Brownian Motion

Pef: (With)the is 5BM if With is conti. n.s.

has stationary indept increment. With a Not.

(1) Livy 's Construction:

We will play connect-the-Not on Co.17.

Suppose Zk in Nov. 11.

i) fw...

Note: $W(1) \sim N(0,1)$. Set X(1) = W(1).

Connect (0.0) to (1, W(1)). $\Rightarrow X'''(t) = Z_1 t$.

Note: $W(\frac{1}{2}) \sim N(0, \frac{1}{2})$. $X''(\frac{1}{2}) = \frac{Z_1}{2} \sim N(0, \frac{1}{4})$ Fet $X''(\frac{1}{2}) = X''(\frac{1}{2}) + \frac{Z_2}{2} \sim N(0, \frac{1}{2})$ Connect (0,0), $(\frac{1}{2}, X''(\frac{1}{2}))$, (1, X''(0))Where $X'''(1) = X'''(1) = Z_1$.

iii) Analogously. nt step n, from x" to x" :

$$\begin{cases} \chi^{(n+1)}(2k/2^{n+1}) = \chi^{(n)}(2k/2^{n+1}) \\ \chi^{(n+1)}(2k+1/2^{n+1}) = \frac{1}{2}(\chi^{(n)}(\frac{k+1}{2^n}) - \chi^{(n)}(\frac{k}{2^n}) + \frac{Z_{2^n+1}}{2^{\frac{n}{2}+1}} \end{cases}$$

By induction: (X (*/2001) - X (**1/2001) k

are inhept increments,

iv) Prove: X"(+) — With Hteloil]. n.s.

Lemma. Grand Nov. 13. Then polant & Joing for large n) = 1. for some c > 2Pf: $p \in G_{n} : X$) = $\int_{X}^{\infty} e^{-\frac{t^{2}}{2}} lt = \frac{c}{X}$ $\Rightarrow g$ Borel - Cantelli. Lemma: $g \in [G_{n}] : g \in [$

Set $M_{n} = \max_{t \in \Omega_{n}, |I|} |X^{(n)}(t) - X^{(n+1)}| = 2 \max_{t \in \Omega_{n}, |I|} |X^{(n+1)}(t)| = 2 \max_{t \in \Omega$

V) With ~ Ninth. Ht & Ci. 17.

Pf: $\exists r_n = k/2^m \rightarrow t$. $W(t_n) \sim N(0, t_n)$ By white of $W : W(t_n) = \lim_n W(t_n) \sim N(0, t_n)$ (Write $W(t_n) \sim J_{t_n} Z_n \cdot Z_n \sim N(0, 1)$)

Vi) W has indept. Stationary increments.

Pf: For seten. if $5n \rightarrow s$. $tn \rightarrow t$. $un \rightarrow n$. $(w_{tn}) - w_{tsn}$, $w_{tnn} - w_{tnn}$) $\sim (\sqrt{t_{n-5}}, z_{1}, \sqrt{u_{n-5}}, z_{2})$ $z_{1}, z_{2}, \sim N_{tn}$). Let $n \rightarrow \infty$.

(2) Conditional Dist.:

Prop. $Wt = \pm Wn/n$ is indept with $Wn \cdot \forall u > t \geq 0$.

Pf: $C \cdot v \in Wt = \pm Wn/n$, $Wn = \pm \pi u = t/n \cdot u = 0$ Cor. i) $E \in Wt \mid Wn = t/n \cdot Wn \cdot u \cdot t \geq 0$ ii) $Wt \mid Wn \sim Wt = \pm Wn/n \cdot t \cdot t \cdot t \cdot t = 0$

 $\frac{prop. i)}{ii} WtlWs.Wn \sim NcWs + \frac{t-s}{u-s}(Wn-Ws), \frac{ct-s)(u-t)}{n-s}$ $ii) EcWsWtlWn) = \frac{s}{t} EcW_t^2|Wn|$ $for \forall 0 \leq s < t < n.$

Pf: i) $E(W+|W_s,W_n) = \overline{E}(W+-W_s|W_n-W_s)+W_s$ = $E(\widetilde{W}+-s|\widetilde{W}-s)+W_s$

ii) Cherk: Ec W+ (Ws - \frac{s}{t} W+) | Wm) = 0

(3) Sojonen Time Problem:

X(t) = Mt + 6W(t), Mso. W is SBM.

Kmk: Alternatively by occupation time Formula from local time. Then:

i) \(\begin{align*} \text{B \in B \

(4) Shift Mitting Time:

Consider $X_t = -Mt + Wt$. M > 0. W_t is SBM.

Next. We find: $P_{-n} \in \mathbb{Z}_b < \mathbb{Z}_n$). Where $\mathbb{Z}_n = \mathbb{Z}_n$ inf $\mathbb{Z}_n = \mathbb{Z}_n = \mathbb{Z}_n$.

Set $\mathbb{Z}_n = \mathbb{Z}_n \times \mathbb{Z}_n = \mathbb{Z}_n = \mathbb{Z}_n = \mathbb{Z}_n = \mathbb{Z}_n = \mathbb{Z}_n = \mathbb{Z}_n$.

Denote: $\mathbb{Z}_n = \mathbb{Z}_n \times \mathbb{Z}_n = \mathbb{Z}_n$

P(max X+ > E) = och) ch + 0). # 270.

Pf: [HS = $\int_{0}^{L} \frac{m_{\Lambda} x}{6 x + 2 h} W(t) + m_{\Lambda} t \neq 1$] $\sum_{k=1}^{L} \frac{p_{k}}{6 x + 2 h} \sum_{k=1}^{L} \frac{p_{k}}{2 x + 2 h} = 0$ $\sum_{k=1}^{L} \frac{p_{k}}{2 x + 2 h} \sum_{k=1}^{L} \frac{p_{k}}{2 x + 2 h} = 0$ $\sum_{k=1}^{L} \frac{p_{k}}{2 x + 2 h} \sum_{k=1}^{L} \frac{p_{k}}{2 x + 2 h} = 0$

By first step analysis: $u(x) \stackrel{\text{mp}}{=} E_X c p c X_T = b (X_h) = E c u c (X_h) + o c h$ $= u(x) + u'(x) E c (X_h - x) + \frac{u'(x)}{2} E c (X_h - x)^2) + \cdots$ $= u(x) + u'(x) c - u h + \frac{1}{2} u''(x) h + o c h$ by Taylor expansion at X.

Divide h at both sides. Let $h \to 0$. Then:

PERSON SERVICE OCH OH-301. VIII

pe Bindsh

- and 1 ay fail = "

By first seek madeers

ax 19=2x 2d 3