1.

a. Implication Introduction

X	Y	Z	¬Х	$\neg Z$	$\neg X^{\wedge}Y^{\wedge}\neg Z$	$X^Z \to Y$
0	0	0	1	1	0	1
0	0	1	1	0	0	1
0	1	0	1	1	1	1
0	1	1	1	0	0	1
1	0	0	0	1	0	1
1	0	1	0	0	0	0
1	1	0	0	1	0	1
1	1	1	0	0	0	1

A material condition (\rightarrow) is true unless its antecedent is true and its consequent is false.

For the transformed rule $X^Z \to Y$ to be true, either X^Z is false, or both X^Z and Y are true.

We can see that when $\neg X^{\hat{}}Y^{\hat{}}\neg Z$ is True, $X^{\hat{}}Z \rightarrow Y$ is also True, which suffices to prove that Implication Introduction is a sound rule of inference.

b. Conjunctive Rule Splitting

A	В	C	D	A^B	C^D	A^B→C^D	A^B→C
0	0	0	0	0	0	1	1
0	0	0	1	0	0	1	1
0	0	1	0	0	0	1	1
0	0	1	1	0	1	1	1
0	1	0	0	0	0	1	1
0	1	0	1	0	0	1	1
0	1	1	0	0	0	1	1
0	1	1	1	0	1	1	1
1	0	0	0	0	0	1	1
1	0	0	1	0	0	1	1
1	0	1	0	0	0	1	1
1	0	1	1	0	1	1	1
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
1	1	1	0	1	0	0	1
1	1	1	1	1	1	1	1

We can see that every row where $(A^B \rightarrow C^D)$ is True, $A^B \rightarrow C$ is True. There is no row where the premise is True and the conclusion is False. Therefore, whenever the premise is True, the conclusion is guaranteed to be True.

c. Natural Deduction

Assumption: $A^B \rightarrow C^D$

Show: $A^B \rightarrow C$

Proof:

- (1) A^B (Given)
- (2) C^D (Modus Ponens from (1))
- (3) C (Simplification from (2))
- (4) $A^B \rightarrow C$ (From (1) to (3), conditional proof)

Therefore, we've shown that if we assume $A^B \to C^D$, we can derive $A^B \to C$ using Natural Deduction, confirming that $A^B \to C^D \models A^B \to C$

d. Resolution

- (1) $A^B \rightarrow C^D$ (Given)
- (2) \neg (A $^{\land}$ B) \lor (C $^{\land}$ D) (eliminate biconditionals and implications)
- (3) $(\neg A \lor \neg B) \lor (C^D)$ (DeMorgan's)
- (4) $(\neg A \lor \neg B \lor C)$ and $(\neg A \lor \neg B \lor D)$

P1: $\neg A \lor \neg B \lor C$

P2: ¬A ∨ ¬B ∨ D

- (1) $A^B \rightarrow C$ (Given)
- (2) \neg (A $^{\land}$ B) \lor C (eliminate biconditionals and implications)
- (3) $\neg A \lor \neg B \lor C$ (DeMorgan's)

$$Q: \neg A \lor \neg B \lor C$$

Negation of Q is:

 $Q': A \wedge B \wedge \neg C$

Q'1: A

Q'2: B

Q'3: ¬C

From P1 and Q'1:

 $\neg B \lor C$

From $\neg B \lor C$ and Q'2:

 \mathbf{C}

So we have C, which contradicts Q'3 (\neg C). Thus, by contradiction, the statement A^B \rightarrow C^B |= A^B \rightarrow C is proven by resolution.

2. Sammy's Sport Shop

- a. Propositional Knowledge Base (see sammy.kb)
- b. Prove that Box 2 must contain white balls (C2W) using Natural Deduction:

Given: {O1Y, L1W, O2W, L2Y, O3Y, L3B}

- i. $L1W \rightarrow C1Y \vee C1B$ (Label is False)
- ii. $O1Y \rightarrow C1Y \vee C1B$ (Observation from Box 1 is Yellow)

$$(i) + (ii) = C1Y \times C1B$$
 (no new information)

- iii. $L2Y \rightarrow C2W \vee C2B$
- iv. $O2W \rightarrow C2W \vee C2B$

$$(iii) + (iv) = C2W v C2B$$
 (no new information)

- v. $L3B \rightarrow C3Y \times C3W$
- vi. $O3Y \rightarrow C3Y \vee C3B$

$$(v) + (vi) = C3Y$$
 (Box 3 must contain only yellow)

- vii. $C3Y \rightarrow C1W \times C1B \times C2W \times C2B$
 - (ii) + (vii) = C1B (Box 1 must contain both)
 - (iv) + (vii) = C2W v C2B (no new information)
- viii. $C1B \rightarrow C2Y \times C2W \times C3Y \times C3W$

$$(iv) + (viii) = C2W$$
 (Box 2 must contain only white)

- ix. C2W (By natural deduction)
- c. Conversion from KB to CNF (see sammy.cnf)
- d. Prove that Box 2 must contain white balls (C2W) using Resolution:

Given: {O1Y, L1W, O2W, L2Y, O3Y, L3B}

Add ~C2W and attempt to find a contradiction.

- i. L2Y and \sim L2Y v C2W v C2B = C2W v C2B
- ii. O2W and ~O2W v C2W v C2B = C2W v C2B (no new information)
- iii. $C2W \times C2B$ and $\sim C2W = C2B$
- iv. L3B and \sim L3B v C3Y v C3W = C3Y v C3W
- v. O3Y and \sim O3Y v C3Y v C3B = C3Y v C3B
- vi. from (iii) and (v), C2B and C3Y v C3B = C3Y
- vii. C3Y and C3Y v C3W = C3Y v C3W (no new information)
- viii. Considering the restraints, we know that ~(C1B ^ C2B). From (iii), we know C2B, so also ~C1B
- ix. L1W and \sim L1W v C1Y v C1B = C1Y v C1B
- x. from (viii) ~C1B, so C1Y
- xi. from (x) and (iii) and (vi), C1Y and C2B and C3Y, meaning no box contains only white balls. This is a contradiction, therefore ~C2B is False, therefore C2B is True.

3. Forward Chaining:

HaveMountainBike → HaveBike

AvisOpen → CarRentalOpen

CarRentalOpen → IsNotAHoliday

HaveMoney ^ CarRentalOpen → CanRentCar

CanRentCar → CanDriveToWork

CanDriveToWork → CanGetToWork

4. Backward Chaining:

Trace	Comment			
CanGetToWork	initialize with query			
CanBikeToWork	pop CanGetToWork, replace with antecedent of (a)			
HaveBike, WorkCloseToHome, Sunny	replace CanBikeToWork with antecedents of (d)			
HaveMountainBike,WorkCloseToHome, Sunny	replace HaveMountainBike with antecedent of (e)			
WorkCloseToHome, Sunny	pop HaveMountainBike (fact)			
Sunny	pop WorkCloseToHome (fact)			
[backtrack] CanDriveToWork	Sunny is not provable, therefore CanBikeToWork is not provable, so move to next rule for CanGetToWork (b)			
OwnCar	replace CanDriveToWork with antecedent of (g)			
[backtrack] CanRentCar	OwnCar is not provable, so move to next rule for CanDriveToWork (j)			
HaveMoney, CarRentalOpen	replace CanRentCar with antecedents of (k)			
CarRentalOpen	pop HaveMoney (fact)			
HertzOpen	replace CarRentalOpen with antecedent of (l)			
[backtrack] AvisOpen	HertzOpen not provable, so move to next rule for CarRentalOpen (m)			
Ø	pop AvisOpen (fact); stack becomes empty; return success!			