10 Committee distinction	Formulario di fisica 2 v0.1	\cdot Potenziale scalare V	Le cariche	si distribuiscono sempre su	· Lavoro per ruotarlo		· Leggi di Kirchhoff	•	■ INDUZIONE	· Disco di Barlow	· Dens. SUPERFI	CIALE corren
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NOME:	$V({f r}) = U({f r})$		ıai all'interno	$W = \int^{\theta_f} M d\theta$	(24)	Legge dei nodi	Ĩ.	Coefficienti mutua induzione	Campo elettrico	LIBERA	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MATRICOLA:		•	elettrostatica	on ar	(±,)				$vxB\mathbf{u}_x$		(162)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	■ FONDAMENTALI	_ `			Se E uniforme $W = nE(\cos \theta - \cos(\theta z))$	(75)	k=0 Legge delle maglie		(0-1) 7-1-1-17-11-1	F.e.m. indotta	$\mathbf{j_1} = \nabla \times \mathbf{H}$	(163)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	· Teorema (divergenza)	5		1		(61)	0		Flusso generato da 1 attraverso 2			(164)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\int \mathbf{F} \cdot d\mathbf{\Sigma} = \int \nabla \cdot \mathbf{F} d\tau$. Capacita							:	•	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\int_{Σ} \int_{τ} \int_{τ}			(22)	$\nu = \frac{1}{s} \sqrt{\frac{pE}{r}}$		MAGNETOSTATICA	. · ·	Induttanza	n un circuito chiuso		(165)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	· Teorema (Stokes)	$r_{rr} = \int_{-\infty}^{\infty} r_{rr} r_{rr}$		le volte c'è induzione com- dipende dalla configurazione								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\oint_{\gamma} \mathbf{F} \cdot d\mathbf{s} = \int_{\Sigma} \nabla \times \mathbf{F} d\Sigma$				$U = -\mathbf{p} \cdot \mathbf{E}$	(77)				Se nnon ci sono forze esterne il mota smorzato		(166)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	· Teorema (Gradiente)	Equazione di Poisson	· Condensa	tori			· Prima legge di Laplace		Solenoide ideale	Momento torcente frenante	con N circuiti filiformi	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\phi \circ \phi \simeq \int \Box \phi \circ \phi$				$\mathbf{F} = \nabla (\mathbf{p} \cdot \mathbf{E})$	(78)						(167)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\gamma = \gamma = \gamma = \gamma$			(oc)	· Energia pot. tra due dipoli				Toroide	Velocità angolare	■ CIRCUITI RLC	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	· Flusso di un campo	Carica puntiforme σ	Sterico							$\tau = \frac{2mR}{T}$		
1.	$\Phi_{\Sigma}(\mathbf{E}) = \oint_{\Sigma} \mathbf{E} \cdot \mathrm{d}\mathbf{\Sigma}$		$C = 4\pi\varepsilon_0$	7	$4\pi\epsilon_0 r^2$ (F1 F2 (F1 F7) (F2 F)	(62)						edenze in serie le dei resistori
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	· Equazioni di Maxwell	$V = \frac{q}{4\pi\varepsilon_0 r}$			· Forza tra dipoli				ındotta	■ DIPOLO MAGNETICO	$Z = D : i \left(., I : 1 \right)$	(168)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nel vuoto:		$C = \frac{2\pi\varepsilon_0 n}{\ln\frac{R}{r}}$									71
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\nabla \cdot \mathbf{E} = \frac{r}{\varepsilon_0}$	$\mathbf{E}(r) = \begin{cases} \frac{Qr}{4\pi\varepsilon_0 R^3} = \frac{3\rho r}{\varepsilon_0} \end{cases}$				(80)	 B di corpi notevoli (ATTENZIO) viene indicata la direzione, il verso dip 		Fem indotta			$-\frac{1}{2}$ (169)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial x}$	$\left(\frac{4\pi\epsilon_0R^2}{6}\right)$					de dalla corrente I) Asse di una spira			· Potenziale del dipolo)33	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\nabla \cdot \mathbf{B} = 0$	$V(r) = \begin{cases} \frac{\rho(3R^* - r^*)}{G\varepsilon_0} & \text{Se r} \\ \frac{G\varepsilon_0}{Q} & \text{so r} \end{cases}$				o	$\mathbf{B}(z) = \frac{\mu_0 I r^2}{1} \mathbf{n}. \tag{1}$				•	norzato
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\varepsilon_0}$					(81)	r^{2})(3/2) $^{-z}$		Corrente indotta $\hat{c}_{A\Phi(\mathbf{D})}$	· Campo magnetico B generato	$I''(t) + 2\gamma I'(t) + \omega_0 I(t)$) = 0 (170)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F. J.S. — Gint		(38)									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\int_{\Sigma} \mathbf{E} \cdot d\mathbf{\Sigma} = \frac{\varepsilon_0}{\varepsilon_0}$	$\mathbf{L}(T) \equiv \left\{ rac{Q}{4\pi arepsilon_0 R^2} ight.$		rico		(82)	00		Energia dell'induttanza	. Momento torcente	$\omega = \sqrt{LC} \qquad 2L$ $\omega = \sqrt{\omega_0^2 - \gamma^2} \qquad \tau = 0$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\oint_{\Gamma} \mathbf{E} \cdot d\mathbf{s} = -\frac{\mathrm{d}\Phi(\mathbf{B})}{\mathrm{d}t}$	$V(r) = \begin{cases} \frac{Q}{4\pi\varepsilon_0 R} \end{cases}$			dr Diolettiis linnei				Mutua (solo una volta ogni coppia):			κ_0^2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\oint_{\Sigma} \mathbf{B} \cdot d\mathbf{\Sigma} = 0$		(20)	ma del condensatore	. Dielettrici lineari $\mathbf{P} = arepsilon_{\mathbf{c}} \mathbf{v}_{\mathbf{c}} \mathbf{F}_{t} = arepsilon_{\mathbf{c}} (k-1) \mathbf{F}_{t}.$	(83)	$+a^2 \mathbf{u}_{\phi}$					(171)
10 12 12 12 13 13 14 14 15 15 15 15 15 15	$\int_{\Sigma} d\Phi_E$				$\mathbf{r} = c_0 \lambda E \mathbf{L}_R = c_0 (n-1) \mathbf{L}_R$	(66)	Solenoide ideale	1	Interna			
1. Part 2. Early 1. Part 2. Early 1. Ear	$\oint_{\Gamma} \mathbf{B} \cdot d\mathbf{s} = \mu_0 I_{conc} + \mu_0 \varepsilon_0 \frac{1}{dt}$. Dens. superficiale di q polarizza $rac{k-1}{}$	ata						ره (179)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nei mezzi:			e circuito RC		(84)	Toroide			· Energia del dipolo	$Smorz. CRITIGO \gamma^2:$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\nabla \cdot \mathbf{D} = \rho_{libere}$		· (##)		· Dens. volumetrica di q polarizza	ata			In un circuito (conta una volta ogni induttanza ed una ogni coppia)			(173)
	$\nabla \times \mathbf{H} = \mathbf{J}_{C,lib} + \frac{\partial \mathbf{D}}{\partial t}$		(6)			(85)	xy, con K \mathbf{u}_x		N	· Energia pot. tra due dipoli	A B e o si ricava	on impostando
The contraction of the contra	$\oint_{\Sigma} \mathbf{D} \cdot \mathrm{d} \mathbf{\Sigma} = Q_{int,lib}$				· Spostamento elettrico		гепте		$U = \frac{1}{2} \sum_{i=1} (L_i I_i^2 + \sum_{j=1} M_{i,j} I_i I_j) i \neq j$			
Experiment with the problem of th	$\oint_{\mathcal{L}} \mathbf{H} \cdot d\mathbf{s} = I_{conc} \lim_{lh} + \frac{d\Phi_D}{l}$				$\mathbf{D} = \varepsilon_0 \mathbf{E}_k + \mathbf{P} = \varepsilon_0 k \mathbf{E}_k = \varepsilon_0 \mathbf{E}_0$	(98)		111)	(133)	B è il campo magnetico generato dall		rzato
State Sta	Jr concino dt				•		• Effetto Hall b spessore sonda, b $//$ B, b \perp I, n car/	•	Legge di Felici	tro dipolo		(174)
(17) $V(x) = \frac{MR}{2}$ (18) Condensations in the part of the contract of the part of the contract of the part of the contract of the part	Generali	$\mathbf{E}(x) = \frac{\lambda Rx}{2\varepsilon_0 (x^2 + R^2)^{3/2}} \mathbf{u}_x$	•	tore pieno	. Lavoro del generatore $\int_{-1.7}^{t_2} \int_{-1.7}^{t_2} \int_{-1.7}^{t_3} \int_{-1.7}^{$	(10)	$V_H = \frac{IB}{\sum_{\alpha \alpha b}} $ (1)			Forza tra dipon $\mathbf{F}(\mathbf{r})=rac{3\mu_0}{4\pi v^4}[(\mathbf{m_1}\cdot\mathbf{u}_r)\mathbf{m_2}+(\mathbf{m_2}\cdot\mathbf{u}_r)\mathbf{m}$		
(3) $V(x) = \frac{V(x)}{2} \frac{V(x)^2}{2} V(x)^$	$\Delta B_{\perp} = 0$			re riempito di materiale di	$W_{gen} = \int_{t_1} V \mathrm{d}q(t) = 2U_E$	(87)			R	-twt-		$\Omega_{\mathcal{E}_0}$. (8.
[19] Exposition for the contraction of the contrac	$\Delta E_{\parallel} = 0$			(99)	. Densità di corrente N_{RW}		Forza an Ampere Corr. equiversa = for. attrattiva	•	Circuito RL in DC L si oppone alle variazioni di I smorzan-	$\pm (m_1 \cdot m_2) u_r = 0 (m_1 \cdot u_r) (m_2 \cdot u_r) u_r$		$= -\frac{1}{L} \sin(Mt + \Phi)$ (175)
	$\Delta D_1 = \sigma_L$ $\Delta D_2 = \sigma_L$	$\sigma(c)$			$\mathbf{J} = nq\mathbf{v} = \frac{\mathbf{J}}{\tau}$	(88)			dole Appena inizia a circolare corrente	■ MAGNETISMO	Soluzione	
	$\Delta E_1 = \frac{-}{\varepsilon_0}$	$\mathbf{E}(x) = \frac{1}{2\varepsilon_0} \left(1 - \frac{1}{\sqrt{1 + \frac{R^2}{x^2}}}\right)$			· Intensità di corrente		· Potenziale vettore A	,		· Campo magnetico nella materia	$I(t) = I_0(\Omega)\cos(\Omega t)$	(176)
	$\Delta H_{\parallel} = \mathbf{K}_c imes \mathbf{u}_n $ In inotesi di linearità				$I = \frac{\operatorname{d}(\mathcal{O})}{\operatorname{d}t} = \int_{\Sigma} \mathbf{J} \cdot \operatorname{d}\Sigma$	(68)			Ouando il circuito viene aperto			
E(r) = $\frac{a}{2}\frac{p}{6}\frac{p}{2}\frac{p}{4}$ E(r) = $\frac{a}{2}\frac{p}{6}\frac{p}{4}\frac{p}{4}$ E(r) = $\frac{a}{2}\frac{p}{6}\frac{p}{4}\frac{p}{4}\frac{p}{4}$ E(r) = $\frac{a}{2}\frac{p}{6}\frac{p}{4}\frac{p}{4}$ E(r) = $\frac{a}{2}\frac{p}{6}\frac{p}{4}\frac{p}{4}$ E(r) = $\frac{a}{2}\frac{p}{6}\frac{p}{4}\frac{p}{4}\frac{p}{4}$ E(r) = $\frac{a}{2}\frac{p}{6}\frac{p}{4}\frac{p}{4}\frac{p}{4}$ E(r) = $\frac{a}{2}\frac{p}{6}\frac{p}{4}\frac{p}{4}\frac{p}{4}\frac{p}{4}\frac{p}{4}$ E(r) = $\frac{a}{2}\frac{p}{6}\frac{p}{4}$	$D_{1,\parallel} D_{2,\parallel}$	Disco carico uniformemente (ore piano	i Ohm	(3)	$\int \frac{\mathbf{j(r_2)}}{r_{2,1}} \mathrm{d}\tau_2$				$I_0(\Omega) = \frac{\varepsilon_0}{ Z } =$	$\frac{\varepsilon_0}{\omega L + \frac{1}{2} \lambda^2} \tag{177}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$k_1 = k_2$				V = KI	(90)			Circuiti con barra mobile (b lunghez-	Campo magnetizzazione M		, mc
	Se $\sigma_L = 0$			COLUMN		(91)			za barra) F.e.m. indotta			,
Guscio cilindrico uniformemente carico (2) E(f) = $\frac{1}{2\pi c_0 L}$ (15) $\frac{1}{2\pi c_0 L}$ (16) $\frac{1}{2\pi c_0 L}$ (17) $\frac{1}{2\pi c_0 L}$ (18) $\frac{1}{2\pi c_0 L}$ (19) $\frac{1}{2\pi c_0 L$	$k_1 E_{1,1} = k_2 E_{2,1}$		<u> </u>	di dipolo		(93)			$\varepsilon(t) = -Bbv(t) \tag{137}$			(178)
	Furfazione innee di B $\tan(\theta_2) = \mu_2$				σ Potenza conduttore ohmico					izzante H		dı I rıspetto a a
	$\tan(\theta_1) = \frac{r^2}{\mu_1}$	$\mathbf{E}(r) = \begin{cases} 0 & Q \\ \frac{Q}{2\pi\varepsilon_0 h r} \end{cases}$	•		$P = VI = RI^2 = \frac{V^2}{D}$	(94)	· Moto ciclotrone	,			Risonanza	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	■ ELETTROSTATICA				$\mathbf{d}P = \mathbf{J}(\mathbf{r}) \cdot \mathbf{E}(\mathbf{r}) d\tau$	(95)			ner mnovere la harra		$Im(Z) = 0 \rightarrow \omega_0 =$	(T/9)
(25) ECONDUTTORI (26) Loginalibrio (26) Loginalibrio (27) All interpretation of contact in equilibrio (28) Loginalibrio (29) Loginalibrio (20) Loginalibrio (212) Roginalibrio (212) Roginali	· Forza di Coulomb									· Dens. LINEARE di corrente su SUPERFICIE		
Conduttori in equilibrio All'interno All'	$\mathbf{F} = \frac{q_1 1_2}{4\pi\varepsilon_0 r^2} \mathbf{u}_{1,2}$	-	· Campo el	ettrico E generato		(90)				$\mathbf{K_m} = \mathbf{M} \times \mathbf{u_r} \tag{1}$		(180)
(26) — il campo è nullo (52) M = $\mathbf{a} \times q\mathbf{E}(x,y,z)$ (72) $R_{eq} = \begin{pmatrix} \frac{n}{2} & 1\\ \frac{n}{2} & R_{eq} \end{pmatrix}^{-1}$ (97) $R_{eq} = \begin{pmatrix} \frac{n}{2} & 1\\ \frac{n}{2} & R_{eq} \end{pmatrix}^{-1}$ (97) $R_{eq} = \begin{pmatrix} \frac{n}{2} & 1\\ \frac{n}{2} & R_{eq} \end{pmatrix}^{-1}$ (97) $R_{eq} = \begin{pmatrix} \frac{n}{2} & 1\\ \frac{n}{2} & R_{eq} \end{pmatrix}^{-1}$ (97) $R_{eq} = \begin{pmatrix} \frac{n}{2} & 1\\ \frac{n}{2} & R_{eq} \end{pmatrix}^{-1}$ (120) $R_{eq} = \begin{pmatrix} \frac{n}{2} & R_{eq} & R_{e$	· Definizione campo elettrico	· Conduttori in equilibrio	$\mathbf{E} = \frac{qd\left(2cc\right)}{d}$		$K_{eq} = \sum_{i=1}^{r} \mathcal{K}_i$	(96)	flessione elica (v 2 dimen		Forza magnetica sulla barra	$\mathbf{K_m} = K_m \mathbf{u}_{\phi}$	•	le
E = 0 (52) $\mathbf{M} = \mathbf{a} \times q\mathbf{E}(x,y,z)$ (72) $\mathbf{E} = 0$ (52) $\mathbf{M} = \mathbf{a} \times q\mathbf{E}(x,y,z)$ (73) $\mathbf{A} = \mathbf{A} = A$	$\mathbf{F} \equiv \frac{\mathbf{F}(\mathbf{r}_0)}{\mathbf{r}_0}$		· Momento	torcente								(181)
- il potenziale è costante Se E uniforme Se E uniforme $d = \frac{2\pi R}{\tan(\theta)}$ (122) essa è opposta a v e il moto è smorzato $d = \nabla \times \mathbf{M}$ (160) $V_{eff} = \frac{\sqrt{2}}{2}V_0$ (27) $\Delta V = 0$ (53) $\mathbf{M} = \mathbf{p} \times \mathbf{E}$ (73) $\Delta V = V_0 - r_i I$ (98) $d = \frac{2\pi R}{\tan(\theta)}$ (182) esponenzialmente $d = \frac{2\pi R}{\sin(\theta)}$ (161) $d = \frac{\sqrt{2}}{2}V_0$	06				$R_{eq} = \left(\sum_{i=1}^{1} \frac{1}{R_i}\right)$	(62)			ATTENZIONE: per tenere v costante è necessaria una F esterna: altrimenti	ZZATA	•	
(21) $\Delta V = 0$ (53) $\mathbf{M} = \mathbf{p} \times \mathbf{E}$ (73) $\Delta V = V_0 - r_i I$ (96)	En. potenziale due cariche q_1q_2	'	Se E unifor	me	· Generatore reale				essa è opposta a v e il moto è smorzato esponenzialmente		$V_{eff} = \frac{\sqrt{2}}{2}V_0$	$=\frac{\sqrt{2}}{5}I_0$ (182)
	$U = \frac{1}{4\pi\varepsilon_0 r_{1,2}} + C$			(73)	$\Delta V = V_0 - r_i I$	(86)					7	

(237)		(238)	(000)	(239)		(240)	(241)	angolare	ngoraro	(242)		(949)	(c47)		(244)		(245)		(246)	(247)		(248)	(249)	interfe-	lei due	$\frac{1}{2}$	(250)		(251)		(252)		(253)		(254)	(271)	(272)	,	(273)	(274)		$\frac{x}{-}$ (275)
$I_{MAX} = N^2 I_0$ Massimi secondari	$m \in \mathbb{Z} - \{kN, kN - 1 \text{ con } k \in \mathbb{Z}\}$	$\delta = \frac{2m+1}{2N} \pi \to \sin \theta = \frac{2m+1}{2N} \frac{\lambda}{d}$	In I	$I_{SEC} = \frac{1}{\left(\sin\frac{\pi d \sin\theta}{\lambda}\right)^2}$	Minimi $m \in \mathbb{Z} - \{kN\}$	$\delta = \frac{2m}{N}\pi \to \sin\theta = \frac{m\lambda}{Nd}$	$I_{MTN} = 0$	e angolare (distanza	tra min. e max. adiacente)	$\Delta\theta \approx \frac{1}{1-\lambda}$	$N d \cos \theta$ Potere risolutore	$\delta\lambda_{-1}$	$\frac{\lambda}{\lambda} = \frac{Nn}{Nn}$	· Diffrazione Intensità	$I(\theta) = I_0 \left(\frac{\sin\left(\frac{\pi a \sin \theta}{\lambda}\right)}{\frac{\pi a \sin \theta}{\pi a \sin \theta}} \right)^2$	Massimo pincipale in $\theta = 0$	$I_{MAX} = I_0$	Massimi secondari $m \in \mathbb{Z} - \{-1, 0\}$. $2m + 1 \lambda$	$\sin \theta = \frac{2}{a} - \frac{1}{a}$	$I_{SEC} = \frac{I_0}{\left(\frac{\pi(2m+1)}{2}\right)^2}$	Minimi $m \in \mathbb{Z} - \{0\}$	$\sin \theta = \frac{m\lambda}{a}$	$I_{MIN} = 0$	• Reticolo di diffrazione Sovrapposizione di diffrazione e interfe-	renza, l'intensità è il prodotto d effetti	$I(\theta) = I_0 \left(\frac{\sin(\frac{\pi a \sin \theta}{\lambda})}{\sin(\frac{\lambda \pi d \sin \theta}{\lambda})} \right)^2$	$\frac{\lambda}{\lambda}$ Sin($\frac{\lambda}{\lambda}$)	Dispersione	$D = \frac{\mathrm{d}\theta}{\mathrm{d}\lambda} = \frac{m}{d\cos\theta_m}$	Fattore molt. di inclinazione	$f(\theta) = \frac{1 + \cos \theta}{2}$	· Filtro polarizzatore Luce NON polarizzata	$I = \frac{I_0}{2}$	Luce polarizzata (Legge di Malus)	$I = I_0 \cos^2(\theta)$	$\int \frac{1}{(x^2 + r^2)^{3/2}} \mathrm{d}x = \frac{x}{r^2 \sqrt{r^2 + x^2}}$	$\int \frac{x}{-x} dx = \sqrt{r^2 + x^2}$	$\int \sqrt{x^2 + r^2}$	$\int \frac{x}{(x^2 + r^2)^{3/2}} \mathrm{d}x = -\frac{1}{\sqrt{r^2 + x^2}}$	$\int \frac{1}{\cos x} dx = \log \left(\frac{1 + \sin x}{\cos x} \right)$		$\int \sin^3 ax dx = -\frac{3a\cos ax}{4a} + \frac{\cos 3ax}{12}$
ZIO-			(220)		(221)		(222)		(223)		(224)		(225)		(226)	(227)	,		(228)		(229)		$n \in \mathbb{Z}$	(250) tile		(231)	(232)		(233)		(234)		(235)		(236)		(267)		(268)		(269)	(270)
■ INTERFERENZA e DIFFRAZIO-	NE · Interferenza generica	onda risultante	$f(\mathbf{r},t) = Ae^{i(kr_1-\omega t + \alpha)}$	Ampiezza	$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2 \cos \delta}$	Diff. cammino ottico	$\delta = \alpha_2 - \alpha_1 = \left(\Phi_2 - \Phi_1 + k(r_2 - r_1)\right)$	Intensità	$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \delta$	Fase risultante α	$\tan \alpha = \frac{A_1 \sin \alpha_1 + A_2 \sin \alpha_2}{A_2 \cos \alpha_2 + A_2 \cos \alpha_2}$	$A_1 \cos \alpha_1 + A_2 \cos \alpha_2$ Massimi	$\delta = 2n\pi$	Minimi	$\delta = (2n+1)\pi$. Condizione di Fraunhofer $\theta = \frac{\Delta y}{2}$	L L grande tale che tan $\theta \approx \theta$	· Interferenza in fase Diff. cammino ottico	$\delta = k(r_2 - r_1) = \frac{2\pi}{\lambda} d\sin\theta$	Costruttiva	$r_2 - r_1 = n\lambda \to \sin\theta = n\frac{\lambda}{d} n \in \mathbb{Z}$	Distruttiva	$r_2 - r_1 = \frac{2n+1}{2}\lambda \to \sin\theta = \frac{2n+1}{2}\frac{\lambda}{d}$	· Interf. riflessione su lastra sott	(n indice rifr., t spessore lastra) Diff. cammino ottico	$\delta = \frac{2\pi}{\lambda} \frac{2nt}{\cos \theta_t}$	Massimi $m \in \mathbb{N}$ $t = \frac{2m+1}{\lambda} \lambda \cos \theta,$	$4n$ Minimi $m \in \mathbb{N}$	$t = \frac{m}{2n}\lambda\cos\theta_t$	· Interferenza N fenditure Diff. cammino ottico	$\delta = \frac{2\pi}{\lambda} d\sin\theta$	Intensità	$I(\theta) = I_0 \left(\frac{\sin(N\frac{\delta}{2})}{\sin\frac{\delta}{2}} \right)^{\omega}$	Massimi principali $m \in \mathbb{Z}$	$\delta = 2m\pi \to \sin\theta = \frac{m\lambda}{d}$	· Attrito viscoso Equazione differenziale	$v' + \frac{v}{\tau} = K$	Soluzione	$v(t) = k\tau(1 - e^{-\frac{t}{\tau}})$	■ ANALISI MATEMATICA · Integrali ricorrenti	$\int \frac{1}{x^2 + r^2} dx = \frac{1}{r} \arctan \frac{x}{r}$	$\int \frac{1}{\sqrt{x^2 + r^2}} dx = \ln \sqrt{x^2 + r^2} + x$
l	(200)		(201)		(202)		(203)	,	(204)		(205)		(206)	(207)		(208)	= 1)	(209)		(210)	(211)	(919)	(212)	non oss	(213)	(214)	(215)		(216)		(217)		(218)		(219)	(961)	(707)	(262)	(263)	(264)	(265)	(266)
· Coefficienti di Fresnel Definizione	$r = \frac{E_r}{E_s} \qquad R = \frac{P_r}{P_s} = \frac{I_r}{I_s}$		$t = \frac{E_t}{E_i} \qquad T = \frac{P_t}{P_i} = \frac{I_t}{I_i}$	E.	$r_{-} = \frac{\sin(\theta_t - \theta_i)}{\sin(\theta_t - \theta_i)}$	$\sin(\theta_t + \theta_i)$	$r_{\pi} = \frac{\tan(\theta_t - \theta_i)}{2}$	$\tan(\theta_t + \theta_i)$	$R_{\sigma} = r_{\sigma}^2 \qquad R_{\pi} = r_{\pi}^2$	Raggio TRASMESSO polarizzato	$t_{\sigma} = \frac{2n_i \cos \theta_i}{n_i \cos \theta_i + n_i \cos \theta_i}$	$n_i \cos \theta_i + n_t \cos \theta_t$	$t_p i = \frac{2n_i \cos \theta_i}{n_i \cos \theta_t + n_t \cos \theta_i}$	$T_{\sigma} = 1 - R_{\sigma} \qquad T_{\pi} = 1 - R_{\pi}$	izza	$R = \frac{1}{2}(R_{\sigma} + R_{\pi}) \qquad T = \frac{1}{2}(T_{\sigma} + T_{\pi})$	Incidenza normale ($\cos \theta_i ? \cos \theta_t =$	$r = \frac{n_i - n_t}{n_1 + n_2}$	2 \	$R = \left(\frac{n_i - n_t}{n_i + n_t}\right)$	$t = \frac{2n_i}{n_i + n_t}$	$T - \frac{4n_in_t}{}$	$a = (n_i + n_t)^2$ A result of B December (i) morning with	Angolo di Drewster (u raggio rinesso non ha polar. parallela)	$\theta_i + \theta_t = \frac{\pi}{2} \to \theta_B = \theta_i = \arctan \frac{n_t}{n_i}$	$R = \frac{1}{2}\cos^2(2\theta_i)$	T = 1 - R	· Pressione di radiazione Superficie ASSORBENTE	$p = rac{I_i}{v}$	Superficie RIFLETTENTE	$p = \frac{I_i + I_t + I_r}{v}$	· Rapporto di polarizzazione	$\beta_R = \frac{P_R^{\sigma} - P_R^{\pi}}{P_{\sigma}^{\sigma} + P_{\pi}^{\pi}}$	$P_{\mu}^{\sigma} - P_{\pi}$	$\beta_T = \frac{T - T_T}{P_T^{\sigma} + P_T^{\pi}}$	· Lavoro	Moto circolare unif. accelerato	$v = \omega r$	$a = \frac{v^2}{r} = \omega^2 r$	$\theta(t) = \theta(0) + \omega(0)t + \frac{1}{2}\alpha t^2$. Moto armonico	Equazione differenziale $x'' + \omega^2 x = 0$	Soluzione $x(t) = A\sin(\omega t + \varphi)$
			(183)	(184)				(185)			(186)		(187)	di Σ		(188)		(189)		(190)	(191)		(192)		(193)		(194)	(195)		(196)	(197)		(198)		(199)		(255)	(256)	(257)	(258)		(260)
■ CAMPO EM e OTTICA	Campi in un'onda EM	(Nel vuoto $v = c$)	$E(x,t) = E_0 \cos(kx - \omega t)$	$B(x,t) = \frac{E_0}{v}\cos(kx - \omega t)$	$\omega = kv k = \frac{2\pi}{r} \lambda = \frac{v}{r}$	ν	· Vettore di Poynting	$\mathbf{S} = \frac{1}{\mathbf{E} \times \mathbf{B}}$	μ_0	· Intensità media onda	$I = \langle S \rangle = \langle E^2 \varepsilon v \rangle$	· Potenza	$P = I\Sigma$	L'intensità varia in base alla scelta di	· Equazioni di continuità Teorema di Poynting	$\nabla \cdot \mathbf{S} + \mathbf{E} \cdot \mathbf{j} + \frac{\partial u}{\partial t} = 0$	Conservazione della carica	$\nabla \cdot \mathbf{j} + \frac{\partial \rho}{\partial t} = 0$	· Densità di en. campo EM	$u_{EM} = \frac{1}{2} (\mathbf{E} \cdot \mathbf{D} + \mathbf{B} \cdot \mathbf{H})$	$U_{EM} = \int_{\mathbb{R}^3} u_{EM} \mathrm{d} au$	· Densità di quantità di moto	∞ ∞ ⊴	. Effetto Doppler	$\nu' = \nu \frac{v - v_{oss}}{v - v_{sorg}}$	Oscillazione del dipolo	$I(r,\theta) = \frac{I_0}{r^2} \sin^2(\theta)$	$P = \int \int I(r,\theta) dr d\theta = \frac{8}{3}\pi I_0$	Velocità dell'onda	$v^2 = \frac{1}{k_e \varepsilon_0 k_m \mu_0}$	$c^2 = \frac{1}{\varepsilon_{o.0.0}}$	oreo · Indice di rifrazione	$n = \frac{c}{v} = \sqrt{k_e k_m}$	· Legge di Snell-Cartesio	$n_1\sin\theta_1=n_2\sin\theta_2$	■ UNITÀ DI MISURA Wh c m²ka	$H = \frac{1}{A} = Tm^2 = \frac{10^{-13}}{A^2 s^2}$ $V = V^2 = \frac{10^{-13}}{10^{-13}}$	$\Omega = \frac{V}{A} = \frac{V}{W} = \frac{m \log y}{A^2 s^3}$	$T = \frac{N}{Am} = \frac{kg}{As^2}$	$V = \frac{J}{C} = \frac{W}{A} = \frac{m \log 3}{8^3 A}$ $F = \frac{C}{V} = \frac{C^2}{V} = \frac{A^2 s^4}{m \log 4 s}$	FISICA 1	. Momento torcente $M = \mathbf{r} \times \mathbf{F} = I \alpha$

· Differenziale di primo ordine	ne Soluzioni	oni	-	Identità vettoriali		· Identità geometriche	
Colma generale		0		$\nabla \cdot (\nabla \times \mathbf{A}) = 0$	(282)	$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$ (288)	3 (288)
y(t) + a(t)y(t) = b(t)	(2/0) $y(t) =$	$y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$	(279)	$\nabla \times (\nabla f) = 0$	(283)		
Soluzione $a(t) = c^{-A(t)}(c+\int b(t)e^{A(t)}dt)$	Se $\Delta = 0$	0 =		$\nabla \cdot (f\mathbf{A} = f\nabla \cdot \mathbf{A} + \mathbf{A} \cdot \nabla f$		$\cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta (289)$	β (289)
g(t) = c Differentiale di secondo ordine omo-		$y(t) = c_1 e^{\lambda_1 t} + t c_2 e^{\lambda_2 t}$	(280)	$\nabla(\mathbf{A}\cdot\mathbf{B}) = \mathbf{B}\cdot(\nabla\times\mathbf{A}) - \mathbf{A}\cdot(\nabla\times\mathbf{B})$	$\mathbf{A} \cdot (\nabla \times \mathbf{B})$	$\cos\frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos\alpha}{2}}$	(290)
geneo	Se $\Delta < 0$	0 >			(285)		
Forma generale $y'' + ay' + by = 0$ $a, b \in \mathbb{R}$	(278) $y(t) =$	$y(t) = c_1 e^{\alpha t} \cos(\beta t) + c_2 e^{\alpha t} \sin(\beta t) (281)$		$\nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$	(286)	$\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}}$	(291)
$\lambda_{1,2} \in \mathbb{C}$ sono le soluzioni dell'equazione associata		$con \alpha = Re(\lambda) e \beta = Im(\lambda)$		$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$	(287)	$\tan \frac{\alpha}{2} = \frac{1 - \cos \alpha}{\sin \alpha} = \frac{\sin \alpha}{1 + \cos \alpha}$	(292)
		Cartesiane	S	Sferiche	Cilindriche		
	Gradiente $(\nabla f =)$	$\frac{\partial f}{\partial x} \mathbf{x} + \frac{\partial f}{\partial y} \mathbf{y} + \frac{\partial f}{\partial z} \mathbf{z}$	$\frac{\partial f}{\partial r} \mathbf{r} + \frac{1}{r} \frac{\partial}{\partial r}$	$\frac{\partial f}{\partial r} \mathbf{r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \theta + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \phi$	$\frac{\partial f}{\partial r} \mathbf{r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \theta + \frac{\partial f}{\partial z} \mathbf{z}$	s	
	Divergenza $(\nabla \cdot \mathbf{F} =)$	$\frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$	$\frac{1}{r^2} \frac{\partial r^2 F_r}{\partial r} + \frac{1}{r \sin \theta}$	$\frac{1}{r^2}\frac{\partial r^2F_r}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial F_\theta \sin\theta}{\partial \theta} + \frac{1}{r\sin\theta}\frac{\partial F_\phi}{\partial \phi}$	$\frac{1}{r}\frac{\partial F_r}{\partial r} + \frac{1}{r}\frac{\partial F_\theta}{\partial \theta} + \frac{\partial F_z}{\partial z}$	$\frac{F_z}{\partial z}$	
		$\left(\begin{array}{c} \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \end{array}\right)$	$\left(\frac{1}{r\sin\theta}\left(\frac{\partial}{\partial x}\right)\right)$	$\frac{1}{r\sin\theta} \left(\frac{\partial F_{\phi} \sin\theta}{\partial \theta} - \frac{\partial F_{\theta}}{\partial \phi} \right)$	$\left(\begin{array}{c} \left(\frac{1}{r}\frac{\partial F_z}{\partial \phi} - \frac{\partial F_\phi}{\partial z}\right) \end{array}\right)$		
	Rotore $(\nabla \times \mathbf{F} =)$	$\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}$	$\frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\delta}{\theta} \right)$	$\frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial F_r}{\partial \phi} - \frac{\partial (r F_{\phi})}{\partial r} \right)$	$\left(\frac{\partial F_r}{\partial z} - \frac{\partial (rF_z)}{\partial r}\right)$		
		$\left(\begin{array}{c} \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \end{array}\right)$	$\left(\frac{1}{r} \left(\frac{\partial (r)}{\delta} \right) \right)$	$\frac{1}{r} \left(\frac{\partial (r F_{\theta})}{\partial r} - \frac{\partial F_r}{\partial \theta} \right)$	$\left(\frac{1}{r} \left(\frac{\partial (rF_{\phi})}{\partial r} - \frac{\partial F_r}{\partial \phi} \right) \right)$		
		Il laplaciano di un cam	po scalare Φ , in qu	ll laplaciano di un campo scalare Φ , in qualunque coordinata, è $\nabla \cdot \nabla \Phi$	$\Phi \Delta$.		