7.9 <u>Esercizio</u>

Nella rete in figura sono rappresentati 4 router (R1, R2, R3 e R4), un client A, un HTTP proxy P e un HTTP server S. Accanto ad ogni collegamento è indicata la propria capacità, mentre il tempo di propagazione è pari a 10 ms su ciascun collegamento.

Il client vuole scaricare del server un sito web composto da 1 pagina HTML di dimensione LHTML=80 [kbyte] e 6 oggetti JPEG richiamati nella pagina HTML di dimensione 500 kbyte. Nella rete sono presenti flussi interferenti di lunga durata: 4 tra R1 e R2, 10 tra R3 e R4. Assumiamo di avere raggiunto attraverso TCP una condivisione equa delle risorse in tutta la rete.

Si chiede di calcolare il tempo di trasferimento del sito web a livello applicativo nei seguenti casi:

- a) il client A non ha proxy configurato, apre connessioni non-persistenti in parallello (quando possibile e nel massimo numero possibile)
- b) il client A utilizza il proxy P, apre al massimo una connessione alla volta in modalità nonpersistent.

Solo la pagina HTML ed i primi 2 oggetti JPEG sono presenti nella cache del proxy.

Per semplicità nel calcolo del tempo di trasferimento non si consideri il tempo di ritrasmissione di ciascuno dei router R.

Soluzione

Il client A colloquia direttamente con il server S.

Assumiamo di avere raggiunto una condivisione equa delle risorse in tutta la rete, per la pagina HTML, i collegamenti attraversati hanno le seguenti capacità effettive: A-R1 15 Mb/s, R1-R2 2 Mb/s (4+1 flussi), R2-R3 15Mb/s, R3-R4 1Mb/s (10+1 flussi). Dunque il trasferimento è governato dal collo di bottiglia R3-R4 a 1 Mb/s. Il tempo di trasferimento della pagina HTML è pari a $T_{HTML} = 8*80 \ [kbit] / 1 \ [Mb/s] = 640 \ ms$

Per gli oggetti JPEG, i collegamenti attraversati sono i medesimi, dunque il collo di bottiglia sarà il link R3-R4 con una capacità effettiva di 687.5 kb/s (10+6 flussi). Il tempo di trasferimento di ogni oggetto JPEG è pari a $T_{OGG} = 8*500$ [kbit] / 687.5 [kb/s] = 5.82 s.

Il tempo totale di trasferimento (considerando una sola volta il tempo di trasmissione della pagina HTML e di ciascun oggetto JPEG, senza contare quello dovuto ai router, come da ipotesi nel testo) è pari a $T = T_{\rm open} + T_{\rm get} + T_{\rm HTML} + T_{\rm open} + T_{\rm get} + T_{\rm OGG}$ in accordo con la figura sotto. Considerando 10 ms di tempo di propagazione per ciascun collegamento e tenendo conto di 5 collegamenti in andata e 5 in ritorno, $T_{\rm open} = T_{\rm get} = 100 \ [ms] \rightarrow T = 6.86 \ {\rm s}.$

Punto b)

Il client A colloquia con il proxy P. Il colloquio client-proxy è definito dal collo di bottiglia R1-R2 con una capacità di 2 Mb/s (4+1 flussi), mentre il colloquio proxy-server ha R3-R4 come collo di bottiglia, dunque una capacità di 1 Mb/s (10+1 flussi). I tempi di trasferimento sono:

$$T_{\rm HTML}^{\rm AP} = (640 \text{ kb} / 2 \text{ Mb/s}) = 320 \text{ ms}$$

$$T_{\rm OGG}^{\rm AP} = (4 \text{ Mb} / 2 \text{ Mb/s}) = 2 \text{ s}$$

$$T_{\rm OGG}^{\rm PS} = (4 \text{ Mb} / 1 \text{ Mb/s}) = = 4 \text{ s}$$

rispettivamente per il trasferimento della pagina HTML dal proxy al client, di un oggetto JPEG dal proxy al client e di un oggetto JPEG dal server al proxy.

I tempi di propagazione sono $T_{\text{open}}^{\text{CP}} = T_{\text{get}}^{\text{CP}} = 60 \text{ ms}$ per la connessione client-proxy e sono $T_{\text{open}}^{\text{PS}} = T_{\text{get}}^{\text{PS}} = 80 \text{ ms}$ per la connessione proxy-client.

Il tempo totale di trasferimento (considerando una sola volta il tempo di trasmissione della pagina HTML e di ciascun oggetto JPEG, senza contare quello dovuto ai router, come da ipotesi nel testo) è pari a

$$T = T_{\text{open}}^{\text{AP}} + T_{\text{get}}^{\text{AP}} + T_{\text{HTML}}^{\text{AP}} + 2(T_{\text{open}}^{\text{AP}} + T_{\text{get}}^{\text{AP}} + T_{\text{OGG}}^{\text{AP}}) + 4(T_{\text{open}}^{\text{AP}} + T_{\text{get}}^{\text{AP}} + T_{\text{OGG}}^{\text{AP}} + T_{\text{OGG}}^{\text{AP}}) + T_{\text{open}}^{\text{PS}} + T_{\text{get}}^{\text{PS}} + T_{\text{OGG}}^{\text{PS}}) = 29.8s$$