What can we learn from voting records of a past congress?

Dataset

- Data from UC Irvine Machine Learning Repository 1984 US House Voting Records
- "Key votes" identified by the Congressional Quarterly Almanac
- Categorical Data: Votes are Yes, No, and "?"

Limitations

- Key Vote Selection¹:
 - Controversy or impact
 - Test of presidential power
- 16 votes limited data
- One year
- "?" votes have multiple categories
 - Voted present conflict of interest or other reason
 - "Did not vote or otherwise make a position known"

¹ https://www.jstor.org/stable/439750

Goals

- EDA to look for anything interesting
- Classification model to predict Republican or Democrat based on voting record
- Cluster analysis to look for more than 2 clusters of voting records
 - Are there important caucuses within the parties, or a 3 way split between moderate, left-wing, and right-wing voting records?

Exploratory Data Analysis

Yes votes

Important features of the data

- 267 democrats, 168 republicans
- Votes are more bipartisan than would be expected for the current congress
- Bills cover range of issues
- Some bills passed, some did not

'?' votes per bill

Neutral Vote Analysis

- "Water Project" environmental policy bill with environmentalist groups advocating for a 'No' vote. Bill passed.¹
- "South Africa" Sanctions on apartheid South Africa. Bill passed²

¹https://scorecard.lcv.org/roll-call-vote/1984-540-water-project-cost-sharing-maintenance-and-repairs

²https://www.congress.gov/bill/98th-congress/house-bill/4230/summary/40?r=92

Classification Model

Prepare and Find Model

- Goal: predict Republican or Democrat based on voting record
- Outliers:
 - Look for Republicans and Democrats with very unusual voting pattern for the party. Boxplot of # yes votes.
 - No important outliers
- Tested several models with F1 score for precision-accuracy balance: logistic regression, k-nearest neighbors, bagging classifier, Adaboost, random forest

Final Model

- Random Forest: train F1 = 1.0, test F1 = 0.98
- No need to change parameters or features
- Evaluate (positive and negative class both matter):
 - Sensitivity (Democrat) 0.98
 - Specificity (Republican) 0.98

Feature Importance

- Model predicting
 Republican vs. Democrat
 largely on a health care
 policy vote
- Vote on budget is expected to be partisan

Feature	Feat. Importance
Yes Physician Fee	0.21
No Physician Fee	0.19
Yes Budget	0.09
No Budget	0.08
No Ed. Spend	0.05
Yes El Salvador	0.04
No El Salvador	0.04

Cluster Model

Elbow Plot

Silhouette Plot

Conclusions and Next Steps

- Conclusions:
 - Caucuses other than parties are not important enough to show up in modeling
 - Health care policy may be the area that is most likely to divide Republicans and Democrats
- Possible Extension
 - Get data from all votes and model with lasso regularization and logistic regression to see if the conclusions from 'key votes' match conclusions from all votes