

Capstone Project-3 Coronavirus Tweet Sentiment Analysis

By Harshavardhan M. Shete

Twitter and Tweet Sentiment Analysis

- Twitter is microblogging platform
- Opinion platform used throughout the world
- Immense database of sentiments
- What is sentiment analysis?

Image Source: Google.com

Coronavirus Tweet Sentiment Analysis

- The task is to build a classification model to predict the sentiment of Covid-19 related tweets
- The dataset contains following columns:
 - Location: The location at which the tweet was made
 - TweetAt: The date on which the tweet was made.
 - OriginalTweet: This is the actual text of the tweet
 - Sentiment: This is the sentiment of the tweet, which is manually tagged
- 41157 Rows
- Multiclass classification with 5 classes: Extremely Positive, Positive, Neutral,
 Negative, Extremely Negative

Solutioning

- 1. Exploratory Data Analysis
- 2. Data Pre-processing
- 3. Model Training and Performance Metrics

Exploratory Data Analysis

Sentiment Count

Date-wise Tweet Count

Top 15 locations with highest number of tweets

Handling Null Values

	Total	Percent
Location	8590	20.871298
Sentiment	0	0.000000
Original Tweet	0	0.000000
TweetAt	0	0.000000
ScreenName	0	0.000000
UserName	0	0.000000

Data Pre-processing

Steps taken to prepare the data

- Removing Twitter Handles/ Usernames
- Removing URL links
- Removing # symbols and retaining the tags
- Removing Punctuations and stop words
- Removing short words
- Tokenization and stemming

Few examples of before and after tweets

Original Tweet

@MeNyrbie @Phil_Gahan @Chrisitv https://t.co/iFz9FAn2Pa and https://t.co/xX6ghGFzCC and https://t.co/l2NlzdxNo8

• After removing Twitter Handles and URL links

and and

Original Tweet

Me, ready to go at supermarket during the #COVID19 outbreak.\r\r\n\r\r\nNot because I'm paranoid, but because my food stock is litterally empty. The #coronavirus is a serious thing, but please, don't panic. It causes shortage...\r\r\n\r\r\n#CoronavirusFrance #restezchezvous #StayAtHome #confinement

After removing # symbols, punctuations, special characters and stopwords

ready supermarket covid outbreak paranoid food stock litteraly empty coronavirus serious thing please panic causes shortage coronavirusfrance restezchezvous stayathome confinement

Model Training and Performance Metrics

Models used

- Decision Tree Classifier
- Support Vector Machine Classifier
- K Nearest Neighbour Classifier
- Naive Bayes classifier
- Random Forest Classifier
- XGBoost Classifier
- Stochastic Gradient Descent- SGD Classifier

Performance Comparison

	Model	Test accuracy	Precision	Recall
1	Support Vector Machines	0.628037	0.628791	0.628037
4	Random Forest	0.564626	0.606985	0.564626
6	Stochastic Gradient Decent	0.561224	0.589431	0.561224
3	Naive Bayes	0.482143	0.520163	0.482143
5	XGBoost	0.482143	0.520163	0.482143
0	Decision Tree	0.317298	0.770043	0.317298
2	K Nearest Neighbour	0.271016	0.778916	0.271016

Challenges

- Sarcastic Tweets
- Huge number of location, difficult to draw any conclusion
- Longer execution time

Conclusion

For the given problem of multiclass tweet sentiment classification the 'Support Vector Machine' classifier has performed the best with 62.8% accuracy and equally fair performance in terms of precision and recall.