0) 0,00,00

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 21. Dezember 2000 (21.12.2000)

PCT

(10) Internationale Veröffentlichungsnummer WO 00/76329 A1

(51) Internationale Patentklassifikation7: 1/16, 1/18

A23K 1/00,

PCT/EP00/04847

(21) Internationales Aktenzeichen:

I CI/LI 00/0404/

(22) Internationales Anmeldedatum:

27. Mai 2000 (27.05.2000)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 199 26 932.7

14. Juni 1999 (14.06.1999) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): TETRA WERKE DR. RER. NAT. ULRICH BAENSCH GMBH [DE/DE]; Herrenteich 78, D-49324 Melle (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): SCHMIDT, Hartmut [DE/DE]; Schauenroth 28, D-49124 Georgsmarienhütte (DE). KÜRZINGER, Hubert [DE/DE]; Jeankamp 8, D-49324 Melle (DE). (74) Anwälte: MANSMANN, Ivo usw.; Gödecke AG, Mooswaldaliee 1, D-79090 Freiburg (DE).

(81) Bestimmungsstaaten (national): AE, AG, AL, AU, BA, BB, BG, BR, CA, CN, CR, CU, CZ, DM, DZ, EE, GD, GE, HR, HU, ID, IL, IN, IS, JP, KP, KR, LC, LK, LR, LT, LV, MA, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, TR, TT, UA, US, UZ, VN, YU, ZA.

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

Mit internationalem Recherchenbericht.

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: ENERGY-RICH FOOD FLAKES FOR FISH AND INVERTEBRATES AND METHOD FOR THE PRODUCTION THEREOF

(54) Bezeichnung: ENERGIEREICHE FUTTERFLOCKEN FÜR FISCHE UND INVERTEBRATEN SOWIE VERFAHREN ZUR HERSTELLUNG

(57) Abstract: The invention relates to a homogeneous high-fat food provided in the form of food flakes, to a method for producing the same and to the use thereof for promoting the growth, the ingestion of food, and the condition of freshwater and saltwater fish and invertebrates. The inventive food flakes are used to improve resistance to stress, to prevent losses due to unfavorable keeping conditions such as high temperatures in the summer and low temperatures in the winter when keeping pond fish, and to reduce nitrogen and phosphorous excretion which promotes algae growth.

(57) Zusammenfassung: Homogenes fettreiches Futter in Form von Futterflocken sowie Verfahren zur Herstellung und dessen Verwendung zur Förderung von Wachstum, Futteraufnahme und Kondition von Fischen und Invertebraten im Süss- und Seewasser, zur Verbesserung der Widerstandsfähigkeit gegen Stress, zur Verhinderung von Verlusten bei ungünstigen Haltungsbedingungen wie hohen Temperaturen im Sommer und tiefen Temperaturen im Winter bei der Haltung von Teichfischen sowie zur Verminderung der das Algenwachstum fördernden Stickstoff- und Phosphorausscheidung.

1

Energiereiche Futterflocken für Fische und Invertebraten sowie Verfahren zur Herstellung

Beschreibung

Ublicherweise sind gegenwärtig Fischfuttermittel, besonders für Zierfische, durch einen relativ hohen Proteingehalt (ca. 40 - 50 %) und Stärkeanteil (ca. 16 - 30 %) bei gleichzeitig relativ geringem Energiegehalt (ca. 0,5 - 8 % Fett) charakterisiert. Solche Futtermittel lassen sich industriell unproblematisch in für die Zierfischhaltung üblichen Applikationsformen (Futterflocken, schwimmfähige Extrudate, Tabletten) herstellen und führen zu einem guten Wachstum und zu einer ausreichenden Ernährung der Tiere.

Zur Aufzucht und Mast von Nutzfischen werden dagegen zunehmend energiereiche Futter in Form von Extrudaten oder 15 Pellets eingesetzt, die neben einem für das Wachstum wichtigen hohen Proteingehalt Fettgehalte bis zu 25 % aufweisen (BioMar GmbH, Firmenschrift 'Fütterung/Umwelt -Ecoline'). Die Verwendung solcher Futtermittel in der professionellen Fischzucht führt im Vergleich zu fettärmeren Produkten zu weniger wasserbelastenden stickstoffhaltigen Ausscheidungsprodukten (Ammoniak, Nitrit, Nitrat), da der Energiebedarf der Tiere überwiegend durch die stickstofffreien Fette gedeckt wird. Die stickstoffhaltigen Proteine dienen daher weitestgehend dem Wachstum und müssen nicht zur Energiegewinnung unter Bildung stickstoffhaltiger Abbauprodukte verstoffwechselt werden. Fette sind darüber hinaus in der Fischernährung Kohlenhydraten als Energieträger überlegen, da Fische anders als entwicklungsgeschichtlich höher stehende Tiere -

30 aufgrund ihrer metabolischen Eigenheiten Kohlenhydrate nur

PCT/EP00/04847 WO 00/76329

2

begrenzt verwerten können. Der Einsatz von fettreichen Fischfuttermitteln in der Nutzfischhaltung hat durch die Einsparung von Proteinen und die geringere Ausscheidung von wasserbelastenden Stoffen daher sowohl ökonomische als auch ökologische Vorteile.

Derartige Futtermittel wurden bisher für Zierfische im Aquarium oder in Gartenteichen nicht eingesetzt, da den genannten Vorteilen gravierende technologische Nachteile entgegenstanden. Das Herstellen von langsam absinkenden Futterflocken, wie sie aufgrund der Größe der Tiere in der Zierfischernährung üblich sind, mit hohen Fettanteilen war bisher im technischen Maßstab nicht möglich, da fettreiche Futtermischungen zur Herstellung von Flocken nach den üblichen Verfahren auf den normalerweise eingesetzten 15 Walzentrocknern verkleben und sich nicht zu einer zerkleinerbaren Folienbahn ablösen lassen.

10

20

Überraschenderweise wurde nun gefunden, daß mit einem neuen Produktionsverfahren auch flockierte Futter mit hohen Energiegehalten in Form von Fett/Öl hergestellt und damit die Kondition von Fischen deutlich verbessert werden kann.

Das neue Verfahren basiert auf dem Auswalzen von Formkörpern, die z.B. durch Extrusion oder Pelletierung hergestellt werden können, zu dünnen im Wasser langsam absinkenden Futterflocken.

25 So wurden energiereiche Futterflocken mit dem neuen Verfahren hergestellt und an typischen Zierfischen für Aquarien bezüglich Eignung im Vergleich zu traditionellen Standardfuttern mit niedrigen Fettgehalten getestet: In einem Fütterungsversuch an zwei verschiedenen Zierfischspezies (Labidochromis caeruleus, Barbus conchonius) wurde ein flockiertes Versuchsfutter mit hohem Energiegehalt (33 % Fett) im Vergleich zum Kontrollfutter (7 % Fett) über

3

einen Zeitraum von 12 Wochen bei einer Wassertemperatur von 25°C auf Wirksamkeit getestet.

Die Ergebnisse demonstrieren eindeutig, daß bei der Applikation des energiereichen Flockenfutters die Futter
5 aufnahme deutlich erhöht und der Zuwachs der Fische signifikant besser im Vergleich zur Kontrolle ist. Ähnliche Ergebnisse zeigten sich bei Verfütterung von Versuchsflocken mit 18 % bzw. 23 % Fett im Vergleich zu einer Testdiät mit 8 % Fett.

10 Unter Berücksichtigung dieser überraschenden neuen Befunde ist daher die Herstellung und der Einsatz fettreicher Flockenfutter auch für die Haltung von Zierfischen vorteilhaft.

Gegenstand der vorliegenden Erfindung ist daher eine 15 energie-/fettreiche Futterflocke für Fische und Invertebraten sowie die Herstellung und Verwendung dieser Flocken.

20

Bevorzugt ist ein flockiertes Zierfischfutter, das in homogener Verteilung Energie in Form von 12 - 40 % Fett enthält, bevorzugt 12 bis 20 % und ganz besonders bevorzugt ca. 15 bis 19 % Fett bei einem Feuchtigkeitsgehalt von 1 bis 30 %, bevorzugt 4 bis 25 % und ganz besonders bevorzugt ca. 8 %. Daneben enthält dieses Futter die üblichen Grundbestandteile wie 25 - 50 % Protein, bevorzugt 43 %, 10 bis 25 % Stärke, bevorzugt 13 % und 10 bis 60 % N-freie Extraktstoffe, bevorzugt 20 %, wobei alle Mengenangaben auf das Gewicht des Produktes bezogen sind.

gesetzt werden (z.B. Sojaöl, Fischöle, Seetierfett, Talg, Sonnenblumenöl, Maiskeimöl).

Die Energiezugabe in Form von Fett/Öl in hohen Dosierungen für flockiertes Futter für Fische und Invertebraten erfolgt während des Mischens der mehlförmigen und flüssigen Futterkomponenten. Somit ist eine homogene Verteilung bereits in der Rohstoffmischung vor dem nachgeschalteten Extrusionsoder Pelletierprozeß und anschließendem Auswalzen zu Flocken gewährleistet.

- Bei der Herstellung von Extrudaten werden die abgewogenen Rezepturkomponenten in einem Mischer mit den erforderlichen Mengen an Energie in Form von Fett/Öl homogen vermischt und extrudiert. Dabei werden beispielsweise zunächst 330 kg energiereiche Rohstoffmischung mit einer Extrudier-
- 15 schneckendrehzahl von 60 98 %, bevorzugt 75% und einer Temperatur im Mehleinzugsbereich von 40 160°C, bevorzugt 75°C und im Düsenkopf von 40 190°C, bevorzugt 75°C unter Zugabe von 1 100 l, bevorzugt 30 l Wasser pro Stunde zu l bis 50, bevorzugt 2 4 mm langen Extrudaten mit einem
- 20 Stickdurchmesser von 1 bis 10 mm, bevorzugt 2 4 mm extrudiert.

Bedingt durch die Geometrie der Austrittsdüse des Extruders und der vorzugebenden Abschnittslänge des Extrusionsstrangs werden Abschnitte mit gleicher dreidimensionaler Form erhalten.

Diese Extrudate werden anschließend direkt in einem Walzenstuhl zu gleichmäßig geformten Flocken mit einer Dicke zwischen 10 µm und 5 mm und einem Durchmesser zwischen T bis 100 mm ausgewalzt, die ebenfalls eine

30 gleiche dreidimensionale Form besitzen.

25

Zum Auswalzen geeignete Formkörper mit annähernd gleicher dreidimensionaler Form lassen sich auch durch Pelletisierung der fettreichen Rohstoffmischung erhalten, die anschließend zu gleichgeformten Flocken ausgewalzt werden können.

Bei der Herstellung der Formkörper mittels Extrusion ist die Temperatur auf < 80°C reduzierbar.

Bei diesem Verfahren sind nach der Herstellung keine zusätzlichen Arbeitsschritte wie z.B. Besprühen oder Beschichten mit Ölen/Fetten zur Energieanreicherung - wie bei herkömmlichen Pellets - erforderlich.

Ein weiterer Gegenstand der Erfindung ist die Verwendung des erfindungsgemäßen homogenen fettreichen Futters zur Förderung von Wachstum, Futteraufnahme und Kondition von Zierfischen im Süß- und Seewasser, zur Verbesserung der Widerstandsfähigkeit gegen Streß, zur Verhinderung von Verlusten bei ungünstigen Haltungsbedingungen wie hohen Temperaturen im Sommer und tiefen Temperaturen im Winter bei der Haltung von Teichfischen sowie zur Verminderung der das Algenwachstum fördernden Stickstoff- und Phosphorausscheidung.

Patentansprüche

1. Homogenes fettreiches Flockenfutter für Fische und Invertebraten gekennzeichnet durch einen Fettgehalt von 12 bis 40 % bei einer Restfeuchte von 1 bis 30 % in Form von gleichmäßig geformten Flocken.

5

15

25

- 2. Homogenes fettreiches Futter gemäß Anspruch 1, dadurch gekennzeichnet, daß es in homogener Verteilung 12 bis 20 % Fett bei einem Feuchtigkeitsgehalt von 4 bis 25 % enthält.
- 3. Homogenes fettreiches Futter gemäß Anspruch 2, dadurch gekennzeichnet, daß es in homogener Verteilung 18 % Fett bei einem Feuchtigkeitsgehalt von 8 % enthält.
 - 4. Homogenes fettreiches Futter gemäß der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß es in homogener Verteilung als weitere Bestandteile 25 50 % Protein, bevorzugt 43 %, 10 bis 25 % Stärke, bevorzugt 13 % und 10 bis 60 % N-freie Extraktstoffe, bevorzugt 20 % enthält.
- Futter gemäß der Ansprüche 1 bis 4 enthaltend als flüssige und/oder feste Fett/Ölkomponente Sojaöl,
 Fischöle, Seetierfett, Talg, Sonnenblumenöl, Maiskeimöl oder deren Mischungen.
 - 6. Futter gemäß der Ansprüche 1 bis 5 hergestellt durch Vermischen der Rohstoffe, Extrusion der Rohstoffmischung zu Formkörpern mit gleicher Raumform und anschließendem Auswalzen der Formkörper zu Flocken gleicher Form.
 - 7. Futter gemäß der Ansprüche 1 bis 5 hergestellt durch Vermischen der Rohstoffe, Pelletisierung der Rohstoffmischung zu Formkörpern mit gleicher Raumform und

7

anschließendem Auswalzen der Formkörper zu Flocken gleicher Form.

- 8. Verfahren zur Herstellung fettreicher Futterflocken gemäß der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Rezepturkomponenten homogen vermischt werden und dann mit einer Extrudierschneckendrehzahl von 60 98 %, bevorzugt 75 % und einer Temperatur im Mehleinzugsbereich von 40 160 °C, bevorzugt 75°C und im Düsenkopf von 40 190 °C, bevorzugt 75°C unter Zugabe von 1 100 l, bevorzugt 30 l Wasser pro Stunde zu 1 bis 50, bevorzugt 2 4 mm langen Extrudaten mit einem Stickdurchmesser von 1 bis 10 mm, bevorzugt 2 4 mm extrudiert und anschließend auswalzt zu Flocken mit einer Dicke zwischen 10 µm und 5 mm und einem Durchmesser zwischen 1 mm und 100 mm.
- 9. Verwendung eines homogenen fettreichen Futters gemäß der Ansprüche 1 7 zur Förderung von Wachstum, Futteraufnahme und Kondition von Zierfischen im Süß- und Seewasser.
- 10. Verwendung eines homogenen fettreichen Futters gemäß
 20 der Ansprüche 1 7 für die Zierfischhaltung zur
 Verbesserung der Widerstandsfähigkeit gegen Streß.
 - 11. Verwendung eines homogenen fettreichen Futters gemäß der Ansprüche 1 7 für die Zierfischhaltung zur Verhinderung von Verlusten bei ungünstigen
- Haltungsbedingungen wie hohen Temperaturen im Sommer und tiefen Temperaturen im Winter bei der Haltung von Teichfischen.
- 12. Verwendung eines homogenen fettreichen Futters gemäß der Ansprüche 1 7 für die Zierfischhaltung zur Verminderung der das Algenwachstum fördernden Stickstoff- und Phosphorausscheidung.