Math 322 Homework Problem Set 4

Problem 1. Two of the graphs in the image below are isomorphic.

- (a) Determine which two graphs are isomorphic, and give an appropriate graph isomorphism that confirms this.
- (b) Explain why the remaining graph is not isomorphic to the other two.

Problem 2. Consider the following weighted graph G_0 :

- (a) Using Dijkstra's algorithm, find the shortest distance from vertex a to every other vertex of G_0 . Show all your work (that is, how you proceed at each stage of the algorithm). You <u>don't need</u> to also find paths of shortest length in this part of the problem.
- (b) By relying, if you want to, on your work in part (a), find all paths of shortest length from a to j.

Problem 3. In Lecture 18 we saw that, if a connected graph G of size ≥ 3 is Eulerian, then its line graph L(G) is Hamiltonian.

Show that the converse is not always true. That is, find a connected graph H of size ≥ 3 such that

- its line graph L(H) is Hamiltonian,
- but H is **not** Eulerian.

Confirm that your example has the above properties.

Problem 4. Let d be a positive integer ≥ 2 . Prove the following statement: for every connected d-regular graph G, its line graph L(G) is Eulerian.

Problem 5. (a) Consider the graph G_0 from Problem 2:

Show that G_0 has a Hamilton path. Moreover, show that G_0 is <u>not</u> Hamiltonian.

(b) For each of the graphs on the next page, determine whether it is Hamiltonian or not. If it is, find a Hamilton cycle. Otherwise, explain why no such cycle exists.

Graph H_1

Graph H_2