KUBIG 24-W 겨울방학 BASIC STUDY SESSION

NLP SESSION WEEK1

CONTENTS

Session 중에는 모두 캠을 켜주시기 바랍니다 :)

01 NLP SESSION 소개

02 자기 소개

03 Deep Learning Reminder

04 과제 설명

01 NLP SESSION 소개

방학동안무엇을하나요?

한 학기동안 잘 부탁 드립니다!!

17기 사회학과 김희준

17기 수학과 홍여빈

주차	복습과제	학습내용	예습과제
1주차		OT, DL Reminder	
2주차	- 해당 주차에 배운 내용에 대한 코드 실습 과제 부여	텍스트 전처리, 워드 임베딩 (Word2Vec, GloVe)	- 다음 주차에 배울 내용에 대한 코드 실
3주차	- ex) week1 복습과제: deep learning reminder(pytorch	RNN, LSTM, GRU, ELMo	습 과제 부여 - ex) week1 예습과제: 텍스트 전처리
4주차	basic)	Attention, Transformer	pipeline 구현 코드
5주차	- session 시작 초반부에 우수 코드 선정자가 5분 가량 코드 구현 과정 발표(별도 발표자료 없이 코드를 화	BERT	- week1 예습과제라 함은, week1 session이 끝나고 부여되는, week2 내용에 대한 예습과제를 의미합니다!
6주차	면공유하여 발표)	GPT	- <mark>마감기한: 수요일 오후 6시</mark>
7주차	· - <mark>마감기한: 수요일 오후 6시</mark>	응용 분야 논문 소개 (information retrieval, instruction tuning, model-based evaluation etc)	

매주 목 19:00~21:00 총 2시간 진행

밑바닥부터 시작하는 딥러닝2 Pdf 파일 제공 예정

딥러닝을 이용한 자연어 처리 입문 위키독스에서 무료 이용 가능(부분 유료)

고려대학교 DSBA 연구실 유튜브 채널에서 paper review 영상 참고

02 자기 소개

친해지길 바라!

2. 자기 소개

한 학기 동안 함께 하실 분들!

김나연

이수민

안영지

최유민

김송성

정해원

진서연

최주희

장원준

임정준

이승준

황민아

기수, 이름, 학과, 나이, 사는 곳, 취미 NLP 경험, NLP 선택 이유, 원하는 방향성

03 Deep Learning Reminder

MLP, Backpropagation etc ···

Deep Learning Training Cycle

Forward pass through NN, get predictions

Update the network parameters

Backpropagation of the total cost

single-layer perceptron

입력층(input layer) 출력층(output layer)

XOR problem

<i>x</i> ₁	<i>x</i> ₂	у
0	0	0
0	1	1
1	0	1
1	1	0

multi-layer perceptron

3-2. Forward Pass

Forward Pass computation

$$\sigma\left(\begin{bmatrix} 1 & -2 \\ -1 & 1 \end{bmatrix}\begin{bmatrix} 1 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix}\right)$$
$$= \sigma\left(\begin{bmatrix} 4 \\ -2 \end{bmatrix}\right) = \begin{bmatrix} 0.98 \\ 0.12 \end{bmatrix}$$

activation function

3-3, Cost Function

Total Cost

Total cost를 minimize하는 network parameter 찾기

Gradient Descent

Batch Gradient Descent

Mini-Batch Gradient Descent

Stochastic Gradient Descent

3-4. Backpropagation

$$w_{i}(t+1) = w_{i}(t) - \eta \frac{\partial C}{\partial w_{i}}$$

$$x_{1} \downarrow \qquad \qquad \downarrow$$

04 과제 설명

1주차 복습과제, 예습과제

4-1. 예습과제, 복습과제

코드과제의 파일형식은 ipynb로, KUBIG 24-1 **Github** repo에 업로드 될 예정입니다! Colab 환경에서 제작된 과제들이므로 **google** colab에서 실행하시는 것을 권장드립니다. E.O.D