

滑轮组 轮轴 斜面

日期:	时间:	姓名:	
Date:	Time:	Name:	

初露锋芒

	1. 掌握滑轮组的画法
	2. 能够进行简单的滑轮组力学计算
学习目标	3. 知道轮轴及其应用
&	4. 知道斜面及其应用
重难点	1. 滑轮组
	2. 轮轴和斜面

根深蒂固

—,	温轮组

3、组装滑轮组方法: 首先根据公式 $\mathbf{n}=(\mathbf{G}_{\eta}+\mathbf{G}_{\eta})$ /F 求出绳子的股数。然后根据"奇动偶定"的原则。结合题目的具体要求组装滑轮。

二、轮轴

1、轮轴是由一个______组成的,能绕共同轴线旋转的机械,叫做轮轴。半径较大的轮(外环)叫 ,半径较小的轮(内环)叫 。轮轴两个环是 _____。

2、如图所示,_____为轮半径,_____为轴半径, F_1 为作用在轮上的力, F_2 为作用在轴上的力,根据_____有: $F_1R=F_2r$ (动力×轮半径=阻力×轴半径)。

三、斜面

1、定义:与______方向有不为零的夹角的平面叫做斜面。斜面是一种______,使用斜面的好处是______,但是要_____。斜面高度一定时,斜面越____,使用它就越___。

枝繁叶茂

一、滑轮组

知识点一: 滑轮组

【例1】下列几种说法中正确的是 ()

- A. 任何一个滑轮组都具备既省力又改变动力方向的优点
- B. 滑轮组的省力情况决定于动滑轮的个数
- C. 滑轮组的省力情况决定于承担物重的绳子段数
- D. 任何滑轮组都具有既省力又省距离的优点

【例 2】(1) 用滑轮组将陷在泥中汽车拉出来,试在图中画出最省力的绕绳方法;

(2) 请在图中用笔画线代替绳子,将两个滑轮连成滑轮组,要求人力往下拉绳使重物升起。

知识点二:滑轮组的应用

【例 3】如图, A、B 两个滑轮中, A 是______滑轮, B 是_____滑轮, 在不考虑滑轮重和摩擦时, 物体与桌面的摩擦力是 90N, 匀速移动物体, 水平拉力 F 为_____。

【例 4】用如下图所示的滑轮组提升物体,以及已知物体重 200 牛,物体匀速上升 1 米,不计滑轮组重及摩擦,则 ()

- A. 拉力为 80 牛
- B. 拉力为 40 牛
- C. 绳的自由端拉出 4 米
- D. 绳的自由端拉出1米

【例 5】如图所示,物体 A 重 20N,物体 B 重 10N,若此时物体 A 恰好在水平桌面上向右做匀速直线运动。若用力 F 向左拉物体 A,使物体 A 向左作匀速直线运动,则拉力 F 为______N,弹簧测力计的示数为______N。(不计滑轮重及绳子与轮之间的摩擦)

1、理想滑轮组 (不计摩擦和轮重) 拉力 F=G/n。

只忽略轮轴间的摩擦,则拉力 $F=(G_{\eta}+G_{\eta})/n$

绳子自由端移动距离是 n 倍的重物移动的距离 $S_F(\vec{u}, v_F) = nh_G(\vec{u}, v_G)$

2、组装滑轮组方法:首先根据公式 $n=(G_{\eta}+G_{\bar{\eta}})/F$ 求出绳子的股数。

段数的确定可以采取在动、定滑轮间画一条水平直线,数绳子和直线交点,

然后根据"奇动偶定"的原则。结合题目的具体要求组装滑轮。

二、轮轴

知识点一:轮轴及其应用

【例1】拖拉机起动时的摇把就是一种轮轴。已知摇把手柄长60cm,摇把一端套简直径6cm,当人用力100N摇动时,套筒处受力是多大?

【例 2】如图所示两个轮轴使用时,两图中拉力 F 大小相等,轮轴的轮半径是轴半径的二倍,则所挂重物

 G_1 、 G_2 的重力比是 (

A. 1:1

B. 2:1

C. 4:1

D. 无法判断

1、轮轴可看作是杠杆的变形。

2、轮轴特点: 当把动力施加在轮上,阻力施加在轴上,则动力臂 I1=R,阻力臂 $I_2=r$,根据杠杆的平衡条件: $F_1I_1=F_2I_2$,即 $F_1R=F_2r$,

∵R>r,

 $\therefore F_1 < F_2$,即使用轮轴可以省力,也可以改变力的方向,但却费了距离。

三、斜面

知识点一:斜面及其应用

【例1】如图,用测力计分别沿A、B两个面拉动同一物体至相同高度(A、B两个斜面的光滑程度等情况

- 一样),则测力计的读数将 ()
 - A. 一样大
 - B. 在 A 面拉动时读数大
 - C. 在 B 面拉动时读数大
 - D. 无法比较

【例2】小明同学在某次课外活动课上设想研究斜面的使用特点。他先用弹簧测力计把重为 G 的物体缓慢提起 h 高度,此时测力计的示数情况如图 (a) 所示。再分别用弹簧测力计把该物体沿着倾角不同的光滑斜面拉到 h 高度,测力计的示数情况如图 (b)、(c)、(d) 所示。请仔细观察图中的操作和测力计的示数变化,然后归纳得出初步结论。

- (1) 比较图 (a) 与 (b) (或 (a) 与 (c) 或 (a) 与 (d)) 两图可知: 。
- (2) 比较图 (b) 与 (c) 与 (d) 三图可知:

方 法 与 斜面都能省力,相同斜面,坡度越小越省力,坡度越大越费力。 技 巧

随堂检测

1、如图所示甲、乙两个滑轮组,它们吊着的物体重都是 G,滑轮重及摩擦均不计。当绳端拉力分别为 F #和 F z时,物体匀速上升。则 F #与 F z 之比是 (

B. 2:3

D. 4:5

2、如图所示,摩擦不计,滑轮重2N,物重10N。在拉力F的作用下,物体以0.4m/s的速度匀速上升,则

()

A. F=5N, 滑轮C向上的速度是0.2m/s

C. F=12N, 物体A水平向左的速度是0.8m/s

D. F=22N, 物体A水平向左的速度是0.2m/s

3、如图所示,装置处于静止状态,如果物体的重力为 G_1 和 G_2 ,在不计滑轮重及绳子摩擦的情况下, G_1 : G_2

为 ()

A. 1:2 B. 1:1

C. 2:1

D. 3:1

4、如图所示,重物 A 放在水平地面上,重物 B 通过细绳与重物 A 相连,定滑轮固定在天花板上的 O 点,重 物 A 所受重力为 G_A ,重物 A 对地面的压力为 F_A ,重物 B 所受重力为 G_B ,重物 B 所受绳子向上的拉力为 F_B , 定滑轮装置所受总重力为 G_{g} ,且 $G_A > G_B$,不计绳重及滑轮摩擦。当整个装置处于静止平衡状态时,下列说 法错误的是 ()

- A. FA与 GA是一对相互作用力
- B. F_A大小等于 G_A与 G_B之差
- C. F_B和 G_B是一对平衡力
- D. 天花板上的 O 点受到的向下拉力大小等于 2G_B+G_定

5、如图,用一滑轮来提升物体,不计滑轮和绳子的重力以及摩擦力,若作用在绳子上的力为100N时,刚好能 使物体匀速上升,则物体重 N; 若绳子移动了4m,则物体要移动 m。

6、如图所示是某轮轴的截面图。轴的直径是 10 厘米,动力 F 的作用点 A 到轴心 O 的距离为 20 厘米。若不计摩擦,用_____牛的力可以提起 400 牛的重物。如摇柄转动一圈,可将重物提升_____厘米。

7、如图所示的滑轮组,不计轮轴间摩擦,重物 G=100N,每个滑轮重 20N,当绳自由端拉力 F 竖直向上大小为 30N 时,重物 G 对地面的压力为_____N,拉力 F 为_____N 时,恰好能让重物 G 匀速上升;若重物 G 能以 0.1 m/s 的速度匀速上升,则绳自由端向上运动速度为_____m/s。

8、如图所示,若拉力 F=900 牛顿,物体 A 重 1500 牛顿,不计滑轮重和绳与滑轮间摩擦。当绳子自由端移动 3 米,则沿水平方向匀速拉动物体 A 前进时,物体 A 与地面间摩擦力为_____N,物体 A 移动_____m。

9、如图所示,请画出提升重物最省力的绕法。

10、如图所示,用两个滑轮组提升相同的重物,物体的质量是 5m,在不计摩擦的情况下,拉绳的力 F_1 与 F_2 之比是多少?

12、如图所示的滑轮组,不计滑轮重和摩擦,则 $F_1 = ____G$, $F_2 = ____G$ 。

13、小周学过有关"斜面"的知识后提出了一个问题: "斜面的用力大小与斜面的倾斜程度有没有关系?"针对这问题他做了以下探究实验,并记录实验数据如下:

实验次	斜面的	物体重	物体上升高度	沿斜面拉力	物体移动距离
数	倾斜程度	G/N	h/m	F/N	S/m
1	较缓	5.0	0.10	1.6	0.50
2	较陡	5.0	0.15	2.2	0.50
3	最陡	5.0	0.25	3.1	0.50

通过对上述实验数据的分析, 你认为斜面省力情况与斜面倾斜程度的关系是: 斜面越陡,

14、用如图所示的滑轮组提升重物,摩擦不计,当重物 G=1600N、拉力 F 为 450N 时,可使重物匀速上升,求:

- (1) 当拉绳的速度为 2m/s 时,可使重物以 的速度匀速上升;
- (2) 当被提起的物体重为 G´=2600N 时, 拉力 F´为_____N 可以使物体匀速上升。

15、如图所示为辘轳和滑轮组合的机械装置。辘轳的轴半径 r 为 15 厘米,摇把到轴心线的距离 R 为 40 厘米。利用该装置将重 800 牛顿的物体匀速提起。若滑轮及绳重均不计,机件间摩擦也不计,试求摇把上至少应加多大的力?

16、如图所示,是一套简易升降装置示意图,其上端固定在楼顶,工人用力拉绳子,装置可使人与工作台升至所需高度,装置中滑轮 A、B、C 的重力分别为 100N、50N、40N,人的重力为 600N,当人用 100N 的拉力向下拉绳子时,地面对工作台的支持力为 450N,则工作台的重力为______N。(不计绳重和摩擦)

17、如图所示,人的重力为 G_1 ,木板的重力为 G_2 ,木板长为 L,若滑轮及绳子质量和摩擦都不计,要使木板处于水平平衡状态,问:

- (1) 人用多大的力拉绳子?
- (2) 人对板的压力为多大?

18、如图所示,三根细绳的分别系住 A、B、C 三个物体,它们的另一端分别系于 O 点,a、b 为两定滑轮。整个装置处于平衡状态时,Oa 与竖直方向成 30° ,Ob 处于水平状态。已知 B 的质量为 m,如果将左边的滑轮 a 水平向左缓慢移动距离 s,整个装置仍处于平衡状态,则 ()

- A. 物体 A、C 的重力之比为2:1
- B. 物体 A、C 的质量之比为1:2
- C. 该过程中A、B下降,C上升
- D. 该过程中A、C上升,B下降

- 19、如图所示,使用滑轮组拉起重 G=100N 的重物,不计轮轴间的摩擦和滑轮的重力,则拉力 F 为()
 - A. 25N
- B. 12.5N
- C. 100N
- D. 200N

瓜熟蒂落

1、如图所示,人对绳的自由端拉力 F 都相等,且物体处于静止状态,不计滑轮重和摩擦,比较四个物体重力, 最大的是 ()

B. G_2

D. G_4

2、如图所示的装置中,已知重物 $G_1=500N$,重物 $G_2=1200N$,在不考虑摩擦和其他阻力情况下,使重物 G_1 保 持平衡的拉力 F 应等于_____N。

3、如图所示,绳子与滑轮重不计,物体处于静止状态,如果 M_1 =5kg,那么 M_2 应等于____kg。

4、用图所示的两个滑轮组成一个滑轮组提升重物,要求绳子的自由端拉过 3m 时,重物升高 1m,请在图中画 出绳子的绕法。

5、如图所示,物体重 G 为 600N,站在地上的人拉住绳子的一端,使物体在空中静止,若不计滑轮重力和摩 擦,则人的拉力为 ()

- A. 400N B. 300N C. 200N D. 150N

い、A、Dが初州町里刀	7万加力 0UN 和 12	ION,滑轮重忽略	个月,知图///小,三	当 A、B 物体都静止时, A 物体受
到的合力及 B 物体对地	面的压力分别为	()		
A. 60N; 140N	B. 0; 20N	C. 0; 60N	D. 0; 140N	B
7、如图所示,物体 A i	重120N,在重力)	为 G _B 的物体 B 的	作用下在水平桌面」	上做匀速直线运动,A 与桌面之间
的摩擦力为 f。如果在 d	A 上加一个水平向	司左大小为180N自	的拉力 F,物体 B 冬]速上升,不计摩擦、绳重及滑轮
重,则下列选项正确的	是 ()			
A. $G_B=30N$	B. $G_B=90N$	C. f=180N	D. f=90N	/////
				В
8、如图所示,体重为5	10N 的人,用滑纳	沦组拉重 500N 的	物体 A 沿水平方向	以 0.02m/s 的速度匀速运动。运动
				地面上的定滑轮与物体 A 相连的
绳子沿水平方向,地面	上的定滑轮与动剂	骨轮相连的绳子沿	竖直方向)则下列	计算结果中,正确的是()
A. 绳子自由端受到	到的拉力大小是 1	00N	<u> </u>	<u> </u>
B. 人对地面的压力	力为 400N			Ď l
C. 人对地面的压力	力为 250N			
D. 绳子自由端运动	动速度是 0.01m/s		Å	\oplus
			#	<u>C</u>
)	
				P A
9、有一滑轮组由三根维	4子与动滑轮连接	:. 己知动滑轮重		
		,已知动滑轮重		A ZON,不计绳重和摩擦,则使重物
匀速上升时所用的拉力				
匀速上升时所用的拉力	()		20N,提起物体重 7	
匀速上升时所用的拉力	()		20N,提起物体重 7	
匀速上升时所用的拉力A. 90N 10、如图所示, G ₁ =20N	() B.50N N,台秤示数 8N,	C. 270N 不计滑轮重,物	20N,提起物体重 7 D.30N 体 G ₂ 重	
匀速上升时所用的拉力A. 90N 10、如图所示, G ₁ =20N	() B.50N N,台秤示数 8N,	C. 270N	20N,提起物体重 7 D.30N 体 G ₂ 重	70N,不计绳重和摩擦,则使重物