PRACTICA Nº 1

CIRCUITO TRIFASICO FUENTE ESTRELLA CARGA ESTRELLA EQUILIBRADA

OBJETIVOS.-

- Aprender a realizar una conexión estrella estrella, y realizar mediciones de tensiones y corrientes.
- Verificar la relación entre tensión de fase y de línea en sistemas trifásicos conexión estrella.
- Analizar las diferencias entre un sistema fuente estrella y carga estrella con neutro físico y sin neutro físico.
- Verificar y comparar el comportamiento de tensiones y corrientes con cargas puramente resistivas y cargas RL y RC conectadas en estrella.

FUNDAMENTO TEORICO.-

La mayor parte de generación, transmisión, distribución y la utilización de la energía eléctrica se efectúa por medio de sistemas trifásicos. Un generador trifásico de tensión está constituido por tres fuentes monofásicas de igual valor eficaz pero desfasadas 120° entre ellas es decir:

$$u_{a(t)} = \sqrt{2}U_f \cos(\varpi t)$$

$$u_{b(t)} = \sqrt{2}U_f \cos(\varpi t - 120^\circ)$$

$$u_{c(t)} = \sqrt{2}U_f \cos(\varpi t + 120^\circ)$$

En los circuitos trifásicos que estudiaremos utilizaremos la siguiente terminología:

Voltaje de línea.- Tensión entre dos líneas del sistema (U_{L1-L2} , U_{L2-L3} y U_{L1-L3}).

Voltaje de fase.- Tensión entre cada línea y el neutro $U_{L1-N}, U_{L2-N}, U_{L3-N}$ en el generador o tensión en cada impedancia de la carga.

Corriente de línea.- Corriente de cada una de las líneas. $I_{L1};\,I_{L2};\,I_{L3}$

Corriente de fase.- Corriente por cada impedancia de la carga trifásica. $I_{F1};\,I_{F2};\,I_{F3}$

Voltaje de neutro.- Voltaje entre el neutro del generador y el neutro de la carga en un circuito Y-Y: U_0 o U_N

Corriente de neutro.- Corriente entre el neutro del generador y el neutro de la carga cuando el circuito trifásico tiene 4 hilos: $I_0\,$ o $\,I_N\,$

Un circuito con fuente estrella y carga estrella (Y-Y) es un circuito trifásico donde el generador y la carga se conectan de la siguiente manera:

Observamos que existirán al menos 4 terminales de salida del generador, la cuarta es llamada neutro del generador y es la referencia de los voltajes de fase.

En estos sistemas se cumplen las relaciones:

$$I_{linea} = I_{fase} \tag{A}$$

$$V_{linea} = \sqrt{3} * V_{fase}$$
 (B)

Como se puede observar la corriente de línea y de fase son iguales, y las tensiones de línea y de fase no son iguales.

La característica fundamental en estos circuitos es que $\overline{U}_0=0$ lo cual implica que el circuito no es afectado al conectar un cuarto hilo.

ARMADO DE CIRCUITO.-

- Caso 1.- Carga Resistiva
- Caso 2.- Carga resistiva inductiva.
- Caso 3.- Carga resistiva capacitiva

EQUIPOS Y/O ELEMENTOS A UTILIZAR:

- Una fuente conexión estrella de tensión trifásica de 380 V rms de línea.
- Multimetros.
- Tres resistencias monofásicas de igual valor
- Tres inductancias monofásicas de igual valor
- Tres capacitancias monofásicas de igual valor.
- Conectores requeridos.

PROCEDIMIENTO.-

- 1. Realizar los cálculos indicados en la clase.
- 2. Armar los siguientes circuitos trifásicos caso 1, caso 2 y caso 3 (el armado de circuitos se debe realizar con fuente desenergizada).
- 3. Tomar datos de tensión y corriente de línea y de fase con el voltímetro y amperímetro en las tres fases en bornes de la carga como se ilustra en el siguiente cuadro sin neutro conectado y luego con neutro conectado.

CASO 1.- CARGA RESISTIVA

	VOLTAJES DE FASE (GENERADOR)		VOLTAJES DE FASE (CARGA)			VOLTAJES DE LÍNEA			
	$oxed{U_{{\scriptscriptstyle L1-N}}}$	$U_{\scriptscriptstyle L2-N}$	U_{L3-N}	$U_{{\scriptscriptstyle R}1}$	$U_{{\scriptscriptstyle R}2}$	$U_{{\scriptscriptstyle R}3}$	$U_{{\scriptscriptstyle L1-L2}}$	$U_{{\scriptscriptstyle L2-L3}}$	$U_{{\scriptscriptstyle L3-L1}}$
SN									
CN									

	I_{L1}	I_{L2}	I_{L3}	I_0	U_{0}
SN				0	
CN					0

CASO 2.- CARGA RESISTIVA INDUCTIVA

	VOLTAJES DE FASE (GENERADOR)		VOLTAJES DE FASE (CARGA)			VOLTAJES DE LÍNEA			
	$U_{{\scriptscriptstyle L1-N}}$	$U_{\scriptscriptstyle L2-N}$	U_{L3-N}	U_{Z1}	U_{Z2}	U_{Z3}	$U_{{\scriptscriptstyle L1-L2}}$	$U_{{\scriptscriptstyle L2-L3}}$	$U_{{\scriptscriptstyle L3-L1}}$
SN									
CN									

	I_{L1}	I_{L2}	I_{L3}	I_0	U_{0}
SN				0	
CN					0

CASO 3.- CARGA RESISTIVA CAPACITIVA

	VOLTAJES DE FASE (GENERADOR)		VOLTAJES DE FASE (CARGA)			VOLTAJES DE LÍNEA			
	$oxed{U_{{\scriptscriptstyle L1-N}}}$	$oxed{U_{{\scriptscriptstyle L2-N}}}$	$U_{{\scriptscriptstyle L3-N}}$	U_{Z1}	U_{Z2}	U_{Z3}	$U_{{\scriptscriptstyle L1-L2}}$	$U_{{\scriptscriptstyle L2-L3}}$	$U_{{\scriptscriptstyle L3-L1}}$
SN									
CN									

	I_{L1}	I_{L2}	I_{L3}	I_0	U_{0}
SN				0	
CN					0

CUESTIONARIO.-

- 1.- Con los datos de laboratorio el generador es perfectamente equilibrado?. ¿A qué se debería que no sea así?.
- 2.- Determine las relaciones entre tensiones de línea y de fase. Se verifica lo estudiado en la teoría?.
- 3.- Existe variación en las tensiones de línea y de fase al variar la carga?. Coincide esto con lo teórico?.
- 4.- El voltaje de neutro medido en cada caso resulta exactamente cero?. En caso de que no sea así, a qué se debe?.
- 5.- La corriente de neutro es exactamente cero?. A que se debe que no lo sea?.
- 6.- Existe variación en sus datos obtenidos con neutro físico o sin neutro físico?. a qué se debería esa variación?.
- 7.- Demostrar mediante diagrama fasorial la relación de voltaje de línea y de fase:

$$U_L = \sqrt{3}U_F$$

CONCLUSIONES Y RECOMENDACIONES.-