		0	stf	al	lia
lochschule	für	ange	ewa	ıno	dte

Fakultät Fahrzeugtechnik Prof. Dr.-Ing. V. von Holt Institut für Fahrzeugsystemund Servicetechnologien Modulprüfung Embedded Systems BPO 2011/BPO 2008

> WS 2015 17.06.2015

Name:	
Vorname	
Matr.Nr.:	
Unterschrift	

Zugelassene Hilfsmittel: Einfacher Taschenrechner

Zeit: 60 Minuten

1	2	3	Summe	Note
(10)	(20)	(30)	(60)	

Aufgabe 1 (10 Punkte) - Kurzfragen a) (2 P) Wann bezeichnet man ein Schedulingverfahren als "optimal"? b) (2 P) Was unterscheidet das Versetzen einer Task in den Wait-Zustand von dem Aufruf einer "klassischen" Delay-/Wait-Funktion? c) (2 P) Warum darf in Multitaskingumgebungen eine Task nicht ständig aktiv sein? d) (2 P) Was versteht man unter "Aktivem Netzwerkmanagement" bei OSEK-NM?

e) (2 P) Warum gibt es bei OSEK verschiedene sog. Conformance-Classes für OSEK-OS und

OSEK-COM?

Aufgabe 2 (20 Punkte) - Synchronisation/Kommunikation

In einem Messwertrechner liefert eine **Sensor-Task** periodisch Messwerte und verteilt diese an 3 **Auswerte-Task** (s.u.). Da die **Auswertung** der Messwerte **datenabhängig** ist, sind nicht alle Auswerte-Task gleichmäßig belastet, daher können die Messwerte nicht einfach statisch verteilt werden. Da die Messwerte ausserdem teils gehäuft auftreten, muss ein bzw. müssen Messwertpuffer vorgesehen werden, damit keine Messwerte verlorengehen.

- a) (8 P) Entwerfen Sie eine Kommunikationsstruktur (UML-Blockdiagramm), welche die folgenden Rahmenbedingungen erfüllt:
 - Eingehende Messwerte der Sensor-Task werden derjenigen Auswerte-Task zugewiesen, welche die geringste Auslastung (am wenigsten wartende Messwerte) hat.
 - Als Kommunikationsmittel stehen folgende Konstrukte und Funktionen zur Verfügung:

Kommunikationsmittel	Funktionen
Gemeinsamer Speicher (Buffer)	BufferWrite(), BufferRead()
Message Queue	MsgQPost(), MsgQPend()
Mutex	MuxPost(), MuxPend()
Semaphore	SemPost(), SemPend()
Event Flags	FlagPost(), FlagPend()

<<Task>>
Sensor

<<Task>>
Auswertung1

<<Task>>
Auswertung2

<<Task>>
Auswertung2

b)	(6 P) Stellen Sie den Ablauf der Kommunikation seitens der Sensor-Task in Form von Pseudocode oder als Aktivitätsdiagramm dar!
c)	(6 P) Stellen Sie den Ablauf der Kommunikation seitens einer Auswerte-Task in Form von
c)	(6 P) Stellen Sie den Ablauf der Kommunikation seitens einer Auswerte-Task in Form von Pseudocode oder als Aktivitätsdiagramm dar!
c)	(6 P) Stellen Sie den Ablauf der Kommunikation seitens einer Auswerte-Task in Form von Pseudocode oder als Aktivitätsdiagramm dar!
c)	(6 P) Stellen Sie den Ablauf der Kommunikation seitens einer Auswerte-Task in Form von Pseudocode oder als Aktivitätsdiagramm dar!
c)	(6 P) Stellen Sie den Ablauf der Kommunikation seitens einer Auswerte-Task in Form von Pseudocode oder als Aktivitätsdiagramm dar!
c)	(6 P) Stellen Sie den Ablauf der Kommunikation seitens einer Auswerte-Task in Form von Pseudocode oder als Aktivitätsdiagramm dar!
c)	(6 P) Stellen Sie den Ablauf der Kommunikation seitens einer Auswerte-Task in Form von Pseudocode oder als Aktivitätsdiagramm dar!

Aufgabe 3 (30 Punkte) - Scheduling

Ein Echtzeit-Multitaskingsystem umfasst **5 Tasks mit unterschiedlichen Periodendauern** und **Ausführungszeiten**. Bei einigen Tasks schwanken die Periodendauern, bei anderen variiert die Ausführungszeit und bei einigen ist beides variabel. Die genauen Zeiten sind der u.a. Tabelle zu entnehmen. Bei den folgenden Betrachtungen soll davon ausgegangen werden, dass die **Deadline** einer Task jeweils deren **Periodendauer entspricht**.

Tasks	Zykluszeit [ms]	Laufzeit[ms]
T1	1020	2
T2	2030	24
T3	1520	4
T4	60	35
T5	30	5

a) (6 P) Berechnen Sie die **minimale** sowie die **maximale Prozessorlast**, welche durch die einzelnen Tasks verursacht wird! Berechnen Sie daraus die **minimale** und **maximale** Gesamtauslastung die durch das **Taskset** verursacht wird!

Tasks	Minimale	Maximale
	Prozessorlast [%]	Prozessorlast [%]
T1		
T2		
T3		
T4		
T5		
Gesamtlast		

b) (2 P) Wie groß ist die **mittlere Prozessorlast** unter der Annahme, dass die o.a. Schwankungen in den Periodendauern und Ausführungszeiten der Tasks **gleichverteilt** sind!

c) (3 P) Wie müssten die Tasks priorisiert werden, wenn man das Multitasking durch ein Rate-Monotonic-Scheduling umsetzen wollte? Geben Sie die allgemeine Regel zur Prioritätenwahl sowie die Prioritäten der einzelnen Tasks an!

d) (2 P) Ist das Taskset durch das Rate-Monotonic-Scheduling in jedem Fall realisierbar? Begründen Sie Ihre Antwort!
Im Folgenden soll das Taskset durch ein Earliest-Deadline-First-Scheduling realisiert werden.
e) (2 P) Was versteht man unter einem Earlist-Deadline-First-Scheduling?
f) (5 P) Tragen Sie in das u.a. Schedulingdiagramm die Ereignisse/Deadlines der einzelnen Tasks (unterhalb der Zeitskala) unter der Annahme eines Worst-Case-Scenarios ein!
g) (10 P) Weisen Sie den Schedule für den Worst-Case anhand des u.a. Schedulingdiagramms nach!

