CS & IT ENGINEERING

COMPUTER ORGANIZATION
AND ARCHITECTURE

Floating Point Representation By- Vishvadeep Gothi sir

Lecture No.- 01

Recap of Previous Lecture

Topics to be Covered

Topic RISC vs CISC

Topic Byte Ordering

Topic Floating Point Representation

Topic: Types of Microprogrammed Control Unit

Horizontal

In control word one bit per signal is stored

control word size is large

no any decoder needed.

vertical

Control word is stored in encoded form to reduce it's size.

All signals are divided into multiple groups in such a way that from one group only one signal is active at

Decoder needed to generate signals.

Vertical Harizohtal max degree of parallelism is limited by no. of groups. max of signals active at a time (max degree of parallism) is more. -> slower because of signal decoders. -> faster

micro programmed C.U. mem In In vertical stored 50 active 1 00 4 signals 50, 51,52,53 01 in single group 51 are grouped 10 52 53 52 51 50 53 50 active Haizontel D 51 6 53

Topic: Speed Comparison

[NAT]

#Q. A control unit generates 120 control signals, which are divided into 6 groups of mutually exclusive signals as below:

Group1 = 30
$$\Rightarrow$$
 $\log_2 307 = 5$ bits
Group2 = 13 \Rightarrow 4 bits
Group3 = 12 \Rightarrow 4 bits
Group4 = 3 \Rightarrow 2 bits
Group5 = 27 \Rightarrow 5 bits
Group6 = 35 \Rightarrow 6 bits

How many bits can be saved by using vertical micro-programmed control unit as compared to horizontal one? e^{-3} = e^{-3}

#Q. A micro-programmed control unit is required to generate a total of 25 control signals. Assume that during any microinstruction at most 2 control signals are active. Minimum number of bits required in the control word to generate the required control signals will be?

Ans=10

[NAT]

#Q. A micro-programmed control unit is required to support 64 instructions with each instruction need a sequence of 32 microoperations to execute completely. The control unit has microinstruction format with 3 fields: control signals, MUX select and next address field. The control unit has 134 signal to be stored in horizontal manner. The MUX has 8 inputs. The size of control memory to support such control unit is 296 k bits?

mux select = 3 bits

No. of micro-instrs stored =
$$64 * 32$$

= $2^6 * 2^5$
= 2^{11}
= $2048 \Rightarrow add = 11-bits$

Control mem. size = $2^{11} * 148 \text{ bits}$ = $2 * 2^{10} * 148 \text{ bits}$ = 296 k bits

[NAT]

#Q. A micro-programmed control unit is required to support 128 instructions with each instruction need a sequence of 64 microoperations to execute completely. The control unit has microinstruction format with 3 fields: control signals, MUX select and next address field. The control unit has 134 signal to be stored in horizontal manner. The MUX has 8 inputs. The size of control memory to support such control unit is 150 k bytes?

mem size =
$$2^{13} \times 15$$
 bits
= $2^{3} \times 2^{10} \times 150$ bits
= 150×150 bytes

Topic : RISC vs CISC

S. No.	RISC (Reduced Instruction-Set Computer)	CISC (Complex Instruction-Set Computer)
1.	Less Number of Instructions Supported	More Number of Instructions
2.	Fixed Length Instructions	Variable Length Instructions
3.	Simple Instructions	Complex Instructions
4.	Simple and less number of addressing Modes	Complex and More number of addressing Modes
5.	Easy to implement using hardwired control unit	Difficult to implement using hardwired control unit

Topic: RISC vs CISC

S. No.	RISC (Reduced Instruction-Set Computer)	CISC (Complex Instruction-Set Computer)
6.	One Cycle per instruction	More than one cycle per instruction
7.	Register-to-Register arithmetic operation only (Reg based architecture	Register-to-Memory & Memory-to- Register arithmetic operations possible
8.	More Number of Registers (GPR ^S)	Less Number of Registers

[MCQ]

- #Q. Consider the following processor design characteristics.
 - A. Register-to register arithmetic operations only
 - Jł. Fixed-length instruction format
 - III. Hardwired control unit

Which of the characteristics above are used in the design of a RISC processor?

GATE - 20/8

A I and II only

B II and III only

C I and III only

D // 1, II and III

byte 1

byte o

Floating point Representati In fisced point representat 6-69ts slimited range of numbers represented. Unsigned => 0 to 63 soin =) floating point representation
Can provide larger range of signed (215 comp.) => -32 to +31 numbers

Topic: Floating-Point Numbers

The number is represented in format:

Sign	Exponent	manling
S	E	М
9	L	101

- Mantissa is signed normalized (implicit/explicit) fraction number
- Exponent is stored in biased form.

Topic: Biased Exponent

La convert exponent into unsigned value and stone

S	E	М	
	JL	in u lits numbers =>	Range Transform unsigned -8 to +7 O to 15

original exponent	stored exponent (E) excess-8 code
_8	0
_7	$\frac{1}{2} = \frac{E + 8}{2}$ bias = 8
<u>-6</u>	$\frac{2}{E} = e + bias$
Ó	8
?	
I I	

If k-bits are used to store E. B_i^2 as = 2

Topic: Mantissa

Manlissa (M) = Number after point

$$e = 3$$

$$E = 3 + bias$$

$$S = 1011$$

$$M = 011$$

$$e = 2$$

$$E = 2 + bias$$

$$M = 10111$$
 $e = 3$
 $E = 3+8 = (11)_{10} = (1011)_{2}$

Topic : Value Formula

S E M	
-------	--

Value (Explicit) =
$$(-1)^{5}$$
 * 0.M * 2

Value (Implicit) = $(-1)^{5}$ * 1.M * 2

Value (Implicit) = $(-1)^{5}$ * 1.M * 2

#Q. A certain well-known computer family represents the exponents of its floating-point numbers as "excess-64" integers; i.e., a typical exponent $e_6e_5e_4e_3e_2e_1e_0$ represents the number:

$$e = -64 + \sum_{i=0}^{6} 2^{i} ei$$

$$e = -64 + \sum_{i=0}^{6} 2e_i$$

$$e = 64 - \sum_{i=0}^{6} 2^{i}ei$$

$$e = 64 - \sum_{i=0}^{6} 2e_i$$

binary to decimal

original = Value — bias =>
$$\sum_{i=0}^{6} e_i * 2^i - 64$$

2 mins Summary

Topic

RISC vs CISC

Topic

Byte Ordering

Topic

Floating Point Representation

Happy Learning THANK - YOU