

Toshanraju Vysyaraju, and Ina Park

Background

- Gravitational microlensing
 - The focusing of light as mass moves past star
- Took data from Optical Gravitational Lensing Experiment (OGLE)
 - Polish based
 - Long running observations of trying to find microlensing events
- Our Goal:
 - Fit and analyze Paczynski
 Light Curve Model to OGLE's
 data

Data

- Collected from OGLE-IV project
 - Database of microlensing events from 2019
 - One of the largest sky variability surveys
- X-axis measures time, the Y-axis measures the magnitude, and the data points themselves represent a measure of brightness as a function of time
- Picked three microlensing events

Methods

Paczynski microlensing model

$$u(t) = \sqrt{u_{min}^2 + \left(\frac{t - t_0}{t_E}\right)^2}$$

Non-blended model Blended model
$$A(t) = \frac{u^2 + 2}{u\sqrt{u^2 + 4}} \qquad A(t) = f_{bl} \left(\frac{u^2 + 2}{u\sqrt{u^2 + 4}} - 1 \right) + 1$$

$$m_{mod}(t) = m_{bl} - 2.5 \log_{10}(A(t))$$

- u(t): angular separation of source and lens
- u_min: minimum separation
- A(t): Magnification of light from lensing
- m_bl: intensity of light with A = 1
- f_bl: fraction of incoming light that is from the source
- m_mod(t): intensity of light predicted by our model
- Found parameters by optimizing a chi^2 function for both models
- Used Markov Chain Monte Carlo (MCMC) simulation to analyze error in parameters

Results :

- Both model's lined up well with the data
- We were able to mimic OGLE's results
 - With aesthetic differences
- Blended vs Unblended parameter fitting

Results

$\text{Parameters} \!\!\downarrow \text{Event} \!\!\to$	0017	0277	0420	OGLE 0017	OGLE 0277	OGLE 0420
$\overline{u_{min}}$	0.221	0.565	0.504	0.36	0.565	0.503
$t_E [\mathrm{days}]$	110.381	26.958	12.989	421.250	26.595	12.989
$t_0 \text{ [HJD - } 2450000 \text{]}$	8555.296	8593.624	8597.027	85557.734	8593.624	8597.030
m_{bl}	17.962	15.112	16.795	17.998	15.112	16.799

$Parameters[Blended] \downarrow Event \rightarrow$	0017	0277	0420	OGLE 0017	OGLE 0277	OGLE 0420
$\overline{u_{min}}$	0.036	0.565	0.503	0.036	0.565	0.503
$t_E [\mathrm{days}]$	421.242	26.959	12.989	421.250	26.595	12.989
$t_0 \; [{ m HJD} \; - \; 2450000]$	8557.734	8593.624	8597.030	85557.734	8593.624	8597.030
m_{bl}	17.998	15.112	16.799	17.998	15.112	16.799
f_{bl}	0.152	1.0	1.0	0.152	1.0	1.0

Error Analysis

Conclusion

- Limitations:
 - Cannot determine mass of lens
 - Need distances (us to lens, us to source, and lens to source)

$$M = \frac{c^2}{4G} \frac{D_l D_s}{D_{ls}} |\theta_+ \theta_-|$$

Limitations → Further research, observation, and experimentation

Questions?

