Chuẩn hóa dữ liệu (Normalization)

Các dạng chuẩn (1NF -> BCNF) Thuật toán phân rã thành 3NF bảo toàn phụ thuộc Thuật toán phân rã thành BCNF có nối không mất

Chuẩn hóa (1)

- Chuẩn hóa là quá trình tách bảng (phân rã) thành các bảng nhỏ hơn dựa vào các phụ thuộc hàm mà không làm mất thông tin.
- Các dạng chuẩn là các chỉ dẫn để thiết kế các bảng trong CSDL.
- Mục đích của chuẩn hóa là loại bỏ các dư thừa vì
 - Yêu cầu về không gian lưu trữ
 - Tránh các lỗi khi thao tác dữ liệu (Insert, Delete, Update).
- Chú ý: chuẩn hóa làm tăng thời gian truy vấn.

Chuẩn hoá (2)

- Các dạng chuẩn sử dụng phụ thuộc hàm
- Chuẩn 3 (3NF)
 - Luôn có được phân rã có nối không mất và bảo toàn phụ thuộc
 - Cho phép dư thừa 1 chút
- Chuẩn Boyce Codd (BCNF)
 - Tránh dư thừa
 - Luôn có phân rã có nối không mất
 - Không phải luôn có được phân rã bảo toàn phụ thuộc

© Bộ môn Tin học - ĐH Thăng Long

MF	Tenfim	NSX	Giathue	нѕх	NPP	МаКН	TenKH	Điachi	Ngaydat
P001	Hồn yêu	1996	3.2	C 20	Fafim	K001	David	Paris	1/1/06
P002	Đảo vô hình	2006	5.0	C 20	Fafim	K001	David	Paris	1/2/06
						K002	Marie	Toulouse	5/1/06
						K003	John	Nice	1/2/06
P003	Hoa hậu FBI	2002	3.2	Wanner	Films	K003	John	Nice	1/2/06
P004	Taxi	2005	4.5	France	Fafim	K001	David	Paris	2/5/06
						K004	Helen	Bordeaux	1/2/06
P005	Đời cát	2003	2.5	VFC	VFC	K005	Taix	Toulouse	4/1/06

© Bộ môn Tin học - ĐH Thăng Long

5

Còn bảng S sau là 1 quan hệ?

NGUOIQL	CAPDUOI1	CAPDUOI2	CAPDUOI3	CAPDUOI4
Bob	Jim	Mary	Beth	
Mary	Mike	Jason	Carol	Mark
Jim	Alan			

Cột lặp

- Jim chỉ có một cấp dưới ?
- Nếu Mary thêm một người cấp dưới ?
- \rightarrow Gộp các cột lặp thành một cột
- Vấn đề gì xảy ra ???

© Bộ môn Tin học - ĐH Thăng Long

.

Dạng chuẩn 1 - 1NF

- Chuẩn 1 đảm bảo bảng đang xét là một quan hệ:
 - Giá tri của các côt là đơn tri.
 - Không chứa các cột lặp
- Cách chuyển sang dạng 1NF:
 - điền đủ dữ liêu vào các côt khác
 - Biến côt đa tri thành các dòng

MF	Tenfim	NSX	Giathue	HSX	NPP	MaKH	TenKH	Điachi	Ngaydat
P001	Hồn yêu	1996	3.2	C 20	Fafim	K001	David	Paris	1/1/06
P002	Đảo vô hình	2006	5.0	C 20	Fafim	K001	David	Paris	1/2/06
P002	Đảo vô hình	2006	5.0	C 20	Fafim	K002	Marie	Toulouse	5/1/06
P002	Đảo vô hình	2006	5.0	C 20	Fafim	K003	John	Nice	1/2/06
P003	Hoa hậu FBI	2002	3.2	Wanner	Films	K003	John	Nice	1/2/06
P004	Taxi	2005	4.5	France	Fafim	K001	David	Paris	2/5/06
P004	Taxi	2005	4.5	France	Fafim	K004	Helen	Bordeaux	1/2/06
P005	Đời cát	2003	2.5	VFC	VFC	K005	Taix	Toulouse	4/1/06

© Bộ môn Tin học - ĐH Thăng Long

7

Dạng chuẩn 2 - 2NF (1)

8

- Môt quan hê đat 2NF nếu
 - Quan hệ đã đạt 1NF
 - Thuộc tính khác khóa phụ thuộc hoàn toàn vào khóa
- Một quan hệ đạt 2NF nếu thỏa mãn 1 trong các điều kiện sau
 - Khóa chính chỉ gồm 1 thuộc tính.
 - Bảng không có các thuộc tính không khóa.
 - Tất cả thuộc tính không khóa phụ thuộc hoàn toàn vào tập thuộc tính khóa chính.
- Gơi ý
 - Chỉ kiểm tra các quan hệ có đạt 2NF nếu quan hệ đó có khoá chính gồm 2 thuộc tính trở lên.
 - Để chuyển quan hệ từ dạng 1NF sang dạng 2NF, ta dùng phép chiếu.

© Bộ môn Tin học - ĐH Thăng Long

Dạng chuẩn 2 - 2NF (2)

- Bảng R có các phụ thuộc hàm sau:

 - ② MaKH → TenKH, Diachi
 - ③ MF, MaKH → Ngaythue
 - \P HSX \rightarrow NPP
- Khóa chính: MF, MaKH.
- Các thuộc tính Tenfim, Giathue, TenKH, Diachi,...
 - là các thuộc tính không khóa
 - chỉ phụ thuộc vào một bộ phận của khóa
 - → R không đạt chuẩn 2

© Bộ môn Tin học - ĐH Thăng Long

9

 $\pi_{\mathsf{MaKH},\mathsf{TenKH},\mathsf{Diachi}}(\mathsf{R})$

 $\pi_{\mathsf{MF},\mathsf{Tenfim},\mathsf{NSX},\mathsf{Giathue},\mathsf{HSX},\mathsf{NPP}}(\mathsf{R})$

 R_2

 $\pi_{\mathsf{MF},\mathsf{MaKH},\mathsf{Ngaydat}}(\mathsf{R})$

 R_3

MaKH	TenKH	Diachi
K001	David	Paris
K002	Marie	Toulouse
K003	John	Nice
K004	Helen	Bordeaux
K005	Taix	Toulouse

MF	Tenfim	NSX	Gia thue	HSX	NPP
P001	Hồn yêu	1996	3.2	C 20	Fafim
P002	Đảo vô hình	2006	5.0	C 20	Fafim
P003	Hoa hậu FBI	2002	3.2	Wanner	Films
P004	Taxi	2005	4.5	France	Fafim
P005	Đời cát	2003	2.5	VFC	VFC

MF	MaKH	Ngay dat
P001	K001	1/1/06
P002	K001	1/2/06
P002	K002	5/1/06
P002	K003	1/2/06
P003	K003	1/2/06
P004	K001	2/5/06
P004	K004	1/2/06
P005	K005	4/1/06

© Bộ môn Tin học - ĐH Thăng Long

Các lỗi khi ở dạng 2NF

- Lược đồ R₂(MF, Tenfim, NSX, Giathue, HSX, NPP)
 gồm các phu thuôc hàm:
 - MF → Tenfim, NSX, Giathue, HSX, NPP
 - $HSX \rightarrow NPP$
- R2 dat 2NF.
- Vấn đề
 - Có thể thêm nhà phân phối cho 1 hãng sản xuất nếu hãng đó chưa sản xuất bộ phim nào?
 - Nếu xoá thông tin 1 bộ phim có làm mất thông tin về hãng sản xuất và nhà phân phối không?
 - Khi thay đổi nhà phân phối cho 1 hãng sản xuất thì phải thực hiện thao tác đó bao nhiều lần?

© Bộ môn Tin học - ĐH Thăng Long

11

Dạng chuẩn 3 – 3NF

- Môt quan hê ở 3NF nếu
 - Quan hệ đã đạt 2NF
 - Không có các phụ thuộc bắc cầu.
- Một lược đồ quan hệ R ở 3NF nếu với mọi phụ thuộc X → A đúng trong R và A ∉ X thì hoặc X là khóa bao hàm hoặc A là nguyên tố.
- A là thuộc tính nguyên tố (thuộc tính khóa) nếu A là thuộc một khóa dự tuyển của R, ngược lai A là phi nguyên tố.
- VD: Cho lược đồ CSZ, F = {CS → Z, Z → C}, CS và SZ đều là khóa.
 - ⇒ tất cả các thuộc tính là nguyên tố.

© Bộ môn Tin học - ĐH Thăng Long

Các lỗi khi ở dạng 3NF (1)

- Ví dụ:
 - R(MF, Tenfim, NamSX, MaBS, Tinhtrang, HSX) và các mô tả như sau:
 - Mỗi fim có thể có nhiều bản sao
 - Mỗi bản sao của một phim có tình trạng khác nhau
 - Một phim chỉ có một tên, năm sản xuất và HSX.
- Từ thông tin trên ta có các phụ thuộc hàm sau:
 - MF → Tenfim, NamSX, HSX
 - MF, MaBS \rightarrow Tinhtrang
- R có khoá (MF, MaBS)

MF	Tenfim	NSX	HSX	MBS	Tinhtrang
P001	Hồn yêu	1996	C 20	1	Mượn
P001	Hồn yêu	1996	C 20	2	Hỏng
P001	Hồn yêu	1996	C 20	3	Mượn
P002	Đảo vô hình	2006	C 20	1	Bán
P002	Đảo vô hình	2006	C 20	2	Rỗi
P003	Hoa hậu FBI	2002	Wanner	1	Rỗi

- R trên đạt 3NF.
- Lỗi phát sinh
 - Khi xoá bản sao 1 của phim P003 thì làm mất thông tin của phim này
 - Không thể thêm thông tin về 1 phim nếu phim đó chưa có bản sao nào

© Bô môn Tin học - ĐH Thăng Long

15

Dang chuẩn Boyce-Codd - BCNF (1)

- Một lược đồ quan hệ R ở dạng BCNF nếu với mọi phụ thuộc X→A đúng trong R và A ∉ X thì X là khóa bao hàm.
- Một quan hệ ở BCNF thì cũng đạt 3NF.
- Trong thực hành các quan hệ đạt chuẩn 3NF là đủ. Tuy nhiên một quan hệ ở 3NF không đảm bảo đã loại bỏ được tất cả các lỗi khi thao tác dữ liêu.

© Bộ môn Tin học - ĐH Thăng Long

MF	Tenfim	NSX	HSX	MBS	Tinhtrang
P001	Hồn yêu	1996	C 20	1	Mượn
P001	Hồn yêu	1996	C 20	2	Hỏng
P001	Hồn yêu	1996	C 20	3	Mượn
P002	Đảo vô hình	2006	C 20	1	Bán
P002	Đảo vô hình	2006	C 20	2	Rỗi
P003	Hoa hậu FBI	2002	Wanner	1	Rỗi

 $\pi_{\mathsf{MF},\mathsf{Tenfim},\mathsf{NSX},\mathsf{HSX}}(\mathsf{R})$

MF	Tenfim	NSX	HSX
P001	Hồn yêu	1996	C 20
P002	Đảo vô hình	2006	C 20
P003	Hoa hậu FBI	2002	Wanner

 $\pi_{\mathsf{MF},\mathsf{MaBS},\mathsf{Tinhtrang}}(\mathsf{R})$

MF	MBS	Tinhtrang
P001	1	Mượn
P001	2	Hỏng
P001	3	Mượn
P002	1	Bán
P002	2	Rỗi
P003	1	Rỗi

© Bộ môn Tin học - ĐH Thăng Long

17

Thuật toán phân rã thành 3NF (1)

- Dùng để phân rã R thành (R₁, R₂,...,R_n) mà
 - R_i đạt 3NF
 - Phân rã bảo toàn phụ thuộc, và
 - Phân rã có nối không mất
- Thuật toán
 - IN: Lược đồ quan hệ R, tập phụ thuộc hàm F
 - OUT: Một phân rã bảo toàn phụ thuộc của R sao cho mỗi lược đồ quan hệ đều có dạng 3NF và ứng với hình chiếu của F trên lược đồ đó.

© Bộ môn Tin học - ĐH Thăng Long

Thuật toán phân rã thành 3NF (2)

 Thuật toán phân rã thành 3NF bảo toàn phụ thuộc Tính F_C

```
\begin{split} m &= 0 \\ \text{IF } (\alpha \to Y \in F_c) \text{ AND } (\alpha \to Z \in F_c) \\ &\quad \{ F_C = F_C \setminus \{ \alpha \to Y, \, \alpha \to Z \} \cup \{ \alpha \to YZ \} \\ &\quad \} \text{ /* Hợp các phụ thuộc có cùng vế trái*/} \\ \text{FOR } (X \to Y \in F_c) \text{ DO} \\ &\quad \{ m = m+1 \\ &\quad R_m = XY \\ &\quad \} \end{split}
```

© Bộ môn Tin học - ĐH Thăng Long

19

Thuật toán phân rã thành 3NF (3)

- Ví du 1
 - R = ABCD, F = {AB \rightarrow C, C \rightarrow D, BC \rightarrow D, CD \rightarrow B}
 - Phân rã thành 3NF
- Giải quyết
 - Tính $F_C = \{AB \rightarrow C, C \rightarrow D, C \rightarrow B\}$
 - $F_C = \{AB \rightarrow C, C \rightarrow BD\}$
 - Ta có R_1 = ABC, R_2 = BCD
 - Phân rã ρ = (ABC, BCD) bảo toàn phụ thuộc

© Bộ môn Tin học - ĐH Thăng Long

Thuật toán phân rã thành 3NF (4)

 Thuật toán cải tiến để phân rã có nối không mất Tính F_C

```
\begin{split} & m = 0 \\ & \text{IF } (\alpha \rightarrow Y \in F_c) \text{ AND } (\alpha \rightarrow Z \in F_c) \\ & \left\{ F_C = F_C \setminus \left\{ \alpha \rightarrow Y, \, \alpha \rightarrow Z \right\} \cup \left\{ \alpha \rightarrow YZ \right\} \right. \\ & \left. \right\} /^* \text{ Hợp các phụ thuộc có cùng vế trái*/} \\ & \text{FOR } (X \rightarrow Y \in F_c) \text{ DO} \\ & \left\{ \begin{array}{l} m = m+1 \\ R_m = XY \end{array} \right\} \\ & \text{IF } (!\exists \; R_i \; với \; 1 \leq i \leq m \; chứa \; 1 \; khoá \; dự \; tuyển \; của \; R)} \\ & \left\{ \begin{array}{l} m = m+1 \\ R_m = 1 \; khoá \; dự \; tuyển \; bất \; kỳ \; của \; R \end{array} \right\} \end{split}
```

© Bộ môn Tin học - ĐH Thăng Long

21

Thuật toán phân rã thành 3NF (5)

- Ví du 2
 - R=CTHRSG, F= $\{C\rightarrow T$, HR $\rightarrow C$, HT $\rightarrow R$, CS $\rightarrow G$, HS $\rightarrow R$ $\}$
 - Tìm phân rã đạt 3NF bảo toàn phụ thuộc và có nối không mất.
- Giải quyết
 - Ta có F_C = F
 - K = HS
 - $\rho = (CT, HRC, HTR, CSG, HSR)$ đạt 3NF
 - Thêm lược đồ HS vào phân rã ρ; có HSR chứa khóa
 - ightarrow Phân rã ho bảo toàn phụ thuộc và có nối không mất

© Bộ môn Tin học - ĐH Thăng Long

Thuật toán phân rã thành 3NF (6)

- Ví du 3
 - F={MF→Tenfim,NSX,Giathue,HSX,NPP; HSX→NPP}
 - Tìm phân rã đạt 3NF bảo toàn phụ thuộc và có nối không mất.
- Giải quyết
 - $F_C = \{MF \rightarrow Tenfim, NSX, Giathue, HSX; HSX \rightarrow NPP\}$
 - K = (MF, HSX)
 - Phân rã gồm $R_1 = (MF, Tenfim, NSX, Giathue, HSX)$ và $R_2 = (HSX, NPP)$ đạt 3NF

© Bộ môn Tin học - ĐH Thăng Long

23

Phân rã thành BCNF (1)

- Bổ đề:
- 1. Mỗi lược đồ có 2 thuộc tính đều có dạng BCNF.
- Nếu R không có dạng BCNF thì ta có thể tìm được các thuộc tính A và B trong R sao cho (R - AB) → A đúng (có thể (R - AB) → B cũng đúng). Điều ngược lại chưa chắc đã đúng.

© Bộ môn Tin học - ĐH Thăng Long

Thuật toán phân rã thành BCNF (1)

- Dùng để phân rã R thành (R₁, R₂,...,R_n) mà
 - R_i đạt BCNF
 - Phân rã có nối không mất
- Thuât toán:
 - IN: Lược đồ quan hệ R, tập phụ thuộc hàm F.
 - OUT: Một phân rã của R có nối không mất, sao cho mỗi lược đồ quan hệ trong phân rã có dạng BCNF ứng với hình chiếu của F trên lược đồ đó.

© Bộ môn Tin học - ĐH Thăng Long

25

Thuật toán phân rã thành BCNF (2)

- Phương pháp: Phân rã lược đồ R thành 2 lược đồ:
 - 1. Lược đồ 1: có tập các thuộc tính XA, có dạng BCNF và phụ thuộc $X \rightarrow A$ đúng.
 - 2. Lược đồ 2: R A
 - Tiếp tục phân rã lược đồ R A theo các bước 1, 2 cho đến khi
 - không thể phân rã được nữa
 - lược đồ chỉ còn 2 thuộc tính

© Bộ môn Tin học - ĐH Thăng Long

Thuật toán phân rã thành BCNF (3)

Chương trình chính:

```
BEGIN
Z:= R;
REPEAT
Phân rã Z thành Z-A và XA /*gọi TT phân rã D*/
Thêm XA vào phân rã;
Z:= Z - A;
UNTIL (không thể phân rã Z)
Thêm Z vào phân rã
END.
```

© Bộ môn Tin học - ĐH Thăng Long

27

Thuật toán phân rã thành BCNF (4)

• Thủ tục phân rã (D)

```
BEGIN

IF Z không chứa A, B sao cho A ∈ (Z - AB)+ THEN
    return Z có dạng BCNF và không phân rã được
ELSE
    BEGIN
    Tìm một cặp A và B; Y := Z;
    WHILE (Y chứa A và B sao cho (Y - AB) → A) DO
        Y:=Y - B;
    return phân rã Z-A và Y /*Y là XA trong CT chính*/
END;
END;
```

© Bộ môn Tin học - ĐH Thăng Long

Thuật toán phân rã thành BCNF (5)

- Cho lược đồ quan hệ CTHRSG và tập phụ thuộc
 F = (C→T, HR→C, HT→R, CS→G, HS→R)
- Áp dụng thuật toán:
 - Y=CTHRSG, A=C, B=T, C \in (HRSG)⁺ \Rightarrow Y=CHRSG
 - Y=CHRSG, A=R, B=C, R \in (HSG)⁺ \Rightarrow Y=HRSG
 - Y=HRSG, A=R, B=G, R \in (HS)+ \Rightarrow Y=HRS
 - Không phân rã được nữa, HRS là một lược đồ trong phân rã.
 - Z=CTHRSG R=CTHSG
 - Tiếp tục với Y=CTHSG

© Bộ môn Tin học - ĐH Thăng Long

29

Thuật toán phân rã thành BCNF (6)

- Y=CTHSG, A=T, B=H, T \in (CSG)⁺ \Rightarrow Y=CTSG
- Y=CTSG, A=T, B=S, T \in (CG)⁺ \Rightarrow Y=CTG
- Y=CTG, A=T, B=G, T ∈(C)⁺ ⇒ Y=CT
- CT không phân rã được nữa, CT là một lược đồ trong phân rã.
- Z = CHSG
- Tiếp tục với Y = CHSG
- ...
- Cuối cùng được phân rã (HRS, CT, CSG, CHS)
- **Chú ý:** Thứ tự chọn cặp A, B khác có thể thu được một phân rã khác, ρ = (CHS, THS, HSG, HSR).

© Bộ môn Tin học - ĐH Thăng Long

Một vài chú ý về BCNF

- Với cùng lược đồ, có thể có nhiều phân rã khác nhau đat BCNF
- Thuật toán chỉ sinh ra 1 trong các phân rã đó
- Phân rã BCNF có thể bảo toàn phụ thuộc
- Thứ tự chọn phụ thuộc hàm trong thuật toán có thể sinh ra phân rã khác nhau

© Bộ môn Tin học - ĐH Thăng Long