

BUNDESREPUBLIK DEUTSCHLAND

JCS58 U.S. PRO
09/1994 184
11/26/01

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen: 100 58 396.2
Anmeldetag: 24. November 2000
Anmelder/Inhaber: Siemens Aktiengesellschaft,
München/DE
Bezeichnung: Medizinische Systemarchitektur mit einem
integrierten RIS-Client auf dem Konsolen-
rechner einer Modalität
IPC: G 06 F, G 06 T

**Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ur-
sprünglichen Unterlagen dieser Patentanmeldung.**

München, den 12. April 2001
Deutsches Patent- und Markenamt
Der Präsident
Im Auftrag

Agurks

Beschreibung

Medizinische Systemarchitektur mit einem integrierten RIS-Client auf dem Konsolenrechner einer Modalität

5 Die Erfindung betrifft eine medizinische Systemarchitektur mit einer Modalität zur Erfassung von Untersuchungs-Bildern, mit einer der jeweiligen Modalität zugeordneten Vorrichtung zur Verarbeitung der Untersuchungs-Bilder, mit einer Vorrichtung zur Übertragung von Daten und der Untersuchungs-Bilder und mit einer Vorrichtung zur Speicherung der Daten und Untersuchungs-Bilder.

Aus dem Buch "Bildgebende Systeme für die medizinische Diagnostik", herausgegeben von H. Morneburg, 3. Auflage, 1995, Seiten 684ff sind medizinische Systemarchitekturen, sogenannte PACS (Picture Archival and Communication Systeme), bekannt, bei denen zum Abruf von Patientendaten und durch Modalitäten erzeugte Bilder Bildbetrachtungs- und Bildbearbeitungsplätze, sogenannte Workstations, über ein Bildkommunikationsnetz miteinander verbunden sind.

Die Client-Software eines Radiologie Informationssystems (RIS) ist das Bedien-Interface für Medizinisch-Technische Radiologieassistenten (MTRA) und Ärzte in der Radiologie, um beispielsweise Patienten aufzunehmen, die Untersuchungen zu planen und zu terminieren, die Befunde zu verwalten und Abrechnungen einzuleiten. Je nach Einbettung in das übergeordnete Krankenhausinformationssystem (KIS) können manche dieser Vorgänge bereits dort erfolgen wie beispielsweise die Patientenaufnahme, Leistungsanforderung und Abrechnung, wobei das RIS die an diese Vorgänge gekoppelten Daten über eine Netzwerkschnittstelle nur noch übernimmt.

35 Zusätzlich zu diesen "Verwaltungstätigkeiten" agiert das RIS oft noch als Workflow-Treiber in der Radiologie, um beispielsweise Anforderungsdaten in Form eines DICOM-Worklist-

Eintrags zu einer Modalität wie CT-, MR- oder Röntgengerät zu schicken, an der die Untersuchung stattfinden soll. Bei den heutigen Systemen müssen zur notwendigen Übernahme der Untersuchungsdaten, beispielsweise Anzahl der Bilder, Serien und Strahlenschutzdaten wie Röhrenspannung (kV), mAs-Produkt (mAs), Zeit (s), Energiedosis (Gy), etc., von der Modalität in das RIS zur Dokumentation und Abrechnung diese Daten manuell von einer Arbeitskraft abgelesen und in das RIS übertragen werden, wodurch sich ein erheblicher Aufwand und zusätzliche Fehlerquellen ergeben.

Wird zusätzlich eine PACS-Lösung benutzt, dann stellt das RIS weitere Workflow-Treiber-Funktionen bereit, beispielsweise um Altbilder und -befunde eines Patienten automatisch aus dem Archiv auf eine Befundungsworkstation zu laden, das sogenannte Pre-Fetching, oder nach dem sogenannten Auto-Routing ausgesuchte Bilder und Befunde an die anfordernden klinischen Abteilungen automatisch zurückzuschicken.

Die Bedienung des RIS erfolgt dabei über spezielle Client-Terminals, früher einfache ASCII-Terminals, heute in der Regel handelsübliche PCs. Das heißt insbesondere, dass sich neben jedem Konsolenrechner einer Modalität und neben jeder PACS Befundungsworkstation üblicherweise ein extra Personal Computer (PC) mit eigener Tastatur als RIS-Client befindet. Der Bediener, beispielsweise MTRA oder Arzt, muss dabei permanent zwischen den verschiedenen Rechnern und Tastaturen hin- und her wechseln. Oft muss der Bediener auch doppelte Eingaben derselben Daten vornehmen, nämlich an den Konsolenrechnern der Modalität wie auch an den Terminals des RIS-Clients. Dies gilt besonders für alle Daten, die nicht standardisiert über die DICOM-Worklist ausgetauscht werden können, beispielsweise Mengenangaben von Verbrauchsmitteln oder spezielle Arbeitsschritte, die später in der Abrechnung relevant sind.

Bisher konnte durch mehrere verteilte Rechner, beispielsweise die Konsolenrechner der Modalität und daneben aufgestellten PCs mit dem RIS-Client, zwar die radiologische Leistung erbracht werden, aber die Bedienung wies nur einen geringen

5 Bedienungskomfort für MTRAs und Ärzte im Hinblick auf die Möglichkeiten der Steuerung und Optimierung der Abteilungsressourcen (Utilization Management) und auf den möglichen Automatisierungsgrad der Informationsflüsse.

- 10 Die Erfindung geht von der Aufgabe aus, die angesprochenen Schwächen des heute üblichen Konzepts von speziellen RIS-Clients zu beseitigen, durch die das Bedienpersonal zwischen "Client-Terminal" und Konsolenrechnern der Modalitäten wechseln muss, den Bedienkomfort zu erhöhen, die Steuerung und
- 15 Optimierung der Abteilungsressourcen (Utilization Management) zu ermöglichen und die erforderlichen Informationsflüsse zu automatisieren.

- 20 Die Aufgabe wird erfindungsgemäß dadurch gelöst, dass die Vorrichtungen zur Verarbeitung der Untersuchungs-Bilder als RIS-Client ausgebildet und über einen Netzwerkanschluss der Vorrichtungen mit einem RIS-Server verbunden sind.

25 Durch die Realisierung des RIS-Clients auf beliebigen Konsolenrechnern, beispielsweise als RIS-Fenster, kann die RIS-Funktion von derselben Tastatur ohne "Ortswechsel" durch so genannte Desktop Integration bedient werden. Zusätzlich können nützliche neue Applikationen auf den Konsolenrechnern der Modalitäten verfügbar gemacht werden, insbesondere in Richtung Utilization Management, also die bessere Planung, Überwachung und Optimierung der Auslastung der Modalitäten und aller beteiligten Ressourcen wie Personal, Verbrauchsmittel, Zeit und sonstige Kostenfaktoren. Ein weiterer Vorteil ist die Verfügbarmachung der Funktionen des RIS auf den Modalitäten, was zur verbesserten Automatisierung des Informationsflusses und damit zur Beschleunigung der Prozessabläufe in der diagnostischen Radiologie führen wird. Außerdem kann eine

30

35

notwendige automatische Übernahme der Untersuchungsdaten, beispielsweise Anzahl der Studien, Bilder, Serien, Art der Sequenzen und Strahlenschutzdaten wie Röhrenspannung (kV), mAs-Produkt (mAs), Zeit (s), Energiedosis (Gy), etc., von der 5 Modalität in das RIS zur Dokumentation und Abrechnung erfolgen. Aus dem Untersuchungsprotokoll kann auch eine Vorgabe bezüglich des verwendeten Verbrauchsmaterials vorgegeben werden, welche nur bestätigt werden muss und bei Bedarf korrigierbar ist.

10

Durch den integrierten RIS-Client auf einem Konsolenrechner einer Modalität vereinfacht sich somit die Bedienung, verbessern sich die Workflow-Eigenschaften und erweitern sich die Utilization Management Funktionalitäten.

15

Die beschriebenen Probleme lassen sich besonders einfach dadurch lösen, dass die Vorrichtungen zur Verarbeitung der Untersuchungs-Bilder eine RIS-Client-Software aufweisen, wobei die RIS-Client-Software in die Software und gleichzeitig in 20 die Benutzeroberfläche der Vorrichtungen durch sogenannte Desktop Integration von radiologischen Modalitäten integriert sein kann.

25

Besonders günstig ist die Integration der RIS-Client-Software in eine Plattform-Software, da dann die Möglichkeiten der RIS-Client-Software für alle Modalitäten, die diese Plattform-Software nutzen, auf einfache Weise bereitgestellt werden können.

30

Bei Vorrichtungen zur Verarbeitung der Untersuchungs-Bilder mit Monitoren hat es sich als zweckmäßig erwiesen, wenn auf der Benutzeroberfläche neben den Untersuchungs-Bildern im Bildbearbeitungsfenster ein Fenster mit dem RIS-Client auf den jeweiligen Monitoren einblendbar ist.

35

In vorteilhafter Weise können die Vorrichtungen derart ausgebildet sein, dass auf der Benutzeroberfläche ein Icon ange-

ordnet ist, durch das sich das Fenster mit dem RIS-Client öffnen lässt.

Der RIS-Client wird auf einfache Weise und schnell auf der Benutzeroberfläche wiedergegeben, wenn die Vorrichtungen derart ausgebildet sind, dass auf der Benutzeroberfläche das Fenster mit dem RIS-Client als eigene Task-Card realisiert ist, so dass der Benutzer lediglich auf den RIS-Karteikartenreiter am rechten Bildschirmrand klicken muss.

Der Gebrauchswert der erfindungsgemäßen Vorrichtungen lässt sich erhöhen, wenn der Workflow von dem RIS-Client zur automatischen Informationsübermittlung gesteuert wird.

Analysen über die Häufigkeit, bei welchen klinischen Fragestellungen welche Effekte auf die Diagnosegüte oder die daraus resultierende Therapieentscheidung durch die Untersuchung verursacht wurden, können erreicht werden, wenn der RIS-Client auf dem Konsolenrechner einer Modalität Daten zu Outcome-Analysen liefert.

Eine bessere Planung, Überwachung und Optimierung der Auslastung der Modalitäten und aller beteiligten Ressourcen lässt sich erreichen, wenn der RIS- Client ein Statistik-Modul für Auswertungen von gesammelten Daten aufweist.

Die Erfindung ist nachfolgend anhand von in der Zeichnung dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:

Figur 1 ein Beispiel einer Systemarchitektur eines Krankenhausnetzes,

Figur 2 eine schematische Darstellung eines Monitors der Systemarchitektur mit einer erfindungsgemäßen Benutzeroberfläche, beispielsweise eines CT mit integriertem RIS-Client,

Figur 3 eine weitere Ausführung einer erfindungsgemäßen Benutzeroberfläche, und

5 Figur 4 ein Workflow Szenario einer erfindungsgemäßen Vorrichtung.

In der Figur 1 ist beispielhaft die Systemarchitektur eines Krankenhausnetzes dargestellt. Zur Erfassung medizinischer Bilder dienen die Modalitäten 1 bis 4, die als bilderzeugende Systeme beispielsweise eine CT-Einheit 1 für Computertomographie, eine MR-Einheit 2 für Magnetische Resonanz, eine DSA-Einheit 3 für digitale Subtraktionsangiographie und eine Röntgeneinheit 4 für die digitale Radiographie 4 aufweisen kann. An diese Modalitäten 1 bis 4 sind Bedienerkonsolen 5 bis 8 der Modalitäten oder Workstations angeschlossen, mit denen die erfassten medizinischen Bilder verarbeitet und lokal abgespeichert werden können. Auch lassen sich zu den Bildern gehörende Patientendaten eingeben.

20 Die Bedienerkonsolen 5 bis 8 sind mit einem Kommunikationsnetz 9 als LAN/WAN Backbone zur Verteilung der erzeugten Bilder und Kommunikation verbunden. So können beispielsweise die in den Modalitäten 1 bis 4 erzeugten Bilder und die in den Bedienerkonsolen 5 bis 8 weiter verarbeiteten Bilder in zentralen Bildspeicher- und Bildarchivierungssystemen 10 abgespeichert oder an andere Workstations weitergeleitet werden.

25 An dem Kommunikationsnetz 9 sind weitere Viewing-Workstations 11 als Befundungskonsolen angeschlossen, die lokale Bildspeicher aufweisen. Eine derartige Viewing-Workstation 11 ist beispielsweise ein sehr schneller Kleincomputer auf der Basis eines oder mehrerer schneller Prozessoren. In den Viewing-Workstation 11 können die erfassten und im Bildarchivierungssystem 10 abgelegten Bilder nachträglich zur Befundung abgerufen und in dem lokalen Bildspeicher abgelegt werden, von

dem sie unmittelbar der an der Viewing-Workstation 11 arbeitenden Befundungsperson zur Verfügung stehen können.

5 Weiterhin sind an dem Kommunikationsnetz 9 Server 12, beispielsweise Patientendaten-Server (PDS), Fileserver, Programm-Server und/oder EPR-Server angeschlossen.

10 Der Bild- und Datenaustausch über das Kommunikationsnetz 9 erfolgt dabei nach dem DICOM-Standard, einem Industriestandard zur Übertragung von Bildern und weiteren medizinischen Informationen zwischen Computern, damit eine digitale Kommunikation zwischen Diagnose- und Therapiegeräten unterschiedlicher Hersteller möglich ist. An dem Kommunikationsnetz 9 kann ein Netzwerk-Interface 13 angeschlossen sein, über das 15 das interne Kommunikationsnetz 9 mit einem globalen Datennetz, beispielsweise dem World Wide Web verbunden ist, so dass die standardisierten Daten mit unterschiedlichen Netzwerken weltweit ausgetauscht werden können.

20 Erfindungsgemäß ist an dem Kommunikationsnetz 9 ein RIS-Server 14 angeschlossen, mit dem die Bedienerkonsolen 5 bis 8 mittels des Kommunikationsnetzes 9 über TCP/IP-Protokolle kommunizieren.

25 In der Figur 2 ist ein Monitor 15 eines Konsolen- oder Zweitkonsolenrechners, beispielsweise der Bedienerkonsole 5 der CT-Einheit 1, dargestellt. Über einen Netzwerkanschlusses 16 der Bedienerkonsole 5 ist der RIS-Client mit dem RIS-Server 14 verbunden, kann aber auch über TCP/IP-Protokoll mit anderen DICOM und/oder HL7 standardisierten RIS, KIS und PACS-Servern 12 über das interne Kommunikationsnetz 9 kommunizieren, beispielsweise einem KIS-Server für das Krankenhausinformationssystem, einem EPR-Server, oder verschiedenen PACS-Servern wie Befundungskonsolen, Bildarchiv, Web-Bildverteilungsserver, usw. Dabei benutzt der RIS-Client Standard-Anwendungsprotokolle wie DICOM, HL7, aber auch http, um Internet-/Intranet-Server zu erreichen.

Auf der Benutzeroberfläche 17 des Monitor 15 ist ein Bildbearbeitungsfenster 18, beispielsweise die "Examination Task-Card", mit mehreren nebeneinanderliegenden CT-Aufnahmen wiedergegeben, neben denen in bekannter Weise Icons 19 zum Auslösen von Befehlen angeordnet sind.

Derartige Task-Cards sind aus der WO 00/31673 bekannt, durch die in einfacher und schneller Weise Benutzeraufträge oder Tasks, die als eine Aktivität eines Workflows zu betrachten sind und insbesondere bei der Bildnachbearbeitung und Befundung bei allen bildgebenden Verfahren der Medizintechnik in vorteilhafter Weise einsetzbar sind, ausgewählt werden können, wobei mehrere Tasks oder Aktivitäten, parallel verarbeitet und beliebig aufgerufen werden können. Dabei ist die Benutzeroberfläche in Bereiche unterteilt, wobei in einem Steuerbereich Einblendungen mit Informationen des Benutzerauftrages erfolgen, am Rande der Benutzeroberfläche Felder in der Art von Kartenreitern 23 angeordnet sind, denen jeweils ein anderer Benutzerauftrag zugeordnet ist, und der derzeit aufgerufene, aktuelle, sichtbare Benutzerauftrag auf dem Kartenreiter 23 erkennbar markiert ist. Die am Rande angeordneten Kartenreiter 23 nach diesem Task-Card-Konzept sorgen für eine klare Einteilung. Damit wird ein medizinischer Workflow realisiert.

Sollen nun Eingaben von der CT-Bedienerkonsole 5 als RIS-Client in den RIS-Server 14 gemacht oder Daten aus dem RIS-Server 14 in den RIS-Client, die Bedienerkonsole 5 der CT-Einheit 1, übertragen werden, so wird durch Klicken mit der Maus auf ein RIS-Icon 20 ein RIS-Client-Fenster 21 auf dem Monitor 15 geöffnet, beispielsweise die Bildschirmmaske für Patientenregistrierung. Alle RIS-Eingaben von MTRA oder Arzt erfolgen nun über die Tastatur des Konsolenrechners, ohne dass der Bediener zu einem extra RIS-Client-Terminal gehen muss. Auch kann er problemlos zwischen dem Bildbearbeitungsfenster 18 und dem RIS-Client-Fenster 21 wechseln.

In Figur 3 ist eine alternative Lösung der Desktop-Integration dargestellt, bei der der RIS-Client als eigene Task-Card 22 realisiert ist. Hier erscheint die Benutzeroberfläche des RIS-Client, wenn der Benutzer auf den RIS-Karteikartenreiter 24 am rechten Bildschirmrand klickt, so dass sich wieder das aus Figur 2 bekannte RIS-Client-Fenster 21 für Patientenregistrierung als Task-Card 22 öffnet. Die Arbeit mit dem RIS-Client erfolgt danach genauso wie im Fall der Lösung in Figur 2.

In der Figur 4 ist ein mögliches Workflow Szenario einer erfundungsgemäßen Vorrichtung wiedergegeben. Sie beschreibt den klinischen Arbeitsfluss mit den verschiedenen Arbeitschritten und den Einsatz der Softwarepakete der verschiedenen Systeme, wie beispielsweise das RIS oder die Modalität. Auf der linken Seite ist die verwendete Applikationssoftware, das jeweilige Softwarepaket/-funktion der verschiedenen Systeme in der Reihenfolge des klinischen Arbeitsflusses, und auf der rechten Seite der Datenfluss dargestellt. Der Datenfluss ist eine Auflistung der Daten, die während der verschiedenen Arbeitsschritte von den Softwarepaketen eingesetzt werden.

Zuerst wird die jeweilige Applikationssoftware der verschiedenen Systeme in der Reihenfolge des klinischen Arbeitsflusses beschrieben (linke Spalte):

- a) Durch das RIS erfolgen zuerst die Registrierung sowie automatische Übernahme der Daten in die DICOM Worklist.
- b) In der Modalität werden nach Empfang der DICOM Worklist das Untersuchungsprogramm geladen und die Untersuchung gestartet.
- c) Es erfolgt die Untersuchung durch die Modalität.

d) Nach dem Untersuchungsende erfolgen über DICOM die Benachrichtigung des RIS und durch das RIS die Bestätigung und Dokumentation der Untersuchung.

5 e) Als nächstes werden die Daten zur Abrechnung an das KIS weitergeleitet.

f) Die Untersuchungsdaten gehen zur weiteren Befundung beispielsweise an eine Workstation.

10

Jetzt wird der von den Softwarepaketen eingesetzte Datenfluss der verschiedenen Arbeitsschritte in der Reihenfolge des klinischen Arbeitsflusses beschrieben (rechte Spalte):

15 a) Die Patientenstammdaten und Untersuchungsanforderung werden erfasst oder aufgerufen.

b) Die Untersuchungsangaben werden eingegeben.

20 c) Während der Untersuchung werden die Aufnahmedaten und das Verbrauchsmaterials erfasst, beispielsweise Studien-, Serien- und Bildanzahl, Art der Sequenzen, Strahlenschutzdaten (kV, mAs, sec., Gy).

25 d) Die Daten werden vom RIS übernommen.

Die Vereinfachung der Bedienung auf einem einzigen Rechner mit einer einzigen Tastatur ist der unmittelbar sichtbare und sofort bereitstellbare Nutzen für MTRAs und Ärzte, der aus 30 der Desktop-Integration des RIS-Clients auf dem Konsolenrechner einer Modalität folgt.

Ein weiterer Vorteil für die Effizienz der Arbeit in der diagnostischen Radiologie ist die Möglichkeit von Workflow-35 Steuerungen aus dem RIS auf den Konsolen der Modalitäten, wie beispielsweise die "prefetching" und "autorouting" Funktionen zur automatischen Informationsübermittlung. Heute kann auf

einer Modalität nur genau ein Zielknoten für die Weiterleitung einer Patientenbildstudie vordefiniert werden, oder es muss jedes Mal "von Hand" ein neuer Zielknoten eingegeben werden; dies lässt sich über den RIS-Client dynamisieren,
5 also automatisch die Weiterleitung der Studien ermöglichen, wobei sich das Ziel beispielsweise aus der Auswertung der Parameter für untersuchtes Organ, anfordernde Stelle, Information über Vorbefunde, usw. ergibt.

10 Zusätzlicher Nutzen aus der Integration des RIS-Clients auf dem Konsolenrechner einer Modalität kommt zum Tragen, wenn die RIS-Schnittstelle zur besseren Planung, Überwachung und Optimierung der Auslastung der Modalitäten und aller beteiligten Ressourcen wie Personal, Verbrauchsmittel, Zeit und
15 sonstige Kostenfaktoren eingesetzt wird, also zum sogenannten "Utilization Management". Jedes RIS besitzt auch ein sogenanntes "Statistik-Modul", in dem der Arzt beliebige Auswertungen der gesammelten Daten vornehmen kann, beispielsweise Anzahl der verschiedenen Untersuchungen, durchschnittliche
20 Untersuchungsdauer, durchschnittlich verwendete Verbrauchsmaterialien wie Filme, Kontrastmittel, Nuklide und vieles mehr. Dieses Statistik-Modul ist der Ausgangspunkt für jedes Utilization Management und kann nun auch auf den Konsolenrechnern der Modalitäten eingesetzt werden, beispielsweise
25 zur Protokollierung und Auswertung, welche verschiedenen Sequenzen auf einem MR in einer bestimmten Periode angewendet wurden, oder welche Einstellungen wie Vorschub, Schichtdicke, etc., wie oft bei einem Mehrschicht-CT gewählt wurden, und welche Auswirkungen auf Untersuchungszeiten und damit -kosten
30 diese Einstellungen hatten.

Die Integration des RIS-Clients auf dem Konsolenrechner kann einer Modalität zusätzlich zum Ausgangspunkt für das Sammeln von Daten zu Outcome-Analysen werden. Solche Analysen können beispielsweise untersuchen, welche Sequenzen eines MR in welcher Häufigkeit bei welcher klinischen Fragestellung gewählt wurden, und welchen Effekt auf die Diagnosegüte oder die dar-

aus resultierende Therapieentscheidung die Sequenzen hatten.
Damit wird dann langfristig die Integration von radiologischen Modalitäten in ein umfassendes "Disease Management" Konzept ermöglicht.

Anhang

In der Beschreibung verwendete Abkürzungen:

- 5 DICOM Digital Imaging and Communications in Medicine
DICOM-Standard ist ein Industriestandard zur Übertragung von Bildern und weiteren medizinischen Informationen zwischen Computern zur Ermöglichung der digitalen Kommunikation zwischen Diagnose- und Therapiegeräten unterschiedlicher Hersteller.
- 10 EPR Electronic-Patient-Record (Elektronische Patienten Akte)
- 15 HL7 Health Level 7 - ein ANSI zugelassener Standard der Standards Developing Organizations (SDOs)
HL7 Spezifikation ist das Anwendungsprotokoll für elektronischen Datenaustausch in medizinischer Umgebung
- 20 KIS Krankenhaus Information System:
System für allgemeines Krankenhaus Management, mit den Hauptmerkmalen Patienten Management, Buchhaltung und Rechnungswesen, Personal Management usw.
- 25 MTRA Medizinisch-Technische(r) Radiologieassistent(in)
- PACS Picture Archival and Communication System
- 30 RIS Radiologie Informationssystem (Radiology Information System):
Information System zum Daten-Management innerhalb der Radiologie Abteilung, das beispielsweise den Patienten Zugang, die Kreation von Worklisten, das Berichtswesen, Report Management, die Buchhaltung und das Rechnungswesen usw. unterstützt.

Patentansprüche

1. Medizinische Systemarchitektur mit einer Modalität (1 bis 4) zur Erfassung von Untersuchungs-Bildern, mit einer der jeweiligen Modalität (1 bis 4) zugeordneten Vorrichtung (5 bis 8) zur Verarbeitung der Untersuchungs-Bilder, mit einer Vorrichtung (9) zur Übertragung von Daten und der Untersuchungs-Bilder und mit einer Vorrichtung (10) zur Speicherung der Daten und Untersuchungs-Bilder, wobei die Vorrichtungen (5 bis 8) zur Verarbeitung der Untersuchungs-Bilder als RIS-Client ausgebildet und über einen Netzwerkanschluss (16) der Vorrichtungen (5 bis 8) mit einem RIS-Server (14) verbunden sind.
- 15 2. Systemarchitektur nach Anspruch 1, dadurch gekennzeichnet, dass die Vorrichtungen (5 bis 8) zur Verarbeitung der Untersuchungs-Bilder eine RIS-Client-Software aufweisen.
- 20 3. Medizinische Systemarchitektur nach Anspruch 2, dadurch gekennzeichnet, dass die RIS-Client-Software in die Software der Vorrichtungen (5 bis 8) integriert ist.
- 25 4. Medizinische Systemarchitektur nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die RIS-Client-Software in die Benutzeroberfläche (17) der Vorrichtungen (5 bis 8) integriert ist.
- 30 5. Medizinische Systemarchitektur nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die RIS-Client-Software in eine Plattform-Software integriert ist.
- 35 6. Medizinische Systemarchitektur nach einem der Ansprüche 1 bis 5, bei der die Vorrichtungen (5 bis 8) Monitore (15) aufweisen, dadurch gekennzeichnet,

dass die Vorrichtungen (5 bis 8) zur Verarbeitung der Untersuchungs-Bilder derart ausgebildet sind, dass auf der Benutzeroberfläche (17) neben den Untersuchungs-Bildern im Bildbearbeitungsfenster (18) ein Fenster (20) mit dem RIS-Client
5 auf den jeweiligen Monitoren (15) einblendbar ist.

7. Medizinische Systemarchitektur nach Anspruch 6,
dadurch gekennzeichnet, dass die
Vorrichtungen (5 bis 8) derart ausgebildet sind, dass auf der
10 Benutzeroberfläche (17) ein Icon (19) angeordnet ist, durch
das sich das Fenster (20) mit dem RIS-Client öffnen lässt.

8. Medizinische Systemarchitektur nach einem der Ansprüche
1 bis 7, dadurch gekennzeichnet,
15 dass die Vorrichtungen (5 bis 8) derart ausgebildet sind,
dass auf der Benutzeroberfläche (17) das Fenster (20) mit dem
RIS-Client als eigene Task-Card (21) realisiert ist.

9. Medizinische Systemarchitektur nach einem der Ansprüche
20 1 bis 8, dadurch gekennzeichnet,
dass der Workflow von dem RIS-Client zur automatischen Infor-
mationsübermittlung gesteuert wird.

10. Medizinische Systemarchitektur nach einem der Ansprüche
25 1 bis 9, dadurch gekennzeichnet,
dass der RIS-Client auf dem Konsolenrechner einer Modalität
Daten zu Outcome-Analysen liefert.

11. Medizinische Systemarchitektur nach einem der Ansprüche
30 1 bis 10, dadurch gekennzeichnet,
dass der RIS-Client ein Statistik-Modul für Auswertungen von
gesammelten Daten aufweist.

Zusammenfassung

Medizinische Systemarchitektur mit einem integrierten RIS-Client auf dem Konsolenrechner einer Modalität

5 Die Erfindung betrifft eine medizinische Systemarchitektur mit einer Modalität (1 bis 4) zur Erfassung von Untersuchungs-Bildern, mit einer der jeweiligen Modalität (1 bis 4) zugeordneten Vorrichtung (5 bis 8) zur Verarbeitung der
10 Untersuchungs-Bilder, mit einer Vorrichtung (9) zur Übertragung von Daten und der Untersuchungs-Bilder und mit einer Vorrichtung (10) zur Speicherung der Daten und Untersuchungs-Bilder, wobei die Vorrichtungen (5 bis 8) zur Verarbeitung der Untersuchungs-Bilder als RIS-Client ausgebildet und über
15 einen Netzwerkanschluss (16) der Vorrichtungen (5 bis 8) mit einem RIS-Server (14) verbunden sind.

Figur 2

FIG 1

200021785

2/4

19

17

18

22

20

15

21

16

FIG 2

200021785

3/4

23

Examination Viewing RIS

Patient Edit Insert View Setup 2D Tools Options System Help

MagicSAS LV 0.18_BB - Patient

Datei Modul Patient Toolbars Benutzer Hilfe

sa

Patient

PatientenID	00331	Vorname	Tonia	Titel	
Familienname	Reinhaler	Geburtsdatum	1948 10 17	Geburtsname	
Geschlecht	<input checked="" type="checkbox"/> männlich <input type="checkbox"/> weiblich	Notruf		Abteilung	Station 1
Status	keine Anforderung	Haushnummer	222	Nationalität	
Strasse	SIEMENSSTRASSE	Ort			
Postleitzahl					
Telefonnummer	4711/25				

Aufenthalt

AufenthaltsNr	1997/00331	Aufnahmedatum	1997 06 22
Krankenkasse		Aufenthaltsart	
Tarif			
Aufenthaltsnummer	Aufnahmedatum		
1997/00331	1997.06.22		

Bereich

Checkup not completed. System should not be used for patient exam

17 21 24

FIG 3

FIG 4