

dsPIC30F Peripheral Module

dsPIC30F EUART Module

Session Agenda

- Module Overview
- UART Transmission
- UART Reception
- Additional Features

UART - Overview

- Serial transmission and reception
 - 8-bit (Odd, Even or No Parity) or 9-bit data
 - Full-duplex, asynchronous communication
 - Support for communication protocols such as RS-232, RS-422, RS-485 and LIN
 - 4-deep Transmit and Receive buffers
 - Transmit and Receive interrupts
 - Error detection
 - Support for receiver addressing
 - Loopback mode
 - Alternate TX/RX pins on some devices
 - Wake-up from SLEEP

UART - Baud Rate Generator

- Dedicated 16-bit Baud Rate Generator
- Baud Rate controlled by UxBRG register (x = 1 or 2)
 - Baud Rate = Fcy / (16 * (UxBRG + 1))
 where Fcy = Instruction Cycle Frequency
- Both transmitting and receiving devices must use same Baud Rate
- Bits are transmitted and/or received at the rate defined by the Baud Rate

UART - Transmission

- UART module is enabled by setting the UARTEN bit in the UxMODE register
- Transmission starts only when:
 - The data to be transmitted is written to the buffer, AND UTXEN bit in the UxSTA register is set

UART – Transmission (contd.)

 UART module is enabled by setting the UARTEN bit in the UxMODE register

R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	U-0	U-0	
UARTEN	-	USIDL	_	_	ALTIO	-	-	
bit15	14	13	12	11	10	9	bit8	
	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	WAKE	LPBACK	ADAUD	-	_	PDSEL<1>	PDSEL<0>	STSEL
	Bit 7	6	5	4	3	2	1	bit 0

- Transmission starts only when:
 - The data to be transmitted is written to the buffer, AND
 - ❖ The UTXEN bit in the UxSTA register is set

R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-1	
UTXISEL	_	-	-	UTXBRK	UTXEN	UTXBF	TRMT	
bit15	14	13	12	11	10	9	bit8	
	R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
	Bit 7	6	5	4	3	2	1	bit 0

UART - Transmission (contd.)

- The first bit transmitted is a START bit
 - Low level on UxTX pin for 1 bit time
- Next, the actual data bits are sent
 - LSB first, MSB later and parity bit last
 - Data format (8 or 9 bits) and parity type (even, odd or no parity) configured by PDSEL bits in the UxMODE register
 - No parity for 9-bit data

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	-	-	PDSEL1	PDSEL0	STSEL
bit7	6	5	4	3	2	1	bit0

UART - Transmission (contd.)

- The last bit transmitted is a STOP bit
 - High level on UxTX pin for 1 or 2 bit times
 - Number of STOP bits configured by STSEL bit in the UxMODE register

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	-	-	PDSEL1	PDSEL0	STSEL
bit7	6	5	4	3	2	1	bit0

- TRMT status bit in the UxSTA SFR
 - Bit is cleared if Transmit Shift Register (UxTSR) is busy or a transmission is pending

R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-1
UTXISEL	-	-	-	UTXBRK	UTXEN	UTXBF	TRMT
bit15	14	13	12	11	10	9	bit8

UART - Transmit Buffers

- 4-deep Transmit FIFO Buffer
 - Only the first character in the buffer is memorymapped and thus user-accessible, UxTXREG
 - Characters in the buffer are shifted out of the buffer through UxTSR in FIFO
 - All 8 (or 9) data bits, are buffered
 - The UTXBF status bit in the UxSTA register indicates whether the buffer is full

R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-1
UTXISEL	-	-	-	UTXBRK	UTXEN	UTXBF	TRMT
bit15	14	13	12	11	10	9	bit8

UART - Transmit Interrupts

- Transmit Interrupt indicated by UxTXIF bit and enabled by UxTXIE bit
 - When UTXISEL bit in the UxSTA register = 1
 - Interrupt occurs when buffer becomes empty
 - Used for transmitting a block of 4 characters
 - When UTXISEL bit = 0
 - Interrupt occurs whenever a character is transferred to UxTSR
 - Used for transmitting a single character
 - In this mode, an interrupt is generated as soon as the UTXEN bit is set

R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-1
UTXISEL	-	-	_	UTXBRK	UTXEN	UTXBF	TRMT
bit15	14	13	12	11	10	9	bit8

TxD Interrupt Timing

UART Baud Rate Generator

- Dedicated 16-bit baud rate generator
 - Baud Rate = Fcy / (16 * UxBRG+1)

or

- UxBRG = [FCY / (16 * Baud Rate)] 1
- Baud Rate Example
 - Fosc = 16MHz , Fcy=4MHz
 - Descried Baud Rate: 19200 bps

$$UxBRG = [4000000/(16*19200)] -1$$

Baud Rate Error = 4000000/(16(12+1))=19230 bps

Error % = (19230-19200) / 19200 = 0.16%

UART - Reception

- UART Receiver becomes active when the module detects a START bit
- Data (starting with LSB) and parity bits are shifted through the Receive shift Register (UxRSR)
 - Data format and parity type (PDSEL bits in the UxMODE register) must be configured to match those of the transmitting device

UART - Reception (contd.)

- UxRSR stops shifting in bits when it detects a STOP bit
 - Number of STOP bits (STSEL bit in the UxMODE register) must be configured to match those of the transmitting device
- As long as UxRSR is shifting in bits, the module sets the RIDLE status bit in the UxSTA register
 - Bit remains clear at all other times

UART - Receive Buffers

- 4-deep Receive FIFO Buffer
 - All 8 (or 9) data bits, as well as Error flags, are buffered
 - Only the first character in the buffer is memory-mapped (UxRXREG)
 - The error flags in the UxSTA register reflect the error states of the first character in the buffer
 - URXDA status bit in the UxSTA register indicates if the buffer contains new data

UART - Receive Interrupts

- Receive Interrupt indicated by UxRXIF bit and enabled by UxRXIE bit
 - When URXISEL bits in the UxSTA register = 11
 - Interrupt occurs when buffer becomes full
 - Used for receiving a block of 4 characters
 - ♦ When URXISEL bits = 10
 - Interrupt when buffer has 3 characters
 - Used for receiving a block of 3 characters
 - ♦ When URXISEL bits = 01 or 00
 - Interrupt whenever a character is received
 - Used for receiving a single character

UART - Error Detection

Parity Error

- When received parity does not match the parity calculated by module from received data
- Indicated by PERR bit in the UxSTA register set

Framing Error

- When a STOP bit is expected on UxRX pin but a low logic level is detected
- Indicated by FERR bit in the UxSTA register set

Receive Overrun Error

- When the Receive Buffer is full and a 5th character is received
- Indicated by OERR bit in the UxSTA register set

UART - Address Detection

- When the UART is operating in 9-bit mode (PDSEL = 11), and the ADDEN bit in the UxSTA register is set
 - The module will wait for an Address word, i.e., a 9-bit word with the 9th bit set
 - At this stage, the URXISEL bits in the UxSTA register must be set to 00 or 01
- On receiving the Address word, the user inspects the lower byte to verify an address match
- If an address match occurred, the user should clear the ADDEN bit, after which the module will wait for Data words (9-bit words with MSB clear)

UART - LIN Support

- Transmission of Break Characters
 - A Break character can be transmitted by setting the UTXBRK bit in the UxSTA register for at least 13 bit times

R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-1
UTXISEL	-	-	_	UTXBRK	UTXEN	UTXBF	TRMT
bit15	14	13	12	11	10	9	bit8

- Autobaud Detection
 - The UxRX pin is internally routed to an Input Capture pin (IC1 for UART1, IC2 for UART2)
 - Used for capturing both edges of START bit for determining baud rate

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	-	-	PDSEL1	PDSEL0	STSEL
bit7	6	5	4	3	2	1	bit0

UART - Additional Features

- Alternate I/O
 - Some devices have an alternate pair of TX/RX pins
- Loopback Mode
 - UxTX pin internally connected to UxRX pin
- Wake-up from SLEEP
 - Device can be woken up from SLEEP by a START bit

F	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	U-0	U-0
UA	ARTEN	-	USIDL	-	-	ALTIO	-	-
	bit15	14	13	12	11	10	9	bit8
	R/W-C	R/W-(R/W-(OO	U-0	R/W-0	D R/W-	0 R/W-0
	WAKE	LPBAC	K ABAUI) -	-	PDSEL	1 PDSEL	.0 STSEL
	bit7	6	5	4	3	2	1	bit0

Prepare UART Lab

- APP020 EVM Board setting request
 - DSW1 SW1 & SW2 are ON position for the ICD2 programming & using the PGC, PGD for Debugging
 - DSW2 SW1 & SW2 are ON position for UART1 (Lab1)
 SW3 & SW4 are ON position for UART2 (Lab2)
 - DSW3 SW1 & SW2 are ON position for VR input
 - DSW4 All OFF position
- Hyper-Terminal
 - Standard RS-232 communication port
 - Or, use the RS-232 to USB adapter
 - Set the Terminal: 9600 bps, Non parity, 8-bit data and 1 stop mode without any Handshake

Initialize the UART

```
/* Configure uart1 receive and transmit interrupt */
CloseUART1();
ConfigIntUART1 (UART RX INT EN & UART RX INT PR6 &
              UART TX INT DIS & UART TX INT PR2);
                                 /* Setup the Buad Rate Generator */
                                 //UxBRG = ( (FCY/Desired Baud Rate)/16) - 1
baudvalue = 95;
                                 //UxBRG = ((7372800*2/9600)/16)-1 = 95
/* Configure UART1 module to transmit 8 bit data with one stopbit. Also Enable loopback mode */
U1MODEvalue = UART EN & UART IDLE CON &
              UART DIS WAKE & UART DIS LOOPBACK &
              UART DIS ABAUD & UART NO PAR 8BIT &
              UART_1STOPBIT & UART_ALTRX_ALTTX;
U1STAvalue = UART_INT_TX_BUF_EMPTY &
              UART TX PIN NORMAL &
              UART_TX_ENABLE & UART_INT_RX_CHAR &
              UART ADR DETECT DIS &
              UART RX OVERRUN CLEAR;
```

OpenUART1(U1MODEvalue, U1STAvalue, baudvalue);

Write data To UART1

Use the WriteUART1 () from Library