

Contents

Chapter 1	Page 2

Chapter 1

Sats 1.0.1 Matrisen som projekterar på \vec{v}

För att slippa hålla på med beräkningar med bråktal för att hitta matrisen som beskriver projektionen på vektorn \vec{v} , så kan man använda formeln nedan:

$$A = \frac{1}{\vec{v} \cdot \vec{v}} \vec{v} \vec{v}^T$$

Därmed projektionen av vektorn \vec{x} på vektorn \vec{v} beskrivs av matrismultiplikationen $proj_{\vec{v}}\vec{x} = A\vec{x}$

Sats 1.0.2 Matrisen som projekterar på vektorrummet V

Om vektorummet definieras som V := col(A), då beskrivs matrisen som projekterar på vektorrummet V på följande sättet:

$$P = A(A^T A)^{-1} A^T$$

Alltså för att projektera givna vektor
n \vec{x} på vektorummet V, så använder man följande matrismultiplikation
 $P\vec{x}$. **Notera** att det är exakt samma metod som används för minstakvadratmetoden. Projektionen av en vektor på en vektorummet ger den bästa approximationen av givna vektor
n på vektorrummet.

Sats 1.0.3 Ortogonala komplementet till delrummet $V \in \mathbb{R}^n$

Om man vill hitta ortogonala komplementet (också delrum) till delrummet V med villkorn att V inte spannar hela \mathbb{R}^n , så använder man formeln nedan. **Observera** att V := col(A)

$$V^{\perp} = ker(A^T) = null(A^T)$$

Varför: En ortogonal komplement V^{\perp} till delrummet V innebär att $\forall \vec{v} \in V^{\perp}$, $\forall \vec{u} \in V \implies v \cdot u = 0$. Om A beskrivs som $\begin{bmatrix} w_1 & \dots & w_k \end{bmatrix}$ så kommer A^T beskrivas på sättet nedan.

$$A^T = \begin{bmatrix} w_1 \\ \vdots \\ w_k \end{bmatrix}$$

Om man multiplicerar A^T med en vektor \vec{x} och försöker bestämma noll-rummet så bestämmer vi per definition ortogonala komponentet. D.v.s rummet där varje vektor $\vec{x} \in \mathbb{R}^n$ ger 0 med skalärprodukten av varje vektor som spannar V $(w_1, \dots w_k)$, som det kan ses nedan.

$$null(A^{T}) = ker(A^{T}) := \begin{bmatrix} w_{1} \cdot \vec{x} \\ \vdots \\ w_{k} \cdot \vec{x} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

Sats 1.0.4 En vektor \vec{x} kan skrivas som projektionen på en vektorrum + projektionens ortogonala komplement

För att kunna bevisa 1.0.2 så brukar man använda denna sats som beskrivs nedan.

$$\vec{x} = proj_W \vec{x} + proj_{W^{\perp}} \vec{x}$$

$$proj_{W^{\perp}}\vec{x} = \vec{x} - proj_{W}\vec{x}$$

Sats 1.0.5 Hitta resterande basvektorer i \mathbb{R}^n utifrån en mängd linjärt oberoende vektorer S

För det, måste storleken av S vara mindre än n, annars är S redan en bas för \mathbb{R}^n . Om $S = \{w_1, \dots, w_k\}$, så sätter vi upp dessa vektorer som kolumnelement och sedan löser noll-rummet, som det kan ses nedan.

$$A = \begin{bmatrix} w_1 \\ \vdots \\ w_k \end{bmatrix}; B := null(A) = ker(A)$$

Varför: Som i 1.0.3 så försöker vi hitta en mängd vektorer (B) som är ortogonala och därmed linjärt oberoende mot varje vektor i S. Detta är ekvivalent med att varje vektor i mängden vektorer vi försöker lösa, B, har skalärprodukten 0 med varje vektor i S. Enligt kraven för linjärt oberoendet av basvektorerna så blir mängden $S \cup B$ en bas för \mathbb{R}^n .

Sats 1.0.6 Sambandet mellan matrisen A och $A^{T}A$, samt AA^{T}

Theoreum 7.5.8 & 7.5.9 i boken Contemporary Linear Algebra (s. 365)

- \bullet A och AA^T har samma kolumnrum
- $A \text{ och } A^T A \text{ har samma radrum}$
- Om A har full kolumnrank $\implies det(A^TA) \neq 0$
- Om A har full radrank $\implies det(AA^T) \neq 0$

Vad kan man använda detta till? Om man vill kolla för en större matris om raderna eller kolumnerna är linjärt oberoende, så kan man bestämma determinanten av A^TA respektive AA^T . Om determinanten $\neq 0$ då medför det att kolumerna respektive raderna i matrisen A är linjärt oberoende. **OBS**: AA^T och A^TA är kvadratiska matriser.

Sats 1.0.7 Ortogonal diagonalisering

Symmetriska matriser $(A^{-1} = A^T)$ är ortogonalt diagonaliserbara och kan därmed utryckas som $A = PDP^T$. Dessutom när det kommer till egenvärde och diagonalisering har symmetriska matriser följande egenskaper (A är en $n \times n$ symmetrisk matris):

- \bullet Ahar nolika reella egenvärden, räknade med multiplicitet.
- Dimensionen av varje egenrum överensstämmer med tillhörande egenvärdes multiplicitet som rot till karaktäristiska ekvationen.
- ullet Egenvektorerna från de olika egenvärden är ortogonala mot varandra \Longrightarrow spannar upp hela \mathbb{R}^n .

Sats 1.0.8 Symmetriska matriser för kvadratiska former

Om A är en symmetrisk matris för den kvadratiska formen x^TAx så gäller följande satser:

- x^TAx är positivt definit $(x^TAx > 0, \forall x \neq \vec{0})$ om och endast om **alla** egenvärden av A är positiva
- x^TAx är negativt definit $(x^TAx < 0, \forall x \neq \vec{0})$ om och endast om **alla** egenvärden av A är negativa
- x^TAx är indefinit $(x^TAx > 0 \land x^TAx < 0, \forall x)$ om och endast om A har minst en positiv och en negativ egenvärde

Sats 1.0.9 Cayley-Hamilton sats

S. 474 i boken "Contemporary Linear Algebra"

En kvadratisk matris A med storleken $n \times n$ uppfyller sin motsvarande karaktäristiska ekvation, det vill säga att om karaktäristiska ekvationen för matrisen A är:

$$\lambda^n + c_1 \lambda^{n-1} + \dots + c_n = 0$$

Så gäller följande:

$$A^n + c_1 A^{n-1} + \dots + c_n I = 0$$

Sats 1.0.10 Multiplikation mellan en matris och en vektor

S. 106 i boken "Contemporary Linear Algebra"

Följande två viktiga satser gäller för multiplikationen av vektorerna \vec{u}, \vec{v} med matrisen A.

- $A\vec{u} \cdot \vec{v} = \vec{u} \cdot A^T \vec{v}$
- $\vec{u} \cdot A \vec{v} = A^T \vec{u} \cdot \vec{v}$