Results: Compare and Contrast

3/3/2020

Results: Compare and Contrast

This next section is my attempt to compare and contrast the ML Algorithms prepared in this report.

As you will remember, I have studied 6 different M.L. algorithms using protein amino acid percent composition data from two classes. Class number 1 is my positive control which is a set of Myoglobin proteins, while the second class is a control group of human proteins that do not have Fe binding centers.

Group	Class	N of Class	Range of Groups
Controls	0 or (-)	1217	$1, \ldots, 1217$
Myoglobin	1 or (+)	1124	$1218, \ldots, 2341$

The Six M.L Algorithms consist of:

Name	Type	Output Used For Graphing
Principal Component Analysis	Unsupervised	Anomalies $> Abs(3\sigma)$
Logistic Regression	Supervised	FP & FN
SVM-linear	Supervised	FP & FN
SVM-polynomial kernel	Supervised	FP & FN
SVM-radial basis function kernel	Supervised	FP & FN
Neural Network	Supervised	FP & FN

Scatter Plots of Anomalies Vs. FP & FN Outputs

To obtain False-Positive (fp) from sets: {-}

- 1. False-Postives $\stackrel{\text{def}}{=} \{ \text{obs} = 0 \land \text{pred} = 1 \}$
- 2. False-Negatives $\stackrel{\text{def}}{=}$ {obs = 1 \land pred = 0}

Anomalies Inner Joined with PC

```
## Load Libraries
Libraries = c("knitr", "readr")

for(p in Libraries){
    library(p, character.only = TRUE)
```

```
}
opts_chunk$set(cache = TRUE, fig.align = "center")
```

Prepare PCA: PC1 and PC2 for all 2340 proteins

```
norm_c_m_20aa <- read_csv("./00-data/03-ml_results/norm_c_m_20aa.csv")
pca_values <- prcomp(norm_c_m_20aa)
row_pc12 <- cbind(rowNum = 1:2340, PC1 = pca_values$x[,1], PC2 = pca_values$x[,2])
# dim(row_pc12)</pre>
```

Load Files & change column names

Inner-join (merge) with PC 1&2 (row_pc12)

Generate FP/FN & PCA-Anomalies on PCA Plots

PCA-Anomalies Plot

PCA-Anomalies On PC 1 & 2 Axes

Logit FP/FN On PC 1 & 2 Axes

SVM-Linear FP/FN On PC 1 & 2 Axes

SVM-Polynomial FP/FN On PC 1 & 2 Axes

SVM-RBF FP/FN On PC 1 & 2 Axes

Neural Network Function Plot

Statistical Learning Method Vs Total Number of FP/FN

Statistical Method	Total Number Produced	Unique	Total/Unique
Principal Componnent Analysis	461	460	1.002
Logit	537	119	4.51
SVM Linear	496	125	3.97

Statistical Method	Total Number Produced	Unique	Total/Unique
SVM Polynomial	278	70	3.97
SVM Radial Basis Function	244	58	4.21
Random Forest	190	46	4.13
Deep Learning	347	133	2.61

```
# Load Libraries
Libraries <- c("doMC", "knitr", "readr", "caret", "nnet", "caretEnsemble", "e1071", "kernlab")
for (p in Libraries) {
    library(p, character.only = TRUE)
# Import data & data handling
c_m_TRANSFORMED <- read_csv("./00-data/02-aac_dpc_values/c_m_TRANSFORMED.csv",</pre>
                             col_types = cols(Class = col_factor(levels = c("0", "1")),
                                               PID = col skip(),
                                               TotalAA = col_skip()))
# Partition data into training and testing sets
set.seed(1000)
index <- createDataPartition(c_m_TRANSFORMED$Class, p = 0.8, list = FALSE)</pre>
training_set <- c_m_TRANSFORMED[ index,]</pre>
            <- c_m_TRANSFORMED[-index,]</pre>
test_set
Class_test <- as.factor(test_set$Class)</pre>
```

Stacking Algorithms - Run multiple algorithms in one call.

Plot the resamples output to compare the models.

