In [1]: import numpy as np
import pandas as pd # pd is the universally-used abbreviation

In [2]: raw_data = pd.read_csv('Motor_Vehicle_Collisions_-_Crashes.csv')
 raw_data.head(10)

C:\Users\13475\anaconda3\lib\site-packages\IPython\core\interactiveshell.py:3
071: DtypeWarning: Columns (3) have mixed types.Specify dtype option on impor
t or set low memory=False.

has_raised = await self.run_ast_nodes(code_ast.body, cell_name,

Out[21:

ut[2]:		CRASH DATE	CRASH TIME	BOROUGH	ZIP CODE	LATITUDE	LONGITUDE	LOCATION	ON STREET NAME
	0	02/06/2020	9:59	NaN	NaN	40.772020	-73.956024	(40.77202, -73.956024)	EAST 77 STREET
	1	01/15/2020	19:00	QUEENS	11368	40.751064	-73.854935	(40.751064, -73.854935)	NaN
	2	02/10/2020	0:08	BROOKLYN	11223	40.598312	-73.961190	(40.598312, -73.96119)	AVENUE U
	3	01/18/2020	16:30	NaN	NaN	40.793198	-73.824140	(40.793198, -73.82414)	WHITESTONE EXPRESSWAY
	4	01/24/2020	6:55	QUEENS	11372	40.750717	-73.872170	(40.750717, -73.87217)	NaN
	5	02/10/2020	23:30	MANHATTAN	10029	40.792920	-73.945790	(40.79292, -73.94579)	LEXINGTON AVENUE
	6	01/13/2020	11:25	MANHATTAN	10003	40.731964	-73.988160	(40.731964, -73.98816)	EAST 12 STREET
	7	01/13/2020	21:30	NaN	NaN	NaN	NaN	NaN	EAST 57 STREET
	8	02/12/2020	0:19	NaN	NaN	40.751940	-73.832306	(40.75194, -73.832306)	COLLEGE POINT BOULEVARD
	9	01/17/2020	16:00	NaN	NaN	40.667477	-73.956230	(40.667477, -73.95623)	BEDFORD AVENUE

10 rows × 29 columns

In [3]: # Remove the data not nessesary for this excercise

data1 = raw_data.drop(columns = ["LATITUDE", "LONGITUDE", "LOCATION", "OFF STRE ET NAME", "NUMBER OF PEDESTRIANS INJURED", "NUMBER OF PEDESTRIANS KILLED", "NUMBER OF CYCLIST INJURED", "NUMBER OF CYCLIST KILLED", "NUMBER OF MOTORIST INJURED", "NUMBER OF MOTORIST KILLED", "CONTRIBUTING FACTOR VEHICLE 3", "CONTRIBUTING FACTOR VEHICLE 4", "CONTRIBUTING FACTOR VEHICLE 5", "VEHICLE TYPE CODE 3", "VEHICLE TYPE CODE 4", "VEHICLE TYPE CODE 5"])

In [4]: # Drop all null values in borough and on street name

data1.dropna(axis=0, subset=['BOROUGH', 'ON STREET NAME'], inplace=True)
data1.head(10)

Out[4]:

Out[4]:		CRASH DATE	CRASH TIME	BOROUGH	ZIP CODE	ON STREET NAME	CROSS STREET NAME	NUMBER OF PERSONS INJURED	NUMBER OF PERSONS KILLED
	2	02/10/2020	0:08	BROOKLYN	11223	AVENUE U	CONEY ISLAND AVENUE	3.0	0.0
	5	02/10/2020	23:30	MANHATTAN	10029	LEXINGTON AVENUE	EAST 107 STREET	0.0	0.0
	6	01/13/2020	11:25	MANHATTAN	10003	EAST 12 STREET	3 AVENUE	0.0	0.0
	11	02/03/2020	11:53	BRONX	10474	SPOFFORD AVENUE	CASANOVA STREET	3.0	0.0
	13	01/18/2020	13:10	BROOKLYN	11209	79 STREET	4 AVENUE	0.0	0.0
	15	01/19/2020	6:30	BROOKLYN	11230	AVENUE I	OCEAN AVENUE	0.0	0.0
	16	01/20/2020	17:00	QUEENS	11416	WOODHAVEN BOULEVARD	ATLANTIC AVENUE	0.0	0.0
	17	01/17/2020	20:20	QUEENS	11362	233 STREET	WEST ALLEY ROAD	1.0	0.0
	18	01/11/2020	16:25	BROOKLYN	11232	35 STREET	4 AVENUE	0.0	0.0
		01/23/2020	9:10	BROOKLYN	11214	BATH AVENUE	BAY PARKWAY	0.0	0.0
	4								

> In [5]: # create a data frame that shows all the crashes in manhattan filter1 = data1['BOROUGH'] == 'MANHATTAN' manhattan = data1[filter1] manhattan.head(10)

Out[5]:

out[5]:		CRASH	CRASH		ZIP	ON STREET	CROSS	NUMBER OF	NUMBER OF	
		DATE	TIME	BOROUGH	CODE	NAME	STREET NAME	PERSONS INJURED	PERSONS KILLED	F
	5	02/10/2020	23:30	MANHATTAN	10029	LEXINGTON AVENUE	EAST 107 STREET	0.0	0.0	lr
	6	01/13/2020	11:25	MANHATTAN	10003	EAST 12 STREET	3 AVENUE	0.0	0.0	lr
	27	01/30/2020	16:25	MANHATTAN	10009	EAST 12 STREET	1 AVENUE	1.0	0.0	lr
	29	01/31/2020	9:32	MANHATTAN	10022	51 Street	2 Avenue	0.0	0.0	İr
	37	02/08/2020	10:20	MANHATTAN	10065	YORK AVENUE	EAST 63 STREET	0.0	0.0	
	48	01/29/2020	18:10	MANHATTAN	10021	1 AVENUE	EAST 69 STREET	0.0	0.0	lr
	51	02/09/2020	10:54	MANHATTAN	10026	5 AVENUE	EAST 116 STREET	0.0	0.0	
	61	01/29/2020	10:01	MANHATTAN	10023	WEST 67 STREET	BROADWAY	1.0	0.0	lr
	84	02/07/2020	17:35	MANHATTAN	10065	YORK AVENUE	EAST 63 STREET	0.0	0.0	
	90	01/16/2020	6:10	MANHATTAN	10029	EAST 99 STREET	PARK AVENUE	0.0	0.0	
	4									

In [6]: # number of people injured in manhattan manhattan['NUMBER OF PERSONS INJURED'].sum()

Out[6]: 43848.0

```
In [7]: # number of people dead in manhattan
        manhattan['NUMBER OF PERSONS KILLED'].sum()
Out[7]: 241.0
In [8]: # groups = manhattan.groupby('ON STREET NAME')
        # # for street, group in groups:
              -----")
              print(street + ":")
        # #
              print(group)
        # df = pd.DataFrame(groups)
In [9]: # 2. Split the data frame according to the zip code
        groups1 = manhattan.groupby('ZIP CODE')
        #for zip_code, group in groups1:
           #print(zip_code)
           #print(group)
        # zip_code df = pd.DataFrame(zip_code)
        # zip code df['NUMBER OF PERSONS INJURED'] = manhattan['NUMBER OF PERSONS INJU
        RED'1
        # zip code df.head(40)
In [10]: # counts the number of crashes in each zip code
        # returns the number of rows in each group
        manhattan zip codes = groups1.size()
In [11]: # 4. Organize the results as a data frame.
        manhattan zip codes = manhattan zip codes.to frame(name="Collisions per zip co
        de")
        manhattan_zip_codes.head()
Out[11]:
                Collisions per zip code
        ZIP CODE
          10000.0
                             69
          10001.0
                           6551
          10002.0
                           5867
          10003.0
                           3584
```

969

10004.0

```
In [12]: # groups6 = manhattan['ZIP CODE'].groupby(['NUMBER OF PERSONS KILLED'])
# deaths = groups6.mean()
# deaths

# df_manhattan_deaths = deaths.to_frame(name="Number of deaths")
# df_manhattan_deaths.head()
# df_means_exam = df['Exam'].groupby(df['Course']).mean().to_frame(name="Avera ge Exam Score")
```

In [13]: manhattan_zip_codes

Out[13]:

Collisions per zip code

ZIP CODE	
10000.0	69
10001.0	6551
10002.0	5867
10003.0	3584
10004.0	969
10271	1
10278	3
10280	72
10281	18
10282	32

112 rows × 1 columns

Out[16]:

Collisions per zip code

ZIP CODE	
10016.0	7273
10022.0	7221
10019.0	7173
10001.0	6551
10036.0	6473
10013.0	6380
10022	5872
10002.0	5867
10016	5791
10019	5676
10036	5352
10001	5190
10018.0	4936
10011.0	4906
10065.0	4823
10013	4753
10029.0	4431
10002	4405
10017.0	4384


```
In [18]: filter2 = data1['BOROUGH'] == 'BRONX'
bronx = data1[filter2]
bronx.head(10)
```

Out[18]:

]:		CRASH DATE	CRASH TIME	BOROUGH	ZIP CODE	ON STREET NAME	CROSS STREET NAME	NUMBER OF PERSONS INJURED	NUMBER OF PERSONS KILLED
	11	02/03/2020	11:53	BRONX	10474	SPOFFORD AVENUE	CASANOVA STREET	3.0	0.0
	22	01/18/2020	13:00	BRONX	10453	MAJOR DEEGAN EXPRESSWAY	WEST FORDHAM ROAD	0.0	0.0
	25	01/20/2020	17:45	BRONX	10466	EAST 233 STREET	BRONX BOULEVARD	1.0	0.0
	33	02/04/2020	14:07	BRONX	10472	WATSON AVENUE	MORRISON AVENUE	1.0	0.0
	36	01/21/2020	0:00	BRONX	10455	EAST 149 STREET	BRUCKNER BOULEVARD	0.0	0.0
	40	01/19/2020	12:00	BRONX	10456	SHERIDAN AVENUE	EAST 168 STREET	0.0	0.0
	60	01/31/2020	17:45	BRONX	10467	BURKE AVENUE	WHITE PLAINS ROAD	0.0	0.0
	72	02/02/2020	14:34	BRONX	10458	EAST 183 STREET	CROTONA AVENUE	0.0	0.0
	88	01/15/2020	5:00	BRONX	10451	COURTLANDT AVENUE	EAST 148 STREET	0.0	0.0
	94	01/26/2020	17:23	BRONX	10463	WEST 230 STREET	KINGSBRIDGE AVENUE	0.0	0.0
	4								•

```
In [19]: # number of people injured in manhattan
bronx['NUMBER OF PERSONS INJURED'].sum()
```

Out[19]: 42908.0

```
In [20]: bronx['NUMBER OF PERSONS KILLED'].sum()
```

Out[20]: 173.0

```
In [21]: # 2. Split the data frame according to the zip code
        groups2 = bronx.groupby('ZIP CODE')
        #for zip code, group in groups2:
            #print(zip code)
            #print(group)
In [22]: # counts the number of crashes in each zip code
        # returns the number of rows in each group
        bronx_zip_codes = groups2.size()
In [23]: # 4. Organize the results as a data frame.
        bronx_zip_codes = bronx_zip_codes.to_frame(name="Collisions per zip code")
        bronx_zip_codes.head()
Out[23]:
                 Collisions per zip code
         ZIP CODE
          10451.0
                             4928
          10452.0
                             3838
          10453.0
                             4639
          10454.0
                             3963
          10455.0
                             3417
In [24]: bronx zip codes.count()
Out[24]: Collisions per zip code
                                51
        dtype: int64
In [25]: bronx zip codes['Collisions per zip code'].sum()
Out[25]: 133837
```

```
In [26]: # which zip codes have the most crashes
bronx_zip_sorted = bronx_zip_codes.sort_values(by="Collisions per zip code", a
scending=False)
bronx_zip_sorted.head(8)
```

Out[26]:

Collisions per zip code

5467
5051
4928
4817
4639
4523
4187
4000

```
In [27]: # greater number of zip codes with high number of crashes
bronx_zip_codes.hist()
```



```
In [28]: filter3 = data1['BOROUGH'] == 'BROOKLYN'
brooklyn = data1[filter3]
brooklyn.head(10)
```

Out[28]:

•		CRASH DATE	CRASH TIME	BOROUGH	ZIP CODE	ON STREET NAME	CROSS STREET NAME	NUMBER OF PERSONS INJURED	NUMBER OF PERSONS KILLED
	2	02/10/2020	0:08	BROOKLYN	11223	AVENUE U	CONEY ISLAND AVENUE	3.0	0.0
	13	01/18/2020	13:10	BROOKLYN	11209	79 STREET	4 AVENUE	0.0	0.0
	15	01/19/2020	6:30	BROOKLYN	11230	AVENUE I	OCEAN AVENUE	0.0	0.0
	18	01/11/2020	16:25	BROOKLYN	11232	35 STREET	4 AVENUE	0.0	0.0
	20	01/23/2020	9:10	BROOKLYN	11214	BATH AVENUE	BAY PARKWAY	0.0	0.0
	21	01/30/2020	9:05	BROOKLYN	11221	WEIRFIELD STREET	EVERGREEN AVENUE	0.0	0.0
	23	01/15/2020	9:45	BROOKLYN	11206	HARRISON AVENUE	HEYWARD STREET	2.0	0.0
	28	01/14/2020	18:00	BROOKLYN	11223	AVENUE W	STRYKER STREET	1.0	0.0
	43	02/07/2020	11:30	BROOKLYN	11201	FLATBUSH AVENUE EXTENSION	WILLOUGHBY STREET	1.0	0.0
	44	01/20/2020	19:25	BROOKLYN	11206	JOHNSON AVENUE	BUSHWICK PLACE	1.0	0.0
	•								•

In [29]: # number of people injured in manhattan
brooklyn['NUMBER OF PERSONS INJURED'].sum()

Out[29]: 97885.0

```
In [30]: # number of people injured in brooklyn
        brooklyn['NUMBER OF PERSONS KILLED'].sum()
Out[30]: 419.0
In [31]: | # 2. Split the data frame according to the zip code
        groups3 = brooklyn.groupby('ZIP CODE')
        #for zip_code, group in groups3:
            #print(zip_code)
            #print(group)
In [32]: # counts the number of crashes in each zip code
        # returns the number of rows in each group
        brooklyn_zip_codes = groups3.size()
In [33]: # 4. Organize the results as a data frame.
        brooklyn_zip_codes = brooklyn_zip_codes.to_frame(name="Collisions per zip cod
        brooklyn_zip_codes.head()
Out[33]:
                 Collisions per zip code
         ZIP CODE
           11201.0
                             8445
           11203.0
                             7874
           11204.0
                             4447
           11205.0
                             2810
           11206.0
                             4983
In [34]: brooklyn_zip_codes.count()
Out[34]: Collisions per zip code
                                 81
```

dtype: int64

In [35]: # which zip codes have the most crashes
brooklyn_zip_sorted = brooklyn_zip_codes.sort_values(by="Collisions per zip co
de", ascending=False)
brooklyn_zip_sorted.head(30)

Out[35]:

Collisions per zip code

ZIP CODE	
11207.0	10762
11201.0	8445
11203.0	7874
11236.0	7639
11234.0	7550
11207	6981
11226.0	6815
11212.0	6804
11208.0	6266
11220.0	6216
11233.0	6164
11230.0	5929
11201	5260
11211.0	5110
11213.0	5085
11206.0	4983
11203	4967
11210.0	4905
11219.0	4592
11218.0	4575
11217.0	4545
11234	4540
11204.0	4447
11235.0	4424
11223.0	4418
11226	4361
11214.0	4298
11236	4287
11220	4085
11216.0	4031

In [36]: brooklyn_zip_codes.hist()


```
In [37]: filter4 = data1['BOROUGH'] == 'QUEENS'
    queens = data1[filter4]
    queens
```

Out[37]:

	CRASH	CRASH		ZIP	ON STREET	CROSS	NUMBER OF	NUM
	DATE	TIME	BOROUGH	CODE	NAME	STREET NAME	PERSONS INJURED	PERS KIL
16	01/20/2020	17:00	QUEENS	11416	WOODHAVEN BOULEVARD	ATLANTIC AVENUE	0.0	
17	01/17/2020	20:20	QUEENS	11362	233 STREET	WEST ALLEY ROAD	1.0	
26	02/10/2020	11:30	QUEENS	11101	LONG ISLAND EXPRESSWAY	GREENPOINT AVENUE	1.0	
35	02/04/2020	20:00	QUEENS	11411	207 STREET	MURDOCK AVENUE	1.0	
47	01/18/2020	17:00	QUEENS	NaN	245 STREET	JAMAICA AVENUE	0.0	
1734255	07/03/2012	22:25	QUEENS	11368	99 STREET	38 AVENUE	0.0	
1734258	07/05/2012	8:00	QUEENS	11103	30 AVENUE	42 STREET	0.0	
1734264	07/04/2012	4:17	QUEENS	11420	SOUTH CONDUIT AVENUE	130 STREET	0.0	
1734269	07/03/2012	20:35	QUEENS	11413	SOUTH CONDUIT AVENUE	224 STREET	0.0	
1734270	07/02/2012	17:15	QUEENS	11365	FRANCIS LEWIS BOULEVARD	48 AVENUE	0.0	

263823 rows × 13 columns

In [38]: # number of people injured in queens
queens['NUMBER OF PERSONS INJURED'].sum()

Out[38]: 77344.0

```
In [39]: # number of people injured in queens
        queens['NUMBER OF PERSONS KILLED'].sum()
Out[39]: 385.0
In [40]:
        # 2. Split the data frame according to the zip code
        groups4 = queens.groupby('ZIP CODE')
        #for zip_code, group in groups4:
            #print(zip_code)
            #print(group)
In [41]: | # counts the number of crashes in each zip code
        # returns the number of rows in each group
        queens_zip_codes = groups4.size()
In [42]: # 4. Organize the results as a data frame.
        queens_zip_codes = queens_zip_codes.to_frame(name="Collisions per zip code")
        queens_zip_codes.head()
Out[42]:
                 Collisions per zip code
         ZIP CODE
           11001.0
                              269
           11004.0
                             1249
           11005.0
                               12
           11040.0
                              157
           11101.0
                             9117
In [43]: | queens_zip_codes.count()
```

Out[43]: Collisions per zip code 135 dtype: int64

In [44]: # which zip codes have the most crashes
 queens_zip_sorted = queens_zip_codes.sort_values(by="Collisions per zip code",
 ascending=False)
 queens_zip_sorted.head(16)

Out[44]: Collisions per zip code

ZIP CODE	
11101.0	9117
11434.0	7940
11385.0	6834
11101	5922
11377.0	5911
11354.0	5452
11420.0	5249
11355.0	5000
11373.0	4762
11375.0	4761
11413.0	4717
11368.0	4498
11385	4437
11432.0	4175
11422.0	4053
11434	4037

In [45]: queens_zip_codes.hist()


```
In [46]: filter5 = data1['BOROUGH'] == 'STATEN ISLAND'
    staten_island = data1[filter5]
    staten_island.head(10)
```

Out[46]:

	CRASH	CRASH		ZIP	ON STREET	CROSS	NUMBER OF	NUMBER OF
	DATE	TIME	BOROUGH	CODE	NAME	STREET NAME	PERSONS INJURED	PERSONS KILLED
381	01/23/2020	9:52	STATEN ISLAND	10306	HYLAN BOULEVARD	CANNON BOULEVARD	0.0	0.0
401	02/01/2020	23:04	STATEN ISLAND	10304	FLAGG PLACE	FOUR CORNERS ROAD	3.0	0.0
609	02/08/2020	9:08	STATEN ISLAND	10306	ROCKLAND AVENUE	BURTON COURT	1.0	0.0
921	02/13/2020	8:45	STATEN ISLAND	10312	HUGUENOT AVENUE	SHORT PLACE	0.0	0.0
970	01/23/2020	23:33	STATEN ISLAND	10302	JEWETT AVENUE	WYGANT PLACE	1.0	0.0
1164	02/02/2020	19:40	STATEN ISLAND	10306	TYSENS LANE	AMBOY ROAD	1.0	0.0
1175	01/25/2020	10:00	STATEN ISLAND	10304	RICHMOND ROAD	NARROWS ROAD NORTH	0.0	0.0
1277	01/14/2020	7:30	STATEN ISLAND	10306	EDINBORO ROAD	RIGBY AVENUE	0.0	0.0
1286	02/07/2020	4:30	STATEN ISLAND	10305	SAINT JOHNS AVENUE	BEETHOVEN STREET	0.0	0.0
1456	01/14/2020	22:20	STATEN ISLAND	10306	HYLAN BOULEVARD	FAIRBANKS AVENUE	2.0	0.0
4								>

```
In [47]: # number of people injured in queens
staten_island['NUMBER OF PERSONS INJURED'].sum()
```

Out[47]: 12030.0

```
In [48]: # number of people injured in brooklyn
staten_island['NUMBER OF PERSONS KILLED'].sum()
```

Out[48]: 70.0

In [51]: # 4. Organize the results as a data frame.

staten_island_zip_codes = staten_island_zip_codes.to_frame(name="Collisions pe
 r zip code")
 staten_island_zip_codes.head()

Out[51]: Collisions per zip code

10301.0 2928 10302.0 171 10303.0 106 10304.0 3447

```
In [52]: staten_island_zip_codes.count()
```

3033

Out[52]: Collisions per zip code 24 dtype: int64

10305.0

In [53]: # which zip codes have the most crashes
 staten_island_zip_codes.sort_values(by="Collisions per zip code", ascending=Fa
 lse)

Out[53]:

Collisions per zip code

ZIP CODE	
10306.0	4573
10304.0	3447
10306	3190
10312.0	3106
10305.0	3033
10301.0	2928
10312	2436
10304	2397
10301	2140
10314	2113
10305	2100
10310.0	1836
10314.0	1574
10309.0	1555
10308.0	1484
10309	1316
10310	1248
10308	1015
10307.0	433
10303	397
10302	338
10307	332
10302.0	171
10303.0	106

In [54]: staten_island_zip_codes.hist()

