OpenBugs

Michael Andreae

December 11, 2015

We are trying to repeat the analysis by Dr. Johnson's for the ICBG evidency synthesis for ACE 151

OpenBugs Example

We followed the Tutorial here http://www.r-tutor.com/bayesian-statistics/openbugs

```
model <- function() {</pre>
    # Prior
    p ~ dbeta(1, 1)
    # Likelihood
    y ~ dbin(p, N)
}
# To transfer the model to OpenBUGS, we load the R2OpenBUGS extension
# and write the model to a temporary location using the method
# write.model. We denote the model file location by model.file.
library(R2OpenBUGS)
model.file <- file.path(tempdir(),</pre>
                         "model.txt")
write.model(model, model.file)
# Problem
# The data set survey contains sample smoker statistics among
# university students. Denote the proportion of smokers in the general
# student population by p. With uniform prior, find the mean and
# standard deviation of the posterior of p using OpenBUGS.
# Then we have to decide data parameters of the BUGS model. We find
# that there are 236 students in the survey, and 47 of them smoke,
\# which we denote by N and y respectively.
library(MASS)
tbl <- table(survey$Smoke)</pre>
N <- as.numeric(sum(tbl)); N</pre>
## [1] 236
y <- N - as.numeric(tbl["Never"]); y</pre>
## [1] 47
```

```
# We then identify data variables in a list called data.
data <- list("N", "y")</pre>
# And we identify the variable p to be monitored in a vector called
# params.
params <- c("p")
# Lastly, we need to select some initial parameters for the simulation.
# A rule of thumb is to choose values as close to the expected result
\# as possible. In this case, we initialize p to be 0.5. Notice how we
# wrap the initial values inside a list that is to be returned by a
# function.
inits <- function() { list(p=0.5) }</pre>
# Then we invoke OpenBUGS with the namesake method bugs and save the
\# result in a variable out. We select 10,000 iterations per simulation
# chain.
out <- bugs(data, inits, params, model.file, n.iter=10000)
out$summary
```

```
## p 0.2014755 0.02574684 0.1531 0.1838 0.2009 0.2184 0.25450  
## deviance 6.4509696 1.38373189 5.4710 5.5700 5.9070 6.7770 10.47025  
## p 1.001293 5100  
## deviance 1.001188 6900
```