

UWA – ENSC3015 Signals and Systems

Please complete your details below:			
Surname:	Number:		
Signature:	Date:		
10:58am, Monday, September 4 in Tattersall LT			
	Class Test 1:		
	Introduction and Time-Domain Analysis		
	Time allowed: 45 minutes Max mark: 48, Assessment: 5% ¹	This paper contains: 6 pages, 6 questions	

Candidates should attempt **all** questions and show **all** working with numerical answers to **3** decimal places in the spaces provided after each question, show as much working as possible to gain maximum marks. You can use the blank page on the reverse side for rough working, but these pages will not be marked

FOR THE ATTACHMENTS PLEASE REFER TO THE SEPARATED PAGES

¹ If you do better in the exam this test will <u>not</u> contribute to your unit marks and the 5% will come from the final exam performance. However if you do better in this test compared to the final exam then this test will be included in the unit marks.

Question 1 (8 marks)

(a) A continuous-time signal x(t) is shown below:

Carefully sketch the signal x(2t + 1):

(b) A discrete-time signal x[n] is shown below:

Carefully sketch the signal x[3-n]:

Question 2 (8 marks)

(a) Determine whether or not each of the following continuous-time signals is periodic. If the signal is periodic, determine the fundamental period

(i)
$$x(t) = 3\cos\left(4t + \frac{\pi}{3}\right)$$

(ii)
$$x_e(t) = \frac{1}{2}(x(t) + x(-t))$$
, where $x(t) = \cos(4\pi t) u(t)$

(i)

(ii)

(b) Determine whether or not each of the following discrete-time signals is periodic. If the signal is periodic, determine the fundamental period (**HINT**: For discrete-time signals the period must be an integer number of samples).

(i)
$$x[n] = \sin\left(\frac{6\pi}{7}n + 1\right)$$

(ii)
$$x[n] = \cos\left(\frac{n}{8} - \pi\right)$$

(i)

(ii)

Question 3 (8 marks)

Determine for each of the systems below (where x(t) is the input and y(t) is the output) which and all of the properties that apply: Memoryless, Time invariant, Linear, Causal, Stable.

- (a) $y(t) = \begin{cases} 0 & x(t) < 0 \\ x(t) + x(t-2) & x(t) \ge 0 \end{cases}$
- (b) y(t) = x(t/3)
- (c) y[n] = nx[n]
- (d) y[n] = x[4n+1]
- (a)
- (b)
- (c)
- (d)

Question 4 (8 marks)

Compute the convolution y[n] = x[n] * h[n] where $x[n] = \alpha^n u[n]$ and $h[n] = \beta^n u[n]$ and $\alpha \neq \beta$. Use $\sum_{m=0}^{M-1} \gamma^m = \frac{1-\gamma^M}{1-\gamma}$, for $\gamma \neq 1$ and simplify your expression.

Question 5 (8 marks)

A Linear Time-Invariant (LTI) continuous-time system is specified by the differential equation

$$\frac{d^2}{dt^2}y(t) + 3\frac{d}{dt}y(t) = \frac{d}{dt}x(t) + 2x(t)$$

 $\frac{d^2}{dt^2}y(t) + 3\frac{d}{dt}y(t) = \frac{d}{dt}x(t) + 2x(t)$ with initial conditions $y_0(0) = \dot{y}_0(0) = 1$. Find $y_0(t)$, the zero-input response. Do NOT use the Laplace transform for this.

Question 6 (8 marks)

For the following LTI system impulse responses determine whether the system is casual and also whether it is stable. Justify your answers.

- $h(t) = e^{-4t}u(t-2)$ (a)
- $h(t) = e^{-2t}u(t+50)$ (b)
- $h[n] = (0.5)^n u[-n]$ (c)
- $h[n] = (-0.5)^n u[n] + (1.01)^n u[n-1]$ (d)
- (a)
- (b)
- (c)
- (d)

PLEASE TEAR THIS PAGE AND KEEP

Periodic Signals

For discrete signals the sinusoid is a periodic function only for certain values of Ω given by $\Omega = 2\pi \frac{m}{N_0}$ $2\pi F$ where $F = \frac{m}{N_0}$

LTI System Properties

 $\mathbf{T}\{\alpha_1 x_1 + \alpha_2 x_2\} = \alpha_1 y_1 + \alpha_2 y_2$ Linearity:

 $\mathbf{T}\{x(t-\tau)\} = y(t-\tau)$ Time-invariant:

Impulse Response

Memoryless System:	$h(t) = K\delta(t)$	$h[n] = K\delta[n]$
Causal System:	h(t) = 0 t < 0	h[n] = 0 n < 0
BIBO Stable System:	$\int_{-\infty}^{\infty} h(\tau) d\tau < \infty$	$\sum_{k=-\infty}^{\infty} h[k] < \infty$

Convolution Integral / Sum

$$x_1(t) * x_2(t) = \int_{-\infty}^{\infty} x_1(\tau) x_2(t-\tau) d\tau$$

$$x_1[n] * x_2[n] = \sum_{m=-\infty}^{\infty} x_1[m]x_2[n-m]$$

Zero-input response for real roots of a continuous-time LTI system

Assume
$$r$$
 of the N roots are real but identical, $(=\lambda)$ with the remaining $(N-r)$ roots being distinct:
$$y_0(t) = (c_1 + c_2 t + \dots + c_r t^{r-1})e^{\lambda t} + c_{r+1}e^{\lambda_{r+1}t} + c_{r+2}e^{\lambda_{r+2}t} + \dots + c_N e^{\lambda_N t}$$

Zero-input response for real roots of a discrete-time LTI system

Assume
$$r$$
 of the N roots are real but identical (= λ), with the remaining ($N-r$) roots being distinct:
$$y_0[n] = (c_1 + c_2 n + \dots + c_r n^{r-1})\lambda^n + \sum_{k=r+1}^N c_k \lambda_k^n$$