

"Interventional Photonic Energy Emitter System" by Crowley Claims Pending as of August 10, 2000

- 1. (Twice Amended) An interventional device, comprising: a sonoluminescent light module for placement inside a body, the module comprising
 - (i) an acoustic transducer for generating sound waves;
- (ii) a housing enclosing an acoustic conducting medium, the acoustic conducting medium positioned in a pathway of the sound waves generated by the acoustic transducer, at least a portion of the housing being optically transparent; and
- (iii) a lens for focusing the sound waves generated by the acoustic transducer in the acoustic conducting medium, whereby sonoluminescent light is generated.
- 2. Cancelled.

. 11

- 3. (Amended) The interventional device of claim 1 wherein the acoustic transducer comprises a piezoelectric material and a wave matching layer.
- 4. (Amended) The interventional device of claim 1 wherein the lens is disposed between the acoustic transducer and the acoustic conducting medium.
- 5. (Amended) The interventional device of claim 1 wherein a distal end of the housing is shaped to provide reflection and concentration of sound waves in the acoustic conducting medium.
- 6. (Amended) The interventional device of claim 1 wherein a distal end of the housing is open to focus sound waves in the tissue.
- 7. (Amended) The interventional device of claim 1 wherein the acoustic conducting medium comprises water.

U.S.S.N.: 08/922,263

Page 2 of 7

8. (Amended) The interventional device of claim 1 wherein the acoustic conducting

medium comprises a solid substance or target on which sonoluminescent effect can be

observed.

9. The interventional device of claim 3 wherein the piezoelectric material comprises lead

zirconate-titanate.

10. The interventional device of claim 1 wherein the sonoluminescent light module is

disposed near a distal end of the interventional device.

11. The interventional device of claim 10 further comprising a pulse generator in

communication with the sonoluminescent light module through electrical conduits

positioned inside the interventional device.

12. (Amended) The interventional device of claim 1 wherein the sonoluminescent light

module is disposed near a distal end of the interventional device and the distal end of the

interventional device performs as the housing.

13. Cancelled.

14. (Amended) The interventional device of claim 1 wherein a position of the light

module inside the interventional device is adjustable.

15. The interventional device of claim 10 wherein the interventional device has an

optically transparent window comprising a material selected to transmit light having a

predetermined wavelength.

16. (Amended) An interventional device, comprising:

a distal portion comprising an x-ray generating light source for placement inside a body;

a proximal end connected to an energy source; and

U.S.S.N.: 08/922,263

Page 3 of 7

a middle elongated portion of variable length that is at least partly inserted inside the body, comprising a signal conduit that electronically connects the energy source and the x-ray generating light source.

17. The interventional device of claim 16 wherein the x-ray generating light source comprises a sonoluminescent light source.

18. Cancelled.

19. Cancelled.

20. (Amended) An interventional device, comprising:

a distal portion comprising an arc lamp for placement inside a body;

a proximal end connected to an energy source; and

a middle elongated portion of variable length that is at least partly inserted inside the body, comprising a signal conduit that electronically connects the energy source and the arc lamp.

21. The interventional device of claim 20 wherein the arc lamp comprises:

a housing, and

a first and a second electrode positioned inside the housing and in relation to each other to strike an arc.

- 22. The interventional device of claim 21 wherein the first electrode has a hemisphere shape and is coated with a metal.
- 23. The interventional device of claim 21 wherein the second electrode is formed on an inner surface of the housing by flash metallization.

U.S.S.N.: 08/922,263

Page 4 of 7

24. The interventional device of claim 21 wherein the first and the second electrode are

sealed inside the housing with sintered metal and a seal material that yields under high

pressure.

25. The interventional device of claim 24 wherein the sintered metal comprises copper

wool.

26. (Amended) The interventional device of claim 21 wherein a distal end of the housing

is dome shaped for collecting and redirecting light generated by the arc lamp.

27. The interventional device of claim 21 wherein a material for the housing comprises

quartz.

28. The interventional device of claim 21 further comprising a feedback system and a

light guide disposed adjacent a housing wall for supplying light output to a feedback

system.

29. (Amended) The interventional device of claim 20 wherein the interventional device is

selected from the group consisting of a catheter, an endoscope, a guide wire, a needle, and

an introducer.

30. The interventional device of claim 21 wherein the distal end of the interventional

device performs as the housing.

31. Cancelled.

32. (Amended) An interventional device, comprising:

a distal portion comprising a fluorescent light source for placement inside a body;

a proximal end connected to an energy source; and

U.S.S.N.: 08/922,263

Page 5 of 7

a middle elongated portion of variable length that is at least partly inserted inside the body, comprising a signal conduit that electronically connects the energy source and the

fluorescent light source.

33. The interventional device of claim 32 wherein the fluorescent light source comprises

a flash tube coated with a phosphorescent or fluorescing material.

34. The interventional device of claim 32 wherein the fluorescent light source comprises

an equipotential flash tube shaped to discharge uniformly.

35. The interventional device of claim 34 wherein the fluorescent light source further

comprises a dielectric material surrounding the flash tube and a pair of electrodes

disposed at opposite sides of the dielectric material.

36. (Amended) The interventional device of claim 32 wherein the interventional device is

selected from the group consisting of a catheter, an endoscope, a guide wire, a needle, and

an introducer.

37. (Amended) The interventional device of claim 32 comprising a balloon catheter

having a polymeric stent placed on an external surface of a balloon portion.

38. The interventional device of claim 37 wherein the polymeric stent becomes hardened

when exposed to radiation generated by the fluorescent light source.

39. The interventional device of claim 38 wherein the polymeric stent comprises a

ultraviolet curable epoxy or adhesive material.

40. The interventional device of claim 32 wherein the fluorescent light source comprises:

a Gunn-effect diode for generating radio-frequency energy;

a dielectric resonator disposed adjacent the diode; and

U.S.S.N.: 08/922,263

Page 6 of 7

a gas tube comprising a gaseous substance that fluoresce when subjected to RF energy.

41. (Amended) An interventional device, comprising:

a distal portion comprising a spark gap module for placement inside a body;

a proximal end connected to an energy source; and

a middle elongated portion of variable length that is at least partly inserted inside the

body, comprising a signal conduit that electronically connects the energy source and the

spark gap module.

42. The interventional device of claim 41 wherein the spark gap comprises two

electrodes positioned in relation to each other for generating a spark across a gap between

the two electrodes.

43. The interventional device of claim 42 wherein the two electrodes are sealed in a

transparent housing.

44. The interventional device of claim 43 further comprising a filter disposed at a distal

end of the housing for enhancing a desired light output.

45. Cancelled.

46. Cancelled.

47. (Amended) An interventional device, comprising:

a distal portion comprising an incandescent lamp for placement inside a body and for

generating short duration high intensity light waves;

a proximal end connected to an energy source; and

a middle elongated portion of variable length that is at least partly inserted inside the

body, comprising a signal conduit that electronically connects the energy source and the

incandescent lamp.

U.S.S.N.: 08/922,263

Page 7 of 7

48. The interventional device of claim 47 wherein short duration comprises duration of

less than 100 milliseconds.

49. The interventional device of claim 47 wherein the incandescent lamp comprises a

housing, a pair of electrodes placed inside the housing and a filament connecting the pair

of electrodes.

50. The interventional device of claim 49 wherein the filament comprises an oxidizing

filament and the housing is filled with a selected gas for generating light having a pre-

determined color.

51. Cancelled.

52. (New) The interventional device of claim 41, wherein the interventional device is

selected from the group consisting of a catheter, an endoscope, a guide wire, a needle, and

an introducer.

53. (New) The interventional device of claim 47, wherein the interventional device is

selected from the group consisting of a catheter, an endoscope, a guide wire, a needle, and

an introducer.

WUD\1002\19.972143_2