LAB 2: Phân tích thuật toán

1 Phân tích độ phức tạp thời gian của thuật toán

1.1

- a. n^2
 - (a) Khi tăng gấp đôi kích thước đầu vào:

$$\frac{(2n)^2}{n^2} = 4$$

- \Rightarrow Thuật toán chạy chậm hơn 4 lần.
- (b) Khi tăng kích thước đầu vào thêm 1:

$$\frac{(n+1)^2}{n^2} = 1 + \frac{2}{n} + \frac{1}{n^2}$$

Với nlớn $\rightarrow 1 \Rightarrow$ Không đáng kể.

- b. n^{3}
 - (a) Khi tăng gấp đôi kích thước đầu vào:

$$\frac{(2n)^3}{n^3} = 8$$

- \Rightarrow Thuật toán chạy chậm hơn 8 lần.
- (b) Khi tăng kích thước đầu vào thêm 1:

$$\frac{(n+1)^3}{n^3} = 1 + \frac{3}{n} + \frac{3}{n^2} + \frac{1}{n^3}$$

Với n lớn $\rightarrow 1 \Rightarrow$ Không đáng kể.

- c. $100n^2$
 - (a) Khi tăng gấp đôi kích thước đầu vào:

$$\frac{(100(2n))^2}{100n^2} = 4$$

 \Rightarrow Thuật toán chạy chậm hơn 4 lần.

(b) Khi tăng kích thước đầu vào thêm 1:

$$\frac{100(n+1)^2}{n^2} = 100 + \frac{200}{n} + \frac{100}{n^2}$$

Với n lớn $\rightarrow 1 \Rightarrow$ Không đáng kể.

- d. $n \log n$
 - (a) Khi tăng gấp đôi kích thước đầu vào:

$$\frac{(2n)\log(2n)}{n\log n} = 2 + \frac{2\log 2}{\log n}$$

Với n lớn $\rightarrow 2 \Rightarrow$ Thuật toán chạy chậm hơn **gần 2 lần**.

(b) Khi tăng kích thước đầu vào thêm 1:

$$\frac{(n+1)\log(n+1)}{n\log n} = 1 + \frac{\log(n+1)}{\log n} + \frac{1}{n\log n}$$

Với n lớn $\rightarrow 1 \Rightarrow$ Không đáng kể.

- e. 2^{n}
 - (a) Khi tăng gấp đôi kích thước đầu vào:

$$\frac{2^{2n}}{2^n} = 2^n$$

Với n lớn \rightarrow rất lớn \Rightarrow Thuật toán chạy chậm hơn **rất nhiều lần**.

(b) Khi tăng kích thước đầu vào thêm 1:

$$\frac{2^{n+1}}{2^n} = 2$$

 \Rightarrow Thuật toán chạy chậm hơn 2 lần.

1.2

a. Phát biểu định nghĩa chính thức của ký pháp Big-O:

$$\exists c > 0, n_0 > 0$$
 sao cho $T(n) < c \cdot f(n), \forall n > n_0.$

b. Cho f(n) và g(n) là các hàm số dương. Sử dụng định nghĩa cơ bản của ký pháp Big-O, chứng minh rằng:

$$\max(f(n), g(n)) = O(f(n) + g(n)).$$

 $Ch\acute{u}ng \ minh$: Với mọi n, ta có:

$$\max(f(n), g(n)) \le f(n) + g(n).$$

Do đó, $\exists c > 0$ sao cho:

$$\max(f(n), g(n)) \le c \cdot (f(n) + g(n)).$$

Theo định nghĩa:

$$\max(f(n), g(n)) = O(f(n) + g(n)).$$

c. Chứng minh rằng mệnh đề sau là vô nghĩa: "Thời gian chạy của thuật toán A ít nhất là $O(n^2)$ ".

O là ký pháp mô tả cận trên (upper bound). Do đó, mệnh đề trên không có ý nghĩa vì nó không xác định được cận dưới (lower bound) của thời gian chạy thuật toán A.

1.3

a. Chứng minh hoặc phản bác mệnh đề sau:

$$2^{n+1} = O(2^n)$$

Chứng minh: Ta có:

$$2^{n+1} = 2 \cdot 2^n < c \cdot 2^n$$
, với $c = 2$, $n_0 = 1$.

 \Rightarrow dpcm.

b. Chứng minh hoặc phản bác mệnh đề sau:

$$2^{2n} = O(2^n)$$

Phản bác: Ta có:

$$2^{2n} = (2^n)^2 \gg c \cdot 2^n$$
, với mọi $c > 0$, $n_0 > 0$.

 \Rightarrow Khác hoàn toàn.

c. Chứng minh hoặc phản bác mệnh đề sau:

Nếu
$$f(n) = O(g(n))$$
 thì

$$\log f(n) = O(\log g(n)),$$
 với giả thiết $f(n) > 1, g(n) > 1.$

Chứng minh: Theo định nghĩa Big-O, ta có:

$$f(n) \le c \cdot g(n), \quad \forall n \ge n_0.$$

Lấy log hai vế, ta được:

$$\log f(n) \le \log (c \cdot g(n))$$

$$\Leftrightarrow \log f(n) = \log c + \log g(n)$$

$$\Leftrightarrow \log f(n) \le c' \cdot \log g(n)$$

$$\text{v\'oi } c' = \log c + 1, \quad n > n_0.$$

 \Rightarrow dpcm.

d. Chứng minh hoặc phản bác mệnh đề sau:

Nếu
$$f(n) = O(g(n))$$
 và $g(n) \ge 1$ thì

$$2^{f(n)} = O(2^{g(n)}).$$

Phần bác: Giả sử f(n) = 2n, g(n) = n. Khi đó:

$$f(n) = O(g(n))$$
 và $g(n) \ge 1$.

Mà:

$$2^{f(n)} = 2^n \ll 2^{2n}$$
 với mọi $c > 0, n > n_0$.

 \Rightarrow Khác hoàn toàn.

1.4

Sắp xếp theo thứ tự tăng dần theo tốc độ tăng trưởng (growth rate) của các hàm sau: $G\phi i$ \acute{y} : Sử dụng quy tắc L'Hôpital hoặc so sánh logarit để xử lý các hàm phức tạp.

Bài làm

a.
$$f_1(n) = n + 10$$
; $f_2(n) = \sqrt{2n}$; $f_3(n) = n^2 \log(n)$; $f_4(n) = n^{2.5}$; $f_5(n) = 10^n$; $f_6(n) = 100^n$.

Sắp xếp:

$$f_1(n) = O(n)$$

$$f_2(n) = O(\sqrt{n})$$

$$f_3(n) = O(n^2 \log(n))$$

$$f_4(n) = O(n^{2.5})$$

$$f_5(n) = O(10^n)$$

$$f_6(n) = O(100^n)$$

$$\Rightarrow f_2(n) < f_1(n) < f_3(n) < f_4(n) < f_5(n) < f_6(n)$$

b.
$$g_1(n) = n(\log n)^3$$
; $g_2(n) = n^{4/3}$; $g_3(n) = 2^n$; $g_4(n) = n^{\log(n)}$; $g_5(n) = 2^{2n}$.

Phân tích:

- So sánh $g_1(n) = n(\log n)^3$ và $g_2(n) = n^{4/3}$:

$$\lim_{n \to \infty} \frac{n(\log n)^3}{n^{4/3}} \stackrel{L}{=} 0.$$

$$\Rightarrow g_1(n) < g_2(n)$$
.

- So sánh $q_2(n) = n^{4/3}$ và $q_3(n) = 2^n$:

$$\lim_{n \to \infty} \frac{n^{4/3}}{2^n} = 0.$$

$$\Rightarrow q_2(n) < q_3(n)$$
.

– So sánh $g_3(n) = 2^n$ và $g_4(n) = n^{\log n}$:

$$\lim_{n\to\infty}\frac{2^n}{n^{\log n}}=\lim_{n\to\infty}2^{n-(\log n)^2}=\infty.$$

$$\Rightarrow g_3(n) > g_4(n).$$

– So sánh $g_3(n) = n^{\log n}$ và $g_5(n) = 2^{2n}$:

$$\lim_{n \to \infty} \frac{n^{\log n}}{2^{2n}} = \lim_{n \to \infty} 2^{(\log n)^2 - 2n} = 0.$$

$$\Rightarrow g_3(n) < g_5(n).$$

– So sánh $g_1(n) = n(\log n)^3$ và $g_4(n) = n^{\log n}$:

$$\lim_{n \to \infty} \frac{n(\log n)^3}{n^{\log n}} = \lim_{n \to \infty} n^{1 - \log n} (\log n)^3 = 0.$$

$$\Rightarrow g_1(n) < g_4(n).$$

- So sánh
$$g_4(n) = n^{\log n}$$
 và $g_2(n) = n^{4/3}$:

$$\lim_{n\to\infty}\frac{n^{\log n}}{n^{4/3}}=\lim_{n\to\infty}n^{\log n-4/3}=\infty.$$

$$\Rightarrow g_4(n) > g_2(n).$$

Kết luận:

$$g_1(n) < g_2(n) < g_4(n) < g_3(n) < g_5(n)$$

1.5

Sử dụng Master Theorem để giải các phương trình đệ quy sau:

a.
$$T(n) = 2T(\frac{n}{2}) + n$$

b.
$$T(n) = 3T(\frac{n}{2}) + n$$

c.
$$T(n) = 4T(\frac{n}{2}) + n^2$$

d.
$$T(n) = T\left(\frac{n}{2}\right) + n$$

e.
$$T(n) = 2T(\frac{n}{2}) + 1$$

f.
$$T(n) = 3T\left(\frac{n}{3}\right) + n$$

Gợi ý: Xác định rõ các tham số a, b, và f(n) trước khi áp dụng Master Theorem. Nếu Master Theorem không áp dụng được, sử dụng phương pháp thế.

Master Theorem: Let $a \ge 1$ and b > 1 be constants, and let f(n) be an asymptotically positive function. Consider the recurrence:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n).$$

Bài làm

a.
$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

$$a = 2, \quad b = 2, \quad f(n) = n.$$

Ta có:

$$n^{\log_b a} = n^{\log_2 2} = n.$$

Do đó, theo trường hợp 2 của Master Theorem:

$$T(n) = \Theta(n \log n).$$

b.
$$T(n) = 3T\left(\frac{n}{2}\right) + n$$

$$a = 3, \quad b = 2, \quad f(n) = n.$$

Ta có:

$$n^{\log_b a} = n^{\log_2 3} \approx n^{1.585}$$

Do đó, theo trường hợp 1 của Master Theorem:

$$\Rightarrow f(n) = O(n^{\log_b a - \epsilon})$$
 với $\epsilon \approx 0.585$.

c.
$$T(n) = 4T(\frac{n}{2}) + n^2$$

$$a = 4$$
, $b = 2$, $f(n) = n^2$.

Ta có:

$$n^{\log_b a} = n^{\log_2 4} = n^2.$$

Do đó, theo trường hợp 2 của Master Theorem:

$$T(n) = \Theta(n^2 \log n).$$

d.
$$T(n) = T\left(\frac{n}{2}\right) + n$$

$$T(n) = T(n/4) + n/2 + n$$

$$T(n) = T(n/8) + n/4 + n/2 + n$$

$$T(n) = T(n/16) + n/8 + n/4 + n/2 + n$$

$$\vdots$$

$$T(n) = T(1) + n(1 + 1/2 + 1/4 + ...)$$

$$T(n) = T(1) + 2n$$

$$\Rightarrow T(n) = O(n).$$

e.
$$T(n) = 2T(\frac{n}{2}) + 1$$

$$a = 2, \quad b = 2, \quad f(n) = 1.$$

Ta có:

$$n^{\log_b a} = n^{\log_2 2} = n.$$

Do đó, theo trường hợp 1 của Master Theorem:

$$\Rightarrow f(n) = O(n^{\log_b a - \epsilon})$$
 với $\epsilon = 1$.

f.
$$T(n) = 3T\left(\frac{n}{3}\right) + n$$

$$a = 3, \quad b = 3, \quad f(n) = n.$$

Ta có:

$$n^{\log_b a} = n^{\log_3 3} = n.$$

Do đó, theo trường hợp 2 của Master Theorem:

$$T(n) = \Theta(n \log n).$$

1.6

Phân tích độ phức tạp thời gian của các thuật toán sau trong các trường hợp (Worst case, Average case, Best case):

- a. Tìm kiếm nhị phân (Binary Search)
- b. Kiểm tra số nguyên tố
- c. Thuật toán Euclid tính Ước số chung lớn nhất (GCD)
- d. Đếm số bit 1 trong biểu diễn nhị phân của số nguyên

Bài làm

a. Tìm kiếm nhị phân (Binary Search)

$$T(n) = T\left(\frac{n}{2}\right) + O(1)$$

Giải phương trình đệ quy trên ta được:

$$T(n) = O(\log n)$$

- Best case: Phần tử cần tìm nằm ngay ở giữa mảng \Rightarrow chỉ cần 1 phép so sánh.

$$T_{\text{best}}(n) = O(1)$$

- Worst case: Phần tử cần tìm không tồn tại hoặc nằm ở biên, mỗi lần thu hẹp tìm kiếm còn một nửa, lặp cho đến khi còn 1 phần tử.

$$T_{\text{worst}}(n) = O(\log n)$$

- **Average case:** Trung bình cũng phải thực hiện số lần so sánh tương tự như worst case.

$$T_{\text{avg}}(n) = O(\frac{\log n}{2}) = O(\log n)$$

b. Kiểm tra số nguyên tố

$$T(n) = O(\sqrt{n})$$

- Best case: Số n là số chẵn lớn hơn $2 \Rightarrow$ chỉ cần 1 phép chia.

$$T_{\text{best}}(n) = O(1)$$

- Worst case: Số n là số nguyên tố \Rightarrow phải kiểm tra tất cả các số từ 2 đến \sqrt{n} .

$$T_{\text{worst}}(n) = O(\sqrt{n})$$

- Average case: Trung bình cũng phải thực hiện số phép chia tương tự như worst case.

$$T_{\text{avg}}(n) = O(\sqrt{n})$$

c. Thuật toán Euclid tính Ước số chung lớn nhất (GCD)

$$T(n) = T(n \log n) + O(1)$$

- Best case: Hai số a và b bằng nhau \Rightarrow chỉ cần 1 phép chia lấy dư.

$$T_{\text{best}}(n) = O(1)$$

- Worst case: Hai số a và b là hai số Fibonacci liên tiếp đến khi dư = $0 \Rightarrow$ phải thực hiện nhiều phép chia lấy dư.

$$T_{\text{worst}}(n) = O(\log n)$$

- Average case: Trung bình cũng phải thực hiện số phép chia tương tự như worst case.

$$T_{\text{avg}}(n) = O(\log n)$$

d. Đếm số bit 1 trong biểu diễn nhị phân của số nguyên

$$T(n) = O(\log n)$$

- Best case: Số $n = 0 \Rightarrow$ không có bit 1.

$$T_{\text{best}}(n) = O(1)$$

- Worst case: Số n có tất cả các bit là $1 \Rightarrow$ phải kiểm tra tất cả các bit.

$$T_{\text{worst}}(n) = O(\log n)$$

- Average case: Trung bình số bit 1 trong biểu diễn nhị phân của số nguyên có độ dài k là $k/2 \Rightarrow$ phải kiểm tra khoảng nửa số bit.

$$T_{\text{avg}}(n) = O(\log n)$$

1.7

Phân tích độ phức tạp thời gian của các thuật toán sau:

a. Dãy Fibonacci

- Đệ quy đơn giản:

Ý tưởng: Gọi đệ quy trực tiếp theo công thức:

$$F(n) = F(n-1) + F(n-2)$$

Tính toán lặp lại nhiều lần.

$$T(n) = T(n-1) + T(n-2) + O(1) \implies T(n) = O(2^n)$$

- Đệ quy có nhớ (Memoization):

Ý tưởng: Lưu kết quả đã tính vào mảng nhớ, lần sau cần thì lấy ra, không tính lai. Mỗi giá tri chỉ tính một lần, do đó:

$$T(n) = O(n)$$

- Lặp (Iteration):

Ý tưởng: Tính tuần tự từ F(0), F(1) rồi dùng vòng lặp đến F(n). Chỉ cần duyệt từ 1 đến n, nên:

$$T(n) = O(n)$$

b. Tính tổng mảng bằng phương pháp chia để trị

$$T(n) = 2T\left(\frac{n}{2}\right) + O(1)$$

Áp dụng định lý Master, ta có:

$$T(n) = O(n)$$

c. Tính lũy thừa a^n

- Naive: Nhân a với nhau n lần:

$$T(n) = O(n)$$

- Chia để trị (Exponentiation by Squaring):

$$T(n) = T\left(\frac{n}{2}\right) + O(1) \implies T(n) = O(\log n)$$

d. Tháp Hà Nội (đệ quy)

$$T(n) = 2T(n-1) + O(1) \implies T(n) = O(2^n)$$

2 Lập trình và Đo lường thời gian thực thi thuật toán

2.1

Cài đặt và so sánh thời gian thực thi của từng thuật toán trong 1.6

Yêu cầu:

- a. Đo thời gian thực thi của thuật toán với kích cỡ input: $n < 10^6$.
- b. Vẽ biểu đồ so sánh thời gian thực thi của thuật toán.
- c. So sánh kết quả thực nghiệm với dự đoán lý thuyết từ phần 1 và giải thích sự khác biệt (nếu có).
- d. Thiết kế các bộ input khác nhau để kiểm tra các trường hợp (Worst case, Average case, Best case).
- e. Xác định điểm giao (giá trị n mà tại đó thuật toán A có độ phức tạp lý thuyết tốt hơn nhưng thực tế lại chậm hơn thuật toán B).

Bài làm

a. Đo thời gian thực thi của thuật toán với kích cỡ input: $n < 10^6$.

Input Size	BinarySearch	LinearSearch	Ratio (B/A)
2	0.0000	0.0000	
4	0.0000	0.0000	_
8	0.0000	0.0000	_
16	0.0000	0.0000	_
:	:	:	:
65536	0.0000	0.9990	_
131072	0.0000	1.8250	_
262144	0.0000	3.9990	_
524288	0.0000	9.7710	_

Bảng 1: So sánh thời gian thực thi giữa Binary Search và Linear Search

Input Size	Prime Optimized (ms)	Prime Naive (ms)	Ratio
2	0.0000	0.0000	_
4	0.0000	0.0000	_
8	0.0000	0.0000	_
16	0.0000	0.0000	_
:	:	i :	
32768	0.0000	0.1950	_
65536	0.0000	0.2000	_
131072	0.0000	0.2240	_
262144	0.0000	0.9980	_
524288	0.0000	4.0020	_

Bảng 2: So sánh thời gian chạy kiểm tra số nguyên tố: Optimized vs Naive

Input Size	Prime Optimized (ms)	Prime Naive (ms)	Ratio
2	0.0000	0.0000	_
4	0.0000	0.0000	_
8	0.0000	0.0000	_
16	0.0000	0.0000	_
:	;	i :	:
32768	0.0000	0.0000	_
65536	0.0000	0.0000	_
131072	0.0000	0.0000	_
262144	0.0000	0.0000	_
524288	0.0000	0.0000	_

Bảng 3: So sánh thời gian chạy kiểm tra số nguyên tố: Optimized vs Naive

Bit count (tương tự như GCD) ⇒ không thay đổi quá nhiều.

b. Vẽ biểu đồ so sánh thời gian thực thi của thuật toán.

Hình 1: So sánh thời gian thực thi giữa Binary Search và Linear Search

Hình 2: So sánh thời gian chạy kiểm tra số nguyên tố: Optimized vs Naive

Hình 3: So sánh thời gian chạy tính GCD: Modulo vs Subtraction

Bit count (tương tự như GCD) ⇒ không thay đổi quá nhiều.

- e. Xác định điểm giao:
 - Binary vs Linear: Điểm giao khoảng $n \in [20, 50]$, nơi Binary bắt đầu nhanh hơn. Mặc dù về lý thuyết Binary tốt hơn ngay từ đầu, nhưng hằng số ẩn làm nó chậm hơn ở n nhỏ.
 - **Prime Optimized vs Naive:** Optimized luôn nhanh hơn, không có điểm giao nơi A chậm hơn.
 - GCD Mod vs Sub: Điểm giao ở n nhỏ (n < 10), Subtraction nhanh hơn do phép trừ rẻ hơn modulo.
 - Bit Kern vs Loop: Kernel luôn nhanh hơn hoặc bằng, không có điểm giao.

2.2

Phân tích độ phức tạp thời gian của các thuật toán sau:

- a. Dãy Fibonacci (đệ quy đơn giản, đệ quy có nhớ, lặp)
- b. Tính tổng mảng bằng phương pháp chia để trị
- c. Tính lũy thừa a^n (Phương pháp naive và chia để trị)
- d. Tháp Hà Nội (đệ quy)

Bài làm

a. Dãy Fibonacci (đệ quy đơn giản, đệ quy có nhớ, lặp)

Input Size	Recursive (ms)	Memoization (ms)	Iterative (ms)
10	0.0000	0.0000	0.0000
15	0.0000	0.0000	0.0000
20	0.0000	0.0000	0.0000
25	0.0000	0.0000	0.0000
30	0.0000	0.0000	0.0000
35	127.1480	0.0000	0.0000

Bảng 4: So sánh thời gian thực thi Fibonacci: Recursive vs Memoization vs Iterative

Hình 4: So sánh thời gian thực thi giữa các phương pháp Fibonacci

b. Tính tổng mảng bằng phương pháp chia để trị

Input Size	Sum Divide & Conquer (ms)
10	0.0000
20	0.0000
30	0.0000

Bảng 5: Thời gian thực thi thuật toán tính tổng bằng Divide & Conquer

Hình 5: Thời gian thực thi thuật toán tính tổng bằng Divide & Conquer

c. Tính lũy thừa a^n (Phương pháp naive và chia để trị)

Input Size	a^n Phương pháp naive và chia để trị
10	0.0000
20	0.0000
30	0.0000

Bảng 6: Thời gian thực thi thuật toán tính lũy thừa a^n (Phương pháp naive và chia để trị)

Hình 6: Thời gian thực thi thuật toán tính lũy thừa a^n (Phương pháp naive và chia để trị)

d. Tháp Hà Nội (đệ quy)

Input Size	Hanoi (ms)
10	0.0000
15	0.0000
20	5.0910
25	130.7070
30	4550.7800

Bảng 7: Thời gian thực thi bài toán Tháp Hà Nội

Hình 7: Thời gian thực thi thuật toán Tháp Hà Nội