Digital Systems

May 23

Sequential circuits

Specified by a time sequence of inputs, outputs, internal states

- Synchronous →
 - happens at a particular clock frequency
 - · action only at discrete instance
 - · easy to define specific states
- Asynchronous →
 - if we know the time it takes to propagate through a gate or conducting line
 - propagates delay of logic gates
 - · may become unstable

Synchronous sequential circuit

Latch: storage element changes state based on input level

Flip-flop: storage element changes state based on input transition (clock transition)

Latches

1. SR(set-reset) Latch

NOR implementation: Inputs zero by default, become 1 when triggered

S	R	Q	Q'
1	0	1	0 → Set condition
0	0	1	0 after S = 1, R = 0
0	1	0	1 → Reset condition

S	R	Q	Q'
0	0	0	1, after S = 0, R = 1
1	1	0	0 → Forbidden state

NAND implementation: Inputs 1 by default, zero when triggered

S	R	Q	Q'
1	0	0	1 → Set condition
1	1	0	1 after S = 1, R = 0
0	1	1	0 → Reset condition
1	1	1	0, after S = 0, R = 1
0	0	1	1 → Forbidden state

NAND implementation with enable pin:

E	S	R	Q	Q'
0	Χ	Χ	No change	No change
1	1	1	No change	No change
1	0	1	1	0
1	1	0	0	1
1	0	0	1	1

2. D Latch (Transparent latch)

E	D	Q	Q'
0	X	No change	No change
1	0	0	1
1	1	1	0

Flip-flop

Negative edge triggered master-slave D Flip-flop

Clk	Y	Q
0	No change	Υ
1	D	No change
0 → 1	No change → D	Y → No change
1 → 0	D → No change	No change → Y = D

b Important

$$Q(t + 1) = D$$

It is example of Moore machine, output is independent of previous state

Positive triggered D flip-flop:

Complement clock

JK Flip flop

$$D = JQ' + K'Q$$

J	K	D	Q (t + 1)
0	0	Q	Q
0	1	0	0
1	0	1	1
1	1	1	Q'

Excitation Tables

A_t	A_{t+1}	$J_A I\!\!/ J_B$	$K_A I J_B$

A_t	A_{t+1}	$J_A I\!\!\!/ J_B$	$K_A I J_B$
0	0	0	Χ
0	1	1	X
1	0	Χ	1
1	1	Χ	0

T flip-flop

set J = K in JK flip-flop

(c) Graphic symbol

Т	Q(t + 1)
0	Q(t)
1	Q'(t)

$$Q(t+1) = T \oplus Q$$

Excitation Table:

A_t	A_{t+1}	Т
0	0	0
0	1	1
1	0	1
1	1	0

SR Flip-flop

S	R	Q	Q'
0	0	No change	No change

S	R	Q	Q'
0	1	0	1
1	0	1	0
1	1	1	1

Excitation Table:

Q(t)	Q(t + 1)	S	R
0	0	0	Χ
0	1	1	0
1	0	0	1
1	1	Х	0

May 26

Analysis of synchronous sequential circuits

The idea is to find what the circuit does (in the form of say a state diagram) given the circuit diagram

Eg.

$$egin{aligned} A_{t+1} &= A_t x_t + B_t x_t \ B_{t+1} &= A_t' x_t \ y &= (A_t + B_t) x_t' \end{aligned}$$

State Table:

Present State				ext ate	Output
Α	В	x	A	В	y
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

State Diagram

This circuit detects zeroes after a series of ones

Eg.

$$A_{t+1} = A \oplus x \oplus y$$

State Table

A	X	у	A_{t+1}
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

State Diagram

Eg.

$$J_A = B$$
 $K_A = Bx'$
 $J_B = x'$
 $K_B = A \oplus x$

State Table

A_t	B_t	X	A_{t+1}	B_{t+1}	J_A	K_A	J_B	K_B
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

State Diagram

Finite State Machines:

Mealy Machine

• Output depends directly on input

Moore Machine:

• Output doesn't depend directly on input

May 27

State Reduction

Eg.

	Next	State	Output		
Present State	x = 0	x = 1	x = 0	x = 1	
а	а	b	0	0	
b	c	d	0	0	
c	a	d	0	0	
d	e	f	0	1	
e	a	f	0	1	
f	g	f	0	1	
g	a	f	0	1	

There are some redundant terms here. For example, e and g do the same thing, so we can get rid of it. If we set e = g, d and f also turn out to be the same.

	Next	State	Output		
Present State	x = 0	x = 1	x = 0	<i>x</i> = 1	
а	а	b	0	0	
b	c	d	0	0	
c	a	d	0	0	
d	e	d	0	1	
e	a	d	0	1	

Design Procedure

- Derive state table
- Reduce number of states
- Assign unique binary value for each state
- Obtain binary coded state table
- Choose type of flip flops to be used
- Derived simplified flip-flop input equation
- Draw logic circuit

Two bit counter

4 states are required

- 2 bits/flip-flops
- 1 input

A_t	B_t	X	A_{t+1}	B_{t+1}	у
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

$$A_{t+1} = x(A_t + B_t) \ B_{t+1} = x(A_t + B_t') \ y = AB$$

Synthesis using D Flip-flop

Synthesis using JK Flip-flop

$$A_{t+1} = x(A_t + B_t)$$

 $B_{t+1} = x(A_t + B_t')$
 $y = AB$

State Table

Table 5.13 *State Table and JK Flip-Flop Inputs*

	sent ate	Next Input State			Fli	p-Flo _l	p Inp	uts
Α	В	x	A	В	JA	K _A	J _B	K _B
0	0	0	0	0	0	X	0	X
0	0	1	0	1	0	X	1	X
0	1	0	1	0	1	X	X	1
0	1	1	0	1	0	X	X	0
1	0	0	1	0	X	0	0	X
1	0	1	1	1	X	0	1	X
1	1	0	1	1	X	0	X	0
1	1	1	0	0	X	1	X	1

May 30

3-bit Counter

Synthesis using T flip-flop

Excitation Table

State Table for Three-Bit Counter

Pres	Present State		Ne	Next State			Flip-Flop Inputs			
A ₂	A_1	<i>A</i> ₀	A ₂	A_1	<i>A</i> ₀	T _{A2}	<i>T_{A1}</i>	T _{AO}		
0	0	0	0	0	1	0	0	1		
0	0	1	0	1	0	0	1	1		
0	1	0	0	1	1	0	0	1		
0	1	1	1	0	0	1	1	1		
1	0	0	1	0	1	0	0	1		
1	0	1	1	1	0	0	1	1		
1	1	0	1	1	1	0	1	1		
1	1	1	0	0	0	1	1	1		

$$T_{A_0} = 1$$

$$T_{A_1} = A_0$$

$$T_{A_2} = A_1 A_0$$

Timing Circuits

Setup time is defined as the minimum amount of time before the clock edge, during which the data must be held stable i.e. the input should not change within the setup time duration so as to ensure proper data to be latched.

Hold time is defined as the minimum amount of time after the clock edge, during which the data must be held stable i.e. the input should not change within the Hold time duration so as to ensure proper data to be latched.

Registers and Counters

Registers are a group of flip-flops and gates that store data

Asynchronous register using D flip-flops

- 10, 11, 12, 13 are the inputs stored
- Clear_b
 - is 1 by default
 - is 0, all flip-flops are set to 0

× Problems:

The output changes during clock-edge if inputs are changed. There are two ways to "store" the information:

- · Clock should be held in pause
- Input should be held constant

Messing around with either of them is not a good idea!

Synchronous register

4-bit parallel load registers

Holds the output in a given state until you are ready to change the state ("loading")

- When load is 1, Input data is transferred
- When load is 0, existing data is stored undisturbed

Shift Register

Shifts data to neighbouring flip-flops during each clock cycle

Serial Adder

4-bit serial adder by loading through shift resistor and storing sum in another shift register

Present State Q_t	Inputs:x	у	Next State Q_{t+1} = C	S	J_Q	K_Q
0	0	0	0	0	0	X
0	0	1	0	1	0	Χ
0	1	0	0	1	0	X
0	1	1	1	0	1	X
1	0	0	0	1	Χ	1
1	0	1	1	0	Χ	0
1	1	0	1	0	Χ	0
1	1	1	1	1	Χ	0

$$J_Q = xy$$
 $K_Q = x'y'$ S = $x \oplus y \oplus Q_t$

June 2

Bidirectional Universal Shift register

- Parallel/serial in, parallel/serial out
- Shift from left to right and right to left

S_0	S_1	Operation	
0	0	No change	$Q_{t+1}=Q_t$
0	1	Shift right	$A_3 ightarrow A_2 ightarrow A_1 ightarrow A_0$
1	0	Shift left	$A_0 o A_1 o A_2 o A_3$
1	1	Parallel load	Parallel input

• Clear is used to asynchronously reset the D flip-flops

Diagram:

June 3

Counters

Subset of register, in which it goes through pre-defined sequence of binary states

Asynchronous

Ripple counter

• flip-flop transition triggers the next flip-flop (it's not synchronized by a common clock)

Synchronous counter

• Flip flops triggered by common clock

Up-Down counter

Use T flip-flop instead of JK flip-flop

BCD Counter using T flip-flop

А3	A2	A1	AO	А3	A2	A1	AO	у	T_{A3}	T_{A2}	T_{A1}	T_{A0}
0	0	0	0	0	0	0	1	0	0	0	0	1
0	0	0	1	0	0	1	0	0	0	0	1	1
0	0	1	0	0	0	1	1	0	0	0	0	1
0	0	1	1	0	1	0	0	0	0	1	1	1
0	1	0	0	0	1	0	1	0	0	0	0	1
0	1	0	1	0	1	1	0	0	0	0	1	1
0	1	1	0	0	1	1	1	0	0	0	0	1
0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	0	0	1	0	0	0	0	1

А3	A2	A1	AO	А3	A2	A 1	AO	у	T_{A3}	T_{A2}	T_{A1}	T_{A0}
1	0	0	1	0	0	0	0	1	1	0	0	1

 $T_{A0} = 1$

 T_{A1} = A3' A0

 T_{A2} = A3' A1 A0 (can be simplified further)

 T_{A3} = A3' A2 A1 A0 + A3 A2' A1' A0 (can be simplified further)

y = A3 A2' A1' A0

Binary counter with parallel load

• We want parallel loading capacity, as we often want to start the counter at a particular state instead of some arbitrary state

· · · · · · · · · · · · · · · · · · ·										
CLK	Load	Count	Function							
X	X	X	Clear to 0							
1	1	X	Load inputs							
1	0	1	Count next binary state							
1	0	0	No change							
		CLK Load X X ↑ 1 ↑ 0	CLK Load Count X X X ↑ 1 X ↑ 0 1							

Eg. BCD counter with parallel load

All inputs are 0, when A3 A0 are like 11, we reach 1001 we load the counter with 0000

When A3 A1 are like 11, we've hit 1001 and we clear the counter

Ring counter

Inputs going like 1000, 0100, 0010, 0001, 1000, etc.

For 2^n timing circuit

Shift register: Shift input is T3

• 2^n flip-flops

2-bit counter and decoder

Johnson Counter/Twisted ring counter/Switch tail counter

Sequence	Fli	p-flop	outpu	ıts	AND gate required
number	\overline{A}	В	С	E	for output
1	0	0	0	0	A'E'
2	1	0	0	0	AB'
3	1	1	0	0	BC'
4	1	1	1	0	CE'
5	1	1	1	1	AE
6	0	1	1	1	A'B
7	0	0	1	1	B'C
8	0	0	0	1	C'E

For n timing sequences, there are n/2 flip-flops and n gates required, and all are two input gates

June 6

Memory Units

Word: Groups of bits stored by memory units

Modern computers are 64-bit computers

Address: Integer from $0 o 2^k - 1$, where k is the number of address lines

Read-Only Memory	Random Access Memory
Non-volatile, i.e. doesn't lose information when powered down	Volatile
Hard-wired (look-up table)	Faster than a ROM
"Read" only	Both read and write

Random access memory

Diagram of a memory unit and its functionality:

Memory Enable	Read/Write	Operation
0	X	None
1	0	Write
1	1	Read

- → Access time: Time required for read operation
- → Cycle time: Time required for write operation Access time and cycle time < Clock time of CPU

Clocked at 50 MHz, i.e. Time period of one pulse is 20 nsec

SRAM	DRAM
Static RAM	Dynamic RAM
Latches and flip-flops	Capacitor, needs refreshing
Retains data for a long timescale	Shorter timescale
Faster	Slower
Expensive	Less expensive
More power	Less power
Address multiplexing is more complicated, as it uses 4 transistors	Address multiplexing is easier, as it uses transistor + capacitor

Memory Cell

- Stores one bit of information
- For a RAM with m words and n bit word length, there are m x n memory cells

Select	Read/Write	Input	Output	Q_+
0	X	X	0	Q
1	0	I	0	I
1	1	X	Q	Q

Construction of 4 x 4 RAM

× Issues

k inputs and 2^k words

The decoder requires 2^k AND gates with k inputs (k + 1, if we have the enable pin) each

Coincident decoding

Keep track of x and y coordinates, using k/2 bits for x coordinates and k/2 bits for y coordinate.

This uses 2 * (32 5-input AND gates) and the memory cell is at the intersection of these two rows and columns.

1024 words memory, using coincident decoding

Address Multiplexing in DRAM

Strobes: Essentially enable pins, that enable the data in register to the decoder when 0

- RAS: Row address strobe
- CAS: Column address strobe
 First, RAS is made 0, a particular row is chosen, then CAS is made 0, the respective column is chosen, then the data is read/written. After that, both strobes are reset to 1

Programmable Logic Devices

- I/O Block → Programmable switch matrix → I/O Block
- Implemented using AND-OR gates

Programmable Read Only Memory:

Programmable Logic Array:

Programmable Array Logic:

Programmable Read only memory (PROM)

- Memory elements are interconnections patterns along with decoder/OR gates
- 2^k words, each word is n bits long

 Programmable OR array is built with fuses intact, fuses broken while programming the device

Note: Each OR gate is a 32 input OR gate

Sample truth table

		Input	:s		Outputs							
I ₄	I ₃	I ₂	<i>I</i> ₁	I ₀	A ₇	A ₆	A ₅	A ₄	A_3	A ₂	<i>A</i> ₁	A ₀
0	0	0	0	0	1	0	1	1	0	1	1	0
0	0	0	0	1	0	0	0	1	1	1	0	1
0	0	0	1	0	1	1	0	0	0	1	0	1
0	0	0	1	1	1	0	1	1	0	0	1	0
		:							:			
1	1	i	0	0	0	0	0	0	. 1	0	0	1
1	1	1	0	1	1	1	1	0	0	0	1	0
1	1	1	1	0	0	1	0	0	1	0	1	0
1	1	1	1	1	0	0	1	1	0	0	1	1

Using PROMs to design functions

ullet Each of $A_0 \dots A_7$ can be used as a function

Eg. Design a combinational circuit using a programmable read only memory to accept a 3-bit number and outputs a binary number equal to square of the input number

A_2	A_1	A_0	B_5	B_4	B_3	B_2	B_1	B_0
0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	1
0	1	0	0	0	0	1	0	0

A_2	A_1	A_0	B_5	B_4	B_3	B_2	B_1	B_0
0	1	1	0	0	1	0	0	1
1	0	0	0	1	0	0	0	0
1	0	1	0	1	1	0	0	1
1	1	0	1	0	0	1	0	0
1	1	1	1	1	0	0	0	1

- $B_0 = A_0$
- $B_1 = 0$
- $B_2 \dots B_5$ all depend on the input, so they the word length has to be 4

ROM would be an 8×4 ROM, where word length is 4 and we have to address 8 locations. We can burn appropriate connections corresponding to $B_5 \dots B_2$ in the above table

Programmable Logic Array (PLA)

Both AND gates and OR gates are programmable

Three parts:

- AND gate inputs are programmable
- OR gate inputs are also programmable
- Complemented outputs can be XOR-ed to get proper output
- · Using common outputs is better

PLA size:

- n inputs
- k 2n-input AND gates
- m Outputs
- 2n imes k Number of connections between input and AND
- ullet m imes k connections between AND and OR

Typical PLA size would be 16/48/8 o n/k/m

Eg.

$$F_1 = AB' + AC + A'BC'$$

$$F_2 = (AC + BC)'$$

Programming Table

A	В	С	$F_1(T)$	$F_2(C)$
1	0	-	1	_
1	_	1	1	1
_	1	1	_	1
0	1	0	1	_

Eg.

$$F_1 = \sum (0, 1, 2, 4)$$

$$F_2 = \sum (0, 5, 6, 7)$$

$$F_1 = A'B' + B'C' + A'C'$$

$$F_1' = AB + BC + AC$$

$$F_2 = A'B'C' + AC + AB$$

Programming Table

A	В	С	$F_1(C)$	$F_2(T)$
1	1	-	1	1
1	_	1	1	1
_	1	1	1	_
0	0	0	_	1

Programmable Array Logic

- Fixed OR array (not as flexible as PLA)
- Typical 4 inputs and 4 outputs with 3 AND + OR gate at each output

- Lines 1...8
- Lines 9 and 10 can be used to feed in the first input

Eg.

W =
$$\sum$$
 (2, 12, 13)
X = \sum (7, 8, 9, 10, 11, 12, 13, 14, 15)
Y = \sum (0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 15)
Z = \sum (1, 2, 8, 12, 13)

W = A'B'CD' + ABC'

X = A + BCD

Y = A' B + CD + B'D'

Z = W + AC'D' + A'B'C'D

Programming Table

Product Term	A	В	С	D	w	Output
1	1	1	0	_	_	
2	0	0	1	0	_	w = ABC' + A'B'C D'
3	_	_	_	_	_	
4	1	_	_	_	_	
5	_	1	1	1	_	x = A + BCD
6	_	_	_	_	_	
7	0	1	_	_	_	
8	_	_	1	1	_	y = A'B + CD + B'D'
9	_	0	_	0	_	
10	-	_	_	_	1	
11	1	_	0	0	_	z = w + A C'D' + A'B'C'D
12	0	0	0	1	_	

Sequential Programmable Logic Devices

Eg. Field Programmable logic sequencer

• PLA with the output driving a flip-flop

Macro-cell

Output enable (OE): three state buffer

- if OE is 0, output is not obtained
- if OE is 1, output is obtained

Eg. 3-bit up counter which counts when input = 1, remains in same state when input is 0

State Table:

Present State		Next State			
A ₂	A_1	A_0	A ₂	A_1	A ₀
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

$$egin{aligned} Q_2^+ &= Q_2 Q_0' + Q_2 Q_1' + Q_2 x' + Q_2' Q_1 Q_0 x \ Q_1^+ &= Q_1 Q_0' + Q_1 x' + Q_1' Q_0 x \ Q_0^+ &= Q_0 x' + Q_0' x \end{aligned}$$

Eg. Design a PLD circuit using PAL/PLA for detecting 1101 Sequence

A	В	x	A+	B+	у
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	1	1	0
1	0	1	1	0	0
1	1	0	0	0	0
1	1	1	0	1	1

$$A_+ = A'Bx + AB'$$

 $B_+ = A'B'x + AB'x' + ABx$
 $y = ABx$

Field programmable gate array (FPGA)

- Reconfigurability
- Rapid prototyping
- Parallel processing (multiple cores)
- Low latency
- Low power consumption \rightarrow we're only turning on the gates we want

June 17

Asynchronous sequential circuits

Eg.

x/y_1y_2	00	01	11	10
0	0	1	1	0
1	0	0	1	1

x/y_1y_2	00	01	11	10
0	0	1	1	0
1	1	1	0	0

Transition Table

x/y_1y_2	00	01	11	10
0	00	11	11	00
1	01	01	10	10

Stable states \rightarrow 00, 11, 01, 10

If any other states are attained, we change to some other state in the next instant

Eg.

Flow Table

Two states with two inputs and one output

y/x_1x_2	00	01	11	10
а	a, 0	a, 0	a, 0	b, 0
b	a, 0	a, 0	b, 1	b, 0

y/x_1x_2	00	01	11	10
0	0	0	0	1
1	0	0	1	1

$$Y = x_1 x_2' + x_1 y$$

y/x_1x_2	00	01	11	10
0	0	0	0	0
1	0	0	1	0

$$z=x_1x_2y$$

Race conditions

The process of obtaining the logic circuit from the flow table is not always simple $11 \rightarrow 00$ or $01 \rightarrow 10$: might go through some intermediate state, which is fine *Critical Race condition*: End up at different state depending on delays Non-critical Race condition: End up at same state. It can cause hazards though

Eg.

x/y_1y_2	00	01	11	10
------------	----	----	----	----

x/y_1y_2	00	01	11	10
0	00			
1	11	11	11	11

00 → 11

 $00 \rightarrow 01 \rightarrow 11$

 $00 \rightarrow 10 \rightarrow 11$

This is non-critical race condition

Eg.

x/y_1y_2	00	01	11	10
0	00			
1	11	01	11	10

 $00 \rightarrow 11$ if delays are equal

 $00 \rightarrow 01 \text{ or } 00 \rightarrow 10 \text{ if delays are unequal}$

This is critical race condition

Eg.

x/y_1y_2	00	01	11	10
0	00			
1	11	01	01	11

 $00 \to 01$

 $00 \rightarrow 10 \rightarrow 11 \rightarrow 01$

Non-critical race condition

Eg.

x/y_1y_2	00	01	11	10
0	00			
1	11	11	11	10

 $00 \rightarrow 01 \rightarrow 11$

00 → 10

Critical Race condition

Eg.

x/y_1y_2	00	01	11	10
0	00			
1	01	11	10	01

For x = 1, output is unstable and cycles as follows: $00 \rightarrow 01 \rightarrow 11 \rightarrow 10 \rightarrow 01 \rightarrow 11 \rightarrow 10...$

Determining Stability

$$Y = (x_1 y)' x_2$$

Transition Table:

y/x_1x_2	00	01	11	10
0	0	1	1	0
1	0	1	0	0

Unstable circuit, as for input 11, output switches rapidly between two states

Analysis

- Determine all feedback loops
- Derive Boolean function for each y_i
- Plot each y in a map
- Combine all maps (transition table)
- Identify and circle stable states
- Identify race conditions

SR latch:

$$Y = ((S+y)' + R)' = (S+y)R' = R'S + R'y$$

y/SR	00	01	11	10
0	0	0	0	1
1	1	0	0	1

- It is stable
- Race conditions checking
 - 00 → 11
 - 00 → 01 → 11
 - 000
 - $-~00~\rightarrow~10~\rightarrow~11~\rightarrow~11$
 - 0100
 - $-00 \to 01 \to 11$
 - 100
 - $-00 \rightarrow 10 \rightarrow 11 \rightarrow 11$
 - 1100
 - 11 → 00
 - 11 → 10 → 00
 - 011
 - 11 → 01 → 00
 - 000
 - $-11 \to 10 \to 00$
 - 1 Unstable
 - $-11 \rightarrow 01 \rightarrow 11$
 - 1 Unstable
 - 01 → 10
 - $-01 \rightarrow 00 \rightarrow 10 \rightarrow 10$
 - 0011
 - $-01 \rightarrow 11 \rightarrow 10 \rightarrow 10$
 - 0011
 - $-01 \to 00 \to 10$

```
1 Unstable
```

$$-01 \to 00 \to 10$$

1 Unstable

$$-10 \to 01$$

$$-10 \to 00 \to 01$$

0 Unstable

0 Unstable

$$-10 \rightarrow 00 \rightarrow 01 \rightarrow 01$$

1100

$$, -10 \rightarrow 11 \rightarrow 01$$

, 10

$$S \rightarrow 0$$
 first $y \rightarrow 0$

$$R \rightarrow 0$$
 first $y \rightarrow 1$

ullet we have to ensure SR=0 to prevent 11 state

$$Y = ((S+y)' + R)' = (S+y)R' = R'S + R'y + 0 = R'S + R'y + SR = S + R'y$$

Finding Critical Race conditions

Eg.

Transition Table:

$oxed{y_1y_2/x_1x_2}$ 00 01 11	10
--------------------------------	----

y_1y_2/x_1x_2	00	01	11	10
00	00	00	01	00
01	01	01	11	11
11	00	11	11	10
10	00	10	11	10

For each input, at least one stable state → stable

Race condition:

- Input 00
 No 00 → 11, 11 → 00, 01 → 10, 10 → 01 conditions
- Input 01, state 11
 11 → 00: can be done when input is 00
 But, y₁y₂ might go as follows:
- $11 \to 10 \to 00$
- 11 → 01
 Critical Race condition
- Input 01, no other conditions possible
- Input 11, state 11
 11 → 00, input given must be 00
- $11 \to 01 \to 01$
- 11 → 10 → 00 Critical Race condition
- Input 10, no other conditions possible

Implementation of circuit using SR latch

Eg.
$$Y=x_1x_2'+x_1y$$

y/x_1x_2	00	01	11	10
0	0	0	0	1
1	0	0	1	1

Excitation Table

|--|

у	Y	S	R
0	0	0	Χ
0	1	1	0
1	0	0	1
1	1	Χ	0

S

y/x_1x_2	00	01	11	10
0	0	0	0	1
1	0	0	Χ	Χ

$$S = x_1 x_2'$$

R

y/x_1x_2	00	01	11	10
0	Χ	Χ	X	0
1	1	1	0	0

$$\mathsf{R} = x_1'$$

 $\textbf{Hazards} \rightarrow \textbf{Malfunction/switching transient due to unequal delays}$

Static 1 hazard

$$x_1=1, x_3=1, x_2: 1 o 0$$

Y becomes 0 for an instant, then becomes 1 again

The function is $Y=x_1x_2+x_3x_2^\prime$

x_1/x_2x_3	00	01	11	10
0	0	1	0	0
1	0	1	1	1

Adjacent 1s without common implicant is static 1 hazard

Static 0 hazard

Adjacent 0s without common implicant is static 0 hazard