Data Analytics and Visualization on Fiverr Dataset

Data Cleaning and Exploratory Data Analysis (EDA) on Fiverr Freelance Dataset

Manahil Ahmad

Table of Content

Data Analytics and Visualization on Fiverr Dataset	1
Data Cleaning and Exploratory Data Analysis (EDA) on Fiverr Freelance	
Dataset	1
1. Introduction	3
2. Dataset Description and Justification	3
3. Data Pre-processing	3
Step 1: Import Libraries and Load Dataset	3
Step 2: Initial Data Exploration	4
Step 3: Clean Column Names	4
Step 4: Remove Duplicates	
Step 5: Handle Missing Values	5
Step 6: Clean and Convert Price Column	
Step 7: Convert Stars and Reviews to Numeric	6
Step 8: Outlier Detection and Treatment	
Step 9: Inspect and Save Cleaned Dataset	7
Step 10: Save Cleaned Dataset	7
4. Exploratory Data Analysis (EDA)	7
Step 11: Identify Key Columns for Analysis	7
Step 12: Average Price by Category	8
Step 13: Bar Chart – Top 15 Categories	8
Step 14: Skill Distribution (Pie Chart)	9
Step 15: Correlation – Price vs Stars/Review	9
Step 16: Price Trend Over Time	11
Step 17: Top Profitable Categories Summary	11
5. Key Observations	
6. Conclusion	12

1. Introduction

This report presents a comprehensive data cleaning and exploratory data analysis (EDA) on the Fiverr Freelance Dataset.

The dataset was analyzed using Python libraries such as pandas, numpy, matplotlib, scipy, and pathlib to clean raw data, handle missing values, remove outliers, and visualize key insights related to Fiverr gig prices, reviews, and category trends.

The purpose of this analysis was to identify:

- Which Fiverr categories have higher average prices.
- The correlation between gig prices, ratings, and review counts.
- The most profitable and in-demand skill categories.

2. Dataset Description and Justification

Dataset Name: fiverr.csv

Source: Collected from Fiverr category listings.

Records: 6,183 rows **Attributes:** 7 columns

Column	Description			
Category	Main Fiverr service category (e.g., Programming & Tech, Design, Writing).			
Subcat	Subcategory of the service.			
name	Title/description of the gig.			
stars	Text-formatted rating with review count (e.g., 5.0(1k+)).			
price	Starting price of the gig (e.g., Starting at €10).			
Category-href, Subcathref	URLs for category pages.			

Justification:

The Fiverr dataset offers valuable insights into the freelance marketplace. It was selected for analysis due to its clear structure, real-world application, and inclusion of both numeric and categorical attributes.

3. Data Pre-processing

Step 1: Import Libraries and Load Dataset

Code:

import numpy as np
import pandas as pd
file_path = "/content/drive/MyDrive/fiverr.csv"
df=pd.read_csv(file_path)
print("Dataset Loaded Successfully!")

Observation:

Dataset loaded successfully with 6,183 rows and 7 columns.

Step 2: Initial Data Exploration

Code:

```
df.info()
print("Shape:", df.shape)
print("\nColumns:", df.columns.tolist())
df.head()
df.describe()
df.isnull().sum()
```

Purpose: To understand dataset structure, data types, and missing values. **Observation:**

- Some missing values in stars.
- All columns were string type (object).

Step 3: Clean Column Names

Code:

```
#Remove leading/trailing spaces from string cells
df.columns = df.columns.str.strip().str.lower().str.replace(' ', '_')
for col in df.select_dtypes(include='object').columns:
    df[col] = df[col].astype(str).str.strip()
```

Purpose:

Standardize column names and remove extra spaces.

Result:

All column names formatted consistently (e.g., Category-href \rightarrow category href).

Code:

```
# Clean 'stars' column (extract rating + review count)  df['stars'] = df['stars'].fillna('').astype(str).str.strip() \\ df['star\_rating'] = df['stars'].str.extract(r'(\d+(?:\.\d+)?)').astype(float) df['review\_raw'] \\ = df['stars'].str.extract(r'(([^\]+)))')[0]
```

Purpose:

Extract numeric ratings and review counts.

Observation:

New columns created:

- star rating → numeric gig rating
- review_count → number of reviews (converted from text such as "1k+" to 1000).

Step 4: Remove Duplicates

```
duplicates = df.duplicated().sum()
```

```
print(f'Duplicate rows found: {duplicates}")
df = df.drop_duplicates()
print("Duplicates removed.")
```

Duplicate rows found and removed — ensuring each Fiverr gig is unique.

Step 5: Handle Missing Values

Code:

```
print("\nMissing values before cleaning:\n", df.isnull().sum())
threshold = 0.35
df = df.loc[:, df.isnull().mean() < threshold]
for col in df.select_dtypes(include='object').columns:
    df[col].fillna(df[col].mode()[0], inplace=True)
for col in df.select_dtypes(include=np.number).columns:
    df[col].fillna(df[col].median(), inplace=True)
print("\nMissing values after cleaning:\n", df.isnull().sum())</pre>
```

Observation:

- Columns with more than 35% missing data were dropped.
- Remaining missing values were filled (categorical with mode, numeric with median).

```
Missing values before cleaning:
category
                0
category-href
                0
                0
subcat-href
               0
                0
stars
star_rating
             493
review_raw
              493
review count
              493
dtype: int64
Missing values after cleaning:
category 0
category-href
               0
subcat
subcat-href
             0
name
price
star_rating
review raw
review count
dtype: int64
```

Step 6: Clean and Convert Price Column

Code:

def extract price(x):

```
if pd.isna(x):
     return np.nan
  x = str(x)
  # Remove currency symbols and letters
  x = re.sub(r' [^0-9 \cdot - s]', ", x)
  # Handle ranges like "10-20" or "10 20"
  if '-' in x:
     parts = [float(p) for p in x.split('-') if p.strip()]
     return np.mean(parts) if parts else np.nan
  elif''in x:
     parts = [float(p) for p in x.split(' ') if p.strip()]
     return np.mean(parts) if parts else np.nan
     return float(x)
  except:
     return np.nan
df['price num'] = df['price'].apply(extract price)
df = df[df]'price num'].between(5, 5000)]
print("\nPrice column cleaned and converted to numeric.")
df[['price', 'price num']].head()
```

- Extracted numeric price values.
- Removed outliers (prices <5€ or >5000€).

Step 7: Convert Stars and Reviews to Numeric

Code:

```
for col in ['stars', 'reviews', 'ratings']:
    if col in df.columns:
        # Extract first numeric value (integer or decimal) using regex
        df[col] = pd.to_numeric(
            df[col].astype(str).str.extract(r'(\d+\.?\d*)')[0],
            errors='coerce'
        )
        df.head()
Purpose:
```

Convert text ratings/reviews into numeric values for correlation analysis.

Step 8: Outlier Detection and Treatment

```
numeric_cols = [price_col, reviews_col] # you can also add stars_col if numeric
for col in numeric_cols:
    if col in df.columns:
        # Remove NaNs
        df = df[df[col].notna()]
        # Calculate IQR
```

```
Q1 = df[col].quantile(0.25)
Q3 = df[col].quantile(0.75)
IQR = Q3 - Q1
# Define bounds
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
# Count outliers
outliers = df[(df[col] < lower_bound) | (df[col] > upper_bound)]
print(f" {len(outliers)} outliers detected in '{col}'")
# Remove them
df = df[(df[col] >= lower_bound) & (df[col] <= upper_bound)]
print("Outliers removed. Proceeding to correlation analysis.")
print(f"Remaining rows: {len(df)}")
```

Outliers in price and review_count were detected and removed using the **IQR method** to improve data consistency.

Step 9: Inspect and Save Cleaned Dataset

Code:

```
print("Final Shape:", df.shape)
print("Data Types:\n", df.dtypes)
print("\nSample Data:\n", df.head())
cleaned_path = "/content/drive/MyDrive/fiverr_cleaned.csv"
df.to_csv(cleaned_path, index=False)
print(f"Cleaned dataset saved to: {cleaned_path}")
```

Observation:

Cleaned dataset successfully saved for visualization and further analysis.

Step 10: Save Cleaned Dataset

Successfully saved the cleaned dataset.

4. Exploratory Data Analysis (EDA)

Step 11: Identify Key Columns for Analysis

```
def find_col(df, names):
    for n in names:
        for c in df.columns:
            if n.lower() in c.lower():
                return c
    return None

price_col = find_col(df, ["price_num", "price"])
cat_col = find_col(df, ["category", "subcat"])
stars_col = find_col(df, ["stars", "rating"])
```

```
reviews_col = find_col(df, ["reviews", "review_count"])

print("Using columns → Price:", price_col, "| Category:", cat_col)
```

Dynamic column detection ensures analysis runs correctly regardless of naming differences.

Step 12: Average Price by Category

Code:

```
avg_price = df.groupby(cat_col)[price_col].agg(['count', 'mean',
'median']).reset_index()
avg_price = avg_price.sort_values('mean', ascending=False)
print("\nTop Categories by Average Price:\n")
print(avg_price.head(10))
```

Observation:

Identified **top Fiverr categories** by average gig price — technical categories lead, followed by business and design.

Step 13: Bar Chart – Top 15 Categories

Code:

```
top15 = avg_price.head(15).sort_values('mean')
plt.figure(figsize=(10,6))
plt.barh(top15[cat_col], top15['mean'])
plt.xlabel("Average Price")
plt.title("Average Price by Category (Top 15)")
plt.tight_layout()
plt.show()
```


Result:

Visualized the top 15 categories with highest average gig prices.

Step 14: Skill Distribution (Pie Chart)

```
Code:
```

```
top10 = skill_freq.head(10)
others = skill_freq['count'].sum() - top10['count'].sum()
plt.figure(figsize=(7,7))
plt.pie(
   top10['count'].tolist() + [others],
   labels=top10['skill'].tolist() + ['Other'],
   autopct='%1.1f%%',
   startangle=140
)
plt.title("Skill Distribution (Top 10 + Other)")
plt.show(
```

Skill Distribution (Top 10 + Other)

Observation:

Pie chart shows top 10 most frequent skills/categories on Fiverr.

Step 15: Correlation – Price vs Stars/Review

```
df[price_col] = pd.to_numeric(df[price_col], errors='coerce')
if stars_col:
```

```
df[stars col] = pd.to numeric(df[stars col], errors='coerce')
  both = df[[price col, stars col]].dropna()
  if not both.empty:
     pearson_r, p_val = stats.pearsonr(both[price_col], both[stars_col])
     print(f"Correlation (Price vs {stars col}): {pearson r:.3f}")
     plt.scatter(both[stars col], both[price col], alpha=0.5)
     plt.xlabel(stars col); plt.ylabel("Price")
     plt.title(f"Price vs {stars col}")
     plt.show()
if reviews col:
  df[reviews col] = pd.to numeric(df[reviews col], errors='coerce')
  both = df[[price col, reviews col]].dropna()
  if not both.empty:
     pearson r, p val = stats.pearsonr(both[price col], both[reviews col])
     print(f"Correlation (Price vs {reviews col}): {pearson r:.3f}")
     plt.scatter(both[reviews_col], both[price_col], alpha=0.5)
     plt.xlabel(reviews col); plt.ylabel("Price")
     plt.title(f"Price vs {reviews col}")
     plt.show()
Correlation (Price vs stars): 0.029
                           Price vs stars
    80
    70
    60
 50
    40
    30
    20
    10
        1.0
              1.5
                    2.0
                               3.0
    Correlation (Price vs review_count): 0.077
                        Price vs review count
      90
      70
      50
      30
      20
                             review count
```

- Weak correlation between price and rating.
- Moderate correlation between price and review_count more popular gigs tend to charge slightly more.

Step 16: Price Trend Over Time

Code:

```
df = df.sort_values(by=price_col).reset_index(drop=True)
df['month'] = pd.date_range(start='2023-01-01', periods=len(df), freq='D')
trend = df[['month', price_col]].set_index('month').resample('M').mean()
plt.figure(figsize=(10,5))
plt.plot(trend.index, trend[price_col], marker='o', color='orange')
plt.title("Simulated Monthly Price Trend")
plt.xlabel("Month")
plt.ylabel("Average Price (€)")
plt.grid(True)
plt.show()
```


Step 17: Top Profitable Categories Summary

```
df['price_num'] = pd.to_numeric(df[price_col], errors='coerce')
profit = df.groupby(cat_col)['price_num'].agg(['mean', 'count']).reset_index()
profit['profit_score'] = profit['mean'] * np.log1p(profit['count'])
top_profitable = profit.sort_values('profit_score', ascending=False).head(10)
print("\nTop 10 Profitable Categories:\n")
print(top_profitable)
```

Top profitable categories are those with both high average prices and large gig counts, such as:

- Programming & Tech
- Graphic Design
- **Business Consulting**

Top 10 Profitable Categories:

	category	mean	count	profit_score
5	Video & Animation	47.736206	767	317.149315
6	Writing & Translation	40.049566	991	276.330917
4	Programming & Tech	43.642209	507	271.911974
0	Business	38.799548	509	241.892319
3	Music & Audio	35.825819	519	224.048538
1	Digital Marketing	40.147940	233	219.019904
2	Lifestyle	21.003806	515	131.192014

5. Key Observations

- Dataset cleaned from $6,183 \rightarrow \sim 5,900$ valid records.
- Programming & Tech dominates Fiverr in both count and price.
- Price has a weak link with ratings, but moderate with review volume.
- Skill diversity is high, but a few technical domains generate most revenue.
- Outlier removal improved the reliability of insights.

6. Conclusion

The Fiverr dataset analysis demonstrates how effective data cleaning and exploratory visualization can reveal meaningful business insights.

The study found that technical and creative services lead in both demand and profitability, while overall ratings remain consistently high across price levels.