

ЭТИКЕТКА

СЛКН.431235.009 ЭТ

Микросхема интегральная 564 ИПЗТ1ЭП Функциональное назначение – Арифметическо – логическое устройство

Условное графическое обозначение

Схема расположения выводов

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода	№ вывода	Назначение вывода
1	1-ый разряд слова В	9	Выход 1-го разряда функции F $\overline{\text{(F)}}$	17	Выход образования переноса
2	1-ый разряд слова А	10	Выход 2-го разряда функции \overline{F} (\overline{F})	18	4-ый разряд слова В
3	4-ый вход выбора функции	11	Выход 3-го разряда функции F $\overline{\text{(F)}}$	19	4-ый разряд слова А
4	3-ый вход выбора функции	12	Общий	20	3-ый разряд слова В
5	2-ый вход выбора функции	13	Выход 4-го разряда функции F $\overline{(F)}$	21	3-ый разряд слова А
6	1-ый вход выбора функции	14	Выход компаратора А=В	22	2-ый разряд слова В
7	Вход переноса	15	Выход распространения переноса	23	2-ый разряд слова А
8	Признак функции	16	Выход сквозного переноса	24	Питание

1. ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при t = (25 ± 10) °C) Таблица 1

Цанионования наваматра, одинина намарания, рожим намарания	Буквенное	Норма		
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более	
1	2	3	4	
1. Выходное напряжение низкого уровня, B, при: $U_{CC} = 5$ B, $U_{IL} = 0$ B, $U_{IH} = 5$ B $U_{CC} = 10$ B, $U_{IL} = 0$ B, $U_{IH} = 10$ B	U _{OL}	- -	0,01 0,01	
2. Выходное напряжение высокого уровня, B, при: $U_{CC} = 5$ B, $U_{IL} = 0$ B, $U_{IH} = 5$ B $U_{CC} = 10$ B, $U_{IL} = 0$ B, $U_{IH} = 10$ B	U _{ОН}	4,99 9,99	- -	
3. Максимальное выходное напряжение низкого уровня, B, при: $U_{CC}=5$ B, $U_{IL}=1,5$ B, $U_{IH}=3,5$ B $U_{CC}=10$ B, $U_{IL}=3,0$ B, $U_{IH}=7,0$ B	U _{OL max}	-	0,8 1,0	
4. Минимальное выходное напряжение высокого уровня, B, при: $U_{CC}=5$ B, $U_{IL}=1,5$ B, $U_{IH}=3,5$ B $U_{CC}=10$ B, $U_{IL}=3,0$ B, $U_{IH}=7,0$ B	U _{OH min}	4,2 9,0	- -	
5. Входной ток низкого уровня, мкА, при: U _{CC} = 10 B, U _{IL} = 0 B, U _{IH} = U _{CC} U _{CC} = 15 B, U _{IL} = 0 B, U _{IH} = U _{CC}	I_{IL}	- -	/-0,05/ /-0,10/	
6. Входной ток высокого уровня, мкА, при: $U_{CC} = 10 \text{ B, } U_{IL} = 0 \text{ B, } U_{IH} = U_{CC} \\ U_{CC} = 15 \text{ B, } U_{IL} = 0 \text{ B, } U_{IH} = U_{CC}$	I_{1H}	-	0,05 0,10	
7. Выходной ток низкого уровня, мА, при: $U_{CC} = 5 B, U_{IL} = 0 B, U_{IH} = U_{CC}, U_{O} = 0,4 B$ $U_{CC} = 10 B, U_{IL} = 0 B, U_{IH} = U_{CC}, U_{O} = 0,5 B$	I_{OL}	0,40 0,90	- -	
8. Выходной ток высокого уровня, мА, при: $U_{CC} = 5$ B, $U_{IL} = 0$ B, $U_{IH} = U_{CC}$, $U_{O} = 2.5$ B $U_{CC} = 10$ B, $U_{IL} = 0$ B, $U_{IH} = U_{CC}$, $U_{O} = 9.5$ B	I_{OH}	/-0,50/ /-0,50/	- -	
9. Ток потребления, мкА, при: $U_{CC} = 10 \; B, \; U_{IL} = 0 \; B, \; U_{IH} = U_{CC}$ $U_{CC} = 15 \; B, \; U_{IL} = 0 \; B, \; U_{IH} = U_{CC}$	I_{CC}	-	10,0 20,0	

Продолжение таблицы 1			
1	2	3	4
10. Время задержки распространения при включении и выключении, нс			
- от входа суммы к выходу суммы, при:	t_{PHL1}		
$U_{CC} = 5 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = 5 \text{ B}, C_{L} = 50 \text{ m}$	t_{PLH1}	-	1100
$U_{CC} = 10 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = 10 \text{ B}, C_L = 50 \text{ m}$		-	400
- от входа суммы к выходу распространения переноса, при:	t _{PHI.2}		
$U_{CC} = 5 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = 5 \text{ B}, C_L = 50 \text{ m}$	t _{PLH2}	-	750
$U_{CC} = 10 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = 10 \text{ B}, C_L = 50 \text{ m}$	VPLPI2	-	270
- от входа суммы к выходу образования переноса, при:	t _{PHL3}		
$U_{CC} = 5 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = 5 \text{ B}, C_{L} = 50 \text{ m}$	t _{PLH3}	-	750
$U_{CC} = 10 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = 10 \text{ B}, C_L = 50 \text{ m}$	CPLH3	-	270
- от входа суммы к выходу сквозного переноса, при:	t _{PHI 4}		
$U_{CC} = 5 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = 5 \text{ B}, C_{L} = 50 \Pi\Phi$	t _{PLH4}	-	1150
$U_{CC} = 10 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = 10 \text{ B}, C_L = 50 \text{ m}$	LPLH4	-	400
- от входа переноса к выходу суммы, при:	t _{PHL5}		
$U_{CC} = 5 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = 5 \text{ B}, C_{L} = 50 \text{ m}$		-	620
$U_{CC} = 10 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = 10 \text{ B}, C_L = 50 \text{ m}$	$t_{\rm PLH5}$	-	200
- от входа переноса к выходу сквозного переноса, при:	+		
$U_{CC} = 5 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = 5 \text{ B}, C_{L} = 50 \text{ m}$	t _{PHL6}	-	470
$U_{CC} = 10 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = 10 \text{ B}, C_L = 50 \text{ m}$	$t_{\rm PLH6}$	-	180
- от входа суммы к выходу компаратора, при:	+		
$U_{CC} = 5 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = 5 \text{ B}, C_{L} = 50 \text{ m}$	t _{PHL7}	-	1600
$U_{CC} = 10 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = 10 \text{ B}, C_{L} = 50 \text{ m}$	$t_{\rm PLH7}$	-	550
- от входа суммы к выходу суммы (логические операции), при:	,		
$U_{CC} = 5 \text{ B}, U_{II} = 0 \text{ B}, U_{IH} = 5 \text{ B}, C_{L} = 50 \text{ m}$	t _{PHL8}	-	1150
$U_{CC} = 10 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = 10 \text{ B}, C_L = 50 \text{ п}$ Ф	$t_{\rm PLH8}$		400
12. Входная емкость, пФ, при:	C ₁	_	15
$U_{\rm CC} = 10 \text{ B}$	Cl	=	13

	1.2	Содержание	драгоценных	металлов в	з 1000	шт.	изделий
--	-----	------------	-------------	------------	--------	-----	---------

	золото	Γ,
	серебро	Γ,
в том числе:		
	золото	Γ/MM
на 24 выводах,	длиной	MM.

2 НАДЕЖНОСТЬ

- 2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5)°С не менее 100000 ч, а в облегченном режиме (U_{CC} от 5 до 10В)- не менее 120000 ч.
- 2.2 Гамма процентный срок сохраняемости ($T_{\rm C\gamma}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП , должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных, - в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям AEЯР.431200.610-04ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие.

Срок гарантии исчисляется с даты изготовления, нанесенной на микросхемы.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Цена договорная

Микросхемы 564 ИПЗТ1ЭП соответствуют	г техническим услов	виям АЕЯР.431200.610-04ТУ и г	признаны годными для эксплуатации.
Приняты по от от	(дата)		
Место для штампа ОТК		Место для штампа ВП	
Место для штампа «Перепроверка произи	ведена	(дата) »	
Приняты по от от	(дата)		
Место для штампа ОТК		Место для штампа ВП	

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка, вход – выход, питание-общая точка.

Остальные указания по применению и эксплуатации – в соответствии с АЕЯР.431200.610ТУ