Masterarbeit

Inhaltsverzeichnis

I. Überblick	2
1. Puntkwolke	2
2. Daten	2
3	2
II. Berechnung	2
1. Ablauf	
2. Separierung in Bäume	
3. Segmentierung von einem Baum	
4. Baumeigenschaften	
4.1. Krümmung	
4.2. Punkthöhe	
4.3. Varianz in Scheibe	
4.4	
5. Eigenschaften für Visualisierung	
5.1. Normale	
5.2. Punktgröße	
6. Baumart	3
III. Visualisierung	3
III. Visualisierung	
1. Technik	3
1. Technik	3 3
Technik Punkt Dynamische Eigenschaft	3 3 3
1. Technik	3 3 3
1. Technik	3 3 3 3
1. Technik	3 3 3 3 3
1. Technik	3 3 3 3 3 3
1. Technik	3 3 3 3 3 4
1. Technik	3 3 3 3 3 4 4
1. Technik	3 3 3 3 3 4 4 4
1. Technik	3 3 3 3 3 3 4 4 4 4
1. Technik	3 3 3 3 3 4 4 4 4 4
1. Technik	3 3 3 3 3 3 4 4 4 4 4 4
1. Technik	3 3 3 3 3 3 4 4 4 4 4 4 4
1. Technik	3 3 3 3 3 3 4 4 4 4 4 4 4 4

I. Überblick

- 1. Puntkwolke
- 2. Daten
- 3. ...

II. Berechnung

1. Ablauf

Als Bild

- 1. Eingabedateien
 - · Dateien laden
- 2. Punktmenge
 - Segmentierung in Bäume, Boden...
- 3. Liste von Bäumen
 - Analyse der Bäume
- 4. Liste von analysierten Bäumen
 - · Generierung von Octree
- 5. Octree + LOD für Visualisierung

Phasen (Phase ist in sich parallelisiert)

- Laden der Dateien
- Segmentierung
- Analyse + Generierung

2. Separierung in Bäume

• ?

3. Segmentierung von einem Baum

• 7

4. Baumeigenschaften

4.1. Krümmung

- 1. Hauptkomponentenanalyse
 - $\lambda_i \min_{3\lambda_0} i \in \mathbb{N}_0^2$ und $\lambda_i > \lambda_j$ wenn i > j
- $2. \ c_{\frac{3\lambda_2}{\lambda_0 + \lambda_1 + \lambda_2}}$
 - *c* ∈ [0, 1]

4.2. Punkthöhe

- 1. $h = \frac{p_y y_{\min}}{y_{\max} y_{\min}}$ • $h \in [0, 1]$
- 4.3. Varianz in Scheibe

- 1. 5 cm Scheiben
- 2. geometrischen Schwerpunkt berechnen
- 3. Varianz *v* berechnen
- 4. $x = \frac{v_i}{v_{\text{max}}}$ • $x \in [0, 1]$

4.4. ...

5. Eigenschaften für Visualisierung

5.1. Normale

- 1. Hauptkomponentenanalyse
- 2. Eigenvektor für λ_2

5.2. Punktgröße

- 1. Durchschnittliche Abstand zu umliegenden Punkten
- 2. Ausgleichsfaktor?

6. Baumart

• ?

III. Visualisierung

1. Technik

- Rust
- WebGPU (wgpu)
- native Window
- Website?

2. Punkt

- Instancing
- quad rect
- · Ausdehnung mit Normale
- · Discard mit Distanz

3. Dynamische Eigenschaft

3.1. Lookup Table

4. Subpunktwolken (Bäume)

4.1. Selektion (Raycast)

5. Eye Dome

- 1. Post processing
- 2. depth image
- 3. anliegender Pixel mit maximalem Abstand

1. (-1,0), (0,-1), (1,0), (0,1)

- 4. Parameter *m*
- 5. $x = \frac{\text{maximaler abstand}}{\text{maximaler abstand}}$
- 6. auf [0, 1] beschränken
- 7. Parameter color?
- 8. Pixel mit color und x als α überlagern

6. LOD Octree

- 1. (Octree begriffe in English)
- 2. Octree mit maximaler Blattgröße 1 ≪ 15? (32k)
- 3. Blätter mit mehr Punkten werden in 8 Kinderknoten geteilt
 - Punkte auf Kinder verteilen
- 4. non Leaf Knoten wird LOD aus Kindern berechnet
 - 1. Punkte kombinieren
 - 2. Für Eigenschaften wert von einem Punkt übernehmen
- 5. rekursiv von Kindern bis zum Root
- 6. Beim rendern für entferne Punkte nur Lod Stufe verwenden
 - 1. je näher so genauere LOD Stufe

6.1. Kostenbudget?

- Anpassung der Genauigkeit
 - · verringerung des Aufwands

7. Kamera/Projektion

7.1. Kontroller

- 7.1.1. Orbital
- 7.1.2. First person

7.2. Projektion

7.2.1. Perspektive

FOV

7.2.2. Orthogonal?

8. Interface

• ?