

Geodatenanalyse I: Multivariate Statistik

Kathrin Menberg

Stundenplan

Vorläufiger Stundenplan			
Datum	Thema	Dozent	
20.10.2021	Einführung in die Programmierung mit Python	Gabriel Rau	
25.10.2021	Univariate Statistik und statistisches Testen	Kathrin Menberg	
01.11.2021	Feiertag		
08.11.2021	Umgang und Berechnung von Datensätzen	Gabriel Rau	
15.11.2021	Bivariate und schließende Statistik	Kathrin Menberg	
22.11.2021	Datenvisualisierung mit matplotlib	Gabriel Rau	
29.11.2021	Multivariate Statistik	Kathrin Menberg	
06.12.2021	Datenformate, Datenspeicherung und Datenbanken	Gabriel Rau	
13.12.2021	Monte-Carlo Methoden	Kathrin Menberg	
20.12.2021	Analyse und Visualisierung von Geodaten	Gabriel Rau	
27.12.2021	Weihnachtsferien	·	
03.01.2022	Weihnachtsferien		
10.01.2022	Sensitivitätsanalyse	Kathrin Menberg	
17.01.2022	Datenethik, Lizensierung und Entwicklungstools	Gabriel Rau	
24.01.2022	Räumliche Interpolation	Kathrin Menberg	
31.01.2022	Fragen zur Programmierung	Gabriel Rau	
07.02.2022	Regressionsanalyse	Kathrin Menberg	

Uhrzeit	Inhalt	
10:00 – 10:30	Multivariate Statistik	
10:30 – 11:15	Übung	
11:15 – 11:30	<u>Pause</u>	
11:30 – 12:15	Fortsetzung Übung	
12:15 – 12:30	Diskussion und Reflexion	

Lernziele

Am Ende der Stunde werden die Teilnehmer:

- mit den statistischen Konzepten der Datentransformation,
 Eigenvektoren und Eigenwerten vertraut sein.
- Methoden zur Reduzierung von Dimensionen auf Geodatensätze anwenden und die Ergebnisse graphisch darstellen können.

n-dimensionale Datensätze

- Beziehungen zwischen allen Parametern
 - Parameterraum (parameter space)
- Gemeinsame graphische
 Darstellung von vielen
 Parametern schwierig
 - Erkennen von Mustern usw.

https://towardsdatascience.com/pca-principal-component-analysisexplained-visually-in-5-minutes-20ce8a9ebf0f

Multivariate Statistik

- Dimensionen von Datensätzen reduzieren ohne viel Information zu verlieren
- ▶ 2D Visualisierung von komplexen Beziehungen
 - ► Hauptkomponentenanalyse (principal component analysis)
 - Faktorenanalyse (factor analysis)
 - Unabhängigkeitsanalyse (Independent Component Analysis)
- Datenpunkte mit ähnlichen Eigenschaften identifizieren
 - Clusteranalyse (cluster analysis)
 - k-Means Algorithmus

Transformieren von Datensätzen

- ➤ Rohdaten oft nicht normalverteilt, Unterschiede in Varianzen zwischen einzelnen Parametern, usw.
- Standardisieren von Daten
- Standard-Normalverteilung

$$\searrow$$
 $X \sim N(0,1)$

$$standardized x_i = \frac{x_i - \bar{x}}{std(x)}$$

- ➤ Ziel: Reduzieren von Dimensionen (meist zur Visualisierung)
- ▶ Beispiel 3D → 2D:

х	у	z
1	2	2
2	2	2
2	1	1
4	3	2
5	3	2
6	4	3

https://towardsdatascience.com

- ▶ 1. Alle Datenpunkte standardisieren
 - Mittelwerte berechnen und Datenpunkte "zentrieren"

https://towardsdatascience.com

▶ 2. Linie (bzw. Achse) mit der besten Übereinstimmung finden

- erste Hauptkomponente (PC1)
- Linearkombination aus x, y und z
- Erklärt einen signifikanten Anteil der Varianz im Datensatz

3. zweite Hauptkomponente finden

- Beste Übereinstimmung im rechten Winkel zu PC1
- Ebenso Linearkombination aus x, y und z
- Erklärt einen kleineren Anteil der Varianz im Datensatz als PC1

Mathematische Lösung für n-dimensionale Datensätze über lineare Algebra

https://towardsdatascience.com

- Hauptkomponenten als Achsen (bzw. Vektoren) im Parameterraum
 - ▶ Betrag des Vektors: Eigenwert (PC1 > PC2, ...) (Skalar)
 - Richtung des Vektors: Eigenvektor (n * 1, Vektor)

4. Rotation des Parameterraums auf die identifizierten Achsen.

Matrixmultiplikation:

standardisierte Datenpunkte × Eigenvektoren (PC1, PC2)

Übung 5: Multivariate Statistik

Eisen

- Grundwasserdatensatz Karlsruhe
 - Hauptkomponentenanalyse
 - Matrizenrechnung
 - Visualisierung

Aufgaben in Jupyter Notebook: Tiefe 05 Multivariate Statistik uebung USW.

Koch et al. (2020)

 O_2

Nitrat

Literatur

- Trauth (2015) MATLAB Recipes for Earth Sciences (4th Ed.), Springer
- ► Koch et al. (2020) Groundwater fauna in an urban area: natural or affected?, Hydrology and Earth System Sciences Discussions
- ► Lever et al. (2017) Principal component analysis, Nature Methods 14(7), 641-642

Nützliche Weblinks:

https://towardsdatascience.com/a-complete-guide-to-principalcomponent-analysis-pca-in-machine-learning-664f34fc3e5a

