Graph Theory and Complex Networks: An Introduction

Maarten van Steen

VU Amsterdam, Dept. Computer Science Room R4.20, steen@cs.vu.nl

Chapter 03: Extensions

Version: April 7, 2014

vrije Universiteit amsterdam

.

Contents

Chapter	Description
01: Introduction	History, background
02: Foundations	Basic terminology and properties of graphs
03: Extensions	Directed & weighted graphs, colorings
04: Network traversal	Walking through graphs (cf. traveling)
05: Trees	Graphs without cycles; routing algorithms
06: Network analysis	Basic metrics for analyzing large graphs
07: Random networks	Introduction modeling real-world networks
08: Computer networks	The Internet & WWW seen as a huge graph
09: Social networks	Communities seen as graphs

Directed graph	
	·
Idea: extend graphs by letting edges have an explicit direction:	
 Representing one-way streets in a street plan Expressing asymmetry in social relationships (Alice likes Bob: A → B) 	
 Expressing asymmetry in communication networks 	
Definition	
A directed graph or digraph D is a tuple (V, A) of vertices V , and a collection of arcs A where each arc $a = \langle \overrightarrow{u}, \overrightarrow{v} \rangle$ joins a vertex (tail) $u \in V$ to another (not necessarily distinct) vertex (head) v .	

3.1 Directed graphs

3.1 Directed graph

Basic properties

Definition

For a vertex v of digraph D, the number of arcs with head v is called the indegree $\delta_{in}(v)$ of v. The outdegree $\delta_{out}(v)$ is the number of arcs having v as their tail.

Theorem

 $\forall D : \sum_{v \in V(D)} \delta_{in}(v) = \sum_{v \in V(D)} \delta_{out}(v) = |A(D)|$

Proof

- Every arc in D has exactly one head and one tail.
- ullet $\sum_{v\in V(D)}\delta_{\mathit{in}}(v)$ is the same as counting all arc heads
- $\sum_{v \in V(D)} \delta_{out}(v)$ is the same as counting all tails
- Both are equal to the total number of arcs.

4/25

3.1 Directed graphs

Extensions

Directed graphs

	<i>V</i> ₁	<i>V</i> ₂	<i>V</i> ₃	V_4	Σ
<i>V</i> ₁	1	1	0	0	2
v_2	0	0	1	0	1
<i>V</i> 3	1	1	0	0	2
<i>V</i> ₄	0	0	1	1	2
Σ.	2	2	2	1	7

Observations

- Adjacency matrix is *not* necessarily symmetric: in general, $\mathbf{A}[i,j] \neq \mathbf{A}[j,i]$.
- A digraph D is strict iff $\mathbf{A}[i,j] \leq 1$ and $\mathbf{A}[i,i] = 0$.
- $\forall v_i : \sum_j \mathbf{A}[i,j] = \delta_{out}(v_i)$ and $\sum_j \mathbf{A}[j,i] = \delta_{in}(v_i)$.

Incidence matrix

	a ₁	a_2	a_3	a_4	a_5	a_6	a_7
	0	1	-1	0	0	0	0
<i>V</i> ₂	0	a ₂ 1 -1 0 0	0	-1	1	0	0
<i>V</i> 3	0	0	1	1	-1	-1	0
V_4	0	0	0	0	0	1	0

$$\mathbf{M}[i,j] = \begin{cases} 1 \\ -1 \\ 0 \end{cases}$$

if vertex v_i is the tail of arc a_j if vertex v_i is the head of arc a_j

Observation

Incidence matrices for digraphs cannot capture loops, making these matrices being used less often compared to undirected graphs.

6/2

Extensions 3.1 Directed graphs	Extensions 3.1 Directed graphs
Connectivity	
Connectivity	
Definition	
A directed (v ₀ , v _k)-walk is an alternating sequence	
[$v_0, a_0, v_1, a_1, \ldots, v_{k-1}, a_{k-1}, v_k$] with $a_i = \langle \overline{v_i, v_{i+1}} \rangle$.	
• A directed trail is a directed walk with distinct arcs.	
a directed trail is a directed walk with distinct arcs. a directed path is a directed trail with distinct vertices.	
a directed path is a directed trail with distinct vertices. a directed cycle is a directed trail with distinct vertices except for	
$V_0 = V_k$.	
-10 1 _A .	
Definition	
D is strongly connected if there exists a directed path between every	
pair of distinct vertices from D. D is weakly connected if its underlying	
(undirected) graph is connected.	
7/25	7/25
Extensions 3.1 Directed graphs	Extensions 3.1 Directed graphs
	Calendonia 3.1 Unicoled graphs
Reachability	

Algorithm (Reachable vertices) $R_t(u)$ is set of reachable vertices from u found after t steps. $N_{out}(v)$ is out-neighbors of $v: N_{out}(v) = \{w \in V(D) | \exists \langle \overline{v}, \overrightarrow{w} \rangle \in A(D) \}.$

Vertex v is reachable from vertex u if there exists a directed (u, v)-path.

Definition

- $\textbf{@} \ \ \textit{Construct the set } R_{t+1}(u) \leftarrow R_t(u) \cup \bigg(\bigcup_{v \in R_t(u)} N_{out}(v) \bigg).$
- If $R_{t+1}(u) = R_t(u)$, stop: $R(u) \leftarrow R_t(u)$. Otherwise, increment t and repeat the previous step.

Extensions 3.1 Directed graphs	Extensions 3.1 Directed graphs
Strongly connected orientations	
3,	<u> </u>
Note	
An orientation $D(G)$ of an undirected graph G is a directed graph in which edge from G has been assigned a direction.	
Question) <u> </u>
Given G, how many orientations can you construct?	
Theorem	
There exists an orientation $D(G)$ for a connected undirected graph G that is strongly connected if and only if $\lambda(G) \ge 2$.	
Proof: Strongly connected $\Rightarrow \lambda(G) \ge 2$	· -
By contradiction: assume that $\lambda(G) = 1$.	
by contradiction, assume that $\kappa(a) = 1$.	

Weighted graphs

Definition
In a weighted graph G each edge e has an associated real-valued weight $w(e) < \infty$. For $H \subseteq G$, $w(H) = \sum_{e \in E(H)} w(e)$.

Important application: Finding the shortest path in a graph. Basic idea:

• Start with a set $S = \{v_0\}$, and add vertex closest to v_0 .

• Expand S by adding vertex closest to v_0 through one of the vertices in S.

• Stop when there are no more vertices left.

	Extensions 3.3 Colorings
Edge colorings	<u> </u>
Basic idea	
Assign colors to edges such that two edges incident to the same vertex have different colors: $\forall \langle u, v \rangle, \langle v, w \rangle \in E(G) : col(\langle u, v \rangle) \neq col(\langle v, w \rangle).$	
Application	
Consider <i>n</i> storage devices, but that we need to move data between devices (e.g., to balance the load).	
 Represent each storage device by a vertex. 	

Extensions 3.3 Colorings	Extensions 3.3 Colorings
Edge colorings: formalities	
Definition	
G, connected and loopless, is k-edge colorable if $E(G)$ can be	
partitioned into k disjoint sets E_1, \ldots, E_k such that	
$\forall E_i : e_1, e_2 \in E_i \Rightarrow e_1, e_2$ are not incident with the same vertex.	J.,
Edge chromatic number: minimal k for which G is k-edge colorable: $\chi'(G)$.	
Theorem (Vizing)	
For any simple graph G, either $\chi'(G) = \Delta(G)$ or $\chi'(G) = \Delta(G) + 1$, with	
$\Delta(G) = \max_{v \in V(G)} \delta(v)$	
	′
Note	
For all graphs we have $\chi'(G) \geq \Delta(G)$	
16/25	16/25
Extensions 3.3 Colorings	Extensions 3.3 Colorings
Vertex colorings	
vertex colonings	
Definition	
G , simple and connected, is k-vertex colorable if $V(G)$ can be partitioned into k disjoint sets V_1, \ldots, V_k such that	
$\forall V_i, \ \forall x, y \in V_i : \langle x, y \rangle \notin E(G)$.	
Chromatic number: minimal k for which G is k -vertex colorable: $\chi(G)$.	
Problem	
Finding $\chi(G)$ is a notoriously difficult problem: no efficient general	
solution exists, meaning we need to essentially try all possible combinations.	

Extensions 3.3 Colorings	Extensions 3.3 Colorings
Finding $\chi(G)$	
Theorem	
Theorem For any (simple, connected) graph $G: \chi(G) \leq \Delta(G) + 1$.	
Proof by induction on number of vertices n	
• $n = 1$: trivial as $\chi = 1$ and $\Delta = 0$.	
• Assume OK for $k > 0$ and consider G with $ V(G) = k + 1$.	
• Consider $v \in V$ with $\delta(v) = \Delta(G)$. $G^* = G - v \Rightarrow$ exists c -vertex coloring C^* of G^* with $\chi(G^*) = c \le \Delta(G^*) + 1$.	
• $\Delta(G) = \Delta(G^*) \Rightarrow$ worst case $c = \Delta(G^*) + 1$. $ N(v) = \Delta(G) = c - 1 \Rightarrow$ there is a color left over that we can use for v .	
• $\Delta(G) > \Delta(G^*) \Rightarrow$ introduce new color for v and at worst $\chi(G) = \chi(G^*) + 1 \le \Delta(G^*) + 2 \le \Delta(G) + 1$.	

Extensions 3.3 Colorings	Extensions	3.3 Colorings
Coloring planar graphs		
Coloring prairies graphic		
Theorem		
For any planar graph G , $\chi(G) \leq 4$.		
Observation		
If this theorem holds, we should be able to color any map with only four		
different colors.		
Problem		
 Conjectured in 1852 and specific cases proved to hold. 		
 Only in 1976 the theorem was proved to be true, but 		
A computer program was needed:		
Split problem into 2000 different cases		
Write a program for each case separately		
Were the programs correct?		
40.05		40/05
19/25		19/25

Extensions 3.3 Colorings	Extensions 3.3 Colorings
Simpler bounds for $\chi(G)$	
Theorem	
Every planar graph has a vertex v with $\delta(v) \leq 5$.	
Every planar graph has a vertex v with $\theta(v) \leq 3$.	
Proof	
• Consider only $n \ge 7$ vertices (otherwise trivial);	
• $m = E(G) \Rightarrow \sum_{v \in V(G)} \delta(v) = 2m$.	
• Assume no vertex exists with $\delta(v) \le 5 \Rightarrow 6n \le 2m$.	
• <i>G</i> planar $\Rightarrow m \le 3n - 6 \Rightarrow 6n \le 6n - 12$. Contradiction.	
22/25	22/25

Extensions 3.3 Colorings	Extensions 3.3 Colorings
Simpler bounds for $\chi(G)$	
Proof cnt'd: assume all colors used for $N(v) \Rightarrow \delta(v) = 5$ Idea: Rearrange the colors in $N(v) = \{v_1, v_2, \dots, v_5\}$. Let $col(v_i) = c_i$. Assume no (v_1, v_3) -path in G^* with only c_1, c_3 : Consider (v_1, w) -paths in G^* colored with only c_1, c_3 • For the induced subgraph H , we know that $v_3 \notin V(H)$ • Also: $N(v_3) \cap V(H) = \emptyset$. Solution: interchange c_1 and c_3 in $H \Rightarrow$ use c_1 for v .	
24/25	24/25

Solution: interchange colors c_2 and c_4 in $H' \Rightarrow$ use c_2 for v.