Certificates of positivity in the multivariate Bernstein basis

RICHARD LEROY AND MARIE-FRANÇOISE ROY IRMAR/Université de Rennes 1

d degree, k number of variables, τ bitsize

Certificate of posivity of a polynomial P on a simplex: algebraic identity making it visible that P is indeed positive.

Bibliography 3

- 1 Multivariate Bernstein basis
- 2 How to define the control polytope
- 3 Certificates of positivity on a simplex
- 4 Estimating the worse possible minimum of a positive polynomial

1 Multivariate Bernstein basis

- 2 How to define the control polytope
- 3 Certificates of positivity on a simplex
- 4 Estimating the worse possible minimum of a positive polynomial

Multivariate Bernstein basis 5

1 Multivariate Bernstein basis

Simplex V defined by k+1 linear inequalities $\ell_j \ge 0, j=0,...,k$, normalized by

$$1 = \ell_0 + \ldots + \ell_k$$

Multi-index $i = (i_0, ..., i_k)$, of degree $d, |i| = i_0 + ... + i_k = d$,

$$\operatorname{Bern}_{d,i}(V) = \frac{d!}{i_0! \cdots i_k!} \prod_{j=0}^k \ell_j^{i_j} = {d \choose i} \ell^i$$
 (1)

Think of

$$1 = \left(\ell_0 + \dots + \ell_{k}\right)^d$$

Properties of the Bersntein basis

- takes positive values on V,
- basis of the vector-space of polynomials of degree $\leq d$

If $deg(P) \leq d$ and i a multiindex of degree d, denote by $b(P, d, V)_i$ (or simply b_i) the coefficient of $Bern_{d,i}(V)$ in P and by b(P, d, V) the vector of Bernstein coefficients of P.

The values of P at the vertices of the simplex are given by $b(P, d, V)_{de_j}$, $e_j = (0, ..., 0, 1, 0, ..., 0)$, 1 at place j, j = 0, ..., k.

Multivariate Bernstein basis 7

Example

$$k = 1, d = 2$$

$$X^2, 2 X (1-X), (1-X)^2$$

$$k = 2, d = 2$$

$$X^{2}, 2XY, Y^{2}, 2X(1-X-Y), 2Y(1-X-Y), (1-X-Y)^{2}$$

$$k = 3, d = 2$$

develop $(X + Y + Z + (1 - X - Y - Z))^2$

1 Multivariate Bernstein basis

- 2 How to define the control polytope
- 3 Certificates of positivity on a simplex
- 4 Estimating the smallest possible minimum of a positive polynomial

2 How to define the control polytope

In the univariate case k = 1, the multi-index (d - i, i) of degree d is identified with i, i = 0, ..., d, and the points $M_i = (i/d, b_i)$ immediately define the control line above [0, 1].

Example

d=3, P with coefficients [4,-6,7,10] in the Bernstein basis for [0,1]

Figure 1. Graph of P and control line of P on [0,1].

In the multivariate case, given a multi-index i of degree d, the points $M_i = (m_i, b_i)$ where m_i is the point of Δ with barycentric coordinates i do not define any more a control polytope above the standard simplex Δ .

Figure 2. Which control polytope?

In order to define a control polytope it is needed to define a triangulation of Δ based on the grid points m_i .

1 Standard triangulation [4]

Let V be a simplex with affinely independant vertices $v^0, ..., v^k, d$ the degree. The definition of the standard triangulation $T_{k,d}(V)$ is not intrinsic and depends on the order of the vertices of V.

To every function $F \in \{1, ..., d\}^{\{1,...,k\}}$ is associated a subsimplex V_F of V defined as follows.

Reorder the values of F as

$$f_1 \le ... \le f_k$$
 (with $f_0 = 0, f_{k+1} = d$)

Define the multi-index of degree d

$$i_F^0 = (..., f_j - f_{j-1}, ...), j = 1, ..., k+1$$

an the permutation σ_F of $\{1,...,k\}$

$$\sigma_F(j) = \sharp \{\ell \in \{1, ..., k\} \mid F(\ell) < F(j)\} + \sharp \{\ell \in \{1, ..., j\} \mid F(\ell) = F(j)\}$$

Define, for j from 1 to k multi-indices of degree d

$$i_F^j = i_F^{j-1} + e_{\sigma_F(j)} - e_{\sigma_F(j)-1}.$$

The simplex $V_F = [v_F^0, ..., v_F^k]$ is defined by taking for v_F^j the barycenter of $v_0, ..., v_k$ with weights i_F^j .

How to define the control polytope 15

Example 1 (k = 2, d = 2)

$$F(1)$$
 $F(2)$ $\sigma_F(1)$ $\sigma_F(2)$ V_F
 2 2 1 2 $[(2,0,0),(1,1,0),(1,0,1)]$
 2 1 2 1 $[(1,1,0),(1,0,1),(0,1,1)]$
 1 2 1 2 $[(1,1,0),(0,2,0),(0,1,1)]$
 1 1 1 2 $[(1,0,1),(0,1,0),(0,0,2)]$

$$i_F^0 = (..., f_j - f_{j-1}, ...), j = 1, ..., k+1$$

$$\sigma_F(j) = \sharp \{ \ell \in \{1, ..., k\} \mid F(\ell) < F(j) \} + \sharp \{ \ell \in \{1, ..., j\} \mid F(\ell) = F(j) \}$$

Figure 3. Which is the standard one?

How to define the control polytope

Example 2: k = 3, d = 2

F(1)	F(2)	F(3)	$\sigma_F(1)$	$\sigma_F(2)$	$\sigma_F(3)$	V_F
2	2	2	1	2	3	[(2,0,0,0),(1,1,0,0),(1,0,1,0),(1,0,0,1)]
2	2	1	2	3	1	[(1,1,0,0),(1,0,1,0),(1,0,0,1),(0,1,0,1)]
2	1	2	2	1	3	[(1,1,0,0),(1,0,1,0),(0,1,1,0),(0,1,0,1)]
1	2	2	1	2	3	[(1,1,0,0),(0,2,0,0),(0,1,1,0),(0,1,0,1)]
2	1	1	3	1	2	[(1,0,1,0),(1,0,0,1),(0,1,0,1),(0,0,1,1)]
1	2	1	1	3	2	[(1,0,1,0),(0,1,1,0),(0,1,0,1),(0,0,1,1)]
1	1	2	1	2	3	[(1,0,1,0),(0,1,1,0),(0,0,2,0),(0,0,1,1)]
1	1	1	1	2	3	[(1,0,0,1),(0,1,0,1),(0,0,1,1),(0,0,0,2)]

Properties of the standard triangulation

- it is a triangulation (simplices intersect along faces)
- it depends on the order of the vertices
- it is invariant under a cyclic permutation of the vertices
- the restriction of $T_{k,d}(V)$ to the simplex V' with vertices $v_0, ..., v_r$ is $T_{r,d}(V')$
- if V_F is a simplex of $T_{k,d}(V)$, $T_{k,\ell}(V_F)$ is the restriction to V_F of $T_{k,d\ell}(V)$.

Control polytope

Once the standard triangulation $T_{k,d}(V)$ of V is defined, it makes sense to define the control polytope of a polynomial P on V: it is the piecewise linear continuous function defined over each $V_F = [v_F^0, ..., v_F^k]$ of $T_{k,d}(V)$ by its values at $v_F^j = b(P, d, V)_{i_F^j}$, j = 0, ..., k.

The control polytope of P is a kind of piecewise linear approximation of the graph of P. The graph of P on V is contained in the convex hull of the control polytope.

Adjacencies in the standard triangulation

Two simplices $V_F = [u^0, ..., u^k]$ and $V_G = [w^0, ..., w^k]$ of the standard triangulation share a common face $[u^0, ..., u^k] \setminus u^j$ in one of the three following cases:

- if 0 < j < k, then

$$F(s) = G(s), s \neq j, j + 1,$$

$$F(j) = G(j+1)$$

$$F(j+1), = G(j)$$

- if j = 0, then

$$F(s) = G(s+1), s = 1, ..., k-1,$$

 $F(k) = G(1)-1$

- if j = k, then

$$F(s) = G(s-1), s=2,...,k,$$

 $F(1) = G(k)+1$

Convexity

Given the adjacency relations between sub-simplexes of $T_{k,d}(V)$, the control polytope of P on V is convex if and only if, with $e_j = (0, ..., 0, 1, 0, ..., 0)$, and $e_{-1} = e_k$

$$b_{i+e_j+e_{\ell-1}} + b_{i+e_{j-1}+e_{\ell}} \geqslant b_{i+e_{j-1}+e_{\ell-1}} + b_{i+e_j+e_{\ell}}$$

for all $0 \le j < \ell \le k$ and all multi-index i of degree d-2.

To P is associated the vector $\delta_2(b)$ whose i, j, ℓ 's coordinate is

$$b_{i+e_j+e_{\ell-1}} + b_{i+e_{j-1}+e_{\ell}} - b_{i+e_{j-1}+e_{\ell-1}} - b_{i+e_j+e_{\ell}}$$

Example k = 2, d = 2 the vector $\delta_2(b)$ has three components

$$b_{(2,0,0)} + b_{(0,1,1)} - b_{(1,1,0)} - b_{(1,0,1)}$$

$$b_{(0,2,0)} + b_{(1,0,1)} - b_{(1,1,0)} - b_{(0,1,1)}$$

$$b_{(0,0,2)} + b_{(1,1,0)} - b_{(1,0,1)} - b_{(0,1,1)}$$

2.1 Worse possible distance between the graph and the control polytope for the standard simplex

Theorem 1. The maximum distance between the graph of P and the control polytope of P on the standard simplex Δ is estimated by

$$\frac{dk(k+2)}{24} \|\delta_2(b)\|_{\infty}$$

When k = 1, classical bound

$$\frac{d}{8}||\delta_2(b)||_{\infty}$$

When k = 2, bound from [7]

$$\frac{d}{3} \|\delta_2(b)\|_{\infty}$$

Idea of the proof:

- use convexity and prove that, supposing without loss of generality that $\|\delta_2(b)\|_{\infty} = 1$, the maximum distance is obtained for a polynomial P such that all components of $\delta_2(P)$ are 1
- construct explicitly a polynomial P^* such that all components of $\delta_2(b^*)$ are 1 and compute the difference between the graph and the control polytope for P^*

It turns out that there is a polynomial P^* of degree 2 such that $\delta_2(b^*) = 1$. It is the quadratic form associated to the symmetric matrix

$$m_{i,j} = \frac{d(d-1)}{2}i(k-j+1), i \leq j, i \leq j$$

If k=2 and d=2, we obtain

$$2X^2 + 2XY + 2Y^2$$

which was known to reach the maximum.

For k > 2, the result seems to be new.

2.2 Worse possible distance between the graph and the control polytope for the general simplex

Let U be a subsimplex of the standard triangulation of degree 2^N of the standard simplex Δ , and h the diameter of U. We denote by b_i the Bernstein's coefficients of P on Δ and b'_i the Bernstein coefficients of P on U

Theorem 2.

$$\|\delta_2(b')\|_{\infty} \leq \frac{k(k+1)(k+2)(k+3)}{24} \|\delta_2(b)\|_{\infty} h^2$$

Since $h \leq \frac{\sqrt{k}}{2^N}$, we obtain

Theorem 3. The maximum distance between the graph of P and the control polytope of P on a subsimplex of the standard triangulation is estimated by

$$\frac{d k^{3} (k+1) (k+2)^{2} (k+3)}{24^{2} 2^{2N}} ||\delta_{2}(b)||_{\infty}$$

How to define the control polytope 25

- 1 Multivariate Bernstein basis
- 2 How to define the control polytope
- 3 Certificates of positivity on a simplex
- 4 Estimating the smallest possible minimum of a positive polynomial

3 Certificates of positivity on a simplex

Suppose that P is positive on V. By a certificate of positivity we mean an algebraic identity proving that P is positive on V. There are two kinds of certificates of positivity in the Bernstein basis:

Global certificates of positivity

Express P in the Bernstein basis for increasing degree D. If D is big enough, all the coefficients are positive.

We denote by m the minimum of P on Δ .

Theorem 4. If P is positive on Δ

$$D > \frac{d (d-1)k(k+2)}{24 m} ||\delta_2(b)||_{\infty}$$

ensures that all the elements of $b(P, D, \Delta)$ are positive.

Different from the bound by Powers and Reznik, sometimes better sometives worse.

Local certificates of positivity

Keep the degree d and subdivide Δ in subsimplices for which all the coefficients of P are positive.

Theorem 5. If P is positive on Δ

$$2^{N} > \frac{\sqrt{d}k(k+2)\sqrt{k(k+1)(k+3)}}{24\sqrt{m}}\sqrt{\|\delta_{2}(b)\|_{\infty}}$$

ensures that all the elements of $b(P, D, V_i)$ are positive for V_i a simplex of the standard triangulation $T_{2N}(\Delta)$.

Local certificates are better for two reasons

- the size of the certificates is smaller,
- the process is adaptative, since some simplices do not need to be subdivided.

Subdividing

Algorithm 1. (multivariate De Casteljau)

Input: (V, b(P, p, V)) and v a barycenter of the vertices with weight $\beta = (\beta_0, ..., \beta_k)$

- Output: $V_0, ..., V_k$ the k+1 simplices after subdivision, $b(P, p, V_j), j = 0, ..., k$.
- Procedure:
 - Initialization: $c_i^{(0)} := b(P, p, V)_i$, for $i = (i_0, ..., i_k), i_0 + ... + i_k = p$.
 - \circ For $\ell = 1, ..., p$,
 - Let $e_j = (0, ..., 0, 1, 0, ..., 0)$, 1 at place number j among k + 1 numbers.
 - For $i = (i_0, ..., i_k)$, $i_0 + ... + i_k = p \ell$, compute $c_i^{(\ell)} := \sum_{s=0}^k \beta_j c_{i+e_j}^{(\ell-1)}$.
 - Output Bersntein's coefficients on V_j $b(P, p, V_j)_i = c_{i-i_j e_j}^{(i_j)}.$

Figure 4.

The only remaining question is: if P is not everywhere positive, how to be sure that the algorithm stops?

- 1 Multivariate Bernstein basis
- 2 How to define the control polytope

- 3 Certificates of positivity on a simplex
- 4 Estimating the smallest possible minimum of a positive polynomial

4 Estimating the smallest possible minimum of a positive polynomial

Suppose P is positive on the unit simplex Δ , is it possible to express as a function $m(d, k, \tau)$ the smallest possible minimum of P on Δ ?

This is a natural question in itself.

It also provides a test for ensuring that a polynomial P is not positive on V in the multivariate case:

if the diameter of the subdivision is small enough so that the distance between the graph and the control polytope is at most $m(d, k, \tau)/2$

and

if it is not the case that all the coefficients of P are positive then P is not everywhere positive.

The principle is simple: suppose that the minimum of P of Δ is obtained in the interior of a face σ of Δ , which is itself a unit simplex of lower dimension. Then the minimum of P on Δ coincides with the minimum of $P_{|\sigma}$ on σ . So it is not a loss of generality to suppose that the minimum of P is obtained in the interior of Δ .

Thus it is sufficient to estimate the value of P on a connected component of the algebraic set Z defined by the zero of $\operatorname{grad}(P)$

$$\frac{\partial P}{\partial X_1} = \dots = \frac{\partial P}{\partial X_k} = 0$$

intersected with Δ .

In non degenerate situations, the algebraic set Z has a finite number of points. It may however happen that Z has an infinite number of points. So we rely on an algorithm of [1] to compute a point in every connected component of Z intersected with Δ . The minimum of P on Δ is the minimum of the values of P at such a point.

Theorem 6. The minimum of P on Δ is estimated by the smallest positive root of a polynomial h of degree at most $(2d)^k$.

The bitsize of the coefficients of f can also be estimated (work in progress). Something like

$$k^{2}(2d)^{2k+4}(\tau + \text{terms coming from caries})$$

The value of the minimum can be doubly exponentially small.

Rough description of the Certificate of Positivity Algorithm

Initialize the list L of simplices to inspect with Δ

Remove a simplex V from L

If all the elements of b(P, d, V) are positive, store them in a list C

If a value of P at a vertex of V is negative output it

Otherwise subdivide V using the standard triangulation of degree 2, and put all the simplices of $T_2(V)$ in L.

Stop when L is empty OR the diameter of each V on L is small enough to ensure that P is not everywhere positive.

Bibliography 37

Bibliography

- 1. S. Basu, R. Pollack, M.-F. Roy, Algorithms in real algebraic geometry, Springer-Verlag, second edition (2006).

 On line at http://perso.univ-rennes1.fr/marie-francoise.roy/
- 2. S. Bernstein, Sur la représentation des polynômes positifs, Soobshch. Kharkov matem. ob-va, ser. 2, 14 227-228.(1915).
- 3. F. BOUDAOUD, F. CARUSO, M.-F. ROY, Certificates of positivity in the Bernstein's basis, Discrete and Computational Geometry 39 639-655(2008).
- 4. T. GOODMAN, J. Peters, Bézier nets, convexity and subdivision of higher dimensional simplices, Computer aided geometric design 12 53-65 (1995).
- 5. R. Leroy, Base de Bernstein multivairiée, approximation et certificats de positivité, Thèse en préparation
- 6. V. Powers, B. Reznick, A new bound for Polya's Theorem with applications to polynomials positive on polyhedra, Journal of Pure and Applied Algebra 164, 221-229 (2001)

7. U. Reif, Best bounds on the approximation of polygons and splines by their controle structure, Computer aided geometric design 17 569-589 (2000)