ML assignment:

Dataset:

Annotated dataset of around 3k images which has locations of defects (bounding box)

Problem statement:

- Based on the given dataset, identifying if a given image is healthy/ not binary classification
 - Problem statement 1(using custom model from scratch)
- Based on the given dataset, predict multi-label classification using custom model Dataset is not being loaded due to out of memory error (since it has shape len * 6 (classes) * 224 * 224 * 3)
- Based on the given dataset , predict & localize multiclasses using pretrained model (By fine tuning the model, making it customized to the dataset)
 - Problem statement 2

Classification folder refers to problem statement 1 Detection folder refers to problem statement 2

Problem statement 1:

Pipeline:

- Data Preparation (loading the data & modifying the paths as per requirement)
- Data preprocessing
 resize the image (since we have multiple shapes) to (224,224)
 Normalize the pixel values to [0,1]
- Data augmentation

Flipping

Rotation

Brightness

Width, height shift

- Models
 - Manual feature selection:

Trained the model using HOG, LBP and use random forest for classification

- CNN model: (auto feature selection using CNN & trained with augmented dataset)

- Inferences

Problem statement 2:

Pipeline:

- Extracted the dataset from roboflow (in yolov5 format)
- Seperated the dataset into train, validation classes for gaining the prediction
- Adjusted the path variables in .yml file & constrained hyperparameters for low training time.

Inferences:

- Following defects are identified in a better way in the given order: *spot*, *acne*, *mole*, *pimple*..

Actual image:

Predicted:

Predictions couldn't identify acne/pimple/ other classes in better way compared to spots due to:

- low epochs: 5
- Since the model is taking very high training time: around 37 minutes for a epoch, I've restricted the model to 5 epochs instead of general 20/50 range
- Low quality dataset:
 Dataset isn't preprocessed (resized) & augmented (which reduces its robustness)
 Also the dataset lacks the diversity among the classes & annotation isn't upto the mark for some images as well
 - Too small bounding box: Adding to the less amount of data, bounding box size is also too small which is making it difficult to differentiate between similar classes

Future work:

- Preprocess the dataset before hand to ensure all images are of similar shape
- Normalize the image pixels as part of pre-processing for better convergence
- Augmented the dataset by flipping, rotating, brightness, contrast ... to ensure robustness
- Increase the epochs and ensure model is being trained with GPU for faster execution
- If model predicts similar to the labels, we can evaluate using IOU & other evaluation metrics
- Mole class can be removed since it doesn't come under curable defect, instead we can add whiteheads (manual annotation ...)