Universität Ulm

Dr. Jan-Willem Liebezeit Marcus Müller Sommersemester 2019

Übungen Analysis 1 für Ingenieure und Informatiker: Blatt 7

31. Berechne den Grenzwert

$$\lim_{x \to 0} \frac{e^x - 1}{x}.$$

Hinweis: Wir können annehmen, dass |x| < 1. Benutze die Potenzreihendarstellung der Exponentialfunktion, um eine geometrische Reihe zu erhalten.

32. Betrachte die Funktion $f:(0,1)\to\mathbb{R}$ mit

$$f(x) = \begin{cases} 0, & \text{falls } x \in \mathbb{R} \setminus \mathbb{Q}, \\ 1/q, & \text{falls } x = p/q \text{ für } p, q \in \mathbb{N} \text{ ohne gemeinsamen Teiler}. \end{cases}$$

Zeige, dass f an jeder irrationalen Stelle $(x \in \mathbb{R} \setminus \mathbb{Q})$ stetig ist, an jeder rationalen Stelle $(x \in \mathbb{Q})$ jedoch unstetig.

Hinweis: Ist r = p/q rational, so ist die Folge $x_n := r + \sqrt{2}/n$ für alle $n \in \mathbb{N}$ irrational. Beachte außerdem, dass es für beliebiges $\varepsilon > 0$ nur endlich viele natürliche Zahlen q gibt, sodass $q \le 1/\varepsilon$.

- 33. Es seien f_1, f_2, \ldots stetige Funktionen auf einem Intervall $I \subset \mathbb{R}$. Für jedes feste $x \in I$ sei die Folge $(f_1(x), f_2(x), \ldots)$ nach oben beschränkt. Wir definieren die Funktion $g(x) := \sup(f_1(x), f_2(x), \ldots)$. Dann ist g auf ganz I definiert. Gib ein Beispiel an, das zeigt, dass die Funktion g nicht stetig zu sein braucht.
- **34.** Es sei $f: I \to \mathbb{R}$ mit $I \subset \mathbb{R}$. Wir nennen f gleichmäßig stetig auf I, falls

$$\forall \varepsilon > 0 \,\exists \delta > 0 : (\forall x, y \in I \text{ mit } |x - y| < \delta) \Rightarrow |f(x) - f(y)| < \varepsilon.$$

Beachte, dass die Schranke $\delta := \delta(\varepsilon)$ nur noch von ε , aber nicht mehr von einem bestimmten Punkt $x_0 \in I$ abhängt. Die Schranke gilt also gleichmäßig für alle $x \in I$.

- (a) Sei nun f stetig auf I und (x_n) sei eine Cauchyfolge in I.
 - (i) Gib ein Beispiel dafür an, dass $(f(x_n))$ keine Cauchyfolge sein muss.
 - (ii) Zeige, dass $(f(x_n))$ immer eine Cauchyfolge ist, falls f gleichmäßig stetig auf I ist.
- (b) Es seien $f:[0,1]\to\mathbb{R}$ gleichmäßig stetig und $\varepsilon>0$ beliebig. Konstruiere eine Treppenfunktion T (d.h. eine stückweise konstante Funktion) auf [0,1], sodass für alle $x\in[0,1]$ gilt, dass $|f(x)-T(x)|<\varepsilon$.
- **35.** Zeige, dass jede monotone Funktion f auf einem Intervall I nur abzählbar viele Sprungstellen haben kann.

Hinweis: Zu jedem Intervall findet man eine rationale Zahl, die in diesem Intervall liegt.

36. Zeige, dass jedes Polynom ungeraden Grades mindestens eine Nullstelle besitzt.