Chapter 1. Vector Analysis

1 V	Vect	or Analysis	1
1.	.1	Vector Algebra	1
1.	.2	Differential Calculus	13
1.	.3	Integral Calculus	24
1.		Curvilinear Coordinates	38
1.	.5	The Dirac Delta Function	45
1.0		The Theory of Vector Fields	52
Α,	Vect	tor Calculus in Curvilinear Coordinates	54
	A.1		54
A	4.2	Notation	54
A	4.3	Gradient	54
A	4.4	Divergence	54
A	1. 5	Curl	55
A	4.6	Laplacian	55

1.1 Vector Algebra

1.1.1 Vector Operations

(i) Addition of two vectors.

Addition is *commutative*: A + B = B + A

Addition is associative: (A + B) + C = A + (B + C)

To *subtract* is to add its opposite: A - B = A + (-B)

- (ii) Multiplication by a scalar. a(A + B) = aA + aB
- (iii) Dot product of two vectors. $\mathbf{A} \cdot \mathbf{B} \equiv AB \cos \theta$

Dot product (= scalar product) is *commutative*: $A \cdot B = B \cdot A$

Dot product (= scalar product) is distributive: $A \cdot (B + C) = A \cdot B + A \cdot C$

(iv) Cross product of two vectors. $\mathbf{A} \times \mathbf{B} \equiv AB \sin \theta \,\hat{\mathbf{n}}$

Cross product (= vector product) is *not commutative*: $B \times A = A \times B$

Dot product (= vector product) is distributive: $A \times (B + C) = A \times B + A \times C$

Example 1.1

Let C = A - B (Fig. 1.7), and calculate the dot product of C with itself.

Solution:

$$\mathbf{C} \cdot \mathbf{C} = (\mathbf{A} - \mathbf{B}) \cdot (\mathbf{A} - \mathbf{B}) = \mathbf{A} \cdot \mathbf{A} - \mathbf{A} \cdot \mathbf{B} - \mathbf{B} \cdot \mathbf{A} + \mathbf{B} \cdot \mathbf{B},$$

or

$$C^2 = A^2 + B^2 - 2AB\cos\theta.$$

This is the law of cosines.

1.1.2 Vector Algebra: Component form

$$\mathbf{A} = A_x \hat{\mathbf{x}} + A_y \hat{\mathbf{y}} + A_z \hat{\mathbf{z}}.$$

(i) Rule: To add vectors, add like components.

$$\mathbf{A} + \mathbf{B} = (A_x \hat{\mathbf{x}} + A_y \hat{\mathbf{y}} + A_z \hat{\mathbf{z}}) + (B_x \hat{\mathbf{x}} + B_y \hat{\mathbf{y}} + B_z \hat{\mathbf{z}})$$

= $(A_x + B_x)\hat{\mathbf{x}} + (A_y + B_y)\hat{\mathbf{y}} + (A_z + B_z)\hat{\mathbf{z}}$.

(ii) Rule: To multiply by a scalar, multiply each component.

$$a\mathbf{A} = (aA_x)\hat{\mathbf{x}} + (aA_y)\hat{\mathbf{y}} + (aA_z)\hat{\mathbf{z}}.$$

(iii) Rule: To calculate the dot product, multiply like components, and add.

$$\mathbf{A} \cdot \mathbf{B} = (A_x \hat{\mathbf{x}} + A_y \hat{\mathbf{y}} + A_z \hat{\mathbf{z}}) \cdot (B_x \hat{\mathbf{x}} + B_y \hat{\mathbf{y}} + B_z \hat{\mathbf{z}}) = A_x B_x + A_y B_y + A_z B_z$$
$$\hat{\mathbf{x}} \cdot \hat{\mathbf{x}} = \hat{\mathbf{y}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{z}} = 1; \quad \hat{\mathbf{x}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{x}} \cdot \hat{\mathbf{z}} = \hat{\mathbf{y}} \cdot \hat{\mathbf{z}} = 0.$$

1.1.2 Vector Algebra: Component form

(iv) Rule: To calculate the cross product, form the determinant whose first row is $\hat{\mathbf{x}}$, $\hat{\mathbf{y}}$, $\hat{\mathbf{z}}$, whose second row is \mathbf{A} (in component form), and whose third row is \mathbf{B} .

$$\mathbf{A} \times \mathbf{B} = (A_{x}\hat{\mathbf{x}} + A_{y}\hat{\mathbf{y}} + A_{z}\hat{\mathbf{z}}) \times (B_{x}\hat{\mathbf{x}} + B_{y}\hat{\mathbf{y}} + B_{z}\hat{\mathbf{z}})$$

$$= \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z} \end{vmatrix}$$

$$= (A_{y}B_{z} - A_{z}B_{y})\hat{\mathbf{x}} + (A_{z}B_{x} - A_{x}B_{z})\hat{\mathbf{y}} + (A_{x}B_{y} - A_{y}B_{x})\hat{\mathbf{z}}$$

Example 1.2 Find the angle between the face diagonals of a cube.

$$\mathbf{A} = 1\,\hat{\mathbf{x}} + 0\,\hat{\mathbf{y}} + 1\,\hat{\mathbf{z}}; \qquad \mathbf{B} = 0\,\hat{\mathbf{x}} + 1\,\hat{\mathbf{y}} + 1\,\hat{\mathbf{z}}.$$

$$\mathbf{A} \cdot \mathbf{B} = 1 \cdot 0 + 0 \cdot 1 + 1 \cdot 1 = 1$$

$$= AB\cos\theta = \sqrt{2}\sqrt{2}\cos\theta = 2\cos\theta.$$
Therefore, $\cos\theta = 1/2$, or $\theta = 60^{\circ}$.

1.1.3 Triple Products

(i) Scalar triple product: $A \cdot (B \times C)$

 $|\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})|$ is the volume of the parallelepiped generated by \mathbf{A} , \mathbf{B} , and \mathbf{C} , since $|\mathbf{B} \times \mathbf{C}|$ is the area of the base, and $|\mathbf{A} \cos \theta|$ is the altitude

 $A\cdot (B\times C)=B\cdot (C\times A)=C\cdot (A\times B)\quad \text{ Note that "alphabetical" order is preserved}$

In component form,
$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \begin{vmatrix} A_x & A_y & A_z \\ B_x & B_y & B_z \\ C_x & C_y & C_z \end{vmatrix}$$

Note that the dot and cross can be interchanged: $\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \times \mathbf{B}) \cdot \mathbf{C}$

1.1.3 Triple Products

(ii) Vector triple product: $\mathbf{A} \times (\mathbf{B} \times \mathbf{C})$

$$A \times (B \times C) = B(A \cdot C) - C(A \cdot B)$$
 \rightarrow BAC-CAB rule

Notice that
$$(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}$$
 is an entirely different vector.
 $(\mathbf{A} \times \mathbf{B}) \times \mathbf{C} = -\mathbf{C} \times (\mathbf{A} \times \mathbf{B}) = -\mathbf{A}(\mathbf{B} \cdot \mathbf{C}) + \mathbf{B}(\mathbf{A} \cdot \mathbf{C})$

all higher vector products can be similarly reduced, so it is never necessary for an expression to contain more than one cross product in any term.

$$(\mathbf{A} \times \mathbf{B}) \cdot (\mathbf{C} \times \mathbf{D}) = (\mathbf{A} \cdot \mathbf{C})(\mathbf{B} \cdot \mathbf{D}) - (\mathbf{A} \cdot \mathbf{D})(\mathbf{B} \cdot \mathbf{C});$$

$$\mathbf{A} \times (\mathbf{B} \times (\mathbf{C} \times \mathbf{D})) = \mathbf{B}(\mathbf{A} \cdot (\mathbf{C} \times \mathbf{D})) - (\mathbf{A} \cdot \mathbf{B})(\mathbf{C} \times \mathbf{D}).$$

$$[\mathbf{A} \times (\mathbf{B} \times \mathbf{C})] + [\mathbf{B} \times (\mathbf{C} \times \mathbf{A})] + [\mathbf{C} \times (\mathbf{A} \times \mathbf{B})] = 0.$$

1.1.4 Position, Displacement, and Separation Vectors

Position vector: $\mathbf{r} \equiv x \,\hat{\mathbf{x}} + y \,\hat{\mathbf{y}} + z \,\hat{\mathbf{z}}$.

a unit vector pointing radially outward is

$$\hat{\mathbf{r}} = \frac{\mathbf{r}}{r} = \frac{x\,\hat{\mathbf{x}} + y\,\hat{\mathbf{y}} + z\,\hat{\mathbf{z}}}{\sqrt{x^2 + y^2 + z^2}}$$

Infinitesimal displacement vector: $d\mathbf{l} = dx \,\hat{\mathbf{x}} + dy \,\hat{\mathbf{y}} + dz \,\hat{\mathbf{z}}$

Separation vector from source point to field point:

$$\mathbf{z} \equiv \mathbf{r} - \mathbf{r}'$$
 $\mathbf{z} = (x - x')\hat{\mathbf{x}} + (y - y')\hat{\mathbf{y}} + (z - z')\hat{\mathbf{z}}$

Its magnitude is

$$r = |\mathbf{r} - \mathbf{r}'|$$
 $r = \sqrt{(x - x')^2 + (y - y')^2 + (z - z')^2}$

a unit vector in the direction from \mathbf{r}' to \mathbf{r} is

$$\hat{\mathbf{z}} = \frac{\mathbf{z}}{i} = \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|} \qquad \hat{\mathbf{z}} = \frac{(x - x')\hat{\mathbf{x}} + (y - y')\hat{\mathbf{y}} + (z - z')\hat{\mathbf{z}}}{\sqrt{(x - x')^2 + (y - y')^2 + (z - z')^2}}$$

1.1.5 How Vectors transform

Suppose, for instance, the \overline{x} , \overline{y} , \overline{z} system is rotated by angle ϕ , relative to x, y, z, about the common $x = \overline{x}$ axes.

$$\overline{z}$$
 A
 $\overline{\theta}$
 $\overline{\phi}$
 y

$$A_y = A\cos\theta, \qquad A_z = A\sin\theta,$$

$$\overline{A}_y = A\cos\overline{\theta} = A\cos(\theta - \phi) = A(\cos\theta\cos\phi + \sin\theta\sin\phi) = \cos\phi A_y + \sin\phi A_z$$

$$\overline{A}_z = A \sin \overline{\theta} = A \sin(\theta - \phi) = A(\sin \theta \cos \phi - \cos \theta \sin \phi) = -\sin \phi A_y + \cos \phi A_z$$

More generally, for rotation about an arbitrary axis in three dimensions,

$$\begin{pmatrix} \overline{A}_{x} \\ \overline{A}_{y} \\ \overline{A}_{z} \end{pmatrix} = \begin{pmatrix} R_{xx} & R_{xy} & R_{xz} \\ R_{yx} & R_{yy} & R_{yz} \\ R_{zx} & R_{zy} & R_{zz} \end{pmatrix} \begin{pmatrix} A_{x} \\ A_{y} \\ A_{z} \end{pmatrix} \qquad \overline{A}_{i} = \sum_{j=1}^{3} R_{ij} A_{j}$$

a vector is a tensor of rank 1

1.2 Differential Calculus

1.2.1 "Ordinary" Derivatives

$$df = \left(\frac{df}{dx}\right) dx$$

how rapidly the function f(x) varies when we change the argument x the *slope* of the graph of f versus x

1.2.2 Gradient

Suppose, now, that we have a function of three variables— T(x, y, z)

how T changes when we alter all three variables by the infinitesimal amounts dx, dy, dz.

$$dT = \left(\frac{\partial T}{\partial x}\right) dx + \left(\frac{\partial T}{\partial y}\right) dy + \left(\frac{\partial T}{\partial z}\right) dz$$

$$= \left(\frac{\partial T}{\partial x}\hat{\mathbf{x}} + \frac{\partial T}{\partial y}\hat{\mathbf{y}} + \frac{\partial T}{\partial z}\hat{\mathbf{z}}\right) \cdot (dx\,\hat{\mathbf{x}} + dy\,\hat{\mathbf{y}} + dz\,\hat{\mathbf{z}})$$

$$= (\nabla T) \cdot (d\mathbf{l})$$

$$\nabla T \equiv \frac{\partial T}{\partial x}\hat{\mathbf{x}} + \frac{\partial T}{\partial y}\hat{\mathbf{y}} + \frac{\partial T}{\partial z}\hat{\mathbf{z}} \longrightarrow \mathbf{Gradient of T}$$

$$\nabla T \equiv \frac{\partial T}{\partial x}\hat{\mathbf{x}} + \frac{\partial T}{\partial y}\hat{\mathbf{y}} + \frac{\partial T}{\partial z}\hat{\mathbf{z}} \rightarrow \text{What's the physical meaning of the Gradient:}$$

Geometrical Interpretation of the Gradient:

 $dT = \nabla T \cdot d\mathbf{l} = |\nabla T| |d\mathbf{l}| \cos \theta$ where θ is the angle between ∇T and $d\mathbf{l}$. the *maximum* change in T evidentally occurs when $\theta = 0$ (for then $\cos \theta = 1$) That is, for a fixed distance $|d\mathbf{l}|$, dT is greatest when \mathbf{l} move in the *same direction* as ∇T .

- → Gradient is a vector that points in the direction of maximum increase of a function. Its magnitude gives the slope (rate of increase) along this maximal direction.
- → Gradient represents both the magnitude and the direction of the maximum rate of increase of a scalar function.

Example 1.3

Find the gradient of $r = \sqrt{x^2 + y^2 + z^2}$ (the magnitude of the position vector).

$$\nabla r = \frac{\partial r}{\partial x} \hat{\mathbf{x}} + \frac{\partial r}{\partial y} \hat{\mathbf{y}} + \frac{\partial r}{\partial z} \hat{\mathbf{z}} = \frac{x \hat{\mathbf{x}} + y \hat{\mathbf{y}} + z \hat{\mathbf{z}}}{\sqrt{x^2 + y^2 + z^2}} = \frac{\mathbf{r}}{r} = \hat{\mathbf{r}}.$$

it says that the distance from the origin increases most rapidly in the radial direction, its *rate* of increase in that direction is 1.

1.2.3 The Del Operator: √

$$\nabla T \equiv \frac{\partial T}{\partial x}\hat{\mathbf{x}} + \frac{\partial T}{\partial y}\hat{\mathbf{y}} + \frac{\partial T}{\partial z}\hat{\mathbf{z}} = \left(\hat{\mathbf{x}}\frac{\partial}{\partial x} + \hat{\mathbf{y}}\frac{\partial}{\partial y} + \hat{\mathbf{z}}\frac{\partial}{\partial z}\right)T$$

$$\nabla = \hat{\mathbf{x}} \frac{\partial}{\partial x} + \hat{\mathbf{y}} \frac{\partial}{\partial y} + \hat{\mathbf{z}} \frac{\partial}{\partial z}$$
: a vector operator, not a vector.

there are three ways the operator ∇ can act:

- 1. On a scalar function $T: \nabla T$ (gradient)
 - → **Gradient** represents both the magnitude and the direction of the maximum rate of increase of a scalar function.
- 2. On a vector function \mathbf{v} , via the dot product: $\nabla \cdot \mathbf{v}$ (divergence)
- 3. On a vector function v, via the cross product: $\nabla \times \mathbf{v}$ (curl)

1.2.4 The Divergence $div \mathbf{A} = \nabla \cdot \mathbf{A}$

$$\nabla \cdot \mathbf{v} = \left(\hat{\mathbf{x}} \frac{\partial}{\partial x} + \hat{\mathbf{y}} \frac{\partial}{\partial y} + \hat{\mathbf{z}} \frac{\partial}{\partial z}\right) \cdot (v_x \hat{\mathbf{x}} + v_y \hat{\mathbf{y}} + v_z \hat{\mathbf{z}}) = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$$

$$\nabla \bullet \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

 $\nabla \cdot \mathbf{A} = \frac{cA_x}{\partial x} + \frac{cA_y}{\partial y} + \frac{cA_z}{\partial z}$: **scalar, a** measure of how much the vector **A** spread out (diverges) from the point in question

: positive (negative if the arrows pointed in) divergence

: zero divergence

: positive divergence

Example 1.4

Suppose the functions in Fig. 1.18 are $\mathbf{v}_a = \mathbf{r} = x\,\hat{\mathbf{x}} + y\,\hat{\mathbf{y}} + z\,\hat{\mathbf{z}}$. $\mathbf{v}_b = \hat{\mathbf{z}}$, and $\mathbf{v}_c = z\,\hat{\mathbf{z}}$. Calculate their divergences.

$$\nabla \cdot \mathbf{v}_a = \frac{\partial}{\partial x}(x) + \frac{\partial}{\partial y}(y) + \frac{\partial}{\partial z}(z) = 1 + 1 + 1 = 3$$

$$\nabla \cdot \mathbf{v}_b = \frac{\partial}{\partial x}(0) + \frac{\partial}{\partial y}(0) + \frac{\partial}{\partial z}(1) = 0 + 0 + 0 = 0$$

$$\nabla \cdot \mathbf{v}_c = \frac{\partial}{\partial x}(0) + \frac{\partial}{\partial y}(0) + \frac{\partial}{\partial z}(z) = 0 + 0 + 1 = 1$$

1.2.5 The Curl

$curl \mathbf{A} = rot \mathbf{A} = \nabla \times \mathbf{A}$

$$\nabla \times \mathbf{v} = \begin{bmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ v_x & v_y & v_z \end{bmatrix} = \hat{\mathbf{x}} \left(\frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z} \right) + \hat{\mathbf{y}} \left(\frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x} \right) + \hat{\mathbf{z}} \left(\frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y} \right)$$

$$abla imes A = egin{pmatrix} \partial_y A_z - \partial_z A_y \\ \partial_z A_x - \partial_x A_z \\ \partial_x A_y - \partial_y A_x \end{pmatrix}$$
: a **vector,** a measure of how much the vector **A** curl (rotate) around the point in question.

Non-zero curl:

$$\mathbf{v}_{a} = -y\hat{\mathbf{x}} + x\hat{\mathbf{y}} \qquad \nabla \times \mathbf{v}_{a} = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -y & x & 0 \end{vmatrix} \qquad \mathbf{v}_{b} = x\mathbf{y}$$

$$\nabla \times \mathbf{v}_{b} = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 0 & x & 0 \end{vmatrix} = \hat{\mathbf{z}}$$

$$\mathbf{v}_{b} = x\hat{\mathbf{y}}$$

$$\nabla \times \mathbf{v}_{b} = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 0 & x & 0 \end{vmatrix} = \hat{\mathbf{z}}$$

$$=2\hat{\mathbf{z}}$$

1.2.6 Product Rules (six rules)

two for gradients:

$$\nabla (fg) = f \nabla g + g \nabla f$$

$$\nabla (\mathbf{A} \cdot \mathbf{B}) = \mathbf{A} \times (\nabla \times \mathbf{B}) + \mathbf{B} \times (\nabla \times \mathbf{A}) + (\mathbf{A} \cdot \nabla)\mathbf{B} + (\mathbf{B} \cdot \nabla)\mathbf{A}$$

two for divergences:

$$\nabla \cdot (f\mathbf{A}) = f(\nabla \cdot \mathbf{A}) + \mathbf{A} \cdot (\nabla f)$$
$$\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B})$$

two for curls:

$$\nabla \times (f\mathbf{A}) = f(\nabla \times \mathbf{A}) - \mathbf{A} \times (\nabla f)$$

$$\nabla \times (\mathbf{A} \times \mathbf{B}) = (\mathbf{B} \cdot \nabla)\mathbf{A} - (\mathbf{A} \cdot \nabla)\mathbf{B} + \mathbf{A}(\nabla \cdot \mathbf{B}) - \mathbf{B}(\nabla \cdot \mathbf{A})$$

Prove al the six rules!

$$\nabla \cdot (f\mathbf{A}) = \frac{\partial}{\partial x} (fA_x) + \frac{\partial}{\partial y} (fA_y) + \frac{\partial}{\partial z} (fA_z)$$

$$= \left(\frac{\partial f}{\partial x} A_x + f \frac{\partial A_x}{\partial x} \right) + \left(\frac{\partial f}{\partial y} A_y + f \frac{\partial A_y}{\partial y} \right) + \left(\frac{\partial f}{\partial z} A_z + f \frac{\partial A_z}{\partial z} \right)$$

$$= (\nabla f) \cdot \mathbf{A} + f(\nabla \cdot \mathbf{A}).$$

1.2.7 Second Derivatives

 ∇T is a vector,

- (1) Divergence of gradient: $\nabla \cdot (\nabla T)$.
- (2) Curl of gradient: $\nabla \times (\nabla T)$.

 $\nabla \cdot \mathbf{v}$ is a scalar

(3) Gradient of divergence: $\nabla(\nabla \cdot \mathbf{v})$

- $\nabla \times \mathbf{v}$ is a *vector*, (4) Divergence of curl: $\nabla \cdot (\nabla \times \mathbf{v})$.
 - (5) Curl of curl: $\nabla \times (\nabla \times \mathbf{v})$.
- (1) Divergence of gradient: $\nabla \cdot (\nabla T) \longrightarrow \underline{\text{Laplacian: } \Delta = \nabla \cdot \nabla = \nabla^2}$

$$\nabla \cdot (\nabla T) = \left(\hat{\mathbf{x}} \frac{\partial}{\partial x} + \hat{\mathbf{y}} \frac{\partial}{\partial y} + \hat{\mathbf{z}} \frac{\partial}{\partial z}\right) \cdot \left(\frac{\partial T}{\partial x} \hat{\mathbf{x}} + \frac{\partial T}{\partial y} \hat{\mathbf{y}} + \frac{\partial T}{\partial z} \hat{\mathbf{z}}\right) = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2}$$

(2) The curl of a gradient is always zero: $\nabla \times (\nabla T) = 0$

→ The curl of the gradient of any scalar field is identically zero!

- (3) $\nabla(\nabla \cdot \mathbf{v})$ for some reason seldom occurs in physical applications $\nabla^2 \mathbf{v} = (\nabla \cdot \nabla)\mathbf{v} \neq \nabla(\nabla \cdot \mathbf{v})$
- (4) The divergence of a curl, is always zero: $\nabla \cdot (\nabla \times \mathbf{v}) = 0$

→ The divergence of the curl of any vector field is identically zero.

(5) Curl of curl: $\nabla \times (\nabla \times \mathbf{v}) = \nabla (\nabla \cdot \mathbf{v}) - \nabla^2 \mathbf{v}$

(Note) Two Null Identities of second derivatives

(I) The curl of the gradient of any scalar field is identically zero.

$$\nabla \times (\nabla V) = 0$$

(ex) If a vector is curl-free, then it can be expressed as the gradient of a scalar field.

$$\nabla \times \mathbf{E} = 0 \longrightarrow \mathbf{E} = -\nabla V$$

(II) The divergence of the curl of any vector field is identically zero.

$$\nabla \cdot (\nabla \times \mathbf{A}) = 0$$

(ex) If a vector is divergenceless, then it can be expressed as the curl of another vector field.

$$\nabla \cdot \mathbf{B} = 0 \longrightarrow \mathbf{B} = \nabla \times \mathbf{A}$$

Summary of the useful vector formulas

Triple Products

(1)
$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \mathbf{B} \cdot (\mathbf{C} \times \mathbf{A}) = \mathbf{C} \cdot (\mathbf{A} \times \mathbf{B})$$

(2)
$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$$
 (BAC-CAB rule)

Product Rules

(3)
$$\nabla (fg) = f(\nabla g) + g(\nabla f)$$

(4)
$$\nabla (\mathbf{A} \cdot \mathbf{B}) = \mathbf{A} \times (\nabla \times \mathbf{B}) + \mathbf{B} \times (\nabla \times \mathbf{A}) + (\mathbf{A} \cdot \nabla)\mathbf{B} + (\mathbf{B} \cdot \nabla)\mathbf{A}$$

(5)
$$\nabla \cdot (f\mathbf{A}) = f(\nabla \cdot \mathbf{A}) + \mathbf{A} \cdot (\nabla f)$$

(6)
$$\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B})$$

(7)
$$\nabla \times (f\mathbf{A}) = f(\nabla \times \mathbf{A}) - \mathbf{A} \times (\nabla f)$$

(8)
$$\nabla \times (\mathbf{A} \times \mathbf{B}) = (\mathbf{B} \cdot \nabla) \mathbf{A} - (\mathbf{A} \cdot \nabla) \mathbf{B} + \mathbf{A} (\nabla \cdot \mathbf{B}) - \mathbf{B} (\nabla \cdot \mathbf{A})$$

Second Derivatives (9) $\nabla \cdot (\nabla \times \mathbf{A}) = 0$

$$(9) \quad \nabla \cdot (\nabla \times \mathbf{A}) = 0$$

(10)
$$\nabla \times (\nabla f) = 0$$

(11)
$$\nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$$

Appendix A: Vector Calculus in Curvilinear Coordinates

A.1 (orthogonal) Curvilinear Coordinates: (u, v, w)

in the Cartesian system, (x, y, z); in the spherical system, (r, θ, ϕ) ; $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$ in the cylindrical system, (s, ϕ, z) $x = s \cos \phi$, $y = s \sin \phi$, z = z

A.2 Notation

the infinitesimal displacement vector from (u, v, w) to (u + du, v + dv, w + dw)

$$d\mathbf{I} = f \, du \, \hat{\mathbf{u}} + g \, dv \, \hat{\mathbf{v}} + h \, dw \, \hat{\mathbf{w}}$$

in Cartesian coordinates f = g = h = 1; in spherical coordinates f = 1, g = r, $h = r \sin \theta$; in cylindrical coordinates f = h = 1, g = s

System	и	υ	\overline{w}	f	g	h
Cartesian	x	у	z	1	1	1
Spherical	r	θ	ϕ	1	r	$r\sin\theta$
Cylindrical	s	ϕ	z	1	S	1

A.3 Gradient in Curvilinear Coordinates:

a scalar function t(u, v, w) changes by an amount

$$dt = \frac{\partial t}{\partial u} du + \frac{\partial t}{\partial v} dv + \frac{\partial t}{\partial w} dw$$

We can write it as a dot product,

$$dt = \nabla t \cdot d\mathbf{l} = (\nabla t)_u f du + (\nabla t)_v g dv + (\nabla t)_w h dw \leftarrow d\mathbf{l} = f du \,\hat{\mathbf{u}} + g dv \,\hat{\mathbf{v}} + h dw \,\hat{\mathbf{w}}$$

$$(\nabla t)_u \equiv \frac{1}{f} \frac{\partial t}{\partial u}, \quad (\nabla t)_v \equiv \frac{1}{g} \frac{\partial t}{\partial v}, \quad (\nabla t)_w \equiv \frac{1}{h} \frac{\partial t}{\partial w}$$

System	и	υ	\overline{w}	f	g	h
Cartesian	х	y	z	1	1	1
Spherical	r	θ	ϕ	1	r	$r \sin \theta$
Cylindrical	s	ϕ	z	1	S	1

→ **Gradient** of t in arbitrary curvilinear coordinates.

the total change in t, as you go from point a to point b

$$t(\mathbf{b}) - t(\mathbf{a}) = \int_{\mathbf{a}}^{\mathbf{b}} dt = \int_{\mathbf{a}}^{\mathbf{b}} (\nabla t) \cdot d\mathbf{l}$$

→ Fundamental theorem for gradients

A.4 Divergence in Curvilinear Coordinates:

Suppose that we have a vector function,

$$\mathbf{A}(u, v, w) = A_u \,\hat{\mathbf{u}} + A_v \,\hat{\mathbf{v}} + A_w \hat{\mathbf{w}}$$

we wish to evaluate the integral $\oint \mathbf{A} \cdot d\mathbf{a}$ over the surface of the infinitesimal volume

Because $d\mathbf{I} = f du \, \hat{\mathbf{u}} + g \, dv \, \hat{\mathbf{v}} + h \, dw \, \hat{\mathbf{w}}$, the side lengths of the volume are

$$dl_u = f du$$
, $dl_v = g dv$, and $dl_w = h dw$

Therefore the volume of the infinitesimal volume is

$$d\tau = dl_u \, dl_v \, dl_w = (fgh) \, du \, dv \, dw$$

For the *front* surface: the area is $d\mathbf{a} = -(gh) dv dw \hat{\mathbf{u}}$.

$$\mathbf{A} \cdot d\mathbf{a} = -(ghA_u) \, dv \, dw$$

For the back surface at (u + du): $d\mathbf{a} = (gh) dv dw \hat{\mathbf{u}}$

$$\mathbf{A} \cdot d\mathbf{a} = (ghA_u) \, dv \, dw$$

Since for any (differentiable) function
$$F(u)$$
, $F(u + du) - F(u) = \frac{dF}{du} du$

$$\mathbf{A} \cdot d\mathbf{a}$$
 at (u + du) - $\mathbf{A} \cdot d\mathbf{a}$ at (u) $\Rightarrow \left[\frac{\partial}{\partial u} (ghA_u) \right] du \, dv \, dw = \frac{1}{fgh} \frac{\partial}{\partial u} (ghA_u) \, d\tau$

Divergence in Curvilinear Coordinates:

we wish to evaluate the integral $\oint \mathbf{A} \cdot d\mathbf{a}$ over the surface of the infinitesimal volume

The front and back sides yield, $\mathbf{A} \cdot d\mathbf{a} \longrightarrow \frac{1}{f g h} \frac{d}{\partial u} (g h A_u) d\tau$

By the same token, the right and left sides yield $\longrightarrow \frac{1}{f \varrho h} \frac{\partial}{\partial v} (f h A_v) d\tau$

the top and bottom give $\longrightarrow \frac{1}{f \varrho h} \frac{\partial}{\partial w} (f g A_w) d\tau$

The divergence of A in curvilinear coordinates is defined by

$$\nabla \cdot \mathbf{A} \equiv \frac{1}{fgh} \left[\frac{\partial}{\partial u} (ghA_u) + \frac{\partial}{\partial v} (fhA_v) + \frac{\partial}{\partial w} (fgA_w) \right]$$

 $\oint \mathbf{A} \cdot d\mathbf{a} = (\nabla \cdot \mathbf{A}) d\tau.$ it pertains only to *infinitesimal* volumes.

since da always points outward,

 $\mathbf{A} \cdot d\mathbf{a}$ has the opposite sign for the two members of each pair only those at the outer boundary survive when everything is added up.

$$\oint \mathbf{A} \cdot d\mathbf{a} = \int (\nabla \cdot \mathbf{A}) d\tau \Rightarrow \text{Divergence theorem}$$

→ It converts a volume integral to a closed surface integral, and vice versa.

A.5 Curl in Curvilinear Coordinates:

To obtain the curl in curvilinear coordinates, we calculate the line integral, $\oint \mathbf{A} \cdot d\mathbf{l}$.

$$\oint \mathbf{A} \cdot d\mathbf{l}$$

around the infinitesimal loop generated by starting at (u, v, w) of length $dl_u = f du$, width $dl_v = g dv$

The area is $d\mathbf{a} = (fg)du \, dv \, \hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}}$ points out of the page

Along the bottom segment,

$$d\mathbf{l} = f du \,\hat{\mathbf{u}} \longrightarrow \mathbf{A} \cdot d\mathbf{l} = (f A_u) du$$

Assuming the coordinate system is right-handed.

obliged by the right-hand rule to run the line integral counterclockwise

Along the top leg, the sign is reversed, $\longrightarrow \mathbf{A} \cdot d\mathbf{l} = -(fA_u)\big|_{v+dv}$

Taken together, these two edges give

$$\mathbf{A} \cdot d\mathbf{l} : \longrightarrow \left[-(fA_u) \big|_{v+dv} + (fA_u) \big|_{v} \right] du = -\left[\frac{\partial}{\partial v} (fA_u) \right] du dv$$

Similarly, the right and left sides yield $\mathbf{A} \cdot d\mathbf{l} : \longrightarrow \left[\frac{\partial}{\partial u}(gA_v)\right] du dv$

so the total is
$$\oint \mathbf{A} \cdot d\mathbf{l} = \left[\frac{\partial}{\partial u} (gA_v) - \frac{\partial}{\partial v} (fA_u) \right] du \, dv = \frac{1}{fg} \left[\frac{\partial}{\partial u} (gA_v) - \frac{\partial}{\partial v} (fA_u) \right] \hat{\mathbf{w}} \cdot d\mathbf{a}$$

Curl in Curvilinear Coordinates:

$$\oint \mathbf{A} \cdot d\mathbf{l} = \left[\frac{\partial}{\partial u} (gA_v) - \frac{\partial}{\partial v} (fA_u) \right] du \, dv = \frac{1}{fg} \left[\frac{\partial}{\partial u} (gA_v) - \frac{\partial}{\partial v} (fA_u) \right] \hat{\mathbf{w}} \cdot d\mathbf{a}$$

The curl of A in curvilinear coordinates is defined by

$$\nabla \times \mathbf{A} \equiv \frac{1}{gh} \left[\frac{\partial}{\partial v} (hA_w) - \frac{\partial}{\partial w} (gA_v) \right] \hat{\mathbf{u}} + \frac{1}{fh} \left[\frac{\partial}{\partial w} (fA_u) - \frac{\partial}{\partial u} (hA_w) \right] \hat{\mathbf{v}} + \frac{1}{fg} \left[\frac{\partial}{\partial u} (gA_v) - \frac{\partial}{\partial v} (fA_u) \right] \hat{\mathbf{w}}$$

Now we generalize the line integral to the u, v, and w components,

$$\oint \mathbf{A} \cdot d\mathbf{l} = (\mathbf{\nabla} \times \mathbf{A}) \cdot d\mathbf{a}.$$

Fortunately, as before, the internal contributions cancel in pairs, because every internal line is the edge of two adjacent loops running in opposite directions.

Therefore, we can extend it to finite surface:

→ It converts a volume integral to a closed surface integral, and vice versa.

A.6 Laplacian in Curvilinear Coordinates:

Laplacian = "the divergence of the gradient of" $\nabla^2 = \nabla \cdot \nabla$

$$\nabla t \equiv \frac{1}{f} \frac{\partial t}{\partial u} \hat{\mathbf{u}} + \frac{1}{g} \frac{\partial t}{\partial v} \hat{\mathbf{v}} + \frac{1}{h} \frac{\partial t}{\partial w} \hat{\mathbf{w}} \quad \leftarrow \text{Gradient of T}$$

$$\nabla \cdot \mathbf{A} \equiv \frac{1}{fgh} \left[\frac{\partial}{\partial u} (ghA_u) + \frac{\partial}{\partial v} (fhA_v) + \frac{\partial}{\partial w} (fgA_w) \right] \leftarrow \mathbf{Divergence} \text{ of } \mathbf{A}$$

$$\nabla^2 t =$$

$$\nabla^2 t \equiv \frac{1}{fgh} \left[\frac{\partial}{\partial u} \left(\frac{gh}{f} \frac{\partial t}{\partial u} \right) + \frac{\partial}{\partial v} \left(\frac{fh}{g} \frac{\partial t}{\partial v} \right) + \frac{\partial}{\partial w} \left(\frac{fg}{h} \frac{\partial t}{\partial w} \right) \right]$$

System	и	υ	\overline{w}	f	g	h
Cartesian	x	у	z	1	1	1
Spherical	r	θ	ϕ	1	r	$r\sin\theta$
Cylindrical	s	φ	z	1	s	1

(Ex) Laplace equation:
$$\nabla^2 V = 0$$

Poisson equation:
$$\nabla^2 V = -\frac{\rho}{\varepsilon_0}$$