Project Overview:

The Digital Thermometer project utilizes an Arduino Uno, an LCD, and a TMP36 temperature sensor to display the temperature in Fahrenheit on an LCD screen. The sensor reads the temperature, and the Arduino processes the data to show it on the display.

Components Used:

1. Arduino Uno:

- Description: A microcontroller board used to interface with input and output devices for various projects.
- **Working Principle**: Arduino Uno acts as the central controller, processing inputs from the temperature sensor and outputting the data to the LCD.
- Application: Used in various embedded systems and electronics projects to control devices based on inputs.

2. **Breadboard:**

- o **Description**: A board for constructing circuits without soldering. It provides a platform for connecting electronic components.
- **Working Principle**: Used to build and test circuits by inserting components into its conductive tracks.
- o **Application**: Essential for prototyping and testing electronic circuits.

3. LCD (Liquid Crystal Display):

- Description: A display device that shows information in a readable format using liquid crystals.
- **Working Principle**: LCDs work by controlling the alignment of liquid crystals with applied electrical voltage to form readable characters.
- Application: Used in numerous electronic devices to display text, such as clocks, thermometers, and digital meters.

4. TMP36 Temperature Sensor:

- o **Description**: A sensor that detects temperature and provides an analog output.
- o **Working Principle**: The TMP36 operates like a diode, where the voltage changes with temperature. The analog output is converted into temperature readings.
- o **Application**: Used in temperature measurement devices like digital thermometers, HVAC systems, and weather stations.

5. 220 Ω Resistor:

- o **Description**: A resistor used to limit current in a circuit.
- **Working Principle**: Resistors provide resistance to the flow of current, ensuring that components like the LCD aren't damaged by excessive current.
- o **Application**: Common in circuits to protect components from overcurrent.

6. Potentiometer:

- o **Description**: A variable resistor that adjusts the resistance value.
- o **Working Principle**: It has three terminals; adjusting the wiper changes the resistance, which is used to fine-tune the contrast of the LCD.

o **Application**: Used in volume controls, dimming lights, and tuning adjustments in circuits.

7. Jumper Wires:

- o **Description**: Wires used to make connections between different components.
- **Working Principle**: These wires have connectors at both ends to make electrical connections without soldering.
- o **Application**: Common in breadboarding and prototyping circuits.

Working Principle:

- 1. The TMP36 sensor measures the temperature and provides an analog output proportional to the temperature.
- 2. The Arduino reads the analog signal and converts it into a digital value that corresponds to the temperature.
- 3. The temperature value is displayed on the LCD screen in both Celsius and Fahrenheit.

Applications of the Project:

- **Temperature Monitoring**: This project can be used in various temperature-sensitive applications, such as monitoring room temperatures or outdoor environments.
- **HVAC Systems**: Integrated into heating, ventilation, and air conditioning systems for accurate temperature regulation.
- Weather Stations: Used in basic weather stations to measure ambient temperature.
- **Home Automation**: Can be used to monitor temperature in smart homes for controlling heating and cooling systems.