Apprentissage bayésien Estimation de densité

Cours 2 ARF Master DAC

Nicolas Baskiotis

nicolas.baskiotis@lip6.fr
http://webia.lip6.fr/~baskiotisn

équipe MLIA, Laboratoire d'Informatique de Paris 6 (LIP6) Sorbonne Universités - Université Pierre et Marie Curie

S2 (2017-2018)

Plan

- Rappel MAPSI/Probabilités
- Classification bayésienne
- Estimation de densité
- Sélection de modèles

Notions et notations

Rappel

- Univers Ω , Espace probabiliste (Ω, \mathcal{A}, P)
- Variable aléatoire réelle (v.a.r.) : $X : \Omega \to \mathbb{R}$ notation : P(X = 1) = 0.3, loi de X (ou mesure de probabilité) : P_X , fonction de répartition $F_X : F_X(b) = P_X(X < b)$
- Dans le cas continue, fonction de densité p_X : $p_X(x) \geq 0, \ \int_x p_X(x) dx = 1, F_X(b) F_X(a) = p_X(a \leq X \leq b) = \int_a^b p_X(x) dx$ abus de notation : $p_X \to p$
- Espérance, variance : $\mathbb{E}[X] = \int_{X} x p_{X}(x) dx \ Var[X] = \mathbb{E}[(X \mathbb{E}[X])^{2}]$
- Densité jointe, indépendance, conditionnement, marginalisation : Soit X, Y deux v.a. et leur densité jointe : $p_{X,Y}(x,y)$
 - trouver $p_X \to \text{marginalisation} : p_X(x) = \int_{y} p_{X,Y}(x,y) dy$
 - indépendance : $p_{X,Y}(x,y) = p_X(x)p_Y(y)$
 - conditionnement : p(x|y) = p(x,y)/p(y)
 - \Rightarrow Bayes : p(y|x) = p(x|y)p(y)/p(x)

Quelques lois et bornes de convergence

Loi faible/forte des grands nombres

Soit X_1, \ldots, X_m v.a. tirer de la même loi, de même espérance μ et variance, et la moyenne empirique $\bar{X}_m = \frac{1}{m} \sum_{i=1}^m X_i$, alors

- $\forall \epsilon > 0$, $\lim_{m \to \infty} Pr(|\bar{X}_m \mu| \le \epsilon) = 1$ (faible)
- ullet $Pr(\lim_{m o \infty} \bar{X}_m = \mu) = 1$ (forte)

Théorème central limite

 X_i v.a. iid, de moyenne μ , variance σ , alors $Z_m = \frac{\bar{X}_m - \mu}{\sigma/\sqrt{m}} \to \mathcal{N}(0, 1)$.

Bornes usuelles

- Gauss-Markov : pour $X \geq 0, \epsilon > 0, \Pr(X \geq \epsilon) \leq \frac{\mu}{\epsilon}$
- Tchebychev : $Pr(|X \mu| \ge \epsilon) \le \frac{\sigma^2}{\epsilon^2}$
- \Rightarrow si $ar{X}_m=rac{1}{m}\sum_1^m X_i,\, \mathbb{E}(ar{X}_m)=\mu,\, Var(ar{X}_m)=rac{\sigma^2}{m},\, ext{donc}\, Pr(|ar{X}_m-\mu|\geq\epsilon)\leq rac{\sigma^2}{m\epsilon^2}$
 - Hoeffding : $X_i \in [a,b]$, $Pr(|\bar{X}_m \mu| \ge \epsilon) \le 2 \exp\left(-\frac{2m\epsilon^2}{(b-a)^2}\right)$

Plan

- Rappel MAPSI/Probabilités
- Classification bayésienne
- Estimation de densité
- Sélection de modèles

Classification binaire

Formalisation

- Deux classes : $\mathcal{Y} = \{y_+, y_-\}$
- un ensemble $\mathcal{X} \subseteq \mathcal{R}^d$ de représentation des exemples (d la dimension)
- un exemple : $\mathbf{x} = (x_1, x_2, \dots, x_d) \in \mathcal{X}$
- ullet objectif : prendre une décision sur la classe d'un exemple $x \in \mathcal{X}$
- \Rightarrow on cherche une fonction $f: \mathcal{X} \to \mathcal{Y}$ (classifieur)
- on notera souvent \hat{y} la décision prise sur un exemple \mathbf{x} , $\hat{y} = f(\mathbf{x})$

Films et avis

- Deux classes : j'aime (y_+) et je n'aime pas (y_-)
- Un film décrit par : (année, budget, durée,nationalité) (4 dimensions, $\mathcal{X}=\mathcal{R}^4$)
- Une fonction de prédiction : $f(\mathbf{x}) = y_+ \text{ si } x_1 \ge 2000 \text{ sinon } y_-$

Classification binaire

Sur la base imdb ...:

- Année vs Durée
- Année vs Budget

Première approche

Le plus simple

Si on dispose de $P(y = y_+)$ et $P(y = y_-)$, probabilités a priori :

- elles décrivent notre connaissance générique du problème
- peuvent dépendre des situations
- on peut décider y_+ si $P(y_+) > P(y_-)$, y_- dans le cas contraire
- Quelle est le risque de se tromper ?

Première approche

Le plus simple

Si on dispose de $P(y = y_+)$ et $P(y = y_-)$, probabilités a priori :

- elles décrivent notre connaissance générique du problème
- peuvent dépendre des situations
- on peut décider y_+ si $P(y_+) > P(y_-)$, y_- dans le cas contraire
- Quelle est le risque de se tromper ?

Problèmes

- Toujours la même décision
- On ne tient pas compte de la description $x \in \mathcal{X}$.
- Évaluation du risque : $R = min(P(y_+), P(y_-))$

Comment faire mieux?

Classification binaire

Sur la base imdb ...:

- Année vs Durée
- Année vs Budget

Dans un monde idéal (bayésien)

Si on dispose ...

de P(y) (probabilité a priori) et de $p(\mathbf{x}|y)$:

Dans un monde idéal (bayésien)

Si on dispose ...

de P(y) (probabilité a priori) et de $p(\mathbf{x}|y)$:

$$p(y, \mathbf{x}) = p(y|\mathbf{x})p(\mathbf{x}) = p(\mathbf{x}|y)p(y)$$

•
$$p(\mathbf{x}) = p(\mathbf{x}|y_+)p(y_+) + p(\mathbf{x}|y_-)p(y_-)$$

Dans un monde idéal (bayésien)

Si on dispose ...

de P(y) (probabilité a priori) et de $p(\mathbf{x}|y)$:

- $p(y, \mathbf{x}) = p(y|\mathbf{x})p(\mathbf{x}) = p(\mathbf{x}|y)p(y)$
- $p(\mathbf{x}) = p(\mathbf{x}|y_+)p(y_+) + p(\mathbf{x}|y_-)p(y_-)$

Alors

En observant \mathbf{x} , on peut étudier la *probabilité a posteriori* $p(y|\mathbf{x})$.

- On appelle $p(\mathbf{x}|y)$ la vraisemblance de \mathbf{x} par rapport à y.
- décision bayésienne : choisir y_+ si $p(y_+|\mathbf{x})>p(y_-|\mathbf{x})$, le contraire sinon
- $\Rightarrow f(\mathbf{x}) = argmax_{\mathbf{y}}p(\mathbf{y}|\mathbf{x})$
- $p(\mathbf{x})$ est-il important ?

Comment évaluer l'erreur d'un classifieur?

Fonction de perte : quantifié une erreur

- Notion d'erreur, de perte associée à une décision $f(\mathbf{x})$
- Erreur simple : à chaque fois qu'on se trompe, on compte 1

$$\Rightarrow$$
 fonction de perte : $\ell(f(\mathbf{x}), y) = \begin{cases} 1 & \text{si } f(\mathbf{x}) \neq y \\ 0 & \text{sinon} \end{cases}$ 0-1 loss

- Risque associé : $R(y_i|\mathbf{x}) = \sum_i l(y_i, y_j) P(y_j|\mathbf{x}) = 1 P(y_i|\mathbf{x})$
- $R(f) = \int_{\mathbf{x}} R(f(\mathbf{x})|\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$
- Peut-on toujours avoir un risque nul ? souvent ?

Probabilité de l'erreur

Caclul de l'erreur

- $\bullet \ P(\text{erreur}|\mathbf{x}) = \begin{cases} P(y_+|\mathbf{x}) & \text{si on d\'ecide } y_- \\ P(y_-|\mathbf{x}) & \text{si on d\'ecide } y_+ \end{cases}$
- $P(\text{erreur}) = \int P(\text{erreur}|\mathbf{x})p(\mathbf{x})d\mathbf{x}$
- $P(\text{erreur}|\mathbf{x}) = min(P(y_+|\mathbf{x}), P(y_-|\mathbf{x}))$
- $P(\text{erreur}|\mathbf{x}) = min(P(\mathbf{x}|y_+)P(y_+), P(\mathbf{x}|y_-)P(y_-))$
- Si $p(\mathbf{x}|y_+) = p(\mathbf{x}|y_-)$?
- Si $P(y_+) = P(y_-)$?

Risque bayésien : $\int R(f(\mathbf{x})|\mathbf{x})p(\mathbf{x})d\mathbf{x}$

- Classifieur bayésien : f qui minimise le risque
- On peut montrer que c'est le meilleur classifieur possible (cf TD)
- alors est-ce que c'est fini ?

40 40 40 40 40 40 40

Probabilité de l'erreur

Caclul de l'erreur

- $\bullet \ P(\text{erreur}|\mathbf{x}) = \begin{cases} P(y_+|\mathbf{x}) & \text{si on d\'ecide } y_- \\ P(y_-|\mathbf{x}) & \text{si on d\'ecide } y_+ \end{cases}$
- $P(\text{erreur}) = \int P(\text{erreur}|\mathbf{x})p(\mathbf{x})d\mathbf{x}$
- $P(\text{erreur}|\mathbf{x}) = min(P(y_+|\mathbf{x}), P(y_-|\mathbf{x}))$
- $\bullet \ P(\mathsf{erreur}|\mathbf{x}) = \min(P(\mathbf{x}|y_+)P(y_+), P(\mathbf{x}|y_-)P(y_-))$
- Si $p(\mathbf{x}|y_+) = p(\mathbf{x}|y_-)$?
- Si $P(y_+) = P(y_-)$?

Risque bayésien : $\int R(f(\mathbf{x})|\mathbf{x})p(\mathbf{x})d\mathbf{x}$

- Classifieur bayésien : f qui minimise le risque
- On peut montrer que c'est le meilleur classifieur possible (cf TD)
- alors est-ce que c'est fini ?
- \Rightarrow Malheureusement non, $p(\mathbf{x}|y)$ rarement disponible ...

4 ロト 4 間ト 4 豊ト · 豊 · 少へで

Que faire?

Apprentissage paramètrique, bayésien : estimation de $p(\mathbf{x}, y)$

- attention ! $\mathbf{x} \in \mathcal{X}$, de dimension d plutôt grand (voir très grand!)
- en vérité : $p(\mathbf{x}|y) = p(x_1, x_2, ..., x_d|y)$
- dans le cas binaire $(x_i \in \{0,1\}), 2*2^d$ paramètres !!
- une solution simple : naive bayes, considérer chaque dimension indépendante
- $\Rightarrow p(\mathbf{x}|y) = p(x_1|y)p(x_2|y) \dots p(x_d|y), 2*d \text{ paramètres.}$
 - ou poser des lois a priori, estimation de paramètres des lois → estimation bayésienne, maximum de vraisemblance
 - modèles graphiques, recherche d'indépendance entre dimension, ...

Ou s'en affranchir (en partie)

• C'est la suite de ce cours !

Plan

- Rappel MAPSI/Probabilités
- Classification bayésienne
- Estimation de densité
- Sélection de modèles

Estimation de densité

Contexte

- Estimer la densité d'une variable aléatoire (ou la loi jointe de plusieurs)
- à partir d'un ensemble de réalisation : un échantillon d'exemples.
- Exemple : distribution de films en fonction de l'année, du budget, ...
- En classification : si on peut évaluer les densités de variables aléatoires
 classifieur bayésien pour la classification !

Applications multiples

- Estimation de file d'attentes, d'occupation de lieux,
- Estimation des pics des stocks, des pics de pollution

Estimation de densité : Vélibs

Velibs pris à une station

- Données : $\{time_i, station_i\}$ $i \in \{1, ..., N\}$ les logs des vélibs
- On veut évaluer la probabilité qu'un vélib soit emprunté à une station donnée durant un intervalle de temps donné
- \Rightarrow estimation de densité de la variable aléatoire X_s à valeur dans [0,60*24] (temps exprimé en minute) pour la station s

Velibs empruntés pour 5 stations sur une journée

Méthode par histogramme

Estimation par une variable aléatoire discrète

- Correspond à une discrétisation des valeurs de la v.a.
- Choix d'un pas de discrétisation : toutes les heures par exemple $\Delta=60$
- On compte le nombre d'observations qui tombe dans chaque créneau $n_i, i \in \{0, 1, \ldots, 23\}$
- L'estimation est alors : $p_i = \frac{n_i}{N\Delta}$

Nombre de

Estimation d'histogramme

Problème : explosion combinatoire

- Quand le nombre de dimension augmente, le nombre de cases augmente exponentiellement :
- Beaucoup de cases sans aucun échantillon
- ullet Et même celles qui en ont, un nombre faible o peu représentatif

Nombre de velibs empruntés par 20 minutes sur 2 stations

Estimation non paramètrique par noyaux

Idée générale

- Soit une région \mathcal{R} de l'espace,
- P la probabilité qu'un exemple x appartienne à cette région, $P = \int_{\mathcal{R}} p(\mathbf{x}) d\mathbf{x}$
- x_1, \ldots, x_n iid, P_k la probabilité d'avoir k parmi n dans \mathcal{R}
- $P_k = C_n^k P^k (1 P)^{n-k}, \mathbb{E}[k] = nP$

Raffinement

- Si $p(\mathbf{x})$ est continue et que \mathcal{R} est petit, que p(x) ne varie presque pas dans \mathcal{R}
- $\Rightarrow \int_{\mathcal{R}} p(x)dx \simeq p(x)V$, V volume de \mathcal{R}
- $\Rightarrow p(x) \simeq \frac{k/n}{V}$
 - avec $\{\mathcal{R}_1, \mathcal{R}_2, \dots\}$ des régions pour $1, 2, \dots$ échantillons, k_n le nombre d'échantillons dans \mathcal{R}_n et V_n le volume, on a $p_n(x) = \frac{k_n/n}{V_n}$

Fenêtre de Parzen

Principe

- \mathcal{R}_n est un hypercube, chaque côté de longueur h_n
- $V_n = h_n^d$
- $\phi(x) = \begin{cases} 1 & \text{si } |x^i| \le 1/2 \\ 0 & \text{sinon} \end{cases}$
- ullet ϕ définie un hypercube unitaire centré à l'origine.
- $\phi(\frac{x-x'}{h_n}) = 1$ ssi x' est dans l'hypercube de volume V_n centré en x.

Conséquence

- $k_n = \sum_{i=1}^n \phi((x x_i)/h_n)$
- $\bullet p_n(x) = \frac{1}{n} \sum_{i=1}^n \frac{1}{V_n} \phi(\frac{x x_i}{h_n})$
- simplification : $\delta_n(x) = \frac{1}{V_n}\phi(x/h_n) \to p_n(x) = \frac{1}{n}\sum_{i=1}^n \delta_n(x-x_i)$

21 / 31

N. Baskiotis (LIP6, UPMC) ARF S2 (2017-2018)

Discussion

Effet de h_n

- h_n grand $\rightarrow \delta_n$ peu sensible, paysage homogène
- h_n petit $\rightarrow \delta_n$ tend vers un pic de Dirac.
- compromis entre petite résolution et grande variabilité

Discussion

Pourquoi se limiter à des hypercubes ?

- φ peut être plus générale (noyaux)
- o conditions nécessaires :
 - $\phi(x) \geq 0$
 - $\int \phi(x)dx = 1$

Discussion: exemples velib

Discussion: exemples imdb

Estimateur de Watson-Nadaraya

De la densité à la classification

• Classification binaire : $p(x|y_+)$ et $p(x|y_-)$, et pour la suite $y_+ = 1, y_- = -1$

•
$$p(y|x) = \frac{p(x|y)p(y)}{p(x)} = \frac{\frac{1}{n_y} \sum_{y_i = y} \phi(x - x_i) \frac{n_y}{n}}{\frac{1}{n_y} \sum_{i} \phi(x - x_i)}$$

•
$$p(y_+|x) - p(y_-|x) = \frac{\sum_j y_j \phi(x-x_j)}{\sum_i \phi(x-x_i)} = \sum_j y_j \frac{\phi(x-x_j)}{\sum_i \phi(x-x_i)}$$

directement adaptable à la régression

Plus proches voisins (k-nearest Neighbors)

Principe

- plutôt que de prendre en compte un noyau ou la distance, prendre en compte le voisinage (immédiat ou non) du point
- un paramètre : k le nombre de voisins à prendre en compte
- $p(y|x) = \frac{1}{k} \sum_{j=k}^{\infty} p(y|x)$ plus proches y_j

Discussion

- Parzen : travail sur le volume, pas de contrôle sur le nombre de points considérés
- Knn: volume libre, mais nombre de points fixe
- dans tous les cas :
 - complexité grande des algorithmes (possible d'utiliser des arbres de partitionnement (KD-tree) et autres heuristiques pour accélérer)
 - des paramètres à choisir . . .
- Comment choisir les paramètres ?

Plan

- Rappel MAPSI/Probabilités
- Classification bayésienne
- Estimation de densité
- Sélection de modèles

Sélection de modèles

Problèmatique

- Très souvent, il faut fixer des paramètres aux algorithmes d'apprentissage
 - profondeur de l'arbre
 - nombre de voisins dans les k-nn
 - longueur de l'hypercube, paramètre des noyaux dans les fenêtres de Parzen
- quels effets ont ses paramètres ?
 - ils déterminent généralement le pouvoir expressif du modèle
 - combien le modèle va coller aux données et faire peu d'erreurs sur les données d'apprentissage
 - ou au contraire faire plus d'erreurs mais généraliser
- ⇒ ils calibrent le *sur-apprentissage* ou le *sous-apprentissage*
 - compromis entre l'apprentissage par cœur et l'apprentissage uniforme

Sélection de modèles empirique

Choisir le paramètrage en fonction des données

- évaluer les différents paramétrages en fonction de l'évaluation des modèles
- utiliser des données pour évaluer les modèles
- Mais pas n'importe lesquelles !!

Evaluer un modèle

- Problème : il ne faut jamais évaluer un modèle sur l'ensemble d'apprentissage (pourquoi ?)
- vocabulaire :
 - ensemble d'apprentissage
 - ensemble de calibration (optionnel, dépend des algos)
 - ensemble de test
- Mais comment éviter un biais lors de la construction de ses ensembles ?

Validation croisée

Principe

- Partitionner les données en k sous-ensembles
- apprendre le modèle sur k-1 sous-ensembles
- évaluer le modèle sur le dernier sous-ensemble
- répéter l'opération *k*-fois, sur toutes les combinaisons possibles, en gardant les sous-ensembles fixes.
- la performance moyenne est la moyenne des k évaluations : $\frac{1}{k} \sum_{i=1}^{k} \ell(p(X_i|X/X_i))$.

Discussion

- Cas particulier : si $k = n 1 \rightarrow leave-one-out$
- Vaut-il mieux k grand ou petit ?
- Si on dispose de beaucoup (beaucoup) de données, est-ce toujours intéressant? Et dans le cas de peu (très peu) de données?
- Inconvénients ?