

#### DIGITAL DESIGN AND COMPUTER ORGANIZATION

Wallace Tree Multiplier - 2

Reetinder Sidhu

Department of Computer Science and Engineering



#### DIGITAL DESIGN AND COMPUTER ORGANIZATION

#### Wallace Tree Multiplier - 2

#### Reetinder Sidhu

Department of Computer Science and Engineering



#### **Course Outline**



- Digital Design
  - Combinational logic design
  - Sequential logic design
    - ★ Wallace Tree Multiplier 2
- Computer Organization
  - Architecture (microprocessor instruction set)
  - Microarchitecure (microprocessor operation)

#### Concepts covered

Wallace Tree Multiplication



#### **Basic Carry Save Adder**



- Contains n full adders
- **Inputs** Three *n*-bit numbers
- Outputs
  - ▶ One *n*-bit number
  - One (n+1)-bit number (whose LSB is 0)









Sum output size will be same as size of largest input





Sum output size will be same as size of largest input





- Sum output size will be same as size of largest input
- Computed carry size will be only 9 bits





- Sum output size will be same as size of largest input
- Computed carry size will be only 9 bits
- So after left shift carry output is 10 bits





- Sum output size will be same as size of largest input
- Computed carry size will be only 9 bits
- So after left shift carry output is 10 bits

PES UNIVERSITY

 Consider the mutliplication of two 8-bit numbers





Consider the mutliplication of two 8-bit numbers



•  $8 \times 8$  array of values computed by  $8 \times 8$  array of two input AND gates



 Consider the mutliplication of two 8-bit numbers



•  $8 \times 8$  array of values computed by  $8 \times 8$  array of two input AND gates



Consider the mutliplication of two 8-bit numbers



 $\begin{tabular}{ll} 8\times 8 \ array \ of values \ computed \ by \\ 8\times 8 \ array \ of \ two \ input \ AND \ gates \\ \end{tabular}$ 



 Consider the mutliplication of two 8-bit numbers



 $\begin{tabular}{ll} 8\times 8 \ array \ of values \ computed \ by \\ 8\times 8 \ array \ of \ two \ input \ AND \ gates \\ \end{tabular}$ 



 Consider the mutliplication of two 8-bit numbers



- $8 \times 8$  array of values computed by  $8 \times 8$  array of two input AND gates
- $m_0, \ldots, m_7$  are partial products



 Consider the mutliplication of two 8-bit numbers



- $8 \times 8$  array of values computed by  $8 \times 8$  array of two input AND gates
- $m_0, \ldots, m_7$  are partial products
- $m_i$  has size 8 + i bits



 Consider the mutliplication of two 8-bit numbers



- $8 \times 8$  array of values computed by  $8 \times 8$  array of two input AND gates
- $m_0, \ldots, m_7$  are partial products
- $m_i$  has size 8 + i bits

The problem of multiplying two 8-bit numbers has been reduced to the problem of adding the partial products  $m_0, \ldots, m_7$ 

































































• Let  $t_{Adder}$  be critical path delay of fast adder

#### **Carry Save Adders**





- Let  $t_{Adder}$  be critical path delay of fast adder
- The critical path delay of the Wallace tree above the adder is just  $4t_{FA}$

#### **Carry Save Adders**





- Let  $t_{Adder}$  be critical path delay of fast adder
- The critical path delay of the Wallace tree above the adder is just  $4t_{FA}$
- Critical path delay of 8  $\times$  8 Wallace tree multiplier is thus  $t_{AND} + 4t_{FA} + t_{Adder}$

#### Think About It



- Compare the area and time performance of the Wallace Tree Multiplier with that of the Shift-Add Multiplier
  - Try ripple carry and parallel prefix adders in both