

Sítové aplikace a správa sítí

Dokumentace k projektu Programování sítové služby Varianta 2: Export DNS informací pomocí protokolu Syslog

Obsah

1	Úvod	2
2	Uvedení do problematiky	3
	2.1 Model TCP/IP	3
	2.1.1 Vrstva sítového rozhraní	3
	2.1.2 Síťová vrstva	3
	2.1.3 Transportní vrstva	3
	2.1.4 Aplikační vrstva	3
	2.2 Domain Name System	3
	2.2.1 Formát DNS zprávy	4
	2.3 Syslog protokol	4
	2.3.1 Formát zpráv	4
3	Implementace	5
	3.1 Struktura programu	5
	3.2 Popis implementace	5
	3.3 Návratové kódy	6
4	Použití	7
	4.1 Překlad	7
	4.2 Spuštění	7
	4.3 Příklady spuštění	7
5	Dodatečné informace	8

1 Úvod

Dokumentace popisuje řešení projektu a vysvětluje danou problematiku. Naší úlohou bylo nastudovat si potřebné informace a následně navrhnout, naprogramovat a otestovat síťovou službu, navíc k ní napsat manuálovou stránku. Varianta 2, kterou jsem řešil spočívala ve vytvoření aplikace dns-export. Ta odposlouchává síťový provoz na síťovém rozhraní, případně zpracovává pcap soubor, ve kterém je nějaká síťová komunikace již zaznamenána. Aplikace vyfiltruje DNS provoz a následně zpracovává jednotlivé pakety, konkrétně DNS odpovědi (responses). V každé odpovědi projde skrz všechny odpovědní záznamy (Answer resource records) a vyčte určité informace. Doménové jméno, typ DNS záznamu a data specifická pro každý typ. Dále je zaznamenán výskyt těchto informací, shodné jsou sečteny. Tyto výsledky jsou zasílany na syslog server ve formátu odpovídající syslog protokolu.

2 Uvedení do problematiky

2.1 Model TCP/IP

Sítová komunikace je kvůli své komplexnosti rozdělena do tzv. vrstev, které znázorňují hierarchii činností. Výměna informací mezi vrstvami je přesně definována. Každá vrstva využívá služeb vrstvy nižší a poskytuje své služby vrstvě vyšší.

2.1.1 Vrstva síťového rozhraní

Nejnižší vrstva, umožňuje přístup k fyzickému médiu. Je specifická pro každou síť v závislosti na její implementaci. (např. Ethernet)

2.1.2 Síťová vrstva

Vrstva zajišťuje síťovou adresaci, směrování a předávání datagramů. Je implementována ve všech prvcích sítě – směrovačích i koncových zařízeních. (např. IPv4, IPv6, ARP, ICMP)

2.1.3 Transportní vrstva

Poskytuje transportní služby pro kontrolu celistvosti dat. Jedná se o spolehlivé spojení (TCP) nebo nespolehlivé spojení (UDP). Je implementována až v koncových zařízeních, proto umožňuje přizpůsobit chování sítě potřebám aplikace.

2.1.4 Aplikační vrstva

Vrstva, která se stará o přenos konkrétních aplikačních dat. (např. SSH, FTP, HTTP, DHCP, DNS)

Obrázek 1: Schéma zapouzdření dat na vrstvách TCP/IP

2.2 Domain Name System

DNS (Domain Name System) je hierarchický systém doménových jmen, který je realizován servery DNS a protokolem stejného jména, kterým si vyměňují informace. Jeho hlavním úkolem jsou vzájemné převody doménových jmen a IP adres sítě. Slouží de facto jako distribuovaná databáze sítových informací.

2.2.1 Formát DNS zprávy

DNS zpráva má následující formát:

Header
Question
Answer
Authority
Additional

Header (hlavička) blíže specifikuje DNS zprávu. Například zda se jedná o dotaz, či odpověď, zda nastala nějaká chyba, nebo kolik zpráva obsahuje DNS záznamů (resource records) a jakých jsou typů.

V sekci Question (dotaz) jsou informace které chce tázající zjistit. Konkrétně doménové jméno na které se dotazuje, typ a třída záznamu.

Answer, Authority a Additional jsou pak záznamy. Všechny mají shodný formát a obsahují různé odpovědi, případně cestu jak se odpovědí dosáhlo.

2.3 Syslog protokol

Syslog protokol je standard pro záznam programových zpráv (logů). Program podle protokolu posílá zprávy napříč sítí ke kolektorům logovacích zpráv – syslog serverům. Jedná se tedy o architekturu klient-server. Komunikace může probíhat přes UDP na portu 514 nebo přes TCP na portu 6541.

2.3.1 Formát zpráv

Maximální délka paketu je 1024 bytů. Zpráva má následující formát:

Část PRI se skládá ze třech až pěti znaků. Začíná znakem '<', následuje číslo a končí znakem '>'. Číslo uvnitř špičatých závorek se nazývá Priority value a reprezentuje Facility – zařazení podsystému a Severity – míru závažnosti.

Priority value se vypočítá následujícím vzorcem:

Část HEADER obsahuje časovou značku – TIMESTAMP, tedy kdy byla zpráva odeslána a adresu odesílatele – HOSTNAME, tedy kdo zprávu odeslal.

Poslední část, MSG, se sestává opět ze dvou částí. První z nich je TAG, což je název procesu, který zprávu vygeneroval a druhá je CONTENT, tedy konkrétní obsah zprávy.

$$MSG = TAG CONTENT$$

3 Implementace

3.1 Struktura programu

Aplikace se snaží držet objektově orientovaného paradigma. Kvůli spravování signálů (signal_handler) bylo nutné některé objekty definovat na globální úrovni.

Jako první se pracuje s instancí třídy ArgParser, která se stará o zpracování argumentů příkazové řádky a jejich validaci. Argumenty jsou uloženy jako privátní atributy a přístup k nim je definován pomocí příslušných metod.

Třída PcapParser využívá pcap knihovnu pro odchytávání síťového provozu na síťovém zařízení, případně pro parsování zdrojového pcap souboru. Dále vyfiltruje DNS provoz a zpracuje veškeré hlavičky až k aplikační vrstvě. Poradí si na síťové vrstvě s IPv4 i IPv6 datagramama a na transportní vrstvě s TCP i UDP komunikací.

Třída DnsParser zpracovává data DNS protokolu. Vytřídí pouze odpovědi (responses), které neskončili chybou. Projde všechny záznamy v sekci Answers a vybere data potřebná k vytvoření statistik. Statistiky ukládá do globální datové struktury unordered_map jako dvojice klíč->hodnota. Klíč jsou získaná data z DNS záznamu a value je počet výskytů těchto dat za celou dobu odchytávání, případně za zpracování celého pcap souboru.

Třída Syslog se pak stará o komunikaci se syslog serverem. Poskytuje metody pro připojení, odpojení a odesílání zpráv na syslog server.

Ve funkci signal_handler jsou pak odchytávány signály. SIGUSR1 pro výpis statistik na STDOUT, SIGALRM pro odeslání statistik na syslog server a SIGINT pro ukončení aplikace (v případě odposlouchávání na sítovém rozhraní běží aplikace až do obdržení tohoto signálu).

V modulu utils jsou implementovány pomocné funkce pro zpracovávání DNS komunikace, makro pro debug výpisy, nápověda, či výjimky pro zpracování chybného chování.

3.2 Popis implementace

Aplikace je napsaná v jazyce C/C++ podle aktuálního standardu C++17. Překlad je řešen pomocí Unixové utility make dle přiloženého Makefile souboru. Dále je napsána manuálová stránka ve značkovacím jazyce troff – soubor dns-exp.1, kde je stručný popis aplikace a jsou blíže specifikovány argumenty a návratové kódy.

Pro zpracování argumentů příkazové řádky je využívána knihovna getopt.h. Syntaxe zadávání argumentů programu, by tedy měla odpovídat standardním posixovým nástrojům. Například jsou povoleny zkrácené (-a i dlouhé (--argument) varianty argumentů a jejich libovolné pořadí.

Pro zachytávání provozu na síťovém rozhraní, či zpracovávání pcap souboru aplikace využívá funkce pcap knihovny. Ta také komunikaci vyfiltruje pouze na DNS komunikaci. Funkce pcap_loop iteruje přes veškeré vyfiltrované rámce. Každý z nich je zpracováván ve statické metodě packet_handle. Zde je zpracování dále děleno podle protokolu na síťové vrstvě (IPv4, IPv6) a poté i podle protokolu na vrstvě transportní (TCP, UDP). Při UDP komunikaci je řízení rovnou předáváno modulu DnsParser. V případě TCP komunikaci, jsou data ukládána do globálního bufferu (vector) a zpracována až v případě nutnosti – před odesláním na syslog server, či vypsáním na STDOUT. Je tomu tak z důvodu fragmentace aplikačních dat DNS na transportní vrstvě.

Modul DnsParser pak sbírá už konkrétní informace. Tedy na jaké doménové jméno byl kladen dotaz, jaký typ dotazu byl požadován a konkrétní odpověď. Jsou podporovány následující DNS typy: A, AAAA, CNAME, DNSKEY, DS, MX, NS, NSEC, OPT, PTR, RRSIG, SOA, SPF a TXT. Ostaní typy jsou značeny jako unknown_type a unknown_data. Modul využívá různých implementovaných struktur pro ulehčení práce s ukazateli. U struktur je použit atribut __attribute__((packed)), aby nedocházelo k jejich zarovnání (padding).

Komunikace se syslog serverem je řešeno pomocí knihovny sys/socket.h. Nejprve je navázáno komunikace se serverem a poté jsou zprávy (logs) postupně odesílány. Před skončením aplikace je spojení ukončeno a socket uzavřen.

3.3 Návratové kódy

- 0 OK
- 1 chyba zpracování argumentů příkazové řádky
- 2 chyba při odposlouchávání síťového rozhraní či zpracování pcap souboru (např. neplatné jméno rozhraní nebo pcap souboru)
- 3 chyba při komunikaci se syslog serverem (např. nepodařilo se navázat spojení)
- 9 systémová chyba (např. malloc nealokoval paměť)

4 Použití

4.1 Překlad

- \$ make pro standardní překlad programu
- \$ make pack pro překlad programu pro účely debugování (přepínač -g, debugovací vypisy)
- \$ make clean pro smazání všech objektových souborů a deplistu
- \$ make clean-all pro smazání všech objektových souborů, deplistu a binárního souboru

4.2 Spuštění

- \$./dns-export [-r RESOURCE | -i INTERFACE] [-t TIMEOUT] -s SERVER [-h]
 - -r RESOURCE, --resource RESOURCE Udává jméno pcap souboru, který se bude zpracovávát. Aspoň jeden z argumentů resource nebo interface musí být zadán.
 - -i INTERFACE, --interface INTERFACE Udává jméno rozhraní na kterém bude odposloucháván síťový provoz. Aspoň jeden z argumentů resource nebo interface musí být zadán.
 - -t TIMEOUT, --timeout TIMEOUT Časový interval v sekundách udávající, jak často statistiky budou zasílány. Výchozí hodnota 60 vteřin. Volitelný argument.
 - -s SERVER, --server SERVER Adresa syslog serveru kam statistiky budou zasílány. Povinný argument.
 - -h, --help Vypíše nápovědu na STDOUT. Volitelný argument.

4.3 Příklady spuštění

...

5 Dodatečné informace

...