$$T(n) = 8 T(n/4) + n^{3/2}$$

$$a = 8$$
, $b = 4$, $f(n) = n^{3/2}$

$$n^{(\log_b a)} = n^{(\log_4 8)} = n^{(3/2)}$$

$$n^{(3/2)} = f(n) \rightarrow Case 2$$

$$T(n) = \Theta\left(n^{(3/2)} \log n\right)$$

$$\log_4 8 = x \to 4^x = 8$$

$$\rightarrow x = 3/2$$

 $T(n): n^{3/2}$

Recursion Tree:

In level L, we have 8^L nodes. Work in each node = $(n/4^L)^{3/2}$ # levels (tree height) => 1 = $n/4^L$ => n = 4^L =>L = $\log_4 n$

Merging cost at level 1: 8 $(\frac{n}{4})^{3/2} = n^{3/2}$

Merging cost at level 2: $8^2 (n/4^2)^{3/2} = n^{3/2}$

• • •

Total Amount of work = L* $n^{3/2}$ = O $((n)^{3/2}\log n)$ \rightarrow O $((n)^{3/2}\log n)$

Or:

Total Amount of work = C
$$\sum_{L=0}^{\log_4 n} (n/4^L)^{3/2} * 8^L = C(n)^{3/2} \sum_{L=0}^{\log_4 n} 4^{-3L/2} * 8^L$$

$$C(n)^{3/2} \sum_{L=0}^{\log_4 n} 2^{-3L} * 2^{3L} = C(n)^{3/2} \sum_{L=0}^{\log_4 n} 1$$

$$= C(n)^{3/2} (\log n + 1) \Rightarrow O((n)^{3/2} \log n)$$

$$\sum_{i=1}^{n} C = Cn$$