

HOW TO

Given a polynomial function f, find the x-intercepts by factoring.

- 1. Set f(x) = 0.
- 2. If the polynomial function is not given in factored form:
 - a. Factor out any common monomial factors.
 - b. Factor any factorable binomials or trinomials.
- 3. Set each factor equal to zero and solve to find the x- intercepts.

EXAMPLE 2

Finding the x-Intercepts of a Polynomial Function by Factoring

Find the *x*-intercepts of $f(x) = x^6 - 3x^4 + 2x^2$.

⊘ Solution

We can attempt to factor this polynomial to find solutions for f(x) = 0.

$$x^6 - 3x^4 + 2x^2 = 0$$
 Factor out the greatest common factor.
 $x^2(x^4 - 3x^2 + 2) = 0$ Factor the trinomial.
 $x^2(x^2 - 1)(x^2 - 2) = 0$ Set each factor equal to zero.

$$(x^{2}-1) = 0$$
 $(x^{2}-2) = 0$
 $x^{2} = 0$ or $x^{2} = 1$ or $x^{2} = 2$
 $x = 0$ $x = \pm 1$ $x = \pm \sqrt{2}$

This gives us five x- intercepts: $(0,0),(1,0),(-1,0),(\sqrt{2},0)$, and $(-\sqrt{2},0)$. See <u>Figure 3</u>. We can see that this is an even function.

EXAMPLE 3

Finding the x-Intercepts of a Polynomial Function by Factoring

Find the *x*- intercepts of $f(x) = x^3 - 5x^2 - x + 5$.

Solution

Find solutions for f(x) = 0 by factoring.