Advanced Computer Networks

Overlay Networks

Jianping Pan Spring 2017

Paper reading summaries

- Starting from this week
 - H reading list is on xc (will be further updated)
 - H summary submission schedule to be posted soon
 - H 1-page reading summary on assigned papers
 - H what's the problem? important then? and now?
 - H main ideas? previous work? follow-on work?
 - H strengths then? and now? why?
 - H weaknesses then? and now? why?
 - H how to improve? how to do better or differently?

1/24/17 csc466/579 2

^{*} reading guideline at: http://www.cs.uvic.ca/~pan/csc466/reading.txt (template to be posted soon)

What do we "have" so far?

- Internet design and architecture
 - H store-and-forward packet switching
 - H end-to-end arguments
 - smart end-hosts vs dumb networks
 - H best-effort services, client-server applications
- Initially, the Internet was an "overlay"
 - H over telephone networks
- By design, the Internet is a "peer-to-peer"
 - H for all end-hosts

Reality check

- A network of service-provider's networks
 H still mostly packet switching, end-to-end, best-effort
- But hierarchical structures almost everywhere
 - H tiered service provider networks
 - H hierarchies in naming, addressing, routing, service provisioning, content delivery etc
 - H the (only) way to deal with scalability
- Two sides of the story
 - H a lot of details/redundancy invisible to externals

Examples

- Internet routing
 - H routing pathologies
 - a considerable percentage of routes is affected
 - H delayed convergence
 - after a fault, it takes tens of minutes to converge
 - **H** extended recovery
 - some faults take hours to recover
- Dependable Internet?
 - H not yet

Adding ??? into the network?

- Changing the infrastructure is difficult
 - [⊬] in a competitive ISP market
 - H only end-to-end counts
 - H and not all applications need perfect ???
- Alternatives
 - **H** application overlays
 - e.g., virtual private networks (VPN)
 - content delivery networks (CDN)
 - H end-to-end or edge-to-edge

Resilient Overlay Networks

- http://nms.lcs.mit.edu/ron
 - н́ [ABKM01] D. Anderson, H. Balakrishnan, F. Kaashoek, R. Morris, Resilient Overlay Networks, In Proc. of SOSP '01. [RON]
- Design goals
 - H fast failure detection and recovery
 - active probing, re-routing
 - H tighter integration with applications
 - application-specific, e.g., video conferencing
 - **H** expressive policy routing
 - e.g., "no commercial traffic on Internet2" 7

Observations

Network redundancy, invisible to applications

1/24/17 csc466/579 8

Ideas

Route around failures

Approaches

- Characterize "links" between nodes
 - H active probing: delay, loss
- Disseminate link characteristics
 - H "link-state" advertisement
- Choose the "best" route
 - H only at the entry node
 - H with possibly one intermediate node
- Forward the packets
- H RON encapsulation

Design details

Path selection

^Ĥ delay

- exponentially weighted moving average (EWMA)
- delay_{i+1} = a * delay_i + (1-a) * last_rtt, a = 0.9

H loss: moving window average

window size: 100

H throughput

TCP-like, proportional to 1/(rtt * sqrt(p))

H application-specific

• priority among delay, loss, throughput, etc

Membership management

- Static membership
 - H load other peer nodes from a configuration file
- Announcement-based, soft-state membership
 - H know at least one peer node
 - H announce its existence by broadcast
 - **H** soft-state
 - flood peer node list every 5 minutes
 - if a node is not heard for 60 minutes, the node has left
- Search?

Performance evaluation

Reduced delay

1/24/17

Reduced loss

30-min average loss rate with RON csc466/579

Improved throughput

1/24/17

Overhead

Link probing

H size: 69 bytes; interval: 12 seconds

Link advertisement

H size: 60+20*(N-1); interval: 14 seconds

• Recovery time: 12~25 seconds (N=50)

10 nodes	20 nodes	30 nodes	40 nodes	50 nodes
1.8 Kbps	5.9 Kbps	12 Kbps	21 Kbps	32 Kbps

More discussion

- One hop?
- Route stability
 - **H** hysteresis
- Path selection
 - H tradeoff between delay, loss, etc
- Routing policy
- Scalability
- NAT (network address translator)

More overlay networks

- Planet-lab network testbed and GENI
- Peer-to-peer applications
 - H Napster: with centralized directory server
 - H Gnutella: distributed flooding search (ERS)
 - H KaZaA: hierarchy introduced; supernode
 - H BitTorrent: trackers; files in chunks; tit-for-tat
 - [⊬] Skype
 - **H** Structured P2P
 - Distributed Hash Table (HDT): Chord, CAN, Pastry, etc

Next lectures

DHT

- H Required reading
 - Chord
 - [RFHKS01] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, "A scalable content-addressable network. In SIGCOMM," Aug. 2001. [CAN]
 - [RD01] Rowstron and P. Druschel, "Pastry: Scalable, distributed object location and routing for largescale peerto-peer systems," Proc. 18th IFIP/ACM Int'l. Conf. Distributed Systems Platforms (Middleware), 2001.
 [Pastry]
- Gnutella, BitTorrent, Skype