MEK1100

Seksjon for Mekanikk, Matematisk institutt, UiO

Obligatorisk oppgave №2

Analyser et datasett målt i Hydrodynamisk laboratorium ved Matematisk institutt

Motivasjon

Forestill en problemstilling innen olje- og gassindustrien. F.eks. transport av gass igjennom havet til ett anlegg på land.

I praksis betyr dette at en blanding av olje, vann og gass vil strømme gjennom røret. I eksperimentet som vi skal se på, ble benyttet vann og luft.

Luften beveger seg raskere enn vannet (farten til luft 2.0 m/s, farten til vannet 0.1 m/s), og dette kan føre til **dannelsen av bølgen** på skilleflaten mellom luft og vann.

Bølgen kan deretter føre til **dannelsen av virvel** i lufta etter at den har passert en bølgetopp.

(Teksten over er en lenke til en video)

PIV (Particle Imaging Velocimetry) oppsett (Til info)

Vi bruker en laser til å lage et «*lysark*» inn i røret, dette lysarket er vårt xy-plan, med x-aksen i lengderetningen og y-aksen vertikalt oppover. Det tilsettes sporstoffer i fluidene som kan avbildes av to høyhastighetskameraer, det ene kameraet på skrå nedover fra lufta mot vannet og det andre kameraet på skrå oppover fra vannet mot lufta.

Øyeblikksbildet

Den røde kurven er skilleflaten mellom vann og luft i lysarket.

Hint: Numerisk integrasjon

Anta at vi har et rektangel definert av nedre venstre hjørne (X1, Y1) og øvre høyre hjørne (X2, Y2).

Det lukkede kurveintegralet skal regnes ut mot klokken. I tegningen grønne piler viser positiv retning og røde piler negativ retning.

Kurveintegralet langs bunn-siden skal regnes ut som:

$$\int_{X_1}^{X_2} v(X_1, Y = Y_1) dX$$

La n være antall målinger av v, kan vi tilnærme integral med summen: $\sum_{i=1}^k v_i \Delta X$

Integralet langs de andre sidene regnes ut på samme måte.

Hint: Data struktur

La oss se på to matriser X og Y som danner xy-planet. Matrisene er skrevet opp slik de er lagret i Python/Matlab, med størrelsen (201,194):

$$X = \begin{pmatrix} x_1 & x_2 & \cdots & x_{194} \\ x_1 & x_2 & \cdots & x_{194} \\ \cdots & \cdots & \cdots \\ x_1 & x_2 & \cdots & x_{194} \end{pmatrix} \qquad Y = \begin{pmatrix} y_1 & y_1 & \cdots & y_1 \\ y_2 & y_2 & \cdots & y_2 \\ \cdots & \cdots & \cdots \\ y_{201} & y_{201} & \cdots & y_{201} \end{pmatrix}$$

La oss lage et vektor pil plot med hastigheten i xy-planet u**i** + v**j**, som er gitt fra array indeks:

Denne indeksen gir oss følgende plot, hvor den grønne pilen er hastigheten og den røde stjernen er punktet i xy-planet

Hint: Data struktur

La oss se på to vektorer X og Y som er definert slik:

$$x = [x_1, x_2, x_3, x_4, x_5]$$
$$y = [y_1, y_2, y_3, y_4, y_5]$$

For eksempel vi ønsker å finne koordinaten til indeksene (2,3) For Python får vi dermed

$$x = [x_1, x_2, (x_3, x_4, x_5]]$$

 $y = [y_1, y_2, y_3, (y_4, y_5)]$

Mens for Matlab får vi

$$x = [x_1, x_2, x_3, x_4, x_5]$$

$$y = [y_1, y_2, y_3, y_4, y_5]$$

Så **husk** at vi følger Matlab indeksering i oblig teksten.

Hint: Data struktur

La oss se på et mindre området. Vi kan lage et rektangel som er definert ved indeksene i hjørner (iX,iY): (10, 20) og (40, 90) (for Matlab) (9, 19) og (39, 89) (for Python)

