Scheduling & Resource Levelling

Slides available at tomlogan.co.nz/edi slides.pdf

Handout available at tomlogan.co.nz/edi notes.pdf

Building a house

- What are the steps?
 - Foundation
 - Design
 - Paint
 - Walls and ceiling

- Roof
- Wiring
- Plumbing
- etc

Scheduling:

How long will the project take?

When do you need to start each of the activities to finish on time?

Resource levelling is taking resource constraints into consideration

Learning Objectives

- Understand the precedence diagram method (PDM)
- Be able to construct a resource unconstrained schedule using the PDM
- Understand how resource levelling provides a resource constrained schedule

Example

Say we have five activities (sub tasks that make up some project):

Activity ID	Predecessor	Expected time (days)
Α	-	8
В	Α	4
С	B, E	5
D	-	3
E	D	2

Precedence Diagram Method (PDM)

Precedence diagram conceptualises which activities precede and succeed one another.

We say A precedes B (or B requires A to finish before it can start):

Example: PDM

PDM

- Scheduling: When should we start each activity so the project finishes on time
- Precedence diagram helps determine this

PDM: Early start and finish

- First step is to determine the earliest that an activity can start
- Early start (ES)
- What's the ES of A?

Example: PDM

Activity ID	Expected time (days)
Α	8
В	4
С	5
D	3
Е	2

Example: PDM

Activity ID	Expected time (days)
Α	8
В	4
С	5
D	3
E	2

PDM: Early start and finish

- First step is to determine the earliest that an activity can start
- Early start (ES)
- ES = max of
 - First time step
 - Early finish of predecessor + 1

PDM: Early start and finish

- Then we can determine the earliest date each activity can finish
- Early finish (EF)
- EF = ES + duration 1
- EF(A) = 8 because A is completed on the eighth day

Example: PDM

Activity ID	Expected time (days)
Α	8
В	4
С	5
D	3
Е	2

Example: Forward pass

Example: Forward pass

Example: Forward pass

PDM: Late start and finish

- Calculating the ES and EF is known as the forward pass
- ES tells us the earliest we can start an activity
- We also want some wiggle room when is the latest we can start an activity without affecting the deadline?
- LS (late start)
- What is the LS of A?

Example: PDM

PDM: Late start and finish

- Need to work <u>backwards</u> (hence <u>backward pass</u>)
- What is the LS of C?
- First what is the late finish (LF) of C
- LF = min of
 - Project finish date (if unspecified, default is to use the largest EF)
 - Late start of successor 1
- LS = LF duration + 1

Example: Backward pass

Example: Backward pass

PDM: Float

- This means there is no "wiggle room" any delay will delay the entire project
- Float is the number of days an activity can be delayed without impacting the project
- Float = ?

PDM: Float

- Note the EF and LF are the same for some activities
- This means there is no "wiggle room" any delay will delay the entire project
- Float is the number of days an activity can be delayed without impacting the project
- Float = LF ES duration + 1

ES	Α	EF
	float	
LS	dur	LF

Example: Float

Critical path

- The series of activities with float = 0 is the critical path
- The critical path is the one that dictates when the project will be complete
- Any delays to the critical path affect the project deadline

Resource constraining

- This has given us a schedule that is resource unconstrained
- However, there are likely constraints on resources
- Resources = labour, equipment, material
- Resource levelling is used to determine a resource constrained schedule
- Software is required for the optimization

Resource levelling: essentials

- (first determine the resource unconstrained schedule)
- For each activity: what resources are required at each timestep
 - E.g. activity A requires a digger (excavator) for the first four days
- Consider each time step sequentially:
 - What resources are needed by the activities currently scheduled?
 - Are the required resources available?
 - If not, assign the resources to the activity with the highest priority (common to use the lowest float)
 - Activity without resources is pushed to start at the next time step
 - Repeat for the next timestep

Resource levelling: example

1	Α	8	
	0		
1	8	8	

- Let's say that
 - Activity A is the foundations of a road
 - Activity D is the swale (stormwater ditch) off the road
- Both require diggers
 - A requires it for the first four time steps
 - D requires it for the first two
- Only one digger is available
- D must therefore start on day 5 this is the resource start (RS)

Resource levelling

- Two alternatives
 - Limited resources delay project completion
 - Meet deadline identify resource limitations

- Options for manager
 - Get more resources
 - Extend deadline
 - New project plan

In-class problem – 5-10min – work with others as you'd like

Draw the precedence diagram for the following house construction problem and determine the float of each activity.

	Activity	Immediate predecessor	Time (days)
1	Walls and ceiling	2	5
2	Foundation	None	3
3	Roof timbers	1	2
4	Roof sheathing	3	3
5	Electrical Wiring	1	4
6	Roof shingles	4	8
7	Exterior Siding	8	5
8	Windows	1	2
9	Paint	6, 7, 10	2
10	Inside wall board	8, 5	3

Key concepts

- Construct a precedence diagram from activity list
- Calculate the float for each activity
- Understand the differences between and uses of ES, EF, LS, LF, RS, RF
- Understand how resource levelling determines a resource constrained schedule