2D Taylor series

TOTAL POINTS 5

Now you have seen how to calculate the multivariate Taylor series, and what zeroth, first and second order
approximations look like for a function of 2 variables. In this course we won't be considering anything
higher than second order for functions of more than one variable.

In the following questions you will practise recognising these approximations by thinking about how they behave with different x and y, then you will calculate some terms in the multivariate Taylor series yourself.

The following plot features a surface and its Taylor series approximation in red, around a point given by a red circle. What order is the Taylor series approximation?

- Zeroth order
- O First order
- Second order
- O None of the above
 - ✓ Correct

The red surface is constant everywhere and so has no terms in $m{\Delta x}$ or $m{\Delta x}^2$

2. What order Taylor series approximation, expanded around the red circle, is the red surface in the following plot?

(a)
$$f(x,y) = x \sin(x^2/2 + y^2/4)$$

$$\bigcap f(x,y) = (x^2 + 2x)e^{-x^2 - y^2/5}$$

Correct

The gradient of the red surface is non-zero and constant, so the Δx terms are the highest order.

4. Recall that up to second order the multivariate Taylor series is given by $f(\mathbf{x} + \Delta \mathbf{x}) = f(\mathbf{x}) + J_f \Delta \mathbf{x} + \frac{1}{2} \Delta \mathbf{x}^T H_f \Delta \mathbf{x} + \dots$

Consider the function of 2 variables, $f(x,y) = xy^2e^{-x^4-y^2/2}$. Which of the following is the first order Taylor series expansion of f around the point (-1,2)?

$$\bigcirc f_1(-1 + \Delta x, 2 + \Delta y) = -4e^{-3} - 4e^{-3}\Delta x + 4e^{-3}\Delta y$$

$$\bigcirc f_1(-1 + \Delta x, 2 + \Delta y) = 2e^{-33/2} - 63e^{-33/2}\Delta x - 2e^{-33/2}\Delta y$$

(a)
$$f_1(-1 + \Delta x, 2 + \Delta y) = -4e^{-3} - 12e^{-3}\Delta x + 4e^{-3}\Delta y$$

✓ Correct

5. Now consider the function $f(x,y)=\sin(\pi x-x^2y)$. What is the Hessian matrix H_f that is associated with the second order term in the Taylor expansion of f around $(1,\pi)$?

$$O_{H_f} = \begin{pmatrix} -2 & -2\pi \\ 2\pi & 1 \end{pmatrix}$$

$$O_{H_f} = \begin{pmatrix} -\pi^2 & \pi \\ \pi & -1 \end{pmatrix}$$

$$\bigcirc H_f = \begin{pmatrix} -2\pi & -2 \\ -2 & 1 \end{pmatrix}$$

✓ Correct

Good, you can check your second order derivatives here:

$$\partial_{xx} f(x,y) = -2y \cos(\pi x - x^2 y) - (\pi - 2xy)^2 \sin(\pi x - x^2 y)$$

$$\partial_{xy} f(x,y) = -2x \cos(\pi x - x^2 y) - x^2 (\pi - 2xy) \sin(\pi x - x^2 y)$$

$$\partial_{yx} f(x,y) = -2x \cos(\pi x - x^2 y) - x^2 (\pi - 2xy) \sin(\pi x - x^2 y)$$

$$\partial_{yy}f(x,y)=-x^4\sin(\pi x-x^2y)$$

w