

A Fine-grained CPU-GPU Analysis Framework

Yueming Hao yhao24@ncsu.edu North Carolina State University

Contributors:

Keren Zhou, John Mellor-Crummey, Xiaozhu Meng, Xu Liu

GPU Profilers Lack

GPU Profilers

- NVIDIA: Nsight Compute, Nsight Systems
- AMD: Rocm Profiler

Limitations:

- hotspot analysis only
- no value profiling

Our goal is to develop a value profiler for GPUs!

Motivation: Pytorch-Deepwave

Case Study: Pytorch-Deepwave

```
1 void replication_pad3d_backward_out_cuda_template(...) {
   gradInput.resize_as_(input);
3
   gradInput.zero_();
     . . . }
5 Tensor replication_pad3d_backward_cuda(...) {
6 - <u>auto</u> gradInput = at::zeros_like(input,
        LEGACY_CONTIGUOUS_MEMORY_FORMAT);
8
    replication_pad3d_backward_out_cuda_template(gradInput,
          gradOutput, input, paddingSize);
9
10 }
     For the ReplicationPad operator in the backward phase,
     RTX 2080Ti: 1.07x speedup
     A100: 1.04x speedup
     https://github.com/pytorch/pytorch/pull/48890 The PR has been merged.
```

Temporal Redundancy

Spatial Redundancy

Array A

GVProf: A value profiler for GPU-based clusters. [SC 2020] Zhou Keren, Yueming Hao, John Mellor-Crummey, Xiaozhu Meng, and Xu Liu.

Fine-Grained Value Patterns

Array A			Array A	Array A		
A[0]	1	A[0]	1	A[0]	0	
	1		1		0	
	1		1		0	
	1		1		0	
	2		1		0	
A[5]	3	A[5]	1	A[5]	0	
Frequent Values		es S	Single Value		Single Zero	

Fine-Grained Value Patterns

Array A

Array A
Data type: int32

Array A

e: int32 Data type: float32

A[0]	1
A[1]	2
A[2]	3
A[3]	4
A[4]	5
A[5]	6

1	
127	
32	
-120	
15	
12	

Structured Values y = kx + b

Heavy Type

Approximate Values

Coarse-Grained Value Patterns

Redundant Values

Duplicate Values

ValueExpert Overview

Online analyzer processes collected performance data to identify value patterns and build value flow graphs. This component dispatches

- preprocess of coarse-grained value patterns on GPUs
- all other analysis works on CPUs

Data collector utilizes NVIDIA's Sanitizer API to instrument

- each GPU memory instruction to obtain its touched memory addresses, value loaded/stored to the memory addresses
- GPU APIs, including memory copy, memory set, and kernel launch

ValueExpert: exploring value patterns in GPU-accelerated applications. [ASPLOS 2022] Zhou, Keren, Yueming Hao, John Mellor-Crummey, Xiaozhu Meng, and Xu Liu.

ValueExpert Overview

The offline analyzer mainly analyzes CPU and GPU binaries to obtain information about line mapping etc.

Overhead

Median overhead:

- 7.35× on RTX 2080 Ti
- 7.81× on A100

Optimization Results

	RTX 2080Ti		A100	
Applications	Kernel Speedup	Memory Speeup	Kernel Speedup	Memory Speeup
Rodinia/backprop	8.18X	1.01X	1.67X	1.01X
Rodinia/sradv1	1.52X	1.03X	1.11X	1.06X
Rodinia/pathfinder	1.13X	4.21X	1.37X	3.27X
Rodinia/hotspot3D	2.00X	1.00X	1.99X	0.99X
Darknet	1.06X	1.82X	1.05X	1.73X
Castro	1.27X	1.00X	1.24X	1.02X
BarraCUDA	1.06X	1.13X	1.06X	1.13X
PyTorch-Deepwave	1.07X	1.01X	1.04X	1.00X
PyTorch-Bert	1.57X	1.01X	1.59X	1.00X
PyTorch-Resnet50	1.02X	1.00X	1.03X	0.98X
LAMMPS	-	6.03X	-	5.19X
Geometric Mean	1.58X	1.34X	1.39X	1.28X
Median	1.29X	1.01X	1.11X	1.02X

PyTorch Benchmarks

Case Study: PyTorch-Resnet50

Case Study: Pytorch-Resnet50

Case Study: Pytorch-Resnet50

input × filter + bias

1.02× and 1.03× speedups for convolution layers on RTX 2080 Ti and A100

https://github.com/pytorch/pytorch/pull/48540 The PR has been merged.

What about the CPU-GPU interactions?

Interesting Topics

- CPU-GPU managed memory
- CPU-GPU data transmission
- GPU-GPU data transmission
- CPU-GPU shared memory hierarchy

How Managed Memory Works

Potenional frequent true shaing and false sharing!

GPUPUNK Overview

Implementation Details

- Combined Fine-grained CPU-GPU CCT
 - Build the combined accurate CCT based on instrumentation data, inlucding device function calls
- Combined CPU-GPU Data Analysis
 - Instrument all CPU memory accesses and GPU memory accesses
 - Estimate page faults invoked by memory accesses
 - Analyze potentional page false sharing

Reduce Overhead

- GPU Preprocesor
 - Use a small kernel preprocess data collected from GPU
 - Expose those APIs to users
- Minimizing CPU-GPU Data Transfers
 - Use an adaptive copy mechanism to switch between different copy strategies
- Kernel Filtering
 - Supports monitoring a subset of GPU kernels specified by users
- Kernel and Block Sampling
 - Supports monitoring a subset of GPU kernel and block executions specified by users

Conclusion

- GVProf & ValueExpert
 - https://github.com/GVProf/GVProf
- GPUPUNK(work in progress)
 - https://github.com/FindHao/gpupunk

Questions?