MAST31005 Algebra II exercise 4 (14.02.2024)

1. Define 'revlex' order for $\alpha, \beta \in \mathbb{N}^n$ by

 $\alpha > \beta$ \iff the right-most nonzero entry of $\alpha - \beta$ is negative

Show that revlex is not a monomial order.

- **2.** Consider on $K[x_1, \ldots, x_8]$ the wdegrevlex order with weights (1, 1, 2, 3, 3, 4, 4, 4). List all of the monomials of weighted degree 4 in increasing order.
- **3.** Let $>_x$ be a monomial order on $K[x_1,\ldots,x_n]$ and let $>_y$ be a monomial order on $K[y_1,\ldots,y_m]$. Define the *product order* $>_{xy}$ on $K[x_1,\ldots,x_n,y_1,\ldots,y_m]$ by

$$x^{\alpha}y^{\beta} >_{xy} x^{\gamma}y^{\delta} \iff x^{\alpha} >_{x} x^{\gamma} \text{ or } \begin{cases} \alpha = \gamma, \text{ and} \\ y^{\beta} >_{y} y^{\delta} \end{cases}$$

- (a) Show that $>_{xy}$ is a monomial order.
- (b) Is the lex order on K[x, y] the product order of the canonical orders on K[x] and K[y]?
- **4.** Compute the remainder of polynomial division for $f = x^4y^2 + x^2y^2 y + 1$ divided by the ordered tuple P with respect to the lex order on $\mathbb{Q}[x,y]$ when
- (a) $P = (xy^2 x, x y^3)$
- (b) $P = (x y^3, xy^2 x)$
- **5.** Let $I \subset K[x_1, \ldots, x_n]$ be an ideal with the following property: for every polynomial $p = \sum c_{\alpha} x^{\alpha} \in I$, if $c_{\alpha} \neq 0$ then $x^{\alpha} \in I$. Show that I is a monomial ideal.
- **6.** Let $I = \langle x^{\alpha} : \alpha \in A \rangle \subset K[x_1, \dots, x_n]$ be a monomial ideal and let > be a monomial order on $K[x_1, \dots, x_n]$. Let $\beta = \min\{\alpha : x^{\alpha} \in I\}$. Show that $\beta \in A$.
- 7. Let $I = \langle x^6, x^2y^3, y^7 \rangle \subset \mathbb{Q}[x, y]$.
- (a) Draw a visualization of the exponents $(m,n) \in \mathbb{N}^2$ of the monomials $x^m y^n \in I$.
- (b) If we divide $f \in \mathbb{Q}[x,y]$ by the tuple (x^6,x^2y^3,y^7) , which monomials can appear in the remainder?
- (c) Compute the dimension of the quotient $\mathbb{Q}[x,y]/I$ as a vector space over \mathbb{Q} .