Theorem (2.2.16a). Let A and B be sets. $(A \cap B) \subseteq A$.

Proof. Let x be an element in $(A \cap B)$. Then by definition, $(x \in A) \land (x \in B)$. It trivially follows from the definition of logical conjunction that $x \in A$ whenever $x \in (A \cap B)$. So $(A \cap B) \subseteq A$.