

PROJECTION DISPLAY APPARATUS

BACKGROUND OF THE INVENTION1. Field of Invention

[0001] The present invention relates to a projection display apparatus using a liquid crystal panel, and in particular relates to a liquid crystal projector having a polarization separator formed at the emitting side of the liquid crystal panel.

2. Description of Related Art

[0002] An exemplary related art liquid crystal projector is shown in Fig. 15. The liquid crystal projector includes a light source 302 for emitting white light, a reflector 301 for making the white light emitted from the light source 302 substantially parallel, an incident side polarizing plate 303 for allowing an S wave in the reflected light from the reflector 301, for example, to pass therethrough, a transmissive liquid crystal panel 304 for modulating the S wave which has passed through the incident side polarizing plate 303 corresponding to an image signal, an emitting side polarizing plate 305 disposed on the emitting side of the liquid crystal panel 304 for allowing only an arbitrary polarized element (S wave, for example) in the light transmitted from the liquid crystal panel 304 to pass therethrough, a projection lens 306 for magnifying and projecting the light transmitted from the emitting side polarizing plate 305 on a screen, and a cooling fan 307 for cooling the incident side polarizing plate 303, the liquid crystal panel 304, and the emitting side polarizing plate 305.

[0003] In a liquid crystal projector 300 having the structure described above, when the S wave is transmitted from the incident side polarizing plate 303, in a black region for example, the S wave is converted into a P wave in the liquid crystal panel 304, while in a white region, the S wave is modulated so as to be transmitted. The converted P wave on one side is blocked off by the emitting side polarizing plate 305 to output a black color, and the S wave on the other side is transmitted to output a white color.

[0004] In the related art liquid crystal projector 300 mentioned above, because the emitting side polarizing plate 305 is an absorbing polarizing plate, when a polarized element (P wave, for example) perpendicularly intersecting a polarized element (S wave, for example), which passes through when outputting a black color, is absorbed, heat is generated. In particular, because the amount of light increases with increasing brightness of the liquid crystal projector, the absorbing polarizing plate may burn when outputting a black color over the entire region.

[0005] Furthermore, since heating the polarizing plate causes a material included in the polarizing plate, such as iodine, to randomly evaporate, the polarization becomes ununiform, resulting in a reduction of contrast, a generation of color phase irregularity, and a reduction in the polarizing plate life.

SUMMARY OF THE INVENTION

[0006] The present invention addresses this situation, and it is an object thereof to provide a projection display apparatus capable of reducing heat absorption of a polarizing plate.

[0007] In order to achieve the object mentioned above, according to the present invention, a projection display apparatus includes a light source that projects light onto an object to be projected; a polarizing unit that polarizes the light emitted from the light source at least in a first direction and a second direction that is different from the first direction; a color-separation unit that divides the light polarized by the polarizing unit into a plurality of colors; a plurality of liquid crystal panels that respectively modulate the plurality of colors divided by the color-separation unit; a color-combining unit that combine the plurality of colors respectively modulated by the plurality of liquid crystal panels so as to generate composite light including the plurality of colors; a polarization separator that separates first light rays, which are included in the composite light generated by the color-combining unit and polarized in the first direction by the polarizing unit, from second light rays, which are polarized in the second direction by the

polarizing unit, by allowing the first light rays to pass therethrough while reflecting the second light rays therefrom; and a projecting unit that projects the first light rays separated by the polarization separator onto the object to be projected.

[0008] Furthermore, preferably, the polarization separator is arranged so that an angle of inclination of the polarization separator, which is the angle between the surface perpendicular to the direction of travel of the composite light generated by the color-combining unit and the polarization-separator surface on which the composite light enters, is an angle that results in a contrast that is larger than a contrast at which the angle of inclination is 0° , which is specified by characteristics defining the relationship between the angle of inclination of the polarization separator and the contrast which is the degree of separation to separate the first light rays from the second light rays.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] Fig. 1 is a schematic of an example of a projection display apparatus according to an embodiment of the present invention;

Fig. 2 is a side view of a part of the projection display apparatus of Fig. 1;

Fig. 3 is a graph showing the transmissivity versus angle of inclination characteristics of a reflection polarizing plate in the projection display apparatus of Fig. 1;

Fig. 4 is a graph showing the polarization degree versus angle of inclination characteristics of the reflection polarizing plate in the projection display apparatus of Fig. 1;

Fig. 5 is a graph showing the contrast versus angle of inclination characteristics of the reflection polarizing plate in the projection display apparatus of Fig. 1;

Fig. 6 is a schematic showing the lower limit of an angle of inclination of the reflection polarizing plate;

Fig. 7 is a schematic showing the lower limit of an angle of inclination of the reflection polarizing plate;

Fig. 8 is a schematic side-view of an example of a projection display apparatus according to another embodiment of the present invention;

Fig. 9 is a schematic showing the lower limit of an angle of inclination of a reflection polarizing plate;

Fig. 10 is a schematic side-view of an example of a projection display apparatus according to another embodiment of the present invention;

Fig. 11 is a schematic showing the lower limit of an angle of inclination of a reflection polarizing plate;

Fig. 12 is a schematic showing the lower limit of an angle of inclination of a reflection polarizing plate;

Fig. 13 is a schematic side-view of an example of a projection display apparatus according to another embodiment of the present invention;

Fig. 14 is a schematic side-view of an example of a projection display apparatus according to another embodiment of the present invention; and

Fig. 15 is a schematic of an example of a related art projection display apparatus.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

[0010] Preferred embodiments according to the present invention will be specifically described below with reference to the drawings.

[First Embodiment]

(Overall Structure)

[0011] First, an overall schematic structure of a liquid crystal projector, which is an example of a projection display apparatus according to the present invention, will be described with reference to Fig. 1. Fig. 1 is a schematic of the liquid crystal projector.

[0012] A liquid crystal projector 1 according to the embodiment, as shown in Fig. 1, includes a light-source lamp 10, dichroic mirrors 22 and 24 which are a color-separation unit (color-separation optical system) that divide the light from the light-source lamp 10 into multiple different colors (R, G, and B), an integrator 12 disposed between the light-source lamp 10 and the dichroic mirror 22 that distributes illumination uniformly or equally, a polarization-conversion system 14 which is a polarization-

conversion unit that converts undefined polarized light into one kind of polarized light, a mirror 20 which is an optical system that reduces and reflects the light beam from the polarization-conversion system 14, liquid crystal panels 42 (42R, 42G, and 42B) that modulate the intensity of each spectral (R, G, and B) divided by the dichroic mirrors 22 and 24, a reflection mirror 26 disposed between the dichroic mirror 22 and the liquid crystal panel 42R, condenser lenses 41 (41R, 41G, and 41B) respectively disposed in incident sides of the liquid crystal panels 42 (42R, 42G, and 42B), a cross-dichroic prism 50 (referred to as a "prism" below) which is a color combining unit that combines each spectral (R, G, and B) modulated in intensity by the liquid crystal panels 42 (42R, 42G, and 42B), a projection lens 70 which is a projection unit that magnifies and projects the combined light combined by the prism 50, a relay optical system 30 disposed between the dichroic mirror 24 and the liquid crystal panel 42B that compensates one optical-path length different from those of the other two colors, and a reflection polarizing plate 60 included in a polarization separating unit disposed between the projection lens 70 and the prism 50 that separates two orthogonal polarized light waves, S-wave and P-wave, by allowing one of the two orthogonal polarized light waves (S-wave, for example) in the light straight waves passing through the liquid crystal panels 42 (42R, 42G, and 42B) so as to pass therethrough while allowing the other (P-wave, for example) to reflect therefrom.

[0013] The integrator 12 brightens peripheral portions by dispersing the light traveling from the center of the light-source lamp 10, and is formed of two lens arrays 12a and 12b. A rectangular lens forming the first lens array 12a divides and condenses the light beam from the light source lamp 10 to form a secondary light-source image by leading the light beam into a relay lens corresponding to the second lens array 12b. The relay lens forming the second lens array 12b performs image-formation of the rectangular lens corresponding to the first lens array 12a onto the liquid crystal panels 42 (42R, 42G, and 42B).

~~INS~~ ~~On~~ **[0014]** The polarization-conversion system 14 is a system that outputs only one polarized light from the light including both the P-wave and S-wave corresponding to the polarization of the P-wave or S-wave. For instance, when reflecting one polarized p-wave, the P-wave is changed into the S-wave so as to only output the S-wave, for example.

~~INS~~ ~~On~~ **[0015]** The polarization-conversion system 14 includes a condenser lens 16 and a disk-shaped polarization beam slitter (PBS) array 15 disposed between the second lens array 12b and the condenser lens 16.

[0016] The PBS array 15 is an arrangement in which a polarization separation surface and a reflection surface are arranged in a staggered configuration and in parallel, and the number of pairs formed of one polarization separation surface and one reflection surface corresponds to the number of columns or rows of the first lens array 12a.

[0017] In the secondary light-source image formed in the PBS array 15 by polarization separating, the secondary light-source image, due to the P-polarized wave, or the polarized P wave, and the secondary light-source image, due to the S-polarized wave, or the polarized S wave, are spatially separated so as to form a pair state.

[0018] The condenser lens 16 superimposes plural images of the rectangular lens onto the liquid crystal panels 42 by orientating a main light-beam passing through the relay lens toward the central direction of the liquid crystal panels 42 (42R, 42G, and 42B).

[0019] The relay optical system 30 includes two reflection mirrors 32 and 34 and a lens 33 disposed between the reflection mirrors 32 and 34.

[0020] The prism 50 is formed by bonding four rectangular prisms together in an X-shape to be a substantially rectangular solid. As shown in Fig. 1, three surfaces of the prism 50 are used for incident surfaces of the liquid crystal panels 42R, 42G, and 42B, respectively, and another one surface is used as a combined light emitting surface that emits the combined light. One of the residual two faces is used as an emitting surface that dissipates the polarized light, e.g., the P-wave, which is reflected by a

reflection polarizing plate 60, which will be described below, outside of the prism 50.

[0021] The reflection polarizing plate 60 is arranged so that the incident surface, on which the combined light emitted from the prism 50 enters, is inclined at a predetermined angle relative to the optical axis of the combined light. In the embodiment, the angle of inclination ranges approximately from 15° to 33° as will be described below, so that the reflection polarizing plate 60 can be arranged within a narrow space between the projection lens 70 and the prism 50. In addition, in the embodiment, one polarizing plate 60 is commonly used to reflect emitting rays from three liquid crystal panels 42.

[0022] In the liquid crystal projector 1 having the optical system structure described above, the white light emitted from the light-source lamp 10 is reduced and reflected by the mirror 20, and is divided by the two dichroic mirrors 22 and 24 into the three primary colors red (R), green (G), and blue (B), so as to illuminate the corresponding liquid crystal panels 42R, 42G, and 42B.

[0023] In the three primary-color rays (R-ray, G-ray, and B-ray) respectively modulated in intensities by the liquid crystal panels 42 (42R, 42G, and 42B), the G-ray passes straight through the prism 50; the B-ray is reflected by a connection surface 50M2 within the prism 50; and the R-ray is reflected by the connection surface 50M2 so as to be combined by the prism 50 and magnified and projected by the projection lens 70 onto a screen (surface to be projected).

(Arrangement of Polarizing Plate)

[0024] The arrangement of the reflection polarizing plate in accordance with the present invention will be now described with reference to Fig. 2. Fig. 2 is a schematic schematically showing an optical system for at least one color derived from the three-disk liquid crystal projector shown in Fig. 1.

[0025] Referring to Fig. 2, the liquid crystal projector 1 includes an incident-side reflection polarizing plate 43 and an absorption polarizing

plate 44, both of which are disposed between the condenser lens 41 and the liquid crystal panel 42, and the emitting side reflection polarizing plate 60 and an absorption polarizing plate 62, both of which disposed in an inclined state at a predetermined angle relative to an optical axis in the emitting side of the composite light from the prism 50. In addition, the incident-side reflection polarizing plate 43 has the same transmission axis as that of the incident-side absorption polarizing plate 44, while the emitting side reflection polarizing plate 60 has the same transmission axis as that of the emitting side absorption polarizing plate 62.

[0026] In the embodiment, the reflection polarizing plate 60 and the absorption polarizing plate 62 are lined-up (laid on) with each other so as to be one polarizing plate of a lined-up (multi-layer) structure (which may be referred to as a "multilayer product"), which is inclined at a predetermined angle of inclination. However, the invention is intended to cover other structures. For example, only the reflection polarizing plate 60 may be inclined, while the absorption polarizing plate 62 may not be inclined and erected vertically (perpendicularly to the optical axis), because the polarization degree is increased when erecting the absorption polarizing plate 62 vertically.

[0027] Furthermore, in the embodiment, the inclination spreads toward upside as shown in Fig. 2. However, the inclination direction is not limited to this arrangement, and it may spread toward the downside direction.

[0028] The reflection polarizing plates 43 and 60 are made of a polarizing film, such as DBEF (the trade name of 3M Co.) and PCF (the trade name of Nitto Denko Co.) made by depositing dielectric multi-layered films. In the incident light entering the reflection polarizing plates 43 and 60, when the waves, in which polarizing surfaces perpendicularly intersect each other, are respectively referred to as a P-wave and a S-wave, the P-wave having one polarizing surface (a polarized light ray vibrating in the horizontal direction, for example) is perfectly reflected by the reflection polarizing plates 43 and 60, while the S-wave (a polarized light ray vibrating

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
80100
80101
80102
80103
80104
80105
80106
80107
80108
80109
80110
80111
80112
80113
80114
80115
80116
80117
80118
80119
80120
80121
80122
80123
80124
80125
80126
80127
80128
80129
80130
80131
80132
80133
80134
80135
80136
80137
80138
80139
80140
80141
80142
80143
80144
80145
80146
80147
80148
80149
80150
80151
80152
80153
80154
80155
80156
80157
80158
80159
80160
80161
80162
80163
80164
80165
80166
80167
80168
80169
80170
80171
80172
80173
80174
80175
80176
80177
80178
80179
80180
80181
80182
80183
80184
80185
80186
80187
80188
80189
80190
80191
80192
80193
80194
80195
80196
80197
80198
80199
80200
80201
80202
80203
80204
80205
80206
80207
80208
80209
80210
80211
80212
80213
80214
80215
80216
80217
80218
80219
80220
80221
80222
80223
80224
80225
80226
80227
80228
80229
80230
80231
80232
80233
80234
80235
80236
80237
80238
80239
80240
80241
80242
80243
80244
80245
80246
80247
80248
80249
80250
80251
80252
80253
80254
80255
80256
80257
80258
80259
80260
80261
80262
80263
80264
80265
80266
80267
80268
80269
80270
80271
80272
80273
80274
80275
80276
80277
80278
80279
80280
80281
80282
80283
80284
80285
80286
80287
80288
80289
80290
80291
80292
80293
80294
80295
80296
80297
80298
80299
80300
80301
80302
80303
80304
80305
80306
80307
80308
80309
80310
80311
80312
80313
80314
80315
80316
80317
80318
80319
80320
80321
80322
80323
80324
80325
80326
80327
80328
80329
80330
80331
80332
80333
80334
80335
80336
80337
80338
80339
80340
80341
80342
80343
80344
80345
80346
80347
80348
80349
80350
80351
80352
80353
80354
80355
80356
80357
80358
80359
80360
80361
80362
80363
80364
80365
80366
80367
80368
80369
80370
80371
80372
80373
80374
80375
80376
80377
80378
80379
80380
80381
80382
80383
80384
80385
80386
80387
80388
80389
80390
80391
80392
80393
80394
80395
80396
80397
80398
80399
80400
80401
80402
80403
80404
80405
80406
80407
80408
80409
80410
80411
80412
80413
80414
80415
80416
80417
80418
80419
80420
80421
80422
80423
80424
80425
80426
80427
80428
80429
80430
80431
80432
80433
80434
80435
80436
80437
80438
80439
80440
80441
80442
80443
80444
80445
80446
80447
80448
80449
80450
80451
80452
80453
80454
80455
80456
80457
80458
80459
80460
80461
80462
80463
80464
80465
80466
80467
80468
80469
80470
80471
80472
80473
80474
80475
80476
80477
80478
80479
80480
80481
80482
80483
80484
80485
80486
80487
80488
80489
80490
80491
80492
80493
80494
80495
80496
80497
80498
80499
80500
80501
80502
80503
80504
80505
80506
80507
80508
80509
80510
80511
80512
80513
80514
80515
80516
80517
80518
80519
80520
80521
80522
80523
80524
80525
80526
80527
80528
80529
80530
80531
80532
80533
80534
80535
80536
80537
80538
80539
80540
80541
80542
80543
80544
80545
80546
80547
80548
80549
80550
80551
80552
80553
80554
80555
80556
80557
80558
80559
80560
80561
80562
80563
80564
80565
80566
80567
80568
80569
80570
80571
80572
80573
80574
80575
80576
80577
80578
80579
80580
80581
80582
80583
80584
80585
80586
80587
80588
80589
80590
80591
80592
80593
80594
80595
80596
80597
80598
80599
80600
80601
80602
80603
80604
80605
80606
80607
80608
80609
80610
80611
80612
80613
80614
80615
80616
80617
80618
80619
80620
80621
80622
80623
80624
80625
80626
80627
80628
80629
80630
80631
80632
80633
80634
80635
80636
80637
80638
80639
80640
80641
80642
80643
80644
80645
80646
80647
80648
80649
80650
80651
80652
80653
80654
80655
80656
80657
80658
80659
80660
80661
80662
80663
80664
80665
80666
80667
80668
80669
80670
80671
80672
80673
80674
80675
80676
80677
80678
80679
80680
80681
80682
80683
80684
80685
80686
80687
80688
80689
80690
80691
80692
80693
80694
80695
80696
80697
80698
80699
80700
80701
80702
80703
80704
80705
80706
80707
80708
80709
80710
80711
80712
80713
80714
80715
80716
80717
80718
80719
80720
80721
80722
80723
80724
80725
80726
80727
80728
80729
80730
80731
80732
80733
80734
80735
80736
80737
80738
80739
80740
80741
80742
80743
80744
80745
80746
80747
80748
80749
80750
80751
80752
80753
80754
80755
80756
80757
80758
80759
80760
80761
80762
80763
80764
80765
80766
80767
80768
80769
80770
80771
80772
80773
80774
80775
80776
80777
80778
80779
80780
80781
80782
80783
80784
80785
80786
80787
80788
80789
80790
80791
80792
80793
80794
80795
80796
80797
80798
80799
80800
80801
80802
80803
80804
80805
80806
80807
80808
80809
80810
80811
80812
80813
80814
80815
80816
80817
80818
80819
80820
80821
80822
80823
80824
80825
80826
80827
80828
80829
80830
80831
80832
80833
80834
80835
80836
80837
80838
80839
80840
80841
80842
80843
80844
80845
80846
80847
80848
80849
80850
80851
80852
80853
80854
80855
80856
80857
80858
80859
80860
80861
80862
80863
80864
80865
80866
80867
80868
80869
80870
80871
80872
80873
80874
80875
80876
80877
80878
80879
80880
80881
80882
80883
80884
80885
80886
80887
80888
80889
80890
80891
80892
80893
80894
80895
80896
80897
80898
80899
80900
80901
80902
80903
80904
80905
80906
80907
80908
80909
80910
80911
80912
80913
80914
80915
80916
80917
80918
80919
80920
80921
80922
80923
80924
80925
80926
80927
80928
80929
80930
80931
80932
80933
80934
80935
80936
80937
80938
80939
80940
80941
80942
80943
80944
80945
80946
80947
80948
80949
80950
80951
80952
80953
80954
80955
80956
80957
80958
80959
80960
80961
80962
80963
80964
80965
80966
80967
80968
80969
80970
80971
80972
80973
80974
80975
80976
80977
80978
80979
80980
80981
80982
80983
80984
80985
80986
80987
80988
80989
80990
80991
80992
80993
80994
80995
80996
80997
80998
80999
80100
80101
80102
80103
80104
80105
80106
80107
80108
80109
80110
80111
80112
80113
80114
80115
80116
80117
80118
80119
80120
80121
80122
80123
80124
80125
80126
80127
80128
80129
80130
80131
80132
80133
80134
80135
80136
80137
80138
80139
80140
80141
80142
80143
80144
80145
80146
80147
80148
80149
80150
80151
80152
80153
80154
80155
80156
80157
80158
80159
80160
80161
80162
80163
80164
80165
80166
80167
80168
80169
80170
80171
801

in the vertical direction) passes through the reflection polarizing plates 43 and 60.

[0029] In addition, in the embodiment, the angle of inclination of the reflection polarizing plate 60 is less than 45° as will be described below, so that the reflected light returns within the prism 50 so as to pass therethrough.

[0030] In order to prevent the light from refracting and reflecting within or on the surface of the prism 50 and thereby returning to the prism 50, as shown in Fig. 2, as for the surfaces of the prism 50 other than the emitting surface of the composite light from the prism 50, an AR (anti-reflection) coat 52, which is a transmissive member (coating member), that passes another polarized P-wave reflected by the reflection polarizing plate 60 straight through, is deposited on the transmission surface of the other straight polarized light. After polishing the surface of the prism 50, the AR coat 52 is formed by depositing it thereon. Thereby, the reflection on the surface of the prism 50 is eliminated.

[0031] The AR (anti-reflection) coat 52 is made of a material, such as a dielectric multi-layered film. In order to prevent the incident light from the liquid crystal panels 42 from returning, the AR coat 52 is deposited on prism faces opposing the liquid crystal panels 42 and one of top and bottom faces thereof, i.e., at least four faces in total. In addition, the coat may not be deposited on the other face through which the light does not pass.

[0032] The light reflected by the reflection polarizing plate 60 enters the prism 50 from a composite-light-emitting surface thereof so as to pass through the surface of the AR coat 52 on the prism 50.

(Polarization Degree versus Angle of Inclination Characteristics)

[0033] The inventors measured the polarization degree, transmissivity, and contrast of the polarizing plate (multi-layer product) made by laying the reflection polarizing plate 60 on the absorption polarizing plate 62 together when the angle of inclination of the plate is changed. The contrast represents the light-separating degree of the polarizing plate.

[0034] The transmissivity denotes a light-transmissible rate, and the polarizing degree denotes a rate of the P-wave separable from the S-wave.

[0035] The inventors examined and compared a case of inclination about a transmission axis with a case of inclination about an absorption axis (reflection axis) perpendicular to the transmission axis. As a result, as shown in Fig. 3, for example, in the transmissivity versus angle of inclination characteristics, in cases: when an absorption polarizing plate is inclined about a transmission axis; a DBEF, which is a reflection polarizing plate, is inclined about a transmission axis; and a multi-layer product is inclined about a transmission axis, the transmissivity decreases with increasing inclination in the angle, as indicated by symbols B1, C1, and A1. (In the below description of Figs. 3 to 5, a polarizing plate indicates an absorption polarizing plate and a DBEF indicates a reflection polarizing plate.) On the other hand, in cases: when a polarizing plate is inclined about an absorption axis; a DBEF is inclined about a reflection axis; and a multi-layer product is inclined about an absorption axis, the transmissivity increases with increasing inclination in the angle, as indicated by symbols B2, C2, and A2.

[0036] Regardless of the angle of inclination, the overall transmissivity of the DBEF, the polarizing plate, and the multi-layer product decreases in that order.

[0037] From the above, transmissivity of the DBEF, the polarizing plate, and the multi-layer product decrease with increasing inclination of the angle about the transmission axis while the transmissivity increases when inclining about the absorption axis (reflection axis), although there are errors due to measuring instruments.

(Polarization Degree versus Angle of Inclination Characteristics)

[0038] Next, when verifying the polarization degree versus angle of inclination characteristics about these six types of structures, the results shown in Fig. 4 are obtained. That is, in A1 of the multi-layer product about the transmission axis, A2 of the multi-layer product about the absorption axis, B1 of the polarizing plate about the transmission axis, and B2 of the

polarizing plate about the absorption axis, the polarization degree is substantially constant at 99.9% or more until approximately 30°, and the polarization degree decreases slightly when exceeding approximately 30°.

[0039] On the other hand, in the DBEF both about the transmission axis and the absorbing axis (reflection axis), the polarization degree increases until approximately 15°, the polarization degree decreases slightly until between substantially 15° and 30°, and the polarization degree decreases slightly when exceeding approximately 30°.

(Contrast versus Angle of Inclination Characteristics)

[0040] Furthermore, when verifying the contrast versus angle of inclination characteristics about four types derived from the six types mentioned above except DBEFs, the results shown in Fig. 5 are obtained. That is, in B1 of the polarizing plate about the transmission axis, B2 of the polarizing plate about the absorption axis, and A1 of the multi-layer product about the transmission axis, the contrast decreases gradually from 400 with increasing inclination in the respective angles. Only in A2 of the multi-layer product about the absorption axis, the contrast is slightly larger than 400 until approximately 30°, and is gently decreasing when exceeding 30°.

[0041] In addition, because a reflection polarizing plate, such as a DBEF and PCF, is reduced in contrast performance, when the DBEF is used by itself, the contrast is significantly low; and when a reflection polarizing plate is singly used, the contrast is also reduced below 97% to 98%, so that these cannot be solely used.

[0042] The contrast is now assumed to be certain light leakage, and calculation is performed by designating a reference point when the inclination is vertical. In Fig. 5, the value at the reference point (a first contrast according to the present invention) is a contrast of 400, for example.

[0043] When a multi-layer product is inclined about an absorption axis, as indicated by A2, the contrast is over the reference point value within the range from approximately 5° to 32-35° (a second contrast according to the present invention).

[0044] Therefore, a liquid crystal projector can be provided having characteristically better contrast compared with the case in which an absorption polarizing plate is used at approximately 45°, for example.

[0045] However, when the plate is vertically erected at 0°, the reflected light is returned to the liquid crystal panels 42 when displaying black color, and charge stored in liquid crystals leaks as a transistor is turned on, so that current is unfavorably produced. Therefore, it is preferable that inclination be an angle at which the reflected light is not returned to the liquid crystal panels 42.

[0046] According to the embodiment, it is preferable that an angle of inclination be from 15° to 30°, and the inclination be performed about the absorption axis of the DBEF and about the absorption axis of the polarizing plate. The liquid crystal panels 42 are formed to be horizontally oriented, so that the angle of inclination is required to be smaller when inclining vertically than when inclining laterally.

[0047] From the above, as for an upper limit angle (a second angle according to the present invention), it is preferable that the angle be larger than an angle at which a contrast is reduced and which is at least lower than a predetermined value in the contrast versus angle of inclination characteristics. Specifically, as shown in the characteristic graph of Fig. 5, it is preferable that the angle of inclination be approximately 33° to 35° at which the contrast on the curve A2 is below 400. In views where the starting angle descends on the curve A2 in Fig. 5 and the angle in Fig. 4 at which the polarization degree is high, etc., the angle of inclination may preferably be 30° or less, and more preferably, the angle of inclination may be approximately from 15° to 30°. In addition, as for the kind of polarizing plate to be used, as shown in A2 of Fig. 3, it is preferable that a multi-layer product, in which the transmissivity increases with increasing inclination in the angle, be inclined about the absorption axis.

(Lower Limit of Angle of Inclination)

[0048] Next, a lower limit value (a first angle according to the present invention) will be described with reference to Figs. 6 and 7. In general, the

lower limit value may preferably be an angle at which the light reflected by the reflection polarizing plate 60 does not return to the liquid crystal panel 42 (42G) via the prism 50.

[0049] For example, as shown in Fig. 7, when the reflection polarizing plate 60 (and the absorption polarizing plate 62) included in the polarization separator are arranged within a member 80 that is formed of the same material as that of the prism 50, the light reflected by the reflection polarizing plate 60 has an angle θ of inclination to pass through an apex O of the prism 50.

[0050] That is, when the prism 50 is not refractive to the reflected light, i.e., the angle of refraction is 0° , the incident angle and the reflection angle relative to the normal direction of the reflection polarizing plate 60 are identical to each other, so that the lower limit value is theoretically 22.5° .

[0051] However, the inventors of the present application have experimentally calculated a more preferable angle θ of inclination under the following conditions. When the size of the prism 50 is $40 \times 40 \times 40$ mm; the size of the liquid crystal panels 42 is 1.3 inches and 28×21 mm (an aspect ratio of 4 : 3); and the minimum peripheral clearance is 5.0 mm, for example, the angle θ of inclination = 16.1° becomes clear.

[0052] Therefore, in the structure shown in Fig. 7, it is preferable that an angle of inclination of the reflection polarizing plate 60 be at least not less than approximately 16.1° .

[0053] On the conditions mentioned above, however, when the minimum peripheral clearance is small, the angle θ of inclination is further reduced, and the angle θ of inclination may be approximately 15° .

[0054] In addition, in a normal example shown in Fig. 6 which does not have a glass member as shown in Fig. 7, since the reflected light is refracted at P point, for example, when it enters the prism 50, the angle of refraction may be added to the angle θ . For instance, an angle greater than the angle of refraction of ultraviolet light that is most refractive with a shortest wavelength may be added to the lower limit value of the angle of inclination as an increment. When the increment angle is denoted as α° , the

lower limit values can be derived as cases of about $15^\circ + \alpha$, $16.1^\circ + \alpha$, $22.5^\circ + \alpha$, and so forth.

[0055] Therefore, as the lower limit values, when having the glass member, there may be a case of about 15° with the small minimum clearance, a case of 16.1° with the minimum clearance under the condition mentioned above, and a case of 22.5° theoretically calculated.

[0056] On the other hand, when no glass member is included in the structure, there may be a case of about $15^\circ + \alpha$ with the small minimum peripheral clearance, a case of $16.1^\circ + \alpha$ with the minimum clearance under the condition mentioned above, and a case of 22.5° theoretically calculated.

[0057] As described above, when the reflection polarizing plate 60 is arranged within the glass member 80 that is made of the same material (optical glass) as that of the prism 50, or the reflection polarizing plate 60 is sandwiched between two glass members, refraction does not occur when entering the prism 50 from ambience, in comparison with the case in which the reflection polarizing plate 60 is simply arranged with an angle of inclination as shown in Fig. 6, so that the lower limit value of the angle θ of inclination can be set to be small. The distance between the projection lens 70 and the prism 50 can thereby be further reduced, resulting in a brighter liquid crystal projector.

[0058] From the above, as angles of inclination of the reflection polarizing plate 60, when including the glass member 80, there is a case of 22.5° to about 30° , a case of 16.1° to about 30° , a case of about 15° to about 30° , a case of 22.5° to about 33° , a case of 16.1° to about 33° , a case of about 15° to about 33° , a case of 22.5° to about 35° , a case of 16.1° to about 35° , and a case of about 15° to about 35° , in order of preference.

[0059] When having no glass member 80, in order of preference, there are a case of $22.5^\circ + \alpha$ to about 30° , a case of $16.1^\circ + \alpha$ to about 30° , a case of about $15^\circ + \alpha$ to about 30° , a case of $22.5^\circ + \alpha$ to about 33° , a case of $16.1^\circ + \alpha$ to about 33° , a case of about $15^\circ + \alpha$ to about 33° , a case of $22.5^\circ + \alpha$ to about 35° , a case of $16.1^\circ + \alpha$ to about 35° , and a case of about $15^\circ + \alpha$ to about 35° .

(Functions)

[0060] Next, functions of the liquid crystal projector formed as described above will be described with regard to at least one liquid crystal panel shown in Fig. 2.

[0061] In the liquid crystal projector 1 formed as described above, the P-wave, which has passed through the condenser lens 41, is reflected by the reflection polarizing plate 43, for example. Thereby, the absorption polarizing plate 44 is not required to absorb the polarized light, which is reflected as above, preventing the absorption polarizing plate 44 from being heated.

[0062] On the other hand, the S-wave, which has transmitted the condenser lens 41, passes through the reflection polarizing plate 43 and the absorption polarizing plate 44 so as to be modulated by the liquid crystal panel 42 in accordance with an image signal. The black region of the liquid crystal panel 42 has a birefringence effect of nematic liquid crystals during the S-wave passes through the liquid crystal panel 42, so that the polarizing surface is rotated at the right angle so as to emit the P-wave, which is formed by rotating the polarizing surface of the S-wave by 90° (orthogonal transformation), from the liquid crystal panel 42. On the other hand, in the white region of the liquid crystal panel 42, the polarizing surface of the S-wave proceeds straight so as to be emitted from the liquid crystal panel 42.

[0063] The S-wave emitted from the liquid crystal panel 42, in such a manner described above, passes through the prism 50, and then, after transmitting the reflection polarizing plate 60 and the absorption polarizing plate 62, it is projected on a screen by the projection lens 70.

[0064] On the other hand, the P-wave emitted from the liquid crystal panel 42 passes through the prism 50, and then is reflected outside the optical path by the reflection polarizing plate 60.

[0065] Therefore, one of polarized light rays is reflected outside of the optical path by the reflection polarizing plate 60, so that the light absorbed by the emitting side absorption polarizing plate 62 scarcely exists, preventing the emitting side absorption polarizing plate from being heated.

[0066] In the embodiment, the reflection polarizing plate 60 is arranged at an angle of inclination of at least about 15° to about 35° as described above.

[0067] By such a range of the angle of inclination, a liquid crystal projector can be provided with high contrast, as shown in the contrast versus angle of inclination characteristic chart of Fig. 5. Moreover, as shown in the polarization degree versus angle of inclination characteristic chart of Fig. 4, the high polarization degree can be maintained. In addition to this, the high transmissivity can be further maintained, as shown in the transmissivity the angle of inclination characteristic chart of Fig. 3.

[0068] Even when the value of the angle of inclination is close to the upper limit, because the occupied width of the reflection polarizing plate 60 is comparatively small, the distance between the liquid crystal panel 42 and the projection lens 70 can be reduced. For example, the inclination is required to perform in the vertical direction of the prism 50 at an angle within the range from about 15° to about 35°, so that the distance may be 0.5 paths at the most, where one path represents the distance between the liquid crystal panel 42 and the projection lens 70 as one unit. In general, the projected image of the liquid crystal projector 1 becomes dimmer with increasing distance between the liquid crystal panel 42 and the projection lens 70. On the other hand, with decreasing distance between the liquid crystal panel 42 and the projection lens 70, a brighter liquid crystal projector can be constructed. In the embodiment, since the distance can be reduced small, a liquid crystal projector with bright projected images can be achieved. In particular, since, in a three-disk liquid crystal projector 1 as shown in Fig. 1, a space between the prism 50 and the projection lens 70, which is defined in the related art, can be utilized for arrangement, an occupied space specialized for the reflection polarizing plate 60 is not now required, resulting in miniaturizing of the apparatus area when the polarizing plate is equipped.

[0069] Moreover, when the reflection polarizing plate 60 is inclined at an angle of about 15 which is close to the lower limit value, the reflected

light (returning light) reflected by the reflection polarizing plate 60 transmits through the prism 50 once, and is emitted to the outside from the top surface (reflected-light-emitting surface) of the prism 50. Since, on the top surface (reflected-light-emitting surface), AR coat 52 is deposited, the reflected light (returning light) passing through the prism 50 is prevented from being reflected by the top surface so as to transmit to the outside, so that not only the reflected light by the reflection polarizing plate 60, but also the reflected light by the top surface (reflected-light-emitting surface) can be reduced, minimized or prevented from returning to the liquid crystal panel 42 as returning light, thereby reducing, minimizing or preventing error operation of the liquid crystal panel 42.

[0070] In addition, as described above, when the reflection polarizing plate 60 (and the absorption polarizing plate 62) are arranged within the glass member 80, which is made of a material that is substantially the same as that of the prism 50 as shown in Fig. 7, the lower limit value is about 15°; when the glass member 80 is not formed as shown in Fig. 6, since the reflected light is refracted on an incident surface in which the reflected light enters, the angle α needs to be added thereto as an increment for refraction. It is sufficient that this angle α be larger than the angle of refraction of ultraviolet light that is most refractive with a shortest wavelength, for example.

[0071] In the related art, an absorption polarizing plate disposed in an emitting side is heated to burn when displaying black color; however, according to the embodiment described above, as the light to be absorbed into the absorption polarizing plate is reflected using the reflection polarizing plate on the emitting side, the burning can be prevented. Thereby, cooling is facilitated while the capacity of a cooling fan is reduced, resulting in miniaturization of the apparatus and reduction in noises. Furthermore, a long life of the apparatus is enabled by reducing the thermal burden of the absorption polarizing plate on the emitting side.

[0072] Furthermore, as the preferred range of the angle of inclination of the polarizing plate can be set to be comparatively narrow as mentioned

above, the distance between the projection lens and the liquid crystal panel can also be reduced, thereby achieving a bright liquid crystal projector. Moreover, due to the angle mentioned above and AR coat, the returning light reflected on the polarizing plate and the prism can be reduced, minimized or prevented from entering the liquid crystal panel.

[0073] Furthermore, in addition to high contrast performance of the multi-layer product itself due to the angle mentioned above, as polarizing plates are used in the incident side and emitting side of the liquid crystal panel, the contrast can be enhanced in comparison with the case in which a polarizing plate is not used.

[Second Embodiment]

[0074] Next, a second embodiment according to the present invention will be described with reference to Fig. 8. In addition, a description of substantially the same structures as those of the first embodiment is omitted below; such that only different parts will be described. Fig. 8 is a schematic of a liquid crystal projector according to the second embodiment.

[0075] According to the first embodiment, the vertical occupied length of the reflection polarizing plate is identical with the vertical length of the prism. However, a reflection polarizing plate of a liquid crystal projector according to the embodiment has a smaller occupied length than the vertical length of the prism.

[0076] As shown in Fig. 8, in addition to structures that are common to the first embodiment, a liquid crystal projector 100 according to the embodiment includes a reflection polarizing plate 110 included in a polarization separator inclined at an angle θ_2 of inclination and having an occupied height Z_2 smaller than the width (height) Z_1 of the prism 50 and an absorption polarizing plate 112 having the same transmission axis as that of the reflection polarizing plate 110.

[0077] In side-end regions ZP and ZP of the prism 50, optical ununiformity due to manufacturing is comparatively liable to be produced. Therefore, according to the embodiment, the optical uniformity can be maintained by avoiding using the side-end regions ZP and ZP .

[0078] That is, an arrangement region of the reflection polarizing plate 110 and the absorption polarizing plate 112 is formed by the occupied height Z2 excluding the side-end regions ZP and ZP of the prism 50, as shown in Fig. 8.

[0079] In this case, as for the angle θ_2 of inclination, the upper limit value is not modified identically with the first embodiment. However, the lower limit value needs to be slightly modified.

[0080] That is, by a decrement that the occupied height is reduced to be Z2, a correction angle δ needs to be subtracted from the lower limit value of the first embodiment. Accordingly, the lower limit value (a fourth angle according to the present invention) of the angle of inclination according to the embodiment is about $15^\circ - \delta$ when the clearance is small, and $16.1^\circ - \delta$ when the clearance is normal. However, this is a condition when the reflection polarizing plate 110 (and the absorption polarizing plate 112) are arranged within a glass member 120 which is made of a material substantially the same as that of the prism 50 as shown in Fig. 9, and refraction does not occur on the boundary between the prism 50 and the atmosphere. When the reflection polarizing plate 110 (and the absorption polarizing plate 112) are arranged in the atmosphere, the angle α needs to be added thereto as an increment for refraction just like in the first embodiment. On such a condition, as the lower limit value, there is a case of about $15^\circ + \alpha - \delta$, a case of $16.1^\circ + \alpha - \delta$, and so forth.

[0081] From the above, as angles of inclination of the reflection polarizing plate 110, when including the glass member 120, there is a case of $16.1^\circ - \delta$ to about 30° , a case of about $15^\circ - \delta$ to about 30° , a case of $16.1^\circ - \delta$ to about 33° , a case of about $15^\circ - \delta$ to about 33° , a case of $16.1^\circ - \delta$ to about 35° , and a case of about $15^\circ - \delta$ to about 35° , in order of preference.

[0082] When no glass member 120 is included, in order of preference, there is a case of $16.1^\circ + \alpha - \delta$ to about 30° , a case of about $15^\circ + \alpha - \delta$ to about 30° , a case of $16.1^\circ + \alpha - \delta$ to about 33° , a case of about $15^\circ + \alpha - \delta$ to about 33° , a case of $16.1^\circ + \alpha - \delta$ to about 35° , and a case of about $15^\circ + \alpha - \delta$ to about 35° .

H 5 0 0 2 6 2 4 2 2 2 0

[0083] As described above, according to the embodiment, while having the same advantages as those of the first embodiment, by avoiding using the side-end regions of the prism, in which optical ununiformity due to prism manufacturing is comparatively liable to be produced, a liquid crystal projector capable of maintaining the optical uniformity can be provided.

[0084] Reduction in the occupied height of the polarizing plate further reduces the angle of inclination in comparison with that of the first embodiment, while reduction in the occupied width enables a liquid crystal projector with more enhanced brightness to be provided.

[Third Embodiment]

[0085] Next, a third embodiment according to the present invention will be described with reference to Fig. 10. Fig. 10 is a schematic of a part of a liquid crystal projector according to the third embodiment.

[0086] As shown in Fig. 10, in addition to structures common to the first embodiment, a liquid crystal projector 130 according to the embodiment includes a reflection polarizing plate 140 having two incident surfaces (reflection surfaces) 140a and 140b respectively inclined at an angle θ_3 relative to the optical axis and arranged to be substantially V-shaped in cross-section, instead of a one-disk-shaped reflection polarizing plate as in the first embodiment, and a disk-shaped absorption polarizing plate 142. In addition, the absorption polarizing plate 142 may be V-shaped in the same way.

[0087] In this case, the lower limit value of the angle of inclination (a third angle according to the present invention) is examined by the inventors of the present application on the same condition as the first embodiment, resulting in the angle θ_3 of inclination = 9.35°.

[0088] Accordingly, the lower limit value of the angle of inclination in this case is to be approximately 9.35° including measuring and fitting errors.

[0089] However, this is a condition that occurs when the reflection polarizing plate 140 is arranged within a glass member 150, which is made

of a material that is substantially the same as that of the prism 50 as shown in Fig. 12, and refraction is not performed on the boundary between the prism 50 and the atmosphere. When the reflection polarizing plate 140 is arranged in the atmosphere as shown in Fig. 11, the angle α needs to be added thereto as an increment for refraction just like in the first embodiment. On such a condition, the lower limit value is to be $9.35^\circ + \alpha$. In addition, the upper limit value is not changed just like in the first embodiment.

[0090] From the above, as angles of inclination of the reflection polarizing plate 150, when including the glass member, there is a case of 9.35° to about 30° , a case of about 9.35° to about 33° , and a case of 9.35° to about 35° , in order of preference.

[0091] When no glass member is included, in order of preference, there is a case of $9.35^\circ + \alpha$ to about 30° , a case of about $9.35^\circ + \alpha$ to about 33° , and a case of $9.35^\circ + \alpha$ to about 35° .

[0092] As described above, according to the embodiment, while having the same advantages as those of the first embodiment, the distance between the projection lens and the liquid crystal panel can be further reduced compared with the first and second embodiment, so that a liquid crystal projector with more enhanced brightness and a smaller size can be provided.

[0093] In addition, in such a V-shaped polarizing plate, it may be a short polarizing plate which does not extend inside the side-end regions of the prism just like in the second embodiment. Moreover, upper and lower incident surfaces of the V-shape may have different angles of inclination from each other.

[Fourth Embodiment]

[0094] Next, a fourth embodiment according to the present invention will be described with reference to Fig. 13. Fig. 13 is a schematic of a part of a liquid crystal projector according to the fourth embodiment.

[0095] As shown in Fig. 13, in addition to structures common to the first embodiment, a liquid crystal projector 160 according to the

embodiment includes a reflection polarizing plate 170, an absorption polarizing plate 171, both the plates 170 and 171 are curved and have lengths slightly longer than that of one side of the prism 50, and a light absorber 172 which is a heat absorbing member that absorbs heat by condensing the reflected light from the curved portion.

[0096] As a material of the light absorber 172, it is preferable to use bismuth sulfide, for example. Thereby, heat can be efficiently absorbed. However, the light absorber 172 can be made of other materials.

[0097] When curving the plates in such a manner, the occupied width is reduced to be smaller than that in an oblique arrangement, so that in a narrow space between the prism 50 and the projection lens 70, curving enables the reflected light to be dispersed, although the angle of inclination according to the first embodiment is not achieved. Therefore, while having the same advantages as those of the first embodiment, the distance between the projection lens and the liquid crystal panel can be further reduced, so that a liquid crystal projector with more enhanced brightness and a smaller size can be provided.

[0098] Moreover, by using bismuth sulfide as the light absorber, the heat can be efficiently absorbed.

[0099] In the embodiment, both of the reflection polarizing plate 170 and the absorption polarizing plate 171 are curved. However, only the reflection polarizing plate 170 may be curved.

[Fifth Embodiment]

[0100] Next, a fifth embodiment according to the present invention will be described with reference to Fig. 14. Fig. 14 is a schematic of a part of a liquid crystal projector according to the fifth embodiment.

[0101] As shown in Fig. 14, in addition to structures that are common to the first embodiment, a liquid crystal projector 180 according to the embodiment includes a V-shaped reflection polarizing plate 190 having two incident surfaces (reflection surfaces) 190a and 190b which are curved portions that are respectively curved relative to the optical axis, instead of a one-disk-shaped reflection polarizing plate as in the first embodiment, a

disk-shaped absorption polarizing plate 191, and light absorbers 192a and 192b which are a pair of heat absorbing members respectively disposed outside of the prism 50 in the vertical direction that absorb heat by condensing the reflected light from the incident surfaces (reflection surfaces) 190a and 190b. In addition, the absorption polarizing plate 191 may be V-shaped in the same way.

[0102] According to the embodiment, while having the same advantages as those of the first embodiment, the distance between the projection lens and the liquid crystal panel can be further reduced compared with the first and second embodiment, so that a liquid crystal projector with more enhanced brightness and a smaller size can be provided.

[0103] In addition, in such a V-shaped polarizing plate, it may be a short polarizing plate which does not extend inside the side-end regions of the prism just like in the second embodiment.

[0104] An apparatus and operation according to the present invention have been described in connection with several specific embodiments. However, those skilled in the art will appreciate that various modifications of the embodiments that fall within the spirit and scope of the present invention may be used. For example, a three-disk liquid crystal projector is described in the above embodiments. However, a one-disk liquid crystal projector may be also applied to the above embodiments. In this case, the direction of inclination and curvature is not only vertical (inclination about the X-axis on an X-Z plane), but it may also be lateral (inclination about the Z-axis on the X-Z plane). In addition, the liquid crystal panels are formed to be horizontally oriented, so that the inclination about the X-axis is more preferable. Also, in the example shown in Fig. 10, not only the two reflection surfaces in the vertical direction, but also four reflection surfaces respectively inclined in the vertical and lateral directions, may be formed. Furthermore, these four surfaces may be curved as shown in Fig. 14, respectively.

[0105] Moreover, in examples shown in Figs. 13 and 14, the curved portion may be a multi-step curvature as long as light does not return.

[0106] In the embodiments described above, the prism and the glass member are formed as different members. However, the polarization separator may be formed on the side of the prism integrally formed with the glass member.

[0107] Combinations between the embodiments and between each embodiment and each modification may be applied to the present invention, of course.

[Advantages]

[0108] As described above, according to the present invention, as the light to be absorbed into an absorption polarizing plate is reflected using a polarization separator on the emitting side, heating and burning in the polarizing plate can be reduced, minimized or prevented. Thereby, cooling is facilitated while the capacity of a cooling fan is reduced, resulting in miniaturization of the apparatus and reduction in noises. Furthermore, a long life is enabled by reducing the thermal burden of the absorption polarizing plate on the emitting side.

[0109] Furthermore, as the preferred range of an angle of inclination of the polarizing plate can be set to be comparatively narrow, the distance between a projection unit and a liquid crystal panel can also be reduced, thereby achieving a bright liquid crystal projector. Moreover, due to the angle mentioned above and a transmissive member, the returning light reflected on the polarization separator and a color-combining unit can be reduced, minimized or prevented from entering the liquid crystal panel.

[0110] By the high contrast performance of the polarization separator itself due to the angle mentioned above, the contrast can be enhanced.