Open Data Analytics Dashboard For Policy Makers

Aldrin Lambon

Proposal Checklist

- Decision-making based on usable and open information.
- Focus on development-related data
- System to make simultaneous decisions at the same time.

Open Data

Excel Files, Zip Files, Shapefiles, etc...

Analytics Dashboard

Pipeline

Data Scope

Spatial Data:

Administrative Boundaries ARMM Barangays (PSA, 2016), Administrative Boundaries ARMM Provinces (PSA, 2016)

Tabular Data:

Population, Number of Schools, Water Supply, Fuel for Lighting, Worker Occupation and Construction Material

Analytics Dashboard DEMO

https://tabsoft.co/2FnC5Wn

Moving Forward

- Area-specific dashboards
- Database system
- KPI monitoring system

Open Data Analytics Dashboard For Policy Makers

Aldrin Lambon

Spatial Clustering

Univariate Spatial Clustering of Population Totals at the Brgy Level

Spatial Weights

 All barangays that share the same borders are considered neighbors

Spatial Statistics

Moran's I

 Measures spatial autocorrelation based on both feature locations and feature values simultaneously

Spatial Clusters

Local Indicators of Spatial Association (LISA)

> can identify spatial dependency (hot spots, cold spots, and spatial outliers) in a given locality

Appendix: Global Moran's I

The Moran's I statistic for spatial autocorrelation is given as:

$$I = \frac{n}{S_0} \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i,j} z_i z_j}{\sum_{i=1}^{n} z_i^2}$$
(1)

where z_i is the deviation of an attribute for feature i from its mean $(x_i - X)$, $w_{i,j}$ is the spatial weight between feature i and j, n is equal to the total number of features, and S_0 is the aggregate of all the spatial weights:

$$S_0 = \sum_{i=1}^n \sum_{j=1}^n w_{i,j} \tag{2}$$

The z_I -score for the statistic is computed as:

$$z_I = \frac{I - \mathbf{E}[I]}{\sqrt{\mathbf{V}[I]}} \tag{3}$$

where:

$$\mathbf{E}[I] = -1/(n-1) \tag{4}$$

$$V[I] = E[I^2] - E[I]^2$$
 (5)

Appendix: Local Moran's I

The Local Moran's I statistic of spatial association is given as:

$$I_i = \frac{x_i - \bar{X}}{S_i^2} \sum_{j=1, j \neq i}^n w_{i,j} (x_j - \bar{X})$$
 (1)

where x_i is an attribute for feature i, \bar{X} is the mean of the corresponding attribute, $w_{i,j}$ is the spatial weight between feature i and j, and:

$$S_i^2 = \frac{\sum\limits_{j=1, j \neq i}^{n} (x_j - \bar{X})^2}{n-1}$$
 (2)

with n equating to the total number of features.

The z_L -score for the statistics are computed as:

$$z_{I_i} = \frac{I_i - \mathbf{E}[I_i]}{\sqrt{\mathbf{V}[I_i]}} \tag{3}$$

where:

$$E[I_i] = -\frac{\sum\limits_{j=1, j\neq i}^{n} w_{ij}}{n-1}$$

$$(4)$$

$$V[I_i] = E[I_i^2] - E[I_i]^2$$
(5)