XGBoost (2) - SklearnWrapper

XGBoost 라이브러리를 sklearn과의 호환을 위해 Wrappering한 클래스

#01. 패키지 참조

```
import warnings
warnings.filterwarnings('ignore')

import numpy as np
from xgboost import XGBClassifier
from xgboost import plot_importance

from matplotlib import pyplot as plt
import seaborn as sns

from pandas import read_excel
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler
from imblearn.over_sampling import SMOTE

from sklearn.metrics import confusion_matrix, accuracy_score
from sklearn.metrics import precision_score, recall_score
from sklearn.metrics import f1_score, roc_auc_score
```

#02. 데이터 로딩 및 전처리

```
origin = read_excel("https://data.hossam.kr/G02/breast_cancer.xlsx")

# 독립/종속 변수 분리

x = origin.drop('target', axis=1)

y = origin['target']

# 데이터 스케일링

std_x = StandardScaler().fit_transform(x)

# 훈련/검증 데이터 분리

x_train, x_test, y_train, y_test = train_test_split(
    std_x, y, test_size=0.3, random_state=2021)

# SMOTE 적용

x_sm, y_sm = SMOTE(random_state=2021).fit_resample(x_train, y_train)

x_sm.shape, y_sm.shape, x_test.shape, y_test.shape
```

```
((500, 30), (500,), (171, 30), (171,))
```

#03. 훈련모델 구현

XGBoost 전용 데이터 생성

기존의 DataFrame 형식 사용 가능

학습 모델 적합

- eta 파라미터는 learing_rate 로 이름이 변경된다.
- num_boost_round 파라미터는 n_estimator 로 이름이 변경된다.
- sub_sample -> subsample
- lambda -> reg_lambda
- alpha -> reg_alpha

```
xgb_model = XGBClassifier(n_estimators=400, learning_rate=0.1, max_depth=3)
xgb_model.fit(x_sm, y_sm)
```

```
XGBClassifier

XGBCla
```

학습 결과 확인

```
# 예측치를 산정할 경우 각 클래스에 속할 확률이 아니라 클래스 분류 결과를 반환 preds = xgb_model.predict(x_test) print("predict() 수행 결과값을 10개만 표시, 분류 결과를 표시함") print(preds[:10])

# 클래스에 속할 확률값(이진분류이므로 1에 속할 확률만 취함) pred_probs = xgb_model.predict_proba(x_test)[:, 1] print("predict_proba() 수행 결과값을 10개만 표시, 예측 확률 값을 표시함") print(pred_probs[:10])
```

```
predict( ) 수행 결과값을 10개만 표시, 분류 결과를 표시함
[1 1 1 0 1 0 0 1 0 1]
predict_proba( ) 수행 결과값을 10개만 표시, 예측 확률 값을 표시함
[9.9921024e-01 9.9443418e-01 9.8088878e-01 9.8499982e-04 9.9882632e-01
1.4456784e-02 1.6132860e-04 9.9923825e-01 8.9017116e-03 9.9996185e-01]
```

성능평가

오차 행렬

```
confusion = confusion_matrix( y_test, preds)
confusion
```

```
array([[ 60, 4],
[ 3, 104]], dtype=int64)
```

성능지표 확인

```
accuracy = accuracy_score(y_test , preds)
precision = precision_score(y_test , preds)
recall = recall_score(y_test , preds)
f1 = f1_score(y_test,preds)
roc_auc = roc_auc_score(y_test, pred_probs)
print('정확도: {0:.4f}, 정밀도: {1:.4f}, 재현율: {2:.4f}, F1: {3:.4f}, AUC:
{4:.4f}'.format(accuracy, precision, recall, f1, roc_auc))
```

```
정확도: 0.9591, 정밀도: 0.9630, 재현율: 0.9720, F1: 0.9674, AUC:0.9907
```

변수별 중요도 확인

```
plt.figure(figsize=(10,15))
plot_importance(xgb_model, ax=plt.gca())
plt.show()
plt.close()
```


#04. 하이퍼 파라미터 튜닝

모델 적합

주요 일반 파라미터

파라미터 명	설명
booster	gbtree(tree based model) 또는 gblinear(linear model) 선택, default는 gbtree
silent	default는 0이며, 출력 메세지를 나타내고 싶지 않을 경우 1로 설정
nthread	CPU의 실행 스레드 개수를 조정하며, default는 CPU의 전체 스레드를 다 사용하는 것이다. 멀티 코어/ 스레트 CPU 시스템에서 전체 CPU를 사용하지 않고 일부 CPU만 사용해 ML 애플리케이션을 구동하는 경우에 변경

주요 부스터 파라미터 |

파라미터 명	설명
learning_rate (eta)	학습률. 0에서 1 사이의 값을 지정하며 부스팅 스텝을 반복적으로 수행할 때 업데이트 되는 학습률 값 기본 xgboost를 이용할 경우 default는 0.3이고 사이킷런 래퍼 클래스를 이용 할 경우 eta는 learning_rate 파라미터로 대체되며, default는 0.1이다. 보통은 0.01 ~ 0.2 사이의 값을 선호
n_estimators(num_boost_rounds)	부스팅 반복 횟수
min_child_weight	트리에서 추가적으로 가지를 나눌지를 결정하기 위해 필요한 데이터들의 weight 총합, min_child_weight가 클수록 분할을 자제한다. 과적합을 조절하기 위해 사용된다.(기본값=1)
min_split_loss(gamma)	트리의 리프 노드를 추가적으로 나눌지를 결정할 최소 손실 감소 값이다. 해당 값보다 큰 손실(loss)이 감소된 경우에 리프 노드를 분리한다. 값이 클수록 과적합 감소 효과가 있다.(기본값=0)
max_depth	트리 기반 알고리즘의 max_depth와 같다. 0을 지정하면 깊이에 제한이 없다. max_depth가 높으면 특정 피쳐 조건에 특화되어 룰 조건이 만들어지므로 과적 합 가능성이 높아지며 보통은 3~10 사이의 값을 적용(기본값=6)
sub_sample(subsample)	트리가 커져서 과적합되는 것을 제어하기 위해 데이터를 샘플링하는 비율을 지정한다. sub_sample=0.5로 지정하면 전체 데이터의 절반을 트리를 생성하는 데 사용한다. 0에서 1사이의 값이 가능하나 일반적으로 0.5 ~ 1 사이의 값을 사용(기본값=1)
colsample_bytree	GBM의 max_feature와 유사하다. 트리 생성에 필요한 피처(column)를 임의로 샘플링하는 데 사용된다. 매우 많은 피처가 있는 경우 과적합을 조정하는 데 적 용(default=1)

학습 태스크 파라미터

objective

최솟값을 가져야할 손실 함수

함수	설명
binary:logitic	이진 분류일 때 적용한다.

함수	설명
multi:softmax	다중 분류일 때 적용한다. 손실함수가 multi:softmax 일 경우에는 label 클래스의 개수 인 num_class parameter를 지정해야 한다.
multi:softprob	multi:softmax와 유사하나 개별 label 클래스의 해당되는 예측 확률을 반환한다.

eval_metric

검증에 사용되는 함수를 정의한다. defalut는 회귀인 경우는 rmse , 분류일 경우에는 error 이다.

```
xgb_model = XGBClassifier()

params = {
    "n_estimators": [300, 400],
    "learning_rate": [0.05, 0.1, 0.15],
    "max_depth": [5, 7]
}

grid = GridSearchCV(xgb_model, param_grid=params, scoring='accuracy', cv=5)

grid.fit(x_sm, y_sm)

print(grid.best_params_)
print(grid.best_score_)
best_model = grid.best_estimator_
```

```
{'learning_rate': 0.15, 'max_depth': 7, 'n_estimators': 300}
0.97399999999999
```

과적합 문제가 심각하다면?

- 1. eta 값을 낮춘다.(0.01 ~ 0.1) 그리고 eta 값을 낮추면 num_round(또는 n_estimator)는 반대로 높여준다.
- 2. max_depth 값을 낮춘다.
- 3. min_child_weight 값을 높인다.
- 4. subsample과 colsample_bytree를 조정하는 것도 트리가 너무 복잡하게 생성되는 것을 막아 과적합 문제에 도움이 될 수 있다.