## Genome assembly strategies

Arturo Vera Ponce de Leon May 2019

veraponcedeleon.1@osu.edu

# Genome assembly

#### Genome assembly



#### Summarizing

Reads (fastq)





Chromosome

Briefings in Bioinformatics, 2016, 1–18

# Genome *de-novo* assembly or reference mapping



#### Genome Assembly

## Work flow to classic genome assembly strategies



Figure 2. General steps in a genome assembly workflow. Input and output data are indicated for each step.

#### Software used in this lecture

fastQC

**TrimGalore** 

IDBA SPADES

QUAST BUSCO CheckM

## Strategies to genome assembly

Algorithms

- Greedy
- Overlap-layoutconsensus (OLC)
- 3. De Bruijn Graph





# Steeps to genome assembly using De-Bruijn graph

The basic strategy for de novo assembly for short NGS reads comprises three steps: (i) contig assembly, (ii) scaffolding and (iii) gap filling.





Seven Bridges of Königsberg

## The K-mers: divide and conquer



## The K-mers: divide and conquer

- It breaks reads into successive k-mers and the graph maps the k-mers
- Each k-mer is a node and edges are drawn between each k-mer in a read.
- Repeat sequences create a fork in the graph; alternative sequences create a bubble.
- The k-mer size can only be determined by "trial and error".
- A small value of K will create a complex graph but a large value of K may miss small overlaps. A good starting point would be a k-mer size that is 2/3 the size of the read
- Good for short reads or small genomes. With long reads and/or large genomes, may require lots of RAM (e.g., ~0.5 TB for human)

## Let's go to assembly some bacterial genomes

#### **BIOINFORMATICS**

#### ORIGINAL PAPER

Vol. 28 no. 11 2012, pages 1420–1428 doi:10.1093/bioinformatics/bts174

Sequence analysis

Advance Access publication April 11, 2012

### IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth

Yu Peng, Henry C. M. Leung\*, S. M. Yiu and Francis Y. L. Chin Department of Computer Science, The University of Hong Kong, Pokfulam Road, Hong Kong Associate Editor: Michael Brudno



Fig. 1. Flowchart of IDBA-UD

#### Evaluating the assembly

- **§** Genome assembly results:
- contig size and number of contigs produced
- scaffold size and number
- N50 and N90
- **§**□ Coverage
- **§**□ GC Content
- **§**□ Genome annotation
- repeats analysis and annotation
- protein-coding gene annotation (including gene structure prediction and gene function annotation)
- non-coding RNA gene annotation (including annotation of microRNA, tRNA, rRNA, and other ncRNA)
- transposon and tandem repeats annotation
- §□ Comparative genomics and evolution (chromosome structure, conserved gene families)

#### Basic stats

#### **Basic statistics**

**N50** the length of the shortest contig such that the sum of contigs of equal length or longer is at least 50% of the total length of all contigs.

Contig size (bp) 3000

2000 N50

1200

800

600 N90

400

Total: **8000** 

N90 = the length of the shortest contig such that the sum of contigs of equal length or longer is at least 90% of the total length of all contigs.

#### **SPADEs**



JOURNAL OF COMPUTATIONAL BIOLOGY Volume 19, Number 5, 2012 © Mary Ann Liebert, Inc. Pp. 455–477 DOI: 10.1089/cmb.2012.0021

Original Articles

SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing

ANTON BANKEVICH,<sup>1,2</sup> SERGEY NURK,<sup>1,2</sup> DMITRY ANTIPOV,<sup>1</sup> ALEXEY A. GUREVICH,<sup>1</sup> MIKHAIL DVORKIN,<sup>1</sup> ALEXANDER S. KULIKOV,<sup>1,3</sup> VALERY M. LESIN,<sup>1</sup> SERGEY I. NIKOLENKO,<sup>1,3</sup> SON PHAM,<sup>4</sup> ANDREY D. PRJIBELSKI,<sup>1</sup> ALEXEY V. PYSHKIN,<sup>1</sup> ALEXANDER V. SIROTKIN,<sup>1</sup> NIKOLAY VYAHHI,<sup>1</sup> GLENN TESLER,<sup>5</sup> MAX A. ALEKSEYEV,<sup>1,6</sup> and PAVEL A. PEVZNER<sup>1,4</sup>