

53年珠色 - XOps 风向标 深圳垃

时间: 2023年4月7日-8日 地址:中国·深圳

FinOps产业推进方阵

GOPS.

ACS原生云建设之路

熊爱国 资深IT工程师

招商银行总行信息技术部原生云服务团队 主管

01 云建设背景和选型

02 云建设历程和现状

03 问题和风险

04 经验和趋势

01

云建设背景和选型

为什么上云

传统主机系统和传统开放 系统的挑战

为什么是原生云和全栈云

原生云和全栈云的优势

为什么是多云 和混合云

多云架构的优势

新IT变革的决定性力量

招行需要一个先进的私有云来重构科技体系, 实现科 技的扁平、开放、共享和敏捷, 并支撑全行业务更加 融合互通以及快速发展。

2015年招行组织 前往美国硅谷 做云计算专题考察

背景和选型

传统技术架构成为了进一步创新发展的瓶颈

传统主机系统

IBM z390主机 COBOL语言

IBM AS400主机 RPG语言

HP Tandem主机 COBOL85/TAL/TACL

为什么上云

挑战

难以横向扩展 与主流技术脱节 生态封闭 参与者少

传统开放系统

IBM RS6000

VMWARE/VSAN

EMC/NETAPP

IBM DB2/WAS/MQ

挑战

资源割裂 敏捷和弹性差 技术栈繁杂 应用架构散乱

两个重要洞察

头部厂商引领到开源社区引领

外包外购到自主可控

背景和选型

原生云 (Cloud Native)

在云的发展过程中,原生云作为一个概念被提出由来已久,它要求云在技术架构、组织、流程和工具等各方面均应具备先进的特性,以AWS为首的领先公有云正是原生云的最佳实践。

全栈云(Full Stack)

在面向用户场景方面,构建以满足技术人员云原生应用开发、云服务开发、应用和服务部署以及业务人员使用云场景的全栈功能云,而非实现局部laaS云或PaaS云。

多云 (Multi Cloud)

BiModal IT 双模IT —— 以标准和稳 态为主的传统架构; 以云原生为主 的云架构。

云的理念和架构经受考验后, 稳态 业务也可以上云。

多云=稳态云+敏态云。

85%的企业采用multicloud。

"Multicloud: reality, not a strategy"

混合云 (Hybrid Cloud)

官方定义:混合云=公有云+私有云 我们的理解: 跨多云的统一云平台

- 高可用
- 安全异构
- 避免锁定
- 安可信创

招行私有云特征

云开两朵

面向金融核心交易的金融云面向通用敏捷应用的原生云

一云双栈

使用通用x86技术栈的通用区 使用国产信创技术栈的信创区

一云多芯

在通用区,使用x86芯片 在信创区,使用多种信创芯片

Open & Cloud Native

坚持开放,全面向云原生转型:容器化,微服务架构, DevOps, Serverless, IaC

02

历程和现状

历程和现状

ACS laaS平台发展历程

ACS技术底座初期以通用技术栈为主,目前演进到双栈:

- ACS 1.0成型于2018年,基于WS2016
- ACS 2.0成型于2019年,基于WS2019
- ACS 3.0成型于2022年,包含WS2022和TCE3100

随着技术底座的不断升级迭代,持续提升ACS的先进性和可用性。

ACS 0.1

2017年,ACS首个Lab 实验室在西丽建成, 验证了ACS路线可行性。

ACS 1.0

2018年,基于 WS2016,建成分行云, 通过服务分行,探索上 云路径。

ACS 2.0

2019年,升级2.0,基 于WS2019,建成ACS 同城3AZ,分行云进化 为ACS。分行云退出历 史舞台,启动应用上云。

ACS 2.1

2020年, ACS建成两地七中心高可用架构, ACS私有云体系建成, 升级WS版本, 优化 ACS性能。服务全行50%应用上云。启动三年上云工程。

ACS 3.0

2022年,基于WS2022 升级3.0,实现ACS全行 一朵云,建成大规模的 先进私有云。招行全面 上云。

与腾讯云合作的原生云信创区完成建设,正式投产。两个技术栈全面支持IPv6+IPv4。

历程和现状

ACS PaaS平台建设历程

2014

1. 启动PaaS平台技术研究和建设试点

2015

- 1. 基于PCF的PaaS 1.0容器平台投产落地
- 2. 第一批试点应用完成改造投产

2016

- 1. PaaS 1.0容器平台形成异地 双活部署架构
- 2. 传统应用改造迁移,扩大试点范围

2017

1. PCF重要版本升级及部署架构优化,提升平台稳定性 2. k8s+docker容器技术选型验

2018

1. 完成OCP3技术选型,基于Vmware投产落地PaaS 2.0容器平台,形成深圳+上海的异地双活部署架构,试点应用改造投产2. 开始引导应用往PaaS 2.0容器平台改造投产,包含传统应用和PaaS 1.0容器平台上的应用

2019

- 1. OCP3适配ACS原生云laaS,定稿PaaS 3.0容器平台方案,落地投产环研发Region,Region内形成BIZ 3 AZ多活,DMZ 2AZ多活的高可用部署架构
- 2. 开始引导应用往PaaS 3.0容器平台改造投产,包含传统应用,PaaS 1.0和PaaS 2.0容器平台上的应用

2020

- 1. PaaS 3.0容器平台落地投产上海环张江 Region, Region内形成BIZ 2 AZ, DMZ 2 AZ多活的高可用部署架构
- 2. PaaS 3.0容器平台支持应用异地双Region 双活/灾备部署架构
- 3. PaaS 1.0容器平台全量应用完成迁出
- 4. 信息技术部三年上云重大专项开始,PaaS 3.0作为主力承载平台,承接应用容器化上云的运行需求

2021

- 1. PaaS 3.0容器平台落地投产深圳环平湖 Region, Region内形成BIZ 3 AZ, DMZ 2 AZ多活的高可用部署架构
- 2. PaaS 3.0技术方案版本升级,新建ACS容器集群采用OCP4版本
- 3. PaaS 1.0容器平台环境正式下线
- 4. 完成ACS信创区容器平台技术选型验证和 部署方案定稿

2022

- 1. 完成PaaS 2.0容器平台应用全量迁移至PaaS 3.0容器平台, PaaS 2.0正式下线
- 2. ACS信创区容器平台TKE投产落地,在平湖Region形成本地BIZ 2 AZ, DMZ 2 AZ的高可用部署架构,开始试点应用改造投产
- 3. 基于自研的PaaS 4.0容器平台技术体系构建开始,落地自研traefik ingress,自研cmbk8s
- 4. 容器平台分级分类方案制定,开始在准生产环境实施集群建设和应用迁移
- 5. 信息技术部三年上云重大专项成功验收,实现应用 100% 上云

应用上云历程

2018.9 一首个分行应用上云

上云试点阶段

2019.5 一首个总行应用上云

2020.12 - 700+个系统完成上云

全面上云阶段

2021.12 - 1500+个系统完成上云

2022.9 一 所有总分行系统完成上云

包括服务亿级客户的手机银行在内,三年共完成总分行2200+套应用系统上云

历程和现状

GOP5 2023 shenzhen

- > 2022年整体可用性达到99.995+%,在同业中属于领先地位。
- ▶ 应用上云率、容器化程度、微服务能力在行业处于领先地位。
- ➤ 荣获 IDC 2023 亚洲 (银行业) 基础设施现代化领航者 (中国) ; 人行金融信创优秀案例。

总行: 应用 分行: 应用 子公司: 应用

历程和现状

发展趋势的总结

稳中求进	单技术栈 (通用区)	双技术栈 (通用区+信创区)	
安全合规	单网络栈 (IPv4)	双网络栈 (IPv4+IPv6)	
有的放矢	应用容器/微服务化	原生云服务改造	
小步快跑	分行试点上云	总分行全面上云	

03

问题和风险

问题和风险

安全的问题 DMZ/BIZ 两地三中心

安全合规

网络的问题 延时丢包 容量瓶颈 传输瓶颈

体验的问题 租户体系 责任共担模型 自服务模式 运维运营的问题 运维的侧重 运营的侧重

业务连续性 AZ隔离和切换 发现-定界-隔离 三板斧建设 混沌工程等 上云的问题 流量调度 灰度发布 混合部署 迁移搬迁 统一日志 链路追踪 信创替代等

04

经验和趋势

1. 顶层设计在云建设中至关重要

2. 集中力量打磨云平台关键组件

通过平台化,服务化屏蔽基础设施复杂性,持续改进服务质量几个重要的工具平台:

- 云管理平台 (CMP)
- cmbagent

- 云运维平台 (COP)
- 一体化监控和事件平台(先知)

监控平台

经验和趋势

3. 发挥云基础设施敏捷弹性的优势

层层支撑,最终赋能业务能伸能缩,减少资源浪费

应用一一标准应用架构、应用分类分级

PaaS服务 — 业务不中断前提下的动态扩缩容能力

laaS服务 一 资源快速交付能力、高交付成功率

基础设施 一 计算存储分离架构; 可扩展的软件定义网络

4. 活着是第一要务,恢复业务是第一优先

- 解耦的可用性才是可管理的可用性 灰度升级保证服务不中断
- 多管齐下提升容量性能

- 多层次的保障体系

- - Region级云服务
 - AZ级切换能力
 - 资源池容量管理
 - 多容错域管理
 - 基础设施的快速故障隔离

经验和趋势

5. 开放才能有未来

一云双栈, 一云多芯

通过通用区与信创区的双栈混部结构,满足下述需求:

- 应用支撑能力(业务需求);
- 独立自主(监管要求);
- 成本(可持续性);

ACS 双栈架构特点:

- x86与c86同源,代码复用,节省研发投入;
- 前端流量灵活调度能力,实现平稳过渡;
- 先以信创应用试点,后逐步推广;

经验和趋势

6. 紧追前沿技术,分享技术红利

· 向云而行 可能是KPI导向

• 因云而生 云原生模式下的自发驱动

Thanks

开放运维联盟

高效运维社区

荣誉出品

DevOps 时代