I232 Information Theory Chapter 11: Slepian-Wolf Coding

Brian Kurkoski

Japan Advanced Institute of Science and Technology

2023 May

There is no Pop Quiz for this lecture.

From Single User to Multi-User Systems

- So far, we only considered a single encoder and a single decoder:
 - ► Source coding: encoding of a single source
 - Channel coding: single transmitter, single receiver
- ▶ Question: What happens when we consider multiple sources or multiple receivers?
 - ► This lecture: source coding for two sources

Recall Vector Source Coding from Chapter 5

- ightharpoonup A vector source is $\mathbf{x} = (x_1, x_2, \dots, x_n)$.
- ▶ Optimal encoding can compress at rate *R*:

$$R \geq H(\mathsf{X})$$

▶ Decoder produces $\hat{\mathbf{x}} = \mathbf{x}$. Lossless source coding

11.1 Distributed Source Coding

- 11.1.1 Motivation for Distributed Source Coding (1/2)
- 11.1.2 Distributed Source Coding
- 11.1.3 Naive Encoders
- 11.1.4 Communicating Encoders

11.1.1 Motivation for Distributed Source Coding (1/2)

Consider various types of environmental monitoring problems:

Earthquake, fire, animal activity, acoustic submarine monitoring

Typically a large number of wireless sensors are distributed in the environment:

- ▶ Data is correlated: Physically separated but observe the same signal
- Compression is needed: Wireless transmitters need to reduce transmit power

Thus, distributed source coding is suitable for such problems.

Motivation for Distributed Source Coding (2/2)

Distributed source coding suitable when encoder has limited computational power. Consider video compression:

- Compression on a power-constrained device with limited computational power
- Adjacent video frames are correlated
- ► Each frame is encoded separately, using distributed coding

Thus, distributed source coding reduces complexity even when the encoder has access to the correlated data streams.

11.1.2 Distributed Source Coding

We have two sources x and y. Source coding is **distributed**:

- \blacktriangleright Encoder 1 sees only ${\bf x}$ and compresses with rate R_1
- ▶ Encoder 2 sees only y and compresses with rate R_2 .

Assume that sources x and y are **correlated**

Correlated Sources

Correlated sources are considered x and y are considered:

$$\mathbf{x} = x_1, x_2, \dots, x_n$$
$$\mathbf{y} = y_1, y_2, \dots, y_n$$

Correlation means x_i, y_i are jointly distributed, but pairs (x_i, y_i) are i.i.d.:

$$p_{\mathbf{XY}}(\mathbf{x}, \mathbf{y}) = \prod_{i=1}^{n} p_{\mathbf{XY}}(x_i, y_i)$$

When x and y are binary, define z as:

$$\mathbf{z} = \mathbf{x} \oplus \mathbf{y},$$

so that $z_i=0$ if the two source sequences agree in position i. If they disagree, then $z_i=1$.

Example: Transmitting the Weather

The weather in Kanazawa and Fukui is correlated. Transmit to the weather center:

$$0 = \mathsf{rainy}$$

 $1 = \mathsf{sunny}$

x and y differ with probability p: $\Pr[x \neq y] = p$. Difference sequence:

$$\mathbf{z} = \mathbf{x} \oplus \mathbf{y} = 0000101000.$$

Take
$$p_{X}(x) = p_{Y}(y) = [\frac{1}{2}, \frac{1}{2}],$$

Three Encoding Strategies

- 1. Naive Encoders: Encoders ignore correlation. Encoders do not communicate.
- 2. Communicating Encoders: Encoders use correlation. Encoders communicate.
- 3. Slepian-Wolf encoding: Encoders use correlation. Encoders do not communicate.

Our main interest is Slepian-Wolf encoding, but introduce naive encoders and communicating encoders to show the significance of Slepian-Wolf encoding.

11.1.3 Naive Encoders

Naive encoders ignore the correlation in X, Y.

- ▶ Encoder 1 compresses \mathbf{x} are rate R_1 .
- ▶ Encoder 2 compresses y are rate R_2 .

What are the achievable rate pairs (R_1, R_2) ?

Using what we already know:

$$H(X) \le R_1$$

 $H(Y) \le R_2$

11.1.3 Naive Encoders

Naive encoders ignore the correlation in X,Y.

- ▶ Encoder 1 compresses \mathbf{x} are rate R_1 .
- ▶ Encoder 2 compresses y are rate R_2 .

What are the achievable rate pairs (R_1, R_2) ?

Using what we already know:

$$H(X) \le R_1$$

 $H(Y) \le R_2$

Red region indicates achievable rate pairs (R_1, R_2) for naive encoders.

11.1.4 Communicating Encoders

With communicating encoders, temporarily ignore the distributed source coding framework, and allow Encoder 1 to send ${\bf x}$ to Encoder 2.

We have two sources x and y. Source coding is **distributed**:

- ▶ Encoder 1 compresses **x** with rate $R_1 = H(X)$
- ▶ Encoder 2 uses x and to compress y with rate $R_2 = H(Y|X)$.

Example: Transmitting the Weather

Weather Example on the whiteboard:

- 1. Numerical values of achievable rates for naive scheme
- 2. "Joint Encoding": Encoder 2 knows x.
- 3. Numerical values of achievable rates for joint encoding.

Slepian-Wolf Theorem

As before, Encoder 1 and Encoder 2 do not communicate.

Slepian-Wolf Theorem: The achievable rate region for the pair of rates, (R_1, R_2) is the set of points that satisfy:

$$H(X|Y) \le R_1$$

 $H(Y|X) \le R_2$,
 $H(X,Y) \le R_1 + R_2$

Surprising result: Encoders which do not communicate achieve the same rate as the joint encoder.

Proof technique:

- ▶ Lower bounds: Joint encoding. We cannot do better than this.
- ▶ Achievability: random binning with typical sequences.

Slepian-Wolf Theorem

Slepian-Wolf Theorem: The achievable rate region for the pair of rates, (R_1, R_2) is the set of points that satisfy:

$$H(X|Y) \le R_1$$

 $H(Y|X) \le R_2$,
 $H(X,Y) \le R_1 + R_2$

Distributed coding achieves lower rates by considering source correlation.

Rate Region of Three-User Distributed Source Coding

While Slepian-Wolf is given for two sources, it can be generalized to three or more sources.

Three-user capacity region:

$$R_1 \ge H(X_1|X_2, X_3),$$

$$R_2 \ge H(X_2|X_1, X_3),$$

$$R_3 \ge H(X_3|X_1, X_2),$$

$$R_1 + R_2 \ge H(X_1, X_2|X_3),$$

$$R_1 + R_3 \ge H(X_1, X_3|X_2),$$

$$R_2 + R_3 \ge H(X_2, X_3|X_1),$$

$$R_1 + R_2 + R_3 \ge H(X_1, X_2, X_3).$$

Find the Slepian-Wolf achievable rate region for this source

$P_{X,Y}$		Y	
		0	1
X	0	3/8	1/8
	1	1/8	3/8

Note:

• $\log_2 3 \approx 1.585$

Find the Slepian-Wolf achievable rate region for this source

$P_{X,Y}$		Y	
		0	1
X	0	3/8	1/8
	1	1/8	3/8

Note:

• $\log_2 3 \approx 1.585$

11.2 Finite-Length Slepian-Wolf Coding

Consider a concrete, finite length scheme. Assume:

- $ightharpoonup \mathbf{x}$ and \mathbf{y} are binary vectors, with finite length n.
- $p_{X}(x) = p_{Y}(y) = [\frac{1}{2}, \frac{1}{2}]$
- ightharpoonup Correlation: assume \mathbf{x} and \mathbf{y} differ in at most t positions:

 $\mathbf{x} \oplus \mathbf{y} = \mathbf{z}$ has t or fewer ones

11.2 Finite-Length Slepian-Wolf Coding

Consider a concrete, finite length scheme. Assume:

- $ightharpoonup \mathbf{x}$ and \mathbf{y} are binary vectors, with finite length n.
- $p_{X}(x) = p_{Y}(y) = [\frac{1}{2}, \frac{1}{2}]$
- ightharpoonup Correlation: assume \mathbf{x} and \mathbf{y} differ in at most t positions:

$$\mathbf{x} \oplus \mathbf{y} = \mathbf{z}$$
 has t or fewer ones

Slepian-Wolf Encoding: Partition all sequences \mathcal{Y}^n into 2^m bins. Each bin has an m-bit label.

- 1. Encoder 1 transmits x uncompressed, with rate $R_1 = 1$.
- 2. Encoder 2 finds the bin that \mathbf{y} belongs to. Encoder 2 transmits the bin label with rate $R_2=m/n$.

11.2 Finite-Length Slepian-Wolf Coding

Consider a concrete, finite length scheme. Assume:

- $ightharpoonup \mathbf{x}$ and \mathbf{y} are binary vectors, with finite length n.
- $p_{X}(x) = p_{Y}(y) = [\frac{1}{2}, \frac{1}{2}]$
- ightharpoonup Correlation: assume \mathbf{x} and \mathbf{y} differ in at most t positions:

$$\mathbf{x} \oplus \mathbf{y} = \mathbf{z}$$
 has t or fewer ones

Slepian-Wolf Encoding: Partition all sequences \mathcal{Y}^n into 2^m bins. Each bin has an m-bit label.

- 1. Encoder 1 transmits x uncompressed, with rate $R_1 = 1$.
- 2. Encoder 2 finds the bin that ${\bf y}$ belongs to. Encoder 2 transmits the bin label with rate $R_2=m/n$.

Decoding: 1. The decoder already has x.

2. The decoder looks in bin m. It chooses $\hat{\mathbf{y}}$ to be the sequence in bin m that differs from \mathbf{x} in the smallest number of positions.

Finite-Length Slepian-Wolf Coding

Key point regarding the partition of sequences:

- Sequences in one bin should differ in a large number positions
- ▶ Specifically: If the source sequence differ in $\leq t$ positions, then any two sequences in a bin should differ in $\geq 2t+1$ positions.

A partition is also called a codebook.

Example 1: Binning

Consider Slepian-Wolf compression of binary sources ${\bf x}$ and ${\bf y}$ with length n=3 which differ in 1 or fewer positions.

Use the codebook with four bins, given by the following table.

$\mathbf{s} = 00$	$\mathbf{s} = 01$	$\mathbf{s} = 10$	$\mathbf{s} = 11$
000	001	010	011
111	110	101	100

Each bin has two codewords.

Suppose $\mathbf{x} = 010$ and $\mathbf{y} = 110$, which differ in one position. $\bigstar 2$

Visualization of Binning

Visualize all n=3 sequences using the "Hamming cube".

Sequences in each bin differ in at least 3 positions. "Coset" means "bin".

In our example, decoder receives x = 010 and s = 01, corresponding to coset 2.

Example 2: Linear Block Codes

Binning operations may be performed using linear block codes.

The code is specified by an r-by-n parity-check matrix \mathbf{H} .

Encoder 1 transmits x and Encoder 2 transmits the *syndrome* s:

$$\mathbf{s}_2 = \mathbf{y}\mathbf{H}^{\mathrm{t}}$$

Decoder already has ${\bf x}$. The decoder recovers ${\bf y}$ from ${\bf s}_2$ and ${\bf x}$ as follows. Using the syndrome table ϕ compute:

$$\mathbf{c} = \phi(\mathbf{s}_2)$$

$$\mathbf{s}_1 = (\mathbf{x} \oplus \mathbf{c})\mathbf{H}^t$$

$$\hat{\mathbf{e}} = \phi(\mathbf{s}_1)$$

$$\hat{\mathbf{y}} = \mathbf{x} \oplus \hat{\mathbf{e}},$$

Above, all operations are modulo-2.

¹gives the lowest-weight vector in bin s. Found from H

Linear Code Example with n=3

Repeat previous example using the parity check matrix \mathbf{H} :

$$\mathbf{H} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix},$$

which has syndrome table:

$$\begin{array}{c|ccc} \mathbf{s} & \phi(\mathbf{s}) \\ \hline 0 \ 0 & 0 \ 0 \ 0 \\ 0 \ 1 & 0 \ 0 \ 1 \\ 1 \ 0 & 0 \ 1 \ 0 \\ 1 \ 1 & 1 \ 0 \ 0 \\ \end{array}$$

With x = 010 and y = 110, perform encoding and decoding. $\bigstar 3$

Switch Role of Encoder 1 and Encoder 2

So far, we considered achieving point A:

- ► Encoder 1 does not compress: $R_1 > H(X)$
- ▶ Encoder 2 compresses $R_2 \ge H(Y|X)$

Achieve point B by switching roles:

- ▶ Encoder 1 compresses $R_1 \ge H(X|Y)$
- Encoder 2 does not compress: $R_1 \ge H(Y)$

How to achieve other points between A and B?

Time Sharing (Also Called Rate Splitting)

Let $A=(R_1^1,R_2^1)$ and $B=(R_1^2,R_2^2)$ be two achievable rates. Then, any rate pair given by:

$$(R_1, R_2) = kA + (1 - k)B$$

for $0 \le k \le 1$ is also achievable.

Use code A for fraction k, and use code B for fraction (1 - k).

Since $n \to \infty$, we have infinite bits available for time sharing.

This also shows that the achievable rate region is convex.

Summary

- Example of network information theory: more than one transmitter/receiver
- Distributed source coding: multiple sources, each with own encoder
- Slepian-Wolf Theorem for lossless source coding:
 - Achievable rate region bounded by three inequalities
 - Surprising result: distributed encoding has the same rate as communicating encoders
 - Slepian-Wolf coding using binning

Class Info

- ▶ Tutorial Hours: Monday, May 29 at 13:30. Ask questions about homework.
- ▶ Homework 10 on LMS. Deadline: Monday, May 29 at 18:00
- Last lecture: Wednesday, May 31. Review of Information Theory. No Pop Quiz.
- Final exam: Monday, June 5 at 9:00.

Final Exam

The exam is closed book. You may use:

- ▶ **Two** pages of notes, A4-sized paper, double-sided OK.
- Blank scratch paper

You may not use anything else: No printed materials, including books, lecture notes, and slides. No notes (except as above). No internet-connected devices. No calculators. You may need to perform a 2×2 matrix inverse.

Exam Content

- ► Covers the whole course: Chapters 1–7, 9–10
- Emphasizes second half: channel capacity, differential entropy, rate-distortion.
- Study Homeworks.

Past exam will be provided.