硬盘分区&LVM逻辑卷2020Irf227

一、硬盘分区
1.Linux虚拟机关机状态下添加一个100G和一个20G的SCSI接口硬盘
2.检测并确认新硬盘 fdisk -I 命令
3.规划硬盘中的分区 fdisk命令
4.创建文件系统mkfs、mkswap命令
5.创建XFS文件系统
6.创建ext4文件系统
8.mkswap命令
9.基于分区扩展SWAP分区
10.基于文件扩展SWAP分区
10.挂载文件系统、ISO镜像、mount命令
11.卸载已挂载的文件系统 umount命令
12.设置文件系统的自动挂载 /etc/fstab 文件面试题
13.查看磁盘使用情况 df命令
14.查看分区的UUID号 blkid命令
15.基于设备UUID挂载
16.大小超过2T的分区规划 parted命令
用法: parted [选项][设备[命令][参数]]
帮助选项:
操作命令:
1.Parted工具详解:
2.开始通过parted工具来对磁盘进行操作

二、	LVM逻辑卷管理
	1.LVM概述Logical Volume Manager
	2.LVM基本概念
	(1) PV (Physical Volume) 物理卷
	(2) VG (Volume Group) 卷组
	(3) LV (Logical Volume) 逻辑卷
	3.LVM管理命令
	4.物理卷管理
	4.1 pvscan命令
	4.2 pvcreate命令
	4.3 pvdisplay命令
	4.4 pvremove命令
	5.卷组管理
	5.1 vgscan命令
	5.2 vgcreate命令
	5.3 vgdisplay命令
	5.4 vgremove命令
	5.5 vgextend命令
	6.逻辑卷管理
	6.1 lvscan命令
	6.2 lvcreate命令
	6.3 lvdisplay命令
	6.4格式化并使用逻辑卷
	6.5 lvextend命令

6.7 lvremove命令

一、硬盘分区

1.Linux虚拟机关机状态下添加一个100G和一个20G的SCSI接口硬盘

2.检测并确认新硬盘 fdisk -I 命令

格式: fdisk -1 「磁盘设备]

[root@localhost ~]# fdisk -1

磁盘 /dev/sda: 85.9 GB, 85899345920 字节, 167772160 个扇区

Units = 扇区 of 1 * 512 = 512 bytes

扇区大小(逻辑/物理): 512 字节 / 512 字节

I/O 大小(最小/最佳): 512 字节 / 512 字节

磁盘标签类型: dos

磁盘标识符: 0x000ab9f0

设金	备 Boo	ot	Start	End	Blocks	Id S	System	
/dev/s	da1	*	2048	2099199	1048576	83	Linux	
/dev/s	da2		2099200	167772159	82836480	8e	Linux	LVM

磁盘 /dev/sdb: 107.4 GB, 107374182400 字节, 209715200 个扇区

Units = 扇区 of 1 * 512 = 512 bytes

扇区大小(逻辑/物理): 512 字节 / 512 字节

I/O 大小(最小/最佳): 512 字节 / 512 字节

[root@localhost ~]# fdisk -1 | grep "/dev/sd*"

磁盘 /dev/sda: 85.9 GB, 85899345920 字节, 167772160 个扇区

/dev/sda1 * 2048 2099199 1048576 83 Linux

/dev/sda2 2099200 167772159 82836480 8e Linux LVM

磁盘 /dev/sdb: 107.4 GB, 107374182400 字节, 209715200 个扇区

/dev/sdb1 2048 4196351 2097152 83 Linux

/dev/sdb2 4196352 8390655 2097152 83 Linux

/dev/sdb3 8390656 209715199 100662272 5 Extended

/dev/sdb5 8392704 10489855 1048576 82 Linux swap / Solaris

/dev/sdb6 10491904 20977663 5242880 83 Linux

磁盘 /dev/sdc: 107.4 GB, 107374182400 字节, 209715200 个扇区

磁盘 /dev/sdd: 107.4 GB, 107374182400 字节, 209715200 个扇区

磁盘 /dev/sde: 107.4 GB, 107374182400 字节, 209715200 个扇区

[root@localhost ~]# fdisk -1 /dev/sda

磁盘 /dev/sda: 85.9 GB, 85899345920 字节, 167772160 个扇区

Units = 扇区 of 1 * 512 = 512 bytes

扇区大小(逻辑/物理): 512 字节 / 512 字节

I/0 大小(最小/最佳): 512 字节 / 512 字节

磁盘标签类型: dos

磁盘标识符: 0x000ab9f0

设备 Boot	Start	End	Blocks	Id System
/dev/sda1 *	2048	2099199	1048576	83 Linux
/dev/sda2	2099200	167772159	82836480	8e Linux LVM

MBR (msdos dos) GPT (最多可以划分128个主分区) 带*号的是系统引导文件,对于系统启动很重要

对于已有的分区,将通过列表的方式输出以下信息:

- Device:分区的设备文件名称
- Boot: 是否是引导分区, 是则有 "*"
- Start:该分区在硬盘中的起始位置(柱面数)
- End:该分区在硬盘中的结束(柱面数)
- Blocks:分区的大小,以Blocks(块)为单位,默认的块大小为1024字节
- Id:分区类型的ID标记号,对于EXT4分区为83,LVM分区为8e,swap分区为
- 82, RAID分区为fd等
- System:分区类型

注意: 新挂接的硬盘可能未包含任何分区会提示以下信息 (Disk/dev/sdb doesn't contain a vaild partition table)

注意:分区类型的概念在windows中是没有的,分区类型与文件系统类型应一致,这样管理磁盘文件系统时才不容易引起混乱

3.规划硬盘中的分区 fdisk命令

作用: 在交互式的操作环境中管理磁盘分区

格式: fdisk [磁盘设备]

常用选项:

m: 查看操作指令的帮助信息

p:列表查看分区信息

n:新建分区

d:删除分区

t:变更分区类型

w:保存分区设置并退出

q:放弃分区设置并退出

Ctrl+退格键: 删除输入的错误字符

示例:

为主机新增一块100G的SCSI硬盘

对该硬盘进行分区

划分两个主分区,各10G,剩余空间为扩展分区

在扩展分区中建立两个逻辑分区,第一个逻辑分区2G,类型为swap。第二个逻辑分区为20G

[root@localhost ~]# fdisk -1 /dev/sdb

磁盘 /dev/sdb: 107.4 GB, 107374182400 字节, 209715200 个扇区

Units = 扇区 of 1 * 512 = 512 bytes

扇区大小(逻辑/物理): 512 字节 / 512 字节

I/0 大小(最小/最佳): 512 字节 / 512 字节

磁盘标签类型: dos

磁盘标识符: 0x398f19af

设备 Boot	Start	End	Blocks I	d S	ystem
/dev/sdb1	2048	4196351	2097152	83	Linux
/dev/sdb2	4196352	8390655	2097152	83	Linux
/dev/sdb3	8390656	209715199	100662272	5	Extended
/dev/sdb5	8392704	10489855	1048576	82	Linux swap / Solaris
/dev/sdb6	10491904	20977663	5242880	83	Linux

[root@localhost ~]# fdisk /dev/sdb

欢迎使用 fdisk (util-linux 2.23.2)。

更改将停留在内存中,直到您决定将更改写入磁盘。

使用写入命令前请三思。

命令(输入 m 获取帮助): p

磁盘 /dev/sdb: 107.4 GB, 107374182400 字节, 209715200 个扇区

Units = 扇区 of 1 * 512 = 512 bytes

扇区大小(逻辑/物理): 512 字节 / 512 字节

I/0 大小(最小/最佳): 512 字节 / 512 字节

磁盘标签类型: dos

磁盘标识符: 0x398f19af

设备 Boot	Start	End	Blocks I	Id S	System
/dev/sdb1	2048	4196351	2097152	83	Linux
/dev/sdb2	4196352	8390655	2097152	83	Linux
/dev/sdb3	8390656	209715199	100662272	5	Extended
/dev/sdb5	8392704	10489855	1048576	82	Linux swap / Solaris
/dev/sdb6	10491904	20977663	5242880	0	Empty

命令(输入 m 获取帮助): t

分区号 (1-3,5,6, 默认 6): 6

Hex 代码(输入 L 列出所有代码): L

0	空	24	NEC DOS	81	Minix / 旧 Linu	bf	Solaris
1	FAT12	27	隐藏的 NTFS Win	82	Linux 交换 / So	c1	DRDOS/sec (FAT-
2	XENIX root	39	Plan 9	83	Linux	c4	DRDOS/sec (FAT-
3	XENIX usr	3c	PartitionMagic	84	OS/2 隐藏的 C:	c6	DRDOS/sec (FAT-
4	FAT16 <32M	40	Venix 80286	85	Linux 扩展	c7	Syrinx
5	扩展	41	PPC PReP Boot	86	NTFS 卷集	da	非文件系统数据
6	FAT16	42	SFS	87	NTFS 卷集	db	CP/M / CTOS / .
7	HPFS/NTFS/exFAT	4d	QNX4. x	88	Linux 纯文本	de	Dell 工具
8	AIX	4e	QNX4.x 第2部分	8e	Linux LVM	df	BootIt
9	AIX 可启动	4f	QNX4.x 第3部分	93	Amoeba	e1	DOS 访问
a	OS/2 启动管理器	50	OnTrack DM	94	Amoeba BBT	еЗ	DOS R/O
b	W95 FAT32	51	OnTrack DM6 Aux	9f	BSD/OS	e4	SpeedStor
С	W95 FAT32 (LBA)	52	CP/M	a0	IBM Thinkpad 休	eb	BeOS fs
е	W95 FAT16 (LBA)	53	OnTrack DM6 Aux	a5	FreeBSD	ee	GPT
f	W95 扩展 (LBA)	54	OnTrackDM6	a6	OpenBSD	ef	EFI (FAT-12/16/
10	OPUS	55	EZ-Drive	a7	NeXTSTEP	f0	Linux/PA-RISC

- 11 隐藏的 FAT12 56 Golden Bow a8 Darwin UFS f1 SpeedStor
- 12 Compag 诊断 5c Priam Edisk a9 NetBSD f4 SpeedStor
- 14 隐藏的 FAT16 <3 61 SpeedStor ab Darwin 启动 f2 DOS 次要
- 16 隐藏的 FAT16 63 GNU HURD or Sys af HFS / HFS+ fb VMware VMFS
- 17 隐藏的 HPFS/NTF 64 Novell Netware b7 BSDI fs fc VMware VMKCORE
- 18 AST 智能睡眠 65 Novell Netware b8 BSDI swap fd Linux raid 自动
- 1b 隐藏的 W95 FAT3 70 DiskSecure 多启 bb Boot Wizard 隐 fe LANstep
- 1c 隐藏的 W95 FAT3 75 PC/IX be Solaris 启动 ff BBT
- 1e 隐藏的 W95 FAT1 80 旧 Minix

Hex 代码(输入 L 列出所有代码): 83

已将分区 "Empty" 的类型更改为 "Linux"

命令(输入 m 获取帮助): P

磁盘 /dev/sdb: 107.4 GB, 107374182400 字节, 209715200 个扇区

Units = 扇区 of 1 * 512 = 512 bytes

扇区大小(逻辑/物理): 512 字节 / 512 字节

I/0 大小(最小/最佳): 512 字节 / 512 字节

磁盘标签类型: dos

磁盘标识符: 0x398f19af

设备 Boot	Start	End	Blocks I	d S	ystem
/dev/sdb1	2048	4196351	2097152	83	Linux
/dev/sdb2	4196352	8390655	2097152	83	Linux
/dev/sdb3	8390656	209715199	100662272	5	Extended
/dev/sdb5	8392704	10489855	1048576	82	Linux swap / Solaris
/dev/sdb6	10491904	20977663	5242880	83	Linux

命令(输入 m 获取帮助): w

The partition table has been altered!

Calling ioctl() to re-read partition table.

正在同步磁盘。

[root@localhost ~]# partprobe /dev/sdb

[root@localhost ~]# partx -u /dev/sdb

上面两个作用相同,使系统加载分区表,识别新的分区(有时需要重启操作系统才能识别)

4.创建文件系统mkfs、mkswap命令

mkfs命令

作用: 创建文件系统(格式化) Make Filesystem

格式: mkfs -t 文件系统类型 分区设备

常用选项:

- -t:指定格式化文件类型
- -b:指定block大小,单位为字节
- -l:inode大小
- -U:设置UUID号
- -q:执行时不显示任何信息

「root@localhost ~]# mkfs #两次Tab键

mkfs mkfs.cramfs mkfs.ext3 mkfs.fat mkfs.msdos mkfs.xfs
mkfs.btrfs mkfs.ext2 mkfs.ext4 mkfs.minix mkfs.vfat

5.创建XFS文件系统

创建文件夹才能用

[root@localhost ~]# mkfs -t xfs /dev/sdb1 或者 mkfs.xfs /dev/sdb1 meta-data=/dev/sdb1 isize=512 agcount=4, agsize=131072 blks sectsz=512 attr=2, projid32bit=1 finobt=0, sparse=0 crc=1 data bsize=4096 blocks=524288, imaxpct=25 sunit=0 swidth=0 blks bsize=4096 ascii-ci=0 ftype=1 =version 2 naming log =internal log bsize=4096 blocks=2560, version=2 sectsz=512 sunit=0 blks, lazycount=1 extsz=4096 blocks=0, rtextents=0 realtime =none [root@localhost ~]# mkdir /data1 [root@localhost ~]# mount /dev/sdb1 /data1 [root@localhost ~]# cd /data1/ [root@localhost data1]# 1s

6.创建ext4文件系统

[root@localhost ~] # mkfs -t ext4 /dev/sdb2 = mkfs.ext4 /dev/sdb2

创建文件夹才能用

7. 创建FAT32文件系统

[root@localhost ~]# mkfs -t vfat -F 32 /dev/sdb6
mkfs.fat 3.0.20 (12 Jun 2013)

创建文件夹才能用

8.mkswap命令

作用: 创建交换机文件系统

格式: mkswap分区设备

9.基于分区扩展SWAP分区

[root@localhost ~]# mkswap /dev/sdb5

正在设置交换空间版本 1, 大小 = 1048572 KiB

无标签, UUID=5f657f98-556b-495d-a935-f3712cb2b805

[root@localhost ~]# swapon -s

文件名 类型 大小 已用 权限

/dev/dm-1 partition 2097148 0 -1

[root@localhost ~]# grep -i "swaptotal" /proc/meminfo

SwapTotal: 2097148 kB

[root@localhost ~]# cat /proc/meminfo

MemTotal: 997956 kB

MemFree: 203968 kB

MemAvailable: 403432 kB

Buffers: 22992 kB

Cached: 296116 kB

SwapCached: 0 kB

Mlocked: 0 kB

SwapTotal: 2097148 kB

SwapFree: 2097148 kB

基于分区扩展大小,需要创建分区,不是特别方便

从已有的硬盘来弄

10.基于文件扩展SWAP分区

[root@localhost ~]# dd if=/dev/zero of=/swapfile bs=1M count=200

记录了200+0 的读入

记录了200+0 的写出

209715200字节(210 MB)已复制,10.9967 秒,19.1 MB/秒

[root@localhost ~]# du -sh /swapfile

200M /swapfile

[root@localhost ~]# chmod 600 /swapfile

[root@localhost ~]# mkswap /swfile

正在设置交换空间版本 1, 大小 = 307196 KiB

无标签, UUID=47c02cc6-c3f3-4203-867d-42740e66b8eb

[root@localhost ~]# swapon /swfile

[root@localhost ~]# grep -i "swaptotal" /proc/meminfo

SwapTotal: 2097148 kB

[root@localhost ~]# swapon -s

文件名 类型 大小 己用 权限

/dev/dm-1 partition 2097148 0 -1

10.挂载文件系统、ISO镜像、mount命令

作用: 挂载文件系统、ISO镜像

格式:

```
mount [-t类型] 存储设备 挂载点目录
mount -o loop ISO 镜像文件 挂载点目录
mount 查看当前的挂载
mount -a 挂载/etc/fstab中已记录的所有挂载
```

```
[root@localhost ~]# mkdir /{dianying, xuexi, youxi}
[root@localhost ~]#mount /dev/sdb1 /dianying/
[root@localhost ~]#mount /dev/sdb2 /xuexi/
[root@localhost ~]#mount /dev/sdb3 /youxi/
```

```
[root@localhost ~]#mount | grep sdb

/dev/sdb6 on /youxi type vfat

(rw, relatime, fmask=0022, dmask=0022, codepage=437, iocharset=ascii, short

name=mixed, errors=remount-ro)

/dev/sdb1 on /dianying type xfs (rw, relatime, seclabel, attr2, inode64, noquota)

/dev/sdb2 on /xuexi type ext4 (rw, relatime, seclabel, data=ordered)
```

#前提是上传一个测试IOS镜像文件到Linux系统中

```
[root@localhost ~]# vim /etc/fstab
[root@localhost ~]# rz
```

```
[root@localhost ~]# mkdir /vmtools
[root@localhost ~]# mount /root/linux.iso /vmtools
mount: /dev/loop0 写保护,将以只读方式挂载
[root@localhost ~]# mount | tail -1
/root/linux.iso on /vmtools type iso9660 (ro,relatime)
[root@localhost ~]# ls /vmtools/
manifest.txt VMwareTools-10.3.2-9925305.tar.gz vmware-tools-upgrader-64
run upgrader.sh vmware-tools-upgrader-32
```

11.卸载已挂载的文件系统 umount命令

作用: 卸载已挂载的文件系统

格式:

umount 存储设备位置

umount 挂载点目录

umount -a 卸载所有/etc/fstab已记录的挂载 --不要轻易使用

光驱

eject = > eject -t -----弹出光驱

卸载

[root@localhost ~]# umount /dev/sdb6

 $[{\tt root@localhost} ~ \tilde{\ }] \# \ {\tt umount} \ / {\tt xuexi}$

[root@localhost ~]# mount | grep sdb

[root@localhost ~]# umount -a

umount 后面可以跟 设备 文件所在目录

umount: /: 目标忙。

(有些情况下通过losf(8)或fuser(1)可以找到有关使用该设备的进程的有用信息)

umount: /sys/fs/cgroup: 目标忙

(有些情况下通过losf(8)或fuser(1)可以找到有关使用该设备的进程的有用信息)

umount: /run:目标忙

(有些情况下通过losf(8)或fuser(1)可以找到有关使用该设备的进程的有用信息)

umount: /dev:目标忙

(有些情况下通过losf(8)或fuser(1)可以找到有关使用该设备的进程的有用信息)

[root@localhost ~]#mount -a

12.设置文件系统的自动挂载 /etc/fstab 文件-----面试题

[root@localhost ~]# vim /etc/fstab

#文件最后追加四行

/dev/sdb1	/data1	xfs	defaults	0 0
/dev/sdb2	/data2	ext4	defaults	0 0
UUID="0450-0157"	/data3	vfat	defaults	0 0
/dev/cdrom	/media/cdrom/	iso9660	defaults	0 0

[root@localhost ~]# mount -a

mount: /dev/sr0 写保护,将以只读方式挂载

```
[root@localhost ~]# vim /etc/fstab
[root@localhost ~]# mount | grep sdb
/dev/sdb1 on /data1 type xfs (rw, relatime, seclabel, attr2, inode64, noquota)
/dev/sdb2 on /data2 type ext4 (rw, relatime, seclabel, data=ordered)
/dev/sdb3 on /data3 type vfat
(rw, relatime, fmask=0022, dmask=0022, codepage=437, iocharset=ascii, short
name=mixed, errors=remount-ro)
```

常见参数:

/dev/sdb1 /dianying xfs
defaults, noauto, ro 0 1

defaults: 默认

auto: 系统自动挂载, fstab默认就是这个选项

noauto: 开机不自动挂载

nouser: 只有超级用户可以挂载 ro: 按制度权限挂载 (read only)

rw:按可读可写权限挂载 user:任何用户都可以挂载

[root@localhost ~]# cat /etc/fstab

/etc/fstab # Created by anaconda on Mon Jan 6 00:04:38 2020 # # Accessible filesystems, by reference, are maintained under '/dev/disk' # See man pages fstab(5), findfs(8), mount(8) and/or blkid(8) for more info # /dev/mapper/centos-root / xfs defaults 0 0 UUID=a981f4c4-dafc-4a70-afe5-f242b7662655 /boot xfs defaults /dev/mapper/centos-home /home defaults 0 0 xfs /dev/mapper/centos-swap swap defaults 0 0 swap

/dev/sdb1	/data1	xfs	defaults	0 0
/dev/sdb2	/data2	ext4	defaults	0 0
UUID="0450-0157"	/data3	vfat	defaults	0 0
/dev/cdrom	/media/cdrom/	iso966	0 defaults	0 0

dump备份设置 --第一列

/dev/sdb1 /dianying ext4 defaults

1 2

当其值为1时,将允许dump备份程序备份;设置为0时,忽略备份操作

fsck磁盘检查设置;检查文件设备的完整性 --第二列

/dev/sdb1 /dianying ext4 defaults

1 2

其值是一个顺序,当其值为0时,永远不检查;而/根目录分区永远都为1 <u>优先检查</u>;其他分区一般为2 <u>次要检查</u>。

13.查看磁盘使用情况 df命令

作用: 查看磁盘使用情况 格式: df [选项] [文件]

常用选项:

• -h: 显示更易读的容量单位

• -T: 显示对应文件系统的类型

• -i: 显示inode数量

[root@localhost ~]# df -Th

文件系统	类型	容量	已用	可用	己用%	挂载点
/dev/mapper/centos-root	xfs	50G	4.9G	46G	10%	/
devtmpfs	${\tt devtmpfs}$	975M	0	975M	0%	/dev
tmpfs	tmpfs	992M	0	992M	0%	/dev/shm
tmpfs	tmpfs	992M	11M	982M	2%	/run
tmpfs	tmpfs	992M	0	992M	0%	/sys/fs/cgroup
$/{\tt dev/mapper/centos-home}$	xfs	46G	33M	46G	1%	/home
/dev/sda1	xfs	1014M	157M	858M	16%	/boot
tmpfs	tmpfs	199M	12K	199M	1%	/run/user/42
tmpfs	tmpfs	199M	0	199M	0%	/run/user/0
/dev/sdb1	xfs	5.0G	33M	5.0G	1%	/data1

/dev/sdb2	ext4	4.8G	20M	4.6G	1% /data2
/dev/sdb3	vfat	5.0G	4.0K	5.0G	1% /data3
/dev/loop0	iso9660	55M	55M	0	100% /vmtools
/dev/sr0	iso9660	4.2G	4.2G	0	100% /media/cdrom

[root@localhost ~]# df -Th /dev/sdb1

文件系统 类型 容量 已用 可用 已用% 挂载点 /dev/sdb1 xfs 5. 0G 33M 5.0G 1% /data1

查看类命令很重要

[root@localhost ~]# who

tty2 2020-02-26 17:24 root

pts/0 2020-02-26 17:25 (192.168.200.128) root

[root@localhost ~]# w

20:02:15 up 2:38, 2 users, load average: 0.02, 0.04, 0.05

TTY **USER** FROM LOGIN@ IDLE JCPU PCPU WHAT

tty2 17:242:37m 0.07s 0.07s -bash root

pts/0 192. 168. 200. 128 17:25 7.00s 0.20s 0.03s w root

[root@localhost ~]# uptime

20:02:29 up 2:38, 2 users, load average: 0.01, 0.04, 0.05

[root@localhost ~]# df -i

文件系统		Inode	己用(I)	可用(I)
已用(I)%	挂载点			
/dev/mapper/centos	s-root 26214400	162275	26052125	1%
/				
devtmpfs		249476	404	249072
1%	/dev			
tmpfs		253768	1	253767
1%	/dev/shm			
tmpfs		253768	908	252860
1%	/run			
tmpfs		253768	16	253752
1%	/svs/fs/cgroup			

/sys/fs/cgroup

/dev/mapper/centos-home	23654400 10		23654390	1%
/home				
/dev/sda1	524288	326		523962
1% /boo	t			
tmpfs	253768	3	9	253759
1% /run,	/user/42			
tmpfs	253768	}	1	253767
1% /rui	n/user/0			
/dev/sdb1	2621440	3		2621437
1% /da	tal			
/dev/sdb2	327680	11		327669
1%	data2			
/dev/sdb3		0	0	0
- /0	data3			
/dev/loop0		0	0	0
_ /-	vmtools			
/dev/sr0		0	0	
0 -	/media/o	edrom		

当我们创建一个文件的时候就会消耗一个inode

[root@localhost ~]# df ~Th /dev/sdb1#帶单位文件系统类型容量已用可用已用%挂载点

/dev/sdb1 xfs 5.0G 33M 5.0G 1% /data1

[root@localhost ~]# df -i /dev/sdb1

文件系统 Inode 已用(I) 可用(I) 已用(I)% 挂载点

/dev/sdb1 2621440 3 2621437 1% /data1

14.查看分区的UUID号 blkid命令

UUID号: 分区必须格式化后才会有UUID号

格式: blkid 分区设备

15.基于设备UUID挂载

UUID号是唯一的, uuid 识别设备

写fskid的时候最好写上UID号

[root@localhost ~]# umount /dev/sdb3

[root@localhost ~]# blkid /dev/sdb3

/dev/sdb3: UUID="0450-0157" TYPE="vfat"

[root@localhost ~]# vim /etc/fstab

UUID="0450-0157" /data3 vfat defaults 0 0

[root@localhost ~]# mount /dev/sdb3

[root@localhost ~]# mount | grep sdb3

/dev/sdb3 on /data3 type vfat

(rw, relatime, fmask=0022, dmask=0022, codepage=437, iocharset=ascii, short name=mixed, errors=remount-ro)

inode知识补充:

inode包含文件的元信息(文件的属性),

一个文件有两类数据:文件的内容;文件的属性

具体来说有以下内容:

- 文件的字节数
- 文件拥有者的User ID
- 文件的Group ID
- 文件的读、写、执行权限
- 文件的时间戳: 共有三个, ctime指inode上一次变动的时间, mtime指文件内容上一次变动的时间, atime指文件上一次打开的时间
- 链接数,即有多少文件名指向这个inode
- 文件数据block的位置

可以用**stat命令**,查看某个文件的inode信息: stat example.txt inode的大小: 128字节,其中最后4字节为记录block位置的数据 mke2fs -N 修改inode数

[root@localhost ~]# stat initial-setup-ks.cfg

文件: "initial-setup-ks.cfg"

大小: 1822 块: 8 IO 块: 4096 普通文件

设备: fd00h/64768d Inode: 100663386 硬链接: 1

权限: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)

环境: system_u:object_r:admin_home_t:s0

最近访问: 2020-01-06 00:23:09.613996137 +0800

最近更改: 2020-01-06 00:23:09.614996137 +0800

最近改动: 2020-01-06 00:23:09.614996137 +0800

创建时间: -

16.大小超过2T的分区规划 parted命令

通常划分分区工具我们用的比较多是fdisk命令,但是现在由于磁盘越来越廉价,而且磁盘空间越来越大。而fdisk工具他对分区是有大小限制的,它只能划分小于2T的磁盘。现在的磁盘空间已经远远大于2T,有两个方法来解决这个问题:其一是通过卷管理来实现,其二就是通过Parted工具来实现对2T磁盘进行分区操作。

GPT格式的磁盘相当于原来MBR磁盘中原来保留4个partition table的4*16个字节,只留第一个16个字节,类似于扩展分区,真正的partition table在512字节之后,GPT分区方式没有四个主分区的限制,最多可达到128个主分区。

用法: parted [选项]...[设备[命令][参数]...]

将带有"参数"的命令应用于"设备"。如果没有给出"命令",则以交互模式运行

帮助选项:

-h, --help 显示此求助信息

-1,---list 列出所有识别的分区信息

-i, --interactive 在必要时,提示用户

-s, --script 从不提示用户

-v, --version 显示版本

操作命令:

检查MINOR #对文件

系统进行一个简单的检查

cp[FROM-DEVICE] FROM-MINOR TO-MINOR #将文件系统复制到另一个分区

help[COMMAND] #打印通用求

助信息,或关于COMMAND的信息

mklabel 标签类型 #创建新的

磁盘标签 (分区表)

mkfs MINOR 文件系统类型 #在MINOR创建类型

为"文件系统类型"的文件系统

mkpart 分区类型[文件系统类型] 起始点 终止点 #创建一个分区

mkpartfs 分区类型 文件系统类型 起始点 终止点 #创建一个带有文件系统的分区 #移动编号为MINOR的

move MINOR 起始点 终止点

#将编号为 name MINOR 名称

MINOR的分区命名为"名称"

print [MINOR] #打印

分区表,或者分区

quit

分区

#退出程序

#挽救临 rescue 起始点 终止点

近"起始点"、"终止点"的遗失的分区

#改变位 resize MINOR

于编号为MINOR的分区中文件系统的大小

rm MINOR #删除编

号为MINOR的分区

select 设备 #选择

要编辑的设备

set MINOR 标志 状态 #改变编号为

MINOR的分区标志

1.Parted工具详解:

1.1 进入Parted的方法 (在命令行输入Parted命令即可)

[root@localhost ~]# parted

使用 /dev/sda

Welcome to GNU Parted! Type 'help' to view a list of commands. #欢迎信息 (parted)

类似fdisk一样, 先要选择要分区的硬盘, 此处为/dev/sdc:

[root@localhost ~]# parted

GNU Parted 3.1

使用 /dev/sda

Welcome to GNU Parted! Type 'help' to view a list of commands.

(parted) select /dev/sdc

使用 /dev/sdc

(parted)

或者[root@localhost ~]# parted /dev/sdc

GNU Parted 3.1

使用 /dev/sdc

Welcome to GNU Parted! Type 'help' to view a list of commands. (parted)

1.2获取parted工具帮助的方法: (只需输入help即可)

[root@localhost ~]# parted

(parted) help

或者[root@localhost ~]# parted --help

1.3退出parted工具 (只需输入quit即可)

[root@localhost ~]# parted

(parted) quit

2.开始通过parted工具来对磁盘进行操作

2.1查看单个磁盘状态

[root@localhost ~]# parted /dev/sdc

GNU Parted 3.1

使用 /dev/sdc

Welcome to GNU Parted! Type 'help' to view a list of commands.

(parted) p #查看

磁盘分区状态

错误: /dev/sdc: unrecognised disk label #由于没有打上磁盘标签,

所以表现信息无法列出

Model: VMware, VMware Virtual S (scsi)

Disk /dev/sdc: 107GB

Sector size (logical/physical): 512B/512B

Partition Table: unknown

Disk Flags:

(parted) mklabel #创建磁

盘标签

新的磁盘标签类型? gpt #输入磁盘标签

类型 gpt msdos (MBR)

(parted) p #再

次查看磁盘分区状态

Model: VMware, VMware Virtual S (scsi)

Disk /dev/sdc: 107GB

Sector size (logical/physical): 512B/512B

Partition Table: gpt

Disk Flags:

Number Start End Size File system Name 标志

2.2查看所有磁盘状态

[root@localhost ~]# parted -1 /dev/sdc

2.3通过parted工具来创建分区

[root@localhost ~]# parted /dev/sdc

GNU Parted 3.1

使用 /dev/sdc

Welcome to GNU Parted! Type 'help' to view a list of commands.

(parted) mkpart #创建分区

分区名称? []? data1 #分区名称

文件系统类型? [ext2]? ext4 #文件系统类型

起始点? 1 #指定起始位置

结束点? 5G #指定结束位置

(parted) p #查看磁盘分

区状态

Model: VMware, VMware Virtual S (scsi) #显示磁盘类型为SCSI

Disk /dev/sdc: 107GB #磁盘大小

Sector size (logical/physical): 512B/512B #扇区大小

Partition Table: gpt #分区类型为GPT

Disk Flags:

Number Start End Size File system Name 标志

1 1049kB 5000MB 4999MB data1

用mkpart创建多个分区

(parted) p

Model: VMware, VMware Virtual S (scsi)

Disk /dev/sdc: 107GB

Sector size (logical/physical): 512B/512B

Partition Table: gpt

Disk Flags:

Number Start End Size File system Name 标志

1 1049kB 5000MB 4999MB data1 2 5000MB 10.0GB 5001MB data2 3 10.0GB 15.0GB 5000MB data3

2.4通过parted工具删除一个分区

(parted) rm 3 #删除分区3

(parted) p

Model: VMware, VMware Virtual S (scsi)

Disk /dev/sdc: 107GB

Sector size (logical/physical): 512B/512B

Partition Table: gpt

Disk Flags:

Number Start End Size File system Name 标志

1 1049kB 5000MB 4999MB data1 2 5000MB 10.0GB 5001MB data2

2.5通过parted工具来格式化分区创建文件系统

- 老的版本用 (parted)mkfs 1 ext4 ,现在用不了了
- 下面退出parted模式,用mkfs来格式化

[root@localhost ~]# mkfs -t ext4 /dev/sdc1

mke2fs 1.42.9 (28-Dec-2013)

文件系统标签=

OS type: Linux

块大小=4096 (log=2)

分块大小=4096(1og=2)

Stride=0 blocks, Stripe width=0 blocks

305216 inodes, 1220352 blocks

61017 blocks (5.00%) reserved for the super user

第一个数据块=0

Maximum filesystem blocks=1249902592

38 block groups

32768 blocks per group, 32768 fragments per group

8032 inodes per group

Superblock backups stored on blocks:

32768, 98304, 163840, 229376, 294912, 819200, 884736

Allocating group tables: 完成

正在写入inode表:完成

Creating journal (32768 blocks): 完成

Writing superblocks and filesystem accounting information: 完成

[root@localhost ~]# mkfs.xfs /dev/sdc2

meta-data=/dev/sdc2 isize=512 agcount=4, agsize=305216 blks

= sectsz=512 attr=2, projid32bit=1

= crc=1 finobt=0, sparse=0

data = bsize=4096 blocks=1220864, imaxpct=25

	=	sunit=0	swidth=0 blks
naming	=version 2	bsize=4096	ascii-ci=0 ftype=1
log	=internal log	bsize=4096	blocks=2560, version=2
	=	sectsz=512	<pre>sunit=0 blks, lazy-count=1</pre>
realtime	e =none	extsz=4096	blocks=0, rtextents=0

[root@localhost ~]# mkfs.xfs /dev/sdc3

meta-dat	a=/dev/sdc3	isize=512	agcount=4, agsize=305152 blks
	=	sectsz=512	attr=2, projid32bit=1
	=	crc=1	finobt=0, sparse=0
data	=	bsize=4096	blocks=1220608, imaxpct=25
	=	sunit=0	swidth=0 blks
naming	=version 2	bsize=4096	ascii-ci=O ftype=1
log	=internal log	bsize=4096	blocks=2560, version=2
	=	sectsz=512	<pre>sunit=0 blks, lazy-count=1</pre>
realtime	=none	extsz=4096	blocks=0, rtextents=0

2.6挂载刚才格式化后的文件系统

[root@localhost ~]# mkdir /data1
[root@localhost ~]# mount /dev/sdc1 /data1
[root@localhost ~]# mount | tail -1
/dev/sdc1 on /data1 type ext4 (rw, relatime, seclabel, data=ordered)
[root@localhost ~]# mkdir /data1/dir{1..10}
[root@localhost ~]# ls /data1/
dir1 dir10 dir2 dir3 dir4 dir5 dir6 dir7 dir8 dir9 lost+found

2.7删除和恢复分区

[root@localhost ~]# umount /dev/sdc3

[root@localhost ~]# parted /dev/sdc

GNU Parted 3.1
使用 /dev/sdc

Welcome to GNU Parted! Type 'help' to view a list of commands.

(parted) rm 3

(parted) p

Model: VMware, VMware Virtual S (scsi)

Disk /dev/sdc: 107GB

Sector size (logical/physical): 512B/512B

Partition Table: gpt

Disk Flags:

Number Start End Size File system Name 标志

1 1049kB 5000MB 4999MB ext4 data1 2 5000MB 10.0GB 5001MB xfs data2

(parted) rescue

#恢复分区

起始点? 10G

结束点? 15G

正在搜索文件系统... 45% (剩余时间 00:01)信息: A xfs primary partition was found at 10.0GB -> 15.0GB

. Do you want to add it to the partitiontable?

是/Yes/否/No/放弃/Cancel? yes

(parted) quit

信息: You may need to update /etc/fstab.

[root@localhost ~]# 1s -1 /dev/sdc*

brw-rw----. 1 root disk 8, 32 2月 27 02:57 /dev/sdc brw-rw----. 1 root disk 8, 33 2月 27 02:57 /dev/sdc1 brw-rw----. 1 root disk 8, 34 2月 27 02:57 /dev/sdc2 brw-rw----. 1 root disk 8, 35 2月 27 02:57 /dev/sdc3

二、LVM逻辑卷管理

注意:逻辑分区和逻辑卷不是一个概念。

问题一:服务的日志存放在/var/log目录下,现在空间不够怎么办?

问题二:数据库软件安装在/usr/local/mysq1目录下,现在空间不够怎么办?

答案: 是普通分区吗? 那没办法!

1.LVM概述--Logical Volume Manager

许多Linux操作系统的使用者在安装操作系统时都会遇到这样的困境:如何精确评估和分配各个硬盘分区的容量。如果当初估计不准确,一旦系统分区不够用就可能不得不备份,删除相关数据,甚至被迫重新规划分区并重装操作系统,以满足应用系统的需要。

LVM是Linux操作系统中对磁盘的分区进行管理的一种逻辑机制,它是建立在硬盘和 分区之上,文件系统之下的一个逻辑层,在建立文件系统时屏蔽了下层的磁盘分区布局,因 此能够在保持现有数据不变的情况下动态调整磁盘容量,从而增强磁盘管理的灵活性。

在安装CentOS操作系统的过程中选择自动分区是,就会默认采用LVM分区方案,而不需要再进行手动配置。需要注意的是LVM逻辑卷的建立依赖于内核,因此/boot分区不能基于LVM创建,必须独立出来。

2.LVM基本概念

(1) PV (Physical Volume) 物理卷

物理卷是LVM机制的基本存储设备,通常对应为一个普通分区或整个硬盘,创建物理卷时,会在分区或硬盘头部创建一个保留区块,用于记录LVM属性,并把存储空间分割成默认大小为4MB的基本单元(Physical Exent, PE),构成物理卷。物理卷一般直接使用设备文件名称。

分区建议将ID 转为8e, 若是整个硬盘将所有空间划分为一个主分区。

(2) VG (Volume Group) 卷组

由一个或多个物理卷组成一个整体,即成为卷组,在卷组中可以动态添加或移除物理卷可以分成不同的卷组,卷组的名称用户自己定义。

(3) LV (Logical Volume) 逻辑卷

逻辑卷建立在卷组之上,与物理卷没有直接关系,对于逻辑卷来说,每一个卷组就是一个整体,从这个整体中分割出一块空间,作为用户创建文件系统的基础,这一小块空间就称为逻辑卷。逻辑卷经过格式化创建了文件系统后,就可以挂载使用了。

逻辑卷创建步骤:准备分区-->创建物理卷-->创建卷组-->创建逻辑卷-->格式化(形成文件系统)-->挂载使用

面粉袋原理

3.LVM管理命令

功能	物理卷管理	卷组管理	逻辑卷管理
扫描scan	pvscan/pvs	vgscan/vgs	lvscan/lvs
建立create	pvcreate	vgcreate	lvcreate
显示display	pvdisplay	vgdisplay	lvdisplay
删除remove	pvremove	vgremove	lvremove
扩展extend		vgextend	lvextend

减少reduce vgreduce lvreduce

使用fdisk工具在磁盘设备"/dev/sdb"中划分出三个主分

区/dev/sdb1,/dev/sdb21,/dev/sdb3每个分区大小为5G,将分区类型ID修改为8e。

ps:物理卷无法扩展和减少,它本身是一个分区一块硬盘

[root@localhost ~]# fdisk /dev/sdd

欢迎使用 fdisk (util-linux 2.23.2)。

更改将停留在内存中,直到您决定将更改写入磁盘。 使用写入命令前请三思。

Device does not contain a recognized partition table 使用磁盘标识符 0xd96ab1da 创建新的 DOS 磁盘标签。

命令(输入 m 获取帮助): n

Partition type:

- p primary (0 primary, 0 extended, 4 free)
- e extended

Select (default p): p

分区号 (1-4, 默认 1):

起始 扇区 (2048-209715199, 默认为 2048):

将使用默认值 2048

Last 扇区, +扇区 or +size {K, M, G} (2048-209715199, 默认为 209715199): +5G 分区 1 已设置为 Linux 类型, 大小设为 5 GiB

命令(输入 m 获取帮助): n

Partition type:

- p primary (1 primary, 0 extended, 3 free)
- e extended

Select (default p): p

分区号 (2-4, 默认 2):

起始 扇区 (10487808-209715199, 默认为 10487808):

将使用默认值 10487808

Last 扇区, +扇区 or +size {K, M, G} (10487808-209715199, 默认为 209715199): +5G 分区 2 已设置为 Linux 类型, 大小设为 5 GiB

命令(输入 m 获取帮助): n

Partition type:

p primary (2 primary, 0 extended, 2 free)

e extended

Select (default p): p

分区号 (3,4, 默认 3):

起始 扇区 (20973568-209715199, 默认为 20973568):

将使用默认值 20973568

Last 扇区, +扇区 or +size {K, M, G} (20973568-209715199, 默认为 209715199): +5G 分区 3 已设置为 Linux 类型, 大小设为 5 GiB

命令(输入 m 获取帮助): p

磁盘 /dev/sdd: 107.4 GB, 107374182400 字节, 209715200 个扇区

Units = 扇区 of 1 * 512 = 512 bytes

扇区大小(逻辑/物理): 512 字节 / 512 字节

I/0 大小(最小/最佳): 512 字节 / 512 字节

磁盘标签类型: dos

磁盘标识符: 0xd96ab1da

	设备 Boot	Start	End	Blocks	Id S	System
/	dev/sdd1	2048	10487807	5242880	83	Linux
/	dev/sdd2	10487808	20973567	5242880	83	Linux
/	dev/sdd3	20973568	31459327	5242880	83	Linux

命令(输入 m 获取帮助): w

The partition table has been altered!

Calling ioctl() to re-read partition table. 正在同步磁盘。

[root@localhost ~]# partx /dev/sdd

NR START END SECTORS SIZE NAME UUID

1 2048 10487807 10485760 5G

2 10487808 20973567 10485760 5G

3 20973568 31459327 10485760 5G

4.物理卷管理

4.1 pvscan命令

pvscan命令用于扫描系统中所有的物理卷,并输出相关信息。

[root@localhost ~]# pvscan

Total: 1 [<99.00 GiB] / in use: 1 [<99.00 GiB] / in no VG: 0 [0]

4.2 pvcreate命令

格式: pvcreate 设备1 [设备2...]

pvcreate命令用于将整个硬盘或分区转换为物理卷,主要是添加LVM属性信息并划分为PE存储单位,该命令需要使用硬盘或分区作为参数。

[root@localhost ~]# pvcreate /dev/sdd[123]

Physical volume "/dev/sdd1" successfully created.

Physical volume "/dev/sdd2" successfully created.

Physical volume "/dev/sdd3" successfully created.

[root@localhost ~]# pvscan

Total: 4 [<114.00 GiB] / in use: 1 [<99.00 GiB] / in no VG: 3 [15.00 GiB]

[root@localhost ~]# pvs

```
      PV
      VG
      Fmt
      Attr
      PSize
      PFree

      /dev/sda2
      centos
      1vm2
      a--
      <99.00g</td>
      4.00m

      /dev/sdd1
      myvg
      1vm2
      a--
      <5.00g</td>
      <5.00g</td>

      /dev/sdd2
      myvg
      1vm2
      a--
      <5.00g</td>
      <5.00g</td>

      /dev/sdd3
      1vm2
      ---
      5.00g
      5.00g
```

4.3 pvdisplay命令

[root@localhost ~]# pvdisplay /dev/sdd1

"/dev/sdd1" is a new physical volume of "5.00 GiB"

--- NEW Physical volume ---

PV Name /dev/sdd1

VG Name

PV Size 5.00 GiB

Allocatable NO

PE Size 0

Total PE 0

Free PE 0

Allocated PE 0

PV UUID nLybFn-3qJx-qjSw-2IJp-GWNZ-001C-fzZWLd

4.4 pvremove命令

pvremove命令用于将物理卷还原成普通的分区或磁盘,不在用于LVM体系,被移除的物理卷将无法被pvscan识别。

[root@localhost ~]# pvremove /dev/sdd3

5.卷组管理

5.1 vgscan命令

vgscan命令用于扫描系统中已建立的LVM卷组及相关信息。

[root@localhost ~]# vgscan

Reading volume groups from cache.

Found volume group "centos" using metadata type 1vm2

[root@localhost ~]# vgs

VG #PV #LV #SN Attr VSize VFree

centos 1 3 0 wz--n- <99.00g 4.00m

myvg 2 0 0 wz--n- 9.99g 9.99g

5.2 vgcreate命令

格式: vgcreate 卷组名 物理卷名1 物理卷名2...选项-s 指定PE大小(单位M) vgcreate命令用于将一个或多个物理卷创建为一个卷组,第一个命令参数用于设置卷组名称,其后依次指定需要加入该卷组的物理卷作为参数。

[root@localhost ~]# vgcreate myvg /dev/sdd1 /dev/sdd2

Volume group "myvg" successfully created

5.3 vgdisplay命令

vgdisplay命令用于显示系统中各类卷组的详细信息,需要使用指定卷组名作为参数,未指 定卷组默认

[root@localhost ~]# vgdisplay myvg

Volume group	
VG Name	myvg
System ID	
Format	1vm2
Metadata Areas	2
Metadata Sequence No	1
VG Access	read/write
VG Status	resizable
MAX LV	0
Cur LV	0
Open LV	0
Max PV	0
Cur PV	2
Act PV	2
VG Size	9.99 GiB
PE Size	4.00 MiB
Total PE	2558
Alloc PE / Size	0 / 0
Free PE / Size	2558 / 9.99 GiB
VG UUID	KgOvSH-ERDf-tKb2-dTj1-UdQK-BejL-0IVdRO

5.4 vgremove命令

vgremove命令用于删除指定的卷组名称作为参数即可。删除时应确保该卷组中没有正在使用 的逻辑卷

[root@localhost ~]# vgremove myvg

5.5 vgextend命令

vgextend命令用于扩展卷组的磁盘空间,当创建了新的物理卷,需要将其加入到已有的卷组中,就可以使用vgextend命令。该命令的第一个参数为需要扩展容量的卷组名称,其后为需要添加到该卷组中的各物理卷。

[root@localhost ~]# vgcreate myvg /dev/sdb1
[root@localhost ~]# vgextend myvg /dev/sdb2

6.逻辑卷管理

6.1 lvscan命令

1vscan命令用于扫描系统中已建立的逻辑卷及相关信息。

[root@localhost ~]# lvscan

ACTIVE '/dev/centos/swap' [<3.88 GiB] inherit

ACTIVE '/dev/centos/home' [<45.12 GiB] inherit

ACTIVE '/dev/centos/root' [50.00 GiB] inherit

[root@localhost ~]# lvs

LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync

Convert

home centos -wi-ao---- <45.12g root centos -wi-ao---- 50.00g swap centos -wi-ao---- <3.88g

6.2 lvcreate命令

1vcreate命令用于从指定的卷组中分割空间,以创建新的逻辑卷。需要指定逻辑卷大小,名称及所在的卷组名作为参数。

格式: lvcreate -L 容量大小 (-1 指定PE个数) -n 逻辑卷名 卷组名

[root@localhost ~]# lvcreate -n lv001 -L 8G myvg

Logical volume "1v001" created.

[root@localhost ~]# 1s -1 /dev/myvg/1v001

1rwxrwxrwx. 1 root root 7 2月 26 23:48 /dev/myvg/1v001 -> .../dm-3

6.3 lvdisplay命令

lvdisplay命令用于像是逻辑卷的详细信息,可以指定逻辑卷的设备文件作为参数,也可以使用卷组名为参数,以显示该卷组中的所有逻辑卷的信息。

[root@localhost ~]# lvdisplay /dev/myvg/lv001

```
--- Logical volume ---
```

LV Path /dev/myvg/1v001

LV Name 1v001
VG Name myvg

LV UUID U1H1iq-QJM7-5NOo-eD3F-8EQy-D3pq-iPx1SQ

LV Write Access read/write

LV Creation host, time localhost.localdomain, 2020-02-26 23:48:45 +0800

LV Status available

open 0

LV Size 8.00 GiB

Current LE 2048

Segments 2

Allocation inherit

Read ahead sectors auto
- currently set to 8192

Block device 253:3

6.4格式化并使用逻辑卷

[root@localhost ~]# mkfs -t ext4 /dev/myvg/lv001

mke2fs 1.42.9 (28-Dec-2013)

文件系统标签=

OS type: Linux

块大小=4096 (log=2)

分块大小=4096 (1og=2)

Stride=0 blocks, Stripe width=0 blocks

524288 inodes, 2097152 blocks

104857 blocks (5.00%) reserved for the super user

第一个数据块=0

Maximum filesystem blocks=2147483648

64 block groups

32768 blocks per group, 32768 fragments per group

8192 inodes per group

Superblock backups stored on blocks:

32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632

Allocating group tables: 完成

正在写入inode表:完成

Creating journal (32768 blocks): 完成

Writing superblocks and filesystem accounting information: 完成

强制由ext4文件系统转换为xfs文件系统

[root@localhost ~] # mkfs -t xfs -f /dev/myvg/lv001

meta-data=/dev/myvg/lv001 isize=512 agcount=4, agsize=524288 blks

sectsz=512 attr=2, projid32bit=1

	=	crc=1	finobt=0, sparse=0
data	=	bsize=4096	blocks=2097152, imaxpct=25
	=	sunit=0	swidth=0 blks
naming	=version 2	bsize=4096	ascii-ci=0 ftype=1
log	=internal log	bsize=4096	blocks=2560, version=2
	=	sectsz=512	<pre>sunit=0 blks, lazy-count=1</pre>
realtime	e =none	extsz=4096	blocks=0, rtextents=0

挂载: UUID号--->blkid /dev/myvg/lv001

[root@localhost ~]# mkdir /data

[root@localhost ~]# mount /dev/myvg/lv001 /data

[root@localhost ~]# df -Th /dev/myvg/lv001

文件系统 类型 容量 已用 可用 已用% 挂载点

/dev/mapper/myvg-1v001 xfs 8.0G 33M 8.0G 1% /data

6.5 lvextend命令

lvextend命令用于动态扩展逻辑卷的空间,当目前使用的逻辑卷空间不足时,可以从所在卷组中分割额外的空间进行扩展。只要指定需要增加的容量大小及逻辑卷设备文件位置即可。前提是该卷组中还有尚未分配的磁盘空间,否则需要先扩展组容量。

组扩展:

[root@localhost ~]# vgextend vg001 /dev/sdd3

Volume group "vg001" not found

Cannot process volume group vg001

[root@localhost ~]# vgs

```
VG
         #PV #LV #SN Attr VSize
                                    VFree
           1
                   0 wz--n- <99.00g 4.00m
  centos
           2
                   0 \text{ wz}--n-
 myvg
               1
                              9.99g 1.99g
[root@localhost ~]# vgextend myvg /dev/sdd3
  Volume group "myvg" successfully extended
[root@localhost ~]# vgs
 VG
         #PV #LV #SN Attr
                            VSize
                                    VFree
               3 0 wz--n- <99.00g 4.00m
  centos
           3
               1
                   0 \text{ wz}--n- < 14.99g < 6.99g
 myvg
逻辑扩展:
[root@localhost ~]# lvextend -L +4G /dev/myvg/lv001
 Size of logical volume myvg/lv001 changed from 8.00 GiB (2048 extents) to
12.00 GiB (3072 extents
). Logical volume myvg/lv001 successfully resized.
[root@localhost ~]# lvdisplay
  --- Logical volume ---
 LV Path
                         /dev/centos/swap
 LV Name
                         swap
 VG Name
                         centos
 LV UUID
                         pUVmrf-VIwv-NtB9-wNCW-NK1V-uCOR-qros8L
 LV Write Access
                         read/write
 LV Creation host, time localhost.localdomain, 2020-01-06 00:04:37 +0800
 LV Status
                         available
 # open
 LV Size
                         <3.88 GiB
                         992
  Current LE
  Segments
                         1
  Allocation
                         inherit
  Read ahead sectors
                         auto
  - currently set to
                         8192
  Block device
                         253:1
  --- Logical volume ---
```

/dev/centos/home

home

LV Path

LV Name

VG Name centos

LV UUID nKcyPo-xVQL-Ysk4-Kfrs-a1BZ-MTEp-dbcURk

LV Write Access read/write

LV Creation host, time localhost.localdomain, 2020-01-06 00:04:37 +0800

LV Status available

open 1

LV Size <45.12 GiB

Current LE 11550

Segments 1

Allocation inherit

Read ahead sectors auto
- currently set to 8192
Block device 253:2

--- Logical volume ---

LV Path /dev/centos/root

LV Name root

VG Name centos

LV UUID CV1LoZ-5miO-NZoJ-20tk-5Unc-Vc02-dqCx7P

LV Write Access read/write

LV Creation host, time localhost.localdomain, 2020-01-06 00:04:37 +0800

LV Status available

open 1

LV Size 50.00 GiB

Current LE 12800

Segments 1

Allocation inherit

Read ahead sectors auto
- currently set to 8192

Block device 253:0

--- Logical volume ---

LV Path /dev/myvg/1v001

LV Name 1v001 VG Name myvg LV UUID U1H1iq-QJM7-5NOo-eD3F-8EQy-D3pq-iPx1SQ

LV Write Access read/write

LV Creation host, time localhost.localdomain, 2020-02-26 23:48:45 +0800

LV Status available

open 0

LV Size 12.00 GiB

Current LE 3072

Segments 3

Allocation inherit

Read ahead sectors auto
- currently set to 8192
Block device 253:3

6.6 执行xfs grows /dev/卷组名/逻辑卷名 命令以便重新识别文件系统的大小

[root@localhost ~] # xfs_growfs /dev/myvg/lv001

meta-data=/dev/mapper/myvg-lv001 isize=512 agcount=4, agsize=524288 blks

= sectsz=512 attr=2, projid32bit=1

= crc=1 finobt=0 spinodes=0

data = bsize=4096 blocks=2097152, imaxpct=25

= sunit=0 swidth=0 blks

naming =version 2 bsize=4096 ascii-ci=0 ftype=1

log =internal bsize=4096 blocks=2560, version=2

= sectsz=512 sunit=0 blks, lazy-count=1

realtime =none extsz=4096 blocks=0, rtextents=0

data blocks changed from 2097152 to 3145728

[root@localhost ~]# df -Th

/dev/mapper/centos-root xfs 50G 4.9G 46G 10% /

devtmpfs devtmpfs 975M 0 975M 0% /dev

tmpfs tmpfs 992M 11M 982M 2% /run

tmpfs tmpfs 992M 0 992M 0%/sys/fs/cgroup

/dev/mapper/centos-home xfs 46G 33M 46G 1% /home

/dev/sda1 xfs 1014M 157M 858M 16% /boot

tmpfs	tmpfs	199M	12K	199M	1% /run/user/42
tmpfs	tmpfs	199M	0	199M	0% /run/user/0
/dev/sdc1	ext4	4.5G	19M	4.2G	1% /data1
/dev/sdc2	xfs	4.7G	33M	4.7G	1% /data2
/dev/loop0	iso9660	55M	55M	0	100% /vmtools
/dev/sr0	iso9660	4.2G	4.2G	0	100% /media/cdrom
/dev/sr0 /dev/sdc3	iso9660 xfs	4. 2G 4. 7G	4.2G 33M	0 4.7G	100% /media/cdrom 1% /data3

[root@localhost ~]# df -Th /dev/myvg/lv001

文件系统 类型 容量 己用 可用 己用% 挂载点/dev/mapper/myvg-lv001 xfs 12G 33M 12G 1%/data

ext4文件系统: [root@localhost ~] # resize2fs /dev/myvg/lv001

注意: xfs文件系统只支持增大分区空间的情况,不支持减小的情况(切记!!!)

6.7 lvremove命令

1vremove命令用于删除指定的逻辑卷,直接使用逻辑卷的设备文件作为参数即可

[root@localhost \sim]# umount /dev/myvg/lv001

[root@localhost ~]# lvremove /dev/myvg/lv001

Do you really want to remove active logical volume myvg/lv001? [y/n]: y Logical volume "lv001" successfully removed

[root@localhost ~]# vgremove myvg

Volume group "myvg" successfully removed

[root@localhost ~]# pvremove /dev/sdd[123]

Labels on physical volume "/dev/sdd1" successfully wiped.

Labels on physical volume "/dev/sdd2" successfully wiped.

Labels on physical volume "/dev/sdd3" successfully wiped.

[root@localhost ~]# fdisk /dev/sdd

欢迎使用 fdisk (util-linux 2.23.2)。

更改将停留在内存中,直到您决定将更改写入磁盘。 使用写入命令前请三思。 命令(输入 m 获取帮助): d 分区号 (1-3, 默认 3): 1 分区 1 已删除

命令(输入 m 获取帮助): d 分区号 (2,3, 默认 3): 2 分区 2 已删除

命令(输入 m 获取帮助): d 已选择分区 3 分区 3 已删除 嗯~好啦,回到解放前啦~