驱动卡使用说明

驱动卡的使用说明分为两部分,一部分是参数配置命令说明,一部分是接口使用部分命令说明。本产品使用 usart (uart) 串口总线进行预先调试配置,使用 can 总线进行实际上车应用。

串口命令分为命令名称和参数两部分。使用者在将驱动卡和电脑使用串行通信协议连接后, 在电脑端的上位机勾选发送新行,即可进行命令的发送与回显接收。

Can 总线命令需要用户在主从模块中配置好发送协议,连接信号线后以联合体的方式进行通信。具体联合体格式如下:

typedef union{
 char ch[8];
 uint8_t ui8[8];
 uint16_t ui16[4];
 int in[2];
 float fl[2];
 double df;
}can_ msg;

一、驱动卡参数设置

1.1 配置电机类型与编码器类型

指令	响应	参数
mtr <param/> <param2></param2>	mtr OK	Param:编码器类型
		0——增量式编码器
		1——绝对值磁编码器
		Param2:电机类型
		0——普通有刷电机
		1——普通无刷电机
		3——Robomaster 电机 (can
		总线控制)

1.2 写入驱动卡 can ID

指令	响应	参数
canid <param/>	can id = <param/>	id 号

1.3 写入 robomaster 电机的 id (不可用)

Robomaster 电机有自己的 id 号序列,这里只需要写通过 C610 或 C620 电调配置好后的电机序号即可(即亮灯频次所对应的序号,取值范围 1-8)

指令	响应	参数
canmtrid <param/>	canid = <param/>	id 号

1.4 写入电机速度环 pid 参数

指	\$	响应	参数
speed_pid	<param/>	set speed_pid = <param/>	Param: 比例参数
<param2> <pa< td=""><td>aram3></td><td><param2> <param3></param3></param2></td><td>Param2:积分参数</td></pa<></param2>	aram3>	<param2> <param3></param3></param2>	Param2:积分参数
			Param3:微分参数
			(参数类型 float)

1.5 写入电机位置环 pd 参数

指令		响应	参数
position_pd	<param/>	set position_pd = <param/>	Param: 比例参数
<param2></param2>		<param2></param2>	Param2:微分参数
			(参数类型 float)

1.6 写入位置环最大速度

指令	响应	参数
max_speed <param/>	max speed = <param/>	Param: 位置环最大速度
		(参数类型 int)

1.7 写入磁编码器零点位置

指令	响应	参数
asoffset <param/>	asoffset = <param/>	Param: 位置
		(取值范围 0-16384 整数)

磁编码器返回的测量值会存在零点, 当测量范围小于 360 度时, 可以通过修改零点位置将零点放置在不需要达到的那一侧, 从而保证测量范围内数值变化平滑无跳变。

1.8 写入速度环积分限幅

指令	响应	参数
int_limit <param/>	int_limit OK	Param: 参数
		(参数类型 float)

二、驱动卡接口使用

2.1 帮助

指令	响应	参数
help	输出全部命令描述	无

2.2 版本

指令	响应	参数
version	输出版本号	无

2.3 设置占空比

指令	响应	参数
duty <param/>	duty set <param/>	占空比值
		(取值范围-100-100 整数)

2.4 设置速度

指令	响应	参数
speed <param/>	speed set <param/>	速度值 (参数类型 int)

2.5 设置位置

指令	响应	参数
position <param/>	position set <param/>	位置值 (参数类型 int)

2.6 示波器输出

指令	响应	参数
wave <param/>	输出示波器波形	Param: 操作类型
		0 — — 停止输出
		1 — — 依 次 输 出
		Target_Speed、Now_Speed、
		i、的波形
		2 — — 依 次 输 出
		Target_Position 、
		Now_Position 的波形

2.7 输出状态

指令	响应	参数
status	输出现在电机的状态及参数	无

2.8 can 总线协议

功能	int[0]	int[1]
设置占空比	0	占空比值(-100-100)
设置速度	1	速度值
设置位置	2	位置值

三、参考案例

如果我们拿到了一个尾部配有增量式编码器的 24v 有刷直流电机, 我们可以参考如下步骤使用。

- 1.将电机的电机线、编码器线与驱动卡连接好,驱动卡连接 24v 电池,打开电源开关,打开模拟示波器程序连接串口。
- 2.串口发送 mtr 0 0, 观察回显是否正常。
- 3.依次发送命令 wave 0 与 duty 30 观察 Now_Speed 是否为正, 如果不为正, 则断开电源, 将电机线反插。
- 4.发送 int_limit 1200 设置一个较大的积分限幅参数。
- 5.使用 speed_pid 命令写入一个合适的 pid 参数,使用 speed 命令发送一个合适的速度,观察 Now_Speed 与 Target_Speed 的波形,迭代 pid 参数,直至波形满意。
- 6.逐渐累加 speed 直至电机达到最大速度, 记录下此时的 i 的值, 发送 speed 0 使电机停下, 使用 int_limit 命令将 i 写入驱动卡。
- 7(可选). 使用 position_pd 命令写入一个合适的 pd 参数, 使用 position 命令发送一个合适的

位置,观察 Now_Position 与 Target_Position 的波形,迭代 pd 参数,直至波形满意。

8.通过 canid 命令写入自行选定的 id 值。

9. 摁下驱动卡上的 reset 键,观察参数是否写进 flash 中。

10.上车调试。

四、可能存在的问题以及解决办法

1.打开电源驱动卡上灯不亮

断开电源,检查线路连接是否正确牢固,再次打开电源,若灯还不亮,迅速切断电源并更换驱动卡。

2.发送 duty 命令时,无论参数正负,电机均往一个方向转

切断电源, 更换驱动卡。

3.写入 pid 参数后电机不受控疯转

迅速切断电源,再次打开电源,先写入一个较小一点的 pid 参数再发送速度或位置。

4.发送 duty 命令时, Now_Speed 无波形

检查编码器线路连接是否正确牢固

5.发送 duty 命令时, 电机不转

改发送一个略微大一点的占空比,若还不转,检查线路,若还不转,更换驱动卡。

6.发送一个较大的速度命令后再发送0速度电机没有停下来

设置积分限幅后再次尝试

7.电机无法达到本应达到的最大速度

积分限幅讨小

8. 摁下 reset 键后参数未显示

重写参数

9.电机大功率运转时驱动卡程序重启

将驱动卡上的 3.3v 和 and 外接其他电源再次尝试。

10.微动复位电机堵转

检查微动开关

11.串口没有回显

检查有没有勾选暂停编辑框。

检查串口波特率是否正确。

检查串口线路、或更换蓝牙、或更换驱动卡、或重装电脑蓝牙驱动。

12.修改速度 pid 参数后发送速度电机不转

检查积分限幅是否太低或为 0

13.修改位置 pd 参数后发送位置电机不转

检查是否写入速度 pid 参数,位置环的输出是速度,若速度 pid 为 0 则无法输出。

14.发送位置后电机转很长时间才停下来

摁 reset 重置速度环积分值。