

# Single Supply Dual Operational Amplifier with Full Swing Output

#### **■GENERAL DESCRIPTION**

The NJM2746 is a dual low supply voltage operational amplifier with Full swing output.

It is suitable for audio section of portable sets, PCs and any General-purpose use.

#### **■ FEATURES**

Operating Voltage :2.5V to 14V

•Output Full Swing :  $V_{OH} \ge 4.9 \text{V Typ.}$  (at  $V^{+}=5V$ ,  $R_{L}=5k\Omega$ )

:  $V_{OL}$  ≤0.1V Typ. (at V<sup>+</sup>=5V, R<sub>L</sub>=5kΩ)

**PIN FUNCTION** 

1. A OUTPUT 2. A -INPUT 3. A +INPUT 4. GND

5. B +INPUT 6. B -INPUT 7. B OUTPUT

8. V<sup>+</sup>

Offset Voltage :1mV TypSlew Rate :3.5V/µs Typ.

•Low Distortion : 0.001% typ. (at  $V^{+}=5V$ , f=1kHz)

Low Input Voltage Noise :10nV/√Hz typ.

Bipolar Technology

Package Outline : DMP8, SSOP8, TVSP8

#### **■ PIN CONFIGURATION**



NJM2746M NJM2746V NJM2746RB1 (Top View)

#### **■PACKAGE OUTLINE**





NJM2746M

NJM2746V



NJM2746RB1

#### **■ ABSOLUTE MAXIMUM RATINGS**

| PARAMETER                        | SYMBOL           | RATINGS                               | UNIT |  |
|----------------------------------|------------------|---------------------------------------|------|--|
| Supply Voltage                   | V <sup>+</sup>   | 15                                    | V    |  |
| Differential Input Voltage Range | V <sub>ID</sub>  | V <sub>ID</sub> ±15 (Note1)           |      |  |
| Common Mode Input Voltage Range  | V <sub>ICM</sub> | 0 to 15 (Note1)                       | V    |  |
| Power Dissipation                | P <sub>D</sub>   | DMP8 (300), SSOP (250)<br>TVSP8 (320) | mW   |  |
| Operating Temperature Range      | T <sub>opr</sub> | -40 to +85                            | °C   |  |
| Storage Temperature Range        | T <sub>stg</sub> | -50 to +125                           | °C   |  |

(Note1) For supply voltage less than 15V, the absolute maximum input voltage is equal to the supply voltage.

### ■ OPERATING VOLTAGE (Ta=25°C)

| PARAMETER      | SYMBOL         | RATINGS   | UNIT |
|----------------|----------------|-----------|------|
| Supply Voltage | V <sup>+</sup> | 2.5 to 14 | V    |

#### **■ ELECTRICAL CHARACTERISTICS**

### •DC CHARACTERISTICS (V<sup>+</sup>=5V,Ta=25°C)

| PARAMETER                       | SYMBOL           | TEST CONDITION                                               | MIN. | TYP. | MAX. | UNIT |
|---------------------------------|------------------|--------------------------------------------------------------|------|------|------|------|
| Operating Current               | Icc              | R <sub>L</sub> =∞, V <sub>IN</sub> =2.5V,<br>No Signal Apply | -    | 4    | 5.5  | mA   |
| Input Offset Voltage            | V <sub>IO</sub>  | R <sub>S</sub> ≤ 10kΩ                                        | -    | 1    | 6    | mV   |
| Input Bias Current              | I <sub>B</sub>   |                                                              | -    | 100  | 350  | nA   |
| Input Offset Current            | I <sub>IO</sub>  |                                                              | -    | 5    | 100  | nA   |
| Large Signal Voltage Gain       | A <sub>V</sub>   | R <sub>L</sub> ≥10kΩ to 2.5V,<br>Vo=0.5V to 4.5V             | 65   | 85   | -    | dB   |
| Common Mode Rejection Ratio     | CMR              | $0V \le V_{CM} \le 4V$                                       | 60   | 75   | -    | dB   |
| Supply Voltage Rejection Ratio  | SVR              | V <sup>+</sup> =2.5V to 14V                                  | 60   | 80   | -    | dB   |
| Output Voltage                  | V <sub>OH</sub>  | $R_L=5k\Omega$ to 2.5V                                       | 4.75 | 4.9  | -    | V    |
|                                 | $V_{OL}$         | $R_L = 5k\Omega$ to 2.5V                                     | -    | 0.1  | 0.25 | V    |
| Input Common Mode Voltage Range | V <sub>ICM</sub> | CMR ≥ 60dB                                                   | 0    | -    | 4    | V    |

### •AC CHARACTERISTICS (V<sup>+</sup>=5V,Ta=25°C)

| PARAMETER                      | SYMBOL     | TEST CONDITION                                            | MIN. | TYP.  | MAX. | UNIT   |
|--------------------------------|------------|-----------------------------------------------------------|------|-------|------|--------|
| Unity Gain Bandwidth           | GB         | f=1MHz                                                    | -    | 10    | -    | MHz    |
| Phase Margin                   | $\Phi_{M}$ | $R_L=10k\Omega$ , $C_L=10pF$                              | -    | 75    | -    | Deg    |
| Equivalent Input Noise Voltage | $V_{NI}$   | $f=1kHz$ , $V_{CM}=2.5V$                                  | -    | 10    | -    | nV/√Hz |
| Total Harmonic Distortion      | THD        | f=1kHz, $A_V$ =+2 $R_L$ =10k $\Omega$ to 2.5V, Vo=1.5Vrms | -    | 0.001 | -    | %      |
| Amp to Amp Separation          | CS         | $f$ =1kHz $R_L$ =10k $\Omega$ to 2.5V, Vo=1.5V $m$ s      | -    | 120   | -    | dB     |

### •AC CHARACTERISTICS (V<sup>+</sup>=5V,Ta=25°C)

| PARAMETER | SYMBOL | TEST CONDITION                                                                     | MIN. | TYP. | MAX. | UNIT |
|-----------|--------|------------------------------------------------------------------------------------|------|------|------|------|
| Slew Rate | SR     | (Note 2), $A_V=1$ , $V_{IN}=2Vpp$<br>$R_L=10k\Omega$ to 2.5V<br>$C_L=10pF$ to 2.5V | -    | 3.5  | -    | V/µs |

(Note 2) Number specified is the slower of the positive and negative slew rates.





























#### Phase Margin vs. Load Capacitance $V^{+}=5V$ , Vin=0.02Vpp, Vo= $V^{+}/2$ , G<sub>V</sub>=40dB,



#### Supply Voltage Rejection Ratio vs. Ambient Temperature



#### Voltage Gain/Phase vs. Frequency (correlation with Ta)









Pulse Response "Rise" (correlation with Ta)



# Voltage Gain vs. Frequency (correlation with Ta)



# Pulse Response "Fall" (correlation with Capacitance Load)



# Pulse Response "Fall" (correlation with Ta)







## Equivalent Input Noise Voltage vs. Frequency



#### [CAUTION]

The specifications on this data book are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this data book are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.