丢番图方程

考虑方程 $a^2 + b^2 = c^2$

定义: 称正整数 a, b, c 组成了一个毕达哥拉斯三元组,若 (a, b, c) = 1 且 $a^2 + b^2 = c^2$.

解: 容易看出 a,b 一奇一偶 (标注:由条件 (a,b)=1,知 a,b 不能同为偶数;若 a,b 同为奇数,则 $a^2=4x+1,b^2=4y+1,a^2+b^2=4(x+y)+2$,但 $c^2=4K$ 或 4K+1, $a^2+b^2=c^2$ 不可能成立)

不失一般性,设a为偶数,则b,c均为奇数,

$$(\frac{a}{2})^2 = \frac{c^2 - b^2}{4} = \frac{c + b}{2} \cdot \frac{c - b}{2}$$

可证 $\frac{c+b}{2} = t^2, \frac{c-b}{2} = s^2, (t,s) = 1.t, s$ 一奇一偶.

(标注-引理: 不定方程 $uv=w^2, u>0, v>0, (u,v)=1$ 的一切正整数解可以写成公式 $u=t^2, v=s^2, w=ts, t>0, s>0, (t,s)=1)$

(标注-引理证明: 设 u,v,w 是方程的任一解. 令 $u=t^2u_1,v=s^2v_1,t>0,s>0$, 其中 u_1,v_1 不再被任何数的平方整除,则 $t^2\mid w^2,s^2\mid w^2$. 故 $t\mid w,s\mid w$. 又 (u,v)=1, 故 $(t^2,s^2)=1$,故 (t,s)=1,所以 $ts\mid w$,设 $w=w_1ts$,代入方程得 $u_1v_1=w_1^2$.

若 $w_1^2 \neq 1$, 则存在素数 p, 满足 $p^2 \mid w_1^2$. 但由 u_1, v_1 的定义及 $(u_1, v_1) = 1$ 知 $p^2 \nmid u_1 v_1$.

故 $w_1^2 = 1, u_1v_1 = 1$, 但 u_1, v_1, w_1 均为正整数, 所以 $u_1 = v_1 = w_1 = 1$.

因此 $u = t^2, v = s^2, w = ts, t > 0, s > 0, (t, s) = 1.$

反之, 引理中给出的解显然满足方程)

定理 7: (a,b,c) 是毕达哥拉斯三元组当且仅当

$$\begin{cases} a = 2st \\ b = t^2 - s \\ c = t^2 + s^2 \end{cases} (t, s) = 1$$

t 与 s 一奇一偶.