Computerized Lexical Analysis Reveals Complexity of Student Ideas in Biology

John Merrill

Casey Lyons

Shauna Jones

Rosa Moscarella

Kevin Haudek

Mark Urban-Lurain

CRCSTL
Center for Research on
College Science Teaching
and Learning

Introduction: Use of constructed responses

- Students have complex ideas
- One limitation of multiple choice questions is the forced selection of a single idea
- Having students create their own explanations may better reveal their complex ideas

Introduction: Conceptual Change

- Students build new ideas upon existing knowledge
- This makes conceptual change difficult in that incorrect ideas are not easily replaced

Research Question

- How can we better reveal and understand students' complex ideas?
 - When students construct own answer, more likely to reveal mix of ideas
 - Impossible to analyze all students' submissions in very large courses
 - Can computer help?
 - Lexical analysis allows the processing of large numbers of student responses to reveal common patterns of ideas

Why Research Photosynthesis?

- Photosynthesis a complex biological process
 - energy transformations
 - molecular rearrangements
 - structure/function relationships
- Existing diagnostic questions* and research into student difficulties

Methods

- Exam data from introductory cell biology course (n=391)
- Each student received one MC DQC and one constructed response
- Used 2 versions of the DQC questions that allowed a cross-over design
- Lexical analysis by SPSS Text Analytics for Surveys

Multiple Choice Questions

- Q. A mature maple tree can have a mass of 1 ton or more (dry biomass, after removing water), yet it starts from a seed that weighs less than 1 gram. Which of the following contributes most to this huge increase in biomass?
 - A. Absorption of mineral substances from root (7.7%)
 - B. Absorption of organic substances from soil via roots (12.7%)
 - c. Incorporation of CO2 gas from atmosphere into molecules by green leaves (59.4%)
 - D. Incorporation of H2O from soil into molecules by green leaves (7.7%)
 - E. Absorption of solar radiation into the leaf (12.7%)
- A similar question stem using corn and same distractors was also used

Constructed Response Prompt

Q: A mature maple tree can have a mass of 1 ton or more (dry biomass, after removing the water), yet it starts from a seed that weighs less than 1 gram. **Explain this huge increase in biomass**.

Lexical Analysis

Frequencies of concepts expressed in Constructed Responses

Students' explanations reveal a more complex picture than multiple choice

Concepts in constructed response coded by MC choice

MC Selection

A. Minerals

B. Organic substances

C. CO2

D. H2O

E. Light

MC Selection vs. CR Categories

Students' concept heterogeneity revealed through written explanations

Conclusions

- Lexical analysis can reveal patterns of concepts present in large number of responses
- Students have complex and heterogeneous ideas
- Constructed response provides a unique view of this complexity that can be missed by multiple choice items

Conclusions

- Nothing particularly unique about analyzing student writing, per se
- Ability to accurately analyze LARGE numbers quickly at low cost is unique
- Formative feedback to instructor about patterns of ideas of whole class allows rapid instructional response (JiTT)
- Even reading lots of responses would be unlikely to reveal these patterns in responses
 - exceptional research tool

Next Steps

- Use lexical categories as predictors of human scoring
 - Different rubric types
- Creation and implementation of DQC-type instrument as opposed to questions

Acknowlegements

- Collaborators
 - Automated Analysis of Constructed Response (AACR) Group
 - Diagnostic Question Cluster (DQC) Group
 - Joyce Parker, Duncan Sibley

- Funding
 - National Science Foundation
 - DUE 0736952 and DUE 1022653

Visit our group webpage: aacr.crcstl.msu.edu