```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
data = pd.read csv(r'C:\Users\sharm\Downloads\
2725Swisspix.RarExtractorRarFileOpenerSimpleUnrarS g68sgvev02mx6!App\
Black Friday Sales Prediction\Black Friday Sales.csv')
data.info
                                           User ID Product ID Gender
<bound method DataFrame.info of</pre>
     Occupation City Category
0
        1000001
                 P00069042
                                  F
                                      0-17
                                                      10
                                                                      Α
1
        1000001
                 P00248942
                                  F
                                      0 - 17
                                                      10
                                                                      Α
2
                                      0 - 17
        1000001
                  P00087842
                                  F
                                                      10
                                                                      Α
3
        1000001
                  P00085442
                                  F
                                      0 - 17
                                                      10
                                                                      Α
4
                                                                      C
        1000002
                 P00285442
                                  М
                                       55+
                                                      16
                                                     . . .
. . .
550063
        1006033
                  P00372445
                                  М
                                     51-55
                                                      13
                                                                      В
                                                                      C
550064
        1006035
                  P00375436
                                  F
                                     26-35
                                                       1
550065
        1006036
                  P00375436
                                  F
                                     26-35
                                                      15
                                                                      В
550066
        1006038
                  P00375436
                                  F
                                        55+
                                                       1
                                                                      C
                                  F
                                     46-50
                                                                      В
550067
        1006039 P00371644
                                                       0
       Stay_In_Current_City_Years Marital_Status Product Category 1
\
0
                                                                         3
                                  2
                                                   0
                                                                         1
1
                                                   0
2
                                  2
                                                                        12
                                                   0
3
                                  2
                                                                        12
                                                   0
                                                                         8
                                 4+
550063
                                                    1
                                                                        20
550064
                                                                        20
                                  3
                                                   0
550065
                                 4+
                                                                        20
                                                                        20
550066
                                  2
                                                   0
550067
                                 4+
                                                                        20
        Product Category 2 Product Category 3
                                                   Purchase
```

0 1 2 3 4		NaN 6.0 NaN 14.0 NaN	NaN 14.0 NaN NaN NaN	8370 15200 1422 1057 7969								
550063 550064 550065 550066 550067		NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN	368 371 137 365 490								
[550068 rows x 12 columns]>												
data.sh	nape											
(550068	3, 10)											
data.de	escribe()											
count mean std min 25% 50% 75% max	Gender 550068.000000 0.753105 0.431205 0.000000 1.000000 1.000000 1.000000	Age 550068.000000 2.496430 1.353632 0.000000 2.000000 2.000000 3.000000 6.000000	Occupation 550068.000000 8.076707 6.522660 0.000000 2.000000 7.000000 14.000000 20.000000	City_Category 550068.000006 1.042646 0.760211 0.000006 1.000006 2.000006								
count mean std min 25% 50% 75% max	Marital_Status 550068.000000 0.409653 0.491770 0.000000 0.000000 1.000000 1.000000	3.9 1.0 1.0 5.0 8.0		Category_2 \ 0068.000000 9.828967 4.207898 2.000000 8.000000 9.800000 14.000000 18.000000								
count mean std min 25% 50% 75% max	ean 12.662500 9263.968713 td 2.271833 5023.065394 in 3.000000 12.000000 5% 12.660000 5823.000000 9% 12.660000 8047.000000 5% 12.660000 12054.000000											
data.is	snull(). <mark>sum</mark> ()											

```
Gender
                               0
                               0
Age
Occupation
                               0
City Category
                               0
                               0
Stay In Current City Years
Marital_Status
                               0
                               0
Product Category 1
Product_Category_2
                               0
Product Category 3
                               0
Purchase
dtype: int64
data.dtypes
Gender
                                 int32
Age
                                 int32
Occupation
                                 int64
City_Category
                                 int32
Stay In Current City Years
                                object
Marital_Status
                                 int64
Product Category 1
                                 int64
Product Category 2
                               float64
Product Category 3
                               float64
Purchase
                                 int64
dtype: object
data['Product Category 2'].mean()
9.828967327675853
 data['Product Category 3'].mean()
12.662499945461288
data['Product Category 2'].fillna(9.8, inplace=True)
data['Product Category 3'].fillna(12.66, inplace=True)
data.isnull().sum()
                               0
Gender
                               0
Age
                               0
Occupation
City Category
                               0
Stay In Current City Years
                               0
Marital Status
                               0
Product Category 1
                               0
                               0
Product Category 2
Product Category 3
                               0
Purchase
dtype: int64
```

```
data.drop(['User ID', 'Product ID'], axis=1, inplace=True)
KeyError
                                           Traceback (most recent call
last)
Cell In[37], line 1
----> 1 data.drop(['User ID', 'Product ID'], axis=1, inplace=True)
File ~\New folder\lib\site-packages\pandas\util\ decorators.py:331, in
deprecate nonkeyword arguments.<locals>.decorate.<locals>.wrapper(*arg
s, **kwarqs)
    325 if len(args) > num allow args:
    326
          warnings.warn(
    327
msg.format(arguments= format argument list(allow args)),
                FutureWarning,
    329
                stacklevel=find stack level(),
    330
--> 331 return func(*args, **kwargs)
File ~\New folder\lib\site-packages\pandas\core\frame.py:5399, in
DataFrame.drop(self, labels, axis, index, columns, level, inplace,
errors)
   5251 @deprecate nonkeyword arguments(version=None,
allowed args=["self", "labels"])
   5252 def drop( # type: ignore[override]
   5253
            self,
   (\ldots)
            errors: IgnoreRaise = "raise",
   5260
   5261 ) -> DataFrame | None:
   5262
   5263
            Drop specified labels from rows or columns.
   5264
   (\ldots)
   5397
                    weight 1.0 0.8
   5398
-> 5399
            return super().drop(
   5400
                labels=labels,
   5401
                axis=axis,
   5402
                index=index,
   5403
                columns=columns,
                level=level,
   5404
   5405
                inplace=inplace,
   5406
                errors=errors,
   5407
            )
File ~\New folder\lib\site-packages\pandas\util\ decorators.py:331, in
deprecate nonkeyword arguments.<locals>.decorate.<locals>.wrapper(*arg
s, **kwargs)
```

```
325 if len(args) > num allow args:
    326 warnings.warn(
    327
msg.format(arguments= format argument list(allow args)),
                FutureWarning,
    329
                stacklevel=find stack level(),
    330
--> 331 return func(*args, **kwargs)
File ~\New folder\lib\site-packages\pandas\core\generic.py:4505, in
NDFrame.drop(self, labels, axis, index, columns, level, inplace,
errors)
   4503 for axis, labels in axes.items():
            if labels is not None:
   4504
-> 4505
                obj = obj. drop axis(labels, axis, level=level,
errors=errors)
   4507 if inplace:
   4508
            self. update inplace(obj)
File ~\New folder\lib\site-packages\pandas\core\generic.py:4546, in
NDFrame. drop axis(self, labels, axis, level, errors, only slice)
                new axis = axis.drop(labels, level=level,
   4544
errors=errors)
   4545
            else:
-> 4546
                new axis = axis.drop(labels, errors=errors)
            indexer = axis.get indexer(new axis)
   4549 # Case for non-unique axis
   4550 else:
File ~\New folder\lib\site-packages\pandas\core\indexes\base.py:6934,
in Index.drop(self, labels, errors)
   6932 if mask.any():
            if errors != "ignore":
   6933
-> 6934
                raise KeyError(f"{list(labels[mask])} not found in
axis")
   6935
            indexer = indexer[~mask]
   6936 return self.delete(indexer)
KeyError: "['User ID', 'Product ID'] not found in axis"
corr1 = data.corr()
sns.heatmap(corr1,annot=True)
C:\Users\sharm\AppData\Local\Temp\ipykernel 13708\1251888686.py:1:
FutureWarning: The default value of numeric only in DataFrame.corr is
deprecated. In a future version, it will default to False. Select only
valid columns or specify the value of numeric only to silence this
warning.
  corr1 = data.corr()
```



```
sns.set_theme(style='ticks',palette=None)
plt.figure(figsize=(8, 6))
ax = sns.countplot(x="Gender", data=data)
plt.title('Countplot for Gender')
plt.xlabel('Gender')
plt.ylabel('Count')
# Adding value labels to the bars
for bars in ax.containers:
    ax.bar_label(bars)
    ax.set_xticklabels(['Female', 'Male'])
plt.show()
```



```
sns.set_theme(style='ticks',palette=None)
plt.figure(figsize=(10, 10))
ax = sns.countplot(y="Age", data=data)
plt.title('Countplot for Age')
plt.xlabel('Count of Age')
plt.ylabel('Age')

for bars in ax.containers:
    ax.bar_label(bars)
    ax.set_yticklabels(['0-17','55+','26-35','46-50','51-55','36-45','18-25'])
plt.show()
```

Gender

Male

Female

50000 -

0


```
sns.set_theme(style='ticks',palette=None)
plt.figure(figsize=(8, 6))
ax = sns.countplot(x="City_Category", data=data)
plt.title('Countplot of City')
plt.xlabel('City Category')
plt.ylabel('Count')

for bars in ax.containers:
    ax.bar_label(bars)
    ax.set_xticklabels(['A','C','B'])
plt.show()
```



```
cat_var =
['Gender','Age','Occupation','City_Category','Stay_In_Current_City_Yea
rs','Marital Status']
for x in cat_var:
  print(data[x].value_counts())
  ************ Gender ***********
1
   414259
   135809
Name: Gender, dtype: int64
            *******
********** Age *********
2
   219587
3
   110013
1
    99660
4
    45701
5
    38501
6
    21504
```

```
0
     15102
Name: Age, dtype: int64
*************
******** Occupation ********
     72308
0
     69638
7
     59133
1
     47426
17
     40043
20
     33562
12
     31179
14
     27309
2
     26588
16
     25371
6
     20355
3
     17650
10
     12930
5
     12177
15
     12165
11
     11586
19
     8461
13
      7728
18
      6622
9
      6291
8
      1546
Name: Occupation, dtype: int64
************
******* City Category **********
1
    231173
2
    171175
    147720
Name: City_Category, dtype: int64
************
******* Stay In Current City Years **********
1
    193821
2
    101838
3
     95285
4
     84726
     74398
Name: Stay_In_Current_City_Years, dtype: int64
******* Marital Status *********
0
    324731
1
    225337
Name: Marital_Status, dtype: int64
data['Stay In Current City Years'] =
data['Stay In Current City Years'].replace(to replace="4+",value="4")
```

data.value_counts()											
Gender Age Occupation City_Category Stay_In_Current_City_Years Marital_Status Product_Category_1 Product_Category_2 Product_Category_3 Purchase											
1 8 4	2	2	9.8	0	0 12.66	8005	0				
5		1	9.8	1	1 12.66	6893	1				
5	0	10	9.8	1	4 12.66	8693	0				
8	2	2	9.8	1	1 12.66	5843	1				
5	1	4	9.8	2	1 12.66	6998	0				
				1	4		0				
20 1			9.8	1	12.66	250	Ū				
236		1									
126		1									
121 18	6	1 20	9.8	2	3 12.66	3833	1				
	1 Length: 544807, dtype: int64										
data.he	ad()										
Gende Stay_In 0		ge Occ ent_Cit 0	y_Yea		ry 0		2				
1	0	0		10	0		2				
2	0	0		10	0		2				
3	0	0		10	0		2				
4	1	6		16	2		4				

```
Marital Status
                    Product Category 1 Product Category 2
Product_Category_3 \
                0
                                     3
                                                        9.8
12.66
                                     1
                                                        6.0
                0
14.00
                                                        9.8
                 0
                                    12
2
12.66
                                                       14.0
                 0
                                    12
12.66
                                     8
                                                        9.8
                0
4
12.66
   Purchase
0
       8370
1
      15200
2
       1422
3
       1057
4
       7969
X = data.drop("Purchase",axis=1)
y = data["Purchase"]
cat var = ['Gender','Age','City Category']
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
for var in cat var:
    data[var] = le.fit_transform(data[var])
data.head(5)
   Gender Age Occupation City Category
Stay_In_Current_City_Years
  ____0
                                          0
                                                                      2
             0
                                                                      2
        0
             0
                         10
                                          0
                                                                      2
        0
                         10
                                          0
3
        0
             0
                         10
                                          0
                                                                      2
                         16
                                          2
                                                                      4
        1
             6
   Marital Status Product Category 1 Product Category 2
Product_Category_3 \
                0
                                     3
                                                        9.8
12.66
                                     1
                                                        6.0
1
                0
14.00
                0
                                                        9.8
2
                                    12
```

```
12.66
                0
                                    12
                                                      14.0
3
12.66
                                     8
                                                       9.8
12.66
   Purchase
0
       8370
1
      15200
2
       1422
3
       1057
4
       7969
X.shape
(550068, 9)
y.shape
(550068,)
from sklearn.preprocessing import StandardScaler
scale = StandardScaler()
X transform = scale.fit transform(X)
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(X, y,
test size=0.2, random state=27)
from sklearn.linear model import LinearRegression
LR = LinearRegression()
LR.fit(X train,y train)
LinearRegression()
y_pred = LR.predict(X test)
from sklearn.metrics import
mean absolute error, mean squared error, r2 score
error score test1 = np.sqrt(mean_squared_error(y_test,y_pred))
print('The mean squared error is: ',error_score_test1)
error score test2 = np.sqrt(mean absolute error(y test,y pred))
print('The mean absolute error is: ',error score test2)
error score test3 = np.sqrt(r2 score(y test,y pred))
print('The r2 score error is: ',error_score_test3)
The mean squared error is: 4694.357280165304
The mean absolute error is: 59.96477022706394
The r2 score error is: 0.360653650744712
```