ML approaches to improve patient outcomes for Heart Disease and Diabetes diagnoses

Rachel Roggenkemper, Jacob Perez, Brendan Callender Cal Poly Department of Statistics in collaboration with the American College of Cardiology

Background

Diabetes and Cardiovascular Disease (CVD) are closely linked, requiring integrated approaches for risk assessment. These conditions significantly impact global health outcomes.

Project Goals

- 1. Develop **predictive algorithms** that improve **diagnostic** consistency for these disease states.
- 2. Prioritize equitable outcomes for male and female patients to improve patient outcomes across sex.

Project Data

- CDC **Diabetes** Health Indicators Dataset
- 2. CVD Data from a Multispecialty hospital in India
- 3. Sylhet **Diabetes** Hospital in Bangladesh dataset

Project Data

CDC Diabetes Dataset (N = 70,692):

- Classification Target: Diabetes vs No Diabetes
 - 50/50 split in data (positive/negative)
- Demographic and Lifestyle predictors
 - Easily accessible, minimal testing

High BP?	High Chol?	ВМІ	Sex	•••	Age Group	Difficulty Walking?	Diabetes?
Yes	Yes	33	Male	•••	55-59	Yes	Yes
No	Yes	24	Female	•••	18-24	No	No

Cardiovascular Disease Dataset (N = 1,000):

- Classification Target: Heart Disease vs No Heart Disease
 - 58/42 split in data (positive/negative)
- Demographic, Clinical, Biochemical, and Lifestyle predictors
 - Patient testing required

Age	Sex	Chest Pain	Resting BP	•••	Peak Exercise Slope	# Major Vessels	Heart Disease?
53	Male	Non-Anginal	171	•••	Downsloping	3	Yes
40	Male	Typical Angina	94	•••	Upsloping	1	No

Early-Stage (ES) **Diabetes Dataset** (N = 520):

- Classification Target: Diabetes vs No Diabetes
 - 60/40 split in data (positive/negative)
- Demographic, Symptom-Based predictors
 - Minimal testing required

Excessive Thirst?	Excessive Urination?	Sex	•••	Age	Excessively Hungry?	Vision Blurring?	Diabetes?
Yes	Yes	Male	• • •	51	Yes	No	Yes
No	Yes	Female	•••	43	No	Yes	No

CDC Diabetes Decision Tree Classifier

Only requires 4 easy-to-collect predictors:

- Whether patient has high blood pressure
- Patient **BMI**
- Whether patient has difficulty walking or climbing stairs
- Whether the patient would describe their current health as "very good"

CVD Logistic Regression with Elastic Net

Most Important Predictors for:

ES Diabetes Logistic Regression with LASSO

Most Important Predictors for:

	015 101.				
Positive Diabetes Diagnosis		Negative Diab	etes Diagnosis		
Having Excessive Itching		Having Excessive thirst			
Having Muscle Stiffness		Having Excess	sive urination		
Correctly diagnoses	Correctly	diagnoses	ROC-AUC		
90%/92%	91	0/0	0.94		
89%/92%	81%	-0/ ₀ /99%	0.95/0.91		
of patients	A	s who truly liabetes			

Methods

- 1. Exploratory Data Analysis
 - Examined distribution of sex and diagnosis in data
 - Investigated predictor relationships with diagnoses
- 2. Classification Models (Supervised Learning)
 - Decision Tree Classifiers
 - Logistic Regression with Ridge/LASSO penalties
- 3. Evaluation Metrics Used
 - Accuracy Overall correctness of model diagnosis predictions
 - Sensitivity Correctness of model diagnosis for those who truly have a positive diagnosis
 - ROC-AUC Measures model's ability of balancing the true positive rate and false positive rate. We expect a value of 0.5 for random guessing and 1 for a perfect model.

Limitations

External Validity of Results:

Due to **cultural differences** which influence individuals' **diet**, health habits, perceptions of pain, and medical symptoms, we advise only applying these models for the following populations:

- CDC Diabetes Model -- American adults
- CVD Model -- Indian adults
- ES Diabetes Model -- Indian adults

We also recognize these data represent individuals who do have access to health care and may underrepresent marginalized groups who lack access to health care.

Negative Model Impact:

- False negatives could lead to diseases being left untreated
 - This can potentially affect patients with atypical symptoms

Lastly, **FDA approval** and **additional model testing** is required before these models can be freely used by doctors

References

Doppala, Bhanu Prakash; Bhattacharyya, Debnath (2021), "Cardiovascular_Disease_Dataset", Mendeley Data, V1, doi: 10.17632/dzz48mvjht.1

Centers for Disease Control and Prevention (CDC), Behavioral Risk Factor Surveillance System Survey Data, [year of data], Atlanta, Georgia: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention

Early Stage Diabetes Risk Prediction [Dataset]. (2020). UCI Machine Learning Repository. https://doi.org/10.24432/C5VG8H