(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公勝番号 特開2003-61958 (P2003~61958A)

(43)公開日 平成15年3月4日(2003.3.4)

(51) Int.Cl."

觀別配母

FI

テーマコート (参考)

A 6 1 B 8/06

A61B 8/06

4C301

4C601

審査解求 米解求 解求項の数15 〇L (金 28 資)

特爾2002-173177(P2002--173177) (21)出廣路号

(22)出翼日

平成14年6月13日(2002.6.13)

(31) 優先権主ట番号 勢期2001-182535 (P2001-182535)

(32)優先日

平成13年6月15日(2001.6.15)

(33) 優先檔主張国 日本(よび) (71) 出國人 594164531

東芝阪用システムエンジニアリング株式会

東京都北区欧羽2丁目18番4号

(71) 出域人 000003078

株式会社集艺

東京都沿区芝浦一丁目1番1号

(72) 発明者 志岐 朵一

東京都北区赤羽二丁月16番4号 東芝医用

システムエンジニアリング株式会社内

(74) 代班人 100078765

最終質に蛇く

(54) 【発明の名称】 超位被验的独留

(57) 【型的】

【課題】血管の拍動性を簡便に且つ効果的に表示する強 音波診断装弦を提供する。

【解決手段】超音波診断装置は、超音波プローブ1、送 信部2(送信パルス発生器21、送信ビームフォーマ2 2)、 吳僑部3 (プリアンプ31、 吳僑ピームフォーマ 32)、CFM処理的4(勘含製素信号抽出器41、補 正速度淡算器 4 2) 、断险像処理部 5、及び激示部 6 を 備え、披紋体内に超音波パルスを送受信しながら所定の 断面をスキャンし、このスキャンで得られる画像を表示 する。この際、補正速度演算器42は、受信信号から被 検体内の運動体の抑動の特徴を示す進度(運動体の速 段)を演算する疾算器43と、代表的な速度(基準速 度)を演算する演算器44と、運動体の速度を基準速度 を用いて補正する補正器45とを備え、その補正された 速度データを表示部の上で表示する。

选。

(2)

特開2003…61958

【特許謝求の範囲】

【請求項1】 被検体内に超音波パルスを送処値しなが ⑤スキャンを行なうスキャン手段と、

前記スキャン手段によるスキャンで得られる受債債母から前記被後体内の運動体の速度を顧次求める手段と、

所定時間中に得られる複数の前配選度から基準速度を求め、前配運動体の速度それぞれを前記基準速度を用いて 補正する処理手段と、

前記処理手段で求めたデータを、前記所定期間中に複数 回更新するように表示する表示手段とを備えたことを特 徴とする超音波診断設置。

【請求項2】 前記基準速度は、

- 1) 所定時間の速度の平均値又はこの平均値の絶対値、
- 2) 所定時間の速度の絶対値の平均値、
- 3) 所定時間の選座のRMS値(Root Mean Square Value)。
- 4) 所定時間の速度又はこの速度の絶対値に対し、ドーR (Finite impulse Response) フィルタ、トーR (Infinite impulse Response) フィルタ、及び非線形フィルタのいずれかを用いて演算した値又はその絶対値、及び5) 所定時間の速度のペクトル的な平均値又はこの平均値の絶対値、の内の少なくとも1つであることを特徴とする請求項1記載の超音波診断装置。

【簡求項3】 前配処理手段は、

- 1) 前配運動体の速度を前記基準速度で除算する手段、及び
- 2) 前記運動体の速度を前記基準速度に対する相対的な 値に変換する手段の内の少なくとも1つを備えたことを 特徴とする野求項1記載の超音波診断装置。

【請求項4】 被検体内に超音波パルスを送覺値しなが らスキャンを行なうスキャン手段と、

前記スキャン手段によるスキャンで符られる受信値号から前配被検体内の移動体に関する速度情報を求める手段と、

前記速度情報に基づいて、拍動の状態を表す表示画像を 生成する表示画像生成手段と、

前記速度情報に基づいて、拍動表示のオン・オフ動作を 切り替えるように前記表示画像生成手段を頻節する手段 とを備えたことを特徴とする超音波診断装置。

【請求項5】 前記処理手段は、前記速度のサンプリング定理に基づく折り返りを抽正する手段と、前記処理手段で求めたデータの時間的変化を紐和する手段との少なくとも1つを備えたことを特徴とする請求項1配数の超音波診断装置。

【請求項6】 前記スキャン手段は、前記被検体内の1 断面を心拍動の駆出期に対応する時間の逆数で示される 値以上のフレーム数でスキャンすることを特徴とする語 求項1 記載の超音波診断装置。

【請求項7】 前記表示手段は、前記処理手段で求めた データの2次元画像を表示することを特徴とする語求項 1 記載の超音波診断藝窟。

【請求項8】 被検体内に超谐波パルスを送受信しながら1 断面を1 心拍分に相当する複数回スキャンしながら3 次元的にスキャンするスキャン手段と、

前記スキャン手段による3次元的なスキャンで符られる 受信信号から前記被検体内の運動体の速度を順次求める 手段と、

所定期間中に得られる複数の前記速度から基準速度を求め、前記運動体の速度それぞれを前記基準速度を用いて 補正する処理手段と、

前記処理手段で求めたデータの少なくとも3次元國像 を、前記所定期間中に複数回更新するように表示する表示手段とを備えたことを特徴とする超音波診断装置。

【隣求項9】 前記スキャン手段は、2次元アレイ振動 子を用いた電子スキャンにより前記被検体を3次元的に スキャンする手段であり、

前配運動体の速度は、所定時間の最大速度であり、 前配基準速度は、前配被検体の心時相で変化しない情報 であることを特徴とする請求項8記載の超音波診断基

【請求項10】 前記断面の断層像を得る手段を更に備え、

前記表示手段は、前記断層像と前記処理手段で求めたデータの画像とを同一モニタ上に表示する手段と、前記断 層像に前記処理手段で求めたデータの画像を重畳表示す る手段との少なくとも1つを備え、

前記断層像は、2次元画像文は3次元画像であることを特徴とする語求項1または請求項8記載の超音波診断整置。

【請求項11】 前記処理手段で求めたデータの関係を カラーで表示する手段と、

前配処理手段で求めたデータと前記被検体の運動体からの散乱エコーのパワー情報とを組み合わせた情報を表示する手段と、

前記処理学校で求めたデータの大きさが前記基準選集の 近傍及びそれよりも小さい値に対しては所定のカラーバ 一の色を低速を表す色とし、前記処理手段で求めたデー タの大きさが前記基準速度の近傍より大きくなるにつれ て前記カラーバーの色を高速を表す色とするように表示 する手段と、

前記処理手段で求めたデータと折り返り速度とを同時に 設示する手段との少なくとも1つを備えたことを特徴と する請求項1または請求項8記載の超音波診断装置。

【請求項12】 前記処理手段は、前記被核体内の運動体の速度をピクセル毎に求める手段を備え、この1つ以上のピクセルにおける速度の時間変化のグラフを、前記処理手段で求めたデータの画像と同時に表示する手段を備えたことを特徴とする請求項1または該求項8記載の超音波診断裝置。

【請求項13】 前記処理手段は、パルサティリティー

特服2003~61958

・インデックス(PI)、レジスティピティ・インデックス(RI)等のインデックスを求める処理手段を備えたことを特徴とする請求項8記載の超音波診断装置。

【請求項14】 前記処理手段で求めたデータの画像と前記被検体の運動体からの散乱エコーのパワー情報の画像とを混在させて表示する手段と、

前記処理手段で求めたデータと前記パワー情報とを組み合わせた情報の画像と前記パワー情報の画像とを混在させて表示する手段と、

前記処理事段で求めたデータのカラーバーと前記パワー情報のカラーバーを同時に表示する手段と、

前記処理手段で求めたデータと前配パワー情報とを組み合わせて表すカラーパーと前記パワー情報のカラーパーを何時に表示する手段と、

前記処理手段で求めたデータのカラーバーの上限値、下限値、及び折返り速度の少なくとも1つを表示する手段と、の内の少なくとも1つを備えたことを特徴とする語 求項1または語求項8記載の超音波診断装置。

【請求項15】 前記平均を行なった後、平均値の(1 +α)倍(α≥0)以下の前配運動体の速度を用いて再 度前記平均を行い、この2回目の平均値を前記基準速度 とすることを特徴とする請求項2記載の超音液診断装 値。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本照明は、被検体内の血流の 助態、特に血流の拍動性を効果的に表示する超音波診断 駿原に関する。また、本発明は、被検体内の血流の拍動 性を3次元的に表示する超音波診断塾證に関する。

[0002]

【従来の技術】超音波診断数域には、通常、断層像を表示する日モード等の断層像モードのほか、血流像を表示するCFM (Color Flow Mapping) モード等の超音波診断で用いる画像表示に関する種々のモードが知られている。

【OOO3】こういったモードの内、CFMは、血流情報を2次元的にリアルタイムに表示するものである。この場合の血流情報は、一般的には超音波プローブ側に近づく流れが赤色、その逆に超音波プローブ側から遠ざかる流れが脊色でそれぞれモニタ上で提起可能に表示される。

si=x_i+jy_i

 $=a_1 \cdot exp [j \{2\pi r_d T_{rn} (i-1) + e\}] ---- (1)$ (i=1, 2, --, N)

の式で表すことができる。この式において、aiは短幅、faはドブラ周波数、Trnは、超音波パルスの任意走森数方向への強信間隔、φは初期位相をそれぞれ示

す。この内、ドブラ周波数faは、説明の都合上、N個のドプラデータ間で一定値としているが、一般性を失うものではない。

【0004】このようなCFMの表示を行うための原理及び処理内容の概要を説明する。まず、超音波膨断装置において、従来広く知られているように、診断対象の被検体内の同一場所(方向)を複数回(N回)、超音波速査することにより時系列のエコー信号を得て、その時系列のエコー信号からドブラ法に基いて所望の深き位置での血流速度又は血流の散乱パワーを検出する。すなわち、ドブラ信号は、被検体内の同一場所を所定時間隔で連査することにより得られる血球からの反射信号(血流信号)の単位時間内での位相シフト発として得られる。こうして待られたドブラ信号が血流速度又は血流の散乱パワーに換算される。

【0005】さらに詳細に説明すると、各回の超音波走流に伴うエコー保号から、ミキサ及びLPF(Low Pass Filter)にて直交位相検波を行うことにより、ドブラ 個号が1(In-Phase) 信号および〇(Quadrature-Phase) 信号として抽出される。

【0006】ここで抽出されたドブラ信号には、血球のように移動している物体(運動体)からの反射波と、心管壁や跛器実質のように殆ど移動していない固定物体からの反射波(クラッタ信号)とが混在して含まれる。この内、運動体からの反射波では、ドブラシフトが生じるのに対し、固定物体からの反射波では、その反射強度が強く変配的であるものの、ドブラシフトが殆ど生じないといった特徴をもつ。

【0007】従って、このようなドブラシフト母の程を利用して、MTL(Moving TargetIndicator)フィルタにより固定物体からの反射液を反映したクラッタ成分を除去すれば、血流ドブラ信号を効率よく抽出できる。そして、この血流ドブラ信号、すなわち各深さ位微のN個のドブラデータxl(L信号)及びyl(C信号)(Lm1、2、…、N)を用いて間波数解析を行うことにより、そのスペクトルの平均値(ドブラ周波数)、分散値、あるいは血球からの反射強度(パワー)が算出される。

【0008】ここで用いる簡波数解析には、通常、自己相関法が採用される。この自己相関法を用いた周波数解析の例を説明する。上述したように、MTIフィルタによるクラッタ成分除去で得られる血流ドブラ信号は、N個のドブラデータxi及びyiで構成される複楽数21であり、これは、

【数1】

(4)

特別2003-61958

【0009】上記(1) 式において、複素数z | の単位時間当りの位相回転がドプラ周波数 f a となる。そこで、N個のドプラデータの平均的な被索自己相関関数を、

$$2 = (N-1)^{-1} \sum_{i=1}^{N-1} s_i^* s_{i+1}$$

$$= (N-1)^{-1} \sum_{a_i \cdot a_{i+1} \in xp} [J \{2\pi f_d T_{in}\}] \qquad \dots (3)$$

となる。このため、ドブラ周波数faは、 【数4】

$$T_{d} = (2\pi T_{ph})^{-1} ten^{-1} (Y/X) ---- (4)$$

$$X = \sum (x_1 x_{1+1} + y_1 y_{1+1})$$

$$Y = \sum (x_1 y_{1+1} - y_1 x_{1+1})$$

$$V_d = f_d \cdot e / (2 f_M \cdot \cos \theta)$$

の式から、ドブラ速度 V d を換算することができる。この (5) 式において、c は登速、 f M はミキサの基準係 母周波数、 θ は超音波ビームと血流との成す角度 (以下、「ドブラ角度」と呼ぶ)をそれぞれ示す。

【OO11】ここで、CPMの場合には、その画像を構成する空間上の各位置毎に異なるドブラ角度を各位置毎に求めるのは困難であるため、上記(5)式中のドブラ角度補正が省略される。すなわち、CFMでは、

【数6】

Vd=fd·o/(2fM) ……(6) の式で得られるドブラ遠度 Vdの値がカラ〜表示される。このため、ドブラ角度の大きいところでは、本来の流速値よりも小さくなり、遅い速度で表示される(このことを「角度依存性」があると置う)。

【OO12】このようにして得られる血流速度は、モニタ上では、漁常、日モードで得られる断層像を背景にして2次元的に設示される。

【0013】また、近年では超音波診断整置の3次元画像表示が盛んに研究・開発され、血流の3次元パワー画像も表示可能となってきた。この場合、3次元データの収集は、例えば撮動子が1次元配列された電子スキャンプローブを用いたハンドスキャンで行われる。このハンドスキャンは、振動子の配列方向に電子スキャンさせながら、ブローブを把持する操作者の手を動かしてそのプローブを振動子の配列方向と直交する方向に移動させるものである。

[0014]

【免明が解決しようとする課題】しかし、現状のCFMモードの表示では、次のような問題があった。

【0015】まず、近年では各種診断法の進歩に伴い、 血管を動脈、門脈、静脈というように簡便で有効に見分 けることが可能な表示が求められている。特に、超音波 を用いて血管を上記のように見分けるには、血流の拍動 性を見るのがよいと考えられる。 の吐で表される。

【ODIO】このドプラ周波数fdを用いると、 【数5】

***** (5)

【0016】従来、こういった血管の拍動性を調べる方法としては、1つにパルサディリディー・インデックスPI (Pulsatility Index) と呼ばれる表示法が知られている。このPIは、一心拍中の血液速度の変化の程度を定量化したインデックスで、血管の末梢循環無抗を反映するため、原料での胎児の発育不全の早期発発や、腹部領域での經路の鑑別診断に有効とされている(特開平5~317311号公報)。

【0017】その他の方法としては、例えば血管の拍動性を検査する際、血流の加速度の定益性をCFM法による二次元カラーフローマップ情報又は三次元表示情報に加えるため、フレームメモリに費き込まれた時系列に開接する2つのフレームの血流速度データから血流の加速度を演算し表示する方法(特許第2768959号公報)や、エコー源の移動速度の拍動強度を表す画像を撮像する超音波接像方法および装置を実現するため、受信したエコーのドップラシフトに基づきエコー源の移動速度を検出し、その移動速度の現在の時相における値および過去の時相における値を用いた演算により移動速度の拍動の強度を検出し、その検出した拍動の強度を表す画像を生成する方法(特開2000-152935号公報)等も既に提案されている。しかし、未だ実用的に使用されるに至っていない。

【0018】また、現状のCFMモードでは、パワー液 示の場合には、血流の拍動性を明瞭に表すことが困難で ある。また、速度表示の場合でも、速度値を示す色が時 切的に変化していれば拍動性、それが変化していなけれ ば非拍動性というように見分けられると考えられるが、 実際には注視していても判別が難しい場合が多く、実用 的ではない。いずれの表示であっても、血流の拍動性を もっと簡便に分かる表示が必要である。

【0019】特に、末梢では流速が遅いため、動脈であっても拍動の変化量が小さくなり、速度設示で動脈と静脈を区別することは非常に困難である。また、速度表示

には、上述したように角度依存性の問題があるため、ドプラ角度が大きいところでは本来の流速値に比べて検出される流速値が小さくなり、末梢間様に、拍動性を検出するのは非常に困難である。

【0020】一方、上述した3次元表示においても、単なる血管の表示から更に進んで、助脈、門脈、静脈というように血管の種別をつけた表示が求められている。ここでも、血流の拍動性を元に表示するのがよいと考えられるが、拍動性を3次元的に表示するのに適した超音波診断数層が必要である。

【0021】本発明は、上述した従来技術の問題に新自してなされたもので、血管の拍動性を簡便に且つ効果的に表示する超音波診断装置を提供することを自的とする。

【0022】また、本発明は、血管の拍動性を3次元的に表示するのに適した超音波診断装置を提供することを 自的とする。

[0023]

【課題を解決するための手段】上記目的を遅成するため、本発明に係る超音波診断装置は、被検体内に超音波パルスを送受價しながら所定のスキャンを行なうスキャン手段と、このスキャン手段によるスキャンで得られる受信信号から前記被検体内の速度を順次求める呼段と、所定期間中に得られる複数の前記速度から基準速度を求め、前記運動体の速度それぞれを削配基準速度を用いて補正する処理手段と、この処理手段で求めたデータを、前記所定期間中に複数回更新するように表示する表示手段とを備えたことを基本的な特徴とする。

【0024】木類明において、前配処理学段は、前記処 個手段から助き要素の個母を抽出する抽出手段を備える ことが可能である。

【OO25】本発明において、被検体内の「運動体の速度」(即ち、拍動の特徴を示す速度)には、例えば瞬時速度が採用できる。また、「熱準速度」(即ち、代表的な速度)には、1)所定時間の速度における平均値又はこの平均値の絶対値、2)所定時間の速度のRMS値(Root Mean Square Value)、4)所定時間の速度又はこの速度の絶対値に対してFIR(Finite Impulse Response)フィルタ、11R(Infinite Impulse Response)フィルタ、11R(Infinite Impulse Response)フィルタ、非緯形フィルタを用いて演算した値又はその絶対値、及び5)所定時間の速度におけるペクトル的な平均値又はこの平均値の絶対値、の内の少なくとも1つを採用できる。前配所定時間は、好ましくは、被検体の1心拍、又は1心拍に相当する時間。或いは1心拍と同等の効果が得られる時間である。

【0026】本発明において、前記処理手段による補正は、1)前記運動体の速度を前記基準速度で除算する手段、及び2)前記運動体の速度を削記基準速度に対する相対的な値に変換する手段の内の少なくとも1つを備え

ることができる。

【0027】本発明において、前記処理手段は、より好ましくは、前記速度の折り返りを補正する補正手段を備える。本発明において、前記処理手段で求めたデータの時間的変化を緩和する緩和手段をさらに備えることができる。本発明において、前記スキャン手段は、7 断面を心拍動の駆出期に対応する時間の逆数で示される値以上のフレーム数でスキャンする手段を備えることが認ましい。

【DD28】本発明において、削記表示手段は、前記処 親手段で求めたデータの2次元画像を表示することがで きる。

【0029】本発明の別の側面に係る超音波診断装置は、被検体内に超音波パルスを送受信しながら1断値を1心拍分に相当する複数回スキャンしながら3次元的にスキャンするスキャン手段と、前記スキャン手段による3次元的なスキャンで得られる受信信号から前記被検体内の運動体の速度を順次求める手段と、所定期間中に得られる複数の前記速度から越築速度を求め、前記運動体の速度それぞれを前記越速度を用いて補正する処理手段と、前記処理手段で求めたデータの少なくとも3次元 画像を、前記処理手段で求めたデータの少なくとも3次元 画像を、前記処理手段で求めたデータの少なくとも3次元 画像を、前記所定期間中に複数回更新するように表示する表示手段とを備えたことを特徴とする。

【0030】本発明において3次元スキャンを行う場合、前記スキャン手段には、2次元アレイ級動子を用いた電子スキャンにより被検体を3次元的にスキャンする手段が好適である。本発明において3次元スキャンを行う場合、前記運動体の速度は、前記所定時間の最大速度であることが好適である。本発明において被検体の拍動性を得て、その情報の3次元関係を表示する場合、前記運動体の拍動性を示す情報が心時相で変化しない情報であることが好適である。

【0031】本発明において、前記断面の断層像を得る手段を備え、前記製示学段は、前断層像と前記処理手段で求めたデータとや同一モニタ上に変示することが可能である。この場合、前記表示学段は、前記断層像に前記処理手段で求めたデータの画像を重整表示するとより効果的である。また、本発明で3次元変派を行う場合、前記断層像が3次元画像であってもよい。本発明において、前記処理学段で求めたデータの画像をカラーで表示すると効果的である。

::

【0032】本発明において、前記処理手段で求めたデータと前記運動体からの散乱エコーのパワーとを組み合わせた情報を設示することも可能である。本発明において、前記処理手段で求めたデータの大きさが前記代表的な速度の近傍又はそれよりも小さい値に対してカラーバーの色を低速を表す色とし、前記代表的な速度の近傍よりも大きくなるにつれて前記カラーバーの色を高速を表す色とするように表示すれば、より効果的である。

【0033】本発明において、前記処理手段で求めたデ

(6)

特開2003-61958

一タの適像と前記被検体の運動体からの散乱エコーのパワー情報の関像とを混在させて選示すると更に効果的である。前記処理手段で求めたデータと前記パワー情報とを起れ合わせた情報の画像と前記パワー情報の画像とを選在させて表示することも可能である。この場合のカラーバーは、前記処理手段で求めたデータのカラーバーと前記パワー情報のカラーバーを同時に表示してもよい。また、前記処理手段で求めたデータと前記パワー情報のカラーバーを同時に表示してもよい。また、前記処理手段で求めたデータのカラーバーの上限値、下限値を設定手段を用いて適宜設定したり、前記処理手段で求めたデータのカラーバーの上限値、下限値、折返り速度などを表示するとより効果的である。

【0034】以上、本発明に係る超音波診断装置によれば、スキャン手段により被検体内の同一方向に超音波パルスを複数回送受信しながら画像化したい断面がスキャンされる。そして、処理手段により、スキャン手段によるスキャンで得られる受信信号からその断面のサンブル点毎に組織信号が除去され、これにより血流信号が得られ、この血流信号から運動体の速度(即ち、拍動の特徴を示す速度)と基準速度(即ち、代表的な速度)が求められ、運動体の速度が蒸準速度で補正される。そこで、表示手段により、こうして得られたサンブル点毎のデータ、例えば2次元画像や3次元画像が表示される。

【0035】これによれば、選動体の速度が基準速度で 検正されるため、末梢血管の機な速度の遅い血流の拍動 性も明瞭に示される。また、ドブラの角度依存性も解消 され、ドブラ角度が大きくても血流の拍動性が閉瞭に示 される。このように補正されたデータが設示されるた め、従来のCFMのパワー関係や速度調像に比べ、拍動 性を簡便に且つ効果的に表示でき、動脈、門脈、静脈等 の視認性が向上し、診断能が向上する。

【OD36】特に、運動体の遠底に瞬時速度を用いれば、特に優れた拍動性表示が可能であり、拍動性の変化をリアルタイム旦ウダイナミックに表示でき、これにより、拍動性の視認性を高めることができる。また、基準速度には、所定時間の瞬時速度の平均値又はこの平均値の絶対値、所定時間の瞬時速度の絶対値の平均値、所定時間の瞬時速度の絶対値に対してFIRフィルタ、IIRフィルタ、非額形フィルタを用いて流算した値又はその絶対値、所定時間の瞬時速度のペクトル的な平均値又はこの平均値の絶対値等が好適である。

【0037】さらに、所定時間は、1 心拍又はそれに相当する時間が好適で、それと同等の効果を得られる時間であってもよい。また、補正としては割算が最も簡便で効果的である。即ち、この割算により、末梢血管の様な速度の遊い血流の拍動性も明瞭に示され、ドブラの角度依存性も解消される。さらに、速度の折り返りを損正す

ることにより、本発明をより速い速度まで適用可能となり、非常に効果的となる。

【0038】また、リアルタイム表示において、拍動性の変化が早く見辛いと感じる場合は、時間的な変化を観知して表示することにより視認性を高めることができる。

【0039】また、ある1断笛を心拍動の駆出期に対応する時間の逆数で示される値以上のフレーム数でスキャンすることにより、駆出期を取りこぼしなく確実に捉えられるため、拍動性を確実に表示でき、診断能が大幅に向上する。これは、拍動性は、心臓のポンプ作用によって起こるものであり、1心周期のうち、駆出期に最もその特徴が現れ、即ち、静脈や門脈では1心周期を通して血流速度がほぼ平坦であるのに対して、動脈では駆出期に速度が急速に増加して減少し、その後、次の駆出期まで漸減するため、従って拍動性を検出するには駆出期を確実に捉えることが必須であるためである。

【0041】ここで、被検体内をスキャン手段により3次元的にスキャンして被検体の血流の拍動性を示す情報を待て、その情報の3次元画像を表示する場合、1所置を複数回スキャンしながら3次元スキャンを行うことにより、精度の高い拍動性の3次元画像を表示することが「空、診断能が大きく向上する。

【0042】本発明における3次元スキャンを有効に実施するには、2次元アレイ振動子を用いた電子スキャンにより被検体を3次元的にスキャンする方法が最適である。

【0043】また、運動体の速度として、所定時間の最大速度を用いれば、動脈等の拍動性の高い血管は高拍動性の色、門脈や静脈等の拍動性の低い血管は低拍動性の色で常に表示されるので、拍動性の特徴を最もよく変した心時相の画像を常に得ることができる。従って、上記の3次元要を構成する際の基になる拍動性を表す2次元画像を心時相で変化しない画像として容易に得ることができ、3次元の拍動性画像を容易に構成できる。一般には、被検体の血流の拍動性を示す情報を心時相で変化しない情報として得れば、3次元の拍動性)神経をより容易に構成できる。

【0044】上記の2次元及び3次元の拍勁性頭像を設 示する場合には、断面の断層像を得る手段を同時に備 え、表示手段により断層像と処理手段で求めたデータの 画像とを同一モニタに表示すれば、血管の位置同定が容 易になり、視認性が質に向上した画像が得られ、診断能 が向よする。

【0045】特に、表示手段は、断層像に処理手段で求めたデータの画像を重量表示すると効果的である。また、3次元表示の場合には、断層像は2次元剛像のみならず3次元関像であっても効果的である。本発明において、拍動性関係をカラーで表示すれば、視認性が更に良くなり、効果的である。本発明において、処理手段で求めたデータと被検体内の運動体からの散乱パワーとを組み合わせた情報をカラー画像として表示すれば、視覚的効果を更に高めることができる。

【0046】また、基準速度が極々の平均速度である場合、処理手段で求めたデータの大きさが代表的な速度の近傍であるときは、静脈や門脈では各心時相での値とほぼ間じであり、軸脈では駆出期以外の時相での値とほぼ間じである。そこで、処理手段で求めたデータの大きさが基準速度の近傍及びそれより小さい値に対してはカラーバーの色を低速を表す色とし、基準速度の近傍より大きくなるにつれてカラーバーの色を高速を表す色にすれば、非拍動性と拍動性の色を明瞭に使い分けることができ、拍動性の区別が容易になり、診断能が向上する。

【0047】また、呼吸・拍動等により膜器が動いた場合や、血管が末梢血管やドブラ角度が大きい血管である様な場合に、一時的にあるいは心時相によっては血流俗号が検出できないことがあり、その結果、基準速度が求まらずに運動体の速度を補正できない場合がある。即ち、速度の補正はできないけれども運動体の速度(従ってその瞬間の血流信号)は検出できる場合が超こる。

【0048】この様な場合は、処理手段で求めたデータの面像(拍動性を示す画像)は表示できないが、血流の存在を示すパワー表示は可能である。従って、運動体の速度を補正できた場合は、処理手段で求めたデータの画像の表示を行ない、運動体の速度の補正はできないが血流検出ができた場合は、パワー数示を行なう。即ち、処理手段で求めたデータの画像とパワー画像を遅在させて表示する。

【0049】この様にすることにより、検出された血管は全て表示できることになり、かつ運動体の速度の補正ができた血管は拍動性が表示でき、血管検出能が高い拍動性表示が可能で、診断能が大きく何上する。この際、拍動性画像とパワー画像をカラーで表示すれば、視認性が向上して効果的であり、また、運動体の速度の補正ができた部分に対して、処理手段で求めたデータと被検体内の運動体からの散乱パワーとを組み合わせた情報をカラー画像として表示すれば、視覚的効果を更に高めることができる。

【0050】この場合のカラーパーは、拍動性を示すカラーパーとパワーを示すカラーパーとを同時に表示する

ことが必要である。拍助性を示すカラーバーは、上記した表示法によれば拍動性の区別が容易になる。また、選動体の速度の補正ができた部分に対して、処理手段で求めたデータと被検体内の運動体からの散乱パワーとを組み合わせた情報をカラー画像として表示する場合は、1つのカラーバーの例えば離方向に拍助性を示すカラー、その機方向にパワーを示すカラーを組み合わせて用いる。このカラーバーと、パワーのカラーバーとを同時に表示することも可能である。

【0051】また、これらのカラーバーと併せて、拍助性を示すカラーバーの上限値と下限値を表示すれば、色と拍動性の程度の関係が明示され拍動性の程度の認識がより容易になり診断能が向上する。また、カラーバーの上限値と下限値を設定する手段を用いて、これらの鎖を適切な値に設定することにより、拍動性をより効果的に表示でき、診断能が向上する。また、折返り速度を表示すれば、速度レンジの設定を適切にでき、拍動性をより効果的に検出でき、検出能が向上する。

[0052]

【発明の実施の形態】以下、本発明に係る超音波診断装 層の選協の形版を添付図面を参照して具体的に説明する。

【0053】第1実施形態

競初に、本発明の第1実施形態に係る超資波診断数置を 図1~図14に基づいて説明する。

【0054】図1は、本例の超音波診断装置の機能プロック図を示す。図1に示すように、本例の超音波診断装 識は、被検体の体表に当接させる超音波プローブ(以下、単に「プローブ」と呼ぶ)1のほか、このブローブ1に開気的に接続された送信部2及び受信部3と、このうちの受信部3に電気的に接続されたひFM処理部4及び断層像(ロモード)処理部5と、この両処理部4、5に電気的に接続された股票部6とを備える。

【0055】プローブ1は、超音波信号と電気信号との間で双方向に使号変換する機能を有するもので、その一例として、その先端部にリニア状に配置されたアレイ型圧電振助子を有する。このアレイ型圧電振助子は、複数の圧電器子を並列に配置し、その配置方向を連査方向とするもので、複数の圧電振動子それぞれが送受信の各チャンネル(送信チャンネル及び受信チャンネル)を成す。

【0056】送信部2は、関1に示すように、送信パルスを発生する送信パルス発生器21からの送信パルスを選延制御すると共に認動パルス信号に変換してプローブ1の送信チャンネル毎の振動子を励振させる送信ビームフォーマ22とを備え、これにより、プローブ1を駆動させてその各振動子を介して被検体内に起音波パルスを送受信させる。

【0057】受債的3は、図1に示すように、受債チャンネル毎に割り当てられるプリアンブ31と、このプリ

される。

アンプ31で受信した信号に対し受信遅延加算及び直交 位相検波を行う受信ビームフォーマ32とを備え、これ により、受信した信号を遅延加算することで送信時と同 一方向にピームフォーミングしたエコー信号を形成し、 そのエコー信号から1 (In-Phase) 信号およびQ (Quad rature-Phase) 信号を生成する。

[0058] ここで生成される | 信母および Q 信号により、ドブラ信号の方向分離、すなわち血流などの移動物体がプローブ 1 側に近づいているか、それともプローブ 1 側から選ざかっているかの分離が可能となる。この | 値号および Q 信号 (以下、「ドブラ信号」と総称する)は、CFM処理部 4 及び断隣像処理部 5 にそれぞれ送られる。

【0059】断層像処理部5は、超資波パルスの送獎係で得られる受信信号からBモード断層像としての被検体の断層像データを生成し、その断層像データを表示部8に送る。

【0060】CFM処理部4は、関1に示すように、その信号入力側から順に、機能上、動き要素信号抽出器41と、補正速度演算器42とを備える。この内、補正速度演算器42は、図1に示すように、基本的には、被検体内の運動体の速度としての拍動の特徴を示す速度流算器があった。基準速度としての代表的な速度を演算を設算器(以下、「代表的な速度演算器」)44と、調資算器43、44の演算結果を元に拍動の特徴を示す速度を代表的な速度を用いて補正する補正器45とで構成

【0061】この構成により、CFM短理部4は、動き 要集倡号抽出器41の処理によりクラッタ成分を除去し で血流ドブラ信号を特た後、補正速度演算器42の処理 により、その拍動の特徴を示す速度演算器43にて本発 明に基づく運動体の速度としての拍動の特徴を示す速度 を演算すると共に代表的な速度演算器44にて基準速度 としての代表的な速度とを演算し、補正器45にて拍動 の特徴を示す速度を代表的な速度で補正して補正速度データを生成し、この補正速度データを表示部6に送る。

【0062】股示部6は、例えば断層像処理部5からの断層像データ上にCFM処理部4からのCFM血流補定速度画像データを重量すると共に補正速度の大きさを示すカラーパー等を併記した状態の画像データを作成し、その画像データをモニタ上に表示する。これにより、補正速度データをマッピングして表示できるので、拍動性を簡便に且つ効果的に表示することができ、動脈、門脈、静脈等の血管を区別して表示でき、視認性が向上し、診断能が向上するようになる。

【0063】次に、本発明に関係する補正速度演算器4 2の具体例を群迹する。

【0064】図2は、補正速度液算器42の詳細な構成例(図中の符号では補正速度液算器42A)を示す機能

ブロック図である。図2に示す例では、補正速度演算器 42Aは、機能上、前述した拍勁の特徴を示す速度演算 器43、代数的な速度演算器44、及び補正器45のほか、速度演算器46、パップァメモリ47、及び1心拍 時間設定器48を備える。

【0065】この構成によれば、助き要素信号抽出器41から出力される各ピクセル毎(以下、各ピクセル毎の 演算であるので、この記載は省略する)の血流ドブラ信 母は、補正速度演算器42Aに入力され、速度演算器46にてその血流ドブラ信号から速度データが混算される。ここで演算された速度データは、バッファメモリ47に一時機納される。

【0066】このパッファメモリ47には、速度データがそれぞれ1心拍またはそれに相当する時間(以下、

「1心拍時間」と略記する)分、格納される。そして、 速度演算器 4.6 から新たな速度データが入力される度 に、パッファメモリ 4.7 からは最も古いデータが楽却され、常に1心拍時間分の速度データを保持しながらリア ルタイムでデータが更新されていく。

【0067】これと関時に、拍動の特徴を示す速度演算器43により、パッファメモリ47の1心拍時間分のデータから指定された拍動の特徴を示す速度値が抽出されるか、又は、関係する速度群から抽出して指定された拍動の特徴を示す速度Vchaが演算され、その速度Vchaが補正器45に送られる。

【0068】一方、代談的な速度演算器44により、パッファメモリ47の1心拍時間分のデータから代表的な速度Vrapが演算され、その速度Vrepが補正器45に送られる。

【0069】そして、補正器45により、拍助の特徴を 示す速度Vchaが代表的な速度Vrapで補正され、 その補正速度Vcmpが得られる。この補正速度V cmpは、その補正の関数をひとすると、

【数7】Vcmp=G(Vcha、Vran)の式で設現できる。ここで得られた補正速度Vompが 表示部6に出力される。

【ロロフロ】このようにして、補正選択演算器42では、代表的な速度Vrepを1心拍時間で得るので、心拍動の影響を受けにくい代表的な速度rcpが得られ、從って、拍動の特徴を示す速度repの特性を的確に反映した補正速度Vempを得ることができる。

::

【0071】なお、本例においては、パッファメモリ47が新たな迷度データが入力される度に更新されるのに対応して、拍勁の特徴を示す迷度Vohaと、代数的な速度V_f p p もそれぞれ新たな迷度データが入力される度に再計算されて運新され、従って補正速度V_{cmp}も新たな速度データが入力される度に再計算されて更新される。従って、補正速度V_{cmp}は、リアルタイムで組正速度決算器 4 2 から出力され、これにより、リアルタイム性に優れた補正速度データが得られる。

(9)

【0072】本例における1心拍時間は、1心拍時間設定器48により、パッファメモリ47及び代表的な速度 演算器44に対して設定される。具体的には、1心拍に相当する時間THRを、速度データのサンプリング時間 TFR (速度データが更新されていく時間間隔、すなわちプレーム数の逆数)で除することで、前記1心拍時間のサンプル数しが設定される。すなわち、このサンブル数しの算出式は、

【数8】L=THR/TFR の式で示すことができる。

【0073】ここで、1心拍に相当する時間下日尺は、 図示しない心室阿期原路で、被検体より得られた心電同 期償号に基づき1心拍の時間を測ることにより得られ、 この値が図示しないCPUを介して1心拍時間設定器4 8に送られる。また、心質問期を用いない場合は、1心 拍とほぼ同等の時間がCPUにより1心拍時間設定器4 8に設定される。このときの1心拍に相当する時間日尺 は、例えば約1秒である。

【0074】なお、本例では、1心拍を用いて説明してあるが、本発明はこれに限定されるものではなく、例えば複数心拍を用いてもよい。この場合、複数心拍では基本的には1心拍の値が繰り返されるだけであり、拍動の特徴を示す速度や代表的な速度は基本的に同じ値で、パッファメモリ47の容量が増大するだけであるので、できれば1心拍の方が好ましい。また、近似値として1心周期よりも短い時間で平均を行うことも可能であり、この場合にはパッファメモリ47の容量を減らすことができる。一般的に、1心拍の平均と同等の効果が得られる時間であればよい。

【0075】図3は、図2に示す補正速度演算器42Aの一例である補正速度演算器42Bを示すプロック図である。図3において、補正速度演算器42Bには、前述の拍動の特徴を示す速度演算器43の例として瞬時速度抽出器43A、前述の代表的な速度演算器44の例として平均速度演算器44A、及び前述の補正器45の例として除算器45Aが、それぞれ採用されている。

【OO77】図4(a)において、TFRは、遠底データのサンプリング時間(TFR=1/フレーム数)、THRは、1心拍に相当する時間、V1、V2、…、VL+1、VL+1、VL+2、…、VL+nは、あるピクセルにおいて時間TFR毎にサンプリングされる速度データ、データ群(O)は、ある時間において1心拍に相当する時間THR分、パッファメモリ47に格納される速度データ群(V1、V2、…、VL)、データ群(1)は、データ群(O)の時相よりも1フレーム後に

格納される速度データ群(V_2 、…、 V_L 、 V_{L+1})をそれぞれ示す(図中のデータ群(2)、…、 $\{n\}$ もこれと同様である)。

【0078】すなわち、データ群(1)では、データ群(0)の中の最も古いデータ、すなわち速度Viが鍛却され、最新のデータ、すなわち速度VL+1が追加され、このようにしてバッファメモリ47内のデータが限次更新されていく。

【DD79】図4(a)では、瞬時速度として、データ 群の最新のデータが採用される。例えば、データ群

(0)では速度V_L、データ群(n)では速度_{L+n}が それぞれ瞬時速度として採用される。従って、図3に示 す瞬時速度抽出器43Aでは、これらの速度V_L、

L+n、…が選次読み出される。この場合、パッファメモリ47を経由せずに速度演算器46から直接、速度VL、L+n、…を得ることも可能である。

【0080】一方、平均速度済算器44人では、1心的時間の速度データの平均版ベンンが演算される。ここでの平均値ベンンとしては、各時相の速度と1、22、…、VLの平均値、各時相の速度と1、V2、…、VLの平均値の絶対態、各時相の速度V1、V2、…、VLの終対値の平均額、及び各時相の速度V1、V2、…、VLのRMS値(Root Mean Square Value)のいずれでもよい。すなわち、平均値ベンンの演算式は、

[数9]

$$\langle V \rangle = (V_1 + V_2 + \dots + V_L) / L$$

 $\langle V \rangle = |V_1 + V_2 + \dots + V_L| / L$
 $\langle V \rangle = (|V_1| + |V_2| + \dots + |V_L|) / L$
 $\langle V \rangle = \sqrt{(V_1^2 + V_2^2 + \dots + V_L^2) / L}$

のいずれの式でも構わない。上記の式において、Lは、 1心拍時間で得られる各ピクセルの速度データのサンプ ル数である。

【0081】その他、平均値</br>

速度
V1、V2、…、VL、又はその絶対値
V1 、

1 V2 | 、…、 | VL | に対して、F1Rフィルタ、又は11Rフィルタ、又は非線形フィルタを用いて演算した質又はその絶対値を採用することもできる。この場合のフィルタリングする演算の関数をF1Lとすれば、平均値

【数10】

等の式で姿すことができる。

【0082】また、平均値ペンンとしては、各時相の速度と1、V2、…、VLのペクトル的な平均値又はその

(10)

特開2003~61958

絶対値を用いることも可能である。この例を図5 (a)、(b)、及び(c)を用いて説明する。

【OOB3】図5(u)~(c)は、ドブラ速度のサンプリング定理による折り返りを説明するものである。一般に、超音波は、超音波パルスを一定時間Trnで送信しているため、ある走査線方向で考えると、得られる血流ドブラ信号も一定開陽TrnのN個の離散的な信号となる。このため、ドブラ速度は、倒5(a)に示すように、折り返り速度主Vai~エ1/(2Trn)・c/2fMのところで折り返る。例えば、速度をプラス(+)方向に大きくしていくと、+Vaiを超えたところで一Valに折り返り、マイナス(~)方向から〇に

【0084】 図5 (b) は、これと同様のことを前述の 従来技術の項で説明した(2) 式で示されるN個のドプ ラデータの平均的な複素自己相関関数 Z は、ベクトルと 考えることができる。すなわち、図5 (b) において、 速度が増減するということは、複繁自己相関関数 Z に相 当するベクトルが微楽平面上でその原点を中心に回転することを意味する。

【0085】従って、この場合には、+X軸からの復素自己相関関数乙の関系角が速度Vに相当し(厳密には速度Vに比例した位相角2xfdTrn)、+X軸上に選度V=0、-X軸上に前記折り返り建度V=±Vafが

それぞれ位置することになる。そして、速度Vが(+) 方向に増加し、一× X 粒を越えると、 V = 生 V a 」を境に プラス (+) の値からマイナス (一) の値に転じる。 【0086】 そこで、図5 (a) に示すように、同様の

【0086】そこで、図5(a)に示すように、同様の 複素平面上で各時相の自己相関関数21、22、…、2 Lの加算、又は平均を行えば、各時相の速度V1、 V2、…、VLの平均を行うことができる。これは、ベ

マトル的な平均とも営える。この方法の特徴は、速度が 極端に変化しない限り、折り返りの影響を受けないといった点にある。

【0087】ここでの自己相関関数の平均を求める方法としては、自己相似関数の大きさを正規化して平均する方法も考えられる。すなわち、平均値<2>は、

【数11】

<Z>= (Z,+Z2+-+Z1)/L

 $\langle z \rangle = \{z_1/\} z_1 + z_2/\{z_2\} + \cdots + z_L/\{z_L\}\} /L$

等の式で示すように算出可能である(図5 (c)の場合、速度V1、速度V2の平均速度<V>は、例えば<
ス>= (Z1+Z2)/2となる)。

【0088】このようにして求めた自己相関関数の平均値<2>は、<2>=<2><2>+ 1<2>であるから、前述の従来技術の項で説明した(2)式、(4)式を用いると、途度Vの平均値<2>は、

【数12】

 $<V>=c/(2t_M) \cdot (2\pi T_{rn})^{-1} \tan^{-1}(<Y>/<X>)$

 $<V>=|c/(2f_M) \cdot (2\pi T_{rn})^{-1} \tan^{-1}(<Y>/<X>)|$

等の或で示すように演算できる。

【0089】上記の演算は、図3に示す例では、速度演算器46から出力される自己相関関数21、22、一をパッファメモリ47に格納しておき、そのパッファメモリ47に格納された自己相関関数21、22、一を平均速度演算器44Aに逐次読み出すことで行われる。これにより、平均速度演算器44Aでは、データ群(0)、

(1)、…の速度データの平均値いが選次演算される。そして、除算器45Aでは、補正速度Vamp 1、…が、

【数13】

近づいていく。

$$V_{cmp0}=V_{L}/_{0}$$
 $V_{cmp1}=V_{L+1}/_{1}$

…の式で示すように逐次演算される。

【0090】この場合、分母である速度データの平均値 < V>0、< V>1、…として、絶対値を採用すると、 補正速度 V_{cmp0} 、 V_{cmp1} 、…は、

【数14】

$$V_{cmp0} = V_{l} / | < V >_{0} |$$

$$V_{cmp1} = V_{l+1} / | < V >_{1} |$$

…の式で示すように演算される。これにより、分子である瞬時速度の正負の符号で方向分離された方向付き稲正 速度データが行られる。

【0091】また、補正遠度V_{cmp0}、V_{cmp1}、…として絶対値を採用すると、

【数15】

$$V_{omp0} = |V_{\downarrow}/\langle V\rangle_{0}|$$

$$V_{omp1} = |V_{\downarrow+1}/\langle V\rangle_{1}|$$

…の式で示すように演算され、大きさのみを示す補正データが得られる。

【0092】また、抽出する速度の瞬時値は、前述のように最新の速度に限定されるものではなく、パッファメモリ47に格納されるデータの何れであってもよい。

【U 0 9 3】図4 (b)は、抽出する速度の瞬時値として、格納されたデータ群(0)、(1)、…、(n)の中で時間的に中央のデータ(例えば、データ群(0)の場合では、1心拍に相当する時間THRの中央時間THR/2に対するデータVL)を誤んだ場合の例である。この場合には、平均速度演算器44人で得られる平均速度と、瞬時速度抽出器43人で得られる瞬時速度との時間的なずれが最小となり、補正速度の偏類性がより

特開2003-61958

(11)

向上するといった利点もある。

【0094】なお、前述した図4(a)の場合では、独 山する速度の瞬時値として、格納されたデータ群の中で 最新のデータを選んでいるため、ブローブ1で収集され たデータが表示されるまでの処理による遅延時間を最も 小さくでき、最もリアルタイム性に優れた画像を得るこ とができる。

【0095】なお、図3に示す補正速度演算器42Bの例では、補正器45として除算器45Aを用いているが、本発明はこれに限定されるものではなく、例えば図6に示す補正速度演算器42Cのように図3中の除算器45Aの代わりに平均速度基準速度変換器45Bを採用することも可能である。なお、図6中の平均速度基準速度で換器45Bを除く構成(速度演算器46、パッファメモリ47、1心拍時間設定器、瞬時速度抽出器43A、平均速度減算器44A)は、前途の補正速度演算器42Bと同様である。この場合の平均速度基準速度等器42Bによる補正原理は、平均速度<V>に一定値くを乗じた値(二と×<V>)で瞬時速度 Vを割る演算を採用するもので、各ピクセル毎に表示速度レンジを変える様な場合に相当する。

【0096】すなわち、図6の例による演算法では、平均速度<V>に一定値なを乗じた値なくV>が設示レンジに相当し(どはピクセルに依存しない一定値)、ピクセル毎に異なる平均値<V>に一定値なを乗じてピクセル毎に異なる速度レンジなくV>を得て、そのピクセル毎の速度レンジなくV>でピクセル毎の瞬時値Vを除するが、一般的には平均速度基準速度変換器45日にで瞬時値Vを速度レンジなくV>基準の値に変換することにより相正する。この例では、上配除算を用いた例の場合とは一定値と倍だけの値の違いが発生するが、後述するカラーパーの階調に割り撮る際に同じとなる。

【0097】また、補正速度は、深度を用いているので、拍断の特徴を支援する速度演算や代数的な速度演算において、折り返りの影響を受ける。この折り返りは、サンプリング定理に基づいて原理的に起きるので、その影響を完全になくすことはできないが、補正による改善は可能である。この場合の補正法として、上記ベクトル的な演算を行う方法が考えられるが、その他の例を以下説明する。

【0098】図7は、折り返り補工機能を追加した補正 速度演算器42Dの機能ブロック図を示す。図7に示す 補正速度演算器42Dには、前述した図2に示す補正遮 度減算器42Aの内、速度演算器46とパッファメモリ 47との間に折返り補正器49が挿入されている。その 他の構成(拍動の特徴を示す速度演算器43、代箋的な 速度演算器44、補正器45)は、図2に示す例と同様 である。この例で追加される折返り補正器49は、速度 変化の物理的連続性を利用して処理を行うものである。 【0099】図8は、この折返り補正器49による処理 例を前述した図5(b)、(c)と同様の複素自己相関関数を用いて説明するものである。ここでは、各時相の速度V1、V2、…、VLを演算する時間関係が速度変化に対してある程度短ければ、隣り合う時相の速度は複素平面上で大きく離れることはないため、折返りの補正が可能となることを前提にしている。図8に示す例は、婚り合う時相の速度V1、V2のうち、V1は折り返しがなく、V2に折り返しが生じてーV2'と検出されている場合である。この場合には、両者V7、V2の差の絶対値をとると、「ーV2'ーV1 | となる。このような場合には、ーV2'+2 Vaとなり、速度の物理的連続性から考えると、ーV2'よりもV2の方が確からしい値であるため、V2が採用される。

【O 1 O O 】 このようにして、折返り補正器 4 9 にて折り返しが補正される。これにより、検出できる逃皮の範囲を広げることができ、速度精度が向上するため、拍動性の検出能がより向上し、診断能もより向上するようになる。

【0101】上記のようにして得られた補正速度は、壺 示部6の脚面上で設示される。この表示例を開9 (a) に示す。回9 (a) は、補正速度が断層像上に重量表示され、方向分離がされていない場合の表示例である。図9 (a) 中のカラーバーは、補正速度の大きさを示し、例えば補正速度が小さければ赤色、大きければ黄色で表される。

【0102】図9(b)には、補正速度の時間的な変化を示す。この例は、前述した図3に示す補正速度治算器420で与えられる補正速度に対応したものである。図9(b)中の補正速度の大きさ1は、その補正速度の定義式(例えば、Vcmp=V/<V>等)から容易に分かるように、平均速度に対応している。

【0103】図9(b)に示すように、補正速度は、静脈や門臁の場合にはほぼ1付近で変越しているが、動脈の場合には1心周期の間で見るとその駆出期に1を超えて急速に増加・減少し、その後は1付近で漸減している。すなわち、1心周期が約1秒であるのに対し、その駆出期は200ms~300msであるため、1心周期の平均速度は、速度が漸減している時相の速度に近いことが分かる。

【0104】従って、横正速度が1近傍よりも小さければ赤色様、1近傍よりも大きくなるにつれて黄色様にしていけば、図9(a)に示すように、動脈のように拍動性の強い血管は、1心周期の駆出期に黄色様、その他の期間には赤色様になるのに対し、静脈や門脈のように拍動性の弱い血管は、1心周期を通して赤色様になるため、動静脈を明瞭に区別して表示することが可能となる。これにより、血管の拍動性を明瞭に区別できる。

【0105】また、カラーバーの表示に用いる色は、揺正速度の大きさが1近傍及びそれよりも小さい値に対し

(12)

ては低速を表す色とし、1近傍よりも大きくなるにつれて高速を表す色とすれば、非拍動性と拍動性の色を明瞭に使い分けることができ、拍動性の区別が容易になり、 診断能が向上する。

【0 1 0 6】図 1 0 (a) ~ (e) は、カラーバーの変 示例を示す。

【0107】図10(a)は、前述した図9(a)の場合と同様に、補正速度が小さい場合は例えば赤色にし、大きくなるにつれて例えば質色にしたカラーパーの表示例である。本例では、補正速度の大小を色相で区別しているが、本発明はこれに限定されるものではない。

【0108】図10(b)は、図10(a)に赤す補正 速度にパワー表示を組み合わせたカラーパーの表示例で ある。本例では、血流からの散乱パワーが大きければ明 るくし、小さければ暗くしている。これにより、血管に 立体磁を持たせることができ、より効果的な表示が可能 となる。ここで用いるパワーは、前逐した図1中のCF M処理部4内の図示しないパワー演算器で演算される。

【0109】図10(c)は、図10(a)に深す補近 速度表示で方向分離を行ったカラーバーの表示例であ る。本例では、プロープ1に近づく流れを例えば暖色 系、遊ざかる敗れを例えば家色系で示している。このよ うに方向分離することにより、血管の区別をより容易に 行える場合がある。

【0110】図10(d)は、図10(c)に示す方向分離した補正決度にパワーを組み合わせたカラーパーの表示例である。本例では、前述の図10(b)、(c)の両方の効果を併せ持つ。

【0111】図10(e)は、図10(e)~(d)と 関様の補正選度表示でその質素色と你素色との境界部に 関値を表すマーカを追加した表示例である。

【0112】また、前記のように速度の折り返り補正を行っているが、これでも折り返りは完全に補正で告ないため、操作者が表示部6のモニタを見ながら容易に対応できるように、サンプリング定理で規定される選度範囲である折り返り速度をモニタ上に表示させることも可能である。

【0113】この場合には、前述した図5(a)~(c)を参照すれば、折り返り速度は+Va1、-Va1であるため、この値をモニタ上に表示する。また、速度範囲を(+)方向又は(-)方向に Δ V分、広げることもでき、例えば(+)方向に広げたときは、速度範囲は+Va1+ Δ Vから-Va1+ Δ Vとなるので、この値をモニタ上に表示する。

【の 7 7 4】 このようにすれば、検出可能な速度範囲がおおよそ分かるので、操作者が図示しない操作パネル上のボタンを押すことで、折り返り速度を調整し、折り返りを防ぐことが可能となる。これにより、より的確な画像が得られ、より一層、的確な静断ができるようになる。

【0115】また、拍助性は心臓のポンプ作用によってはこるもので、1心周期のうち、駆出期に最もその特徴が現れる。すなわち、前述したように、静脈や門脈では1心周期を通して血流速度がほぼ平坦であるのに対し、動脈では駆出期に速度が急速に増加して減少し、その後、次の駆出期まで漸減する。従って、拍動性を検出するには、駆出期を確実に捉えることが必須である。このためには、例えば1断面を心拍動の駆出期に対応する時間の逆数で示される値以上のフレーム数でスキャンさせることが望ましい。このようにすれば、駆出期を取りこぼしなく確実に捉えられるため、拍動性をより確実に表示できる。

【0116】次に、本例の補正速度表示の効果を従来の場合と比較して説明する。

【0117】図11(a)及び(b)は、従来の速度モードの表示で動脈を捉えた場合を説明するものである。図11(a)は、モニタの表示例である。図11(a)において、矢印はモニタ上に表示される動脈中の位置の異なる各点は、β、γでの血流速度(向きと大きさ)を示し、その血流速度の大きさは各々Va、Vb、Vaで、各点は、β、γにおける超器波走査線と血流の成す角度(ドプラ角度)は各々8 a、8 a、6 bである。また、本例では、Va>Vb、8 a

との図像となっている。

【0118】図11(b)は、図11(a)中の各点α、β、γでの血流ドブラ速度、すなわち各点α、β、γにおける血流速度の超音波線方向成分 Va·cos(θ)、Va·cos(θ)、Va·cos(θ)、OB)、Vb·cos(θ)、Va·cos(θ)、OB)、Vb·cos(θ)、Va·cos(θ)、OB)で示す同に血管(場脈)であるため、ドブラ速度の時間変化は各点でほぼ同じであるが、その大きさが比例算で各点体に異なっているのが分かる。従って、従来の速度モード表示では、拍動性は本来同じであるにもかかわらず、実際には異なったものとして表示されることになる。このことは前述した通りである。

【0119】 具体的には、関11(a)及び(b)に示すように、流速が遅い細い血管(点8)や、ドブラ角度の大きい血管(点γ)では、拍動性が小さく表示されてしまい、実際に拍動性が弱い血管との区別がつきにくくなる。また、カラーバーは、速度のから正負の折り返り速度でを色柏を変える等して表示され、例えば点αのところでは速い速度の色、点8や点γのところでは遅い速度の色というように異なった色で表示されるため、逆に判別しにくい。この上、カラーバーの表示範囲や表示方法が必ずしも拍動性を表示するのに適しておらず、表示自体も分かりにくい。こういった事情により、従来の速度モードで拍動性の判別をするのは容易ではなかった。

【0120】これに対し、関12(a)及び(b)は、本発明に逃づく例の補正速度の設示で前述した従来例

 $\{0121\}$ 本例の場合は、図12(α)及び(α)に 示すように、同じ血管であれば、太くてドブラ角度の小 さい部分(α)も、細い部分(α)も、或いはドブ ラ角度の大きい部分(α)も、全て同じように補正逃 では、速度の海滅部分の値はほぼ1で、拍勁の強い部分 は1より大きい間様の値になる。

【0122】すなわち、本例の速度モードの表示では、 流速やドプラ角度に依存せずに、同様の補正態度が得られ、促って同様の拍動性が得られる。これを前述したカ ラーバーを用いて表示すれば、流速やドプラ角度に依存 せずに、拍動性を明瞭に表示でき、これにより、視認性 も大質に向上するようになる。特に、本例の速度モードでは、場合によって非拍動性血管との区別が困難となる 遅い流速や大きいドプラ角度の血流に対しても拍動性の 検出ができるので、非常に効果的で、診断能もより大幅 に向上する。

【0123】なお、前述した通り、拍助性の変化は駆出期に大きく現れるが、駆出期の時間範囲は200ms~300msなので、そのままを目視で確認すると短く感じる場合も考えられる。この場合には、図13(s)~(c)に例示するように補正速度の変化を緩和する処理を行えば、目視しやすくなり、有効である。

【0124】図13(a)は、緩和処理をしない場合の 補正速度の時間変化の例、図13(b)は、緩和処理を した場合の補正速度の時間変化の例をそれぞれ示す。本 例では、図13(a)に示す補正速度に対し、拍動性を 的確に捉えるため、図13(b)に示すように、その立 ち上がり部分ではその立ち上がりに追従させ、その立ち 下がり部分では急速に小さくなるのではなく級やかに小 さくなるように緩和処理が施される。このようにすれ ば、残像感を出して拍動性の視認性をより向上させるこ とが可能となる。

【0125】このような緩和処理は、例えば前述した磁 示部6で行うことができる。この場合の姿示部6の構成 例を関13(c)に示す。図13(c)において、表示 部8Aは、既知の構成、すなわちカラーイメージメモリ 61、断層Ҩイメージメモリ62、DSC(デジタル・ スキャン・コンバータ)63、及びモニタ64のほか、 カラーイメージメモリ61とDSC63との間に補正速 度変化緩和器80が挿入されている。

【O 1 2 6】この構成によれば、前述のCFM処理部4から送られてくる補正速度データがカラーイメージメモ

リ61に一時格納される。このカラーイメージメモリ61には、複数フレーム分のデータが格納される。そこで、補正速度変化緩和器60は、カラーイメージメモリ61のデータを読み出して前述の緩和処理を行い、その値をロSC63に出力する。これとは別に、前述の断層像処理部5から送られてくる断層像データは、断層像イメージメモリ62に格納された後、DSC63に出力される。

【0127】そして、DSC63では、所定の画像処理、走査線変換のほか、補正速度変化級和器60からの 級和処理が施された補正速度画像と断層像イメージメモリ62からの断層像画像との合成等が行われ、その出力 がモニタ64上で画像として表示される。

【ロ128】なお、本例では、血流ドブラ信号の補正速 度を求める機能をCFM処理部4内に設けている構成と しているが、これに限らず、例えば痰赤部6内に設ける ことも可能である。この場合の構成例を関14に示す。 【0129】関14に示す例では、CFM処理部4日 は、従来と間様の構成(動き要案信辱抽出器41、 速度 波算器42)で機成され、遠度波算器42から速度デー タを出力する。また、表示部ら日は、前述した既知の構 成、すなわちカラーイメージメモリ61、断層像イメー ジメモリ62、DSC83、及びモニタ64のほか、カ ラーイメージメモリ6~の入力側に前近のCFM処理部 4内に設けられた速度補正演算器42Aと同様の補正速 庭演算器65 (拍動の特徴を示す速度演算器66、代表 的な速度溶算器67、補正器68、パッファメモリ6 9、及び1心拍時間設定器70)が付加されている。こ の構成により、本例でも上記と同様の拍動性表示が可能 となり、阿様の効果が得られる。

[0130] 第2実施形態

次に、本発明の第2実施形態に係る超音波診断装置を図 15~図22に基づいて説明する。本例は、前述した血 流ドプラ信号の速度補正を3次元表示の場合に適用した ものである。

【0131】関15は、本例の超音波診断装置の機能プロック図を示す。図15に示すように、本例の超音波診断装置は、被検体の体表部分に当接させるプローブとして2次元アレイブローブ7を採用したものである。

【0132】その他、本例の超音波診断裝置は、図15に示すように、2次元アレイプローブ7に電気的に接続された送信部2A(図1と同様の送信バルス発生器21、送信ピームフォーマ22のほか、スキャン制御器20が付加)及び受信部3A(図1と同様のプリアンブ31、受信ビームフォーマ32)と、このうちの受信部3Aに電気的に接続されたCFM処理部4(図1と関様の動き要素供与抽出器41、補正速度演算器42)及び断層像処理部5と、この演処理部4、5に電気的に接続された表示部8(図13(c)と関様のD3C83、モニタ84のほか、3次元カラーイメージメモリ81、3次

元 新層像イメージメモリ82を採用)とを備える(前記と同様の構成についてはその説明を簡略又は省略する)。

【0133】2次元アレイブローブノは、超音波信号と電気信号との間で双方向に信号変換する機能を有するもので、その一例として、その先端部に2次元に配置された2次元アレイ型圧電振動子は、複数の圧電素子を軽視に2次元的に配置し、超音波信号を報機斜めの方向等、3次元的に走電可能にしたもので、複数の圧電振動子それぞれが、送受信の各チャンネルを成す。

【0134】この2次元アレイブローブ7を用いれば、スキャンする断面を変えながら複数断面をスキャン(ポリュームスキャン)して、3次元データ(ボリュームデータ)を収集することができる。このポリュームスキャンの例を図16(a)~(c)及び殴17(a)~(c)に示す。

【0135】図16(a)は、断面をスキャンしながら、その断面をその壁面方向に移動させる方法、図17(a)は、断面をスキャンしながら、その断面をその中心軸周りに回転させながら移動させる方法をそれぞれ説明するものである。何れの方法においても、1つの断面を複数回、好選には1心拍時間分、スキャンさせることが共進し、これが本発明の特徴の1つとなっている。

【0136】その例として、図16(b)及び図17(b)は、断面を一致させて1つの断面を1心拍時間、スキャンした後、例えば超音波ピームの厚さ分だけ断面をすらせて間様のスキャンを行う方法、また、図16(a)及び図17(c)は、1断面を1フレームだけスキャンした後、超音波ピームの厚みより小さい幅僅かにずらしながら1フレームずつスキャンを行う方法をそれぞれ示す。何れの方法も、スキャンされた空間上の任意の1点は1心拍時間スキャンされたことになる。このようなボリュームスキャンによって、各断面における補正速度の演算が初めて可能になり、3次元の拍動性表示が初めて可能になる。

【0137】なお、図16(b)及び図17(b)の場合は、スキャン断面が1心拍時間静止しているので、補正速度の演算精度の面でより優れている。また、図16(c)及び図17(c)の場合は、スキャン断面が連続しているので、補正速度を空間的に離かく求めることができ、優れている。

【ロ138】これらのスキャンは、送信部2Aのスキャン制御部23(図15参照)を用いてスキャン断面を制御することで行うことができる。このスキャン制御シーケンスの一例を図18(a)~(c)に示す。

【0 139】図18(a)は、従來の1次元アレイプロープによる定査シーケンス例を説明するものである。この場合は、図18(a)に示すように、同一のスキャン断箇で、その断面を構成する間一の複数定査額(図中の

走査線1、走登線、…、走査線3)を、順像の1フレーム毎(図中の1フレーム、2フレーム、…)に繰り返しスキャンするようになっている。

【0 7 4 0】これに対し、関18(b)及び(c)は、本例の2次元アレイプローブによるポリュームスキャンの制御シーケンス例を説明するものである。

【0141】この内、図18(b)は、前述した図16(b)及び図17(b)の場合に相当するものである。この場合は、図18(b)に示すように、ポリュームスキャン領域内のある1つの断面(図中の断面1)で、その断面を構成する複数走査線(図中の走査線1-1(新面1の走査線1を遺味する)、定査線1-2、…、走査線1-J)を走査して1フレームとし、同一断面で同一走査を1回(1フレーム)、即ち、1心拍時間分、繰り返しスキャンした後、例えば超音波ビームの厚み分だけ断面の位置をステップ状にずらし、その断面(図中の断面2)で同様に1心拍時間分スキャンし、以後、ボリュームスキャン領域内の全ての断面に対し1心拍時間分スキャンするようになっている。

【0142】また、図18 (c) は、前述した図16 (c) 及び図17 (c) の場合にそれぞれ相当するもの である。この場合は、図18(o)に示すように、ポリ ュームスキャン領域内のある1つの断面(関中の断面 1) で、その断面を構成する複数走資線(幽中の走資線 1-1、走査線1-2、…、走査線1-1)を、画像の 1フレーム分スキャンし後、超音波ピームの厚みよりも 小さい幅(例えば、超音波ビームの序みの1/1の序み 幅) だけ断面の位置を少しずらし、その断面(図中の断 面2) で同様に1 フレーム分スキャンし、以後、断面の 位置を少しずつずらしながら断面さ、…、断面 1、断面 1+1、…と選続的に順次スキャンしていく。「個の断 面をスキャンするのに1心拍時間要することになる。そ して、断菌1から断面1までのデータで補正速度を演算 し、1つの補正選進データの断面が得られる。次に1つ レーム分の時間遅れで、断面2から断面1・1.1までのデ 一タで補正速度を演算し、となりの補正達度データの断 歯が得られる。以下、尚様に1フレーずつ遅れて、原 次、となりあった断面の補正速度が得られる。

【0143】なお、上記のボリュームスキャンの場合、 断面をスキャンする際に1回の送信に対して複数方向から受信する地列同時受信を用いれば、例えば複数の断面 を同時にスキャンすることができ、ボリュームスキャン の時間を短縮できる等、1つの断面を1心拍時間スキャ ンしながら種々のスキャン法を工夫できることは勿論で ある。

【0144】なお、本例では、2次元アレイブローブ7を用いた電子スキャンを例示してあるが、その利点を他の方法(1次元アレイブローブを用いた場合)と比較して説明する。

【O 1 4 5】図19(a)は、従来の1次元配列の振動

(15)

子を有する電子スキャンプローブ(1次元アレイブローブ)を手に持って、通常の1断面スキャンを行いながら、そのスキャン断面と垂直方向に断面の位置をずらす、いわゆるハンドスキャンによる方法を説明するものである。この方法では、前述のように1つの断面を1心拍時間スキャンしながら断面の位置をずらすことは大きな困難を伴い、実用的ではない。

【0146】図19(b)は、従来の1次元配列の提動子を有する電子スキャンプローブ(1次元アレイプローブ)を既知のガイド神を用いたスライド機構及び回転機構を有するプローブ移動用の機械に装新し、この機械を用いてプローブをゆっくり動かしながら1つの断節を1心拍時間スキャンしながらボリュームデータを収集する方法を説明するものである。この方法は、1つの断節を1心拍時間スキャンすることが可能であるが、機械が大掛かりになり、スキャンとプローブ移動との関類をとる必要もあって煩雑となり、図19(a)の場合と関様に実用的ではない。

【0147】これに対し、図19(c)は、本例の2次元アレイプローブ7で賦子スキャンを行う方法を説明するものである。この方法によれば、操作者は被検体の検査部位にプローブを固定していればよく、これにより、自動的に特度よくボリュームデータが収集・表示され、簡便で精度良い3次元の接動性表示が可能となる。

【0148】上記の2次元アレイプローブ7で収集されたデータから、補正速度が演算される。このときの補正速度としては、例えば最大速度を用いると3次元の再構成が容易になる。この最大速度を用いた補正を行うための補正速度演算器42の構成例を図20に示す。

【0149】 図20に示す補正速度漢算器42 Eは、前述した図3の場合と同様に、速度演算器46、パッファメモリ47、平均速度演算器44A、除算器45A、及び1心拍時間設定器48のほか、拍動の特徴を示す速度演算器として最大速度検出器43Bを有する。ここでの最大速度検出器43Bを有する。ここでの最大速度検出器43Bの動作例を図21に示す。

【0150】図21は、前述した図4(a)及び(b)の場合と同様に、ある1ピクセルを対象として時間 t に対する速度 V の変化を示すグラフである。図21において、TFRは、速度データのサンプリング時間(TFR~1/フレーム数)、THRは、1心拍時間、V1、…、V1、…、V1、…、V1、…、V1、…、V1、 … なるピクセルにおいて時間 TFR毎にサンプリングされる 遠度データ、データ群(0)は、ある時間において1心 拍時間 THR分、バッファメモリ47に格納される速度 データ群(V1、V2、…、V1)、データ群(1)は、データ群(0)の時相よりも1フレーム後に格納される速度データ群(V2、…、V1)をそれぞれ示す(図中のデータ群(2)、(3)、(4)…もこれと 同様である)。

【0151】ここで、パップァメモリ47には、データ

群の中の最も古いデータ、すなわち速度V₁が棄却され、最新のデータ、すなわち速度V_{1.+}7が追加され、このようにしてデータが順次更新されていく。

【0152】これと同時に、最大速度検出器43日にて、データ評毎に速度データの最大速度、すなわち図21の例ではデータ群(0)~(2)では速度V₁、データ群(3)、(4)では速度V₁が読み出され、除算器45Aに送られる。このデータ群は、1心拍時間下出入のデータなので、どのデータ群にも常に1心拍中の最大速度データが合まれている。しかも、格納されるデータ群は常に最新値に更新されているので、最大速度も常に最新値となる。

【0153】一方、平均速度演算器44Aでは、前述と 同様に、データ群の速度データの平均値ペジンの、ベソ ン1、ベソン3、ベソン4、…が遅次演算され、除算器 45Aに送られる。

【O 154】これにより、除算器45Aでは、最大速度 検出器43Bからの最大速度(V₁、V₁ | 等)と、平 均速度演算器44Aからの平均速度<V>O、<V >1、<V>3、<V>4、…とを元に、補正速度V cmpO、Vomp1、Vomp2、Vcmp3、… が、

【数16】

V_{ompi}=V₁/<V>₀
V_{ompi}=V₁/<V>₁
V_{omp2}=V₁/<V>₂
V_{omp2}=V₁/<V>₃

…の式で示すように逐次演算される。

【O 155】この場合、分母である速度データの平均値として、絶対値を採用すると、補近速度は、

【数 1 7】

V_{omp} = V₁/(<V>₀| V_{omp} = V₁/(<V>₁| V_{omp} = V₁/(<V>₂| V_{omp} = V₁/(<V>₂|

…の式で演算でき、これにより、分子である瞬時速度の 正負の符号で方向分離された方向付き補正速度データが 役られる。

•••

【0156】また、補正速度として絶対値を採用すると、

【数 1 8】

 $V_{\text{omp2}} = |V_{1}/\langle V_{2}|$ $V_{\text{omp2}} = |V_{1}/\langle V_{2}|$ $V_{\text{omp2}} = |V_{1}/\langle V_{2}|$

…の式で示すように、大きさのみを示す補正速度データが行られる。この演算は、前述した図3の場合と同様で

特別2003-61958

ある。

【0157】このようにすれば、常に補正された最大速度を表示でき、例えば前述した図5の表示例の場合、動脈は常に違い速度を示す赤色で示され、静止画状態の幽像が表示される。一般的には、拍動性を示す情報として心時相で変化しない情報を用いれば、静止画状態の画像が表示される。この画像は、静止画を見たい場合、静止画をデータとして保存する場合、3次元画像を構成する場合等に特に効果的である。

【0 1 5 8】また、補正された最大速度データは、水ールドせずにリアルタイムで常に更新されるので、仮にゆるやかな呼吸を行って血管が多少移動したとしても、血管の表示もそれに応じて移動して表示でき、有効である。従って、こういった補正された最大速度データを用いれば、視路性、保存性、及びリアルタイム性に優れ且つ3次元画像構成に避した拍動性画像が得られ、診断能がより一層向上するといった利点がある。

【0159】上記のように補正速度演算器42日で演算された補正速度データは、設示部8に送られる(図20、図15分照)。この表示部8は、前述した通り、イメージメモリとして3次元データが格納可能な3次元カラーイメージメモリ81及び3次元断層像イメージメモリ82を備え、上記の補正速度データを3次元カラーイメージメモリ81に格納すると共に、これと同時に2次元的又は3次元的に収集・演算された断層像データを3次元所層像イメージメモリ82に格納する。

【0160】そこで、前述したポリュームスキャンが終了し、ポリュームデータの収集が終了すると、3次元カラーイメージメモリ81に格納された3次元の補正速度データと、3次元断層像イメージメモリ82に格納された2次元または3次元の断層像データとが読み出され、操作者が図示しない操作パネルから入力及び指定されたフォーマットに従って、DSC83を介してモニタ84上に3次元随像が表示される。この3次元 国像の表示例を図22(a)及び(b)に示す。

【0161】図22(a)は、3次元の拍動性血管像に 2次元の断層像を組み合わせた画像であり、図22

(b) は、3次元の拍動性血管像に3次元の断機像を組み合わせた画像である。

【0 162】従って、これらの画像表示法の特徴を生かし、必要に応じて使い分けることにより、防腐像で位置問定したり患部を観察したりしながら、拍動性血管を3次元で表示できるので、助静脈を血管の繋がりよく、視認性よく、簡便に、区別しながら認識でき、検査の効率と精度が大幅に向上するようになる。

[0163] 以上のように、上記第1及び第2実施形態によれば、血管の拍動性を捉えることにより、血管を動脈・静脈と描き分けることが基本的に可能となる。しかし、動静脈と拍動性とは厳密には1対1で対応しないこ

とが明らかであり、その例外が発生する場合も考えられる。

【0164】例えば、下大静脈では拍動性が見られ、この様な場合には静脈であってもある程度拍動性顕像として表示される可能性がある。また、例23に示すドプラ 画像のように、腫瘍血流において拍動性を示しながらも1心拍の平均速度に対して速度の変化が小さい場合があり、この様な場合は、拍動しているにも拘わらず拍動性 画像として明瞭に表示されない場合も考えられる。

【0165】そこで、上記のような場合の改善策として、より好適な例を図24及び図25に基づいて説明する。

【0166】本例の方法では、まず、CFM処理部において従来行われているように、ピクセル毎に速度演算を行い、名ピクセルの速度を求める。そして、図24に示すように、マーカを用いて拍動性画像上で任意のピクセルが指定されると、その指定されたピクセルの速度の時間変化(速度・時間のグラフ)を拍動性画像と同時に表示する。

【0167】これによれば、従来のCFM及びスペクトラムドブラの同時表示では、スペクトラムドブラがCFMと別に専用のスキャンを必要としているため、CFM随像のフレーム数が1/2に低下するのに対し、本例による方法では、拍動性表示と同じスキャンデータから速度が求められるので、フレーム数が低下するといった事態は発生しない。このことは、拍動性表示を行う際に駆出期を確実に捉えるためには非常に重要である。また、従来のCFM、スペクトラムドブラ同時返示が、「点のスペクトラムしか表示できないのに対し、本例による方法では、複数点の速度の時間変化が表示可能であり、本例による方法では、複数点の速度の時間変化が表示可能であり、速度一時間のグラフのみ、又は、拍動性画像のみをフリーズさせることも可能である。

【0168】なお、木例で用いるマーカは、その大きさを変えることができ、マーカの航四内で空間的な平均処理を行えば、速度データを安定させることができる。また、速度一時間のグラフは、実際はフレーム毎の速度をブロットすることになるが、これは図25(a)~

(b) に示すように、各フレームの値を点でプロットしてもよく、或いは各点を折線や曲線で結んでもよい。また、心間向期で時間をすらしながら速度を求めて数心的の速度を重ね書きすれば、時間間隔がより密なグラフが得られる。また、速度演算では、通常は平均速度を求めて表示するが、その平均速度と速度の分散とを組み合わせることで擬似的な最高速度を求めて表示してもよい。さらに、本例の方法ではリアルタイム表示が最適であるが、これに限定されず、例えば拍動性表示をフリーズした後、指定したピクセルの速度一時間表示を行ってもよい。この場合、速度データをメモリに記憶させておく必

(17)

特別2003-61958

姿がある。

【ロ169】上記の例によれば、拍動流の変が画像を補い、より確実な拍動性検出を行なうことができ、診断能がより一層向上する。

【ロ170】なお、上記の拍動流表示については、例えば、次のような第1~第3の適用例が可能である。

【0171】1)第1の適用例は、上記の拍動流表示と 既知の広帯域送信(例えば、特開2000-34258 6号公報、特開2001-269344号公報等参照) の方式とを組み合わせるものである。ここでの「広帯域 送信」とは、パワードブラモード時に、通常の4波~8 波の超音波パルスによる送信駆動を行なうのではなく、 日モード時と同等の1波又は2波の超音波パルス、即ち 広帯域の超音波パルスによる送信駆動するもので、これ により、日モードと本質的に同等の距離分解能を得るこ とができる(例えば特開2000-342586号公報 参照)。

【0172】この広帯域の超音波パルスの例としては、例えばパースト波数が3米満の超音波パルスを例示できる。これにより、ブルーミングが無い又は殆どない空間分解能の良い血流画像を表示でき、診断能をより向上させることが可能となる。(例えば、特開2000-342586号公報参照)。ここで、超音波パルスの送信周波数の逆数が送慣パルスの1度期であり、1周期の時間及さを持つ超音波パルスをパースト1数のパルス、2周期の時間及さ持つ超音波パルスをパースト2波のパルス、M周期の時間及さを持つ超音波パルスをパースト2波のパルス、M周期の時間及さを持つ超音波パルスをパースト

【0173】従って、本済用例によれば、上記の拍動流 表示による効果に加え、より一層の高分解能化が可能と なる。

【0174】2)第2の適用例は、前述した基準速度を 算出する方法を工夫したものである。

【0175】関26は、血流画像を成すカラーマップ上のある1つのピクセルでの速度の時間変化(フレーム方向変化)を例に挙げて、前速した補正速度を求める演算式を説明するものである。一般性を失うことなく、ここでは例として、基準速度として、1心拍時間の速度の絶対値の平均値をとり、補正速度一瞬時速度の絶対値/1心拍時間の速度の絶対値の平均値とする。この細距速度は、前述した通り、速度データを同じピクセルの速度で割って求めているため、ドプラ角度依存性の問題が解消され、血管の拍動性をより閉除に検出することができる。この場合の平均値の算出法は、1心拍時間の全ての関時速度を対象として、その範囲での平均演算を1回行なって平均値を求めるのが通常である。

【0176】この1回平均の方式に対し、本適用例における平均値の算出法として2回平均方式を採用した場合を図27(動脈の場合)及び図28(静脈の場合)に示

す。本例における2回平均方式は、1心拍中の全ての瞬時速度を対象としてその範囲での平均演算により平均値M1を遮然後、さらに、その平均値M1の所定値(Th値、例えばTh値=1+α)倍の値(M1*Th値)以下の瞬時速度のみを対象として(置い換えると、M1*Th値を超える瞬時速度を除外として)、2回目の平均減算を行なってその平均値M2を求め、これを平均値M1の代わりに上記補正速度の演算式中の分母側に採用するものを含う。

[0177] この2回平均方式によれば、1) 図27に示す助脈の場合では、7 例平均液体による平均値M1と比べると、2回目の平均値M2が低くなる分、拍動性がより強調されるのに対し、図28に示す静脈の場合では問者の差は殆どなく非拍動性に表示される、2) 2回目の平均値M2の方が図27から手動でトレースして出す平均値に感覚的に近く理解しやすい、3) 駆出期しか検出されていない場合でも、拍動性が表示され起い等の特徴が得られ、静脈と動脈とをより一層明瞭に見分けることが可能となる。

【0178】3)第3の適用例は、上述の拍動流飛ぶと既知のパワー表示とを混在させて表示するものである。

【0179】呼吸・拍動等により顕器が動いた場合や、 血管が末梢血管やドブラ角度が大きい血管である様な場合に、一時的にあるいは心時梢によっては血流信号が検 出できないことがあり、その結果、基準速度が求まらず に運動体の速度を接近できない場合がある。

【ロ180】即ち、腱器が動いた場合には、ある1つの ピクセルに前目した場合、1心拍時間内で血管が存在し なくなり、1心拍時間内の運動体の速度が全ては得られ ず欠落が生じる。

【0181】また、末梢血管では、血流速度が遅くなり検出されるドブラ信号周波数は低くなり、ドブラ角度が大きい血管でも角度依存性により検出されるドプラ信号周波数はやはり低くなる。この様な場合には、MT1フィルタによってドブラ周波数が低い信号はカットされるので、例えば動脈の駆出期のドブラ信号は検出できるが拡張期のドブラ信号は検出できないようなことが生じ、その結果、1心拍時期内の週酬体の速度が全ては得られず欠落が生じる。

【0182】本適用例は、この様な事態に対処するためのものである。そのために、ある程度、運動体の速度の欠落が生じても、基準速度を求められる様にする。以下、1つのピクセルに発目して説明する。

【0183】図29に示すように、例えば1心拍時間に20フレームあったとすると、その内の例えば70%以上のフレームで運動体の速度が検出できれば、即ち14フレーム以上で運動体の速度が検出できれば、これらの位を用いて計算する基準速度は信頼性があると判断し、基準速度を計算する。この14フレームは速続したフレ

一ムであってもよいし(図29中の(1)、(2) 参照)、とびとびのフレームであってもよい(図29中の(3) 参照)。そして、検出された運動体の速度をここで計算した基準速度で補正して抽正速度を求める。そして、そのフレームのそのピクセルでは拍動性表示を行なう機にする。

【0184】一方、20フレーム中で14フレーム未満の運動体の速度しか検出できなければ、この場合に計算する基準速度は信頼性がないと判断し、基準速度を計算せず補正速度を求めない(図29中の(4)参照)。しかし、血流個母は検出されているので、血流の存在を示すため、そのフレームのそのピクセルでは通常のパワー表示で表示する様にする。もちろん、運動体の速度が検出されていないピクセルでは拍動性表示もパワー表示もしない。

【0 1 8 5】この結果、図30(a)に示すように、拍動性表示とパワー表示とが混在して表示されることになる(以下、この表示を「拍動流・パワー混在表示」と称する)。このように拍動流・パワー混在表示にすることにより、検出された血管は全て表示できることになり、かつ運動体の速度の補正ができた血管は拍動性が表示でき、血管検出館が高くかつより高い検出確率で拍動性表示が可能で、診断能が大きく向上する。

【0186】この拍動流・パワー混在表示においては、 拍動性画像とパワー面像をカラーで表示すれば視限性が 向上して効果的である。この場合のカラーバーの例を図 30(b)、(c)に示す。カラーバーは、推正速度 (拍動流)のカラーバーと、パワーのカラーバーとを同 時に表示する。

【0187】図30(b)は、図10(a)の補正速度のカラーパーと通常のパワーのカラーパーとを組み合わせた例であり、図30(c)は、図10(b)の補正速度のカラーパーと流常のパワーのカラーバーとを組み合わせた例である。いずれの場合も、補正速度とパワーとが別の色で表示されるので、拍動流とパワーの区別が明瞭にできてかつ拍動流については拍動の程度が明瞭に示され、検出能と診断能が大きく向上する。

【0188】さらに、前述した図30(a)に示す補正 速度のカラーバーには、上限値と下限値が表示されてい る。この様にすることにより、補正速度のカラーから拍 動の程度を更に読み取り易くすることができる。

【0 1 8 9】さらに、図30(d)に示すように、図示しない操作パネル上に設定スイッチを設けることにより、図30(a)の回像を見ながら、補正速度の上限値、下限値を適切に設定することができ、拍動の視思性を向上することができる。また、図30(a)の両面上に折返り速度を表示し、さらに図30(d)に示すように、図示しない操作パネル上に設定スイッチを設けることにより、図30(a)の図像を見ながら、折返り速度を適切に設定して、拍動の表示性能を向上させることが

できる。

【0190】以上により、本適用例によれば、血流と拍動性の検出能を高くし、かつ拍動の視認性を向上させることにより、診断能をより大きく向上させることが可能になる。

【0191】なお、本発明は、代表的に例示した上記実施例に限定されるものではなく、当業者であれば、特許請求の範囲の記載内容に基づき、その要旨を逸脱しない範囲内で種々の態様に変形、変更して実施でき、これらの変更、変形例も本発明の様利範囲に属する。

[0792]

【発明の効果】以上説明したように、本発明によれば、 血流の補正速度を2次元的または3次元的に表示するこ とにより、血流の拍類性を効果的に表示することができ、助脈、静脈、門脈等を識別することができる。従って、血管の視題性が向上し、検査効率と精度が向上し、 診断能が大幅に向上する。

【0193】また、本発明において3次元スキャンを行って血流の拍動性を捉えて3次元的に表示する場合、1 断面を複数回スキャンしながら3次元スキャンを行うことにより、特度の高い拍動性データを3次元的に得ることができ、診断能が大幅に向よする。

【図面の簡単な説明】

[図1] 本発明の第1突施形態に係る政資波診断基性の 全体構成を示す概略プロック図。

【図2】補正速度演算器の全体構成を示す概略プロック図。

【図4】(a) 及び(u) は瞬時速度抽出器の動作を説明する時間一速度のグラフで、(a) は瞬時速度としてデータ群の最新のデータを採用する場合のグラフ、

(b) は瞬時速度としてデータ群の中央のデータを採用する場合のグラフ。

【図5】(a)~(c)は、1心拍時間の速度データの平均値としてベクトル的な平均値又はその絶対値を用いる場合の説明図。

【図6】拍動の特徴を示す速度を代表的な速度基準の低に変換する場合の補正速度演算器の具体例を示す概略プロック図。

【関フ】折り返り補正機能を有する場合の補正速度演算 器の具体例を示す概略プロック図。

【図8】折り返り採正法の例を説明する図。

【関 9 】 (a) は、補正速度の表示例を示す的、(b)は、(a)に対応した補正速度の時間的な変化を示すグラフ。

【図10】 (a) ~ (a) は、カラーバーの表示例を説明する図。

【図17】(a)及び(b)は、従来の速度モードの表示で動脈を捉えた場合の説明図。

特期2003-61958

(19)

【図12】(a)及び(b)は、本発明の場合の補正这 底の表示で図11と同じ動脈を捉えた場合の説明図。

【図13】(a)は、補正速度の変化を緩和しない場合の補正速度の時間変化を示すグラフ、(b)は、補正速度の変化を緩和した場合の補正速度の時間変化を示すグラフ、(c)は、補正速度の変化を緩和する機能を有する表示部の要部構成を示す機略プロック図。

【関14】表示部内に補正速度演算器を有する構成例の 概略ブロック図。

【図15】本発明の第2実施形態に係る超音波診断装置の全体構成を示す概略プロック図。

【図16】(a)~(c)は、ポリュ~~ムスキャンの一例を説明する図。

【図17】 (a) ~ (c) は、ポリュームスキャンのその他の例を説明する図。

【図18】(a)~(c)は、ポリュームスキャンの制御シーケンスの一例を説明する図。

【図19】(a)~(c)は、2次元アレイプローブを用いた電子スキャンを他の方法と比較した場合の説明図。

【関20】拍動の特徴を示す速度として最大速度を採用した場合の補正速度減算器の具体例を示す概略プロック図。

【図21】図20に示す補正速度演算器の動作を設明する時間一選度のグラフ。

【図22】 (a) 及び(b)は、3次元画像の表示例を 説明する図。

【図23】拍動しているにも拘わらず拍動性函像が明瞭に表示されない場合の例を説明する時間---ドプラ速度のグラフ。

【図24】マーカで指定されたピクセルの速度の時間変化を示すグラフを拍動性画像と同時に表示する場合を説明する図。

【図25】(a)~(c)は、マーカで指定されたピクセルの速度の時間変化を示す各種グラフ。

【図26】補正速度として正規化速度を採用する場合の 演算方法の概要を説明する図。

【図27】2回平均方式による動脈の場合の平均値を説明する図。

【図28】2回平均方式による静脈の場合の平均値を説明する図。

【関29】1心拍中の速度ゲータの有効フレーム場を用いて拍謝性液算の有効・無効を判定する場合を説明する。

【図30】(a)~(d)は、拍助性とパワーの混在表

示を説明する図。

【符号の説明】

- 1 プローブ
- 2、2人 送佰部
- 3、3A 吳信郎 ...
- 4、4A、4B CFM処理部
- 5 新居像処理部
- 8、6A、6B 表示部
- 7 2次元アレイプローブ
- 8 姦景部 (3次元表示の場合)
- 21 滋傷パルス発生器
- 22 送信ビームフォーマ
- 23 スキャン制御器
- 31 プリアンプ
- 32 受信ビームフォーマ
- 41 勤き要素信号抽出部
- 42、42A~42E 補正速度演算器
- 43 拍動の特徴を示す速度(運動体の速度)液算器
- 43A 赠時速度抽出器
- 438 最大速度検出器
- 4.4 代表的な速度(基準速度) 液灰器
- 44A 平均速度演算器
- 45 補正器
- 45A 除粹器
- 45B 平均速度基準迷度変換器
- 46 速度演算器
- **47 パッファメモリ**
- 48 1心拍時間設定器
- 49 折返り梯正器
- 60 描正速度変化緩和器
- 61 カラーイメージメモリ
- 62 断層像イメージメモリ
- 63 DSC
- 64 モニタ
- 65 速度補正演算器(表示部例)
- 66 拍動の特徴を示す速度(運動体の速度) 波算器

::

- 67 代数的な速度(基準速度)演算器
- 68 補正器
- 69 パッファメモリ
- 70 1心拍時間設定器
- 81 3次元カラーイメージメモリ
- 82 3次元衡層像イメージメモリ
- 83 D3C
- 84 モニタ

(20)

特開2003-61958

.

(21)

特勝2003-61958

(22)

特闘2003-61958

【图7】

(23)

特別2003-61958

【図11】

【图12】

【图27】

(24)

特別2003-61958

[图16]

【図14】

(25)

特別2003~61958

【図15】

[图18]

[図29]

(26)

特別2003~61958

[図20]

【図21】

(27)

物開2003-61958

(28)

特開2003-61958

フロントページの続き

ドターム(参考) 4C301 DD04 DD10 EE20 JB17 JB21 KK16 KK21 4C601 DD07 DE01 DE03 EE30 JB34 JB51 JC25 KK18 KK21