

EOSC 350 : Environmental, Geotechnical and Exploration Geophysics I EM EM-31

September – December, 2017

How to draw 3D loops and field lines on a 2D paper

Viewing from right side

Interactive 3D visualization in "MagDipoleLoops3D.ipynb" clone from https://github.com/yangdikun/magLab.git

3-loop Model Complex decomposition Imaginary-axis $H^{s}\cos(\boldsymbol{\theta}_{s}) = -H^{s}\sin(\boldsymbol{\phi})$ Real-axis Hр $\pi/2$ Re **θ**_ε: Phase of H^s lm↓ $H^{\rm s}\sin(\boldsymbol{\theta}_{\rm s}) = -H^{\rm s}\cos(\boldsymbol{\phi})$ transmitter receiver 1.0 Imaginary Response function (Q) 7.0 8.0 8.0 8.0 resistive inductive 0.2 limit limit 0.0 target 10^{-3} 10^{-2} 10^{-1} 10° 10¹ 10² 10^{3} Induction number (α)

Data along a Profile

$$\frac{H_3^s}{H_3^p} = -\frac{M_{12}M_{23}}{M_{13}L} \left[\frac{\alpha^2 + i\alpha}{1 + \alpha^2} \right]$$

Coupling

- location, orientation
- overall magnitude

Induction

- properties of loop 2
- how much in Re & Im

Data along a Profile

Data along a profile for $\alpha = 0.5$

$$\frac{H_3^s}{H_3^p} = -\frac{M_{12}M_{23}}{M_{13}L} \left[\frac{\alpha^2 + i\alpha}{1 + \alpha^2} \right]$$

Coupling

- location, orientation
- overall magnitude

Induction

- properties of loop 2
- how much in Re & Im

EM-31

- Frequency = 9.8 kHz
- Tx-Rx spacing = 3.66 m
- Horizontal or vertical coplanar
- "Ground conductivity meter"

EM-31 Data

EM-31 Data

EM-31 Data Map of real (in-phase) data Map of imaginary (quadrature) data observation grid target loop Northing (inclination, declination) (E, N, Depth) Easting Depth

EM-31 Data Interpretation

Data Feature 1: Uniform, smooth and small

EM-31 Data at Low Induction

Small **Re** and small **Im** on the data maps, α big or small?

Low induction number:

- H^s data mostly in quadrature, Im > Re ≈ 0
- Very small induced current
- Subdivide the earth into many pieces; each piece interacts with Tx-Rx independently without interaction between any two pieces (recall low induced magnetization in magnetics, easy calculation using superposition!)

Apparent Conductivity

Vertical coplanar (VCP)

• only sensitive to σ_1

Horizontal coplanar (HCP)

- mostly sensitive to σ₁
- also sensitive to σ_2

If
$$\sigma = \sigma_1 = \sigma_2 = \sigma_3 = \sigma_4$$
 (half-space)

$$\mathbf{Re} \approx 0$$
 $\mathbf{Im} = \frac{\omega \mu_0 \sigma s^2}{4}$

Derive apparent conductivity

$$\sigma_a = \frac{4}{\omega \mu_0 s^2} \mathbf{Im}$$

If $\sigma_1 \neq \sigma_2 \neq \sigma_3 \neq \sigma_4$ (layered earth), apparent conductivity (transformed **Im** data) is weighted sum of contributions from each layer.

$$\sigma_{a} = \int\limits_{0}^{\infty} \phi_{V}(z) \sigma(z) dz$$

For instrument not on the surface, $\sigma_1 = 0$.

Low Induction: $s << \delta$

Back-of-envelope calculation:

For EM-31 operating at 9.8 kHz, at what resistivity would the low induction break down for a half-space?

Skin depth of a uniform half-space

$$\delta = 506 \sqrt{\frac{\rho}{f}} \quad \text{meter}$$

where ρ is resistivity in Ω m and f is frequency in Hz.

Apparent Conductivity $\sigma_a = \frac{4}{\omega \mu_0 s^2}$

$$\sigma_a = \frac{4}{\omega \mu_0 s^2} \mathbf{Im}$$

Question: Which area on the maps is the most likely to have a reliable estimate of the ground conductivity?

EM-31 Data Interpretation

Data Feature 1:

Uniform, smooth and small

Data Feature 2:

Abrupt change Positive and negative Large **Re** and small **Im**

EM-31 Data at High Induction

Large **Re** and small **Im** on the data maps, α big or small?

High induction number:

- H^s data mostly in in-phase, Re > Im ≈ 0
- Very strong induced current
- Cannot use apparent conductivity, but if the target is a good compact conductor, use the 3loop model

Vertical Target Loop

45 Degree Dipping Target Loop

Horizontal Target Loop

Equiaxed Target

Question: Can you find those features on the data map and infer the geometry and orientations of the targets?

Summary

- EM-31 specifications
 - Frequency: 9.8 kHz
 - Tx-Rx separation: 3.66 m
 - Coil configuration: HCP or VCP
 - Boom orientation: in-line or cross-line
- EM-31 data interpretation
 - Low induction: apparent conductivity
 - High induction: compact conductors