(i)
$$Q_1b_1 \cdot Q_2b_2 = Q_1Q_2b_1b_2 \in Hk$$
 since $Q_1Q_2\in H$ and $b_1b_2\in k$.

(ii)
$$(Q_1b_1)^{-1} = b_1^{-1}Q_1^{-1} = Q_1^{-1}b_1^{-1}$$
 ("G is an abelian group).

This means that every element in HK has its inverse.

(b) Suppose
$$G = S_3$$
. and $H = \langle a \rangle$ and $k = \langle b \rangle$ where

$$a = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$
, $b = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$. Then,

$$HK = \{1, 9, 6, ab\}$$
 does not contain $(ab)^{-1}$, thus $HK = \{1, 9, 6, ab\}$ does not contain $(ab)^{-1}$, thus $HK = \{1, 9, 6, ab\}$

$$(OL)^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

7.3.38 (a) We know that $U(\mathbb{Z}_p) = \{1,2,\dots p-1\}$ thus $|U(\mathbb{Z}_p)| = p-1$.

Since $U(\mathbb{Z}_p)$ is a multiplicative group of nonzeros of \mathbb{Z}_p , $U(\mathbb{Z}_p)$ is a cyclic group. This means that for some $g \in U(\mathbb{Z}_p)$, g is a generator of $U(\mathbb{Z}_p)$ of order p-1.

generator of $U(\mathbb{Z}p)$ of order p-1. Let $L=g^k$ $(k\in\mathbb{Z})$ then $L^{p-1}=(g^k)^{p-1}=(g^{p-1})^k=/$

(b) If (a,p)=1 then $[a]^{p-1}=1$ by (i). This means that $a^{p-1}=1$ (mod p) thus $a^p=a$ (mod p).

If $(a_1p) > 1$ then p(a) and a = 0 (mod p), which means that $a^p = a$ $(mod p)_p$

Let $G = \langle \alpha \rangle$ be a cyclic group of infinite order. Using additive m-botion, 2x = a has no solution in G.

But D always has a solution of such equation as $\chi = \frac{Q}{2}$, which is a contradiction.

Thus Q is not a cyclic group.

Let f: Z→Q be an isomorphism. Then for some beb, f(1)=b. Thus we can say that $f(u) = ub \ (u \in \mathbb{Z}).$ Then 160, but there is no QEZ s.t f(a)= 1/2. which is a contradiction. Thus additive groups Z and Q are not isomorphic. 7.4.40 Zi is commutative but Si is not. Let a, b ess s.t a · b ≠ b · a. Suppose $f: \mathbb{Z}_{L} \to S_{3}$ be an isomorphism. Then, I n,m s.f f(n)=a and f(m)=b. f(n+m) = a.b > b.a = f(m+n) which is a contradiction All elements of ZLXZLXZL have order 2. However, (1,1) ∈ ZaxZa has order F. We know that if f: A-B is an isomorphism, then order of aEA and the order of f(9) ∈ B should be the same

7.4.61. Let[3] be a generator of
$$\mathbb{Z}_h$$
 then let $dg: \mathbb{Z}_h \to \mathbb{Z}_h$ $dg(x) = gx$ (mod n)

(i) Let $x, y \in \mathbb{Z}_h$ then suppose $dg(x) = dg(x)$ then $gx = gy$ then $x = y$. Thus injective.

(ii) Let $p \in \mathbb{Z}_h$, $p = gg!x = g(g!a) = dg(g!a)$.

Thus surjective.

(iii) $dg(x+y) = g(x+y) = gx + gy = dg(x) + dg(y)$.

By (i), (ii), (iii), $dg(x+y) = g(x+y) = gx + gy = dg(x) + dg(y)$.

Thus, $dg \in Aut \mathbb{Z}_h$. Let $f: Aut \mathbb{Z}_h \to U_h$ set $f(dg) = g$ (mod n)

(i) Let $dg_1, dg_2 \in Aut \mathbb{Z}_h$ and let $f(dg_1) = f(dg_2)$

(i) Let d_3 , d_3 , $\in Aut Zh$ and $[et f(d_{3_1}) = f(d_{3_2})]$ then $g_1 = g_2 \rightarrow Qg_1(1) = Qg_2(1)$. Since Qg_1 , d_3 , is automorphism, d_3 , $(x) = Qg_2(2)$ for $X \in \mathcal{W}$, $1 \leq X < n$. \longrightarrow Thus injective.

(ii) For any geUn, it is a generator of In. Thus there exists $dg \in Aut IL s.t f(dg) = g \longrightarrow Thus surjective.$ (iii) (dg, odg) (x) = dg, ([9x]) = [9,9x] = dg, x

By above, <9,9=<9,0<9.

 $f(49.049) = f(49.3) = 9.92 = f(3.1) \cdot f(3.2)$

-> Thus, homomorphism. By (i), (ii), (iii), Aut III and Un are Isomorphic m