

Dataset

- 6497 observations and 13 variables
- **Fixed_acidity:** corresponds to the set of low volatility organic acids
- Volatile_acidity: acids extracted from the sample by means of a distillation process
- Citric_acid: amount of acidity to complement a specific flavor
- Residual_sugar: sugars (natural juices) that are left in wine after fermentation
- Chlorides: relative to overall taste caused by salt
- Free_sulfur_dioxide: a preservative to prevent oxidation and microbial spoilage
- Total_sulfur_dioxide: the overall amount of sulfites that have reacted
- **Density:** the amount of wine must (fruit juice) used
- **pH:** level of pH (0: most acidic, 14: most basic)
- **Sulphates:** a chemical compound that occurs naturally at low levels during the process of wine fermentation
- **Alcohol:** percentage of Alcohol
- **Quality:** rating from 3-9
- Color: red or white

EDA

Exploratory Analysis (Correlation Matrix)

Elbow Method

K-Means: 3 Clusters

as.factor(cluster)

K-Means with 3 Clusters

as.factor(cluster) 1 2

RED WINES SWEETNESS CHART

WHITE WINES SWEETNESS CHART

K-Means-3 clustering comments

- Cluster 1: Sweet White Wines (Rose)
 - o Low alcohol,
 - high in sulfur dioxide
 - o high in residual sugar
- Cluster 2: Natural Red Wines (Merlot)
 - High in alcohol
 - low in density
- Cluster 3: Dry Wines (Combining)
 - Slightly higher fixed acidity
 - lowest sulfur dioxide
 - o low residual sugar

PCA: 3 Clusters

```
Importance of components:
                          PC1
                                 PC2
                                        PC3
                                                PC4
                                                        PC5
                                                                PC6
                                                                        PC7
                                                                                      PC9
                                                                                             PC10
                                                                                                     PC11
                                                                                                             PC12
                       1.7440 1.6278 1.2812 1.03374 0.91679 0.81265 0.75088 0.7183 0.6770 0.54682 0.47706 0.18107
Standard deviation
Proportion of Variance 0.2535 0.2208 0.1368 0.08905 0.07004 0.05503 0.04699 0.0430 0.0382 0.02492 0.01897 0.00273
Cumulative Proportion 0.2535 0.4743 0.6111 0.70013 0.77017 0.82520 0.87219 0.9152 0.9534 0.97830 0.99727 1.00000
```

PCA with 3 clusters

3D Plot of PCA

```
.fittedPC1 .fittedPC2 .fittedPC3
1.511924 1.453781 0.298750
.fittedPC1 .fittedPC2 .fittedPC3
0.4063623 -1.3408644 -0.2297762
.fittedPC1 .fittedPC2 .fittedPC3
-2.56960554 0.63945912 0.04919818
```


K-means Clustering with 4 clusters

K-means Clustering with 4 clusters

KMeans-4 clustering comments

- Cluster 1: Sweet White Wines
 - Low Alcohol percentage, high residual sugar, high total sulfur dioxide
- Cluster 2: Dry Red Wines
 - Highest in alcohol percentage, lowest density
- Cluster 3: Top Shelf White Wines (Chardonnay or Sauvignon Blanc)
 - highest in citric acid, fixed acidity is high, sulfates is high
- Cluster 4: Low Shelf Red Wines
 - Lowest in citric acid, highest in volatile acidity, highest pH, low total sulfur dioxide

RED WINEMAKING: WHOLE GRAPE FERMENTATION

CRUSH DARK-SKINNED GRAPES ONLY

SKINS, SEEDS, PULP & JUICE

FROM GRAPE SOLIDS

RED WINES TASTE STRONGER AND MORE LIKE GRAPE PEELS

ANY COLOR

ILLICE FROM GRAPE SOLIDS

JUICE ONLY

WHITE WINES TASTE MILDER AND MORE LIKE GRAPE JUICE

EXTRACTING COLOR FROM GRAPE SKINS REQUIRES HOTTER, FASTER AND MORE

PRESERVING FRESH TASTE OF GRAPE JUICE REQUIRES COOLER, SLOWER AND MORE TRANQUIL FERMENTATIONS

PCA with 4 clusters

Importance of components:												
	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10	PC11	PC12
Standard deviation	1.7440	1.6278	1.2812	1.03374	0.91679	0.81265	0.75088	0.7183	0.6770	0.54682	0.47706	0.18107
Proportion of Variance	0.2535	0.2208	0.1368	0.08905	0.07004	0.05503	0.04699	0.0430	0.0382	0.02492	0.01897	0.00273
Cumulative Proportion	0.2535	0.4743	0.6111	0.70013	0.77017	0.82520	0.87219	0.9152	0.9534	0.97830	0.99727	1.00000

PCA with 4 clusters

	Measure of Gaseous components	Taste Intensity	Measure of Acidity	
	PC1	DC3	PC3	PC4
		PC2		
fixed_acidity	-0.25692873	0.2618431	-0.46748619	0.14396377
volatile_acidity	-0.39493118	0.1051983	0.27968932	0.08005785
citric_acid	0.14646061	0.1440935	-0.58807557	-0.05551036
residual_sugar	0.31890519	0.3425850	0.07550170	-0.11245623
chlorides	-0.31344994	0.2697701	-0.04676921	-0.16529004
free_sulfur_dioxide	0.42269137	0.1111788	0.09899801	-0.30330631
total_sulfur_dioxide	0.47441968	0.1439475	0.10128143	-0.13223199
density	-0.09243753	0.5549205	0.05156338	-0.15057853
рН	-0.20806957	- 0.1529219	0.40678741	-0.47147768
sulphates	-0.29985192	0.1196342	-0.16869128	-0.58801992
alcohol	-0.05892408	-0.4927275	-0.21293142	-0.08003179
quality	0.08747571	-0.2966009	-0.29583773	-0.47243936

Measure of

3D Plot of PCA

```
.fittedPC1 .fittedPC2 .fittedPC3 1.5376534 1.4540786 0.2998627 .fittedPC1 .fittedPC2 .fittedPC3 0.4355544 -1.3629507 -0.2815429 .fittedPC1 .fittedPC2 .fittedPC3 -2.518977 1.212844 -1.984068 .fittedPC1 .fittedPC2 .fittedPC3 -2.4033036 0.2238458 1.4197218
```


Differences

3 Clusters	4 clusters
 Cluster 3 was a mix-mash of things Generalized red wines more Focused more on taste profile 	 With four clusters, it addressed the confusion into better-defined clusters Made distinguishable separations of red white and white wine Added quality into the cluster descriptions

Exploration with GMM

GMM Introduction

- GMM= Gaussian Mixture Model
- Combined multivariate Gaussians
- Sum of weighted Gaussian where the weights are the prior probabilities for the respective

Gaussian

- Minimize weighted distances(by Variance.)
 - Note Kmeans tries to minimize just distances
- Probabilistic
 - Note: Kmeans is a direct assignment.
 - Note: GMM will have probabilities that the observation belongs to cluster(s) k
- Noticed bimodal densities
- GMM will allow us to represent the distribution better

Best Model based on BIC(Bayesian Information Criterion)

Model	Σ_k	Σ_k Distribution		Shape	Orientation	
EII	λI	Spherical	Equal	Equal	<u> </u>	
VII	$\lambda_k I$	Spherical	Variable	Equal	_	
EEI	λA	Diagonal	Equal	Equal	Coordinate axes	
VEI	$\lambda_k A$	Diagonal	Variable	Equal	Coordinate axes	
EVI	λA_k	Diagonal	Equal	Variable	Coordinate axes	
VVI	$\lambda_k A_k$	Diagonal	Variable	Variable	Coordinate axes	
EEE	$\lambda oldsymbol{D} oldsymbol{A} oldsymbol{D}^ op$	Ellipsoidal	Equal	Equal	Equal	
EVE	$\lambda oldsymbol{D} oldsymbol{A}_k oldsymbol{D}^ op$	Ellipsoidal	Equal	Variable	Equal	
VEE	$\lambda_k m{D} m{A} m{D}^ op$	Ellipsoidal	Variable	Equal	Equal	
VVE	$\lambda_k oldsymbol{D} oldsymbol{A}_k oldsymbol{D}^ op$	Ellipsoidal	Variable	Variable	Equal	
EEV	$\lambda D_k A D_k^{ op}$	Ellipsoidal	Equal	Equal	Variable	
VEV	$\lambda_k D_k A D_k^{\uparrow}$	Ellipsoidal	Variable	Equal	Variable	
EVV	$\lambda D_k A_k D_k^{\uparrow}$	Ellipsoidal	Equal	Variable	Variable	
VVV	$\lambda_k \boldsymbol{D}_k \boldsymbol{A}_k \boldsymbol{D}_k^{\top}$	Ellipsoidal	Variable	Variable	Variable	

3 clusters

4 clusters

5 clusters

Conclusions on GMM

- As the number of clusters go up, we found there was more uncertainty among the intersectional points
 - o 3 was subjectively considered to be the best at capturing the distinctions
- Performance
 - Not all clusters might have assumed Gaussian Distributions = more uncertainty

■ Density and pH vs volatile acidity

