UK Patent Application (19) GB (11) 2 179 054 A

(43) Application published 25 Feb 1987

(21)	Application No 8619788	(51)	INT CL ⁴ C11D 17/00
(22)	Date of filing 14 Aug 1986		
(30)	Priority data	(52)	Domestic classification (Edition I): C5D 6A5D2 6A5F 6B10A 6B11D 6B12A 6B12B1 6B12E 6B12F1 6B12F2 6B12G1 6B12G2A 6B12G4 6B12G6 6B1
	(31) 8520548 (32) 16 Aug 1985 (33) GB]	6B2 6B4 6B5 6B6 6B7 6B8 6B9
(71)	Applicant Unilever Plc, (Incorporated in United Kingdom),	(56)	Documents cited GB A 2152525 GB 0674896 GB A 2151657 EP A1 0091237 GB A 2015561 EP A1 0003172 GB 1540386 US 2580713
	Unilever House, Blackfrlars, London EC4P 4BQ	(58)	Field of search C5D
(72)	Inventors Francis John Leng, David Machin, David Allan Reed		Selected US specifications from IPC sub-class C11D

(54) Detergent gel compositions

London EC4

(74) Agent and/or Address for Service

M. E. Fransella, Patent Division, Unilever Plc, P O Box 68,

(57) Stable aqueous detergent gels wholly or predominantly in hexagonal liquid crystal form contain a principal non-ethoxylated non-soap anionic surfactant in which the head group is positioned terminally or next-to-terminally on a hydrocarbon chain, for example, a primary alkyl sulphate or an alpha-olefin sulphonate, together with either an auxiliary surfactant or a specified additive.

SPECIFICATION

Detergent compositions

5	Technical field	5
	The present invention relates to detergent compositions in the form of a stable transparent, translucent or opaque water-soluble gel which is wholly or predominantly in hexagonal liquid crystal form. The compositions of the invention are especially suitable for washing dishes or other hard surfaces, but are also of use for other cleaning purposes, for example, fabric washing.	
10		10
15	Background and prior art US 2 580 713 (Wood/Procter & Gamble) describes paste or gel detergent compositions which are in hexagonal or "middle" phase. These compositions contain certain anionic detergents, notably triethanolamine lauryl sulphate, generally in admixture with water-soluble soaps. Use of alkanolamine as the principal cation facilitates middle phase formation. GB 2 155 031A (Unilever), published on 18 September 1985, describes and claims detergent compositions in hexagonal phase gel form. The principal ingredient of these gels is a "secondary" surfactant, that is to say, its	15
20	polar head group is positioned non-terminally in a hydrocarbon chain or carries two or more hydrocarbon chains. Examples of "secondary" surfactants are alkylbenzene sulphonates and dialkyl sulphosuccinates. These surfactants will not form hexagonal phase spontaneously at ambient temperature, and the gels contain an "additive", for example, urea or sodium xylene sulphonate, that forces the composition into hexagonal phase. A simple gel of this type may contain alkylbenzene sulphonate, urea and water,	20
25	Turkish Patent No. 21612 (Mintax), laid open to public inspection on 5 December 1984, also discloses detergent gels containing alkylbenzene sulphonate, urea and water, but contains no reference to hexagonal phase.	25
30	The "secondary" surfactants to which the aforementioned GB 2 155 031A (Unilever) relates will tend to form lamellar phase rather than hexagonal phase, and need an "additive" such as urea to stabilise the hexagonal phase. "Primary" surfactants such as alkyl sulphates, in which the head group is positioned terminally or next to terminally on a hydrocarbon chain, are subject to a different problem: they tend to crystallise. A urea-type "additive" does not overcome this difficulty. According to US 2 580 713 mentioned above this problem is solved	30
35	by using alkanolamine as the principal cation. We have now discovered that it is possible to extend substantially the range of concentrations over which hexagonal phase gels stable at 22°C can be prepared from "primary" non-ethoxylated non-soap surfactants, even in sodium salt form, by the inclusion in the gels of a second component which may either be an auxiliary surfactant of a defined type or a specific type of non-surfactant "additive".	35
40	Definition of the invention The present invention accordingly provides an aqueous detergent composition comprising a gel wholly or predominantly in hexagonal liquid crystal form, wherein the gel comprises: (a) from 5 to 85% by weight of a non-ethoxylated micelle-forming non-soap surfactant having an anionic head group and an aliphatic or araliphatic hydrocarbon chain containing from 10 to 20 aliphatic carbon atoms, the anionic head group being positioned terminally or next to terminally in the hydrocarbon chain, and	40
45	 (b) a second component comprising (b) (i) from 1 to 75% by weight of an auxiliary micelle-forming non-soap surfactant selected from: (b) (i) (i) anionic non-soap surfactants other than those defined under (a) above, ethoxylated nonionic surfactants having HLB values of at least 12, and amine oxides; or (b) (i) (ii) fatty acid mono- and diethanolamides, and ethoxylated nonionic surfactants having HLB values lower than 12; 	45
50	and /or (b) (ii) 1 to 15% by weight of an additive which is a non-micelle-forming or weakly micelle-forming aliphatic, alicyclic, aromatic or araliphatic nonionic material having a melting point not exceeding 55°C and a dielectric	50
55	constant of at least 2.2, selected from: (b) (ii)(i) materials containing at least 4 carbon atoms, and containing a hydroxyl group positioned terminally or within 2 carbon atoms of the terminal position on a hydrocarbon chain or on an aromatic or alicyclic ring, and optionally one or more further polar groups; containing not more than 6 aliphatic carbon atoms if the hydroxyl group is the only polar group present or if a second polar group is present and separated from the hydroxyl group by 2 or less carbon atoms; or containing not more than 12 aliphatic carbon atoms if a second polar group is present and separated from the hydroxyl group by 3 or more carbon atoms; or	55
60	(b) (ii) (ii) materials containing at least 7 carbon atoms, and containing at least one polar group positioned	60
65	(c) from 1 to 45% by weight of a second additive which is an anionic or nonionic water-soluble non-micelle-	65

araliphatic hydrocarbon chain containing at most 6 aliphatic carbon atoms; component (c) being essential if neither an auxiliary surfactant (b)(i)(i) nor an additive (b)(ii)(i) is present; and (d) water.

5 Disclosure of the invention

5

The detergent gels of the invention are characterised by being wholly or predominantly in hexagonal liquid crystal form. This crystal form, also known as "middle" phase, may be recognised by various microscopic techniques, of which X-ray diffraction is the most definitive: hexagonal phase compositions give rise to a characteristic X-ray diffration pattern unique to this liquid crystal form. The ratio between the Bragg spacings in 10 the X-ray pattern is

10

15

20

$$1:\frac{1}{\sqrt{3}}:\frac{1}{\sqrt{4}}:\frac{1}{\sqrt{7}}$$

15

see, for example, "Liquid Crystals and Plastic Crystals", edited by G W Gray and P A Winsor (Ellis Horwood Ltd, 1974), volume 2, chapter 4, page 88.

Of the three liquid crystal forms - lamellar, hexagonal and cubic - hexagonal phase is intermediate in rigidity, but rigidity or viscosity is not an infallible means of distinguishing hexagonal phase gels from other gels because,

20 for example, softer lamellar phase gels can be thickened with polymer or electrolytes to produce products of comparable viscosity. The products of the invention are inherently stiff gels, and require no thickening agent. Preferred embodiments are transparent or translucent, and are sufficiently attractive in appearance for packaging in transparent containers.

The detergent gels of the invention comprise the following ingredients:

- 25 (a) the principal surfactant.
- 25 (b) the second component which is
 - (b) (i) the auxiliary surfactant, and/or
 - (b) (ii) the additive,
 - (c) the optional second additive,
- 30 (d) water.

40

30

35

These are described in more detail below. In addition, certain other ingredients conventionally used in detergent products may be present, also as described below.

The principal surfactant (a)

The principal surfactant (a) may be any non-ethoxylated non-soap anionic surfactant in which the anionic headgroup is positioned on the terminal or next-to-terminal carbon atom of a hydrocarbon chain containing from 10 to 20 aliphatic carbon atoms. Examples of such surfactants include the following:

(i) Primary alkyl sulphates of the general formula I

$$R_1 - O - SO_3X_1$$
 (I) 40

wherein R₁ is an alkyl group having from 10 to 20 carbon atoms and X₁ is a solubilising cation. Primary alkyl sulphates may be substantially of a single chain length, as in dodecyl sulphate; or they may consist of mixtures of materials of different chain length, as in coconut alkyl sulphate $(C_{10} - C_{14}, with C_{12})$ and C_{14} predominating).

45 (ii) Alpha-olefin sulphonates of the general formula II

45

$$R_2 - SO_3X_2 \tag{II}$$

wherein R_2 is an alpha, beta-unsaturated $C_{10} - C_{20}$ alkenyl group and X_2 is a solubilising cation.

50 (iii) Primary alkane sulphonates of the general formula III

50

$$R_3 - SO_3X_3 \tag{III}$$

wherein R_3 is an primary $C_{10} - C_{20}$ alkyl group and X_3 is a solubilising cation.

55 (iv) Alkyl or alkenyl isethionates of the general formula IV

55

$$R_4 - CO - O - CH_2CH_2 - SO_3X_4$$
 (IV)

where R_4 is a $C_7 - C_{20}$ alkyl or alkenyl group and X_4 is a solubilising cation. 60 (v) Alpha-sulphonated fatty acid salts (SFAS) of the general formula V

60

$$R_6 - CH - SO_3X_5$$
 (V)
 I
 $COOX_6$

65

15

20

25

30

35

40

45

50

55

60

65

wherein R_5 is a $C_8 - C_{20}$ alkyl group, X_5 is a solubilising cation, and X_6 is H or a solubilising cation (the same as or different from X_5), depending on pH.

(vi) Fatty acid methyl ester sulphonates (FAES) of the general formula VI

wherein R_6 is a $C_8 - C_{20}$ alkyl group and X_7 is a solubilising cation. Fatty acid methyl ester sulphonates may be 10 substantially of a single chain length, or may consist of mixtures of materials of different chain length, as in coconut FAES ($C_8 - C_{18}$, with R_6 as C_{10} and C_{12} predominating).

It will be seen that all these preferred surfactants contain a sulphonate or sulphate head group in a terminal or next-to-terminal position, and in some cases this is modified by the presence of a nearby carboxyl or carboxylic ester group.

The countercation of the principal surfactant component (a) may be any solubilising cation, provided that the Krafft point of the surfactant or surfactant/additive system as a whole is below ambient temperature. Examples include alkali metal, such as sodium, potassium, lithium or caesium; alkaline earth metal, such as magnesium; ammonium; substituted ammonium, such as mono-, di- or trialkylamine or mono-, di- or trialkanolamine.

Trialkanolamine salts have the advantage that because the molecular weight of the cation is high the water

20 content of a given composition will be reduced, as compared with a similar sodium salt composition, and the concentration of surfactant and (if present) additive will be increased: in practice this increases the range of compositions over which robust commercial gels can be prepared. Sodium salts, on the other hand, are easy to prepare by neutralisation with caustic soda. The choice of cation is therefore very much a matter of preference.

The principal surfactant component (a) of the compositions of the invention may be constituted by any one or 25 more of the materials listed above.

In one preferred embodiment of the invention, the principal surfactant (a) comprises or consists of one or more primary alkyl sulphates.

Proportions of ingredients present

In the compositions of the invention, the principal surfactant (a) is present in an amount of from 5 to 85% by weight, preferably from 5 to 75% and more preferably from 8 to 55% by weight, the most preferred level depending on whether an auxiliary surfactant (b) (i) or an "additive" (b) (ii), or both, is or are present. The preferred level also depends on the countercation of the principal surfactant, and will be larger if the cation is of high molecular weight, for example, triethanolamine, than if it is of low molecular weight, for example, sodium.

35 For sodium salts, the preferred level is from 5 to 60% by weight, more preferably from 5 to 55% by weight. The total amount of components (a) and (b) present, whether (b) is an auxiliary surfactant or an additive or both, ranges from 15 to 95% by weight, preferably from 15 to 85% by weight. Again the preferred amount depends on the countercation of the principal surfactant, and, if an anionic auxiliary surfactant is present, on its countercation too. In an all-sodium system the total level of (a) plus (b) is preferably within the range of from 30

40 to 60% by weight. The water content is preferably from 15 to 85% by weight in general, and preferably from 40 to 70% by weight in an all-sodium system. As detailed below, the most preferred ranges within these ranges will differ according to whether component (b) is an auxiliary surfactant (i) or an additive (ii), or a mixture of the two.

The total surfactant level, that is to say, the total level of the principal surfactant (a) plus any auxiliary
45 surfactant (b) (i) present, is preferably within the range of from15 to 80% by weight. The lower end of this range
-15 to 60% by weight – is especially applicable to all-sodium systems, while total surfactant levels of 60 to 80%
will normally be attainable only if the cation of one or both surfactants is of high molecular weight, for example,
triethanolamine. The region of hexagonal phase formation will of course vary with the principal surfactant, the
auxiliary surfactant (if present) and the proportions in which the two are present: these variations will be
50 illustrated in the Examples at the end of this specification.

The auxiliary surfactant (b)(i)

In a first embodiment of the invention, the compositions of the invention contain an auxiliary non-soap surfactant (b) (i) selected from specified anionic and nonionic surfactants.

In this first embodiment, the compositions of the invention contain from 1 to 75% by weight, preferably from 5 to 50% by weight, more preferably from 8 to 40% by weight, of the auxiliary surfactant (b)(i), and also preferably contain from 5 to 60% by weight, more preferably from 5 to 40% by weight, of the principal surfactant (a). Again, the preferred levels depend on the countercation of the principal surfactant, and on that of the auxiliary surfactant if the latter is anionic. The term "principal surfactant" is not intended to carry the implication that this 60 component necessarily predominates, and indeed the ratio of (a) to (b)(i) can range from 20:1 to 0.1:1,

preferably from 10:1 to 0.1:1, the preference depending on the particular auxiliary surfactant chosen.

The total active detergent level in this embodiment preferably ranges from 16 to 60% by weight, in an all-sodium system. It is of course possible for more than one of each surfactant from each of the categories (a) and (b)(i) to be present.

Two subgroups of auxiliary surfactant suitable for use in the present invention have been recognised. The first,

30

5

10

15

25

35

45

50

(b) (i) (i), consists of anionic non-soap surfactants other than those of the same type as the principal surfactant (a), that is to say, anionic non-soap surfactants other than non-ethoxylated anionic surfactants in which the anionic headgroup is positioned terminally or next-to-terminally on the C₁₀ to C₂₀ hydrocarbon chain; ethoxylated nonionic surfactants having high (≥12.0) HLB values; and amine oxides. Preferred classes of 5 (b) (i) (i) auxiliary surfactants are:

 non-ethoxylated anionic surfactants in which the anionic headgroup is positioned non-terminally in an aliphatic or araliphatic hydrocarbon chain;

(2) ethoxylated anionic surfactants;

(3) ethoxylated nonionic surfactants having HLB values ≥12.0; and

10 (4) amine oxides.
The first group of non-ethoxylated surfactants have been disclosed as ingredients of hexagonal phase gels in the aforementioned GB 2 155 031A (Unilever), where they are referred to as "secondary" surfactants.

In a "secondary" anionic surfactant, the anionic head group is either attached to the hydrophobic hydrocarbon chain in a non-terminal position, or itself occupies a non-terminal position within the chain, that is to say, two or 15 more shorter chains are directly attached to the head group itself. The first type of "secondary" surfactant will

5 more shorter chains are directly attached to the head group itself. The first type of "secondary" surfactant will generally conform to the general formula VII

 R_{2} Y Z (VII)

wherein Z is the anionic head group, for example, a sulphonate or sulphate group in combination with a solubilising cation; R_7 and R_8 are aliphatic or araliphatic hydrocarbon chains together containing from 8 to 20

solubilising cation; R₇ and R₈ are aliphatic or araliphatic hydrocarbon chains together containing from 8 to 20 carbon atoms, the shorter of R₇ and R₈ containing at least 2 aliphatic carbon atoms; and Y is a linking group such as 25

-CH-, -C(CH₃)-, | -CH-CH₂-, or -CH-
$$\overline{O}$$
-, | 30

the total number of aliphatic carbon atoms in R₇, R₈ and Y being at least 8, preferably 10 to 28.

Examples of this first type of "secondary" anionic surfactant include alkylbenzene sulphonates, secondary alkane sulphonates and secondary alkyl sulphates. All these materials are generally random mixtures of isomers, and will include some material that is not "secondary", that is to say, with a terminally or next-to-terminally

positioned head group, but the average constitution of the material will be "secondary".

The second type of "secondary" anionic surfactant will generally conform to the general formula VIII

wherein Z is the anionic head group, in combination with a solubilising cation, and R₉ and R₁₀ are aliphatic or araliphatic hydrocarbon chains together containing at least 8, preferably 10 to 28, aliphatic carbon atoms, the 45 shorter of the chains R₉ and R₁₀ containing at least 2 aliphatic carbon atoms.

Examples of this second type of "secondary" anionic surfactant are dialkyl sulphosuccinates.

For the purposes of the present invention, preferred "secondary" non-ethoxylated anionic surfactants are the linear or branched alkylbenzene sulphonates containing an average of from 8 to 15, preferably 10 to 13, aliphatic parton atoms.

Alkylbenzene sulphonates may advantageously be combined with the principal surfactant (a) at weight ratios of (a) to (b) (i) of from 10:1 to 0.25:1. If the principal surfactant (a) is one or more primary alkyl sulphates, the preferred ratio range is from 5:1 to 0.67:1, more preferrably from 4:1 to 1:1.

Preferred ethoxylated anionic surfactants for use in the compositions of the invention are the alkyl ether sulphates. These are materials of the general formula IX

$$R_{11}$$
-(OCH₂CH₂)_n-O-SO₃X₈ (IX)

wherein R_{11} is en alkyl group containing from 10 to 20, preferably from 12 to 15, carbon atoms: X_8 is a solubilising cation; and n, the average degree of ethoxylation, ranges from 1 to 12, preferably from 1 to 8. As with the principal surfactant (a), the choice of solubilising cation for the enionic auxiliary suractant

(b) (i) (i) is very much a matter of preference.

Preferred high-HI B ethoxylated nonionic surfactants are the ethoxylated alcohols and alkyl phenols, which are

Preferred high-HLB ethoxylated nonionic surfactants are the ethoxylated alcohols and alkyl phenols, which are materials of the general formula X

60

10

30

40

45

wherein x is zero (alcohol ethoxylates) or 1 (alkylphenol ethoxylates); R_{12} is an alkyl group having from 6 to 20 carbon atoms; and m, the average degree of ethoxylation, ranges from 5 to 30. For alcohol ethoxylates, R_{12} preferably has from 8 to 18 carbon atoms, and m is from 5 to 14. Examples of suitable alcohol ethoxylates include Dobanol (Trade Mark) 91-8 and 91-6 ex Shell (C_9 - C_{11} alcohol; m=8 and 6 respectively; HLB values 5 13.8 and 12.6 respectively). For alkylphenol ethoxylates, R_{12} preferably has from 8 to 12 carbon atoms and m is from 6 to 16.

Ethoxylated auxiliary surfactants, both anionic and nonionic, may advantageously be combined with the principal surfactant (a) at weight ratios of (a) to (b)(i) of from 10:1 to 0.1:1. If the principal surfactant (a) is one or more primary alkyl sulphates, the preferred ratio range is from 5:1 to 0.1:1, more preferably from 3.5:1 to 0.14:1.

The amine oxides are materials of the general formula XI

 $\begin{array}{c|c}
R_{14} \\
\hline
R_{13} & \longrightarrow O
\end{array}$ (XI)

20 wherein R_{13} is a C_{10} – C_{20} alkyl group, R_{14} is a C_1 – C_4 alkyl group, and R_{15} is a C_1 – C_4 alkyl group.

Amine oxides may advantageously by combined with the principal surfactant (a) at weight ratios of (a) to (b) (i) of from 20:1 to 2:1. If the principal surfactant is one or more primary alkyl sulphates, the preferred ratio range is from 10:1 to 3:1, more preferably from 7:1 to 3:1.

The second class of auxiliary surfactants (b)(i)(ii) consists of ethoxylated nonionic surfactants of low (<12.0) 25 HLB value, and fatty acid mono-and diethanolamides.

Preferred ethoxylated nonionic surfactants are the ethoxylated alcohols and alkyl phenols of the general formula X given above, but generally with lower degrees of ethoxylation m then the higher-HLB materials; an example is Dobanol (Trade Mark) 91-5 ex Shell (C₈-C₁₁ alcohol; m=5; HLB 11.7). These may advantageously 30 be combined with the principal surfactant (a) et weight ratios of (a) to (b) (i) of from 10:1 to 0.1:1. If the principal surfactant (a) is one or more primary alkyl sulphates, the preferred ratio range is form 5:1 to 0.1:1, more

preferably from 3.5:1 to 0.14:1.

The fatty acid mono- and diethanolamides are materials of the general formula XII

wherein R₁₆ is an alkyl group containing from 7 to 20 carbon atoms, and R₁₇ is H or -CH₂CH₂OH.

Fatty acid mono- and diethanolamides may advantageously be combined with the principal surfactant (a) at weight ratios of (a) to (b)(i) of from 20:1 to 2:1. If the principal surfactant is one or more primary alkyl sulphates, the preferred ratio range is from 10:1 to 3:1, more preferably from 7:1 to 3:1.

The significance of the distinction between the two broad classes of auxiliary surfactant (b)(i)(i) and (b)(i)(ii) is that the optional second additive (c), which will be discussed in more detail below, is required when the auxiliary surfactant is of the (b)(i)(ii) type. When the auxiliary surfactant is of the (b)(i)(i) type, the second additive (c) may if desired be present, but it is not essential.

If desired, the compositions of the invention may contain mixtures of auxiliary surfactants, of the same type or of different types.

50 The additive (b)(ii) 50

In a second embodiment of the invention, the compositions contain in addition to the principal surfactant (a) an "additive" (b) (ii) which is not a surfectant. The edditive (b) (ii) is a non-micelle, forming or weakly micelle-forming aliphatic, alicyclic aromatic or araliphatic nonionic material having a melting point not exceeding 55°C, and a dielectric constant of at least 2.2. The additive (b) (ii) has the ability to lower the Krafft temperature of the surfactant system below ambient temperature. As with the auxiliery surfectants (b) (i), the additives (b) (ii) fall into two broad classes (b) (ii) (i) and (b) (ii) (ii), the optional second additive (c) being essential only when the additive (b) (ii) is of the (b) (iii) (ii) type, and optional or advantageous when the additive (b) (ii) is of the (b) (iii) (ii) type.

The first class of additives, (b) (ii) (i), is composed of materials that are additionally capable of extending the
60 range of compositions in which hexagonal phase exists and is stable. These are relatively short-chain organic
materials containing a hydroxyl group, which may be alcoholic or phenolic. If desired one or more additional
poler groups may be present in the molecule, for exemple, a further hydroxyl group or a carboxyl, carboxylic acid
ester, carboxylic acid amide, amine, aldehyde, or ketone group. The (b) (ii) (i) additive should contain at least 4
carbon atoms, the maximum number of carbon atoms that may be present being governed by the number and
65 disposition of any polar groups present other than the hydroxyl group. If no other polar group is present, or if a

20

30

45

second polar group is present but separated from the hydroxyl group by 2 or less carbon atoms, the (b)(ii)(i) additive should contain not more than 6 aliphatic carbon atoms; while if a second polar group separated from the hydroxyl group by 3 or more carbon atoms is present, the (b)(ii)(i) additive should contain not more than 12 aliphatic carbon atoms. These limitations are imposed by the necessity for the (b)(ii)(i) additive to have some, 5 but not too much, affinity for water.

Examples of suitable (b)(ii)(i) additives, with melting points and dielectric constants (above the melting point), include the following:

10		Melting point	Dielectric constant	10
	2-phenylethanol	<20°C	11.5	
	hydroxycitronellal	<20°C	11–12	
	benzyl alcohol	<20°C	13.1	
15	thymol	51°C	about 9	15

The second class of additives (b) (ii) (ii) is composed of materials that are not in themselves capable of extending the hexagonal phase region but which solve the problem of crystallisation by lowering the Krafft temperature of the surfactant or surfactant mixture present, while taking the composition into lamellar phase rather than hexagonal phase. As previously mentioned, when the additive (b) (ii) is of this type, it is essential that a second type of additive (c), as defined in the aforementioned GB 2 155 031A (Unllever), also be present in order to force the composition into hexagonal phase. The additives (c) are discussed in more detail below.

The additives (b)(ii)(ii) are poorly water-soluble amphiphilic materials of which the overall character is hydrophobic despite the presence of polar groups. They contain at least 7 carbon atoms, and may contain a polar group positioned terminally or within 2 carbon atoms of the terminal position on a hydrocarbon chain or on an aromatic or alicyclic ring, and/or may contain ethylenic unsaturation. The dielectric constant of the (b)(ii)(ii) additive is at least 2.2. The polar group, if present, may be, for example, a hydroxyl, carboxyl, carboxylic acid ester, carboxylic acid amide, amine, aldehyde, or ketone group.

Examples of such materials, with melting points and dielectric constants (above the melting point), include the 30 following:

		Melting point	Dielectric constant	
35	decan-l-ol dodecan-l-ol coconut alcohol	7°C 26°C 40−45°C	about 7 about 5 4–5	35
40	oleyl alcohol decanoic acid dodecanoic acid oleic acid coconut fatty acid	6-7°C 31.5°C 44°C 16.3°C 40-45°C	about 4 about 2.4 about 2.4 2.4 about 2.4	40

Perfume-like ingredients may also be used as (b)(ii)(ii) additives. Examples of such materials, with melting points 45 and dielectric constants (above the melting point), include the following:

		Melting point	Dielectric constant	
50	d-limonene linalool terpineol amyl cinnamic aldehyde	<20°C <20°C <20°C <20°C	2.3 about 3 about 3 about 12	50
55	diethyl phthalate anisole	<20°C <20°C	about 8 4.3	55

Commercial perfume blends may also be used. Perfume-like ingredients are typically used at a 1 to 5% by weight level with 30 to 60% by weight of the principal surfactant (a).

With both classes of additive (b) (ii) (i) and (b) (ii) (ii), a melting point of 55°C or below is essential, in order to 60 avoid crystallisation of the additive.

Relatively low levels (1–15% by weight, preferably 2–10% by weight) of additive (b) (ii), whether of the (b) (ii) (i) type or of the (b) (ii) (ii) type, are sufficient. The preferred amount of surfactant (a) present in this embodiment will of course depend on its countercation, and for an all-sodium system will range from 25 to 60% by weight, more preferably from 30 to 50% by weight. The total level of surfactant plus additive in this embodiment preferably ranges from 16 to 60% by weight, more preferably from 35 to 57% by weight, for an all-sodium system. The ratio of

65

surfactant to additive may range, for example, from 30:1 to 3:1. For a (b) (ii) (i) additive and a primary alkyl sulphate, a preferred ratio range is from 27.5:1 to 3.5:1.

If desired, compositions of the invention may contain both an auxiliary surfactant (b) (i) and an additive (b) (ii).

The optional additive (c)

The compositions of the invention may also contain a second type of additive (c), and indeed this is essential when component (b) is an auxiliary surfactant of the (b) (i) (ii) type, or an additive of the (b) (ii) (ii) type that is not of itself a hexagonal phase promoter. The second additive (c) is also useful in other embodiments to counteract the effect of electrolyte which tends to diminish the size of the hexagonal phase region, and is thus

counteract the effect of electrolyte which tends to diminish the size of the hexagonal phase region, and is th especially advantageous in compositions containing electrolytic components such as builders.

The additive (c) is described in detail in the aforementioned GB 2 155 031A (Unilever). It is a water-soluble non-micelle-forming or weakly micelle-forming material capable of driving the surfactant mixture or surfactant/additive mixture from lamellar phase into hexagonal phase, or of increasing the region of stable 15 hexagonal phase available with a particular composition. The mechanism of action of the additive (c) is not

clearly understood; it is possible that it acts so as to increase micelle or liquid crystal curvature, but the scope of the invention is not to be limited by this hypothesis. Empirically it has been observed that some materials useful as hydrotropes in light-duty liquid detergent compositions may behave as type (c) additives. These are generally molecules containing a large polar group and, optionally, a small hydrophobic group, such as an aliphatic or 20 araliphatic chain containing not more than 6, preferably 4 or less, aliphatic carbon atoms. The larger the polar head group, the larger the hydrophobe that can be tolerated.

The polar group of the additive (c) may carry an ionic charge, but if so this must be of the same polarity as that of the surfactant or surfactants, that is to say, anionic. Examples of anionic additives (c) are the lower aryl or alkylaryl sulphonates, such as toluene and xylene sulphonates.

Alternatively the additive (c) may be a highly polar but uncharged material. A preferred type of uncharged additive (c) is typified by the lower amides, containing the – CON – group. Common features of this second type appear to be an ability to raise the dielectric constant of water combined with a structure-breaking effect on water. The preferred material, which is both cheap and environmentally unobjectionable, is urea. Short-chain urea homologues and enalogues, for example, methyl and ethyl ureas, thiourea, formamide and acetamide, are 30 possible alternatives, but these are of less interest than urea itself in view of various drawbacks such as cost, toxicity or simply a lesser effectiveness as an additive.

If the additive (c) is urea, a buffering agent is advantageously present in order to minimise hydrolysis, especially alkaline hydrolysis, of the urea. A suitable buffer is boric acid, preferably used in an amount of less than 3% by weight, more preferably from 1 to 2% by weight. Buffering may instead by achieved by including treiethanolamine as a countercation in the surfactant system. The buffering capability and greater electrolyte tolerance of triethanolamine as countercation, compared with say, sodium, allow higher levels of electrolytic components, for example, sodium tripolyphosphate builder, to be incorporated in the compositions of the invention.

The additive (c) is advantageously present at a level of from 1 to 45% by weight, preferably from 5 to 35% by weight. The more additive (b) (ii) (ii) present, and the more electrolyte present, the more additive (c) will be 40 required.

The water (d)

In all embodiments of the invention, water is an essential constituent. The relative proportions of any particular system of surfactant (a), component (b) (auxiliary surfactant or additive), optional second additive (c) and water that will give stable hexagonal phase or predominantly hexagonal phase gels can be ascertained by experiment, and a phase diagram constructed. Samples at various ratios are prepared by mixing, and the phases present can be recognised without difficulty by visual appearence, gross flow properties, appearance in polarised light, and texture observed in a polarising microscope.

50 Optional additional ingredients

Unbuilt compositions of the invention may consist substantially wholly of surfactant (a), component (b), optional additive (c), and water, plus the usual minor ingredients such as colour, perfume, germicides and preservatives. Such unbuilt compositions are useful for light-duty applications, for example, for dishwashing, as shampoos, or for fabric washing in soft water areas.

Also within the scope of the invention are heavy-duty fabric washing compositions containing ingredients such as builders, fluorescers, bleaches, photobleaches, enzymes, antiredeposition agents, deoperfumes and germicides. Weter-soluble organic or inorganic builders, for example, phosphates, citrates or nitrilotriacetates may be incorporated in the composition fo the invention but care must be taken that the electrolyte level does not rise to such an extent that the hexagonal phase gel is destabilised. As previously mentioned, the emount of electrolytic builder that can be tolerated can be increased by also including an additive (c), preferably urea. The same considerations apply to other electrolytic ingredlents, for example, sodium sulphite bleach.

Alternatively, water-insoluble inorganic builders such as zeolite may be suspended in the gels of the invention. Equally, other useful insoluble materials such as abrasives or peroxyacid bleaches may be present as suspended solids. An especially preferred bleach material is 1,12-diperoxydodecanedioic acid, as described in EP 160 342A (Unilever).

10

5

15

20

25

30

35

40

45

55

50

60

EXAMPLES

The following non-limiting Examples, in which percentages and ratios are by weight, illustrate the invention.

5 Comparative examples A to D

5

Attempts were made, by mixing, to prepare hexagonal phase gels containing coconut alkyl sulphate and water. The alkyl sulphate (sodium salt) was Emal (Trade Mark) 10 ex Kao Soap Ltd. The compositions prepared, and their physical states at ambient temperature, in this case 22°C, are shown in the following Table: it will be seen that no stable hexagonal phase gels could be made.

10		Ū		10
	Alkyl sulphate	Water	Description of product	
Α	30	70	Crystals plus solution	
15 B	35	65	Crystals plus solution	15
С	45	55	Mass of crystals	
D	50	50	Mass of crystals	

Examples 1 to 30

These Examples illustrate the first embodiment of the invention, in which an auxiliary surfactant (b)(i) is present. 20

25

Examples 1 to 5

Compositions containing the coconut alkyl sulphate used in Comparative Examples A to D, alkyl ether sulphate and water were prepared by mixing. The alkyl ether sulphate was Synperonic (Trade Mark) 3-S-70S (C₁₃₋₁₅, 3EO, 25 sodium salt) ex ICI. The compositions were as shown in the relevant Table, in which numbers are used to signify compositions (stable gels) according to the invention, and letters are used to signify comparative compositions outside the invention. The alkyl sulphate is shown as (a) and the alkyl ether sulphate as (b)(i).

Examples 6 to 12

Compositions containing the sodium coconut alkyl sulphate used in previous Examples, together with ethoxylated nonionic surfactant and water, were prepared by mixing. The nonionic surfactant was Dobanol (Trade Mark) 91-8 ex Shell ($C_9 - C_{11}$, 8EO), which has an HLB value of 13.8. The compositions are shown in the relevant Table, in which (b) (i) denotes the nonionic surfactant. In this Table, the expression "two phases" denotes separation into two liquid crystal (hexagonal and lamellar) phases.

35

30

Examples 13 to 15

35

40

Compositions similar to those of Examples 6 to 12 were prepared using as the auxiliary surfactant (b)(i) an ethoxylated alcohol having a lower average degree of ethoxylation, Dobanol 91-6 ex Shell (C₉-C₁₁, 6 EO): this has an HLB value of 12.6. The compositions are shown in the relevant Table.

40

Examples 16 and 17

Compositions containing an even lower ethoxylate, Dobanol 91-5 ex Shell (C_s-C₁₁, 5 EO), HLB value 11.7, were prepared as shown in the relevant Table. The gel of Comparative Example W contained some hexagonal phase but exhibited flow properties. No wholly hexagonal phase gel could be prepared from these ingredients in the absence 45 of a component (c).

Attempts to prepare gels using Dobanol 91-2.5 ex Shell (C₉-C₁₁, 2.5 EO, HLB 8.2) without urea were unsuccessful: no hexagonal phase region existed at 22°C In the absence of a component (c).

45

Example 18

50 Compositions containing sodium coconut alkyl sulphate with a non-ethoxylated nonlonic surfactant, coconut 50 diethanolamide (Ethylan (Trade Mark) LD ex Lankro), were prepared as shown in the relevant Table. The gel of Comparative Example AA contained some hexagonal phase but exhibited flow properties.

Examples 19 to 22

Compositions containing primary alkyl sulphates in sodium salt form (dodecyl in Example 22, coconut in all the others) together with coconut dimethyl amine oxide (Empigen (Trade Mark) OB ex Albright and Wilson) were prepared as shown in the relevant Table. The sodium dodecyl sulphate was a pure laboratory reagent ex British Drug Houses Ltd.

60 Examples 23 to 26

Compositions containing sodium coconut alkyl sulphate with a linear C₁₀-C₁₂ alkylbenzene sulphonate, Marlon (Trade Mark) A ex Hüls, were prepared as shown in the relevant Table.

65

60

Examples 27 and 28

Compositions containing ethoxylated nonionic surfactant as the auxiliary surfactant (b)(i), and sodium

tripolyphosphate builder, were prepared as shown in the relevant Table. The base formulation, of 20% sodium dodecyl sulphate and 20% Dobanol 91–8, was similar to Example 9 above. Without urea (Comparative Examples KK and LL) an unstable hexagonal phase could be obtained which melted at around ambient temperatures. With 10% urea, hexagonal phase gels stable both at 50°C and at ambient temperature were obtained.

Comparative experiments without the auxiliary surfactant, using 40% sodium dodecyl sulphate, gave solid

Example 29

crystals (Comparative Examples PP to SS).

A stable hexagonal phase gel containing the triethanolamine salt of coconut alkyl sulphate (80%), Dobanol 10 91–8 (5%) and water (15%) was prepared. The (a): (b) (i) ratio was 16:1. The very high total active detergent level will be noted: because of the high molecular weight of the triethanolamine cation the region for stable hexagonal gel formation occurs at higher active detergent levels that is the case for the sodium salt.

10

Examples 30 to 33

Compositions containing sodium alpha-olefin sulphonates (AOS) of various chain lengths as the principal surfactant (a) were prepared as shown in the relevant Table. The C₁₄ and C₁₄₋₁₈ materials were ex Lion Corporation, Japan and the C_{14/16} AOS was ex Aekyung Shell, Korea. The auxiliary surfactants used were Dobanol 91–8 and Dobanol 91–5, and, as expected, urea was required in order to obtain a stable gel with the latter (lower HLB) material. In each case the total active detergent level was 50% by weight and the ratio of (a) (b) (i) was 4:1,

15

20

Examples 34 to 38

Stable hexagonal phase gels were prepared, as shown in the relevant Table, containing various primary non-ethoxylated anionic surfactants (a) in conjunction with the nonionic surfactant Dobanol 91–8 as the auxiliary surfactant (b)(i).

25

25 Examples 39 to 71

These Examples illustrate the second embodiment of the invention, in which an additive (b) (ii) is present.

Examples 39 to 41

Compositions containing sodium coconut alkyl sulphate as the surfactant and 2-phenylethanol as an edditive (b) (ii) (i) were prepared by mixing, the compositions being shown in the relevant Table.

30

Examples 42 to 47

Compositions containing sodium coconut alkyl sulphate, and hydroxycitronellal

35

(CH₃)₂ C(OH)-(CH₂)₃-CH(CH₃)-CH₂CHO

as an additive (b) (ii) (i) were prepared by mixing, the compositions being shown in the relevant Table.

40 Examples 48 to 52

35

55

60

40

Compositions containing sodium coconut alkyl sulphate, and benzyl alcohol as an additive (b) (ii) (i), were prepared by mixing, the compositions being shown in the relevant Table.

70

Examples 53 to 57

Compositions containing a single-chain-length alkyl sulphate, sodium dodecyl sulphate, and 2-phenylethanol as an additive (b)(ii)(i), were prepared by mixing, the compositions being shown in the relevant Table.

45

Example 58

A stable hexagonal phase gel prepared by mixing contained 35% sodium coconut alkyl sulphate, 5% thymol 50 (2-isopropyl-5-methylphenol) as an additive (b)(ii)(i) and 60% water.

50

Examples 59 and 60

Compositions containing sodium coconut alkyl sulphate (35% by weight), and linalool (5% by weight) as an additive (b)(ii)(ii), were prepared with and without urea as an additive (c), as shown below.

55

Example	Urea (%)	water (%)	Product	55
SSS	_	60	Flowable composition	
59	10	50	Predominantly hexagonal gel	
60	20	40	Predominantly hexagonal gel	60

Example 61

Compositions containing sodium coconut alkyl sulphate (40% by weight), and a commercial perfume (IFF 114 ex International Flavours & Fragrances Inc, 5% by weight) were prepared with and without urea as an additive (c), 65 as shown below.

10	GB 2 179 054 P					
		Example	Urea (%)	water (%)	Product	
		TTT	_	55	Solution plus lamellar phase	
_		61	10	45	Predominantly hexagonal gel	5
	Examples 62 to 64 Compositions contained with a	aining sodiu nd without u	m coconut alkyl ırea as an additiv	sulphate, and e (c), as sho	d terpineol as a perfume-like additive (b)(ii)(ii), wn in the relevant Table.	·
	prepared with and with	thout urea as	an additive (c),	as shown in	d coconut fatty acid as an additive (b)(ii)(ii), were the relevant Table. It will be seen that with this type formation, but its level must be carefully chosen.	10
15	Example 66 The procedure of Ex Table. Similar results v	kample 65 wa vere obtained	as repeated using I, a higher level of	decan-l-ol a f urea being r	s the additive (b) (ii) (ii), as shown in the relevant equired for stable gel formation than in Example 65.	15
20	together with benzyl	alcohol or line total activ	monene additive e detergent level	(b) (ii) (i) or was 40% by	n sulphonate (AOS) as (principal) surfactant (a), (b)(ii)(ii) respectively, as shown in the relevant weight and the ratio of surfactant to additive was le gel.	20
25	Example 70 A stable hexagonal (55% by weight), ber and the ratio of surface	nzyl alcohol	(5% by weight) a	taining sodit and water. T	Im coconut fatty acid methyl ester sulphonate he total active detergent level was 55% by weight,	25
30	(b)(ii), compositions	tance of the were prepar additives" the	chain length and red containing so hat do not meet t	dium cocon hese require	nt limitations in the definition of the additive ut alkyl sulphate (40% by weight) and 5% by ments: ethanol (only 2 carbon atoms) and stearyl	30
35	and an	Example	"Additive"	Urea (%)	Product	35
					C. Lucian when a favo amendala	
		KKKK JJJJ	Ethanol Stearyl alcohol	-	Solution plus a few crystals Solid	
40		LLLL	Stearyl alcohol	10	Solid	40
45	Examples 71 to 79 Stable gels in acco compositions are sho the base gel for Exam The fabric washing	own in the re oples 75 to 7	levant Table. The '9 was that of Ex	e base gel fo ample 31.	e in washing fabrics, were prepared by mixing. The r Examples 71 to 74 was that of Example 2, and s:	45
	Antiredeposition age	nt: sodium c	arboxymethyl ce	Ilulose, ex C	ourtaulds (62% active matter)	
50	Germicide: formalin ((37%)				50
	Proteolytic enzyme: a	alcalase solu	tion ex Novo, ac	tivity 1600 g	lycine units/mg.	
	Fluorescer: Tinopal (Trade Mark)	CBS-X ex Ciba-	Geigy, which	n is 4,4'-di(2-sulphostyryl)-diphenyl, disodium salt.	55
55	Photobleach: alumin	ium phthalo	cyanine sulphon	ate ex Ciba (Geigy.	
	Deoperfume: ex PPF	INternation	al			
60	Solid peroxyacid ble DPDDA granules ex	ach: 1,12-di Degussa slu	peroxydodecane rried in water an	dioic acid (D d filtered to	PDDA) (12% avalable oxygen, produced from emove water-soluble inorganic salts).	60
	Buffer (to maintain g	good peroxy:	acid bleach stabi	lity in storag	e): Citric acid.	
65	All those composition	ns were stab	ole translucent he	exagonal pha	se gels.	6

Examples 80 to 82

These Examples relate to fabric washing compositions in accordance with the invention containing electrolytic components: sodium tripolyphosphate as a builder, and sodium sulphite as a mild bleaching agent as described in GB 1 417 870 (Unilever) and British Patent Application No. 86 06145 (Unilever). The compositions are 5 shown in the relevant Table: all were stable translucent hexagonal phase gels.

5

Dishwashing test

The dishwashing performances of three gels according to the invention were evaluated using a standardised test procedure in which soiled plates were washed to a foam collapse end point. Each plate was pre-soiled with 10 5g of a standard cooking oil/starch/fatty acid emulsion in water, and the washing solution in each case consisted of 5g of product dissolved in 5 litres of water (4° French hardness) at 45°C, that is to say, a whole product concentration of 1 g/litre. The gels tested were those of Examples 13 and 30, and a gel (Composition 83) similar to that of Example 23 but containing a different alkylbenzene sulphonate, Dobane (Trade Mark) 102 ex Shell (sodium salt). The results were as shown in the final Table.

10

15

EXAMPLES 1 TO 5

20	Example	(a)	(b) (i)	Water	Total active detergent	Ratio (a):(b) ⁻ (i)	Product	20
	E	35	5	60	40	7:1	Crystals + solution	
	F	35	20	45	55	1.75:1	Gel + crystals	
	1	30	10	60	40	3:1	Stable gel	
25	G	25	5	70	30	5:1	Liquid solution	25
	Н	25	10	65	35	2.5:1	Gel + solution	
	2	25	15	60	40	1.67:1	Stable gel	
	3	20	20	60	40	1:1	Stable gel	
	4	10	30	60	40	0.33:1	Stable gel	
30	5	15	30	55	45	0.5:1	Stable gel	30

EXAMPLES 6 TO 12

35 /	Example	(a)	(b) (i)	Water	Total active detergent	Ratio (a):(b) (i)	Product	35
	J	40	5	55	45	8:1	Crystals	
	6	35	10	55	45	3.5:1	Stable gel	
40	K	30	30	40	60	1:1	Two phases	40
	7.	30	10	60	40	3:1	Stable gel	
	L	30	5	65	35	6:1	Gel + solution	
	8	20	30	50	50	0.67:1	Stable gel	
	9	20	20	60	40	1:1	Stable gel	
45	10	15	20	65	35	0.75:1	Stable gel	45
	11	10	30	60	40	0.33:1	Stable gel	
	M	10	20	70	30	0.5:1	Gel + solution	
	12	5	35	60	40	0.14:1	Stable gel	
50								50

EXAMPLES 13 TO 15

E	xample	(a)	(b) (i)	Water	Total active detergent	Ratio (a):(b) (i)	Product	
55								55
	N	40	10	50	50	4:1	Two phases	
	P	35	20	45	55	1.75:1	Two phases	
	Q	35	5	60	40	7:1	Two phases	
	13	30	10	60	40	3:1	Stable gel	
60	R	20	30	50	50	0.67:1	Liquid solution	60
	14	20	20	60	40	1:1	Stable gel	
	S	20	10	70	30	2:1	Gel + solution	
	15	10	30	60	40	0.33:1	Stable gel	
	T	10	20	70	30	0.5:1	Liquid solution	
65	-						-	65

	EXAMPLE 16 & 17									
	xample	(a)	(b) (i)	Urea	Water	Total active detergent	Ratio (a):(b) (i)	Product	_	
5									5	
	U	30	20	_	50	50	1.5/1	Lamellar phase (flows)		
	16	30	20	20	30	50	1.5:1	Stable gel		
	V	30	15	_	55	45	2:1	Solution plus lamellar phase		
	17	30	15	20	35	45	2:1	Stable gel		
10	W	30	10		60	40	3:1	Flowing gel	10	0
	X	20	20	_	60	40	1:1	Solution plus lamellar phase		•
					1	EXAMPLE 18				r
15									15	
I	Example	(a)	(b) (i)	Urea	Water	Total active detergent	Ratio (a):(b) (i)	Product		
	Υ	35	15		50	50	2.33:1	Solution plus lamellar phase		
20	18	35	15	20	30	50	2.33:1	Stable gel	20	
20	Z	30	20	20	50	50	1:5:1	Lamellar phase + solution		
		30	10		60	40	3:1	Slightly flowing gel		
	AA BB	30 25	10		65	35	2.5:1	Liquid solution		
	CC	20	25	_	55	45	0.8:1	Solution + lamellar phase		
25	CC	20	25	_	55	40	0.0.1	Colation 1 lamonal phase	25	
25										
					EXA	MPLES 19 TO	22			
					147. 4	T-4-1 andisa	Batia	Product		
30	Example	. (ž	9)	(b) (i)	Water	Total active detergent			30	
	DD	4	5	5	50	50	9:1	Gel + crystals		
	19		0	10	50	50	4:1	Stable gel		
	EE		5	10	55	45	3.5:1	Two phases		
35	20		5	5	60	40	7:1	Stable gel	35	
•	FF		0	10	60	40	3:1	Two phases		
	21		0	5	65	35	6:1	Stable gel		
	GG		5	10	65	35	2.5:1	Two phases		
	нн		.0	20	60	40	1:1	Lamellar phase		
40	JJ		0	15	65	35	1.33:1	Two phases	40	
70	22		8	8	84	16	1:1	Stable gel		
						14 D. EO OO TO	00			
g er					EXA	MPLES 23 TO	20		45	
45	Everele	1.	-1	(h) (i)	Water	Total active	e Ratio	Product		
,	Example	(4	9)	(b) (i)		detergent	(a):(b) (i			
	KK	4	5	20	35	65	2.25:1	Crystals		
50	LL		5	5	50	50	9:1	Crystals	50	
	23		0	20	40	60	2:1	Stable gel		
	24		.0	10	50	50	4:1	Stable gel		
	26		15	20	45	55	1.75:1	Stable gel		ž
	26		80	30	40	60	1:1	Stable gel		
55	MM		.O	40	40	60	0.5:1	Two phases	55	
55	NN		:0	20	60	40	1:1	Gel + solution		
									60	
60									00	

EXAMPLES 27 AND 28										
	Example	(a)	(b) (i)	STP	Urea	Wat	er Product ((ambient)		
5	MM NN 27 28	20 20 20 20	20 20 20 20	5 10 5 10	 10 10	55 50 45 40	Crystals Stable ge	+ liquid	5 ГР	
10	PP QQ RR SS	40 40 40 40	_ _ _ _	5 5 10 10	10 20 10 20	45 35 40 30	Crystals Crystals		10	
15	5 EXAMPLES 30 TO 33									
	Example	Principal surfactant	(a)	Auxiliary surfactant	(b) (i)	Urea	Water	Product (ambient)		
20	30 31 32 TT	C ₁₄ AOS C _{14/16} AOS C ₁₄₋₁₈ AOS C ₁₄ AOS	40 40 40 40	91-8 91-8 91-8 91-5	10 10 10 10	 10	50 50 50 50 40	Stable gel Stable gel Stable gel Flowing gel	20	
25	33	C ₁₄ AOS	40	91–5	10	10	40	Stable gel	25	
				EXAM	PLES 34 T	O 38				
30	Example	Principal surfa	actant	(a)	(b) (i)	Water	Total ad deterg		30	
35	34 35 36	Na coconut is Na decane su Monosodium sulpho-dodec acid salt	lphonate alpha-	10 20 10	30 40 30	60 40 60	40 60 40	Stable gel		
	37	Sodium/amm coconut alpha	a-sulpho	10	40	50	50	Stable gel		
40	38	fatty acid salt Na coconut a sulpho fatty a methyl ester s	lpha- cid	55	10	35	65	Stable gel	40	
45		EXAMPLES 39 TO 41								
	Example	(a)	(b) (ii)	Water	d	Total etergent s additive	Ratio (a):(b) (ii)	Product		
50	UU VV WW	50 50 50	10 7 5	40 43 45		60 57 55	5:1 7:1 10:1	Crystals Lamaliar phase Crystals	50	
55	XX 39 YY 40 ZZ	45 45 45 40 40	10 5 2 5 2	45 50 53 55 58		55 50 47 45 42	4.5:1 9:1 22.5:1 8:1 20:1	Lamellar phase Stable gel Crystals Stable gel Crystals	55	
60	41 AAA BBB	35 35 30	10 5 10	55 60 60		46 40 40	3.5:1 7:1 3:1	Stable gel Gel + solution Gel + solution	60	

EXAMPLES 42 TO 47									
<i>E</i> 5	xample	(a)	(b) (ii)	Water	Total detergent plus additive	Ratio (a):(b)	Product (ii)	5	
5					pros duarer				
	CCC	50	2	48	52	25:1	Crystals		
	42	45	10	45	55	4.5:1	Stable gel		
	43	45	5	50	50	9:1	Stable gel		
10	44	40	10	50	50	4:1	Stable gel	10	
-	45	40	5	55	45	8:1	Stable gel		
	46	40	2	58	42	20:1	Stable gel		
	47	35	10	55	45	3.5:1	Gel + a little		
	•						solution		
15	DDD	35	2	63	37	17.5:1	Gel + solution	15	
	EEE	25	10	65	35	2.5:1	Solution		
		•							
20				EXAMPLES 4	48 TO 52			20	
20	xample	(a)	(b) (ii)	Water	Total	Ratio	Product		
	xampie	(8)	(11)	vvater	detergent plus additive	(a):(b)			
0-		EO	10	40	60	5:1	Lamellar phase	25	
25	FFF	50	10		-	10:1	Crystals	25	
	GGG	50	5	45 45	55 55	4.5:1	Stable gel		
	48	45 45	10 5	45 50	50 50	9:1	Stable gel		
	49 HHH	45 45	2	53	47	22.5:1	Crystals		
30	50	45 40	10	50	50	4:1	Stable gel	30	
30	50 51	40	5	55	45	8:1	Stable gel	• • • • • • • • • • • • • • • • • • • •	
	52	35	10	55	45	3.5:1	Stable gel		
	JJJ	35	5	60	° 40	7:1	Gel + solution		
	KKK	35	2	63	37	17.5:1	Gel + solution		
35	LLL	30	10	60	40	3:1	Gel + solution	35	
				EXAMPLES	53 TO 57				
40 E	Example	(a)	(b) (ii)	Water	Total detergent plus additive	Ratio (a):(b)	Product (ii)	40	
	MMM	50	10	. 40	60	5:1	Lamellar phase		
45	53	50	5	45	55	10:1	Stable gel	45	
	NNN	50	2	48	52	25:1	Crystals		
	54	40	5	55	45	8:1	Stable gel		
	55	40	2	58 60	42 40	20:1 3:1	Stable gel Stable gel		
	56	30	10	60 65	40 25	6:1	Stable gel	50	
50	57	30	5 2	65 68	35 32	15:1	Solution	30	
	PPP	30	10	65	35	2.5:1	Solution		
	QQQ RRR	25 25	5	70	30	5:1	Solution		
	nnn	25	3	70	00	0.1	00.04.0		
55				EXAMPLES	62 TO 64			55	
						146-4	On duct (ambiant)		
E	Example	(a)	(b) (ii)	Urea	a l	Water	Product (ambient)		
60	UUU	40	5			55	Two phases	60	
	62	40	5	10		45 05	Stable gel		
	63	40	5	20		35 50	Stable gel		
	VVV	40	10	_		50	Two phases (liquid)		
	www	40	10	10		40	Two phases (liquid)	65	
65	64	40	10	20		30	Stable gel	00	

EXAMPLE 65									
Example (a) (b		b) (ii) Urea		Water	Product (ambient)				
10	XXX 65 YYY ZZZ AAAA BBBB	40		5 5 5 10 10	10		Solid plus Stable gel Mass of cre Solid plus Two phase Mass of cre	ystals solution s (liquid)	5 10
				EXA	AMPLE 66				
15	Example	(a)	(i	b) (ii)	Urea	Water	Product (a	mbient)	15
20	CCCC DDDD 66 EEEE FFFF GGGG	40 40 40 40 40 40		5 5 5 10 10		55 45 35 50 40 30	45 Two phases (liquid) 35 Stable gel 50 Solid plus solution 40 Solid plus solution		20
25				EXAM	PLE 67 TO	69			25
4	Example	Principal surfactant	(a)	Additive (b) (i)	Ure	a Water	Product		
30	67 68 HHHH 69	$C_{14}AOS$ $C_{14/18}AOS$ $C_{14}AOS$ $C_{14}AOS$	40 40 40 40	Benzyl alcohol Benzyl alcohol Limonene 5 Limonene 5		55 55 55 52	Stable gel Stable gel Lamellar phase Stable gel	e and solution	30
35				FXAME	PLE 71 TO	74			35
				71		, . 72	73	74	
40 Sodium cocnut alkyl sulphate Alkyl ether sulphate Sodium carboxymethyl cellulose Formalin Alcalase solution			25 15 1 —		25 15 — 0.75	25 15 — — 0.5	25 15 1 0.75 0.5	40	
45 Water					balance to		0.0	45	
EXAMPLES 75 TO 79									
50				75	76	77	78	79	50
Sodium C _{14-C15} AOS Dobanol 91-8 Fluorescer 55 Photobleach Deoperfume Citric acid 1,12-diperoxydodecanedioic acid			40 10 0.1 — —	40 10 — 0.00 — —	40 10 — 6 — 0.3 —	40 10 — — 1 5	40 10 — 0.006 0.3 1	55	
(bleach) 60 Water					-	balance to			60

			EXA	MPLES 80 TO 82			
				80	81	82	
5	Sodium c	oconut alkyl sulphate		40	40	40	5
		ene sulphonate		10	10	10	
	Sodium tr Sodium si	ripolyphosphate		5 	 5	5 5	
	Water	прине		baland	ce to 100%	Ū	
10							10
		·	DIS	HWASHING TEST			
15	Example	Principal sufactant (a)		Cosurfactant (b) (i)	Numb	er of plates washed	15
	13	Sodium coconut	20	Dobanol 91-6	10	37	, ,
	83	alkyl sulphate Sodium coconut	30	Alkylbenzene sulphonate	e 10	25	
20	30	alkyl sulphate C₁₄ alpha-olefin	40	Dobanol 91–8	10	20	20
	•	sulphonate (Na salt)	40				
	CLAIMS						
25		aqueous detergent composition c	ompris	ng a gel wholly or predom	inantly in hexagon	al liquid crystal form,	25
		he gel comprises: from 5 to 85% by weight of a non-	ethovy	ated micelle-forming non-	-soapsurfactant ha	ving an anionic head	
	(a)	group and an aliphatic or araliph	atic hyd	rocarbon chain containing	g from 10 to 20 ali _l	phatic carbon atoms,	
		the anionic head group being po	sitione	terminally or next to term	inally in the hydro	carbon chain, and	_
	(b)	a second component comprising	3				30
	(b)(i)	from 1 to 75% by weight of an a	uxiliary	micelle-torming non-soa	p surfactant select	tea trom: popionic surfactants	
	(b)(i)(i)	anionic non-soap surfactants oth having HLB values of at least 12	ier than Danda	unose denned under (a) a mine oxides: or	Dove, ethoxylated	nomonic surfactants	
	(P)(i)(ii)	fatty acid mono- and diethanola	z, and a amides.	and ethoxylated nonionic	surfactants havir	g HLB values lower	
35	(5)(1)(11)	than 12;					35
	and/or						
	(b)(ii)	1 to 15% by weight of an additi	ve whic	h is a non-micelle-formin	g or weakly micel	le-forming aliphatic,	
		alicyclic, aromatic or araliphatic	nonio	nic material having a me	iting point not ex	ceeding 55°C and a	
<i>1</i> 0	/h)/ii)/i)	dielectric constant of its liquid for materials containing at least 4 c	arbon s	it least ∠.∠, selected from: toms, and containing a h	vdroxvl aroun nos	itioned terminally or	40
+0	(0)(11)(1)	within 2 carbon atoms of the terr	ninal n	osition on a hydrocarbon o	hain or on an aron	natic or alicyclic ring.	
		and optionally one of more furth	er polar	groups; containing not m	ore than 6 aliphati	c carbon atoms if the	
		budround group is the only polar	aroun n	- ·			
		Hydroxyl gloup is the only polar (ուրուհ հ	resent or if a second polar :	group is present ar	nd separated from the	
		hydroxyl group by 2 or less carl	bon ato	ms; or containing not mo	group is present ar ore than 12 aliphat	nd separated from the tic carbon atoms if a	
45		hydroxyl group by 2 or less carl second polar group is present as	bon ato nd sepa	ms; or containing not mo rated from the hydroxyl g	group is present ar ore than 12 aliphat roup by 3 or more	nd separated from the tic carbon atoms if a carbon atoms; or	45
45	(b)(ii)(ii)	hydroxyl group by 2 or less card second polar group is present at materials containing at least 7 car	bon ato nd sepa rbon ato	ms; or containing not mo rated from the hydroxyl g oms, and containing at leas	group is present ar ore than 12 aliphat roup by 3 or more of one polar group p	nd separated from the tic carbon atoms if a carbon atoms; or positioned terminally	45
45	(b)(ii)(ii)	hydroxyl group by 2 or less carl second polar group is present at materials containing at least 7 ca or within 2 carbon atoms of the	bon ato nd sepa rbon ato termina	ms; or containing not mo rated from the hydroxyl g oms, and containing at leas al position on a hydrocarb	group is present ar ore than 12 aliphat roup by 3 or more of one polar group p	nd separated from the tic carbon atoms if a carbon atoms; or positioned terminally	45
		hydroxyl group by 2 or less carl second polar group is present at materials containing at least 7 ca or within 2 carbon atoms of the ring, and/or containing ethyleni	bon atond sepa rbon aton termina c unsat	ms; or containing not mo rated from the hydroxyl goms, and containing at leas al position on a hydrocarb uration;	group is present ar ore than 12 aliphat roup by 3 or more st one polar group pon on chain or on an	nd separated from the tic carbon atoms if a carbon atoms; or positioned terminally	45
	the total a	hydroxyl group by 2 or less carl second polar group is present at materials containing at least 7 ca or within 2 carbon atoms of the ring, and/or containing ethyleni amount of (a) plus (b) being with anally.	bon ato nd sepa rbon ato termina c unsat hin the	ms; or containing not mo rated from the hydroxyl goms, and containing at leas al position on a hydrocarb uration; range of from 15 to 95% b	group is present ar ore than 12 aliphat roup by 3 or more st one polar group on chain or on an oy weight;	nd separated from the tic carbon atoms if a carbon atoms; or positioned terminally aromatic or alicyclic	45 50
		hydroxyl group by 2 or less carl second polar group is present at materials containing at least 7 ca or within 2 carbon atoms of the ring, and/or containing ethyleni amount of (a) plus (b) being with onally, from 1 to 45% by weight of	bon ato nd sepa rbon ato termina c unsat hin the	ms; or containing not mo rated from the hydroxyl goms, and containing at leas al position on a hydrocarb uration; range of from 15 to 95% bond additive which is a	group is present ar ore than 12 aliphat roup by 3 or more st one polar group on chain or on an by weight; n anionic or non	nd separated from the tic carbon atoms if a carbon atoms; or positioned terminally aromatic or alicyclic	
	the total a	hydroxyl group by 2 or less carl second polar group is present at materials containing at least 7 ca or within 2 carbon atoms of the ring, and/or containing ethyleniamount of (a) plus (b) being with smally, from 1 to 45% by weight of non-micelle-forming or weakly	bon atond sepand sepand terminate cunsate hin the a second micelle	ms; or containing not mo rated from the hydroxyl goms, and containing at leas al position on a hydrocarb uration; range of from 15 to 95% bond additive which is a -forming material having	group is present ar ore than 12 aliphat roup by 3 or more st one polar group on chain or on an by weight; n anionic or non a polar head grou	nd separated from the tic carbon atoms if a carbon atoms; or positioned terminally aromatic or alicyclic ationic water-soluble up and optionally an	
50	the total a and, optic (c)	hydroxyl group by 2 or less carl second polar group is present at materials containing at least 7 ca or within 2 carbon atoms of the ring, and/or containing ethyleniamount of (a) plus (b) being with smally, from 1 to 45% by weight of non-micelle-forming or weakly alighatic or araliphatic hydrocarl	bon ato nd sepa rbon ato termina c unsat hin the a seco micelle	ms; or containing not mo rated from the hydroxyl goms, and containing at least all position on a hydrocarb uration; range of from 15 to 95% bond additive which is a -forming material having tin containing at most 6 e	group is present ar ore than 12 aliphat roup by 3 or more st one polar group on chain or on an by weight; n anionic or non a polar head grou liphatic carbon ato	nd separated from the tic carbon atoms if a carbon atoms; or positioned terminally aromatic or alicyclic ationic water-soluble up and optionally an oms;	
50	the total and, optic	hydroxyl group by 2 or less card second polar group is present at materials containing at least 7 card or within 2 carbon atoms of the ring, and/or containing ethylenismount of (a) plus (b) being with smally, from 1 to 45% by weight of non-micelle-forming or weakly aliphatic or araliphatic hydrocard (c) being essential if neither a	bon ato nd sepa rbon ato termina c unsat hin the a seco micelle	ms; or containing not mo rated from the hydroxyl goms, and containing at least all position on a hydrocarb uration; range of from 15 to 95% bond additive which is a -forming material having tin containing at most 6 e	group is present ar ore than 12 aliphat roup by 3 or more st one polar group on chain or on an by weight; n anionic or non a polar head grou liphatic carbon ato	nd separated from the tic carbon atoms if a carbon atoms; or positioned terminally aromatic or alicyclic ationic water-soluble up and optionally an oms;	50
50	the total a and, optic (c) compone (d)	hydroxyl group by 2 or less carl second polar group is present at materials containing at least 7 ca or within 2 carbon atoms of the ring, and/or containing ethyleniamount of (a) plus (b) being with smally, from 1 to 45% by weight of non-micelle-forming or weakly aliphatic or araliphatic hydrocarlnt (c) being essential if neither a water.	bon ato nd sepa rbon ato termina c unsat hin the a seco micelle bon cha n auxili	ms; or containing not mo rated from the hydroxyl goms, and containing at least position on a hydrocarb uration; range of from 15 to 95% bond additive which is all forming material having ain containing at most 6 eary surfactant (b)(i)(i) no	group is present ar ore than 12 aliphat roup by 3 or more st one polar group p on chain or on an by weight; In anionic or non a polar head grou liphatic carbon atter or an additive (b) (i	nd separated from the tic carbon atoms if a carbon atoms; or positioned terminally aromatic or alicyclic atomic water-soluble up and optionally anoms; i) (i) is present; and	
50 55	the total a and, optic (c) compone (d) 2. A c	hydroxyl group by 2 or less carl second polar group is present at materials containing at least 7 ca or within 2 carbon atoms of the ring, and/or containing ethyleniamount of (a) plus (b) being with smally, from 1 to 45% by weight of non-micelle-forming or weakly aliphatic or araliphatic hydrocarlnt (c) being essential if neither a water.	bon ato nd sepa rbon ato termina c unsat hin the a seco micelle bon cha n auxili	ms; or containing not mo rated from the hydroxyl goms, and containing at least position on a hydrocarb uration; range of from 15 to 95% bond additive which is all forming material having ain containing at most 6 eary surfactant (b) (i) (i) no tin the surfactant (a) is a particular to the surfactant (b) is a particular to the surfactant (a) is a particular to the surfactant (b) is a particular to the surfactant (a) is a particular to the surfactant (b) is a particular to the surfactant (a) is a particular to the surfactant (a) is a particular to the surfactant (a) is a particular to the surfactant (b) in the surfactant (a) is a particular to the surfactant (a) is a particular to the surfactant (b) in the surfactant (b) in the surfactant (a) is a particular to the surfactant (b) in the surfactant (a) is a particular to the surfactant (b) in the surfactant (c) in the	group is present ar ore than 12 aliphat roup by 3 or more st one polar group p on chain or on an by weight; In anionic or non a polar head grou liphatic carbon at or an additive (b) (i	nd separated from the tic carbon atoms if a carbon atoms; or positioned terminally aromatic or alicyclic mionic water-soluble up and optionally anoms; i) (i) is present; and ate, a primary alkane	50
50 55	the total a and, optic (c) compone (d) 2. A c sulphona methyl es	hydroxyl group by 2 or less carl second polar group is present at materials containing at least 7 ca or within 2 carbon atoms of the ring, and/or containing ethyleni amount of (a) plus (b) being with anally, from 1 to 45% by weight of non-micelle-forming or weakly aliphatic or araliphatic hydrocarl nt (c) being essential if neither at water. composition as claimed in claim 1 te, an alpha-olefin sulphonate, arter sulphonate, or a mixture of arter sulphonate, a	bon ato nd sepa rbon ato termina c unsat hin the a seco micelle bon cha n auxili , where n alkyl on	ms; or containing not morated from the hydroxyl goms, and containing at least all position on a hydrocarburation; range of from 15 to 95% bond additive which is all-forming material having in containing at most 6 eary surfactant (b) (i) (i) not in the surfactant (a) is a gor alkenyl isethionete, an appropriate of those.	group is present ar ore than 12 aliphat roup by 3 or more st one polar group on chain or on an by weight; an anionic or non a polar head grou liphatic carbon ato or an additive (b) (i primary alkyl sulph alpha-sulpho fatty	nd separated from the tic carbon atoms if a carbon atoms; or positioned terminally aromatic or alicyclic mionic water-soluble up and optionally anoms; i) (i) is present; and ate, a primary alkane acid salt, a fatty acid	50
50 55	the total a and, optic (c) compone (d) 2. A c sulphona methyl es 3. A c	hydroxyl group by 2 or less carl second polar group is present at materials containing at least 7 ca or within 2 carbon atoms of the ring, and/or containing ethyleni amount of (a) plus (b) being with anally, from 1 to 45% by weight of non-micelle-forming or weakly aliphatic or araliphatic hydrocarl nt (c) being essential if neither at water. Total phonate, or a mixture of arter sulphonate, and ter sulphonate, or a mixture of arter proposition as claimed in claim 1 ter sulphonate, or a mixture of arter sulphonate, and composition as claimed in claim 2 terms of the sulphonate or a mixture of arter sulphonate, as claimed in claim 2 terms of the sulphonate or a mixture of arter sulphonate, as claimed in claim 2 terms of the sulphonate or a mixture of arter sulphonate, as claimed in claim 2 terms of the sulphonate or a mixture of arter sulphonate, and the sulphonate or a mixture of arter sulphonate, and the sulphonate or a mixture of arter sulphonate or a mixture of a mixture	bon ato nd sepa rbon ato termina c unsat hin the a seco micelle bon cha n auxili , where n alkyl on two on	ms; or containing not morated from the hydroxyl goms, and containing at least all position on a hydrocarburation; range of from 15 to 95% bond additive which is all-forming material having a most 6 eary surfactant (b) (i) (i) no in the surfactant (a) is a por alkenyl isethionete, an allor more of those.	group is present ar ore than 12 aliphat roup by 3 or more st one polar group on chain or on an by weight; an anionic or non a polar head grou liphatic carbon ato or an additive (b) (i primary alkyl sulphalpha-sulpho fatty	and separated from the tic carbon atoms if a carbon atoms; or positioned terminally aromatic or alicyclic atomic water-soluble up and optionally anoms; i) (i) is present; and ate, a primary alkane acid salt, a fatty acid kyl sulphete.	50 55
50 55	the total a and, optic (c) compone (d) 2. A c sulphona methyl es 3. A c 4 A c	hydroxyl group by 2 or less card second polar group is present at materials containing at least 7 ca or within 2 carbon atoms of the ring, and/or containing ethyleni amount of (a) plus (b) being with anally, from 1 to 45% by weight of non-micelle-forming or weakly aliphatic or araliphatic hydrocard in (c) being essential if neither at water. composition as claimed in claim 1 tet, an alpha-olefin sulphonate, and tet sulphonate, or a mixture of an ecomposition as claimed in claim 2 composition as claimed in claim 2	bon ato nd sepa rbon ato termina c unsat hin the a seco micelle bon cha n auxili , where n alkyl o 2, where 2, where 2, where	ms; or containing not morated from the hydroxyl goms, and containing at leasel position on a hydrocarburation; range of from 15 to 95% bond additive which is alto-forming material having in containing at most 6 eary surfactant (b) (i) (i) not in the surfactant (a) is a gor alkenyl isethionete, an alto more of those.	group is present ar ore than 12 aliphat roup by 3 or more st one polar group on chain or on an by weight; an anionic or non a polar head grou liphatic carbon ato or an additive (b) (i brimary alkyl sulph alpha-sulpho fatty prises e primary al prises an alpha-ol	and separated from the tic carbon atoms; if a carbon atoms; or positioned terminally aromatic or alicyclic tionic water-soluble up and optionally anoms; i) (i) is present; and ate, a primary alkane acid salt, a fatty acid kyl sulphete. efin sulphonate.	50 55
50 55	the total a and, optic (c) compone (d) 2. A c sulphona methyl es 3. A c 4. A c 5. A c	hydroxyl group by 2 or less carl second polar group is present at materials containing at least 7 ca or within 2 carbon atoms of the ring, and/or containing ethyleni amount of (a) plus (b) being with anally, from 1 to 45% by weight of non-micelle-forming or weakly aliphatic or araliphatic hydrocarl nt (c) being essential if neither at water. Total phonate, or a mixture of articomposition as claimed in claim 1 ter sulphonate, and ter sulphonate, and ter sulphonate or a mixture of articomposition as claimed in claim 2 tomposition as claimed in any one	bon ato nd sepa rbon ato termina c unsat hin the a seco micelle bon cha n auxili , where n alkyl o ny two 2, where of clair	ms; or containing not morated from the hydroxyl goms, and containing at least all position on a hydrocarburation; range of from 15 to 95% bond additive which is all-forming material having a containing at most 6 eary surfactant (b) (i) (i) not in the surfactant (a) is a por alkenyl isethionete, an allor more of those. Sin the surfactant (e) come in the surfactant (a) come in the surfactant (b) come in the surfactant (a) come in the surfactant (b) come in the surfactant (a) come in the surfactant (b) come in the surfactant (a) come in the surfactant (b) contains a	group is present ar ore than 12 aliphat roup by 3 or more st one polar group on chain or on an by weight; an anionic or non a polar head grou liphatic carbon ato or an additive (b) (i brimary alkyl sulph alpha-sulpho fatty prises e primary al prises an alpha-ol	and separated from the tic carbon atoms; if a carbon atoms; or positioned terminally aromatic or alicyclic tionic water-soluble up and optionally anoms; i) (i) is present; and ate, a primary alkane acid salt, a fatty acid kyl sulphete. efin sulphonate.	50 55
50 55 60	the total a and, optic (c) compone (d) 2. A c sulphona methyl es 3. A c 4. A c 5. A c ratio of su	hydroxyl group by 2 or less card second polar group is present at materials containing at least 7 callor within 2 carbon atoms of the ring, and/or containing ethylenismount of (a) plus (b) being with anally, from 1 to 45% by weight of non-micelle-forming or weakly aliphatic or araliphatic hydrocard (c) being essential if neither at water. The composition as claimed in claim 1 tet, an alpha-olefin sulphonate, and ter sulphonate, or a mixture of an ecomposition as claimed in claim 2 composition as claimed in any one urfactant (a) to surfactant (b) (i)	bon ato nd sepa rbon ato termina c unsat hin the a seco micelle bon cha n auxili , where n alkyl co ny two 2, where con color secondary	ms; or containing not morated from the hydroxyl goms, and containing at least position on a hydrocarburation; range of from 15 to 95% bond additive which is a forming material having an containing at most 6 eary surfactant (b) (i) (i) not in the surfactant (a) is a por alkenyl isethionete, an action the surfactant (e) comein the surfactant (a) comein the surfactant (a) comein the surfactant (a) comes 1 to 4, which contains a come 20:1 to 0.1:1.	group is present ar ore than 12 aliphat roup by 3 or more st one polar group on chain or on an by weight; a nanionic or non a polar head grou liphatic carbon ato or an additive (b) (i primary alkyl sulph alpha-sulpho fatty prises e primary al prises an alpha-ol in auxiliary surfecta	and separated from the tic carbon atoms if a carbon atoms; or positioned terminally aromatic or alicyclic dionic water-soluble up and optionally anoms; i) (i) is present; and ate, a primary alkane acid salt, a fatty acid kyl sulphete. efin sulphonate. ant (b) (i), the weight	50 55
50 55 60	the total a and, optic (c) compone (d) 2. A c sulphona methyl es 3. A c 4. A c 5. A c ratio of su	hydroxyl group by 2 or less carl second polar group is present at materials containing at least 7 ca or within 2 carbon atoms of the ring, and/or containing ethyleni amount of (a) plus (b) being with anally, from 1 to 45% by weight of non-micelle-forming or weakly aliphatic or araliphatic hydrocarl nt (c) being essential if neither at water. Total phonate, or a mixture of articomposition as claimed in claim 1 ter sulphonate, and ter sulphonate, and ter sulphonate or a mixture of articomposition as claimed in claim 2 tomposition as claimed in any one	bon ato nd sepa rbon ato termina c unsat hin the a seco micelle bon cha n auxili , where 2, where 2, where 2, where 5, whee	ms; or containing not morated from the hydroxyl goms, and containing at least position on a hydrocarburation; range of from 15 to 95% from 15	group is present ar ore than 12 aliphat roup by 3 or more st one polar group on chain or on an by weight; an anionic or non a polar head grou liphatic carbon ato or an additive (b) (i primary alkyl sulph alpha-sulpho fatty prises an alpha-ol in auxiliary surfectant (b) (i) is selected	and separated from the tic carbon atoms if a carbon atoms; or positioned terminally aromatic or alicyclic dionic water-soluble up and optionally anoms; i) (i) is present; and ate, a primary alkane acid salt, a fatty acid kyl sulphete. efin sulphonate. ant (b) (i), the weight ad from alkylbenzene	50

	A composition as claimed in any one of claims 1 to 4, which contains an additive (b)(ii), the weight ratio					
	of surfactant (a) to additive (b)(ii) being from 30/1 to 3:1.					
	8. A composition as claimed in claim 7, wherein the additive (b)(ii) is selected from 2-phenyl ethanol,					
	hydroxycitronellal, benzyl alcohol, linalool, thymol, terpineol, coconut fatty acid and decan-I-ol.					
5	9. A composition as claimed in any one of claims 1 to 8, which comprises a second additive (c) which is	5				
	urea.					
	10. A composition as claimed in any one of claims 1 to 9, wherein all anionic surfactants are in sodium salt					
	form and the total level of surfactant (a) plus surfactant (b) (i) or additive (b) (ii) is from 16 to 60% by weight.					
	11. An aqueous detergent composition comprising a gel wholly or predominantly in hexagonal liquid crystal					
10	form, wherein the gel comprises:	10				
	(a) from 5 to 75% by weight of a non-ethoxylated micelle-forming surfactant having an anionic head group and an aliphatic or araliphatic hydrocarbon chain containing from 10 to 20 aliphatic carbon					
	atoms, the anionic head group being positioned terminally or next to terminally in the hydrocarbon					
	chain, and					
15	(b) a second component comprising	15				
	(b) (i) from 1 to 75% by weight of an auxiliary micelle-forming anionic, nonionic or zwitterionic surfactant					
	other than an anionic surfactant as defined under (a), with the proviso that (b) (i) cannot be an					
	alkylbenzene sulphonate when (a) is a fatty acid soap, or					
	(b) (ii) 1 to 15% by weight of an additive which is a non-micelle-forming or weakly micelle-forming aliphatic,					
20	alicyclic, aromatic or araliphatic nonionic material having a melting point not exceeding 55°C and	20				
	containing at least 4 carbon atoms and at least one polar group positioned terminally or within 2					
	carbon atoms of the terminal position on a hydrocarbon chain or on an aromatic or alicyclic ring,					
	he total amount of (a) plus (b) being within the range of from 15 to 85% by weight;					
	(c) optionally 1 to 45% by weight of a second additive which is an anionic or nonlonic water-soluble					
25	non-micelle-forming material having a polar head group and optionally an aliphatic or araliphatic	25				
	hydrocarbon chain containing at most 6 aliphatic carbon atoms, and					
	(d) water.					
	12. A composition as claimed in claim 1, substantially as described in any one of Examples 1 to 83 herein.					
20		30				
30	Printed for Her Majesty's Stationery Office by Croydon Printing Company (UK) Ltd., 12/86, D8817356.					