Κεφάλαιο 3

Αριθμητική για υπολογιστές

'Το ελάχιστο θέλησα, και με τιμώρησαν με το πολύ.' -- Οδ. Ελύτης

Νταχράν, Σαουδική Αραβία: 25/2/1991

Ιρακινος πύραυλος Scud σκοτώνει 28 και τραυματίζει 98 στρατιώτες των ΗΠΑ

Σφάλμα λογισμικού στο σύστημα Patriot

Ο χρόνος υπολογιζόταν σε δέκατα του sec

Πολλαπλασιάστηκε επί 1/10 για να έρθει σε sec

1/10 = 0,0001 1001 1001 1001 1001 100 (24 bit)

Σφάλμα: 0,1100 1100 \times 2⁻²³ \approx 9.5 \times 10⁻⁸ s

Σωρευμένο σφάλμα σε 100 ώρες:

 $\approx 9.5 \times 10^{-8} \times 100 \times 60 \times 60 \times 10 = 0.34 \text{ s}$

Aπόσταση Scud = (0,34 s) × (1676 m/s) ≈ 570 m

http://www.ima.umn.edu/~arnold/disasters/disasters.html

Αριθμητική για υπολογιστές

- Λειτουργίες (πράξεις) σε ακεραίους
 - Πρόσθεση και αφαίρεση
 - Πολλαπλασιασμός και διαίρεση
 - Χειρισμός της υπερχείλισης

- Κλασματικοί αριθμοί κινητής υποδιαστολής (floating-point)
 - Αναπαράσταση και λειτουργίες (πράξεις)

Ακέραια πρόσθεση

Παράδειγμα: 7 + 6

- Υπερχείλιση (overflow) αν το αποτέλεσμα είναι εκτός του εύρους των τιμών
 - Πρόσθεση ετερόσημων τελεστέων, όχι υπερχείλιση
 - Πρόσθεση θετικών τελεστέων
 - Υπερχείλιση αν το πρόσημο του αποτελέσματος είναι 1
 - Πρόσθεση αρνητικών τελεστέων
 - Υπερχείλιση αν το πρόσημο του αποτελέσματος είναι 0

Αφαίρεση ακεραίων

- Πρόσθεση του αντιθέτου του δεύτερου τελεστέου
- Παράδειγμα: 7 6 = 7 + (-6)

```
+7: 0000 0000 ... 0000 0111

-6: 1111 1111 ... 1111 1010

+1: 0000 0000 ... 0000 0001
```

- Υπερχείλιση αν το αποτέλεσμα είναι εκτός του εύρους των τιμών
 - Αφαίρεση δύο θετικών ή δύο αρνητικών, όχι υπερχείλιση
 - Αφαίρεση θετικού από αρνητικό τελεστέο
 - Υπερχείλιση αν το πρόσημο του αποτελέσματος είναι Ο
 - Αφαίρεση αρνητικού από θετικό τελεστέο
 - Υπερχείλιση αν το πρόσημο του αποτελέσματος είναι 1

Χειρισμός της υπερχείλισης

- Μερικές γλώσσες (π.χ., C) αγνοούν την υπερχείλιση
 - Χρησιμοποιούν τις εντολές του MIPS addu, addui, subu
- Άλλες γλώσσες (π.χ., Ada, Fortran) απαιτούν τη δημιουργία μιας εξαίρεσης
 - Χρησιμοποιούν τις εντολές του MIPS add, addi, sub
 - Στην υπερχείλιση, καλείται ο χειριστής εξαιρέσεων
 - Αποθήκευση του PC στο μετρητή προγράμματος εξαιρέσεων (exception program counter - EPC)
 - Άλμα στην προκαθορισμένη διεύθυνση του χειριστή
 - Η εντολή mfc0 (move from coprocessor reg) μπορεί να ανακτήσει την τιμή του EPC, για να γίνει επιστροφή, μετά τη διορθωτική ενέργεια

Πολλαπλασιασμός

Υλικό πολλαπλασιασμού

Βελτιστοποιημένος πολλαπλασιαστής

Ταχύτερος πολλαπλασιαστής

- Χρησιμοποιεί πολλούς αθροιστές
 - Συμβιβασμός κόστους/απόδοσης

- Μπορεί να υλοποιηθεί με διοχέτευση (pipeline)
 - Πολλοί πολλαπλασιασμοί εκτελούνται παράλληλα

Ταχείες λειτουργίες σ2

Επέκταση παράστασης

Πολλαπλασιασμός x2

Διαίρεση /2

Πολλαπλασιασμός στον MIPS

- Δύο καταχωρητές των 32 bit για το γινόμενο
 - ΗΙ: τα περισσότερο σημαντικά 32 bit
 - LO: τα λιγότερο σημαντικά 32 bit
- Εντολές
 - mult rs, rt / multu rs, rt
 - γινόμενο των 64 bit στους HI/LO
 - mfhird / mflord
 - Μεταφορά από (move from) του HI/LO στον rd
 - Μπορούμε να ελέγξουμε την τιμή του ΗΙ για να δούμε αν το γινόμενο ξεπερνά τα 32 bit
 - mul rd, rs, rt
 - Τα λιγότερο σημαντικά 32 bit του γινομένου -> rd

Διαίρεση

- Ελεγχος για μηδενικό διαιρέτη
- Διαίρεση μεγάλου μήκους
 - Αν διαιρέτης ≤ από τα bit του διαιρετέου
 - '1' στο πηλίκο, αφαίρεση
 - Αλλιώς
 - 'Ο' στο πηλίκο, κατέβασμα του επόμενου bit του διαιρετέου
- Διαίρεση με επαναφορά (restoring division)
 - Κάνε την αφαίρεση και αν το υπόλοιπο γίνει
 < 0, πρόσθεσε πίσω το διαιρέτη
- Προσημασμένη διαίρεση
 - Κάνε τη διαίρεση με τις απόλυτες τιμές
 - Ρύθμισε το πρόσημο του πηλίκου και του υπολοίπου

Υλικό διαίρεσης

Βελτιστοποιημένος διαιρέτης

- Ένας κύκλος για κάθε αφαίρεση μερικού υπολοίπου
- Μοιάζει πολύ με πολλαπλασιαστή!
 - Το **ίδιο** υλικό μπορεί να χρησιμοποιηθεί και για τις δύο πράξεις

Ταχύτερη διαίρεση

- Δεν μπορεί να χρησιμοποιηθεί παράλληλο υλικό όπως στον πολλαπλασιαστή
 - Η αφαίρεση εκτελείται υπό συνθήκη, ανάλογα με το πρόσημο του υπολοίπου
- Ταχύτεροι διαιρέτες (π.χ. διαίρεση SRT) δημιουργούν πολλά bit του πηλίκου σε κάθε βήμα
 - Και πάλι απαιτούνται πολλά βήματα

Διαίρεση στον MIPS

- Χρήση των καταχωρητών HI/LO για το αποτέλεσμα
 - ΗΙ: υπόλοιπο 32 bit
 - LO: πηλίκο 32 bit
- Εντολές
 - div rs, rt / divu rs, rt
 - Όχι έλεγχος για υπερχείλιση ή διαίρεση με το Ο
 - Το λογισμικό πρέπει να εκτελεί τους ελέγχους αν αυτό απαιτείται
 - Χρήση των mfhi, mflo για προσπέλαση του αποτελέσματος

Κινητή υποδιαστολή

- Αναπαράσταση για μη ακέραιους αριθμούς
 - Περιλαμβάνει και πολύ μικρούς και πολύ μεγάλους αριθμούς
- Όπως η επιστημονική σημειογραφία (scientific notation)
 - -2.34×10^{56}
 - $-+0.002 \times 10^{-4}$
 - +987,02 × 10⁹
- Σε δυαδικό
 - $= \pm 1, xxxxxxxx_2 \times 2^{yyyy}$
- Οι τύποι float και double της C

Πρότυπο κινητής υποδιαστολής

- Ορίζεται από το ΙΕΕΕ Std 754-1985
- Αναπτύχθηκε ως λύση στην απόκλιση των αναπαραστάσεων
 - Ζητήματα φορητότητας (portability) για τον κώδικα επιστημονικών εφαρμογών
- Πλέον είναι σχεδόν οικουμενικά αποδεκτό
- Αναπαραστάσεις κινητής υποδιαστολής (float point)
 - Απλή ακρίβεια single precision (32 bit)
 - Διπλή ακρίβεια double precision (64 bit)
 - 4πλή ακρίβεια quad precision (128 bit)

Μορφή κινητής υποδιαστολής ΙΕΕΕ

single: 8 bit single: 23 bit double: 11 bit double: 52 bit

S Εκθέτης Κλάσμα

$$x = (-1)^S \times (1 + Kλάσμα) \times 2^{(Εκθέτης - Πόλωση)}$$

- Εκθέτης (exponent) Κλάσμα (fraction)
- S: bit προσήμου ($0\Rightarrow$ μη αρνητικός, $1\Rightarrow$ αρνητικός)
- Κανονικοποίηση του σημαντικού (significand):
 1.0 ≤ |significand| < 2.0
 - Έχει πάντα ένα αρχικό bit 1 πριν την υποδιαστολή, και συνεπώς δεν χρειάζεται ρητή αναπαράστασή του («κρυμμένο» bit)
- Εκθέτης: αναπαράσταση «με υπέρβαση» (excess): πραγματικός εκθέτης + πόλωση (bias)
 - Εγγυάται ότι ο εκθέτης είναι απρόσημος
 - Απλή ακρίβεια: Πόλωση = 127 Διπλή ακρίβεια: Πόλωση = 1023

ΙΕΕΕ 754 (απλή ακρίβεια) 32-bit

S	e(8)	f(23)
S	Εκθέτης	Κλάσμα

Συνθήκη	Τιμή
0 < e < 255	(-1) $^{\rm s} \times 2^{{\rm e}^{-127}} \times 1$,f (κανονικοποιημένη μορφή)
$e = 0; f \neq 0$	$(-1)^s \times 2^{-126} \times 0$,f (υπο-κανονική μορφή)
e = 0; f = 0	$(-1)^s \times 0.0$ (μηδέν)
s = 0; e = 255; f = 0	+∞ (θετικό άπειρο)
s = 1; e = 255; f = 0	-∞ (αρνητικό άπειρο)
$s = x$; $e = 255$; $f \neq 0$	ΝαΝ (μη-αριθμός)

Εύρος απλής ακρίβειας

- V_{Max}: (2²⁵⁴⁻¹²⁷) (1,1111111111111111111111)
- V_{Max} : (2¹²⁷) (2 2⁻²³) \approx **2¹²⁸**
- V_{Min}: 0 0000001 000000000000000000000

- $V_{\rm Min}$: 2⁻¹²⁶
- V_{MIN} : $(2^{-126})(2^{-23}) = 2^{-149}$

Κανονική/Υποκανονική παράσταση

(a) 32-bit Format Without Denormalized Numbers

(b) 32-bit Format With Denormalized Numbers

ΙΕΕΕ 754 (διπλή ακρίβεια) 64-bit

S	e(11)	f(52)
S	Εκθέτης	Κλάσμα

Συνθήκη	Τιμή
0 < e < 2047	$(-1)^s \times 2^{e-1023} \times 1.f$ (κανονικοποιημένη μορφή)
$e = 0; f \neq 0$	$(-1)^s \times 2^{-1022} \times 0.f$ (υπο-κανονική μορφή)
e = 0; f = 0	$(-1)^s \times 0.0$ (μηδέν)
s = 0; e = 2047; f = 0	+∞ (θετικό άπειρο)
s = 1; e = 2047; f = 0	-∞ (αρνητικό άπειρο)
$s = x$; $e = 2047$; $f \neq 0$	ΝαΝ (μη-αριθμός)

ΙΕΕΕ 754 (4πλή ακρίβεια) 128-bit

S	e(15)	f(112)
S	Εκθέτης	Κλάσμα

Συνθήκη	 Τιμή
0 < e < 32767	$(-1)^s \times 2^{e-16383} \times 1.f$ (κανονικοποιημένη μορφή)
$e = 0; f \neq 0$	$(-1)^s \times 2^{-16382} \times 0.f$ (υπο-κανονική μορφή)
e = 0; f = 0	$(-1)^s \times 0.0$ (μηδέν)
s = 0; e = 32767; f = 0	+∞ (θετικό άπειρο)
s = 1; e = 32767; f = 0	-∞ (αρνητικό άπειρο)
$s = x$; $e = 32767$; $f \neq 0$	ΝαΝ (μη-αριθμός)

Εργαλεία μετατροπής ΑΚΥ

https://babbage.cs.qc.cuny.edu/IEEE-754/

https://www.h-schmidt.net/FloatConverter/IEEE754.html

Ακρίβεια ΑΚΥ

Παράδειγμα κινητής υποδιαστολής

- Αναπαράσταση του -0,75
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - **S** = 1
 - Κλάσμα = 1000...00₂
 - Εκθέτης = −1 + Πόλωση
 - $A\pi\lambda\dot{\eta}$: -1 + 127 = 126 = 011111110₂
 - Δ ιπλή: -1 + 1023 = 1022 = 01111111110₂
- Διπλή: 10111111111101000...00

Παράδειγμα κινητής υποδιαστολής

- Ποιος είναι ο αριθμός

- **S** = 1
- Κλάσμα = 01000...00₂
- Εκθέτης = 10000001₂ = 129

$$x = (-1)^{1} \times (1 + .01_{2}) \times 2^{(129 - 127)}$$

= $(-1) \times 1.25 \times 2^{2}$
= -5.0

Άπειρο και μη-αριθμοί (NaN)

- Εκθέτης = 111...1, Κλάσμα = 000...0
 - ±Άπειρο
 - Μπορεί να χρησιμοποιηθεί σε επόμενους υπολογισμούς, για αποφυγή του ελέγχου υπερχείλισης
- Εκθέτης = 111...1, Κλάσμα ≠ 000...0
 - Όχι αριθμός (Not-a-Number NaN)
 - Δείχνει ένα άκυρο ή απροσδιόριστο αποτέλεσμα (π.χ. 0,0/0,0)
 - Μπορεί να χρησιμοποιηθεί σε επόμενους υπολογισμούς

Πρόσθεση κινητής υποδιαστολής

- Ένα δεκαδικό παράδειγμα με 4 ψηφία
 - $-9.999 \times 10^{1} + 1,610 \times 10^{-1}$
- 1. Ευθυγράμμιση υποδιαστολών
 - Ολίσθηση αριθμού με το μικρότερο εκθέτη
 - $-9.999 \times 10^{1} + 0.016 \times 10^{1}$
- 2. Πρόσθεση σημαντικών
 - $-9.999 \times 10^{1} + 0.016 \times 10^{1} = 10,015 \times 10^{1}$
- 3. Κανονικοποίηση αποτελέσματος & έλεγχος υπερχείλισης/ανεπάρκειας
 - 1.0015 × 10²
- 4. Στρογγυλοποίηση και επανακανονικοποιήση αν είναι απαραίτητο
 - $1,002 \times 10^2$

Πρόσθεση κινητής υποδιαστολής

- 4-bit αριθμοί $1.000_2 \times 2^{-1} + -1,110_2 \times 2^{-2}$ (0,5 + -0,4375)
- 1. Ευθυγράμμιση υποδιαστολών
 - Ολίσθηση αριθμού με το μικρότερο εκθέτη
 - $-1,000_2 \times 2^{-1} + -0,111_2 \times 2^{-1}$
- 2. Πρόσθεση συντελεστών
 - $1,000_2 \times 2^{-1} + -0,111_2 \times 2^{-1} = 0,001_2 \times 2^{-1}$
- 3. Κανονικοποίηση αποτελέσματος και έλεγχος υπερχείλισης/ανεπάρκειας
 - 1,000₂ × 2⁻⁴, χωρίς υπερχείλιση/ανεπάρκεια
- 4. Στρογγυλοποίηση και επανα-κανονικοποιήση, αν είναι απαραίτητο
 - $= 1,000_2 \times 2^{-4}$ (καμία αλλαγή) = 0,0625

Υλικό αθροιστή κινητής υποδιαστολής

- Πολύ πιο πολύπλοκος από τον ακέραιο αθροιστή
- Για να γίνει σε έναν κύκλο πρέπει να έχει πολύ μεγάλη διάρκεια
 - Πολύ μεγαλύτερη από τις ακέραιες λειτουργίες
 - Το πιο αργό ρολόι θα επιβάρυνε όλες τις εντολές
- Ο αθροιστής κινητής υποδιαστολής συνήθως παίρνει πολλούς κύκλους
 - Μπορεί να υλοποιηθεί με διοχέτευση

Αθροιστής κινητής υποδιαστολής

Πολλαπλασιασμός κιν. υποδιαστολής

- Ένα δεκαδικό παράδειγμα με 4 ψηφία
 - $-1,110 \times 10^{10} \times 9,200 \times 10^{-5}$
- 1. Πρόσθεση εκθετών
 - Για πολωμένους εκθέτες, αφαίρεση της πόλωσης από το άθροισμα
 - Νέος εκθέτης = 10 + (-5) = 5
- 2. Πολλαπλασιασμός σημαντικών
 - $1.110 \times 9,200 = 10.212 \Rightarrow 10,212 \times 10^5$
- 3. Κανονικοποίηση αποτελέσματος & έλεγχος για υπερχείλιση ή ανεπάρκεια
 - 1,0212 × 10⁶
- 4. Στρογγυλοποίηση και επανακανονικοποίηση
 - 1,021 × 10⁶
- 5. Καθορισμός προσήμου του αποτελέσματος
 - +1,021 × 10⁶

Πολλαπλασιασμός κιν. υποδιαστολής

- Ένα δυαδικό παράδειγμα με 4 bit
 - $-1,000_2 \times 2^{-1} \times -1,110_2 \times 2^{-2}$ (0,5 × -0,4375)
- 1. Πρόσθεση εκθετών
 - Χωρίς πόλωση: -1 + -2 = -3
 - Με πόλωση: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- 2. Πολλαπλασιασμός σημαντικών
 - $1,000_2 \times 1,110_2 = 1,1102 \implies 1,110_2 \times 2^{-3}$
- 3. Κανονικοποίηση αποτελέσματος και έλεγχος υπερχείλισης/ανεπάρκειας
 - 1,110₂ × 2⁻³ (καμία αλλαγή) χωρίς υπερχείλιση/ανεπάρκεια
- 4. Στρογγυλοποίηση και επανακανονικοποίηση
 - 1,110₂ × 2⁻³ (καμία αλλαγή)
- 5. Καθορισμός προσήμου: +ve × -ve \Rightarrow -ve
 - $-1,110_2 \times 2^{-3} = -0,21875$

Υλικό κινητής υποδιαστολής

- Ο πολλαπλασιαστής ΚΥ έχει παρόμοια πολυπλοκότητα με τον αθροιστή ΚΥ
 - Αλλά χρησιμοποιεί πολλαπλασιαστή για τα σημαντικά αντί για αθροιστή
- Το υλικό αριθμητικής κιν. υποδ. συνήθως εκτελεί
 - Πρόσθεση, αφαίρεση, πολλαπλασιασμό, διαίρεση, αντίστροφο, τετραγωνική ρίζα
 - Μετατροπή ΚУ ↔ ακέραιο
- Οι λειτουργίες συνήθως διαρκούν πολλούς κύκλους
 - Μπορούν να υπολοποιηθούν με διοχέτευση

Εντολές ΚΥ στον MIPS

- Επιπρόσθετος συνεπεξεργαστής επεκτείνει την αρχιτεκτονική
- Ξεχωριστοί καταχωρητές ΚΥ
 - 32 απλής ακρίβειας: \$f0, \$f1, ... \$f31
 - Ζεύγη για διπλή ακρίβεια: \$f0/\$f1, \$f2/\$f3, ...
- Εντολές ΚΥ επενεργούν μόνο σε καταχωρητές ΚΥ
 - Τα προγράμματα δεν εκτελούν ακέραιες πράξεις σε δεδομένα ΚΥ
- Εντολές φόρτωσης και αποθήκευσης καταχωρητών ΚΥ
 - lwc1, ldc1, swc1, sdc1
 - $\pi.x. Idc1 $f8, 32($sp)$

Εντολές ΚΥ στον MIPS

Αριθμητική απλής ακρίβειας

- add.s, sub.s, mul.s, div.s
 - π.χ., add.s \$f0, \$f1, \$f6

Αριθμητική διπλής ακρίβειας

- add.d, sub.d, mul.d, div.d
 - π.χ., mul.d \$f4, \$f4, \$f6
- Σύγκριση απλής και διπλής ακρίβειας
 - c.xx.s, c.xx.d (xx είναι eq, lt, le, ...)
 - Δίνει τη τιμή 1 ή 0 σε bit κωδικών συνθήκης ΚΥ (FP condition-code bit) π.χ. c.lt.s \$f3, \$f4
- Διακλάδωση σε αληθή (†) ή ψευδή (f) κωδικό συνθήκης ΚΥ
 - bc1t, bc1f $\pi.x$. bc1t TargetLabel

Παράδειγμα ΚΥ: βαθμοί °F σε °C

```
float f2c (float fahr) {
return ((5.0/9.0)*(fahr - 32.0));
```

- fahr στον \$f12, αποτέλεσμα στον \$f0, οι σταθερές στο χώρο της καθολικής μνήμης
- Κώδικας MIPS:

```
f2c: lwc1 $f16, const5($gp)
lwc1 $f18, const9($gp)
div.s $f16, $f16, $f18
lwc1 $f18, const32($gp)
sub.s $f18, $f12, $f18
mul.s $f0, $f16, $f18
jr $ra
```

Ακριβής αριθμητική

- Το IEEE Std 754 καθορίζει πρόσθετο έλεγχο της στρογγυλοποίησης
 - Επιπλέον 3 bit ακρίβειας (guard, round, sticky)
 - Επιλογή τρόπων στρογγυλοποίησης (rounding modes)
 - Επιτρέπει στον προγραμματιστή να ρυθμίσει με λεπτομέρεια την αριθμητική συμπεριφορά ενός υπολογισμού
- Δεν υλοποιούν όλες τις επιλογές όλες οι μονάδες ΚΥ
 - Οι περισσότερες γλώσσες προγραμματισμού και βιβλιοθήκες ΚΥ χρησιμοποιούν απλώς τις προκαθορισμένες λειτουργίες
- Συμβιβασμός μεταξύ πολυπλοκότητας του υλικού, απόδοσης, και απαιτήσεων της αγοράς

Συμπερασματικές παρατηρήσεις

- Οι αρχιτεκτονικές συνόλου εντολών υποστηρίζουν αριθμητική
 - Προσημασμένων και απρόσημων ακεραίων
 - Κινητής υποδιαστολής για τους πραγματικούς
- Πεπερασμένο εύρος και ακρίβεια
 - Οι λειτουργίες μπορεί να οδηγήσουν σε υπερχείλιση (overflow) και ανεπάρκεια (underflow)
- Αρχιτεκτονική συνόλου εντολών MIPS
 - Εντολές πυρήνα: οι 54 πιο συχνά χρησιμοποιούμενες
 - 100% TOU SPECINT, 97% TOU SPECFP
 - Άλλες εντολές: λιγότερο συχνές