CALCOLO NUMERICO

Corso di Laurea in Informatica

A.A. 2021/2022 – Prova Scritta A – 16/05/2022

NOME COGNOME MATRICOLA

Esercizio 1 Sia $A = (a_{i,j}) \in \mathbb{R}^{n \times n}, n \geq 2$, definita come

$$a_{i,j} = \begin{cases} 1 \text{ se } i = 1; \\ \alpha \text{ se } i = j + 1; \\ 0 \text{ altrimenti.} \end{cases}$$

Per n = 3 si ottiene

$$A = \left[\begin{array}{ccc} 1 & 1 & 1 \\ \alpha & 0 & 0 \\ 0 & \alpha & 0 \end{array} \right].$$

- 1. Si determini i valori di α per cui :
 - (a) A è predominante diagonale;
 - (b) A è invertibile.
- 2. Si determini i valori di α per cui A ammette unica la fattorizzazione LU e per tali valori si calcoli la fattorizzazione.
- 3. Si determini la condizione su α affinchè il comando lu(A) in MatLab restituisca una fattorizzazione LU della matrice A o in altri termini il metodo di eliminazione gaussiana con pivoting parziale applicato ad A non esegua scambi di righe.

Esercizio 2 Si consideri l'equazione

$$f(x) = x^3 + e^x = 0$$

- 1. Si determini il numero di soluzioni reali dell'equazione. Per ogni soluzione si determini un'intervallo di separazione.
- 2. Si dica se il metodo delle tangenti applicato per la risoluzione dell'equazione f(x) = 0 con punto iniziale $x_0 \in \{-1, -1/2\}$ genera una successione convergente.
- 3. Scrivere una funzione Matlab che dati in input $tol, x_0 \in \mathbb{R}$, calcola la successione generata dal metodo delle tangenti applicato per la risoluzione dell'equazione f(x) = 0 a partire da x_0 arrestandosi quando $|x_k x_{k-1}| \le tol$ e restituendo in uscita la coppia (x_k, k) .