

Course > Final E... > Final E... > 3

3

Final Exam due May 20, 2020 05:29 IST Completed

Problem 3

3.0/3.0 points (graded)

Let  $X_1$ ,  $X_2$ ,  $X_3$  be i.i.d. Binomial random variables with parameters n=2 and p=1/2. Define two new random variables

$$Y_1 = X_1 - X_3,$$

$$Y_2 = X_2 - X_3$$
.

We further introduce indicator random variables  $Z_i \in \{0,1\}$  with  $Z_i = 1$  if and only if  $Y_i = 0$  for i=1,2.

Calculate the covariance of  $Y_1$  and  $Y_2$ .

(Give an exact answer or a decimal accurate to at least 3 decimal places.)

Calculate the variance of  $Z_1$ . (Give an exact answer or a decimal accurate to at least 3 decimal places.)

Calculate the covariance of  $Z_1$  and  $Z_2$ . (Give an exact answer or a decimal accurate to at least 3 decimal places.)

STANDARD NOTATION

**Solution:** 



- ullet Since  $X_i$  are independent,  $\mathsf{Cov}\left(Y_1,Y_2
  ight) = \mathsf{Var}\left(X_3
  ight) = np\left(1-p
  ight) = 1/2.$
- ullet  $Z_1$  is Bernoulli with parameter

$$p = \mathbf{P}(Z_1 = 1) = \mathbf{P}(Y_1 = 0) = \mathbf{P}(X_1 = X_3) = (1/4)^2 + (1/2)^2 + (1/4)^2 = 3/8.$$

The variance is

$$Var(Z_1) = p(1-p) = 15/64.$$

ullet The covariance of  $Z_1,Z_2$  is

$$\mathsf{Cov}(Z_1, Z_2) \ = \ \mathbf{E}[Z_1 Z_2] - \mathbf{E}[Z_1] \, \mathbf{E}[Z_2]$$

$$= \ \mathbf{P}(X_1 = X_2 = X_3) - p^2 \quad \text{where } p = 3/8$$

$$= \ (1/4)^3 + (1/2)^3 + (1/4)^3 - (3/8)^2 = 1/64.$$

Submit

You have used 2 of 3 attempts

• Answers are displayed within the problem

## Error and Bug Reports/Technical Issues

**Hide Discussion** 

Topic: Final Exam: Final Exam / 3

| Show all posts   ✓                                                                                                                                                | by recent activity 🗸     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| ☑ Please help to understand Cov(Z1,Z2)                                                                                                                            | 8                        |
| P(X 1 = X 2 = X 3)  Can someone show me how to calculate this like in the solution?                                                                               | 7                        |
| ? [STAFF] The questions are not graded  Hi Staff, This question is not graded for me even though it shows I have used 1 out of 3 attempts                         | npts, and also a green t |
| Sadness I had found and saved the correct answers, but forgot to submit them.                                                                                     | 2                        |
| Cannot see my grade on this task Hi, Staff! I submitted my answer but it is not graded. 'You have used 1 of 3 attempts' Response                                  | se is not marked as cor  |
| Parameter for Z1 - Can you advise where this approach went wrong?  Hi, I took a different approach to get parameter for Z but was wrong. I'd appreciate any advis | se to tell me where wen  |

| <b>∀</b> | How is p = 3/8?  Can someone shed some light on the solution?                                                                                            | 3              |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 2        | My answers for Q3 of the Final<br>a. 1/2 b. 15/64 c. 1/64                                                                                                | 14             |
| <b>∀</b> | What "i.i.d" means?  Let X1, X2, X3 be "i.i.d." Binomial random variables. I do not understand this expression.                                          | 3              |
| <b>∀</b> | Which unit/topic is referred here?  Lam concerned because I use somewhat "manual" tools (i.e. a tree of events) to calculate Bernoulli probability and t | 1 new <u>.</u> |
| 4        |                                                                                                                                                          |                |

© All Rights Reserved

