طراحی سیستمهای دیجیتال

پروژه امتیازی (سوال ۷ میانترم) دکتر فصحتی

امیرحسین فراهانی۹۷۱۰۶۱۵۴ تابستان ۱۴۰۳

نمای کلی

هدف نهایی این پروژه پیاده سازی یک پردازشگر ساده دارای قابلیت جمع و ضرب اعداد ۵۱۲ بیتی میباشد. این پردازشگر دارای ۳ بخش اصلی میباشد که این بخش ها شامل حافظه، ALU و واحد کنترلی میباشد.

حافظه

حافظه طراحی شده به عمق ۵۱۲ واحد و هر واحد ۱۶ بیت میباشد.

ALU

واحد پرادزشات عددی نیز دارای قابلیت جمع و ضرب اعداد ۵۱۲ بیتی میباشد. خروجی این واحد ۱۰۲۴ بیت میباشد و مستقیم به رجیستر های A۱ تا A۴ متصل میباشد.

واحد كنترلي

وظیفه واحد کنترلی دریافت دستورات از کاربر و کنترل سیگنال ها میباشد. دستورات ورودی این پردازشگر ۱۳ بیتی میباشند و در کل ۴ دستور وجود دارد.

- ١. انتقال داده از رجيستر به حافظه
- ۲. انقال داده از حافظه به رجیستر
 - ۱. جمع
 - ۴. ضرب

ساختار کلی دستورات نیز به شکل زیر است

ورودی دستورات ضرب و جمع رجیستر های A۱ و A۲ میباشند و بخش پر ارزش خروجی بر A۴ و بخش کم ارزش آن بر A۳ ذخیره می شود.

تحليل عملكرد خروجي

در تصاویر زیر، نمونه هایی از خروجی های Test Bench برا بخش های مختلف نشان داده شده است.

ALU Test Bench

در تصویر بالا در هر کلاک یک ورودی جدید داده می شود و عملیات هر کلاک با کلاک قبلی متفاوت است.

Memory Test Bench

در تصویر بالا ابتدا مقدار اولیه ای که از روی فایل data.txt بر روی حافظه ریخته شده نشان داده می شود و سپس در هر کلاک یک ورودی مجدد خوانده می شود. یک ورودی جدید در آدرسی جدید ذخیره می شود و در کلاک بعدی همان ورودی مجدد خوانده می شود.

Processor Test Bench

در این آزمون ابتدا مقدار اولیه حافظه بر رجیستر های A۱ و A۲ ذخیره می شود و سپس حاصل جمع آنها حساب می شود و روی A۳ ریخته می شود. سپس مقدار A۳ بر آدرس A۷ حافظه ذخیره می شود و در دستور بعدی همان عدد از حافظه بر رجیستر A۱ ریخته می شود. سپس حاصل ضرب A۱ و A۲ حساب می شود و A۱۲ بیت کم ارزش آن بر آدرس A۷ حافظه ذخیره می شود و سپس روی رجیستر A۲ بارگذاری می شود. همانطور که مشاهده می شود پرداز شگر به درستی کار می کند.