# Unidade IV: Ordenação Interna - Algoritmo da Bolha

Prof. Max do Val Machado



Instituto de Ciências Exatas e Informática Curso de Ciência da Computação

Legenda: - menor elemento em vermelho

- parte ordenada está de azul

101 115 30 63 47 20



Comparação

Bolha

101 115 30 63





Bolha























Comparação







Bolha

20 101 115 30 63 47

Ordenado



Comparação

20 101 115 30



Bolha









Menor (Será o número da bolha)



Comparação

20 101















**20 30** 101 115 47 63

**Ordenado** 



**20 30 101 115** 



Comparação

Bolha





Menor (Será o número da bolha)



Comparação

20 30 101







Comparação

20 30







20 30 47 101 115 63

**Ordenado** 



Comparação

20 30 47 101



20 30 47 101









Comparação

20 30 47 101







20 30 47 63 101 115

Ordenado

**20 30 47 63** 101 115

Ordenado

O algoritmo terminou? Por que?

20 30 47 63 101 115

Bolha

Comparação

20 30 47 63





Menor (Será o número da bolha)



20 30 47 63 101 115

**Ordenado** 

O algoritmo terminou? Por que?

20 30 47 63 101 115

Ordenado

#### Conclusão

 O problema dos algoritmos de seleção e da bolha é porque eles realizam várias comparações redundantes

Além disso, a bolha faz um número quadrático de movimentações

Algoritmo estável

# Algoritmo em C like

Ver código em: fonte/unidade04/Bolha.java

# Análise do Número de Comparações

Método de ordenação por seleção em que os registros são comparados,
 dois a dois e o menor é movimentado para o início do array

$$C(n)=rac{n(n-1)}{2}$$
 , para os três casos

## Análise do Número de Movimentações

Pior caso: o array está ordenado de forma decrescente

$$M_{Max}(n) = 3 * \sum_{i=1}^{n-1} (n-i) = 3 * \frac{n(n-1)}{2}$$

 Caso médio: depende do número de inversões em todas as permutações do array

$$M_{Med}(n) = 3 * \frac{n(n-1)}{4}$$

#### Exercício

Mostre todas as comparações e movimentações do algoritmo anterior para o array abaixo:

| 12 | 4 | 8 | 2 | 14 | 17 | 6 | 18 | 10 | 16 | 15 | 5 | 13 | 9 | 1 | 11 | 7          | 3 |
|----|---|---|---|----|----|---|----|----|----|----|---|----|---|---|----|------------|---|
|    | ' | • | _ |    |    | _ |    | _  |    |    |   |    | _ | _ |    | , <b>'</b> | _ |