COMPUTER ORGANIZATION (IS F242)

LECT 32: MIPS ARCHITECTURE

Multicycle Datapath with Control

Actions of the 1 bit control signals

Signal name	Effect when deasserted	Effect when asserted	
RegDst	The register file destination number for the Write register comes from the rt field.	The register file destination number for the Write register comes from the rd field.	
RegWrite	None.	The general-purpose register selected by the Write register number is written with the value of the Write data input.	
ALUSrcA	The first ALU operand is the PC.	The first ALU operand comes from the A register.	
MemRead	None.	Content of memory at the location specified by the Address input is put on Memory data output.	
MemWrite	None.	Memory contents at the location specified by the Address input is replaced by value on Write data input.	
MemtoReg	The value fed to the register file Write data input comes from ALUOut.	The value fed to the register file Write data input comes from the MDR.	
lorD	The PC is used to supply the address to the memory unit.	ALUOut is used to supply the address to the memory unit.	
IRWrite	None.	The output of the memory is written into the IR.	
PCWrite	None.	The PC is written; the source is controlled by PCSource.	
PCWriteCond	None.	The PC is written if the Zero output from the ALU is also active.	

Actions of the 2 bit control signals

Signal name	Value (binary)	Effect	
ALUOp	00	The ALU performs an add operation.	
	01	The ALU performs a subtract operation.	
	10	The funct field of the instruction determines the ALU operation.	
ALUSrcB	O0 The second input to the ALU comes from the B register.		
	01	The second input to the ALU is the constant 4.	
	10	The second input to the ALU is the sign-extended, lower 16 bits of the IR.	
	11	The second input to the ALU is the sign-extended, lower 16 bits of the IR shifted left 2 bits.	
PCSource	00	Output of the ALU (PC + 4) is sent to the PC for writing.	
	01	The contents of ALUOut (the branch target address) are sent to the PC for writing.	
	10	The jump target address (IR[25:0] shifted left 2 bits and concatenated with PC + 4[31:28]) is sent to the PC for writing.	

Drawbacks of Multi Cycle Datapath

- Assume the following
 - Memory access = 2ns
 - Register Read/Write = 1ns
 - □ ALU function = 2ns

Load	5 cycles
Add	4 cycles
Store	4 cycles
Branch	3 cycles

Cycle Time for Single cycle Implementation 8ns

Cycle Time for Multi cycle Implementation **2ns**

Arithmetic 48%
Loads 22%
Stores 11%
Branch 19%

Multi cycle - Assume a program with a million instructions Avg. CPI = 0.48*4 + 0.22*5 + 0.11*4 + 0.19*3 = 4.03 cycles T = I * CPI * Cycle Time = $10^6 * 4.03 * 2 = 8.06$ ms

Defining the control

- Control unit design
 - Hardwired finite state machines
 - Microprogrammed A symbolic representation of control in the form of instructions that are executed on a simple machine
- Finite state machines
 - set of state + directions
- Next state function
 - combinational function that maps the current state and the inputs to the next state

Control circuit

Instruction Fetch and Decode FSM States

R - type

Branch

Jump

Exceptions

Exception:

 is an anomalous event arising from within the processor, such as arithmetic overflow

Interrupt:

- is an event that causes an unexpected change in control flow. Interrupts are assumed to originate outside the processor, for example, an I/O request
- Patterson and Hennessey's convention
 - An interrupt is an externally caused event, and an exception one of all other events that cause unexpected control flow in a program

Interrupt Vs Exception in MIPS

Type of Event	From where?	MIPS terminology
I/O device request	External	Interrupt
Invoke OS from user program	Internal	Exception
Arithmetic overflow	Internal	Exception
Using an undefined instruction	Internal	Exception
Hardware malfunctions	Either	Exception or Interrupt