Pandas: Merging, Joining, and Concatenating

Data Science Developer

Outline

- Merging and joining Dataframe
 - Inner Join
 - Outer Join
 - Left Join
 - Right Join
- Concatenating Dataframe

Merging and Joining

Joining Methods

The **merge** function allows you to merge DataFrames together using a similar logic as merging SQL Tables together.

Dataframe to join

Inner Join and Outer Join

In [15]: pd.merge(left,right,how= 'outer', on='key')

Out[15]:

	key	Α	В	С	D
0	K0	Α0	B0	C0	D0
1	K1	A1	B1	C1	D1
2	K2	A2	B2	NaN	NaN
3	K3	A 3	В3	C2	D2
4	K4	NaN	NaN	C3	D3

left Join and Right Join

In [17]: pd.merge(left,right,how= 'left', on='key')

Out[17]:

	key	Α	В	С	D
0	K0	A 0	В0	C0	D0
1	K1	A1	В1	C1	D1
2	K2	A2	B2	NaN	NaN
3	K 3	А3	ВЗ	C2	D2

K4 NaN NaN C3 D3

Joining by index

```
In [19]:
         left
                           In [20]:
                                     right
Out[19]:
                           Out[20]:
                  В
                                          С
          K0 A0 B0
                                         C0 D0
          K1
                 B1
                                             D1
          K2 A2 B2
                                         C2 D2
          K3
             A3
                 B3
                                         C3 D3
                                       In [22]: left.join(right, how='outer')
           left.join(right)
  In [21]:
                                       Out
```

Joining is a convenient method for combining the columns of two potentially differently-indexed DataFrames into a single result DataFrame.

```
Out[21]:
                    В
                          С
                 Α
                                D
               A0
                    B0
                         C0
           K0
                               D0
           K1
                    B1
                               D1
```

A2

A3

B2

B3

NaN

C2

NaN

D2

K2

K3

[22]:					
		Α	В	С	D
	K0	Α0	В0	C0	D0
	K1	A1	B1	C1	D1
	K2	A2	B2	NaN	NaN
	K3	A3	В3	C2	D2
	K4	NaN	NaN	C3	D3

Concatenating

The DataFrames

```
In [5]: df1
Out[5]:
        0 A0 B0 C0 D0
              B1
                 C1
        2 A2 B2 C2 D2
        3 A3 B3 C3 D3
In [6]:
       df2
Out[6]:
             B4
                 C4
                    D4
              B5
                 C5
              B6
                 C6
                     D6
        7 A7 B7 C7
                    D7
```


Concatenation

```
pd.concat([df1,df2,df3])
In [8]:
Out[8]:
                    В
                         С
                              D
              Α0
                   B0
                        C0
                             D0
              A1
                   B1
                        C1
                             D1
              A2
                   B2
                        C2
                             D2
               A3
                   B3
                        C3
                             D3
              A4
                   B4
                        C4
                             D4
              A5
                   B5
                        C5
                             D5
              A6
                   B6
                        C6
                             D6
              Α7
                   B7
                        C7
                             D7
              Α8
                   B8
                        C8
                             D8
               A9
                   B9
                        C9
                             D9
                  B10
                       C10 D10
```

A11

B11

C11

Concatenation

```
In [46]: pd.concat([df1,df2,df3],axis=1)

Out[46]:

A B C A B C A B C

O A0 B0 C0 A4 B4 C4 A8 B8 C8

I A1 B1 C1 A5 B5 C5 A9 B9 C9

A2 A2 B2 C2 A6 B6 C6 A10 B10 C10

3 A3 B3 C3 A7 B7 C7 A11 B11 C11
```


Reference

 Merge, join, concatenate and compare. <u>https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html</u>

