21 Marking scheme: Worksheet (A2)

1	a	The atoms in a solid are arranged in a three-dimensional structure. There are strong attractive forces between the atoms.	[1] [1]
	b	The atoms vibrate about their equilibrium positions. The atoms in a liquid are more disordered than those in a solid. There are still attractive electrical forces between molecules but these are weaker than	[1] [1]
		those between similar atoms in a solid. The atoms in a liquid are free to move around.	[1] [1]
	С	The atoms in a gas move around randomly. There are virtually no forces between the molecules (except during collisions) because they are much further apart than similar molecules in a liquid. The atoms of a gas move at high speeds (but no faster than those in a liquid at the same temperature).	[1] [1]
2	Th	ne atoms move faster	[1]
-	be	cause their mean kinetic energy increases as the temperature is increased. the atoms still have a random motion.	[1] [1]
3	a	The internal energy of a substance is the sum (of the random distribution) of the kinetic and potential energies of its particles (atoms or molecules).	[1]
	b	There is an increase in the average kinetic energy of the aluminium atoms as they vibrate with larger amplitudes about their equilibrium positions.	[1]
		The potential energy remains the same because the mean separation between the atoms does not change significantly.	[1]
		Hence, the internal energy increases because there is an increase in the kinetic energy of the atoms.	[1]
	c	As the metal melts, the mean separation between the atoms increases.	[1]
		Hence, the electrical potential energy of the atoms increases.	[1]
		There is no change in the kinetic energy of the atoms because the temperature remains the same.	[1]
		The internal energy of the metal increases because there is an increase in the electrical potential energy of the atoms.	[1]
4	Ch	nange in thermal energy = $mass \times specific$ heat capacity \times change in temperature	[1]
5	Sp	the specific heat capacity refers to the energy required to change the temperature of a substance. The ecific latent heat of fusion is the energy required to melt a substance; there is no change in	[1]
		mperature as the substance melts.	[1]
6	E =	= $mc\Delta\theta$ = $6.0 \times 10^5 \times 4200 \times (24 - 21)$ = $7.56 \times 10^9 \text{ J} \approx 7.6 \times 10^9 \text{ J}$	[1] [1] [1]
7	<i>E</i> =	$=mc\Delta heta$	[1]
		$=300\times10^{-3}\times490\times(20-300)$	[1]
		= -4.1×10^4 J (The minus sign implies energy is released by the cooling metal.)	[1]
8		$= mL_f = 200 \times 10^{-3} \times 3.4 \times 10^5$	[1]
		$=6.8 \times 10^4 \mathrm{J}$	[1]

1

9 a i
$$T=273+0=273$$
 K ii $T=273+80=353$ K iii $T=273+80=353$ K iii $T=273+120=153$ K III b i $\theta=400-273=127^{\circ}$ C III $\theta=400-273=127^{\circ}$ C III $\theta=3-273=270^{\circ}$ C III $\theta=3$

14 Heat 'lost' by hot water = heat 'gained' by cold water. [1]

$$0.3 \times c \times (90 - \theta) = 0.2 \times c \times (\theta - 10)$$
 [1]

where c is the specific heat capacity of the water and θ is the final temperature.

The actual value of c is not required, since it cancels on both sides of the equation.

Hence:

$$0.3 \times (90 - \theta) = 0.2 \times (\theta - 10)$$

$$27 - 0.3\theta = 0.2\theta - 2.0$$

$$0.5\theta = 29$$
 so $\theta = 58$ °C [1]

15 Heat 'lost' by metal = heat 'gained' by cold water [1]

$$0.075 \times 500 \times (\theta - 48) = 0.2 \times 4200 \times (48 - 18)$$

(θ is the initial temperature of the metal.)

$$\theta - 48 = \frac{0.2 \times 4200 \times 30}{0.075 \times 500}$$
 [1]

$$\theta - 48 = 672 \tag{1}$$

$$\theta = 720 \, ^{\circ}\text{C}$$