

96.	355.1	17.	84.	54.	28.	04.	82.	63.	46.	31.	17.	05.	4.2	4.3	5.5	7.6	0.5	4.2		3.4	8.9	4.8	1.1	7.92	5.00	EN E	
$^{\mathrm{ZH}}$	Hz	$_{ m Hz}$	ZH	ZH	ZH	$_{\rm ZH}$	ZH	ZH	ZH	ZH	Hz	Hz	ZH	HZ	ZH	$^{\mathrm{ZH}}$	ZH	$^{\mathrm{ZH}}$	ZH	ZH	ZH	ZH	ZH	ZH	HΖ	REQ	
-0.01	-0.01	-0.01	•								. 0	.0					.0	-0.01	•		-0.01	•		-0.01	-0.01	AMPL	
dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	A	
. 03	6.294	. 63	.04	. 51	.04	. 62	. 24	. 90	. 59	.32	.08	. 86	. 66	.49	ω	. 19	.07	60.	60.	70.	89.	17.	52.	94.	43.	HZ H	
kHz	kHz	kHz	kHz	kHz	kHz	kHz	kHz	kHz	kHz	kHz	kHz	kHz	kHz	kHz	kHz	KHZ	kHz	$^{\mathrm{ZH}}$	$_{ m ZH}$	$^{\mathrm{ZH}}$	ZH	$_{\mathrm{ZH}}$	$^{\mathrm{ZH}}$	$^{\mathrm{ZH}}$	$^{\mathrm{ZH}}$	REQ	
-0.03	-0.02	-0.02	-0.01	-0.01	-0.01		-0.02			-0.01		•		-0.01	•			•		-0.01	٠	-0.01	-0.01	-0.01	-0.01	AMPL	
dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	A	
		00.	41	0.0	1.67	4.17	7.45	1.4	6.05		6.91	3.05	9.59	6.4	3.72	1.24	9.01	7.02	5.24	3.648	2.219	0.940	. 795	.770	.852	GEN FREQ	
		-0.93	-0.81			Մ		·			N		-			Н						-0.05	-0.04	-0.04	-0.03	AMPL	
		dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	dBr	A	
																										Αp	

GEN FREQ THD- 25.00 Hz 0.18 31.50 Hz 0.1' 40.00 Hz 0.1' 50.00 Hz 0.20 63.00 Hz 0.22 80.00 Hz 0.22 100.0 Hz 0.22 125.0 Hz 0.22 160.0 Hz 0.22 200.0 Hz 0.12	37 % 315.0 Hz 79 % 400.0 Hz 79 % 500.0 Hz 04 % 630.0 Hz 23 % 800.0 Hz 1.000 kHz 1.250 kHz 1.600 kHz 1.600 kHz 2.500 kHz	THD+N A 0.209 % 0.223 % 0.207 % 0.207 % 0.217 % 0.213 % 0.207 % 0.213 % 0.213 % 0.213 % 0.213 %	GEN FREQ 4.000 kHz 5.000 kHz 6.300 kHz 8.000 kHz 10.000kHz 12.500kHz 16.000kHz 20.000kHz	THD+N A 0.219 % 0.228 % 0.239 % 0.252 % 0.278 % 0.306 % 0.355 % 0.385 %	Ар
IMD A LEVI	EL A 079 V	GEN: IMD	1.735 V	60Hz/8kHz	Ар
GEN FREQ PHAS 25.00 Hz -0.2 31.50 Hz -0.2 40.00 Hz -0.2 50.00 Hz -0.2 63.00 Hz -0.2 80.00 Hz -0.2 100.0 Hz 0.0 125.0 Hz 0.0 200.0 Hz 0.0 250.0 Hz 0.0	deg 400.0 Hz deg 500.0 Hz deg 630.0 Hz deg 800.0 Hz deg 1.000 kHz deg 1.250 kHz deg 1.600 kHz deg 2.000 kHz deg 2.500 kHz	PHASE A-G 0.0 deg 0.0 deg 0.0 deg 0.0 deg 0.1 deg 0.1 deg 0.1 deg 0.1 deg 0.2 deg 0.3 deg 0.4 deg	GEN FREQ 4.000 kHz 5.000 kHz 6.300 kHz 8.000 kHz 10.000kHz 12.500kHz 16.000kHz 20.000kHz	PHASE A-G 0.6 deg 0.8 deg 1.0 deg 1.3 deg 1.6 deg 2.0 deg 2.6 deg 3.2 deg	Ар
RATIO A/G 16.96dB	FREQ GA 998.40 Hz	GEN:SINE	1.735 V	1.001 kHz	Ар
NOISE A 190.8 uV		UN-WTD GEN:SINE	22 Hz - 1.735 V	22 kHz 1.001 kHz	Ар
NOISE A 20.83 uV		UN-WTD GEN:SINE	400 Hz - 1.735 V	22 kHz 1.001 kHz	Ар

ay 0.0

3.1018

% 7S.S

ay 7.1

ay a.1

sy 8.5

sy 8.5

sm 7820.02 M

ay 82.80+

sm 8888.02

		4H 46	45 NN	(l)bəu	J V 69	. 8	K(↓) ,	dyd		
	7	*			ę			Λ 001	S am OI	
					,					
										et .
+ + + +	++++	+ + + +	-		++++		++++	1 1 1 1	++++	1
										-
		1					2 2		рочов	

-181.188 pVs cycles(†)

4135 N

AWZ-

V 88.4-

V 82.8

A III.₽=

V +1.1+

4 1124 N

4 1123 V

(l)helab

(**[**)×wex

(l)uwex

(1)-Jaho

(**|**)+ua∧o

(!)IIeH

([)\dtbiw

period(**1**)

ЛЛ(†)%08-02a V ₱SI.₽

(†)esia VmS-

W(↓)%0Z-08J

M

 Π

([)eaue

(【)ueəw

([)[dwe

([)əseq

(**[**)swuo

(【)∧əpsɔ

(L)ueawo

(|)vaba

(f)qot

-(【)WnWĭXew

([)արայսյա

	Nouse Nous
+++++++	houget