CS1231(S) Tutorial 7: Number Theory 2

National University of Singapore

2020/21 Semester 1

Background

Definition 8.5.1. Let $m, n \in \mathbb{Z}$. An integer linear combination of m and n is a number of the form ms + nt, where $s, t \in \mathbb{Z}$.

Theorem 8.5.2 (Bézout's Lemma). Let $m, n \in \mathbb{Z}$ with $n \neq 0$. Then gcd(m, n) is an integer linear combination of m and n.

Questions for discussion on the LumiNUS Forum

Answers to these questions will not be provided.

D1. Prove or disprove the following sentence:

There is a prime number p such that p+2 and p+4 are also prime.

- D2. Show that 15 is a multiplicative inverse of 7 modulo 26.
- D3. Use the Euclidean Algorithm to find
 - (a) gcd(1,5),
 - (b) gcd(100, 101),
 - (c) gcd(123, 277),
 - (d) gcd(1529, 14039),
 - (e) gcd(1529, 14038), and
 - (f) gcd(11111, 111111).
- D4. Prove or disprove the following sentence:

If d is an integer linear combination of two integers a and b, then $d = \gcd(a, b)$.

Tutorial questions

- 1. Compute gcd(a, b) for the following pairs of a and b, and express gcd(a, b) in the form of ax + by where $x, y \in \mathbb{Z}$:
 - (a) a = 17 and b = 5;
 - (b) a = 275 and b = 407.
- 2. Let $a, b, c \in \mathbb{Z}$. Suppose a and b divide c, and gcd(a, b) = 1. Prove that ab divides c.
- 3. Let $a, b, s, t \in \mathbb{Z}$ such that as + bt = 1. Show that gcd(a, b) = 1.
- 4. Let $a,b,s,t\in\mathbb{Z}$ such that $as+bt=\gcd(a,b)$. Prove that $\gcd(s,t)=1$. (Hint: you may find Question 3 helpful.)

5. Let $a, b \in \mathbb{Z}$ with $a \neq 0$ or $b \neq 0$. Prove that

$$\gcd\left(\frac{a}{\gcd(a,b)}, \frac{b}{\gcd(a,b)}\right) = 1.$$

(Hint: you may find Question 3 helpful.)

6. Let $a, b \in \mathbb{Z}$ with $a \neq 0$ or $b \neq 0$. Prove that an integer n is an integer linear combination of a and b if and only if $gcd(a, b) \mid n$.

(Hint: Bézout's Lemma may be helpful for the "if" direction.)

7. Find $x, y, z \in \mathbb{Z}$ such that 12x - 15y + 50z = 1.

(Hint: What is gcd(gcd(12,15),50)? Bézout's Lemma may be helpful here.)

- 8. Determine the prime factorization of each of the following integers:
 - (a) 14351;
 - (b) 14369.
- 9. For each of the following pairs of a and n, determine whether a has a multiplicative inverse modulo n, and find one if it has any:
 - (a) a = 3 and n = 8;
 - (b) a = 6 and n = 14;
 - (c) a = 31 and n = 24.
- 10. For each of the congruence equations below, find all integers x, if any, that satisfy it:
 - (a) $5x \equiv 2 \pmod{32}$;
 - (b) $4x \equiv 6 \pmod{48}$.

(Hint: you may find Question 6 helpful for (b).)

11. Let $a, b \in \mathbb{Z}$ and $m, n \in \mathbb{Z}^+$ with gcd(m, n) = 1. Consider the following system of simultaneous congruence equations:

$$\begin{cases} x \equiv a \pmod{m}; \\ x \equiv b \pmod{n}. \end{cases}$$

Apply Bézout's Lemma to find $s, t \in \mathbb{Z}$ such that ms + nt = 1. Let $c_0 = ant + bms$.

- (a) Verify that $x = c_0$ is a solution to the system of simultaneous congruence equations above.
- (b) Let $c \in \mathbb{Z}$. Prove that x = c is a solution to the system of simultaneous congruence equations above if and only if $c \equiv c_0 \pmod{mn}$.

(Hint: you may find Question 2 useful.)