PATENT ABSTRACTS OF JAPAN

(11)Publication number:

59-193233

(43) Date of publication of application: 01.11.1984

(51)Int.CI.

C22C 9/00

(21)Application number: 58-065265

(71)Applicant: TOSHIBA CORP

(22)Date of filing: 15.04.1983

(72)Inventor: SUGAI HIROZO

(72)Inventor.

YAMANE SHIGEMI

MACHITORI HARUKA TEJIMA KOICHI FUJIWARA TETSUO

(54) COPPER ALLOY

(57)Abstract:

PURPOSE: To provide a copper alloy having high conductivity, high strength and good yield, obtained by adding a proper amount of an element selected from a specific group to a copper alloy containing a specific amount of Cr and Zr.

CONSTITUTION: One or more element selected from one or both of a first element group consisting of Ni, Sn, Fe, Co, Zn, Ti, Be, B, Mg, P, Ag, Si, Mn, Cd, Al, a rare earth element, Ca and Ge and a second element group consisting of Nb, V, Hf, Mo, W, Y, La, Ta and Ga is contained in a copper alloy containing one or both of 0.01W2.0wt% Cr and 0.005W1.0% Zr in a proper amount to form a precipitation hardening type copper alloy. In this copper alloy, the size of the dispersed substance is controlled to about $50\mu m$ and, pref., the distribution of the dispersed substance with a particle size of about $0.5W50\mu m$ is adjusted to a range of about 100W100,000. This copper alloy has both of high conductivity and excellent strength.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(3) 日本国特許庁 (JP)

①特許出願公開

⑫公開特許公報(A)

昭59—193233

⑤ Int. Cl.³C 22 C 9/00

識別記号 CCA 庁内整理番号 6411-4K **43公開** 昭和59年(1984)11月1日

発明の数 1 審査請求 未請求

(全 9 頁)

邻銅合金

②特

顧 昭58-65265

②出 願 昭58(1983) 4 月15日

⑩発 明 者 菅井普三

横浜市磯子区新杉田町8東京芝浦電気株式会社横浜金属工場内

@発 明 者 山根茂美

横浜市磯子区新杉田町8東京芝浦電気株式会社横浜金属工場内

70発 明 者 待鳥晴香

東京都港区虎ノ門1-26-5東 京芝浦電気株式会社港分室内

⑩発 明 者 手島光一

川崎市幸区小向東芝町1東京芝 浦電気株式会社総合研究所内

⑩発 明 者 藤原鉄雄

川崎市幸区小向東芝町1東京芝 浦電気株式会社総合研究所内

⑪出 願 人 株式会社東芝

川崎市幸区堀川町72番地

⑩代 理 人 弁理士 則近憲佑 外1名

明 細 書

- 1. 発明の名称 銅合金
- 2. 特許請求の範囲
 - (1) クロム、ジルコニウムのいづれか又は双方を選択し、クロムの成分が0.01~20 wt%、ジルコニウムの成分が0.005~1.0 wt% になるように含有させた鋼合金。
- (2) 銅-0.01%~20wt%クロム合金、銅-0.005~1.0wt%シルコニウム合金又は銅-0.01~20wt%クロム-0.005~1.0wt%シルコニウム合金に、第一群の元素と第二群の元素のいづれか又は双方から1種又は2種以上選択し、含有させた特許請求の範囲第1項に記載の銅合金。

第一群の元素: Ni, Sn, Fe, Co, Zn, Ti, Be, B, Mg, P, Ag, Si, Mn, Cd, Ae)

希土類元素,Ca,Ga

第二群の元素: Nb,V,Hf,Mo,W,Y,La,Ta, Ga

- (3) 分散物の大きさは 5 0 μπ以下である特許 請求の範囲第 1 項に記載の銅合金。
- (4) 大きさが 0.5~50μπ の分散物の分布は、 100~100000個/ml である特許請求の範囲 第1項に配載の飼合金。
- 3. 発明の詳細な説明
 - (発明の技術分野)

本発明は導電性と強度とを兼備した銅合金に関する。

(発明の技術的背景とその問題点)

析出硬化型銅合金は、導電率が高くかつ強度も高い金属材料であって、各種の製品に用いられている。この種の合金の強度は溶体化温度を高くする程向上して行くものである。しか品度体化温度が980℃をこえると、合金の結晶粒が粗大化し、加工時に肌荒れ現象が生じ、外観不良を起す。このような不良を起こさず、、更に強度の高い材料が要求された。そして御大の物質をこれらの銅合金に添加したものが試みられたが、材料の強度と導電率とは、相以する特性

特開昭59-193233 (2)

であるので、高導電率にして、かつ一層強度の 高い金萬材料は仲々に得られなかった。又、旅 加元業が活性であると、なかなか良好な製品が 歩溜り良くできないという問題もあった。

(発明の目的)

本発明の目的は、上記の点を考慮して、高導 電率にしてかつ強度が一層高い特性を有し、か つ歩溜の良好な銅合金を提供するものである。 (発明の概要)

本願発明者らは、析出硬化型銅合金を研究した結果、Cr銅、Zr鮹、Cr-Zr銅系の合金、窒ましくはCu-0.01~21 wt% Cr合金、Cu-0.005~1.0 wt% Zr合金又はCu-0.01~20 wt% Cr-0.005~1.0 wt% Zr合金を提供することにより、上記の目的を選成できることがわかった。

更に、上記合金に各種添加物を適量添加する ことにより上記目的がより容易に達成できると とが分った。

更に上記合金に通切な析出物を分布させると

強度に悪影響を与える。したがって、酸素を低下させることにより、これらの問題を解決できる。

酸素の低下方法としては、下記の 6 つの方法 がある。

- (1) カーボンルツボ又はマグネン丁等のスタ ンブルツボを用いて溶解する場合、溶解素 材又は溶湯中にカーポンを入れることが好 ましい。
- (2) (1) において用いるカーボンは高純度(90%以上の純度)が好ましく、超高純度カーボン(95%以上の純度)であれば更に好ましい。
- (3) リターン材に含まれる酸素親和力の強い 成分元素を積極的に脱酸に利用する為に容 易にリターン材を投入するのが好ましい。
- (4) 母合金に含まれるガス、不純物の混入を避ける為に、溶解素材(銅地金)の溶け落ち後母合金を投入し、その後 Zrを添加するのが好ましい。

とにより上配目的が容易に達成できることが分った。

更に上記合金に適切な製造法を適用するとと により上記目的が容易に達成できることが分った。

以下それぞれについて述べる。

まず本発明の銅合金の製造法を述べる。第1 図はその製造法の工程図である。

本工程は鋳造工程と溶体化工程と冷間加工工程に特長を有し、他の工程に関しても、本発明の為に種々工夫がなされている。

先ず、溶解工程では酸素が低い方が好ましく 具体的には100 ppm 以下、更には80 ppm 以下、更には60 ppm 以下が好ましい。 これは、本発明の銅合金が酸素と親和力の強いCェヤ Zェを含んでいるので、酸化物等の非金属介在物を生成しやすいからである。この非金属介在物は、装面欠陥(ハガレ、キズ、フクレ、ワレ等)、メッキ性(例えばAg、Ni、Sn、ハンダ等のメッキ)、繰返し曲げ性、導電率及び

- (5) 脱酸のための添加と成分元素としての添加の為に乙ェを複数に分けて投入するのが 好ましい。
- (6) 溶解素材(銅地金)の溶け落ち後、溶湯 表面を不活性ガスでおおりのが好ましい。 以上のような手段で酸素を低下させることによ り、添加元素の歩溜りも向上できる。

一方酸素が低下することにより、水素が増加するが、この水素も低く抑えた方が好ましく、 具体的には10 ppm 以下、 更には 5 ppm 以下、 更には 3 ppm 以下が好ましい。 これは熱処理の 際フクレを発生させる原因となる為である。

水素量を低下させる方法としては銅地金に電 線銅を添加する方法が好ましい。

以上のように、酸素量、水素量を低下させる
溶解法を用いることにより、装面欠陥が少なく
メッキ性、繰返し曲げ性、導電率及び強度が良
好な銅合金が得られ、本発明のクロム、ジルコニウム網合金には、非常に有効である。

次に鋳造工程について述べる。本発明の網合

したがって、との鋳造法は、インゴットの湯ジワ、割れ、介在物巻込みが防止できやすく、 又特定組織を得やすいので、本発明の目的の銅合金がえられやすい。

次に面削工程について述べる。鋳造工程後、

である溶体化処理をもちいることにより、強度、延性、繰返し曲げ性、導電率が良好な鋼合金が得られることがわかった。又、溶体化の際、冷却速度は速いほど強度に効果があり、具体的には空冷、更には水冷が好ましいこともわかった。又、この方法は温度をあまり上げないで済むる、エネルギー的にも有利である。この溶体化工程は、鋳造工程又は熱間加工工程にも含ませるととが可能であり、その場合工程の短縮になる。

以上のように溶体化温度と冷却速度を制御することにより、高強度で高導電性となる組織の 銅合金を得ることができる。

次に冷間加工工程について述べる。本発明ではこの工程を取り入れることにより、一層強度が高く、繰返し曲げ特性が良好な銅合金が得られる。加工率は大きい方が好ましく、具体的には70%~99%、更には80%~95%、更には85%~90%が好ましい。この冷間加工は、銷合金に加工硬化及び析出物微細化を行こせ、強度、繰返し曲げを向上させることがで

インゴットに表面割れ、 弱ジワが生じた場合、 それを除去する方が最終製品の歩溜りを向上で き好ましい。 但し、 湯ジワ等の 表面欠陥がなけ ればとの工程は省略してもよい。

次に熱間加工について述べる。との工程は加工品を所望の寸法までもっていく工程であるが、熱間加工の最終温度を6000~8500、好ましくは700℃~8200、更に好ましくは750℃~800℃にし、その後急冷するととにより、熱間加工と溶体化処理を兼ねるととができ、工程の簡略化が可能である。との跃々をででき、工程の簡略化が可能である。との下されるのようにより、強度を低下される。したがって、この工程が溶体化工程を兼る場合、したがって、この工程が溶体化工程を兼る場合、したがって、の最終温度を上記の範囲にすることにより、高強度で高導伝性の網合金が得られる。

次に溶体化処理工程について述べる。本願発明者らは、実験研究した結果、溶体化温度が600℃~850℃、好ましくは700℃~820℃、

きるが、加工率が高すぎると、延性が低下し、 一方低くすぎると強度がでない。

次に時効処理工程について述べると、この工程は前の冷間加工工程と超み合せて300℃~500℃、好ましくは350℃~500℃、更に好ましくは400℃~450℃の温度で時効することにより、飼合金に強度、導電性及び靱性を与えることができる。この際、温度が高すきると軟化し、一方、低すぎると歪がとれず繰返し曲げ性が低下する。

したがって、この冷間加工工程及び時効処理工程では、加工率、時効温度を制御することにより、強度、繰返し曲げ、延性及びエッチング性に好ましい組織を得ることができる。したがって、本発明の網合金を以上の方法を用いることにより、一層高強度にして、かつ高導電性の特性を有し、かつ歩溜りが良好な網合金を提供できる。

次に分散物の大きさおよび分布について説明 する。本発明でいう分散物の大きさとは、分散 したがって、銅合金の組織を上記の如くする ことにより、メッキ性、エッチング性、導電率、 繰返し曲げ性、強度が艮好な銅合金を提供でき る。

析出物の大きさ、および分布を上述のように

いるので、折り曲げ性および硬度等の極めて良 好な銅合金となる。

次に成分について述べる。2ァ、Cァを添加 し、分散させることにより、導電性を低下させ ず、強度を向上させることができるが、量が多 すぎると、導電性及び加工性が低下し、一方少 なすぎると強度及び耐熱性が不足する。したが って、これらの合金に関してはCrが2%以下 例允は 0.01~20 wt%、 2 r が 1.0 % 以下例 えば 0.005~1.0 wt%の範囲が好ましい。又 Cr、2rは非常に活性な金属であり、酸繁と の親和力が大きく、溶解の際酸化物を形成させ やすく、又メッキ性も低下させやすい。したが って、特に製造法の歩留りヤメッキ性を求める 場合.は、Cr量は 0.01~0.4 wt%、Zr量は 0.005~0.1 wt%の範囲が好ましい。又Zr、 Cr貴を波し、不活性な他の元素を添加するこ とにより、強度と導電性を保ちつつ、かつ製造 しやすい朝合金を提供できる。 C u - C r 合金、 Cu-Zr合金、Cu-Cr-Zr合金のうち

するためには次に述べる方法により製造する。

まずCr、Zr等を含有するCu合金を次のように例えば連続鋳造法により鋳造する。すなわち溶湯温度1000~1400℃、好ましくは1100~1300℃、 更に好ましくは1150~1250~約以上、 好ましくは100/秒以上、 更に好ましくは150/秒以上で凝固させる。 冷却速度が遅すぎると、 折出物が大きくなるので好ましくない。

次に熱間圧延及び冷間圧延を施したのち、溶体化熱処理を行ない、加工率が70%~99%、好ましくは80%~95%、更に好ましくは85%~90%の冷間圧延等の冷間加工により所定の大きさに仕上げて、300~550℃、好ましくは350℃~500℃、更に好ましくは400~450℃で数時間加熱することにより時効硬化処理を行なり。

このようにして製造された銅合金は、 C u 合金中に折出物が細かく、かつ均一に分散されて

では、 との順に高温強度が高く、 リードピン、 リードフレームのような高温強度を求められる 材料には適当である。

次に添加成分を加えた銅合金について述べる。 Cu-Cr合金、Cu-Zr合金又Cu-Cr -Zr合金は要求特性に応じ下記の第1群元素 又は/および第2群元素を添加することにより、 更に本発明の目的を達成しやすい銅合金を提供 できる。

第1群の元素とは、Ni,Sn,Fe,Co,Zn,Ti,Be, B,Mg,P,Ag,Si,Mn,Cd,Al, 全土類元素,Ca,Ge

である。

第2群の元衆とは、Nb,V,Hf,Mo,W,Y,La,Ta, Ga

である。

先ず、第1群元素について説明する。 これらの 素に関して、本願発明者らは上記の成分の C u - Z r 合金、 C u - C r 合金、 C u - C r - Zr 合金に下記の成分範囲の第1群元素を添加する ことにより、その複合効果として、本発明の目 的を達しえる銅合金を提供できることがわかった。

この成分範囲として、 Niは 0.005~10 wt%、 更には 0.05~5.0 wt%、 更には 0.1~2.0 wt% が好ましい。 これは Niを添加することにより、強度を向上させることができるが、 多すぎると導電性を低下させ、一方少なすぎると効果がでない為である。

S n 含有量は、 0.00 05~10 wt%、更には 0.05~5.0 wt%、更には 0.1~20 wt% が好ましい。これは S n を添加することにより、強度を向上させることができるが、多すぎると導電性を低下させ、一方少なすぎると効果がでない為である。

F · 含有量は 0. 0 0 5 ~ 5. 0 wt%、 更には
0. 0 1 ~ 1. 0 wt%、 更には 0. 0 5 ~ 0. 5 wt%が
好ましい。 これは F · を絵加することにより、
強度を向上させることができるが、 多すぎると

B e 貴は 0.001~20 wt%、更には 0.01~
1.0 wt%、更には 0.05~0.5 が好ましい。 これは B o を添加することにより、強度が向上するが、量が多すぎると、価格が増加し、一方少なすぎると効果がでない為である。

B 放は 0.001~1.0 wt%、更には 0.01~
0.5 wt%、更には 0.05~0.5 wt%が好ましい。
これは B を添加することにより、強度向上や結
晶粒粗大化防止が可能となるが、量が多すぎる
と加工性が低下し、一方少なすぎると効果がで
ない為である。

M g 量は 0.001~20 wt%、更には 0.01~0.5 wt%、更には 0.01~0.1 wt%が好ましい。これは M g を添加することにより、強度及び脱酸が向上するが、量が多すぎると、導電性及び加工性が低下し、一方少なすぎると効果がてない為である。

 導電性及びハンダ耐候性を低下させ、一方少な すぎると効果がでない為である。

C。含有數は、0.005~5.0 wt%、更化は0.01~1.0 wt%、更化は0.05~0.5 wt%が好ましい。これは、C。を添加することにより、強度を向上させることができるが、多すぎると導電性を低下させ、一方少なすぎると効果がでない為である。

2 n 含有量は 0.005~10 wt%、更には 0.01~20 wt%、更には 0.05~0.5 wt%が好ましい。これは 2 n を添加することにより、強度が向上するが、量が多すぎるとハンダ耐能性が低下し、一方少なすぎると効果がでない為である。

T i 含有量は 0.0 0 5 ~ 5.0 wt%、 更には 0.0 5 ~ 1.0 wt%、 更には 0.0 5 ~ 0.5 wt% が 好ましい。 これは、 T i を 添加することにより、 強度向上や結晶粒粗大化防止が可能となるが、 量が多すぎると、 導電性が低下し、 一方少なす ぎると効果がない為である。

力が向上するが、量が多すぎると導電性及びハンダ耐 候性が低下し、一方少なすぎると効果が でない為である。

Ag 量は 0.001~3.0 wt%、 更には 0.005 ~ 0.5 wt%、 更には 0.01~0.05 wt% が好ま しい。 これは、 Ag を添加することにより、強 度が向上するが、 量が多すぎると、 価格が増加 し、一方少なすぎると効果がでない為である。

Si 登は 0.001~5.0 wt%、 更には 0.01 ~0.5 wt%、 更には 0.02~0.1 wt%が好ましい。とれは Si を添加することにより、強度向上、脱酸力向上及び結晶粒粗大化防止が可能となるが、 量が多すぎると導電性が低下し、一方少なすぎると効果がでない為である。

C d 動は 0.001~5.0 wt%、 更には 0.01 ~ 0.2 wt%、 更には 0.02~ 0.1 wt% が好ましい。 これは C d を添加することにより、 強服が向上するが、 量が多すぎると価格の増加や加工性の低下をきたし、一方少なすぎると効果がでない為である。

A e 敷は 0.001~10 wt%、更には 0.005~1.0 wt%、更には 0.05~0.5 wt%が好ましい。これは、A e を添加することにより、強度及び脱酸力が向上するが、 量が多すぎると導電性及び加工性が低下し、一方少なすぎると効果がでない為である。

希士類元素量は、0.001~20 wt%、更には0.05~0.5 wt%が好ましい。これは希土類元素を添加することにより、強度及び脱酸力が向上するが、量が多すぎると価格の増加や加工性の低下をきたし、一方量が少なすぎると効果がでない為である。

C a 遺は、 0.0 0 1 ~ 1.0 wt%、 更には0.0 1 ~ 0.1 wt% が好ましい。 これは C a を添加する

粒粗大化防止が可能であるが、量が多すぎると 導電性及び加工性が低下し、一方少なすぎると 効果がない。したがって V 量は 0.005 ~ 5.0 wt%、更には 0.01 ~ 0.5 wt%、更には 0.1 ~ 0.5 wt% が好ましい。

H 1 を添加することにより、強度向上及び結晶 2 粗大化防止を可能とするが、量が多すぎると、導電性及び加工性が低下し、一方少なすぎると効果がない。したがってH 1 量は 0.005 ~5.0 ×t%、 更には 0.05 ~ 0.5 ×t% が好ましい。

M。を添加することにより、強度向上及び結晶粒粗大化防止が可能となるが、量が多すぎると、価格増加及び加工性低下をきたし、一方少なすぎると効果がない。したがってM。量は0.001~20 wt%、更には0.05~0.5 wt%が好ましい。

Wを添加することにより、強度向上及び結晶 粒粗大化防止が可能となるが、量が多すぎると 価格増加及び加工性低下きたし、一方少なすぎ

ことにより、脱酸力及び切削性が向上するが、 量が多すぎると、加工性が低下し、一方少なす ぎると効果がでない為である。

G。量は 0.001~5.0 wt%、 更には 0.01 ~ 0.1 wt% が好ましい。 これは G。を添加する ととにより、 強度が向上し、 又結晶粒の粗大化 が防止できやすくなるが、 量が多すぎると、 導 電性が低下し、一方少なすぎると効果がでない。

次に第2群元素について説明する。これらの元素も高強度高導電性銅合金の添加元素として好ましいものである。これらの元素は単独に使用されても、あるいは第1群の元素と併用されても、効果がある。

これは、N b を添加することにより、強度が 向上し、結晶粒の粗大化が防止できやすくなる が、量が多すぎると導能性及び加工性が低下し、 一方少なすぎると効果がない。したがってN b 量は 0.005~5.0 wt%、更には 0.01~0.5 wt%、更には 0.1~0.5 wt%が好ましい。

Vを添加することにより、強度向上及び結晶

ると効果がない。したがってW量は 0.001~ 20 wt%、更には 0.05~ 0.5 wt% が好ましい。

Yを添加することにより、強度及び脱酸力が向上するが、量が多すぎると価格増加及び加工性低下をきたし、一方少なすぎると効果がない。したがって、Y量は0.001~20wt%、更には0.05~0.5 wt%が好ましい。

しゅを添加することにより、強度及び脱酸力が向上するが量が多すぎると、価格増加及び加工性低下をきたし、一方少なすぎると効果がない。したがってしょ量は 0.001~20 wt%、更には 0.01~0.1 wt% が好ましい。

Taを添加することにより、強度向上及び結晶粒粗大化防止が可能となるが、量が多すぎると導電性低下及び価格増加をきたし、一方少なすぎると効果がない。したがってTa量は0.001~20 wt%、更には0.05~0.5 wt%が好ましい。

Gaを添加することにより、強度向上及び結

特開昭59-193233(プ)

晶粒粗大化防止が可能となるが、 量が多すぎる と導電性が低下し、一方少なすぎると効果がない。 したがって G a 量は 0.001~5.0 wt%、 更には 0.01~0.1 wt% が好ましい。

るりを添加することにより、強度向上及び結晶粒粗大化防止が可能となるが、量が多すぎると導電性及び加工性が低下し、一方少なすぎると効果がない。したがってるり強は0.001~5.0 wt%、更には0.01~0.1 wt%が好ましい。以上第1群元素及び第2群元素について述べたが、これらの元素は、銅合金の水められる特性により、適宜選択されると良い。水められる特性としては、例えばメッキ性、導電性、折り曲げ性、耐熱性及び機械的強度等があるが、、例えばメッキ性及び強度が重要視される場合、添加元素としてMg, Mn, Y, La 等を選べば良い。

そして、これらの特性が求められる製品とし

ては、例えばリードフレーム、リードピン、高強度導電線、鋳造用鋳型、連鋳用鋳型、非晶質合金製造用ロール、抵抗溶接用電極、熱交換器用部品(フィン、バイブ、隔壁等)、電池缶、装飾部材、バイメタル、ガラス成形用部材、真空容器、溶接トーチ、リード線等がある。

以上述べてきた好ましい成分、 製法、 組織、 用途の代表例を第1 表に示す。

たお、Crが 0.3 ~ 0.7 wt% で、 Zrが 0.1 未満の Cu - Cr - Zr 合金、及び Crが 0.3 未 満で Zrが 0.1 ~ 0.5 wt% の Cu - Cr - Zr 合金に関しても 同様に好ましい 特性、 組織が得 られた。

以下余白

第1表好ましい代表例

1	成	分		製	造	条	件	特	性	組織	用 途 (その他)
	Cu - Cr 0.5~1.0		帝解(連鋳) カーボンルツポ 又は帝湯中に カーポン装入 (O, 30ppn以下)	好ましく	oo.0		Ŀ→400~500℃ : 好ましくは	耐熱性 くり返し曲げ性		Δ	電優材料、溶接トーチ パネ材料
-Zr	C u - C r 0.3~0.7		, Sopping (裕体化	դ 00℃-	冷間加工 →70%以」	時効 Ŀ→ 400~500°O 好ましくは	導電性	() () ()	©	導電線全般(#) 真空容器 鋳型 バイメタル
	C u - C r 0.3未満	0.1未活	,	溶体化 750~8! 好ましく!	5 0°O-	冷間加工 →70%以」	時効 -→ 350~450℃ 好ましくは	導電性	О Д	0	導電船全般 (架線、ケーブル、より線
- 1	Cu - Cr 0.5~1.0 Si, Ge, M 0.001~0.	0.5~1.0 g,B,Ag)	,	格体化 700~80 好ましくk 700~75) 0℃ - t		時効 -→400~550℃ 好ましくは	導電性	Δ (Θ) (Ο)	0	電磁材料、密接トーチ バネ材料
г-X В (Cu - Cr 0.3~0.7 Fe, Ni, P, Cd 0.005 +A (Ag	0.1~0.5 S _n ,A _g)	,	好ましくた	0°0- t	冷間加工 +70%以上		導電性 強度,耐熱性 くり返し曲げ性 メッキ性 ハンタ	000	0	導電線全散(〃) バイメタル 真空容器
c	Cu - Cr 0.3以下 Ti,Be,Co Mn,Zn 0.005 +A	0.1以下		好ましくた	oc-	冷削加工 +70%以上	.→450~600°O 好ましくは	導覧性 強度,耐熱性 くり返し曲げ性 メッキ性 ハンタ	0 0 0 4	0	バネ材 寛徳材料

(発明の実施例)

第2 表に示す試料 1 ~ 1 7 を作成して、 特性を調べ、 その結果を第2 装に示した。 又、 比較の為、 試料 1 8 ~ 2 8 を実施例と同様に調べ、 その結果を第2 表に併配した。

との援から明らかなように、本発明の成分、 組織、製造法を用いたCu合金は有効なことが わかる。1~17に示す組み合せ以外の組み合 せについても同程度の効果が得られる。

以下余白

第 2 表

1 11 化学成分(w 1%)				A(-+%)	· · · · · · · · · · · · · · · · · · ·	組	橃.	特 性						
	No	化 Cr	子 成 Zr	その他	O₂含有量	製造方	溶体化および 時効熱処理	分散物の			導動率	繰返し曲げ		総合評価
-		0.6			11	シールあり	あり	3800		0	<u>Q</u>	0	8	
-	2	0.3			8	,	"	2100			0	<u> </u>	0	8
1 1	3	0.3		N i 0.5	8	"	"	2500		<u> </u>		<u> </u>		ö
	-4	0.3		B 0.07	10	,	//	2500		<u></u> Q	<u>.</u>	_ Q	0	o
-	5	0.3		Fe 0.1, P 0.02	9	"	,	3200		_O	<u> </u>	8	- Ö	ö
本	- 6		0.3		12	,		2500			<u>Q</u> .	0	F-8-	ŏ
発	-7		0.2	Mg 0.05	13	,	,,	2200			<u> </u>		10	ŏ
明	8		0.2	Ag 0.02	12	•	/	2000		<u>_</u>	<u>Q</u> _		1-6-	0
0	9		0.2	Be 0.15	12	,	/	2100		<u> </u>	L은-		1 ŏ	5
1 -	10	0.6	0.3		13	"	,	4600		<u>Q</u>	0_		-6	ö
奥	11	0.6	0.1	Sn 0.3	10	7		4100		<u>Q</u>			10	
施	12	0.6	0.1	Co 0.3	13	"	"	4000		0	<u> </u>	 	 0 -	
69	13	0.4	0.0 5	T1 0.2	10	,	/	3100			1-2-		1-8-	0
	14	0.4	0.0 5	8: 0.1	11	,		3200		<u> </u>	10	- 8	10	1-8-1
	15	0.3	0.0 5	Y 0.2	12	"	/	3500		10	10		1-8-	1ŏ
	16	0.3	0.0 5	Mn 0.2, Cd 0.1	11	,	,	220		0	<u> </u>	<u> </u>	1 8	ö
1	17	0.3	0.0 5	Zn 0.1, Ge 0.1	10	,	/	240	Total Court		0	<u> </u>	- Z	× × ×
	18	2.5			11	,		1210		0	_×		0	× ×
1	19	0.005	<u> </u>		9			8		↓ .×	10	- ×	- A	×
	20	0.6	-	Fe 12	10	//	//	1440		Ļ으	: <u>:</u>	ô	- ×	+ 2 -
胜	21	0.6	 	Zn 15	18			390		무	1×	<u> </u>	+÷	×
1"	22	0.3	† =	N i 0.5	7 6	シールなし		250		0	10			x
較	23	0.3	 	Ni 0.5	7 2		なし	210			18			+^-
*57	24	1	0.3	Mg 0.03	6.6	,		200		↓ ×	18	1-2-	- 	-
559		0.6	0.1		75	,	35 5	320		₩Ş	+8	+		×
"	26	0.6	0.1	_	70	,	カレ	340		₩	+8	-	- ô	× ×
1	27	_ 	0.3	-	13	シールあり	59	460					15	x
1	28		0.0 5	Ni 0.5	11	,		330	<u> </u>	11 4			_1	

(村) 0.5~50 μの分散物の平均個数

(発明の効果)

本発明は銅-0.01~2.0 wt%クロム合金、 銅-0.005~1.0 wt%ジルコニウム合金又は 銅-0.01~20 wt%クロム-0.005~1.0 wt%ジルコニウム合金を用いることにより、高 導電率にてかつ強度が一層高い特性を有し、か つ歩溜が良好な銅合金を提供できる。

4. 図面の簡単な説明

第1図は本発明の銅合金の製造工程図である。

代理人弁理士 則 近 憲 佑(ほか1名)

第 1 図

THIS PAGE BLANK (USPTO)