ME 301 THEORY OF MACHINES I SOLVED PROBLEM SET 1

PROBLEM 1.

For the planar mechanism given below:

- **a)** Find the degree of freedom, the number of independent loops, and the total number of required joint variables (position variables).
- **b)** Choose a sufficient number of revolute joints which when disconnected yield an open-loop system. Indicate those joints. Assign the joint variables and show them clearly.
- c) Write the necessary number of independent loop closure equations using vectors described by directed lines such as \overrightarrow{SQ} , \overrightarrow{RS} , etc.
- **d)** Using complex numbers, re-write these loop closure equations in terms of the joint variables and the fixed parameters of the mechanism.

$$A_0A = a_2$$
, $AB = a_3$, $BC = a_5$

NOTE: The symbol • indicates revolute joint of a link with the fixed link.

Solution:

a)
$$\ell = 6, j = 7 (5R, 2P) \Rightarrow F = 3(6 - 7 - 1) + 7 = 1$$

 $L = 7 - 6 + 1 = 2, \# \text{ of joint variables} = 4 + 1 = 5$

b) R joints at B and D_o are chosen for disconnecting.

Joint variables for the remaining joints are θ_{12} , θ_{13} , s_{34} , s_{16} and θ_{15} .

c) LCE 1:
$$\overrightarrow{P_{B_3}} = \overrightarrow{P_{B_5}} \implies \overrightarrow{A_o A} + \overrightarrow{AB_3} = \overrightarrow{A_o Q} + \overrightarrow{QC} + \overrightarrow{CB_5}$$

$$\text{LCE 2: } \overrightarrow{P_{D_{o_4}}} = \overrightarrow{P_{D_{o_1}}} \implies \overrightarrow{A_o A} + \overrightarrow{AD_{o_4}} = \overrightarrow{A_o D_{o_1}}$$

d)
$$a_2 e^{i\theta_{12}} + a_3 e^{i(\theta_{13} - \alpha_3)} = s_{16} + ib_1 + a_5 e^{i\theta_{15}}$$

$$a_2 e^{i\theta_{12}} + s_{34} e^{i\theta_{13}} = a_1 + ic_1$$

PROBLEM 2.

In the mechanism shown the link lengths are $A_oB_o = r_1 = 8$ cm, $A_oA = r_2 = 4$ cm and $B_oB = r_4 = 4.5$ cm and the angle $B_oBA = 90^o$. s_{43} is the input variable. The loop closure equation is

$$\overrightarrow{A_o A} = \overrightarrow{A_o B_o} + \overrightarrow{B_o B} + \overrightarrow{BA}$$

Using analytical solution of loop closure equation find θ_{14} and θ_{12} when $s_{43} = 4$ cm. Find <u>all</u> solutions corresponding to different assembly configurations of the mechanism.

Hint: First find θ_{14} by eliminating θ_{12} .

Solution:

$$r_2 e^{i\theta_{12}} = r_1 + r_4 e^{i\theta_{14}} + s_{43} i e^{i\theta_{14}}$$

Re:
$$r_2 \cos \theta_{12} = r_1 + r_4 \cos \theta_{14} - s_{43} \sin \theta_{14}$$

Im:
$$r_2 \sin \theta_{12} = r_4 \sin \theta_{14} + s_{43} \cos \theta_{14}$$

Square and add:

$$2r_1r_4\cos\theta_{14} - 2r_1s_{43}\sin\theta_{14} = r_2^2 - r_1^2 - r_4^2 - s_{43}^2$$

$$A\cos\theta_{14} + B\sin\theta_{14} = C$$

where
$$A = 2r_1r_4 = 72$$
, $B = -2r_1s_{43} = -64$, $C = r_2^2 - r_1^2 - r_4^2 - s_{43}^2 = -84.25$
 $\Rightarrow D = \sqrt{A^2 + B^2} = 96.33$, $\varphi = atan_2(B, A) = -41.6^o$,

$$\theta_{14} = \varphi \pm cos^{-1} \frac{c}{D} = -41.6^{\circ} \pm 151.0^{\circ} = 109.4^{\circ}, -192.6^{\circ}$$

$$\theta_{12} = atan_2(r_4\sin\theta_{14} + s_{43}\cos\theta_{14}, r_1 + r_4\cos\theta_{14} - s_{43}\sin\theta_{14})$$

For
$$\theta_{14}=109.4^o$$
, $\theta_{12}=atan_2(2.92,2.73)=46.9^o$

For
$$\theta_{14} = -192.6^o = 167.4^o$$
, $\theta_{12} = atan_2(-2.92, 2.73) = -46.9^o = 313.1^o$

PROBLEM 3.

The link lengths of a 6-link mechanism are given as shown. θ_{12} is the input variable. Using LCEs corresponding to loops $A_oABB_oA_o$ and B_oPCDB_o , find the dependent joint variables θ_{14} , s_{43} , θ_{15} and s_{16} when $\theta_{12} = 60^o$. Find the solutions of all assembly configurations.

<u>Hint:</u> First solve LCE corresponding to loop $A_oABB_oA_o$ for θ_{14} and s_{43} .

Solution:

LCE 1:
$$\overline{A_0 A} = \overline{A_0 B_0} + \overline{B_0 B} + \overline{B A}$$

$$r_2 e^{i\theta_{12}} = -ir_1 + s_{43} e^{i\theta_{14}} + r_3 e^{i(\theta_{14} + \frac{\pi}{2})}$$

$$= -ir_1 + s_{43} e^{i\theta_{14}} + ir_3 e^{i\theta_{14}}$$

LCE 2:
$$\overrightarrow{B_0P} + \overrightarrow{PC} = \overrightarrow{B_0D} + \overrightarrow{DC}$$

$$ia_1 - s_{16} = a_4 e^{i(\theta_{14} + \pi)} + r_5 e^{i\theta_{15}}$$

$$= -a_4 e^{i\theta_{14}} + r_5 e^{i\theta_{15}}$$

Solution of LCE 1:

$$r_2 \cos \theta_{12} = s_{43} \cos \theta_{14} - r_3 \sin \theta_{14} \tag{1}$$

$$r_2 \sin \theta_{12} = -r_1 + s_{43} \sin \theta_{14} + r_3 \cos \theta_{14} \tag{2}$$

To eliminate s_{43} rearrange eqs. (1) and (2) as follows:

$$s_{43}\cos\theta_{14} = r_2\cos\theta_{12} + r_3\sin\theta_{14} \tag{3}$$

$$s_{43}\sin\theta_{14} = r_1 + r_2\sin\theta_{12} - r_3\cos\theta_{14} \tag{4}$$

Taking the ratio of the two sides of eqs. (3) and (4):

$$\frac{s_{43}^{\prime}\cos\theta_{14}}{s_{43}^{\prime}\sin\theta_{14}} = \frac{r_2\cos\theta_{12} + r_3\sin\theta_{14}}{r_1 + r_2\sin\theta_{12} - r_3\cos\theta_{14}}$$

Cross-multiplying gives

$$A\cos\theta_{14} + B\sin\theta_{14} = C \tag{5}$$

where

$$A = r_1 + r_2 \sin \theta_{12}$$
$$B = -r_2 \cos \theta_{12}$$
$$C = r_3$$

If we let

$$A = D\cos\phi$$
$$B = D\sin\phi$$

where

$$D = \sqrt{A^2 + B^2}$$

$$\phi = atan_2(B, A)$$

Eq. (5) reduces to

$$D\cos(\theta_{14}-\phi)=C$$

which yields

$$\theta_{14} = \phi \pm \cos^{-1} \left(\frac{C}{D} \right) \tag{6}$$

Eq. (6) gives two solutions for θ_{14} . These solutions correspond to different assembly configurations. Then for each θ_{14} , s_{43} can be found using either eq. (3) or eq. (4). Let us use Eq. (3):

$$s_{43} = \frac{r_2 \cos \theta_{12} + r_3 \sin \theta_{14}}{\cos \theta_{14}}$$

Solution of LCE 2:

$$-s_{16} = -a_4 \cos \theta_{14} + r_5 \cos \theta_{15} \tag{1}$$

$$a_1 = -a_4 \sin \theta_{14} + r_5 \sin \theta_{15} \tag{2}$$

To find θ_{15} , rearrange Eq. (2) as follows:

$$\sin \theta_{15} = \frac{a_1 + a_4 \sin \theta_{14}}{r_5} \tag{9}$$

or

$$\theta_{15} = \sin^{-1} \left(\frac{a_1 + a_4 \sin \theta_{14}}{r_5} \right) \tag{10}$$

There are two different solutions for the inverse sine function in Eq. (10). Again, these solutions correspond to different assembly configurations. For each θ_{15} found from Eq. (10), s_{16} can be found using Eq. (1) as follows:

$$s_{16} = a_4 \cos \theta_{14} - r_5 \cos \theta_{15} \tag{11}$$

The numerical results are tabulated below. Since each loop has two assembly configurations, the mechanism has four assembly configurations.

A= 65,98	
B= -15	
C= 35	
D= 67,66	

$$tan^{-1}\frac{B}{A} = -12.8^{\circ}, 167.2 \implies \phi = -12.8^{\circ}$$

Configuration #	θ ₁₄ [°]	s ₄₃ [cm]	θ ₁₅ [°]	s ₁₆ [cm]
1	46,04	57,91	32,31	-32,60
2	46,04	57,91	147,69	60,37
3	-71,66	-57,91	-4,15	-48,56
4	-71,66	-57,91	184,15	61,15