

Deep Learning

PhD. Msc. David C. Baldears S. PhD(s). Msc. Diego López Bernal

TC3007C

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

"Traditional" machine learning:

Deep, "end-to-end" learning:

Year	Contributer	Contribution
300 BC	Aristotle	introduced Associationism, started the history of human's attempt to understand brain.
1873	Alexander Bain	introduced Neural Groupings as the earliest models of neural network, inspired Hebbian Learning Rule.
1943	McCulloch & Pitts	introduced MCP Model, which is considered as the ancestor of Artificial Neural Model.
1949	Donald Hebb	considered as the father of neural networks, introduced Hebbian Learning Rule, which lays the foundation of modern neural network.
1958	Frank Rosenblatt	introduced the first perceptron, which highly resembles modern perceptron.
1974	Paul Werbos	introduced Backpropagation
1980 -	Teuvo Kohonen	introduced Self Organizing Map
	Kunihiko Fukushima	introduced Neocogitron, which inspired Convolutional Neural Network
1982	John Hopfield	introduced Hopfield Network
1985	Hilton & Sejnowski	introduced Boltzmann Machine
1986	Paul Smolensky	introduced Harmonium, which is later known as Restricted Boltzmann Machine
	Michael I. Jordan	defined and introduced Recurrent Neural Network
1990	Yann LeCun	introduced LeNet, showed the possibility of deep neural networks in practice
1997 -	Schuster & Paliwal	introduced Bidirectional Recurrent Neural Network
	Hochreiter &	introduced LSTM, solved the problem of vanishing
	Schmidhuber	gradient in recurrent neural networks
2006	Geoffrey Hinton	introduced Deep Belief Networks, also introduced
		layer-wise pretraining technique, opened current deep learning era.
2009	Salakhutdinov & Hinton	introduced Deep Boltzmann Machines
2012	Geoffrey Hinton	introduced Dropout, an efficient way of training neural networks
		From: Wang & Raj: On the Origin of Deep Learning (2017)

- Supervised learning
- Unsupervised learning
- Self-supervised learning
- Reinforcement learning

- Supervised learning
- Unsupervised learning
- Self-supervised learning
- Reinforcement learning

- Supervised learning
- Unsupervised learning
- Self-supervised learning
- Reinforcement learning

Image from https://arxiv.org/abs/1710.10196

- Supervised learning
- Unsupervised learning
- Self-supervised learning
- Reinforcement learning

Fundamentals of machine learning

Data

- Humans learn by observation and unsupervised learning
 - model of the world / common sense reasoning
- Machine learning needs lots of (labeled) data to compensate

Data

- Tensors: generalization of matrices to n dimensions (or rank, order, degree)
 - 1D tensor: vector
 - 2D tensor: matrix
 - 3D, 4D, 5D tensors
 - numpy.ndarray(shape, dtype)
- Training validation test split (+ adversarial test)
- Minibatches
 - o small sets of input data used at a time
 - usually processed independently

Optimization

- Mathematical optimization:

 "the selection of a best element (with regard to some criterion) from some set of available alternatives" (Wikipedia)
- Main types: finite-step, iterative, heuristic

By Rebecca Wilson (originally posted to Flickr as Vicariously) [CC BY 2.0], via Wikimedia Common

regularization

Learning as an optimization problem

cost function:

ion:
$$J(heta) = rac{1}{m} \sum_{i=1}^m L(f(\mathbf{x}_i; heta), y_i) + R(heta)$$

loss

Gradient descent

- Derivative and minima/maxima of functions
- Gradient: the derivative of a multivariable function
- Gradient descent:

$$\theta_{t+1} = \theta_t - \alpha \frac{\partial J(\theta)}{\partial \theta}$$

 (Mini-batch) stochastic gradient descent (and its variants)

Over- and underfitting, generalization, regularization

- Models with lots of parameters can easily overfit to training data
- Generalization: the quality of ML model is measured on new, unseen samples
- Regularization: any method* to prevent overfitting
 - simplicity, sparsity, dropout, early stopping
 - *other than adding more data

Anatomy of a deep neural network

- Layers
- Input data and targets
- Loss function
- Optimizer

Layers

- Data processing modules
- Many different kinds exist
 - densely connected
 - convolutional
 - recurrent
 - pooling, flattening, merging, normalization, etc.
- Input: one or more tensors
- output: one or more tensors
- Usually have a state, encoded as weights
 - o learned, initially random
 - When combined, form a network or a model

Input data and targets

- The network maps the input data
 X to predictions Y'
- During training, the predictions Y'
 are compared to true targets Y
 using the loss function

Loss function

- The quantity to be minimized (optimized) during training
 - the only thing the network cares about
 - there might also be other metrics you care about
- Common tasks have "standard" loss functions:
 - mean squared error for regression
 - binary cross-entropy for two-class classification
 - categorical cross-entropy for multi-class classification
 - etc.
- https://lossfunctions.tumblr.com/

Optimizer

- How to update the weights based on the loss function
- Learning rate (+scheduling)
- Stochastic gradient descent, momentum, and their variants
 - RMSProp is usually a good first choice
 - more info:
 http://ruder.io/optimizing-gradient-descent/

Deep learning frameworks

Caffe

DEEPLEARNING4J

O PyTorch

TensorFlow

© Caffe2

theano

Deep learning frameworks

- Keras is a high-level neural networks API
 - included in TensorFlow 2 as tf.keras
 - https://keras.io/ , https://www.tensorflow.org/guide/keras
- PyTorch is:
 - a GPU-based tensor library
 - an efficient library for dynamic neural networks
 - https://pytorch.org/

Perceptron

A perceptron is known as a single neuron model that is the basic building block to larger neural networks. Neurons

Neuron

Each neuron may have one or many inputs. Likewise, one neuron may yield single or multiple outputs to multiple neurons.

Perceptron Model (Minsky-Papert in 1969)

Synapse

ANN is made up of connections. These connections are more commonly known as **weights** or synapse. **Weights** have an important role, as they are used for a neural network to **learn**. Weights are supposed to **adjust** or **pass** the signal to the next neurons.

Hidden layer

The hidden layer is a layer of neuron in ANN which is present between the input and output layer. The input layer receives the data.

Hyperparameter

To run ANN, several constant parameters are set before the learning process begins. Some examples of hyperparameters are a number of hidden layers, epoch, batch size, optimization, etc.

Forward propagation

In this step, the neural network is fired in the forward direction, from left to right. Input layers move to the next hidden layer based on weight and this step moves forward as per the activation function, until getting the predicted results y.

Cost Function

Cost function and loss function refers to nearly the same. It basically compares the predicted results to the actual result and measures the generated error.

Backward Propagation

Moves from right to left. This is an algorithm that uses gradient descent to calculate the gradients of the error function.

Data Preparation

According to a survey in Forbes, data scientists spend 80% of their time on data preparation:

