Calculs Scientifique - CM 2 - Sumpy

Saturday, February 3, 2024 9:45 PM

• CM 2:

0

# shows type of the expression # shows the sub-expression of the	
·	
# shows the sub-expression of the original expression	
# stands for string representation	
# will break down the P to a sum of rational fractions	
# numerical evaluation	
# replace multiple values once	
# A class to generate a rational number	
# generate a <u>LaTeX</u> representation of a given expression	
# A class to generate a <u>function</u>	
# transform an <u>expression</u> to a <u>function</u>	
# calculate the integrate between 0 and 1	
# third derivative of expr	
# x>0, the positive side	
# Taylor series	
# transform a Python expression to a Sympy expression	
# draw a plot from functions # a plot between -2 and 2 ordonee # a plot between -2 and 2 absis # give a title to the plot	
# a method to make the color of the plot blue	
# multiple plots in the same graph	
# generate 3d plot	
# returns whether two logic expressions are equivalents ro not	

Basics	Geometry	Examples
Sympy help: help(function) Declare symbol: x = Symbol('x') Substitution: expr.subs(old, new) Numerical evaluation: expr.evalf() Expanding: expr.expand() Common denominator: ratsimp(expr) Simplify expression: simplify(expr)	Points: a = Point(xcoord, ycoord) Lines: 1 = Line(pointA, pointB) Circles: c = Circle(center, radius) Triangles: t = Triangle(a, b, c) Area: Intersection: intersection(a, b) Checking tangency: c.is_tangent(1)	Find 100 digits of π' : $(pi^{**}\Sigma) \cdot n(100)$ Expand $(x + y)^2(x - y)(x^2 + y)$: $((x + y)^{**}2 \cdot (x - y) \cdot (x^{**}2 + y)) \cdot \text{expand}()$ Simplify $\frac{1}{x} + \frac{x \sin x - 1}{x^2 - 1}$: $\text{simplify}(1/x) + (x \cdot \sin(x) - 1)/(x^{**}2 - 1)$
Constants π : pi e : E ∞ : ∞ : ∞ : ∞ θ : π : Integer (\mathbb{Z}): Integer (\mathbb{Z}): Rational (\mathbb{Q}): Rational (\mathbb{Q}): Reals (\mathbb{R}): Float(\mathbb{Z}) Basic funtions	Plotting Plot: Zoom: +/-: R/F or PgUp/PgDn or Numpad */- Rotate X,Y axis: Arrow Keys or WASD Rotate Z axis: Q and E or Numpad 7 and 9 View XY: F1 View XZ: F2	Check if line passing through points $(0,1)$ and $(1,1)$ is tangent to circle with center at $(5,5)$ and radius 3: Circle $(9 \cos(16,5), 3)$, is, tangent $(1,1)$. Find roots of $x^4 - 4x^3 + 2x^2 - x = 0$:
Trigonometric: sin cos tan cot Cyclometric: asin acos atan acot Hyperbolic: sinh cosh tanh coth Area hyperbolic: asinh acosh atanh acoth Exponential: exp(x) Square root: sqrt(x)	View YZ. F3 View Perspective: F4 Axes Visibility: F5 Axes Colors: F6 Screenshot: F8 Exit plot: ESC	solve($\mathbf{x} * * 4 - 4 * \mathbf{x} * * 3 + 2 * \mathbf{x} * \mathbf{x} - 2 - \mathbf{x}$, \mathbf{x}) Solve the equations system: $x + y = 4$, $xy = 3$: solve($[\mathbf{x} * \mathbf{y} - 4, \mathbf{x} * \mathbf{y} - 3], [\mathbf{x}, \mathbf{y}]$) Calculate limit of the sequence $\sqrt[n]{n}$: $\lim_{x \to \infty} \mathbf{x} \cdot \mathbf{y} \cdot \mathbf{y} \cdot \mathbf{y} = \mathbf{y}$
Logarithm (log. a):	Discrete math Factorial $(n!)$: Binomial coefficient $\binom{n}{k}$: Sum $(\sum_{n=n}^{b} expr)$: Product $(\prod_{n=n}^{b} expr)$: product $(\exp r, (n, a, b))$	Calculate left-sided limit of the function $\frac{ x }{x}$ in 0: limit(abs(x)/x, x, 0, dir='-') Calculate the sum $\sum_{n=0}^{100} n^2$: summation(n**2, (n, 0, 100))
$\begin{array}{lll} & \lim_{x \to x} f(x); & \text{limit}(f, \ x, \ a) \\ & \lim_{x \to a} f(x); & \text{limit}(f, \ x, \ a, \ dire^{-s}) \\ & \lim_{x \to a_+} f(x); & \text{limit}(f, \ x, \ a, \ dire^{+s}) \\ & \frac{d}{dx} f(x); & \text{diff}(f, \ x) \\ & \frac{d}{dx} f(x) f(x) f(x) \\ & \frac{d}{dx} f(x) f(x) f(x) f(x) \\ & \text{diff}(f, \ x) f(x) f(x) f(x) f(x) f(x) \\ & \text{diff}(f, \ x) f(x) f(x) f(x) f(x) f(x) f(x) \\ & \text{diff}(f, \ x) f(x) f(x) f(x) f(x) f(x) f(x) f(x) \\ & \text{diff}(f, \ x) f(x) f(x) f(x) f(x) f(x) f(x) f(x) f$		Calculate the sum $\sum_{n=0}^{\infty} \frac{1}{n^2}$: summation(1/n**2, (n, 0, oo)) Calculate the integral $\int \cos^3 x dx$: integrate($\cos(x)$ **3, x) Calculate the integral $\int_{1}^{\infty} \frac{dx}{x^2}$:
$\begin{aligned} & \int_{0}^{b} f(x) dx : & \text{integrate}(f, (x, a, b)) \\ & \text{Taylor series} (\text{at} a, \deg n) & \text{f.series}(x, a, n) \end{aligned}$ Equations $\begin{aligned} & \text{Equations} & \text{Solve}(f, x) \\ & \text{System of equations:} & \text{solve}(f, g], (x, y]) \\ & \text{Differential equation:} & \text{dsolve}(equation, f(x)) \end{aligned}$	Ones matrix n × n: ones(n) Printing BTEX print: print latex() Python print: print python() Pretty print: pprint()	integrate(1/x**2, (x, 1, 00)) Find 10 terms of series expansion of $\frac{1}{1-2x}$ at 0: $(1/(1-2*x))$.series(x, 0, 10) Solve the differential equation $f''(x) + 9f(x) = 1$: dsolve(f(x).diff(x, x) + 9*f(x) - 1, f(x))