MATH 2130 Summer Evening 2012 Problem Workshop 2

- 1. For the following limits, determine whether or not the limit exists (with justification) and if the limit exists, determine its value.
 - (a) $\lim_{(x,y)\to(0,0)} \frac{x^2-xy+y^2}{x^2+2y^2}$
 - (b) $\lim_{(x,y)\to(0,0)} \frac{x^3y}{x^6+y^3}$
 - (c) $\lim_{(x,y)\to(2,-3)} \frac{x^2-4x-y^2-6y-5}{x^2-4x+y^2+6y+13}$
 - (d) $\lim_{(x,y)\to(3,2)} \frac{\sin(2x-3y)}{2x-3y}$ (where the function is 1 along the path 2x-3y=0.)
 - (e) $\lim_{(x,y)\to(0,0)} \frac{x^4y^4}{x^4+y^4}$
 - (f) $\lim_{(x,y)\to(0,1)} \arctan\left|\frac{y}{x}\right|$
 - (g) $\lim_{(x,y)\to(0,1)} \arctan\left(\frac{y}{x}\right)$
 - (h) $\lim_{(x,y)\to(0,1)} \arctan\left(\frac{x}{y}\right)$
- 2. Show that the function $f(x,y) = 3x^2 + y^2 \cos\left(\frac{2x}{y}\right)$ satisfies the equation

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = 2f(x, y).$$

Answers:

- 1. For the following limits, determine whether or not the limit exists (with justification) and if the limit exists, determine its value.
 - (a) DNE
 - (b) DNE
 - (c) DNE
 - (d) 1
 - (e) 0
 - (f) $\pi/2$
 - (g) DNE
 - (h) 0