Project 3 – Artificial Neural Networks and Deep Learning CS548 / BCB503 / CS583 Knowledge Discovery and Data Mining - Fall 2019 Prof. Carolina Ruiz

Students: Bhoomi Patel and Srinarayan Srikanthan

	Classification	Regression
Dataset :	'	
Dataset Description	/0	5
Data Exploration	/10	0
Initial Data Preprocessing (if any)	/0:	5
Code Description: Python libraries and functions, and/or your own code	/10	/10
Experiments:		
Guiding Questions	/10	/10
Sufficient & coherent set of experiments	/10	/10
Objectives, Parameters, Additional Pre/Post-processing	/10	/10
Presentation of results	/10	/10
Analysis of individual experiments' results	/10	/10
Summary of Results, Analysis, Discussion, and Visualizations	/20	/20
Advanced Topic	/30	0
Total Written Report	/210 =	/100

Dataset Description, Exploration, and Initial Preprocessing: (at most 1 page)

[05 points] Dataset Description: (e.g., dataset domain, number of instances, number of attributes, distribution of target attribute, % missing values, ...)

The dataset is from the census bureau database to determine the income levels of a person. The number of instances is 199523, with 40 attributes considered for modelling. The target has two classes each having a distribution of 93.80% and 6.20% respectively. The following fields have missing values: State of previous residence(709-0.35%), migration code-change in msa(99696-49.96%), migration code-change in reg(99696-49.96%), migration code-change within reg(99696-49.96%), migration previous residence(709-0.35%), migration previous residence(709-0.35%), migration code-change in msa(99696-49.96%), migration previous residence(709-0.35%), migration code-change within reg(99696-49.96%), migration previous residence(709-0.35%), migration code-change within reg(99696-49.96%), migration previous residence(709-0.35%), migration previous residence(709-0.35%), migration code-change within reg(99696-49.96%), migration previous residence(709-0.35%), r

[10 points] Data Exploration: (e.g., comments on interesting or salient aspects of the dataset, visualizations, correlation, issues with the data, ...)

The dataset has 33 Nominal attributes and 7 Continuous attributes. The dataset is an extensive one, with nearly 2 lakh instance representing the actual population. From the dataset it is observed that among numeric attributes capital gains has the highest standard deviation of 4697.53 and year has the lowest standard deviation of 0.5. It is also observed that capital losses has maximum number of zeros with a percentage of 98.04. By plotting the correlation matrix, we interpreted that *Capital Gains* column is highly correlated to the target variable *income*. The major issue with the dataset is the % of missing values it contains. Of the total columns that contained the missing values, majority columns has missing data almost equal to 50%. Another issue was the distribution of the income attribute, that was used as a classification predictor. It was clearly dominated by one class of values, making it difficult to develop a model to learn patterns in the weaker class.

[05 points] Initial data preprocessing, if any, based on data exploration findings: (e.g., removing IDs, strings, ...)

Removed the entire column *instance weight*. Further there were missing values represented as '?' and the column hispanic Origin has values NA. These values were converted to categorical values using the following: df = df.replace('?', 'Missing'); df = df.fillna(df['hispanic Origin'].mode()[0])

Code Description: Python Libraries and Functions you used and what parameters you experimented with. (At most 1 page.)

[10 points] Classification:

Preprocessing Techniques for Classification: First, we used label encoding for *target* column using function *LabelEncoder()* and then, we *OneHotEncoded* all the nominal values using the function *pd.get_dummies(df) i.e.* OneHotEncoding with drop = 'first'. After encoding, all the variables where scaled using the *StandardScaler()* function.

ANNs:Libraries used:pandas, sklearn.neural_network.MLPClassifier, sklearn.model_selection.KFold,sklearn.metrics,sklearn.metrics.accuracy_score, sklearn.metrics.precision score, sklearn.metrics.recall score, sklearn.metrics.accuracy_score.

The MLPClassifier is invoked for each split of the k-folds with the following parameters: hidden_layer_sizes(the number of layers and number of nodes in each layer), activation(type of activation function for the hidden layer), solver(chosen based on the size of the dataset for weight optimization), alpha, batch_size(size of minibatches for stochastic optimizers), learning_rate(constant/adaptive/invscaling), random_state and momentum(if solver = 'sgd'). These parameters are varied depending on the guiding question and experimented. The performance of every experiment was evaluated using metrics provided by sklearn along with k-fold validation and obtain loss on each iteration using clf.loss_.

The loss function used for classification is log-loss. This is given by: $-\log P(yt|yp) = -(yt \log(yp) + (1 - yt) \log(1 - yp))$

[10 points] Regression:

Preprocessing Techniques for Regression: Used label encoding for column *education* using function *LabelEncoder()* and then, we *OneHotEncoded* all the nominal values using the function *pd.get_dummies(df) i.e.* OneHotEncoding with drop = 'first'. Used *sklearn.preprocessing.scale* to scale the attributes

ANNs: (if same as for classification above, just state so)

Libraries used: pandas, numpy, sklearn.model_selection.K_Fold, sklearn.preprocessing.scale, sklearn.preprocessing.LabelEncoder, sklearn.neural_network.MLPRegressor, sklearn.metrics.mean_absolute_error, sklearn.metrics.mean_squared_error, sklearn.metrics.r2_score

Using KFold=20, split the dataset into training and testing. For ea7ch split, do the following: use MLPRegressor using the parameters hidden_layer_sizes (the no. of hidden layers with nodes in each layer), activation (the type of activation for the hidden layer), solver (chosen based on the size of the dataset for weight optimization), alpha (L2 penalty), batch_size (size of mini batches for sgd), learning_rate (step-size for weight updation), momentum (if solver = 'sgd'), early_stopping, etc. Using fit function, fit the training dataset and then using predict function, compute y_pred for for the test dataset. Obtain loss on each iteration using clf.loss_. Compute correlation coefficient, mean_absolute_error and mean_squared error using the libraries mentioned above. Finally, compute the average of all the performance metrics.

The loss function used here is Squared-loss function. It is also known as Mean Square Error, which is square of difference between actual and predicted values

Note: We ran experiments with values of kFold ranging from 25 to 125 and there were negligible changes in the performance metrics. The only difference was that the time taken to build the model increased drastically with increase in kFold. Thus, we decided to perform experiments using k=20.

Guiding Questions

[10 points] Three Guiding Questions for the Classification Experiments: (at most 1/3 page)

- 1. Predict income based on capital gains, dividends from stocks, weeks per year and age.
- 2. Does the type and category of work determine a person's income.
- 3. Are income and demography of the person related?

[10 points] Three Guiding Questions for the Regression Experiments: (at most 1/3 page)

- 1. Determine age from a person's earnings.
- 2. Delineate age based on income, education and marital status
- **3.** How old is a house-owner?

[40 points]	[40 points] Summary of Classification Experiments. Use k-fold cross-validation for a reasonable k, if possible. What k did you use? k =20.					
Guiding	Pre-process	Parameters: # of hidden layers, # of	Performance metrics:	Time to	Analysis & observations about	
questions		nodes in each hidden layer,	Accuracy, Precision,	build	experiment, and interesting	Calculated
		activation function, "solver", learning	Recall, ROC Area,	model	results	Average Loss
		rate, momentum,	[specify which used]			
1	OneHotEnc	# of hidden layers=1, # of nodes in	Accuracy:94.40	3minutes	With one layer the network was	15.87
	oding,	each hidden layer=10, activation	Precision:74.47	5seconds	able to perform good, identifying	
	LabelEncodi	function='relu', solver=sgd,	Recall:17.45		both classes and the average loss	
	ng, Scaling	alpha=0.0001, batch size= 'auto',	ROC Area:58.43		over 20 iterations was low.Using	
		learning_rate='constant',(tol=1e-3)			tol=1e-3 reduced time and	
					precision but not recall and loss.	
1	OneHotEnc	# of hidden layers=2, # of nodes in	Accuracy:94.56	4minutes	As the number of layers was	15.68
	oding,	each hidden layer=10,5 activation	Precision:71.29	19seconds	increased the time to build the	
	LabelEncodi	function='relu', solver=sgd,	Recall:19.64		network increased but the accuracy	
	ng, Scaling	alpha=0.0001, batch size= 'auto',	ROC Area:59.55		and other parameters including	
		learning_rate='constant'			average loss got better.	
1	OneHotEnc	# of hidden layers=2, # of nodes in	Accuracy:94.54	10minutes	Changing the learning rate to	15.61
	oding,	each hidden layer=10,5, activation	Precision:70.80	7seconds	adaptive had a drastic impact on	
	LabelEncodi	function='relu', solver=sgd,	Recall:19.81		the time to build the network with	
	ng, Scaling	alpha=0.0001, batch size= 'auto',	ROC Area:59.63		not any big difference in the	
		learning_rate=adaptive			remaining parameters.	
2	OneHotEnc	#of hidden layers=3, #of nodes in	Accuracy:93.76	10minutes	The network with three hidden	18.20
	oding,	each hidden layer=10,5,2 activation	Precision:29.85	48seconds	layers was not very good in finding	
	LabelEncodi	function =tanh, solver=sgd, alpha	Recall:2.41		the minority class and hence had a	
	ng, Scaling	=0.0002, batch size=200, momentum	ROC Area:50.09		low recall and precision value, the	
		=0.5 learning_rate ='invscaling',			high accuracy is attributed to the	
					distribution of data.	
2	OneHotEnc	# of hidden layers=3, # of nodes in	Accuracy:93.82	8minutes	By changing the learning rate from	17.35
	oding,	each hidden layer=10,5,2, activation	Precision:54.73	25seconds	invscaling the time to build	
	LabelEncodi	function=tanh, solver=adam,	Recall:3.25		network reduced and changing the	
	ng, Scaling	alpha=0.0002, batch size= 'auto',	ROC Area:51.86		solver type provided better results	
		learning_rate=constant			in terms of precision and avg loss.	
2	OneHotEnc	# of hidden layers=3, # of nodes in	Accuracy:93.85	8minutes	Modifying the solver to lbfgs and	17.15
	oding,	each hidden layer=10,5,2, activation	Precision:57.82	6seconds	keeping the value of alpha at	
	LabelEncodi	function=tanh, solver=lbfgs,	Recall:3.65		0.0002 provided the best results	
	ng, Scaling	alpha=0.0002, batch size= 'auto',	ROC Area:51.74		out of the experiments that were	
		learning_rate='constant'			run in all.	

2	OneHotEnc oding, LabelEncodi ng, Scaling	# of hidden layers=2, # of nodes in each hidden layer=10,5 activation function= logistic, solver=lbfgs, alpha =0.0001,batch size= 400, momentum =0.8 ,learning_rate = 'constant'	Accuracy:92.87 Precision:44.95 Recall:2.86 ROC Area:51.36	7minutes 15seconds	By reducing the number of hidden layers batch size and changing the activation function had a bad impact on performance though it marginally reduced the time.	17.18
3	OneHotEnc oding, LabelEncodi ng, Scaling	# of hidden layers=2, # of nodes in each hidden layer=10,5 activation function=tanh, solver=adam, alpha=0.0002, batch size= 250, learning_rate ='constant'	Accuracy:93.78 Precision:8.33 Recall:1.61 ROC Area:50.0016	5minutes 12seconds	For this guiding question, varying any of the available parameters resulted in similar accuracy, but recall and precision was very low, revealing that there was no finite pattern between the parameters.	22.58
3	OneHotEnc oding, LabelEncodi ng, Scaling	# of hidden layers=2, # of nodes in each hidden layer=10,5 activation function= tanh, solver=adam, alpha=0.0001, batch size= 500, learning_rate= constant	Accuracy:93.97 Precision:15.47 Recall:4.03 ROC Area:50.01	5minutes 42seconds	By changing the batch size to 500 and alpha value provided the best possible result for this guiding question considering all the other experiments by varying the parameters.	22.37

[20 points] Summary of Python Classification Results, Analysis, Discussion, and Visualizations (at most 1/2 page) 1. Analyze the effect of varying parameters/experimental settings on the results. 2. Analyze the results from the point of view of the dataset domain, and discuss the answers that the experiments provided to your guiding questions. 3. Comparison with regression results obtained in project 2.

- 1. From the experiments performed, it was evident that as a)hidden_layer_sizes: we increase the number of hidden layers, nodes in a layer or the learning rate as adaptive or invscaled the time required to construct the network increased. b)activation: The type of activation function used and the solver had a major role in developing the network. For the third guiding question it was activation function= tanh, solver=adam that was able to identify the minority class among data. Other combinations of solvers and activation functions were not able to do so. As time to build the network increased with more layers, performance also had a slight improvement. Having the batch_size small reduced time to construct a network. The average loss decreased when we fine tuned the parameters instead of the default ones.
- 2. From the domain perspective, there was no major relationship between income and demographic data nor the type and class of employment taken. By analysing the data, capital gains had a clear correlation with the target attribute ie., income. In this dataset, the number of people with an income of more than 50000 was very sparse. Finding patterns among them was a challenging task in which capital gains helped in identifying the sparse entries. This is the reason why the results of experiments on first guiding question are better than the other.
- 3. Comparing with the results of the experiments performed in the second project, the following can be inferred: 1) when there was no stopping condition given on the tree the precision and recall values were better than the neural network, and the accuracy was almost the same. 2) when stopping conditions were applied the precision and recall values dipped. The third guiding question being an exception where the neural network performed better in terms of the recall value. Depending on the features considered and its distribution different models/networks performed better. ZeroR outperformed with all metrics which should be attributed to the distribution of the data, except ROC as it identifies only one class.

[40 points] Summary of Regression Experiments Use k-fold cross-validation for a reasonable k, if possible. What k did you use? k = 20. At most 1.5 pages.						
Guiding	Pre-	Parameters: # of hidden layers, #	Performance metrics:	Time to	Analysis & observations about	Root Mean
questions	process	of nodes in each hidden layer,	Correlation Coefficient	build model	experiment, and interesting results	Square Error
		activation function, "solver",	and Error Metric(s)			
		learning rate, momentum,	[specify which used]			
1	OneHotE	# of hidden layers=1, # of nodes in	Loss = 0.47	1 min 39	The model was able to give a good	0.97
	ncoding,	each hidden layer=10, activation	Correlation Coefficient	secs	value for correlation coefficient,	
	Scaling	function='relu', solver='adam',	= 0.06		thus, stating that the attributes	
		alpha=0.0001, batch size= 'auto',	Mean Absolute Error =		were highly correlated to the target	
		random_state=np.random	0.78		attribute	
1	OneHotE	# of hidden layers=3, # of nodes in	Loss = 0.48	1 min 56	Here, though the attributes were	0.98
	ncoding,	each layer=10,5,7, activation	Correlation Coefficient	secs	highly correlated to target, the	
	Scaling	function='relu', solver='sgd',	= 0.04		correlation coefficient decreased	
		alpha=0.0001, batch size='auto',	Mean Absolute Error =		due to the value of the momentum.	
		learning_rate='invscaling',	0.80		Thus, with the increase in friction	
		momentum=0.9			i.e momentum, corr coeff decreases	
1	OneHotE	# of hidden layers=2, # of nodes in	Loss = 0.47	11 secs	As the no. of hidden layers	0.97
	ncoding,	each layer=10, activation	Correlation Coefficient		increased, the corr coeff improved,	
	Scaling	function='identity', solver='lbfgs',	= 0.05		thus stating that the no. of hidden	
		alpha=0.0001, batch_size='auto'	Mean Absolute Error =		layers play an important role in	
			0.79		determining the metrics	
2	OneHotE	# of hidden layers=2, # of nodes in	Loss = 0.15	27 mins 29	With learning rate = 'adaptive', the	0.55
	ncoding,	each layer=10,5, activation	Correlation Coefficient	secs	loss decreased drastically. This was	
	LabelEnc	function='tanh', solver='sgd',	= 0.69		because with every iteration the	
	oding,	alpha=0.0001, batch_size=100,	Mean Absolute Error =		loss decreased and hence the	
	Scaling	learning_rate='adaptive',	0.41		model took so long to build	
		momentum=0.5				
2	OneHotE	# of hidden layers=1, # of nodes in	Loss = 0.15	6 mins 47	The time taken to build this model	0.55
	ncoding,	each layer=10, activation function	Correlation Coefficient	secs	was quite less compared to the	
	LabelEnc	= 'logistic, solver='lbfgs',	= 0.69		above because of the solver and the	
	oding,	alpha=0.0005, batch_size='auto',	Mean Absolute Error =		activation function. Yet the metrics	
	Scaling	early_stopping=True	0.40		obtained were quite similar	
2	OneHotE	# of hidden layers=3, # of nodes in	Loss = 0.15	7 mins 20	With the increase in alpha there	0.55
	ncoding,	each layer=5,5,2, activation	Correlation Coefficient	secs	was a decrease in the variance, thus	
	LabelEnc	function='relu', solver='adam',	= 0.69		avoiding the model from overfitting	
	oding,	alpha=0.0007, batch_size=200,	Mean Absolute Error =		the training data	
	Scaling	random_state=0	0.41			

3	OneHotE	# of hidden layers=4, # of nodes in	Loss = 0.22	2 mins 21	Using beta_1=0.7; the exponential	0.66
	ncoding,	each layer=10,5,2,2, activation	Correlation Coefficient	sec	decay rate, the model trains faster	
	Scaling	function='identity', solver='adam',	= 0.56		and produces results quicker	
		alpha=0.0001, batch_size='auto',	Mean Absolute Error =		compared to the rest	
		beta_1=0.7	0.50			
3	OneHotE	# of hidden layers=2, # of nodes in	Loss = 0.21	1 min 54	Here, as the batch_size was set to	0.65
	ncoding,	each layer=10,2, activation	Correlation Coefficient	secs	200, the time taken to build the	
	Scaling	function='logistic', solver='lbfgs',	= 0.56		model was less as compared to the	
		alpha=0.0005, batch_size=200,	Mean Absolute Error =		others, because the weights are	
		random_state=np.random	0.50		updated after each propagation	
3	OneHotE	# of hidden layers=5, # of nodes in	Loss = 0.22	5 mins 23	early_stopping=True uses the	0.66
	ncoding,	each layer=3,3,2,3,2, activation	Correlation Coefficient	secs	validation data to score the model	
	Scaling	function='relu', solver='sgd',	= 0.56		and hence avoids overfitting by	
		alpha=0.0002, batch_size='auto',	Mean Absolute Error =		returning the best parameters	
		early_stopping=True	0.50			

[20 points] Summary of Python Regression Results, Analysis, Discussion, and Visualizations (at most 1/2 page) 1. Analyze the effect of varying parameters/experimental settings on the results. 2. Analyze the results from the point of view of the dataset domain, and discuss the answers that the experiments provided to your guiding questions. 3. Comparison with regression results obtained in project 2.

- 1. Based on the various parameters used, following was our observation: a)hidden_layer_sizes: As the size of hidden layer increases, the performance metric increases but the time taken to build the model also increases. b) activation and solver: These two together are an important criteria to determine the model. With sgd as solver and adaptive as activation, the accuracy of the model increased. c) batch_size: the network trains faster with mini batches. d) early_stopping: early_stopping helps avoid overfitting the model. e) alpha: Increase in alpha helps to control the high variance of the model
- 2. Guiding Question 1: We found that wage per hour, income and weeks worked in a year would play a major role in determining the person's age. However, the results obtained weren't that good, thus, stating that there is no direct relation between a person's age with the income he earns by working for a particular weeks in a year.

Guiding Question 2: This question produced the best correlation coefficient, thus signifying that education, marital status and income played a very critical role in determining a person's age.

- Guiding Question 3: Further, we decided to compute the age of a person who owns a house i.e is a householder. The performance metrics obtained were moderate and implied that there was some relationship between the attribute detailed household summary in household = Householder and the target attribute age.
- **3.** By comparing results with project 2, following was inferred; Guiding Question 1: With one hidden layer, solver='adam' and activation='relu', the model predicted the same results as the DecisionTreeRegressor. On comparing with zeroR, the results were somewhat closer. Guiding Question 2: The performance metrics obtained with solver='sgd' and learning_rate='adaptive' were quite similar to this model and hence, the neural network was able to predict the same as the DecisionTreeRegressor. Guiding Question 3: With alpha=0.005 and batch_size = 100, similar results were obtained, thus implying that both model correctly avoided high variance and hence ultimately prevented the model from overfitting the training data.

Advanced Topic (AT MOST 1 PAGE): Conditional Generative Adversarial Networks (cGANs)

[7 points] List of sources/books/papers used for this topic (include URLs if available). Provide full references (authors, title, where published, year, ...).

- Jon Gauthier, Conditional generative adversarial networks for convolutional face generation, Technical report, March 2015 (https://www.foldl.me/uploads/2015/conditional-gans-face-generation/paper.pdf)
- Mehdi Mirza, Simon Osindero, Conditional Generative Adversarial Nets, arXiv, Cornell University, 6 Nov 2014 (https://arxiv.org/pdf/1411.1784.pdf)
- Connor Shorten, Must Read Papers on GANs, TowardsDataScience blog, Mar 4 2019 (https://towardsdatascience.com/must-read-papers-on-gans-b665bbae3317)

[20 points] In your own words, provide an in-depth, yet concise, description of your chosen topic. Make sure to cover all relevant data mining aspects of your topic. Your description here should be comprehensive and in-depth (it should reflect work at the graduate level).

Generative Adversarial Network are deep Neural Nets that consists of two 'adversarial' models viz. Generator model G which tries to capture the distribution of data and generates new data instances and the Discriminator model D which estimates the probability if its from the training sample or from G. To learn a generator distribution over data x, a mapping function from is build from noise distribution and data spaces. Both G and D are trained simultaneously, the values of G and D are augmented to minimize the value of log(1 - D(G(z))) and maximize log D(x) respectively. The mapping function is represented using the following equation:

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

Conditional Generative Adversarial Networks (cGANs) are an extension of GANs wherein an external condition y is applied to both the Discriminator and the Generator. This further assists in building models with different contextual information by applying different conditions and helps the generator in generating fake samples with a specific condition. For eg: with the help of noise data we could generate face of a person with sunglasses. This makes cGAN not completely unsupervised as we need some class labels to guide them. In the objective function for cGANs, the generator has prior noise and condition y are combined and for the discriminator the data x and condition y are presented as inputs. In the discriminator x and y are presented as inputs to a discriminative function and in the generator the prior input noise z, and y are combined in joint hidden representation. This provides the network a headstart in what to look for. The objective function is represented as follows:

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x}|\boldsymbol{y})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z}|\boldsymbol{y})))].$$

In conclusion, cGANs have lot of potential for interesting and useful applications. Various experiments performed by the authors in the above mentioned papers have proved that cGANS are way more effective than conventional model and that the conditional information y could be used to deterministically control the output of the generator; which further implied that cGANs could be used to generate images from spoken text or handwritten words.

[3 points] Describe how this topic relates to deep learning and the material covered in this course.

In this course, we discussed how deep learning uses hierarchy of neural networks to imitate our brain. Since, cGAN; which is a deep learning and unsupervised (not completely) machine learning technique in GAN also consists of Multilayer Perceptrons (MLP) which has various applications, this topic is highly related to Deep Learning.

Authorship: The initial Data Exploration was done by Bhoomi whereas visualizing the dataset to obtain correlation was done by Sri. Both of the members came up with different guiding questions and both built their code, ran experiments and then based on the results, merged the code to obtain the best output for the guiding questions. Mutually decided which would be the best part of the model to incorporate in the report and it was GAN concept that motivated Sri to choose the advanced topic. Based on the topic, Bhoomi came up with the concept of Conditional GANs.