Análisis Matemático II – Cuestionario del Final del 22/12/20

P1

Sea el campo vectorial $\overline{f} \in C^1(\mathbb{R}^3)$ cuyo rotor es $\nabla \times \overline{f}(x,y,z) = (z,y,x)$. Entonces la circulación de \overline{f} a lo largo de la curva definida por la intersección de las superficies de ecuaciones x+z=3 y $x^2+y^2=1$, cuando se la realiza con la orientación dada por $(1,0,2) \rightarrow (0,1,3) \rightarrow (-1,0,4) \rightarrow (0,-1,3) \rightarrow (1,0,2)$, resulta igual a:

Seleccione una:

- a. − π
- \bigcirc b. -3π
- O c. Ninguna de las otras es correcta
- \odot d. π
- O e. 3π

P2

Sea el campo vectorial $\overline{f}: \mathbb{R}^3 \to \mathbb{R}^3$, cuya matriz jacobiana es $D\overline{f}(x,y,z) = \begin{pmatrix} 3-4 & x & y & z & -y \\ y^2 & 2 & x+y & z \\ -2 & z & 1 & 2 & x-y \end{pmatrix}$

Entonces, el flujo de \overline{f} a través de la superficie frontera del cuerpo H definido por: $Z \ge \sqrt{x^2 + y^2}$ y $Z \le 1$, orientada en forma saliente de H resulta igual a:

Seleccione una:

- O a. Ninguna de las otras es correcta
- \bigcirc b. $\pi/2$
- \bigcirc c. $3\pi/2$
- O d. π
- O e. 3π

P3

Sea el campo escalar $f(x,y) = k g(x) y^2 - \frac{2}{k} y x^2$, donde k es constante y g(x) es la solución particular de la ecuación diferencial x g' - g = x que pasa por el punto $\overline{A} = (1,2)$.

Sabiendo que $f \in \mathbb{C}^1$ en un entorno de \overline{A} , los valores k para los cuales resulta nula la derivada direccional $f'(\overline{A}, (1/\sqrt{2}, -1/\sqrt{2}))$ son:

Seleccione una:

- \bigcirc a. $k = \pm \sqrt{3}/2$
- b. $k = \pm \sqrt{3/2}$
- O c. Ninguna de las otras es correcta
- \bigcirc d. $k = \pm \sqrt{2}$
- \bigcirc e. $k = \pm 1$

P4

Sea $\overline{g}: \mathbb{R}^2 \to \mathbb{R}^2$ diferenciable en $\overline{A} = (x_0, y_0)$ con $\overline{g}(\overline{A}) = (3, 5)$ y matriz jacobiana $D\overline{g}(\overline{A}) = \begin{pmatrix} -1 & 2 \\ 0 & 7 \end{pmatrix}$.

Sean $f: \mathbb{R}^2 \to \mathbb{R}$ diferenciable en su dominio y $h = f \circ \overline{g}$ tal que $\nabla f(3,5) = (1,1)$. Entonces , sabiendo que $f(\overline{g}(\overline{A})) = 2$, el valor de la aproximación lineal de $h(\overline{A} + (0.02, -0.01))$ es:

Seleccione una:

- O a. 1.93
- О b. 2.07
- O c. 2.11
- Od. 1.89
- O e. Ninguna de las otras es correcta

Análisis Matemático II – Cuestionario del Final del 22/12/20

P5

Dada la curva C definida por la intersección de las superficies de ecuaciones: $x^2-y^2=3$ y $z=x^2-x$ y + 2, entonces, la recta tangente a C en $(2,1,z_0)$ interseca a la superficie de ecuación y=|x| en el/los punto(s): Seleccione una:

o a. (5/3,2/3,8/3)o b. Ninguna de las otras es correcta

o c. (3,3,3) y (5/3,2/3,8/3)

P6

Sea el cuerpo H definido por: $x^2+y^2+z^2 \le 12$, $z \ge x^2+y^2$, cuya densidad de masa en cada punto es proporcional a la distancia desde el punto al plano xy. Entonces, siendo x > 0 la constante de proporcionalidad correspondiente a la expresión de la densidad, la masa del cuerpo resulta igual a:

Seleccione una:

 \bigcirc e. (5, -5, 1)

- \bigcirc a. $\frac{45}{16}k$ π
- \bigcirc b. $\frac{45}{4}k$ π
- \bigcirc c. $\frac{5}{4}k\pi$
- \bigcirc d. Ninguna de las otras es correcta
- \bigcirc e. $\frac{63}{4}k$ π

P7

Sea $\overline{f} \in C^1(\mathbb{R}^2)$ un campo de fuerzas tal que $\overline{f}(x,y) = (y \ g''(x), \ 2 \ g(x) + y^2)$ y sea Γ la curva de ecuación $\overline{X} = (2 \ \text{sen}(2 \ \pi \ t), \ 3 \ \text{cos}(2 \ \pi \ t))$ con $0 \le t \le 1$. Entonces, para que el trabajo de \overline{f} a lo largo de Γ resulte nulo es suficiente que: Seleccione una:

O a. Ninguna de las otras es correcta

O b. $g(x) = x \ e^{2x}$ O c. $g(x) = e^{2x}$ O d. $g(x) = x^3$ O e. g(x) sea un polinomio de primer grado

P8

Dada $f(x,y) = x^2 + 2y^2 + yx^2$ definida en \mathbb{R}^2 , analizando los extremos locales de f(x,y) se concluye que:

Seleccione una:

o a. Ninguna de los otras es correcta

o b. f(0,0) es máximo local

o c. f(2,-1) y f(-2,-1) son mínimos locales

o d. f(2,-1) y f(-2,-1) son máximos locales

o e. f(0,0) es mínimo local

Análisis Matemático II – Cuestionario del Final del 22/12/20

P9

Considere el campo vectorial \overline{f} cuya matriz jacobiana es $D\overline{f}(x,y,z) = \begin{pmatrix} 2 & x & y & x-1 & z \\ 2 & x & 3 & y & z & z \\ 2 & x & x+y & 3 \end{pmatrix}$ y la curva C definida por la intersección de las superficies de

ecuaciones $x^2 + 2y^2 + 3z^2 = 4$ y z = 1.

Entonces, la circulación de \overline{f} a lo largo de C en el sentido de recorrido dado por $(0,1/\sqrt{2},1) \rightarrow (1,0,1) \rightarrow \cdots \rightarrow (0,1/\sqrt{2},1)$ resulta igual a:

Seleccione una:

- \bigcirc a. $-\pi/\sqrt{2}$
- \bigcirc b. $\sqrt{2}$ π
- O c. 2π
- O d. Ninguna de las otras es correcta
- \bigcirc e. $-\sqrt{2}$ π

P10

En la figura de la derecha las curvas S y C son trozos de circunferencias. Entonces, el área de la región D sombreada es igual a:

Seleccione una:

- \bigcirc a. $\pi+2$
- O b. Ninguna de las otras es correcta
- c. π-2
- O d. 4π
- O e. 2π