CIMPA Research School:

Algebraic, Enumerative and Geometric Combinatorics - ECCO 2016

Triangulations of polytopes. Problem sheet.

4 Triangulaciones y subdivisiones regulares

- 1. *Sean $\alpha, \beta \in \mathbb{R}^n$ dos vectores de levantamiento tales que $\alpha \beta$ ies una evaluación afín en V. Prueba que α y β producen la misma triangulación regular.
- 2. *Deduce de lo anterior que para construir las triangulaciones regulares de V, o para comprobar si una triangulación es regular o no, no hay pérdida de generalidad en elegir a priori d+1 puntos afínmente independientes (un d-símplice) y prescribir que esas d+1 coordenadas del vector de levantamiento sean zero.
- *Prueba que las siguientes triangulaciones de m.o.a.e. son no regulares. Pista: por el problema anterior, puedes dar altura zero a los tres puntos interiores.

- 4. *Prueba que, a excepción de las dos triangulaciones no regulares del ejercicio anterior, todas las demás triangulaciones de los conjuntos del Problema 1.1 son lexicográficas (y, por tanto, no regulares).
- 5. Construye una triangulación regular que no sea lexicográfica.
- 6. *Sea B un subconjunto de V. Prueba que hay una subdivisión de V (de hecho, una regular) en la que B es una celda.
- 7. Sean B1 y B_2 dos subconjuntos de A con $conv(B_1) \cap conv(B_2) = \emptyset$. Prueba que hay una subdivisión de V (de hecho, una regular) en la que B_1 y B_2 son celdas.
- 8. Muestra que eso falla con *tres* conjuntos: tomando como V los vértices de un prisma triangular, encuentra tres subconjuntos B_1 , B_2 , B_3 con $\operatorname{conv}(B_i) \cap \operatorname{conv}(B_j) = \emptyset$ para $i, j \in \{1, 2, 3\}$ pero sin que exista una subdivisión que tiene a B_1 , B_2 y B_3 como celdas. Nota: en la m.o.a.e. existen B_1 , B_2 y B_3 para los que no hay ninguna subdivisión regular que los tiene como celdas.