NOTES ON MODEL THEORIES

XINGZHI HUANG

1. Structures

Definition 1.1. A structure $\mathcal{A} := (A, \{R_i^{\mathcal{A}}\}_{i \in I}, \{f_i^{\mathcal{A}}\}_{j \in J}, \{c_k^{\mathcal{A}}\}_{k \in K})$ consists of:

- 1. a non-empty set A, called the universe of A
- 2. a relation $R_i^{\mathcal{A}}$ on A for each $i \in I$ 3. a function $f_j^{\mathcal{A}}: A^{n_j} \to A$ for each $j \in J$
- 4. an element $c_k^{\mathcal{A}} \in A$ for each $k \in K$.

The sets I, J, K are disjoint index sets. The arity of $R_i^{\mathcal{A}}$ is some natural number m_i , and the arity of f_i^A is some natural number n_j .

Definition 1.2. Given a structure $\mathcal{A} = (A, \{R_i^{\mathcal{A}}\}_{i \in I}, \{f_i^{\mathcal{A}}\}_{j \in J}, \{c_k^{\mathcal{A}}\}_{k \in K})$, the signature $L_{\mathcal{A}}$ of \mathcal{A} is the collection of symbols $\{R_i\}_{i\in I}, \{f_j\}_{j\in J}, \{c_k\}_{k\in K}$, where R_i is a relation symbol of arity m_i , f_j is a function symbol of arity n_j , and c_k is a constant symbol.

Definition 1.3. Fix a signature L. An L-structure is a structure whose signature is L.

Definition 1.4. We can define a category of L-structures, denoted by Str(L), as follows.

The objects of Str(L) are all L-structures. If \mathcal{A} and \mathcal{B} are two L-structures, then a morphism from \mathcal{A} to \mathcal{B} is a function $h:A\to B$ such that:

- 1. for each relation symbol R_i of arity m_i in L, and for all $a_1, a_2, \ldots, a_{m_i} \in A$, if $(a_1, a_2, \ldots, a_{m_i}) \in R_i^{\mathcal{A}}$, then $(h(a_1), h(a_2), \ldots, h(a_{m_i})) \in R_i^{\mathcal{B}}$; 2. for each function symbol f_j of arity n_j in L, and for all $a_1, a_2, \ldots, a_{n_j} \in A$,
- we have $h(f_j^{\mathcal{A}}(a_1, a_2, \dots, a_{n_j})) = f_j^{\mathcal{B}}(h(a_1), h(a_2), \dots, h(a_{n_j}));$
 - 3. for each constant symbol c_k in L, we have $h(c_k^A) = c_k^B$.

Theorem 1.5. The injective morphisms in Str(L) are precisely the embeddings: the surjective morphisms in Str(L) are precisely the surjective homomorphisms.

Definition 1.6. Given two L-structures \mathcal{A} and \mathcal{B} , we say that \mathcal{A} is a substructure of \mathcal{B} , denoted by $\mathcal{A} \subseteq \mathcal{B}$, if $A \subseteq B$ and the inclusion map $i: A \to B$ is an embedding.

References