн3	НО	осн ₃	НО	осн	Ю	осн	осн3	осн	но	осн3	Ю	Ю	ОН	осн	ОН	осн ₃	ОН	осн ₃	ЮН
χ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	o	0	0	0	0
R ⁵	Methy1	Methy1	Methy1	Methy1	Methy1	H	Н	Methyl	Methy1	Ethyl	Ethyl	Methyl	Methyl	Methyl	Methyl	, н	Н	Methyl	Methy1	Methy1	Methy1
R4	4-Fluorphenyl	3-Nitrophenyl	3-Nitrophenyl	4-Trifluorphenyl	4-Trifluorphenyl	3-Thienyl	3-Thienyl	Pheny1	Pheny1	Pheny 1	Pheny 1	3-Methoxyphenyl	3-Methoxyphenyl	3-Methoxyphenyl	Phenyl	3-Furyl	3-Furyl	Phenyl	Pheny1	Pheny1	Phenyl
Ré	n-Propyl	Methyl	Methyl	Methy1	Methy1	Methyl	Methyl	4-Chlorbenzyl	4-Chlorbenzyl	Methyl	Methyl	Benzyl	Benzyl	Benzyl	2-Phenylethyl	Methyl	Methyl	3-CF ₃ -benzyl	3-CF ₃ -benzyl	2-Fluorbenzol	2-Fluorbenzol
Nr.	2.76	2.77	2.78	2.79	2.80	2.81	2.82	2.83	2.84	2.85	2.86	2.87	2.88	2.89	2.90	2.91	2.92	2.93	2.94	2.95	2.96

Nr.	R6	R4	R5	¥	R1	Diastereomere	Fp. (°C)
2.97	2.97 2-Fluorbenzol Phenyl:	Phenyl	Methyl	0	НО	1:3	138-141
2.98	3-Fluorbenzyl Phenyl	Pheny 1	Methy1	0	0СН3	1:1	81- 86
2.99	2.99 3-Fluorbenzyl Phenyl	Pheny 1	Methy1	0	но	4:1	195-197
2.100	2.100 3-Fluorbenzyl	Pheny 1	Methyl	0	ONa	3:1	250-260
2.101	2.101 4-Fluorbenzyl	Pheny l	Methy1	0	осн ₃	1:1	112-115
2.102	2.102 4-Fluorbenzyl Phenyl	Pheny 1	Methy1	0	НО		

Synthese von Verbindungen der allgemeinen Formel VI

Beispiel 6

5

3-Phenoxy-3-phenyl-2-hydroxybuttersäuremethylester

28,2 g (0,3 mol) Phenol und 19,2 g (0,1 mol) 3-Phenyl-2,3-epoxy-buttersäuremethylester werden zusammen 6 Stunden auf 100°C

10 erhitzt. Nach Abdestillieren des überschüssigen Phenols am Hochvakuum und chromatographischer Reinigung des Rückstands an Kieselgel mit Hexan/Essigestergemischen erhält man 17,9 g eines

15 Ausbeute: 62,5 %

schwach gelben Öls.

Beispiel 7

3-(4-Bromphenyl)oxy-3-phenyl-2-hydroxybuttersauremethylester

20

51,9 g (0,3 mol) 4-Bromphenol und 19,2 g (0,1 mol)
3-Phenyl-2,3-epoxybuttersäuremethylester werden 8 h bei 100°C und
12 h bei Raumtemperatur gerührt. Nach Abdestillieren des überschüssigen Phenols wird der Rückstand mittels Flash-Chromato-

25 graphie (Kieselgel, n-Hexan-Essigester 9:1) gereinigt. Man erhält 7,2 g eines weißen Feststoffes.

Ausbeute: 20 % Fp.: 133 - 135°C

30 Analog wurden die in Tabelle 3 genannten Verbindungen hergestellt:

35

38

Tabelle 3: Zwischenprodukte der Formel VI mit $R^1 = CH_3$

		R ⁶	R ⁴	R ⁵	Fp. [0C]
10	3.1	Phenyl	Phenyl	Methyl	Ö1
	3.2	4-Bromphenyl	Phenyl	Methyl	130-133
	3.3	Phenyl	Methyl	Methyl	
	3.4	Phenyl	Phenyl	i-Propyl	
15	3.5	2-Fluorphenyl	Phenyl	Methyl	
	3.6	3-Fluorphenyl	Phenyl	Methyl	Ö1
	3.7	4-Fluorphenyl	Phenyl	Methyl	Ö1
	3.8	4-Chlorphenyl	Phenyl	Methyl	
	3.9	4-Nitrophenyl	Phenyl	Methyl	
20	3.10	4-Methylphenyl	Phenyl	Methyl	Öl
	3.11	Phenyl	2-Fluorphenyl	Methyl	
	3.12	Phenyl	3-Methoxyphenyl	Methyl	
	3.13	Phenyl	4-i-Propylphenyl	Methyl	
25	3.14	Phenyl	2-Methylphenyl	Methyl	
	3.15	Phenyl	3-Nitrophenyl	Methyl	
	3.16	Phenyl	4-Bromphenyl	Methyl	
	3.17	Phenyl	2-Furyl	Methyl	
30	3.18	Phenyl	2-Thienyl	Methyl	Ö1
	3.19	Phenyl	3-Furyl	Methyl	
	3.20	Phenyl	3-Thienyl	Methyl	
	3.21	3-Methylphenyl	Phenyl	Methyl	Ō1
2 5	3.22°	2-Methylphenyl	Phenyl	Methyl	Ö1
35	3.23	4-i-Propylphenyl	Phenyl	Methyl	Ö1
	3.24	Phenyl	4-Chlorphenyl	Methyl	Ō1

Synthese von Verbindungen der allgemeinen Formel I:

Beispiel 8

5 3-Phenoxy-3-phenyl-2-(4,6-dimethoxypyrimidin-2-yl)oxybuttersäure methylester

4,4 g (15,4 mmol) 3-Phenoxy-3-pheny1-2-hydroxybuttersäuremethy1ester (Verb. 1.1) werden in 40 ml Dimethylformamid gelöst und mit 10 0,46 g (18,4 mmol) Natriumhydrid versetzt. Man rührt 1 Stunde und gibt dann 3,4 g (15,4 mmol) 4,6-Dimethoxy-2-methylsulfonylpyrimidin zu. Nach 24 Stunden Rühren bei Raumtemperatur wird vorsichtig mit 10 ml Wasser hydrolisiert, mit Essigsäure ein pH-Wert von 5 eingestellt und das Lösungsmittel am Hochvakuum ab-15 destilliert. Der Rückstand wird in 100 ml Essigester aufgenommen, mit Wasser gewaschen, über Natriumsulfat getrocknet und das

Lösungsmittel abdestilliert. Der Rückstand wird mit 10 ml Methylt-butylether versetzt und der gebildete Niederschlag abgesaugt. Nach dem Trocknen verbleiben 1,6 g eines weißen Pulvers.

20

Ausbeute: 24,5 % Fp.: $143 - 145^{\circ}$ C

Beispiel 9

25

- 3-Phenoxy-3-phenyl-2-(4,6-dimethoxypyrimidin-2-yl)oxybuttersaure
- 1,3 g 3-Phenoxy-3-phenyl-2-(4,6-dimethoxypyrimidin-2-yl)oxy-buttersäuremethylester (Bsp. 3) werden in 20 ml MeOH und 40 ml 30 Tetrahydrofuran gelöst und mit 3,7 g 10 % NaOH-Lösung versetzt. Man rührt 6 Stunden bei 60°C und 12 Stunden bei Raumtempertur, destilliert die Lösungsmittel im Vakuum ab und nimmt den Rückstand in 100 ml Wasser auf. Nicht umgesetzter Ester wird mit Essigester extrahiert. Anschließend stellt man die Wasserphase 35 mit verdünnter Salzsäure auf pH 1 - 2 und extrahiert mit Essig-
- ester. Nach Trocknen über Magnesiumsulfat und Abdestillieren des Lösungsmittels verbleiben 1,0 g eines weißen Pulvers.

Ausbeute: 79,7 % **40** Fp.: 50 - 55°C

Beispiel 10

3-Phenoxy-3-pheny1-2-[(4,6-dimethoxypyrmidin-2-y1)thio]buttersäuremethylester

5

7,2 g (25 mmol) 3-Phenoxy-3-phenyl-2-hydroxybuttersäuremethylester (Verb. 1.1) werden in 50 ml Dichlormethan gelöst, 3 g (30 mmol) Triethylamin zugegeben und unter Rühren 3,2 g (28 mmol) Methansulfonsäurechlorid zugetropft. Man rührt 2 Stunden bei Raumtemperatur, wäscht mit Wasser, trocknet über Magnesiumsulfat und engt im Vakuum ein. Der Rückstand wird in 100 ml DMF aufgenommen und bei 0°C zu einer Suspension von 12,9 g (75 mmol) 4,6-Dimethoxpyrimidin-2-thiol und 8,4 g (100 mmol) Natriumhydrogencarbonat in 100 ml DMF getropft. Nach 2 Stunden Rühren 15 bei Raumtemperatur und weiteren 2 Stunden bei 60°C gießt man auf 1 Liter Eiswasser und saugt den entstandenen Niederschlag ab. Nach Trocknen verbleiben 4,2 g eines weißen Pulvers.

Ausbeute: 38 %

20

Analog den obigen Beispielen wurden die in Tabelle 4 genannten Verbindungen hergestellt.

Tabelle 4

25

35	Bsp. Nr.	R ⁶	R ⁴	R ⁵	R ¹	Y	Fp. [⁰ C]
33	4.1	Phenyl	Phenyl	Methyl	OCH ₃	0	100-103
	4.2	Phenyl	Phenyl	Methyl	OH	0	50-55
	4.3	Phenyl	Phenyl	Methyl	OCH ₃	S	
	4.4	Phenyl	Phenyl	Methyl	ОН	S	
40	4.5	Phenyl	Phenyl	i-Propyl	OCH ₃	0	
	4.6	Phenyl	Phenyl .	i-Propyl	ОН	0	•
	4.7	Phenyl	Methyl	Methyl	OCH ₃	0	
	4.8	Phenyl	Methyl	Methyl	ОН	0	
45	4.9	4-Bromphenyl	Phenyl	Methyl	OCH ₃	0	130-135
	4.10	4-Bromphenyl	Phenyl	Methyl	ОН	0	155-160
	4.11	2-Fluorphenyl	Phenyl	Methyl	OCH ₃	0	128-134

			41				
	Bsp. Nr.	R ⁶	R ⁴	R ⁵	R ¹	Y	Fp. [°C]
	4.12	2-Fluorphenyl	Phenyl	Methyl	ОН	0	170-171
	4.13	3-Fluorphenyl	Phenyl	Methyl	OCH ₃	0	85- 90
5	4.14	3-Fluorphenyl	Phenyl	Methyl	ОН	0	167-169
	4.15	4-Fluorphenyl	Phenyl	Methyl	OCH ₃	0	115-116
	4.16	4-Fluorphenyl	Phenyl	Methyl	ОН	0	122-125
	4.17	4-Chlorphenyl	Phenyl	Methyl	OCH ₃	0	Ŏ1
10	4.18	4-Chlorphenyl	Phenyl	Methyl	ОН	0	94- 98
	4.19	4-Methylphenyl	Phenyl	Methyl	OCH ₃	0	100-114
	4.20	4-Methylphenyl	Phenyl	Methyl	ОН	0	Ŏ1
	4.21	4-Nitrophenyl	Phenyl	Methyl	OCH ₃	0	
15	4.22	4-Nitrophenyl	Phenyl	Methyl	ОН	0	
	4.23	Phenyl	2-Fluorphenyl	Methyl	OCH ₃	0	130-132
	4.24	Phenyl	2-Fluorphenyl	Methyl	ОН	0	194-195
	4.25	Phenyl	3-Methoxyphenyl	Methyl	OCH ₃	0	Ö1
20	4.26	Phenyl	3-Methoxyphenyl	Methyl	OH	0	Ō1
	4.27	Phenyl	4-i-Propylphenyl	Methyl	OCH ₃	0	
	4.28	Phenyl	4-i-Propylphenyl	Methyl	ОН	0	
	4.29	Phenyl	4-Bromphenyl	Methyl	OCH ₃	0	129-131
	4.30	Phenyl	4-Bromphenyl	Methyl	OH	0	Öl
25	4.31	Phenyl	2-Furyl	Methyl	OCH ₃	0	
	4.32	Phenyl	2-Furyl	Methyl	ОН	0	
	4.33	Phenyl	3-Furyl	Methyl	OCH ₃	0	
	4.34	Phenyl	3-Furyl	Methyl	ОН	0	
30	4.35	Phenyl	2-Thienyl	Methyl	OCH ₃	0	
	4.36	Phenyl	2-Thienyl	Methyl	ОН	0	
	4.37	Phenyl	3-Thienyl	Methyl	OCH ₃	0	
	4.38	Phenyl	3-Thienyl	Methyl	ОН	0	
35	4.39	3-Methylphenyl	Phenyl	Methyl	OCH ₃	0	155
	4.40	3-Methylphenyl	Phenyl	Methyl	ОН	0	100-101
	4.41	4-i-Propyl- phenyl	Phenyl	Methyl	OCH ₃	0	130-131
40	4.42	4-i-Propyl- phenyl	Phenyl	Methyl	ОН	0	230
•	4.43	Phenyl	4-Chlorphenyl	Methyl	OCH ₃	0	143-144
	4.44	Phenyl	4-Chlorphenyl	Methyl	ОН	0	90- 92
	4.45	Phenyl	2-Methylphenyl	Methyl	OCH ₃	0	179-180
45	4.46	Phenyl	2-Methylphenyl	Methyl	ОН	0	
40	4.47	2-Methylphenyl	Phenyl	Methyl	OCH ₃	0	95-114
	4.48	2-Methylphenyl	Phenyl	Methyl	ОН	0	80- 85

	Bsp. Nr.	R ⁶	R ⁴	R ⁵	R ¹	Y	Fp. [⁰ C]
	4.49	Phenyl	4-Methylphenyl	Methyl	OCH ₃	0	110-112
5	4.50	Phenyl	4-Methylphenyl	Methyl	ОН	0	156-157
3	4.51	Phenyl	3-Methylphenyl	Methyl	OCH ₃	0	Ö1
	4.52	Phenyl	3-Methylphenyl	Methyl	ОН	0	158-160
	4.53	4-Methoxy- phenyl	Phenyl	Methyl	OCH ₃	0	157-158
10	4.54	4-Methoxy- phenyl	Phenyl	Methyl	ОН	0	106-107
	4.55	Phenyl	4-Fluorphenyl	Methyl	OCH ₃	0	160-165
	4.56	Phenyl	4-Fluorphenyl	Methyl	ОН	0	99-100
15	4.57	4-Methylthio- phenyl	Phenyl	Methyl	осн3	0	160-163
	4.58	4-Methylthio- phenyl	Phenyl	Methyl	ОН	0	248-250
	4.59	4-t-Butyl- phenyl	Phenyl	Methyl	OCH ₃	0	106-110
20	4.60	4-t-Butyl- phenyl	Phenyl	Methyl	ОН	0	250
	4.61	Phenyl	Phenyl	Ethyl	OCH ₃	0	115-117
	4.62	Phenyl	Phenyl	Ethyl	ОН	0	84- 85
25	4.63	4-Acetoxy- phenyl	Phenyl	Methyl	осн3	0	157-159
	4.64	4-Hydroxy- phenyl	Phenyl	Methyl	ОН	0	80- 90

Verwendung von Carbonsäurederivaten als Arzneimittel

Zusammenfassung

5

Verwendung von Carbonsäurederivaten der Formel I

10
$$\begin{array}{c|c}
R & & & & & & & & & & \\
R & & & & & & & & & \\
R & & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & \\
R & & & &$$

15

25

in der R eine Formylgruppe, eine Gruppe CO_2H oder einen zu COOH hydrolysierbaren Rest bedeutet und die übrigen Substituenten folgende Bedeutung haben:

- 20 R² Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy oder C_1 - C_4 -Alkylthio;
 - X Stickstoff oder CR¹⁴, wobei R¹⁴ Wasserstoff bedeutet oder zusammen mit R³ eine 3- bis 4-gliedrige Alkylen- oder Alkenylenkette bildet, in der jeweils eine Methylengruppe durch Sauerstoff ersetzt ist;
- R³ Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy, C_1 - C_4 -Alkylthio oder R³ ist mit R¹⁴ wie oben angegeben zu einem 5- oder 6-gliedrigen Ring verknüpft;
- R⁴ eine C₁-C₁₀-Alkylgruppe, welche ein bis fünf Halogenatome und/oder einen der folgenden Reste tragen kann: C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Cyano, C₁-C₈-Alkylcarbonyl, C₁-C₈-Alkoxy-carbonyl, Phenyl, Phenoxy oder Phenylcarbonyl, wobei die Phenylreste ihrerseits ein bis fünf Halogenatome und/oder einen bis drei der folgenden Reste tragen können: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und/oder C₁-C₄-Alkylthio;

40

45

eine C_1 - C_{10} -Alkylgruppe, welche ein bis fünf Halogenatome tragen kann und einen der folgenden Reste trägt: ein fünfgliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome und/oder ein Schwefel- oder Sauerstoffatom, welcher ein bis vier Halogenatome und/oder einen bis zwei der folgenden

Reste tragen kann: $C_1-C_4-Alkyl$, $C_1-C_4-Halogenalkyl$, $C_1-C_4-Alkyl$, $C_1-C_4-Halogenalkoxy$, $C_1-C_4-Alkyl$ thio und/oder Phenyl;

eine C_3-C_{12} -Cycloalkyl- oder C_3-C_{12} -Cycloalkenylgruppe, die ein Sauerstoff- oder Schwefelatom enthalten kann und ein bis fünf Halogenatome und/oder einen der folgenden Reste tragen kann: C_1-C_4 -Alkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthio, Cyano, C_1-C_8 -Alkyl-carbonyl, C_1-C_8 -Alkoxycarbonyl, Phenyl, Phenoxy oder Phenyl-carbonyl, wobei die Phenylreste ihrerseits ein bis fünf Halogenatome und/oder einen bis drei der folgenden Reste tragen können: C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy und/oder C_1-C_4 -Alkylthio;

eine C₃-C₆-Alkenyl- oder eine C₃-C₆-Alkinylgruppe, welche jeweils ein bis fünf Halogenatome und/oder einen der folgenden Reste tragen kann: C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Cyano, C₁-C₈-Alkylcarbonyl, C₁-C₈-Alkoxycarbonyl, Phenyl, Phenoxy oder Phenylcarbonyl, wobei die Phenylreste ihrerseits ein bis fünf Halogenatome und/oder einen bis drei der folgenden Reste tragen können: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und/oder C₁-C₄-Alkylthio;

ein fünf- oder sechsgliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome und/oder ein Schwefel- oder Sauerstoffatom, welcher ein bis vier Halogenatome und/oder einen bis zwei der folgenden Reste tragen kann: C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy, C_1 - C_4 -Alkylthio, Phenyl, Phenoxy oder Phenylcarbonyl, wobei die Phenylreste ihrerseits ein bis fünf Halogenatome und/oder einen bis drei der folgenden Reste tragen können: C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy und/oder C_1 - C_4 -Alkylthio;

Phenyl oder Naphthyl, die durch einen oder mehrere der folgenden Reste substituiert sein können: Halogen, Nitro, Cyano, Hydroxy, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkylthio, Amino, C_1 - C_4 -Alkylamino oder C_1 - C_4 -Dialkylamino;

R⁴ und R⁵ bilden zusammen mit dem benachbarten Kohlenstoffatom einen 3- bis 8-gliedrigen Ring, der ein Sauerstoff- oder Schwefelatom enthalten kann und einen bis drei der folgenden Reste tragen kann: C₁-C₄-Alkyl, Halogen, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und/oder C₁-C₄-Akylthio;

5

10

25

30

Wasserstoff, C_1 - C_4 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl, C_3 - C_8 -Cycloalkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxyalkyl, C_1 - C_4 -Alkylthioalkyl, Phenyl oder R^5 ist mit R^4 wie oben angegeben zu einem 3- bis 8-gliedrigen Ring verknüpft;

5

- R⁶ $C_1-C_8-Alkyl$, $C_3-C_6-Alkenyl$, $C_3-C_6-Alkinyl$ oder $C_3-C_8-Cyclo-alkyl$, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: Halogen, Nitro, Cyano, $C_1-C_4-Alkoxy$, $C_3-C_6-Alkenyloxy$, $C_3-C_6-Alkinyloxy$, $C_1-C_4-Alkylthio$,
- C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkoxycarbonyl, C₁-C₄-Alkylamino, Di-C₁-C₄-alkylamino, Phenyl, ein- oder mehrfach, z.B. ein bis dreifach durch Halogen, Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy oder C₁-C₄-Alkylthio substituiertes Phenyl oder Phenoxy;

Phenyl oder Naphthyl, die jeweils durch einen oder mehrere der folgenden Reste substituiert sein können: Halogen, Nitro, Cyano, Hydroxy, Amino, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy, Phenoxy, C_1 - C_4 -Alkylthio,

20 $C_1-C_4-Alkoxy$, $C_1-C_4-Halogenalkoxy$, Phenoxy, C_1-C_4-Alky $C_1-C_4-Alkylamino$ oder $C_1-C_4-Dialkylamino$;

ein fünf- oder sechsgliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome und/oder ein Schwefel- oder Sauerstoffatom, welcher ein bis vier Halogenatome und/oder einen bis zwei der folgenden Reste tragen kann: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, Phenyl, Phenoxy oder Phenylcarbonyl, wobei die Phenylreste ihrerseits ein bis fünf Halogenatome und/oder einen bis drei der folgenden Reste tragen können: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und/oder C₁-C₄-Alkylthio;

- Y Schwefel oder Sauerstoff oder eine Einfachbindung;
- 35
- Z Schwefel oder Sauerstoff;

zur Herstellung von Arzneimitteln.