

This Week in Al Chat-GPT Plugins

Image from OpenAI

Topics

Neural networks

- Motivation
- Computational graphs

Computing function gradients

- ► Numeric and analytic gradients
- Derivatives in graphs
- ► Backpropagation algorithm

Neural Networks

Original idea was to roughly model neuron behavior

Neural Networks Motivation

In very simplified terms, a neuron (nerve cell)

- ► Has multiple input connections
- ▶ Weights each input signal by some factor
- Fires output signal if sum of inputs exceeds a threshold
- Firing rate depends on sum

Neural Networks

We can model this behavior as $o = a(\mathbf{w} \cdot \mathbf{x} + b)$

- x and w are all inputs and weights
- b corresponds to the threshold
- $ightharpoonup a(\cdot)$ is an activation function that models firing rate

Neural Networks

We can select $a(\cdot)$ freely

- ightharpoonup Sigmoid function sgn(v) was popular early on
- lacktriangle Hyperbolic tangent anh(v) is better and sometimes used
- lacktriangle Rectified linear unit (ReLU) $\max(0,v)$ most popular now

Use ReLU unless you have good reason not to

We will talk more about transfer functions later

Neural Networks Activation Functions

Neural Networks

Use ReLU unless you have good reason not to

- ▶ Performs close to optimal in wide range of tasks
- ► Helps preserve signal throughout network (more later)
- Results in sparse networks

Several tweaks to ReLU exist (e.g. Leaky ReLU, ELU)

Work (marginally) better in certain situations

Neural Networks

Neurons compute $o = a(\mathbf{w} \cdot \mathbf{x} + b)$

So T neurons form a linear model with T outputs

- ▶ Simply set a(v) = v such that $o_t = \mathbf{w}_t \cdot \mathbf{x} + b_t$
- Result is identical to definition in previous lecture

Neurons form layers

- ► Neurons in same layer see same inputs
- ► Inputs are often also represented as layer

Layers are often given names based on what they do

- Layer with above neurons (a(v) = v) called linear
- Activation functions often considered own layer

Can add hidden layers to increase model capacity

- ► Such networks are called multi-layer perceptrons (MLPs)
- ▶ Deep neural networks (DNNs) have several such layers

Assuming D = 1 and a(v) = ReLU

- lacktriangle Model is T piecewise linear functions with H kinks
- ightharpoonup Same for D>1 but hard to visualize

Neural Networks

Image from cs.stanford.edu

Neural Networks Universal Approximators

MLPs are universal approximators (depending on H and $a(\cdot)$)

- ► Can represent any decision boundary (classification)
- ► Can approximate any function to any degree (regression)

Does this solve our image classification problems?

- ▶ No because we have bad (low-level) feature vectors
- Garbage in, garbage out

Neural Networks Universal Approximators

What if we use the raw images instead?

▶ Squeeze $32 \times 32 \times 3$ images to vectors \mathbf{x} with $\dim(\mathbf{x}) = 3072$

Also does not work

- ► Shallow MLPs perform poorly
- ► Neither do deep MLPs (also poor scaling)

MLP-based designs that work well exist though

More in a later lecture

Neural Networks Computational Graphs

The term "neural network" is misleading

- ▶ Biological neurons are much more complex [1]
- Modern (deep) neural networks have evolved a lot

Better to think of modern neural networks as

- ► Compositions of scalar sub-functions (units)
- That form a directed acyclic computational graph
- And grouped into layers depending on distance from input

Neural Networks Computational Graphs – Example

$$o = f(x) = f(g_1(h_1(x), h_2(x)), g_2(h_2(x), h_3(x)))$$

Neural Networks Computational Graphs

Granularity can be chosen freely

- We might define $g(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b$
- $rac{g(\mathbf{x}) = h_1(x_1) + \cdots + h_D(x_D) + b \text{ with } h_d(x_d) = w_d x_d }$
- Or whatever we want really

We will vary granularity depending on context

- More granularity helps understanding training process
- ► Implementations are less granular (parallel computations)

Training involves computing $\nabla L(\boldsymbol{\theta})$ in every iteration

- ► Many iterations required to train networks
- Computation must be exact and efficient

Parameter Initialization

Got to initialize all parameters first

- lacktriangle Multiplicative weights $\mathbf{w}_1 \cdots \mathbf{w}_H$ and $\mathbf{w}_1 \cdots \mathbf{w}_T$
- lacktriangle Additive biases $b_1 \cdots b_H$ and $b_1 \cdots b_T$

Want to preserve signal strength throughout network

- Avoid numerical issues (floating point math)
- Prevent exploding or vanishing gradients

Biases are not critical

► Simply set to 0 initially

Parameter Initialization

Weights are critical (multiplicative effect on output)

- ► Signal will vanish/explode if weights too small/large
- ► The deeper the network, the bigger the problem

Parameter Initialization

Sample weights from $\mathcal{N}(0,\sigma)$ to avoid issues

- $lackbox{ Optimal }\sigma$ depends on number of connections and $a(\cdot)$
- ► See [3] for details if interested

Note that this preserves signal only initially

- Weights change during training
- Why normalization layers are important (more later)

Numerical Gradients

One way to obtain $\nabla L(\boldsymbol{\theta})$ is numerical differentiation

- ▶ Vector $\mathbf{1}_p$ is 1 at position p and 0 otherwise
- Follows directly from definition of the derivative

Practical considerations

- ightharpoonup ϵ should be close to 0 while avoiding numerical issues
- ightharpoons $abla L_p(m{ heta}) = (L(m{ heta} + \mathbf{1}_p \epsilon) L(m{ heta} \mathbf{1}_p \epsilon))/2\epsilon$ preferable

Numerical Gradients

Trivial to implement

Only an approximation (ϵ cannot be arbitrarily small)

Too inefficient in practice

- ▶ Must evaluate $L \dim(\theta) + 1$ times
- Complex networks have millions of parameters

Gradient Computation Analytic Gradients

We thus would prefer the analytic gradient

lackbox Obtain abla L analytically using calculus

Can compute $\nabla L(\boldsymbol{\theta})$ directly

- Accurate (no approximation)
- Potentially much more efficient (single evaluation)

Derivatives in Graphs

Neural networks are computational graphs

► As are loss function defined for them

Derivatives in such graphs can be computed iteratively

- Recursive application of the chain rule
- ▶ Recall that if F(x) = f(g(x)) then F'(x) = f'(g(x))g'(x)

To compute gradients in such graphs we

- ► Evaluate the graph and store local results (forward pass)
- ► Aggregate local gradients (backward pass)

Derivatives in Graphs

Simple example with e(a, b) = (a + b)(b + 1)

Derivatives in Graphs

Forward pass with a=2 and b=1

Image from colah.github.org

Derivatives in Graphs

Every node can compute local gradients independently

 $ightharpoonup \partial f/\partial x$ means partial derivative f_x

Derivatives in Graphs

To obtain $\nabla e(2,1)$ we use the multivariate chain rule

We calculate $\nabla e_a(2,1)$ by

- lacktriangle Multiplying local gradients along every path from a to e
- Summing over all resulting values

Same for e_b (and all other variables in general)

Derivatives in Graphs

$$e_a(2,1) = c_a(2,1) \cdot e_c(2,1) = 1 \cdot 2 = 2$$

Derivatives in Graphs

$$e_b(2,1) = c_b(2,1) \cdot e_c(2,1) + d_b(2,1) \cdot e_d(2,1) = 2 + 3 = 5$$

Derivatives in Graphs

Can use the same algorithm to compute $L(\boldsymbol{\theta})$

Recall that the loss is an average over ${\cal S}$ samples

$$\blacktriangleright \ L(\pmb{\theta}) = 1/S \cdot \textstyle\sum_s H(\mathbf{o}^s, \mathrm{softmax}(f(\mathbf{x}^s; \pmb{\theta})))$$

So $\nabla L(\boldsymbol{\theta})$ is average of individual $\nabla H(\boldsymbol{\theta})$

- ▶ Compute $\nabla H(\theta)$ for all s and average
- Of course this applies to loss functions in general

Gradient Computation Derivatives in Graphs

To calculate $\nabla H(\boldsymbol{\theta})$ we

- ▶ Decompose the NN to simple functions
- Do the same for the softmax and cross-entropy
- Stack both to obtain a combined graph
- Use the same algorithm as above

Derivatives in Graphs

Neural networks are graphs of simple functions

► Can decompose the inner products

f	f'
$x_1 + x_2$	1
x_1x_2	x_2 and x_1
$\max(0, x)$	0 or 1

Derivatives in Graphs

As are the cross-entropy and softmax functions

f	f'
$\exp(x)$	$\exp(x)$
ln(x)	1/x
x_1/x_2	$1/x_2 \text{ and } -x_1/x_2^2$

Derivatives in Graphs

Linear classifier with D=2 and T=2

Derivatives in Graphs

"Attached" softmax and cross-entropy

Gradient Computation Derivatives in Graphs

Graph is dense

- Must sum over several paths per partial derivative
- Number of paths grows exponentially with graph complexity
- Above algorithm not efficient enough for large networks

Derivatives in Graphs

Reverse-mode differentiation solves this problem

- ► Computes derivatives of output node wrt. all other nodes
- Efficiently by touching every edge only once
- Called backpropagation in neural network community

Achieved by

- ► Starting at the output (loss) node
- Propagating local gradients backwards to input nodes
- Storing intermediate results for efficiency

Derivatives in Graphs

Start at output node \boldsymbol{e} and move towards inputs

At every node n

- For every child c, compute local gradient $l_c = \partial n/\partial c$
- ▶ For every child c, compute $m_c = l_c \cdot \partial e / \partial n \; (\partial e / \partial e = 1)$
- lacktriangle Compute $\partial e/\partial c$ as sum over all m_c

Derivatives in Graphs

Image from colah.github.org

Derivatives in Graphs

Resulting patterns in gradient flow

- Add distributes gradients unchanged to all inputs
- Max routes gradient unchanged to largest input
- Multiply multiplies with switched inputs

Image from cs231n.github.ic

Derivatives in Graphs

Neural networks are always trained using backpropagation

- ► Can increase efficiency by many magnitudes
- ► Makes training huge (deep) neural networks feasible

In practice

- Graph composition not as fine (vectorization)
- $ightharpoonup
 abla H(m{ heta})$ computed in parallel for all s (data parallelism)

Bibliography

- [1] Brunel et al. Single neuron dynamics and computation. 2014.
- [2] Prince. Computer Vision Models. 2012.
- [3] Prince. Understanding Deep Learning. 2023.

