Маthеmatics Department



# Course Methods Year 12 test one 2022

| Formula sheet provided:    | Уes             |                                                                                             |
|----------------------------|-----------------|---------------------------------------------------------------------------------------------|
| .Q.,,,,,Q.,,,,,,,,,,       |                 |                                                                                             |
| Task weighting:            | % <u></u> 01    |                                                                                             |
| Marks available:           | ——40—— mark     | s                                                                                           |
|                            | A4 paper.       |                                                                                             |
| Special items:             | Drawing instrun | rents, templates, notes on one unfolded sheet of                                            |
| Standard items:            |                 | r preferred), pencils (including coloured), sharpener,<br>Tape, eraser, ruler, highlighters |
| Materials required:        | No calculate    | oks nor classpads allowed                                                                   |
| Number of questions:       | 8               |                                                                                             |
| Time allowed for this task | 40              | suim —                                                                                      |
| Таsk type:                 | Кеsbonse        |                                                                                             |
|                            |                 |                                                                                             |
| Student name:              |                 | Teacher name:                                                                               |

Note: All part questions worth more than 2 marks require working to obtain full marks.

1 Page



Q1 (3, 4 & 3 = 10 marks) Differentiate the following:

a) 
$$(3x - 1)^5$$

|                       | Solution            |  |
|-----------------------|---------------------|--|
| $5(3x - 1)^4 3$       |                     |  |
|                       | Specific behaviours |  |
| P correct power       |                     |  |
| P uses factor of 5    |                     |  |
| P uses factor of 3    |                     |  |
| (no need to simplify) |                     |  |

b) 
$$(5x^2 - 1)^7 3x^2$$
 and simplify

|                                                                                                                                                                                | Solution |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                                                                                                                                                                                |          |
| $(5x^2 - 1)^7 3x^2$                                                                                                                                                            |          |
| $(5x^2 - 1)^7 6x + 3x^2 7(5x^2 - 1)^6 10x$                                                                                                                                     |          |
| $(5x^{2} - 1)^{6} 6x + 3x^{2} 7(5x^{2} - 1)^{6} 10x$ $(5x^{2} - 1)^{6} 2x [3(5x^{2} - 1) + 105x^{2}]$ $(5x^{2} - 1)^{6} 2x [120x^{2} - 3]$ $(5x^{2} - 1)^{6} 6x [40x^{2} - 1]$ |          |
| $(5x^2 - 1)^6 2x [120x^2 - 3]$                                                                                                                                                 |          |
| $(5x^2 - 1)^6 6x [40x^2 - 1]$                                                                                                                                                  |          |
|                                                                                                                                                                                |          |

# Specific behaviours

P uses product rule

P uses chain rule for bracket term

P obtains a correct expression

P shows a fully simplified expression

c) 
$$\frac{3x+1}{\sqrt{7-2x}}$$
 (do not simplify)

Solution
$$\frac{\sqrt{7-2x}(3)-(3x+1)\frac{1}{2}(7-2x)^{\frac{-1}{2}}(-2)}{7-2x}$$

**2** | P a g e

 $T = A(800 - 20A) = 800A - 20A^2$ 

$$\frac{dT}{dA} = 800 - 40A = 0$$

$$A = 20$$
 ha

Mathematics Department

$$\frac{dT^2}{dA^2} = -40$$

A = 20 A'' = -40...local max

# Specific behaviours

P determines expression for total amount of corn

P differentiates and equates to zero

P solves for A (no units required)

P shows using a derivative test that this is a local max

### Q8 (5 marks)

Let the cost,  $\$^C$ , to make  $^X$  items in a factory be given by  $^C = 3x^3 - 12x^2 + 40x$  dollars. Using calculus show that the minimum **average cost** per item is equal to the marginal cost at this number of items.

# Solution $C = 3x^{3} - 12x^{2} + 40x$ $Av = \frac{C}{x} = 3x^{2} - 12x + 40$ $(Av)' = 6x - 12 = 0 \quad , x = 2$ $(Av)'' = 6 \therefore local min$ Av(2) = 12 - 24 + 40 = 28 $M \text{ arg } inal(x) = 9x^{2} - 24x + 40$ M arg inal(2) = 36 - 48 + 40 = 28 QED

# Specific behaviours

P determines exp for average and differentiates

P equates derivative to zero and solves for x

P shows with derivative test that local min

P shows marginal cost formula

Pshows both equal at required x value

Mathematics Department Perth Modern

P correct numerator P correct denominator P uses quotient rule Specific behaviours

Determine the equation of the tangent to  $y = (5x - 1)(2x^3)$  at Q2 (4 marks)

# Specific behaviours 92 - x + 8 = y97 -= 3 3+4E=8 3 + X + E = V $4 \times 1 = 1$ , 1 = 0 $\epsilon_{X}01 + \epsilon_{X}0(1 - XS) = \lambda_{V}$ Solution

P uses product rule

P sets up a constant and equation to solve P determines gradient

P states tangent line

Q3 (5 marks)

Determine the coordinates of the stationary points and their nature for  $y=x^{x}-2x^{x}-x+2$  . Justify.

 $\left(\frac{1}{2}, \frac{20}{50}\right) & \left(\frac{1}{2}, \frac{1}{50}\right)$  $\Delta = \Delta + 1 - \Delta + 1 - = \chi$  max  $\log 1 \cdot ... \leq -2 \cdot \chi \ll 1 - = \chi$  $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} + \frac{6}{\sqrt{2}} + \frac{6}{\sqrt{2}} + \frac{1}{\sqrt{2}} = 2 + \frac{1}{2} + \frac{6}{2} + \frac{1}{\sqrt{2}} = x$ in in  $\sqrt{2} = \frac{5}{\sqrt{2}} + \frac{6}{\sqrt{2}} + \frac{1}{\sqrt{2}} = x$  $1 -= x, \frac{1}{\varepsilon} = x, 0 = ^{1}$ + x9 = x(1+x)(1+xE) = 1+x++xXE = xX = xX $\lambda = x_3 + 5x_5 + x + 5$ 

Solution

Mathematics Department Perth Modern

Note: No follow through if sketch is wrong as original function given & do not accept

Q6 (2 & 3 = 5 marks)

Z.01≈ (I.S)Q

Consider the function y = g(x) where g(2) = 10, g'(2) = 5.

express this as an approximate percentage change again using the increments formula. and Using the increments formula (small change) determine an approximate value for  $\frac{(2.1)}{9}$  and

Solution

# Specific behaviours

P uses increments formula

 $\delta.0 = 1.0(5)$   $\varrho = x \Delta \frac{\sqrt{b}}{\sqrt{b}} \approx \sqrt{\Delta}$ 

P determines approx. g(2.1)

formula determine the approximate percentage change in volume for a 3% change in the b) The volume of a sphere of radius  $^{\gamma}$  metres is given by stnemers increments.

Solution

| $\%6 = \frac{1}{1} \xi =$ | $\frac{\varepsilon^{JJL}\frac{\xi}{\tau}}{\sqrt{U_{\zeta}JLL_{\zeta}}} \approx$ | $\frac{A}{A\nabla}$ |
|---------------------------|---------------------------------------------------------------------------------|---------------------|
|                           |                                                                                 |                     |

P sets up an expression for percentage change in volume Specific behaviours

P simplifies expression

Psubs % change for r to give approx. % change in V

corn to be harvested per hectare is given by  $(800 - 20 \, \mathrm{A})$  kg for  $A \le 40$  . Using calculus determine Let  $\Lambda$  equal the number of hectares that a farmer will use to grow corn one season. The amount of Q7 (4 marks)

the number of hectares that should be used to maximise the amount of corn produced.

Solution

# Specific behaviours

P determines first derivative

P equates derivative to zero

P solves for x values of both stationary pts

P uses a derivative test and shows values to determine nature

P determines y values of stationary pts

# Q4 (3 marks)

The displacement of a body from an origin O, at time t seconds, is X metres where

$$x = t^3 - 3t^2 + 5t + 1$$
,  $t \ge 0$ 

Determine the velocity and the displacement of the body when the acceleration is zero.

# Solution

 $x = t^3 - 3t^2 + 5t + 1$ ,  $t \ge 0$ 

 $v = 3t^2 - 6t + 5$ 

a = 6t - 6 = 0

t = 1

x = 1 - 3 + 5 + 1 = 4

v = 3 - 6 + 5 = 2

# Specific behaviours

P differentiates to determine velocity and acceleration

P equates acceleration to zero and solves for t

P states velocity and displacement for this time

# Q5 (4 marks)

Consider the function f(x) which is graphed below.



Mathematics Department

On the **axes below**, sketch the gradient function f'(x) indicating on your sketch the location of any stationary points and any inflection points. (labelled)



P labels inflection pt

P labels local max (accept max)