Análisis Matemático II

Tema 2: Series de funciones

8, 9 y 15 de marzo

Convergencia puntual y uniforme

Convergencia absoluta

Series de potencias

Series de funciones

Concepto de serie de funcione

 $A \neq \emptyset$, $\{f_n\}$ sucesión de funciones de A en $\mathbb R$

Consideramos la sucesión de funciones $\{S_n\}$ dada por

$$S_n = \sum_{k=1}^n f_k \ \, \forall n \in \mathbb{N} \, , \ \, \text{es decir,} \ \, S_n(x) = \sum_{k=1}^n f_k(x) \ \, \forall x \in A \, , \ \, \forall n \in \mathbb{N} \, .$$

Entonces $\{S_n\}$ es una serie de funciones, que se denota por $\sum_{n\geqslant 1}f_n$.

La sucesión $\{f_n\}$ es el término general de la serie $\displaystyle\sum_{n\geqslant 1}f_n$

Para $n\in\mathbb{N}$, se dice que S_n es la n-ésima suma parcial de la serie $\displaystyle\sum_{n\geqslant 1}f_n$

Toda sucesión de funciones $\{g_n\}$ se puede expresar como serie:

$$\{g_n\} = \sum_{n>1} (g_n - g_{n-1})$$
 donde $g_0 = 0$

Convergencia puntual de una serie de funciones

Convergencia puntual y suma de la serie

$$\emptyset
eq C \subset A$$
 ,
$$\sum_{n\geqslant 1} f_n \text{ serie de funciones de } A \text{ en } \mathbb{R}$$

La serie $\sum_{n\geqslant 1} f_n$ converge en un punto $x\in A$ cuando

la serie de números reales $\displaystyle \sum_{n\geqslant 1} f_n(x)$ es convergente

Por tanto $\sum_{n \ge 1} f_n$ converge puntualmente en C cuando

la serie
$$\sum_{n\geq 1} f_n(x)$$
 converge, para todo $x\in C$

Entonces, la suma de la serie en C es la función $f:C\to\mathbb{R}$ dada por

$$f(x) = \sum_{n=1}^{\infty} f_n(x)$$
 $\forall x \in C$

Convergencia uniforme de una serie de funciones

Convergencia uniforme y criterio de Cauchy

Supongamos que la serie $\sum_{n\geq 1} f_n$ converge puntualmente en C

y sea $f:C \to \mathbb{R}$ la suma de dicha serie en C

Entonces, $\sum_{n\geqslant 1} f_n$ converge uniformemente en C cuando

$$\forall \varepsilon > 0 \; \exists \; m \in \mathbb{N} : \; n \geqslant m \quad \Rightarrow \quad \left| f(x) - \sum_{k=1}^{n} f_k(x) \right| < \varepsilon \quad \forall x \in C$$

Esto equivale a que $\sum_{n\geq 1} f_n$ sea uniformemente de Cauchy en C , es decir:

$$\forall \varepsilon > 0 \ \exists \ m \in \mathbb{N} : \ m \leqslant p < q \implies \left| \sum_{k=n+1}^{q} f_k(x) \right| < \varepsilon \ \forall x \in C$$

Otras formas de numerar los sumandos

Series con otra numeración

 $f_n:A\to\mathbb{R}$ para todo $n\in\mathbb{N}\cup\{0\}$, $m\in\mathbb{N}$ fijo. Definimos:

$$\sum_{n\geqslant 0} f_n = \sum_{n\geqslant 1} f_{n-1} = \left\{ \sum_{k=0}^{n-1} f_k \right\}$$

$$\sum_{n \geqslant m+1} f_n = \sum_{n \geqslant 1} f_{m+n} = \left\{ \sum_{k=m+1}^{m+n} f_k \right\}$$

Si convergen puntualmente en un conjunto $C\subset A$, sus sumas vienen dadas, para todo $x\in C$, por

$$\sum_{n=0}^{\infty} f_n(x) = \sum_{n=1}^{\infty} f_{n-1}(x) \qquad \text{y} \qquad \sum_{n=m+1}^{\infty} f_n(x) = \sum_{n=1}^{\infty} f_{m+n}(x)$$

Convergencia de series con otra numeración

La numeración no afecta a la convergencia puntual

La convergencia puntual de $\sum_{n\geqslant 0}f_n$ en C equivale a la de $\sum_{n\geqslant 1}f_n$

que a su vez equivale a la de $\sum_{n \geqslant m+1} f_n$, en cuyo caso,

$$\sum_{n=0}^{\infty} f_n(x) = f_0(x) + \sum_{n=1}^{\infty} f_n(x) \quad \forall x \in C$$

$$\sum_{n=1}^{\infty} f_n(x) = \sum_{n=1}^{m} f_n(x) + \sum_{n=m+1}^{\infty} f_n(x) \quad \forall x \in C$$

La numeración no afecta a la convergencia uniforme

La convergencia uniforme de $\sum_{n \geq 0} f_n$ en C equivale a la de $\sum_{n \geq 1} f_n$

que a su vez equivale a la de $\displaystyle\sum_{n\geqslant m+1}f_n$

Resto y término general de una serie

Resto de una serie que converge puntualmente

Suponiendo que la serie $\sum_{n=1}^{\infty} f_n$ converge puntualmente en C, definimos:

$$R_n(x) = \sum_{k=n+1}^{\infty} f_k(x) \quad \forall x \in C, \ \forall n \in \mathbb{N}$$

Se dice que la sucesión $\{R_n\}$ es el resto de la serie $\sum_{n\geqslant 1}f_n$ en C

 $\{R_n\}$ converge puntualmente a cero en C

La serie $\sum_{n\geq 1} f_n$ converge uniformemente en C si, y sólo si,

 $\{R_n\}$ converge uniformemente a cero en C

Condición necesaria para la convergencia uniforme

Si una serie de funciones converge uniformemente en un conjunto $\,C$, entonces su término general converge uniformemente a cero en $\,C$

Convergencia uniforme de series y continuidad

Continuidad de la suma de una serie

Sea A un espacio topológico, $x_0 \in A$ y, para cada $n \in \mathbb{N}$, sea $f_n : A \to \mathbb{R}$ una función continua en el punto x_0

Supongamos que la serie $\displaystyle \sum_{n\geqslant 1} f_n$ converge uniformemente

en un entorno $\it U$ del punto $\it x_0$,

y sea
$$f:U\to\mathbb{R}$$
 su suma, es decir: $f(x)=\sum_{n=1}^\infty f_n(x) \quad \forall x\in U$

Entonces f es continua en el punto x_0

Convergencia uniforme de series y derivación

Derivación de la suma de una serie

Dado un intervalo acotado no trivial $J\subset\mathbb{R}$, para cada $n\in\mathbb{N}$, sea $f_n:J\to\mathbb{R}$ una función derivable en J.

Supongamos que la serie $\sum_{n\geq 1} f'_n$ converge uniformemente en J ,

y que existe $a \in J$, tal que la serie $\displaystyle \sum_{n \geqslant 1} f_n(a)$ es convergente.

Entonces, la serie $\displaystyle \sum_{n\geqslant 1} f_n$ converge uniformemente en J

y definiendo
$$f(x) = \sum_{n=1}^{\infty} f_n(x)$$
 para todo $x \in J$,

se tiene que la función $f:J\to\mathbb{R}$ es derivable en J con

$$f'(x) = \sum_{n=1}^{\infty} f'_n(x) \quad \forall x \in J$$

Convergencia uniforme de series e integración

Integral de la suma de una serie

Sean $a,b\in\mathbb{R}$ con a< b , y $\{f_n\}$ una sucesión de funciones continuas de [a,b] en \mathbb{R} ,

Si la serie $\sum_{n\geq 1} f_n$ converge uniformemente en [a,b], se tiene que

$$\int_{a}^{b} \left(\sum_{n=1}^{\infty} f_n(x) \right) dx = \sum_{n=1}^{\infty} \int_{a}^{b} f_n(x) dx$$

Convergencia absoluta de series de funciones

Convergencia absoluta

Una serie de funciones $\sum_{n\geqslant 1} f_n$ converge absolutamente en C,

cuando $\sum_{n\geqslant 1} |f_n|$ converge puntualmente en C, es decir, cuando

la serie de términos positivos $\sum_{n\geqslant 1} \big| f_n(x) \big|$ es convergente, para todo $x\in C$.

Relación con la convergencia puntual

Si la serie de funciones $\sum_{n\geqslant 1}f_n$ converge absolutamente en C,

entonces también converge puntualmente en $\,C\,$ y se verifica que

$$\left| \sum_{n=1}^{\infty} f_n(x) \right| \leqslant \sum_{n=1}^{\infty} \left| f_n(x) \right| \qquad \forall x \in C$$

Criterio para la convergencia absoluta y uniforme

Test de Weierstrass

Sea $\{f_n\}$ una sucesión de funciones, de un conjunto A en $\mathbb R$ y C un subconjunto no vacío de A. Supongamos que existe una serie convergente $\sum_{n\geq 1} M_n$ de números reales, tal que

$$|f_n(x)| \leq M_n \quad \forall x \in C, \quad \forall n \in \mathbb{N}$$

Entonces la serie $\sum_{n\geq 1} f_n$ converge absoluta y uniformemente en C.

Series de potencias

Concepto de serie de potencias

Llamamos serie de potencias a toda serie de funciones $\sum_{n\geqslant 0}f_n$ en la que,

para cada $n\in\mathbb{N}\cup\{0\}$, la función $f_n:\mathbb{R} o\mathbb{R}$ venga dada por

$$f_n(x) = c_n (x - a)^n \quad \forall x \in \mathbb{R}$$

donde $\{c_n\}$ es una sucesión de números reales y $c_0, a \in \mathbb{R}$

Se dice que tal serie está centrada en el punto $a \in \mathbb{R}$, y para cada $n \in \mathbb{N} \cup \{0\}$, $c_n \in \mathbb{R}$ es su n-ésimo coeficiente

La anterior serie de potencias de denota por $\sum c_n(x-a)^n$

Radio de convergencia de una serie de potencias

Límite superior

Si $\{\alpha_n\}$ es una sucesión acotada de números reales,

su límite superior viene dado por

$$\limsup_{n \to \infty} \alpha_n = \lim_{n \to \infty} \left(\sup \left\{ \alpha_k : k \in \mathbb{N}, \ k \geqslant n \right\} \right)$$

Cuando $\{\alpha_n\}$ no está mayorada, convenimos que: $\limsup_{n \to \infty} \alpha_n = +\infty$

Radio de convergencia

El radio de convergencia de una serie de potencias $\sum_{n\geqslant 0} c_n (x-a)^n$

es la constante $R \in \mathbb{R}^+_0 \cup \{+\infty\}$ definida por

$$R = 1/L \qquad \qquad \mathrm{donde} \qquad \qquad L = \limsup_{n \to \infty} \sqrt[n]{|c_n|}$$

entendiendo que R=0 si $L=+\infty$ y $R=+\infty$ si L=0

Convergencia de las series de potencias (I)

Intervalo de convergencia

Si R el radio de convergencia de una serie de potencias $\sum_{n\geqslant 0}c_n(x-a)^n$

se define el intervalo de convergencia de la serie como

$$J = \left\{ x \in \mathbb{R} : |x - a| < R \right\}$$

 $J=\emptyset$ cuando R=0 , mientras que $J=\mathbb{R}$ cuando $R=+\infty$

La información que nos da el radio de convergencia

Si J es el intervalo de convergencia de la serie $\sum_{n\geqslant 0} c_n (x-a)^n$

La serie converge absoluta y uniformemente en todo compacto $\,K\subset J\,,$

y en particular, converge absolutamente en $\, J \, . \,$

Además, la serie no converge en ningún punto de $\mathbb{R}\setminus\left(\overline{J}\cup\{a\}\right)$

Convergencia de las series de potencias (II)

Los tres casos que pueden darse

- Radio de convergencia $+\infty$, intervalo de convergencia $\mathbb R$: La serie converge absolutamente en $\mathbb R$
 - y uniformemente en cada compacto $\, K \subset \mathbb{R} \,$
- \bullet Radio de convergencia 0 , intervalo de convergencia \emptyset : La serie sólo converge en el punto a
- Radio de convergencia $R \in \mathbb{R}^+$, intervalo de convergencia]a-R,a+R[: La serie converge absolutamente en]a-R,a+R[, y uniformemente en cada compacto $K \subset]a-R,a+R[$. No converge en ningún punto de $\mathbb{R} \setminus [a-R,a+R]$

Convergencia de las series de potencias (III)

Convergencia uniforme en $\,\mathbb{R}\,$

Una serie de potencias $\sum_{n \geq 0} c_n (x-a)^n$ converge uniformemente en $\mathbb R$

si, y sólo si, el conjunto $\big\{\,n\in\mathbb{N}\,:\,c_n\neq0\,\big\}$ es finito

Información que no nos da el radio de convergencia

$$\sum_{n\geq 0} x^n, \qquad \sum_{n\geq 1} \frac{x^n}{n}, \qquad \sum_{n\geq 1} \frac{x^n}{n^2}$$

- Las tres series tienen radio de convergencia R=1
- ullet La primera no converge en 1 ni en -1
- ullet La segunda converge en el punto -1 pero no en 1
- ullet La tercera converge uniformemente en [-1,1]
- La primera no converge uniformemente en]-1,1[

La suma de una serie de potencias

Radio de convergencia de la serie de las derivadas

Las series de potencias
$$\sum_{n>0} c_n (x-a)^n$$
 y $\sum_{n>0} (n+1) c_{n+1} (x-a)^n$

tienen el mismo radio de convergencia

Derivabilidad de la suma de una serie de potencias

Sea $\sum_{n\geq 0} c_n (x-a)^n$ una serie de potencias con radio de convergencia $R\neq 0$,

$$J$$
 su intervalo de convergencia y $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n \quad \forall x \in J$

Entonces f es de clase C^{∞} en J. Además, para todo $k \in \mathbb{N}$,

la serie
$$\sum_{n \ge 0} \frac{(n+k)!}{n!} c_{n+k} (x-a)^n$$
 tiene radio de convergencia R y

$$f^{(k)}(x) = \sum_{n=0}^{\infty} \frac{(n+k)!}{n!} c_{n+k} (x-a)^n = \sum_{n=k}^{\infty} \frac{n!}{(n-k)!} c_n (x-a)^{n-k} \quad \forall x \in J$$

En particular: $f^{(k)}(a) = k! c_k \ \forall k \in \mathbb{N} \cup \{0\}$

Algunos desarrollos en serie

La serie geométrica

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \qquad \forall x \in]-1,1[$$

$$\sum_{n=k}^{\infty} \binom{n}{k} x^{n-k} = \frac{1}{(1-x)^{k+1}} \quad \forall x \in]-1,1[, \ \forall k \in \mathbb{N}$$

La función exponencial

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \qquad \forall x \in \mathbb{R}$$

El logaritmo

$$\log x = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n} (x-1)^n \quad \forall x \in]0,2[$$