Claims

1. A compound of formula (I)

5

the N-oxides, the pharmaceutically acceptable acid addition salts and the stereochemically isomeric forms thereof, wherein the dotted line is an optional bond and is absent when X^2 represents nitrogen; the radical -Y¹-Y²- is a radical of formula

10

15

20

-N=CH-(a-1),-CH=N-(a-2),-CH₂-CH₂-(a-3),-CH=CH-(a-4),

wherein in the bivalent radicals of formula (a-1) or (a-2) the hydrogen atom may optionally be replaced by C_{1-6} alkyl or phenyl; or in the bivalent radicals of formula (a-3) or (a-4) one or two hydrogen atoms may optionally be replaced by C₁₋₆alkyl or phenyl;

X¹ is carbon or nitrogen;

at least one of X² or X³ represents nitrogen and the other X² or X³ represents CH or carbon when the dotted line represents a bond, or both X^2 and X^3 represent nitrogen: R^1 is C_{1-6} alkyl;

aryl¹;

 C_{1-6} alkyl substituted with hydroxy, C_{3-6} cycloalkyl, aryl¹ or naphthalenyl;

C₃₋₆cycloalkyl;

25 C₃₋₆cycloalkenyl;

C₃₋₆alkenyl;

 C_{3-6} alkenyl substituted with aryl¹;

 C_{3-6} alkynyl;

 C_{3-6} alkynyl substituted with aryl¹;

 C_{1-4} alkyloxy C_{1-4} alkanediyl optionally substituted with aryl¹; 30 or when -Y¹-Y²- is a radical of formula (a-1) than R¹ may be taken together with Y² to form a radical of formula -CH=CH-CH=CH- wherein each hydrogen may optionally be replaced by a substituent independently selected from C₁₋₄alkyl, C_{1-4} alkyloxy, polyhalo C_{1-4} alkyl, halo, cyano, trifluoromethyl or aryl¹;

35 wherein aryl¹ is phenyl; or phenyl substituted with from one or five substituents

```
each independently selected from C<sub>1-4</sub>alkyl, C<sub>1-4</sub>alkyloxy,
                               polyhaloC<sub>1-4</sub>alkyl, halo, cyano, or trifluoromethyl;
       R^2 is hydrogen, C_{1-4}alkyl, or halo;
       A is C_{1-6}alkanediyl;
              C<sub>1-6</sub>alkanediyl substituted with one or two groups selected from aryl<sup>2</sup>,
5
              heteroaryl<sup>1</sup> and C<sub>3-8</sub>cycloalkyl;
              or provided X3 represents CH said radical A may also represent NH optionally
              substituted with aryl<sup>2</sup>, heteroaryl<sup>1</sup> or C<sub>3-8</sub>cycloalkyl;
              wherein aryl2 is phenyl; or phenyl substituted with from one to five substituents
                        each independently selected from C<sub>1-4</sub>alkyl, C<sub>1-4</sub>alkyloxy, halo, cyano
10
                        or trifluoromethyl;
                        heteroaryl1 is furanyl, thienyl, pyridinyl, pyrazinyl, pyrimidinyl, or
                        pyridazinyl; and said heteroaryl1 is optionally substituted with one or
                         two substituents each independently selected from C<sub>1-4</sub>alkyl,
                         C<sub>1-4</sub>alkyloxy, halo, cyano or trifluoromethyl;
15
             B is N^3R^4, or
                  OR<sup>9</sup>:
                  wherein each R<sup>3</sup> and R<sup>4</sup> are independently selected from
                       hydrogen,
20
                        C_{1-8}alkyl,
                       C<sub>1-8</sub>alkyl substituted with one, two or three substituents each
                                    independently from one another selected from hydroxy, halo,
                                    cyano, C_{1-4}alkyloxy, C_{1-4}alkyloxycarbonyl, C_{3-8}cycloalkyl,
                                    polyhaloC_{1-4}alkyl, NR^5R^6, CONR^7R^8, aryl^3, polycyclic aryl, or
                                    heteroaryl<sup>2</sup>;
25
                        C3_8cycloalkyl;
                        C<sub>3-8</sub>cycloalkenyl;
                        C<sub>3-8</sub>alkenyl;
                        C<sub>3-8</sub>alkynyl;
                        aryl<sup>3</sup>;
 30
                        polycyclic aryl;
                        heteroaryl<sup>2</sup>; or
                        R^3 and R^4 combined with the nitrogen atom bearing R^3 and R^4 may form
                            an azetidinyl, pyrrolidinyl, piperidinyl, morpholinyl, azepanyl, or
                            azocanyl ring wherein each of these rings may optionally be substituted
 35
                            by C<sub>1-4</sub>alkyloxycarbonyl, C<sub>1-4</sub>alkyloxycarbonylC<sub>1-4</sub>alkyl,
                            carbonylamino, C_{1-4}alkylcarbonylamino, CONR^7R^8 or
```

C₁₋₄alkylCONR⁷R⁸; wherein R^5 is hydrogen, C_{1-4} alkyl, aryl³, polycyclic aryl, or heteroaryl²; R^6 is hydrogen or C_{1-4} alkyl; R^7 is hydrogen, C_{1-4} alkyl or phenyl; 5 R⁸ is hydrogen, C₁₋₄alkyl or phenyl; or R^9 is C_{1-6} alkyl, or C_{1-6} alkyl substituted with one, two or three substituents each independently from one another selected from hydroxy, halo, cyano, C₁₋₄alkyloxy, C₁₋₄alkyloxycarbonyl, C_{3.8}cycloalkyl, C_{3.8}cycloalkenyl, trifluoromethyl, NR⁵R⁶, CONR⁷R⁸, 10 aryl³, polycyclic aryl, or heteroaryl²; wherein aryl³ is phenyl; phenyl substituted with one to five substituents each independently selected from C₁₋₄alkyl, C₁₋₄alkyloxy, halo, hydroxy, trifluoromethyl, cyano, C₁₋₄alkyloxycarbonyl, 15 C_{1-4} alkyloxycarbonyl C_{1-4} alkyl, methylsulfonylamino, methylsulfonyl, NR⁵R⁶, C₁₋₄alkylNR⁵R⁶, CONR⁷R⁸ or C₁₋₄alkylCONR⁷R⁸; polycyclic aryl is naphthalenyl, indanyl, fluorenyl, or 1,2,3,4-tetrahydronaphtalenyl, and said polycyclic aryl is 20 optionally substituted with one or two substituents each independently selected from C₁₋₆alkyl, C₁₋₆alkyloxy, phenyl, halo, cyano, C₁₋₄alkylcarbonyl, C₁₋₄alkyloxycarbonyl, C₁₋₄alkyloxycarbonylC₁₋₄alkyl, NR⁵R⁶, C₁₋₄alkylNR⁵R⁶, CONR⁷R⁸, C₁₋₄alkylCONR⁷R⁸ or C₁₋₄alkyloxycarbonylamino 25 and heteroaryl² is pyridinyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl, triazolyl, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, oxazolyl, pyrrolyl, furanyl, thienyl; quinolinyl; isoquinolinyl; 1,2,3,4tetrahydro-isoquinolinyl; benzothiazolyl; benzo[1,3]dioxolyl; 30 2,3-dihydro-benzo[1,4]dioxinyl; indolyl; 2,3-dihydro-1H-indolyl; 1H-benzoimidazolyl; and said heteroaryl² is optionally substituted with one or two substituents each independently selected from C₁₋₆alkyl, C₁₋₆alkyloxy, phenyl, halo, cyano, 35 C_{1-4} alkylcarbonyl, C_{1-4} alkyloxycarbonyl, C_{1-4} alkyloxycarbonyl C_{1-4} alkyl, NR⁵R⁶, C_{1-4} alkylNR⁵R⁶,

CONR⁷R⁸ or C₁₋₄alkylCONR⁷R⁸.

15

30

35

- 2. A compound as claimed in claim 1 wherein X² represents nitrogen and X³ represents CH.
- 5 3. A compound as claimed in claim 1 wherein X² represents CH and X³ represents nitrogen.
 - 4. A compound as claimed in claim 1 wherein both X^2 and X^3 represent nitrogen.
- 5. A compound as claimed in any of claims 1 to 4 wherein radical A represents C_{1-6} alkanediyl substituted with aryl².
 - 6. A compound as claimed in any of claims 1 to 4 wherein radical B represents OR^9 wherein R^9 is C_{1-6} alkyl or NR^3R^4 wherein R^3 is hydrogen.
 - 7. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically active amount of a compound as claimed in any of claims 1 to 6.
- 8. A process for preparing a pharmaceutical composition as claimed in claim 7 wherein a therapeutically active amount of a compound as claimed in any of claims 1 to 6 is intimately mixed with a pharmaceutically acceptable carrier.
 - 9. A compound as claimed in any of claims 1 to 6 for use as a medicine.
- 25 10. A process for preparing a compound of formula (I) wherein
 - a) an intermediate of formula (II), wherein Y¹, Y² and R¹ are defined as in claim 1, is reacted with an intermediate of formula (III), wherein X¹, X², X³, R², A, and B are as defined in claim 1 and Q is selected from bromo, iodo and trifluoromethylsulfonate, in a reaction-inert solvent and optionally in the presence of at least one transition metal coupling reagent and/or at least one suitable catalyst such as palladium associated with triphenylphosphine, or triphenylarsine; or

b) or, compounds of formula (I) are converted into each other following art-known

5

10

transformation reactions; or if desired; a compound of formula (I) is converted into a pharmaceutically acceptable acid addition salt, or conversely, an acid addition salt of a compound of formula (I) is converted into a free base form with alkali; and, if desired, preparing stereochemically isomeric forms thereof.

11. A compound of formula (IX)

HO-C-A-X³

$$X^2$$
 X^1
 Y^1
 Y^2
 Y^2
 Y^3
 Y^4
 Y^2
 Y^3
 Y^4
 Y^4
 Y^4

the *N*-oxides, the pharmaceutically acceptable acid addition salts and the stereochemically isomeric forms thereof, wherein R^1 , R^2 , X^1 , X^2 , X^3 , Y^1 , Y^2 and A are as defined in claim 1.