Experiment 9

Aim:

To simulate and verify basic Logic Gates and Boolean Functions.

Tools and Apparatus:

DC Voltage Source, AND, NAND, OR, NOR, NOT, XOR and XNOR gates.

Theory:

Truth Tables:

Input		Output					
Α	В	AND	NAND	OR	NOR	XOR	XNOR
0	0	0	1	0	1	0	1
0	1	0	1	1	0	1	0
1	0	0	1	1	0	1	0
1	1	1	0	1	0	0	1

Input	Output
Х	NOT
0	1
1	0

1.
$$x = \overline{A \cdot B(C + D)}$$

ınp	Output		
В	С	D	x
0	0	0	1
0	0	1	1
0	1	0	1
1	0	0	1
0	0	0	1
1	0	0	1
0	1	0	1
0	0	1	1
1	1	0	1
	B 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0	B C D 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1

	Inp	Output		
Α	В	С	D	х
0	1	0	1	1
0	0	1	1	1
1	1	1	0	0
1	0	1	1	1
1	1	0	1	0
0	1	1	1	1
1	1	1	1	0

$2. \ y = AC + B\overline{C} + \overline{A}BC$

	Output		
Α	В	С	у
0	0	0	0
1	0	0	0
0	1	0	1
0	0	1	0
1	1	0	1
1	0	1	1
0	1	1	1
1	1	1	1

3. $z = \overline{A + B + \overline{C}D\overline{E}} + \overline{B}C\overline{D}$

		Output			
Α	В	С	D	E	Z
0	0	0	0	0	1
1	0	0	0	0	0
0	1	0	0	0	0
0	0	1	0	0	1
0	0	0	1	0	0
0	0	0	0	1	1
1	1	0	0	0	0
1	0	1	0	0	1
1	0	0	1	0	0
1	0	0	0	1	0
0	1	1	0	0	0
0	1	0	1	0	0
0	1	0	0	1	0
0	0	1	1	0	1
0	0	1	0	1	1
0	0	0	1	1	1
1	1	1	0	0	0
1	1	0	1	0	0
1	1	0	0	1	0
1	0	1	1	0	0
1	0	1	0	1	1

	Inp	ut		Output	
Α	В	С	D	E	Z
1	0	0	1	1	0
0	1	1	1	0	0
0	1	1	0	1	0
0	1	0	1	1	0
0	0	1	1	1	1
1	1	1	1	0	0
1	1	1	0	1	0
1	1	0	1	1	0
1	0	1	1	1	0
0	1	1	1	1	0
1	1	1	1	1	0

Simulation Results:

4. AND Gate

5. NAND Gate

6. OR Gate

7. NOR Gate

8. XOR Gate

9. XNOR Gate

10.NOT Gate

11. $x = \overline{A \cdot B(C + D)}$

12. $y = AC + B\overline{C} + \overline{A}BC$

13. $\mathbf{z} = \overline{\mathbf{A} + \mathbf{B} + \overline{\mathbf{C}}\mathbf{D}\overline{\mathbf{E}}} + \overline{\mathbf{B}}\mathbf{C}\overline{\mathbf{D}}$

Conclusion:

Hence, we can see that the truth table is verified for all Boolean gates and Boolean functions.

Inferences:

- **1.** A OR B = A + B
- **2.** $A AND B = A \cdot B$
- **3.** $NOT A = \bar{A}$
- **4.** $A NOR B = \overline{A + B}$
- **5.** $A \ NAND \ B = \overline{A \cdot B}$
- **6.** $A XOR B = A \cdot B + \overline{A \cdot B}$
- 7. $A XNOR B = \overline{A \cdot B + \overline{A \cdot B}}$