

Department of Mathematics Wintersemester 2011/2012

9-th Exercise Sheet in "Computer Algebra"

Deadline: Thursday, 05 January 2012, 10.00 h

Exercise 1. Let $I \subset K[x_1, \ldots, x_n]$ be an ideal and moreover assume that $K[x_1, \ldots, x_r] \subset K[x_1, \ldots, x_n]/I$ is a Noether normalization. Prove that I is equidimensional if and only if every non-zero $f \in K[x_1, \ldots, x_r]$ is a non-zero divisor in $K[x_1, \ldots, x_n]/I$.

Exercise 2. Use Exercise 1 to check whether $\langle x^2 + xy, xz \rangle$ is equidimensional.

Exercise 3. Let K be a field with $\operatorname{char}(K)=0$, \overline{K} its algebraic closure and $P\subset K[x_1,\ldots,x_n]$ a maximal ideal. Prove that $P\overline{K}[x_1,\ldots,x_n]$ is a radical ideal.

Exercise 4. Let $I \subset K[x_1, \ldots, x_n]$ be a zero-dimensional ideal. Write a SINGULAR procedure to compute $\sqrt{I} \subset K[x_1, \ldots, x_n]$, the radical of I.