Question	Scheme	Marks	
Number 5(a)	$V = x \times 4x \times h = 772$		
	$h = \frac{193}{x^2} = \frac{772}{4x^2}$	B1	
	$A = 2 \times 4x^{2} + 2xh + 2 \times 4xh = 8x^{2} + 10xh$ $A = 8x^{2} + 10x \times \frac{193}{x^{2}} = 8x^{2} + \frac{1930}{x} *$	M1A1cso (3)	
(b)	$(A =)8x^2 + 1930x^{-1}$		
	$(A =)8x^{2} + 1930x^{-1}$ $\left(\frac{dA}{dx} = \right)16x - 1930x^{-2}$	M1	
	$\left(\frac{\mathrm{d}A}{\mathrm{d}x} = 0 \Rightarrow 16x = \frac{1930}{x^2}\right)$	dM1	
	$x^3 = \frac{1930}{16} \qquad x = 4.9409 = 4.94$	A1	
	$\left(\frac{d^2A}{dx^2} = \right)16 + 3860x^{-3}$	M1	
	$x = 4.94 \implies \frac{\mathrm{d}^2 A}{\mathrm{d}x^2} > 0$: minimum	A1ft (5)	
(c)	$A_{\min} = 8 \times 4.940^2 + \frac{1930}{4.940} = 585.9, = 586$	M1,A1cao (2)	
(a)B1	$h = \frac{193}{r^2}$ or $\frac{772}{4r^2}$ or $xh = \frac{193}{r}$ oe Seen explicitly or used in the expression for A		
M1	Form an expression for A in terms of x and h which must be dimensionally correct and replace h with a function of x		
A1cso	Obtain the given expression for A. No errors seen. Must start $A =$ or area =		
(b) M1	Differentiate the GIVEN expression for A		
dM1	Equate their derivative to 0. Dependent on the previous M mark.		
A1	x = 4.94 Must be 3 sf Special Case : 4.94 with no working (calculator solution) scores M1M1A1		
M1	Attempt the second derivative - must have 2 terms.		
A1ft	Deduce that their value of x gives a minimum, follow through their x. No need the derivative provided the value of x is positive and the derivative is algebra		
	Must have a conclusion.		
	For last 2 marks: Look at signs of $\frac{dA}{dx}$ either side of $x = 4.94$ and calculate the values of		
ALTs	$\frac{A}{x}$ (M1) All correct with conclusion (A1) or refer to the graph - sketch must be shown.		
(c) M1 A1cao	Use their value of x in the given expression for A and complete to $A =$ 586 Must be 3sf unless rounding already penalised in (b)		