

Mitschrift von Falk-Jonatan Strube

Vorlesung von Prof. Dr.-Ing. Flach 15. Januar 2016

Inhaltsverzeichnis

1	Anli	egen der Lehrveranstaltung	1	
2	Gru	ndlagen der Elektrotechnik	1	
	2.1	Grundgrößen und Grundbeziehungen	1	
	2.2	Potential und Spannung	2	
	2.3	Stromfluss, Ladungsausgleich	3	
	2.4	Widerstand	3	
	2.5	Zusammenschaltung von Widerständen	4	
	2.6	Leistung und Energie	6	
	2.7	Stromkreise und Schaltbilder	6	
3	Berechnung von Stromkreisen			
	3.1	Spannungsteiler	7	
	3.2	Stromteiler	8	
	3.3	Strom-Spannungskennlinie	9	
	3.4	Spannungsquelle	10	
	3.5	, , ,	10	
			11	
	3.6		12	
	3.7	Kondensator, Kapazität	13	
	J.,	3.7.1 Strom-Spannungs-Reziehung am Kondensator	13	

Einführung

Passwort Materialien: lvf_ws2015

Prüfung: 1 Blatt A4 hanbeschrieben, doppelseitig beschrieben

1 Anliegen der Lehrveranstaltung

Analyse/Synthese

- Modellbildung
- unterschiedliche Anregungen
- Bauelemente aktiv, passiv, Halbleiter
- Netzwerke (linear, nichtlinear)
- Schaltungen (analog, digital)

Informatik: automatisierte Informationsverarbeitung

FAZIT: Grundkenntnisse, gemeinsames Vokabular mit HW-Ingenieuren

2 Grundlagen der Elektrotechnik

2.1 Grundgrößen und Grundbeziehungen

Bsp.: Elektrophor mit Bernsteinplatte und Katzenfell

Bernstein mit Katzenfell einreiben, dann Metallplatte anfassen: Elektronen fließen ab, Bernstein ist positiv geladen.

Modellbildung: Erklärung für beobachteten Sachverhalt

- möglichtst einfaches Modell
- vollständige widerspruchsfreie Definition
- Beschreibung über mathematische Gleichung

Bohr-Sommerfeldsches Atommodell:

Atommodell ist elektrisch neutral. Aber:

- unter bestimmten Bediengungen entstehen positive und negative Ladungen (Energiezufuhr)
- Elementarladung $e = 1, 6 \cdot 10^{-19} C$

Beobachtung: Ladungen ziehen sich an / Ladung stoßen sich ab.

Kraftwirkung

$$F \sim Q_1 \cdot Q_2$$

$$F \sim \frac{1}{r^2}$$

$$F = k \frac{Q_1 \cdot Q_2}{r^2}$$

2.2 Potential und Spannung

- Ladungen im elektrischen Feld haben unterschiedliche Potenziale.
- Einheit des Potenzial: Volt [V]
- Spannung ist Potentialdifferenz
- Einführen eines Bezugspotentials $\varphi = 0V$

Beispiele für Spannungen:

• Antennen ... μV

• Microfon ... mV

• Batterie (AA) ... 1, 2V

• Netzteile ... $\pm 5V$, $\pm 12V$

Haushalt ... 230V

• Freileitungen ... 380kV

2.3 Stromfluss, Ladungsausgleich

• Strom $I = \frac{\Delta Q}{\Delta t}$, $i(t) = \frac{dQ}{dt}$

Ursache: Potentialdifferenz

Voraussetzung: leitfähiger Kanal, bewegliche Ladungen

• "Fließgeschwindigkeit" bestimmt Größe des Stroms

Analogie: Fluß

Höhenunterschied - Potential

Flussbett - Leitung Wasser - Leiter

2.4 Widerstand

Beobachtung: $I \sim U, I = G \cdot U \text{ mit } G \dots \text{ Leitwert}$

je größer der Leitwert, desto kleiner der Widerstand $\Rightarrow G = \frac{1}{R}$ mit $R \dots$ ohmscher Widerstand

Ohmsches Gesetz: $R\left(=\frac{U}{I}\right)=const.$ $U=R\cdot I$ $I=\frac{U}{R}$

 $\text{mit } [I] = A \text{ (Ampere)} \quad [U] = V \text{ (Volt)} \quad [R] = \frac{V}{A} = \Omega \text{ (Ohm)} \quad [G] = \frac{A}{V} = S \text{ (Siemens)}$ Wiederstand ist eine Materialeigenschaft.

 $R \sim l - R \sim rac{1}{A} - R = k \cdot rac{l}{A} \ ext{mit} \quad k = \varrho \dots \ ext{spezifischer Widerstand} \ [\varrho] = \Omega \cdot m = \Omega rac{mm^2}{m}$

$$G = \frac{1}{R} = \frac{A}{\varrho \cdot l} = \frac{\kappa A}{l} \; \mathrm{mit} \quad \; \kappa = \frac{1}{\varrho}$$

Widerstand ist ...

- Materialeigenschaft
- Bauelement

2.5 Zusammenschaltung von Widerständen

a) Reihenschaltung

$$\textit{Maschensatz} : \sum_{\circlearrowleft} U = 0$$

$$\begin{split} U_{ges} &= U_1 + U_2 + \ldots + U_n \\ U_{ges} &= IR_1 + IR_2 + \ldots + IR_n \\ \frac{U_{ges}}{I} &= R_{ges} = R_1 + R_2 + \ldots + R_n \end{split}$$

$$R_{ges} = \sum_{i=1}^{n} R_i$$

b) Parallelschaltung

Knotensatz:
$$\sum I = 0$$

$$\begin{split} I_{ges} &= I_1 + I_2 + \ldots + I_n \\ I_{ges} &= \frac{U}{R_1} + \frac{U}{R_2} + \ldots + \frac{U}{R_n} \\ \frac{I_{ges}}{U} &= \frac{1}{R_{qes}} = \frac{1}{R_1} + \frac{1}{R_2} + \ldots + \frac{1}{R_n} \end{split}$$

$$\frac{1}{R_{ges}} = \sum_{i=1}^{n} \frac{1}{R_i}$$

Beispiele:

$$R_{ges} - R_1 + R_2$$

 $R_1 = R_2 = R \implies R_{ges} = 2R$
 $R_1 \gg R_2 \implies R_{ges} \approx R_1$

$$R_{ges} = \frac{R_1 R_2}{R_1 + R_2}$$

$$R_1 = R_2 = R \quad \Rightarrow \quad R_{ges} = \frac{R}{2}$$

 $R_1 \gg R_2 \quad \Rightarrow \quad R_{ges} \approx R_2$

$$R^* = R||2R = \frac{2R \cdot R}{3R} = \frac{2}{3}R$$

$$R' = R||(R + R^*) = \frac{R \cdot \frac{5}{3}R}{\frac{8}{3}R} = \frac{5}{8}R$$

$$R_{ges} = R + R' + R = 2R + \frac{5}{8}R = \frac{21}{8}R$$

2.6 Leistung und Energie

2.7 Stromkreise und Schaltbilder

- Modellierung elektronischer Erscheinungen
- Berechnung von Stromkreisen

Bsp.: Ein Kondensator wird zum Aufladen an eine Spannungsquelle mit dem Innenwiderstand R_i angeschlossen und zum Entladen an einen Widerstand R_E . Das Laden erfolgt über den Strombegrenzungswiderstand R_L .

- Umschalter
- Kondensater C, Widerstand R_i , R_E , R_L
- Spannungsquelle

3 Berechnung von Stromkreisen

3.1 Spannungsteiler

$$\begin{array}{l} U_{R_1} = IR_1 \quad U_{R_2} = IR_2 \quad U_q = I(R_1 + R_2) \\ \frac{U_{R_2}}{U_q} = \frac{R_2}{R_1 + R_2} \quad \frac{U_{R_1}}{U_{R_2}} = \frac{R_1}{R_2} \\ \text{Anwendungsbeispiel: Potenziometer} \end{array}$$

belasteter Spannungsteiler:

$$\frac{U_{out}}{U_{in}} = \frac{R_2||R_L}{R_1 + R_2||R_L}$$

Bspw.:
$$R_1 = 5\Omega$$
, $R_2 = R_L = 5\Omega$

unbelasteter Fall:
$$\frac{U_{out}}{U_{in}} = \frac{5\Omega}{10\Omega} \Rightarrow U_{out} = 5V$$

$$\begin{split} &\frac{U_{out}}{U_{in}} = \frac{R_2||R_L}{R_1 + R_2||R_L} \\ &\text{Bspw.: } R_1 = 5\Omega, \, R_2 = R_L = 5\Omega \\ &\text{unbelasteter Fall: } \frac{U_{out}}{U_{in}} = \frac{5\Omega}{10\Omega} \Rightarrow U_{out} = 5V \\ &\text{belasteter Fall: } \frac{U_{out}}{U_{in}} = \frac{2,5\Omega}{7,5\Omega} \Rightarrow U_{out} = 3,33V \end{split}$$

doppelter Spannungsteiler

gesteuerter Spannungsteiler

3.2 Stromteiler

$$U_{out} = I_3 \cdot R_3 = I_2 \cdot R_2 = I_1 \cdot (R_2 || R_3)$$

$$\frac{I_3}{I_2} = \frac{R_2}{R_3}$$

$$\frac{I_3}{I_1} = \frac{R_2 || R_3}{R_3} = \frac{R_2 \cdot R_3}{(R_2 + R_3) \cdot R_3} = \frac{R_2}{R_2 + R_3}$$

$$\frac{I_2}{I_1} = \frac{R_2||R_3}{R_2} = \frac{R_3}{R_2 + R_3}$$

Beispiel: geg.:

ges.: R_{AB}, R_{CD}, u_{out} , alle Ströme

$$\begin{split} R_{AB} &= R_1 + R_2 || (R_3 + R_4) \\ R_{CD} &= R_4 || (R_3 + R_2) \\ \frac{U_{out}}{U_h} &= \frac{R_4}{R_3 + R_4} \frac{U_h}{U_{in}} = \frac{R_2 || (R_3 + R_4)}{R_1 + R_2 || (R_3 + R_4)} \\ U_{out} &= U_{in} \frac{R_2 || (R_3 + R_4)}{R_1 + R_2 || (R_3 + R_4)} \cdot \frac{R_4}{R_3 + R_4} \\ I_1 &= \frac{U_{in}}{R_{AB}} \\ \frac{I_2}{I_1} &= \frac{R_3 + R_4}{R_2 + R_3 + R_4} \Rightarrow I_2 = \frac{U_{in}}{R_{AB}} \cdot \frac{R_3 + R_4}{R_2 + R_3 + R_4} \\ \frac{I_3}{I_1} &= \frac{R_2}{R_2 + R_3 + R_4} \Rightarrow I_3 = \frac{U_{in}}{R_{AB}} \cdot \frac{R_2}{R_2 + R_3 + R_4} \end{split}$$

3.3 Strom-Spannungskennlinie

Ziel: anschauliche Beschreibung des Klemmverhaltens von Bauelementen

• Verbraucher: ohmscher Widerstand

• Verbraucher: Diode

$$?\Rightarrow$$
 nichtlinear $I=f(U)=I_s\left(e^{rac{U}{U_T}}-1
ight)$ $I_S\dots$ Sperrstrom

 U_T ... Temperaturspannung

3.4 Spannungsquelle

Was ist eine Spannungsquelle?

Batterie, Netzteil, Antenne, Mikrophon, Steckdose, ...

Unterteilung in:

- Signalquellen (irgendein u(t), wenig Energie)
- Spannungsquellen (Gleichspannung/Wechselspannung)

Modell:

Quelle im Leerlauf

Quelle kurzgeschlossen

Ersatzschaltbild einer realen Quelle:

 $U_q \dots$ Leerlaufspannung

 R_i ... Innenwiderstand

 $I_k \dots$ Kurzschlussstrom

3.5 Grundstromkreis

reale Quelle + Verbraucher

Strom-Spannungs-Kennlinienfeld des Grundstromkreises

Last:
$$I = f(U) = \frac{U_{AB}}{R_V}$$

Quelle:
$$I = f(U)$$

(mit Maschensatz:
$$I \cdot R_i + U_{AB} - U_q = 0$$

$$I = \frac{1}{R_i}(U_q - U_{AB}) = -\frac{1}{R_i}U_{AB} + I_k$$
)

Grundstomkreis mit nichtlinearem Verbraucher

Leistung am Lastwiderstand

$$\begin{array}{ll} \rightarrow P_V = I \cdot U_{AB} & \text{mit } U_{AB} = U_q - I \cdot R_i & I \cdot R_i + U_{AB} - U_q = 0 \\ P_V = U_q \cdot I + I^2 \cdot R_i & I = \frac{U_{AB}}{R_V} \\ P_V = f(R_V) & \end{array}$$

maximale Leistung am Verbraucher: $\frac{dP_V}{dR_V}=0 \Rightarrow P_{V,max}$ für $R_V=R_i$ (dann $P_{V,max}=\frac{I_k\cdot U_q}{4}$)

3.5.1 Betrachtung der Leistung im Grundstromkreis

ABB 41:

Generator

- P_i möglichst klein

• soll sich nicht erwärmen

ullet P_L möglichst groß

Verbraucher

Wirkungsgrad groß

Leistung am Lastwiderstand:

$$P_L = U_{AB} \cdot I = \frac{U_{AB}^2}{R_L} = I^2 \cdot R_L$$
 mögliche Lastfälle:

Flacheninhalt = leisting

Lessony Innerwidostand > Verbistleistry Les Fall 3: Wirhwys grad gut Fall 4: Wirhwys grad schlecht

- 1.) Leerlauf: $R_L \to \infty$ $AP_{Leerlauf}$: $U_{AP} = U_q$, $I_{AP} = 0$, $P_{AP} = 0$
- 2.) Kurzschluss: $R_L = 0$ $AP_{Kurzschluss}$: $U_{AP} = 0$, $I_{AP} = I_K$, $P_{AP} = 0$
- 3.) großer Lastwiderstand: AP_{gr} : $U_{AP} = U_{AP,gr}$, $I_{AP} = I_{AP,qr}$, $P_{AP,qr} > 0$
- 4.) kleiner Lastwiderstand: AP_{kl} : $U_{AP} = U_{AP,kl}$, $I_{AP} = I_{AP,kl}$, $P_{AP,qr} > 0$

Zwei realistische Betriebsfälle:

- Wirkungsgrad groß, dafür nicht maximale Leistung
- Wirkungsgrad bei 50% und maximale Leistung

3.6 Spannungszeitfunktion

Verlauf einer Spannung über der Zeit.

- Gleichspannung $U = const \neq f(t)$ (Batterien, Stromversorgung für elektrische Geräte
- Wechselspannung (Steckdose)

Kenngrößen: $\hat{U}=325V$ (Spitzenwert), U=230V (Effektivwert), f=50Hz ($T=\frac{1}{f}=20ms$, $\omega = 2\pi f [\text{Kreisfrequenz}], \varphi_0 \text{ Phasenverschiebung/Nullphasenwinkel}$ $u(t) = \hat{U} \cdot \sin(\omega t + \varphi_o)$

- zur Informationsübertragung können \hat{U} , ω und φ_0 variiert werden.
- unterschiedliche Wechselspannungen können gemischt werden.
- harmonischee Spannungen (bestehen aus Sinussschwingungen).

Grundtypen von Spannungszeitfunktionen

periodische Spannungen

• impulsförmige Spannungen

3.7 Kondensator, Kapazität

Kapazität

→ Fähigkeit, Ladungen zu speichern

→ konkretes elektrisches Bauelement (kann Ladungen speichern) ⇒ Kondensator

Einsatz: Energiespeicherung, Ausnutzung des frequenzabhängigen Verhaltens Wirkungsweise:

Beobachtung: $Q \sim U \Rightarrow Q = C \cdot U$

mit $C = \text{Proportionalitätsfaktor} \Rightarrow \text{Kapazität } C \text{ mit } [C] = \frac{[Q]}{[U]} = \frac{As}{V} = F \text{ (Farrad)}$ relevante Werte: zwischen $10^{-6}_{\mu}...10^{-9}_{n}...10^{-6}_{p}F$

$$\begin{array}{ll} \textbf{Bemessungsgleichung} & \text{(für C)} \\ C \sim A,\, C \sim \frac{1}{d},\, C \sim \frac{A}{d} \Rightarrow C = \varepsilon \cdot \frac{A}{d} \end{array}$$

 $(\varepsilon = \varepsilon_r \cdot \varepsilon_0 \dots \varepsilon_0)$: Dielektrizitätskonstate des Vakuums $= 8,856 \cdot 10^{-12} \frac{As}{Vm}$

3.7.1 Strom-Spannungs-Beziehung am Kondensator

$$u_C(t) = \frac{1}{C} \int i_C(t)dt$$
$$i_C(t) = C \cdot \frac{du_c(t)}{dt}$$

Konsequenzen: $u(t) = \hat{U} \cdot sin(\omega t) \Rightarrow i_C(t) = \underbrace{\hat{U} \cdot \omega C}_{-\hat{t}} (sin(\omega t) + 90^\circ)$

Scheinwiderstand des Kondensators: $X_C = \frac{\hat{U}}{\hat{I}} = \frac{\hat{U}}{\hat{U}\omega C} = \frac{1}{\omega C}$

Anwendung des frequenzebhängigen Verhaltens:

