Lab Worksheet

Lab#7 - White-box testing

วัตถุประสงค์การเรียนรู้

- 1. ผู้เรียนสามารถออกแบบการทดสอบแบบ White-box testing ได้
- 2. ผู้เรียนสามารถวิเคราะห์ปัญหาด้วย Control flow graph ได้
- 3. ผู้เรียนสามารถออกแบบกรณีทดสอบโดยคำนึงถึง Line coverage ได้
- 4. ผู้เรียนสามารถออกแบบกรณีทดสอบโดยคำนึงถึง Block coverage ได้
- 5. ผู้เรียนสามารถออกแบบกรณีทดสอบโดยคำนึงถึง Branch coverage ได้
- 6. ผู้เรียนสามารถออกแบบกรณีทดสอบโดยคำนึงถึง Condition coverage ได้
- 7. ผู้เรียนสามารถออกแบบกรณีทดสอบโดยคำนึงถึง Branch and Condition coverage ได้

โจทย์: Clump counts

Clump counts (https://codingbat.com/prob/p193817) เป็นโปรแกรมที่ใช้ในการนับการเกาะกลุ่มกันของข้อมูลภายใน Array โดยการเกาะกลุ่มกันจะนับสมาชิกใน Array ที่อยู่ติดกันและมีค่าเดียวกันตั้งแต่สองตัวขึ้นไปเป็นหนึ่งกลุ่ม เช่น

$$[1, 2, 2, 3, 4, 4] \rightarrow 2$$

 $[1, 1, 2, 1, 1] \rightarrow 2$

$$[1, 1, 1, 1, 1] \rightarrow 1$$

ซอร์สโค้ดที่เขียนขึ้นเพื่อนับจำนวนกลุ่มของข้อมลที่เกาะอย่ด้วยกันอย่ที่

https://github.com/ChitsuthaCSKKU/SOA/tree/2025/Assignment/Lab7 โดยที่ nums เป็น Array ที่ใช้ในการสนับสนุน การนับกลุ่มของข้อมูล (Clump) ทำให้ nums เป็น Array ที่จะต้องไม่มีค่าเป็น Null และมีความยาวมากกว่า 0 เสมอ หาก nums ไม่เป็นไปตามเงื่อนไขที่กำหนดนี้ โปรแกรมจะ return ค่า 0 แทนการ return จำนวนกลุ่มของข้อมูล

แบบฝึกปฏิบัติที่ 7.1 Control flow graph

จากโจทย์และ Source code ที่กำหนดให้ (CountWordClumps.java) ให้เขียน Control Flow Graph (CFG) ของเมธอด countClumps() จากนั้นให้ระบุ Branch และ Condition ทั้งหมดที่พบใน CFG ให้ครบถ้วน

ตอบ

Condition:

(1) Nym == MI

(d) nums[i] == prev

1 Muns. longth == 0

(5) Pinclump

i < nuns. length

(b) vums[i] i= prev

แบบฝึกปฏิบัติที่ 7.2 Line Coverage

- 1. จาก Control Flow Graph (CFG) ของเมธอด countClumps() ในข้อที่ 1 ให้ออกแบบกรณีทดสอบเพื่อให้ได้ Line coverage = 100%
- 2. เขียนกรณีทดสอบที่ได้ พร้อมระบุบรรทัดที่ถูกตรวจสอบทั้งหมด
- 3. แสดงวิธีการคำนวณค่า Line coverage

<u>ตอบ</u>

Test Case No.	Input(s)	Expected Result(s)	Path and Branch
1	พบไไ	0	Line No.: 6, 1
2	£ 3	0	Line No.: 6,7
ზ	{ 1,1,2 }	1	Line No.: 6,10, 11, 12, 14, 15, 16,17, 20,25
۵.	{1,1,2,2,3,3,3}	2	Line No.: 6, 10, 11, 12, 16, 15, 16, 17, 20, 21

Line coverage =
$$\frac{13}{13} \times 100 = 100 \%$$

แบบฝึกปฏิบัติที่ 7.3 Block Coverage

- 1. จาก Control Flow Graph (CFG) ของเมธอด countClumps() ในข้อที่ 1 ให้ออกแบบกรณีทดสอบเพื่อให้ได้ Block coverage = 100%
- 2. เขียนกรณีทดสอบที่ได้ พร้อมระบุ Block ที่ถูกตรวจสอบทั้งหมด
- 3. แสดงวิธีการคำนวณค่า Block coverage

CP353201 Software Quality Assurance (1/2568)

Lab instruction

<u>ตอบ</u>

Test Case No.	Input(s)	Expected Result(s)	Path and Branch
5	wall	0	Block: A, &
Ь	{ a, a}	1	Block: A, C, D, E, F, G, H, I, K
7	10,13	D	Block: A, C, D, E, F, G, I, J, K
*	{ 4, 4, 4 }	1	Block: A, 4 D, E, F, 6, H, I, K

Block coverage =
$$\frac{11}{11} \times 100 = 100 \%$$

แบบฝึกปฏิบัติที่ 7.3 Branch Coverage

- 4. จาก Control Flow Graph (CFG) ของเมธอด countClumps() ในข้อที่ 1 ให้ออกแบบกรณีทดสอบเพื่อให้ได้ Branch coverage = 100%
- 5. เขียนกรณีทดสอบที่ได้ พร้อมระบุ Path และ Branch ที่ถูกตรวจสอบทั้งหมด
- 6. แสดงวิธีการคำนวณค่า Branch coverage

<u>ตอบ</u>

Test Case No.	Input(s)	Expected Result(s)	Path and Branch	
9	Mall	0	Path: A-B Branch: A-True	
10	£ 1, 13	1	Path: A-C-O-E-F-H-I-K-G Branch: A-False, E-True, F-True, I	. Palse, E. Falso
11	{1,2,5}	0	Path: A - L - D - E - F - I - J - K - 6 Branch: A - False, E - Tave, F - False, I - 1	True, E_ Folse
			Path: Branch:	

CP353201 Software Quality Assurance (1/2568)

Lab instruction

	Path:
	Branch:
	Path:
	Branch:
	Path:
	Branch:
	Path:
	Branch:

Branch coverage =
$$\frac{4}{4} \times 100 = 100 \%$$

แบบฝึกปฏิบัติที่ 7.4 Condition Coverage

- 1. จาก Control Flow Graph (CFG) ของเมธอด countClumps() ในข้อที่ 1 ให้ออกแบบกรณีทดสอบเพื่อให้ได้ Condition coverage = 100%
- 2. เขียนกรณีทดสอบที่ได้ พร้อมระบุ Path และ Condition ที่ถูกตรวจสอบทั้งหมด เช่น Condition A = T และ Condition B = F
- 3. แสดงวิธีการคำนวณค่า Condition coverage

<u>ตอบ</u>

Test Case No.	Input(s)	Expected Result(s)	Path and Condition
12	wvI)	0	P: A-B
15	{ 3	0	P: A-B
۱۵	f a, a 3	1	P: A-U-D-E-F-H-1-K-G
19	1 1,2 3	0	P: A-L-D-E-Y-I-J-K-6

Condition coverage =
$$\frac{b}{b} \times 100 = 100 \%$$

แบบฝึกปฏิบัติที่ 7.5 Branch and Condition Coverage (C/DC coverage)

- 1. จาก Control Flow Graph (CFG) ของเมธอด countClumps() ในข้อที่ 1 ให้ออกแบบกรณีทดสอบให้ได้ C/DC coverage = 100%
- 2. เขียนกรณีทดสอบที่ได้ พร้อมระบุ Path, Branch, และ Condition ที่ถูกตรวจสอบทั้งหมด
- 3. แสดงวิธีการคำนวณค่า C/DC coverage
- 4. เขียนโค้ดสำหรับทดสอบตามกรณีทดสอบที่ออกแบบไว้ด้วย JUnit และบันทึกผลการทดสอบ

ตอบ

Test Case	Input(s)	Expected Result(s)	Actual Result(s)	Path, Branch, and
No.				Condition
				P: A-B
16	mul/	D	Pass/Fail: Pass	B: A-Truc
			Pass/Fail: Fass	ι : Φ

\7	13	0	Pass/Fail: Pass	P: A-B B: A-Tyve C: ①	
14	£ 0, 0 3	1	Pass/Fail: Pass	P: A-C-O-E-F-H-1-L B: A-False, E-True, F-True, I-F C: 3 6 5	
19	1 1,2 3	0	Pass/Fail: Pass/Fail:	P: A - L - D - E - r - I - J - B: A - Folse, E - True, F - Folse, I - T	K-6 「YVE, E_Folse
			Pass/Fail:		

C/DC coverage =

$$\left(\frac{6+4}{10}\right) \times 100 = 100 \%$$