

CEC

通信电子线路 Communication Electronic Circuits

张明强

2024年3月1日

学而不厭 酶 人不倦

课程简介

> 教学内容

第1章 绪论

第2章 选频网络

第3章 高频小信号放大器

第4章 非线性电路、时变参量电路和变频器

第5章 高频功率放大器

第6章 正弦波振荡器

第7章 振幅调制与解调

第8章 角度调制与解调

第9章 数字调制与解调

第10章 反馈控制电路

主要参考教材

电子线路分类

线性器件与非线性器件

线性器件

线性电子线路

晶体二极管、三极管、场效应管等器件,在**静态工** 作点合适, 且**小信号工作**时, 输出与输入之间呈线 性关系,此时的器件为线性器件。

非线性电子线路 非线性器件

非线性器件的分析不再满足齐次性和叠加性原理。

非线性电子线路广泛应用于通信系统中,如倍频器、 混频器、调制器、解调器等。

静态工作点和非线性失真

高频电子线路主要分析对象和方法

1. 主要分析对象

1)能量转换

有输入信号控制

(非谐振功放、谐振功放)

无输入信号控制

(振荡器)

2)频率变换

线性频谱搬移

(混频、调幅、检波)

非线性频谱搬移

(调频、鉴频、调相、鉴相)

2. 主要分析方法

- 1)解非线性微分方程
- 2)数值分析

3)工程分析

图解法

解析法

解析法

幂级数分析法 指数函数分析法 折线近似分析法 线性时变系统分析法 差动特性分析法 开关函数分析法 矢量分析法

课程目标与考核方式

> 课程目标

- 1. 了解课程和专业相关前沿
- 2. 掌握高频通信电子线路各单元电路的基本概念、工作原理和电路组成。
- 3. 掌握各种非线性电子线路分析和设计方法,为后续课程打下必备的基础。

4. 熟练地掌握高频通信电子线路<mark>常用测试仪器的使用方法与基本测试技术</mark>,对通信电子线路的基本单元电路具有初步设计、安装和调试的能力。

> 考核方式

平时10%+作业10%+实验20%+期中20%+期末40%

参考教材:

张肃文编,《高频电子线路》,高等教育出版社 2009

张肃文编,《高频电子线路学习指导书》,高等教育出版社 2009

董在望主编,《通信电路原理》,清华大学出版社 2002

阳昌汉 主编.《高频电子线路学习指导》. 高等教育出版社 2006

Chapter 1 绪论

- ☞ 1.1 无线通信发展简史
- ☞ 1.2 无线电信号传输原理
- ☞ 1.3 通信的传输媒质

1837年<mark>莫尔斯</mark>发明电报,创造莫尔斯电码,开创通信的新纪元。 1876年<mark>贝尔</mark>发明电话,能够直接将语言信号变为电信号沿导线传送。

的无线电发明和发展奠定了坚实的理论基础。

- 1864年英国物理学家<mark>麦克斯韦</mark>从理论上证明了电磁波的存在,为后来
- 1887年德国物理学家<mark>赫兹</mark>以卓越的实验技巧证实了电磁波的客观存在。 莫尔斯、贝尔、法拉第、麦克斯韦、赫兹

俄国物理学家波波夫也对无线电通讯作出重要的贡献,1895年他发表了论文,并公开演示了他制作的"雷电指示器",实际上是一台无线电接收机。

1895年马可尼首次在几百米的距离实现电磁波通信,1901年首次完成横渡大西洋的通信。

波波夫及实验用的接收机

马可尼

1904年, 弗莱明发明电子二极管, 成为进入无线电电子学时代的标志。

弗莱明和他发明的二极管

1907年李·德·福雷斯特发明了电子三极管,用它可组成多种重要功能的电子线路。

弗雷斯特和他发明的三极管

1948年肖克莱、巴丁和布拉顿发明了晶体三极管,它在许多方面已取代了电子管的传统地位。

■ 20世纪60年代开始出现将"管"、"路" 结合起来的集成电路。

杰克基尔比

大信息时代—起源

口 信息革命

猿→人 信息得 以交流 和传递

信息

语言的

突破了人类大脑及原 官加工利用信息的能 人类进入信息社会时 信息可以被储存在文字中进 行传播,解决了语言的时间

信息革命

WHEN?

WHAT?

扩大了信息的 交流、传递的 容量和范围

. . .

第三次 信息革命

印刷术的发

第六次 信息革命

计算机与互联网的使用

声音、图片影 像、文字

实现同时远距 离实时传播

电磁波传播信 息,速度增长 几十亿倍

信息科学的发展历程

A. Turning 计算机科学之父

C. Shannon 信息论之父

N. Wiener 控制论之父

1936

1946

1948

1948

图灵提交论文 《论可计算数及其在判定性问题上的应用》

香农发表《通信的数学理论》 标志着信息论的创立

维纳发表

世界首台由真空电子器件组成的通用电子计算机研制成功 冯·诺依曼提出著名的"程序内存"架构

《控制论或关于在动物和机器中控制和通讯的科学》标志着控制论的创立

未来的通信集信息技术大成:典型的复杂巨系统,亟需基础理论突破

信息论之父一香农

控制论之父—维纳

计算机之父—冯诺依曼

系统科学家——钱学森

系统论、信息论、控制论及AI融合方法来解决复杂问题

通信的基本问题

信息如何度量?

信息如何传输?

香农 第一定理 将原始信源符号压缩为新的编码符号,每个信源符号 需要的编码符号平均长度的最小值为信源的信息熵

即: 信息熵是信源压缩的码长极限

通信的基本问题

信息如何度量?

信息如何传输?

移动通信在智能时代的需求

演进维度的逐步扩展

■ 通信演进趋势呈现出"泛在性、智能性、宽带性"特征

传统通信的堆叠式创新

目前,通信发展模式以语法通信基础理论为指导,以技术堆叠为演进思路,以系统复杂度换取性能增益,即堆叠式发展,对资源的快速消耗使现有发展模式难以为继

未来通信的潜在应用

未来通信的生态构建

通信芯片被卡脖子

重塑生态: 从基础理论创新出发,改变通信信息层次,扭转"倒金字塔"结构,重 塑健康产业生态

倒金字塔结构,受制于人

2021年2季度 5G基带芯片份额 网络应用 车联网、智慧医疗、VR/AR... 5% 10% 设备制造 > 终端、基站、核心网设备... 30% 核心器件/软件 手机芯片、网络基础软件. 基础研究 ■联发科 三星 ■高通 - 其他 > 语法信息理论...

健康生态结构,对等博弈

网络应用

> 新型: 车联网、智慧医疗、VR/AR...

设备制造

> 新型: 终端、基站、核心网设备...

核心器件/软件

语义通信芯片、网络操作系统...

基础研究

语义信息理论...

未来大信息时代的3C融合

二 未来更加丰富的业务应用及极致的性能需求,迫切需要计算-通信-控制的有机融合与深度协作,实现低时延信息传输,高精准计算决策,高可靠控制执行

计算-通信-控制融合

智慧医疗

智慧城市

智慧交通

做好准备——在实践中学习和科研

拒绝"摆烂"

Chapter 1 绪论

- ☞ 1.1 无线通信发展简史
- ☞ 1.2 无线电信号传输原理
- ☞ 1.3 通信的传输媒质

▶ 1.2.1 传输信号的基本方法

1**、消息**:由收发双方共同约定的字母、数字、文字、语言等。

2、信息:消息中的有效成分。

3、信号: 任何随时间变化的物理量称为信号。通常指电信号,如u(t),i(t)等。

4**、信道**:信号传输的媒质。如导线、 光缆、波导、空气。

5、信号的带宽:信号的最高频率与最低频率之差 也就是这个信号所拥有的频率范围,叫做该信号的频谱宽度,简称为频宽,也叫带宽.

通信系统是指"电通信",包括移动通信、电报、电话、广播、电视、雷达、遥测、遥控等。

▶ 1.2.1 传输信号的基本方法

一个无线通信系统框图

麦克斯韦的电磁理论告诉我们,只要空间某个区域有振荡的电场或磁场,就会产生电磁波.

要向外界发射电磁波,振荡电路必须具有如下的特点:

第一, 要有足够高的频率。

理论的研究证明,振荡电路单位时间内辐射出去的能量,与振荡频率的四次方成正比。振荡电路的频率越高,发射电磁波的本领越大。

第二, 电路必须开放。

由闭合电路变成开放电路

实际开放电路

▶ 1.2.2 无线信号的产生与发射

图 1.2.3 正弦调幅波形

将音频信号"装载"在高频载波上,以利于由 天线发射和接收,该过程称为"调制"。

调制的意义

- 1、馈送到天线上的信号波长和天线 尺寸相当时,天线才能有效地辐射和 接收电磁波。
- 2、区别不同的音频信号, 防止串台。
- 3、通频带。中心频率越高,所能容纳的电台数目越多,但又不能无限升高。

▶ 1.2.2 无线信号的产生与发射

无线广播的频率:

解调后中频中心频率:

AM: 465kHz FM: 10.7MHz

▶ 1.2.2 无线信号的产生与发射

-3dB带宽的定义和理解

也叫: 半功率点

20log(Au/Aum)

 $= 20\log(Au)$

 $= 20\log(0.707)$

= -3dB

▶ 1.2.2 无线信号的产生与发射

调制:由携有信息的电信号去控制高频振荡信号的某一参数,使该参数

按照电信号的规律而变化。

涉及到三种信号: (信息(基带)信号——低频信号

基带信号也叫调制信号

载波信号 } 高频信号

例如: $v(t) = (E_c + e_m) \sin \omega_c t$

其中: $\iota(t)$ 为调制后的瞬时幅值; E_c 为载波信号的峰值幅值;

 e_m 为调制信号的瞬时幅值; ω_c 为载波频率。

解调:调制的逆过程,将已调信号变换为携带有信息的电信号。

▶ 1.2.2 无线信号的产生与发射

调制的方式

$$v(t) = A\sin(\omega t + \varphi)$$

2、调频) - 调频) 调角

1、调幅

▶ 1.2.2 无线信号的产生与发射

调幅发射机(以调幅广播为例)

▶ 1.2.3 无线信号的接收

直接放大式接收机方框图

35/45

图 1.2.11 超外差式接收机方框图

Chapter 1 绪论

- ☞ 1.1 无线通信发展简史
- ☞ 1.2 无线电信号传输原理
- ☞ 1.3 通信的传输媒质

> 无线传输信道

图 1.2.3 通信系统框图

根据传输媒质的不同,分为有线通信与无线通信。

> 无线电波主要传播方式

1、绕射传播(地波)

电波沿着地球弯曲表面传播,如下图所示:

适合频率 f:

1.5MHz以下

(λ为200m以上)的中长波。

特点:传播性能稳定可靠,但由于地面不是理想的导体有能量的损耗。

主要用于长距离通信、导航和广播。

> 无线电波主要传播方式

2、折射和反射传播(天波) 利用电离层的折射和反射来实现传播

适合频率 f:

1.5MHz~30MHz (10m~200m)的短波

特点:电离层的特性受多种因素的影响,因此通信的稳定性较差,但传播距离远。主要用于广播、船舶通信、和飞行通信。

- > 无线电波主要传播方式
 - 3、直线传播(空间波)

电波从发射天线发出,沿直线传播到接收天线

适合频率 f: 30MHz以上的超短波 (波长λ为10m以下)

特点:这种传播的距离只限制在视距范围内(也叫视距传播)增高天线可以 提高直线传播的距离。

> 高频电子线路的工作频段

小结

- 1. 了解信息科学前沿方向
- 2. 了解无线通信的发展历史、应用和前沿
- 3. 掌握线性与非线性(器件、电路)的含义
- 4. 理解调制和解调的含义与意义
- 5. 掌握通信系统的基本组成、传输原理、传输媒质

Thank You!

