Storage of Bulk Solids

Dr.Swambabu Varanasi

Storage and Transport of Bulk Solids

Agriculture

Mineral processing

Fertilizer

Construction materials

Food processing

Pharmaceutical

and Many more industries..

Particulate Solids/ Bulk Solids

- Length scale: micron to cm
- Particles types (few listed below):
 - Abrasive
 - Tough
 - Rubbery
 - Soft
 - Dusty
 - Cohesive F
 - Free flowing

Storage Types

- Open storage
- Closed storage

Open storage

- Commonly used materials: Coarse solids like gravel, sand, etc.
- For large quantities: This is the most economical method.
- Problems: Environmental problems such as dusting or leaching of soluble material from the pile.

Sulphur storage

Coal storage

Coal could be a black bomb if improperly stored

If Coal needs to stored in closed container, continuous monitoring of gases (CO, CO₂) and temperature and proper ventilation system are necessary

Closed Storage

Often, Three types of containers/vessels are used – Bin, Hoper and Silo.

Bins

- Larger diameter, Small height
- specified humidity and temperature condition
- Vented
- Mainly for dry materials

Hopers

Silos

- Smaller diameter, Tall
- Made of concrete, wood, steel
- specified humidity and temperature condition
- Sealed (air-tight)

Design matters..

www.jenike.com

Types of flow in Silo's

Core Flow

Mass flow pattern in Silo's

When the outlet valve is closed

Advantages: Motion of the powder is uniform and almost steady,

Bulk density of discharges is constant

Flow stresses are low

Disadvantage: Erosion of wall happens in certain cases which will lead to contamination

https://youtu.be/-ziFKcQ2UjU

Core flow pattern in Silo's

Inhaler

Ela 4. Cabamatic of topical processinal material decalishday

Ref: Principles of metered-dose inhaler design by S. Newman

Dairy Powder packing

Design matters..

Flow problems: Bridging/Arching and Ratholing

https://www.siperm.com/en/

Mass flow

Traces of hammering at a hopper wall

Flow problems in Silo's

Segregation

Source: https://www.youtube.com/watch?v=o8eo-9CVpQ8

Elimination of Segregation

Flowability of powder sample

Angle of Repose (degrees)	Expected Flow	
25-30	Excellent	
31-35	Good	
36-40	Fair	
41-45	Passable	
46-55	Poor - Needs agitation	
56-65	Very Poor	
>66	Very, Very Poor Activate Windows Go to Settings to active	

Although AOR tells the flow ability of materials, doesn't correlate with the hoper angle

Factors influences the flow of particles

- Stresses in Bulk Solids
 - Powder internal friction
 - Cohesion
- Wall Friction
- Compressibility/ permeability
- Process conditions
 - Temperature
 - Humidity
- Time consolidation

Arching

 Arching – a stable arch forms above the silo outlet which stops the discharge of powder.

Powder

Arch of powder with sufficient

flow

strength to prevent

- Two Causes for arching:
- Coarse grained bulk solids can build up arches due to interlocking and wedging of particles.
- To mitigate this:
 - The circular outlet of a conical hopper is at least 6 to 10 times the maximum particle size,
 Xmax
 - The width of the rectangular outlet of a wedge-shaped hopper should be at least 3 to 7 times Xmax

Hoppers

Arching

Another reason for arching:

• An arch occurs when the strength developed by the solids is greater than the stresses acting within the surface of the arch.

 When fine-grained and cohesive bulk solids used, powder develop strength (compressive strength, unconfined yield strength) under the action of compact stress due to adhesive forces between individual particles.

• This type of arching can be avoided by a sufficiently large outlet opening.

Flow – No Flow criterion

• Gravity flow of a solids occurs : stress developed by the solids (σ_D) > compacting stresses in arch (σ_C)

$$ff = \frac{\sigma_{\rm C}}{\sigma_{\rm D}} = \frac{\text{compacting stress in the hopper}}{\text{stress developed in the powder}}$$

- Higher the ff, lower the flowability
- ff depends on:
 - The nature of the solid
 - The nature of the wall material
 - The slope of the hopper wall.

Thank you