Linear Systems - Iterative Methods

Consider the syste

(i)
$$\begin{cases} 3x_1 - x_2 + x_3 = 1 \\ 3x_1 + 6x_2 + 2x_3 = 0 \\ 3x_1 + 3x_2 + 7x_3 = 4 \end{cases}$$

(ii)
$$\begin{cases} 3x_1 + x_2 + x_3 = 5 \\ x_1 + 3x_2 - x_3 = 3 \\ 3x_1 + x_2 - 5x_3 = -1 \end{cases}$$

(iii)
$$\begin{cases} 3x_1 + x_2 + x_3 = 6 \\ x_1 + 3x_2 + x_3 = 3 \\ x_1 + x_2 + 3x_3 = 5 \end{cases}$$

Consider the systems
$$\begin{cases} 3x_1 - x_2 + x_3 = 1 \\ 3x_1 + 6x_2 + 2x_3 = 0 \\ 3x_1 + 3x_2 + 7x_3 = 4 \end{cases}$$
 (ii)
$$\begin{cases} 3x_1 + x_2 + x_3 = 5 \\ x_1 + 3x_2 - x_3 = 3 \\ 3x_1 + x_2 - 5x_3 = -1 \end{cases}$$
 (iv)
$$\begin{cases} 3x_1 + x_2 + x_3 = 6 \\ x_1 + 3x_2 + x_3 = 3 \\ x_1 + x_2 + 3x_3 = 5 \end{cases}$$
 (iv)
$$\begin{cases} 2x_1 + x_2 - x_3 + x_4 = 4 \\ x_1 - 2x_2 + x_3 - 2x_4 = 5 \\ 2x_1 + 2x_2 + 5x_3 - x_4 = 6 \\ x_1 - x_2 + x_2 + 4x_4 = 7 \end{cases}$$

Starting with $\begin{bmatrix} x_1^{(0)} \\ x_2^{(0)} \\ r^{(0)} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, compute the iterates $\begin{bmatrix} x_1^{(1)} \\ x_2^{(1)} \\ x_2^{(1)} \end{bmatrix}$ and $\begin{bmatrix} x_1^{(2)} \\ x_2^{(2)} \\ x_2^{(2)} \end{bmatrix}$,

the Jacobi method

- the Gauss-Seidel method
- **02.** Show that if $\mathbf{A} = \left(a_{ij}\right)_{1 \le i, j \le n}$ is an $n \times n$ matrix, then

$$\left\| \boldsymbol{A} \right\|_1 = \max_{1 \leq j \leq n} \sum_{i=1}^n \ \left| a_{ij} \right| \qquad \quad \text{and} \qquad \quad \left\| \boldsymbol{A} \right\|_{\infty} = \max_{1 \leq i \leq n} \sum_{j=1}^n \ \left| a_{ij} \right|$$

Hence $||A||_1$ is the maximum of the 1-norm of the columns of A, while $||A||_2$ is the maximum of the 1-norm of the rows of A.

Compute $\left\| \left| \boldsymbol{A} \right| \right\|_{_{1}}$ and $\left\| \left| \boldsymbol{A} \right| \right\|_{_{\infty}}$ for each of the matrices

a.
$$A = \begin{bmatrix} 0 & 2 & -1 \\ 1 & -1 & 2 \\ 1 & -1 & 4 \end{bmatrix}$$

b.
$$A = \begin{bmatrix} 1 & -2 & 3 & 0 \\ 3 & -6 & 9 & 3 \\ 2 & 1 & 4 & 1 \\ 1 & -2 & 2 & -2 \end{bmatrix}$$

Compute $\|A\|_{2}$ for each of the following matrices

$$\mathbf{a.} \quad \boldsymbol{A} = \begin{bmatrix} 1 & -2 \\ -3 & 4 \end{bmatrix}$$

b.
$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

a.
$$A = \begin{bmatrix} 1 & -2 \\ -3 & 4 \end{bmatrix}$$
 b. $A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ **c.** $A = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 1 & 1 & 2 \end{bmatrix}$

05. Let
$$I_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$
 and $D = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix}$

- Show that $|||I_n|||_1 = |||I_n|||_2 = ||I_n||_\infty = 1$
- Compute $\|\boldsymbol{D}\|_1$, $\|\boldsymbol{D}\|_2$, and $\|\boldsymbol{D}\|_{\infty}$
- For each of the systems in problem (01) above, compute 06.
 - the Jacobi iterative matrix $\, oldsymbol{T}_{\scriptscriptstyle J} = oldsymbol{I} oldsymbol{D}^{-1} \, oldsymbol{A} \,$ and its infinity norm
 - the Gauss-Seidel iterative matrix $\, m{T}_{\scriptscriptstyle GS} = m{I} m{R}^{-1} \, m{A} \,$ and its infinity norm

Discuss the convergence of each method.

Note: In MATLAB, the command inv(A), computes the inverse of the matrix A, while the command norm(A,inf), computes the infinity norm of the matrix A.

- Analyze the convergence of the Jacobi and Gauss-Seidel iterative methods for the system A x = b, where $A = \begin{bmatrix} 1 & \alpha \\ \alpha & 1 \end{bmatrix}$, $|\alpha| < 1$
- Suppose the system $\boldsymbol{x} \boldsymbol{D}\boldsymbol{x} + \boldsymbol{c}$, $\boldsymbol{x}^{(0)} = \boldsymbol{0}$ where \boldsymbol{B} is an $n \times n$ matrix. $\boldsymbol{x}^{(k)} = \boldsymbol{B} \, \boldsymbol{x}^{(k-1)} + \boldsymbol{c}, \quad k = 1, \, 2, \, 3, \, \cdots$ Suppose the system x = Bx + c, has a unique solution $x \in \mathbb{R}^n$, and consider the
 - Show that if $\| \boldsymbol{B} \| < 1$, for some induced matrix norm $\| \cdot \|$, then the sequence $\left\{ \left. oldsymbol{x}^{(k)}
 ight.
 ight\}_{k \geq 0} \ ext{converges to} \ oldsymbol{x}, \ ext{and} \ \|oldsymbol{x} - oldsymbol{x}^{(k)}\| \leq \|oldsymbol{B}\|^k \ \|oldsymbol{x} - oldsymbol{x}^{(0)}\|.$
 - Show that

$$\|m{x} - m{x}^{(k)}\| \le \frac{\|m{B}\|^k}{1 - \|m{B}\|} \|m{x}^{(1)} - m{x}^{(0)}\|$$

$$\textbf{09.} \quad \text{Consider the system} \left[\begin{array}{cccccc} 4 & -1 & 0 & -1 & 0 & 0 \\ -1 & 4 & -1 & 0 & -1 & 0 \\ 0 & -1 & 4 & 0 & 0 & -1 \\ -1 & 0 & 0 & 4 & -1 & 0 \\ 0 & -1 & 0 & -1 & 4 & -1 \\ 0 & 0 & -1 & 0 & -1 & 4 \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{array} \right] = \left[\begin{array}{c} 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \end{array} \right]$$

with exact solution $x = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$. Use the MATLAB functions myJacobi() and myGauss-

Seidel() from your assignment #3 to solve the system

using Jacobi's Method

b. using Gauss-Seidel Method

Stop the iterations whenever $\frac{\|\boldsymbol{x}^{(k)} - \boldsymbol{x}^{(k-1)}\|_{\infty}}{\|\boldsymbol{x}^{(k)}\|_{\infty}} \leq 10^{-3}$

- Compute the condition number $\|A\|$ $\|A^{-1}\|$ of the given matrix A. Use the one-norm. **a.** $A = \begin{bmatrix} 1/2 & 1/3 \\ 1/3 & 1/4 \end{bmatrix}$ **b.** $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 6 \end{bmatrix}$ 10.

Notice that because the matrices are symmetric, the use of the infinity-norm will give the same value of the condition number.

Let ${\pmb A}$ be an $n \times n$ invertible matrix, and let λ_1 , λ_2 , \cdots , λ_n be its eigenvalues. Show

$$\operatorname{cond} \left(\boldsymbol{A} \right) \geq \frac{\displaystyle \max_{1 \leq i \leq n} |\lambda_i|}{\displaystyle \min_{1 \leq i \leq n} |\lambda_i|}$$

The $n \times n$ Hilbert matrix, is the matrix whose (i, j)-entry is $\frac{1}{i+j-1}$. For instance the

 2×2 Hilbert matrix is $\begin{bmatrix} \frac{1}{1} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{3} \end{bmatrix}$, and the 3×3 Hilbert matrix is $\begin{bmatrix} \frac{1}{1} & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \end{bmatrix}$.

Use MATLAB to solve and compare the two solutions of the systems Ax = b

 $\mathbf{A}\mathbf{y} = \mathbf{c}$, where \mathbf{A} is the 6×6 Hilbert matrix, $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$ and $\mathbf{c} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$

Can you explain why despite the fact that b and c are nearly equal, the solutions of the two systems are not.

Note: In MATLAB, the command A = hilb(n) will generate the $n \times n$ Hilbert matrix and store it in A, while the command $x = A \setminus b$, will solve the system Ax = b, using LU with partial pivoting.

3