MA 572: Homework 1

Carlos Salinas

January 20, 2016

1

PROBLEM 1.1 (HATCHER §2.1, Ex. 11)

Show that if A is a retract of X then the map $H_n(A) \to H_n(X)$ induced by the inclusion $A \subset X$ is injective.

Proof. Suppose that A is a retract of X. Then there exists a continuous map $r: X \to A$ such that r(X) = A and $r \mid A = \mathrm{id}_A$. Let $i: A \hookrightarrow X$ denote the inclusion map and $i_*: H_n(A) \to H_n(X)$ denote the induced homomorphism on the homology groups of A and X; do the same for r, $r_*: H_n(X) \to H_n(X)$. Then $r \circ i = \mathrm{id}_A$ which induces the endomorphism $(r \circ i)_* = r_* \circ i_* = \mathrm{id}_{H_n(A)}$ on $H_n(A)$. Thus, the inclusion map i_* is injective (since it has a left inverse).

MA 572: Homework 1

PROBLEM 1.2 (HATCHER §2.1, Ex. 12)

Show that chain homotopy of chain maps is an equivalence relation.

Proof. Let X and Y be topological spaces and $f, g, h: X \to Y$ be continuous maps. Then $f_{\#}, g_{\#}, h_{\#}: C_n(X) \to C_n(Y)$ denote the induced chain maps. We show that chain homotopy of chain maps is an equivalence relation:

(i) Let P be the 0 homomorphsim. Then, we have

$$\partial 0 + 0 \partial = 0 = f_{\#} - f_{\#}.$$

Thus, $f_{\#}$ is chain homotopic to itself.

(ii) Suppose $f_{\#}$ is chain homotopic to $g_{\#}$. Then there exist a homomorphism $P: C_n(X) \to C_{n+1}(Y)$ such hat $\partial P + P\partial = g_{\#} - f_{\#}$. Put Q := -P. Then, we have

$$\partial(-P) + (-P)\partial = -(\partial P + P\partial) = -(g_{\#} - f_{\#}) = f_{\#} - g_{\#}.$$

Thus, $g_{\#}$ is chain homotopic to $f_{\#}$.

(iii) Suppose that $f_{\#}$ is chain homotopic to $g_{\#}$ and $g_{\#}$ is chain homotopic to $h_{\#}$. Then there exists homomorphism $P: C_n(X) \to C_{n+1}(Y)$ and a homomorphism $Q: C_n(X) \to C_{n+1}(Y)$ such that $\partial P + P \partial = g_{\#} - f_{\#}$ and $\partial Q + Q \partial = h_{\#} - g_{\#}$. Put R:=P+Q. Then, we have

$$\begin{split} \partial(P+Q) + (P+Q)\partial &= \partial P + \partial Q + P\partial + Q\partial \\ &= (\partial Q + Q\partial) + (\partial P + P\partial) \\ &= (h_\# - g_\#) + (g_\# - f_\#) \\ &= h_\# - f_\#. \end{split}$$

Thus, $f_{\#}$ is chain homotopic to $h_{\#}$.

We conclude that 'chain homotopy' is an equivalence relation.

PROBLEM 1.3 (HATCHER §2.1, Ex. 16)

- (a) Show that $H_0(X, A) = 0$ iff A meets each path-component of X.
- (b) Show that $H_1(X, A) = 0$ iff $H_1(A) \to H_1(X)$ is surjective and each path-component of X contains at most one path-component of A.

Proof. (a) \Longrightarrow Suppose that the relative 0th homology of X with respect to A, $H_0(X,A)$, is trivial. Let $\{X_{\alpha}\}$ be the set of path-components of X. We aim to show that $A \cap X_{\alpha} \neq \emptyset$ for all α . Let $i \colon A \hookrightarrow X$ denote the canonical inclusion map $A \subset X$. Now, the map i can be extended to a chain map between chain complexes which, by proposition 2.9, induces a homomorphism $i_* \colon H_n(A) \to H_n(X)$ between the homology groups of A and X. Similarly, the map $j \colon C_n(X) \to C_n(X,A)$ induces a map $j_* \colon H_n(X) \to H_n(X,A)$ so, by theorem 2.16, we have a long exact sequence

$$\cdots \xrightarrow{\partial} H_0(A) \xrightarrow{i_*} H_0(X) \xrightarrow{j_*} H_0(X, A) \xrightarrow{0} 0. \tag{1}$$

In particular, the short exact sequence

$$0 \xrightarrow{0} H_0(A) \xrightarrow{i_*} H_0(X) \xrightarrow{j_*} H_0(X, A) \xrightarrow{0} 0. \tag{2}$$

But $H_0(X, A) = 0$ so the map $j_* = 0$. By short exactness of (2) we have im $i_* = \ker j_* = H_0(X)$, so i_* is surjective.

MA 572: Homework 1

PROBLEM 1.4 (HATCHER §2.1, Ex. 17)

- (a) Compute the homology groups $H_n(X,A)$ when X is \mathbf{S}^2 or $\mathbf{S}^1 \times \mathbf{S}^1$ and A is a finite set of points in X.
- (b) Compute the groups $H_n(X, A)$ and $H_n(X, B)$ for X a closed orientable surface of genus two with A and B the circles shown. [What are X/A and X/B?]

Proof. (a) Since A is a finite collection of points in S^2 , let us enumerate the set A via $\{a_1, ..., a_n\}$ and denote by A_k the subset $\{a_1, ..., a_k\}$ of A, where $k \leq n$. Now, by the generalization of theorem 2.16 to triples, we have the long exact sequence

$$\cdots \longrightarrow H_m(A_n, A_{n-1}) \longrightarrow H_m(\mathbf{S}^2, A_{n-1}) \longrightarrow H_m(\mathbf{S}^2, A_n) \longrightarrow H_{m-1}(A_n, A_{n-1}) \longrightarrow \cdots .$$
 (3)

Exactness of (3) tells us that for $m \geq 2$ we have $H(\mathbf{S}^2, A_{n-1}) \cong H(\mathbf{S}^2, A_n)$ since

$$H_m(A_n, A_{n-1}) = 0 \longrightarrow H_m(\mathbf{S}^2, A_{n-1}) \longrightarrow H_m(\mathbf{S}^2, A_n) \longrightarrow 0 = H_{m-1}(A_n, A_{n-1})$$

is exact. Evidently, $H_m(A_n, A_{n-1}) = 0$ for m > 1.

(b)

¹I will prove this if time permits.