PREVISÃO DE RESULTADOS EM PARTIDAS DE FUTEBOL

Marcelo Leme de Arruda www.chancedegol.com.br

Universidade Federal do Rio Grande do Norte Semana de Estatística 2013

Modelos de Previsão

Ingredientes:

1 – Representação paramétrica

Descrição matemática da probabilidade de um dado resultado ou placar

"Equação das probabilidades"

2 – Método de estimação

Forma de obtenção dos parâmetros da "equação das probabilidades" a partir de dados e informações reais

Modelos de Previsão

Ingredientes:

(3 – Análise de Qualidade)

Quão "bom" é o modelo?

Atributos de qualidade

Medidas de qualidade

Valores de referência

1 - Representação Paramétrica

Existem duas formas (abordagens) de representação paramétrica:

* Representação para o RESULTADO:

P(vitória) P(empate) P(derrota)

* Representação para o PLACAR do jogo:

P(0x0)	P(0x1)	P(0x2)
P(1x0)	P(1x1)	P(1x2)
P(2x0)	P(2x1)	P(2x2)

Representação para o RESULTADO

Várias podem ser formuladas, mas a mais conhecida é a Representação de **Bradley- Terry:**

$$p_{i,j} = P(i \text{ vencer } j) = \frac{\pi_i}{\pi_i + \pi_j}$$

Exemplo: jogo A x B com $\pi_A = 4$ e $\pi_B = 5$

então:
$$p_{A,B} = \frac{4}{9}$$
 e $p_{B,A} = \frac{5}{9}$

Embora seja extremamente intuitiva, a Representação de Bradley-Terry pode ser matematicamente construída a partir da **Distribuição de Gumbel** (também conhecida como *Distribuição de Valores Extremos*).

Definição: diz-se que X ~ Gumbel(μ , β) se:

$$f(x) = \frac{1}{\beta} \exp\left(-\frac{x-\mu}{\beta} - e^{-\frac{x-\mu}{\beta}}\right)$$

então:
$$F(x) = P(X \le x) = e^{-e^{-\frac{(x-\mu)}{\beta}}}$$

Consideremos agora que cada time tem um <u>escore latente</u> *S* ("escore latente" significa um placar não-observável mas que indiretamente define o vencedor – exemplo: xadrez).

Suponhamos então que o time i tem um escore latente S_i que segue uma Distribuição de Gumbel com parâmetros $\beta=1$ e $\mu=\log\pi_i$.

então:
$$F(s) = P(S_i \le s) = e^{-e^{-\frac{(s-\log \pi_i)}{1}}}$$

Assim, o resultado de um jogo entre dois times i e j pode ser representado por uma variável aleatória $\Delta_{ij} = S_i - S_j$.

E pode-se mostrar que essa variável tem distribuição de probabilidade

$$F(\Delta_i) = P(\Delta_i \le \delta_i) = \frac{1}{1 + e^{(\ln \pi_i - \ln \pi_j) - \delta_i}}$$

e, por fim, que a probabilidade de vitória do time *i* contra o time *j* é igual a:

$$P(i \text{ vencer } j) = P(\Delta_i > 0) = 1 - P(\Delta_i \le 0) =$$

$$= \frac{1}{1 + e^{-(\ln \pi_i - \ln \pi_j)}} = \boxed{\frac{\pi_i}{\pi_i + \pi_j}}$$

Bradley-Terry - Observações

A formulação padrão de Bradley-Terry se aplica somente a confrontos simples onde não existe a possibilidade de empate (exemplo: xadrez - Ranking Elo). Porém, existem adaptações / expansões que contemplam:

- * Possibilidade de empate;
- * Efeito "vantagem do primeiro jogador" (jogar com as brancas, jogar no seu próprio campo etc.);
 - * Margem de vitória
 - * etc.

Representação para o PLACAR

Várias podem ser formuladas, mas a mais usual é a **Distribuição de Poisson**, ou seja, se X é o número de gols marcados por um time num dado jogo, então:

$$P(X = x) = P(\text{marcar } x \text{ gols}) = \frac{e^{-\lambda} \lambda^x}{x!}$$

Exemplo: se $\lambda = E[X] = 1,8$ (ou seja, se. o time "marca em média 1,8 gol por jogo"), então a probabilidade de ele marcar 3 gols é:

$$P(X = 3) = \frac{e^{-(1,8)}(1,8)^3}{3!} = 0,161$$

Representação para o PLACAR

MAS... pode-se considerar que E[X] e P(X=x) dependam da força do adversário.

Por isso, uma representação mais adequada pode ser a **Distribuição de Holgate:**

$$P(X = x, Y = y) = e^{-(\lambda_1 + \lambda_2 + \lambda_{12})} \sum_{i=0}^{\min(x,y)} \frac{\lambda_1^{x-i} \lambda_2^{y-i} \lambda_{12}^i}{(x-i)!(y-i)!i!}$$

Construção da Holgate

Assim como vimos com a Representação de Bradley-Terry, a Distribuição de Holgate também tem sua razão de ser.

Consideremos três variáveis independentes P_1 , P_2 e P_{12} , com distribuições de Poisson:

$$P_1 \sim \text{Poisson}(\lambda_1)$$

 $P_2 \sim \text{Poisson}(\lambda_2)$
 $P_{12} \sim \text{Poisson}(\lambda_{12})$

Construção da Holgate

E definamos X e Y da seguinte forma:

$$X = P_1 + P_{12}$$

 $Y = P_2 + P_{12}$

Então, a Distribuição de Holgate é a distribuição do vetor (X,Y), ou seja:

$$P(X = x, Y = y) = P(P_1 + P_{12} = x, P_2 + P_{12} = y)$$

Notem que é a presença comum de P_{12} nas expressões de X e Y que provoca a dependência entre as duas variáveis.

2 - Estimação dos Parâmetros

Existem vários modos possíveis para estimar (obter) os parâmetros de uma representação:

- * Máxima Verossimilhança
- * Mínimos Quadrados (Modelos Lineares)
- * Estimação Bayesiana / Métodos Iterativos
- * Estimação direta
- * etc.

É a procura, dentre todos os valores possíveis que os parâmetros podem assumir, daqueles que maximizam a probabilidade de ocorrência dos resultados observados.

Exemplo - Bradley-Terry:

$$p_{i,j} = \frac{\pi_i}{\pi_i + \pi_j} \Rightarrow L = \prod_{i=1}^N \prod_{\substack{j=1 \ j \neq i}}^N \frac{\pi_i^{n_i}}{(\pi_i + \pi_j)^{n_{ij}}}$$

verossimilhança de um jogo verossimilhança total

Exemplo numérico - Bradley-Terry:

A vence B	A vence C	B vence C
C vence D	B vence D	D vence A

Então, a verossimilhança total para esses jogos é:

$$L = \frac{\pi_{A}}{\pi_{A} + \pi_{B}} \cdot \frac{\pi_{C}}{\pi_{C} + \pi_{D}} \cdot \frac{\pi_{A}}{\pi_{A} + \pi_{C}} \cdot \frac{\pi_{B}}{\pi_{B} + \pi_{D}} \cdot \frac{\pi_{B}}{\pi_{B} + \pi_{C}} \cdot \frac{\pi_{D}}{\pi_{A} + \pi_{D}} =$$

$$= \frac{\pi_{A}^{2} \pi_{B}^{2} \pi_{C} \pi_{D}}{(\pi_{A} + \pi_{B})(\pi_{C} + \pi_{D})(\pi_{A} + \pi_{C})(\pi_{B} + \pi_{D})(\pi_{B} + \pi_{C})(\pi_{A} + \pi_{D})}$$

e portanto a log-verossimilhança total é:

$$\ell = 2 \ln \pi_A + 2 \ln \pi_B + \ln \pi_C + \ln \pi_D$$

$$-\ln(\pi_A + \pi_B) - \ln(\pi_C + \pi_D) - \ln(\pi_A + \pi_C)$$

$$-\ln(\pi_B + \pi_D) - \ln(\pi_B + \pi_C) - \ln(\pi_A + \pi_D)$$

Por fim, calculando-se as derivadas e igualando-as a zero:

$$\frac{\partial \ell}{\partial \pi_A} = 0 \quad \frac{\partial \ell}{\partial \pi_B} = 0 \quad \frac{\partial \ell}{\partial \pi_C} = 0 \quad \frac{\partial \ell}{\partial \pi_D} = 0$$

chegamos a equações do tipo:

$$\frac{2}{\pi_A} - \frac{1}{\pi_A + \pi_B} - \frac{1}{\pi_A + \pi_C} - \frac{1}{\pi_A + \pi_D} = 0$$

Em geral, não há solução analítica para essas equações, mas existem métodos numéricos facilmente programáveis e através dos quais podemos encontrar:

$$\hat{\pi}_A = 0.45$$
 $\hat{\pi}_C = 0.15$
 $\hat{\pi}_B = 0.45$ $\hat{\pi}_D = 0.15$

Observação 1: a solução das equações não é única! Para perceber isso, basta notar que, se π_A , π_B , π_C e π_D são soluções estimadores de MV, então

$$L_{AxB} = \frac{\pi_A}{\pi_A + \pi_B} = \frac{k\pi_A}{k\pi_A + k\pi_B}$$

$$L_{CxD} = \frac{\pi_C}{\pi_C + \pi_D} = \frac{k\pi_C}{k\pi_C + k\pi_D} \text{ etc.}$$

e $k\pi_A$, $k\pi_B$, $k\pi_C$ e $k\pi_D$ também são EMV.

O que se costuma fazer é escolher k de forma que a soma dos parâmetros seja igual a 1:

$$\begin{split} \hat{\pi}_A &= 0,45 \\ \hat{\pi}_B &= 0,45 \\ \hat{\pi}_C &= 0,15 \\ \Rightarrow \hat{\pi}_A + \hat{\pi}_B + \hat{\pi}_C + \hat{\pi}_D = 1,2 \Rightarrow k = \frac{1}{1,2} \Rightarrow \\ \hat{\pi}_D &= 0,15 \\ \hat{\pi}_A &= 0,375 \quad \hat{\pi}_C = 0,125 \\ \hat{\pi}_B &= 0,375 \quad \hat{\pi}_D = 0,125 \end{split}$$

Observação 2 - Poisson (Holgate):

Exemplo – Time A 3x2 Time B

$$L = e^{-(\lambda_1 + \lambda_2 + \lambda_{12})} \sum_{i=0}^{2} \frac{\lambda_1^{3-i} \lambda_2^{2-i} \lambda_{12}^{i}}{(3-i)!(2-i)!i!}$$

Essa expressão é geralmente impraticável de se derivar e igualar a zero.

Se consideramos a verossimilhança total para um conjunto de jogos, é ainda mais inviável obter analiticamente os EMV.

Consiste em tratar os parâmetros como váriáveis dependentes de informações observadas (variáveis explicativas):

$$\theta_i = \alpha_1 x_{1i} + \alpha_2 x_{2i} + \dots + \alpha_k x_{ki} + \varepsilon_i$$

Esse parâmetro θ_i pode ser:

- * o π de Bradley-Terry do time i;
- * o λ da Poisson de um time i;
- * uma função dos λ 's de Poisson dos dois adversários do jogo i;
 - * etc.

A forma padrão de estimação dos θ_i é a minimização dos erros quadráticos:

$$\begin{split} \mathcal{E}_i &= \theta_i - (\alpha_1 x_{1i} + \alpha_2 x_{2i} + \dots + \alpha_k x_{ki}) & \text{(erro individual)} \\ \mathbf{E} &= \sum_i [\theta_i - (\alpha_1 x_{1i} + \alpha_2 x_{2i} + \dots + \alpha_k x_{ki})]^2 & \text{(erro quadrático total)} \end{split}$$

Os estimadores de mínimos quadrados são, então, as soluções das equações

$$\frac{\partial \mathbf{E}}{\partial \alpha_1} = 0$$
 $\frac{\partial \mathbf{E}}{\partial \alpha_2} = 0$ etc.

e, a partir das estimativas $\hat{\alpha}_1, \hat{\alpha}_2$ etc., podemos calcular

$$\hat{\theta}_i = \hat{\alpha}_1 x_{1i} + \hat{\alpha}_2 x_{2i} + \dots + \hat{\alpha}_k x_{ki}$$

Observações:

* Vantagem dos MQ sobre os EMV: podemos embutir nos α_i qualquer fator de interesse, <u>inclusive relações de dependência</u> entre times adversários.

Um exemplo (numérico, inclusive) disso será visto mais à frente, no estudo de caso.

Observações:

* MQP (Mínimos Quadrados Ponderados): alternativa que difere dos MQO (MQ Ordinários) por permitir inclusão de **pesos** (idade do jogo, importância do campeonato etc.):

$$E = \sum_{i} w_{i} [\theta_{i} - (\alpha_{1} x_{1i} + \alpha_{2} x_{2i} + \dots + \alpha_{k} x_{ki})]^{2}$$

* A abordagem até aqui analisada é de Regressão Linear Múltipla. Mas existem modelos baseados em abordagens mais complexas, como Regressão Logística, GLM etc.

Métodos Iterativos: o(s) parâmetro(s) são diretamente atualizados, a partir dos seus valores anteriores e dos resultados ou placares efetivamente observados.

Exemplo 1 (hipotético) - a probabilidade de o time X marcar g gols é:

$$P(G=g) = \frac{e^{-\lambda} \lambda^g}{g!}$$
 (Poisson)

e o valor de λ é atualizado por $\lambda_{k+1} = 0, 2 \cdot \lambda_k + 0, 8 \cdot g_k$ (valor atualizado de λ (para o jogo k+1)) — (valor original de λ (para o jogo k) — (gols marcados no jogo k) —

Exemplo numérico:

Suponhamos que $\lambda_k = 3.5$

e que o time marcou 2 gols nesse jogo ($g_k = 2$).

então, o valor do parâmetro λ para o próximo jogo será

$$\lambda_{k+1} = 0.2 \cdot 3.5 + 0.8 \cdot 2 = 2.3$$

Exemplo 2 (real) - Ranking Elo de Seleções

$$P(X \text{ vencer } Y) = \frac{\pi_x}{\pi_x + \pi_y}$$
 (Bradley-Terry)

onde

$$\pi_{\scriptscriptstyle X} = \begin{cases} 10^{(\theta_{\scriptscriptstyle X}+100)/400} & \text{se a seleção } X \text{ jogar em casa} \\ 10^{\theta_{\scriptscriptstyle X}/400} & \text{caso contrário} \end{cases}$$

 $(\pi_{V} \text{ \'e definido de modo an\'alogo})$

Exemplo 2 (real) - Ranking Elo de Seleções

 S_o = resultado observado da seleção X =

$$= \begin{cases} 1 & \text{se a seleção } X \text{ vencer} \\ 0,5 & \text{se a seleção } X \text{ empatar} \\ 0 & \text{se a seleção } X \text{ perder} \end{cases}$$

 S_e = resultado esperado da seleção X =

 $=1 \cdot P(\text{time } X \text{ ganhar}) + 0 \cdot P(\text{time } X \text{ perder}) =$

$$=1 \cdot \frac{\pi_x}{\pi_x + \pi_y} + 0 \cdot \frac{\pi_y}{\pi_x + \pi_y} = \frac{\pi_x}{\pi_x + \pi_y}$$

Exemplo numérico:

Suponhamos que, inicialmente, $\theta_x = 800$ então, ignorando o efeito "jogar em casa":

$$\pi_{x} = 10^{\theta_{x}/400} = 100$$

Exemplo numérico:

Suponhamos também que $\pi_y = 25$ então, o resultado esperado de X é

 $S_e = 1 \cdot P(\text{time } X \text{ ganhar}) + 0 \cdot P(\text{time } X \text{ perder}) =$

$$=1 \cdot \frac{\pi_x}{\pi_x + \pi_y} + 0 \cdot \frac{\pi_y}{\pi_x + \pi_y} = \frac{100}{125} = 0.8$$

supondo agora que o time X ganhe o jogo contra o time Y (ou seja: $S_o = 1$), temos:

Exemplo numérico:

$$\theta_x' = \theta_x + K(S_o - S_e) =$$
= 800 + K(1 - 0.8)

Para jogos de Copa do Mundo (e ignorando a diferença de gols), K = 60 e, portanto, os valores atualizados de θ_x e π_x seriam:

$$\theta_x' = 800 + 60(1 - 0.8) = 812$$
e $\pi_x' = 10^{\theta_x'/400} = 107.15$

Estimação Bayesiana: atribuição de uma distribuição de probabilidades aos parâmetros (priori) e atualização dessa distribuição em função das informações observadas (verossimilhança).

Notação:

 $\pi(\theta)$ - distribuição <u>a priori</u> do parâmetro θ

 $f(x|\theta)$ - distribuição (<u>verossimilhança</u>) de x, condicional ao valor de θ .

 $\pi(\theta \mid x)$ - distribuição <u>a posteriori</u> de θ , condicional ao valor de x.

Estimação Bayesiana e Métodos Iterativos Distribuição a Posteriori:

$$\pi(\theta \mid x) = \frac{\pi(\theta)f(x \mid \theta)}{\int_{\Theta} \pi(\theta)f(x \mid \theta)d\theta}$$

 $\pi(\theta)$ = "probabilidade" (*priori*) de θ assumir um determinado valor.

 $f(x|\theta)$ = "probabilidade" (<u>verossimilhança</u>) de observar o valor x, em função do valor de θ .

Estimação Bayesiana e Métodos Iterativos Distribuição a Posteriori:

$$\pi(\theta \mid x) = \frac{\pi(\theta)f(x \mid \theta)}{\int_{\Theta} \pi(\theta)f(x \mid \theta)d\theta}$$

 $\pi(\theta \mid x) =$ "probabilidade" (*posteriori*) de θ assumir um dado valor, atualizada pelo valor observado de x.

 $\int_{\Theta} \pi(\theta) f(x \mid \theta) d\theta = \text{constante de normalização}$

Exemplo:

Verossimilhança:

$$f(x \mid \lambda) = P(X = x \mid \lambda) = \frac{e^{-\lambda} \lambda^x}{x!}$$

(i.e. o número X de gols marcados segue uma Poisson com média λ)

Priori:

$$\pi(\lambda) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha - 1} e^{-\beta \lambda}$$

(i.e. a média λ segue uma distribuição Gama com parâmetros α e β)

Exemplo:

Posteriori:

$$f(\lambda \mid x) = \frac{\frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha - 1} e^{-\beta \lambda} \cdot \frac{e^{-\lambda} \lambda^{x}}{x!}}{\int_{0}^{\infty} \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha - 1} e^{-\beta \lambda} \cdot \frac{e^{-\lambda} \lambda^{x}}{x!} d\lambda}$$

MAS: Poisson e Gama são <u>Distribuições</u> <u>Conjugadas</u>, o que facilita a obtenção da *posteriori*, sem necessidade de calcular a integral do denominador.

Exemplo:

Posteriori:

$$\pi(\lambda \mid x) = \frac{\beta^{\alpha+x}}{\Gamma(\alpha+x)} \lambda^{\alpha+x-1} e^{-(\beta+1)\lambda}$$

(i.e. depois da observação do valor x, a média λ segue uma distribuição atualizada Gama com parâmetros $\alpha + x$ e $\beta + 1$)

Estimação *Bayesiana* e Métodos Iterativos Como calcular P(X=x) para o próximo jogo?

Existem três abordagens:

- * Distribuição f(x) com parâmetro igual à Esperança *a posteriori* de λ .
- * Distribuição f(x) com parâmetro igual à Moda *a posteriori* de λ .
- * Distribuição *Preditiva:*

$$DP(x) = \int_{0}^{\infty} \pi(\lambda \mid x_{o}) P(x \mid \lambda) d\lambda$$

Exemplo:

Posteriori:

$$\pi(\lambda \mid x_o) = \frac{\beta^{\alpha + x_o}}{\Gamma(\alpha + x_o)} \lambda^{\alpha + x_o - 1} e^{-(\beta + 1)\lambda}$$

* Esperança a posteriori:

$$E[\lambda \mid x_o] = \frac{\alpha + x_o}{\beta + 1} \Rightarrow P(X = x) = \frac{e^{-\frac{\alpha + x_o}{\beta + 1}} \left(\frac{\alpha + x_o}{\beta + 1}\right)^x}{x!}$$

Exemplo:

Posteriori:

$$\pi(\lambda \mid x_o) = \frac{\beta^{\alpha + x_o}}{\Gamma(\alpha + x_o)} \lambda^{\alpha + x_o - 1} e^{-(\beta + 1)\lambda}$$

* Moda a posteriori:

$$Moda[\lambda \mid x_o] = \frac{\alpha + x_o - 1}{\beta + 1} \Rightarrow P(X = x) = \frac{e^{-\frac{\alpha + x_o - 1}{\beta + 1}} \left(\frac{a + x_o - 1}{\beta + 1}\right)^x}{x!}$$

Exemplo:

Posteriori:

$$\pi(\lambda \mid x_o) = \frac{\beta^{\alpha + x_o}}{\Gamma(\alpha + x_o)} \lambda^{\alpha + x_o - 1} e^{-(\beta + 1)\lambda}$$

* <u>Distribuição Preditiva</u>

$$DP(x) = \int_{\lambda} \frac{\beta^{\alpha + x_o}}{\Gamma(\alpha + x_o)} \lambda^{\alpha + x_o - 1} e^{-(\beta + 1)\lambda} \cdot \frac{e^{-\lambda} \lambda^x}{x!} d\lambda$$

Exemplo:

Novamente, o fato de Poisson e Gama serem <u>Distribuições Conjugadas</u>, facilita o trabalho e elimina a necessidade de calcular a integral:

* <u>Distribuição Preditiva</u> (Binomial Negativa):

$$DP(x) = {\begin{pmatrix} x + \alpha + x_o - 1 \\ x \end{pmatrix}} \left(1 - \frac{1}{\beta + 2} \right)^{\alpha + x_o} \left(\frac{1}{\beta + 2} \right)^x$$

Exemplo numérico:

Verossimilhança (Poisson):

$$f(x \mid \lambda) = P(X = x \mid \lambda) = \frac{e^{-\lambda} \lambda^{x}}{x!}$$

Priori para λ (Gama com $\alpha = \beta = 1$):

$$\pi(\lambda) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha - 1} e^{-\beta \lambda} = e^{-\lambda}$$

Exemplo numérico:

Suponhamos que o time marcou 2 gols, ou seja, foi observado $x_o = 2$.

então:

A *posteriori* para λ será uma Gama com parâmetros $\alpha + x_o = 1 + 2 = 3$ e $\beta + 1 = 1 + 1 = 2$):

$$\pi(\lambda \mid x_o) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha - 1} e^{-\beta \lambda} = 4\lambda^2 e^{-2\lambda}$$

Exemplo numérico:

Por fim:

* Esperança a posteriori:

$$E[\lambda \mid x_0] = \frac{3}{2} = 1.5 \implies P(X = x) = \frac{e^{-1.5}(1.5)^x}{x!}$$

* Moda *a posteriori*:

$$Moda[\lambda \mid x_0] = \frac{2}{2} = 1 \Rightarrow P(X = x) = \frac{e^{-1}}{x!}$$

Exemplo numérico:

* <u>Distribuição Preditiva</u> (Binomial Negativa)

$$DP(x) = {x + \alpha + x_o - 1 \choose x} \left(1 - \frac{1}{\beta + 2}\right)^{\alpha + x_o} \left(\frac{1}{\beta + 2}\right)^x =$$

$$= {x + 2 \choose x} \left(\frac{2}{3}\right)^3 \left(\frac{1}{3}\right)^x$$

Obs: os modelos (iterativos e bayesianos) reais são, em geral, (bem) mais complexos que os exemplos aqui apresentados.

Estimação Direta

Utilização direta de informações descritivas (externas e pré-existentes).

Exemplo:

 R_{x} = pontos da seleção X no Ranking da FIFA

 R_v = pontos da seleção Y no Ranking da FIFA

$$P(X \text{ vencer } Y) = \frac{R_x}{R_x + R_y}$$
 (Bradley-Terry)

PROBLEMA: as informações utilizadas como parâmetros não necessariamente guardam coerência conceitual com as probabilidades.

3 - Verificação de Qualidade

* Análise Anterior

Apreciação <u>qualitativa</u> das características da construção do modelo.

* Análise Posterior

Avaliação <u>quantitativa</u> dos resultados preditivos obtidos pelo modelo

Índices de confronto entre previsões realizadas (probabilidades) e resultados efetivamente observados.

Análise Anterior

Pergunta: o que o modelo faz, faz sentido?

Exemplo (Ranking FIFA + Bradley-Terry):

$$\frac{P(X \text{ vencer } Y)}{P(Y \text{ vencer } X)} = \frac{\frac{R_x}{R_x + R_y}}{\frac{R_y}{R_x + R_y}} = \frac{R_x}{R_y}$$

PORÉM: o método de cálculo do Ranking FIFA **não implica** que uma seleção com *k* vezes a pontuação de outra, tenha uma probabilidade de vitória igual a *k* vezes a de derrota!

Se baseia em duas medidas/atributos:

A - Medida de Confiabilidade

<u>Idéia básica</u>: de uma moeda que tenha P(cara) = 80% e P(coroa) = 20%, esperase observar, no longo prazo, 80% de caras e 20% de coroas.

Nesse caso, teríamos:

$$MC = \left(\frac{\#caras}{\#jogadas} - 0.8\right)^{2} + \left(\frac{\#coroas}{\#jogadas} - 0.2\right)^{2}$$

Em termos futebolísticos:

$$MC = \sum_{p} \left(\frac{\#VO_p + \#EO_p + \#DO_p}{\#VP_p + \#EP_p + \#DP_p} - p \right)^2$$

onde:

 $\#VP_p + \#EP_p + \#DP_p = \text{quantidade de resultados}$ (vitórias, empates e derrotas) que tinham probabilidade p de ocorrer

 $\#VO_p + \#EO_p + \#DO_p = \text{quantos desses resultados}$ efetivamente aconteceram

Observação: Probabilidades são números reais. Por isso, costuma-se trabalhar com intervalos:

$$MC = \sum_{I} \left(\frac{\#VO_{I} + \#EO_{I} + \#DO_{I}}{\#VP_{I} + \#EP_{I} + \#DP_{I}} - I^{*} \right)^{2}$$

onde:

 $\#VP_I + \#EP_I + \#DP_I =$ quantidade de resultados (V, E, D) cujas probabilidades de ocorrência estavam dentro do intervalo I

 $\#VO_I + \#EO_I + \#DO_I =$ quantos desses resultados efetivamente aconteceram

 $I^* = \text{centro do intervalo I}$

Exemplo numérico (site Chance de Gol):

I	I*	#P _i	#O _i	$\frac{\#O_I}{\#P_I}$	$\left(\frac{\#O_I}{\#P_I}-I^*\right)^2$
[0;0,1]	0,05	2583	314	0,122	0,0051
[0,1;0,2]	0,15	7831	1804	0,230	0,0065
[0,2;0,3]	0,25	16679	5924	0,355	0,0111
[0,3;0,4]	0,35	6293	2774	0,441	0,0082
[0,4 ; 0,5]	0,45	7238	3254	0,450	2x10 ⁻⁷
[0,5 ; 0,6]	0,55	6316	3413	0,540	0,0001
[0,6;0,7]	0,65	3431	2068	0,603	0,0022
[0,7;0,8]	0,75	1625	1098	0,676	0,0055
[0,8 ; 0,9]	0,85	721	562	0,772	0,0050
[0,9;1]	0,95	221	195	0,882	0,0046

MC = Soma = **0,0483**

Interpretação Gráfica (site Chance de Gol):

diagonal azul = proporções esperadas (I*) linha vermelha = proporções observadas (#OI/#PI)

Interpretação Gráfica (site Chance de Gol):

MC = distância entre as linhas azul e vermelha consequentemente: melhor MC possível = 0

B - Medida de DeFinetti

É uma medida de exatidão das previsões.

<u>Idéia básica</u>: confronto entre o vetor de probabilidades (previsões) (PV, PE, PD) e o vetor correspondente ao resultado de fato observado:

- (1, 0, 0) se o time ganhou o jogo;
- (0, 1, 0) se o time empatou o jogo;
- (0, 0, 1) se o time perdeu o jogo.

Medida de DeFinetti

Todos os vetores (PV, PE, PD) possíveis podem ser associados a pontos do simplex (triângulo) em \mathbb{R}^3 :

Medida de DeFinetti

Então, a <u>Distância de DeFinetti</u> é a distância quadrática entre o pontos correspondentes à previsão realizada e ao resultado ocorrido:

$$DDF = \begin{cases} (PV-1)^2 + (PE-0)^2 + (PD-0)^2 & \text{se vencer;} \\ (PV-0)^2 + (PE-1)^2 + (PD-0)^2 & \text{se empatar;} \\ (PV-0)^2 + (PE-0)^2 + (PD-1)^2 & \text{se perder.} \end{cases}$$

E a <u>Medida de DeFinetti</u> é a média aritmética das Distâncias de DeFinetti para todos os jogos considerados.

Medida de DeFinetti

Valores de Referência:

- * Melhor DDF possível: $(1-1)^2 + 2 \cdot (0-0)^2 = 0$
- * "Preguiçoso": imagine um modelo que sempre atribua probabilidades (1/3, 1/3, 1/3), para todos os jogos possíveis.

então, para esse modelo:

$$MDF = (1/3-1)^2 + 2 \cdot (1/3-0)^2 = 0,6667$$

Logo, é mais conveniente, mais rápido, mais barato etc. usar o "modelo preguiçoso" do que um modelo que tenha DDF > 0,6667.

C - "Taxa de Funcionamento"

Quantas vezes (proporcionalmente) o modelo produz valores inadequados.

Exemplo: Bradley-Terry

"TF" = proporção de vezes em que foram estimados valores positivos para π .

Exemplo: Binomial Negativa

"TF" = proporção de vezes em que foram estimados valores de *p* entre 0 e 1.

D - "Taxa de Acerto" (MITO!)

Quantas vezes (proporcionalmente) o modelo "acertou" o vencedor dos jogos.

<u>observação 1</u>: tudo o que tem probabilidade 95% de acontecer, tem 5% de não acontecer.

<u>observação 2</u>: se um time tem probabilidade de 5% de vitória, então a hipótese de esse time ganhar o jogo está contemplada (e medida em 5%).

PORTANTO, não é correto utilizar a "taxa de acerto" como medida de qualidade.

D - "Taxa de Acerto" (MITO!)

Exemplo: time *X* x time *Y*

	Modelo I	Modelo II
P(vitória de X)	0,90	0,35
P(empate)	0,06	0,33
P(vitória de Y)	0,04	0,32

Suponha que o time Y tenha vencido o jogo.

Então, os dois modelos teriam "TA" = 0.

Mas, claramente, I "errou muito mais" que II.

4 - Estudo de Caso: Chance de Gol

Representação Paramétrica:

Distribuições de Poisson univariadas, i.e., para um jogo entre os times *i* e *j*:

 G_i = número de gols marcados pelo time i

 G_i = número de gols marcados pelo time j

$$P(G_i = g) = \frac{e^{-\lambda_i} \lambda_i^g}{g!}$$

$$P(G_j = g) = \frac{e^{-\lambda_j} \lambda_j^g}{g!}$$

Funções a serem estimadas:

$$D_{ij} = E[G_i - G_j] = \lambda_i - \lambda_j$$
(quanto o time i é "melhor" que o j)
$$S_{ii} = E[G_i + G_i] = \lambda_i + \lambda_i$$

("poder ofensivo conjunto" dos dois times)

A partir dessas funções D_{ij} e S_{ij} , pode-se obter os λ de cada time:

$$\lambda_i = \frac{S_{ij} + D_{ij}}{2} \qquad \lambda_j = \frac{S_{ij} - D_{ij}}{2}$$

Equações de estimação (regressão):

$$\begin{cases} S_k = \alpha_1 X_{1k} + \alpha_2 X_{2k} + ... + \alpha_N X_{Nk} + \varepsilon_k \\ D_k = \beta_1 Y_{1k} + \beta_2 Y_{2k} + ... + \beta_N Y_{Nk} + \varepsilon'_k \end{cases}$$

 S_k = soma de gols no k-ésimo jogo

 $X_{ik} = 1$ se o time *i* participou do *k*-ésimo jogo; 0 se não participou

 α_1 , α_2 , ..., α_N são (hiper)parâmetros a serem estimados

Equações de estimação (regressão):

$$\begin{cases} S_k = \alpha_1 X_{1k} + \alpha_2 X_{2k} + ... + \alpha_N X_{Nk} + \varepsilon_k \\ D_k = \beta_1 Y_{1k} + \beta_2 Y_{2k} + ... + \beta_N Y_{Nk} + \varepsilon'_k \end{cases}$$

 D_k = diferença de gols no k-ésimo jogo

 $Y_{ik} = 1$ se o time i foi "mandante" -1 se foi "visitante" 0 se não participou do k-ésimo jogo

 β_1 , β_2 , ..., β_N são (hiper)parâmetros a serem estimados

Aplicando a essas equações técnicas de análise de regressão múltipla, obtemos os estimadores de mínimos quadrados

$$\hat{\alpha}_1, \hat{\alpha}_2, \dots, \hat{\alpha}_N \in \hat{\beta}_1, \hat{\beta}_2, \dots, \hat{\beta}_N$$

que são aqueles que minimizam os erros quadráticos

$$\sum \varepsilon_k^2 = \sum [S_k - (\alpha_1 X_{1k} + \alpha_2 X_{2k} + ... + \alpha_N X_{Nk})]^2$$

$$\sum \varepsilon_k'^2 = \sum [D_k - (\beta_1 Y_{1k} + \beta_2 Y_{2k} + \dots + \beta_N Y_{Nk})]^2$$

Suponhamos agora que o próximo jogo (o (k+1)-ésimo) seja entre os times i e j. Então, a partir de $\hat{\alpha}_1, \hat{\alpha}_2, ..., \hat{\alpha}_N$ e $\hat{\beta}_1, \hat{\beta}_2, ..., \hat{\beta}_N$ podemos calcular

$$\begin{cases} \hat{S}_{k+1} = \hat{\alpha}_1 X_{1,k+1} + \hat{\alpha}_2 X_{2,k+1} + \dots + \hat{\alpha}_N X_{N,k+1} = \hat{\alpha}_i + \hat{\alpha}_j \\ \hat{D}_{k+1} = \hat{\beta}_1 Y_{1,k+1} + \hat{\beta}_2 Y_{2,k+1} + \dots + \hat{\beta}_N Y_{N,k+1} = \hat{\beta}_i - \hat{\beta}_j \end{cases}$$

e, consequentemente:

$$\hat{\lambda}_i = \frac{\hat{S}_{k+1} + \hat{D}_{k+1}}{2}$$
 e $\hat{\lambda}_j = \frac{\hat{S}_{k+1} - \hat{D}_{k+1}}{2}$

Exemplo Numérico

Campeonato hipotético:

```
Jogo 1 - Time A 2x3 Time B
```

Jogo 2 - Time C 5x1 Time D

Jogo 3 - Time A 4x0 Time C

Jogo 4 - Time B 1x1 Time D

Jogo 5 - Time A 0x2 Time D

Queremos calcular as probabilidades para o

Jogo 6 - Time B x Time C

Exemplo Numérico

Campeonato hipotético:

Jogo 1 - Time A 2x3 Time B

Jogo 2 - Time C 5x1 Time D

Jogo 3 - Time A 4x0 Time C

Jogo 4 - Time B 1x1 Time D

Jogo 5 - Time A 0x2 Time D

Então, temos, para a primeira equação de regressão:
$$S = \begin{bmatrix} 5 \\ 6 \\ 4 \end{bmatrix} \quad X = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 2 & & & 1 & 0 & 1 \end{bmatrix}$$

Campeonato hipotético:

```
Jogo 1 - Time A 2x3 Time B
```

que é "equivalente" a "solucionar" o sistema de equações

$$\begin{cases} \alpha_{\text{Time A}} + \alpha_{\text{Time B}} = 5 \\ \alpha_{\text{Time C}} + \alpha_{\text{Time D}} = 6 \\ \alpha_{\text{Time A}} + \alpha_{\text{Time C}} = 4 \\ \alpha_{\text{Time B}} + \alpha_{\text{Time D}} = 2 \\ \alpha_{\text{Time A}} + \alpha_{\text{Time D}} = 2 \end{cases}$$

Campeonato hipotético:

Jogo 1 - Time A 2x3 Time B

Jogo 2 - Time C 5x1 Time D

Jogo 3 - Time A 4x0 Time C

Jogo 4 - Time B 1x1 Time D

Jogo 5 - Time A 0x2 Time D

Analogamente, para a segunda equação de regressão:
$$D = \begin{bmatrix} -1 \\ 4 \\ 0 \end{bmatrix} \quad Y = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & 0 & -1 \end{bmatrix}$$

Campeonato hipotético:

```
Jogo 1 - Time A 2x3 Time B
```

que é "equivalente" a "solucionar" o sistema de equações

$$\begin{cases} \beta_{\text{Time A}} - \beta_{\text{Time B}} = -1 \\ \beta_{\text{Time C}} - \beta_{\text{Time D}} = 4 \\ \beta_{\text{Time A}} - \beta_{\text{Time C}} = 4 \\ \beta_{\text{Time B}} - \beta_{\text{Time D}} = 0 \\ \beta_{\text{Time A}} - \beta_{\text{Time D}} = -2 \end{cases}$$

Calculando-se os estimadores de mínimos quadrados, encontramos:

$$\begin{cases}
\hat{\alpha}_{\text{Time A}} = 1,25 \\
\hat{\alpha}_{\text{Time B}} = 2,5
\end{cases}$$

$$\hat{\beta}_{\text{Time A}} = -0,125 \\
\hat{\beta}_{\text{Time B}} = 0 \\
\hat{\alpha}_{\text{Time C}} = 4 \\
\hat{\alpha}_{\text{Time D}} = 0,75$$

$$\hat{\beta}_{\text{Time D}} = -0,875$$

de onde obtemos:

$$\hat{E}[G_B + G_C] = (1,25 \cdot 0) + (2,5 \cdot 1) + (4 \cdot 1) + (0,75 \cdot 0) = 6,5$$

$$\hat{E}[G_B - G_C] = (-0,125 \cdot 0) + (0 \cdot 1) + (-0,5 \cdot (-1)) + (0,875 \cdot 0) = 0,5$$

Por fim:

$$\hat{\lambda}_B = \frac{\hat{E}[G_B + G_C] + \hat{E}[G_B - G_C]}{2} = \frac{6.5 + 0.5}{2} = 3.5$$

$$\hat{\lambda}_C = \frac{\hat{E}[G_B + G_C] - \hat{E}[G_B - G_C]}{2} = \frac{6.5 - 0.5}{2} = 3$$

e, consequentemente:

$$P(G_B = b) = \frac{e^{-3.5}(3.5)^b}{b!}$$
 $P(G_C = c) = \frac{e^{-3}3^c}{c!}$

Como calcular P(V), P(E) e P(D)?

$$P(\text{vit\'oria de } B) = P(G_B > G_c) = \sum_{b>c} P(G_B = b) P(G_C = c)$$

$$P(\text{vit\'oria de } C) = P(G_B < G_c) = \sum_{b < c} P(G_B = b) P(G_C = c)$$

$$P(\text{empate}) = P(G_B = G_C) = \sum_b P(G_B = b)P(G_C = b)$$

PORÉM, não existe fórmula fechada para as duas primeira somas.

* Distribuição de Skellam:

$$P(G_B - G_C = d) = e^{-(\lambda_B + \lambda_C)} \left(\frac{\lambda_B}{\lambda_C}\right)^{d/2} I_{|d|} \left(2\sqrt{\lambda_B \lambda_C}\right)$$

então:

$$P(\text{vit\'oria de } B) = P(G_B - G_C > 0) = \sum_{d>0} P(G_B - G_C = d)$$

$$P(\text{empate}) = P(G_B - G_C = 0)$$

$$P(\text{vit\'oria de } C) = P(G_B - G_C < 0) = \sum_{d < 0} P(G_B - G_C = d)$$

Então, a probabilidade de empate pode ser calculada de forma exata:

$$P(\text{empate}) = e^{-(\hat{\lambda}_B + \hat{\lambda}_C)} I_0 \left(2\sqrt{\hat{\lambda}_B \hat{\lambda}_C} \right)$$

e as probabilidades de vitória de cada time podem ser aproximadas pelas somas:

$$P(\text{vit\'oria de }B) = \sum_{d=1}^{N} e^{-(\hat{\lambda}_B + \hat{\lambda}_C)} \left(\frac{\hat{\lambda}_B}{\hat{\lambda}_C}\right)^{d/2} I_{|d|} \left(2\sqrt{\hat{\lambda}_B\hat{\lambda}_C}\right)$$

$$P(\text{vit\'oria de }C) = \sum_{d=-N}^{-1} e^{-(\hat{\lambda}_B + \hat{\lambda}_C)} \left(\frac{\hat{\lambda}_B}{\hat{\lambda}_C}\right)^{d/2} I_{|d|} \left(2\sqrt{\hat{\lambda}_B}\hat{\lambda}_C\right)$$

* Retângulo Truncado:

$P(G_B=0,G_C=0)$	$P(G_B=1,G_C=0)$	 $P(G_B = N, G_C = 0)$
$P(G_B=0,G_C=1)$	$P(G_B=1,G_C=1)$	 $P(G_B = N, G_C = 1)$
:		:
$P(G_B=0,G_C=N)$	$P(G_B = 1, G_C = N)$	 $P(G_i = N, G_j = N)$

então, podem ser feitas as aproximações:

P(empate) = soma da diagonal

 $P(vitória\ de\ B) = soma\ do\ triângulo\ superior$

 $P(vitória\ de\ C) = soma\ do\ triângulo\ inferior$

Então, lembrando que $\hat{\lambda}_B = 3.5$ e $\hat{\lambda}_C = 3$

e fazendo as somas pela distribuição de Skellam truncada entre -20 e 20, chegamos às probabilidades

$$\begin{cases} P(\text{vit\'oria de } B) = 0,498 \\ P(\text{empate}) = 0,157 \\ P(\text{vit\'oria de } C) = 0,345 \end{cases}$$

Após a realização do jogo, o impacto dessas probabilidades na Medida de Confiabilidade será:

- * Soma de 1 ao denominador da parcela referente ao intervalo [0,4; 0,5];
- * Soma de 1 ao numerador se o time *B* vencer o jogo e de 0 em caso contrário.
- * Soma de 1 ao denominador da parcela referente ao intervalo [0,1; 0,2];
- * Soma de 1 ao numerador se o time *B* empatar o jogo e de 0 em caso contrário.

Após a realização do jogo, o impacto dessas probabilidades na Medida de Confiabilidade será:

- * Soma de 1 ao denominador da parcela referente ao intervalo [0,3; 0,4];
- * Soma de 1 ao numerador se o time *B* perder o jogo e de 0 em caso contrário.

Após a realização do jogo, o impacto dessas probabilidades na Medida de DeFinetti será:

*
$$DDF = (0.498-1)^2 + (0.157-0)^2 + (0.345-0)^2 = 0.396$$

se o time B vencer o jogo;

*
$$DDF = (0.498 - 0)^2 + (0.157 - 1)^2 + (0.345 - 0)^2 = 1.078$$

se o time B empatar o jogo;

*
$$DDF = (0.498-0)^2 + (0.157-0)^2 + (0.345-1)^2 = 0.702$$

se o time *B* perder o jogo.

5 - Comentários Finais

Rankings Paramétricos

Modelos suficientemente "bons" (no sentido da análise anterior) podem proporcionar a formação de rankings.

Exemplo: Bradley-Terry

$$\pi_{i} > \pi_{j} \Rightarrow \frac{\pi_{i}}{\pi_{i} + \pi_{j}} > \frac{\pi_{j}}{\pi_{i} + \pi_{j}} \Rightarrow$$

$$\Rightarrow P(i \text{ derrotar } j) > P(j \text{ derrotar } i) \Rightarrow$$

$$\Rightarrow i \text{ \'e "melhor" que } j$$

Rankings Paramétricos

Exemplo: Chance de Gol

$$\beta_{i} > \beta_{j} \Rightarrow E[G_{i} - G_{j}] > 0 \Rightarrow$$

$$\Rightarrow E[G_{i}] > E[G_{j}] \Rightarrow$$

$$\Rightarrow P(G_{i} > G_{j}) > P(G_{i} < G_{j}) \Rightarrow$$

$$\Rightarrow i \text{ \'e "melhor" que } j$$

Portanto, os times podem ser tecnicamente ranqueados em função dos seus parâmetros π (Bradley-Terry) ou β (Chance de Gol).

Resultados x Placares

Exemplo (play-off de cinco jogos):

Time M 1x0 Time N

Time N 7x0 Time M

Modelos baseados em resultados:

4 vitórias do Time M contra 1 do Time N (portanto, o Time M é "melhor").

Resultados x Placares

Exemplo (play-off de cinco jogos):

Time M 1x0 Time N

Time N 7x0 Time M

Modelos baseados em placares:

"placar agregado" de 7x4 para o Time N (portanto, o Time N é "melhor").

Áreas para Estudos Futuros

- * Modelos "intermediários" que conciliem "placar" e "resultado";
- * Modelos que levem em consideração os jogadores (desfalques, reforços etc.);
- * Modelos de comparação histórica (Hungria de 1954 x Brasil de 1970, Santos de Pelé x Barcelona de Messi etc.)

www.chancedegol.com.br Seção COMO TUDO FUNCIONA

chancedegol@chancedegol.com.br mlarruda@terra.com.br mlarruda@gmail.com