Gate 2023- Instrumentation Engineering

EE23BTECH11037 - M Esha*

Question 59: The op amps in the circuit are ideal. The input signals are $V_{S1} = 3 + 0.10 \sin(300t)$, V and $V_{S2} = -2 + 0.11 \sin(300t) \text{ V}$. The average value of the voltage V_0 is _____ volts (rounded off to two decimal places).

(GATE IN 2023)

Solution:

Variable	Value	Description
V_{s1}	$3 + 0.10\sin(300t)$	Input voltages
V_{s2}	$-2 + 0.11 \sin(300t)$	
R		Resistances of the resistors
V_o		Output voltage
V_1		Output voltage of V_{s1} opamp
V_2		Output voltage of V_{s2} opamp

TABLE 0 INPUT PARAMETERS

the current does not flow through op-amp. voltage drop by each R

by KVL,

$$V_{s2} - V_2 = V_{s1} - V_{s2} \tag{2}$$

$$V_2 = 2V_{s2} - V_{s1} \tag{3}$$

$$V_1 - V_{s1} = V_{s1} - V_{s2} \tag{4}$$

$$V_1 = 2V_{s1} - V_{s2} \tag{5}$$

$$V_o = \frac{V_1 + V_2}{2} \tag{6}$$

$$=\frac{V_{s1} + V_{s2}}{2} \tag{7}$$

$$= \frac{3 + 0.10\sin(300t) + -2 + 0.11\sin(300t)}{2}$$
(8)

$$=0.5 + \frac{0.21\sin(300t)}{2} \tag{9}$$

$$V_{avg} = \frac{1}{T} \int_0^T V(t) dt$$

$$= \frac{300}{2\pi} \int_0^{\frac{2\pi}{300}} \left(0.5 + \frac{0.21 \sin(300t)}{2} \right) dt$$
(10)

$$=\frac{33}{2\pi}\int_{0}^{\infty}\left(0.5+\frac{332334(2337)}{2}\right)dt\tag{11}$$

$$=0.5\tag{12}$$

$$= V_{s1} - V_{s2}$$