Introduction to Cryptography – LMAT2450 Final Examination

January 5, 2015

Instructions

- 1. You can use the slides presented during the class, and all your personal notes. No book or other printed/photocopied material is allowed.
- 2. The duration of the exam is 3 hours. Answer the questions on **separate** sheets of paper.
- 3. You have the possibility to present your answers to the examiners.

Question 1 We are interested in the construction of hash functions $\langle \mathsf{Gen}, H \rangle$ from a block cipher. Our constructions make use of a simplified version of the Merkle-Damgård transform, that is, we hash a message $m = m_1, \ldots, m_l$ (where each m_i is n bits long) by computing $h_i = F(m_i, h_{i-1})$, using a public constant (say, 0) as h_0 and h_l as output of the hash function (note that we do not add an extra block containing the message length.)

The F function is built using a block cipher BC (with n bits block size and key size,) as depicted in the figure below, where p, k and x can take any of the following four values: m_i , h_{i-1} , $m_i \oplus h_{i-1}$ and s where s is a public random bit-string produced by Gen. The output of F is always taken as c.

In total, we have 64 possible ways of building F: 3 variables can take 4 possible values. Those 64 hash function candidates have been studied in detail in the literature, and only 12 among them provide a secure hash function. We ask you to show how each of the 3 candidates below fail to provide one of the 3 standard security properties of a hash function (try to break the weakest possible property.)

1.
$$p = h_{i-1}, k = s, x = m_i$$
 (that is, $F(m_i, h_{i-1}) = BC_s(h_{i-1}) \oplus m_i$).
2. $p = s, k = m_i, x = h_{i-1}$.
3. $p = s, k = m_i \oplus h_{i-1}, x = s$.

Question 2 Blum and Goldwasser proposed a public key encryption scheme defined as follows.

- Gen(1ⁿ) picks two random primes p and q of length n and equal to 3 mod 4. It outputs the public key N = pq and the private key (p,q). For such choices of p and q, there is an efficient function sqrt that, given p and q and an element of QR_N (i.e., an element of \mathbb{Z}_N^* that is the square of another element of \mathbb{Z}_N^*), computes the single square root of this element that is itself in QR_N .
- $\mathsf{Enc}_N(m)$ parses m as l bits m_1, \ldots, m_l . Then it picks a random $a_0 \to \mathbb{Z}_N^*$ and computes the sequence a_1, \ldots, a_{l+1} by successive squaring, that is, $a_i = a_{i-1}^2 \mod N$. The ciphertext c is computed as $(a_{l+1}, m_1 \oplus LSB(a_1), \ldots, m_l \oplus LSB(a_l)$, where LSB is the function that extracts the least significant bit of its input.
- 1. Explain how the Dec algorithm works for this scheme. (You can use the sqrt function as a black box.)
- 2. Prove that the Blum-Goldwasser encryption scheme is not IND-CCA secure.

The SRLSB game, defined as follows, has been proven as difficult to win as factoring N:

- \mathcal{A} wins the SRLSB game if it guesses LSB(a) from the outputs of the following experiment:
- a) Run Gen as defined above and output the modulus N.
- b) Pick a random element $a \in QR_N$ (by picking a random element in \mathbb{Z}_N^* and squaring it) and output $a^2 \mod N$.
- Consider a restricted version of the Blum-Goldwasser encryption scheme where the message space is $\{0,1\}$ (that is, l=1). Prove that this scheme is IND-CPA secure under the SRLSB assumption.
- Extend your previous result to the case of messages of arbitrary length that differ by their first bit only.

Question 3 Your answer to each of the following questions should take less than 5 lines.

- Λ . Let $\Pi = \langle \mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec} \rangle$ be an IND-CPA secure encryption scheme with plaintext space \mathcal{M} and ciphertext space \mathcal{C} . Suppose that the plaintext space can be partitioned into \mathcal{P}_1 and \mathcal{P}_2 of equal size and that there exists a function $f: \mathcal{C} \to \{0,1\}$ so that f(c) = 1 iff c is the encryption of a message in \mathcal{P}_1 . Prove that, if Π is IND-CPA, then no adversary can efficiently compute f.
- Z. Let $G: \{0,1\}^* \to \{0,1\}^*$ be a pseudorandom generator with 1 bit expansion (that is, $\forall s \in \{0,1\}^*$, it holds that |G(s)| = |s| + 1). Show that this pseudorandom generator is insecure in front of a computationally unbounded adversary.
- Alice computes Pedersen commitments on (secret) messages m_1 and m_2 as $c_1 = g^{m_1}h^{r_1}$, $c_2 = g^{m_2}h^{r_2}$ (computing in a cyclic group of prime order q, and with r_1 and r_2 being random values in \mathbb{Z}_q , as usual) and wants to prove that she knows an opening on the commitment $c_3 = c_1^{m_2}h^{r_3} = g^{m_1m_2}h^{r_1m_2+r_3}$ for the message m_1m_2 . To this purpose, she runs the following sigma protocol with Bob:
 - Alice selects random $m_1', m_2', r_1', r_2', r_3'$ all from \mathbb{Z}_q and sends to Bob the commitments $a_1 = g^{m_1'}h^{r_1'}, \ a_2 = g^{m_2'}h^{r_2'}$ and $a_3 = c_1^{m_2'}h^{r_3'}$.
 - Bob sends a random e back to Alice.
 - Alice sends the responses $f_{m_1} = m'_1 + em_1$, $f_{m_2} = m'_2 + em_2$, $f_{r_1} = r'_1 + er_1$, $f_{r_2} = r'_2 + er_2$, $f_{r_3} = r'_3 + er_3$ to Bob.
 - (a) What equations should be verified by Bob in order to check this proof?
 - (b) Show that this protocol is honest verifier zero-knowledge.

(Note that we do not ask you to care about the soundness or the completeness of this protocol.)

A. We build a bit commitment scheme based on a hash function $\Pi = \langle \mathsf{Gen}, H \rangle$: Gen picks a random hash function index s. Then, $\mathsf{Com}_s(m)$ provides the commitment $c = H^s(b||r)$ for a random r that is as long as the output of H^s and the opening d = (r, b). Open is defined in the natural way. Show that this scheme is computationally binding if the hash function Π is collision-resistant.