# Preuves en Déduction Naturelle pour le système de Spinoza

### D'après la formalisation de Jarrett

### 28 février 2025

### Table des matières

| 1 | Intr | oduction                    | 1         |
|---|------|-----------------------------|-----------|
| 2 |      | ation et symboles           | 2         |
|   | 2.1  | Lexique                     | 2         |
|   |      | 2.1.1 Opérateurs modaux     | 2         |
|   | 2.2  | Règles modales              | 2         |
|   |      | 2.2.1 Prédicats unaires     | 2         |
|   |      | 2.2.2 Prédicats binaires    | 2         |
|   |      | 2.2.3 Prédicats ternaires   | 3         |
|   | 2.3  | Définitions                 | 3         |
|   | 2.4  | Axiomes                     | 3         |
| 3 | Pre  | uves en déduction naturelle | 4         |
|   | 3.1  | Proposition 1 (P1)          | 4         |
|   | 3.2  | Proposition 2 (P2)          | 5         |
|   | 3.3  | Proposition 3 (P3)          | 6         |
|   | 3.4  | Lemmes intermédiaires       | 7         |
|   |      | 3.4.1 Lemme DP1             | 7         |
|   |      | 3.4.2 Lemme DP4             | 7         |
|   |      | 3.4.3 Lemme DP5             | 8         |
|   |      | 3.4.4 Lemme DP6             | 9         |
|   |      |                             | 10        |
|   | 3.5  |                             | 11        |
|   | 3.6  |                             | $12^{-1}$ |
|   | 3.7  |                             | 13        |
|   | 3.8  |                             | 14        |
|   | 3.9  |                             | 15        |
|   |      |                             | 16        |
|   |      | - , ,                       | 17        |
|   |      |                             | 18        |
|   |      | -                           | 19        |
|   |      |                             | 20        |
|   |      |                             | 20<br>20  |
|   |      | - ,                         | 20<br>21  |
|   |      |                             | 21<br>22  |
|   |      |                             | 22<br>22  |
|   |      |                             | 22<br>23  |
|   |      |                             | 23<br>24  |
|   |      |                             | 24<br>25  |
|   |      | 1 /                         |           |
|   |      | 1 ( )                       | 26<br>27  |
|   |      |                             | 27        |
|   |      | 1 /                         | 29        |
|   |      | 1 /                         | 30        |

### 1 Introduction

Ce document présente les preuves en déduction naturelle (système DN) pour les propositions principales de l'Éthique de Spinoza, d'après la formalisation de Charles Jarrett présentée dans  $The\ Logical\ Structure\ of\ Spinoza's\ Ethics,\ Part\ I$ 

### 2 Notation et symboles

### 2.1 Lexique

#### 2.1.1 Opérateurs modaux

- L(p): Nécessité logique p est logiquement nécessaire
- M(p): Possibilité p est possible
- N(p): Nécessité naturelle p est naturellement nécessaire

### 2.2 Règles modales

- **R1** :  $\forall P(L(P) \rightarrow N(P))$ 

La nécessité logique implique la nécessité naturelle

 $-\mathbf{R2}: \forall P(N(P) \to P)$ 

Axiome T pour la nécessité naturelle

— R3 :  $\forall P \forall Q (L(P \rightarrow Q) \rightarrow (L(P) \rightarrow L(Q)))$ 

Axiome K pour la nécessité logique

 $-\mathbf{R4}: \forall P(M(P) \to L(M(P)))$ 

Axiome S5 - possibilité et nécessité

 $-\mathbf{R5}: \forall P(P \to L(P))$ 

Règle de nécessitation

 $-- \mathbf{R6} : \forall P \forall Q (N(P \to Q) \to (N(P) \to N(Q)))$ 

Axiome de distributivité pour la nécessité naturelle

#### 2.2.1 Prédicats unaires

- $-A_1(x): x \text{ est un attribut}$
- $-B_1(x): x \text{ est libre}$
- $D_1(x): x$  est une instance de désir
- $-E_1(x): x \text{ est éternel}$
- $-F_1(x): x \text{ est fini}$
- $-G_1(x): x \text{ est un dieu}$
- $J_1(x): x$  est une instance d'amour
- $-K_1(x): x$  est une idée
- $-M_1(x): x \text{ est un mode}$
- $N_1(x): x$  est nécessaire
- $S_1(x): x$  est une substance
- $T_1(x): x \text{ est vrai}$
- $U_1(x): x$  est un intellect
- $-W_1(x): x \text{ est une volonté}$

#### 2.2.2 Prédicats binaires

- $-A_2(x,y): x \text{ est un attribut de } y$
- $C_2(x,y): x$  est conçu à travers y
- $-I_2(x,y): x \text{ est en } y$
- $-K_2(x,y): x$  est cause de y
- $-L_2(x,y): x \text{ limite } y$
- $-M_2(x,y): x \text{ est un mode de } y$
- $-O_2(x,y): x \text{ est un objet de } y$
- $-P_2(x,y): x \text{ est la puissance de } y$
- $--R_2(x,y): x$  a plus de réalité que y
- $V_2(x,y): x$  a plus d'attributs que y

#### 2.2.3 Prédicats ternaires

- $-C_3(x,y,z): x$  est commun à y et à z
- $D_3(x,y,z): x$  est divisible entre y et z

#### 2.3 Définitions

- $-\mathbf{D1}: K_2(x,x) \land \neg \exists y (y \neq x \land K_2(y,x)) \leftrightarrow L(\exists y (y=x))$ 
  - Causa sui ce dont l'essence implique l'existence
- $\mathbf{D2} : F_1(x) \leftrightarrow \exists y (y \neq x \land L_2(y, x) \land \forall z (A_2(z, x) \leftrightarrow A_2(z, y)))$ 
  - Une chose est finie quand elle peut être limitée par une autre de même nature
- $\mathbf{D3} : S_1(y) \leftrightarrow (I_2(y,y) \land C_2(y,y))$ 
  - Une substance est ce qui est en soi et est conçu par soi
- **D4a**:  $A_1(x) \leftrightarrow \exists y (S_1(y) \land I_2(x,y) \land C_2(x,y) \land I_2(y,x) \land C_2(y,x))$ 
  - Un attribut est ce que l'intellect perçoit de la substance comme constituant son essence
- **D4b** :  $A_2(x,y) \leftrightarrow (A_1(x) \land C_2(y,x))$ 
  - x est un attribut de y
- **D5a**:  $M_2(x,y) \leftrightarrow (x \neq y \land I_2(x,y) \land C_2(x,y))$ 
  - Un mode est ce qui est dans autre chose et est conçu par elle
- **D5b**:  $M_1(x) \leftrightarrow \exists y (S_1(y) \land M_2(x,y))$ 
  - x est un mode
- $\mathbf{D6} : G_1(x) \leftrightarrow (S_1(x) \land \forall y (A_1(y) \to A_2(y,x)))$ 
  - Dieu est une substance constituée d'une infinité d'attributs
- **D7a**:  $B_1(x) \leftrightarrow (K_2(x,x) \land \neg \exists y (y \neq x \land K_2(y,x)))$ 
  - Une chose est libre quand elle n'est cause que d'elle-même
- **D7b** :  $N_1(x) \leftrightarrow \exists y (y \neq x \land K_2(y, x))$ 
  - Une chose est nécessaire quand elle est déterminée par autre chose
- $\mathbf{D8} : E_1(x) \leftrightarrow L(\exists v(v=x))$ 
  - L'éternité est l'existence même en tant que nécessaire

#### 2.4 Axiomes

- **A1**:  $\forall x(I_2(x,x) \vee \exists y(y \neq x \wedge I_2(x,y)))$ 
  - Tout ce qui est, est soit en soi, soit en autre chose
- **A2**:  $\forall x((\neg \exists y(y \neq x \land C_2(x,y))) \leftrightarrow C_2(x,x))$ 
  - Ce qui ne peut être conçu par un autre doit être conçu par soi
- **A3**:  $\forall x \forall y (K_2(y,x) \rightarrow N((\exists v(v=y)) \leftrightarrow \exists v(v=x)))$ 
  - D'une cause déterminée suit nécessairement un effet
- **A4**:  $\forall x \forall y (K_2(x,y) \leftrightarrow C_2(y,x))$ 
  - La connaissance de l'effet dépend de la connaissance de la cause
- $\mathbf{A5} : \forall x \forall y ((\neg \exists z (C_3(z, x, y))) \leftrightarrow (\neg C_2(x, y) \land \neg C_2(y, x)))$ 
  - Les choses qui n'ont rien en commun ne peuvent être conçues l'une par l'autre
- **A6**:  $\forall x(K_1(x) \rightarrow (T_1(x) \leftrightarrow \exists y(O_2(y,x) \land K_2(x,y))))$ 
  - L'idée vraie doit s'accorder avec son objet
- **A7**:  $\forall x (M(\neg \exists y (y = x)) \leftrightarrow \neg L(\exists y (y = x)))$ 
  - Si une chose peut être conçue comme non existante, son essence n'implique pas l'existence
- $-\mathbf{A8}: \forall x \forall y (I_2(x,y) \to C_2(x,y))$ 
  - Si x est en y alors x est conçu par y
- **A9** :  $\forall x(\exists y(A_2(y,x)))$ 
  - Toute chose a un attribut
- **A10**:  $\forall x \forall y \forall z (D_3(x,y,z) \rightarrow M(\neg \exists w(w=x)))$ 
  - Si x est divisible en y et z alors il est possible que x n'existe pas
- - Si x est une substance et y limite x alors y est une substance
- **A12**:  $\forall x((\exists y(M_2(x,y))) \rightarrow M_1(x))$ 
  - Si x est un mode de quelque chose alors x est un mode
- **A13** :  $M(\exists x(G_1(x)))$ 
  - Il est possible qu'un Dieu existe
- **A14**:  $\forall x (N(\exists y (y = x)) \leftrightarrow \neg F_1(x))$ 
  - x existe nécessairement si et seulement si x n'est pas fini

### 3 Preuves en déduction naturelle

### 3.1 Proposition 1 (P1)

Si x est un mode de y et y est une substance, alors x est en y et y est en soi.

$$\forall x \forall y (M_2(x,y) \land S_1(y) \rightarrow I_2(x,y) \land I_2(y,y))$$

## 3.2 Proposition 2 (P2)

Deux substances ayant des attributs différents n'ont rien en commun entre elles.

$$\forall x \forall y (S_1(x) \land S_1(y) \land x \neq y \rightarrow \neg \exists z (C_3(z, x, y)))$$

| 1  | $S_1(x) \wedge S_1(y) \wedge x \neq y$                                                               |                         |
|----|------------------------------------------------------------------------------------------------------|-------------------------|
| 2  | $S_1(x)$                                                                                             | $\wedge E$ , 1          |
| 3  | $S_1(y)$                                                                                             | $\wedge E$ , 1          |
| 4  | $x \neq y$                                                                                           | $\wedge E$ , 1          |
| 5  | $S_1(x) \leftrightarrow (I_2(x,x) \land C_2(x,x))$                                                   | D3                      |
| 6  | $I_2(x,x) \wedge C_2(x,x)$                                                                           | $\Rightarrow$ E, 2, 5   |
| 7  | $C_2(x,x)$                                                                                           | $\wedge E, 6$           |
| 8  | $S_1(y) \leftrightarrow (I_2(y,y) \land C_2(y,y))$                                                   | D3                      |
| 9  | $I_2(y,y) \wedge C_2(y,y)$                                                                           | $\Rightarrow$ E, 3, 8   |
| 10 | $C_2(y,y)$                                                                                           | $\wedge E, 9$           |
| 11 | $(\neg \exists z (z \neq x \land C_2(x, z))) \leftrightarrow C_2(x, x)$                              | A2                      |
| 12 | $C_2(x,x) \to \neg \exists z (z \neq x \land C_2(x,z))$                                              | ∧E, 11                  |
| 13 | $\neg \exists z (z \neq x \land C_2(x, z))$                                                          | $\Rightarrow$ E, 7, 12  |
| 14 | $\neg (y \neq x \land C_2(x,y))$                                                                     | $\forall E, 13$         |
| 15 | $y \neq x \rightarrow \neg C_2(x, y)$                                                                | ⇒E, 14                  |
| 16 | $x \neq y \to y \neq x$                                                                              | Logique                 |
| 17 | $x \neq y$                                                                                           | $\wedge E$ , 1          |
| 18 | $y \neq x$                                                                                           | $\Rightarrow$ E, 17, 16 |
| 19 | $\neg C_2(x,y)$                                                                                      | $\Rightarrow$ E, 18, 15 |
| 20 | $(\neg \exists z (z \neq y \land C_2(y, z))) \leftrightarrow C_2(y, y)$                              | A2                      |
| 21 | $C_2(y,y) \to \neg \exists z (z \neq y \land C_2(y,z))$                                              | $\wedge E$ , 20         |
| 22 | $\neg \exists z (z \neq y \land C_2(y, z))$                                                          | ⇒E, 10, 21              |
| 23 | $\neg(x \neq y \land C_2(y, x))$                                                                     | $\forall E, 22$         |
| 24 | $x \neq y \to \neg C_2(y, x)$                                                                        | ⇒E, 23                  |
| 25 | $\neg C_2(y,x)$                                                                                      | $\Rightarrow$ E, 4, 24  |
| 26 | $(\neg \exists z (C_3(z, x, y))) \leftrightarrow (\neg C_2(x, y) \land \neg C_2(y, x))$              | A5                      |
| 27 | $(\neg C_2(x,y) \land \neg C_2(y,x)) \to \neg \exists z (C_3(z,x,y))$                                | $\wedge E, 26$          |
| 28 | $\neg C_2(x,y) \land \neg C_2(y,x)$                                                                  | $\land I,\ 19,\ 25$     |
| 29 | $\neg \exists z (C_3(z, x, y))$                                                                      | ⇒E, 28, 27              |
| 30 | $S_1(x) \wedge S_1(y) \wedge x \neq y \rightarrow \neg \exists z (C_3(z, x, y))$                     | $\Rightarrow$ I, 1–29   |
| 31 | $\forall y (S_1(x) \land S_1(y) \land x \neq y \to \neg \exists z (C_3(z, x, y)))$                   | $\forall I, 30$         |
| 32 | $\forall x \forall y (S_1(x) \land S_1(y) \land x \neq y \rightarrow \neg \exists z (C_3(z, x, y)))$ | ∀I, 31                  |

### 3.3 Proposition 3 (P3)

Des choses qui n'ont rien en commun entre elles ne peuvent être cause l'une de l'autre.

$$\forall x \forall y (\neg \exists z (C_3(z, x, y)) \rightarrow \neg K_2(x, y) \land \neg K_2(y, x))$$

### 3.4 Lemmes intermédiaires

#### 3.4.1 Lemme DP1

x est une substance si et seulement si x est en soi.

$$\forall x(S_1(x) \leftrightarrow I_2(x,x))$$

#### 3.4.2 Lemme DP4

Une substance est sa propre cause.

$$\forall x(S_1(x) \to K_2(x,x))$$

$$\begin{array}{c|cccc}
1 & & & & & & & & & & & & \\
2 & & & & & & & & & & & \\
3 & & & & & & & & & & \\
3 & & & & & & & & & \\
4 & & & & & & & & \\
4 & & & & & & & & \\
5 & & & & & & & \\
4 & & & & & & & \\
5 & & & & & & \\
6 & & & & & & \\
6 & & & & & & \\
7 & & & & & & \\
8 & & & & & \\
8 & & & & & \\
8 & & & & & \\
9 & & & & & \\
9 & & & & & \\
9 & & & & & \\
9 & & & & & \\
9 & & & & & \\
9 & & & & & \\
9 & & & & & \\
9 & & & & & \\
9 & & & & & \\
9 & & & & \\
9 & & & & \\
9 & & & & \\
9 & & & & \\
9 & & & & \\
9 & & & & \\
9 & & & & \\
9 & & & & \\
9 & & & & \\
9 & & & & \\
9 & & & & \\
9 & & & \\
9 & & & \\
9 & & & \\
9 & & & \\
9 & & & \\
9 & & & \\
9 & & & \\
9 & & & \\
9 & & & \\
9 & & & \\
9 & & & \\
9 & & & \\
9 & & & \\
9 & & & \\
9 & & & \\
9 & & & \\
9 & & & \\
9 & & & \\
9 & & & \\
9 & & & \\
9 & & \\
9 & & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 & & \\
9 &$$

### 3.4.3 Lemme DP5

Toute chose est soit une substance soit un mode.  $\,$ 

$$\forall x (S_1(x) \vee M_1(x))$$

| 1  | $\forall x (I_2(x,x) \vee \exists y (y \neq x \wedge I_2(x,y)))$    | A1                             |
|----|---------------------------------------------------------------------|--------------------------------|
| 2  | $I_2(x,x) \vee \exists y (y \neq x \wedge I_2(x,y))$                | $\forall E, 1$                 |
| 3  | $I_2(x,x)$                                                          |                                |
| 4  | $S_1(x) \leftrightarrow I_2(x,x)$                                   | DP1                            |
| 5  | $S_1(x)$                                                            | $\Rightarrow$ E, 3, 4          |
| 6  | $S_1(x) \vee M_1(x)$                                                | $\vee I, 5$                    |
| 7  | $\exists y(y \neq x \land I_2(x,y))$                                |                                |
| 8  | $y \neq x \wedge I_2(x,y)$                                          |                                |
| 9  | $y \neq x$                                                          | $\wedge E, 8$                  |
| 10 | $I_2(x,y)$                                                          | ∧E, 8                          |
| 11 | $I_2(x,y) \to C_2(x,y)$                                             | A8                             |
| 12 | $C_2(x,y)$                                                          | ⇒E, 10, 11                     |
| 13 | $y \neq x \land I_2(x,y) \land C_2(x,y)$                            | $\land I,9,10,12$              |
| 14 | $M_2(x,y) \leftrightarrow (x \neq y \land I_2(x,y) \land C_2(x,y))$ | D5a                            |
| 15 | $x \neq y \leftrightarrow y \neq x$                                 | Logique                        |
| 16 | $x \neq y$                                                          | $\Rightarrow$ E, 9, 15         |
| 17 | $x \neq y \land I_2(x,y) \land C_2(x,y)$                            | $\land I,16,10,12$             |
| 18 | $M_2(x,y)$                                                          | ⇒E, 17, 14                     |
| 19 | $(\exists y(M_2(x,y))) \to M_1(x)$                                  | A12                            |
| 20 | $\exists y (M_2(x,y))$                                              | ∃I, 18                         |
| 21 | $M_1(x)$                                                            | $\Rightarrow$ E, 20, 19        |
| 22 | $S_1(x) \vee M_1(x)$                                                | $\vee I, 21$                   |
| 23 | $S_1(x) \vee M_1(x)$                                                | $\exists E,  7,  8\!\!-\!\!22$ |
| 24 | $S_1(x) \vee M_1(x)$                                                | $\vee E, 2, 3-6, 7-23$         |
| 25 | $\forall x (S_1(x) \vee M_1(x))$                                    | $\forall I, 24$                |

### 3.4.4 Lemme DP6

Une substance et un mode ne peuvent jamais être la même chose.

$$\forall x(\neg(S_1(x) \land M_1(x)))$$

| 1  | $S_1(x) \wedge M_1(x)$                                                  |                         |
|----|-------------------------------------------------------------------------|-------------------------|
| 2  | $S_1(x)$                                                                | $\wedge E$ , 1          |
| 3  | $M_1(x)$                                                                | $\wedge E$ , 1          |
| 4  | $M_1(x) \leftrightarrow \exists y (S_1(y) \land M_2(x,y))$              | D5b                     |
| 5  | $\exists y (S_1(y) \land M_2(x,y))$                                     | $\Rightarrow$ E, 3, 4   |
| 6  | $S_1(y) \wedge M_2(x,y)$                                                |                         |
| 7  | $M_2(x,y)$                                                              | $\wedge E, 6$           |
| 8  | $M_2(x,y) \leftrightarrow (x \neq y \land I_2(x,y) \land C_2(x,y))$     | D5a                     |
| 9  | $x \neq y \land I_2(x,y) \land C_2(x,y)$                                | $\Rightarrow$ E, 7, 8   |
| 10 | $x \neq y$                                                              | $\wedge E, 9$           |
| 11 | $C_2(x,y)$                                                              | $\wedge E, 9$           |
| 12 | $S_1(x) \leftrightarrow (I_2(x,x) \wedge C_2(x,x))$                     | D3                      |
| 13 | $I_2(x,x) \wedge C_2(x,x)$                                              | $\Rightarrow$ E, 2, 12  |
| 14 | $C_2(x,x)$                                                              | $\wedge E$ , 13         |
| 15 | $(\neg \exists z (z \neq x \land C_2(x, z))) \leftrightarrow C_2(x, x)$ | A2                      |
| 16 | $C_2(x,x) \to \neg \exists z (z \neq x \land C_2(x,z))$                 | $\wedge E$ , 15         |
| 17 | $\neg \exists z (z \neq x \land C_2(x, z))$                             | $\Rightarrow$ E, 14, 16 |
| 18 | $\neg (y \neq x \land C_2(x,y))$                                        | $\forall E, 17$         |
| 19 | $y \neq x \leftrightarrow x \neq y$                                     | Logique                 |
| 20 | $y \neq x$                                                              | $\Rightarrow$ E, 10, 19 |
| 21 | $y \neq x \land C_2(x,y)$                                               | $\wedge I, 20, 11$      |
| 22 |                                                                         | $\wedge I$ , 18, 21     |
| 23 | <u> </u> _                                                              | $\perp E, 22$           |
| 24 |                                                                         | $\exists E, 5, 623$     |
| 25 | $\neg (S_1(x) \land M_1(x))$                                            | $\neg I,\ 124$          |
| 26 | $\forall x (\neg (S_1(x) \land M_1(x)))$                                | $\forall I, 25$         |
|    |                                                                         |                         |

### 3.4.5 Lemme DP7

Si x est un attribut de y et y est une substance, alors x=y.

$$\forall x \forall y (A_2(x,y) \land S_1(y) \to x = y)$$

| 1  | $A_2(x,y) \wedge S_1(y)$                                                |                         |
|----|-------------------------------------------------------------------------|-------------------------|
| 2  | $A_2(x,y)$                                                              | ∧E, 1                   |
| 3  | $S_1(y)$                                                                | ∧E, 1                   |
| 4  | $A_2(x,y) \leftrightarrow (A_1(x) \land C_2(y,x))$                      | D4b                     |
| 5  | $A_1(x) \wedge C_2(y,x)$                                                | $\Rightarrow$ E, 2, 4   |
| 6  | $C_2(y,x)$                                                              | $\wedge E, 5$           |
| 7  | $S_1(y) \leftrightarrow (I_2(y,y) \land C_2(y,y))$                      | D3                      |
| 8  | $I_2(y,y) \wedge C_2(y,y)$                                              | $\Rightarrow$ E, 3, 7   |
| 9  | $C_2(y,y)$                                                              | $\wedge E, 8$           |
| 10 | $(\neg \exists z (z \neq y \land C_2(y, z))) \leftrightarrow C_2(y, y)$ | A2                      |
| 11 | $C_2(y,y) \to \neg \exists z (z \neq y \land C_2(y,z))$                 | $\wedge E$ , 10         |
| 12 | $\neg \exists z (z \neq y \land C_2(y, z))$                             | ⇒E, 9, 11               |
| 13 | $\neg(x \neq y \land C_2(y, x))$                                        | $\forall E, 12$         |
| 14 | $x \neq y \to \neg C_2(y, x)$                                           | ⇒E, 13                  |
| 15 | $C_2(y,x) \to \neg (x \neq y)$                                          | Contraposée             |
| 16 | $C_2(y,x)$                                                              | R, 6                    |
| 17 | $\neg(x \neq y)$                                                        | $\Rightarrow$ E, 16, 15 |
| 18 | x = y                                                                   | ¬E, 17                  |
| 19 | $A_2(x,y) \wedge S_1(y) \to x = y$                                      | $\Rightarrow$ I, 1–18   |
| 20 | $\forall y (A_2(x,y) \land S_1(y) \to x = y)$                           | $\forall I, 19$         |
| 21 | $\forall x \forall y (A_2(x,y) \land S_1(y) \to x = y)$                 | $\forall I, 20$         |

### 3.5 Théorème DPI

Tout est soit une substance, soit un mode, mais pas les deux.

$$\forall x ((S_1(x) \land \neg M_1(x)) \lor (\neg S_1(x) \land M_1(x)))$$

### 3.6 Théorème DPII

Une substance est ses propres attributs.

$$\forall x(S_1(x) \to A_2(x,x))$$

| 1  | $S_1(x)$                                                                                                |                         |
|----|---------------------------------------------------------------------------------------------------------|-------------------------|
| 2  | $A_2(x,y) \leftrightarrow (A_1(x) \wedge C_2(y,x))$                                                     | D4b                     |
| 3  | $S_1(x) \leftrightarrow (I_2(x,x) \land C_2(x,x))$                                                      | D3                      |
| 4  | $I_2(x,x) \wedge C_2(x,x)$                                                                              | $\Rightarrow$ E, 1, 3   |
| 5  | $C_2(x,x)$                                                                                              | $\wedge E, 4$           |
| 6  | $A_1(x) \wedge C_2(x,x)$                                                                                |                         |
| 7  | $A_2(x,x)$                                                                                              | $\Rightarrow$ E, 6, 2   |
| 8  | $A_1(x) \wedge C_2(x,x) \rightarrow A_2(x,x)$                                                           | ⇒I, 6–7                 |
| 9  | $A_1(x) \leftrightarrow \exists y (S_1(y) \land I_2(x,y) \land C_2(x,y) \land I_2(y,x) \land C_2(y,x))$ | D4a                     |
| 10 | $\exists y (S_1(y) \land I_2(x,y) \land C_2(x,y) \land I_2(y,x) \land C_2(y,x)) \rightarrow A_1(x)$     | $\wedge E, 9$           |
| 11 | $S_1(x) \wedge I_2(x,x) \wedge C_2(x,x) \wedge I_2(x,x) \wedge C_2(x,x)$                                | $\land I,1,4,4$         |
| 12 | $\exists y (S_1(y) \land I_2(x,y) \land C_2(x,y) \land I_2(y,x) \land C_2(y,x))$                        | ∃I, 11                  |
| 13 | $A_1(x)$                                                                                                | $\Rightarrow$ E, 12, 10 |
| 14 | $A_1(x) \wedge C_2(x,x)$                                                                                | $\wedge I$ , 13, 5      |
| 15 | $A_2(x,x)$                                                                                              | ⇒E, 14, 8               |
| 16 | $S_1(x) 	o A_2(x,x)$                                                                                    | $\Rightarrow$ I, 1–15   |
| 17 | $\forall x(S_1(x) \to A_2(x,x))$                                                                        | $\forall I, 16$         |

#### 3.7 Théorème DPIII

Quelque chose est une substance si et seulement si elle est causa sui.

$$\forall x(S_1(x) \leftrightarrow K_2(x,x))$$

### 3.8 Proposition 4 (P4)

Deux ou plusieurs choses distinctes ne peuvent se distinguer que par la diversité des attributs de leurs substances, ou par la diversité des affections de ces mêmes substances.

$$\forall x \forall y (x \neq y \rightarrow \exists z \exists z' ((A_2(z,x) \land A_2(z',y) \land z \neq z') \lor (A_2(z,x) \land z = x \land M_1(y)) \lor (A_2(z',y) \land z' = y \land M_1(x)) \lor (M_1(x) \land M_1(y))))$$

```
1
2
                                                                                                                                                                                                                  DPI
              \forall a((S_1(a) \land \neg M_1(a)) \lor (\neg S_1(a) \land M_1(a)))
3
              (S_1(x) \wedge \neg M_1(x)) \vee (\neg S_1(x) \wedge M_1(x))
                                                                                                                                                                                                                  ∀E. 2
                   S_1(x) \wedge \neg M_1(x)
4
5
                    S_1(x)
                                                                                                                                                                                                                  ∧E, 4
                                                                                                                                                                                                                  \forall E, 2
6
                    (S_1(y) \land \neg M_1(y)) \lor (\neg S_1(y) \land M_1(y))
7
                         S_1(y) \wedge \neg M_1(y)
8
                         S_1(y)
                                                                                                                                                                                                                  ∧E. 7
                         \forall a(S_1(a) \to A_2(a,a))
                                                                                                                                                                                                                  DPII
10
                         S_1(x) \to A_2(x,x)
                                                                                                                                                                                                                  \forall E, 9
11
                         A_2(x,x)
                                                                                                                                                                                                                  \RightarrowE, 5, 10
                         S_1(y) \to A_2(y,y)
12
                                                                                                                                                                                                                  ∀E. 9
13
                         A_2(y,y)
                                                                                                                                                                                                                  \RightarrowE, 8, 12
14
                         A_2(x,x) \wedge A_2(y,y) \wedge x \neq y
                                                                                                                                                                                                                  \wedge I,\ 11,\ 13,\ 1
15
                         \exists z \exists z' (A_2(z, x) \land A_2(z', y) \land z \neq z')
                                                                                                                                                                                                                  ∃I, 14
                         \exists z \exists z' ((A_2(z,x) \land A_2(z',y) \land z \neq z') \lor (A_2(z,x) \land z = x \land M_1(y)) \lor (A_2(z',y) \land z' = y \land M_1(x)) \lor (M_1(x) \land M_1(y)))
16
                                                                                                                                                                                                                  ∨I, 15
17
                          \neg S_1(y) \wedge M_1(y)
                         M_1(y)
                                                                                                                                                                                                                  ∧E, 17
18
                         A_2(x,x)
                                                                                                                                                                                                                  ⇒E, 5, 10
19
                                                                                                                                                                                                                  \wedge I, 19, ??, 18
20
                         A_2(x,x) \wedge x = x \wedge M_1(y)
                                                                                                                                                                                                                  ∃I 20
                         \exists z \exists z' (A_2(z,x) \land z = x \land M_1(y))
21
22
                         \exists z\exists z'((A_2(z,x) \land A_2(z',y) \land z \neq z') \lor (A_2(z,x) \land z = x \land M_1(y)) \lor (A_2(z',y) \land z' = y \land M_1(x)) \lor (M_1(x) \land M_1(y)))
                                                                                                                                                                                                                  VI. 21
                    \exists z \exists z' ((A_2(z,x) \land A_2(z',y) \land z \neq z') \lor (A_2(z,x) \land z = x \land M_1(y)) \lor (A_2(z',y) \land z' = y \land M_1(x)) \lor (M_1(x) \land M_1(y)))
23
                                                                                                                                                                                                                  \vee E,\ 6,\ 7\text{--}16,\ 17\text{--}22
24
                    \neg S_1(x) \wedge M_1(x)
                    M_1(x)
25
                                                                                                                                                                                                                  \wedge E, 24
                    (S_1(y) \wedge \neg M_1(y)) \vee (\neg S_1(y) \wedge M_1(y))
                                                                                                                                                                                                                  ∀E. 2
26
                         S_1(y) \wedge \neg M_1(y)
27
28
                         S_1(y)
                                                                                                                                                                                                                  ∧E, 27
29
                         S_1(y) \to A_2(y,y)
                                                                                                                                                                                                                  ∀E, 9
                                                                                                                                                                                                                  \RightarrowE, 28, 29
30
                         A_2(y,y)
                                                                                                                                                                                                                  ∧I, 30, ??, 25
31
                         A_2(y,y) \wedge y = y \wedge M_1(x)
32
                         \exists z \exists z' (A_2(z', y) \land z' = y \land M_1(x))
                                                                                                                                                                                                                  ∃I, 31
                         \exists z \exists z' ((A_2(z,x) \land A_2(z',y) \land z \neq z') \lor (A_2(z,x) \land z = x \land M_1(y)) \lor (A_2(z',y) \land z' = y \land M_1(x)) \lor (M_1(x) \land M_1(y)))
                                                                                                                                                                                                                  ∨I, 32
33
34
                         \neg S_1(y) \wedge M_1(y)
35
                         M_1(y)
                                                                                                                                                                                                                  ∧E, 34
36
                         M_1(x) \wedge M_1(y)
                                                                                                                                                                                                                  ∧I, 25, 35
37
                         \exists z \exists z' (M_1(x) \land M_1(y))
                                                                                                                                                                                                                  ∃I, 36
                         \exists z\exists z'((A_2(z,x)\wedge A_2(z',y)\wedge z\neq z')\vee (A_2(z,x)\wedge z=x\wedge M_1(y))\vee (A_2(z',y)\wedge z'=y\wedge M_1(x))\vee (M_1(x)\wedge M_1(y)))
                                                                                                                                                                                                                  ∨I, 37
38
39
                   \exists z \exists z' ((A_2(z,x) \land A_2(z',y) \land z \neq z') \lor (A_2(z,x) \land z = x \land M_1(y)) \lor (A_2(z',y) \land z' = y \land M_1(x)) \lor (M_1(x) \land M_1(y)))
                                                                                                                                                                                                                  \vee E,\ 26,\ 27\text{--}33,\ 34\text{--}38
              \exists z \exists z' ((A_2(z,x) \land A_2(z',y) \land z \neq z') \lor (A_2(z,x) \land z = x \land M_1(y)) \lor (A_2(z',y) \land z' = y \land M_1(x)) \lor (M_1(x) \land M_1(y)))
40
                                                                                                                                                                                                                  VE, 3, 4-23, 24-39
41
         x \neq y \rightarrow \exists z \exists z' ((A_2(z,x) \land A_2(z',y) \land z \neq z') \lor (A_2(z,x) \land z = x \land M_1(y)) \lor (A_2(z',y) \land z' = y \land M_1(x)) \lor (M_1(x) \land M_1(y)))
                                                                                                                                                                                                                  ⇒I, 1–40
         \forall y(x \neq y \rightarrow \exists z \exists z'((A_2(z,x) \land A_2(z',y) \land z \neq z') \lor (A_2(z,x) \land z = x \land M_1(y)) \lor (A_2(z',y) \land z' = y \land M_1(x)) \lor (M_1(x) \land M_1(y))))
                                                                                                                                                                                                                  ∀I, 41
42
43
         \forall x \forall y (x \neq y \rightarrow \exists z \exists z' ((A_2(z,x) \land A_2(z',y) \land z \neq z') \lor (A_2(z,x) \land z = x \land M_1(y)) \lor (A_2(z',y) \land z' = y \land M_1(x)) \lor (M_1(x) \land M_1(y))))
                                                                                                                                                                                                                  \forall I, 42
```

### 3.9 Proposition 5 (P5)

Il ne peut y avoir, dans la nature des choses, deux ou plusieurs substances de même nature, ou, en d'autres termes, de même attribut.

$$\forall x \forall y (S_1(x) \land S_1(y) \land x \neq y \rightarrow \neg \exists z (A_2(z,x) \land A_2(z,y)))$$

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1  | $S_1(x) \wedge S_1(y) \wedge x \neq y$                                                                          |                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------------------------------------------------------------------------------------------------------|-----------------------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2  | $S_1(x)$                                                                                                        | $\wedge E$ , 1        |
| $\begin{array}{ c c c c c }\hline 5 & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3  | $S_1(y)$                                                                                                        | $\wedge E$ , 1        |
| $ \begin{array}{ c c c c }\hline 6 & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4  | $x \neq y$                                                                                                      | $\wedge E$ , 1        |
| $ \begin{array}{ c c c c c } \hline 7 & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5  | $\exists z (A_2(z,x) \land A_2(z,y))$                                                                           |                       |
| $ \begin{array}{ c c c c c } 8 & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6  | $A_2(z,x) \wedge A_2(z,y)$                                                                                      |                       |
| 9   $\forall a \forall b (A_2(a,b) \land S_1(b) \rightarrow a = b)$ DP7   $A_2(z,x) \land S_1(x) \rightarrow z = x$ $\forall E, 9$   $A_2(z,x) \land S_1(x)$ $\land I, 7, 2$   $z = x$ $\Rightarrow E, 11, 10$   $A_2(z,y) \land S_1(y) \rightarrow z = y$ $\forall E, 9$   $A_2(z,y) \land S_1(y) \rightarrow z = y$ $\Rightarrow E, 14, 13$   $A_2(z,y) \land S_1(y)$ $\Rightarrow E, 14, 13$   $A_2(z,y) \land S_1(y)$ $\Rightarrow E, 14, 13$   $A_2(z,y) \land S_2(y)$   $A_2(z,y) \land S_2(y)$   $A_2(z,y) \land S_2(y)$   $A_2(z,y) \land S_2(z,y)$   $A_2(z,y) \land S_2(z,y)$ | 7  | $A_2(z,x)$                                                                                                      | $\wedge E, 6$         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8  | $A_2(z,y)$                                                                                                      | $\wedge E, 6$         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9  | $\forall a \forall b (A_2(a,b) \land S_1(b) \to a = b)$                                                         | DP7                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 | $A_2(z,x) \wedge S_1(x) \to z = x$                                                                              | $\forall E, 9$        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11 | $A_2(z,x) \wedge S_1(x)$                                                                                        | $\wedge I, 7, 2$      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12 | z = x                                                                                                           | ⇒E, 11, 10            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13 | $A_2(z,y) \wedge S_1(y) \to z = y$                                                                              | $\forall E, 9$        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14 | $A_2(z,y) \wedge S_1(y)$                                                                                        | $\wedge I, 8, 3$      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15 | $  \qquad   \qquad   \qquad   z = y$                                                                            | ⇒E, 14, 13            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16 |                                                                                                                 | $\wedge I$ , 12, 15   |
| 19   $x \neq y$ R, 4<br>20   $x = y \land x \neq y$ $\land$ I, 18, 19<br>21   $\bot$ $\bot$ $\bot$ E, 20<br>22   $\bot$ $\lnot \exists z (A_2(z, x) \land A_2(z, y))$ $\lnot$ I, 5–22<br>23   $\lnot \exists z (A_2(z, x) \land A_2(z, y))$ $\lnot$ I, 5–22<br>24   $S_1(x) \land S_1(y) \land x \neq y \rightarrow \lnot \exists z (A_2(z, x) \land A_2(z, y))$ $\Rightarrow$ I, 1–23<br>25   $\forall y (S_1(x) \land S_1(y) \land x \neq y \rightarrow \lnot \exists z (A_2(z, x) \land A_2(z, y)))$ $\forall$ I, 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17 | x = z                                                                                                           | 12                    |
| 20 $x = y \land x \neq y$ $\land$ I, 18, 19<br>21 $x = y \land x \neq y$ $\Rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18 | x = y                                                                                                           | 17,15                 |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19 | $x \neq y$                                                                                                      | R, 4                  |
| 22 $\begin{vmatrix} \bot & \exists E, 5, 6-21 \\ -\exists z (A_2(z,x) \land A_2(z,y)) & \neg I, 5-22 \\ 24 & S_1(x) \land S_1(y) \land x \neq y \rightarrow \neg \exists z (A_2(z,x) \land A_2(z,y)) & \Rightarrow I, 1-23 \\ \forall y (S_1(x) \land S_1(y) \land x \neq y \rightarrow \neg \exists z (A_2(z,x) \land A_2(z,y))) & \forall I, 24 \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20 |                                                                                                                 | ∧I, 18, 19            |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21 |                                                                                                                 | $\perp$ E, 20         |
| 24 $S_1(x) \wedge S_1(y) \wedge x \neq y \rightarrow \neg \exists z (A_2(z, x) \wedge A_2(z, y))$ $\Rightarrow I, 1-23$<br>25 $\forall y (S_1(x) \wedge S_1(y) \wedge x \neq y \rightarrow \neg \exists z (A_2(z, x) \wedge A_2(z, y)))$ $\forall I, 24$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22 |                                                                                                                 | $\exists E, 5, 621$   |
| 25 $\forall y (S_1(x) \land S_1(y) \land x \neq y \rightarrow \neg \exists z (A_2(z,x) \land A_2(z,y)))$ $\forall I, 24$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23 | $\neg \exists z (A_2(z,x) \land A_2(z,y))$                                                                      | $\neg I, 5-22$        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24 | $S_1(x) \land S_1(y) \land x \neq y \rightarrow \neg \exists z (A_2(z,x) \land A_2(z,y))$                       | $\Rightarrow$ I, 1–23 |
| 26 $\forall x \forall y (S_1(x) \land S_1(y) \land x \neq y \rightarrow \neg \exists z (A_2(z,x) \land A_2(z,y)))$ $\forall I, 25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25 | $\forall y (S_1(x) \land S_1(y) \land x \neq y \rightarrow \neg \exists z (A_2(z,x) \land A_2(z,y)))$           | $\forall I, 24$       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26 | $\forall x \forall y (S_1(x) \land S_1(y) \land x \neq y \rightarrow \neg \exists z (A_2(z,x) \land A_2(z,y)))$ | $\forall I, 25$       |

### 3.10 Proposition 6 (P6)

Une substance ne peut être produite par une autre substance.

$$\forall x \forall y (S_1(x) \land S_1(y) \land x \neq y \rightarrow \neg (K_2(x,y) \land \neg K_2(y,x)))$$

# 3.11 Corollaire de la Proposition 6 (P6c)

Une substance ne peut être produite par autre chose.

$$\forall x (S_1(x) \to \neg(\exists y (y \neq x \land K_2(y, x))))$$

| 1  |                                                                                      | $S_1(x)$            | _                                                                                  |                       |
|----|--------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------|-----------------------|
| 2  | $S_1(x) \leftrightarrow (I_2(x,x) \land C_2(x,x))$                                   |                     |                                                                                    | D3                    |
| 3  |                                                                                      | $I_2(x, x)$         | $(x) \wedge C_2(x,x)$                                                              | $\Rightarrow$ E, 1, 2 |
| 4  |                                                                                      | $C_2(x,$            | x)                                                                                 | $\wedge E, 3$         |
| 5  |                                                                                      | $(\neg \exists z ($ | $z \neq x \land C_2(x,z))) \leftrightarrow C_2(x,x)$                               | A2                    |
| 6  |                                                                                      | $C_2(x,$            | $(x) \to \neg \exists z (z \neq x \land C_2(x, z))$                                | $\wedge E, 5$         |
| 7  |                                                                                      | $\neg \exists z (z$ | $z \neq x \wedge C_2(x,z)$                                                         | $\Rightarrow$ E, 4, 6 |
| 8  |                                                                                      | $\Box y$            | $y(y \neq x \wedge K_2(y,x))$                                                      |                       |
| 9  |                                                                                      |                     | $y \neq x \land K_2(y, x)$                                                         |                       |
| 10 |                                                                                      |                     | $y \neq x$                                                                         | $\wedge E, 9$         |
| 11 |                                                                                      |                     | $K_2(y,x)$                                                                         | $\wedge E, 9$         |
| 12 |                                                                                      |                     | $\forall a \forall b (K_2(a,b) \leftrightarrow C_2(b,a))$                          | A4                    |
| 13 |                                                                                      |                     | $K_2(y,x) \leftrightarrow C_2(x,y)$                                                | $\forall E, 12$       |
| 14 |                                                                                      |                     | $C_2(x,y)$                                                                         | ⇒E, 11, 13            |
| 15 |                                                                                      |                     | $y \neq x \land C_2(x,y)$                                                          | $\wedge I$ , 10, 14   |
| 16 |                                                                                      |                     | $\exists z(z \neq x \land C_2(x,z))$                                               | $\exists I, 15$       |
| 17 |                                                                                      |                     | $\neg \exists z (z \neq x \land C_2(x, z))$                                        | R, 7                  |
| 18 |                                                                                      |                     | $\exists z(z \neq x \land C_2(x,z)) \land \neg \exists z(z \neq x \land C_2(x,z))$ | $\wedge I, 16, 17$    |
| 19 |                                                                                      |                     | 上                                                                                  | $\perp E, 18$         |
| 20 |                                                                                      |                     |                                                                                    | $\exists E, 8, 9-19$  |
| 21 |                                                                                      | $\neg \exists y (y$ | $y \neq x \wedge K_2(y,x)$                                                         | $\neg I,\ 820$        |
| 22 | $S_1(x) \to \neg(\exists y (y \neq x \land K_2(y, x)))$                              |                     |                                                                                    | ⇒I, 1–21              |
| 23 | $\forall x (S_1(x) \to \neg(\exists y (y \neq x \land K_2(y, x)))) $ $\forall I, 22$ |                     |                                                                                    | $\forall I, 22$       |

### 3.12 Proposition 7 (P7)

Il appartient à la nature de la substance d'exister.

$$\forall x(S_1(x) \to L(\exists y(y=x)))$$

## 3.13 Proposition 8 (P8)

Toute substance est nécessairement infinie.

$$\forall x(S_1(x) \to \neg F_1(x))$$

| 1  | $S_1(x)$                                                                                                            |                         |  |  |  |
|----|---------------------------------------------------------------------------------------------------------------------|-------------------------|--|--|--|
| 2  | $F_1(x)$                                                                                                            |                         |  |  |  |
| 3  | $F_1(x) \leftrightarrow \exists y (y \neq x \land L_2(y, x) \land \forall z (A_2(z, x) \leftrightarrow A_2(z, y)))$ | D2                      |  |  |  |
| 4  | $\exists y(y \neq x \land L_2(y,x) \land \forall z(A_2(z,x) \leftrightarrow A_2(z,y)))$                             | $\Rightarrow$ E, 2, 3   |  |  |  |
| 5  | $y \neq x \land L_2(y,x) \land \forall z (A_2(z,x) \leftrightarrow A_2(z,y))$                                       |                         |  |  |  |
| 6  | $y \neq x$                                                                                                          | $\wedge E, 5$           |  |  |  |
| 7  | $L_2(y,x)$                                                                                                          | $\wedge E, 5$           |  |  |  |
| 8  | $\forall z (A_2(z,x) \leftrightarrow A_2(z,y))$                                                                     | $\wedge E, 5$           |  |  |  |
| 9  | $\forall a \forall b (S_1(a) \land L_2(b, a) \to S_1(b))$                                                           | A11                     |  |  |  |
| 10 | $S_1(x) \wedge L_2(y,x) \to S_1(y)$                                                                                 | $\forall E, 9$          |  |  |  |
| 11 | $S_1(x) \wedge L_2(y,x)$                                                                                            | $\wedge I, 1, 7$        |  |  |  |
| 12 | $S_1(y)$                                                                                                            | ⇒E, 11, 10              |  |  |  |
| 13 |                                                                                                                     | A9                      |  |  |  |
| 14 | $\exists b(A_2(b,x))$                                                                                               | $\forall E, 13$         |  |  |  |
| 15 | $A_2(z,x)$                                                                                                          |                         |  |  |  |
| 16 | $A_2(z,x) \leftrightarrow A_2(z,y)$                                                                                 | $\forall E, 8$          |  |  |  |
| 17 | $A_2(z,y)$                                                                                                          | $\Rightarrow$ E, 15, 16 |  |  |  |
| 18 | $A_2(z,x) \wedge A_2(z,y)$                                                                                          | $\wedge I, 15, 17$      |  |  |  |
| 19 | $\exists z (A_2(z,x) \land A_2(z,y))$                                                                               | ∃I, 18                  |  |  |  |
| 20 | $\forall a \forall b (S_1(a) \land S_1(b) \land a \neq b \rightarrow \neg \exists z (A_2(z,a) \land A_2(z,b)))$     | P5                      |  |  |  |
| 21 |                                                                                                                     | $\forall E, 20$         |  |  |  |
| 22 | $S_1(x) \wedge S_1(y) \wedge x \neq y$                                                                              | $\land I,1,12,6$        |  |  |  |
| 23 |                                                                                                                     | $\Rightarrow$ E, 22, 21 |  |  |  |
| 24 | $\exists z (A_2(z,x) \land A_2(z,y)) \land \neg \exists z (A_2(z,x) \land A_2(z,y))$                                | $\wedge I, 19, 23$      |  |  |  |
| 25 |                                                                                                                     | $\perp E, 24$           |  |  |  |
| 26 |                                                                                                                     | $\exists E, 14, 15–25$  |  |  |  |
| 27 |                                                                                                                     | $\exists E,4,5–26$      |  |  |  |
| 28 | $\neg F_1(x)$                                                                                                       | $\neg I, \ 227$         |  |  |  |
| 29 | $S_1(x) \to \neg F_1(x)$                                                                                            | $\Rightarrow$ I, 1–28   |  |  |  |
| 30 | $\forall x (S_1(x) \to \neg F_1(x))$                                                                                | $\forall I, 29$         |  |  |  |

### 3.14 Proposition 9 (P9)

Suivant qu'une chose a plus de réalité ou d'être, un plus grand nombre d'attributs lui appartient.

$$\forall x \forall y ((S_1(x) \land S_1(y)) \to (R_2(x,y) \leftrightarrow V_2(x,y)))$$

### 3.15 Proposition 10 (P10)

Tout attribut d'une substance doit être conçu par soi.

$$\forall x (A_1(x) \to C_2(x,x))$$

| 1  | $A_1(x)$                                                                                                |                        |  |  |
|----|---------------------------------------------------------------------------------------------------------|------------------------|--|--|
| 2  | $A_1(x) \leftrightarrow \exists y (S_1(y) \land I_2(x,y) \land C_2(x,y) \land I_2(y,x) \land C_2(y,x))$ | D4a                    |  |  |
| 3  | $\exists y (S_1(y) \land I_2(x,y) \land C_2(x,y) \land I_2(y,x) \land C_2(y,x))$                        | $\Rightarrow$ E, 1, 2  |  |  |
| 4  | $S_1(y) \wedge I_2(x,y) \wedge C_2(x,y) \wedge I_2(y,x) \wedge C_2(y,x)$                                |                        |  |  |
| 5  | $S_1(y)$                                                                                                | $\wedge E, 4$          |  |  |
| 6  | $C_2(y,x)$                                                                                              | $\wedge E, 4$          |  |  |
| 7  | $S_1(y) \leftrightarrow (I_2(y,y) \land C_2(y,y))$                                                      | D3                     |  |  |
| 8  | $I_2(y,y) \wedge C_2(y,y)$                                                                              | $\Rightarrow$ E, 5, 7  |  |  |
| 9  | $C_2(y,y)$                                                                                              | ∧E, 8                  |  |  |
| 10 |                                                                                                         | A2                     |  |  |
| 11 | $C_2(y,y) \to \neg \exists z (z \neq y \land C_2(y,z))$                                                 | ∧E, 10                 |  |  |
| 12 | $\neg \exists z (z \neq y \land C_2(y, z))$                                                             | $\Rightarrow$ E, 9, 11 |  |  |
| 13 | $x \neq y$                                                                                              |                        |  |  |
| 14 | $x \neq y \land C_2(y,x)$                                                                               | $\wedge I$ , 13, 6     |  |  |
| 15 | $\exists z(z \neq y \land C_2(y,z))$                                                                    | ∃I, 14                 |  |  |
| 16 | $\neg \exists z (z \neq y \land C_2(y, z))$                                                             | R, 12                  |  |  |
| 17 | $\exists z(z \neq y \land C_2(y,z)) \land \neg \exists z(z \neq y \land C_2(y,z))$                      | $\wedge I$ , 15, 16    |  |  |
| 18 |                                                                                                         | $\perp E, 17$          |  |  |
| 19 |                                                                                                         | $\neg I, 13-18$        |  |  |
| 20 | x = y                                                                                                   | ¬E, 19                 |  |  |
| 21 | $C_2(y,y)$                                                                                              | R, 9                   |  |  |
| 22 | $C_2(x,x)$                                                                                              | 20,21                  |  |  |
| 23 | $C_2(x,x)$                                                                                              |                        |  |  |
| 24 | $A_1(x) \to C_2(x,x)$                                                                                   | ⇒I, 1–23               |  |  |
| 25 | $25  \forall x (A_1(x) \to C_2(x, x)) $ $\forall I, 24$                                                 |                        |  |  |

### 3.16 Proposition 11 (P11)

Dieu, c'est-à-dire une substance constituée par une infinité d'attributs dont chacun exprime une essence éternelle et infinie, existe nécessairement.

$$L(\exists x(G_1(x)))$$

| 1  | $M(\exists x(G_1(x)))$                                                               | A13                        |
|----|--------------------------------------------------------------------------------------|----------------------------|
| 2  | $\exists x(G_1(x))$                                                                  |                            |
| 3  | $G_1(g)$                                                                             |                            |
| 4  | $G_1(x) \leftrightarrow (S_1(x) \land \forall y (A_1(y) \to A_2(y,x)))$              | D6                         |
| 5  | $S_1(g) \land \forall y (A_1(y) \to A_2(y,g))$                                       | $\Rightarrow$ E, 3, 4      |
| 6  | $S_1(g)$                                                                             | $\wedge E$ , 5             |
| 7  | $\forall x (S_1(x) \to L(\exists y (y=x)))$                                          | P7                         |
| 8  | $S_1(g) 	o L(\exists y (y=g))$                                                       | $\forall E, 7$             |
| 9  | $L(\exists y(y=g))$                                                                  | $\Rightarrow$ E, 6, 8      |
| 10 | $\exists y(y=g)$                                                                     |                            |
| 11 | y = g                                                                                |                            |
| 12 | $G_1(g)$                                                                             | R, 3                       |
| 13 | $G_1(y)$                                                                             | 11,12                      |
| 14 | $\exists x(G_1(x))$                                                                  | ∃I, 13                     |
| 15 | $\exists x (G_1(x))$                                                                 | $\exists E, \ 10, \ 11-14$ |
| 16 | $(\exists y(y=g)) \to (\exists x(G_1(x)))$                                           | $\Rightarrow$ I, 10–15     |
| 17 | $L((\exists y(y=g)) \to (\exists x(G_1(x))))$                                        | R5, 16                     |
| 18 | $L(\exists y(y=g)) \to L(\exists x(G_1(x)))$                                         | R3, 17                     |
| 19 | $L(\exists x(G_1(x)))$                                                               | $\Rightarrow$ E, 9, 18     |
| 20 | $L(\exists x(G_1(x)))$                                                               | $\exists E,\ 2,\ 319$      |
| 21 | $(\exists x(G_1(x))) \to L(\exists x(G_1(x)))$                                       | $\Rightarrow$ I, 2-20      |
| 22 | $L((\exists x(G_1(x))) \to L(\exists x(G_1(x))))$                                    | R5, 21                     |
| 23 | $M(\exists x(G_1(x))) \land L((\exists x(G_1(x))) \rightarrow L(\exists x(G_1(x))))$ | $\wedge I, 1, 22$          |
| 24 | $L(\exists x(G_1(x)))$                                                               | S5, 23                     |

### 3.17 Proposition 12 (P12)

On ne peut concevoir selon sa véritable nature aucun attribut de la substance duquel il résulte que la substance soit divisible.

$$\forall x(S_1(x) \rightarrow \neg \exists y \exists z(D_3(x,y,z)))$$



### 3.18 Proposition 13 (P13)

La substance absolument infinie est indivisible.

$$\forall x (S_1(x) \land (\forall w (A_1(w) \to A_2(w, x))) \to \neg \exists y \exists z (D_3(x, y, z)))$$

### 3.19 Proposition 14 (P14)

Il ne peut exister et on ne peut concevoir aucune autre substance que Dieu.

$$\exists x (G_1(x) \land \forall y (S_1(y) \to y = x))$$

### 3.20 Proposition 14-A (P14-A)

Version alternative de P14 : Il existe exactement un Dieu.

$$\exists x \forall y (G_1(y) \leftrightarrow y = x)$$

## $3.21 \quad \text{Proposition 15 (P15)}$

Tout ce qui existe est en Dieu et rien ne peut être ni être conçu sans Dieu.

$$\forall x \exists g (G_1(g) \land I_2(x,g) \land C_2(x,g))$$

| 1  | $\exists g(G_1(g) \land \forall y(S_1(y) \to y = g))$ P14           |                         |  |  |
|----|---------------------------------------------------------------------|-------------------------|--|--|
| 2  | $G_1(g) \land \forall y (S_1(y) \to y = g)$                         |                         |  |  |
| 3  | $G_1(g)$                                                            | $\wedge E, 2$           |  |  |
| 4  | $\forall y (S_1(y) \to y = g)$                                      | $\wedge E, 2$           |  |  |
| 5  | $\forall x (S_1(x) \vee M_1(x))$                                    | DP5                     |  |  |
| 6  | $S_1(x) \vee M_1(x)$                                                | $\forall E, 5$          |  |  |
| 7  | $S_1(x)$                                                            |                         |  |  |
| 8  | $S_1(x) \to x = g$                                                  | $\forall E, 4$          |  |  |
| 9  | x = g                                                               | ⇒E, 7, 8                |  |  |
| 10 | $S_1(x) \leftrightarrow (I_2(x,x) \land C_2(x,x))$                  | D3                      |  |  |
| 11 | $I_2(x,x) \wedge C_2(x,x)$                                          | ⇒E, 7, 10               |  |  |
| 12 | $I_2(x,x)$                                                          | ∧E, 11                  |  |  |
| 13 | $C_2(x,x)$                                                          | ∧E, 11                  |  |  |
| 14 | $I_2(x,g)$                                                          | 9,12                    |  |  |
| 15 | $C_2(x,g)$                                                          | 9,13                    |  |  |
| 16 | $I_2(x,g) \wedge C_2(x,g)$                                          | $\wedge I$ , 14, 15     |  |  |
| 17 | $G_1(g) \wedge I_2(x,g) \wedge C_2(x,g)$                            | $\wedge I, 3, 16$       |  |  |
| 18 | $\exists g(G_1(g) \land I_2(x,g) \land C_2(x,g))$                   | ∃I, 17                  |  |  |
| 19 | $M_1(x)$                                                            |                         |  |  |
| 20 | $M_1(x) \leftrightarrow \exists y (S_1(y) \land M_2(x,y))$          | D5b                     |  |  |
| 21 | $\exists y (S_1(y) \land M_2(x,y))$                                 | $\Rightarrow$ E, 19, 20 |  |  |
| 22 | $S_1(y) \wedge M_2(x,y)$                                            |                         |  |  |
| 23 | $S_1(y)$                                                            | $\wedge E$ , 22         |  |  |
| 24 | $M_2(x,y)$                                                          | $\wedge E, 22$          |  |  |
| 25 | $S_1(y) \to y = g$                                                  | $\forall E, 4$          |  |  |
| 26 | y = y                                                               | $\Rightarrow$ E, 23, 25 |  |  |
| 27 | $M_2(x,g)$                                                          | 24,26                   |  |  |
| 28 | $M_2(x,y) \leftrightarrow (x \neq y \land I_2(x,y) \land C_2(x,y))$ | D5a                     |  |  |
| 29 | $x \neq g \land I_2(x,g) \land C_2(x,g)$                            | $\Rightarrow$ E, 27, 28 |  |  |
| 30 | $I_2(x,g) \wedge C_2(x,g)$                                          | ∧E, 29                  |  |  |
| 31 | $G_1(g) \wedge I_2(x,g) \wedge C_2(x,g)$                            | $\wedge I, 3, 30$       |  |  |
| 32 | $\exists g(G_1(g) \land I_2(x,g) \land C_2(x,g))$                   | ∃I, 31                  |  |  |
| 33 | $\exists g(G_1(g) \land I_2(x,g) \land C_2(x,g))$                   | $\exists E, 21, 22–32$  |  |  |
| 34 | $\exists g(G_1(g) \land I_2(x,g) \land C_2(x,g))$                   | $\lor E, 6, 718, 1933$  |  |  |
| 35 | $\exists g(G_1(g) \land I_2(x,g) \land C_2(x,g))$                   | $\exists E,\ 1,\ 234$   |  |  |
| 36 | $\forall x \exists g (G_1(g) \land I_2(x,g) \land C_2(x,g))$        | $\forall I, 35$         |  |  |

### 3.22 Proposition 16 (P16)

Dieu est cause de toutes choses.

$$\forall x \exists g (G_1(g) \land K_2(g,x))$$

### 3.23 Proposition 17 (P17)

Dieu agit par les seules lois de sa nature et sans y être contraint par personne.

$$\exists g(G_1(g) \land \neg(\exists x(\neg I_2(x,g) \land K_2(x,g))) \land \forall x(K_2(g,x)))$$

```
P14
1
         \exists x (G_1(x) \land \forall y (S_1(y) \to y = x))
2
              G_1(g) \wedge \forall y (S_1(y) \to y = g)
3
                                                                                                     \wedge E, 2
              G_1(g)
                                                                                                     ∧E, 2
4
              \forall y(S_1(y) \to y = g)
5
              G_1(g) \leftrightarrow (S_1(g) \land \forall y (A_1(y) \rightarrow A_2(y,g)))
                                                                                                     D6
6
              S_1(g) \wedge \forall y (A_1(y) \to A_2(y,g))
                                                                                                     \RightarrowE, 3, 5
7
              S_1(g)
                                                                                                     ∧E, 6
                   \exists x (\neg I_2(x,g) \land K_2(x,g))
9
                         \neg I_2(e,g) \wedge K_2(e,g)
                                                                                                     ∧E, 9
10
                         \neg I_2(e,g)
11
                         K_2(e,g)
                                                                                                     ∧E, 9
12
                         \forall x (S_1(x) \to \neg(\exists y (y \neq x \land K_2(y, x))))
                                                                                                     \rm P6c
                                                                                                     ∀E, 12
                         S_1(g) \to \neg(\exists y (y \neq g \land K_2(y,g)))
13
                                                                                                     ⇒E, 7, 13
14
                         \neg(\exists y(y \neq g \land K_2(y,g)))
                                                                                                     \forall E, 14
15
                         \neg(e \neq g \land K_2(e,g))
16
                         e = g \vee \neg K_2(e,g)
                                                                                                     De Morgan, 15
17
                              e = g
                              S_1(g) \leftrightarrow (I_2(g,g) \wedge C_2(g,g))
                                                                                                     D3
                              I_2(g,g) \wedge C_2(g,g)
                                                                                                     \RightarrowE, 7, 18
19
20
                              I_2(g,g)
                                                                                                     ∧E, 19
21
                              I_2(e,g)
                                                                                                     17,20
                                                                                                     R, 10
22
                              \neg I_2(e,g)
23
                              I_2(e,g) \wedge \neg I_2(e,g)
                                                                                                     ∧I, 21, 22
24
                                                                                                     \perp E, 23
25
                               \neg K_2(e,g)
26
                              K_2(e,g)
                                                                                                     R, 11
27
                              K_2(e,g) \wedge \neg K_2(e,g)
                                                                                                     \wedge I, 26, 25
28
                               \perp
                                                                                                     \perp E, 27
                         \perp
                                                                                                     \vee E,\ 16,\ 17\text{--}24,\ 25\text{--}28
29
30
                                                                                                     \exists E, 8, 9-29
31
               \neg \exists x (\neg I_2(x,g) \land K_2(x,g))
                                                                                                     \neg I, 8-30
                                                                                                     P16
32
              \forall x \exists h (G_1(h) \land K_2(h, x))
              \exists h(G_1(h) \land K_2(h,x))
                                                                                                     ∀E, 32
33
34
                   G_1(h) \wedge K_2(h,x)
                   G_1(h)
35
                                                                                                     ∧E, 34
36
                   \exists z \forall y (G_1(y) \leftrightarrow y = z)
                                                                                                     P14-A
37
                        \forall y (G_1(y) \leftrightarrow y = z)
                         G_1(g) \leftrightarrow g = z
                                                                                                     \forall E, 37
38
                         G_1(h) \leftrightarrow h = z
                                                                                                     ∀E, 37
39
40
                                                                                                     ⇒E, 3, 38
                        g = z
41
                         h=z
                                                                                                     \RightarrowE, 35, 39
                         h = g
                                                                                                     40,41
42
                         K_2(h,x)
                                                                                                     ∧E, 34
43
                        K_2(g,x)
44
                                                                                                     42,43
                   K_2(g,x)
                                                                                                     \exists E, 36, 37-44
45
46
              K_2(g,x)
                                                                                                     ∃E, 33, 34–45
47
              \forall x(K_2(g,x))
                                                                                                     \forall I, 46
              G_1(g) \wedge \neg(\exists x(\neg I_2(x,g) \wedge K_2(x,g))) \wedge \forall x(K_2(g,x))
                                                                                                     \wedge I,\ 3,\ 31,\ 47
48
49
              \exists g(G_1(g) \land \neg(\exists x(\neg I_2(x,g) \land K_2(x,g))) \land \forall x(K_2(g,x)))
                                                                                                     ∃I, 48
        \exists g(G_1(g) \land \neg(\exists x(\neg I_2(x,g) \land K_2(x,g))) \land \forall x(K_2(g,x)))
                                                                                                     \exists E,\ 1,\ 2\!\!-\!\!49
```

## 3.24 Corollaire 2 de la Proposition 17 (P17c2)

Dieu seul est cause libre.

$$\exists g(G_1(g) \land B_1(g) \land \forall x(B_1(x) \to x = g))$$

| 1  | $\mid \exists g(G_1(g) \land \neg(\exists x(\neg I_2(x,g) \land K_2(x,g))) \land \forall x(K_2(g,x)))$                                                       | P17                     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 2  | $G_1(g) \land \neg(\exists x(\neg I_2(x,g) \land K_2(x,g))) \land \forall x(K_2(g,x))$                                                                       |                         |
| 3  | $G_1(g)$                                                                                                                                                     | $\wedge E, 2$           |
| 4  |                                                                                                                                                              | $\wedge E, 2$           |
| 5  | $G_1(g) \leftrightarrow (S_1(g) \land \forall y (A_1(y) \to A_2(y,g)))$                                                                                      | D6                      |
| 6  | $S_1(g) \land \forall y (A_1(y) \to A_2(y,g))$                                                                                                               | $\Rightarrow$ E, 3, 5   |
| 7  | $S_1(g)$                                                                                                                                                     | $\wedge E, 6$           |
| 8  | $\forall x (S_1(x) \leftrightarrow K_2(x,x))$                                                                                                                | DPIII                   |
| 9  | $S_1(g) \leftrightarrow K_2(g,g)$                                                                                                                            | $\forall E, 8$          |
| 10 | $K_2(g,g)$                                                                                                                                                   | $\Rightarrow$ E, 7, 9   |
| 11 | $\forall x (S_1(x) \to \neg(\exists y (y \neq x \land K_2(y, x))))$                                                                                          | P6c                     |
| 12 | $S_1(g) \to \neg(\exists y (y \neq g \land K_2(y,g)))$                                                                                                       | $\forall E, 11$         |
| 13 |                                                                                                                                                              | $\Rightarrow$ E, 7, 12  |
| 14 | $K_2(g,g) \land \neg \exists y (y \neq g \land K_2(y,g))$                                                                                                    | $\wedge I$ , 10, 13     |
| 15 | $B_1(x) \leftrightarrow (K_2(x,x) \land \neg \exists y (y \neq x \land K_2(y,x)))$                                                                           | D7a                     |
| 16 | $K_2(g,g) \land \neg \exists y (y \neq g \land K_2(y,g)) \leftrightarrow B_1(g)$                                                                             | $\forall E, 15$         |
| 17 | $B_1(g)$                                                                                                                                                     | ⇒E, 14, 16              |
| 18 | $B_1(x)$                                                                                                                                                     |                         |
| 19 | $B_1(x) \leftrightarrow (K_2(x,x) \land \neg \exists y (y \neq x \land K_2(y,x)))$                                                                           | D7a                     |
| 20 | $K_2(x,x) \land \neg \exists y (y \neq x \land K_2(y,x))$                                                                                                    | ⇒E, 18, 19              |
| 21 | $K_2(x,x)$                                                                                                                                                   | $\wedge E, 20$          |
| 22 | $\forall z (S_1(z) \leftrightarrow K_2(z,z))$                                                                                                                | DPIII                   |
| 23 | $K_2(x,x) \leftrightarrow S_1(x)$                                                                                                                            | $\forall E, 22$         |
| 24 | $S_1(x)$                                                                                                                                                     | $\Rightarrow$ E, 21, 23 |
| 25 | $\exists z (G_1(z) \land \forall y (S_1(y) \to y = z))$                                                                                                      | P14                     |
| 26 | $G_1(h) \land \forall y (S_1(y) \to y = h)$                                                                                                                  |                         |
| 27 | $\forall y (S_1(y) \to y = h)$                                                                                                                               | $\wedge E, 26$          |
| 28 | $S_1(x) \to x = h$                                                                                                                                           | $\forall E, 27$         |
| 29 |                                                                                                                                                              | ⇒E, 24, 28              |
| 30 | $G_1(h)$                                                                                                                                                     | $\wedge E, 26$          |
| 31 | $\exists z \forall y (G_1(y) \leftrightarrow y = z)$                                                                                                         | P14-A                   |
| 32 |                                                                                                                                                              |                         |
| 33 |                                                                                                                                                              | $\forall E, 32$         |
| 34 | $G_1(h) \leftrightarrow h = z$                                                                                                                               | $\forall E, 32$         |
| 35 | g = z                                                                                                                                                        | $\Rightarrow$ E, 3, 33  |
| 36 | h = z                                                                                                                                                        | ⇒E, 30, 34              |
| 37 | h = g                                                                                                                                                        | 35,36                   |
| 38 | x = h                                                                                                                                                        | R, 29                   |
| 39 | x = y                                                                                                                                                        | 38,37                   |
| 40 | x = g                                                                                                                                                        | $\exists E, 31, 32–39$  |
| 41 | x = g                                                                                                                                                        | $\exists E, 25, 2640$   |
| 42 | $B_1(x) \to x = g$                                                                                                                                           | $\Rightarrow$ I, 18–41  |
| 43 | $\forall x (B_1(x) \to x = g)$ $G_1(g) \land B_1(g) \land \forall x (B_1(x) \to x = g)$ $\exists g (G_1(g) \land B_1(g) \land \forall x (B_1(x) \to x = g))$ | $\forall I, 42$         |
| 44 | $G_1(g) \wedge B_1(g) \wedge \forall x (B_1(x) \to x = g)$                                                                                                   | $\wedge I$ , 3, 17, 43  |
| 45 | $\exists g(G_1(g) \land B_1(g) \land \forall x(B_1(x) \to x = g))$                                                                                           | ∃I, 44                  |
| 46 | $\exists g(G_1(g) \land B_1(g) \land \forall x(B_1(x) \to x = g))$                                                                                           | $\exists E,1,245$       |
|    |                                                                                                                                                              |                         |

### 3.25 Proposition 18 (P18)

Dieu est cause immanente, et non transitive, de toutes choses.

$$\exists g(G_1(g) \land \forall x(I_2(x,g) \leftrightarrow K_2(g,x)))$$

### 3.26 Proposition 19 (P19)

Dieu et tous ses attributs sont éternels.

$$\exists g(G_1(g) \land E_1(g) \land \forall x(A_2(x,g) \rightarrow E_1(x)))$$