

# Betimsel İstatistik -2

Doç. Dr. Meryem ULUSKAN 2021

Doç. Dr. Meryem ULUSKAN

### GEOMETRİK ORTALAMA AYLIK ARTIŞ DEĞERİNİ BULMA

A= Anapara rij= Aylık farklı faiz (artış) değerleri

Farklı aylık faiz değerleri ile 3 dönem sonunda elde edeceğim miktar

$$A(1+r_1)(1+r_2)(1+r_3)$$

olur.

n dönem sonunda

$$A(1+r_1)(1+r_2)$$
 ...  $(1+r_n)$  olur

Bu farklı aylık faiz değerleri yerine aylık ortalama hangi faizi (r) uygulasaydım aynı değere (paraya, miktara) ulaşırdım?

Bu farklı aylık faiz değerleri yerine aylık ortalama hangi faizi (r) uygulasaydım aynı değere (paraya, miktara) ulaşırdım?

$$(1+r_1)(1+r_2)(1+r_3) = (1+r)^3$$

$$\sqrt[3]{(1+r_1)(1+r_2)(1+r_3)} = \sqrt[3]{(1+r)^3}$$

$$\sqrt[3]{(1+r_1)(1+r_2)(1+r_3)} = 1+r$$

 $(1+r_i)'$ lerin geometrik ortalaması

Doç. Dr. Meryem ULUSKAN

**ÖRNEK:** Bir yatırım aracına 1000 TL yatırılmış ve aylık dönemler sonunda, sırasıyla, 1175, 1325, 1462, 1588, 1760, 1905, 2084, 2284, 2512 TL olduğu belirlenmiştir. Yatırılan paranın aylık ortalama artış hızını ve ortalamasını hesaplayınız.

Çözüm:

Aylık artışlar: artış oranı=(i+1' inci ay değeri – i' inci ay değeri) / i' inci ay değeri

| į  | $X_i$ | Artış |
|----|-------|-------|
| 1  | 1000  | ?     |
| 2  | 1175  | ?     |
|    | 1325  | ?     |
| 4  | 1462  | ?     |
| 5  | 1588  | ?     |
| 6  | 1760  | ?     |
| 7  | 1905  | ?     |
| 8  | 2084  | ?     |
| 9  | 2284  | ?     |
| 10 | 2512  | ?     |
|    |       |       |

|    | ÇÖZÜM |       | AÇIKLAMA                                             |  |  |
|----|-------|-------|------------------------------------------------------|--|--|
|    |       |       | Eğer artışların ortalaması aritmetik ortalama olarak |  |  |
| į  | $X_i$ | Artış | hesaplanırsa, iki aylık devrelerde ortalama artış    |  |  |
| 1  | 1000  | **    | 0,10808 olarak bulunur ki, bu doğru bir sonuç        |  |  |
| 2  | 1175  | 0,175 | olmayacaktır. Eğer ilk yatırılan miktar 1000 TL'den  |  |  |
| 3  | 1325  | 0,128 | başlayıp her devrede 0,108108 oranında artırılırsa,  |  |  |
| 4  | 1462  | 0,103 | 10 devre sonunda 2518,5 TL'ye ulaşılır ve bunun      |  |  |
| 5  | 1588  | 0,086 | 2512 TL'den büyük olduğu açıktır. Aritmetik ortalama |  |  |
| 6  | 1760  | 0,108 | olarak hesaplanan ortalama artış gerçekleşen değeri  |  |  |
| 7  | 1905  | 0,082 | daha büyük tahmin etmiştir.                          |  |  |
| 8  | 2084  | 0,094 | Devre değerleri bir önceki devreye bağlı olduğundan  |  |  |
| 9  | 2284  | 0,096 | geometrik ortalama kullanılarak devrelik ortalama    |  |  |
| 10 | 2512  | 0,100 | artış oranının ve ortalama değerin hesaplanması      |  |  |
|    |       |       | doğru olacaktır.                                     |  |  |
|    | •     | ,     |                                                      |  |  |

Doç. Dr. Meryem ULUSKAN

## Çözüm devam

| GEOMETRÍK ORTALAMA ÖRNEKLER       |                    | •                                      | ••           |
|-----------------------------------|--------------------|----------------------------------------|--------------|
| GEOMETRIK ORTALAMIA ORNEKLER      | OFOR SETE          | III ODTAL ABAA                         | ABBIELLI ED  |
| GEOIVIET KIN ONTALAIVIA OKIVEKLER | <i>(</i> N/  L   D | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | INDRIEDIED   |
|                                   | THE LINE I D       | INUNIAIAIVIA                           | UNIVENIEN    |
|                                   |                    | •                                      | O:::1=::E::: |

Bakteri üretilen bir laboratuarda bakteri sayısı 3 gün sonunda 1000den 4000'e ulaşmıştır.

Günlük ortalama artış yüzdesi kaçtır?

Doç. Dr. Meryem ULUSKAN

## **GEOMETRİK ORTALAMA ÖRNEKLER**

Bir çiftlikte 890 tane büyükbaş hayvan vardır. Birinci yılın sonunda bunların sayısı 950'ye, ikinci yılın sonunda 1075'e ve üçüncü yılın sonunda 1260'a ulaşmıştır.

- a) Hayvanların yıllık ortalama çoğalma hızı
- b) Hayvanların herhangi bir yıldaki ortalama sayısını hesaplayınız.

#### HARMONİK ORTALAMA

#### Basit Serilerde:

$$\bar{X}_H = \frac{1}{\frac{1}{n} \sum 1/X_i} = \frac{n}{\sum 1/X_i}$$

#### Frekans ya da sınıflandırılmış serilerde

 $\sum n_i = n$  olmak üzere

$$\frac{1}{\bar{X}_H} = \frac{1}{n} \left( \frac{n_1}{X_1} + \frac{n_2}{X_2} + \dots + \frac{n_k}{X_k} \right) = \frac{1}{n} \sum_{i=1}^{n} n_i / X_i^*$$

Doç. Dr. Meryem ULUSKAN

#### KARELİ ORTALAMA

Basit Serilerde

$$\bar{X}_K = \sqrt{\frac{X_1^2 + X_2^2 + \dots + X_n^2}{n}} = \sqrt{\frac{\sum X_i^2}{n}}$$

Frekans (yada sınıflandırılmış serilerde)

$$\bar{X}_K = \sqrt{\frac{n_1 X_1^2 + n_2 X_2^2 + \dots + X_k^2}{n_1 + n_2 + \dots + n_k}} = \sqrt{\frac{\sum n_i X_i^{*2}}{\sum n_i}}$$

| •• |    |   |   |   |   |
|----|----|---|---|---|---|
| О  | rn | e | k | e | r |

Bir öğrencinin Matematik, Fizik, Kimya derslerinin dönem sonu başarı notları sırasıyla 75, 82, 90 ve 70'tir. Eğer bu derslerin kredileri sırasıyla 5, 4, 3 ve 4 ise öğrencinin genel not ortalaması kaçtır?

Doç. Dr. Meryem ULUSKAN

## <u>Örnekler</u>

Bir atölyede çalışan 5 işçiden her biri aynı parçayı, 1. işçi 10 dakikada, 2. işçi 15 dakikada, 3. işçi 12 dakikada, 4. işçi 16 ve 5. işçi 20 dakikada üretiyorsa 1 işçi bir parçayı ortalama kaç dakikada üretir?

## <u>Örnekler</u>

Sınıflandırılmış serinin harmonik ortalamasını bulunuz.

| Sınıflar  | ni |  |
|-----------|----|--|
| 2,5 - 3,5 | 2  |  |
| 3,5 - 4,5 | 4  |  |
| 4,5 - 5,5 | 5  |  |
| 5,5 - 6,5 | 9  |  |
| 6,5 - 7,5 | 10 |  |
| 7,5 - 8,5 | 7  |  |
| 8,5 - 9,5 | 3  |  |