Lecture 18: Security

Operating System and networks

Behzad Bordbar

Overview

- What is security?
 - policies and mechanisms
 - threats and attacks
- Security of electronic transactions
 - secure channels
 - authentication and cryptography
- Security techniques
 - access control
 - firewalls
 - cryptographic algorithms

Security

- Definition
 - set of measures to guarantee the privacy, integrity and availability of resources:
 - □objects, databases, servers, processes, channels, etc
 - involves protection of objects and securing processes and communication channels
- Security policies
 - specify who is authorised to access resources (e.g. file ownership)
- Security mechanisms
 - enforce security policy (e.g. file access control)

Security model

- Object: intended for use by different clients, via remote invocation
- Principal: authority on whose behalf invocation is issued

The enemy

- Processes: encapsulate resources, interact by messages
- Messages: exposed to attack by enemy

Security threats: examples

- Online shopping/banking
 - intercept credit card information
 - purchase goods using stolen credit card details
 - replay bank transaction, e.g. credit an account
- Online stock market information service
 - observe frequency or timing of requests to deduce useful information, e.g. the level of stock
- Website
 - flooding with requests (denial of service)
- My computer
 - receive/download malicious code (virus)

Security threats: what & where

Security threats fall into three categories

Leakage:acquisition of info by unauthorised recipient

Tampering: unauthorised alteration

Vandalism: interference with the property of a system without

gain to the perpetrator.

Types of security threats

- Eavesdropping
 - obtaining copies of messages without authority
- Masquerading
 - sending/receiving messages using the identity of another principal without their authority
- Message tampering
 - intercepting and altering messages
- Replaying
 - intercepting, storing and replaying messages
- Denial of service
 - flooding a channel with requests to deny access to others

Defeating the enemy: how?

- Encryption (scrambling a message to hide its contents)
 - does not prove identity of sender
- Shared secrets (keys)
 - messages encrypted with the shared key
 - can only be decrypted if the key is known
- Identification (are you who you are?)
 - password protection, etc
- Authentication (are you who you say you are?)
 - include in message identity of principal/data, timestamp
 - encrypt with shared key

Secure channels

- Processes: reliably know identity of principal
- Messages: protected against tampering, timestamped to prevent replaying/reordering.

Threats due to mobility...

- Mobile code (Java JVM)
 - applets, mobile agents (travel collecting information)
 - downloaded from server, run locally
- Security issues: what if the program...
 - illegally writes to a file?
 - writes over another program's memory?
 - crashes?
- Some solutions
 - stored separately from other classes
 - type-checking and code-validation (instruction subset)
 - still does not guard fully against programming errors...

Designing secure systems

- Basic message
 - networks are insecure
 - interfaces are exposed
- Threat analysis
 - assume worst-case scenario
 - list all threats complex scenarios!!!
- Design guidelines
 - log at points of entry so that violations detected
 - limit the lifetime and scope of each secret
 - publish algorithms, restrict access to shared keys
 - minimise trusted base

Main security techniques

- Access control
 - implement resource protection, e.g. file protection
 - essential in distributed systems (remote login)
- Firewalls
 - monitor traffic into and out of intranet
- Cryptographic algorithms
 - ciphers
 - authentication
 - digital signatures

Access control

- Definition
 - ensure that users/processes access computer resources in a controlled and authorised manner
- Protection domain
 - is a set of rights for each resource, e.g. Unix files
 - associated with each principal
- Two implementations of protection domains
 - Capabilities
 - ☐ request accompanied by key, simple access check
 - □open to key theft, or key retained when person left company
 - Access control lists
 - □ list of rights stored with each resource
 - ☐ request requires authentication of principal

Access control

How it works: Reference Monitor

intercepts all access attempts authenticates request and principal's credentials applies access control

- ☐ if Yes, access proceeds
- ☐ if No, access is denied, error message returned to the subject

Firewalls

- Monitor and control all communication into and out of an intranet.
- Service control:
 - filter requests for services on internal hosts
 - e.g. reject HTTP request unless to official webserver
- Behaviour control
 - prevent illegal or anti-social behaviour
 - e.g. filter 'spam' messages
- User control:
 - allow access to authorised group of users
 - e.g. dial-up services

How does it work...

- A set of processes, at different protocol levels:
- IP packet filtering
 - screening of source & destination, only 'clean' packets proceed
 - performed in OS kernel of router
- TCP gateway
 - monitors TCP connection requests
- Application-level gateway
 - runs proxy for an application on TCP gateway, e.g. Telnet
- Bastion
 - separate computer within intranet
 - protected by IP packet filtering, runs TCP/application gateway

Firewall configurations

Cryptographic algorithms

Encryption

- apply rules to transform plaintext to ciphertext
- defined with a function F and key K
- denote message M encrypted with K by

$$F_K(M) = \{M\}_K$$

Decryption

uses inverse function

$$F^{-1}_{K}(\{M\}_{K}) = M$$

- can be symmetric (based on secret key known to both parties)
- or asymmetric (based on public key)

Symmetric cryptography

One-way functions

- encryption function F_K easy to compute
- decryption function F⁻¹_K hard, not feasible in practice

Idea

- difficult to discover F_K given {M}_K
- difficulty increases with K, to prevent brute-force attack
- combine blocks of *plaintext* with key through series of XOR,
 bit shifting, etc, obscuring bit pattern

Examples

- several algorithms: TEA, DES
- secure secret key size 128 bits

Asymmetric cryptography

Trap-door functions

- pair of keys (e.g. large numbers)
- encryption function easy to compute (e.g. multiply keys)
- decryption function infeasible unless secret known (e.g. factorise the product if one key not known)

Idea

- two keys produced: encryption key made public, decryption key kept secret
- anyone can encrypt messages, only participant with decryption key can operate the trap door

Examples

a few practical schemes: RSA

Block ciphers

- How it works
 - message divided into fixed size blocks (64 bits), padded
 - encryption block by block
- Cipher block chaining
 - combine each *plaintext* block with preceding *ciphertext* block using XOR before encryption

Stream ciphers

- How it works
 - used when no block structure (e.g. voice)
 - encryption performed bit by bit
 - generate sequence of numbers, concatenate into secure bit stream

summary

- Security
 - achieves privacy, integrity and availability of distributed systems
- Main techniques
 - access control
 - firewalls
 - cryptography
- Design issues
 - consider worst-case scenario of threats
 - balance cost versus risk
 - log and detect