Mathematical Statistics Assignment 4: Due November 9th, 11:59 pm, MyCourses

- Q1 The correlation between two random variables X and Y is given by $Corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$. Proove the following
 - (a) Shifting X and Y has no effect on their correlation, i.e., Corr(X + a, Y + b) = Corr(X, Y) for any constants a and b
 - (b) Scaling X and Y has no effect on their correlation, i.e., Corr(cX,Y) = Corr(X,Y) for any constant c
 - (c) Scaling and shifting both X and Y has no effect on their correlation, i.e., Corr(cX + a, dY + b) = Corr(X, Y) for any constants a, b, c, d
 - (d) Starting from the definition of expectations, show that $Var(aX+bY)=a^2Var(X)+b^2Var(Y)+2abCov(X,Y)$
 - (e) Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z)
 - (f) Cov(X+Y,Z+W) = Cov(X,Z) + Cov(X,W) + Cov(Y,Z) + Cov(Y,W)
 - (g) Show that E((X EX)(Y EY)) = E(XY) E(X)E(Y)
 - (h) Show that Corr(X, Y) is bounded between -1 and 1
- **Q2** Let X and Y have joint PDF given by

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} y^{\beta-1} e^{-x} e^{-y} & 0 < x < \infty, 0 < y < \infty \\ 0 & else \end{cases}$$

Let
$$U = X + Y$$
 and $V = X/(X + Y)$.

- (a) Find the joint PDF of (U, V)
- (b) Find the marginal distributions of U and V.
- (c) Are U and V independent?
- Q3 Let X and Y be independent Uniform(0,1) random variables. Define the transformations $U = \sqrt{-2\log(X)}\cos(2\pi Y)$ and $V = \sqrt{-2\log(X)}\sin(2\pi Y)$ (where log is the natural logarithm).
 - (a) Find the joint PDF of (U, V)
 - (b) Find the marginal distributions of U and V.
 - (c) Are U and V independent?
- **Q4** Let $X \sim Uniform(0,1)$ and $Y \sim Uniform(0,1/10)$, where X and Y are independent random variables. Consider the transformation U = X and V = X + Y
 - (a) Find the joint PDF of (U, V)
 - (b) Find the Cov(X, Y) and Corr(X, Y)