SIEM: Escape & Evade

Agenda

- SIEM and its detection shortcomings!
 - Understanding SIEM deployment profiles
 - Agent interruption
 - Log source disruption
 - Rules bypass via subverting detection logic or command obfuscation
- 2. Advice for mitigations

\$whoami

Dan

- Presales Director, UK at • Vectra Al
- in/crossleydaniel/

Niall

- **Professional Services**
- MDR/IR
- **Blue Team**
- in/niallerrity/

Guy

- SecOps Veteran
- **Business/People/Proc** ess SME

gkramer@ciauk.ltd /guy-kramer/ in

Real-life Example

Actor: 2017: Operation

CloudHopper

Desc: Avoided detection for approx 3yrs within MSPs (DXC, CGI, BAE... others), gaining access in to client networks "the biggest corporate espionage efforts in history"

Actor: APT10 Chinese Govt

Target: Intellectual property

sensitive data

Q PwC/BAE report available <u>here</u> ↓

SIEM Core Concepts

What is a SIEM? & Example Deployment Profiles

- Security Information & Event Manager it's where you shovel all your logs!
- Has been one of the core threat detection tools for the SOC for many decades.
- Deployments come in many different shapes and sizes. An understanding of the likely deployment profile will give you an understanding of the likely shortcomings..
 - E.g. Small/large deployments, outsourced Tier 1 etc..

Common SIEM Deployment Profiles

	Small Enterprise 1-1000 Employees	Mid Enterprise 1000-10000 Employees	Large Enterprise 10000+ Employees		
Driving factors	Compliance	Compliance, Central Logging, SOC (Threat Intel & Advanced Analysis)	Compliance, Central Logging, SOC (Threat Intel & Advanced Analysis), Hunting		
Managed	Outsourced/Minimal	Outsourced/Sometimes Specialists	Dedicated Team & Outsourced		
Data Sources Simple as network is usually not complicated. Firewalls, endpoints and maybe cloud		Hybrid with multiple security tools. Firewalls, NAC, Endpoint, Cloud Logs, IdP	Multiple environments with different tools, usually limited to a number of data sources due to cost.		
Preferred SIEM Type	Cloud-based, managed service	Scalable, hybrid-capable	On-premises or hybrid with full customization		
IOC Creation	No	Sometimes/Minimal	Both in-house and 3rd party		
Typical Providers	Splunk Cloud or LogRhythm SaaS	IBM QRadar or Microsoft Sentinel	Splunk Enterprise or ArcSight		
Weakness Analysis	Cloud based and lack of management	Lack of process or ownership around IOC management & investigations	Lack of data sources, correlation issues		

SIEM Log Sources

- For a SIEM to work, you need to get data into it!
 - Commonly via an agent, e.g. AMA
- Log source collection mechanisms is commonly via API, syslog, Windows event log, flat-file etc.
- Any issues with log collection can lead to missed detections!

Log Source Disruption

- Missed detections due to log processing issues is a common issue with SIEMs
- Some basic agent interference strategies could be:
 - 1. Disable SIEM agent service
 - 2. Perform action
 - 3. Clear Windows Event Log
 - 4. Restart agent (within heartbeat check timeframe).
- Or:
- 1. Suspend the Windows Event Log
- 2. Perform Action
- 3. Unsuspend Event Log

Log Source Disruption


```
Administrator: Command Prompt
C:\Users\dcrossley126\Downloads\Release\Release>phant0m-exe.exe
        Version:
                        Halil Dalabasmaz
        Author:
                        artofpwn.com
        WWW:
        Twitter:
                        @hlldz
                        @hlldz
        Github:
[+] Process Integrity Level is high, continuing...
[!] SeDebugPrivilege is not enabled, trying to enable...
[+] SeDebugPrivilege is enabled, continuing...
[*] Attempting to detect PID from Service Manager...
[+] Event Log service PID detected as 1268.
[*] Using Technique-1 for killing threads...
   Thread 1472 is detected and successfully killed.
+| Thread 1644 is detected and successfully killed.
[+] Thread 1648 is detected and successfully killed.
[+] Thread 1652 is detected and successfully killed.
[*] All done.
C:\Users\dcrossley126\Downloads\Release\Release>_
```

- Clearing Windows Event Log causes EVID1100. This could trigger a SIEM alert
- The Windows Event Log can also be suspended..
- SIEM can alert on no data, however the standard Sentinel analytic rule only checks for no heartbeat for past hour (for example..)

Source: https://github.com/hlldz/Phant0m

Cloud Logging Disruption

- Cloud logs can be interrupted or stopped
- Important to understand when this happens
- Use testing tools, such as Halberd (shown) to understand if you have detection coverage for this technique

Source: https://github.com/vectra-ai-research/Halberd

Log Parsing

- SIEMs parse logs by applying regular expressions to the raw log data
 - This powers analytic rules, dashboards, reports, etc.
 - Collection time vs Query time
- Parsing can be problematic!
 - Not all fields are correctly parsed
 - Not all logs are categorised correctly
- Creating and maintaining parsing rules can be very complex and time consuming

- Where do rules come from?
- In most cases SIEM providers only provide basic rule set leaving the users to create their own.
- Usually turn to community based rules or 3rd party suppliers
- We can leverage this to determine what rules are likely deployed for a given environment

Ref: https://controlcompass.github.io/

re.regex: Checks if the process command line contains calc.exe using a regular expression. Specifically looking for execution outside Windows Sys

rule suspicious_calculator_usage {
 meta:

description = "Detects suspicious use of calc.exe with command line parameters or

in a suspicious directory, which is likely caused by some PoC or detection evasion" reference = "https://tdm.socprime.com/tdm/info/OBZnYuU21qdX"

mitre = "defense evasion, t1036"

events:

((re.regex(\$selection1.target.process.command_line, `.*\\calc\.exe .*`) and (\$selection1.metadata.product_event_type = "4688" or \$selection1.metadata.product_event_type = "1")) or ((re.regex(\$selection1.target.process.file.full_path, `.*\\calc\.exe`) and (\$selection1.metadata.product_event_type = "4688" or \$selection1.metadata.product_event_type = "1")) and not (re.regex(\$selection1.target.process.file.full_path, `.*\\Windows\\Sys.*`))))

condition:

\$selection1

Metadata for the rule, description, author, MITRE reference etc

metadata.product_event_type:

Verifies that the event type corresponds to specific Windows event IDs:

4688: A process creation event in Windows Security Logs.

1: Sysmon Event ID 1


```
RULES
```

ss started") and

```
13
       logsource:
14
           category: process_creation
15
           product: windows
16
       detection:
17
           selection:
18
               Image|endswith: '\ntdsutil.exe'
           condition: selection
19
20
       falsepositives:
           - NTDS maintenance
       level: medium
```

field in the Endpoint data model.

will yield a file modification named ntds.dit to the destination.'
search: '| tstats `security_content_summariesonly` count min(_time) as firstTime max(_time)
 as lastTime from datamodel=Endpoint.Processes where (Processes.process_name=ntdsutil.exe
 Processes.process=*ntds* Processes.process=*create*) by Processes.dest Processes.user
 Processes.parent_process Processes.process_name Processes.process Processes.process_id
 Processes.parent_process_id | `drop_dm_object_name(Processes)` | `security_content_ctime(firstTime)`|
 `security_content_ctime(lastTime)` | `ntdsutil_export_ntds_filter`'
how_to_implement: You must be ingesting endpoint data that tracks process activity,

including parent-child relationships from your endpoints, to populate the Endpoint

data model in the Processes node. The command-line arguments are mapped to the "process"

Identify the SIEM and review public rules, with this information we can determine alternative methods to invoke an executable and bypass the static rule logic.

Invoke examples

- Copy executable to a new filename/path
- Indirectly invoke the executable, for example with Powershell in memory
 - Powershell will still trigger a log, need to use in memory capabilities such as
 Powerspoint's Invoke-ReflectivePEInjection
- Obfuscate the command line
- Disable the logging for process creation

Evasion type	Sample affected rule	Affected search term	Sample match	Sample evasion
Insertion	win_susp_schtask_creation	* /create *	schtasks.exe /create	schtasks.exe /"create"
Substitution	win_susp_curl_download	O_	curl -O http://	curlremote-name http://
Omission	win_mal_adwind	*cscript.exe *Retrive*.vbs *	cscript.exe\Retrive.vbs	cscript\Retrive.vbs
Reordering	win_susp_procdump	* -ma ls*	procdump -ma ls	procdump ls -ma
Recoding	win_vul_java_remote_dbg	*address=127.0.0.1*	address=127.0.0.1,	address=2130706433,

Table 1: The five evasion types used to evade almost half (129 of 292) of the analyzed Sigma rules.

But wait my SIEM checks for policy tampering and log clearing.....

- 4907 (audit policy changes)
- 1102 (log clearing)
- 4688 (process creation logging)

This can be challenging to overcome, however there are some techniques which might work (Again you'll need to check the specific SIEM rules & surface you're attacking)

- wevtutil sl Security /q:"Event[System[(EventID=4907)]]"
- auditpol/set/subcategory:"Process Creation"/success:disable/failure:disable
 - (Local admin required for both)

Azure Active Directory					
CrowdStrike ProcessRollup2, Sysmon EventID 1, Sysmon EventID 12, Sysmon EventID 13, Windows Event Log Security 4688					
CrowdStrike ProcessRollup2, Sysmon EventID 1, Windows Event Log Security 4688					
Powershell Installed IIS Modules					
Powershell Script Block Logging 4104					
Sysmon EventID 1					
Sysmon EventID 1, Windows Event Log Security 4688					
Sysmon EventID 8					
Windows Event Log Security 4648					
Windows Event Log System 7045					

SIEM Rules Bypass subvert detection logic

- Many SIEM deployments use out of the box correlation / analytic rules
- Many are based on watchlists or asset lists which are often not updated
- Many are simple IOC matches
- Results in minimal detection coverage + bypass techniques!

```
kQL YAML ARM

let threshold = 5000;
    _Im_networksession(eventresult='Failure')
| summarize Count=count() by SrcIpAddr, bin(TimeGenerated,5m)
| where Count > threshold
| extend timestamp = TimeGenerated, threshold
```

SIEM Rules Bypass Password Spray

- Many SIEM rules use static detection logic,
 i.e. manual thresholds
- E.g. a Password Spraying rule needs balance the observation within a timeframe
- The rule from MS Azure-Sentinel Github repoleonships
 looks for 5 failed logins for Entra ID from the same IP in 20 mins
- With our new knowledge of SIEM deployment profiles, we know the likelihood of this rule having been tuned..

```
let timeRange = 1d;
let lookBack = 7d;
let authenticationWindow = 20m;
let authenticationThreshold = 5;
```

```
/ SigninPasswordSpray.yaml [ ]
hannah.oneill@cybercx.com.au Update versions
 Code Blame 86 lines (86 loc) - 5.46 KB - (7)
                                                                  83 Raw □ ± 0 - □
            name: Password spray attack against Microsoft Fotra ID application
              'Identifies evidence of password spray activity against Microsoft Entra ID appl
              Note: Due to the number of possible accounts involved in a password spray it is
              - connectorId: AzureActiveDirectory
               let timeRange = 1d
                 summarize by UserId. lu UserDisplayName - UserDisplayName. lu UserPrincipal
                | where TimeGenerated > ago(timeRange)
                 summarize FailedPrincipalCount = dcount(UserPrincipalName) by bin(TimeGene
                 where FailedPrincipalCount >= authenticationThreshold
                | where ResultType in(failureCodes)
                  extend FullLocation - strcat(LocationDetails.countryOrRegion,'|', Location
                  summarize StartTime - min(TimeGenerated), EndTime - max(TimeGenerated), make
                extend UserDisplant/ameriff(isempty(lu UserDisplant/ame), UserDisplant/ame, 1
                | summarize StartTime = min(StartTime), EndTime = max(EndTime), make_set(User
                extend FailedPrincipalCount = array_length(set_UserPrincipalName
                table(tableName) // get data on success vs. failure history for each :
                | where TimeGenerated > ago(timeRange)
                  summarize GlobalSuccessPrincipalCount = dcountif(UserPrincipalName, (Result
```

let aadSignin = aadFunc("SigninLogs");

master - Azure-Sentinel / Solutions / Microsoft Entra ID / Analytic Rules

SIEM Rules Bypass Password Spray

- We can test EntralD password spray using tool 'Halberd'
- Using default spray of 3 seconds between attempts, the Sentinel Analytic rule triggers as expected

Source: https://github.com/vectra-ai-research/Halberd

SIEM Rules Bypass Password Spray

- Running the same password spraying attack with a wait of 300 seconds (ie 4 attempts every 20 minutes)
- Sentinel Analytic rule does not trigger...

Date		↑↓ Request ID	User	$\uparrow\downarrow$	Application	$^{\downarrow \downarrow}$	Status	IP address	Location	Conditional Access	Authentication requirement
10/12/202	4, 09:29:30	3c888956-2ae9-4192-aC			Microsoft Office		Failure		Hapurhey, Manchester, GB	Not Applied	Single-factor authentication
10/12/202	4, 09:24:28	4a9987be-33d1-4a94-9			Microsoft Office		Failure		Hapurhey, Manchester, GB	Not Applied	Single-factor authentication
10/12/202	4, 09:19:27	29cfee11-8e8d-4e45-92		nony	Microsoft Office		Failure		Hapurhey, Manchester, GB	Not Applied	Single-factor authentication
10/12/202	4, 09:14:26	f6bee844-3c12-47da-94		ta	Microsoft Office		Failure		Hapurhey, Manchester, GB	Not Applied	Single-factor authentication
10/12/202	4, 09:09:25	53f20407-060e-4a80-93		nberger	Microsoft Office		Failure		Hapurhey, Manchester, GB	Not Applied	Single-factor authentication
10/12/202	4, 09:04:23	8be81181-9370-4470-af		ndez	Microsoft Office		Failure		Hapurhey, Manchester, GB	Not Applied	Single-factor authentication
10/12/202	4, 08:45:16	87e7ea43-15b0-46da-9a			Microsoft Office		Failure		Hapurhey, Manchester, GB	Not Applied	Single-factor authentication
10/12/202	4, 08:14:02	3b678e9d-64fc-4f21-9b		nley	Microsoft Office		Failure		Hapurhey, Manchester, GB	Not Applied	Single-factor authentication
10/12/202	4, 08:09:01	3d520660-f698-4231-b2		cer	Microsoft Office		Failure		Hapurhey, Manchester, GB	Not Applied	Single-factor authentication
10/12/202	4, 08:04:00	a3d6cc54-9cbb-413e-80			Microsoft Office		Failure		Hapurhey, Manchester, GB	Not Applied	Single-factor authentication

SIEM Rules Bypass subvert Detection Logic

- Understand not only your detection coverage but the logic behind the detections
 - Sometimes a detection may not cover you as you may think
- A multi-layered detection approach is key

Advice and Mitigations

Mitigations

Threat Modelling

Use Case Definition

Continuous Improvement

FIN

Questions

*?