report

December 5, 2019

1 Influence of salt intake behavior to blood pressure

1.1 STATS 506 group project

1.1.1 Author: Xinjun Li

This is a report generated by jupyter notebook for the group project of STATS 506 in University of Michigan.

Our project aims to answer the following question:

Is salt intake associated with blood pressure? If so, to what extent is that relationship mediated or moderated by age or waist size?

We will use NHANES data in analysis.

Required software and packages to run the code are as follows: * Python3 * os * pandas * statsmodels * patsy * matplotlib

```
[1]: # Import packages
    import os
    import pandas as pd
    from statsmodels.formula.api import ols
    from statsmodels.stats.anova import anova_lm
    import patsy
    from statsmodels.api import OLS
    from statsmodels.stats.mediation import Mediation
    import matplotlib.pyplot as plt
[2]: # Set working directory
    os.chdir('D:///STAT506/Group project/stats506/')
    # read data
    demo = pd.read_excel("RawData/Demographics_15_16.xlsx")
    BMI = pd.read_excel("RawData/Body_measures_2015_16.xlsx")
    bp = pd.read_excel('RawData/Blood_Pressure_2015_16.xlsx')
    nutr = pd.read_excel("RawData/Dietary_nutrients_firstday_2015_16.xlsx")
```

1.2 Data cleaning

We need first clean the raw data and join different dataset.

```
[3]: # select useful columns
    # ! Note: we need to drop values '9' or '99' which represent "don't know"
    demo=demo.set index('SEQN'
                        ).filter(items=['RIDAGEYR'] # 'RIAGENDR', 'RIDRETH3'
                        ).dropna()
    # demo[['RIAGENDR', 'RIDRETH3']]=demo[['RIAGENDR', 'RIDRETH3']].
     →astype('category')
    BMI=BMI.set_index('SEQN'
                      ).filter(items=['BMXWAIST'] # ,'BMXWT','BMXHT'
                      ).dropna()
    nutr=nutr.set_index('SEQN'
                        ).filter(items=['DBD100'] #,'DBQ095Z','DRQSPREP'
                        ).dropna(
                        ).query('DBD100 != 9'
                        ).astype('category')
    # Calculate mean of blood pressure
    bp=bp.set_index('SEQN'
                    ).filter(regex='(BPXSY*)|(BPXDI*)')
    bp=bp.assign(SY=bp.filter(regex='BPXSY*').mean(axis=1, skipna = True),
                 DI=bp.filter(regex='BPXDI*').mean(axis=1, skipna = True)
                 ).filter(items=['SY','DI']).dropna()
    # Merge all data set
    df=bp.join(demo,how='inner').join(BMI,how='inner').join(nutr,how='inner')
      Take a look at the data we are about to work on.
[4]: # Show data summary of numeric variables
    df.describe()
[4]:
                    SY
                                 DΙ
                                        RIDAGEYR
                                                      BMXWAIST
    count 4670.000000 4670.000000 4670.000000 4670.000000
   mean
            119.510921
                          66.050393
                                       38.107281
                                                     93.630557
    std
            17.292694
                         13.378804
                                       21.598139
                                                    19.019918
   min
            74.000000
                          0.000000
                                        8.000000
                                                    46.300000
   25%
            107.333333 58.666667
                                       18.000000
                                                   79.700000
    50%
            116.666667
                          66.666667
                                       35.000000
                                                    93.000000
    75%
                                       56.000000
            128.000000
                          74.666667
                                                    105.900000
            206.666667
                         124.000000
                                       80.000000
                                                    171.600000
    max
[5]: # Show data summary of categorical variables
    df.describe(include='category')
[5]:
            DBD100
            4670.0
    count
    unique
               3.0
    top
               1.0
    freq
            2444.0
```

Generate plots show the relationship between salt intake behaviors and blood presure.

1.3 Fit OLS

Now fit the ordinary least square to the data. The models used are: DI $\,\sim\,$ DBD100 and SY $\,\sim\,$ DBD100

1.3.1 Diastolic result

```
[8]: # fit ols to Diastolic measurements
  ols_DI=ols('DI~DBD100',data=df).fit()
  # Print the summary
  ols_DI.summary()
```

[8]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable:	DI	R-squared:	0.003
Model:	OLS	Adj. R-squared:	0.003
Method:	Least Squares	F-statistic:	7.993
Date:	Thu, 05 Dec 2019	Prob (F-statistic):	0.000343
Time:	12:15:13	Log-Likelihood:	-18730.
No. Observations:	4670	AIC:	3.747e+04
Df Residuals:	4667	BIC:	3.749e+04
Df Model:	2		
Covariance Type:	nonrobust		

0.975]	coef	std err	t	P> t	[0.025	
Intercept 65.930 DBD100[T.2.0]	65.4003 0.9326	0.270 0.449	242.026 2.077	0.000	64.871 0.052	
1.813 DBD100[T.3.0] 3.127	2.0782	0.535	3.886	0.000	1.030	
Omnibus: Prob(Omnibus): Skew: Kurtosis:		524.110 0.000 -0.594 5.570	Durbin-Wa Jarque-Be Prob(JB): Cond. No.	era (JB):	1560	.999 .469 0.00 3.29

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

[9]: anova_lm(ols_DI)

[9]:		df	sum_sq	${\tt mean_sq}$	F	PR(>F)
	DBD100	2.0	2852.76590	1426.382950	7.992829	0.000343
	Residual	4667.0	832862.70838	178.457833	NaN	NaN

1.3.2 Systolic result

```
[10]: # fit ols to Systolic measurements
    ols_SY=ols('SY~DBD100',data=df).fit()
    # Print the summary
    ols_SY.summary()
```

[10]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

===========			=========
Dep. Variable:	SY	R-squared:	0.004
Model:	OLS	Adj. R-squared:	0.003
Method:	Least Squares	F-statistic:	8.841
Date:	Thu, 05 Dec 2019	Prob (F-statistic):	0.000147
Time:	12:15:13	Log-Likelihood:	-19928.
No. Observations:	4670	AIC:	3.986e+04
Df Residuals:	4667	BIC:	3.988e+04
Df Model:	2		

Covariance Type	e: =======	nonrobust				
0.975]	coef	std err	t	P> t	[0.025	
- Intercept 119.231 DBD100[T.2.0] 2.795 DBD100[T.3.0] 3.987	118.5461 1.6571 2.6321	0.349 0.580 0.691	339.471 2.856 3.809	0.000 0.004 0.000	117.861 0.520 1.277	
Omnibus: Prob(Omnibus): Skew: Kurtosis:	=======	835.290 0.000 1.084 4.923	Durbin-Wa Jarque-Be Prob(JB): Cond. No.	era (JB):	 16	1.966 334.915 0.00 3.29

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
[11]: anova_lm(ols_SY)
```

```
[11]: df sum_sq mean_sq F PR(>F)
DBD100 2.0 5.269709e+03 2634.854509 8.840718 0.000147
Residual 4667.0 1.390935e+06 298.036262 NaN NaN
```

From the above results, we know that both models are significant and every coefficients are significant(at the level of 95%).

1.4 Moderation effect of waist size

First, add two columns recording a standiviation above and below of waist size.

```
[12]: df['waist_sd'] = df['BMXWAIST'].std()
df['waist_up']=df['BMXWAIST']+df['waist_sd']
df['waist_down']=df['BMXWAIST']-df['waist_sd']
```

1.4.1 Diastolic result

```
Fit model: DI ~ DBD100 + BMXWAIST + DBD100 * BMXWAIST

[13]: moderation_DI = ols('DI ~ DBD100 + BMXWAIST + DBD100 * BMXWAIST', data=df).fit()
moderation_DI.summary()
```

[13]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

=======================================	========	======	========	======	=======
Dep. Variable:	DI	1			0.090
Model:	OLS	J	R-squared:		0.089
Method:	Least Squares		tistic:		92.35
	u, 05 Dec 2019		(F-statistic):		5.66e-93
Time:	12:15:13	0	ikelihood:		-18518.
No. Observations:	4670	AIC:			3.705e+04
Df Residuals:	4664	BIC:			3.709e+04
Df Model:	5				
Covariance Type:	nonrobust				
=======================================	========	======	========	======	========
	coef	std err	t	P> t	[0.025
0.975]					
Intercept	45.2378	1.273	35.545	0.000	42.743
47.733					
DBD100[T.2.0]	2.5683	2.137	1.202	0.229	-1.621
6.757					
DBD100[T.3.0]	3.7644	2.720	1.384	0.166	-1.567
9.096					
BMXWAIST	0.2182	0.013	16.179	0.000	0.192
0.245					
DBD100[T.2.0]:BMXWAIST	-0.0214	0.022	-0.955	0.339	-0.065
0.023					
DBD100[T.3.0]:BMXWAIST	-0.0266	0.028	-0.953	0.341	-0.081
0.028					
Omnibus:	 642.737	 Durbi	n-Watson:		2.006
Prob(Omnibus):	0.000	Jarqu	e-Bera (JB):		2183.342
Skew:	-0.685	Prob(JB):		0.00
Kurtosis:	6.057	Cond.	No.		1.62e+03
=======================================		======		======	

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.62e+03. This might indicate that there are strong multicollinearity or other numerical problems.

[14]:	anova_lm(moderation	n_DI)				
[14]:		df	sum_sq	mean_sq	F	PR(>F)
	DBD100	2.0	2852.765900	1426.382950	8.748537	1.613124e-04
	BMXWAIST	1.0	72202.692290	72202.692290	442.845941	5.372836e-94

```
DBD100:BMXWAIST 2.0
                          229.976156 114.988078 0.705265 4.940305e-01
   Residual
                4664.0 760430.039934
                                      163.042461
                                                     {\tt NaN}
                                                                 NaN
[15]: # one standard deviation above mean
    moderation DI up = ols('DI ~ DBD100 + waist up + DBD100 * waist up', data=df).
    →fit()
   moderation_DI_up.summary()
[15]: <class 'statsmodels.iolib.summary.Summary'>
                          OLS Regression Results
   Dep. Variable:
                                    R-squared:
                                                               0.090
                                DI
   Model:
                               OLS Adj. R-squared:
                                                               0.089
   Method:
                       Least Squares F-statistic:
                                                               92.35
   Date:
                     Thu, 05 Dec 2019 Prob (F-statistic):
                                                           5.66e-93
   Time:
                           12:15:13 Log-Likelihood:
                                                             -18518.
   No. Observations:
                              4670 AIC:
                                                            3.705e+04
   Df Residuals:
                               4664 BIC:
                                                            3.709e+04
   Df Model:
                                 5
    Covariance Type:
                          nonrobust
                           coef std err
                                            t P>|t|
                        41.0870 1.525 26.946 0.000
                                                              38.098
    Intercept
    44.076
   DBD100[T.2.0]
                        2.9751 2.555 1.164 0.244 -2.035
    7.985
   DBD100[T.3.0]
                        4.2712 3.244 1.317 0.188
                                                            -2.088
    10.630
                        0.2182
                                   0.013 16.179
                                                     0.000
   waist_up
                                                               0.192
    0.245
   DBD100[T.2.0]:waist_up -0.0214 0.022 -0.955
                                                     0.339
                                                              -0.065
   DBD100[T.3.0]:waist up -0.0266 0.028 -0.953
                                                    0.341
                                                              -0.081
    ______
                            642.737 Durbin-Watson:
    Omnibus:
                                                               2.006
                              0.000 Jarque-Bera (JB):
   Prob(Omnibus):
                                                             2183.342
   Skew:
                             -0.685 Prob(JB):
                                                                0.00
```

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly

Cond. No.

2.32e+03

6.057

specified.

[2] The condition number is large, 2.32e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
[16]: # one standard deviation below mean
    moderation_DI_down = ols('DI ~ DBD100 + waist_down + DBD100 * waist_down',_
     →data=df).fit()
    moderation_DI_down.summary()
```

[16]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results							
Dep. Variable: Model: Method: Le	DI OLS east Squares 05 Dec 2019 12:15:14 4670 4664 5 nonrobust	OLS Adj. R-squared: st Squares F-statistic: 5 Dec 2019 Prob (F-statistic): 12:15:14 Log-Likelihood: 4670 AIC: 4664 BIC: 5			0.090 0.089 92.35 5.66e-93 -18518. 3.705e+04 3.709e+04		
0.975]	coef	std err	t	P> t	[0.025		
Intercept 51.394 DBD100[T.2.0] 5.537 DBD100[T.3.0] 7.570 waist_down 0.245 DBD100[T.2.0]:waist_down 0.023 DBD100[T.3.0]:waist_down 0.028	49.3885 2.1615 3.2576 0.2182 -0.0214 -0.0266	1.023 1.722 2.200 0.013 0.022 0.028	48.287 1.255 1.481 16.179 -0.955 -0.953	0.000 0.209 0.139 0.000 0.339 0.341	47.383 -1.214 -1.055 0.192 -0.065 -0.081		
Omnibus: Prob(Omnibus): Skew: Kurtosis:	642.737 0.000 -0.685 6.057	Durbin-W	atson: era (JB): :		2.006 2183.342 0.00 1.06e+03		

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.06e+03. This might indicate that there are strong multicollinearity or other numerical problems.

For the models above, coefficients for the interaction terms and salt intake itself are not significant (at level of 95%). There are not moderation effect of waist size on salt intake and diastole.

1.4.2 Systolic result

Dep. Variable:

Fit model: SY ~ DBD100 + BMXWAIST + DBD100 * BMXWAIST

[17]: moderation_SY = ols('SY ~ DBD100 + BMXWAIST + DBD100 * BMXWAIST', data=df).fit()
moderation_SY.summary()

[17]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

SY

R-squared:

0.176

2 op				~ ~			0.2.0
Model:		0	LS Ac	dj.	R-squared:		0.175
Method:	Lea	st Squar	es F-	-sta	tistic:		199.6
Date:	Thu, 0	5 Dec 20	19 Pı	rob	(F-statistic):		2.71e-193
Time:		12:15:	14 Lo	og-L	ikelihood:		-19484.
No. Observations:		46	70 A	IC:			3.898e+04
Df Residuals:		46	64 BI	IC:			3.902e+04
Df Model:			5				
Covariance Type:		nonrobu					
=======							========
		coef	std 6	err	t	P> t	[0.025
0.975]							
Intercept	8	3.3170	1.5	565	53.231	0.000	80.248
86.386							
DBD100[T.2.0]		1.6470	2.6	528	0.627	0.531	-3.505
6.799							
DBD100[T.3.0]		1.3457	3.3	345	0.402	0.687	-5.211
7.903							
BMXWAIST		0.3813	0.0	017	22.986	0.000	0.349
0.414							
DBD100[T.2.0]:BMXWAIS	ST -	0.0069	0.0	028	-0.250	0.802	-0.061
0.047							
DBD100[T.3.0]:BMXWAIS	ST -	0.0027	0.0	034	-0.078	0.938	-0.070
0.065							
		======	======				=======

Kurtosis:	6.236	Cond. No.	1.62e+03
Skew:	1.320	Prob(JB):	0.00
Prob(Omnibus):	0.000	Jarque-Bera (JB):	3393.681
Omnibus:	1183.493	Durbin-Watson:	1.972

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.62e+03. This might indicate that there are strong multicollinearity or other numerical problems.

[18]: anova_lm(moderation_SY)

[18]:	df	sum_sq	mean_sq	F	\
DBD100	2.0	5.269709e+03	2634.854509	10.684907	
BMXWAIST	1.0	2.407964e+05	240796.362719	976.481519	
DBD100:BMXWAIST	2.0	1.548005e+01	7.740026	0.031387	
Residual	4664.0	1.150123e+06	246.595924	NaN	

PR(>F)

DBD100 2.345321e-05
BMXWAIST 8.385065e-195
DBD100:BMXWAIST 9.691002e-01
Residual NaN

[19]: # one standard deviation above mean
moderation_SY_up = ols('SY ~ DBD100 + waist_up + DBD100 * waist_up', data=df).

→fit()
moderation_SY_up.summary()

[19]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

	=======================================		=========
Dep. Variable:	SY	R-squared:	0.176
Model:	OLS	Adj. R-squared:	0.175
Method:	Least Squares	F-statistic:	199.6
Date:	Thu, 05 Dec 2019	Prob (F-statistic):	2.71e-193
Time:	12:15:14	Log-Likelihood:	-19484.
No. Observations:	4670	AIC:	3.898e+04
Df Residuals:	4664	BIC:	3.902e+04
Df Model:	5		
Covariance Type:	nonrobust		
=======================================	=======================================		==========

=======

coef

0.975]

std err

t P>|t|

[0.025

Intercept	76.0645	1.875	40.563	0.000	72.388
79.741					
DBD100[T.2.0]	1.7782	3.143	0.566	0.572	-4.383
7.939					
DBD100[T.3.0]	1.3965	3.989	0.350	0.726	-6.424
9.217	0.3813	0.017	22.986	0 000	0.240
waist_up 0.414	0.3813	0.017	22.980	0.000	0.349
DBD100[T.2.0]:waist_up	-0.0069	0.028	-0.250	0.802	-0.061
0.047		0.020	0.200	0.002	0.002
DBD100[T.3.0]:waist_up	-0.0027	0.034	-0.078	0.938	-0.070
0.065					
		======			=======
Omnibus:	1183.493	Durbin	n-Watson:		1.972
Prob(Omnibus):	0.000	Jarque-Bera (JB):			3393.681
Skew:	1.320	Prob(JB):			0.00
Kurtosis:	6.236	Cond.	No.		2.32e+03
=======================================		======			=======

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.32e+03. This might indicate that there are strong multicollinearity or other numerical problems.

[20]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

			=========
Dep. Variable:	SY	R-squared:	0.176
Model:	OLS	Adj. R-squared:	0.175
Method:	Least Squares	F-statistic:	199.6
Date:	Thu, 05 Dec 2019	Prob (F-statistic):	2.71e-193
Time:	12:15:14	Log-Likelihood:	-19484.
No. Observations:	4670	AIC:	3.898e+04
Df Residuals:	4664	BIC:	3.902e+04
Df Model:	5		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025
0.975]					
Intercept 93.035	90.5694	1.258	72.002	0.000	88.103
DBD100[T.2.0] 5.667	1.5158	2.118	0.716	0.474	-2.636
DBD100[T.3.0] 6.598	1.2949	2.705	0.479	0.632	-4.008
waist_down 0.414	0.3813	0.017	22.986	0.000	0.349
DBD100[T.2.0]:waist_down 0.047	-0.0069	0.028	-0.250	0.802	-0.061
DBD100[T.3.0]:waist_down 0.065	-0.0027	0.034	-0.078	0.938	-0.070
Omnibus:	1183.493	Durbin-W	atson:		1.972
<pre>Prob(Omnibus):</pre>	0.000	Jarque-B	era (JB):		3393.681
Skew:	1.320	Prob(JB)	:		0.00
Kurtosis:	6.236	Cond. No	=======	.=======	1.06e+03 =====

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.06e+03. This might indicate that there are strong multicollinearity or other numerical problems.

For the models above, coefficients for the interation terms and salt intake itself are not significant (at level of 95%). There are not moderation effect of waist size on salt intake and diastole.

1.5 Mediation effect of age

Fit model: RIDAGEYR ~ DBD100 to see if there are relationships between age and salt intake

```
[21]: # test if there is relationship between age and salt intake.
age_D = ols('RIDAGEYR ~ DBD100', data=df).fit()
age_D.summary()
```

[21]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable:	RIDAGEYR	R-squared:	0.009
Model:	OLS	Adj. R-squared:	0.008
Method:	Least Squares	F-statistic:	20.96
Date:	Thu, 05 Dec 2019	<pre>Prob (F-statistic):</pre>	8.67e-10

Time:		12:15:14	Log-Likelihood:		-20954.
No. Observations	5:	4670	AIC:		4.191e+04
Df Residuals:		4667	BIC:		4.193e+04
Df Model:		2			
Covariance Type		nonrobust			
=	=======	========		========	=======================================
	coef	std err	t	P> t	[0.025
0.975]					
Intercept	36.2901	0.435	83.420	0.000	35.437
37.143					
DBD100[T.2.0] 4.413	2.9959	0.723	4.145	0.000	1.579
	5.1646	0.861	5.999	0.000	3.477
6.852					
	=======	 1880.486	======= Durbin-Wa	======= itson:	2.043
Prob(Omnibus):		0.000	Jarque-Be	era (JB):	325.994
Skew:			Prob(JB):		1.63e-71
Kurtosis:		1.908	Cond. No.		3.29
					=======================================

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

The model is significant. There are relationships between age and salt intake behavior.

1.5.1 Diastolic result

Fit model: DI ~ DBD100 + RIDAGEYR.

```
[22]: mediation_DI = ols('DI ~ DBD100 + RIDAGEYR', data=df).fit()
mediation_DI.summary()
```

[22]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

===========	===========		
Dep. Variable:	DI	R-squared:	0.073
Model:	OLS	Adj. R-squared:	0.072
Method:	Least Squares	F-statistic:	121.6
Date:	Thu, 05 Dec 2019	Prob (F-statistic):	7.67e-76
Time:	12:15:14	Log-Likelihood:	-18563.
No. Observations:	4670	AIC:	3.713e+04
Df Residuals:	4666	BIC:	3.716e+04

Df Model: Covariance Type	:	3 nonrobust			
0.975]	coef	std err	t	P> t	[0.025
- Intercept 60.271 DBD100[T.2.0] 1.293 DBD100[T.3.0] 2.249 RIDAGEYR 0.181	59.4642 0.4425 1.2334 0.1636	0.411 0.434 0.518 0.009	1.020 2.381 18.646	0.000 0.308 0.017 0.000	58.657 -0.408 0.218 0.146
Omnibus: Prob(Omnibus): Skew: Kurtosis:		724.710 0.000 -0.747 6.391	Durbin-Wa Jarque-Be Prob(JB): Cond. No	era (JB):	2.007 2672.320 0.00 136.

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

The model is significant. Age might be a mediator between salt intake and diastolic.

```
[23]: # Create design matrix

DI,model_mat = patsy.dmatrices("DI ~ DBD100 + RIDAGEYR", data=df)

df_med_DI=pd.DataFrame(model_mat).iloc[:,1:]

df_med_DI.columns=['DBD2','DBD3','RIDAGEYR']

df_med_DI['DI']=DI

# origin model and mediator model

med_model_DI=OLS.from_formula('DI ~ RIDAGEYR+DBD2+DBD3', data=df_med_DI)

mediator_DI=OLS.from_formula('RIDAGEYR ~ DBD2+DBD3', data=df_med_DI)

# origin model and mediator model

med_DI = Mediation(med_model_DI,mediator_DI,['DBD2','DBD3'],'RIDAGEYR').fit()

med_DI.summary()
```

[23]:	Estimate	Lower CI bound	Upper CI bound	P-value
ACME (control)	1.336201	0.894425	1.810091	0.000
ACME (treated)	1.336201	0.894425	1.810091	0.000
ADE (control)	1.692829	0.107259	3.290577	0.038
ADE (treated)	1.692829	0.107259	3.290577	0.038

Total effect	3.029030	1.396428	4.608381	0.000
Prop. mediated (control)	0.438871	0.269666	0.920362	0.000
Prop. mediated (treated)	0.438871	0.269666	0.920362	0.000
ACME (average)	1.336201	0.894425	1.810091	0.000
ADE (average)	1.692829	0.107259	3.290577	0.038
Prop. mediated (average)	0.438871	0.269666	0.920362	0.000

All the mediation effect(ACME) are significant(at level of 95%). Which means that age is a mediator between salt intake and diastolic.

1.5.2 Systolic result

```
Fit model: SY ~ DBD100 + RIDAGEYR.

[24]: mediation_SY = ols('SY ~ DBD100 + RIDAGEYR', data=df).fit()
mediation_SY.summary()
```

[24]: <class 'statsmodels.iolib.summary.Summary'>

		NIS Regres	sion Result	g		
	.=======	=========	========	========		=====
Dep. Variable:		SY	R-squared	:		0.326
Model:		OLS	Adj. R-sq	uared:		0.326
Method:	Lea	ast Squares	F-statist	ic:		753.2
Date:	Thu,	05 Dec 2019	Prob (F-s	tatistic):		0.00
Time:		12:16:57	Log-Likel	ihood:	_	19015.
No. Observation	ns:	4670	AIC:		3.8	04e+04
Df Residuals:		4666	BIC:		3.8	06e+04
Df Model:		3				
Covariance Type	e:	nonrobust				
=	========		=======	========		=====
	coef	std err	t	P> t	[0.025	
0.975]	COGI	Stu ell	Ü	1 > 0	[0.020	
_						
Intercept	101.9719	0.453	224.951	0.000	101.083	
102.861						
DBD100[T.2.0]	0.2888	0.478	0.604	0.546	-0.648	
1.226						
DBD100[T.3.0]	0.2734	0.571	0.479	0.632	-0.845	
1.392						
RIDAGEYR	0.4567	0.010	47.259	0.000	0.438	
0.476						
Omnibus:	:=======	 587.593	======= Durbin-Wa	======== tson:	========	1.956
Prob(Omnibus):		0.000	Jarque-Be		12	53.258
Skew:		0.767	Prob(JB):	. (/-		2e-273
Kurtosis:		5.022	Cond. No.			136.
			,			

 \cite{black} Standard Errors assume that the covariance matrix of the errors is correctly specified.

The model is significant. Even thought the coefficients of salt intake is not significant(at level of 95%). Age might be a mediator between salt intake and systolic.

```
[25]: # Create design matrix
SY,model_mat = patsy.dmatrices("SY ~ DBD100 + RIDAGEYR", data=df)
df_med_SY=pd.DataFrame(model_mat).iloc[:,1:]
df_med_SY.columns=['DBD2','DBD3','RIDAGEYR']
df_med_SY['SY']=SY

# origin model and mediator model
med_model_SY=OLS.from_formula('SY ~ RIDAGEYR+DBD2+DBD3', data=df_med_SY)
mediator_SY=OLS.from_formula('RIDAGEYR ~ DBD2+DBD3', data=df_med_SY)

# origin model and mediator model
med_SY = Mediation(med_model_SY,mediator_SY,['DBD2','DBD3'],'RIDAGEYR').fit()
med_SY.summary()
```

[25]:	Estimate	Lower CI bound	Upper CI bound	P-value
ACME (control)	3.737113	2.471780	5.024574	0.000
ACME (treated)	3.737113	2.471780	5.024574	0.000
ADE (control)	0.563925	-1.081074	2.157202	0.514
ADE (treated)	0.563925	-1.081074	2.157202	0.514
Total effect	4.301039	2.189444	6.329029	0.000
Prop. mediated (c	ontrol) 0.870716	0.616533	1.373339	0.000
Prop. mediated (t:	reated) 0.870716	0.616533	1.373339	0.000
ACME (average)	3.737113	2.471780	5.024574	0.000
ADE (average)	0.563925	-1.081074	2.157202	0.514
Prop. mediated (a	verage) 0.870716	0.616533	1.373339	0.000

All the mediation effect(ACME) are significant. Which means that age is a mediator between salt intake and systolic.

1.6 Summary

From the analysis above, we know that the salt intake behavior have significant influence on people's blood pressure (both diastolic and systolic). The influence of salt intake behavior on blood pressure(both diastolic and systolic) is not modirated by waist size. Age is a Mediator between salt intake behavior and blood pressure(both diastolic and systolic).

1.7 Reference

```
1. https://en.wikipedia.org/wiki/Moderation_(statistics)
```

^{2.} http://web.pdx.edu/~newsomj/semclass/ho_mediation.pdf

1.8 Aknowledgement

I would like to thank Dr. Henderson for always patiently answering any questions. I would also like to thank my fellow group members, Jingyan Lu and Karthik G. Your works are very inspiring. I cannot finishing this report without your contributions.