Теория вероятности. Теория

Александр Сергеев

1 Вероятностное пространство. Вероятность и ее свойство

Определение

Алгебра событий:

 Ω – множество элементарных исходов

 \mathcal{A} – набор подмножеств Ω

 \mathcal{A} – алгебра, если

1. $\Omega \in \mathcal{A}$

2.
$$A \in \mathcal{A} \Rightarrow \overline{A} = \Omega \setminus A \in \mathcal{A}$$

3.
$$A, B \in \mathcal{A} \Rightarrow A \cup B = A + B \in \mathcal{A}$$

Элементы алегбры – события

Операции с событиями

1.
$$A \cup B = A + B$$

$$2. \ A \cap B = AB = \overline{A} + \overline{B}$$

3.
$$\overline{A} = \Omega \setminus A$$

$$4. \ A \setminus B = A - B = A\overline{B}$$

Определение

 σ -алгебра

 ${\cal A}$ — сигма-алгебра

1. A – алгебра

2.
$$A_1, A_2, \ldots \in \mathcal{A} \Rightarrow \bigcup A_i \in \mathcal{A}$$

Определение

События A, B – несовместные $AB = \varnothing$

Набор несовместный, если события попарно несовместные

Определение (вероятностное пространство)

 Ω – множество элементарных исходов

 \mathcal{A} – сигма-алгебра

 $P: \mathcal{A} \to \mathbb{R}$ – вероятность, если

- 1. $P(A) \ge 0$
- 2. $P(\Omega) = 1$
- 3. $P(\bigcup A_i) = \sum P(A_i)$

Определение (вероятностное пространство в широком смысле)

Ω – множество элементарных исходов

 \mathcal{A} – алгебра

 $P: \mathcal{A} \to \mathbb{R}$ – вероятность, если

- 1. $P(A) \ge 0$
- 2. $P(\Omega) = 1$

3.
$$\bigcup_{i=0}^{\infty} A_i \Rightarrow P(\bigcup_{i=0}^{\infty} A_i) = \sum_{i=0}^{\infty} P(A_i)$$

Теорема о продолжении меры

 $\langle \Omega, \mathcal{A}, P \rangle$ – вероятностное пространство в широком смысле

Тогда
$$\exists\,!Q:\sigma(\mathcal{A})\to\mathbb{R}$$
 – вероятность, $Q\bigg|_{\mathcal{A}}=P$, где $\sigma(\mathcal{A})$ – сигма-алгебра,

содержащая \mathcal{A}

Определение

 \mathcal{A} — система интервалов на \mathbb{R} , замкнутая относительно конечного объединения и пересечения

 $\mathcal{B} = \sigma(\mathcal{A})$ — борелевская сигма-алгебра

Примеры вероятностных пространств

1. Модель классической вероятности

$$\Omega = \{\omega_1, \dots, \omega_N\}
\mathcal{A} = 2^{\Omega}
P(\{\omega_i\}) = P(\omega_i) = \frac{1}{N}
\mathcal{A} = \{\omega_{i_1}, \dots, \omega_{i_M}\} \Rightarrow P(\mathcal{A}) = \frac{M}{N}$$

- 2. Ω набор $\{0^i,1\}, i \in \mathbb{N}_0 = \{0,1,2,3,\ldots\}$ $P(0^i1) = q^ip$
- 3. Модель геометрической вероятности Ω ограниченное, измеримое по Лебегу множество

 \mathcal{A} – измеримое по Лебегу подмножество Ω

$$P(A) = \frac{\lambda A}{\lambda \Omega}$$

Теорема (свойство вероятности)

1.
$$A \subset B \Rightarrow P(A) \leq P(B)$$

2.
$$P(A) < 1$$

3.
$$P(A) + P(\overline{A}) = 1$$

4.
$$P(A + B) = P(A) + P(B) - P(AB)$$

5.
$$P(\varnothing) = 0$$

6.
$$P(\bigcup A_i) \le \sum P(A_i)$$

Доказательство

1.
$$P(B) = P(A) + P(B - A)$$

2.
$$A \subset \Omega \Rightarrow P(A) \leq 1$$

3.
$$A \sqcup \overline{A} = \Omega$$

$$4. \ B = AB \sqcup (B \setminus AB)$$

5.
$$B_1 = A_1 \ B_2 = A_2 \setminus A_1$$

 $B_n = A_n \setminus (A_1 \cup \dots A_{n-1}) \bigsqcup B_i = \bigcup A_i$
 $B_i \subset A_i$
 $P(\bigcup A_i) = P(\bigsqcup B_i) = \sum P(B_i) \leq \sum P(A_i)$

Теорема (формула включения/исключения)
$$P(A_1+\ldots+A_n)=\sum_i P(A_i)-\sum_{i< j} P(A_iA_j)+\sum_{i< j< k} P(A_iA_jA_k)+\ldots (-1)^{n+1}\sum_{i_1<\ldots< i_n} P(A_{i_1}\ldots A_{i_n})$$
 Локазательство

Доказательство

Доказательство по индукции