University of Padova Department of Information Engineering

Biomedical Wearable Technologies for Healthcare and Wellbeing

Research applications

A.Y. 2022-2023

Luca Cossu & Michele Atzeni

Outline

- > IMPACT
- > DEEP
- > AIRPREDICT
- > TimeRun

Clinical Trials

- Essential instrument to test newly developed solutions for disease management and care
- Multiple patients in parallel
- Data gathering for assessment of the examined methodology

Data Gathering

- Different sources (automatic sensors, manual input,...) and format (numeric, raw text description,...)
- Lack of standardization of data schema
- Need of normalization before data availability for research purposes

Our solution

- During my master thesis I have developed and briefly tested a mobile platform built in Flutter
- > The platform allows for conduction of simple clinical trials
- ➤ It integrates automatic data collection from different sources

Platform structure

- Cloud database
- Mobile application with wearable devices integration
- Monitoring interface for real-time monitoring

Mobile application

- ➤ iOS application
- Dexcom© G6 sensor integration
- HealthKit integration
- Manual data logging
- > Statistics over different time periods
- PDF report creation and sharing capabilities

Today view with graph and statistics

Outline

- > IMPACT
- > DEEP
- > AIRPREDICT
- > TimeRun

Context of the DEEP platform

- Adaptation of the IMPACT platform to the study
- Post bariatric surgery patients with post-prandial hypoglycaemic events
- Objectives:
 - Understand and predict blood glucose dynamic in this population
 - Predict hypoglycaemic events
 - Therapy effects on glucose fluctuations

Multiple data types to be gathered

- Blood glucose
- Meal intakes (kind and quantity)
- Hypoglycemia symptoms
- Physical activities (steps automatically collected)
- Drug intakes with comments and informations
- Sleep cycles

Real time capabilities

- Data collection from multiple devices
 - Continuous Glucose Monitoring sensor (CGM)
 - Fitness trackers (Apple health integration)
- Patient monitoring via web interface
- Simple real-time algorithms to be tested
- Change trial settings
 - Blinding of CGM data

Mobile application

- Real time communication with multiple wearable sensors
- Completely customisable in theme and features
- Able to run simple real time algorithms
- Active custom notifications for specific events

Web interface

- Overview of all enrolled patients
- Per patient details and statistics
- Daily analysis page
- Custom features
- Custom trial settings

Patients overview

- Landing page for the clinician website.
- Alerts and status of patients at a glance
- > Enrolment of new patient

Live demo

Outline

- > IMPACT
- > DEEP
- **AIRPREDICT**
- > TimeRun

Air Pollution

- ➤ **Air pollution** is a **global issue** that has a significant impact on human health
- The quality of air is an environmental factor that **affects non-transmissible illnesses** such as respiratory and neurodegenerative diseases.

Asthma

- Asthma is a disease characterised by diffuse inflammation of the airways
- > Relapses, i.e. exacerbations, are defined as an acute and severe loss of disease control requiring urgent treatment.

The Problem

Problem

- **Exposure to air pollution is a crucial risk factor** for asthma exacerbation
- ➤ Hence, air pollution can significantly impact the quality of life of asthma patients
- Preventing exacerbation episodes is critical in improving the prognosis of asthma
- Current state-of-the-art predictive models for asthma exacerbation mostly do not consider risk factors related to pollution
- A dynamic personal exposure assessment can enable real-time personalized predictions of exposure-induced adverse events

The Planned Approach

- > Develop a new **smart monitoring system**, consisting of
 - Wearable and portable Internet-of-Things sensors
 - Mobile and a web applications
 - Cloud database (IMPACT)
 - Data analysis and Machine Learning
- ➤ The monitoring system will be tested in a population of asthma patients followed at the Respiratory Disease Clinic of University of Padova (DCTV).

IoT Sensors

> Atmotube PRO

- Portable air quality monitoring device
- Measures
 - pollutant concentrations,
 - weather indices, total volatile organic compounds,
 - temperature, humidity, and pressure

> Fitbit Charge 5

- Smartwatch that captures
 - heart rate
 - physical activity information.
 - Stress
 - SpO2

> MIR Smart One

- Pocket-sized, personal spirometer
- Measures
 - Peak flow rate (PEF)
 - Forced expiratory volume (FEV1)

Mobile Application

Personal Exposure Tool

Leveraging Bluetooth Low Energy (BLE) communication and Web APIs, wearable/portable sensor data is gathered to compute the Personal Exposure (i.e Inhalation).

> Asthma Diary

User can report an Asthma Attack, the Spirometry test done daily and also the Asthma Control Test (ACT). Logs can be visualized in the asthma diary page.

Clinical Web Dashboard

Patients enrolment for the trial

Create a new patient within the IMPACT platform, hence enrol a new asthmatic patient into the Airpredict trial.

Monitor Patients' Asthma Control

Possibility to check the exposure and asthma related trends for each patient that had sync their data with the IMPACT Cloud Database.

Data Analysis and Machine Learning

Collected patient-generated and environmental data will be used

> Find the factors influencing asthma exacerbations

Identification of the air pollution exposure factors that most increase the risk of asthma exacerbations.

Artificial Intelligence predictive modeling

The development of AI predictive models to predict the risk of future exacerbations in asthma patients, considering clinical and environmental factors.

Live demo

Outline

- > IMPACT
- > DEEP
- > AIRPREDICT
- > TimeRun

Setting

- Master thesis project of last year's BWTHW student
- Accuracy comparison between multiple smartwatches to be used in future studies
 - Apple Watch 8
 - Garmin Vivoactive 4
 - Fitbit Charge 5
 - Withings Scanwatch

Gold standard

- ➤ Polar H10
- ➤ ECG sensor considered one of the most accurate¹ on the market
- Simple bluetooth integration

Protocol of the study

- > 10 participants
- Running activity to span over all heart rate zones
- > Two minutes of run for each heart rate zone
 - Running speed is guided by the master thesis student giving instructions to the participant to keep the heart rate in the required zone
 - Use of a mobile app built by the student to monitor the participant in real time

Practical demonstration