TRIGONOMETRY Chapter 8

Razones trigonométricas de ángulos notables de 30°,60°,45°

HELICO-MOTIVACIÓN

Usando nuestra mano izquierda, aprovecharemos que el dedo meñique y el pulgar forman 90º. Y los otros tres dedos forman aproximadamente los ángulos notables de 30º, 45º y 60º.

Haremos:

$$\frac{\sqrt{\text{Cant. de Dedos}}}{2}$$

Para el seno consideraremos la cantidad de dedos que estén por debajo del dedo seleccionado.

Para el coseno consideraremos la cantidad de dedos que estén por encima del dedo seleccionado.

HELICO THEORY

R.T	30°	60°	45°
sen	<u>1</u>	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$
cos	3 2	1 2	1 √ 2
tan	1 √ 3	√ 3	1
cot	$\sqrt{3}$	1 √ 3	1
sec	$\frac{2}{\sqrt{3}}$	2	√ 2
CSC	2	2 √ 3	√ 2

1. Complete los espacios en blanco:

a. $10 \text{ sen } 30^{\circ} = 5$

b. $\sqrt{3} \tan 60^{\circ} = 3$

c. $6 \cot 45^{\circ} = 6$

- a. $10 \sin 30^{\circ} = 10 \times \left(\frac{1}{2}\right) = 5$
- b. $\sqrt{3} \tan 60^{\circ} = \sqrt{3} \times (\sqrt{3}) = 3$
- c. $6 \cot 45^{\circ} = 6 \times (1) = 6$

2. Calcule A+B si:

$$A = \sqrt{2} \operatorname{sen} 45^{\circ} + \tan 45^{\circ}$$

$$B = \sqrt{3} \cot 30^{\circ} + \cot 45^{\circ}$$

$$A = \sqrt{2} \operatorname{sen} 45^{\circ} + \tan 45^{\circ}$$

$$A = \sqrt{2} \times \left(\frac{1}{\sqrt{2}}\right) + (1)$$

$$A = 1 + 1$$

$$A = 2$$

$$B = \sqrt{3} \cot 30^{\circ} + \cot 45^{\circ}$$

$$B = \sqrt{3} \times \left(\sqrt{3}\right) + (1)$$

$$B = 3 + 1$$

$$B = 4$$

$$\therefore A + B = 6$$

3. Calcule

$$M = \frac{12 \tan 45^{\circ} + 8 \sin 30^{\circ}}{\sec^{2} 60^{\circ}}$$

RESOLUCIÓN:

$$M = \frac{12 \times (1) + 8 \times \left(\frac{1}{2}\right)}{(2)^2}$$

$$M = \frac{12+4}{4} = \frac{16}{4}$$

 $\therefore M = 4$

4. Determine el valor de x.

$$x \tan^2 60^{\circ} - 2 \csc 30^{\circ} = 5 \cot 45^{\circ}$$

$$x \tan^2 60^\circ - 2 \csc 30^\circ = 5 \cot 45^\circ$$

$$x\left(\sqrt{3}\right)^2 - 2(2) = 5(1)$$

$$3x - 4 = 5$$

$$3x = 9$$

$$x = \frac{9}{3}$$

$$\therefore x = 3$$

5. Efectúe:

$$\frac{y + \tan 45^{\circ}}{\sec 60^{\circ}} = \frac{y - \cot^2 30^{\circ}}{\sqrt{2} \sec 45^{\circ}}$$

$$\frac{y+1}{2} = \frac{y-(\sqrt{3})}{\sqrt{2} \times \left(\frac{1}{\sqrt{2}}\right)}$$

$$\frac{y+1}{2} = \frac{y-3}{1}$$

$$y + 1 = 2(y - 3)$$

$$y + 1 = 2y - 6$$

6. Marcos es un gran fan de los videojuegos. Entra a una tienda de nombre Playmania para mirar algunos precios. Los precios de los tres productos que a marcos le interesan son:

VIDEOJUEGOS	PRECIO (\$)	
JACKBOX	А	
MINICRAFT	В	
GRAND THEFT AUTO	С	

Donde: $A = 80 \text{ sen } 30^{\circ}$

 $B = 50 \text{ sen}^2 45^{\circ}$

 $C = 15\sqrt{3} \tan 60^{\circ}$

Si Marcos solo cuenta con \$65

a. ¿Cuántos videojuegos podrá comprar?

b. ¿Cuál o cuales de ellos comprará?

RESOLUCIÓN:

$$A = 80 \operatorname{sen} 30^{\circ} = 80 \times \left(\frac{1}{2}\right) = 40 \qquad A = 40$$

$$B = 50 \operatorname{sen}^{2} 45^{\circ} = 50 \times \left(\frac{1}{\sqrt{2}}\right)^{2} = 70 \times \frac{1}{2} \qquad B = 25$$

$$B = 50 \text{ sen}^2 45^\circ = 50 \times \left(\frac{1}{\sqrt{2}}\right)^2 = 70 \times \frac{1}{2} \implies B = 25$$

$$C = 15\sqrt{3} \tan 60^\circ = 15\sqrt{3} \times (\sqrt{3}) = 15 \times 3$$
 $C = 45$

Podrá comprar hasta 2 videojuegos.

Con sus \$65 comprara el JACKBOX y MINICRAFT a la vez.

7. Calcule $\mathbf{A} \cdot \mathbf{B}$ si

$$A = \csc^2 60^\circ + \sin 30^\circ$$

RESOLUCIÓN:

$$A = \left(\frac{2}{\sqrt{3}}\right)^2 + \frac{1}{2}$$

$$A = \frac{4}{3} \times \frac{1}{2}$$

$$A = \frac{(4)(2) + (3)(1)}{(3)(2)}$$

$$A = \frac{8+3}{6}$$

$$A = \frac{11}{6}$$

$$B = (\sqrt{2})^2 + (2)^2$$

$$B = 2 + 4$$

Piden:

$$\mathbf{A} \cdot \mathbf{B} = \left(\frac{11}{6}\right) \left(6\right)$$

$$\therefore A \cdot B = 11$$

8. De las figuras mostradas, establezca una relación:

$$x^2 = (4)^2 + (2 \sin 30^\circ)^2$$

$$x^2 = 16 + \left[2\left(\frac{1}{2}\right)\right]^2$$

$$x^2 = 16 + 1$$
 $x = \sqrt{17}$

$$x = \sqrt{17}$$

$$y^2 = (2)^2 + (\tan^2 60^\circ)^2$$

$$y^2 = 4 + \left[\left(\sqrt{3} \right)^2 \right]^2$$

$$y^2 = 4 + 9$$
 $y =$