Mass and radius constraints for neutron stars from pulse shape modeling

Tuomo Salmi

University of Turku thisal@utu.fi

November 15, 2016

Aim

- Determination of masses and radii for rapidly rotating neutron stars
- Constrain the number of possible equations of state
- The properties of matter at extremely high densities
- Study the effects of polarization measurements on mass and radius constraints

Contents

- Introduction
 - Neutron stars
 - Accreting millisecond pulsars
- Methods
 - Modeling the pulse profiles of accreting millisecond pulsars
 - Bayesian inference and Monte Carlo sampling methods
 - Test our tools and methods with synthetic data
- Results
 - Polarization measurements may be used the get significantly tighter constraints for masses and radii.

- Most dense objects that can be directly observed
- Typical mass $M=1.5M_{\odot}$ and typical radius R=12 km
- Supernuclear densities (5 to 10 times the nuclear equilibrium density $n_0 \approx 0.16~{\rm fm}^{-3}$ of neutrons and protons)
- Are created after the gravitational collapse of a core of a massive star (> $8M_{\odot}$) at the end of its life.

- Composition of the innermost core is unknown.
- Equation of state (EOS) gives the relation between the pressure and density (or mass and radius).
- The EOS of a neutron star is unknown.

Figure: Figure 2 from Lattimer and Prakash (2004).

- Observed masses and radii constrain the number of possible EOSs.
- Upper limits for compactness
 - The general relativity (Schwarzschild condition)
 - Causality condition
- Lower limit for compactness
 - Fastest observed rotational frequency

Figure: Figure 2 from Lattimer and Prakash (2004).

- The highest observed mass rules out many EOSs.
- We aim to find out independent knowledge of both mass and radius.

Figure : Figure from Demorest et al. (2010).

Accreting millisecond X-ray pulsars (AMXP)

- A subgroup of low mass X-ray binaries (LMXB)
- Gas from the accretion disk (stripped from the companion) is channeled onto the magnetic poles of a millisecond pulsar.
- A pair of "hot spots"

Figure: Figure 4 from Romanova et. al (2004).

Accreting millisecond X-ray pulsars (AMXP)

- Recycling scenario
 - The evolutionary progenitors of recycled radio millisecond pulsars

Figure: Figure 4 from Romanova et. al (2004).

Accreting millisecond X-ray pulsars (AMXP)

- Some of AMXPs show outbursts
- SAX J1808.4—3658:
 Nearly coherent oscillations detected during outbursts
- Similar outburst evolution: SAX J1748.9—2021 (in the Figure)

Figure : Figure 1 from Sanna et al. (2016).

SAX J1808.4-3658

Methods

- Pulse shape modeling
- Bayesian analysis
- Monte Carlo sampling methods

Pulse profile modeling

- Schwarzschild + Doppler approximation (S+D)
- Oblate shape of the star taken into account
- Mass and radius affecting the light bending
- Time delays different from different locations

Pulse profile modeling

Observed spectral flux from an infinitesimal spot:

$$dF_E = (1 - u)^{1/2} \delta^4 I'_{E'}(\sigma') \cos \sigma \frac{d \cos \alpha}{d \cos \psi} \frac{dS'}{D^2}$$
 (1)

- D= distance, $\psi=$ bending angle, $\delta=$ Doppler factor, $(1-u)^{1/2}=$ inverse of gravitational redshift, $\sigma=$ emission angle relative to the spot normal, and $\alpha=$ emission angle relative to the radius vector.
- Integration over the spot surface

Pulse profile modeling

- Energy spectrum (energy dependency of I'_{F'})
- Blackbody + Power-law according to observations
- Heated hot spot + Comptonization from an accretion shock
- In this thesis two-component power-law
- $l'_{E'}(\sigma') \propto \sigma'$ either isotropic or "Hopf" profile

SAX J1808.4-3658

Figure: Figure 3 from Poutanen and Gierlinski (2003).

Bayesian inference

$$p(\mathbf{y}|\mathcal{D}) \propto p(\mathcal{D}|\mathbf{y})p(\mathbf{y})$$
 (2)

- \mathcal{D} = Data
- y = Parameters of the pulse profile model
- p(y) = Prior probability distributions of the parameters
- $p(\mathcal{D}|\mathbf{y})$ = Probability distribution of the data given the parameters
- $p(\mathbf{y}|\mathcal{D})$ = Probability distribution of the parameters given the data

Ensemble sampler

- Independent walkers moving the parameter space
- Stretch-move algorithm instead of Metropolis-Hastings
- New sample is either accepted or rejected with a certain probability

Figure: Figure 2 from Goodman and Weare (2010).

Results

- Synthetic data
- Posterior probability distributions

- We have generated a synthetic data similar to SAX J1808.4—3658 using the pulse profile model.
- Parameters assumed to be physically reasonable
- The variability amplitude A determined mainly by observer inclination i and spot co-latitude θ_s:

$$A = \frac{F_{\text{max}} - F_{\text{min}}}{F_{\text{max}} + F_{\text{min}}} \tag{3}$$

$$A \approx \frac{(1 - r_{\rm S}/R)\sin i \sin \theta_{\rm s}}{r_{\rm S}/R + (1 - r_{\rm S}/R)\cos i \cos \theta_{\rm s}}.$$
 (4)

$$A \approx \frac{(1 - r_{\rm S}/R)\sin i\sin\theta_{\rm s}}{r_{\rm S}/R + (1 - r_{\rm S}/R)\cos i\cos\theta_{\rm s}}.$$
 (5)

- Switching *i* and θ_s has no effect on *A*.
- However, the variability of polarized flux depends on i and θ_s separately.
- To study this, we have created two datasets which differ only in i and θ_s .
- We assume either uniform or non-uniform prior probability distributions for parameters.
- We obtain posterior probability distributions for the parameters using the ensemble sampler.

Table: Paramters of the synthetic datasets.

Parameter	Value
Radius R	12.0 km
Mass M	1.5 M _☉
Inclination i	5 ° or 75 °
Spot colatitude θ_s	75 ° or 5 °
Spot angular size ρ	10.0 °
Distance D	2.5 kpc
Temperature $T_{\rm eff}$	2.0 keV

Figure: Equatorial spot Figure: Polar spot

Figure: Polar spot with only uniform priors.

Figure : Polar spot with non-uniform i and θ_s priors (blue lines).

Figure: Equatorial spot with only uniform priors.

Figure : Equatorial spot with non-uniform i and θ_s priors (blue lines).

Results

- Only upper limits for masses and radii when only non-uniform priors
- Both upper and lower limits when prior information for i and θ_s applied
- Correct $i \theta_s$ solution not found without prior information.
- The size of the spot is well constrained but the distance is not.

Summary

- AMXPs show coherent oscillations at the spinning frequency of the pulsar.
- These oscillations may be used to constrain masses and radii of pulsars.
- Tighter constraints for mass and radius from polarization
- Future
 - Develope the model
 - From synthetic to real observations

The End