HEC 2010

Exercice avec préparation 1

Soit n un entier naturel non nul. Un jardinier plante n bulbes de tulipe(s) dans son jardin.

Chaque bulbe a une probabilité $p \in]0;1[$ de donner une fleur. Lorsqu'une tulipe fleurit une année, elle refleurit toutes les années suivantes. Par contre si un bulbe n'a pas donné de fleur une année, il a toujours une probabilité p de donner une fleur l'année suivante. On suppose de plus que les floraisons des différents bulbes sont indépendantes. On pose q = 1 - p.

On suppose que l'expérience est modélisée par un espace probabilisé (Ω, \mathcal{A}, P) .

On appelle T la variable aléatoire correspondant au nombre d'années nécessaires pour que tous les bulbes fleurissent.

- 1. Question de cours : Loi géométrique, définition, propriétés.
- 2. Pour tout $h \in [1; n]$, on définit la variable aléatoire T_h égale au nombre d'années nécessaires pour que le h-ième bulbe fleurisse.
 - a) Déterminer la loi de T_h .
 - b) Exprimer T en fonction de T_1, T_2, \ldots, T_n . En déduire la loi de T.
- 3. a) Calculer $\lim_{N\to+\infty}\sum_{k=1}^n \binom{n}{k} (-1)^k N(q^k)^N$.
 - **b)** Calculer $\lim_{N\to+\infty}\sum_{k=1}^n (-1)^k \binom{n}{k} \sum_{j=1}^N (q^k)^{j-1}$.
 - c) En déduire $\mathbb{E}(T)$ sous forme d'une somme.

Exercice sans préparation 1

Soit E un espace vectoriel de dimension finie $n \ge 1$.

Déterminer les endomorphismes f de E diagonalisables qui vérifient $\mathrm{Im}(f) \subset \ker(f)$.

Exercice avec préparation 2

- 1. Question de cours : Comparaison de fonctions au voisinage de l'infini.
- 2. Soit g la fonction définie sur \mathbb{R}_+^* à valeurs réelles, telle que :

$$\forall x \in]0; +\infty[, \quad g(x) = x \ln^2(x).$$

- a) Montrer que g réalise une bijection de $]1; +\infty[$ dans $]0; +\infty[$. Soit h la bijection réciproque de la restriction de g à l'intervalle $]1; +\infty[$.
- b) a) Montrer que:

$$\forall x > 0, \quad \ln h(x) + 2\ln(\ln h(x)) = \ln(x)$$

- b) En déduire un équivalent simple de h(x) lorsque x tend vers $+\infty$.
- 3. Soit X une variable aléatoire de densité f définie par :

$$f(x) = \begin{cases} \frac{1}{2g(|x|)} & \text{si } |x| < \frac{1}{e} \text{ et } x \neq 0\\ 0 & \text{sinon} \end{cases}$$

- a) Vérifier que f est bien une densité de probabilité.
- b) Montrer que X possède une espérance et la calculer.
- c) X possède-t-elle une variance?

Exercice sans préparation 2

On note $\mathscr{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 .

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base \mathscr{B} est $M = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

- 1. Calculer $f(e_1 + e_2 + e_3)$, $f(e_2 \text{ et } f(-e_1 + e_3)$.
- 2. Montrer que M est semblable à la matrice $M' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$.
- 3. M est-elle diagonalisable?

Exercice avec préparation 3

Soit X une variable aléatoire définie sur un espace probabilisé (Ω, \mathcal{A}, P) , qui suit la loi binomiale $\mathcal{B}(n, p)$, avec $n \ge 2$ et 0 .

On définit sur (Ω, \mathscr{A}, P) une variable aléatoire Y de la façon suivante :

- \times pour tout $k \in [1; n]$, la réalisation de l'évènement [X = k] entraı̂ne celle de l'évènement [Y = k];
- \times la loi conditionnelle de Y sachant [X = 0] est la loi uniforme sur [1; n].
- 1. Question de cours : Le modèle binomial.
- 2. Déterminer la loi de probabilité de Y.
- 3. Calculer l'espérance $\mathbb{E}(Y)$ de Y.
- 4. a) Déterminer la loi de probabilité conditionnelle de Y sachant $[X \neq 0]$.
 - b) Calculer l'espérance, notée $\mathbb{E}(Y \mid [X \neq 0])$, de la loi conditionnelle de Y sachant $[X \neq 0]$.

Exercice sans préparation 3

Soit A une matrice symétrique réelle d'ordre n $(n \in \mathbb{N}^*)$ et vérifiant $A^k = I_n$. Que peut-on dire dans les cas suivants :

- a) k est un entier naturel impair?
- b) k est un entier naturel pair non nul?

Exercice avec préparation 4

Toutes les variables aléatoires de cet exercice sont définies sur un espace probabilisé (Ω, \mathcal{A}, P) .

- 1. Question de cours : Espérance et variance d'une variable aléatoire discrète finie ; définition et interprétation.
- 2. Soient a et b deux réels tels que a < b. On considère une variable aléatoire X (discrète ou possédant une densité) prenant toutes ses valeurs dans l'intervalle [a, b] et ayant un moment d'ordre 2.
 - a) Montrer que pour tout réel λ , on a la relation $\mathbb{V}(X) \leqslant \mathbb{E}((X \lambda)^2)$.
 - **b)** En déduire que $\mathbb{V}(X) \leqslant \frac{(b-a)^2}{4}$.
- 3. Dans la suite X est une variable aléatoire discrète ayant un moment d'ordre 2.
 - a) On suppose que X suite une loi uniforme sur $\{a,b\}$, c'est-à-dire :

$$\mathbb{P}([X=a]) = \mathbb{P}([X=b]) = \frac{1}{2}$$

Montrer alors qu'il y a égalité dans l'inégalité précédente.

- b) Etude d'une réciproque : on suppose que $\mathbb{V}(X) = \frac{(b-a)^2}{4}$. Montrer que $X(\Omega) = \{a, b\}$, puis que X suit une loi uniforme sur $\{a, b\}$.
- 4. Que signifie le résultat précédent ? (on pourra s'appuyer sur l'interprétation de la variance)

Exercice sans préparation 4

Soient X et Y deux variables aléatoires définies sur un même espace probabilisé (Ω, \mathcal{A}, P) , indépendantes, suivant la loi géométrique de paramètre $p \in]0;1[$.

Pour tout $\omega \in \Omega$, on pose :

$$M(\omega) = \begin{pmatrix} X(\omega) & 0\\ 1 & Y(\omega) \end{pmatrix}$$

- 1. Déterminer $\mathbb{P}(\{w \in \Omega \mid M(\omega) \text{ inversible }\})$.
- 2. Déterminer $\mathbb{P}(\{w \in \Omega \mid M(\omega) \text{ diagonalisable }\})$.

Exercice avec préparation 5

Soit n un entier supérieur ou égal à 2, et p et q deux réels de]0;1[tels que p+q=1. On considère deux variables aléatoires discrètes X et Y définies sur une espace probabilisé (Ω, \mathcal{A}, P) .

La loi du couple (X, Y) est donnée par :

pour tout (j,k) tels que $0 \le j \le n$ et $1 \le k \le n$,

$$\mathbb{P}([X=j] \cap [Y=k]) = \begin{cases} \binom{n}{k} p^k q^{n-k} & \text{si } k=j, \ j \neq 0 \\ \frac{q^n}{n} & \text{si } j=0 \\ 0 & \text{si } k \neq j \text{ et } j \neq 0 \end{cases}$$

- Question de cours : Loi d'un couple de variables aléatoires discrètes. Lois marginales, lois conditionnelles.
- 2. a) Déterminer les lois marginales de X et Y respectivement.
 - **b)** Calculer $\mathbb{E}(Y)$.
- 3. Soit j un entier tel que $0 \le j \le n$.
 - a) Déterminer la loi conditionnelle de Y sachant [X = j].
 - b) Calculer l'espérance conditionnelle, notée $\mathbb{E}(Y \mid [X = j])$, de la loi conditionnelle de Y sachant [X = j].
- 4. a) Montrer que, pour tout $q \in [0; 1[$, on a :

$$\mathbb{P}([X=1]\cap [Y=1])\neq \mathbb{P}([X=1])\times \mathbb{P}([Y=1])$$

Conclure.

- b) Calculer Cov(X,Y). Montrer qu'il existe une valeur de q pour laquelle Cov(X,Y)=0.
- c) Conclure.

Exercice sans préparation 5

Étudier la convergence de la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par :

$$\forall n \in \mathbb{N}^*, \quad u_n = \frac{1}{n^{\alpha}} \sum_{k=1}^n k \ln \left(1 + \frac{k}{n} \right)$$

où α est un nombre réel,

- 1. Dans le cas où $\alpha = 2$.
- 2. Dans le cas où $\alpha \neq 2$.

Exercice avec préparation 6

- 1. Question de cours : Moment d'ordre r d'une variable aléatoire à densité; définition, existence.
- 2. Montrer qu'il existe deux réels A et B, indépendants de x, tels que, pour tout réel x > 0, on a :

$$\frac{1}{x(x+1)} = \frac{A}{x} + \frac{B}{x+1}$$

3. On pose:

$$f(x) = \begin{cases} \frac{k}{x(x+1)} & \text{si } x \geqslant 1\\ 0 & \text{sinon} \end{cases}$$

où k est un paramètre réel.

- a) Déterminer k pour que f soit une densité d'une variable aléatoire X.
- b) X admet-elle une espérance?
- 4. a) Déterminer la loi de T = |X| où |X| désigne la partie entière de X.
 - **b)** En déduire la valeur de $\sum_{n=1}^{+\infty} \ln \left(1 + \frac{1}{n(n+2)}\right)$.
- 5. Déterminer la loi de $Z = \frac{1}{X}$.
- 6. a) Déterminer la loi de Y = X |X|.
 - b) Montrer que, pour tout entier $r \ge 1$, Y admet un moment d'ordre r.
 - c) Calculer $\mathbb{E}(Y)$.

Exercice sans préparation 6

Soit
$$n \geqslant 2$$
 et $A = \begin{pmatrix} 0 & 1 & \dots & 1 \\ 1 & 0 & \dots & 1 \\ \vdots & & \ddots & \vdots \\ 1 & 1 & \dots & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$

Calculer A^{-1} .

Exercice avec préparation 7

1. Question de cours : Définitions d'un estimateur, d'un estimateur sans biais d'un paramètre réel inconnu θ .

Soit Z une variable aléatoire discrète d'espérance $\mathbb{E}(Z) = \theta$ $(\theta \in \mathbb{R}^*)$ et de variance $\mathbb{V}(Z) = 1$.

Pour n entier de \mathbb{N}^* , on dispose d'un n-échantillon (Z_1, Z_2, \ldots, Z_n) de variables aléatoires indépendantes et de même loi que Z, définies sur un espace probabilisé (Ω, \mathcal{A}, P) .

On pose $\overline{Z_n} = \frac{1}{n} \sum_{j=1}^n Z_j$. On suppose que θ est inconnu.

- 2. a) La variable aléatoire $\overline{Z_n}$ est-elle un estimateur sans biais de θ ?
 - b) Quel est le risque quadratique de $\overline{Z_n}$ en θ ?
- 3. Soient $\beta_1, \beta_2, \ldots, \beta_n$ des réels non nuls et $Y_n = \sum_{j=1}^n \beta_j Z_j$.
 - a) Déterminer la condition que doivent vérifier les réels $\beta_1, \beta_2, \ldots, \beta_n$, pour que, pour tout $\theta \in \mathbb{R}^*$, on ait : $\mathbb{E}(Y_n) = \theta$?

On suppose que cette condition est vérifiée.

- b) Calculer $\operatorname{Cov}(\overline{Z_n}, Y_n)$ et $\mathbb{V}(\overline{Z_n})$, où Cov désigne la covariance et \mathbb{V} la variance. En déduire que $\mathbb{V}(\overline{Z_n}) \leq \mathbb{V}(Y_n)$. Interprétation.
- 4. Soient $\alpha_1, \alpha_2, \ldots, \alpha_n$ des réels non nuls.

On définit la variable aléatoire U_n par : $U_n = \sum_{j=1}^n \alpha_j Z_j$,

et on suppose que $\underline{\mathbb{E}(U_n)} = \theta$ et $\mathbb{V}(U_n) = \frac{1}{n}$.

Montrer que $U_n = \overline{Z_n}$ avec une probabilité égale à 1.

Exercice sans préparation 7

Soit f la fonction définie sur $\mathbb{R}_+^* \times \mathbb{R}_+^*$, à valeurs réelles, par :

$$f(x,y) = \frac{x^2 + xy + \sqrt{y}}{x\sqrt{y}}.$$

- 1. Montrer que f est de classe C^2 sur $\mathbb{R}_+^* \times \mathbb{R}_+^*$.
- 2. Déterminer les points critiques de f.
- 3. Quelle est la nature de ces points critiques?