HEAT AND MASS TRANSPORT GROUP

heatandmass.ep.wisc.edu

INVESTIGATING THE STABILITY BOUNDARY OF A NATURAL CIRCULATION LOOP USING THE SYSTEM CODE SAM

- 1. Background and Motivation
- 2. Stability Analysis (Summary)
- 3. Loop Model in a System Code
- 4. Remove Sources of Numerical Instability
- 5. Impose Transients, Observe Behavior
- Path Forward

KAZI AHMED

NEUP Fellow Department of Engineering Physics University of Wisconsin - Madison kkahmed@wisc.edu

Graduate Student Seminar

21 September 2018 University of Wisconsin-Madison

1. Background and Motivation

Instability definition: Flow versus time for damped, neutral and unstable systems (P.K. Vijayan)

Case Study: Mk1 PB-FHR

"Mark 1" Pebble-Bed Fluoride-Salt-Cooled High-Temperature Reactor

Passive Safety Systems: Physics Driven

- Primary advantage is execution of cooling functionality without operator intervention and without power
- Concern: instabilities because of strongly coupled flow, boundary conditions, and thermophysical properties (→ buoyant driving force)
- Can all components endure thermal stresses from continued oscillation? Are safety margins maintained?

HEAT AND MASS TRANSPORT GROUP

heatandmass.ep.wisc.edu

2. Stability Analysis using the Nyquist Criterion (Summary)

1D Linear Stability Analysis

Integrate fluid momentum over the loop:

$$0 = \oint \beta g_s(T - T_o)ds - \sum_{i=1}^{loop} \frac{1}{2} \left(f_i \frac{L_i}{D_i} + K \right) u_i^2$$

Superimpose disturbances:

$$\underline{u} = u + \varepsilon e^{\omega t}, \qquad \underline{T} = T + \lambda e^{\omega t}$$

Perturbed momentum equation:

$$\omega \sum_{i}^{loop} \varepsilon_{i} L_{i} = \oint \beta g_{s} \lambda \, ds - \sum_{i}^{loop} \left(f_{i} \frac{L_{i}}{D_{i}} + K \right) \varepsilon_{i} u_{i}$$

M. Abou Dbai, "Stability Analysis of a Molten FLiBe Natural Circulation Loop Using the Nyquist Criterion", UW-Madison, in Transactions of the American Nuclear Society, Vol. 118, Philadelphia, Pennsylvania, June 17-21, 2018

1D Linear Stability Analysis

Energy equation (iterate with momentum to find constant properties):

$$\dot{m}c\frac{dT}{ds} = \begin{cases} \dot{q}_{w}''(\pi D) & \text{heated section (DHX)} \\ -U(T-T_{\infty})(\pi D) & \text{cooled section (TCHX)} \\ -\pi k N u (T-T_{f}) & \text{freezing section (TCHX)} \\ 0 & \text{adiabatic sections (hot and cold legs)} \end{cases}$$

Characteristic equation:

$$\begin{split} \Phi(\omega) &= \omega \sum_{i}^{loop} \varepsilon_{i} L_{i} - \beta g \left[\int^{H_{DHX}} \lambda dx + \int^{H_{HotLeg}} \lambda ds - \frac{H_{TCHX}}{L_{TCHX}} \left(\int^{s_{Rf}} \lambda ds + \int^{L_{TCHX}-s_{Rf}} \lambda ds \right) - \int^{H_{ColdLeg}} \lambda ds \right] + \sum_{i}^{loop} \left(f_{i} \frac{L_{i}}{D_{i}} + K \right) \varepsilon_{i} u_{i} \end{split}$$

M. Abou Dbai, "Stability Analysis of a Molten FLiBe Natural Circulation Loop Using the Nyquist Criterion", UW-Madison, in Transactions of the American Nuclear Society, Vol. 118, Philadelphia, Pennsylvania, June 17-21, 2018

1D Linear Stability Analysis

Perturbed energy equation:

$$\lambda\omega + u\frac{\partial\lambda}{\partial s} + \varepsilon \begin{cases} \frac{\pi D\dot{q}_w''}{\dot{m}_h c} \\ (T_o + \Delta T - T_\infty) \left(\frac{-\pi D U}{\dot{m}_c c}\right) e^{\frac{-\pi D U}{\dot{m}_c c} s} \\ (T_i - T_f) \left(\frac{-\pi N u \ k}{\dot{m}_c c}\right) e^{\frac{-\pi N u \ k}{\dot{m}_c c} (s - s_{Rf})} = \begin{cases} 0 & \text{DHX} \\ -\frac{U}{\rho c} \frac{P}{A} \lambda & \text{TCHX} \\ -\frac{N u \ k}{\rho c R_f^2} \lambda & \text{freezing} \\ 0 & \text{adiabatic} \end{cases}$$

Characteristic equation:

$$\begin{split} \Phi(\omega) &= \omega \sum_{i}^{loop} \varepsilon_{i} L_{i} - \beta g \left[\int^{H_{DHX}} \lambda dx + \int^{H_{HotLeg}} \lambda ds - \frac{H_{TCHX}}{L_{TCHX}} \left(\int^{s_{Rf}} \lambda ds + \int^{L_{TCHX}-s_{Rf}} \lambda ds \right) - \int^{H_{ColdLeg}} \lambda ds \right] + \sum_{i}^{loop} \left(f_{i} \frac{L_{i}}{D_{i}} + K \right) \varepsilon_{i} u_{i} \end{split}$$

M. Abou Dbai, "Stability Analysis of a Molten FLiBe Natural Circulation Loop Using the Nyquist Criterion", UW-Madison, in Transactions of the American Nuclear Society, Vol. 118, Philadelphia, Pennsylvania, June 17-21, 2018

Stability Boundary Using the Nyquist Criterion

M. Abou Dbai, "Stability Analysis of a Molten FLiBe Natural Circulation Loop Using the Nyquist Criterion", UW-Madison, in Transactions of the American Nuclear Society, Vol. 118, Philadelphia, Pennsylvania, June 17-21, 2018

Stability Boundary Predicted for two Designs

 ΔH elevation difference between the centers of **DHX** and TCHX

 ΔT temperature rise across DHX

Re $\rho vD/\mu$ at TCHX inlet

$$Nt_{TCHX}^* = 4Nt_{TCHX}$$

 $L_{TCHX}^* = L_{TCHX}/4$

M. Abou Dbai, "Stability Analysis of a Molten FLiBe Natural Circulation Loop Using the Nyquist Criterion", UW-Madison, in Transactions of the American Nuclear Society, Vol. 118, Philadelphia, Pennsylvania, June 17-21, 2018

Aside: Grashof Number

Note buoyancy term and loss term in the momentum equation:

$$0 = \oint \beta g_s(T - T_o)ds - \sum_{i}^{loop} \frac{1}{2} \left(f_i \frac{L_i}{D_i} + K \right) u_i^2$$

- $Gr = \rho^2 g \beta \Delta H^3 \Delta T / \mu^2$
- Ratio of buoyant forces to viscous forces

3. Loop Model in a System Code

System Analysis Module (SAM)

- Plant-level system tool for transient scenario safety analysis
- Built on MOOSE (finite element framewor¹)
 - High-order finite element method
- Fluid dynamics implementation: Incompressible, thermally expandable
 - Inherent buoyancy-driven circulation

$$\begin{split} &\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial z} = 0 \ , \\ &\frac{\partial (\rho u)}{\partial t} + \frac{\partial (\rho u u + p)}{\partial z} = -\rho g - \frac{f}{D_e} \frac{\rho u |u|}{2} \ , \\ &\frac{\partial (\rho H)}{\partial t} + \frac{\partial (\rho u H)}{\partial z} = q''' \ , \end{split}$$

System Code Simulation (most basic sense)

- Network of pipes and heat structures
- Illustrates a basic component simulated in a system code

Connect inlet/outlet of pipes to build entire flow system

Flow Area, Length Hydraulic Diameter Heated Perimeter

1D Navier Stokes

Specify form losses for area changes, junctions, branches

Friction loss, heat transfer coefficient: Specified, or determined in code logic

$$\begin{split} &\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial z} = 0 \ , \\ &\frac{\partial (\rho u)}{\partial t} + \frac{\partial (\rho u u + p)}{\partial z} = -\rho g - \frac{f}{D_e} \frac{\rho u |u|}{2} \ , \\ &\frac{\partial (\rho H)}{\partial t} + \frac{\partial (\rho u H)}{\partial z} = q''' \ , \end{split}$$

Model should be as Realistic as Possible

Mk1 design parameters for DHX (tube side) and TCHX (coiled tube side)

Parameter	DHX	TCHX	Unit
Water Temperature (T_{∞})	-	100	°C
Outside diameter	0.0127	0.0127	m
Inside diameter	0.0109	0.0109	m
Number of tubes	984	936	-
Tube length	2.5	6	m
Overall U	291	22.6	W/m ² -C
Heat Transfer Area	98	224	m ²

Liquid thermophysical properties for FLiBe (600-800°C)

Property	Correlation (T in °C)	Unit
Viscosity	$4.638 \cdot 10^5 / \mathrm{T}^{2.79}$	kg/m-s
Specific Heat	2415.78	J/kg-C
Thermal Conductivity	$0.7662 + 0.0005 \cdot T$	W/m-C
Density	2279.92 − 0.488 · T	kg/m ³

Simplifications for Comparison to Analysis

- Match flow lengths/heights/areas
- Match heat transfer areas, total heat addition at DHX, TCHX h-coefficient, etc.
- Make properties constant (except density)
- Emulate TCHX heat rejection fluid
- Make negligible the thermal inertia of solids and the junction losses
- Goal: corroborate linear stability analysis, demonstrate use of SAM for this purpose

4. Remove Sources of Numerical Instability

One Example of a Numerical Issue

Tank outflow temperature problem

One Example of a Numerical Issue

Tank outflow temperature problem 5 One possible approach: Use a function to set the tank inflow temperature as the outflow temperature boundary condition **TCHX** DHX

HEAT AND MASS TRANSPORT GROUP

heatandmass.ep.wisc.edu

5. Impose Transients, Observe Behavior

Stability Boundary: Three Test Samples

M. Abou Dbai, "Stability Analysis of a Molten FLiBe Natural Circulation Loop Using the Nyquist Criterion", UW-Madison, in Transactions of the American Nuclear Society, Vol. 118, Philadelphia, Pennsylvania, June 17-21, 2018

Stability Boundary: Three Test Samples

M. Abou Dbai, "Stability Analysis of a Molten FLiBe Natural Circulation Loop Using the Nyquist Criterion", UW-Madison, in Transactions of the American Nuclear Society, Vol. 118, Philadelphia, Pennsylvania, June 17-21, 2018

Impose Transient: Increase q and flow losses

Increase heat addition at DHX, add K-loss factors at junctions

Better Idea: Artificial Head Loss

Ramp up heat addition at DHX, ramp up anti-pump at junction

Stability Boundary: Three Test Samples

M. Abou Dbai, "Stability Analysis of a Molten FLiBe Natural Circulation Loop Using the Nyquist Criterion", UW-Madison, in Transactions of the American Nuclear Society, Vol. 118, Philadelphia, Pennsylvania, June 17-21, 2018

Test A

Test B

Test C

Test B: Parametric Gr vs Re Plot

Consider the Definition of Re and Gr

- $Re = \rho vD/\mu = \dot{m}D/\mu A$
- Define with mass flow, this is actually fine
- $Gr = \rho^2 g \beta \Delta H^3 \Delta T / \mu^2$
- Should be calculated from an integral, not constant properties
- First approximation: treat DHX as linear, use inlet and outlet ρ

Test B: More Realistic Calculation of Gr Modified Design: $q''=24082W/m^2$, Re=128, Gr=2.0E12 at SS; Gr=3.5E12 at Predicted Boundary 150--6e+12 145 5.5e+12 Gr 2 140 5e + 12Gr 2 ALT Re 2 135 4.5e+12 130 4e + 12Re 1 **2** 125 3.5e+12 **ن** 120 3e+12 Gr 1 115 2.5e+12 110 2e+12 Gr Case 1 Re Case 1 105 -1.5e+12 Gr Case 2 Re Case 2 Gr Case 2 AL1 100 1e+12 5600 5800 6000 34 2400 2600 2800 3000 3200 3600 3800 4000 4200 4400 4600 4800 5000 5200 3400 5400 Time (s)

Test B: Parametric Gr vs Re Plot

Test B: Parametric Improved Gr vs Re Plot

Test B: Parametric Improved Gr vs Re Plot

HEAT AND MASS TRANSPORT GROUP

heatandmass.ep.wisc.edu

6. Path Forward

Conclusions and Next Steps

- This code-to-theory comparison corroborates the use of linear stability analysis using the Nyquist Criterion for salt loops
- Exploration of the stability boundary with SAM is demonstrated, this is an integral effects verification test case

- Motivates continued use of stability analysis for more complex cases (add heat structure masses, etc.)
- Guide SAM stability studies of many possible scenarios_{10,13} using analytical results

steady-state solution

References

- P. K. Vijayan, A. K. Nayak, "Introduction to Instabilities in Natural Circulation Systems," no. May, pp. 17–21 (2010).
- C. Andreades, A. T. Cisneros, J. K. Choi, A. Y. K. Chong, M. Fratoni, S. Hong, L. R. Huddar, K. D. Huff, D. L. Krumwiede, M. R. Laufer, M. Munk, R. O. Scarlat, N. Zweibaum, E. Greenspan, P. F. Peterson, "Technical Description of the 'Mark 1' Pebble-Bed Fluoride-Salt-Cooled High-Temperature Reactor (PB-FHR) Power Plant," University of California - Berkeley, UCBTH-14-002 (2014).
- M. Abou Dbai, "Stability Analysis of a Molten FLiBe Natural Circulation Loop Using the Nyquist Criterion", University of Wisconsin-Madison, in *Transactions of the American Nuclear* Society, Vol. 118, Philadelphia, Pennsylvania, June 17-21, 2018

Acknowledgements

The work is supported under NEUP Grant DE-NE0008545 (Project 16-10647) Experimental and Modeling Investigation of Overcooling Transients that include Freezing, in Fluoride-Salt Cooled High-Temperature Reactors (FHRs). This material is based upon work supported under an Integrated University Program Graduate Fellowship.

U.S. Department of Energy

Acknowledgements to Dr. Rui Hu and Argonne National Laboratory for continued support and development of the SAM code

Special thanks to Mohamed Abou Dbai for permission to use figures and information from "Stability Analysis of a Molten FLiBe Natural Circulation Loop Using the Nyquist Criterion"

