

- 1数の表現
 - 2 集合論

数の表現

■ コンピュータの基本は ○ と 1 で計算している。電源が Offの場合は ○、電源が On の場合は 1 となる。この電源 On と Offの二つの状態から計算を行う場合、最も簡単な表現方法は 2 進数[Binary]となる。

10進数

$$0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 10 \rightarrow 11 \rightarrow 12$$

10 個の数で表現

11 個目は桁上がり

2進数

$$0 \rightarrow 1 \rightarrow 10 \rightarrow 11 \rightarrow 100 \rightarrow 101 \rightarrow 110 \rightarrow 111$$

2個の数で表現

3個目は桁上がり

基数変換

● 2 進数と 10 進数[Decimal]の変換、または 8 進数や 16 進数といった基数を変換することを基数変換[Base Conversion]と呼ぶ。

〈10進数→2進数の変換〉

nest terminal

The state of the s

8 進数と 16 進数

● 2 進数と同じように、8・16 個の数で表現する方法を 8 進数 [Octal] • 16 進数 [Hexadecimal, Hex]という。

〈8進数、16進数→10進数の変換〉

〈10進数→8進数、16進数の変換〉

Note 1

16 進数の "数字" は 0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F である。

2 進数の演算

● 2 進数の桁上がり: 1+1=10。

● 2 進数の桁下がり: 10 - 1 = 1。

+	1011 0101	×	1011 101
	10000		1011
_	1011 0101		0000 1011
	110		110111

問題: 人の指で最大 何個の数を表現でき るか考えてみよう!

Tips 🔆

16進数を表示する場合の表示方法:

1. 右下に小さく「16」 と書く: 17FA₁₆。

2. 冒頭に「0x」を書く 0x17FA。

10進数	2進数	8進数	16進数
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	А
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F
16	10000	20	10

データ容量の単位

一度に最大で 32 ビットのデータを 処理できる CPU を 32 ビット CPU、 64 ビットのデータを処理できる CPU を 64 ビットCPUと呼ぶ。

• ビットとバイト

コンピュータは 2 進数ですべてのデータが構成される。この時の最小単位「2 進数の 1 桁分」をビット[Bit]と呼び、8 ビット分をまとめた単位をバイト[Byte]と呼ぶ。

● 補助単位

大きい値の補助単位		小さい値の補助単位	
k(キロ)	10 ³ =1,000倍	m(ミリ)	$1/10^3 = 1/1,000$
M(メガ)	106=1,000,000倍	μ(マイクロ)	$1/10^6 = 1/1,000,000$
G(ギガ)	10 ⁹ =1,000,000,000倍	n(ナノ)	$1/10^9 = 1/1,000,000,000$
T(テラ)	1012=1,000,000,000,000倍	p(ピコ)	1/10 ¹² =1/1,000,000,000,000

【問題1】

2進数1011と2進数101を乗算した結果の2進数はどれか。

平成28年秋期 問91 4問目/選択範囲の問題数51問

ア 1111 イ 10000 ウ 101111 エ 110111

【問題 2】

10進数155を2進数で表したものはどれか。

出典:令和2年秋期 問62

2 集合論

集合とは

● ある特性をもったデータ(要素)の集まりを**集合**[Set]という。集合を表す図にベン図[Venn Diagram]がある。

全体集合	対象とするデータ すべて で構成される集合。
補集合	ある集合Aに対して「Aでない」要素の集まり。
部分集合	ある集合Aに対して「Aに含まれる」集合Bのこと。

コンピュータはデータを扱う時、条件で対象を絞り込みする。この絞り込み条件は集合論の概念を用いている。かつ [AND]、または[DR]などを見ていこう。

和集合と積集合

● 和集合[Union]: A または B (A OR B)。

● 積集合[Product]: A かつ B (A AND B)。

差集合

● 差集合[Difference]: A かつ B でない (A AND NOT B)。

集合演算と論理演算

論理和 (OR、または)	二つの値がいずれも偽(O)のときのみ結果が偽(O)となり、それ以外は真(1)となる
論理積(AND、かつ)	二つの値がいずれも真(1)のときのみ結果が真(1)となり、それ以外は偽(0)となる
否定(NOT、ではない)	値が真(1)のときに結果が偽(0)となり、値が偽(0)のときに結果が真(1)となる
排他的論理和(XOR)	二つの値が異なるときに結果が真(1)となり、二つの値が等しいときに結果が偽(0)となる

● 真[True]と偽[False]: 集合において、条件(A)を満たすこと、集合 A に含まれることを「真」といい、条件(A)を満たさない、集合 A に含まれないことを「偽」という。論理演算の場合、真を 1 で表し、偽を 0 で表すこともある。

論理演算の真理値表

①論理和

А	В	A OR B
1	1	1
1	0	1
0	1	1
0	0	0

②論理積

Α	В	A AND B
1	1	1
1	0	0
0	1	0
0	0	0

③否定

А	NOT A
1	0
0	1

④排他的論理和

Α	В	A XOR B
1	1	0
1	0	1
0	1	1
0	0	0

各論理演算は、記号を用いて、

AORB → A+B

A AND B - A · B

NOT A $\rightarrow \overline{A}$

A XOR B → A⊕B

のように表現することもあります。

論理演算の法則

四則演算の交換法則

$$a + b = b + a$$

 $a \times b = b \times a$

四則演算の分配法則

$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) + (\mathbf{a} \times \mathbf{c})$$

四則演算の結合法則

$$\mathbf{a} + (\mathbf{b} + \mathbf{c}) = (\mathbf{a} + \mathbf{b}) + \mathbf{c}$$

 $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$

論理演算の交換法則

a AND b = b AND aa OR b = b OR a

論理演算の分配法則

a AND (b OR c) = (a AND b) OR (a AND c)a OR (b AND c) = (a OR b) AND (a OR c)

論理演算の結合法則

a AND (b AND c) = (A AND b) AND ca OR (b OR c) = (a OR b) OR c

ド・モルガンの法則

NOT (a AND b) = (NOT a) OR (NOT b)NOT (a OR b) = (NOT a) AND (NOT b)

【問題1】

次のベン図の網掛けした部分の検索条件はどれか。

平成29年秋期 問98 40問目/選択範囲の問題数51問

ア (not A) and (B and C)

イ (not A) and (B or C)

ウ (not A) or (B and C)

⊥ (not A) or (B or C)

【問題 2】

二つの集合AとBについて,常に成立する関係を記述したものはどれか。ここで,(X∩Y)は,XとYの両方に属する部分(積集合),(X∪Y)は,X又はYの少なくとも一方に属する部分(和集合)を表す。

平成27年春期 問62 24問目/選択範囲の問題数51問

- ア (A∪B)は, (A∩B)でない集合の部分集合である。
- イ (A∪B)は, Aの部分集合である。
- ウ (A∩B)は, (A∪B)の部分集合である。
- 工 (A∩B)は, Aでない集合の部分集合である。

【問題 3】

二つの集合AとBについて、常に成立する関係を記述したものはどれか。ここで、 $(X \cap Y)$ は、XとYの共通部分(積集合)、 $(X \cup Y)$ は、X又はYの少なくとも一方に属する部分(和集合)を表わす。

出典:平成22年春期 問69

- ア (A∩B)は、Aでない集合の部分集合である。
- イ (A∩B)は、Aの部分集合である。
- ウ (A∪B)は, (A∩B) の部分集合である。
- エ (A∪B)は,Aの部分集合である。

まとめ

Sum Up

- 1.数の表現:
 - ① 2 進数、8 進数、16 進数と 10 進数の変換。
 - ② 2 進数の演算。
 - ③ データ容量の単位。
- 2.集合論:
 - ① 集合の概念。
 - ② 集合演算。
 - ③ 論理演算。

注意

Note 1

要注意:

- 内容1;
- 内容2。

ヒント

こういう小技もある。

例

Example 🗸

Hello, world! を出力。

Example

Happy, world! を出力

補足

Coffee Break

補足説明の内容。

まとめ

Sum Up

- 1. HTML;
- 2. CSS;
- 3. JavaScript。

コードや添付資料のチェック

Try oliolida Test.java

コード

以下のテンプレートを使う:

```
1 /* A Java program example. */
2
3 package something.test;
4
5 public class Hello {
6    public static void main(String[] args) {
7        System.out.println("Hello world!");
8    }
9 }
```

Created by this site.

テーブル (色調整可)

データ型	範囲	サイズ
byte	-128 ~ 127	1 Byte
short	-32,768 ~ 32,767	2 Byte
char	0 ~ 65,535	2 Byte
int	-2,147,483,648 ~ 2,147,483,647	4 Byte
long	-9,223,372,036,854,775,808 ~ 9,223,372,036,854,775,807	8 Byte

- 翻訳
 - ➤ オブジェクト指向[Object Oriented]。

- 内部指向
 - ▶ 前話した内容: ♠§1.1.1。
 - ▶ 後で話す内容: ★§ 2.5.1。
- 外部指向
 - ➤ 外部サイト: <a>⊕ <a>https://java.com。。