Stand: 4. April 2024

SoSe 2024

Lösungsvorschläge zum 0. Tutorium – Logische Methoden der Informatik

Auf diesem Blatt wiederholen wir endliche (nicht-deterministische) Automaten und reguläre Sprachen und ihre Abschlusseigenschaften. Für das erste Theorem mit dem wir uns beschäftigen werden sind beide Konzepte wichtig.

Definition 1 (endliche Automaten) Ein endlicher nicht-deterministischer Automat (abgekürzt: NFA) ist ein Tupel $\mathcal{A} := (Q, \Sigma, q_0, \Delta, F)$. Dabei ist

- Q eine endliche Menge von Zuständen,
- Σ ein endliches Alphabet,
- q_0 der Anfangszustand,
- $F \subseteq Q$ die Menge der Endzustände und
- $\Delta \subseteq Q \times \Sigma \times Q$ die Übergangsrelation.

Der Automat ist deterministisch (abgekürzt: DFA), wenn Δ funktional ist, d.h. wenn es für jeden Zustand $q \in Q$ und jedes Symbol $a \in \Sigma$ genau ein $q' \in Q$ gibt mit $(q, a, q') \in \Delta$. Wir schreiben dann üblicherweise Δ als Funktion $\delta \colon Q \times \Sigma \to Q$.

Definition 2 (reguläre Sprache) Sei Σ ein endliches Alphabet. Eine Sprache $\mathcal{L} \subseteq \Sigma^*$ heißt regulär, wenn es einen NFA \mathcal{A} mit $\mathcal{L}(\mathcal{A}) = \mathcal{L}$ gibt.

Aufgabe 1

Zeigen Sie: Reguläre Sprachen sind unter Vereinigung abgeschlossen.

Lösung zu Aufgabe 1

Vereinigungsautomat

Seien \mathcal{L}_1 , \mathcal{L}_2 zwei reguläre Sprachen, die durch die DFAs $\mathcal{A}_1 = (Q_1, \Sigma_1, q_1, \delta_1, F_1)$ und $\mathcal{A}_2 = (Q_2, \Sigma_2, q_2, \delta_2, F_2)$ erkannt werden. Wir gehen o.B.d.A. davon aus, dass die jeweiligen Zustands-, Alphabet- und Transitionsmengen der beiden Automaten disjunkt sind.

Wir konstruieren einen neuen Automaten, einen NFA, \mathcal{A} , der die Sprache $\mathcal{L}_1 \cup \mathcal{L}_2$ erkennt. Hierzu sei $\mathcal{A} := (Q, \Sigma, q_0, \Delta, F)$ mit

- $Q \coloneqq Q_1 \cup Q_2 \cup \{q_0\},$
- $\Sigma := \Sigma_1 \cup \Sigma_2$,
- $\Delta := \delta_1 \cup \delta_2 \cup \{(q_0, a, q) \mid (q_1, a, q) \in \delta_1 \text{ oder } (q_2, a, q) \in \delta_2\}$ und
- $F := \begin{cases} F_1 \cup F_2 & \text{, falls } \varepsilon \notin \mathcal{L}_1 \text{ und } \varepsilon \notin \mathcal{L}_2 \\ F_1 \cup F_2 \cup \{q_0\} & \text{, andernfalls} \end{cases}$

Ein Wort $w \in \Sigma^*$ wird genau dann von \mathcal{A} akzeptiert, wenn es von \mathcal{A}_1 oder \mathcal{A}_2 akzeptiert wird.

Aufgabe 2

Zeigen Sie: Reguläre Sprachen sind unter Schnitt abgeschlossen.

Lösung zu Aufgabe 2

Produktautomat

Seien \mathcal{L}_1 , \mathcal{L}_2 zwei reguläre Sprachen, die durch die DFAs $\mathcal{A}_1 = (Q_1, \Sigma_1, q_1, \delta_1, F_1)$ und $\mathcal{A}_2 = (Q_2, \Sigma_2, q_2, \delta_2, F_2)$ erkannt werden.

Wir konstruieren einen neuen Automaten \mathcal{A} , der die Sprache $\mathcal{L}_1 \cap \mathcal{L}_2$ erkennt. Hierzu sei $\mathcal{A} := (Q_1 \times Q_2, \Sigma, (q_1, q_2), \delta, F)$ mit

- $\Sigma := \Sigma_1 \cup \Sigma_2$,
- $\delta((q,p),a) := (\delta_1(q,a), \delta_2(p,a))$ und
- $F := F_1 \times F_2$.

Ein Wort $w \in \Sigma^*$ wird genau dann von \mathcal{A} akzeptiert, wenn es von \mathcal{A}_1 und \mathcal{A}_2 akzeptiert wird.

Man beachte, dass man die Automaten \mathcal{A}_i vorab um die Buchstaben $a \in \Sigma_i \setminus \Sigma_j$ erweitern muss $(\{i,j\} = \{1,2\})$ indem man einen Zustand $q_{M\ddot{u}ll}$ zum Automaten hinzufügt und alle fehlenden Übergänge zu $q_{M\ddot{u}ll}$ schickt. Dies ist eine Standarderweiterung in der Automatentheorie

Aufgabe 3

Zeigen Sie: Reguläre Sprachen sind unter Komplement abgeschlossen.

Lösung zu Aufgabe 3

Komplementautomat

Sei \mathcal{L} eine reguläre Sprache und $\mathcal{A}=(Q,\Sigma,q_0,\delta,F)$ ein DFA der sie erkennt.

Wir konstruieren einen neuen Automaten \mathcal{A}' , der die Sprache $\Sigma^* \setminus \mathcal{L}$ erkennt. Hierzu sei $\mathcal{A}' \coloneqq (Q, \Sigma, q_0, \delta, Q \setminus F)$.

An dieser Stelle ist es entscheidend einen deterministischen Automaten zu nehmen. Das Flippen der Endzustände funktioniert nicht im nicht-deterministischen Fall.

Ein Wort $w \in \Sigma^*$ wird genau dann von \mathcal{A}' akzeptiert, wenn es nicht von \mathcal{A} akzeptiert wird.

Aufgabe 4

Zeigen Sie: Reguläre Sprachen sind unter Projektion abgeschlossen.

Für $\mathcal{L} \subseteq \Gamma^*$, mit $\Gamma = \Sigma \times \Theta$, ist die *Projektion* von \mathcal{L} auf Σ definiert als die Sprache $\mathcal{L}_{\pi} \subseteq \Sigma^*$ mit

$$\mathcal{L}_{\pi} \coloneqq \{a_1 \dots a_n \in \Sigma^* \mid \text{ es ex. eine Folge } i_1 \dots i_n \text{ mit } i_j \in \Theta \text{ für alle } j \text{ mit } 1 \leq j \leq n \text{ und } (a_1, i_1) \dots (a_n, i_n) \in \mathcal{L}\}.$$

Lösung zu Aufgabe 4

Sei $\mathcal{A} \coloneqq (Q, \Gamma, q_0, \Delta, F)$ ein NFA mit $\mathcal{L}(\mathcal{A}) = \mathcal{L}$. Wir definieren einen NFA $\mathcal{B} \coloneqq (Q, \Sigma, q_0, \Delta', F)$ mit den gleichen Zuständen wie \mathcal{A} und mit der Übergangsrelation

$$\Delta' \coloneqq \{(q,a,q') \mid (q,(a,i),q') \in \Delta \text{ für ein } i \in \Theta\}.$$

Sei nun $w = a_1 \cdots a_n \in \Sigma^*$. Der Automat \mathcal{B} akzeptiert das Wort w genau dann, wenn es eine Folge i_1, \ldots, i_n mit $i_j \in \Theta$ gibt, so dass \mathcal{A} das Wort $w' \coloneqq (a_1, i_1) \cdots (a_n, i_n)$ akzeptiert. Also ist $w \in \mathcal{L}_{\pi}$ genau dann, wenn $w' \in \mathcal{L}$.