Ejercicios de la sección 3.3 Matrices por bloques

(Para hacer en clase: 1, 2, 3, 5, 7, 10, 13.) (Con solución o indicaciones: 4, 6, 8, 9, 11, 14.)

En los ejercicios siguientes en los que aparezcan pro- ▶10. ductos de matrices por bloques, se debe suponer que las matrices están partidas en bloques conformes para la multiplicación por bloques.

Calcula los productos indicados en los ejercicios 1 a 4. Intenta "predecir" el resultado teniendo en cuenta que en cada caso la matriz de la izquierda es una "matriz elemental por bloques".

▶1.
$$\begin{bmatrix} I & \mathbf{0} \\ E & I \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
. ▶2. $\begin{bmatrix} E & \mathbf{0} \\ \mathbf{0} & F \end{bmatrix} \begin{bmatrix} P & Q \\ R & S \end{bmatrix}$.

▶3.
$$\begin{bmatrix} \mathbf{0} & I \\ I & \mathbf{0} \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
. ▶4. $\begin{bmatrix} I & \mathbf{0} \\ -E & I \end{bmatrix} \begin{bmatrix} W & X \\ Y & Z \end{bmatrix}$.

En los ejercicios 5 a 8 halla fórmulas para X, Y y Z en términos de A, B y C.

▶5.
$$\begin{bmatrix} A & B \\ C & \mathbf{0} \end{bmatrix} \begin{bmatrix} I & \mathbf{0} \\ X & Y \end{bmatrix} = \begin{bmatrix} \mathbf{0} & I \\ Z & \mathbf{0} \end{bmatrix}.$$

▶6.
$$\begin{bmatrix} X & \mathbf{0} \\ Y & Z \end{bmatrix} \begin{bmatrix} A & \mathbf{0} \\ B & C \end{bmatrix} = \begin{bmatrix} I & \mathbf{0} \\ \mathbf{0} & I \end{bmatrix}$$
.

▶7.
$$\begin{bmatrix} X & \mathbf{0} & \mathbf{0} \\ Y & \mathbf{0} & I \end{bmatrix} \begin{bmatrix} A & Z \\ \mathbf{0} & \mathbf{0} \\ B & I \end{bmatrix} = \begin{bmatrix} I & \mathbf{0} \\ \mathbf{0} & I \end{bmatrix}.$$

▶8.
$$\begin{bmatrix} A & B \\ \mathbf{0} & I \end{bmatrix} \begin{bmatrix} X & Y & Z \\ \mathbf{0} & \mathbf{0} & I \end{bmatrix} = \begin{bmatrix} I & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & I \end{bmatrix}.$$

▶9. Sabiendo que

la inversa de
$$\begin{bmatrix} I & \mathbf{0} & \mathbf{0} \\ A & I & \mathbf{0} \\ B & D & I \end{bmatrix} \quad \text{es} \quad \begin{bmatrix} I & \mathbf{0} & \mathbf{0} \\ P & I & \mathbf{0} \\ Q & R & I \end{bmatrix},$$

halla P, Q y R.

En los ejercicios 10 y 11 indica para cada enunciado si es verdadero o falso.

- (a) Si $A = \begin{bmatrix} A_1 & A_2 \end{bmatrix}$ y $B = \begin{bmatrix} B_1 & B_2 \end{bmatrix}$ son matrices por bloques con A_1 y A_2 de los mismos tamaños respectivos que B_1 y B_2 , entonces $A + B = \begin{bmatrix} A_1 + B_1 & A_2 + B_2 \end{bmatrix}$.
- (b) Si $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$ y $B = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}$ entonces las particiones de A y B son conformes para la multiplicación por bloques.

- (a) Sean A_1 , A_2 , B_1 , A_2 matrices A_1 where A_2 is A_2 . $B = \begin{bmatrix} B_1 & B_2 \end{bmatrix}$. Entonces el producto BA está definido pero el producto AB no lo está.
- (b) La traspuesta de la matriz $A = \begin{bmatrix} P & Q \\ R & S \end{bmatrix}$ es la matriz $A^{\mathsf{T}} = \begin{bmatrix} P^{\mathsf{T}} & Q^{\mathsf{T}} \\ R^{\mathsf{T}} & S^{\mathsf{T}} \end{bmatrix}.$
- **12.** Sea $A = \begin{bmatrix} B & \mathbf{0} \\ \mathbf{0} & C \end{bmatrix}$ donde B y C son matrices cuadradas. Demuestra que $\overset{\iota}{A}$ es inversible si y sólo si tanto B como C son inversibles.

▶13.

- (a) Comprueba que si $A = \begin{pmatrix} 1 & 0 \\ 2 & -1 \end{pmatrix}$ entonces $A^2 = I$.
- (b) Usa el producto de matrices por bloques para demostrar que $M^2 = I$ siendo

$$M = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & -2 & 1 \end{pmatrix}.$$

▶14. Sin realizar ninguna operación elemental de filas calcula

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 3 & 5 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 7 & 8 \\ 0 & 0 & 0 & 5 & 6 \end{pmatrix}.$$

Pistas y soluciones de ejercicios seleccionados de la sección 3.3

4.
$$\begin{bmatrix} I & \mathbf{0} \\ -E & I \end{bmatrix} \begin{bmatrix} W & X \\ Y & Z \end{bmatrix} = \begin{bmatrix} W & X \\ Y - EW & Z - EX \end{bmatrix}.$$
 Nótese la analogía con una operación elemental de reem-

6. Hay que resolver las ecuaciones XA = I, ZC = I e YA + ZB = I. De las dos primeras $X = A^{-1}$ y $Z = C^{-1}$. Con esto y la tercera ecuación se obtiene: $Y = -C^{-1}BA$. (Obsérvese que este ejercicio nos da la inversa de una matriz triangular por bloques de 2 × 2 bloques cuadrados, en función de los bloques y sus inversos.)

8.
$$X = A^{-1}$$
, $Y = 0$, $Z = A^{-1}(I - B)$

9.
$$P = -A$$
, $Q = DA - B$, $R = -D$.

11. (a) Ambos lo están, (b) Las Q^T y R^T en A^T habría que intercambiarlas.

14. Es una matriz diagonal por bloques y por tanto su inversa también es diagonal por bloques con bloques diagonales los inversos de los bloques originales. Obsérvese que los tres bloques tienen det = 2 y de ahí el factor $\frac{1}{2}$.

$$A^{-1} = \frac{1}{2} \begin{pmatrix} 5 & -1 & 0 & 0 & 0 \\ -3 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 6 & -8 \\ 0 & 0 & 0 & -5 & 7 \end{pmatrix}.$$