## Introduction to Algorithms

Mong-Jen Kao (高孟駿)

Tuesday 10:10 – 12:00

Thursday 15:30 – 16:20

## Binary Search

Find the **boundary of 0-1** in a **0-1 monotone sequence fast**.

## Two Typical Scenarios

Given a sequence of numbers  $a_1, a_2, ..., a_n$  that are <u>sorted</u> in <u>non-descending order</u>.

For a given value k,

the first element  $\geq k$ .

- Find the smallest index i such that  $a_i \not < k$ .
- Find the smallest index j such that  $a_i > k$ .

the first element > k.



For 
$$k = 6$$
,  
 $i = 5$   
 $j = 8$ .

## Two Typical Scenarios

■ Given a sequence of numbers  $a_1, a_2, ..., a_n$  that a non-descending order.

j - i is the number of times k appears.

For a given value k,

the first element  $\geq k$ .

- Find the smallest index i such that  $a_i \not < k$ .
- Find the smallest index j such that  $a_i > k$ .

the first element > k.

For 
$$k = 6$$
,  
 $i = 5$   
 $j = 8$ .

#### The General Scenario

- Given a 0-1 sequence  $a_1, a_2, ..., a_n$  sorted in order, <u>further assume</u> that  $a_0 = 0$  and  $a_{n+1} = 1$ .
  - Find the index i such that  $a_i \neq a_{i+1}$ , i.e., identify the boundary of 0 and 1.



### Alternative (Equivalent) Scenario

- Given a 0-1 sequence  $a_1, a_2, ..., a_n$  sorted in order, <u>further assume</u> that  $a_0 = 0$  and  $a_{n+1} = 1$ .
  - Find the index i such that  $a_i \neq a_{i+1}$ , i.e., identify the boundary of 1 and 0.



### Conversion to the General Scenario

- The first search problem can be converted to the general form.
  - Find the smallest index i such that  $a_i \not < k$ .

For 
$$k = 6$$
,



For each element  $a_i$ , we ask



the first element that is 0.

- Is  $a_i < k$ ?



## Converting to the General Scenario

- The first search problem can be converted to the general form.
  - Find the smallest index j such that  $a_i > k$ .

For 
$$k = 6$$
,



For each element  $a_i$ , we ask



the first element that is 1.

- Is 
$$a_i > k$$
?



## Binary Search on 0-1 Sequence

Find the **boundary of 0-1** in a **0-1 monotone sequence fast**.

### Problem Scenario

- Let  $a_1, a_2, ..., a_n$  be a 0-1 sequence of interests.
  - We further assume that  $a_0 = 0$  and  $a_{n+1} = 1$ .
  - Find the index  $i \in \{0,1,...,n\}$  such that  $a_i = 0$  and  $a_{i+1} = 1$ .



Let  $a_1, a_2, ..., a_n$  be a 0-1 sequence. Assume that  $a_0 = 0$  and  $a_{n+1} = 1$ .

- Given two indexes  $\ell < r$  with  $a_\ell = 0$  and  $a_r = 1$ , find the index  $i \in [\ell, r-1]$  such that  $a_i = 0$  and  $a_{i+1} = 1$ .
  - If  $r \ell$  is 1, then we're done. 0 1  $a_{\ell}$   $a_{r}$
  - Otherwise,  $r \ell > 1$ .

Take mid  $\coloneqq \lfloor (\ell + r)/2 \rfloor$  and inspect  $a_{\text{mid}}$ .



Let  $a_1, a_2, ..., a_n$  be a 0-1 sequence. Assume that  $a_0 = 0$  and  $a_{n+1} = 1$ .

- Given two indexes  $\ell < r$  with  $a_\ell = 0$  and  $a_r = 1$ , find the index  $i \in [\ell, r-1]$  such that  $a_i = 0$  and  $a_{i+1} = 1$ .
  - Take mid  $\coloneqq \lfloor (\ell + r)/2 \rfloor$  and inspect  $a_{\text{mid}}$ .
    - If  $a_{\text{mid}} = 0$ , then the answer is in the right-hand-side.

We have a *recursive problem* on (mid, r).



Let  $a_1, a_2, ..., a_n$  be a 0-1 sequence. Assume that  $a_0 = 0$  and  $a_{n+1} = 1$ .

- Given two indexes  $\ell < r$  with  $a_{\ell} = 0$  and  $a_r = 1$ , find the index  $i \in [\ell, r-1]$  such that  $a_i = 0$  and  $a_{i+1} = 1$ .
  - Take mid  $\coloneqq \lfloor (\ell + r)/2 \rfloor$  and inspect  $a_{\text{mid}}$ .
    - If  $a_{mid} = 1$ , then the answer is in the left-hand-side.

We have a **recursive problem** on  $(\ell, mid)$ .



■ BinarySearch(L,R) - To search the 0-1 sequence  $a_L, ..., a_R$ 

A. 
$$\ell \leftarrow L - 1$$
.  $r \leftarrow R + 1$ .

- B. While  $r \ell > 1$ , do the following.
  - a) mid  $\leftarrow \lfloor (\ell + r)/2 \rfloor$ .
  - b) If  $a_{mid}$  is 0, set  $\ell \leftarrow$  mid. Otherwise, set  $r \leftarrow$  mid.
- C. Report  $(\ell, r)$ .

### Correctness of Binary Search

- In step (Ba), we always have  $L \le \text{mid} \le R$ .
  - When  $\ell < r 1$ , we have

$$\ell < \lfloor (\ell + r)/2 \rfloor < r.$$

■ The answer to be searched is always contained within  $[\ell, r]$  in the beginning of the while loop in step (B).

## Time Complexity

■ The running time of this algorithm can be described by the following recurrence.

$$T(n) = \begin{cases} \Theta(1), & n \le 2, \\ T(\lfloor n/2 \rfloor) + \Theta(1), & n > 3. \end{cases}$$

- Solving the recurrence, we obtain  $T(n) = \Theta(\log n)$ .

■ LowerBound(A[1...n], k) - A[1...n] sorted in non-descending order. Find the smallest i such that  $A[i] \ge k$ 

A. 
$$\ell \leftarrow 0$$
.  $r \leftarrow n + 1$ .

- B. While  $r \ell > 1$ , do the following.
  - a) mid  $\leftarrow \lfloor (\ell + r)/2 \rfloor$ .
  - b) If  $a_{mid} < k$ , set  $\ell \leftarrow \text{mid}$ . Otherwise, set  $r \leftarrow \text{mid}$ .
- C. If r equals n + 1, then report "No such element". Otherwise, report r.

■ UpperBound(A[1...n], k) - A[1...n] sorted in non-descending order. Find the smallest i such that A[i] > k

A. 
$$\ell \leftarrow 0$$
.  $r \leftarrow n + 1$ .

- B. While  $r \ell > 1$ , do the following.
  - a) mid  $\leftarrow \lfloor (\ell + r)/2 \rfloor$ .
  - b) If  $k < a_{mid}$ , set  $r \leftarrow mid$ . Otherwise, set  $\ell \leftarrow mid$ .
- C. If r equals n + 1, then report "No such element". Otherwise, report r.

# 本週程式題導覽

#### Problem - A

- 讀入一群在資料庫裡的數字,判斷接下來讀入的數字是否在資料庫裡。
  - 本題基本上有兩種不同的作法.
    - **先排序**資料庫裡的數字, **再使用 binary search** 進行搜尋
    - 使用 C++ 關聯容器儲存資料,並使用其成員函式進行搜尋
  - 建議同學可練習以不同的方法完成本題

### Problem - B

Tangent Point Query.

給定第一象限內的一個 upper convex curve, 以及在第二象限的一連串 query points.

計算每個 query point 在 upper convex hull 上的切點.

