KHÔLLE Nº 20

Exercice 1.

1. Pour tout entier $k \in \mathbb{N}$, et pour tout $t \in]0,1]$, on a $|t^{2k} \ln t| \leq |\ln t| = -\ln t$. Et, l'intégrale $\int_0^1 |\ln t| \, \mathrm{d}t = -\int_0^1 \ln t \, \mathrm{d}t$ converge. D'où, l'intégrale $\int_0^1 |t^{2k} \ln t| \, \mathrm{d}t$ converge. On en déduit que l'intégrale I_k converge, pour tout entier $k \in \mathbb{N}$. Soit $x \in]0,1]$. On calcule

$$\begin{split} \int_x^1 t^{2k} \ln t \; \mathrm{d}t &= \left[\frac{t^{2k+1}}{2k+1} \ln t\right]_x^1 - \int_x^1 \frac{t^{2k+1}}{2k+1} \cdot \frac{1}{t} \; \mathrm{d}t \quad \text{car ln et } t \mapsto t^{2k} \text{ sont } \mathcal{C}^1 \\ &= \frac{-x^{2k+1}}{2k+1} - \int_x^1 \frac{t^{2k}}{2k+1} \; \mathrm{d}t \\ &= -\frac{x^{2k+1}}{2k+1} - \left[\frac{t^{2k+1}}{(2k+1)^2}\right]_x^1 \\ &= -\frac{x^{2k+1}}{2k+1} - \frac{1}{(2k+1)^2} + \frac{x^{2k+1}}{(2k+1)^2} \\ &\xrightarrow[x \to 0]{} - \frac{1}{(2k+1)^2}. \end{split}$$

On en déduit que, pour tout $k \in \mathbb{N}$, $I_k = -1/(2k+1)^2$.

2. La série de fonctions $\sum f_k$, où $f_k: t \mapsto t^{2k} \ln t$, converge simplement vers la fonction $t \mapsto \ln t/(1-t^2)$ sur]0,1[. Les fonctions f_k sont continues et intégrables:

$$\int_0^1 |f_k(t)| \, \mathrm{d}t = -\int_0^1 t^{2k} \ln t \, \, \mathrm{d}t = -I_k.$$

Et, la série $\sum (-I_k) = -\sum 1/(2k+1)^2$ converge car, pour tout $k \in \mathbb{N}, 0 \le 1/(2k+1)^2 \le 1/k^2$ et la série $\sum 1/k^2$ converge. Ainsi, la fonction $g: t \mapsto \ln t/(1-t^2)$ est intégrable sur $]0, +\infty[$, donc f = -g l'est aussi; et,

$$\int_0^1 \frac{\ln t}{t^2 - 1} dt = -\sum_{k=0}^\infty \int_0^1 f_k(t) dt$$

$$= \sum_{k=0}^\infty (-I_k)$$

$$= \sum_{k=0}^\infty \frac{1}{(2k+1)^2}$$

$$= \sum_{k=1}^\infty \frac{1}{k^2} - \sum_{k=1}^\infty \frac{1}{(2k)^2}$$
par somme termes pairs/impairs pour la série $\sum 1/k^2$

$$= \frac{\pi^2}{6} - \frac{1}{4} \sum_{k=1}^\infty \frac{1}{k^2}$$

$$= \frac{\pi^2}{6} \left(1 - \frac{1}{4}\right)$$

$$= \frac{\pi^2}{8}.$$

Exercice 2.

1. La fonction l
n est de classe \mathscr{C}^2 sur $]0,+\infty[$ donc deux fois dérivable sur cet intervalle et, pour tou
tx>0, $\ln''x=-1/x^2<0$. La fonction l
n est donc concave sur $]0,+\infty[$. Soient a,b et c trois réels strictement positifs. Par concavité de la fonction l
n, on a $\ln\left((a+b+c)/3\right)\leqslant (\ln a+\ln b+\ln c)/3$. D'où, $\ln\left((a+b+c)/3\right)\leqslant \ln(abc)/3=\ln\sqrt[3]{abc}$. Par croissance de l
n, on en déduit que

$$\frac{a+b+c}{3} \geqslant \sqrt[3]{abc}.$$

- 2. La fonction f est de classe \mathscr{C}^1 sur $(\mathbb{R}_{\star}^+)^2$, donc différentiable sur $(\mathbb{R}_{\star}^+)^2$. On calcule $\nabla f(x,y) = (1-1/yx^2,1-1/xy^2)$. On procède par analyse-synthèse.
 - Analyse. On suppose que f atteint un extremum local en $(x,y) \in (\mathbb{R}_+^*)^2$. Ainsi, $\nabla f(x,y) = 0$. D'où, $1 = 1/yx^2$ et $1 = 1/xy^2$. On en déduit que $yx^2 = xy^2$, d'où x = y. Or, $1 = 1/yx^2 = 1/x^3$, d'où x = y = 1. Ainsi, si un extremum est atteint, il sera en (1,1).

Synthèse. Montrons que f atteint un minimum en (1,1). Montrons ainsi que $f(x,y) \ge f(1,1) = 3$ pour tout vecteur $(x,y) \in (\mathbb{R}_{\star}^+)^2$.

$$f(x,y) = x + y + \frac{1}{xy} \ge 3\sqrt[3]{\frac{xy}{xy}} = 3 = f(1,1).$$

On en déduit que f atteint un minimum global en (1,1), et n'a pas de maximum (local ou global) et n'a pas d'autres minima (locaux ou globaux).

Exercice 3.

1. L'univers Ω est l'ensemble des (n+1)-uplets d'éléments de $[\![1,n]\!]$: $\Omega=[\![1,n]\!]^{n+1}$. Soit $k\in[\![2,n+1]\!]$. L'événement (X=k) n'est pas vide car le (n+1)-uplet

$$u_k = (1, 2, \dots, k - 2, 1, 1, \dots, 1)$$

est un élément de (X=k). D'où, par croissance de la probabilité, $P(\{u_k\}) \leqslant P(X=k)$, car $\{u_k\} \subset (X=k)$. Or, par équiprobabilité, $P(\{u_k\}) = 1/\operatorname{Card}\Omega = 1/n^{n+1} > 0$. On en déduit que P(X=k) > 0.

2. Montrons $P(X>k)\neq 0$. On a $(X>k)=(X\geqslant k+1)$, d'où $P(X>k)=P(X\geqslant k+1)>0$ car $k+1\in [\![2,n]\!]$. On sait que $(X>k+1)\cap (X>k)=(X>k+1)$ car $(X>k)\subset (X>k+1)$. On a montré précédemment que $P(X>k)\neq 0$. On en déduit, par définition des probabilités conditionnelles,

$$P(X > k+1) = P((X > k+1) \cap (X > k)) = P(X > k+1 \mid X > k) \cdot P(X > k).$$

- 3. Au (k+1)-ième lancer, on choisit une boule parmi n avec équiprobabilité. Pour que X>k+1 sachant que X>k, il faut tirer une boule non tirée, il y en a n-k. D'où, $P(X>k+1\mid X>k)=(n-k)/n$.
- 4. Montrons, par récurrence sur k, la propriété $\mathcal{P}(k)$: « $P(X>k)=n!/(n^k\cdot(n-k)!)$. »
 - Pour k = 0, on a $P(X > 0) = 1 = n!/(n^0 \cdot n!)$. Ainsi, $\mathcal{P}(0)$ est vraie.
 - On suppose $\mathcal{P}(k)$ vraie, montrons que $\mathcal{P}(k+1)$ est aussi vraie. En appliquant l'égalité des probabilités trouvées à la question précédente, qui est valide comme $k \in [\![1,n-1]\!]$, on calcule

$$\begin{split} P(X > k+1) &= P(X > k+1 \mid X > k) \cdot P(X > k) \\ &= \frac{n-k}{n} \cdot \frac{n!}{n^k \cdot (n-k)!} \\ &= \frac{n!}{n^{k+1} \cdot (n-k+1)!}. \end{split}$$

Ainsi, $\mathcal{P}(n+1)$ est vraie.

On en déduit, par récurrence, que $P(X>k)=n!/(n^k\cdot(n-k)!)$, pour tout $k\in [1,n-1]$. De plus, pour k=n, on a P(X>n)=0 car il n'y a que n boules dans l'urne.