Predavanja 8

Newtonov interpolacijski polinom

Fakulteta za računalništvo in informatiko Univerza v Ljubljani

28. november 2021

Interpolacijski polinom - Newtonova baza

- ▶ Interpolacija prek standardne monomske baze $\{1, x, x^2, ..., x^n\}$ povzroči slabo pogojenost, je pa poceni za računanje (Horner).
- ▶ Newtonov interpolacijsk polinom na točkah x₀, x₁, x₂, ..., x_n

$$p_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \ldots + a_n(x - x_0)(x - x_1) \cdot \cdots (x - x_{n-1}).$$

Baza so polinomi

1,
$$x-x_0$$
, $(x-x_0)(x-x_1)$, ..., $(x-x_0)(x-x_1)\cdots(x-x_{n-1})$.

Newtonova baza je stabilnejša od standardne baze.

Primer računanja polinoma v Newtonovi bazi Interpolirajmo podatke $(x_0, y_0), (x_1, y_1), (x_2, y_2)$ v Newtonovi obliki.

Poiskati moramo koeficiente a₀, a₁ in a₂ v polinomu

$$p_2(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1).$$

Iz 3 podatkov dobimo sistem 3 linearnih enačb v neznanih koeficientih:

$$x_0: y_0 = a_0 + 0 + 0$$

 $x_1: y_1 = a_0 + a_1(x_1 - x_0) + 0$
 $x_2: y_2 = a_0 + a_1(x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1)$

Ali v matrični obliki:

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & x_1 - x_0 & 0 \\ 1 & x_2 - x_0 & (x_2 - x_0)(x_2 - x_1) \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \end{bmatrix}$$

Ker je matrika spodnje trikotna, potrebujemo samo $O(n^2)$ operacij:

$$\begin{array}{lcl} a_0 & = & y_0 = f(x_0), & a_1 = \frac{y_1 - a_0}{x_1 - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}, \\ \\ a_2 & = & \frac{y_2 - a_0 - (x_2 - x_0)a_1}{(x_2 - x_1)(x_2 - x_0)} = \frac{f(x_2) - f(x_0) - (x_2 - x_0)\frac{f(x_1) - f(x_0)}{x_1 - x_0}}{(x_2 - x_1)(x_2 - x_0)} \\ \\ & = & \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{x_2 - x_0}. \end{array}$$

Interpolacijski polinom v Newtonovi bazi

Iz tega vidimo vzorec. Pojavljajo se izrazi oblike $f[x_i, x_j] := \frac{f(x_j) - f(x_i)}{x_j - x_i}$ Na zgornjem primeru dobimo:

$$a_0 = f(x_0),$$
 $a_1 = f[x_0, x_1],$ $a_2 = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}.$

To se da posplošiti do rekurzivnega računanja polinomov v Newtonovi obliki. Označimo z $f[x_0, x_1, \ldots, x_k]$ vodilni koeficient interpolacijskega polinoma stopnje največ k, ki se z f ujema v točkah x_0, \ldots, x_k .

Izrek

1. Koeficienti Newtononovega interpolacijskega polinoma p_n stopnje največ n, ki se z f ujema v točkah x_0,\ldots,x_n , so enaki

$$a_0 = f[x_0],$$
 $a_1 = f[x_0, x_1],$ $a_2 = f[x_0, x_1, x_2], \dots,$ $a_n = f[x_0, x_1, \dots, x_n].$

Deljene diference povezuje formula

$$f[x_0,\ldots,x_k] = \begin{cases} \frac{f^{(k)}(x_0)}{k!}, & x_0 = x_1 = \ldots = x_k, \\ \frac{f[x_1,\ldots,x_k] - f[x_0,\ldots,x_{k-1}]}{x_k - x_0}, & \textit{sicer}. \end{cases}$$

Računanje deljenih diferenc Deljene diference pa lahko bolj učinkovito računamo s pomočjo tabel:

X	$f[\cdot]$	$f[\cdot,\cdot]$		$f[\cdot,\cdot,\cdot,\cdot]$
<i>x</i> ₀	$f[x_0]$	$f[x_0, x_1]$		
<i>X</i> ₁	$f[x_1]$	#[w_w]	$f[x_0,x_1,x_2]$	fry y y y 1
<i>x</i> ₂	$f[x_2]$	$I[X_1, X_2]$	$f[x_1, x_2, x_3]$	$f[x_0, x_1, x_2, x_3]$
<i>x</i> ₃	f[x ₃]	f[X ₂ , X ₃]	$f[x_0, x_1, x_2]$ $f[x_1, x_2, x_3]$	

Konstruirajmo deljene diference za podatke (1,3), $(\frac{3}{2},\frac{13}{4})$, (0,3), $(2,\frac{5}{3})$.

Iz tabele deljenih diferenc preberimo interpolacijski polinom.

X	$f[\cdot]$	$f[\cdot,\cdot]$	$f[\cdot,\cdot,\cdot]$	$f[\cdot,\cdot,\cdot,\cdot]$
1 3 2	3 13 4	1/2 1	1 3	-2
0	3	<u>6</u> 2	$-\frac{5}{3}$	_
2	<u>5</u>	- <u>2</u>		

Interpolacijski polinom je tako

$$p_2(x) = 3 + \frac{1}{2}(x-1) + \frac{1}{3}(x-1)\Big(x - \frac{3}{2}\Big) - 2(x-1)\Big(x - \frac{3}{2}\Big)x.$$