```
import.csv.py ×

1  # Importing necessary libraries
2  import pandas as pd# Load the downloaded Titanic dataset
3  file_path = 'Titanic.csv'
4  titanic_data = pd.read_csv('C:\Users\vikra\OneDrive\Desktop|')
5  # Show the first few rows of the dataset to get an overview
6  titanic_data.head()
```

PassengerId	Survived	Pclass	Name			SibSp	Parch	Ticket			
				Sex	Age				Fare	Cabin	Embarked
1	0	3	Braund,			1	0	A/5 21171		NaN	S
			Mr. Owen	male	22.0				7.2500		
			Harris								
2	1	1	Cumings,	38.0	1	0	PC	71.2833	C85	С	
			Mrs. John				17599				
			Bradlefemale								
3	1	3	Heikkinen,			0	0	STON/O2.3101282	NaN	S	
			Miss. Laina	female	26.0			7.9250			
4	1	1	Futrelle,	35.0	1	0		53.1000	C123	S	
			Mrs. Jacques				113803				
			Heathfemale								
5	0	3	Allen, Mr.			0	0	373450		NaN	S
			William	male	35.0				8.0500		
			Henry								

Data Exploration

The dataset contains the following columns:

- 1. **Sex**: Gender of the passenger (male/female)
- 2. **Age**: Age of the passenger
- 3. **SibSp**: Number of siblings/spouses aboard
- 4. **Parch**: Number of parents/children aboard
- 5. **Fare**: Ticket fare
- 6. **Embarked**: Port of embarkation (C = Cherbourg; Q = Queenstown; S = Southampton)
- 7. **Pclass**: Ticket class (First, Second, Third)
- 8. Cabin: cabin number
- 9. **Survived**: Whether the passenger survived (1) or not (0)

Missing	Values	Data Type		
PassengerId	0	int64		
Survived	0	int64		
Pclass	0	int64		
Name	0	object		
Sex	0	object		
Age	177	float64		
SibSp	0	int64		
Parch	0	int64		
Ticket	0	object		
Fare	0	float64		
Cabin	687	object		
Embarked	2	object		

Data Cleaning

We have the following issues in the dataset:

1. **age**: 177 missing values

2. **embarked**: 2 missing values

To handle these:

- For the **age** column, we can fill the missing values with the median age.
- For the **embarked** column, we can fill the missing values with the most frequent port of embarkation.

```
# Fill missing values in the 'age' column with the median age
median_age = titanic_data['Age'].median()
titanic_data['Age'].fillna(median_age, inplace=True)

# Fill missing values in the 'embarked' column with the most frequent value
most_frequent_embarked = titanic_data['Embarked'].mode()[0]
titanic_data['Embarked'].fillna(most_frequent_embarked, inplace=True)

# Verify that there are no more missing values
titanic_data.isnull().sum()
```

PassengerId	0
Survived	0
Pclass	0
Name	0
Sex	0
Age	0
SibSp	0
Parch	0
Ticket	0
Fare	0
Cabin	687
Embarked	0

Data Cleaning Summary

All missing values have been successfully addressed:

- The age column's missing values have been filled with the median age.
- The **embarked** column's missing values have been filled with the most frequent port of embarkation.

```
import.csv.py ×

1  # Calculate basic statistical measures for the numerical columns
2  statistical_summary = titanic_data.describe()
3  •
4  statistical_summary
```

1		Age	SibSp	Parch	Fare	Survived
2	count	891.000000	891.000000	891.000000	891.000000	891.000000
3	mean	29.361582	0.523008	0.381594	32.204208	0.383838
4	std	13.019697	1.102743	0.806057	49.693429	0.486592
5	min	0.420000	0.000000	0.000000	0.000000	0.000000
6	25%	22.000000	0.000000	0.000000	7.910400	0.000000
7	50%	28.000000	0.000000	0.000000	14.454200	0.000000
8	75%	35.000000	1.000000	0.000000	31.000000	1.000000
9	max	80.000000	8.000000	6.000000	512.329200	1.000000

Data Analysis

Let's now proceed with some basic statistical analysis to summarize the dataset.

Data Analysis Summary

Here are some key statistical insights about the numerical columns:

- 1. **Age**: The average age of passengers is approximately 29.36 years, with a standard deviation of 13.02. The youngest passenger was 0.42 years old, and the oldest was 80.
- 2. **SibSp (Siblings/Spouses)**: On average, passengers had about 0.52 siblings or spouses aboard. The maximum number in this category is 8.
- 3. **Parch (Parents/Children)**: On average, passengers had about 0.38 parents or children aboard. The maximum number in this category is 6.
- 4. **Fare**: The average ticket fare was approximately 32.20 units, with a wide standard deviation of 49.69. The fare ranged from 0 to 512.33 units.
- 5. **Survived**: About 38.4% of the passengers in this dataset survived.

Data Visualization

- Distribution of numerical features
- Categorical features vs Survival rate
- Correlations between features

```
import.csv.py ×
 1
       # Importing necessary libraries for data visualization
 2
       import matplotlib.pyplot as plt
 3
       import seaborn as sns# Set the style for the visualizations
       sns.set(style="whitegrid")
 4
       # Initialize the figure
 5
       plt.figure(figsize=(20, 15))
 6
       # Create a list of numerical features
 7
       nomerical_features = ['Age', 'Fare', 'SibSp', 'Parch']
 8
       # Create subplots for each numerical feature
       for i, feature in enumerate(numerical_features, 1):
10
11
       plt.subplot( *args: 2, 2, i)
       sns.histplot(titanic_data[feature], bins=30, kde=True)
12
       plt.title(f'Distribution of {feature.capitalize()}')plt.tight_layout()
13
       plt.show()
14
15
```


Data Visualization Summary: Numerical Features

- 1. **Age**: The age distribution is somewhat skewed to the right, with a higher concentration of passengers between 20 and 30 years old.
- 2. **Fare**: The fare distribution is highly skewed to the right, indicating that most passengers paid a lower fare, while a few paid extremely high fares.
- 3. **SibSp (Siblings/Spouses)**: Most passengers did not have siblings or spouses aboard, as indicated by the peak at 0.
- 4. **Parch (Parents/Children)**: Similar to SibSp, most passengers did not have parents or children aboard.

import.csv.py ×

```
# Initialize the figure
2
      plt.figure(figsize=(20, 15))
      # Create a list of categorical features related to survival
      categorical_features = ['Sex', 'Class', 'Embarked']
     # Create subplots for each categorical feature vs survival
      for i, feature in enumerate(categorical_features, 1):
6
7
      plt.subplot(2, 3, i)
      sns.barplot(x=feature, y='survived', data=titanic_data)
8
      plt.title(f'Survival Rate by {feature.capitalize()}')plt.tight_layout()
9
10
      plt.show()
```

