DATASHEET

AXP173

Enhanced Single Cell Li-Battery and Power System Management IC

Enhanced single Cell Li-Battery and Power System Management IC

tabl e of Cont ents

.1

. Overview (Summary)	3
2. Characteristics (Feature)	4
3Typical applications (Typical Application)	5
4. Limit parameter (Absolute Maximum Ratings)	6
5 Electrical Characteristics (Electrical Characteristics)	6
6. Typical Characteristics (Typical Characteristics)	9
7Pin definitions (Pin Description)	13
8. Functional Block Diagram (Functional Block Diagram)	5
9. Control and operation (Control and Operating)	6
91 two operating modes (Mode Description)	6
92 and a reset switch (Power On / Off & Reset)	16
9.Power Management passage 3 (IPS)	 8
9.4 adaptive charger (Adaptive Charger)	_
\$\mathcal{S}\$ different operating modes Pin function differences (Mode Difference)three	0 twenty
96 Multi-channel power output (Multi-Power Outputs)	4
${\mathfrak F}$ default setting voltage / start timing (Default Voltage / Timing Setting)	5
9.The signal acquisition system 8 (Singal Capture)	6

AXP173

Enhanced single Cell Li-Battery and Power System Management IC

101	The package (Package)	44
	9.1A register (Registers)	. 28
	910 Host Interface and interrupt (Host Interface and IRQ)	. 27
	9.9 Timer (Timer)	. 26

1. Overview (Summary)

AXP173 system is highly integrated power management chip, for single-cell lithium battery (lithium ion or lithium polymer) and requires multiple output power conversion applications, to provide easy to use yet flexible configuration complete power solution that fully satisfies currently increasingly complex applications processor system to the relatively complex and precise power control requirements.

Internal AXP173 incorporates an adaptive USB-Compatible charger 2 down converters (Buck DC-DC converter), 4 linear regulators (the LDO), the voltage / current / temperature surveillance multiplexer 12-Bit ADC. To ensure security and stability of the power system, AXP173 also integrated over / under voltage (OVP / UVP), over temperature (OTP), the overcurrent (OCP) protection circuit.

AXP173 having external USB adapter and the like, and a three-input battery capacity, their intellectual energy balance (Intelligent Power Select, IPS TM) circuit can be safely transparent distribution of power between the USB and the external AC adapter, lithium batteries, and a load application system, and only in the case without external power source for a battery (or a battery discharge / damage) may also be applied to make the system work properly.

AXP173 provides a two-wire serial communication with the host communication interface: Two Wire Serial Interface (TWSI), the processor may apply to open or close certain power output, voltage thereof is provided by this interface, access to internal registers and various measurement data (including Fuel Gauge). High accuracy (0.5%) of the power measurement data to facilitate consumers a clearer grasp of the real-time power usage, giving consumers unprecedented power equipment experience. When the application system does not require adjustment of the default output AXP173, it can also work independently of the application without the intervention of the processor.

AXP173 provide 5mm x 5mm 32-pin QFN package.

Applications

- Handheld mobile devices
 Smart mobile phone, PMP /
 MP4, digital cameras, digital cameras, handheld navigation devices GPS, PDA, handheld digital television broadcast receivers
- Mobile Internet Devices MID
- Digital photo frames, portable
 DVD players, ultra mobile PCs
 UMPC and UMPC-like, learning
 machine
- The application processor circuitry
 - Application Processor systems
- Other battery systems and

multiple supply applications

Pin definitions

Va.aw WPPIQPWECC

SDA SCK 2 PWROK

IPSOUT
IPSOUT
EXTEN
VIN1
LX1
PGND1
DCDC1
IRQ

 [22]
 BAT

 [21]
 BAT

 [20]
 ACIN

 [16]
 LDO

 [17]
 VINT

2. Characteristics (Feature)

• Power Management (IPS)

- o Wide input voltage range: 2.9V ~ 6.3V (AMR: -0.3V ~ 11V)
- o Wisdom efficient configurable power balance "IPS ™" system
- Adaptive USB or AC adapter current limiting pressure limiting (4.4V / 500mA / 100mA)
- o Equivalent internal resistance is less than ideal diode $100 m\Omega$

• Fully integrated charger (Charger)

- o The maximum charging current of up to 1.4A
- Support battery temperature monitoring
- Full support USB charging, in line with regulatory requirements
- \circ High charging accuracy error is less than 0.5%
- o Support 4.1V/4.15V/4.2V/4.36V and other battery
- o Automatically controlled charging
 process
- Direct drive LED indicates the state of charge
- o The system automatically adjusts the charging current load

• 2 Road synchronous buck converter (DC-DC)

- DC-DC1: can be adjusted between 0.7V ~ 3.5V, 25mV / step, drive capability 1.2A
- DC-DC2: can be adjusted between 0.7-2.275V, 25mV / step, drive capability 1.6A, support VRC

• 4 Linear regulators (LDO)

- o LDO1: 30mA, always effective
- o LDO2: Low Noise LDO, 1.8V ~ 3.3V adjustable,
 - 100mV / step, 200mA drive capability
- LDO3: Low Noise LDO, 1.8-3.3V adjustable, 100mV / step, 200mA drive capability
- LDO4: between 0.7-3.5V can be adjusted, 25mV / step, drive capability 0.5A

Note: VRC, Voltage Ramp Control, voltage slope control.

• The signal acquisition system (Signal Capture)

- o Built-in multi-channel 12 Bit ADC
- o Providing a current battery voltage and the number of the external power sourceaccording to
- o Built Precision Coulomb Counter and Fuelgauge system
- o Provide a wealth of power management information, such as the instantaneous consumption (mA or mW), the remaining battery charge (% or mAh), the state of charge (%) and the remaining battery time or charging time
- o Low battery warning and protection
- o Provide chip temperature information

• Application processor interface (Host Interface)

- Host data may be exchanged via the interface TWSI
- Interrupt management can be flexibly configured
- o Built-in timer
- o Provides four registers can be used to shut down the systemData retention
- o Support standalone mode without having to interface control

• System Management (System Management)

- o Soft Reset Hard Reset or may
- o Support soft shutdown or a hard shutdown, support external wake openmachine
- Supports output voltage monitoring, self-diagnosis function
- o A system reset PWROK
- o Detecting an external power source (insertion / removal / insufficient driving capability)
- o All output voltages are supported by soft start
- o Over / under voltage protection (OVP / UVP)
- o Overcurrent protection (OCP)
- Over temperature protection (OTP)

o stand by OTG VBUS power state setting and

Confidential

Page 5/45

monitoring

- High integration (Fully Integration)
 - o Generating an internal precision voltage reference (0.5%)
 - o Internal MOSFET
 - o The timing and the output voltage can be customized

3. Typical applications (Typical Application)

4. Limit parameter (Absolute Maximum Ratings)

Symbol	Description	Value	Units
ACIN	Input Voltage Input Voltage	-0.3 to 11	V
VBUS	Input Voltage Input Voltage	-0.3 to 11	V
TJ	Operating Temperature Range Operating Temperature	-40 to 130	$^{\circ}$
Ts	Storage Temperature Range Storage Temperature	-40 to 150	$^{\circ}$
T_{LEAD}	Maximum Soldering Temperature (at leads, 10sec) Soldering temperature	300	$^{\circ}$
V _{ESD}	Maximum ESD stress voltage, Human Body Model Antistatic ability	> 4000	V
PD	Internal Power Dissipation	2100	mW
	Internal power consumption tolerance		

5. Electrical characteristics (Electrical Characteristics)

 $VIN = 5V, BAT = 3.8V, TA = 25 \, ^{\circ}C$

SYMBOL	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNITS
ACIN						
V _{IN}	ACIN Input Voltage		3.8		6.3	V
I _{OUT}	VOUT Current Available Before	500mV Voltage Drop		2000		mA
	Loading BAT					
V_{UVLO}	ACIN Under Voltage Lockout			3.8		V
V _{OUT}	IPS Output Voltage		2.9		5.0	V
R _{ACIN}	InternalIdealDiodeOn	PIN to PIN, ACIN to			200	m Ω
		IPSOUT				
	Resistance					
VBUS			1			
V_{IN}	VBUS Input Voltage		3.8		6.3	V
I_{OUT}	VOUT Current Available Before	500mV Voltage Drop		500	900	mA
	Loading BAT					
V_{UVLO}	VBUS Under Voltage Lockout			3.8		V
V _{OUT}	IPS Output Voltage		2.9		5.0	V
R _{VBUS}	InternalIdealDiodeOn	PIN to PIN, VBUS to			300	mΩ
		IPSOUT				
	Resistance					
Battery Cha	arger					
V_{TRGT}	BAT Charge Target Voltage		-0.5%	4.2	+ 0.5%	V
I _{CHRG}	Charge Current	Internal		780	1320	mA
I _{TRKL}	Trickle Charge Current			10%		I_{CHRG}

						mA
V _{TRKL}	TrickleChargeThreshold			3.0		V
	Voltage					
$\Delta~V_{\rm RECHG}$	RechargeBatteryThreshold	Threshold Voltage		-100		mV
	Voltage	Relative to VTARGET				
T_{TIMER1}	ChargerSafetyTimer	Trickle Mode		40		Min
	Termination Time					
T _{TIMER2}	ChargerSafetyTimer	CC Mode		480		Min
	Termination Time					
I_{END}	EndofChargeIndication	CV Mode		10%	15%	I_{CHRG}
						mA
NITTO	Current Ratio					
NTC		Г		1		
V_{TL}	ColdTemperatureFault	Charge	0	2.112	3.264	V
	Threshold Voltage	Discharge	Ü	3.226	3.201	
V_{TH}	Hot Temperature Fault Threshold	Charge	0	0.397	3.264	V
	Voltage	Discharge	U	0.282	3.204	
V_{TE}	NTC Disable Threshold Voltage	Falling Threshold		0.2		V
		Hysteresis				
Ideal Diod	e					
R _{ds (on)}	InternalIdealDiodeOn				100	mΩ
	Resistance (BAT to IPSOUT)					

SYMBOL	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNITS
Off Mode C	urrent					
I _{BATOFF}	OFF Mode Current	BAT = 3.8V		27		μΑ
I _{SUSPEND}	USB VBUS suspend Mode	BAT = 3.8V, VBUS =		86		μΑ
	current	5V,				
		N_VBUSEN = 1				
Logic				1	<u>'</u>	
$V_{\rm IL}$	Logic Low Input Voltage			0.3		V
V_{IH}	Logic High Input Voltage			2		V
TWSI						
V_{CC}	Input Supply Voltage			3.3		V
ADDRESS	TWSI Address			0x68		
f_{SCK}	Clock Operating Frequency			400	1200	kHZ
tf	Clock Data Fall Time	2.2Kohm Pull High		60		ns
tr	Clock Data Rise Time	2.2Kohm Pull High		100		ns
DCDC						
f _{OSC}	Oscillator Frequency	Default		1.5		MHz
DCDC1						

Enhanced single Cell Li-Battery and Power System Management IC

I_{VIN1}	Input Current	PFM Mode		26		μΑ
------------	---------------	----------	--	----	--	----

		$I_{DC1OUT} = 0$				
I_{LIM1}	PMOS Switch Current Limit	PWM Mode		1600		mA
I_{DC1OUT}	Available Output Current	PWM Mode		1200		mA
V _{DC1OUT}	Output Voltage	Default	0.7	3.3	3.5	V
DCDC2						
I _{VIN2}	Input Current	PFM Mode		20		μΑ
		$I_{DC2OUT} = 0$				
I_{LIM2}	PMOS Switch Current Limit	PWM Mode		2300		mA
I_{DC2OUT}	Available Output Current	PWM Mode		1600		mA
V_{DC2OUT}	Output Voltage Range		0.7	1.25	2.275	V

SYMBOL	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNITS
LDO1						
V_{LDO1}	Output Voltage	ILDO1 = 1mA		1.25		V
			10/	1.8	10/	
			-1%	2.5	1%	
				3.3		
I_{LDO1}	Output Current			30		mA
LDO2						
$V_{\rm LDO2}$	Output Voltage	ILDO2 = 1mA	-1%	3	1%	V
I_{LDO2}	Output Current			200		mA
IQ	Quiescent Current			100		μΑ
PSRR	Power Supply Rejection Ratio	ILDO2 = 60mA, 1KHz				dB
eN	Output Noise, 20-80KHz	Vo = 3V, $Io = 150mA$		28		μV_{RMS}
LDO3						
$V_{\rm LDO3}$	Output Voltage	ILDO3 = 1mA	-1%	3.3	1%	V
I_{LDO3}	Output Current			200		mA
IQ	Quiescent Current			100		μΑ
PSRR	Power Supply Rejection Ratio	ILDO3 = 10mA, 1KHz		TBD		dB
eN	Output Noise, 20-80KHz	Vo = 1.8V, Io = 150mA		18		μV_{RMS}
LDO4						
$V_{\rm LDO4}$	Output Voltage	ILDO4 = 1mA	-1%	2.5	1%	V
$I_{\rm LDO4}$	Output Current			500		mA
IQ	Quiescent Current			20		μΑ
PSRR	Power Supply Rejection Ratio	ILDO4 = 10mA, 1KHz		TBD		dB

6. Typical characteristics (Typical Characteristics)

DC-DCEfficiencyvs.Load (3.8Vin)

DC-DCLoad Transient

DC-DCRipple

VREF vs Temperature

VTRGTvs Temperature

Page 14/

7. Pin definitions (Pin Description)

Num	Name	Type	Condition	Function Description		
1	SDA /	Ю	Host Control	TWSI Data Signal, pull high	to 3.3V IO Power through an	
	N_HOLDEN		Mode	2.2K Resistor		
		I	Stand Alone	N_HOLDEN: GND-Hold er	nable; High-not hold	
			Mode			
2	SCK	I		TWSI Clock Signal, pull hig	th to 3.3V IO Power through an	
				2.2K Resistor		
3	PWROK	О		Power good indication		
4	N_VBUSEN	I		VBUS to IPSOUT Selection	 panjichen	
					2016-04-22 01:01:13	
				High: IPSOUT do not select	N VBUSEN: GND: IPSOUT	
5	VIN2	PI			election through VBUS	
6	LX2	IO		Inductor Pin for DCDC2	High: IPSOUT not gated VBUS	
7	PGND2	G		NMOS Ground for DCDC2		
8	DCDC2	I		DC-DC2 feedback pin		
9	LDO3	О		Output Pin of LDO3		
10	LDO2	О		Output Pin of LDO2		
11	LDOIN	PI		Input to LDO2 and LDO3		
12	LDO4	I		Output Pin of LDO4		
13	APS	PI		Internal Power Input	l I I panjichen	
14	PWRON	I		Power On-Off key input, Int		
15	BIAS	IO		External 200Kohm 1% resis	Internal Power Input	
16	VREF	О		Internal reference voltage	I	
17	VINT	РО		Internal logic power, 2.5V		
18	LDO1	О		LDO1 output, for Host RTC	block	
19	VBUS	PI		USB VBUS input		
20	ACIN	PI		Adapter input		
21,22	BAT	Ю		Main Battery		
twent	CHGLED	О		charger status indication		
у						
three	TS	т		D-44 T	:	
twent y four	13	I		Battery Temperature sensor	input or an external ADC input	
25,26	IPSOUT	PO		System power source		
27	EXTEN	О		External power module enab	ole	
28	VIN1	PI		DCDC1 input source		
29	LX1	Ю		Inductor Pin for DCDC1		
30	PGND1	G		NMOS Ground for DCDC1		
31	DCDC1	I		DCDC1 feedback pin		
32	IRQ /	О	Host Control	IRQ output		

Enhanced single Cell Li-Battery and Power System Management IC

	N_CHGEN		Mode	
		I	Stand Alone	It is charger enable pin
			Mode	GND -charger enable; High-charger disable
33	EP	G		Exposed Pad, need to connect to the system ground

8. Functional Block Diagram (Functional Block Diagram)

9. Operation and control (Control and Operating)

9.1 Two operating modes (Mode Description)

AXP173 has two operating modes, Host Control mode and a Stand Alone mode, the SCK IPSOUT whether connection setting. When connected to the SCK IPSOUT, working in Stand Alone mode; AXP173 SCK if the pull 3.3V IO power system, the Host Control mode it work. Under Host Control mode, through access to internal registers, Host can be flexible to adjust and monitor the working status AXP173, and to obtain a wealth of information. In Stand Alone mode, AXP173 automatic power path management, charging management, power management of all tasks, without intervention of the Host, all adjustable parameters such as output voltage, charging current, etc., are set to default values.

NOTE: "Host" refers to a host processor application system.

Note: the following referred to "external power supply" comprising an input ACIN and VBUS.

9.2 And a reset switch (Power On / Off & Reset)

Switch button (PEK)

AXP173 of PWRON between GND pin may be connected to a key, as an independent switch key Power Enable Key (PEK). AXP173 can automatically identify this key "long press" and a "short press" and react accordingly.

Several Power Source (Power on Source)

- 1, ACIN, VBUS and access the battery.
- 2, PEK.

AXP173 boot source 1.ACIN, VBUS, the battery insertion 2.PEK

2015-12-10 23:24:15

paniichen

Power (Power On)

AXP173 can boot from the PEK (key longer than "ONLEVEL"). Press equivalent PEK, power may be also AXP173 In practical applications, Host timing (the Alarm) may be connected to the output signal of the PEK PWRON- parallel, the Alarm signal is active (low).

Boot, DC-DC and LDO will follow the chronological order of setting the soft-start, after completion of starting by Host opening / closing the respective power supply.

Shutdown (Power Off)

PEK "long press" time is longer than IRQLEVEL, the interrupt service routine PEK, Host may "register REG32H [7]" write "1" to notify AXP173 into a shutdown state. AXP173 output will turn off all power except when LDO1 into a shutdown state.

In the following cases, AXP173 will automatically shut down:

- 1, the input voltage is too low, the low voltage protection;
- 2, the load caused by excessive power supply output voltage is too low, overload protection;
- 3, the input voltage is too high, the overvoltage protection (details see "Power Management passage" section);
- 4, when the PEK greater than offlevel (default 6S) automatically turn off the system except for the other output of LDO1;

AXP173 automatic protection mechanism to avoid the occurrence of abnormal applications are irretrievably damaged when the power supply device, thereby protecting the entire system.

Sleep and wake (Sleep and wakeup)

in And boot MannerA case, if the system needs to enter Sleep mode, and wherein one or several passage way power off, can be made REG31 [3] controls to determine whether a signal is triggered by short Wakeup PEK, each output power to the PMU REG31 restored to the state [3] is set to 1, and the brightest the power is turned off sequentially according to a predetermined power-on sequence.

Following which control flow of Sleep and wakeup mode.

The system reset function and an output monitoring function (PWROK)

AXP173, PWROK output
panjichen
2016-04-22 00:52:54
After the success of the power pulled PWROK undervoltageCase
malfunction and

9.3 Power Management passage (IPS)

AXP173 power input may be from a lithium battery BAT, USB VBUS input ACIN external power supply (AC adapter, such as AC Adapter), IPS to select the appropriate power distribution in accordance with the state of the external power supply and lithium.

- o When only access lithium battery, no external power input, using the lithium battery;
- o When an external supply (VBUS or ACIN), preferentially using an external power supply;
- When the battery is connected, the external power is removed, and immediately "seamless" switch lithium battery;
- when When simultaneously accessing both VBUS and ACIN preferentially used ACIN power, and charging the lithium battery;
- If at this time When ACIN drive capability is insufficient, the timely passage opens VBUS achieve ACIN / VBUS supply common;
- o If the drive capacity is still insufficient, the charging current will be reduced until 0, and then supplemented with a battery-powered; see the following illustration:

Host IPS parameters can be set and read information which is fed back TWSI AXP173 access internal registers.

Limit voltage / current mode and the direct mode

In order not to affect USB communication, VBUS work in the default path "VBUS voltage-limiting mode." In this mode, AXP173 will VBUS voltage is maintained above a set reference voltage VHOLD to satisfy USB specification. VHOLD default is 4.4V, can be [5: 3] in the register Reg30H adjustment.

If the system from USB VBUS magnitude of the current drawn is limited demand, provides a current limiting modes to choose from (see Register

REG30H [1]), the current limit Alternatively 500mA / 100mA (register Reg30H [0]).

If you only use the system Mind without USB powered USB communication, a USB or a power adapter, can modify the register REG30H [6] set to be AXP173 "through the VBUS mode", when electricity needs AXP173 priority application system. When the driving capability of USB Host system power is too weak or the VBUS voltage is lower than VHOLD, AXP173 the IRQ is issued, to inform Host weak VBUS power supply capacity, indicating a USB communication may be affected by the Host software determines subsequent actions.

The reaction of the external power supply is inserted AXP173

AXP173 insertion operation can automatically detect the external power source. When inserted into the external power AXP173 detected, automatically determining whether an external power source is available, and the result is set in the corresponding registers, also issued the IRQ, notification Host.

And the meanings of the status is the external power supply as follows:

Status bit register	meaning		
Register REGOOH [7]	ACIN indicating whether there is an external power supply adapter		
Register REGOOH [6]	It indicates the external power adapter is available ACIN		
Register REGOOH [5]	Indicating whether there is an external power source VBUS		
Register REGOOH [4]	It indicates the external power source is available VBUS		
Register REGOOH [3]	When indication of an external supply VBUS, is higher than the voltage of VBUS VHOLD		
Register REGOOH	Indicates the external power supply ACIN / VBUS whether the PCB shorting		
Register REGOOH [0]	Indicate whether the system is trigger panjichen VBUS Power 2016-04-22 01:02:15		

Whether the choice of VBUS as input

"Indicates an external supply VBUWhen S, is higher than the voltage VBUS VHOLD "This flag allows the Host upon receipt IRQ7 (VBUS supply means weak), because the system load judgment VBUS access is pulled low or because the external power supply voltage is itself less than VHOLD, thus facilitating Host software decide whether to continue to work in the voltage-limiting mode or changed through mode.

That the choice of an input power source VBUS

Whether AXP173 chosen as VBUS input power, and by N_VBUSEN register REG30H [7] to letermine:

Enhanced single Cell Li-Battery and Power System Management IC

N_VBUSEN	REG30H [7]	Input Power	meaning	
Low	0	VBUS	VBUS and no effective choice when ACIN	
Low	1	VBUS	VBUS input power supply can be used as active	
High	1	VBUS	VBUS VBUS	
High	0	ACIN / BAT	Do not use VBUS	

Low battery warning and low voltage protection (automatic shutdown)

AXP173 may be provided two low voltage warning and automatic shutdown VWARNING voltage VOFF, and APS compared. Once APS lower than VWARNING, on the issue IRQ19. If the APS is less than VOFF, AXP173 automatically enters shutdown mode, turns off all outputs except the LDO1.

VWARNING default values and VOFF can register REG3AH, REG3BH and REG31H Bit [2: 0] is provided.

Overvoltage protection

When the external power supply voltage exceeds When 6.3V, APX19x issued IRQ1/4, suggesting an external power supply overvoltage. When the external power source exceeds 7V, AXP173 Automatic shut-down.

9.4 Adaptive charger (Adaptive Charger)

AXP173 integrates a constant current / constant-voltage charger, the charge cycle can be automatically controlled, secure clocks can be built automatically stop charging without processor intervention. This can automatically adjust the power consumption of the charger system charging current, battery detection, activation and trickle charge, built-in temperature detection circuit may automatically reduce the charging current when the temperature is too high or too low.

Start adaptive charging process

The default state of the charger is enabled (can be disabled by setting the register, refer to "Register REG33H"). When access to an external power source, first determines whether AXP173 be used for charging the external power source, is turned on when the external power source is available to meet the conditions, and this time the charging function, then the charging process begins automatically AXP173, IRQ sent to the Host, it indicates the charging process begins. Meanwhile, CHGLED pin output low, may drive an external LED indicates the state of charge.

A schematic view of the charging voltage and current process

Two voltage sign

VTRGT, the target charging voltage. VTRGT by a register set, the default is 4.2V (see "register REG33H [6: 5]"). When the external power supply voltage decreases, AXP173 will automatically adjust the target charging voltage.

VRCH, automatic recharge voltage. VRCH = VTRGT-0.1V.

recharging current

The charging current can register REG33H [3: 0] set, the default value is 450mA or 780mA.

Charging Process

If the battery voltage is below 3.0V, the charger automatically enters the pre-charging mode, charging current to the preset value 1/10. If over 40 minutes (this time is adjustable, see "Register REG34H"), the battery voltage can not reach 3.0V, the battery charger automatically enters active mode. Specific details see "Battery active mode."

Once the battery voltage is higher than 3.0V, the charger entered constant current mode. If the charging current is less than 65% of the preset value, the system sends this notification IRQ17 "external power supply driving capability is insufficient, then the charging current does not reach the set value, the charging time will be extended so that, if a full charge faster, the proposed replacement greater power consumption on or off the function of the big."

When the battery voltage reaches the target voltage VTRGT, the charger enters the constant voltage mode from the constant current mode, the charge current decreases.

When the charging current below a predetermined value 10% or 15% (can be set, refer to "Register REG33H"), the charge cycle, the charging is stopped, the end of charge, AXP192 will issue IRQ18, value wppilpwelce Confidential Page 25/

Enhanced single Cell Li-Battery and Power System Management IC

CHGLED stop pin indicating the state of charge. When the battery voltage drops below the lower VRCH, it will automatically begin recharging, also issued IRQ17.

In the non pre-charging mode, if the 480 minutes (this time can be adjusted, refer to "Register REG34H"), the charge cycle is not over, the battery charger will automatically enter the active mode.

Battery mode is activated

Whether from the pre-charging mode or the battery enters an active mode from the constant current charging mode (the timer has timed out), AXP173 will send IRQ10, indicates that the battery may be damaged.

In the battery active mode, always Charger low current to charge the battery, if the battery voltage reached can be VRCH, exit the active mode, also issued IRQ11.

AXP173 REG01H register indicates the battery charger is in the active mode.

CHGLED

CHGLED pin indicates the state of charge and alarm, it has four states: charging, not charging, the battery and the external power supply abnormality alarm overvoltage alarm. CHGLED are NMOS Open Drain (open drain type) output, four states may be displayed by a current limiting resistor to directly drive a light emitting diode. Its performance in each state shown in the following table:

status	which performed	Note
Charging	Low	
Not	High resistance	
charging		
Battery	25% duty 1Hz	Battery charger enters the active mode, the
abnormal	hopping	battery temperature is too high or too low
Overvolt	25% duty 4Hz jump	External power supply input voltage is too
age		high

Battery temperature detection

In the charging / during use, AXP173 TS pin in an external temperature sensitive resistor is monitored by the battery temperature. A schematic circuit of FIG follows:

In the figure above, VTH / VTL respectively high and low temperature threshold is set, respectively, through the registerREG38H/39H/3CH/3DH provided, VTE = 0.2V. Recommended temperature sensitive resistance 10Kohm, 1% accuracy of the temperature sensitive resistor NTC selection of 25 °C. The constant current AXP173 out on the TS pin, this current can be set to 20uA, 40uA, 60uA, 80uA four kinds (see Register REG84H), to accommodate different NTC resistor. This current flows through the temperature-sensitive resistor, to obtain a detection voltage, AXP173 voltage value measured by the ADC and compared with the set value, to emit a corresponding IRQ or be suspended.

Battery Testing

AXP173 automatically detects whether the battery is present, and identification (see Register REG01H) in the register and issuing IRQ13, IRQ14. Host cell detection can be opened or closed to control (see register REG32H).

9.5 Pin function difference between different operating modes (Mode Difference)

${\bf SDA / N_VHOLDEN}$

Operating in the Host Control mode, this pin as TWSI data signal; when operating in STAND ALONE mode selection signal which is valid as a USB VHOLD pressure limiting mode, the effect of registers REG30H [6] opposite.

IRQ / N_CHGEN

Operating in the Host Control mode, this pin as the interrupt state signal, for generating an interrupt to inform Host; when operating in STAND ALONE mode, as the charge enable / disable signal, the effect of registers REG33H [7] In contrast.

9.6 Multiple power output (Multi-Power Outputs)

Output voltage and multiplex AXP173 function list provided belo					panjichen 2015-12-10 23: 	34:52
	Output path	Types of	The default voltage	Applicatio n examples	2-way drive	capability and application OO examples 4
	DCDC1	BUCK	Can be set	3.3VI / O	1200 mA	
	DCDC2	BUCK	Can be set	1.25Vcore	1600 mA	
	LDO1	LDO	Can be set	RTC	30 mA	
	LDO2	LDO	Can be set	Analog / FM	200 mA	
	LDO3	LDO	Can be set	1.8V HDMI	200 mA	
	LDO4	LDO	Can be	2.5Vddr	500 mA	

AXP173 comprising two synchronous buck DC-DC, 4-way LDO, the timing and control various promoters. DC-DC operating frequency of 1.5MHz default, can be adjusted by setting the registers, the peripheral may be the use of small inductive and capacitive elements. Two DC-DC can be set to a PWM mode or automatic mode (automatic switching by the AXP173 The magnitude of the load), refer to "Register REG80H".

set

DC-DC1 / 2 / LDO4

DCDC1 / LDO4 output voltage range of 0.7-3.5V, DCDC2 output voltage 0.7-2.275V, may register set (see "register REG23H 26H 27H 29H").

DCDC1 / 2 output capacitance smaller than recommended 10uF X7R ESR ceramic capacitor; when the output voltage is set to 2.5V or more recommended 2.2uH inductance, at 2.5V or less, is recommended 4.7uH inductor, wherein the inductor saturation current greater than this need 50% of the maximum power path the current demand.

The following is a list of recommended LC:

inductance		
model	Current specifications	DC resistance

AXP173

Enhanced single Cell Li-Battery and Power System Management IC

Murata LQH55PN2R2NR0	2100mA@2.2uH	30mOhm
Murata LQH55PN4R7NR0	1400mA@4.7uH	60mOhm
Murata LQH44PN2R2MP0	2000mA@2.2uH	49mOhm
Murata LQH44PN4R7MP0	1700mA@2.2uH	80mOhm
TDK VLF5010ST-2R2M2R3	2700mA@2.2uH	41mOhm
TDK VLF5014ST-4R7M1R7	1700mA@4.7uH	98mOhm
TDK SLF6045T-4R7N2R4-3PF	2400mA@4.7uH	27mOhm

capacitance				
model	Temperature characteristics	Tolerance		
TDK C2012X5R0J475K	X5R / X7R	10% @4.7uF		
TDK C2012X5R0J106K	X5R / X7R	10% @ 10uF		
Murata GRM31E71A475K	X7R	10% @4.7uF		
Murata GRM21E71A106K	X7R	10% @ 10uF		
Murata GRM31E71A106K	X7R	10% @ 10uF		

LD01

LDO1 always on, providing a continuous power supply system for the application of real time clock circuit (the RTC), the driving capability of 30mA.

LDO2 / 3

LDO2 / 3 uses a low-noise design can provide power to the analog circuitry of application system, the driving capability of 200mA.

Soft start (Soft Start)

All DC-DC and LDO outputs soft-start support of the establishment of the way, avoiding sudden changes starting current impact on the input path.

Self-diagnosis: load monitoring and limiting protection				
	panjichen 2015-12-10 23:38:20			
Down, to protect A DC-DCAnd when the output voltage is lower than the set the internal automatic shutdown. with	2 Buck and 4 have LDO voltage protection 85%			
circuit Internal automatic recording system by which the specific output vo	ltage is too low a			
shutdown(See Register REG46H [5: 2]) and send the appropriate IRQ.				

all DC-DC requires no external Schottky diode and the resistor divider feedback circuit. If the application does not require use of a DC-DC, just to correspond to the LX pin floating.

9.7 The default setting voltage / start timing (Default Voltage / Timing Setting)

AXP173 customizable default voltage of each power supply, the startup sequence and so on.

Promoter sequence: comprising a total of eight starts, i.e. 0-7, wherein the first 7 when the power supply not started by default in this way. Other 0-6 1-7 grade represent the first step to start this way power. Each step can be set from the start time interval, the range of selectable 1, 4, 16mS.

Default voltage settings: for each channel DCDC / LDO may be selected from the set range including the lowest voltage to the highest voltage. About this part, see "Default Configuration instructions" document.

9.8 The signal acquisition system (Signal Capture)

General battery monitor battery power is typically estimated by measuring the battery voltage, and AXP173 multiplexer 12Bit ADC battery voltage is measured in addition, it can also measure the battery current and the external power supply voltage, current, and battery charge and discharge internal integrated coulometer. Host can be more accurately calculated based on these data the battery, in addition, may also be calculated out extensive real-time system power consumption information, remaining battery capacity, the battery charged, and the remaining battery time remaining full .

Separate ways Enable control and ADC sampling rate can be set through the register REG82H, 83H, 84H, sampling result stored in the corresponding register, see Data Class ADC register illustration. The battery is charged or discharged current direction [2] are indicated by the register REG00H.

Channel	000Н	STEP	FFFH
Battery Voltage	0mV	1.1mV	4.5045V
Bat discharge current	0mA	0.5mA	4.095A
Bat charge current	0mA	0.5mA	4.095A
ACIN volatge	0mV	1.7mV	6.9615V
ACIN current	0mA	0.625mA	2.5594A
VBUS voltage	0mV	1.7mV	6.9615V
VBUS current	0mA	0.375mA	1.5356A
Internal temperature	-144.7 °C	0.1 °C	264.8 °C
APS voltage	0mV	1.4mV	5.733V
TS pin input	0mV	0.8mV	3.276V

9.9 Timer (Timer)

AXP173 comprises an internal timer, by setting register REG8AH [6: 0] can be changed timer value, the minimum resolution min (Minute), set timer expires after REG8AH [7].

9.10 Host port and interrupt (TWSI and IRQ)

Map 1: Single Read and Write

Map 2: Multi Read and Write

Host interface to access via TWSI AXP173 register, the operation timing as shown above, or supports standard $100 \mathrm{KHz}$

400KHz frequency at speeds up to 1.2MHz, while supporting tonal / write operation, the device address 69H (read) and 68H (write).

When certain events occur, AXP173 by pulling IRQ interrupt mechanism to alert Host, and interrupt status stored in the interrupt status register (see Register REG44H, register REG45H, register REG46H, register REG47H), the corresponding status register write a bit clears the corresponding interrupt, when no interrupt event, the IRQ output high (pull-up resistor by the external 51K). Each of the interrupt can be masked (see Register REG40H, register REG41H, register REG42H, register REG43H) by the interrupt control register.

position	Interr	meaning	position	Interru	meaning
	upt number			pt number	
Register 44H	IRQ1	Power ACIN	Register 46H	IRQ16	IC internal
[7]		overpressure	[7]		overtemperature
Register 44H	IRQ2	Insert supply	Register 46H	IRQ17	Charging current
[6]		ACIN	[6]		inadequate
Register 44H [5]	IRQ3	Remove the power ACIN	Register 46H [5]	IRQ18	DCDC1 voltage is too low
Register 44H	IRQ4	VBUS power	Register 46H	IRQ19	DCDC2 voltage is too
[4]		overpressure	[4]		low
Register 44H [3]	IRQ5	Insert supply VBUS	Register 46H [3]	IRQ20	LDO4 voltage is too low
Register 44H	IRQ6	VBUS power	Register 46H	IRQ21	Retention
[2]		source is	[2]		
D • 4 411	TD 0.7	removed	D ACH	ID 022	DEV D
Register 44H [1]	IRQ7	VBUS voltage is less than	Register 46H [1]	IRQ22	PEK Press
		V_{HOLD}	[1]		
Register 44H		Rete	Register 46H	IRQ23	PEK Press
[0]		ntio	[0]		
		n			
Register 45H [7]	IRQ8	Battery access	Register 47H [7]		Rete
Register 45H	IDOO	Dottony nomoval	Register 47H		ntio
[6]	IRQ9	Battery removal	[6]		n
Register 45H	IRQ10	Enter the	Register 47H	IRQ26	VBUS valid
[5]		battery activate mode	[5]		
Register 45H	IRQ11	Exit Battery	Register 47H	IRQ27	VBUS invalid
[4]		mode activated	[4]		
Register 45H [3]	IRQ12	Charging	Register 47H [3]	IRQ28	VBUS SESSION effective
Register 45H [2]	IRQ13	finished charging	Register 47H [2]	IRQ29	VBUS SESSION invalid
Register 45H	IRQ14	Battery	Register 47H		Rete

[1]		temperature is	[1]	ntio	
		too high			n
Register 45H	IRQ15	Battery	Register 47H	IRQ30	Low battery
[0]		temperature is	[0]		warning
		too low			

9.11 Register (Registers)

Group 1, the power control class

addre ss	Register Description	R/ W	Defaults
00	Power Status Register	R	
00	Tower Status Register	K	
01	Mode power / charge status register	R	
04	OTG VBUS status register	R	
06-0B	Data buffer register 0-5	R / W	F0 / 0F / 00 / FF /
			00/00
10	EXTEN & DC-DC2 switch control register	R / W	X5H
12	DC-DC1 / LDO4 & LDO2 / 3 switch control register	R / W	XFH
twent y three	DC-DC2 voltage setting register	R / W	16H
25	DC-DC2 voltage slope parameter setting register	R/ W	00Н

26	DC-DC1 voltage setting register	R / W	68H
27	Voltage setting register LDO4	R/ W	48H
28	LDO2 / 3 voltage setting register	R / W	CFH
30	Path setting register VBUS-IPSOUT	R/ W	60H
31	Shutdown voltage setting register VOFF	R / W	ХЗН
32	Off, the battery is detected, CHGLED control register	R/ W	46H
33	Charging control register 1	R/ W	С8Н
34	Charge control register 2	R / W	41H
36	PEK parameter setting register	R/ W	5DH
37	DCDC converter operating frequency setting register	R/ W	08H
38	Low battery charge warning setting register	R/ W	А5Н
39	Battery charging high temperature alarm setting register	R / W	1FH
3A	APS setting register low Level1	R / W	68H
3B	APS setting register low Level2	R/ W	5FH
3C	Low battery discharge alarm setting register	R / W	FCH
3D	Battery discharge high temperature alarm setting register	R/ W	16H
80	Operation mode setting register DCDC	R / W	ЕОН
82	ADC enable setting register 1	R/ W	83H
83	ADC enable setting register 2	R / W	80H
84	ADC sampling rate settings, TS pin control register	R / W	32H
8A	Timer control register	R/ W	00Н
8B	Monitoring setting register VBUS	R / W	00Н
8F	Over-temperature shutdown control register	R / W	01H

Group 2, interrupt control based

ĺ	addr	Register Description	R/	Defaul

ess		W	ts
40	IRQ enable control register 1	R / W	D8H
41	IRQ Enable Control Register 2	R / W	FFH
42	IRQ Enable Control Register 3	R / W	3ВН
43	IRQ enable control register 4	R / W	C1H
44	IRQ Status Register 1	R / W	00Н
45	IRQ Status Register 2	R / W	00Н
46	IRQ status register 3	R / W	00Н
47	IRQ status register 4	R / W	00Н

Group 3, ADC data class

addr	Register Description	R/ W
ess		**
56	ADC voltage ACIN 8 bits of data	R
57	ADC data low voltage ACIN 4	R
58	ACIN current ADC 8 bits of data	R

59	Low current ADC Data ACIN 4	R
5A	ADC VBUS voltage is 8 bits of data	R
5B	ADC data VBUS voltage is lower 4 bits	R
5C	VBUS current ADC 8 bits of data	R
5D	VBUS current ADC Data Low 4	R
5E	AXP173 internal temperature monitor ADC 8 bits of data	R
5F	AXP173 low internal temperature monitor ADC data 4	R
62	High ADC input TS data 8, the default monitoring battery temperature	R
63	Low ADC input TS data 4, the default monitoring battery temperature	R
70	High instantaneous power battery 8	R
71	The instantaneous power of the battery 8	R
72	8 Battery low instantaneous power	R
78	High voltage battery 8	R
79	Low battery 4	R
7A	Battery charging current is high 8	R
7B	5 Low battery charging current	R
7C	Battery discharge current is high 8	R
7D	Low battery discharge current 5	R
7E	High voltage APS 8	R
7F	Low voltage APS 4	R

addr ess	Register Description	R/ W	Defaults
В0	Battery charging coulomb counter data register 3	R / W	00Н
B1	Battery charging coulomb counter data register 2	R / W	00Н
B2	Battery charging coulomb counter data register 1	R / W	00Н
В3	Battery charging coulomb counter data register 0	R / W	00Н
B4	Coulometer cell discharge data register 3	R / W	00Н
В5	Coulometer cell discharge data register 2	R / W	00Н
В6	Coulometer cell discharge data register 1	R / W	00Н
В7	Coulometer cell discharge data register O	R / W	00Н
В8	Coulomb Counter Control Register	R / W	00Н

REG 00H: Input power status

Bit	desc	R/W
	ript	
	ion	
7	ACIN there is an indication	R
	0: ACIN absent; 1: ACIN present	
6	ACIN is available indicating	R
5	VBUS presence indication	R

	0: VBUS absent; 1: VBUS exists	
4	Indicating VBUS availability	R
3	Before using the access indication VBUS is greater than VHOLD	R
2	Indicates that the battery current direction	R
	0: battery discharge; 1: the battery is charged	
1	ACIN and VBUS input indicating whether the PCB is shorted	R
0	Start indicating whether the source is ACIN or VBUS	R
	0: Start source is ACIN / VBUS; 1: Source Start non ACIN / VBUS	

REG 01H: power mode of operation and the state of charge indication

Bit	desc	R/W
	ript	
	ion	
7	Indicates whether AXP173 overtemperature	R
	0: No over-temperature; 1: overtemperature	
6	Charging indicator	R
	0: No charging or charging has been completed; 1: Charging	
5	Battery status indication exists	R
	0: No battery is connected to AXP173; 1: a battery connected to AXP173	
4	Retention	R
3	It indicates whether the cell enters active mode	R
	0: No battery enters an active mode; 1: Battery has entered an active mode	
2	Indicating whether the charging current is less than desired current	R
	0: the actual charge current is equal to the desired current; 1: the actual charge current is less than desired current	
1-0	Retention	R

REG 04H: USB OTG VBUS status indicator

Bit	desc	R/W
	ript	
	ion	
7-3	Retention	
2	Indicating VBUS is valid, effective 1 represents	R
1	Indicates VBUS Session A / B is valid, represents an effective 1	R
0	Session End indicating state 1 represents an effective	R

REG 06-0BH: data cache

Enhanced single Cell Li-Battery and Power System Management IC

NOTE: As long as an external power source, a battery power sources exist, the four bytes of data would have been stored, without influence of the switching machine. Defaults F0/0F/00/FF/00/00H

REG 10H: EXTEN & DC-DC2 output control

Default value: XXH

Bit	desc ript		R/W	Defaul ts
		ion		
7-3	Reservations can not be changed			
2	Switching control EXTEN 0: Off; 1: Open		RW	X
1	Reservations can not be changed			
0	DC-DC2 switching control	0: Off; 1: Open	RW	X

Note: XCustom represented by the circumstances, the following value XPart with this.

REG 12H: control the power supply output

Default value: XXH

Bit	desc	cription	R/W	Default
				s
7	Reservations can not be changed		RW	X
6	Switching control EXTEN	0: Off; 1: Open	RW	X
5	Reservations can not be changed		RW	X
4	DC-DC2 switching control	0: Off; 1: Open	RW	X
3	Switching control LDO3		RW	X
2	Switching control LDO2		RW	X
1	Switching control LDO4		RW	X
0	DC-DC1 switching control		RW	X

NOTE: REG12Hbit6 / 4 respectively REG10Hbit2 / 0.

REG 23H: DC-DC2 output voltage setting

Default value: 16H

Bit	des	cription	R/W	Default
				S
7-6	Retention			
5	DC-DC2 output voltage setting Bit5	0.7-2.275V, 25mV / step	RW	X
4	DC-DC2 output voltage setting Bit4		RW	X
3	DC-DC2 output voltage setting Bit3		RW	X
2	DC-DC2 output voltage setting Bit2		RW	X
1	DC-DC2 output voltage setting Bit1		RW	X
0	DC-DC2 output voltage setting Bit0		RW	X

REG 25H: DC-DC2 dynamic voltage scaling parameters

Default value: 00H

Bit	desc	description		Default
7-3	Retention			
2	DC-DC2 VRC enable control	DC-DC2 VRC enable control		0
	0: open; 1: Close			
1	Retention			
0	DC-DC2 VRC voltage rising slope 0: 25mV / 15.625us = 1.6mV / us		RW	0
	control	1:25 mV / 31.250 us = 0.8 mV / us		

REG 26H: DC-DC1 setting the output voltage

Default value: 68H

Bit	desc	description		Default
				s
7	Retention			
6	DC-DC1 output voltage setting Bit6	0.7-3.5V, 25mV / step	RW	X
5	DC-DC1 output voltage setting Bit5		RW	X
4	DC-DC1 output voltage setting Bit4		RW	X
3	DC-DC1 output voltage setting Bit3		RW	X
2	DC-DC1 output voltage setting Bit2		RW	X
1	DC-DC1 output voltage setting Bit1		RW	X
0	DC-DC1 output voltage setting Bit0		RW	X

REG 27H: LDO4 setting the output voltage

Default value: 48H

Bit	desc	description		Default
				s
7	Retention			
6	Output voltage setting Bit6 LDO4	0.7-3.5V, 25mV / step	RW	X
5	LDO4 output voltage setting Bit5		RW	X
4	LDO4 output voltage setting Bit4		RW	X
3	LDO4 output voltage setting Bit3		RW	X
2	LDO4 output voltage setting Bit2		RW	X
1	Output voltage setting Bit1 LDO4		RW	X
0	Output voltage setting Bit0 LDO4		RW	X

REG 28H: LDO2 / 3 output voltage setting

Default value: CFH

Bit		desc		Default
		ript		s
	ion			
7	Output voltage setting Bit3 LDO2	1.8-3.3V, 100mV / step	RW	X
6	Output voltage setting Bit2 LDO2		RW	X
5	Output voltage setting Bit1 LDO2		RW	X
4	Output voltage setting Bit0 LDO2		RW	X
3	Output voltage setting Bit3 LDO3	1.8-3.3V, 100mV / step	RW	X
2	Output voltage setting Bit2 LDO3		RW	X
1	Output voltage setting Bit1 LDO3		RW	X
0	Output voltage setting Bit0 LDO3		RW	X

REG 30H: VBUS-IPSOUT path management

Default value: 60H

Bit	desc	cription	R/W	Default
				s
7	When VBUS VBUS-IPSOUT available path selection control signal		RW	0
	0: whether to open N_VBUSEN pin is	determined by this pathway		
	1: VBUS-IPSOUT open passage may b N_VBUSEN	be selected, regardless of the state of		
6	VBUS VHOLD pressure limiting contr	rol	RW	1
	0: Any pressure; 1: pressure limiting			
5	VHOLD set Bit 2	000: 4.0V; 001: 4.1V; 010: 4.2V	RW	1
4	Setting Bit 1 VHOLD	011: 4.3V; 100: 4.4V; 101: 4.5V	RW	0
3	Bit 0 is set VHOLD	110: 4.6V; 111: 4.7V	RW	0
2	Retention			
1	VBUS limiting control enable signal		RW	X
	0: Off; 1: Open			
0	VBUS current limit control to open the	e stream selection time	RW	0
	0: 500mA; 1: 100mA			

REG 31H: VOFF voltage setting off

Default value: X3H

Bit	description	R/W	Default
			S

7-4	Reservations can not be changed	
3	PWRON Press wakeup enable settings Sleep mode:	

	0: short press Wake-up close					
	1: Short open as wake-up function					
	After writing this bit is autom	atically cle	ared, and th	herefore need		
	to write one again before each	into Sleep m	iode			
2	VOFF set Bit2	000-2.6V;	001-2.7V;	010-2.8V;	RW	0
1	VOFF set Bit1	011-2.9V;	100-3.0V;	101-3.1V;	RW	1
0	VOFF Setting Bit0	110-3.2V;	111-3.3V		RW	1

REG 32H: set off, and the battery detection control pin CHGLED

Default value: 46H

Bit	desc	cription	R/W	Defaul
				ts
7	Shutdown Control		RW	0
	This bit output will be closed.	AXP173 1		
6	Battery monitor function setting	g: 0:shut down; 1:Open	RW	1
5-4	CHGLED pin function settings	00: High impedance 01: 25% 1Hz flashing 10: 25% 4Hz flicker 11: output low	RW	00
3	CHGLED pin control settings	0: controlled by the charging function 1: [: 45] controlled by the register REG 32HBit	RW	0
2-0	Retention			

REG 33H: charging control 1

Default value: C8H

Bit	description	R/W	Defaul
			ts
7	Charging enable control bit	RW	1
	0: Off, 1: Open		
6: 5	Charging the target voltage setting	RW	10
	00: 4.1V; 01: 4.15V; 10: 4.2V; 11: 4.36V		
4	Charging end current setting	RW	0
	0: the end of charge is less than 10% of the value of the charging current provided		
	1: the end of charge is less than 15% of the value of the charging current provided		

AXP173

3-0	Charging current setting			RW	1000
	0000: 100mA; 0001: 190mA;	0010: 280mA;	0011: 360mA;		
	0100: 450mA; 0101: 550mA;	0110: 630mA;	0111: 700mA;		
	1000: 780mA; 1001: 880mA;	1010: 960mA;	1011: 1000mA;		
	1100: 1080mA; 1101: 1160mA;	1110: 1240mA; 11	11: 1320mA		

REG 34H: charging control 2

Default value: 41H

Bit	description		R/W	Default
				s
7	Precharge timeout setting Bit1	00: 30 min; 01: 40min;	RW	0
6	Precharge timeout setting Bit0	10: 50min; 11: 60min.	RW	1
5-2	Retention			
1	Timeout setting the constant current mode Bit1	00: 7Hours; 01: 8Hours; 10: 9Hours; 11: 10Hours.	RW	0
0	Timeout setting the constant current mode Bit0		RW	1

REG 36H: PEK Key parameters

Default value: 5DH

Bit	description		R/	Defaul
			W	ts
7	Boot time is set Bit1	00: 128mS; 01: 512mS;	RW	0
6	Boot time is set BitO	10: 1S; 11: 2S.	RW	1
5	Long time setting key Bit1	00: 1S; 01: 1.5S;	RW	0
4	BitO set time long key	10: 2S; 11: 2.5S.	RW	1
3	Automatic shutdown function is set longer than the time duration		RW	1
	shutdown button			
	0: Off; 1: Open			
2	After the completion of power-u	p signal delay PWROK	RW	1
	0: 32mS; 1: 64mS			
1	Set Bit1 long shutdown	00: 4S; 01: 6S;	RW	0
0	Setting BitO long shutdown	10: 8S; 11: 10S.	RW	1

REG 37H: DC-DC operating frequency is provided

Default value: 08H

Bit	description		R / W	Defaul ts
7-4	Retention			
3	DC-DC switching frequency is set Bit 3	Each 5% change a default value of 1.5MHz	RW	1
2	DC-DC switching frequency setting Bit 2		RW	0
1	DC-DC switching frequency setting		RW	0

AXP173

	Bit 1
0	DC-DC switching frequency setting Bit 0

REG 38H: VLTF-charge battery charge low threshold setting

Default value: A5H

Bit	desc	description		Defaul
				ts
7-0	When charging the battery low threshold setting, M	M * 10H, when Corresponds to 2.112V when M = A5H; can	RW	A5H
		Corresponding to the voltage OV ~		
		3. 264V		

VLTF-charge = M * 10H * 0.0008V

REG 39H: VHTF-charge battery charging temperature threshold setting

Default value: 1FH

Bit	desc	description		Defaul
				ts
7-0	When charging the battery temperature threshold settings,	N * 10H, when $N = 1FH$, corresponding to 0.397V; can	RW	1FH
	N	Corresponding to the voltage OV $^{\sim}$ 3.264V		

VHTF-charge = N * 10H * 0.0008V

REG 3AH: APS low level 1

Default value: 68H

Bit	description	R/ W	Defaul ts
7-0	APS low setting level 1	RW	68H

REG 3BH: APS low level 2

Default value: 5FH

Bit	description	R/ W	Defaul ts
7-0	APS low setting level 2	RW	5FH

 $REG3AH, REG3BH corresponding APS \verb|Voltage| is set to the$

following relationship(Assumed that the register valuen):

Vwarning = 2.8672 + 1.4 mV * n * 4

REG 3CH: VLTF-discharge battery discharge cold threshold setting

Default value: FCH

Bit	desc	description		Defaul
				ts
7-0	When the discharge of the battery low threshold setting,	M * 10H, when Corresponds to 3.226V when M = FCH; can	RW	FCH
	M	Corresponding to the voltage OV ~		

VLTF-discharge = M * 10H * 0.0008V

REG 3DH: VHTF-discharge battery discharge threshold setting temperature

Default value: 16H

Bit	description			Defaul
			ts	
7-0	When the discharge of the battery temperature threshold	N * 10H, when $N = 16H$, corresponding to 0.282V; to be	RW	16H
	settings, N	Shall voltage OV $^{\sim}$ 3.264V		

VLTF-discharge = N * 10H * 0.0008V

REG 80H: DC-DC mode selection

Default value: EOH

Bit	desc		R/W	Defaul
	ript			ts
	ion			
7-4	Retention			
3	DC-DC1 operating mode control	0: PFM / PWM automatic switching	RW	0
2	DC-DC2 operating mode control	1: Fixed PWM	RW	0
1-0	Retention			

REG 82H: ADC Enable 1

Default value: 83H

Bit	desc	cription	R/W	Default
				s
7	Battery voltage ADC Enable	0: Off, 1: Open	RW	1
6	Battery current ADC Enable		RW	0
5	Enable ADC voltage ACIN		RW	0
4	ACIN current ADC Enable		RW	0
3	VBUS voltage ADC Enable		RW	0
2	VBUS current ADC Enable		RW	0
1	APS voltage ADC Enable		RW	1
0	TS ADC function enable pin		RW	1

REG 83H: ADC Enable 2

Default value: 80H

Bit	desc	R/W	Defaul
	ript		ts

AXP173

	ion			
7	AXP173 internal temperature monitoring enable ADC	0: Off, 1: Open	RW	1
6-0	Retention			

REG 84H: ADC setting the sample rate, TS pin control

Default value: 32H

Bit		desc	R/W	Defaul
		ript		ts
		ion		
7	ADC sampling rate settings Bit 1	$25 \times 2n$	RW	0
6	ADC sampling rate settings Bit 0	Sampling rates of 25, 50, 100,	RW	0
		200Hz		
5-4	TS pin output current setting:		RW	11
	00: 20uA; 01: 40uA; 10: 60uA; 11: 80uA			
3	Retention			
2	TS pin function selection		RW	0
	0: battery temperature monitoring function, 1: independent external ADC input path			
	TS current output pin disposed	00: Close	RW	1
1-0		01: a charging current output	RW	0
		10: input sampling ADC, power can be		
		11: Always Open		

REG 8AH: Timer control

Default value: 00H

Bit	desc	R/W	Default
	ript		s
	ion		
7	Timer expires.	RW	0
	Write clear this state 1		
6-0	Set the timer time in minutes	RW	0000000
	Write off this whole timer 0		

REG 8BH: VBUS pin function control monitoring SRP

Default value: 00H

Bit	desc	R/W	Default
	ript		s
	ion		
7-6	Retention		
5-4	VBUS voltage setting effective	RW	00
	00: 4.0V; 01: 4.15V; 10: 4.45V; 11: 4.55V		
3	VBUS Valid detection function setting: 0: off, 1: Open	RW	0
2	VBUS Session detection function setting: 0: off, 1: Open	RW	0

1	Discharge VBUS discharge function provided	RW	0
	0: VBUS discharge resistor; 1: Use of a discharge resistor VBUS		
0	Charge VBUS charging function provided	RW	0
	0: OFF VBUS charge resistance; 1: VBUS VBUS to charge a charging resistor		

REG 8FH: over-temperature shutdown feature set

Default value: 01H

Bit	desc	R/W	Default
	ript		S
	ion		
7-3	Retention	RW	0
2	AXP173 internal over-temperature shutdown feature set 0: not shut; 1: Shutdown	RW	0
1-0	Retention		

REG 40H: IRQ Enable 1

Default value: D8H

Bit	description	R/ W	Defaul ts
7	ACIN overvoltage IRQ enable	RW	1
6	IRQ enable access ACIN	RW	1
5	IRQ enable removal ACIN	RW	0
4	VBUS enable overvoltage IRQ	RW	1
3	IRQ enable access VBUS	RW	1
2	IRQ enable removal VBUS	RW	0
1	VBUS enable available but less than VHOLDIRQ	RW	0
0	Retention	RW	0

REG 41H: IRQ Enable 2

Default value: FFH

Bit	description	R/ W	Defaul ts
7	IRQ enable access to the battery	RW	1
6	IRQ enable removal of the battery	RW	1
5	Battery active mode enable IRQ	RW	1
4	Exit IRQ enable battery mode is activated	RW	1
3	Charging IRQ enable	RW	1
2	IRQ enable charging completion	RW	1
1	Battery over-temperature IRQ enable	RW	1

0 IRQ enable low-temperature battery	RW	1
--------------------------------------	----	---

REG 42H: IRQ enable 3

Default value: 3BH

Bit	description	R/W	Defaul
			ts
7	AXP173 internal over-temperature IRQ enable	RW	0
6	The charging current is less than a set current IRQ is enabled	RW	0
5	Output voltage setting value is less than the DC-DC1 IRQ enable	RW	1
4	Output voltage setting value is less than the DC-DC2 IRQ enable	RW	1
3	LDO4 output voltage is less than the set value IRQ is enabled	RW	1
2	Retention	RW	0
1	IRQ enable short key	RW	1
0	IRQ enable long key	RW	1

REG 43H: IRQ enable 4

Default value: C1H

Bit	description	R/W	Defaul
			ts
7-6	Retention	RW	1
5	VBUS enable effective IRQ	RW	0
4	VBUS invalid IRQ enable	RW	0
3	VBUS Session A / B IRQ enable	RW	0
2	VBUS Session End IRQ enable	RW	0
1	Retention	RW	1
0	IRQ enable low pressure APS	RW	1

REG 4AH: IRQ enable 5

Default value: 00H

Bit	description	R/W	Defaul
			ts
7	Timeout timer IRQ enable	RW	0
6-0	Reservations can not be changed	RW	0

REG 44H: IRQ status 1

Default value: 00H

AXP173

Bit	description	R/W	Default
			s

7	Overvoltage IRQ state ACIN	RW	0
6	Access IRQ state ACIN	RW	0
5	ACIN out of the IRQ status	RW	0
4	Overvoltage IRQ state VBUS	RW	0
3	Access IRQ state VBUS	RW	0
2	VBUS out of the IRQ status	RW	0
1	But less than the available state VBUS VHOLDIRQ	RW	0
0	Retention	RW	0

REG 45H: IRQ state 2

Default value: 00H

Bit	description	R/ W	Defaul ts
7	IRQ battery access state	RW	0
6	IRQ state of the battery is removed	RW	0
5	IRQ active mode state the battery	RW	0
4	Exit Battery active mode IRQ status	RW	0
3	Charging IRQ status	RW	0
2	Charge completion state of IRQ	RW	0
1	IRQ state battery overtemperature	RW	0
0	Battery low temperature IRQ status	RW	0

REG 46H: IRQ status 3

Default value: 00H

Bit	description	R/W	Defaul
			ts
7	AXP173 internal over-temperature IRQ status	RW	0
6	The charging current is lower than the set current IRQ state	RW	0
5	DC-DC1 output voltage is less than the set value IRQ state	RW	0
4	DC-DC2 output voltage is smaller than the set value IRQ state	RW	0
3	LDO4 output voltage is less than the set value IRQ state	RW	0
2	Retention	RW	0
1	IRQ state short key	RW	0
0	IRQ state long key	RW	0

Note: All IRQ status register clears the corresponding bit write a corresponding state.

REG 47H: IRQ status 4

Default value: 00H

Bit	description	R/W	Defaul
			ts
7-6	Retention	RW	0
5	VBUS valid IRQ status	RW	0
4	VBUS invalid IRQ status	RW	0
3	VBUS Session A / B IRQ state	RW	0
2	VBUS Session End IRQ status	RW	0
1	Retention	RW	0
0	APIRQ S low voltage state, a voltage lower than the APS Warning Leve2 Once	RW	0
	set, over Warning Level1		
	Will be cleared		

REG 4DH: IRQ status 5

Default value: 00H

Bit	description	R/W	Defaul
			ts
7	Timer timeout IRQ status	RW	0
6-0	Reservations can not be changed	RW	0

Note: All IRQ status register clears the corresponding bit write a corresponding state.

REG B8H: Coulomb gauge control

Default value: 00H

Bit	desc	R/W	Defaul
	ript		ts
	ion		
7	Switching control coulometer	RW	0
6	Coulometer pause control, this bit while writing this bit will be cleared from Coulomb Count 1 will be suspended,	RW	0
5	Clear Coulomb meter control, this bit 1 will coulometer cleared and this bit is self-clearing	RW	0
4-0	Retention	RW	0

10. Package (Package)

000000

© 2010 X-Powers Limited - All rights reserved

X-Powers can not assume responsibility for use of any circuitry other than circuitry entirely embodied in a X-Powers product. No circuit patent licenses, copyrights, or other intellectual property rights are implied. X-Powers reserves the right to make changes to the specifications and products at any time without notice.