AUTOMATA, LANGUAGES AND COMPUTATION

1109/2023

-> Automata: Machines which can perform tasks automatically - [] Finite devices

-> Finite Automata.

UNIT-1

→ An automata (or) automaton is a machine designed to respond to encoded instructions (Robot).

Auto: self Meta: machine

- Code written should be compact.

Ex Automatic washing machine, automatic machine tools; etc.

Automata Theory (or) Theory of computation describes the basic idea and models underlying computing

IIP -> Computation -> 0/P

-> Each abstract computing machine successives formal language. -> Formal language recognizes or contains

encoded instructions

Concatenation of 2 languages 15/2/33 Li, Li : 2 languages L1. L2 -> concatenation closure operation of a language language including null string: &tar/Klun closure. 12 Machine * M >> L for every machine there is language excluding null string: +ve closure language and vice-ve General form of productions: > Formal Language P: x->B where A set of strings of dymbols from Le (VUT)+ and Be (VUT)* some alphabet (¿) is called a formal language (compty and finite) P: x -> B -> & derived B & induced to B > Formal Gramman: & . contains variables diructione of a language Grammas or formal Grammas: G= (V,T,S,P) V= non-empty set of variables Variables: Upper case Terminals: a to 2 and digits o to 9 terminals and some special operators sev = start variable Eg1: V= { S,A,B} and T = {a,b} where P = set of production onles S is a start variable, then productions p

Chansky Hieranchy of Formal Languages:						
Gramm - all Type	Gisammai Accepted	Language Accepted	Automaton			
Type-0	Unrestricted	Recoursable enumerable language	Turing machin			
Type 1	context-sensitive	context-sensitive	Cinear-bounds			
Type-2	Context-free gramman	Context-free language	Pushdown automaton.			
Type-3	Regular grammay	Regulari Language.	Finite state automotion.			
Type.	3 < Type 2 < Type	2 1 × Type O.				

FA or Finite state Machine (FSM) represents a machine that takes input and produces, output

FA: Quin Tuple or 5-Tuple denoted by M = (0, £, 8, 90, F)

9: Finite or non empty-set of states or internal
states

E input Alphabet

S: Transition / Moving / Mapping function

90: Initial/stook state in Q (only one)

F: Set of final or accepting states, FCB (set of states)

S: 8× € → 9

Example:
$$\{0, 5, 8, 90, f\}$$
 $\{0, 9, 3\}$
 $\{0, 9, 3\}$

Fransition S(90,a) = 91, S(90,b) = 90, S(91,a) = 9,function S(91,b) = 90

State diagram:-

- initial state

O Suppose, ilp in abb

not accepted. To since final

abba

90 a q, b qo b qo a q, V Since final state is reached

accepted

* Deterministic Finite Automata: DFA @ NFA]

→ Deterministic refers to the uniqueness of computation:

→ Machine goes to one state only for a particular input and does not accept null move

→ NFA is used to transmit any no ob states for a particular IIP and accept the null move. → NFA: multiple choices → Theoretical concept. → DFA: only one choices → Lexical Analysis * (Q. S. S. 910, F)

* (9,5,8,9,0,F)

Q -> Set of finite states

≥ -> finite set of symbols (alphabet)

8 -> transition to 8: 9×2->9

90 → initial state.

F-set of final states of Q.

L={w|w start with a} for ≤={a,b}*

* Draw statediagram for given DFA.

q={a,b,c}

 $\leq = (0,1), q_0 = \{a\}, F = \{c\}$

and transition function table:

Present sto	Le Next state	Next state IP=1
α	a	Ь
b	C	a
C	16	10

* Draw state transition diagram for given $S = \{0,1\}$ accepts all starting with 0.

*Extensions of transitions to paths:

Non-deterministic Finite Automata:

Fermal dep.

$\hat{S}(q_0, \epsilon) = \{q_0\} $ $q_0 = \{q_0\} $ $q_1 = \{q_0\} $	Short 0,1	92		
0(10-1)-0(8(90.6),) (42 8 8	ŝ(90,€)={q0}	9/0	{q.}	90,91
$=\lambda$	$\hat{s}(q_0, 1) = \hat{s}(\hat{s}(q_0, \epsilon),)$	2	Ø	Ø

$$\hat{s}(q_0, 10) = \delta(\hat{s}(q_0, 1), 0) = \delta(\{q_0, q_1\}, 0)$$

$$= \delta(q_0, 0) \cup \delta(q_1, 0)$$

$$= \{q_0\} \cup \{q_2\}$$

$$= \{q_0, q_2\}$$

$$\hat{s}(90,101) = 8(\hat{s}(90,10),1) = 8(90,923,1)$$

$$= 8(90,1) \cup 8(92,1)$$