CS & IT ENGINEERING

Error Control

Lecture No-3

By- Ankit Doyla Sir

TOPICS TO BE COVERED

minimum Hamming distance For error correction

Min. Hamming Distance for Error Correction:

Ex1:

Valid code word

1001 7 minimum Hamming
1010 J distance = 2

Ex2:

Valid code word

0000 7 minimum Humming

0011 Jaistana = 2

Invalid code word

Can detect one bit error but

9t can't correct one bit error

Invalid code word

can detect one bit error

but st can't correct one bit error

Ex3:

Valid code word

0007

minimum

111

Hamming

error

100 111 26it

Ex4:

Valid code word

0000 7 minimum

1111 Hamming

Ex5:

Valid code word

000007 minimum

Hamming

distance = 5

abit

3bit

Invalid code word

9t detect and correct

2 bit error

Note

- 1) To correct one bit crowd min. Hamming distance required = 3 = 2×1+1
- @ To correct two bit crowr min Hamming distance required = 5 = 2*2+1
- 3) To correct d' bit error min. Hamming distance required = 2xd+1 = ad+1

Consider a binary code that consists of only four valid code words

Let the minimum Hamming distance of the code be p and the maximum number of erroneous bits that can be corrected by the

code be q. Then the values of p and q are

GATE 2017

$$p = 3$$
 and $q = 1$

$$d(a,b) = 3$$

$$d(a,c) = 3$$

$$d(a,d) = 4$$

$$d(b,c) = 4$$

$$p = 3$$
 and $q = 2$

$$p = 4$$
 and $q = 1$

$$p = 4$$
 and $q = 2$

minimum Hamming distance sequised to cossect d' bit essos = 2d+1

$$2d+1=3$$

 $2d=3-1$
 $2d=2$
 $2d=1(2)$

Q.2

What is the distance of the following code 000000, 010101, 000111, 011001, 111111?

2

3

4

$$d(a_1b)=3$$

$$d(a_1d)=3$$

Min. Hamming distance=2

GATE 1995

Q.3

An error correcting code has the following code words:

00000000, 00001111, 01010101, 10101010, 11110000.

What is the maximum number of bit errors that can be corrected?

- 00001111
- 01 010101 01011010-No of 1'8=4 (Hamming distance)

minimum Hamming distance=4

$$ad = 3$$
 $d = 3$
 $d = 3$
 $d = 3$

'd' bit excor correction

d=2

min HD = 2d+1

2x2+1=5(min Hammingdistance)

min Hamming distance required to correct d' bit error = 2d+1 = 2*5+1=11

NIELIT 2020

minimum Hamming distance required to detect d' bit error = d+1 = 10+1 = 11

