

Einführung in Data Science und maschinelles Lernen

ZEITREIHENANALYSEN

- Fehlende Werte
- Muster in Zeitreihenanalysen
- Non-Stationarity
- Baseline Modelle und Naïve Forecasting
- Projektpräsentation
- Und jetzt?

IMPUTATION EXAMPLES

```
2 title: "Missing Values"
    output: html_notebook
 6 + \``{r}
 8 library(readr)
    library(VIM)
   library(dplyr)
    library(ggplot2)
11
12
    options(datatable.use.index = TRUE)
14
15 🔺
16
17 v ```{r}
                                                                                                                             ☆ ▼ →
18 # VIM Aggregation Plot
   sleep %>%
      aggr(combined=TRUE, numbers=TRUE)
20
21
22 🔺
23
24
25 v ```{r}
                                                                                                                             ☆ 🏝 🕨
   # Listwise deletion
    sleep_deletion <- na.omit(sleep)</pre>
28
29
    sleep_deletion %>%
      aggr(combined=TRUE, numbers=TRUE)
30
31
32 🔺
33
34
37
    sleep_hotdeck1 <- sleep %>%
      hotdeck()
40 sleep_hotdeck1 %>%
      aggr(combined=TRUE, numbers=TRUE)
41
    ggplot(sleep_hotdeck1) +
43 geom point(aes(x=Sleep, v=Dream, color=Sleep imp))
```

IMPUTATION BEI VIELEN FEHLENDEN WERTEN

Berücksichtigung der Indikator-Variable!

 Ggf. Vergleich unterschiedlicher Imputationsverfahren anhand unterschiedlicher Splits in Trainings- und Validierungsdatensatz.

DISKUSSION

Welche verschiedenen Arten von Mustern kann man in der dargestellten Abbildung erkennen?

DeepLearning.Al. (o. J.). Common patterns in time series—Sequences and Prediction. Abgerufen 7. Januar 2021, von Coursera website: https://www.coursera.org/lecture/tensorflow-sequences-time-series-and-prediction/common-patterns-in-time-series-dWnOy

NON-STATIONARITY

MUSTER IN ZEITREIHENANALYSEN

- Trends
- "Jahresgang" (Saisonality)
- Rauschen (Noise)
- Autokorrelation (serielle Korrelation)

DIFFERENCING

DIFFERENCING

Subtraktion der vorherigen Beobachtung von der aktuellen Beobachtung

 Methode zum Entfernen bzw. Mindern von Autokorrelation in Zeitreihen.

Versuch "stationäre" Zeitreihen zu erhalten

LAG-DIFFERENZ

 Die Differenz zwischen aufeinanderfolgenden Beobachtungen wird als Lag-1-Differenz bezeichnet.

 Die Lag-Differenz kann an die spezifische zeitliche Struktur angepasst werden.

 Bei Zeitreihen mit einer saisonalen Komponente kann man davon ausgehen, dass die Verzögerung der Periode (Breite) der Saisonalität entspricht.

BEISPIELAUSWERTUNGEN

```
3 | ### Preparation of the Environment 📖
   ### Reading the data file
   ### Prepare data
   ********
   # Pedestrians hourly
32
   # Basic plot
   ggplot(pedestrians_hourly) +
    geom_line(aes(x=datetime, y=`pedestrians count`), color="#69b3a2") +
    xlab("") +
    theme_ipsum() +
37
    theme(axis.text.x=element_text(angle=60, hjust=1))
39
   # Time frame specific plot
   ggplot(pedestrians_hourly) +
    geom_line(aes(x=datetime, y=`pedestrians count`), color="#69b3a2") +
    xlab("") +
    theme_ipsum() +
    theme(axis.text.x=element_text(angle=60, hjust=1)) +
45
    scale_x_datetime(limit=c(as.POSIXct("2021-10-01"),as.POSIXct("2021-11-01")))
48
   # Pedestrians daily
51
52 # Basic plot
  ggplot(pedestrians_daily) +
    geom_line(aes(x=date, y=`pedestrians count`), color="#69b3a2") +
    xlab("") +
```

BASELINE MODELLE

- Allein an Metriken wie MAPE oder RMSE kann man häufig schlecht abschätzen, wie viel das eigene Modell gelernt hat.
- Es ist daher wichtig, die Ergebnisse anderer Modelle als "Baseline" bzw. Referenz zu nutzen.

Mögliche Baselines:

- Ergebnisse bisher genutzter Modelle für den gleichen Datensatz
- Ergebnisse von Modellen auf artverwandten Datensätzen
- Speziell bei Zeitreihen: Ergebnisse basierend auf Naïve Forecasting

NAIVE FORECASTING

- Mögliches Baseline Modell für Zeitreihenanalysen
- Vorhersage entspricht dem jeweils letzten beobachteten Wert
- Saisonal Naïve Forecasting:
 Vorhersage entspricht dem letzten Wert mit der gleichen Saisonalität.

Forecasts = trailing moving average of differenced series + centered moving average of past series (t - 365)

BEISPIELBERECHNUNG VON LAG-DATEN

```
library(ggplot2)
     library(dplyr)
     # Create some example data
     ts_{data} < -data.frame(date = seq(from = as.Date("2022-01-01"), to = as.Date("2022-12-31"), by = "day"),
                                    product = 1,
                                   value = rnorm(365, mean = 100, sd = 10)
     # Plot the data using ggplot
     ggplot(ts_data, aes(x = date, y = value)) +
      geom_line() +
11
      ggtitle("Time Series Data") +
      xlab("Date") +
13
      ylab("Value")
14
15
    # Add variable including the value of the day before
16
    ts_data_with_lag <- ts_data %>%
17
      arrange(date) %>%
18
      mutate(value_prev_day = lag(value, default = NA))
19
2.0
21
22
     # Example data, in which several values (labels) are given for each day
     multiple_ts_data <- ts_data %>%
      rbind(data.frame(date = seq(from = as.Date("2022-01-01"), to = as.Date("2022-12-31"), by = "day"),
25
                                    product=2.
26
27
                                    value = rnorm(365, mean = 100, sd = 10))
28
     multiple_ts_data_with_lag <- multiple_ts_data %>%
       arrange(date, product) %>%
30
      group_by(product) %>%
31
      mutate(value_prev_within_day = lag(value, default = NA)) %>%
32
33
      ungroup()
34
```

DISKUSSION

In der Praxis will man häufig nicht ein Jahr, sondern z.B. nur den nächsten Tag vorhersagen.

Welche Informationen aus der Zeitreihe wären zusätzlich besonders hilfreich?

RECURRENT NEURAL NET (RNN)

 In einem RNN Layer sind die Knoten einer Schicht untereinander verknüpft.

INHALT DER PROJEKTPRÄSENTATION

- Eure Namen auf der Titelseite
- Auflistung und kurze Beschreibung der selbst erstellten Variablen
- Balkendiagramme mit Konfidenzintervallen für zwei selbst erstellte Variablen
- Optimierung des linearen Modells: Modellgleichung und adjusted r²
- Art der Missing Value Imputation
- Optimierung des neuronalen Netzes:
 - Source Code zur Definition des neuronalen Netzes
 - Darstellung der Loss-Funktionen für Trainings- und Validierungsdatensatz
 - MAPEs für den Validierungsdatensatz insgesamt und für jede Warengruppe einzeln
- "Worst Fail"

HINWEISE

- Dauer der Präsentation: ca. 8 Minuten pro Team
- Powerpoint, Keynote oder ähnliches (ggf. aus R-Markdown generiert)
- Zur Präsentation anhand Eures besten Modells die Vorhersagen für den Testdatensatz der Kaggle Competition berechnen und dort hochladen.

Bis spätestens zum 1. März:

- Die Präsentation zu Eurem Repo hinzufügen
- Das Repo wie in den READMEs beschrieben vervollständigen und das main README wie hier beschrieben in der EduHub-Plattform hochladen

WIE KANN ICH WEITER MACHEN?

(KI in der Praxis

6. Juni 2023

Apple spricht nicht über KI, packt sie aber trotzdem überall rein

DEEP MINDS Podcast

Podcast über Künstliche Intelligenz und Wissenschaft

Künstliche Intelligenz und Robotik | DEEP MINDS #15

Verfügbar bei <u>Youtube</u>, <u>Soundcloud</u>, <u>Spotify</u>, <u>Apple</u>, <u>Google</u> und <u>Amazon</u>

KI-Forschung

KI und Gesellschaft

KI in der Praxis

R-BLOGGERS

R news and tutorials contributed by hundreds of R bloggers

HOME

ABOUT

RSS ADD YOUR BLOG!

LEARN R

R JOBS

CONTACT US

R and OOP anti-patterns

June 9, 2023 | Bob Carpenter

Thomas Lumley just dropped a blog post, Blank cheque inheritance and statistical objects, which begins as follows. One of the problems with object-oriented programming for statistical methods is that inheritance is backwards. Everything is fine for data structures, and Bioconductor ... Continue reading → [Read more...]

'Advanced Shiny Development' the hands-on workshop

June 9, 2023 | Mirai Solutions

Best practices for a robust and maintainable shiny app, a hand on workshop on 21/06. Do you know how to build a basic Shiny web application, but would you like to bring your Shiny development to the next level? Learn from professional experts how to...

[Read more...]

Building a basic Shiny app with Golem - Part I (Video)

June 7, 2023 | pacha.dev/blog

R and Shiny Training: If you find this blog to be interesting, please note that I offer personalized and group-based training sessions that may be reserved through Buy me a Coffee. Additionally, I provide training services in the Spanish language ... [Read more...]

Search R-bloggers.. Go Subscribe 52793 readers Your e-mail here

Most viewed posts (weekly)

How to improve your storytelling with R PCA vs Autoencoders for Dimensionality Reduction

How to install (and update!) R and RStudio Update to Data Science Software Popularity Why GLMs should be a priority when teaching

Understanding the file.info() Function in R: Listing Files by

Stay up to date in Data Science.

Get the Data Elixir newsletter for a weekly dose of the top data science picks from around the web. Covering machine learning, data visualization, analytics, and strategy.

No spam, ever.

What readers say...

Get unlimited access to all of Medium.

Become a member

Machine Learning

Start writing

Trending Latest

Merve Noyan · 17 hours ago

Complete Guide on Deep Learning Architectures Part 2: Autoencoders

Autoencoder: Basic Ideas Autoencoder is the type of a neural network that reconstructs an input from the output. The basic idea here is tha...

Machine Learning 5 min read

Bex T. in Towards Data Science · 18 hours ago → Member-only

10 Confusing XGBoost Hyperparameters and How to Tune Them Like a Pro in 2023

XGBoost hyperparameters done with style and visuals - Intro Today, I

Writers Stories

Related Topics

Artificial Intelligence Data Science

Deep Learning

Python

ΑI

Technology

Programming

NLP

Neural Networks

See more topics

Top Writers

The PyCoach

10M+ Views on Medium | Make money by writing abou... Follow

Machine Learning

r/MachineLearning

Beiträge

LINKEDIN

- Philipp Schmid
- Lior Sinclair
- Hugging Face
- • •

courserd (UDACITY

100 Udemy

:: KI-Campus

Die Lernplattform für Künstliche Intelligenz

MACHINE LEARNING DEGREE BY OPENCAMPUS.SH

GET A SOLID UNDERSTANDING OF MACHINE LEARNING AND LEARN HOW TO IMPLEMENT YOUR OWN STATE OF THE ART MACHINE LEARNING PROJECTS.

→ JOIN OUR COURSES)

DIENSTAG 16:00 - 17:45

Get hands-on experience in applying machine learning techniques with TensorFlow.

Die Bewerbungsfrist ist leider abgelaufen.

Du wirst lernen

- Best Practices für TensorFlow, ein populäres Open-Source-Framework für maschinelles Lernen, um neuronale Netzwerke zu trainieren
- Umgang mit Bilddaten aus der realen Welt und Erkundung von Strategien zur Vermeidung von Overfit, einschließlich Augmentation und Drop-Out
- Erstellung eines Systems zur Verabeitung natürlicher Sprache
- Anwendung von RNNs, GRUs und LSTMs zum Training dieser Lernmodelle unter Verwendung von Text- und Zeitreihendaten

DIENSTAG

16:00 -17:45 ECTS

ONLINE +

ŽA)

ENGLISCH