CS 580 ALGORITHM DESIGN AND ANALYSIS

Dynamic Programming

Vassilis Zikas

DYNAMIC PROGRAMMING

- The algorithmic tools so far:
 - Greedy and D&C
- Great tools
- But useful in very specific types of problems
 - E.g. the problems we talked in the D&C module have obvious poly-time solutions, and the smart D&C solution was faster
 - But we didn't see how to break "exponential barriers"
- Today:
 - Sledgehammer #1: Dynamic programming
- In the future:
 - Sledgehammer #2: Linear programming

DYNAMIC PROGRAMMING

• Greedy:

Build a solution incrementally

• D&C:

 Break problem into smaller sub-problems of the same instance, solve recursively and combine

Dynamic programming:

 Break up problem into series of overlapping sub-problems and build up solutions to larger and larger sub-problems

INTERVAL SCHEDULING

- There's an incoming set of jobs $\{1, ..., n\}$
- The *i*th job corresponds to an interval $[s_i, t_i]$
- · Two jobs are compatible if they don't overlap
- Goal: find maximum subset of compatible jobs

- There's an incoming set of jobs $\{1, ..., n\}$
- The *i*th job corresponds to an interval $[s_i, t_i]$ and has weight v_i
- Two jobs are compatible if they don't overlap
- Goal: find maximum weight subset of compatible jobs

 Observation: Greedy can fail (spectacularly) if arbitrary weights are allowed

- Sort in non decreasing finish time and re-name the jobs so that $f_1 \le f_2 \le \cdots \le f_n$
- For job j let p(j) = largest index i < j such that job i is compatible with job j

Time

- OPT(j) := value of optimal solution to the problem with requests 1, ..., j
 - Typical dynamic programming formulation
- Case 1: OPT(j) doesn't select job j
 - Easy observation: Then it's just the same as OPT(j-1)
- Case 2: OPT(j) selects job j
 - Then it can't select all the jobs that are incompatible with j
 - ∘ Those are exactly p(j) + 1, ..., j 1
 - Therefore, OPT(j) in this case should just be the same as OPT(p(j)) plus job j

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \max \{ v_j + OPT(p(j)), OPT(j-1) \} & \text{otherwise} \end{cases}$$

- 1. Sort by finish time and rename to get $f_1 \le \cdots \le f_n$: O(nlog(n))
- 2. Compute p(j) for each job j: $O(n^2)$
- 3. For each job j run compute-OPT(j):
 - If j = 0, return 0
 - Return $\max\{OPT(p(j)) + v_j, OPT(j-1)\}$
- For compute-OPT(j):
 - T(n) = T(n-1) + T(p(n)) + O(1)
 - This is exponential!

RECURSION? NO THANKS!

- Why recurse??
 - Just store the value of OPT(j)
- We've already seen this trick with Fibonacci!
- 3. For all j, OPT[j] = 0
- 4. For all j, run Compute-OPT(j):
 - If j = 0 return 0
 - $\circ \quad OPT[j] = \max\{OPT[j-1], OPT[p(j)] + v_j\}$
- Step 4 now takes linear time!

- Motivation:
 - A spellchecker finds a misspelled word
 - Wants to look for close by words in the dictionary
 - What's an appropriate notion of distance?

- Minimum number of edits (insertions, deletions and replacements) needed for the two string to be identical
 - "-" above means that you can place anything

- Input:
 - Strings x = x[1, ..., m] and y = y[1, ..., n]
- Output:
 - Minimum edit distance

- How about solving it on the prefix?
- E(i,j) = minimum edit distance between <math>x[1,...,i] and y[1,...,j]

Figure 6.3 The subproblem E(7,5).

- What's E(i, j) in terms of subproblems we've already solved?
 - E.g. E(i-1,j), E(i,j-1), E(i-1,j-1), and so on?

- In the alignment of x[i] and y[j], one of three things can happen
 - 1. We have x[i] and " "
 - 2. We have "-" and y[j]
 - 3. x[i] aligned with y[j]

- In the alignment of x[i] and y[j], one of three things can happen
 - 1. We have x[i] and " "
 - 2. We have "-" and y[j]
 - 3. x[i] aligned with y[j]
- Case 1:
 - The remainder problem aligns x[1, ..., i-1] and y[1, ..., j]
 - ∘ That's just E(i 1, j)

- In the alignment of x[i] and y[j], one of three things can happen
 - 1. We have x[i] and " "
 - 2. We have "-" and y[j]
 - 3. x[i] aligned with y[j]
- Case 2:
 - The remainder problem aligns x[1, ..., i] and y[1, ..., j-1]
 - That's just E(i, j 1)

- In the alignment of x[i] and y[j], one of three things can happen
 - 1. We have x[i] and " "
 - 2. We have "-" and y[j]
 - 3. x[i] aligned with y[j]
- Case 3:
 - The remainder problem aligns x[1, ..., i-1] and y[1, ..., j-1]
 - That's just E(i-1, j-1)
 - Almost!
 - x[i] = y[j] and they're aligned
 - Or, $x[i] \neq y[j]$ and they're aligned
 - Define diff(i,j) := 0 if x[i] = y[j] and 1 otherwise

- In the alignment of x[i] and y[j], one of three things can happen
 - 1. We have x[i] and " "
 - 2. We have "-" and y[j]
 - 3. x[i] aligned with y[j]
- Overall

$$E(i,j) = min \begin{cases} diff(i,j) + E(i-1,j-1) \\ 1 + E(i-1,j) \\ 1 + E(i,j-1) \end{cases}$$

- Example
 - EXPONENTIAL vs POLYNOMIAL
 - \circ E(4,3): EXPO vs POL
 - Either O and "-"
 - Either "-" and L
 - Or O aligned with L
 - $E(4,3) = \min\{1 + E(3,3), 1 + E(4,2), 1 + E(3,2)\}$

• Where do we start?

- For i = 0, ..., m: E(i, 0) = i
- For j = 0, ..., n: E(0, j) = j
- For i = 1, ..., m
 - \circ For j = 1, ..., n:
 - $E(i,j) = \min\{\dots\}$
- Return E(m, n)
- Running time: O(mn)

Make sure we have actually solved all subproblems we need!

- Can you do better?
- Probably not...
 - Backurs and Indyk [2015]
 - ° If the edit-distance can be computed in time $O(n^{2-\delta})$ for some constant $\delta>0$, then SAT can be solved in time $2^{n(1-\epsilon)}$ for some constant $\epsilon>0$. Also known as SETH (Strong Exponential Time Hypothesis)
 - Not as widely believed as $P \neq NP$, but pretty reasonable
 - If you don't believe it, you don't have to worry about finding algorithms for SAT, just beat $O(n^2)$ for edit distance!

KNAPSACK

- During a robbery, a burglar finds much more loot than he had expected and has to decide what to take
- His bag can take total weight of W
- There are *n* items to pick from
 - \circ Item *i* has weight w_i and value v_i
- What's the most valuable collection of items that can fit in the bag??

KNAPSACK

- W = 10
- Unlimited amount of each item:
 - Item 1 and two of item 4: \$48
- One of each item:
 - Item 1 and item 3: \$46

Item	Weight	Value
1	6	\$30
2	3	\$14
3	4	\$16
4	2	\$9

KNAPSACK

- Greedy?
- Clearly picking highest value would be a bad idea (not for this instance, but generally)
- What about sort by v_i/w_i (bang-per-buck)
- Also suboptimal:
 - Will put in items 1 and 2

Item	Weight	Value
1	6	\$30
2	3	\$14
3	4	\$16
4	2	\$9

KNAPSACK: WITH REPETITION

- THE question in dynamic programming:
 - What are the subproblems?
- Smaller knapsack (i.e. W)? Fewer items?
- K(w) = maximum value with weight w
- What's the value of K(w)?
- If *i* is included, then it's $v_i + K(w w_i)$
 - Which *i*??
 - Try all!
- $K(w) = \max_{i:w_i \le w} \{K(w w_i) + v_i\}$

KNAPSACK: WITH REPETITION

Item	Weight	Value
1	6	\$30
2	3	\$14
3	4	\$16
4	2	\$9

- K(0) = K(1) = 0
- K(2) = 9 (only item 4 fits)
- $K(3) = \max\{K(0) + v_2, K(1) + v_4\} = 14$
- $K(4) = \max\{K(1) + v_2, K(0) + v_3, K(2) + v_4\} = \max\{14,16,9+9\} = 18$
- •
- K(W) is the solution

KNAPSACK: WITHOUT REPETITION

- Previous subproblem is useless
- It's not enough to know K(w)
 - We need to know the items used, so that we don't repeat them!
- K(w, j) = maximum value with knapsack of size w with items 1, ..., j

KNAPSACK: WITHOUT REPETITION

- Case 1: OPT doesn't select i
 - $\circ K(w,i) = K(w,i-1)$
- Case 2: *OPT* selects *i*
 - $K(w,i) = K(w w_i, i 1) + v_i$
- Pick the best of the two!

$$K(w, i) = \max\{K(w, i - 1), K(w - w_i, i - 1) + v_i\}$$

KNAPSACK

- Running time?
- In both versions, we have at least as many subproblems as W
 - Linear?
 - No!!!
- We only need logW bits to represent W
- Exponential running time!!!!
- Can we do better?
- Probably not...

• Input:

• Directed graph G = (V, E) with weighted (and maybe negative) edges

Output:

The shortest path between all pairs of vertices

- Bellman-Ford from each vertex s
 - $\circ O(|V|^2|E|)$
- We'll do $O(|V|^3)$
 - The Floyd-Warshall algorithm
- THE question:
 - What's a good subproblem?

- Hint: Intermediate nodes
 - What if none are allowed?
 - Easy: shortest path is just an edge, if it exists
 - \circ What if v_1 is the only allowed intermediate node?
 - Shortest (u, v) path is the smaller of (1) the edge $w_{u,v}$ if the edge exists, (2) the edge from u to v_1 plus the edge from v_1 to v
 - Keep growing this

- dist(i, j, k): the length of the shortest path from i to j in which the only intermediate nodes allowed are {1, ..., k}
 - $dist(i, j, 0) = w_{i,j}$, or ∞ if no edge exists
- Adding a vertex k
 - Need to re-examine all pairs i, j
 - Easy: either you use *k* or you don't

- Note: we are assuming no negative cycles
 - Where??
 - We implicitly assumed that the shortest path from i to j goes through k at most once!
 - We can detect these cycles by running Bellman-Ford
- Under the assumption:

$$dist(i,j,k) = min \begin{cases} dist(i,j,k-1) \\ dist(i,k,k-1) + dist(k,j,k-1) \end{cases}$$

• <u>Definition</u>: A subset of vertices *S* is an *independent set* in an undirected graph *G* if there is no edge (v, u) where both v and u are in *S*

Problem:

- Input: a tree G = (V, E)
- Output: the (size of the) largest independent set

- Independent set in general graphs is difficult
 - Very very very difficult
- Trees are a rare subcase where the problem is tractable
 - Neat dynamic program

- THE question:
 - What's the subproblem?
- Root the tree from some node r
- OPT either has r or it doesn't
 - If it does, then it can't contain any of its children
 - If it doesn't then we can recurse in the subtrees
 - Since there are no edges between them we are in good shape: the optimal solutions are independent

• I(r) = weight of maximum independent set of subtree hanging from r

•
$$I(r) = max \begin{cases} 1 + \sum_{grandchildren \ u \ of \ r} I(u) \\ \sum_{children \ u \ of \ r} I(u) \end{cases}$$

- Start from leaves and go up the tree
- Done!