Практическая работа №2.

Тема: «Настройка VLAN на устройствах Cisco».

Цель работы: научиться использовать технологию VLAN.

Ход работы:

Схема с одним коммутатором:

1. Открываем Cisco Packet Tracer и перетаскиваем в рабочую область коммутатор 2960 и 4 компьютера Generic. Переходим во вкладку Connections и выбираем тип кабеля: Copper Straight-Through. Подключаем каждый компьютер к коммутатору (рис.2.2).

Рис. 2.2. Схема подключения к коммутатору

2. Предположим, что компьютера PC0 и PC1 принадлежат одному сегменту бухгалтеров. Выберем фигуру прямоугольник и определяем сегмент. Далее аналогично определяем сегмент обычных пользователей (рис. 2.3).

					ИКСиС.09.03.02.100000 ПР				
Изм.	Лист	№ докум.	Подпись	Дат					
Разра	б.	Кузнецов Д.В.				Лит.	Лист	Листов	
Прове	₽p.	Береза А.Н.			Практическая работа №2		2		
Рецен	13				«Настройка VLAN на	ИСОиП (филиал) ДГТУ в			
Н. Контр. Утверд.					-	г.Шахты			
					устройствах Cisco»		ИСТ-Tb21		

Рис. 2.3. Схема разбиения на сегменты

3. Разделим трафик сегментов. Открываем настройки коммутатора, входим в Console. С помощью команды configure terminal задаем режим глобального конфигурирования. Определяем vlan, в котором будут находиться пользователи. Затем создаем vlan 2 и задаем имя buh. Выходим.

```
Switch>enable
Switch#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) #vlan 2
Switch(config-vlan) #name buh
Switch(config-vlan) #
Switch(config-vlan) #exit
Switch(config) #
```

4. Переходим к настройке интерфейса. Наводим мышку на соединение и видим, что 1 компьютер подключается через FastEthernet0/1, а 2 - через FastEthernet0/2. Данные порты определяем в vlan 2. Заходим в настройки FastEthernet0/1 и видим, что порт функционирует в режиме access и определяем его в vlan 2. Настройка окончена. Аналогично настраиваем FastEthernet0/2.

```
Switch>enable
Switch#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) #int
% Incomplete command.
Switch(config) #interface FastEthernet 0/1
Switch(config-if) #switchport mode access
Switch(config-if) #switchport access vlan 2
Switch(config-if) #interface FastEthernet 0/2
Switch(config-if) #switchport mode access
Switch(config-if) #switchport mode access
Switch(config-if) #switchport access vlan 2
Switch(config-if) #switchport access vlan 2
Switch(config-if) #exit
Switch(config) #
```

При помощи команды show vlan проверяем работу.

Изм.	Лист	№ докум.	Подпись	Дата

VLAN	Name				Sta	tus Po	rts			
1	defau	lt			act	ive Fa	0/3,	Fa0/4, Fa		
						Fa	0/7,	Fa0/8, Fa		
						Fa	0/11,	Fa0/12,		
						Fa	0/15,	Fa0/16,		
						Fa	0/19,	Fa0/20,		
						Fa	0/23,	Fa0/24,		
2	buh				act:	ive Fa	0/1,	Fa0/2		
1002	fddi-	fddi-default				act/unsup				
1003	token-	-ring-defa	ng-default act/unsup							
1004	fddin	et-default		act/unsup						
1005	trnet	-default			act,	/unsup				
VLAN	Туре	SAID	MTU	Parent	RingNo	BridgeNo	Stp	BrdgMode		
1	enet	100001	1500	_		23	_			
2	enet	100002	1500	_	-	-	_	-		
1002	fddi	101002	1500	-	_	-	_	-		
1003	tr	101003	1500		2	2	_	<u>-</u>		
1004	fdnet	101004	1500	_	<u>~</u>	2.7	ieee	_		
Me	ore									

5. Аналогично настраиваем другой сегмент.

```
Switch>enable
Switch#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) #vlan 3
Switch(config-vlan) #name users
Switch (config-vlan) #exit
Switch(config) #interface FastEthernet 0/3
Switch(config-if) #switchport mode access
Switch(config-if) #switchport access vlan 3
Switch(config-if) #exit
Switch(config) #interface FastEthernet 0/4
Switch(config-if) #switchport mode access
Switch(config-if) #switchport access vlan 3
Switch (config-if) #exit
Switch(config) #exit
Switch#
%SYS-5-CONFIG_I: Configured from console by console
```

При помощи команды show vlan проверяем работу.

VLAN	Name				Sta	tus Po	rts			
1	defau	ılt			act	ive Fa	0/5,	Fa0/6, Fa(
						Fa	0/9,	Fa0/10, Fa		
						Fa	0/13	Fa0/14, 1		
						Fa	0/17	Fa0/18, 1		
						Fa	0/21	Fa0/22, 1		
						Gi	g1/1	Gig1/2		
2	buh				act	ive Fa	0/1,	Fa0/2		
3	users	users			active Fa0/3,		0/3,	Fa0/4		
1002	fddi-	default			act	act/unsup				
1003	token	-ring-def	ault		act	act/unsup				
1004	fddin	et-default	t		act/unsup					
1005	trnet	-default			act	/unsup				
VLAN	Туре	SAID	MTU	Parent	RingNo	BridgeNo	Stp	BrdgMode		
1	enet	100001	1500	-	-	-	_	-		
2	enet	100002	1500	-	_	-	_	-		
3	enet	100003	1500		2	_	2	_		
1002	fddi	101002	1500	-	_	_	_	-		
M	ore									

Изм.	Лист	№ докум.	Подпись	Дата

6. Задаем IP-адреса 1 и 2 компьютерам (192.168.2.1 и 192.168.2.2), а 3 и 4 компьютерам (192.168.3.1 и 192.168.3.2). Проверяем командой ping соединение 1 компьютера со 2, а затем с 3.

```
Packet Tracer PC Command Line 1.0
PC>ping 192.168.2.2
Pinging 192.168.2.2 with 32 bytes of data:
Reply from 192.168.2.2: bytes=32 time=0ms TTL=128
Ping statistics for 192.168.2.2:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = 0ms, Maximum = 0ms, Average = 0ms
PC>ping 192.168.3.1
Pinging 192.168.3.1 with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 192.168.3.1:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
```

7. Если посмотреть в коммутаторе таблицу mac-адресов, можно увидеть, что в ней стал указываться и vlan - адрес, которого приходит mac-адрес.

Схема с двумя коммутаторами:

Switch>enable

1. Рассмотрим пример с использованием 2 коммутаторов. Для этого удаляем сегменты и дублируем оборудование. Соединяем коммутаторы типом кабеля: Copper Cross-Over GigabitEthernet 1/1 (рис. 2.4).

Изм.	Лист	№ докум.	Подпись	Дата

Рис. 2.4. Схема с двумя коммутаторами

2. Задаем IP-адреса компьютеров и объединяем их в сегменты (рис. 2.5).

Рис. 2.5. Разбиение на сегменты схемы с двумя коммутаторами

3. Так, как коммутатор скопирован, он уже настроен. Проверяем с помощью команды show run.

```
spanning-tree mode pvst
interface FastEthernet0/1
 switchport access vlan 2
 switchport mode access
interface FastEthernet0/2
 switchport access vlan 2
 switchport mode access
interface FastEthernet0/3
switchport access vlan 3
 switchport mode access
interface FastEthernet0/4
 switchport access vlan 3
 switchport mode access
interface FastEthernet0/5
interface FastEthernet0/6
  -More--
```

Изм.	Лист	№ докум.	Подпись	Дата

4. Настраиваем trunk-port. Входим в режим конфигурирования, затем в interface GigabitEthernet 1/1 и указываем режим.

```
Switch#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)#interface GigabitEthernet 1/1
Switch(config-if)#switchport mode trunk

Switch(config-if)#
%LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet1/1
e to down

%LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet1/1
e to up
```

Задаем нужные vlan.

```
Switch(config-if) #switchport trunk allowed vlan 2,3
Switch(config-if) #exit
Switch(config) #
```

Аналогично настраиваем другой коммутатор.

```
Switch>enable
Switch#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)#interface GigabitEthernet 1/1
Switch(config-if)#switchport mode trunk
Switch(config-if)#switchport trunk allowed vlan 2,3
Switch(config-if)#end
Switch#
```

5. Проверяем взаимодействие компьютеров командой ping.

```
PC>ping 192.168.2.3
Pinging 192.168.2.3 with 32 bytes of data:
Reply from 192.168.2.3: bytes=32 time=1ms TTL=128
Reply from 192.168.2.3: bytes=32 time=0ms TTL=128
Reply from 192.168.2.3: bytes=32 time=0ms TTL=128
Reply from 192.168.2.3: bytes=32 time=0ms TTL=128
Ping statistics for 192.168.2.3:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = Oms, Maximum = 1ms, Average = Oms
PC>ping 192.168.2.4
Pinging 192.168.2.4 with 32 bytes of data:
Reply from 192.168.2.4: bytes=32 time=0ms TTL=128
Ping statistics for 192.168.2.4:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = 0ms, Maximum = 0ms, Average = 0ms
```

6. Исключаем из trunk-port vlan 3.

	·			
Изм.	Лист	№ докум.	Подпись	Дата

```
Switch(config) #interface gil/1
Switch(config-if) #switchport trunk allowed vlan 2
Switch (config-if) #end
Switch#
%SYS-5-CONFIG_I: Configured from console by console
Switch#show run
Building configuration ...
Current configuration : 1293 bytes
version 12.2
no service timestamps log datetime msec
no service timestamps debug datetime msec
no service password-encryption
hostname Switch
spanning-tree mode pvst
interface FastEthernet0/1
switchport access vlan 2
 switchport mode access
interface FastEthernet0/2
 switchport access vlan 2
 --More--
```

Проверяем взаимодействие компьютеров командой ping.

```
PC>ping 192.168.3.4
Pinging 192.168.3.4 with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 192.168.3.4:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
PC>ping 192.168.3.3
Pinging 192.168.3.3 with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 192.168.3.3:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
```

Контрольные вопросы:

- 1. Что собой представляет VLAN? Какими преимуществами и недостатками обладает VLAN?
 - 2. Какие существуют способы организации VLAN?
- 3. Охарактеризуйте способы, позволяющие устанавливать членство в VLAN.
- 4. Охарактеризуйте протокол VTP. Какие преимущества и ограничения возникают при использовании протокола VTP?
 - 5. Какие существуют режимы работы протокола VTP?

Изм.	Лист	№ докум.	Подпись	Дата