Model with Less Variables

Code ▼

Vanessa Gonzalez 2018-06-24

Random Forest Model using less variables

Open libraries.

Hide

```
library("mlbench")
library("caret")
library("randomForest")
library("lattice")
library("ggplot2")
library("rpart")
library("e1071")
library("e1071")
library("caret", lib.loc="/Library/Frameworks/R.framework/Versions/3.4/Resources/library")
```

Hide

```
colnames(dfDataSet4YGImpute) <- c("FourYG", "One.CSCI101", "One.MATH111", "Two.CSCI261"
,"Two.MATH112", "Two.MATH201", "Three.CSCI262", "Three.MATH213", "Four.CSCI341", "Four.CSC
1358", "Four.MATH225", "Five.CSCI306", "Five.CSCI403", "Five.MATH332", "Six.CSCI406", "Seve
n.CSCI370", "Eight.CSCI400", "Eight.CSCI442")
LessVariablesSet <- dfDataSet4YGImpute
# Creates Data Partitions and removes variables
inTrainingLess <- createDataPartition(LessVariablesSet$FourYG, p = 0.80, list = FALSE
LessVariablesSet <- LessVariablesSet[-(2:3)]</pre>
LessVariablesSet[-(3)]
LessVariablesSet <- LessVariablesSet[-(5)]</pre>
LessVariablesSet <- LessVariablesSet[-(7)]</pre>
LessVariablesSet <- LessVariablesSet[-(11)]</pre>
# Creates Training data Set
trainingLess <- LessVariablesSet[inTrainingLess, ]</pre>
# Creates Testing data Set
testingLess <- LessVariablesSet[-inTrainingLess, ]</pre>
# Data Set with less varialbes
head(LessVariablesSet)
```

Fou... Two.CSCI261 Two.MATH... Three.CSCI262 Four.CSCI341 Four.CSCI358 Five.CSCI3

<fctr></fctr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dl< th=""></dl<>
1 Yes	4	3.000000	3.000000	2.000000	4.000000	3.0000
2 No	4	3.000000	3.603932	3.100057	3.099580	3.6212
5 Yes	4	3.000000	3.665798	3.664659	3.720739	3.7434
6 Yes	3	2.000000	3.000000	3.000000	2.000000	4.0000
7 Yes	4	4.000000	4.000000	4.000000	4.000000	4.0000
8 Yes	3	3.790084	4.000000	3.517370	3.942883	4.0000
6 rows 1-8 of 12 columns						

Hide

trainingLess

	Fou <fctr></fctr>	Two.CSCI261 <dbl></dbl>	Two.MATH <dbl></dbl>	Three.CSCI262 <dbl></dbl>	Four.CSCl341 <dbl></dbl>	Four.CSCl358 <dbl></dbl>	Five.CS
1	Yes	4.000000	3.000000	3.000000	2.000000	4.000000	3.00
5	Yes	4.000000	3.000000	3.665798	3.664659	3.720739	3.74
7	Yes	4.000000	4.000000	4.000000	4.000000	4.000000	4.00
8	Yes	3.000000	3.790084	4.000000	3.517370	3.942883	4.00
10	Yes	3.000000	1.000000	2.984141	3.000000	2.166370	3.05
11	Yes	4.000000	3.000000	4.000000	4.000000	4.000000	4.00
12	Yes	3.000000	2.000000	4.000000	3.000000	4.000000	4.00
13	Yes	4.000000	2.000000	3.000000	3.000000	3.000000	4.00
14	No	3.000000	2.000000	2.000000	2.000000	4.000000	3.00
16	Yes	4.000000	3.000000	4.000000	4.000000	4.000000	4.00
1-10 of 318 rows 1-8 of 12 columns			Previou	s 1 2 3	4 5 6 3	2 Next	

Hide

testingLess

Fou	Two.CSCI261	Two.MATH	Three.CSCI262	Four.CSCI341	Four.CSCI358	Five.CS
<fctr></fctr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	

1-10	of 78 rows	1-8 of 12 colum	ins	Previous 1	2 3 4	5 6 8	Next
78	No	4.000000	4.000000	4.000000	4.000000	4.000000	4.0
73	Yes	3.000000	3.000000	4.000000	4.000000	3.000000	4.00
61	No	0.500000	2.245680	2.873061	1.888522	2.412753	2.94
53	Yes	4.000000	2.502048	3.775148	3.162417	3.285296	3.46
43	No	4.000000	2.000000	0.300000	2.266172	1.000000	3.09
41	Yes	4.000000	2.000000	4.000000	3.000000	2.000000	3.00
30	Yes	4.000000	4.000000	4.000000	4.000000	4.000000	4.00
18	Yes	4.000000	1.000000	4.000000	3.000000	1.000000	3.00
6	Yes	3.000000	2.000000	3.000000	3.000000	2.000000	4.00
2	No	4.000000	3.000000	3.603932	3.100057	3.099580	3.62

Regresion Partition with method "class" for set with less variables

Hide

FourYG.rp.Less = rpart(FourYG ~ ., data=trainingLess, method = "class")
FourYG.rp.Less

```
n = 318
node), split, n, loss, yval, (yprob)
      * denotes terminal node
 1) root 318 90 Yes (0.2830189 0.7169811)
   2) Eight.CSCI442< 1.862643 21 4 No (0.8095238 0.1904762) *
   3) Eight.CSCI442>=1.862643 297 73 Yes (0.2457912 0.7542088)
     6) Five.CSCI403< 3.501903 55 25 Yes (0.4545455 0.5454545)
      12) Five.MATH332< 2.071729 29 10 No (0.6551724 0.3448276) *
      13) Five.MATH332>=2.071729 26 6 Yes (0.2307692 0.7692308) *
     7) Five.CSCI403>=3.501903 242 48 Yes (0.1983471 0.8016529)
      14) Four.CSCI358< 3.303554 133 35 Yes (0.2631579 0.7368421)
        28) Four.CSCI358>=3.092642 8 3 No (0.6250000 0.3750000) *
        29) Four.CSCI358< 3.092642 125 30 Yes (0.2400000 0.7600000)
          58) Two.CSCI261< 2.85 9 4 No (0.5555556 0.4444444) *
          59) Two.CSCI261>=2.85 116 25 Yes (0.2155172 0.7844828) *
      15) Four.CSCI358>=3.303554 109 13 Yes (0.1192661 0.8807339) *
```

Hide

```
printcp(FourYG.rp.Less)
```

```
Classification tree:
rpart(formula = FourYG ~ ., data = trainingLess, method = "class")
Variables actually used in tree construction:
[1] Eight.CSCI442 Five.CSCI403 Five.MATH332 Four.CSCI358 Two.CSCI261
Root node error: 90/318 = 0.28302
n = 318
        CP nsplit rel error xerror
1 0.144444
                    1.00000 1.00000 0.089255
2 0.050000
                   0.85556 0.96667 0.088330
               1
3 0.011111
                    0.75556 0.95556 0.088011
               3
4 0.010000
                    0.72222 1.05556 0.090690
```

Create a summary for the data set with less variables

```
summary(FourYG.rp.Less)
```

```
Call:
rpart(formula = FourYG ~ ., data = trainingLess, method = "class")
  n = 318
          CP nsplit rel error
                                              xstd
                                 xerror
1 0.1444444
                 0 1.0000000 1.0000000 0.08925501
2 0.05000000
                  1 0.8555556 0.9666667 0.08833027
3 0.01111111
                 3 0.7555556 0.9555556 0.08801104
4 0.01000000
                  6 0.7222222 1.0555556 0.09068974
Variable importance
Eight.CSCI442 Four.CSCI358 Five.MATH332 Five.CSCI403 Six.CSCI406 Eight.CSCI400
Four.CSCI341
               Two.CSCI261
                             Two.MATH201
           29
                                                     13
                                                                    7
                                                                                  5
                         16
                                       13
Five.CSCI306 Three.CSCI262
            2
Node number 1: 318 observations,
                                    complexity param=0.1444444
  predicted class=Yes expected loss=0.2830189 P(node) =1
    class counts:
                     90
                          228
   probabilities: 0.283 0.717
  left son=2 (21 obs) right son=3 (297 obs)
  Primary splits:
      Eight.CSCI442 < 1.862643 to the left,
                                             improve=12.465940, (0 missing)
                  < 2.361973 to the left,
      Two.MATH201
                                             improve=10.239170, (0 missing)
      Six.CSCI406
                   < 2.266458 to the left,
                                             improve=10.222070, (0 missing)
      Five.CSCI403 < 3.419795 to the left,
                                             improve= 9.568449, (0 missing)
      Eight.CSCI400 < 3.215149 to the left,
                                             improve= 9.298103, (0 missing)
  Surrogate splits:
      Four.CSCI358 < 0.85
                               to the left, agree=0.940, adj=0.095, (0 split)
      Eight.CSCI400 < 0.85
                              to the left, agree=0.937, adj=0.048, (0 split)
Node number 2: 21 observations
  predicted class=No
                       expected loss=0.1904762 P(node) =0.06603774
    class counts:
                     17
   probabilities: 0.810 0.190
Node number 3: 297 observations,
                                    complexity param=0.05
  predicted class=Yes expected loss=0.2457912 P(node) =0.9339623
    class counts:
                     73
                          224
   probabilities: 0.246 0.754
  left son=6 (55 obs) right son=7 (242 obs)
  Primary splits:
      Five.CSCI403 < 3.501903 to the left,
                                             improve=5.883073, (0 missing)
      Four.CSCI358 < 3.386122 to the left, improve=5.621907, (0 missing)
      Six.CSCI406 < 2.468042 to the left,
                                             improve=4.832347, (0 missing)
```

```
Five.CSCI306 < 3.345445 to the left,
                                             improve=4.796963, (0 missing)
      Eight.CSCI400 < 2.981697 to the left,
                                             improve=4.720930, (0 missing)
  Surrogate splits:
      Eight.CSCI400 < 2.50993 to the left,
                                             agree=0.845, adj=0.164, (0 split)
      Three.CSCI262 < 2.853189 to the left,
                                             agree=0.838, adj=0.127, (0 split)
      Six.CSCI406 < 1.968216 to the left,
                                             agree=0.838, adj=0.127, (0 split)
      Four.CSCI341 < 0.85
                               to the left,
                                             agree=0.828, adj=0.073, (0 split)
      Five.CSCI306 < 2.15
                                             agree=0.825, adj=0.055, (0 split)
                               to the left,
Node number 6: 55 observations,
                                   complexity param=0.05
  predicted class=Yes expected loss=0.4545455 P(node) =0.172956
    class counts:
                     25
                           30
   probabilities: 0.455 0.545
  left son=12 (29 obs) right son=13 (26 obs)
  Primary splits:
      Five.MATH332 < 2.071729 to the left,
                                            improve=4.938510, (0 missing)
      Five.CSCI306 < 3.716578 to the left,
                                            improve=4.446640, (0 missing)
                                            improve=3.108641, (0 missing)
      Four.CSCI358 < 2.344163 to the left,
      Two.MATH201 < 2.780642 to the left,
                                            improve=2.424242, (0 missing)
      Six.CSCI406 < 2.446701 to the left,
                                            improve=2.259286, (0 missing)
  Surrogate splits:
      Six.CSCI406
                    < 2.133311 to the left, agree=0.709, adj=0.385, (0 split)
      Four.CSCI341 < 2.502655 to the left, agree=0.673, adj=0.308, (0 split)
      Four.CSCI358 < 2.344163 to the left, agree=0.673, adj=0.308, (0 split)
                    < 2.210063 to the left, agree=0.618, adj=0.192, (0 split)
      Eight.CSCI442 < 2.534753 to the right, agree=0.618, adj=0.192, (0 split)
Node number 7: 242 observations,
                                    complexity param=0.01111111
  predicted class=Yes expected loss=0.1983471 P(node) =0.7610063
    class counts:
                     48
                          194
   probabilities: 0.198 0.802
  left son=14 (133 obs) right son=15 (109 obs)
  Primary splits:
      Four.CSCI358 < 3.303554 to the left,
                                             improve=2.480648, (0 missing)
      Eight.CSCI400 < 1.85
                               to the left,
                                             improve=2.006702, (0 missing)
      Three.CSCI262 < 2.429332 to the left,
                                             improve=1.505686, (0 missing)
      Two.CSCI261
                   < 2.85
                                             improve=1.203605, (0 missing)
                               to the left,
      Two.MATH201
                    < 2.339399 to the left,
                                             improve=1.052872, (0 missing)
  Surrogate splits:
      Five.MATH332 < 3.355349 to the left,
                                             agree=0.727, adj=0.394, (0 split)
      Two.MATH201
                   < 3.3
                               to the left,
                                             agree=0.711, adj=0.358, (0 split)
      Five.CSCI306 < 3.72575 to the left,
                                             agree=0.674, adj=0.275, (0 split)
      Six.CSCI406
                   < 3.064793 to the left,
                                             agree=0.674, adj=0.275, (0 split)
                                             agree=0.669, adj=0.266, (0 split)
      Eight.CSCI400 < 3.326161 to the left,
Node number 12: 29 observations
  predicted class=No
                       expected loss=0.3448276 P(node) =0.09119497
```

```
class counts:
                    19
                           10
   probabilities: 0.655 0.345
Node number 13: 26 observations
  predicted class=Yes expected loss=0.2307692 P(node) =0.08176101
    class counts:
                    6
                           20
   probabilities: 0.231 0.769
Node number 14: 133 observations,
                                    complexity param=0.01111111
  predicted class=Yes expected loss=0.2631579 P(node) =0.418239
    class counts:
                     35
                           98
  probabilities: 0.263 0.737
  left son=28 (8 obs) right son=29 (125 obs)
  Primary splits:
      Four.CSCI358 < 3.092642 to the right, improve=2.2289470, (0 missing)
      Five.CSCI403 < 3.728962 to the right, improve=1.7944060, (0 missing)
      Two.CSCI261 < 2.85
                             to the left, improve=1.6506320, (0 missing)
      Five.MATH332 < 2.36125 to the right, improve=1.2432230, (0 missing)
      Two.MATH201 < 3.15
                            to the right, improve=0.8300801, (0 missing)
Node number 15: 109 observations
  predicted class=Yes expected loss=0.1192661 P(node) =0.3427673
    class counts:
                    13
   probabilities: 0.119 0.881
Node number 28: 8 observations
  predicted class=No
                       expected loss=0.375 P(node) =0.02515723
    class counts:
                      5
   probabilities: 0.625 0.375
Node number 29: 125 observations,
                                   complexity param=0.01111111
  predicted class=Yes expected loss=0.24 P(node) =0.3930818
    class counts:
                     30
                           95
  probabilities: 0.240 0.760
  left son=58 (9 obs) right son=59 (116 obs)
  Primary splits:
                              to the left, improve=1.9314180, (0 missing)
      Two.CSCI261
                   < 2.85
      Five.CSCI403 < 3.801474 to the right, improve=1.4580860, (0 missing)
      Five.MATH332 < 2.415702 to the right, improve=1.0666670, (0 missing)
      Five.CSCI306 < 3.005169 to the left, improve=0.6272232, (0 missing)
      Eight.CSCI442 < 2.546135 to the right, improve=0.5891068, (0 missing)
Node number 58: 9 observations
  predicted class=No
                       expected loss=0.4444444 P(node) =0.02830189
    class counts:
   probabilities: 0.556 0.444
```

```
Node number 59: 116 observations

predicted class=Yes expected loss=0.2155172 P(node) =0.3647799

class counts: 25 91

probabilities: 0.216 0.784
```

Prediction

Hide

```
predictionsLess = predict(FourYG.rp.Less, testingLess, type="class")
table(testingLess$FourYG, predictionsLess)
```

```
predictionsLess
No Yes
No 10 12
Yes 9 47
```

Confusion Matrix

```
library(caret)
confusionMatrix(table(predictionsLess, testingLess$FourYG))
```

```
Confusion Matrix and Statistics
predictionsLess No Yes
            No
               10
            Yes 12 47
               Accuracy: 0.7308
                 95% CI: (0.6184, 0.825)
   No Information Rate: 0.7179
   P-Value [Acc > NIR] : 0.4572
                  Kappa : 0.3065
Mcnemar's Test P-Value: 0.6625
            Sensitivity: 0.4545
            Specificity: 0.8393
         Pos Pred Value: 0.5263
         Neg Pred Value: 0.7966
             Prevalence: 0.2821
         Detection Rate: 0.1282
   Detection Prevalence: 0.2436
      Balanced Accuracy: 0.6469
       'Positive' Class : No
                                                                                   Hide
min(FourYG.rp.Less$cptable[,"xerror"])
[1] 0.955556
                                                                                   Hide
which.min(FourYG.rp.Less$cptable[,"xerror"])
```

Get the cost complecity parameter of the record

3

```
FourYG.cp.Less = FourYG.rp$cptable[3,"CP"]
FourYG.cp.Less
```

[1] 0.02777778

Hide

```
prune.tree.Less = prune(FourYG.rp.Less, cp= FourYG.cp.Less)
```

Hide

```
prune.tree.Less = prune(FourYG.rp.Less, cp = FourYG.cp.Less)
predictionsLessPrune = predict(prune.tree.Less, testingLess, type="class")
table(testingLess$FourYG, predictionsLessPrune)
```

predictionsLessPrune

No Yes

No 7 15

Yes 4 52

Hide

confusionMatrix(table(predictionsLessPrune, testingLess\$FourYG))

Confusion Matrix and Statistics

predictionsLessPrune No Yes

No 7 4 Yes 15 52

Accuracy : 0.7564

95% CI: (0.646, 0.8465)

No Information Rate : 0.7179 P-Value [Acc > NIR] : 0.26848

Kappa : 0.2909

Mcnemar's Test P-Value: 0.02178

Sensitivity : 0.31818

Specificity: 0.92857

Pos Pred Value : 0.63636

Neg Pred Value : 0.77612

Prevalence: 0.28205

Detection Rate: 0.08974

Detection Prevalence: 0.14103

Balanced Accuracy: 0.62338

'Positive' Class : No

Top 10 variables

Hide

str(LessVariablesSet)

Random Forest model with les variables

Hide

```
FourYG.rf.Less <- randomForest(FourYG ~Two.CSCI261+Two.MATH201+Four.CSCI341+Four.CSCI
358+Five.CSCI306+Five.CSCI403+Five.MATH332+Six.CSCI406+Eight.CSCI400+Eight.CSCI442 ,
data = trainingLess)
FourYG.rf.Less</pre>
```

```
FourYG.rf.prediction.Less <- predict(FourYG.rf.Less, testingLess)
table(FourYG.rf.prediction.Less, testingLess$FourYG)</pre>
```

FourYG.rf.prediction.Less No Yes
No 10 4
Yes 12 52

Hide

importance(FourYG.rf.Less)

	MeanDecreaseGini	
Two.CSCI261	7.459634	
Two.MATH201	12.278136	
Four.CSCI341	9.084376	
Four.CSCI358	12.814361	
Five.CSCI306	12.923026	
Five.CSCI403	14.286177	
Five.MATH332	11.681177	
Six.CSCI406	10.813423	
Eight.CSCI400	13.245431	
Eight.CSCI442	16.094796	

Hide

varImpPlot(FourYG.rf.Less)

FourYG.rf.Less

Hide

confusionMatrix(table(FourYG.rf.prediction.Less, testingLess\$FourYG))

```
Confusion Matrix and Statistics
FourYG.rf.prediction.Less No Yes
                      No
                      Yes 12 52
              Accuracy : 0.7949
                 95% CI: (0.6884, 0.878)
   No Information Rate: 0.7179
   P-Value [Acc > NIR] : 0.08014
                  Kappa : 0.4307
Mcnemar's Test P-Value: 0.08012
           Sensitivity: 0.4545
            Specificity: 0.9286
         Pos Pred Value: 0.7143
         Neg Pred Value: 0.8125
            Prevalence: 0.2821
         Detection Rate: 0.1282
   Detection Prevalence: 0.1795
      Balanced Accuracy: 0.6916
       'Positive' Class : No
```

Logistic Regresion with less variables

```
# Template code
# Step 1: Build Logit Model on Training Dataset
FourYG.lr.Less <- glm(FourYG ~Two.CSCI261+Two.MATH201+Four.CSCI341+Four.CSCI358+Five.
CSCI306+Five.CSCI403+Five.MATH332+Six.CSCI406+Eight.CSCI400+Eight.CSCI442, family= "b
inomial", data = trainingLess)
FourYG.lr.Less</pre>
```

```
Call: glm(formula = FourYG ~ Two.CSCI261 + Two.MATH201 + Four.CSCI341 +
    Four.CSCI358 + Five.CSCI306 + Five.CSCI403 + Five.MATH332 +
    Six.CSCI406 + Eight.CSCI400 + Eight.CSCI442, family = "binomial",
    data = trainingLess)
Coefficients:
                Two.CSCI261
                              Two.MATH201 Four.CSCI341 Four.CSCI358 Five.CSCI
  (Intercept)
306
     Five.CSCI403
                  Five.MATH332
     -5.14326
                    0.18486
                                   0.15821
                                               -0.24165
                                                                0.46495
                                                                               0.35
          0.47539
                        -0.11963
388
  Six.CSCI406 Eight.CSCI400 Eight.CSCI442
      0.26569
                    0.03466
                                   0.26318
Degrees of Freedom: 317 Total (i.e. Null); 307 Residual
Null Deviance:
                   378.9
Residual Deviance: 330.3
                         AIC: 352.3
```

Hide

```
# Step 2: Predict Y on Test Dataset
predicted.lr.Less <- predict(FourYG.lr.Less, testingLess, type="response")</pre>
```

Variable Importance

```
gbmImp.Less <- varImp(FourYG.rf.Less, scale = FALSE)
gbmImp.Less</pre>
```

	Overall <dbl></dbl>
Two.CSCl261	7.459634
Two.MATH201	12.278136
Four.CSCl341	9.084376
Four.CSCl358	12.814361
Five.CSCI306	12.923026
Five.CSCI403	14.286177
Five.MATH332	11.681177
Six.CSCI406	10.813423

Eight.CSCI400	13.245431
Eight.CSCI442	16.094796
1-10 of 10 rows	