Álgebra Linear B		
$1^{\rm o}$ semestre do ano lectivo $2006/20$	007— COM+MEC	
Exame da Época Especial — 14 d		
Departamento de Matemática para Curso: Nome:	a a Ciência e Tecnologia — Número:	- Universidade do Minho Classificação:
A prova tem a duração de 120 min de máquina de calcular. Durante desligados e só se pode abandonar é constituída por três grupos e terr ndicam-se as cotações na escala d	a realização da prova os a sala passados 15 minuto nina com a palavra "Fim".	telemóveis devem estar os do seu início. A prova
Grupo I — Indique, na folha do e ustificações, se as seguintes propocaracteres "V" ou "F", respectivamentos oranco: 0; resposta errada: -5, sen	sições são verdadeiras ou f ente. Cotações — respos	falsas usando para tal os ta certa: 5; resposta em
I.1 \square Dadas duas matrizes A e B	3 quaisquer, é sempre poss	sível calcular AB .
I.2 \square Sejam $A \in B$ matrizes commesma ordem.	utáveis. Então, $A \in B$ são	matrizes quadradas da
I.3 A aplicação $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ se $\alpha = 0$.	$f(x_1, x_2, x_3) = (0, x_1 - x_1)$	$(x_3 + \alpha)$, é linear se e só
I.4 \square -3 é um valor próprio de r	nultiplicidade dois da mat	$\operatorname{riz} A = \begin{bmatrix} 0 & 3 \\ 3 & 0 \end{bmatrix}.$
I.5 \square Seja (S) o sistema de equa $\begin{bmatrix} 2 & 1 & 0 & 1 \\ 3 & 3 & k_1 & 5 \\ 3 & 0 & -3 & -2 \end{bmatrix}, k_1 \in \mathbb{R}, \text{ e cu}$ $k_2 \in \mathbb{R}$. Se $k_1 \in [1, 2]$ e k_2		
I.6 \square Seja (S) um sistema linear é um sistema impossível.	com mais equações do que	e incógnitas. Então, (S)

I.7	Considere o conjunto \mathbb{R}^2 munido das opera	ações $(x_1, x_2) \oplus (y_1, y_2) = (x_1 +$
	$y_1, x_2 + y_2$) e $\alpha \odot (x_1, x_2) = (\alpha^2 x_1, \alpha^2 x_2)$.	Então, $\forall \alpha, \beta \in \mathbb{R}, \forall x \in \mathbb{R}^2$:
	$(\alpha + \beta) \odot x = \alpha \odot x \oplus \beta \odot x.$	

I.8 Considere o conjunto
$$V = \{(x, x^2) | x \in \mathbb{R} \}$$
 munido das operações $(x, x^2) \oplus (y, y^2) = (x + y, (x + y)^2)$ e $\alpha \odot (x, x^2) = (\alpha x, \alpha^2 x^2), \ \alpha \in \mathbb{R}$. Então, $\forall \alpha \in \mathbb{R}, \forall \underline{x}, \underline{y} \in V : \alpha \odot (\underline{x} \oplus \underline{y}) = \alpha \odot \underline{x} \oplus \alpha \odot \underline{y}$.

Grupo II — Complete, na folha do enunciado da prova sem apresentar cálculos nem justificações, as seguintes frases de modo a obter proposições verdadeiras. Cotações — resposta certa: 3; resposta em branco ou errada: 0.

- II.1 Considere o sistema de equações lineares (S) cuja matriz dos coeficientes é $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \alpha \beta \end{bmatrix}$ e cujo vector dos termos independentes é $b = \begin{bmatrix} 0 \\ 0 \\ \beta-1 \end{bmatrix}$, $\alpha, \beta \in \mathbb{R}$.
 - (a) c(A) = 3 se e só se
 - (b) c(A|b) = 1 se e só se
 - (c) (S) é possível e determinado se e só se
 - (d) (S) é impossível se e só se
 - (e) Se $\alpha = 0$ e $\beta = 1$, então $CS_{(S)} =$
- II.2 Seja a matriz $A = \begin{bmatrix} a & b & c \\ d & e & f \\ a & h & i \end{bmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{R})$, tal que |A| = 2.
 - (a) $\begin{vmatrix} d & e & f \\ g & h & i \\ 2a & 2b & 2c \end{vmatrix} =$. (b) $|A^T A^{-1}| =$. (c) $\begin{vmatrix} c & b & a \\ f & e & d \\ 2i & 2h & 2g \end{vmatrix} =$

II.3 Seja
$$A = [a_{ij}] \in \mathcal{M}_{4n \times 4n}(\mathbb{R}), \ a_{ij} = \begin{cases} (-1)^i & \text{se } i \geq j, \\ 0 & \text{se } i < j. \end{cases}$$
 Então, $\det(A) = \begin{bmatrix} & & \\ & & \end{bmatrix}$

II.5 Sejam as matrizes
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
 e $B = [b_{ij}] \in \mathcal{M}_{2 \times 2}(\mathbb{R})$, $b_{ij} = \begin{cases} -1 & \text{se } i \geq j, \\ 1 & \text{se } i < j. \end{cases}$

(a)
$$A^2 =$$
 .

$$. (b) AB =$$

(c)
$$B^{-1} =$$

II.6 A matriz de ordem 2 dada por A =é ortogonal.

- II.7 (a) Sejam x = (1,0,1) e $S_1 = ((1,0,0),(0,1,0),(0,0,1))$ uma base ordenada de \mathbb{R}^3 . Então, $[x]_{\mathcal{S}_1} =$
 - (b) Sejam y = (1, 2, 3) e $S_2 = ((0, 1, 0), (1, 0, 0), (0, 0, 1))$ uma base ordenada de \mathbb{R}^3 . Então, $[y]_{\mathcal{S}_2} =$
 - (c) Sejam z = (1,0,0) e $S_3 = ((1,1,1),(0,1,1),(1,0,1))$ uma base ordenada de \mathbb{R}^3 . Então, $[z]_{\mathcal{S}_3} =$
 - (d) Sejam $p = x^2 + 1$ e $S_4 = (x^2, x^2 1, x + 2)$ uma base ordenada de $\mathbb{R}_2[x]$. Então, $[p]_{\mathcal{S}_4} = |$

II.8 Seja $T \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2), T(x, y, z) = (x + z, x).$

(b)
$$\mathcal{N}_T =$$

(d)
$$n_T =$$

Grupo III — Responda, nas folhas que lhe foram distribuídas e por qualquer ordem, às seguintes questões, indicando todos os cálculos que tiver de efectuar, bem como as respectivas justificações. Cotações: 20+15+(8+8)+20+20.

- III.1 Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ tal que $AA^T = -I_n$. Mostre que n é par, que A é invertível e determine uma expressão para A^{-1} .
- III.2 Defina conjunto gerador de um espaço vectorial, conjunto linearmente independente e base de um espaço vectorial.
- III.3 Considere o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 2 & 3 \\ -5 & 7 \end{bmatrix}$ e o vector dos termos independentes é $b = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$.
 - (a) Mostre, sem o resolver, que o sistema de equações lineares dado é possível e determinado.
 - (b) Resolva o sistema de equações lineares dado através da Regra de Cramer.
- III.4 Considere o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 4 & -3 \\ 3 & 6 & -5 \end{bmatrix}$ e o vector dos termos independentes é $b = \begin{bmatrix} 9 \\ 1 \\ 0 \end{bmatrix}$. Resolva-o através do método de Gauss e do método de Gauss-Jordan.
- III.5 Determine o espectro da matriz $A = \begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$, bem como o espaço próprio do valor próprio de maior módulo.

Fim.