Stability of Operational amplifiers

Willy Sansen

KULeuven, ESAT-MICAS Leuven, Belgium

willy.sansen@esat.kuleuven.be

Table of contents

- Use of operational amplifiers
- Stability of 2-stage opamp
- Pole splitting
- Compensation of positive zero
- Stability of 3-stage opamp

Operational amplifiers do operations

$$-\frac{v_{OUT}}{R_F} = \frac{v_1}{R_1} + \frac{v_2}{R_2} + \frac{v_3}{R_3}$$

Requires High gain High speed Low noise

Opamp specs: Voltage gain is large

Differential input voltage ≈ 0

Input current = 0

Bandwidth is high

Gainbandwidth GBW is very, very high

Low power

Single-ended or fully differential?

Voltage input or current input?

Voltage input Current output **Current input Current output**

Classification

Opamp

Operational Transconduct.

OTA

OCA

CM amp

Operational amplifier

Operational Current amplifier

$$A_{v} = \frac{v_{OUT}}{v_{IN}}$$

$$A_g = \frac{i_{OUT}}{v_{IN}}$$

$$A_i = \frac{I_{OUT}}{I_{IN}}$$

$$A_r = \frac{v_{OUT}}{i_{IN}}$$

$$= A_g R_L$$

= A_i
$$\frac{R_L}{R_S}$$

$$= A_r \frac{1}{R_s}$$

GBW

Feedback configurations

Integrator

$$A_{v} = \frac{1}{j \frac{f}{f_{p}}}$$

$$f_p = \frac{1}{2\pi RC}$$

Low-pass filter

$$A_{v0} = -\frac{R_2}{R_1}$$
 $A_v = \frac{A_{v0}}{(1 + j\frac{f}{f_p})}$

$$f_p = \frac{1}{2\pi R_2 C}$$

High-pass filter

High-pass filter

$$A_{v0} = 1 + \frac{R_2}{R_1}$$

$$A_v = A_{V0} (1 + j \frac{f}{f_z})$$

$$f_z = \frac{1}{2\pi RC}$$

$$R = R_1 / / R_2 = \frac{R_1 R_2}{R_1 + R_2}$$

Low-pass filter with finite attenuation

$$A_{v0} = 1 + \frac{R_2}{R_1}$$
 $A_v = A_{v0} \frac{(1 + j\frac{f}{f_z})}{j\frac{f}{f_z}}$

$$f_z = \frac{1}{2\pi RC}$$

$$R = R_1 + R_2$$

Exchange of gain and bandwidth

Open- and closed-loop gain

$$v_{\varepsilon} = v_{IN} - H v_{OUT}$$

$$V_{OUT} = G v_{\varepsilon}$$

$$A_{c} = \frac{v_{OUT}}{v_{IN}} = \frac{G}{1 + GH} \approx \frac{1}{H}$$

if the loop gain GH = T >> 1

P. Gray, P.Hurst, S.Lewis, R. Meyer: Design of analog integrated circuits, 4th ed., Wiley 2001

What makes an opamp an opamp?

Single-pole amplifier
High impedance = high gain
Exchange Gain-Bandwidth
Stable for all gain values

Wideband amplifier:

Multiple-pole amplifier
Low impedances at nodes
Wide Bandwidth
Stable for one gain only

Single-pole system

Two-pole system

Increase PM by increasing f₂: low f₂

Increase PM by increasing f2

Set PM by setting $f_2 \approx 3$ GBW

Calculate PM for $f_2 \approx 3$ GBW

Open loop gain A =
$$\frac{A_0}{(1+j\frac{f}{f_1})(1+j\frac{f}{f_2})}$$

$$A_c = 1$$
 V_{IN}
 $+A_c$
 $+A$

Closed loop gain
$$A_c = \frac{A}{1+A} \approx \frac{1}{1+j\frac{f}{GBW} + j^2\frac{f^2}{GBW} f_2}$$

$$\approx \frac{1}{1+j2\zeta\frac{f}{f_r} + j^2\frac{f^2}{f_2^2}}$$

 ζ is the damping (=1/2Q) f_r is the resonant frequency

Relation PM, damping and f₂/GBW

$$f_r = \sqrt{GBW f_2}$$
 PM (°) = 90° - arctan $\frac{GBW}{f_2}$ = arctan $\frac{f_2}{GBW}$

$$\frac{f_2}{\text{GBW}} \quad \text{PM (°)} \quad \zeta = \frac{1}{2} \sqrt{\frac{f_2}{\text{GBW}}} \qquad \text{P}_f (\text{dB}) \qquad \text{P}_t (\text{dB})$$

$$0.5 \qquad 27 \qquad 0.35 \qquad 3.6 \qquad 2.3$$

$$1 \qquad 45 \qquad 0.5 \qquad 1.25 \qquad 1.3$$

$$1.5 \qquad 56 \qquad 0.61 \qquad 0.28 \qquad 0.73$$

$$2 \qquad 63 \qquad 0.71 \qquad 0 \qquad 0.37$$

$$3 \qquad 72 \qquad 0.87 \qquad 0 \qquad 0.04$$

Amplitude response vs frequency

$$\zeta = Q = 0.7$$

$$P_{f} = \frac{1}{2 \zeta \sqrt{1 - \zeta^2}}$$

Amplitude response vs time

Table of contents

- Use of operational amplifiers
- Stability of 2-stage opamp
- Pole splitting
- Compensation of positive zero
- Stability of 3-stage opamp

Generic 2-stage opamp

$$|A_v| = 1 \Rightarrow GBW = \frac{g_{m1}}{2\pi C_c}$$

$$f_{nd} = \frac{g_{m2}}{2\pi C_L}$$

Generic 2-stage opamp

$$|A_v| = 1 \implies GBW = \frac{g_{m1}}{2\pi C_c}$$

$$f_{nd} = \frac{g_{m2}}{2\pi} \frac{1}{C_L} + \frac{C_{n1}}{C_c}$$

Elementary design of 2-stage opamp

$$GBW = \frac{g_{m1}}{2\pi C_c}$$

GBW =
$$\frac{g_{m1}}{2\pi C_c}$$
 $f_{nd} = 3 \text{ GBW} = \frac{g_{m2}}{2\pi C_L} \frac{1}{1 + \frac{C_{n1}}{C_c}}$ ≈ 0.3

$$\frac{g_{m2}}{g_{m1}} \approx 4 \frac{C_L}{C_c}$$

Larger current in 2nd stage!

GBW = 100 MHz for
$$C_L = 2 pF$$

Solution: choose
$$C_c = 1 pF$$

Table of contents

- Use of operational amplifiers
- Stability of 2-stage opamp
- Pole splitting
- Compensation of positive zero
- Stability of 3-stage opamp

Generic 2-stage opamp: Miller OTA

Generic two-stage opamp

Approximate poles and zeros

$$A = A_0 \frac{1 - cs}{1 + a s + b s^2}$$

Zero s =
$$\frac{1}{c}$$

Pole
$$s_1 = -\frac{1}{a}$$

$$s_2 = -\frac{a}{b}$$
 if $s_2 >> s_1$

Miller OTA: pole splitting with C_c

Pole splitting for high C_c:

$$f_d = \frac{1}{2\pi A_{v2}R_{n1}C_c}$$

$$f_z = \frac{g_{m2}}{2\pi C_c}$$

is a positive zero!

Effect of positive zero

Negative zero

$A_{v} = A_{v0} \frac{1 + j f / f_{2}}{1 + j f / f_{1}}$ $|A_{v}|$ ϕ_{A} 0° f_{1} f_{2} f_{3}

-90°

-180°

Positive zero

Miller OTA: pole splitting with g_{m2}

Pole splitting by ...

$$\frac{g_{m2}}{g_{m1}} \approx 4 \frac{C_L}{C_c}$$

or
$$g_{m2} C_c \approx 4 g_{m1} C_L$$

Table of contents

- Use of operational amplifiers
- Stability of 2-stage opamp
- Pole splitting
- Compensation of positive zero
- Stability of 3-stage opamp

Positive zero because feedforward

Cut feedforward through C_c - 1

Ref. Tsividis, JSSC Dec.76, 748-753

Cut feedforward through C_c - 2

Compensation with cascodes

Cut feedforward through C_c - 3

$$f_z = \frac{1}{2\pi C_c (1/g_{m2} - R_c)}$$

$$R_c = 1/g_{m2}$$
 No zero
 $R_c > 1/g_{m2}$ Negative zero

Ref. Senderovics, JSSC Dec 78, 760-766

Negative zero compensation

$$R_c >> 1/g_{m2}$$
 $f_z = -\frac{1}{2\pi C_c R_c}$
 $f_z = 3 \text{ GBW}$ $R_c = \frac{1}{3 g_{m1}}$

Final choice:

$$\frac{1}{g_{m2}} < R_c < \frac{1}{3g_{m1}}$$

Exercise of 2-stage opamp

GBW = 50 MHz for $C_L = 2 pF$ Find I_{DS1} ; I_{DS2} ; C_c and R_c !

Choose
$$C_c$$
 = 1 pF > g_{m1} = 2π C_c GBW = 315 μS I_{DS1} = 31.5 μA & 1/ g_{m1} ≈ 3.2 kΩ

$$f_{nd}$$
 = 150 MHz > g_{m2} = 2π C_L 4GBW = $8g_{m1}$ = 2520 μS I_{DS2} = 252 μA & $1/g_{m2}$ ≈ 400 Ω

400 Ω < R_c < 1 kΩ : R_c =
$$1/\sqrt{2.5} \approx 400\sqrt{2.5} \approx 640 \Omega \pm 60\%$$

Table of contents

- Use of operational amplifiers
- Stability of 2-stage opamp
- Pole splitting
- Compensation of positive zero
- Stability of 3-stage opamp

1-stage CMOS OTA

$$GBW = \frac{g_{m1}}{2\pi C_L}$$

2-stage Miller CMOS OTA

$$GBW = \frac{g_{m1}}{2\pi C_C}$$

$$f_{nd1} = \frac{g_{m2}}{2\pi C_L}$$

$$f_{nd1} = 3 GBW$$

3-stage Nested Miller CMOS OTA

Nested Miller with differential pair

Huijsing, JSSC Dec.85, pp.1144-1150

Relation between the f_{nd}'s

Relation f_{nd}'s and power

Elementary design of 3-stage opamp

$$GBW = \frac{g_{m1}}{2\pi C_C}$$

$$f_{nd1} = 3 \text{ GBW} = \frac{g_{m2}}{2\pi C_D}$$

Choose
$$C_D \approx C_C!$$

$$f_{nd2} = 5 GBW = \frac{g_{m3}}{2\pi C_L}$$

$$\frac{g_{m2}}{g_{m1}} \approx 3 \qquad \frac{g_{m3}}{g_{m1}} \approx 5 \frac{C_L}{C_C}$$

Even larger current in output stage!

Exercise of 3-stage opamp

```
GBW = 50 MHz for C_1 = 2 pF
Find I_{DS1}; I_{DS2}; I_{DS3}; C_C and C_D!
Choose C_C = C_D = 1 \text{ pF} > g_{m1} = 2\pi C_C GBW = 315 \mu S
                                                       I_{DS1} = 31 \, \mu A
f_{nd1} = 150 \text{ MHz} > g_{m2} = 2\pi C_D 3GBW = 3g_{m1} = 945 \mu S
                                                        I_{DS2} = 95 \, \mu A
f_{nd2} = 250 \text{ MHz} > g_{m3} = 2\pi C_1 5GBW = 10g_{m1} = 3150 \mu S
                                                          I_{DS3} = 315 \mu A
```

Comparison 1, 2 & 3 stage designs

GBW = 50 MHz for
$$C_L = 2 pF$$

Single stage :
$$I_{DS1} = 31 \mu A$$
 $I_{TOT} = 2I_{DS1} = 62 \mu A$

Two stages: Choose
$$C_C = 1 pF$$

$$I_{DS1} = 31 \ \mu A$$
 $I_{DS2} = 252 \ \mu A$ $I_{TOT} = 2I_{DS1} + I_{DS2} = 314 \ \mu A$

Three stages: Choose
$$C_C = C_D = 1 pF$$

$$I_{DS1} = 31 \; \mu \text{A} \quad I_{DS2} = 95 \; \mu \text{A} \quad I_{DS3} = 315 \; \mu \text{A}$$

$$I_{TOT} = 2I_{DS1} + 2I_{DS2} + I_{DS3} = 567 \; \mu \text{A}$$

Table of contents

- Use of operational amplifiers
- Stability of 2-stage opamp
- Pole splitting
- Compensation of positive zero
- Stability of 3-stage opamp