

Phys415

GENERAL RELATIVITY

Lecture Notes

Contents

Rev	iew of Special Relativity
I.1	Lorentz Transformations
	I.1.1 Examples of Lorentz Transformations
	I.1.2 The Restricted Lorentz Group
I.2	The Scalar Product in Minkowski Spacetime
I.3	The Causal Structure of Minkowski Spacetime

0 Physical Overview of General Relativity

IN GENERAL RELATIVITY, gravity is no longer a "force"...

Space tells matter how to move;

Matter tells space how to curve.

— Misner, Thorne and Wheeler

In Newtonian gravity, escape velocity is given by $\frac{1}{2}mv^2 = \frac{GMm}{R}$. Gravity is significant if $\frac{v^2}{2} \sim \frac{GM}{R}$. Special relativity is significant when $v^2 \sim c^2$. Hence, general relativity is significant when $\frac{c^2}{2} \sim \frac{GM}{R} \iff R \sim \frac{2GM}{c^2}$; this is the Schwarzschild radius.

When escape velocity \sim light velocity, the existence of a black hole if implied.

I Review of Special Relativity

Background

See (Schutz, 2009, ch 1) and (Doughty, 2018, ch 5, 12, 13).

Assumptions of Special Relativity:

1. The world is described by a 4-dimensional continuum, **spacetime**, or **Minkowski space** \mathcal{M}^4 , which is the set of all **events** x^{μ} ,

$$x^{\mu} \equiv \mathbf{x} = (x^0, x^i) \equiv (x^0, \mathbf{x}) = (ct, \mathbf{x}).$$

-Notation

Greek indices, μ, ν run over *spacetime* index values; $\{0, 1, 2, 3\}$. Latin indices (mid-alphabet), i, j, k run over *spatial* index values; $\{1, 2, 3\}$. \boldsymbol{x} is a 4-vector (twiddle); x is a 3-vector (under bar).

2. There exist **inertial frames**; namely, frames in which the measured values of time t and position x^i of events result in *linear* equations of motion for *free* particles.

Postulates of Special Relativity:

- 1. Principle of Relativity: The laws of physics are invariant under transformations $x^{\nu} \to x^{\bar{\mu}}(x^{\nu})$ from one inertial frame to another (and such transformations form a group).
- 2. Constancy of the Speed of Light: There exists an invariant upper bound on all velocities

$$\left| \frac{\mathrm{d}\vec{x}}{\mathrm{d}t} \right| \leq \left| \frac{\mathrm{d}\vec{x}}{\mathrm{d}t} \right|_{\mathrm{max}} = c \quad \text{(speed of light)}$$

and this value is the same in all inertial frames.

For photons,

$$c = \begin{vmatrix} \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} \end{vmatrix} = \begin{vmatrix} \frac{\mathrm{d}\mathbf{x}'}{\mathrm{d}t} \end{vmatrix}. \tag{I.1}$$
frame K frame K'

Rewriting (I.1) we see that, for photons,

$$(\mathrm{d}x)^2 + (\mathrm{d}y)^2 + (\mathrm{d}z)^2 - c^2(\mathrm{d}t)^2 = (\mathrm{d}x')^2 + (\mathrm{d}y')^2 + (\mathrm{d}z')^2 - c^2(\mathrm{d}t')^2 = 0.$$
frame K

This suggests the definition of the **spacetime interval** between any neighbouring events x^{μ} and $x^{\mu} + dx^{\mu}$ as

$$ds^{2} \equiv -c^{2}dt^{2} + dx^{2} + dy^{2} + dz^{2}$$
$$= \eta_{\mu\nu}dx^{\mu}dx^{\nu} \qquad ...pseudo-Riemannian structure$$

where $x^{\mu} = (x^0, x^i) = (ct, x, y, z)$ and where

$$\eta_{\mu\nu} = \begin{pmatrix} -1 \\ +1 \\ +1 \\ +1 \end{pmatrix} \equiv \operatorname{diag}(-1, +1, +1, +1) \equiv -1 \oplus \mathbb{1}_3.$$

For photons, $ds^2 = 0$. Using the two postulates, one may show that the interval ds^2 is invariant with respect to coordinates based in any inertial frame (Schutz, 2009, §1.6).

$$ds^2 = \eta_{\mu\nu} dx^{\mu} dx^{\nu} = \eta_{\bar{\mu}\bar{\nu}} dx^{\bar{\mu}} dx^{\bar{\nu}}.$$
 (I.2)

Note -

- The symbol ds^2 for the interval is purely notational convention, since we may have $ds^2 < 0$ is some cases.
- Postulate 1 alone implies either S.R. or its $c \to \infty$ limit (Galilean relativity).
- Formally, $\mathrm{d} x^{\mu} \mathrm{d} x^{\nu}$ is shorthand for the tensor product $\mathrm{d} x^{\mu} \otimes \mathrm{d} x^{\nu}$, and you will see that $\mathrm{d} s^2 = \eta$ is really the metric tensor...

I.1 Lorentz Transformations

In an inertial frame K, the equations of motion of a free particle are linear;

$$\frac{\mathrm{d}^2 x^{\mu}}{\mathrm{d}\lambda^2} = 0 \qquad \iff \qquad x^{\mu} = x_0^{\mu} + u^{\mu}\lambda,$$

where x_0^μ, u^μ are constant and λ is a parameter. Similarly, in any other inertial frame K,

$$\frac{\mathrm{d}^2 x^{\bar{\mu}}}{\mathrm{d}\lambda^2} = 0 \qquad \iff \qquad x^{\bar{\mu}} = x_0^{\bar{\mu}} + u^{\bar{\mu}}\lambda.$$

Now,

$$\frac{\mathrm{d} x^{\bar{\mu}}}{\mathrm{d} \lambda} = \frac{\partial x^{\bar{\mu}}}{\partial x^{\nu}} \frac{\mathrm{d} x^{\nu}}{\mathrm{d} \lambda} = \frac{\partial x^{\bar{\mu}}}{\partial x^{\nu}} u^{\nu} \qquad \qquad \dots chain \ rule$$

$$\implies 0 = \frac{\mathrm{d}^2 x^{\bar{\mu}}}{\mathrm{d} \lambda^2} = \frac{\partial}{\partial x^{\alpha}} \left(\frac{\partial x^{\bar{\mu}}}{\partial x^{\nu}} u^{\nu} \right) u^{\alpha} = \frac{\partial^2 x^{\bar{\mu}}}{\partial x^{\alpha} \partial x^{\nu}} u^{\nu} u^{\alpha} \qquad \qquad \therefore \ u^{\nu} \ constant$$

$$\implies 0 = \frac{\partial^2 x^{\bar{\mu}}}{\partial x^{\alpha} \partial x^{\nu}}. \qquad \qquad \dots since \ true \ \forall u^{\alpha}$$

So the required transformation between inertial frames is linear;

$$x^{\bar{\mu}} = L^{\bar{\mu}}_{\nu} x^{\nu} + a^{\bar{\mu}}, \qquad (I.3)$$

where $a^{\bar{\mu}}$ and $L^{\bar{\mu}}{}_{\nu} \equiv \frac{\partial x^{\bar{\mu}}}{\partial x^n u}$ are constants. Differentiate (I.3) and substitute into (I.2) to give $\eta_{\mu\nu} \mathrm{d}x^{\mu} \mathrm{d}x^{\nu} = \eta_{\bar{\mu}\bar{\nu}} L^{\bar{\mu}}{}_{\mu} L^{\bar{\nu}}{}_{\nu} \mathrm{d}x^{\mu} \mathrm{d}x^{\nu}$. Since this is true $\forall \, \mathrm{d}x^{\mu}$,

$$\boxed{\eta_{\bar{\mu}\bar{\nu}}L^{\bar{\mu}}_{\mu}L^{\bar{\nu}}_{\nu} = \eta_{\mu\nu}.}$$
(I.4)

In matrix form, (I.3) and (I.4) are

$$\bar{x} = Lx + a,
L^{\dagger} \eta L = \eta.$$
(I.3a)
(I.4a)

$$L^{\mathsf{T}}\eta L = \eta. \tag{I.4a}$$

Transformations $x \mapsto \bar{x}$ defined by (I.3), (I.4) are the inhomogeneous Lorentz transformations, or **Poincaré transformations**, and form the Poincaré group IO(1,3) (pronounced Inhomogeneous Orthogonal group).

"Inhomogeneous" refers to the inclusion of spacetime translations $x^{\nu} \mapsto x^{\bar{\mu}} =$ $\delta^{\bar{\mu}}_{\nu}x^{\nu} + a^{\bar{\mu}}$, which form a subgroup T⁴ of the Poincaré group. If we set $a^{\bar{\mu}} = 0$ in (I.3), we are left with homogeneous transformations, called simply the Lorentz transformations.

(homogeneity of spacetime)

In G.R., our task is to generalise these ideas to general coordinate frames for which $L^{\bar{\mu}}_{\nu}$ are not necessarily constant.

I.1.1 Examples of Lorentz Transformations

A transformation belonging to the (homogeneous) Lorentz group O(1,3) can be represented as a matrix acting on coordinates x^{μ} when they are viewed as vectors.

$$x^{\mu} \cong \mathbf{x} = \begin{pmatrix} x^0 \\ x^1 \\ x^2 \\ x^3 \end{pmatrix} = \begin{pmatrix} t \\ x \\ y \\ z \end{pmatrix}$$

Note

Spacetime events (i.e., *points* in spacetime) are not themselves vectors—neither addition nor scalar multiplication of events makes physical sense; i.e., spacetime itself is not a *vector space*. However, in S.R. we may represent events by their associated displacement vector relative to a chosen orthogonal inertial frame.

The Lorentz group O(1,3) consists of (combinations of) the following:

• Rotations, e.g., about the z-axis (in the xy-plane) by an angle θ ;

$$L_R(\theta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

• Boosts, e.g., by a velocity \underline{v} in the x-direction;

$$L_B(\alpha) = \begin{pmatrix} \cosh \alpha & -\sinh \alpha & 0 & 0 \\ -\sinh \alpha & \cosh \alpha & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos i\alpha & i\sin i\alpha & 0 & 0 \\ i\sin i\alpha & \cos i\alpha & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

where $\alpha = \tanh^{-1} \frac{v}{c}$ is the rapidity parameter. In terms of the velocity $\beta \equiv \frac{v}{c}$, one has $\cosh \alpha = \frac{1}{\sqrt{1-\beta^2}} \equiv \gamma$ and $\sinh \alpha = \frac{\beta}{\sqrt{1-\beta^2}} \equiv \beta \gamma$.

Note

Boosts appear similar to rotations, but differ as a consequence of the indefiniteness of the metric. Formally, an x-boost of rapidity α is equivalent to a rotation by an 'imaginary angle' $\alpha'=i\alpha$ through the τx -plane, where $\tau=it$ is 'imaginary time'... though this is not a good picture physically!

An important difference between rotations and boosts is that, where $0 \le \theta < 2\pi$ for rotations, we have $-\infty < \alpha < \infty$ for boosts, i.e., rotations form a $compact^1$ subgroup of the Lorentz (or Poincaré) group, whereas boosts are non-compact—and in fact do not form a subgroup (because, in general, the composition of two boosts forms a combination of a rotation and a boost).

Both rotations and boosts depend on continuous parameters (θ or α , respectively). However, the Lorentz group O(1,3) also contains discrete transformations...

• Parity inversion; $P = \operatorname{diag}(1, -\mathbb{1}_3) \equiv \begin{pmatrix} 1 & & \\ & -1 & \\ & & -1 \end{pmatrix}$.

Notice that P is *not* equivalent to a rotation; it transforms a right-handed frame into a left and vice versa, since det P = -1.

— Note –

In even spatial dimensions, the transformation $R = \text{diag}(1, -\mathbb{1}_{2n})$ is not a parity transformation; it is a rotation by π and $\det R = 1$. In these cases, inversions $x_i \mapsto -x_i$ of a *single* spatial coordinate are parity transformations.

• Time reversal; $T = \operatorname{diag}(-1, \mathbb{1}_3)$.

The Lorentz matrix condition (I.4) implies that $(\det L)^2 = 1 \iff \det L = \pm 1$ for any Lorentz transformation $L \in \mathrm{O}(1,3)$. Those with $\det L = +1$ and those with $\det L = -1$ form two disconnected pieces of $\mathrm{O}(1,3)$, but only the first piece contains the identity transformation $\delta^{\bar{\mu}}_{\nu}$.

Inspecting the $\bar{\mu}\nu = \bar{0}0$ component of (I.4) gives

$$\left(L^{\bar{0}}_{0}\right)^{2} - \sum_{\bar{k}=1}^{3} \left(L^{\bar{k}}_{0}\right)^{2} = 1 \implies \left(L^{\bar{0}}_{0}\right)^{2} \ge 1,$$

¹A compact set is one for which any infinite sequence of elements contains a convergent subsequence. E.g., $[0, 2\pi)$ is compact, but \mathbb{R} is not (consider the sequence $\{1, 2, 3, ...\} \subset \mathbb{R}$).

which shows that there exists two disconnected classes of Lorentz transformation with $L^{\bar{0}}_0 \geq 1$ and $L^{\bar{0}}_0 \leq -1$. Those with $L^{\bar{0}}_0 \geq 1$ are called **orthochronous**.

I.1.2 The Restricted Lorentz Group

We define the subgroup of restricted Lorentz transformations by adding two conditions to the Lorentz matrix condition (I.4); that they be 1) orthochronous and 2) have determinant unity.

$$SO^{+}(1,3) \equiv \left\{ \Lambda \mid \Lambda^{\intercal} \eta \Lambda = \eta, \Lambda^{\bar{0}}{}_{0} \geq 1, \det \Lambda = 1 \right\}$$

We have removed the discrete transformations involving P and T, so that $SO^+(1,3)$ is *continuous* and *connected*, unlike O(1,3).

Notation

The S in $SO^+(1,3)$ refers to the condition det $\Lambda=1$, and the $^+$ refers to the orthochronous condition. Sometimes $SO^+(1,3)$ is simply written as SO(1,3).

Groups whose elements may be continuously parametrised are **Lie groups**. The translation group T^4 (parametrised continuously by Δx^{μ}) and the rotation group SO(3) (parametrised continuously by three angles) are examples of *connected* Lie groups.

Reintroducing translations to the restricted Lorentz group gives the restricted Poincaré group $\mathrm{ISO}^+(1,3)$ —also a connected Lie group. Unrestricted groups may be reconstructed by reintroducing the discrete transformations;

$$O(1,3) = \{\Lambda, \Lambda P, \Lambda T, \Lambda PT \mid \Lambda \in SO^{+}(1,3)\}.$$

I.2 The Scalar Product in Minkowski Spacetime

I.3 The Causal Structure of Minkowski Spacetime

A spacetime interval is
$$\begin{cases} \text{timelike} & \text{if } \mathrm{d}s^2 < 0 \\ \text{null} & \text{if } \mathrm{d}s^2 = 0 \\ \text{spacelike} & \text{if } \mathrm{d}s^2 < 0 \end{cases}$$

II The Equivalence Principle

References

- N. Doughty. Lagrangian interaction: an introduction to relativistic symmetry in electrodynamics and gravitation. CRC Press, 2018.
- B. Schutz. A first course in general relativity. Cambridge university press, 2009.