Hledání polytopu maximální dimenze a minimálního obvodu s vrcholy v dané množině bodů

Eric Dusart

17. května 2024

Obsah

- Polytop
- Moje práce
- Otázky

Co je to polytop?

Informace o polytopu

- Polytop dimenze $n \in \mathbb{N}$ je uzavřená podmnožina $P \subseteq \mathbb{R}^n$.
- Polytop maximální dimenze a minimálního obvodu má n+1 vrcholů.
- Neexistuje nadrovina (podprostor dimenze n-1), která by obsahovala všechny vrcholy polytopu.

3/8

(a) Úsečka

Eric Dusart Ročníková práce 17. května 2024

Moje práce

Výzkumná otázka

Jak najít polytop maximální dimenze a minimálního obvodu s vrcholy v dané množině bodů?

Rozdělení práce:

- \checkmark Problém v 1D, 2D a nD
 - ✓ Najít algoritmus.
 - ✓ Dokázat, že funguje.
 - ✓ Naprogramovat algoritmus.

Proč jsem si vzbral toto téma:

- Zájem o matematiku.
- Trojúhelníky ve 2D.
- Problém v n dimenzích.

Proč je užití Dijkstrova algoritmu v dvoudimenzionální variantě problému stejně efektivní jako procházení všech možností?

Pokud máme zvolený bod a a hledáme nejkratší cestu do bodu b, tak Dijkstrův algoritmus bude fungovat následovně:

- Vybere bod a jako počáteční a přiřadí všem ostatním bodům vzdálenost ∞ .
- $\forall u \in V \setminus \{a\}$ zkontroluje, jestli $w(a,u) < \infty$, a pokud ano, vzdálenost změní.
- ...

Obrázek: Graf K_5

5/8

Co když leží všechny vstupní body v jedné nadrovině?

• Hledaný polytop neexistuje.

Eric Dusart Ročníková práce 17. května 2024

Co má větší vliv na časovou náročnost algoritmu? Dimenze či počet bodů? V jakém smyslu a proč?

- Pokud sortíme polytopy podle jejich obvodu:
 - Best: $\binom{\#V}{n+1} + \binom{n+1}{2} \binom{\#V}{n+1} + n \log n + n^3$
 - Worst: $\binom{\#V}{n+1} + \binom{n+1}{2}\binom{\#V}{n+1} + n\log n + \binom{\#V}{n+1}n^3$: všechny polytopy + obvod pro všechny polytopy + sorting + determinant pro všechny polytopy
- Pokud vybíráme minimální:
 - Best: $\binom{\#V}{n+1} + \binom{n+1}{2} \binom{\#V}{n+1} + n \cdot n^3$
 - Worst: $\binom{\#V}{n+1} + \binom{n+1}{2}\binom{\#V}{n+1} + n\binom{\#V}{n+1}n^3$: všechny polytopy + obvod pro všechny polytopy + determinant pro všechny polytopy ale po každé vybírám ten s minimálním obvodem (to je to n před #VC(n+1))

7/8

Můžeš odhadnout náročnost tvého algoritmu pro n=10 (alespoň přibližně)?