PREDICTING THE ENERGY OUTPUT OF WIND

TURBINE BASED ON WEATHER CONDITION

ASSIGNMENT - 3

Date	4th October 2022
Team ID	PNT2022TMID54445
Student Name	E.Gokula Krishnan (310619106304)
Domain Name	Education
Project Name	PREDICTING THE ENERGY OUTPUT OF Wind TURBINE BASED ON WEATHER CONDITION
Maximum Marks	2 Marks

1.) IMPORT THE REQUIRED LIBRARIES

1.)IMPORT THE REQUIRED LIBRARIES In [1]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns

2.)DOWNLOAD AND UPLOAD THE DATASET

		2.)DOWNLOAD AND UPLOAD THE DATASET INTO THE TOO														
n [2]:	df = pd.read_csv('abalone.csv') df.head()															
ut[2]:		Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings						
	0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15						
	1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7						
	2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9						
	3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10						
	4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7						

3.) HANDLE MISSING VALUES AND DEAL WITH THEM

4.) PERFORM THE DESCRIPTIVE STATISTICS ON THE DATASET

5.) PERFORM VARIOUS VISUALISATIONS

a.) UNIVARIANTE ANALYSIS

5.)PERFORM VISUALIZATIONS a.)UNIVARIANTE ANALYSIS In [6]: sns.distplot(df.Rings) C:\Users\Prem\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexi bility) or `histplot' (an axes-level function for histograms). Out[6]: AxesSubplot:xlabel="Rings", ylabel='Density'>


```
In [8]: plt.pic(df. Sex. value_counts(), [0.05, 0.05], colors=['red', 'green', 'blue'], labels=['Wale', 'Female', 'Infant'], autopot='$l.lfb8', plt.shcm()

In [9]: sns. barplot(df. Rings .value_counts). Index, df. Rings. value_counts())

C:(Us ers \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \
```

b.) BI - VARIANTE ANALYSIS

c.) MULTI - VARIANTE ANALYSIS

F477									
rt[13]:		Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
	Length	1.000000	0.986812	0.827554	0.925261	0.897914	0.903018	0.897706	0.556720
	Diameter	0.986812	1.000000	0.833684	0.925452	0.893162	0.899724	0.905330	0.574660
	Height	0.827554	0.833684	1.000000	0.819221	0.774972	0.798319	0.817338	0.557467
	Whole weight	0.925261	0.925452	0.819221	1.000000	0.969405	0.966375	0.955355	0.540390
SI	hucked weight	0.897914	0.893162	0.774972	0.969405	1.000000	0.931961	0.882617	0.420884
1	Viscera weight	0.903018	0.899724	0.798319	0.966375	0.931961	1.000000	0.907656	0.503819
	Shell weight	0.897706	0.905330	0.817338	0.955355	0.882617	0.907656	1.000000	0.627574
	Rings	0.556720	0.574660	0.557467	0.540390	0.420884	0.503819	0.627574	1.000000

6.) FIND AND REPLACE THE OUTLIERS

6.)FIND THE OUTLIERS AND REPLACE THE OUTLIERS In [15]: for i in df.columns.drop('Sex'): sns.boxplot(df[i]) plt.show() C:\USers\Prem\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword ar g: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation. warnings.warn(

C:\Users\Prem\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword ar g: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation.

warnings.warn(

C:\Users\Prem\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword ar g: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation.

warnings.warn(

C:\Users\Prem\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword ar g: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation.

warnings.warn(

C:\Users\Prem\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation.

warnings.warn(

C:\Users\Prem\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword ar g: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation.

warnings.warn(

C:\Users\Prem\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword ar g: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation.

warnings.warn(

C:\Users\Prem\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword ar g: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation.

warnings.warn(

0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250 Height C:\Users\Prem\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation.

warnings.warn(

0.0 0.5 1.0 1.5 2.0 Whole weight

C:\Users\Prem\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation.

warnings.warn(

C:\Users\Pren\anaconda3\11b\s1te—packages\seaborn_decorators.py: 36: Futuretgarn1ng: Pass the follms1ng var lab1e as a keywrd ar g:x.Frxaverston6i.12,theon1yva11dposltlona1argument+s11be'data' and passing other argument s ithout an exp1ic it key word will result in an error or misinterpretation.

ma mines .ma m (

e.o or oz or a es

C:\Us ers\Pren\anaconda3\lib\s ite—pac kage s\s eaborn_deco rato rs.py: 36: Futuref4arn ing: Pas s the tolls *ing var table as a keyemrd ar g:x.FromversionB.12, theonlyvalidpositionalargumentwillbe'data', andpassingotherargumentswithoutanexplicitkey wordwillresultinanerrorormisinterpretation.

namings.narn(

7.) CHECK FOR CATEGORICAL COLUMNS AND ENCODE THEM

<pre>from sklearn.preprocessing import LabelEncoder le = LabelEncoder() df.Sex = le.fit_transform(df.Sex)</pre>														
lf	. head	()												
	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings					
0	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15.0					
1	2	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7.0					
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9.0					
3	2	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10.0					

8.) SPLIT DATA INTO DEPENDENT AND INDEPENDENTVARIABLES

9.) SCALE THE INDEPENDENT VARIABLES

9.) SCALE THE INDEPENDENT VARIABLES In [22]: from sklearn.preprocessing import MinMaxScaler scale = MinMaxScaler() X_scaled = pd.DataFrame(scale.fit_transform(X),columns=X.columns) X_scaled.head() Out[22]: Sex Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight 0 1.0 0.412245 0.424242 0.275 0.230813 0.229231 0.204372 0.237220 1 1.0 0.240816 0.222222 0.250 0.100755 0.101026 0.097611 0.109425 **2** 0.0 0.534694 0.535354 0.475 0.304294 0.262051 0.286731 0.333067 3 1.0 0.387755 0.424242 0.425 0.231714 0.220000 0.230808 0.245208 4 0.5 0.208163 0.202020 0.200 0.091514 0.090769 0.079309 0.085463

10.) SPLIT THE DATA INTO TRAINING AND TESTING

10.)SPLIT THE DATA INTO TRAINING AND TESTING DATA In [23]: from sklearn.model_selection import train_test_split x_train , x_test , y_train , y_test = train_test_split(X_scaled,Y,test_size=0.2,random_state=0)

11.) BUILD THEMODEL

```
11.)BUILD THE MODEL

In [24]: from sklearn.linear_model import LinearRegression model = LinearRegression()
```

12.) TRAIN THEMODEL

```
12.)TRAIN THE MODEL

In [25]: model.fit(x_train,y_train)

Out[25]: LinearRegression()
```

13.) TEST THE MODEL

```
13.)TEST THE MODEL

In [26]: y_predict = model.predict(x_test)

In [27]: pd.DataFrame({"Actual":y_test,"Predicted":y_predict.round(0)})

Out[27]:

Actual Predicted
668 13.0 13.0
1580 8.0 9.0
3784 11.0 10.0
463 5.0 5.0
2615 12.0 10.0
... ... ...
575 11.0 10.0
3231 12.0 9.0
1084 7.0 9.0
290 15.5 12.0
2713 4.0 6.0
836 rows × 2 columns
```

14.) MEASURE THE PERFORMANCE USING METRICS

14.)MEASURE THE PERFORMANCE USING METRICS In [28]: from sklearn import metrics metrics.r2_score(y_test,y_predict) Out[28]: 0.58432381444787