Maciej Bartos 216719 Kamil Celejewski 216733

METODY NUMERYCZNE – LABORATORIUM

Zadanie 1 – metody wyznaczania miejsc zerowych

Opis rozwiązania

W metodzie bisekcji wartości funkcji na krańcach zadanego przedziału[a,b] muszą mieć równe znaki oraz na pewno znajduje się tylko jedno miejsce zerowe. Wówczas:

- 1. Wyznaczamy punkt $x = \frac{a+b}{2}$,
- 2. Jeżeli wartość funkcji od x jest równa 0, algorytm kończy prace,
- 3. W przeciwnym razie, dopóki nie zostanie osiągnięta dokładność (|a-b|> ε) lub zadana liczba iteracji algorytm powtarza czynności 4, 5 oraz 6,
- 4. Ponownie wyznaczamy $x = \frac{a+b}{2}$,
- 5. Wybieramy przedział ([a,x] lub [x,b]) na którym jest spełniony warunek różnych znaków na krańcach przedziału,
- 6. Następnie pod wartość a lub b, zależnie od wybranego przedziału, jest przypisana wartość x,
- 7. Po spełnieniu wymagań pierwiastek ma postać $\frac{a+b}{2}$.

W metodzie Newtona podobnie jak w metodzie bisekcji na zadanym przedziale [a,b] funkcja posiada różne znaki na krańcach, posiada miejsce zerowe oraz funkcja jest równa od zera. Wówczas:

- 1. Wybieramy punkt startowy(w naszym przypadku jest to punkt środka przedziału [a,b],
- 2. Określamy pierwsze przybliżenie miejsca zerowego za pomocą wzoru $x = start \frac{f(start)}{f'(start)'}$
- 3. Powtarzamy krok 2 do momentu osiągnięcia zadanej przez nas dokładności lub ilości iteracji za każdym razem podstawiając pod start wartość x,

Wyniki

Tabela 1. Wyniki pomiarów metodą bisekcji dla epsilon=0.01

Funkcje	Przedział	Iteracje	Pomiar programu (miejsce zerowe)	Dokładność pomiaru	Pomiar analityczny
$3x^3 + 3x^2 - 7x + 1$	<-3,-1>	8	-2.14844	0.078125	-2.1547
sin(x)	<-4,-2>	8	-3.14844	0.0078125	-π
$3,4^x - 1$	<-0.2,0.2>	1	0	POMIAR DOKŁADNY	0
$cos(2x^3 + 4x^2 - 1)$	<0.6,0.8>	5	0.69375	0.00625	0.691177

Tabela 2. Wyniki pomiarów metodą Newtona dla epsilon=0.01

Funkcje	Przedział	Iteracje	Pomiar programu	Dokładność	Pomiar
			(miejsce zerowe)	pomiaru	analityczny
$3x^3 + 3x^2 - 7x$	<-3,-1>	3	-2.1547	0.000346798	-2.1547
+ 1					
sin(x)	<-4,-2>	2	-3.14159	0.00095389	-π
$3,4^{x}-1$	<-0.2,0.2>	1	0	POMIAR	0
				DOKŁADNY	
$cos(2x^3+4x^2)$	<0.6,0.8>	1	0.691177	POMIAR	0.691177
-1)				DOKŁADNY	

Wnioski

Metoda Newtona jest dokładniejsza oraz szybsza, ponieważ do uzyskania przez nią wyniku wymagana jest mniejsza ilość iteracji oraz wynik znajduje się bliżej rzeczywistej wartości niż w przypadku metody bisekcji. Wadą jest natomiast wymóg obliczenia pochodnej.

Ponadto w zaimplementowanej przez nas metodzie Newtona ważną rolę odgrywa punkt startowy. Podając niektóre przedziały wyznaczone zostaje miejsce zerowe spoza zadanego zakresu.