NAND and NOR Gates

ELEC 311 Digital Logic and Circuits Dr. Ron Hayne

Images Courtesy of Cengage Learning

NAND and NOR Gates

Χ	Υ	X NAND Y
0	0	1
0	1	1
1	0	1
1	1	0

Χ	Υ	X NOR Y
0	0	1
0	1	0
1	0	0
1	1	0

311_07

DeMorgan's Laws

$$\bullet (X \cdot Y)' = X' + Y'$$

$$\bullet (X + Y)' = X' \cdot Y'$$

$$X \longrightarrow Z = (X + Y)'$$

$$X \longrightarrow Z = X' + Y'$$
 $X \longrightarrow Q$

$$X \longrightarrow Z = X' \cdot Y'$$

Functionally Complete Set

 Any function can be realized using only NAND gates

SOP to NAND-NAND

$$G = WXY + YZ$$

MOSFETs

PMOS
$$_{+}$$
 $_{-}$ $_{$

311_07

CMOS Inverter

CMOS Inverter

Vin	Q1	Q2	Vout
0 (L)	ON	OFF	1 (H)
1 (H)	OFF	ON	0 (L)

311_07

311_07

311_07

311_07

311_07

CMOS NOR Gate

Noise Margin

311_07

Electrical Characteristics

Sym.	Parameter	Test Conditions ⁽¹⁾		Min.	Тур.(2)	Max.	Unit
$V_{ m IH}$	Input HIGH level	Guaranteed logic HIGH level		3.15	_	_	V
$V_{\rm IL}$	Input LOW level	Guaranteed logic LOW level			_	1.35	V
$I_{ m IH}$	Input HIGH current	$V_{\rm CC} = {\rm Max.}, \ V_{\rm I} = V_{\rm CC}$		_	_	1	μΑ
$I_{ m IL}$	Input LOW current	$V_{\rm CC} = {\rm Max.}, \ V_{\rm I} = 0 \ {\rm V}$		_	_	-1	μΑ
$V_{ m IK}$	Clamp diode voltage	$V_{\rm CC} = \text{Min., I}_{\rm N} = -18 \text{ mA}$		_	-0.7	-1.2	V
$I_{ m IOS}$	Short-circuit current	$V_{\rm CC} = \text{Max.,}^{(3)} V_{\rm O} = \text{GND}$		_	_	-35	mA
Vou	Von II Outbut nigh voitage I	$V_{\text{CC}} = \text{Min.},$ $V_{\text{IN}} = V_{\text{IL}}$	$I_{\mathrm{OH}} = -20 \ \mu\mathrm{A}$	4.4	4.499	_	V
OH			$I_{\rm OH} = -4 \text{ mA}$	3.84	4.3	_	V
$V_{ m OL}$	V _{OL} Output LOW voltage	$V_{\rm CC} = {\rm Min.},$	$I_{\rm OL} = 20 \mu{\rm A}$	_	.001	0.1	V
· OL	- Input 2011 totalige	$V_{\rm IN} = V_{\rm IH}$	$I_{\rm OL} = 4 \text{ mA}$		0.17	0.33	V

NMH = VOHmin - VIHmin = 4.4 V - 3.15 V = 1.25 V

$$NML = VILmax - VOLmax = 1.35 V - 0.1 V = 1.25 V$$

Propagation Delay

Propagation Delay

SWITCHING CHARACTERISTICS OVER OPERATING RANGE, $C_L = 50 \text{ pF}$								
Sym.	Parameter ⁽⁴⁾	Test Co	Min.	Тур.	Max.	Unit		
$t_{ m PD}$	Propagation delay	A or B to Y		_	9	19	ns	
C_{I}	Input capacitance	$V_{\rm IN} = 0 \text{ V}$		_	3	10	pF	
$C_{ m pd}$	Power dissipation capacitance per gate		No load	_	22	_	pF	

Summary

- NAND and NOR Gates
- DeMorgan's Laws
- SOP to NAND-NAND
- MOSFETs
- CMOS Logic Gates
 - Inverter, NAND, NOR
- Electrical Characteristics
 - Noise Margin
 - Propagation Delay