Санкт-Петербургский государственный политехнический университет Петра Великого

Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Лабораторная работа

Фильтрация и свертка

Выполнил студент гр. 3530901/80201 И.С. Иванов

Преподаватель: Н.В. Богач

Санкт-Петербург 2021

Содержание

1	Упражнение №1	5
2	Упражнение №2	10
3	Упражнение №3	12
4	Упражнение №4	16
5	Упражнение №5	18
6	Выводы	21

Список иллюстраций

1	Сигнал Facebook	5
2	Спектр сигнала Facebook	6
3	Выходной сигнал	7
4	Спектр выходного сигнала	7
5	Отношения входного и выходного сигнала	8
6	Фильтр нарастающей суммы и интегрирования	8
7	Сравнение отношения и фильтра	9
8	Сравнение суммирования и фильтрации	9
9	Треугольный сигнал	10
10	Результат применения diff к сигналу	11
11	Результат применения differentiate к спектру сигнала	11
12	Прямоугольный сигнал	12
13	Результат cumsum	13
14	Результат integrate	14
15	Сравнение функций	15
16	Пилообразный сигнал	16
17	Сигнал после двойного интегрирования	17
18	Спектр сигнала после интегрирования	17
19	Кубический сигнал	18
20	Вторая разность кубического сигнала	19
21	Вторая производная кубического сигнала	19
22	Сравнение фильтров	20

Листинги

1	Создание сигнала facebook	5
2	Создание сигнала facebook	6
3	Создание треугольного сигнала	0
4	Создание прямоугольного сигнала	2
5	Применение integrate к спектру сигнала	.3
6	Сравнение cumsum и integrate	4
7	Создание пилообразного сигнала	6
8	Применение двойного интегрирования	6
9	Создание кубического сигнала	8

В первом упражнении необходимо изучить примеры из файла chap09.ipynb. Далее необходимо заменить пилообразный сигнал на непериодические данные Facebook в примере нарастающей суммы.

Создадим сигнал.

```
df = pd.read_csv('Res/FB_2.csv', header=0, parse_dates=[0])
ys = df['Close']
in_wave = Wave(ys, framerate=1)
in_wave.plot()
decorate(xlabel='Time (s)')
```

Листинг 1: Создание сигнала facebook

Рис. 1: Сигнал Facebook

Построим спектр.

Рис. 2: Спектр сигнала Facebook

Получим выходной сигнал, который является совокупной суммой входных сигналов, и его спектр

```
out_wave = in_wave.cumsum()
out_wave.unbias()
out_wave.plot()
decorate(xlabel='Time (s)')
```

Листинг 2: Создание сигнала facebook

Рис. 3: Выходной сигнал

Рис. 4: Спектр выходного сигнала

Посмотрим на отношение входного и выходного сигнала.

Рис. 5: Отношения входного и выходного сигнала

Построим фильтр для нарастающей суммы и сравним его с фильтром интегрирования.

Рис. 6: Фильтр нарастающей суммы и интегрирования

На этой функции видно, что графики сначала совпадают, после расходятся.

Рис. 7: Сравнение отношения и фильтра

Графики совпадают. Фильтр cumsum обратный фильтру diff. Применим cumsum в частотной области.

Рис. 8: Сравнение суммирования и фильтрации

Графики совпали.

В втором упражнении необходимо изучить влияние diff и differentiate на сигнал. Для этого необходимо создать треугольный сигнал, и применить у нему diff. Далее необходимо вычислить спектр сигнала, применить differentiate и посмотреть на результат.

Создадим треугольный сигнал.

```
from thinkdsp import TriangleSignal
in_wave = TriangleSignal(freq=50).make_wave(duration=0.1, framerate=44100)
in_wave.plot()
decorate(xlabel='Time (s)')
```

Листинг 3: Создание треугольного сигнала

Рис. 9: Треугольный сигнал

Применим diff к сигналу.

Рис. 10: Результат применения diff к сигналу

Вычислим спектр сигнала и применим к нему differentiate

Рис. 11: Результат применения differentiate к спектру сигнала

На графике виден необычный эффект. Он вызван тем, что производная треугольного сигнала не определена в вершинах треугольника.

В третьем упражнении необходимо изучить влияние cumsum и integrate на сигнал. Для этого необходимо создать прямоугольный сигнал и применить к нему cumsum. Затем вычислить спектр сигнала и применить integrate.

Создадим сигнал для дальнейшей работы.

```
from thinkdsp import SquareSignal
in_wave = SquareSignal(freq=50).make_wave(duration=0.1, framerate=44100)
in_wave.plot()
decorate(xlabel='Time (s)')
```

Листинг 4: Создание прямоугольного сигнала

Рис. 12: Прямоугольный сигнал

Применим в полученному сигналу cumsum.

Рис. 13: Результат cumsum

Применим к спектру сигнала integrate

```
spectrum = in_wave.make_spectrum().integrate()
spectrum.hs[0] = 0
out_wave2 = spectrum.make_wave()
out_wave2.plot()
decorate(xlabel='Time (s)')
```

Листинг 5: Применение integrate к спектру сигнала

Рис. 14: Результат integrate

Peзультаты cumsum и integrate на вид получились одинаковыми. Проверим их схожесть.

```
out_wave.unbias()
out_wave.normalize()
out_wave2.normalize()
out_wave.plot()
out_wave2.plot()
```

Листинг 6: Сравнение cumsum и integrate

Рис. 15: Сравнение функций

По результатам видно, что различия в сигналах почти неразличимы.

В четвертом упражнении необходимо изучить влияние двойного интегрирования. Для этого надо создать пилообразный сигнал, вычислить его спектр и дважды применить integrate.

Создадим пилообразный сигнал.

```
from thinkdsp import SawtoothSignal
in_wave = SawtoothSignal(freq=50).make_wave(duration=0.1, framerate=44100)
in_wave.plot()
decorate(xlabel='Time (s)')
```

Листинг 7: Создание пилообразного сигнала

Рис. 16: Пилообразный сигнал

Применим двойное интегрирование к созданному сигналу.

```
spectrum = in_wave.make_spectrum().integrate().integrate()
spectrum.hs[0] = 0
out_wave2 = spectrum.make_wave()
out_wave2.plot()
decorate(xlabel='Time (s)')
```

Листинг 8: Применение двойного интегрирования

Рис. 17: Сигнал после двойного интегрирования

Создадим спектр сигнала после интегрирования.

Рис. 18: Спектр сигнала после интегрирования

На графике видно, что сигнал напоминает синусоиду. Происходит это из-за того, что integrate действует как фильтр HЧ. На спектре видно, что отфильтровано все, кроме НЧ.

В четвертом упражнении необходимо изучить влияние второй разности и второй производной. Для этого надо создать CubicSignal, вычислить двойную разность применив diff и проанализировать результат. Далее вычислить вторую производную, дважды применив differentiate к спектру.

Начнем с создания сигнала.

```
from thinkdsp import CubicSignal
in_wave = CubicSignal(freq=0.0005).make_wave(duration=10000, framerate=1)
in_wave.plot()
```

Листинг 9: Создание кубического сигнала

Рис. 19: Кубический сигнал

Вычислим двойную разность, дважды применив diff.

Рис. 20: Вторая разность кубического сигнала

Результат похож на пилообразный сигнал.

Вычислим двойную производную, дважды применив differentiate.

Рис. 21: Вторая производная кубического сигнала

Мы так же получили пилообразный сигнал с некоторым шумом. Связано

это с тем, что производная параболического сигнала не определена в некоторых точках.

Расчитаем фильтры, соответствующие второй разности и второй производной, и сравним их.

Рис. 22: Сравнение фильтров

Оба фильтра являются фильтрами ВЧ, которые усиливают компоненты наивысшей частоты. Поэтому на низких частотах различий нет, но на высоких становятся заметны.

6 Выводы

В результате выполнения данной лабораторной работы были получены знания по интегрированию и дифференцированию сигналов. Была разобрана работа diff, differentiate, cumsum и integrate. Было изучено влияние двойного интегрирования, второй производной и второй разности на сигналы.