- 1) The space shuttle weighs approximately 12.5 tons whose thrusters can simultaneously produce a total thrust of 53400 Newtons for orbital maneuvers. Assuming that the shuttle is initially in a 300 Km (altitude) circular Earth orbit, it is desired to use a single impulse to transfer the shuttle to a 250x300 Km elliptical orbit.
 - 1-1 Determine the required ΔV .
 - 1-2 Use elementary physics and determine the **burn time** of the engine thrusters for the maneuver.
 - 1-3 Calculate the approximate **distance travelled** during the burn time.
 - 1-4 Determine the ratio of your answer to 1-2 to the period of the initial and final orbit.
 - 1-5 Determine the ratio of your answer to 1-3 to the circumference of the initial and final orbit.
- 2) A satellite in orbit 1 undergoes an ΔV impulsive maneuver at its perigee P_1 such that the new orbit has the same eccentricity e, but its apse line is rotated 90^0 clockwise from the original one. Compute the angular momentum of orbit 2 (h_2) in terms of that of orbit $1(h_1)$ and the eccentricity.

3) Two spacecrafts are in the same 8000x13000 Km (radius) elliptical Earth orbit. Spacecraft 1 one is at the perigee while spacecraft 2 is 30° ahead. Calculate the total ΔV required for spacecraft 1 to intercept and rendezvous with spacecraft 2 when spacecraft 2 has traveled 60° .

Hint: This is a chasing maneuver and requires Lamberts formulas as well.

- 4) The vector connecting the apogee to perigee of an Earth orbiting satellite is given. The radial velocity component of the satellite at point C on the orbit is also provided. Given these information:
 - 1-1 Find the satellite orbit equation in polar coordinates (2D).
 - 1-2 The satellite current position, velocity and flight path angle.

Hint1: \vec{r}_{PA} is the direction of eccentricity vector.

Hint2: \vec{v}_{rc} also lies in the orbital plane.

$$[\vec{r}_{PA}]^{ECI} = [9798 \quad 5657 \quad 11314]^T \ km$$

$$[\vec{v}_{r_C}]^{ECI} = [-0.1 \quad 0.2 \quad 0.3]^T \ km / s$$

5) Orbit 1 has an angular momentum h and an eccentricity of e. The direction of motion is shown. Find a relation for the required impulse ΔV (as a function known parameters: h, e, μ) to rotate the Orbit 1, 90 ° about its latus rectum BC without changing h and e to transfer to Orbit 2. That means the orbit shape will remain the same.

Hint1: The impulse is made at point B.

Hint2: True anomalies at B are not the same on both orbits.

Hint3:
$$\Delta v = \sqrt{(v_{r2} - v_{r1})^2 + v_{\perp 1}^2 + v_{\perp 2}^2 - 2v_{\perp 1}v_{\perp 2}\cos\delta}$$

Bonus Problems: (Optional)

B1: Consider the problem of transferring between two coplanar orbits 1 to 2 whose polar equations are given: $r_1 = \frac{7200}{1 + 0.5\cos\theta_1}$, $r_2 = \frac{8064}{1 + 0.4\cos\theta_2}$ using a single impulse.

- a- Find the range of possible values of θ_1 for which the transfer to r_2 is possible.
- b- Find a functional relation for $\Delta V = f(\theta_I)$ that can be utilized to find the optimum θ_I that yields the minimum the required impulsive velocity for transfer to orbit 2.
- c- Determine the optimum value of $\theta_{\scriptscriptstyle I}$ and its corresponding $\Delta V_{\scriptscriptstyle min}$.