3000788 Intro to Comp Molec Biol

Lecture 9: Transcriptomics technology

September 14, 2023

Sira Sriswasdi, PhD

- Research Affairs
- Center of Excellence in Computational Molecular Biology (CMB)
- Center for Artificial Intelligence in Medicine (CU-AIM)

Oligonucleotide microarray

Microarray technology overview

Suarez, E. et al. P R Health Sciences J 28:89-104 (2009)

Microarray fabrication

Microarray fabrication

Probe design for microarray

Unwanted probe interactions

Probe design principles

Sensitivity

- Complementary to each target genomic region
- Multiple probes for each target

Specificity

- Cross-hybridization: similarity to other targets
- BLAST
- Negative control probes

Technical issues

- Secondary structure: self-complementary
- Hybridization energy
- Position-specific bias

Malutan, R. and Vilda, P.G. Thermodynamics of Microarray Hybridization (2011)

https://en.wikipedia.org/wiki/Complement arity_%28molecular_biology%29

Position-specific intensity bias

Steger, D. et al. PLoS ONE 6:e23727 (2011)

Impact of probe length

Chou, C.-C. NAR 32:e99 (2004)

Probe set = multiple probes per gene

Chou, C.-C. NAR 32:e99 (2004)

Jaksik, R. et al. Biology Direct 10:46 (2015)

Perfect match (PM) and mismatch (MM)

Example microarray metadata

ControlType	ProbeName	SystematicName	PositionX	PositionY
1	GE_BrightCorner	GE_BrightCorner	584.922	4464.27
1	DarkCorner	DarkCorner	606.433	4464.3
1	DarkCorner	DarkCorner	626.841	4464.18
0	A_23_P326296	NM_144987	648.069	4464.19
0	A_24_P287941	NM_013290	669.667	4464.39
0	A_24_P325046	BC022434	691	4464.5
0	A_23_P200404	NM_001625	712	4464.5
0	A_19_P00800513	lincRNA:chr7:226042-232442_R	733.224	4464.48
0	A_23_P15619	NM_032391	754.4	4464.41
0	A_33_P3402354	L40403	775.5	4464.32
0	A_33_P3338798	NM_001145251	798.041	4464.16
0	A_32_P98683	NM_005937	817.068	4464.27
0	A_23_P137543	NM_152493	838.533	4464.4
0	A_19_P00803040	lincRNA:chr8:104254399-104295074_F	859.965	4464.37
0	A_23_P117852	NM_014736	881	4464.3
0	A_33_P3285585	AK127191	902.5	4464.5
0	A_24_P328231	NM_017871	923.214	4464.57
0	A_33_P3415668	NR_028328	944.776	4464.52
0	A_23_P73609	NM_000266	966	4464.5
0	A 24 P186124	NM 182501	986.871	4464.53

Microarray data pre-processing

Microarray data collection steps

https://en.wikipedia.org/wiki/Microarray_analysis_techniques

Key processing steps

- Redefining probe set
 - BLAST to latest genome annotation
- Intensity correction
 - Model background using probe location & sequence
 - Perfect match (PM) vs mismatch (MM)
 - Global & local correction
- Outlier removal
- Probe set aggregation
- Log transform

Log-normal distribution

Limpert, Stahel, and Abbt. BioScience 2001.

Microarray data are log-normal distributed

Two-channel microarray

- Two samples are labeled with different dyes
- Mix and hybridize to microarray
- Relative fluorescence signal (ratio) directly indicates fold difference in gene expression
- Minimize technical variance

Miller, M.B. and Tang, Y.-W. Clin Microbiol Rev 611-633 (2009)

Beyond transcriptomics

Comparative genome hybridization (CGH)

SNP genotyping array

- Design probes for alternative
 SNPs at each position
 - Relative hybridization
- Single-nucleotide sequencing
 - Probe acts as primer
 - Match to the position up until right before the SNP
 - Incorporation of the next nucleotide determine the genotype

LaFramboise, T. NAR 37:4181-93 (2009)

Methylation array

Microarray vs DNA sequencing

- Microarray and DNA sequencing are interchangeable in many applications
 - Genome tiling array
 - Fusion gene
 - ChIP-chip
 - Pathogen-specific probes
- Designed once for each task and can be reused
- Cheaper than DNA sequencing
 - But lack the ability to detect novel molecules

Nanostring

Transcript-specific probes & fluorescence barcodes

solution phase hybridization

Counting number of molecules

Barcode

Counts

Identity

XLSA

FOX5

INSULIN

Prebuilt barcode set (up to 800 targets)

PanCancer IO 360

Human 🛨 Mouse 🕩

750 cancer-related genes involved in the complex interplay between the tumor, microenvironment and immune response including 20 internal reference controls.

Application:

Species:

Human, Mouse

Oncology

770, 770

Inventoried

Genes in panel:

% Match: 100%, 100%

Panel type: Platform:

nCounter Analysis System

Canine IO

Canine 🛨

The nCounter® Canine IO Panel includes 780 genes covering 47 annotated pathways involved in canine immune response to IO treatments, and 20 internal reference genes for show more

Application:

Genes in panel:

Oncology

Species:

Canine 800

% Match:

100%

Panel type:

Inventoried

Platform:

nCounter Analysis System

Nanostring quality control

- Imaging QC
 - % of successful imaging field of view > 75%
- Binding QC
 - 0.1-2 molecules per square micron
- Positive control
 - Six synthetic DNA ranging from 0.125-128 fM
- Negative control
 - Eight synthetic DNA that do not bind to probe

Nanostring data preprocessing

Negative and positive control

Raw Data							
			Sample 1	Sample 2	Sample 3		
Positive	POS_A	ERCC_00117.1	24573	21007	21856		
Positive	POS_B	ERCC_00112.1	6948	6414	6589		
Positive	POS_C	ERCC_00002.1	2123	1826	1932		
Positive	POS_D	ERCC_00092.1	432	363	425		
Positive	POS_E	ERCC_00035.1	52	68	53		
Positive	POS_F	ERCC_00034.1	49	38	52		
		Geomean of POS:	858.01	783.19	829.55		
Arithmetic mean of geomeans:		823.58					
POS control normalization factors:			0.96	1.05	0.99		

Housekeeping control

Arithmetic Mean vs Geometric Mean

Limpert, Stahel, and Abbt. BioScience 2001.

$$\frac{\log(x) + \log(y)}{2} = \log(\sqrt{xy})$$
 \rightarrow AM of log-transformed = GM of original data

Arithmetic mean of background noises

- Background noises are Normal
- Arithmetic Mean is ok

Geometric mean of molecule counts

Raw Data							
			Sample 1	Sample 2	Sample 3		
Positive	POS_A	ERCC_00117.1	24573	21007	21856		
Positive	POS_B	ERCC_00112.1	6948	6414	6589		
Positive	POS_C	ERCC_00002.1	2123	1826	1932		
Positive	POS_D	ERCC_00092.1	432	363	425		
Positive	POS_E	ERCC_00035.1	52	68	53		
Positive	POS_F	ERCC 00034.1	49	38	52		
		Geomean of POS:	858.01	783.19	829.55		
Arithmetic mean of geomeans:			823.58				
POS control normalization factors:			0.96	1.05	0.99		

- Real expression data are closer to Log-Normal
- Use GM to represent AM of log-transformed data

Geometric mean of molecule counts

- Real expression data are closer to Log-Normal
- Use GM to represent AM of log-transformed data

Simple transcriptomics analysis

Transformed data can be analyzed with *t*-test

		Control			Treatment			
	J15							
	Α	В	С	D	E	F	G	Н
1	Acc ID	Exp1	Exp2	Exp3	Exp4	Exp5	Exp6	
2	NM_007818	67540.89	70924.09	80243.76	3501.2	5697.47	2426.72	
3	NM_001105160	811.93	801.36	740.71	128.67	104.42	101.33	
4	NM_028089	190.41	211.06	236.19	9.05	23.33	8.44	
5	NM_016696	66.77	57.56	101.09	750.9	659.84	491.89	
6	NM_013459	3.3	11.29	1.89	735.82	816.46	118.22	
7	NM_007809	45.34	36.12	51.02	245.27	372.13	335.67	
8	NM_009999	103.04	370.21	200.29	17.09	13.33	8.44	
9	NM_133960	7708.78	6976.38	6569.04	1731	1641.81	1853.55	
10	NM_027881	31.32	10.16	24.56	268.39	186.62	135.11	
11	NM_054053	31.32	24.83	19.84	323.68	428.78	116.11	
12	NM_007377	47.81	89.17	70.86	370.93	378.79	279.72	
13	NM_028064	703.95	689.62	662.29	214.11	168.85	144.61	
14	NM_008182	222.56	339.73	226.75	30.16	63.32	26.39	
15	NM_013661	12.36	11.29	8.5	97.51	77.76	71.78	
16	NM_007815	20613.09	25218.13	31540.46	5209.07	7680.3	6312.2	

- Log transform
- Perform t-test on each gene
- Correct the p-values for multiple testing

Choosing the right *t*-test

Two-tailed tests whether the expression is higher or lower

=t.test(A2:A13,B2:B13,2,						
T.TEST(array1, array2, tails, type)						
() 1 - Paired	() 1 - Paired () 2 - Two-sample equal variance (homoscedastic) () 3 - Two-sample unequal variance (heteroscedastic)			T.TEST performs a paired t-Test		
() 2 - Two-sa						
() 3 - Two-sa						

- Use paired only for before & after treatment data of the same sample
- Otherwise, assuming unequal variance (Welch) is safer

Correction for multiple testings

- P-value cutoff of 0.05 means that under the null hypothesis, there is only 5% chance of observing the same or more extreme result
- Applying similar test 1,000 times will result in 50 tests on average with smaller pvalue than 0.05 just by chance
 - Differential expression analysis tests thousands of gene at once
- This in unacceptable if a conclusion relies on multiple tests
 - Biological interpretation assumes that selected genes are truly differentially expressed

Bonferroni method

- Divide the p-value cutoff by the number of test
- Adjusted p-value cutoff = 0.05 / 1000 = 0.00005
- Applying similar test 1,000 times will result in 0.05 tests on average with smaller p-value than 0.00005 just by chance
- Easy to calculate but lose power

False discovery rate (FDR)

- P-value operates under the null hypothesis
- But in practice, we want to control the number of errors in the output
 - The number of DEGs that were incorrectly proposed
- False Discovery Rate (FDR) = Probability of getting a false positive
 - Probability that a DEG is not truly differentially expressed
- But FDR involves alternative hypothesis
- There are ways to control FDR through p-value!

Benjamini-Hochberg procedure

- Valid under broad assumptions (independent tests, positively correlated tests, etc.)
- Given a series of tests with p-values, $p_1, p_2, ..., p_n$
- To control FDR to be within 0.05
 - Sort p-values from low to high, $p'_1, p'_2, ..., p'_n$
 - Find largest k such that $p'_k \le 0.05 \times k / n$
 - For the smallest p-value, this is equivalent to Bonferroni
 - For other p-values, this technique gradually loosens the cutoff
 - Reject null hypothesis for tests corresponding to $p'_1, p'_2, ..., p'_k$

Benjamini-Yekutieli procedure

- Valid under broader assumption (some dependence between tests)
- Given a series of tests with p-values, $p_1, p_2, ..., p_n$
- To control FDR to be within 0.05
 - Sort p-values from low to high, $p'_1, p'_2, ..., p'_n$
 - Find largest k such that $p'_k \le (0.05 \times k) / (n \times c(k))$
 - $c(k) = \sum_{i=1}^{k} \frac{1}{i}$
 - For the smallest p-value, this is equivalent to Benjamini-Hochberg & Bonferroni
 - For other p-values, this technique gradually loosens the cutoff but not as much as Benjamini-Hochberg
 - Reject null hypothesis for tests corresponding to $p'_1, p'_2, ..., p'_k$

Correction method comparison

P-value	Bonferroni	В-Н	В-Ү
Smallest	0.0005	0.0005	0.0005
2 nd smallest	0.0005	0.001	0.000667
3 rd smallest	0.0005	0.0015	0.000818
4 th smallest	0.0005	0.002	0.00096
5 th smallest	0.0005	0.0025	0.001095

- There are 100 tests
- Target p-value or FDR cutoff = 0.05

Effect of correction

Gene	Sorted p- value	Rank	Benjamini- Hochberg	Result	c(rank)	Benjamini- Yekutieli	Result
Gene M	0.000001	1	0.0005	Pass	1	0.0005	Pass
Gene S	0.0000035	2	0.001	Pass	1.5	0.00067	Pass
Gene A	0.00028	3	0.0015	Pass	1.83	0.00082	Pass
Gene C	0.0011	4	0.002	Pass	2.08	0.00096	Fail
Gene P	0.06	5	0.0025	Fail	2.28	0.0011	

Linear effect model

Background noise correction models

- Null hypothesis
 - Background noise is normally distributed and is the same over the entire array
- Linear effect model
 - Background noise is normally distributed with mean depending on (x, y) positions and a fixed variance

Fitting normally distributed data

- Negative control probe intensities: $n_1, n_2, ..., n_k$
 - Fitted mean and variance: $\mu = \frac{\sum_i n_i}{k}$ and $\sigma^2 = \frac{1}{k-1} \sum_i (n_i \mu)^2$
 - Likelihood: $\prod_i P(n_i | \mu, \sigma^2) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^k e^{-\frac{1}{2}\sum_i \left(\frac{n_i \mu}{\sigma}\right)^2}$

Linear effect model

- Position of probe *i* with intensity n_i is (x_i, y_i)
- Fitted mean: $\mu(x_i, y_i) = ax_i + by_i + c$
 - Solve for a, b, c that minimize MSE: $\sum_{i} (n_i (ax_i + by_i + c))^2$
- Recall calculus:

$$-\frac{\delta MSE}{\delta a} = \sum_{i} 2(n_i - (ax_i + by_i + c))(-x_i)$$

$$-\frac{\delta MSE}{\delta h} = \sum_{i} 2(n_i - (ax_i + by_i + c))(-y_i)$$

$$-\frac{\delta MSE}{\delta c} = \sum_{i} 2(n_i - (ax_i + by_i + c))(-1)$$

Finding optimal solution by setting derivative to zero

- Boundary: *a*, *b*, or *c* approaches infinity
- Local optima: setting partial derivatives to zero

$$- 0 = \sum_{i} 2(n_i - (ax_i + by_i + c))(-x_i)$$

$$-0 = \sum_{i} 2(n_i - (ax_i + by_i + c))(-y_i)$$

$$- 0 = \sum_{i} 2(n_i - (ax_i + by_i + c))(-1)$$

Some algebra exercises

- Setting partial derivatives to zero
 - $-0 = \sum_{i} (n_i (ax_i + by_i + c))(-x_i)$
 - $-0 = \sum_{i} (n_i (ax_i + by_i + c))(-y_i)$
 - $-0 = \sum_{i} (n_i (ax_i + by_i + c))$
- Or equivalently
 - $a \sum_{i} x_i^2 + b \sum_{i} x_i y_i + c \sum_{i} x_i = \sum_{i} n_i x_i$
 - $a\sum_{i} x_{i}y_{i} + b\sum_{i} y_{i}^{2} + c\sum_{i} y_{i} = \sum_{i} n_{i}y_{i}$
 - $a\sum_{i} x_{i} + b\sum_{i} y_{i} + ck = \sum_{i} n_{i}$
- Three linear equations with three variables ©

Hypothesis testing

- Fitted mean: $\mu(x_i, y_i) = ax_i + by_i + c$
 - Solve for a, b, c that minimize MSE: $\sum_{i} (n_i (ax_i + by_i + c))^2$
- Fitted variance: $\sigma^2 = \frac{1}{k-1} \sum_i (n_i \mu(x_i, y_i))^2$
- Likelihood: $\prod_i P(n_i | \mu(x_i, y_i), \sigma^2) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^k e^{-\frac{1}{2}\sum_i \left(\frac{n_i \mu(x_i, y_i)}{\sigma}\right)^2}$
 - Compare to likelihood from Null hypothesis
 - Likelihood ratio test or nested model testing (degree of freedom = 2)

Incorporating confounding variable

- Design matrix

Sample	Condition	Batch	Patient's Age
S1	Control	1	35
S2	Control	2	21
S3	Control	3	45
S 4	Treatment	1	18
S 5	Treatment	2	37
S6	Treatment	3	52

Any question?

- See you on September 18