

Karma: Cost-effective Geo-replicated Cloud Storage with Dynamic Enforcement of Causal Consistency

Tariq Mahmood, Shankaranarayanan P. N., Sanjay Rao, T. N. Vijaykumar, and Mithuna Thottethodi School of Electrical and Computer Engineering, Purdue University

Modern Cloud Storage Systems Replication, asynchronous write propagation create ordering issues

- Span multiple geo-distributed DCs
 - Twitter, Facebook, Google, Amazon
 - Amazon has 8 worldwide DCs
- Replicate data for low latency
- Use asynchronous write propagation

Each ring contains full replica of dataset

Availability in wide-area rings guaranteed by causality-

DC level caching used for fast reads of remote objects

Have to handle failures, and partitions

Motivation

The Consistency Spectrum

- Weak "eventually consistent" systems Widely deployed, but ordering can be confusing
- Strong ordering of all reads and writes across all clients CAP Theorem ⇒ unavailable on partition

Linearizable Impossible **Causal consistency:** Partial order that preserves COPS/Eiger/Orbe/Karma Causal causality Not confusing for users Available under partition Dynamo/Cassandra **Eventual**

- Static binding: A user is allowed to access only one DC
- Full replication: Expensive, scalability issues
- Simple solutions do not work
- Spreading data across DCs ⇒ Availability issues
- Allowing users to switch DCs ⇒ Consistency violation

Karma: First causally consistent geo-replicated cloud storage system with partial replication while preserving consistency and availability

Karma's Key Ideas

Dynamic Ring Binding Partial Replication Ring-1 Ring-2 Write (X)In-flight (Violation possible) Propagation complete Stable (No violations possible)

- Karma's novel mechanism: Dynamic Ring Restrictions (DRR)
- If a client reads an in-flight object from Ring-1 Temporarily restrict client to read all objects from Ring-1 Client can access any ring once in-flight objects are stable

Caching/Write Buffers

Partial replication ⇒ Remote objects, slow

— DC-level storage caches enable fast reads:

- Problem: Normal cache operation violates causality
- Solution: Stable value caching
- Persistent thread-private write buffers enable fast writes
 - All writes are local

Reads check write-buffer to avoid violations

Performance Evaluation (R/W: 95/5)

Experimental Setup

64-node testbed on PRObE cluster

preserving dynamic ring binding

8 data centers, 8 nodes each

Decouple rings and DCs

Rings span multiple DCs

Amazon AWS emulation using DummyNet

Four Schemes:

32-43% savings for **Cost Savings** read-heavy workloads cost 31% 100 $--\alpha = 0.1$ $--\alpha = 0.2$ storage 80 savings 0 4 0 compute Workload Workload % Fraction of puts agnostic aware

Performance with Faults

- Induce congestion in Europe DC
- All traffic (in and out) is affected
- Table below shows avg. performance hit

		Karma-NC	COPS-PR
_	Throughput degradation	≈ 20%	≈ 50%
	Latency increase	≈ 20%	≈ 85%
,			

120s

Congestion window

Fault Tolerance Analysis

Failure	Availability	Contrast to Full Repl. COPS-PR		Protection Mechanism
Backend Server	✓		=	Chain replication
Cache Server		Not applicable		Stable state
Frontend Server		=	=	Chain replication
Rack			=	Chain replication
Single AZ			1	Dynamic binding
Partition			1	Dynamic binding

Summary

- First causally-consistent cloud storage system with:
 - Partial replication
 - ⇒ Practical, cost effective
 - Dynamic ring switching ⇒ Stronger availability guarantees
- 43% throughput improvement iso-cost
- Significant reduction in operational and capital expenditures