Area between curves

Chase Mathison¹

Shenandoah University

31 January 2024

Announcements

- Stay up to date on homework!
- 2 Office hours: M F, 10am 11am.

Another way

Let's look at a different way to do this problem: Find the area bounded by the curves defined by the functions

$$f(x) = x^2$$
, $g(x) = 2 - x$, $h(x) = 0$.

for $0 \le x \le 2$.

Another way

To find this area last time, we	had to break this area into	2 pieces and ther
find the areas separately.		
A way to tackle this problem a	II at once is to instead swi	tch to integrating
in terms of ins	stead of in terms of x .	
When we do this, instead of a	"top" curve and a "bottom	" curve, we are
really looking at a	curve and a	curve.
Let's try to tackle this area by	integrating in terms of v i	$\frac{1}{1}$ nstead of x

Find the area bounded by the curves defined by the functions

$$f(x) = x^2$$
, $g(x) = 2 - x$, $h(x) = 0$.

for $0 \le x \le 2$, by integrating with respect to the dependent variable instead of the independent variable.

How it works in general

In general, if we want to find the area bounded by two functions of y, we can use the "little slice" method as follows:

How it works in general

Find the area of the region bounded by the curves

$$y = \frac{1}{x^2}, y = 2x, y = 2.$$

