Álgebra II

CP3: Dependencia e independencia lineal

Lic. David Balbuena Cruz

Objetivos

Esta clase práctica tiene como objetivos:

- Determinar si un sistema de vectores es linealmente independiente (l.i) o linealmente dependiente (l.d).
- Construir un sistema generador de un subespacio vectorial.
- Analizar cómo se afecta la independencia lineal de un sistema de vectores cuando se considera otro cuerpo de escalares.

Le recomendamos realizar los ejercicios señalados y consultar el libro Álgebra $Tomo\ I$ de Teresita Noriega. Secciones 1.10 y 1.11.

Ejercicios

Ejercicio 1: Encuentre un sistema de vectores de los espacios vectoriales que se indican, que genere al subespacio que se da a continuación:

(a)
$$E = \mathbb{R}^4$$
, $V = \{(a_1, a_2, a_3, a_4) : 2a_1 + 4a_2 - 6a_3 + 2a_4 = 0\}$

(b) $E = M_3(K)$, V: subespacio de las matrices antisimétricas.

(c)
$$E = K_n[x], V = \{p(x) : p(x) = p(-x)\}\$$

Ejercicio 2: Demuestre que en el espacio de las funciones continuas reales, los vectores

$$f_1(x) = e^x$$
 $f_2(x) = \sin x$ $f_3(x) = \cos x$

son linealmente independientes

Ejercicio 3: En el espacio \mathbb{C}^2 considere los vectores

$$v = (1+i, 2i)$$
 $w = (1, 1+i)$

Demuestre que v y w son linealmente independientes si se considera \mathbb{C}^2 como \mathbb{R} -espacio. ¿Serán linealmente independientes si se considera a \mathbb{C}^2 como \mathbb{C} -espacio?

Ejercicio 4: Sea $\{v, w, u\}$ un sistema de vectores linealmente independientes de un espacio vectorial E. Demuestre que los vectores

$$u+v$$
 $u-v$ $u-2v+w$

son también linealmente independientes.

(a) ¿Cuál es el número máximo de vectores linealmente independientes que pueden obtenerse a partir de las combinaciones lineales de los vectores u, v, w?

Ejercicio 5: Determine cómo deben ser tomados los parámetros a y b reales para que en $\mathbb{R}_4[x]$ los vectores:

$$p_1(x) = ax^3 + bx^2 + 2x + 1$$

$$p_2(x) = ax^3 + (2b - 1)x^2 + 3x + 1$$

$$p_3(x) = x^3 + (2b - 1)x^2 + 2x + 1$$

formen un sistema linealmente independiente de dicho espacio.

(a) Elija de los parámetros de forma que el sistema $\{p_1, p_2, p_3\}$ resulte l.i y construya el subespacio generado por dicho sistema.

Ejercicio 6: Diga si los siguientes sistemas de vectores que se indican son l.i o l.d.

(a)
$$E = K[x], S = \{1, x, x^2, x^3, \dots, x^n, \dots\}$$

(b) $E = C^n(\mathbb{R}, \mathbb{R}), S = \{e^{\alpha_1 t}, e^{\alpha_2 t}, \dots, e^{\alpha_n t}\}$ donde $\alpha_i \neq 0$ y $\alpha_i \neq \alpha_j$ para todo $i, j \in [1, n].$