MAT257 Notes

Jad Elkhaleq Ghalayini

February 15 2019

Let's begin with a C^r mapping $f: \mathbb{R}^n \to \mathbb{R}^p$. Well first of all, we know what the tangent mapping is, or rather we know what the derivative is. And we want to interpret this derivative as a linear mapping induced by f

$$f_{*a}: \mathbb{R}^n_a \to \mathbb{R}^p_{f(a)}, f_{*a}(v_a) = Df(a)(v)_{f(a)}$$
 (1)

Now, by duality, we want to say that f_a induces in the other direction a mapping that we'll call f_a^* that takes alternating k-tensors on the tangent space $\mathbb{R}^p_{f(a)}$ to alternating k-tensors on the tangent space \mathbb{R}^n_a , i.e.

$$f_a^*: \Omega^k(\mathbb{R}^p_{f(a)}) \to \Omega^k(\mathbb{R}^n_a)$$
 (2)

Let's try the case where k = 1. In this case, alternating 1-tensors are just 1-tensors, which are just elements of the dual space, i.e.

$$\Omega^1(\mathbb{R}_a^n) = \mathcal{T}^1(\mathbb{R}_a^n) = (\mathbb{R}_a^n)^* \tag{3}$$

So, if $T \in (\mathbb{R}^p_{f(a)})^*$, we can write

$$f_a^*(T)(v_a) = T(f_{*a}(v_a)) \tag{4}$$

In general, we do the exact same thing for $\omega \in \Omega^k(\mathbb{R}^p_{f(a)})$:

$$f_a^*(\omega)(v_{1,a},...,v_{k,a}) = \omega(f_{*a}(v_1),...,f_{*a}(v_k))$$
(5)

Now, we want to show that f induces a mapping f^* inducing a linear mapping whih takes, instead of pointwise objects as above, k-forms on \mathbb{R}^p to k-forms on \mathbb{R}^n , with a k-form on \mathbb{R}^p taking the form

$$\omega: b \in \mathbb{R}^p \mapsto \omega(b) \in \Omega^k(\mathbb{R}^p_b) \tag{6}$$

So we can write

$$(f^*\omega)(a) = f_a^*(\omega(f(a))) \tag{7}$$

which is the same as saying

$$(f^*\omega)(a)(v_{1,a},...,v_{k,a}) = \omega(f(a))(f_{*a}(v_{1,a}),...,f_{*a}(v_{n,a}))$$
(8)

that is, just repeating what the definition is about. So this is the formal definition. I understand that everyone would like to forget this as soon as possible, so I'm going to try to help.

Proposition 1. Let $f: \mathbb{R}^n \to \mathbb{R}^p$ be \mathcal{C}^r . Then

$$f^*(dy_i) = \sum_{j=1}^n \frac{\partial f_i}{\partial x_j} dx_j = df_i = d(y_i \circ f)$$
(9)

where

$$dy_i = \sum \frac{\partial y_i}{\partial x_j} dx_j \tag{10}$$

Recall also that

$$f_* \left(\frac{\partial}{\partial x_j} \right) = \sum \frac{\partial f_j}{\partial x_i} \frac{\partial}{\partial y_j} \tag{11}$$

Before we prove this, recall that equation 7 is true for every k, including k = 0. And what's a 0-form? It's just a function. So in this case, with a function (zero form) g,

$$f^*(g) = g \circ f \tag{12}$$

Let's get to the proof:

Proof. By definition,

$$f^*(dy_i)(a)(v_a) = dy_i(f(a))(f_{*a}v_a)$$
(13)

Now, what is the right hand side here? It's the matrix of partial derivatives of f(a) applied to v_a . So if $v_a = (v_1, ..., v_n)$, then equation 13 is equal to

$$dy_i(f(a))\left(\sum_{k=1}^p \mathbf{e}_{k,f(a)} \sum_{j=1}^n \frac{\partial f_k}{\partial x_j}(a)v_j\right) = \sum_{j=1}^n \frac{\partial f_i}{\partial x_j}(a)v_j = \sum_{j=1}^n \frac{\partial f_i}{\partial x_j}(a)dx_j(a)v_a$$
(14)

Since this is true for any v_a , it follows that

$$f^*(dy_i) = \sum_{i=1}^n \frac{\partial f_i}{\partial x_j} dx_j \tag{15}$$

as desired. \Box

Let's do an example: assume gx is a \mathcal{C}^r function on \mathbb{R}^n :

$$f^*(dg) = f^*\left(\sum_{i=1}^n \frac{\partial g}{\partial y_i} dy_i\right) = \sum_{i=1}^p \frac{\partial g}{\partial y_i} \circ f f^*(dy_i) = \sum_{i=1}^n \frac{\partial g}{\partial y_i} \circ f \sum_{i=1}^n \frac{\partial f}{\partial x_j} dx_j$$
 (16)

Changing the order of the summation and using the chain rule, we obtain

$$\sum_{j=1}^{n} \left(\sum_{i=1}^{n} \frac{\partial g}{\partial y_i} \circ f \circ \frac{\partial f_i}{\partial x_j} \right) dx_j = \sum_{j=1}^{n} \frac{\partial (g \circ f)}{\partial x_j} dx_j = d(g \circ f)$$
(17)

Let's extend the proposition with some "trivial" facts:

Proposition 2. Let $f: \mathbb{R}^n \to \mathbb{R}^p$ be \mathcal{C}^r . Then

1.
$$f^*(\omega_1 + \omega_2) = f^*(\omega_1) + f^*(\omega_2)$$
, i.e. f^* is linear

2.
$$f^*(g \cdot w) = (g \circ f)f^*\omega$$

3.
$$f^*(\omega \wedge \eta) = f^*(\omega) \wedge f^*(\eta)$$

Proof. Immediate from the definitions

Proposition 3. Suppose $f: \mathbb{R}^n \to \mathbb{R}^p$. Then

$$f^*(gdx_1 \wedge ... \wedge dx_n) = g \circ f \det g' \cdot dx_1 \wedge ... \wedge dx_n \tag{18}$$

This is why the natural object of integration is not functions but rather differential forms. Because if we understand that the object we're integrating is a differential form, not a function, then the formula for change of variable is built into the definition of a differential form.

$$\int g dx_1 \wedge \dots \wedge dx_n = \int g dx_1 \dots dx_n \tag{19}$$

Let's get to the proof:

Proof. Consider

$$f^*(dx_1 \wedge ... \wedge dx_n)(a)(e_{1,a}, ..., e_{n,a})$$
 (20)