Logika (MSc)

Szekventkalkulusok

Tartalom

Szekvent módszer

A szekvent módszer szintaxisa I.

- Γ, Δ: véges formulahalmazok (véges, nem rendezett formulasorozatok)
- A, B, ...: formulák
- (Γ, Δ) pár: szekvent; jelölése: $\Gamma \to \Delta$. A \to jel szándék szerint implikációt reprezentál.

A szekvent módszer szintaxisa II.

Megengedjük, hogy a (Γ, Δ) szekventben akár Γ , akár Δ egyetlen formulát se tartalmazzon.

- Ha Γ üres, a $\emptyset \to \Delta$ helyett $\to \Delta$ -t írunk.
- Ha Δ üres, a $\Gamma \to \emptyset$ helyett $\Gamma \to -t$ írunk.
- Mindkét formulahalmaz lehet üres szekvent: →.
- Ha $\Gamma = \{A_1, A_2, \ldots, A_n\}$ és $\Delta = \{B_1, B_2, \ldots, B_n\}$ véges nem rendezett formulasorozatok, és A, B ítéletlogikai formulák, akkor A, $\Gamma \to \Delta$, B -t írunk, ami az $A, A_1, A_2, \ldots, A_n \to B_1, B_2, \ldots, B_m, B$ szekventet jelenti.

Elsőrendben a szintaxis értelemszerűen ugyanez (Tk.215.o.).

A szekvent módszer szemantikája

Legyen $\mathcal I$ az ítéletlogika nyelvének egy interpretációja, $\mathcal B_{\mathcal I}$ pedig $\mathcal I$ -beli Boole értékelés.

Legyen $\mathcal{B}_{\mathcal{I}}(\Gamma \to \Delta)$ pontosan akkor i igazságértékű, ha van olyan A_k a Γ -ban, hogy $\mathcal{B}_{\mathcal{I}}(A_k) = h$ vagy van olyan B_r a Δ -ban, hogy $\mathcal{B}_{\mathcal{I}}(B_r) = i$.

Egyébként $\mathcal{B}_{\mathcal{I}}$ legyen h igazságértékű.

Szekventek jelentése a szemantika alapján

•
$$\mathcal{B}_{\mathcal{I}}(\rightarrow) = h$$
,

•
$$\mathcal{B}_{\mathcal{I}}(\to B) = \mathcal{B}_{\mathcal{I}}(B)$$
,

•
$$\mathcal{B}_{\mathcal{I}}(A \to) = \mathcal{B}_{\mathcal{I}}(\neg A)$$
,

•
$$\mathcal{B}_{\mathcal{I}}(A \to B) = \mathcal{B}_{\mathcal{I}}(A \supset B)$$
,

•
$$\mathcal{B}_{\mathcal{I}}(A_1, A_2 \to B_1, B_2) = \mathcal{B}_{\mathcal{I}}(A_1 \land A_2 \supset B_1 \lor B_2),$$

• ...

Szekventek jelentése

A szekventek szemantikája szerint írhatjuk általánosan azt, hogy

$$\mathcal{B}_{\mathcal{I}}(\Gamma \to \Delta) =$$

$$= \mathcal{B}_{\mathcal{I}}(A_1, A_2, \dots, A_n \to B_1, B_2, \dots, B_m) =$$

$$= \mathcal{B}_{\mathcal{I}}(\top \land A_1 \land A_2 \land \dots \land A_n \supset B_1 \lor B_2 \lor \dots \lor B_m \lor \bot) =$$

$$= \mathcal{B}_{\mathcal{I}}(A_1 \land A_2 \land \dots \land A_n \supset B_1 \lor B_2 \lor \dots \lor B_m),$$

ahol a baloldal tautológia (\top) , ha Γ üres, a jobboldal pedig azonosan hamis (\bot) , ha Δ üres.

A szemantika elsőrendben értelemszerűen ugyanígy működik.

A szekventkalkulus szabályrendszerei

Azt mondjuk, hogy **egy szekvent teljesül**, ha valahányszor a nyíl baloldalán lévő minden formula igaz a nyíl jobboldalán lévő formulák legalább egyike igaz.

A szekventkalkulus szabályrendszere:

- Gentzen féle (G-kalkulus)
- Curry-féle (C-kalkulus) szabályai megfordíthatók

Axiómák: $X, \Gamma \rightarrow \Delta, X, \dots$

A szabályokban az axióma egy kitüntetett szekvent, egy levezetési szabály két szekventből áll, egy logikai összekötőjelhez tartozik, ami a második szekventben szerepel egy formulában vagy a \rightarrow jel bal vagy a jobb oldalán.

Így minden logikai összekötőjelhez két szabály tartozik. $\circ \to \mathsf{vagy} \to \circ$ jelöléssel aszerint, hogy a \circ logikai művelet a második szekventben a $\to \mathsf{melyik}$ oldalán szerepel.

A G-kalkulus szabályai I.

axiómaséma

$$X \to X$$

levezetési szabályok

$$(\rightarrow sz) \qquad (sz \rightarrow)$$

$$\frac{\Gamma \rightarrow \Delta, X, X}{\Gamma \rightarrow \Delta, X} \qquad \frac{X, X, \Gamma \rightarrow \Delta}{X, \Gamma \rightarrow \Delta}$$

$$(\rightarrow b) \qquad (b \rightarrow)$$

$$\frac{\Gamma \rightarrow \Delta}{\Gamma \rightarrow \Delta, X} \qquad \frac{\Gamma \rightarrow \Delta}{X, \Gamma \rightarrow \Delta}$$

A G-kalkulus szabályai II.

$$(\rightarrow \supset) \qquad (\supset \rightarrow)$$

$$\frac{X, \Gamma \to \Delta, Y}{\Gamma \to \Delta, (X \supset Y)} \qquad \frac{\Gamma \to \Delta, X}{(X \supset Y), \Gamma \to \Delta}$$

$$(\rightarrow \land) \qquad (\land \rightarrow)$$

$$\frac{\Gamma \to \Delta, X}{\Gamma \to \Delta, (X \land Y)} \qquad \frac{X, \Gamma \to \Delta}{(X \land Y), \Gamma \to \Delta} \qquad \frac{Y, \Gamma \to \Delta}{(X \land Y), \Gamma \to \Delta}$$

$$(\rightarrow \lor) \qquad (\lor \rightarrow)$$

$$\frac{\Gamma \to \Delta, X}{\Gamma \to \Delta, (X \lor Y)} \qquad \frac{\Gamma \to \Delta, Y}{\Gamma \to \Delta, (X \lor Y)} \qquad \frac{X, \Gamma \to \Delta}{(X \lor Y), \Gamma \to \Delta}$$

$$(\rightarrow \neg) \qquad (\neg \rightarrow)$$

$$\frac{X, \Gamma \to \Delta}{\Gamma \to \Delta, \neg X} \qquad \frac{\Gamma \to \Delta, X}{\neg X, \Gamma \to \Delta}$$

A G-kalkulus kvantoros levezetési szabályai

$$(\forall \to) \qquad \frac{[A(x \parallel t)], \Gamma \to \Delta}{\forall xA, \Gamma \to \Delta} \qquad (\to \forall) \qquad \frac{\Gamma \to \Delta, A}{\Gamma \to \Delta, \forall xA} \quad (x \notin Par(\Gamma, \Delta))$$
$$(\exists \to) \qquad \frac{A, \Gamma \to \Delta}{\exists xA, \Gamma \to \Delta} \quad (x \notin Par(\Gamma, \Delta)) \qquad (\to \exists) \qquad \frac{\Gamma \to \Delta, [A(x \parallel t)]}{\Gamma \to \Delta, \exists xA}$$

A C-kalkulus szabályai

 $(\rightarrow \neg)$

axiómaséma

 $X, \Gamma \rightarrow \Delta, X$

levezetési szabályok

$$(\rightarrow \supset) \qquad \frac{X, \Gamma \to \Delta, Y}{\Gamma \to \Delta, (X \supset Y)} \qquad (\supset \to) \qquad \frac{\Gamma \to \Delta, X}{(X \supset Y), \Gamma \to \Delta}$$

$$(\to \land) \quad \frac{\Gamma \to \Delta, X \quad \Gamma \to \Delta, Y}{\Gamma \to \Delta, (X \land Y)} \qquad (\land \to) \qquad \frac{X, Y, \Gamma \to \Delta}{(X \land Y), \Gamma \to \Delta}$$

$$(\rightarrow \vee) \qquad \frac{\Gamma \rightarrow \Delta, X, Y}{\Gamma \rightarrow \Delta, (X \vee Y)} \qquad (\vee \rightarrow) \qquad \frac{X, \Gamma \rightarrow \Delta}{(X \vee Y), \Gamma \rightarrow \Delta}$$

$$\frac{\Delta}{X}$$
 $(\neg \rightarrow)$ $\frac{\Gamma \rightarrow \Delta, X}{\neg X, \Gamma \rightarrow \Delta}$

A C-kalkulus kvantoros levezetési szabályai

$$(\forall \to) \qquad \frac{[A(x \parallel t)], \forall x A, \Gamma \to \Delta}{\forall x A, \Gamma \to \Delta} \qquad (\to \forall) \qquad \frac{\Gamma \to \Delta, A}{\Gamma \to \Delta, \forall x A} \quad (x \notin Par(\Gamma, \Delta))$$

$$(\exists \to) \qquad \frac{A, \Gamma \to \Delta}{\exists x A, \Gamma \to \Delta} \quad (x \notin Par(\Gamma, \Delta)) \qquad (\to \exists) \qquad \frac{\Gamma \to \Delta, [A(x \parallel t)], \exists x A}{\Gamma \to \Delta, \exists x A}$$

Levezetésfa

A K-kalkulusbeli levezetésfa és a levezetésfa magassága

- 1 A K-kalkulus minden axiómaszekventje egy levezetésfa, ez a szekvent lesz a levezetésfa gyökere. A levezetésfa magassága 1.
- 2 Ha $\mathcal D$ m magasságú olyan $\mathbf K$ -kalkulusbeli levezetésfa, amelynek gyökere valamely $\mathbf K$ -kalkulusbeli levezetési szabályban épp vonal feletti szekvent, akkor a levezetési szabállyal a vonal alatti S szekventet előállítva

 $\frac{\mathcal{L}}{S}$

is K-kalkulusbeli levezetésfa, ahol az S szekvent a kapott levezetésfa gyökere, és a levezetésfa magassága m+1.

3 Ha \mathcal{D}_1 és \mathcal{D}_2 rendre m_1 és m_2 magasságú olyan \mathbf{K} -kalkulusbeli levezetésfák, melyek gyökerei valamely \mathbf{K} -kalkulusbeli levezetési szabályban épp vonal feletti szekventek, akkor előállítva a levezetési szabállyal a vonal alatti S szekventet,

$$\frac{\mathcal{D}_1 \quad \mathcal{D}_2}{S}$$

is levezetésfa a K-kalkulusban, amelyben az S szekvent lesz a levezetésfa gyökere, és a levezetésfa magassága $\max(m_1, m_2) + 1$.

4 Minden levezetésfa az 1–3. szabályok véges sokszori alkalmazásával áll elő.

Levezetésfa példa

Példa

A C-kalkulusban az alábbi fa 3 magasságú levezetésfa, melynek gyökere a $\to A \supset (B \supset A)$ szekvent:

$$\frac{A, B \to A}{A \to B \supset A} \quad [(\to \supset)]$$

$$\to A \supset (B \supset A)$$

A szekventek mellett zárójelek között megadtuk azt a levezetési szabályt, melyet alkalmazva a szekvent előállt.

A G-kalkulusban a fa nem levezetésfa, hisz a G-kalkulusban $A,B\to A$ nem axiómaszekvent.

Szekvent bizonyíthatósága

Definíció

Egy S szekvent a \mathbf{K} -kalkulusban **bizonyítható**, ha van olyan \mathbf{K} -kalkulusbeli levezetésfa, melynek S a gyökere. Jelölése: $\vdash_{\mathbf{K}} S$.

Példa

Az $A \wedge B \to B \wedge A$ szekvent a **G**-kalkulusban az alábbi (3 magasságú) levezetésfával bizonyítható:

$$\frac{B \to B}{A \land B \to B} \ [(\land \to)] \qquad \frac{A \to A}{A \land B \to A} \ [(\land \to)]$$
$$A \land B \to B \land A \qquad [(\land \to)]$$

Elérhető szabály

Definíció

Jelölje ${\bf K}_1$ a ${\bf G}$ - és ${\bf C}$ -kalkulusok egyikét, és ${\bf K}_2$ a másikat. Azt mondjuk, hogy egy a ${\bf K}_1$ -kalkulusbeli

$$\frac{S_1}{S_2}$$

levezetési szabály **elérhető** a \mathbf{K}_2 -kalkulusból, ha minden olyan esetben, amikor $\vdash_{\mathbf{K}_2} S_1$, akkor $\vdash_{\mathbf{K}_2} S_2$ is. Hasonlóan, egy a \mathbf{K}_1 -kalkulusbeli

$$\frac{S_1}{S_3}$$

levezetési szabály **elérhető** a \mathbf{K}_2 -kalkulusból, ha minden olyan esetben, amikor $\vdash_{\mathbf{K}_2} S_1$ és $\vdash_{\mathbf{K}_2} S_2$, akkor $\vdash_{\mathbf{K}_2} S_3$ is.

G és C kalkulusok ekvivalenciája

Tétel

Ha egy szekvent bizonyítható ${f C}$ kalkulusban, akkor bizonyítható ${f G}$ kalkulusban is (Tk.6.2.17.).

Ha egy szekvent bizonyítható ${f G}$ kalkulusban, akkor bizonyítható ${f C}$ kalkulusban is (Tk.6.2.20.).

Bizonyítás: levezetésfa magassága szerinti indukcióval

Szükséges segédlemmák:

- A C-kalkulus axiómái bizonyíthatók a G-kalkulusban, azaz tetszőleges A formula és Γ, Δ formulasorozat esetén $\vdash_{\mathbf{G}} A, \Gamma \to \Delta, A$.
- A C-kalkulus minden levezetési szabálya elérhető a G-kalkulusból.
- A G-kalkulus axiómái bizonyíthatók a C-kalkulusban, azaz tetszőleges A formula esetén $\vdash_{\mathbf{C}} A \to A$.
- A G-kalkulus minden levezetési szabálya elérhető a C-kalkulusból.

A szekventkalkulus helyessége

Minden levezetési szabály szekventre $\mathcal{B}_{\mathcal{I}}(\Gamma \to \Delta)$ igaz fennáll. Ez az alapja a szekvent kalkulus helyességének:

Tétel

Ha egy szekvent bizonyítható a ${\bf C}$ kalkulusban, akkor a megfelelő $A_1 \wedge A_2 \wedge \ldots \wedge A_n \supset B_1 \vee B_2 \vee \ldots \vee B_k$ formulának van bizonyítása az ítéletkalkulusban.

Bizonyítás: tegyük fel, hogy $\vdash_{\mathbf{C}} \Gamma \to \Delta$. A \mathbf{C} -kalkulusbeli levezetésfa magassága szerinti indukcióval bizonyítjuk be, hogy $A_1 \wedge A_2 \wedge \ldots \wedge A_n \supset B_1 \vee B_2 \vee \ldots \vee B_k$. Az egyes indukciós lépésekben $A_1 \wedge A_2 \wedge \ldots \wedge A_n \supset B_1 \vee B_2 \vee \ldots \vee B_k$ ítéletkalkulusbeli bizonyíthatóságát természetes technikával igazoljuk.

A szekventkalkulus teljessége

Tétel

Ha $\vdash_0 B$, azaz B bizonyítható az ítéletkalkulusban, akkor $\to B$ bizonyítható a ${\bf C}$ kalkulusban, azaz ha $\vdash_0 B$, akkor $\vdash_{\bf C} \to B$.

Bizonyítás: Tegyük fel, hogy $\vdash_0 B$, azaz adott a $D_1, D_2, \ldots, D_m = B$ levezetés. Meg kell mutatni, hogy minden D_k $(1 \le k \le m)$ formulára $\vdash_{\mathbf{C}} D_k$. Ha D_k -t modus ponenssel kaptuk, akkor a lenti lemma miatt tudjuk ezt igazolni.

Szükséges segédlemmák:

- Ha A az ítéletkalkulus axiómája, akkor $\to A$ bizonyítható a ${f C}$ -kalkulusban.
- Az ítéletkalkulus levezetési szabálya, a modus ponens, elérhető a \mathbf{C} -kalkulusból, azaz ha $\vdash_{\mathbf{C}} \to A$ és $\vdash_{\mathbf{C}} \to A \supset B$, akkor $\vdash_{\mathbf{C}} \to B$.

Megfordíthatóság

Definíció

Azt mondjuk, hogy egy szekventkalkulusbeli

$$\frac{S_1}{S_2}$$

levezetési szabály **megfordítható**, ha minden olyan esetben, amikor S_2 szekvent bizonyítható, akkor S_1 is bizonyítható. Hasonlóan, egy

$$\frac{S_1 \quad S_2}{S_3}$$

levezetési szabály **megfordítható**, ha minden olyan esetben, amikor S_3 bizonyítható, akkor S_1 és S_2 is bizonyíthatók.

Lemma

A C-kalkulus levezetési szabályai megfordíthatók.