What is NannyML?

MONITORING MACHINE LEARNING IN PYTHON

Hakim Elakhrass
Co-founder and CEO of NannyML

Prerequisites

- Machine Learning Monitoring Concepts topics:
 - The ideal monitoring workflow
 - Challenges of monitoring ML models in production
 - Two silent model failures, covariate shift, and concept drift
 - Six methods for detecting covariate shift
 - The theoretical concepts behind CBPE and DLE performance estimation methods

What this course will cover?

- Build a robust monitoring system using NannyML
- Implement performance estimation algorithms
- Use the business calculator to determine the monetary value of your machine learning model
- Run univariate and multivariate covariate shift detection methods

Monitoring challenges

No access to ground truth

Alerts fatigue

Open-source solution

Works with any ML framework

The key features

- 1. Monitor what matter
 - Performance estimation and calculation
 - Business value estimation and calculation
- 2. Find what is broken
 - Univariate
 - Multivariate
 - Data quality
- 3. Fix it
 - Retraining triggers

How to use NannyML?


```
import nannyml
```

```
# Load the dataset
reference, analysis, analysis_gt = nannyml.load_us_census_ma_employment_data()
```


Let's practice!

MONITORING MACHINE LEARNING IN PYTHON

Data preparation for NannyML

MONITORING MACHINE LEARNING IN PYTHON

Hakim Elakhrass
Co-founder and CEO of NannyML

Loading the data

```
dataset_name = "green_taxi_dataset.csv"
data = pd.read_csv(dataset_name)
data.head()
```

	lpep_pickup_datetime	PULocationID	DOLocationID	trip_distance	VendorID	payment_type	fare_amount	tip_amount
0	2016-12-01 00:13:25	225	65	2.79	2	2	11.0	0.00
1	2016-12-01 00:06:47	255	255	0.45	2	1	3.5	0.96
2	2016-12-01 00:29:45	41	42	1.20	1	3	6.0	0.00
3	2016-12-01 00:05:43	80	255	1.40	1	2	6.5	0.00
4	2016-12-01 00:47:13	255	189	3.50	1	1	13.5	3.70

Processing the data

```
# Create data partition
data['partition'] = pd.cut(
    data['lpep_pickup_datetime'],
    bins= [pd.to_datetime('2016-12-01'),
           pd.to_datetime('2016-12-08'),
           pd.to_datetime('2016-12-16'),
           pd.to_datetime('2017-01-01')],
    right=False,
    labels= ['train', 'test', 'prod']
```

Splitting the data

```
# Target column name
target = 'tip_amount'
# Features column name
features = ["PULocationID", "DOLocationID", "trip_distance", "VendorID", "pickup_time"]
# Train set
X_train = data.loc[data['partition'] == 'train', features]
y_train = data.loc[data['partition'] == 'train', target]
# Test set (later reference set)
X_test = data.loc[data['partition'] == 'test', features]
y_test = data.loc[data['partition'] == 'test', target]
# Production set (later analysis set)
X_prod = data.loc[data['partition'] == 'prod', features]
y_prod = data.loc[data['partition'] == 'prod', target]
```


Building the model

- Train LGBMRegressor using lightgbm
 library
- Evaluate the model on a test set
- Deploy the model

```
# Training the model
model = LGBMRegressor(random_state=42)
model.fit(X_train, y_train)
# Making predictions
y_pred_train = model.predict(X_train)
y_pred_test = model.predict(X_test)
# Evaluating the model on train and test set
mae_train = MAE(y_train, y_pred_train)
mae_test = MAE(y_test, y_pred_test)
# Deploying the model to production
y_pred_prod = model.predict(X_prod)
```

Creating reference and analysis sets

Reference period

- Uses a test set
- Requires ground truth
- Set the baseline performance

Analysis period

- Latest production data
- Ground truth is optional
- NannyML analyzes the data drift and the performance

```
# Creating reference set
reference = X_test.copy() # Test set features
reference['y_pred'] = y_pred_test # Predictions
reference['tip_amount'] = y_test # Labels
reference = reference.join(
    data['lpep_pickup_datetime']) # Timestamp
```

```
# Creating analysis set
analysis = X_prod.copy() # Production features
analysis['y_pred'] = y_pred_prod # Predictions
analysis = analysis.join(
    data['lpep_pickup_datetime']) # Timestamp
```

Reference set example

- Timestamp the time when observation occurred (optional)
- Features features fed to our model
- Model outputs
 - Predictions prediction score outputted by the model
 - Prediction class labels thresholded probability scores
- Target contains ground truth

Let's practice!

MONITORING MACHINE LEARNING IN PYTHON

Performance estimation

MONITORING MACHINE LEARNING IN PYTHON

Hakim Elakhrass
Co-founder and CEO of NannyML

The algorithms

- CBPE confidence based performance estimation
- DLE direct loss estimation

Direct loss estimation

- Used for regression tasks
- Estimates loss function of monitored model
- LGBM is used as an "extra" model
- NannyML supports various regression metrics like MAE, MSE or RMSE

DLE - code implementation

```
# Initialize the DLE algorithm
estimator = nannyml.DLE(
    y_true='target',
    y_pred='y_pred',
    metrics=['rmse'],
    timestamp_column_name='timestamp',
    chunk_period='d'
    feature_column_names=features,
    tune_hyperparameters=False
)
```

```
# Fit the algorithm
estimator.fit(reference)
results = estimator.estimate(analysis)
```

Confidence based performance estimation

- Used for binary and multiclass classification problems
- Leverages confidence scores to estimate confusion matrix
- Estimates any classification performance metric

CBPE - code implementation

```
# Initialize the CBPE algorithm
estimator = nannyml.CBPE(
    y_pred_proba='y_pred_proba',
    y_pred='y_pred',
    y_true='targets',
    timestamp_column_name='timestamp',
    metrics=['roc_auc'],
    chunk_period='d',
    problem_type='classification_binary',
)
```

```
# Fit the algorithm
estimator.fit(reference)
results = estimator.estimate(analysis)
```

Results

results.plot().show()

Estimated performance (DLE)

Let's practice!

MONITORING MACHINE LEARNING IN PYTHON

