P8160 - Breast Cancer Data: To lasso or to not lasso

Amy Pitts, Hun Lee, Jimmy Kelliher, Tucker Morgan, and Waveley Qiu

Motivation

Diagnosing breast cancer is extremely important.

According to NIH there has been an estimated:

- ▶ 281,550 new cases of breast cancer in women in 2021,
- ▶ 43,600 breast cancer in women related deaths in 2021.

American Cancer Society Guideline for Breast Cancer Screening:

- ▶ Women between ages 25-40 should have an annual clinical breast examination.
- ► Women between ages 40-44 should begin annual screening via mammogram
- Women between ages 45-54 should screened annually via mammogram

Goal

With using all the collected imagine data we want to develop an algorithm to predict diagnosis. Since diagnosis is a binary outcome a logistic regression will be utilized.

Methods:

- Newton-Raphson Algorithm (Full Model)
- Logistic LASSO Algorithm (Optimal Model)

Data

- ▶ 569 rows and 31 columns all related to breast tissue images
- Outcome of interest: Diagnosis (B or M)
 - ▶ 357 benign (B) cases and 212 malignant (M) cases
- ► The Covariates include information such as radius, texture, perimeter, area, smoothness, compactness, concavity, concave points, symmetry, and fractal dimension.

Correlations Between Variables

Figure 2: Ranked Cross-Correlations

25 most relevant

Correlation

The correlation pairs can be grouped into equivalence classes. To identify the best proxy for this grouping we look at the highest mean correlation

- First: {area_mean, area_worst, perimeter_mean, perimeter_worst, radius_mean, radius_worst}
 - ▶ Winner: radius_worst.
- Second: {radius_sd, perimeter_se, area_se}.
 - Winner: radius_se.
- Third: {concavity_mean,concavity_worst, concave.point_worst, concave.point_mean}
 - ► Winner: concave.point_worst.
- Fourth: {texture_mean, texture_worst}
 - Winner: texture_mean

Therefore 10 variables are removed.

Remaining Variables

	Diagnosis Received		
Variable	B , N = 357 ¹	M , N = 212^{7}	p-value ²
texture_mean	17.91 (4.00)	21.60 (3.78)	<0.001
smoothness_mean	0.09 (0.01)	0.10 (0.01)	<0.001
compactness_mean	0.08 (0.03)	0.15 (0.05)	<0.001
concave points_mean	0.03 (0.02)	0.09 (0.03)	<0.001
symmetry_mean	0.17 (0.02)	0.19 (0.03)	<0.001
fractal_dimension_mean	0.06 (0.01)	0.06 (0.01)	0.5
radius_se	0.28 (0.11)	0.61 (0.35)	<0.001
texture_se	1.22 (0.59)	1.21 (0.48)	0.6
smoothness_se	0.01 (0.00)	0.01 (0.00)	0.2
compactness_se	0.02 (0.02)	0.03 (0.02)	<0.001
concavity_se	0.03 (0.03)	0.04 (0.02)	<0.001
concave points_se	0.01 (0.01)	0.02 (0.01)	<0.001
symmetry_se	0.02 (0.01)	0.02 (0.01)	0.028
fractal_dimension_se	0.00 (0.00)	0.00 (0.00)	<0.001
radius_worst	13.38 (1.98)	21.13 (4.28)	<0.001
smoothness_worst	0.12 (0.02)	0.14 (0.02)	<0.001
compactness_worst	0.18 (0.09)	0.37 (0.17)	<0.001
concavity_worst	0.17 (0.14)	0.45 (0.18)	<0.001
symmetry_worst	0.27 (0.04)	0.32 (0.07)	<0.001
fractal_dimension_worst	0.08 (0.01)	0.09 (0.02)	<0.001

⁷ Statistics presented: Mean (SD)

² Statistical tests performed: Wilcoxon rank-sum test

Full Model (Newton-Raphson)

To impliment the Newton-Raphson Method we need the likelihood, gradiant, and hessian matrix:

$$\pi_i = P(Y_i = 1 | x_{i,1}, \dots x_{i,20}) = \frac{e^{\beta_0 + \sum_{j=1}^{20} \beta_j x_{i,j}}}{1 + e^{\beta_0 + \sum_{j=1}^{20} \beta_j x_{i,j}}}$$

likelihood function:

$$L(\mathbf{X}|\beta) = \prod_{i=1}^{n} \left[\pi_{i}^{y_{i}} (1 - \pi_{i})^{1 - y_{i}} \right]$$

log-likelihood:

$$I(\mathbf{X}|\vec{\beta}) = \sum_{i=1}^{n} \left[y_i \left(\beta_0 + \sum_{j=1}^{20} \beta_j x_{i,j} \right) - \log \left(1 + \exp \left(\beta_0 + \sum_{j=1}^{20} \beta_j x_{i,j} \right) \right) \right]$$

Full Model (Newton-Raphson)

The gradient:

$$\nabla I(\mathbf{X}|\vec{\beta}) = \begin{bmatrix} \sum^n y_i - \pi_i & \sum^n x_{i,1}(y_i - \pi_i) & \dots & \sum^n x_{i,20}(y_i - \pi_i) \end{bmatrix}_{(1 \times 21)}^T$$

The hessian matrix (21×21)

$$abla^2 I(\mathbf{X}|\vec{\beta}) = -\sum_{i=1}^n \begin{pmatrix} 1 \\ X \end{pmatrix} \begin{pmatrix} 1 & X \end{pmatrix} \pi_i (1 - \pi_i)$$

$$= -\begin{pmatrix} 1 & X \end{pmatrix} diag(\pi_i (1 - \pi_i)) \begin{pmatrix} 1 \\ X \end{pmatrix}$$

Optimal Model (Logistic LASSO)

also going to be some math

Optimal Model (Logistic LASSO)

more math

5-fold Cross Validation

Cross Validation Results

Best λ

Coefficient Comparison

AUC

Discussion

Resources

Cancer Stat Facts: Female Breast Cancer. *National Cancer Institute* - *NIH* https://seer.cancer.gov/statfacts/html/breast.html

American Cancer Society. (2019). Breast cancer facts & figures 2019–2020. Am Cancer Soc, 1-44.