Стековые автоматы

Теория формальных языков *2021 г*.

Пересечение CFG и рег. языка

Утверждение

Даны CFG G и конечный автомат \mathscr{A} . Можно построить CFG G' такую, что $L(G') = L(G) \cap L(\mathscr{A})$.

Предположим, что G — в k-нормальной форме Хомского, q — множество состояний автомата \mathscr{A} , q_f — единственное финальное состояние, N — множество нетерминалов грамматики G. Множество нетерминалов G' — множество троек $\langle q_i, A, q_i \rangle$, $q_i, q_i \in q$, $A \in N$.

- По каждому правилу $A \to A_1 \dots A_n$ из G строим правила $\langle p,A,q \rangle \to \langle p,A_1,q_1 \rangle \langle q_{n-1},A_n,q \rangle$ для всех возможных p,q,q_i .
- ullet По правилу вида A o t из G и переходу $p o^t q$ строим правило $\langle p,A,q \rangle o t$.
- Нетерминал $\langle q_0, S, q_f \rangle$ объявляем стартовым.

Построим пересечение языков CFG $S \to G_AT \,|\, SS$, $T \to b \,|\, SG_B$, $G_A \to a$, $G_B \to b$, и следующего автомата:

Построим пересечение языков CFG $S \rightarrow G_A T \mid SS$, $T \rightarrow b \mid SG_B, G_A \rightarrow a, G_B \rightarrow b$, и следующего автомата:

Сначала разберёмся с правилами вида $X \to t$. Если t = a, тогда подходящий нетерминал — только G_A , состояния — только 0+0. Если t = b, получается четыре комбинации состояний и нетерминалов.

$$\langle 0, G_B, 1 \rangle \rightarrow b \quad \langle 1, G_B, 1 \rangle \rightarrow b$$

$$\begin{array}{lll} \langle \textbf{0}, \textbf{G}_B, \textbf{1} \rangle \rightarrow \textbf{b} & \langle \textbf{1}, \textbf{G}_B, \textbf{1} \rangle \rightarrow \textbf{b} \\ \langle \textbf{0}, \textbf{T}, \textbf{1} \rangle \rightarrow \textbf{b} & \langle \textbf{1}, \textbf{T}, \textbf{1} \rangle \rightarrow \textbf{b} & \langle \textbf{0}, \textbf{G}_A, \textbf{0} \rangle \rightarrow \textbf{a} \end{array}$$

Построим пересечение языков CFG $S \to G_A T | SS$, $T \rightarrow b \mid SG_B, G_A \rightarrow \alpha, G_B \rightarrow b$, и следующего автомата:

$$\langle 0, G_B, 1 \rangle \rightarrow b \quad \langle 1, G_B, 1 \rangle \rightarrow b$$

$$\langle \textbf{0},\textbf{T},\textbf{1}\rangle \rightarrow \textbf{b} \qquad \langle \textbf{1},\textbf{T},\textbf{1}\rangle \rightarrow \textbf{b} \qquad \langle \textbf{0},\textbf{G}_{\textbf{A}},\textbf{0}\rangle \rightarrow \textbf{a}$$

Рассмотрим возможные подстановки состояний в правила, порождаемые $S \to G_A T$, $T \to SG_B$. Соответствующие уравнения: $\langle X1, S, X2 \rangle \rightarrow \langle X1, G_A, X3 \rangle \langle X3, T, X2 \rangle$

$$\langle Y1, T, Y2 \rangle \rightarrow \langle Y1, S, Y3 \rangle \langle Y3, G_B, Y2 \rangle$$

Чтобы правила были порождающими, необходимо положить X1 = X3 = 0, Y2 = 1. Выпишем все такие правила. Заметим, что получившийся в одном из них нетерминал (0, T, 0) непорождающий, и удалим это правило.

Построим пересечение языков CFG $S \to G_AT \,|\, SS$, $T \to b \,|\, SG_B$, $G_A \to \alpha$, $G_B \to b$, и следующего автомата:

$$\begin{array}{llll} \langle 0, \mathsf{G}_B, 1 \rangle \to b & \langle 1, \mathsf{G}_B, 1 \rangle \to b \\ \langle 0, \mathsf{T}, 1 \rangle \to b & \langle 1, \mathsf{T}, 1 \rangle \to b & \langle 0, \mathsf{G}_A, 0 \rangle \to \alpha \\ \langle 0, \mathsf{S}, 0 \rangle \to \langle 0, \mathsf{G}_A, 0 \rangle \langle 0, \mathsf{T}, 0 \rangle & \langle 0, \mathsf{S}, 1 \rangle \to \langle 0, \mathsf{G}_A, 0 \rangle \langle 0, \mathsf{T}, 1 \rangle \\ \langle 0, \mathsf{T}, 1 \rangle \to \langle 0, \mathsf{S}, 0 \rangle \langle 0, \mathsf{G}_B, 1 \rangle & \langle 0, \mathsf{T}, 1 \rangle \to \langle 0, \mathsf{S}, 1 \rangle \langle 1, \mathsf{G}_B, 1 \rangle \\ \langle 1, \mathsf{T}, 1 \rangle \to \langle 1, \mathsf{S}, 0 \rangle \langle 0, \mathsf{G}_B, 1 \rangle & \langle 1, \mathsf{T}, 1 \rangle \to \langle 1, \mathsf{S}, 1 \rangle \langle 1, \mathsf{G}_B, 1 \rangle \\ \end{array}$$

Осталось разобраться с правилами, порождёнными $S \to SS$. Выпишем их общий вид: $\langle X1, S, X2 \rangle \to \langle X1, S, X3 \rangle \langle X3, S, X2 \rangle$.

Построим пересечение языков CFG $S \to G_AT \,|\, SS$, $T \to b \,|\, SG_B$, $G_A \to \alpha$, $G_B \to b$, и следующего автомата:

$$\begin{array}{c|c} \langle 0, G_B, 1 \rangle \rightarrow b & \langle 1, G_B, 1 \rangle \rightarrow b \\ \langle 0, T, 1 \rangle \rightarrow b & \langle 1, T, 1 \rangle \rightarrow b & \langle 0, G_A, 0 \rangle \rightarrow \alpha \\ & \langle 0, S, 1 \rangle \rightarrow \langle 0, G_A, 0 \rangle \langle 0, T, 1 \rangle \\ \langle 0, T, 1 \rangle \rightarrow \langle 0, S, 0 \rangle \langle 0, G_B, 1 \rangle & \langle 0, T, 1 \rangle \rightarrow \langle 0, S, 1 \rangle \langle 1, G_B, 1 \rangle \\ \langle 1, T, 1 \rangle \rightarrow \langle 1, S, 0 \rangle \langle 0, G_B, 1 \rangle & \langle 1, T, 1 \rangle \rightarrow \langle 1, S, 1 \rangle \langle 1, G_B, 1 \rangle \\ \end{array}$$

Осталось разобраться с правилами, порождёнными $S \to SS$. Выпишем их общий вид: $\langle \mathbf{X1}, S, \mathbf{X2} \rangle \to \langle \mathbf{X1}, S, \mathbf{X3} \rangle \langle \mathbf{X3}, S, \mathbf{X2} \rangle$. Если положить $\mathbf{X1} = \mathbf{1}$, $\mathbf{X2} = \mathbf{0}$, получим саморекурсивное правило $\langle 1, S, 0 \rangle \to \alpha_1 \langle 1, S, 0 \rangle \alpha_2$. Но в построенной части грамматики нет правил вида $\langle 1, S, \dots \rangle \to \beta$. Поэтому нетерминал $\langle 1, S, 0 \rangle \to \mathbf{0}$ непорождающий. Удалим правила с его вхождением.

Построим пересечение языков CFG $S \to G_AT \,|\, SS$, $T \to b \,|\, SG_B$, $G_A \to \alpha$, $G_B \to b$, и следующего автомата:

$$\begin{array}{llll} \langle 0,\mathsf{G}_B,1\rangle \to b & \langle 1,\mathsf{G}_B,1\rangle \to b \\ \langle 0,\mathsf{T},1\rangle \to b & \langle 1,\mathsf{T},1\rangle \to b & \langle 0,\mathsf{G}_A,0\rangle \to \alpha \\ & \langle 0,\mathsf{S},1\rangle \to \langle 0,\mathsf{G}_A,0\rangle \langle 0,\mathsf{T},1\rangle \\ \langle 0,\mathsf{T},1\rangle \to \langle 0,\mathsf{S},0\rangle \langle 0,\mathsf{G}_B,1\rangle & \langle 0,\mathsf{T},1\rangle \to \langle 0,\mathsf{S},1\rangle \langle 1,\mathsf{G}_B,1\rangle \\ & \langle 1,\mathsf{T},1\rangle \to \langle 1,\mathsf{S},1\rangle \langle 1,\mathsf{G}_B,1\rangle \end{array}$$

Теперь если X1=X2=1, то единственный вариант развёртки $S \to SS$ без участия нетерминала $\langle 1,S,0 \rangle$ будет иметь вид $\langle 1,S,1 \rangle \to \langle 1,S,1 \rangle \langle 1,S,1 \rangle$, так что нетерминал $\langle 1,S,1 \rangle$ тоже непорождающий.

Построим пересечение языков CFG $S \to G_AT \,|\, SS$, $T \to b \,|\, SG_B$, $G_A \to \alpha$, $G_B \to b$, и следующего автомата:

$$\begin{array}{llll} \langle 0, G_B, 1 \rangle \rightarrow b & \langle 1, G_B, 1 \rangle \rightarrow b \\ \langle 0, T, 1 \rangle \rightarrow b & \langle 1, T, 1 \rangle \rightarrow b & \langle 0, G_A, 0 \rangle \rightarrow \alpha \\ & \langle 0, S, 1 \rangle \rightarrow \langle 0, G_A, 0 \rangle \langle 0, T, 1 \rangle \\ \langle 0, T, 1 \rangle \rightarrow \langle 0, S, 0 \rangle \langle 0, G_B, 1 \rangle & \langle 0, T, 1 \rangle \rightarrow \langle 0, S, 1 \rangle \langle 1, G_B, 1 \rangle \\ \end{array}$$

Аналогичным образом устанавливаем бесполезность нетерминала $\langle 0, S, 0 \rangle$, который обязан ссылаться либо дважды на себя, либо на непорождающий $\langle 1, S, 0 \rangle$.

Построим пересечение языков CFG $S \to G_AT \,|\, SS$, $T \to b \,|\, SG_B$, $G_A \to a$, $G_B \to b$, и следующего автомата:

$$\begin{array}{lll} \langle \textbf{0},\textbf{G}_{B},\textbf{1}\rangle \rightarrow \textbf{b} & \langle \textbf{1},\textbf{G}_{B},\textbf{1}\rangle \rightarrow \textbf{b} \\ \langle \textbf{0},\textbf{T},\textbf{1}\rangle \rightarrow \textbf{b} & \langle \textbf{1},\textbf{T},\textbf{1}\rangle \rightarrow \textbf{b} & \langle \textbf{0},\textbf{G}_{A},\textbf{0}\rangle \rightarrow \textbf{a} \\ & \langle \textbf{0},\textbf{S},\textbf{1}\rangle \rightarrow \langle \textbf{0},\textbf{G}_{A},\textbf{0}\rangle \langle \textbf{0},\textbf{T},\textbf{1}\rangle \\ & \langle \textbf{0},\textbf{T},\textbf{1}\rangle \rightarrow \langle \textbf{0},\textbf{S},\textbf{1}\rangle \langle \textbf{1},\textbf{G}_{B},\textbf{1}\rangle \end{array}$$

Теперь получается, что все варианты раскрытия нетерминала $\langle 0,S,1\rangle$ по правилу $S\to SS$ включают непорождающие нетерминалы, поэтому никаких других правил в грамматику добавлять не надо. Осталось только удалить правила с недостижимыми нетерминалами $\langle 0,G_B,1\rangle$, $\langle 1,T,1\rangle$.

Построим пересечение языков CFG $S \to G_AT \,|\, SS$, $T \to b \,|\, SG_B$, $G_A \to a$, $G_B \to b$, и следующего автомата:

$$\begin{array}{ll} \langle 0, G_A, 0 \rangle \rightarrow \alpha & \langle 1, G_B, 1 \rangle \rightarrow b \\ \langle 0, T, 1 \rangle \rightarrow b & \\ \langle 0, S, 1 \rangle \rightarrow \langle 0, G_A, 0 \rangle \langle 0, T, 1 \rangle & \langle 0, T, 1 \rangle \rightarrow \langle 0, S, 1 \rangle \langle 1, G_B, 1 \rangle \\ \end{array}$$

Грамматика пересечения языков построена.

Стековая память

Пусть G — CFG. Неформально представим, что G — это стековый автомат, где состояния стека — нетерминальные сент. формы, порождаемые G. Скажем, что G распознаёт только слова, соответствующие пустому стеку.

Стековая память

Пусть G — CFG. Неформально представим, что G — это стековый автомат, где состояния стека — нетерминальные сент. формы, порождаемые G. Скажем, что G распознаёт только слова, соответствующие пустому стеку.

Грамматика и её стек

$$S \rightarrow aSB \mid SS \mid \varepsilon$$
 $B \rightarrow b$
 $\varepsilon, S/SS$
 $\epsilon, S/\varepsilon$
 $b, B/\varepsilon$

Стековая память

Пусть G — CFG. Неформально представим, что G — это стековый автомат, где состояния стека — нетерминальные сент. формы, порождаемые G. Скажем, что G распознаёт только слова, соответствующие пустому стеку.

Грамматика и её стек

$$S \rightarrow aSB | SS | \varepsilon$$
 $B \rightarrow b$
 $\varepsilon, S/SS$
 $\varepsilon, S/\varepsilon$
 $\delta, B/\varepsilon$

А если в такие автоматы добавить ещё состояния?

Pushdown Automata

Определение

Стековый автомат \mathscr{A} — кортеж $\langle \Pi, \Sigma, Q, \delta, q_0, Z_0 \rangle$, где:

- П алфавит стека;
- Σ алфавит языка;
- Q множество состояний;
- δ правила перехода вида $\langle q_i, t, P_i \rangle \to \langle q_j, \alpha \rangle$, где $t \in \Sigma \cup \{\epsilon\}$, $\alpha \in \Pi^*$;
- q_0 стартовое состояние, Z_0 дно стека.

Pushdown Automata

Определение

Стековый автомат \mathscr{A} — кортеж $\langle \Pi, \Sigma, Q, \delta, q_0, Z_0 \rangle$, где:

- П алфавит стека;
- Σ алфавит языка;
- Q множество состояний;
- δ правила перехода вида $\langle q_i, t, P_i \rangle \to \langle q_j, \alpha \rangle$, где $t \in \Sigma \cup \{\epsilon\}$, $\alpha \in \Pi^*$;
- q_0 стартовое состояние, Z_0 дно стека.

Два варианта допуска слова:

- если слово полностью прочитано, и стек пуст;
- если слово полностью прочитано, и состояние финальное.

Виды допуска

Утверждение

PDA с допуском по конечному состоянию распознают те же языки, что и PDA с допуском по пустому стеку.

Виды допуска

Утверждение

PDA с допуском по конечному состоянию распознают те же языки, что и PDA с допуском по пустому стеку.

• Пусть PDA допускает пустой стек. Добавим новый символ дна Z_1 и добавим по нему ε -переходы из всех состояний в новое финальное состояние.

Виды допуска

Утверждение

PDA с допуском по конечному состоянию распознают те же языки, что и PDA с допуском по пустому стеку.

- Пусть PDA допускает пустой стек. Добавим новый символ дна Z_1 и добавим по нему ε -переходы из всех состояний в новое финальное состояние.
- Пусть PDA допускает финальные состояния. Добавим из них ϵ -переходы в состояние, опустошающее стек, а также новый символ стека Z_1 и новое стартовое состояние q_0' с переходом $\langle q_0', \epsilon, Z_0 \rangle \to \langle q_0, Z_0 Z_1 \rangle$.

Пример оформления РDA

Обычно PDA изображается в виде автомата, в котором стрелки помечены сигнатурой α , T/Φ , где α — это символ терминального алфавита (или пустое слово), T — символ на вершине стека, Φ — последовательность стековых символов, помещаемая на вершину стека вместо T.

Следующий PDA распознаёт правильные скобочные последовательности (включая пустое слово).

Пример оформления PDA

Следующий PDA распознаёт правильные скобочные последовательности (включая пустое слово).

Заметим, что перехода из состояния 0 по символу) нет. Так же как и в случае конечных автоматов, можно добавить для такого перехода состояние-ловушку, потому что он порождает слово, в префиксе которого количество закрывающих скобок превышает количество открывающих, а такие слова не являются ПСП.

1

От CFG к PDA

Утверждение

По всякой CFG G можно построить PDA A такой, что $L(G) = L(\mathscr{A}).$

От CFG к PDA

Утверждение

По всякой CFG G можно построить PDA $\mathscr A$ такой, что $\mathsf L(\mathsf G)=\mathsf L(\mathscr A).$

Переведём G в GNF и построим по ней PDA c единственным состоянием 0 и допуском по пустому стеку, такой что $Z_0=S$, правилу $A\to \alpha$ соответствует переход $(0,\alpha,A)\to (0,\epsilon)$; правилу $A\to \alpha B_1\dots B_n$ — переход $(0,\alpha,A)\to (0,B_1\dots B_n)$.

Утверждение

По всякому PDA $\mathscr A$ можно построить CFG G такую, что $L(G)=L(\mathscr A).$

Утверждение

По всякому PDA $\mathscr A$ можно построить CFG G такую, что $L(G) = L(\mathscr A)$.

Пусть Я допускает слова по пустому стеку.

- Построим по стеку Я вспомогательную G':
 - введём новые стековые символы и заменим правила $(q_i, t, A) \to (q_j, A_1 \dots A_n)$ $(n \geqslant 1)$ на пары $(q_i, \epsilon, A) \to (q_i, A_0 \dots A_n)$, $(q_i, t, A_0) \to (q_i, \epsilon)$.
 - переход $(q_i, \varepsilon, A) \to (q_j, A_0 A_1 \dots A_n)$ поставим в соответствие правилу $A \to A_0 A_1 \dots A_n$; переход $(q_i, t, A) \to (q_j, \varepsilon)$ поставим в соответствие правилу $A \to t_{i.j}$. Z_0 объявим стартовым символом. Пустой символ введём явно и так же пометим.

Пусть Я допускает слова по пустому стеку.

- Построим по стеку Я вспомогательную G':
 - введём новые стековые символы и заменим правила $(q_i, t, A) \to (q_i, A_1 \dots A_n)$ (n \geqslant 1) на пары $(q_i, \varepsilon, A) \rightarrow (q_i, A_0 \dots A_n), (q_i, t, A_0) \rightarrow (q_i, \varepsilon).$
 - переход $(q_i, \varepsilon, A) \to (q_i, A_0 A_1 \dots A_n)$ поставим в соответствие правилу $A \to A_0 A_1 \dots A_n$; переход $(q_i, t, A) \to (q_i, \varepsilon)$ поставим в соответствие правилу $A \to t_{i,i}$. Z_0 объявим стартовым символом. Пустой символ введём явно и так же пометим.
- Построим \mathscr{A}' FA с правилами вида $(q_i, t_{i,i}) \to q_i$, если для каких-нибудь A, α $(q_i, t, A) \rightarrow (q_i, \alpha)$ переход А. Все состояния объявим финальными.

Пусть $\mathscr A$ допускает слова по пустому стеку.

- - введём новые стековые символы и заменим правила $(q_i, t, A) \to (q_i, A_1 \dots A_n)$ (n \geqslant 1) на пары $(q_i, \varepsilon, A) \rightarrow (q_i, A_0 \dots A_n), (q_i, t, A_0) \rightarrow (q_i, \varepsilon).$
 - переход $(q_i, \varepsilon, A) \to (q_i, A_0 A_1 \dots A_n)$ поставим в соответствие правилу $A o A_0 A_1 \dots A_n$; переход $(q_i, t, A) o (q_i, \epsilon)$ поставим в соответствие правилу $A \to t_{i,j}$. Z_0 объявим стартовым символом. Пустой символ введём явно и так же пометим.
- Построим \mathscr{A}' FA с правилами вида $(q_i, t_{i,i}) \to q_i$, если для каких-нибудь A, α $(q_i, t, A) \rightarrow (q_i, \alpha)$ переход А. Все состояния объявим финальными.
- ullet Теперь построим CFG пересечение G' и \mathscr{A}' и сотрем все $\varepsilon_{i,j}$ и разметку терминалов. Грамматика G готова!

PDA в CFG формально

- Нетерминалы тройки [p,A,q], где $p,q\in Q$, $A\in\Pi$.
- По каждому переходу вида $(q,t,A) \to (p,A_1 \dots A_n)$ добавим правила для всех возможных q_i вида $[q,A,q_n] \to t[p,A_1,q_1] \dots [q_{n-1},A_n,q_n]$.
- По каждому переходу вида $(q, t, A) \to (p, \epsilon)$ добавим правило $[q, A, p] \to t$.
- Разрешим стартовому состоянию переписываться в любое из $[q_0, Z_0, q]$.

DPDA

Определение

PDA 🗷 детерминированный, если:

- ullet если есть переход $\langle q, \epsilon, Z \rangle \to \dots$, то больше никаких переходов по Z из состояния q нет;
- каждой тройке $\langle q, \alpha, Z \rangle$, $\alpha \in \Sigma$, соответствует не больше одной правой части.

DPDA слабее, чем NPDA. Например, язык $\{a^nb^m\,|\,n=m\lor m=2*n\}$ не распознается DPDA. DPDA с допуском по пустому стеку ещё слабее — язык $\{a^n\}$ не может быть распознан DPDA с таким допуском.

DPDA

DPDA слабее, чем NPDA. Например, язык $\{a^nb^m \mid n=m \lor m=2*n\}$ не распознается DPDA. DPDA с допуском по пустому стеку ещё слабее — язык $\{a^n\}$ не может быть распознан DPDA с таким допуском.

Предположим, что существует DPDA, распознающий язык $\{a^nb^m \mid n=m \lor m=2*n\}$. Тогда после чтения префикса a^nb^n слова a^nb^{2n} он должен находиться в финальном состоянии. Далее он должен распознать ровно n букв b. Заменим часть автомата, распознающую этот фрагмент слова, на изоморфную ей, но читающую только буквы c. Получим PDA, распознающий язык $\{a^nb^n\} \cup \{a^nb^nc^n\}$, не являющийся KC.

Предположим, что существует DPDA с допуском по пустому стеку, распознающий язык $\{\alpha^n\}$. Тогда на слове α стек этого автомата должен быть уже точно пуст \Rightarrow в этом состоянии вообще невозможно сделать дальнейшие переходы.

Пример DPDA

PDA для ПСП, приведённый выше, является DPDA, в чём нетрудно убедиться, проверив, что ε -переход совершается лишь в том случае, когда никакие другие совершить невозможно. Добавим в него состояние-ловушку.

Пример DPDA

Чтобы не описывать многочисленные переходы из состояния-ловушки в себя по всем парам «символ ленты — символ стека», мы воспользовались сокращённым обозначением \forall , \forall / \forall , подразумевая следующее: «по любой паре \langle терминал, символ стека \rangle в состоянии 2 переходим в себя, сохраняя символ стека на вершине». Также избавимся от ε -перехода, введя символ стека Γ , т.е. «самая первая скобка».

Пример DPDA

Поскольку автомат \mathscr{A} — детерминированный, в нём существуют переходы по всем комбинациям \langle терминал, символ стека \rangle , и нет ε -переходов, связывающих нефинальное и финальное состояния, то автомат, в котором все конечные состояния \mathscr{A} заменены на нефинальные и наоборот, распознаёт дополнение языка, распознаваемого PDA \mathscr{A} . Значит, мы показали, что дополнение языка ПСП контекстно-свободно, и предъявили PDA, который распознаёт его.

Двухсторонние PDA

Утверждение

Двухсторонние PDA распознают больше языков, чем односторонние.

Доказательство: язык $\{a^nb^nc^n\}$ распознаваем двухсторонним PDA.