Chapter04 Gradient Descent

1. Learning Rate

Vanilla Gradient Descent: $\theta^i = \theta^{i-1} - \eta \nabla L(\theta^{i-1})$

- 2. Adagrad
 - a) Divide the learning rate of each parameter by the root mean square of its previous derivatives

b)
$$w^{t+1} = w^t - \frac{\eta^t}{\sigma^t} g^t$$
 $\eta^t = \frac{\eta}{\sqrt{t+1}}$ $\sigma^t = \sqrt{\frac{1}{t+1} \sum_{i=0}^t (g^i)^2}$

c)
$$w^{t+1} = w^t - \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}} g^t$$

- d) The best step is: $\frac{|First\ Derivative|}{|Second\ Derivative|}$
- 3. Stochastic Gradient Descent
 - a) Make the training faster
 - b) Loss for only one example
- 4. Feature Scaling
 - a) $y = b + w_1x_1 + w_2x_2$ make different features have the same scaling
 - b) $x_r^i = \frac{x_r^i m_i}{\sigma_i}$

Chapter05 Classification

1. Classification as Regression: Penalize to the examples that are "too correct"

2.
$$P(C_1|x) = \frac{P(x|C_1)P(C_1)}{P(x|C_1)P(C_1) + P(x|C_2)P(C_2)}$$

- 3. Using maximum likelihood to get $P(x|C_1)$ and $P(x|C_2)$: The Gaussian with and mean μ and covariance matrix Σ can generate all the points, likelihood function is written as: $L(\mu, \Sigma) = \prod f_{\mu, \Sigma}(x_i) \quad \mu^*, \Sigma^* = argmaxL(\mu, \Sigma)$ $\mu^* = average(x_i) \quad \Sigma^* = average(x_i \mu^*)(x_i \mu^*)^T$
- 4. To get better performance, we usually use the same covariance matrix
 - a) $\Sigma = weighted_average(\Sigma_1, \Sigma_2)$
 - b) The modified model's boundary line is linear
- 5. Posterior Probability

a)
$$P(C_1|x) = \frac{P(x|C_1)P(C_1)}{P(x|C_1)P(C_1) + P(x|C_2)P(C_2)} = \frac{1}{1 + exp(-z)} = \sigma(z) = \sigma(w \cdot x + b)$$

b)
$$z = ln \frac{P(x|C_1)P(C_1)}{P(x|C_2)P(C_2)} = w^T x + b$$

$$w^{T} = (\mu^{1} - \mu^{2})^{T} \Sigma^{-1} \quad b = \ln \frac{N_{1}}{N_{2}} + \frac{1}{2} ((\mu^{2})^{T} \Sigma^{-1} \mu^{2} - (\mu^{1})^{T} \Sigma^{-1} \mu^{1})$$