EE322M: SIGNAL PROCESSING

Lecture 2

- Some Useful Signal Operations
- Even and Odd Functions

SOME USEFUL SIGNAL OPERATIONS

- ► Time Shifting
- ► Time Scaling
- ► Time Reversal

TIME SHIFTING

TIME SCALING

TIME REVERSAL

COMBINED OPERATION

How to realize x(at - b)?

- ▶ Time-shift x(t) by b to obtain x(t-b). Now time-scale the shifted signal x(t-b) by a [i.e., replace t with at] to obtain x(at-b).
- ▶ Time-scale x(t) by a to obtain x(at). Now time-shift x(at) by b/a [i.e., replace t with t-(b/a)] to obtain x[a(t-b/a)]=x(at-b). In either case, if a is negative, time scaling involves time reversal.

EVEN AND ODD FUNCTIONS

A function $x_e(t)$ is said to be an even function of t if it is symmetrical about the vertical axis:

$$x_e(t) = x_e(-t)$$

▶ A function $x_o(t)$ is said to be an odd function of t if it is anti-symmetrical about the vertical axis:

$$x_o(t) = -x_o(-t)$$

Some Properties of Even and Odd Functions

even function \times odd function = odd function odd function \times odd function = even function even function \times even function = even function

AREA

Because of the symmetries of even and odd functions about the vertical axis, we have

$$\int_{-a}^{a} x_e(t)dt = 2 \int_{0}^{a} x_e(t)dt$$

$$\int_{-a}^{a} x_o(t)dt = 0$$

EVEN AN ODD COMPONENTS OF A SIGNAL

Every signal $\boldsymbol{x}(t)$ can be expressed as a sum of even and odd components because

$$x(t) = \underbrace{\frac{1}{2} \left[x(t) + x(-t) \right]}_{\text{even part}} + \underbrace{\frac{1}{2} \left[x(t) - x(-t) \right]}_{\text{odd}}$$

FINDING THE EVEN AND ODD COMPONENTS OF A COMPLEX SIGNAL

Find the even and odd components of e^{jt} .

$$e^{jt} = x_e(t) + x_o(t)$$

where

$$x_e(t) = \frac{1}{2}[e^{jt} + e^{-jt}] = \cos t$$
 and $x_o(t) = \frac{1}{2}[e^{jt} - e^{-jt}] = j\sin t$

EE322M IIT GUWAHATI KUNTAL DEKA 11

A MODIFICATION FOR COMPLEX SIGNALS

- A complex signal x(t) is said to be conjugate-symmetric if $x(t) = x^*(-t)$.
- ▶ A conjugate-symmetric signal is even in the real part and odd in the imaginary part.
- lacktriangledown A signal is conjugate-antisymmetric if $x(t)=-x^*(-t)$.
- A conjugate-antisymmetric signal is odd in the real part and even in the imaginary part.
- Any signal x(t) can be decomposed into a conjugate-symmetric portion $x_{cs}(t)$ plus a conjugate-antisymmetric portion $x_{ca}(t)$. That is,

$$x(t) = x_{cs}(t) + x_{ca}(t)$$
 where
$$x_{cs}(t) = \frac{x(t) + x^*(-t)}{2}$$
 and
$$x_{ca}(t) = \frac{x(t) - x^*(-t)}{2}$$

EE322M IIT GUWAHATI KUNTAL DEKA 12