Landmark Guided Video Generation

Sijie Song

2018.07.09

Outline

- Every Smile is Unique: Landmark-Guided Diverse Smile Generation
- Skeleton-Aided Articulated Motion Generation

Every Smile is Unique: Landmark-Guided Diverse Smile Generation

CVPR 2018 Poster

Wei Wang^{1,4}, Xavier Alameda-Pineda², Dan Xu¹, Pascal Fua⁴, Elisa Ricci^{1,3}, and Nicu Sebe¹

¹University of Trento, Italy ²Inria, Grenoble-Alpes University, France ³Fondazione Bruno Kessler (FBK), Italy ⁴Computer Vision Laboratory, EPFL, Lausanne, Switzerland

One-to-Many Video Generation

Neural Face

+

Given Label (posed/spontaneous smile)

Figure 1. Two different sequences of spontaneous smiles and associated landmarks. While there is a common average pattern, the changes from one sequence to another are clearly visible.

Overview

Figure 2. Overview of the proposed framework. The input image is used together with the conditioning label to generate a set of K distinct landmark sequences. These landmark sequences guide the neutral face image to translate into face videos.

- Conditional Recurrent Landmark Generator

 Image + Label → Embedding Sequence
- Multi-Mode Recurrent Landmark Generator
 Embedding Sequence → Landmark Sequence
- Landmark Sequence to Video Translation
 Landmark Sequence → Videos

Conditional Recurrent Landmark Generator

- Face Image \rightarrow **VAE** \rightarrow Compact Embedding h_0
- h_0 + Label \rightarrow Cond. LSTM \rightarrow Face Landmark Embedding Sequence $\mathbf{h} = (h_1, \dots, h_T)$
- $\mathbf{h} = (h_1, \dots, h_T) \Rightarrow \mathbf{Decoder}$ \Rightarrow Landmark Sequence $\mathbf{x} = (x_1, \dots, x_T)$

• Training:

Binary Cross-Entropy Loss (BCE) with training sequences $\{\mathbf{y}^n = (y_1^n, \dots, y_T^n)\}_{n=1}^N$

$$\mathcal{L}_{BCE} = \sum_{n,t=1}^{N,T} y_t^n \odot \log x_t^n + (1 - y_t^n) \odot \log(1 - x_t^n)$$

Multi-Mode Recurrent Landmark Generator

- $\mathbf{h} = (h_1, \dots, h_T) \to KLSTM_S \to \{\mathbf{h}_k = (h_{1k}, \dots, h_{Tk})\}_{k=1}^K$
- Training:

Push & Pull loss

- Push the sequences to be distinct

$$\mathcal{L}_{\text{Push}} = -\sum_{n,k=1}^{N,K} \log \phi_k(h_{*k}^n)$$

 ϕ_k : FC + softmax

- Pull them towards a common pattern

Landmark Sequence to Video Translation

U-Net Structure with

Face landmark images
$$\{\mathbf y^n=(y_1^n,\ldots,y_T^n)\}_{n=1}^N$$

Face images $\{\mathbf z^n=(z_1^n,\ldots,z_T^n)\}_{n=1}^N$

• Training:

Reconstruction loss

$$\mathcal{L}_{\text{Rec}} = \sum_{n,t=1}^{N,T} \|z_t^n - w_t^n(\theta_{\mathcal{G}})\|_1$$

$$w_t^n(\theta_{\mathcal{G}}) = \mathcal{G}(y_t^n, z_0^n; \theta_{\mathcal{G}})$$

Adversarial loss

$$\mathcal{L}_{Adv} = \sum_{n,t=1}^{N,T} \log \mathcal{D}([z_0^n, z_t^n]; \theta_{\mathcal{D}}) + \sum_{n,t=1}^{N,T} \log (1 - \mathcal{D}([z_0^n, w_t^n(\theta_{\mathcal{G}})]; \theta_{\mathcal{D}}))$$

Training Strategy

• Three Training Phases:

First, train VAE

Second, finetune VAE + train Cond. LSTM

Third, finetune VAE + finetune Cond. LSTM + train *K* LSTMs

• Video Translation Module: training apart

Figure 3. Detail of the conditional multi-mode recurrent network. The left block (magenta) encodes the landmark image and generates a sequence of landmark embeddings according to the conditioning label. The second block (turquoise) generates K different landmark embedding sequences. Finally, the third block (ocher) translates each of the sequences into a face video.

- Datasets: $T = 32, 64 \times 64$
 - UvA-NEMO Smile
 - DISFA
 - DISFA+
- Preprocess
 - Utilize AU (action unit) to select smile patterns

Figure 4. Action unit dynamics in neutral-to-smile transitions: cheek raiser and lip corner puller.

• Qualitative Evaluation (Cond. LSTM)

Figure 5. Landmark sequences generated with the first block of our CMM-Net. The associated face images are obtained using the landmark sequence to video translation block. The left block corresponds to generated spontaneous smiles, while the right block to posed smiles. The three row pairs correspond to the UvA-NEMO, DISFA & DISFA+ datasets respectively. Images better seen at magnification.

• Qualitative Evaluation (Multi-Mode, K = 3)

Figure 6. Multi-mode generation example with a sequence of the UvA-NEMO dataset: landmarks (left) and associated face images (right). The rows correspond to the original sequence, output of the Conditional LSTM, and output of the Multi-Mode LSTM (last three rows).

• Qualitative Evaluation (State-of-the-Art)

Figure 7. Qualitative comparison. From top to bottom: original sequence, Video-GAN, CRA-Net and CMM-Net. Video-GAN introduces many artifacts compared to the other two. CRA-Net learn the smile dynamics, but fail to preserve the identity, as opposed to CMM-Net which produces realistic smiling image sequences.

• Quantitative Analysis

Table 1. Quantitative Analysis. The SSIM and Inception Score.

	UvA-NEMO Spont.		UvA-	UvA-NEMO Posed		DISFA Spont.			DIS	DISFA+ Posed		
Model	IS	Δ IS	SSIM	IS	Δ IS	SSIM	IS	Δ IS	SSIM	IS	Δ IS	SSIM
Original	1.419	-	-	1.437	-	-	1.426	-	-	1.595	-	-
Video GAN	1.576	0.157	0.466	1.499	0.062	0.450	1.777	0.351	0.243	1.547	0.048	0.434
CRA-Net	1.311	0.108	0.553	1.310	0.127	0.471	1.833	0.407	0.749	1.534	0.061	0.839
CMM-Net	1.354	0.065	0.854	1.435	0.002	0.827	1.447	0.021	0.747	1.533	0.062	0.810

Table 2. CMM-Net vs Video-GAN and CMM-Net vs CRA-Net: percentage (%) of the preferences of the generated videos.

Models	Spontaneous Smile	Posed Smile		
Video-GAN [41]	10.14	7.24		
CMM-Net	85.14	83.68		
~	4.72	9.08		
CRA-Net	17.76	11.94		
CMM-Net	54.87	59.72		
~	27.37	28.33		

Analyzing the Dynamics of AUs

Figure 8. Dynamics of the action units in N2S sequences.

Table 3. Distance between the AU curves of different methods and those of the original sequences.

Model	UvA-NEMO Spont.	UvA-NEMO Posed	DISFA	DISFA+
Video GAN	2.976	2.618	3.775	7.979
CRA-Net	4.452	9.783	2.400	9.931
CMM-Net	2.234	1.472	2.035	1.812

Every Smile is Unique

- Distinct Smile Generation
 - Conditional Recurrent Landmark Generator
 - Multi-Mode Recurrent Landmark Generator
 - Landmark Sequence to Video Translation

Figure 2. Overview of the proposed framework. The input image is used together with the conditioning label to generate a set of K distinct landmark sequences. These landmark sequences guide the neutral face image to translate into face videos.

Skeleton-aided Articulated Motion Generation

MM 2017

Yichao Yan, Jingwei Xu, Bingbing Ni, Xiaokang Yang Shanghai Jiaotong University

Overview

Skeleton Conditional GAN

Fig. 2. Architecture of the generation and discrimination network. The inputs for the generator are the skeleton-appearance pairs (s, x) and generate the synthesized sequence $\hat{Y} = \{\hat{y}_1, ..., \hat{y}_n\}$. The discriminator D tries to distinguish real triplets (x, s, y) and synthesized triplets (x, s, \hat{y}) .

Skeleton Conditional GAN

- Reference image x, skeleton s, ground truth y
- Training: $\mathcal{L}(G,D) = \mathcal{L}_c(G,D) + \lambda \mathcal{L}_{L_1}(G) + \beta \mathcal{L}_{tri}(G)$

Adversarial Loss

$$\mathcal{L}_c(G, D) = \mathbb{E}_{x, s, y \sim p_{data}(x, s, y)} [\log D(x, s, y)]$$

+ $\mathbb{E}_{x, s \sim p_{data}(x, s), z \sim p_z(z)} [\log (1 - D(x, s, G(x, s, z)))]$

 L_1 Loss

$$\mathcal{L}_{L_1}(G) = \mathbb{E}_{x,s \sim p_{data}(x,s),z \sim p_z(z)}[\|y - G(x,s,z)\|_1]$$

Triplet Loss

$$\mathcal{L}_{tri}(G) = \sum_{i=1}^{m} [\|t_i^a - t_i^p\|_2^2 - \|t_i^a - t_i^n\|_2^2 + \alpha]_+$$

Fig. 3. Loss terms of the model. Despite of the GAN loss, we take two additional loss terms, i.e., the L1 loss to enhance the image-to-image translation quality, and the triplet loss to guarantee the continuity of the generated motion sequence.

Generator Architecture

- Stacked Generator
 - Stacked Generator 1Concat skeleton & RGB
 - Stacked Generator 2Draw skeleton on RGB
- Siamese Generator

Fig. 4. Structures of the generator. For both the stacked generator and the Siamese generator, we take the U-Net structure for both generators.

Detailed Architecture

Generator

TABLE I DETAILED STRUCTURE OF THE GENERATOR.

Encoder							
Layer	Layer Input size: $256 \times 256 \times 6(3)$						
1	Conv-(64,K4×4,S2), lReLU-(0.2)						
2	Conv-(128,K4×4,S2), BN, IReLU-(0.2)						
3	Conv-(256,K4×4,S2), BN, lReLU-(0.2)						
4-8	Conv-(512,K4×4,S2), BN, lReLU-(0.2)						
	Decoder						
Layer	Layer Input size: $60 \times 60 \times 1(2)$						
1	FConv-(512,K4×4,S2), BN, Dropout-(0.5), ReLU						
2-5	FConv-(1024,K4×4,S2), BN, Dropout-(0.5), ReLU						
6	FConv-(512,K4×4,S2), BN, Dropout-(0.5), ReLU						
7	FConv-(256,K4×4,S2), BN, Dropout-(0.5), ReLU						
8	FConv-(128,K4×4,S2), BN, Dropout-(0.5), ReLU						

Discriminator

TABLE II
DETAILED STRUCTURE OF THE DISCRIMINATOR.

Discriminator				
Layer	Input size: 256×256×9			
1	Conv-(64,K4×4,S2), lReLU-(0.2)			
2	Conv-(128,K4×4,S2), BN, lReLU-(0.2)			
3	Conv-(256,K4×4,S2), BN, lReLU-(0.2)			
4-6	Conv-(512,K4×4,S2), BN, lReLU-(0.2)			

- Datasets
 - KTH
 - Human3.6M
- Structure Analysis
 - Stacked generator: Lose identity
 - Siamese generator: Keep identity
 - Disentangle pose and appearance

Fig. 5. Examples generated by different generator structure. The first row contains the ground truth motion sequence, the image with red bounding box is the appearance reference image.

Motion Generation (KTH)

(a) Walking.

• Motion Generation (KTH)

(b) Running.

Motion Generation (KTH)

(c) Hand waving.

• Motion Generation (Human3.6M)

(a) Walking.

(b) Walking without background.

Fig. 7. Generation results on Human3.6M dataset. (a) Walking sequence with background. (b) The same sequence without background.

• Component Analysis

TABLE III

RECOGNITION ACCURACIES (%) ON THE GENERATED SEQUENCES. GT DENOTES THE GROUND-TRUTH RESULTS. L1 DENOTES L1 LOSS, G DENOTES GAN LOSS, T DENOTES TRIPLET LOSS.

Action	GT	L1	G	L1+G	L1+G+T
Walking	100	83.1	43.1	93.8	93.8
Running	98.5	76.9	41.5	92.3	92.3
Hand waving	100	95.4	47.7	100	100

Fig. 8. Examples generated with different loss terms.

Skeleton-aided Articulated Motion Generation

- First skeleton-guided video generation
- Triplet loss for temporal relation

Thanks

Q & A Sijie Song