Evaluating Competing Uses for Marine Renewable Energy

Ben Best¹, Levi Kilcher², Walter Musial²

•••

Pacific Region Marine Renewables Environmental Regulatory Workshop Portland, OR September 12, 2017

Need for marine renewable energy

- Reduce:
 - Greenhouse gases
 - Foreign dependence on energy
- Marine energy advantages:
 - O Complementary to other large scale renewable energy
 - O Predictable throughout day and seasons
 - Proximity to dense coastal populations

Outline

- Challenges
- Past Approaches
- Present Cable Analysis
- Future Competing Use Analysis

Challenges

Crowded ocean

Crowder et al (2006) Resolving Mismatches in U.S. Ocean Governance. *Science*

Many data layers, how to synthesize?

Environmental interactions are complex

Past Approaches

Wind Energy Areas: stakeholder process (BOEM)

Ocean uses: unweighted

User defined weights

Expert derived weights

• Cumulative impact analysis habitat x human impact

	pollution		climate change			
habitat	chemical	nutrient	SST	acidification	UV	
coral	1	2	3	1	1	
mangrove	1	1	0	0		
salt marsh	1	2	0	0	0	
seagrass	2	3	2	1		

Halpern et al (2008) A Global Map of Human Impact on Marine Ecosystems. Science

• species x human impact

	pollution		alimata ahansa			1
4	polluti	on	climate change			•••
species	chemical	nutrient	SST	acidification	UV	
blue whales	13	11	12	12	14	
elephant seals	14	0	15	12	11	
black-footed albatross	15	14.5	15	12	11	
sooty shearwaters	13	6	10	11	12	

Open data science tools - Ocean Health Index

ohi-science.org

Spatial decision support system

Present Cable Analysis

Submarine cable safety product

Derive from Submarine Cables (on MarineCadastre.gov)

Tide	Wave	Wind
V	V	
V	V	V
•	V	V
	V	V
V	V	
~	V	
V	V	V
	v v v v v v v v v v v v v v v v v v v	 V V V V V V V

- Apply industry advised horizontal buffers based on depth
 - o Minimum: max(500m, 2 x depth)
 - Recommended: max(500m, 3 x depth)
- Extract overlap with energy resources: tidal, wave, wind (tidal: Haas et al 2011; wave: P. T. Jacobson et al 2011; wind: Schwartz et al 2010)

Depth-varying cable buffer

Wave in West

Wind in Hawaii

Overlap of cable buffers with energy resources

Future Competing Uses Analysis

Future NREL Competing Use Work

- Timeline: Oct 2017 Oct 2018
- Goal
 - Provide common reference to competing uses and potential conflict when evaluating marine renewable energy
 - Update Black & Veatch (2010) report with open, current data
 - Utilize best available data with best available science to provide decision support (advisory vs. exclusive)
 - Create tool to ingest data layers and evaluate competing ocean uses
- Data sources
 - MarineCadastre.gov (<u>scrape-marinecadastre</u>)
 - Others: <u>CA Offshore Wind Energy</u>, <u>West Coast Ocean Data Portal</u>, <u>Northeast Ocean Data</u>
 <u>Portal</u>, <u>Mid-Atlantic Ocean Data Portal</u>, <u>Governors' South Atlantic Alliance Portal</u>, <u>Gulf of Mexico Data Atlas</u>

Ocean use categories

Nonliving Resources

- Energy Resources (n=8)
 Oil Resources, Natural Gas Resources, Tides, Wind, Ocean Currents,
 Geothermal Resources, Ocean Thermal Resources, Solar Radiation
- Material Resources (n=2)
 Sand Resources, Mineral Resources
- Physical/Chemical Features (n=5)
 Physical Habitats and Geomorphology, Bathymetry and Elevation, Substrate,
 Water Column Features, Water-Quality Parameters

Living Resources

- Habitat
- Ecological Functions and Services (n=2)
 Biological Production, Biodiversity
- Biological Occurrence (n=7)
 Fishes, Invertebrates, Flora, Mammals, Birds, Reptiles, Invasive Species

Governance

- Marine Protected Areas (MPAs)
- De Facto MPAs
- Commercial Leases
- Jurisdictional Boundaries
- Tribally Governed Areas
- Regulatory Use Restrictions

Ocean Uses

- Recreational Nonextractive / Cultural Use (n=10)
 Scuba/Snorkeling, Swimming, Surface Board Sports, Paddling, Sailing,
 Motorized Boating, Wildlife Viewing at Sea, Tide Pooling, Shore Use, Cultural Use
- Harvesting Living Resources (n=9)
 Pelagic Fishing, Fishing with Benthic Mobile Gear, Fishing with Benthic Fixed Gear, Kayak Fishing, Dive Fishing, Fishing from Shore, Gathering from Shore, Offshore Seaweed Harvest, Hunting
- Energy Production (n=6)
 Wind Energy Production, Wave Energy Production, Ocean Current Energy Production, Tidal Current Energy Production, Ocean Thermal Energy Conversion, Offshore Oil and Gas Production
- Transportation (n=3)
 Shipping, Cruise Ships, Military Vessels
- Other Commercial/Industrial Uses (n=7)
 Mining and Mineral Extraction, Offshore Aquaculture, Coastal Aquaculture Seawater Intake, Sewage Discharge, Ocean Dumping, Underwater Transmission Cables

Infrastructure

- Ports
- Cables, Pipelines, and Power Grids
- Buoys and Navigational Aids
- Structures

Ocean Use Weighting

energy x ocean use

	recreational non-extractive		harvesting		transportation		biological		
energy	scuba	surfing	pelagic fishing	benthic fishing	shipping	military	mammals	birds	
tidal	1	2	1	1	1	1	1	1.5	
wind	1	1	2	2	0		1.5	2.5	
wave	1	3	1	1	0	0	1.5	1	

• energy x ocean use - species

average

	mam	nmals	birds		
energy	blue whales	elephant seals	black-footed albatross	leatherback sea turtles	
tidal	1	1	1	2	
wind	2	1	2	3	
wave	3	0	0	2	

Tool for competing ocean uses

Graphical User Interface (GUI)

Functions

- Fetch
 data layers from data catalogs
- Integrate
 rescale layers, apply weights, aggregate
- Visualize
 maps, plots, tables; static/interactive

Weights

- Default even weighting
- Upload table
- Modify with sliders

Output

- Report
- Bookmark URL

Future Work

- Detailed Parameters & Models
 - \circ Qualitative Index \rightarrow Quantitative Units
 - \circ General Implementation \rightarrow Specific Configurations

Externally engage stakeholders

Thank you

comments / questions most welcome

ben@ecoquants.com