

TEST REPORT

No. B20N00193-BT

TCL Communication Ltd.

GSM/UMTS/LTE Mobile phone

Model Name: 5002S/5002L

with

Hardware Version: 01

Software Version: 3C7D

FCC ID: 2ACCJH120

Issued Date: 2020-03-02

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

Test Laboratory:

Shenzhen Academy of Information and Communications Technology

Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518026.

Tel: +86(0)755-33322000, Fax: +86(0)755-33322001 Email: yewu@caict.ac.cn, website: www.cszit.com

CONTENTS

1. St	UMMARY OF TEST REPORT	4
1.1.	TEST ITEMS	4
1.2.	TEST STANDARDS	4
1.3.	TEST RESULT	4
1.4.	TESTING LOCATION	4
1.5.	Project data	4
1.6.	Signature	4
2. CI	LIENT INFORMATION	5
2.1.	APPLICANT INFORMATION	5
2.2.	MANUFACTURER INFORMATION	5
3. E(QUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	6
3.1.	ABOUT EUT	6
3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	6
3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	6
3.4.	GENERAL DESCRIPTION	7
4. RI	EFERENCE DOCUMENTS	8
4.1.	DOCUMENTS SUPPLIED BY APPLICANT	8
4.2.	REFERENCE DOCUMENTS FOR TESTING	
5. TI	EST RESULTS	9
5.1.	TESTING ENVIRONMENT	9
5.2.	TEST RESULTS	
5.3.	STATEMENTS	
6. TI	EST EQUIPMENTS UTILIZED	10
7. L	ABORATORY ENVIRONMENT	11
8. M	IEASUREMENT UNCERTAINTY	12
ANNE	X A: DETAILED TEST RESULTS	13
A.0 A	Antenna requirement	13
	MAXIMUM PEAK OUTPUT POWER	
	BAND EDGES COMPLIANCE	
	Conducted Emission	
A.4 I	RADIATED EMISSION	38
A.5 2	20dB Bandwidth	56
A.67	TIME OF OCCUPANCY (DWELL TIME)	61
A.7 N	NUMBER OF HOPPING CHANNELS	65
A 8 (CARRIER FREQUENCY SEPARATION	69

1. Summary of Test Report

1.1. Test Items

Description GSM/UMTS/LTE Mobile phone

Model Name 5002S/5002L

Applicant's name TCL Communication Ltd.

Manufacturer's Name TCL Communication Ltd.

1.2. Test Standards

FCC Part15-2018; ANSI C63.10-2013

1.3. Test Result

Pass

1.4. Testing Location

Address: Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China

1.5. Project data

Testing Start Date: 2020-02-03 Testing End Date: 2020-02-26

1.6. Signature

Lin Kanfeng

林仆丰

(Prepared this test report)

Tang Weisheng

(Reviewed this test report)

Zhang Bojun

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: TCL Communication Ltd.

Address: 5/F, Building 22E, 22 Science Park East Avenue, Hong Kong Science

Park, Shatin, NT, Hong Kong

Contact Person Gong Zhizhou

E-Mail zhizhou.gong@tcl.com Telephone: 0086-755-36611722

Fax: 0086-755-36612000-81722

2.2. Manufacturer Information

Company Name: TCL Communication Ltd.

Address: 5/F, Building 22E, 22 Science Park East Avenue, Hong Kong Science

Park, Shatin, NT, Hong Kong

Contact Person Gong Zhizhou

E-Mail zhizhou.gong@tcl.com Telephone: 0086-755-36611722

Fax: 0086-755-36612000-81722

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description GSM/UMTS/LTE Mobile phone

Model Name 5002S/5002L

Brand Name

Frequency Band 2400MHz~2483.5MHz
Type of Modulation GFSK/π /4 DQPSK/8DPSK

Number of Channels 79

Antenna Type Integrated
Antenna Gain -5.0dBi

Power Supply 3.8V DC by Battery

FCC ID 2ACCJH120

Condition of EUT as received No abnormality in appearance

Note: Components list, please refer to documents of the manufacturer; it is also included in the original test record of Shenzhen Academy of Information and Communications Technology.

3.2. Internal Identification of EUT used during the test

EUT ID*	IMEI	HW Version	SW Version	Receive Date
EUT1	015650000020589	01	3C7D	2020-01-20
EUT2	015650000020597	01	3C7D	2020-01-20

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test

AE ID*	Description	SN
AE1	Charger	/
AE2	Charger	/
AE3	Battery	/

AE1

Model CBA0058AGAC5
Manufacturer MOU,PUAN

AE2

Model CBA0058AGAC7
Manufacturer MOU,CHENYANG

AE3

Model CAB2880001C1

Manufacturer BYD Capacitance 3000mAh

^{*}AE ID: is used to identify the test sample in the lab internally.

3.4. General Description

The Equipment under Test (EUT) is a model of GSM/UMTS/LTE Mobile phone with integrated antenna and battery.

It consists of normal options: Lithium Battery, Charger and Headset.

Manual and specifications of the EUT were provided to fulfil the test.

Samples undergoing test were selected by the client.

4. Reference Documents

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version	
FCC Part 15	FCC CFR 47, Part 15, Subpart C:		
	15.205 Restricted bands of operation;		
	15.209 Radiated emission limits, general requirements;		
	15.247 Operation within the bands 902-928MHz,		
	2400-2483.5 MHz, and 5725-5850 MHz		
ANSI C63.10	American National Standard of Procedures for Compliance	2013	
	Testing of Unlicensed Wireless Devices		

5. Test Results

5.1. <u>Testing Environment</u>

Normal Temperature: 15~35°C Relative Humidity: 20~75%

5.2. Test Results

No	Test cases	Sub-clause of Part 15C	Verdict
0	Antenna Requirement	15.203	Р
1	Maximum Peak Output Power	15.247 (b)	Р
2	Band Edges Compliance	15.247 (d)	Р
3	Conducted Spurious Emission	15.247 (d)	Р
4	Radiated Spurious Emission	15.247,15.205,15.209	Р
5	Occupied 20dB bandwidth	15.247(a)	Р
6	Time of Occupancy (Dwell Time)	15.247(a)	Р
7	Number of Hopping Channel	15.247(a)	Р
8	Carrier Frequency Separation	15.247(a)	Р
9	AC Power line Conducted Emission	15.107,15.207	Р

See ANNEX A for details.

5.3. Statements

SAICT has evaluated the test cases requested by the applicant/manufacturer as listed in section 5.2 of this report, for the EUT specified in section 3, according to the standards or reference documents listed in section 4.2.

6. Test Equipments Utilized

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Due date	Calibration Period
1	Vector Signal Analyzer	FSV40	100903	Rohde & Schwarz	2021-01-15	1 year
2	Bluetooth Tester	CBT32	100584	Rohde & Schwarz	2021-01-01	1 year
3	Power Sensor	U2021XA	MY55430013	Agilent	2021-01-15	1 year
4	Data Acquisiton	U2531A	TW55443507	Agilent	1	/

Radiated emission test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Due date	Calibration Period
1	LISN	ESH2-Z5	100196	R&S	2021-01-02	1 year
2	Test Receiver	ESCI	100701	R&S	2020-08-06	1 year
3	Loop Antenna	HLA6120	35779	TESEQ	2022-05-01	3 year
4	BiLog Antenna	VULB9163	9163 329	Schwarzbeck	2021-02-16	3 year
5	Horn Antenna	3117	00066585	ETS-Lindgren	2022-03-04	3 year
6	Test Receiver	ESR7	101675	R&S	2020-07-18	1 year
7	Spectrum Analyzer	FSP 40	100378	R&S	2020-12-12	1 year
8	Chamber	FACT5-2.0	4166	ETS-Lindgren	2021-05-12	3 year
9	Antenna	QSH-SL-1 8-26-S-20	17013	Q-par	2021-01-14	3 year
10	Antenna	QSH-SL-2 6-40-K-20	17014	Q-par	2021-01-10	3 year

Test software

No.	Equipment	Manufacturer	Version
1	TechMgr Software	CAICT	2.1.1
2	EMC32	Rohde & Schwarz	8.53.0
3	EMC32	Rohde & Schwarz	10.01.00

EUT is engineering software provided by the customer to control the transmitting signal.

The EUT was programmed to be in continuously transmitting mode.

Anechoic chamber

Fully anechoic chamber by ETS-Lindgren

7. Laboratory Environment

Semi-anechoic chambe

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 15 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	> 2MΩ
Ground system resistance	< 4 Ω
Normalised site attenuation (NSA)	< ±4 dB, 3 m distance, from 30 to 1000 MHz

Shielded room

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. =20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-1000MHz>90 dB
Electrical insulation	> 2MΩ
Ground system resistance	< 4 Ω

Fully-anechoic chamber

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 15 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	> 2MΩ
Ground system resistance	< 4 Ω
Voltage Standing Wave Ratio (VSWR)	≤ 6 dB, from 1 to 18 GHz, 3 m distance
Uniformity of field strength	Between 0 and 6 dB, from 80 to 6000 MHz

8. Measurement Uncertainty

Test Name	Uncertai	nty (<i>k</i> =2)
RF Output Power - Conducted	1.32	2dB
2. Time of Occupancy - Conducted	0.58ms	
3. Occupied channel bandwidth - Conducted	66	Hz
	30MHz≤f≤1GHz	1.41dB
4. Transmitter Spurious Emission - Conducted	1GHz≤f≤7GHz	1.92dB
4. Transmitter Spunous Emission - Conducted	7GHz≤f≤13GHz	2.31dB
	13GHz≤f≤26GHz	2.61dB
	9kHz≪f≪30MHz	1.70dB
F. Transmitter Spurious Emission Dadiated	30MHz≤f≤1GHz	4.90dB
5. Transmitter Spurious Emission - Radiated	1GHz≤f≤18GHz	4.60dB
	18GHz≤f≤40GHz	4.10dB
6. AC Power line Conducted Emission	150kHz≶f≶30MHz	3.00dB

ANNEX A: Detailed Test Results

A.0 Antenna requirement

Measurement Limit:

Standard	Requirement		
FCC CRF Part 15.203	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.		

Conclusion: The Directional gains of antenna used for transmitting is -5.0dBi. The RF transmitter uses an integrate antenna without connector.

A.1 Maximum Peak Output Power

Method of Measurement: See ANSI C63.10-clause 7.8.5.

A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

Measurement Limit:

Standard	Limit (dBm)	E.I.R.P Limit (dBm)
FCC CRF Part 15.247 (b)	< 30	< 36

Measurement Results:

Conducted transmitter power

Mode	Peak Conducted Output Power (dBm)			
Wiode	2402MHz (Ch0)	2441MHz (Ch39)	2480MHz (Ch78)	
GFSK	9.26	9.68	8.26	
π /4 DQPSK	π /4 DQPSK 10.07		9.09	
8DPSK	10.48	10.95	9.45	

E.I.R.P

Mada	Peak Conducted Output Power (dBm)			
Mode	2402MHz (Ch0)	2441MHz (Ch39)	2480MHz (Ch78)	
GFSK	4.26	4.68	3.26	
π /4 DQPSK	5.07	5.53	4.09	
8DPSK	5.48	5.95	4.45	

Note: E.I.R.P value = Conducted values (with conducted samples) + Antenna Gain.

Conclusion: Pass

A.2 Band Edges Compliance

Measurement Limit:

Standard	Limit (dBc)	
FCC 47 CFR Part 15.247 (d)	> 20	

Measurement Result:

Mode	Channel	Hopping	Test Results	Conclusion
05014	0	ON	Fig.1	Р
GFSK	78	ON	Fig.2	Р
π /4 DQPSK	0	ON	Fig.3	Р
	78	ON	Fig.4	Р
8DPSK	0	ON	Fig.5	Р
	78	ON	Fig.6	Р

Mode	Channel	Hopping	Test Results	Conclusion
GFSK	0	OFF	Fig.7	Р
	78	OFF	Fig.8	Р
π /4 DQPSK	0	OFF	Fig.9	Р
	78	OFF	Fig.10	Р
8DPSK	0	OFF	Fig.11	Р
	78	OFF	Fig.12	Р

See below for test graphs.

Conclusion: Pass

Fig. 1 Band Edges (GFSK, Ch 0, Hopping ON)

Fig. 2 Band Edges (GFSK, Ch 78, Hopping ON)

Fig. 3 Band Edges (π /4 DQPSK, Ch 0, Hopping ON)

Fig. 4 Band Edges (π /4 DQPSK, Ch 78, Hopping ON)

Fig. 5 Band Edges (8DPSK, Ch 0, Hopping ON)

Fig. 6 Band Edges (8DPSK, Ch 78, Hopping ON)

Fig. 7 Band Edges (GFSK, Ch 0, Hopping OFF)

Fig. 8 Band Edges (GFSK, Ch 78, Hopping OFF)

Fig. 9 Band Edges (π /4 DQPSK, Ch 0, Hopping OFF)

Fig. 10 Band Edges (π /4 DQPSK, Ch 78, Hopping OFF)

Fig. 11 Band Edges (8DPSK, Ch 0, Hopping OFF)

Fig. 12 Band Edges (8DPSK, Ch 78, Hopping OFF)

A.3 Conducted Emission

Measurement Limit:

Standard	Limit	
ECC 47 CED Dort 15 247 (d)	20dB below peak output power in	
FCC 47 CFR Part 15.247 (d)	100 kHz bandwidth	

Measurement Results:

MODE	Channel	Frequency Range	Test Results	Conclusion
		2.402 GHz	Fig.13	Р
	0	1GHz-3GHz	Fig.14	Р
		3GHz-10GHz	Fig.15	Р
		2.441 GHz	Fig.16	Р
GFSK	39	1GHz-3GHz	Fig.17	Р
		3GHz-10GHz	Fig.18	Р
		2.480 GHz	Fig.19	Р
	78	1GHz-3GHz	Fig.20	Р
		3GHz-10GHz	Fig.21	Р
		2.402 GHz	Fig.22	Р
	0	1GHz-3GHz	Fig.23	Р
		3GHz-10GHz	Fig.24	Р
	39	2.441 GHz	Fig.25	Р
π /4 DQPSK		1GHz-3Ghz	Fig.26	Р
		3GHz-10GHz	Fig.27	Р
	78	2.480 GHz	Fig.28	Р
		1GHz-3Ghz	Fig.29	Р
		3GHz-10GHz	Fig.30	Р
		2.402 GHz	Fig.31	Р
	0	1GHz-3GHz	Fig.32	Р
		3GHz-10GHz	Fig.33	Р
	39	2.441 GHz	Fig.34	Р
8DPSK		1GHz-3GHz	Fig.35	Р
		3GHz-10GHz	Fig.36	Р
	78	2.480 GHz	Fig.37	Р
		1GHz-3GHz	Fig.38	Р
		3GHz-10GHz	Fig.39	Р
/	All channels	30 MHz-1GHz	Fig.40	Р
,	All channels	10GHz-26GHz	Fig.41	Р

See below for test graphs.

Conclusion: Pass

Fig. 13 Conducted Spurious Emission (GFSK, Ch0, 2.402GHz)

Fig. 14 Conducted Spurious Emission (GFSK, Ch0, 1 GHz-3 GHz)

Fig. 15 Conducted Spurious Emission (GFSK, Ch0, 3GHz-10 GHz)

Fig. 16 Conducted Spurious Emission (GFSK, Ch39, 2.441GHz)

Fig. 17 Conducted Spurious Emission (GFSK, Ch39, 1GHz-3 GHz)

Fig. 18 Conducted Spurious Emission (GFSK, Ch39, 3GHz-10 GHz)

Fig. 19 Conducted Spurious Emission (GFSK, Ch78, 2.480GHz)

Fig. 20 Conducted Spurious Emission (GFSK, Ch78, 1GHz-3 GHz)

Fig. 21 Conducted Spurious Emission (GFSK, Ch78, 3GHz-10 GHz)

Fig. 22 Conducted Spurious Emission (π /4 DQPSK, Ch0, 2.402GHz)

Fig. 23 Conducted Spurious Emission (π /4 DQPSK, Ch0, 1GHz-3 GHz)

Fig. 24 Conducted Spurious Emission (π /4 DQPSK, Ch0, 3GHz-10 GHz)

Fig. 25 Conducted Spurious Emission (π /4 DQPSK, Ch39, 2.441GHz)

Fig. 26 Conducted Spurious Emission (π /4 DQPSK, Ch39, 1GHz-3 GHz)

Fig. 27 Conducted Spurious Emission (π /4 DQPSK, Ch39, 3GHz-10 GHz)

Fig. 28 Conducted Spurious Emission (π /4 DQPSK, Ch78, 2.480GHz)

Fig. 29 Conducted Spurious Emission (π /4 DQPSK, Ch78, 1GHz-3 GHz)

Fig. 30 Conducted Spurious Emission (π /4 DQPSK, Ch78, 3GHz-10 GHz)

Fig. 31 Conducted Spurious Emission (8DPSK, Ch0, 2.402GHz)

Fig. 32 Conducted Spurious Emission (8DPSK, Ch0, 1GHz-3 GHz)

Fig. 33 Conducted Spurious Emission (8DPSK, Ch0, 3GHz-10 GHz)

Fig. 34 Conducted Spurious Emission (8DPSK, Ch39, 2.441GHz)

Fig. 35 Conducted Spurious Emission (8DPSK, Ch39, 1GHz-3 GHz)

Fig. 36 Conducted Spurious Emission (8DPSK, Ch39, 3GHz-10 GHz)

Fig. 37 Conducted Spurious Emission (8DPSK, Ch78, 2.480GHz)

Fig. 38 Conducted Spurious Emission (8DPSK, Ch78, 1GHz-3 GHz)