Sistemas Contínuos

IFCe – Instituto Federal do Ceará Departamento de Telemática

Prof. Dr. Regis C. P. Marques regismarques@ifce.edu.br

- Introdução -

 Um sistema é definido matematicamente como uma transformação ou operador que mapeia um sinal de entrada x(t) em um sinal de saída y(t), sendo representado por

Obs: qualquer função matemática do tipo y(t)=f(x(t)) pode ser considerado um sistema, contudo nem toda função tem uma aplicação prática a ser considerada no nosso estudo.

Obs: trataremos apenas de sistemas com uma entra e uma saída (SISO – single input, single output).

Classificação dos sistemas

Linearidade: no domínio contínuo, alguns sistemas conhecidos podem ser utilizados como exemplo.

Sistemas lineares	Sistemas não lineares
Circuitos elétricos compostos	
de resistores, capacitores e	Modulador AM
indutores	
Amplificador linear	Portas lógicas
Integrador	Controlador de ganho automático
Derivador	Conversor de onda
Somador digital	Multiplicador de freqüência

 Linearidade: independente do domínio (contínuo ou discreto) para ser linear o sistema deve ser aditivo

$$x_1 \longrightarrow y_1 \quad x_2 \longrightarrow y_2$$

$$x_1 + x_2 \longrightarrow y_1 + y_2$$

e homogêneo

$$x \longrightarrow y$$

$$kx \longrightarrow ky$$

O que é conhecido em circuitos como a propriedade da superposição:

$$x_1 \longrightarrow y_1 \quad x_2 \longrightarrow y_2$$

$$k_1x_1 + k_2x_2 \longrightarrow k_1y_1 + k_2y_2$$

* Invariância: Matematicamente, um sistema é invariante no tempo se, para uma entrada $x_1(t)=x(t-T)$, a saída será $y_1(t)=y(t-T)$, para qualquer valor de T.

- Sistemas instantâneos e dinâmicos: um sistema é dito sem memória (instantâneo) se sua resposta no instante t depende apenas da entrada no mesmo instante. Sistemas com memória são também chamados de sistemas dinâmicos.
- Sistema <u>com memória</u>: circuitos com elementos que armazenam energia (<u>capacitores e indutores</u>).
- Sistema <u>sem memória:</u> circuitos puramente <u>resistivos</u>.

Obs: a maioria do sistemas são sistemas com memória.

- **Causalidade:** Um sistema é causal ou *não antecipativo* se para qualquer t_0 , $y(t_0)$ depende somente de valores de x(t) para $t \le t_0$
- Sistema causal: todo sistema realizável é causal.

Sistema não causal: sistemas discretos, nos quais a variável independente não é o tempo e sim o espaço, podem ser não causais.

$$y[n] = x[n] + 2.x[n-1] - x[n+2]$$

Estabilidade: a estabilidade é uma importante propriedade. Um sistema é considerado estável se para qualquer entrada limitada, o sistema terá sempre saída limitada.

◆ Este sistema é chamado sistema BIBO (bounded input → bounded output)

Um sinal é limitado se $|x(t)| \le L < \infty$, em que L é o limite de amplitude tolerado pelo sistema.

O sistema integrador é um exemplo de sistema instável. Por que?

Resumo

Sinais	Sistemas
Contínuo ou discreto	Contínuo ou discreto
Analógico ou digital	Analógico ou digital
Causal ou não causal	Causal ou não causal
Limitado ou não limitado	Estável ou instável
Outras: periódico ou não,	Outras: linear ou não linear, variante
aleatório ou determinístico	ou invariante, com ou sem memória.

Obs1: Nesta disciplina trataremos apenas sistemas LTI, contínuos e analógicos.

Obs2: a estabilidade é um requisito de projeto do sistema.

Sistemas Lineares Diferenciais

Circuitos elétricos que envolvem reatância (capacitores ou indutores) levam necessariamente à solução de equações diferenciais, visto que a tensão (ou corrente) nesses elementos são dadas por:

$$V_c(t) = \frac{1}{C} \int_0^t i_c(\tau) d\tau \qquad V_L(t) = L \frac{di_L(t)}{dt}$$

$$V_L(t) = L \frac{di_L(t)}{dt}$$

Ex:

$$v_L(t) + v_R(t) + v_C(t) = x(t)$$

$$\frac{dy}{dt} + 3y(t) + 2\int_{-\infty}^{t} y(\tau) d\tau = x(t)$$

$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y(t) = \frac{dx}{dt}$$

Em geral, a relação entrada-saída de um sistema diferencial linear e invariante é dada por:

$$\frac{d^{N}y}{dt^{N}} + a_{1}\frac{d^{N-1}y}{dt^{N-1}} + \dots + a_{N-1}\frac{dy}{dt} + a_{N}y(t)$$

$$=b_{N-M}\frac{d^Mx}{dt^M}+b_{N-M+1}\frac{d^{M-1}x}{dt^{M-1}}+\cdots+b_{N-1}\frac{dx}{dt}+b_Nx(t)$$

Se D^N=d^Nx/dt^N

Q(D) y(t) = P(D) x(t)

$$(D^{N} + a_{1}D^{N-1} + \dots + a_{N-1}D^{N} + a_{N})y(t)$$

$$= (b_{N-M}D^{M} + b_{N-M+1}D^{M-1} + \dots + b_{N-1}D^{N} + ba_{N})x(t)$$

Seguindo o exemplo anterior:

$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y(t) = \frac{dx}{dt}$$

$$Q(D) = Dx(t)$$

$$Q(D) \qquad P(D)$$

- Q(D) é chamado polinômio característico e associaremos ao seu grau a letra N.
- Se P(D) tem grau M, para o sistema acima temos:

N=2; M=1;
$$a_0$$
=1; a_1 =3; a_2 =2; b_0 =0; b_1 =1; b_2 =0.

- ❖ Todo sistema prático tem obrigatoriamente, M≤N. Sistemas em que M>N são sistemas do tipo diferenciador, o qual é sempre instável.
- ❖ Cuidado! Todo sistema estável tem M≤N, mas nem todo sistema com M≤N é estável. A estabilidade deve ser comprovada observando-se o valor dos pólos do sistema.

Análise no Domínio do Tempo

- Resposta do Sistema -

- Um circuito elétrico pode apresentar uma saída (ou resposta) devido a dois fatores: um sinal aplicado à sua entrada ou a cargas armazenas em elementos reativos.
- O primeiro caso é analisado considerando-se que todos os elementos estão descarregados e um sinal x(t) é aplicado a entrada. Essa saída é chamada resposta em estado nulo.
- No segundo caso considera-se que x(t)=0 e que existe algum estado (carga armazenada) no circuito. Esta saída é chamada resposta a entrada nula.

- Resposta do Sistema -

- No circuito abaixo, se Vc(t)=0 e y(t)=0 para t<0, qualquer resposta y(t), em t>0 será efeito de alguma entrada x(t) aplicada no circuito em t=0. (Resposta em estado nulo)
- ❖ Por outro lado, se x(t)=0, para todo t, qualquer resposta y(t)observada em t>0, será efeito de alguma carga presente no circuito e armazenada em C ou L. (Resposta a entrada nula)

Resposta a entrada nula

* Lembrando que a equação geral de um sistema diferencial linear é Q(D) y(t) = P(D) x(t)

$$(D^{N} + a_{1}D^{N-1} + \dots + a_{N-1}D + a_{N})y(t)$$

= $(b_{N-M}D^{M} + b_{N-M+1}D^{M-1} + \dots + b_{N-1}D + b_{N})x(t)$

No caso da resposta a entrada nula, tem-se que x(t)=0 e logo:

$$Q(D)y_0(t)=0$$

Utilizaremos a notação y₀(t) para indicar a resposta a entrada nula

$$(D^{N} + a_{1}D^{N-1} + \dots + a_{N-1}D^{N} + a_{N})y_{0}(t) = 0$$

A equação diferencial

$$(D^N + a_1 D^{N-1} + \dots + a_{N-1} D^N + a_N) y_0(t) = 0$$

Tem solução do tipo

$$y_0(t) = ce^{\lambda t}$$

Em que

$$D^{N}y_{0}(t) = \frac{d^{N}y_{0}(t)}{dt^{N}} = c\lambda^{N}e^{\lambda t}$$

* λ é raiz de Q(λ) e *C* depende de condições iniciais, determinadas a partir dos estados do sistema.

* Se Q(λ) tem N <u>raízes distintas</u> ($\lambda_1, \lambda_2, ... \lambda_N$), então a equação

$$(D^N + a_1 D^{N-1} + \dots + a_{N-1} D^N + a_N) y_0(t) = 0$$

tem N possíveis soluções, logo

$$y_0(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t} + \dots + c_N e^{\lambda_N t}$$

- * Um sistema de ordem N, terá N constantes $(C_1, C_2, ... C_N)$ e portanto devem ser conhecidas N condições.
- As raízes λ são chamadas valores característicos ou autovalores.
- Os termos $e^{\lambda t}$ são chamados *modos característicos*. Os modos característicos determinam o comportamento do sistema.

Seguindo o exemplo anterior, considere que são conhecidas

$$+ \sum_{C = \frac{1}{2}F} v_{C(t)} (D^2 + 3D + 2) y_0(t) = 0$$

• Calculando-se os valores característicos (raízes de Q(λ)) temos: $\lambda^2 + 3\lambda + 2 = (\lambda + 1)(\lambda + 2) = 0$

$$\lambda_1 = -1$$
 $\lambda_2 = -2$

Substituindo os modos característicos na solução do sistema, temos:

$$y_0(t) = c_1 e^{-t} + c_2 e^{-2t}$$

Conhecendo-se as duas condições iniciais, podemos resolver o seguinte sistema linear:

$$0 = c_1 + c_2$$
$$-5 = -c_1 - 2c_2$$

Temos como solução

$$y_0(t) = -5e^{-t} + 5e^{-2t}$$

* No caso de $Q(\lambda)$ possuir <u>raízes repetidas</u>, a solução será da forma

$$y_0(t) = (c_1 + c_2 t + \dots + c_r t^{r-1})e^{\lambda t}$$

Para uma raiz λ que se repete r vezes.

 Exemplo: encontre a resposta a entrada nula, do sistema cuja equação diferencial é dada por:

$$(D^2 + 6D + 9) y(t) = (D + 3)^2 x(t)$$

Com condições iniciais

$$y_0(0) = 3$$
, $\dot{y}_0(0) = -7$

* No caso de $Q(\lambda)$ possuir <u>raízes complexas</u>, a solução será da forma

$$y_0(t) = c_1 e^{(\alpha + j\beta)t} + c_2 e^{(\alpha - j\beta)t}$$

Para que $y_0(t)$ seja real, C_1 e C_2 devem ser complexos conjugados:

$$c_1 = \frac{c}{2}e^{j\theta} \qquad c_2 = \frac{c}{2}e^{-j\theta}$$

assim

$$y_0(t) = \frac{c}{2} e^{j\theta} e^{(\alpha + j\beta)t} + \frac{c}{2} e^{-j\theta} e^{(\alpha - j\beta)t}$$
$$= \frac{c}{2} e^{\alpha t} \left[e^{j(\beta t + \theta)} + e^{-j(\beta t + \theta)} \right]$$
$$= c e^{\alpha t} \cos(\beta t + \theta)$$

- Quando analisamos um circuito, na prática, as condições iniciais: y₀(0), dy₀(0)/dt, ..., dⁿy₀(0)/dtⁿ devem ser derivadas dos estados observados nos capacitores e indutores presentes no circuito.
- Dado o circuito abaixo, e sabendo que V_C(0⁻)= 5 Volts e V_L(0⁻)=
 -5 Volts, Determine as condições iniciais para obtenção da a resposta a entrada nula .

Lembre que:

$$I_C = C \frac{dV_C}{dt}$$

$$V_L = L \frac{dI_L}{dt}$$

- Estabilidade Interna

- Os modos característicos têm importância particular na determinação da estabilidade interna do sistema. O modo característico pode ser visto como o comportamento dissipativo do sistema.
- Se o modo característico é decrescente, isso indica que a energia armazenada no sistema é dissipada. Este comportamento é garantido se <u>\R{\lambda}</u>

Resposta em estado nulo

- Consideraremos agora a situação na qual todo o sistema encontra-se relaxado e a saída y(t) observada em t>0 é consequência de uma entrada x(t) conhecida. Essa saída é chamada resposta em estado nulo.
- Para obter a resposta em estado nulo, primeiramente deve-se conhecer a resposta impulsiva do sistema.
- Devido as propriedades da função impulso, se conhecemos a resposta do sistema a esta função, podemos deduzir a resposta do sistema a qualquer outro sinal limitado x(t).

- Considere o sinal x(t) abaixo. Podemos aproximá-lo por segmentos de reta, que representam o topo dos retângulos mostrados.
- É fato que quanto mais estreito é o retângulo p(t), mais fiel é a representação. Ou seja:

$$x(t) = \lim_{\Delta \tau \to 0} \sum_{r} x(n\Delta \tau) p(t - n\Delta \tau)$$

* Considerando um caso ideal, o pulso p(t) converge para um impulso $\delta(t)$, então x(t) passa a ser expresso como:

$$x(t) = \lim_{\Delta \tau \to 0} \sum_r x(n\Delta \tau) \, \delta(t - n\Delta \tau) \, \Delta \tau$$

* Sabendo que a relação entrada-saída de um sistema linear e invariante é y(t)= $T\{x(t)\}$ e que $x(n\Delta\tau)$ é constante, temos

$$y(t) = \lim_{\Delta \tau \to 0} \sum_{\tau} x(n\Delta \tau) h(t - n\Delta \tau) \Delta \tau$$

em que h(t)=T $\{\delta(t)\}$ é a resposta do sistema quando aplicado um impulso em sua entrada.

Solucionando-se o limite para $\Delta \tau \rightarrow 0$, a resposta em estado nulo de um sistema com resposta impulsiva h(t) é obtida a partir da *integral de convolução*, definida como

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

É importante salientar que <u>a resposta em estado nulo</u> do sistema representa <u>uma relação entrada-saída (relação</u> <u>externa)</u> e apenas representa a saída total se considerarmos que o sistema é observável e controlável. Caso em que a resposta a entrada nula é sempre zero.

- Propriedades da Convolução -

Comutativa

$$x(t) * h(t) = h(t) * x(t)$$

Distributiva

$$x(t) * [h_1(t) + h_2(t)] = x(t) * h_1(t) + x(t) * h_2(t)$$

Esta propriedade é útil para análise de sistemas em paralelo

- Propriedades da Convolução -

Associativa

$$x(t) * [h_1(t) * h_2(t)] = [x(t) * h_1(t)] * h_2(t)$$

Esta propriedade é útil para análise de sistemas em série

$$y(t) = [h_1(t) * h_2(t)] * x(t)$$

$$\delta(t) \qquad b_2(t) \qquad h(t) = h_2(t) * h_1(t)$$

- Propriedades da Convolução -

Convolução com impulso

$$x(t) * \delta(t) = x(t)$$

Qual quer sistema do tipo h(t)= $A\delta(t)$ é um sistema que não altera x(t), apenas gera um ganho, sendo y(t)= Ax(t).

Largura: se x(t) tem duração de T₁ segundos e h(t) T₂ segundos, y(t) terá duração de T₁+T₂ segundos.

- Propriedades da Resposta ao Impulso -

Causalidade: um sistema será causal se:

$$h(t) = 0; t < 0$$

Memória: um sistema é dito sem memória somente se

$$h(t) = 0; t \neq 0$$

Os únicos sistemas sem memória são o amplificador e o resistivo, pois teem resposta impulsiva do tipo h(t)= $A\delta(t)$.

Estabilidade externa: um sistema é BIBO estável se:

$$\int_{-\infty}^{\infty} |h(t)| dt < \infty$$

- Análise gráfica da Convolução -

Considere a convolução entre as funções:

* A integral é definida em função de τ. Devemos ter em mente que na convolução as funções são definidas como $x(\tau)$ e $h(\tau)$. Na integral <u>t</u> é <u>um deslocamento no tempo</u>.

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

- Análise gráfica da Convolução -

Para t<0 temos:</p>

Para t=0 temos:

Nestas situações o produto $x(\tau)h(t-\tau)=0$. Não ocorre interseção entre as funções

- Análise gráfica da Convolução -

Para t>0 temos:

Nesta situação a integral é solucionada como:

$$y(t) = \int_0^t e^{-\tau} e^{-2(t-\tau)} d\tau$$
$$= e^{-t} - e^{-2t}$$

Obtendo a Resposta ao Impulso de um Sistema LTI

 Dado qualquer sistema LTI, sua resposta ao impulso é dada por

$$h(t) = T\{\delta(t)\}\$$

- T{·} representa a transformação matemática realizada pelo sistema.
- * No caso dos sistemas estudados, e para $x(t) = \delta(t)$ e M=N, temos que T é a equação diferencial:

$$Q(D) y(t) = P(D) x(t)$$

$$(D^N + a_1 D^{N-1} + \dots + a_{N-1} D + a_N)h(t)$$

$$= (b_0 D^N + b_1 D^{N-1} + \dots + b_{N-1} D + b_N) \delta(t)$$

- Devemos analisar o sistema em dois instantes:
 - 1. **t=0:** neste instante o sistema encontra-se relaxado e o sinal observado na saída é resultado somente da entrada $x(t) = \delta(t)$. A solução da equação diferencial é

$$h(t) = b_0 \delta(t)$$

t=0+: o impulso aplicado no sistema cessa e gera estados (carrega os elementos reativos). A partir deste instante a saída é dada por

 $h(t) = b_0 \delta(t) + \text{termos dos modos característicos}$

A solução geral para a obtenção da resposta ao impulso é dada por:

$$h(t) = b_0 \delta(t) + [P(D)y_n(t)]u(t)$$

Se M<N, $b_0=0$

Deve-se derivar y_n(t) segundo as operações em P(D)

em que y_n(t) é a resposta a entrada nula devido aos estados gerados pelo impulso, com condições iniciais:

$$y_n(0) = \dot{y}_n(0) = \ddot{y}_n(0) = \dots = y_n^{(N-2)}(0) = 0, \quad y_n^{(N-1)}(0) = 1$$

Exemplo: encontrar a resposta ao impulso do sistema:

$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y(t) = \frac{dx}{dt}$$

