2. kontrolná písomka z ADM konaná dňa 17. 4. 2008

- **1. príklad**. Koľko existuje binárnych reťazcov dĺžky 7, ktoré obsahujú párny počet núl (t. j. 0, 2, 4 a 6)? (2 body)
- **2. príklad.** (Nasledujúci príklad nie je nutné dopočítať numericky, stačí dosadiť hodnoty do odvodeného výrazu)

Keď vám v banke pripisujú na bežnom účte za mesiac 0,1% a za vedenie účtu je koncoročný poplatok 300 Sk, koľko musíte mať na účte, aby ste po roku mal rovnaký stav aký bol počiatočný vklad? (2 body)

3. príklad. Majme 4 permutácie

$$S = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, L = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}, P = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}, C = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$$

Tieto permutácie tvoria množinu $G = \{S, L, P, C\}$. Nech binárna operácia * medzi permutáciami je definovaná obvyklým spôsobom a je asociatívna.

- (1) Zostrojte multiplikačnú tabuľku pre algebraickú štruktúru (G,*) (2 body).
- (2) Nájdite v G neutrálny prvok. (0.5 bodu)
- (3) Nájdite, pre každú permutáciu $x \in G$ inverzný prvok x^{-1} (0.5 bodu).
- (4) Je algebraická štruktúra (G,*) grupou, prečo? (1 bod)
- (5) Zostrojte netriviálnu podgrupu G' grupy G (1 bod).
- (6) Je grupa *G* komutatívna, prečo? (1 bod) (celkovo 6 bodov)
- **4. príklad.** Boolova funkcia $y = f(x_1, x_2, x_3)$ je zadaná tabuľkou

x_1	x_2	<i>X</i> ₃	y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

- (1) Zostrojte Boolovu funkciu, ktorá je takto špecifikovaná pomocou tabuľky. (1 bod)
- (2) Vykonajte jej optimalizáciu pomocou Quinovej a McCluskeyho metódy. (2 body) (celkovo 3 body)
- 5. príklad. Zostrojte spínacie zariadenie, ktoré je reprezentované Boolovou funkciou

$$f(x_1, x_2, x_3, x_4, x_5) = x_5 + x_1(x_3 + x_4)x_2$$

(2 body)

Prémiový príklad. Majme farebné fixky s farebnými krytkami odpovedajúcej farby: červenú, zelenú, modrú, žltú a čiernu. Ku každej z týchto farieb máme práve jednu fixku. Koľko existuje možností poprehadzovania krytiek tak, aby žiadna nebola na fixke rovnakej farby? (2 body)

Riešenie

1. príklad. Koľko existuje binárnych reťazcov dĺžky 7, ktoré obsahujú párny počet núl (t. j. 0, 2, 4 a 6)? (2 body)

Nech počet núl v reťazci je

- (1) n = 0, počet binárnych reťazcov je $\binom{7}{0} = 1$,
- (2) n = 2, počet binárnych reťazcov je $\binom{7}{2} = 21$
- (3) n = 4, počet binárnych reťazcov je $\binom{7}{4} = 35$
- (4) n = 6, počet binárnych reťazcov je $\binom{7}{6} = 7$

Celkový počet požadovaných binárnych reťazcov je 64.

2. príklad. (Nasledujúci príklad nie je potrebné počítať numericky, stačí odvodiť požadovaný výraz) V banke nám pripisujú na účet za mesiac 0.1% úrok a za vedenie účtu je koncoročný poplatok 300 Sk. Koľko musíme mať na účte , aby sme po roku mali rovnaký stav ako pred rokom Počiatočný vklad je A_0 , za mesiac máme $A_1 = A_0 q$, kde q = 1.001, za 12 mesiacov na účte máme

$$A_0 q^{12} - B = A_0 \Rightarrow A_0 (q^{12} - 1) = B \Rightarrow A_0 = \frac{B}{q^{12} - 1} \Rightarrow A_0 = \frac{300}{1.001^{12} - 1}$$

3. príklad. Majme 4 permutácie

$$S = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, L = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}, P = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}, C = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$$

Tieto permutácie tvoria množinu $G = \{S, L, P, C\}$. Nech binárna operácia * medzi permutáciami je definovaná obvyklým spôsobom a je asociatívna.

- (1) Zostrojte multiplikačnú tabuľku pre algebraickú štruktúru (G,*) (2 bod).
- (2) Nájdite v G neutrálny prvok. (0.5 bodu)
- (3) Nájdite, pre každú permutáciu $x \in G$ inverzný prvok x^{-1} (0.5 bodu).
- (4) Je algebraická štruktúra (G,*) grupou, prečo? (1 bod)
- (5) Zostrojte netriviálnu podgrupu G' grupy G (1 bod).
- (6) Je grupa *G* komutatívna, prečo? (1 bod) (celkovo 6 bodov)
- (1) Multiplikačná tabuľka má tvar

*	:	S	L	P	C
S	•	S	L	P	C
I	,	L	С	S	P
P	•	P	S	С	L
C	7	С	P	L	S

(2) Neutrálny prvok je *S*.

(3)
$$S^{-1} = S, L^{-1} = P, P^{-1} = L, C^{-1} = C$$

(4) Algebraická štruktúra je grupou, pretože operácia "súčinu" definovaná nad G zachováva túto množinu, operácia je asociatívna podľa zadania, existuje neutrálny prvok a ku každému prvkou existuje jeho inverzný prvok.

- (5) Netriviálna podgrupa má tvar $G' = \{S, C\}$.
- (6) Grupa je komutatívna, multiplikatívna tabuľka je symetrická podľa hlavnej diagonály.
- **4. príklad.** Boolova funkcia $y = f(x_1, x_2, x_3)$ je zadaná tabuľkou

x_1	x_2	x_3	у
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

(1) Zostrojte Boolovu funkciu, ktorá je takto špecifikovaná pomocou tabuľky.

$$y = \overline{x}_1 \overline{x}_2 \overline{x}_3 + \overline{x}_1 \overline{x}_2 x_3 + x_1 \overline{x}_2 \overline{x}_3 + x_1 \overline{x}_2 x_3$$

(2) Vykonajte jej optimalizáciu pomocou Quinovej a McCluskeyho metódy.

1	000	1	1 – 2	00#	1	1 – 4	#0#
2	001	2	1 - 3	#00	2	2 - 3	#0#
3	100	3	2 - 4	#01			
4	101	4	3 - 4	10#			

$$y_{opt} = \overline{x}_2$$

5. príklad. Zostrojte spínacie zariadenie, ktoré je reprezentované Boolovou funkciou

$$f(x_1, x_2, x_3, x_4, x_5) = x_5 + x_1(x_3 + x_4)x_2$$

Prémiový príklad. Majme farebné fixky s farebnými krytkami odpovedajúcej farby: červenú, zelenú, modrú, žltú a čiernu. Ku každej z týchto farieb máme práve jednu fixku. Koľko existuje možností poprehadzovania krytiek tak, aby žiadna nebola na fixke rovnakej farby? (2 body)

Riešenie: Počet derangementálnych permutácií 5 objektov je

$$D_5 = 5! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} \right) = 2 \cdot 3 \cdot 4 \cdot 5 \left(\frac{1}{2} - \frac{1}{6} + \frac{1}{24} - \frac{1}{120} \right) = 120 \frac{60 - 20 + 5 - 1}{120} = 44$$