Группы

- 1. В первых 4 пунктах G группа.
 - (а) Докажите, что нейтральный элемент единственный.
 - (b) Могут ли существовать два различных правых обратных элемента?
 - (с) Могут ли существовать два различных разносторонних обратных?
 - (d) Докажите, что $(ab)^{-1} = b^{-1}a^{-1}$.
 - (e) Пусть G такое множество с ассоциативной операцией, что существует такой элемент $e \in G$, что ge = g для всех $g \in G$, а также, что для всякого $g \in G$ существует g^{-1} , для которого $gg^{-1} = e$. Докажите, что G группа.
- 2. (а) Докажите, что $\langle g \rangle = \{ g^k \mid k \in \mathbb{Z} \}$ группа. Она называется циклической.
 - (b) Приведите примеры конечной и бесконечной циклических групп.
 - (c) Пусть $g^n=e$, тогда ord $g\mid n$. (Здесь ord $g=\min_{k\in\mathbb{N},\ g^k=e}k$.)
 - (d) Если $g^m = g^n$, то $m \equiv n \pmod{g}$.
 - (е) Докажите, что подгруппа циклической группы циклическая.
- 3. (a) Верно ли, что ord $(g^n) = \frac{\text{ord } g}{(\text{ord } g, n)}$?
 - (b) Верно ли, что из ab = ba следует, что ord (ab) | нок(ord a, ord b)?
 - (c) Чему может равняться ord (ba), если ord (ab) = n?
- 4. Пусть ord g нечетный. Верно ли, что найдется такой $a \in G$, что $g = a^2$?
- 5. Докажите, что группа, все элементы которой имеют порядок 2, абелева.
- 6. Пусть произведение любых двух левых смежных классов некоторой подгруппы H также является левым смежным классом подгруппы H. Верно ли, что H нормальна?
- 7. Докажите, что подгруппа индекса 2 нормальна.
- 8. Две нормальные подгруппы пересекаются по единице. Покажите, что их элементы коммутируют друг с другом.