

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA ELÉTRICA

ELETRÔNICA DE POTÊNCIA (Prof. Azauri A. de Oliveira Júnior)

RETIFICADORES MONOFÁSICOS DE MEIA-ONDA (carga RL)

EXERCÍCIOS

- 1. No circuito da figura 1, L = 0, Vs = 220 Vrms, f = 60 Hz, $eR = 10 \Omega$. Determine:
 - a) ângulo de condução do Diodo.
 - b) correntes média e rms na carga.
 - c) tensões média e rms na carga.
 - d) fator de potência na fonte ca.
- **2.** Repita o exercício 1 para $R = 10\Omega$ e L = 300 mH.
- **3.** No circuito da figura 1, Vs = 220 Vrms, f = 60 Hz. A corrente média da carga é de é de 3A. Sabendo-se que o ângulo da impedância é $\phi = 60^{\circ}$. Determine:
 - a) ângulo de condução do diodo.
 - b) valores de R e L.
 - c) corrente e tensão rms na carga.
 - d) fator de potência na fonte ca.

Figura 1: Retificador de meia-onda não controlado, carga RL.

- **4.** No circuito da figura 2, L = 0, Vs = 220 Vrms, f = 60 Hz, e R = 10 Ω , e o ângulo de disparo $\alpha = 30^{\circ}$. Determine:
 - a) ângulo de condução do Diodo.
 - b) correntes média e rms na carga.
 - c) tensões média e rms na carga.
 - d) fator de potência na fonte ca.

- 5. Repita o exercício 4 para $R = 10\Omega$ e L = 300 mH.
- **6.** No circuito da figura 2, Vs = 220 Vrms, f = 60 Hz. A corrente média do circuito é de 3A, quando o ângulo de disparo for $\alpha = 60^{\circ}$. Sabendo-se que o ângulo da impedância é $\phi = 60^{\circ}$. Determine:
 - a) ângulo de condução do diodo.
 - **b**) valores de R e L.
 - c) correntes média e rms na carga.
 - d) fator de potência na fonte ca.

Figura 2: Retificador monofásico de meia-onda controlado.