TD2. Mélange de Processus de Poisson. Étude de la charge sinistrale totale à temps fixe.

Exercice 1. Soit \tilde{N} un mélange de processus de Poisson et $0 < \tilde{T}_1 < ... < \tilde{T}_n < ...$ ses temps de saut. Montrer que la loi de $(\tilde{T}_1, ..., \tilde{T}_n)$ sachant $\tilde{N}(t) = n \ (n \in \mathbb{N}^*)$ est celle de la statistique d'ordre de n v.a. i.i.d. uniformément distribuées sur [0, t].

Exercice 2. On rappelle qu'une variable aléatoire X suit une loi binomiale négative sur $\{0, 1, 2, ...\}$ de paramètres r > 0 et $p \in]0, 1[$ si

$$\mathbb{P}(X=k) = \frac{\Gamma(r+k)}{\Gamma(r) \, k!} \, p^r \, (1-p)^k, \quad \forall k \ge 0.$$

Soit \tilde{N} un mélange de processus de Poisson de loi mélangeante $\Theta \sim \Gamma(\gamma, \beta)$. Quelle est la loi de $\tilde{N}(t)$? Le processus \tilde{N} est alors appelé processus binomial négatif. La loi binomiale négative est aussi appelée loi de Poisson-mélange ou loi mélange Gamma-Poisson.

Exercice 3. Soit B une variable de loi binomiale négative de paramètres r > 0, $q \in]0,1[$.

- 1. Calculer la fonction génératrice des moments de B.
- 2. Soit $N \sim \mathcal{P}(\lambda)$ le nombre de sinistres dans un porte feuille de risques sur une période donnée. Les coûts de ces sinistres sont modélisés par des variables i.i.d. X_i , $i \geqslant 1$, indépendantes de N et de loi

$$\mathbb{P}(X_i = k) = \frac{k^{-1} p^k}{-\log(1-p)}, k = 1, 2, 3, \dots \quad (p \in]0, 1[).$$

- a. Vérifier que l'on définit bien ainsi une loi de probabilité sur \mathbb{N}^* .
- b. Calculer la fonction génératrice des moments de la loi du coût total $S = \sum_{i=1}^{N} X_i$.
- c. En déduire que S suit une loi binomiale négative dont on précisera les paramètres.
- d. Calculer la prime pure et la prime d'assurance (fondée sur le principe de l'espérance) associées, pour un coefficient de chargement technique $\rho > 0$.

Exercice 4. La charge sinistrale d'un portefeuille de risques pour une année est représentée par la variable $X = \sum_{j=1}^{N} C_j$ où N est le nombre de sinistres de l'année et C_j le coût du j-ème sinistre de l'année. On suppose que N suit une loi de Poisson de paramètre aléatoire Λ (c'est-à-dire que la loi conditionnelle de N sachant $\Lambda = \lambda$ est une loi de Poisson de paramètres λ). La variable Λ suit ici une loi $\Gamma(b,b), b>0$. On suppose que les coûts des sinistres $(C_j)_{j\geqslant 1}$ sont des variables indépendantes entre elles et indépendantes de N, équidistribuées selon la loi de C_1 .

- 1. Calculer $\mathbb{E}(\Lambda)$ et $Var(\Lambda)$
- 2. Rappeler les valeurs de $\mathbb{E}(N|\Lambda)$ et $\mathrm{Var}(N|\Lambda)$ et en déduire $\mathbb{E}(N)$ et $\mathrm{Var}(N)$.
- 3. On suppose que la loi de C_1 est la loi exponentielle de paramètre $\alpha > 0$. Montrer que la loi de X sachant N est une loi Gamma dont on précisera les paramètres. Déterminer la prime pure proposée par l'assureur.

4. Montrer que la loi de $(\Lambda|X, N)$ est indépendante de X, et que c'est une loi Gamma dont on précisera les paramètres.

Exercice 5. On considère un groupe de risques dont le nombre N de sinistres annuel suit une loi géométrique de paramètre $p \in]0,1[$ (i.e $\mathbb{P}(N)=p$ $(1-p)^n$, $\forall n \in \mathbb{N}$). On suppose que le montant annuel cumulé des sinistres S est défini par :

$$S = \sum_{i=1}^{N} X_i$$

où les $X_i, i \in \mathbb{N}^*$ représentent les coûts des sinistres (S=0 si N=0).

- 1. Rappeler les hypothèses usuelles de ce modèle.
- 2. Déterminer la fonction génératrice des moments de S en fonction de celle de X_1 .
- 3. Exprimer $\mathbb{E}[S]$ et Var(S) en fonction de p et des moments de X_1 .
- 4. Indiquer ce que deviennent les formules de la question précédente lorsque les X_i , $i \ge 1$ sont distribuées suivant une loi exponentielle de paramètre $\alpha > 0$. Déterminer ensuite la fonction de répartition de S.
- 5. On suppose que le chargement technique est fondé sur l'écart-type (i.e. de la forme λ $\sigma(S)$). On note R le montant des réserves. Calculer la prime d'assurance $\Pi(S)$ et la probabilité de ruine de l'assureur pour l'année en cours, à savoir

$$\mathbb{P}\left(R+\Pi(S)-S<0\right)$$

en fonction de p, α, λ et R.

Exercice 6. On s'intéresse ici à un contrat de réassurance. Le principe est que le réassureur couvre les pertes supérieures à une franchise K fixée à l'avance. La charge sinistrale totale du réassureur est donc de la forme

$$X = \sum_{i=1}^{N} (C_i - K)_+.$$

On suppose que le nombre de sinistres N est une variable aléatoire de Poisson de paramètre λ et que les coûts C_i sont des variables aléatoires indépendantes, équidistribuées de loi F_C , et indépendantes de N.

- 1. Calculer la fonction génératrice des moments φ_{Y_1} de $Y_1 = (C_1 K)_+$ quand F_C est la loi exponentielle $\mathcal{E}(\gamma)$. Préciser son domaine de définition et en déduire l'espérance $\mathbb{E}[Y_1]$.
- 2. Rappeler l'expression de la fonction génératrice des moments φ_N de N et exprimer la fonction génératrice des moments φ_X de X en fonction de celle de Y.
- 3. Déterminer le montant de la prime $\pi(X)$, fondée sur l'espérance, dont le coefficient de chargement technique est $\rho > 0$.
- 4. Soit N_K le nombre de sinistres de coût supérieur à K. Calculer la fonction génératrice des moments φ_{N_K} de N_K . En déduire que la loi de N_K est une loi de Poisson dont on précisera le paramètre.
- 5. Soit

$$\tilde{X} = \sum_{i=1}^{N_K} \tilde{C}_i,$$

où $(\tilde{C}_i, i \geq 1)$ est une suite de v.a. indépendantes de loi $\mathcal{E}(\gamma)$, indépendantes de N_K . Calculer la fonction génératrice des moments $\varphi_{\tilde{X}}$ de \tilde{X} . En déduire que la loi de \tilde{X} est la même que celle de X lorsque les C_i -s suivent la loi $\mathcal{E}(\gamma)$.