Kildall's algorithm for over-approximate JOP

Deepak D'Souza and K.V. Raghavan

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

September 15, 2017

Why over-approximation of JOP in abstract lattice is useful

Kildall's algorithm to compute over-approximation of JOP

Input: An instance (P, d_0) of a monotone data-flow framework $((D, \leq), F)$.

Output: For each program point N in P, a data-value d_N such that $\mathrm{JOP}_N^{d_0} \leq d_N$.

- Initialize data value at each program point to \perp , entry point to d_0 .
- Mark all points.
- Repeat while there is a marked point:
 - Choose a marked point M with value d_M , unmark it, and "propagate" it to successor points (i.e. for each successor N, replace value at N by $f_{MN}(d_M) \sqcup d_N$).
 - Mark successor point if old value was marked, or new value strictly dominates than old value.
- Return data values at each point as over-approx of JOP.

Underlying lattice

Values computed coincide with JOP values.

Constant propagation example

Kildall's algo vs Actual Constant data

ProgPt	Actual JOP values	Kildall's data
A	Ø	Ø
В	$\{(x,1)\}$	$\{(x,1)\}$
C	Ø	Ø
D	$\{(y,1)\}$	Ø
E	$\{(x,-1),(y,1)\}$	$\{(x,-1)\}$

Note that Kildall's values are \geq the actual JOP values at all points.

What Kildall's algo computes

- Always terminates if lattice has no infinite ascending chains.
- In general, computes the least solution to a system of equations induced by the given instance of the analysis.
- This value is always an over-approximation of the JOP for the given instance.

Termination of Kildall's algo

- Let \overline{d}_i be the vector of values after the *i*-th step of algo.
- At step i+1 either \overline{d}_{i+1} strictly dominates \overline{d}_i , or $\overline{d}_{i+1} = \overline{d}_i$. In the latter case number of marks *decreases*.
- The maximum length of any contiguous non-"climbing" sequence is equal to the number of program points.
- Moreover, the maximum number of "climbing" steps in algorithm is at most the length of any chain in the lattice \overline{D} .
- Therefore, the algorithm is guaranteed to terminate on finite-height lattices.

Induced Equations

The program induces a set of data-flow equations:

$$x_I = d_0$$
 for entry point I
 $x_N = f_{MN}(x_M)$ for an assignment or conditional node n with with incoming point M and outgoing point N
 $x_N = x_L \sqcup x_M$ for a junction node with incoming points L,M and outgoing N .
... etc.

Induced Equations

The program induces a set of data-flow equations:

$$x_I = d_0$$
 for entry point I
 $x_N = f_{MN}(x_M)$ for an assignment or conditional node n with with incoming point M and outgoing point N
 $x_N = x_L \sqcup x_M$ for a junction node with incoming points L,M and outgoing N .
... etc.

Note: The collecting semantics is a solution to the above equations.

Example equations

$$x_A = \emptyset (= d_0)$$

$$x_B = f_1(x_A)$$

$$x_C = x_B \sqcup x_E$$

$$x_D = f_3(x_C)$$

$$x_E = f_4(x_D).$$

Equations can have multiple solutions

Exercise: Give two solutions to equations induced for this program

- Use lattice of subsets of concrete stores, with integer values for x.
- Write down induced equations.
- Give two different solutions to the equations.

Equations can have multiple solutions

Exercise: Give two solutions to equations induced for this program

- Use lattice of subsets of concrete stores, with integer values for x.
- Write down induced equations.
- Give two different solutions to the equations.

Note: collecting semantics of any program is the least solution to its data-flow equations using the concrete lattice (to be shown).

Function \overline{f} induced by equations

Equations:

$$x_A = \emptyset (= d_0)$$

$$x_B = f_1(x_A)$$

$$x_C = x_B \sqcup x_E$$

$$x_D = f_3(x_C)$$

$$x_E = f_4(x_D).$$

Corresponding \overline{f} function:

$$\overline{f}(d_A, d_B, d_C, d_D, d_E) = (d_0, f_1(d_A), d_B \sqcup d_E, f_3(d_C), f_4(d_D)).$$

Natural ordering on solutions to Eq

- Consider "vectorised" lattice $\overline{D} = (D^k, \leq)$, where D is the underlying lattice.
- Each solution to the equations is a point in this vectorised lattice.
- The solutions are precisely the fix-points of the function \overline{f} : $\overline{D} \to \overline{D}$.
- If D is a complete lattice and f_i 's are monotone, then \overline{D} is complete and \overline{f} is monotone.
 - Note: Concrete analysis satisfies these properties.
- Therefore, Knaster-Tarski theorem applies. Therefore, there exists a least solution to \overline{f} .
- Kildall's algorithm computes this Ifp (if it terminates).
 - So does the Kleene iteration $\perp_{\overline{D}}, \overline{f}(\perp_{\overline{D}}), \overline{f}^2(\perp_{\overline{D}}), \ldots$

Correctness

Kildall's algo always computes LFP of \overline{f} .

Monotonicity, distributivity, and continuity

1. JOP ≤ LFP for monotone framework

- Let \overline{c} be any FP of \overline{f} . Consider any program point N. Let $c_N \equiv \overline{c}[N]$.
- Claim: For any path p, if N is the point at the end of p, c_N dominates $d \equiv f_p(d_0)$ reaching N.

The argument is by induction on length of path p.

- Base case |p| = 0: Then N = I, and $d = c_N = d_0$.
- Let path p be of length i+1. Let M be the program that p passes through just before reaching N. Let d' be $f_p^M(d_0)$, where f_p^M is the path transfer function of the prefix of path p that ends at point M. The inductive hypothesis is that $d' \sqsubseteq c_M$.

The rest of the proof is in two cases.

1. JOP < LFP for monotone framework

Case (node between M and N is not a join node):

By definition of \overline{f} , $(\overline{f}(\overline{c}))[N] = f_{MN}(c_M)$. Now, since \overline{c} is an FP of \overline{f} , $c_N = (\overline{f}(\overline{c}))[N]$. Therefore, $c_N = f_{MN}(c_M)$.

Now, since $d = f_{MN}(d')$, by monotinicity of f_{MN} , and from the hypothesis $d' \sqsubseteq c_M$, it follows that $d \sqsubseteq c_N$.

1. JOP < LFP for monotone framework

Case (node between M and N is a join node): Let P be the other predecessor of the join node.

- d = d' (because join nodes have identity transfer function)
- ② $c_M \sqsubseteq c_N$. The argument for this is as follows. By definition of \overline{f} , $(\overline{f}(\overline{c}))[N] = c_M \sqcup c_P$. Now, since \overline{c} is an FP of \overline{f} , $c_N = (\overline{f}(\overline{c}))[N]$. Therefore, $c_N = c_M \sqcup c_P$.

The two observations above in conjunction with the inductive hypothesis imply that $d \sqsubseteq c_N$.

1. $JOP \leq LFP$ for monotone framework

- That is, for every path p that reaches a point N, $f_p(d_0) \sqsubseteq c_N$.
- Therefore, JOP d_N at N is $\sqsubseteq c_N$

Proof: Enough to show that JOP is a fixpoint of \overline{f} .

Proof: Enough to show that JOP is a fixpoint of \overline{f} .

Let N be any program point.

Case (the node before N is not a join node):

- Points shown are lattice values that reach M and N, respectively, due to all paths paths that come via M and end at N. Therefore, d_M and d_N are the JOP values at M and N.
- Now, $d_N = f_{MN}(d_M)$ because of infinite distributivity.
- Therefore, if \overline{d} is any vector s.t. $\overline{d}[M] = d_M$ and $\overline{d}[N] = d_N$, then, by definition of \overline{f} , $(\overline{f}(\overline{d}))[N]$ is equal to d_N .

Case (the node before N is a join node):

- Say S_M is set of lattice values reaching M, and S_P is set of lattice values reaching P.
- Lattice values reaching N is $S_M \cup S_P$. Therefore, d_N is $\sqcup (S_M \cup S_P)$. It then follows that $d_N = d_M \sqcup d_P$.
- Therefore, if \overline{d} is any vector s.t. $\overline{d}[M] = d_M$, $\overline{d}[P] = d_P$, and $\overline{d}[N] = d_N$, then, by definition of \overline{f} , $(\overline{f}(\overline{d}))[N]$ is equal to d_N .

- Since the argument in the previous two slides applies at all points N, we have shown that the vector \overline{d} consisting of all the JOP values is a fix-point of \overline{f} .
- Note: Lattice is finite, and functions are pairwise distributive, and $f_i(\bot) = \bot$ implies framework is infinitely distributive.

Back to Constant Propagation

- f_n^{CP} is monotonic
- f_n^{CP} is not distributive.
 - Consider node n with statement y := x * x, and abstract states $P_1 = \{(x, 1)\}$ and $P_2 = \{(x, -1)\}$.
 - Since $P_1 \sqcup P_2$ is \top , $f_n(P_1 \sqcup P_2) = \top$
 - On the other hand, $f_n(P_1) \sqcup f_n(P_2) = \{(y,1)\}.$

- Let \overline{d} be values computed by Kildall's algo upon termination, and \overline{l} be LFP of \overline{f} .
- Intermediate vector \overline{d}' after any step i is bounded above by \overline{l} . We prove this using induction on number of steps.
- Let N by any program point whose value gets updated in Step i+1.

Case (the node before N is a non-join node):

Explanation:

- $d_M^i \sqsubseteq I_M$ and $d_N^i \sqsubseteq I_N$ by inductive hypothesis.
- $I_N = f_{MN}(I_M)$ because \bar{I} is a FP of \bar{f} (see argument in first "Case" in proof that JOP \leq LFP).
- Therefore, due to monotonicity of f_{MN} , $f_{MN}(d_M^i) \sqsubseteq I_N$.
- Hence, $d_N^{i+1} \sqsubseteq I_N$.

Case (the node before N is a join node):

- Let M and P be the points that precede the join node. Let d_M^i, d_P^i, d_N^i be the data values at the respective program points after Step i.
- Say propagation happens from M to N in Step i (argument is similar if propagation happened from P to N).
- Since \overline{l} is a FP of \overline{f} , by definition of \overline{f} , $l_N = l_M \sqcup l_P$. In other words, $l_M \sqsubseteq l_N$. In conjunction with $d_M^i \sqsubseteq l_M$ (inductive hypothesis), we get $d_M^i \sqsubseteq l_N$.
- By inductive hypothesis, $d_N^i \sqsubseteq I_N$. Therefore, $(d_N^{i+1} = (d_M^i \sqcup d_N^i)) \sqsubseteq I_N$.

Thus it follows that $\overline{d} \leq \overline{l}$.

We now show that $\overline{d} \geq \overline{f}(\overline{d})$ (i.e. \overline{d} is a postfixpoint of \overline{f}) Let N be any program point.

Case (the node before N is a non-join node):

- Let M be the point that precedes this node. By definition of \overline{f} , $(\overline{f}(\overline{d}))[N]$ is equal to $f_{MN}(d_M)$.
- Since all points are unmarked, value d_M must have been propagated to N. That is, d_N must dominate $f_{MN}(d_M)$. That is, d_N dominates $(\overline{f}(\overline{d}))[N]$.

Case (the node before N is a join node):

- Let M and P be the points that precede the join node. By definition of \overline{f} , $(\overline{f}(\overline{d}))[N]$ is equal to $d_M \sqcup d_P$.
- Since all points are unmarked, value d_M and d_P must have been propagated to N. That is, d_N must dominate both d_M and d_P . That is, d_N dominates $d_M \sqcup d_P$. Hence, d_N dominates $(\overline{f}(\overline{d}))[N]$.

• Therefore, by Knaster-Tarski theorem, $\bar{l} = glb(Post)$, and hence $\bar{d} \geq \bar{l}$.

• We have earlier proved that $\overline{d} \leq \overline{l}$. Therefore, it follows that $\overline{d} = \overline{l}$.

Correctness

Kildall's algo always computes LFP.

Overview of correctness

- Every program induces a set of equations on variables whose domain is lattice D. The equations, in turn, induce a function $\overline{f}: \overline{D} \to \overline{D}$.
- If each f_i is monotone and D is a complete lattice then \overline{f} has a least fix-point LFP(\overline{f}).
 - If each f_i is infinitely distributive, then $JOP = LFP(\overline{f})$.
 - Otherwise, if each f_i is only monotonic, $JOP \leq LFP(\overline{f})$.

Overview of correctness

- Every program induces a set of equations on variables whose domain is lattice D. The equations, in turn, induce a function $\overline{f}: \overline{D} \to \overline{D}$.
- If each f_i is monotone and D is a complete lattice then \overline{f} has a least fix-point LFP(\overline{f}).
 - If each f_i is infinitely distributive, then $JOP = LFP(\overline{f})$.
 - Otherwise, if each f_i is only monotonic, $JOP \leq LFP(\overline{f})$.
- Kildall's algorithm, for monotone frameworks:
 - Solution at any point during its execution is $\leq \mathsf{LFP}(\overline{f})$
 - If and when it terminates, solution is equal to $\mathsf{LFP}(\overline{f})$
 - Note this is a stronger claim than "Kildall's algo computes JOP for distributive frameworks" [Killdall, 'POPL 73].
 - Kildall is applicable even if equations are not from a program, as long as lattice is complete and each variable occurs in the lhs of a unique equation.

Summary of sufficient conditions

	Termination	LFP ≥ JOP	LFP = JOP	Kild computes LFP
				upon termination
f _{MN} 's monotonic	√.	\checkmark		\checkmark
No inf. asc. chains	√			
Inf. distributive				

- Each column is a property, and each row is a sufficient condition
- For a property to hold, each sufficient condition mentioned in its column needs to hold