Ensembles et applications

2/3: Applications : images et antécédents

15

1	1.1	ages par une application. Image directe	
2	$\mathbf{A}\mathbf{p}\mathbf{p}$	plications injectives, surjectives, bijectives. Injectivité	4
	2.2	Surjectivité	5
E :	Exercices		

L'essentiel du premier cours sur les applications.

Définition 1.

Soient E et F deux ensembles.

Une **application** f de E dans F est un procédé qui à tout élément x de E associe un unique élément dans F, que l'on note f(x). Cet objet est aussi appelé **fonction**, et décrit par

$$f: \left\{ \begin{array}{ccc} E & \to & F \\ x & \mapsto & f(x) \end{array} \right.$$

L'ensemble E est alors appelé ensemble de départ et l'ensemble F ensemble d'arrivée.

Soient $x \in E$ et $y \in F$ tels que

$$y = f(x);$$

On dit que y est l'image de x par f et que x est \underline{un} antécédent de y par f.

L'ensemble des applications de E dans F est noté F^E ou bien $\mathcal{F}(E,F)$.

L'application **identité** sur un ensemble E est

$$\mathrm{id}_E : \left\{ \begin{array}{ccc} E & \to & E \\ x & \mapsto & x \end{array} \right. .$$

Proposition 2 (Égalité de deux fonctions).

Deux applications sont égales si et seulement si elles sont égales en tout point :

$$\forall (f,g) \in (\mathcal{F}(E,F))^2 \qquad f = g \iff \forall x \in E \quad f(x) = g(x).$$

Définition 3.

Soient E, F, G trois ensembles et $f: E \to F$ et $g: F \to G$ deux applications. La **composée** de f par g, notée $g \circ f$ est l'application

$$g \circ f : \left\{ \begin{array}{ccc} E & o & G \\ x & \mapsto & g \circ f(x) := g(f(x)) \end{array} \right.$$

Proposition 4 (Propriétés de la composition).

• L'identité est neutre pour la composition :

$$\forall f \in \mathcal{F}(E, F)$$
 $\mathrm{id}_F \circ f = f$ et $f \circ \mathrm{id}_E = f$.

• La composition est associative :

$$\forall f \in \mathcal{F}(E, F) \quad \forall g \in \mathcal{F}(F, G) \quad \forall h \in \mathcal{F}(G, H) \qquad (h \circ g) \circ f = h \circ (g \circ f).$$

Fonctions indicatrices.

Dans ce qui suit, E est un ensemble.

Définition 5.

Soit A une partie de E. La fonction indicatrice de A est l'application notée $\mathbf{1}_A$, définie par

$$\mathbf{1}_A: \left\{ \begin{array}{ccc} E & \to & \{0,1\} \\ x & \mapsto & \mathbf{1}_A(x) := \left\{ \begin{array}{ccc} 1 & \text{si } x \in A, \\ 0 & \text{si } x \notin A. \end{array} \right. \right.$$

Par exemple, $\mathbb Q$ étant une partie de $\mathbb R$, on considère $\mathbf 1_{\mathbb Q}$, fonction indicatrice de $\mathbb Q$, définie sur $\mathbb R$.

$$\mathbf{1}_{\mathbb{Q}}\left(\frac{2}{3}\right) = 1$$
 et $\mathbf{1}_{\mathbb{Q}}\left(\sqrt{2}\right) = 0$.

Proposition 6.

Soit E un ensemble et $A, B \in \mathcal{P}(E)$. Les égalités qui suivent sont des égalités entre applications.

Si A et B sont disjoints $(A \cap B = \emptyset)$ alors $\mathbf{1}_{A \cup B} = \mathbf{1}_A + \mathbf{1}_B$.

Plus généralement,

$$\mathbf{1}_{A \setminus B} = \mathbf{1}_A - \mathbf{1}_{A \cap B}, \qquad \mathbf{1}_{A \cap B} = \mathbf{1}_A \cdot \mathbf{1}_B \qquad \mathbf{1}_{A \cup B} = \mathbf{1}_A + \mathbf{1}_B - \mathbf{1}_{A \cap B}.$$

Proposition 7 (Une partie est caractérisée par sa fonction indicatrice).

$$\forall (A,B) \in (\mathcal{P}(E))^2 \quad A = B \iff \mathbf{1}_A = \mathbf{1}_B.$$

2

1 Images par une application.

1.1 Image directe.

Définition 8.

Soit $f: E \to F$ une application et A une partie de E. On appelle **image** (directe) de A par f, et on note f(A) la partie de F ci-dessous

$$f(A) = \{f(x) : x \in A\} = \{y \in F : \exists x \in A \ y = f(x)\}.$$

Lorsque c'est l'image de E tout entier que l'on considère, on peut noter

$$\operatorname{Im}(f) = f(E).$$

Exemple 9.

- 1. Que vaut Im(arctan)?
- 2. Soit $\exp: z \mapsto e^z$; $\mathbb{C} \to \mathbb{C}^*$ l'exponentielle complexe. Que valent $\exp(\mathbb{R})$ et $\exp(i\mathbb{R})$?

Proposition 10.

Soit $f:E\to F$ une application. Soient A et B deux parties de E. On a

$$f(A \cup B) = f(A) \cup f(B)$$
 et $f(A \cap B) \subset f(A) \cap f(B)$.

Exemple 11.

Soit $f: x \mapsto x^2$, définie sur \mathbb{R} . Considérons $A = [1, +\infty[$, et $B =]-\infty, -1]$. Montrer que

$$f(A \cap B) \neq f(A) \cap f(B)$$
.

1.2 Image réciproque.

Définition 12.

Soient E et F deux ensembles non vides et $f: E \to F$ une application. Soit A une partie de F. On appelle **image réciproque** de A par f, et on note $f^{-1}(A)$ la partie de E ci-dessous

$$f^{-1}(A) = \{x \in E : f(x) \in A\}.$$

En particulier, si $y_0 \in F$, $f^{-1}(\{y_0\})$ est l'ensemble des antécédents de y_0 par f dans E.

 \bigwedge La notation $f^{-1}(A)$ peut prêter à confusion.

Si $f: E \to F$, n'est pas bijective, **l'application** f^{-1} **n'est pas définie**, contrairement à l'ensemble $f^{-1}(A)$. Bref, sauf dans le cas où la réciproque existe, l'image réciproque n'est pas l'image par la réciproque...

Exemple 13.

- 1. La fonction tan étant définie sur l'ensemble que l'on sait, déterminer $\tan^{-1}(\mathbb{R}_+)$?
- 2. Soit $f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R} \\ (x,y) & \mapsto & xy \end{array} \right.$ Que valent $f^{-1}(\mathbb{R}_+)$ et $f^{-1}(\{0\})$?

Proposition 14.

Soit $f: E \to F$ une application. Soient A et B deux parties de F. On a

$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$
 et $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.

2 Applications injectives, surjectives, bijectives.

2.1 Injectivité

Définition 15.

Une application $f: E \to F$ est dite **injective** si tout élément de F a au plus un antécédent dans E, ce qui s'écrit :

$$\forall x, x' \in E \quad f(x) = f(x') \implies x = x'.$$

Méthode.

- 1. Pour démontrer qu'une application $f: E \to F$ est injective :
 - On considère deux éléments x et x' de E,
 - on suppose que f(x) = f(x'),
 - on démontre que x = x'.
- 2. Pour démontrer qu'une application $f: E \to F$ n'est pas injective, il suffit d'exhiber une paire $\{x, x'\}$ d'éléments de E tels que $x \neq x'$ et f(x) = f(x').

D'une application $f: E \to F$ injective, on peut dire aussi que c'est une **injection** de E vers F.

Exemples 16.

- 1. La fonction $\sin : \mathbb{R} \to \mathbb{R}$ est-elle injective?
- 2. Soient

$$f: \left\{ \begin{array}{ccc} \mathbb{Z}^2 & \to & \mathbb{R} \\ (p,q) & \mapsto & p+\sqrt{2}q \end{array} \right. \quad \text{et} \quad g: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R} \\ (x,y) & \mapsto & xy \end{array} \right.$$

4

Montrer que f est injective et que g ne l'est pas.

Exemple 17.

Soit $f: X \to \mathbb{R}$, où $X \in \mathcal{P}(\mathbb{R})$. Montrer que si f est strictement monotone, alors elle est injective.

Proposition 18.

La composée de deux applications injectives est injective.

Proposition 19 (Une réciproque partielle).

Soient deux applications $f: E \to F$ et $g: F \to G$.

 $g \circ f$ est injective \implies f est injective.

2.2 Surjectivité.

Définition 20.

Une application $f: E \to F$ est dite **surjective** si tout élément de F a au moins un antécédent dans E, ce qui s'écrit :

$$\forall y \in F \quad \exists x \in E \quad y = f(x).$$

Méthode.

- 1. Pour démontrer qu'une application $f: E \to F$ est surjective :
 - On considère un élément y de F,
 - on trouve/prouve l'existence de $x \in E$ tel que y = f(x).
- 2. Pour démontrer qu'une application $f: E \to F$ n'est pas surjective, il suffit d'exhiber un élément de F n'ayant pas d'antécédent dans E par f.

D'une application $f: E \to F$ surjective, on peut dire aussi que c'est une surjection de E vers F.

Exemples 21.

- 1. La fonction $\sin : \mathbb{R} \to \mathbb{R}$ est-elle surjective?
- 2. Soient

$$f: \left\{ egin{array}{lll} \mathbb{Z}^2 &
ightarrow & \mathbb{R} \\ (p,q) &
ightarrow & p+\sqrt{2}q \end{array}
ight. \quad ext{et} \quad g: \left\{ egin{array}{lll} \mathbb{R}^2 &
ightarrow & \mathbb{R} \\ (x,y) &
ightarrow & xy \end{array}
ight.$$

5

Montrer que g est surjective et que f ne l'est pas.

Proposition 22 (Vision ensembliste de la surjectivité).

Soit $f: E \to F$ une application. On a

$$f$$
 surjective \iff Im $(f) = F$.

Proposition 23.

La composée de deux applications surjectives est surjective.

Proposition 24 (Une réciproque partielle).

Soient deux applications $f: E \to F$ et $g: F \to G$.

 $g \circ f$ est surjective \implies g est surjective.

2.3 Bijectivité et application réciproque.

Définition 25.

Soit une application $f: E \to F$. Elle est dite **bijective** si elle est à la fois injective et surjective, c'est-à-dire si tout élément de F possède un unique antécédent dans E, ce qui s'écrit

$$\forall y \in F \quad \exists! x \in E \quad y = f(x).$$

Définition 26.

Soit $f: E \to F$ une application bijective. On considère, pour tout élément y de F son unique antécédent par f, que l'on note $f^{-1}(y)$. Ce procédé permet de définir comme suit l'**application** réciproque de f, notée f^{-1} :

$$f^{-1}:\left\{\begin{array}{ccc} F & \to & E \\ y & \mapsto & f^{-1}(y) \end{array}\right..$$

Méthode (Calcul de la réciproque d'une fonction).

Soit $f: E \to F$ une fonction bijective et $y \in F$. S'il est possible de résoudre l'équation

$$y = f(x),$$

c'est-à-dire d'exprimer x en fonction de y, on a une expression de $f^{-1}(y)$.

Si, pour tout élément $y \in F$, on sait prouver l'existence et l'unicité d'un antécédent dans E (une solution de l'équation y = f(x)), on a prouvé la bijectivité de f.

6

Théorème 27 (Caract. de la bijectivité par l'existence d'un inverse à gauche et à droite).

Soit $f \in \mathcal{F}(E, F)$ une application. Alors,

$$f$$
 est bijective $\iff \exists g \in \mathcal{F}(F, E) : g \circ f = \mathrm{id}_E$ et $f \circ g = \mathrm{id}_F$

Autrement dit, f est bijective si et seulement si elle admet un (même) « inverse » à gauche et à droite pour la composition. De plus, lorsque cet inverse g existe, $g = f^{-1}$.

Proposition 28.

La composée de deux applications bijectives est bijective.

De plus, si $f: E \to F$ et $g: F \to G$ sont deux applications bijectives, alors

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

Exercices

Images directes, images réciproques.

15.1 $[\blacklozenge \diamondsuit \diamondsuit]$ Soit $f: E \to F$ une application. Soient deux parties $A \subset E$ et $B \subset F$. Montrer l'égalité

$$f(A) \cap B = f(A \cap f^{-1}(B)).$$

15.2 $[\blacklozenge \blacklozenge \diamondsuit]$ Soit $f: E \to F$ une application. Soit A une partie de E et B une partie de F.

- 1. (a) Montrer que $A \subset f^{-1}(f(A))$.
 - (b) Démontrer que si f est injective, l'inclusion réciproque est vraie.
- 2. Soit B une partie de F.
 - (a) Montrer que $f(f^{-1}(B)) \subset B$.
 - (b) Démontrer que si f est surjective, l'inclusion réciproque est vraie.
- 3. Montrer que $f(f^{-1}(f(A))) = f(A)$.
- 4. Montrer que $f^{-1}(f(f^{-1}(B))) = f^{-1}(B)$.

15.3 $[\spadesuit \spadesuit \spadesuit]$ Soit $f: E \to F$ une application. Montrer que

$$f$$
 est injective \iff $[\forall A, B \in \mathcal{P}(E) \ f(A \cap B) = f(A) \cap f(B)].$

Applications injectives, surjectives.

15.4 $[\diamond \Diamond \Diamond]$ Soient

$$f: \left\{ \begin{array}{ccc} \mathbb{N}^2 & \to & \mathbb{Z} \\ (n,p) & \mapsto & (-1)^n p \end{array} \right. \quad \text{et} \quad g: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{C} \\ x & \mapsto & \frac{1+ix}{1-ix} \end{array} \right.$$

Ces fonctions sont-elles injectives? Surjectives?

Démontrer que $\cos_{\mathbb{I}\mathbb{O}}$ n'est pas injective et que $\sin_{\mathbb{I}\mathbb{O}}$ l'est.

15.6 [���] Soit l'application
$$f: \mathbb{R} \to \mathbb{R}$$
 définie par $f(x) = \begin{cases} x^2 & \text{si } x \geq 0 \\ 2x^2 & \text{si } x < 0. \end{cases}$

- 1. Montrer que f n'est pas injective.
- 2. Montrer que $f_{|\mathbb{Q}}$ (restriction de f à \mathbb{Q}) est injective.

$|\mathbf{15.7}| [\blacklozenge \diamondsuit \diamondsuit]$ Soit $f: E \to E$. Montrer que

- 1. f est injective si et seulement si $f \circ f$ est injective.
- 2. f est surjective si et seulement si $f \circ f$ est surjective.

On suppose que $f \circ f = f$ et que f est injective ou surjective. Montrer que $f = id_E$.

15.9 $[\blacklozenge \blacklozenge \diamondsuit]$ Soit E un ensemble non vide et $f: E \to E$ une application telle que $f \circ f \circ f = f$. Montrer que

f est surjective \iff f est injective.

$$\begin{array}{|c|c|c|c|c|} \hline {\bf 15.10} & [\blacklozenge \lozenge \lozenge \lozenge] \text{ Soit } f : \left\{ \begin{array}{l} \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & n + (-1)^n \end{array} \right. \\ \hline \text{D\'emontrer que } f \text{ est une bijection de } \mathbb{N} \text{ dans lui-m\'eme et donner sa r\'eciproque.} \end{array}$$

$$\Phi: \left\{ \begin{array}{ccc} \mathcal{P}(E) & \to & \mathcal{P}(A) \times \mathcal{P}(B) \\ X & \mapsto & (X \cap A, X \cap B). \end{array} \right.$$

- 1. Calculer $\Phi(\emptyset)$ et $\Phi(E \setminus (A \cup B))$. Que dire de A et B si (A,\emptyset) admet un antécédent par Φ ?
- 2. Montrer que : Φ injective $\iff A \cup B = E$.
- 3. Montrer que : Φ surjective $\iff A \cap B = \emptyset$.

15.12 [♦♦♦]

On souhaite que cet exercice éclaire la caractérisation de la bijectivité par existence d'un inverse

Soit
$$f \in \mathcal{F}(E, F)$$
.

1. Démontrer que f est injective si et seulement si elle est inversible à gauche. Plus précisément, prouver l'assertion

$$f$$
 est injective $\iff \exists g \in \mathcal{F}(F, E) \ g \circ f = \mathrm{id}_E$.

2. Démontrer que f est surjective si et seulement si elle est inversible à gauche. Plus précisément, prouver l'assertion

$$f$$
 est injective $\iff \exists g \in \mathcal{F}(F, E) \ f \circ g = \mathrm{id}_F$.

|15.13| [$\diamond \diamond \diamond$] [Théorème de Cantor]

Soit $f \in \mathcal{F}(E, \mathcal{P}(E))$. Montrer que f n'est pas surjective.

Indication : on pourra considérer $A = \{x \in E \mid x \notin f(x)\}.$