First Named Inventor: Paul E. Share

AMENDMENTS TO THE CLAIMS

-3-

Please amend claims 1 and 5, cancel claims 4 and 22-24, and add new claims 25-27 such that the status of the claims is as follows:

- 1. (currently amended) A method comprising the steps of:
 - (a) forming a preblend comprising:
 - (i) a diluent polyester,
 - (ii) a polyamide material, and
 - (iii) an oxygen scavenging material;
 - (b) providing a base polyester;
 - introducing the preblend of step (a) and the base polyester of step (b) into a molding apparatus to permit melting and admixing of the preblend and the base polyester;
 - (d) injection molding or extruding the admixture of step (c) in the apparatus to provide a preform; and
 - (e) expanding the preform of step (d) to provide a plastic container having a barrier layer, layer;
 - (f) wherein the plastic container has an oxygen scavenging property that is activated after filling the container with an agueous fluid.
- (original) The method of claim 1 wherein the plastic container is a multilayer plastic container.
- 3. (original) The method of claim 1 wherein the plastic container is a monolayer plastic container.

4. (cancelled)

5. (currently amended) The method of claim 1 wherein the preblend of step (a) has a greater stability after storage for six months at 25°C and 40% relative humidity than a blend containing only a polyamide material and an oxygen scavenging material storage <u>stored</u> under identical storage conditions.

6. (original) The method of claim 1 wherein the preblend is in a form of solid particles.

7. (original) The method of claim 1 wherein the diluent polyester is present in the preblend in an amount of about 25% to about 75%, by weight of the preblend.

8. (original) The method of claim 1 wherein the diluent polyester comprises a homopolymer or a copolymer of a polyethylene terephthalate, a polyethylene naphthalate, a polybutylene terephthalate, a cyclohexane dimethanol/polyethylene terephthalate copolymer, or a mixture thereof.

9. (original) The method of claim 8 wherein the polyethylene terephthalate comprises a virgin bottle grade polyethylene terephthalate, a post consumer grade polyethylene terephthalate, or a mixture thereof.

10. (original) The method of claim 1 wherein the polyamide material is present in the preblend in an amount of about 25% to about 75%, by weight of the preblend.

Application No.: 10/777,299

-5-

First Named Inventor: Paul E. Share

11. (original) The method of claim 1 wherein the polyamide material comprises a polymer containing m-xylylenediamine monomer units, p-xylylenediamine monomer units, or a mixture thereof

12. (original) The method of claim 1 wherein the polyamide material comprises a polymerization product of m-xylyenediamine and adipic acid.

13. (original) The method of claim 1 wherein the oxygen scavenging material is present in the preblend in an amount of about 20 to about 2000 parts per million, by weight.

14. (original) The method of claim 1 wherein the oxygen scavenging material comprises a transition metal, or a complex or a salt thereof, selected from the first, second, or third transition metal series of the periodic table.

15. (original) The method of claim 1 wherein the oxygen scavenging material is selected from the group consisting of cobalt, iron, nickel, copper, manganese, and mixtures thereof, or a salt or complex thereof.

16. (original) The method of claim 1 wherein the preblend comprises about 30% to about 70%, by weight, of a dilucnt polyester comprising a polyethylene terephalate, a polyethylene naphthalate, or a mixture thereof; about 30% to about 70%, by weight, of an aromatic polyamide material; and about 50 to about 1500 ppm, by weight, of an oxygen scavenging material comprising a salt or a complex of cobalt.

- 17. (original) The method of claim 1 wherein the base polyester is in a form of solid particles.
- 18. (original) The method of claim 1 wherein the preblend and the base polyester are admixed in an amount of about 0.5% to about 20%, by weight, of the preblend, and about 80% to about 99.5%, by weight, of the base polyester.
- 19. (original) The method of claim 1 wherein the base polyester is selected from the group consisting of a polyethylene terephthalate, a polynaphthalene terephthalate, a polybutylene terephthalate, a cyclohexane dimethanol/polyethylene terephthalate copolymer, or a mixture thereof.
- 20. (original) The method of claim 19 wherein the polyethylene terephthalate comprises a virgin bottle grade polyethylene terephthalate, a post consumer grade polyethylene terephthalate, or a mixture thereof.
- 21. (original) The method of claim 1 wherein the preform contains about 10 to about 80 ppm, by weight, of the oxygen scavenging material.
- 22-24. (cancelled).
- 25. (new) The method of claim 1, further comprising:

Application No.: 10/777,299

activating the oxygen scavenging property of the plastic container by filling the plastic container with the aqueous fluid.

26. (new) The method of claim 1, wherein the plastic container has an oxygen permeability of 0.035 cc O_2 /package/day or less after filling with water for 48 hours.

- 27. (new) A method comprising the steps of:
 - (a) forming a preblend comprising:
 - (i) a diluent polyester,
 - (ii) a polyamide material, and
 - (iii) an oxygen scavenging material;
 - (b) providing a base polyester;
 - introducing the preblend of step (a) and the base polyester of step (b) into a molding apparatus to permit melting and admixing of the preblend and the base polyester;
 - injection molding or extruding the admixture of step (c) in the apparatus to provide a preform; and
 - (e) expanding the preform of step (d) to provide a plastic container having a barrier layer;
 - (f) wherein the plastic container has an oxygen permeability in cc O₂/package/day after filling with water for 48 hours, that is less than the oxygen permeability of the container prior to filling with water.