Machine Learning

CS 539
Worcester Polytechnic Institute
Department of Computer Science
Instructor: Prof. Kyumin Lee

HW1

https://canvas.wpi.edu/courses/58900/assignments/35514
 0

Due date is June 6th 11:59pm.

Training Data and Test Data

- Training data: data used to build the model
- Test data: new data, not used in the training process

- Training performance is often a poor indicator of generalization performance
 - Generalization is what we <u>really</u> care about in ML
 - Easy to overfit the training data
 - Performance on test data is a good indicator of generalization performance
 - i.e., test accuracy is more important than training accuracy

Simple Decision Boundary

More Complex Decision Boundary

Example: The Overfitting Phenomenon

A Complex Model

The True (simpler) Model

How Overfitting Affects Prediction

How Overfitting Affects Prediction

How Overfitting Affects Prediction

Comparing Classifiers

• Say we have two classifiers, C1 and C2, and want to choose the best one to use for future predictions

- Can we use training accuracy to choose between them?
- No!

• Instead, choose based on test accuracy...

Training and Test Data

Idea:

Train each model on the "training data"...

...and then test each model's accuracy on the test data

k-Fold Cross-Validation

- Why just choose one particular "split" of the data?
 - In principle, we should do this multiple times since performance may be different for each split

- k-Fold Cross-Validation (e.g., k=10)
 - randomly partition full data set of n instances into k disjoint subsets (each roughly of size n/k)
 - Choose each fold in turn as the test set; train model on the other folds and evaluate
 - Compute statistics over k test performances, or choose best of the k models

Example 3-Fold CV

Optimizing Model Parameters

Can also use CV to choose value of model parameter P

- Search over space of parameter values p ∈ values(P)
 - Evaluate model with P = p on validation set
- Choose value p' with highest validation performance
- Learn model on full training set with P = p'

Choose value of p of the model with the best validation performance

k-Nearest Neighbor& Instance-based Learning

1-Nearest Neighbor

- One of the simplest of all machine learning classifiers
- Simple idea: label a new point the same as the closest known point

1-Nearest Neighbor

- A type of instance-based learning
 - Also known as "memory-based" learning
- Forms a Voronoi tessellation of the instance space

Distance Metrics

Different metrics can change the decision surface

Dist(**a,b**) = $(a_1 - b_1)^2 + (3a_2 - 3b_2)^2$

- Standard Euclidean distance metric:
 - Two-dimensional: Dist(a,b) = $sqrt((a_1 b_1)^2 + (a_2 b_2)^2)$
 - Multivariate: Dist(a,b) = $sqrt(\sum (a_i b_i)^2)$

Four Aspects of an Instance-Based Learner:

1. A distance metric

2. How many nearby neighbors to look at?

3. A weighting function (optional)

4. How to fit with the local points?

1-NN's Four Aspects as an Instance-Based Learner:

- 1. A distance metric
 - Euclidean
- 2. How many nearby neighbors to look at?
 - One
- 3. A weighting function (optional)
 - Unused
- 4. How to fit with the local points?
 - Just predict the same output as the nearest neighbor.

k – Nearest Neighbor

- Generalizes 1-NN to smooth away noise in the labels
- A new point is now assigned the most frequent label of its k
 nearest neighbors

k-NN

- Instance-based learning & lazy learning
- Memorize training data, and measure all each pair of instance in the training set and new instance in the test set
- However, computationally expensive
 - Require N comparison for the prediction
 - Refer to https://machinelearningmastery.com/tutorial-to-implement-k-nearest-neighbors-in-python-from-scratch/
- To reduce the search time (i.e., reduce O(n))
 - We may use some data structure
 - e.g., k-d tree (k- dimensional tree)
 - https://en.wikipedia.org/wiki/K-d_tree
- k-NN regression
 - k nearest neighbors' average target class value
 - http://www.saedsayad.com/k_nearest_neighbors_reg.htm
 - http://scikit-learn.org/stable/modules/neighbors.html

Quiz1

 Quiz1 will be taken on June 4 – it will be available only during the day

 The coverage will be from content of the first lecture to Knearest neighbors

Linear Regression

Regression

Given:

- Data $X = \{x^{(1)}, ..., x^{(n)}\}\$ where $x^{(i)} \in \mathbb{R}^d$
- Corresponding labels $y = \{y^{(1)}, ..., y^{(n)}\}$ where $y^{(i)} \in \mathbb{R}$

Linear Regression

Hypothesis:

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_d x_d = \sum_{j=0}^{d} \theta_j x_j$$
Assume $x_0 = 1$

Fit model by minimizing sum of squared errors

Least Squares Linear Regression

Cost Function

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

• Fit by solving $\min_{\theta} J(\theta)$

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

For insight on J(), let's assume $x \in \mathbb{R}$ so $\theta = [\theta_0, \theta_1]$

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

For insight on J(), let's assume $x \in \mathbb{R}$ so $\theta = [\theta_0, \theta_1] \rightarrow \theta_0 = 0$

$$h_{\theta}(x)$$

(for fixed θ_1 , this is a function of x)

 $J(\theta)$

(function of the parameter θ_1)

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

For insight on J(), let's assume $x \in \mathbb{R}$ so $\theta = [\theta_0, \theta_1] \rightarrow \theta_0 = 0$

$$h_{\theta}(x)$$
 (for fixed θ_1 , this is a function of x)
$$\lambda h_{\theta}(x)$$
 (function of the parameter θ_1)
$$\lambda h_{\theta}(x)$$

$$\lambda h_$$

 $J([0,0.5]) = \frac{1}{2 \times 3} [(0.5-1)^2 + (1-2)^2 + (1.5-3)^2 \approx 0.58$

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

For insight on J(), let's assume $x \in \mathbb{R}$ so $\theta = [\theta_0, \theta_1]$

http://mathworld.wolfram.com/ConvexFunction.html https://www.desmos.com/calculator/kreo2ssqj8

Intuition Behind Cost Function (3-D surface plot)

-0.2

-0.3

-0.4

-0.5 -1000

-500

500

1000

1500

2000

0

Training data

3000

2000

Size (feet²)

Current hypothesis

4000

200

100

1000

 $J(\theta_0,\theta_1)$ (function of the parameter θ_0,θ_1)

Basic Search Procedure

- Choose initial value for θ
- Until we reach a minimum:
 - Choose a new value for θ to reduce $J(\theta)$

Basic Search Procedure

- Choose initial value for θ
- Until we reach a minimum:
 - Choose a new value for θ to reduce $J(\theta)$

Basic Search Procedure

- Choose initial value for θ
- Until we reach a minimum:
 - Choose a new value for θ to reduce $J(\theta)$

Since the least squares objective function is convex, we don't need to worry about local minima