数学物理方法I大作业

- 一、解答题(每题15分,共75分)
- 1. 考虑 z 平面上一个半径为 a ,圆心在原点的圆周 C. 证明:变换 $\xi=z+\frac{a^2}{z}$ 将该圆周变换成直线段 L,左端点位于 $\xi=-2a$,右端点位于 $\xi=2a$.
- 2. 设复变函数 $f(\xi)$ 在闭曲线 C 上连续,在 C 外部解析,且在无穷远处为常数,即

- (2) 如果点 z 在 C 内部,则 $\frac{1}{2\pi i} \oint_C \frac{f(\xi)}{\xi z} d\xi = -K$.
- 3. 设 $f(z) = \frac{z}{e^z 1} = \sum_{n=0}^{+\infty} \frac{B_n}{n!} z^n$,证明:
- (3) 求 B_2, B_4, B_6 .
- 4. 应用留数定理计算广义积分: $\int_0^{+\infty} \frac{1}{1+x^4} \mathrm{d}x$.
- 5. 计算广义积分 $\int_{-\infty}^{+\infty} \frac{1}{(1+x^2)\cosh(\pi x \, / \, 2)} \mathrm{d}x$. (注:函数 $\frac{1}{(1+z^2)\cosh(\pi z \, / \, 2)}$ 在上半平面有无穷多个奇点)
- 二、叙述解析函数理论在物理上的应用,并加以说明. (25分)