Actividad2, Técnicas Multivariantes

Jorge A. Balsells Orellana May 17, 2021

En esta actividad vas a profundizar en las distintas técnicas que se pueden aplicar para abordar un problema de regresión. Además, profundizarás en tus conocimientos sobre las librerías statsmodels y scikit-learn de Python.

0.1 Importando librerías

```
[1]: from sklearn.model_selection import train_test_split
from sklearn.datasets import make_regression
from sklearn import linear_model
import matplotlib.pyplot as plt
import statsmodels.api as sm
import sklearn as sk
import numpy as np
import pandas as pd
```

1 Creando dataset

El primer paso consiste en crear un conjunto de datos ficticio. Para garantizar que cada alumno obtiene uno distinto se va a emplear el documento de identidad de cada uno para crear el conjunto de datos. Para que sean comparables entre todos, si el número de identidad tiene menos de 8 cifras replicaremos las primeras hasta obtener exactamente 8. Además, para evitar los dígitos 0 y 1, si alguna de las cifras es menor que 2 la sustituiremos por ese número. Aplicando estos cambios tendremos el número del documento de identidad preparado para la resolución de la actividad. Numero de identificación personal: 166315389-0101, equivale a 26632538

```
[2]: data = sk.datasets.make_regression(
    n_samples=200+10*2,
    n_features=10+6+6,
    n_informative=10+6,
    n_targets=1,
    noise=10*3,
    shuffle=False,
    bias=2,
    random_state=None,effective_rank=None,
    tail_strength=0.5, coef=False
)
```

2 Agregando títulos

```
[3]: data_fr = pd.DataFrame(data[0])
     data_fr.columns=['c0','c1','c2','c3','c4','c5','c6','
     c7','c8','c9','c10','c11','c12','c13','c14','c15','c16',
     'c17','c18','c19','c20','c21']
     print(data_fr)
               c0
                                            сЗ
                                                      c4
                                                                          c6 \
                         c1
                                   c2
                                                                c5
        -1.200619 0.363886 0.527277
                                      1.776005 1.562085 -0.998717 -1.445892
        -0.370290 -0.721044 -0.004600 1.988354 -1.187087 1.929338 1.106362
    1
    2
        -0.083060 -0.848515 -0.666145 2.155664 1.217626 0.442125 -0.066560
        0.547946 0.137935 0.803414 1.647611 -0.406032 -2.838325 0.998711
    3
    4
        -0.478050  0.939166  1.590225  -2.444970  -1.545710  0.086851  -0.821011
                                  . . .
                                            . . .
    215 0.076349 -0.294829
                            0.649279 -1.841271 0.515866 -0.785015
                                                                   0.919299
    216 -1.447078 0.530184
                            0.876954 -0.646612 0.652381 -0.302676 -1.117376
    217 -0.197006 -2.568405 0.944425 1.424370 1.913104 0.213528 0.841183
    218 0.148215 1.986257 1.706012 1.239836 -0.204384 -1.498575 1.656196
    219 0.101630 1.352317 0.540504 1.114844 -0.140460 -1.433073 1.174183
               с7
                         с8
                                   с9
                                                c12
                                                          c13
    0
         1.007802 -0.210287 -0.315635
                                      ... -0.846384 0.751240 -0.831247
    1
        -1.119966 1.421816 -0.070631
                                      ... -0.386086 0.305581 1.619579
    2
        -0.238667  0.858434  -0.115024
                                      ... 0.949134 -1.379160 1.224498
                                      ... 0.449596 -2.452147 -1.325093
    3
        -1.523243 -0.242737 -1.103062
         0.187369 -0.064385 0.240592
                                      ... 0.141086 -0.828289 1.132770
              . . .
                        . . .
                                                 . . .
                                                          . . .
    . .
    215 -0.460281 1.771298 -0.550230
                                      ... -0.181780 -1.344381 -0.942128
    216 -0.952387  0.646239 -0.520901
                                      ... -0.118848 -0.840821 0.817320
    217 1.971822 1.805175 -1.793488
                                      ... 0.081922 -0.748347 -1.119656
        1.336042 -0.428932 0.776098
                                      ... 2.081237 -0.391987 -0.439679
    219 1.167033 -0.296465 -1.497535
                                      ... 0.890979 -0.105300 1.564012
                        c16
                                 c17
                                           c18
                                                     c19
                                                               c20
    0
        -2.234769 -1.388944 0.341197 1.684392 -0.810816 0.172313 -0.943393
    1
         0.406285 -1.096114 -0.904892 -1.189931 -0.551215 0.579500 -2.862278
         0.048189 - 1.182454 - 1.991184 - 0.456665 - 0.371789 - 0.618690 - 0.531200
    2
        -0.034923 0.227892 0.140545 -0.679035 -1.118085 0.325487 -1.751562
    3
    4
        -2.100005 -0.793645 1.414209 0.430947 -1.358468 1.061865 0.168035
    215 -0.763008 0.103196 0.059206 0.813484 0.177341 0.376273 0.912228
    216 0.154747 0.249033 0.124586 0.790569 1.317087 1.068314 -0.180360
    217 -1.136287 -1.632205 -0.185916 0.315124 0.350710 0.078135 -1.662309
    218 -0.825360 -0.954144 0.378729 1.972238 -0.975027 -0.040878 -0.707584
    219  0.717811  -0.886581  0.015919  0.702115  0.673015  -1.029820  -0.050169
```

3 Dividiendo Dataframe a través de un Split

Divide el conjunto de datos en 200 observaciones para el entrenamiento y el resto para realizar la validación de los distintos métodos de regresión aplicados.

Describe tu conjunto de datos (transformalo en un data.frame, aplica los métodos .info(), .describe() y obtén el histograma de todas las variables (predictoras y la variable respuesta).

```
[5]: train_set.info()
```

Int64Index: 200 entries, 189 to 102 Data columns (total 22 columns): Column Non-Null Count Dtype _____ 0 c0 200 non-null float64 1 c1 200 non-null float64 2 200 non-null float64 c2 3 сЗ 200 non-null float64 4 c4 200 non-null float64 5 200 non-null float64 c5 6 с6 200 non-null float64 7 200 non-null float64 с7 8 с8 200 non-null float64 200 non-null float64 с9 10 c10 200 non-null float64 11 c11 200 non-null float64 12 c12 200 non-null float64 float64 13 c13 200 non-null 14 c14 200 non-null float64 float64 c15 200 non-null 16 c16 200 non-null float64 200 non-null float64 17 c17

<class 'pandas.core.frame.DataFrame'>

18 c18 200 non-null float64 19 c19 200 non-null float64 20 c20 200 non-null float64 21 c21 200 non-null float64

dtypes: float64(22)
memory usage: 35.9 KB

[6]: train_set.describe()

[6]:		с0	c1	c2	c3	c4	c5	\
	count	200.000000	200.000000	200.000000	200.000000	200.000000	200.000000	
	mean	0.061775	0.068480	-0.029100	-0.079289	0.024882	0.058193	
	std	0.951104	0.859848	0.935541	1.045438	1.029154	0.990542	
	min	-2.257323	-2.568405	-2.482018	-2.660958	-3.065924	-2.838325	
	25%	-0.533241	-0.546414	-0.606245	-0.740814	-0.688340	-0.597589	
	50%	0.102723	0.133160	-0.073856	-0.105574	0.089689	0.072999	
	75%	0.744515	0.681227	0.627146	0.691111	0.691641	0.776711	
	max	2.827125	2.731737	2.353466	2.578257	2.533175	2.936126	
		c6	c7	c8	с9		c12 \	
	count	200.000000	200.000000	200.000000	200.000000	200.00	0000	
	mean	-0.061592	0.020946	0.024503	-0.093435	0.07	2567	
	std	0.898575	1.046160	0.983612	0.951497	1.00	4430	
	min	-2.377142	-2.372431	-2.582735	-2.757625	2.57	1439	
	25%	-0.645426	-0.744354	-0.657205	-0.675275	0.66	8238	
	50%	-0.062011	-0.085418	0.019527	-0.079579	0.10	8140	
	75%	0.584005	0.664773	0.690342	0.540392	0.60	2127	
	max	2.180832	3.437404	2.713194	2.434474	3.60	5012	
		-10	-1.4	-15	-10	- 17	-10	\
		c13	c14	c15	c16	c17	c18	\
	count	200.000000	200.000000	200.000000	200.000000	200.000000	200.000000	
	mean	0.018591	0.064096	-0.042001	0.051858	-0.066966	-0.010057	
	std	1.008430	0.987427	0.961506	1.068868	0.910952	1.071814	
	min	-2.511117	-2.603918	-2.434906	-3.314557	-2.959647	-2.939178	
	25%	-0.699544	-0.597825	-0.652038	-0.604215	-0.633148	-0.712945	
	50%	0.082356	0.013870	-0.005546	0.034842	-0.064684	0.023465	
	75%	0.686061	0.741414	0.602292	0.708587	0.621575	0.614373	
	max	3.105076	2.967300	2.438551	2.630969	2.541617	2.675915	
		c19	c20	c21				
	count	200.000000	200.000000	200.000000				
	mean	-0.048863	0.036259	-0.090818				
	std	0.893632	0.995174	0.973091				
	min	-2.101485	-2.593781	-2.862278				
	25%	-0.590866	-0.631175	-0.696132				
	50%	-0.114663	0.061491	-0.049538				
	75%	0.520805	0.803799	0.533666				
	0							

max 2.559372 2.276325 2.769567

[8 rows x 22 columns]

4 Histogramas de features

```
[7]: train_set.hist(bins=50, figsize=(20,15))
plt.show()
```



```
[8]: plt.hist(y_train, bins='auto')
  plt.title("Histograma de la varaible respuesta")
  plt.show()
```


5 Regresión lineal múltiple

Obtén un modelo de regresión lineal múltiple. ¿Son todas las variables predictoras significativas? Utiliza la librería statsmodels. No son todas las variables predictoras significativas, ya que algunas no cumplen con P > |t|.

```
[9]: train_data = train_set.copy()
    train_data['y'] = y_train
    mat_corr = train_data.corr()
    mat_corr['y']
```

```
[9]: c0
             0.364644
     c1
            0.250325
     c2
            -0.107469
     сЗ
            0.424363
     c4
            -0.037278
     с5
            0.351267
     с6
            0.322329
     с7
            0.231789
     с8
            -0.018025
     с9
            0.251766
     c10
            0.130534
            0.168569
     c11
     c12
            0.118699
     c13
            0.161102
     c14
            0.437383
     c15
            0.233611
     c16
            0.062251
     c17
            -0.133591
     c18
            -0.017822
            0.024090
     c19
```

c20 -0.070258 c21 0.031895 y 1.000000

Name: y, dtype: float64

6 Entrenamiento modelo 1

```
[11]: train_set = sm.add_constant(train_set, prepend=True)
model1 = sm.OLS(endog=y_train, exog=train_set)
model1 = model1.fit()
```

[12]: print(model1.summary())

OLS Regression Results

Dep. Variable:	у	R-squared:	0.982
Model:	OLS	Adj. R-squared:	0.979
Method:	Least Squares	F-statistic:	430.1
Date:	Mon, 17 May 2021	Prob (F-statistic):	2.78e-141
Time:	01:34:36	Log-Likelihood:	-959.93
No. Observations:	200	AIC:	1966.
Df Residuals:	177	BIC:	2042.

Df Model: 22 Covariance Type: nonrobust

========		========	========	=======	========	=======
	coef	std err	t	P> t	[0.025	0.975]
const	-0.2033	2.326	-0.087	0.930	-4.794	4.388
c0	71.3972	2.483	28.758	0.000	66.498	76.297
c1	65.7305	2.717	24.189	0.000	60.368	71.093
c2	2.6603	2.580	1.031	0.304	-2.431	7.751
c3	96.9798	2.290	42.354	0.000	92.461	101.499
c4	17.8190	2.313	7.705	0.000	13.255	22.383
c5	55.8696	2.350	23.774	0.000	51.232	60.507
c6	65.0975	2.617	24.878	0.000	59.934	70.261
c7	42.9200	2.204	19.472	0.000	38.570	47.270
c8	7.8005	2.340	3.334	0.001	3.183	12.418
с9	62.1009	2.541	24.439	0.000	57.086	67.116
c10	22.1543	2.280	9.719	0.000	17.656	26.653
c11	18.4234	2.227	8.272	0.000	14.028	22.819
c12	31.9253	2.329	13.706	0.000	27.329	36.522
c13	39.7516	2.318	17.148	0.000	35.177	44.326
c14	98.2821	2.323	42.301	0.000	93.697	102.867
c15	45.2187	2.473	18.288	0.000	40.339	50.098
c16	2.7655	2.168	1.276	0.204	-1.513	7.044
c17	2.6992	2.632	1.025	0.307	-2.496	7.894

========		========	-=======			=======
Kurtosis:		4.0	087 Cond.	No.		2.01
Skew:		0.0	045 Prob(3	JB):		0.00701
Prob(Omnibus):		0.0	043 Jarque	e-Bera (JB):		9.922
Omnibus:		6.2	271 Durbir	n-Watson:		1.991
========	.========					
c21	-0.7817	2.521	-0.310	0.757	-5.756	4.193
c20	-3.2485	2.373	-1.369	0.173	-7.931	1.434
c19	0.7532	2.523	0.299	0.766	-4.225	5.731
c18	2.1383	2.263	0.945	0.346	-2.328	6.604

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

7 Aplicando Step-Wise

Realiza una selección de variables mediante un algoritmo de tipo step-wise, donde en cada paso elimines la variable predictora menos significativa atendiendo a su p.valor hasta que todas las variables del modelo sean significativas (p.valor < 0.05).

En este caso, el valor de P > |t| debe cumplir, siendo P menor a $1.35 * e^{-142}$... A continuación se eliminan todas las columnas del train-set que correspondan a valores mayores de P. En este caso, corresponde inicialmente a la columna C19, C21, C18, C17, C20, C2 y C16.

```
[13]: train_set.drop('c19', axis='columns', inplace=True)
    train_set = sm.add_constant(train_set, prepend=True)
    model2 = sm.OLS(endog=y_train, exog=train_set)
    model2 = model2.fit()
```

[14]: print(model2.summary())

71.4167

2.476

c0

OLS Regression Results

=======================================	====	==========		=====		=======	
Dep. Variable:			y R-	squai	red:		0.982
Model:		01	LS Ad	j. R-	-squared:		0.979
Method:		Least Square	es F-	stati	istic:		452.9
Date:		Mon, 17 May 20	21 Pr	ob (I	F-statistic)	:	1.35e-142
Time:		01:34:	53 Lo	g-Lil	kelihood:		-959.98
No. Observations:		200 AIC:			1964.		
Df Residuals:		1	78 BI	C:			2037.
Df Model:		•	21				
Covariance Type:		nonrobu	st				
	coef	std err	=====	===== t	P> t	[0.025	0.975]
const -0	. 2604	2.313	-0.11	3	0.910	-4.824	4.303

0.000

66.532

28.849

76.302

c1	65.7940	2.702	24.349	0.000	60.462	71.126
c2	2.6727	2.573	1.039	0.300	-2.404	7.750
c3	96.9954	2.283	42.480	0.000	92.490	101.501
c4	17.8809	2.297	7.783	0.000	13.347	22.414
c5	55.8882	2.343	23.851	0.000	51.264	60.512
c6	65.0868	2.610	24.940	0.000	59.937	70.237
c7	42.8624	2.190	19.571	0.000	38.540	47.184
c8	7.8136	2.333	3.349	0.001	3.209	12.418
c9	62.0935	2.534	24.500	0.000	57.092	67.095
c10	22.1471	2.274	9.741	0.000	17.660	26.634
c11	18.4483	2.220	8.310	0.000	14.067	22.829
c12	31.8587	2.313	13.776	0.000	27.295	36.422
c13	39.7645	2.312	17.200	0.000	35.202	44.327
c14	98.2918	2.317	42.418	0.000	93.719	102.865
c15	45.2141	2.466	18.333	0.000	40.347	50.081
c16	2.8038	2.158	1.299	0.196	-1.456	7.063
c17	2.6858	2.625	1.023	0.308	-2.495	7.867
c18	2.1186	2.256	0.939	0.349	-2.334	6.571
c20	-3.2184	2.364	-1.361	0.175	-7.884	1.447
c21	-0.7839	2.514	-0.312	0.756	-5.746	4.178
Omnibus:				 ı-Watson:		1.988
Prob(Omnibu	ıs):	0.0	038 Jarque	e-Bera (JB):		10.683
Skew:		0.0	033 Prob(J	IB):		0.00479
Kurtosis:			130 Cond.		=========	1.99

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
[15]: train_set.drop('c21', axis='columns', inplace=True)
    train_set = sm.add_constant(train_set, prepend=True)
    model2 = sm.OLS(endog=y_train, exog=train_set)
    model2 = model2.fit()
```

[16]: print(model2.summary())

OLS Regression Results

Dep. Variable:	у	R-squared:	0.982
Model:	OLS	Adj. R-squared:	0.980
Method:	Least Squares	F-statistic:	478.0
Date:	Mon, 17 May 2021	Prob (F-statistic):	6.39e-144
Time:	01:35:05	Log-Likelihood:	-960.03
No. Observations:	200	AIC:	1962.
Df Residuals:	179	BIC:	2031.
Df Model:	20		

=======	coef	std err	======= t	P> t	[0.025	0.975]
const	-0.1809	2.293	 -0.079	0.937	-4.705	4.343
c0	71.2484	2.410	29.566	0.000	66.493	76.004
c1	65.8150	2.694	24.426	0.000	60.498	71.132
c2	2.7500	2.554	1.077	0.283	-2.290	7.790
c3	97.1219	2.241	43.332	0.000	92.699	101.545
c4	17.9285	2.286	7.841	0.000	13.417	22.440
c5	55.9942	2.313	24.213	0.000	51.431	60.558
c6	65.1156	2.602	25.030	0.000	59.982	70.249
c7	42.8445	2.184	19.619	0.000	38.535	47.154
c8	7.8812	2.317	3.401	0.001	3.308	12.454
c9	61.9033	2.454	25.228	0.000	57.061	66.745
c10	22.2037	2.261	9.822	0.000	17.743	26.665
c11	18.4284	2.214	8.325	0.000	14.060	22.796
c12	31.8425	2.306	13.807	0.000	27.292	36.393
c13	39.7847	2.305	17.259	0.000	35.236	44.333
c14	98.2064	2.295	42.789	0.000	93.677	102.735
c15	45.3165	2.438	18.587	0.000	40.505	50.128
c16	2.7531	2.147	1.282	0.201	-1.483	6.990
c17	2.6668	2.618	1.019	0.310	-2.499	7.833
c18	2.0328	2.234	0.910	0.364	-2.375	6.441
c20	-3.1425	2.346	-1.340	0.182	-7.772	1.487
Omnibus:	========			n-Watson:	=======	1.988
Prob(Omnib	us):			ie-Bera (JB):		10.201
Skew:	· · · · ·		030 Prob(0.00609
Kurtosis:			105 Cond.			1.88

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
[17]: train_set.drop('c18', axis='columns', inplace=True)
    train_set = sm.add_constant(train_set, prepend=True)
    model2 = sm.OLS(endog=y_train, exog=train_set)
    model2 = model2.fit()
```

[18]: print(model2.summary())

OLS Regression Results

=======================================			
Dep. Variable:	у	R-squared:	0.982
Model:	OLS	Adj. R-squared:	0.980
Method:	Least Squares	F-statistic:	503.6

Date: Prob (F-statistic): Mon, 17 May 2021 4.24e-145 Time: 01:35:19 Log-Likelihood: -960.50 No. Observations: 200 AIC: 1961. Df Residuals: 180 BIC: 2027.

Df Model: 19
Covariance Type: nonrobust

			=======	========		========
	coef	std err	t	P> t	[0.025	0.975]
const	-0.3254	2.286	-0.142	0.887	-4.836	4.186
c0	71.3017	2.408	29.611	0.000	66.550	76.053
c1	65.8078	2.693	24.435	0.000	60.494	71.122
c2	3.0360	2.534	1.198	0.232	-1.964	8.036
c3	97.3354	2.228	43.689	0.000	92.939	101.732
c4	17.9433	2.285	7.852	0.000	13.434	22.453
c5	56.0758	2.310	24.278	0.000	51.518	60.633
c6	64.8721	2.586	25.081	0.000	59.768	69.976
c7	42.7109	2.178	19.611	0.000	38.413	47.008
c8	8.0906	2.305	3.510	0.001	3.542	12.639
c9	61.4269	2.396	25.636	0.000	56.699	66.155
c10	21.9495	2.242	9.789	0.000	17.525	26.374
c11	18.5601	2.208	8.407	0.000	14.204	22.916
c12	31.4831	2.271	13.863	0.000	27.002	35.964
c13	40.0765	2.282	17.565	0.000	35.574	44.579
c14	98.2379	2.294	42.828	0.000	93.712	102.764
c15	45.5399	2.425	18.783	0.000	40.756	50.324
c16	2.8142	2.145	1.312	0.191	-1.418	7.047
c17	2.5329	2.613	0.969	0.334	-2.622	7.688
c20	-2.7757	2.310	-1.202	0.231	-7.334	1.782
=========	:======			========	:======:	
Omnibus:				n-Watson:		1.989
Prob(Omnibus)):		-	e-Bera (JB):		9.415
Skew:			007 Prob(0.00903
Kurtosis:		4.	063 Cond.	No.		1.78

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
[19]: train_set.drop('c17', axis='columns', inplace=True)
    train_set = sm.add_constant(train_set, prepend=True)
    model2 = sm.OLS(endog=y_train, exog=train_set)
    model2 = model2.fit()
```

[20]: print(model2.summary())

Dep. Varia Model: Method: Date: Time: No. Observ Df Residua Df Model: Covariance	M wations: als:	Least Squa on, 17 May 2 01:35 nonrob	res F-sta 021 Prob :32 Log-L 200 AIC: 181 BIC: 18	R-squared: tistic: (F-statistic ikelihood:		0.981 0.980 531.7 2.89e-146 -961.02 1960. 2023.
	coef	std err	t	P> t	[0.025	0.975]
const	-0.5507	2.274	-0.242	0.809	-5.037	3.936
c0	71.0005	2.387	29.739	0.000	66.290	75.711
c1	65.4634	2.669	24.526	0.000	60.197	70.730
c2	2.9783	2.533	1.176	0.241	-2.019	7.975
c3	96.8253	2.165	44.732	0.000	92.554	101.096
c4	18.0813	2.280	7.929	0.000	13.582	22.581
c5	56.1468	2.308	24.325	0.000	51.592	60.701
c6	64.8758	2.586	25.087	0.000	59.773	69.978
c7	42.9235	2.166	19.813	0.000	38.649	47.198
c8	7.9689	2.301	3.463	0.001	3.428	12.509
c9	61.4172	2.396	25.637	0.000	56.690	66.144
c10	21.9190	2.242	9.778	0.000	17.496	26.342
c11	18.8089	2.192	8.579	0.000	14.483	23.135
c12	31.2239	2.255	13.847	0.000	26.775	35.673
c13	40.1395	2.280	17.603	0.000	35.640	44.639
c14	98.2658	2.293	42.851	0.000	93.741	102.791
c15	45.4753	2.423	18.767	0.000	40.694	50.257
c16	2.6426	2.137	1.237	0.218	-1.574	6.860
c20	-2.6741	2.307	-1.159 	0.248	-7.226 	1.878
Omnibus:	==	5.	 772 Durbi	n-Watson:		1.997

Notes

Skew:

Prob(Omnibus):

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

0.024 Prob(JB):

4.026 Cond. No.

0.056 Jarque-Bera (JB):

8.784

0.0124

1.74

```
[21]: train_set.drop('c20', axis='columns', inplace=True)
    train_set = sm.add_constant(train_set, prepend=True)
    model2 = sm.OLS(endog=y_train, exog=train_set)
    model2 = model2.fit()
```

[22]: print(model2.summary())

OLS Regression Results

Dep. Variable:	у	R-squared:	0.981
Model:	OLS	Adj. R-squared:	0.980
Method:	Least Squares	F-statistic:	561.8
Date:	Mon, 17 May 2021	Prob (F-statistic):	2.34e-147
Time:	01:35:44	Log-Likelihood:	-961.76
No. Observations:	200	AIC:	1960.
Df Residuals:	182	BIC:	2019.
Df Modol:	17		

Df Model: 17
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	-0.6684	2.274	-0.294	0.769	-5.155	3.818
c0	70.9421	2.389	29.694	0.000	66.228	75.656
c1	65.6803	2.665	24.645	0.000	60.422	70.939
c2	3.1229	2.532	1.233	0.219	-1.873	8.119
c3	97.1546	2.148	45.233	0.000	92.917	101.392
c4	18.5179	2.251	8.225	0.000	14.076	22.960
c5	56.0162	2.308	24.275	0.000	51.463	60.569
c6	64.7596	2.587	25.037	0.000	59.656	69.863
c7	42.8632	2.168	19.772	0.000	38.586	47.141
c8	8.0017	2.303	3.474	0.001	3.457	12.546
c9	61.2205	2.392	25.595	0.000	56.501	65.940
c10	22.0990	2.238	9.873	0.000	17.683	26.515
c11	18.8339	2.194	8.583	0.000	14.504	23.164
c12	31.1036	2.255	13.795	0.000	26.655	35.552
c13	40.0868	2.282	17.566	0.000	35.584	44.589
c14	98.4499	2.290	42.994	0.000	93.932	102.968
c15	45.7302	2.415	18.932	0.000	40.964	50.496
c16	2.8738	2.130	1.349	0.179	-1.329 	7.076
Omnibus:		6.0	004 Durbin	 1-Watson:		1.997
Prob(Omnibu	ıs):	0.0)50 Jarque	e-Bera (JB):		9.310
Skew:		0.0)34 Prob(J	IB):		0.00952
Kurtosis:		4.0	055 Cond.	No.		1.68

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
[23]: train_set.drop('c2', axis='columns', inplace=True)
train_set = sm.add_constant(train_set, prepend=True)
```

```
model2 = sm.OLS(endog=y_train, exog=train_set)
model2 = model2.fit()
```

[24]: print(model2.summary())

OLS Regression Results

Dep. Variable Model: Method: Date: Time: No. Observat Df Residual: Df Model: Covariance	Mo tions: s:	Least Squar n, 17 May 20 01:35:	res F-stat 221 Prob (58 Log-Li 200 AIC: 183 BIC: 16	red: -squared: istic: F-statistic) kelihood:	:	0.981 0.979 595.1 2.01e-148 -962.59 1959. 2015.
=======	coef	std err	t	P> t	[0.025	0.975]
const	 -0.6630	2.277	-0.291	0.771	-5.155	3.829
c0	70.6606	2.382	29.669	0.000	65.962	75.360
c1	65.4699	2.663	24.581	0.000	60.215	70.725
c3	97.0777	2.150	45.152	0.000	92.836	101.320
c4	18.0597	2.224	8.122	0.000	13.672	22.447
c5	55.5940	2.285	24.327	0.000	51.085	60.103
c6	64.7329	2.590	24.992	0.000	59.623	69.843
c7	42.8066	2.170	19.723	0.000	38.524	47.089
c8	7.7933	2.300	3.388	0.001	3.255	12.332
с9	61.5895	2.376	25.916	0.000	56.901	66.278
c10	22.2372	2.239	9.933	0.000	17.820	26.654
c11	19.2248	2.174	8.841	0.000	14.935	23.515
c12	31.1868	2.257	13.819	0.000	26.734	35.640
c13	39.5467	2.243	17.633	0.000	35.122	43.972
c14	98.3032	2.290	42.927	0.000	93.785	102.821
c15	45.5222	2.413	18.865	0.000	40.761	50.283
c16	2.7093	2.129	1.273	0.205	-1.491	6.909
Omnibus:		5.2	220 Durbir	 ı-Watson:		2.021
Prob(Omnibu	s):	0.0)74 Jarque	-Bera (JB):		7.417
Skew:		0.0)52 Prob(J	<pre>B):</pre>		0.0245
Kurtosis:		3.9	938 Cond.	No.		1.61
========	========	========	:=======	========	:=======	

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
[26]: train_set.drop('c16', axis='columns', inplace=True)
    train_set = sm.add_constant(train_set, prepend=True)
    model2 = sm.OLS(endog=y_train, exog=train_set)
    model2 = model2.fit()
```

[27]: print(model2.summary())

OLS Regression Results

OLS Regression Results						
Dep. Variab	le:		y R-sq	uared:	0.981	
Model:		OLS		R-squared:	0.979	
Method:		Least Squares		atistic:	632.6	
Date:	Mo	on, 17 May 20)21 Prob	(F-statistic	1.75e-149	
Time:		01:36:18		Likelihood:	-963.47	
No. Observa	tions:	2	200 AIC:			1959.
Df Residual	s:	1	L84 BIC:			2012.
Df Model:			15			
Covariance	Type:	nonrobu	ıst			
	coef	std err	t	P> t	[0.025	0.975]
const	-0.4821	2.276	-0.212	0.832	-4.973	4.009
c0	70.6325	2.386	29.609	0.000	65.926	75.339
c1	65.7698	2.657	24.749	0.000	60.527	71.013
c3	97.0603	2.154	45.069	0.000	92.811	101.309
c4	18.0374	2.227	8.098	0.000	13.643	22.432
с5	55.5705	2.289	24.276	0.000	51.054	60.087
c6	64.6963	2.594	24.938	0.000	59.578	69.815
c7	43.0078	2.168	19.835	0.000	38.730	47.286
c8	7.7346	2.304	3.358	0.001	3.190	12.279
c9	61.6922	2.379	25.931	0.000	56.998	66.386
c10	22.0828	2.239	9.862	0.000	17.665	26.501
c11	19.0877	2.175	8.774	0.000	14.796	23.380
c12	31.6224	2.234	14.152	0.000	27.214	36.031
c13	39.3717	2.242	17.558	0.000	34.948	43.796
c14	98.2735	2.294	42.844	0.000	93.748	102.799
c15	45.8517	2.403	19.080	0.000	41.110	50.593
Omnibus:	====================================	-===== 5.6	33 Durb	======== in-Watson:	=======	2.036
Prob(Omnibus): 0.		0.0)60 Jarq	Jarque-Bera (JB):		8.378
Skew: 0.046)46 Prob	(JB):		0.0152	
Kurtosis: 3.999		999 Cond	Cond. No.		1.60	
========	========		-======	========	=======	=======

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

8 Regresión mediante la red elástica

Realiza una regresión mediante la red elástica. Prueba distintos valores de r y obtén el valor óptimo de r y de mediante validación cruzada.

```
[28]: from sklearn.model_selection import RepeatedKFold
      from sklearn.model_selection import GridSearchCV
      from sklearn.metrics import mean_squared_error
      from sklearn.linear_model import ElasticNet
[29]: parameters = {
          'alpha':np.arange(0.005,0.9,0.01),
          'l1_ratio':np.arange(0.1,0.5,0.01)
      print(parameters)
     {'alpha': array([0.005, 0.015, 0.025, 0.035, 0.045, 0.055, 0.065, 0.075, 0.085,
            0.095, 0.105, 0.115, 0.125, 0.135, 0.145, 0.155, 0.165, 0.175,
            0.185, 0.195, 0.205, 0.215, 0.225, 0.235, 0.245, 0.255, 0.265,
            0.275, 0.285, 0.295, 0.305, 0.315, 0.325, 0.335, 0.345, 0.355,
            0.365, 0.375, 0.385, 0.395, 0.405, 0.415, 0.425, 0.435, 0.445,
            0.455, 0.465, 0.475, 0.485, 0.495, 0.505, 0.515, 0.525, 0.535,
            0.545, 0.555, 0.565, 0.575, 0.585, 0.595, 0.605, 0.615, 0.625,
            0.635, 0.645, 0.655, 0.665, 0.675, 0.685, 0.695, 0.705, 0.715,
            0.725, 0.735, 0.745, 0.755, 0.765, 0.775, 0.785, 0.795, 0.805,
            0.815, 0.825, 0.835, 0.845, 0.855, 0.865, 0.875, 0.885, 0.895),
     'l1_ratio': array([0.1 , 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19,
     0.2 ,
            0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31,
            0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42,
            0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49])
[30]: cv = RepeatedKFold(n_splits=5, n_repeats=2, random_state=42)
      print(cv)
     RepeatedKFold(n_repeats=2, n_splits=5, random_state=42)
[31]: elasticNet = ElasticNet()
      Srch = GridSearchCV(elasticNet, parameters, scoring='neg_mean_squared_error', __
       \rightarrowcv=cv, n_jobs=-1)
      result = Srch.fit(train_set,y_train)
[32]: print(result)
      print(result.best_score_)
      print(result.best_params_)
      best_elastic = result.best_estimator_
      print(best_elastic)
```

```
GridSearchCV(cv=RepeatedKFold(n_repeats=2, n_splits=5, random_state=42),
             estimator=ElasticNet(), n_jobs=-1,
            param_grid={'alpha': array([0.005, 0.015, 0.025, 0.035, 0.045,
0.055, 0.065, 0.075, 0.085,
      0.095, 0.105, 0.115, 0.125, 0.135, 0.145, 0.155, 0.165, 0.175,
      0.185, 0.195, 0.205, 0.215, 0.225, 0.235, 0.245, 0.255, 0.265,
      0.275, 0.285, 0.295, 0.305, 0.315, 0.325, 0.335, 0.345, 0.355,
      0.36...
      0.725, 0.735, 0.745, 0.755, 0.765, 0.775, 0.785, 0.795, 0.805,
      0.815, 0.825, 0.835, 0.845, 0.855, 0.865, 0.875, 0.885, 0.895]),
                         'l1_ratio': array([0.1, 0.11, 0.12, 0.13, 0.14, 0.15,
0.16, 0.17, 0.18, 0.19, 0.2,
      0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31,
      0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42,
      0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49])
             scoring='neg_mean_squared_error')
-1047.2692562635616
{'alpha': 0.005, 'l1_ratio': 0.4899999999999977}
ElasticNet(alpha=0.005, l1_ratio=0.489999999999977)
```

9 Comprobación de error cuadrático medio

Comprueba con la muestra de validación con cuál de los tres modelos se obtiene un menor error cuadrático medio.

9.1 Modelo 1

```
[33]: test_set = sm.add_constant(test_set, prepend=True)
    y_predict_model_1 = model1.predict(test_set)
    Mean_Sq_Error = mean_squared_error(y_predict_model_1, y_test)
    print(Mean_Sq_Error)
```

750.5664746002329

9.2 Modelo 2

```
[34]: test_set.drop(columns=['c2','c16','c17','c18','c19','c20','c21'],inplace=True)
y_predict_model_2 = model2.predict(test_set)
```

```
[36]: Mean_Sq_Error_2 = mean_squared_error(y_predict_model_2, y_test)
print(Mean_Sq_Error_2)
```

803.4930275424474

9.3 Modelo 3

```
[37]: y_predict_model_3 = best_elastic.predict(test_set)
[39]: Mean_Sq_Error_3 = mean_squared_error(y_predict_model_3, y_test)
    print(Mean_Sq_Error_3)
```

796.5599792561268

10 Resultados de predicciones

```
[48]:
                                                        pred_modelo_3
                        pred_modelo_1
                                        pred_modelo_2
                y_true
      132
                           337.500686
           333.020602
                                           337.793499
                                                            336.921428
      148
            48.171506
                             70.577423
                                             68.063862
                                                             67.811020
      93
            -2.486599
                              6.473093
                                             12.315322
                                                             12.395744
      180
           117.144811
                             98.533880
                                            100.483649
                                                            100.065695
      15
           219.582261
                           179.860269
                                            178.777864
                                                            178.464100
                                                             91.826115
      115
           118.285486
                                             92.082986
                             93.841975
      172
            35.675697
                             92.450567
                                             99.545055
                                                             99.347175
      209 -165.223912
                          -159.573230
                                          -164.636243
                                                           -164.098968
      75
          -102.658248
                          -111.493527
                                          -112.536782
                                                           -112.142209
      142
            78.210423
                             44.007023
                                             51.301069
                                                             51.217902
      100
           136.480734
                             87.929544
                                             86.054299
                                                             85.798261
                                           246.631635
      30
           239.090672
                           248.634253
                                                            245.976291
      190
           -41.514453
                           -31.521500
                                            -20.886600
                                                            -20.791891
      9
          -395.573814
                          -401.397174
                                                           -394.028853
                                          -395.046826
      67
            31.789654
                             39.031722
                                                             38.367161
                                             38.286235
      218
          373.228970
                           407.431108
                                           400.094889
                                                            398.936383
      175 -336.495524
                          -362.971016
                                          -365.631178
                                                           -364.613181
      18
           -99.469821
                          -152.123828
                                          -155.469751
                                                           -155.049234
      197 -139.163819
                          -137.783906
                                          -149.326964
                                                           -149.080743
          -107.825197
                          -118.043561
                                          -112.738986
                                                           -112.551307
      66
```

Según los resultados mostrados, el mejor modelo fué el Modelo 1, ya que tiene el valor de mean squared error más bajo, luego dió mejor resultado el modelo 3, teniendo en consideración el uso de elastic net. Por último el modelo que tenía mas alto el valor de mean squared error es del

modelo 2. Posiblemente estos resultados pueden mejorar teniendo una mayor cantidad de datos, ya que la cantidad de datos utilizados en realidad han sido pocos.

References

- [1] Aurélien Géron. Hands-on Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O'Reilly Media.
- [2] Scikit-Learn. Gridsearchcv. https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html.
- [3] Scikit-Learn. Repeatedkfold. https://sklearn.org/modules/generated/sklearn.model_selection.RepeatedKFold.html.