Formale Systeme Test 1, Group 2, 7.2.2014

Task 1. (15 + 5) Write down the following statement as a predicate formula:

There exists a 3-element subset of natural numbers that has a 2-element subset whose sum of elements is not divisible by 2.

Is this statement true? (No detailed proof is required, just some intuitive explanation.)

Task 2. (15 + 5) Prove that the following formula is a tautology:

$$(\forall_x [D(x): P(x)] \land \neg \exists_y [D(y): P(y)]) \Rightarrow \neg \exists_z [D(z): T].$$

Using that, show that the following statement is true: If all sheep are white and there is no white sheep, then there is no sheep.

Task 3. (10 + 10)

- (a) Let X be a set and let $1 = \{*\}$. Show that $X \sim \{f \mid f: 1 \to X\}$.
- (b) Prove that $\aleph_0 + \aleph_0 = \aleph_0$.

Task 4. (20) Let n be any natural number that is larger than or equal to 1. Prove (by induction) that then $3^n > 2^n$.

[Recall the inductive definition of k^n for natural numbers k,n: $k^0=1;k^{n+1}=k^n\cdot k$.]

Task 5. (10 + 10) Construct a finite automaton for the language:

- (a) $L = \{a^i b^i c^i \mid i \in \mathbb{N} \land 0 \le i \le 3\}.$
- (b) Let n be a fixed natural number. Give a general construction of a finite automaton for the language $\hat{L} = \{a^i b^i c^i \mid i \in \mathbb{N} \land 0 \le i \le n\}$.