MINORS OF TREE DISTANCE MATRICES

HARRY RICHMAN, FARBOD SHOKRIEH, AND CHENXI WU

ABSTRACT. We prove a formula for the determinant of a principal minor of the distance matrix of a weighted tree. This generalizes a result of Graham and Pollak.

Contents

1.	Introduction	1
2.	Background	3
3.	Proofs	3
4.	Physical interpretation	7
5.	Examples	7
6.	Further work	8
Acknowledgements		8
References		8

1. Introduction

Suppose G = (V, E) is a tree with n vertices. Let D denote the distance matrix of G. In [4], Graham and Pollak proved that

eq:full-det

(1)
$$\det D = (-1)^{n-1} 2^{n-2} (n-1).$$

This identity is remarkable in that the result does not depend on the tree structure, beyond the number of vertices. This identity was motivated by a problem in data communication, and inspired much further research on distance matrices.

The main result of this paper is to generalize (I) by replacing D with any princi-

The main result of this paper is to generalize ((I) by replacing D with any principal minor. For $S \subset V(G)$, let D[S] denote the submatrix consisting of the S-indexed rows and columns.

thm:main

Theorem 1. Suppose G is a tree with n vertices, and distance matrix D. Let $S \subset V(G)$ be a subset of vertices. Then

eq:main

(2)
$$\det D[S] = (-1)^{|S|-1} 2^{|S|-2} \left((n-1) \kappa(G/S) - \sum_{\mathcal{F}_2(G/S)} k(F_*)^2 \right).$$

where G/S denotes the quotient graph that identifies together vertices in S, $\kappa(G/S)$ is the number of S-rooted spanning forests of G, $\mathcal{F}_2(G/S)$ is the set of (S,*)-rooted spanning forests of G, F_* denotes the *-component of F, and

$$k(F_*) = 2 - \deg^o(F_*).$$

Date: v1, May 5, 2022 (Preliminary draft, not for circulation).

Note: the quantities c(F,*), $k(F_*)$ satisfy

$$1 \le c(F, *) \le |S|, \qquad 2 - |S| \le k(F_*) \le 1.$$

When S = V is the full vertex set, the quotient graph G/V consists of a single

vertex with n-1 loop edges, so $\kappa(G/V)=1$ and $\mathcal{F}_2(G/V)=\emptyset$. Weighted version: A weighted version of (I) was proved by Bapat–Kirkland–Neumann [I].

eq:w-full-det

(3)
$$\det D_{\alpha} = (-1)^{n-1} 2^{n-2} \prod_{e \in E} \alpha_e \sum_{e \in E} \alpha_e.$$

thm:w-main

Theorem 2. Suppose G is a finite, weighted tree, and $A \subset V(G)$ is a subset of vertices. Then

eq:w-main

(4)
$$\det D[A] = (-1)^{|S|-1} 2^{|S|-2} \left(\sum_{E(G)} \ell(e) \sum_{\mathcal{T}(G/S)} w(T) - \sum_{\mathcal{F}_2(G/S)} w(F) k(F_*)^2 \right).$$

where $\mathcal{T}(G/A)$ denotes the set of A-rooted spanning forests of G, F_2 varies over all (A,*)-rooted spanning forests of G, F_* denotes the *-component of F.

It is worth observing that the distances appearing in D[S] may ignore a large part of the ambient tree G. We could instead replace G by the subtree consisting of paths between vertices in S, which we call $\operatorname{conv}(S,G)$, the *convex hull* of $S \subset G$. To apply formula (2) "efficiently," we should replace G with this convex hull $\operatorname{conv}(S,G)$. However, the formula as stated is true even without this replacement due to cancellation of terms.

Corollary 3.

(5)
$$\frac{\det D[S]}{\cot D[S]} = \frac{1}{2} \left(\sum_{E(G)} \ell(e) - \frac{\sum_{\mathcal{F}_2(G/S)} w(F) k(F_*)^2}{\sum_{\mathcal{T}(G/S)} w(T)} \right).$$

Theorem 4 (Monotonicity of principal minor ratios). Suppose G = (V, E) is a finite, weighted tree with distance matrix D.

(1) If $S \subset V(G)$ is nonempty,

$$0 \le \frac{\det D[S]}{\cot D[S]} \le \frac{1}{2} \sum_{E(G)} \ell(e).$$

(2) If conv(S, G) denotes the subtree of G consisting of all paths between points of $S \subset V(G)$,

$$\frac{\det D[S]}{\cot D[S]} \le \frac{1}{2} \sum_{E(\operatorname{conv}(S,G))} \ell(e).$$

(3) If $A, B \subset V(G)$ are nonempty subsets with $A \subset B$, then

$$\frac{\det D[A]}{\cot D[A]} \le \frac{\det D[B]}{\cot D[B]}.$$

Theorem 5 (Nonsingular minors). Let G be a finite, weighted tree with distance matrix D, and let $S \subset V(G)$ be a subset of vertices. If $|S| \geq 2$ then $\det D[S] \neq 0$.

1.1. **Previous work.** A formula for the inverse matrix D^{-1} was found by Graham and Lovász in [3].

1.2. Notation. G a finite graph, loops and parallel edges allowed, possibly disconnected

E(G) edge set of G

V(G) vertex set of G

 $\kappa(G)$ number of spanning trees of G

 $\mathcal{T}(G)$ the set of spanning trees of G

 $\mathcal{F}_2(G)$ the set of 2-component forests of G

2. Background

For background on enumeration problems for graphs and trees, see Moon [5]. The following theorem is due to Kirchhoff. For any graph G, let $\kappa(G)$ denote the number of spanning trees of G.

Theorem 6 (All-minors matrix tree theorem). Let G = (V, E) be a finite graph. Let L denote the Laplacian matrix of G. Then for any nonempty vertex set $S \subset V(G)$,

(6)
$$\det L[V \setminus S] = \kappa(G/S).$$

Note that $\kappa(G/S)$ is also the number of S-rooted spanning forests of G.

Theorem 7 ([2]). Let T be a tree with m+1 vertices and m edges. Let D be the distance matrix of T, and L the Laplacian matrix. Let $S \subset V(T)$ be a subset of vertices of T. Then

$$\operatorname{cof} D[S] = (-2)^{|S|-1} \det L[V \setminus S].$$

2.1. Trees and forests.

3. Proofs

Outline of proof: given subset S and distance matrix minor D[S], we will

- (1) Find vector $\mathbf{m} \in \mathbb{R}^S$ such that $D[S]\mathbf{m} = \lambda \mathbf{1}$.
- (2) Compute the sum of entries of \mathbf{m} , i.e. $\mathbf{1}^T \mathbf{m}$.
- (3) Note the identity

$$\mathbf{1}^T \mathbf{m} = \lambda (\mathbf{1}^T D[S]^{-1} \mathbf{1}) = \lambda \frac{\cot D[S]}{\det D[S]}.$$

where $\operatorname{cof} D[S]$ is the sum of cofactors of D[S].

(4) Use known expression for cof D[S] to compute

$$\det D[S] = \lambda(\operatorname{cof} D[S]) \left(\mathbf{1}^T \mathbf{m}\right)^{-1}.$$

The interesting part of this expression will be located in the constant λ .

Example 8. Suppose G is a tree consisting of three paths joined at a central vertex. Let S consist of the central vertex, and the three endpoints of the paths. The corresponding minor of the distance matrix is

$$D[S] = \begin{bmatrix} 0 & a & b & c \\ a & 0 & a+b & a+c \\ b & a+b & 0 & b+c \\ c & a+c & b+c & 0 \end{bmatrix}.$$

Following the steps outlined above:

(1) The vector
$$\mathbf{m} = \begin{bmatrix} -1\\1\\1\\1 \end{bmatrix}$$
 satisfies $D[S]\mathbf{m} = (a+b+c)\mathbf{1}$

- (2) The sum of entries of \mathbf{m} is $\mathbf{1}^T \mathbf{m} = 2$.
- (3) We have

$$2 = \mathbf{1}^T \mathbf{m} = \lambda(\mathbf{1}^T D[S] \mathbf{1}) = \lambda \frac{\cot D[S]}{\det D[S]}.$$

(4) The cofactor sum is $\operatorname{cof} D[S] = -8abc$, so the determinant is

$$\det D[S] = \lambda \frac{\cot A}{\mathbf{1}^T \mathbf{m}} = (a+b+c)(-8abc)\frac{1}{2} = -4(a+b+c)abc.$$

Proposition 9. Let T = (V, E) a tree, and consider the vector $\mathbf{m} \in \mathbb{R}^V$ defined by $\mathbf{m}(v) = 2 - \deg v$,

where deg v denotes the degree of v in T. Then
$$\mathbf{1}^T \mathbf{m} = \sum_{v \in V} (2 - \deg v) = 2$$
.

Let 1 denote the all-ones vector. When we choose a subset $S \subset V(G)$, we no longer have a single "obvious" replacement for \mathbf{m} inside \mathbb{R}^S . Instead, we can take an average over S-rooted spanning forests.

In the outline above, our first goal is to find a "special" vector $\mathbf{m} \in \mathbb{R}^S$ satisfying $D[S]\mathbf{m} = \lambda \mathbf{1}$. We can approach this first goal as follows: consider \mathbb{R}^S inside the larger vector space $\mathbb{R}^V = \mathbb{R}^S \oplus \mathbb{R}^{V \setminus S}$, and we wish to find vectors $\mathbf{n}_i \in \mathbb{R}^V$ satisfying $\pi_S(D\mathbf{n}_i) = \lambda_i \mathbf{1}$. By finding sufficiently many such vectors \mathbf{n}_i , we can hope to find a linear combination that lies inside $\mathbb{R}^S \oplus \{0\}$.

Proposition 10. Suppose $v \in V \setminus S$. For each $s \in S$, let $\mu(v, s) = current$ flowing to s when unit current enters G at v and G is grounded at S. Explicitly,

 $\mu(v,s) = \frac{\# \ of \ S\text{-rooted spanning forests of } G \ whose \ s\text{-component contains } v}{\# \ of \ S\text{-rooted spanning forests of } G}$

$$=\frac{\sum_{\mathcal{T}(G/S)}\mathbb{1}(v\in T(s))}{\kappa(G/S)}$$

Consider the vector $\mathbf{n} \in \mathbb{R}^V$ defined by

$$\mathbf{n}(v) = 1,$$
 $\mathbf{n}(s) = -\mu(v, s) \text{ if } s \in S,$ $\mathbf{n}(w) = 0 \text{ if } w \notin S \cup v$

Then $\pi_S(D\mathbf{n}) = \lambda \mathbf{1}$ for some λ .

Proof sketch. For any $s, s' \in S$, consider tracking value of $D\mathbf{n}$ along path from s to s'. The value of $D\mathbf{n}$ changes according to current flow in the corresponding system, i.e. $D\mathbf{n}$ records electrical potential. By assumption S is grounded, so $D\mathbf{n}$ takes the same value at s and s'.

Note that we can express the tree distance d(v, w) as a sum over edges

$$d(v,w) = \sum_{e \in E(G)} \delta(e;v,w) \qquad \text{where } \delta(e;v,w) = \begin{cases} 1 & \text{if e lies on $v \sim w$ path,} \\ 0 & \text{otherwise.} \end{cases}$$

• If we fix v and w, then $\delta(-; v, w) : E(G) \to \{0, 1\}$ is the indicator function for the unique v w path in G.

• On the other hand if we fix e and v, then the deletion $G \setminus e$ has two connected components, and $\delta(e; v, -): V(G) \to \{0, 1\}$ is the indicator function for the component of $G \setminus e$ not containing v.

Theorem 11. Let G be a tree, S a subset of vertices, and D[S] the corresponding minor of the distance matrix. Suppose $\mathbf{m}_S \in \mathbb{R}^S$ is defined by

$$\mathbf{m}_{S}(v) = \sum_{T \in \mathcal{T}(G/S)} \sum_{w \in T_{v}} (2 - \deg w) = \sum_{T \in \mathcal{T}(G/S)} 2 - c(T, v).$$

Then $D[S]\mathbf{m} = \lambda \mathbf{1}$ for some constant λ .

Proof. Note that

$$\mathbf{m} = \kappa(G/S) \left(\sum_{v \in V} (2 - \deg v) \delta_v + \sum_{v \in V \setminus S} (\deg v - 2) \mathbf{n}_v \right)$$

Theorem 12. With **m** defined as above, $D[S]\mathbf{m} = \lambda \mathbf{1}$ for

(7)
$$\lambda = \sum_{T(G/S)} w(T) \sum_{E(G)} \ell(e) - \sum_{F_2(G/S)} w(F) k(F, *)^2.$$

where c(T, w) is the "cut index" of the w-component of T (as a spanning forest).

Proof. We have

$$(D[S]\mathbf{m})(v) = \sum_{s \in S} d(v, s)\mathbf{m}(s)$$

$$= \sum_{s \in S} \left(\sum_{e \in E(G)} \ell(e)\delta(e; v, s)\right) \left(\sum_{T \in \mathcal{T}(G/S)} w(T)(2 - \deg^o(T, s))\right)$$

$$= \sum_{T} \sum_{e} \ell(e)w(T) \sum_{s \in S} (2 - \deg^o(T, s))\delta(e; v, s)$$

$$= \sum_{T} \sum_{e} \ell(e)w(T) \sum_{s \in S^*(e, v)} (2 - \deg^o(T, s)).$$

where

$$S^*(e, v) = \{s \in S : e \text{ lies on path from } v \text{ to } s\}.$$

If $e \in \text{conv}(G, S)$, then $S^*(e, v)$ is nonempty and we have

$$\sum_{s \in S^*(e,v)} (2 - c(T,s)) = \begin{cases} 1 & \text{if } e \notin T, \\ 1 - (2 - c(T \setminus e,*)) & \text{if } e \in T(s'), \ s' \in S^*(e,v), \\ 1 + (2 - c(T \setminus e,*)) & \text{if } e \in T(s'), \ s' \notin S^*(e,v) \end{cases}$$

Here $c(T \setminus e, *)$ refers to the cut index of the "free" component of the spanning forest $T \setminus e_{\text{above}}$ From $(\ref{equation})$ we have

$$(D[S]\mathbf{m})(v) = \sum_{e} \sum_{T} \ell(e)w(T)(1 - f(v, e, T))$$

where

$$f(v,e,T) = \begin{cases} 0 & \text{if } e \not\in T \\ 2 - \deg^o(T \setminus e,*) & \text{if } e \in T(s') \text{ for some } s' \not\in S^*(e,v) \\ -(2 - \deg^o(T \setminus e,*) & \text{if } e \in T(s') \text{ for some } s' \in S^*(e,v) \end{cases}$$

$$(D[S]\mathbf{m})(v) - \sum_e \sum_T \ell(e)w(T) = -\sum_T \sum_{e \in T \setminus T(S^*)} \ell(e)w(T)(2 - \deg^o(T \setminus e,*))$$

$$+ \sum_T \sum_{e \in T(S^*)} \ell(e)w(T)(2 - \deg^o(T \setminus e,*))$$

The deletion $T \setminus e$ is an (S, *)-rooted spanning forest of G, so we may rewrite the above expression in terms of $\mathcal{F}_2(G/S)$.

$$(1) = -\sum_{F \in \mathcal{F}_2} w(F)(2 - \deg^o(F, *)) \sum_{T} \sum_{e \in T \setminus T(S^*)} \mathbb{1}(F = T \setminus e)$$
$$+ \sum_{F \in \mathcal{F}_2} w(F)(2 - \deg^o(F, *)) \sum_{T} \sum_{e \in T(S^*)} \mathbb{1}(F = T \setminus e)$$

Next, we note that $F = T \setminus e$ is equivalent to $T = F \cup e$, and in particular this only occurs when we choose $e \in \partial F(*)$:

$$(1) = -\sum_{F \in \mathcal{F}_2} w(F)(2 - \deg^o(F, *)) \sum_{e \in \partial F(*)} \mathbb{1}(\delta(e; v, F(*)) = 1)$$
$$+ \sum_{F \in \mathcal{F}_2} w(F)(2 - \deg^o(F, *)) \sum_{e \in \partial F(*)} \mathbb{1}(\delta(e; v, F(*)) = 0)$$

Finally, we observe that for any forest F,

$$\#\{e \in \partial F(*) : \delta(e; v, F(*)) = 0\} = \deg^{o}(F, *) - 1$$

and

$$\#\{e \in \partial F(*) : \delta(e; v, F(*)) = 1\} = 1$$

Thus

$$(1) = -\sum_{F \in \mathcal{F}_2} w(F)(2 - \deg^o(F, *))(1)$$

$$+ \sum_{F \in \mathcal{F}_2} w(F)(2 - \deg^o(F, *))(\deg^o(F, *) - 1)$$

$$= -\sum_{F \in \mathcal{F}_2(G/S)} w(F)(2 - \deg^o(F, *))^2.$$

Remark

The set $\mathcal{F}_2(G/S)$ of (S,*)-rooted spanning forests of G can be partitioned into two types: "active" and "inactive".

$$\mathcal{F}_2(G/S) = \mathcal{F}_2^{in}(G/S) \sqcup \mathcal{F}_2^{out}(G/S),$$

where

$$\mathcal{F}_2^{in}(G/S) = \{ F \in \mathcal{F}_2(G/S) \text{ such that } \deg^o(*, F) \ge 2 \},$$

$$\mathcal{F}_2^{out}(G/S) = \{ F \in \mathcal{F}_2(G/S) \text{ such that } \deg^o(*, F) = 1 \}.$$

Remark:

Moreover, for a given spanning forest $F \in \mathcal{F}_2(G/S, *)$, there are exactly c(F, *) choices of pairs $(T, e) \in \mathcal{T}(G/S) \times E(G)$ such that $F = T \setminus e$. Consider the map

$$E(G) \times \mathcal{T}(G/S) \to \mathcal{F}_2(G/S)$$

defined by ...

$$(e,T)\mapsto T\setminus e.$$

For a forest F in $\mathcal{F}_2(G/S)$, the preimage under this map has c(F,*) elements.

Proposition 13. Let G = (V, E) be a tree, and $S \subset V$. Suppose we label $S = \{s_1, \ldots, s_r\}$ and $V \setminus S = \{t_1, \ldots, t_{n-r}\}$. For each $t_i \in V \setminus S$, consider $\mathbf{f}_i \in \mathbb{R}^V$ defined by

Example 14. If

$$D[S \cup t] = \begin{bmatrix} 0 & a & b & c \\ a & 0 & a+b & a+c \\ b & a+b & 0 & b+c \\ c & a+c & b+c & 0 \end{bmatrix}$$

then

$$\begin{bmatrix} 0 & a & b & c \\ a & 0 & a+b & a+c \\ b & a+b & 0 & b+c \\ c & a+c & b+c & 0 \end{bmatrix} \begin{bmatrix} ab+ac+bc \\ -bc \\ -ac \\ -ab \end{bmatrix} = \begin{bmatrix} -3abc \\ -abc \\ -abc \\ -abc \end{bmatrix}$$

4. Physical interpretation

If we consider G as a network of wires with each edge containing a unit resistor, which is grounded at all nodes in S, then \mathbf{m}_S records the currents flowing to S when current is added on $V \setminus S$ in the amount $2 - \deg v$ for each $v \notin S$.

5. Examples

Example 15. Suppose G is a tree consisting of three paths joined at a central vertex. Let S consist of the central vertex, and the three endpoints of the paths. The corresponding minor of the distance matrix is

$$D[S] = \begin{bmatrix} 0 & a & b & c \\ a & 0 & a+b & a+c \\ b & a+b & 0 & b+c \\ c & a+c & b+c & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & a & b & c \\ a & -a & a & a \\ b & b & -b & b \\ c & c & c & c & -c \end{bmatrix} \sim \begin{bmatrix} 0 & a & b & c \\ a & -2a & 0 & 0 \\ b & 0 & -2b & 0 \\ c & 0 & 0 & -2c \end{bmatrix}.$$

The determinant is

$$\det D[S] = -4(a+b+c)abc.$$

Example 16. Suppose Γ is a tripod with lengths a, b, c and corresponding leaf vertices u, v, w.

Let $S = \{u, v, w\}$. Then

$$D[S] = \begin{bmatrix} 0 & a+b & a+c \\ a+b & 0 & b+c \\ a+c & b+c & 0 \end{bmatrix}.$$

and

$$\det D[S] = 2(a+b)(a+c)(b+c) = 2((a+b+c)(ab+ac+bc) - abc).$$

The "special vector" that satisfies $D[S]\mathbf{m} = \lambda \mathbf{1}$ in this example is

$$\mathbf{m}^T = \begin{bmatrix} a(b+c) & b(a+c) & c(a+b) \end{bmatrix}.$$

6. Further work

See [6].

ACKNOWLEDGEMENTS

The authors would like to thank Ravindra Bapat for helpful discussion.

References

bapat-kirkland-neumann

bapat-sivasubramanian

graham-lovasz

graham-pollak

moon

richman-shokrieh-wu

[1] R. Bapat, S. J. Kirkland, and M. Neumann. On distance matrices and Laplacians. Linear Algebra Appl., 401:193-209, 2005.

- R. B. Bapat and S. Sivasubramanian. Identities for minors of the Laplacian, resistance and distance matrices. Linear Algebra Appl., 435(6):1479–1489, 2011.
- R. L. Graham and L. Lovász. Distance matrix polynomials of trees. Adv. in Math., 29(1):60-88, 1978.
- R. L. Graham and H. O. Pollak. On the addressing problem for loop switching. Bell System
- Tech. J., 50:2495-2519, 1971.
- J. W. Moon. Counting labelled trees. Canadian Mathematical Monographs, No. 1. Canadian Mathematical Congress, Montreal, Que., 1970. From lectures delivered to the Twelfth Biennial Seminar of the Canadian Mathematical Congress (Vancouver, 1969).
- [6] D. H. Richman, F. Shokrieh, and C. Wu. Capacity on metric graphs, 2022. in preparation.