

88-183601/27 E14 G06
MARY-LINIV BIUBO NEUE

MARX-UNIV BURO NEUE
26.11.86-DD-296658 (10.02.88) C07c-127
1-Hydroxy:phenyl-3-phenyl-urea deriv.
2-aminophenol - and N-phenyl:carbamoyl
synthesis of cyan photographic couplers
C88-081929

Prepn. of 1-hydroxyphenyl-3-phenyl-urea derivs. of formula (I) comprises reacting the aminophenol cpd. (II) with N-phenyl-carbamoyl chloride (III) in absolute aprotic solvent at 15-30°C.

UYLE 26.11.86
*DD -253-997-A

*DD -253-997-A

E(10-A13B) G(6-H8A)

R₁, R₂, R₃ and R₄ = H, alkyl, cycloalkyl, aryl, CN, alkoxy, cycloalkoxy, aryloxy, NO₂, alkoxycarbonyl, cycloalkoxycarbonyl, aryloxycarbonyl or halo.

MORE SPECIFICALLY

The solvent is a cyclic ether, e.g. dioxan.

USE/ADVANTAGES

(I) are intermediates for cyan couplers useful in photography. They are now prep'd. simply from readily available starting material in an inexpensive solvent with low energy consumption. Both yield and purity are good.

DD-253997-A +

© 1988 DERWENT PUBLICATIONS LTD.
128, Theobalds Road, London WC1X 8RP, England
US Office: Derwent Inc. Suite 500, 6845 Elm St. McLean, VA 22101
Unauthorised copying of this abstract not permitted.

THIS PAGE BLANK (USPTO)

PREFERRED CONDITIONS

(III) are made in quantitative yields from the corresp. phenylisocyanate by reaction with dry HCl gas. Reaction of (II) and (III) can be in presence of acid acceptor, e.g. Et₃N, to prevent O-acylation, but the same effect can be achieved under neutral conditions when dioxan (which acts as acid acceptor) is used as solvent.

EXAMPLE

6.5g N-phenylcarbamoyl chloride were dissolved in 30ml dioxane and the soln. added to 6.45g 2-amino-5-nitrophenol in 150ml dry dioxan. The mixt. was stirred for 2 hr. at room temp. then poured slowly into 225ml water. Crystals were filtered off and washed with water to give 11.4g (80%) of pure 5-nitro-2-(phenylureido)phenol, m.pt. 184-6°C.
(4pp1251PADwgNo0/0).

DD-253997-A

THIS PAGE BLANK (USPTO)

DEUTSCHE DEMOKRATISCHE REPUBLIK

(12) Wirtschaftspatent

Erteilt gemäß § 17 Absatz 1 Patentgesetz

PATENTSCHRIFT

(19) DD (11) 253 997 A1

4(51) C 07 C 127/19

AMT FÜR ERFINDUNGS- UND PATENTWESEN

In der vom Anmelder eingereichten Fassung veröffentlicht

(21) WP C 07 C / 296 658 2 (22) 26.11.86 (44) 10.02.88

(71) Karl-Marx-Universität, Büro für Neuerungen und Schutzrechte, Goethestraße 3–5, Leipzig, 7010, DD
(72) Hauptmann, Siegfried, Prof. Dr. sc. nat.; Mann, Gerhard, Prof. Dr. sc. nat.; Hennig, Lothar, Dr. rer. nat.; Sikker, Dieter, Dr. rer. nat.; Klose, Ines; Rabe, Andreas; Fiebig, Frauke; Ebisch, Rolf, Dr. rer. nat., DD

(54) Verfahren zur Herstellung von substituierten 2-Arylureidophenolen

(55) Arylureidophenole, Zwischenprodukte, Farbkuppler, Coloraufzeichnung

(57) Das Verfahren zur Herstellung von substituierten 2-Arylureidophenolen (I) hat zur Aufgabe, einen neuen, unkomplizierten und energetisch unaufwendigen Zugang zu dieser Substanzklasse anzugeben. Die Aufgabe wird durch Acylierung von substituierten 2-Aminophenolen (II) mit substituierten N-Phenylcarbamidsäurechlorid n (III) in einem absoluten aprotischen Lösungsmittel bei Raumtemperatur gelöst. Die erfindungsgemäß hergestellten Stoffe fallen in guter Ausbeute und hoher Reinheit an und stellen reaktive Zwischenprodukte für organische Synthesen dar. Sie können z. B. bei geeignetem Substituentenmuster für die Herstellung von Farbkupplern für Coloraufzeichnungsmaterialien verwendet werden.

Patentansprüche:

1. Verfahren zur Herstellung von substituierten 2-Arylureidophenolen der allgemeinen Formel I,

worin R¹, R², R³ und R⁴ ein Wasserstoffatom, eine Alkyl-, Cycloalkyl-, Aryl-, Cyano-, Alkoxy-, Cycloalkoxy-, Aryloxy-, Nitro-, Alkoxycarbonyl-, Cycloalkoxycarbonyl- oder Aryloxycarbonylgruppe oder ein Halogenatomen sein können, gekennzeichnet dadurch, daß man substituierte 2-Aminophenole der allgemeinen Formel II,

worin R¹, R² und R³ die oben angegebene Bedeutung haben, mit substituierten N-Phenylcarbamidsäurechloriden der allgemeinen Formel III,

worin R⁴ ebenfalls die obige Bedeutung besitzt, in einem absoluten aprotischen Lösungsmittel im Temperaturbereich von 15 bis 30°C umgesetzt.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als aprotisches Lösungsmittel bevorzugt ein cyclischer Äther, wie z. B. Dioxan, verwendet wird.

Anwendungsgebiet der Erfindung

Die Erfindung betrifft ein Verfahren zur Herstellung substituierter 2-Arylureidophenoole der allgemeinen Formel I,

in der R¹, R², R³ und R⁴ ein Wasserstoffatom, eine Alkyl-, Cycloalkyl-, Aryl-, Cyano-, Alkoxy-, Cycloalkoxy-, Aryloxy-, Nitro-, Alkoxycarbonyl-, Cycloalkoxycarbonyl- oder Aryloxycarbonylgruppe oder ein Halogenatomen sein können.

Charakteristik der bekannten technischen Lösungen

Für die Synthese von substituierten 2-Arylureidophenoole sind bisher drei Synthesewege bekannt, die alle von substituierten 2-Aminophenoole ausgehen. Der Aufbau einer Harnstoffstruktur aus diesen Edukten ist aufgrund der prinzipiell vorhandenen Bifunktionalität von 2-Aminophenoole als Binucleophile schwierig und bisher trotz spezieller Reaktionsbedingungen mit verfahrensbedingten Nachteilen und Einschränkungen behaftet.

So wird in DE 3300412, DE 3315012 und JP 60/49335 die Synthese von 5-Nitro-2-arylureidophenoole durch Aminolyse von N-Arylcaramidsäurephenylestern mit 2-Amino-5-nitrophenol beschrieben.

Ziel der Erfindung

Das Ziel der Erfindung besteht darin, einen Syntheseweg anzugeben, der Formel I aus reaktiven, gut zugänglichen Ausgangsstoffen in einem Energieaufwand in einem allgemein anwendbaren, unkomplizierten

Darlegung des Wesens der Erfindung

Die Erfindung hat die Aufgabe, in technisch einfacher Weise 2-Arylureidophenole zu ermöglichen, die z.B. interner Farbkuppler eingesetzt werden können.

Die Aufgabe wird erfüllt, indem man Formel III, die oben angegebenen Formel I darstellt, wobei R¹, R² und R³ die oben angegebenen Formel III,

benfa

Die zu acylierenden substituierten 2-Aminophenole II sind prinzipiell durch ein Acylierungsmittel sowohl O- als auch N-acylierbar. Um eine Acylierung am Hydroxylsauerstoff auszuschließen, wird auf den Einsatz einer üblicherweise als säurebindendes Mittel zugesetzten Hilfsbase, wie eines tertiären Amins (z. B. Triethylamin oder Pyridin) verzichtet, wodurch eine Deprotonierung zum Phenolatanion vermieden wird, das nucleophiler als eine Aminogruppe wäre. Als äußerst vorteilhaft erwies sich die Ausführung der Acylierungsreaktion unter Neutralbedingungen in absolutem Dioxan. Dadurch wird zum einen bewirkt, daß aufgrund der im Neutralen höheren Nucleophilie der Aminogruppe gegenüber der Hydroxylgruppe die gewünschte N-Acylierung erfolgt, zum anderen wirkt das eingesetzte Lösungsmittel Dioxan durch Reaktion mit dem bei der Umsetzung freiwerdenden Chlorwasserstoff zu einem Oxoniumsalz als säurebindendes Mittel, ohne jedoch die Ausgangsstoffe unerwünscht zu verändern.

Für die Energiebilanz des Verfahrens ist es weiterhin günstig, daß die beschriebene Umsetzung bereits und am besten bei Raumtemperatur verläuft (bei erhöhter Temperatur gewinnen Nebenreaktionen an Bedeutung).

Die mit dem angegebenen Verfahren erzielten Ausbeuten sind gut bis sehr gut und bedeuten eine effektive Ausnutzung der hochwertigen Ausgangsstoffe.

Es wurde nachgewiesen, daß bei geeignetem Substituentenmuster R¹, R², R³, R⁴ die erfindungsgemäß synthetisierten substituierten 2-Arylureidophenole z. B. als wertvolle Zwischenprodukte für die Synthese von phenolischen Blaugrünkupplern für Coloraufzeichnungsmaterialien Verwendung finden können.

Die Erfindung soll nachstehend an Ausführungsbeispielen erläutert werden:

Herstellungsbeispiel 1

5-Nitro-2-phenylureidophenol

6,5g (0,042 mol) N-Phenylcarbamidsäurechlorid werden in 30ml trockenem Dioxan gelöst und zu einer Lösung von 6,45g (0,042 mol) 2-Amino-5-nitrophenol in 150ml trockenem Dioxan getropft und 2 Stunden bei Raumtemperatur gerührt. Danach wird langsam in 225ml Wasser gegossen. Das kristallin ausfallende Produkt wird abfiltriert und liegt nach Waschen mit Wasser rein vor.

Ausbeute: 11,4g (80% d. Th.) Fp. 184–186°C

Analog wurden dargestellt:

5-Nitro-2-(2-methylphenyl)ureidophenol

Ausbeute: 70% d. Th. Fp. 192–194°C

5-Nitro-2-(2-cyanophenyl)ureidophenol

Ausbeute: 65% d. Th. Fp. 209–211°C

Herstellungsbeispiel 2

4-Chlor-5-nitro-2-phenylureidophenol

10,8g (0,07 mol) N-Phenylcarbamidsäurechlorid werden in 35ml trockenem Dioxan gelöst, auf einmal zu einer Suspension von 12,8g (0,068 mol) 2-Amino-4-chlor-5-nitrophenol in 400ml trockenem Dioxan gegeben und 12 Stunden bei Raumtemperatur gerührt. Es bildet sich ein gelber Niederschlag. Nach Zugabe von 3ml konzentrierter Salzsäure wird der Niederschlag abfiltriert und mit heißem Wasser gewaschen bis die Waschflüssigkeit fast farblos ist. Ein weiterer Anteil Rohprodukt wird erhalten, indem das klare organische Filtrat unter Rühren in 1l Eiswasser getropft wird. Das kristallin ausfallende gelbgrüne Produkt wird abfiltriert und mit Wasser gewaschen. Beide Fraktionen des Rohprodukts werden aus wäßrigem Ethanol umkristallisiert.

Ausbeute: 14,2g (68% d. Th.) Fp. 201°C

Herstellungsbeispiel 3

2-Phenylureidophenol

10,8g (0,07 mol) N-Phenylcarbamidsäurechlorid werden in 25ml trockenem Dioxan gelöst, auf einmal zu einer Lösung von 7,4g (0,068 mol) 2-Aminophenol in 200ml trockenem Dioxan gegeben und 5 Stunden bei Raumtemperatur gerührt. Ein helles Öl setzt sich ab. Nach Zugabe von 3ml konzentrierter Salzsäure wird das Reaktionsgemisch filtriert. Das dabei erhaltene Filtrat und Öl werden durch Behandeln mit Wasser aufgearbeitet. Dazu werden Filtrat und Öl langsam in 250ml Wasser gegossen, wobei ein weißer Niederschlag ausfällt, der abfiltriert und mit Wasser gewaschen wird, wonach er rein vorliegt.

Ausbeute: 10,1g (65% d. Th.) Fp. 202–203°C

Herstellungsbeispiel 4

4,6-Dichlor-5-methyl-2-phenylureidophenol

15,5g (0,068 mol) 3,5-Dichlor-6-hydroxy-4-methylanilinhydrochlorid werden in 300ml trockenem Dioxan suspendiert. Zur Freisetzung des Amins werden 5,5g (0,068 mol) trockenes Pyridin zugegeben. Danach wird mit 10,8g (0,07 mol) N-Phenylcarbamidsäurechlorid in 25ml trockenem Dioxan versetzt und 7 Stunden bei Raumtemperatur gerührt. Nach Zugabe von 3ml konzentrierter Salzsäure wird das Reaktionsgemisch langsam in 1l Wasser eingerührt. Der ausfallende weiße kristalline Niederschlag wird abfiltriert und aus wäßrigem Ethanol umkristallisiert.

Ausbeute: 19,6g (93% d. Th.) Fp. 178–181°C