Technische Universität Berlin

Fakultät II – Institut für Mathematik Kaibel, Luger, Penn-Karras, Pfetsch

 $\begin{array}{c} {\rm SS}\ 2006 \\ 24.07.2006 \end{array}$

Juli – Klausur (Verständnisteil) Analysis II für Ingenieure

Name:								
Die Lösungen sind i geschriebene Klausu						zugebe	n. Mit	Bleistif
Dieser Teil der Klaus Rechenaufwand mit wenn nichts anderes	den Ke	nntniss	en aus	der Vor	elesung	lösbar s	sein. Ge	_
Die Bearbeitungszeit	t beträg	gt 60 N	$\it M$ inute	n.				
Die Gesamtklausur ibeiden Teile der Kla							_	
Korrektur								
	1	2	3	4	5	6	7	Σ

1. Aufgabe 6 Punkte

Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit

$$f(x,y) = \begin{cases} \frac{y\sqrt{|xy|}}{2x^2 + y^2} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0) \end{cases}$$

- a) Ist f im Punkt (0,0) stetig?
- b) Ist f im Punkt (0,0) differenzierbar?
- c) Existiert die partielle Ableitung $\frac{\partial f}{\partial x}(0,0)$?

2. Aufgabe 5 Punkte

Gegeben sei die Potenzreihe $\sum_{k=0}^{\infty} b_k (2x-1)^k$ mit $\lim_{k\to\infty} b_k = \frac{1}{2}\sqrt{2}$. Ermitteln Sie alle $x\in\mathbb{R}$, für die die Reihe konvergent ist.

3. Aufgabe 6 Punkte

Gegeben sei $f: \mathbb{R}^3 \to \mathbb{R}$ mit $f(x, y, z) = \frac{1}{1+x^2+z^2}$ und $\vec{v}(x, y, z) = \operatorname{grad}_{(x, y, z)} f$.

Ermitteln Sie den Wert des Kurvenintegrals $\int_{\vec{x}} \vec{v} \cdot \vec{ds}$ für die Kurve $\vec{x} : [0, 2\pi] \to \mathbb{R}^3$ mit $\vec{x}(t) = (\cos t, \sin t, \frac{t}{\pi})$.

4. Aufgabe 6 Punkte Notieren Sie das Integral $\int\limits_2^5\int\limits_{y-1}^4f(x,y)\,dxdy$ in der Form $\int\int\int f(x,y)\,dydx$ mit geeigneten Grenzen.

5. Aufgabe 5 Punkte

Gegeben sei $f: \mathbb{R}^3 \to \mathbb{R}$ mit $f(x,y,z) = (x+ay+1)^4 + z^2$ und $a \in \mathbb{R}$. Ferner sei $\vec{v}(x,y,z) = \operatorname{grad}_{(x,y,z)} f$. Gibt es ein $a \in \mathbb{R}$, so dass \vec{v} auf \mathbb{R}^3 ein Vektorpotential besitzt?

6. Aufgabe 6 Punkte

Die Mantelfläche eines Kegels der Höhe h entstehe, indem man die Gerade $x=\frac{z}{2}$ um die z-Achse rotieren läßt.

Parametrisieren Sie diese Mantelfläche.

7. Aufgabe 6 Punkte

Ermitteln Sie den Fluß des Vektorfeldes $\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3$ mit $\vec{v}(x,y,z) = (-z+x,\,x^2+y,\,x^2+z)^T$ durch die gesamte Oberfläche ∂K (Orientierung nach außen) des dreidimensionalen Körpers $K = \{(x,y,z) \in \mathbb{R}^3 \,|\, x^2+y^2 \leq 2,\, 1 \leq z \leq 2\}.$