Завдання до практичного №2 «Розв'язання диференційних рівнянь 1 порядку»

Розв'язати задане згідно з варіантом у таблиці 1 рівняння аналітично та чисельно усіма 5 методами (явний та неявний метод Ейлера, метод Рунге-Кути, явний та неявний двохточковий метод Адамса). Проаналізувати стійкість та точність кожного метода.

Аналітичний розв'язок можна знайти тут:

https://www.wolframalpha.com/input/?i2d=true&i=x%27%3D-

10x%5C%2844%29x%5C%2840%290%5C%2841%29%3D1

Виконане завдання завантажити в папку з вашим прізвищем. Можна не формувати окремий текстовий файл, а всі викладки, пояснення та висновки додати як коментарі до тексту програми або як текстову комірку.

 Таблиця 1.

 Диференційні рівняння для завдання 1.

Номер варіанту	Рівняння	Початкова умова, х(0)	Час від t ₀ =0 до t _f =
1	$x'(t) = 0.4t - \sqrt{t} + e^{0.3t}$	4	2
2	$x'(t) = x(0.4 - \sin t)$	1	4
3	$x'(t) = \frac{x(1-t)}{e^t}$	1	2
4	$x'(t) = 2x^2 \sin t$	4	5
5	$x'(t) = 5x \cdot e^{-t} \cdot t$	3	3
6	$x'(t) = 4x - 7t \cdot e^{-t}$	3	4
7	x'(t) = -5x + 4t	7	4
8	$x'(t) = -5x + 4e^{0.2t}$	7	1
9	$x'(t) = 4x \cdot e^{-t} \cdot t$	1	5
10	$x'(t) = -3x \cdot \cos t$	1	4
11	$x'(t) = -7x \cdot \sqrt{t}$	4	3
12	$x'(t) = \left(1 + x^2\right) \cdot e^t$	2	2