

Informatik 09 - Tabellenkalkulation

Informatik 09 - Tabellenkalkulation

Stunde 1+2
BYCS Drive
Excel Werbung
Tabellenkalkulation

Stunde 3+4
Formeln und Parameter
Excel-Werbung erweitert mit Formeln
Absolute und relative Zellbezüge

Stunde 5+6
Formeln mit Diagrammen darstellen
Exkurs: Abstraktionsebenen
Der Weg der Daten

Stunde 7+8
Datenflussdiagramm

Funktionen und Stelligkeit Getränkekalkulation

Stunde 9+10
Datenfluss-Puzzle
Verkettung von Funktionen

Stunde 11+12
Übung: Funktionale Modellierung
Umsetzung der DFDs als Tabelle

Stunde 13+14
Wenn-Dann-Funktion
Wenn-Dann-Funktion
Einkaufstabelle filtern
Daten filtern

Zusatz
Optional: Übung Notentabelle

Outline

Stund	ا _م 1	+2
Sturio		_

Stunde 3+4

Stunde 5+6

Stunde 7+8

Stunde 9+10

Stunde 11+12

Stunde 13+14

Zusatz

Tabellenkalkulation

In Tabellenkalkulationsprogrammen können Daten in den Zellen der erfast und mehille von Formein verschenkt werden. Jede Zelle besitzt eine eindesutige Adlessu. Diese besteht aus Buchstaben () und Zablen () Bakannet Tabellenkalkulationsprogramme sind z.B. Microsoft Excel, Libre-Office Calc oder Google Spreadtheets.

BYCS Drive

- 1. Öffne drive.bycs.de im Internetbrowser und melde dich mit deinen BYCS/Mebis Logindaten an.
- 2. Erstelle einen in deinem persönlichen Bereich einen neuen Ordner mit Name **Informatik 09**
- 3. Wenn du in diesem Ordner auf **+Neu** klickst kannst du neue Dateien (z.B. Kalkulationstabellen) erstellen.

WICHTIG: Achte darauf, die Dateiendung (nach dem Punkt, z.B. .xlsx), nicht zu verändern!

Excel Werbung

- 1. Schau das Video unter: mebis.link/inf9 excel-werbung
- 2. Erstelle in BYCS-Drive eine neue Kalkulationstabelle 01_ExcelWerbung.xlsx
- 3. Baue die Tabelle aus dem Video mit den exakt gleichen Schritten in BYCS-Drive nach!
- 4. Füge deiner Tabelle ein Diagramm hinzu, das die Quartalszahlen grafisch darstellt.
- 5. Stellt die Tabelle tatsächlich eine Wachstumsrate von 10% von Quartal zu Quartal dar?
- 6. Falls nein, wie könnte man die Einträge so ändern, dass automatisch 10% Wachstumsrate berechnet werden?

Spreadsheets.

Spreadsheets.

Spreadsheets.

Spreadsheets.

Outline

Stunde 1+2

Stunde 3+4

Stunde 5+6

Stunde 7+8

Stunde 9+10

tunde 11+12

Stunde 13+14

Zusatz

BYCS Drive 1. Office, Inches Drycs, alle in Intermedianouses and model and the histories BYCS/Mobile Logination on a final process of the pr

verändern!

Excel Werbung

- Schau das Video unter mehis link/inf9 excel-verbung
- Erstelle in BYCS-Drive eine neue Kalkulationstabelle 01 ExcelWerbung.xlsx
- Baue die Tabelle aus dem Video mit den exakt gleichen Schritten in BYCS-Drive nach!
- 4. Füge deiner Tabelle ein Diagramm hinzu, das die Quartalszahlen grafisch darstellt.
- Stellt die Tabelle tatsächlich eine Wachstumsrate von 10% von Quartal zu Quartal dar?
 Falls nein, wie könnte man die Einträge so ändern, dass automatisch 10% Wachstumsrate berechnet werden?

fallantialli...latiaa

In Tabellenkalkulatiorsprogrammen können Daten in den Zellen der erfasst und mithilfe von Formeln verarbeitet werden. Jede Zelle bestirt eine eindeutige Adresso. Diese besticht aus Buchstaben () und Zablen () Bekannte Tabellenkalkulationsprogramme sind z.B. Microsoft Excel, LibreOffice Calc oder Google Spreadtheets.

Formeln und Parameter berochner Zeilnierte autbrautsch. Sie beginnen hanatzeichen Eine moder erogleriegen Funitionen (E.B. Mittelwert) Die Conunferdersaten werder dagsgeste Sie zur Wiese zie E. Weite. 1.17) der Wens andere Zeilne (bl. Adresse, 1.8. B) ah Parameter verwerde werken. Die Berochung des Ergebnisses nennt man auch Auswertung der Formel und Buhr so ab:

Excel-Werbung erweitert mit Formeln

- Öffne deine Excel-Datei von letzter Stunde und lege mit dem + am unteren Rand ein neues Tabellenblatt an.
 - Führt die Schritte wie im Video aus, jedoch nur bis zu den
 Werten der 1. Spalte
- Vervollständigt die Tabelle so, dass die Wachstumsrate (bisher 10%) in einer eigenen Zelle gespeichert und von euren Formeln verwendet wird.
- 4. Überlegt euch ein System, um die Art der Zelle optisch hervorzuheben, und setzt dies in eurer Tabelle um Targt hierfür zunächst jede Art in eine eigene Zelle ein und hebt auch diese Zellen entsprechend hervor. Die Tabelle hat diese Zellarten: Beschriftung, Engabewert,

Absolute und relative Zellbezüge

Zieht oder kopiert man eine Formel in eine andere Zelle, zo verändern sich die Adessen entsprechend der veränderten Zellposition. Man spricht von einem Zellbezug. Möchte man dies verhindem, setzt man ein \$ Symbol vor den entsprechenden Teil (Zeile oder Spalte) der Adresse und spricht von einem Zellbezug. Dies ist auch für Spalte oder Zeile einzel mödelt.

Art des Bezugs von A1	Original Formel	2 nach unten + 1 nach rechts verschoben
relativ	= A1 + C3	
Spalte absolut Zeile relativ	= \$A1 + C3	
Spalte relativ Zeile absolut	= A\$1 + C3	
absolut	= \$A\$1 + C3	

berechnen Zellwerte automatisch. Sie beginnen immer mit einem gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B. Mittelwert). Die **Grundrechenarten** werden dargestellt als:

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch

berechnen Zellwerte automatisch. Sie beginnen immer mit einem gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B. Mittelwert). Die **Grundrechenarten** werden dargestellt als:

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch

berechnen Zellwerte automatisch. Sie beginnen immer mit einem gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B. Mittelwert). Die **Grundrechenarten** werden dargestellt als:

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch

berechnen Zellwerte automatisch. Sie beginnen immer mit einem gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B. Mittelwert). Die **Grundrechenarten** werden dargestellt als:

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch

berechnen Zellwerte automatisch. Sie beginnen immer mit einem gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B. Mittelwert). Die **Grundrechenarten** werden dargestellt als:

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch

berechnen Zellwerte automatisch. Sie beginnen immer mit einem gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B. Mittelwert). Die **Grundrechenarten** werden dargestellt als:

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch

berechnen Zellwerte automatisch. Sie beginnen immer mit einem gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B. Mittelwert). Die **Grundrechenarten** werden dargestellt als:

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die Berechnung des Ergebnisses nennt man auch

berechnen Zellwerte automatisch. Sie beginnen immer mit einem gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B. Mittelwert). Die **Grundrechenarten** werden dargestellt als:

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die

Berechnung des Ergebnisses nennt man auch

berechnen Zellwerte automatisch. Sie beginnen immer mit einem gefolgt von einem mathematischen Term oder vorgefertigten Funktionen (z.B. Mittelwert). Die **Grundrechenarten** werden dargestellt als:

In Formeln können feste Werte (z.B. für MwSt: 1,19) oder Werte anderer Zellen (als Adresse, z.B. B5) als Parameter verwendet werden. Die

Berechnung des Ergebnisses nennt man auch

- 1. Öffne deine Excel-Datei von letzter Stunde und lege mit dem + am unteren Rand ein neues Tabellenblatt an.
- 2. Führt die Schritte wie im Video aus, jedoch nur bis zu den Werten der 1. Spalte
- 3. Vervollständigt die Tabelle so, dass die Wachstumsrate (bisher 10%) in einer eigenen Zelle gespeichert und von euren Formeln verwendet wird.
- 4. Überlegt euch ein System, um die Art der Zelle optisch hervorzuheben, und setzt dies in eurer Tabelle um. Tragt hierfür zunächst jede Art in eine eigene Zelle ein und hebt auch diese Zellen entsprechend hervor. Die Tabelle hat diese Zellarten: Beschriftung, Eingabewert, automatische Berechnung (=Formel)

Zieht oder kopiert man eine Formel in eine
andere Zelle, so verändern sich die Adressen
entsprechend der veränderten Zellposition. Man
spricht von einem Zellbezug .

Möchte man dies verhindern, setzt man ein \$-Symbol vor den entsprechenden Teil (Zeile oder

Spalte) der Adresse und spricht von einem

einzeln möglich.

Zellbezug. Dies ist auch für Spalte oder Zeile

Bei	sp	ie	

Art des Bezugs von A1	Original Formel	+ 1 nach rechts verschoben
relativ	= A1 + C3	
Spalte absolut	= \$A1 + C3	

= A\$1 + C3

= \$A\$1 + C3

Spalte relativ

Zieht oder kopiert man eine Formel in eine
andere Zelle, so verändern sich die Adressen
entsprechend der veränderten Zellposition. Man
spricht von einem Zellbezug .

Möchte man dies verhindern, setzt man ein \$-Symbol vor den entsprechenden Teil (Zeile oder

Spalte) der Adresse und spricht von einem

einzeln möglich.

Zellbezug. Dies ist auch für Spalte oder Zeile

Bei	sp	ie	

Art des Bezugs von A1	Original Formel	+ 1 nach rechts verschoben
relativ	= A1 + C3	
Spalte absolut	= \$A1 + C3	

= A\$1 + C3

= \$A\$1 + C3

Spalte relativ

Zieht oder kopiert man eine Formel in eine
andere Zelle, so verändern sich die Adressen
entsprechend der veränderten Zellposition. Man
spricht von einem Zellbezug .

Möchte man dies verhindern, setzt man ein \$-Symbol vor den entsprechenden Teil (Zeile oder

Spalte) der Adresse und spricht von einem

einzeln möglich.

Zellbezug. Dies ist auch für Spalte oder Zeile

Bei	sp	ie	

Art des Bezugs von A1	Original Formel	+ 1 nach rechts verschoben
relativ	= A1 + C3	
Spalte absolut	= \$A1 + C3	

= A\$1 + C3

= \$A\$1 + C3

Spalte relativ

Zieht oder kopiert man eine Formel in eine
andere Zelle, so verändern sich die Adressen
entsprechend der veränderten Zellposition. Man
spricht von einem Zellbezug .

Möchte man dies verhindern, setzt man ein \$-Symbol vor den entsprechenden Teil (Zeile oder

Spalte) der Adresse und spricht von einem

einzeln möglich.

Zellbezug. Dies ist auch für Spalte oder Zeile

Bei	isp	ie	:

Art des Bezugs von A1	Original Formel	+ 1 nach rechts verschoben
relativ	= A1 + C3	
Spalte absolut	= \$A1 + C3	

= A\$1 + C3

= \$A\$1 + C3

Spalte relativ

Zieht oder kopiert man eine Formel in eine			
andere Zelle, so verändern sich die Adressen			
entsprechend der veränderten Zellposition. Man			
spricht von einem Zellbezug.			

Möchte man dies verhindern, setzt man ein \$-Symbol vor den entsprechenden Teil (Zeile oder

Spalte) der Adresse und spricht von einem

einzeln möglich.

Zellbezug. Dies ist auch für Spalte oder Zeile

Bei	isp	ie	:

Art des Bezugs von A1	Original Formel	+ 1 nach rechts verschoben
relativ	= A1 + C3	
Spalte absolut	= \$A1 + C3	

= A\$1 + C3

= \$A\$1 + C3

Spalte relativ

Zieht oder kopiert man eine Formel in eine			
andere Zelle, so verändern sich die Adressen			
entsprechend der veränderten Zellposition. Man			
spricht von einem Zellbezug.			

Möchte man dies verhindern, setzt man ein \$-Symbol vor den entsprechenden Teil (Zeile oder

Spalte) der Adresse und spricht von einem

einzeln möglich.

Zellbezug. Dies ist auch für Spalte oder Zeile

Bei	isp	ie	:

Art des Bezugs von A1	Original Formel	+ 1 nach rechts verschoben
relativ	= A1 + C3	
Spalte absolut	= \$A1 + C3	

= A\$1 + C3

= \$A\$1 + C3

Spalte relativ

Absolute und relative Zellbezüge

Zieht oder kopiert man eine Formel in eine
andere Zelle, so verändern sich die Adressen
entsprechend der veränderten Zellposition. Man
spricht von einem Zellbezug.

Möchte man dies verhindern, setzt man ein \$-Symbol vor den entsprechenden Teil (Zeile oder

Spalte) der Adresse und spricht von einem

einzeln möglich.

Zellbezug. Dies ist auch für Spalte oder Zeile

D =:===:=	
Beisbiel	
Delapiel	

Art des Bezugs von A1	Original Formel	2 nach unten + 1 nach rechts verschoben
relativ	= A1 + C3	
Spalte absolut Zeile relativ	= \$A1 + C3	
Spalte relativ Zeile absolut	= A\$1 + C3	
absolut	= \$A\$1 + C3	

Outline

Stunde 1+2

Stunde 3+4

Stunde 5+6

Stunde 7+8

Stunde 9+10

tunde 11+12

Stunde 13+14

Zusatz

Excel-Werbung erweitert mit Formeln

- . Öffne deine Excel-Datei von letzter Stunde und lege mit
- dem + am unteren Rand ein neues Tabellenblatt an.
 2. Führt die Schritte wie im Video aus. iedoch nur bis zu den
- Vervollständigt die Tabelle so, dass die Wachstumsrate (bisher 10%) in einer eigenen Zelle gespeichert und von
- 4. Überlegt euch ein System, um die Art der Zelle optisch hervorzuheben, und setzt dies in eurer Tabelle um. Tragt hierfür zunbetst jede Art in eine eigene Zelle ein und hebt auch diese Zellen entsprechend hervor. Die Tabelle hat diese Zellarten: Beschriftung, Eingabewert,

Absolute und relative Zellbezüge

Zieht oder kopiert man eine Formel in eine andere Zelle, so verändem sich die Adressen entsprechend der veränderten Zellposition. Man spricht von einem Zellbozug. Mochte man dies verhindern, setzt man ein § Symbol vor den entsprechenden Teil (Zeile oder Spalte) der Adresseu und spricht von einem

einzeln möglich

oezug. Dies ist auch für Spalte oder Zeile

Art des Bezugs von A1	Original Formel	2 nach unten + 1 nach rechts verschoben		
relativ	= A1 + C3			
Spalte absolut Zeile relativ	= \$A1 + C3			
Spalte relativ Zeile absolut	= A\$1 + C3			
absolut	= \$A\$1 + C3			

Exkurs: Abstraktionsebenen

Ein Kerngebiet der Informatik ist es, Programme darzustellen. Die schöelt eines Computers ist sehr komplex, daher nutst man : Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen . In einem Modell () Jestilt man alles möglichst auf derselben Ebene dar.

Mögliche Abstraktionsebenen einer Zelle unserer Tabelle (es gibt mehr!):

tatsächlicher Wert Formel m. Adresse Beschreibung Einzelwerte Beschreibung

Der Weg der Daten

- 1. Öffne im Browser Orinoco: klassenkarte.de/oo/
- Aus der linken Spalte benötigen wir die Elemente Eingabe, Funktion, Ausgabe und
- Wähle zwei verschiedene Formelfelder deiner Tabelle aus und erstelle ein Diagramm mit den genannten Elementen, das darstellt, welche Daten in die Berechnung einfließen,
- welche ausgegeben werden und was für eine Berechnung durchgeführt wird.

 4. Erstellt möglichst viele Diagramme auf verschiedenen Abstraktionsebenen.

Formeln mit Diagrammen darstellen

Diagramme wie im ersten Hefteintrag, die Eingabe, Verarbeitung und Ausgabe darstellen, nennt man Datenflussdiagramm.

- Zeichne für eine Wachstumsberechnung und eine Summe aus deiner Tabelle je ein Datenflussdiagramm.
- Überlege dabei: Wie stellst du die Daten dar und wieso?
 Zum Beispiel als konkreten Wert, als Zelladresse, als Beschreibung, ...?

Formeln mit Diagrammen darstellen

Diagramme wie im ersten Hefteintrag, die Eingabe, Verarbeitung und Ausgabe darstellen, nennt man Datenflussdiagramm.

- Zeichne für eine Wachstumsberechnung und eine Summe aus deiner Tabelle je ein Datenflussdiagramm.
- Überlege dabei: Wie stellst du die Daten dar und wieso?
 Zum Beispiel als konkreten Wert, als Zelladresse, als Besch

Zum Beispiel als konkreten Wert, als Zelladresse, als Beschreibung, ...?

Ein Kerngebiet der Informatik ist es, Programme darzustellen. Die Arbeit eines Computers ist sehr komplex, daher nutzt man .

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen . In einem Modell () stellt man alles möglichst auf derselben Ebene dar.

tatsächlicher Wert	Formel m. Adresse	Beschreibung Einzelwerte	Beschreibung

Ein Kerngebiet der Informatik ist es, Programme darzustellen. Die Arbeit eines Computers ist sehr komplex, daher nutzt man .

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen . In einem Modell () stellt man alles möglichst auf derselben Ebene dar.

tatsächlicher Wert	Formel m. Adresse	Beschreibung Einzelwerte	Beschreibung

Ein Kerngebiet der Informatik ist es, Programme darzustellen. Die Arbeit eines Computers ist sehr komplex, daher nutzt man .

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen . In einem Modell () stellt man alles möglichst auf derselben Ebene dar.

tatsächlicher Wert	Formel m. Adresse	Beschreibung Einzelwerte	Beschreibung

Ein Kerngebiet der Informatik ist es, Programme darzustellen. Die Arbeit eines Computers ist sehr komplex, daher nutzt man .

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen . In einem Modell () stellt man alles möglichst auf derselben Ebene dar.

tatsächlicher Wert	Formel m. Adresse	Beschreibung Einzelwerte	Beschreibung

Ein Kerngebiet der Informatik ist es, Programme darzustellen. Die Arbeit eines Computers ist sehr komplex, daher nutzt man .

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen . In einem Modell () stellt man alles möglichst auf derselben Ebene dar.

tatsächlicher Wert	Formel m. Adresse	Beschreibung Einzelwerte	Beschreibung

Ein Kerngebiet der Informatik ist es, Programme darzustellen. Die Arbeit eines Computers ist sehr komplex, daher nutzt man .

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen . In einem Modell () stellt man alles möglichst auf derselben Ebene dar.

tatsächlicher Wert	Formel m. Adresse	Beschreibung Einzelwerte	Beschreibung

Ein Kerngebiet der Informatik ist es, Programme darzustellen. Die Arbeit eines Computers ist sehr komplex, daher nutzt man .

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen . In einem Modell () stellt man alles möglichst auf derselben Ebene dar.

tatsächlicher Wert	Formel m. Adresse	Beschreibung Einzelwerte	Beschreibung

Ein Kerngebiet der Informatik ist es, Programme darzustellen. Die Arbeit eines Computers ist sehr komplex, daher nutzt man .

Je nach Anwendung ist ein anderer Detailgrad notwendig. Man spricht dann von verschiedenen . In einem Modell () stellt man alles möglichst auf derselben Ebene dar.

tatsächlicher Wert	Formel m. Adresse	Beschreibung Einzelwerte	Beschreibung

Der Weg der Daten

- 1. Öffne im Browser Orinoco: klassenkarte.de/oo/
- 2. Aus der linken Spalte benötigen wir die Elemente Eingabe, Funktion, Ausgabe und Datenfluss.
- 3. Wähle zwei verschiedene Formelfelder deiner Tabelle aus und erstelle ein Diagramm mit den genannten Elementen, das darstellt, welche Daten in die Berechnung einfließen, welche ausgegeben werden und was für eine Berechnung durchgeführt wird.
- 4. Erstellt möglichst viele Diagramme auf verschiedenen Abstraktionsebenen.

Der Weg der Daten

- 1. Öffne im Browser Orinoco: klassenkarte.de/oo/
- 2. Aus der linken Spalte benötigen wir die Elemente Eingabe, Funktion, Ausgabe und Datenfluss.
- 3. Wähle zwei verschiedene Formelfelder deiner Tabelle aus und erstelle ein Diagramm mit den genannten Elementen, das darstellt, welche Daten in die Berechnung einfließen, welche ausgegeben werden und was für eine Berechnung durchgeführt wird.
- 4. Erstellt möglichst viele Diagramme auf verschiedenen Abstraktionsebenen.

Outline

Stunde 3+4

Stunde 5+6

Stunde 7+8

Stunde 9+10

tunde 11+12

Stunde 13+14

Zusatz

Eine Funktion besitzt in der Informatik genauso wie in Mathe Eingaben (=) und genau eine Ausgabe (=). n sind Funktionen. SUMME und PRODUKT können auch als fertige Funktion

Getränkekalkulation Ihr macht die Kalkulation für eine große Party mit einer Kalkulationstabelle. Da so eine Planung aufwendig ist,

wird sie auf mehrere Personen aufgeteilt.

- 1. Bildet mindestens 4 Gruppen (A1,A2,B1,B2 manche kann es doppelt geben) und nehmt euch
- gemeinsam einen Zettel. Eure Aufgabenstellung erhaltet ihr von der Lehrkraft
 - ramm (mit hoher Abstraktion) Tauscht euer Diagramm mit der anderen Gruppe eures Buchstabens (also z.B. tauschen A1 und A2) und setzt dieses dann mit der Tabellensoftware in BYCS-Drive um.
- Färbt auch dieses Mal wieder die Zellen anhand des Typs (Nutzereingabe, Formel, Beschriftung) ein.
 Zum Testen eurer Formeln könnt ihr einfach Preise und Gäste-Anzahlen erfinden. Wieso ist es sinnvoll, zuerst ein Diagramm zu zeichnen?

Datenflussdiagramm

Datenflussdiagramme stellen die Ein- und Ausgaben von Funktionen übersichtlich dar. Man nutzt sie, um die Umsetzung eines Programms zu planen oder im Nachhinein zu dokumentieren. Datenflussdiagramme bestehen aus diesen Elementen:

Schema eines DFDs mit Platzhaltern:

Datenflussdiagramm

Datenflussdiagramme stellen die Ein- und Ausgaben von Funktionen übersichtlich dar. Man nutzt sie, um die Umsetzung eines Programms zu planen oder im Nachhinein zu dokumentieren. Datenflussdiagramme bestehen aus diesen Elementen:

 ${\bf Schema\ eines\ DFDs\ mit\ Platzhaltern:}$

Datenflussdiagramm Schema eines DFDs mit Platzhaltern: Datenflussdiagramme stellen die Ein- und Ausgaben von Funktionen übersichtlich dar. Man nutzt sie, um die Umsetzung eines Programms zu planen oder im Nachhinein zu dokumentieren. Datenflussdiagramme bestehen aus diesen Elementen:

Eine Funktion besitzt in der Informatik genauso wie in Mathe Eingaben (=) und genau eine Ausgabe (=). Besitzt eine Funktion einen Parameter heißt sie , bei zwei Parametern usw. Gewöhnliche Rechenoperationen sind Funktionen. SUMME und PRODUKT können auch als fertige Funktion geschrieben werden und sind dann beliebig vielstellig.

Eine Funktion besitzt in der Informatik genauso wie in Mathe Eingaben (=) und genau eine Ausgabe (=). Besitzt eine Funktion einen Parameter heißt sie , bei zwei Parametern usw. Gewöhnliche Rechenoperationen sind Funktionen. SUMME und PRODUKT können auch als fertige Funktion geschrieben werden und sind dann beliebig vielstellig.

Eine Funktion besitzt in der Informatik genauso wie in Mathe Eingaben (=) und genau eine Ausgabe (=). Besitzt eine Funktion einen Parameter heißt sie , bei zwei Parametern usw. Gewöhnliche Rechenoperationen sind Funktionen. SUMME und PRODUKT können auch als fertige Funktion geschrieben werden und sind dann beliebig vielstellig.

Eine Funktion besitzt in der Informatik genauso wie in Mathe Eingaben (=) und genau eine Ausgabe (=). Besitzt eine Funktion einen Parameter heißt sie , bei zwei Parametern usw. Gewöhnliche Rechenoperationen sind Funktionen. SUMME und PRODUKT können auch als fertige Funktion geschrieben werden und sind dann beliebig vielstellig.

Eine Funktion besitzt in der Informatik genauso wie in Mathe Eingaben (=) und genau eine Ausgabe (=). Besitzt eine Funktion einen Parameter heißt sie , bei zwei Parametern usw. Gewöhnliche Rechenoperationen sind Funktionen. SUMME und PRODUKT können auch als fertige Funktion geschrieben werden und sind dann beliebig vielstellig.

Eine Funktion besitzt in der Informatik genauso wie in Mathe Eingaben (=) und genau eine Ausgabe (=). Besitzt eine Funktion einen Parameter heißt sie , bei zwei Parametern usw. Gewöhnliche Rechenoperationen sind Funktionen. SUMME und PRODUKT können auch als fertige Funktion geschrieben werden und sind dann beliebig vielstellig.

Eine Funktion besitzt in der Informatik genauso wie in Mathe Eingaben (=) und genau eine Ausgabe (=). Besitzt eine Funktion einen Parameter heißt sie , bei zwei Parametern usw. Gewöhnliche Rechenoperationen sind Funktionen. SUMME und PRODUKT können auch als fertige Funktion geschrieben werden und sind dann beliebig vielstellig.

Ihr macht die Kalkulation für eine große Party mit einer Kalkulationstabelle. Da so eine Planung aufwendig ist, wird sie auf mehrere Personen aufgeteilt.

- 1. Bildet mindestens 4 Gruppen (A1,A2,B1,B2 manche kann es doppelt geben) und nehmt euch gemeinsam einen Zettel. Eure Aufgabenstellung erhaltet ihr von der Lehrkraft
- 2. Zeichnet zu eurer Aufgabenstellung pro Schritt ein Datenflussdiagramm (mit hoher Abstraktion)
- 3. Tauscht euer Diagramm mit der anderen Gruppe eures Buchstabens (also z.B. tauschen A1 und A2) und setzt dieses dann mit der Tabellensoftware in BYCS-Drive um.
 - o Färbt auch dieses Mal wieder die Zellen anhand des Typs (Nutzereingabe, Formel, Beschriftung) ein.
 - o Zum Testen eurer Formeln könnt ihr einfach Preise und Gäste-Anzahlen erfinden.

Wieso ist es sinnvoll, zuerst ein Diagramm zu zeichnen?

Ihr macht die Kalkulation für eine große Party mit einer Kalkulationstabelle. Da so eine Planung aufwendig ist, wird sie auf mehrere Personen aufgeteilt.

- 1. Bildet mindestens 4 Gruppen (A1,A2,B1,B2 manche kann es doppelt geben) und nehmt euch gemeinsam einen Zettel. Eure Aufgabenstellung erhaltet ihr von der Lehrkraft
- 2. Zeichnet zu eurer Aufgabenstellung pro Schritt ein Datenflussdiagramm (mit hoher Abstraktion)
- 3. Tauscht euer Diagramm mit der anderen Gruppe eures Buchstabens (also z.B. tauschen A1 und A2) und setzt dieses dann mit der Tabellensoftware in BYCS-Drive um.
 - o Färbt auch dieses Mal wieder die Zellen anhand des Typs (Nutzereingabe, Formel, Beschriftung) ein.
 - o Zum Testen eurer Formeln könnt ihr einfach Preise und Gäste-Anzahlen erfinden.

Wieso ist es sinnvoll, zuerst ein Diagramm zu zeichnen?

Ihr macht die Kalkulation für eine große Party mit einer Kalkulationstabelle. Da so eine Planung aufwendig ist, wird sie auf mehrere Personen aufgeteilt.

- 1. Bildet mindestens 4 Gruppen (A1,A2,B1,B2 manche kann es doppelt geben) und nehmt euch gemeinsam einen Zettel. Eure Aufgabenstellung erhaltet ihr von der Lehrkraft
- 2. Zeichnet zu eurer Aufgabenstellung pro Schritt ein Datenflussdiagramm (mit hoher Abstraktion)
- 3. Tauscht euer Diagramm mit der anderen Gruppe eures Buchstabens (also z.B. tauschen A1 und A2) und setzt dieses dann mit der Tabellensoftware in BYCS-Drive um.
 - o Färbt auch dieses Mal wieder die Zellen anhand des Typs (Nutzereingabe, Formel, Beschriftung) ein.
 - o Zum Testen eurer Formeln könnt ihr einfach Preise und Gäste-Anzahlen erfinden.

Wieso ist es sinnvoll, zuerst ein Diagramm zu zeichnen?

Ihr macht die Kalkulation für eine große Party mit einer Kalkulationstabelle. Da so eine Planung aufwendig ist, wird sie auf mehrere Personen aufgeteilt.

- 1. Bildet mindestens 4 Gruppen (A1,A2,B1,B2 manche kann es doppelt geben) und nehmt euch gemeinsam einen Zettel. Eure Aufgabenstellung erhaltet ihr von der Lehrkraft
- 2. Zeichnet zu eurer Aufgabenstellung pro Schritt ein Datenflussdiagramm (mit hoher Abstraktion)
- 3. Tauscht euer Diagramm mit der anderen Gruppe eures Buchstabens (also z.B. tauschen A1 und A2) und setzt dieses dann mit der Tabellensoftware in BYCS-Drive um.
 - o Färbt auch dieses Mal wieder die Zellen anhand des Typs (Nutzereingabe, Formel, Beschriftung) ein.
 - o Zum Testen eurer Formeln könnt ihr einfach Preise und Gäste-Anzahlen erfinden.

Wieso ist es sinnvoll, zuerst ein Diagramm zu zeichnen?

Outline

Stunde 3+4

Stunde 5+6

Stunde 7+8

Stunde 9+10

tunde 11+12

Stunde 13+14

Zusatz

Funktionen und Stelligkeit

Eine Funktion besitzt in der Informatik genauso wie in Mathe Eingaben (=) und genau eine Ausgabe (=). Besitzt eine Funktion einen Parameter heißt sie , bei zwei Parametern usw.

Gewöhnliche Rechenoperationen sind Funktionen. SUMME und PRODUKT können auch als fertige Funktion

geschrieben werden und sind dann beliebig weistellig.

Einzelne Parameter trennt man mit Semikolon, alle Zellen innerhalb eines Bereichs gibt man mit Doppelpunkt werkens Start und Entzelle an Zum Beweist.

Getränkekalkulation

- Ihr macht die Kalkulation für eine große Party mit einer Kalkulationstabelle. Da so eine Planung aufwendig ist, wird sie auf mehrere Personen aufneteilt Rildet mindestens 4 Grunnen (41 42 R1 R2 - manche kann es donnelt gehen) und nehmt euch
- gemeinsam einen Zettel. Eure Aufgabenstellung erhaltet ihr von der Lehrkraft
- 2. Zeichnet zu eurer Aufgabenstellung pro Schritt ein Datenflussdiagramm (mit hoher Abstraktion) Tauscht euer Diagramm mit der anderen Gruppe eures Buchstabens (also z.B. tauschen A1 und A2) und setzt dieses dann mit der Tahellensoftware in RYCS-Drive um
- Färbt auch dieses Mal wieder die Zellen anhand des Typs (Nutzereingabe, Formel, Beschriftung) ein.
 Zum Testen eurer Formeln könnt ihr einfach Preise und Gäste-Anzahlen erfinden.

Welche Eigenschaften eines Diagramms machen die Umsetzung leichter?

Wieso ist es sinnvoll, zuerst ein Diagramm zu zeichnen?

Datenfluss-Puzzle

- 1. Trefft euch mit der Gruppe, mit der ihr euer Datenflussdiagramm getauscht habt. Von eurer Lehrkraft bekommt ihr ausgedruckt die Lösungen für eure Einzeldiagramme und ein A3 Blatt als Untergrund.
- 2. Fügt eure einzelnen Datenflussdiagramme zu einem Gesamtdiagramm zusammen. Nutzt hierfür ggf. eine Schere und fügt zusätzliche Datenflüsse und falls notwendig Funktionen ein.
- 3. Überlegt euch: Welche Elemente kann man beim Zusammenfügen entfernen (ohne Information zu verlieren) und wieso?
- 4. Zeichnet nach dem gemeinsamen Vergleich mit der ganzen Klasse ein möglichst stark vereinfachtes Gesamt-DFD zu Gruppe B auf die nächste Seite.

Wenn der einer Funktion als einer anderen Funktion verwendet wird, spricht man von von Funktionen. In Datenflussdiagrammen können zwischen weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen zu wählen. Mit einem kann ein Datenfluss in zwei aufgeteilt werden. Ein Beispiel ist das Gesamt-Diagramm aus der vorheri-

Datenfluss-Puzzle

- 1. Trefft euch mit der Gruppe, mit der ihr euer Datenflussdiagramm getauscht habt. Von eurer Lehrkraft bekommt ihr ausgedruckt die Lösungen für eure Einzeldiagramme und ein A3 Blatt als Untergrund.
- 2. Fügt eure einzelnen Datenflussdiagramme zu einem Gesamtdiagramm zusammen. Nutzt hierfür ggf. eine Schere und fügt zusätzliche Datenflüsse und falls notwendig Funktionen ein.
- 3. Überlegt euch:
 Welche Elemente kann man beim Zusammenfügen entfernen (ohne Information zu verlieren) und wieso?
- 4. Zeichnet nach dem gemeinsamen Vergleich mit der ganzen Klasse ein möglichst stark vereinfachtes Gesamt-DFD zu Gruppe B auf die nächste Seite.

Datenfluss-Puzzle

- 1. Trefft euch mit der Gruppe, mit der ihr euer Datenflussdiagramm getauscht habt. Von eurer Lehrkraft bekommt ihr ausgedruckt die Lösungen für eure Einzeldiagramme und ein A3 Blatt als Untergrund.
- 2. Fügt eure einzelnen Datenflussdiagramme zu einem Gesamtdiagramm zusammen. Nutzt hierfür ggf. eine Schere und fügt zusätzliche Datenflüsse und falls notwendig Funktionen ein.
- 3. Überlegt euch:
 Welche Elemente kann man beim Zusammenfügen entfernen (ohne Information zu verlieren) und wieso?
- 4. Zeichnet nach dem gemeinsamen Vergleich mit der ganzen Klasse ein möglichst stark vereinfachtes Gesamt-DFD zu Gruppe B auf die nächste Seite.

gen Aufgabe.

Wenn der einer Funktion als einer anderen Funktion verwendet wird, spricht man von von Funktionen. In Datenflussdiagrammen können zwischen weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen zu wählen. Mit einem kann ein Datenfluss in zwei aufgeteilt werden.

gen Aufgabe.

Wenn der einer Funktion als einer anderen Funktion verwendet wird, spricht man von von Funktionen. In Datenflussdiagrammen können zwischen weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen zu wählen. Mit einem kann ein Datenfluss in zwei aufgeteilt werden.

gen Aufgabe.

Wenn der einer Funktion als einer anderen Funktion verwendet wird, spricht man von von Funktionen. In Datenflussdiagrammen können zwischen weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen zu wählen. Mit einem kann ein Datenfluss in zwei aufgeteilt werden.

gen Aufgabe.

Wenn der einer Funktion als einer anderen Funktion verwendet wird, spricht man von von Funktionen. In Datenflussdiagrammen können zwischen weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen zu wählen. Mit einem kann ein Datenfluss in zwei aufgeteilt werden.

gen Aufgabe.

Wenn der einer Funktion als einer anderen Funktion verwendet wird, spricht man von von Funktionen. In Datenflussdiagrammen können zwischen weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen zu wählen. Mit einem kann ein Datenfluss in zwei aufgeteilt werden.

gen Aufgabe.

Wenn der einer Funktion als einer anderen Funktion verwendet wird, spricht man von von Funktionen. In Datenflussdiagrammen können zwischen weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen zu wählen. Mit einem kann ein Datenfluss in zwei aufgeteilt werden.

gen Aufgabe.

Wenn der einer Funktion als einer anderen Funktion verwendet wird, spricht man von von Funktionen. In Datenflussdiagrammen können zwischen weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen zu wählen. Mit einem kann ein Datenfluss in zwei aufgeteilt werden.

Wenn der einer Funktion als einer anderen Funktion verwendet wird, spricht man von von Funktionen. In Datenflussdiagrammen können zwischen weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen zu wählen. Mit einem kann ein Datenfluss in zwei aufgeteilt werden.

Ein Beispiel ist das Gesamt-Diagramm aus der vorherigen Aufgabe.

Outline

Stunde 1+2

Stunde 3+4

Stunde 5+6

Stunde 7+8

Stunde 9+10

Stunde 11+12

Stunde 13+14

Zusatz

Datenfluss-Puzzle

- Trefft euch mit der Gruppe, mit der ihr euer Datenflussdiagramm getauscht habt. Von eurer Lehrkraft bekommt ihr ausgedruckt die Lösungen für eure Einzeldiagramme und ein A3 Blatt als Untergrund.
- Fügt eure einzelnen Datenflussdiagramme zu einem Gesamtdiagramm zusammen. Nutzt hierfür ggf. eine Schere und fügt zusätzliche Datenflüsse und falls notwendig Funktionen ein.
- Überlegt euch: Welche Elemente kann man beim Zusammenfügen entfernen (ohne Information zu verlieren) und wieso?
- Zeichnet nach dem gemeinsamen Vergleich mit der ganzen Klasse ein möglichst stark vereinfachtes Gesamt-DFD zu Gruppe B auf die nächste Seite.

Übung: Funktionale Modellierung

Bei einer großen Party fallen nicht nur Getränkekosten an. Zeichne jeweils zwei Datenflussdiagramme:

- Eines auf h\u00f6chster Abstraktionsebene f\u00fcr Daten und Funktionen (genau eine Funktion pro Einzel-Diagramm).
- Eines mit konkreten Rechenoperationen in Funktionen (2-stellige Funktionen) und Daten auf h\u00f6chster Abstraktionsebene.

Verkettung von Funktionen

Wenn der einer Funktion als einer anderen Funktion verwendet wird, spricht man von von Funktionen. In Datenflussdiagrammen können zwischen weggelassen werden. Hierbei ist es dann besonders wichtig, aussagekräftige Funktionsnamen zu wählen. Mit einem kann ein Datenfluss in zwei aufgeteilt werden. Ein Beispiel ist das Gesamt-Diagramm aus der vorheriegen Aufgabe.

Umsetzung der DFDs als Tabelle

- 1. Setze die Diagramme aus der vorherigen Aufgabe in einer neuen Tabellendatei um.
- 2. Überlege dir einen sinnvollen Aufbau für die Tabelle und hebe auch diesmal wieder den Typ (Eingabe, berechneter Wert, Beschriftung) der Zelle (z.B. farbig) hervor.
- Achte darauf, dass auch die Zwischenergebnisse wie in den Datenflussdiagrammen in der Tabelle angezeigt werden.

Beschreibe deinen Ansatz grob:

- •
- •
- •

Bei einer großen Party fallen nicht nur Getränkekosten an. Zeichne jeweils zwei Datenflussdiagramme:

- Eines auf höchster Abstraktionsebene für Daten und Funktionen (genau eine Funktion pro Einzel-Diagramm).
- Eines mit konkreten Rechenoperationen in Funktionen (2-stellige Funktionen) und Daten auf höchster Abstraktionsebene.

Übung: Funktionale Modellierung (a)

Getränkegewinn Durch den Verkauf der Getränke nimmst du Geld ein. Am Ende der Party zählst du die Kassen und erhältst die Gesamteinnahmen. Aus diesem Betrag und den Ausgaben beim Lieferanten errechnest du den Gewinn.

Übung: Funktionale Modellierung (a)

Getränkegewinn Durch den Verkauf der Getränke nimmst du Geld ein. Am Ende der Party zählst du die Kassen und erhältst die Gesamteinnahmen. Aus diesem Betrag und den Ausgaben beim Lieferanten errechnest du den Gewinn.

Übung: Funktionale Modellierung (a)

Getränkegewinn Durch den Verkauf der Getränke nimmst du Geld ein. Am Ende der Party zählst du die Kassen und erhältst die Gesamteinnahmen. Aus diesem Betrag und den Ausgaben beim Lieferanten errechnest du den Gewinn.

Übung: Funktionale Modellierung (b)

Anzahl Gäste Du hast vergessen, am Einlass eine Strichliste zu führen, daher kennst du nur deine Einnahmen durch Eintrittskarten und wie viel eine gekostet hat. Hier raus berechnest du die Anzahl der Gäste.

Übung: Funktionale Modellierung (b)

Anzahl Gäste Du hast vergessen, am Einlass eine Strichliste zu führen, daher kennst du nur deine Einnahmen durch Eintrittskarten und wie viel eine gekostet hat. Hier raus berechnest du die Anzahl der Gäste.

Übung: Funktionale Modellierung (b)

Anzahl Gäste Du hast vergessen, am Einlass eine Strichliste zu führen, daher kennst du nur deine Einnahmen durch Eintrittskarten und wie viel eine gekostet hat. Hier raus berechnest du die Anzahl der Gäste.

Übung: Funktionale Modellierung (c)

Security Weil die Feier deiner besten Freundin beim letzten Mal eskaliert ist, engagierst du einen Sicherheitsdienst. Die Anzahl der benötigten Security-Mitarbeiter berechnest du aus der Anzahl an Gästen und einem Personenschlüssel. Im Anschluss werden aus der Anzahl an Mitarbeitern und den Kosten pro Mitarbeiter die Security-Kosten berechnet.

Übung: Funktionale Modellierung (c)

Security Weil die Feier deiner besten Freundin beim letzten Mal eskaliert ist, engagierst du einen Sicherheitsdienst. Die Anzahl der benötigten Security-Mitarbeiter berechnest du aus der Anzahl an Gästen und einem Personenschlüssel. Im Anschluss werden aus der Anzahl an Mitarbeitern und den Kosten pro Mitarbeiter die Security-Kosten berechnet.

Übung: Funktionale Modellierung (c)

Security Weil die Feier deiner besten Freundin beim letzten Mal eskaliert ist, engagierst du einen Sicherheitsdienst. Die Anzahl der benötigten Security-Mitarbeiter berechnest du aus der Anzahl an Gästen und einem Personenschlüssel. Im Anschluss werden aus der Anzahl an Mitarbeitern und den Kosten pro Mitarbeiter die Security-Kosten berechnet.

Übung: Funktionale Modellierung (d)

Gewinn pro Gast Aus dem Getränke-Gewinn, den Einnahmen aus Eintrittskarten, den Security-Kosten und der Gästeanzahl berechnest du den durchschnittlichen Gewinn pro Gast.

Übung: Funktionale Modellierung (d)

Gewinn pro Gast Aus dem Getränke-Gewinn, den Einnahmen aus Eintrittskarten, den Security-Kosten und der Gästeanzahl berechnest du den durchschnittlichen Gewinn pro Gast.

Übung: Funktionale Modellierung (d)

Gewinn pro Gast Aus dem Getränke-Gewinn, den Einnahmen aus Eintrittskarten, den Security-Kosten und der Gästeanzahl berechnest du den durchschnittlichen Gewinn pro Gast.

Übung: Funktionale Modellierung (e)

Gesamt-Diagramm Füge die abstrakten Einzeldiagramme zu einem abstrakten verketteten Datenflussdiagrammen zusammen. Lasse keine Funktionen aber alle nicht benötigten Datenblöcke weg!

Übung: Funktionale Modellierung (e) Gesamt-Diagramm Füge die abstrakten Einzeldiagramme zu einem abstrakten verketteten Datenflussdiagrammen zusammen. Lasse keine Funktionen aber alle nicht benötigten Datenblöcke weg!

Umsetzung der DFDs als Tabelle

- 1. Setze die Diagramme aus der vorherigen Aufgabe in einer neuen Tabellendatei um.
- 2. Überlege dir einen sinnvollen Aufbau für die Tabelle und hebe auch diesmal wieder den Typ (Eingabe, berechneter Wert, Beschriftung) der Zelle (z.B. farbig) hervor.
- 3. Achte darauf, dass auch die Zwischenergebnisse wie in den Datenflussdiagrammen in der Tabelle angezeigt werden.

Beschreibe deinen Ansatz grob:

Umsetzung der DFDs als Tabelle

- 1. Setze die Diagramme aus der vorherigen Aufgabe in einer neuen Tabellendatei um.
- 2. Überlege dir einen sinnvollen Aufbau für die Tabelle und hebe auch diesmal wieder den Typ (Eingabe, berechneter Wert, Beschriftung) der Zelle (z.B. farbig) hervor.
- 3. Achte darauf, dass auch die Zwischenergebnisse wie in den Datenflussdiagrammen in der Tabelle angezeigt werden.

Beschreibe deinen Ansatz grob:

- •

Umsetzung der DFDs als Tabelle

										<u> </u>
Zeichne eine grobe Skizze deiner Tabelle:										
_ A	В	С	D	Е	F	G	Н		J	K
1										
2	Lösungmöglichkeit 1			Lösungmöglichkeit 2						
3	Einnahmen Getränke	400,00€				Einnahmen Tickets		Preis pro Ticket		
4	Ausgaben Getränke	100,00€				600	,00€	5		
5	Gewinn Getränke	300,00€					Anzahl Gäste		Gäste pro Security	
6	Einnahmen Tickets	600,00€					120		80	
7	Preis pro Ticket	5		Einnahmen Getränke	Ausgaben Getränke			Anzahl Security		Kosten pro Secu-Person
8	Anzahl Gäste	120		400,00€	100,00€				2	250,00€
9	Gäste pro Security	80		Gewinn Getränke				Securitykosten		
10	Anzahl Security	2		300,00€				500,00€		
11	Kosten pro Secu-Person	250,00€		Gewinn pro Gaste						
12	Kosten Security gesamt	500,00€		3,33€						
13	Durchn. Gewinn pro Gast	3,33€								

Outline

Stunde 1+2

Stunde 3+4

Stunde 5+6

Stunde 7+8

Stunde 9+10

Stunde 11+12

Stunde 13+14

Zusatz

Übung: Funktionale Modellierung

 $Bei \ einer \ großen \ Party \ fallen \ nicht nur \ Getränkekosten \ an. \ Zeichne \ jeweils \ zwei \ Datenfluss diagramme:$

- Eines auf höchster Abstraktionsebene für Daten und Funktionen (genau eine Funktion pro Einzel-Diagramm).
- Eines mit konkreten Rechenoperationen in Funktionen (2-stellige Funktionen) und Daten auf h\u00f6chster Abstraktionsebene.

Umsetzung der DFDs als Tabelle

- Setze die Diagramme aus der vorherigen Aufgabe in einer neuen Tabellendatei um.
 Überlege dir einen sinnvollen Aufbau für die Tabelle und hebe auch diesmal wieder den Typ (Eingabe, berechneter Wert, Beschriftung) der Zeile (z.B. faitbig) hervor.
- 3. Achte darauf, dass auch die Zwischenergebnisse wie in den Datenflussdiagrammen in der Tabelle angezeigt werden.

Beschreibe deinen Ansatz grob:

- -

Embandardus (in Chem.)

1. Segare dan kepagabana Endudoduska sawa NYS Onso Ordan and Ohan sa.

2. Segare dan kepagabana Endudoduska sawa NYS Onso Ordan and Ohan sa.

3. Segare dan kepagabana Endudoduska Segare dan Segare

Dates filters

Versahet nam grade Datenmengen, at en bil eich, Filor zu zernenden. Mit direse hann man

**nur einhaltentense Weden nam zu zerzegen.

*den ende heit dem einer bestemmen.

* Melvens Filor börzen miterander kundsten senden.

Wenn-Dann-Funktion

- 1. Öffne Studyflix: bycs.link/studyflix-excel-if
- 2. Schaue das Video und baue die beschriebene Tabelle in BYCS Drive nach.
- 3. Fasse den Artikel/das Video in einem kurzen Hefteintrag zusammen.
- 4. Ergänze mit Hilfe deines Buchs, die Darstellung der Wenn-Dann-Funktion im Datenflussdiagramm.

- 1. Kopiert die freigegebene Einkaufstabelle in euren BYCS-Drive Ordner und Öffnet sie.
- 2. Findet mit Hilfe der Filter Funktion folgendes heraus:
 - Wie teuer war der teuerste Einkauf?
 - Wie teuer war der teuerste Einkauf, den eine diverse Person mit Karte bezahlt hat?
 - Wann und was war der erste Einkauf von Kosmetik in der Tabelle?
 - Was ist der Name der alphabetisch ersten weibliche Person?
 - Was war der billigste Einkauf, der mit Karte gezahlt wurde?

- 1. Kopiert die freigegebene Einkaufstabelle in euren BYCS-Drive Ordner und Öffnet sie.
- 2. Findet mit Hilfe der Filter Funktion folgendes heraus:
 - Wie teuer war der teuerste Einkauf?
 - Wie teuer war der teuerste Einkauf, den eine diverse Person mit Karte bezahlt hat?
 - Wann und was war der erste Einkauf von Kosmetik in der Tabelle?
 - Was ist der Name der alphabetisch ersten weibliche Person?
 - Was war der billigste Einkauf, der mit Karte gezahlt wurde?

- 1. Kopiert die freigegebene Einkaufstabelle in euren BYCS-Drive Ordner und Öffnet sie.
- 2. Findet mit Hilfe der Filter Funktion folgendes heraus:
 - Wie teuer war der teuerste Einkauf?
 - Wie teuer war der teuerste Einkauf, den eine diverse Person mit Karte bezahlt hat?
 - Wann und was war der erste Einkauf von Kosmetik in der Tabelle?
 - Was ist der Name der alphabetisch ersten weibliche Person?
 - Was war der billigste Einkauf, der mit Karte gezahlt wurde?

- 1. Kopiert die freigegebene Einkaufstabelle in euren BYCS-Drive Ordner und Öffnet sie.
- 2. Findet mit Hilfe der Filter Funktion folgendes heraus:
 - Wie teuer war der teuerste Einkauf?
 - Wie teuer war der teuerste Einkauf, den eine diverse Person mit Karte bezahlt hat?
 - Wann und was war der erste Einkauf von Kosmetik in der Tabelle?
 - Was ist der Name der alphabetisch ersten weibliche Person?
 - Was war der billigste Einkauf, der mit Karte gezahlt wurde?

- 1. Kopiert die freigegebene Einkaufstabelle in euren BYCS-Drive Ordner und Öffnet sie.
- 2. Findet mit Hilfe der Filter Funktion folgendes heraus:
 - Wie teuer war der teuerste Einkauf?
 - Wie teuer war der teuerste Einkauf, den eine diverse Person mit Karte bezahlt hat?
 - Wann und was war der erste Einkauf von Kosmetik in der Tabelle?
 - Was ist der Name der alphabetisch ersten weibliche Person?
 - Was war der billigste Einkauf, der mit Karte gezahlt wurde?

- 1. Kopiert die freigegebene Einkaufstabelle in euren BYCS-Drive Ordner und Öffnet sie.
- 2. Findet mit Hilfe der Filter Funktion folgendes heraus:
 - Wie teuer war der teuerste Einkauf?
 - Wie teuer war der teuerste Einkauf, den eine diverse Person mit Karte bezahlt hat?
 - Wann und was war der erste Einkauf von Kosmetik in der Tabelle?
 - Was ist der Name der alphabetisch ersten weibliche Person?
 - Was war der billigste Einkauf, der mit Karte gezahlt wurde?

- nur mit bestimmten Werten in einer anzeigen.
- die nach den Werten einer bestimmten sortieren.
- Mehrere Filter können miteinander kombiniert werden.

- nur mit bestimmten Werten in einer anzeigen.
- die nach den Werten einer bestimmten sortieren.
- Mehrere Filter können miteinander kombiniert werden.

- nur mit bestimmten Werten in einer anzeigen.
- die nach den Werten einer bestimmten sortieren.
- Mehrere Filter können miteinander kombiniert werden.

- nur mit bestimmten Werten in einer anzeigen.
- die nach den Werten einer bestimmten sortieren.
- Mehrere Filter können miteinander kombiniert werden.

- nur mit bestimmten Werten in einer anzeigen.
- die nach den Werten einer bestimmten sortieren.
- Mehrere Filter können miteinander kombiniert werden.

Outline

Stunde 1+2

Stunde 3+4

Stunde 5+6

Stunde 7+8

Stunde 9+10

tunde 11+12

Stunde 13+14

Zusatz

Winn Danie Funktion :

Wenn-Dann-Funktion

Einkaufstabelle filtern

1. Kopert de kreppplene Frankfabell in nove PICS One Order und Offest in.
2. Frade en til Hille für Filter Fradanc fappstechterung.
4. Man en und herre Deland, mit den und Franzen til eine State und den und den State un

Dates filters

Veralle may pub Datesmerger, via ex lifetol, / for as reasone. Mil desemblari man

via and the pub pub Datesmerger, via ex lifetol, / for as reasone. Mil desemblari man

et al. and the desemblar filters in one consign.

et al. and his Millers and Indicates extreme.

Malver filter bitters miletoleris tendence service.

Optional: Übung Notentabelle

Frau Knust möchte die Noten ihrer Klasse übersichtlich verwalten. Hierfür benötigt sie eine Tabelle, in der die Gesamtnoten der einzelnen Fächer pro Schüler:in eingetragen werden, der Durchschnitt berechnet wird und in der letzten Spalte angezeigt wird, ob eine Person in mindestens zwei Fächern eine Note schlechter als 4 hat.

Die Notentabelle soll man mit der Filterfunktion sortieren und filtern können. Die Tabelle soll außerdem optisch ansprechend sein.
Erstelle in BYCS-Drive eine solche Kalkulationstabelle

Optional: Übung Notentabelle

Frau Knust möchte die Noten ihrer Klasse übersichtlich verwalten.

Hierfür benötigt sie eine Tabelle, in der die Gesamtnoten der einzelnen Fächer pro Schüler:in eingetragen werden, der Durchschnitt berechnet wird und in der letzten Spalte angezeigt wird, ob eine Person in mindestens zwei Fächern eine Note schlechter als 4 hat.

Die Notentabelle soll man mit der Filterfunktion sortieren und filtern können. Die Tabelle soll außerdem optisch

ansprechend sein.

Erstelle in BYCS-Drive eine solche Kalkulationstabelle