

Supervised: Ingredients

Outline

Concept

Regression

Classification

Other Loss functions

Concept

How close are the predictions?

How can we quantify the difference?

Regression

Minkowski distance

$$D(Y, \overline{Y}) = \left(\sum_{i} |Y^{i} - \overline{Y^{i}}|^{p}\right)^{\overline{p}}$$

Minkowski distance

$$D_1(Y, \bar{Y}) = \sum_i |Y^i - \bar{Y}^i|$$

$$D_2(Y, \overline{Y}) = \sqrt{\sum_i |Y^i - \overline{Y^i}|^2}$$

Penalizes larger deviations more

$$D_{\infty}(Y, \overline{Y}) = \max_{i} \left| Y^{i} - \overline{Y^{i}} \right|$$

Worst case

Minkowski distance

Huber: the best of both worlds

What other functions?

Take a look at scikit-learn!

Classification

We can use regression loss functions

$$D_h(Y, \bar{Y}) = \max(0, 1 - Y^i * f_w(X^i))$$

Note that f_w is the decision boundary, not the class. Also note that $Y^i = \pm 1$ and not $\{0,1\}$.

Probability:

Logistic Regression

Probability: Cross-entropy

$$D_{CE}(Y, \overline{Y}) = -\sum_{i} Y^{i} \log \overline{Y}^{i} + (1 - Y^{i}) \log(1 - \overline{Y}^{i})$$

Probability: Cross-entropy

$$D_{CE}(Y, \overline{Y}) = -\sum_{i} Y^{i} \log \overline{Y}^{i} + (1 - Y^{i}) \log(1 - \overline{Y}^{i})$$

Other loss functions

What would be a good loss function for a multi-class problem?

• $Y \in \{-1, 0, 1\}$

What would be a good loss function for $Y \in \{0, 1\}^{\bigotimes n}$?

Example:

$$Y^1 = (0, 0, 1, 0, 1)$$

Probability Distributions

Probability Distributions

Kullback–Leibler divergence (Relative Entropy)

$$D_{KL}(PD_1||PD_2) = \sum_{X} PD_1(X) \log(\frac{PD_1(X)}{PD_2(X)})$$

What would be a good loss function for clustering?

The right choice for the Loss function

How do we choose the right loss function?

Convexity

Objective

How does this choice affect the model?

See the NB.

So far ...

