MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2010 SOLUTION KEY

Round 4

- A) Since the middle coefficient is -1, we start with (a, b) = (1, 2). $x^2 - x - n = (x + 1)(x - 2)$ which gives n = 2. Thus, the absolute value of the difference between a and b must always be 1. $2(3) \rightarrow 6$ $3(4) \rightarrow 12$ $4(5) \rightarrow 20$ $5(6) \rightarrow 30$ $6(7) \rightarrow 42$ $7(8) \rightarrow 56$ (too big)
- B) Given: $P = 280x^3y^2$, GCF(P, Q) = $28x^2y^2$ and LCM(P, Q) = $3080x^3y^3z$. Note: Given any two integers m and n, $mn = GCF(m, n) \cdot LCM(m, n)$. Ex: GCF(24, 30) = 6 and LCM(24, 30) = 120 and 24(30) = 6(120) = 720. The same principle applies to literal expressions.

$$PQ = GCF(P, Q) \cdot LCM(P, Q) \rightarrow 280x^3y^2(Q) = (28x^2y^2)(3080x^3y^3z)$$

 $\rightarrow x^3y^2Q = 308x^5y^5z \rightarrow Q = 308x^2y^3z.$

C) Combining like terms, $8A^2 - 7AB + 13B^2 - 3W^2 - 4B^2 - 4A^2 + 19AB - 13W^2$ = $4A^2 + 12AB + 9B^2 - 16W^2 = (2A + 3B)^2 - (4W)^2$. As the difference of perfect squares this factors to (2A + 3B - 4W)(2A + 3B + 4W)

Round 5

- A) The numerator $\cot(45^\circ) + 2\sin(210^\circ)$ evaluates to $1 + 2\left(-\frac{1}{2}\right) = 0$. Without bothering to evaluate, we note that the denominator is nonzero, since the tangent of a first quadrant angle is positive. Thus, the expression evaluates to $\underline{\mathbf{0}}$.
- B) $\left(\sin 510^{\circ} \cos 240^{\circ} \cot^{3} 315^{\circ} \csc \frac{11\pi}{6} \sec \left(\frac{-7\pi}{3} \right) \right)^{5} = \left(\sin 150^{\circ} \cos 240^{\circ} \cot^{3} 315^{\circ} \csc \frac{11\pi}{6} \sec \left(\frac{5\pi}{3} \right) \right)^{5}$ $= \left(\sin 30^{\circ} \cdot -\cos 60^{\circ} \cdot -\cot^{3} 45^{\circ} \cdot -\csc 30^{\circ} \cdot \sec 60^{\circ} \right)^{5} =$ $\left(\sin 30^{\circ} \cdot -\csc 30^{\circ} \cdot -\cos 60^{\circ} \cdot \sec 60^{\circ} \cdot -\cot^{3} 45^{\circ} \right)^{5} = \left((-1)(-1)(-1)^{3} \right) = \underline{-1}$