Mathematical Foundations of Computer Science

CS 499, Shanghai Jiaotong University, Dominik Scheder

- Homework assignment published on Monday, 2018-03-05.
- Work on it and submit a first solution or questions by Sunday, 2018-03-11, 12:00 by email to me and the TAs.
- You will receive feedback by Wednesday, 2018-03-14.
- Submit your final solution by Sunday, 2018-03-18 to me and the TAs.

2 Partial Orderings

2.1 Equivalence Relations as a Partial Ordering

An equivalence relation $R \subseteq V \times V$ is basically the same as a partition of V. A partition of V is a set $\{V_1, \ldots, V_k\}$ where (1) $V_1 \cup \cdots \cup V_k = V$ and (2) the V_i are pairwise disjoint, i.e., $V_i \cap V_j = \emptyset$ for $1 \le i < j \le k$. For example, $\{\{1\}, \{2,3\}, \{4\}\}$ is a partition of $\{1,2,3,4\}$ but $\{\{1\}, \{2,3\}, \{1,4\}\}$ is not.

Exercise 2.1. Let E_4 be the set of all equivalence relations on $\{1, 2, 3, 4\}$. Note that E_4 is ordered by set inclusion, i.e.,

$$(E_4, \{(R_1, R_2) \in E_4 \times E_4 \mid R_1 \subseteq R_2\})$$

is a partial ordering.

Figure 1: the Hasse diagram of the partial ordering

- 1. Draw the Hasse diagram of this partial ordering in a nice way.
- 2. What is the size of the largest chain? solution: the size of the largest chain is 4.
- 3. What is the size of the largest antichain? solution: the size of the largest antichain is 6.

2.2 Chains and Antichains

Define the partially ordered set (\mathbb{N}_0^n, \leq) as follows: $x \leq y$ if $x_i \leq y_i$ for all $1 \leq i \leq n$. For example, $(2, 5, 4) \leq (2, 6, 6)$ but $(2, 5, 4) \not\leq (3, 1, 1)$.

Exercise 2.2. Consider the infinite partially ordered set (\mathbb{N}_0^n, \leq) .

- 1. Which elements are minimal? Which are maximal? solution: (0,0,...,0) is the minimal. There is no maximal element.
- 2. Is there a minimum? A maximum? solution: (0,0,...,0)is the minimum. There is no maximum element.
- 3. Does it have an infinite chain? solution: Yes. If it does not have an infinite chain, it will have the maximum element which we assume $it(a_1, a_2, ..., a_n)$. Then we have

the element $(a_1 + 1, a_2 + 1, ..., a_n + 1)$, which is obviously greater than $(a_1, a_2, ..., a_n)$. Thus, it have an infinite chain.

4. Does it have arbitrarily large antichains? That is, can you find an antichain A of size |A| = k for every $k \in \mathbb{N}$?

solution: Yes. For every $k \in \mathbb{N}$, there is an antichain like(1, 0, ..., 0), (0, 1, ..., 0), ..., (0, 0, ..., 1), which is an antichain.

*Exercise 2.3. Does every infinite subset $S \subseteq \mathbb{N}_0^n$ contain an infinite chain?

Exercise 2.4. Show that (\mathbb{N}_0^n, \leq) has no infinite antichain. **Hint.** Use the previous exercise.

Consider the induced ordering on $\{0,1\}^n$. That is, for $x,y \in \{0,1\}^n$ we have $x \leq y$ if $x_i \leq y_i$ for every coordinate $i \in [n]$.

Exercise 2.5. Draw the Hasse diagrams of $(\{0,1\}^n, \leq)$ for n=2,3.

Figure 2: the Hasse diagrams of $(\{0,1\}^n, \leq)$ for n=2,3

Exercise 2.6. Determine the maximum, minimum, maximal, and minimal elements of $\{0,1\}^n$.

solution: The maximum and maximal element are both 11...1(it has n many 1's). The minimum and minimal element are both 00...0(it has n many 0's).

Exercise 2.7. What is the longest chain of $\{0,1\}^n$?

solution: The longest chain of $\{0,1\}^n$ is 00...0,00...1,00...11,...,11...1.

**Exercise 2.8. What is the largest antichain of $\{0,1\}^n$?

solution: $L_i = x \in 0, 1^n | xhasimany 1's$, obviously $|L_i| = \binom{n}{i}$ and L_i is an antichain. When $i = \left[\frac{n}{2}\right], |L_i| = \binom{n}{i}$ has the largest value, let's name it A. If A is not the largest antichain, it must contain another element B below the midlevel. Since every B in the ithle

2.3 Infinite Sets

In the lecture (and the lecture notes) we have showed that $\mathbb{N} \times \mathbb{N} \cong \mathbb{N}$, i.e., there is a bijection $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$. From this, and by induction, it follows quite easily that $\mathbb{N}^k \cong \mathbb{N}$ for every k.

Exercise 2.9. Consider \mathbb{N}^* , the set of all finite sequences of natural numbers, that is, $\mathbb{N}^* = \{\epsilon\} \cup \mathbb{N} \cup \mathbb{N}^2 \cup \mathbb{N}^3 \cup \dots$ Here, ϵ is the empty sequence. Show that $\mathbb{N} \cong \mathbb{N}^*$ by defining a bijection $\mathbb{N} \to \mathbb{N}^*$.

Exercise 2.10. Show that $R \cong R \times R$. **Hint:** Use the fact that $R \cong \{0,1\}^{\mathbb{N}}$ and thus show that $\{0,1\}^{\mathbb{N}} \cong \{0,1\}^{\mathbb{N}} \times \{0,1\}^{\mathbb{N}}$.

Exercise 2.11. Consider $\mathbb{R}^{\mathbb{N}}$, the set of all infinite sequences (r_1, r_2, r_3, \dots) of real numbers. Show that $\mathbb{R} \cong \mathbb{R}^{\mathbb{N}}$. **Hint:** Again, use the fact that $\mathbb{R} \cong \{0,1\}^{\mathbb{N}}$.

Next, let us view $\{0,1\}^{\mathbb{N}}$ as a partial ordering: given two elements $\mathbf{a}, \mathbf{b} \in \{0,1\}^{\mathbb{N}}$, that is, sequences $\mathbf{a} = (a_1, a_2, \dots)$ and $\mathbf{b} = (b_1, b_2, \dots)$, we define $\mathbf{a} \leq \mathbf{b}$ if $a_i \leq b_i$ for all $i \in \mathbb{N}$. Clearly, $(0,0,\dots)$ is the minimum element in this ordering and $(1,1,\dots)$ the maximum.

Exercise 2.12. Give a countably infinite chain in $\{0,1\}^{\mathbb{N}}$. Remember that a set A is countably infinite if $A \cong \mathbb{N}$.

Exercise 2.13. Find a countably infinite antichain in $\{0,1\}^{\mathbb{N}}$.

Exercise 2.14. Find an uncountable antichain in $\{0,1\}^{\mathbb{N}}$. That is, an antichain A with $A \cong \mathbb{R}$.

**Exercise 2.15. Find an uncountable chain in $\{0,1\}^{\mathbb{N}}$. That is, an antichain A with $A \cong \mathbb{R}$.