RV32I Base Integer Instruction Set

		imm[31:12]	Base Integer		rd	0110111	LUI rd, imm
		imm[31:12]			rd	0010111	AUIPC rd, imm
		disp[20 10:1 11 19	:12]		rd	1101111	JAL rd, disp
	imm[11:	0]	rs1	000	rd	1100111	JALR rd, rs1, imm
disp[12	[10:5]	rs2	rs1	000	disp[4:1 11]	1100011	BEQ rs1, rs2, disp
disp[12		rs2	rs1	001	disp[4:1 11]	1100011	BNE rs1, rs2, disp
disp[12 10:5]		rs2	rs1	100	disp[4:1 11]	1100011	BLT rs1, rs2, disp
	disp[12 10:5]		rs1	101	disp[4:1 11]	1100011	BGE rs1, rs2, disp
disp[12		rs2	rs1	110	disp[4:1 11]	1100011	BLTU rs1, rs2, disp
disp[12		rs2	rs1	111	disp[4:1 11]	1100011	BGEU rs1, rs2, disp
1.	imm[11:	0]	rs1	000	rd	0000011	LB rd, imm(rs1)
	imm[11:	0]	rs1	001	rd	0000011	LH rd, imm(rs1)
	imm[11:		rs1	010	rd	0000011	LW rd, imm(rs1)
	imm[11:	0]	rs1	100	rd	0000011	LBU rd, imm(rs1)
	imm[11:	0]	rs1	101	rd	0000011	LHU rd, imm(rs1)
imm[1	11:5]	rs2	rs1	000	imm[4:0]	0100011	SB rs2, imm(rs1)
imm[1	11:5]	rs2	rs1	001	imm[4:0]	0100011	SH rs2, imm(rs1)
imm[1	11:5	rs2	rs1	010	imm[4:0]	0100011	SW rs2, imm(rs1)
-	imm[11:	0]	rs1	000	rd	0010011	ADDI rd, rs1, imm
	imm[11:	0]	rs1	010	rd	0010011	SLTI rd, rs1, imm
	imm[11:	0]	rs1	011	rd	0010011	SLTIU rd, rs1, imm
	imm[11:	0]	rs1	100	rd	0010011	XORI rd, rs1, imm
	imm[11:	0]	rs1	110	rd	0010011	ORI rd, rs1, imm
	imm[11:	0]	rs1	111	rd	0010011	ANDI rd, rs1, imm
000000	0	shamt5	rs1	001	rd	0010011	SLLI rd, rs1, imm
000000	0	shamt5	rs1	101	rd	0010011	SRLI rd, rs1, imm
010000	0	shamt5	rs1	101	rd	0010011	SRAI rd, rs1, imm
00000	000	rs2	rs1	000	rd	0110011	ADD rd, rs1, rs2
01000	000	rs2	rs1	000	rd	0110011	SUB rd, rs1, rs2
00000	000	rs2	rs1	001	rd	0110011	SLL rd, rs1, rs2
00000	000	rs2	rs1	010	rd	0110011	SLT rd, rs1, rs2
00000	000	rs2	rs1	011	rd	0110011	SLTU rd, rs1, rs2
00000	000	rs2	rs1	100	rd	0110011	XOR rd, rs1, rs2
00000	0000000		rs1	101	rd	0110011	SRL rd, rs1, rs2
0100000		rs2	rs1	101	rd	0110011	SRA rd, rs1, rs2
00000	0000000		rs1	110	rd	0110011	OR rd, rs1, rs2
00000	0000000 rs2 0000000 rs2		rs1	111	rd	0110011	AND rd, rs1, rs2
0000	pred	succ	00000	000	00000	0001111	FENCE
	0000	00000000000000		001	00000	0001111	FENCE.I
				•	•		-

RV64I Base Integer Instruction Set (in addition to RV32I)

RV641 Base Integer Instruction Set (in addition to RV321)										
imm[11:0]	rs1	110	rd	0000011	LWU rd, imm(rs1)				
imm[11:0]	rs1	011	rd	0000011	LD rd, imm(rs1)				
imm[11:5]	rs2	rs1	011	imm[4:0]	0100011	SD rs2, imm(rs1)				
000000	shamt6	rs1	001	rd	0010011	SLLI rd, rs1, imm				
000000	shamt6	rs1	101	rd	0010011	SRLI rd, rs1, imm				
010000	shamt6	rs1	101	rd	0010011	SRAI rd, rs1, imm				
imm[11:0]	rs1	000	rd	0011011	ADDIW rd, rs1, imm				
0000000	shamt5	rs1	001	rd	0011011	SLLIW rd, rs1, imm				
0000000	shamt5	rs1	101	rd	0011011	SRLIW rd, rs1, imm				
0100000	shamt5	rs1	101	rd	0011011	SRAIW rd, rs1, imm				
0000000	rs2	rs1	000	rd	0111011	ADDW rd, rs1, rs2				
0100000	rs2	rs1	000	rd	0111011	SUBW rd, rs1, rs2				
0000000	rs2	rs1	001	rd	0111011	SLLW rd, rs1, rs2				
0000000 rs2		rs1	101	rd	0111011	SRLW rd, rs1, rs2				
0100000	rs2	rs1	101	rd	0111011	\square SRAW rd, rs1, rs2				

RV32M Standard Extension for Integer Multiply and Divide

0000001	rs2	rs1	000	rd	0110011
0000001	rs2	rs1	001	$^{\mathrm{rd}}$	0110011
0000001	rs2	rs1	010	rd	0110011
0000001	rs2	rs1	011	rd	0110011
0000001	rs2	rs1	100	$^{\mathrm{rd}}$	0110011

MUL rd, rs1, rs2 MULH rd, rs1, rs2 MULHSU rd, rs1, rs2 MULHU rd, rs1, rs2 DIV rd, rs1, rs2

0000001	rs2	rs1	101	rd	0110011	DIVU rd, rs1, rs2
0000001	rs2	rs1	110	rd	0110011	REM rd, rs1, rs2
0000001	rs2	rs1	111	$^{\mathrm{rd}}$	0110011	REMU rd, rs1, rs2

RV64M Standard Extension for Integer Multiply and Divide (in addition to RV32M)

0000001	rs2	rs1	000	$^{\mathrm{rd}}$	0111011	MULW
0000001	rs2	rs1	100	$^{\mathrm{rd}}$	0111011	DIVW
0000001	rs2	rs1	101	$^{\mathrm{rd}}$	0111011	DIVU
0000001	rs2	rs1	110	$^{\mathrm{rd}}$	0111011	REMV
0000001	rs2	rs1	111	$^{\mathrm{rd}}$	0111011	REMU

MULW rd, rs1, rs2 DIVW rd, rs1, rs2 DIVUW rd, rs1, rs2 REMW rd, rs1, rs2 REMUW rd, rs1, rs2

RV32A Standard Extension for Atomic Instructions

00010	aqrl	00000	rs1	010	rd	0101111
00011	aqrl	rs2	rs1	010	rd	0101111
00001	aqrl	rs2	rs1	010	rd	0101111
00000	aqrl	rs2	rs1	010	rd	0101111
00100	aqrl	rs2	rs1	010	rd	0101111
01000	aqrl	rs2	rs1	010	rd	0101111
01100	aqrl	rs2	rs1	010	rd	0101111
10000	aqrl	rs2	rs1	010	rd	0101111
10100	aqrl	rs2	rs1	010	rd	0101111
11000	aqrl	rs2	rs1	010	rd	0101111
11100	aqrl	rs2	rs1	010	rd	0101111

LR.W rd, (rs1)
SC.W rd, rs2, (rs1)
AMOSWAP.W rd, rs2, (rs1)
AMOADD.W rd, rs2, (rs1)
AMOXOR.W rd, rs2, (rs1)
AMOOR.W rd, rs2, (rs1)
AMOAND.W rd, rs2, (rs1)
AMOMIN.W rd, rs2, (rs1)
AMOMAX.W rd, rs2, (rs1)
AMOMINU.W rd, rs2, (rs1)
AMOMINU.W rd, rs2, (rs1)
AMOMINU.W rd, rs2, (rs1)
AMOMAXU.W rd, rs2, (rs1)

RV64A Standard Extension for Atomic Instructions (in addition to RV32A)

						`	,
	00010	aqrl	00000	rs1	011	rd	0101111
Γ	00011	aqrl	rs2	rs1	011	rd	0101111
	00001	aqrl	rs2	rs1	011	rd	0101111
	00000	aqrl	rs2	rs1	011	rd	0101111
	00100	aqrl	rs2	rs1	011	rd	0101111
Γ	01000	aqrl	rs2	rs1	011	rd	0101111
	01100	aqrl	rs2	rs1	011	rd	0101111
	10000	aqrl	rs2	rs1	011	rd	0101111
	10100	aqrl	rs2	rs1	011	rd	0101111
	11000	aqrl	rs2	rs1	011	rd	0101111
	11100	aqrl	rs2	rs1	011	rd	0101111

| LR.D rd, (rs1) | SC.D rd, rs2, (rs1) | AMOSWAP.D rd, rs2, (rs1) | AMOADD.D rd, rs2, (rs1) | AMOXOR.D rd, rs2, (rs1) | AMOOR.D rd, rs2, (rs1) | AMOAND.D rd, rs2, (rs1) | AMOMIN.D rd, rs2, (rs1) | AMOMIN.D rd, rs2, (rs1) | AMOMINU.D rd, rs2, (rs1) | AMOMINU.D rd, rs2, (rs1) | AMOMAXU.D rd, rs2, (rs1)

RV32S Standard Extension for Supervisor-level Instructions

10.020 200114414	antennion for S	aper trees	TO TOT TIESUT GEO	10110	_
0000	000000000000000000000000000000000000000	$00000\overline{00111}$	10011		SCALL
0000	0000000010000000	0000000111	10011		SBREAK
0001		SRET			
000100000001	rs1	000000001	110011	SFENCE.VM	
0001	.000000100000000	0000000111	10011		WFI
0011	.000001100000000	0000000111	10011		MRTH
0011	.000001010000000	0000000111	10011		MRTS
0010	000001010000000	0000000111	.0011		HRTS
1100000000000000	00010		rd	1110011	RDCYCLE rd, csr, rs1
11000000001000	00010		rd	1110011	RDTIME rd, csr, rs1
11000000010000	00010		rd	1110011	RDINSTRET rd, csr, rs1
110010000000000	00010		rd	1110011	RDCYCLEH rd, csr, rs1
110010000001000	00010		rd	1110011	RDTIMEH rd, csr, rs1
110010000010000	00010		rd	1110011	RDINSTRETH rd, csr, rs1
imm[11:0]	rs1	001	rd	1110011	CSRRW rd, csr, rs1
imm[11:0]	rs1	010	rd	1110011	CSRRS rd, csr, rs1
imm[11:0]	rs1	011	rd	1110011	CSRRC rd, csr, rs1
imm[11:0]	imm[4:0]	101	rd	1110011	CSRRWI rd, csr, irs1
imm[11:0]	imm[4:0]	rd	1110011	CSRRSI rd, csr, irs1	
imm[11:0]	imm[4:0]	111	rd	1110011	CSRRCI rd, csr, irs1

RV32F Standard Extension for Single-Precision Floating-Point

imm[11:0]			rs1	010	$^{\mathrm{rd}}$	0000111
imm[11:5] rs2		rs1	010	imm[4:0]	0100111	
rs3	00	rs2	rs1	rm	rd	1000011
rs3 00 rs2		rs2	rs1	rm	rd	1000111

FLW frd, imm(rs1) FSW frs2, imm(rs1) FMADD.S frd, frs1, frs2, frs3 FMSUB.S frd, frs1, frs2, frs3

rs3	00	rs2	rs1	rm	rd	1001011
rs3	00	rs2 rs2	rs1	rm	$^{\mathrm{rd}}$	1001111
0000000	0000000		rs1	rm	$^{\mathrm{rd}}$	1010011
0000100		rs2	rs1	rm	$^{\mathrm{rd}}$	1010011
0001000		rs2	rs1	rm	$^{\mathrm{rd}}$	1010011
0001100		rs2	rs1	rm	$^{\mathrm{rd}}$	1010011
0010000		rs2	rs1	000	$^{\mathrm{rd}}$	1010011
0010000		rs2	rs1	001	$^{\mathrm{rd}}$	1010011
0010000		rs2	rs1	010	$^{\mathrm{rd}}$	1010011
0010100		rs2	rs1	000	$^{\mathrm{rd}}$	1010011
0010100		rs2	rs1	001	$^{\mathrm{rd}}$	1010011
010	0110000	000	rs1	rm	$^{\mathrm{rd}}$	1010011
1010000		rs2	rs1	000	$^{\mathrm{rd}}$	1010011
1010000		rs2	rs1	001	$^{\mathrm{rd}}$	1010011
1010000		rs2	rs1	010	$^{\mathrm{rd}}$	1010011
110	0000000	000	rs1	rm	$^{\mathrm{rd}}$	1010011
110	0000000	001	rs1	rm	$^{\mathrm{rd}}$	1010011
110	0100000	000	rs1	rm	$^{\mathrm{rd}}$	1010011
110	0100000	001	rs1	rm	$^{\mathrm{rd}}$	1010011
111	1000000	000	rs1	000	$^{\mathrm{rd}}$	1010011
111	1000000	000	rs1	001	$^{\mathrm{rd}}$	1010011
111	100000	000	rs1	000	$^{\mathrm{rd}}$	1010011
	0	000000000110000	0010	'	rd	1110011
	0	000000000100000	00010		rd	1110011
	0	000000000010000	00010		$^{\mathrm{rd}}$	1110011
000	0000000	011	rs1	001	$^{\mathrm{rd}}$	1110011
000	0000000	010	rs1	001	$^{\mathrm{rd}}$	1110011
000	0000000	001	rs1	001	$^{\mathrm{rd}}$	1110011
00000000010			imm[4:0]	101	$^{\mathrm{rd}}$	1110011
000	0000000	001	imm[4:0]	101	$^{\mathrm{rd}}$	1110011

FNMSUB.S frd, frs1, frs2, frs3 FNMADD.S frd, frs1, frs2, frs3 FADD.S frd, frs1, frs2 FSUB.S frd, frs1, frs2 FMUL.S frd, frs1, frs2 FDIV.S frd, frs1, frs2 FSGNJ.S frd, frs1, frs2 FSGNJN.S frd, frs1, frs2 FSGNJX.S frd, frs1, frs2 FMIN.S frd, frs1, frs2 FMAX.S frd, frs1, frs2 FSQRT.S frd, frs1, frs2 FLE.S frd, rs1, frs2 FLT.S frd, rs1, frs2 FEQ.S frd, rs1, frs2 FCVT.W.S rd, frs1 FCVT.WU.S rd, frs1 FCVT.S.W frd, rs1 FCVT.S.WU frd, rs1 FMV.X.S rd, frs1 FCLASS.S rd, frs1 FMV.S.X frd, rs1 FRCSR rd, csr, rs1 $\mathrm{FRRM}\ \mathrm{rd},\,\mathrm{csr},\,\mathrm{rs}1$ FRFLAGS rd, csr, rs1 FSCSR rd, csr, rs1 FSRM rd, csr, rs1 FSFLAGS rd, csr, rs1 FSRMI rd, csr, irs1 FSFLAGSI rd, csr, irs1

RV64F Standard Extension for Single-Precision Floating-Point (in addition to RV32F)

11000000010	rs1	rm	rd	1010011
11000000011	rs1	rm	rd	1010011
110100000010	rs1	rm	rd	1010011
110100000011	rs1	rm	rd	1010011

FCVT.L.S rd, frs1 FCVT.LU.S rd, frs1 FCVT.S.L frd, rs1 FCVT.S.LU frd, rs1

RV32D Standard Extension for Double-Precision Floating-Point

ir	nm[11:	0]	rs1	011	rd	0000111
imm[11:5]		rs2	rs1	011	imm[4:0]	0100111
rs3	01	rs2	rs1	rm	rd	1000011
rs3	01	rs2	rs1	rm	rd	1000111
rs3	01	rs2	rs1	rm	rd	1001011
rs3	01	rs2	rs1	rm	rd	1001111
0000001		rs2	rs1	rm	rd	1010011
0000101		rs2	rs1	rm	rd	1010011
0001001		rs2	rs1	rm	rd	1010011
0001101		rs2	rs1	rm	rd	1010011
0010001		rs2	rs1	000	rd	1010011
0010001		rs2	rs1	001	rd	1010011
0010001		rs2	rs1	010	rd	1010011
0010101		rs2	rs1	000	rd	1010011
0010101		rs2	rs1	001	rd	1010011
010	000000	001	rs1	rm	rd	1010011
010	000100	000	rs1	rm	rd	1010011
010	110100	000	rs1	rm	rd	1010011
1010001		rs2	rs1	000	rd	1010011
1010001		rs2	rs1	001	rd	1010011
1010001		rs2	rs1	010	rd	1010011
110	110000100000			rm	rd	1010011
110	110000100001			rm	rd	1010011
110100100000			rs1	rm	rd	1010011
	100100		rs1	rm	rd	1010011
111	000100	000	rs1	001	rd	1010011

FLD frd, imm(rs1) FSD frs2, imm(rs1) FMADD.D frd, frs1, frs2, frs3 FMSUB.D frd, frs1, frs2, frs3 FNMSUB.D frd, frs1, frs2, frs3 FNMADD.D frd, frs1, frs2, frs3 FADD.D frd, frs1, frs2 FSUB.D frd, frs1, frs2 FMUL.D frd, frs1, frs2 FDIV.D frd, frs1, frs2 FSGNJ.D frd, frs1, frs2 FSGNJN.D frd, frs1, frs2 FSGNJX.D frd, frs1, frs2 FMIN.D frd, frs1, frs2 FMAX.D frd, frs1, frs2 FCVT.S.D frd, frs1 FCVT.D.S frd, frs1 FSQRT.D frd, frs1 FLE.D frd, rs1, frs2 FLT.D frd, rs1, frs2 FEQ.D frd, rs1, frs2 FCVT.W.D rd, frs1 FCVT.WU.D rd, frs1 FCVT.D.W frd, rs1 FCVT.D.WU frd, rs1 FCLASS.D rd, frs1

RV64D Standard Extension for Double-Precision Floating-Point (in addition to RV32D)

110000100010	rs1	rm	rd	1010011	FCVT
110000100011	rs1	rm	rd	1010011	FCVT
111000100000	rs1	000	rd	1010011	FMV.
110100100010	rs1	rm	rd	1010011	FCVT
110100100011	rs1	rm	rd	1010011	FCVT
111100100000	rs1	000	rd	1010011	FMV.

FCVT.L.D rd, frs1 FCVT.LU.D rd, frs1 FMV.X.D rd, frs1 FCVT.D.L frd, rs1 FCVT.D.LU frd, rs1 FMV.D.X frd, rs1

RV32C Standard Extension for Compressed Instructions

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		RV32C	Standard 1	extension for Coi	npressea ms	structions		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	000	000 imm[5:4 9:6 2 3]				rd'	00	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	001			rs1'	imm[7:6]	rd'	00	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	010	imm[5:3]			imm[2 6]		00	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		imm[5:3]			imm[2 6]		00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	101	imı	m[5:3]				00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	110	imı	m[5:3]				00	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	111	imı	m[5:3]			rs2'	00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		imm[5]			mm[4:0]			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		imm[9]			imn			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		imm	imm		imm			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		imm	imm		imm		-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			imm					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		100111			rs2'			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			imm[11 4 9:8 10 6 7 3:1 5]					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1[8 4:3]					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		' ' ' '						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							10	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1000						10	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			*					
110 imm[5:2 7:6] rs2 10							_	
111 $ \text{imm}[5:2 7:6] $ rs2 10								
10	111		imm[5:2]	[7:6]		rs2	10	

C.ADDI4SPN rd, rs1, imm C.FLD frd, imm(rs1) C.LW rd, imm(rs1) C.FLW frd, imm(rs1) C.FSD frs2, imm(rs1) C.SW rs2, imm(rs1) C.FSW frs2, imm(rs1) C.NOP C.ADDI rd, rs1, imm C.JAL rd, disp C.LI rd, rs1, imm C.LUI rd, imm C.ADDI16SP rd, rs1, imm $C.SRLI\ rd,\ rs1,\ imm$ C.SRAI rd, rs1, imm C.ANDI rs1, rs2, disp C.SUB rd, rs1, rs2 C.XOR rd, rs1, rs2 C.OR rd, rs1, rs2 C.AND rd, rs1, rs2 $C.SUBW\ rd,\,rs1,\,rs2$ C.ADDW rd, rs1, rs2 C.J rd, disp C.BEQZ rs1, rs2, disp C.BNEZ rs1, rs2, disp C.SLLI rd, rs1, imm C.FLDSP frd, imm(rs1) C.LWSP rd, imm(rs1) C.FLWSP frd, imm(rs1) C.JR rd, rs1, imm C.MV rd, rs1, rs2 C.EBREAK C.JALR rd, rs1, imm C.ADD rd, rs1, rs2 C.FSDSP frs2, imm(rs1) C.SWSP rs2, imm(rs1) C.FSWSP frs2, imm(rs1)

RV64C Standard Extension for Compressed Instructions (in addition to RV32C)

011	imm[5:3]		rs1'	imm[7:6]	rd'	00
111	imm[5:3]		rs1'	imm[7:6]	rs2'	00
001	imm[5]	rs1/rd		imm[4:0]		01
011	imm[5]		rs1/rd	im	m[4:3 8:6]	10
111	imm[5:3 8:6]		rs2		10	

C.LD rd, imm(rs1) C.SD rs2, imm(rs1) C.ADDIW rd, rs1, imm C.LDSP rd, imm(rs1) C.SDSP rs2, imm(rs1)