

مبانی بینایی کامپیوتر

مدرس: محمدرضا محمدی

تناظر و همترازی تصاویر

Correspondence and Image Alignment

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \left(\sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \right) \begin{bmatrix} u \\ v \end{bmatrix}$$

$$M \triangleq \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

• مقادیر ویژه یک ماتریس نشان میدهند که در یک راستا چه مقدار انرژی وجود دارد و بردارهای ویژه جهت آنها را مشخص میکنند

مثال

مثال

$$R = \lambda_1 \lambda_2 - k(\lambda_1 + \lambda_2)^2$$

$$R = det(M) - k(trace(M))^{2}$$

$$R$$
 محاسبه مقادیر

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

$$M = g(\sigma_I) * \begin{bmatrix} I_x^2(\sigma_D) & I_x I_y(\sigma_D) \\ I_x I_y(\sigma_D) & I_y^2(\sigma_D) \end{bmatrix}$$

خواص آشكارساز Harris

• نسبت به مقیاس شدت روشایی حساسیت مرتبه ۲ دارد

خواص آشكارساز Harris

- مستقل از چرخش است
- نسبت به شیفت شدت روشنایی تصویر حساس نیست
 - مشتق تصویر وابسته به شیفت نیست
- نسبت به مقیاس شدت روشایی حساسیت مرتبه ۲ دارد
 - نسبت به مقیاس تصویر وابسته است

گوشه

انطباق نقاط كليدى

- پس از استخراج نقاط کلیدی از دو تصویر، نیاز است تا نقاط متناظر با یکدیگر مشخص شوند
 - برای این منظور، ابتدا برای هر نقطه ویژگی یک توصیفگر محاسبه میشود

• سپس، دو به دوی توصیفگرها از دو تصویر مقایسه میشوند و مشابهترین توصیفگرها به عنوان نقاط متناظر انتخاب میشوند

برای جلوگیری از تناظریابی اشتباه، حد آستانهای بر روی میزان مشابهت گذاشته می شود

از نقاط به ناحیهها

- آشکارساز Harris نقاط کلیدی را مشخص می کنند
 - مكانيابي دقيق
 - تکرارپذیری بالا
- به منظور مقایسه این نقاط، نیاز داریم تا هر نقطه توسط یک توصیفگر بر روی ناحیه اطراف خود بازنمایی شود

- چطور می توانیم یک ناحیه مستقل از مقیاس تعریف کنیم؟

مقايسه ناحيهها

رویکرد Naïve: جستجوی کامل

• روش چند مقیاسه:

- توصیفگرها برای ناحیههای با ابعاد متفاوت محاسبه و مقایسه شوند
- این محاسبات برای هر جفت نقاط از دو تصویر بسیار هزینهبر خواهد بود

- تابعی طراحی کنیم که مستقل از مقیاس باشد
- برای ناحیههای متناظر یکسان باشد حتی اگر مقیاس متفاوتی داشته باشند
- به عنوان مثال، میانگین شدت روشنایی مستقل از مقیاس است و برای دو ناحیه متناظر مقدار یکسانی دارد
- برای یک نقطه در یک تصویر، می توان میانگین شدت روشنایی را به صورت تابعی از ابعاد ناحیه لحاظ کرد

- ابعاد مربوط به بیشینه محلی در این منحنی متناسب با مقیاس خواهد بود
- نکته مهم این است که محاسبات مربوط به یافتن اندازه ناحیه در هر تصویر و برای هر نقطه کلیدی به صورت مستقل انجام میشود

• پس از انتخاب ابعاد مناسب، ناحیهها را به یک اندازه مشخص نرمالیزه می کنیم تا به خوبی قابل مقایسه باشند

انتخاب خودكار جهت

•	*	*	*	1
*	*		*	•
4	1	X	*	*
*	7	1	*	•
1	1	*	+	•

• نیاز است تابعی طراحی کنیم که متناسب با مقدار چرخش تصویر، تغییر کند

- می توان ابتدا هیستوگرام جهت گرادیان را محاسبه کرد
 - سپس، جهت غالب در این هیستوگرام را انتخاب کرد

نقاط كليدى

- روشهای پرکاربرد برای اسخراج نقاط کلیدی و توصیفگرهای آنها عبارتند از:
 - SIFT -
 - SURF -
 - ORB -

