COMP 430 Intro. to Database Systems

Entity-Relationship Diagrams

http://jcsites.juniata.edu/faculty/rhodes/dbms/eermodel

Req. Analysis outlines:
Data & what we want to do with it

Goal: Organize data to support requirements.

Use two complementary techniques:

- Entity-relationship design (now)
- Normalization (later)

Entity-Relationship Diagrams

"The Entity-Relationship model

toward a unified view of data"

Peter Chen, 1976

Precise enough for technical decisions

Abstracted enough to omit some implementation details
Abstracted enough for non-technical people

Many variations

For the course, use the given notation.

Product	Company

http://jcsites.juniata.edu/faculty/rhodes/dbms/eermodel

Product

<u>name</u>	price	category
iPad	\$200	Tablet
Galaxy Tab	\$200	Tablet
Galaxy Note	\$500	Smartphone
iPhone	\$600	Smartphone
Let It Be	\$10	CD

Company

industry	name	stockprice
Music	Apple	
Technology	Apple	\$100
Technology	Samsung	\$45

Attributes of entity sets

Primary key – minimal set of attributes that uniquely identifies entity

Convenient to draw in tabular form. Implemented as tables.

Sets A, B:

$$A=\{1,2,3\}, B=\{a,b,c,d\}$$

Cross-product $A \times B$:

Set of all $(a \in A, b \in B)$ pairs

$$A \times B = \{(1,a), (1,b), (1,c), (1,d), (2,a), (2,b), (2,c), (2,d), (3,a), (3,b), (3,c), (3,d)\}$$

(Binary) Relationship R:

Some subset of $A \times B$

$$R = \{(1,a), (2,c), (2,d), (3,b)\}$$

Company c × **Product p**

<u>c.industry</u>	<u>c.name</u>	<u>p.name</u>	•••
Music	Apple	iPad	•••
Music	Apple	Galaxy Tab	
Music	Apple	Galaxy Note	
Music	Apple	iPhone	
Music	Apple	Let It Be	
Technology	Apple	iPad	
Technology	Apple	Galaxy Tab	
Technology	Samsung	iPhone	
Technology	Samsung	Let It Be	

Makes

<u>c.industry</u>	<u>c.name</u>	<u>p.name</u>	•••
Music	Apple	Let It Be	•••
Technology	Apple	iPad	
Technology	Apple	iPhone	
Technology	Samsung	Galaxy Tab	
Technology	Samsung	Galaxy Note	•••

Convenient to draw in tabular form.

Implementation as tables discussed later.

Can have multiple relationships between same entity sets.

Each is a subset of **Person** \times **Company** with primary key (<u>ssn</u>, <u>name</u>).

Can have relationship between single entity set.

A subset of **Person** \times **Person** with primary key (\underline{ssn} , \underline{ssn}).

Relationships can have (non-key) attributes

Relationship attributes are implicitly unique per (p.name, c.name).

Relationship vs. entity

Relationship attributes are implicitly unique per (<u>name</u>, <u>p_id</u>). What if we don't want uniqueness?

Representing as an entity allows multiple Purchases for each Product-Person combination.

What's wrong?

Attributes omitted for brevity

N-ary relationships

Purchase is a subset of **Person** × **Product** × **Store**.

Activity – Draw ER diagram

Authors have IDs and names. They write books.

Books have ISBNs and titles. The library keeps track of how many copies it has of the book. Each book is written by authors and published by a publisher. We want to know every time it is checked out by a borrower.

Borrowers have a library card number, name, and address. They can check out a book on a particular date.

Publishers have an ID, name and address. They publish books.

Maximum cardinality

One-to-one:

Many-to-one:

One-to-many:

Many-to-many:

Minimum cardinality

Are there products made by no company?

Does every company make a product?

默认左边是

0

Or, simply N.

Each product maps to $1 \ge c \ge 1$ company.

Each company maps to $0 \ge p$ products.

B. 1, N

C. N, 1

D. M, N

F. Not enough context

- B. 1, N
- C. N, 1
- D. M, N

E. Not enough context

- B. 1:1, 1:1
- C. 1, N
- D. N, 1
- E. M, N
- F. Not enough context

- A. 1, 1
- B. 1, N
- C. N, 1
- D. M, N
- E. Not enough context

Discussion activity

Make ERD to represent people and their biological parents.

Pros/cons of different approaches?

Similar ex.: attribute vs. related entity set?

Where to add publication date attribute?

- C. Book
- D. Either Publisher or Publishes
- ✓E. Either Publishes or Book

Purchase

person	store	product
Alice	Target	Jeans
Bob	Target	Shirt
Charles	Macys	Jeans
Dana	Amazon	Books

Given Person, then Store & Product are determined.

Each person can make one purchase – and thus of one product at one store.

Purchase

person	store	product
Alice	Target	Jeans
Alice	Powells	Books
Bob	Target	Shirt
Charles	Macys	Jeans
Charles	Target	Shirt
Dana	Amazon	Books

Given Product & Person, then Store is determined.

Any person can buy any given product at most once – and thus at one store.

Any combination.

Purchase

person	store	product
Alice	Target	Jeans
Alice	Powells	Books
Alice	Target	Books
Bob	Target	Shirt
Charles	Macys	Jeans
Charles	Target	Shirt
Dana	Amazon	Books
Dana	Powells	Books

How to say: "Each person shops in at most one store."?

Some constraints require extra relationships

How to say: "Each person shops in at most one store.".

Can convert n-ary to binary

Decision: n-ary or binary?

Generally best when relationship really is between multiple entities.

- Allows multiple purchases per Product-Store-Person combination.
- Allows more control on cardinality.
 - "A person who shops in only one store."

Weak entity set

In a relational database, a weak entity is an entity that cannot be uniquely identified by its attributes alone; therefore, it must use a foreign key in conjunction with its attributes to create a primary key

- Existence/meaning is dependent on another entity set(s).
- Part of its key comes from that other entity set(s)

Weak entity – a <u>subtle</u> semantic distinction

Many-to-many junctions often weak

Enrollment isn't interesting/useful away from its connections to **Course** & **Student**.

Activity – Add multiplicity to ER diagram

Authors have IDs and names. They write books.

Books have ISBNs and titles. The library keeps track of how many copies it has of the book. Each book is written by authors and published by a publisher. We want to know every time it is checked out by a borrower.

Borrowers have a library card number, name, and address. They can check out a book on a particular date.

Publishers have an ID, name and address. They publish books.

Subclasses: unions

Subclasses: disjoint unions, equality

Composite pattern example

Shorthand for singleton subclass

Subclasses: multiple inheritance hierarchy

Figure 8.6

A specialization lattice with shared subclass ENGINEERING_MANAGER.

Subclasses: unions, equality – "categories"

The need for categories/unions

Goal: "Every art piece is owned by a person or company."

What is the problem?

Solution with categories

Goal: "Every art piece is owned by a person or company."

Different options for multiple superclasses

Each subclass entity belongs to & inherits from **all** superclasses.

Each subclass entity belongs to & inherits from **the**appropriate one superclass.

What's the difference?

ER design summary

Semi-formal design technique based upon informal semantics Goal: Schemas that accurately represent and formalize semantics

- Design ER diagram
 - a. Identify entity sets, their attributes, and sub/superclasses
 - b. Identify relationships between entity sets, and their attributes
 - c. Identify max. & min. cardinality of relationships
 - d. Identify weak entity sets
- 2. Convert to schemas next topic
- 3. Normalize schemas coming soon

Activity – Add participation, sub/superclasses

Authors have IDs and names. They write books or chapters of book.

Books have ISBNs and titles. The library keeps track of how many copies it has of the book. Each book is written by authors and published by a publisher. We want to know every time it is checked out by a borrower.

Borrowers have a library card number, name, and address. They can check out a book on a particular date.

Publishers are typically a company with an ID, name and address. They publish books. Alternatively, authors can self-publish.

