A B	ook of Abstrac	ct Algeb	ra (2nd	Edition)	
	Chapter AA, Problem 2E		3 Bookmarks	Show all steps: ON	
		Pro	oblem		
	Prove the following:				
	If $A = B$ and $B = C$, then $A = C$	<i>C</i> .			
		Step-by-s	step solution		
		Step	1 of 2		
	Objective:- The objective is to prove $A =$	B and $B=C$,	then $A = C$.		
	Comment				
		Step	2 of 2		
	Proof:-				
	Let A and B are two sets. Let	$x \in A = B$			
	If sets A and B are such that	every elements of	A and B are same	, then A and B are said to	
	equal.				
	$A = B \Leftrightarrow \left\{ x \in A \Leftrightarrow x \in B \right\}$				
	So,				
	$x \in A \iff x \in B$	(1)			
	Let us suppose $x \in B = C$.				
	So,				
	$x \in B \iff x \in C$	(2)			

Let us consider the equation (1) and (2).

 $x \in B \Leftrightarrow x \in C$