Tentamen i Tillämpad Matematik och statistik för IT-forensik. Del 2: Statistik

$7.5~\mathrm{HP}$

12 januari, 2018

Maxpoäng: 30p. Betygsgränser: 12p: betyg 3, 18p: betyg 4, 24p: betyg 5.

Hjälpmedel: Miniräknare och formelsamling. Kursansvarig: Eric Järpe, telefon 0729-77 36 26, 035-16 76 53.

Alla svar skall ges med 4 decimalers noggrannhet där ej annat anges. Till uppgifterna skall fullständiga lösningar lämnas. Lösningarna ska vara $utf\"{o}rligt$ redovisade! Varje lösning ska b\"{o}rja \"{o}verst på nytt papper. Endast en lösning per blad. L\"{o}sningar kommer finnas på internet: http://dixon.hh.se/erja/teach \rightarrow Matematik och statistik f\"{o}r IT-forensik.

1. Vid en studie av lösenordssäkerhet mäts hur många gissningar, 10^y , som behövs för att gissa ett av 100 slumpvis valda lösenord av längd x, där $5 \le x \le 10$. Man finner att¹

$$\sum_{i=1}^{100} x_i = 804 \qquad \sum_{i=1}^{100} x_i^2 = 6834 \qquad \sum_{i=1}^{100} y_i = 683.27 \qquad \sum_{i=1}^{100} y_i^2 = 5012.8 \qquad \sum_{i=1}^{100} x_i y_i = 5745$$

(a) [2:1] Beräkna
$$\bar{x}$$
. (2p)

- (b) [2:3] Kan man på 1% signifikansnivå bevisa att det i genomsnitt tar mer än en miljon gissningar att knäcka ett lösenord? (3p)
- (c) [2:1] Beräkna intercept och regressionskoefficient i den linjära modellen med variablen $\log_{10}(antal\ gissningar)$ som funktion av variabeln $l\ddot{o}senordsl\ddot{a}ngd$. (3p)

2. [2:2] Låt
$$X \in N(-\frac{1}{3}, \sigma^2)$$
. Beräkna σ om $P(2 + 2X - 3X^2 \le 1) = 0.6492$. (3p)

- 3. En server i ett datanätverk utsätts för attacker som till sitt antal per dag är Poissonfördelat med intensitet $\lambda = 6.7$.
 - (a) [2:2] Vad är sannolikheten att man observerar högst 3 attacker under en dag? (2p)
 - (b) [2:2] Vad är approximativt sannolikheten att observera minst 200 attacker under januari månad? (3p)
 - (c) [2:1] Antag att man under en vecka observerar 6, 8, 7, 1, 5, 5, 10 attacker. Beräkna första kvartilen för detta stickprov. (2p)
- 4. [2:3] Vart fjärde år väljs 349 män och kvinnor in till Sveriges riksdag. År 2014 var 5 905 personer nominerade varav 3 235 män och resten kvinnor². Totalt valdes 158 kvinnor in. Finns det någon anledning att misstänka att valet av riksdagsledamöter ej gjordes oberoende av kön? Avgör frågan med ett test på 5% signifikansnivå och beräkna p-värdet.

 (3p)

¹Denna uppgift är baserad på data från ett projektarbete från 2016.

²Denna uppgift är baserad på data från ett annat projektarbete från 2016.

5. År 2017 var vinstplanen för Sverigelotten per 1 000 000 lotter:

Antal lotter	Vinst (SEK)
1	1000000
1	897000
1	250000
1	200000
1	100000
4	20000
6	10000
10	2000
224	1 000
100	500
300	400
2375	300
15740	100
43750	50
187 500	25

- (a) [2:1] Beräkna sannolikheten att en person som köper en lott får minst $10\,000$:- vinst. (3p)
- (b) [2:2] Antag att Abraflax köper tio lotter. Vad är sannolikheten att han får högst 100:- vinst på minst tre av dessa lotter? (3p)
- (c) [2:3] Ture Tokesson köper 100 lotter i Tomb-Olas lotteri och vinner på dessa 17 vinster. Kan Ture med detta som grund bevisa på 5% signifikansnivå att det är något fuffens med Tomb-Olas lotter? Vad blir p-värdet? (3p)

LYCKA TILL!