0.1 Addisjon

Oppstilling

Denne metoden baserer seg på plassverdisystemet, der man trinnvis regner ut summen av enerne, tierne, hundrene, o.l.

Eksempel 1

Eksempel 2

Eksempel 3

Eksempel 4

Eksempel 1 (forklaring)

1

- a) Vi legger sammen enerne: 4 + 2 = 6
- b) Vi legger sammen tierne: 3 + 1 = 4
- c) Vi legger sammen hundrene: 2+6=8

Eksempel 2 (forklaring)

- a) Vi legger sammen enerne: 3+6=9
- b) Vi legger sammen tierne: 7+8=15. Siden 10 tiere er det samme som 100, legger vi til 1 på hundreplassen, og skriver opp de resterende 5 tierne på tierplassen.
- c) Vi legger sammen hundrene: 1 + 2 = 3.

Språkboksen

Det å skrive 1 på neste sifferplass kalles "å skrive 1 i mente".

Tabellmetoden

Denne metoden tar utgangspunkt i det éne leddet, og summerer fram til det andre leddet er nådd. Det som i starten kan være litt rart med denne metoden, er at du selv velger fritt hvilke tall du skal legge til, så lenge du når det andre leddet til slutt.

Eksempel 1
$$273 + 86 = 359$$

$$\begin{array}{r|rrrr} & 273 \\ \hline 6 & 6 & 279 \\ 30 & 36 & 309 \\ 50 & 86 & 359 \\ \end{array}$$

Eksempel 1 (forklaring)

		273			273
6	6 36	279 309	6	6	279
30	36	309	30	36	309
			50	86	279 309 359
(c)			(d)		

- (a) Vi starter med det leddet vi selv ønsker, ofte er det lurt å starte med det største leddet.
- (b) Vi legger til 6. Da har vi totalt lagt til 6, og videre er 273 + 6 = 279.
- (c) Vi legger til 30. Da har vi totalt lagt til 36, og videre er 279 + 30 = 309.
- (d) Vi legger til 50. Da har vi totalt lagt til 86, altså har vi nådd det andre leddet, og videre er 309 + 50 = 359.

Oppstilling versus tabellmetoden

Ved første øyekast kan kanskje tabellmetoden bare se ut som en innviklet måte å regne addisjon på samenlignet med oppstilling, men med øving vil mange oppdage at tabellmetoden bedrer evnen til hoderegning.

0.2 Subtraksjon

Oppstilling

Subtraksjon med oppstilling baserer seg på plassverdisystemet, der man trinnvis regner differansen mellom enerne, tierne, hundrene, o.l. Metoden tar også utgangspunkt i et mengdeperspektiv, og tillater derfor ikke differanser med negativ verdi (se forklaringen til *Eksempel 2*).

Eksempel 1 (forklaring)

- (a) Vi finner differansen mellom enerne: 9-4=5
- (b) Vi finner differansen mellom tierne: 8-2=6.
- (c) Vi finner differansen mellom hundrene: 7-3=4.

4

Eksempel 2 (forklaring)

- (a) Vi merker oss at 7 er større enn 3, derfor tar vi 1 tier fra de 8 på tierplassen. Dette markerer vi ved å sette en strek over 8. Så finner vi differansen mellom enerne: 13-7=6
- (b) Siden vi tok 1 fra de 8 tierne, er der nå bare 7 tiere. Vi finner differansen mellom tierne: 7 6 = 1.

Tabellmetoden

Tabellmetoden for subtraksjon tar utgangspunkt i at subtraksjon er en omvendt operasjon av addisjon. For eksempel, svaret på spørsmålet "Hva er 789–324?" er det samme som svaret på spørsmålet "Hvor mye må jeg legge til på 324 for å få 789?". Med tabellmetoden følger du ingen spesiell regel underveis, men velger selv tallene du mener passer best for å nå målet.

Eksempel 1
$$789 - 324 = 465$$

$$\begin{array}{r|rrrr} & 324 \\ \hline & 6 & 330 \\ & 70 & 400 \\ & 389 & 789 \\ \hline & 465 & \\ \hline \end{array}$$

Eksempel 2
$$83 - 67 = 16$$

$$\begin{array}{r|rrrr}
 & 67 \\
\hline
 & 3 & 70 \\
\hline
 & 13 & 83 \\
\hline
 & 16 & \\
\end{array}$$

Eksempel 3

$$564 - 478 = 86$$

	478
2	480
20	500
64	564
86	

$$206,1 - 31,7 = 174,4$$

	31,7
0,3	32
70	102
104,1	206,1
174,4	

Eksempel 1 (forklaring)

$$789 - 324 = 465$$

(b)

	324			
6	330			
70	400			
(c)				

	324			
6	330			
70	400			
389	789			
(d)				

	324			
6	330			
70	400			
389	789			
465				
(e)				

- (a) Vi starter med 324.
- (b) Vi legger til 6, og får 324 + 6 = 330
- (c) Vi legger til 70, og får 70+330=400
- (d) Vi legger til 389, og får 389 + 400 = 789. Da er vi framme på 789.
- (e) Vi summerer tallene vi har lagt til: 6 + 70 + 389 = 465

0.3 Ganging

Ganging med 10, 100, 1000 osv.

0.1 Å gange heltall med 10, 100 osv.

- Når man ganger et heltall med 10, får man svaret ved å legge til sifferet 0 bak heltallet.
- Når man ganger et heltall med 100, får man svaret ved å legge til sifrene 00 bak heltallet.
- Det samme mønsteret gjelder for tallene 1000, 10000 osv.

Eksempel 1

$$6 \cdot 10 = 60$$

$$79 \cdot 10 = 790$$

$$802 \cdot 10 = 8020$$

Eksempel 2

$$6 \cdot 100 = 600$$

$$79 \cdot 100 = 7900$$

$$802 \cdot 100 = 80\,200$$

Eksempel 3

$$6 \cdot 1000 = 6000$$

$$79 \cdot 10\,000 = 790\,000$$

$$802 \cdot 100\,000 = 80\,200\,000$$

0.2 Å gange desimaltall med 10, 100 osv.

- Når man ganger et desimaltall med 10, får man svaret ved å flytte komma en plass til høgre.
- Når man ganger et heltall med 100, får man svaret ved å flytte komma to plasser til høgre.
- Det samme mønsteret gjelder for tallene 1000, 10000 osv.

Eksempel 1

$$7.9 \cdot 10 = 79.8 = 79.$$

$$38.02 \cdot 10 = 380.2$$

$$0.57 \cdot 10 = 05.7 = 5.7$$

$$0.194 \cdot 10 = 01.94 = 1.94$$

Eksempel 2

$$7.9 \cdot 100 = 790, = 790$$

$$38,02 \cdot 100 = 3802, = 3802$$

$$0.57 \cdot 100 = 057 = 57$$

$$0,194 \cdot 100 = 019,4 = 19,4$$

Eksempel 3

$$7,9 \cdot 1000 = 7900, = 7900$$

$$38,02 \cdot 10\,000 = 38020, = 38\,020$$

$$0.57 \cdot 100\,000 = 05.7 = 57000, = 57\,000$$

Merk

regel 0.1 er bare et spesialtilfelle av regel 0.2. For eksempel, å bruke regel 0.1 på regnestykket $7 \cdot 10$ gir samme resultat som å bruke regel 0.2 på regnestykket $7.0 \cdot 10$.

Å gange tall med 10, 100 osv. (forklaring)

Titallsystemet baserer seg på grupper av ti, hundre, tusen osv., og tideler, hundredeler og tusendeler osv (se regel ??). Når man ganger et tall med 10, vil alle enere i tallet bli til tiere, alle tiere bli til hundrere osv. Hvert siffer forskyves altså én plass mot venstre. Tilsvarende forskyves hvert siffer to plasser mot venstre når man ganger med 100, tre plasser når man ganger med 1000 osv.

Utvidet form

Ganging på utvidet form bruker vi for å regne multiplikasjon mellom flersifrede tall. Metoden baserer seg på distributiv lov (regel??).

Eksempel 1

$$\begin{vmatrix} 2 & 4 & \cdot & 3 & = & 7 & 2 \\ 2 & 0 & \cdot & 3 & = & 6 & 0 \\ 4 & \cdot & 3 & = & 1 & 2 \\ \hline 7 & 2 & & & 7 & 2$$

Eksempel 2

$$279 \cdot 34 = 9486$$

Eksempel 1 (forklaring)

24 kan skrives som 20 + 4, altså er

$$24 \cdot 3 = (20+4) \cdot 3$$

Videre er

$$(20+4) \cdot 3 = 20 \cdot 3 + 4 \cdot 3$$

= $60 + 12$
= 72

Eksempel 2 (forklaring)

Vi har at

$$279 = 200 + 70 + 9$$
$$34 = 30 + 4$$

Altså er

$$279 \cdot 34 = (200 + 70 + 9) \cdot (30 + 4)$$

Videre er

$$(200 + 70 + 9) \cdot (30 + 4) = 200 \cdot 30 + 70 \cdot 30 + 9 \cdot 30 + 200 \cdot 4 + 70 \cdot 4 + 9 \cdot 4$$

= 9486

Kompaktmetoden

Kompaktmetoden bygger på de samme prinsippene som ganging på utvidet form, men har en skrivemåte som gjør utregningen korterere.

Eksempel 1

 $279 \cdot 34 = 9486$

Eksempel 1 (forklaring)

Vi starter med å gange sifrene i 279 enkeltvis med 4:

- $9 \cdot 6 = 36$, da skriver vi 6 på enerplassen og 3 i mente.
- $7 \cdot 4 = 28$, da skriver vi 8 på tierplassen og 2 i mente.
- $2 \cdot 4 = 8$, da skriver vi 8 på hundrerplassen.

Så ganger vi sifrene i 279 enkeltvis med 30. Dette kan forenkles til å gange med 3, så lenge vi plasserer sifrene én plass forskjøvet til venstre i forhold til da vi ganget med 4:

- $9 \cdot 3 = 27$, da skriver vi 7 på tierplassen og 2 i mente.
- $7 \cdot 3 = 21$, da skriver vi 1 på hundrerplassen og 2 i mente.
- $2 \cdot 3 = 6$, da skriver vi 6 på tusenplassen.

0.4 Divisjon

Deling med 10, 100, 1000 osv.

0.3 Deling med 10, 100, 1000 osv.

- Når man deler et desimaltall med 10, får man svaret ved å flytte komma en plass til venstre.
- Når man deler et desimaltall med 10, får man svaret ved å flytte komma to plasser til venstre.
- Det samme mønsteret gjelder for tallene 1000, 10000 osv.

Eksempel 1

$$200: 10 = 200,0: 10$$

= 20,00
= 20
 $45: 10 = 45,0: 10$
= 4,50

=4.5

Eksempel 2

$$200:100 = 200,0:100$$

$$= 2,000$$

$$= 2$$

$$45:100 = 45,0:100$$

$$= 0,450$$

$$= 0,45$$

Eksempel 3

$$143,7:10=14,37$$

$$143,7:100=1,437$$

$$143.7:1000 = 0.1437$$

$$93.6:10=9.36$$

$$93.6:100 = 0.936$$

$$93.6:1000 = 0.0936$$

Deling med 10, 100, 1000 osv. (forklaring)

Titallsystemet baserer seg på grupper av ti, hundre, tusen osv., og tideler, hundredeler og tusendeler osv (se regel ??). Når man deler et tall med 10, vil alle enere i tallet bli til tideler, alle tiere bli til enere osv. Hvert siffer forskyves altså én plass mot høgre. Tilsvarende forskyves hvert siffer to plasser mot høgre når man deler med 100, tre plasser når man deler med 1000 osv.

Oppstilling

Divisjon med oppstilling baserer seg på divisjon tolket som inndeling av mengder (se s. ??)

Eksempel 1 (forklaring)

Figuren over illustrerer mengden 92, som vi skal dele inn i 4 like store grupper.

• Vi starter med å fordele så mange av tierne som mulig. Av de 9 tierne, kan hver gruppe få 2. Da har vi totalt fordelt $2 \cdot 4 = 8$ tiere.

• Vi står nå igjen med 1 tier og 2 enere, altså 12 enere. Av de 12 enerne, kan hver gruppe få 3. Da har vi totalt fordelt $3 \cdot 4 = 12$ enere.

• Nå er hele mengden 92 fordelt, og da er vi ferdige med utregningen. I hver gruppe endte vi opp med mengden 23.

Tabellmetoden

Tabellmetoden baserer seg på divisjon som omvendt operasjon av ganging. For eksempel er svaret på spørsmålet "Hva er 76 : 4" det samme som svaret på spørsmålet "Hvilket tall må jeg gange 4 med for å få 76?". På samme vis som for tabellmetoden ved subtraksjon er det opp til en selv å velge passende tall for å nå målet.

Eksempel 3

894:3=298

$\cdot 3$		
300	900	900
-2	-6	894
298		

Merk: Samme regnestykke som i Eksempel 2, men en annen utregning.

Eksempel 1 (forklaring)

Siden vi skal dele 92 med 4, gangar vi med 4 fram til vi når 92.

- (a) Vi ganger 10 med 4, som er lik 40. Da har vi så langt kommet til 40.
- (b) Vi ganger 10 med 4, som er lik 40. Da har vi så langt kommet til 40 + 40 = 80.
- (c) Vi ganger 3 med 4, som er lik 12. Da har vi kommet til 80+12=92, som var målet.
- (d) Vi legger sammen tallene vi ganget med, og får 10 + 10 + 3 = 23.

Tips

Det kan være lurt å se tilbake på utregninger gjort med tabellmetoden for å tenke over om man kunne valgt tall på en bedre måte. For eksempel, i *Eksempel 1* over kunne vi startet med å gange med 20. Dette er omtrent like enkelt som å gange med 10, og det ville ha brakt oss nærmere målet.

Divisjon med rest

Det er langt ifra alltid at svaret ved divisjon blir et heiltal. En måte å uttrykke slike svar på, er å ved å bruke begrepet *rest*. Begrepet er best forklart ved eksempel:

Eksempel 1

Regn ut 11:4 med rest.

Svar:

Det største heltallet vi kan gange med 4 uten at produktet blir større enn 11, er 2. $2 \cdot 4 = 8$, så da har vi 11 - 8 = 3 i rest.

$$11 = 2 \cdot 4 + 3$$

Dette betyr at

$$11:4=2 \text{ og } 3 \text{ i rest}$$

Eksempel 2

Regn ut 19:3 med rest.

Svar:

Det største heltallet vi kan gange med 3 uten at produktet blir større enn 19, er 6. $6 \cdot 3 = 18$, så da har vi 19 - 8 = 1 i rest.

$$19 = 6 \cdot 3 + 1$$

Dette betyr at

$$19:3 = 6 \text{ og } 1 \text{ i rest}$$

Eksempel 3

Regn ut 94:4 med rest.

Svar:

Med oppstilling

$$94:4=23 \text{ og } 2 \text{ i rest}$$

Merk: Da det blir feil å bruke = i figuren over, har vi valgt å bruke \rightarrow .

Med tabellmetoden

$$94:4=23 \text{ og } 2 \text{ i rest}$$

Språkboksen

Hvis vi utfører en modulo-operasjon, finner vi resten i et delestykke. Dette blir ofte vist ved forkortingen \mod . For eksempel er

$$11 \mod 4 = 3$$
 , $19 \mod 3 = 1$

I tillegg til **mod**, blir også **%** og \\ brukt som symbol for denne operasjonen i programmeringsspråk.

Divisjon med blanda tall som svar

Eksempel 1

Regn ut 11:4. Skriv svaret som et blandet tall.

Svar:

$$11: 4 = 2 \text{ og } 3 \text{ i rest} = 2 + \frac{3}{4}$$

Eksempel 2

Regn ut 19:3. Skriv svaret som et blandet tall.

Svar:

$$19: 3 = 6 \text{ og } 1 \text{ i rest} = 6 + \frac{1}{3}$$

Eksempel 1 (forklaring)

Vi starter med å legge merke til at $4 = \frac{4}{1}$. Dette betyr at

$$11:4=11:\frac{4}{1}$$

Av regel ?? har vi at

$$11: \frac{4}{1} = 11 \cdot \frac{1}{4}$$

Videre er $11 = 2 \cdot 4 + 3$, og da er

$$11 \cdot \frac{1}{4} = (2 \cdot 4 + 3) \cdot \frac{1}{4}$$

Av regel ?? har vi at

$$(2 \cdot 4 + 3) \cdot \frac{1}{4} = 2 \cdot 4 \cdot \frac{1}{4} + 3 \cdot \frac{1}{4}$$

= $2 + \frac{3}{4}$

0.4.1 Divisjon med desimaltall som svar

Eksempel 1

Regn ut 11:4. Oppgi svaret som desimaltal.

Svar:

Med oppstilling

$$11:4=2,75$$

Med tabellmetoden

$$11:4=2,75$$

$\cdot 4$		
2	8	8
0,5	2	10
$0,\!25$	1	11
2,75		

Eksempel 1; oppstilling (forklaring)

Siden vi deler med 4, er det snakk om å fordele 11 likt i 4 grupper.

- 8 av de 11 enerne kan vi fordele likt i 4 grupper. Da har vi igjen 3 enere. Dette er det samme som 30 tideler.
- 28 av de 30 tidelene kan vi fordele likt i 4 grupper. Da har vi igjen 2 tideler. Dette er det samme som 20 hundredeler.
- 20 av de 20 hundredelene kan vi fordele likt i 4 grupper.
- Hele mengden 11 er nå fordelt, og da er vi ferdige med utegningen.

0.5 Primtalsfaktorisering

Merk: Primtala mellom 1-100 finn du på side 22.

Eksempel 1 (forklaring)

- (a) Sidan 2 er det første primtallet, undersøker vi om 84 er deleleg med 2. Det er det, fordi 84:2=42.
- (b) Vi undersøker om også 42 er deleleg med 2. Det er det, fordi42:2=21.
- (c) Vi undersøker om også 21 er deleleg med 2. Det er det ikkje, fordi 21:2=10,5. Derfor går vi over til neste primtall, som er 3. 21 er deleleg med 3 fordi 21:3=7.

Sidan 7 er eit primtal, er vi komme i mål.

91	92	93	94	95	96	97	98	99	100
81	82	83	84	85	86	87	88	89	90
71	72	73	74	75	76	77	78	79	80
61	62	63	64	65	66	67	68	69	70
51	52	53	54	55	56	57	58	59	60
41	42	43	44	45	46	47	48	49	50
31	32	33	34	35	36	37	38	39	40
21	22	23	24	25	26	27	28	29	30
11	12	13	14	15	16	17	18	19	20
1	2	3	4	5	6	7	8	9	10