Histogram of **Oriented Gradients**

261458 & 261753 Computer Vision

#4

3

HOG

Histogram of Oriented Gradients

N. Dalal & B. Triggs, CVPR 2005

- One of the state-of-the-art shape-based image feature
- Used for pedestrian detection
- Use for film & media analysis
- Used for visual surveillance
- Fast calculation
- Less detailed so that it consumes small amount of memory and hard-disk

261458 & 261753 Computer Vision

Gradient

STEP 1: Calculate image gradients

Gradient

(360° Orientation System)

Magnitude

Direction

STEP 1: Calculate image gradients

STEP 2: Edge detection

261458 & 261753 Computer Vision

#4

5

STEP 4: Quantize gradient direction into several bins

#4

261458 & 261753 Computer Vision

12 bins,360° system

261458 & 261753 Computer Vision

#4

#4

261458 & 261753 Computer Vision

261458 & 261753 Computer Vision

#4

261458 & 261753 Computer Vision

#4

180° system

Scaling Invariant?

261458 & 261753 Computer Vision

#4

#4

Translation Invariant?

261458 & 261753 Computer Vision

#4

Rotation Invariant?

Robust to Intensity/Contrast variation?

261458 & 261753 Computer Vision

Robust to Blur?

261458 & 261753 Computer Vision

#4

Basic Object Recognition by HOG

261458 & 261753 Computer Vision

Segment Image into Cells

261458 & 261753 Computer Vision

261458 & 261753 Computer Vision

Segment Image into Cells

261458 & 261753 Computer Vision

#4

#4

PHOG Pyramid Histogram of Oriented Gradients

"Representing shape with a spatial pyramid kernel"

A.Bosch, A. Zisserman and X.Munoz

ACM, 2007

PHOG Descriptor

http://www.robots.ox.ac.uk/~vgg/research/caltech/phog.html

261458 & 261753 Computer Vision

Segment Image into Cells

261458 & 261753 Computer Vision

PHOG

Pyramid Histogram of Oriented Gradients

PHOG

Pyramid Histogram of Oriented Gradients

Level = 2

PHOG Level 2 = [PHOG Level 1 & HOG of 16 cells]

261458 & 261753 Computer Vision

#4

PHOG Pyramid Histogram of Oriented Gradients

Object Detection Framework

http://eprints.pascal-network.org/archive/00003009/01/bosch07.pdf

261458 & 261753 Computer Vision

#4

Object Detection Framework using HOG

"Histograms of Oriented Gradients for Human Detection"

N. Dalal and B. Triggs

CVPR 2005

over overlapping spatial blocks over detection window SVM SVM

Collect HOG's

Negatives

Positives

[1] Prepare training set

using HOG

- -> Positive Images
 (Image of the target objects
- Negative Images
 (Scene images without target objects for random window selection)

(Resize every sample to obtain the same size)

http://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf

261458 & 261753 Computer Vision

Contrast normalize

Object Detection Framework using HOG

[2] For each training samples, divide images into cells.

[3] Compute HOG for each cells

261458 & 261753 Computer Vision

#4

Object Detection Framework using HOG

[4] Group cells into blocks (better to have overlap)

[5] Concatenate HOG of every cell in that block and normalize it.

261458 & 261753 Computer Vision

#4

Object Detection Framework using HOG

[6] Concatenate every block descriptor to obtain the final descriptor for the image.

For example:

Image size = 64x128 pixels

Cell size = 8x8 pixels => #Cell = 8x16 cells

Block size = 2x2 cells (50% overlap)

=> #Block = 7x15 blocks

HOG Bin = 9 bin/cell

=> Length of Block descriptor = 9x2x2 = 36

=> Length of Final descriptor = 36x7x15 = 3780

Object Detection Framework using HOG

Positives

[8] Use descriptors obtained from training set to train a binary SVM classifier.

Object Detection Framework using HOG

[9] Apply sliding window to scan over the target image and use classifier to determine whether that window is the desired object or not.

261458 & 261753 Computer Vision

