Q1) Q2)

EA721 – Princípios de Controle e Servomecanismos

1º Semestre de 2008 − 1º Prova − Prof. Paulo Valente

RA: Nome: Ass.:

Q1. No sistema de controle da Figura 1, considere

$$10k$$
 Q3)

$$G_1(s) = \frac{10k}{5s+1}$$
, $G_2(s) = 1$ e $F(s) = 1$. Q3)
Q4)

Figura 1

- a) (1 pto) Assuma w(t) = 5, $t \ge 0$. Encontre o valor de k para que a componente de regime em y devida ao distúrbio w esteja limitada a 1% de w. (Essa especificação limita o ganho DC de w para y a 0.01); b) (1 pto) Se $r(t) = 10, t \ge$ 0, encontre o erro de regime de y devido a r para o valor de k determinado em a).
- Q2. Considere o sistema de controle ilustrado na Figura 2. a) (1.0 pto) Supondo inicialmente k=10 e $k_t=0.1$, determine ω_{FP} , a faixa de passagem do sistema; **b**) (1.0 pto) Determine k e k_t para que a máxima sobreelevação e a faixa de passagem do sistema sejam iguais a 5% e 10 rad/s, respectivamente.

A razão $\omega_{\rm FP}/\omega_n$ e a máxima sobreelevação (em %) em função do fator de amortecimento ξ para um sistema de segunda ordem na forma padrão são indicadas nas Tabelas 1 e 2, respectivamente. Ao recorrer às tabelas, use sempre os valores mais próximos aos procurados.

Figura 2

Tabela 1: $\omega_{\text{FP}}/\omega_n \times \xi$				
ξ	$\omega_{\mathrm{FP}}/\omega_n$	ξ	$\omega_{\mathrm{FP}}/\omega_n$	
0.1	1.55	0.6	1.15	
0.2	1.51	0.7	1.01	
0.3	1.45	0.8	0.87	
0.4	1.37	0.9	0.75	
0.5	1.27	1.0	0.64	

Tabela 2: $M_p \times \xi$				
ξ	M_p	ξ	M_p	
0.1	72.9	0.6	9.48	
0.2	52.7	0.7	4.60	
0.3	37.2	0.8	1.52	
0.4	25.4	0.9	0.15	
0.5	16.3	1.0	0.00	

Q3. Considere o sistema de controle ilustrado na **Figura 3**, um modelo simplificado para o controle de profundidade de um submarino. Determine em função de k, k_1 e k_2 (parâmetros conhecidos), **a**) (1 pto) o erro de regime da saída y para uma entrada de referência degrau unitário R(s) = 1/s; **b**) (1 pto) o valor de regime da saída y devido ao distúrbio W(s) = 1/s.

Figura 3

Q4. (2 pts) Os dois sistemas ilustrados na **Figura 4** possuem a mesma função de transferência de malha fechada Y(s)/R(s) (no caso, independente de s) quando $k_1=k_2=100$. Calcule as sensibilidades dos sistemas (a) e (b) em relação ao parâmetro k_1 . Qual dos sistemas é mais sensível a variações no parâmetro k_1 ? Justifique.

Figura 4.

Q5. No sistema de controle da Figura 1, considere

$$G_1(s) = k$$
, $G_2(s) = \frac{2}{s^3 + 4s^2 + 5s + 2}$ e $F(s) = 1$.

a) (0.5 pto) Determine e_d , o erro de regime do sistema para uma entrada degrau de amplitude A (R(s) = A/s); b) (1.5 pto) a especificação de que e_d seja menor do que 2% de A pode ser atingida pelo ajuste do ganho k? Justifique. (Nota: no cálculo de erros de regime, pressupõe-se que o sistema em malha fechada seja estável.)

Algumas Fórmulas

Erros de Regime

Função de Sensibilidade

Sensibilidade de uma função de transferência G(s) a um parâmetro p:

$$S_p^G = \frac{\partial G}{\partial p} \frac{p}{G}.$$

(O parâmetro p pode ser outra função de transferência de interesse).

Teorema do Valor Final

Se $y(t) \Leftrightarrow Y(s)$ possui valor final, então

$$y(\infty) = \lim_{t \to \infty} y(t) = \lim_{s \to 0} sY(s).$$

Respostas

- **Q1.** a) k = 9.9, b) $e_d = 0.1$;
- **Q2.** a) $\omega_{\text{FP}} = 4.8 \text{ rad/s}$, b) $k = 100, k_t = 0.14$;
- **Q3.** a) $e(\infty) = kk_2/(k+k_2)$, b) $y(\infty) = -1/[k_1(k+k_2)]$;
- **Q4.** $S_{k_1}^{Ta}=0.01, S_{k_1}^{Tb}=0.1.$ O sistema (b) é dez vezes mais sensível a variações em k_1 do que o sistema (a);
- **Q5.** a) $e_d = A/(1+k)$, b) Para que $e_d < 0.01A$, seria necessário usar k > 49. Como pelo critério de Routh-Hurwitz o sistema é estável se e somente se -1 < k < 9, a especificação não pode ser atendida.