Single chain completeness and some related properties

Matteo Bianchi

Università degli Studi di Milano Department of Computer Science matteo.bianchi@unimi.it

joint work with

Stefano Aguzzoli

$\mathsf{FL}_\mathsf{ew}\text{-}\mathsf{algebras}$ and $\mathsf{MTL}\text{-}\mathsf{algebras}$

An FL_ew algebra is an algebra $\langle A, *, \to, \wedge, \vee, 0, 1 \rangle$. such that:

- **4** $\langle A, \wedge, \vee, 0, 1 \rangle$ is a bounded lattice with minimum 0 and maximum 1.
- (A, *, 1) is a commutative monoid.
- **(a)** $\langle *, \rightarrow \rangle$ forms a *residuated pair*: $z * x \le y$ iff $z \le x \to y$ for all $x, y, z \in A$. In particular, it holds that $x \to y = \max\{z \in A : z * x \le y\}$.
- 4 An MTL-algebra is an FL_{ew}-algebra satisfying

(Prelinearity)
$$(x \to y) \lor (y \to x) = 1.$$

- The class of MTL-algebras forms a variety, called MTL. The logic corresponding to MTL-algebras is called MTL.
- An axiomatic extension of MTL is a logic obtained by adding other axioms to it.
- Every axiomatic extension of MTL is algebraizable in the sense of [Blok and Pigozzi, 1989], and hence every subvariety of MTL induces a logic.

4 □ ト 4 回 ト 4 豆 ト 4 豆 ・ 夕 Q ○

Definition

Let I be an axiomatic extension of MTI. Then:

- L enjoys the single chain completeness (SCC) if there is an L-chain such that L is complete w.r.t. it.
- L enjoys the finite strong single chain completeness (FSSCC) if there is an L-chain such that L is finitely strongly complete w.r.t. it.
- L enjoys the strong single chain completeness (SSCC) if there is an L-chain such that L is strongly complete w.r.t. it.

Definition

Let L be an axiomatic extension of MTL. Then:

- L enjoys the *single chain completeness* (SCC) if there is an L-chain such that L is complete w.r.t. it.
- L enjoys the *finite strong single chain completeness* (FSSCC) if there is an L-chain such that L is finitely strongly complete w.r.t. it.
- L enjoys the *strong single chain completeness* (SSCC) if there is an L-chain such that L is strongly complete w.r.t. it.

Clearly the SSCC implies the SCC. Moreover:

Definition

Let L be an axiomatic extension of MTL. Then:

- L enjoys the *single chain completeness* (SCC) if there is an L-chain such that L is complete w.r.t. it.
- L enjoys the *finite strong single chain completeness* (FSSCC) if there is an L-chain such that L is finitely strongly complete w.r.t. it.
- L enjoys the *strong single chain completeness* (SSCC) if there is an L-chain such that L is strongly complete w.r.t. it.

Clearly the SSCC implies the SCC. Moreover:

Theorem ([Montagna, 2011])

Let L be an axiomatic extension of MTL. If L enjoys the FSSCC, then the SSCC holds.

Definition

Let L be an axiomatic extension of MTL. Then:

- L enjoys the single chain completeness (SCC) if there is an L-chain such that L is complete w.r.t. it.
- L enjoys the finite strong single chain completeness (FSSCC) if there is an L-chain such that L is finitely strongly complete w.r.t. it.
- L enjoys the strong single chain completeness (SSCC) if there is an L-chain such that L is strongly complete w.r.t. it.

Clearly the SSCC implies the SCC. Moreover:

Theorem ([Montagna, 2011])

Let L be an axiomatic extension of MTL. If L enjoys the FSSCC, then the SSCC holds.

Problem ([Montagna, 2011])

Does the SCC implies the SSCC, in general?

Definition

Let L be an axiomatic extension of $\mathsf{FL}_\mathsf{ew}.$ Then,

Definition

Let L be an axiomatic extension of FL_{ew}. Then,

• L has the Halldén completeness (HC) if for every formulas φ, ψ with no variables in common, $\vdash_{\mathcal{L}} \varphi \lor \psi$ implies that $\vdash_{\mathcal{L}} \varphi$ or $\vdash_{\mathcal{L}} \psi$.

Definition

Let L be an axiomatic extension of FL_{ew}. Then,

- L has the *Halldén completeness* (HC) if for every formulas φ, ψ with no variables in common, $\vdash_{L} \varphi \lor \psi$ implies that $\vdash_{L} \varphi$ or $\vdash_{L} \psi$.
- L has the deductive Maksimova's variable separation property (DMVP) if, for all sets of formulas $\Gamma \cup \{\varphi\}$ and $\Sigma \cup \{\psi\}$ that have no variables in common, $\Gamma, \Sigma \vdash_{L} \varphi \lor \psi$ implies $\Gamma \vdash_{L} \varphi$ or $\Sigma \vdash_{L} \psi$.

Definition

Let L be an axiomatic extension of FL_{ew}. Then,

- L has the *Halldén completeness* (HC) if for every formulas φ, ψ with no variables in common, $\vdash_{L} \varphi \lor \psi$ implies that $\vdash_{L} \varphi$ or $\vdash_{L} \psi$.
- L has the deductive Maksimova's variable separation property (DMVP) if, for all sets of formulas $\Gamma \cup \{\varphi\}$ and $\Sigma \cup \{\psi\}$ that have no variables in common, $\Gamma, \Sigma \vdash_{L} \varphi \lor \psi$ implies $\Gamma \vdash_{L} \varphi$ or $\Sigma \vdash_{L} \psi$.
- L has the *Maksimova's variable separation property* (MVP) if, for all formulas $\varphi_1 \to \varphi_2$ and $\psi_1 \to \psi_2$ with no variables in common, $\vdash_L (\varphi_1 \land \psi_1) \to (\varphi_2 \lor \psi_2)$ implies $\vdash_L \varphi_1 \to \varphi_2$ or $\vdash_L \psi_1 \to \psi_2$.

Definition

Let L be an axiomatic extension of FL_{ew}. Then,

- L has the *Halldén completeness* (HC) if for every formulas φ, ψ with no variables in common, $\vdash_{L} \varphi \lor \psi$ implies that $\vdash_{L} \varphi$ or $\vdash_{L} \psi$.
- L has the deductive Maksimova's variable separation property (DMVP) if, for all sets of formulas $\Gamma \cup \{\varphi\}$ and $\Sigma \cup \{\psi\}$ that have no variables in common, $\Gamma, \Sigma \vdash_{L} \varphi \lor \psi$ implies $\Gamma \vdash_{L} \varphi$ or $\Sigma \vdash_{L} \psi$.
- L has the *Maksimova's variable separation property* (MVP) if, for all formulas $\varphi_1 \to \varphi_2$ and $\psi_1 \to \psi_2$ with no variables in common, $\vdash_L (\varphi_1 \land \psi_1) \to (\varphi_2 \lor \psi_2)$ implies $\vdash_L \varphi_1 \to \varphi_2$ or $\vdash_L \psi_1 \to \psi_2$.

It is immediate to check that the DMVP implies the HC. Moreover

Theorem ([Galatos et al., 2007])

For every substructural logic, the MVP implies the HC.

Definition

Let L be an axiomatic extension of FL_{ew}. Then,

- L has the *Halldén completeness* (HC) if for every formulas φ, ψ with no variables in common, $\vdash_{L} \varphi \lor \psi$ implies that $\vdash_{L} \varphi$ or $\vdash_{L} \psi$.
- L has the deductive Maksimova's variable separation property (DMVP) if, for all sets of formulas $\Gamma \cup \{\varphi\}$ and $\Sigma \cup \{\psi\}$ that have no variables in common, $\Gamma, \Sigma \vdash_L \varphi \lor \psi$ implies $\Gamma \vdash_L \varphi$ or $\Sigma \vdash_L \psi$.
- L has the *Maksimova's variable separation property* (MVP) if, for all formulas $\varphi_1 \to \varphi_2$ and $\psi_1 \to \psi_2$ with no variables in common, $\vdash_L (\varphi_1 \land \psi_1) \to (\varphi_2 \lor \psi_2)$ implies $\vdash_L \varphi_1 \to \varphi_2$ or $\vdash_L \psi_1 \to \psi_2$.

It is immediate to check that the DMVP implies the HC. Moreover

Theorem ([Galatos et al., 2007])

For every substructural logic, the MVP implies the HC.

Problem ([Galatos et al., 2007])

Find examples of substructural logics with DMVP, but without MVP.

The equivalence between HC and SCC

An FL_{ew}-algebra is said to be well connected whenever for every pair of elements x, y, if $x \sqcup y = 1$, then x = 1 or y = 1.

Theorem ([Galatos et al., 2007, Theorem 5.28])

Let L be an axiomatic extension of FL_{ew}. The following are equivalent:

- L has the Halldén completeness.
- 2 L is complete w.r.t. a well-connected FL_{ew}-algebra.
- L is meet irreducible (in the lattice of axiomatic extensions of FL_{ew}).

The equivalence between HC and SCC

An FL_{ew}-algebra is said to be well connected whenever for every pair of elements x, y, if $x \sqcup y = 1$, then x = 1 or y = 1.

Theorem ([Galatos et al., 2007, Theorem 5.28])

Let L be an axiomatic extension of FL_{ew} . The following are equivalent:

- L has the Halldén completeness.
- ② L is complete w.r.t. a well-connected FL_{ew}-algebra.
- **3** L is meet irreducible (in the lattice of axiomatic extensions of FL_{ew}).

It is easy to check that an MTL-algebra is well-connected if and only if it is totally ordered. Hence we obtain the following result.

The equivalence between HC and SCC

An FL_{ew}-algebra is said to be well connected whenever for every pair of elements x, y, if $x \sqcup y = 1$, then x = 1 or y = 1.

Theorem ([Galatos et al., 2007, Theorem 5.28])

Let L be an axiomatic extension of FL_{ew} . The following are equivalent:

- L has the Halldén completeness.
- ② L is complete w.r.t. a well-connected FL_{ew}-algebra.
- L is meet irreducible (in the lattice of axiomatic extensions of FL_{ew}).

It is easy to check that an MTL-algebra is well-connected if and only if it is totally ordered. Hence we obtain the following result.

Theorem

Let L be a logic over MTL. The following are equivalent:

- 1 L has the Halldén completeness.
- 2 L is complete w.r.t. an MTL-chain, that is L enjoys the SCC.
- **1** L is meet irreducible (in the lattice of axiomatic extensions of MTL).

Theorem ([Kihara, 2006, Theorem 6.9])

The following conditions are equivalent for every axiomatic extension L of MTL:

- L has the DMVP.
- All pairs of subdirectly irreducible L-algebras are jointly embeddable into an L-chain.
- All pairs of subdirectly irreducible L-algebras are jointly embeddable into a subdirectly irreducible L-algebra.

Theorem ([Kihara, 2006, Theorem 6.9])

The following conditions are equivalent for every axiomatic extension L of MTL:

- L has the DMVP.
- All pairs of subdirectly irreducible L-algebras are jointly embeddable into an L-chain.
- All pairs of subdirectly irreducible L-algebras are jointly embeddable into a subdirectly irreducible L-algebra.

Definition

We say that an axiomatic extension L of MTL has joint embedding property w.r.t. the class of L-chains (CJEP), if every pair of L-chains is jointly embeddable into an L-chain.

Theorem ([Kihara, 2006, Theorem 6.9])

The following conditions are equivalent for every axiomatic extension L of MTL:

- L has the DMVP.
- All pairs of subdirectly irreducible L-algebras are jointly embeddable into an L-chain.
- All pairs of subdirectly irreducible L-algebras are jointly embeddable into a subdirectly irreducible L-algebra.

Definition

We say that an axiomatic extension L of MTL has joint embedding property w.r.t. the class of L-chains (CJEP), if every pair of L-chains is jointly embeddable into an L-chain.

Theorem ([Montagna, 2011])

Let L be an axiomatic extension of MTL. Then L enjoys the SSCC iff it has the CJEP.

Theorem ([Kihara, 2006, Theorem 6.9])

The following conditions are equivalent for every axiomatic extension L of MTL:

- L has the DMVP.
- All pairs of subdirectly irreducible L-algebras are jointly embeddable into an L-chain.
- All pairs of subdirectly irreducible L-algebras are jointly embeddable into a subdirectly irreducible L-algebra.

Definition

We say that an axiomatic extension L of MTL has joint embedding property w.r.t. the class of L-chains (CJEP), if every pair of L-chains is jointly embeddable into an L-chain.

Theorem ([Montagna, 2011])

Let L be an axiomatic extension of MTL. Then L enjoys the SSCC iff it has the CJEP.

Corollary

Every axiomatic extension of MTL enjoying the SSCC has also the DMVP.

Three problems:

Three problems:

Does exist an axiomatic extension of MTL having the DVMP, but for which the MVP fails?

Three problems:

- Does exist an axiomatic extension of MTL having the DVMP, but for which the MVP fails?
- Are the DMVP and SSCC equivalent, for the axiomatic extensions of MTL?

(reset) April, 2015

Three problems:

- Does exist an axiomatic extension of MTL having the DVMP, but for which the MVP fails?
- Are the DMVP and SSCC equivalent, for the axiomatic extensions of MTL?
- Are che SCC and the SSCC equivalent, for the axiomatic extensions of MTL?

(reset) Apri

Theorem

Let L be an axiomatic extension of MTL not extending SMTL. Then the MVP fails, for L.

Theorem

Let L be an axiomatic extension of MTL not extending SMTL. Then the MVP fails, for L.

Proof.

Since L does not extend SMTL, we have $\forall_L (y \land \neg y) \to \bot$. Moreover, $\forall_L \top \to (x \lor \neg x)$, for L is not Boolean logic.

Theorem

Let L be an axiomatic extension of MTL not extending SMTL. Then the MVP fails, for L.

Proof.

Since L does not extend SMTL, we have $\not\vdash_L (y \land \neg y) \to \bot$. Moreover, $\not\vdash_L \top \to (x \lor \neg x)$, for L is not Boolean logic. We show that $\vdash_L ((y \land \neg y) \land \top) \to (\bot \lor (x \lor \neg x))$, and this implies the failure of the MVP.

Theorem

Let L be an axiomatic extension of MTL not extending SMTL. Then the MVP fails, for L.

Proof.

Since L does not extend SMTL, we have $ot |_L (y \land \neg y) \to \bot$. Moreover, $ot |_L \top \to (x \lor \neg x)$, for L is not Boolean logic. We show that $ot |_L ((y \land \neg y) \land \top) \to (\bot \lor (x \lor \neg x))$, and this implies the failure of the MVP. This is equivalent to show that for every MTL-chain \mathcal{A} , $\mathcal{A} \models (y \sqcap \sim y) \Rightarrow (x \sqcup \sim x) = 1$. If $y \leq x$, then $y \sqcap \sim y \leq y \leq x \leq x \sqcup \sim x$. If y > x, then $\sim y \leq \sim x$, and $y \sqcap \sim y \leq \sim y \leq \sim x \leq x \sqcup \sim x$. This concludes the proof. \square

Theorem

Let L be an axiomatic extension of MTL not extending SMTL. Then the MVP fails, for L.

Proof.

Since L does not extend SMTL, we have $ot \vdash_L (y \land \neg y) \to \bot$. Moreover, $ot \vdash_L \top \to (x \lor \neg x)$, for L is not Boolean logic. We show that $ot \vdash_L ((y \land \neg y) \land \top) \to (\bot \lor (x \lor \neg x))$, and this implies the failure of the MVP. This is equivalent to show that for every MTL-chain \mathcal{A} , $\mathcal{A} \models (y \sqcap \sim y) \Rightarrow (x \sqcup \sim x) = 1$. If $y \leq x$, then $y \sqcap \sim y \leq y \leq x \leq x \sqcup \sim x$. If y > x, then $\sim y \leq \sim x$, and $y \sqcap \sim y \leq \sim y \leq \sim x \leq x \sqcup \sim x$. This concludes the proof. \square

Theorem

The three-valued Łukasiewicz logic enjoys the DMVP, whilst the MVP fails.

Theorem

Let L be an axiomatic extension of MTL not extending SMTL. Then the MVP fails, for L.

Proof.

Since L does not extend SMTL, we have $ot \vdash_L (y \land \neg y) \to \bot$. Moreover, $ot \vdash_L (x \lor \neg x)$, for L is not Boolean logic. We show that $ot \vdash_L ((y \land \neg y) \land \top) \to (\bot \lor (x \lor \neg x))$, and this implies the failure of the MVP. This is equivalent to show that for every MTL-chain \mathcal{A} , $\mathcal{A} \models (y \sqcap \sim y) \Rightarrow (x \sqcup \sim x) = 1$. If $y \leq x$, then $y \sqcap \sim y \leq y \leq x \leq x \sqcup \sim x$. If y > x, then $\sim y \leq \sim x$, and $y \sqcap \sim y \leq \sim y \leq \sim x \leq x \sqcup \sim x$. This concludes the proof. \square

Theorem

The three-valued Łukasiewicz logic enjoys the DMVP, whilst the MVP fails.

Proof.

It is well known that L_3 is strongly complete w.r.t the three element MV-chain L_3 , and hence L_3 enjoys the SSCC. It follows that L_3 has also the DMVP.

Theorem

Let L be an axiomatic extension of MTL not extending SMTL. Then the MVP fails, for L.

Proof.

Since L does not extend SMTL, we have $\forall_L (y \land \neg y) \to \bot$. Moreover, $\forall_L \top \to (x \lor \neg x)$, for L is not Boolean logic. We show that $\vdash_L ((y \land \neg y) \land \top) \to (\bot \lor (x \lor \neg x))$, and this implies the failure of the MVP. This is equivalent to show that for every MTL-chain A, $\mathcal{A} \models (y \sqcap \sim y) \Rightarrow (x \sqcup \sim x) = 1$. If $y \leq x$, then $y \sqcap \sim y \leq y \leq x \leq x \sqcup \sim x$. If y > x, then $\sim y < \sim x$, and $y \sqcap \sim y < \sim y < \sim x < x \sqcup \sim x$. This concludes the proof.

Theorem

The three-valued Łukasiewicz logic enjoys the DMVP, whilst the MVP fails.

Proof.

It is well known that L_3 is strongly complete w.r.t the three element MV-chain L_3 , and hence L_3 enjoys the SSCC. It follows that L_3 has also the DMVP. Since L_3 does not extend SMTL, the MVP fails, for £3.

The problem of the equivalence between DMVP and SSCC

Theorem

For every n-contractive extension of BL, the DMVP and the SSCC are equivalent.

The problem of the equivalence between DMVP and SSCC

Theorem

For every Properties extension of BL, the DMVP and the SSCC are equivalent.

Theorem

Let L be an axiomatic extension of MTL whose chains are isomorphic to vodinal sums of bounded and subdirectly irreducible semihoops. Then the DMVP and the SSCC are converted for L.

The SCC does not imply the SSCC: a counterexample - 1

Theorem ([Montagna, 2011])

Let L be an axiomatic extension of BL that is complete w.r.t. a finite chain. Then L enjoys the SSCC.

The SCC does not imply the SSCC: a counterexample - 1

Theorem ([Montagna, 2011])

Let L be an axiomatic extension of BL that is complete w.r.t. a finite chain. Then L enjoys the SSCC.

We now show that such result does not hold, in general, for the axiomatic extensions of MTL.

Theorem ([Montagna, 2011])

Let L be an axiomatic extension of BL that is complete w.r.t. a finite chain. Then L enjoys the SSCC.

We now show that such result does not hold, in general, for the axiomatic extensions of MTL.

Definition

Let us call Q the MTL-chain (WNM-chain) $\langle \{0, a, b, c, 1\}, *, \Rightarrow, \min, \max, 0, 1 \rangle$, with 0 < a < b < c < 1 and such that:

X	$\sim x$
0	1
а	С
Ь	а
С	а
1	0

$$x*y = \begin{cases} 0 & \text{if } x \le \sim y \\ \min\{x,y\} & \text{otherwise.} \end{cases}$$

Let us call \mathbb{Q} the variety generated by \mathcal{Q} , and let \mathbb{Q} be the corresponding logic.

Proposition

 $\it Q$ does not enjoy the DMVP.

Proposition	
Q does not enjoy the DMVP.	
Proof (sketch).	

Proposition

Q does not enjoy the DMVP.

Proof (sketch).

• Observe that $\mathcal{Q} \models \bigvee_{i < 5} (x_i \to x_{i+1})$, and since $\mathbf{V}(\mathcal{Q}) = \mathbb{Q}$, by [Cintula et al., 2009, Proposition 4.18] every Q-chain cannot have more than five elements.

Proposition

Q does not enjoy the DMVP.

Proof (sketch).

- Observe that $Q \models \bigvee_{i < 5} (x_i \to x_{i+1})$, and since $\mathbf{V}(Q) = \mathbb{Q}$, by [Cintula et al., 2009, Proposition 4.18] every Q-chain cannot have more than five elements.
- Notice that the three element Gödel-chain G_3 belongs to \mathbb{Q} . Just take the quotient of \mathcal{Q} over the filter $\{c,1\}$.

Proposition

Q does not enjoy the DMVP.

Proof (sketch).

- Observe that $Q \models \bigvee_{i < 5} (x_i \to x_{i+1})$, and since $\mathbf{V}(Q) = \mathbb{Q}$, by [Cintula et al., 2009, Proposition 4.18] every Q-chain cannot have more than five elements.
- Notice that the three element Gödel-chain G_3 belongs to \mathbb{Q} . Just take the quotient of Q over the filter $\{c, 1\}$.
- Observe that $\mathbf{G}_3 \not\hookrightarrow \mathcal{Q}$.

(reset

Proposition

Q does not enjoy the DMVP.

Proof (sketch).

- Observe that $Q \models \bigvee_{i < 5} (x_i \to x_{i+1})$, and since $\mathbf{V}(Q) = \mathbb{Q}$, by [Cintula et al., 2009, Proposition 4.18] every Q-chain cannot have more than five elements.
- Notice that the three element Gödel-chain G_3 belongs to \mathbb{Q} . Just take the quotient of \mathcal{Q} over the filter $\{c,1\}$.
- Observe that $G_3 \not\hookrightarrow \mathcal{Q}$.
- From these fact it is easy to check that there is no Q-chain $\mathcal C$ such that $\mathcal Q \hookrightarrow \mathcal C$ and $\mathbf G_3 \hookrightarrow \mathcal C$. Hence the DMVP fails.

Theorem

- For the axiomatic extensions of MTL, the HC does not necessarily imply the DMVP.
- For the axiomatic extensions of MTL, the SCC does not necessarily imply the SSCC (or the FSSCC).

Theorem

- For the axiomatic extensions of MTL, the HC does not necessarily imply the DMVP.
- For the axiomatic extensions of MTL, the SCC does not necessarily imply the SSCC (or the FSSCC).

Interestingly, Q provides a counterexample of minimum cardinality.

Theorem

- For the axiomatic extensions of MTL, the HC does not necessarily imply the DMVP.
- For the axiomatic extensions of MTL, the SCC does not necessarily imply the SSCC (or the FSSCC).

Interestingly, Q provides a counterexample of minimum cardinality.

Theorem

Let A be a non-trivial MTL-chain with less than five elements, and let $\mathbb{L} = \mathbf{V}(A)$. Then L enjoys the SSCC.

A general picture

(reset

Extensions of MTL expanded with Δ

For every axiomatic extension L of MTL, we denote with L_{Δ} its expansion with an operator Δ satisfying the following axioms:

$$\Delta(\varphi) \vee \neg \Delta(\varphi).$$

$$(\Delta 2)$$
 $\Delta(\varphi \lor \psi) \to (\Delta(\varphi) \lor \Delta(\psi)).$

$$\Delta(\varphi) \to \varphi$$
.

$$\Delta(\varphi) o \Delta(\Delta(\varphi)).$$

$$\Delta(\varphi \to \psi) \to (\Delta(\varphi) \to \Delta(\psi)).$$

and the following additional inference rule: $\frac{\varphi}{\Delta \varphi}$.

An MTL $_{\Delta}$ -chain is an MTL-chain expanded with an operation δ , interpreting Δ , such that, for every element x, $\delta(x)=1$ if x=1, whilst $\delta(x)=0$ if x<1.

(reset

Extensions of MTL expanded with Δ

For every axiomatic extension L of MTL, we denote with L_{Δ} its expansion with an operator Δ satisfying the following axioms:

$$\Delta(\varphi) \vee \neg \Delta(\varphi).$$

$$\Delta(\varphi \lor \psi) \to (\Delta(\varphi) \lor \Delta(\psi)).$$

$$\Delta(\varphi) \rightarrow \varphi$$
.

$$\Delta(\varphi) o \Delta(\Delta(\varphi)).$$

$$\Delta(\varphi \to \psi) \to (\Delta(\varphi) \to \Delta(\psi)).$$

and the following additional inference rule: $\frac{\varphi}{\Delta \varphi}$.

An MTL $_{\Delta}$ -chain is an MTL-chain expanded with an operation δ , interpreting Δ , such that, for every element x, $\delta(x)=1$ if x=1, whilst $\delta(x)=0$ if x<1.

We can define the notions of SCC, FSSCC and SSCC in a similar way to the MTL case.

(reset

Extensions of MTL expanded with Δ

For every axiomatic extension L of MTL, we denote with L_{Δ} its expansion with an operator Δ satisfying the following axioms:

$$\Delta(\varphi) \vee \neg \Delta(\varphi).$$

$$\Delta(\varphi \lor \psi) \to (\Delta(\varphi) \lor \Delta(\psi)).$$

$$\Delta(\varphi) \rightarrow \varphi$$
.

$$(\Delta 4)$$
 $\Delta(\varphi) \rightarrow \Delta(\Delta(\varphi)).$

$$\Delta(\varphi \to \psi) \to (\Delta(\varphi) \to \Delta(\psi)).$$

and the following additional inference rule: $\frac{\varphi}{\Delta \varphi}$.

An MTL $_{\Delta}$ -chain is an MTL-chain expanded with an operation δ , interpreting Δ , such that, for every element x, $\delta(x)=1$ if x=1, whilst $\delta(x)=0$ if x<1.

We can define the notions of SCC, FSSCC and SSCC in a similar way to the MTL case.

Theorem

Let L be an axiomatic extension of MTL. Then the SCC, FSSCC and SSCC are equivalent, for L_{Δ} and $L_{\Delta}\forall$.

• Does the DMVP implies the SSCC, in general?

- Does the DMVP implies the SSCC, in general?
- Let L be an axiomatic extension of MTL enjoying the SCC. Does exist a subdirectly irreducibile L-algebra that generates the corresponding variety (a similar problem is open for FL_{ew})?

- Does the DMVP implies the SSCC, in general?
- Let L be an axiomatic extension of MTL enjoying the SCC. Does exist a subdirectly irreducibile L-algebra that generates the corresponding variety (a similar problem is open for FL_{ew})?
- Do MTL and IMTL enjoy the SCC?

- Does the DMVP implies the SSCC, in general?
- Let L be an axiomatic extension of MTL enjoying the SCC. Does exist a subdirectly irreducibile L-algebra that generates the corresponding variety (a similar problem is open for FL_{ew})?
- Do MTL and IMTL enjoy the SCC?
- How about the first-order case? Are there some logical properties characterizing the SCC and the SSCC? Note that the SCC for an axiomatic extension L of MTL do not necessarily implies the SCC for L∀. As shown in [Montagna, 2011] BL is a counterexample.

Bibliography I

- Blok, W. and Pigozzi, D. (1989). Algebraizable logics, volume 77 of Memoirs of The American Mathematical Society. American Mathematical Society. tinyurl.com/o89ug5o.
- Cintula, P., Esteva, F., Gispert, J., Godo, L., Montagna, F., and Noguera, C. (2009). Distinguished algebraic semantics for t-norm based fuzzy logics: methods and algebraic equivalencies. *Ann. Pure Appl. Log.*, 160(1):53–81. doi:10.1016/j.apal.2009.01.012.
- Galatos, N., Jipsen, P., Kowalski, T., and Ono, H. (2007). Residuated Lattices: An Algebraic Glimpse at Substructural Logics, volume 151 of Studies in Logic and The Foundations of Mathematics. Elsevier.
- Kihara, H. (2006). Commutative Substructural Logics an algebraic study. PhD thesis, School of Information Science JAIST. tinyurl.com/o6e52lp.
- Montagna, F. (2011). Completeness with respect to a chain and universal models in fuzzy logic. *Arch. Math. Log.*, 50(1-2):161–183. doi:10.1007/s00153-010-0207-6.

 ⟨□⟩⟨□⟩⟨□⟩⟨₹⟩⟨₹⟩
 ₹
 √0
 √0

 April, 2015
 16 / 15

APPENDIX

Semihoops and hoops

Definition

A semihoop is a structure $\mathcal{A} = \langle A, *, \sqcap, \Rightarrow, 1 \rangle$ such that $\langle A, \sqcap, 1 \rangle$ is an inf-semilattice with upper bound 1, * is a binary operation on A with unit 1, and \Rightarrow is a binary operation such that:

- x < y iff $x \Rightarrow y = 1$,
- \bullet $(x * y) \Rightarrow z = x \Rightarrow (y \Rightarrow z).$

A bounded semihoop is a semihoop with a minimum element; conversely, an unbounded hoop is a hoop without minimum.

- A hoop is a semihoop satisfying $x * (x \Rightarrow y) = y * (y \Rightarrow x)$.
- A Wajsberg hoop is a hoop satisfying $x \Rightarrow (x \Rightarrow y) = y \Rightarrow (y \Rightarrow x)$.

(| reset

Ordinal Sums

- Let $\langle I, \leq \rangle$ be a totally ordered set with minimum 0. For all $i \in I$, let \mathcal{A}_i be a totally ordered such that for $i \neq j$, $A_i \cap A_j = \{1\}$, and assume that \mathcal{A}_0 is bounded.
- Then $\bigoplus_{i \in I} A_i$ (the *ordinal sum* of the family $(A_i)_{i \in I}$) is the structure whose base set is $\bigcup_{i \in I} A_i$, whose bottom is the minimum of A_0 , whose top is 1, and whose operations are

$$x \to y = \begin{cases} x \to^{\mathcal{A}_i} y & \text{if } x, y \in A_i \\ y & \text{if } \exists i > j(x \in A_i \text{ and } y \in A_j) \\ 1 & \text{if } \exists i < j(x \in A_i \setminus \{1\} \text{ and } y \in A_j) \end{cases}$$

$$x * y = \begin{cases} x *^{\mathcal{A}_i} y & \text{if } x, y \in A_i \\ x & \text{if } \exists i < j(x \in A_i \setminus \{1\}, y \in A_j) \\ y & \text{if } \exists i < j(y \in A_i \setminus \{1\}, x \in A_j) \end{cases}$$

• As a consequence, if $x \in A_i \setminus \{1\}$, $y \in A_j$ and i < j then x < y.

d back

(reset

April, 2015

n-contractive logics

Definition

An axiomatic extension L of MTL is said to be *n*-contractive ($n \ge 2$), whenever $L \vdash \varphi^{n-1} \to \varphi^n$.

n-contractive logics

Definition

An axiomatic extension L of MTL is said to be *n*-contractive ($n \ge 2$), whenever $L \vdash \varphi^{n-1} \to \varphi^n$.

Theorem ([Bianchi and Montagna, 2011])

Every n-contractive BL-chain is isomorphic to an ordinal sum of finite MV-chains, each of them having at most n elements.

d back

Proof.

We already know that the SSCC implies the DMVP, so assume that L has the DMVP. Let A, B be two L-chains: we show that the CJEP (and hence the SSCC) holds.

Proof.

We already know that the SSCC implies the DMVP, so assume that L has the DMVP. Let \mathcal{A}, \mathcal{B} be two L-chains: we show that the CJEP (and hence the SSCC) holds. Since the variety (let us call it \mathbb{L}) of L-algebras is closed under ordinal sum, then $\mathcal{A} \oplus \mathbf{2} \in \mathbb{L}$ and $\mathcal{B} \oplus \mathbf{2} \in \mathbb{L}$.

◀ back

Proof.

We already know that the SSCC implies the DMVP, so assume that L has the DMVP. Let \mathcal{A}, \mathcal{B} be two L-chains: we show that the CJEP (and hence the SSCC) holds. Since the variety (let us call it \mathbb{L}) of L-algebras is closed under ordinal sum, then $\mathcal{A} \oplus \mathbf{2} \in \mathbb{L}$ and $\mathcal{B} \oplus \mathbf{2} \in \mathbb{L}$. Clearly $\mathcal{A} \hookrightarrow \mathcal{A} \oplus \mathbf{2}$, $\mathcal{B} \hookrightarrow \mathcal{B} \oplus \mathbf{2}$ and $\mathcal{A} \oplus \mathbf{2}$, $\mathcal{B} \oplus \mathbf{2}$ are both subdirectly irreducible, having both a coatom.

◀ back

Proof.

We already know that the SSCC implies the DMVP, so assume that L has the DMVP. Let \mathcal{A}, \mathcal{B} be two L-chains: we show that the CJEP (and hence the SSCC) holds. Since the variety (let us call it \mathbb{L}) of L-algebras is closed under ordinal sum, then $\mathcal{A} \oplus \mathbf{2} \in \mathbb{L}$ and $\mathcal{B} \oplus \mathbf{2} \in \mathbb{L}$. Clearly $\mathcal{A} \hookrightarrow \mathcal{A} \oplus \mathbf{2}$, $\mathcal{B} \hookrightarrow \mathcal{B} \oplus \mathbf{2}$ and $\mathcal{A} \oplus \mathbf{2}$, $\mathcal{B} \oplus \mathbf{2}$ are both subdirectly irreducible, having both a coatom. By the DMVP we have that there is an L-chain \mathcal{C} such that $\mathcal{A} \oplus \mathbf{2} \hookrightarrow \mathcal{C}$ and $\mathcal{B} \oplus \mathbf{2} \hookrightarrow \mathcal{C}$.

♦ back

Proof.

We already know that the SSCC implies the DMVP, so assume that L has the DMVP. Let \mathcal{A}, \mathcal{B} be two L-chains: we show that the CJEP (and hence the SSCC) holds. Since the variety (let us call it \mathbb{L}) of L-algebras is closed under ordinal sum, then $\mathcal{A} \oplus \mathbf{2} \in \mathbb{L}$ and $\mathcal{B} \oplus \mathbf{2} \in \mathbb{L}$. Clearly $\mathcal{A} \hookrightarrow \mathcal{A} \oplus \mathbf{2}$, $\mathcal{B} \hookrightarrow \mathcal{B} \oplus \mathbf{2}$ and $\mathcal{A} \oplus \mathbf{2}$, $\mathcal{B} \oplus \mathbf{2}$ are both subdirectly irreducible, having both a coatom. By the DMVP we have that there is an L-chain \mathcal{C} such that $\mathcal{A} \oplus \mathbf{2} \hookrightarrow \mathcal{C}$ and $\mathcal{B} \oplus \mathbf{2} \hookrightarrow \mathcal{C}$. Then, $\mathcal{A} \hookrightarrow \mathcal{A} \oplus \mathbf{2} \hookrightarrow \mathcal{C}$, $\mathcal{B} \hookrightarrow \mathcal{B} \oplus \mathbf{2} \hookrightarrow \mathcal{C}$ and we conclude that L has also the CJEP and SSCC.

♦ back

Axiomatization of MTL

The basic connective are $\{\land,\&,\rightarrow,\bot\}$ (formulas built inductively: a theory is a set of formulas). Useful derived connectives are the following ones:

$$\begin{array}{ll} \text{(negation)} & \neg \varphi \stackrel{\text{def}}{=} \varphi \to \bot \\ \\ \text{(disjunction)} & \varphi \lor \psi \stackrel{\text{def}}{=} ((\varphi \to \psi) \to \psi) \land ((\psi \to \varphi) \to \varphi) \\ \\ \text{(top)} & \top \stackrel{\text{def}}{=} \neg \bot \end{array}$$

MTL can be axiomatized by using these axioms and modus ponens: $\frac{\varphi-\varphi\to\psi}{\psi}$.

(A1)
$$(\varphi \to \psi) \to ((\psi \to \chi) \to (\varphi \to \chi))$$

(A2)
$$(\varphi \& \psi) \to \varphi$$

(A3)
$$(\varphi \& \psi) \to (\psi \& \varphi)$$

(A4)
$$(\varphi \wedge \psi) \rightarrow \varphi$$

(A5)
$$(\varphi \wedge \psi) \to (\psi \wedge \varphi)$$

(A6)
$$(\varphi \& (\varphi \to \psi)) \to (\psi \land \varphi)$$

(A7a)
$$(\varphi \to (\psi \to \chi)) \to ((\varphi \& \psi) \to \chi)$$

(A7b)
$$((\varphi \& \psi) \to \chi) \to (\varphi \to (\psi \to \chi))$$

(A8)
$$((\varphi \to \psi) \to \chi) \to (((\psi \to \varphi) \to \chi) \to \chi)$$

$$(A9) \qquad \qquad \bot \to \varphi$$

(reset

Sketch of the proof.

If L has the SSCC, then the DMVP holds. Assume that L has the DMVP, and let ${\cal A}$ is an L chain.

Sketch of the proof.

If L has the SSCC, then the DMVP holds. Assume that L has the DMVP, and let A is an L chain. If A has a last component, then it is subdirectly irreducible, since every component is subdirectly irreducible by hypothesis.

Sketch of the proof.

If L has the SSCC, then the DMVP holds. Assume that L has the DMVP, and let A is an L chain. If A has a last component, then it is subdirectly irreducible, since every component is subdirectly irreducible by hypothesis. If A does not have a last component, then it is infinite, it can be shown that $\mathcal{A} \oplus \mathbf{2}$ is an L-chain.

Sketch of the proof.

If L has the SSCC, then the DMVP holds. Assume that L has the DMVP, and let $\mathcal A$ is an L chain. If $\mathcal A$ has a last component, then it is subdirectly irreducible, since every component is subdirectly irreducible by hypothesis. If $\mathcal A$ does not have a last component, then it is infinite, it can be shown that $\mathcal A\oplus\mathbf 2$ is an L-chain. In particular, since $\mathcal A\hookrightarrow\mathcal A\oplus\mathbf 2$ it is sufficient to show that if $\mathcal A\oplus\mathbf 2\not\models\varphi$, then $\mathcal A\not\models\varphi$.

∮ hack

Sketch of the proof.

If L has the SSCC, then the DMVP holds. Assume that L has the DMVP, and let $\mathcal A$ is an L chain. If $\mathcal A$ has a last component, then it is subdirectly irreducible, since every component is subdirectly irreducible by hypothesis. If $\mathcal A$ does not have a last component, then it is infinite, it can be shown that $\mathcal A\oplus\mathbf 2$ is an L-chain. In particular, since $\mathcal A\hookrightarrow\mathcal A\oplus\mathbf 2$ it is sufficient to show that if $\mathcal A\oplus\mathbf 2\not\models\varphi$, then $\mathcal A\not\models\varphi$. So, an L-chain is subdirectly irreducible or it can be embedded into a subdirectly irreducible L-chain.

√ back

Sketch of the proof.

If L has the SSCC, then the DMVP holds. Assume that L has the DMVP, and let A is an L chain. If A has a last component, then it is subdirectly irreducible, since every component is subdirectly irreducible by hypothesis. If A does not have a last component, then it is infinite, it can be shown that $\mathcal{A} \oplus \mathbf{2}$ is an L-chain. In particular, since $\mathcal{A} \hookrightarrow \mathcal{A} \oplus \mathbf{2}$ it is sufficient to show that if $\mathcal{A} \oplus \mathbf{2} \not\models \varphi$, then $\mathcal{A} \not\models \varphi$. So, an L-chain is subdirectly irreducible or it can be embedded into a subdirectly irreducible L-chain. Since by the DMVP every pair of subdirectly irreducible L-algebras can be embedded into some L-chain, we have that L enjoys the CJEP and the SSCC.