Human Perception of Navigational Affordances in Real-World Scenes

Clemens G. Bartnik, Iris I.A. Groen

Video & Image Sense Lab, Informatics Institute, University of Amsterdam, The Netherlands

Aims We move with ease through our environment. We can choose different paths and use a variety of different navigational actions, such as walking, swimming or climbing.

How do we represent navigational affordances of our immediate environment?

Past research focusing on indoor environments suggests that **scene layout** is an important determinant ¹.

Here, we investigated which scene properties predict a larger range of navigational affordances in both indoor and outdoor environments.

t-SNE visualization of our stimuli covering the attribute space of large-scale dataset ² (12k + Images) compared to previous research ^{1, 3}, Warret et Johnson (Number of images: indoor = outdoor natural = outdoor manmade)

Behavior

We collected human annotations (N = 152) for 7 tasks: 3 tasks involved navigation (DVs) and 4 tasks relied on readily identifiable qualitative scene properties (IVs)

3. Navigability: "How easy would it be to move through the scene? Navigable

Not navigable

Independent Variables:

- 1. Material Properties: e.g.: water, wood (not tree), vegetation, dirt/soil, sand, stone/concrete ²
- **2. Contained Objects:** building/wall, tree/plant, road/street, furniture, body of water, rocks/stones ⁴
- 3. Scene Category: room, inside city, hallway, forest, desert, open country, mountain, coast/river ⁵
- 4. Scene Attributes: open/close; manmade/natural; near/far ³

Computation

For 231 stimuli, high-level visual features were collected via **conv layer 5** activations of **VGG16 Places 365** ⁶

Methods

Conclusions

• Navigational affordance are not adequately captured by readily identifiable scene properties. **Total r²:** They only account for 20% and highly overlap.

• Layout captured by goal point localization drives indoor navigational affordances which has been shown by others ¹ and was confirmed by us. But can not be generalized to all types of environments.

• Consequently, future models need to incorporate multiple relevant features that humans use to perceive the navigational affordances of natural scenes.

Total r²: 20 % Residual (80%)

Contact c.g.bartnik@uva.nl Video & Image Sense Lab

UNIVERSITY

OF AMSTERDAM

<u>cgbartnik</u>

References

¹Bonner & Epstein (2017), PNAS | ³Kravitz et al. (2011), J Neurosci | ⁵Oliva & Torralba (2001), Int J Comput Vis | ⁷Kriegeskorte et al. (2008), Front. Syst. Neurosci | ²Patterson & Hays (2012), CVPR | ⁴Fei-Fei et al. (2007), J Vis | ⁶Zhou et al. (2017), IEEE Trans Pattern Anal Mach Intell |