Mecanização Agrícola

Técnicas para controle de qualidade nas operações mecanizadas

Rafael Tieppo

nas operações mecanizadas

Técnicas para controle de qualidade

• Artesão controla a qualidade do processo?

- Artesão controla a qualidade do processo?
 - Produto Único

- Artesão controla a qualidade do processo?
 - Produto Único
- Contato entre artesão e cliente (DIRETO)
 - Permite certo controle de qualidade
 - Se o artesão não for bom, perde cliente

- Artesão controla a qualidade do processo?
 - Produto Único
- Contato entre artesão e cliente (DIRETO)
 - Permite certo controle de qualidade
 - Se o artesão não for bom, perde cliente
- Atualmente
 - $\blacksquare \quad \mathsf{M\'aquina} \to \mathsf{Produto} \to \mathsf{Cliente}$

• Se é aplicado na indústria, por que não aplicar na **Agricultura**?

- Se é aplicado na indústria, por que não aplicar na Agricultura?
- O que nos leva a controlar a qualidade? Necessidade das empresas se tornarem competitivas, tendo como consequência a busca de um modelo de produção que garanta sobrevivência.

Ferramentas da qualidade

- Brainstorming
- Fluxograma
- Diagrama Ishikawa
- Histograma
- Gráfico de barras
- Pareto
- PDCA
- 5W + 2H
- 5 S
- Controle estatístico do processo (CEP)

Brainstorming

Icons made by www.flaticon.com

Fluxograma

Diagrama Ishikawa

Histograma

Indicador de frequência na forma gráfica

Histograma

Gráfico de barras

Quando usar gráfico de barras?

80/20

- Vilfredo Pareto
- Estudo de proprietários de áreas agrícolas na Itália

Diagrama de Pareto

 $\mathsf{A} = \mathsf{Ferrugem}; \ \mathsf{B} = \mathsf{Lagarta}; \ \mathsf{C} = \mathsf{Nemat\'oide}; \ \mathsf{D} = \mathsf{Antracnose}; \ \mathsf{E} = \mathsf{Mancha} \ \mathsf{foliar}$

PDCA

5W + 2H

Conceito 5 S

Aprender 5S é como "reaprender" o que é natural. Podemos nos inspirar no nosso corpo para cuidar do mundo em que atuamos.

A natureza do 5S é semelhante à natureza dos seres vivos

Fonte: http://5s.com.br

Conceito 5 S - os cinco sensos

Senso	Comando
Utilização	Separar o que é útil do que não é. Melhorar o uso do que é útil
Ordenação Limpeza Saúde Autodisciplina	Um lugar para cada coisa. Cada coisa no seu lugar Limpar e evitar sujar. Padronizar as práticas saudáveis Assumir a responsabilidade de seguir os padrões saudáveis

Controle estatístico do processo (CEP)

Considera-se que um processo está sob controle estatístico quando a única fonte de variação são causas comuns (aleatórias).

Causa aleatória

- Precisão da máquina
- Variabilidade solo

Causa especial

- Elemento desgastado
- Operador sem treinamento

Gráfico de controle

Como controlar seu processo?

Gráfico de controle

Como controlar seu processo? Através dos gráficos de controle torna-se possível visualizar o comportamento das ações realizadas em um determinado processo.

Gráficos de controle

Assumindo que as causas especiais estejam eliminadas, deve-se definir alguns termos:

Figure 1: Gráfico de controle estatístico por processo

Classificação de gráficos de controle

- Gráfico de controle por Variáveis
 - Utilizado para controlar valores contínuos da qualidade de um produto ou serviço, (e.g. comprimento, massa, profundidade)

Classificação de gráficos de controle

- Gráfico de controle por Variáveis
 - Utilizado para controlar valores contínuos da qualidade de um produto ou serviço, (e.g. comprimento, massa, profundidade)
- Gráfico de controle por **Atributo**
 - Utilizado quando se trabalha comparando atributos (e.g. fração com defeito, defeitos por produto, falhas por serviço)

Gráfico de controle por VARIÁVEIS

 μ é a média aritimética da população \to estimada pela média das médias amostrais $(\bar{\bar{x}})$

 δ é o desvio padrão da população \to estimado pela média dos desvios amostrais (\bar{S})

٠.

Linha média $= \bar{\bar{x}}$

Limite de controle pelo desvio padrão:

Linha de controle = \bar{x} \pm A1 \cdot (\bar{S}) , em que \bar{S} é o desvio da população estimado pela **média do desvio padrão** amostral, A1 é um fator de ajuste

Gráfico de controle

Gráfico de controle com problemas

Figure 2: Gráficos de controle de processos com problemas

Exemplo

Profundidade de semente após a operação de semeadura:

AMOSTRA	M1	M2	M3	M4
1	60	70	55	65
2	50	60	70	60
3	60	70	75	65
4	60	50	55	55
5	60	50	65	65
6	50	65	65	70

Gráfico de controle por VARIÁVEIS - exemplo

Amostra	M1	M2	M3	M4	AMPLITUDE	MEDIA	SD
1	60	70	55	65	15	62.5	6.45
2	50	60	70	60	20	60.00	8.16
3	60	70	75	65	15	67.5	6.45
4	60	50	55	55	10	55.00	4.08
5	60	50	65	65	15	60.00	7.07
6	50	65	65	70	20	62.50	8.66
				Média	15.83	61.25	6.81

Gráfico de controle por VARIÁVEIS - exemplo

Com o número de medições (n) verifica-se o valor de A1 nas Tabelas (Apêndice).

- Limites de media pelo desvio padrãoComo tem-se n=4
 - A1 = 1.5
 - Limites da media pelo desvio padrão: LIC = 51.02; LMC = 61.25; LSC = 71.47
- Limites de dispersão pelo desvio padrão
 - B3 = 0
 - B4 = 2.266
 - Limites da dispersão pelo desvio padrão: LIC = 0.0 ; LMC = 6.81 ; LSC = 15.44

Gráfico de controle por VARIÁVEIS - exemplo

Exemplo código

```
plt.figure(figsize=(9, 5))
plt.hist(df_plant['FORCA_LINHA_KN'], color='cyan',
     edgecolor='black',
     bins=np.arange(0.5, 6, 0.5),
     align='mid', alpha=0.6)
plt.xticks(np.arange(0.5, 6, 0.5), fontsize=13)
plt.xlabel('Força por linha (kN)', fontsize=13)
plt.ylabel('Número de observações', fontsize=13)
plt.tight layout()
plt.show()
```

Obrigado

Icons made by wanicon from www.flaticon.com

Referências