Der linearzeit MST-Algorithmus

Der schnellste Algorithmus für das MST/ MSF Problem

Max Springenberg

Proseminar: Randomisierte Algorithmen, TU Dortmund

Motivation

"the fastest"

Borůvka, Kruskal, Prim	$O(m \log(n))$	(deterministisch)
Chazelle	$O(m \log(\beta(m, n)))$	(deterministisch)
MST	O(m+n)	(randomisiert)

1

"the fastest"

```
Borůvka, Kruskal, Prim O(m \log(n)) (deterministisch)
Chazelle O(m \log(\beta(m,n))) (deterministisch)
MST O(m+n) (randomisiert)
```

"For many applications, a randomized algorithm is the simplest algorithm available, or the fastest, or both."[1]

1

Was wollen wir erreichen?

MSF

MSF

F-leicht/-schwer

Teaser: *F*-schwer

Sei G:

Teaser: *F*-schwer

Sei F:

Teaser: *F*-schwer

Dann ist etwas an diesen Kanten besonders.

F-leicht/-schwer

Sei
$$e = \{u, v\}$$
, P_e in F , w von G

$$w_F(e) = egin{cases} \infty & , u \text{ und } v \text{ in verschiedenen Komponenten} \\ max\{w(P_e(e))\} & , \text{ sonst} \end{cases}$$

F-schwer:
$$w(e) > w_F(e)$$

F-leicht:
$$w(e) \leq w_F(e)$$

Zyklus D,E,H,D $\mbox{\ensuremath{\cancel{\uptilde}}}$

 G_{w_1} :

 G_{w_1} , MST F:

 G_{w_1} , MST F:

 G_{w_1} , MST F:

Borůvka Phasen

- 1. Kontraktierende Kanten markieren
- 2. Verbundene Komponenten bestimmen
- 3. Verbundene Komponenten durch einzelne Knoten ersetzen
- 4. Selbstschleifen entfernen

1. Kontraktierende Kanten markieren

2. Verbundene Komponenten bestimmen

3. Verbundene Komponenten durch einzelne Knoten ersetzen

4. Selbstschleifen entfernen

Reduktion der Knoten

• Minimale Komponente: zwei Knoten, eine Kante

Reduktion der Knoten

- Minimale Komponente: zwei Knoten, eine Kante
- Maximale Anzahl minimaler Komponenten: n/2

Reduktion der Knoten

- Minimale Komponente: zwei Knoten, eine Kante
- Maximale Anzahl minimaler Komponenten: n/2
- Maximale Anzahl an Knoten nach Borůvka-Phase: n/2

Randomisierte Stichproben

Wirf eine Münze!

Quelle: https://melbournechapter.net/explore/coin-flip-clipart/

Kanten "würfeln"

 G_1 :

Kanten "würfeln"

Verschlechtern wir den MSF?

Theorem

Für den MSF F von $G(p), p \in (0,1]$ gibt es $\frac{n}{p}$ F -leichte Kanten in G

Beweisidee:

Theorem

Für den MSF F von $G(p), p \in (0,1]$ gibt es $\frac{n}{p}$ F -leichte Kanten in G

Beweisidee:

• Seien die Kanten von G aufsteigend sortiert

$$e_1,\ldots,e_{m_G},\ w(e_1)\leq\ldots\leq w(e_{m_G})$$

Theorem

Für den MSF F von $G(p), p \in (0,1]$ gibt es $\frac{n}{p}$ F -leichte Kanten in G

Beweisidee:

- Seien die Kanten von G aufsteigend sortiert
- Sei $F = (V_G, \emptyset)$

Theorem

Für den MSF F von $G(p), p \in (0,1]$ gibt es $\frac{n}{p}$ F -leichte Kanten in G

Beweisidee:

- Seien die Kanten von G aufsteigend sortiert
- Sei $F = (V_G, \emptyset)$
- Konstruiere G(p) nach der Kantenreihenfolge

Theorem

Für den MSF F von $G(p), p \in (0,1]$ gibt es $\frac{n}{p}$ F -leichte Kanten in G

Beweisidee:

- Seien die Kanten von G aufsteigend sortiert
- Sei $F = (V_G, \emptyset)$
- Konstruiere G(p) nach der Kantenreihenfolge
- Ist die betrachtete Kante F-leicht wird sie in F aufgenommen

• Wann wird die nächste Kante hinzugenommen?

• Wann wird die nächste F-leichte Kante hinzugenommen?

• Wann wird die nächste F-leichte Kante hinzugenommen?

 $k\text{-te Phase} \overset{def}{=} \quad \text{Zufalls experimente} \quad \text{ab } k-1 \text{ Kanten in } F,$ bis k Kanten in F

- Wann wird die nächste F-leichte Kante hinzugenommen?
- Wie oft "würfeln"?

 $\mbox{$k$-te Phase} \stackrel{\mbox{\scriptsize def}}{=} \quad \mbox{Zufalls experimente} \quad \mbox{ab $k-1$ Kanten in F}, \\ \mbox{bis k Kanten in F}$

- Wann wird die nächste F-leichte Kante hinzugenommen?
- Wie oft "würfeln"? 1/p

k-te Phase $\stackrel{def}{=}$ Zufallsexperimente ab k-1 Kanten in F, bis k Kanten in F

- Wann wird die nächste F-leichte Kante hinzugenommen?
- Wie oft "würfeln"? 1/p
- ullet Anzahl an Phasen insgesamt: $s \leq n-1, s \in \mathbb{N}$

k-te Phase $\stackrel{def}{=}$ Zufallsexperimente ab k-1 Kanten in F, bis k Kanten in F

ullet Differenz der Kanten c=(n-1)-s

- Differenz der Kanten c = (n-1) s
- weitere c-Phasen \Rightarrow erwartet mehr F-leichte Kanten in F

- Differenz der Kanten c = (n-1) s
- weitere c-Phasen \Rightarrow erwartet mehr F-leichte Kanten in F
- s + c = n 1 Phasen, bzw. n Erfolge

- Differenz der Kanten c = (n-1) s
- weitere c-Phasen \Rightarrow erwartet mehr F-leichte Kanten in F
- s + c = n 1 Phasen, bzw. n Erfolge
- ullet Erfolgswahrscheinlichkeit: $p \Rightarrow$ negative Binomialverteilung

- Differenz der Kanten c = (n-1) s
- weitere c-Phasen \Rightarrow erwartet mehr F-leichte Kanten in F
- s + c = n 1 Phasen, bzw. n Erfolge
- Erfolgswahrscheinlichkeit: $p \Rightarrow$ negative Binomialverteilung

 $X_{np} \stackrel{def}{=}$ negative Binomialverteilung, Parameter n, p $X_{sp} \stackrel{def}{=}$ negative Binomialverteilung, Parameter s, p X_{np} dominiert X_{sp} , mit:

$$n/p = E[X_{np}] \ge E[X_{sp}] = s/p$$

Der MST-Algorithmus

Data: Graph G

Result: Approximation eines MST/ MSF in G

Data: Graph G

Result: Approximation eines MST/ MSF in G

3 Borůvka-Phasen

1: $G_1, C \leftarrow$ **Wenn** G leer oder Borůvka-Phasen terminieren:

 $\mathbf{return}\ F = C$

Data: Graph G

Result: Approximation eines MST/ MSF in *G*

3 Borůvka-Phasen

1: $G_1, C \leftarrow$ **Wenn** G leer oder Borůvka-Phasen terminieren:

return
$$F = C$$

2:
$$G_2 \leftarrow G_1(p = 0, 5)$$

Data: Graph G

Result: Approximation eines MST/ MSF in *G*

3 Borůvka-Phasen

1: $G_1, C \leftarrow$ **Wenn** G leer oder Borůvka-Phasen terminieren:

return
$$F = C$$

- 2: $G_2 \leftarrow G_1(p=0,5)$
- 3: $F_2 \leftarrow MST(G_2)$

Data: Graph G

Result: Approximation eines MST/ MSF in *G*

3 Borůvka-Phasen

1: $G_1, C \leftarrow Wenn G$ leer oder Borůvka-Phasen terminieren:

return
$$F = C$$

- 2: $G_2 \leftarrow G_1(p=0,5)$
- 3: $F_2 \leftarrow MST(G_2)$
- 4: $G_3 \leftarrow (V_{G_1}, E_{G_1} E_{F_2 heavy})$

Data: Graph G

Result: Approximation eines MST/ MSF in *G*

3 Borůvka-Phasen

1: $G_1, C \leftarrow Wenn G$ leer oder Borůvka-Phasen terminieren:

return
$$F = C$$

- 2: $G_2 \leftarrow G_1(p=0,5)$
- 3: $F_2 \leftarrow MST(G_2)$
- 4: $G_3 \leftarrow (V_{G_1}, E_{G_1} E_{F_2 heavy})$
- 5: $F_3 \leftarrow MST(G_3)$

Data: Graph G

Result: Approximation eines MST/ MSF in *G*

3 Borůvka-Phasen

1: $G_1, C \leftarrow Wenn G$ leer oder Borůvka-Phasen terminieren:

return
$$F = C$$

2:
$$G_2 \leftarrow G_1(p=0,5)$$

3:
$$F_2 \leftarrow MST(G_2)$$

4:
$$G_3 \leftarrow (V_{G_1}, E_{G_1} - E_{F_2 - heavy})$$

5:
$$F_3 \leftarrow MST(G_3)$$

6: **return**
$$F = C \cup F_3$$

Laufzeit: Überblick

$$G_1, C \leftarrow egin{array}{l} & \operatorname{Borůvka-Phasen} \\ & \operatorname{Wenn} \ G \ \operatorname{leer} \\ & \operatorname{oder} \ \operatorname{Borůvka-Phasen} \ \operatorname{terminieren:} \\ & \operatorname{return} \ F = C \\ \\ & G_2 \leftarrow G_1(p=0,5) \\ & F_2 \leftarrow MST(G_2) \\ & G_3 \leftarrow (V_{G_1}, E_{G_1} - E_{F_2 - heavy}) \\ & F_3 \leftarrow MST(G_3) \\ & \operatorname{return} \ F = C \cup F_3 \\ \end{array}$$

Laufzeit: Überblick

$$O(n+m)$$
 $G_1, C \leftarrow egin{array}{c} ext{Wenn } G ext{ leer} \\ ext{oder Borůvka-Phasen terminieren:} \\ ext{return } F = C \end{array}$ $O(n+m)$ $G_2 \leftarrow G_1(p=0,5)$ $F_2 \leftarrow MST(G_2)$ $O(n+m)$ $G_3 \leftarrow (V_{G_1}, E_{G_1} - E_{F_2-heavy})$ $F_3 \leftarrow MST(G_3)$

O(n+m) return $F=C\cup F_3$

Laufzeit: Überblick

$$O(n+m)$$
 $G_1, C \leftarrow egin{array}{c} ext{Wenn } G ext{ leer} \\ ext{oder Borůvka-Phasen terminieren:} \\ ext{return } F = C \end{array}$ $O(n+m)$ $G_2 \leftarrow G_1(p=0,5)$? $F_2 \leftarrow MST(G_2)$ $O(n+m)$ $G_3 \leftarrow (V_{G_1}, E_{G_1} - E_{F_2-heavy})$? $F_3 \leftarrow MST(G_3)$

O(n+m) return $F=C\cup F_3$

$$T(m,n) \leq ? + ? + c(m+n)$$

, mit $c \in \mathbb{N}$ konstant

$$T(m,n) \le ? + ? + c(m+n)$$

, mit $c \in \mathbb{N}$ konstant

$$G_1 \mid n_1 = n/8, m_1 = m$$

$$T(m,n) \le ? + ? + c(m+n)$$

, mit $c \in \mathbb{N}$ konstant

$$G_1$$
 $n_1 = n/8, m_1 = m$
 G_2 $n_2 = n/8, m_2 = m/2$

$$T(m, n) \le T(n/8, m/2) + ? + c(m + n)$$

, mit $c \in \mathbb{N}$ konstant

$$G_1$$
 $n_1 = n/8, m_1 = m$
 G_2 $n_2 = n/8, m_2 = m/2$
 G_3 $n_3 = \frac{n/8}{0.5}, m_3 = m/2$

$$T(m, n) \le T(n/8, m/2) + T(n/8, n/4) + c(m+n)$$

, mit $c \in \mathbb{N}$ konstant

$$G_1$$
 $n_1 = n/8, m_1 = m$
 G_2 $n_2 = n/8, m_2 = m/2$
 G_3 $n_3 = n/4, m_3 = m/2$

. mit $c \in \mathbb{N}$ konstant

$$T(m,n) \leq T(n/8, m/2) + T(n/8, n/4) + c(m+n)$$

$$\leq (T(n/8^2, m/2^2) + T(n/8^2, \frac{m/2}{4}) + c(n/8 + m/2))$$

$$+ (T(n/8^2, \frac{n/4}{2}) + T(n/8^2, n/4^2) + c(n/8 + n/4))$$

$$+ c(n+m)$$

. mit $c \in \mathbb{N}$ konstant

$$T(m,n) \le T(n/8, m/2) + T(n/8, n/4) + c(m+n)$$

$$\le (T(n/8^2, m/2^2) + T(n/8^2, \frac{m/2}{4})$$

$$+ T(n/8^2, \frac{n/4}{2}) + T(n/8^2, n/4^2)$$

$$+ c(n/8 + n/4) + c(n/8 + m/2)) + c(n+m)$$

18

$$T(m, n) \le T(n/8, m/2) + T(n/8, n/4) + c(m+n)$$

$$\le (T(n/8^2, m/2^2) + T(n/8^2, \frac{m/2}{4}) + T(n/8^2, \frac{n/4}{2}) + T(n/8^2, n/4^2) + c(n/2 + m/2)) + c(n+m)$$
, mit $c \in \mathbb{N}$ konstant

$$T(m, n) \leq T(n/8, m/2) + T(n/8, n/4) + c(m+n)$$

$$\leq (T(n/8^2, m/2^2) + T(n/8^2, \frac{m/2}{4}) + T(n/8^2, \frac{n/4}{2}) + T(n/8^2, n/4^2) + c(n/2 + m/2)) + c(n+m)$$

$$\leq c(n+m) \cdot \sum_{i=0}^{\infty} (1/2)^i$$

, mit $c \in \mathbb{N}$ konstant

$$T(m, n) \le T(n/8, m/2) + T(n/8, n/4) + c(m+n)$$

$$\le (T(n/8^2, m/2^2) + T(n/8^2, \frac{m/2}{4}) + T(n/8^2, \frac{n/4}{2}) + T(n/8^2, n/4^2) + c(n/2 + m/2)) + c(n+m)$$

$$\le c(n+m) \cdot \sum_{i=0}^{\infty} (1/2)^i$$

$$= 2 \cdot c(n+m)$$
. mit $c \in \mathbb{N}$ konstant

Literatur

i: Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge: Cambridge University Press 1995, Kapitel 10.3.