Grundbegriffe der Informatik Aufgabenblatt 6

Matr.nr.:	
Nachname:	
Vorname:	
Tutorium:	Nr. Name des Tutors:
Ausgabe:	24. November 2010
Abgabe:	3. Dezember 2010, 12:30 Uhr im Briefkasten im Untergeschoss von Gebäude 50.34
Lösungen werden nur korrigiert, wenn sie • rechtzeitig, • in Ihrer eigenen Handschrift, • mit dieser Seite als Deckblatt und • in der oberen linken Ecke zusammengeheftet abgegeben werden.	
Vom Tutor auszufüllen:	
erreichte Punkte	
Blatt 6:	/ 21
Blätter 1 – 6	: / 119

Aufgabe 6.1 (3+2 Punkte)

Seien $P, Q, R, S \subseteq (D \times D)$ zweistellige Relationen auf einer nichtleeren Menge D.

a) Beweisen Sie:

$$P^* \circ Q = \bigcup_{i=0}^{\infty} (P^i \circ Q)$$

b) Zeigen Sie, dass für beliebige *P*, *Q*, *R*, *S* gilt:

$$P \subseteq Q$$
, $R \subseteq S \Rightarrow P \circ R \subseteq Q \circ S$.

Aufgabe 6.2 (2+1+2 Punkte)

Es bezeichne \mathbb{Z} die Menge der ganzen Zahlen, also $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$. Gegeben sei eine Ziffernmenge $Z_{-2} = \{\mathbb{N}, \mathbb{E}\}$ mit der Festlegung $\operatorname{num}_2(\mathbb{N}) = 0$ und $\operatorname{num}_2(\mathbb{E}) = 1$. Analog zum Vorgehen in der Vorlesung definieren wir eine Abbildung $\operatorname{Num}_{-2}: Z_{-2}^* \to \mathbb{Z}$ wie folgt:

$$\operatorname{Num}_{-2}(\varepsilon) = 0$$

$$\forall w \in Z_{-2}^* \ \forall x \in Z_{-2} : \operatorname{Num}_{-2}(wx) = -2 \cdot \operatorname{Num}_{-2}(w) + \operatorname{num}_2(x)$$

- a) Geben Sie für $w \in \{E, EN, EE, ENE, EEE\}$ jeweils $Num_{-2}(w)$ an.
- b) Für welche Zahlen $x \in \mathbb{Z}$ gibt es ein $w \in \mathbb{Z}_{-2}^*$ mit $\text{Num}_{-2}(w) = x$?
- c) Wie kann man an einem Wort $w \in Z_{-2}^*$ erkennen, ob $\operatorname{Num}_{-2}(w)$ negativ, Null oder positiv ist?

Aufgabe 6.3 (3+3 Punkte)

Gegeben sei folgende Abbildung $f: \mathbb{N}_+ \to \mathbb{Z}$, mit f(n) = 1 - 3n, wobei \mathbb{Z} wieder die Menge der ganzen Zahlen ist.

- a) Gibt es eine Abbildung $g: \mathbb{Z} \to \mathbb{N}_+$, so dass $f \circ g = I_{\mathbb{Z}}$? Begründen Sie ihre Antwort.
- b) Gibt es eine Abbildung $h: \mathbb{Z} \to \mathbb{N}_+$, so dass $h \circ f = I_{\mathbb{N}_+}$? Begründen Sie ihre Antwort.

Aufgabe 6.4 (3+2 Punkte)

Gegeben sei folgende Abbildung über dem Alphabet $A = \{a, b, c, \dots, z\}$.

$$R(\epsilon) = \{\epsilon\},$$

$$\forall w \in A^* : \forall x \in A : R(wx) = x \cdot R(w).$$

- a) Ist R ein Homomorphismus? Begründen Sie ihre Antwort.
- b) Geben Sie ein weiteres Alphabet A' an, so dass R ein Homomorphismus ist.