Populations, Samples, and Variables

Dr Tom Ilvento

Department of Food and Resource Economics

Overview

- We need terms and definitions
 - Populations
 - Samples
 - Measurement
 - Variables
- Types of variables
- · How we collect data

2

What is the population?

 A Population is the total number of units involved in the research question. The units are the members (or elements) of the population.

3

- Populations could be:
 - People
 - Animals
 - Plants
 - Courses
 - Objects
 - Places

A Population is defined by

- Purpose of the study
- The units and elements involved
- Geographic coverage
- Time frame

Example of a population

- What if I was involved in the tourism industry
- And I was interested in understanding the affect of current gas prices on travel in the Mid-Atlantic states, I might define the population as:
- All households in in the Mid-Atlantic states (DE, MD, PA, NJ, NY) in the Fall of 2008

5

Samples

- When we collect data on all elements in a population, we take a census
- However, sometimes it is difficult to get information on the entire population
- So we take a sample of the population
- A sample is a subset of the units or elements of a population

Parameters versus Statistics

- A numerical summary measurement describing a population is called a parameter
- A numerical summary measurement describing a sample is called a statistic.
- Parameters are often represented by Greek characters
 - μ (mu) is often used to represent the population mean
 - ullet Whereas \overline{X} is used for the sample mean

6

Why sample?

- It saves time
- Money
- Other resources (computation time, good will)
- It may actually be impossible to collect information on everyone
 - The satisfaction level of every customer
 - Every part that comes off an assembly line
 - Every black bear in a national park
 - Every person in China

8

Reoccurring Census Debate

- Every 10 years we take a census
- It is mandated in the Constitution
- However, the Census Bureau knows that it doesn't get a complete count - some groups are difficult to contact
- So, the Census Bureau wants to take a really good sample to estimate the undercount, and then adjust the counts to reflect the missing people
- The Supreme Court ruled they cannot rely on a sample to make adjustments

9

Samples

- Samples are also defined in the terms we used for populations
 - purpose of the research,
 - the units and elements involved.
 - the geographic coverage, and
 - the time frame

10

Samples

- A valuable property of a sample is that is representative of the population.
- By representative we mean the sample characteristics resemble those possessed by the population
- We cannot guarantee the sample will be representative, but if we select it on a random basis we have a probability that it will be representative
- Inferential statistics requires a sample be taken on a random basis

What is a random sample?

- A random sample is when each element or unit has the same or nearly the same chance of being selected
- Example
 - If we select a random sample of 100 from a population of 100,000,
 - Each unit has a 100/100,000 or
 - 1/1000th chance of being selected

More Terms

- A variable is a characteristic of an individual unit of the population
- Examples are
 - Age of a person in a survey
 - Height of a plant in an experiment
 - Weight of a package in a manufacturing process
- To be a variable the characteristic must vary!!
- It can't all be the same. Otherwise, it's a constant.

Typical Data Structure and Examples of Variables

Subject	Age	Weight	Height	Gender
I	24	162	72"	Male
2	36	180	66"	Male
3	18	136	68"	Male
4	30	162	74"	Male
5	31	186	70"	Male
6	27	144	70"	Male

14

Measurement

- Measurement is the process of assigning a number or characteristic to variables of the individual units
- Some measurement seems relatively straightforward
 - years of age
 - dollars of income
 - cholesterol counts
 - parts per million of a chemical
 - gender

Measurement

- Some concepts are no so easy to measure
 - Attitudes
 - Family Type
 - Emotions
 - Intelligence
- · What is LOVE?

15

13

Measurement

- The process of measurement is often complex don't take it for granted
- Consider unemployment
 - What do we mean by being employed?
 - Are we simply employed or not employed?
- Measurement always comes with some error
- And perhaps Bias

BIAS is a systematic distortion of the results due to poor design or measurement

17

Measurement

- With measurement we must also deal with
 - Validity are we measuring what we think we are measuring
 - Reliability is the measuring device consistent

18

Level of Measurement

- There are many ways to express the types of variables you might encounter
- One method is to break it down to
 - Quantitative
 - Qualitative
- A more refined method is
 - Continuous
 - Ordinal
 - Nominal

Nominal Level Variables

- Nominal (or categorical) no implied order or superiority
 - Male and Female
 - Treatment and Control groups
 - Religious affiliation
- With nominal data I can represent a category with alphanumeric characters or a number, but the number does not imply order or size
 - Code as Yes or No
 - 1=Yes and 0=No

20

Ordinal Level Variables

- Ordinal an implied order or rank, but the distance between units is not well specified
 - Ranking
 - Grades
 - Strongly agree to Strongly disagree
 - A scale from 1 to 10
- I can also use characters or numbers for ordinal level data

Continuous Level Variables

- Continuous (combination of interval and ratio) data that is measured on an infinite scale where we can say something about the magnitude between numbers
 - Temperature
 - Age
 - Income
 - Years of School

22

Why is the level of measurement important?

- Statistical techniques are predicated on certain levels of measurement.
- Each technique/formula assumes a certain level is used.
- Misusing a statistical technique on a variable can lead to results that are biased or misleading.

JMP and Variable Levels

- JMP will assign variables to one of three categories
 - Categorical

Ordinal

Continuous

- The assignment will influence what you can do with the variable in terms of an analysis
- You can change the assignment by clicking on the variable name

From where might we get data?

- Data from a published source also known as existing data. Someone else collected it and makes it available to you
 - Census of Population
 - Current Population Survey
 - Company data on customers
- Caution data decisions are out of your control

25

From where might we get data?

- A Designed Experiment where the researcher has strict control over the units (people, objects and events).
 - Treatment and Control Groups
 - Randomization of subjects to treatments
- Subjects are assigned randomly or through a controlled process to match subjects
- An experimental design allows you to control more factors and to extract more information from the data

26

From where might we get data?

- Surveys are where a researcher samples a group of people, asks a set of questions, and records the answers
 - Interview
 - Face-to-Face
 - Telephone
 - Self-Administered
 - Mail
 - Internet
- Social Surveys are extremely popular today

From where might we get data?

- Observational Studies are when the researcher observes the units in their natural setting and records the variables of interest.
 - Focus Groups
 - Studies of consumer behavior
 - Wildlife studies in natural habitat
- Observational Studies must deal with a number of methodological issues

Summary

- Things we talked about
 - Population versus a sample
 - The notion of randomness
 - What is a variable?
 - Levels of Measurement
 - Ways in which we collect data
- All of these issues are important in critically looking at statistical results