A NEW POINT ON EULER LINE

FIRST SYNTHETIC PROOF

Jean - Louis AYME 1

THE YAKUB ALIYEV'S RESULT

Hypothesis:	ABC	a triangle,
	Н	the orthocenter ABC,
	H1, H2, H3	les feet of the A, B, C-altitudes of ABC,
	Ta, Tb, Tc	the respective parallels to BC, CA, AB trough H,
	B1, C2	the points of intersection of <i>Ta</i> wrt AC, AB,
	C1, A2	the points of intersection of Tb wrt BA, BC,
	A1, B2	the points of intersection of Tc wrt CB, CA,
	X, Y, Z	the points of intersection of A1C2 and A2B1, of B1A2 and B2C1,
		of C1B2 and C2A1,
	1	the circumcircle of the triangle H1H2H3,
	S1, S2, S3	the second points of intersection of 1 wrt YZ, ZX, XY
et	E	the Euler's line of ABC.

Conclusion : XS1, YS2 and ZS3 concur on *E*.

†

St.-Denis, Île de la Réunion (France).

A. TWO LEMMAS

1. Another nature of the Euler's point

Hypothesis: ABC a triangle,

H the orthocenter of ABC,

H₁, H₂, H₃ the feet of the A, B, C-altitudes of ABC,

The Euler's circle of ABC ABC,

T₁ the midpoint of AH,

O the center of the circumcircle of ABC,

Pa the perpendicular to OT1 trough T_1

and B_2 , C_1 the points of intersection of Pa wrt AC, AB.

Conclusion : T_1 is the midpoint of B_2C_1 . [1]

Scolies: (1) another nature of B_2 and C_1

- The quadrilateral AB₂HC₁ is a parallelogram; in consequence,
- HB_2 // AB and HC_1 // AC.
- Conclusion: B_2 and C_1 are the points present in the Aliyev's figure.
 - (2) $B_2T_1C_1 = Pa$.
 - (3) Nature of the intersection of Pa and M_1H

 By hypothesis, we know that in consequence,

- $Pa \perp OT_1;$ $OT_1 // M_1H;$ $Pa \perp M_1H.$
- M₁T₁ being a diameter of 1, according Thalès "Triangle inscriptible in a half cercle",
- Pa and M_1H intersect on 1.

• Conclusion: this point of intersection is S_1 .

2. A point on the Euler's line

Hypothesis: to the hypothesis and notations of Aliyiev, we add

the center of 1,

 M_1, M_2, M_3 the respective midpoints BC, CA, AB the point of intersection of T_1S_3 and T_3S_1 .

Conclusion : P is on E.

et

Proof: according to the Pascal's theorem [3], (PHN) is the Pascal's line of the $T_1S_3M_3T_3S_1M_1T_1$.

B. THE FIRST SYNTHETIC PROOF

- $\begin{array}{ll} \bullet \quad \text{By hypothesis,} \\ \text{according to "The middle line theorem" applied to the triangle HBC,} \\ \text{in consequence,} \\ \end{array} \begin{array}{ll} C_2B_1 \, /\!/ \, BC \ ; \\ BC \quad /\!/ \, T_2T_3 \ ; \\ C_2B_1 \, /\!/ \, T_2T_3. \end{array}$
- According to the Desargues theorem applied to the homothetic triangles AC₂B₁ et HA₁A₂,
 AH goes trough X intersection of C₂A₁ and B₁A₂.
- Mutatis mutandis, we would prove
 BH goes trough Y intersection of A₂B₁ and C₁B₂
 CH goes trough Z intersection of B₂C₁ and A₁C₂.

According to the Terquem's theorem [4] applied to XYZ and 1,
 XT₁, YT₂ and ZT₃ going trough H,
 XS₁, YS₂ and ZS₃ are concurrent in U.

• Note P the point of intersection of T_1S_3 and T_3S_1 .

• According to Pappus theorem [5], HUP is the Pappus line of the hexagon $T_1XS_1T_3ZS_3T_1$.

According to "A point on the Euler's line", E = PHN; in consequence, U is on E.

• Conclusion: XS_1 , YS_2 and ZS_3 concur on E.

C. REFERENCES

- [1] Ayme J.-L., An Euler point is midpoint; http://www.mathlinks.ro/Forum/viewtopic.php?t=336564.
- [2] Ayme J.-L., Les cercles de Morley, Euler,..., G.G.G. vol. 2 p. 3-5; http://perso.orange.fr/jl.ayme.
- [3] Coxeter, Greitzer, Geometry Revisited, New Mathematical Library, New York (1967) 67.
- $Terquem\ O., \textit{Nouvelles Annales}\ \textbf{1}\ (1842)\ 403\ ;\ \textbf{http://www.numdam.org/numdam-bin/feuilleter?} \textbf{j=NAM\&sl=0}$
- [4] [5] Coxeter, Greitzer, Geometry Revisited, New Mathematical Library, New York (1967) 67.