

Instituto Politécnico Nacional

Escuela Superior de Cómputo

Ping Poller ADMINISTRACION DE SERVICIOS EN RED

Entregable 1

Autor

Alan Fernando Rincón Vieyra

Profesor

Eduardo Gutiérrez Aldana

Índice general

1.	Introducción	2
	1.1. Objetivo	2
2.	Análisis y Diseño	3
	2.1. Arquitectura propuesta	3
	2.2. Especificación de plataforma	3
3.	Desarrollo e implementación	4
	3.1. Desarrollo	4
	3.1.1. Configuración del entorno	4
	3.1.2 Realización del programa Ping Poller	5

capítulo 1

Introducción

En una topología de red es posible que un dispositivo no responda a tiempo a un ping. Para determinar la existencia de una falla en la comunicación con un dispositivo se hace uso de un **ping poller**.

1.1. Objetivo

Desarrollar un ping poller que esté monitoreando a los dispositivos de la red, enviándoles un ping a cada uno y verificando que le tiempo de respuesta sea apropiado.

capítulo 2

Análisis y Diseño

Este capítulo contiene el plan de trabajo de la presente práctica, detallando el alcance y la especificación del sistema.

2.1. Arquitectura propuesta

En la figura TODO: se muestra el diagrama que describe la arquitectura propuesta para la topología de red. La maquina virtual "Debian-1.es el dispositivo que tiene implementado el ping poller, que será el encargado de monitorear la conexión de todos los demás dispositivos (routers, pc's).

2.2. Especificación de plataforma

Para el desarrollar de éste componente se hará uso de la herramienta **rrdtool** (versión x) usando el lenguaje de programación **python** (versión 2) en una maquina virtual con el sistema operativo **Debian** (versión 7).

capítulo 3

Desarrollo e implementación

3.1. Desarrollo

En este capitulo de muestran los pasos necesarios para el desarrollo del ping poller.

3.1.1. Configuración del entorno

Objetivo

Instalar las herramientas necesarias para el desarrollo del ping poller.

Descripción

• Instalar python 2.7.9

```
$ apt-get update
2 $ apt-get install gcc python=2.7.9-1 python-pip librrd-dev libpython-dev
```

• Instalar rrdtool.

```
$ pip install rrdtool
```


Prueba P01-P1: rrdtool instalado

Sistema: Topología de red, Módulo: Ping Poller							
P01-P1 rrdtool instalado							
Pregunta	Si	No	Observaciones				
1. Verificar paquetes instalados							
1.1. ¿Se instaló python 2.7.9?	Χ		Ninguna.				
1.2. ¿Se instaló pip?	Χ		Ninguna.				
1.3. ¿Se instaló rrdtool?	Χ		Me marcaba errores de haders y error en				
			gcc. La solución fue reinstalar gcc.				
2. Fin de la Prueba.							

3.1.2. Realización del programa Ping Poller

Objetivo

Realizar un programa en python que mande ping's a los dispositivos conectados en la red, y en caso de que la respuesta del dispositivo sobrepase el tiempo establecido, notificarlo via emal.

Descripción

• **ping.py** Programa encargado de realizar un ping a una ip específica y devuelve como resultado el tiempo de respuesta en milisegundos.

```
import subprocess, re
   def ping(hostname):
    ping_response = subprocess.Popen(
     ['ping', '-c1', '-w1', hostname],
     stdout=subprocess.PIPE
    ).stdout.read()
    # Verify packet recived.
    packets_recived = int(re.search(
10
     r'([\w|\s|.|\(|\)|\-|:|,\|=|\n]*)([0|1])(\_received)',
11
     ping_response).group(2))
12
    if (packets_recived == 1):
     time = int(re.search(
15
      r'([\w|\s|.|\(|\)|\-|:|,\|=|\n]*)(time=)([0-9]*)([.|0-9]*)(\_ms)',
16
      ping_response).group(3))
     return time
    else:
     return -1
```

• **rrdtool-db.py** Programa encargado de crear la base de datos round robin donde se almacenará el tiempo de retardo de los ping's realizados a una ip determinada.


```
#!/bin/python
    import sys, rrdtool, time
   tMinute = 60
   tHour = tMinute * 60
   tDay = tHour * 24
    fname = 'ping.rrd'
   step = 1 # Time interval betwen every muestra. (1 sec)
   time_average = 1 # Time interval to average. (1 sec)
   hostname = sys.argv[1].replace('.', '_')
    stime = int(time.time())
   duration = tHour
   # Un archivo round robin, que promedia las muestras de 5s durante una hora.
   ret = rrdtool.create(
17
    fname,
    '--start', str(stime),
19
    '--step', str(step),
20
    'DS:ping_%s:GAUGE:3:U:U' % hostname,
21
    'RRA: AVERAGE: 0.5: %d: %d' % (time_average, duration / time_average),
   )
23
24
   if ret:
25
    print rrdtool.error()
```

Uso:

```
$ ./rrdtool-db.py <IP>
```

• **rrdtool-ping.py** Programa encargado de actualizar la base de datos round robin con el tiempo de retardo de un ping realizado a una ip determinada.


```
17 )
```

Uso:

```
$ ./rrdtool-ping.py <IP>
```

• **rrdtool-draw.py** Programa encargado de crear una grafica del tiempo de retardo de los ping's realizados a una ip determinada durante los ultimos 10 minutos.

```
#!/usr/bin/python
    import rrdtool , time , random, sys
    tMinute = 60
    tHour = tMinute * 60
    tDay = tHour * 24
    hostname = sys.argv[1].replace('.', '_')
    fname = 'ping.rrd'
    gfname = 'ping_' + hostname + '.png'
    duration = 10 * tMinute
11
    step = 1 # One second.
12
    time_average = 10 # Time interval to average. (10 sec)
13
    dpoints = duration / step
    etime = int(time.time())
16
    stime = etime - dpoints
17
    rrdtool.graph(
19
    gfname,
20
     '--imgformat', 'PNG',
21
     '-w', '1100',
23
     '-h', '300',
     '--title', 'Pings',
24
     '--vertical-label', 'Tiempo<sub>□</sub>(s)',
25
     '--lower-limit', '0',
     '--start', str(stime - 1),
     '--end', str(etime + 1),
28
     'DEF:rate=%s:ping_%s:AVERAGE' % (fname, hostname),
29
     'CDEF:ms=rate',
30
31
     'VDEF:msmax=ms,MAXIMUM',
     'VDEF:msavg=ms,AVERAGE',
32
     'VDEF:msmin=ms,MINIMUM',
33
     'LINE1:ms#FF0000:Retardo',
     r'GPRINT:msmax:Max\:\_\%6.1lf\_ms',
     r'GPRINT:msavg:Prom\:\\.\%6.1lf\\\ms',
    r'GPRINT:msmin:Min\:\_\%6.1lf\_ms\l',
37
38
    )
```

Uso:

\$./rrdtool-draw.py <IP>

Prueba P01-P2: Ping Poller

Sistema: Topología de red, Módulo: Ping Poller							
P01-P2 Ping Poller							
Pregunta	Si	No	Observaciones				
1. Verificar que se grafque correctamente.							
1.1. ¿Al ejecutar el programa rrdtool-db.py se creó el	Χ		Ninguna.				
archivo ping.rrd?							
1.2. ¿Se ejecuta correctamente el programa rrdtool-	Χ		Ninguna.				
ping.py?							
1.3. ¿Al ejecutar el programa rrdtool-draw.py se creó el	Χ		Ninguna.				
archivo ping_< IP >.png?							
2. Fin de la Prueba.							