Geldanamycin (3)

X=H Monocillin I (2)

X=Cl Radicicol (1)

FIG. 1

- (a) TBDPSCI, imid.,>95%; (b) DIBAL-H,-78 ℃, 92%;
- (c) LiCI, DIPEA (EtO)₂P(O)CH₂CO₂Et, 95%;
- (d) DIBAL-H, -20 °C, 96%; (e) (+)-DET, $Ti(OiP_{4})$, TBHP,90%,>95%ee; (f) SO_{3} *pyridine, $Et_{3}N$, DMSO, 90%;
- (g) PH_3PCH_3Br , NaHMDS, O °C, 82%; (\bar{h}) TBAF, 89%.

F1G.6

a. n-BuLi, -78°C, 50% (6:1); b. TBSCI, 83%; c. 42 C, 70%; d. (i) mCPBA, (ii) Ac_2O , Et_3N , H_2O , 60°C, (iii) $NaHCO_3$, MeOH, 60%; e. SO_2CI_2 , 50%

FIG. 10

a. TBSCI, pyridine; b. NIS or NBS, TsOH; c. Pd(PPh)3, RSnBu3, d. nBu4NF

FIG. 11-1

TO FIG. 12-2

HO OME
$$a,b$$
 TBDPSO \downarrow H c \downarrow 10c

TBDPSO \downarrow H \downarrow TBDPSO \downarrow TBDPSO \downarrow H \downarrow TBDPSO \downarrow T

^a(a) TBDPSCI, imid.,>95%; (b) DIBAL−H,−78 °C, 92%; (c) LiCI, DIPEA (EtO)₂P(O)CH₂CO₂Et, 95%; (d) DIBAL-H -20 °C, 96%; (e) (+)-tetramethyltartaricacid diamide-BBu, Et $_2$ Zn, CH $_2$ I $_2$, 9 >95% ee; (f) SO $_3$ *pyridine, Et $_3$ N, DMSO, 90%; (g) Ph 3 PCH NaHMDS, O °C, 82%; (h) TBAF, 89%;

(i) 7, P(furyl)₃, DIA benzene, 60%

a. n-BuLi, -78 °C, 75% (3:1); b. TBSCI, 83%; c. 42 °C, 20%; d. (i) mCPBA, (ii) Ac_2O , Et_3N , H_2O , 60 °C, (iii) $NaHCO_3$, MeOH, 60%; e. SO_2CI_2 , 80%

FIG. 15-1

FIG. 16-1

TO FIG. 16-2

FROM FIG. 16-1 FIG. 16-2

FIG. 17-1

II. Monocillin I

21/28

동

TO FIG. 17-2

FROM FIG. 17-1

FIG. 17-2

MCF7 Cells Treated with Radiciciol and Analogues

TO FIG. 17-3

FROM FIG. 17-2

VII. Radicicol Oxime

FIG. 17-3

V. Dimethyl Monocillin I

FIG. 18-1

III. Cyclopropyl radicicol

24/28

TO FIG. 18-2

BT474 Cells Treated with Novel Radiciciols (24hrs.)

HER2

FIG. 19

FIG.20

FIG.21

