Computer Science 112 Data Structures

Lecture 22:

Graphs:

Breadth First Search Shortest Path

Review: Graph Traversals

Depth First Traversal

for each vertex v in graph:call dfsG(v)

```
• dfsG(v):
    if (marked(v)) return;
    visit v;
    mark v;
    for each vn in neighbors(v)
        dfsG(vn)
```


$$\mathbf{v} = \langle \mathbf{A} \rangle$$

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

Driver

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

dfsG

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

$$vn = \langle C \rangle$$

$$\mathbf{v} = \langle \mathbf{C} \rangle$$

Driver

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

dfsG

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

$$vn = \langle C \rangle$$

$$\mathbf{v} = \langle \mathbf{C} \rangle$$

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

$$vn =$$

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

dfsG

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

$$vn =$$

$$\mathbf{v} = \langle \mathbf{D} \rangle$$

$$\mathbf{v} = \langle \mathbf{B} \rangle$$

$$\mathbf{v} = \langle \mathbf{B} \rangle$$

$$\mathbf{v} = \langle \mathbf{C} \rangle$$

$$\mathbf{v} = \langle \mathbf{C} \rangle$$

$$\mathbf{v} = \langle \mathbf{D} \rangle$$

$$\mathbf{v} = \langle \mathbf{D} \rangle$$

- Time:
 - Visit each vertex
 - inspect each edge

O(n + e) n vertices, e edges

Uses of DFS Traversal

- Connected Components
 - See GraphCC.java
- Topsort
 - See GraphTS.java

Review: Topological Sort

- Acyclic Digraph <=> partial order
- Topsort: find total order consistent with partial order

$$1 \quad a=1;$$

$$3$$
 c=a*b;

$$4$$
 d=a+4;

$$c=c+d$$

Topological Sort

Acyclic Digraph <=> partial order

Topsort: find total order consistent with

Topsort Algorithms

- Most work by assigning numbers to vertices
 - topsorted order = numerical order
- Depth first

DFS Topsort Algorithm

- Algorithm:
 - Do DFS
 - Number vertices as you leave them
- Problem: leave vertex *after* leave reachable vertices, but needs number *smaller* than reachable vertices
 - Solution: number from largest to smallest numbers
- See GraphTS.java

New: Topsort Example

New: Topsort Example

Topsort Cost

• DFS + numbering

$$= O(n+e) + O(n) = O(n+e)$$

New: Breadth First Search

Like breadth first search on tree

- Breadth First: ABCDEFGH
- Depth First: ABEFDGHC

Breadth First Algorithm

```
bfsG(v):
visit and mark v
enqueue v
while not queue.empty()
  dequeue into w
  for each neighbor n of w:
    if n not visited:
       visit and mark n
       enqueue n
```

Breadth First Cost

- like depth-first:
 - visit every vertex
 - cross every edge
 - O(n+e)

Shortest Path

- weighted digraph
 - weights are all > 0
- "length" of a path = sum of weights of arcs on path
- given start vertex, end vertex, find shortest path from start to end

Shortest Paths

- What is the shortest path
 - from A to E?
 - from A to F?

Shortest Paths

• If a shortest path from A to E runs through F, the part from A to F is a shortest path from A to F

 Consider the shortest paths from A to each other vertex.

 Consider the shortest paths from A to each other vertex.

 Consider the shortest paths from A to each other vertex.

 Consider the shortest paths from A to each other vertex.

 Consider the shortest paths from A to each other vertex.

 Consider the shortest paths from A to each other vertex.

- These can be put together to form a tree
- A Shortest Path Tree

- Grow a tree of shortest paths from start
 - grow it one vertex at a time, closest to farthest
- Fringe: nodes that are not in the tree yet but have a neighbor in the tree

- Vertices in the tree have
 - a link: first step on the shortest path back to start
 - a distance: the length of that whole path

- Vertices in the fringe have
 - a link: an arc to the tree if > 1 of these, use the arc that gives the shortest path back to start
 - a distance: the length of the path using link

Algorithm:

Put start vertex in the tree
While there are any vertices in fringe
Let v be vertex in fringe with
smallest distance-from-start.
Put v in the tree.
Update fringe

Update fringe

- Neighbors of v that are not in tree or fringe get added to fringe
- Neighbors of v that are in the fringe get checked: would changing link to be v result in a smaller distance? If so, change link and distance

J → tree, Update fringe

$J \rightarrow tree$

Update fringe: neighbors → fringe

Update fringe: Check neighbors' links

Node	Status	Link	Distance	_
A	Tree		0	5 B
В	Fringe	A	5	4
C	Fringe	A	4	$\left(\begin{array}{c} \mathbf{C} \end{array}\right)$
D	Fringe	A	7	8
E				(F) (E)
\mathbf{F}				2

Node Status Link Distance	Node	Status	Link	Distance
---------------------------	------	--------	------	-----------------

A Tree -- 0

B Fringe A 5

C Tree A 4

D Fringe A 7

 \mathbf{E}

F Fringe C 12

Node	Status	Link	Distance	_
A	Tree		0	(A) (B)
В	Tree	A	5	4
C	Tree	A	4	$\left(\begin{array}{c} C \end{array} \right)$
D	Fringe	В	6	8
E				(F) (E)
\mathbf{F}	Fringe	C	12	2

Node	Status	Link	Distance
A	Tree		0
В	Tree	A	5
C	Tree	A	4
D	Tree	В	6
E	Fringe	D	7
\mathbf{F}	Fringe	C	12

Node	Status	Link	Distance
A	Tree		0
В	Tree	A	5
C	Tree	A	4
D	Tree	В	6
E	Tree	D	7
F	Fringe	E	9

Node	Status	Link	Distance
A	Tree		0
В	Tree	A	5
C	Tree	A	4
D	Tree	В	6
E	Tree	D	7
F	Tree	${f E}$	9

