1 Повторение.

Царства:

- 1. Животные.
- 2. Растения.
- 3. Грибы.
- 4. Бактерии.

Растения:

- 1. 5 тканей: механическая, основная, образовательная, проводящая, фотосинтезирующая.
- 2. Неограниченный рост.
- 3. Прикрепленный образ жизни.
- 4. Фотосинтез.

Животные:

- 1. Передвигаются в поисках пищи.
- 2. Рост ограничен.
- 3. Нет клеточной стенки.
- 4. Гетеротрофы.
- 5. 4 ткани: соединительная, мышечная, нервная, эпителиальная.

Человек:

- 1. Речь.
- 2. Изгибы опорно-двигательной системы.
- 3. Пятый палец.

Науки.

Наука	О чем
Птеридология	Папоротники
Акарология	Клещи
Карцинология	Ракообразные
Герпетология	Рептилии
Гельминтология	Паразитические черви
Альгология	Водоросли
Бриология	Мхи
Этология	Биологические основы поведения животных
Энтомология	Насекомые
Малакология	Моллюски
Лихенология	Лишайники

Направление	OX	Ученные
Классическое	Многообразие живой природы	Аристотель, Теофраст
Эволюционное	Ответы на сложные вопросы	Дарвин
Физико-химическое	Биохимия	Пастер, Кох

2 Цитология.

Цитология — наука о клетке.

Становление цитологии как науки.

Ученный	Век	Достижения
Евклид	3 – 4 век до нашей эры.	Первые изогнутые поверхности.
Д"Армате	13 век.	Изобрел очки.
Да Винчи	16 век.	Изобрел лупу.
Янсен	16 век.	Совместил две линзы и получил трубу (почти микроскоп).
Гук	17 век.	Понятие клетки.
Левенгук	18 век.	Микроскоп.
Браун	19 век.	Обнаружил ядро.
Пуркине	19 век.	Обнаружил цитоплазму.
Мечников	20 век.	Открыл фагоцитоз — клеточный иммунитет.
Мальпиги, Грю	17 век.	Клеточное строение растений.
Шванн, Шлейден	19 век.	ОХ клетки, основоположники клеточной теории. Положения:
		1. Клетка — структурная функциональная единица.
		2. Все клетки похожи (содержат белки, жиры и углеводы).
		3. Клетка от клетки.
		4. Специализированны по выполняемой функции.
		5. Обмен веществ.

2.1 Химический состав клетки.

Химический состав живой и неживой природы одинаковый. Элементы в организме:

- Макро ... 0.001%.
- Микро $0.001\% \dots 0.000001\%$.
- Ультра микро 0.000001%

Вещества:

- Органические:
 - Белки.
 - Жиры.
 - Углеводы.
 - Нуклеиновые кислоты.
- Неорганические:
 - Вода. f растворение, давление, транспорт.

Вещество	Синоним	Пример	OX	f
Углеводы.	Сахариды.	Глюкоза, крахмал.	Группа органических	Строй материал, энергети-
			соединений.	ческая.
Жиры.	Липиды.	Растительные жи-	Жидкий или твердый.	Запас, защита, энергетиче-
		ры.		ская, регуляторная.
Белки.	Протеины.	Галогены, актины.	Составная часть амино-	Структурная, фермен-
			кислоты.	тативная, регуляторная,
				транспортная.

Жир состоит из глицерина и трех жировых остатка.

Ферментальная функция выполняется у белков.

 $[\]Phi$ ормула глюкозы — $C_6H_{12}O_6$.

2.1.1 Нуклеиновые кислоты.

Нуклеиновые кислоты делятся на:

- ДНК (содержит дезоксирибозу).
- РНК (содержит рибозу).

Биополимеры состоят из мономеров. В нуклеиновых кислотах мономеры — нуклеотиды. Нуклеотиды состоя из:

- Азотистое основания.
- Углевода.
- Остатка фосфорной кислоты.

Азотистые основания:

- ДНК. А (аденин), 2; Т (тимин), 2; Г (гуанин), 3; Ц (цитозин), 3.
- РНК. А, 2; У (урацил), 2; Г, 3; Ц, 3.

Рис. 1: ДНК

Виды РНК:

ullet Информационные. f — считывание информации.

Рис. 2: иРНК

• Транспортные. f — транспорт.

Рис. 3: тРНК

ullet рРНК, находятся в рибосомах. f- синтез белка.

Задачи:

- 1. Дана 1 цепочка ДНК. Построить 2 цепочку ДНК и посчитать количество водородных соединений. Строи по принципу комплементарности. А \leftrightarrow Т, $\Gamma \leftrightarrow$ Ц.
- 2. Дана 1 цепочка ДНК. Построить 2 цепочку ДНК и цепочку иРНК. Строим по принципу комплементарности. Сначала 2 цепочку ДНК $A \leftrightarrow T$, $\Gamma \leftrightarrow I$. Потом от 2 цепочки ДНК, цепочку иРНК $A \leftrightarrow Y$, $\Gamma \leftrightarrow I$.
- 3. Дана молекула. Определить, что это за молекула и построить 2 другие.
- 4. В молекуле ДНК Т 15%. Определить сколько % А, Γ , Ц. А 15%, по принципу комплементарности. Тогда Γ + Ц = 70%. Значит Γ и Ц по 35%.
- 5. Дано: 210 нуклеотидных соединений, в которых 3 водородные связи, и 140, в которых 2 водородные связи. Найти количество А, Т, Г, Ц. А и Т по 70, Г и Ц по 105.
- 6. В одной цепочке ДНК содержится $A-50, \Gamma-40, \Pi-80, T-25$. Найти сколько нуклеотидов каждого вида в молекуле ДНК. А и $T=A+T, \Gamma$ и $\Pi=\Gamma+\Pi$. Тогда A и T по 75, Γ и Π по 120.

2.2 Витамины.

Делятся на водорастворимые и жирорастворимые (К, D, E, A). Роль витаминов: поддержка организма.

2.3 Биокатализаторы.

ОХ биокатализаторов:

- 1. Катализаторы вещества, которые изменяют скорость химической реакции и не входят в состав продуктов реакции.
- 2. Основными биокатализаторами в клетке являются ферменты.
- 3. Ферменты участвуют в процессе синтеза и распада белков.
- 4. Молекулы ферментов имеют активный центр небольшой участок, на котором идет данная реакция.
- 5. С активным центром могут связываться только определенный молекулы в силу их формы и комплементарности.
- 6. Все процессы в живом организме прямо или косвенно осуществляются с участием ферментов.
- 7. Молекулы одних ферментов состоят только из белков, другие включают белок и небелковое соединение кофермент.
- 8. Ферменты действуют в строго определенном порядке и они специфичны для каждого вещества, тк зависят от строения.
- 9. Ферменты зависят от температуры, природы, давления, концентрации.
- 10. Каталитической способностью обладают некоторые молекулы РНК.

2.4 Вирусы.

ОХ вирусов:

- 1. Неклеточная форма жизни.
- 2. Переходное состояние между живой и неживой природой.
- 3. 100% внутриклеточные паразиты.
- 4. Вирусы состоят из 2 частей: белковая оболочка (капсид) и ДНК/РНК.
- 5. Быстро изменяемые частицы (хорошо адаптируются).
- 6. Вирусные заболевания у:
 - Человека: грипп, оспа, корь, полиомиелит, свинка, бешенство, СПИД, краснуха, клещевой энцефалит, гепатит.

- Животных: ящур, чума свиней и птиц, инфекционную анемию лошадей, коровья оспа, бешенство.
- Растений: мозаичная болезнь табака, томатов, огурцов, скручивание листьев, карликовость, желтуха.
- 7. Существуют в кристаллическом виде за пределами клетки.
- 8. Специфичность.
- 9. Заболевания связанные с:
 - РНК-вирусами: $\frac{1}{3}$ вирусов вызывающих OP3.
 - ДНК-вирусами: попиломы, оспа, герпес.

2.5 Клетка.

Клетка наименьшая структурная (все состоит из них) и функциональная (на уровне клетки начинается обмен веществ) единица. Состоят из органедл.

Главная часть клетки — ядро.

Кариоплазма = ядерный сок.

Рис. 4: Ядро клетки.

Хромосомный набор клетки называется кариотипом.

Клетки:

- Соматические. Диплоидный НХ (полный, двойной). 46 хромосом.
- Половые = гаметы (оплодотворение). Гаплоидный (половинный от полного набора). 23 хромосомы.
- 44 аутосомы. Одинаковые и у мужчин, и у женщин.
- 2 половые хромосомы. У женщин XX (гомогаметный), у мужчин XY (гетерогаметный).

Исключения: у птиц, некоторых насекомых и незначительного количества рыб наоборот — мужской пол гомогаметный, женский — гетерогаметный.

Ядрышко:

- 1. f синтез РНК и белков.
- $2. \ \,$ От $1\ \,$ до $7\ \,$ в клетке.
- 3. Хорошо видны когда клетка не делится.
- 4. Взвешены в ядерном соке.
- 5. Плотное круглое тело.

Часть клетки	Количество мембран	OX	f

ЭПС	1	Сложная система из полостей трубочек и канальцев. Занимает большой объем клетки. Гладкая и шероховатая.	Синтез белков (шероховатая), липидов и углеводов (гладкая). Транспорт (внутри клетки).
Рибосома	не мембранные	Много. Состоит из большой, малой и РНК. Могут объединятся в группы — полисомы. У эукариотов могут находится в митохондриях и пластидах.	Синтез белка.
Аппарат Гольджи	1	Состоит из цистерн, ме- шочков, полостей, пузырь- ков, образованных гладкой мембранной.	Накопление, сортировка, хранение, преобразование веществ. Образования лизосом.
Лизосома	1	Имеет вид пузырька. Наполнены пищеварительными ферментами. Образовывается аппаратом Гольджи.	Внутриклеточное пищеварение.
Митохондрии	2	Состоят из внутренних складок (кристов). Содержат собственную ДНК.	Энергия связей питательных веществ запасается в химических связях молекул АТФ. Энергетические станции клетки (преобразуют энергию).
Пластиды	2	Свойствен только растительным клеткам. Зеленые (хлоропласты), желтые и оранжевые (хромопласты), без цветные (лейкопласты). Способны к делению, тк содержат кольцевую ДНК.	Фотосинтез. Запасающая. Восстанавливающая. Цвет.
Вакуоль	1	Полость, окруженная мем- бранной, заполненная кле- точным соком, производ- ная ЭПС. Содержит фер- менты, минеральные соли, продукты обмена веществ. Вакуоль — признак расти- тельных организмов.	Запас. Поддержания внутреннего давления клетки.
Клеточный центр	не мембранные	Из микротрубочек. В середине два тельца — центриоли (только у животных и водорослей). По микротрубочкам происходит перемещение.	Формирует клеточный скелет клетки. Обеспечивает движение органоидов клетки.
Органеллы движения	не мембранные	Органеллы движения — реснички и жгутики.	Позволяют перемещаться клетке.

2.6 Обмен веществ.

Метаболизм (обмен веществ):

• Пластический = ассимиляция (поглощение энергии, образование вещества). (Примеры: синтез глюкозы, синтез белка, синтез $AT\Phi$).

• Энергетический = диссимиляция (выделение энергии, вещество разрушается). (Примеры: дыхание, расщепление глюкозы).

Ассимиляция и диссимиляция — противоположны, но дополняют друг друга.

Все реакции, происходящие в организме, являются ферментативными. Ферментами в организме являются белки.

2.6.1 Энергетический обмен.

Энергия — выделяется, вещество — разрушается. Лыхание:

- Аэробное для получение энергии используют кислород. Пример: все эукариоты, такие как животные, растения и грибы.
- Анаэробное не использует кислород для метаболизма, но получает мало энергии. Пример: бактерии прокариоты.

 ${\bf y}$ анаэробов отсутствует место синтеза — мембранные органоиды. ${\bf y}$ аэробов место синтеза — метахондрия. ${\bf ox}$

1. Место синтеза — метахондрия.

Рис. 5: Метахондрия.

- 2. 1 мембрана. Зашита, обмен веществ, ограничение.
 - 2 внутренняя мембрана. Внутренние кристы, ферменты, которые увеличивают поверхность синтеза.
 - 3 кристы.
 - 4 рибосомы.
 - 5 кольцевая молекула ДНК.
 - 6 ферменты.

3. Этапы:

- (а) Подготовительный.
- (b) Неполное бескислородное расщепление.
- (с) Клеточное дыхание = кислородное расщепление.
 - a + b прокариоты.
 - + с у эукариоты.

Этап	Название этапа	Организм	Место	Исходные вещества	Конечные ве- щества	ΑΤΦ	OX
I	Подготовительный	Аэробы и анаэ- робы.	Лизосомы, органы пи- щеварения.	Крупные пищевые полимеры. По- лисахариды. Белки. Жиры.	Мелкие фрагменты. Дими моносахариды. Аминокислоты. Глицерин и жирные кислоты.	-	Мало тепла.

II	Без O_2	Аэроба и анаэ- робы.	Цитоплазма клеток.	Конечные вещества первого этапа.	ПВК + вода.	2	У некоторых грибов спиртовым брожением. Не много тепла. 40% АТФ, остальное рассеивается.
III	O_2	Аэробные	На мембра- нах мито- хондрий, кристах.	Конечные вещества второго этапа.	Углекислый газ и вода. Образовывается 6 молекул углекислого газа, 42 молекулы воды.	36	КПД выше. Пользуются не все, тк опасно.

Вывод: анаэробы — 38 молекул, аэробы — 2 молекулы.

В процессе гликолиза образовалось 112 молекул ПВК. Какое количество молекул глюкозы подверглось расщеплению, и какое количество АТФ образуется при полном окисление.

2.6.2 Фотосинтез.

Фаза	Место	АТФ	Исходные вещества	Конечные вещества	OX
Световая	Внутри мембран- ных хлоро- пластов (на гранах хло- ропластов)	Образуется 1	АДФ, вода, свет	АТФ, ионы водорода, кислород ↑	 Фотолиз. 2H₂O → 4H⁺ + 4e⁻ + O₂ ↑ Выделяется кислород. Обязателен свет → 1 квант. Молекула хлорофилла переходит в возбужденное состояние (1e⁻ молекулы получает избыток энергии). Энергия тратится на синтез АТФ. Процесс очень эффективен (в 30 раз больше, чем в митохондриях).
Темновая (так как без све- та)	Пластиды → хлоро- пласты	Не образу- ется	Углекислый газ, водо- род	Глюкоза и вещество, способное захватывать CO_2 , вода	 Свет не нужен. СО₂ захватывается из внешней среды специальным веществом. Обеспечиваются энергией, запасенной в световой фазе.

Формула процесса фотосинтеза: $6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2 \uparrow$. **Фотолиз** — процесс распада молекул воды $(H_2O \rightleftarrows H^+ + OH^-)$, протекающий под действием света.

2.7 Типы питания.

- 1. Автотрофы:
 - Фототрофы. Фотосинтез.

• Хемотрофы. Организмы: нитрифицирующие бактерии, железистые бактерии, серобактерии. **Хемосинтез** — процесс окисления захватанных веществ и образования энергии для синтеза сложных органических молекул.

2. Гетеротрофы:

- Паразиты берут органику у живых организмов.
- Сапрофиты берут органику у живых мертвых.
- Симбионты. Могут быть миксотрофами.
- Голозои:
 - I. Плотоядные.
 - II. Растительноядные.
 - III. Всеядные.
- 3. Миксотрофы.

3 Синтез белка. Пластический обмен.

- 1. Место. Белок синтезируется в рибосомах (не мембранные органоиды, состоящие из двух субъединиц).
- 2. Необходимые вещества.
 - І. АТФ, так как энергоемкий процесс.
 - II. Аминокислоты.
 - III. ДНК и РНК.
 - IV. Ферменты.
 - V. тРНК, иРНК, рРНК.
- 3. Результат белок. Мономером белка является аминокислота. В синтезе белка участвует 20 аминокислот.
- 4. Информация зашифрована генетическим кодом. Свойства:
 - І. Универсальность для всех живых организмов.
- 5. ДНК. Мономером ДНК является нуклеотид. Нуклеотид состоит из:
 - І. Азотистое основание (аденин, гуанин, цитозин, тимин).
 - II. Углевод.
 - III. Фосфорный остаток.

Триплет — последовательность из 3 нуклеотидов.

- 6. РНК. Мономером РНК является нуклеотид. Нуклеотид состоит из:
 - І. Азотистое основание (аденин, гуанин, цитозин, урацил).
 - II. Углевод.
 - III. Фосфорный остаток.

Кодон (иРНК) — последовательность из 3 нуклеотидов. Комплементарный с триплетом. **Антикодон** (тРНК) — триплет на тРНК, который подхватывает кислоту нужную для синтеза.

Этап	Место	Исходные	Конечные ве-	OX
Jan	1,10010	вещества	щества	
Транскрипция (считывание)	Ядро	ДНК → триплет (белки, энергия АТФ, нук- леотиды)	иРНК → ко- дон	 Информация переходит от ДНК к РНК. Г – Ц, А – У, Т – А, Ц – Г. Переписывание ІІ цепочки ДНК в иРНК, комплементарную І. У прокариотов нет.
Трансляция (передача)	На рибосо- мах (в ци- топлазмах)	Нуклеотиды	Аминокислоты	 Происходит расшифровка генетической информации. В цитоплазме должны быть все аминокислоты (одни из белков из пищи, другие синтезируются). Рибосома передвигается по иРНК (задержка 0.2 с) тРНК ищет комплементарный кусочек. Заканчивается, когда появляется стоп-триплет. Когда рибосома сдвигается, на ее место сразу приходит другая. Полисома — все рибосомы, синтезирующие один и тот же белок от одной и той же иРНК.

3.1 Задачи.

Все виды РНК:

- ДНК
- тРНК
- иРНК
- Белок (таблица)

Задача 1. Дана молекула ДНК — АТАГЦЦАТЦЦГЦ. Найти: кодоны, иРНК, белок. иРНК — УАУ-ЦГГ-УАГ-ГЦГ. УАУ — тир, ЦГГ — арг, УАГ — -, ГЦГ — ала.

4 Жизненный цикл клетки.

Периоды:

- Пред-синтетический.
- Синтетический (удвоение генетического материала).
- Пост-синтетический.

Репликация — редупликация — удвоение генетического материала в молекуле ДНК.

В ядре хроматин делиться в хромотиды, а они образуют хромосому.

n — количество хромосом; c — количество хромотид.

Интер-фаза — период между делением клетки. Происходит удвоение генетического материала. Способы деления:

- Митоз (непрямое деление клетки, тк есть этап подготовки).
- Мейоз.

Митоз.

Фаза	nc	OX
Про	2n4c	Увеличение ядра. Спирализация ДНК. Веретенное деление.
Мета	2n4c	Хромосомы максимально скручены. Формируется метафазная пластинка. Нити вере-
Mera 2n4c		тена деления к каждой хромосоме в области центромеры.
Ана	4n4c	Хроматиды отделяются друг от друга и расходятся к полюсам клетки. Нити веретена
Tilla	47140	деления укорачиваются и стягиваются к полюсам клетки.
	D (1 1)	В ранней: хроматиды достигают полюсов клетки и раскручиваются; формируется
	$\frac{P (4n4c)}{\Pi (2n2c \times 2)}$	ядерная оболочка и два ядра. В поздней: деление цитоплазмы, органеллы распредели-
11 (27,220 × 2)		лись между двумя клетками. Внутриклеточная перегородка.

Мейоз.

Редукционное (тк уменьшение числа хромосом) деление.

Фаза	nc	OX
		Специализированные хромосомы находят свою пару (гомологичную хромосому), спирализу-
Про I	2n4c	ются и приближаются на короткое время (конъюгация) для обмены одинаковыми участками
		(кроссинговер = перекрест).
Mета I	2n4c	Максимально скручены. В экваториальной плоскости распологаются друг напротив друга
Meia I	21140	гомологичные хромосомы, каждая из которых состоит из двух хроматид.
Ана І	2n4c	К полюсам клетки расходяться гомологичные хромосомы, состоящие из двух хроматид, а не
Апа 1		половинки хромосом — хроматиды, как во время митоза.
$ { m Тело}\ I$	$\frac{P(2n4c)}{\Pi(n2c \times 2)}$	Образование дочерних клеток.
Про ІІ	n2c	По экватору распологается в два раза меньше хромосом, чем в метафазу I .
Мета II	n2c	Максимально скручены. по экваторам располагается вдвое меньше хромосом, чем в мета-
Mera 11	1120	фазу I. Образуется метафазная пластинка.
Ana II	2n2c	Происходит расхождение к полюсам клеток дочерних хроматид, составлявших раньше еди-
Ana II ZiiZC		ную хромасому.
Тело <i>II</i>	P (2n2c)	Образование четырех гаплоидных ядер или клеток (образование спор у мхов и папоротни-
16/10/11	$\overline{\Pi \ (nc \times 2)}$	ков).

Сравнительная ОХ митоза и мейоза.

Признак	Митоз	Мейоз
Число делений	1	2
Образовавшиеся клетки	2 диплоидные.	4 гаплоидные.
Какие клетки образуются	Соматические (не половые).	Половые.
Интер-фаза	Подготовка клетки к делению, ре-	I: подготовка клетки к делению, ре-
	пликация.	пликация. II: Очень короткая или ее
	пликация.	нет, не происходит удвоение ДНК.
	Воспроизведение клеток с количе-	Число хромосом в дочерних клетках
Биологическое значение	ственно и качественно одинаковой	сокращается вдвое (из диплоидных
	генетической информацией. Рост, ре-	клеток с двойным набором хромо-
	генерация, размножение однокле-	сом образуются гаплоидные клетки
	точных.	с одинарным набором хромосом).
Конъюгация и перекрещивание	_	+
Количество фаз	4	8
Синонимы	Непрямое деление.	Редукционное.

4.1 Задачи.

Спорофит $2n \to^{\text{мейоз}}$ спора $n \to^{\text{митоз}}$ гаметофит $n \to \circlearrowleft^{\mathfrak{r}}(n) + \varsigma(n) =$ зигота $2n \to^{\text{митоз}}$ спорофит 2n. Размножение преобладает:

• Гаметофит (водоросли, красные = багрянки, зеленые, бурые, мхи).

• Спорофит (хвощи, плауны, папоротники, ГС, ПС = цветковые).

Гаплоидная клетка — nc, диплоидная — 2n2c.

5 Задачи на генетику.

Родители	$Aa \times Aa$	$Aa \times aa$	$AA \times AA$	$AA \times aa$	$aa \times aa$
Потомство	\bullet $AA - 25\%$ \bullet $Aa - 50\%$ \bullet $aa - 25\%$	 Aa - 50% aa - 50%	• AA — 100%	• Aa — 100%	• aa — 100%
Фенотипическое расщепление	3 : 1 (доминант- ный : рецессив- ный)	1 : 1 (доминант- ный : рецессив- ный)	Все потомство будет доминант-	Все потомство будет доминант-	Все потомство будет рецессивным.

Анализирующее скрещивание — нужно для того, чтобы проверить вступали ли организмы в скрещивание.

5.1 Не полное доминирование.

Задача. A — красный, a — белый.

1. $P: AA \times aa$

G: A a

F: Aa — розовый.

2. $P: Aa \times Aa$

G: Aa Aa

F: AA Aa Aa aa.

6 Хромосомы.

- Половые (X и Y).
- Не половые (аутосомы).

7 Дигидридное скрещивание.

A — желтый, a — зеленый; B — гладкий, b — морщинистый.

 $P: AABB \times aabb$

 $G: AB \times ab$

 F_1 : AaBb — желтый, гладкий.

 $P: AaBb \times AaBb$

 $G: AB, Ab, aB, ab \mid AB, Ab, aB, ab$

 F_2 :

	AB	Ab	aB	ab
AB	AABB	AABb	AaBB	AaBb
Ab	AABb	AAbb	AaBb	Aabb
aB	AaBB	AaBb	aaBB	aaBb
ab	AaBb	Aabb	aaBb	aabb

Генотип.

1(AABB): 2(AABb): 2(AaBB): 1(AAbb): 4(AaBb): 1(aaBB): 2(Aabb): 2(aaBb): 1(aabb)

Фенотип.

9(жг):3(жм):3(зг):1(зм)

8 Изменчивость.

Изменчивость:

- Генотипическая
 - Мутационная
 - Комбинаторная
- Фенотипическая

Сравнение изменчивости

Признак	Генотипическая	Фенотипическая	
Синоним	Наследственная	Не наследственная, модификацион-	
Синоним	Паследственная	ная	
Причины	Родители	Внешняя среда	
Проявления	Индивидуальная	Зависит от среды	
Значения	Формирование генофонда данной	Вионично призначи приднадоблания	
Значения	популяции	Внешние признаки, приспособление	

9 Селекция.

Организмы:

- 1. Растения
- 2. Животные
- 3. Микроорганизмы

Методы селекции:

- 1. Искусственный отбор отбор организмов с нужными признаками для дальнейшего размножения.
- 2. **Гибридизация** скрещивание разных видов, пород или сортов для получения потомства с новыми полезными признаками. Она бывает внутривидовой (между разными породами или сортами) и отдаленной (между разными видами).
- 3. **Мутагенез** метод основанный на искусственном вызывании мутаций у организмов с помощью химических веществ, радиации или других факторов. Мутации могут приводить к появлению новых полезных признаков, которые затем отбираются селекционерами.

Сравнение генной и клеточной инженерии.

Признак.	Клеточная инженерия.	Генная инженерия.
Объект воздействия.	Целая клетка или группа клеток.	Отдельные гены или фрагменты ДНК.
Методы.	Клонирование, культивирование клеток, создание гибридов.	Вставка, удаление или модификация генов.
Применение.	Создание новых организмов, клонирование, получение гибридов.	Создание ГМО, лечение генетических заболеваний.
Примеры.	Клонирование овечки Долли, создание гибридных растений.	Получение генетически модифицированных культур (например, устойчивых к вредителям).
Точность.	Менее точная, так как работа ведется с целыми клетками.	Высокая точность, так как работа ведется на уровне ДНК.

9.1 Селекция животных.

Комплекс мероприятий по улучшению имеющихся и выведению новых форм животных с определенными качествами. Особенности:

- Высшие животные размножаются только половым путем.
- Индивидуальное развитие животных занимает длительное время, онтогенез сложный и медленный.
- Малое количество потомков.

Основные методы:

- Искусственный отбор
- Гибридизация
 - Инбридинг (одна порода, внутри одного вида; близкородственное скрещивание). Между близкими родственниками (братья и сестры, родители и дети). Цель инбридинга получение гомозиготного организма.
 - Аутбридинг (межпородное скрещивание скрещивание). Цель объединение в одном организме нескольких свойств.
 - Отдаленная гибридизация скрещивание животных разных видов, но потомство часто бесплодное.

9.2 Селекция растений.

Особенности:

- 1. Половое и бесполое размножение.
- 2. Быстрое индивидуальное развитие.
- 3. Большое количество потомков.

Основные методы:

- Инбридинг
- Полиплодия. В результате мутагенеза.
- Искусственный мутагенез
- Отдаленная гибридизация

Эффект гетерозиса — выводят несколько отличных друг от друга чистых линий с последующим межлинейным скрещиванием, по результатам проявления эффекта гетерозиса происходит отбор линий для получения гибридных семян.

Для разрушения веретена деления в мейозе — колхицины.

9.3 Селекция микроорганизмов.

Микроорганизмы:

- Прокариоты
- Эукариоты
 - Простейшие
 - Микро грибы
 - Микро водоросли

Особенности:

- Огромное количество
- Бесполое размножение

Методы:

 \bullet Мутагенез \to клоны

Этапы:

- 1. Отбор
- 2. 2 отбор
- 3. Мутагенез
- 4. Отбор
- 5. Пересев
- 6. Отбор
- 7. Размножение

9.4 Ученные селекционеры.

Ученный	Годы жиз-	Достижения	
	ни		
Н. И. Вавилов	1887 - 1943	Коллекция зерновых культур. Закон гомологических рядов наследственной измен-	
п. и. равилов	1667 - 1945	чивости. Центры происхождения культурных растений (8 центров).	
И. В. Мичурин	1855 - 1935	Вывел около 300 новых сортов плодовых растений. В работах применял скрещива-	
и. в. мичурин	1000 - 1900	ние географически отдаленных форм.	
М. Ф. Иванов	1871 - 1935	Создал высокопродуктивную породу свиней Белая степная украинская, породу	
М. Ф. Иванов 1071 — 1999		овец Асканийская рамбулье и др.	
Б. Л. Астауров	1904 - 1974	Вывел полиплоидные грибы тутового шелкопряда, размножающихся партеногене-	
В. Л. Астауров 1904 — 1974		30М.	
		Предложил использовать метод полиплоидии. Получил гибрид между капустой и	
Г. Д. Карпечен-	1899 - 1941	редькой и вывел форму этого гибрида с удвоенным набором хромосом, которая	
КО		оказалась плодовитой.	

10 Эволюция.

Историческое развитие организмов. Синоним филогенез = развертывание.

Чарльз Роберт Дарвин. 19 век, 1809 - 1882. Жил в Англии. Сначала хотел получить медицинское образование, но не срослось, так как он боялся крови.

1859 год — основной труд "Происхождение видов путем естественного отбора, или Сохранения благоприятствующих пород в борьбе за жизнь".

Движущие силы эволюции:

- 1. Наследственная изменчивость
- 2. Борьба за существование в следствии ограниченности ресурсов
- 3. Естественный отбор

Жан Батист Ламарк (1744—1829). Неправильно выдвинул силы эволюции, как начало брал признаки индивидуального развития и говорил, что признаки всегда будут передаваться.

10.1 Формы естественного отбора.

- Движущий
- Стабилизирующий

Изменяющиеся условия. Выживают особи с крайним по-	Движущий	Стабилизирующий
казателем. ют организмы со средним показателем.	Изменяющиеся условия. Выживают особи с крайним показателем.	Направлен на поддерживание уже существующих фенотипов. Не изменяющиеся, постоянные условия. Выживают организмы со средним показателем.

10.2 Вид.

Наименьшая единица систематики.

Вид — группа особей со сходными свойствами, занимающие определенную территорию свободно скрещивающиеся и дающее плодовитое потомство.

Критерий	OX	Пример
	Сходство внешнего и внутреннего строения. Изучает	
Морфологический	совокупность внешних признаков. Минус — есть виды	4. Пастушья сумка имеет прикорне-
	двойники.	вую розетку.
	Сходство всех процессов жизнедеятельности и прежде	
Физиологический	всего сходство размножения, что определяет возмож-	5. Для процесса переваривания пищи
	ность получения потомства при скрещивание.	млекопитающим необходимо наличие
		ферментов.
Генетический	Характерный для каждого вида набор хромосом, их	6. Для человека характерен набор
	размеры, форма, состав ДНК.	хромосом диплоидных клеток рав-
		ный 46.
	Место вида в природных сообществах организмов,	
Экологический	его специализация, наборы факторов внешней среды,	1. Лютик жгучий на заболоченных
	необходимых для существования вида.	местах.
Географический	Область распространения вида (ареал).	3. Голубь обыкновенны широко рас-
		пространен на европейской части
		России.
Исторический	Общность предков, единая история возникновения и	2. Предком собаки являются волки.
	развития вида.	2. Предком сооаки являются волки.

Не существует абсолютного критерия вида, но наиболее определяющим является генетический.

Для образования и существования видов нужна репродуктивная изоляция.

Вид состоит из популяций.

10.2.1 Популяция.

Популяция — группа особей одного вида, живущих на определенно территории. Может стать отдельным видом. Характеристики:

- Генофонд специфический набор генотипов популяции.
- Демографические показатели:
 - 1. Обилие общее число особей данной популяции на территории
 - 2. Рождаемость
 - 3. Смертность
 - 4. Плотность
 - 5. Скорость роста популяции
 - 6. Возрастной состав (репродуктивные особи, пубертатные особи, старые особи)
- Ареал территория, занимаемая популяцией.

10.2.2 Классификация.

Систематика — наука, которая распределяет, описывает и классифицирует организмы. **Классификация** — ранжированное соподчинение.

10.3 Систематика

- 1. Империя (клеточные/неклеточные)
- 2. Над царство (эукариоты/прокариоты)
- 3. Царство (эукариоты Животные, растения, грибы, прокариоты бактерии)

- 4. Под царство (Грибы и растения высшие, низшие, животные многоклеточные/одноклеточные)
- 5. Тип Животные хордовые, членистоногие, губки, саркожгутиконосцы, и тд; Отдел Растения покрытосеменные, голосеменные, мхи, папоротники, плауны, хвощи, и тд
- 6. Подтип Хордовые позвоночные, бесчерепные, оболочники
- 7. Класс Позвоночные млекопитающие, земноводные, пресмыкающиеся, круглоротые, хрящевые, костные
- 8. Отряд Земноводные бесхвостые, безногие, хвостатые
- 9. Семейство
- 10. Род
- 11. Вид

10.3.1 Вид

 ${f B}$ ид — наименьшая единица систематики, состоит из двух слов. На основе видов выводят сорта, породы и штаммы. По виду можно определить род.