

NGO 데이터 분석: 3주차

2020.11.05 ~ 2020.11.11

빅데이터 응용학과 석사 1기 양선욱

- 1. 요인분석
 - 1-1. 탐색적 요인분석

- 2. 분류예측분석
 - 2-1. 선형판별분석
 - 2-2. 로지스틱

- 3. 군집분석
 - 3-1. 계층적 군집분석
 - 3-2. 비계층적 군집분석

- 4. 비모수 통계분석
 - 4-1. 적합도 검정
 - 4-2. 동질성 검정
 - 4-3. 상관성 검정

1. 요인분석 - 1.탐색적 요인분석

사용 데이터

PLED_NUM: 전체 플릿지 수

PLED_NUM_FULFILLED: 납부완료 플릿지 수

CHILD_NUM_COUNTRYCODE : 아동 국가 수

PAY_NUM: 납입 후원 횟수

PAY_SUM_PAYMENTAMOUNT: 납입총후원금액

PAY_NUM_NOPAY: 미납횟수

INTR_NUM_REQUEST : 인터랙션 요청

INTR_NUM_COMM: 인터랙션 횟수

분석 목적

- 후원자의 후원 상황을 설명할 수 있는 요인을 찾는다.
- 뜻 밖의 변수로 만들어지는 요인을 탐색한다.

분석 과정

- 1) 변수투입
- 4) 요인적재량 검사
- 2) 고유값 검사
- 5) 불필요 변수 제거, 새로운 변수 투입
- 3) 요인 수 지정
- 6) 2)로 가서 반복

匸 핵심 코드

```
X = df[['PLED_NUM','PLED_NUM_FULFILLED','CHILD_NUM_COUNTRYCODE','PAY_NUM','PAY_SUM_PAYMENTAMOUNT',
'PAY_NUM_NOPAY','INTR_NUM_REQUEST','INTR_NUM_COMM']]

df = df.dropna()
#3. 탐색적요인분석
fa = FactorAnalyzer(method='principal',n_factors=3, rotation='varimax').fit(X)
print('fa : ',fa)
#4. 결과 출력
print('요인적재량 :\n', pd.DataFrame(fa.loadings_, index=X.columns))
print('\n공통성 :\n', pd.DataFrame(fa.get_communalities(), index=X.columns))
ev, v=fa.get_eigenvalues()
print('\n고유값 :\n', pd.DataFrame(ev))
print('\n고유값 :\n', pd.DataFrame(ev))
print('\n요인점수 :\n', fa.transform(X.dropna()))
```

1. 요인분석 - 1.탐색적 요인분석

결과

	고유값
0	3.88
1	1.66
2	1.08
3	0.56

	0요인	1요인	2요인
전체플릿지수	0.938	0.019	0.185
납부완료 플릿지수	0.932	0.034	0.158
아동국가수	0.849	0.023	0.192
납입후원횟수	0.805	0.186	-0.368
납입총후원금액	0.765	0.267	-0.307
미납횟수	0.053	0.111	0.892
인터랙션 요청	0.078	0.921	-0.033
인터랙션 횟수	0.122	0.731	0.527

	공통성
전체플릿지수	0.914
납부완료 플릿지수	0.896
아동국가수	0.759
납입후원횟수	0.819
납입총후원금액	0.751
미납횟수	0.812
인터랙션 요청	0.855
인터랙션 횟수	0.827

결과 해석

- 고유값이 1이상인 변수가 3개이므로 요인의 수를 3개로 지정하였다.
- 공통값은 모두 0.5이상으로 충분하다.
- 3개의 요인에 각 변수들이 배정되었다.

- 실무적 인사이트

- □ 0요인은 모두 후원자의 후원 상황을 설명하는 변수들이다.
 - -> 0요인을 '후원현황'라고 부르자.
- □ 1요인은 모두 인터랙션에 관한 변수들이다.
 - -> 1요인을 '후원자인터랙션현황'이라고 부르자.
- 2요인은 변수가 하나뿐이지만 설명력이 충분하다. 미납에 관련된 변수를 더 찾아보자.

2. 분류예측분석 - 1.선형판별분석

사용 데이터

액티브비율= PLED_ACTIVE_NUM/PLED_NUM

PAY_RATE_NOPAY : 미납율

CHURN: 이탈여부

분석 목적

- 고객의 이탈여부를 예측하는 모델을 만든다.
- 이탈여부에 영향을 주는 변수들을 찾는다.

분석 과정

- 1) 변수투입
- 5) 불필요 변수 제거, 새로운 변수 투입
- 2) 독립변수 정규성 검사 6) 2)로 가서 반복
- 3) 독립x독립 상관분석 7) 선형판별분석
- 4) 독립x종속 상관분석 8) 사후 분석

분석 결과

* 독립변수 정규성 검사

독립변수	F값	p-value
액티브비율	0.61	0.000
미납율	0.47	0.000

* 선형계수

	선형계수
액티브비율	-31.869
미납율	4.033
절편	12.915

2. 분류예측분석 - 1.선형판별분석

결과

* 독립변수x종속변수 상관분석

	액티브비율	미납율	이탈여부
액티브비율	1.0		
미납율	-0.3	1.0	
이탈여부	-0.9	0.32	1.0

* 예측정확도 : 96.7%

* 분류 행렬표

	유지예측	이탈예측	초합
실제유지	755	32	787
실제이탈	0	190	190
총합	755	222	977

결과 해석

- 예측정확도는 96.7%로 준수하다.
- 미납율 변수 때문에 예측정확도가 내려갔다고 보여진다.
- 더미 데이터까지 써가면서 모든 데이터를 독립변수로 시도 해 보았지만 최종으로 고른 두 가지 독립 변수 만큼의 결과가 나오지 않았다.
- 유지는 잘 예측했으나, 이탈 예측에서 오류가 나왔다.

- 실무적 인사이트

- 이탈예측의 정확도는 85.5%이다.
- 하지만 이탈 고객을 한 명도 놓치지 않았다.
- 고객의 이탈에 가장 큰 영향을 주는 것은 액티브비율이 줄 어 드는 것이다.
- 하지만 이것은 이탈에 따른 결과일 수 있다.
- 이탈의 추세를 확인할 시계열 데이터가 필요하다.

2. 분류예측분석 - 2. 로지스틱

사용 데이터

- AGE : 나이

- 고객등급

- CHURN : 이탈여부

분석 목적

고객등급	우대	골드	실버	브론즈	새싹
이탈율	17%	14%	13%	20%	58%

- 새싹등급인가, 아닌가는 이탈여부에 영향을 줄 것이다.

- 이를 기반으로 고객이탈을 예측하는 모델을 만든다.

분석 과정

3) 불필요 변수 제거, 새로운 변수 투입

1) 변수투입

4) 2)로 가서 반복

2) 로지스틱 분석

5) 사후 분석

변수	coef	p-value	odds
절편	-1.018	0.000	0.361
AGE	-0.015	0.010	0.985
새싹등급	2.046	0.000	7.740

분석 결과

Pseudo R-squared: 0.088

정확도: 81.7%

	유지예측	이탈예측	총합
실제유지	705	31	736
실제이탈	137	47	184
총합	842	78	920

결과해석 & 실무적 인사이트

- 후원자의 나이가 많을 수록 이탈은 소폭 감소한다.
- 새싹등급은 타 등급에 비해 이탈확률이 7.7배 높다.
- 해당 모델도 R-squared값이 낮아 미숙하다.
- 유지라고 예측했으나 실제로 이탈한 고객은 19.4%에 달한다.
- 해당 모델로는 고객을 나이를 늘리라는 결론밖에 못 내린다.

3. 군집분석 - 1.계층적 군집분석

사용 데이터

- 액티브플릿지비율

- 월후원율

- PLED_RATE_FULFILLED : 납부 완료 플릿지 비율

분석 목적

- 후원자들의 후원 성과에 따른 그룹화를 하여 맞춤형 대 응을 하려고 한다.

분석 과정

3) 불필요 변수 제거, 새로운 변수 투입

1) 변수투입

4) 2)로 가서 반복

2) 계층적 군집분석

5) 사후 분석

결과해석 & 실무적 인사이트

- 크게 두 가지의 그룹으로 나뉘어 진다.
- 무슨 요인으로 그룹이 나뉘어 졌는지 사후분석이 필요하다.
- 상대적으로 범위가 좁은 오른쪽 그룹에 선택과 집중 전략이 필 요해 보인다.

3. 군집분석 - 2.비계층적 군집분석

사용 데이터

- 해외아동후원금
- 국내아동후원금
- 해외사업후원금

- 긴급사업후원금
- 국내사업후원금
- 북한사업후원금

분석 목적

- 6가지 후원 분류가 존재한다.
- 후원자들의 후원 방향이 어떻게 나뉘는지 알아본다.

분석 과정

- 1) 변수투입
- 2) k-means 군집분석

- 3) 군집 수 수정
- 4) 2)로 가서 반복
- 5) 사후 분석

핵심 코드

df2 = df1[[ˈ'해회아동','국내아동','해외사업['],'긴급사업['],'국내사업','북한사업[']]]

#2. 비계층적 군집분석

df2 = df2.drop(415)

model = KMeans(n_clusters=6, max_iter=20, random_state=19).fit(df2)

결과

*지정된 군집수에 따른 군집의 분포

군집수	군집1	군집2	군집3	군집4	군집5	군집6
6	467	382	37	30	40	21
5	467	403	37	30	40	
4	470	440	37	30		
3	443	496	38			
2	502	475				

결과 해석

- 군집5, 군집6은 모두 군집2에 흡수된다.
- → 군집수가 4개에서 3개로 줄어들면 큰 변화가 있다.
- 군집수를 4개로 지정한다.

3. 군집분석 - 2.비계층적 군집분석

결과

	해외아동	국내아동	해외사업	긴급사업	국내사업	북한사업	인원수	비율
군집1	333,794	3,978	1,595	553	3,446	382	470명	48.4%
군집2	12,250	9,681	15,443	19,534	27,147	318	440명	45.3%
군집3	80,540	618,108	0	1,351	12,972	0	37명	3.8%
군집4	761,570	73,000	12,000	11,000	2,000	4,000	30명	3.0%

결과 해석

- 군집1은 극단적 해외아동 집중형이다. > 후원금 중 해외아동 비율 97%
- 군집2는 올라운드형이다. > 14%, 11.4%, 18.3% , 23%, 32%, 0.4%
- 군집3은 국내아동 집중형이다. > 국내아동 86%, 해외아동 11%

실무적 인사이트

- 왜 해외아동에 대한 후원이 많은지에 대한 분석이 필요하다.
- 현재 본사의 TV광고는 해외 기아 아동 사업에 초점을 맞추고 있다.
- 해외아동 후원에 집중 중인 본사의 방향성에 따라 군집2에 속 한 후원자들을 군집1, 군집4로 유도할 필요가 있다.
- 북한사업에 대한 재검토가 필요하다.

4. 비모수통계검정 - 1.적합도 검정

사용 데이터

-LONGEVITY_D: 가입 일수 - AGE: 나이 -이탈여부

분석 목적

- -이전의 결과들로 부터 새싹등급의 이탈 비율이 가장 높다.
- 가입 일수에 따른 새싹등급의 이탈이 랜덤한지 알아본다.
- 또한 해당 고객들의 나이가 정규한지 알아본다.

분석 과정

- 1) 새싹등급, 가입기한 1년 이내 데이터 선정
- 2) 가입일수 순으로 이탈여부에 따른 RUN 검정 분석
- 3) 나이에 따른 Kolmogorov-Smirnov 검정 분석
- 4) 가입기한을 조정하여 재분석

가입일수		1년이내	1년이상 3년이내
RUN검정	통계값	-0.419	-2.470
	p-value	0.675	0.013
정규성검정	통계값	0.095	0.778
	p-value	0.230	0.002

결과 해석

- 가입기한이 1년 이내인 데이터는 이탈여부가 무작위이며 나이가 정규분포를 보인다.
- 가입기한이 1년 이상 3년 이내인 데이터는 이탈여부가 무작위가 아니며 나이 또한 정규분포 따르지 않았다.

실무적 인사이트

- 새싹등급이면서 가입기한이 1년 이상인 후원자의 이탈이 급속도로 많아진 이유에 대한 분석이 필요하다.
- 이들의 이탈은 외부적 요인이 적용되어 보인다.
- 후원자의 나이가 정규분포를 따르지 않으므로 나이로 분석을 할 때는 비모수 통계분석 기법을 활용해야 한다.

4. 비모수통계검정 - 2.동질성 검정

- 사용 데이터

-LONGEVITY_D: 가입 일수 -이탈여부

- 분석 목적

- 골드등급과 실버등급의 비율은 35%, 30%로 비슷하다.
- 골드등급과 실버등급의 이탈율은 14%, 13%로 비슷하다.
- 두 집단의 연간 일탈자의 수가 같은지 알아본다.

분석 과정

- 1) 골드등급, 실버등급 가입기한에 따른 데이터 선정
- 2) Mann-Whitney U 검정

분석 결과

U통계량: 24.5 p-value: 0.22

분석 결과

가입기한	골드등급	실버등급
1년 이내	0	3
1년 이상 2년 이내	6	6
2년 이상 3년 이내	4	9
3년 이상 4년 이내	7	3
4년 이상 5년 이내	4	3
5년 이상 6년 이내	7	2
6년 이상 7년 이내	3	0
7년 이상	21	11

실무적 인사이트

- 골드, 실버등급의 연간 이탈자 수는 같다.
- 두 등급의 후원자에게 같은 이탈 방지 접근법이 사용될 수 있다.
- 추후 연간 이탈 비율로도 분석을 해본다.

4. 비모수통계검정 - 3.상관성 검정

- 사용 데이터

-고객등급

-이탈비율

-책임감(미납율 기반 점수)

분석 목적

- 이전의 분석으로 우대등급의 이탈비율이 골드, 실버등급 보다 높다는 것을 알았다.
- 우대등급의 이탈을 막기 위해 이탈비율과 상관성이 있는 데이 터를 찾아야 한다.

분석 과정

- 1) 각 등급의 이탈비율 순위 지정 3) kendall 검정분석 수행
- 2) 비교 변수의 순위 지정
- 4) 변수를 바꾸어 재시도

분석 결과

상관계수: -0.99 p-value: 0.016

분석 결과

	이탈비율	책임감
우대	3	3
골드	4	2
실버	5	1
브론즈	2	4
새싹	1	5

결과분석 & 실무적 인사이트

- 고객등급의 이탈비율 서열과 책임감 서열은 연관성이 있다.
- 상관계수가 -0.9로 강력한 상관관계성을 보여준다.
- 우대등급의 책임감을 다른 등급보다 높도록 관리하면 이탈 비율이 줄어들 것인가? -> 인과관계 모호
- 인과관계를 알기 위한 시계열 데이터가 필요하다.
- 다른 변수에 대한 추가적인 분석이 필요하다.