Ciência da Computação GBC043 Sistemas de Banco de Dados

Modelos Conceituais de Dados

Profa. Maria Camila Nardini Barioni camila.barioni@ufu.br
Bloco B - sala 1B137

1° semestre de 2024

Motivação

- Objetivo da abordagem de BD:
 - oferecer abstração dos dados
 - separar aplicações dos usuários dos detalhes de hardware
 - ferramenta utilizada: modelo de dados
- Modelo de dados:
 - conjunto de ferramentas conceituais para a descrição dos dados e dos relacionamentos existentes entre os dados, da semântica e das restrições que atuam sobre estes

Categorias de Modelos de Dados

- Divisão baseada nos tipos de conceitos oferecidos para descrever a estrutura do BD
- Modelo de dados conceitual
 - modelo de alto nível
 - oferece conceitos próximos aos usuários
 - exemplo: modelo entidade-relacionamento

Categorias de Modelos de Dados

- Modelo de dados de implementação
 - oferece conceitos que
 - podem ser facilmente utilizados por usuários finais
 - não estão distantes da maneira na qual os dados estão organizados dentro do computador
 - é implementado de maneira direta
 - exemplo: modelo relacional
- Modelo de dados físico
 - modelo de baixo nível
 - descreve como os dados estão armazenados fisicamente no computador

Modelo de Dados e o Projeto de BD

Projeto de BD

- Análise de requisitos
 - entrevistas a usuários de BD
 - documentação do sistema
- Projeto conceitual
 - utiliza modelo de dados de alto nível
 - descreve de maneira concisa as necessidades dos usuários
 - inclui descrições detalhadas dos tipos de dados, relacionamentos e restrições
 - é fácil de ser entendido

Projeto de BD

- Mapeamento para modelo
 - tradução do esquema conceitual em uma linguagem de alto nível para uma linguagem de implementação
- Projeto físico
 - especificação de estruturas internas de armazenamento
 - especificação das formas de organização de arquivos para BD

Modelo Entidade-Relacionamento

(Parte 1)

- Profa. Maria Camila Nardini Barioni
- camila.barioni@ufu.br
- Bloco B sala 1B137

Modelo Entidade Relacionamento

Características

- foi desenvolvido para facilitar o projeto lógico do BD
- permite a representação da estrutura lógica global do BD
- é um dos modelos de dados com maior capacidade semântica
- representa um problema como um conjunto de entidades e relacionamentos entre estas entidades

Modelo Entidade Relacionamento

- O ME-R oferece 4 Construtores para a representação da semântica:
 - Tipo-Entidade
 - Atributos de Entidades
 - Tipo-Relacionamento
 - Atributos de Relacionamentos

Entidade

- Qualquer coisa do mundo real envolvida no problema
- Possui existência independente
- Pode ser um objeto com:
 - existência física: uma pessoa, um carro
 - existência conceitual: uma companhia, um emprego, um curso
- Descrita por propriedades particulares: atributos

Atributos

- Caracterizam uma entidade ou um relacionamento
 - exemplo: tipo-entidade cliente

atributos: nome_cliente

endereço_cliente

data_nascimento

- Domínio de um atributo
 - conjunto de valores possíveis para o atributo
 - pode assumir valor nulo (i.e., null)
 - exemplos: nome_cliente: varchar(50)

data_nascimento: date

Exemplos

<u>Tipo-entidade cliente</u> atributos: nome_cliente endereço_cliente data nascimento

■ entidade e₁:

- nome_cliente: Márcia
- endereço_cliente: Rua X, 1
- data_nascimento: 12/03/1970

entidade e₂:

- nome_cliente: Romualdo
- endereço_cliente: Rua Floriano Peixoto, 10
- data_nascimento: 10/10/1982

Classificação dos Atributos

- Simples versus Compostos
 - atributo simples ou atômico
 - não pode ser decomposto (dividido) em atributos mais básicos
 - exemplo: sexo
 - atributo composto
 - pode ser decomposto (dividido) em vários outros atributos mais básicos
 - possui como valor a concatenação dos valores dos atributos simples que o formam
 - exemplo: atributo endereço, composto de nome_rua, nro_casa, complemento, nome_bairro, ...

Atributos Simples x Compostos

- Atributos Compostos
 - podem formar hierarquias

Observação

 se nenhuma consulta será realizada sobre os atributos mais básicos de um atributo composto, então o atributo composto pode ser armazenado no BD como um atributo simples

Classificação dos Atributos

- Monovalorados versus Multivalorados
 - atributo monovalorado
 - possui um único valor para cada entidade
 - exemplo: idade
 - atributo multivalorado
 - possui múltiplos valores para cada entidade
 - exemplo: atributo telefone
 - valores: 222-0000, 222-0001, ...
 - pode possuir limites inferior/superior com relação à multiplicidade dos valores assumidos
 - exemplo: nro_min = 0, nro_max = 3

Classificação dos Atributos

- Armazenados versus Derivados
 - atributo armazenado
 - está realmente armazenado no BD
 - atributo derivado
 - pode ser determinado através de outros atributos ou através de entidades relacionadas
 - exemplos: idade = data_atual data_nascimento nro_empregados = soma das entidades empregado para um departamento
 - pode ou n\u00e3o ser armazenado no BD

Tipo-Entidade

- Conjunto de entidades do mesmo tipo
- Descrito por um nome e uma lista de atributos
- Entidades de um tipo-entidade
 - compartilham os mesmos atributos
 - possuem seus próprios valores para cada atributo

Representação

Restrição de Chave

- Chave primária
 - conjunto mínimo de atributos que identificam de maneira única uma entidade
 - escolhida pelo projetista do BD como o principal meio de identificação de um tipo-entidade

Exemplo:

Relacionamento e Tipo-relacionamento

- Relacionamento
 - associação entre entidades
- Tipo-relacionamento
 - conjunto de relacionamentos do mesmo tipo
- Exemplo: pessoa trabalha para empresa

Papéis nos Relacionamentos

- Cada Tipo-Entidade que participa de um Tipo-Relacionamento tem um PAPEL no relacionamento
- A indicação de cada papel
 - é opcional
 - deve ser feita sempre que possa existir ambigüidade na interpretação

Restrição de Cardinalidade Restrição Estrutural

- Determina o número de entidades às quais outras entidades podem ser associadas através de um relacionamento
- Cardinalidades

```
um-para-um (1:1)
```

- um-para-muitos (1:n)
- muitos-para-um (n : 1)
- muitos-para-muitos (m : n)

Restrição de Cardinalidade

Exercício

Diferencie semanticamente as duas modelagens representadas a seguir:

Atributo de Tipo-Relacionamento

Determinado pela combinação das entidades participantes em uma instância do relacionamento

Exercício

- Dados os tipos-entidade curso e disciplina
 - atributos de curso: código_curso, nome_curso
 - atributos de disciplina: código_disciplina, nome_disciplina, carga_horária
- Faça duas diferentes modelagens, de acordo com as especificações a seguir
 - uma disciplina é obrigatória ou optativa, independentemente do curso (modelagem 1)
 - uma disciplina pode ser obrigatória para um curso e optativa para outro curso (modelagem 2)

Exemplo – Hospital

- Um hospital é organizado em setores (ex.: maternidade, prontosocorro, cirurgia, etc), cada um com um nome único, uma sigla e um médico responsável por gerenciá-lo. Uma data determina quando o médico iniciou suas atividades de gerência no setor.
- Um setor do hospital é responsável por realizar vários procedimentos (ex. do setor de cirurgia: cirurgia vascular, radiocirurgia, etc), cada um com um código único, um nome e um custo total.
- Um médico do hospital pode trabalhar em vários setores, sendo determinada a especialidade em que ele atua em cada setor.
- Para cada médico são armazenadas informações como: nome, CPF, endereço, telefone(s) de contato, salário e CRM. As buscas pelos médicos são sempre realizadas por meio de seu CRM.
- Para a realização de cada procedimento são utilizados vários materiais, cada um com um código único, um nome e a nacionalidade. Cada material pode ser usado em quantidades variadas em diversos procedimentos.

Bibliografia

- Elmasri, Ramez; Navathe, Shamkant B. Sistemas de banco de dados. 4 ed. São Paulo: Addison Wesley, 2005, 724 p. Bibliografia: p. [690]-714.
- Heuser, Carlos Alberto. Projeto de banco de dados. 5 ed. Porto Alegre: Sagra Luzzatto, 2004, 236 p.
- Material Didático produzido pelos professores Cristina Dutra de Aguiar Ciferri e Caetano Traina Júnior