For any optimal solution y^* of (D), since v is a feasible solution of (D) such that $vb < \mu + \epsilon$, we must have

$$\mu \le y^*b < \mu + \epsilon$$
,

and since our reasoning is valid for any $\epsilon > 0$, we conclude that $cx^* = \mu = y^*b$.

If we assume that the dual program (D) has a feasible solution and is bounded below, since the dual of (D) is (P), we conclude that (P) is also feasible and bounded above. \square

The strong duality theorem can also be proven by the simplex method, because when it terminates with an optimal solution of (P), the final tableau also produces an optimal solution y of (D) that can be read off the reduced costs of columns $n + 1, \ldots, n + m$ by flipping their signs. We follow the proof in Ciarlet [41] (Chapter 10).

Theorem 47.8. Consider the Linear Program (P),

maximize
$$cx$$

subject to $Ax \le b$ and $x \ge 0$,

its equivalent version (P2) in standard form,

maximize
$$\widehat{c} \widehat{x}$$

subject to $\widehat{A}\widehat{x} = b$ and $\widehat{x} \ge 0$,

where \widehat{A} is an $m \times (n+m)$ matrix, \widehat{c} is a linear form in $(\mathbb{R}^{n+m})^*$, and $\widehat{x} \in \mathbb{R}^{n+m}$, given by

$$\widehat{A} = \begin{pmatrix} A & I_m \end{pmatrix}, \quad \widehat{c} = \begin{pmatrix} c & 0_m^{\mathsf{T}} \end{pmatrix}, \quad x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad \overline{x} = \begin{pmatrix} x_{n+1} \\ \vdots \\ x_{n+m} \end{pmatrix}, \quad \widehat{x} = \begin{pmatrix} x \\ \overline{x} \end{pmatrix},$$

and the Dual (D) of (P) given by

minimize
$$yb$$

subject to $yA \ge c$ and $y \ge 0$,

where $y \in (\mathbb{R}^m)^*$. If the simplex algorithm applied to the Linear Program (P2) terminates with an optimal solution (\widehat{u}^*, K^*) , where \widehat{u}^* is a basic feasible solution and K^* is a basis for \widehat{u}^* , then $y^* = \widehat{c}_{K^*} \widehat{A}_{K^*}^{-1}$ is an optimal solution for (D) such that $\widehat{c} \widehat{u}^* = y^*b$. Furthermore, y^* is given in terms of the reduced costs by $y^* = -((\overline{c}_{K^*})_{n+1} \dots (\overline{c}_{K^*})_{n+m})$.

Proof. We know that K^* is a subset of $\{1, \ldots, n+m\}$ consisting of m indices such that the corresponding columns of \widehat{A} are linearly independent. Let $N^* = \{1, \ldots, n+m\} - K^*$. The simplex method terminates with an optimal solution in Case (A), namely when

$$\widehat{c}_j - \sum_{k \in k} \gamma_k^j \widehat{c}_k \le 0 \quad \text{for all } j \in N^*,$$