

Normes ISO 27000

 27002 : Code de bonnes pratiques pour la gestion de la sécurité de l'information

- Approche globale de la sécurité des S.I.
- Composée de 114 mesures de sécurité réparties en 14 chapitres couvrant les domaines organisationnels et techniques
- Référentiel de mise en œuvre
 - « Check-list » en cas d'audit

Normes ISO 27000

- 27002 : Code de bonnes pratiques pour la gestion de la sécurité de l'information
- Exemples de mesures du chapitre « Contrôle d'accès »
 - L'accès aux fichiers/répertoires doit être restreint conformément aux politiques de contrôle d'accès
 - Seuls les professeurs autorisés doivent pouvoir accéder à un répertoire contenant les épreuves des futurs examens/concours
 - Les propriétaires de l'information doivent vérifier les droits d'accès à intervalles réguliers
 - Le responsable des concours doit contrôler les droits d'accès au répertoire contenant les épreuves des futurs examens/concours pour s'assurer qu'il n'y a pas d'étudiants qui auraient été rajoutés
- Exemple de mesures du chapitre « Sécurité opérationnelle »
 - L'installation et la configuration de logiciels doivent être encadrés
 - Seuls les administrateurs doivent pouvoir installés un logiciel sur un poste
 - Des sauvegardes doivent êtres régulièrement effectuées et testées
 - Un espace de sauvegarde des données peut être mis à disposition des utilisateurs

Normes ISO 27000

- 27005 : Gestion des risques
- La norme 27005 présente une démarche
 - Donne les lignes directrices relatives à la gestion des risques de sécurité
- Avantages
 - Utilisable seule
 - Plusieurs méthodes sont compatibles ISO 27005
 - Exemple : EBIOS RM
 - Méthode générique, peut être utilisée en toutes circonstances
- Limites
 - C'est plus une démarche qu'une vraie méthode
 - L'organisation doit définir sa propre approche
 - Tendance à l'exhaustivité
 - Accumulation de mesures techniques sans cohérence d'ensemble

À la prochaine séance

Nora Cuppens

INF4420a: Sécurité Informatique Cryptographie I

Frédéric Cuppens

Nora Cuppens & José Fernandez

Aperçu du module – Cryptographie

- Définitions et histoire
- Notions de base (théorie de l'information)
- Chiffrement
 - Méthodes « classiques »
 - Chiffrement symétrique
 - Chiffrement à clé publique
- Cryptanalyse de base
- Autres primitives cryptographiques
 - Hachage cryptographique
 - Signature numérique
 - Infrastructure à clé publique (ICP)
- Principes d'applications de la cryptographie
- Risques résiduels d'applications de la cryptographie

Cryptographie I (aujourd'hui)

- Définition et nomenclature
- Historique
- Théorie de l'information
 - Modèle de Shannon
 - Source d'information
 - · Codage et compression
 - Entropie
- Chiffrement
 - Chiffrement et codage
 - Algorithmes « classiques »
- Cryptanalyse de base
 - Force brute
 - Reconnaissance de texte
 - Analyse de fréquences

CRYPTOGRAPHIE I – INTRODUCTION ET HISTOIRE

Définitions et terminologie

- Un peu de grec classique...
 - Kryptos = « caché », « secret »
 - Graphos = écriture
 - − ⇒ Cryptographie
 - − ⇒ Cryptanalyse
 - Logos = « savoir »
 - − ⇒ Cryptologie
 - Stéganos = « couvert », « étanche »
 - − ⇒ Stéganographie

- Un peu d'américain...
 - Alice
 - Bob
 - Ève
 - (Charlie)
 - Encrypt and Decrypt
- Un peu de français
 - Chiffrer et déchiffrer
 - Coder et décoder
 - Crypter et décrypter (!)
 - Irène !!! (l'ingénieure)
- Un peu de math...

- Les trois ères de la cryptographie
 - « Classique »
 - Jusqu'au masque jetable (chiffre de Vernam)
 - Chiffrement manuel → chiffrement faible
 - « Moderne »
 - Crypto électro-mécanique et WWII (voir applet Enigma)
 - Guerre froide ...
 - Crypto électronique et informatique DES
 - Chiffrement par machines spécialisées → chiffrement plus complexes
 - Réservés aux organisations pouvant acquérir l'équipement

- Les trois ères de la cryptographie (suite)
 - « Âge d'or »
 - Cryptographie à clé publique
 - 1976 Whitfield Diffie & Martin Hellman
 - Introduise la notion de cryptographie à clé publique
 - Algorithme d'échange de clé (DH)
 - Introduise la notion de signature numérique
 - 1978 Ronald Rivest, Adi Shamir, Leonard Adleman
 - Premier algorithme à clé publique (RSA)
 - 1973 Clifford Cocks
 - Invente en parallèle un algorithme équivalent à RSA au sein du GCHQ
 - L'algorithme est classifié « TOP SECRET »
 - Existence dévoilée seulement en 1997

- Les trois ères de la cryptographie (suite)
 - « Âge d'or » (suite)
 - « Démocratisation » de la cryptographie
 - Années 80
 - Cryptographie sur PC (PGP = Pretty Good Privacy))
 - Années 90 et 00
 - Levée des restrictions d'exportations de cryptographie Internet et Web
 - Protocoles réseaux sécurisés : SSH, SSL/TLS, IPSEC, etc.

Infrastructures à clé publique et signature numérique

- Transactions commerciales (bancaire et parabancaires)
- Identité numérique
- Cryptomonnaie
- ...

- Les trois ères de la cryptographie (suite)
 - Apocalypse « imminent » et ère post-quantique
 - 1984 Charles Bennett et Gilles Brassard
 - Invention de la cryptographie quantique –
 base sa sécurité sur les propriétés de la mécanique quantique
 - 1994 Peter Shor (suivant les travaux de Dan Simon)
 - Découverte de la cryptanalyse quantique
 Casse tous les algorithmes à clé publique connus
 Nécessite d'un ordinateur quantique...
 - Années 10
 - Proposition d'algorithmes à clé publique « post quantiques »

Semblent résister à la cryptanalyse quantique

Peu pratiques à utiliser

Pas (encore) de standard établi

Adoption très lente...

CRYPTOGRAPHIE I – THÉORIE DE L'INFORMATION – MODÈLE DE SHANNON

Claude Shannon

- Ile guerre mondiale
 - Contribue aux efforts de cryptanalyse de guerre
- Père de la Théorie de l'information
 - 1948 « A Mathematical Theory of Information »
- Fondement théorique de la cryptographie
 - 1945 « A Mathematical Theory of Cryptography »
 - Classifié basée sur ses travaux de cryptanalyse
 - 1949 « Communication Theory of Secrecy Systems »
 - Version non-classifiée, publié dans Bell Technical Journal

Claude Shannon

- Contributions
 - Introduit une définition mathématique de l'information
 - Source d'information
 - Modèle de Shannon transmission d'information
 - Introduit la notion d'entropie (dans le contexte de l'information)
 - Définit le **bit** comme unité de mesure de l'information
 - Établit les limites fondamentales de la compression
 - Capacité maximale d'un canal de transmission (sans bruit)
 - Introduit une notion mathématique du bruit
 - Établit les limites fondamentales des <u>codes correcteur</u> d'erreurs
 - Introduit une théorie du « secret » en information
 - Modèle de Shannon <u>révisé</u> transmission d'informations secrètes
 - Décrit le lien entre codage et chiffrement

« Information »

 Valeur instantanée d'une variable aléatoire qui est transmise vers un récepteur à travers un canal de communication

Concepts importants

- Variable aléatoire
- Canal de communication Transmission ou
- Moyen de stockage

Exemples

- La couleur du ciel (variable aléatoire) transmise via les ondes lumineuses (canal de transmission) vers votre œil (récepteur)
- Contenu d'un fichier (variable aléatoire) transmise via le réseau téléphonique (canal de transmission) vers votre collègue (récepteur)

- L'information est un concept <u>abstrait</u>
 - la valeur de l'information dépend des attentes du récepteur
 - Couleur du ciel : est-ce vraiment une information ?
 - (théorie de la décision) Est-ce que la température du soleil est critique à ma décision d'investir dans une entreprise web ?
- Théorie de l'information (« Communication Theory »)
 - Ne s'intéresse pas à la sémantique de l'information (son « sens »)
 - S'intéresse à la quantité d'information qui manque au récepteur
 - Wheeler
 - « information » in communication theory is not related to what you do say, but to what you could say
 - Information = manque de connaissance du récepteur

- Pour mesurer cette méconnaissance
 - Quantité d'information obtenue par observation directe de l'information obtenue/transmise
 - Représentée par la valeur de la variable aléatoire
 - Plus cette valeur est « aléatoire »
 - Plus grande est la méconnaissance du récepteur avant sa transmission
 - Plus sa transmission « ajoute » de l'information
 - Si cette valeur est peu aléatoire ou déterministe
 - Le récepteur a peu d'incertitude sur la valeur (méconnaissance faible)
 - La transmission n'apprend pas grand-chose au récepteur (valeur information de l'information faible)
 - Mesure mathématique d'information
 - Entropie de la variable aléatoire
 - Unité de mesure
 - Généralement le bit
 - Défini ainsi pour faciliter la représentation et calculs mathématiques

Source d'information

- « Boîte noire »
- Produit des symboles
 - selon un processus stochastique
 - seront codés (transformés)
 - seront stockés ou transmis
- Variable aléatoire
 - · associée au symbole produit
- Série de symboles
 - différente à chaque fois (« réinitialisation »)
 - produite selon le même processus stochastique

Source discrète

- un symbole à la fois
- sur demande (« bouton »)

