CODEBOOK

FEATURES from Human Activity Recognition Using Smartphones Data Set as Observed in SUBJECTS in various ACTIVITES

The features selected for this database come from the accelerometer and gyroscope 3-axial raw signals tAcc-XYZ and tGyro-XYZ. These time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Similarly, the acceleration signal was then separated into body and gravity acceleration signals (tBodyAcc-XYZ and tGravityAcc-XYZ) using another low pass Butterworth filter with a corner frequency of 0.3 Hz.

Subsequently, the body linear acceleration and angular velocity were derived in time to obtain Jerk signals (tBodyAccJerk-XYZ and tBodyGyroJerk-XYZ). Also the magnitude of these three-dimensional signals were calculated using the Euclidean norm (tBodyAccMag, tGravityAccMag, tBodyGyroMag, tBodyGyroJerkMag).

Finally a Fast Fourier Transform (FFT) was applied to some of these signals producing fBodyAcc-XYZ, fBodyAccJerk-XYZ, fBodyGyro-XYZ, fBodyAccJerkMag, fBodyGyroMag, fBodyGyroJerkMag. (Note the 'f' to indicate frequency domain signals).

These signals were used to estimate variables of the feature vector for each pattern: '-XYZ' is used to denote 3-axial signals in the X, Y and Z directions.

Subject

Source: ProjectData/test/subject_test.txt ProjectData/train/subject_train.txt 1 ... 30 Subject ID

Activity

Source: ProjectData/activity_lables.txt WALKING WALKING_UP WALKING_DOWN SITTING STANDING LAYING

tBodyAcc.mean.X

tBodyAcc.mean.Y

tBodyAcc.mean.Z

time domain signals

tBodyAcc.std.X

time domain signals

average of the standard deviation of body acceleration signal in X axis from accelerometer -0.99999999999 0.99999999999 Hz

tBodyAcc.std.Y

time domain signals

tBodyAcc.std.Z

time domain signals

tGravityAcc.mean.X

time domain signals

average of the mean of gravity acceleration signal in X axis from accelerometer -0.99999999999 0.99999999999 Hz

tGravityAcc.mean.Y

time domain signals

tGravityAcc.mean.Z

time domain signals

average of the mean of gravity acceleration signal in Z axis from accelerometer -0.999999999999 0.99999999999 Hz

tGravityAcc.std.X

time domain signals

average of the standard deviation of gravity acceleration signal in X axis from accelerometer -0.999999999999 0.99999999999 Hz

tGravityAcc.std.Y

time domain signals

average of the standard deviation of gravity acceleration signal in Y axis from accelerometer -0.99999999999 0.99999999999 Hz

tGravityAcc.std.Z

time domain signals

average of the standard deviation of gravity acceleration signal in Z axis from accelerometer -0.99999999999 0.99999999999 Hz

tBodyAccJerk.mean.X

time domain signals

tBodyAccJerk.mean.Y

time domain signals

average of the mean of body acceleration signal jerk in Y axis from accelerometer -0.999999999999 0.999999999999 Hz

tBodyAccJerk.mean.Z

time domain signals

average of the mean of body acceleration signal jerk in Z axis from accelerometer -0.999999999999 0.999999999999 Hz

tBodyAccJerk.std.X

time domain signals

average of the standard deviation of body acceleration signal jerk in X axis from accelerometer -0.999999999999 0.999999999999 Hz

tBodyAccJerk.std.Y

time domain signals

average of the standard deviation of body acceleration signal jerk in Y axis from accelerometer -0.999999999999 0.99999999999 Hz

tBodyAccJerk.std.Z

time domain signals

average of the standard deviation of body acceleration signal jerk in Z axis from accelerometer -0.99999999999 0.99999999999 Hz

tBodyGyro.mean.X

time domain signals

average of the mean of body acceleration signal in X axis from gyrometer -0.999999999999 0.999999999999 Hz

tBodyGyro.mean.Y

time domain signals

average of the mean of body acceleration signal in Y axis from gyrometer -0.999999999999 0.999999999999 Hz

tBodyGyro.mean.Z

time domain signals

average of the mean of body acceleration signal in Z axis from gyrometer -0.99999999999 0.999999999999 Hz

tBodyGyro.std.X

time domain signals

average of the standard deviation of body acceleration signal in X axis from gyrometer -0.999999999999 0.999999999999 Hz

tBodyGyro.std.Y

time domain signals

average of the standard deviation of body acceleration signal in Y axis from gyrometer -0.99999999999 0.999999999999 Hz

tBodyGyro.std.Z

time domain signals

average of the standard deviation of body acceleration signal in Z axis from gyrometer -0.99999999999 0.999999999999 Hz

tBodyGyroJerk.mean.X

time domain signals

average of the mean of body acceleration signal jerk in X axis from gyrometer -0.999999999999 0.99999999999 Hz

tBodyGyroJerk.mean.Y

time domain signals

average of the mean of body acceleration signal jerk in Y axis from gyrometer -0.99999999999 0.99999999999 Hz

tBodyGyroJerk.mean.Z

time domain signals

average of the mean of body acceleration signal jerk in Z axis from gyrometer -0.99999999999 0.99999999999 Hz

tBodyGyroJerk.std.X

time domain signals

average of the standard deviation of body acceleration signal jerk in X axis from gyrometer -0.999999999999 0.999999999999 Hz

tBodyGyroJerk.std.Y

time domain signals

average of the standard deviation of body acceleration signal jerk in Y axis from gyrometer -0.99999999999 0.9999999999999 Hz

tBodyGyroJerk.std.Z

time domain signals

average of the standard deviation of body acceleration signal jerk in Z axis from gyrometer -0.99999999999 0.9999999999999 Hz

tBodyAccMag.mean

time domain signals

average of the mean of body acceleration signal magnitude from accelerometer -0.999999999999 0.99999999999 Hz

tBodyAccMag.std

time domain signals

average of the standard deviation of body acceleration signal magnitude from accelerometer

tGravityAccMag.mean

time domain signals

average of the mean of gravity acceleration signal magnitude from accelerometer -0.999999999999 0.99999999999 Hz

tGravityAccMag.std

time domain signals

average of the standard deviation of gravity acceleration signal magnitude from accelerometer -0.99999999999 0.99999999999 Hz

tBodyAccJerkMag.mean

time domain signals

average of the mean of body acceleration signal jerk magnitude from accelerometer -0.99999999999 0.99999999999 Hz

tBodyAccJerkMag.std

time domain signals

average of the standard deviation of body acceleration signal jerk magnitude from accelerometer -0.99999999999 0.99999999999 Hz

tBodyGyroMag.mean

time domain signals

average of the mean of body acceleration signal magnitude from gyrometer -0.999999999999 0.99999999999 Hz

tBodyGyroMag.std

time domain signals

average of the standard deviation of body acceleration signal magnitude from gyrometer -0.99999999999 0.99999999999 Hz

tBodyGyroJerkMag.mean

time domain signals

average of the mean of body acceleration signal jerk magnitude from gyrometer -0.999999999999 0.999999999999 Hz

tBodyGyroJerkMag.std

time domain signals

average of the standard deviation of body acceleration signal jerk magnitude from gyrometer -0.99999999999 0.9999999999999 Hz

fBodyAcc.mean.X

fBodyAcc.mean.Y

frequency domain signals - time domain signals with Fast Fourier Transform

average of the mean of body acceleration signal in Y axis from accelerometer -0.99999999999 0.99999999999 Hz

fBodyAcc.mean.Z

fBodyAcc.std.X

fBodyAcc.std.Y

fBodyAcc.std.Z

fBodyAccJerk.mean.X

fBodyAccJerk.mean.Y

fBodyAccJerk.mean.Z

fBodyAccJerk.std.X

fBodyAccJerk.std.Y

fBodyAccJerk.std.Z

fBodyGyro.mean.X

fBodyGyro.mean.Y

fBodyGyro.mean.Z

fBodyGyro.std.X

fBodyGyro.std.Y

fBodyGyro.std.Z

fBodyAccMag.mean

fBodyAccMag.std

fBodyBodyAccJerkMag.mean

fBodyBodyAccJerkMag.std

fBodyBodyGyroMag.mean

fBodyBodyGyroMag.std

fBodyBodyGyroJerkMag.mean

fBodyBodyGyroJerkMag.std