Introduction •00

Machine Learning

Lecture 10 Clustering

Felix Bießmann

Beuth University & Einstein Center for Digital Future

Introduction 000

Clustering

Psychological Models of Categorization: Prototypes

Prototypes μ_{Λ} and μ_{o} :

$$\mu_{\Delta} = 1/N_{\Delta} \sum_{n}^{N_{\Delta}} \mathbf{x}_{\Delta,n}$$

$$\mu_o = 1/N_o \sum_{n}^{N_o} \mathbf{x}_{o,n}$$

New data points x are assigned to their closest cluster center μ^*

$$\mu^* = \underset{:}{\operatorname{argmin}} (\|\mu_i - \mathbf{x}\|_2)$$
 (1)

Clustering

Psychological Models of Categorization: Prototypes

Introduction ○○●

The only difference for clustering is: **We do not have labels.**

K-means Clustering

Goal: Given data $\mathbf{x}_1, \dots, \mathbf{x}_N$ find cluster centers $\mu_1, \dots \mu_K$ such that the distances of data points to their respective cluster centre are minimized

$$\mathcal{J} = \sum_{n=1}^{N} \sum_{k=1}^{K} \mathbf{c}_{n,k} \|\mathbf{x}_n - \boldsymbol{\mu}_{\mathbf{c}_k}\|$$
 (2)

where
$$\mathbf{c}_{n,k} \begin{cases} 1 & \text{if } \mathbf{x}_n \text{ belongs to cluster } k \\ 0 & \text{otherwise} \end{cases}$$
 (3)

K-means Clustering

K-Means Algorithm

Re-iterating two steps:

- 1. Assign each data point \mathbf{x}_i to their closest cluster μ_k
- 2. Update μ_{ν} to the mean of the members in that cluster

K-means Clustering Algorithm

Algorithm 1 K-means clustering

```
Require: data \mathbf{x}_1, \dots, \mathbf{x}_N \in \mathbb{R}^D, number of clusters k, iterations m.
 1: Choose random data points as initial cluster centres \mu_1 \leftarrow x_{i_1}, \dots, \mu_k \leftarrow x_{i_k} where
      i_i \neq i_l for all j \neq l.
 2: \mathbf{c} \leftarrow \mathbf{0}_N
 3: \mathbf{c}^{\text{old}} \leftarrow \mathbf{0}_{\text{M}}
 4: i \leftarrow 0
 5: while i < m do
 6:
           for i = 1 to N do
 7:
                Find nearest cluster centre \mathbf{c}_i \leftarrow \operatorname{argmin}_{1 < l < k} \|\mathbf{x}_i - \boldsymbol{\mu}_l\|_2
 8:
           end for
 9:
           for j ← 1 to k do
                 Compute new cluster centre \mu_i \leftarrow \frac{1}{|\{l: \mathbf{c}_i = i\}|} \sum_{l: \mathbf{c}_i = i} \mathbf{x}_l
10:
11:
          end for
12: if c^{old} = c then
13:
                 break
14: end if
15: c^{\text{old}} \leftarrow c
16: i \leftarrow i + 1
17: end while
```


Application Example: Geyser Eruptions

Old Faithful Geyser Yellowstone National Park, USA

Famous data set for clustering

- Old Faithful Eruptions
- Two dimensions
 - 1. Time of Eruption [mins]
 - 2. Time until next Eruption [mins]

Application Example: Geyser Eruptions

Famous data set for clustering

- Old Faithful Eruptions
- Two dimensions
 - 1. Time of Eruption [mins]
 - 2. Time until next Eruption [mins]

K-means Clustering Step-by-Step

Clustering Instability

Number of Clusters is a critical parameter

Clusterings are instable if number of clusters is too small or too large

- Number of clusters is critical hyper parameter
- In supervised settings we use cross-validation to optimize hyper-parameters for accuracy on test data
- How can we optimize the number of clusters?
- \rightarrow Choose that k that results in most **stable** clusterings For a review see e.g. [von Luxburg, 2009]

Clustering Instability Algorithm

Algorithm 2 Clustering Instability

Require: data points $x_1, \ldots, x_n \in \mathbb{R}^d$, clustering algorithm \mathcal{A} , maximal number of clusters K. iterations i.

Ensure: optimal number of clusters k^*

- 1: for k=2 to K do
- 2: Resample data set (e.g. random draws with replacement)
- 3: for it = 1 to i do
- 4: Cluster data using algorithm A into k clusters
- 5: end for
- 6: Compute minimal (across all label permutations) distance between clusterings
- 7: end for
- 8: Chose that k that has the minimal instability over resamplings

- Until 1989 Germany was divided into
 - a free capitalistic western part
 - a communist eastern part
- Political systems influence mentality of people
- The survey "Perspektive Deutschland" investigated this Survey asked questions about:
 - what people desire
 - what people are afraid of

K-Means

...based on questionnaires, 'Perspektive Deutschland' poll 2005.

German Regions clustered by 'Mentality' of Population

People in cluster 1 say:

Helping others is important I am afraid of loosing my job

People in cluster 2 say:

Reaching my own goals is important I am afraid of loosing my health

$$\mathcal{E}(\boldsymbol{\mu}_{k}) = \frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_{k})^{2}$$

$$= \frac{1}{2} \mathbf{x}^{\top} \mathbf{x} - \frac{1}{2} 2 \mathbf{x}^{\top} \boldsymbol{\mu}_{k} - \frac{1}{2} \boldsymbol{\mu}_{k}^{\top} \boldsymbol{\mu}_{k}$$

$$\frac{\partial \mathcal{E}(\boldsymbol{\mu}_{k})}{\partial \boldsymbol{\mu}_{k}} = \boldsymbol{\mu}_{k} - \mathbf{x}$$
(4)

Learning rate $\eta = \frac{1}{n_k} (n_k = \text{number of samples in cluster } k)$

Gradient Step
$$\mu_k \leftarrow \mu_k - \eta \frac{\partial \mathcal{E}(\mu_k)}{\partial \mu_k} = \mu_k - \frac{1}{n_k} (\mathbf{x} - \mu_k)$$

Online K-Means Algorithm

Algorithm 3 Online K-means clustering

Require: data points $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$, number of clusters k, iterations m.

Ensure: cluster centres $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$

- 1: Choose random data points as initial cluster centres
 - $\mu_k \leftarrow \mathbf{x}_i, \dots, \mu_k \leftarrow \mathbf{x}_{i_k}$ where $i_j \neq i_l$ for all $j \neq l$.
- 2: Initialize cluster assignment counts $n_1, \ldots, n_k \leftarrow 0$
- 3: **for** i = 1, ..., m **do**
- 4: Draw a new data point randomly x_i
- 5: Find nearest cluster centre $k^* \leftarrow \operatorname{argmin}_k \|\mathbf{x}_i - \boldsymbol{\mu}_k\|_2$
- 6: Update cluster counts $n_{k^*} \leftarrow n_{k^*} + 1$
- 7: Update cluster centers $\mu_{k^*} \leftarrow \mu_{k^*} + \frac{1}{n_{i^*}} (\mathbf{x}_i - \mu_{k^*})$
- 8: end for

Online K-Means Algorithm - Example

Distance Measures for Real-Valued Data $\mathbf{x} \in \mathbb{R}^D$

Clustering Algorithms need a distance function $d(\mathbf{x}_i, \mathbf{x}_i)$

ullet For real valued data ${f x} \in \mathbb{R}^D$ we can use the Euclidean distance

$$d(\mathbf{x}_i, \mathbf{x}_j) = \|\mathbf{x}_i - \mathbf{x}_j\|_2^2 \tag{5}$$

More robust (less sensitive to outliers) is the **city block distance** or \mathcal{L}_1 norm

$$d(\mathbf{x}_i, \mathbf{x}_j) = \|\mathbf{x}_i - \mathbf{x}_j\|_1 \tag{6}$$

Another alternative is the correlation coefficient (also called cosine similarity)

$$d(\mathbf{x}_i, \mathbf{x}_j) = \frac{\mathbf{x}_1^{\top} \mathbf{x}_2}{\|\mathbf{x}_1\|_2 \|\mathbf{x}_2\|_2}$$
 (7)

For standardized data $\sum_i \mathbf{x}_i = 0, \ \sum_i \mathbf{x}_i^2 = 1$ maximizing correlation is the same as minimizing euclidean distance.

Distance Measures for Non-Real-Valued Data

- For ordinal variables $\mathbf{x} \in \{\text{low}, \text{medium}, \text{high}\}^D$ we can transform the values into real-valued numbers (for three possible values e.g. 1/3, 2/3, 3/3) and then apply distance functions for real-valued data
- For categorial variables $\mathbf{x} \in \{\text{red}, \text{green}, \text{blue}\}^D$ we can use a binary coding for the differences

$$d(\mathbf{x}_i, \mathbf{x}_j) = \sum_{d}^{D} \mathbf{x}_{id} \neq \mathbf{x}_{jd}$$
 (8)

This metric is called **Hamming Distance**

For the sake of simplicity we only consider the euclidean distance

Hierarchical Clustering

- K-Means produces **flat** clusterings
- Often we are interested in a **hierarchy** of clusterings
- Examples:
 - Biological Species
 - Topics in Text Documents

Hierarchical Clustering

- K-Means produces **flat** clusterings
- Often we are interested in a hierarchy of clusterings
- Examples:
 - Biological Species
 - Topics in Text Documents

Hierarchical Clustering

- A popular approach to hierarchical clustering is
 - 1. Start with each data point as one cluster
 - 2. Successively merge (agglomerate) similar clusters

→ Agglomerative Clustering

As most clustering algorithms, these procedures are not defined via objective functions but via algorithms

→ Difficult to establish convergence criteria

Agglomerative Clustering

Merging requires distance function $d(C_i, C_j)$ for clusters C_i , C_j

Agglomerative Clustering

Merging requires distance function $d(C_i, C_i)$ for clusters C_i , C_i

Single Linkage Distance between two closest points in C_i , C_i

$$d(C_i, C_j) = \min_{\mathbf{x}_i \in C_i, \mathbf{x}_j \in C_j} d(\mathbf{x}_i, \mathbf{x}_j)$$

Agglomerative Clustering

Merging requires distance function $d(C_i, C_i)$ for clusters C_i , C_i

Single Linkage Distance between two closest points in C_i , C_i

$$d(C_i, C_j) = \min_{\mathbf{x}_i \in C_i, \mathbf{x}_j \in C_j} d(\mathbf{x}_i, \mathbf{x}_j)$$

Complete Linkage Distance between two most distant points

$$d(C_i, C_j) = \max_{\mathbf{x}_i \in C_i, \mathbf{x}_j \in C_j} d(\mathbf{x}_i, \mathbf{x}_j)$$

Merging requires distance function $d(C_i, C_i)$ for clusters C_i , C_i

Single Linkage Distance between two closest points in C_i , C_i

$$d(C_i, C_j) = \min_{\mathbf{x}_i \in C_i, \mathbf{x}_j \in C_j} d(\mathbf{x}_i, \mathbf{x}_j)$$

Complete Linkage Distance between two most distant points

$$d(C_i, C_j) = \max_{\mathbf{x}_i \in C_i, \mathbf{x}_j \in C_j} d(\mathbf{x}_i, \mathbf{x}_j)$$

Average Linkage Average distance between all $N_i N_i$ pairs

$$d(C_i, C_j) = \frac{1}{N_i N_j} \sum_{\mathbf{x}_i \in C_i, \mathbf{x}_j \in C_j} d(\mathbf{x}_i, \mathbf{x}_j)$$

Agglomerative Clustering Algorithm

Algorithm 4 Agglomerative Clustering

```
Require: Data points x_1, \ldots, x_N \in \mathbb{R}^D, number of clusters k, distance function d(.,.)
Ensure: Binary tree of clusters
 1: Initialize each data point as cluster
 2: for i = 1 to N do
        C_i \leftarrow i
 4: end for
 5: Initialize each cluster as available for merging
 6: S \leftarrow \{1, \ldots, N\}
 7: while There are clusters to merge do
 8:
        Pick 2 most similar clusters to merge
 9:
        j, k \leftarrow \operatorname{argmin}_{i,k} d(j, k)
10:
       Merge clusters to new cluster C_l \leftarrow C_i \cup C_k
11:
        Mark i, k as unavailable for merging
12: S \leftarrow S \setminus \{j, k\}
13: if C_l \notin S then
14:
            \mathcal{S} \leftarrow \mathcal{S} \cup \{I\}
15:
         end if
16: end while
```


Examples Hierarchical Clustering

Dendrograms (binary clustering trees) of yeast gene expression data

Taken from [Murphy, 2012]

Summary

- Clustering Algorithms find clusters in data
- Clustering Performance depends on distance function used
- K-Means is one of the most popular clustering algorithms
- For large data sets use Online K-Means
- Wrong number of clusters leads to unstable results
- Hierarchical clustering

- C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer US, 2007.
- S. Lloyd. Least squares quantization in pcm. Information Theory, IEEE Transactions on, 28(2):129-137, Mar. 1982. ISSN 0018-9448.
- K. P. Murphy. Machine Learning: A Probabilistic Perspective. Adaptive Computation and Machine Learning. The MIT Press, 1 edition, 2012. ISBN 0262018020,9780262018029.

U. von Luxburg. Clustering stability: An overview. Foundations and Trends in Machine Learning, 2(3):235–274, 2009.

