Activité 5.2 - Représenter les molécules organiques

Objectifs:

Connaître les quatre représentations des molécules organiques.

Contexte : Les molécules organiques sont composées de chaînes carbonées, auxquelles sont ajoutés des atomes d'hydrogène, d'oxygène ou d'azote le plus souvent.

→ Comment représenter les molécules organiques ?

1 - La formule brute

Document 1 - Formule brute

Elle indique le nombre de chaque éléments présents dans la molécule.

▶ Exemple : Le butane C₄H₁₀, l'éthanol C₂H₆O ou l'acide carbonique CH₂O₃ Elle permet de calculer facilement les masses molaires et de vérifier si deux molécules sont isomères. Par contre elle ne permet pas de déterminer la géométrie d'une molécule.

Deux molécules sont **isomères** si elles ont la même formule brute, mais un agencement des atomes différents.

▶ Exemple: Le glucose et le fructose sont isomères de formules brutes $C_6H_{12}O_6$, mais ce ne sont pas les mêmes molécules car leur géométries sont différentes.

L'oxybenzone est une molécule utilisée pour protéger des UVA et B issu du soleil. Sa formule brute est $C_{14}H_{12}O_3$.

$\mathcal{O}_{14}\Pi_{12}\mathcal{O}_3$.		
1 – Indiquer le nombre d'é	elément d'hydrogène, d'oxygène et de	carbone dans la molécule d'oxy-
benzone.		
	,	
	tilisé dans le corps humain pour for-	
mer des protéines. Sa représent	ation avec un modèle moléculaire est	
présentée ci-contre avec le code	couleur suivant :	
• Blanc : hydrogène.	• Noir : carbone.	
v		
• Rouge : oxygène.	• Bleu : azote.	
2 - Donner la formule brut	e de l'alanine	
3 - Compter les liaisons d	e chaque carbone et vérifier qu'ils ont	bien la bonne valence.

Document 2 - Formule développée

Elle représente tous les éléments chimiques et toutes les liaisons dans le même plan, ce qui permet de **préciser la géométrie d'une molécule**.

▶ Exemple :

Document 3 – Formule semi-développée

Comme la formule développée, elle représente tous les éléments chimiques, mais elle ne détaille pas les liaisons des éléments hydrogènes.

• Exemple:

$$HO-CH_2-CH_3$$
 $Cl-CH_2-SiH_3$

éthanol

chlorométhylsilane

Document 4 - Formule topologique

Elle représente les liaisons carbone-carbone C—C par des segments formant des angles. Chacune des extrémités d'un segment représente un carbone, sauf si un autre élément chimique y est attaché. Les éléments carbones et les hydrogènes qui sont attachés aux carbones ne sont pas représentés. Tous les autres éléments chimiques sont représentés normalement.

ightharpoonup Exemple:

$$HO$$
 Cl SiH_3 HO $Paracétamol$

	4 •	Do	nne	er 1	la I	ori	mu	пе	br	ut	e,	se	mı	l-d	.ev	ele	op:	pe	e e	et	ae	ve.	loľ	op	ee	αu	ı p	ar	ac	eta	am	lOI	•				
• • •		 							• •	• •		٠.	٠.	• •				• •	٠.	• •		٠.	• •				• •	• •						 	 • • •		
		 																	•												• •			 	 		
		 																																 	 . 		
• • •		 • • •				• •	• • •		• •	• •		• •	• •	• •	• •	• • •		• •	• •	• •		• •	• •	• •	• • •	• •	• •	• •		• •	• •	• •	• • •	 • •	 • •	• •	