Análisis Numérico - Modelación Numérica		Facultad de Ingeniería. Universidad de Buenos Aires.		
1º Cuatrimestre 2022	Curso (Schwarz-Sosa)	Parcial. 1º Oportunidad	Tema 1	Nota
Padrón:	Apellido y Nombres:			

Ejercicio 1. Con los datos de la tabla se ha construido:

- ullet Interpolación por Spline desde x_2 en adelante.
- Interpolación por Hermite Segmentado usando x_2 y x_5 .
- Ajuste por Cuadrados Mínimos tomando puntos desde x_0 en adelante.
- Interpolación por Lagrange Baricéntrico según se indica.

$$\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline i & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\\hline x_i & x_0 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ y_i & p^3 & p + \frac{1}{2} & y_2 & \mathbf{4} & \mathbf{6} & y_5 & y_6 \\ y_i' & - & - & y_2' & - & - & nd & \mathbf{7} \\\hline \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\$$

- 1. Indicar para cada interpolación qué puntos se usaron, el grado y la cantidad de polinomios resultantes. Justificar.
- 2. A partir de la información de Hermite Segmentado obtener toda la información posible para i=2 e i=5
- 3. Incorporando la información de Spline, obtener tantos x_i , y_i e y_i' como sea posible
- 4. Incorporando la información de la matriz de Cuadrados Mínimos y Lagrange Baricéntrico obtener los x_i faltantes
- 5. Utilizando la información del vector de Cuadrados mínimos encontrar una ENOL para obtener p y resolverla mediante un método con lpha>1 utilizando como valor semilla $p_0=2$
- 6. En base a los x_i hallados ¿hasta qué grado máximo de ajuste podría plantearse sin agregar más puntos que los utilizados para construir la matriz del enunciado? Justificar.

Ejercicio 2. Dada la matriz A(x,y) que se muestra a continuación, se pide:

$$A = egin{array}{ccc|c} 5 & 0 & x & & & 1 \ 0 & y^{-1} & 0 & & B = & 10 \ x & 0 & y & & 100 \ \end{array}$$

- 1. Sabiendo que x>>y>1 y que $||A^{-1}||_{\infty}=y$, obtener k(A) como función de las variables x,y
- 2. Construyendo la gráfica de proceso para kA(x,y) obtener las expresiones de Cp y Te
- 3. ¿Qué puede decir sobre la condición del problema? ¿Y sobre la estabilidad del algoritmo?
- 4. Adoptar x=1000 , y=10 para realizar 3 iteraciones por el método de Gauss-Seidel para resolver el SEL $A.\,x=B$
- 5. Indicar para qué criterio de corte y para qué tolerancia adoptaría la tercer iteración realizada como solución del SEL
- 6. ¿Es esperable la convergencia de Gauss-Seidel para esta matriz A? ¿Y para el método de Jacobi?

Ejercicio 3. Indicar a qué método corresponde el siguiente bloque de Python y detectar cuáles son los 3 errores que impedirían que el mismo llegue a un resultado correcto:

```
In [1]:
for i in range (0,n):
    X1[i] = B[i]
    for k in range(0,i):
        X1[i] += A[i,k]*X1[k]
    for k in range(i+1,n):
        X1[i] -= A[i,k]*X0[k]
        X1[i] += A[i,i]
        X1[i] *= (1-w)
        X1[i] += (1-w)*X0[i]
```