The Calculus of Linear Constructions — Technical Report

Qiancheng Fu

December 12, 2021

Contents

1	Introduction	
2	Syntax of CLC (clc_ast.v)	-
3	Reduction and Equality of CLC (clc_ast.v)	2
4	Confluence of CLC (clc_confluence.v)	
	4.1 Parallel Reduction	6
	4.2 Reduction Lemmas	
	4.3 Equality Lemmas	,
	4.4 Parallel Reduction Lemmas	
	4.5 Confluence Theorem	
	4.6 Corollaries of Confluence	
5	Context of CLC (clc_context.v)	ļ
	5.1 Merge Lemmas	
	5.2 Restriction and Purity Lemmas	

1 Introduction

This extended report is meant to accompany our paper of the same title. Here, we describe the meta-theory of CILC and their proofs in detail. All the results presented here have been formalized and proven correct in the Coq Proof Assistant.

2 Syntax of CLC (clc_ast.v)

$$\begin{array}{lll} i & & ::= \ 0 \ | \ 1 \ | \ 2 \ \dots & & \text{universe levels} \\ \\ s,t & & ::= \ U \ | \ L & \text{sorts} \\ \\ m,n,A,B,M & & ::= \ U_i \ | \ L_i \ | \ x & \text{expressions} \\ \\ | \ (x:_s \ A) \to B & & \\ | \ (x:_s \ A) \multimap B & & \\ | \ \lambda x:_s \ A.n & & \\ | \ m \ n & & \end{array}$$

3 Reduction and Equality of CLC (clc ast.v)

$$\frac{m_1 \leadsto^* n \qquad m_2 \leadsto^* n}{m_1 \equiv m_2 : A} \text{Join} \qquad \frac{(\lambda x :_s A.m) \ n \leadsto m[n/x]}{(\lambda x :_s A.m) \ n \leadsto m[n/x]} \text{Step-}\beta \qquad \frac{A \leadsto A'}{\lambda x :_s A.m \leadsto \lambda x :_s A'.m} \text{Step-}\lambda L$$

$$\frac{m \leadsto m'}{\lambda x :_s A.m \leadsto \lambda x :_s A.m'} \text{Step-}\lambda R \qquad \frac{A \leadsto_p A'}{(x :_s A) \to B \leadsto (x :_s A') \to B} \text{Step-}L \to$$

$$\frac{B \leadsto_p B'}{(x :_s A) \to B \leadsto (x :_s A) \to B'} \text{Step-}R \to \qquad \frac{A \leadsto_p A'}{(x :_s A) \multimap B \leadsto (x :_s A') \multimap B} \text{Step-}L \to$$

$$\frac{B \leadsto_p B'}{(x :_s A) \multimap B \leadsto (x :_s A) \multimap B'} \text{Step-}R \to \qquad \frac{m \leadsto m'}{m \ n \leadsto m' \ n} \text{Step-}AppL \qquad \frac{n \leadsto n'}{m \ n \leadsto m \ n'} \text{Step-}AppL$$

4 Confluence of CLC (clc confluence.v)

4.1 Parallel Reduction

To prove the confluence property of CLC, we employ the standard technique utilizing parallel reductions.

$$\frac{A \leadsto_{p} A' \qquad m \leadsto_{p} m'}{\lambda x :_{s} A.m \leadsto_{p} \lambda x :_{s} A'.m'} \operatorname{PSTEP-\lambda}$$

$$\frac{m \leadsto_{p} m' \qquad n \leadsto_{p} n'}{m \ n \leadsto_{p} m' \ n'} \operatorname{PSTEP-APP}$$

$$\frac{m \leadsto_{p} m' \qquad n \leadsto_{p} n'}{(\lambda x :_{s} A.m) \ n \leadsto_{p} m' [n'/x]} \operatorname{PSTEP-\beta}$$

$$\frac{A \leadsto_{p} A' \qquad B \leadsto_{p} B'}{(x :_{s} A) \to B \leadsto_{p} (x :_{s} A') \to B'} \operatorname{PSTEP-\beta}$$

$$\frac{A \leadsto_{p} A' \qquad B \leadsto_{p} B'}{(x :_{s} A) \multimap_{p} m' [n'/x]} \operatorname{PSTEP-\beta}$$

4.2 Reduction Lemmas

Here, we prove some simple lemmas concerning \leadsto , \leadsto^* and substitution.

Definition 4.1. For a term m and a map σ from variables to terms, let $m[\sigma]$ be the term obtained by applying σ uniformly to all free variables in m.

Definition 4.2. For maps σ, τ from variables to terms, we say that σ reduces to τ if for any variable x there exists a reduction $(\sigma x) \rightsquigarrow^* (\tau x)$. We write $\sigma \rightsquigarrow^* \tau$ when it is clear from context that σ, τ are maps and not terms.

Lemma 4.1. For terms m, n and a map σ from variables to terms, if there exist a step $m \rightsquigarrow n$, then there exists a step $m[\sigma] \rightsquigarrow n[\sigma]$.

Proof. By induction on the derivation of $m \rightsquigarrow n$.

Lemma 4.2. For terms m_1, m_2, n_1, n_2 , if these exists reductions $m_1 \rightsquigarrow^* m_2$ and $n_1 \rightsquigarrow^* n_2$, then there exists reduction $(m_1 \ n_1) \rightsquigarrow^* (m_2 \ n_2)$.

Proof. By transitivity of \rightsquigarrow^* and applying rules Step-AppL, Step-AppR.

Lemma 4.3. For terms A_1, A_2, m_1, m_2 and sort s , if there exists reductions $A_1 \rightsquigarrow^* A_2$ and $m_1 \rightsquigarrow^* m_2$, then there exists reduction $\lambda x :_s A_1.m_1 \rightsquigarrow^* \lambda x :_s A_2.m_2$.			
<i>Proof.</i> By transitivity of \leadsto^* and applying rules Step- λ L, Step- λ R.			
Lemma 4.4. For terms A_1, A_2, B_1, B_2 and sort s , if there exists reductions $A_1 \leadsto^* A_2$ and $B_1 \leadsto^* B_2$, then there exists reduction $(x:_s A_1) \to B_1 \leadsto^* (x:_s A_2) \to B_2$.			
<i>Proof.</i> By transitivity of \leadsto^* and applying rules Step-L \to , Step-R \to .			
Lemma 4.5. For terms A_1, A_2, B_1, B_2 and sort s , if there exists reductions $A_1 \leadsto^* A_2$ and $B_1 \leadsto^* B_2$, then there exists reduction $(x:_s A_1) \multimap B_1 \leadsto^* (x:_s A_2) \multimap B_2$.			
<i>Proof.</i> By transitivity of \leadsto^* and applying rules Step-L \multimap , Step-R \multimap .			
Lemma 4.6. For terms m, n and a map σ from variables to terms, if there exist a reduction $m \rightsquigarrow^* n$, then there exists a reduction $m[\sigma] \rightsquigarrow^* n[\sigma]$.			
<i>Proof.</i> By induction on the derivation of \leadsto^* , the transitivity of \leadsto^* and Lemma 4.1.			
Lemma 4.7. For maps σ, τ from variables to terms, if there is a map reduction $\sigma \leadsto^* \tau$, then for any term m these is a reduction $m[\sigma] \leadsto^* m[\tau]$.			
<i>Proof.</i> By induction on the structure of m , applying Lemmas 4.2, 4.3, 4.4, 4.5.			
4.3 Equality Lemmas			
Here, we prove some simple lemmas concerning \leadsto^* , \equiv and substitution.			
Definition 4.3. For maps σ, τ from variables to terms, we say that σ is equal to τ if for any variable x there exists an equality $(\sigma \ x) \equiv (\tau \ x)$. We write $\sigma \equiv \tau$ when it is clear from context that σ, τ are maps and not terms.			
Lemma 4.8. For any map f from terms to terms, if for any terms m, n such that $m \leadsto n$ implies f $m \equiv f$ n , then for any terms m, n equality $m \equiv n$ implies f $m \equiv f$ n .			
<i>Proof.</i> By the properties of the transitive reflexive closure \leadsto^* and that \equiv is an equivalence relation. \Box			
Lemma 4.9. For terms m_1, m_2, n_1, n_2 , if there exists equalities $m_1 \equiv m_2$ and $n_1 \equiv n_2$, then there exists equality $(m_1 \ n_1) \equiv (m_2 \ n_2)$.			
<i>Proof.</i> By transitivity of \equiv and applying rules Join, Step-Appl, Step-Appl.			
Lemma 4.10. For terms A_1, A_2, m_1, m_2 and sort s , if there exists equalities $A_1 \equiv A_2$ and $m_1 \equiv m_2$, then there exists equality $\lambda x :_s A_1.m_1 \equiv \lambda x :_s A_2.m_2$.			
<i>Proof.</i> By transitivity of \equiv and applying rules Join, Step- λ L, Step- λ R.			
Lemma 4.11. For terms A_1, A_2, B_1, B_2 and sort s , if there exists equalities $A_1 \equiv A_2$ and $B_1 \equiv B_2$, then there exists equality $(x:_s A_1) \to B_1 \equiv (x:_s A_2) \to B_2$.			
<i>Proof.</i> By transitivity of \equiv and applying rules Join, Step-L \rightarrow , Step-R \rightarrow .			
Lemma 4.12. For terms A_1, A_2, B_1, B_2 and sort s , if there exists equalities $A_1 \equiv A_2$ and $B_1 \equiv B_2$, then there exists equality $(x:_s A_1) \multimap B_1 \equiv (x:_s A_2) \multimap B_2$.			
<i>Proof.</i> By transitivity of \equiv and applying rules Join, Step-L., Step-R.			
Lemma 4.13. For terms m, n and map σ from variables to terms, if there is equality $m \equiv n$, then there is equality $m[\sigma] \equiv n[\sigma]$.			

Proof. By Lemmas 4.8 and 4.1.

Lemma 4.14. For maps σ, τ from variables to terms and term m , if these is map equality $\sigma \equiv \tau$, then there is equality $m[\sigma] \equiv m[\tau]$.		
<i>Proof.</i> By induction on the structure of m , applying Lemmas 4.9, 4.10, 4.11, 4.12.		
Lemma 4.15. For terms m_1, m_2, n , if there is equality $m_1 \equiv m_2$, then there is equality $n[m_1/x] \equiv n[m_2/x]$ for any variable $x \in FV(n)$.		
<i>Proof.</i> This is a special case of Lemma 4.14 where σ maps x to m_1 and τ maps x to m_2 .		
4.4 Parallel Reduction Lemmas		
Definition 4.4. For maps σ, τ from variables to terms, we say σ parallel reduces to τ if for any variable x there exists a parallel reduction $(\sigma x) \leadsto_p (\tau x)$. We write $\sigma \leadsto_p \tau$ when it is clear from context that σ, τ are maps and not terms.		
Lemma 4.16. For any term m , there exists a reflexive parallel reduction $m \leadsto_p m$.		
<i>Proof.</i> By induction on the structure of m .		
Lemma 4.17. For any map σ from variables to terms, there exists a reflexive parallel map reduction $\sigma \leadsto_p \sigma$.		
<i>Proof.</i> By Definition 4.4 and Lemma 4.16. \Box		
Lemma 4.18. For any terms m, n , if there exists step $m \leadsto n$, then there exists a parallel reduction $m \leadsto_p n$.		
<i>Proof.</i> By induction on the derivation of $m \rightsquigarrow n$ and Lemma 4.16.		
Lemma 4.19. For terms m, n , if there exists parallel reduction $m \leadsto_p n$, then there exists a reduction $m \leadsto^* n$.		
<i>Proof.</i> By induction on the derivation of $m \leadsto_p n$, utilizing the transitive property of \leadsto^* and Lemmas 4.2, 4.3, 4.4, 4.5, 4.6, 4.7.		
Lemma 4.20. For terms m, n and map σ from variables to terms, if there exists parallel reduction $m \leadsto_p n$, there exists parallel reduction $m[\sigma] \leadsto_p n[\sigma]$.		
<i>Proof.</i> By induction on the derivation of $m \leadsto_p n$ and Lemma 4.16.		
Lemma 4.21. For terms m, n and maps σ, τ from variables to terms, if there exists parallel reduction $m \leadsto_p n$ and parallel map reduction $\sigma \leadsto_p \tau$, there exists parallel reduction $m[\sigma] \leadsto_p n[\tau]$.		
<i>Proof.</i> By induction on the derivation of $m \leadsto_p n$.		
Lemma 4.22. For terms m_1, m_2, n , if there is parallel reduction $m_1 \leadsto_p m_2$, then there is parallel reduction $n[m_1/x] \leadsto_p n[m_2/x]$ for any variable $x \in FV(n)$.		
<i>Proof.</i> By Lemma 4.16, this is a special case of Lemma 4.21 where σ maps x to m_1 and τ maps x to m_2 . \square		
4.5 Confluence Theorem		
We first show that \leadsto_p satisfies the diamond property. Using the diamond property, we ultimately prove the confluence theorem.		
Lemma 4.23. CLC term reduction has the diamond property. For terms m, m_1, m_2 , if there are parallel reductions $m \leadsto_p m_1$ and $m \leadsto_p m_2$, then there exists term m' such that $m_1 \leadsto_p m'$ and $m_2 \leadsto_p m'$.		
<i>Proof.</i> By induction on the derivation of $m \leadsto_p m_1$. Each case in the induction specializes m appearing in $m \leadsto_p m_2$, allowing one to invert its derivation in a syntax directed way and apply the induction hypothesis. The difficult cases are due to PSTEP- β as it concerns substitution, so Lemma 4.21 is used to push these cases		

through.

Lemma 4.24. Strip lemma. For terms m, m_1, m_2 , if there is parallel reduction $m \leadsto_p m_1$ and reduction $m \leadsto^* m_2$, then there exists term m' such that $m_1 \leadsto^* m'$ and $m_2 \leadsto_p m'$.

Proof. By induction on the derivation of $m \leadsto_p m_1$, utilizing transitivity of \leadsto^* and Lemmas 4.18, 4.19, 4.23.

Theorem 4.25. CLC term reduction is confluent. For terms m, m_1, m_2 , if there are reductions $m \rightsquigarrow^* m_1$ and $m \rightsquigarrow^* m_2$, then there exists term m' such that $m_1 \rightsquigarrow^* m'$ and $m_2 \rightsquigarrow^* m'$.

Proof. By induction on the derivation of $m \rightsquigarrow^* m_1$, utilizing transitivity of \rightsquigarrow^* and Lemmas 4.18, 4.19, 4.24.

4.6 Corollaries of Confluence

The following results are all corollaries of confluence, proven using a combination of induction, transitivity and confluence. These corollaries allow us to refute false reductions and equalities in future proofs.

Corollary 4.25.1. For a universe s_i and term m, if there is reduction $s_i \rightsquigarrow^* m$, then $m = s_i$.

Corollary 4.25.2. For variable x and term m, if there is reduction $x \rightsquigarrow^* m$, then m = x.

Corollary 4.25.3. For terms A, B, m and sort s, if there is reduction $(x :_s A) \to B \leadsto^* m$, then there exists A', B' such that there are reductions $A \leadsto^* A'$, $B \leadsto^* B'$ and $m = (x :_s A') \to B'$.

Corollary 4.25.4. For terms A, B, m and sort s, if there is reduction $(x :_s A) \multimap B \leadsto^* m$, then there exists A', B' such that there are reductions $A \leadsto^* A'$, $B \leadsto^* B'$ and $m = (x :_s A') \multimap B'$.

Corollary 4.25.5. For terms A, m, n and sort s, if there is reduction $\lambda x :_s A.m \rightsquigarrow^* n$, then there exists A', m' such that there are reductions $A \rightsquigarrow^* A', m \rightsquigarrow^* m'$ and $n = \lambda x :_s A'.m'$.

Corollary 4.25.6. For sorts s, t and levels i, j, if there is equality $s_i \equiv t_j$, then there is s = t and i = j.

Corollary 4.25.7. For terms A_1, A_2, B_1, B_2 and sorts s, t, if there is equality $(x :_s A_1) \to B_1 \equiv (x :_t A_2) \to B_2$, then there are equalities $A_1 \equiv A_2, B_1 \equiv B_2$ and s = t.

Corollary 4.25.8. For terms A_1, A_2, B_1, B_2 and sorts s, t, if there is equality $(x :_s A_1) \multimap B_1 \equiv (x :_t A_2) \multimap B_2$, then there are equalities $A_1 \equiv A_2, B_1 \equiv B_2$ and s = t.

5 Context of CLC (clc_context.v)

Contexts of CLC are of the form $x_1 :_{s_1} A_1, x_2 :_{s_2} A_2, ... x_k :_{s_k} A_k$ where each free variable x_i is assigned a type A_i and sort s_i . Contexts will be referred to by meta variables Γ and Δ .

$$\frac{\Gamma \vdash \overline{\Gamma} \vdash A : U_i}{\Gamma, x :_{\scriptscriptstyle{U}} A \vdash} \text{Wf-U} \qquad \frac{\Gamma \vdash \overline{\Gamma} \vdash A : L_i}{\Gamma, x :_{\scriptscriptstyle{L}} A \vdash} \text{Wf-L}$$

$$\frac{|\Gamma| \qquad \Gamma \vdash A : U_i}{|\Gamma, x :_{\scriptscriptstyle{U}} A|} \text{Pure-U}$$

$$\frac{|\Gamma| \qquad \Gamma \vdash A : U_i}{|\Gamma, x :_{\scriptscriptstyle{U}} A|} \text{Pure-U}$$

$$\frac{\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma}{\Gamma_1, x :_{\scriptscriptstyle{U}} A \ddagger \Gamma_2, x :_{\scriptscriptstyle{U}} A \ddagger \Gamma, x :_{\scriptscriptstyle{U}} A} \text{Merge-U}$$

$$\frac{\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma \qquad x \notin \Gamma_2}{\Gamma_1, x :_{\scriptscriptstyle{U}} A \ddagger \Gamma_2, x :_{\scriptscriptstyle{U}} A \ddagger \Gamma, x :_{\scriptscriptstyle{U}} A} \text{Merge-L2}$$

5.1 Merge Lemmas

Since weakening and contraction rules will not be allowed on restricted variables, it is necessary to have lemmas that enable the manipulation of contexts.

Lemma 5.1. For contexts $\Gamma_1, \Gamma_2, \Gamma$, if there is $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$, then there is $\Gamma_2 \ddagger \Gamma_1 \ddagger \Gamma$.	
<i>Proof.</i> By induction on the derivation of $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$.	
Lemma 5.2. For any context Γ , if there is $ \Gamma $, then there is $\Gamma \ddagger \Gamma \ddagger \Gamma$.	
<i>Proof.</i> By induction on the derivation of $ \Gamma $.	
Lemma 5.3. For any context Γ , there is $\overline{\Gamma} \ddagger \Gamma \ddagger \Gamma$.	
<i>Proof.</i> By induction on the structure of Γ .	
Lemma 5.4. For any context Γ , there is $\Gamma \ddagger \overline{\Gamma} \ddagger \Gamma$.	
<i>Proof.</i> By induction on the structure of Γ .	
Lemma 5.5. For contexts $\Gamma_1, \Gamma_2, \Gamma$, if there is $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$ and $ \Gamma $, then there is $ \Gamma_1 $ and $ \Gamma_2 $.	
<i>Proof.</i> By induction on the derivation of $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$.	
Lemma 5.6. For contexts $\Gamma_1, \Gamma_2, \Gamma$, if there is $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$ and $ \Gamma_1 $, then there is $\Gamma = \Gamma_2$.	
<i>Proof.</i> By induction on the derivation of $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$.	
Lemma 5.7. For contexts $\Gamma_1, \Gamma_2, \Gamma$, if there is $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$ and $ \Gamma_2 $, then there is $\Gamma = \Gamma_1$.	
<i>Proof.</i> By induction on the derivation of $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$.	
Lemma 5.8. For contexts $\Gamma_1, \Gamma_2, \Gamma$, if there is $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$, and also $ \Gamma_1 $, $ \Gamma_2 $, then there is $ \Gamma $.	
<i>Proof.</i> By induction on the derivation of $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$.	
Lemma 5.9. For contexts $\Gamma_1, \Gamma_2, \Gamma$, if there is $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$, and also $ \Gamma_1 $, $ \Gamma_2 $, then there is $\Gamma_1 = \Gamma_2$.	
<i>Proof.</i> By induction on the derivation of $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$.	
Lemma 5.10. For contexts $\Gamma_1, \Gamma_2, \Gamma$, if there is $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$, then there is $\overline{\Gamma_1} = \overline{\Gamma}$ and $\overline{\Gamma_2} = \overline{\Gamma}$.	
<i>Proof.</i> By induction on the derivation of $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$.	
Lemma 5.11. For any context Γ , there is $\overline{\Gamma} \ddagger \overline{\Gamma} \ddagger \overline{\Gamma}$.	
<i>Proof.</i> By induction on the structure of Γ .	
Lemma 5.12. For contexts $\Gamma_1, \Gamma_2, \Gamma, \Delta_1, \Delta_2$, if there is $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$ and $\Delta_1 \ddagger \Delta_2 \ddagger \Gamma_1$, then there exist such that $\Delta_1 \ddagger \Gamma_2 \ddagger \Delta$ and $\Delta \ddagger \Delta_2 \ddagger \Gamma$.	$s \Delta$
<i>Proof.</i> By induction on the derivation of $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$.	
5.2 Restriction and Purity Lemmas	
Lemma 5.13. For any context Γ , there is $\overline{\Gamma} = \overline{\overline{\Gamma}}$.	
<i>Proof.</i> By induction on the structure of Γ .	
Lemma 5.14. For any context Γ , if there is $ \Gamma $, then there is $\Gamma = \overline{\Gamma}$.	
<i>Proof.</i> By induction on the structure of Γ .	
Lemma 5.15. For any context Γ , there is $ \overline{\Gamma} $.	
<i>Proof.</i> By induction on the structure of Γ .	