Шабалин Александр

16 марта 2020 г.

- 1. Обучить нейронную сеть
- 2. Удалить лишние элементы
- 3. Дообучить полученную сеть (Fine-tune)
- 4. Повторить

- 1. Обучить нейронную сеть
- 2. Удалить лишние параметры
- 3. Дообучить полученную сеть (Fine-tune)
- 4. Повторить

- 1. Обучить нейронную сеть
- 2. Удалить лишние элементы
- 3. Дообучить полученную сеть (Fine-tune)
- 4. Повторить

- 1. Обучить нейронную сеть
- 2. Удалить лишние элементы
- 3. Дообучить полученную сеть (Fine-tune)
- 4. Повторить

Network	Top-1 Error	Top-5 Error	Parameters	Compression Rate
LeNet-300-100 Ref	1.64%	-	267K	
LeNet-300-100 Pruned	1.59%	-	22K	12×
LeNet-5 Ref	0.80%	2	431K	
LeNet-5 Pruned	0.77%	-	36K	12×
AlexNet Ref	42.78%	19.73%	61M	
AlexNet Pruned	42.77%	19.67%	6.7M	9×
VGG-16 Ref	31.50%	11.32%	138M	
VGG-16 Pruned	31.34%	10.88%	10.3M	13×

Если качество не падает, то почему бы не тренировать урезанные сети с нуля?

Гипотеза:

Случайно инициализированная нейронная сеть содержит в себе подсеть, которая при обучении на не большем числе итераций достигает не меньшей точности, чем исходная сеть.

- 1. Создаем нейронную сеть со случайными весами
- 2. Обучаем ее и обрезаем лишние параметры
- 3. Возвращаем параметры к исходным значениям
- 4. Повторяем (2)-(3)

- 1. Создаем нейронную сеть со случайными весами
- 2. Обучаем ее и обрезаем лишние параметры
- 3. Возвращаем параметры к исходным значениям
- 4. Повторяем (2)-(3)

- 1. Создаем нейронную сеть со случайными весами
- 2. Обучаем ее и обрезаем лишние параметры
- 3. Возвращаем параметры к исходным значениям
- 4. Повторяем (2)-(3)

- 1. Создаем нейронную сеть со случайными весами
- 2. Обучаем ее и обрезаем лишние параметры
- 3. Возвращаем параметры к исходным значениям
- 4. Повторяем (2)-(3)

- 1. Создаем нейронную сеть со случайными весами
- 2. Обучаем ее и обрезаем лишние параметры
- 3. Возвращаем параметры к исходным значениям
- 4. Повторяем (2)-(3)

Получаем нейронную сеть малых размеров, 1-15% от исходного размера, которая быстрее обучается и достигает не меньшей точности.

- Xavier initialization: $std_i = \sqrt{\frac{2}{n_{i-1} + n_i}}$
- Kaiming initialization: $std_i = \sqrt{\frac{2}{n_{i-1}}}$

 n_i - количество нейронов на i-ом слое

Вопросы

- 1. Сформулировать гипотезу The Lottery Tickets.
- 2. Алгоритм нахождения подсети в The Lottery Tickets Hypothesis
- 3. Алгоритм нахождения подсети показывающей хорошие результаты без обучения.

Источники

- The Lottery Ticket Hypothsis: Finding Sparse, Trainable Neural Networks (2019)
- One ticket to win them all: generalizing lottery ticket initializations across datasets and optimizers (2019)
- What's Hidden in a Randomly Weighted Neural Network? (2019)