Integration eines aktiven

einen Viertelfahrzeug Luftfederdämpfers in

Prüfstand

Integration of an active air spring damper in a quarter car test rig

Autor B.Sc. Clemens Janzarik, (Betreuer M.Sc. Manuel Rexer)

Masterthesis am Institut für Fluidsystemtechnik, Darmstadt, 10. November 2020

Danksagung oder Widmung

Wenn sich Word beim Starten beschwert, dass das Dokument nicht bearbeitet werden kann, oder die Schriftarten fehlen, braucht man die offiziellen TUD Schriftarten von der TU Homepage:

http://www.tu-darmstadt.de/aktuell/tudesign,

Die neuen Schriftarten sehen am Bildschiffm bei verkleinerter Darstellung merkwürdig aus. Dies ist aber bei einem Ausdruck verschwunden, es ist "nur" ein Darstellungsproblem.

Dieses Dokument wird laufend angepasst. Deswegen sollte die jeweils aktuellste Vorlage verwendet werden.

Zur Definition der Titel-Signatur:

S für Studentische Arbeiten

D für Dissertationen

B für sonstige Berichte (z.B. Industrieberichte)

Nummer: Fortlaufend. Woher kennt man die Nummer? Auf Documents werden die Dateien mit der Nummer/abgelegt:

presentation_JJMMTT_S001_Titel_Autor.ppt report JJMMTT S001 Titel Autor.doc report_JJMMTT_S001_Titel_Autor.pdf

FLUIDSYSTEMTECHNIK Prof. Dr.-ing. Peter F. Peiz

MASCHINENBAU We engineer future

Erklärungen

Hiermit versichere ich, die vorliegende Masterarbeit ohne Hilfe Dritter nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die den Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

(Unterschrift) (Ort, Datum)

Inhalt

duften ist congeyesen his dunde Antorderungen an die Lutteder Debe of Ceiche Degrife Verwender 2.4 (Statistische Grundlagen um HiL und Viertelfahrzeug-Versuche miteinander zu vergleichen) 4 ÎINTEGRATION DES AKTIVEN LUFTFEDERDÄMPFERS IN DEN VIERTELFAHRZEUG > Einen Unterpartet braun t 3 KONSTRUKTIVE UMGESTALTUNG DES FUNKTIONSPROJOTYPS...... 5 JANDERUNGEN AN DER PRÜFSTANDSOFTWARE GELIGER F. C. CORT 4.3 / Mögliche Probleme die aufgetreten sind, und wie sie gelöst wurden .. 7 VERGLEICH MIT HARDWARE IN THE LOOP VERSUCHEN 3.3 Integration von Beschleunigungs- und Wegsensoren... 5.1 Reduzierung um das Viertelfahrzeugmodell. John Frandlegende 4.1 Anforderungen an den Prüfstand 5.2 Implementierung der Sensorfusion 6 VERSUCHSDURCHFÜHRUNG 2.1 Der aktive Luftfederdämpfer... 1.1 Motivation und Zielsetzung. 2 GRUNDLAGEN ... Sensor Fusion.. 1 EINLEITUNG.... HiL-Versuche .. PRÜFSTAND 6.1 Versuchsplan. dague. 4.2 Aufbau.... 8 FAZIT.... 2.3

м,	Ψ.	17	w.	01	\simeq	
1					ì:	
i						
÷						
i	i	,				
		- 1				
	-					
i						
				'n.		
				ej.		
)at		
				'n		
				re		
				he		
				eic.		
				ds		
				96		
				Jer		
				räč		
÷				ä		
		.8		ate		
		Ь		Ð		
	-	e.	h L	an		
		erz	eic.	e		
~	ď	S	LZ.	sd	œ	
7	و	lng	Ne.	in.	9	
ΚĀ	4	np	<u>le</u>	eic)	Ā	
LITERATUR	ANHANG A	Abbildungsverzeichnis	Tabellenverzeichnis	Verzeichnis der auf Datenträger gespeicherten Dateien	ANHANG B10	
\equiv	Ā	Ak	Ta	Ve	Ā	

Symbolverzeichnis

Basissystem

Die erste Spalte der folgenden Liste zeigt die im Text verwendeten Symbole für die auftretenden physikalischen und mathematischen Größen. In der zweiten Spalte wird die Bedeutung des Symbols beschrieben. Die Dimensionsformel jeder physikalischen Größe ist als Potenzprodukt der Basisgrößen Länge (L), Masse (M), Zeit (T), Temperatur (Θ), Stoffmenge (N), Strom (I) und Lichtstärke (J) in der Spalte 3 angegeben.

Symbol	Bedeutung	Dimension
A	Querschnittsfläche	L^2
R	Radius	T
, _D	Clemenszahl	1
Re	Reynoldszahl	1
φ.	Durchflusszahl	
ψ	Druckzahl	1
U	Spannung	$M L^2 I^{-1} T^{-3}$
Indizes		
A	Arbeitsanschluss A	
а	Aktor	
В	Arbeitsanschluss B	
dyn	dynamisch	

Abkürzungen

VDMA Verband der Deutschen Maschinen und Anlagenbauer TU Technische Universität

1 Einleitung

Grundlegende Motivation für das System welches am FST Entwickelt wird

1.1 Motivation und Zielsetzung

Wieso muss der aLFD überhaupt in den neuen Prüfstand eingebaut werden? Wo lagen die Probleme bei den HiL Versuchen \rightarrow Ziel ist es, die HIL Versuche mit den neuen Versuchen in Relation zu setzen

Hier vielleicht noch ein Bildchen von alten und vom neuen Prüfstand.

2 Grundlagen

2.1 Der aktive Luftfederdämpfer

Hier wird das System noch mal in ein paar Worten zusammengefasst um später darauf verweisen zu können.

2.2 HiL-Versuche

Wie waren die HiL-Versuche prinzipiell Aufgebaut, welche Daten müssen hier vielleicht noch validiert werden.

2.3 Sensor Fusion

2.4 (Statistische Grundlagen um HiL und Viertelfahrzeug-Versuche miteinander zu vergleichen)

Konstruktive/Umgestaltung des Funktionsprototyps

3.1 Anforderungen an die Luftfeder

Daten				
Bezeichnung	Maximalabstand Kugelköpfe (Ergibt sich aus	der Geometrie des	Viertelfahrzeugprüfstandes)	
Art	FF			
Gliederung	Bauraum			

MASCHINENBAU We engineer future

ich aus		lenten		Möglichst kurz	Möglichst steif	m Möglichst gering	>>25 Hz	raulik 30 bar
Minimalabstand Kugelköpfe (Ergibt sich aus der Prüfstandgeometrie)	Herstellbarkeit in Institutswerkstatt	Einfache Montage der neuen Komponenten	Einfacher Hydraulik Ölwechsel	Leitungslänge Hydraulik	Steifigkeit Hydrauliksystem	Strömungswiderstand Hydrauliksystem	Eckfrequenz der Sensorik	Druckbeständigkeit der Segment-Hydraulik
FF	WF	WF	WF	ZF	ZF	ZF	FF	FF
	Konstruktive Gestaltung						Leistungsmerkmale FF	

Tabelle 3-1: Anforderungen an die Luftfeder 👩

3.2 Versorgung des unteren aktiven Kolbens mit Hydraulikleitung von oben

3.3 Integration von Beschleunigungs- und Wegsensoren

4 Integration des aktiven Luftfederdämpfers in den Viertelfahrzeug Prüfstand

4.1 Anforderungen an den Prüfstand

Gliederung	Art	Art Bezeichnung	Daten
Allgemein	FF	Reproduzierbarkeit der Versuche	Allein aus der
			Literatur und der
			Versuchsbeschreibung
			sollte der Versuch
			wiederholt werden
			können.
Konstruktive	ZF	Coloumbsche Reibung	Möglichst gering
Gestaltung	FF	Kein Lagerspiel	
Leistungsmerkmale FF	FF	Eckfrequenz der Bodenanregung	>25 Hz ¹

¹ Tabelle 3.2: Parameter zur Generierung der virtuellen Straßen aus [1]

Tabelle 4-1: Anforderungen an den Prüfstand 🆫

mach as hen

4.2 Aufbau

Indize wich tursiv

s wicht twist

4.3 Mögliche Probleme die aufgetreten sind, und wie sie gelöst wurden

5 Änderungen an der Prüfstandsoftware

5.1 Reduzierung um das Viertelfahrzeugmodell

5.2 Implementierung der Sensorfusion

6 Versuchsdurchführung

6.1 Versuchsplan

7 Vergleich mit Hardware in the Loop Versuchen

² Tabelle 3.1: Parameter des Viertelfahrzeugmodells aus [1]

MASCHINENBAU We engineer future

8 Fazit

Anhang A

P. Hendrich. Konzeptvalidierung einer aktiven Luftfederung im Kontext autonomer Fahrzeuge. Forschungsberichte zur Fluidsystemtechnik. Dissertation. Fachgebiet Fluidsystemtechnik. Darmstadt. 2018. [1]

Literatur

Autorvorname abgekürzt Nachname. Buchtitel kursiv. Veröffentlichungstyp. Verlag. Verlagsort. Jahr. [2]

Tabellenverzeichnis

Es konnten keine Einträge für ein Abbildungsverzeichnis gefunden werden.

Abbildungsverzeichnis

Tabelle 4-1: Anforderungen an den Prüfstand Tabelle 3-1: Anforderungen an die Luftfeder

MASCHINENBAU We engineer future

,

Verzeichnis der auf Datenträger gespeicherten Dateien

Datei	Anwendung	Beschreibung
Ausarbeitung\DA_Brander	Word97	Dieses Dokument
Einfacher_Lenkzyklus\ info.txt	Editor	Erklärungen zur Simulation des einfachen Lenkzyklus
Einfacher_Lenkzyklus∖ input_sinus.m	Matlab	Berechnet Eingabevektoren des einfachen Lenkzyklus; Skript zum Plotten der Ergebnisse
Einfacher_Lenkzyklus\ sinus_elast_kompl_radkraefte.m	Matlab	Ergebnisse des einfachen Lenkzyklus. Darstellung der Ergebnisse mit Datei input_sinus.
Modelle\ etha_konstantdruck_mit_elast.mdl	SIMULINK	Modell zur Wirkungsgradsimulation der konventionellen Lenkung und der Konstantdrucklenkung
Modelle\ etha_konstantdruck_ohne_elast.mdl	SIMULINK	Modell zur Wirkungsgradsimulation der konventionellen Lenkung und der Konstantdrucklenkung mit vereinfachter Mechanik (ohne Elastizitäten)
Modelle\Kennfeld318.mat	Matlab	Pumpenkennfeld des BMW 318. Datei wird von der Datei parameter.m geladen
Modelle\param_sim.mat	Matlab	Einstellungen für die verwendeten Gleichungslöser. Muss nur aufgerufen werden, wenn Modell über Skriptfile simuliert wird
Modelle\parameter.m	Matlab	Parameterdatei für Modell 'etha_konstantdruck'

Anhang B

(z.B. Hersteller Prospekte und Datenblätter, Kopien)

6