Northwestern MSDS-498 Artificial

Model #101: Credit Card Default Model

Model Development Guide

Andrew Stevens

September 1, 2022

1. Introduction

.

2. The Data

University of California Irvine hosts a Machine Learning Repository (Dua and Graff 2019) which includes the default of credit card clients in Taiwan prepared to compare the predictive abilities of selected data mining methods (Dua and Graff 2019). The response variable of the dataset is a binary indicator for whether a customer defaulted on their credit card debt. Delinquency is defined as missing a single payment due date, while default is not making a specific number of consecutive payments (Cagan 2020). Entering default involves collections actions and likely losses for the creditor, so a company would seek customers unlikely to default.

The predictor variables included in the dataset can be divided into two categories about the customer: demographic attributes and billing/payment history. The demographic attributes are comprised of SEX, EDUCATION, MARRIAGE, and AGE. The billing/payment history variables comprise six months of history including repayment status, billing amount, and payment amount.

Before the data can be engineered into features consumable by different modeling methods, each datatype and feature class must be reviewed for sufficient and consistent data quality. The dataset was first checked for empty values, and zero nullity was reported across all fields. The dataset was focused to only explanatory and target variables.

ccd_focus <- subset(credit_card_default, select=ID:DEFAULT)</pre>

Then the dlookr () packages describe function was used to generate descriptive statistics, and the field of interest `na` was searched for values greater than 0 (indicating any empty records).

```
desc <- describe(ccd_focus)
any(desc$na > 0)
>> [1] FALSE
```

The data dictionary must next be used to review whether invalid values exist and must be cleaned. Appendix A provides the complete dictionary with each field explicitly defined.

Table 1: Data Dictionary - Abridged

Fields	Variable	Valid Values	
X1	LIMIT_BAL	> 0	Scalar positive
X2	SEX	(1,2)	Binary
Х3	EDUCATION	(1:4)	Integer, categorical
X4	MARRIAGE	(1:3)	Integer, categorical
X5	AGE	Int, >0,<120	Discrete, potentially ordinal integer
X6-X11	PAY_#	(-1,1:9)	Discrete ordinal integer
X12-X17	BILL_AMT#	(1:3)	Scalar pos/neg
X18-X23	PAY_AMT#	(1:3)	Scalar positive
Z	DEFAULT	(0,1)	Binary

In order to understand the data as received and determine what cleaning and engineering steps are necessary, a high level quality report assists in reviewing each variable's requirements & alignment to them. This was executed following the guidelines from Dempsey (2015).

Table 2: Data Quality Overview - Raw

Column Name	Data Type	Present	Missing	Unique		Maximum
		Values	Values	Values	Value	Value
ID	int64	30000	0	30000	1	30000
LIMIT_BAL	int64	30000	0	81	10000	1000000
SEX	int64	30000	0	2	1	2
EDUCATION	int64	30000	0	7	0	6
MARRIAGE	int64	30000	0	4	0	3
AGE	int64	30000	0	56	21	79
PAY_0	int64	30000	0	11	-2	8
PAY_2	int64	30000	0	11	-2	8
PAY_3	int64	30000	0	11	-2	8
PAY_4	int64	30000	0	11	-2	8
PAY_5	int64	30000	0	10	-2	8
PAY_6	int64	30000	0	10	-2	8
BILL_AMT1	int64	30000	0	22723	-165580	964511
BILL_AMT2	int64	30000	0	22346	-69777	983931
BILL_AMT3	int64	30000	0	22026	-157264	1664089
BILL_AMT4	int64	30000	0	21548	-170000	891586
BILL_AMT5	int64	30000	0	21010	-81334	927171
BILL_AMT6	int64	30000	0	20604	-339603	961664
PAY_AMT1	int64	30000	0	7943	0	873552
PAY_AMT2	int64	30000	0	7899	0	1684259
PAY_AMT3	int64	30000	0	7518	0	896040
PAY_AMT4	int64	30000	0	6937	0	621000
PAY_AMT5	int64	30000	0	6897	0	426529
PAY_AMT6	int64	30000	0	6939	0	528666
DEFAULT	int64	30000	0	2	0	1

3. Feature Engineering

In the practice of credit risk modeling, features are usually engineered by aggregating customer transactional data to determine behavioral patterns (Bahnsen et al 2016). We will also consider and test approaches for binning and combining demographic attributes of the customer, dependent on each specific model's needs.

The AGE attribute is received as integers indicating years of age for each customer. Because age is a discrete variable with high cardinality, discretization can bring it closer to a knowledge-level representation (Peng et al 2009) and is essential for models such as trees/forests. Age has been initially separated by decade, and testing will be performed on more evenly distributed bins or perhaps other approaches.

Table 2: Resulting distribution of Age Binning

Age_Group	Freq
1-10	0
11-20	0
21-30	11,013
31-40	10,713
41-50	6,005
51-60	1,997
61-70	257
71-80	15

Weight of evidence binning was also tested, which divided the AGE attribute into four classes and the 'separation' of response results indicates that it will be a more effective means than based only on decade.

Figure 1: Weight of Evidence Binning Result - Age

In order to produce variables useful and potentially meaningful to statistical models, all transactional data will be replaced with aggregated and computed statistics.

- Utilization balance divided by the consumer's credit line each month. The Values
 resulting are between approximately negative two and positive eleven. These will be
 scaled between negative one and positive one, testing normalization first.
- Payment_ratio payment each month divided by the previous month's balance. To be
 initially normalized between zero and one. Any month with zero balance will be set to
 one as this is a "perfect" payment; no remaining balance due.
- Age_bins Initial binning by decade; Weigh of Evidence has also been used and the two will be compared for performance/correlation with target.
- Other binning look at binning PAY_N fields, education, resulting metavariables
- Sex, Education and Marriage review correlation with target, consider binning education as there are many

Commented [AJS1]: Tbc

Commented [AJS2]: May need to be standardized due to high ratios seen

Commented [AJS3]: Need to implement and test

Commented [AJS4]: Need to test

Commented [AJS5]: Need to test

- Compute some measure of balance velocity or increase. You can look at increases
 inutilization instead of balance to have the increase be normalized. You can define
 several types of measures here. One would be the increase in the utilization over the
 history of the series.
- Another would be the difference between the minimum utilization and the current utilization.

4. Exploratory Data Analysis

After initial engineering of the data for feature generation,

The target variable, DEFAULT, is imbalanced, though not severely. This will require adjustment to accuracy measure and potentially modeling choices.

Figure 3: Histogram of Target Variable

The method used to calculate some of the engineered variables will require further adjustment.

NAs result from 0 in the denominator (divide by 0 error) of division engineered variables. These fields must be filled in logically. Since a Pay Ratio is engineered by dividing the payment each month by the previous month's balance, a balance of zero is a positive result and should be set to the maximum value for this field.

pay_ratio1 has 2468 (8.2%) missing values	Missing
pay_ratio2 has 2814 (9.4%) missing values	Missing
pay_ratio3 has 3150 (10.5%) missing values	Missing
pay_ratio4 has 3449 (11.5%) missing values	Missing
pay_ratio5 has 3959 (13.2%) missing values	Missing
ratio_avg has 5791 (19.3%) missing values	Missing

After cleaning the engineered variables, a review of the high level data quality report helps to determine if any further actions are necessary.

Table 3: Data Quality Overview - Engineered

Column Name	Data Type	Present Values	Missing Values	Unique Values	Minimum Value	Maximum Value
DEFAULT	int32	30000	0	2	0	1
age_bins	category	30000	0	6	21-30	71-80
bill_avg	float64	30000	0	27370	-	877313.833333
				:	56043.16666	7
payment_avg	float64	30000	0	19180	0.0	627344.333333
pay_ratio1	float64	30000	0	20209	0.0	4444.333333
pay_ratio2	float64	30000	0	20042	0.0	5001.0
pay_ratio3	float64	30000	0	19411	0.0	4444.333333
pay_ratio4	float64	30000	0	18580	0.0	129.705128
pay_ratio5	float64	30000	0	18025	0.0	690.655172
ratio_avg	float64	30000	0	24820	0.0	2667.199955
util1	float64	30000	0	25565	-0.619892	6.4553
util2	float64	30000	0	25088	-1.39554	6.3805
util3	float64	30000	0	24738	-1.0251	10.688575
util4	float64	30000	0	24452	-1.3745	5.14685
util5	float64	30000	0	24075	-0.876743	4.9355
util6	float64	30000	0	24075	-0.876743	4.9355
util_avg	float64	30000	0	28402	-0.23259	5.537758
balance_growth_6mo	float64	30000	0	27137	-4.7004	1.7911
bill_max	int32	30000	0	23979	-6029	1664089
payment_max	int32	30000	0	11670	0	1684259
pay_max	float64	30000	0	9	0.0	8.0
DEFAULT	int32	30000	0	2	0	1

"Correlation allows you to interpret the covariance further by identifying both the direction and the strength of any association" (Tilman, 2016), and a correlation matrix makes this visually accessible across the range of explanatory variables and the target.

Figure 3: Correlation Plot of Target Variable and Engineered Variables

The matrix shows that several of the variables have very low coefficients with the target variable, "DEFAULT" and should be considered for dimension reduction. Explanatory variables that have high correlation with each other should also be considered for reduction (Gelman, 2014) as the intent of building a model is locating the variance or finding the signal in the noise. Multiple correlated signals does not contribute to the model; it is redundant & models perform better with fewer inputs.

5. Predictive Modeling: Methods and Results

a. Random Forest

The first model tested is random forest. There

Figure 4: Confusion Matrix: Random Forest

Table 4: Classification Report: Random Forest

	Precision	Recall !	F1-Score	Support
0	0.83	0.93	0.88	5766.00
1	0.52	0.27	0.36	1557.00
accuracy	0.79	0.79	0.79	0.79
macro avg	0.67	0.60	0.62	7323.00
weighted avg	0.76	0.79	0.76	7323.00

Commented [AJS6]: (desc and Ref)

b. Gradient Boosting

The second model tested is XGBoost There

Commented [AJS7]: (desc and Ref)

Figure 4: Confusion Matrix: XGBoost

Table 4: Classification Report: XGBoost

	Precision	n Recall	F1-Score	Support
0	0.88	0.98	0.93	5766.00
1	0.87	0.52	0.65	1557.00
accuracy	0.88	0.88	0.88	0.88
macro avg	0.88	0.75	0.79	7323.00
weighted avg	0.88	0.88	0.87	7323.00

c. Logistic Regression with Variable Selection

The first model tested is random forest. There

Commented [AJS8]: (desc and ref)

Figure 4: Confusion Matrix: Logistic Regression

Table 4: Classification Report: Logistic Regression

	Precision	n Recall	F1-Score	Support
0	0.79	0.99	0.88	5766.00
1	0.64	0.03	0.06	1557.00
accuracy	0.79	0.79	0.79	0.79
macro avg	0.72	0.51	0.47	7323.00
weighted avg	0.76	0.79	0.71	7323.00

d. Support Vector Machine

The support vector machine is implemented as a support vector classifier. There

Figure 4: Confusion Matrix: SVM

Table 4: Classification Report: SVM

	Precision	n Recall	F1-Score	Support
0	0.81	0.94	0.87	5766.00
1	0.42	0.16	0.23	1557.00
accuracy	0.78	0.78	0.78	0.78
macro avg	0.62	0.55	0.55	7323.00
weighted avg	0.72	0.78	0.73	7323.00

Commented [AJS9]: Complete desc and Ref

6. Comparison of Results

Throughout the initial models true negative rate is the highest class. False negatives are the common issue that is concerning, as failure to predict most of the defualting customers would be extremely costly for the company. False positives are the next concern, but less so as a lost customer is not as expensive as letting through a defaulting one. XGBoost is the best initial model that is able to deal with the target class imbalance.

7. Conclusions

conclusion.

8. Bibliography

- Dua, D. and Graff, C. (2019). UCI Machine Learning Repository
 [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.
- 2. Yeh, I. C., and Lien, C. H. (2009). The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients. Expert Systems with Applications, 36(2), 2473-2480.
- Cagan, Michele. Debt 101: From Interest Rates and Credit Scores to Student Loans and Debt Payoff Strategies, an Essential Primer on Managing Debt. First Adams Media hardcover edition, Adams Media, 2020.
- 4. Dempsey, Robert. Python Business Intelligence Cookbook: Leverage the Computational Power of Python with More than 60 Recipes That Arm You with the Required Skills to Make Informed Business Decisions. 2015. Open WorldCat, https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=11 31993.
- 5. Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics

 Tables. R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
- 6. Correa Bahnsen, Alejandro, et al. "Feature Engineering Strategies for Credit Card Fraud Detection." Expert Systems with Applications, vol. 51, June 2016, pp. 134–42. DOI.org (Crossref), https://doi.org/10.1016/j.eswa.2015.12.030.

- L. Peng, W. Qing and G. Yujia, "Study on Comparison of Discretization Methods," 2009
 International Conference on Artificial Intelligence and Computational Intelligence, 2009, pp. 380-384, doi: 10.1109/AICI.2009.385.
- 8. Waskom, Michael L. "Seaborn: Statistical Data Visualization." Journal of Open Source Software, vol. 6, no. 60, 2021, p. 3021, https://doi.org/10.21105/joss.03021.
- 9. Gelman, Andrew. Bayesian Data Analysis. Third edition, CRC Press, 2014.

10.

11. Liu, and

9. Appendix A: Data Dictionary

X1	LIMIT_BAL	Amount of the given credit (NT dollar): it includes both the individual consumer
		credit and his/her family (supplementary) credit.
X2	SEX	Gender (1 = male; 2 = female).
Х3	EDUCATION	Education (1 = graduate school; 2 = university; 3 = high school; 4 = others).
X4	MARRIAGE	Marital status (1 = married; 2 = single; 3 = others).
X5	AGE	Age (year).
History of	monthly past	payment. The measurement scale for the repayment status is: -1 = pay duly; 1 =
payment d	elay for one r	month; 2 = payment delay for two months;; 8 = payment delay for eight months; 9
= payment	delay for nine	e months and above.
X6	PAY_1	repayment status in September, 2005
X7	PAY_2	repayment status in August, 2005
X8	PAY_3	repayment status in July, 2005.
Х9	PAY_4	repayment status in June, 2005.
X10	PAY_5	repayment status in May, 2005.
X11	PAY_6	repayment status in April, 2005.
Amount of	bill statemen	it (NT dollar)
X12	BILL_AMT1	bill statement amount in September, 2005
X13	BILL_AMT2	bill statement amount in August, 2005
X14	BILL_AMT3	bill statement amount in July, 2005.
X15	BILL_AMT4	bill statement amount in June, 2005.
X16	BILL_AMT5	bill statement amount in May, 2005.
X17	BILL_AMT6	bill statement amount in April, 2005.
Amount of	previous pay	ment (NT dollar)
X18	PAY_AMT1	amount paid in September, 2005
X19	PAY_AMT2	amount paid in August, 2005
X20	PAY_AMT3	amount paid in July, 2005.
X21	PAY_AMT4	amount paid in June, 2005.
X22	PAY_AMT5	amount paid in May, 2005.
X23	PAY_AMT6	amount paid in April, 2005.