Análise em \mathbb{R}^d

Hugo Cattarucci Botós (IME - USP) hugocbotos@gmail.com

Última atualização em 25 de fevereiro de 2024

Copyright © 2024 de Hugo Cattarucci Botós. Autorizo reprodução e distribuição do texto para fins não-lucrativos desde que a autoria seja citada. Se encontrar erros, agradeço se me notificar via e-mail: hugocbotos@gmail.com.

Sumário

1	Beabá topológico		3
	1.1	Revisão de sequências na reta.	3
	1.2	Normas e métricas	6
	1.3	Topologia de espaço métrico	21
	1.4	Sequência em espaços métricos	25
	1.5	Continuidade	28
	1.6	Homeomorfismos	33
	1.7	Conexidade	36
	1.8	Compacidade	42
	1.9	Sequências de Cauchy	45
	Diferenciabilidade		
	2.1	$\mathbb{R} o \mathbb{R}^d$	51

Capítulo 1

Beabá topológico

The introduction of the cipher 0 or the group concept was general nonsense too, and mathematics was more or less stagnating for thousands of years because nobody was around to take such childish steps ...

Alexander Grothendieck

1.1 Revisão de sequências na reta.

Uma sequência em um conjunto X é uma função $\mathbb{Z}_{\geq 1} \to X$ associa a cada inteiro positivo n um ponto x_n de X. Uma sequência x_n em \mathbb{R} é formada por números $x_1, x_2, x_3, \ldots, x_n, \ldots$ e converge para $x \in \mathbb{R}$ se temos $|x - x_n|$ tão pequeno quanto quisermos para n suficientemente grande. Mais precisamente, dizemos que x_n converge para x se para cada $\varepsilon > 0$ existe n_0 tal que $|x_n - x| < \varepsilon$ para $n \geq n_0$. Denotamos essa convergência por $x_n \to x$ ou $\lim_{n \to \infty} x_n = x$.

Exercício 1.1 (Desigualdade de Bernoulli). Prove que para $n \in \mathbb{Z}_{\geq 0}$ e x > -1 temos

$$(1+x)^n > 1 + nx$$
.

A desigualdade de Bernoulli é bastante útil quando mostrando limites numéricos básicos.

Exemplo 1.2. Considere $a \in \mathbb{R}_{>1}$ e $x_n = a^{\frac{1}{n}}$. Temos que $x_n \to 1$. De fato, considere $h_n = a^{\frac{1}{n}} - 1$ e note que $h_n \ge 0$. Pela desigualdade de Bernoulli 1.1,

$$a = (1 + h_n)^n \ge 1 + nh_n$$

ou seja,

$$0 \le h_n \le \frac{a-1}{n} \to 0,$$

$$a^{\frac{1}{n}} = 1 + h_n \to 1.$$

Por outro lado, se 0 < a < 1, temos

$$a^{\frac{1}{n}} = \frac{1}{(a^{-1})^{\frac{1}{n}}} \to 1,$$

pois $a^{-1} > 1$.

Exercício 1.3. Mostre que $n^{1/n} \to 1$.

Vamos supor que o leitor saiba que conjuntos limitados superiormente em \mathbb{R} possuem supremo, e conjuntos limitados inferiormente possuem ínfimo. Esses fatos são normalmente vistos em um curso básico de análise na reta.

Exercício 1.4. Mostre que

- se x_n é crescente e limitada, então $x_n \to \sup\{x_i : i \ge 1\}$;
- se x_n é decrescente e limitada, então $x_n \to \inf\{x_i : i \ge 1\}$.

Exemplo 1.5. Considere $a_n = \left(1 + \frac{1}{n}\right)^n$. Mostremos que a_n é crescente. A seguir, fatoraremos a_{n+1}/a_n até termos uma expressão apropriada para aplicar a desigualdade de Bernoulli 1.1, assim mostrando que $\frac{a_{n+1}}{a_n} \geq 1$.

$$\frac{a_{n+1}}{a_n} = \frac{\left(1 + \frac{1}{n+1}\right)^{n+1}}{\left(1 + \frac{1}{n}\right)^n}$$

$$= \left(1 + \frac{1}{n}\right) \frac{\left(1 + \frac{1}{n+1}\right)^{n+1}}{\left(1 + \frac{1}{n}\right)^{n+1}}$$

$$= \left(1 + \frac{1}{n}\right) \left(\frac{(n+2)n}{(n+1)^2}\right)^{n+1}$$

$$= \left(1 + \frac{1}{n}\right) \left(1 - \frac{1}{(n+1)^2}\right)^{n+1}$$

$$\geq \left(1 + \frac{1}{n}\right) \left(1 - (n+1)\frac{1}{(n+1)^2}\right)$$

$$= \frac{n+1}{n} \frac{n}{n+1} = 1.$$

Portanto, $a_{n+1} \ge a_n$, ou seja, a sequência a_n é crescente. Se essa for limitada superiormente, teremos que $a_n \to \sup\{a_i : i \ge 1\}$, que é o número e.

Mostremos que a_n é limitada superiormente. Pelo binômio de Newton

$$a_n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k}$$

$$= \sum_{k=0}^n \frac{n(n-1)\cdots(n-k+1)}{k!} \frac{1}{n^k}$$

$$= \sum_{k=0}^n \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right) \frac{1}{k!}$$

$$\leq \sum_{k=0}^n \frac{1}{k!}$$

$$= 1 + 1 + \frac{1}{2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{2 \cdot 3 \cdots n}$$

$$\leq 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}}$$

 $\leq 3.$

Logo, a_n converge para $\sup\{a_i : i \geq 1\}$.

Exercício 1.6. Sejam x_n e y_n sequências em \mathbb{R} convergentes para x e y e seja $\alpha \in \mathbb{R}$ uma constante . Mostre que

$$x_n + y_n \to x + y$$
, $\alpha x_n \to \alpha x$, $x_n y_n \to xy$.

Mostre que para $y \neq 0$, temos que y_n é não nulo par n suficientemente grande e

$$\frac{x_n}{y_n} \to \frac{x}{y}$$
.

Proposição 1.7. Considere uma função $f: I \to \mathbb{R}$, onde I é um intervalo. São equivalentes:

• f é contínua em x_0 , i.e., dado $\varepsilon > 0$, existe $\delta > 0$ tal que

$$|f(x) - f(x_0)| < \varepsilon$$
 quando $|x - x_0| < \delta$.

• Para toda sequência convergente $x_n \to x_0$, temos $f(x_n) \to f(x_0)$.

Exercício 1.8. Prove a Proposição 1.7.

Definição 1.9. Uma subsequência de x_n é uma sequência

$$x_{n_1}, x_{n_2}, x_{n_3}, \cdots$$

com

$$n_1 < n_2 < n_3 < \cdots$$
.

Exercício 1.10. Considere uma sequência x_n e um ponto x. Mostre que $x_n \to x$ se as subsequências x_{2k} e x_{2k+1} convergem para x.

Extra: Utilize tal resultado para provar o teste de convergência de Leibniz para séries: se a_k é uma sequência decrescente de termos não-negativos e $a_k \to 0$, então

$$\lim_{n \to \infty} \sum_{k=0}^{n} (-1)^{k+1} a_k$$

converge.

Teorema 1.11 (Teorema de Bolzano-Weierstrass). Toda sequência limitada admite subsequência convergente.

Demonstração. Considere a sequência x_n limitada. Há R > 0 tal que $x_n \in [-R, R]$. Seja $I_0 = [-R, R]$. Dividindo I_0 ao meio, obtemos dois intervalos fechados. Escolha I_1 como sendo uma das metades possuindo x_n para infinitos n's. Temos que $\{n \in \mathbb{Z}_{\geq 1} : x_n \in I_1\}$ é infinito e o comprimento de I_1 , denotado por $|I_1|$, vale $|I_1| = |I_0|/2$. Dividindo I_1 ao meio, escolhemos I_2 tal que $\{n \in \mathbb{Z}_{\geq 1} : x_n \in I_2\}$ é infinito e $|I_2| = |I_1|/2 = |I_0|/2^2$. Seguindo tal algorítimo, obtemos os intervalos fechados e limitados I_0, I_1, I_2, \ldots tais que

- $\{n \in \mathbb{Z}_{\geq 1} : x_n \in I_i\}$ é infinito,
- $I_0 \supset I_1 \supset I_2 \supset \cdots \supset I_i \supset I_{i+1} \supset \cdots$,
- $|I_i| = |I_0|/2^i$.

Escolha $x_{n_1} \in I_1$. Existe $n_2 > n_1$ tal que $x_{n_2} \in I_2$, pois $\{n \in \mathbb{Z}_{\geq 1} : x_n \in I_2\}$ é infinito. Similarmente, existe $n_3 > n_2$ tal que $x_{n_3} \in I_3$. Seguindo tal procedimento, existem $n_1 < n_2 < n_3 < \cdots < n_i < n_{i+1} < \cdots$ tais que $x_{n_i} \in I_i$.

Como I_i é um intervalo fechado e limitado, temos que esse possuí extremos a_i, b_i , isto é, $I_i = [a_i, b_i]$. Adicionalmente, temos que $I_{i+1} \subset I_i$ e, consequentemente, $a_i \leq a_{i+1}$ e $b_i \geq b_{i+1}$. Além disso, a sequência a_i é limitada superiormente por R e a sequência b_i é limitada inferiormente por -R, ou seja, os números

$$\alpha := \sup\{a_i : i \in \mathbb{Z}_{\geq 1}\}$$
 e $\beta := \inf\{b_i : i \in \mathbb{Z}_{\geq 1}\}$

existem.

Assim, $a_n \to \alpha$ e $b_n \to \beta$, por serem sequências monótonas. Como $b_n - a_n = |I_0|/2^n \to 0$, temos que $\alpha = \beta$, ou seja, $a_n, b_n \to \alpha$.

Por outro lado, $a_k \leq x_{n_k} \leq b_k$, pois $x_{n_k} \in I_k$. Deste modo,

$$a_k - \alpha \le x_{n_k} - \alpha \le b_k - \alpha$$
,

ou seja,

$$\lim_{k \to \infty} x_{n_k} = \alpha.$$

Exemplo 1.12. A sequência $x_n = (-1)^n$ não converge, mas é limitada. Temos as subsequências convergentes $x_{2k} \to 1$ e $x_{2k+1} \to -1$.

Exercício 1.13. Considere $f:[a,b]\to\mathbb{R}$ contínua. Mostre que:

- f é limitada;
- existe $x_0 \in [a, b]$ tal que $f(x_0) = \sup\{f(x) : x \in [a, b]\}$, ou seja, f atinge máximo.

1.2 Normas e métricas

Comecemos com \mathbb{R}^d . Temos o produto interno canônico

$$\langle x, y \rangle = \sum_{i} x^{i} y^{i},$$

onde $x = (x^1, ..., x^d)$ e $y = (y^1, ..., y^d)$.

Esse produto nos fornece uma norma definida pela fórmula

$$|x| = \sqrt{\langle x, x \rangle}.$$

Mais explicitamente,

$$|x| = \sqrt{\sum_{i} (x^i)^2}.$$

Uma norma, se o leitor não viu ou não lembra, tem de satisfazer as seguintes propriedades:

- |kx| = |k||x| para $k \in \mathbb{R}$ e $x \in V$;
- $|x| \ge 0$ para qualquer $x \in V$ e somente vale zero se x = 0;
- Vale a desigual dade triangular: Para $x, y \in \mathbb{R}^d$, temos que

$$|x+y| \le |x| + |y|.$$

Geometricamente, essa última propriedade é interpretada da seguinte forma. Se temos um triangulo com lados x, y, x + y, então a soma do comprimento de dois lados é maior ou igual que o comprimento do terceiro lado. De jeito mais simplista. Se queremos ir de 0 a x + y, então podemos ir direto, percorrendo a distância |x + y|, ou ir passando por x. Isto é, vamos de 0 a x percorrendo a distância |x| e depois de x a x + y percorrendo a distância |y|, porque x + y - x = y.

Figura 1.1: Triangulo com vetores x, y e x + y.

De forma mais geral, temos:

Definição 1.14. Uma norma em um espaço vetorial V sobre $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} é uma função $p: V \to \mathbb{R}$ que satisfaz as três propriedades listadas acima.

- p(kx) = |k|p(x) para $k \in \mathbb{K}$ e $x \in V$;
- $p(x) \ge 0$ para qualquer $x \in V$ e somente vale zero se x = 0;
- Vale a desigualdade triangular: Para $x, y \in V$, temos que

$$p(x+y) \leq p(x) + p(y)$$
.

O espaço V munido da \boldsymbol{p} é chamado de espaço vetorial normado e é denotado por $(V, |\cdot|)$.

Voltemos a \mathbb{R}^d . Repare que as duas primeiras propriedades de normas são evidentes, mas a terceira não é. A fim de prova-la precisamos da desigualdade de Cauchy-Schwarz. Primeiro provemos o "teolema" de Pitágoras.

Definição 1.15. Dois vetores $x, y \in \mathbb{R}^d$ são ortogonais (ou perpendiculares) se $\langle x, y \rangle = 0$.

Repare que o vetor nulo é ortogonal a todo vetor.

Lema 1.16 (Teorema de Pitágoras). Considere $x, y \in \mathbb{R}^d$. Temos que x, y são orthogonais se, e só se,

$$|x+y|^2 = |x|^2 + |y|^2$$
.

Demonstração. Basta notar que

$$|x + y|^2 = \langle x + y, x + y \rangle = |x|^2 + 2\langle x, y \rangle + |y|^2$$

Teorema 1.17 (Desigualdade de Cauchy-Schwartz). Se $x, y \in \mathbb{R}^d$, então

$$|\langle x, y \rangle| < |x||y|$$
.

A igualdade vale se x, y são linearmente dependentes.

Demonstração. Se x=0 ou y=0, então $\langle x,y\rangle=0$ e o resultado é trivialmente válido. Podemos desta forma assumir que x e y são não nulos. Considere o vetor

$$\Pi[y]x := \frac{\langle x, y \rangle}{\langle y, y \rangle} y,$$

que se chama projeção de x sobre a reta $\mathbb{R}y$.

Figura 1.2: Projeção de x sobre y.

Note que $x - \Pi[y]x$ e $\Pi[y]x$ são ortogonais:

$$\langle x - \Pi[y]x, \Pi[y]x \rangle = \left\langle x - \frac{\langle x, y \rangle}{\langle y, y \rangle} y, \frac{\langle x, y \rangle}{\langle y, y \rangle} y \right\rangle = 0.$$

Assim, pelo Teorema de Pitágoras 1.16, obtemos

$$|x|^2 = |x - \Pi[y]x|^2 + |\Pi[y]x|^2.$$

Temos que

$$|x - \Pi[y]x|^{2} = |x|^{2} - |\Pi[y]x|^{2}$$

$$= |x|^{2} - \langle x, y \rangle^{2} |y|^{2}$$

$$= \frac{1}{|y|^{2}} (|x|^{2} |y|^{2} - \langle x, y \rangle^{2}).$$

Como $|x - \Pi[y]x| \ge 0$ e somente é zero quando x,y são proporcionais, obtemos o resultado.

Observação 1.18. Todos esses resultados valem para espaços vetoriais reais ou complexos com produto interno. As provas são essencialmente as mesmas com a tecnicalidade de que no caso complexo você obtém $|\text{Re}\langle x,y\rangle| \leq |x||y|$ no argumento acima. Nesse cenário se usa o seguinte truque: o número $\xi = \frac{\langle x,y\rangle}{|\langle x,y\rangle|}$ é complexo de norma 1. Assim,

$$\langle \overline{\xi}x,y\rangle = |\langle x,y\rangle|$$

e obtemos

$$|\langle x, y \rangle| = |\operatorname{Re}\langle \overline{\xi}x, y \rangle| \le |\overline{\xi}x||y| = |\overline{\xi}||x||y| = |x||y|,$$

que é o resultado desejado.

Da desigualdade de Cauchy-Schwarz 1.17, temos que para $x,y\in\mathbb{R}^d$ não nulos vale

$$-1 \le \frac{\langle x, y \rangle}{|x||y|} \le 1$$

e assim há $\theta \in [0, \pi]$ tal que $\langle x, y \rangle = |x||y|\cos(\theta)$.

O número θ é unicamente determinado, porque a função cosseno cos : $[0, \pi] \to [-1, 1]$ é bijetora. Além disso, dizemos que θ é o ângulo entre x e y. Note também que para x, y não nulos, temos x, y ortogonais se, e só se, $\theta = \frac{\pi}{2}$.

Exercício 1.19. Mostre a Lei dos Cossenos. Se x,y são vetores não-nulos e θ é o ângulo entre eles, então

$$|x - y|^2 = |x|^2 + |y|^2 - 2|x||y|\cos(\theta).$$

Finalmente podemos provar a terceira propriedade da definição de norma para \mathbb{R}^d , a desigualdade triangular. Basta usarmos a desigualdade de Cauchy-Schwarz 1.17.

$$|x+y|^2 = |x|^2 + 2\langle x, y \rangle + |y|^2 \le |x|^2 + 2|\langle x, y \rangle| + |y|^2 \le |x|^2 + 2|x||y| + |y|^2 = (|x| + |y|)^2,$$
$$|x+y| \le |x| + |y|.$$

Exercício 1.20. Considere o espaço M_d das matrizes quadradas reais $d \times d$. Mostre que

- $\langle A, B \rangle = \operatorname{tr}(AB^T)$ é um produto interno e $\boldsymbol{p}(A) = \sqrt{\operatorname{tr}(AA^T)}$ é uma norma em M_d ;
- $q(A) = \sup\{|Ax| : x \in \mathbb{R}^d, |x| = 1\}$ é uma norma em M_d .

Agora definimos métrica (que é a mesma coisa que distância).

Definição 1.21. Uma métrica $d: X \times X \to \mathbb{R}$ em um conjunto X é uma função satisfazendo as seguintes propriedades:

- Positividade: $d(x,y) \ge 0$ para quaisquer $x,y \in X$ e vale zero quando x=y;
- Simetria: d(x,y) = d(y,x) para quaisquer $x,y \in X$;
- Desigualdade triangular: $d(x, z) \le d(x, y) + d(y, z)$ para quaisquer $x, y, z \in X$.

O conjunto X munido de uma métrica d é chamado de **espaço métrico**, que denotamos por (X, d).

O autor desse texto as vezes esquece de escrever coisas. Ao invés de escrever (X,d), muitas vezes escreverei X para denotar um espaço métrico, quando não houver confusão. As vezes denotamos a métrica de X por d_X quando for conveniente.

Se V é um espaço vetorial normado sobre $\mathbb R$ ou $\mathbb C$ com norma p, então d(x,y):=p(x-y) é uma métrica. Isso segue direto das propriedades de norma.

Para \mathbb{R}^d , temos que a distância entre x e y é

$$d(x,y) = \sqrt{\sum_{i} (x^i - y^i)^2}.$$

Temos assim que todo espaço normado é naturalmente um espaço métrico.

Definição 1.22. Seja X um espaço métrico com métrica $d_X: X \times X \to \mathbb{R}$ e $A \subset X$. O conjunto A é espaço métrico com métrica $d_A: A \times A \to \mathbb{R}$ dada por $d_A(x,y) := d_X(x,y)$.

Em outras palavras, a métrica de A é só a métrica de X (a métrica ambiente) restrita a A. Essa métrica em A é conhecida como métrica induzida de X em A.

Assim, todo subconjunto de \mathbb{R}^d tem é um espaço métrico.

Temos a reta $\mathbb{R} \times \{0\}$ em \mathbb{R}^2 . A distância é dada por

$$d_{\mathbb{R}\times\{0\}}\left((x,0),(y,0)\right) = \sqrt{(x-y)^2 + (0-0)^2} = |x-y|$$

que é a distância entre x, y na reta real \mathbb{R} . Assim, a métrica induzida nos eixos coordenados é simplesmente a métrica vinda de \mathbb{R} .

Pela mesma lógica, se temos $\mathbb{R}^n \times \{0\} \subset \mathbb{R}^n \times \mathbb{R}^{d-n}$, onde n < d, temos que a métrica em $\mathbb{R}^n \times \{0\}$ é exatamente a que se espera, a vinda de \mathbb{R}^n .

O círculo unitário

$$\mathbb{S}^1 := \{ (x^1, x^2) \in \mathbb{R}^2 : (x^1)^2 + (x^2)^2 = 1 \}$$

tem métrica induzida de \mathbb{R}^2 . A distância entre $x, y \in \mathbb{S}^1$ é a comprimento do segmento de reta ligando x a y em \mathbb{R}^2 , o que não é exatamente a métrica que vem a mente quando pensamos em um círculo. A distância mais óbvia seria a o comprimento d'(x,y) do menor arco entre x, y.

Essa distância d'(x,y) é ângulo entre x,y, porque o círculo tem raio 1:

$$d'(x,y) = \arccos(\langle x,y \rangle) \in [0,\pi],$$

onde $\arccos:[-1,1]\to[0,\pi]$ é inversa da função $\cos:[0,\pi]\to[-1,1].$

Proposição 1.23. Considere $x, y \in \mathbb{S}^1$.

$$|x - y| \le d'(x, y) \le \frac{\pi}{2}|x - y|.$$

Demonstração. Se x = y ou x = -y a designaldade é válida. Nesse segundo temos |x - y| = 2 e $d'(x, y) = \pi$.

Agora suponha $x \neq y$ e $x \neq -y$. Temos o triângulo 0, x, y. Seja θ o ângulo entre x e y, isto é, $\theta = d'(x, y)$. Portanto, lembrando que $\cos(\theta) = 1 - 2\sin^2(\frac{\theta}{2})$, temos que

$$|x - y|^2 = 2 - 2\langle x, y \rangle = 2(1 - \cos(\theta)) = 4\sin^2(\theta/2)$$
.

Provemos que para $s \in [0, \frac{\pi}{2}]$ valem as desigualdades

$$\frac{2}{\pi}s \le \sin(s) \le s.$$

A função $s\mapsto s-\sin(s)$ vale 0 em s=0 e tem derivada $1-\cos(s)$, que é não negativa, ou seja, a função é crescente. Daí segue que $s-\sin(s)\geq 0$. Por outro lado, a função $\sin(s)$ é concava (sua segunda derivada é não positiva) no intervalo $[0,\pi]$, ou seja, a parte inferior de seu gráfico é convexa. Assim, a reta ligando (0,0) a $(\frac{\pi}{2},1)$, dada por $s\mapsto \frac{2}{\pi}s$, está abaixo do seu gráfico para $0\leq s\leq \frac{\pi}{2}$.

Figura 1.3: $\frac{2}{\pi}s \leq \sin(s) \leq s$ para $0 \leq s \leq \frac{\pi}{2}$.

Tomando $s = \theta/2$ temos:

$$\frac{4}{\pi^2}\theta^2 \le |x - y|^2 \le \theta^2,$$

$$\frac{2}{\pi}d'(x, y) \le |x - y| \le d'(x, y),$$

$$|x - y| \le d'(x, y) \le \frac{\pi}{2}|x - y|.$$

Observação 1.24. A esfera unitária d-dimensional $\mathbb{S}^d = \{x \in \mathbb{R}^{d+1} : |x| = 1\}$ satisfaz a mesma propriedade. Temos a métrica $d'(x,y) = \arccos(\langle x,y \rangle)$ que cálcula o comprimento do arco ligando x a y. Mais precisamente, se $x \neq y$, temos círculo $\mathbb{S}^d \cap (\mathbb{R}x + \mathbb{R}y)$ e d'(x,y) computa o comprimento de arco nesse círculo. A comparação entre essa métrica intrínseca d' e a métrica vinda do ambiente é

$$|x - y| \le d'(x, y) \le \frac{\pi}{2}|x - y|,$$

a mesma que provamos acima. A prova é igual.

O que não é óbvio é que d' em \mathbb{S}^d é de fato uma métrica. Mais precisamente, não é obvio que ela satisfaz a desigualdade triangular. Provemos tal fato.

Proposição 1.25. Para $x, y, z \in \mathbb{S}^d$, temos

$$d'(x,y) \le d'(x,y) + d'(y,z)$$

Demonstração. Suponha que não vale. Há x,y,z tais que

$$\arccos\langle x, z \rangle > \arccos\langle x, y \rangle) + \arccos\langle y, z \rangle.$$

Como a função $\cos:[0,\pi]\to[-1,1]$ é decrescente, temos

$$\langle z, x \rangle < \cos(\arccos\langle x, y \rangle + \arccos\langle y, z \rangle),$$

e, usando que $\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$, obtemos

$$\langle z, x \rangle < \cos(\arccos\langle x, y \rangle) \cos(\arccos\langle y, z \rangle) - \sin(\arccos\langle x, y \rangle) \sin(\arccos\langle y, z \rangle)$$

que pode ser simplificado para

$$\langle z, x \rangle < \langle x, y \rangle \langle y, z \rangle - \sqrt{1 - \langle x, y \rangle^2} \sqrt{1 - \langle y, z \rangle^2},$$

onde usamos que $\sin(\alpha) = \sqrt{1-\cos(\alpha)}$ para $0 \le \alpha \le \pi.$ Assim

$$\sqrt{1 - \langle x, y \rangle^2} \sqrt{1 - \langle y, z \rangle^2} < \langle x, y \rangle \langle y, z \rangle - \langle z, x \rangle,$$

$$(1 - \langle x, y \rangle^2)(1 - \langle y, z \rangle^2) < \langle x, y \rangle^2 \langle y, z \rangle^2 - 2\langle x, y \rangle \langle y, z \rangle \langle z, x \rangle + \langle z, x \rangle^2,$$

$$1 - \langle x, y \rangle^2 - \langle y, z \rangle^2 - \langle z, x \rangle^2 - 2\langle x, y \rangle \langle y, z \rangle \langle z, x \rangle < 0.$$

Por outro lado, a matriz de Gram

$$G := \left[egin{array}{ll} \langle x,x
angle & \langle x,z
angle & \langle x,z
angle \ \langle y,x
angle & \langle y,y
angle & \langle y,z
angle \ \langle z,x
angle & \langle z,y
angle & \langle z,z
angle \end{array}
ight]$$

é igual a $A^T A$, onde

$$A = \begin{bmatrix} x^1 & y^1 & z^1 \\ x^2 & y^2 & z^2 \\ x^3 & y^3 & z^3 \end{bmatrix}.$$

Em particular, $det(G) = det(A)^2 \ge 0$, ou seja, obtemos

$$1 - \langle x, y \rangle^2 - \langle y, z \rangle^2 - \langle z, x \rangle^2 - 2 \langle x, y \rangle \langle y, z \rangle \langle z, x \rangle \ge 0,$$

contradizendo a desigualdade que deduzimos acima.

Portanto, temos a métrica de \mathbb{R}^{d+1} restrita a esfera \mathbb{S}^d , a esfera intrínseca d' em \mathbb{S}^d e elas ainda se comparam, o que quer dizer que o conceito de pequeno para uma métrica é pequeno para outra.

Tal fenômeno também ocorre em \mathbb{R}^d , onde se compara entre métricas oriundas de normas. Se temos uma norma \boldsymbol{p} em \mathbb{R}^d , então sempre há constantes $C_2, C_1 > 0$ para as quais $|x|C_1 \leq \boldsymbol{p}(x) \leq C_2|x|$ (veja Proposição 1.31). Em termos de métricas, temos

$$C_1|x-y| \le \mathbf{p}(x-y) \le C_2|x-y|.$$

Por exemplo, a função $|x|_1:=|x^1|+|x^2|+\cdots+|x^d|$ define uma norma. Por um lado,

$$|x|_1 = \langle (|x^1|, \dots, |x^d|), (1, 1, \dots, 1) \rangle \le |x| |(1, 1, \dots, 1)| = \sqrt{d}|x|.$$

Por outro lado, $|x|_1^2$ tem entre seus temos $(x^1)^2 + (x^2)^2 + \cdots + (x^d)^2$, ou seja, $|x|_1^2 \ge |x|^2$. Logo,

$$|x| \le |x|_1 \le \sqrt{d}|x|.$$

Exemplo similar vem da norma $|x|_{\infty} := \max_{i} |x^{i}|$.

Temos

$$\frac{1}{\sqrt{d}}|x| \le |x|_{\infty} \le |x|.$$

Exercício 1.26. Mostre que:

- $|\cdot|_1, |\cdot|_{\infty}$ são normas;
- $\sum_i |x^i||y^i| \le |x|_1|y|_\infty$ para $x, y \in \mathbb{R}^d$.

Essas três normas, $|\cdot|$, $|\cdot|_1$ e $|\cdot|_{\infty}$, fazem parte de uma família maior de normas, as normas l^p . Para $p \in [1, \infty)$, definimos

$$|x|_p := \left(\sum_i |x^i|^p\right)^{\frac{1}{p}}.$$

Para todo $p \in [1, \infty)$, a expressão acima define uma norma. A parte difícil é mostrar a desigualdade triangular, que faremos a seguir (veja Proposição 1.30). Além disso, repare que $|x|_{\infty} = \lim_{p \to \infty} |x|_p$ e que $|x| = |x|_2$.

Exercício 1.27. Mostre que $|x|_{\infty} = \lim_{p \to \infty} |x|_p$.

Figura 1.4: Círculo $|(s,t)|_p = 1$ para vários p's.

Mostremos a desigualdade triangular para as normas l^p .

Figura 1.5: Gráfico da função x^{p-1} .

Lema 1.28 (Desigualdade de Young). Considere $p \in (1, \infty)$ e tome q tal que $\frac{1}{p} + \frac{1}{q} = 1$, isto é, $q = \frac{p}{p-1}$. Para $a, b \ge 0$ temos

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

Demonstração. Considere a função $f(x) = x^{p-1}$. A área abaixo do gráfico para $x \in [0, a]$ é $\frac{a^p}{p}$, em vermelho na Figura 1.5. A inversa dessa função é $g(y) = y^{q-1}$, pois se temos

 $y=x^{p-1}$, então $x=y^{\frac{1}{p-1}}=y^{q-1}$. A área em azul na Figura 1.5 é a integral de g(y) de 0 a b, isto é, $\frac{b^q}{q}$.

O quadrado definido pelos pontos (0,0), (a,0), (a,b), (0,b) tem área ab. Além disso, esse se encontra dentro da região conjunta formada pela região vermelha com a azul. Assim,

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

Lema 1.29 (Desigualdade de Hölder). Se $p \in (1, \infty)$ e $q = \frac{p}{p-1}$, então para quaisquer $x, y \in \mathbb{R}^d$

$$\sum_{i} |x^i||y^i| \le |x|_p |y|_q.$$

Repare que para p = q = 2, temos que

$$\sum_{i} |x^{i}| |y^{i}| \le |x|_{2} |y|_{2},$$

(que segue da desigualdade de Cauchy-Schwarz 1.17). Além disso, podemos extender o resultado para p=1 e $q=\infty$. Pois nesse caso ainda temos $\frac{1}{p}+\frac{1}{q}=1$ e

$$\sum_{i} |x^i||y^i| \le |x|_1|y|_{\infty}.$$

Demonstração. Se x = 0 ou y = 0 a designaldade é trivialmente verdadeira. Podemos assumir $x \neq 0$ e $y \neq 0$. Considere $u = x/|x|_p$ e $v = y/|y|_q$. Temos $|u|_p = |v|_q = 1$. Pela designaldade de Young 1.28, temos

$$\sum_{i} |u^{i}||v^{i}| \le \sum_{i} \frac{|u^{i}|^{p}}{p} + \frac{|v^{i}|^{q}}{q} = \frac{\sum_{i} |u^{i}|^{p}}{p} + \frac{\sum_{i} |v^{i}|^{q}}{q} = \frac{1}{p} + \frac{1}{q} = 1.$$

Como $u^i = x^i/|x|_p$ e $v^i = y^i/|y|_q$, temos

$$\sum_{i} |x^{i}||y^{i}| \le |x|_{p}|y|_{q}.$$

Finalmente, provamos a desigualdade triangular.

Proposição 1.30 (Desigualdade de Minkowski). Considere $p \in [1, \infty]$. Para todo $x, y \in \mathbb{R}^d$ temos

$$|x+y|_p \le |x|_p + |y|_p$$

Demonstração. Podemos supor que $1 , pois os casos extremos <math>p = 1, \infty$ são fáceis e são deixados ao leitor. Se x + y, x ou y são nulos, o resultado é obviamente verdadeiro. Assim, podemos supor $x + y \neq 0$, $x \neq 0$ e $y \neq 0$. Temos que

$$|x+y|_p^p = \sum_i |x^i + y^i| |x^i + y^i|^{p-1}$$

$$\begin{split} &\leq \sum_{i} (|x^{i}| + |y^{i}|) |x^{i} + y^{i}|^{p-1} \\ &= \sum_{i} |x^{i}| |x^{i} + y^{i}|^{p-1} + \sum_{i} |y^{i}| |x^{i} + y^{i}|^{p-1} \\ &\leq \left(\sum_{i} |x^{i}|^{p}\right)^{1/p} \left(|x^{i} + y^{i}|^{(p-1)q}\right)^{1/q} + \left(\sum_{i} |y^{i}|^{p}\right)^{1/p} \left(|x^{i} + y^{i}|^{(p-1)q}\right)^{1/q} \\ &= |x|_{p} \left(|x^{i} + y^{i}|^{p}\right)^{\frac{p-1}{p}} + \left(\sum_{i} |y^{i}|^{p}\right)^{1/p} \left(|x^{i} + y^{i}|^{p}\right)^{\frac{p-1}{p}} \\ &= |x|_{p} |x + y|_{p}^{p-1} + |y|_{p} |x + y|_{p}^{p-1} \\ &= (|x|_{p} + |y|_{p})|x + y|_{p}^{p-1} \end{split}$$

onde a desigualdade de Hölder 1.29 entra na passagem da terceira para quarta linha. Portanto,

$$|x+y|_p^p \le (|x|_p + |y|_p)|x+y|_p^{p-1},$$

 $|x+y|_p \le |x|_p + |y|_p.$

Proposição 1.31. Para quaisquer normas \boldsymbol{p} em \mathbb{R}^d , existem constantes $C_1, C_2 > 0$ tais que

$$C_1|x| \le \boldsymbol{p}(x) \le C_2|x|.$$

Demonstração. Na base canônica temos $x = x^1 e_1 + \cdots + x^d e_d$. Logo, pela desigualdade de Cauchy-Schwarz 1.17, temos

$$p(x) \le |x^1|p(e_1) + \dots + |x^d|p(e_d) \le C_2|x|$$

onde
$$C_2 = \sqrt{p(e_1)^2 + \dots + p(e_d)^2}$$

Agora mostremos que existe uma cosntante positiva C_1 pequena suficiente de modo que $C_1|x| \leq p(x)$. Suponha que não existe tal constante. Para cada n existe $x_n = (x_n^1, \dots, x_n^d)$ tal que

$$\boldsymbol{p}(x_n) < \frac{1}{n}|x_n|.$$

Tome $y_n = x_n/|x_n|$. Temos $p(y_n) < \frac{1}{n}$, ou seja, $p(y_n) \to 0$.

Temos que y_n está na esfera de raio 1. Em particular, para cada índice i temos $y_n^i \in [-1, 1]$.

Uma sequência limitada admite subsequência convergente (veja Teorema 1.11). A menos de passar para uma subsequência, podemos assumir que y_n^1 converge. Novamente passando para subsequência, podemos agora supor que y_n^2 também converge. Fazendo o processo novamente, podemos supor que y_n^3 também converge. Assim, a menos de passar para uma subsequência, podemos supor que y_n^1, \dots, y_n^d convergem em \mathbb{R} para y^1, \dots, y^d . Como $(y_n^1)^2 + \dots + (y_n^d)^2 = 1$ para todo n, temos |y| = 1, onde $y = (y^1, \dots, y^d)$.

Por um lado,

$$p(y) \le p(y_n - y) + p(y_n) \le C_2|y_n - y| + p(y_n) \to 0,$$

ou seja, p(y) = 0.

Por outro lado, $y \neq 0$, ou seja, $p(y) \neq 0$, porque \boldsymbol{p} é uma norma. Uma contradição.

A menos que seja dito o contrário, sempre que considerarmos uma norma/métrica em \mathbb{R}^d , estamos considerando a canônica.

Definição 1.32. Duas métricas d_1, d_2 em X são Lipschitz equivalentes se há constantes $C_1, C_2 > 0$ tais que

$$C_1 d_1(x, y) \le d_2(x, y) \le C_2 d_1(x, y).$$

Exercício 1.33. Prove que a relação "ser Lipschitz equivalente" em métricas sobre X define uma relação de equivalência.

Como vimos, as duas métricas consideradas na esfera \mathbb{S}^d são Lipschitz equivalentes e pela Proposição 1.31 temos que métricas oriundas de normas distintas em \mathbb{R}^d são Lipschitz equivalentes.

Além disso, observe que como todo espaço vetorial V de dimensão finita é isomorfo a algum \mathbb{R}^d , temos que duas normas nesse espaço vetorial são Lipschitz equivalentes. Em particular, as normas sobre matrizes quadradas vistas no Exercício 1.20 são equivalentes, o que não é imediato.

Definição 1.34. Seja (X,d) um espaço métrico. Uma bola aberta de centro x e raio r é o conjunto $B_{(X,d)}(x,r) = \{y \in X : d_X(x,y) < r\}$. Se estamos trabalhando com apenas a métrica d, então escrevemos apenas B(x,r) para designar a bola, pois não há ambiguidade.

Em \mathbb{R}^d , uma bola centrada em x com raio r é da forma

$$B_{\mathbb{R}^d}(x,r) = \{ y \in \mathbb{R}^d : \sum_i |y^i - x^i|^2 < r^2 \}.$$

Para d=1, obtemos

$$B_{\mathbb{R}}(x,r) = \{ y \in \mathbb{R} : |y - x|^2 < r^2 \} = (x - r, x + r),$$

o intervalo centrado em x com comprimento 2r.

Se temos duas métricas d_1, d_2 Lipschitz equivalentes com constantes $C_1, C_2 > 0$ satisfazendo

$$C_1d_1(x,y) \le d_2(x,y) \le C_2d_1(x,y),$$

então podemos comparar as bolas de (X, d_1) e (X, d_2) :

$$B_{(X,d_1)}(x,r) \subset B_{(X,d_2)}(x,C_2r)$$
 e $B_{(X,d_2)}(x,s) \subset B_{(X,d_1)}\left(x,\frac{s}{C_1}\right)$.

Definição 1.35. Seja (X, d_X) um espaço métrico. Um aberto de X é um subconjunto U com a seguinte propriedade: para cada $x \in X$, existe r > 0 tal que $B(x, r) \subset U$.

Figura 1.6: Um ponto x em U cabe com folga.

Intuitivamente, um aberto em X é um conjunto no qual todo ponto cabe com certa folga dentro de U. De fato, se $x \in U$, existe $B(x,r) \subset U$ com r > 0. Isso quer dizer que se $y \notin U$, então $d_X(x,y) \geq r$.

Exercício 1.36. Sejam d_1, d_2 métricas Lipschitz equivalentes em X. Mostre que U é aberto com respeito a d_1 se, e só se, for aberto com respeito a d_2 .

Exercício 1.37. Considere \mathbb{R} com as métricas $d_1(x,y) = |x-y|$ e $d_2(x,y) = \min(1,|x-y|)$. Mostre que

- d_2 é de fato uma métrica;
- as métricas d_1, d_2 não são Lipschitz equivalentes;
- as métricas d_1, d_2 produzem os mesmos abertos em \mathbb{R} .

Exercício 1.38. Mostre que [0,1) é aberto de $\mathbb{R}_{\geq 0}$, mas não é aberto de \mathbb{R} .

Proposição 1.39. A bola aberta B(x,r) em (X,d_X) é aberta.

Demonstração. Considere $x' \in B(x,r)$ e $r' = r - d_X(x',x)$, que é positivo. Se $y \in B(x',r')$, então

$$d_X(x,y) \le d_X(x,x') + d_X(x',y) < r' + d_X(x',y) = r,$$

ou seja, $B(x',r') \subset B(x,r)$.

O conjunto vazio \emptyset é aberto de X. Se não fosse aberto, haveria um ponto x em \emptyset para o qual $B(x,r) \not\subset \emptyset$ para todo r, o que é impossível porque \emptyset não possui elementos. Assim, \emptyset é aberto. O conjunto X é aberto de X.

Além disso, se U_1, U_2 são abertos de X, então $U_1 \cap U_2$ é aberto de X. De fato, dado $x \in U_1 \cap U_2$, existem $r_1, r_2 > 0$ tais que $B(x, r_1) \subset U_1$ e $B(x, r_2) \subset U_2$. Tomando $r = \min(r_1, r_2)$, temos

$$B(x,r) \subset U_1 \cap U_2$$
.

Por fim, se $\{U_{\lambda} : \lambda \in \Lambda\}$ é uma família de abertos de X, então $\cup_{\lambda \in \Lambda} U_{\lambda}$ é aberto de X, onde essa união pode ser finita ou infinita (não necessariamente enumerável). De fato, se $x \in \cup_{\lambda \in \Lambda} U_{\lambda}$, então existe $\lambda_0 \in \Lambda$ tal que $x \in U_{\lambda_0}$. Como U_{λ_0} é aberto, existe r > 0 para o qual

$$B(x,r) \subset U_{\lambda_0} \subset \bigcup_{\lambda \in \Lambda} U_{\lambda}.$$

Em resumo, obtemos o seguinte resultado:

Proposição 1.40. Seja (X, d_X) espaço métrico.

- \emptyset , X são abertos de X;
- se U_1, U_2 são abertos de X, então $U_1 \cap U_2$ é aberto de X;
- se $\{U_{\lambda} : \lambda \in \Lambda\}$ é uma família de abertos de X, então $\bigcup_{\lambda \in \Lambda} U_{\lambda}$ é aberto de X.

Exercício 1.41. Mostre que todo aberto U de um espaço métrico X é união das bolas abertas contidas em U.

Exercício 1.42. Mostre que

- todo intervalo aberto de R contem um número racional;
- todo subconjunto de \mathbb{R} é união de intervalos. Dica: $A \subset \mathbb{R}$ é intervalo se para $a_1, a_2 \in A$, com $a_1 \leq a_2$, temos $[a_1, a_2] \subset A$;
- um aberto de \mathbb{R} é união enumerável de intervalos abertos disjuntos.

1.3 Topologia de espaço métrico

Definição 1.43. Considere um conjunto X com uma família τ de subconjuntos de X. Dizemos que τ é uma topologia se satisfaz as seguintes propriedades:

- $\emptyset, X \in \tau$;
- se $U_1, U_2 \in \tau$, então $U_1 \cap U_2 \in \tau$;
- se $\{U_{\lambda} : \lambda \in \Lambda\} \subset \tau$, então $\bigcup_{\lambda \in \Lambda} U_{\lambda} \in \tau$.

Nesse caso, chamamos (X, τ) de espaço topológico e os elementos de τ são chamados de abertos de X. Quando a topologia está clara do contexto, escrevemos $U \subset X$ para denotar que U é aberto de X.

Em resumo, uma topologia é uma família distinguida de subconjuntos chamados abertos, que devem seguir regras básicas. O espaço todo e o vazio devem ser abertos, intersecção de finitos abertos é aberto, e união arbitrária de abertos é aberta.

Exemplo 1.44. Seja (X, d_X) um espaço métrico. Lembre-se que definimos aberto em X de acordo com a Definição 1.35. O conjunto $\tau = \{U \subset X : U \text{ \'e aberto de } X\}$ define uma topologia em X, por causa da Proposição 1.40. Dizemos que essa topologia \'e induzida pela métrica d_X .

A partir desse ponto, assumiremos que todo espaço tem uma métrica.

Exemplo 1.45. Exemplos extremos. Seja X um conjunto.

• A maior topologia em X é a discreta, onde todo subconjunto é aberto:

$$\tau_{\text{discreta}} = \{U : U \subset X\}.$$

Essa topologia é induzida pela métrica $d(x_1, x_2)$ que vale 1 se $x_1 \neq x_2$ e 0 se $x_1 = x_2$.

• A menor topologia em X é a caótica, que tem somente \emptyset e X como abertos:

$$\tau_{\text{ca\'otica}} = \{\emptyset, X\}.$$

Essa topologia também vem de uma métrica. De fato, basta tomar $d(x_1, x_2) = 0$ para todo $x_1, x_2 \in X$.

Definição 1.46. Uma propriedade topológica é aquela que pode ser caracterizada a partir da topologia.

Como veremos, continuidade, convergência de sequências, conexidade, conexidade por caminhos e compacidade são propriedades caracterizadas a partir da topologia.

Exemplo 1.47. Considere em reta \mathbb{R} as métricas $d_1(x,y) = |x-y|$ e $d_2(x,y) = \min(|x-y|,1)$. O conjunto \mathbb{Z} é ilimitado com respeito a métrica d_1 e limitado com respeito a métrica d_2 , isto é, $d_2(x,0) \leq 1$ para todo $x \in \mathbb{Z}$. No entanto, d_1, d_2 induzem a mesma topologia. Assim, a propriedade "ser limitado" não é uma propriedade topológica, i.e., não pode ser caracterizada a partir da topologia, que é a discreta nesse exemplo.

Em breve daremos uma definição mais apropriada de propriedade topológica, como sendo aquela que é invariante por homeomorfismo.

Exercício 1.48. Considere um espaço métrico X. Mostre que para pontos $x, y \in X$ distintos, existem abertos U e V de X tais que $U \cap V = \emptyset$, $x \in U$ e $y \in V$.

Exercício 1.49. Seja (X, d_X) espaço métrico e Y subconjunto. Considere em Y a métrica d_Y induzida de X, isto é, $d_Y(y_1, y_2) := d_X(y_1, y_2)$. Mostre que $A \subset Y$ é aberto com respeito a métrica d_Y se, e somente se, existe um aberto U de X tal que $A = Y \cap U$.

Dica: Escreva A como uma união de bolas de Y e use que bolas de Y são bolas de X intersectadas com Y. Construa U como união de bolas de X.

Exercício 1.50. Considere $\mathbb{Z}^d \subset \mathbb{R}^d$. Mostre que topologia induzida em \mathbb{Z}^d é a discreta.

Exercício 1.51. Se Y é aberto de X, então U é aberto de Y se, e só se, U é aberto de X e $U \subset Y$.

Em um espaço métrico, sempre usaremos a topologia induzida pela sua métrica. Além disso, lembre-se que métricas Lipschitz equivalentes induzem a mesma topologia (Exercício 1.36), então em espaços normados, por exemplo, podemos trabalhar com qualquer norma quando interessados em propriedades relacionadas a topologia.

Exercício 1.52. Considere os espaços métricos $(X_1, d_{X_1}), \cdots, (X_n, d_{X_q})$.

• Mostre que as métricas

$$d_1((x^1, \dots, x^q), (y^1, \dots, y^q)) := \sum_{i=1}^q d_{X_i}(x^i, y^i),$$

$$d_2((x^1, \dots, x^q), (y^1, \dots, y^q)) := \sqrt{\sum_{i=1}^q d_{X_i}(x^i, y^i)^2},$$

$$d_{\infty}((x^1, \dots, x^q), (y^1, \dots, y^q)) := \max_{1 \le i \le q} (d_{X_i}(x^i, y^i))$$

em $X_1\times \cdots \times X_q$ são Lipschitz equivalentes e, consequentemente, definem a mesma topologia.

• Mostre $\Omega \subset X_1 \times \cdots \times X_q$ é aberto se, e só se, para cada $x = (x^1, \dots, x^q) \in \Omega$ existem abertos U_1, \dots, U_q com $U_i \subset X_i$ tais que

$$x \in U_1 \times \cdots \times U_q \subset \Omega$$
.

Dica: Utilize a métrica d_{∞} .

Nós chamamos a topologia descrita no exercício acima de **topologia produto**. Obviamente, a topologia de \mathbb{R}^d (oriunda de uma norma) coincide com a topologia produto.

Definição 1.53. Seja X espaço métrico. O subconjunto $F \subset X$ é fechado se $X \setminus F$ é aberto.

Exemplo 1.54. Pontos são fechados. Mais precisamente, se $x \in X$, então $\{x\}$ é fechado. De fato, dado $y \in X \setminus \{x\}$ temos que $B(y, d(y, x)) \subset X \setminus \{x\}$, ou seja, $X \setminus \{x\}$ é aberto.

Exercício 1.55. Mostre que a bola fechada

$$B[x,r] = \{ y \in X : d(x,y) \le r \}$$

é fechada.

Proposição 1.56. Temos que

- X e ∅ são fechados;
- se F_1, F_2 são fechados, então $F_1 \cup F_2$ é fechado;
- se $\{F_\lambda\}_{\lambda\in\Lambda}$ é uma família de fechados, então $\bigcap_{\lambda\in\Lambda}F_\lambda$ é fechado.

Demonstração. Basta usar as identidades de conjuntos

$$X\setminus\bigcup_i A_i=\bigcap_i (X\setminus A_i),$$

$$X \setminus \bigcap_{i} A_{i} = \bigcup_{i} (X \setminus A_{i}).$$

Definição 1.57. Uma vizinhança de $x \in X$ é um aberto contendo x.

Exemplo 1.58. Em um espaço métrico X, temos que bolas B(x,r) são vizinhanças de x.

Exemplo 1.59. Se X está munido da topologia discreta, então $\{x\}$ é uma vizinhança de x. Se X está munido da topologia caótica, a única vizinhança de um ponto é o espaço X todo.

Definição 1.60. Considere um subconjunto A de X e ponto $x \in X$. Dizemos que x é ponto aderente de A em X se para toda vizinhança V de x temos que $V \cap A \neq \emptyset$.

O fecho \overline{A} de A em X é o conjunto dos pontos aderentes de A em X.

Em outras palavras, pontos aderentes são aqueles próximos de A, mas que não necessariamente estão em A. O fecho \overline{A} de A é formado pelos pontos de X próximos de A.

Exercício 1.61. Considere o subconjunto A do espaço métrico X. Mostre que $x \in X$ é ponto aderente de A em X se, e só se, $B(x,r) \cap A \neq \emptyset$ para todo r > 0.

Exemplo 1.62. O ponto $\sqrt{2}$ é aderente de \mathbb{Q} em \mathbb{R} . De fato, dado r > 0, considere $N \in \mathbb{Z}_{\geq 1}$ tal que $\frac{1}{N} < r$. Seja k o maior inteiro satisfazendo $k \leq N\sqrt{2}$. Temos que $N\sqrt{2} < k+1$. Portanto,

$$0 \le \frac{k}{N} - \sqrt{2} < \frac{1}{N} < r.$$

Em outras palavras, $\frac{k}{N} \in (\sqrt{2} - r, \sqrt{2} + r) = B(\sqrt{2}, r)$.

Portanto, $B(\sqrt{2}, r) \cap \mathbb{Q} \neq \emptyset$ para todo r > 0 e, consequentemente, $\sqrt{2} \in \overline{\mathbb{Q}}$.

Agora caracterizaremos fechados em termos de pontos aderentes. Um conjunto fechado será aquele que contem seus pontos aderentes.

Proposição 1.63. Seja A subconjunto de um espaço métrico X.

- \overline{A} é fechado.
- A é fechado se, e só se, $A = \overline{A}$.

Demonstração. Provemos que \overline{A} é fechado. Tome $x \in X \setminus \overline{A}$, isto é, x não é aderente de A em X. Existe uma bola B(x,r) de x tal que $B(x,r) \cap A = \emptyset$. Para todo $y \in B(x,r)$ temos que B(x,r) é vizinhança de y disjunta de A, ou seja, nenhum ponto de B(x,r) é aderente a A em X. Portanto, $B(x,r) \subset X \setminus \overline{A}$. Daí segue que $X \setminus \overline{A}$ é aberto em X e \overline{A} é fechado em X.

Agora mostremos que A é fechado se, e só se, $A = \overline{A}$. Como vimos acima, \overline{A} é sempre fechado. Assim sendo, se $A = \overline{A}$, então A é fechado.

Provemos a recíproca. Considere A fechado e mostremos que $A=\overline{A}$. Tome $x\not\in A$. Existe uma bola B(x,r) de x tal que $B(x,r)\subset X\setminus A$, ou seja, $B(x,r)\cap A=\emptyset$ e, consequentemente, x não é aderente a A em X. Portanto, $\overline{A}\subset A$. Como $A\subset \overline{A}$ sempre vale, concluímos que $A=\overline{A}$.

Exercício 1.64. Mostre que $\overline{\mathbb{Q}}$ em \mathbb{R} é \mathbb{R} .

Quando um subconjunto A de X tem fecho $\overline{A} = X$, dizemos que A é denso em X. Com isso em mente, \mathbb{Q} é denso em \mathbb{R} seguindo o exercício acima. O conjunto dos números irracionais também é denso em \mathbb{R} e \mathbb{Q}^d é denso em \mathbb{R}^d .

Exercício 1.65. Seja X espaço métrico e A um subconjunto de X. Definimos a distância de $x \in X$ a A como sendo

$$d_X(x,A) := \inf_{a \in A} d_X(x,a).$$

Mostre que $x \in \overline{A}$ se, e só se, $d_X(x, A) = 0$.

1.4 Sequência em espaços métricos

Definição 1.66. Seja X espaço métrico. A sequência x_n converge para x se dada uma vizinhança U de x existe $n_0 \in \mathbb{Z}_{\geq 1}$ tal que $x_n \in U$ para $n \geq n_0$.

Denotamos essa convergência por $x_n \to x$ ou $\lim_{n \to \infty} x_n = x$.

Intuitivamente, isso quer dizer que para qualquer vizinhança de x a sequência x_n entra nela eventualmente e permanece lá. É comum dizer também que para qualquer vizinhança U de x temos $x_n \in U$ para n suficientemente grande.

Do ponto de vista da métrica, temos que $x_n \to x$ se, e só se, para cada $\varepsilon > 0$ existe $n_0 \in \mathbb{Z}_{\geq 1}$ tal que $x_n \in B(x, \varepsilon)$ para $n \geq n_0$, ou seja, se

$$d_X(x, x_n) < \varepsilon$$
 para $n \ge n_0$.

Em outras palavras, temos que $x_n \to x$ se, e só se, $d_X(x_n, x) \to 0$.

Exercício 1.67. Considere um espaço métrico X, a sequência x_n e os pontos x, x' em X. Mostre que se $x_n \to x$ e $x_n \to x'$, então x = x'.

Observação 1.68. Quando lidando com matrizes reais ou complexas, uma norma útil é a dada por $|A|_{\infty} := \max_{i,j} |a_{ij}|$. Como todas as normas de \mathbb{R}^{d^2} (ou \mathbb{C}^{d^2}) são todas equivalentes entre si (veja a Proposição 1.31), temos que a norma $|\cdot|_{\infty}$ define a topologia do espaço de matrizes como qualquer outra. Desta norma fica fácil ver que $A_n \to A$ se, e só se, as entradas de A_n convergem para as correspondentes entradas de A.

Exemplo 1.69. Nesse exemplo, todas as matrizes são complexas. O resultado abaixo é falso para matrizes reais.

Seja A uma matriz $d \times d$ complexa. A decomposição de Schur nos diz que existem uma matriz triangular superior U e uma matriz unitária Q tais que

$$A = QUQ^*$$

onde Q^* é a transposta da matriz conjugada de Q. Por triangular superior queremos dizer que U tem os termos abaixo de sua diagonal nulos e por unitária queremos dizer que $QQ^* = \mathrm{Id} = Q^*Q$, isto é, Q é uma isometria da forma Hermitiana canônica de \mathbb{C}^d .

$$A = Q \begin{bmatrix} u_{11} & u_{12} & u_{13} & \cdots & u_{1d-1} & u_{1d} \\ 0 & u_{22} & u_{23} & \cdots & u_{2d-1} & u_{2d} \\ 0 & 0 & u_{33} & \cdots & u_{3d-1} & u_{3d} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & u_{d-1d-1} & u_{d-1d} \\ 0 & 0 & 0 & \cdots & 0 & u_{dd} \end{bmatrix} Q^*.$$

A seguir mostraremos que perturbando a diagonal de U, obtemos matrizes diagonalizáveis suficientemente próximas de A.

Repare que os autovalores de A são $u_{11}, u_{22}, \cdots, u_{dd}$, os termos da diagonal de U. Dado $n \in \mathbb{Z}_{\geq 1}$, escolha $\varepsilon_1[n], \varepsilon_2[n], \ldots, \varepsilon_d[n] \geq 0$ tais que

$$u_{i\,i} + \varepsilon_i[n] \neq u_{j\,j} + \varepsilon_j[n]$$

para $i \neq j$ e $\varepsilon_1[n], \ldots, \varepsilon_d[n] < \frac{1}{n}$.

Adicionamos uma perturbação a diagonal de U usando tais ε 's e definimos:

$$A_n := Q \begin{bmatrix} u_{11} + \varepsilon_1[n] & u_{12} & u_{13} & \cdots & u_{1d-1} & u_{1d} \\ 0 & u_{22} + \varepsilon_2[n] & u_{23} & \cdots & u_{2d-1} & u_{2d} \\ 0 & 0 & u_{33} + \varepsilon_3[n] & \cdots & u_{3d-1} & u_{3d} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & u_{d-1d-1} + \varepsilon_{d-1}[n] & u_{d-1d} \\ 0 & 0 & 0 & \cdots & 0 & u_{dd} + \varepsilon_d[n] \end{bmatrix} Q^*.$$

Assim temos que cada A_n é diagonalizável porque tem os autovalores dois a dois distintos. Além disso, $A_n \to A$, pois as entradas de A_n convergem para as entradas de A, já que $\varepsilon_j[n] < \frac{1}{n}$. Logo, para toda matriz A, existe uma sequência A_n de matrizes diagonalizáveis que converge para A.

Como vimos ao fim da Secção 1.3. Um subconjunto D de X é denso se $\overline{D} = X$. No caso de matrizes complexas $M_d(\mathbb{C})$, temos que o espaço D das matrizes $d \times d$ diagonalizáveis é denso em $M_d(\mathbb{C})$. Mais precisamente, o argumento acima prova que $\overline{D} = M_d(\mathbb{C})$. Deixemos isso mais claro.

Exercício 1.70. Prove o teorema de Cayley-Hamilton. Considere uma matriz complexa $A \in M_d(\mathbb{C})$. Seja $p_A(x) = \det(x \operatorname{Id} - A)$ o polinômio característico de A. Podemos escrever

$$p_A(x) = x^d + c_{d-1}x^{d-1} + \dots + c_1x + c_0,$$

onde c_i depende polinomialmente das entradas de A. Por exemplo, $c_{d-1} = -\operatorname{tr}(A)$ e $c_0 = (-1)^d \det(A)$.

- Mostre que se $B=QAQ^{-1}$ para Q invertível, então $p_B=p_A.$
- Mostre que se A é diagonalizável, então

$$A^{d} + c_{d-1}A^{d-1} + \dots + c_{1}A + c_{0}Id = 0.$$

• Teorema de Cayley-Hamilton: Conclua que

$$A^{d} + c_{d-1}A^{d-1} + \dots + c_{1}A + c_{0}\mathrm{Id} = 0$$

para toda matriz complexa $A \in M_d(\mathbb{C})$ porque matrizes diagonálizáveis sao densas.

Proposição 1.71. Considere o espaço métrico X. Temos que $D \subset X$ é denso em X, isto é, $\overline{D} = X$, se, e só se, para cada $x \in X$ existir uma sequência $x_n \in D$ tal que $x_n \to x$.

Demonstração. Assuma que D é denso em X e considere $x \in X$. Para cada bola $B\left(x, \frac{1}{n}\right)$, existe $x_n \in D$, pois $B\left(x, \frac{1}{n}\right) \cap D \neq \emptyset$. Logo, $d_X(x_n, x) < \frac{1}{n} \to 0$ e $x_n \in X$.

Por outro lado, assuma que para cada $x \in X$ existe uma sequência $x_n \in D$ convergindo a x e mostremos que $\overline{D} = X$. Fixe $x \in X$. Se $x_n \in D$ converge para $x \in X$, então para toda vizinhança U de x há n_0 suficientemente grande tal que $x_{n_0} \in U$. Portanto, a intersecção $U \cap D$ é não vazia e, consequentemente, $x \in \overline{D}$.

Da mesma forma, podemos provar que \mathbb{Q} é denso em \mathbb{R} aproximando cada $x \in \mathbb{R}$ por uma sequência de \mathbb{Q} . Isso é fácil de fazer usando expansão decimal por exemplo. A menos de trocar x por -x, podemos assumir que $x \geq 0$. Na base 10 o elemento x se escreve como

$$x = a_0.a_1a_2a_3\cdots = a_0 + \sum_{i=1}^{\infty} \frac{a_i}{10^i},$$

com $a_0 \in \mathbb{Z}_{\geq 0}$ e $a_1, a_2, \dots \in \{0, 1, \dots, 9\}$. Truncando x obtemos $x_n := a_0.a_1a_2a_3 \dots a_n \in \mathbb{Q}$, que converge para x, pois

$$|x - x_n| \le \sum_{i=n+1}^{\infty} \frac{9}{10^i} = \frac{1}{10^n} \sum_{i=1}^{\infty} \frac{9}{10^i} = \frac{1}{10^n} 0.9999 \dots = \frac{1}{10^n} \to 0.$$

Portanto, \mathbb{Q} é denso em \mathbb{R} .

Observação 1.72. Definindo $y_n := x_n(1 + \sqrt{2}/n)$ temos uma sequência de números irracionais convergindo a x. Logo, $\overline{(\mathbb{R} \setminus \mathbb{Q})} = \mathbb{R}$.

Exercício 1.73. Considere o espaço métrico X e $A \subset X$. Mostre que $x \in \overline{A}$ se, e só se, existe uma sequência $x_n \in A$ tal que $x_n \to x$.

Exercício 1.74. Considere o espaço métrico X e $A \subset X$. Mostre que A é fechado se, e só se, para toda sequência convergente $x_n \in A$ com limite $x \in X$ temos que $x \in A$.

Assim, o conceito de fechado em espaços métricos pode ser caracterizado via sequências: fechado é aquele cujas sequências não escapam para fora do conjunto.

Observação 1.75. Se temos o produto de espaços métricos $X_1 \times \cdots \times X_q$ e uma sequência $x_n = (x_n^1, \dots, x_n^q)$, então temos que tal sequência converge para um ponto x se, e só se, $x_n^i \to x^i$, pois a topologia do produto pode, por exemplo, ser dada por

$$d_1(x,y) = \sum_{i=1}^{q} d_{X_i}(x^i, y^i)$$

e temos que $d_1(x_n, x) \to 0$ se, e só se, $d_{X_i}(x_n^i, x^i) \to 0$ para todo $i \in \{1, \dots, q\}$. Em particular, uma sequência x_n em \mathbb{R}^d converge se, e só se, suas coordenadas x_n^i convergem

Definição 1.76. Considere $A \subset X$, uma função $f: A \to Y$ e um ponto $x_0 \in \overline{A}$. Dizemos que $\lim_{x \to X_0} f(x) = L$ se $f(x_n) \to L$ para toda sequência $x_n \in A$ convergindo a x.

Depois veremos que pode-se considerar $\mathbb{R}^d \cup \{\infty\}$ como espaço métrico (veja Observação 1.106). Para tal métrica temos que $x_n \to \infty$ se, e só se, $\lim |x_n| = \infty$.

Proposição 1.77. Mostre que $\lim_{x\to x_0} f(x) = L$ se, e só se, para cada $\epsilon > 0$ existe $\delta > 0$ tal que $d_Y(f(x), L) < \varepsilon$ quando $x \in A$ e $d_X(x, x_0) < \delta$.

Demonstração. Assuma que

$$\lim_{x \to x_0} f(x) = L,$$

e mostremos que para cada $\varepsilon > 0$ existe $\delta > 0$ tal que $d_Y(f(x), L) < \varepsilon$ quando $x \in A$ e $d_X(x, x_0) < \delta$.

Suponha que tal afirmação é falsa. Portanto, existe $\epsilon > 0$ tal que para todo $\delta > 0$ temos $d_Y(f(x), L) \geq \varepsilon$ quando $x \in A$ e $d_X(x, x_0) < \delta$. Para cada n existe $x_n \in A$ tal que $d_X(x_n, x_0) < \frac{1}{n}$ e $d_Y(f(x_n), L) \geq \varepsilon$. Logo, $x_n \to x_0$ e $f(x_n) \not\to L$, uma contradição.

Por outro lado, mostremos que se vale a condição ε e δ então temos que para toda sequência $x_n \in A$ convergindo para x_0 vale $f(x_n) \to L$. De fato, dado $\varepsilon > 0$ existe $\delta > 0$ tal que $d(f(x), L) < \varepsilon$ quando $x \in A$ e $d(x, x_0) < \delta$. Existe n_0 tal que $x_n \in B_X(x_0, \delta)$ para $n \ge n_0$. Assim, $d_Y(f(x_n), L) < \varepsilon$ para $n \ge n_0$. Logo, $f(x_n) \to L$.

1.5 Continuidade

Definição 1.78. Sejam X, Y espaços métricos. Uma função $f: X \to Y$ é contínua em x se dada uma vizinhança U de f(x), existe uma vizinhança V de x tal que $f(U) \subset V$.

Se f é contínua em todo $x \in X$, dizemos que f é contínua.

Note que continuidade é algo que é puramente topológico, não depende de métrica ou de ε e δ .

Exercício 1.79. Mostre que se $f: X \to Y$ é constante, então f é contínua.

Exercício 1.80. Mostre que a função identidade é contínua.

Proposição 1.81. Sejam X e Y espaços métricos. A função $f: X \to Y$ é contínua em X se, e só se, dado $\varepsilon > 0$, existe $\delta > 0$ tal que

$$f(B_X(x,\delta)) \subset B_Y(f(x),\varepsilon),$$

isto é,

$$d_Y(f(x), f(y)) < \varepsilon$$
 quando $d_X(x, y) < \delta$.

Observação: As bolas no domínio são com respeito a X e as no contradomínio, com respeito a Y.

Demonstração. Se f é contínua em x, então para a vizinhança $B_Y(f(x), \varepsilon)$ de f(x) existe uma vizinhança V de x tal que $f(V) \subset B_Y(f(x), \varepsilon)$. Como $x \in V$ e V é aberto de X, existe uma bola $B_X(x, \delta) \subset V$. Portanto,

$$f(B_X(x,\delta)) \subset B_Y(f(x),\varepsilon).$$

Agora suporemos que dado $\varepsilon > 0$, existe $\delta > 0$ tal que $f(B_X(x,\delta)) \subset B_Y(f(x),\varepsilon)$ e mostraremos que f é contínua.

Dada uma vizinhança U de f(x), há ε tal que $B_Y(f(x),\varepsilon) \subset U$. Por hipótese, há $\delta > 0$ tal que $f(B_X(x,\delta)) \subset B_Y(f(x),\varepsilon)$. Tomando $V = B_X(x,\delta)$ temos $f(V) \subset B_Y(f(x),\varepsilon) \subset U$.

Observação 1.82. Repare que a proposição acima, quando aplicada a $X = Y = \mathbb{R}$, se torna a definição de continuidade via ε e δ do cálculo.

Exercício 1.83. Sejam X e Y espaços métricos. Uma função $f: X \to Y$ é Lipschitz se existe uma constante C > 0 tal que $d_Y(f(x_1), f(x_2)) \le Cd_X(x_1, x_2)$ para quaisquer $x_1, x_2 \in X$.

- Mostre que se f é Lipschitz, então f é contínua;
- Dê um exemplo de função contínua não-Lipschitz.

Proposição 1.84. Uma função $f: X \to Y$ é contínua em x se, e só se, para toda sequência x_n convergindo para x, temos $f(x_n) \to f(x)$.

Demonstração. Mostremos que se f é contínua em x e $x_n \to x$, então $f(x_n) \to f(x)$. Dada a vizinhança U de f(x), existe uma vizinhança V de x tal que $f(V) \subset U$. Como $x_n \to x$, existe n_0 tal que $x_n \in V$ para $n \ge n_0$. Portanto, $f(x_n) \in U$ para $n \ge n_0$.

Mostremos agora que se f mapeia sequências convergentes para x em sequências convergentes para f(x), então ela deve ser contínua. De fato, suponha que ela não seja contínua. Existe um $\varepsilon > 0$ tal que para todo $\delta > 0$ temos que $f(B_X(x,\delta)) \not\subset B_Y(f(x),\varepsilon)$. Em particular, para cada n, existe $x_n \in B_X\left(x,\frac{1}{n}\right)$ tal que $f(x_n) \not\in B_Y(f(x),\varepsilon)$. Temos que $x_n \to x$ porque $d_X(x_n,x) < \frac{1}{n}$ e $f(x_n) \not\to f(x)$ porque $d_Y(f(x_n),f(x)) \ge \varepsilon$, uma contradição.

Exercício 1.85.

- Seja X espaço métrico. Considere $f: X \to \mathbb{R}$ e $g: X \to \mathbb{R}$ contínuas em x. Mostre que f+g e fg são contínuas em x. Supondo que g não se anula em x, mostre que f/g é contínua em x.
- Mostre que $\pi_i : \mathbb{R}^d \to \mathbb{R}$, dada por $\pi_i(x^1, \dots, x^d) = x^i$, é contínua (π_i manda x em sua i-ésima coordenada x^i).

• Mostre que toda função polinomial $p: \mathbb{R}^d \to \mathbb{R}$ é contínua. Por polinomial queremos dizer que p é da forma

$$p(x) = \sum_{i_1=0}^{n_1} \cdots \sum_{i_d=0}^{n_d} a_{i_1 \cdots i_d} (x^1)^{i_1} \cdots (x^d)^{i_d}.$$

• Mostre que determinante e traço são contínuas como funções de $M_d(\mathbb{R})$ em \mathbb{R} , onde $M_d(\mathbb{R})$ é o espaço de matrizes quadradas $d \times d$ reais, que pode ser identificado com \mathbb{R}^{d^2} .

Proposição 1.86. Mostre que se $f: X \to Y$ e $g: Y \to Z$ são contínua em x e f(x), então $g \circ f: X \to Z$ é contínua em x.

Demonstração. Tome $x_n \to x$. Temos $f(x_n) \to f(x)$ e, consequentemente, $g(f(x_n)) \to g(f(x))$.

Logo, composta de funções contínuas é contínua.

Exemplo 1.87. Considere a função $f: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$ dada por $f(x^1, x^2) = \frac{\sin(x^1 + x^2)}{\sqrt{(x^1)^2 + (x^2)^2}}$. Essa função é contínua, pois pode ser construída compondo funções contínuas. As funções abaixo são contínuas porque são compostas de funções contínuas:

$$(x^1, x^2) \mapsto x^1 + x^2 \mapsto \sin(x^1 + x^2),$$

 $(x^1, x^2) \mapsto (x^1)^2 + (x^2)^2 \mapsto \sqrt{(x^1)^2 + (x^2)^2}.$

Note que

$$(x^1, x^2) \mapsto x^1 + x^2, \quad (x^1, x^2) \mapsto (x^1)^2 + (x^2)^2$$

são contínuas por serem polinomiais e

$$y \mapsto \sin(y), \quad y \mapsto \sqrt{y}$$

são funções contínuas de uma variável real a valores reais.

Dividindo

$$(x^1, x^2) \mapsto \sin\left(x^1 + x^2\right)$$

por

$$(x^1, x^2) \mapsto \sqrt{(x^1)^2 + (x^2)^2}$$

obtemos a função f.

Exercício 1.88. Seja X espaço métrico e Y um subconjunto.

- Mostre que o mapa de inclusão $i: Y \to X$, dado por i(y) = y, é contínuo.
- Se $f:X\to Z$ é uma função contínua entre dois espaços métricos e $Y\subset X$, então $f|_Y:Y\to Z$ é contínua.

• Se $f: X \to Z$ é uma função contínua entre dois espaços métricos e $f(X) \subset W$, então $f: X \to W$ é contínua.

Exemplo 1.89. Considere uma função contínua $f: X \to Y$. A função

$$\lambda: \{(x, f(x)) \in X \times Y : x \in X\} \to X,$$

dada por $(x, f(x)) \mapsto x$ é contínua, por ser restrição de uma função contínua.

Exercício 1.90. Considere os espaços métricos X, Y_1, Y_2, \cdots, Y_d . Mostre que:

- a projeção $\pi_i: Y_1 \times \cdots \times Y_d \to Y_i$, dada por $\pi_i(y) = y^i$, é contínua.
- uma função $f: X \to Y_1 \times \cdots \times Y_d$ dada por $f = (f_1, \cdots, f_d)$ é contínua se, e só se, cada f_i é contínua.

Exemplo 1.91. Considere o espaço M_d de matrizes quadradas $d \times d$. Temos que as operações básicas são contínuas. As funções Soma, Mult : $M_d \times M_d \to M_d$, dadas por Soma(A, B) = A + B e Mult(A, B) = AB, tem como entradas polinômios e, portanto, são contínuas. Por exemplo, AB tem entrada i, j igual a

$$\sum_{k} a_{ik} b_{kj},$$

que é polinomial nas entradas de A e B.

Se considerarmos o grupo multiplicativo $GL(d, \mathbb{R}) := \det^{-1}(\mathbb{R}_{\neq 0})$, que é aberto porque pré-imagem de aberto é aberto, então podemos definir a função

$$\operatorname{Inv}:\operatorname{GL}(d,\mathbb{R})\to\operatorname{GL}(d,\mathbb{R})$$

pela fórmula $Inv(A) = A^{-1}$.

Mostremos que a função Inv é contínua. Considere o polinômio característico de $A \in \mathrm{GL}(d,\mathbb{R})$. Temos

$$p(t) := \det(t - A) = t^d - c_{d-1}t^{d-1} + \dots + tc_1 + c_0,$$

onde $c_0 = (-1)^d \det(A)$ porque $p(0) = c_0$. Note que cada c_i é um polinômio nas entradas de A.

Pelo teorema de Cayley-Hamilton (veja Exercício 1.70), temos que

$$A^{d} + c_{d-1}A^{d-1} + \dots + Ac_1 + c_0 = 0,$$

ou seja,

$$A\left(A^{d-1} + c_{d-1}A^{d-2} + \dots + c_1\right) = -c_0,$$

$$A^{-1} = \frac{(-1)^{d+1}}{\det(A)} \left(A^{d-1} + c_{d-1}A^{d-2} + \dots + c_1\right),$$

cujas entradas são quocientes de polinômios nas entradas de A.

Exemplo 1.92. Considere a esfera \mathbb{S}^d e a matriz A com tamanho $(d+1) \times (d+1)$. Enxergaremos os vetores de \mathbb{R}^{d+1} como vetores coluna e o produto interno como $\langle x,y \rangle = y^T x$. Definimos o mapa $E: \mathbb{S}^d \to \mathbb{R}$ como sendo

$$E(x) = \langle Ax, x \rangle = x^T Ax.$$

Essa função é contínua porque é restrição de uma função polinomial $\langle Ax, x \rangle$, que está definida em \mathbb{R}^{d+1} , na esfera.

O conceito de aberto nos permite caracterizar quando a função é contínua em todos os pontos do seu domínio.

Proposição 1.93. Sejam X e Y espaços métricos. Uma função é contínua se, e só se, pré-imagem de aberto é aberto, isto é, $f^{-1}(U) \subset X$ quando $U \subset Y$.

Demonstração. Seja f contínua e mostremos que $f^{-1}(U) \subset X$ para $U \subset Y$. De fato, tome $x \in f^{-1}(U)$. Temos que $f(x) \in U$. Como f é contínua em x, existe uma vizinhança V_x de x tal que $f(V_x) \subset U$, ou seja, $V_x \subset f^{-1}(U)$. Como $f^{-1}(U) = \bigcup_{x \in f^{-1}U}(V_x)$, que é uma união de abertos de X, temos que $f^{-1}(U)$ é aberto.

Agora suponha que $f^{-1}(U) \subset X$ quando $U \subset Y$ e mostremos que f é contínua. Tome $x \in X$ e uma vizinhança U de f(x). Como $V := f^{-1}(U)$ é aberto e $x \in V$, temos que V é vizinhança de x, Além disso, $f(V) \subset U$. Portanto, f é contínua em x e como x é arbitrário, f é contínua.

Mostremos que composta de funções contínuas é contínua novamente.

Proposição 1.94. Se $f: X \to Y$ e $g: Y \to Z$ são contínuas, então $g \circ f$ é contínua.

Demonstração. Se $U \subset Z$, então $g^{-1}(U) \subset Y$ e, consequentemente, $f^{-1}(g^{-1}(U)) \subset X$. Como $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$ é aberto em X, temos que $g \circ f$ é contínua.

Proposição 1.95. Sejam X, Y espaços métricos. Temos que $f: X \to Y$ é contínua se, e só se, $f^{-1}(F)$ é fechado em X para todo fechado F em Y.

Demonstração. Basta usar a identidade de conjunto

$$f^{-1}(Y \setminus F) = X \setminus f^{-1}(F)$$

e que pré-imagem de aberto é aberto se, e só se, a função for contínua.

Exemplo 1.96. Seja $f: X \to \mathbb{R}$ contínua e a um número real. Temos que

$$\{x \in X : f(x) \ge a\}, \quad \{x \in X : f(x) \le a\} \quad e \quad f^{-1}(a)$$

são fechados, pois conjuntos $(-\infty, a]$, $[a, \infty)$ e $\{a\}$ são fechados em \mathbb{R} .

Exemplo 1.97. Seja (X, d) espaço métrico. Dado $a \in X$, a função $x \mapsto d(x, a)$ é contínua, porque

$$|d(x,a) - d(x',a)| \le d(x,x')$$

e assim a função é Lipschitz (verifique isso!). Portanto, a bola fechada

$$B[a,r] := \{x \in X : d(x,a) \le r\}$$

é fechada em X.

Exemplo 1.98. O grupo $SL(d, \mathbb{R})$ das matrizes $d \times d$ com determinante 1 é fechado em $GL(d, \mathbb{R})$ e em M_d porque $SL(d, \mathbb{R}) = \det^{-1}(1)$.

Exercício 1.99. Sejam (X, d_X) espaço métrico e A subconjunto X. Mostre que:

- $x \mapsto d_X(x,A) := \inf_{a \in A} d_X(x,a)$ é contínua;
- se A é fechado, então $f^{-1}(0) = A$;
- se A_1, A_2 são fechados disjuntos, então

$$\phi(x) = \frac{d_X(x, A_2)}{d_X(x, A_1) + d_X(x, A_2)}$$

é uma função contínua que vale

$$\phi|_{A_1} = 0$$
, $\phi|_{A_2} = 1$, $0 < \phi(x) < 1$ para $x \in X \setminus (A_1 \cup A_2)$.

· os conjuntos

$$U_1 = \phi^{-1}\left(\left(-\infty, \frac{1}{2}\right)\right)$$
 e $U_2 = \phi^{-1}\left(\left(\frac{1}{2}, \infty\right)\right)$

são abertos disjuntos de X satisfazendo

$$A_1 \subset U_1$$
, $A_2 \subset U_2$ e $U_1 \cap U_2 = \emptyset$.

1.6 Homeomorfismos

Definição 1.100. Um homeomorfismo entre X e Y é uma bijeção $f: X \to Y$ contínua cuja inversa $f^{-1}: Y \to X$ é contínua. Se um homeomorfismo entre X e Y existe, então dizemos que X e Y são homeomorfos. Note que homeomorfismo define uma relação de equivalência.

Exemplo 1.101. A função identidade $\mathrm{Id}:X\to X$, com domínio e contra domínio com mesma topologia, é homeomorfismo.

Exemplo 1.102. Considere $f: \mathbb{R} \to (0,1)$ dada por $f(x) = \frac{e^x}{1+e^x}$ é homeomorfismo. De fato, computemos sua inversa e mostremos que essa é contínua.

Se y = f(x), então

$$e^{x}y + y = e^{x},$$

$$e^{x} = \frac{y}{1 - y},$$

$$x = \log\left(\frac{y}{1 - y}\right).$$

Portanto,

$$f^{-1}(y) = \log\left(\frac{y}{1-y}\right)$$

é continua.

Exercício 1.103. Mostre que todo intervalo (a, b) é homeomorfo a (0, 1) e que o intervalo [0, 1) é homeomorfo a (0, 1].

Exemplo 1.104. Considere o grupo das matrizes $d \times d$ invertíveis $GL(d, \mathbb{R})$. Considere

$$Z = \{(A, t) \in M_d \times \mathbb{R} \times \mathbb{R} : \det(A)t = 1\}.$$

Temos o mapa $f: \mathrm{GL}(d,\mathbb{R}) \to Z$ dado por

$$f(A) = \left(A, \frac{1}{\det(A)}\right),$$

que é contínuo. Sua inversa é $f^{-1}(A,t)=A$, que é contínua também.

Logo, f é um homeomorfismo entre $GL(d, \mathbb{R})$ e Z.

Figura 1.7: Projeção estereográfica.

Exemplo 1.105. Projeção estereográfica. Considere $\mathbb{S}^d \subset \mathbb{R}^{d+1}$ e seja N o polo norte da esfera, i.e., $N = (0, 0, \dots, 0, 1)$. A projeção estereográfica

$$f:\mathbb{S}^d\setminus\{N\}\to\mathbb{R}^d$$

é dada por

$$f(x^1, x^2, \dots, x^d, x^{d+1}) = \left(\frac{x^1}{1 - x^{d+1}}, \frac{x^2}{1 - x^{d+1}}, \dots, \frac{x^d}{1 - x^{d+1}}\right),$$

que é contínua e tem inversa contínua

$$f^{-1}: \mathbb{R}^d \to \mathbb{S}^d \setminus \{N\}$$

dada por

$$f^{-1}(y^1, y^2, \dots, y^d) = \left(\frac{2y^1}{1 + \sum_{i=1}^d (y^i)^2}, \frac{2y^2}{1 + \sum_{i=1}^d (y^i)^2}, \dots, \frac{2y^d}{1 + \sum_{i=1}^d (y^i)^2}, \frac{-1 + \sum_{i=1}^d (y^i)^2}{1 + \sum_{i=1}^d (y^i)^2}\right).$$

Logo, $\mathbb{S}^d \setminus \{N\}$ é homeomorfo a \mathbb{R}^d .

Observação 1.106. Se considerarmos o símbolo ∞ e adiciona-lo a \mathbb{R}^d , obtemos o conjunto $\mathbb{R}^d \cup \{\infty\}$. Considere a função $f: \mathbb{S}^d \to \mathbb{R}^d \cup \{\infty\}$ que mapeia pontos $x \neq N$ para um ponto de \mathbb{R}^d pela projeção estereográfica e $N \mapsto \infty$.

Podemos definir uma topologia em $\mathbb{R}^d \cup \{\infty\}$ a partir de \mathbb{S}^d . Dizemos que $U \subset \mathbb{R}^d \cup \{\infty\}$ se $f^{-1}(U)$ é aberto na esfera. Isso define uma topologia em $\mathbb{R}^d \cup \{\infty\}$ de modo que \mathbb{S}^d e $\mathbb{R}^d \cup \{\infty\}$ são homeomorfos. Uma vizinhança de ∞ é um subconjunto U de $\mathbb{R}^d \cup \{\infty\}$ contendo ∞ tal que $U \setminus \{\infty\}$ é aberto de \mathbb{R}^d e existe R > 0 tal que

$$\{x \in \mathbb{R}^d : |x| > R\} \subset U.$$

Chamamos procedimentos como o descrito de compactificação.

No plano complexo \mathbb{C} , ao adicionar o ∞ , obtemos $\mathbb{C} \cup \{\infty\}$, que é uma esfera a menos de homeomorfismo. Quando se estuda funções da forma $f(z) = \frac{az+b}{cz+d}$, com $ad-bc \neq 0$, podemos estender f para uma função contínua de $\mathbb{C} \cup \{\infty\}$ em $\mathbb{C} \cup \{\infty\}$. Se faz isso da seguinte forma. Se c = 0 definimos

$$f(\infty) := \lim_{z \to \infty} \frac{az + b}{d} = \infty$$

e se $c \neq 0$ definimos

$$f(-d/c) := \lim_{z \to -d/c} \frac{az+b}{cz+d} = \infty,$$

$$f(\infty) := \lim_{z \to \infty} \frac{az+b}{cz+d} = \lim_{z \to \infty} \frac{a+\frac{b}{z}}{c+\frac{d}{z}} = \frac{a}{c}.$$

Além disso, essa função da esfera na esfera é homeomorfismo, porque é contínua (argumente via sequências) e tem inversa

$$f^{-1}(w) = \frac{dw - b}{-cw + a}.$$

Funções racionais como a descrita são chamadas de funções de Möbius. Por exemplo, se temos $f(z) = \frac{z}{3z-2}$, podemos definir $f(2/3) = \infty$ e $f(\infty) = 1/3$, assim obtendo uma função contínua da esfera na esfera.

Note que se temos

$$w = \frac{z}{3z - 2},$$

então

$$3zw - 2w = z,$$
$$z = \frac{2w}{3w - 1}.$$

Logo, a inversa de f é dada por

$$f^{-1}(w) = \frac{2w}{3w - 1}.$$

Funções de Möbius são importantes porque preservam ângulo e orientação (mas não preservam distâncias).

Outros exemplos de homeomorfismos, que não provaremos aqui, são:

Exemplo 1.107. O toro, que em \mathbb{R}^3 pode ser dado por

$$(\sqrt{x^2 + y^2} - R)^2 + z^2 = r^2,$$

com 0 < r < R, é homeomorfo a $\mathbb{S}^1 \times \mathbb{S}^1$.

Exemplo 1.108. O cubo $Q = [-1,1]^d \setminus (-1,1)^d$ é homeomorfo a esfera \mathbb{S}^d .

Definição 1.109. Uma propriedade é invariante topológico, se for invariante por homeomorfismo.

A seguir estudaremos nosso primeiro invariante topológico, a conexidade.

1.7 Conexidade

Definição 1.110. Um espaço métrico X é desconexo se existem U_1 e U_2 abertos em X e não vazios tais que

$$U_1 \cap U_2 = \emptyset$$
 e $X = U_1 \cup U_2$.

Se X não é desconexo, então dizemos que X é conexo.

Repare que como $X \setminus U_1 = U_2$ e $X \setminus U_2 = U_1$, tanto U_1 quanto U_2 são fechados. Assim, poderíamos definir X como desconexo se esse pode ser escrito como a união de dois fechados não triviais disjuntos.

Um ponto $\{x\}$ é conexo, pois os únicos abertos no espaço $\{x\}$ são \emptyset e $\{x\}$. Já um espaço formado por dois pontos $\{x,y\}$ com a topologia discreta é desconexo porque $\{x,y\}$ = $\{x\} \cup \{y\}$ é união de dois abertos (ou fechados) não triviais e disjuntos.

Proposição 1.111. Se X é desconexo, então há uma função contínua tal que cor : $X \to \{1,2\}$ sobrejetora, onde o contra-domínio $\{1,2\}$ tem a topologia induzida de \mathbb{R} , que é discreta. Reciprocamente, se tal função existe, X é desconexo.

Demonstração. Se X é desconexo, então temos abertos não triviais U_1, U_2 em X disjuntos tais que $X = U_1 \cup U_2$. Defina cor(x) = 1 se $x \in U_1$ e cor(x) = 2 se $x \in U_2$. Como pré-imagem de aberto é aberto, temos que f é contínua. De fato,

$$\operatorname{cor}^{-1}(\{1\}) = U_1, \quad \operatorname{cor}^{-1}(\{2\}) = U_2, \quad \operatorname{cor}^{-1}(\emptyset) = \emptyset, \quad \operatorname{cor}^{-1}(\{1,2\}) = X.$$

Por outro lado, se tal função existe, então temos os abertos disjuntos e não vazios

$$U_1 := \operatorname{cor}^{-1}(\{1\})$$
 e $U_2 := \operatorname{cor}^{-1}(\{2\})$

tais que $X = U_1 \cup U_2$.

A ideia da função cor é a seguinte, se X é desconexo, então conseguimos separá-lo com duas cores, aqui denotadas por 1 e 2, de modo contínuo.

Os conjuntos conexos de \mathbb{R} são os intervalos.

Observação 1.112. Um subconjunto I de \mathbb{R} é dito ser intervalo se para cada $a, b \in I$ com a < b temos que $[a, b] \subset I$.

Exercício 1.113. Mostre que um intervalo é de um dos seguintes tipos:

$$\mathbb{R}$$
, $(-\infty,b)$, $(-\infty,b]$, (a,b) , (a,b) , $[a,b)$, $[a,\infty)$, (a,∞) .

Proposição 1.114. Um subconjunto $I \subset \mathbb{R}$ é conexo se, e só se, for I é intervalo.

Demonstração. Considere I conexo. Mostremos que I é um intervalo. Suponha que esse não é o caso. Existem $a, b \in I$ com $[a, b] \not\subset I$. Assim, há $c \not\in I$ tal que a < c < b. Logo,

$$I = (I \cap (-\infty, c)) \cup (I \cap (c, \infty)),$$

ou seja, I é a união de dois abertos de I disjuntos e não triviais (observe que esses abertos são abertos de I, mas não necessariamente de \mathbb{R}). Logo, concluímos que I é desconexo, uma contradição.

Agora mostremos que se I é intervalo, então é conexo. Suponha que I é desconexo. Pela Proposição 1.111, existe $\operatorname{cor}: I \to \{1,2\}$ sobrejetora e contínua. Tome $a,b \in I$ tal que $\operatorname{cor}(a) = 1$ e $\operatorname{cor}(b) = 2$. A menos de trocar a e b de símbolos, podemos supor que a < b. Pelo teorema do valor intermediário aplicado a função $\operatorname{cor}|_{[a,b]}: [a,b] \to \{1,2\}$, existe c em (a,b) tal que $\operatorname{cor}(c) = 1.5$, uma contradição, pois a imagem de cor é $\{1,2\}$.

Agora provemos que imagem de conexo é conexo.

Proposição 1.115. Se $f: X \to Y$ é contínua e X conexo, então f(X) é conexo.

Demonstração. Suponha que f(X) é desconexo. Há uma função contínua sobrejetora cor : $f(X) \to \{1,2\}$ pela Proposição 1.111. Assim, temos a função contínua e sobrejetora cor \circ f de X em $\{1,2\}$. Provando que X é desconexo. Contradizendo a hipótese do teorema.

Uma consequência imediata desse fato é que para funções contínuas de \mathbb{R} em \mathbb{R} , imagem de intervalo é sempre intervalo.

Observação 1.116. Conexidade é invariante topológico por causa da proposição acima. Se X e Y são homeomorfos e X é conexo, então Y é conexo também.

Podemos usar isso para provar a inexistência de homeomorfismos. Por exemplo, mostremos que \mathbb{R} não é homeomorfo a \mathbb{S}^1 . Suponha, por absurdo, que eles são: existe um homeomorfismo $f: \mathbb{S}^1 \to \mathbb{R}$. Removendo N = (0,1) do domínio e f(N) do contra-domínio, obtemos o homeomorfismo $\mathbb{S}^1 \setminus \{N\} \to \mathbb{R} \setminus \{f(N)\}$. Note que temos os homeomorfismos

$$\mathbb{S}^1 \setminus \{N\} \simeq \mathbb{R} \quad \text{e} \quad \mathbb{R} \setminus \{f(N)\} \simeq (-\infty, 0) \cup (0, \infty),$$

mas o primeiro é conexo e o segundo não é. Assim, temos uma contradição.

Exercício 1.117. Mostre que a figura

não é homeomorfa a \mathbb{S}^1 . Mostre que a primeira figura não é homeomorfa a

Definição 1.118. Uma curva contínua em X é uma função contínua $\gamma:[0,1]\to X$.

Proposição 1.119. Se $\gamma_1:[0,1]\to X$ e $\gamma_2:[0,1]$ são curvas contínuas com $\gamma_1(1)=\gamma_2(0)$, então $\gamma_3:[0,1]\to X$ dada por

$$\gamma_3(t) = \begin{cases} \gamma_1(2t) & \text{se } 0 \le t \le 0.5 \\ \gamma_2(2t-1) & \text{se } 0.5 \le t \le 1 \end{cases}$$

é uma curva contínua com $\gamma_3(0) = \gamma_1(0)$ e $\gamma_3(1) = \gamma_2(1)$.

Demonstração. É claro que γ_3 é contínua para $[0,0.5)\cup(0.5,1]$. Provemos sua continuidade em t=0.5. Dada uma vizinhança V de $\gamma_1(1)=\gamma_2(0)$, existe $\delta>0$ (que podemos tomar menor que 0.5) tal que

$$\gamma_1(2t) \in V \text{ para } t \in (0.5 - \delta, 0.5],$$

$$\gamma_2(2t-1) \in V \text{ para } t \in [0.5, 0.5 + \delta),$$

pois tanto $\gamma_1(2t)$ quanto $\gamma_2(2t-1)$ são contínuas em t=0.5. Assim, temos que

$$\gamma_3((0.5-\delta,0.5+\delta)) \subset V.$$

Logo, γ_3 é contínua em t=0.5.

Em outras palavras, dadas duas curvas γ_1 e γ_2 tais que o final de γ_1 é o início de γ_2 , podemos junta-las em uma nova curva γ_3 . É comum denotar essa concatenação de curvas γ_3 por $\gamma_1\gamma_2$.

Definição 1.120. O espaço X é conexo por caminhos se para quaisquer dois pontos x e y de X existe uma curva conectando um ao outro, i.e., existe $\gamma:[0,1]\to X$ tal que $\gamma(0)=x$ e $\gamma(1)=y$.

Note que se γ é um caminho que vai de x a y então $t\mapsto \gamma(1-t)$ é um caminho que vai de y a x.

Exercício 1.121. Mostre que $I \subset \mathbb{R}$ é conexo se, e só se, for conexo por caminhos.

Conexidade por caminhos é outro invariante topológico e costuma a ser relacionado a conexidade. Sempre se tem que conexidade por caminhos implica em conexidade, mas a recíproca não é verdadeira (exemplo desse fato pode ser encontrado em livros de topologia geral). No entanto, para uma classe grande de casos, conexidade por caminhos é equivalente a conexidade. Mais precisamente, se um espaço é conexo e todo ponto tem uma vizinhança conexa por caminhos, então tal espaço é conexo por caminhos, como veremos adiante.

A vantagem da conexidade por caminhos está na facilidade de verificar sua validade.

O espaço \mathbb{R}^d é conexo por caminhos porque dois pontos podem ser ligados por um segmento de reta. A esfera \mathbb{S}^d também é conexa por caminhos.

A fim de ver isso, mostremos primeiro que se removermos um ponto z de \mathbb{S}^d obtemos que

$$\mathbb{S}^d \setminus \{z\} \simeq \mathbb{S}^d \setminus \{(0,\ldots,0,1)\}.$$

De fato, fixe uma base ortonormal v_1, v_2, \ldots, v_d com $v_d = z$. A isometria que leva e_i em v_i leva a esfera $\mathbb{S}^d \setminus \{z\}$ em $\mathbb{S}^d \setminus \{(0, \ldots, 0, 1)\}$. Como esse mapa é a restrição de um isomorfismo linear, se trata de um homeomorfismo.

Agora mostremos que \mathbb{S}^d é conexo por caminhos. Dado dois pontos $x,y\in\mathbb{S}^d$, tomamos um ponto $z\in\mathbb{S}^d$ diferente de x,y. Repare que $\mathbb{S}^d\setminus\{z\}$ é homeomorfo a \mathbb{R}^d porque

$$\mathbb{S}^d \setminus \{z\} \simeq \mathbb{S}^d \setminus \{(0,\ldots,0,1)\} \simeq \mathbb{R}^d.$$

Como esse é conexo por caminho, podemos ligar x a y em $\mathbb{S}^d \setminus \{z\}$ e assim estamos conectando x a y por um caminho em \mathbb{S}^d .

Exercício 1.122. Mostre que se $f: X \to Y$ é contínua e X é conexo por caminho, então f(X) é conexo por caminhos. Em particular, se f for homeomorfismo, então Y tem de ser conexo por caminhos (e assim conexidade por caminhos é invariante topológico).

Proposição 1.123. Mostre que se X é conexo por caminhos, então X é conexo.

Demonstração. Suponha que X é desconexo. Existe $\operatorname{col}: X \to \{1,2\}$ contínua e sobrejetora. Tome $x,y \in X$ tal que $\operatorname{col}(x) = 1$ e $\operatorname{col}(y) = 2$. Seja $\gamma: [0,1] \to X$ uma curva ligando x a y. Temos que $\operatorname{col} \circ \gamma$ é um mapa contínuo e sobrejetor de [0,1] em $\{1,2\}$, contradizendo que [0,1] é conexo.

Um espaço é localmente conexo por caminhos se todo ponto tem uma vizinhança conexa por caminhos. Todo aberto U de \mathbb{R}^d é localmente conexo por caminhos porque bolas em \mathbb{R}^d são conexas por caminhos e dado $x \in U$ existe r > 0 tal que $B(x, r) \subset U$.

Verifiquemos que bolas de \mathbb{R}^n são conexas por caminho para qualquer norma. Mais que isso, são convexas, i.e., dois pontos podem ser ligados por um segmento de reta. Seja \boldsymbol{p} uma norma em \mathbb{R}^d e considere a bola

$$\{z \in \mathbb{R}^d : \mathbf{p}(x-z) < r\}$$

de raio r centrada em z. Tome x_1, x_2 nessa bola. Temos que o caminho $\gamma : [0, 1] \to X$ dado por $\gamma(t) = (1 - t)x + ty$ está inteiramente contido em tal bola. De fato,

$$p(\gamma(t)) \le (1-t)p(x) + tp(t) < (1-t)r + tr = r.$$

Proposição 1.124. Mostre que um aberto U em \mathbb{R}^d é conexo por caminhos quando for conexo.

Demonstração. Suponha que U não é conexo por caminhos. Fixe um ponto $x_0 \in U$. Considere

$$V_1 := \{x \in U : \text{existe um caminho conectando } x_0 \text{ a } x\}$$

Seja $V_2 := X \setminus U_1$.

Se $x \in V_1$, então existe uma bola aberta B_x centrada em x contida em U, porque U é aberto. Como a bola é conexa por caminhos, todo ponto de B pode ser conectado a x, que por sua vez pode ser conectado a x_0 . Desta forma, $B_x \subset V_1$. Assim, V_1 é aberto, porque

$$V_1 = \bigcup_{x \in U_1} B_x,$$

e não vazio, porque $x_0 \in U_1$.

Por outro lado, V_2 é aberto também. Se $x \in V_2$, então não podemos conectar x a x_0 . Mas existe uma bola B_x centrada em x e contida em U. Todo ponto de B_x está conectado a x, que não pode ser conectado a x_0 . Assim, nenhum ponto da bola B_x pode ser conectado a x_0 . Portanto, $B_x \subset V_2$. Logo, V_2 é aberto e não vazio (pois estamos supondo que U não é conexo por caminhos). Portanto, $U = V_1 \cup V_2$, com V_1, V_2 abertos em U, disjuntos e não triviais. Logo, U é desconexo, uma contradição.

Pelo mesmo argumento, temos que, em \mathbb{R}^d , um aberto é conexo se, e só se, dois pontos podem ser conectados por um caminho poligonal, i.e., uma curva feita de segmentos de reta concatenados.

Exemplo 1.125. Uma álgebra real é um espaço vetorial real A munido de multiplicação satisfazendo:

- $(\alpha x)y = x(\alpha y) = \alpha(xy)$ para $\alpha \in \mathbb{R}, x, y \in A$;
- x(y+z) = xy + xz e (y+z)x = yx + zx para $x, y, z \in A$;

Dizemos que a álgebra A é unital se ela tem unidade: existe e tal que ex = xe = x para $x \in A$.

E uma álgebra unital A é de divisão se dados $a \neq 0$ e b em V, existem $x, x' \in V$ tais que ax = b e x'a = b, ou seja, se é uma álgebra onde é possível resolver equações.

Exemplos de álgebras são vários. O produto vetorial em \mathbb{R}^3 é um exemplo de álgebra, mas ela não é unital. O espaço C(X) de funções contínuas de X em \mathbb{R} é uma álgebra unital assim como o espaço de matrizes quadradas M_d .

Nenhuma dessas álgebras é de divisão. Exemplos de álgebras de divisão são \mathbb{R} e \mathbb{C} . Note que $\dim_{\mathbb{R}} \mathbb{R} = 1$ e $\dim_{\mathbb{R}} \mathbb{C} = 2$. Além dessas, existem somente outras duas de dimensão finita, a dos quaternions e a dos octonions, que tem dimensão 4 e 8.

Mostraremos que espaços tridimensionais não podem ter estrutura de álgebra de divisão. Suponha que \mathbb{R}^3 tem estrutura de álgebra de divisão real. Para cada $a \in \mathbb{R}^3$, existe a função $f_a : \mathbb{R}^3 \to \mathbb{R}^3$ dada por $f_a(x) = ax$, que é linear. Note que $a \mapsto f_a$ é uma função de \mathbb{R}^3 no espaço Lin(\mathbb{R}^3 , \mathbb{R}^3), das transformações lineares de \mathbb{R}^3 em \mathbb{R}^3 (que pode ser identificado com M_3). Além disso, essa função é contínua.

De fato, na base canônica e_1, e_2, e_3 há constantes $c_{ij}^k \in \mathbb{R}$ tais que

$$e_i e_j = \sum_{1 \le i,j,k \le 3} c_{ij}^k e_k.$$

e escrevendo $a = \sum_i a^i e_i$ e $x = \sum_j x^j e_j$, temos $f_a(x) = \sum_{i,j,k} a^j x^i c_{ij}^k e_k$ e, consequentemente, identificamos f_a com a matriz

$$M(a) = \begin{bmatrix} \sum_{j} a^{j} c_{1j}^{1} & \sum_{j} a^{j} c_{2j}^{1} & \sum_{j} a^{j} c_{3j}^{1} \\ \sum_{j} a^{j} c_{1j}^{2} & \sum_{j} a^{j} c_{2j}^{2} & \sum_{j} a^{j} c_{3j}^{2} \\ \sum_{j} a^{j} c_{1j}^{3} & \sum_{j} a^{j} c_{2j}^{3} & \sum_{j} a^{j} c_{3j}^{3} \end{bmatrix}.$$

A aplicação $a \mapsto f_a$ de \mathbb{R}^3 em $\operatorname{Lin}(\mathbb{R}^3, \mathbb{R}^3)$ é contínua, pois M(a) é contínua. Repare que para $a \in \mathbb{R}^3 \setminus \{0\}$, temos que f_a é sobrejetora. De fato, dado y, existe x tal que ax = y. Assim, f_a é isomorfismo linear e consequentemente

$$\det(M(a)) \neq 0$$
 para $a \in \mathbb{R}^3 \setminus \{0\}.$

Seja e a unidade de \mathbb{R}^3 , temos que

$$f_e x = ex = x$$
 e $f_{-e} = (-e)x = -(ex) = -x$.

Assim, $f_e = \text{Id e } f_{-e} = -\text{Id e}$, consequentemente,

$$M(e) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{e} \quad M(-e) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

Agora note que $\mathbb{R}^3 \setminus \{0\}$ é conexo por caminhos. Existe uma curva contínua $\gamma : [0,1] \to \mathbb{R}^3 \setminus \{0\}$ tal que $\gamma(0) = \text{Id}$ e $\gamma(1) = -\text{Id}$. Como a função $a \mapsto \det(M(a))$ é contínua, temos que $t \mapsto \det M(\gamma(t))$ é função contínua.

Logo, temos uma curva contínua em \mathbb{R} ligando det M(e) = 1 a det M(-e) = -1, ou seja, há $t' \in [0,1]$ tal que det $M(\gamma(t')) = 0$, contradizendo que $\gamma(t') \in \mathbb{R}^3 \setminus \{0\}$. Portanto, \mathbb{R}^3 não pode admitir estrutura de álgebra de divisão real.

Antes de terminar essa secção gostaria de adicionar que muitas vezes se usa a expressão "componente conexa". Se X é espaço métrico, então podemos definir uma relação entre pontos que é $x \sim y$ se existe $C \subset X$ conexo tal que $x,y \in C$. Essa relação é de equivalência e assim temos que X é união disjunta de suas classes de equivalência. Cada classe de equivalência é conexa. Assim, quebramos X como união de conjuntos conexos.

Similarmente, podemos quebrar X é componentes conexas por caminho.

Exercício 1.126. Verifique que a relação descrita acima é de equivalência.

Dica: Use que C é conexo se não existe uma função cor : $C \to \{1, 2\}$ sobrejetora e contínua. Além disso, mostre que as classes laterais são conexas.

Exercício 1.127. Se X é localmente conexo (como é todo aberto de \mathbb{R}^d), então as componentes conexas são abertas.

Exercício 1.128. Mostre que um aberto de \mathbb{R}^d só pode ter uma quantidade enumerável de componentes.

1.8 Compacidade

Definição 1.129. Um espaço métrico X é compacto se toda sequência x_n em X admite subsequência x_{n_k} convergente.

Observação 1.130. Em topologia geral, um espaço no qual toda sequência admite uma subsequência convergente é dito ser sequencialmente compacto. Um espaço é compacto em topologia geral se toda cobertura de X por abertos admite uma subcobertura finita. Como veremos posteriormente na Proposição 1.145, em espaços métricos, compacidade e compacidade sequencial são conceitos equivalentes.

Exemplo 1.131. Todo intervalo fechado e limitado [a, b] é compacto. De fato, se x_n é sequência em [a, b], ela admite subsequência convergente x_{n_k} por ser limitada (veja Teorema 1.11). Seja x o limite de x_{n_k} . O ponto x pertence a [a, b] porque esse é fechado (um subconjunto A de um espaço métrico X é fechado se, e só se, toda sequência de A convergente em X converge em A, isto é, o limite da sequência pertence a A).

Proposição 1.132. Se X_1 e X_2 são espaços métricos compactos, então $X_1 \times X_2$ é compacto.

Demonstração. Se $x_n = (x_n^1, x_n^2)$ é uma sequência de $X_1 \times X_2$, então temos que x_n^1 tem subsequência convergente $x_{n_k}^1$ em X_1 . A sequência $x_{n_k}^2$ em X_2 , que é a sequência na segunda entrada com os índices de $n_1 < n_2 < \cdots$, tem uma subsequência convergente x_{m_j} . Note que os índices $m_1 < m_2 < m_3 < \cdots$ são tomados entre $n_1 < n_2 < n_3 < \cdots$. Assim, $x_{m_j} = (x_{m_j}^1, x_{m_j}^2)$ converge em $X_1 \times X_2$.

Por indução, temos que se X_1, \ldots, X_k são compactos, então $X_1 \times \cdots \times X_k$ é compacto.

Exemplo 1.133. Uma caixa $[a_1, b_1] \times \cdots \times [a_d, b_d]$ em \mathbb{R}^d , com $a_i < b_i$, é compacta por ser produto de compactos.

Proposição 1.134. Um subconjunto $A \subset \mathbb{R}^d$ é compacto se, e só se, A é fechado e limitado (com respeito a norma canônica).

Demonstração. Suponha A compacto. Considere uma sequência convergente $x_n \in A$ com limite x em \mathbb{R}^d . Como A é compacto, existe uma subsequência que converge em A e seu limite tem de ser x. Logo, $x \in A$. Agora mostremos que A é limitado. Suponha, por absurdo, que A é ilimitado. Para cada n, existe $x_n \in A$ tal que $|x_n| > n$. Essa sequência não tem subsequência convergente, uma contradição. Logo, se A é compacto, então A é fechado e limitado em \mathbb{R}^d .

Reciprocamente, suponha que A é fechado e limitado. Existe uma caixa compacta $Q = [a_1, b_1] \times \cdots \times [a_d, b_d]$ contendo A. Se x_n é uma sequência de A, ela é sequência de Q e admite subsequência convergente em Q. Como A é fechado e os pontos da subsequência estão em A, o limite dessa subsequência pertence a A. Logo, A é compacto.

Exemplo 1.135. Como consequência, a esfera \mathbb{S}^d é compacta, porque é limitada e fechada. Ela é fechada porque a função $f(x) = \sum_{i=1}^{d+1} (x^i)^2 de \mathbb{R}^{d+1}$ em \mathbb{R} é contínua e, consequentemente, $\mathbb{S}^d = f^{-1}(1)$ é fechado por ser pré-imagem de um fechado por uma função contínua.

Exercício 1.136. Mostre que se X é compacto e $A \subset X$ é fechado, então A é compacto.

Proposição 1.137. Se $f: X \to Y$ é contínua e X é compacto, então f(X) é compacto.

Demonstração. Se y_n é uma sequência em f(X), então para cada n existe $x_n \in X$ tal que $y_n = f(x_n)$. Como X é compacto, x_n admite uma subsequência x_{n_k} que converge para $x \in X$. Logo, $y_{n_k} = f(x_{n_k})$ converge para f(x), ou seja, f(X) é compacto.

Em particular, se $f: X \to Y$ é sobrejetora e contínua, Y é compacto. Assim, compacidade é invariante por homeomorfismo. Por exemplo, \mathbb{R}^d não é compacto (porque não é limitado em \mathbb{R}^d com a norma usual). Assim, \mathbb{S}^d não pode ser homeomorfo a \mathbb{R}^d .

Proposição 1.138. Se $f: X \to \mathbb{R}$ é contínua e X é compacto, então f atinge máximo e mínimo.

Demonstração. Sabemos que f(X) é compacto. Assim f(X) é fechado e limitado em \mathbb{R} . Seja $M = \sup_{x \in X} f(x)$. Existe uma sequência x_n tal que $f(x_n) \to M$. Como f(X) é fechado, $M \in f(X)$. Logo, existe x tal que f(x) = M. O argumento para existência de mínimo é análogo.

Exemplo 1.139. Mostremos que normas em \mathbb{R}^d são Lipschitz equivalentes novamente. Seja p uma norma. Pela desigualdade de Cauchy-Schwartz 1.17, temos que

$$p(x) = p\left(\sum_{i=1}^{d} x^{i} e_{i}\right) \le \sum_{i=1}^{d} |x^{i}| p(e_{i}) \le \left(\sum_{i=1}^{d} p(e_{i})^{2}\right)^{\frac{1}{2}} |x|.$$

Assim, $p: \mathbb{R}^d \to \mathbb{R}$ é contínua. Sejam M>0 e m>0 máximo e mínimo de p na esfera \mathbb{S}^{d-1} . Daí segue que

$$m|x| \leq p(x) \leq M|x|$$

para $x \in \mathbb{R}^d$, pois para x = 0 a desigualdade acima é válida e para $x \neq 0$, temos

$$m \le \boldsymbol{p}\left(\frac{x}{|x|}\right) \le M$$

porque $\frac{x}{|x|} \in \mathbb{S}^{d-1}$.

Proposição 1.140 (Lema do número de Lebesgue). Seja X compacto. Considere uma cobertura $\{U_{\lambda}\}_{{\lambda}\in\Lambda}$ de X por abertos, isto é,

$$X = \bigcup_{\lambda \in \Lambda} U_{\lambda}.$$

Existe r > 0, chamado número de Lebesgue, com a seguinte propriedade: dado $x \in X$ existe $\lambda \in \Lambda$ tal que $B(x, r) \subset U_{\lambda}$.

Demonstração. Suponha que o resultado seja falso: dado r > 0, existe x para o qual $B(x,r) \not\subset U_{\lambda}$ para todo λ . Assim, dado $n \in \mathbb{Z}_{\geq 1}$ existe x_n tal que $B\left(x_n,\frac{1}{n}\right) \not\subset U_{\lambda}$ para todo λ . Como X é compacto, x_n admite uma subsequência convergente x_{n_k} . Seja x seu limite e U_{λ_0} um aberto da cobertura contendo x. Existe s > 0 tal que $B(x,s) \subset U_{\lambda_0}$. Temos que existe k_0 tal que $x_{n_k} \in B\left(x,\frac{s}{2}\right)$ e $\frac{1}{n_k} < \frac{s}{2}$ para $k \geq k_0$. Logo, para $y \in B(x_{n_{k_0}},\frac{1}{n_{k_0}})$ temos

$$d_X(x,y) \le d_X(x,x_{n_{k_0}}) + d_X(x_{n_{k_0}},y) < \frac{s}{2} + \frac{s}{2} = s.$$

Portanto,

$$B(x_{n_{k_0}}, \frac{1}{n_{k_0}}) \subset B(x, s) \subset U_{\lambda_0},$$

uma contradição.

Corolário 1.141. Seja $f: X \to \mathbb{R}$ contínua com X compacto. A função f é uniformemente contínua, isto é, dado $\varepsilon > 0$ existe $\delta > 0$ tal que $|f(x_1) - f(x_2)| < \varepsilon$ para $x_1, x_2 \in X$ satisfazendo $d_X(x_1, x_2) < \delta$.

Demonstração. Dado x considere o aberto $U_x = f^{-1}\left(B\left(f(x), \frac{\varepsilon}{2}\right)\right)$. Temos que $X = \bigcup_x U_x$. Assim, pela Proposição 1.140, existe $\delta > 0$ tal que $B(x, \delta)$ está contido em algum $U_{x'}$. Tome x_1, x_2 tal que $d_X(x_1, x_2) < \delta$. Existe $U_{x'}$ tal que $B(x_1, \delta) \subset U_{x'}$. Logo,

$$|f(x_1) - f(x_2)| \le |f(x_1) - f(x')| + |f(x') - f(x_2)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

porque $x_1, x_2 \in B(x_1, \delta) \subset U_{x'}$.

Exemplo 1.142. Seja $f: X \times [a,b] \to \mathbb{R}$ contínua. A função $g(x) = \int_a^b f(x,t) dt$ é contínua. De fato, dado $\varepsilon > 0$, existe δ tal que $|f(x,t) - f(x',t')| < \varepsilon$ quando $d_X(x,x') < \delta$ e $|t-t| < \delta$. Assim, $|g(x) - g(x')| \le \int_a^b |f(x,t) - f(x',t)| dt \le \varepsilon (b-a)$.

Exercício 1.143. Seja $f: \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}$ contínua. Suponha que existe $\phi: \mathbb{R} \to \mathbb{R}_{\geq 0}$ contínua tal que para cada $x \in \mathbb{R}^d$ temos $|f(x,t)| \leq \phi(t)$ para $t \in \mathbb{R}$. Além disso, suponha que $\int_{-\infty}^{\infty} \phi(t) dt$ é finita. Mostre que $g(x) = \int_{-\infty}^{\infty} f(x,t) dt$ está bem definida e é contínua.

Lema 1.144. Se X é compacto e r > 0, então X pode ser coberto por finitas bolas de raio r.

Demonstração. Suponha que não. Tome $x_1 \in X$. Tome $x_2 \in X \setminus B(x_1, r)$, que existe porque X não pode ser coberto por uma bola. Similarmente, existe $x_3 \in X \setminus (B(x_1, r) \cup B(x_2, r))$. Indutivamente, existem x_1, \ldots, x_n, \ldots tais que x_k não pertence a $B(x_i, r)$ para i < k. Logo, para i < k, temos que $d(x_i, x_k) \ge r$. Portanto, x_n não admite uma subsequência convergente.

Proposição 1.145. O espaço X é compacto se, e só se, para cada cobertura $\{U_{\lambda}\}_{\Lambda}$ de X por abertos, isto é, $X = \bigcup_{\lambda \in \Lambda} U_{\lambda}$, existem $\lambda_1, \ldots, \lambda_k$ tais que $X = \bigcup_{i=1}^k U_{\lambda_i}$.

Demonstração. Se X é compacto, então toda cobertura admite uma subcobertura finita de abertos. De fato, basta combinar Lema 1.140 com Lema 1.144.

Reciprocamente, assuma que toda cobertura de X por abertos admite cobertura finita e mostremos que X é compacto. De fato, suponha que X não é compacto: há uma sequência x_n que não admite subsequencia convergente. Para cada $z \in X$ existe uma bola $B(z, r_z)$ tal que $\{n \in \mathbb{Z}_{\geq 1} : x_n \in B(z, r_z)\}$ é finito. Como $X = \bigcup_z B(z, r_z)$, há z_1, \ldots, z_k tal que $X = \bigcup_i B(z_i, r_{z_i})$ e assim

$$\{n \in \mathbb{Z}_{\geq 1} : x_n \in X\} \subset \bigcup_{i=1}^k \{n \in \mathbb{Z}_{\geq 1} : x_n \in B(z_i, r_{z_i})\}$$

é finito, uma contradição.

1.9 Sequências de Cauchy

Definição 1.146. Uma sequência x_n em X é de Cauchy se para todo $\varepsilon > 0$ existe $N \in \mathbb{Z}_{\geq 1}$ tal que

$$d_X(x_n, x_m) < \varepsilon$$

para $n, m \geq N$.

Em outras palavras, x_n é de Cauchy se $\lim_{m,n\to\infty} d_X(x_n,x_m) = 0$.

Exemplo 1.147. É claro que toda sequência convergente é de Cauchy (verifique isso). Em \mathbb{R}^d a recíprova vale, toda sequência de Cauchy converge. De fato, se x_n de Cauchy, então existe N tal que $|x_n - x_N| < 1$ para $n \ge N$, ou seja, a sequência é limitada porque $x_n \in B(x_N, 1)$ exceto finitos pontos. Assim, x_n é uma sequência contída em uma caixa compacta suficientemente grande. Em particular, x_n tem uma subsequência x_{n_k} convergente. Denotemos seu limite por x. Dado $\epsilon > 0$, existe N' tal que

$$|x_n - x_{n_k}| < \varepsilon$$

para $n, n_k \geq N'$. Fazendo $k \to \infty$, temos $|x_n - x| \leq \varepsilon$ para $n \geq N'$. Portanto, $x_n \to x$. Logo, em \mathbb{R}^d , toda sequência de Cauchy converge.

Definição 1.148. Um espaço métrico (X, d_X) é completo se toda sequência de Cauchy converge.

Portanto, \mathbb{R}^d é completo.

Observação 1.149. Um espaço completo pode ser homeomorfo a um espaço não completo, ou seja, ser completo não é invariante topológico. Por exemplo, considere $X = \left\{\frac{1}{n} : n \in \mathbb{Z}_{\geq 1}\right\}$ e $Y = \mathbb{Z}_{\geq 1}$ com as métricas induzidas de \mathbb{R} . O espaço Y é completo porque toda sequência de Cauchy é eventualmente constante, isto é, se y_n é de Cauchy em Y, então existe N tal que $y_n = y_N$ para $n \geq N$. Por outro lado, X possui a sequência de Cauchy $x_n = \frac{1}{n}$ que não converge em X. Logo, X não é completo. Os espaços X e Y são homeomorfos pelo mapa $X \to Y$, $x \mapsto x^{-1}$.

Por outro lado, se dois espaços X e Y são bi-Lipschitz isomorfos, isto é, existe uma bijeção $f: X \to Y$ tal que f e f^{-1} são Lipschitz, então X é completo se, e só se, Y é completo. Em particular, métricas Lipschitz equivalentes induzem as mesmas sequências de Cauchy.

Exercício 1.150. Considere a matriz quadrada A. Mostre que a série $\sum_{k=0}^{\infty} \frac{A^k}{k!}$ converge. Denotamos essa série por $\exp(A)$.

Dica: utilize a norma

$$|A| := \sup_{|x|=1} |Ax|$$

e que $|AB| \leq |A||B|$.

Exemplo 1.151. Mostremos que exp : $M_d \to M_d$ é contínua.

Considere $\varepsilon > 0$. Tome $N \in \mathbb{Z}_{\geq 1}$ tal que

$$\sum_{k>N} \frac{(|A|+1)^k}{k!} < \frac{\varepsilon}{3}$$

Para uma matriz H tal que |H| < 1 temos

$$|\exp(A+H) - \exp(A)| \le \sum_{k=0}^{N} \frac{|(A+H)^k - A^k|}{k!} + \frac{2\varepsilon}{3}.$$

Tome $\delta \in (0,1)$ tal que para $|H| < \delta$ temos

$$\frac{|(A+H)^k - A^k|}{k!} \le \frac{\varepsilon}{3N} \quad \text{para} \quad k = 0, 1, \dots, N.$$

Assim, para $|H| < \delta$ temos

$$|\exp(A+H) - \exp(A)| < \varepsilon$$
,

ou seja, exp é contínua em A.

Exercício 1.152. Use que matrizes diagonalizáveis complexas são densas no espaço de matrizes quadradas complexas para demonstrar que

$$\exp(\operatorname{tr}(A)) = \det(\exp(A)).$$

Dica: Mostre que se $B = QAQ^{-1}$ para uma matriz invertível Q, então $\exp(\operatorname{tr}(B)) = \exp(\operatorname{tr}(A))$ e $\det(\exp(B)) = \det(\exp(A))$. Assim, podemos verificar que a fórmula acima vale para matrizes diagonais a fim de provar para matrizes diagonalizáveis. Provado para matrizes diagonais, utilize a densidade para concluir que a fórmula vale para qualquer matriz $A \in M_d(\mathbb{C})$, pois exp é contínua.

Observação 1.153. O Exercício 1.152 é bastante importante porque nos permite computar álgebras de Lie de vários grupos de Lie matriciais, por exemplo. Aparece também ao resolver problemas variacionais envolvendo volume.

Exemplo 1.154. Seja X espaço métrico e BC(X) o espaço das funções contínuas limitadas de X em \mathbb{R} , o símbolo BC significa "bounded continuous". Claramente, BC(X) é espaço vetorial e consideramos nesse espaço a norma

$$|f|_{\infty} = \sup_{x \in X} |f(x)|.$$

O espaço BC(X) é completo. Espaços vetoriais normados cuja métrica é completa são chamados de espaços de Banach. Assim BC(X) é espaço de Banach.

Além disso, se X é compacto, então C(X)=BC(X), isto é, toda função contínua é limitada.

Observação 1.155. De forma geral, C(X) é o espaço das funções contínuas de X em \mathbb{R} . As vezes se escreve $C(X,\mathbb{R})$ ou $C(X\to\mathbb{R})$. Mesmo quando X não é compacto C(X) possuí topologia natural e no caso em que X é aberto de \mathbb{R}^d , essa vem de uma métrica. No entanto, não adentrarei em tais tópicos aqui.

Proposição 1.156. O espaço BC(X) é completo.

Demonstração. Seja f_n sequência de Cauchy. Para cada $z \in X$ temos $|f_n(z) - f_m(z)| \le \sup_{x \in X} |f_n(x) - f_m(x)| \to 0$ quando $n, m \to \infty$. Logo, para cada z, a sequência $f_n(z)$ em \mathbb{R} é de Cauchy. Seja $f(z) = \lim_{n \to \infty} f_n(z)$.

Dado $\varepsilon > 0$, existe $N \in \mathbb{Z}_{\geq 1}$ tal que

$$|f_n(x) - f_m(x)| < \varepsilon \quad \forall x \in X$$

para $n, m \geq N$. Fazendo $m \to \infty$, temos

$$|f_n(x) - f(x)| < \varepsilon \quad \forall x \in X$$

para $n \geq N$. Em particular, f é limitada.

Portanto, $\sup_{x\in X}|f_n(x)-f(x)|\to 0$. Falta mostrar que f é contínua. Tome $z\in X$ e mostremos que f é contínua em z. Dado $\varepsilon>0$, existe $N\in\mathbb{Z}_{\geq 1}$ tal que

$$|f(x) - f_N(x)| < \frac{\varepsilon}{3} \quad x \in X.$$

Adicionalmente, como f_N é contínua, existe $\delta > 0$ tal que

$$|f_N(x) - f_N(z)| < \frac{\varepsilon}{3}$$

para $x \in B(z, \delta)$.

Logo, para $x \in B(z, \delta)$,

$$|f(x) - f(z)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(z)| + |f_N(z) - f(z)| < \varepsilon.$$

Portanto, f é contínua em z.

Exercício 1.157. Mostre que $BC(X, \mathbb{R}^d)$, o espaço das funções contínuas e limitadas de X em \mathbb{R}^d , é completo para a norma

$$|f|_{\infty} = \sup_{x \in X} |f(x)|.$$

Exercício 1.158 (Teorema do ponto fixo de Banach). Sejam X espaço métrico completo e $f: X \to X$ uma contração, isto é, existe $k \in [0,1)$ tal que $d_X(f(x_1), f(x_2)) \le k d_X(x_1, x_2)$.

• Mostre que $d_X(f^{i+1}(x), f^i(x)) \leq k^i d_X(f(x), x)$. Como consequência, para n < m temos

$$d_X(f^m(x), f^n(x)) \le \sum_{i=n}^{m-1} d_X(f^{i+1}(x), f^i(x)) \le \left(\sum_{i=n}^{m-1} k^i\right) d_X(f(x), x).$$

Conclua que para qualquer x a sequência $f^n(x)$ é de Cauchy.

• Como X é completo, existe z tal que $f_n(x) \to z$. Mostre que f(z) = z e que f só pode possuir um ponto fixo.

• Se $x, x' \in X$ são pontos distintos, então $\lim_n f^n(x) = \lim_n f^n(x')$.

Exemplo 1.159. Sejam $x_0 \in \mathbb{R}^d$ e f uma função definida em uma vizinhança de x_0 com valores em \mathbb{R}^d . Considere a equação diferencial $\dot{x} = f(x)$ com $x(0) = x_0$. Suponha que f é Lipschitz em uma vizinhança de x_0 . Existem r > 0 e L > 0 tal que $|f(x) - f(y)| \le L|x - y|$ para $x, y \in B[x_0, r]$, onde $B[x_0, r] := \{x \in \mathbb{R}^d : |x - x_0| \le r\}$ é a bola fechada centrada em x_0 de raio r.

Mostremos que existe uma solução x(t) para equação diferencial tal que $x(0) = x_0$. Considere o número δ a ser definido posteriormente. O subconjunto

$$X = \{x : [-\delta, \delta] \to \mathbb{R}^d : x(0) = x_0 \text{ e } x([-\delta, \delta]) \subset B[x_0, r]\}.$$

de $C([-\delta, \delta], \mathbb{R}^d)$ é fechado. Em particular, X é completo.

Considere o operador $\Lambda(x) = x_0 + \int_0^t f(x(s)) ds$ definido para funções $x \in X$. Queremos que $\Lambda(X) \subset X$ e Λ seja contração. Para isso, devemos tomar um δ conveniente. Note que para $x, y \in X$ e $0 \le t \le \delta$ temos

$$|\Lambda(x) - x_0| \le \int_0^t |f(x(s))| ds \le \max_{u \in [x_0 - r, x_0 + r]} |f(u)| \delta,$$

$$|\Lambda(x) - \Lambda(y)| \le \int_0^t |f(x(s)) - f(y(s))| ds \le 2Lr\delta.$$

Similarmente, para $x,y\in X$ e $-\delta \leq t \leq 0$ temos

$$|\Lambda(x) - x_0| \le \int_t^0 |f(x(s))| ds \le \max_{u \in [x_0 - r, x_0 + r]} |f(u)| \delta,$$

$$|\Lambda(x) - \Lambda(y)| \le \int_t^0 |f(x(s)) - f(y(s))| ds \le 2Lr\delta.$$

Tomando $\delta > 0$ tal que

$$\max_{u \in B[x_0, r]} |f(u)| \delta < r$$

 \mathbf{e}

$$2Lr\delta < 1$$

temos que Λ leva X em X e é uma contração. Pelo Teorema de ponto fixo de Banach, há $x \in X$ tal que

$$x(t) = x_0 + \int_0^t f(x(s))ds.$$

Consequentemente, $x(0) = x_0 e \dot{x} = f(x)$.

Agora mostremos a unicidade da solução: duas soluções tem de coincidir em uma vizinhança de 0. Se x, y são soluções da equação diferencial definidas numa vizinhança de t = 0, então para $\delta > 0$ suficientemente pequeno temos que x, y estão definidas em $[-\delta, \delta]$,

$$x(t), y(t) \in B[x_0, r] \quad \forall t \in [-\delta, \delta],$$

$$\max_{u \in B[x_0, r]} |f(u)| \delta < r,$$

$$2Lr\delta < 1$$

e, consequentemente, Λ é contração em

$$\{z: [-\delta, \delta] \to \mathbb{R}^d : z(0) = x_0 \text{ e } z([-\delta, \delta]) \subset B[x_0, r]\}.$$

Temos que x=y em $[-\delta,\delta]$ porque x e y restritos a tal intervalo são pontos fixos de Λ e esse é único.

Capítulo 2

Diferenciabilidade

$\mathbf{2.1} \quad \mathbb{R} ightarrow \mathbb{R}^d$

Definição 2.1. Uma curva (ou caminho) em \mathbb{R}^d é uma função contínua $\gamma: I \to \mathbb{R}^d$, onde I é um intervalo de \mathbb{R} . Escrevamos $\gamma(t) = (\gamma^1(t), \dots, \gamma^d(t))$. Dizemos que essa curva é diferenciável se γ^i é diferenciável para todo i. A derivada de γ é definida como

$$\frac{\mathrm{d}\gamma}{\mathrm{d}t} := \left(\frac{\mathrm{d}\gamma^1}{\mathrm{d}t}, \dots, \frac{\mathrm{d}\gamma^d}{\mathrm{d}t}\right).$$

As vezes denotamos a primeira derivada por $\dot{\gamma}$, a segunda derivada por $\ddot{\gamma}$, e assim por diante. Dizemos que γ é de classe C^r se cada γ^i é de classe C^r , isto é, as derivadas

$$\frac{\mathrm{d}\gamma^i}{\mathrm{d}t}, \frac{\mathrm{d}^2\gamma^i}{\mathrm{d}^2t}, \cdots, \frac{\mathrm{d}^r\gamma^i}{\mathrm{d}^rt}$$

existem e são contínuas.

Exercício 2.2.

- Mostre que se α, β são curvas de classe C^1 , então

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle\alpha,\beta\rangle = \langle\dot{\alpha},\beta\rangle + \left\langle\alpha,\dot{\beta}\right\rangle.$$

• Mostre que

$$\frac{\mathrm{d}|\alpha|^2}{\mathrm{d}t} = 2 \left\langle \alpha, \dot{\alpha} \right\rangle.$$

• Mostre que se α não passa pela origem no instante t, então

$$\frac{\mathrm{d}|\alpha|}{\mathrm{d}t} = \left\langle \frac{\alpha}{|\alpha|}, \dot{\alpha} \right\rangle.$$

• Para d=3, mostre que

$$\frac{\mathrm{d}\alpha \times \beta}{\mathrm{d}t} = \dot{\alpha} \times \beta + \alpha \times \dot{\beta}.$$

A velocidade de uma curva γ é a primeira derivada $\dot{\gamma}$. A segunda derivada $\ddot{\gamma}$ é a aceleração.

Exemplo 2.3 (Força central). Curvas no plano. Em vez de trabalhar com \mathbb{R}^2 , trabalharemos com os números complexos $\mathbb{C} = \mathbb{R} \oplus i\mathbb{R}$.

Considere uma partícula com massa m e com trajetória γ que não passa pela origem. Temos que em coordenadas polares:

$$\gamma(t) = r(t) \exp(i\theta(t)),$$

onde r > 0 e $\exp(i\alpha) := \cos(\alpha) + i\sin(\alpha)$. A velocidade e a aceleração são:

$$\dot{\gamma} = \dot{r} \exp(i\theta(t)) + r\dot{\theta}i \exp(i\theta(t)),$$

$$\ddot{\gamma} = (\ddot{r} - r^2 \dot{\theta}^2) \exp(i\theta(t)) + (2\dot{r}\dot{\theta} + r\ddot{\theta})i \exp(i\theta(t)).$$

O vetor $\exp(i\theta(t))$ é unitário e radial, isto é, $\exp(i\theta(t)) = \frac{\gamma}{|\gamma|}$. O vetor $i \exp(i\theta(t))$ é obtido ao rotacionar $\exp(i\theta(t))$ no sentido anti-horário por 90°.

Uma força central $f: \mathbb{R}^d \setminus \{0\} \to \mathbb{R}^d$ é um campo vetorial (uma função que associa a cada x um vetor f(x)) da forma $f(x) = \phi(|x|) \frac{x}{|x|}$ onde ϕ é uma função de $\mathbb{R}_{>0}$ em \mathbb{R} . Em outras palavras, a força é central se f(x) é sempre paralelo a x. Se a força f age sobre um corpo de massa m percorrendo a trajetória γ , então, pela segunda lei de Newton,

$$m\ddot{\gamma} = f(\gamma).$$

Assim, se γ descreve o movimento de uma partícula em $\mathbb C$ sob a ação de uma força central, o que quer dizer que $\ddot{\gamma}$ aponta na direção radial, então

$$2\dot{r}\dot{\theta} + r\ddot{\theta} = 0$$

ou seja,

$$\frac{\mathrm{d}}{\mathrm{d}t}r^2\dot{\theta} = 0,$$

$$r^2\dot{\theta}$$
 é constante.

A grandeza $L = mr^2\dot{\theta}$ se chama momento angular e, como vimos, é constante para forças centrais. Forças centrais são extremamente importantes. Dois exemplos distinguidos são:

$$f(x) = -kx$$
 (Lei de Hook)

$$f(x) = \frac{k}{|x|^2} \frac{x}{|x|}$$
 (Lei do inverso do quadrado).

Integração de curvas é feita coordenada a coordenada

$$\int_a^b \gamma(t) dt := \left(\int_a^b \gamma^1(t) dt, \dots, \int_a^b \gamma^d(t) dt \right).$$

É óbvio que o teorema fundamental do cálculo vale:

$$\int_{a}^{b} \dot{\gamma}(t) dt = \gamma(b) - \gamma(a),$$

$$\frac{\mathrm{d}}{\mathrm{d}s} \int_{a}^{s} \gamma(t) \mathrm{d}t = \gamma(s),$$

porque a integral de curvas é definida coordenada a coordenada.

Proposição 2.4. Considere a curva γ definida em [a,b]. Temos que

$$\left| \int_{a}^{b} \gamma(t) dt \right| \leq \int_{a}^{b} |\gamma(t)| dt.$$

Demonstração. Se $\int_a^b \gamma(t) dt = 0$, então a identidade acima é trivialmente verdadeira. Podemos assumir que tal vetor é não nulo.

Para qualquer vetor v, temos

$$\left\langle \int_{a}^{b} \gamma(t) dt, v \right\rangle = \sum_{i} v^{i} \int_{a}^{b} \gamma^{i}(t) dt$$

$$= \sum_{i} \int_{a}^{b} \gamma^{i}(t) v^{i} dt$$

$$= \int_{a}^{b} \langle \gamma(t), v \rangle dt$$

$$\leq \int_{a}^{b} |\gamma(t)| |v| dt$$

$$= \int_{a}^{b} |\gamma(t)| dt |v|$$

por causa da desigualdade de Cauchy-Schwartz 1.17.

Tomando

$$v = \int_{a}^{b} \gamma(t) dt$$

obtemos

$$\left| \int_{a}^{b} \gamma(t) dt \right|^{2} \leq \int_{a}^{b} |\gamma(t)| dt \left| \int_{a}^{b} \gamma(t) dt \right|,$$
$$\left| \int_{a}^{b} \gamma(t) dt \right| \leq \int_{a}^{b} |\gamma(t)| dt.$$

Proposição 2.5 (Teorema do valor médio). Considere a curva $\gamma:[a,b]\to\mathbb{R}^d$ de classe C^1 . Temos que

$$|\gamma(b) - \gamma(a)| \le \max_{a \le t \le b} |\dot{\gamma}(t)| (b - a).$$

Demonstração. Pelo teorema fundamental do cálculo:

$$\gamma(b) - \gamma(a) = \int_a^b \dot{\gamma}(t) dt.$$

Logo, pela Proposição 2.4, temos

$$|\gamma(b) - \gamma(a)| \le \int_a^b |\dot{\gamma}(t)| dt \le \max_{a \le t \le b} |\dot{\gamma}(t)| (b - a).$$

O comprimento de uma curva $\gamma:[a,b]\to\mathbb{R}^d$ de classe C^1 é

$$L(\gamma, [a, b]) = \int_a^b |\dot{\gamma}(t)| dt.$$

Pelo teorema fundamental do cálculo e a Proposição 2.4

$$|\gamma(b) - \gamma(a)| \le \int_a^b |\dot{\gamma}| dt = L(\gamma, [a, b]),$$

ou seja, o comprimento de uma curva ligando $\gamma(a)$ a $\gamma(b)$ é maior que ou igual a $|\gamma(b) - \gamma(a)|$. Uma reparametrização é uma função $\phi: [a', b'] \to [a, b]$ bijetora de classe C^1 . Note que

$$L(\gamma, [a, b]) = L(\gamma \circ \phi, [a', b'])$$

porque

$$\int_a^b |\dot{\gamma}| \mathrm{d}t = \int_{a'}^{b'} |\dot{\gamma}(\phi(s))| \left| \frac{\mathrm{d}\phi}{\mathrm{d}s} \right| \mathrm{d}s = \int_{a'}^{b'} \left| \frac{\mathrm{d}}{\mathrm{d}s} \gamma(\phi(s)) \right| \mathrm{d}s.$$

Definição 2.6. Uma curva γ é regular se $\dot{\gamma}(t) \neq 0$ para todo t.

Curvas regulares são interessantes porque podemos reparametrizá-las de modo que a nova curva tenha velocidade constante e igual a 1. De fato, suponha que a curva γ está definida no intervalo [a,b]. Seja L o comprimento de γ e considere $s(t)=\int_a^t |\dot{\gamma}(u)| du$. Temos que $\frac{\mathrm{d}s}{\mathrm{d}t}=|\dot{\gamma}(t)|>0$, ou seja, s é estritamente crescente. Além disso, s(a)=0 e s(b)=L. A inversa $\tau:[0,L]\to[a,b]$ de s tem derivada

$$\frac{\mathrm{d}\tau}{\mathrm{d}s} = \frac{1}{|\dot{\gamma}(\tau(s))|}.$$

E assim, a curva $\tilde{\gamma}(s) = \gamma(\tau(s))$ tem velocidade com módulo 1.

$$\left|\dot{\tilde{\gamma}}(s)\right| = \left|\dot{\gamma}(\tau(s))\right| \frac{\mathrm{d}\tau}{\mathrm{d}s} = 1.$$

Uma curva regular com velocidade 1 em valor absoluto é chamada de curva parametrizada por comprimento de arco.

Exemplo 2.7. A curva $\gamma(s) = \exp(is)$ é parametrizada por comprimento de arco porque $|\dot{\gamma}| = |i \exp(is)| = 1$.

Exemplo 2.8. Considere uma curva $\gamma : \mathbb{R} \to \mathbb{C}$ parametrizada por comprimento de arco. Em particular, a aceleração é perpendicular a velocidade:

$$|\dot{\gamma}(s)|^2 = 1,$$

$$\langle \dot{\gamma}(s), \ddot{\gamma}(s) \rangle = 0.$$

Assim, não há aceleração tangencial. Como $\ddot{\gamma}$ é paralelo a $i\dot{\gamma}$, existe uma função k(s) tal que

$$\ddot{\gamma}(s) = k(s)i\dot{\gamma}(s).$$

A função k se chama curvatura. O valor absoluto de k(s) é dado por

$$|k(s)| = |\ddot{\gamma}(s)|.$$

A curvatura em s_0 mede o raio do círculo que melhor aproxima a curva γ em s_0 . Esse círculo leva o nome de círculo osculante. O raio desse círculo é $r_0 = \frac{1}{|k(s_0)|}$, onde assumimos $k(s_0) \neq 0$, e o seu centro é

$$c_0 := \gamma(s_0) + r_0 i \dot{\gamma}(s_0).$$

O círculo osculante parametrizado por comprimento de arco é

$$\lambda(s) := c(s_0) - r_0 i\dot{\gamma}(s_0) \exp\left(i\frac{s - s_0}{r(s_0)}\right).$$

Note que

$$\lambda(s_0) = \gamma(s_0),$$

$$\dot{\lambda}(s_0) := \dot{\gamma}(s_0),$$

$$\ddot{\lambda}(s_0) := \frac{i\dot{\gamma}(s_0)}{r_0} = \ddot{\gamma}(s_0),$$

ou seja, o círculo osculante aproxima-se de γ no sentido que

$$|\gamma(s) - \lambda(s)| = o(|s - s_0|^2).$$

Se $k(s_0) = 0$, então aproximamos γ pela reta $\lambda(s) = \gamma(s_0) + \dot{\gamma}(s_0)(s - s_0)$ e temos

$$|\gamma(s) - \lambda(s)| = o(|s - s_0|^2).$$

Podemos interpretar esse cenário como sendo um círculo osculante de raio infinito. De fato, para $r(s_0)$ muito grande temos

$$\lambda(s) := c(s_0) - r_0 i\dot{\gamma}(s_0) \exp\left(i\frac{s - s_0}{r(s_0)}\right) \simeq c(s_0) - r_0 i\dot{\gamma}(s_0) \left(1 + i\frac{s - s_0}{r(s_0)}\right) = \gamma(s_0) + \dot{\gamma}(s_0)(s - s_0).$$

Como discutimos na secção sobre conexidade, temos que um aberto é conexo se, e só se, é conexo por caminhos. Além disso, sempre podemos tomar caminhos poligonais. Podemos também tomar caminhos regulares simples (simples quer dizer que o caminho não se auto-intersecta), mas provar a existência de tais caminhos é não trivial: segue de dois fatos, todo aberto admite uma métrica riemanniana completa e dois pontos podem ser ligados por uma geodésica minimizante de velocidade 1 na presença de uma métrica riemanniana completa.

Uma curva contínua $\gamma : [a, b] \to \mathbb{R}^d$ é C^1 por partes se há $a = t_1 < t_2 < \cdots < t_k = b$ tais que γ é de classe C^1 em (t_i, t_{i+1}) e os limites laterais

$$\lim_{t \to t_i^+} \dot{\gamma}(t), \quad \lim_{t \to t_i^-} \dot{\gamma}(t)$$

existem. Curvas poligonais são exemplos de curvas \mathbb{C}^1 por partes.

Note que comprimento de curva está definido para curvas C^1 por partes.

$$L(\gamma, [a, b]) := \sum_{i} \int_{t_i}^{t_{i+1}} |\dot{\gamma}(t)| \mathrm{d}t.$$

De forma geral, se V é uma função de $\mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^d$ em \mathbb{R}^k , por exemplo, podemos definir

$$\int_a^b V(t, \gamma(t), \dot{\gamma}) dt := \sum_i \int_{t_i}^{t_{i+1}} V(t, \gamma(t), \dot{\gamma}(t)) dt.$$

Podemos considerar V's que dependam de $\ddot{\gamma}$ ou derivadas superiores. Mas em geral, usamos apenas até a primeira derivada.

Exemplo 2.9. O trabalho de uma força $f: U \to \mathbb{R}^d$, com U aberto em \mathbb{R}^d , ao longo de um caminho γ em U, que assumimos ser C^1 por partes, é definido como sendo

$$W(f,\gamma) := \int_a^b \langle f(\gamma(t)), \dot{\gamma} \rangle dt.$$

Se a força é central, isto é, $U = \mathbb{R}^d \setminus 0$ e $f(x) = \phi(|x|) \frac{x}{|x|}$ para uma função $\phi : \mathbb{R}_{>0} \to \mathbb{R}$, então $W(f,\gamma) = 0$ para todo caminho γ fechado. Mostremos que esse é o caso. Considere $V(r) = \int_1^r \phi(s) \mathrm{d}s$. Temos que

$$\frac{\mathrm{d}}{\mathrm{d}t}V(|\gamma(t)|) = \phi(|\gamma(t)|) \left\langle \frac{\gamma(t)}{|\gamma(t)|}, \dot{\gamma}(t) \right\rangle$$

Assim, como $\gamma(a) = \gamma(b)$, temos

$$W(f,\gamma) = \int_a^b \phi(|\gamma(t)|) \left\langle \frac{\gamma(t)}{|\gamma(t)|}, \dot{\gamma}(t) \right\rangle dt = \int \frac{d}{dt} V(|\gamma(t)|) dt = V(|\gamma(b)|) - V(|\gamma(a)|) = 0.$$

Exercício 2.10. Mostre que se o trabalho para curvas fechadas é sempre zero, então o trabalho para ir de x_0 a x_1 independe da curva conectando esses pontos.

Exercício 2.11. Mostre que se γ é C^1 por partes, então

$$\int_{a}^{b} \dot{\gamma}(t) dt = \gamma(b) - \gamma(a).$$

Referências Bibliográficas

[Aur] Leandro F. Aurichi. Espaços métricos.

https://sites.icmc.usp.br/aurichi/dokuwiki/doku.php?id=curso:metricos2021

 $[\mathrm{Spi}]$ Michael Spivak. Calculus on Manifolds. CRC Press, 1^a edição. 1965.