Математическое моделирование

Лабораторная работа №6

Матюшкин Денис Владимирович (НПИбд-02-21)

Содержание

1	Цель работы	4		
2	Задание	5		
3	Теоретическое введение	6		
4	Выполнение лабораторной работы 4.1 Решение на Julia	8 9 10		
5	Выводы	14		
Сп	Список литературы			

Список иллюстраций

4.1	Графики численности в случае $I(0) \leq I^*$	11
4.2	Графики численности в случае $I(0)>I^*$	12
4.3	Графики численности в случае $I(0) \leq I^*$	12
4.4	Графики численности в случае $I(0) > I^*$	13

1 Цель работы

Построение простейшей модели по здаче об эпидемии.

2 Задание

Вариант 50

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове N=4289 в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0)=82, А число здоровых людей с иммунитетом к болезни R(0)=15. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0)-R(0).

Постройте графики изменения числа особей в каждой из трех групп. Рассмотрите, как будет протекать эпидемия в случае:

- 1. если $I(0) \leq I^*$
- 2. если $I(0) > I^*$

3 Теоретическое введение

Julia - это высокопроизводительный язык программирования, который сочетает в себе скорость компилируемых языков с удобством использования скриптовых языков. Он предназначен для научных вычислений, анализа данных и создания высокопроизводительных приложений. Julia поддерживает многопоточность, имеет обширную экосистему библиотек и является проектом с открытым исходным кодом [1].

OpenModelica - это свободная и открытая среда для моделирования и анализа динамических систем. Она предоставляет инструменты для создания и симуляции моделей в различных областях, таких как инженерия, наука, экономика [2].

Рассмотрим простейшую модель эпидемии. Предположим, что некая популяция, состоящая из N особей, (считаем, что популяция изолирована) подразделяется на три группы. Первая группа - это восприимчивые к болезни, но пока здоровые особи, обозначим их через S(t). Вторая группа - это число инфицированных особей, которые также при этом являются распространителями инфекции, обозначим их I(t). А третья группа, обозначающаяся через R(t) - это здоровые особи с иммунитетом к болезни.

До того, как число заболевших не превышает критического значения I^* , считаем, что все больные изолированы и не заражают здоровых. Когда $I(t) > I^*$, тогда инфицирование способны заражать восприимчивых к болезни особей.

Таким образом, скорость изменения числа S(t) меняется по следующему закону:

$$rac{dS}{dt} = egin{cases} -lpha S & ext{,ecли } I(t) > I^* \ 0 & ext{,ecли } I(t) \leq I^* \end{cases}$$

Поскольку каждая восприимчивая к болезни особь, которая, в конце концов, заболевает, сама становится инфекционной, то скорость изменения числа инфекционных особей представляет разность за единицу времени между заразившимися и теми, кто уже болеет и лечится. Т.е.:

$$rac{dI}{dt} = egin{cases} lpha S - eta I & ext{,если } I(t) > I^* \ -eta I & ext{,если } I(t) \leq I^* \end{cases}$$

А скорость изменения выздоравливающих особей (при этом приобретающие иммунитет к болезни):

$$\frac{dR}{dt} = \beta I$$

Постоянные пропорциональности α,β - это коэффициенты заболеваемости и выздоровления соответственно. Для того, чтобы решения соответствующих уравнений определялось однозначно, необходимо задать начальные условия. Считаем, что на начало эпидемии в момент времени t=0 нет особей с иммунитетом к болезни R(0)=0, а число инфицированных и восприимчивых к болезни особей I(0) и S(0) соответственно. Для анализа картины протекания эпидемии необходимо рассмотреть два случая: $I(0) \leq I^*$ и $I(0) > I^*$

4 Выполнение лабораторной работы

4.1 Решение на Julia

```
using Plots
using Differential Equations
a = 0.01
b = 0.02
N = 4289
I = 82
R = 15
S = N-I-R
tspan = (0, 100)
t = collect(LinRange(0, 200, 1000))
u0 = [S; I; R]
function syst(dy, y, p, t)
    dy[1] = 0
    dy[2] = b*y[2]
    dy[3] = -b*y[2]
end
```

```
prob = ODEProblem(syst, u0, tspan)
sol = solve(prob, saveat=t)

plot(sol)

savefig("../report/image/01.png")

function syst(dy, y, p, t)
    dy[1] = -a*y[1]
    dy[2] = a*y[1] - b*y[2]
    dy[3] = b*y[2]

end

prob = ODEProblem(syst, u0, tspan)
sol = solve(prob, saveat=t)

plot(sol)

savefig("../report/image/02.png")
```

4.2 Решение на OpenModelica

Первый случай:

```
model lab6_1
parameter Real a = 0.01;
parameter Real b = 0.02;
Real S(start=4289);
```

```
Real I(start=82);
Real R(start=15);
equation
  der(S) = 0;
  der(I) = b*I;
  der(R) = -b*I;
end lab6_1;
 Второй случай:
model lab6_2
parameter Real a = 0.01;
parameter Real b = 0.02;
Real S(start=4289);
Real I(start=82);
Real R(start=15);
equation
  der(S) = -a*S;
  der(I) = a*S-b*I;
  der(R) = b*I;
end lab6_2;
```

4.3 Результаты работы

Результаты на Julia (рис. 4.1 и 4.2).

Рис. 4.1: Графики численности в случае $I(0) \leq I^*$

Рис. 4.2: Графики численности в случае $I(0) > I^*$

Результаты на OpenModelica (рис. 4.3 и 4.4).

Рис. 4.3: Графики численности в случае $I(0) \leq I^*$

Рис. 4.4: Графики численности в случае $I(0)>I^{st}$

5 Выводы

В ходе выполнения лабораторной работы мы построили простейшую модель по здаче об эпидемии.

Список литературы

- 1. Julia 1.10 Documentation [Электронный ресурс]. Matrix Laboratory, 2023. URL: https://docs.julialang.org/en/v1/.
- 2. User Documentation [Электронный pecypc]. Open Source Modelica Consortium, 2013. URL: https://openmodelica.org/useresresources/u serdocumentation/.