Latex Template

Zih-Yu Hsieh

January 14, 2025

1

Question 1 Let $f:(a,b) \to \mathbb{R}$ be differentiable on (a,b).

Prove: if $\forall x \in (a,b), f'(x) \neq 0$, then f is one-to-one on (a,b).

Give an example showing that the converse statement is in general not true.

Pf:

Suppose $\forall x \in (a,b), f'(x) \neq 0$:

(1) f'(x) is strictly less than or greater than 0 on (a,b):

We'll prove by contradiction: Suppose f'(x) is neither strictly less than 0 nor strictly greater than 0 on (a,b), then there exists $x_0, x_1 \in (a,b)$, with $f'(x_0) \leq 0$ and $f'(x_1) \geq 0$, and by the assumption that $f'(x) \neq 0$, the strict inequality $f'(x_0) < 0$ and $f'(x_1) > 0$ is applied. (This also implies $x_0 \neq x_1$, since derivatives are different at the two points).

Recall that for function $f:[a,b] \to \mathbb{R}$ be differentiable on (a,b), if a < c < d < b and $f'(c) \neq f'(d)$, for any λ strictly in between f'(c) and f'(d) (either $f'(c) < \lambda < f'(d)$ or $f'(c) > \lambda > f'(d)$), there exists $x \in (c,d)$ with $f'(x) = \lambda$.

Then, first suppose $x_0 < x_1$: f is differentiable on (a,b) and $f'(x_0) < 0 < f'(x_1)$ implies there exists $x \in (x_0, x_1)$ with f'(x) = 0, which contradicts the assumption;

then suppose $x_1 < x_0$: again, f is differentiable on (a,b) and $f'(x_1) > 0 > f'(x_0)$ implies there exists $x \in (x_1, x_0)$ with f'(x) = 0, which again contradicts the assumption.

So, the assumption is false, f'(x) must be strictly greater than 0 or less than 0 for all $x \in (a,b)$.

(2) f is strictly increasing or decreasing on (a, b):

Based on (1), f'(x) is strictly less than 0 or strictly greater than 0.

Suppose f'(x) > 0 for all $x \in (a, b)$, then for any $x, y \in (a, b)$ with x < y, by the Mean Value Theorem, there exists $c \in (x, y) \subseteq (a, b)$, such that the following is true:

$$\frac{f(y) - f(x)}{y - x} = f'(c) > 0, \quad (f(y) - f(x)) = f'(c)(y - x)$$

Since (y-x), f'(c) > 0 by assumption, the (f(y) - f(x)) = f'(c)(y-x) > 0, thus f(y) > f(x), showing that f is strictly increasing.

Similarly, suppose f'(x) < 0 for all $x \in (a, b)$, with the same x, y above, by Mean Value Theorem, there exists $c \in (x, y) \subseteq (a, b)$, such that the following is true:

$$\frac{f(y) - f(x)}{y - x} = f'(c) < 0, \quad (f(y) - f(x)) = f'(c)(y - x)$$

Since (y - x) > 0 and f'(c) < 0, then (f(y) - f(x)) = f'(c)(y - x) < 0, of f(y) < f(x), showing that f is strictly decreasing.

 $\mathbf{2}$

#