STATS331

Credit: Unknown to me at this time

Introduction to Bayesian Statistics Semester 2, 2016

Today's Lecture

Point and Interval Estimation
or
Summarising Posterior Distributions

The Posterior is It

 In Bayesian stats, the posterior distribution is the complete answer

$$\begin{array}{rcl} p(\theta|x) & = & \frac{p(\theta)p(x|\theta)}{p(x)} \\ p(\theta|x) & \propto & p(\theta)p(x|\theta) \\ \\ \text{posterior} & \propto & \text{prior} \times \text{likelihood.} \end{array}$$

From this, you can work out the probability of anything

Why We Study This

 Summaries: The full posterior can be "too much information". Good for communication

 Point of contact with frequentist stats, which has "estimators" and "confidence intervals"

Bus Example

Reminder of Bus Results

- Uniform prior
- Binomial sampling distribution to get the likelihoods
- 5 trials
- 2 successes

$$\theta | x \sim \text{Beta}(3,4)$$

Decision Theory

When you are forced to make a choice, how do you make the *best* choice?

"You acted unwisely," I cried, "as you see

by the outcome." He calmly eyed me:

"When choosing the course of my action," said he, "I had not the outcome to guide me."

Ambrose Bierce (via Ed Jaynes)

But We Have Some Information

So some choices are "probably" better than others!

Point Estimation

If we are estimating a parameter θ from data, we could give a guess $\hat{\theta}$

The value that we choose is a decision

Best Point Estimate

The best estimate would be the true value

$$\hat{\theta} = \theta$$

Take home message: be wary of any stats method that is "optimal", such statements should always have qualifiers

Point Estimate: Mode

Point Estimate: Median

Point Estimate: Mean/Expectation

Calculating Summaries

Calculating posterior mode, mean, and median in R

NOTE: This will be different when we use MCMC/JAGS.

```
# Mean
posterior mean = sum(theta*posterior)
# Mode
highest probability = max(posterior)
posterior mode = theta[posterior == highest probability]
# Median
F = cumsum(posterior)
dist = abs(F - 0.5)
posterior median = theta[dist == min(dist)]
```

Choosing Between Them

All of these estimates are well within the range of uncertainty, in this example. But this isn't always true!

Utility

If the true value is θ and I guess $\hat{\theta}$ how "good" is my guess?

Utility function

$$U(\hat{\theta}, \theta)$$

Loss

- Loss is just the negative of utility
- For pessimists...

$$L = -U$$

Quadratic Loss

$$L(\hat{\theta}, \theta) = \left(\hat{\theta} - \theta\right)^2$$

Minimise Loss?

- Can't need to know true θ value
- Minimise POSTERIOR EXPECTED LOSS

$$E\left[L(\hat{\theta}, \theta)\right] = \int p(\theta|x) \left(\hat{\theta} - \theta\right)^2 d\theta$$

 Minimise by differentiation wrt estimate and then setting to zero, solve for estimate. See lecture notes for proof

Posterior Mean is the Best!

Take Home Message

 You're best off using the posterior mean if you think a quadratic loss function is reasonable

This is sometimes called the Bayes Estimate

Linear/Absolute Loss

$$L(\hat{\theta}, \theta) = |\hat{\theta} - \theta|$$

Posterior Median Wins!

When is the Mode Best?

- Mode = 0.4
 - All-or-nothing loss
 - Reward for getting it right
 - Anything wrong is equally bad

All-or-nothing loss

- You are hungry and in the dark
- Based on some rustling noises, you have a posterior distribution for the location of an animal

• Where should you shoot?

 Hint: a hit is good, but any miss is equally as bad as any other

Where should you shoot?

- a) Posterior mean
- b) Posterior median
- c) Posterior mode

Interval Estimation

Credible Intervals: the idea

Find an interval that encloses some specified amount of probability, e.g. 90%, 95%

Credible Intervals in R

Once again, the method for this will be different when we use MCMC/JAGS

Credible Intervals vs. Confidence Intervals

 New Widgets are injected with a chemical that helps them to function

They are guaranteed to work for a certain duration

After that, they fail with a mean lifetime of 1 year.

Sampling Distribution

$$p(x|\theta) = \begin{cases} \exp(\theta - x), & x \ge \theta \\ 0, & \text{otherwise} \end{cases}$$

Multiple Data

$$p(x_1, x_2, x_3 | \theta) = \begin{cases} \prod_{i=1}^{3} \exp(\theta - x_i), & \text{all } xs \ge \theta \\ 0, & \text{otherwise} \end{cases}$$

We observe $x = \{12, 14, 16\}$

We observe

$$x = \{12, 14, 16\}$$

What is the value of the *likelihood* for θ **=20?**

Likelihood is the probability of observing this data if the hypothesis were true

Bayesian Ingredients

Likelihood

$$p(x_1, x_2, x_3 | \theta) = \begin{cases} \prod_{i=1}^{3} \exp(\theta - x_i), & \text{all } xs \ge \theta \\ 0, & \text{otherwise} \end{cases}$$

$$p(x_1, x_2, x_3 | \theta) = \begin{cases} \exp(3\theta - 42), & \theta < 12 \\ 0, & \text{otherwise} \end{cases}$$

Prior

 $\theta \sim \text{Uniform}(0, \text{ large upper limit})$

Stirring the Pot

```
theta = seq(0, 20, by=0.01)
prior = rep(1, length(theta))
prior = prior/sum(prior)
lik = exp(3*theta - 42)
lik[theta > 12] = 0
h = prior*lik
post = h/sum(h)
plot(theta, post, type='l', xlab='Theta',
 ylab='Posterior Probability')
```

Posterior PDF

Cumulative Distribution

• 90% credible interval = {11.00, 11.98}

Frequentist Confidence Interval

• Prob(θ in interval) = 0.9

Bayesian Credible interval

Prob(θ in interval | x)

Frequentist Confidence interval

Prob(θ in interval $\mid \theta$)

Widget Confidence Interval

An estimator and a confidence interval

$$\theta^* = \frac{1}{N} \sum_{i=1}^{N} (x_i - 1)$$

$$(\theta^* - 0.8529, \theta^* + 0.8264)$$

Fake Data Sets

```
theta = 10
x = theta = log(runif(3)) # Generate from
 exponential
theta star = mean(x - 1)
left = theta star - 0.8529
right = theta star + 0.8264
inside = (theta > left && theta < right)
TRUE
```

Repeat 1,000,000 times

```
for(i in 1:1000000)
{
     # do stuff
}
> mean(inside)
[1] 0.899118
```

Confidence Interval

• Our data was $x = \{12, 14, 16\}$

Frequentist confidence interval

{12.1471, 13.8264}

Bayesian credible interval

{11.00, 11.98}

OOPS

Summary

Today we saw how the "best" estimate depends on the utility function

 Credible intervals and confidence intervals are different concepts!

OOPS

Next Week

We will learn about MCMC. Why we need it and how it works

See you in the labs!