Digital Watermarking and Steganography

by Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, Ton Kalker

Chapter 11. Content Authentication

Lecturer: Jin HUANG

2015

The Motivation

- Has the Work been altered in any way whatsoever?
- Has the Work been significantly altered?
- What parts of the Work have been altered?
- Can an altered Work be restored?

Exact Authentication

Even a single bit change can be detected.

A Straightforward Method

- LSB
- Compare with predefined bit sequence.
- Limited authentication capabilities.

Embedded Signatures

Making the watermark "link" to cover.

- Signatures, e.g. SHA, MD5.
- But embedding change the cover.
- Partition the cover into two parts
 - One for signatures.
 - One for embedding.

Erasable Watermarks

It is the original unmodified work.

But there is watermark in it!

The idea:

- ullet c_w is a work with authentication w_r .
- \bullet I can get the true original unmodified c_o .
 - \bullet remove $\mathbf{w_r}$ from $\mathbf{c_w}.$
- Verify \mathbf{w}_r with \mathbf{c}_o .

An Example

Simply use E_BLIND and D_LC with integer w_r .

$$\mathbf{c}_{\mathbf{w}} = \mathbf{c}_{\mathbf{o}} + \mathbf{w}_{\mathbf{r}}.$$

- But, the clamping of the value.
- Picking right w_r to avoid this problem?
 - No. It should be the signature.

A Solution

Modulo addition.

$$\mathbf{c_w} = \mathbf{c_o} + \mathbf{w_r} \mod 256.$$

From the viewpoint of human:

Salt-and-pepper noise.

Detection

From the viewpoint of detector:

• Introduce some noise: from 253 + 5 to 3.

• Compare to clamp: $255 \Rightarrow 3$.

Change of $\mathbf{w}_{\mathbf{r}}$

Original: 5.

• Clamp: 2.

• Modulo : -250.

Illustration

If the values of pixels are far from the borders.

Illustration

If the values of pixels are close to the borders.

- Blank and white strips.
- Images with equalized histograms.

Practical Solutions for Erasability

Difference expansion

- Neighboring pixels are more likely to have similar values.
- Difference between two neighboring pixels has a smaller dynamic range.

Using the difference as the channel.

One Bit Only

Giving two neighboring pixels

 $x_1, x_2 \in \{0, \cdots, 255\}.$

Transform

$$(y_1, y_2) = T(x_1, x_2) = (2x_1 - x_2, 2x_2 - x_1)$$

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \left(\operatorname{Id} + \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \right) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}.$$

Example:

$$T(59, 54) \Rightarrow (64, 49).$$

Modulo 3

How to embed?

• Modulo 3: $y_1 - y_2 = 3(x_1 - x_2)$.

• embed 1: $y_1 + = 1$.

• embed 0: $y_1 - = 1$.

How to detect?

 $y_1 - y_2 \mod 3.$

Convert It Back

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = T^{-1} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = ((4y_1 + 2y_2)/6)$$

An example

• Embedding:

$$c_o = x = (59, 54)$$

 $c_y = Tx = (64, 49)$
 $c_{y_0} = (63, 49)$.

• Extract message:

$$(63-49)\mod 3=14\mod 3=2\Rightarrow 0$$

Recover c_o:

$$14 \Rightarrow 15$$

 $63 \Rightarrow 49 + 15 = 64$
 $c'_o = T^{-1}(64, 49)' = (59, 54).$

Illustration

For More Bits

For *n*-bit:

$$\begin{aligned} (y_1, y_2) &= T_n(x_1, x_2) \\ &= ((n+1)x_1 - nx_2, (n+1)x_2 - nx_1) \\ \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} &= \begin{pmatrix} \operatorname{Id} + n \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}. \end{aligned}$$

Embeddable Pixel Pair

Both values in the pairs (y_1-n,y_2) and (y_1+n,y_2) are within the dynamic range $\{0,\cdots,255\}$.

How to know?

$$y_1 - y_2 \mod (2n+1) = 0.$$

How to do?

- Modify x_1 to make $x_1 + c x_2$ mod (2n + 1) = 0.
- o ...

Illustration

n = 3

Wait a Moment

It is stupid to make it so complex! Why not directly change x_1 so that:

$$x_1 - x_2 \mod 3 = 2 \text{ for } 0, \cdots$$

Benefit

$$y_1 + y_2 = x_1 + x_2.$$

- Less change on (average) brightness.
- Noisy is better than block change.

Question: Difference Expansion

What is the result of embedding 0 into (60, 54)? What is the recovered result?

More Importantly

$$\mathbf{c_o} = (59, 54), (60, 54), m = 0.$$

By T:

$$\mathbf{c}_{\mathbf{w}} = (63, 49), (65, 48).$$

$$\mathbf{c}'_{\mathbf{o}} = (59, 54), (60, 54).$$

•
$$x_1 - x_2$$
:

•
$$c_w = (59, 54)$$
.

$$\mathbf{c}_{\mathbf{o}}' = (59, 54), (60, 54) \dots$$

Fundamental Problem with Erasability

Perfect erasable watermarking

- 100% effectiveness.
- Unique Restoration.
- Low false positive.

It is impossible!

- $\begin{tabular}{l} \bullet & \mbox{Media space cannot hold c_o and its c_w} \\ \mbox{simultaneously}. \end{tabular}$
- $\bullet \ 100\%$ effectiveness leads to 100% false positive.

Difference expansion

Expand the marking space by (2n+1).

Message separation.

Digital Watermarking and Steganography

by Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, Ton Kalker

Chapter 12. Steganography

Lecturer: Jin HUANG

2015

Difference to Watermark

- Imperceptible: watermark.
- Undetectable: steganography.

Cover Work Source Embedding function Channel monitored by (Eve) Key Message Extraction function Key Key

The Warden

The warden is part of the channel.

- Passive
- Active
- Malicious: trying to impersonate Alice or Bob or otherwise tricking them.

Embedding

The cover work is

- Preexisting, and will not be modified: cover lookup.
- Generated, and will not be modified: cover synthesis.
- Preexisting and modified: cover modification.

Look up

- Labeling work by messages.
- Deliver the messages by sequence of transmission.

Example

- 1024 songs for 10-bit message.
- 1024 sequential transmissions lead to 10k-bit.

Synthesis

Creates the stego Work without recourse to a cover Work.

British spies in Wold War II

- Source: a big book of conversations.
- By selecting different phrases from the book.

Packed but nature sequence of look up.

Modification

- Type and magnitude of change.
- Location of change
 - Sequential
 - (Pseudo) random: pseudo-random walk.
 - Adaptive: informed.

The Secret Key

Shared between Alice and Bob

- Seed the pseudo-random walk.
- Seed the noise signal.

The First Attempt

Using LSB.

pixel values can be divided into disjoint pairs of values

$$\circ$$
 $(2i, 2i+1)$

$$2i \rightarrow 2i + 1 : 1, 2i + 1 \rightarrow 2i : 0.$$

Practical Steganographic Methods

- OutGuess
- Masking Embedding as Natural Processing

For Simple Detection

In a bin consists of a pair of values (f, \bar{f}) .

In normal work, if $f>\bar{f}$, how much information can be embedded into this bin?

Let fraction α is used to embed

$$f' = f - \frac{\alpha}{2}(f - \bar{f})$$
$$\bar{f}' = \bar{f} + \frac{\alpha}{2}(f - \bar{f})$$

Sc

$$f' > \bar{f}' \Longrightarrow \alpha \le \frac{2\bar{f}}{f + \bar{f}}.$$

Capacity

- Embedding capacity.
- Steganographic capacity.

More Advanced Method

Defending Against Statistical Steganalysis.

Basic Idea

Each bin contains a lots of pixel pairs.

- Some of them for embedding.
- Some of them for correction.

Identical histogram

One embedding goes with one correction.