hw4	Graded
23 Hours, 50 Minutes Late	
Student Giancarlos Marte	
Total Points 22.5 / 25 pts	
Question 1 induction	6 / 6 pts
✓ - 0 pts Correct	
Question 2	
induction with regexps ✓ -1 pt base case: did not use single char map fn	9 / 10 pts
Question 3	
non regular language	6.5 / 8 pts
✓ - 1.5 pts Missing 2 cases	
You did not split y in the middle and the right	
Question 4	
readme	1 / 1 pt
✓ - 0 pts Correct	

1) Prove the following statement is true:
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

step	statement	justification
1	A natural number is: 0 or k+1, where k is a natural number	definition of a natural number
2	Proof by induction on the natural number n.	method of proving because the definition of a natural number is recursive
3	base case: n=1 goal: show both sides of the statement are equal	given, (1) and (2)
4	proof of goal: $ \sum_{i=1}^{n} 1^2 = \frac{1(1+1)(2(1)+1)}{6} $ $ 1 = \frac{2(3)}{6} $ 1=1 both sides are equal	plugging in and mathematical computation
5	The statement is true for the base case.	(4)
6	Inductive case: n = k+1 for some natural number k	(1)
7	Inductive hypothesis: $\sum_{i=1}^{k} i^2 = \frac{k(k+1)(2k+1)}{6}$	(2)
8	goal: prove that for n = k + 1, $\sum_{i=1}^{k+1} i^2 = \sum_{i=1}^{k} i^2 + (k+1)^2$	(2) and (7)
9	proof of goal (left hand side): $\sum_{k+1}^{k+1} i^2 = \frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}$ $\frac{(k+1)(k+2)(2k+2+1)}{6} = \frac{(k+1)(k+2)(2k+3)}{6}$ $\frac{(k^2+3k+2)(2k+3)}{6} = \frac{2k^3+3k^2+6k^2+9k+4k+6}{6}$ $\frac{2k^3+9k^2+13k+6}{6}$	plugging in and mathematical computation

10	proof of goal (right hand side): $ \sum_{k+1}^{k+1} i^2 = \sum_{i=1}^{k} i^2 + (k+1)^2 $ $ \frac{2k^3 + 9k^2 + 13k + 6}{6} = \frac{k(k+1)(2k+1)}{6} + (k^2 + 2k + 1) $ $ \frac{2k^3 + 9k^2 + 13k + 6}{6} = \frac{k(k+1)(2k+1)}{6} + \frac{6k^2 + 12k + 6}{6} $ $ \frac{2k^3 + 9k^2 + 13k + 6}{6} = \frac{(k^2 + k)(2k + 1)}{6} + \frac{6k^2 + 12k + 6}{6} $ $ \frac{2k^3 + 9k^2 + 13k + 6}{6} = \frac{(2k^3 + k^2 + 2k^2 + k)}{6} + \frac{6k^2 + 12k + 6}{6} $ $ \frac{2k^3 + 9k^2 + 13k + 6}{6} = \frac{2k^3 + k^2 + 2k^2 + k + 6k^2 + 12k + 6}{6} $ $ \frac{2k^3 + 9k^2 + 13k + 6}{6} = \frac{2k^3 + 9k^2 + 13k + 6}{6} $ both sides are equal	plugging in, (7) and mathematical computation
11	The statement is true for the base case and the inductive case, therefore the statement is true.	(2), (5) and (10)

2) prove map_{lang} is closed $map_{lang}(L) = \{map_{str}(w) \mid w \in L\}$

	etetement	iustification
step	statement	justification
1	Theorem: if L is regular, so is $map_{lang}(L)$	given
2	Proof by induction on the regular expression of L	method of proof
3	Definition of a regular expression: R is a regular expression if R is 1. a for some a in the alphabet Σ , 2. ε , 3. \oslash , 4. $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions 5. $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, 6. $(R_1 *)$, where R_1 is a regular expression	definition of a regular expression
4	Base cases:	(1), (2) and (3)
	 a for some a in the alphabet Same regular expression represents map_{lang}(L) ε Same regular expression represents map_{lang}(L) Same regular expression represents map_{lang}(L) Same regular expression represents map_{lang}(L) 	
5	Language L is regular with regular expression, $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions	(3)
6	\boldsymbol{R}_1 and \boldsymbol{R}_2 describe languages \boldsymbol{L}_1 and \boldsymbol{L}_2	regular expression ⇔ regular language theorem
7	If \boldsymbol{L}_1 is a regular language, then $map_{lang}(\boldsymbol{L}_1)$ is a regular language	inductive hypothesis
8	If \boldsymbol{L}_2 is a regular language, then $map_{lang}(\boldsymbol{L}_2)$ is a regular language	inductive hypothesis

9	$map_{lang}(\boldsymbol{L}_1)$ and $map_{lang}(\boldsymbol{L}_2)$ are regular	(6), (7), (8)
10	$map_{lang}(L_1) \cup map_{lang}(L_2)$ is regular	union closed for regular languages theorem
11	$map_{lang}(L_1) \cup map_{lang}(L_2) = map_{lang}(L_1 \cup L_2)$	union and map_{lang} are commutative
12	$L = (L_1 \cup L_2)$	(1), (5) and (6)
13	$map_{lang}(L)$ is regular	(10), (11), (12)
14	Language L is regular with regular expression, $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions	definition of a regular expression
15	\boldsymbol{R}_1 and \boldsymbol{R}_2 describe languages \boldsymbol{L}_1 and \boldsymbol{L}_2	regular expression ⇔ regular language theorem
16	If L_1 is a regular language, then $map_{lang}(L_1)$ is a regular language	inductive hypothesis
17	If \boldsymbol{L}_2 is a regular language, then $map_{lang}(\boldsymbol{L}_2)$ is a regular language	inductive hypothesis
18	$map_{lang}(\boldsymbol{L}_1)$ and $map_{lang}(\boldsymbol{L}_2)$ are regular	(15), (16), (17)
19	$map_{lang}(L_1) \circ map_{lang}(L_2)$ is regular	concatenation is closed for regular languages theorem
20	$map_{lang}(L_1) \circ map_{lang}(L_2) = map_{lang}(L_1 \circ L_2)$	concatenation and map_{lang} are commutative
21	$L = (L_1 \circ L_2)$	(14) and (15)
22	$map_{lang}(L)$ is regular	(19), (20), and (21)
23	Language L is regular with regular expression, $(R_1^{\ *})$, where $R_1^{\ }$ is a regular expression	definition of a regular expression

24	R_{1} describes languages L_{1}	regular expression ⇔ regular language theorem
25	If L_1 is a regular language, then $map_{lang}(L_1)$ is a regular language	inductive hypothesis
26	$map_{lang}(L_1)$ is regular	(23), (24), (25)
27	$(map_{lang}(L_1))$ * is regular	kleene star is closed for regular languages theorem
28	$(map_{lang}(L_1)) * = map_{lang}(L_1 *)$	kleene star and map_{lang} are commutative
29	$L = (L_1^*)$	(23) and (24)
30	$map_{lang}(L)$ is regular	(27), (28), (29)

3) show that the following language is not a regular language: $L_3 = \{x == y \mid where \ x \ and \ y \ are \ equal \ binary \ numbers\}$

$$\Sigma = \{0, 1, =\}$$

step	statement	justification
1	proof by contradiction on language \boldsymbol{L}_3	method of proof
2	If a language B is regular then there exists a pumping constant p where if s is a string in the language and is at least length p, then it can be divided into three pieces, s=xyz, satisfying these conditions: 1) for each <i>i</i> ≥ 0, <i>xy</i> ^{<i>i</i>} <i>z</i> ∈ <i>B</i> , 2) y > 0 and 3) xy ≤ p.	definition of pumping lemma
3	assume $L_3 = \{x == y\}$ is a regular language	definition of pumping lemma, (1) and assumption
4	There exists a pumping constant for \boldsymbol{L}_3	definition of a regular language and (2)
5	choose string, $w = \{1^p == 1^p\}$ as a counter example	(1) and (2)
6	possible split: all one's before the two equal signs (==) is y let $p = 3$ $w = \{111 == 111\}$ $x: 1$ $y: 11$ $z: ==111$ $ y > 0$ $2>0$ $ xy \le p$ $2*1 \le 3$ xy^iz let $i = 2$ then $w = \{11111==111\}$ w is not in the language anymore because the binary number 11111 is not equal to 111	pumping lemma computation, (2) and counter example
7	Since w was not in the language, that means it is not pumpable.	(2) and (6)

8	If w is not pumpable then that means it is a counterexample to the pumping lemma.	(4), (5) and (7)
9	There are no other ways to split the string w so that the condition xy is satisfied.	(2)
10	Since $w = \{1^p == 1^p\}$ is not pumpable that means $\{x == y\}$ is not a regular language.	(7) and (8)
11	This is a contradiction to the assumption, therefore it cannot be a regular language.	(1), (2), (3), (5) and (10)

README

names of other students: none books/websites: class slides

time: 4 hours