Алгоритм А*

Эдуард

30 июля 2019 г.

Постановка задачи 1

Имеем G = (V, E) - неориентированный взвешенный граф с весовой функцией $g: E \to \mathbf{R}$, вершины которого соответствуют положениям, которые можно занимать; ребра - траектории, по которым проходим, двигаясь между соседними вершинами. Известны стартовая v_S и финишная v_F вершины.

Путь $\pi\{v_S,\ldots,v_F\}$ - последовательность вершин и ребер, которая связывает v_S и v_F . Пусть P - множество путей из v_S в v_F .

Вес пути: $g(\pi\{v_S,\ldots,v_F\})=\sum_i g(v_i)$, где $i=S,S+1,\ldots,F-1,F$. Задача: Найти путь $\pi_m\{v_S,\ldots,v_F\}=\arg\min_{\pi\in P}g(\pi)$

Определим эвристическую функцию $f(v_i) = g(v_i) + h(v_i)$, где

 $g(v_i) = g(\pi\{v_S, \dots, v_i\}),$

 $h(v_i)$ - оценка веса пути из v_i в v_F . Должна удовлетворять условию: $h(v_i) \le h^*(v_i),$

 $h^*(v_i)$ - действительный вес пути из v_i в v_F .

В данной задаче можно использовать $h(v_i) = \rho(v_i, v_F)$ - евклидово расстояние от v_i до v_F .

2 Псевдокод

```
A-star(start, goal)
 OPEN := \emptyset;
 CLOSE := \emptyset;
 OPEN.push(start);
 g[start]=0;
 f[start] = g[start] + h[start];
 while OPEN.size > 0 do
   v := \arg\min_{v \in OPEN} f(v);
    OPEN.remove(v);
    if v=goal then
      getPathFromParentPointers(v);
        return "path found";
   end
   CLOSE.push(v);
    Expand(v);
end
return "no path found"
 end
 Expand(v)
 SUCC=getSuccessors(v);
 foreach v' \in SUCC do
   gNew = g(v) + g(\{v, v'\});
    if v' \in CLOSE or gNew \ge g(v) then
    continue;
   end
   if v \notin CLOSE or gNew < g(v) then
      parent[v']=v;
       g(v')=gNew;
       f(v)=g(v)+h(v);
       if v' \notin OPEN then
       Open.push(v')
      \mathbf{end}
   end
end
```

Algorithm 1: A* algorithm

Список литературы

- $1.\ {\rm A}$ Method of Ship's Path Planning at Sea by Yuanliang Zhang Sci-Hub
- 2. A*-based Pathfinding in Modern Computer Games by Xiao Cui and Hao Shi

Paper

3. Path Planning for Ground Simulation Objiect Based on A* Algorithm by Zhao Zhiqiang

Sci-Hub

4. Grid-based angle-constrained path planning by Konstantin Yakovlev (Example of pseudocode)