Programming in R

Dries Debeer & Benjamin Becker

31. March and 01. April 2022

FDZ Spring Academy

Introduction

Introduction

Who are we?

Dries Debeer

Statistical Consultant at Ghent University (FPPW) scDIFtest, permimp, eatATA, mstDIF

dries.debeer@ugent.be

Benjamin Becker

Researcher at IQB (Verbund Forschungsdaten) eatGADS, eatDB, eatATA, pisaRT

b.becker@iqb.hu-berlin.de

Introduction

Who are you?

- 1. Occupation, employer?
- 2. Previous knowledge and experience
 - with R?
 - with other statistical software?
 - with other programming languages?
- 3. Specific interest/motivation for this workshop?

- 1. Increase efficiency!
 - Save time and nerves
 - Avoid errors and bugs
 - High transfer effect to all projects (with data analyses)
- 2. Successful collaborations (including with your future self!)
- 3. Code as deliverable (i.e., part of research paper)

Two of your worst collaborators:

- 1. Past Self
 - the biggest mess in existence
 - did not document anything
 - uses a completely different style of writing code
 - does not reply to e-mails
- 2. Future Self
 - has the memory of a goldfish
 - will have zero understanding for your current brilliance

Goal of this workshop

An introduction to R as a Programming language

- Better practical R skills
- Better understanding of R (and programming)
- Different framing: R as a programming language

Agenda

Day 1

- RStudio setup
- Flow & conditional programming
- Loops & iteration
- Functions (part I)

Day 2

- Functions (part II)
- Functionals & split-apply-combine
- Good programming practices

RStudio setup

RStudio setup

- 1. Save the course content to a directory on your machine
- 2. Open RStudio
- 3. Choose File < New Project ...
- 4. Choose Existing Directory
- Browse to the directory on your machine where you saved the course content and select the "R-programming" folder as the Project working directory
- 6. Click Open in new session
- 7. Click Create Project

RStudio setup - optional

- 1. Choose Tools < Global options
- 2. Under General
 - DON'T Restore .RData into workspace at startup
 - NEVER Save workspace to .Rdata on exit:
- 3. Further personalize RStudio

Flow & conditional programming

Flow & conditional programming

R has specific tools (functions) that help organize the flow of computations.

You can make computations conditional on other objects ("conditional computation")

The most commonly used tools are:

- if (+ else)
- ifelse

if statements have the basic form

```
if(test){
  some_computations
}
```

- test should be either TRUE or FALSE (or code that results in one of both).
- If test == TRUE, than some_computations is executed, if test == FALSE, than not.
- Important: test should have length 1. If not, only the first element is considered.

else can be added, but it is optional

```
if(test){
   some_computations
} else if (test_2){
   other_computations
} else {
   more_computations
}
```

Typical test functions

Vectorized, elementwise		
==	equal to	
!=	NOT equal to	
>, <	is greater, less than	
>=, <=	is greater, less than or equal to	
&	AND operator	
1	OR operator	
xor	exclusive OR	

Typical test functions

Not Vectorized		
identical()	identical to	
any()	at least one TRUE	
all()	all TRUE	
&&	AND operator	
П	OR operator	
is.character(), is.data.frame(),		

Typical test functions

Compare:

```
c(TRUE, TRUE) & c(FALSE, TRUE)

> [1] FALSE TRUE

c(TRUE, TRUE) && c(FALSE, FALSE)

> [1] FALSE
```

The test should have length 1!

```
# only the first element is evaluated
age < c(8, 17, 39, 55)
if (age >= 18) {
 "can vote"
} else {
    "too young"
> Warning in if (age >= 18) {: the condition has length > 1 and
only the first element will be used
> [1] "too young"
```

Typical uses

```
if(any(is.na(x))){
  stop("computation impossible due to NA values")
}
if(!is.integer(vector)){
  warning("'vector' is automatically converted to integer.
          This may affect the results")
 vector <- as.integer(vector)</pre>
if(is.null(argument)){
 # default computations
} else if (argument == specific_value) {
 # other computations
}
```

Programming advice

- if is almost always used inside of functions or loops
- If possible, avoid using else
- Use meaningful initialization, early return(), stop(), etc. instead

Solution using if and else

```
age <- 17
if (age >= 18) {
   vote <- "can vote"
} else {
   vote <- "too young"
}
vote</pre>
```

Solution using meaningful initialization

```
age <- 17
vote <- "too young"
if (age >= 18) {
   vote <- "can vote"
}
vote</pre>
```

A vectorized version is ifelse().

Go-to tool for conditional recoding

Exercises

Loops & Iteration

Loops & iteration

R has specific tools (functions) that help organize the flow of computations.

You can repeat a similar computation multiple times typically with changing options ("iteration"). The most commonly used tools are:

- loops (for, while, repeat)
- functionals (apply family)

Loops & Iteration - for

for statements have the basic form

```
for (element in vector) {
  computation
}
```

For each element in the vector, the computation is executed. Often, the computation depends on the element in that iteration.

Loops & Iteration - for

```
# iterate over a numeric vector
for (index in 1:3){
  cat(" computation -")
  computation - computation - computation -
# iterate over a character vector
for (name in c("Alice", "Bob", "Casey")){
  if(name == "Bob") cat(" This was Bob -")
  else cat(" Not Bob -")
   Not Bob - This was Bob - Not Bob -
```

Loops & Iteration - for

Nested loops (over the rows and columns of a matrix)

```
matrix <- matrix(NA, nrow = 2, ncol = 3)</pre>
for (rowNr in 1:2){
 for (colNr in 1:3){
   matrix[rowNr, colNr] <- rowNr * 10 + colNr</pre>
matrix
  [,1] [,2] [,3]
> [1,] 11 12 13
> [2,] 21 22 23
```

Loops & Iteration - while

while statements have the basic form

```
while (condition){
  computation
}
```

As long as the condition is TRUE, the computation is executed. Often, the computation depends on something that is related to the condition.

Loops & Iteration - while

Sample five random values from a normal distribution, the distance between the minimum and maximum should be at least 4.

```
max_dif <- 0
while (max_dif <= 4){</pre>
 cat("|")
 values <- rnorm(5)</pre>
 max dif <- max(values) - min(values)</pre>
max dif
> [1] 4.476298
```

Loops & Iteration - repeat

repeat statements have the basic form

```
repeat {
  computation
}
```

Without a break the computation is repeated infinite times

Loops & Iteration - next break

- next starts next iteration
- break ends iteration (of the innermost loop)

```
index <- 0
repeat {
  index <- index + 1
  if (index %in% c(3, 5)) next
  if (index > 6) break
  print(index)
> [1] 1
> [1] 2
> [1] 4
> [1] 6
```

Iteration - Good practice

Programming advice

Use seq(), seq_len(), or seq_along().

```
x <- numeric()
for (index in 1:length(x)){
  print(index)
> [1] 1
> [1] 0
for (index in seq_along(x)){
  print(index)
```

Loops & Iteration - Good practice

Programming advice

Don't grow, replace.

```
x <- letters
result1 <- numeric()  # grow
result2 <- numeric(length(x)) # replace
for (index in seq_along(x)){
  result1 <- c(result1, paste(index, x[index]))  # grow
  result2[index] <- paste(index, x[index])  # replace
}</pre>
```

Loops & Iteration - Functionals

There are specific functions that allow efficient and clean iteration. We focus on the apply-family. These functions *apply* a function repeatedly.

Can be seen as an abstraction of a for loop, with the following advantages

- requires less code to write
- does not store intermediate results
- no need to replace / grow

(also see the purrr package)

apply

- for objects with dimensions (matrix, array, data.frame)
- apply over (a) chosen dimension(s)

```
my_matrix <- matrix(1:6, nrow = 2)
apply(my_matrix, 1, max)  # apply per row

> [1] 5 6
apply(my_matrix, 2, max)  # apply per column

> [1] 2 4 6
```

lapply

data.frames are lists with the columns as elements:

```
lapply(iris, FUN = class)
> $Sepal.Length
> [1] "numeric"
>
> $Sepal.Width
> [1] "numeric"
>
> $Petal.Length
> [1] "numeric"
>
> $Petal.Width
> [1] "numeric"
>
> $Species
> [1] "factor"
```

lapply

- any type of element can be used
- other arguments can be passed through

```
means <- lapply(mtcars[1:7], FUN = mean)</pre>
str(means)
> List of 7
> $ mpg : num 20.1
> $ cyl : num 6.19
> $ disp: num 231
> $ hp : num 147
> $ drat: num 3.6
> $ wt : num 3.22
> $ qsec: num 17.8
```

Functionals

More on how these functionals can be used tomorrow.

Exercises

Functions I

"To understand computations in R, two slogans are helpful: Everything that exists is an object. Everything that happens is a function call."

— John Chambers

Function Calls

Computing in R happens through function calls. A function is applied to one or more objects, and returns an object after the computation.

Figure 1: A function call.

The typical use is: function(object1, argument = object2)

Function Calls

- Computations that seem not to be done using function calls are actually also function calls. Try `<-`(a, 5) or `>`(5, 2)
- most functions that seem not to return an object, return it invisibly. Check (a <- 5).

Building Blocks

Functions are the building blocks of R code. Writing functions allows you to organize and optimize the computations that you want to do.

Functions should:

- have a clear purpose
- be well documented
- be portable

Stepping Stone

Central stepping stone for R users:

Move from solely using functions written by others to writing your own functions.

Function definition

- Name
- Arguments/Formals (input)
- Body (what happens inside, R-code with the computations)
- Output

Function definition

```
# Name
countNA <- function(x) { # Arguments/Formals
out <- sum(is.na(x)) # Body
out # Output
}</pre>
```

Function Names

Every function needs a (meaningful) name!

- Usually a verb (what does the function do?)
- Avoid existing names
- Better longer than unclear
- CamelCase vs snake_case

Function Names

Good

- computeAIC()
- removeNAs()
- drop_NA_rows()
- factor_to_dummies()

Bad

- myFun()
- foo()
- statistics()
- data_preparation()

Most functions take one or multiple inputs. These are usually:

- One or two data arguments
- Additional Options

Examples for zero arguments

- getwd()
- Sys.time()

Examples for one argument

- dim()
- names()

Examples for multiple arguments

- mean()
- median()
- lm()

Programming advice

 $Less\ arguments = better!$

Often arguments have to by objects of a specific type.

```
sum(c("a", "b", "c")) # gives an error
```

The documentation typically gives (or should give) information about what objects the arguments should be. Check ?sum

Single return object

Pure functions return a single object.

- (Standard) The last evaluated object
- Object defined by return()

Figure 2: A pure function.

Single return object

return() stops the computation, and returns the object.

```
return_early <- function(x, early) {</pre>
  x2 < -x*2
  if(early) (return(x2))
  out <- x + x2 # not executed
  0111.
return_early(2, early = TRUE)
> [1] 4
return_early(2, early = FALSE)
> [1] 6
```

Single return object

Multiple return objects can be combined in a list!

Single Return Object

The return object is a list with multiple objects.

```
get_info <- function(x){</pre>
  mean_x <- mean(x)</pre>
  median_x <- median(x)</pre>
 n_obs_x <- length(x)
  range_x <- range(x)</pre>
  return(list(mean = mean_x, median = median_x,
               n_obs = n_obs_x, range = range_x))
str(get_info(airquality$Wind))
> List of 4
  $ mean : num 9.96
  $ median: num 9.7
> $ n_obs : int 153
  $ range : num [1:2] 1.7 20.7
```

Default arguments

What happens if the user omits an argument?

```
return_early <- function(x, early) {
  x2 <- x*2
  if(early) (return(x2))
  out <- x + x2 # not executed
  out
}
return_early(2)
> Error in return_early(2): argument "early" is missing, with no
default
```

Default arguments

Default arguments are made for such instances!

```
return_early <- function(x, early = FALSE) {
    x2 <- x*2
    if(early) (return(x2))
    out <- x + x2 # not executed
    out
}
return_early(2)
> [1] 6
```

Default arguments

Additional arguments give (the user) flexibility. Default arguments keep the function easy to use.

Try ?lm

Programming advice

- Think which arguments to include, and which should (not) have defaults
- Choose sensible defaults

Exercises

Functions II

Reasons

Why write functions?

- They make code ...
 - shorter (less repetition)
 - · easier to read and understand
- They help avoid copy-paste errors
- They make it easier to change your code
- They increase transferability to ...
 - other use cases
 - other projects
 - other persons
- They keep your work space clean

Readability

Writing a function:

```
RMSE <- get_RMSE(predictions, observations)</pre>
```

Not writing a function:

```
diff <- observations - predictions
sq_diff <- diff^2
m_sq_diff <- mean(dif)
RMSE <- sqrt(m_sq_diff)</pre>
```

Readability

Writing a function:

```
summary(mtcars$mpg)

> Min. 1st Qu. Median Mean 3rd Qu. Max.
> 10.40 15.43 19.20 20.09 22.80 33.90
```

Readability

Not writing a function:

```
round(c("Min." = min(mtcars$mpg),
   "1st Qu." = as.numeric(quantile(mtcars$mpg)[2]),
   "Median" = median(mtcars$mpg),
   "Mean" = mean(mtcars$mpg),
   "3rd Qu." = as.numeric(quantile(mtcars$mpg)[4]),
   "Max." = max(mtcars$mpg)), 2)

> Min. 1st Qu. Median Mean 3rd Qu. Max.
> 10.40 15.43 19.20 20.09 22.80 33.90
```

Side Effects

Functions can have "side effects":

- console output
- plots
- write/save on drive
- ..

Figure 3: A function with side effect.

Side Effects

Console output: ?cat and ?print

```
print_info <- function(x){</pre>
  info <- get_info(x)</pre>
  cat("There are ", info$n_obs,
      " observed values. \nThe mean is ",
      round(info$mean, 2), ". \nThe median is ",
      round(info\$median, 2), ". \n", sep = "")
print_info(airquality$Wind)
> There are 153 observed values.
> The mean is 9.96.
> The median is 9.7.
```

Side effects

Graphics output: Standard plot, ggplot2, lattice

```
hist2 <- function(x, title){
  info <- get_info(x)</pre>
  mean_median <- as.numeric(info[c("mean", "median")])</pre>
  hist(x, col = "skyblue", freq = FALSE,
       main = paste0(title, " (n = ", info$n_obs, ")"))
  abline(v = mean_median, lwd = 2,
         col = c("darkred", "darkblue"))
  text(mean_median, y = c(.11, .09),
       labels = paste(c("Mean", "Median"),
                       round(mean_median, 2),
                       sep = " = "),
       col = c("darkred", "darkblue"), pos = 4)
hist2(airquality$Wind, "Wind")
```

Side effects

Graphics output

Output

Programming advice

- Write pure functions (no-side effects)
- Write separate functions for side effects
- Plotting functions should return NULL or the plot as an object

Figure 4: A side effect function.

Error: computation is interrupted without return object!

?stop

```
get_log_xtox <- function(x) {
  if(!is.numeric(x)) stop("This does not work!")
  x_x <- x^x
  return(log(x_x))
}
get_log_xtox("a")
> Error in get_log_xtox("a"): This does not work!
```

Error: computation is interrupted without return object!

Figure 5: Computation with Error.

?stopifnot is an abbreviation for if(!test) stop():

```
get_log_xtox <- function(x) {
   stopifnot(is.numeric(x))
   x_x <- x^x
   return(log(x_x))
}
get_log_xtox("a")
> Error in get_log_xtox("a"): is.numeric(x) is not TRUE
```

Message: To inform the user about something.

?message

```
get_log_xtox <- function(x) {
    x_x <- x^x
    message("Thank you for using this function!")
    return(log(x_x))
}
get_log_xtox(2)
> Thank you for using this function!
> [1] 1.386294
```

Warning: Warn the user that something may be fishy.

?warning

```
get_log_xtox <- function(x) {</pre>
  if(x < 0 && (x %% 2 == 0))
    warning("Not sure you can trust the result.",
            call. = FALSE)
 x x < - x^x
  return(log(x_x))
get_log_xtox(-2)
> Warning: Not sure you can trust the result.
> [1] -1.386294
```

Message & warning: computation is NOT interrupted!

Figure 6: A message or warning.

Output

Programming advice

- Choose carefully when something warrants a message, warning or error
- Write clear and helpful warnings, errors, messages

Where does a function find objects?

R uses specific rules to find objects, which lead to the following:

```
a <- 55
add_a <- function(x){
  return(x + a)
}
add_a(5)
> [1] 60
```

When a function is called, the computations in the body are run line by line. When R cannot find an object inside the function, it looks outside the function.

Where does a function find objects?

Name masking!

Objects inside the function mask objects outside the function with the same name.

```
a <- 55
add_a <- function(x){
  a <- 5
  return(x + a)
}
add_a(5)
> [1] 10
```

Functional programming

The return object should only depend on the arguments of the function, *not* on the context!

BAD:

```
a <- 55
add_a <- function(x){
  return(x + a)
}
add_a(5)
> [1] 60
```

Functional programming

The return object should only depend on the arguments of the function, *not* on the context!

GOOD:

```
add_a <- function(x, a = 55){
   return(x + a)
}
add_a(5)
> [1] 60
```

Functional programming

The function should not change the context.

BAD

```
a <- 55
change_a <- function(new_a){
  a <<- new_a
  return(invisible(NULL))
}
change_a(5)
a
> [1] 5
```

R has a special argument (in the definition of the function):

```
... (dot-dot-dot)
```

Useful when you don't know how many arguments there will be.

Examples:

- ?sum
- ?save
- ?cbind
- ?paste
- ...

A function that checks for multiple objects if they are character vectors. (A wrapper around (?is.character))

```
is_character <- function(...){
  lapply(list(...), is.character)
}
is_character(a = "Awesome", b = 5)

> $a
> [1] TRUE
>
> $b
> [1] FALSE
```

... can take *any* number of additional arguments Useful for passing arguments to other functions like:

- apply-family
- plot-family
- ...

apply example.

WARNING! Watch out with spelling mistakes, arguments can get lost!

```
get_quantiles <- function(x, ...){</pre>
 apply(x, 2, quantile, ...)
get_quantiles(airquality, na.rm = TRUE,
            prosb = c(.25, .5, .27))
       Ozone Solar.R Wind Temp Month Day
> 0% 1.00 7.00 1.7
                         56
> 25% 18.00 115.75 7.4 72 6 8
> 50% 31.50 205.00 9.7 79 7 16
> 75% 63.25 258.75 11.5
                         85 8 23
> 100% 168.00 334.00 20.7
                               9 31
                         97
```

Writing Functions

Before creating the function

- What should my function do?
- Which input objects (Arguments)?
- which additional options (Arguments)?
- What should the output object be?

After creating the function

- Test it
- Add input validation
- Document

What makes a good function?

Pure functions!

- no side effects
- no dependency on global environment
- only input via arguments (functional programming)

Results in easier understanding and higher portability.

Exercises

Functionals

Higher Order Functions

Higher order functions are functions that either take functions as input or return functions as output.

Functionals

As defined by Hadley Wickham: A functional is a function that takes another function as an input. Common argument names are FUN or f.

Examples

- apply-family
- Reduce, Filter
- nlm
- optimize
- ..

The apply-family *applies* a function repeatedly. This can be seen as an abstraction of a for loop, with the following advantages:

- requires less code to write
- can be easier to read / understand
- does not store intermediate results
- no need to replace / grow

The members of the apply-family in Base R are:

- lapply vector / list \rightarrow list
- ullet sapply vector / list o vector (matrix)
- ullet apply matrix / array / data.frame o vector (matrix)
- tapply, by
- mapply, Map
- rapply, eapply, vapply

A popular alternative from the tidyverse: purrr

- ullet map vector / list ightarrow list
- ullet map2 multiple vectors / lists ightarrow list
- ..

Our focus: lapply

Why?

- Consistent output
- Fast
- No dependencies
- We want to understand R basics

lapply

lapply has two main arguments

X the input list/vector

FUN the function that should be repeatedly applied

```
example_list \leftarrow list(vec1 = c(1, 3, 4),
                      vec2 = c(4, 2, 10),
                      vec3 = c(2, NA, 1))
lapply(example_list, FUN = mean)
> $vec1
> [1] 2.666667
>
> $vec2
> [1] 5.333333
> $vec3
> [1] NA
```

Other arguments can be passed through lapply via '...'.

```
example_list \leftarrow list(vec1 = c(1, 3, 4),
                      vec2 = c(4, 2, 10),
                      vec3 = c(2, NA, 1))
lapply(example_list, FUN = mean, na.rm = TRUE)
> $vec1
> [1] 2.666667
>
> $vec2
> [1] 5.333333
>
> $vec3
> [1] 1.5
```

We can use our own functions as input.

```
dropNAs <- function(x) {</pre>
 x[!is.na(x)]
lapply(example_list, FUN = dropNAs)
> $vec1
> [1] 1 3 4
>
> $vec2
> [1] 4 2 10
>
> $vec3
> [1] 2 1
```

Anonymous functions can be used as input.

```
lapply(example_list, FUN = function(x) x[!is.na(x)])

> $vec1
> [1] 1 3 4
>
> $vec2
> [1] 4 2 10
>
> $vec3
> [1] 2 1
```

Data.frames are lists, too.

```
lapply(iris, FUN = class)
> $Sepal.Length
> [1] "numeric"
>
> $Sepal.Width
> [1] "numeric"
>
> $Petal.Length
> [1] "numeric"
>
> $Petal.Width
> [1] "numeric"
>
> $Species
> [1] "factor"
```

104

Atomic vectors can be used as input, but often vectorization could be used instead.

```
lapply(c(1, 2, 3), FUN = function(x) {
  paste0("ID", x)
})
> [[1]]
> [1] "ID1"
>
> [[2]]
> [1] "ID2"
>
> [[3]]
> [1] "ID3"
```

Limitation of lapply:

Only a single list/vector can be supplied as input. Map is a generalization of lapply! It is usually needed less often but a very powerful tool.

A common use case for the apply-family is the **Split & Apply & Combine** paradigm. Here, we want to perform the same analyses for various subgroups in our data set:

- split a data.frame or vector (?split)
- apply computations on each split (?lapply)
- combine the results (?do.call)


```
head(iris)
    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
>
> 1
             5.1
                        3.5
                                      1.4
                                                  0.2 setosa
> 2
            4.9
                        3.0
                                      1.4
                                                  0.2 setosa
> 3
            4.7
                        3.2
                                      1.3
                                                  0.2 setosa
> 4
            4.6
                        3.1
                                     1.5
                                                 0.2 setosa
> 5
             5.0
                        3.6
                                     1.4
                                                 0.2 setosa
> 6
             5.4
                        3.9
                                      1.7
                                                  0.4 setosa
table(iris$Species)
>
>
      setosa versicolor virginica
          50
                     50
                                50
>
```

Splitting the data set via a single (or multiple) grouping variables

```
data_list <- split(iris, f = iris$Species)
class(data_list)

> [1] "list"
length(data_list)

> [1] 3
```

Apply the same computation to all data sets

```
out_list <- lapply(data_list, function(subdat) {
  mod <- lm(Sepal.Length ~ Sepal.Width, data = subdat)
  sum_mod <- summary(mod)
  out <- c(Intercept = coef(mod)[[1]],
     Slope = coef(mod)[[2]],
     r2 = sum_mod$r.squared)
  round(out, 3)
})</pre>
```

Combine the results

Exercises

Good programming practices

"Write code for humans, not for machines!" $\,$

Code Style

Invest time in writing readable R-code.

- It will make collaborations easier
- It will make debugging easier
- It will help make your analyses reproducible

There is a complete *tidyverse* style-guide https://style.tidyverse.org/.

Go easy on your eyes

- with spaces before and after: + / * = <- < == >
- always use <- for assignments
- only use = in function calls
- use indentation (largely automatic in RStudio)
- CamelCaseNames vs snake_case_names
- be consistent!
- wrap long lines at column 70-80 (Rstudio)

White space

```
new_var=(var1*var2/2)-5/(var3+var4)

# versus

new_var <- (var1 * var2 / 2) - 5 / (var3 + var4)</pre>
```

Indentation

```
for(name in names){formula=as.formula(paste0("y~.-",name))
fit<-lm(formula,data=my_data)</pre>
coefs[["name"]]=coef(fit)
print(name)
print(summary(fit))}
# versus
for(name in names){
  formula <- as.formula(paste0("y~.-", name))</pre>
  fit <- lm(formula, data = my_data)</pre>
  coefs[["name"]] <- coef(fit)</pre>
  print(name)
  print(summary(fit))
```

Wrap long lines

```
final_results <- data.frame(first_variable =</pre>
sgrt(results$mean_squared_error), second_variable =
paste0(results$condition, results$class, sep = ":"),
third variable = results$bias)
# versus
final_results <- data.frame(</pre>
  first_variable = sqrt(results$mean_squared_error),
  second_variable = paste0(results$condition,
                            results$class, sep = ":"),
  third_variable = results$bias)
```

Go easy on your mind

- use meaningful names: "self-explainable"
- always write the formal arguments in function calls (except the first)
- benefit from autocompletion (<tab>) => embrace longer names
- use TRUE and FALSE not T and F
- comment, comment, comment
 - NOT what (should be clear from the code)
 - but why
 - explain the reasoning, not the code

Use meaningful names

```
V <- myFun(m1_B)
# versus

RMSE_age_gender <- get_RMSE(lm_age_gender)</pre>
```

Programming advice

Use verbs for functions and nouns for other objects.

Write formal arguments

Benefit from auto completion using tab

Comment, comment

```
## Start every Rscript with a comment that explains
   what the code in the script does, why it does
##
##
   this, and to which project it belongs.
##
   Your future self will be very thankful!
##
## Mention which packages you are using in this Rscript.
## Use sections to separate chunks -----
## Maybe even subsections =================
## Recode variables so that missings are coded as "NA"
dat[dat %in% c(99, 999)] <- NA # missings coded 99 or 999
```

Keep your code slim

Try to limit your package-dependencies.

Only load library() the packages that you absolutely need. If you are only using dplyr, it does not make sense to load the complete tidyverse.

Controversial: when possible, use the :: operator (and consider not loading the package). chape::<function>

- explicit dependencies
- less name conflicts

Never Attach

Forget about attach()!

Don't use it, unless you completely understand what happens (see ?attach).

Use with(data.frame, expression) instead.

Testing R code

Writing code is error prone. Incorporate tests and checks in your workflow.

- minimal examples
- write tests and checks
- \bullet helpful packages: testthat, RUnit, testit, ...

Computing speed can become an issue. Avoid common pitfalls:

- don't grow, but replace
- vectorize where possible
- check the computing speed

?system.time, microbenchmark or profiling tools

Don't grow!

```
system.time({
  new_data <- NULL
  for(row_nr in seq_len(NROW(data))){
    new_data <- cbind(</pre>
      data[row_nr,],
      result = exp(data$x[row_nr]) /
        log(data$z[row_nr]) +
        5 * sqrt(data$y[row_nr]))
})
           system elapsed
     user
     1.73
             0.00
                      1.73
```

Replace!

```
system.time({
  n_rows <- dim(data)[1]</pre>
  data$result <- rep(NA, n_rows)</pre>
  for(row_nr in seq_len(n_rows)){
    data$result[row_nr] <- exp(data$x[row_nr]) /</pre>
      log(data$z[row_nr]) +
      5 * sqrt(data$y[row_nr])
})
>
            system elapsed
     user
     0.29
              0.01
                       0.31
```

Vectorize!

```
system.time({
  data$result <- exp(data$x) / log(data$z) +
    5 * sqrt(data$y)
})

> user system elapsed
> 0 0 0
```

Compare the speed of different implementations using:

microbenchmark::microbenchmark

```
get_mean1 <- function(x){</pre>
  weight <- 1/length(x)</pre>
  out. <- 0
  for(i in seq_along(x)){
    out <- out + x[i] * weight
  return(out)
get_mean2 <- function(x){</pre>
  sum(x)/length(x)
```

Compare the speed of different implementations using:

microbenchmark::microbenchmark

```
x < - rnorm(500)
microbenchmark::microbenchmark(
 mean(x), get_mean1(x), get_mean2(x))
> Unit: nanoseconds
                                                 max neval cld
                {\tt min}
                        lq
                            mean median
          expr
                                          uq
       mean(x) 1900 2000 2285
                                   2100
                                        2200
>
                                                9900
                                                       100
                                                             a
>
  get_mean1(x) 11000 11300 33302 12200 12500 2147900
                                                       100
                                                             a
  get_mean2(x)
                       600
                            8662
                                   700
                 600
                                         700
                                              794900
                                                       100
                                                             a
```

Programming advice

Don't worry about speed before it becomes an issue.

Wrap Up

General Advice

- Investing time in learning R pays off
- It's a steady learning curve
- Learn from masters
- Rewrite important code the first attempt is usually not the best approach

General R Advice

- Document well
- Use a consistent style
- Write functions
- Split long functions in smaller ones
- Write wrappers
- Use Iteration (don't copy paste)
- Use matrix operations and vectorized functions instead of loops
- Use git

Literature Recommendations

R Resources

- Avanced R Ed. 1 (http://adv-r.had.co.nz/)
- Avanced R Ed. 2 (https://adv-r.hadley.nz/)
- R Inferno (https: //www.burns-stat.com/pages/Tutor/R_inferno.pdf)
- R Packages (https://r-pkgs.org/)
- Clean Code (https://enos.itcollege.ee/~jpoial/oop/ naited/Clean%20Code.pdf)

Thank you for your attention!

Thank you for your attention!

Questions? Remarks?