### **Sistemas Embarcados**

Prof. Dr. Josenalde Oliveira

- F<sub>EL</sub> = −K<sub>S</sub>x (Mola ideal) Lei de Hooke
- $F_{AM} = -B\dot{x}$  (Amortecedor ideal)

$$\sum F_R = m\ddot{x} \tag{1}$$

$$m\ddot{x} = -F_{EL} - F_{AM} + f_i \tag{2}$$

$$m\ddot{x} = -K_s x - B\dot{x} + f_i \tag{3}$$

#### Sistema massa-mola-amortecedor Sujeito à força externa fi

Ks = Coeficiente de elasticidade;

B = Coeficiente de amortecimento do amortecedor;

m = Massa do bloco;

fi = Força externa .



https://blogdocontroleiro.wordpress.com/2017/07/03/sistema-massa-mola-amortecedor/

#### Função de transferência X(s)/F(s)

$$\frac{X(s)}{F(s)} = \frac{1}{Ms^2 + bs + k}$$

Para simular, supor:

M = 0.5 kg

K = 1 N/cm

 $B = 0.01 \, \text{N.s/cm}$ 

B = 0.3 N.s/cm

B=1 N.s/cm

F = fi = 10 N

e condições iniciais nulas





Super (sobre) amortecido – polo na origem (entrada) e duas raízes reais diferentes



Não amortecido – polo na origem (entrada) e duas raízes complexas no eixo Im



Subamortecido – polo na origem (entrada) e dois polos complexos









Composição da resposta da equação diferencial

Criticamente amortecido – polo na origem (entrada) e duas raízes iguais reais



$$G(s) = \frac{{\omega_n}^2}{s^2 + 2\xi\omega_n s + {\omega_n}^2}$$

 $\omega_n$  Frequência natural

Função geral de segunda ordem





https://blogdocontroleiro.wordpress.com/2017/07/03/sistema-massa-mola-amortecedor/

#### Função de transferência X(s)/F(s)

$$\frac{X(s)}{F(s)} = \frac{1}{Ms^2 + bs + k}$$

Para simular, supor:

M = 1 kg

K = 20 N/m

B = 10 Ns/m

F = fi = 1 N

e condições iniciais nulas

**Objetivos**: tempo de subida rápido (o tempo em que a saída atinge pela primeira vez o setpoint, Overshoot mínimo, sem erro de regime permanente.



Em malha aberta:

- erro de 95% 0.05 X 1
- tempo de subida 1s
- tempo de estab. 1.5s

Teste 1: Controle P, com Kp(kC) = 300



Em malha fechada:

Teste 1: Controle P, com Kp (kC) = 80 Overshoot Offset



Em malha fechada:

Teste 1: Controle P, com Kp (kC) = 30 Ki = 70, Kp/tau\_i = 70 tau i = 0,42

### Circuito – filtro de segunda ordem

#### Circuito com AMPOP - Salley Key http://sim.okawa-denshi.jp/en/OPseikiLowkeisan.htm



### Circuito – filtro de segunda ordem

#### **Circuito com AMPOP**

$$Gp(s) = K \frac{a_0}{s^2 + a_1 s + a_0} = \frac{\omega_0^2}{s^2 + \frac{\omega_0}{Q} + \omega_0^2}$$

$$Gp(s) = K \frac{a_0}{s^2 + a_1 s + a_0} = \frac{\omega_0}{s^2 + \frac{\omega_0}{Q} + \omega_0^2}$$

$$a_0 = \frac{1}{C_1 C_2 R_1 R_2},$$

$$a_1 = \frac{R_1 + R_2}{C_1 R_1 R_2},$$









VCC de 3 a 32VDC, fonte única

### Possibilidades de conexão (com módulo)



$$Gc = \frac{U(s)}{E(s)} = Kc \left( 1 + \frac{1}{\tau_i s} + \frac{\tau_d s}{1 + \alpha s} \right)$$

$$P+I\frac{1}{s}+D\frac{N}{1+N\frac{1}{s}}$$

# Por hoje é isso!