МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Кафедра «Системы обработки информации и управления»

ОТЧЕТ

Рубежный контроль №2 по курсу «Технологии машинного обучения»

Вариант 9

ИСПОЛНИТЕЛЬ:	<u>Меркулова Н.А.</u>
группа ИУ5-64Б	ФИО
	""2020 г.
ПРЕПОДАВАТЕЛЬ:	<u>Гапанюк Ю.Е.</u> _{ФИО}
	""2020 г.

Москва - 2020

1. Условие

Задача 1. Классификация текстов на основе методов наивного Байеса.

Необходимо решить задачу классификации текстов на основе любого выбранного Вами датасета (кроме примера, который рассматривался в лекции). Классификация может быть бинарной или многоклассовой. Целевой признак из выбранного Вами датасета может иметь любой физический смысл, примером является задача анализа тональности текста.

Необходимо сформировать признаки на основе CountVectorizer или TfidfVectorizer.

В качестве классификаторов необходимо использовать два классификатора, не относящихся к наивным Байесовским методам (например, LogisticRegression, LinearSVC), а также Multinomial Naive Bayes (MNB), Complement Naive Bayes (CNB), Bernoulli Naive Bayes.

Для каждого метода необходимо оценить качество классификации с помощью хотя бы одной метрики качества классификации (например, Accuracy). Сделате выводы о том, какой классификатор осуществляет более качественную классификацию на Вашем наборе данных.

2. Выполнение

См. на следующей странице

In [25]:

```
import pandas as pd
import numpy as np
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import fl_score, precision_score
from sklearn.linear_model import LogisticRegression
import matplotlib.pyplot as plt
from sklearn.naive_bayes import MultinomialNB, ComplementNB, BernoulliNB
from sklearn.metrics import accuracy_score
from sklearn.svm import LinearSVC
from sklearn.feature_extraction.text import TfidfVectorizer

%matplotlib inline
sns.set(style="ticks")
```

In [3]:

```
data = pd.read_csv('../data/south-park.csv')
data
```

Out[3]:

	Season	Episode	Character	Line
0	10	1	Stan	You guys, you guys! Chef is going away. \n
1	10	1	Kyle	Going away? For how long?\n
2	10	1	Stan	Forever.\n
3	10	1	Chef	I'm sorry boys.\n
4	10	1	Stan	Chef said he's been bored, so he joining a gro
70891	9	14	Stan	I think you're pushing it.\n
70892	9	14	Randy	How about twenty?\n
70893	9	14	Stan	That's not disciprine.\n
70894	9	14	Randy	Right right. Does vodka count?\n
70895	9	14	Stan	Dad!\n

70896 rows × 4 columns

In [4]:

```
data = data.drop(columns = ['Season', 'Episode'])
```

In [5]:

```
data['Character'].value_counts()
Out[5]:
Cartman
                     9774
                     7680
Stan
Kyle
                     7099
Butters
                     2602
Randy
                     2467
Some KKK members
                        1
Reveler 4
Louse 3
                        1
Paparazzo 10
                        1
Volunteer 4
                        1
Name: Character, Length: 3950, dtype: int64
```

In [6]:

```
data = data[data['Character'].isin(['Cartman', 'Stan', 'Kyle', 'Randy', 'Butters'])]
data
```

Out[6]:

	Character	Line
0	Stan	You guys, you guys! Chef is going away. \n
1	Kyle	Going away? For how long?\n
2	Stan	Forever.\n
4	Stan	Chef said he's been bored, so he joining a gro
9	Cartman	I'm gonna miss him. I'm gonna miss Chef and I
70891	Stan	I think you're pushing it.\n
70892	Randy	How about twenty?\n
70893	Stan	That's not disciprine.\n
70894	Randy	Right right. Does vodka count?\n
70895	Stan	Dad!\n

29622 rows × 2 columns

Разделим выборку на обучающую и тестовую:

In [7]:

```
X = data.drop('Character', axis=1)
Y = data['Character']
```

```
In [8]:
```

Х

Out[8]:

```
Line
              You guys, you guys! Chef is going away. \n
    0
                          Going away? For how long?\n
    1
                                              Forever.\n
    2
        Chef said he's been bored, so he joining a gro...
       I'm gonna miss him. I'm gonna miss Chef and I...
70891
                              I think you're pushing it.\n
70892
                                  How about twenty?\n
                                 That's not disciprine.\n
70893
                       Right right. Does vodka count?\n
70894
70895
                                                 Dad!\n
```

29622 rows × 1 columns

In [9]:

```
Y
```

```
Out[9]:
```

```
0
             Stan
             Kyle
1
2
             Stan
4
             Stan
         Cartman
9
70891
             Stan
70892
            Randy
70893
             Stan
70894
            Randy
70895
             Stan
Name: Character, Length: 29622, dtype: object
```

In [10]:

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25, random_staprint('{}, {}'.format(X_train.shape, X_test.shape))
print('{}, {}'.format(Y_train.shape, Y_test.shape))

(22216, 1), (7406, 1)
(22216,), (7406,)
```

```
In [12]:
```

```
vectorizer = TfidfVectorizer()
vectorizer.fit(X_train + X_test)
```

Out[12]:

tokenizer=None, use_idf=True, vocabulary=None)

In [13]:

X train

Out[13]:

	Line		
12000	Dude, asshole, you're keeping a lot of other c		
38924	This is gonna be fun.\n		
31154	You can say that again.\n		
3765	Uh! \n		
13854	No, let me tell you somethin', fellers! You al		
26626	What?! You said nobody would know!\n		
42206	Cartman just hit the button, and the ship flew		
12703	Whoa, wait wait, we don't wanna just lie about		
28952	There he goes again.\n		
523	Hybrid cars don't cause smugness, people do		
22216 rows × 1 columns			

In [17]:

```
X_train_vec = vectorizer.transform(X_train['Line'])
X_test_vec = vectorizer.transform(X_test['Line'])
```

In [18]:

```
X_train_vec.shape
```

Out[18]:

(22216, 1)

```
In [43]:
def test(model):
    print(model)
    model.fit(X train vec, Y train)
    print("accuracy:", accuracy score(Y test, model.predict(X test vec)))
In [44]:
test(LogisticRegression(solver='lbfgs', multi class='auto'))
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept
=True,
                   intercept scaling=1, 11 ratio=None, max iter=100,
                   multi_class='auto', n_jobs=None, penalty='12',
                   random state=None, solver='lbfgs', tol=0.0001, verb
ose=0,
                   warm start=False)
accuracy: 0.32919254658385094
In [45]:
test(LinearSVC())
LinearSVC(C=1.0, class weight=None, dual=True, fit intercept=True,
          intercept scaling=1, loss='squared hinge', max iter=1000,
          multi class='ovr', penalty='12', random state=None, tol=0.00
01,
          verbose=0)
accuracy: 0.32919254658385094
In [46]:
test(MultinomialNB())
MultinomialNB(alpha=1.0, class prior=None, fit prior=True)
accuracy: 0.32919254658385094
In [47]:
test(ComplementNB())
ComplementNB(alpha=1.0, class prior=None, fit prior=True, norm=False)
accuracy: 0.08817175263300027
In [48]:
test(BernoulliNB())
```

BernoulliNB(alpha=1.0, binarize=0.0, class_prior=None, fit_prior=True)
accuracy: 0.32919254658385094