The Engineering World #DataScience 27 & 28

May 31, 2018

AKKAL BAHADUR BIST
DATA SCIENTIST AT
KATHMANDU INSTITUTE OF APPLIED SCIENCES (KIAS)
Center for Conservation Biology (CCB)

1 NETWORK ANALYSIS

1.0.1 Network analysis use cases

Social media marketing analysis, Infrastructure system design, Financial risk management, Public health management

1.0.2 Network

A body of connected data that's evaluated during graph analysis

1.0.3 Graph

A data visualization schematic depicting the data that comparises a network

1.0.4 Network analysis vocablary

Nodes: the vertices around which a graph is formed

Edges: the lines that connect vertices within a graph

Directed graph(aka digraph): a graph where there is a direction assign to each edge that connects a node

Directed edge: an edge feature that has been assign a direction between nodes

Undirected graph: a graph where all edges are bidirectional

Undirected eddge: a bidirectional edge feature

Graph size: the number of edge in a graph Graph order: number of vertices is a graph

Degree: the number of edges connected to a vertex, with loops counted twice

1.0.5 Graph generator

The functions that generates graphs

graph generator has most important application is Synthetic veriation of A particular graph

Type of graph generators Graph drawing algorithms

Network analysis algorithms Algorithmic routing for graphs Graph search algorithms Subgraphs algorithms

2 GRAPH OBJECT NETWORK ANALYSIS

You + Machine Learning = Scientific Discovery

2.0.1 Working with Graph objects

```
In [1]: import numpy as np
    import pandas as pd
    from pylab import rcParams
    import seaborn as sb
    import matplotlib.pyplot as plt
    import networkx as nx
In [2]: %matplotlib inline
    rcParams ['figure.figsize'] = 5,4
    sb.set_style ('whitegrid')
```

2.0.2 Creating graph objects

```
In [3]: G = nx.Graph() #empty graph drawing
     nx.draw(G)
```


2.0.3 The basics about drawing graph objects

In [7]: nx.draw_circular(G)

In [8]: nx.draw_kamada_kawai(G)

In [9]: nx.draw_networkx(G)

In [10]: nx.draw_random(G)

In [11]: nx.draw_shell(G)

In [12]: nx.draw_spectral(G)

In [13]: nx.draw_spring(G)

In [14]: nx.draw_kamada_kawai(G)

2.0.4 Labeling and coloring your graph plots

In [15]: nx.draw_circular(G, node_color = 'bisque', with_labels = True) #add node color and label

2.0.5 Identify graph proporties

2.0.6 Using graph generator

In [24]: nx.draw_circular(G)

