NASA CONTRACTOR REPORT 166369

NASA-CR-166369 | 9820021800

Relation of Land Use/Land Cover to Resource Demands

ROT TO EL TAKEN FROM THIS ROOM

Cristopher Clayton

LIBRARY GOPY

JUL 3 0 **1982**

LANGLEY RESEARCH CENTER LIBRARY, NASA HAMPTON, VIRGINIA

NASA Cooperative Agreement NAG 2-20 March 1981

NASA CONTRACTOR REPORT 166369

Relation of Land Use/Land Cover to Resource Demands

Cristopher Clayton University of California, Santa Barbara, CA 93106

Prepared for Ames Research Center under Contract NAG 2-20

Ames Research Center Moffett Field, California 94035

N82-29676

CHRISTOPHER CLAYTON

ASSISTANT RESEARCHER, UNIVERSITY OF CALIFORNIA, SANTA BARBARA, CALIFORNIA SOCIAL SCIENTIST, H.D.R. SCIENCES, SANTA BARBARA, CALIFORNIA

RELATION OF LAND USE/LAND COVER TO RESOURCE DEMANDS

SPECIFIC EMPHASIS:

RESIDENTIAL ENERGY DEMAND

SPECIFIC TASK:

INVESTIGATE PREDICTIVE (FORCASTING) MODELS

SUB-TASKS:

- 1. ECONOMETRIC MODELS OF RESIDENTIAL ENERGY DEMAND
- 2. EVALUATION OF DETERMINANTS OF RESIDENTIAL ENERGY DEMAND VIS A VIS DERIVABILITY FROM REMOTELY SENSED DATA
- 3. DATA BASES ORGANIZATION AND INTEGRATION
- 4. RESIDENTIAL LAND USE AND REMOTE SENSING, i.e., LAND USE/LAND COVER CLASSIFICATION
- 5. LAND USE/LAND COVER CHANGE DETECTION
- 6. LAND USE/LAND COVER PREDICTIVE MODELLING

ECONOMETRIC MODELS OF RESIDENTIAL ENERGY DEMAND

PURPOSE:

ISOLATE THE MAJOR DETERMINANTS OF DEMAND FOR ENERGY

UTILITY:

PREDICT CONSEQUENCES OF (i) NATURAL CHANGES SUCH AS CLIMATIC FLUCTUATIONS, AND (ii) DELIBERATE POLICY ACTIONS BY DECISION-MAKERS SUCH AS PRICING POLICIES

FORM:

REGRESSION FRAMEWORK -

$$Y = a + b_1 X_1 + b_2 X_2, ..., +b_n X_n,$$

WHERE Y (DEPENDENT VARIABLE) = ENERGY DEMAND, X; (INDEPENDENT VARIABLES) = FACTOR DETERMINING ENERGY DEMAND, n = NUMBER OF INDEPENDENT VARIABLES, AND a and b; ARE MODEL PARAMETERS.

NOTE: (i) INDEPENDENT VARIABLES (X₁) ARE KNOWN TO INFLUENCE SIGNIFICANTLY THE VALUE OF Y

(ii) PARAMETER 'a' IS A CONSTANT OF PROPORTION-ALITY AND PARAMETER 'b' INDICATES THE CHANGE IN Y COMMENSURATE WITH A UNIT CHANGE IN X, i.e., MEASURE OF ELASTICITY

EXAMPLE: $Y = 3.0 - 0.7X_1 + 0.3X_2$,

WHERE Y = ENERGY DEMAND, X_1 = PRICE OF ENERGY, AND X_2 = HOUSEHOLD INCOME

SIGNIFICANT INDEPENDENT VARIABLES:

PRICE OF FUEL (ELASTICITY OF DEMAND)

HOUSEHOLD INCOME (ELASTICITY OF DEMAND WITH REGARD TO INCOME)

PRICE OF SUBSTITUTE FUELS (CROSS ELASTICITY WITH REGARD TO ALTERNATIVE FUELS)

HOUSEHOLD SIZE

CLIMATIC CHARACTERISTICS

PRICE OF HOUSEHOLD APPLIANCES SUCH AS HEATING AND COOLING APPARATUS

ENERGY DEMAND DETERMINANTS AND REMOTE SENSING

DETERMINANTS:

PHYSICAL VS. NON-PHYSICAL ENVIRONMENTAL ATTRIBUTES

PHYSICAL ATTRIBUTES: THEY ARE SCALE-DEPENDENT. ANDERSON LEVELS I AND II

CAN BE DERIVED FROM LANDSAT DATA.

URBAN LAND USE/LAND COVER ATTRIBUTES:

RESIDENTIAL - HIGH DENSITY

- MEDIUM/LOW DENSITY

OPEN SPACE

COMMERCIAL/INDISTRIAL/INSTITUTIONAL

TRANSPORTATION - HIGHWAYS

- RAILROADS

- AIRPORTS

THIS IS INADEQUATE. IT IS NECESSARY TO HAVE ADDITIONAL COLLATERAL INFORMATION. SUCH INFORMATION (SOCIO-ECONOMIC AND DEMOGRAPHIC ATTRIBUTES OF A POPULATION) IS OFTEN IN TABULAR FORM. IMAGE, MAP, AND TABULAR DATASETS MUST BE INTEGRATED INTO A GEO-BASED INFORMATION SYSTEM.

	Digital		First-Order Land Use/Land Cover Second-Order
	Codes		Third-Order
1		ł	Urban and built-up land
	11		Residential
	12	Į.	Commercial and services
		121	Recrational
	13		Industrial
	14		Extractive
	15		Transportation, communications, and utilities
		151	Utilities
	16		Institutional
	17		Strip and clustered development
	18	1	Mixed urban
	19		Open and other urban
		191	Solid-waste dump
		192	Cemetery
		174	
2			Agricultural land
	21	1	Cropland and pasture
		211	Nonirrigated cropland
		212	Irrigated cropland
		213	Pasture
	22	==•	Orchards, groves, and other horticultural areas
	23		Feeding operations
	24	1	Other agricultural land
	4.7]	
3		į .	Rangeland
	31		Grass
	32	i	Savannas
	33	•	Chaparral (taken as brushland)
	34	ļ	Desert shrub
4		1	Forest land
•	41	į	Deciduous
	1-	411	Deciduous/intermittent crown
	42		Evergreen (coniferous and other)
	-	421	Coniferous/solid crown
		422	Coniferous/intermittent crown
	43	122	Mixed forest land
		1	
5		1	Water
	51		Streams and waterways
	52	1	Lakes
	53		Rescrvoirs
	54		Bays and estuaries
	55		Other water
6			Nonforested wetland
U	61		Vegerated
	62	i	Bare
	UL		_
7		ł	Barren land
	71		Salt flats
	72		Beaches
	73	Ì	Sand other than beaches
	74		Bare exposed tock
	-	741	Hillslopes
	75	Į	Other barren land
_	- -		
8			Tundra Tundra
	81	}	
9			Permanent snow and icefields
-	91		Permanent snow and icefields

MINNEAPOLIS ¹	HOUSTON ²	MILWAUKEE ³	LOS ANGELES ⁴	ORLANDO ⁵
Commercial Core Industrial Core Commercial/ Industrial Strip	Commercial/ Industrial/ Transporta- tion	Commerce/ Industry	Commercial/ Industrial/ Institu- tional	Commercial Industrial/ New Con- struction
High Density Single Fa- mily Res. Low Density Single Fa- mily Res. Mixed Single Multiple Family Res.	Residential Residential (New) Mixed Residential	Inner City Wooded Suburbs New Suburbs Other Suburbs	Med./High Density Residential Low Density Residential	Residential Wooded Residential
Urban Open Extractive			Undeveloped Urban Green Space Flood Channels & Extractive	Undeveloped
	Woody Veg. Non Woody Veg.	Trees Grassy Rural	Chapparal Grassland Agricultural	Trees Marsh
	Water	Water	Water	Water

Brown and Sizer, 1973 Dornbach and McKain, 1973 Mausel, Todd, and Baumgardner, 1974 Bryant, 1976 Hannah, Thomas, and Esparza, 1975

1 Source: 2 Source: 3 Source: 4 Source: 5

URBAN ACTIVITIES IDENTIFIABLE AT FOUR LEVELS OF INTERPRETATION

ERTS-1 Satellite Imagery	High Altitude Photography RB-57, 1:120,000	High Altitude Photography RB-57, 1:60,000	Medium Altitude Photography Black-and-White, 1:15,840
Core Residential/Commercial	Individual Structures Residential Areas	Single Family Residential Swimming Pools Apartment Complex Mobile Home Park	Housing Types High Rise Structures Garden Apartments
	Shopping Plaza Commercial Cluster Strip Commercial	Mobile Home Sales Parking Lots with Cars	Pleasure Boat Sales Building Under Construction
	Administrative Buildings Schools University Complex Cemetery		Institutional Buildings
	Golf Course Baseball Diamond Drive-in Theater	Boat Dock with Small Boats	Power Boat — Wake Park
	Marinas Heavy Industry Tank Farm Light Industry	Junk Yard Extracting Industry Fabricating Processing Gas Storage	Power Plant — Coal Piles Overhead Crane Water Pipes Open Storage Area
Excavations	Excavating Industry	023010126	Open storage Area
Airports	Airport Terminal Building Aircraft Hangars		
Highways	Highway Interchanges Divided Highways Bridges Rest Areas		
Railroads	R.R. Switching Yards		R.R. Box Cars
Utilities	Power Line Right of Way Secondary Roads Tertiary Roads Port Facilities — Ships		

Source: Gary K. Higgs and M. Sullivan, "A Comparitive Analysis of Remote Sensing Scale/System Attributes for a Multi-Level Land Use Classification System," Proceedings of the American Society Fall Convention (Falls Church, Va., 1973), pp. 335-367.

GEO-BASED INFORMATION SYSTEMS

DEFINITION:

INTEGRATION OF DATASETS HAVING AREAL COLLECTION UNITS OF VARIED SIZE, SHAPE, AND FORMAT.

FORMAT:

LANDSAT IMAGE - REGULAR CELL-BASED (PIXEL)

M.S.S. BANDS 4, 5, 6, AND 7 AND BAND RATIOS

MAP FORMAT - POINT DIMENSION, e.g., ELEVATION, RAINFALL, INTERSECTION

LINE DIMENSION, e.g., WATERCOURSE, RAOD, TRANSMISSION

LINE

AREA DIMENSION, e.g., CENSUS TRACT, NEIGHBORHOOD,

LAND USE/LAND COVER CATEGORY

TABULAR FORMAT - IRREGULAR AREAL UNIT FOR WHICH SOCIO-ECONOMIC

INFORMATION IS AVAILABLE, e.g., AVERAGE FAMILY

SIZE, AVERAGE FAMILY INCOME, AND AVERAGE NUMBER

OF AUTOS PER FAMILY

EXAMPLE:

I.B.I.S. (IMAGE BASED INFORMATION SYSTEM)

Conceptualized Formation of an IBIS Data Base.

LAND USE/LAND COVER CLASSIFICATION

**** ACCURATE CLASSIFICATIONS OF REMOTELY SENSED DATA IS CENTRAL ****

TO ALL APPLICATIONS TO WHICH THESE DATA ARE PUT.

**** MANY ANALYSES AND MODELS ADD THEIR OWN VARIANCE TO THE DATA ****

AND, THUS, IT IS CRITICAL TO BEGIN WITH HIGHLY ACCURATE DATA

THAT CAN WITHSTAND SOME DEGRADATION DURING THE DERIVATION

OF FINAL PRODUCTS.

ISSUES ASSOCIATED WITH THE ATTAINMENT OF ACCEPTABLE LEVELS OF ACCURACY:

- 1. CLASSIFICATION SCHEME USED (DESIGNED FOR USE WITH REMOTELY SENSED DATA OR NOT).
- 2. SPECTRAL AND SPATIAL FEATURE SELECTION AND POSSIBLE NEED TO REDUCE DIMENSIONALITY.
- 3. IMAGE RADIOMETRIC (SUN ANGLE AND HAZE) AND GEOMETRIC (REGISTRATION) CHARACTERISTICS OF RAW AND PROCESSED REMOTELY SENSED DATA. GEOMETRIC TRANSFORMATIONS INVOLVE RE-SAMPLING.
- 4. TEMPORAL SEQUENCE OF COVERAGE.
- GENERATION OF CLASS TRAINING STATISTICS AND AMPLING TECHNIQUES.
- 6. OPTIMAL USE OF COLLATERAL DATA SUCH AS TERRAIN DATA WHICH CAN BE TREATED AS AN ADDITIONAL CHANNEL.

LAND USE/LAND COVER CHANGE DETECTION

AIM:

- IDENTIFY THOSE PICTURE ELEMENTS THAT HAVE CHANGED OVER TIME
- 2. A. DISTINGUISH CHANGE THAT IS OF INTEREST FROM THAT WHICH IS NOT
 - B. CLASSIFICATION OF THE CHANGES OF INTEREST

METHODOLOGY: 1. IMAGE DIFFERENCING

- 2. IMAGE RATIOING
- CLASSIFICATION COMPARISON
- 4. PREPROCESSING PRIOR TO CHANGE DETECTION
- 5. CHANGE VECTOR ANALYSIS

1. IMAGE DIFFERENCING.

- A. PRECISELY REGISTER SCENES OF SAME AREA FOR TWO DATES
- B. SUBTRACT ONE IMAGE FROM THE OTHER ON A PIXEL-BY-PIXEL BASIS
- C. CREATE FREQUENCY DISTRIBUTIONS OF RADIANCE CHANGE FOR EACH BAND
- D. LOCATE THRESHOLD BOUNDARIES ON DISTRIBUTION TO SEPARATE CHANGE
 AND NO-CHANGE PIXELS (OFTEN DONE INTERACTIVELY BY AN INTERPRETER
 FAMILIAR WITH THE AREA)

2. IMAGE RATIOING.

- A. RATIO TRANSFORMATIONS TEND TO REMAIN INVARIANT UNDER VARYING
 CONDITIONS SUCH AS SHADOW, SUN ANGLE, AND SEASONAL REFLECTANCE
 DIFFERENCES
- B. NORMALIZED RATIO VALUES ON A PIXEL-BY-PIXEL BASIS IN ONE BAND ARE REPRESENTED BY A FREQUENCY DISTRIBUTION
- C. THRESHOLD SELECTION TAKES PLACE. RATIO VALUES SIGNIFICANTLY
 DIFFERENT FROM 1.0 ARE CONSIDERED CHANGE PIXELS

IMAGE DIFFERENCING CHANGE DETECTION METHOD

CLASSIFICATION COMPARISON.

- A. SUCCESS DEPENDS SIGNIFICANTLY UPON ACCURATE CLASSIFICATION OF LAND USE/LAND COVER
- B. CLASSIFICATION OF MULTI-DATE, MULTI-SPECTRAL DATA WITH HOPE
 THAT A "CHANGE" CATEGORY WILL EMERGE
- C. LAYERED CLASSIFICATION REQUIRES MULTI-STAGE DECISION LOGIC.
 CLASSIFICATION STRATEGY IS BEST PERCEIVED AS A TREE DIAGRAM
- D. CLUSTERING COMPARISON. UNSUPERVISED CLASSIFICATION OF SCORES
 FOR TWO DATES AND COMPARION OF THE RESULTING GROUPINGS

4. PREPROCESSING PRIOR TO CHANGE DETECTION.

- A. LOW FREQUENCY FILTERING IMAGE SMOOTHING TO ENHANCE AREAS OF HOMOGENEITY AT EXPENSE OF HIGH FREQUENCY DETAIL
- B. HIGH FREQUENCY FILTERING THIS ENHANCEMENT TECHNIQUE PRODUCES

 A SHARP VISUAL IMAGE BUT CONTAINS MORE "NOISE". GREATER EDGE

 ENHANCEMENT HIGHLIGHTING DISCONTINUITIES IN THE DATA
- C. PRINCIPAL COMPONENT ANALYSIS REDUCES THE DIMENSIONALITY OF
 THE DATA BY COLLAPSING A SET OF CORRELATED VARIABLES INTO A
 SMALLER SET OF ORTHOGONAL VARIABLES

5. CHANGE VECTOR ANALYSIS.

- A. WHEN LAND CHANGES ITS SPECTRAL APPEARANCE MAY CHANGE. PLOT

 THE VALUE OF TWO SPECTRAL VARIABLES (BANDS) FOR AN AREA BEFORE

 AND AFTER CHANGE ON A GRAPH
- B. VECTOR HAS BOTH MAGNITUDE AND DIRECTION:
 - (i) MAGNITUDE INDICATES AMOUNT OF CHANGE;
 - (ii) DIRECTION INDICATES TYPE OF CHANGE
- C. POSSIBILITY OF USING STANDARD DEVIATIONAL ELLIPSE ANALYSIS

LAND USE/LAND COVER PREDICTIVE MODELLING

**** LAND USE PATTERNS ARE A RESULT OF MISGUIDED SUBSIDIES,
INSTITUTIONAL STRUCTURES, TECHNICAL CHANGE, CULTURAL LAG
TIME AND, TO SOME EXTENT NON-QUANTIFIABLE INFLUENCES OF
PUBLIC PREFERENCES. ALL THESE PARAMETERS INTERELATE TO
PRODUCE A PATTERN.

THE PATTERN IS COMPRISED OF A SET OF STATES (LAND USE CATEGORIES) AND THEIR INTERRELATIONSHIPS (SPATIAL PROXIMITIES OR RULES GOVERNING THEIR INTERCHANGABILITY).

CONSIDER MODELS THAT ATTEMPT TO DESCRIBE AND EXPLAIN THE LAND USE CHANGE PROCESS. CONSIDER IN TURN:

- A. A TYPOLOGY OF LAND USE CHANGE MODELS
- B. OPERATIONAL MODELS INCORPORATING REMOTELY SENSED DATA
- C. SUGGESTED MODEL EXTENSIONS

- A. A TYPOLOGY OF LAND USE CHANGE MODELS.
- I. INDEPENDENT MODEL.

LAND USE IN CELL $\mathbf{g_{ij}}$ AT TIME t+dt IS IN NO WAY RELATED TO THE LAND USE IN CELL $\mathbf{g_{ij}}$ AT TIME t.

II. DEPENDENT MODEL (MARKOV MODEL).

LAND USE IN CELL g_{ij} AT TIME t+dt DEPENDS ON PREVIOUS LAND USE IN CELL g_{ij} AT TIME t.

$$g_{ij}^{t+dt} = F(g_{ij}^t)$$

III. HISTORICAL MODEL (TIME SERIES OR LAGGED VARIABLE MODEL)

LAND USE IN CELL g_{ij} AT TIME t+dt DEPENDES ON THE SEVERAL PREVIOUS LAND USES IN CELL g_{ij} .

$$g_{i,j}^{t+dt} = F(g_{i,j}^t, g_{i,j}^{t-dt}, g_{i,j}^{t-2dt}, \dots, g_{i,j}^{t-kdt})$$

IV. MULTIVARIATE MODEL (MULTIPLE LINEAR REGRESSION AND DISCRIMINANT ANALYSIS) LAND USE IN CELL g_{ij} IS DEPENDENT ON SEVERAL OTHER VARIABLES ALSO AT CELL g_{ij} .

$$g_{ij}^{t+dt} = F(u_{ij}^t, v_{ij}^t, w_{ij}^t, \dots, z_{ij}^t)$$

V. GEOGRAPHICAL MODEL

LAND USE IN CELL $\mathbf{g_{ij}}$ IS DEPENDENT ON LAND USE IN OTHER CELLS.

$$g_{ij}^{t+dt} = F(g_{i \pm p, j \pm q}^t)$$

A. EXTRAPOLATION-FILTERING MODEL

$$g_{ij}^{t} = F(g_{i \pm p, j \pm q}^{t})$$

THIS MODEL CAN BE CHARACTERIZED BY A GEOGRAPHICAL QUIZ.

B. DYNAMIC GEOGRAPHICAL

$$g_{ij}^{t+dt} = \dot{F}(g_{ij}^t, n_{ij})$$

WHERE n_{ij} DENOTES ALL OF THE LAND USES IN THE NEIGHBORHOOD OF LOCATION i,j.

THE MODEL HAS TWO PARAMETERS: (i) - n - NEIGHBORHOOD,

(ii) F - FUNCTION

- (i) NEIGHBORHOOD. THIS IS IMPORTANT BECAUSE IT DEFINES THE GEOGRAPHICAL DOMAIN OF INFLUENCE. ONE COULD ASSUME THAT NEIGHBORHOOD
 DEFINITION VARIES BY CELL BUT IT IS EASIER AT ASSUME <u>SPATIAL</u>
 NEIGHBORHOOD STATIONARITY. ALTERNATIVELY, ONE COULD ALLOW
 NEIGHBORHOOD TO VARY IN SIZE, SHAPE, AND ORIENTATION AND BE A
 FUNCTION OF THE LOCATION OF THE CELL, i.e., p,q = F(i,j)
- (ii) FUNCTION. ASSUME 5 LAND USE TYPES AND A CELL NEIGHBORHOOD OF 5, i.e., (i,j), (i-1,j), (i+1,j), (i,j-1), and (i,j+1). THUS, THERE ARE 5 STATES (S) AND 5 NEIGHBORS (N). A TRANSITION RULE SHOWS THAT ONE MUST CONSIDER $S^N = 3125$ CASES TO COVER ALL POSSIBILITIES.

ASSUME <u>SPATIAL ISOTROPY</u>, i.e., POSITIONING OF NEIGHBORS DOES NOT COUNT AND <u>SPATIAL STATIONARITY</u>. THIS MEANS THAT THE SAME ENVIR-ONMENT (NEIGHBORHOOD) RESULTS IN THE SAME CONSEQUENCES OR THAT THE RULES DO NOT DEPEND ON WHERE YOU ARE. COMPARE CHESS : RULES ARE PIECE-SPECIFIC BUT APPLY UNIFORMLY AT ANY LOCATION ON THE BOARD.

Α	Α	Α	Α	В	В
Α	Α	Α	В	В	Α
Α	A		Α	A	Α
Α	В	В	Α	Α	Α
В	В	Α	Α	Α	Α
В	В	Α	Α	Α	Α

$$\begin{array}{ccc}
R & R \\
R & A & I & \longrightarrow & R & C & I \\
C & & C & C
\end{array}$$

$$RICRA \longrightarrow C$$

$$(2R, 1I, 1C, A) \longrightarrow C$$

- B. OPERATIONAL MODELS INCORPORATING REMOTELY SENSED DATA
- I. LANDSCAPE MODELLING.

DEFINITION: LANDSCAPE MODELLING ORGANIZES AND OVERLAYS INFORMATION FROM EXISTING MAPS, TABULAR SOURCES, AND THE ANALYSIS OF REMOTE SENSING IMAGERY INTO A COMPUTER FRAMEWORK.

AIM: THE CURRENT THRUST OF LANDSCAPE MODELLING IS THE PROJECTION

AND DISPLAY IN A MAP FORM OF THE FUTURE LANDSCAPE WHICH WOULD

RESULT FROM THE CONTINUATION OF CURRENT LAND MANAGEMENT

PRACTICES OR THE LACK THEREOF.

- METHODOLOGY: 1. CELL-BY-CELL COMPARISON TO DETECT CHANGE
 - 2. MATRIX SHOWING FREQUENCY OF CHANGE BETWEEN CLASSES
 - 3. CONSTRUCTION OF TRANSITION PROBABILITY MATRIX
 - 4. MARKOV CHAIN MODELLING TO PREDICT FUTURE AGGREGATE CHANGE
 - 5. IDENTIFICATION OF DETERMINANTS OF CHANGE THROUGH DISCRIMINANT ANALYSIS
 - 6. APPLICATION OF DISCRIMINANT MODEL TO ALL CELLS TO ESTIMATE NEXT MOST PROBABLE CHANGE
 - 7. ALLOCATE CHANGE BASED ON PRIORITY RANKING OF CELLS

SIMPLE SCHEMATIC REPRESENTATION OF THE LANDSCAPE MODELING CONCEPT.

Built-Up Urban Areas Minimum Distance to Built-Up Urban Areas

CHANGES IN DENVER LAND USE, 1963 TO 1970. Entries show the number of 10 acre cells of each 1963 land use that converted to another land use by 1970. A blank denotes that no conversion occurred between the respective land uses during the period covered. Entries along the principal diagonal represent the number of cells of the land use that did not change to another land use between 1963 and 1970.

		Converting to 1970 Land Use														1963 Land-							
1963 Land-Use Type	Code -	11	12	13	14	15	16	17	18	19	21	22	23	24	41	51	52	53	55	61	73	75	Use Total
Residential	11	6393	11	2			2			12						1							642
Commercial and services	12	2	1089							6												5	110
Industrial	13	3	1	882			1																RA
Extractive	14	3		5	444						6						5						46
Transportation, communication, and utilities	15	<u> </u>				729																	72
Institutional	16	14	2		ì		3079			14							15						31.2
Strip and clustered development	17							1350														ı	135
Mixed urban	18	İ						4															1
Open and other urban land	19	239	52	46	35	51	42	39		3175	46					1	6					q	374
Cropland and pasture	21	394	27	125	139	72	31	262		351	14558			2		4	22	17				5	1600
Orchards and other horticultural areas	22											\ ₆ \											
Feeding operations	23												\ 2										j
Other agricultural land	24	ı			8	13				2	3			15			1						
Deciduous forest land	41) IR								
Streams and waterways	51	1														95							9
Lakes	52										1					`	592						• •
Reserve its	53																`	158					1
Other water	55																	`	\ <u>,</u>				
Vegetated nonforested wetland	61																			171			1
Sand other than beaches	73	ļ		1	9					2											52		
Other barren land	75						4				10										`	1873	i is
1970 Land-Use totals	1	7050	1182	1061	636	865	3159	1655	0	1562	14624	6	2	7	18	101	641	175		171	52	 1892	`

DENVER LAND-USE PROBABILITY TRANSITION MATRIX, 1963 TO 1970. Entries in the matrix denote the fraction of each 1963 land use that converted to another land use in 1970 as computed from table 4. A blank in the matrix denotes that no conversion occurred between the respective land uses during the period covered. A 1.0 in the matrix denotes that the area of that land use either did not change or increased by conversion to it from another land use between 1963 and 1970. Entries less than 0.001 are indicated by a dash.

1002 1 111 T			Converting to 1970 Land Use																			
1963 Land-Use Type	Code-	11	12	13	14	15	16	17	- 18	19	21	22	23	24	41	51	52	53	55	61	73	75
Residential	11	0.996	0.002	_			_			0.002						-						
Commercial and services	12	0.002	0.988							0.005												0.005
Industrial	13	0.003	0.001	0.994			0.001															
Extractive	14	0.006		0.011	0.959						0.013						0.011					
Transportation, communi- cations and utilities	15				`	1.0																
Institutional	16	0.004	0.001				0.995			0.004							0,005					
Strip and clustered development	17							1.0														
Mixed urban	18							1.0														
Open and other urban land	19	0.064	0.014	0.013	0.009	0.014	0.011	0.01	0	0.849	0.012			-		-	0.002					0,002
Cropland and pasture	21	0.025	0.002	0.009		0.004	0.002	0.01	6	0.022	0.909					•	0.001	0,00	11			-
Orchards and other horticultural areas	22											1.0										
Feeding operations	23) 1.0 __									
Other agricultural land	24	0.030			0.242	0.394				0.061	0.091			0.152			0,030					
Deciduous forest land	41														1.0							
Streams and waterways	51	0,010														0.99	n					
Lakes	52										0.002						0.998					
Reservoirs	53																	1.0				
Other water	55																		1.0			
Vegetated nonforested wetland .	61																			1.0		
Sand other than beaches	73			0.016	0,141					0.031											0.81	3
Other barren land	7.5	<u> </u>					0,002				0.005											0,993

DENVER AGGREGATE LAND-USE PROJECTIONS BY A MARKOV TREND MODEL, 1963 TO 2068. Specific land-use total areas, such as those illustrated in figure 42, are detailed here. Photointerpreted second-order land-use changes between 1963 and 1970 were used to drive this generalized trend model for the 24- by 24-mile Denver Metropolitan Area. The basic assumption of the Markov model is that the rates of changes are constant over time for all land-use classes. This model can project only aggregate land-use areas and cannot spatially predict the actual sites of conversion.

	Measured	Acreages							Project	ted Acreage	1					
Land-Use Type	1963	1970	1977	1984	1991	1998	2005	2012	2019	2026	2033	2040	2047	2054	2061	2068
Residential	64,210	70,500	76,320	81,700	86,680	91,280	95,530	99,450	103,060	106,400	109,470	112,310	114,920	117,330	119,550	121.60
Commercial and services	11,020	11,820	.12,580	13,290	13,960	14,590	15,180	15,730	16,260	16,750	17,210	17,640	18,040	18,430	18,780	
Industrial	8.870	10,610	12,250	13,760	15,170	16,470	17,690	18,810	19,860	20,830	21,730	22,570	23,350	24.070	24,740	19,120
Extractive .	4,630	6,360	7,800	9,030	10,090	10,980	11,730	12,350	12,860	13,260	13,580	13,810	13,980	14,080		25,360
Transportation, communi-	İ		#. . *(*)					12,110	}		1,50	1.3,610	13,980	14,080	14,130	14,120
cations, and utilities	7,290	8,650	9,820	10,890	11,890	12,810	13,660	14,450	15,190	15,870	16,500	17,090	17,630	18,140	18,610	19.040
Institutional	31,250	31,590	31,880	32,130	32,330	32,500	32,620	32,710	32,770	32,810	32,810	32,790	32,740	32,680	32,600	32,50x
Strip and clustered					1	1	ļ	ļ	ļ			, .				,,,,,,,,,,,
development	13,500	16,550	19,310	21,850	24,190	26,330	28,300	30,110	31,770	33,300	34,710	36,010	37,200	38,300	39,320	40,264
Mixed urban	40	0	O	O	0	0	0	0	0	0	0	0	0	0	0	1 .
Open and other urban	37,410	35,620	33,800	31,980	30,200	28,470	26,810	25,220	23,700	22,270	20,920	19,650	18,460	17,340	16,110	15,340
Cropland and pasture	160,090	146,240	133,600	122,120	111,670	102.150	93,500	85,610	78,440	71,900	65,940	60,510	55,560	51,050	46,940	43,180
Orchards and other horticultural areas	60	60	60	60	60	60	60	60			1					
Feeding operations	20	20	20	20	20	20	20		.60	60	60	60	60	60	60	60
Other agricultural land	330	70	30	20	20	20		20	20	20	20	20	20	20	20	20
Deciduous forest land	180	180	180	180	180	180	20 180	10	10	10	10	10	10	10	10	} 10
Streams and waterways	960	1.010	1,060	1,100	1,140	1,180	i '''	180	180	180	180	180	180	180	180	181
Lakes	5,930	6,410	6,880	7,340	7,800	8,260	1,210	1.250	1,280	1,300	1,330	1,360	1,380	1,400	1,420	1,440
Reservoirs	1.580	1.750	1,910	2,050	2.180	2,300	8,700	9,140	9,580	000,01	10,420	10,830	11,240	11,630	12,020	12,400
Other water	50	50	50	3030	50		2,400	2,500	2,590	2,680	2,750	2,820	2,890	2,950	3,000	3,050
Vegetated nonforested]] "	,,00	ווכ	30	50	50	50	50	50	50	50	50	50	50	.54
wetland	1,710	1,710	1,710	1,710	1,710	1,710	1,710	1,710	1,710	1,710	1,710	1.710				
Sand other than heaches	, 640	520	420	340	280	230	180	150	120	100	1.710		1,710	1,710	1,710	1,710
Other barren fand	18,870	18,920	18,960	19,000	19,040	19,070	19,090	19.110	19,130	19,140	19,150	70 19,160	50 19,170	40 19,170	19,170	19.16
Grand Total	368,640	368,640	368,640	368,640	368,640	368,640	368,640	368,640	368,640	368,640	368,640	368,640	368,640	368,640	368,640	368,64

Observation interval.

Region of possible reality.

PREDICTION OF FUTURE TRENDS IN THE AMOUNT OF OPEN SPACE AND COMPETING LAND USE IN THE DENVER METROPOLITAN AREA. A constant matrix of transfers, $P = \left\{p_{i,j}\right\}$, from land use, i, to land use, j, was assumed. Acreages displayed relate to the original area of 24-by 24-statute miles = 576 square statute miles.

PROPOSED COMBINATION MARKOV AND LINEAR DISCRIMINANT MODELS FOR IM-PROVED SPATIAL-CHANGE PREDICTION. The Markov trend model provides the correct number of change cells by type. These can be selected from a sorted list of discriminant-computed posterior probabilities of change. The selected cells can be assembled into a map of future land use. Spatially registered Landsat digital imagery can serve as future land-use inputs in lieu of the 1963 to 1970 aerial photography.

II. SPATIAL ANALYSIS AND REGIONAL LAND USE PATTERNS.

DEFINITION: THE TERMS <u>SPATIAL ANALYSIS</u> AND <u>SYNTHESIS</u> ARE DEFINED AS

THE SEPARATION OF A LAND USE PATTERN INTO INDIVIDUAL

COMPONENTS (SPATIAL PROXIMITIES) AND THE RECONSTRUCTING

OF THESE COMPONENTS FOR USE IN PROJECTING LAND USE PATTERNS.

AIM: NEED TO PROJECT FUTURE LAND USE PATTERNS.

METHODOLOGY: 1. BASED ON QUANTIFICATION OF A LAND USE PATTERN

- 2. OPERATION DEFINITION OF SPATIAL RELATIONSHIPS
- 3. DERIVATION OF A WEIGHTED INDEX BASED ON FREQUENCIES
 OF OCCURRENCE FOR EACH DISTANCE FROM ALL OTHER LAND
 USES
- 4. IDENTIFICATION OF "TRIGGERING" AND "CONSTRAINING" FACTORS
- 5. ALLOCATION PROCEDURE OF AGGREGATE DEMAND FOR LAND TO SPATIAL DOMAIN

OPERATION:

- 1. SELECTION OF 15 LAND USE/LAND COVER CLASSES CODED

 AS PRESENCE/ABSENCE ON CELL-BY-CELL BASIS
- 2. CREATION OF <u>SPATIAL PROXIMITIES</u> MATRIX FOR EACH LAND USE/LAND COVER CATEGORY WITH 19 DISTANCE INTERVALS.

 ACCOMPANIED BY A MAP SHOWING ISO-PROXIMITY LINES
- 3. TABLE OF PROXIMITY OCCURRENCES OF ANY LAND USE/LAND COVER
 CATEGORY TO ALL OTHER CATEGORIES BY DISTANCE INTERVALS
- 4. PROJECTION TECHNIQUE. MODEL MUST DISCRIMINATE UNDEV-ELOPED AREAS HAVING THE SAME SPATIAL CHARACTERISTICS AS AREAS CURRENTLY OCCUPIED BY A GIVEN LAND USE. THUS.

A CELL WITHOUT URBAN DEVELOPMENT FOUND TO POSSESS THE LARGEST NUMBER OF SPATIAL ATTRIBUTES THAT MOST CLOSELY APPROXIMATE THE ATTRIBUTES OF DEVELOPED CELLS IS ASSUMED TO DEVELOP IN THE SAME MANNER.

5. CROSS REFERENCE FILES SHOWING (i) CELLS CONTAINING A
PARTICULAR LAND USE CATEGORY; (ii) CELLS HAVING HIGH
WEIGHTING FOR SOME CATEGORY; (iii) LAND USE CATEGORY
DEMAND (EXPRESSED IN ACRES OR NUMBER OF CELLS); (iv)
CELLS CONTAINING CONSTRAINING ATTRIBUTES.

•	• qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq	· • • • • • • • • • • • • • • • • • • •
	088888886666666666666666666666666666666	
304773	ETITUTE ET SOO METER GRID	3656
FCAEF2 ===0 === 2	E A R C H F R C C R C C C C C C C C C C C C C C C	

•

•

TABLE OF FREQUENCIES COUNTS OF MEDIUM DENSITY HOUSING VERSUS DISTANCES* FROM OTHER LAND USES

DISTANCES

LAND USES	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Water	34	90	82	77	106	66	91	74	53	43	19	16	10	13	8	8	4	2	3
Institutions	176	379	125	45	40	20	11	1	1	0	0	2	2	1	1	0	0	0	0
Low Density Housing	173	366	167	59	15	4	5	7	5	3	0	0	0	0	0	0	0	0	0
High Density Housing	87	229	144	93	83	26	28	14	13	7	8	6	9	3	6	· 8	12	7	8
Recreation	77	186	144	115	124	46	24	4	11	13	7	7	3	2	6	6	7	7	6
Railroads	83	184	115	92	103	63	62	51 _.	26	7	8	6	3	1	0	0	0	0	0
Industry	23	119	103	97	135	75	. 76	52	46	40	17	11	3	2	1	۰ 2	1	1.	0
Commerce	101	290	159	89	75	32	20	12	y 4	6	4	3	1	4	4	0	0	0	0
Rural (major)	153	297	159	75	41	23	14.	8	7 11,	14	7	2	0	0	0	0	0	0	0
Rural (minor)	46	107	78	. 69	101	50	52	1037,	35	43	30	37	31	33	24	16	9	6	0
Controlled Access	5	10	8	5	7	15	14	19	11	13	8	15	14	19	15	15	18	12	16
Uncontrolled Access	133	240	125	95	78	29	18	-14/	17	. 15	9	8	6	6	1	1	2	0	1
Transportation (interchanges)	5	26	34	36	64	52	50	38	47	65	51	48	36	40	27	27	21	10	11
Transportation (interstates)	20	55	45	36	61	53	46	39	50	63	43	38	29	29	31	20	16	12	9
Sewer Service Areas	217	197	118	72	57	28	15	15	12	14	8	11	3	5	5	4	3	5	0
Rivers	130	257	144	120	108	31	13	1	0	0	0	0	0	0	0	0	0	0	0

CK/1mt 2/8/77 revised 11/23/77

^{*}Distances equal 500 meters.

LEVELS

FREGUENCY SIOO

SAME CELLS AS MEDIUM LEGEND JE EEFFS IN THE TUBES 9562 SEEABLEDEDINGEBERZIDEN YPTSTREAM FECCULACY \$300 30

486488

LEVELS

FREQUENCY SIGN TOO

C. SUGGESTED MODEL EXTENSION.

MODEL SHOULD POSSESS TWO MAJOR ATTRIBUTES:

- I. ABILITY TO PREDICT THE MAGNITUDE OF AGGREGATE SYSTEM-WIDE LAND USE/LAND COVER CHANGE
- II. ABILITY TO PREDICT THE MOST LIKELY GEOGRAPHICAL LOCATION WHERE CHANGE WILL OCCUR.
- I. A. STOCHASTIC APPROACH.

ATTENTION SHOULD BE PAID TO HOW WELL THE PHENOMENA BEING MODELLED APPROXIMATE THE MATHEMATICAL AND STATISTICAL REQUIREMENTS OF THE MODEL, e.g., STATIONARITY OF THE TRANSITION PROBABILITIES AND ORDER OF THE PROCESS.

- B. USE OF EXOGENOUS (TRIGGERING) VARIABLES WHICH ARE DERIVED FROM DEMOGRAPHIC/ECONOMIC MODELS DESIGNED TO PREDICT FUTURE LAND REQUIREMENTS. THIS APPROACH REQUIRES A DETERMINATION OF TRIGGERING FACTORS, CONSTRAINING FACTORS, AND SUITABILITY CRITERIA.
- II. A. MULTIVARIATE APPROACH WHICH DETERMINES THE RELATIONSHIPS BETWEEN

 CHANGE AND A NUMBER OF INDEPENDENT VARIABLES VIA MULTIPLE REGRESSION

 AND DISCRIMINANT ANALYSIS.
 - B. USE OF LATERAL DEPENDENCIES AND THE CALCULATION OF CONDITIONAL PROBABILITIES ALONG THE LINES OF THE "GEOGRAPHICAL MODEL" DESCRIBED EARLIER. ATTENTION MUST BE PLACED ON THE DEFINITION OF THE CONCEPTS "NEIGHBORHOOD" AND "FUNCTION".

THE ABOVE CONCERN CAN BE FORMALLY EXPRESSED AS FOLLOWS:

$$P_K = F(P_K^T, P_K^N),$$

WHERE P_K^T IS THE TIME TRANSITON MATRIX DESCRIBING THE PROBABILITY THAT THE NEXT CELL STATE WILL BE K, P_K^N IS THE CONDITIONAL PROBABILITY THAT CELL TYPE K WILL OCCUR, GIVEN THE STATES OF THE NEIGHBORING CELLS, AND F IS A FUNCTION THAT COMBINES THE TWO PROBABILITIES. THE EXACT SPECIFICATION OF THE FUNCTION CAN VARY, e.g.,

$$F(P_K^T, P_K^N) = P_K^T \cdot P_K^N \text{ OR}$$

$$F(P_K^T, P_K^N) = W_1 P_K^T + W_2 P_K^N, \text{ WHERE}$$

 \mathbf{W}_1 AND \mathbf{W}_2 ARE APPROPRIATE WEIGHTS.

MARKOV CHAIN MODELLING

APPLICATIONS:

MODELLING MOVEMENT IN TERMS OF GEOGRAPHICAL MOVEMENT OR IN

TERMS OF MOVEMENT FROM ONE "STATE" TO ANOTHER. A SYSTEM IS

IN A PARTICULAR STATE AT ANY POINT IN TIME, i.e., HAS A

PARTICULAR STRUCTURE OR SET OF RELATIONSHIPS AMONG THE PARTS.

MARKOV CHAIN MODELS ARE NEAT AND ELEGANT CONCEPTUAL DEVICES
FOR <u>DESCRIBING</u> AND <u>ANALYZING</u> THE NATURE OF CHANGE AND MAY BE
USED TO FORCAST FUTURE CHANGE.

PLANNERS AND ADMINISTRATORS CONCERNED WITH THE PRESENT AND FUTURE SPATIAL ORGANIZATION OF THE LANDSCAPE ARE INTERESTED IN THE <u>PROBABILITIES</u> OF CHANGE. THE MARKOV CHAIN MODEL IS A STOCHASTIC TYPE OF MODEL.

- MODEL ELEMENTS: 1. TRANSITION PROBABILITY MATRIX WHERE ELEMENTS IN EACH ROW SUM TO 1.0. THE PRINCIPAL DIAGONAL OF THE SQUARE MATRIX INDICATES THE PROBABILITY OF NO CHANGE IN THE STATE.
 - 2. INITIAL STATE VECTOR DESCRIBES THE STRUCTURE OF THE ENTIRE SYSTEM AT ANY POINT IN TIME, e.g., PERCENT OF LAND IN EACH OF A NUMBER OF LAND USE/LAND COVER CLASSES. THE ELEMENTS OF THE VACTOR SUM TO 1.0.
 - 3. A CHANGE IN THE STATE VECTOR IS ACCOMPLISHED BY MULTI-PLYING THE INITIAL STATE VECTOR BY SUCCESSIVELY HIGHER POWERS OF THE TRANSITION PROBABILITY MATRIX.
 - 4. THE SIMPLE MODEL ASSUMES: (i) A CONSTANT POPULATION;
 (ii) A SET OF TRANSITION PROBABILITIES; (iii) THESE

PROBABILITIES REMAIN CONSTANT OR <u>STATIONARY</u>; AND (iv) THE FIRST ORDER PROPERTY, i.e., THE SYSTEM CHANGING FROM A GIVEN STATE s_i AT TIME t_{0+1} <u>DEPENDS</u> ONLY ON THE STATE s_i AT THE TIME t_0 AND IS INDEPENDENT OF THE STATES OF THE SYSTEM PRIOR TO t_0 .

- 5. PROPERTIES OF REGULAR FINITE MARKOV CHAINS.
 - (i) TRANSITION PROBABILITIES ARE NON-NEGATIVE AND THOSE
 IN EACH ROW SUM TO 1.0 AND THE TRANSITION MATRIX
 IS REGULAR IF FOR SOME POWER OF THE MATRIX THERE
 ARE ONLY POSITIVE NUMBERS.
 - (ii) CONCEPT OF EQUILIBRIUM IS EXPRESSED IN TWO THEOREMS:
 - .a. IF P IS A TRANSITION MATRIX FOR A REGULAR MARKOV

 CHAIN THEN 1 THE POWERS OF P APPROACH A MATRIX A

 2 EACH ROW OF A IS THE SAME PROBABIL
 ITY VECTOR 'a'

 3 THE ELEMENTS OF 'a' ARE ALL POSITIVE
 - .b. IF P IS A TRANSITION MATRIX FOR A REGULAR MARKOV
 CHAIN AND A AND 'a' ARE AS STATED ABOVE, THEN THE
 UNIQUE VECTOR 'a' IS THE UNIQUE PROBABILITY
 VECTOR SUCH THAT 'a'.P='a'. THE MATRIX A IS
 DEFINED AS THE LIMITING MATRIX.
 - (iii)THE LIMITING MATRIX DESCRIBES THE AVERAGE STATE OF THE SYSTEM AND THE ASSOCIATED PROBABILITY VECTOR 'a' HOLDS THE SYSTEM IN EQUILIBRIUM.
 - (iv) IN MARKOV CHAIN ANALYSIS, FOR MODELLING PURPOSES, THE EQUILIBRIUM DISTRIBUTION IS OF INTEREST NOT AS A FORCAST OF THE FUTURE STATE OF THE SYSTEM BUT AS A

- PROJECTION OF WHAT WOULD BE IF THE <u>OBSERVED</u> PATTERN OF MOVEMENT CONTINUED UNHAMPERED.
- APPROACHES EQUILIBRIUM FROM AN INITIAL DISTRIBUTION.

 IT CAN BE USED TO CALCULATE A MATRIX OF MEAN FIRST

 PASSAGE TIMES, i.e., THE TIME IT TAKES ON AVERAGE

 TO MOVE FROM ONE STATE TO ANOTHER.

QUESTIONS ABOUT THE APPLICATION OF THE MARKOV MODEL.

- 1. IDENTIFICATION OF THE SPECIFIC ORDER PROPERTY SHOULD BE MADE. MOST APPLICATIONS ASSUME A FIRST ORDER. CRITERIA EXIST TO TEST SUCH AN ASSUMPTION.
- 2. STATIONARITY OF THE PARAMETERS, i.e., THE ESTIMATED TRANSITION
 PROBABILITIES ARE FIXED OR CONSTANT THROUGHOUT THE PREDICTIVE PERIOD.
 STATISTICAL TESTS EXIST.

Estimated probability transition matrix of commercial activities for downtown Denver. First row, 1947-1951; second row, 1951-1963; third row, 1963-1967; fourth row, 1967-1971.

Transition from	Transition to ^a										
	1	2	3	4	5	6	7	8	9		
Financial,	0.798	-	-	0-125	0.056	-	0.014	-	0.007		
real estate,	0.724	0.052	0.013	0.089	0.019	0.013	0.038	-	0.051		
and insurance	0.747	-	-	0.070	0.014	0.014	0.042	-	0.112		
	0.806	-	-	0.015	0.029	0.045	0.059	-	0-045		
Professional	0.026	0.615	-	0.218	0.038	-	0.027	-	0.080		
services	0.080	0.400	0.120	0.040	0.080	0.040	0.160	-	0.080		
	-	0.625	•	0.042	0.208	-	0.125	-	-		
	-	1.000	-	-	-	-	-	-	-		
Commercial	_	-	0.919	0.054	-	-	0.027	-	-		
residential	0-095	-	0.667	-	_	0.048	0.190	-	-		
	-	-	0.727	-	-	-	0.181	-	0.091		
	- ,	-	0.682	-	-	-	0.046	-	. 0.272		
General retail	0.029	0.008	-	0.830	0.024	0.016	0.012	-	0.081		
	0.033	0.028	0.002	0.539	0.040	0.022	0.191	-	0.144		
	0.045	0.003	-	0.719	0.010	0.023	0.069	0.005	0.126		
	-	0.003	0.002	0.703	0.014	0.028	0.023	0.016	0.217		
Personal	0.030	_	-	0.146	0.732	0.021	-	-	0.098		
and commercia!	0.055	-	0.004	0.164	0.535	0.008	0.133	-	0.102		
services	0-057	0.020	-	0.062	0.647	-	0.095	-	0.119		
	-	-	-	0.072	0.619	0.041	0.031	-	0.237		
Eating	0.012	-	-	0.060	0.036	0.811	0.019	-	0.062		
ind/or drinking	0.069	-	0.011	0.042	0.070	0.643	0.168	-	0.049		
	0.050	-	-	0.033	0.004	0.767	0.083	-	0.063		
	0 ·009	-	-	0.027	0.009	0.691	0.036	-	0.227		
Parking	0.067	-	_	0.022	0.011	0.011	0.845	-	0.044		
•	0.042	-	0.013	0.042	0.013	0.030	0.795	0-013	0.065		
	0.033	-	-	0.033	-	-	0.900	-	0.033		
	-	-	-	-	-	-	0.946	-	0.054		
Entertainment	-	-	-	-	-	0.042	_	0.958	-		
	0.037	-	-	0-111	-	0.037	0.185	0.630	-		
	0.154	-	-	-	-	-	-	0.846	-		
	-	-	•	-	-	-	0.167	0.666	0.167		
Other	0.042	0.004	0.002	0.081	0.065	0.010	0.007	-	0.798		
	0.026	0.018	0.018	0.215	0.044	0.062	0.106	-	0.499		
	0.036	0.001	-	0.066	0.005	0.009	0.072	-	0.811		
	0.003	-	-	0.005	0.003	0.001	-	0.001	0.987		

Key: 1 financial, real estate, and insurance; 2 professional services; 3 commercial residential;
 4 general retail;
 5 personal and commercial services;
 6 eating and/or drinking;
 7 parking;
 8 entertainment;
 9 other.

Estimated second-order probability transition matrices of commercial activities for downtown Denver. First row, 1947-1951-1963; second row, 1951-1963-1967; third row, 1963-1967-1971. Key as in table 1.

Commercial residential.							General retail.											
Transition to Tr (first period)	Transit	Transition to (second period)								Transition to (second period)								
	1	2	3	4	5	6	7	8	9	!	2	3	4	5	6	7	8	9
Financial,	-	-	-	_	_	-	-	_	_	0.438	-	-	0.281	0.129	-	0.031	-	0.125
real estate, and insurance	1 · 00	-	-	-	-	-	-	-	-	0·750 0·889	0·028 -	-	0·083 0·055	- 0·055	-	0·028	-	0·111
Professional	-	-	-	-	-	-	-	-	-	0.400	0.400	-	-	0.200	-		-	-
services	-	-	-	-	-	-	-	-	-	0.400	0.200	-	-	-	-	-	-	0.400
	-	-	-	-	-	-	-	-	-	1.00	-	-	-	-	-	-	-	-
Commercial 0.05 residential -	0.051	-	0·795 1·00	-	<u>-</u> .	-	0·103	•	0.051	-	-	1.00	-	-	-	-	-	-
	-	-	0.882	-	-	-	0.118	-	-	-	-	-	•	-	-	-	-	_
General retail -	<u>-</u>	-	•	-	-	-	-	-	1.00	0·064 0·052	0·010 0·002	0·002 0·003	0·603 0·702	0·043 0·018	0·030 0·030	0·109 0·085	0·002 0·003	0·130 0·105
	-	-	-	1.00	-	-	-	-	-	0.007	0.007	0.004	0.664	0.015	0.019	0.150	0.012	0.122
Personal	-	-	-	-	-	-	-	-	-	-	0.080	-	0.080	0.440	-		-	0.160
and commercial	-	-	-	-	-	-	-	-	-	0.097	-	0.032	0.205	0.519	-	0.130	-	0.016
services	-	-	-	-	-	-	-	-	-	-	-	-	-	0.200	0.500	0.400	-	0.200
Eating and/or drinking	· -	-	-	-	-	-	-	-	-	-	-	-	0.419	-	0.571	-	-	.
	-	-	-	-	-	1.00	-	-	-	-	-	-	0·225 0·444	-	0·626 0·467	0.025	-	0.071 0.089
Parking	_	-	-	_	_	_	_	-		_	-	-	0.029	_	_ ,	0.914	0.057	-
	-	-	-	-	-	-	1.00	-	-	-	-	-	0.062	-	-	0.892		0.046
	-	-	•	-	-	-	1.00	-	-	-	-	-	0.088	-	-	0.645	-	0.267
Entertainment	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.00	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Other	-	-	-	-	-	-	-	-	-	0.073	0.013	-	0.188	0.073	0.061	0.073	-	0.518
	-	-	-	_	-	-	-	-	1.00	0·101 0·004	0.004	-	0·238 0·167	0.020	0.009	0·195 0·238	- 0·026	0·432 0·556

DISCRIMINANT ANALYSIS

PURPOSE:

A METHOD OF PRODUCING HYBRID VARIABLES SO AS TO PRODUCE THE BEST POSSIBLE SEPARATION, OR DISCRIMINATION, BETWEEN VARIOUS GROUPS. SUCH DISCRIMINANT FUNCTIONS ARE OFTEN NECESSARY BECAUSE OF CO-LLINEARITY AMONG INDEPENDENT VARIABLES ORIGINALLY USED IN THE ANALYSIS.

THE METHOD INVOLVES TWO SETS OF EQUATIONS: (i) A SET RELATING
THE GROUP MEMBERSHIP TO THE DISCRIMINANT FUNCTIONS; AND (ii) A SET
RELATING THE ORIGINAL VARIABLES TO THE DISCRIMINANT FUNCTIONS.

USES:

- 1. TESTING (AND GENERATING) HYPOTHESES, e.g., INVESTIGATE WHETHER
 A CERTAIN SET OF RELATED VARIABLES (MEASURED ON INTERVAL OR
 RATIO SCALES) SUCCESSFULLY DISCRIMINATE BETWEEN GROUPS OF
 OBSERVATIONS ON A NOMINAL SCALE.
- 2. EVALUATING A CLASSIFICATION, e.g., INDICATE THE NUMBER OF MISCLASSIFICATIONS IN THE DEPENDENT VARIABLE.
- 3. ESTIMATING VALUES FOR OTHER OBSERVATIONS, i.e., ALLOCATING NEW OBSERVATIONS TO AN EXISTING CLASSIFICATION.

Derivation of a discriminant function, showing: (A) the location of 12 observations, in two groups, on two orthogonal independent variables; (B) the location of members of the two groups, and the group means, on the separate independent variables; (C) location of a discriminant function which achieves maximal separation of the two groups; and (D) the location of members of the two groups, and the group means, on the discriminant function.

A discriminant function separating two groups of observations according to their values on four, related variables.

A discriminant analysis showing the use of two discriminant functions to separate three groups of observations in a three-variable space.

CR 166369	2. Government Acces	sion No.	3. Recipient's Catalog	it's Catalog No.					
4. Title and Subtitle Relation of Land Use/	Tand Cover	+0	5. Report Date March 1981						
Resource Demands	Land Cover		6. Performing Organi	zation Code					
7. Author(s) Cristopher Clayton		8. Performing Organiz	ation Report No.						
9. Performing Organization Name and Address			10. Work Unit No. T-4334						
Department of Geograp	hv	}-	11. Contract or Grant						
University of Califor	mia		Grant NAG 2-20						
Santa Barbara, CA 93	3106	L	13. Type of Report and Period Covered						
12. Sponsoring Agency Name and Address			Contractor	Report					
National Aeronautics Washington, D.C. 205	and Space A 546	Administratio	14. Sponsoring Agency	Code					
15. Supplementary Notes									
Ŋ	David Sinno NASA Ames R	tt T esearch Cente ld, CA 94035	E: 415-965 FTS 448						
16. Abstract	WITELL FIE	Lu, un 74055							
residential energy context of impleme information system Remotely sensed dathis process.	entation the as containi	rough manipul ng land use/c	ation of gover inform	eographic mation.					
17 Van Wart 19									
17. Key Words (Suggested by Author(s)) Land Use		18. Distribution Statement							
Land Cover		Unclassified-Unlimited							
Change Detection									
Remote Sensing		STAR Catego	ry 43						
19. Security Classif. (of this report)	20. Security Classif. (o	f this page)	22. Price*						
Unclassified	Unclass	ified	49						

