

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE160107301

FCC REPORT

(BLE)

Applicant: Shenzhen Eden Information Technology Co.,Ltd.

Address of Applicant: RM.626, B1 Huayuan Sci-Tech Innovation Park, 168 Baoyuan

Road, Bao'an District, Shenzhen, China

Equipment Under Test (EUT)

Product Name: Smart Vibrator

Model No.: Z101, Z102, Z103, Z104, Z105, Z106, Z107, Z108

Trade mark: TOT

FCC ID: 2AHHV-Z101

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 27 Jan., 2016

Date of Test: 28 Jan., to 02 Mar., 2016

Date of report issued: 02 Mar., 2016

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	02 Mar., 2016	Original

Tested by: O2 Mar., 2016

Test Engineer

Reviewed by: 02 Mar., 2016

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3		ITENTS	
4		T SUMMARY	
5		IERAL INFORMATION	
J	GEN	IERAL INFORMATION	
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	LABORATORY FACILITY	
	5.6	LABORATORY LOCATION	
	5.7	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	15
	6.5	Power Spectral Density	18
	6.6	BAND EDGE	20
	6.6.1	Conducted Emission Method	20
	6.6.2	2 Radiated Emission Method	22
	6.7	Spurious Emission	27
	6.7.1	Conducted Emission Method	27
	6.7.2	Radiated Emission Method	30
7	TES	T SETUP PHOTO	35
R	EUT	CONSTRUCTIONAL DETAILS	27

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Shenzhen Eden Information Technology Co.,Ltd.	
Address of Applicant:	RM.626, B1 Huayuan Sci-Tech Innovation Park, 168 Baoyuan Road, Bao'an District, Shenzhen, China	
Manufacturer:	Shenzhen Eden Information Technology Co.,Ltd.	
Address of Manufacturer:	RM.626, B1 Huayuan Sci-Tech Innovation Park, 168 Baoyuan Road, Bao'an District, Shenzhen, China	

5.2 General Description of E.U.T.

Product Name:	Smart Vibrator
Model No.:	Z101,Z102,Z103,Z104,Z105,Z106,Z107,Z108
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-500mAh
Remark:	Item No.: Z101,Z102,Z103,Z104,Z105,Z106,Z107,Z108 are electrically identical , only shell shapes and colors are different.

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

Report No: CCISE160107301

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode Keep the EUT in continuous transmitting with modulation				

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Rad	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017	
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-28-2015	03-28-2016	
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016	
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016	
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016	
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016	
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016	
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2015	03-28-2016	
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016	
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016	

Con	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017		
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016		
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016		
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016		
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 0 dBi.

6.2 Conducted Emission

		•		
Test Requirement:	FCC Part 15 C Section 15.207	/		
Test Method:	ANSI C63.4: 2009			
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz			
Limit:	Frequency range (MHz) Limit (dBuV) Quasi-peak Average			
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarithm			
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 			
Test setup:	LISN 40cm		er — AC power	
Test Uncertainty:			±3.28 dB	
Test Instruments:	Refer to section 5.7 for details			
Test mode:	Refer to section 5.3 for details			

Measurement Data

Neutral:

Trace: 1

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : 72 Condition

Pro

: Smart Vibrator : Z101 EUT

Model Test Mode : BLE mode
Power Rating : AC120V/60HZ
Environment : Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: YT

Remark

Kemark	•	1227				271 100	100	
		Read	LISN	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
-	MHz	dBu∜	<u>dB</u>	dB	dBu∇	dBu∀	<u>dB</u>	
1	0.154	21.98	0.17	10.78	32.93	55.78	-22.85	Average
2	0.158	26.38	0.17	10.78	37.33	65.56	-28.23	QP
3	0.182	21.96	0.17	10.77	32.90	64.42	-31.52	QP
4	0.182	13.47	0.17	10.77	24.41	54.42	-30.01	Average
5	0.262	18.06	0.16	10.75	28.97	61.38	-32.41	QP
6	0.262	13.75	0.16	10.75	24.66	51.38	-26.72	Average
1 2 3 4 5 6 7 8 9	0.318	16.24	0.16	10.74	27.14	59.75	-32.61	QP
8	0.389	15.16	0.16	10.72	26.04	58.08	-32.04	QP
9	0.389	8.28	0.16	10.72	19.16	48.08	-28.92	Average
10	0.727	6.70	0.17	10.78	17.65	46.00	-28.35	Average
11	22.775	23.61	0.97	10.89	35.47			Average
12	23.018	26.48	1.00	10.89	38.37		-21.63	

Line:

Trace: 3

Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Condition

: 72 Pro

EUT Smart Vibrator

Test Mode : BLE mode
Power Rating : AC120V/60HZ
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: YT
Remark

Remark

Nomal R	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
552	MHz	—dBu₹	<u>dB</u>	<u>d</u> B	dBu₹	−−dBuV	dB	
1	0.154	18.82	0.26	10.78	29.86	55.78	-25.92	Average
2	0.162	26.76	0.26	10.77	37.79	65.34	-27.55	QP
1 2 3 4 5 6 7 8 9	0.178	23.66	0.26	10.77	34.69	64.59	-29.90	QP
4	0.178	13.02	0.26	10.77	24.05	54.59	-30.54	Average
5	0.262	17.62	0.26	10.75	28.63	61.38	-32.75	QP
6	0.262	12.90	0.26	10.75	23.91	51.38	-27.47	Average
7	0.318	15.33	0.26	10.74	26.33	59.75	-33.42	QP
8	0.318	8.22	0.26	10.74	19.22	49.75	-30.53	Average
9	0.389	9.69	0.26	10.72	20.67	48.08	-27.41	Average
10	0.739	17.29	0.28	10.79	28.36	56.00	-27.64	QP
11	22.655	24.26	1.30	10.89	36.45	50.00	-13.55	Average
12	22 896	27 42	1 36	10 89	39 67	60.00	-20.33	OP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 9.2.2					
Limit:	30dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

T (0)	Max PK Conducted Output Power	1: "/ ID)	Result	
Test CH	(dBm)	Limit(dBm)		
Lowest	-5.54			
Middle	-6.31	30.00	Pass	
Highest	-7.25			

Test plot as follows:

Lowest channel

Date: 18.FER.2016 14:38:02 Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 8.1					
Limit:	>500kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.738		
Middle	0.732	>500	Pass
Highest	0.726		

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.080		
Middle	1.080	N/A	N/A
Highest	1.080		

Test plot as follows:

6dB EBW

Date: 18.FEB.2016 15:03:00

Lowest channel

Date: 18.FEB.2016 15:04:22

Middle channel

Date: 18.FEB.2016 15:05:10

Highest channel

99% OBW

Date: 18.FEB.2016 15:06:26

Lowest channel

Date: 18.FEB.2016 15:05:58

Middle channel

Date: 18.FEB.2016 15:05:35

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 10.2					
Limit:	8 dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-6.79		
Middle	-7.42	8.00	Pass
Highest	-8.26		

Test plots as follow:

Date: 18.FEB.2016 15:11:38

Lowest channel

Date: 18.FEB.2016 15:11:14

Middle channel

Date: 18.FEB.2016 15:10:47

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 13				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Test plots as follow:

Date: 18.FEB.2016 15:07:33

Lowest channel

Date: 18.FEB.2016 15:10:02

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10: 2	009 and KDE	3 558074v03r	03 section	12.1			
Test Frequency Range:	2.3GHz to 2.5GHz							
Test site:	Measurement D	istance: 3m						
Receiver setup:	Frequency	Detector	RBW	Remark				
·	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	Above IGHZ	RMS	1MHz	3MHz	Average Value			
Limit:	Freque	ency	Limit (dBuV		Remark			
	Above 1	GHz	54.0 74.0		Average Value Peak Value			
Test Procedure:	the ground to determin 2. The EUT wantenna, wantenna, wantenna and the ground Both horizon make the north and to find the north and to determine the north and the	at a 3 meter at the position was set 3 meter which was mountained and vertine as urement. Uspected emister the rota table maximum reactiver system and width with sion level of the cified, then to would be rep margin would.	camber. The factor of the highesters away from unted on the total aried from one the maximum cal polarizations soin, the EU na was turned for was turned for the maximum Hamal aries are to Parameters of the EUT in peasesting could be orted. Otherward be re-tested.	table was rest radiation. The interfer op of a variation of the analysis and the analysis a	e 0.8 meters above otated 360 degrees			
Test setup:	AE SOCM	EUT Groce Groce Test Receive	Horn Anta	Antenna To Controller	wer			
Test Instruments:	Refer to section	5.7 for details	S					
Test mode:	Refer to section	5.3 for details	S					
Test results:	Passed							

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Smart Vibrator Condition

EUT

Model : Z101
Test mode : BLE-L mode
Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55% Test Engineer: YT Remark :

Mari										
			Antenna							
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
-	MHz	dBu∜	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m			
1	2390.000	26.71	23.68	0.00	0.00	50.39	74.00	-23.61	Peak	
2	2390,000	10.65	23.68	0.00	0.00	34.33	54.00	-19.67	Average	

Test channel: Lowest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT

: Smart Vibrator : Z101 Test mode : BLE-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: YT
Remark Model

Remark

1 2

Freq			Cable Loss			Limit Line			
MHz	dBu∇	$-\overline{dB}/\overline{m}$	dB	<u>dB</u>	dBuV/m	dBu√/m	<u>dB</u>		
2390.000 2390.000			0.00 0.00		51.35 35.53			Peak Average	

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Smart Vibrator Condition EUT

: Z101 Model

Test mode : BLE-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: YT
Remark

Remark

	Freq		Antenna Factor						
	MHz	dBu₹	$\overline{-dB/m}$	<u>d</u> B	<u>d</u> B	$\overline{dB} \overline{uV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1 2	2483.500 2483.500								

Test channel: Highest

Vertical:

.emar.	100		Antenna Factor						
3	MHz	dBu∇	$-\overline{dB}/\overline{m}$	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>d</u> B	
1 2	2483.500 2483.500			0.00 0.00		55.46 43.38			Peak Average

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2009 and KDB558074 section 11						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.7 for details						
Test results:	Passed						

Test plot as follows:

Lowest channel

Date: 18.FEB.2016 15:13:15

30MHz~25GHz

Middle channel

Date: 18.FEB.2016 15:14:35

30MHz~25GHz

Highest channel

Date: 18.FEB.2016 15:15:23

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10:20	009						
Test Frequency Range:	9KHz to 25GHz							
Test site:	Measurement D	istance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
·	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	Above IGHZ	RMS	1MHz	3MHz	Average Value			
Limit:	Frequency		Limit (dBuV/m	@3m)	Remark			
	30MHz-88MHz		40.0		Quasi-peak Value			
	88MHz-216MHz	_	43.5		Quasi-peak Value			
	216MHz-960MH	lz	46.0		Quasi-peak Value			
	960MHz-1GHz							
	Above 1GHz							
	4 7 5 5 7							
Test Procedure:	960MHz-1GHz 54.0 Quasi-peak Value Average Value							

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL Condition

EUT : Smart Vibrator

: Z101 Model Test mode : BLE mode Power Rating: DC 3.7V Environment: Temp:25.5°C Huni:55% Test Engineer: YT Remark:

remark				32000000			507 17	100	
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
= 1	MHz	dBu∜	dB/m	₫B	<u>d</u> B	dBuV/m	dBuV/m	dB	
1	46.503	36.80	16.96	1.28	29.85	25.19	40.00	-14.81	QP
2	121.549	45.56	11.89	2.19	29.38	30.26	43.50	-13.24	QP
3	143.830	45.03	11.34	2.44	29.25	29.56	43.50	-13.94	QP
2 3 4 5 6	216.024	43.34	11.18	2.85	28.73	28.64	46.00	-17.36	QP
5	287.990	43.03	12.27	2.91	28.47	29.74	46.00	-16.26	QP
6	566.622	38.13	18.23	3.91	29.05	31.22	46.00	-14.78	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL : Smart Vibrator Condition

EUT

Model : Z101 Test mode : BLE mode Power Rating : DC 3.7V

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT

Remark

9707700000	Freq			Antenna Cable Factor Loss					
-	MHz	dBu∜	─dB/m	₫B	dB	dBuV/m	dBuV/m	dB	
1	46.666	39.30	16.83	1.28	29.85	27.56	40.00	-12.44	QP
2	120.699	44.86							
2	136.939	45.96	11.88	2.36	29.29	30.91	43.50	-12.59	QP
4 5 6	167.824	44.23	9.82	2.64	29.07	27.62	43.50	-15.88	QP
5	233.349	38.07	11.66	2.83	28.63	23.93	46.00	-22.07	QP
6	463.970	34.29	16.38	3.32	28.89	25.10	46.00	-20.90	QP

Above 1GHz

Т	est channel	:	Lowest		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	45.95	31.53	10.57	40.24	47.81	74.00	-26.19	Vertical	
4804.00	44.71	31.53	10.57	40.24	46.57	74.00	-27.43	Horizontal	
Т	est channel	:	Lowest		Le	vel:	Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	35.61	31.53	10.57	40.24	37.47	54.00	-16.53	Vertical	
4804.00	34.65	31.53	10.57	40.24	36.51	54.00	-17.49	Horizontal	

-	Test chanr	nel:	Middle		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	44.17	31.58	10.66	40.15	46.26	74.00	-27.74	Vertical	
4884.00	43.21	31.58	10.66	40.15	45.30	74.00	-28.70	Horizontal	
-	Test chanr	nel:	Middle		Le	vel:	Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	34.97	31.58	10.66	40.15	37.06	54.00	-16.94	Vertical	
4884.00	33.78	31.58	10.66	40.15	35.87	54.00	-18.13	Horizontal	

Т	est channel	:	Highest		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	45.32	31.69	10.73	40.03	47.71	74.00	-26.29	Vertical
4960.00	45.47	31.69	10.73	40.03	47.86	74.00	-26.14	Horizontal
Т	est channel	:	Highest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	35.67	31.69	10.73	40.03	38.06	54.00	-15.94	Vertical
4960.00	35.69	31.69	10.73	40.03	38.08	54.00	-15.92	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.