EXHIBIT 25

Detailed Structural Analysis_Damages to the Panorama Glass

• Phenomenon: Panorama sunroof glasses damaged

Measures:

Rear

Ceramic coating

Front

Cause: External impact

REDACTED

REDACTED

Attachment 3: Area of Damaged Glass Screen

► KMC Structure Top/Down Analysis

Vehicle type	TF	VG	SL	REDACTED	XM F/L	
Form	Overall: 0.563m2 Ceramic: 0.219m2	Overall: 0.564m2 Ceramic: 0.217m2	Overall: 0.763m2 Ceramic: 0.354m2		Overall: 0.751m2 Ceramic: 0.275m2	
Coating area ratio	38.9%	38.5%	46.4%		36.6%	
Comparison	Standard	Same	disadvantageous		Same	

Why the black ceramic side is weak

➤ Dispersion of stress in the direction of the glass due to the plasticity of the silk printed BCB material

Why the black ceramic side is weak

- Impact strength is proportional to the surficial compressive stress. Especially, it is impacted by the size of the surficial compressive stress of the bottom side.
- ➤ In the event that impact load is applied from the top side under the conditions as shown in the above drawing, we can see that damages tend to occur in the case of (c) in which the surficial compressive stress level on the bottom side is relatively low.
 - Namely, in the event that a ball is dropped with the BCB layer on the outside, damages occur even at a low height.
- > It is possible to reduce reduction in stress by removing the BCB side.