High-Fidelity Simulations for Turbulent Flows

Luca Sciacovelli

DynFluid Laboratory Arts et Métiers Institute of Technology http://savoir.ensam.eu/moodle

Master Recherche "Aérodynamique et Aéroacoustique" 2021 - 2022

Part II

Modeling of the Navier–Stokes Equations

1	Turbulence
2	Hierarchy of turbulence modeling
3	Mean flow equations
4	RANS Models

5 Wall Treatment

	-		
1	lur	bu	lence

Hierarchy of turbulence modeling

Mean flow equations

4 RANS Models

5 Wall Treatment

What is turbulence?

No rigorous definition..

- lacktriangle Irregular, seemingly random motions
- ► Non repeatability (sensitivity to IC)
- ► Large range of *L* and *t* scales
- ▶ 3D, unsteady, rotational
- ► Enhanced diffusion and dissipation
- Scale similarity

Features of Turbulence I

Turbulence

Sensitivity to initial conditions

Consider this simplified model for atmospheric convection (Lorenz system)

$$\begin{cases} \dot{x} = \sigma(y - x) \\ \dot{y} = \rho x - xz - y \quad \text{with} \quad \sigma = 10, \beta = \frac{8}{3}, \rho = 35 \\ \dot{z} = xy - \beta z \end{cases}$$

- ▶ Infinitesimal perturbations (here, 10⁻⁵) lead to completely different evolutions
- Chaotic solutions, deterministic but unpredictable
 - Butterfly effect, discovered by Lorenz in 1961 restarting from the middle a weather forecast: different rounding error of computer and printout (6 vs 3 digits)
- Where do perturbations come from?
 - "Physical" perturbations: impurities, small fluctuations of p, u or T, small geometry variations...
 - "Numerical" perturbations: rounding and truncation errors, initial and boundary conditions errors..

 Turbulence
 Hierarchy of turbulence modeling
 Mean flow equations
 RANS Models
 Wall Treatment
 Refe

 000 ●000000000000
 0000000
 00000000000
 00000000000
 00000000000
 000000000

Features of Turbulence II

Features of Turbulence III

Large range of scales

Consider the 2D model equation

$$\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_i} = 0 \qquad \text{with}$$

$$\begin{cases} u(x, y, t_0) = A\cos(k_x x)\sin(k_y y) \\ v(x, y, t_0) = B\sin(k_x x)\cos(k_y y) \end{cases} (Ak_x + Bk_y = 0)$$

Taylor expansion:
$$u_i(x_i, t) = u_i(x_i, t_0) + (t - t_0) \frac{\partial u_i}{\partial t} \Big|_{t_0} + \dots = u_i(x_i, t_0) - (t - t_0) u_j \frac{\partial u_j}{\partial x_j} \Big|_{t_0} \Longrightarrow$$

$$u(x, y, t) = A\cos(k_x x)\sin(k_y y) + (t - t_0)\frac{k_x A^2}{2}\left[\cos(2k_x x)\sin^2(k_y y) + \sin(2k_x x)\cos^2(k_y y)\right] + \dots$$

- ▶ High-order harmonics generated by non-linear term \implies increase of active L and t scales
 - What is the smallest structure that could be activated?

Is turbulence good or bad?

- ✓ Good for many applications
 - Delayed separation, enhanced mixing..
- X Not desired in others
 - Increases drag, reduced efficiency..

156. Comparison of laminar and turbulent boundary layers. The laminar boundary layer in the upper photograph sengrates from the creek of a convex surface (cf.

photograph remains attached; similar behavior is shown below for a sharp corner. (Cf. figures 55-58 for a sphere.) Titanium secuchloride is painted on the forepart of the

Phenomena classifications

degrees of freedom

n=1	n=2	n≥3	n>>1	continuum
growth/decay/equilibrium	oscillations	engineering	collective phenomena	waves and patterns
exponential growth	harmonic oscillator		coupled harmonic oscillators	elasticity
radioactive decay	two-body problem		solid state physics	wave equation
	(Kepler, Newton)		molecular dynamics	electromagnetism (Maxwell)
		civil engineering	equilibrium statistical	quantum mechanics
		electrical engineering	mechanics	(Schrödinger, Heisenberg, Dirac
				heat and diffusion
				acoustics
fixed points	anharmonic oscillator		the frontier	
bifurcations	biological oscillators	chaos		spatio-temporal complexity
relaxational dynamics	(neurons, heart cells)			
logistic equation	predator-prey cycles	strange attractors	coupled nonlinear oscillators	nonlinear waves (shocks, soliton
		(Lorenz)		
		three-body problem	lasers, nonlinear optics	
		(Poincaré)	nonlinear solid state physics	plasmas
		chemical kinetics	(semiconductors)	earthquakes
		Iterated maps	heart cell synchronization	general relativity
		(Felgenbaum)	neural networks	quantum field theory
		fractals (Mandelbrot)		reaction-diffusion
		f	immune system	biological & chemical waves
		practical uses of chaos	economics	epilepsy
		quantum chaos		turbulent fluids (Navier-Stokes

Milestones in turbulence

000000000000000000

Turbulence

Osborne Reynolds (1842-1912)

- ▶ 1883: Laminar-to-turbulent transition (*Re* number)
- ▶ 1895: Reynolds decomposition

Ludwig Prandtl (1875-1953)

- ▶ 1904: First studies on boundary layers
- ▶ 1925: Mixing-length model for turbulent transport

Lewis Fry Richardson (1881-1953)

▶ 1922: Notions of vortex and energy cascade

Geoffrey Ingram Taylor (1886-1975)

▶ 1935: Statistical theory of Turbulence

Andrey Kolmogorov (1903-1987)

- ▶ 1941: K41 Theory: dimensional analysis, -5/3 law (energy spectrum)
- ▶ 1962: K62 Theory: scale invariance rupture, intermittency problem

Robert Kraichnan (1928-2008)

 1967: Inverse energy cascade and Field Theory approach

Steven Orszag (1943-2011)

- ► 1966: Eddy-Damped Quasi-Normal Markovian (EDQNM) Approximation
- ► 1972: First DNS 3D on a 32³ grid (Orszag & Patterson)
- ► 1948: Numerical weather forecast (von Neumann & Charney)
- ► 1963: Large-Eddy Simulation (LES) Technique (Smagorinsky)
- ► 1965: Fast-Fourier Transform (FFT) Algorithm (Cooley & Tukey)
- ► 1977: Cray-1 at the National Center for Atmoshperic Research
- ▶ 2002: DNS on a 4096³ grid (Kaneda)
- ➤ 2020: DNS on a 8192³ grid (http://turbulence.pha.jhu.edu/)

Navier-Stokes Equations

Equations:

- ▶ 1 mass conservation eq.
- 3 momentum balance eqs.
- ▶ 1 energy conservation eq.
- ⇒ 5 equations

We need 16 - 5 = 11 relations

Unknowns:

- 1 density ρ
- ▶ 1 pressure p
- ▶ 1 temperature T
- ▶ 3 velocity components *u*, *v*, *w*
- 6 viscous stress tensor components σ_x , σ_y , σ_z , τ_{xy} , τ_{xz} , τ_{yz}
- ▶ 3 heat flux components: q_x , q_y , q_z
- ▶ 1 energy (total, internal, enthalpy, ..) E

⇒ 16 unknowns

Thermal equation of state

$$p = p(\rho, T)$$
$$e = e(\rho, T)$$

$$(+1 \text{ eq.})$$

Caloric equation of state

$$e = e(\rho, T)$$

$$(+1 eq.)$$

Fourier's Law

$$q_i = -\lambda \frac{\partial T}{\partial x_i}$$

with given
$$\lambda = \lambda(T)$$
 law (+3 eq.)

Newtonian fluid + Stokes hypothesis

$$au_{ij} = 2\mu \left(S_{ij} - rac{1}{3} S_{kk} \delta_{ij}
ight)$$

with given
$$\mu=\mu(T)$$
 law $\ \ (+6$ eq.)

System closed!

16 eq.

Navier-Stokes Equations

Compressible Formulation (CNS)

$$\begin{cases} \frac{\partial \rho}{\partial t} + \frac{\partial \rho u_i}{\partial x_i} = 0 \\ \frac{\partial \rho u_i}{\partial t} + \frac{\partial \rho u_i u_j}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \rho f_i + \frac{\partial \tau_{ij}}{\partial x_j} \\ \frac{\partial \rho E}{\partial t} + \frac{\partial [(\rho E + p)u_i]}{\partial x_i} = \rho f_i u_i + \frac{\partial (\tau_{ij}u_j)}{\partial x_i} - \frac{\partial q_i}{\partial x_i} \\ \text{with} \quad q_i = -k \frac{\partial T}{\partial x_i} \qquad T_{ij} = -\rho \delta_{ij} + 2\mu \left[S_{ij} - \frac{1}{3} S_{kk} \delta_{ij} \right] \qquad S_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_i} + \frac{\partial u_j}{\partial x_i} \right) \end{cases}$$

- Thermally perfect gas: $p = \rho RT$
- Calorically perfect gas: c_p , c_v = const.

$$R = 287.1 \, rac{\mathsf{J}}{\mathsf{kg}\,\mathsf{K}} \quad \mathsf{and} \quad \gamma = 1.4$$

$$c_p = \frac{\gamma R}{\gamma - 1} = 1004.85 \, \frac{\mathsf{J}}{\mathsf{kg}\,\mathsf{K}}$$

$$c_{v} = \frac{R}{\gamma - 1} = 717.75 \, \frac{\mathsf{J}}{\mathsf{kg}\,\mathsf{K}}$$

Incompressible Formulation (INS)

$$\begin{cases} \frac{\partial u_i}{\partial x_i} = 0\\ \frac{\partial u_i}{\partial t} + \frac{\partial u_i u_j}{\partial x_j} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + f_i + \nu \frac{\partial^2 u_i}{\partial x_j^2} \end{cases}$$

• μ model: Sutherland's law (100 K < T < 1900 K)

$$\mu(\mathit{T}) = \mu_{\mathsf{ref}} \left(rac{\mathit{T}}{\mathit{T}_{\mathsf{ref}}}
ight)^{rac{3}{2}} rac{(\mathit{T}_{\mathsf{ref}} + \mathit{S})}{(\mathit{T} + \mathit{S})}$$

$$T_{\text{ref}} = 273.16 \,\text{K}, S = 110.4 \,\text{K}, \mu_0 = 1.711 \cdot 10^{-5} \,\frac{\text{kg}}{\text{m}\,\text{s}}$$

• λ model: constant Prandtl assumption

$$\lambda = \frac{\mu c_p}{\text{Pr}}$$
 with $Pr = 0.72$

 $f \equiv \overline{f} + f'$

Statistical description: Reynolds averaging

A turbulent velocity field exhibits:

- Large spatial and temporal fluctuations
- "Smooth" and slowly-varying average
 - Statistical average applicable!
 - Statistical avg. ≡ Ensemble avg. (ergodicity property)

Statistical average $\overline{f}(\vec{x},t)$ of a variable $f(\vec{x},t)$:

$$\overline{f}(\vec{x},t) = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} f^{(i)}(\vec{x},t)$$

being $f^{(i)}$ the *i*-th sample. From a practical point of view:

► Steady turbulent field, temporal average:

$$\overline{f}(\vec{x}) = \lim_{T \to \infty} \frac{1}{T} \int_{t_0}^{t_0 + T} f^{(i)}(\vec{x}, t') \, \mathrm{d}t'$$

► Homogeneous turbulent field, spatial average:

$$\overline{f}(t) = \lim_{\mathcal{V} \to \infty} \frac{1}{\mathcal{V}} \iiint_{\mathcal{V}} f^{(i)}(\vec{x}', t) \, d\vec{x}'$$

Properties:

- 1. Linearity: $\overline{f+g} = \overline{f} + \overline{g}$
- 2. Preservation of constants: $\overline{\mathsf{C}^{\mathsf{te}}} = \mathsf{C}^{\mathsf{te}} \; (\Longrightarrow \; \overline{\overline{f}} \equiv \overline{f})$
- 3. Commutation with derivatives: $\frac{\overline{\partial f}}{\partial x} = \frac{\partial \overline{f}}{\partial x}$

Reynolds averaging:

By definition:

- ▶ Product of 2 variables *f* and *g*:

$$fg \equiv (\overline{f} + f')(\overline{g} + g') = \overline{f}\overline{g} + \overline{f}g' + f'\overline{f} + f'g'$$

$$\Longrightarrow \overline{fg} = \overline{\overline{f}}\overline{g} + \overline{\overline{f}}\underline{g}' + \overline{\overline{f}}\underline{g}'\overline{f} + \overline{f'g'} = \overline{\overline{f}}\overline{g} + \overline{\overline{f'g'}}$$

Statistical description: Favre averaging

Problem:
$$\overline{\rho f} = \overline{(\overline{\rho} + \rho')(\overline{u}_i + f')} = \overline{\rho} \overline{f} + \overline{\rho' f'}$$

- ▶ Applying Reynolds avg. leads to a system of eqs. for the mean field different from the initial one!
- ► We apply Favre (or density-weighted) average:

$$\widetilde{f} = \frac{\lim_{T \to \infty} \int_{t_0}^{t_0 + T} \rho f \, dt}{\lim_{T \to \infty} \int_{t_0}^{t_0 + T} \rho \, dt} = \frac{\overline{\rho f}}{\overline{\rho}}$$

Obtaining

Turbulence

$$f = \widetilde{f} + f''$$
 with $f'' = f' - \frac{\overline{\rho' f'}}{\overline{\rho}}$

with

$$\begin{split} \widetilde{f''} &= \frac{1}{\overline{\rho}} \lim_{T \to \infty} \int_{t_0}^{t_0 + T} \rho(f - \widetilde{f}) \, \mathrm{d}t \\ &= \left(\frac{1}{\overline{\rho}} \lim_{T \to \infty} \int_{t_0}^{t_0 + T} \rho f \, \mathrm{d}t \right) - \widetilde{f} = \widetilde{f} - \widetilde{f} = 0 \end{split}$$

Auxiliary relations:

$$\frac{\overline{f''} \neq 0}{\overline{\rho f''} = 0}$$

$$\frac{\overline{\rho f''} = \overline{\rho}}{\overline{\rho f}} = \overline{\rho f} = \overline{\rho f}$$

- ► Same properties of Reynolds averaging hold
- ► Simpler expressions for non-constant density flows
 - Examples:

$$\overline{\rho u T} = \overline{\rho} \, \overline{u} \, \overline{T} + \overline{\rho} \, \overline{u' T'} + \overline{\rho' u'} \, \overline{T} + \overline{\rho' T'} \, \overline{u} + \overline{\rho' u' T'}$$

$$\overline{\rho u T} = \overline{\rho} \, \widetilde{u} \, \widetilde{T} + \overline{\rho} \, \overline{u'' T''}$$

"Types" of turbulence

Turbulence

Symmetries and invariances of NS equations

Time shift	$(t, \vec{x}, \vec{u}) ightarrow (t+a, \vec{x}, \vec{u})$
Space shift	$(t, ec{x}, ec{u}) ightarrow (t, ec{x} + ec{a}, ec{u})$
Galilean transform	$(t, \vec{x}, \vec{u}) \rightarrow (t, \vec{x} + \vec{a}t, \vec{u} + \vec{a})$
3D rotation	$(t, ec{x}, ec{u}) ightarrow (t, Rec{x}, Rec{u})$
Scaling 1	$(t, \vec{x}, \vec{u}) ightarrow (t, e^a \vec{x}, e^a \vec{u})$
Scaling 2	$(t, \vec{x}, \vec{u}) \rightarrow (e^a t, e^a \vec{x}, \vec{u})$

...

 $(\iota, x, u) \to (e \ \iota, e \ x, u)$

 Statistically Homogeneous Turbulence: all statistics are invariant under translation of the coordinate system, i.e.

$$\overline{u_i'(x_k)u_j'(x_k)} = \overline{u_i'(x_k + \Delta x_k)u_j'(x_k + \Delta x_k)}, \quad i, j, k = 1, 2, 3$$

2. **Statistically Isotropic Turbulence**: all statistics are invariant under rotation and reflection of the coordinate system, i.e.

$$\overline{u_1'^2} = \overline{u_2'^2} = \overline{u_3'^2} = u'^2, \qquad \overline{u_i'u_j'} = -\overline{u_i'u_j'} \implies \overline{u_i'u_j'} = 0 \quad \text{ for } i \neq j$$

- Mean velocities = 0, no privileged directions
- Direct relation with k_t : $\overline{u_i'u_j'} = u'^2 \delta_{ij} = \frac{2}{3} k_t \delta_{ij}$
- Homogeneous Isotropic turbulence (HIT): allows theoretical conclusions about turbulence, widely used for development of turbulence models

Shear flows

Turbulence

Wall Treatment

▶ Round jets, Flow around airfoil, flows in combustion chamber..

Two-point correlations

physica space

Largest physical (integral) scales:

$$\ell_t = \int_0^\infty f(r,t) dt, \quad u' \sim \sqrt{\frac{2}{3}k_t}, \quad \tau_t = \frac{\ell_t}{u'}$$

Eddies exist at different length scales: How to determine the distribution of eddy size at a single point?

⇒ Two-point correlations!

- Measurement of velocity fluctuations, $u_i'(\vec{x},t)$ and $u_j'(\vec{x}+\vec{r},t)$
- ► Two-point correlation: $R_{ij}(\vec{x}, \vec{r}, t) = \overline{u_i'(\vec{x}, t)u_j'(\vec{x} + \vec{r}, t)}$
 - for HIT, $R_{ij}(\vec{x}, \vec{r}, t) = \overline{R_{ij}(r, t)}$
- ▶ By normalization, **correlation function**: $f(r,t) = \frac{R(r,t)}{u_{rms}^2(t)}$
 - Degree of correlation of stochastic signals

Turbulence

The energy cascade

- ► Dynamics dominated by big-size **coherent structures**
- ▶ Increase of *Re* (×2 for each picture):

Creation of smaller structures, large ones unchanged

Energy

Transfer of Energy

Dissipation of Energy $Re = \frac{u'\ell}{\nu}$

- ▶ Large eddies: $\ell_t \implies \text{high-}Re$
 - Unstable due to inertial forces
 - Rupture and creation of smaller structures
 - Re_ℓ progressively lower
 - The "cascade" stops at ℓ_η for which $\mathit{Re}_{\ell_\eta} {=} rac{u_\eta \ell_\eta}{
 u} {pprox} 1$
 - This is called the Kolmogorov scale

Kolmogorov's K41 Theory

Turbulence

0000000000000000000

First similarity hypothesis:

At sufficiently high-Re, small-scales eddies have a universal form, uniquely determined by ν and ε

▶ Leads to length, velocity and time scales by dimensional analysis of ν [m²s⁻¹] and ε [m²s⁻³]:

	Large scales	Small scales
	(energetic)	(dissipative)
Velocity	$u' \sim k_t^{1/2}$	$u_{\eta} = (\nu \varepsilon)^{1/4}$
Length	ℓ_{t}	$\ell_{\eta} = (\nu^3/\varepsilon)^{1/4}$
Time	$ au_{t} \sim \ell_{t}/u'$	$ au_\eta = (u/arepsilon)^{1/2}$

$$\begin{cases} \ell_{t} \approx \frac{u'^{3}}{\varepsilon} \\ \ell_{\eta} \approx \left(\frac{\nu^{3}}{\varepsilon}\right)^{1/4} \Longrightarrow \frac{\ell_{t}}{\ell_{\eta}} = \left(\frac{u'\ell_{t}}{\nu}\right)^{3/4} = Re_{\ell_{t}}^{3/4} \quad \text{and} \quad \begin{cases} \tau_{t} \approx \frac{\ell_{t}}{u'} \\ \tau_{\eta} \approx \left(\frac{\nu}{\varepsilon}\right)^{1/2} \Longrightarrow \frac{\tau_{t}}{\tau_{\eta}} = \left(\frac{u'\ell_{t}}{\nu}\right)^{1/2} = Re_{\ell_{t}}^{1/2} \end{cases}$$

Second similarity hypothesis:

At sufficiently high-Re, statistics of scale r in $\ell_n \ll r \ll \ell_t$ have a universal form, uniquely determined by ε , independent of ν

Inertial equilibrium subrange, in which Prod. \approx Diss. $\implies \varepsilon \approx \frac{k_t}{\tau_0} \approx \frac{u'^2}{\ell_0 / u'} = \frac{u'^3}{\ell_0}$ (independent of ν)

$$\begin{cases} \tau_t \approx \frac{\ell_t}{u'} \\ \tau_\eta \approx \left(\frac{\nu}{\varepsilon}\right)^{1/2} \Longrightarrow \frac{\tau_t}{\tau_\eta} = \left(\frac{u'\ell_t}{\nu}\right)^{1/2} = Re_{\ell_t}^{1/2} \end{cases}$$

00000000000000000 Turbulent spectra

Turbulence

A first cost estimation

Considering that:

000000000000000000

Turbulence

- ▶ We need $\approx n = 3 \div 5$ points to discretize ℓ_{η}
- ▶ The number of grid points is $N \sim Re^{9/4}$ (shown later)
- ► Typical atmospheric scales are $u_0 \sim 10 \, \frac{\text{m}}{\text{s}}$ $\ell_t \sim 10^3 \, \text{m}$ $\nu \sim 10^{-5} \, \frac{\text{m}^2}{\text{s}}$

Estimate the number of grid points needed to solve all spatial scales. We obtain

$$Re = \frac{u_0 \ell_t}{\nu} = \frac{10 \times 10^3}{10^{-5}} \approx 10^9 \qquad \begin{cases} \ell_t \approx 10^3 \text{ m} \\ \ell_\eta = \frac{\ell_t}{Re^{3/4}} = \frac{10^3}{(10^9)^{3/4}} \approx 0.2 \text{ mm} \end{cases} \qquad \begin{cases} \tau_t = \frac{L_t}{U_0} = \frac{10^3}{10} = 100 \text{ s} \\ \tau_\eta = \frac{\tau_t}{Re^{1/2}} = \frac{100}{(10^9)^{1/2}} \approx 0.003 \text{ s} \end{cases}$$

$$N \sim (nRe)^{9/4} = (3 \times 10^9)^{9/4} = 1.6 \cdot 10^{21} \text{ points}$$

- ► This is just to simulate a 1 km³ cube of the atmosphere
- ▶ Think how big the atmosphere is
- ► Get depressed
- ▶ Not all is lost!

■ Turbulence		
■ Hierarchy of turbulence modeling		

Mean flow equations

4 RANS Models

5 Wall Treatment

rbulence Hierarchy of turbulence modeling

Mean flow equations

RANS Models 000000000000000 Wall Treatment

Hierarchy of CFD methods

Direct Numerical Simulation (DNS)

► No modelling of turbulence

Turbulence

► Solve all spatial and temporal scales. Remember:

$$rac{\ell_t}{\ell_\eta} \sim Re_{\ell_t}^{3/4} \qquad rac{ au_t}{ au_\eta} \sim Re_{\ell_t}^{1/2}$$

Spatial Scales

- ▶ Grid-width comparable to ℓ_{η}
- ▶ Computational domain proportional to ℓ_t
- ▶ 1D example: Integral length ℓ_t discretized with N points, equispaced by h (L = Nh). We need:
 - The domain to be bigger than ℓ_t : $Nh \ge \ell_t$
 - The grid size to be smaller than ℓ_n : $h < \ell_n$

$$\ell_{\eta} N \ge Nh \ge \ell_{t} \implies N \ge \frac{\ell_{t}}{\ell_{\eta}} = Re_{\ell_{t}}^{3/4}$$

In 3D: $N_{3D} = N_{1D}^3 = Re_{\ell_t}^{9/4}$

- lacktriangle For $\mathrm{Re}_{\ell_t}=10^6$, $N_{3D}pprox 3\cdot 10^{13}$ points
 - ✓ Extremely useful for fundamental research
 - ✓ Test of turbulence models

largest eddies ℓ_t

smallest eddies ℓ_{η}

Temporal Scales

- ▶ Time-step comparable to τ_{η}
- ▶ Total time of integration proportional to τ_t
- ► Example: Time-step based on CFL restriction

$$CFL = \frac{u'\Delta t}{\Delta x} \approx 1, \qquad \tau_t \sim \frac{\ell_t}{u'}$$

$$N_{ite} = rac{ au_t}{\Delta t} \sim rac{\ell_t/u'}{\Delta x/u'} \sim rac{\ell_t}{\ell_\eta} \sim Re_{\ell_t}^{3/4}$$

Total Cost: $N_{3D} \times N_{ite} \sim Re_{\ell_t}^{9/4} \times Re_{\ell_t}^{3/4} = Re_{\ell_t}^3$

- ▶ Increasing $Re \times 10$ implies $Cost \times 1000!$
 - ✗ Infeasible at large Re
 - **X** Hard to implement in complex geometries

Direct Numerical Simulation (DNS)

- Examples shown in HPC session
 - NACA0012 stall $N=2\cdot 10^8$ points, $M_{\infty}=0.15$, Q-criterion

0000000

- Examples of large grid sizes:
 - Isotropic turbulence: 8192³
 - Channel flow: $10240 \times 1536 \times 7680$
 - Boundary layer: 3320 × 224 × 2048
- More than 1 PB of data available

http://turbulence.pha.jhu.edu/

Hierarchy of turbulence modeling

RANS Models

Wall Treatment

Large-Eddy Simulations (LES)

Large scales resolved and small scales modeled, κ_c defining the scales separation

Physical space

resolved

production

1/4

1/1

E(k)

Comparison LES - DNS (Moin and Mahesh, 1998)

N _{LES}	~,	$0.4 N_{DNS}$
IVLES	\sim	$Re_{ au}^{1/4}$

Reн	$Re_{ au}$	N _{DNS}	N _{LES}		
12 300	360	6.7×10^6	6.1×10^5		
30 800	800	4.0×10^7	3.0×10^6		
61 600	1450	$1.5 imes 10^8$	1.0×10^7		
230 000	4650	2.1×10^9	1.0×10^8		

- LES, no walls: $N = Re^{0.5}$
- LES. walls: $N = Re^{2.4}$

• $N_{RANS} = 10^4$

- ✓ Reduced computational effort (5-10 % w.r.t. DNS)
- ✓ Modeling part restricted to small (universal) scales
- ✓ Allows unsteady 3D computations of coherent structures
- X Still expensive, notably for wall-bounded flows
- **X** Extension to complex geometries not trivial
- Filter interacts with discretization: need for accurate schemes!

unrestrived SGS

Large-Eddy Simulations (LES)

Reynolds-Averaged Navier-Stokes (RANS) simulations

All turbulent scales are modeled, only a statistical mean is solved

- ✓ Extremely cheap compared to DNS and LES
- ✓ Widely spread in traditional and industrial CFD codes
- ✓ Well adapted to complex geometries
- X All the turbulent motions must be properly modeled
- X Pragmatic "tuning" of model parameters is often required
- Results not always correspond to mean flow from experiments (requires the ergodic theorem to be valid)

4	т	HE			
1			IJ		

■ Hierarchy of turbulence modeling

Mean flow equations

4 RANS Models

5 Wall Treatment

Mean Flow equations

Incompressible NS, homogeneous fluid:

$$\begin{cases} \frac{\partial u_i}{\partial x_i} = 0 \\ \frac{\partial u_i}{\partial t} + \frac{\partial u_i u_j}{\partial x_j} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + \nu \frac{\partial^2 u_i}{\partial x_j^2} \Longrightarrow \begin{cases} \frac{\overline{\partial (\overline{u}_i + u_i'})}{\partial t} = 0 \\ \frac{\overline{\partial (\overline{u}_i + u_i'})}{\partial t} + \frac{\overline{\partial ((\overline{u}_i + u_i'})(\overline{u}_j + u_j'))}}{\partial x_j} = -\frac{1}{\rho} \overline{\frac{\partial (\overline{p} + p'})}{\partial x_i} + \nu \frac{\partial^2 (\overline{u}_i + u_i')}{\partial x_j^2} \end{cases}$$

To find the transport equations for the mean and fluctuating quantities, we need to:

- Replace the Reynolds decomposition
- 2. Average the equation

$$\frac{\partial u_i}{\partial x_i} = 0, \quad \frac{\partial (\overline{u}_i + u_i')}{\partial x_i} = 0, \quad \frac{\partial (\overline{u}_i + u_i')}{\partial x_i} = 0, \implies \boxed{\frac{\partial \overline{u}_i}{\partial x_i} = 0} \qquad \tau_{ij}^R = -\rho \overline{u_i' u_j'}$$
: Reynolds stress tensor

Subtracting the equations
$$\frac{\partial u_i}{\partial x_i} = 0$$
 and $\frac{\partial \overline{u}_i}{\partial x_i} = 0$: $\boxed{\frac{\partial u_i'}{\partial x_i} = 0}$ In general, $-\rho \overline{u_i' u_j'} \gg \tau_{ij}$ (apart from near-wall reg

Linearity of continuity equation

$$\begin{cases} \frac{\partial \overline{u}_{i}}{\partial x_{i}} = 0 \\ \frac{\partial \overline{u}_{i}}{\partial t} + \frac{\partial (\overline{u}_{i}\overline{u}_{j})}{\partial x_{j}} = -\frac{1}{\rho} \frac{\partial \overline{\rho}}{\partial x_{i}} + \nu \frac{\partial^{2} \overline{u}_{i}}{\partial x_{j}^{2}} - \frac{\partial \overline{u}_{i}^{\prime} u_{j}^{\prime}}{\partial x_{j}} \end{cases}$$

$$\tau_{ij}^{\kappa} = -\rho u_i^{\prime} u_j^{\prime}$$
: Reynolds stress tensor

- Coupling between mean and fluct. field
- (apart from near-wall region)
- Unknown term, to be modeled

This system represents the "Reynolds-averaged Navier-Stokes" (RANS) equations

Can we derive an equation for the Reynolds stresses to close the system? Let's start from the kinetic energy

Kinetic energy of the mean field

By applying the Reynolds decomposition to the kinetic energy one has:

- $ightharpoonup \hat{E}$: kinetic energy of the mean field
- $ightharpoonup k_t$: turbulent kinetic energy (TKE)

$$\overline{E} = \frac{1}{2} \overline{u_i u_i} = \frac{1}{2} \overline{(\overline{u}_i + u_i')(\overline{u}_i + u_i')} = \frac{1}{2} \overline{(\overline{u}_i \overline{u}_i + 2u_i' \overline{u}_i + u_i' u_i')}
= \frac{1}{2} (\overline{u_i} \overline{u}_i + 2 \overline{u_i' u_i'} + \overline{u_i' u_i'}) = \frac{1}{2} (\overline{u}_i \overline{u}_i + \overline{u_i' u_i'}) = \hat{E} + k_t$$

Transport equation for the kinetic energy of the mean field \hat{E}

$$\begin{split} \overline{\mathbf{u}_{i}} \times \left\{ \frac{\partial \rho \overline{\mathbf{u}}_{i}}{\partial t} + \frac{\partial (\rho \overline{\mathbf{u}}_{i} \overline{\mathbf{u}}_{j})}{\partial x_{j}} = -\frac{\partial \overline{p}}{\partial x_{i}} + \frac{\partial \overline{\tau}_{ij}}{\partial x_{j}} - \frac{\partial \rho \overline{u'_{i}} u'_{j}}{\partial x_{j}} \right\} \\ \underbrace{\frac{\partial \frac{1}{2} \rho \overline{u}_{i}^{2}}{\partial t} + \frac{\partial \frac{1}{2} \rho \overline{u}_{i}^{2} \overline{\mathbf{u}}_{j}}{\partial x_{j}}}_{\underline{\mathbf{d}}_{i}} = \rho \overline{u'_{i}} \underline{u'_{j}} \frac{\partial \overline{u}_{i}}{\partial x_{j}} - \overline{\tau}_{ij} \frac{\partial \overline{u}_{i}}{\partial x_{j}} + \underbrace{\frac{\partial}{\partial x_{j}} \left(- \overline{u}_{j} \overline{p} + \overline{u}_{i} \overline{\tau}_{ij} - \overline{u}_{i} \rho \overline{u'_{i}} \underline{u'_{j}} \right)}_{\text{transport terms}} \end{split}$$

► For homogeneous isotropic turbulence:

$$\frac{\overline{d}}{dt} \left(\frac{1}{2} \rho \overline{u}_i^2 \right) = \rho \overline{u_i' u_j'} \frac{\partial \overline{u}_i}{\partial x_j} - \overline{\tau}_{ij} \frac{\partial \overline{u}_i}{\partial x_j}$$
variation of \hat{E}
in the mean field
transfer to
turbulent field
dissipation of \hat{E}
for viscous effects

Kinetic energy of the fluctuating field (1)

Transport equation for the turbulent kinetic energy k_t

$$\begin{cases} \frac{\partial \rho u_{i}}{\partial t} + \frac{\partial (\rho u_{i} u_{j})}{\partial x_{j}} = -\frac{\partial p}{\partial x_{i}} + \frac{\partial \tau_{ij}}{\partial x_{j}} \\ (-) & \Longrightarrow \frac{\partial \rho u_{i}'}{\partial t} + \frac{\partial}{\partial x_{j}} [\rho(u_{i}' \overline{u}_{j} + \overline{u}_{i} u_{j}' + u_{i}' u_{j}')] = -\frac{\partial p'}{\partial x_{i}} + \frac{\partial \tau_{ij}'}{\partial x_{j}} + \frac{\partial \rho \overline{u_{i}' u_{j}'}}{\partial x_{j}} \\ \frac{\partial \rho \overline{u}_{i}}{\partial t} + \frac{\partial (\rho \overline{u}_{i} \overline{u}_{j})}{\partial x_{j}} = -\frac{\partial \overline{p}}{\partial x_{i}} + \frac{\partial \overline{\tau}_{ij}}{\partial x_{j}} - \frac{\partial \rho \overline{u_{i}' u_{j}'}}{\partial x_{j}} \\ \frac{\overline{u_{i}'} \times (\star)}{\partial x_{j}} & \Longrightarrow \frac{\overline{d}}{dt} (\rho k_{t}) = -\rho \overline{u_{i}' u_{j}'} \frac{\partial \overline{u}_{i}}{\partial x_{j}} - \frac{1}{2} \frac{\partial}{\partial x_{j}} \overline{\rho u_{i}' u_{i}' u_{j}'} - \overline{u_{i}'} \frac{\partial p'}{\partial x_{i}} + \frac{\partial}{\partial x_{j}} \overline{u_{i}' \tau_{ij}'} \\ \frac{Production}{\sqrt{2}} & \xrightarrow{Production} & \xrightarrow{Dissipation} & \xrightarrow{Diffusion} & \xrightarrow{Difusion} & \xrightarrow{Difusion} & \xrightarrow{Difusion} & \xrightarrow{Difusion} & \xrightarrow{Difusion} & \xrightarrow{Difusion} & \xrightarrow{Difusion}$$

For homogeneous isotropic turbulence:

$$\underbrace{\frac{\overline{d}}{dt}(\rho k_t)}_{\text{Variation of }k_t} = \underbrace{-\rho \overline{u_i' u_j'}}_{\text{energy transfer between in the mean field}} - \underbrace{\tau_{ij}' \frac{\partial u_i'}{\partial x_j}}_{\text{dissipation of }k_t}$$

Kinetic energy of the fluctuating field (2)

$$\frac{\overline{\mathsf{d}}}{\mathsf{d}t}(\rho k_t) = \underbrace{-\rho \overline{u_i'} u_j'}_{\substack{\mathsf{Production}}} \underbrace{\frac{\partial \overline{u}_i}{\partial x_j}}_{\substack{\mathsf{Dissipation}}}$$

- ▶ Dissipation rate for k_t : $\rho \varepsilon \equiv \overline{\tau'_{ij} \frac{\partial u'_i}{\partial x_i}} = 2\mu \overline{S''_{ij}} = \frac{1}{2}\mu \left[\frac{\partial u'_i}{\partial x_i} + \frac{\partial u'_j}{\partial x_i} \right]^2 \ge 0$
- ► Meaning of production \mathcal{P} term:

if
$$\begin{cases} u'_2 > 0 \\ u'_1 < 0 \end{cases} \implies \overline{u'_1 u'_2} < 0$$

if $\begin{cases} u'_2 < 0 \\ u'_1 > 0 \end{cases} \implies \overline{u'_1 u'_2} < 0$

hence $\mathcal{P} > 0!$

- Triple correlations..
- Derivation of equations for such correlations
 ⇒ even higher correlations..

(internal energy)

Derivation of FANS equations (1)

- ► Let's switch to the compressible case
- We use Favre filtering

Conservation of Mass

$$\frac{\overline{\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u_i)}{\partial x_i}}}{\frac{\partial \rho}{\partial t} + \frac{\partial [\rho (\widetilde{u}_i + u_i'')]}{\partial x_i}} = 0$$

$$\frac{\partial \overline{\rho}}{\partial t} + \frac{\partial (\overline{\rho} \widetilde{u}_i)}{\partial x_i} + \frac{\partial (\overline{\rho} u_i'')}{\partial x_i} = 0$$

$$\frac{\partial \overline{\rho}}{\partial t} + \frac{\partial (\overline{\rho} \widetilde{u}_i)}{\partial x_i} = 0$$

Conservation of Momentum

$$\frac{\partial \rho u_{i}}{\partial t} + \frac{\partial (\rho u_{i} u_{j})}{\partial x_{j}} = \overline{-\frac{\partial p}{\partial x_{i}}} + \frac{\partial \tau_{ij}}{\partial x_{j}}$$

$$\overline{\frac{\partial \rho(\widetilde{u}_{i} + u_{i}'')}{\partial t} + \frac{\partial}{\partial x_{j}} \left[\rho(\widetilde{u}_{i} + u_{i}'')(\widetilde{u}_{j} + u_{j}'') \right]} = \overline{-\frac{\partial p}{\partial x_{i}}} + \overline{\frac{\partial \tau_{ij}}{\partial x_{j}}}$$

$$\overline{\frac{\partial \rho \widetilde{u}_{i}}{\partial t}} + \frac{\partial \overline{\rho u_{i}''}}{\partial t} + \frac{\partial}{\partial x_{j}} \left[\overline{\rho u_{i} u_{j}} + \overline{\rho u_{i}'' u_{j}'} + \overline{\rho u_{i}'' u_{j}''} \right] = -\frac{\partial \overline{p}}{\partial x_{i}} + \frac{\partial \overline{\tau}_{ij}}{\partial x_{j}}$$

$$\overline{\frac{\partial (\overline{\rho} \widetilde{u}_{i})}{\partial t}} + \frac{\partial (\overline{p} \widetilde{u}_{i} \widetilde{u}_{j})}{\partial x_{j}} = -\frac{\partial \overline{p}}{\partial x_{i}} + \frac{\partial}{\partial x_{j}} \left[\overline{\tau}_{ij} - \overline{\rho u_{i}'' u_{j}''} \right]$$

Derivation of FANS equations (2)

Conservation of Energy

Turbulence

$$\frac{\frac{\partial \rho E}{\partial t} + \frac{\partial \rho H u_j}{\partial x_j}}{\frac{\partial \sigma}{\partial x_j}} = \frac{\partial \sigma_{ji} u_i}{\partial x_j} - \frac{\partial q_j}{\partial x_j}$$

$$\frac{\partial (\tau_{ji}u_i)}{\partial x_j} = \frac{\partial}{\partial x_j} [\tau_{ji}(\widetilde{u}_i + u_i'')]$$

$$= \frac{\partial}{\partial x_j} (\overline{\tau}_{ji}\widetilde{u}_i + \overline{\tau}_{ji}u_i'')$$

$$\frac{\partial q_j}{\partial x_i} = \frac{\partial \overline{q}_j}{\partial x_i}$$

$$\frac{\frac{\partial \rho E}{\partial t}}{\frac{\partial t}{\partial t}} = \frac{\frac{\partial}{\partial t} \left[\rho \left(\widetilde{e} + e'' + \frac{1}{2} (\widetilde{u}_i + u_i'') (\widetilde{u}_i + u_i'') \right) \right]}{\frac{\partial}{\partial t} \left[\rho \left(\widetilde{e} + \frac{1}{2} \widetilde{u}_i \widetilde{u}_i \right) + \rho \frac{1}{2} u_i'' u_i'' \right]} \\
= \frac{\partial}{\partial t} \left[\overline{\rho} \left(\widetilde{e} + \frac{1}{2} \widetilde{u}_i \widetilde{u}_i \right) + \overline{\rho} \frac{1}{2} \widetilde{u}_i'' u_i'' \right]} \\
= \frac{\partial}{\partial t} \left[\overline{\rho} \left(\widetilde{e} + \frac{1}{2} \widetilde{u}_i \widetilde{u}_i + \frac{1}{2} k_t \right) \right] = \frac{\partial \overline{\rho} \widetilde{E}}{\partial t} \\
\frac{\rho H u_j}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\rho (\widetilde{u}_j + u_j'') \left(\widetilde{h} + h'' + \frac{1}{2} (\widetilde{u}_i + u_i'') (\widetilde{u}_j + u_j'') (\widetilde{$$

$$\frac{\overline{\partial \rho H u_{j}}}{\partial x_{j}} = \frac{\overline{\partial u_{j}}}{\overline{\partial u_{j}}} \left[\rho(\widetilde{u}_{j} + u_{j}^{"}) \left(\widetilde{h} + h^{"} + \frac{1}{2} (\widetilde{u}_{i} + u_{i}^{"}) (\widetilde{u}_{i} + u_{i}^{"}) \right) \right]
= \frac{\overline{\partial u_{j}}}{\overline{\partial u_{j}}} \left[\rho(\widetilde{u}_{j} + u_{j}^{"}) \left(\widetilde{h} + h^{"} + \frac{1}{2} \widetilde{u}_{i} \widetilde{u}_{i} + u_{i}^{"} \widetilde{u}_{i} + \frac{1}{2} u_{i}^{"} u_{i}^{"} \right) \right]
= \frac{\partial u_{j}}{\overline{\partial u_{j}}} \left(\overline{\rho} \widetilde{u}_{j} \widetilde{h} + \overline{\rho} \widetilde{u}_{j} \frac{1}{2} \widetilde{u}_{i} \widetilde{u}_{i} + \overline{\rho} \widetilde{u}_{j} k_{t} + \overline{\rho} u_{j}^{"} h^{"} + \overline{\rho} u_{j}^{"} u_{i}^{"} \widetilde{u}_{i} + \frac{1}{2} \overline{\rho} u_{j}^{"} u_{i}^{"} u_{i}^{"} \right)
= \frac{\partial u_{j}}{\overline{\partial u_{j}}} \left(\overline{\rho} \widetilde{u}_{j} \widetilde{h} + \overline{\rho} u_{j}^{"} h^{"} + \overline{\rho} u_{j}^{"} u_{i}^{"} \widetilde{u}_{i} + \frac{1}{2} \overline{\rho} u_{j}^{"} u_{i}^{"} u_{i}^{"} \right)$$

$$\frac{\partial \overline{\rho}\widetilde{E}}{\partial t} + \frac{\partial \overline{\rho}\widetilde{u}_{j}\widetilde{H}}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left[(\overline{\tau}_{ji} - \overline{\rho u_{j}'' u_{i}''})\widetilde{u}_{i} \right] - \frac{\partial}{\partial x_{j}} \left(\overline{\mathbf{q}}_{j} + \overline{\rho u_{j}'' h''} \right) + \frac{\partial}{\partial x_{j}} \left(-\frac{1}{2} \overline{\rho u_{j}'' u_{i}'' u_{i}''} + \overline{\tau_{ji} u_{i}''} \right)$$

Derivation of FANS equations (3)

$$\begin{cases} \frac{\partial \overline{\rho}}{\partial t} + \frac{\partial \left(\overline{\rho} \widetilde{u}_{i} \right)}{\partial x_{i}} = 0 \\ \frac{\partial \left(\overline{\rho} \widetilde{u}_{i} \right)}{\partial t} + \frac{\partial \left(\overline{\rho} \widetilde{u}_{i} \widetilde{u}_{j} \right)}{\partial x_{j}} = -\frac{\partial \overline{\rho}}{\partial x_{i}} + \frac{\partial}{\partial x_{j}} \left[\overline{\tau}_{ij} - \overline{\rho u_{i}'' u_{j}''} \right] \\ \frac{\partial \overline{\rho} \widetilde{E}}{\partial t} + \frac{\partial \overline{\rho} \widetilde{u}_{j} \widetilde{H}}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left[\left(\overline{\tau}_{ji} - \overline{\rho u_{j}'' u_{i}''} \right) \widetilde{u}_{i} \right] - \frac{\partial}{\partial x_{j}} \left(\overline{q}_{j} + \overline{\rho u_{j}'' h''} \right) + \frac{\partial}{\partial x_{j}} \left(-\frac{1}{2} \overline{\rho u_{j}'' u_{i}'' u_{i}''} + \overline{\tau_{ji} u_{i}''} \right) \\ \frac{\partial \overline{\rho}}{\partial t} + \frac{\partial \left(\overline{\rho} \widetilde{u}_{i} \right)}{\partial x_{i}} = 0 \\ \frac{\partial \left(\overline{\rho} \widetilde{u}_{i} \right)}{\partial t} + \frac{\partial \left(\overline{\rho} \widetilde{u}_{i} \widetilde{u}_{j} \right)}{\partial x_{j}} = -\frac{\partial \overline{\rho}}{\partial x_{i}} + \frac{\partial}{\partial x_{j}} \left[2 \overline{\mu} \widetilde{S}_{jj}^{D} - \overline{\rho u_{j}'' u_{i}''} \right] \\ \frac{\partial \overline{\rho} \widetilde{E}}{\partial t} + \frac{\partial \overline{\rho} \widetilde{u}_{j} \widetilde{H}}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left[\left(2 \overline{\mu} \widetilde{S}_{ji}^{D} - \overline{\rho u_{j}'' u_{i}''} \right) \widetilde{u}_{i} \right] - \frac{\partial}{\partial x_{j}} \left(\overline{\rho}_{i} \frac{\overline{\rho} \widetilde{h}}{\partial x_{j}} + \overline{\rho u_{j}'' h''} \right) + \frac{\partial}{\partial x_{j}} \left(-\frac{1}{2} \overline{\rho u_{j}'' u_{i}'' u_{i}''} + \overline{\tau_{ji} u_{i}''} \right) \\ \frac{\partial \overline{\rho} \widetilde{E}}{\partial t} + \frac{\partial \overline{\rho} \widetilde{u}_{j} \widetilde{H}}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left[\left(2 \overline{\mu} \widetilde{S}_{ji}^{D} - \overline{\rho u_{j}'' u_{i}''} \right) \widetilde{u}_{i} \right] - \frac{\partial}{\partial x_{j}} \left(\overline{\rho}_{i} \frac{\overline{\rho} \widetilde{h}}{\partial x_{j}} + \overline{\rho u_{j}'' h''} \right) + \frac{\partial}{\partial x_{j}} \left(-\frac{1}{2} \overline{\rho u_{j}'' u_{i}'' u_{i}''} + \overline{\tau_{ji} u_{i}''} \right)$$

Assumptions: 1.
$$\overline{\tau}_{ij} = \overline{2\rho\nu\left(S_{ij} - \frac{1}{3}S_{kk}\delta_{ij}\right)} = \overline{2\rho\nu S_{ij}^D} = 2\overline{\rho}\widetilde{\nu}\widetilde{S}_{ij}^D + 2\overline{\rho\nu\nu}\widetilde{S}_{ij}^{D} + 2\overline{\rho\nu\nu}\widetilde{S}_{ij}^{D}} = 2\overline{\mu}\widetilde{S}_{ij}^D$$

2. $\overline{p} = \overline{\rho RT} = \overline{\rho}R\widetilde{T}$, $\widetilde{e} = c_{\nu}\widetilde{T}$, $\widetilde{h} = \widetilde{e} + \overline{\frac{p}{2}} = c_{p}\widetilde{T}$

Terms closed

- Reynolds stress
- 2. Reynolds heat flux
- 3. Turbulent transport and work
- 4. Instances of k_t

3.
$$\overline{q}_{j} = -\lambda \frac{\partial \overline{T}}{\partial x_{j}} = -\frac{\overline{\mu}}{Pr} \frac{\partial h}{\partial x_{j}} = -\frac{1}{Pr} \left(\overline{\rho} \widetilde{\nu} \frac{\partial \widetilde{h}}{\partial x_{j}} + \overline{\rho \nu'' \frac{\partial h''}{\partial x_{j}}} \right) = \frac{\overline{\mu}}{Pr} \frac{\partial \widetilde{h}}{\partial x_{j}}$$

4.
$$\overline{\mu} = \frac{\overline{T}}{\mu_{\text{ref}}} \left(\frac{T}{T_{\text{ref}}}\right)^{3/2} \frac{T_{\text{ref}} + S}{T_{\text{ref}} + S} \approx \mu_{\text{ref}} \left(\frac{\widetilde{T}}{T_{\text{ref}}}\right)^{3/2} \frac{T_{\text{ref}} + S}{\widetilde{T}_{\text{ref}} + S}$$

The Boussinesq hypothesis

Turbulence

How to model the Reynolds stress tensor $\tau_{ii}^R = \overline{\rho u_i^{\prime\prime} u_i^{\prime\prime}}$? Two main ideas:

- 1. Try to derive a transport equation for au_{ij}^R
 - Already tried, closure problem remains
 - RSM (second-moment closures), see later
- 2. Use a "turbulent" viscosity: Boussinesq hyp. (1877)
 - Analogy to Newtonian fluid approach for molecular shear stress
 - Gradient transport model (first-order model, providing second moments as function of first)

$$\tau_{ij} = 2\mu S_{ij} - \frac{2}{3}\mu S_{kk}\delta_{ij}$$

$$\tau_{ij}^{R} = -\overline{\rho u_i'' u_j''} = 2\mu_t \widetilde{S}_{ij} - \frac{2}{3}\overline{\rho}k_t\delta_{ij}$$

- $\blacktriangleright \mu_t = \mu_t(\vec{x}, t)$: eddy viscosity
 - Property of the flow, not of the fluid
 - In general, $\mu_t \gg \mu$, apart from near-wall regions
 - $2/3\overline{\rho}k_t\delta_{ii}$ ensures correct definition of k_t

Weaknesses of Boussinesq approximation:

- $ightharpoonup \mathcal{P} = 2\mu_t \overline{\mathcal{S}_{ij}^2} \geq 0$ always
- Reduction from 6 to 1 unknown, but closure model always needed
- ▶ Linear relation between μ_t and \overline{S}_{ij} !
 - When $\overline{S}_{ij} = 0$, $\tau_{ij}^R = 0$ instantaneously (violation of causality)
 - ✗ Axisymmetric, stratified, rotating, separated, shocked flows, 3D flows, strong curvatures, impingement, axial strain..
 - \checkmark Fixes for rotation, curvature, ν_t limiters..

Weakly non-parallel shear flows

Hypothesis:

- ► Steady, incompressible flow
- $ightharpoonup \overline{u} = \overline{u}(y), \quad \overline{v} = 0$
- ► Small streamwise fluctuations (i.e., $\frac{\partial (\bullet)}{\partial x} \ll \frac{\partial (\bullet)}{\partial y}$)
- $ightharpoonup au_{
 m tot}$ must nullify when velocity profile achieves a local extremum

RANS for steady incompressible flow:

$$\rho \overline{y} \frac{\partial \overline{u}}{\partial x} + \rho \overline{y} \frac{\partial \overline{u}}{\partial y} = -\frac{\partial \overline{y}}{\partial x} + \frac{\partial (\rho \overline{u'u'})}{\partial x} + \frac{\partial}{\partial y} (\overline{\tau}_{xy} - \rho \overline{u'v'})$$

Total shear stress:

$$\tau_{\text{tot}} = \overline{\tau}_{xy} - \rho \overline{u'v'} = \mu \frac{\partial \overline{u}}{\partial y} + \mu_t \frac{\partial \overline{u}}{\partial y} = (\mu + \mu_t) \frac{\partial \overline{u}}{\partial y}$$

Law of the wall for a ZPG turbulent boundary layer

- ► Far from wall, inertia ≫ friction (Outer Region)
- Near the wall, inertia ≪ friction (Inner Region):

$$\frac{\partial \tau_{tot}}{\partial y} \approx 0 \implies \tau_{tot} = C^{te}$$

Two zones may be identified:

1) Viscous sublayer

Very close to the wall, laminar friction dominant since $u, v \rightarrow 0$. Hence

$$\mu \frac{\partial^2 u}{\partial y^2} \approx 0 \quad \Longrightarrow \quad u = Cy \quad \text{with} \quad C = \frac{\tau_w}{\mu}$$

We introduce the friction velocity

$$u_{\tau} = \sqrt{\frac{\tau_w}{\rho}} \implies u^+ = \frac{u}{u_{\tau}} \qquad y^+ = \frac{\rho u_{\tau} y}{\mu} = Re^+$$
 $u = Cy \implies u^+ = y^+$

2) Logarithmic Region

Turbulent friction increases progressively and dominates laminar one. Since $\tau_{tot} = C^{te}$ and $u_{\tau} = C^{te}$, by dimensional analysis:

$$\frac{\partial u}{\partial y} \sim \frac{\mathcal{O}(u)}{\mathcal{O}(y)} = A \frac{u_{\tau}}{y^{+}} \quad \text{with} \quad A = \frac{1}{\kappa}$$

$$u = \frac{u_{\tau}}{\kappa} \int \frac{dy^{+}}{y^{+}} \implies \frac{u}{u_{\tau}} = u^{+} = \frac{1}{\kappa} \log(y^{+}) + B$$

with $\kappa \approx$ 0.41 (von Karman constant) and $B \approx$ 5.4

Closure for FANS

1. Reynolds stress tensor:

$$\begin{split} \tau_{ij} &= 2\mu S_{ij} - \frac{2}{3}\mu S_{kk}\delta_{ij} \\ -\overline{\rho u_i''u_j''} &= 2\mu_t\widetilde{S}_{ij} - \frac{2}{3}\overline{\rho}k_t\delta_{ij} \end{split}$$

2. Reynolds heat flux:

$$\overline{q}_{j} = \frac{\overline{\mu}}{Pr} \frac{\partial \widetilde{h}}{\partial x_{j}}$$

$$\overline{\rho u_{j}^{"} h^{"}} = -\lambda_{t} \frac{\partial \widetilde{T}}{\partial x_{j}} = \frac{\mu_{t}}{Pr_{t}} \frac{\partial \widetilde{h}}{\partial x_{j}}$$

• Usually, $Pr_t = 0.9$

3. Turbulent kinetic energy: several approaches depending on the turbulence model:

- Part of the solution (e.g., k_t - ε , k_t - ω , ...)
- Not part of the solution (e.g., S-A), neglected
- Relation with μ_t (Bradshaw's assumption)

4. Turbulent transport and work:

- For models where k_t is not available, neglected
- For models where k_t is available, generally something like:

$$-\overline{\rho u_{j}^{"}}\frac{1}{2}u_{i}^{"}u_{i}^{"}+\overline{\tau_{ji}u_{i}^{"}}=\left(\overline{\mu}+\frac{\mu_{t}}{\sigma_{k}}\right)\frac{\partial k_{t}}{\partial x_{j}}$$

• For low-Ma flows often neglected, as the term $\frac{2}{3}\overline{\rho}k_t\delta_{ij}$ in τ^R_{ij} $(\overline{\rho}k_t\ll\overline{p})$

Closed FANS equations

Closed PANS equations
$$\begin{cases} \frac{\partial \overline{\rho}}{\partial t} + \frac{\partial \left(\overline{\rho}\widetilde{u}_{i}\right)}{\partial x_{i}} = 0 \\ \frac{\partial \left(\overline{\rho}\widetilde{u}_{i}\right)}{\partial t} + \frac{\partial \left(\overline{\rho}\widetilde{u}_{i}\widetilde{u}_{j}\right)}{\partial x_{j}} = -\frac{\partial \overline{\rho}}{\partial x_{i}} + \frac{\partial}{\partial x_{j}} \left[2(\overline{\mu} + \mu_{t})\widetilde{S}_{ij} - \frac{2}{3}\overline{\rho}k\delta_{ij} \right] \\ \frac{\partial \overline{\rho}\widetilde{E}}{\partial t} + \frac{\partial \overline{\rho}\widetilde{u}_{j}\widetilde{H}}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left[\left(2(\overline{\mu} + \mu_{t})\widetilde{S}_{ij} - \frac{2}{3}\overline{\rho}k\delta_{ij} \right) \widetilde{u}_{i} \right] + \frac{\partial}{\partial x_{j}} \left[\left(\frac{\overline{\mu}}{Pr} + \frac{\mu_{t}}{Pr_{t}} \right) \frac{\partial \widetilde{h}}{\partial x_{j}} \right] + \frac{\partial}{\partial x_{j}} \left[\left(\overline{\mu} + \frac{\mu_{t}}{\sigma_{k}} \right) \frac{\partial k_{t}}{\partial x_{j}} \right]$$

Hierarchy of turbulence modeling

Mean flow equations

4 RANS Models

5 Wall Treatment

General principles for turbulence modeling

Objectives of the turbulence models

- As cheap as possible (overnight computations, parametric studies, ..)
- ▶ Predictive (no *a priori* knowledge of the solution)
- ► Representing at best the flow physics

Some principles exist for their development

- ✔ Provide a method/mathematical framework
- Give physical constraints enabling the modeler to make relevant choices
- Not sufficient for ensuring that the models will "work properly"
- ✗ Not necessarily compatible with each other
- ✗ Some of them can be considered more important, but impossible to rank them

List of more common principles

- Closure: the model must consist in a closed system of equations (as many equations as unknowns)
- 2. Dimensional homogeneity: the model for a quantity must be of the same dimension as the quantity itself
- 3. Completeness: it does not require any a priori knowledge of the flow (e.g., no $\ell_{\rm mix}$)
- 4. Objectivity: independent on the reference frame
- 5. Universality: it should theoretically be applicable to all flows (or at least to a wide class of flows)
- Realizability: the moments of order 1 and 2 have precise mathematical properties, e.g., τ^R_{ij} is a positive-semidefinite tensor
 (⇒ eigenvalues and principal invariants positive)
- Consistency with boundary layer theory: it is expected to reproduce at least a standard BL
- Numerical robustness: it should be robust (contrast with ease of use / quality of physics representation)

Overview of RANS Models

URANS: Unsteady-RANS

- Study of long-term periodical oscillations / time-dependent effects
 - Bluff bodies, IC Engines, Helicopter rotors, Transonic airfoils,...
- ✓ Ok with various eddy-viscosity models
- ✓ Successfully combined with LES or DES
- X Model type and time step can have a significant impact on results

Difference Low-Re / High-Re / All-Re related to wall treatment (explained later)

Eddy-Viscosity models (EVM)

 ν_{t} $I_m^2 |\overline{S}_{ii}|$

- 1. 0-equations (Algebraic) models (Prandtl, Baldwin-Lomax, ..)
- 2. 1-equation models
 - TKF models (Prandtl-Kolmogorov)

 $CI_{pk}\sqrt{k_t}$ $\nu_{sa}f_{v1}$

 Spalart-Allmaras 3. 2-equation models

- - k_t - ε models (Jones-Launder, RNG, Realizable,...)
 - k₊-ω models (Wilcox., Menter's SST)

Can be linear (EVM) or non-linear (NEVM) Revnolds Stress Models

Transport equations for the Reynolds stress tensor + length scale

Algebraic models

- $\blacktriangleright \mu_t$ computed as a function of a suitable "mixing" length
- ▶ Based on analogies: for μ with kinetic theory of gases, for τ between turbulent and molecular transport:

$$\begin{split} \tau_{\rm mol} &= \mu \frac{\partial u}{\partial {\rm y}} \quad {\rm with} \quad \mu = \frac{1}{3} \rho \ell_{\it mfp} {\rm v}_{\it mol} \\ \tau_{\rm turb} &= \mu_t \frac{\partial \overline{u}}{\partial {\rm v}} \quad {\rm with} \quad \mu_t = \rho \ell_{\it mix} {\rm v}_{\it turb} \end{split}$$

where
$$v_{\mathsf{turb}} = c_1 \ell_{\mathsf{mix}} \left| rac{\partial \overline{u}}{\partial y}
ight|$$
 and $\ell_{\mathsf{mix}} = c_2 y$

- c₁ and c₂ to be specified
- μ_t is part of the solution, since it depends on $\frac{\partial u}{\partial y}$
- ightharpoonup ℓ_{mix} depends upon flow configuration
 - Fundamental difference w.r.t. mean free path
 - ullet \propto characteristic length (case by case)
 - Typically, function of distance from nearest wall
 - Problems for complex geometries, detached flows, unstructured solvers..
 - Debatable performances...

Prandtl's mixing length

$$u_t = \ell_{\mathsf{mix}} \left| \frac{\partial u}{\partial v} \right| \implies \mu_t = \rho \ell_{\mathsf{mix}}^2 \left| \frac{\partial u}{\partial v} \right|$$

For a general quantity q of a particle, with an assumed linear profile q=q(y):

- ► Turbulent eddy moves the particle by an amount y' towards a level y: $q' = \left(\frac{\partial \overline{q}}{\partial v}\right) y'$
- lacktriangle To move up, the particle has a velocity $v' \propto u'$, thus

if
$$\frac{\partial \overline{u}}{\partial y} \begin{cases} > 0 : v' = Cu' \\ < 0 : v' = -Cu' \end{cases}$$
 \Longrightarrow combining, $v' = C \left| \frac{\partial \overline{u}}{\partial y} \right| y'$

► A kinematic flux can be formed: $\overline{v'q'} = -Cy'^2 \left| \frac{\partial \overline{u}}{\partial y} \right| \frac{\partial \overline{q}}{\partial y}$ Prandtl assumed C = 1 and called y' the mixing length:

$$\overline{v'q'} = -\ell_{\mathsf{mix}}^2 \left| \frac{\partial \overline{u}}{\partial y} \right| \frac{\partial \overline{q}}{\partial y} \implies \overline{u'v'} = -\ell_{\mathsf{mix}}^2 \left| \frac{\partial \overline{u}}{\partial y} \right| \frac{\partial \overline{u}}{\partial y} = \nu_t \frac{\partial \overline{u}}{\partial y}$$

► To be valid whatever the orientation of the shear, generalized as $\nu_t = \ell_{\text{mix}}^2 \sqrt{2S_{ij}S_{ij}}$

Mixing length and Van Driest damping functions

For **free-shear flows**, ℓ_{mix} proportional to the layer width:

$$\ell_{\rm mix} = \begin{cases} 0.071 \, \delta & \text{for mixing layer} \\ 0.098 \, \delta & \text{for plane jet} \\ 0.080 \, \delta & \text{for round jet} \\ 0.180 \, \delta & \text{for plane wake} \\ \dots \end{cases}$$

For wall-bounded flows, the walls block the maximum size of the eddies

- \blacktriangleright ℓ_t related to distance from the wall
 - ullet Prandtl supposed that $\ell_t=\kappa y$ with $\kappa=0.41$, thus

$$\ell_t = \min(\kappa y, 0.09\delta)$$

- ▶ Moreover, viscosity dampens the eddies in the viscous layer and reduces their size
 - The Van Driest damping function accounts for this effect:

$$\ell = \kappa y \left[1 - \exp\left(-rac{y^+}{A^+}
ight)
ight] \quad ext{with} \quad A^+ = 26.0$$

Baldwin-Lomax Model

Turbulence

$$\begin{split} \mu_t &= \begin{cases} \mu_{t, \text{inner}} = \rho \ell^2 |\Omega| & \text{if } y \leq y_{\text{cross}} \\ \mu_{t, \text{outer}} &= \rho K C_{\text{cp}} F_{\text{wake}} F_{\text{kleb}}(y) & \text{if } y > y_{\text{cross}} \end{cases} \\ |\Omega| &= \sqrt{2 \Omega_{ij} \Omega_{ij}} \\ \Omega_{ij} &= \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} - \frac{\partial u_j}{\partial x_i} \right) \\ \ell &= \kappa y \left[1 - \exp \left(\frac{-y^+}{A^+} \right) \right] \end{split}$$

Evolutions of the base model:

- ► Van Driest (1956) wall damping
- ► Clauser (1956) defect layer modification
- Corrsin and Kister (1954) intermittency modification

$$A^+ = 26, \quad \textit{C}_{cp} = 1.6, \quad \textit{C}_{kleb} = 0.3, \quad \textit{C}_{wk} = 0.25, \quad \kappa = 0.4, \quad \textit{K} = 0.0168$$

- ✓ Good results for simple (attached) flows
- Fast and robust

with
$$y_{\text{cross}} = \min(y)$$
 where $\mu_{t,\text{inner}} = \mu_{t,\text{outer}}$

$$egin{aligned} F_{ ext{wake}} &= \min \left(y_{ ext{max}} F_{ ext{max}}, C_{ ext{wk}} y_{ ext{max}} rac{u_{ ext{diff}}^2}{F_{ ext{max}}}
ight) \ u_{ ext{diff}} &= \max \left(\sqrt{u_i u_i}
ight) - \min \left(\sqrt{u_i u_i}
ight) \ F_{ ext{kleb}} &= \left[1 + 5.5 \left(rac{y C_{ ext{kleb}}}{y_{ ext{max}}}
ight)^6
ight]^{-1} \end{aligned}$$

 y_{max} and F_{max} determined by the maximum of

$$F(y) = y|\Omega|\left[1 - \exp\left(\frac{-y^+}{A^+}\right)\right]$$

✗ Only depends on local flow properties ⇒ no abrupt flow variations (pressure gradients, separations, complex flows..)

Transport equation models

Turbulence does not adapt instantaneously to abrupt variations! How to take into account flow history?

▶ Idea: write transport equations for given properties. Obviously, start from k_t ($\overline{u_i'' \times \text{Momentum}}$)

$$\frac{\partial \overline{\rho} k_{t}}{\partial t} + \frac{\partial \overline{\rho} \widetilde{u}_{j} k_{t}}{\partial x_{j}} = \underbrace{\frac{\overline{\rho} u_{i}'' u_{j}''}{\overline{\rho} u_{i}'' u_{j}''} \frac{\partial \widetilde{u}_{i}}{\partial x_{j}} - \underbrace{\frac{\overline{\rho} u_{i}''}{\overline{\rho} u_{i}''}}_{Dissipation} + \underbrace{\frac{\overline{\rho} u_{i}''}{\overline{\rho} u_{i}''}}_{work} - \underbrace{\frac{\overline{\rho} u_{i}'' u_{i}''}{\overline{\rho} u_{i}'' u_{i}''}}_{transport} - \underbrace{\frac{\overline{\rho} ressure}{\overline{\rho} u_{i}'' u_{i}''}}_{eligation} \underbrace{\frac{\overline{\rho} ressure}{\overline{\rho} u_{i}'' u_{i}''}}_{work} - \underbrace{\frac{\overline{\rho} u_{i}'' u_{i}''}{\overline{\rho} u_{i}''}}_{work} - \underbrace{\frac{\overline{\rho} u_{i}'' u_{i}''}}_{work} - \underbrace{\frac{\overline{\rho}$$

► Production: Boussinesq + Newtonian fluid

$$\tau_{ij}^{R} = 2\mu_{t}\widetilde{S}_{ij} - \frac{2}{3}\overline{\rho}k_{t}\delta_{ij}$$

- ▶ Dissipation: $\varepsilon = f(k_t, \ell)$. Either:
 - Algebraic relation: $\varepsilon = C_D \frac{k_t^{3/2}}{\ell}$ (1-eq. model)
 - Supply 2nd PDE (2-eq. model)

Therefore,
$$\mu_t = \rho C v_k \ell_k = \rho C k^{1/2} \frac{k^{3/2}}{\varepsilon} = \rho C \frac{k_t^2}{\varepsilon}$$

- ► Turbulent transport and work: same as previously shown in FANS closure (for consistency)
- ▶ Pressure terms: no standards, often neglected

- ✓ Include history effect w.r.t. 0-equation models
- **X** Need to set a turbulent length..
- \mathbf{x} k_t 1-equation model abandoned for SA approach

Remark: gradient-diffusion relation commonly used between turbulent flux of a quantity and its corresponding mean gradient:

$$-\rho \overline{v'\phi'} = \Gamma_t \frac{\partial \phi}{\partial y} \quad \text{with} \quad \Gamma_t = \frac{\mu_t}{\sigma_t}$$

- ightharpoonup T turbulent diffusivity, σ_t turbulent Prandtl number
- $ightharpoonup \sigma_t pprox 1$ (the same turbulent eddies are responsible for transporting momentum and other scalars)

Spalart-Allmaras Model

Turbulence

- lacktriangle Transport equation directly based on a "modified" turbulent viscosity, u_{sa}
- ▶ More info at https://turbmodels.larc.nasa.gov/spalart.html

$$\frac{\partial \nu_{\mathsf{sa}}}{\partial t} + \widetilde{u}_j \frac{\partial \nu_{\mathsf{sa}}}{\partial x_j} = c_{b1} (1 - f_{t2}) S_{\mathsf{sa}} \nu_{\mathsf{sa}} - \left[c_{w1} f_w - \frac{c_{b1}}{\kappa^2} f_{t2} \right] \left(\frac{\nu_{\mathsf{sa}}}{d} \right)^2 + \frac{1}{\sigma} \left[\frac{\partial}{\partial x_j} \left((\widetilde{\nu} + \nu_{\mathsf{sa}}) \frac{\partial \nu_{\mathsf{sa}}}{\partial x_j} \right) + c_{b2} \frac{\partial \nu_{\mathsf{sa}}}{\partial x_k} \frac{\partial \nu_{\mathsf{sa}}}{\partial x_k} \right]$$

$$\nu_t = \nu_{\rm sa} f_{v1} \qquad S_{\rm sa} = \Omega + \frac{\nu_{\rm sa}}{\kappa^2 d^2} f_{v2} \qquad \Omega = \sqrt{2 \widetilde{\Omega}_{ij} \widetilde{\Omega}_{ij}} \qquad \widetilde{\Omega}_{ij} = \frac{1}{2} \left(\frac{\partial \widetilde{u}_i}{\partial x_j} - \frac{\partial \widetilde{u}_j}{\partial x_i} \right)$$

$$\chi = \frac{\nu_{\mathsf{sa}}}{\widetilde{\nu}} \qquad f_{\mathsf{t2}} = c_{\mathsf{t3}} \exp\left(-c_{\mathsf{t4}} \chi^2\right) \qquad f_{\mathsf{v1}} = \frac{\chi^3}{\chi^3 + c_{\mathsf{v1}}^3} \qquad f_{\mathsf{v2}} = 1 - \frac{\chi}{1 + \chi f_{\mathsf{v1}}}$$

$$f_w = g \left(\frac{1 + c_{w3}^6}{g^6 + c_{w3}^6} \right)^{1/6} g = r + c_{w2} (r^6 - r)$$
 $r = \min \left(\frac{\nu_{sa}}{S_{sa} \kappa^2 d^2}, 10 \right)$

- $ightharpoonup c_{w1} f_w$ models destruction due to inviscid blocking (pressure fluctuation damping)
- **Viscous destruction** is accounted for in the definition of ν_t (by means of $f_{\nu 1}$)
- Additional nonlinear term $c_{b2} \frac{\partial \nu_{sa}}{\partial x_k} \frac{\partial \nu_{sa}}{\partial x_k}$ important at the edge of the turbulent region, where diffusion dominates.
- ▶ Why not solving directly for ν_t ? \implies because of ν_t behaviour near the wall!

$$c_{b1} = 0.1355$$

$$c_{b2} = 0.622$$

$$\sigma = 2/3$$

$$\kappa = 0.41$$

$$c_{v1}=7.1$$

$$c_{t3} = 1.2$$

$$c_{t4}=0.5$$

$$c_{w1} = \frac{c_{b1}}{\kappa^2} + \frac{1 + c_{b2}}{\sigma}$$

$$c_{w2}=0.3$$

$$c_{w3}=2$$

Spalart-Allmaras Model - cont'd

- ▶ The ν_t profile is
 - linear in the log region: $\frac{\nu_t}{\nu} = \kappa y^+$
 - quartic in the viscous layer, $\frac{\nu_t}{\nu} \sim (y^+)^4$
 - Lot of cells needed to represent such quantity!
 - ullet u_{sa} reproduces viscous damping thanks to f_{v1}
 - ullet Far from the wall, $f_{v1}
 ightarrow 1$ and $u_{\mathsf{sa}} =
 u_t$

What about BCs?

- At the wall, $\nu_{sa} = 0$
- ▶ In the freestream, $\nu_{\text{sa}} = \nu_t$. Thus, at the inlet:

$$u_{\mathsf{sa}} =
u_t = rac{\mathsf{C}_{\mu} \mathsf{k}_t^2}{arepsilon} \quad \mathsf{or} \quad
u_{\mathsf{sa}} =
u_t = rac{\mathsf{k}_t}{\omega}$$

with k_t and ω calculated from:

- A length scale ℓ (e.g., 10% of the wing chord)
- The turbulence intensity *I* (e.g., 5%)

$$k_t = \frac{3}{2}u_{\infty}^2I^2$$
 $\varepsilon = C_{\mu}\frac{k_t^{3/2}}{\ell}$

- Cheap and easy to implement
- Attached wall bounded flows, mild separation and recirculation
- ✗ Massively separated flows, free shear flows, decaying turbulence..

k_t - ε model

▶ Transport of k_t and of its dissipation rate ε . Jones and Launder (1972), Launder and Sharma (1974), ...

$$\begin{cases} \frac{\partial \overline{\rho}k_{t}}{\partial t} + \frac{\partial \overline{\rho}\widetilde{u}_{j}k_{t}}{\partial x_{j}} = \tau_{ij}^{R}\frac{\partial \widetilde{u}_{i}}{\partial x_{j}} - \overline{\rho}\varepsilon + \frac{\partial}{\partial x_{j}}\left[\left(\overline{\mu} + \frac{\mu_{t}}{\sigma_{k}}\right)\frac{\partial k_{t}}{\partial x_{j}}\right] \\ \frac{\partial \overline{\rho}\varepsilon}{\partial t} + \frac{\partial \overline{\rho}\widetilde{u}_{j}\varepsilon}{\partial x_{j}} = \overline{\rho}C_{\varepsilon 1}\frac{\varepsilon}{k_{t}}\tau_{ij}^{R}\frac{\partial \widetilde{u}_{i}}{\partial x_{j}} - C_{\varepsilon 2}\overline{\rho}\frac{\varepsilon^{2}}{k_{t}} + \frac{\partial}{\partial x_{j}}\left[\left(\overline{\mu} + \frac{\mu_{t}}{\sigma_{\varepsilon}}\right)\frac{\partial\varepsilon}{\partial x_{j}}\right] \end{cases}$$

$$\mu_t = \rho C_\mu \frac{k_t^2}{\varepsilon} \qquad C_\mu = 0.09$$

$$C_{\varepsilon 1} = 1.44$$
 $\sigma_k = 1.0$ $C_{\varepsilon 2} = 1.92$ $\sigma_{\varepsilon} = 1.3$

- ✓ Simple to implement, robust, predictable behaviour
- Independence from free-stream values
- Correctly reproduces shear stress in free shear flows
- ✓ Applicable to wider range of flows than SA

- **X** Linearity of the model (no complex 3D flows)
- X Not sensitive to streamline curvatures and rotations
- X Difficult to impose BCs: low-Re corrections needed
 - **X** Equations not valid in viscous layer
 - $\mathbf{x} \ \varepsilon^2/k_t$ singular at the wall

Improvements:

▶ Modified ε -eq. and Coeffs derived analytically based on Renormalization Group Theory

RNG k+-€

- ✓ Rapidly strained flows, moderate swirl
- ✓ Flows with streamline curvature

- Realizable k_t - ε
- ▶ Modified ε -eq. taking into account physical constraints
 - 1. $\det(\overline{u_i'u_i'}) \geq 0$
 - 2. $\overline{u_i'u_i'} \geq 0$ (positive normal stresses)
 - 3. $|\overline{u_i'u_i'}|^2 \leq \overline{u_i^2}\overline{u_i^2}$ (Cauchy-Schwartz inequality)
 - Recirculation, rotation, separation
 - ✓ Often more accurate and easier to converge than RNG

k_{t} - ω Wilcox model

- $ightharpoonup 2^{\text{nd}}$ transport equation for the specific dissipation rate (a.k.a. turbulence frequency): $\omega = \frac{\varepsilon}{C L}$
- ▶ More info at https://turbmodels.larc.nasa.gov/wilcox.html

$$\begin{cases} \frac{\partial \overline{\rho}k_t}{\partial t} + \frac{\partial \overline{\rho}\widetilde{u}_jk_t}{\partial x_j} = \tau_{ij}^R \frac{\partial \widetilde{u}_i}{\partial x_j} - \beta^* \overline{\rho}k_t \omega + \frac{\partial}{\partial x_j} \left[\left(\overline{\mu} + \sigma_k \frac{\overline{\rho}k_t}{\omega} \right) \frac{\partial k_t}{\partial x_j} \right] \\ \frac{\partial \overline{\rho}\omega}{\partial t} + \frac{\partial \overline{\rho}\widetilde{u}_j\omega}{\partial x_j} = \alpha \frac{\omega}{k_t} \tau_{ij}^R \frac{\partial \widetilde{u}_i}{\partial x_j} - \beta \overline{\rho}\omega^2 + \frac{\partial}{\partial x_j} \left[\left(\overline{\mu} + \sigma_\omega \frac{\overline{\rho}k_t}{\omega} \right) \frac{\partial \omega}{\partial x_j} \right] + \sigma_d \frac{\overline{\rho}}{\omega} \frac{\partial k_t}{\partial x_j} \frac{\partial \omega}{\partial x_j} & \alpha = 0.52 \\ \beta = \beta_0 f_\beta, \qquad f_\beta = \frac{1 + 85\chi_\omega}{1 + 100\chi_\omega}, \qquad \chi_\omega = \left| \frac{\Omega_{ij}\Omega_{jk}\widehat{S}_{ki}}{(\beta^*\omega)^3} \right|, \qquad \widehat{S}_{ki} = \widetilde{S}_{ki} - \frac{1}{2} \frac{\partial \widetilde{u}_m}{\partial x_m} \delta_{ki} & \sigma_\omega = 0.5 \\ \sigma_d = \begin{cases} 0 & \frac{\partial k_t}{\partial x_j} \frac{\partial \omega}{\partial x_j} \leq 0 \\ \sigma_{do} & \frac{\partial k_t}{\partial x_j} \frac{\partial \omega}{\partial x_j} > 0 \end{cases}, \qquad \mu_t = \frac{\overline{\rho}k_t}{\widehat{\omega}}, \qquad \widehat{\omega} = \max\left(\omega, C_{\lim} \sqrt{\frac{2}{\beta^*}} \widetilde{S}_{ij} \widetilde{S}_{ij} \right) & \sigma_{do} = 0.125 \\ C_{\lim} = 0.875 \end{cases}$$

- Better then k_t - ε for external aerodynamics and turbomachinery
- Correct behavior in the viscous layer
- ✓ APG BL, free shear, low-Re flows, separation
- ✓ Production indep. on k_t since $\alpha \frac{\omega}{k} P = 2\alpha S_{ij} S_{ij}$ (numerical robustness)

- **✗** Transition/separation predicted excessive/early
- **x** $\omega(y \to 0) \sim \frac{6\nu}{\beta v^2} \to \infty$ at the wall
- **X** Sensitive to inlet and far-field values of ω ! k_t - ε was better \implies hybridization Replacing $\varepsilon = C_{\mu} k_t \omega$ in the ε equation leads to appearance of the cross-diffusion term

k_t - ω SST, Menter's Shear-Stress Transport model

Turbulence

▶ Blending of k_t - ε and k_t - ω . More info at https://turbmodels.larc.nasa.gov/sst.html

$$\begin{cases}
\frac{\partial \overline{\rho} k_{t}}{\partial t} + \frac{\partial \overline{\rho} \widetilde{u}_{j} k_{t}}{\partial x_{j}} = \tau_{ij}^{R} \frac{\partial \widetilde{u}_{i}}{\partial x_{j}} - \beta^{*} \overline{\rho} k \omega + \frac{\partial}{\partial x_{j}} \left[(\overline{\mu} + \sigma_{k} \mu_{t}) \frac{\partial k}{\partial x_{j}} \right] \\
\frac{\partial \overline{\rho} \omega}{\partial t} + \frac{\partial \overline{\rho} \widetilde{u}_{j} \omega}{\partial x_{j}} = \frac{\alpha}{\nu_{t}} \tau_{ij}^{R} \frac{\partial \widetilde{u}_{i}}{\partial x_{j}} - \beta \overline{\rho} \omega^{2} + \frac{\partial}{\partial x_{j}} \left[(\mu + \sigma_{\omega} \mu_{t}) \frac{\partial \omega}{\partial x_{j}} \right] + 2(1 - F_{1}) \frac{\overline{\rho} \sigma_{\omega 2}}{\omega} \frac{\partial k_{t}}{\partial x_{j}} \frac{\partial \omega}{\partial x_{j}}
\end{cases}$$

$$\sigma_k = F_1 \sigma_{k1} + (1 - F_1) \sigma_{k2}, \qquad \sigma_\omega = F_1 \sigma_{\omega 1} + (1 - F_1) \sigma_{\omega 2}, \qquad \beta = F_1 \beta_1 + (1 - F_1) \beta_2 \qquad \sigma_{k1}, \sigma_{\omega 1}, \beta_1 \text{ from } k - \omega$$

$$\alpha = F_1 \alpha_1 + (1 - F_1) \alpha_2, \qquad \alpha_1 = \frac{\beta_1}{\beta^*} - \sigma_{\omega 1} \frac{\kappa^2}{\sqrt{\beta^*}}, \qquad \alpha_2 = \frac{\beta_2}{\beta^*} - \sigma_{\omega 2} \frac{\kappa^2}{\sqrt{\beta^*}} \qquad \sigma_{k2}, \sigma_{\omega 2}, \beta_2 \text{ from } k - \varepsilon$$

$$[(\sqrt{k} - 500\tilde{\chi}) - 4\bar{\chi}\sigma_{\omega 2}, k_1] \qquad \beta^* = 0.09$$

$$F_1 = \tanh(\arg_1^4), \qquad \arg_1 = \min\left[\max\left(\frac{\sqrt{k_t}}{0.09\omega d}, \frac{500\widetilde{\nu}}{d^2\omega}\right), \frac{4\overline{\rho}\sigma_{\omega 2}k_t}{\mathsf{CD}_{k_t\omega}d^2}\right] \qquad \qquad \beta^* = 0.09$$

$$\mu_t = \frac{a_1 \overline{\rho} k_t}{\max(a_1 \omega, \Omega F_2)}, \qquad F_2 = \tanh(\arg_2^2), \qquad \arg_2 = \max\left(\frac{2\sqrt{k_t}}{0.09\omega d}, \frac{500\widetilde{\nu}}{d^2\omega}\right)$$

- ▶ Terms in green are different from standard $k_t \omega$ model; blending of $\phi = \phi_1 F_1 + \phi_2 (1 F_1)$
- ▶ Model driven by F_1 $\begin{cases} \rightarrow 1 \text{(near-wall region): term disappears, } k_t$ - ω recovered $\\ \rightarrow 0 \text{(far from walls): term active, } k_t$ - ε recovered with variable change $\omega = \frac{\varepsilon}{k_t}$
- **\blacktriangleright** Bound on μ_t avoid overestimation of shear stress in APG BLs
- ✓ Benefits of combined k_t - ε and k_t - ω ✓ Dependency on wall distance: less suitable for free shear flows

EVM and NEVM

Eddy-viscosity models (EVM)

- $ightharpoonup
 u_t$ based on turbulence scalars determined by solving transport equations
- ▶ (Deviatoric) turbulent stress ∝ mean strain
- ✓ Simply to code, robust thanks to extra viscosity
- ✓ Theoretically supported in some simple but common flow configurations
- ✓ Effective in many engineering flows
- ✗ Dependence on single scalar! Fails for strongly anistropic flows and when more than one stress component has an effect on the mean flow Example: in the log region of a BL, the stress are

$$\overline{u'^2}: \overline{v'^2}: \overline{w'^2} = 1:0.4:0.6$$

EVM would predict all of these to be equal to $\frac{2}{3}k_t$

 Not particularly important for simple shear flows (but it is for complex flows).
 Possible solutions: NEVM and RSM Halfway between EVM and DCM

- ► Halfway between EVM and RSM
- $ightharpoonup au_{ij}^R$ non-linear function of mean strain and vorticity

Non-linear eddy-viscosity models (NEVM)

Defining the anisotropy tensor $a_{ij} = \frac{\tau_{ij}^R}{k_t} = \frac{\overline{u_i'u_j'}}{k_t} - \frac{2}{3}\delta_{ij}$ The dimensionless $\overline{S_{ii}}$ and $\overline{\Omega_{ii}}$ are (e.g., for k_t - ε):

$$\overline{s_{ij}} = \frac{k_t}{\varepsilon} \overline{S_{ij}} \qquad \overline{\omega_{ij}} = \frac{k_t}{\varepsilon} \overline{\Omega_{ij}}$$

Then one has:

$$a_{ij} = \begin{cases} -2C_{\mu}\overline{s_{ij}} & \text{for EVM} \\ -2C_{\mu}\overline{s_{ij}} + \boxed{NL(\overline{s_{ij}}, \overline{\omega_{ij}})} & \text{for NEVM} \end{cases}$$

- ✔ Huge improvement for certain important flows
- ✓ Only slightly more expensive than EVM
- Don't accurately represent the real production and advection processes
- X Little theoretical foundation in complex flows

Reynolds Stress Models (RSM)

Derive an exact equation for the Reynolds stresses:

$$\overline{u_j' imes \left[\mathcal{N}(u_i) - \overline{\mathcal{N}(u_i)}
ight] + u_i' imes \left[\mathcal{N}(u_j) - \overline{\mathcal{N}(u_j)}
ight]}$$

$$\frac{\partial \rho \overline{u_i' u_j'}}{\partial t} + \underbrace{\frac{\partial \rho \overline{u}_k u_i' u_j'}{\partial x_k}}_{\text{Convection}} = \underbrace{\frac{\rho \text{roduction}}{\rho_{ij}}}_{\text{Production}} \underbrace{\frac{\rho \text{roduction}}{\rho_{ij}}}_{\text{Production}} \underbrace{\frac{\rho \text{sissipation}}{\rho_{ij}}}_{\text{Convection}} \underbrace{\frac{\rho \text{roduction}}{\rho_{ij}}}_{\text{Out}} \underbrace{\frac{\rho \text{du}_i'}{\partial x_k} \frac{\partial \overline{u}_j'}{\partial x_k}}_{\text{Out}} + \underbrace{\frac{\rho'}{\rho'} \left(\frac{\partial u_i'}{\partial x_j} + \frac{\partial u_j'}{\partial x_i}\right)}_{\text{Out}} + \underbrace{\frac{\partial}{\partial x_k} \left(\mu \frac{\partial \overline{u}_i' u_j'}{\partial x_k}\right)}_{\text{Turbulent Diffusion}} \underbrace{\frac{\rho''}{\rho''} \left(\frac{\partial u_i'}{\partial x_k} + \frac{\partial u_j'}{\partial x_k}\right)}_{\text{Out}} + \underbrace{\frac{\partial}{\partial x_k} \left(\mu \frac{\partial \overline{u}_i' u_j'}{\partial x_k}\right)}_{\text{Turbulent Diffusion}} \underbrace{\frac{\rho''}{\rho''} \left(\frac{\partial u_i'}{\partial x_k} + \frac{\partial u_j'}{\partial x_k}\right)}_{\text{Out}} + \underbrace{\frac{\partial}{\partial x_k} \left(\mu \frac{\partial \overline{u}_i' u_j'}{\partial x_k}\right)}_{\text{Turbulent Diffusion}} \underbrace{\frac{\rho''}{\rho''} \left(\frac{\partial u_i'}{\partial x_k} + \frac{\partial u_j'}{\partial x_k}\right)}_{\text{Out}} + \underbrace{\frac{\partial}{\partial x_k} \left(\mu \frac{\partial \overline{u}_i' u_j' u_j'}{\partial x_k}\right)}_{\text{Out}} + \underbrace{\frac{\partial}{\partial x_k} \left(\mu \frac{\partial \overline{u}_i' u_j' u_j'}{\partial x_k}\right)}_{\text{Out}} + \underbrace{\frac{\partial}{\partial x_k} \left(\mu \frac{\partial \overline{u}_i' u_j' u_j'}{\partial x_k}\right)}_{\text{Out}} + \underbrace{\frac{\partial}{\partial x_k} \left(\mu \frac{\partial \overline{u}_i' u_j' u_j'}{\partial x_k}\right)}_{\text{Out}} + \underbrace{\frac{\partial}{\partial x_k} \left(\mu \frac{\partial \overline{u}_i' u_j' u_j'}{\partial x_k}\right)}_{\text{Out}} + \underbrace{\frac{\partial}{\partial x_k} \left(\mu \frac{\partial \overline{u}_i' u_j' u_j'}{\partial x_k}\right)}_{\text{Out}} + \underbrace{\frac{\partial}{\partial x_k} \left(\mu \frac{\partial \overline{u}_i' u_j' u_j'}{\partial x_k}\right)}_{\text{Out}} + \underbrace{\frac{\partial}{\partial x_k} \left(\mu \frac{\partial \overline{u}_i' u_j' u_j'}{\partial x_k}\right)}_{\text{Out}} + \underbrace{\frac{\partial}{\partial x_k} \left(\mu \frac{\partial \overline{u}_i' u_j' u_j'}{\partial x_k}\right)}_{\text{Out}} + \underbrace{\frac{\partial}{\partial x_k} \left(\mu \frac{\partial \overline{u}_i' u_j' u_j'}{\partial x_k}\right)}_{\text{Out}} + \underbrace{\frac{\partial}{\partial x_k} \left(\mu \frac{\partial \overline{u}_i' u_j' u_j'}{\partial x_k}\right)}_{\text{Out}} + \underbrace{\frac{\partial}{\partial x_k} \left(\mu \frac{\partial \overline{u}_i' u_j' u_j'}{\partial x_k}\right)}_{\text{Out}} + \underbrace{\frac{\partial}{\partial x_k} \left(\mu \frac{\partial \overline{u}_i' u_j' u_j'}{\partial x_k}\right)}_{\text{Out}} + \underbrace{\frac{\partial}{\partial x_k} \left(\mu \frac{\partial \overline{u}_i' u_j' u_j'}{\partial x_k}\right)}_{\text{O$$

- ✓ 7 additional equations (6 stresses + length scale)
 - C_{ij} and P_{ij} are exact, no model required!
- ✗ 22 new unknowns (red terms require modeling)
- ► Speziale-Sarkar-Gatzki, Launder-Reece-Rodi, ...
- ► Algebraic RSM, Differential RSM, Explicit RSM..

- \checkmark Anisotropy of μ_t and $\tau^R_{ij} \implies$ ok for Rotation, high strain rate, swirl, strong 3D effects, curvature..
- **X** Computationally more expensive
- **X** Less robust (no μ_t) and tougher to converge due to tight coupling with momentum

1	_	,				
Τ.	ı	ì				

Hierarchy of turbulence modeling

Mean flow equations

4 RANS Models

5 Wall Treatment

Near-wall region

Turbulence

Viscous effects

Local: contact needed

- ► Strong mean velocity gradients
 - Turbulence production peak
 - Damping of all components of u_i'
 - Narrowing of the turbulence spectrum (vanishing of the inertial zone)

Non-viscous effects

Non-local: the wall is felt at distance

- ▶ **Wall Echo**: Reflection of *p* fluctuations on the wall
 - Increased fluctuations (\Longrightarrow larger redistribution)
- ▶ **Blocking effect**: Wall-normal fluctuations generate high-*p* zones that tend to
 - Slow down the flow in the wall-normal direction
 - Deviate it in wall-parallel directions

What about the "universal" behaviour?

- ► Obtained based on very **strict hypotheses** (high-*Re*, ZPG flat plates, ..)
- ▶ In real flows, it is often perturbed or completely modified (e.g., at separation)

Consequences for modeling?

- Models based on hypotheses not always applicable in the near-wall region. What can be done?
 - Force the model to behave correctly introducing corrections depending on wall distance or Ret
 Low-Re models
 - 2. Use models that work properly near the walls (e.g., k_t - ω , kind of a low-Re model)
 - Avoid the resolution of the near-wall region
 ⇒ High-Re models + wall functions

 - Reconsidering the hypotheses used in the derivation of the models (e.g., elliptic relaxation)

High-Re vs low-Re models

► Notion of high/low-*Re* refers to the **turbulent Re**:

$$extit{Re}_t = rac{ ext{Turbulent forces}}{ ext{Viscous forces}} = rac{
u_t}{
u}$$

- Local: variable inside the flow, \rightarrow 0 at the wall
- There is always a low-Re region close to the wall There can be others elsewhere!

- High-Re model: not integrable down to the wall (correction with wall functions needed)
- ► Low-Re model: can be applied down to the wall (with or without damping functions)
- ► All-Re model: model consistent for all y⁺ (e.g., Adaptive wall functions)

Low-Re models: damping functions (DF)

- ▶ Coefficients C_1 , C_2 , C_μ damped with f_1 , f_2 , f_μ
 - f_{μ} can be $f(Re_t)$, $f(d_w)$, or both

$$egin{cases} f_1 = 1 \ f_2 = 1 - 0.3 \exp(-Re_t^2) \ f_\mu = \exp\left[rac{-3.4}{(1+Re_t/50)^2}
ight] \end{cases}$$

$$Re_{t} = \frac{\rho k_{t}^{1/2} \ell_{t}}{\mu} = \frac{\rho k_{t}^{1/2}}{\mu} \left(\frac{k_{t}^{3/2}}{\varepsilon}\right) = \frac{\rho k_{t}^{2}}{\mu \varepsilon}$$

- ✓ Some models are intrinsically low-Re (e.g., k_t - ω)
- ✓ DF applicable to most models (also RSM)
- **X** Viscous sublayer must be well resolved $(y^+ < 1)$
- \mathbf{x} DF are very empirical \implies lack of universality

High-Re models: wall functions (WF)

▶ Viscous sublayer modeled (first point at $30 < y^+ < 100$ and $y < 0.1\delta$). Examples for k_t - ε :

One-scale approach

▶ Compute u_{τ} with iterative method from:

$$\frac{u}{u_{\tau}} = \frac{1}{\kappa} \ln \frac{y u_{\tau}}{\nu} + C \tag{1}$$

(e.g. with Newton-Raphson)

▶ Use u_{τ} to evaluate τ_{w} , k_{t} and ε :

$$au_{\rm w} = \mu \frac{\partial u}{\partial y} = \rho u_{ au}^2, \quad \varepsilon = \frac{u_{ au}^3}{\kappa y}, \quad k_{\rm t} = C_{\mu}^{-1/2} u_{ au}^2$$

- ✓ Good results in situations close to ideal conditions
- ✓ Substantial reduction of number of grid points
- ✓ Simpler mesh generation
- ✓ Robustness: can be used all the time (this does not guarantee the quality of the results)

Two-scale approach

- $ightharpoonup u_{ au}$ evaluated from (1)
- ▶ Instead of imposing k_t at the wall, $\partial k/\partial y = 0$
- ightharpoonup A second velocity scale, u_k , is evaluated from

$$u_k^2 = C_\mu^{1/2} k_t$$

where k_t is taken at the point closest to the wall

- Friction imposed as $\tau_w = \mu \frac{\partial u}{\partial y} = \rho u_\tau u_k$
- Location of the discretization point closest to the wall must be well controlled
- **X** Hypothesis of equilibrium conditions $(\mathcal{P} = \varepsilon)$
- ✗ Relations does not hold at stagnation, separation, reattachment, recirculation, APG BL, curved wall.. for example, for separation/reattachment:

$$u_{\tau}=0 \implies k_{t}=\varepsilon=0$$

Wall treatment: High-Re

Turbulence

- 1. Standard wall function: use log-law to compute BCs
- 2. Non-equilibrium wall function: improved models for flows with separations, reattachments, high ∇p ..
- 3. Zonal model: regions distinguished by a wall-distance-based Reynolds: $Re_y = \frac{\rho \sqrt{k_t y}}{\mu}$
 - \bullet $Re_y > 200$: turbulent core region, regular models
 - $Re_y \leq 200$: viscosity-affected region: only k_t eq. solved, ε from a Re_y -dependent correlation
 - Damping functions also used for the turbulent viscosity
- 4. Two-layers models: check first cell position

$$y^* = \frac{\rho C_{\mu}^{1/4} k_t^{1/2} y}{\mu} \implies \begin{cases} u^* = \frac{1}{\kappa} \ln(Ey^*) & \text{if } y^* \ge 11.225 \\ u^* = y^* & \text{if } y^* \le 11.225 \end{cases} \implies \tau_w = \frac{\rho u C_{\mu}^{1/4} k_t^{1/2}}{u^*}$$

E: empirical const. (9.8 for smooth walls)

5. Enhanced Wall Treatments: blending of two-layers models:

$$u^+ = \exp(\Gamma)u_{\mathsf{lam}}^+ + \exp\left(rac{1}{\Gamma}
ight)u_{\mathsf{turb}}^+ \qquad ext{with} \qquad \Gamma = -rac{0.01(y^+)^4}{1+5y^+}$$

6. Scalable wall functions..

Conclusions

No universally accepted turbulence model that works for all applications

- Accuracy and effectiveness of each model varies depending on application
- ► Choice of the model will depend on
 - 1. Flow Physics
 - 2. Established practice for the class of problem
 - 3. Level of accuracy required
 - 4. Availability of models & functions in the CFD software
 - 5. Available computation resources
 - 6. Amount of time to carry out the simulation
- Research modeling choices for your class of problems
 - Choose the model tweaked specifically for this type
 - X Don't use if it has been modified for another problem

Try to make the mesh either coarse or fine enough to avoid placing the wall-adjacent cells in the buffer layer (5 $< y^+ < 30$)!

Roadmap to 2030

"CFD Vision 2030 Study: A path to Revolutionary Computational Aerosciences", NASA/CR-2014-218178

References I

- Jones, W. and Launder, B. (1972). The prediction of laminarization with a two-equation model of turbulence. *International Journal of Heat and Mass Transfer*, 15(2):301–314.
- Launder, B. and Sharma, B. (1974). Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. *Letters in Heat and Mass Transfer*, 1(2):131–137.
- Moin, P. and Mahesh, K. (1998). Direct numerical simulation: a tool in turbulence research. *Annual review of fluid mechanics*, 30(1):539–578.