Estimating the parameters of twofold Weibull mixture model in right-censored reliability data by using genetic algorithm

Communications in Statistics - Simulation and Computation

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/lssp20

Estimating the parameters of twofold Weibull mixture model in right-censored reliability data by using genetic algorithm

Erkut Tekeli & Güzin Yüksel

To cite this article: Erkut Tekeli & Güzin Yüksel (2020): Estimating the parameters of twofold Weibull mixture model in right-censored reliability data by using genetic algorithm, Communications in Statistics - Simulation and Computation

To link to this article: https://doi.org/10.1080/03610918.2020.1808681

Estimating the parameters of twofold Weibull mixture model in right-censored reliability data by using genetic algorithm

Erkut Tekeli^a (i) and Güzin Yüksel^b (i)

^aDepartment of Computer Technologies, Kozan Vocational School, Çukurova University, Kozan/Adana, Turkey; ^bDepartment of Statistics, Faculty of Science and Letters, Çukurova University, Adana, Turkey

ABSTRACT

In this article, a new method was practiced to form a model by using twofold Weibull mixture distribution in right-censored reliability data. The method depends on estimating the parameters of right-censored twofold Weibull mixture distribution in a most appropriate way to the data by using genetic algorithm techniques. The best model was tried to be found by using MSE, MAE and MAPE metrics, respectively, as fitness function in the method. To test the model, failure data of aircraft planes' windshield, which is often used in the literature, was used and the results were compared with other methods in the literature. Furthermore, the performance of the method was compared for the sample sizes, censorship ratios and mixture proportions by conducting Monte Carlo simulation study.

ARTICLE HISTORY

Received 3 September 2019 Accepted 6 August 2020

KEYWORDS

Genetic algorithm; Mixture distribution; Reliability; Twofold Weibull

1. Introduction

In system reliability, systems consist of components with various structures and features. System reliability can be obtained through the reliabilities of the components that form the system. However, in many cases, while the time survival of the system can be observed, time survival of the components cannot be observed. Censorship is widespread in time survival experiments because of time and budgetary constraints (Yang, Ng, and Balakrishnan 2016). In order to estimate the parameters of time survival models that are formed by various statistical distributions in right-censored systems, best linear unbiased estimation (BLUE) (Balakrishnan, Ng, and Navarro 2011), maximum likelihood estimation (MLE) (Balakrishnan, Ng, and Navarro 2011; Ng, Navarro, and Balakrishnan 2012) and regression-based method (Zhang, Ng, and Balakrishnan 2015) were developed. These methods require complex calculations.

Mixture distributions are also used in system reliability modeling. Berchtold (2004) compared the expectation-maximization (EM), stochastic expectation-maximization (SEM) and genetic algorithm (GA) methods for the parameter estimation in mixture models. Volterman and Balakrishnan (2013) suggested an iterative method for the calculation of mixture proportions in right-censored data. Wang (2014) proposed bare bones particle swarm optimization (BBPSO) algorithm for estimating the parameters of Weibull distribution with censored data, and compared the performance of BBPSO and EM models by a Monte Carlo simulation. Wang and Huang (2014) used a particle swarm optimization (PSO) algorithm to estimate parameters of the mixture of two Weibull with complete and multiple censored data. They compared the performance of PSO and EM models by a Monte Carlo simulation. Yang, Ng, and Balakrishnan (2016) suggested SEM algorithm to be used in complete and censored systems to obtain the maximum likelihood estimations of the parameters of system's survival models. Bordes and

Chauveau (2016) presented a few iterative methods based on EM and SEM algorithm which provide us to estimate parametric or semi-parametric mixture models, providing that they are definable, for right-censored survival data. Ruhi, Sarker, and Karim (2015) tried to estimate the parameters of the model by using EM algorithm for twofold Weibull mixture model.

The Weibull probability paper (WPP) method was widely used for estimating the parameters of Weibull mixture models. A large part of the literature is interested in the situations of a well-divided subpopulation, use various approaches in the drawings and for the characterization of asymptotes. As also mentioned by Murthy, Xie, and Jiang (2004) there are two serious disadvantages in the WPP method. The WPP method produces very rough estimations as long as iteration is not used and will be evaluated by eyesight. For this reason, they can be used as a starting point for more sophisticated statistical methods. The second disadvantage is, it does not perform statistical confidence limits for estimated parameters.

Another method for estimating the parameters of Weibull mixture models is EM. According to Ferreira and Silva (2017), EM algorithm has some advantages compared to other iterative algorithms, but it also has disadvantages. The EM algorithm may converge very slowly to the result in some datasets or datasets with too much missing information. The EM algorithm does not have an integrated process for generating an estimate of the covariance matrix of parameter estimates. However, this disadvantage can be overcome by using appropriate methods. Another disadvantage of the EM algorithm is that the prediction is highly dependent on the initial solution given to the algorithm. Therefore, the EM algorithm does not guarantee convergence to the global solution. However, the GA mutates the solution at a certain rate in each iteration to avoid local solutions. Thus, it can continue to search in other parts of the solution space.

In this article, a method based on GA was presented in order to estimate the most appropriate parameters of twofold Weibull mixture model to the right-censored reliability data. In Sec. 2, twofold Weibull mixture model was defined. Besides, maximum likelihood estimation method was defined for parameter estimation. In Sec. 3, a method based on GA was presented and the results were compared with some known methods by using windshield failure data. In Sec. 4, Monte Carlo simulation was conducted for evaluating the performance of the method in different situations. Finally, the results were given in Sec. 5.

2. Twofold Weibull mixture model

Probability density function, cumulative distribution function, time survival function and Hazard function of a random T variable, taken from Weibull distribution, is given below.

$$f(t) = \frac{\beta}{\alpha} \left(\frac{t}{\alpha}\right)^{\beta - 1} e^{-\left(\frac{t}{\alpha}\right)^{\beta}}, \quad t \ge 0, \ \alpha > 0, \ \beta > 0$$
 (1)

$$F(t) = 1 - e^{-\left(\frac{t}{\alpha}\right)^{\beta}}, \quad t \ge 0, \ \alpha > 0, \ \beta > 0$$
 (2)

$$S(t) = e^{-\left(\frac{t}{\alpha}\right)^{\beta}}, \quad t \ge 0, \ \alpha > 0, \ \beta > 0$$
 (3)

$$h(t) = \frac{\beta}{\alpha} \left(\frac{t}{\alpha}\right)^{\beta - 1}, \quad t \ge 0, \ \alpha > 0, \ \beta > 0$$
 (4)

When the observations are divided into two clusters as D, the cluster of uncensored observations $(t_i \le v_i)$ and C as the cluster of censored data $(t_i > v_i)$, maximum likelihood function is

$$L(\alpha, \beta) = \left[\prod_{i \in D} f(t_i)\right] \left[\prod_{i \in C} \left(1 - F(v_i)\right)\right],\tag{5}$$

where t_i indicates the uncensored observation time, and v_i indicates the censorship time for T_i . With $u_i = min(t_i, v_i)$, the maximum likelihood estimation of β is acquired through solving the

$$\frac{\sum_{i=1}^{n} u_i^{\hat{\beta}} \ln u_i}{\sum_{i=1}^{n} u_i^{\hat{\beta}}} - \frac{1}{\hat{\beta}} - \frac{1}{k} \sum_{i \in D} \ln u_i = 0$$
 (6)

equation. The maximum likelihood estimation of α is acquired with

$$\hat{\alpha} = \left[\frac{1}{n} \left(\sum_{i=1}^{n} u_i^{\hat{\beta}} \right) \right]^{1/\hat{\beta}} \tag{7}$$

equation.

The cumulative distribution function of a k-fold mixture model is

$$G(t) = \sum_{i=1}^{k} \omega_j F_j(t), \tag{8}$$

where, $F_i(t)$ is the cumulative distribution function of jth subpopulation and ω_i is the mixture distribution proportion of jth subpopulation and $\sum_{j=1}^k \omega_j = 1$.

Probability density function of a k-fold mixture model is

$$g(t) = \sum_{j=1}^{k} \omega_j f_j(t) \tag{9}$$

Reliability function of a k-fold mixture model is given as:

$$R_i(t) = 1 - F_i(t) \tag{10}$$

Distinctively, cumulative distribution function in twofold Weibull mixture model (k=2) is

$$G(t) = \omega F_1(t) + (1 - \omega)F_2(t) \tag{11}$$

If we put Weibull (α_1, β_1) instead of $F_1(t)$ and Weibull (α_2, β_2) instead of $F_2(t)$ distributions is obtained as

$$G(t) = \left\{ 1 - \exp\left[-\left(\frac{t}{\alpha_2}\right)^{\beta_2} \right] \right\} + \omega \left\{ \exp\left[-\left(\frac{t}{\alpha_2}\right)^{\beta_2} \right] - \exp\left[-\left(\frac{t}{\alpha_1}\right)^{\beta_1} \right] \right\}, \tag{12}$$

probability density function in twofold Weibull mixture model is obtained as

$$g(t) = \omega \left\{ \frac{\beta_1}{\alpha_1} \left(\frac{t}{\alpha_1} \right)^{\beta_1 - 1} \exp\left[-\left(\frac{t}{\alpha_1} \right)^{\beta_1} \right] \right\} + (1 - \omega) \left\{ \frac{\beta_2}{\alpha_2} \left(\frac{t}{\alpha_2} \right)^{\beta_2 - 1} \exp\left[-\left(\frac{t}{\alpha_2} \right)^{\beta_2} \right] \right\}, \tag{13}$$

reliability function is obtained as

$$R(t) = \omega \left\{ \exp\left[-\left(\frac{t}{\alpha_1}\right)^{\beta_1} \right] \right\} + (1 - \omega) \left\{ \exp\left[-\left(\frac{t}{\alpha_2}\right)^{\beta_2} \right] \right\}. \tag{14}$$

Maximum likelihood estimations of model parameters

In Eq. (5), maximum likelihood estimation can be obtained with

$$\ln L = \sum_{i \in D} \ln \left\{ \omega \left[\frac{\beta_1}{\alpha_1} \left(\frac{u_i}{\alpha_1} \right)^{\beta_1 - 1} \exp \left[-\left(\frac{u_i}{\alpha_1} \right)^{\beta_1} \right] \right] + (1 - \omega) \left[\exp \left[-\left(\frac{u_i}{\alpha_2} \right)^{\beta_2} \right] \right] \right\} + \sum_{i \in C} \ln \left\{ \omega \left[\exp \left[-\left(\frac{u_i}{\alpha_1} \right)^{\beta_1} \right] \right] + (1 - \omega) \left[\exp \left[-\left(\frac{u_i}{\alpha_2} \right)^{\beta_2} \right] \right] \right\}$$
(15)

equation, if we replace the probability density function and cumulative distribution function of twofold Weibull distribution and take the logarithm of both sides. Maximum likelihood estimations of parameters can be found when the partial differentiation is taken and made equal to zero of (15) equation according to β_1 , α_1 , β_2 , α_2 and ω parameters, respectively. Since closed-form solutions cannot be obtained from the obtained equations, iterative methods will be necessary to use in order to find the maximum likelihood estimations.

Murthy, Xie, and Jiang (2004), created a twofold Weibull mixture model for data and calculated the model parameters by applying a graphical method based on Weibull probability paper (WPP) method. The model selection has a tendency of trial and error process. WPP provides a systematical procedure for determining whether or not one of the models is appropriate for modeling a data set.

It is based on Weibull transformation as in

$$y = \ln\{-\ln[1 - F(t)]\}$$
 and $x = \ln(t)$ (16)

In this transformation, the graphic of y according to x variable is called as Weibull probability graph. In the early 1970s, a special paper was developed to draw the data of this transformation and it is called Weibull probability paper (WPP). Graphics drawn with the help of this paper is named as WPP graphics. Today, many reliability software packages contain programs that can automatically produce this graphic for a given data set.

3. Proposed method and practical example

3.1. Genetic algorithm

The emergence of GA approach happened in the early 1970s. In his studies about machine learning, John Holland (1975) was influenced by the evolution and change in living beings and developed GA. GAs are often used in machine learning and optimization practices.

GA is an algorithm which tries to find the best appropriate one in many possible solutions. Sequences that include all of the information about any solution are called as chromosome. In every generation, bad solutions tend to disappear and good solutions tend to be used to create better solutions. GAs do not scan all of the solution space, but a part of it. Thus, they reach a solution in a much shorter time by making an efficient scan. An important superiority of GAs is that they get rid of the effect of local solutions by means of protecting the diversity in the population.

In order to determine how much the intended objective is fulfilled in the problem, a fitness function is determined. Usually, fitness function is intended to be maximum or minimum. Fitness function determines the quality of the chromosome. The value of the fitness function plays a very important role in whether or not the chromosome in a population transfers its data to the next generation.

Basic operators of algorithm such as mate selection, reproduction, crossover and mutation are originated from biology. Algorithm practices the survival of the fittest principle to reach more appropriate results. In every generation, by enabling individuals to live with more appropriate solutions compared to other solutions according to appropriacy in the problem area, as in natural adaptation, it leads the population to develop more and thus attempts to find the most appropriate result.

3.2. Windshield failure data set

In order to test the method, windshield failure data was used. The data set was first used in the studies of Blischke and Murthy (2000) and it contains the failure times and service times in the windshield of a certain aircraft model. Data containing the service times were not completed

Table 1	Aircraft	windshiald	failure data.
Table L.	AIICIAII	winasnieia	Tallure data.

	Failure	Times			Service times	
0.040	1.866	2.385	3.443	0.046	1.436	2.592
0.301	1.876	2.481	3.467	0.140	1.492	2.600
0.309	1.899	2.610	3.478	0.150	1.580	2.670
0.557	1.911	2.625	3.578	0.248	1.719	2.717
0.943	1.912	2.632	3.595	0.280	1.794	2.819
1.070	1.914	2.646	3.699	0.313	1.915	2.820
1.124	1.981	2.661	3.779	0.389	1.920	2.878
1.248	2.010	2.688	3.924	0.487	1.963	2.950
1.281	2.038	2.823	4.035	0.622	1.978	3.003
1.281	2.085	2.890	4.121	0.900	2.053	3.102
1.303	2.089	2.902	4.167	0.952	2.065	3.304
1.432	2.097	2.934	4.240	0.996	2.117	3.483
1.480	2.135	2.962	4.255	1.003	2.137	3.500
1.505	2.154	2.964	4.278	1.010	2.141	3.622
1.506	2.190	3.000	4.305	1.085	2.163	3.665
1.568	2.194	3.103	4.376	1.092	2.183	3.695
1.615	2.223	3.114	4.449	1.152	2.240	4.015
1.619	2.224	3.117	4.485	1.183	2.341	4.628
1.652	2.229	3.166	4.570	1.244	2.435	4.806
1.652	2.300	3.344	4.602	1.249	2.464	4.881
1.757	2.324	3.376	4.663	1.262	2.543	5.140
1.795	2.349	3.385	4.694	1.360	2.560	

because the failure were not observed yet. In the data set, the service times was regarded as rightcensored data.

In the data set demonstrated in Table 1, a total of 153 data is included, 88 observations which describe the fault time and 65 observations which describe the service times of faulted windshields. Time unit of measurement is 1000 hours.

With the Kaplan-Meier method (Zhou and Yang 2015) which is a non-parametric method, reliability function was estimated from the observations. Let's name this estimation as $R_{\rm KM}$. Parameters of the model were optimized by using GA for reaching the most appropriate twofold Weibull mixture model with \hat{R}_{KM} and thus \hat{R}_{GA} estimations were found.

In order to reach the best model, three distance metrics below (17)-(19) are used as fitness function. Mean square error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) is defined with

$$MSE = \frac{1}{n} \sum_{i=1}^{n} \left(\hat{R}_{KM}^{(i)} - \hat{R}_{GA}^{(i)} \right)^{2}$$
 (17)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} \left| \hat{R}_{KM}^{(i)} - \hat{R}_{GA}^{(i)} \right|$$
 (18)

MAPE =
$$\frac{1}{n} \sum_{i=1}^{n} \left| \frac{\hat{R}_{KM}^{(i)} - \hat{R}_{GA}^{(i)}}{\hat{R}_{KM}^{(i)}} \right|$$
(19)

equations. It is aimed for used fitness functions to be minimum. Methods created by using three different fitness functions are named as GA_{MSE}, GA_{MAE} and GA_{MAPE}, respectively.

Anderson-Darling test was used in order to test the fitness of the model that is found by the data. Fischer and Kamps (2013) compared the competency of various tests used for the goodness of fit in right-censored data and Anderson-Darling test took its place as one of the best in many cases in their study. Anderson-Darling test is based on the difference between cumulative distribution function and empirical distribution function, stated in the null hypothesis. Test statistics are given with

Table 2. Parameters of GA.

Structure of Chromosome	$[\omega, \alpha_1, \beta_1, \alpha_2, \beta_2]$
Population	100
Iteration count	50
Mutation rate	0.1
Fitness function	min(MSE)
	min(MAE)
	min(MAPE)

$$A^{2} = -\frac{1}{n} \sum_{i=1}^{n} (2i - 1) \left\{ \ln[p_{(i)}] + \ln[1 - p_{(n-i+1)}] \right\} - n$$
 (20)

equation. Here it is $p_{(i)} = F([x_i - \overline{x}]/s)$, F is the cumulative distribution function in the hypothesis and \overline{x} and s are the mean of the data and standard distribution, respectively. The small Anderson-Darling value of the data (A^2) , obtained as a result of the test, indicates the more fitness of the data with the model.

The proposed method is coded in R programing language (R Core Team 2018) and GA package (Scrucca 2013) is used for genetic algorithm. GA parameters selected in the software are given in Table 2.

The performance of the model obtained with the proposed GA method is compared with WPP and EM methods and the results are demonstrated in Table 3. In WPP method, the results that are obtained from the studies of Murthy, Xie, and Jiang (2004) are used. In the EM method, the software that is used in the studies of Ruhi, Sarker, and Karim (2015) is used. Initial values were taken randomly in both GA and EM methods.

The model that is obtained by using all the data may not accurately estimate in different data samples (Gigerenzer and Brighton 2009). For this reason, in order to test the estimation validity and increase the reliability of the performance comparison of the model, 10-fold cross validation is used in EM and GA methods. Cross-validation is widely accepted in data mining and machine learning fields and furthermore, it is used as a standard procedure for performance estimation and model selection (Refaeilzadeh, Tang, and Liu 2009). k-fold cross validation performs more tests in order to obtain a stable estimation of the model error and uses the mean of the performances of these tests. 10-fold cross validation (k=10) is widely used in the literature (Reitermanova 2010). In the 10-fold cross-validation, the available data are randomly divided into 10 parts. 9 of the parts are used as education data to develop models, the other part was used as a test data for evaluating the performance of the available model. 10 iterations were conducted by using a different part each time for test data. The means of the fitness of the models in each iteration with training and test data are recorded by measuring with Anderson-Darling test. After ensuring the performance of the method, last model was created using all data by omitting the models that emerged during iterations.

When EM method is applied, A^2 value is obtained as 0.4093 for the training phase. Since this value is lower than the A^2 values that are found in other methods, the EM method demonstrated the best performance during the training phase. On the other hand, the lowest A^2 value was found as 0.9050 in GA_{MSE} method for the testing phase. The performance of the EM method is observed to decrease considerably the test phase. This indicates that models obtained with GA methods are more appropriate with new data.

Moreover, the models obtained in this study were compared using MSE, MAE and MAPE metrics. The model obtained with the GA-MAPE method produced the lowest MSE value, while the model obtained with the GA-MAE method produced the lowest MAE value. In contrast, the lowest MAPE value was achieved by the model obtained by the EM method.

					Proposed method	S
		WPP	EM	GA_MSE	GA_MAE	GA_MAPE
Training	A^2	1.1910	0.4093	0.7112	0.6177	0.7731
3	p value	0.2705	0.8415	0.5711	0.6392	0.5260
Testing	A^2	_	1.3596	0.9050	0.9758	0.9286
J	p value	_	0.2801	0.5179	0.5098	0.5297
Model	$\hat{\omega}$	0.136	0.0188	0.0004	0.1704	0.1926
	$\hat{\alpha}_1$	8.230	0.2568	4.1248	4.2835	4.0261
	$\hat{\hat{m{eta}}}_1 \ \hat{m{eta}}_1$	0.429	1.2709	3.9644	3.2830	5.2992
	$\hat{\alpha}_2$	3.210	3.5138	3.3261	3.3204	3.3131
	$\hat{\hat{\alpha}}_{2}$ $\hat{\hat{\beta}}_{2}$	2.990	2.8405	2.3786	2.5441	2.2846
Performance of models	MŚE	0.00133	0.00123	0.00108	0.00086	0.00084
	MAE	0.03074	0.02704	0.02896	0.02207	0.02374
	MAPE	0.11441	0.09688	0.10674	0.10828	0.09949

Table 3. Comparison of GA methods and other methods in literature.

4. Simulation study

In this section, in order to evaluate the performance of the available methods by using GA, simulation study was conducted. Simulations were performed for different sample sizes, different censorship ratios and different mixture proportions. Appropriate data for twofold Weibull mixture distribution is produced according to the definitions below.

$$f_{ij} \sim \text{Weibull}(\alpha_j, \beta_i)$$
 $i = 1, 2, ..., n; j = 1, 2$ (21)

$$x_i = \omega f_{i1} + (1 - \omega) f_{i2}$$
 $i = 1, 2, ..., n$ (22)

Here, f_{ij} are the pseudo-random numbers that are obtained from Weibull distribution. ω is the mixture proportion in twofold Weibull mixture distribution.

Different rates of data were chosen randomly from the samples and accepted as right censored data. Models that are appropriate for the data are created with EM algorithm method and GA methods. A^2 and p values were calculated for each simulation repeats.

The parameters of the twofold Weibull mixture distribution were kept constant during the simulation study as $\alpha_1=7$, $\beta_1=3$, $\alpha_2=2$ and $\beta_2=4$. A total of 80 cases were examined for five different mixture proportion ($\omega = 0.1, 0.3, 0.5, 0.7, 0.9$), four different sample size (n = 25, 100, 250, 0.9) 500) and four different censorship ratio (10%, 20%, 30%, 40%). Each case was repeated 100 times. Estimated mean square error (EMSE) and estimated bias (EBIAS) for each case are calculated according to the equation below.

$$EMSE = \frac{1}{m} \sum_{i=1}^{m} (\hat{\theta}_i - \theta)^2$$
 (23)

$$EBIAS = \frac{1}{m} \sum_{i=1}^{m} \hat{\theta}_i - \theta \tag{24}$$

where $\theta = (\alpha_1, \beta_1, \alpha_2, \beta_2, \omega)$ and m is count of trials in simulation.

As a result of the simulation, EBIAS and EMSE values for different mixture proportions, different sample sizes and different censorship ratios are demonstrated in Appendix A-D.

In most cases in the simulation study, GA methods found the more appropriate models from the EM method. It is observed that in the GA methods, using metrics, which measure the distance between the data and the model, as fitness function not only makes it easy to apply but also provides better results.

Among 80 cases, the proposed GA-MAPE method produced the lowest EMSE value in 30 cases, the GA-MSE method in 18 cases and the GA-MAE method in 15 cases. However, the EM

Figure 1. EMSE of the methods according to the mixture proportion.

method produced the lowest EMSE values in only 17 cases. The EM method is successful in some cases where the mixture proportion is equal to 0.5 or 0.7.

On the other hand, for the EBIAS of the β_2 parameter, the EM algorithm has the best values in 54 of 80 cases, whereas for the EBIAS of the α_1 , β_1 , and α_2 parameters, the proposed GA methods have mostly the best values. For the ω parameter, EM and GA algorithms have the best EBIAS value in similar number of cases.

In the graphic in Figure 1, the change of EMSE value according to mixture proportion can be observed in all cases. As the mixture proportion increases, EMSE value increases as well in GA methods, that is, a decrease in the fitness of the model to the data is observed. On the other hand, in the EM method, the best EMSE value was obtained when the mixture proportion is equal to 0.5. While the mixture proportion is equal to 0.5, the EM method is more successful than the proposed methods. On the contrary, GA methods are more successful in cases where the mixture proportion is different from 0.5. EM method is thought to produce worse results in cases where the mixture proportion is small or large because the EM algorithm is affected by the initial values and converges to local solutions.

In the graphic in Figure 2, the change of EMSE value according to sample size can be observed in all cases in simulation. As the sample size increases, EMSE value decreases, that is, performances of models increase. GA_{MSE} method has better performance than other methods.

In the graphic in Figure 3, the change of EMSE value according to censorship ratio can be observed in all cases in the simulation. As the censorship ratio increases, EMSE value increases, that is, performances of the models decrease. GA_{MSE} method has better performance than other methods.

5. Conclusion

As a result, a twofold Weibull mixture model was created for a data set used in the literature with an available method and the parameters of the model was estimated. When the obtained results were compared with the studies of Murthy, Xie, and Jiang (2004) and Ruhi, Sarker, and Karim (2015) on the same data set, it was determined that although EM method produces more appropriate model in the training phase, in the model created with GA_{MSE} method, the result of the Anderson-Darling goodness of fit test was found to be the smallest value in test phase. This

Figure 2. EMSE of the methods according to the sample size.

Figure 3. EMSE of the methods according to the censor rate.

indicates that the model found by GA_{MSE} method has a better estimation performance compared to other methods.

Monte Carlo simulation study was conducted in order to better examine the result obtained from the actual data. With the simulation study, the fitness of the model was tested for various sample sizes, censorship ratios and mixture proportions. Simulation study demonstrated that models found with proposed GA methods provide better fitness to the data in most cases, compared to the method where EM algorithm is used. Especially the GA_{MAPE} method has performed best in more cases in simulation. The EM method has performed better only in cases where the mixture proportion is equal to 0.5. The fact that GA is less affected by initial values and local solutions than the EM algorithm makes this difference.

in simulation
2
= 2
u =
_
Ŧ
1SE
EMS
and
Ş
8
ш
Ä
ĕ
þ
ē
<u> </u>
¥

	ŝ	-0.001	0.002	900'0	0.016	-0.038	-0.032	-0.023	-0.013	-0.035	-0.025	-0.020	-0.010	-0.041	-0.036	-0.035	-0.029	-0.067	-0.066	-0.061	-0.059
GA-MAPE	$\hat{\alpha}_2$ \hat{eta}_2	0.074 0	-0.058 0.088 0.093 -MSF=0.1888	-0.046 0.096 0.135 EMSE - 0.2216	-0.042 0.112 0.159 EMSE=0.2420	45 0.245 0.016 FMSE — 0.2412	to 0.263 0.032 FMSE_0.2711	50 0.276 0.075 FMSF = 0.3222	0.121 0.297 0.073 $0.08E = 0.3418$	84 0.336 0.021 $FMSF = 0.6743$	61 0.348 0.020 $EMSE = 0.6597$	07 0.367 0.041 FMSE — 0.6508		60 0.433 0.025 $EMSE = 0.6059$	33 0.448 0.056 FMSF = 0.6296	42 0.495 0.039	EMSE = 0.7134 0.439 0.561 0.117 EMSE = 0.8717	EMSE = 0.6717 90 0.558 0.046 EMSE = 0.6939	0.362 0.626 0.082	0.636 0.098	EMSE = $0.90/2$ 54 0.724 0.148 EMSE = 1.0990
	$\hat{\beta}_1$	-0.1	-0.0	·	-0.0	0.0	0.0	0.0		0.5	0.5	0.5	0.4	0.4	0.4	0.4	0.4	0.3		0.3	0.3
	β, β	0.024	-0.023	0.017	-0.008	4 -0.139	7 -0.134	2 –0.131	1 -0.148	1 -0.224	2 –0.205	1 -0.184	9 –0.147	1 -0.089	6 –0.046	7 -0.030	9 0.017	9 0.065	5 0.089	5 0.132	4 0.195
	ŝ	0.008	0.014	0.018	0.023	-0.024	-0.017	-0.012	-0.001	-0.031	-0.022	-0.021	-0.009	-0.041	-0.036	-0.037	-0.029	-0.069	-0.065	-0.065	-0.064
<u></u>	$\hat{\beta}_2$	0.064	0.079	0.112	0.134 2521	12 0.234 -0.001 EMSE - 0.3387	0.033	0.268 0.065	0.106	-0.012 5062	0.021	0.066	0.101	0.007	0.056	0.084	0.113	0.007	0.077	0.051	8521 0.079 1017
GA-MAE	$\hat{\alpha}_2$		-0.001 0.079 0. EMSF = 0.2053	-0.086 0.091 0.	0.000 0.108 0.134 $EMSE = 0.2521$	0.234 ASF — 0	18 0.253 0.0 EMSE 0.2755	7 0.268 0.0 FMSF — 0.3003	0.032 0.292 0.106 $EMSE = 0.3413$	0.351 0.343 -0 $EMSF = 0.5062$	3 0.369 0.0	18 0.397 0.1 FMSF — 0.5401	5 0.430 0.701 EMSE = 0.6050	3 0.436 0.000 EMSE = 0.5700	0.357 0.488 0.056 $EMSF = 0.6647$	0.303 0.541 0.084 EMSE 0.7206	0.279 0.596 0.279	EMSE = 0.7721 $6 0.591 0.00$ $EMSE = 0.7564$	0.317 0.633 0.077	0.340 = 0.620	EMSE = 0.8521 7 0.745 0. EMSE = 1.1017
	$\hat{\beta}_1$	-0.009	-0.001 FA	-0.086	0.000 EA	0.032 FMS	0.028 EM	0.017 FMS	0.032 EN	0.351 FA	0.353 FMS	0.288 EMS	0.295 EM	0.353 EM	0.357 FA	0.303	0.279	0.366 FM	0.317	0.340	EMS 0.371 EMS
	ά	0.018	-0.014	0.010	0.023	-0.130	-0.123	-0.114	-0.116	-0.206	-0.186	-0.165	-0.114	-0.106	-0.058	-0.014	0.034	0.057	0.107	0.154	0.178
	ŝ	0.005	0.009	0.012	0.018	-0.027	-0.021	-0.016	-0.006	-0.032	-0.024	-0.019	-0.007	-0.046	-0.037	-0.036	-0.035	-0.068	-0.065	-0.063	-0.060
	$\hat{\beta}_2$	0.061	0.068	0.090	0.126 94	0.000	0.025	0.064	0.088	-0.017 719	0.010	0.067	0.071	-0.007	0.055	0.069	0.123	0.045	0.075	0.108	// 0.125 1 25
GA-MSE	$\hat{\alpha}_2$	9 0.072 0. FMSF — 0.2204	0.010 0.085 0.068 $0.018 = 0.0051$	-0.044 0.096 0.	0.000 0.114 0.000 0.008 = 0.2594	0.011 0.239 0.	2 0.257 0.0 EMSE — 0.2868	-0.006 0.275 0.064	0.059 0.298 0. EMSE=0.3338	0.325 0.351 -0. $EMSF = 0.4719$	0.286 0.371 0.010 EMSF = 0.4512	0.307 0.396 EMSE — 0.54	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} .8 & 0.456 & -0 \\ EMSE & = 0.5881 \end{array}$	0.333 0.460 0.055 EMSF = 0.5774	0.351 0.516 0.069 EMSE - 0.6844	$\begin{array}{cccc} EMSE &= 0.00444 \\ 0.308 & 0.571 & 0.123 \\ EMSE &= 0.7021 \end{array}$	EMSE = 0.7931 21 0.552 0.0 FMSE - 0.6604	0.323 0.633 0.075	EMISE = 0.05 $0.348 0.661$	EMSE = $0.91/7$ 0.299 0.742 0. EMSE = 1.0425
	$\hat{\beta}_1$	0.019 FMS	0.010 FMS	-0.044	0.000 EMS	0.011 FM	0.052 FMS	-0.006 FM	0.059 EM	0.325 FMS	0.286 FMS	0.307 FMS	0.324 EMS	0.358 FMS	0.333 FMS	0.351	0.308	0.321	0.323	0.348	EMIS 0.299 EMS
	ά ₁	-0.012	0.011	-0.017	0.012	-0.106	-0.111	-0.100	-0.109	-0.212	-0.185	-0.161	-0.117	-0.090	-0.042	-0.022	0.067	0.075	0.100	0.151	0.194
	ŝ	0.092	0.095	0.094	960:0	0.065	0.061	0.059	0.058	0.041	0.037	0.029	0.025	-0.025	-0.018	-0.011	-0.008	-0.054	-0.049	-0.047	-0.045
	\hat{eta}_2	0.012	0.016 87	5, 5.025 75).031 71	-0.047	-0.044	-0.036	-0.031 305	-0.076	-0.073	-0.066	-0.062 194	094	-0.091 83	-0.085	-0.081	92	0.347	0.484	537 0.732 531
EM	$\hat{\alpha}_2$	4 0.081 0.0 EMSE - 0.6489	0.220 0.096 0.016 $EMSE = 0.6387$	0.230 0.107 0.025 EMSE — 0.6375	0.237 0.128 0.031 $EMSE = 0.6271$	4	EMSE — 0.4400 18 0.270 —0. FMSE — 0.4358		2 0.319 -0.7305 EMSE = 0.4305					88 $0.578 -0.5$	0.091 0.617 -0.091 FMSF = 0.4683			^ ~	SO 0.799 0.3	0.807	
	$\hat{\beta}_1$	0.214 FMS	0.220 EMS	0.230 EMS	0.237 EMS	0.144 0.247 FMSF — 0	0.148 EMS	0.156 0.287 $0.0156 0.000$	0.162 0.319 EMSE = 0.4	0.109 0.412 FMSF=0.38	0.112 0.443	0.120 0.467	0.125 0.511 EMSE = 0.4	0.088 EMSI	0.091	0.098 0.647	0.103 0.702	0.073 0.791 $0.073 0.791$	0.080 0.799	0.101 0.807	EMSE = 2.5 0.146 0.916 EMSE = 6.0
	ά	-0.752	-0.737	-0.726	-0.705	-0.587	-0.564	-0.546	-0.514	-0.421	-0.390	-0.366	-0.323	-0.255	-0.217	-0.186	-0.131	-0.147	-0.081	-0.014	0.075
8	K	0.1	0.2	0.3	0.4	0.1	0.2	0.3	0.4	0.1	0.2	0.3	0.4	0.1	0.2	0.3	9.4	0.1	0.2	0.3	0.4
Cases	3	0.1				0.3				0.5				0.7				6.0			

,		-	
(ų	-	
1	Ċ	Ξ	

0 CR 37 β β 32 β 6 β 7 8 β 6 β 7 8 β 8 β 7 8 β	Cases	Š			EM				GA-MSE				/ 9	GA-MAE			U	GA-MAPE		
Carrollia Carr	3	೫	$\hat{\alpha}_1$	\hat{eta}_1	$\hat{\alpha}_2$	\hat{eta}_2	ŝ	$\hat{\alpha}_1$		\hat{eta}_2	ŝ	$\hat{\alpha}_1$	\hat{eta}_1		ŝ	$\hat{\alpha}_1$	\hat{eta}_1	$\hat{\alpha}_2$	\hat{eta}_2	ŝ
03 - 0.713	0.1	0.1	-0.742	0.157 FMSF	0.091	-0.036 75	0.097	-0.017	0.006 0.080	0.028	0.002	0.003	0.039 (FMSF	0.077 0.019 = 0.1615	0.004	-0.048	-0.038 PMS	0.087 C F = 0.14	25	-0.007
04 - 0.694 0.16 EMREE 0.5469 0.029 0.027 - 0.006 0.027 0.031 0.003 0.004 0.119 0.049 0.017 0.049 0.017 0.049 0.018 0.029 0.018 0.029 0.027 0.028 0.029 0.025 0.023 0.003 0.004 0.119 0.004 0.127 0.024 0.029 0.018 0.028 0.024 0.003 0.004 0.119 0.004 0.127 0.004 0.128 0.005 0.024 0.003 0.004 0.119 0.004 0.012 0.025 0.003 0.004 0.119 0.004 0.005 0.003 0.004 0.119 0.004 0.005 0.003 0.004 0.119 0.004 0.005 0.003 0.004 0.119 0.005 0.005 0.003 0.004 0.119 0.004 0.005 0.003 0.004 0.119 0.005 0.003 0.004 0.119 0.005 0.005 0.003 0.004 0.119 0.005 0.003 0.004 0.119 0.005 0.003 0.004 0.119 0.005 0.003 0.005 0.003		0.2	-0.729	0.162 FMSF		-0.032	0.094	0.014	0.094 0.094 FMSF — 0.17	0.025	0.000	-0.044	-0.015 (.088 0.044 = 0.1614	0.009	0.022	-0.047 FMS	0.099 C	25	-0.004
04 - 0.694 0.16 0.199 0.023 0.029 0.027 - 0.006 0.125 0.000 0.000 0.000 0.018 0.007 0.199 0.004 0.118 0.049 0.109 0.017 0.048 0.009 0.128 0.057 0.109 0.028 0.024 0.001 0.024 0.002 0.018 0.007 0.024 0.003 0.001 0.025 0.001 0.025 0.001 0.025 0.001 0.025 0.001 0.025 0.001 0.025 0.001 0.025 0.001 0.025 0.001 0.025 0.001 0.025 0.001 0.025 0.001 0.025 0.001 0.025 0.001 0.025 0.001 0.001 0.025 0.001 0.025 0.001 0.025 0.001 0.025 0.001 0.025 0.001 0.025 0.001 0.025 0.001 0.025 0.001 0.025 0.001 0.025 0.001 0.025 0.001 0.025 0.001 0.025 0.001 0.025 0.001 0.025 0.001 0.025 0.001 0.025 0.001 0.025 0.001 0.025		0.3	-0.713	0.163 FMSF	0.121 $= 0.56$	-0.031 -45	0.094	0.028	0.092 0.110 $0.092 0.110$	0.023	0.003	-0.029	-0.051 (0.103 0.052 0.1579	0.013	-0.039	-0.024 c		24	-0.001
10 0.571 0.091 0.262 - 0.0091 0.082 - 0.0132 0.0026 0.0249 - 0.0037 0.014 0.0142 0.002 0.024 0.0030 0.024 0.0037 0.014 0.0188 0.0296 0.014 0.002 0.024 0.020 0.024 0.020 0.021 0.017 0.014 0.029 0.0188 0.029 0.014 0.029 0.015 0.029 0.021 0.016 0.021 0.017 0.014 0.029 0.0188 0.029 0.014 0.029 0.0188 0.029 0.014 0.029 0.0188 0.029 0.014 0.029 0.0188 0.029 0.014 0.029 0.0188 0.029 0.014 0.029 0.0188 0.029 0.014 0.029 0.0188 0.029 0.014 0.029 0.0188 0.029 0.014 0.029 0.0188 0.029 0.014 0.029 0.0188 0.029 0.014 0.029 0.0188 0.029 0.014 0.029 0.0188 0.029 0.014 0.029 0.029 0.029 0.029 0.029 0.029 0.014 0.029		0.4	-0.694	0.161 EMSE	0.139 $= 0.54$	-0.032 36	0.092	0.027	-0.006 0.127 EMSE = 0.1 5	0.030 5 55	0.008	-0.003	0.004 C	0.049 0.049 0.0797	0.017	-0.048	0.009 EMS		.057 21	0.006
0.2 −0.550 0.095 0.0283 −0.087 0.080 0.0151 0.188 0.269 −0.047 0.029 0.015 0.025 0.029 0.021 0.027 0.039 0.021 0.021 0.021 0.027 0.038 0.039 0.038 −0.030 0.034 0.033 −0.030 0.034 0.033 −0.038 0.039 0.038 −0.030 0.034 0.033 −0.030 0.034 0.034 0.034 0.034 0.033 −0.030 0.034 0.	0.3	0.1	-0.571	0.091 FMSF		-0.091 73	0.062	-0.132		-0.037	-0.031	-0.142	0.072 (FMSF	0.247 -0.032 0.0217		-0.177	0.204 FMS	0.260 -1 36	15	-0.040
03 - 0.526 0.097 0.308 - 0.006 0.059 - 0.134 0.094 0.229 0.0000 0.002 0.018 0.028 0.019 0.000 0.000 0.0000 0.000 0		0.2	-0.550	0.095 EMSE	0.283	-0.087	090.0	-0.151	0.188 0.269 FMSF - 0.25	-0.047	-0.029	-0.176	0.060 (.262 –0.029 = 0.201		-0.207	0.215 (FMS	0.277 – 0.328		-0.036
0.4 −0.496 0.095 0.337 −0.088 0.058 −0.149 0.078 0.314 −0.007 0.014 0.168 0.344 0.049 0.048 0.034 0.049 0.039 0.039 0.039 0.033 −0.089 0.039 0.033 −0.089 0.033 −0.089 0.033 −0.089 0.033 −0.089 0.033 −0.089 0.033 −0.089 0.033 −0.089 0.033 −0.089 0.033 −0.089 0.033 −0.089 0.033 −0.089 0.033 −0.089 0.033 −0.089 0.033 −0.089 0.033 −0.089 0.033 −0.089 0.033 −0.089 0.033 −0.089 0.033 −0.089 0.033 −0.099 0.033 −0.099 0.033 −0.099 0.033 −0.099 0.033 −0.099 0.033 −0.099 0.033 −0.099 0.033 −0.099 0.033 −0.099 0.033 −0.099 0.034 −0.099 0.030 0.048 0.039 0.048 −0.039 0.048 −0.039 0.044 0.039 0.039 0.044 0.039 0.039 0.044 0.039 0.039 0.044 0.039 0.039 0.044 0.039		0.3	-0.526	0.097 EMSE	0.308 0.308 0.39	-0.086	0.059	-0.134	0.084 0.293 EMSF = 0.25	-0.020	-0.022	-0.185		- 0.223 -0.030 -0.2743	-0.016	-0.219	0.276 (FMS)	0.287 – 0.328 0.287 – 0.374 5F – 0.374		-0.026
EMNE		0.4	-0.496	0.095 EMSE	0.337 0.38 0.38	-0.088 -0.088 49	0.058	-0.149	0.078 0.314 EMSE = 0.26	-0.027 -2 27	-0.014	-0.169	0.148 (EMSE	-0.2745 -3.04 -0.019 $=0.2951$	-0.009	-0.204	0.242 EMS	0.315		-0.020
0.2 −0.372	0.5	0.1	-0.400	0.059	0.433	-0.118	0.025	-0.210	0.376 0.373	-0.086	-0.038	-0.219	0.357 (.367 –0.086	-0.033	-0.228	0.501	0.346	141	-0.029
0.3 6.0.39 0.064 0.2.50 0.016 0.367 0.026 0.015 0.016 0.367 0.026 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.019 0.019 0.026 0.013 0.240 0.010 0.013 0.044 0.010 0.013 0.044 0.010 0.013 0.044 0.010 0.013 0.044 0.010 0.013 0.044 0.010 0.014 0.013 0.044 0.010 0.014 0.013 0.044 0.010 0.014 <th< td=""><td></td><td>0.2</td><td>-0.372</td><td></td><td>0.462 0.462 0.463</td><td>-0.115</td><td>0.028</td><td>-0.196</td><td>0.342 = 0.42 $0.342 = 0.390$ $0.342 = 0.390$</td><td>-0.084 -0.084</td><td>-0.029</td><td>-0.208</td><td>0.378 (</td><td>= 0.4255 1.381</td><td>-0.023</td><td>-0.203</td><td>0.485 EMS</td><td>0.368 H</td><td></td><td>-0.024</td></th<>		0.2	-0.372		0.462 0.462 0.463	-0.115	0.028	-0.196	0.342 = 0.42 $0.342 = 0.390$ $0.342 = 0.390$	-0.084 -0.084	-0.029	-0.208	0.378 (= 0.4255 1.381	-0.023	-0.203	0.485 EMS	0.368 H		-0.024
0.4 -0.299 0.062 0.34 -0.13 0.296 -0.015 -0.135 0.329 0.40 -0.015 -0.135 0.14 -0.143 0.48 -0.012 -0.042 -0.042 -0.013 0.014 -0.014 -0.014 0.014 -0.024 -0.014		0.3	-0.339	0.064	0.495	-0.113	0.024	-0.177	0.339 0.420 EMSE — 0.44	-0.077	-0.020	-0.164	0.367 (- 0.4323 1.422 -0.066 - 0.4780	-0.025	-0.187	0.448 c	0.391		-0.015
0.1 0.0229 0.039 0.604 -0.134 -0.011 -0.089 0.267 0.049 -0.085 0.231 -0.049 -0.085 -0.049 -0.085 -0.049 -0.085 -0.049 -0.084 -0.094 -0.096 -0.019 -0.019 -0.019 -0.019 -0.019 -0.019 -0.019 -0.019 -0.019 -0.019 -0.019 -0.019 -0.049 -0.019		0.4	-0.299		0.534 0.534 = 0.39	-0.115	0.025	-0.138		-0.070 -0.070 120	-0.015	-0.135	6.329 (EMSE	= 0.47.69 1.440	-0.010	-0.143	0.469 0 EMS	0.428 – 0.574 0.5E = 0.574	7.2	-0.012
0.2 -0.193 0.043 0.640 -0.131 -0.012 -0.039 0.278 0.283 -0.109 -0.046 -0.062 0.263 0.533 -0.083 -0.083 -0.084 0.622 -0.013 0.044 0.682 -0.131 -0.012 -0.039 0.277 0.039 0.277 0.039 0.277 0.039 0.277 0.039 0.277 0.039 0.234 0.039 0.234 0.039 0.234 0.039 0.277 0.039 0.277 0.039 0.277 0.039 0.234 0.039 0.234 0.039 0.277 0.034 0.034 0.034 0.034 0.0357 0.039 0.277 0.039 0.277 0.039 0.237 0.039 0.234 0.039 0.234 0.039 0.277 0.034 0.034 0.034 0.034 0.0357 0.039 0.277 0.039 0.237 0.039 0.234 0.039 0.234 0.039 0.234 0.03	0.7	0.1	-0.229		0.604 = 0.44	.134	-0.011	-0.089	0.496	-0.127	-0.042	-0.093	0.241 (FMSF	1.499 -0.085	-0.042	-0.076	0.310 FMS	0.461 - 0.38	98	-0.039
0.3 -0.152 0.044 0.062 -0.130 0.009 0.019 0.241 0.586 0.0053 0.0019 0.270 0.009 0.019 0.270 0.005 0.009 0.0019 0.000 0.009 0.0019 0.000 0.0019 0.000 0.0019 0.000 0.0019 0		0.2	-0.193	0.043 EMSE	0.640		-0.012	-0.039	0.278 0.538 FMSF — 0.47	-0.109	-0.046	-0.062	0.263 (EMSF	.533 –0.083 – 0.4652	-0.038	-0.048	0.324 EMS	0.502 – F = 0.43		-0.038
0.4 -0.101 0.043 0.72 -0.131 -0.008 0.039 0.227 0.6 -0.040 0.034 0.043 0.270 0.010 0.043 0.035 0.026 0.577 0.000 0.027 0.000 0.027 0.000 0		0.3	-0.152	0.044 EMSE	0.682 - 0.51	.130	-0.009	-0.019	0.241 0.586 FMSF — 0.52	-0.053	-0.039	-0.010	0.270 (EMSF	- 5.752 -0.089 -0.5480	-0.039	-0.007	0.309 c	0.536 – 1.15 0.536 – 1.15	29	-0.034
0.1 -0.120		0.4	-0.101	0.043 EMSE	0.732 $= 0.57$.131	-0.008	0.039	0.227 0.621 $0.88E = 0.57$	-0.060 -14	-0.034	0.043	0.270 C EMSE	= 0.6223	-0.035	0.026	0.266 e	0.577 – i.e.	90	-0.023
-0.062 -0.012 0.860 0.099 -0.059 0.123 0.195 0.694 -0.100 -0.071 0.115 0.200 0.704 -0.094 -0.070 0.111 0.231 0.694 -0.115 EMSE = 0.9748 -0.091 0.059 0.163 0.179 0.759 -0.071 0.165 0.164 0.198 0.758 -0.075 -0.068 0.169 0.216 0.698 -0.061 EMSE = 0.8026 0.002 0.917 0.052 0.058 0.225 0.025 0.215 0.801 -0.052 0.057 0.219 0.213 0.812 -0.038 0.061 0.215 0.801 0.005 0.917 EMSE = 0.9852 EMSE = 0.9982	0.9	0.1	-0.120	-0.020 FMSF	0.837	050	-0.061	0.077	0.655	-0.117	-0.071	0.061	0.171 (FMSF	670 -0.128 = 0.5989	-0.068	0.090	0.234 EMS	0.604 - 0.52	90	-0.066
-0.003 -0.001 0.893 0.081 -0.059 0.163 0.179 0.759 -0.071 -0.065 0.164 0.198 0.758 -0.075 -0.068 0.169 0.216 0.698 -0.061 EMSE = 0.9383		0.2	-0.062	-0.012 FMSF	0.860 $= 0.97$	660	-0.059	0.123	0.694	-0.100	-0.071	0.115	0.200 (FMSF	0.704 -0.094 = 0.6965	-0.070	0.111	0.231 FMS	0.694 – SE = 0.67	15	-0.068
0.089 0.002 0.917 0.052 -0.058 0.225 0.215 0.801 -0.052 -0.057 0.219 0.213 0.812 -0.038 -0.061 0.215 0.208 0.779 -0.017 EMSE = 0.9822 EMSE = 0.9194 EMSE = 0.9852 EMSE = 0.9852		0.3	-0.003	-0.001 FMSF	0.893	181	-0.059	0.163	0.759 SF — 0.80	-0.071	-0.065	0.164	0.198 (FMSF	.758 –0.075 – 0.8044	-0.068	0.169	0.216 FMS	0.698 –	61	-0.061
		0.4	0.089	0.002 EMSE		252	-0.058	0.225	0.215 - 0.801 $0.215 - 0.801$ $0.805 = 0.91$	-0.052 94	-0.057	0.219	0.213 (EMSE	1.812 -0.038 $= 0.9852$	-0.061	0.215	0.208 EMS	0.779 E = 0.90	17	-0-0.059

\subseteq
0
≔
<u>_e</u>
simulation
⊏
.=
.⊑
-=
250 in
250
a
- 11
-11
_
_
$\overline{}$
Ę
\overline{S}
S
EMSE
7
Ē
and
S
EBIAS
⇌
æ
ш
ن
ιi
_
_
_
_
endix (

- 1			EM				-	GA-MSE				G	GA-MAE				G	GA-MAPE		
	$\hat{\alpha}_1$	\hat{eta}_1	$\hat{\alpha}_2$	\hat{eta}_2	$\hat{\omega}$	$\hat{\alpha}_1$	\hat{eta}_1	$\hat{\alpha}_2$	\hat{eta}_2	$\hat{\omega}$	$\hat{\alpha}_1$	\hat{eta}_1	$\hat{\alpha}_2$	\hat{eta}_2	$\hat{\omega}$	$\hat{\alpha}_1$	\hat{eta}_1	$\hat{\alpha}_2$	\hat{eta}_2	$\hat{\omega}$
l '	-0.760	0.119 FMSF	0.132	0.134	0.097	0.007	0.016 FMS	6 0.082 0.0 EMSE — 0.1897	0.021	0.000	-0.036	-0.026 FMSF	0.075 0.0	0.035	0.008	-0.035	-0.025 FMS	25 0.090 0.0 EMSE — 0.1615)25	-0.010
	-0.747	1000000000000000000000000000000000000	0.144 0.144 0.06	0.126	0.095	-0.020	0.041 FMS	10.094 = 0.037 10.094 = 0.00 10.095 = 0.03	0.023 85	0.002	-0.014	-0.018 FMSF	0.088	0.029	0.000	-0.003	0.000 FMS	0.00000000000000000000000000000000000	333	-0.006
	-0.734	0.120 FMSF	0.163	0.226	0.093	9000	0.087 FMS	37 0.110 0.0 EMSF = 0.1651	0.017	0.003	-0.036	0.059 FMSF	0.103 = 0.154	0.032	0.011	-0.040	-0.045 0.114	, ,	946	-0.001
	-0.715	0.120 0.187 $0.00000000000000000000000000000000000$	0.181 $= 0.81$	0.187	0.091	0.029	0.085 EMS	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.029	0.007	-0.026	0.075 EMSE	0.120 = 0.171	0.040	0.016	0.000	0.042 EMS	EMSE = 0.1754	0.041 54	0.002
	-0.601	0.045 FMSF	0.0314 0.024 $0.024 = 0.4824$	0.024	0.052	-0.134	0.029 FMSI	29 0.253 -0.0	34	-0.031	-0-0.130	0.169 FMSF	0.247	-0.041	-0.028	-0.221	0.338 FMS	38 0.261 -0.1	018	-0.042
	-0.583	0.045 FMSF	0.025 ± 0.000 0.0 FMSF 0.000 0.4955	0.336 0.057 = 0.4955	0.051	-0.160	0.115 FMS	15 0.271 -0.0	940	-0.028	-0.146	0.042 EMSE	0.266 = 0.20	-0.038 -0.038	-0.023	-0.223	0.269 EMS	59 0.276 -0 . FMSF $= 0.3575$	023	-0.034
	-0.554	0.043 FMSF		0.356 0.064 = 0.5062	0.051	-0.131	0.094 0.295		047	-0.025	-0.185	0.173 FMSF	0.282 $= 0.295$	-0.034	-0.017	-0.245	0.356 0.293 FMSF = 0.4		028	-0.027
	-0-0.525	0.047 EMSE	$\begin{array}{lll} \text{EMSE} & 0.385 & 0.066 \\ \text{EMSE} & 0.5089 \end{array}$	0.066	0.050	-0.157	0.186 0.319 EMSE = 0.2		043	-0.020	-0.174	0.152 EMSE	0.309	-0.039 37	-0.010	-0.202	0.346 0.319 EMSE = 0.4	, —	.036	-0.023
	-0.395	0.048 EMSE	0.438 $= 0.36$	348 0.438 -0.126 EMSE = 0.3685	0.027	-0.213	0.327 EMS	0.379 - 0.0	860	-0.037	-0.224	0.338 EMSE	0.373 = 0.36	-0.095 83	-0.034	-0.217	0.451 EMS	51 0.357 -0. EMSE = 0.4146	950	-0.033
	-0.367	0.049 EMSE	0.049 0.467 -0.3729 EMSE = 0.3729	0.467 -0.126 = 0.3729	0.022	-0.194	0.376 0.397 EMSE = 0.4		93	-0.030	-0.205	0.334 EMSE	0.396 $= 0.395$	-0.093 31	-0.027	-0.203	0.411 EMS	11 0.369 –0. EMSE = 0.3935	057	-0.022
	-0.333	0.050 EMSE	0.500	0.50 0.500 -0.125 EMSE = 0.3822	0.024	-0.190	0.305 EMS	0.305 0.427 -0.092 EMSE = 0.4126		-0.017	-0.180	0.329 EMSE	0.419 = 0.409	-0.104 95	-0.020	-0.185	0.398 EMS	0.396 -0.082 EMSE = 0.4001	082	-0.014
	-0.292	0.051 EMSE	0.51 0.541 -0 EMSE = 0.3996	0.541 - 0.124 = 0.3996	0.025	-0.142	0.268 EMS	$\begin{array}{lll} 0.268 & 0.464 & -0.084 \\ EMSE = 0.4105 \end{array}$		-0.013	-0.134	0.308 EMSE	308 0.454 – EMSE = 0.4184	-0.087 34	-0.015	-0.160	0.374 EMS	0.374 0.419 -0.8 EMSE = 0.4246	990:	-0.003
	-0.274	-0.020 EMSE	.020 0.666 –(EMSE = 0.5586	$\begin{array}{cccc} -0.020 & 0.666 & -0.017 \\ \text{EMSE} & = 0.5586 \end{array}$	-0.026	-0.092	0.209 0.522 $EMSE = 0.3$		123	-0.043	-0.095	0.221 EMSE	0.526 = 0.416	-0.133 53	-0.045	-0.069	0.283 EMSI	83 $0.481 -0.0$	680	-0.043
	-0.229	-0.020 EMSE	020 0.692 – EMSE = 0.5837	$\begin{array}{cccc} -0.020 & 0.692 & -0.001 \\ \text{EMSE} & = 0.5837 \end{array}$	-0.025	-0.055	0.230 EMS	0.230 0.562 -0.147 EMSF = 0.4439		-0.047	-0.061	0.226 FMSF	0.549 $= 0.449$	-0.130	-0.043	-0.042	0.246 EMSI	46 0.507 -0.114 EMSE = 0.3754	114	-0.035
	-0.177	-0.019 0.722 0.020 FMSF = 0.6689	0.722	0.020	-0.024	-0.008	0.192 FMS	0.602 -0.0	121	-0.039	-0.016	0.192 FMSF	0.613	-0.126 50	-0.042	-0.006	0.240 FMSI	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120	-0.033
	-0.104	-0.020 0.750 0.001 EMSE = 0.6538	0.750 $\overline{0} = 0.65$	0.001	-0.023	0.043	0.182 0.622 EMSE = 0.5		980	-0.028	0.029	0.172 EMSE	0.652 = 0.556	_0.087 55	-0.029	0.047	0.229 EMS	0.623 - 0.5395 EMSE = 0.5395	100	-0.034
	-0.095	-0.032 EMSE	032 0.829 -0.7501	-0.032 0.829 -0.033 EMSE = 0.7501	-0.060	0.062	0.156 EMS	60.687 - 0.1 EMSE = 0.5930	4	-0.072	0.063	0.150 EMSE	0.700 = 0.613	-0.143	-0.070	0.083	0.172 EMSI	72 $0.625 -0.$ EMSE = 0.4974	101	-0.063
	-0.037	-0.027 EMSE	-027 0.856 - 0.8017	-0.027 0.856 -0.018 EMSE = 0.8017	-0.058	0.104	0.133 EMS	0.746	137	-0.073	0.093	0.129 EMSE	0.749 = 0.698	-0.125 32	-0.065	0.117	0.160 EMSI	60 $0.686 -0.126$ EMSE = 0.5989	126	-0.059
	0.024	-0.023 FMSF		0.893 0.007 = 0.9326	-0.057	0.147	0.108 FMS	0.809 - 0.1	-0.110	-0.066	0.160	0.129 FMSF	0.792 = 0.784	-0.115 14	-0.063	0.169	0.183 FMSI	83 $0.743 - 0.743$	132	-0.065
	0.117	-0.021 FMSF	021 0.921 – EMSE – 0.9578	-0.019	-0.056	0.208	0.107 FMS)7 0.857 –0.0	660	-0.060	0.180	0.109 EMCE	0.883	-0.105	-0.064	0.208	0.141	41 0.833 -0.096		-0.060

(4	
/	ン

Cases	Cases		EM EMALE TO THE TOTAL THE TOTAL TO THE TOTAL	EW E				GA	GA-MSE				GA-MAE			GA	GA-MAPE	
8	R	$\hat{\alpha}_1$	\hat{eta}_1	$\hat{\alpha}_2$	\hat{eta}_2	$\hat{\omega}$	$\hat{\alpha}_1$	\hat{eta}_1 ô	$\hat{\alpha}_2$ \hat{eta}_2	$\hat{\omega}$	$\hat{\alpha}_1$	\hat{eta}_1	$\hat{\alpha}_2$ \hat{eta}_2	$\hat{\omega}$	$\hat{\alpha}_1$	\hat{eta}_1	$\hat{\alpha}_2$ \hat{eta}_2	$\hat{\omega}$
0.1	0.1	-0.738	0.146 EMSE	5 0.095 -0.5865	-0.045 65	0.092	0.008	0.045 0.0 EMSE =	15 0.082 0.037 EMSE = 0.1693	0.001	-0.025	0.052 FMS	0.078 0.030 EMSE = 0.1747	0.006	-0.003	-0.090 0 EMSE	$\begin{array}{ccc} 90 & 0.093 & 0.036 \\ EMSE = 0.1899 \end{array}$	6 -0.010
	0.2	-0.724	0.147 FMSF	7 0.109 -0 $EMSF = 0.5696$	-0.044 -96	960.0	-0.001	0.040 0.0 EMSE =	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.002	-0.039	0.024 FMS	4 0.090 0.045 $FMSF = 0.1818$	5 0.010	-0.042	0.006 0 FMSF	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 -0.008
	0.3	-0.708	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 0.125 –C FMSF = 0.5507	-0.043	0.093	0.001	0.084 0.1 FMSF	4 0.113 0.020 FMSF = 0.1798	0.001	-0.026	0.032 0.105	32 0.105 0.036 FMSF = 0.1607	6 0.011	-0.040	-0.025 0.117	25 0.117 0.044 EMSF = 0.1698	4 -0.003
	0.4	-0.689	0.148 CMSE	8 0.144 –(EMSE = 0.5291	-0.043 91	0.098	-0.006	0.079 0.1 EMSE =	0.029 0.029 EMSE = 0.1635	0.005	-0.035	0.068 0.122 $EMSE = 0.$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0.014	-0.069	-0.061 0 EMSE	61 0.134 0.046 $EMSE = 0.1626$	6 0.004
0.3	0.1	-0.566	0.078 FMSF	8 0.268 -0 FMSF = 0.4120	-0.102	0.071	-0.168	0.154 0.2 EMSE =	54 0.253 -0.035 EMSE = 0.2478	-0.032	-0.177	0.126 FMS	6 0.246 -0.028 FMSF = 0.2680	8 -0.024	-0.243	0.395 0 FMSF	0.262 -0.022 FMSF = 0.4607	22 –0.041
	0.2	-0.544	0.079 0.289 EMSF = 0.40		-0.101 0.4	0.064	-0.172	0.169 0.7 FMSF	0.270 -0.041 EMSF = 0.2534	-0.028	-0.183	0.154 0.263	54 0.263 -0.033 EMSE = 0.2474	13 -0.021	-0.242	0.400 0 FMSF	0.277 -0.019 EMSF = 0.5067	19 -0.035
	0.3	-0.519	0.080 EMSE	0.314 -0.3890	-0.100 390	0900	-0.195	0.185 0.2 EMSE =	35 0.291 -0.038 EMSE = 0.2851	-0.023	-0.173	0.154 0.287 EMSE = 0.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 -0.018	-0.244	0.363 0 EMSE	$\begin{array}{cccc} & & & & & & & & & & & & & & & & & & &$	27 –0.030
	0.4	-0.489	0.080 EMSE	0.344 -0 EMSE = 0.3788	-0.100 '88	0.058	-0.178	0.197 0.3 EMSE	7 0.320 -0.043 EMSE = 0.3026	-0.019	-0.162	0.139 0.312 EMSE = 0.3	39 0.312 -0.032 EMSE = 0.2640	.2 -0.013	-0.268	0.396 0.313 EMSE = 0.4	0.313 - 0.038 EMSE = 0.4707	38 -0.018
0.5	0.1	-0.393	0.045 EMSE	5 0.440 -0.3683 EMSE = 0.3683	-0.129	0.022	-0.220	0.359 0.3 EMSE =	9 $0.382 -0.098$ EMSE = 0.4101	-0.037	-0.212	0.394 EMS	$\begin{array}{cccc} 14 & 0.368 & -0.086 \\ EMSE = 0.4025 \end{array}$	6 -0.034	0.221	0.451 0 EMSE	0.360 -0.051 EMSE = 0.4179	51 –0.033
	0.2	-0.365	0.044 EMSE	4 0.469 –0 EMSE = 0.3729	-0.130	0.024	-0.194	0.338 0. ² EMSE =	18 $0.404 - 0.097$ EMSE = 0.3970	-0.031	-0.181	0.343 0.400 EMSE = 0.4	3 0.400 -0.094 EMSE = 0.4018	4 -0.032	-0.195	0.428 0 EMSE	28 0.377 -0.069 EMSE = 0.4050	9 -0.026
	0.3	-0.331	0.044 EMSE	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.130	0.025	-0.167	0.296 0.4 EMSE =	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.026	-0.157	0.299 0.425 EMSE = 0.3	19 0.425 -0.103 EMSE = 0.3699	3 -0.025	-0.183	0.357 0 EMSE	57 0.396 -0.078 EMSE = 0.3688	78 -0.013
	0.4	-0.290	0.044 EMSE	$\begin{array}{cccc} 4 & 0.544 & -0.544 & -0.4003 & 0.4003 $	-0.130 303	0.027	-0.140	0.285 0.4 EMSE =	5 0.473 -0.078 EMSE = 0.4373	-0.014	-0.129	0.266 0.467 EMSE = 0.4	6 0.467 -0.089 EMSE = 0.4008	9 -0.018	-0.149	0.334 0 EMSE	34 $0.431 -0.094$ EMSE = 0.3702	94 -0.008
0.7	0.1	-0.258	-0.018 0.652 EMSE = 0.5	0	-0.069 80	-0.026	-0.081	0.239 0.5 EMSE =	$\begin{array}{cccc} 19 & 0.511 & -0.128 \\ EMSE & = 0.3930 \end{array}$	-0.047	-0.087	0.208 0.531 EMSE = 0.4	18 0.531 -0.129 EMSE = 0.4059	9 -0.047	-0.081	0.236 0 EMSE	36 $0.481 -0.101$ EMSE = 0.3413	01 -0.037
	0.2	-0.212	-0.019 0.678 -0.065 FMSF = 0.5224	$\begin{array}{ccc} 19 & 0.678 & -0.524 \\ \text{FMSF} & 0.5224 \end{array}$	-0.065	-0.025	-0.046	0.204 0.5 FMSF	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.043	-0.057	0.202 0.557 FMSF = 0.4	0.557 -0.117 EMSF = 0.4261	7 -0.044	-0.051	0.231 0	31 0.524 -0.118 FMSF = 0.3894	18 -0.033
	0.3	-0.164	-0.020 0.714 $-0.020EMSF = 0.6312$	20 0.714 –(FMSF = 0.6312	-0.020 12	-0.024	-0.006	0.201 0.5 FMSF	11 0.581 -0.128 FMSF = 0.4458	-0.040	-0.016	0.166 0.598	0.598 -0.139 EMSF = 0.4495	9 -0.039	-0.010	0.20	0.549 -0.130 FMSF = 0.3949	30 -0.030
	0.4	-0.099	-0.022 0.751 $-0.017EMSE = 0.6747$	22 0.751 –(EMSE = 0.6747	-0.017 17	-0.023	0.042	0.182 0.6 EMSE =	0.644 - 0.114 EMSE = 0.5359	-0.034	0.032	0.165 - 0.660 EMSE = 0.5	$\begin{array}{ll} EMSE = 0.7473 \\ 0.660 & -0.130 \\ EMSE = 0.5432 \end{array}$	0.034	0.034	0.180 0 EMSE	EMSE = 0.575 30 0.615 -0.137 EMSE = 0.4764	37 –0.027
0.9	0.1	-0.075	-0.028 0.810 EMSE = 0.68		-0.087 62	-0.061	0.082	0.156 0.6 EMSE =	6 0.683 -0.155 $EMSE = 0.5788$	-0.075	0.064	0.132 0.696 EMSE = 0.96	2 0.696 -0.143 $ EMSE = 0.5826$	13 -0.068	0.072	0.143 0 EMSE	13 $0.631 -0.139$ EMSE = 0.4880	39 -0.059
	0.2	-0.022	-0.028 0.845 -0.071 EMSE = 0.7526	28 $0.845 -0$ EMSE = 0.7526	-0.071	-0.059	0.115	0.131 0.7 EMSE =	$\begin{array}{ll} 11 & 0.715 & -0.128 \\ \text{EMSE} = 0.6242 \end{array}$	-0.065	0.105	0.105 EMS		990:0- 91	0.129	0.158 0 EMSE	58 0.689 -0.143 EMSE = 0.5899	43 -0.067
	0.3	0.043	-0.028 0.880 FMSF - 0.88	28 0.880 –C	-0.044	-0.057	0.141	0.085 0.8	5 0.808 -0.115 EMSE - 0.7743	-0.064	0.151	0.084 0.825 FMSF — 0.8	14 0.825 -0.114 FMSF - 0.8198	4 -0.064	0.162	0.134 0	34 0.754 -0.130	30 -0.062
	0.4	0.131	-0.028 1.009 EMSE = 1.1	_	-0.033 -72	-0.055	0.213	0.119 0.8 EMSE =	$\begin{array}{cccc} \text{EMSE} & -3.77.15 \\ 9 & 0.863 & -0.100 \\ \text{EMSE} & = 0.9256 \end{array}$	-0.064	0.211	0.082 EMS	2 0.857 -0.105 EMSE = 0.8950	15 -0.058	0.211	0.112 0 EMSE	12 0.832 -0.132 EMSE = 0.8459	32 –0.059

Funding

This study is supported by the Scientific Research Projects Unit of Çukurova University (Grant Number: FBA-2018-10438). The authors are grateful to the anonymous reviewers for their valuable comments and contributions.

ORCID

Erkut Tekeli (D) http://orcid.org/0000-0001-9468-5378 Güzin Yüksel (D) http://orcid.org/0000-0002-1644-3696

References

Balakrishnan, N., H. K. T. Ng, and J. Navarro. 2011. Linear inference for type-II censored lifetime data of reliability systems with known signatures. *IEEE Transactions on Reliability* 60 (2):426–40. doi:10.1109/TR.2011. 2134371.

Berchtold, A. 2004. Optimization of mixture models: comparison of different strategies. *Computational Statistics* 19 (3):385–406. doi:10.1007/BF03372103.

Blischke, W. R., and D. N. P. Murthy. 2000. Reliability modeling, prediction, and optimization. New York: Wiley.

Bordes, L., and D. Chauveau. 2016. Stochastic EM algorithms for parametric and semiparametric mixture models for right-censored lifetime data. *Computational Statistics* 31 (4):1513–38. doi:10.1007/s00180-016-0661-7.

Ferreira, L. A., and J. L. Silva. 2017. Parameter estimation for Weibull distribution with right censored data using EM algorithm. *Eksploatacja i Niezawodnosc – Maintenance and Reliability* 19 (2):310–15. doi:10.17531/ein.2017.2.20.

Fischer, T., and U. Kamps. 2013. Power maps in goodness-of-fit testing. *Computational Statistics* 28 (3):1365–82. doi:10.1007/s00180-012-0361-x.

Gigerenzer, G., and H. Brighton. 2009. Homo heuristics: why biased minds make better inferences. *Topics in Cognitive Science* 1 (1):107–43. doi:10.1111/j.1756-8765.2008.01006.x.

Holland, J. H. 1975. Adaptation in natural and artificial systems. Michigan: University of Michigan Press.

Murthy, D. N. P., M. Xie, and R. Jiang. 2004. Weibull model. New York: Wiley.

Ng, H. K. T., J. Navarro, and N. Balakrishnan. 2012. Parametric inference from system lifetime data under a proportional hazard rate model. *Metrika* 75 (3):367–88. doi:10.1007/s00184-010-0331-7.

R Core Team. 2018. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Refaeilzadeh, P., L. Tang, and H. Liu. 2009. Cross-validation. In *Encyclopedia of database systems*, eds. L. Liu and ÖZSU MT. Boston, MA: Springer.

Reitermanova, Z. 2010. Data splitting. In WDS'10 Proceedings of Contributed Papers, Part I: Mathematics and Computer Sciences, ed. J. Safrankova and J. Pavlu, 31–36. Prague: Matfyzpress.

Ruhi, S., S. Sarker, and M. R. Karim. 2015. Mixture models for analyzing product reliability data: a case study. Springer Plus 4:634. doi:10.1186/s40064-015-1420-x.

Scrucca, L. 2013. GA: A package for genetic algorithms in R. Journal of Statistical Software 53 (4):1–37. doi:10. 18637/jss.v053.i04.

Volterman, W., and N. Balakrishnan. 2013. Efficient iterative computation of mixture weights for pooled order statistics for meta-analysis of multiple type-II right censored data. *Computational Statistics* 28 (5):2231–39. doi:10. 1007/s00180-013-0404-y.

Wang, F. K. 2014. Using BBPSO algorithm to estimate the Weibull parameters with censored data. Communications in Statistics – Simulation and Computation 43 (10):2614–27. doi:10.1080/03610918.2012. 762386.

Wang, F. K., and P. R. Huang. 2014. Implementing particle swarm optimization algorithm to estimate the mixture of two Weibull parameters with censored data. *Journal of Statistical Computation and Simulation* 84 (9): 1975–89. doi:10.1080/00949655.2013.778992.

Yang, Y., H. K. T. Ng, and N. Balakrishnan. 2016. A stochastic expectation–maximization algorithm for the analysis of system lifetime data with known signature. *Computational Statistics* 31 (2):609–41. doi:10.1007/s00180-015-0586-6.

Zhang, J., H. K. T. Ng, and N. Balakrishnan. 2015. Statistical inference of component lifetimes with location-scale distributions from censored system failure data with known signature. *IEEE Transactions on Reliability* 64 (2): 613–26. doi:10.1109/TR.2015.2417373.

Zhou, M., and Y. Yang. 2015. A recursive formula for the Kaplan–Meier estimator with mean constraints and its application to empirical likelihood. *Computational Statistics* 30 (4):1097–109. doi:10.1007/s00180-015-0567-9.