特征值与特征向量的定义

定义1

设 **A** 为数域 F 上的 n 阶方阵. 如果存在 $\lambda \in F$ 和非零列向量 $\mathbf{x} \in F^n$ 使得 $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$, 则称 λ 为 **A** 的一个特征值 (eigenvalue, characteristic value), 并称 \mathbf{x} 为属于 λ 的一个特征向量 (eigenvector, characteristic vector).

设
$$\mathbf{A} = (a_{ij})$$
 为数域 F 上的一个 n 阶方阵, 则

$$\lambda \in F$$
 为 **A** 的特征值 $\Leftrightarrow V_A(\lambda)$ 有非零向量 $\Leftrightarrow (\lambda I - A)x = 0$ 有非零解 $\Leftrightarrow \lambda I - A$ 不可逆 \Leftrightarrow 行列式 $|\lambda I - A| = 0$.

$$|\lambda \mathbf{I} - \mathbf{A}| = \begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ -a_{n1} & \cdots & -a_{n,n-1} & \lambda - a_{nn} \end{vmatrix}$$
$$= \lambda^n + 中间次数的复杂项 + (-1)^n \det(\mathbf{A}).$$

最后的这个多项式是关于未知元 λ 的 F 上的 n 次多项式, 其中间次数的系数较为复杂, 我们稍后会作进一步解释. 该多项式将被记作 $p_{A}(\lambda)$, 称为 A 的特征多项式 (characteristic polynomial). 相应地, 方程 $p_{A}(\lambda)=0$ 称为矩阵 A 的特征方程 (characteristic equation). 具体取值 $\lambda_0 \in F$ 为 A 的特征值, 当且仅当 λ_0 是 $p_{A}(\lambda)=0$ 的根. 由域上的多项式的理论, 我们知 A 的特征值最多有 n 个. 特别地, A 的特征值的个数有限.

如何在 ℂ上求一个 n 阶方阵 A 的特征值和相应的特征向量?

① 首先, 计算矩阵 A 的特征多项式 $p_A(\lambda)$. 由代数学基本定理可知, $p_A(\lambda)$ 恰好有 n 个复根 (可能有重根), 从而可以写成

$$p_{\mathbf{A}}(\lambda) = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s},$$

其中 $\lambda_1, \ldots, \lambda_s \in \mathbb{C}$ 是 **A** 的全部不同的特征值, 相应的重数 $n_i \geq 1$ 被称为 λ_i 的代数重数, 满足

$$n_1 + \cdots + n_s = n$$
.

② 对于每个特征值 λ_i , 求解齐次方程组 $(\lambda_i I - A)x = 0$. 相应的解空间 $V_A(\lambda_i)$ 不是零空间, 不妨设 $x_{i1}, x_{i2}, \ldots, x_{im_i}$ 是一个基础解系 $(m_i$ 被称为 λ_i 的几何重数).则 A 的属于 λ_i 的所有特征向量为 $V_A(\lambda_i)$ 中的所有非零向量,即 x_{i1}, \ldots, x_{im_i} 的非零线性组合的全体.

求矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
 的特征值及特征向量.

设 3 阶矩阵 A 的 3 个特征值为 1,1,2, 对应地分别有特征向量

$$\boldsymbol{\xi}_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \quad \boldsymbol{\xi}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad \boldsymbol{\xi}_3 = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}.$$

求矩阵 A.

- ① 由多项式的理论可知, 实多项式的虚根都是成对出现的. 这说明实方阵的虚复特征值也是成对出现的.
- ② 事实上, 若 λ 是某个 n 阶实方阵 A 的复特征值, $x \in \mathbb{C}^n$ 是对应的一个特征向量. 则

$$\mathbf{A}\overline{\mathbf{x}} = \overline{\mathbf{A}}\overline{\mathbf{x}} = \overline{\mathbf{A}}\mathbf{x} = \overline{\lambda}\overline{\mathbf{x}} = \overline{\lambda}\overline{\mathbf{x}}$$

由于 $\overline{x} \neq 0$, 这说明 \overline{x} 是实矩阵 A 关于特征值 $\overline{\lambda}$ 的特征向量. 特别地, 这说明实方阵的复特征向量也是依照复共轭运算成对出现的. (当然, 这儿需要简要说明一下, 当 $\lambda \neq \overline{\lambda}$, 则必有 $x \neq \overline{x}$, 从而 x 不是实向量. 为此, 我们用反证法. 假设 $x = \overline{x}$. 则我们会得到

$$\overline{\lambda} x = \overline{\lambda} \overline{x} = \overline{Ax} \xrightarrow{A, x \text{ args} h} Ax = \lambda x,$$
 $Ax = \overline{\lambda} x = \overline{\lambda} x = \lambda x$

这说明 $(\lambda - \overline{\lambda})x = 0$. 但是 $\lambda \neq \overline{\lambda}$, 从而可以推出 x = 0. 而这与 x 为特征值相 矛盾.)

⑤ 如果实矩阵 A 的特征值是实数,那么为了讨论的方便,作为解空间的基本解系的特征向量我们一般可以取为实向量.

若
$$\mathbf{x} = (x_1, \ldots, x_n)^\mathsf{T} \in \mathbb{C}^n$$
,则

$$\|\mathbf{x}\| \coloneqq \sqrt{|\mathbf{x}_1|^2 + |\mathbf{x}_2|^2 + \cdots + |\mathbf{x}_n|^2} = \sqrt{\overline{\mathbf{x}}^\mathsf{T}}\mathbf{x}$$

称为 x 在标准内积下的模长. 显然, x = 0 当且仅当 ||x|| = 0.

例 6

设 λ 为n阶方阵A的一个特征值,x为对应的一个特征向量,则

- ① λ^k 是 \mathbf{A}^k 的特征值, 其中 k 为正整数, 并且更一般地, 若 f(t) 是一个一元多项式, 则 $f(\lambda)$ 是 $f(\mathbf{A})$ 的特征值;
- λ 为 A^T 的特征值;
- ③ 若 $\lambda \neq 0$, 则 $\frac{\det(\mathbf{A})}{\lambda}$ 为 **A** 的伴随矩阵 **A*** 的特征值;
- ④ 若 A 为实方阵且满足 $AA^T = I$ (即 A 为正交矩阵), 则 $|\lambda| = 1$. (此时 $\lambda \in \mathbb{C}$)

注 7

描述了

- ① 设 n 阶方阵 A 的每行元素之和都等于 s. 容易看出,对于全为 1 的列向量
- $\mathbf{x} = (1, 1, ..., 1)^{\mathsf{T}}$ 有 $\mathbf{A}\mathbf{x} = s\mathbf{x}$. 从而, $\mathbf{x} \in \mathbf{A}$ 的关于特征值 s 的特征向量.
 ② 设 n 阶方阵 \mathbf{B} 的每列元素之和都等于 t. 由于转置运算不改变矩阵的特征值,利用上面一条可以看出, $t \in \mathbf{B}$ 的特征值, 不过, 此时的特征向量就不一定容易

命题8

若 $A = T^{-1}BT$, 则 $p_A(\lambda) = p_B(\lambda)$, 即它们的特征多项式相等. 特别地, 相似的矩阵的特征值 (重根按重数计算) 相同, 特征多项式的各个系数 (如这些矩阵的迹、行列式等等) 也对应相等.

注 9

对于相似的矩阵, 虽然其特征值相同, 对应的特征向量还是会改变的. 事实上, 若 $B = T^{-1}AT$, 则 $Ax = \lambda x$ 当且仅当 $TBT^{-1}x = \lambda x$, 当且仅当 $B(T^{-1}x) = \lambda(T^{-1}x)$. 这说明 $x \in A$ 的属于 λ 的特征向量, 当且仅当 $T^{-1}x \in B$ 的属于 λ 的特征向量.

命题 10

设 A, B 为同阶方阵, 则 AB 和 BA 具有相同的特征多项式.

注 11

设 $\lambda_1, \ldots, \lambda_n$ 是 n 阶方阵 \mathbf{A} 的所有特征值, f(t) 为一元多项式,则 $f(\lambda_1), \ldots, f(\lambda_n)$ 皆为 $f(\mathbf{A})$ 的特征值.由于可能出现 $i \neq j$ 但是 $f(\lambda_i) = f(\lambda_j)$ 的情形,目前这并没有表明 $f(\lambda_1), \ldots, f(\lambda_n)$ 为 $f(\mathbf{A})$ 全部的特征值.为此,我们利用下一节要提到的 Schur 定理. 不妨设所考虑的矩阵为复方阵,由该定理可知,存在可逆方阵 \mathbf{T} 使得 $\mathbf{T}^{-1}\mathbf{A}\mathbf{T}$ 为上三角矩阵,其对角线上的元素依次为 $\lambda_1, \ldots, \lambda_n$.可以直接验证, $\mathbf{T}^{-1}f(\mathbf{A})\mathbf{T}$ 仍然是上三角矩阵,其对角线上的元素依次为 $f(\lambda_1), \ldots, f(\lambda_n)$.这足以说明, $f(\lambda_1), \ldots, f(\lambda_n)$ 为 $f(\mathbf{A})$ 全部的特征值.

复方阵的特征多项式

设
$$\mathbf{A} = (a_{ij}) \in \mathbb{C}^{n \times n}$$
,则

$$p_{\mathbf{A}}(\lambda) = \det(\lambda \mathbf{I} - \mathbf{A}) = \begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & -a_{n-1,n} \\ -a_{n1} & \cdots & \cdots & -a_{n,n-1} & \lambda - a_{nn} \end{vmatrix}.$$

很明显, $p_{A}(\lambda)$ 是关于 λ 的多项式. 由于 λ 仅出现在主对角线上, 不难看出 $p_{A}(\lambda)$ 是关于 λ 的最高次系数为 1 的 n 次多项式, 从而

$$p_{\mathbf{A}}(\lambda) = \frac{i \mathcal{C}^{k}}{2} \lambda^{n} + \sigma_{1} \lambda^{n-1} + \dots + \sigma_{n-1} \lambda + \sigma_{n}$$

= $(\lambda - \lambda_{1})(\lambda - \lambda_{2}) \cdots (\lambda - \lambda_{n}).$

其中 $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ 为 $p_{\mathbf{A}}(\lambda)$ 的根, 即 **A** 的特征值.

由韦达定理 (多项式系数与根的关系) 可知,

$$\sigma_i = (-1)^i \sum_{1 \le j_1 < \dots < j_i \le n} \lambda_{j_1} \lambda_{j_2} \cdots \lambda_{j_i},$$

例如. 当 n=4 而 i=2. 则

$$\sigma_2 = (-1)^2 (\lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_1 \lambda_4 + \lambda_2 \lambda_3 + \lambda_2 \lambda_4 + \lambda_3 \lambda_4),$$

$$\sigma_2 = (-1)^2 (\lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_1 \lambda_4 + \lambda_2 \lambda_3 + \lambda_2 \lambda_4 + \lambda_3 \lambda_4)$$

需要特别关注的是

$$\sigma_1 = -\sum_{i=1}^n \lambda_i, \qquad \sigma_n = (-1)^n \lambda_1 \cdots \lambda_n.$$

$$\sigma_1 = -\sum \lambda_i, \qquad \sigma_n = (-1)^n \lambda_1 \cdots \lambda_n$$

另一方面, 对于给定 n 阶矩阵 A, 形如 $\left|A\left(\frac{i_1 i_2 \cdots i_k}{i_1 i_2 \cdots i_k}\right)\right|$ 的 k 阶子式称为行列式 |A| 的 k 阶主子式, 其中 $1 < i_1 < i_2 < \cdots < i_k < n$. 在注 12 中, 我们可以证明: 上面 的 $(-1)^k \sigma_k$ 是所有 k 阶主子式的和. 特别地. 我们有

$$-\sigma_1 = \sum_{i=1}^{n} a_{ii}, \qquad (-1)^n \sigma_n = \det(\mathbf{A}).$$

$$\det(\mathbf{A}) = \lambda_1 \cdots \lambda_n, \tag{1}$$

 $\operatorname{tr}(\boldsymbol{A}) = \sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} \lambda_{i}.$

(2)

注 $12((-1)^k\sigma_k$ 是所有 k 阶主子式的和)

设 $\alpha_1, \ldots, \alpha_n$ 是 **A** 的 n 个列向量,于是 $p_{\mathbf{A}}(\lambda) = \det(\lambda \mathbf{e}_1 - \alpha_1, \lambda \mathbf{e}_2 - \alpha_2, \ldots, \lambda \mathbf{e}_n - \alpha_n)$. 由行列式函数的多重线性性,该式

$$p_{m{A}}(\lambda) = \det(\lambda m{e}_1 - m{lpha}_1, \lambda m{e}_2 - m{lpha}_2, \dots, \lambda m{e}_n - m{lpha}_n)$$
. 田行列式函数的多重线性性, 该多等于
$$\sum_{i=1}^n \sum_{j_1, j_2, \dots, j_k} D_{j_1, j_2, \dots, j_k},$$

k=0 $1 \le i_1 < i_2 < \cdots < i_k \le n$ 其中, 若设 $\{i_{k+1} < i_{k+2} < \cdots < i_n\}$ 为 $\{i_1 < i_2 < \cdots < i_k\}$ 在 $\{1,2,\ldots,n\}$ 中的补集,则 D_{i_1,i_2,\ldots,i_k} 为行列式函数,其 i_1,i_2,\ldots,i_k 分量分别为 $-\alpha_{i_1},-\alpha_{i_2},\ldots,-\alpha_{i_k}$,而 $i_{k+1},i_{k+2},\ldots,i_n$ 分量分别为 $\lambda e_{i_{k+1}},\lambda e_{i_{k+2}},\ldots,\lambda e_{i_n}$. 不难验证,

$$D_{i_1,i_2,...,i_n} = (-1)^k \lambda^{n-k} \left| \mathbf{A} \begin{pmatrix} i_1 & i_2 & \cdots & i_k \\ i_1 & i_2 & \cdots & i_k \end{pmatrix} \right|,$$

从而完成了证明.

由公式 (1) 出发, 我们立刻得到

推论 13

n 阶方阵可逆当且仅当零不是它的特征值.

例 14

学生课堂上自学教材 P174-175 的例 6.3.4, 6.3.5.

例 15

设 **A** 为 3 阶方阵, 有特征值 1, 2, 3. 设 **B** = $A^3 + 2A^2 + A + 2I$. 若以

 $f(x) = x^3 + 2x^2 + x + 2$, 则 **B** = f(A), 从而以 f(1) = 6, f(2) = 20 和 f(3) = 50 为特征

值. 特别地, $|\mathbf{B}| = 6 \cdot 20 \cdot 50 = 6000$, $\operatorname{tr}(\mathbf{B}) = 6 + 20 + 50 = 76$.

例 16

若 $\mathbf{A} = (a_{ii})_{4\times 4}$, 以 1 为二重特征值, 以 -2 为一重特征值, 求 \mathbf{A} 的特征多项式.

定义 17

设 F 为数域, V 为 F 上的线性空间, \mathscr{A} 为 V 上的线性变换. 若存在 $\lambda \in F$ 以及非零 向量 $\mathbf{x} \in V$, 满足 $\mathscr{A}(\mathbf{x}) = \lambda \mathbf{x}$, 则称 λ 为 \mathscr{A} 的一个特征值, 并称 \mathbf{x} 为属于 λ 的一个特征向量.

例 18

对于实数域上的线性空间 $\mathbb{R}^{n\times n}$ 上的线性变换 $\mathscr{A}: \mathbf{A}\mapsto \mathbf{A}^\mathsf{T}$, 讨论其特征值和特征向量.

在数域 F 上的有限维线性空间 V 上的线性变换 \mathscr{A} , 在 V 的一组基 $\alpha_1, \ldots, \alpha_n$ 下有矩阵 A. 在之前, 我们已经见到了 A 的特征向量与 \mathscr{A} 的特征向量之间的关系. 由此

出发,我们定义如下:

$$\mathscr{A}$$
 的特征多项式 $p_{\mathscr{A}}(\lambda) \coloneqq p_{\mathbf{A}}(\lambda)$, \mathscr{A} 的秩 $\mathrm{rank}(\mathscr{A}) \coloneqq \mathrm{rank}(\mathbf{A})$,

Ø 的行列式 $\det(\mathscr{A}) \coloneqq \det(\mathsf{A}),$ Ø 的迹 $\operatorname{tr}(\mathscr{A}) \coloneqq \operatorname{tr}(\mathsf{A}).$

由于特征多项式、秩、行列式、迹是方阵的相似不变量, 故上面的定义不依赖于特定的基 α_1,\ldots,α_n (从而 A) 的选取.

定义 20

对于线性空间 V上的一个线性变换 \mathscr{A} , 若存在 V的一组基, 使得 \mathscr{A} 在这组基下的矩阵为对角阵, 那么我们称 \mathscr{A} 为可对角化的.

注 21

在上面的定义中,任取 V的一组基,并设 $\mathscr A$ 在这组基下的矩阵为 A.则容易验证, A可对角化当且仅当 $\mathscr A$ 可对角化.

矩阵的相似对角化

并不是所有的方阵都可以相似对角化

例 22

考察矩阵
$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
. 由于该矩阵为上三角矩阵, \mathbf{A} 的特征值为 2,2,2, 故若 \mathbf{B}

与 \boldsymbol{A} 相似,则 \boldsymbol{B} 的特征值也同样地为 2,2,2. 注意: \boldsymbol{B} 不能为对角阵, 否则 \boldsymbol{B} 必为 $2\boldsymbol{I}_3$. 但是 $2\boldsymbol{I}_3$ 的相似等价类中仅有一个元素 $2\boldsymbol{I}_3$,并不包含 \boldsymbol{A} . 故 \boldsymbol{A} 与 $2\boldsymbol{I}_3$ 并不相似 等价,即, \boldsymbol{A} 不可对角化.