$ext{TD de MTH 100 (Bases mathématiques)} \\ ext{Partie 1}$

Choisir $la/les\ bonne(s)\ r\'eponse(s)$.

- 1. Quelle est la formule vraie parmi les quatre suivantes? (a) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x+y>0$, (b) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y^2 < x$, (c) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x+y>0$, (d) $\forall \varepsilon \in \mathbb{R}^{+*}, \forall \alpha \in \mathbb{R}^{+*}, |x| < \alpha \Rightarrow |x^2| < \varepsilon$.
- 2. La négation de la proposition P :" $\forall x \in \mathbb{R}, f(x) \leq 1$ " est (a) $\exists x \in \mathbb{R}, f(x) > 1$, (b) $\exists x \notin \mathbb{R}, f(x) > 1$, (c) $\exists x \in \mathbb{R}, f(x) < 1$, (d) $\exists x \notin \mathbb{R}, f(x) > 1$
- 3. Soient A, B deux parties de E telles que $B \subset A$. Soit X une partie de E telle que $A \cap X = B$. Alors (a) X = A, (b) X = B, (c) $X = B \cup Y$ avec $Y \subset \mathscr{C}_E^A$, (d) $X = A \cup Y$ avec $Y \subset \mathscr{C}_E^A$.
- 4. Soit $f: X \to Y$ une application et soit $A \subset X$. Alors (a) $A = f^{-1}(f(A))$, (b) $A \subset f^{-1}(f(A))$, (c) $A = f(f^{-1}(A))$, (d) $A \subset f(f^{-1}(A))$.
- 5. Soit $f: X \to Y$ une application injective. Soit A et B deux parties de X telles $B \subset A$. Alors (a) $f(A \setminus B) = f(A) \setminus f(B)$, (b) $f(A \setminus B) = f(B) \setminus f(A)$, (c) $f(A \setminus B) = f(B)$, (d) $f(A \setminus B) = f(A)$.
- 6. Sur \mathbb{C} on considère la relation d'équivalence $z\mathscr{R}z'$ si |z|=|z'|. La notation $\mathscr{C}(O,r)$ désigne le cercle de centre O (origine du repère) et de rayon r. Géométriquement, la classe d'équivalence de 2+2i est (a) $\mathscr{C}(O,2)$, (b) $\mathscr{C}(O,2\sqrt{2})$, (c) $\mathscr{C}(O,4)$, (d) $\mathscr{C}(O,4\sqrt{2})$.

Partie 2

- 1. Nier, de la manière la plus précise possible, les énoncés suivants.
 - (a) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y > 0.$
 - (b) Tout triangle équilatéral a ses angles égaux à 60 degrés.
- 2. Soit E un ensemble à n éléments et A une partie de E à p éléments. Quel est le nombre de parties de E qui contiennent un et un seul élément de A?
- 3. Soit $f: \mathbb{Z} \to \mathbb{Z}$ l'application définie par $f(n) = n + (-1)^n$.
 - (a) Les entiers n et f(n) sont-ils de même parité?
 - (b) L'application f est-elle bijective?
 - (c) Calculer f(f(n)). En déduire une expression de f^{-1} et résoudre l'équation

$$347 = n + (-1)^n$$

où n est un entier inconnu.

4. Soient $x, y, \lambda \in \mathbb{R}, \lambda > 0$. Montrer que

$$2xy \le \frac{x^2}{\lambda} + \lambda y^2.$$

5. On pose $u_2 = 1 - \frac{1}{2^2}$ et pour $n \ge 3$, $u_n = \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \cdots \left(1 - \frac{1}{n^2}\right)$. Calculer u_n puis $\lim_{n \to \infty} u_n$.