Классификация Хомского для матриц биграммных языков

А. А. Петюшко, Д. Н. Бабин

Множество слов, у которых частоты встречаемости пар соседних букв образуют одну и ту же матрицу - это формальный (биграммный) язык. В статье описывается матрицы, соответствующие регулярным и контекстно-свободным биграммным языкам.

Ключевые слова: биграммный язык, матрица частот, соседние буквы, эйлеровы циклы.

Матрицы традиционно являются инструментом решения прикладных задач. Ещё в начале 20 века выдающимся русским учёным А. А. Марковым [1] был создан аппарат цепей, впоследствии названных цепями Маркова. В дальнейшем этот аппарат получил широкое применение для распознавания и статистического моделирования естественных языков, погоды и других явлений [2]. При таком подходе целью является сама матрица, по которой можно будет предсказывать дальнейшее поведение изучаемого объекта.

В данной статье изучается обратная задача: рассматривается формальный язык с фиксированной матрицей биграмм. В классификации Хомского [3] принадлежность слова языку определяется либо с помощью автомата (регулярные языки), либо с помощью автомата с магазинной памятью (контекстно-свободные языки), либо с помощью машины Тьюринга [4]. Нашей целью является установление соответствия между матричным описанием языка и описанием Хомского.

Пусть A ($|A| < \infty$) - конечный алфавит. Биграммой в алфавите A называется двухбуквенное слово $ab \in A^*, a,b \in A$

 $(ab \neq ba \text{ при } a \neq b)$. Обозначим через $\theta_{\beta}(\alpha)$, где $\beta \in A^*, \alpha \in A^*$, количество подслов β в слове α , т.е. количество различных разложений слова α в виде $\alpha = \alpha' \beta \alpha''$ (α' и α'' могут быть пустыми).

По слову $\alpha \in A^*$ можно построить квадратную матрицу биграмм $\Theta(\alpha)$ размера $|A| \times |A|$ такую, что на месте (i,j) матрицы будет стоять значение $\theta_{a_i a_j}(\alpha)$. Обозначим через Ξ множество квадратных матриц размера $|A| \times |A|$, каждый элемент которых является неотрицательным целым числом.

Назовём языком $L(\Theta)$, порожденным матрицей $\Theta \in \Xi$, множество всех слов, имеющих одну и ту же матрицу биграмм Θ ,

$$L(\Theta) = \{ \beta \in A^* | \Theta(\beta) = \Theta \}.$$

Построим по матрице Θ ориентированный граф G_{Θ} , вершинами которого будут все буквы из алфавита A, при этом ребра будут соответствовать биграммам с учётом их кратностей, т.е. кратность θ_{ab} будет порождать θ_{ab} ориентированных рёбер $a \to b$. Аналогично, кратность θ_{cc} будет порождать θ_{cc} петель $c \to c$.

Ориентированный граф назовём *эйлеровым*, если выполняются следующие условия:

- 1) Неизолированные вершины составляют одну компоненту связности соответствующего неориентированного графа;
- 2) У всех вершин количество входящих рёбер равно количеству исходящих рёбер.

Назовём ориентированный граф *почти эйлеровым*, если выполняется условие 1), и у всех вершин, кроме двух, количество входящих рёбер равно количеству исходящих рёбер, а у оставшихся двух вершин разность количества входящих рёбер и количества исходящих рёбер равна +1 и -1, соответственно.

Известно [5], что в эйлеровом графе существует эйлеров цикл, а в почти эйлеровом - эйлеров путь, не являющийся эйлеровым циклом (то есть начальная вершина пути не совпадает с конечной).

Имеет место следующий критерий непустоты:

Теорема 1. [6] Для того, чтобы язык $L(\Theta)$ был непуст, достаточно, чтобы построенный по Θ ориентированный граф G_{Θ} был либо эйлеровым, либо почти эйлеровым.

Следствие 1. Проблема пустоты языка $L(\Theta)$ алгоритмически разрешима.

Более интересен случай, когда матрица биграмм рассматривается как матрица пропорций биграмм, то есть языка, в котором сохраняются отношения $\theta_{ab}(\alpha)/\theta_{cd}(\alpha)$ $\forall a,b,c,d\in A$, $\theta_{cd}(\alpha)>0$ для любого слова α из этого языка.

Назовём биграммным языком, заданным матрицей $\Theta \in \Xi$, назовём

$$F_{\Theta} = \bigcup_{k=1}^{\infty} L(k\Theta),$$

Имеет место теорема о числе слов в частотных языках:

Теорема 2. [6] Пусть задан набор биграмм $\Theta \in \Xi$. Тогда

- 1) Если ориентированный граф G_{Θ} является эйлеровым, то в частотном языке F_{Θ} счетное число слов;
- 2) Если ориентированный граф G_{Θ} является почти эйлеровым, то частотный язык F_{Θ} совпадает с $L(\Theta)$ (и, соответственно, в нем конечное число слов);
- 3) Если ориентированный граф G_{Θ} не является ни эйлеровым, ни почти эйлеровым, то в частотном языке F_{Θ} нет ни одного слова.

Имеет место

Следствие 2. Задача определения по набору значений $\Theta \in \Xi$, пуст, конечен или счетен частотный язык F_{Θ} , алгоритмически разрешима.

Назовём две ненулевые матрицы Θ_1 и Θ_2 из Ξ *кратными*, если существует действительный коэффициент $c \in R, c \neq 0$, такой что верно $\Theta_1 = c\Theta_2$. В противном случае ненулевые матрицы назовём некратными.

Теорема 3. [6] Пусть $A, |A| < \infty$ - некоторый конечный алфавит, а матрица биграмм Θ такова, что ориентированный граф G_{Θ} является эйлеровым. Тогда:

1) Если существует такое разложение $\Theta=\Theta_1+\Theta_2$ в сумму

двух ненулевых некратных матриц, причём обе матрицы Θ_1 и Θ_2 задают ориентированные графы G_{Θ_1} и G_{Θ_2} , которые являются эйлеровыми, то язык F_{Θ} нерегулярен;

2) В противном случае язык F_{Θ} регулярен.

Обозначим через $\Xi_k \subset \Xi$ множество матриц размера $|A| \times |A|$, каждый элемент которых не превосходит k>0. Через N_f^k - количество тех из них, которые задают конечные (непустые) языки F_{Θ} , через N_i^k - количество матриц, задающих счётные языки F_{Θ} , через N^k_{reg} - количество матриц, задающих счётные регулярные языки F_{Θ} , через N^k_{nreg} - количество матриц, задающих счётные нерегулярные языки F_{Θ} . Через N^k обозначим общее количество матриц биграмм $\Theta \in \Xi_k$. Очевидно, что $N^k = (k+1)^{n^2}$.

Теорема 4. [7] Выполнены следующие соотношения:

1) Для всех
$$k>k_0$$
 выполнено $rac{1}{n(n-1)}<rac{N_i^k}{N_f^k}<1$;

$$2) \lim_{k \to \infty} \frac{N_i^k}{N^k} = 0,$$

2)
$$\lim_{k\to\infty} \frac{N_k^k}{N^k} = 0$$
;
3) $\lim_{k\to\infty} \frac{N_{reg}^k}{N_{nreg}^k} = 0$.

Обозначим через N_q^k количество матриц биграмм $\Theta \in \Xi_k$, задающих непустые языки F_Θ . Имеет место следствие:

Следствие 3.
$$\lim_{k\to\infty} \frac{N_q^k}{N^k} = 0$$
.

Имеет место критерий контекстно-свободности биграммного языка:

- **Теорема 5.** [8] Пусть матрица кратностей биграмм $\Theta \in$ Ξ, задающая эйлеров граф, разлагается в сумму не менее двух линейно независимых матриц, также задающих эйлеровы графы. Тогда:
- 1) Если Θ разлагается единственным образом в сумму двух линейно независимых матриц $\Theta = \Theta_1 + \Theta_2$, coombemствующих простым эйлеровым циклам, и не разлагается в сумму большего количества линейно независимых матриц, соответствующих эйлеровым циклам, то язык F_{Θ} контекстно-свободный;
- 2) Иначе язык F_{Θ} не контекстно-свободный.

Список литературы

- [1] А. А. Марков. Пример статистического исследования над текстом "Евгения Онегина", иллюстрирующий связь испытаний в цепь. // Известия Императорской Академии наук, серия VI. 1913. Т. 10. № 3. С. 153–162.
- [2] U. Essen and V. Steinbiss. Cooccurrence smoothing for stochastic language modeling. // Acoustics, Speech, and Signal Processing, International Conference on. IEEE, 1992. Vol. 1. P. 161–164.
- [3] N. Chomsky. Three models for the description of language. // Information Theory, IRE Transactions on. 1956. Vol. 2. № 3. P. 113–124.
- [4] В. Б. Кудрявцев, С. В. Алешин, А. С. Подколзин. Введение в теорию автоматов. М.: Наука, 1985.
- [5] О. Ope. М.: Наука, 1980.
- [6] А. А. Петюшко. О биграммных языках. // Дискретная математика. 2013. Т. 25. № 3. С. 64–77.
- [7] А. А. Петюшко. О мощности биграммных языков. // Дискретная математика. 2014. Т. 26. № 2. С. 71–82.
- [8] А. А. Петюшко. О контекстно-свободных биграммных языках. // Интеллектуальные системы. Теория и приложения. 2015. Т. 19. № 2. С. 187–208.