CR13: Computational Topology Exercises #7

Recall that the *cycle space* $Z(G, \mathbb{Z}_2)$ of a graph G = (V, E) is the subspace of chains, *i.e.* of formal linear combinations of edges with \mathbb{Z}_2 coefficients, with zero boundary. As usual, the boundary operator is the linear extension of the map that sends an edge uv to the formal difference v-u of its endpoints. If we replace the \mathbb{Z}_2 coefficients by any ring R of coefficients we obtain the cycle space Z(G,R) over R. In general, when $1 \neq -1$ in R, one should consider a chain as a linear combination of *oriented* edges, identifying the opposite $-\vec{e}$ of an oriented edge \vec{e} with the oppositely oriented edge. Equivalently, we may assume that every unoriented edge is given a default orientation and consider chains as linear combinations of *unoriented* edges using the default orientation to define the boundary operator (so that for an edge with endpoints u and v we have $\delta_1 e = v - u$ if the default orientation goes from u to v and v and v otherwise).

Given a weight function $w: E \to \mathbb{R}_+$, we define the weight of a chain $c = \sum_{e \in E} \alpha_e e$ as $w(c) = \sum_{e \in E} |\alpha_e| w(e)$. This is well defined if the coefficients are for instance in \mathbb{Z}_2 or \mathbb{Z} with the obvious interpretation of $|\cdot|$. A minimum cycle basis is then a basis of the cycle space with minimum total weight.

Let G be the *generalized Petersen graph* obtained by taking two copies of the cycle C_{11} with respective vertex sets $\{I_0, I_1, \ldots, I_{10}\}$ and $\{O_0, O_1, \ldots, O_{10}\}$, adding the 11 edges $O_j I_{3j}$ between the two cycles, with $0 \le j \le 10$ and taking indices modulo 11. The cycles are respectively called the *inner* cycle and the *outer* cycle and the other edges are called *spokes*. We consider the weight function:

$$w(e) = \begin{cases} 5 & \text{if } e \text{ is an inner edge,} \\ 4 & \text{if } e \text{ is an outer edge,} \\ 12 & \text{if } e \text{ is a spoke.} \end{cases}$$

Our aim is to compare the minimum bases for $Z(G, \mathbb{Z}_2)$ and for $Z(G, \mathbb{Z})$.

- 1. Compute all the possible weights of a simple cycle in *G* that uses at most two spokes.
- 2. Let $B_{\mathbb{Z}_2}$ be the set of cycles composed of the outer cycle and the 11 cycles formed with one outer edge, two spokes and 3 inner edges. Show that B is the unique minimum basis for $Z(G,\mathbb{Z}_2)$. Hint: Notice that every cycle in G uses an even number of spokes.
- 3. Let T be a spanning tree of G. For every chord of T consider the *fundamental cycle* obtained by joining the chord endpoints with a simple path in T. Show that the set of fundamental cycles (with a chosen orientation) is a basis of $Z(G, \mathbb{Z})$. We call it the *fundamental basis* associated to T. Given any cycle in $Z(G, \mathbb{Z})$, how can you read the coefficients of its decomposition in the fundamental basis?

¹For convenience, we denote by \mathbb{Z}_2 the field $\mathbb{Z}/2\mathbb{Z}$.

- 4. Show that $B_{\mathbb{Z}_2}$ is not a basis of $Z(G,\mathbb{Z})$. You may decompose $B_{\mathbb{Z}_2}$ over the fundamental basis B_T associated with the spanning tree T composed of all the spokes and all the inner edges but one. Alternately, you may compute the sum of the cycles in $B_{\mathbb{Z}_2}$ (with coherent orientations of the cycles).
- 5. Consider the set of cycles $B_{\mathbb{Z}}$ obtained from $B_{\mathbb{Z}_2}$ by replacing the outer cycle with the simple cycle composed of an inner edge, two spokes and four outer edges. Compute the weight of $B_{\mathbb{Z}}$ and show that $B_{\mathbb{Z}}$ is a minimum basis for $Z(G,\mathbb{Z})$.