2018-09-13 Modelling with ODEs (2.3)

2.3 Modelling with ODEs

The equations that describe the boulder's altitude are

- $my'' = -mg \gamma y'$
- y(0) = 0, y'(0) = 10

The Solution is
$$y\left(t
ight)=-rac{mg}{\Upsilon}t-\left(rac{m^{2}g}{\Upsilon^{2}}+rac{10m}{\Upsilon}
ight)\left(e^{-rac{\Upsilon}{m}t}-1
ight)$$

- 1. Can you think of ways/experiments to measure (gamma) and m based on using this formula?
 - a. Measure $y(t_1)=y_1$
 - b. Throw the boulder

You can measure the drag coefficient by this.

i. Use terminal velocity y(t) = 0

When modelling

- Define Variables (write units if you know)
 - Example: h(t) = height of boulder t seconds after launch
- Start with Basic Principles
- Models are Approximations -- Require Assumptions (difficult part of modelling)

Modelling a simple pendulum

- Which basic principle should we use?
 - We need to know
 - Force = Gravity + Tension
 - Gravity = -mg
 - Tension = T
 - Newton's 2nd law (F = ma)

$$F = -mg + (-T)$$

• Going to be made up of gravity acting on the mass and the tension in the rope

Assume

- Massless rope
- Rigid rope string is always at a constant length L, no elastic energy
- No friction from either the air or the hinge or the rope
- No air resistance
- Small angles

· Define variables

- \circ The force of T is in the direction of the string, we need to represent this. If we used $Tcos\theta$ or $-Tsin\theta$, we would have the problem of introducing another variable, θ , to find! Instead, use vectors:
 - $\vec{r}(t)$ = position of the mass t seconds after it is launched
 - $F=-mg\hat{\jmath}+(-T\vec{r})$
 - Note: We cannot add a scalar and vector together! Therefore, the gravity component includes
 j to make it a vector.
 - Acceleration = $\vec{v}' = \vec{r}''$

Other Examples of Modelling with First Order Differential Equations (not covered in lecture)

1. Mixing

- i.e. Stir Tank Reaction: Adding salt to a tank of water, and at the same time, draining salt water out of the tank.
- o Define variables:
 - t = time (min), m(t) = mass of salt in the water (g), V = volume of water in the tank (L), R = flow rate of water (L/min), and C = salt concentration of water (g/L)
- o Basic principle:
 - $lacksquare C = rac{m}{V} \left(concentration = rac{mass}{volume}
 ight)$
 - $lacksquare rac{dm}{dt} = rate\ in-rate\ out$
- o Constructing the model
 - Assume the inflow rate of water is the same as the outflow rate of water.
 - Assume the volume of water in the tank is constant at all times.
 - lacksquare Model: $rac{dm}{dt} = rate~in rate~out = RC_{in} RC_{out} = RC_{in} Rrac{m(t)}{V}$
 - If given initial mass of salt in the tank, then can solve differential equation above for m(t) to find mass of salt in the tank at any time t.

2. Paying Off a Loan

- i.e. Borrowing money from the bank and making monthly payments to payback the bank.
- t = time (years), S(t) = balance on the bank loan at any time t (\$), r = annual interest rate (%/year), k = monthly payment rate (\$/month)

- Assume annual interest rate is constant for all years.
- \circ Model: $rac{dS}{dt}=rS\left(t
 ight)-12k$, k is multiplied by 12 to account for 12 months in a year.

3. Population Growth

- $\circ~$ Exponential growth model: $rac{dP}{dt}=rP\left(t
 ight)$
- \circ Logistic growth model: $rac{dP}{dt} = rP\left(t
 ight)\left(1 rac{P(t)}{K}
 ight)$
- o r = population growth rate, P(t) = population at time t, K = carrying capacity of the population
- Logistic growth model is a better model with better approximations than exponential growth model because population will not grow indefinitely in real life.

4. Newton's Law of Cooling

- k = transmission coefficient, rate of heat exchange between the object and its surroundings, measured in $(time)^{-1}$,
 - u(t) = temperature of object at any time t (Kelvin, Celsius, or Fahrenheit), T = ambient temperature/temperature of surroundings (Kelvin, Celsius, or Fahrenheit)
- \circ Model: $rac{du}{dt}=-k\left(u\left(t
 ight) -T
 ight)$

5. Escape Velocity

- v_e = escape velocity, the least initial velocity for which the object launched from the ground will not return to the Earth (m/s), R = radius of the earth (m), x = distance above sea level (m), g = acceleration due to gravity ($\frac{m}{s^2}$), k = a constant, w(x) = gravitational force acting on the mass (N), m = mass (kg), x+R = altitude/distance from the center of the Earth (m)
- Assume there is no air resistance.

$$_{\circ}\;\;w\left(x
ight) =-rac{k}{\left(x+R
ight) ^{2}},\;and\;w\left(0
ight) =-mg\:at\:sea\:level,\;so\:k=mgR^{2}$$

• Since there are no other forces acting on the object:

$$0 = w\left(x
ight) = F_{net} = ma = mrac{dv}{dt} = -rac{mgR^2}{\left(R+x
ight)^2}, \ where \ rac{dv}{dt} = rac{dv}{dx}rac{dx}{dt} = vrac{dv}{dx}$$

$$\circ$$
 Model: $vrac{dv}{dx}=-rac{gR^2}{(R+x)^2}$

- \circ Solving the model, it is found that $v_e=\sqrt{2gR}$, and the escape velocity on Earth is about 11.1 km/s
- Full derivation can be found in section 2.2 of the textbook (second edition)