

Student Number:

St Catherine's School

Waverley

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

August 2012

Mathematics Extension 2

General Instructions

- Reading Time 5 minutes
- Working Time 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Complete each section in a separate booklet

- All questions are of equal value
- Total Marks 100
- Attempt Questions 1 16

STANDARD INTEGRALS

St Catherine's School Waverley

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \quad if \quad n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \sin^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 + a^2}), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

NOTE: $\ln x = \log_e x$, x > 0

SECTION 1

Attempt Questions 1-10 All questions are of equal value

Answer each question on the Multiple Choice Answer Sheet supplied

Question 1:

1 The diagram shows the graph of the function y = f(x).

Which of the following is the graph of $y = \sqrt{f(x)}$?

(A)

(C)

(D)

St Catherine's School Waverley

Question 2:

What is the value of $\arg \overline{z}$ given the complex number $z = 1 - i\sqrt{3}$?

Question 3:

It is given that 3+i is a root of $P(z) = z^3 + az^2 + bz + 10$ where a and b are real numbers. Which expression factorises P(z) over the real numbers?

(A)
$$(z+1)(z^2-6z+10)$$
 (B) $(z-1)(z^2-6z-10)$

(B)
$$(z-1)(z^2-6z-10)$$

(C)
$$(z+1)(z^2+6z+10)$$

(C)
$$(z+1)(z^2+6z+10)$$
 (D) $(z-1)(z^2+6z-10)$

Question 4:

For the ellipse with the equation $\frac{x^2}{4} + \frac{y^2}{3} = 1$. What is the eccentricity?

(A)
$$\frac{1}{4}$$

(B)
$$\frac{1}{2}$$

(C)
$$\frac{3}{4}$$

(D)
$$\frac{9}{16}$$

Question 5:

Consider the hyperbola with the equation $\frac{x^2}{144} - \frac{y^2}{25} = 1$.

What are the equations of the directrices?

(A)
$$x = \pm \frac{14^{4}}{13}$$

(B)
$$x = \pm \frac{13}{25}$$

(C)
$$x = \pm \frac{25}{13}$$

(C)
$$x = \pm \frac{25}{13}$$
 (D) $x = \pm \frac{13}{144}$

Question 6:

Consider the Argand diagram below.

Which inequality could define the shaded area?

(A)
$$|z| \le 1$$
 and $|z - (1-i)| \ge 1$

(B)
$$|z| \le 1$$
 and $|z - (1+i)| \ge 1$

(C)
$$|z| \le 1$$
 and $|z - (1-i)| \le 1$

(D)
$$|z| \le 1$$
 and $|z - (1+i)| \le 1$

Question 7:

Which of the following is an expression for $\int_{-\infty}^{\infty} \frac{dx}{\sqrt{16-x^2}} dx$?

(A)
$$-2\sqrt{16-x^2}+c$$

(A)
$$-2\sqrt{16-x^2}+c$$
 (B) $-\sqrt{16-x^2}+c$

(C)
$$\frac{1}{2}\sqrt{16-x^2}+c$$

(C)
$$\frac{1}{2}\sqrt{16-x^2}+c$$
 (D) $-\frac{1}{2}\sqrt{16-x^2}+c$

Question 8:

The polynomial equation $x^3 - 5x^2 + 6 = 0$ has roots α , β and γ .

Which of the following polynomial equations have roots $\alpha - 1$, $\beta - 1$ and $\gamma - 1$?

(A)
$$x^3 - 8x^2 - 7x = 0$$

(B)
$$x^3 - 8x^2 + 13x = 0$$

(C)
$$x^3 - 3x^2 - 7x + 2 = 0$$

(C)
$$x^3 - 3x^2 - 7x + 2 = 0$$
 (D) $x^3 - 2x^2 - 7x + 2 = 0$

Question 9:

St Catherine's School Waverley

The region bounded by $y \le 4x^2 - x^4$ and $0 \le x \le 2$ is rotated about the y axis to form a solid.

What is the volume of this solid using the method of cylindrical shells

(A)
$$\frac{16\pi}{3}$$
 units³.

(B)
$$\frac{8\pi}{3}$$
 units³

(C)
$$\frac{32\pi}{3}$$
 units³

(C)
$$\frac{32\pi}{3}$$
 units³ (D) $\frac{20\pi}{3}$ units³

Question 10:

Which of the following is an expression for $\int \frac{1}{\sqrt{7-6x-x^2}} dx$?

(A)
$$\sin^{-1}\left(\frac{x-3}{2}\right) + c$$

(B)
$$\sin^{-1}\left(\frac{x+3}{2}\right) + \epsilon$$

(C)
$$\sin^{-1}\left(\frac{x-3}{4}\right) + c$$

(D)
$$\sin^{-1}\left(\frac{x+3}{4}\right) + c$$

End of Section 1

Marks

1

Marks

Question 11 (15 Marks) Start a new booklet

(a) Using
$$t = \tan \frac{x}{2}$$
, evaluate $\int_0^{\frac{\pi}{2}} \frac{dx}{1 + \sin x}$.

2

(b) Use the substitution
$$u = e^x$$
, or otherwise, find $\int \frac{e^x dx}{\sqrt{1 - e^{2x}}}$.

2

(e) Find
$$\int \frac{4x^3 - 2x^2 + 1}{2x - 1} dx$$
.

3

3

$$\int_0^{\frac{\pi}{3}} x \sec^2 x \ dx = \frac{\pi \sqrt{3}}{3} - \ln 2$$

- Let $I_n = \int_0^{\pi} x^n \sin x \, dx$, where $n = 0, 1, 2, \dots$
 - (i) Use integration by parts to show that $I_n = \pi^n n(n-1)I_{n-2}$ for n = 2, 3, 4, ...
 - (ii) Hence, evaluate $\int_0^{\pi} x^4 \sin x \, dx$ 2

Question 12 (15 Marks) Start a new booklet

(a) If A = 3 + 4i and B = 5 - 13i write the following in the form x + iy

(ii)
$$\frac{A}{B}$$

(iii)
$$\sqrt{A}$$

Q(w) P(z)

In the Argand diagram, OPQ is an equilateral triangle. P represents the complex number z and Q represents the complex number w.

(i) Explain why
$$w = zcis \frac{\pi}{3}$$

Show that
$$w^3 + z^3 = 0$$

The complex number Z moves such that $\operatorname{Im}\left(\frac{1}{\overline{Z}-i}\right)=1$.

Show that the locus of Z is a circle and find its centre and radius.

(d) On the Argand diagram, shade the region where both $|z-1-i| \le 2$ and $0 \le \arg z < \frac{\pi}{4}$

Marks

2

Question 13 (15 Marks) Start a new booklet

The diagram shows the graph of y = f(x). It has a horizontal asymptote at y = 1.

Draw separate one-third page sketches of the graphs of the following:

(i)
$$y = |f(x)|$$

$$y = |f(x)|$$
 2

(ii)
$$y = \frac{1}{f(x)}$$

(iii)

(iv)
$$y = \ln(f(x))$$

 $y^2 = f(x)$

$$x^3 + y - 3xy = 3$$

at the point (1,2)

- The hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, a > b > 0, has eccentricity e
 - Show that the line through the focus S(ae,0) that is perpendicular to the asymptote $y = \frac{bx}{a}$ has an equation $ax + by - a^2e = 0$.

Question 14 (15 Marks) Start a new booklet

 $cp, \frac{c}{c}$ is a point on the hyperbola $xy = c^2$.

The tangent to the hyperbola at P intersects the x and y axes at A and Brespectively, and the normal at to the hyperbola at P intersects the second 'branch' of the hyperbola at Q.

Show that the equation of the normal at P is $py-c=p^3(x-cp)$

Show that the x coordinates of P and Q are the roots of the equation

and hence find the coordinates of Q

Given the distance $AB = 2c\sqrt{p^2 + \frac{1}{p^2}}$, show that the area of $\triangle ABQ = c^2 \left(p^2 + \frac{1}{p^2} \right)^2$

Given the fact that the sum of any two reciprocals is ≥ 2 , find the minimum area of $\triangle ABQ$

2

2

3

Marks

Question 14 (continued)

- The polynomial $P(x) = x^3 6x^2 + 9x + c$ has a double zero. Find the possible values of the real number c.

Given that $z = \cos\theta + i\sin\theta$ prove that:

3

Question 15 (15 Marks) Start a new booklet

The base of a certain solid is the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$

Every cross-section perpendicular to the x-axis is an equilateral triangle. The shaded cross-section shown with base PQ is a typical slice of the solid.

- (i) Show that the shaded cross-sectional area is given by $A = \sqrt{3}y^2$
- (ii) Find the cross sectional area as a function of x.
- Hence find the volume of the solid.

(b)

(a)

A solid is formed by rotating the region bounded by $y = 2x - x^2$ and the x-axis about the line x = -1

(i) When the segment PQ of the region is rotated about x = -1, it will form an annulus.

Question 15 continues on page 13

Marks

Marks

Question 15 (continued)

A large sculpture has a triangular base and top as shown. The height of the sculpture is 10 metres. Each cross section parallel to the base is an isosceles trapezium, and all other dimensions are shown in the diagram above.

(i) Show, with working, that the cross-sectional area of the slice at h metres above the base, is given by

$$A = 8 - \frac{4h}{5} + \frac{h^2}{50}$$

(ii) Hence by considering the typical slice GHIJ of thickness δh , find the volume of the sculpture.

Question 16 (15 Marks) Start a new booklet

- (a) Show that the condition for the roots of the cubic $ax^3 + bx^2 + cx + d = 0$ to be in the ratio 1:2:3 is that bc = 11ad
- (b) The tangent at P on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ cuts the x-axis at (M) while the normal at P cuts the x-axis at (N) If O is the centre of the ellipse; Prove that OM. $ON = a^2e^2$
- (c) A stone is projected from a point O on a horizontal plane at an angle of elevation α and with initial velocity U metres per second. The stone reaches a point A in its trajectory, and at that instant it is moving in a direction perpendicular to the angle of projection with a speed V metres per second.

Air resistance is neglected throughout the motion and g is the acceleration due to gravity.

If t is the time in seconds at any instant, show that when the stone is at A:

- $V = U \cot \alpha$ 2
- $t = \frac{U}{g \sin \alpha}$ 2
- (d) A sequence $u_1, u_2, u_3,...$ is defined as follows; $u_1 = 1 , u_2 = -12 \text{ and } u_n = u_{n-1} + 6u_{n-2} \text{ for } n \ge 3.$

Prove by mathematical induction that

 $u_n = -6 \left[(-2)^{n-2} + 3^{n-2} \right]$ for all positive integers n.

Page no. of

Course:

Marking Scheme for Task:

Page no. of

Academic Year: 2011-12

Marking Scheme for Task;

$t = \tan \frac{x}{2} \text{if } \sin x = \frac{2t}{1+t^2} \cos x = \frac{1-t^2}{1+t^2}$ $dt = \frac{1}{t} \sec^2 \frac{x}{2}$ $= \frac{1}{2}(1+t^2) \qquad \int_0^{T_2} \frac{dx}{1+s_{100}}$ $dx = 2dt$ $1+t^2 = \int_0^t \frac{2dt}{1+2t^2}(4+t^2)$ $x = t = 1$ $= 2\int_0^t \frac{dt}{1+t^2}$	omment
$dt = \frac{1}{2} \operatorname{Sec}^{2} \frac{1}{2}$ $= \frac{1}{2} (1+t^{2}) \qquad \int_{0}^{\infty} \frac{dx}{1+s_{100}}$ $i dx = 2dt$ $1+t^{2} \qquad = \int_{0}^{1} \frac{2dt}{1+2t_{1}(4+t^{2})}$ $\chi = \pi t = 1$ $= 2 \int_{0}^{1} \frac{dt}{1+t+2t+t^{2}}$ $= 2 \int_{0}^{1} \frac{dt}{1+t} \int_{0}^{1} dt$ $= 2 \left[-\frac{1}{2} + 1 \right]$ $= 1$	
$= \frac{1}{2}(1+t^{2})$ $= \frac{1}{2}(1+t^{2})$ $\therefore dx = \frac{2}{2}dt$ $1 = \frac{2}{2}dt$ $2 = \frac{2}{2}dt$ $1 = \frac{2}{2}dt$ $2 = \frac{2}{2}dt$ $3 = \frac{2}{2}dt$ $4 = \frac{2}{2}dt$ $4 = \frac{2}{2}dt$ $4 = \frac{2}{2}dt$ $4 = \frac{2}{2}dt$	
$ \begin{aligned} \lambda &= 2dt \\ 1+t^2 &= \int_0^1 \frac{2dt}{1+2t} \\ \lambda &= 1 \end{aligned} $ $ \begin{aligned} \lambda &= 1 \\ 2 &= 1 \end{aligned} $ $ \begin{aligned} \lambda &= 1 \\ 2 &= 1 \end{aligned} $ $ \begin{aligned} \lambda &= 1 \\ 2 &= 1 \end{aligned} $ $ \begin{aligned} \lambda &= 1 \\ 2 &= 1 \end{aligned} $ $ \begin{aligned} \lambda &= 1 \\ 2 &= 1 \end{aligned} $ $ \begin{aligned} \lambda &= 1 \\ 2 &= 1 \end{aligned} $ $ \begin{aligned} \lambda &= 1 \\ 2 &= 1 \end{aligned} $ $ \begin{aligned} \lambda &= 1 \\ 2 &= 1 \end{aligned} $ $ \begin{aligned} \lambda &= 1 \end{aligned} $	
$X = 0 t = 0$ $X = T t = 1$ $= 2 \int_{0}^{1} \frac{dt}{1 + 2t + t^{2}}$ $= 2 \int_{0}^{1} \frac{dt}{(t + t)^{2}}$ $= 2 \int_{0}^{1} \frac{-1}{1 + t} \int_{0}^{1}$ $= 2 \left[-\frac{1}{2} + 1 \right]$	
$\mathcal{X} = \frac{1}{2} \ell = 1$ $= 2 \int_{0}^{1} \frac{dt}{1 + 2t + \ell^{2}}$ $= 2 \int_{0}^{1} \frac{dt}{(t + \ell)^{2}}$ $= 2 \int_{0}^{1} \frac{-1}{1 + t} \int_{0}^{1}$ $= 2 \int_{0}^{1} \frac{-1}{1 + t} \int_{0}^{1}$ $= 1$	
$= 2 \int_{0}^{1} \frac{dt}{(t+t)^{2}}$ $= 2 \left[-\frac{1}{2} + 1 \right]_{0}^{1}$ $= 1$	
$= 2 \left[\frac{-i}{i+t} \right]_{0}^{i}$ $= 2 \left[-\frac{i}{2} + 1 \right]$ $= 1$	
$= 2 \left[-\frac{1}{2} + 1 \right]$ $= 1$	
$= 1.$ $(e^{x}) = 1.$ $u = e^{x}$	
$u = e^{x}$	
$\int \frac{e^{x}}{\sqrt{1-e^{2x}}} dx = \int \frac{du}{\sqrt{1-u^{2}}} u = e^{x} dx$	
$= Sm^{-1}u + c$	
= Sin-lex +c	
$\int_{-2x^{2}-1}^{2x^{2}-2x^{2}+1} 4x^{3}-2x^{2}+1=(2x-1)(2x^{2})+1$	
$= \int \left[2x^2 + \frac{1}{2x-1} \right] dx$	
$=\frac{2t^3}{3}+\frac{1}{2}\ln 2x-1 +c$	

Q	Solutions	Marks	Comments
11 d)	$\int_{0}^{\infty} x \operatorname{dec} x dx \qquad \qquad u = x \qquad v = \tau \operatorname{dis} x$ $u' = 1 \qquad v' = \operatorname{Sec} x$	1	
	$= \left[x + \tan x \right]_0^{\frac{1}{3}} - \int_0^{\frac{1}{3}} + \tan x dx$	1	
	$= \frac{\sqrt{3}\pi}{3} + \int_{0}^{1} \log_{e} \cos x \int_{0}^{3} dx$ $= \frac{\sqrt{3}\pi}{3} + \ln \frac{1}{2} - 0$		
	$= \frac{\pi \sqrt{3}}{3} + \frac{1}{n} - \frac{1}{n} = \frac{\pi \sqrt{3}}{3} - \frac{1}{n} = \frac{\pi}{3}$	1	
11e	$I_n = \int_0^n x^n s_n x dx \qquad u = x^n v = -cosx$ $u = x^n v = -cosx$, 	
	$= \left[-x^n \cos x\right]_0^T + \int_0^T nx^{n-1} \cos x dx$		
	$= \pi^{n} + n \int_{0}^{\pi} x^{n-1} \cos x \cos u = x^{n-1} V = 0$ $u' = (n-1)\pi^{n-2} V' = 0$	mx osx 1	
	$= \pi^{n} + n \left[\left(\sum_{i=1}^{n-1} s_{i} n x \right)_{0}^{T} - \int_{0}^{T} (n-1) x^{n-2} s_{i} n x dx dx \right]$ $= \pi^{n} + n \left[\left(\sum_{i=1}^{n-1} s_{i} n x \right)_{0}^{T} - \left(\sum_{i=1}^{n-1} s_{i} n x \right)_{0}^{T} \right]$		
	$= \pi^{n} - n(n-1) I_{n-2}$	1.	

Page no. of

Course:

Marking Scheme for Task

Page no. of

Marking Scheme for Task: Ac		Academic Ye	ar: 2011-12
Q	Solutions	Marks	Comments
11e (11)	$I_{4} = \int_{0}^{\pi} \chi^{4} Sin \chi d\chi$ $= \pi^{4} - 4.3 I_{2}$		
	$= \pi^{4} - 12 \left[\pi^{2} - 2I_{0} \right]$ $= \pi^{4} - 12 \pi^{2} + 24I_{0}$	1	
	Now Io = So x sinx du		
	$= \int_{0}^{\pi} \sin x dx$ $= \left[-\cos x \right]_{0}^{\pi}$		
-	= 1 + 1 = 2		
	$\therefore I_{4} = \pi^{4} - 12\pi^{2} + 48$		
	i de la companya de La companya de la co		

Marking Scheme for Task:	cademic Ye	ar: 2011-12
Q Solutions	Marks	Comments
$ \begin{array}{lll} $	1	·
(ii) $\frac{A}{B} = \frac{3+4i}{5+13i} \times \frac{5+13i}{5+13i}$ $= \frac{15-52+59i}{25+169}$ $= -\frac{37}{194} + \frac{59i}{194}$		
(11) $\sqrt{A} = \sqrt{3+4\ell} = 2\ell + iy$ $2\ell^2 - y^2 = 3 - 0$ $2\ell + y^2 = 5 - 0$	2	
(1) w is the complex number 3 rotated through 60° (I) in an anticlockwise olirection, Also w and 3 have equal moduli	2	
(11) $w^3 + z^3 = (z \cos z)^3 + z^3$ = $z^3 \cos z + z^3$ = $z^3 \cos z + z^3$ = $z^3 + z^3$	2	
· · · · · · · · · · · · · · · · · · ·		

Page no. of

rage no. Of

Page no. of

Marking Scheme for Task:

Academic Year: 2011-12

Marking Scheme for Task:

Course:

· Q	Solutions	Marks	Comments
120	$Im\left(\frac{1}{\bar{x}-i}\right)=1$ let $\bar{y}=x+iy$		
	$\frac{1}{\sqrt{3}-i} = \frac{1}{x-iy-i}$ $= \frac{1}{x-(y+i)i} \times \frac{x+(y+i)i}{x+(y+i)i}$		
	$= \frac{\chi + (y+i)^{\perp}}{\chi^{2} + (y+i)^{\perp}}$ $= \frac{\chi}{\chi^{2} + (y+i)^{\perp}} + \frac{(y+i)}{\chi^{2} + (y+i)^{2}}$	-	
	Now $I_m(\frac{1}{3-i}) = \frac{y+i}{n^2 + (y+i)^2} = 1$ $\therefore n^2 + (y+i)^2 = y+1$		
	$\chi^2 + y + 2y + i = y + i$	1	
-	$x^{2} + y^{2} + y = 0$ $x^{2} + y^{2} + y + \frac{1}{4} = \frac{1}{4}$ $x^{2} + (y + \frac{1}{2})^{2} = \frac{1}{4}$ ii Circle centre $(0, -\frac{1}{2})$ radius = $\frac{1}{2}$	1	
12d	In Re	1ea_ =2	

Q	Solutions	S	Marks	Comments
$3 = 1-t^2$	+ 2t i + 2t i + 2t i + tr + an = 1 + i Sin0 2030 + Sin0	Solution of the second		Comments
			Nic.	

Marking Scheme for Task:

Page no. of

Academic Year: 2011-12

Course:

Marking Scheme for Task:

Page no. of

Q`	Solutions Solutions	Marks	Comments
Q13	y= fw	2	
	(II)	2	
	(III)		
	$y^2=f(x)$	2	

Marking Scheme for Task:	Academic Year	
Q Solutions $ A = A = A + A $	Marks 2	Comments
$dy = 3x^{3} + y - 3xy = 3$ $3x^{2} + dy - 3y - 3x dy = 0$ $dy (1 - 3x) = 3y - 3x^{2}$ $dy = \frac{3y - 3x^{2}}{1 - 2x}$		
$at(1,2) dy = \frac{3}{-2}$	1	
$y-a = -\frac{3}{2}(x-1)$ 2y-4 = -3x + 3 3x + 2y - 7 = 0 is equal tangent.	1	

Marking Scheme for Task:

Page no. of

Academic Year: 2011-12

Course:

Marking Scheme for Task:

Page no. of

Q Solutions $3e \frac{\chi^2 + y^2}{a^2} = 1$ (1) $S(ae,0) y = \frac{L}{a}x$ $m_2 = -\frac{a}{L}(x-ae)$	Marks	Comments
(1) $S(ae,0) y = \frac{4}{a}x$: $m_2 = -\frac{1}{a}$	- <u>a</u>	
V	- <u>a</u>	
$y-o=-\frac{a}{6}(x-ae)$	1 1	
by = -an +a'e		
: ax+ by- a = 0		
(11) ax+ by -a'e =0 -0		
y = \frac{1}{2}		
Sub 2 in 1)		
$ax + \frac{b^2x}{a} - a^2e = 0$		
$a^2x + b^2x - a^3e = 0$		
$\chi(a^2+l^2)=a^3e$		
$x = \frac{a^3e}{a^2 + b^2}$	<u>— (3)</u>	
Now $b^2 = a^2(e^2 - i)$ $b^2 = a^2e^2 - a^2$		
$a^2+b^2=a^2e^2$		
$\therefore \text{ from } \textcircled{3} X = \frac{a^3 e}{a^3 e^3}$		
$x = \frac{a}{b}$	/^	
which is the	Le corresponding	
·	/	

Marking Scheme for Task:	Academic 1 C	11. 2011 12
Q Solutions	Marks	Comments
140)(11) Area AABQ = = = AB.PQ		
Now Pa = $\sqrt{(c\rho + c)^2 + (c + c\rho^3)^2}$		
$= \sqrt{c^2 \rho^2 + \frac{2\alpha^2}{\rho^2} + \frac{c^2}{\rho^2} + \frac{c^2}{\rho^2} + \frac{c^2}{\rho^2} + \frac{c^2\rho}{\rho^2}}$	6	
$= C\sqrt{\rho^6 + 3\rho^2 + \frac{3}{\rho^2} + \frac{1}{\rho^6}}$		
$= c\sqrt{(\rho^2 + \frac{1}{\rho r})^3}$		
i. Area DABQ = 1 x 20 / (p2+1) x c / (p3+1)	(1) (1)	
$=c^{\nu}\left(\rho^{\nu}+\frac{1}{\rho^{\nu}}\right)^{2}$		
(11) $\frac{a}{b} + \frac{b}{a} \ge 2$ for $a > 0$ by $(g \text{ wen})$		
pr+1 ≥ 2 ?: Minimum Area = 4c2)	
146) Au = $x^3 - 6x^2 + 9x + c$ double zero.		
$p'(0) = 3x^{2} - 4x + 9 = 0$ $x^{2} - 4x + 3 = 0$		
(x-3)(x-1)=0 $0.5516/e doerble 2ero for x=1, x=1$	= 3	
4x=1 P(0) =0 => C=-4		3
$\chi = 3 \text{Ad} = 0 \implies C = 0$	1	

Marking Scheme for Task:

Page no. of

Academic Year: 2011-12

Course:

Marking Scheme for Task:

Page no. of

	warking Scheme for Task.	Academic 10	ai. 2011-12	1 [Harking Continuo tot 1 ask.
Q	Solutions	Marks	Comments	<u> Q</u>	Solutions
140	1) gradient of tangent at for xy=ex			/4	$\begin{cases} 1 \\ 3 = Coot + isino \end{cases}$
	$15. M_1 = -\frac{1}{\rho^2}$	1			$z^n = Con\theta + i Sinn \theta $
	i graduet of normal is M2 = p2		·		$\frac{1}{3} = Coon \theta - i Sinn \theta$
	: equation of normal at 1:				: 5n+1 = 2cosno
	$(xp) \qquad py - c = p^3(x - cp)$	1			(i) let $3^{5}-1=0$: $3^{5}=1$
	(ii) $py-c = p^{2}(x-cp) - 0$				Cosp+iSins0=1
	$y = \frac{c^2}{x}$; Cos So = 1
	J x				SO = 0, 277, 4-70
	Sub@ in O				O=0,25,45
	$\frac{\rho c^2}{x} - c = \rho^3 (x - c\rho)$				i. roofs 9 85-1=0 are
** .	$\rho c^2 - cx = \rho^3 x^2 - c\rho^4 x$				3 = C150, C15 2tt, C
	$(-\rho^{3}) p^{3}x^{2} - c\rho^{4}x + cx - \rho c^{2} = 0$ $(-\rho^{3}) x^{2} - c\rho x + \frac{c}{\rho^{3}}x - \frac{c^{2}}{\rho^{2}} = 0$				$= \operatorname{Ciso}_{\mathcal{S}} \operatorname{Cis}_{\mathcal{S}} \operatorname{C}$
	$\left(-\frac{c}{\rho^3}\right)^3 x^2 - \frac{c}{c\rho x} + \frac{c}{\rho^3} x - \frac{c}{\rho^2} = 0$				i factors of 35-1 are
	$x^2 - c \left[\rho - \frac{1}{\rho^3} \right] x - \frac{c^2}{\rho^2} = 0$	1			(3-1)(3-C152#)[3-C15(2#)
					18. (3-1) (32-2 Coo \$3+1) (3°
	Sum of roots = C[P-1]				$(11) 3^{5-1} = (3^{4} - 1)(3^{4} + 3^{2} + 3^{2})$
	noot at Pis age cp	16.		2	i e
	$\therefore \times \text{ coordinate of } Q \text{ is } X = -\frac{c}{\rho^3}$	#			$3^{4} + 3^{3} + 3^{2} + 3 + 1 = \left(3^{2} - 26, \frac{211}{5}3 + 1\right)$
	y coordinate of Q is $y = \frac{C^2}{C^2}$				$forz = 1$ $5 = (2 - 260 \%)$ $\frac{5}{4} = (1 - 60 \%)$
	$\frac{1}{c}$ Courds of $\frac{1}{2}$ $\left(-\frac{c}{12} - \frac{c}{12}\right)$	1			4

Q	Solutions	Marks	Comments
14c)			
	$z^n = Con\theta + iSinn\theta \qquad z^{-n} = Co(-n\theta) + iSinf$	no)	
	$\frac{1}{3^n} = Cosno - i Sinno$		
		1	
	$\int_{0}^{\infty} \frac{1}{3^{n}} = 2\cos n\theta$		
	11) let 35-1=0		
	(1) let $3^{5}-1=0$ $3^{5}=1$	•	
	Cosp+iSinSO =1		
	: Cos so = 1 so = 0,27,47,67,811		
	O=0,25,45, 51, 87	1	
	i. roofs 9 35-1=0 are 3 = C150, C152tt, C154tt, C156tt C156tt		
	= ciso, cis at cis(th), cis	(광)	
	,		E
	i factors of 35-1 are	Pic 1-47	h)
	(3-1)(3-C1525)[3-C15(271)] (3-C1545)[3.	2 (3	
	12. (3-1) (32-200 453+1) (32-200 4513+1)		
,	(III) $3^{5-1} = (3^{+-1})(3^{4} + 3^{3} + 3^{2} + 3^{+1})$	1	
	$3^{4} + 3^{3} + 3^{2} + 3 + 1 = \left(3^{2} - 263\frac{217}{5}3 + 1\right)\left(3^{2} - 263\frac{477}{5} + 1\right)$		
	(a) (b) (a-a64)		
7	5 = (2 - 26.5)(2 - 26.41)		
	$\frac{5}{5} = (1 - \cos^{2} \frac{1}{5})(1 - \cos^{4} \frac{1}{5})$,	
	;	1	

Page no. of

Course:

Marking Scheme for Task:

Page no. of

1	Marking Scheme for Task:	Academic Ye	ar: 2011-12
Q	Solutions	Marks	Comments
dis	a)(1) area of cross section: 24 (84)		,
	$A = y \times \sqrt{3}y$	1.	
	$=\sqrt{3}y^2$		
	$ (11) \frac{x^2}{25} + \frac{y^2}{16} = 1 $		
	$\frac{y^2}{16} = 1 - \frac{x^2}{25}$		
	$y^2 = 16\left(1 - \frac{x^2}{as}\right)$		
	$A = 16\sqrt{3}\left(1 - \frac{3c^2}{25}\right)$		
	(III) $V=\int_{-5}^{5} 16\sqrt{3}\left(1-\frac{x^{2}}{25}\right)dx$.	(
-	$= 16\sqrt{3} \int_{-5}^{5} \left(1 - \frac{x^2}{25}\right) dx$		
	$= 16\sqrt{3} \left[x - \frac{x^3}{75} \right]_{-5}^{5}$		
	$= 16\sqrt{3} \left[\left(5 - \frac{125}{75} \right) - \left(-5 + \frac{125}{75} \right) \right]$		
	$= 16\sqrt{3} \left[10 - \frac{250}{75} \right]$	1	
	$=$ $320\sqrt{3}$ units 3		

Marking Scheme for Task:		ar: 2011-12
Solutions	Marks	Comments
(5 b)(1)	>	
$y = 2\pi - 2$	1	
$r_1 = 1 - \sqrt{1 - y} + 1 \qquad x^2 - 2x + y = 0$		
$X = 2 \pm \sqrt{4 - 44}$	1	
$A = \pi(r_2 - r_1) = 1 \pm \sqrt{1 - y}$		
$= \pi t \left(r_2 - \Gamma_1 \right) \left(r_2 + \Gamma_1 \right)$		
$= \pi \left(2\sqrt{1-y} \right) \left(2 + \frac{1}{2} \right)$ $= 8\pi \sqrt{1-y} U^{2}$		
$(11) V = \int_0^L 8\pi \sqrt{1-y} dy$		
$=8\pi\int_{0}^{R}\sqrt{1-y}dy$		
$=8\pi\sqrt{2(1-y)^{3/2}}$	9	
$=8\pi\left[+\frac{2}{3}\right]$		
= 16I Umts 3	1	

Marking Scheme for Task:

Page no. of

Academic Year: 2011-12

Q	Solutions	Marks	Comments
Q15	$c)(i)$ $a = m_i h + c_i$		
	When h=0 a=4 => C,=4		
	$\therefore a = mh + 4$	1	
	When $h=10 \ a=0 \implies m=-\frac{2}{5} \ i \cdot a=-\frac{2}{5}h+4$		
	$b = m_2 h + c_2$		
	When h=0 b=0 => Cr =0		
	$\begin{array}{c} \therefore b = mh \\ \text{when } h = 10 \ b = 2 \implies m_2 = \frac{1}{8} \therefore \ b = \frac{1}{8}h \end{array}$		
	when h=10 0-2 = 112 = 8		
	$\chi = m_3 h + c_3$		
	When h=0 X=4 => C3=4		
	$\lambda \mathcal{X} = M_0 h + 4$	1	
	When $h=10 \ \text{X}=2 \Rightarrow \text{Mg}=\frac{1}{5} \ \text{if } X=\frac{1}{5} + 4$,	
	Now A = - 1/5 - 2h+4 + 1h)		
	$= -\frac{h+20}{10} \left[4 - \frac{1}{5}h \right]$		
	$= -\frac{h+20}{10} \left[\frac{20-h}{5} \right]$		
	$=\frac{20-h}{10}\cdot\frac{20-h}{5}$		
	$= \frac{400 - 30h + h^2}{30}$		
	$= 8 - \frac{1}{5} + \frac{h^2}{50}$		

Course:

Marking Scheme for Task:

Page no. of

Marking Scheme for Task:	Academic Yea	ar: 2011-12
Q Solutions	Marks	Comments
$\int_{0}^{10} \left(8 - \frac{4h}{5} + h^{2}\right) dh.$	1	
$= \left[8h - \frac{4h^{2}}{10} + \frac{h^{3}}{150} \right]_{0}^{10}$		
$= \left[80 - \frac{400}{10} + \frac{1000}{150} \right]$		
= 80 - 40 + 20 3		
$= \left(40 + \frac{20}{3}\right)$		
= 140 Units ³	1	
·		

Page no. of

Course:

Marking Scheme for Task:

Page no. of

			ar: 2011-12
Q	Solutions	Marks	Comments
Qlb	1 200 1 200 1 200 1 200		
	Sum of roots = $\left[6d = -\frac{b}{a}\right]$:
	Sum of prod $2x = 2x^2 + 3x^2 + 6x^2 = \left[11x^2 - \frac{2}{a}\right] - 2$		
	product of roots = $\left 6\alpha^3 = \frac{d}{a} \right $ = 3		
	$(D \times (a) $ $66 \times (a)^3 = -\frac{bc}{a^2}$]	
	$3 \times 11 66d^{3} = -\frac{11d}{a}$		
	$\frac{bc}{a^2} = \frac{ud}{a}$		
	: be = 11ad.		
	b), tangent at P.	-	
	$ \frac{xx_i + yy_i = 1}{ar br} = 1 $ $ let y = 0 \times = \frac{a}{x_i} $		Eur.
	$DM = 9^{2}$	1	
	Normal at P! $\frac{a^2x - b^2y = a^2 - b^2}{x_1}$		
	$let y = 0 x = (a^2 - b^2) \frac{x_1}{a^2}$	1	
	$3.0N = (a^2 - b^2) \cdot \frac{\chi_1}{a^2}$,	
	Now om. on = $a^2 - b^2 \cdot \frac{\chi_1}{a^2} \cdot \frac{\alpha^2}{\chi_1}$ $= \alpha^2 - b^2$	2	
	$= a^{2} $ $= a^{2} $ $= a^{2} $ $= a^{2} (Note l^{2} = a^{2}(1-e^{2}) $ $= a^{2} - a^{2}e^{2} $,	

Solutions	Marks	Comments
u 🗴		
		1
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
i i i		
A ETAV		
(1) $\dot{x} = U\cos\lambda \dot{y} = U\sin\lambda - gt$		
At A. y = USINd -gt x = M Cosh	1	
also $\dot{x} = VSind$		
VSina = U Cosh		
	1	
: V = Ulota	•	
and Uz -V Cosa		
(11) At A $\dot{y} = USm\alpha - gt$ and $\dot{y} = -VCosd$ (downward)		
(Appriliance)		
i, USINA -gt = - VCosa		
1 / 1/Cosol + 1/Cosol		
gt = Usind + VCosal		
t = USING + V Cosod		
but from (i) V = U Cota		
: t = USINX + UCOSX		
9		
= Usin'a + Ucos'd		
Sina g		1
$= \frac{U \sin^2 \alpha + U \cos^2 \alpha}{S in \alpha g}$ $= \frac{U}{g S in \alpha}.$	1	

Page no. of

Marking Scheme for Task:

			ar: 2011-12
Q	Solutions	Marks	Comments
Q16	d) $u_1 = 1$ $u_2 = -12$ $u_n = u_{n-1} + 6u_{n-2}$ $n \ge 3$		
	Prove $U_n = -6 \left[(-2)^{n-2} + 3^{n-2} \right]$ for all $n \ge 1$		
	(F) for n=1 U, = -6[(-2)-1+(8)-1		
	$=-6\left[-\frac{1}{2}+\frac{1}{3}\right]$,	-
	= 1 true		
	$for n=2$ $U_2 = -6 [(-2)^0 + 3^0]$		
	=-12 true.		
	@ assume true for $n=k$ and $n=k-1$ $3 \le k \le \infty$ 1e assume $U_k = -6[(2)^{k-2} + 3^{k-2}]$	1	
	$U_{k-1} = -6[(-2)^{k-3} + 3^{k-3}]$	'	
	3) ATP true for $n = k+1$ 1.2. AT.P. $U_{k+1} = -6[(-2)^{k-1} + 3^{k-1}]$		
	LHS $U_{k+1} = U_k + 6U_{k-1}$ = $-6\left[(-2)^{k-2} + 3^{k-2}\right] - 6^2\left[(-2)^{k-3} + 3^{k-3}\right]$	7	
	$= -6[(-2)^{k-1} + 3 + 3 + 6 + (-2)^{k-1} - 2 \cdot 3$ $= -3(-2)^{k-1} + 2 \cdot 3^{k-1} - 3^2(-2)^{k-1} - 2 \cdot 3$	/ k-1	
	$=-6(-2)^{k-1}-6.3^{k-1}$	2	
	$=-6\left[\left(-2\right)^{k-1}-3^{k-1}\right]$		
	= RHS		
	(4) true for n=k+1 If true for n=k	-	
	Since true for n=1,2 then by		
	mathematical induction true for all n ≥ 1		