

Matemática Teste 1 4 · 03 · 2022

Duração: 90 minutos

Nome: Turma:

Justifique convenientemente todas as suas respostas.

Exercício 1 Considere os conjuntos:

- A de números inteiros maiores que -4 e não superiores a 3.
- B =]0,5[
- $C = \{x \in \mathbb{R} : x \le 2 \lor x > 4\}.$
- a) Represente o conjunto A em extensão.
- b) Escreva na forma de intervalo ou de reunião de intervalos de números reais o conjunto $B\cap C$.

Exercício 2 Resolva, em \mathbb{R} , as seguintes condições:

a)
$$(x-1)(x-4)=0$$
;

b)
$$\frac{-3(1-3x)}{3} - \frac{1-2x}{2} < 1.$$

Exercício 3 Considere, no plano, os pontos A = (-1,3) e B = (-2,5).

a) Determine a norma do vetor \overrightarrow{AB} .

b) Indique um vetor colinear com o vetor \overrightarrow{AB} e com norma superior à norma de \overrightarrow{AB} .

Exercício 4 Considere a reta r definida por r: 2x + y + 10 = 0 e o ponto de coordenadas P(2,0).

a) Indique um vetor diretor de r .

b) Escreva a **equação reduzida** da reta s perpendicular a r e que passa no ponto P(2,0).

Exercício 5 Considere reta r de equação x=4 e a circunferência $\mathcal C$ de equação $(x-3)^2+(y+2)^2=3.$

- a) Indique uma equação da reta que passa no centro da circunferência e é paralela ao eixo das ordenadas.
- b) Determine os pontos de interseção da reta r com a circunferência \mathcal{C} .

c) Determine a distância da origem do referencial cartesiano ao centro da circunferência $\mathcal{C}.$

Exercício 6 Considere, em \mathbb{R}^2 , a circunferência \mathcal{C} definida pela equação $x^2+2x+y^2+4y=-1$. Calcule as coordenadas do centro da circunferência e o respetivo raio.

Exercício 7 Represente num referencial cartesiano o seguinte conjunto:

$$\{(x,y) \in \mathbb{R}^2 : -6x + 3y \le 12 \land y \ge 0 \land x \le 0\}.$$

Exercício 8 Resolva as seguintes equações:

- a) $3\cos\theta + 3 = 0$;
- b) $\sqrt{2} \sin \theta 1 = 0$.

Exercício 9 — Acerca de um ângulo θ , sabe-se que $\tan\theta=\frac{5}{3}$ e que $\frac{\pi}{2}<\theta<\frac{3\pi}{2}$. Calcule $\cos\theta$.

Exercício 10 Mostre, no domínio em que a expressão é válida, que:

$$\sin\theta\times\tan\theta+\cos\theta=\frac{1}{\cos\theta}.$$

FORMULÁRIO e COTAÇÃO

 $d_{P,r}=rac{|Ax_0+By_0+C|}{\sqrt{A^2+B^2}}$ dá a distância do ponto $Pig(x_0,y_0ig)$ à reta r de equação Ax+By+C=0

	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
sin	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
cos	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	<u>1</u>
tan	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

Cotação:

1.a) 10 **1.**b) 15 **2.**a) 15 **2.**b) 15 **3.**a) 10 **3.**b) 10 **4.**a) 5 **4.**b) 15 **5.**a) 5 **5.**b) 15

5.c) 15 **6.** 15 **7.** 15 **8.**a) 10 **8.**b) 10 **9.** 10 **10.** 10

FIM DA PROVA