МІНІСТЕРСТВО ОСВІТИ І НАУКИ В УКРАЇНІ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ"

IПСА Кафедра Системного проектування

РОЗРАХУНКОВО-ГРАФІЧНА РОБОТА

по дисципліні: "Чисельні методи " на тему:

"Дослідження збіжності ітеративних методів розв'язку нелінійних рівнянь "

виконав:

студент II курсу групи ДА-72 Кондратюк Т.Є.

Зміст

Вступ	3
Постановка задачі	
Теоретичні відомості	5
Метод половинного ділення	5
Метод Ньютона (метод дотичних)	6
Метод хорд	8
Метод простих ітерацій	
Реалізація на java	11
Метод половинного ділення	11
Метод Ньютона (метод дотичних)	12
Метод хорд	
Метод простих ітерацій	14
Висновок	
Список джерел	15

Вступ

Ітераційний метод – чисельний метод вирішення математичних задач, наближений метод вирішення нелінійних алгебраїчних рівнянь. Суть полягає в знаходженні за наближеним значенням величину наступного наближення (котре вже є більш точним). Метод дозволяє отримати значення коренів рівняння з заданою точністю у вигляді границі послідовності деяких векторів (ітераційний процес). Характер збіжності і сам її факт залежить від вибору початкового наближеного кореня х0.

Для отримання розв'язку ріняння з необхідною точністю постановка задачі і умов вирішення повинна бути коректною, а метод, що використовується для отримання величин невідомої, повинен бути стійким і збіжним. Якісним показником збіжності є сам факт отримання рішення при заданій точності, а кількісним показником буде число ітерацій К, за яке рішення потрапляє в окіл точного рішення, тобто швидкість вирішення, що вимірюється в циклах ітераційного алгоритму. Також слід врахувати дотримання достатньої умови збіжності ітераційного методу відносно похибки округлення.

Постановка задачі

Дана деяка функція f(x) і необхідно знайти всі або деякі значення x, для яких f(x) = 0;

Значення x^* , при котрому $f(x^*) = 0$, називається коренем (або рішенням) рівняння.

Відносно функції f(x) часто мається на увазі, що f(x) двічі неперервно диференційовна в околі кореня.

В процесі наближеного пошуку коренів рівняння зазвичай виділяють два етапи: локалізація (або відділення) кореня і його уточнення.

Локалізація полягає у визначенні відрізка [a,b], на якому знаходиться один і лише один корінь.

На етапі уточнення кореня вираховують наближене значення кореня з заданою точністю. Наближене значення уточнюють за допомогою ітераційних методів

Теоретичні відомості

Метод половинного ділення

Нехай із попереднього аналізу відомо, що корінь рівняння знаходиться на відрізку $[a_0, b_0]$, тобто $x^*[a_0, b_0]$, так, що $f(x^*)=0$.

Нехай функція f(x) неперервна на відрізку $[a_0, b_0]$ і приймає на кінцях відрізка значення різних знаків, тобто $f(a_0)f(b_0) < 0$.

Розділимо відрізок $[a_0, b_0]$ на дві половини. Отримаємо току $x_0 = (a_0 + b_0)/2$ Обчислимо значення функції в цій точці : f(x0) Якщо f(x0) = 0, то x_0 — шуканий корінь і задача вирішена.

В іншому випадку знаходимо знаки f(x) на кінцях відрізків $[a_0, x_0]$ і $[x_0, b_0]$. Той із них, на кінцях якого f(x) має значення різних знаків приймають за новий відрізок $[a_1, b_1]$, і вираховують наступне наближення $x1 = (a_1 + b_1)/2$.

Похибка методу

Після кожної ітерації відрізок, на якому розташований корінь, зменшується вдвічі, а після n ітерацій в 2ⁿ разів:

$$b_n - a_n = (b_0 - a_0) / 2^n$$

Оскільки корінь належить відрізку $[a_n, b_n]$, а x_n — середина цього відрізка, то величина $|x^*-x_n|$ завжди буде менше половини довжини цього відрізка: $|x^*-x_n| < (b_n - a_n) / 2$, отже $|x^*-x_n| < (b_0 - a_0) / 2$ ^n.

Критерій завершення

При заданій точності наближення ε обчислення закінчуються, коли буде виконано нерівність b_n - $a_n < 2\varepsilon$ або нерівність $n > \log 2 \; ((b_0 - a_0) \, / \, \varepsilon)$ - 1. Таким чином, кількість ітерацій можна визначити заздалегідь. За наближене значення кореня береться величина x_n .

Збіжність методу

На відміну від більшості інших методів уточнення, метод половинного ділення сходиться завжди, тобто володіє безумовною збіжністю. З кожним кроком похибка наближеного значення зменшується в два рази, тобто $|x^*-x_n| < |x^*-x_{n-1}|/2$.

Тому даний метод ϵ методом з лінійною збіжністю

Метод Ньютона (метод дотичних)

Нехай корінь $x^* \in [a, b]$, так, що f(a) f(b) < 0. Припускаємо, що функція f(x) неперервна й двічі неперервно диференційовна на відрізку [a, b]. А її похідні f'(x) і f'(x) зберігають свій знак на [a, b]. Приймемо за x_0 той кінець відрізка, в якому f(x) має той же знак що і f''(x). Рівняння дотичної до f(x) в точці $(x_0, f(x_0))$ буде мати вигляд: $y = f(x_0) + f'(x_0)$ $(x - x_0)$. Перший перетин отримаємо, взявши абсцису точки перетину цієї дотичної з віссю $OX: x_1 = x_0 - f(x_0) / f'(x_0)$. Аналогічно вчинимо з точкою $(x_0, f(x_0))$, потім з точкою $(x_0, f(x_0))$, і так далі. В результаті одержимо послідовність наближень: $x_n + 1 = x_n - f(x_n) / f'(x_n)$.

Похибка методу

Для метода Ньютона справедлива наступна оцінка похибки :

$$|x_n - x^*| \le \frac{M_2}{2m_1} |x_n - x_{n-1}|^2$$
 Де $M_2 = \max_{a \le x \le b} |f''(x)|, m_1 = \min_{a \le x \le b} |f'(x)|$

Критерій завершення

При заданій точності $\varepsilon > 0$ обчислення потрібно вести до тих пір, поки не буде виконано нерівність:

$$\frac{M_2}{2m_1}|x_n-x_{n-1}|^2<\varepsilon$$
 або $|x_n-x_{n-1}|<\sqrt{\frac{2m_1\varepsilon}{M_2}}$ Можна використовувати спрощену умову: $|x_n-x_{n-1}|<\varepsilon$

Збіжність методу

Збіжність методу Ньютона залежить від вибору початкового наближення. Якщо в якості x0 вибрати той з кінців відрізка, для якого f(x) $f''(x) \ge 0$ то ітерації сходяться.

Метод хорд

Метод хорд є ще однією модифікацією методу Ньютона. Нехай відомо, що корінь х * рівняння f(x) = 0 знаходиться на відрізку [a, b] і виконується умова f(b) $f''(b) \ge 0$, тоді x0 = a. Будемо проводити з точки (b, f(b)) прямі через розташовані на графіку функції точки з координатами $(x_n, f(x_n))$.

Абсциса точки перетину такої прямої з віссю ОХ ϵ черговим наближенням x_{n+1}

Прямі на цьому рисунку заміняють дотичні в методі Ньютона. Ця заміна базується на наближеній рівності

$$f'(x_n) \approx \frac{f(b) - f(x_n)}{b - x_n}$$

Замінимо в розрахунковій формулі Ньютона похідну $f'(x_n)$ правою частиною наближеної нерівності. В результаті отримаємо розрахункову формулу методу хорд:

$$x_{n+1} = x_n - \frac{(b-x_n)f(x_n)}{f(b) - f(x_n)}$$

Похибка методу

Похибка методу оцінюється відношенням:

$$|x_{n} - x^{*}| \le \frac{M_{1} - m_{1}}{m_{1}} |x_{n} - x_{n-1}|,$$

$$M_{1} = \max_{a \le x \le b} |f'(x)|, m_{1} = \min_{a \le x \le b} |f'(x)|$$

$$\text{de}$$

Збіжність і критерій завершення

Метод хорд має лінійну збіжність Критерій завершення ітерацій методу хорд:

$$|x_n - x_{n-1}| < \varepsilon$$

Метод простих ітерацій

Для застосування цього методу вихідне нелінійне рівняння f(x) = 0 замінюють еквівалентним: $x = \phi(x)$

Нехай на відрізку [a, b] розташований єдиний корінь. Приймемо за x0 будь-яке значення з інтервалу [a, b]. Обчислимо значення функції $\varphi(x)$ при $x = x_0$ і знайдемо уточнене значення $x1 = \varphi(x_0)$. Продовжуючи цей процес необмежено, отримаємо послідовність наближень до кореня: $x_{n+1} = \varphi(x_n)$

Похибка методу

$$\left|x_{n}-x^{*}\right| \leq \frac{q}{1-q}\left|x_{n}-x_{n-1}\right| \qquad q = \max_{a \leq x \leq b}\left|\varphi'(x)\right|$$

Збіжність методу

Якщо функція φ (x) визначена і неперервна на інтервалі [a, b] і $|\varphi'(x)| < 1, x \in [a,b]$ то процес ітерацій сходиться з будь-якою точністю при будь-якому початковому значенні x0 з інтервалу [a, b].

Геометрична ілюстрація методу

Коренем вихідного нелінійного рівняння ε абсциса точки перетину лінії $y = \phi(x)$ з прямою y = x. З графіків можна побачити, що в методі простих ітерацій можливі як збіжні, так і розбіжні ітераційні процеси. Швидкість збіжності залежить від абсолютної величини $\phi'(x)$. Тому вибір способу зведення вихідного рівняння до виду $x = \phi(x) \varepsilon$ важливим

Критерій завершення

При заданій точності $\varepsilon > 0$ обчислення потрібно вести до тих пір, поки не буде виконано нерівність: $|x_n - x_{n-1}| < \frac{1-q}{q} \varepsilon$

Якщо $q \le 0.5$ можна використовувати спрощене умова: $|x_n - x_{n-1}| < \varepsilon$ Якщо функція f(x) неперервна разім зі своєю першою похідною на відрізку [a,b] і 0 < m < f'(x) < M на [a,b], то зведення рівняння f(x) = 0 до вигляду $x = \phi(x)$ виконують наступним чином:

$$\lambda f(x) = 0$$

$$x = x + \lambda f(x)$$

$$x = \phi(x), \text{ de } \phi(x) = x + \lambda f(x)$$

$$\phi'(x) = 1 + \lambda f'(x)$$

Якщо в якості константи λ взяти $\lambda = -\frac{1}{M}$, то

$$\varphi'(x) = 1 + \lambda f'(x) = 1 - \frac{1}{M} f'(x) < 1 - \frac{m}{M} < 1,$$

$$\varphi'(x) = 1 + \lambda f'(x) = 1 - \frac{1}{M} f'(x) > 1 - \frac{M}{M} = 0$$

Тобто
$$0 < \varphi'(x) < k = 1 - \frac{m}{M} < 1$$

Реалізація на java

Метод половинного ділення

```
import static java.lang.Math.abs;
public class Test {
  static double f(double x) {
     return Math.cos(x) - Math.sqrt(x);
  public static void main(String[] args) {
    double a, b, x = 0, c, eps = 0.00001f;
     int iter = 0;
     System.out.println("Знайти корінь рівняння cos(x)-sqrt(x)=0 на інтервалі [0;10] при eps=0.00001");
     System.out.println();
     long startTime = System.currentTimeMillis();
    a = 0;
    b = 10;
    while (abs(a - b) > eps) {
       iter++;
       c = (a + b) / 2;
       if(f(a) * f(c) \le 0) b = c;
       else {
         a = c;
         x = (a + b) / 2;
     long timeSpent = System.currentTimeMillis() - startTime;
     System.out.println("x = " + x + " f(x) = " + f(x));
    System.out.println("Кількість ітерацій : "+ iter);
     System.out.println("Час роботи: " + timeSpent + " мс");
```

```
Энайти корінь рівняння cos(x)-sqrt(x)=0 на інтервалі [0;10] при eps=0.00001 x = 0.6417465209960938 f(x) = -3.931121899514167E-5 Кількість ітерацій : 20 Час роботи : 0 мс
```

Метод Ньютона

```
import java.io.BufferedReader;
import java.io.InputStreamReader;
class Test {
  public static double f(double x) {
    return Math.cos(x) - Math.sqrt(x);
  public static double df(double x) {
    return (-1)/(2 * Math.sqrt(x)) - Math.sin(x);
  public static double g(double x) {
    return x - f(x) / df(x);
  public static void main (String[] args) throws Exception {
     BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
    double x:
    double eps;
    System.out.println("Знайти корінь рівняння cos(x)-sqrt(x)=0 при eps=0.00001");
    System.out.print("Введіть приблизне значення кореня : ");
    x = Double.parseDouble(reader.readLine());
    eps = 0.00001;
    double iter;
    long startTime = System.currentTimeMillis();
    for(iter = 1; eps < Math.abs(f(x)); iter = iter + 1) {
       if(df(x) == 0)
         System.out.println("Ділення на 0");
         break;
       x = g(x);
    long timeSpent = System.currentTimeMillis() - startTime;
     System.out.printf("Кількість ітерацій: %.0f%n", iter);
    System.out.println("x = " + x);
    System.out.println("g(x) = " + g(x));
    System.out.println("df(x) = " + df(x));
    System.out.println("f(x) = " + f(x));
     System.out.println("Час роботи: " + timeSpent + " мс");
```

```
Энайти корінь рівняння соз(x)-sqrt(x)=0 при eps=0.00001
Введіть приблизне значення кореня : 1
Кількість ітерацій : 4
x = 0.6417143710025017
g(x) = 0.6417143708728826
df(x)= -1.2227342355853725
f(x) = -1.584896658357593E-10
Час роботи : 0 мс
```

```
Знайти корінь рівняння cos(x)-sqrt(x)=0 при eps=0.00001
Введіть приблизне значення кореня : 0
Нескінченний цикл
Знайти корінь рівняння cos(x)-sqrt(x)=0 при eps=0.00001
Введіть приблизне значення кореня : 50
Нескінченний цикл
```

Метод хорд

```
import java.io.BufferedReader;
import java.io.InputStreamReader;
public class Test {
  public static double f(double x) {
     return Math.cos(x) - Math.sqrt(x);
  public static void main(String[] args)throws Exception {
     BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
     double x,eps,a,b,c;
     int n;
     System.out.println("Знайти корінь рівняння cos(x)-sqrt(x)=0 при eps=0.00001");
     System.out.println("Введіть значення а");
     a = Double.parseDouble(reader.readLine());
     System.out.println("Введіть значення b");
     b = Double.parseDouble(reader.readLine());
     eps = 0.00001;
     n = 0;
     do {
       c = (f(b) * a - f(a) * b) / (f(b) - f(a));
       if(f(a) * f(c) > 0)
       else b = c;
     while(Math.abs((f(b) * a - f(a) * b) / (f(b) - f(a)) - c) < eps);
     System.out.printf("Корінь x = \% 10.7 f\% n", x);
     System.out.println("Кількість ітерацій = " + n);
```

```
Энайти корінь рівняння cos(x)-sqrt(x)=0 при eps=0.00001
Введіть значення а

0
Введіть значення b

1
Корінь x = 0,6850734
Кількість ітерацій = 1
```

Метод простих ітерацій

```
import java.io.BufferedReader;
import java.io.InputStreamReader;
public class Test {
  public static double f(double x) {
    return Math.cos(x)*Math.cos(x);
  public static void main(String[] args)throws Exception {
    BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
    double x,eps,a,b,x0;
    int n;
    System.out.println("Знайти корінь рівняння cos(x)-sqrt(x)=0 при eps=0.00001");
    System.out.println("Введіть значення а");
    a = Double.parseDouble(reader.readLine());
    System.out.println("Введіть значення b");
    b = Double.parseDouble(reader.readLine());
    System.out.println("Введіть значення х0");
    x0 = Double.parseDouble(reader.readLine());
    eps = 0.00001;
    int iter;
     long startTime = System.currentTimeMillis();
    for(iter=0;;iter++)
       x=f(x0);
       if((Math.abs(x-x0)) < eps)
         break;
       x0=x;
    long timeSpent = System.currentTimeMillis() - startTime;
    System.out.printf("Kopihb x = \%10.7f\%n", x);
    System.out.println("Кількість ітерацій = " + iter);
     System.out.println("Час роботи: " + timeSpent + " мс");0
```

```
Знайти корінь рівняння cos(x)-sqrt(x)=0 при eps=0.00001
Введіть значення а

0
Введіть значення b

1
Введіть значення x0

0.5
Корінь x = 0,6417097
Кількість ітерацій = 241
Час роботи : 0 мс
```

Висновок

Для знаходження кореня кожен із запропонованих методів потребує початкового задання інтервалу [a,b], на якому розташований корінь. На цьому інтервалі функція повинна бути неперервною.

Методи половинного ділення хорд збіжні завжди, якщо правильно вказати інтервал [a,b], в якому лежить корінь. У нашому прикладі знадобилось 20 ітерацій, щоб знайти х методом половинного ділення і всього 1 ітерація для методу хорд.

Метод Ньютона збіжний лише тоді, коли f(x) і f''(x) мають однакові знаки. В іншому випадку слід обрати інший кінець відрізка. Також функція на відрізку [a,b] повинна бути двічі неперервно диференційовною. Для нашого прикладу знадобилося 4 ітерації

Метод простих ітерацій збіжний, якщо функція $\varphi(x)$ визначена і неперервна на інтервалі [a,b] і $|\varphi'(x)| < 1$. Нам знадобилася 241 ітерація для знаходження x.

Не дивлячись на те, що методи суттєво різняться кількістю ітерацій, час виконання жодного з них не перевищив однієї мілісекунди. Це пояснюється тим, що ітерації різних методів мають різну швидкість виконання.

Список джерел

http://www.cyberforum.ru

https://life-prog.ru/1_7967_metodi-resheniya-nelineynih-uravneniy.html

http://statistica.ru/branches-maths/chislennye-metody-resheniya-uravneniy/#s5