Composition of Functions

Summary

- 1. With compositions of functions, the output of one function is used as input into the other.
- 2. You can even evaluate entire functions into other functions.

Compositions of functions involve substituting one function into the variable(s) of another.

The composition of a function f and g denoted

$$(f \circ g)(x)$$
 is
$$(f \circ g)(x) = f(g(x))$$

where we plug g(x) into the variable for f(x).

In other words, the output of g(x) becomes the **input** of f(x).

The following illustrates finding $(f \circ g)(8)$, or f(g(8)), in which

$$g(x) = 2x + 3$$
 and $f(x) = x^2$

- 1. Evaluate g(8) to get 2(8) + 3, or 19.
- 2. Evaluate f(19) to get 19^2 , or 361.

Example 1. Find each of the following if f(x) = 3x - 4 and $g(x) = x^2 + 6$

(a)
$$(f \circ g)(2)$$

(b)
$$(g \circ f)(2)$$

(c)
$$(f \circ f)(1)$$

We can even substitute an entire function into another and simplify.

Using g(x) = 2x + 3 and $f(x) = x^2$, the composition $(f \circ g)(x)$ becomes

$$(f \circ g)(x) = f(2x+3)$$

$$= (2x+3)^{2}$$

$$= (2x+3)(2x+3)$$

$$= 4x^{2} + 12x + 9$$

Example 2. Find each of the following if f(x) = 3x - 4 and $g(x) = x^2 + 6$

(a)
$$(f \circ g)(x)$$

(b)
$$(g \circ f)(x)$$

(c) $(f \circ f)(x)$

Tabular and Visual Methods

Remember, f(x) tells you the output (or y-coordinate) of the function when plugging in a value for x.

For instance, f(3) = -2 means

- \bullet When the input is 3, the output is -2
- The point (3, -2) is on the graph of the function.

Example 3. Find each given the table below.

x	-3	-2	-1	0	1	2	3
f(x)	1	-2	-3	-1	3	2	0
g(x)	-2	2	-3	3	0	1	-1

- (a) $(f \circ g)(-1)$ (b) f(g(2))
- (c) $(g \circ f)(0)$
- (d) g(g(-3))

Example 4. Find each given the graph below.

- (a) $(f \circ g)(-5)$
- (b) g(f(-2))
- (c) f(f(2))
- (d) $(g \circ g)(-4)$