Low Latency Interest Rate Markets

Theory, Pricing & Practice

PART ONE: Theory

IR Markets, Products & Models

- Introduction to IR Markets
- Interest Rate Swaps
- > IR Products & CDS
- Yield Curves
- > IR Risk
- Credit Models

Quant Research Papers

https://ssrn.com/author=1728976

Support Materials: Quant Research, C++ and Excel Examples

https://github.com/nburgessx/SwapsBook

PART TWO: Pricing & Practice

Case Studies

- > IRS Pricing Formulae
- IRS Pricing Case Study
- Asset Swap Structuring
- Asset Swap Pricing Case Study
- Pricing Tricks & Rules of Thumb

PART ONE - THEORY

Interest Rate Markets - Project Finance

Purpose

- > To Facilitate Government, Corporate & Project Finance
- Mortgages, Corporate Loans, Gov Projects & Infrastructure
- e.g. Hospitals, Transport (HS2), Energy & Defence Projects

Market Size

- Market Size by Notional: \$200T (US) + \$150T (EU)
- Derivatives, Loans & Securities
- All Referencing LIBOR, until Recently

Interest Rate Markets – Why the need for Speed?

- Cleared Electronic Trading & Auto-Hedging
- ➤ Real-Time, Highly Liquid & High Precision (Bid-Offer 1/10th bps i.e. USD 10 per MM)
- > Trading Horizon: High Frequency Trading (HFT) vs Long-Term Fund Performance

USD Semi vs 31	1 Libor			USD Spreads	vs Treasuries		
31) 1 Year	0.750 / 0.754	+0.014	≣	71) 1 Year	4.282 / 5.295	+0.687	
32) 2 Year	1.045 / 1.049	+0.017	E	72) 2 Year	10.248 / 10.806	-0.073	
33) 3 Year	1.284 / 1.287	+0.018	≣	73) 3 Year	3.337 / 3.895	-0.029	≣
34) 4 Year	1.467 / 1.471	+0.015	#■	74) 4 Year	1.350 / 1.900	+0.161	
35) 5 Year	1.617 / 1.621	+0.014	■	75) 5 Year	-4.020 / -3.454	+0.138	≣
36) 6 Year	1.750 / 1.754	+0.012	丰重	76) 6 Year	-8.100 / -7.550	+0.157	
37) 7 Year	1.866 / 1.870	+0.011	■	77) 7 Year	-13.577 / -13.036	+0.382	
38) 8 Year	1.966 / 1.970	+0.011		78) 8 Year	-11.100 / -10.550	+0.335	
39) 9 Year	2.052 / 2.056	+0.011	≣	79) 9 Year	-9.888 / -9.088	+0.492	
40) 10 Year	2.126 / 2.129	+0.011	##	80) 10 Year	-9.775 / -9.275	+0.537	==
41) 12 Year	2.250 / 2.254	+0.007		81) 12 Year	2.520 / 3.320	+0.204	
42) 15 Year	2.376 / 2.380	+0.006	華王	82) 15 Year	-3.599 / -2.799	+0.110	
43) 20 Year	2.497 / 2.501	+0.002	≣	83) 20 Year	-10.100 / -9.600	+0.150	
44) 25 Year	2.558 / 2.563	+0.003	丰重	84) 25 Year	-22.800 / -22.250	+0.150	
45) 30 Year	2.592 / 2.597	+0.000	≣	85) 30 Year	-38.058 / -37.491	+0.351	
46) 40 Year	2.612 / 2.621	+0.003					
47) 50 Year	2.598 / 2.604	+0.004	≣				

Interest Rate Markets – Models

Interest Rate Markets – The LIBOR Problem

feed into LIBOR, a reference rate for nearly

The Problem with LIBOR

- ➤ LIBOR Market Transactions < \$500M
- Rates Do Not Reflect Actual Borrowing Levels
- ➤ LIBOR Levels Increasingly Set by Panel/Expert Judgement

Market Size

Market Size by Notional: \$200T (US) + \$150T (EU)

Large Market Driven by Small Number of LIBOR Transactions!!!

Interest Rate Markets – LIBOR Benchmark Replacement (Reference)

LIBOR Rates

- Low Transaction Volume / Panel Based
- Forward Looking Term Rate, known In-Advance
- > In Built Credit Risk Component

Risk-Free Rates (RFRs)

- Transaction Based
- Backward Looking Rate, Known In-Arrears
- No Credit Component i.e. Risk-Free

Market Changes

- Legacy LIBOR Contracts, Fall-Back Rates
- New RFR Products & Yield Curve Model Changes

3 Month Risk-Free Rate

Rate: Daily O/N Fixings leading to an Averaged Effective Rate

Coupon: Determined in Arrears

Interest Rate Markets – Project Finance Risks & Solutions

1. Interest Rate Risk

- > Finance linked to variable interest rates
- Use IRS to Fix Borrowing Costs

2. Foreign Exchange / Currency Risk

- International Finance
- Use Cross Currency Swaps to Fix FX Rates

3. Credit Default Risk

- Bonds, Bi-Lateral and Non-Cleared Transactions
- > Risk of Counterpart Default
- Credit Default Swaps, Collateral & CSA Agreements

4. No money to invest?

- Use Asset Swaps to Borrow Funds to Invest in Bonds
- Pay LIBOR + Spread to Receive Bond Coupons
- ➤ Floating Spread includes Funding + Credit Costs

Interest Rate Swaps – Fixed or Variable Borrowing Costs?

Project Finance

Project Finance Incurs Variable Interest Costs (LIBOR + Spread)

Hedging Interest Rate Risk

- Swap Floating Interest for Fixed Interest (or Vice Versa)
- Traditionally Used to Fix Borrowing Costs
- Also for Speculative Purposes

Interest Rate Swaps – Market Quotes & Pricing

USD Semi vs 3N	1 Libor			USD Spreads	vs Treasuries		
31) 1 Year	0.750 / 0.754	+0.014	≣	71) 1 Year	4.282 / 5.295	+0.687	
32) 2 Year	1.045 / 1.049	+0.017	#	72) 2 Year	10.248 / 10.806	-0.073	==
33) 3 Year	1.284 / 1.287	+0.018	■	73) 3 Year	3.337 / 3.895	-0.029	≣
34) 4 Year	1.467 / 1.471	+0.015	#■	74) 4 Year	1.350 / 1.900	+0.161	
35) 5 Year	1.617 / 1.621	+0.014	■	75) 5 Year	-4.020 / -3.454	+0.138	≣
36) 6 Year	1.750 / 1.754	+0.012	#	76) 6 Year	-8.100 / -7.550	+0.157	
37) 7 Year	1.866 / 1.870	+0.011	■	77) 7 Year	-13.577 / -13.036	+0.382	■
38) 8 Year	1.966 / 1.970	+0.011		78) 8 Year	-11.100 / -10.550	+0.335	
39) 9 Year	2.052 / 2.056	+0.011	≣	79) 9 Year	-9.888 / -9.088	+0.492	
40) 10 Year	2.126 / 2.129	+0.011	##	80) 10 Year	-9.775 / -9.275	+0.537	==
41) 12 Year	2.250 / 2.254	+0.007		81) 12 Year	2.520 / 3.320	+0.204	
42) 15 Year	2.376 / 2.380	+0.006	華王	82) 15 Year	-3.599 / -2.799	+0.110	
43) 20 Year	2.497 / 2.501	+0.002	≣	83) 20 Year	-10.100 / -9.600	+0.150	
44) 25 Year	2.558 / 2.563	+0.003	丰重	84) 25 Year	-22.800 / -22.250	+0.150	
45) 30 Year	2.592 / 2.597	+0.000		85) 30 Year	-38.058 / -37.491	+0.351	
46) 40 Year	2.612 / 2.621	+0.003	1				
47) 50 Year	2.598 / 2.604	+0.004	≣				

> Standard Tenors: Spread Over US Treasury Yields

➤ New Swaps: Par Rate (%), since PV=0

Existing Swaps: Present Value (USD)

Interest Rate Swaps – Present Value

Present Value is the Sum of Discounted Cash Flows

$$Swap PV = \underbrace{\sum_{i=1}^{n} N r \tau_{i} P(t_{0}, t_{i})}_{Fixed Cash Flows} - \underbrace{\sum_{j=1}^{m} N(l_{j-1} + s) \tau_{j} P(t_{0}, t_{j})}_{Floating Cash Flows}$$

Interest Rate Swaps – Par Rate

- New Swaps Trade at Par i.e. PV = 0
- Consequently such Swaps Quote as a Par Rate
- > This is the fixed rate that makes both trade legs equal

$$Swap \ PV = \underbrace{r \sum_{i=1}^{n} N \ \tau_{i} \ P(t_{0}, t_{i})}_{Fixed \ Cash \ Flows} - \underbrace{\sum_{j=1}^{m} N(\ l_{j-1} + s) \ \tau_{j} \ P(t_{0}, t_{j})}_{Floating \ Cash \ Flows} = 0$$

Rearrange for the Fixed Rate r and call this the Par Rate, p

$$Par\ Rate, p = \frac{PV(Float\ Leg)}{\sum_{i=1}^{n} N\ \tau_{i}\ P(t_{0}, t_{i})} = \frac{PV(Float\ Leg)}{Annuity(Fixed\ Leg)^{1}}$$

¹ Par Rates calculated in terms of Annuity or PV01

Interest Rate Swaps - Specification

- Majority of Swap Booking Schedule Related
- > Trading Templates, Generators & Static Data

	Swap Generator Template	USD_SV	VAP_3M
	LEG TYPE	LEG1:FIXED	LEG2:FLOAT
ပ္ ပ္	PAY / RECEIVE	PAY	RECEIVE
E =	NOTIONAL	1,000,000	1,000,000
Dynamic Frade Info	FIXED RATE (%)	1.00%	-
රු 🖺	FLOAT SPREAD (BPS)	2D	0.00 2D
13	EFFECTIVE DATE / LAG		
	MATURITY DATE / TENOR	2Y	2Y
	LEG CURRENCY	USD	USD
	NOTIONAL EXCHANGE LEVERAGE	NONE	NONE 1.00
	FRONT STUB INDEX	1.00	
		-	NATURAL NATURAL
	BACK STUB INDEX	USD	USD
	VALUATION CURRENCY	USD	
	FORECAST INDEX DISCOUNT INDEX	USDOIS	USD3M USDOIS
	INDEX COMPOUND METHOD	OSDOIS	NONE
ي.	SPREAD COMPOUND METHOD		NONE
<u> </u>	SPREAD COMPOUND METHOD ROLL DAY	END	END
<u>ه</u> م	STUB TYPE	SHORT START	SHORT START
υĘ	FIXING BUS DAY ADJUSTMENT	SHORT START	707700 70070
static Data chediile In	FIXING BUS DAY ADJUSTIMENT	-	MODIFIED_FOLLOWING NY+LDN
Static Data Schedule Info	FIXING CALENDAR FIXING LAG	-	NY+LUN 2D
+	FIXING LAG FIXING IN-ADVANCE / IN-ARREARS		IN-ADVANCE
	ACCRUAL FREQUENCY	SEMI-ANNUAL	QUARTERLY
	ACCRUAL BUS DAY ADJUSTMENT	MODIFIED FOLLOWING	MODIFIED FOLLOWING
	ACCRUAL CALENDAR	NY	NY
	ACCRUAL DAYCOUNT	30/360	ACT/360
	PAYMENT FREQUENCY	SEMI-ANNUAL	QUARTERLY
	PAYMENT REQUENCY PAYMENT BUS DAY ADJUSTMENT	MODIFIED FOLLOWING	MODIFIED FOLLOWING
	PAYMENT CALENDAR	NY	NY
	PAYMENT LAG	2D	2D

	TRADE PARAMETERS	LEG1	LEG2
	LegType	FLOAT	FLOAT
	Currency	EUR	USD
	Notional	8,769,622	10,000,000
	NotionalExchange	ALL	ALL
	PayReceive	PAY	RECEIVE
8	EffectiveDate	Fri, 26-Oct-18	Fri, 26-Oct-18
TRADE	MaturityDateOrTenor	1Y	1Y
FN	FixedRate (%)		4
E	FloatSpread (Bps)	0.00	0.00
	IndexCompoundMethod		NONE
	SpreadCompoundMethod	18	NONE
	Leverage	1.00	1.00
	ForecastCurve	EUR3M	USD3M
	DiscountCurve	EURDF_USDCSA	USDDF
P S	isMTMResetLeg	FALSE	TRUE
MTM	ResetBaseFX	1.00000	1.14030
S	ValuationCurrency	USD	USD
60	CouponRollDay	NATURAL	NATURAL
COUPON & STUB	isEndOfMonth	TRUE	TRUE
CONVENTIONS	StubType	SHORT_START	SHORT_START
NE ON	FrontStubCurveIndex	NATURAL	NATURAL
N N	BackStubCurveIndex	NATURAL	NATURAL
0 0	FrontStubDate	083	*
	BackStubDate	12	#
	AccrualFrequency	QUARTERLY	QUARTERLY
	AccrualCalendar	TGT+NY+LON	TGT+NY+LON
	AccrualBusDayConv	MOD_FOLLOWING	MOD_FOLLOWING
Z	AccrualDaycount	ACT/360	ACT/360
ILE TO	IRFixingBusDayConv	MOD_FOLLOWING	MOD_FOLLOWING
SCHEDULE NFORMATION	IRFixingCalendar	TGT+NY+LON	TGT+NY+LON
S S	IRFixingLag	2D	2D
N F	IRFirstFixingLag	14	\$
100	PaymentFrequency	QUARTERLY	QUARTERLY
	PaymentBusDayConv	MOD_FOLLOWING	MOD_FOLLOWING
	PaymentCalendar	TGT+NY+LON	TGT+NY+LON
	PaymentLag	2D	2D
श्च	IsNonDeliverable	FALSE	FALSE
NON- DELIVERABLES	SettlementCurrency	142	20s 20s
VERA	FXFixingLag	0 8 8	ti
E	FXFixingBusDayConv	142	25
	FXFixingCalendar	053	±:

(Reference)

Interest Rate Swaps - Schedules & Stubs

Swap Schedules

- Backwards vs Forward Rolling Schedules
- Unadjusted to Preserve Roll Day
- Holiday Adjustments Ex-Ante
- Accrual Day Count Conventions

Broken-Dated Swaps

- Stubs & Stub Rates (Linear Interp)
- Short Start/End, Long Start/End
- Market Default: Short Start

IR Products – Tenor & Xccy Basis Swaps

(Reference)

Tenor Basis Swaps

- Float vs Float (Same Currency)
- Exchange USD3M for USD6M say
- Match Project Cash Flow Frequency

Tenor Basis Swap Formulae (December 30, 2015). Available at SSRN: https://ssrn.com/abstract=2959605

Xccy Basis Swaps

- Float vs Float (Different Currencies)
- Exchange USD3M for EUR3M say
- Marked-to-Market / FX Notional Resets
- Reduces XVA Costs

An Illustrated Step-by-Step Guide of How to Price Cross Currency Swaps (November 11, 2018). Available at SSRN: https://ssrn.com/abstract=3278907

IR Products – Asset Swaps

Asset Swap

Borrow Funds to Invest in Bonds

Client Perspective

- Receive Bond Coupons
- Pay LIBOR + Spread
- Spread Includes Finance + Credit Costs

IR Products – Credit Default Swaps (CDS)

Insurance Against Counterparty Default

- Insuring Bond Notional Invested
- Pay Fixed Insurance Premium
- Receive Protection Payment on Default

Credit Crisis & ISDA Big Bang (2008)

- Standardized & Cleared Contracts (IMM Dates¹)
- Increased Liquidity
- Accrued Interest, Clean & Dirty Prices

¹ Third Wednesday of Mar, June, Sep and Dec

IR Products – CDS Pricing

(Reference)

Pricing

- Similar to Interest Rate Swap Pricing
- With Additional Survival Probability Term, Q(t,T)

$$Q(t,T) = exp\left(-\int_t^T \lambda(t,u)du\right)$$

 $\triangleright \lambda$ is the 'Hazard Rate' (instantaneous prob of default)

Buying Credit Protection

PV = PV(Protection Leg) - PV(Premium Leg)

$$PV(Premium Leg) = \sum_{i=1}^{n} \underbrace{Ns \Delta(t_{i-1}, t_i)}_{Coupon} \underbrace{Q(t_i)}_{P(Survive)} \underbrace{P(t_0, t_i)}_{Discount}$$

$$PV(Protection\ Leg) = \sum_{i=1}^{n} \underbrace{N(1-R)}_{\substack{Loss\ Given\\Default}} \underbrace{[Q(t_{i-1})-Q(t_i)]}_{\substack{Premium\ Period\\Factor}} \underbrace{P(t_0,t_i)}_{\substack{Discount\ Factor}}$$

IR Risk

What are the main IR risks?

- Discount Risk (DF01)
- Forward Risk (PV01)
- Discount + Forward Risk (DV01)

Risk Calculation Methods

- Analytical
- Numerical Risk (Benchmark)
- Using Yield Curve Jacobian
- Automatic Adjoint Differentiation (AAD)

Instrument	Term	Rate			
USD SOFR Swap	ON	2.37000%			
USD SOFR Swap	1W	2.36510%			
USD SOFR Swap	2W	2.34960%			
USD SOFR Swap	3W	2.35200%			
USD SOFR Swap	1M	2.34550%			
USD SOFR Swap	2M	2.30320%			
USD SOFR Swap	3M	2.25590%			
USD SOFR Swap	4M	2.19610%			
USD SOFR Swap	5M	2.14750%			
USD SOFR Swap	6M	2.10350%			
USD SOFR Swap	1Y	1.89350%			
USD SOFR Swap	2Y	1.68360%			
USD SOFR Swap	3Y	1.62600%			
USD SOFR Swap	4Y	1.61700%			
USD SOFR Swap	5Y	1.64200%			
USD SOFR Swap	6Y	1.67900%			
USD SOFR Swap	7Y	1.71600%			
USD SOFR Swap	8Y	1.75700%			
USD SOFR Swap	9Y	1.79800%			
USD SOFR Swap	10Y	1.83200%			
USD SOFR Swap	15Y	1.96800%			
USD SOFR Swap	20Y	2.03300%			
USD SOFR Swap	25Y	2.04100%			
USD SOFR Swap	30Y	2.04900%			

Bucketed DV01, US	SD	
Instrument	Tenor	DV01
USD SOFR Swap	ON	8
USD SOFR Swap	1W	0
USD SOFR Swap	2W	0
USD SOFR Swap	3W	0
USD SOFR Swap	1M	0
USD SOFR Swap	2M	0
USD SOFR Swap	3M	0
USD SOFR Swap	4M	0
USD SOFR Swap	5M	-1
USD SOFR Swap	6M	1
USD SOFR Swap	1Y	92
USD SOFR Swap	2Y	213
USD SOFR Swap	3Y	294
USD SOFR Swap	4Y	409
USD SOFR Swap	5Y	453
USD SOFR Swap	6Y	541
USD SOFR Swap	7Y	723
USD SOFR Swap	8Y	736
USD SOFR Swap	9Y	852
USD SOFR Swap	10Y	892
USD SOFR Swap	15Y	1,320
USD SOFR Swap	20Y	1,662
USD SOFR Swap	25Y	1,979

USD SOFR Swap

Total Risk

2,252

12,428

Yield Curves - Calibration

Model Inputs & Outputs

- Liquid Market Instrument Quotes [IN]
- Forward Rates [OUT]
- Discount Factors [OUT]

Calibration Process

- Choose State Variable¹
- Choose Interpolator / Functional Form
- Solve and Imply Forwards & Disc Factors²

¹ Popular choices: forward rate, disc factor, logDF, zero rate etc.

² May need to differentiate and/or integrate state variable, $P(t,T) = \exp\left(-\int_t^T f(t,u)du\right)$

Yield Curves – Collateral & CSA Curves

(Reference)

Collateral & CSA Curves

- Calibrate to FX Forwards & Xccy Swaps
- FX Forward Invariance (FX Carry Trade)
- Impacts Discount Factors Only
- No Impact on Forward Rates

Advanced CSA Topics

- Cheapest to Deliver (Multiple CSAs)
- Collateral Switch Options

$$f(t,T)^{USD/EUR} = s(t)^{USD/EUR} \underbrace{\left(\frac{P(t,T)^{EUR_USDCSA}}{P(t,T)^{USD_USDCSA}}\right)}_{USD_CSA} = s(t)^{USD/EUR} \underbrace{\left(\frac{P(t,T)^{EUR_EURCSA}}{P(t,T)^{USD_EURCSA}}\right)}_{EUR_CSA}$$

Yield Curves - Features

Features

- > Instrument Behaviour
- Mixed Interpolation Schemes
- Turn-of-Year Effects (ToYs)

Advanced Features for Electronic Markets

- Curve Jacobian
- Ultra-Fast Curves & Analytical Risk
- Automatic Adjoint Differentiation (AAD)

Yield Curves – Curve Jacobian

Electronic HFT Usage

- Ultra-Fast Rebuilds
- Real-Time Risk
- Auto-Hedging

Inverse Curve Ja	cobian, dL	/dP								
				Curv	e Calibrati	on Instrum	ents			
Forward Pillars	dP _{1Y} OIS	dP _{ZY} OIS	dP _{3Y} OIS	dP _{4Y} OIS	dP _{5Y} OIS	dP _{1Y} IRS	dP _{2Y} IRS	dP _{3Y} IRS	dP _{4Y} IRS	dP _{5Y} IRS
dO _{1Y}	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
dO _{2Y}	-1.01	2.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
dO _{3Y}	0.00	-2.04	3.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
dO _{4Y}	0.00	0.00	-3.08	4.08	0.00	0.00	0.00	0.00	0.00	0.00
dO _{5Y}	0.00	0.00	0.00	-4.13	5.13	0.00	0.00	0.00	0.00	0.00
dL _{1Y}	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00
dL _{2Y}	0.00	0.00	0.00	0.00	0.00	-1.01	2.01	0.00	0.00	0.00
dL₃γ	0.00	0.00	0.00	0.00	0.00	0.00	-2.04	3.04	0.00	0.00
dL _{4Y}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-3.08	4.08	0.00
dL _{5Y}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-4.13	5.13

By-Product of Calibration Process

- \triangleright First Order Derivative Matrix, dP/dL (Inverse Required)
- Measures Impact of Changes in Market Instrument Quotes (P) on Forward Rates (L)
- Controls Hedge and Risk Buckets (Same as Numerical Bumping)
- Use Implicit Function Theorem (IFT) to modify Risk Buckets (see Appendix)

Yield Curves — Ultra-Fast Rebuilds

New Forwards
$$L_{New} = L_{Old} + dL$$

$$= L_{Old} + (\frac{dL}{dP}). dP$$

N	ew Forward	S	Orig	ginal Forwar	ds		Invers	e Jaco	bian, d	L/dP								Chang	ge in Mkt Data
	LNEW			LOLD			OIS 1Y	OIS 2Y	OIS 3Y	OIS 4Y	OIS SY	IRS 1Y	IRS 2Y	IRS 3Y	IRS 4Y	IRS SY			dP
LIYOIS	1.44591%		LIVOIS	1.43591%		LIYOIS	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		LIYOU	0.01%
Layous	1.24323%		Layors	1.23323%		L2Y OIS	-1.01	2.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		L2Y OIS	0.01%
L 3Y OIS	1.26107%		Layors	1.25107%		Layous	0.00	-2.04	3.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00		Layos	0.01%
Lay OIS	1.30130%		Layois	1.29130%		Layors	0.00	0.00	-3.08	4.08	0.00	0.00	0.00	0.00	0.00	0.00		Layors	0.01%
LSYOIS	1.40782%		Lsy	1.39782%	+	LsyOIS	0.00	0.00	0.00	-4.13	5.13	0.00	0.00	0.00	0.00	0.00	×	Lsy	0.01%
LIYIRS	1.71896%		LIYIRS	1.70896%	9 51	LIYIRS	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	^	LIYIRS	0.01%
L2Y IRS	1.48359%		L2Y IRS	1.47359%		LzyIRS	0.00	0.00	0.00	0.00	0.00	-1.01	2.01	0.00	0.00	0.00		L _{2Y} IRS	0.01%
L 3Y IRS	1.50531%		LayiRS	1.49531%		L 3Y IRS	0.00	0.00	0.00	0.00	0.00	0.00	-2.04	3.04	0.00	0.00		LayIRS	0.01%
Lay IRS	1.56934%		Lay IRS	1.55934%		LayIRS	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-3.08	4.08	0.00		L _{4Y} IRS	0.01%
LsyIRS	1.63999%		LSYIRS	1.62999%		L SY IRS	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-4.13	5.13		LsyIRS	0.01%

Implementation

- ➤ Slow Curve (Full-Rebuild) Ticks in Background (ca. 10ms)
- Fast Curve (Jacobian Method) Used Between Refreshes (Real-Time)

Yield Curves — Real-Time Risk

Requirements

- Curve Jacobian
- Trade or Portfolio Jacobian

Risk as a Matrix Operation

- Can be Parallelized / Vectorized
- Matrix Dimensions Must Agree
- Interpolation & Forward Mapping
- Barycentric Weights, w_i(t)

$$p(t) = \sum_{j=0}^{n} w_j(t) f(t_j), \qquad w_j(t) = \frac{\prod_{k=0, k \neq j}^{n} (t - t_k)}{\prod_{k=0, k \neq j}^{n} (t_j - t_k)}$$

Yield Curves – Automatic Adjoint Differentiation (AAD)

Trade Jacobian

- AAD Can Compute Instrument Price & Risk Simultaneously
- Direct Differentiation of Code + Implicit Function Theorem (IFT)
- Exact & Fast (X4 Pricing Time)

Tangent & Adjoint Modes

- Tangent Mode (dot): Forward Mode One Risk at a Time
- > Adjoint Mode (bar): Backward Mode All Risks Simultaneously
- Activation Inputs Control Risk Outputs

Implementation Methods

- By Hand (See Appendix for Swap DV01 Risk Example)
- Derivative Code by Overloading, DCO/C++
- Professional Tools: Adept, NAG

Pricing Calculations

$$x \to f(x) \to g(f) \to h(g) \to y$$

Chain Rule: Forwards

$$\frac{\text{d}f}{\text{d}x}.\frac{\text{d}g}{\text{d}f}.\frac{\text{d}k}{\text{d}g}.\frac{\text{d}y}{\text{d}k}=\frac{\text{d}y}{\text{d}x}$$

Chain Rule: Backwards

$$\frac{dy}{dh}.\frac{dh}{dg}.\frac{dg}{df}.\frac{df}{dx} = \frac{dy}{dx}$$

Yield Curves – AD Tangent Mode Example

(Reference)

Tangent Mode

- Differentiate Forwards using 'Dot' Notation
- One Risk at a Time, Controlled by Dot Input Activation Variables 1 or 0
- For $\frac{df}{dx_1}$ and $\frac{df}{dx_2}$ must call tangent method twice

```
double function( double x1, double x2)
02 {
       double a = x1*x1;
                                     // Step 1:
       double b = 2*a;
                                     // Step 2:
04
       double c = x2;
                                      // Step 3:
                                                     d = 3x_2
                                     // Step 4:
       double d = 3*c;
                                                     f = 2x_1^2 + 3x_2
       double f = b + d;
                                     // Step 5:
       return f:
09 }
```

Simple Function: $f(x_1, x_x) = 2x_1^2 + 3x_2$

Source Code: https://onlinegdb.com/kKqaS6hJT

```
01 tangent(2.0, 3.0, 1.0, 0.0); // Input: x1 = 2, x2 = 3, x1_d = 1, x2_d = 0 Output: 8
02 tangent(2.0, 3.0, 0.0, 1.0); // Input: x1 = 2, x2 = 3, x1_d = 0, x2_d = 1 Output: 3
```

Function Derivatives using Tangent Mode

```
01 double tangent( double x1, double x2, double x1 dot, double x2 dot )
02 {
                                                            a = x_1^2
         double a = x1*x1;
                                            // Step 1:
                                                            \dot{a} = 2x_1 \cdot \dot{x}_1
         double a dot = 2*x1*x1 dot; // Tangent:
04
                                                                                    \dot{a} = 2x_1
                                                            b = a
         double b = 2*a;
                                           // Step 2:
        double b dot = 2*a dot;
                                           // Tangent:
                                                            b=2\cdot a
                                                                                     b = 4x_1
         double c = x2;
                                            // Step 3:
                                                            c = x_2
        double c dot = x2 dot;
                                           // Tangent:
                                                            \dot{c} = \dot{x}_2
                                                                                    \dot{c} = 1
         double d = 3*c;
                                           // Step 4:
                                                            d = 3c
        double d dot = 3*c dot;
                                                                                    d = 3
                                           // Tangent:
                                                            d = 3 \cdot c
                                           // Step 5:
                                                            f = 2x_1^2 + 3x_2
         double f = b + d;
                                                           \dot{f} = \dot{b} + \dot{d}
        double f dot = b dot + d dot; // Tangent:
         return f dot;
                                            // Result:
                                                            \dot{f} = 4x_1 + 3
14 }
```

Simple Function $f(x_1,x_x)=2x_1^2+3x_2$ with Tangent Derivatives

Yield Curves – AD Adjoint Mode Example

(Reference)

Adjoint Mode (Reverse Mode)

- Backwards Differentiation with 'Bar' Notation
- Forward Sweep then Back Propagate Risk
- Computes All Risks at Same Time
- Risk Controlled By Bar Input Activation Variable 1 or 0
- Adjoint Method Calculates Both $\frac{df}{dx_1}$ and $\frac{df}{dx_2}$

```
double function( double x1, double x2)
02 {
                                                       a = x_1^2
        double a = x1*x1;
                                       // Step 1:
04
       double b = 2*a;
                                       // Step 2:
       double c = x2;
                                       // Step 3:
       double d = 3*c;
                                       // Step 4:
                                                       d = 3x_2
                                      // Step 5:
                                                      f = 2x_1^2 + 3x_2
       double f = b + d:
       return f;
09
```

Simple Function: $f(x_1, x_x) = 2x_1^2 + 3x_2$

```
01 adjoint(2.0, 3.0, 1.0); // Input: x1 = 3, x2 = 2, f_bar Output: df/dx_1 = 8 and df/dx_2 = 3
```

Function Derivatives using Adjoint Mode

```
01 void adjoint( double x1, double x2, double f bar )
02 {
        // Forward Sweep
                                                       a = x_1^2
        double a = x1*x1;
                                         // Step 1:
                                                       b = 2x_1^2
        double b = 2*a;
                                         // Step 2:
                                                        c = x2
        double c = x2;
                                         // Step 3:
                                                       d = 3x_2
        double d = 3*c;
                                         // Step 4:
                                                       f = 2x_1^2 + 3x_2
        double f = b + d;
                                         // Step 5:
        // Back Propagation
                                                        b bar = 1
        double b bar = f bar;
                                         // Step 5:
                                                                        from input variable
        double d bar = f bar;
                                         // Step 5:
                                                        d bar = 1
                                                                        from input variable
        double c bar = 3*d bar;
                                         // Step 4:
                                                        c bar = 3
        double x2 bar = c bar;
                                         // Step 3:
                                                        x2 bar = 3
                                                                        df/dx_2 = 3
        double a bar = 2*b bar;
                                                        a bar = 2
                                         // Step 2:
        double x1 bar = 2*x1*a bar;
                                                        x1 \text{ bar} = 4x_1 \quad df/dx_1 = 4x_1
                                         // Step 1:
        // Display Results
        std::cout << "df/dx1: " << x1 bar << std::endl;
                                                               //\bar{x}_1 = df/dx_1 = 4x_1
        std::cout << "df/dx2: " << x2 bar << std::endl;
                                                               //\bar{x}_2 = df/dx_2 = 3
20 }
```

Simple Function $f(x_1, x_x) = 2x_1^2 + 3x_2$ with Adjoint Derivatives

Credit Models – Hazard Rates & Survival Probabilities (Reference)

Calibration Summary

- Yield Curve is an Input
- Calibrate to Bonds or CDS
- \triangleright Imply Hazard Rates, λ
- Used for Survival Prob, Q(t,T)

Common Assumptions

- Piecewise Constant¹
- Deterministic Hazard Rates

Rule of Thumb

$$\lambda = \frac{s}{(1-R)}$$

$$Q(t,T) = exp\left(-\int_{t}^{T} \lambda(t,u)du\right) \qquad P(t,T) = \exp\left(-\int_{t}^{T} f(t,u)du\right)$$

¹ As often there is only a single calibration instrument

PART TWO - PRICING & PRACTICE

Interest Rate Swap – Annuity is the Key Pricing & Risk Factor

It's All About Annuity

- Pricing & Risk Expressed in Terms of Annuity
- Similarly Float Legs Expressed in Annuity Terms
- Can Be Used to Convert a Float Leg to Fixed Leg
- Useful for Low Latency Pricing

Key Formulae:

- \triangleright PV = (r p) Annuity(Fixed)
- Par Rate = PV(Float) / Annuity(Fixed)
- PV01 = Annuity(Fixed) x 0.01%
- > DV01 = PV01 + DF01 = PV01 for Par Swaps

$$A_N = N \sum_{i=1}^n \tau_i P(t_0, t_i)$$

Low Latency Interest Rate Swap Pricing

Electronic Rates Markets & Low Latency Interest Rate Swap Calculations (May 31, 2022).

Available at SSRN: https://ssrn.com/abstract=4125565

$$Swap PV = PV^{Fixed Leg} - PV^{Float Leg}$$

$$= r \sum_{i=1}^{n} N_i \tau_i P(t_0, t_i) - \sum_{j=1}^{m} N_j l_{j-1} \tau_j P(t_0, t_j)$$

$$=(r-p)A_{Fixed}$$

Interest Rate Swap – Pricing & Risk Example

(Reference)

Compute Annuity A_N

= USD 4,863,971.74

$$A_N = N \sum_{i=1}^n \tau_i P(t_0, t_i)$$

 $PV = (r - p) A_N$

 $= (5.00\% - 1.59\%) A_N$

= USD 167,892.11

Par Rate = $PV(Float) / A_N$

 $= 75,306 / A_N$

= 1.5482%

PV01

 $= A_N \times 0.01\%$

= USD 486.40

32

Asset Swap - Structuring

Trader Creates Synthetic Asset Swap

- Borrow Cash from Treasury to Purchase Bond
- Buy Bond
- Buy CDS Protection (or Carries Credit Risk Unhedged)

Credit Risky Bond Coupons, C **ASW TRADER**

Trader Cash Flows

- Pays Treasury Funding
- Pays CDS Premium
- Receives Bond Coupons and Passes on to Client
- Client Pays All Costs + Commission as a Spread over LIBOR (or RFR)

Asset Swap - Pricing as a Spread Over LIBOR (or RFR)

- ASW Spread Par-Par Spread
- MMS Spread Yield-Yield Spread¹

Asset Swap – Pricing using Par-Par Method

(Reference)

Pricing as a PV

- Valuation Method for Existing Swaps, Unwinds and Novations (trade transfers)
- > Again Present Value is Simply the Sum of Incoming and Outgoing Cash Flows
- An Upfront Par-Adjustment is Made if the Underlying Bond not Trading at Par, i.e., 100

$$PV^{Asset \, Swap} = \underbrace{\Phi r^{Fixed} \sum_{i=1}^{n} N_i \tau_i P(t_0, t_i)}_{Fixed \, Leg} - \underbrace{\Phi \sum_{j=1}^{m} N_j (l_{j-1} + s) \tau_j P(t_0, t_j)}_{Float \, Letg} + \underbrace{\Phi N_1 \left(\frac{100 - B}{100}\right)}_{Par \, Adjustment}$$

Pricing as a Par Spread

- New Asset Swaps Price to Par i.e., zero
- Instead Quote as a Par Spread s
- Rearrangement of PV formula with PV=0

$$s = \left(\frac{\left(\mathbf{r}^{Fixed} - p^{Market}\right)A^{Fixed} + \left(\frac{100 - B}{100}\right)}{A^{Float}}\right)$$

Pricing Tricks & Rules of Thumb

Annuity Assumption

- Need to know market par rates for standard swap maturities
- Assume Annual Coupons and Discount Factors = 1.0
- This means Annuity = Time to Maturity

Interest Rate Swap PV

Approximate PV

$$\triangleright$$
 PV = N (r – p) A(Fixed)

 \triangleright PV = N \triangle r T

This gives PV as USD 100 per Million per Year per Δr in bps

IRS Rule of Thumb

- PV = 100 x ΔN x Δr x ΔT
- DV01 = PV01 = 100 x ΔN x ΔT

Pricing Tricks – Interest Rate Swap

IRS – Rule of Thumb

- \triangleright PV = 100 x \triangle N x \triangle r in bps x \triangle T
- DV01 = PV01 = 100 x ΔN x ΔT

Market Par Rate

- 5Y Par Rate = 150 bps
- $ightharpoonup \Delta r = (r-p) = (500-150) = 350 bps$

Present Value

- ightharpoonup Here $\Delta N = 1$, $\Delta r = 350$, $\Delta T = 5$
- > PV = USD 175,000
- > DV01 = PV01 = USD 500

PV = 100 x 1 x 350 x 5 = USD 170K

 $DV01 = 100 \times 1 \times 5 = USD 500$

Pricing Tricks – Asset Swap

(Reference)

We Can Make the Same Annuity Assumption to Price Asset Swaps

Par-Par Spread

$$s = \left(\frac{\left(\mathbf{r}^{Fixed} - p^{Market}\right)A^{Fixed} + \left(\frac{100 - B}{100}\right)}{A^{Float}}\right)$$

IRS Rule of Thumb

$$s = (r - p) + (100-B/100) / T$$

= $\Delta r - (\Delta B / T)$

where
$$\Delta r = (r - p)$$
 in bps
and $\Delta B = (B\% - 100\%)$ in bps

Par-Par Spread

Here $\Delta r = 0.50\% - 0.44\% = 6$ bps, $\Delta B = 458$ bps and T = 10

$$S = 6 - (458/10) \approx 6 - 46 = -40 \text{ bps}$$

References

Quant Research Papers https://ssrn.com/author=1728976

Support Materials, C++ & Excel Examples https://github.com/nburgessx/SwapsBook

Appendix – Implicit Function Theorem (IFT)

IFT Theorem

To gain some intuition consider the following function f(x,y)=0 for which we have a solution (a,b). Near the solution we can express y as function of x namely f(x,y(x))=0. Using this expression, we can compute the derivative in terms of x only by differentiating with respect to x as follows,

$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial x} = 0$$

which gives,

$$\frac{\partial y}{\partial x} = -\left(\frac{\partial f}{\partial f}\right)_{\partial y}$$

We have a solution under the condition, $\frac{\partial f}{\partial y} \neq 0$, since we cannot divide by zero.

Yield Curve Application

In the context of a yield curve calibration, we solve for the solution of a helper target function, H(L,P)=0, where L is the LIBOR forward rate state variable (model output) and P the yield curve par rate (model input). The helper target function computes the difference between model par rates as a function of the forward state variable L and a market instrument par rate quote,

$$H(L, P) = Model Par Rate(L) - Market Par Rate$$

How does this Help with Sensitivity Calculations?

The IFT theorem says that having found a solution to the continuously differentiable function H(L,P)=0 in two variables we can express the solution solely in terms of the model output L namely H(L,P(L))=0 and that the Jacobian derivative can be computed independent of model inputs i.e., the yield curve instruments and par rates as,

$$\frac{\partial P}{\partial L} = -\left(\frac{\partial H}{\partial H}\right)_{\partial P}$$

Now, from the definition of the function H(L,P) we can easily determine dH/dP=-1 which leads to,

$$\frac{\partial P}{\partial L} = -\left(\frac{\partial H}{\partial H}\right) = \frac{\partial H}{\partial L}$$
$$= \frac{d}{dL} (Model \ Par \ Rate)$$

For an Interest Rate Swap

$$Par\ Rate, p = \frac{PV(Float\ Leg)}{\sum_{i=1}^{n} N\ \tau_{i}\ P(t_{0}, t_{i})} = \frac{\sum_{j=1}^{m} N\left(\ l_{j-1} + s\right)\tau_{j}\ P(t_{0}, t_{j})}{Annuity(Fixed)}$$

- > The derivative with respect to L is trivial to calculate
- We can calculate for any set of calibration instruments
- This allows us to modify and select any risk & hedge buckets

Appendix – Swap DV01 Risk Example using AAD (Part I)

IRS Present Value Code

- Swap Price Implementation
- Simplified for Demo Purposes
- For Full Example See

https://bit.ly/SwapCodeAAD

```
01 // Swap Inputs
                Pay or Receive Fixed: Pay = 1, Receive = -1
02 // phi
03 // n
               Swap Notional
04 // r
                Fixed rate
05 // tau
               Accrual year fraction
06 // t
                Coupon Payment Time
07 // f
               Floating Forward Rate
08 // s
               Floating Spread
09 // z
                Discounting Zero Rate for Discount Factor, where df = exp(-z*t)
11 double swap_pv(double phi, double n, double r, double tau, double t, double f, double s,
    double z)
12 {
        double df
                         = \exp(-z*t);
                                                // Step 1. Discount Factor using zero rate, z
        double pv fixed = phi*n*r*tau*df;
                                                // Step 2. Fixed PV = \varphi N r \tau_1 P(0, t_1)
        double pv float = -phi*n*(f+s)*tau*df; // Step 3. Float PV = \varphi N(l_1 + s)\tau_1 P(0, t_1)
        double pv swap = pv fixed+pv float; // Step 4. Swap PV = Fixed PV + Float PV
        return pv_swap;
18 }
```

Swap Price

Appendix – Swap DV01 Risk Example using AAD (Part II)

Analytical DV01 Risk

- Using Adjoint Mode (AAD)
- Forward Sweep for Price
- Back Propagation for Risk
- Simultaneous Forward and Discount Risk

```
01 double adjoint(double phi, double n, double r, double tau, double t, double f, double s, double z,
     double pv bar)
02 {
        // Forward Sweep
                                                       // Step 1. Discount Factor using zero rate, z
04
        double df
                               = \exp(-z*t);
        double pv fixed
                               = phi*n*r*tau*df;
                                                       // Step 2. Fixed PV = \phi N r \tau 1 P(0, t 1)
                               = -phi*n*(f+s)*tau*df; // Step 3. Float PV = \phi N(I 1+s) \tau 1 P(0,t 1)
        double pv float
        double pv swap
                               = pv fixed+pv float; // Step 4. Swap PV = Fixed PV + Float PV
        // Backward Propagation
        double pv fixed bar
                               = pv bar;
                                                                               // Step 4.
        double pv float bar
                                                                               // Step 4.
                               = pv bar;
        double f bar
                               = -phi*n*tau*df*pv float bar*shift size f;
                                                                               // Step 3. *
        double df_bar
                               = -phi*n*f*tau*pv_float_bar*shift_size_df;
                                                                               // Step 3. *
14
        df bar
                               += phi*n*r*tau*pv fixed bar*shift size df;
                                                                               // Step 2. *
                               = -t*exp(-z*t)*df bar;
        double z bar
                                                                               // Step 1.
        // DV01 Result
       return f_bar + df_bar; // Sensitivity to 1 bps change in forwards and discount factors
18
19 }
```

Swap DV01 using AD in Adjoint Mode

```
01 // inputs( phi, n, r, tau, t, f, s, z, pv_bar )
02 adjoint( 1, 1000000, 0.02, 1, 1, 0.01, 0, 0.02, 1 ); // Output DV01 Risk
```

Swap DV01 Risk using Adjoint Mode

Source Code: https://www.onlinegdb.com/edit/al8aNASJnQ

Have questions or want further info?

Contact

LinkedIn: <u>www.linkedin.com/in/nburgessx</u>