Wetting of the tarsal adhesive fluid controls underwater adhesion in ladybug beetles: Supplementary information

Pranav Sudersan,[†] Michael Kappl,[†] Bat-El Pinchasik,[‡] Hans-Jürgen Butt,[†] and
Thomas Endlein[†]

†Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany ‡School of Mechanical Engineering, Tel Aviv University, Tel Aviv-Yafo, Israel

S1 Simulation method: Single capillary bridge

- ³ Capillary force due to a single adhesive fluid or bubble meniscus (termed "capillary bridge")
- was calculated by performing simulations in Surface Evolver¹, similar to the method de-
- scribed by De Souza et al.². A simple cubic geometry, mimicking the capillary bridge, of
- constant volume, V, was defined as the initial condition with an interfacial tension, γ , with
- 7 the surrounding medium. Interfacial tension of the capillary bridge with the substrate is
- s given by $\gamma \cos \theta$, where θ is the corresponding contact angle inside the bridge. For the case
- of a bubble meniscus, θ is defined w.r.t. the surrounding water, since θ can also directly
- characterise the substrate wettability. The capillary bridge spans a gap distance d between
- the top face and the substrate. The boundary conditions were set corresponding to a pinned
- $_{12}$ contact line of diameter D on the top face and constant interfacial tension with the sub-
- strate on the bottom. All lengths were normalised relative to length $s=(3V/4\pi)^{1/3}$. An
- appropriate geometry refinement routine was chosen to evolve the capillary bridge shape to

- its minimum energy state. The normalised total capillary force, $\hat{f} = f/\gamma s$, is the sum of the
- 2 Laplace pressure and surface tension contributions, where:

$$f = f_{laplace} + f_{surface tension} = \Delta P_{laplace} A_{bottom} + 2\pi R_{bottom} \gamma \sin \theta$$
 (S1)

- Here, $\Delta P_{laplace}$ is the Laplace pressure of the equilibrium capillary bridge, A_{bottom} is
- 4 the contact area of the capillary bridge with the substrate at bottom and R_{bottom} is the
- 5 corresponding radius of contact, all obtained from the simulation output for the equilibrium
- 6 surface.
- The gap distance d was varied stepwise and the capillary force was calculated each time
- to obtain force-distance curves for a particular choice of D and θ .

⁹ S2 Substrate characterization

- The surface chemistry of untreated glass (hydrophilic) and PFOTS-coated glass (hydropho-
- bic) were characterized using dynamic contact angle measurements (Table S1).

Table S1: Dynamic contact angles (Mean \pm SD, n = 3) of Milli-Q water and n-hexadecane on the different test substrates.

Substrate	Liquid	$\theta_{ m A}$	$\theta_{ m R}$	
Glass	Water	63±5°	20±2°	
	n-Hexadecane	<10°	<10°	
PFOTS	Water	122±1°	93±2°	
	n-Hexadecane	88±2°	56±5°	

12 S3 Statistical comparison

- Two-way ANOVA test showed a significant effect of the Contact mode (p=0.001, F=9.596,
- degrees of freedom=2) and Substrate (p<0.001, F=36.231, degrees of freedom=1) categories
- on the single leg adhesion force measurements of the ladybug beetle (Coccinella septempuc-
- tata). Significant interaction between the above two categories was seen (p=0.001, F=10.551,

- degrees of freedom=2). Post-hoc analysis results are shown below (Table S2). The uncor-
- ² rected p-values and Common Language Effect Size (CLES) were obtained from pair-wise
- 3 Student t-test between A and B while keeping the third parameter fixed (degrees of free-
- 4 dom=8 for each pair). p-values showing statistically significant difference between A and B
- 5 are in boldface. CLES represents the statistical proportion of samples under A with higher
- 6 adhesion than under B. The condition for statistical significance is based on the Bonferroni-
- 7 corrected critical p-value of 0.008.

Table S2: Post-hoc t-test results for each combination of contact mode and substrate

Fixed variable	A	В	Т	p-value	CLES
In air	PFOTS	Glass	-0.053	0.959	0.48
Underwater: bubble	PFOTS	Glass	3.292	0.011	0.96
Underwater: no bubble	PFOTS	Glass	10.044	0.0	1.0
PFOTS	In air	n air Underwater: bubble		0.897	0.48
PFOTS	In air	Underwater: no bubble	-0.224	0.828	0.48
PFOTS	Underwater: bubble	Underwater: no bubble	-0.37	0.721	0.44
Glass	In air	Underwater: bubble	4.688	0.002	1.0
Glass	In air	In air Underwater: no bubble		0.0	1.0
Glass	Underwater: bubble	Underwater: no bubble	2.086	0.07	0.84

⁸ S4 Capillary force due to an air bubble

⁹ Capillary force of a single air bubble against a PFOTS-coated glass surface are compared for two different volumes (Figure S1). The volumes correspond to the expected range for the case of the trapped air bubble in a ladybug's pad. Here, the bubble was pinned to a micropatterned PDMS substrate on the top. Approach-retract tests were performed at

- 62.5 μm s⁻¹ speed. The maximum adhesion force of any of the bubble never exceeds 50
- 2 μN, significantly lower than the beetle's underwater adhesion to the same substrate (>
- 3 400 μN). Thus, the bubble's contribution to adhesion in the "underwater: bubble" contact
- 4 of a ladybug's pad should be negligible. Example measurement video is included in the
- 5 supplementary data (Movie3).

Figure S1: Capillary force of the pinned bubble against a PFOTS-coated glass surface

6 S5 Capillary bridge model: Sensitivity analysis

- ⁷ Sensitivity analysis was performed using the one-at-a-time (OAT) method. Dimensionless
- 8 model parameters were initially set to correspond to the ladybug's case, as given by, contact

- area fraction ($\alpha = 0.1$), pad to hair diameter ratio ($D_p/D_h = 50$), hair aspect ratio ($L/D_h = 0.1$)
- 2 10), water surface tension ratio $(\gamma_{wa}/\gamma_{fa}=3)$, tarsal fluid-water interfacial tension ratio
- з $(\gamma_{fw}/\gamma_{fa}=2)$, tarsal fluid size parameter $(\phi_f=2)$, bubble size parameter $(\phi_b=1.6)$.
- 4 Substrate contact angles were kept fixed (same as in main text). Each parameter was varied
- ⁵ within a particular range, one at a time, and the corresponding adhesion forces in air (F_a),
- 6 underwater: no bubble (F_w) and underwater: bubble (F_b) were calculated. Linear least square
- 7 regression was performed to quantify the relative change in adhesion for each contact mode
- ⁸ with respect to the varied parameter. Here, F_w/F_a and F_b/F_a were taken to be the model
- output. Slope and R² values for each case are reported below (Table S3).

Table S3: Sensitivity analysis

Parameter	Range	Substrate	${f F_w/F_a}$		${ m F_b/F_a}$	
			slope	\mathbb{R}^2	slope	R^2
α	0.05, 0.3	Hydrophilic	3.03E-18	1.52E-03	2.30E-01	7.72E-01
		Hydrophobic	-9.69E-17	3.03E-03	-9.40E-01	7.72E-01
D_p/D_h	30.0, 60.0	Hydrophilic	-8.83E-20	1.48E-01	1.28E-02	9.73E-01
		Hydrophobic	-5.65E-18	1.48E-01	-1.51E-02	9.82E-01
L/D_h	8.0, 15.0	Hydrophilic	$0.00E{+}00$	0.00E + 00	-5.27E-02	9.11E-01
		Hydrophobic	0.00E + 00	0.00E + 00	5.41E-02	8.66E-01
γ_{wa}/γ_{fa}	2.5, 3.5	Hydrophilic	-2.01E-01	8.57E-01	-2.43E-01	9.43E-01
		Hydrophobic	4.11E-02	1.00E+00	6.87E-02	1.00E+00
γ_{fw}/γ_{fa}	1.5, 2.5	Hydrophilic	2.01E-01	8.62E-01	1.90E-01	8.94E-01
		Hydrophobic	5.56E-01	1.00E+00	1.57E-01	1.00E + 00
ϕ_f	1.7, 2.2	Hydrophilic	1.29E-02	4.52E-01	6.18E-02	7.94E-02
		Hydrophobic	7.67E-02	9.84E-01	-3.06E-01	9.66E-01
ϕ_b	1.2, 1.8	Hydrophilic	$0.00E{+}00$	0.00E + 00	-1.14E+00	8.85E-01
		Hydrophobic	0.00E + 00	0.00E + 00	1.46E+00	9.78E-01

$_{ iny 10}$ S6 Supplementary video files

11 Movie1

- Adhesion test recordings showing the three contact modes: in air, underwater: bubble and
- underwater: no bubble on a hydrophobic PFOTS-coated glass substrate. The two top panels

- of the video show the synchronous raw bottom-view and side-view recordings of the pad
- 2 making contact with the substrate. The lower-left panel shows contact area extraction of
- the hairs with the surface via image processing and lower-right panel shows the corresponding
- 4 temporal contact force and area data plot, with the data cursor synchronized with the other
- 5 panels.

6 Movie2

- ⁷ Adhesion test recording corresponding to the case of bad contact, which occurred underwater
- 8 on the PFOTS-coated glass substrate

9 Movie3

- Adhesion test recording of an air bubble (2nL volume) pinned to a microstructured PDMS
- on the top and making contact with a smooth PFOTS-coated glass substrate on the bottom.

12 References

- 13 (1) Brakke, K. A. The surface evolver. *Experiment. Math.* **1992**, *1*, 141–165.
- 14 (2) De Souza, E. J.; Brinkmann, M.; Mohrdieck, C.; Arzt, E. Enhancement of Capillary
- Forces by Multiple Liquid Bridges. Langmuir 2008, 24, 8813–8820.