

T. Delerue, E. Ketelaer, M. Schick

Applying an Inexact Newton Method in Hiflow³

modified on July 3, 2014

Version 1.3

Contents

1	Intro	oduction	3
	1.1	How to use the tutorial?	3
		$1.1.1$ Using HiFlow 3 as a Library	3
		1.1.2 Using HiFlow 3 as a Developer	3
2	Mat	chematical Setup	4
	2.1	Problem	4
	2.2	Exact and Inexact Newton Methods	4
3	The	Commented Program	5
	3.1	Preliminaries	5
	3.2	Parameter File	6
	3.3	Main Function	
	3.4	Member Functions	
			8
		3.4.2 run()	10
4	Nun	nerical Tests	11
	4.1	Test Parameters	11
	4.2	Results	11

Applying an Inexact Newton Method in HiFlow³

1 Introduction

HiFlow³ is a multi-purpose finite element software providing powerful tools for efficient and accurate solution of a wide range of problems modeled by partial differential equations (PDEs). Based on object-oriented concepts and the full capabilities of C++ the HiFlow³ project follows a modular and generic approach for building efficient parallel numerical solvers. It provides highly capable modules dealing with the mesh setup, finite element spaces, degrees of freedom, linear algebra routines, numerical solvers, and output data for visualization. Parallelism - as the basis for high performance simulations on modern computing systems - is introduced on two levels: coarse-grained parallelism by means of distributed grids and distributed data structures, and fine-grained parallelism by means of platform-optimized linear algebra back-ends.

1.1 How to use the tutorial?

You find the example codes newton_tutorial.cc and newton_tutorial.h, a parameter file newton_tutorial.xml for a numerical example, as well as a Makefile, which you only need when using HiFlow³ as a library (see 1.1.1), in the folder /hiflow/examples/newton. The geometry data (*.inp, *.vtu) is stored in the folder /hiflow/examples/data.

1.1.1 Using HiFlow³ as a Library

First install HiFlow³. Therefore, follow the instructions listed on http://www.hiflow3.org/, see "Documentation"-"Installation". To compile and link the tutorial correctly, you may have to adapt the Makefile depending on the options you chose in the cmake set up. Make sure that the variable HIFLOW_DIR is set to the path, where HiFlow³ was installed. The default value ist /usr/local. When you set the option WITH_METIS to ON in the cmake set up, you have to make sure to link to the metis library in the Makefile (www.cs.umn.edu/~metis). -lmetis must be added to the end of the line in the Makefile, where the target newton_tutorial is build (see second option in the Makefile, which is marked as a comment). By typing make in the console, in the same folder where the source-code and the Makefile is stored, you compile and link the tutorial. To execute the flow tutorial sequentially, type ./newton_tutorial /"path_to"/newton_tutorial.xml /"path_to_mesh_data"/. To execute it in parallel mode with four processes type mpirun -np 4 ./newton_tutorial /"path_to_mesh_data"/.

1.1.2 Using HiFlow³ as a Developer

First build and compile HiFlow³. Go to the directory /build/example/newton, where the binary newton_tutorial is stored. Type ./newton_tutorial, to execute the program in sequential mode. To execute in parallel mode with four processes, type mpirun -np 4 ./newton_tutorial. In both cases, you need to make sure that the default parameterfile newton_tutorial.xml is stored in the same directory as the binary, and that the geometry data specified in the parameter file is stored in /hiflow/examples/data. Alternatively, you can specify the path of your own xml-file with the name of your xml-file (first) and the path of your geometry data (second) in the comment

line, i.e. ./newton_tutorial /"path_to_parameterfile"/"name_of_parameterfile".xml /"path_to_geometry_data"/.

2 Mathematical Setup

2.1 Problem

In this tutorial we are trying to observe the effect of inexact Newton methods on the calculation time of a fluid dynamics problem. For this purpose two particular methods developed by Eisenstat and Walker [1], which are already implemented in Hiflow³ [4] were used. The problem consists of solving the incompressible Navier-Stokes equations in a two-dimensional channel around a rectangular obstacle(see figure 1). For this purpose we applied the same model as in the Hiflow³ tutorial *Boundary Value Problem for Incompressible Navier-Stokes Equation*, thus for complete informations regarding the mathematical and geometry setup we refer to [2]. We first give a brief overview of the theory behind exact and inexact Newton methods, then we mention the source code of the tutorial, and we finish by presenting the obtained results.

Figure 1: Flow channel in 2D with an obstacle.

2.2 Exact and Inexact Newton Methods

The exact Newton method originally solves a nonlinear problem equation [3] of the form

$$F(x) = 0, (1)$$

where F is a nonlinear operator $F:D\subset X\to Y$ and X,Y Banach spaces endowed with norms $\|\cdot\|_X,\|\cdot\|_Y$. In addition, F needs to be at least once continuously differentiable, and a starting guess x^0 for the solution of (1) is necessary. Linearization of F at x^0 , by means of Taylor's expansion of first order, leads to the linear equation $F'(x^0)\Delta x^0+F(x^0)=0$. The solution Δx^0 is then added to the starting guess, leading to a new solution vector x^1 . A linearization of F, this time at x^1 , leads to a new linear equation which in turn provides a new increment Δx^1 . Repetition of these steps leads therefore to an iteration rule which approximates (1):

$$F'(x^k)\Delta x^k + F(x^k) = 0, \qquad x^{k+1} = x^k + \Delta x^k, \qquad k = 0, 1, \dots$$
 (2)

Thus, the nonlinear problem (1) turns into a sequence of linear problems. This is called Newton's method for general nonlinear problems. In our situation iteration (2) (nonlinear solver) is pursued until the residual $F(x^k)$, evaluated at the so-called Newton step k, respects some conditions set prior to calculation, that is, tolerances on the iterative residual norm $\|F(x^k)\|_Y$ and on the iterative ratio $\frac{\|F(x^k)\|_Y}{\|F(x^{k-1})\|_Y}$. Now, at each Newton step k a linear solver is launched in Hiflow³ in

order to determine the k-th increment Δx^k . Check of convergence takes place here at the linear residual norm $\|F'(x^k)\Delta x^k + F(x^k)\|_Y$ at the Newton step k, as well as at the following ratio:

$$\frac{\|F'(x^k)\Delta x^k + F(x^k)\|_Y}{\|F(x^k)\|_Y}$$
 (3)

In an **exact Newton method** strong absolute and relative tolerances are set, as can be seen in table 2. In comparison **inexact newton methods** aim at loosening up the tolerance on the above mentioned ratio in order to gain calculation time without loosing too much accuracy. In fact at each Newton step k a so called forcing term $\eta_k \in [0,1)$ is calculated and the stopping point is reached as soon as the linear residual respects the condition

$$\frac{\|F'(x^k)\Delta x^k + F(x^k)\|_Y}{\|F(x^k)\|_Y} \le \eta_k. \tag{4}$$

The tolerance on the linear residual norm is left unchanged. Hence we observe that the main difference between both approaches lies in the choice of the upper bound of the ratio (3), which remains constant in an exact Newton method but varies in an inexact Newton method at each Newton step k.

As mentioned in section 2.1 two methods [1] were applied in this tutorial. In these methods the forcing term η_k at each Newton step k is calculated as follows:

Choice 1 (Forcing strategy 1)

$$\eta_k = \frac{\| \|F(x^k)\|_Y - \|F'(x^{k-1})\Delta x^{k-1} + F(x^{k-1})\|_Y \|}{\|F(x^{k-1})\|_Y},$$
(5)

Choice 2 (Forcing strategy 2)

$$\eta_k = \gamma \left(\frac{\|F(x^k)\|_Y}{\|F(x^{k-1})\|_Y} \right)^{\alpha}, \tag{6}$$

where a start value $\eta_0 \in [0,1)$ as well as the parameters $\gamma \in [0,1]$, $\alpha \in (1,2]$ are given. For a thorough motivation of the choice of these two particular forcing terms and the related parameters see [1].

These two inexact Newton methods as well as the exact Newton method are contained in Hiflow³ [4]. In the following we present how to apply them.

3 The Commented Program

3.1 Preliminaries

The Newton tutorial needs following two input files:

- A parameter file: The parameter file is an xml-file, which contains all parameters needed to execute the program. It is read in by the program. Parameters for example defining the termination condition of the nonlinear and linear solver are listed as well as parameters needed for the linear algebra. It is not necessary to recompile the program, when parameters in the xml-file are changed. By default the Newton tutorial reads in the parameter file newton_tutorial.xml, see section 3.2, which contains the parameters of the two-dimensional numerical example. This file is stored in /hiflow/examples/newton/.
- Geometry data: The file containing the geometry is specified in the parameter file. For the numerical results in two dimensions we choose dfg2d_rect.inp. You can find different meshes in the folder /hiflow/examples/data.

HiFlow³ does not generate meshes for the domain Ω . Meshes in *.inp and *.vtu format can be read in. There is a function in /build/utils/ called 'inp2vtu' which converts *.inp format to *.vtu format. Type /build/utils/inp2vtu 2 dfg2d_rect.inp to convert dfg2d_rect.inp to dfg2d_rect.vtu. Additionally a file dfg2d_rect_bdy.vtu is created which shows the body of the domain.

It is possible to extend the reader for other formats. Furthermore it is possible to generate other geometries by using external programs (Mesh generators) or by hand. Both formats provide the possibility to mark cell or facets by material numbers.

To distinguish different boundary conditions, material numbers are set on the boundary different. You can find different material numbers for some given geometry files in table (1). The parame-

File	Materia	al numbers					
	Inflow	Outflow	Тор	Bottom	Obstacle	Front	Back
dfg2d_rect.inp	15	16	13	13	14	-	-
channel_2d_uniform.inp	10	12	13	11	none	-	-
dfg_bench3d_cyl.inp	10	12	11	11	13	11	11
dfg_bench3d_rect2.inp	10	12	11	11	13	30	20
channel_bench1.inp	10	12	13	11	2/1(up/down)	30	20

Table 1: Material numbers for different geometry files

ter file defines the meaning of the material number: In the parameter file you find the boundary parameters InflowMaterial and OutflowMaterial. In this case the variable InflowMaterial is set to 15 and the variable OutflowMaterial to 16.

The Newton tutorial emerges from an already existing program in Hiflow³, channel_benchmark, whose source code is contained in hiflow//examples/benchmarks/channel_benchmark/. The source code was slightly modified in order to make use of the different parts contained in Hiflow³ regarding the inexact Newton methods described in 2.2, that is, the classes ForcingStrategy<LAD>, its derivative EWForcing<LAD>, and NonlinearSolverParameter [4].

3.2 Parameter File

The parameter file normally required by the program channel_benchmark was modified in order to consider the different test parameters concerning the forcing strategy.

```
<Param>
  <OutputPrefix > NewtonTutorial </OutputPrefix >
    <Filename>dfg2d_rect.inp</Filename>
    <InitialRefLevel>0</InitialRefLevel>
  </Mesh>
  <LinearAlgebra>
    <Platform > CPU </Platform >
    <Implementation>Naive</Implementation>
    <MatrixFormat > CSR </ MatrixFormat >
  </LinearAlgebra>
  <FlowModel>
    <Density>1.0
    <Viscosity>1.0e-3</Viscosity>
    <InflowSpeed>0.5</InflowSpeed>
    <InflowHeight > 0.41 </InflowHeight >
    <InflowWidth>0.41</InflowWidth>
```

```
</FlowModel>
 <QuadratureOrder >6</QuadratureOrder >
 <FiniteElements>
    <VelocityDegree >2</VelocityDegree >
    <PressureDegree >1 </pressureDegree >
  </FiniteElements>
 <Boundary>
    <InflowMaterial > 15 </ InflowMaterial >
    <OutflowMaterial>16</OutflowMaterial>
    <CylinderMaterial>14</CylinderMaterial>
  </Boundary>
 <NonlinearSolver>
    <MaximumIterations>20</MaximumIterations>
    <AbsoluteTolerance>1.e-15</AbsoluteTolerance>
    <RelativeTolerance>1.e-6</RelativeTolerance>
    <DivergenceLimit > 1.e6 </ DivergenceLimit >
    <ForcingStrategy > None </ForcingStrategy >
    <InitialValueForcingTerm > 0.5 </ InitialValueForcingTerm >
    <MaxValueForcingTerm > 0.9 / MaxValueForcingTerm >
    <GammaParameterEW2>1.0</GammaParameterEW2>
    <AlphaParameterEW2>1.618033989</AlphaParameterEW2>
  </NonlinearSolver>
 <LinearSolver>
    <MaximumIterations>100000</MaximumIterations>
    <AbsoluteTolerance>1.e-15</AbsoluteTolerance>
    <RelativeTolerance>1.e-6</RelativeTolerance>
    <DivergenceLimit > 1.e6 </DivergenceLimit >
    <BasisSize >500 </BasisSize >
    <Preconditioning>1</Preconditioning>
  </LinearSolver>
 <ILUPP>
    <PreprocessingType > 0 </PreprocessingType >
    <PreconditionerNumber>11</preconditionerNumber>
    <MaxMultilevels>20</MaxMultilevels>
    <MemFactor > 0.8 < / MemFactor >
    <PivotThreshold>2.75</PivotThreshold>
    <MinPivot > 0.05 </MinPivot >
 </ILUPP>
 <Backup>
    <Restore > 0 < / Restore >
    <LastTimeStep > 160 </LastTimeStep >
    <Filename>backup.h5
  </Backup>
</Param>
```

In the field <ForcingStrategy> </ForcingStrategy> we can choose between the following options: None, EisenstatWalker1 or EisenstatWalker2. For more details regarding the numerical values of the linear and nonlinear solver parameters, see section 4.

3.3 Main Function

The main function starts the simulation of the Newton tutorial newton_tutorial.cc.

```
int main(int argc, char** argv) {
    MPI_Init(&argc, &argv);

    std::string param_filename(PARAM_FILENAME);
    if (argc > 1) {
        param_filename = std::string(argv[1]);
}
```

```
try {
     NewtonTutorial app(param_filename);
     app.run();
} catch(const std::exception& e) {
     std::cerr << "\nProgram_ended_with_uncaught_exception.\n";
     std::cerr << e.what() << "\n";
     return -1;
}
MPI_Finalize();
return 0;
}</pre>
```

3.4 Member Functions

Following member functions are components of the Newton tutorial:

- run()
- read_mesh()
- prepare()
- prepare_bc()
- visualize()
- EvalFunc(const LAD::VectorType& in, LAD::VectorType* out)
- compute_residual(const LAD::VectorType& in, LAD::VectorType* out)
- compute_stationary_residual(const LAD::VectorType& in, LAD::VectorType* out)
- EvalGrad(const LAD::VectorType& in, LAD::MatrixType* out)
- compute_jacobian(const LAD::VectorType& in, LAD::MatrixType* out)
- compute_stationary_matrix(const LAD::VectorType& in, LAD::MatrixType* out)
- setup_linear_algebra()

With the exception of run() and prepare(), all member functions can be found in the Navier-Stokes Equation tutorial [2]. run() and prepare() are actually also similar to the ones contained in other Hiflow³ tutorials, however they include here code parts regarding the inexact Newton method.

3.4.1 prepare()

In Hiflow³, if a nonlinear problem is to be solved using the Newton method, the class Newton<LAD> is used. The corresponding instance object in the Newton Tutorial is:

```
// nonlinear solver
Newton<LAD> newton_;
```

Within this class further instance variables are present and allow the user to switch between the exact and inexact Newton methods, in particular the instance objects ForcingStratObject\ of type ForcingStrategy<LAD>, and ForcingStrategy\ of type NonlinearSolverParameter. As these are private variables of the class Newton<LAD>, we only have access to them by means of the public instance function SetForcingStrategy. So if we wish to use an inexact Newton method, we must make use of this function. It takes as parameter an object also of type ForcingStrategy<LAD>, which should already have been initialized according to the wished forcing strategy indicated in the parameter file. The function will then initialize the private objects mentionned above by giving ForcingStratObject\ the adress of the parameter object, and by setting ForcingStrategy\ to the value NewtonForcingStrategyOwn. Concretely these steps take place in the member function prepare() as follows.

• Initialisation of the nonlinear solver:

```
// get nonlinear solver parameters from parameter file
nls_max_iter =
 params_["NonlinearSolver"]["MaximumIterations"].get<int>();
nls_abs_tol =
 params_["NonlinearSolver"]["AbsoluteTolerance"].get < double > ();
nls rel tol =
  params_["NonlinearSolver"]["RelativeTolerance"].get < double > ();
nls_div_tol =
  params_["NonlinearSolver"]["DivergenceLimit"].get<double>();
// setup nonlinear solver
newton_.InitParameter(&res_, &matrix_);
newton_.InitParameter(Newton<LAD>::NewtonInitialSolutionOwn);
newton_.InitControl(nls_max_iter, nls_abs_tol,
                    nls_rel_tol, nls_div_tol);
newton_.SetOperator(*this);
newton_.SetLinearSolver(gmres_);
```

Initialisation of ForcingStratObject\

```
// get forcing strategy parameters from parameter file
    forcing_strategy_ =
      params_["NonlinearSolver"]["ForcingStrategy"].get<std::string>();
    eta_initial =
      params_["NonlinearSolver"]["InitialValueForcingTerm"].get < double > ();
    eta_max =
     params_["NonlinearSolver"]["MaxValueForcingTerm"].get <double >();
    gamma_EW2 =
      params_["NonlinearSolver"]["GammaParameterEW2"].get<double>();
    alpha_EW2 =
      params_["NonlinearSolver"]["AlphaParameterEW2"].get < double > ();
// setup forcing strategy object ForcingStratObject
// within the nonlinear solver
    if (forcing_strategy_ == "EisenstatWalker1") {
        EWForcing <LAD>* EW_Forcing = new EWForcing <LAD>(eta_initial,
                                                          eta_max, 1);
        newton_.SetForcingStrategy(*EW_Forcing);
    } else if (forcing_strategy_ == "EisenstatWalker2") {
        EWForcing <LAD >* EW_Forcing =
        new EWForcing < LAD > (eta_initial, eta_max, 2,
                            gamma_EW2, alpha_EW2);
```

```
newton_.SetForcingStrategy(*EW_Forcing);
}
```

We see that if a forcing strategy is desired, an object of type EWForcing<LAD>, a subclass of ForcingStrategy<LAD>, has to be created first with the appropriate parameters, and then transfered to the nonlinear solver newton_ of type Newton<LAD> via the function SetForcingStrategy as explained above. On the other hand if we wish to use the exact Newton method, we simply need to type None in the field <ForcingStrategy> </ForcingStrategy> of the parameter file.

3.4.2 run()

The instance function run() initialises the problem, and calls in particular the instance function Solve(), contained in the nonlinear solver object newton, to solve the stationary flow problem described in 2.1. It is defined in the class NewtonTutorial. We indicate here only the relevant part of this function, the entire version of it can be found in the folder /hiflow/examples/newton.

```
virtual void run() {
    simul_name_ = params_["OutputPrefix"].get<std::string>();
    MPI_Comm_rank(comm_, &rank_);
    MPI_Comm_size(comm_, &num_partitions_);
    [...]
    // Setup timing report
    TimingScope::set_report(&time_report_);
        TimingScope tscope("Setup");
        setup_linear_algebra();
        read_mesh();
        prepare();
    [...]
    // Measurement of the global calculation time
    Timer timer;
    newton_.Solve(&sol_);
    [...]
    timer.stop();
    [...]
    visualize();
    [...]
}
```

The time measured by the object timer is the value used by the nonlinear solver to make all calculations and is therefore of great interest here, as it is mainly influenced by the choice of the forcing strategy in the parameter file.

For more informations regarding the class Newton<LAD>, where a nonlinear problem is solved using either the exact or an inexact Newton method as explained in 2.2, please see the corresponding program code newton.cc contained in Hiflow³ [4].

4 Numerical Tests

4.1 Test Parameters

For comparison we launched the tests using both the exact Newton method and the forcing strategies described in section 2.2. As for the exact Newton method, the used parameters regarding the convergence conditions of the linear solver are detailled in table 2.

Absolute Tolerance	1.0E-015
Relative Tolerance	1.0E-006
Divergence Limit	1.0E006

Table 2: Convergence Conditions of the Linear Solver

For both inexact Newton methods only the relative tolerance differs from these values, see 2.2. Consequently, the following parameters need to be entered: for both forcing strategies the initial value of the forcing term, viz. η_0 , was set to 0.5, whereas the maximal value of η_k allowed was set to 0.9 in both cases. In addition, for the second forcing strategy the values of the parameters γ and α (see Forcing strategy 2, 6), which were successively tested, are presented in table 3.

$$\begin{array}{c|c|c|c|c} \gamma & 0.8 & 0.9 & 1.0 & 1.1 \\ \hline \alpha & 1 & \frac{1+\sqrt{5}}{2} & 2 & \end{array}$$

Table 3: Parameters of the Forcing Strategy 2

The maximal number of iterations within the linear solver was set to 1000.

Furthermore the tests were launched with different refinement levels of the geometry mesh (levels 0 to 4 are presented hereafter). As for the nonlinear solver, the stopping conditions, which are set on the residual, were the same as detailed in table 2. However the maximal number of iterations was set to 20.

All calculation tests were executed on the *long* partition of the *Taurus* cluster. The *long* partition has following configuration:

- 4 Nodes * 2 CPUs * 6 Cores (*2 Hyperthreads) Intel Xeon X5650 Processors
- 48 GB memory per node
- Infiniband 4x QDR Network (theoretical 32 GBit/s p2p data transmission rate)
- Available nodes: numhpc034[0-3]

4.2 Results

Informations regarding the mesh refinement for the different refinement levels used in this tutorial are gathered in table 4.

For each simulation we gathered the calculation time required by the nonlinear solver, see section 3.4.2, the value of the resulting residual norm $||F(x)||_Y$ after convergence and the number of

Refinement level	0	1	2	3	4
Number of cells of the refined mesh	2206	8824	35296	141184	564736
Total number of degrees of freedom	10377	40608	160632	638928	2548512

Table 4: Mesh Refinement

Newton steps as well as the number of iterations within the linear solver for each Newton step. The results obtained are presented hereafter.

Cell count of the refined mesh is 2206. Total degrees of freedom count is 10377.

	Residuum	Duration [seconds]	Duration [ratio]	Newton steps	Linear solver iterations [per Newton step]
Exact Newton method					
	6.78782E-010	17.758	1	5	9 9 9 9 9
Inexact Newton method					
Eisenstat Walker 1	1.07154E-008	17.821	1.0035	5	1 1 1 2 2
Eisenstat Walker 2					
	1.07154E-008	17.829	1.0040	D.	1 1 1 2 2
$0.8 \frac{1+\sqrt{5}}{2}$	7.14838E-010	17.874	1.0065	2	1 2 1 2 3
2 2	2.86797E-010	17.861	1.0058	5	П
Ŧ	1 071 7 4 7 000	11000	00	L	·
Į,	1.07154E-008	17.850	1.0052	ဂ	
$0.9 \frac{1+\sqrt{5}}{2}$	7.14838E-010	17.836	1.0044	2	1 2 1 2 3
2	2.86797E-010	17.846	1.0050	വ	
1	7.22867E-009	21.430	1.2068	9	1 1 1 1 1 2
$1.0 \frac{1+\sqrt{5}}{2}$	7.14838E-010	17.833	1.0042	2	Н
2 2	2.86797E-010	17.832	1.0042	2	1 2 1 2 4
1	3.53137E-010	25.045	1.4104	7	1 1 1 1 1 1 2
$1.1 \frac{1+\sqrt{5}}{2}$	6.58038E-010	17.817	1.0033	2	1 2
2 2	2.86797E-010	17.878	1.0068	5	1 2 1 2 4

Table 5: Results for refinement level 0 - Sequential execution

Cell count of the refined mesh is 8824.
Total degrees of freedom count is 40608.

1.1 $\frac{1+\sqrt{5}}{2}$ 3.00656E-009 2.73588E-009	1.0 $\frac{1+\sqrt{5}}{2}$ 3.00656E-009 2.73588E-009	$ \begin{array}{ccc} 1 & 6.17652E-010 \\ 0.9 & \frac{1+\sqrt{5}}{2} & 6.83429E-009 \\ 2 & 2.73588E-009 \end{array} $	Eisenstat Walker 2 Gamma Alpha 1 $0.8 \frac{1+\sqrt{5}}{2}$ $0.8 \frac{2}{2}$ $0.8 \frac{1}{2}$ $0.8 \frac{1}{2}$ $0.8 \frac{1}{2}$ $0.8 \frac{1}{2}$	Inexact Newton method Eisenstat Walker 1 6.84645E-013	Exact Newton method 2.64412E-010	Residuum
-008	-010 -009 -009	-010 -009 -009	-010 -009	-013	-010	
6m49.5s 4m40.1s 4m41.8s	6m43.9s 4m41s 4m43.4s	6m44.1s 4m37.3s 4m37.5s	5m39.5s 4m37.2s 4m37.7s	5m41.9s	4m46.5s	Duration
1.429 0.978 0.984	1.410 0.981 0.989	1.411 0.968 0.969	1.185 0.968 0.969	1.193	-	Duration [ratio]
5 5 7	5 5 7	5 5 7	თ თ ი	6	Sī	Newton
1 1 1		₽₽₽	P P P	-	12	
0 4 7	ω 4 τ	σσω	σσω	4	9	Linear solver iterations [per Newton step]
ωωн	ωωн	ωωн	ωωμ	2	9	solv
5 4 1	0 4 7	0 4 7	ω 4 τ	4	9	near solver iteratio
6 2 8	б и и	σ υ ν	4 0 0	4	9	terat
2	ω	ω	4	7		tions
ω	4	4				

Table 6: Results for refinement level 1 - Sequential execution

Cell count of the refined mesh is 35296. Total degrees of freedom count is 160632.

	Residuum	Duration	Duration [ratio]	Newton steps	<u> </u>	Linear solver iterations [per Newton step]	solver Newto	itera on st	ations ep]		
Exact Newton method											
	1.25615E-010	1m31.4s	1	5	109	84	84	88	06		
Inexact Newton method											
Eisenstat Walker 1	3.42601E-009	1m43.3s	1.130	9	-	46	17	36	39	54	
Eisenstat Walker 2 Gamma Alpha											
- 1	3.13709E-009	2m22.7s	1.561	6	1 5	18	14	16	18	22	
	L	L C	7	Ç	1.9	0 6	2 2	7	ć	ĭ	
$\frac{1}{2}$	1.31915E-009 1.81827E-010	1m42.5s 1m44.3s	1.121	0 0	→ ←	22	7 7 7 8	41 46	χ Σ 8	51 65	
ı		}	!	•	I	l I) I)))	
	8.69453E-009	2m36.2s	1.709	10	Н	18	13	15	14	17	
l					18	18	18	19			
0.9 $\frac{1+\sqrt{5}}{2}$	1.21791E-009	1m42s	1.116	9	\vdash	20	21	37	40	51	
2	1.81761E-010	1m44.2s	1.140	9	\vdash	22	27	45	46	64	
•	1 22006E 000	20000	0100	13	-	9	7	5	-	7	
⊣	1.22000E-000	311122.05	6.7.7	CT	17	12	14	14	15	15	16
$1.0 \frac{1+\sqrt{5}}{2}$	4.93468E-009	1m42.5s	1.121	9	Н	20	20	35	37	47	
2	1.51781E-010	1m44.7s	1.146	9	1	21	25	44	49	9	
	9.62694E-007	4m54.1s	3.218	20	Н	15	13	10	10	2	
					2	9	6	9	6	2	9
					7	9	2	4	2	2	4
$1.1 \frac{1+\sqrt{5}}{2}$	3.08431E-012	1m58.8s	1.300	7	Н	19	17	26	35	42	99
2 _	1.59374E-010	1m43.9s	1.137	9	1	21	24	43	47	64	

Table 7: Results for refinement level 2 - Execution with 8 processes

Cell count of the refined mesh is 141184. Total degrees of freedom count is 638928.

	1.1					1.0					0.9				0.8		Eisenstat Walker 2 Gamma Alpha 1	Eisenstat Walker 1	Inexact N		Exact Nev	
2	$\frac{1+\sqrt{5}}{2}$			Ц	2	$\frac{1+\sqrt{5}}{2}$	l		1	2	$\frac{1+\sqrt{5}}{2}$	1	1	2	$\frac{1+\sqrt{5}}{2}$	1	Walker 2 a Alpha 1	Walker 1	Inexact Newton method		Exact Newton method	
1.68058E-010	9.58617E-009			7.81944E-005	1.44509E-010	3.07228E-009			9.29623E-009	1.32034E-010	1.53368E-009		4.03001E-009	1.07252E-010	1.36005E-009		4.5464E-009	9.47125E-009		6.21979E-011		Residuum
5m56.1s	5m45s			16m18.2s	5m52.7s	5m45.8s			16m1.6s	5m47.8s	5m48.2s		10m27.7s	5m49.8s	5m38s		8m1s	5m36.5s		5m45.8s		Duration
1.030	0.998			2.830	1.020	1			2.781	1.006	1.007		1.815	1.012	0.977		1.391	0.973		ш		Duration [ratio]
6	6			20	6	6			19	6	6		12	6	6		9	6		ഗ		Newton steps
Ľ	ᆫ	5	11	ᆫ	_	ᆫ	25	27	Ц	Н	Н	47	ы	ъ	_	65	Ľ	Ь		211		
48	40	10	6	18	50	42	22	22	21	52	45	47	28	53	48	47	33	88		214		Lir
63	47	7	ω	32	71	50	34	25	34	77	54	46	35	81	58	55	38	36		240		
120	75	6	ω	12	121	90	25	29	15	123	102	33	30	127	109		41	93		246		ear solver iteration per Newton step
120	111	4	ω	11	120	119	23	23	18	132	115	44	28	139	109		52	82		244		ear solver iterations per Newton step]
189	136	4	4	12	193	149	31	37	16	190	140	42	40	192	149		69	139				ls St
		4	4				24															

Table 8: Results for refinement level 3 - Execution with 16 processes

Cell count of the refined mesh is 564736 Total degrees of freedom count is 2548512

	Residuum	Duration	Duration [ratio]	Newton steps		Lineal [pe	Linear solver iterations [per Newton step]	r iterai on ste	tions [p]	
Exact Newton method										
	3.09906E-011	24m38.9s	1	2	436	550	603	610	638	
Inexact Newton method										
Eisenstat Walker 1	4.91523E-009	19m15.3s	0.781	9						
Eisenstat Walker 2										
	1.01844E-008	25m11.2s	1.022	6	Н	36	100	92	117	144
					161	136	147			
$0.8 \frac{1+\sqrt{5}}{2}$	1.72337E-009	20m9.1s	0.818	9	\vdash	66	150	287	305	319
2 2	1.68935E-010	21m10s	0.859	9	\vdash	106	257	309	333	436
1	7.40192E-009	30m38.8s	1.243	11	1	27	93	53	99	107
					133	132	87	107	87	
$0.9 \frac{1+\sqrt{5}}{2}$	1.43398E-009	19m48.4s	0.804	9	П	92	130	256	301	317
2	2.69001E-010	22m9.6s	0.899	9	Н	104	231	308	324	411
1	1.06235E-008	43m52.7s	1.780	16	₩	23	90	43	53	43
					83	61	88	92	74	09
					85	62	54	86		
1.0 $\frac{1+\sqrt{5}}{2}$	7.35479E-010	21m22.8s	0.867	9	П	98	129	227	307	363
2	5.04675E-010	22m46.9s	0.924	9	\vdash	102	196	306	318	392
1	2.41731E-005	49m42.6s	2.017	20	1	19	82	37	41	38
					22	15	20	26	30	33
					20	21	10	9	_∞	_∞
					7	10				
$1.1 \frac{1+\sqrt{5}}{2}$	4.04693E-009	18m20.2s	0.744	9	\vdash	92	124	187	268	317
2	6.50955E-010	19m51.1s	0.805	9	П	101	181	307	316	382

Table 9: Results for refinement level 4 - Execution with 32 processes

List of Figures

1	Flow channel in 2D with an obstacle	4
List	of Tables	
1	Material numbers for different geometry files	6
2	Convergence Conditions of the Linear Solver	11
3	Parameters of the Forcing Strategy 2	11
4	Mesh Refinement	12
5	Results for refinement level 0 - Sequential execution	13
6	Results for refinement level 1 - Sequential execution	14
7	Results for refinement level 2 - Execution with 8 processes	15
8	Results for refinement level 3 - Execution with 16 processes	16
9	Results for refinement level 4 - Execution with 32 processes	17

References

- [1] Stanley C. Eisentat, Homer F. Walker. *Choosing the Forcing Term in an Inexact Newton Methode*. Rice University, May 1994.
- [2] M. Baumann, A. Helfrich-Schkarbanenko, E.Ketelaer, S. Ronnas, M. Wlotzka. *Boundary Value Problem for Incompressible Navier-Stokes Equation*. EMCL, modified on March 2012.
- [3] P.Deuflhard. Newton Methods for Nonlinear Problems Affine Invariance and Adaptive Algorithms. Springer, 2004.
- [4] Hiflow³. Files contained in folder //hiflow/src/nonlinear/, especially newton.cc (the instance function Solve()), forcing_strategy.h and forcing_eisenstat_walker.cc.