16. Diffúzió

A mérést végezte: Tóth Tímea, Görgei Anna, Márton Tamás

Mérés időpontja: 2018. 04. 09.

A mérés célja

A mérés célja az volt, hogy meghatározzuk a ZnSO₄ vizes oldatának diffúziós együtthatóját különböző koncentrációk mellett.

Mérőeszközök:

- ZnSO₄ oldat
- küvetta
- optikai lencserendszer (nagyítás=9)
- fényképezőgép
- stopper

A mérés elve:

Diffúzió akkor lép fel, ha egy rendszerben inhomogenitás van, vagyis a rendszer egyes komponenseinek eloszlása térben nem egyenletes. Ilyenkor az egyensúlyi állapot beállta anyagáramlással jár együtt, és ezt nevezzük diffúziónak. A mérés során a nemegyensúlyi állapot koncentráció-eloszlásának időbeli lefolyását követtük nyomon. 1, 1/2 és 1/3 mólos oldatokkal végeztük a mérést. 1 mólos az az oldat, melynek 1 dm³-ében 1 mol oldott anyag van. Ezeket az oldatokat elkészítettük, majd a küvettában lévő desztillált víz alá rétegeztük, hogy legyen "nulla állapot", vagyis amikor még éppen nem indul meg a diffúzió. Ezek után időről időre fényképet készítettünk (minden oldatnál 7 darabot, kivéve az 1/3 mólos esetében, ahol 9-et) a kivetített Gauss-görbéről. A mért görbét az ImageJ program segítségével értékeltük ki, ennek használata során a mérésleíráshoz tartozó fájl utasításait követtük.

A fénykép készítések pontos időértékei:

Kép	1. mérés	2. mérés	3. mérés
sorszáma	1 mol	1/2 mol	1/3 mol
1	128 s	5 s	8 s
2	247 s	125 s	133 s
3	360 s	247 s	246 s
4	482 s	486 s	360 s
5	780 s	784 s	480 s
6	1145 s	1147 s	600 s
7	1800 s	1800 s	780 s
8	-	-	1140 s
9	-	-	1200 s

A diffúziós együttható mérése:

A diffúzió folyamatát a két Fick-törvény együttes értelmezése írja le. Ha ezt egy kétkomponensű rendszerre alkalmazzuk, ahol az egyik komponens az oldószer, a másik pedig az oldott anyag, és ez a rendszer 1 dimenziós, akkor a vizsgálandó anyag c(x,t) koncentrációjára fennáll a következő összefüggés, amely egyben a diffúziós egyenlet:

$$\frac{\delta c}{\delta t} = D\left(\frac{\delta^2 c}{\delta x^2}\right)$$

A kezdő pillanatban tehát x=0 és t=0-ban még nincs diffúzió. Az egyenlet megoldása a következő alakot ölti:

$$c(x,t) = \frac{c_0}{2} \left(1 - \frac{2}{\pi} \int_{0}^{\varepsilon} \exp(-s^2) \, ds \right)$$
$$\varepsilon = \frac{x}{\sqrt{4Dt}}$$

 c_0 a kiindulási koncentráció, vagyis minden t=0 és x<0 helyen $c(x)=c_0$. A koncentráció-gradiens hely- és időfüggése:

$$\left(\frac{\delta c}{\delta x}\right) T, p = \frac{c_0}{2\sqrt{Dt\pi}} exp\left(-\frac{x^2}{4Dt}\right)$$

Ez a függvény x=0 helyen maximummal rendelkezik, értéke:

$$M = \frac{\delta c}{\delta x} (x = 0) = \frac{c_0}{2\sqrt{Dt\pi}}$$

A kiindulási c₀ koncentráció pedig a görbe alatti területtel arányos.

$$F = \int_{-\infty}^{+\infty} \frac{\delta c}{\delta x} dx = c_0$$
$$\frac{F}{M} = 2\sqrt{Dt\pi}$$

Ha tehát meghatározzuk az F/M arányt, és ennek négyzetét az idő függvényében ábrázoljuk, akkor egy egyenest kapunk melynek meredeksége a D diffúziós állandóval arányos lesz. A mérést Schlieren-módszerrel végeztük, amelynek lényege, hogy a törésmutató gradiens a beeső párhuzamos fénynyaláb hullámfrontját megdeformálja, és az ebből származó eltérüléseket vizsgáljuk.

Kiértékelés

A kiértékelő program a fényképeken szereplő görbékre Gauss-görbét illesztett, visszaadta az illesztett görbe paramétereit, a maximum magasságát és a görbe alatti területet. A kapott paramétereket felhasználva ábrázoltuk az azonos koncentrációhoz tartozó görbéket egy grafikonon. A görbék maximumát az x=0 értékhez toltuk el úgy, hogy a görbe alakja közben ne változzon. Mindhárom esetben megfigyelhető, hogy az idő múlásával a Gauss-görbék maximuma csökkent, a félértékszélességük nőtt.

A program által illesztett görbe egyenlete:

$$y = a + (b - a) * \exp\left(\frac{(x - c)^2}{2d^2}\right)$$

1 mólos oldat							
A kép	A program által illesztett paraméterek						
sorszáma	a b c d						
1	141.81190	349.41980	239.59008	21.17148			
2	77.46754	262.45544	220.96994	23.84616			
3	63.81627	239.08834	188.39728	28.12160			
4	341.55755	507.91832	424.12146	33.72128			
5	122.22043	250.97050	227.02073	38.10818			
6	401.41014	515.72959	409.04664	42.28677			
7	37.11431	145.39326	287.75415	54.23425			

1/2 mólos oldat							
A kép	A program által illesztett paraméterek						
sorszáma	a	a b c d					
1	67.58364	171.06577	226.10205	29.36049			
2	35.35179	126.84555	205.91470	31.73213			
3	107.45803	177.37865	181.82747	33.58598			
4	107.47920	165.93479	202.68129	40.35488			
5	116.34960	169.84631	192.79770	44.04680			
6	115.74192	166.27187	174.10914	49.23639			
7	106.32227	146.62411	252.02912	54.35000			

	1/3 mólos oldat						
A kép	A program által illesztett paraméterek						
sorszáma	a b c d						
1	99.78616	194.00909	211.78824	17.33232			
2	132.85361	205.03490	189.57786	21.26985			
3	91.35704	155.47120	151.42674	27.38744			
4	99.82203	154.78707	135.48435	28.28453			
5	106.17753	157.74384	143.79139	31.28581			
6	115.33020	161.83519	106.92136	34.55009			
7	84.13145	130.09819	142.71920	46.04505			
8	79.18799	125.12052	183.24335	63.65038			
9	89.90514	129.14268	325.20521	49.90191			

Az 1/3 mólos oldat esetén a nyolcadik fénykép kiértékelése során egy olyan görbét kaptunk, amely nem illett be a többi közé, ezért ezt az ábrán nem tüntettük fel, és a további számolás során sem használtuk fel.

Az illesztés során kapott Gauss-görbékből meghatározható a diffúziós állandó. A mérés során az optikai rendszer nagyítása 9 volt, a görbe alatti területet ezzel leosztottuk, a hányadost ezután F-fel jelöljük. Az ismert görbe alatti terület (F), maximális magasság (M) és az idő alapján egyenest illesztettünk a következő egyenlet szerint:

$$\left(\frac{F}{M}\right)^2 = 4\pi Dt.$$

Az illesztett egyenes meredeksége (m) a diffúziós állandóval (D) a következőképpen arányos: $m=4\pi D$.

	1 mólos oldat						
A kép	t [s]	$F [mm^2]$ M $[mm]$		$(F/M)^2 [mm^2]$			
sorszáma							
1	128	1224.17	207.61	34,77			
2	247	1228.60	184.99	44,11			
3	360	1372.78	175.27	61,34			
4	482	1562.44	166.36	88,21			
5	780	1366.51	128.75	112,65			
6	1145	1346.39	114.32	138,71			
7	1800	1635.55	108.28	228,16			

	1/2 mólos oldat						
A kép sorszáma	t [s]	F [mm ²]	M [mm]	$(F/M)^2 [mm^2]$			
1	5	846.21	103.48	66,87			
2	125	808.61	91.49	78,11			
3	247	654.05	69.92	87,50			
4	486	657.01	58.46	126,32			
5	784	656.28	53.50	150,50			
6	1147	693.00	50.53	188,05			
7	1800	610.06	40.30	229,14			

	1/3 mólos oldat						
A kép sorszáma	t [s]	F [mm ²]	M [mm]	$(F/M)^2 [mm^2]$			
1	8	454.84	94.22	23,30			
2	133	427.60	72.18	35,09			
3	246	489.05	64.11	58,18			
4	360	433.00	54.97	62,06			
5	480	449.33	51.57	75,93			
6	600	447.50	46.50	92,60			
7	780	589.49	45.97	164,46			
9	1200	593.95	39.24	229,14			

Az illesztéshez használt egyenes egyenlete:

$$y = m * x + b.$$

	$m [mm^2]$	$\Delta m [mm^2]$	b [mm ²]	$\Delta b \text{ [mm}^2\text{]}$	$D \left[mm^2/s \right]$	$\Delta D [mm^2/s]$
1 mólos	0.1126	±0.00574	21.653	±5.1332	0.00896	±0.000457
1/2 mólos	0.0937	±0.00584	70.880	±5.1690	0.00745	±0.000465
1/3 mólos	0.1780	±0.01561	7.8826	±1.3100	0.01417	±0.001242

Összegzés:

A mérésünkben sikeresen ki tudtuk számítani a diffúziós együtthatókat, és az eloszlások jól látszottak, bár néhány hibaforrás azért így is akadt:

- A mérőberendezés nem volt megfelelően beállítva, és mivel ez speciális hozzáértést igényelt, így kellett vele mérnünk. Ebből következően a kivetített Gauss-görbék teljesen elkentek lettek és homályosak, emiatt nem tudtunk numerikusan pontokat leolvasni róla, csak szemmel való leolvasással; a továbbiakban ezekre illesztettünk. Valószínűleg innen ered az az "outlier" görbe az 1/3 molos mérésnél, melyet nem vettünk bele az ábrázolásba.
- A küvetták valószínűleg nem voltak megfelelően megtisztítva, ami befolyásolhatta a diffúzió folyamatát. (A mérés közben sem desztillált vízzel tisztítottuk őket, hanem csapvízzel).
- Ugyanez igaz lehetett a fecskendőre és a szilikon csőre, amivel adagoltuk az oldatot, illetve ha esetleg buborék került bele, az is adhatott hibát a keveredésnél.
- A desztillált víz alá való rétegzése az oldatnak nagy precizitást igényel, egy kis kézremegés is már keveredést okozhat, illetve a szilikon cső kiemelése sem lehet tökéletes. Pozitívum viszont, hogy amikor ezt a műveletet végeztük, jól látható volt a két áttetsző folyadék közti határfelület.
- Egyéb hibaforrások lehetnek még a használt folyadékok tisztasága, a lencsék tisztasága a leképezésnél, illetve a fényképezőgép megfelelő exponálása, bár ez csak a szemmel való leolvasásban fontos. Ideális esetben a kapott fényképet számítógép ki tudná értékelni.

Hivatkozások:

http://wigner.elte.hu/koltai/labor/parts/modern16.pdf