STAT 620 Homework 11

2022-04-29

7.9 Let (Ω, \mathcal{F}, P) be a probability space.

1. If $\{A_i\}_{i=1}^m$ is a collection of independent events, show

$$P\left(\bigcup_{i=1}^{m} A_i\right) = 1 - \prod_{i=1}^{m} (1 - P(A_i)).$$

$$P\left(\bigcup_{i=1}^{m} A_i\right) = 1 - P\left(\left(\bigcup_{i=1}^{m} A_i\right)^C\right)$$

$$= 1 - P\left(\bigcap_{i=1}^{m} A_i^C\right)$$

$$= 1 - \prod_{i=1}^{m} P(A_i^C) \qquad (Theorem 7.4.4 & Definition 7.4.3)$$

$$= 1 - \prod_{i=1}^{m} (1 - P(A_i)) \qquad \Box$$

2. If $\{A_i\}_{i=1}^{\infty}$ is a collection of independent events, show

$$P\left(\bigcap_{i=1}^{\infty} A_i\right) = \prod_{i=1}^{\infty} P(A_i)$$

I am going to attempt to prove this by induction. Consider two sets in the collection A_{i_1} and A_{i_2} . By Definition 7.4.2, $P(A_{i_1} \cap A_{i_2}) = P(A_{i_1})P(A_{i_2})$. We also have that by definition, for $m \in \mathbb{N}$, $P\left(\bigcap_{j=1}^m A_{i_j}\right) = \prod_{j=1}^m P(A_{i_j})$.

Now consider m+1 sets. We want to show that $P\left(\bigcap_{j=1}^{m+1} A_{i_j}\right) = \prod_{j=1}^{m+1} P(A_{i_j})$. We have

$$P\left(\bigcap_{j=1}^{m+1} A_{i_j}\right) = P\left(\left(\bigcap_{j=1}^{m} A_{i_j}\right) \cap A_{i_{m+1}}\right)$$

$$= P\left(\bigcap_{j=1}^{m+1} A_{i_j}\right) \times P(A_{i_{m+1}})$$

$$= \prod_{j=1}^{m} P(A_{i_j}) \times P(A_{i_{m+1}})$$

$$= \prod_{j=1}^{m+1} P(A_{i_j})$$

Therefore, the probability of a countable intersection of independent events can be expressed as the countable product of the probabilities of the individual events.

8.2 Let $(\mathbb{X}, \mathcal{M}, \mu)$ be a measure space and $\mathbb{X} = A \cup B$ with $A, B \in \mathcal{M}$. Prove that a real valued function f on \mathbb{X} is measurable if and only if f is measurable on A and on B.

(f is measurable on $\mathbb{X} \implies f$ is measurable on A and B)

If f is measurable on $\mathbb{X} = A \cup B$, then $f^{-1}(C) \in \mathcal{M}$ for all C in the corresponding Borel σ -algebra. Then by definition 8.2.3, and the closure of a σ -algebra under finite intersection, $f^{-1}(C) \cap A \in \mathcal{M}$ and $f^{-1}(C) \cap B \in \mathcal{M}$ for all $C \in \mathcal{N}$ (the Borel σ -algebra), so f is measurable on A and B.

(f is measurable on A and $B \implies f$ is measurable on \mathbb{X})

Starting from the end and going to the beginning in the above proof should be sufficient for this direction, I think. If f is measurable on A and B, then $f^{-1}(C) \cap A \in \mathcal{M}$ and $f^{-1}(C) \cap B \in \mathcal{M}$ for all $C \in \mathcal{N}$. This implies by the properties of σ -algebras that $f^{-1}(C) \in \mathcal{M}$ for all $C \in \mathcal{N}$, so by definition 8.2.1, f is \mathcal{M} -measurable.

8.7 Let X be an integer valued random variable on a probability space (Ω, \mathscr{F}, P) and m a positive integer. Show

$$\sum_{i=-\infty}^{\infty} P(\{\omega : i < X(\omega) \le i + m\}) = m.$$

$$\sum_{i=-\infty}^{\infty} P(\{\omega : i < X(\omega) \le i + m\}) = \sum_{i=-\infty}^{\infty} P(\{i, \dots, i + m\})$$

$$= \sum_{i=-\infty}^{\infty} P\left(\bigcup_{j=i}^{i+m} \{j\}\right)$$

$$= \sum_{i=-\infty}^{\infty} \sum_{j=i}^{i+m} P(\{j\})$$

$$= \dots \sum_{i=k}^{k+m} P(\{i\}) + \sum_{i=k+1}^{k+1+m} P(\{i\}) + \dots$$

$$= \sum_{i=-\infty}^{\infty} mP(\{i\})$$

$$= m \sum_{i=-\infty}^{\infty} P(\{i\}) = m \times 1 = m$$