ZANICHELLI

Lezioni di chimica organica

Lezione 6

Aldeidi, chetoni e acidi carbossilici

Aldeidi e chetoni: gruppo funzionale

I gruppi funzionali delle aldeidi e dei chetoni sono molto simili: per le aldeidi è —CHO, mentre per i chetoni è —CO—. Entrambi i gruppi funzionali contengono il raggruppamento $)_{C=0}$ detto carbonile.

Per questo motivo aldeidi e chetoni sono anche chiamati composti carbonilici.

Aldeidi e chetoni: proprietà fisiche

I punti di ebollizione delle aldeidi e dei chetoni sono più alti di quelli degli idrocarburi a uguale massa molecolare. Questo si deve all'elevata elettronegatività dell'atomo di ossigeno, che polarizza il legame carbonio-ossigeno e fa sì che tra le molecole di aldeidi e chetoni ci siano forti interazioni dipolo-dipolo. Gli alcoli corrispondenti, invece, bollono a temperature più elevate a causa dei legami a idrogeno, assenti in aldeidi e chetoni.

Modello molecolare dell'acetone (un chetone) con evidenziata la polarizzazione

Aldeidi e chetoni: nomenclatura

Il nome IUPAC delle aldeidi si ricava da quello dell'alcano corrispondente sostituendo alla –o finale il suffisso –ale. Analogamente il nome dei chetoni si ottiene col suffisso –one. È frequente tuttavia l'utilizzo della nomenclatura tradizionale per alcuni composti di uso comune.

Aldeidi e chetoni: reattività e diffusione

La reazione caratteristica dei composti carbonilici è l'addizione nucleofila grazie all'atomo di carbonio polarizzato del gruppo carbonile.

$$Nu: + C = O: \Rightarrow Nu - C - O: \Rightarrow Nu - C - O - H$$

Per la loro elevata reattività e il loro odore caratteristico, i composti carbonilici sono tra le molecole più diffuse a livello biologico.

Acidi carbossilici: gruppo funzionale

Gli **acidi carbossilici** sono caratterizzati dal gruppo funzionale —COOH, chiamato **gruppo carbossile**. Esso deriva dalla fusione tra il carbonile $)_{C=0}$ e il gruppo ossidrile —OH.

Carbossile o gruppo carbossilico

Acidi carbossilici: nomenclatura

La nomenclatura degli **acidi carbossilici** prevede l'aggiunta del suffisso *-oico* al nome dell'alcano corrispondente. Alla nomenclatura IUPAC ne è affiancata una corrente, tutt'ora in uso.

Nei nomi correnti si usano le lettere greche α , β , γ ... per designare gli atomi di carbonio che seguono al gruppo carbossile.

Acidi carbossilici: proprietà fisiche

Gli acidi carbossilici tendono a formare legami a idrogeno intermolecolari; pertanto presentano **punti di ebollizione** abbastanza alti.

In acqua sono solubili solo gli acidi formico, acetico e propionico.

Acidi carbossilici: proprietà chimiche

Gli acidi carbossilici sono acidi deboli, ma sono più forti dei fenoli e degli alcoli. Questo perché lo ione carbossilato è una base più debole sia dello ione alcossido sia dello ione fenossido a causa del suo elettrone delocalizzato su entrambi gli ossigeni e quindi meno disponibile a legare un protone.

formule di risonanza dello ione carbossilato

Acidi carbossilici: reattività (I)

A causa della loro acidità, gli acidi carbossilici reagiscono con basi forti per dare dei sali:

A partire dagli acidi carbossilici, con reagenti adeguati, si ottengono diversi derivati, tutti caratterizzati dalla presenza del **gruppo acilico** —RCO.

Acidi carbossilici: reattività (II)

I derivati degli acidi carbossilici si ottengono tramite reazioni di **sostituzione nucleofila acilica**. Essa avviene in due fasi: nella prima si ha *addizione* di un nucleofilo al carbonio carbonilico; nella seconda si ha *eliminazione* di un gruppo uscente (L) e riformazione del doppio legame — C=O.

Acidi carbossilici: diffusione e usi

Formula	Nome IUPAC (nome comune)	Proprietà e usi
НСООН	acido metanoico (acido formico)	Ha proprietà germicide. Si usa nell'industria della gomma.
CH₃COOH	acido etanoico (acido acetico)	È un ottimo solvente per composti organici e inorganici. Il comune aceto è una soluzione al 6% di acido acetico.
CH₃CH₂COOH	acido propanoico (acido propionico)	È usato come conservante (E 280) nel pane, nelle paste alimentari fresche e nelle patatine.
CH₃CH₂CH2COOH	acido butanoico (acido butirrico)	È contenuto nel burro rancido, in alcuni formaggi e, come gliceride, nel burro e nei grassi di origine animale.
CH ₃ —CH=CH—CH=CH—COOH	acido trans, trans-2,4- esadienoico (ac. sorbico)	Inibisce funghi e muffe e viene addizionato soprattutto ai formaggi (E 200).
$CH_3(CH_2)_7CH = CH(CH_2)_7COOH$	acido <i>cis</i> -ottadecenoico (acido oleico)	È il costituente più abbondante della maggioranza degli oli vegetali e rappresenta il 75% circa degli acidi dell'olio di oliva.
СООН	acido benzoico	Trova impiego come antimicrobico nelle bevande analcoliche e in pasticceria (E 210).
ноос—соон	acido etandioico (acido ossalico)	È utilizzato nell'industria tessile e per rimuovere le macchie di ruggine.
HOOC—CH ₂ —CH ₂ —COOH	acido butandioico (acido succinico)	Si trova nella lattuga e in altri prodotti vegetali.
ноос — соон	acido 1,4-benzendicar- bossilico (acido tereftalico)	È utilizzato nell'industria delle fibre sintetiche e per la produzione del PET per le bottiglie in plastica.
CH ₃ —CH—COOH OH	acido 2-idrossipropanoico (acido lattico)	È utilizzato come conservante per le olive (E 270).
COOH HOOC—CH ₂ —C—CH ₂ —COOH OH	acido 3-carbossi-3-idrossi- 1,5-pentandioico (acido citrico)	Usato nell'industria alimentare come acidulante (E 330). È contenuto nella frutta.
HOOC—CH—CH—COOH 	acido 2,3-diidrossibuta- ndioico (acido tartarico)	Entra nella formulazione di bevande analcoliche, caramelle, lieviti chimici (E 334). Si trova nella frutta e nel vino.
СООН	acido 2-idrossibenzoico (acido salicilico)	È utilizzato in grande quantità per produrre salicilato di metile e acido acetilsalicilico (aspirina).

ZANICHELLI