LECTURE 12

Gradient Descent, sklearn

Optimization methods to analytically and numerically minimize loss functions.

Data 100/Data 200, Spring 2022 @ UC Berkeley

Josh Hug and Lisa Yan

Quick Note

Today's lecture is largely in a Jupyter notebook!

• I've made copies of the most important parts of the notebook in the slides, but the full details are available in code.de.

Plan for next two lectures: Model Implementation

(today)

Model Implementation I: sklearn Gradient Descent

Model Implementation II:

Gradient descent Feature Engineering

Today's Goal: Ordinary Least Squares Numerically

1. Choose a model

Multiple Linear

Regression

For each of our n datapoints:

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p$$

2. Choose a loss function

L2 Loss

Mean Squared Error (MSE)

$$\hat{\mathbb{Y}} = \mathbb{X}\theta$$

3. Fit the model

Minimize average loss with ealeulus geometry numerical methods

4. Evaluate model performance

MSE

Today's Roadmap

- Simple Linear Regression
 - Using Derived Formulas
 - Using sklearn
- Multiple Linear Regression
 - Using sklearn
 - Using Derived Formulas
- Minimizing an Arbitrary 1D Function
 - Gradient Descent Example
 - Gradient Descent Implementation
- Gradient Descent on a 1D Model
- Gradient Descent in Higher Dimensions

Simple Linear Regression

$$\hat{a} = \bar{y} - \hat{b}\bar{x}$$

$$\hat{b} = r\frac{\sigma_y}{\sigma}$$

$$r = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - x}{\sigma_x} \right) \left(\frac{y_i - y}{\sigma_y} \right)$$

Simple Linear Regression Using Derived Formulas

- Simple Linear Regression
 - Using Derived Formulas
 - Using sklearn
- Multiple Linear Regression
 - Using sklearn
 - Using Derived Formulas
- Minimizing an Arbitrary 1D Function
 - Gradient Descent Example
 - Gradient Descent Implementation
- Gradient Descent on a 1D Model
- Gradient Descent in Higher Dimensions

Simple Linear Regression Using sklearn

Lecture 12, Data 100 Spring 2022

Simple Linear Regression

- Using Derived Formulas
- Using sklearn
- Multiple Linear Regression
 - Using sklearn
 - Using Derived Formulas
- Minimizing an Arbitrary 1D Function
 - Gradient Descent Example
 - Gradient Descent Implementation
- Gradient Descent on a 1D Model
- Gradient Descent in Higher Dimensions


```
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(df[["total_bill"]], df["tip"])
df["sklearn_predictions"] = model.predict(df[["total_bill"]])
```

	total_bill	tip	sex	smoker	day	time	size	predicted_tip	residual	sklearn_predictions
0	16.99	1.01	Female	No	Sun	Dinner	2	2.704636	-1.694636	2.704636
1	10.34	1.66	Male	No	Sun	Dinner	3	2.006223	-0.346223	2.006223
2	21.01	3.50	Male	No	Sun	Dinner	3	3.126835	0.373165	3.126835
3	23.68	3.31	Male	No	Sun	Dinner	2	3.407250	-0.097250	3.407250
4	24.59	3.61	Female	No	Sun	Dinner	4	3.502822	0.107178	3.502822
5	25.29	4.71	Male	No	Sun	Dinner	4	3.576340	1.133660	3.576340
6	8.77	2.00	Male	No	Sun	Dinner	2	1.841335	0.158665	1.841335
7	26.88	3.12	Male	No	Sun	Dinner	4	3.743329	-0.623329	3.743329
8	15.04	1.96	Male	No	Sun	Dinner	2	2.499838	-0.539838	2.499838
9	14.78	3.23	Male	No	Sun	Dinner	2	2.472532	0.757468	2.472532

Multiple Linear Regression Using sklearn

- Simple Linear Regression
 - Using Derived Formulas
 - Using sklearn
- Multiple Linear Regression
 - Using sklearn
 - Using Derived Formulas
- Minimizing an Arbitrary 1D Function
 - Gradient Descent Example
 - Gradient Descent Implementation
- Gradient Descent on a 1D Model
- Gradient Descent in Higher Dimensions


```
model_2d = LinearRegression()
model_2d.fit(df[["total_bill", "size"]], df["tip"])
model_2d.predict([[10, 3]])
array([2.17387149])
```

Multiple Linear Regression Using Derived Formulas

- Simple Linear Regression
 - Using Derived Formulas
 - Using sklearn
- Multiple Linear Regression
 - Using sklearn
 - Using Derived Formulas
- Minimizing an Arbitrary 1D Function
 - Gradient Descent Example
 - Gradient Descent Implementation
- Gradient Descent on a 1D Model
- Gradient Descent in Higher Dimensions

2D Linear Model Equation

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

```
print(f"theta0: {model_2d.intercept_}")
print(f"theta1 and theta2: {model_2d.coef_}")
```

theta0: 0.6689447408125027

theta1 and theta2: [0.09271334 0.19259779]

2.1737

Predictions for Linear Model of Arbitrary Dimensions Using Matrix Notation

$$\hat{\mathbb{Y}} = \mathbb{X}\theta$$
 theta = np.array([[0.6689, 0.0927, 0.1926]]).T theta array([[0.6689], [0.0927], [0.1926]])
$$\mathbb{X} = \text{np.array}([[1, 10, 3]])$$

$$\mathbb{X}$$
 array([[1, 10, 3]])
$$\mathbb{X}$$
 theta

array([[2.1737]])

Multiple Predictions for Linear Model of Arbitrary Dimensions Using Matrix Notation

$$\hat{\mathbb{Y}} = \mathbb{X}\theta$$

```
X = df[["total_bill", "size"]].head(4)
X["bias"] = [1, 1, 1, 1]
X = X[["bias", "total_bill", "size"]]
X
```

	bias	total_bill	size
0	1	16.99	2
1	1	10.34	3
2	1	21.01	3
3	1	23.68	2

	0
0	2.629073
1	2.205218
2	3.194327
3	3.249236

Visualizing the Predictions of a 2D Model

$$\hat{\mathbb{Y}} = \mathbb{X}\theta$$

Predictions of our 2D linear model lie in a plane.

Finding Optimal Parameters Using the Normal Equation

$$\hat{\boldsymbol{\theta}} = \left(\mathbb{X}^T \mathbb{X} \right)^{-1} \mathbb{X}^T \mathbb{Y}$$

```
X = df[["total_bill", "size"]].copy()
X["bias"] = np.ones(len(X))
X = X[["bias", "total_bill", "size"]]
X.head(4)
```

```
Y = df[["tip"]]
Y.head(4)
```

	bias	total_bill	size
0	1.0	16.99	2
1	1.0	10.34	3
2	1.0	21.01	3
3	1.0	23.68	2

```
tip1.011.663.503.31
```

```
theta_using_normal_equation = np.linalg.inv(X.T @ X) @ X.T @ Y
theta_using_normal_equation.values
```

```
array([[0.66894474],
[0.09271334],
[0.19259779]])
```

Minimizing an Arbitrary 1D Function

- Simple Linear Regression
 - Using Derived Formulas
 - Using sklearn
- Multiple Linear Regression
 - Using sklearn
 - Using Derived Formulas
- Minimizing an Arbitrary 1D Function
 - Gradient Descent Example
 - Gradient Descent Implementation
- Gradient Descent on a 1D Model
- Gradient Descent in Higher Dimensions

Arbitrary Function of Interest

```
def arbitrary(x):
    return (x**4 - 15*x**3 + 80*x**2 - 180*x + 144)/10

x = np.linspace(1, 6.75, 200)
fig = px.line(y = arbitrary(x), x = x)
```


Minimizing this Function using scipy.optimize.minimize

from scipy.optimize import minimize

minimize(arbitrary, x0 = 6)

minimize(arbitrary, x0 = 1)

Minimizing an **Arbitrary 1D Function -Gradient Descent** Example

- Simple Linear Regression
 - Using Derived Formulas
 - Using sklearn
- Multiple Linear Regression
 - Using sklearn
 - Using Derived Formulas
- Minimizing an Arbitrary 1D Function
 - Gradient Descent Example
 - Gradient Descent Implementation
- Gradient Descent on a 1D Model
- Gradient Descent in Higher Dimensions

Function, Roots, and Derivatives

Derivative Tells Us Which Way to Go

Derivative is negative, so go right.

• Follow the slope down.

Derivative is positive, so go left.

Follow the slope down.

Link: https://www.desmos.com/calculator/twpnylu4lr


```
def plot_one_step(x):
    new_x = x - derivative_arbitrary(x)
    plot_arbitrary()
    plot_x_on_f(arbitrary, new_x)
    plot_x_on_f_empty(arbitrary, x)
    print(f'old x: {x}')
    print(f'new x: {new_x}')
```



```
def plot_one_step(x):
    new_x = x - derivative_arbitrary(x)
    plot_arbitrary()
    plot_x_on_f(arbitrary, new_x)
    plot_x_on_f_empty(arbitrary, x)
    print(f'old x: {x}')
    print(f'new x: {new_x}')
```

```
plot_one_step(4.4)
```

old x: 4.4


```
def plot_one_step(x):
    new_x = x - derivative_arbitrary(x)
    plot_arbitrary()
    plot_x_on_f(arbitrary, new_x)
    plot_x_on_f_empty(arbitrary, x)
    print(f'old x: {x}')
    print(f'new x: {new_x}')
```

```
plot_one_step(5.0464)
```

old x: 5.0464


```
def plot_one_step(x):
    new_x = x - derivative_arbitrary(x)
    plot_arbitrary()
    plot_x_on_f(arbitrary, new_x)
    plot_x_on_f_empty(arbitrary, x)
    print(f'old x: {x}')
    print(f'new x: {new_x}')
```

```
plot_one_step(5.4967)
```

old x: 5.4967


```
def plot_one_step(x):
    new_x = x - derivative_arbitrary(x)
    plot_arbitrary()
    plot_x_on_f(arbitrary, new_x)
    plot_x_on_f_empty(arbitrary, x)
    print(f'old x: {x}')
    print(f'new x: {new_x}')
```

```
plot_one_step(5.080917145374805)
```

old x: 5.080917145374805 new x: 5.489966698640582


```
def plot_one_step(x):
    new_x = x - derivative_arbitrary(x)
    plot_arbitrary()
    plot_x_on_f(arbitrary, new_x)
    plot_x_on_f_empty(arbitrary, x)
    print(f'old x: {x}')
    print(f'new x: {new_x}')
```

We appear to be bouncing back and forth. Turns out we are stuck!

Any suggestions for how we can avoid this issue?

Manual Gradient Descent with Slower "Learning Rate"

```
def plot_one_step_better(x):
    new_x = x - 0.3 * derivative_arbitrary(x)
    plot_arbitrary()
    plot_x_on_f(arbitrary, new_x)
    plot_x_on_f_empty(arbitrary, x)
    print(f'old x: {x}')
    print(f'new x: {new_x}')
```

```
plot one step better(4)
old x: 4
new x: 4.12
  3.0
  2.5
  2.0
  1.5
  1.0
  0.5
  0.0
 -0.5
 -1.0
```


Manual Gradient Descent with Slower "Learning Rate" (many steps later)

```
def plot_one_step_better(x):
    new_x = x - 0.3 * derivative_arbitrary(x)
    plot_arbitrary()
    plot_x_on_f(arbitrary, new_x)
    plot_x_on_f_empty(arbitrary, x)
    print(f'old x: {x}')
    print(f'new x: {new_x}')
```

```
plot_one_step_better(5.323)

old x: 5.323
new x: 5.325108157959999

3.0
2.5
2.0
1.5
1.0
```

0.5

-0.5

-1.0

Gradient Descent Implementation

- Simple Linear Regression
 - Using Derived Formulas
 - Using sklearn
- Multiple Linear Regression
 - Using sklearn
 - Using Derived Formulas
- Minimizing an Arbitrary 1D Function
 - Gradient Descent Example
 - Gradient Descent Implementation
- Gradient Descent on a 1D Model
- Gradient Descent in Higher Dimensions

Gradient Descent as a Recurrence Relation

```
def plot_one_step_better(x):
    new_x = x - 0.3 * derivative_arbitrary(x)
    plot_arbitrary()
    plot_x_on_f(arbitrary, new_x)
    plot_x_on_f_empty(arbitrary, x)
    print(f'old x: {x}')
    print(f'new x: {new_x}')
```

$$x^{(t+1)} = x^{(t)} - 0.3 \frac{d}{dx} f(x)$$

old x: 5.323

Our Recurrence Relation as Iterative Code

$$x^{(t+1)} = x^{(t)} - \alpha \frac{d}{dx} f(x)$$

```
def gradient descent(df, initial guess, alpha, n):
    """Performs n steps of gradient descent on df using learning rate alpha starting
       from initial_guess. Returns a numpy array of all guesses over time."""
    guesses = [initial guess]
    current guess = initial guess
    while len(guesses) < n:</pre>
        current guess = current guess - alpha * df(current guess)
        guesses.append(current_guess)
    return np.array(guesses)
                               trajectory = gradient descent(derivative arbitrary, 4, 0.3, 20)
                               trajectory
                               array([4. , 4.12 , 4.26729664, 4.44272584, 4.64092624,
                                     4.8461837 , 5.03211854, 5.17201478, 5.25648449, 5.29791149,
                                     5.31542718, 5.3222606, 5.32483298, 5.32578765, 5.32614004,
```

5.32626985, 5.32631764, 5.32633523, 5.3263417 , 5.32634408])

Our Recurrence Relation as Iterative Code

def gradient descent(df, initial guess, alpha, n):

$$x^{(t+1)} = x^{(t)} - \alpha \frac{d}{dx} f(x)$$

"""Performs n steps of gradient descent on df using learning rate alpha starting

```
from initial_guess. Returns a numpy array of all guesses over time."""
guesses = [initial guess]
current guess = initial guess
while len(guesses) < n:</pre>
    current guess = current guess - alpha * df(current guess)
    guesses.append(current_guess)
                           trajectory = gradient descent(derivative arbitrary, 4, 1, 20)
return np.array(guesses)
                           trajectory
                           array([4. , 4.4 , 5.0464 , 5.4967306 , 5.08086249,
                                  5.48998039, 5.09282487, 5.48675539, 5.09847285, 5.48507269,
                                  5.10140255, 5.48415922, 5.10298805, 5.48365325, 5.10386474,
                                  5.48336998, 5.1043551 , 5.48321045, 5.10463112, 5.48312031])
```

Convergence of Gradient Descent

There is a rich literature exploring the convergence of many variants of gradient descent.

- Well beyond the scope of our course!
- For more, see a dedicated course in mathematical optimization.

Gradient Descent on a 1D Model

Lecture 12, Data 100 Spring 2022

- Simple Linear Regression
 - Using Derived Formulas
 - Using sklearn
- Multiple Linear Regression
 - Using sklearn
 - Using Derived Formulas
- Minimizing an Arbitrary 1D Function
 - Gradient Descent Example
 - Gradient Descent Implementation
- Gradient Descent on a 1D Model
- Gradient Descent in Higher Dimensions

Applying Gradient Descent to Our Tips Dataset

We've seen how to find the optimal parameters for a 1D linear model for the tips dataset:

- Using the derived equations from data 8.
- Using sklearn.
 - Uses gradient descent!

While in real practice in this course, you'll usually use sklearn, let's see how we can do the gradient descent ourselves.

We'll first fit a model that has no y-intercept, for maximum simplicity.

Let's try this out in our notebook.

Gradient Descent in Higher Dimensions

Lecture 12, Data 100 Spring 2022

- Simple Linear Regression
 - Using Derived Formulas
 - Using sklearn
- Multiple Linear Regression
 - Using sklearn
 - Using Derived Formulas
- Minimizing an Arbitrary 1D Function
 - Gradient Descent Example
 - Gradient Descent Implementation
- Gradient Descent on a 1D Model
- Gradient Descent in Higher Dimensions

A Two Parameter Model

Suppose we now try simple linear regression, which has two parameters:

$$tip = \theta_0 + \theta_1 bill$$

We'll use gradient descent to minimize the function below:

Here, theta is a two dimensional vector!

```
def mse_loss(theta, X, y_obs):
    y_hat = X @ theta
    return np.mean((y_hat - y_obs) ** 2)
```


A 2D Loss Function

Here, we see the loss of our model as a function of our two parameters.

Gradient Descent

Just like earlier, we can follow the slope of our 2D function.

Example: Gradient of a 2D Function

Consider the 2D function:

$$f(\theta_0, \theta_1) = 8\theta_0^2 + 3\theta_0\theta_1$$

For a function of 2 variables, $f(\theta_0, \theta_1)$ we define the gradient $\nabla_{\vec{\theta}} f = \frac{\partial f}{\partial \theta_0} \vec{i} + \frac{\partial f}{\partial \theta_1} \vec{j}$, where \vec{i} and \vec{j} are the unit vectors in the θ_0 and θ_1 directions.

$$\frac{\partial f}{\partial \theta_0} = 16\theta_0 + 3\theta_1$$

$$\frac{\partial f}{\partial \theta_1} = 3\theta_0$$

$$\nabla_{\vec{\theta}} f = (16\theta_0 + 3\theta_1)\vec{i} + 3\theta_0 \vec{j}$$

Example: Gradient of a 2D Function in Column Vector Notation

Consider the 2D function:

$$f(\theta_0, \theta_1) = 8\theta_0^2 + 3\theta_0\theta_1$$

Gradients are also often written in column vector notation.

$$\nabla_{\vec{\theta}} f(\vec{\theta}) = \begin{bmatrix} 16\theta_0 + 3\theta_1 \\ 3\theta_0 \end{bmatrix}$$

Example: Gradient of a Function in Column Vector Notation

For a generic function of p + 1 variables.

$$\nabla_{\vec{\theta}} f(\vec{\theta}) = \begin{bmatrix} \frac{\partial}{\partial \theta_0} (f) \\ \frac{\partial}{\partial \theta_1} (f) \\ \vdots \\ \frac{\partial}{\partial \theta_p} (f) \end{bmatrix}$$

How to Interpret Gradients

- You should read these gradients as:
 - o If I nudge the 1st model weight, what happens to loss?
 - If I nudge the 2nd, what happens to loss?
 - o Etc.

You Try:

Derive the gradient descent rule for a linear model with two model weights and MSE loss.

• Below we'll consider just one observation (i.e. one row of our data).

$$f_{\vec{\theta}}(\vec{x}) = \vec{x}^T \vec{\theta} = \theta_0 x_0 + \theta_1 x_1$$

$$\ell(\vec{\theta}, \vec{x}, y_i) = (y_i - \theta_0 x_0 - \theta_1 x_1)^2$$

Squared loss for a single prediction of our linear regression model.

$$\nabla_{\theta} \ell(\vec{\theta}, \vec{x}, y_i) = ?$$

$$\ell(\vec{\theta}, \vec{x}, y_i) = (y_i - \theta_0 x_0 - \theta_1 x_1)^2$$

$$\frac{\partial}{\partial \theta_0} \ell(\vec{\theta}, \vec{x}, y_i) = 2(y_i - \theta_0 x_0 - \theta_1 x_1)(-x_0)$$

$$\frac{\partial}{\partial \theta_1} \ell(\vec{\theta}, \vec{x}, y_i) = 2(y_i - \theta_0 x_0 - \theta_1 x_1)(-x_1)$$

$$\nabla_{\theta} \ell(\vec{\theta}, \vec{x}, y_i) = \begin{bmatrix} -2(y_i - \theta_0 x_0 - \theta_1 x_1)(x_0) \\ -2(y_i - \theta_0 x_0 - \theta_1 x_1)(x_1) \end{bmatrix}$$

Summary

Gradient descent allows us to find the minima of functions.

- At each step, we compute the steepest direction of the function we're minimizing, yielding a p-dimensional vector.
- Our next guess for the optimal solution is our current solution minus this p-dimensional vector times a learning rate alpha.

(An earlier version of this slide mentioned convex functions. This concept will appear in the next lecture.)

LECTURE 12

Gradient Descent, sklearn

Content credit: Josh Hug, Joseph Gonzalez

