species

code	species		
m	maple		
р	pine		

import sqlite3
c = sqlite3.connect("worksheet.db")

def **qry**(sql):

return pd.read_sql(sql, c)

troo y y species o

	tree	X	У	species	diameter	priority
	Α	10	4	m	8	71
	В	20	4	m	10	100
	С	30	4	р	6	30
)	D	40	4	р	8	40
	Е	50	4	m	12	99

trees

species = qry("SELECT * FROM species")
trees = qry("SELECT * FROM trees")

- 1 trees[trees["priority"] > 90][["x", "y"]] # convert to SQL
- 2 qry("SELECT x+y FROM trees WHERE species = 'm'") # convert to Pandas
- 3 cd = species["code"][species["species"]=="maple"].iloc[0]
 trees[trees["species"] == cd]["tree"] # convert to 2 SQL queries
- 4 qry("SELECT species FROM trees ORDER BY priority DESC")

hydrants

year	color	style	owner	alt	active
1999	red	K-81	private	1179	0
2000	red	M-3	public	1065	0
2001	green	Pacer	private	1058	1
2010	blue	Pacer	public	1081	1
2014	blue	Pacer	public	1052	1
2018	blue	Pacer	public	1109	1

hydrants = qry(""" SELECT * FROM hydrants """)

- 8 qry("SELECT color, year FROM hydrants WHERE color = 'blue' ")
- 9 df = qry("SELECT color, year FROM hydrants")
 df[df.color == "blue"]
- 10 qry("SELECT year FROM hydrants WHERE owner='private' AND active")
- df = qry("SELECT year, style, active FROM hydrants")
 df[df.active == 1]["style"]
- **12** hydrants["color"].value_counts() # convert to SQL
- 13 qry("""SELECT color, COUNT(*) FROM hydrants
 WHERE active GROUP BY color""")
- 14 qry("""SELECT color, COUNT(*) AS count FROM hydrants
 GROUP BY color HAVING count > 1""")