Jordan Normal Form and Exponential Map

Ernest BIZIMANA

African Institute for Mathematical Sciences (AIMS-Ghana)

Supervisor: Prof. Urlich Krähmer

May 31, 2019

Outline

- Introduction
- 2 Definitions and Examples
- 3 Eigenvectors and Generalised Eigenvectors
- 4 Jordan's Theorem
- Motivation for Proof of Jordan's Theorem
- 6 The Matrix Exponential
- Conclusion
- References

Introduction

Block Diagonal Matrix

Figure: Jordan Normal Form

Algebraic multiplicity (Alg m)

number of times eigenvalue λ is repeated along the diagonal of Jordan matrix ${\bf J}$.

Algebraic multiplicity (Alg m)

number of times eigenvalue λ is repeated along the diagonal of Jordan matrix ${\bf J}$.

Geometric multiplicity (Geo m)

number of blocks in **J** with eigenvalue λ .

Algebraic multiplicity (Alg m)

number of times eigenvalue λ is repeated along the diagonal of Jordan matrix ${\bf J}$.

Geometric multiplicity (Geo m)

number of blocks in $\bf J$ with eigenvalue λ .

Nilpotent Matrix

A matrix **N** which satisfies $\mathbf{N}^k = 0$, for some integer k, is called nilpotent. K is nilpotency.

Algebraic multiplicity (Alg m)

number of times eigenvalue λ is repeated along the diagonal of Jordan matrix **J**.

Geometric multiplicity (Geo m)

number of blocks in **J** with eigenvalue λ .

Nilpotent Matrix

A matrix **N** which satisfies $\mathbf{N}^k = 0$, for some integer k, is called nilpotent. K is nilpotency.

Diagonalizable Matrix

An $n \times n$ matrix is said to be diagonalizable if and only if the corresponding eigenvalues are distinct or the algebraic multiplicity is equal to geometric multiplicity.

Algebraic multiplicity (Alg m)

number of times eigenvalue λ is repeated along the diagonal of Jordan matrix **J**.

Geometric multiplicity (Geo m)

number of blocks in **J** with eigenvalue λ .

Nilpotent Matrix

A matrix **N** which satisfies $\mathbf{N}^k = 0$, for some integer k, is called nilpotent. K is nilpotency.

Diagonalizable Matrix

An $n \times n$ matrix is said to be diagonalizable if and only if the corresponding eigenvalues are distinct or the algebraic multiplicity is equal to geometric multiplicity.

Eigenvectors

Eigenvector

Consider a square matrix $\mathbf{A}_{n\times n}$, with eigenvalue λ . If $(A-\lambda \mathbf{I})v=0$, $v\neq 0$ is an eigenvector from eigenvalue λ .

Eigenvectors

Eigenvector

Consider a square matrix $\mathbf{A}_{n\times n}$, with eigenvalue λ . If $(A-\lambda \mathbf{I})v=0$, $v\neq 0$ is an eigenvector from eigenvalue λ .

Generalized eigenvector

Define $\mathbf{N}=A-\lambda\mathbf{I}$. Call $v\neq 0$ a generalised eigenvector with λ for \mathbf{A} if $\mathbf{N}^k\mathbf{v}=0$, for some natural k. If k=1, \mathbf{v} is called an eigenvector.

Eigenvectors

Eigenvector

Consider a square matrix $\mathbf{A}_{n\times n}$, with eigenvalue λ . If $(A - \lambda \mathbf{I})v = 0$, $v \neq 0$ is an eigenvector from eigenvalue λ .

Generalized eigenvector

Define $\mathbf{N}=A-\lambda\mathbf{I}$. Call $v\neq 0$ a generalised eigenvector with λ for \mathbf{A} if $\mathbf{N}^k\mathbf{v}=0$, for some natural k. If k=1, \mathbf{v} is called an eigenvector.

Defective Matrix

A square matrix which is not diagonalizable. Example;

$$\begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}$$

Where $\lambda = 3$, with algebraic multiplicity 2.

Theorem

Definition; the $n \times n$ matrix $\mathbf{J}_{\lambda,n}$ with $\lambda' s$ on the diagonal , 1's on the super-diagonal and 0's elsewhere is called a Jordan block matrix.

Theorem

Definition; the $n \times n$ matrix $\mathbf{J}_{\lambda,n}$ with $\lambda's$ on the diagonal , 1's on the super-diagonal and 0's elsewhere is called a Jordan block matrix.

Theorem

Every matrix over \mathbb{C} is similar to a matrix in Jordan normal form, that is, for every **B** there is a **P** with $J = P^{-1}BP$ in Jordan normal form.

Theorem

Definition; the $n \times n$ matrix $\mathbf{J}_{\lambda,n}$ with $\lambda's$ on the diagonal , 1's on the super-diagonal and 0's elsewhere is called a Jordan block matrix.

Theorem

Every matrix over \mathbb{C} is similar to a matrix in Jordan normal form, that is, for every **B** there is a **P** with $J = P^{-1}BP$ in Jordan normal form.

Since in Jordan form there is no basis of eigenvectors, it means that there is a basis of generalized eigenvectors.

Motivation for Jordan block $\mathbf{A} = \mathbf{J}_{\lambda,n}$

 λ is the eigenvalue, n is the order of the square matrix.

Example: Simple Jordan Matrix

$$\mathbf{A} = \mathbf{J}_{2,3} = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
, with (Alg m =3) and (Geo m=1)

Motivation for Jordan block $\mathbf{A} = \mathbf{J}_{\lambda n}$

 λ is the eigenvalue, n is the order of the square matrix.

Example: Simple Jordan Matrix

$$\mathbf{A} = \mathbf{J}_{2,3} = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
, with (Alg m =3) and (Geo m=1)

Writing
$$\mathbf{A}_2 = \mathbf{A} - 2\mathbf{I} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 to become;

Motivation for Jordan block $\mathbf{A} = \mathbf{J}_{\lambda,n}$

 λ is the eigenvalue, n is the order of the square matrix.

Example: Simple Jordan Matrix

$$\mathbf{A} = \mathbf{J}_{2,3} = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
, with (Alg m =3) and (Geo m=1)

Writing
$$\mathbf{A}_2 = \mathbf{A} - 2\mathbf{I} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 to become;

$$A_2e_1=0, \quad A_2e_2=e_1, \quad A_2e_3=e_2$$

this means that there is no basis of eigenvectors.

Since $A_2e_1=0$, \mathbf{e}_1 is an eigenvector with eigenvalue 2. Check if \mathbf{e}_2 and \mathbf{e}_3 are generalized eigenvectors.

Since $A_2e_1=0$, \mathbf{e}_1 is an eigenvector with eigenvalue 2. Check if \mathbf{e}_2 and \mathbf{e}_3 are generalized eigenvectors. It means

$$(\mathbf{A}_2)^k e_2 = 0$$
, implies that $k = 2$
 $(\mathbf{A}_2)^k e_3 = 0$, implies that $k = 3$

Since $A_2e_1=0$, \mathbf{e}_1 is an eigenvector with eigenvalue 2. Check if \mathbf{e}_2 and \mathbf{e}_3 are generalized eigenvectors. It means

$$(\mathbf{A}_2)^k e_2 = 0$$
, implies that $k = 2$
 $(\mathbf{A}_2)^k e_3 = 0$, implies that $k = 3$

Since $(\mathbf{A}_2)^2 e_2 = 0$ and $(\mathbf{A}_2)^3 e_3 = 0$, and so \mathbf{e}_2 and \mathbf{e}_3 are called generalized eigenvectors. Thus there is a basis of generalized eigenvectors.

Recall the unique solution of the initial value problem

$$\begin{cases} \mathbf{x}' = \mathbf{A}\mathbf{x} \\ \mathbf{x}(0) = \mathbf{x}_0 \end{cases}$$

is given by $\mathbf{x}(t) = e^{t\mathbf{A}}\mathbf{x}_0$.

Recall the unique solution of the initial value problem

$$\begin{cases} \mathbf{x}' = \mathbf{A}\mathbf{x} \\ \mathbf{x}(0) = \mathbf{x}_0 \end{cases}$$

is given by $\mathbf{x}(t) = e^{t\mathbf{A}}\mathbf{x}_0$.

Suppose **A** is defective. Nevertheless, it is still possible to get a solution. there is an invertible matrix T such that A is similar to $J = T^{-1}AT$.

Recall the unique solution of the initial value problem

$$\begin{cases} \mathbf{x}' = \mathbf{A}\mathbf{x} \\ \mathbf{x}(0) = \mathbf{x}_0 \end{cases}$$

is given by $\mathbf{x}(t) = e^{t\mathbf{A}}\mathbf{x}_0$.

Suppose **A** is defective. Nevertheless, it is still possible to get a solution. there is an invertible matrix **T** such that **A** is similar to $\mathbf{J} = \mathbf{T}^{-1}\mathbf{A}\mathbf{T}$. Thus

$$A = TJT^{-1}, \quad e^{tA} = e^{t(TJT^{-1})} = T^{-1}e^{tJ}T.$$

Recall the unique solution of the initial value problem

$$\begin{cases} \mathbf{x}' = \mathbf{A}\mathbf{x} \\ \mathbf{x}(0) = \mathbf{x}_0 \end{cases}$$

is given by $\mathbf{x}(t) = e^{t\mathbf{A}}\mathbf{x}_0$.

Suppose **A** is defective. Nevertheless, it is still possible to get a solution. there is an invertible matrix T such that A is similar to $J = T^{-1}AT$. Thus

$$\mathbf{A} = \mathbf{T}\mathbf{J}\mathbf{T}^{-1}, \ \ e^{t\mathbf{A}} = e^{t(\mathbf{T}\mathbf{J}\mathbf{T}^{-1})} = \mathbf{T}^{-1}e^{t\mathbf{J}}\mathbf{T}.$$

Knowing that $\mathbf{N} = \mathbf{J} - \lambda \mathbf{I}$, is a nilpotent matrices with nilpotency n, then $e^{t\mathbf{J}} = e^{\lambda_i \mathbf{I} t + \mathbf{N} t}$, where

$$e^{\mathbf{N}t} = \mathbf{I} + t\mathbf{N} + \frac{\mathbf{N}^2 t^2}{2!} + ... + \frac{\mathbf{N}^{n-1} t^{n-1}}{(n-1)!}$$

Then

$$e^{tJ} = e^{\lambda_i \mathsf{I}t} \left(\mathsf{I} + t\mathsf{N} + \frac{\mathsf{N}^2 t^2}{2!} + ... + \frac{\mathsf{N}^{n-1} t^{n-1}}{(n-1)!} \right)$$

Then

$$\begin{array}{lll} \mathbf{e}^{t\mathbf{J}} & = & e^{\lambda_i\mathbf{I}t}\left(\mathbf{I}+t\mathbf{N}+\frac{\mathbf{N}^2t^2}{2!}+...+\frac{\mathbf{N}^{n-1}t^{n-1}}{(n-1)!}\right) \\ \\ e^{t\mathbf{J}} & = & \begin{pmatrix} e^{\lambda_1t} & & \\ & \ddots & \\ & & e^{\lambda_nt} \end{pmatrix}\left(\mathbf{I}+t\mathbf{N}+\frac{\mathbf{N}^2t^2}{2!}+...+\frac{\mathbf{N}^{n-1}t^{n-1}}{(n-1)!}\right) \\ \\ e^{t\mathbf{A}} & = & \mathbf{T}^{-1}e^{t\mathbf{J}}\mathbf{T} \end{array}$$

Then

$$\begin{array}{lll} e^{t\mathbf{J}} & = & e^{\lambda_i\mathbf{I}t}\left(\mathbf{I}+t\mathbf{N}+\frac{\mathbf{N}^2t^2}{2!}+...+\frac{\mathbf{N}^{n-1}t^{n-1}}{(n-1)!}\right) \\ \\ e^{t\mathbf{J}} & = & \begin{pmatrix} e^{\lambda_1t} & & \\ & \ddots & \\ & & e^{\lambda_nt} \end{pmatrix}\left(\mathbf{I}+t\mathbf{N}+\frac{\mathbf{N}^2t^2}{2!}+...+\frac{\mathbf{N}^{n-1}t^{n-1}}{(n-1)!}\right) \\ \\ e^{t\mathbf{A}} & = & \mathbf{T}^{-1}e^{t\mathbf{J}}\mathbf{T} \\ \\ \times(t) & = & e^{t\mathbf{A}}x_0 = (\mathbf{T}^{-1}e^{t\mathbf{J}}\mathbf{T})x_0 \end{array}$$

Where x_0 is the initial value.

Example: system of ODE, Given $\begin{cases} \frac{dy_1}{dt} = \lambda y_1 + y_2 \\ \frac{dy_2}{dt} = \lambda y_2, \end{cases}$

$$\begin{cases} \frac{dy_1}{dt} = \lambda y_1 + y_2 \\ \frac{dy_2}{dt} = \lambda y_2, \end{cases}$$

Example: system of ODE, Given
$$\begin{cases} \frac{dy_1}{dt} = \lambda y_1 + y_2 \\ \frac{dy_2}{dt} = \lambda y_2, \end{cases}$$
 The above

system can be written as
$$\frac{dY}{dt} = Ay$$
. $\begin{pmatrix} \dot{y_1} \\ \dot{y_2} \end{pmatrix} = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$, Thus

$$y(t) = e^{At}y_0$$

Example: system of ODE, Given $\begin{cases} \frac{dy_1}{dt} = \lambda y_1 + y_2 \\ \frac{dy_2}{dt} = \lambda y_2, \end{cases}$ The above system can be written as $\frac{dY}{dt} = Ay$. $\begin{pmatrix} \dot{y_1} \\ \dot{y_2} \end{pmatrix} = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} y_1 \\ v_2 \end{pmatrix}$, Thus $y(t) = e^{At}y_0$

$$y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = e^{\lambda_i \mathbf{I} t} (\mathbf{I} + t \mathbf{N}) \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$

Example: system of ODE, Given $\begin{cases} \frac{dy_1}{dt} = \lambda y_1 + y_2 \\ \frac{dy_2}{dt} = \lambda y_2, \end{cases}$ The above system can be written as $\frac{dY}{dt} = Ay$. $\begin{pmatrix} \dot{y_1} \\ \dot{y_2} \end{pmatrix} = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$, Thus $v(t) = e^{At}v_0$

$$y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = e^{\lambda_i \mathbf{I} t} (\mathbf{I} + t \mathbf{N}) \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$
$$= \begin{pmatrix} e^{\lambda t} & 0 \\ 0 & e^{\lambda t} \end{pmatrix} \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & t \\ 0 & 0 \end{pmatrix} \right\} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$

Example: system of ODE, Given $\begin{cases} \frac{dy_1}{dt} = \lambda y_1 + y_2 \\ \frac{dy_2}{dt} = \lambda y_2, \end{cases}$ The above system can be written as $\frac{dY}{dt} = Ay$. $\begin{pmatrix} \dot{y_1} \\ \dot{y_2} \end{pmatrix} = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$, Thus $v(t) = e^{At} y_0$

$$y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = e^{\lambda_i \mathbf{I} t} (\mathbf{I} + t \mathbf{N}) \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$

$$= \begin{pmatrix} e^{\lambda t} & 0 \\ 0 & e^{\lambda t} \end{pmatrix} \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & t \\ 0 & 0 \end{pmatrix} \right\} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$

$$y = \begin{pmatrix} e^{\lambda t} & 0 \\ 0 & e^{\lambda t} \end{pmatrix} \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} c_1 e^{\lambda t} + c_2 t e^{\lambda t} \\ c_2 e^{\lambda t} \end{pmatrix}$$

Example: system of ODE, Given $\begin{cases} \frac{dy_1}{dt} = \lambda y_1 + y_2 \\ \frac{dy_2}{dt} = \lambda y_2, \end{cases}$ The above system can be written as $\frac{dY}{dt} = Ay$. $\begin{pmatrix} \dot{y_1} \\ \dot{y_2} \end{pmatrix} = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$, Thus $v(t) = e^{At}v_0$

$$y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = e^{\lambda_i \mathbf{I} t} (\mathbf{I} + t \mathbf{N}) \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$

$$= \begin{pmatrix} e^{\lambda t} & 0 \\ 0 & e^{\lambda t} \end{pmatrix} \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & t \\ 0 & 0 \end{pmatrix} \right\} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$

$$y = \begin{pmatrix} e^{\lambda t} & 0 \\ 0 & e^{\lambda t} \end{pmatrix} \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} c_1 e^{\lambda t} + c_2 t e^{\lambda t} \\ c_2 e^{\lambda t} \end{pmatrix}$$

$$y = c_2 e^{\lambda t} \left(t \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) + c_1 e^{\lambda t} \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

11 / 13

Conclusion

- No matter whether the matrix generated by the system of ODE is not diagonalizable we can get solution using Jordan norm form.
- Jordan form can be used as tool to generalize the solution for some ordinary differential equation.

References

- Erik, Walhlén (ODE Spring 2011): The Jordan Normal Form
- http://mathworld.wolfram.com/JordanCanonicalForm.html
- https://doi.org/10.2200/S00146ED1V01Y200808MAS002

