Языковые модели

1. Предсказание следующего слова

Одной из задач обработки текстов на естественном языке выступает задача предсказания следующего слова по предшествующим. Примерами таких задач являются задача предсказания следующего слова при наборе текста в смартфоне или дополнение поисковых запросов.

Данная задача может быть сведена к оценке вероятностей встретить каждое из возможных слов после имеющегося. Соответствующая языковая модель примет вид:

$$w^* = \operatorname{argmax}_{w_k \in V} P(w_k \mid w_{k-1}), \tag{1}$$

$$P(w_k \mid w_{k-1}) = \frac{P(w_k) P(w_{k-1} \mid w_k)}{P(w_{k-1})},$$
(2)

где V — множество всех возможных слов, а $P(w_k | w_{k-1})$ — вероятность встретить слово w_k после w_{k-1} .

Для удобства полученную модель можно представить в следующем виде:

$$w^* = \operatorname{argmax}_{w_k \in V} [\log P(w_k) + \log P(w_{k-1} \mid w_k)].$$
 (3)

Иногда по последнему слову оказывается невозможным определить следующее, поскольку в нем не учитывается контекст. Например, если последнее слово является союзом, то приемлемые варианты следующего слова определяет и предшествующее данному союзу слово. Оценка вероятности в данном случае проводится на основе m последних слов. Таким образом, модель (1)-(2) примет вид:

$$w^* = \operatorname{argmax}_{w_k \in V} P(w_k \mid w_{k-1}, w_{k-2}, \dots, w_{k-m}), \tag{4}$$

$$P(w_k \mid w_{k-1}, w_{k-2}, ..., w_{k-m}) = ((P(w_k) P(w_{k-1}, w_{k-2}, ..., w_{k-m} \mid w_k)) / P(w_{k-1}, w_{k-2}, ..., w_{k-m})).$$
 (5)

Предположим, что текущее слово w_k зависит только от того, какие слова встретились перед ним и не зависит от того, в каком порядке они встретились. Тогда

$$w^* = \operatorname{argmax}_{w_k \in V} \left[P(w_k) \prod_{i=1}^m P(w_{k-i} \mid w_k) \right] = \operatorname{argmax}_{w_k \in V} \left[\log P(w_k) + \sum_{i=1}^m \log P(w_{k-i} \mid w_k) \right].$$
 (6)

Полученная языковая модель также используется для решения задачи классификации документов.

1.1. Наивный байесовский классификатор

Пусть стоит задача определить категорию новостей по их тексту. Тогда оценки вероятностей принадлежности новости к каждой $c \in C$ категории могут быть найдены по формуле:

$$c^* = \operatorname{argmax}_{c \in C} \frac{P(c) P(d \mid c)}{P(d)}.$$
 (7)

3десь P(c) – вероятность встретить новость данной категории, рассчитываемая по формуле:

$$P(c) = \frac{N_c}{N},\tag{8}$$

где N_c – количество новостей в категории c, N – общее число новостей;

$$P(d \mid c) = P(w_1 \mid c) P(w_2 \mid c) \dots P(w_m \mid c) = \prod_{i=1}^m P(w_i \mid c),$$
(9)

где w_1 , ..., w_m – слова, встретившиеся в новости d (в предположении, что все слова независимы), а

$$P(w_i \mid c) = \frac{v_{ic} + 1}{\sum_{i' \in V} (v_{i'c} + 1)} = \frac{v_{ic} + 1}{\mid V \mid + \sum_{i' \in V} v_{i'c}}$$
(10)

после применения сглаживания Лапласа для устранения проблемы неизвестных слов;

P(d) — оценка вероятности встретить новость, состоящую из данного набора слов. Поскольку P(d) не оказывает влияния на результат, то итоговая модель классификации может быть представлена в виде:

$$c^* = \operatorname{argmax}_{c \in C} \left[\log P(c) + \sum_{i=1}^{m} \log P(w_i | c) \right].$$
 (11)

1.2. Оценка условных вероятностей в языковой модели на основе словаря

Условные вероятности в формуле (3) могут быть оценены непосредственно по имеющемуся словарю слов. Для этого необходимо рассмотреть имеющиеся в словаре биграммы, тогда:

$$P(w_{k-1} \mid w_k) = \frac{v_{(w_{k-1}, w_k)}}{\sum_{(w_i, w_j) \in V} v_{(w_i, w_j)}},$$
(12)

где $v_{(w_{k-1},w_k)}$ – частота встречаемости словосочетания $(w_{k-1},\ w_k)$.

2. Базовые идеи модели word2vec

Задачу предсказания следующего слова по предыдущим можно представить как задачу многоклассовой классификации, где y=1, если данное слово следует за предыдущим, и y=0 в противном случае. Обучающую выборку в данном легко получить с помощью скользящего окна.

Paccмотрим строку «Success is the ability to go from failure to failure without losing your enthusiasm» и пройдем по ней окном размера 3. Таким образом наберется обучающая выборка, где первые два слова являются признаками, а последний столбец – целевой переменной.

Success	is	the
is	the	ability
the	ability	to
ability	to	go
to	go	from
go	from	failure
from	failure	to
failure	to	failure
to	failure	without
failure	without	losing
without	losing	your
losing	your	enthusiasm

Представить слова обучающей выборки в виде вектора можно с помощью метода One-hot-encoding. Число уникальных слов в представленной строке равно 12. Тогда для первого объекта на вход модели будет подаваться следующий вектор:

$$\{1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\},\$$

а соответствующее значение целевой переменной:

$$\{0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0\}.$$

Таким образом проводится оценка вероятностей каждого возможного варианта.

2.1. Continuous Bag of Words (CBoW)

Если стоит задача восстановления пропущенного слова, то кроме слов перед целевым можно рассматривать также и последующие слова. Пусть в рассмотренном ранее примере пропущено слово *«the»*, тогда при ширине окна, равной 5, признаками будут выступать слова *«Success»*, *«is»*, *«ability»*, *«to»*

Success	is	ability	to	the
is	the	to	go	ability
the	ability	go	from	to
ability	to	from	failure	go
to	go	failure	to	from
go	from	to	failure	failure
from	failure	failure	without	to
failure	to	without	losing	failure
to	failure	losing	your	without
failure	without	your	enthusiasm	losing

Данная архитектура называется Continuous Bag of Words.

2.2. Skip-gram

Архитектура skip-gram устроена несколько иначе. Если CBoW предсказывает слово по его окружению, то в архитектуре skip-gram, наоборот, по текущему слову необходимо предсказать его окружение. Тогда обучающая выборка будет представлена в следующем виде:

«Success is the ability to go from failure to failure without losing your enthusiasm»

the	Success	
the	is	
the		
	ability	
the	to	
ability	is	
ability	the	
ability	to	
ability	go	
to	the	
to	ability	
to	go	
to	from	
go	ability	
go	to	
go	from	
go	failure	
from	to	
from	go	
from	failure	
from	to	
failure	go	
failure	from	
failure	to	
failure	failure	
to	from	
to	failure	
to	failure	
to	without	
failure	failure	
failure	to	
failure	without	
failure	losing	
without	to	
without	failure	
without	losing	
without	your	
losing	failure	
losing	without	
losing	your	
losing	enthusiasm	

Важно отметить, что обучение на всем имеющемся словаре приводит к необходимости вычислять вероятности для каждого слова (функция softmax). Чтобы этого избежать от задачи многоклассовой классификации переходят к задаче бинарной классификации, где на вход подаются два слово, а выход — метка, являются ли данные слова соседями.

2.3. Добавление отрицательных примеров

Важно отметить, что обучающая выборка содержит исключительно положительные примеры:

input	output	target
the	Success	1
the	is	1
the	ability	1
the	to	1
ability	is	1
ability	the	1
ability	to	1
ability	go	1
to	the	1
to	ability	1
to	go	1
to	from	1
go	ability	1
go	to	1
go	from	1

Чтобы обучить модель классификации необходимо добавить отрицательные примеры, то есть те слова, которые не являются соседними.

input	output	target
the	Success	1
the	is	1
the	ability	1
the		0
the	to	1
ability	is	1
ability	the	1
ability	to	1
ability		0
ability	go	1
to	the	1
to	ability	1
to	go	1
to		0
to	from	1
go	ability	1
go	to	1
go	from	1

2.4. Модель word2vec

Идея модели word2vec состоит в том, чтобы представить каждое слово в векторном виде таким образом, чтобы косинус угла между векторами слов был тем меньше, чем ближе по смыслу данные слова.

Архитектура модели word2vec основывается на модели skip-gram и состоит из двух матриц: векторных представлений слов (embedding) и матрица контекста (context):

Здесь первая матрица представляет собой веса обучения может использоваться для векторного	