## ASSUMPTION UNIVERSITY VINCENT MARY SCHOOL OF ENGINEERING, SCIENCES, AND TECHNOLOGY CSX4209/CSX4281/ITX4209 QUIZ 2 KEY (3 hrs. 58 points) 1/2024

1. (5 points) You believe 1% of gym members in your group use steroids. You have arranged a blood test that detects steroids: There is a 99% chance you will be caught positive for steroids when you use steroids. There is a 0.5% chance you will be positive if you do not use steroids. What is the chance that a positive blood analysis identifies a steroid user? (Hints: Let A be "use steroids," and B be "positive to steroids"). Show all your calculation steps.

```
\begin{split} P(A) &= 0.01 \ (1\%) \\ P(\sim A) &= 1 - P(A) = 1 - 0.01 = 0.99 \\ P(B|A) &= 0.99 \ (99\%) \\ P(\sim B|A) &= 1 - 0.99 = 0.01 \\ P(B|\sim A) &= 0.005 \ (0.5\%) \\ \hline \frac{Find \ P(A|B)?}{P(A|B) = P(B|A) \times P(A)/P(B)} \\ \text{where } P(B) &= P(B|A) \times P(A) + P(B|\sim A) \times P(\sim A) \\ P(A|B) &= (0.99 \times 0.01) \ / \ (0.99 \times 0.01 + 0.005 \times 0.99) = \underline{0.667} = 66.7\% \end{split}
```

2. (4 points) Calculate the following based on the training examples for a regression task shown in **Figure 1 below** (where X is input data,  $Y_d$  is desired output, and Y is the predicted/calculated output): a) Sum of 0/1 Error =  $\frac{4}{5}$ . b) Sum of squares error (SOSE) =  $\frac{1.17}{5}$ . c) Root means square error (RMSE) =  $\frac{0.361}{5}$ .

| Example               | X   | Yd  | Y   | Ε   | $E^2$ | 0/1 |
|-----------------------|-----|-----|-----|-----|-------|-----|
| $e_1$                 | 0.7 | 1.7 | 1.7 | 0   | 0     | 0   |
| $e_2$                 | 1.1 | 2.4 | 2.0 | 0.4 | 0.16  | 1   |
| $e_3$                 | 1.3 | 2.5 | 2.5 | 0   | 0     | 0   |
| $e_4$                 | 1.9 | 1.5 | 1.5 | 0   | 0     | 0   |
| $e_5$                 | 2.6 | 2.1 | 1.2 | 0.9 | 0.81  | 1   |
| <i>e</i> <sub>6</sub> | 3.1 | 2.3 | 2.3 | 0   | 0     | 0   |
| e <sub>7</sub>        | 3.9 | 3.2 | 2.8 | 0.4 | 0.16  | 1   |
| $e_8$                 | 2.9 | 1.8 | 1.8 | 0   | 0     | 0   |
| <i>e</i> <sub>9</sub> | 5.0 | 3.4 | 3.2 | 0.2 | 0.04  | 1   |

3. (3 points) Based on the performance indicators of a Boolean predictor in **Figure 2 below**, calculate the following: a) *Precision*, b) *Recall*, and c) *False-Positive Rate*.

|    | ар | an  |
|----|----|-----|
| pp | 90 | 200 |
| pn | 50 | 500 |

- a) [1 mark] **Precision** = tp/(tp+fp) = 90/(90+200) = 0.3103
- **b)** [1 mark] Recall (True-positive rate) = tp/(tp+fn) = 90/(90+50) = 0.6429
- c) [1 mark] False-positive rate = fp/(fp+tn) = 200/(200+500) = 0.2857
- 4. (5 points) Suppose a company wants to group their visitors by their age. The ages of the first set of visitors are {22, 46, 18, 35, 60, 24, 65, 40, 55, 39, 50}. Assume that the initial centroids are M1 = 18 and M2 = 60. Based on the given parameters, show the results of the first iteration used by the **k-means clustering** algorithm for **k** = 2 by filling the blanks of the following table (where D1 and D2 are the distances of data from their centroids).

| Data | D1 | D2 | Cluster    |
|------|----|----|------------|
| 22   | 4  | 38 | <b>C1</b>  |
| 46   | 28 | 14 | <b>C2</b>  |
| 18   | 0  | 42 | <b>C</b> 1 |
| 35   | 17 | 25 | <b>C</b> 1 |
| 60   | 42 | 0  | <b>C2</b>  |
| 24   | 6  | 36 | <b>C</b> 1 |
| 65   | 47 | 5  | <b>C2</b>  |
| 40   | 22 | 20 | <b>C2</b>  |
| 55   | 37 | 5  | <b>C2</b>  |
| 39   | 21 | 21 | <b>C1</b>  |
| 50   | 32 | 10 | <b>C2</b>  |

5. (5 points) Consider the supervised learning dataset in **Figure 3 below.** Calculate the **log loss** of the input attribute "*WhereRead*" in the output attribute '*UserAction*' (Show all your calculation steps).

| Example         | Author  | Thread    | Length | WhereRead | UserAction |
|-----------------|---------|-----------|--------|-----------|------------|
| $e_1$           | known   | new       | long   | home      | skips      |
| $e_2$           | unknown | new       | short  | work      | reads      |
| $e_3$           | unknown | follow Up | long   | work      | skips      |
| $e_4$           | known   | follow Up | long   | home      | skips      |
| $e_5$           | known   | new       | short  | home      | reads      |
| e <sub>6</sub>  | known   | follow Up | long   | work      | skips      |
| e <sub>7</sub>  | unknown | follow Up | short  | work      | skips      |
| $e_8$           | unknown | new       | short  | work      | reads      |
| <b>e</b> 9      | known   | follow Up | long   | home      | skips      |
| $e_{10}$        | known   | new       | long   | work      | skips      |
| $e_{11}$        | unknown | follow Up | short  | home      | skips      |
| $e_{12}$        | known   | new       | long   | work      | skips      |
| $e_{13}$        | known   | follow Up | short  | home      | reads      |
| $e_{14}$        | known   | new       | short  | work      | reads      |
| e <sub>15</sub> | known   | new       | short  | home      | reads      |
| $e_{16}$        | known   | follow Up | short  | work      | reads      |
| $e_{17}$        | known   | new       | short  | home      | reads      |
| $e_{18}$        | unknown | new       | short  | work      | reads      |
| e <sub>19</sub> | unknown | new       | long   | work      | ?          |
| $e_{20}$        | unknown | follow Up | long   | home      | ? Unseen   |

<u>ANS:</u> Splitting on *WhereRead* divides the examples in *UserAction* into *home*  $\rightarrow$  (4 *skips*) and (4 *reads*). Similarly, *work*  $\rightarrow$  (5 *skips*) and (5 *reads*). Therefore, <u>four</u> combinations of entropy values need to be calculated:

- (i). Number of *skips* under *home* in *UserAction*  $\times \log_2$  (probability of *skips* under *home* in *UserAction*) =  $4 \times \log_2 (4 \text{ skips})/(4 \text{ skips} + 4 \text{ reads}) = 4 \times \log_2(4/8) = 4 \times \log_2 0.5$
- (ii). Number of *reads* under *home* in *UserAction*  $\times \log_2$  (probability of *reads* under *home* in *UserAction*) =  $4 \times \log_2(4 \text{ reads})/(4 \text{ reads} + 4 \text{ skips}) = 4 \times \log_2(4/8)$  =  $4 \times \log_2 0.5$
- (iii). Number of *skips* under *work* in *UserAction*  $\times \log_2$  (probability of *skips* under *work* in *UserAction*) =  $5 \times \log_2 (5 \text{ skips})/(5 \text{ reads} + 5 \text{ skips}) = 5 \times \log_2 (5/10) = 5 \times \log_2 0.5$
- (iv). Number of *reads* under *work* in *UserAction*  $\times \log_2$  (probability of *reads* under *work* in *UserAction*) =  $5 \times \log_2$  (5 reads)/(5 reads + 5 skips) =  $5 \times \log_2(5/10)$  =  $5 \times \log_2 0.5$

NAME ...... ID.NO. ..... SEC.......

The log loss = -[
$$(4 \times log_2 0.5) + (4 \times log_2 0.5) + (5 \times log_2 0.5) + (5 \times log_2 0.5)]/18$$
  
Where log<sub>2</sub> 0.5 = -1  
So the log loss =  $(4 + 4 + 5 + 5)/18 = \underline{1}$ 

6. (5 points) A section of perceptron training for the 2-input OR function is shown in the following Table (where w1, w2, and y are the weights, and the calculated output of the perceptron and x1, x2, and yd are the inputs and output of the OR function). Assume the w1=-0.4, w2 = 0.3, bias (b) = 0.2, and learning rate (∞) = 0.1. Show the perceptron's first iteration by completing the table's blanks (the step activation estimates y, and the bias is subtracted from the weighted sum of inputs).

| x1 | x2 | yd | w1   | w2  | У | е | w1new | w2new |
|----|----|----|------|-----|---|---|-------|-------|
| 0  | 0  | 0  | -0.4 | 0.3 | 0 | 0 | -0.4  | 0.3   |
| 1  | 0  | 1  | -0.4 | 0.3 | 0 | 1 | -0.3  | 0.3   |
| 0  | 1  | 1  | -0.3 | 0.3 | 1 | 0 | -0.3  | 0.3   |
| 1  | 1  | 1  | -0.4 | 0.3 | 0 | 1 | -0.3  | 0.4   |

7. (8 points) The multi-layer perceptron (MLP) with its input, weight, and bias values are shown in Figure 5. Calculate its feed-forward outputs of h1(2), h2(2), h3(2), and h1(3)out based on the following values: w11(1) = w12(1) = w13(1) = 0.4, w21(1) = w22(1) = w23(1) = 0.5, w31(1) = w32(1) = w33(1) = 0.3 w11(2) = w12(2) = w13(2) = 0.2, b1(1) = b2(1) = b3(1) = 0.7, b1(2) = 0.3, b1(2) =



a) 
$$h1(2)$$
:  
 $X1(2) = x1w11(1) + x2w31(1) + x3w13(1) + b1(1)$   
Output,  $h1(2) = 1/(1 + e^{-X1(2)}) = 0.9723$ 

b) h2(2): X2(2) = x1w21(1) + x2w22(1) + x3w23(1) + b2(1) $Coutput, h2(2) = 1/(1 + e^{-X2(2)}) = 0.9885$ 

c) h3(2): X3(2) = x1w31(1) + x2w32(1) + x3w33(1) + b3(1)Output,  $h3(2) = 1/(1 + e^{-X3(2)}) = 0.9504$ 

d) h1(3) out: X3 = h1(2)w11(2) + h2(2)w12(2) + h3(2)w13(2) + b1(2)Output, h1(3) out  $= 1/(1 + e^{-X3}) = 0.6976$  NAME ...... ID.NO. ..... SEC.......

- 8. (5 points) Suppose a spinning wheel game with nine numbers [1,2,3,4,5,6,7,8,9], each with equal probability. Let **S** be the outcome of a spin. Based on these: (a). (2 points) Find the information (entropy) **H(S)** of a spin. (b). (2 points) Suppose an **odd sensor O** is connected and detects only the odd value from a spin. Find **H(S|O)** (c). (1 point). Find the **spin's information gain** (**IG**) with the odd sensor **O**.
  - a) (2 points) The 9 values on the spinning wheel are {1,2,3,4,5,6,7,8,9}.

Let S bet the outcome of a spin. Then the Entropy of S, H(S) is given as:

H(S) = 
$$-\sum_{i=1}^{9} 1/9 \times \log_2 1/9$$
  
=  $-\sum_{i=1}^{9} 0.111 \times \log_2 0.111$   
=  $3.17$ 

b) (2 points) The odd sensor O, detects one value out of  $\{1,3,5,7,9\}$  and never detects any even value  $\{2,4,6,8\}$ , and it skips these even values.

The entropy of a spin in the presence of the odd sensor O is H(S|O):

H(S|O) = - (5 possible odd outcome/total values)  $\times \log_2$  (one odd outcome)/5 odd values) - (4 blocked even values/total values)  $\times \log_2$  (one even outcome/4 blocked even values)

```
= -5/9 \times \log_2 (1/5) - 4/9 \times \log_2 (1/4)
= -0.5556 \times \log_2 0.2 - 0.444 \times \log_2 0.25
= 2.179
```

- c) (1 point) Information gain (IG) = H(S) H(S|O) = 3.17 2.179 = 0.991
- 9. (3 points) Calculate the joint probability of the following event based on the Bayes net shown in **Figure below**: "The alarm (A) has sounded, but **no** burglary (B) has occurred, but a minor earthquake (E) has occurred, and John (J) called, and Mary (M) not called.



$$\begin{split} P(A \land \sim & B \land E \land J \land \sim M) \\ &= P(A|\sim & B \land E) \times P(\sim B) \times P(E) \times P(J|A) \times P(\sim M|A) \\ &= 0.7 \times (1\text{-}0.001) \times 0.002 \times 0.90 \times (1\text{-}0.70) \\ &= 0.7 \times 0.999 \times 0.002 \times 0.90 \times 0.30 = 0.000378 \end{split}$$

NAME ...... ID.NO. SEC....... SEC......

10. (4 points) Consider the Bayesian Network with three Boolean variables shown in **Figure below.** Compute (a) (2 points)  $P(\sim A \mid W, H)$ . (b) (2 points)  $P(\sim A, W, H)$ .



a) (2 points) 
$$P(\sim A|W, H) = P(\sim A|W \wedge H)$$
  
=  $P(\sim A|W) = 1 - P(A|W) = 1 - 0.8 = \underline{0.2}$   
b) (2 points)  $P(\sim A, W, H) = P(\sim A \wedge W \wedge H)$   
=  $P(\sim A|W) \times P(W) \times P(H|W)$ 

11. (6 points) The joint probability distribution of three variables, flu (f), allergy(a), and sinus (s), is shown in **Figure below**. By applying the direct computation of the joint probability distribution, check whether  $P(f^1|s^1) < P(f^1|a^1)$ .

 $= 0.2 \times 0.2 \times 0.3 = 0.012$ 

$$f^1$$
  $a^1$   $s^1$  0.0270  
 $f^1$   $a^1$   $s^0$  0.0030  
 $f^1$   $a^0$   $s^1$  0.1620  
 $f^1$   $a^0$   $s^0$  0.1080  
 $f^0$   $a^1$   $s^1$  0.0140  
 $f^0$   $a^1$   $s^0$  0.0560  
 $f^0$   $a^0$   $s^1$  0.0063  
 $f^0$   $a^0$   $s^0$  0.6237

$$P(f|s) = P(f \wedge s)/P(s)$$

Where 
$$P(f \land s) = P(f \land a \land s) + P(f \land \sim a \land s) = 0.0270 + 0.1620 = 0.189$$
  
Similarly,  $P(s) = P(f \land a \land s) + P(\sim f \land a \land s) + P(f \land \sim a \land s) + P(\sim f \land \sim a \land s) = 0.027 + 0.014 + 0.1620 + 0.0063 = 0.2093$   
 $P(f|s) = P(f \land s)/P(s) = 0.189/0.2093 = \underline{0.903}$   
 $P(f|a) = P(f \land a)/P(a)$   
Where  $P(f \land a) = (f \land a \land s) + P(f \land a \land \sim s) = 0.0270 + 0.0030 = 0.03$   
Similarly,  $P(a) = P(f \land a \land s) + P(\sim f \land a \land s) + P(f \land a \land \sim s) + P(\sim f \land a \land \sim s) = 0.0270 + 0.0140 + 0.0030 + 0.0560 = 0.10$   
 $P(f|a) = P(f \land a)/P(a) = 0.03/0.10 = \underline{0.3}$  Therefore,  $P(f^1|s^1) < P(f^1|a^1)$  is proved.

12. (5 points) The **Figure below** shows the two factors, **go\_out**, and **get\_coffee**, from a probabilistic inference function. Show how the **summing-out** process eliminates the variable **Rain** from the product of **get coffee** and **go\_out**.

| ,          | Full | Wet | Prob |        | Rain | Wet | Prob |
|------------|------|-----|------|--------|------|-----|------|
| ,          | t    | t   | 0.6  | '      | t    | t   | 0.8  |
| get_coffee | t    | f   | 0.4  | go_out | t    | f   | 0.2  |
|            | f    | t   | 0.3  |        | f    | t   | 0.1  |
|            | f    | f   | 0.7  |        | f    | f   | 0.9  |

NAME ...... ID.NO. ..... SEC.......

**Step 1:** Find the product of factors  $get\_coffee$  and  $go\_out$  Assume that, Full = F, Wet = W, Rain = R

| F | W              | R                | Probability             |
|---|----------------|------------------|-------------------------|
| t | t              | t                | $0.48 (0.6 \times 0.8)$ |
| t | t              | $\boldsymbol{f}$ | $0.06 (0.6 \times 0.1)$ |
| t | f              | t                | $0.08 (0.4 \times 0.2)$ |
| t | f              | $\boldsymbol{f}$ | $0.36 (0.4 \times 0.9)$ |
| f | t              | t                | $0.24 (0.3 \times 0.8)$ |
| f | t              | $\boldsymbol{f}$ | $0.03 (0.3 \times 0.1)$ |
| f | $\overline{f}$ | t                | $0.14 (0.7 \times 0.2)$ |
| f | $\overline{f}$ | f                | $0.63 (0.7 \times 0.9)$ |

**Step 2:** From the product of the factors *get\_coffee* and *go\_out*, apply the summing technique to eliminate the variable *Rain(R)*.

| F | W | <b>Probability</b> |
|---|---|--------------------|
| t | t | 0.54               |
| t | f | 0.44               |
| f | t | 0.27               |
| f | f | 0.77               |

i. 
$$F = t$$
,  $W = t$ ,  $R = t = 0.48$   
 $F = t$ ,  $W = t$ ,  $R = f = 0.06$   
ii.  $F = t$ ,  $W = f$ ,  $R = t = 0.08$   
 $F = t$ ,  $W = f$ ,  $R = f = 0.36$   
iii.  $F = f$ ,  $W = t$ ,  $R = t = 0.24$   
 $F = f$ ,  $W = t$ ,  $R = f = 0.03$   
iv.  $F = f$ ,  $W = f$ ,  $R = t = 0.14$   
 $F = f$ ,  $W = f$ ,  $R = f = 0.63$