Computational Number Theory Part IV

Cyclic Groups, related hardness assumptions

Cyclic Groups

- Generator: Let G be a group, and |G| = p. $g \in G$ is a generator of G if every element $a \in G$ is equal to g^x for some $x \in \{0,...,p-1\}$
- Restated: every element $a \in G$ is in $\{g^0, g^1, g^2, \dots, g^{p-1}\}$, where $g \in G$ is generator
- Groups can have multiple generators
- G is cyclic if it has a generator

Cyclic Groups

- If p is a prime, Z_p^* is a cyclic group of order p-1¹
- All cyclic groups mutually isomorphic
- A bijective mapping f exists, s.t. f: G —> H, for cyclic groups G,H
- Of course, just because an isomorphism exists, doesn't mean it is efficiently computable...

Cyclic Groups Useful?

- Many hard problems defined over cyclic groups
 - Discrete Logarithms
 - Diffie-Hellman (DH): Computational/decisional (CDH/DDH)
 - Not all problems assumed hard in all cyclic groups, some hard in specific groups

Discrete Logarithms

- Let G be a cyclic group, |G| = p, let $g \in G$ be the generator. For every $h \in G$, there exists a unique $x \in Z_q$, s.t., $g^x = h$
- x is called the discrete logarithm of h to base g
- Why "discrete"?
 - Take on values in finite range
 - As opposed to values in (infinite) set of real numbers

Discrete Log (DL) Problem

DLog Experiment: DLog_{A,G}(n):

There exists a cyclic group, |G| = p, $\|p\| = n$; let $g \in G$ be a generator

Choose h ∈ G

Poly-time algorithm A: $A(G,p,g,h) \rightarrow x$ Output 1 if $g^x = h$, else output 0

The discrete log problem is hard w.r.t. G, if for all PPT algorithms A, there exists a negligible function, negl, s.t.:
 Pr[DLog_{A,G}(n) = 1] ≤ negl(n)

DL Problem

- DLog_{A,G}(n) simply says there exists such a group G
 - Doesn't mean DLog_{A,G}(n) is hard in all groups!
 - Not hard in (Z_p,+)
- Some candidate groups in which DLog_{A,G}(n) is believed hard:
 - Composite-order cyclic groups
 - Prime-order cyclic groups
 - Elliptic curve groups

Diffie-Hellman (DH) Problems

- Related, but not known to be equivalent to the DL problem
- Two problems:
 - Computational DH (CDH)
 - Decisional DH (DDH)
- General hardness relations:
 - If DL is easy in some group G, CDH is easy (in G) too
 - If DL is hard in some group G, is CDH hard too? not known!
 - If CDH is easy in some group G, DDH is easy too
 - If DDH is easy in some group G, is CDH and DL easy too? No — counterexamples exist

CDH Problem

- Let G be a cyclic group, and |G| = p, let generator $g \in G$, let $h_1, h_2 \in G$, such that $h_1 = g^{x_1}$, $h_2 = g^{x_2}$, let $x_1, x_2 < -Z_p$
- Informally, problem is to compute $g^{(x_1 \cdot x_2)}$, given (p, g, h₁, h₂)
- The CDH problem is hard relative to G, if for all PPT algorithms, A, there is a negligible function, negl, such that

 $Pr[(g^{(x_1 \cdot x_2)}) \leftarrow A(G, p, g, g^{x_1}, g^{x_2})] \leq negl(n)$ where $x_1, x_2 \leftarrow Z_p$, and n is a security parameter

Easy to see that if DL is tractable, we can easily find an $x_1 = \log_g h_1$, then do $h_2^{x_1}$, which is the right answer.

DDH Problem

- Let G be a cyclic group, and |G| = p, let generator $g \in G$, let $h_1, h_2 \in G$, such that $h_1 = g^{x_1}$, $h_2 = g^{x_2}$, let $h_3 = h_1^{x_2} = g^{(x_1 \cdot x_2)}$, let $x_1, x_2, y < -Z_p$
- Informally, problem is to distinguish $g^{(x_1 \cdot x_2)}$ from random g^y , given (p,g,h_1,h_2,h_3)
- The DDH problem is hard relative to G, if for all PPT algorithms, A, there is a negligible function, negl, such that

$$|\Pr[A(G, p, g, g^{x_1}, g^{x_2}, g^{(x_1 \cdot x_2)}) = 1] - \Pr[A(G, p, g, g^{x_1}, g^{x_2}, g^{y})]$$

= 1] | \le negl(n)

where $x_1, x_2 < -Z_p$, and n is a security parameter

Group Order

- Ok, but what is p? Prime or composite? (|G| = p)
- Actually, DL, CDH hold in both prime/compositeorder cyclic groups
- But DL considered hardest in prime-order cyclic groups
- DL (relatively) easier if |G|=q, and q has small prime factors¹
- DDH easy if |G|=q, and q has small prime factors

Does Order Matter?

- Marked preference for cyclic G, |G| = p, p>1 is a prime
- Because of reasons on previous slide
- Also, finding generator $g \in G$ is easy, if p is prime
- All elements of G, except identity element are generators of G!
- Finally, if we require DDH to be hard¹, we better use prime-order groups!

Subgroups of Z_p*

- Ok, so we need cyclic groups of prime order
- One possibility: Z_p*
- Is this prime order? Not for p > 3¹. Ugh :-(
- What about prime-order subgroups of Z_p*?
- Pick 2 primes p, q, s.t., p = rq + 1, $r \ge 1$. Then the subgroup of r^{th} residues modulo p is defined as:

$$G = \{[h^r \mod p] \mid h \in Z_p^*\}$$

Known result: G is a subgroup of of Z_p* of order q

Group Generation Algorithm

GroupGen (1^n) -> (G,g,q)

- Generate a uniform n-bit prime q
- Generate an l-bit prime p, s.t., q | (p-1) /* Use
 Miller-Rabin (or any) algorithm */
- Choose a uniform h, s.t., $h \in \mathbb{Z}_p^*$ with $h \neq 1$
- Set $g = [h^{(p-1)/q} \mod p]$
- return p, g, q, where |G| = q, and G is subgroup of Z_p^*

In practice, no need to run this, just use standardized values (recommended by NIST for specific algorithms)

Generator Example

• Consider a group $G = Z_{11}^*$, $|Z_{11}^*| = 10$. How many generators of Z_{11}^* can you find? Subgroups? Verify them

- $Z_{11}^* = \{1,2,3,4,5,6,7,8,9,10\}$
- If G is prime-order cyclic, easy |G| = no. of generators (see slide 12).
- But Z₁₁* not prime-order cyclic. Ugh!

- Candidate generator: 2
- If 2 is generator, then every $a \in Z_{11}^*$ should be $\in \{2^0, 2^1, 2^2, \dots, 2^9\}$ (see slide 2)
- Values generated by $2^x \mod 11$, $x \in \{0,...9\}$: $\{1,2,4,8,5,10,9,7,3,6\}$ this is all of G
- Yes, that works; 2 is a generator

- Next candidate generator: 3
- If 3 is generator, then every $a \in Z_{11}^*$ should be $\in \{3^0, 3^1, 3^2, \dots, 3^9\}$
- Values generated by $3^x \mod 11$, $x \in \{0,...9\}$: $\{1,3,9,5,4,1,3,9,5,4\}$; $\{1,3,4,5,9\} \neq G$
- 3 is not a generator of G
- But generator of subgroup $H_1 \subset G$, $H_1 = \{1,3,4,5,9\}$; $|H_1| = 5^1$

1: Note that H₁ is a prime-order (5-order) subgroup, but H₁≠ Z₅*! Cool, isn't it?!

- Next, try 10
- If 10 is generator, then every $a \in Z_{11}^*$ should be $\in \{10^0, 10^1, 10^2, \dots, 10^9\}$
- Values generated by $10^x \mod 11$, $x \in \{0,...9\}$: $\{1,10,1,10,1,10,1,10,1,10\}$; $\{1,10\} \neq G$
- 10 is not a generator of G
- But generator of subgroup $H_2 \subset G$, $H_2 = \{1,10\}$; $|H_2| = 2$

- Check if any of {1,4,5,6,7,8,9} ∈ G are generators as an exercise
- Do the subgroups tally with our formula?
- Pick 2 primes p, q, s.t., p = rq + 1, $r \ge 1$. Then the subgroup of r^{th} residues modulo p is defined as:

$$G = \{[h^r \bmod p] \mid h \in Z_p^*\}$$

Known result: G is a subgroup of of Z_p* of order q

• Verify H₁:

- p = 11, q = 5, so r = 2
- Compute $G' = \{[h^r \mod p] \mid h \in Z_p^*\}$ (set of squares in this case, since r = 2)
- G' = {1² mod 11, 2² mod 11,3² mod 11,...,10² mod 11}
- $G' = \{1,4,9,5,3,3,5,9,4,1\} = \{1,4,9,5,3\}$
- So yes, $G' = H_1$

• Verify H₂:

- p = 11, q = 2, so r = 5
- Compute $G' = \{[h^r \mod p] \mid h \in \mathbb{Z}_p^*\}$
- G' = {1⁵ mod 11 ,2⁵ mod 11,3⁵ mod 11,...,10⁵ mod 11}
- $G' = \{1,10,1,10,1,10,1,10,1,10\} = \{1,10\}$
- So yes, $G' = H_2$

Example, etc.

• Exercise: If you find any other subgroups, verify them using the formula (just the same as we did H_1 , H_2)

- Migraine-inducing? Bear with me...
- Course about math/theory underpinning crypto, after all :-)