Machine learning

Lecture 10
Quality Assurance Legostones

Prof. Dr.-Ing. Jan Schmitt

E-mail: jan.schmitt@fhws.de

The course objectives

#	Date	Topic	Lecturer
1	17.03.2021	Introduction	All
2	24.03.2021	Data visualization and preprocessing (Titanic)	Prof. Schmitt
3	31.03.2021	Getting to know Machine Learning	Prof. Schmitt
4	07.04.2021	Linear / Multiple Regression	Prof. Ceballos-Cancino
5	14.04.2021	Logistic Regression	Prof. Engelmann
6	21.04.2021	Decision Trees	Prof. Ceballos-Cancino
7	28.04.2021	Neural Networks	Prof. Engelmann
8	05.05.2021	Time Series Forecasting	Prof. Batres
9	12.05.2021	Time Series Forecasting	Prof. Ceballos-Cancino
10	19.05.2021	Quality Assurance Legostones	Prof. Schmitt
11	26.05.2021	Changeover Prediction	Prof. Schmitt / Engelmann
12	02.06.2021	Poster Session	All

We meet via ZOOM – the link is permanently the same and posted in the eLearning announcement

It's a Machine Learning Tour

virtual onboarding

FH_'W-S

FH_'W-S

our starts

ty to survive

FH_'W-S

12. International Machine Learning Expert!

4. To be ill on tour is never a good idea

5. Will you pass the portfolio examination?

10. We have to build bridges not walls!

e of our cruise is running out!

cking away! 8. Tin

7. Out next track is travelled by ... ?

6. Oh no, an illness again

Grading

	Digital badge	Course grading	
Ice breaker	20		√
Quiz 1 – Fundamental understanding		25	\
Paper – COVID19	30	12,5	\
Quiz 2 – Deeper understanding		25	√
Paper – Akahappa	30	12,5	√
Poster session	20	25	
Total	100	100	

Agenda

- General course evaluation / vLab performance evaluation
- The CRISP-DM Model again
- Use-Case
 - Fundamentals of production KPIs
 - Interpretation of dataset
- ML-Model
- Practical session
- Results & Discussion

General course evaluation

Link: https://cloud6.evasys.de/fhws/online/

Passwort: WKRAF

Fill it, please

- 10 min.

vLab performance evaluation

- Please find in CANVAS Module 10 the vLab performance evaluation
- Fill it, please!
- 5 min.

Learning objectives

- In the previous lectures you learn primarily
 - Handling data
 - Single ML techniques and apply them to a dataset
- In the remaining 2 lectures we try to solve an Industry 4.0 issue with real production data
 - Using the CRISP-DM model and discover the task step by step
 - Discuss the relevance of ML in Industry 4.0

The CRISP-DM Model

Cross Industry Standard Process for Data Mining CRISP-DM

- Standard model for with six different process phases for DM problems
- CRISP-DM is application-neutral and can be used in any areas
- Established worldwide
- One of the most frequently used models in this (data) environment

The product - Lego Brickstone

Product features (name some in the chat !)

- Production features (name some in the chat!)

QA as a part of the production system

Frequency converter

Infrared temperature sensor

Acceleration sensor

Conveyor belt

Direction of motion

Industrial camera

<u>Purpose:</u>

Quality Assurance of Lego stones

The test bench

The functions of the production system components

Tweedback

Component	Function	Remarks
Conveyor belt		
Freqency converter		
Infrared temperature sensor		
Acceleration sensor		
Industrial camera		
Photoelectric sensor 1 = fork light barrier		
Photoelectric sensor 2 2 0 0 0		
Photoelectric sensor 3 3 C © © © ©		

Our use case

The scenario

Prof. Engelmann: Plant manager

- We have a lot of trouble with our automated quality assurance line
- The OEE KPI is a catastrophe!
- We have a lot of downtime
- Solve the problem, <u>Now</u>!
- We need to know what is our major issue.

You: data scientist

– OE... KP...What...?

Our Use Case - Excursion

Fundamentals of production control

The OEE – Overall Equipment Effectiveness

$$OEE = Availability \cdot Effectiveness \cdot Quality rate$$

Availability:

Availability =
$$\frac{APT}{PBT}$$

Effectiveness

$$Effectiveness = \frac{PRI \cdot PQ}{APT}$$

Quality rate

Quality Rate =
$$\frac{GQ}{PQ}$$

Our Use Case - Excursion

Overall Equipment Effectiveness (OEE) factors combined with loss types and possible causes of loss

OEE Factor	Loss type	Cause of loss
Availability.	 Equipment failure 	
Availability:	Setup & adjustment	
Effectiveness	Idling & minor stoppages	
	 Equipment failure Setup & adjustment Idling & minor stoppages 	
Quality rate	 Quality deviations 	
	 Deviations from product changeover 	

Our use case

The scenario

Prof. Engelmann: Plant manager

- We have a lot of trouble with our automated quality
 assurance line
- The OEE is a catastrophe!
- We have a lot of downtime
- Solve the problem, <u>Now</u>!
- We need to know what is our major issue/failure class.

You: data scientist

- OK, I know the system and OEE
- Let me have a
 look at the data

Row: Dataset for each product P1 with many features (cycle_time, duration_cam...)

	cycle_time	duration_cam	duration_end	wait	fork_light_barrier	acc_sensor	motor_temp	Lego_check	width_Lego	length_Lego	horizontal_distance	vertical_distance
	00:00:02	00:00:02	00:00:00	00:05:39	1	2.6416	28.5206	1	164.23	246.44	-0.032533	-0.389930
1	00:00:02	00:00:02	00:00:00	00:07:05	1	2.6519	26.7138	1	163.77	246.32	-0.033498	-0.367090
2	00:00:02	00:00:01	00:00:01	00:00:03	1	2.6487	24.1249	1	163.53	246.42	-0.038323	-0.366120
3	00:00:07	00:00:07	00:00:00	00:00:03	1	2.6484	28.7740	1	163.35	246.28	0.025371	-0.016770
4	00:00:02	00:00:01	00:00:01	00:00:03	1	2.6513	27.0664	1	163.36	246.68	0.021510	-0.024169

n = 7757 datasets

Maybe we can train a Machine Learning model, which is feasible to evaluate the major issues in our production line automatically?

	cycle_time	duration_cam	duration_end	wait	fork_light_barrier	acc_sensor	motor_temp	Lego_check	width_Lego	length_Lego	horizontal_distance	vertical_distance	
0	00:00:02	00:00:02	00:00:00	00:05:39	1	2.6416	28.5206	1	164.23	246.44	-0.032533	-0.389930	
1	00:00:02	00:00:02	00:00:00	00:07:05	1	2.6519	26.7138	1	163.77	246.32	-0.033498	-0.367090	
2	00:00:02	00:00:01	00:00:01	00:00:03	1	2.6487	24.1249	1	163.53	246.42	-0.038323	-0.366120	
3	00:00:07	00:00:07	00:00:00	00:00:03	1	2.6484	28.7740	1	163.35	246.28	0.025371	-0.016770	
4	00:00:02	00:00:01	00:00:01	00:00:03	1	2.6513	27.0664	1	163,36	246.68	0.021510	-0.024169	
	••••												

Maybe we can label each dataset with a failure mode or normal production mode

Failure mode XX

Our maintenance department label failure classes (1, 2, 3, 4, 6, 7, 8) and the normal production mode (5) in the data set

- 'Blocked_Lego': 1
- 'Fallen_Lego': 2
- 'Machine_Downtime_Long': 3
- 'Machine_Downtime_Short': 4

- 'Normalfall': 5
- 'Reduced_Motorspeed': 6
- 'Unplanned_Maintenance': 7
- 'Waiting_Time': 8

Now, we can train a model with common failure classes & in the future we are able to identify the most relevant failures automatically.

	cycle_time	duration_cam	duration_end	wait	fork_light_barrier	acc_sensor	motor_temp	Lego_check	width_Lego	length_Lego	horizontal_distance	vertical_distance	failure_class
0	00:00:02	00:00:02	00:00:00	00:05:39	1	2.6416	28.5206	1	164.23	246.44	-0.032533	-0.389930	7
1	00:00:02	00:00:02	00:00:00	00:07:05	1	2.6519	26.7138	1	163.77	246.32	-0.033498	-0.367090	7
2	00:00:02	00:00:01	00:00:01	00:00:03	1	2.6487	24.1249	1	163.53	246.42	-0.038323	-0.366120	5
3	00:00:07	00:00:07	00:00:00	00:00:03	1	2.6484	28.7740	1	163.35	246.28	0.025371	-0.016770	1
4	00:00:02	00:00:01	00:00:01	00:00:03	1	2.6513	27.0664	1	163.36	246.68	0.021510	-0.024169	5

Which model can be used?

Our Use Case – cheat sheet

Our Use Case – Hands On

Data: converted_data_eng.xlsx

Jupyter Notebook: SV_lego_with_converted_data.ipynb

Minute Paper

