

OPERATING AND SERVICE MANUAL

8165A PROGRAMMABLE SIGNAL SOURCE

(Including Options 002 and 907 to 910)

SERIAL NUMBERS

This manual applies directly to instruments with serial number 1904 G 00601 and higher. Any changes made in instruments having serial numbers higher than the above number will be found in a "Manual Changes" supplement supplied with this manual. Be sure to examine this supplement for any changes which apply to your instrument and record these changes in the manual. Backdating information for instruments with lower serial numbers will be found in Section 7.

© HEWLETT-PACKARD GMBH 1979
HERRENBERGER STR. 110, D-7030 BÖBLINGEN
FEDERAL REPUBLIC OF GERMANY

MANUAL PART NO. 08165-90003 Microfiche Part No. 08165-95003

Printed: Oct. 1979

CERTIFICATION

Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United States National Bureau of Standards, to the extent allowed by the Bureau's calibration facility, and to the calibration facilities of other International Standards Organization members.

WARRANTY

This Hewlett-Packard product is warranted against defects in material and workmanship for a period of one year from date of shipment. During the warranty period, Hewlett-Packard Company will, at its option, either repair or replace products which prove to be defective.

HP warrants that its software and firmware designated by HP for use with an instrument will execute its programming instructions when properly installed on that instrument. HP does not warrant that the operation of the instrument, or software, or firmware will be uninterrupted or error free.

For products returned to HP for warranty service, Buyer shall prepay shipping charges to HP and HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to HP from another country.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse; operation outside of the environmental specifications for the product, or improper site preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HP SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

ASSISTANCE

Product maintenance agreements and other customer assistance agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office. Addresses are provided at the back of this manual.

SAFETY SUMMARY

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Hewlett-Packard Company assumes no liability for the customer's failure to comply with these requirements.

GENZHAL - This is a Safety Class I instrument (people I wisk terminal for an abortion earthics) and has been by multicrure? and tested responding to inventigated safety area had?

OPERATION – BEFORE APPLYING POWER comply with the installation section. Additionally, the following shall be observed:

Co not remove instrument govers when

The disconnect synder of a constant of the protective earth grounding will cause a potential shock hazard that could result in serious personal injury. Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any unintended operation.

Make sure that only fuses with the required rated current and of the specified type (normal blow, time delay, etc.) are used for replacement. The use of repaired fuses and the short-circuiting of fuseholders must be avoided.

Adjustments described in the manual are performed with power supplied to the instrument while performed works are runn und Energy two body of performed, and injury.

open distrient main ellings indire, at income able, should be carried out only by a skilled person, who is aware of the hazard involved. Do not attempt internal service or adjustment unless another person, capable of rendering first at income units and income at its income.

On many correct the mateument in the presence of flammat to close or furnes if perating of my pastriced instrument in such in union minutes a definite talkey hozzar.)

Denot misral substitute parts or enform the unjuthor red modification to the instrument.

Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply

To prevent Crit aira silon, mold a egit hand the sign of the assemble at the day of the Crit shall be the may by consider! instrument with party and using the most only place and principle mass only decrease.

SAFETY SYMBOLS

/**!** \

The apparatus will be marked with this symbol when it is necessary for the user to refer to the instruction manual in order to protect the apparatus against damage.

Indicates dangerous voltages.

Earth terminal

WARNING

The WARNING sign denotes a hazard. It calls attention to a procedure, practice or the like, which, if in the mostly participant or adherent to characteristic manager to the first of infulty or the state of the sta

The CAUTION sign denotes a " zard it calls attention to an operating procedure, practice, or the like, which, it not correctly per ormed or adhered to, could result the make to or lesting to much a process beyond the Caution Michael and the make to or the latter of the make to or the latter of the make the country of the latter of the l

Dangerous voltages, capable of causing serious personal injury, are present in this instrument. Use extreme caution when handling, testing, and adjusting.

•				
Alemanaramina				
The state of the s				
and the second s				
			•	
			•	

General Information Model 8165A

SECTION I GENERAL INFORMATION

1-1 INTRODUCTION

- 1—2 This Operating and Service Manual contains information required to install, operate, test, adjust and service the Hewlett-Packard Model 8165A. Figure 1—1 shows the mainframe and accessories supplied. This section covers instrument identification, description, accessories, specifications, and other basic information.
- 1–3 A Microfiche version of this manual is available on 4×6 inch microfilm transparencies (order number on title page). Each microfilm contains up to 60 photoduplicates of the manual pages. The microfiche package also includes the latest Manual Changes supplement as well as all pertinent Service Notes.

1-4 SPECIFICATIONS

1-5 Instrument specifications are listed in Table 1-2. These specifications are the performance standards or limits against which the instrument is tested.

1-6 SAFETY CONSIDERATIONS

- 1—7 The Model 8165A is a Safety Class 1 instrument (it has an exposed metal chassis that is directly connected to earth via the power supply cable).
- 1—8 This operating and service manual contains information, cautions, and warnings which must be followed by the user to ensure safe operation and to maintain the instrument in a safe condition.

1-9 INSTRUMENTS COVERED BY MANUAL

1—10 Attached to the rear of this instrument is a serial number plate (Figure 1—3). The first four digits of the serial number only change when there is a significant change to the instrument. The last five digits are assigned to instruments sequentially. The contents of this manual apply directly to the instrument serial number quoted on the title page. For instruments with lower serial numbers, refer to the backdating information in Section VII of this manual. For instruments with higher serial numbers, refer to the Manual Change sheets at the end of this manual. In addition to change information, the

Manual Change sheets may contain information for correcting errors in the manual. To keep this manual as up-to-date and accurate as possible, Hewlett-Packard recommends that you periodically request the latest Manual Change supplement. The supplement for this manual is identified with this manual's print date and part number, both of which appear on this manual's titla page. Complimentary copies of the supplement are available from Hewlett-Packard.

Figure 1-3. Serial Number Plate

1-11 DESCRIPTION

1–12 The HP Model 8165A Programmable Signal Source provides sine, triangle and square waveforms in the frequency range 1 mHz to 50 MHz. Operating modes include: normal (internal trigger), voltage-controlled oscillator, external trigger, gate, burst and FM. Output capabilities include normal/invert, selectable source impedance, variable offset up to \pm 10 V and variable amplitude up to \pm 20 Vpp. Microprocessor design makes mode selection and parameter setting easy whether done manually or programmed over the HP-IB*. Current operating status, including notification of operating or programming error, is available to the bus and indicated on the front panel.

1-13 OPTIONS

1–14 8165A Option 002 provides additional AM feature and up/down logarithmic sweep modes. The sweep modes have selectable start and stop frequencies and the sweep time may be selected from six discrete values. Sweep start may be externally triggered or, for continuous operation, internally triggered.

NOTE: Option 001 (additional sweep mode only) is obsolete. Refer to Backdating.

^{*} Hewlett-Packard Interface Bus, Hewlett-Packard's implementation of IEEE Standard 488 ,,Standard Digital Interface for Programmable Instrumentation".

1-15 8165A Options 907, 908 and 909 provide handles and/or rack mounting accessories. Refer to Figure 1-2.

1-16 B165A Option 910 provides an additional manual.

1-17 All options will be delivered with the instrument if ordered at the same time as the instrument.

1-18 ACCESSORIES SUPPLIED

1-19 The 8165A is supplied complete with the following items (see Figure 1-1):

ITEM	HP PART NUMBER
1A Fuse for 230V operation	2110-0001
2A Fuse for 115V operation	21100002
Power cable	see Figure 2-2
User's Reference (inserted	08165-90011

1-20 RECOMMENDED TEST EQUIPMENT

in pull-out under instrument)

1-21 Equipment required to maintain the model 8185A is listed in Table 1-1. Other equipment can be substituted if it meets or exceeds the critical specifications listed in the table.

Table 1-1 Recommended Test Equipment

INSTRUMENT	RECOMMENDED MODEL	REQUIRED CHARACTERISTICS	USE
Counter	HP5345A	50 μHz to 50 MHz, 8-digit display	P, A
Digital voltmeter	HP 3455A	0.1–20V, ac rms and dc, 0.004 % accuracy	P, A
Spectrum analyzer	HP181A + 8557A or HP141T + 8552A + 8556A	1–50 MHż	P, A
Spectrum analyzer	HP3580A	100 Hz — 1 MHz	A
Sampling scope	HP180C + 1810A	Dual channel, 2 mV/div, 10 ps $-$ 50 μ /div	Р, А
Scope	HP1740A	100 MHz bandwidth	Ρ, Α
Pulse generator	HP8012B	1 Hz - 1 MHz, square, pulse, offset	P, A
Voltage source	HP6213A	100 mV - 10V dc	Р, А
System controller	HP9825A + 98034A	Desktop computer, HP-IB, Interface	P
Logic analyzer	HP1600A	16-bit	T
Logic probe	HP545A	TTL, MOS	Т
Cable assembly (3)	HP111708	50 Ω, 61cm (24 in), 8NC	P, A
Cable assembly (2)	HP11170A	50 Ω, 30cm (12 in), BNC	P, A
Feedthrough termination	HP10100C	50 Ω, BNC	Ρ, Α
Power attenuator	Microline 766-20	20d8, 20W	P, A
8NC Tee	HP1250-0781	1 mele, 2 female	P, A
Adapter	HP1251-2277	Banana / BNC female	P, A
1:1 Probe	HP10007/8B	8NC / retractable hook	A
10:1 Probe	HP100068	8NC / retractable hook	A
Capacitor	HP 0160-3724	0.47 μF	A
Extender board	HP 5060-2043	24 pin	T
Extender board	HP 5060-1742	18 pin	Т

Frequency Characteristics

Waveforms: Sine, square, pulse, triangle, ramp.

Range: 0.001 Hz to 50.00 MHz (0.001 Hz to 19.99 MHz

for 20 and 80% duty cycle/symmetry).

Accuracy, Stability and Resolution:

Norm	Trig, Gate, Burst
0.001% *	f<1 kHz f≥1 kHz 0.001%* 5%
	± 1×10 ⁶ * ± 5×10 ⁻⁴ **
± 1x10 ⁻⁰ *	± 1x10 ⁻⁶ * ± 1x10 ⁻³ **
	0.001% * ± Ix10.6* ± 1x10.6*

* Accuracy and stability can be improved by phase locking to an external frequency reference.

** After 15 minutes.

Jitter: ≤ 0.2% at 20/80% duty cycle/symmetry

 $\leq 0.1\% (\geq 1 \text{ kHz})$

 \leq 0.02% (0.1 Hz - 999 Hz), further improvement

at lower frequencies.

Output Characteristics

(50 Ω Source terminated by 50 Ω load unless stated otherwise)

Range: amplitude and offset independently variable within ± 10 V.

Source Impedance: selectable 50 Ω ± 1% or 1 k Ω ± 10%, in parallel with 50 pF.

Amplitude:

 $10.0~\text{mV}_{pp}$ to $10.0~\text{V}_{pp},$ $2.00~\text{V}_{pp}$ to $20.0~\text{V}_{pp}$ (1 k Ω into 50 $\Omega).$

Accuracy:	Sine	Square	Triangle (50%)	Ramp (20%, 80%)	Pulse (20%, 80%)
< 1 kHz	± 2%	± 2%	± 2%	± 2%	± 2%
1 kHz - 5 MHz	± 2%	± 2%	± 2%	± 5%	± 2%
5 MHz 20 MHz	± 5%	± 5%	± 10%	± 10%	± 5%
20 MHz — 50 MHz	± 5%	± 5%	± 5% to -	20%	

Resolution: 3 digits.

Offset: $0 \text{ to } \pm 5.00 \text{ V}$,

0 to \pm 10.0 V (1 k Ω into 50 Ω).

Accuracy: \pm (1% programmed value + 1% signal V_{pp} + 20 mV).

Resolution: 2 digits (10 to 99 mV), 3 digits (\geq 100 mV).

Baseline Drift (Trig, Gate and Burst modes): ≤ 5% of peak amplitude.

Sine Characteristics (Norm mode):

Harmonic Components: Up to 5 MHz, THD < 1% of fundamental. Above 5 MHz, all harmonics at least 30 dB below fundamental.

Spurious: all non-harmonically related outputs at least 40 dB below fundamental.

Triangle/Ramp Characteristics

Symmetry: 20, 50, 80% selectable.

Linearity: (10% to 90%): $\pm 1\%$ (up to 5 MHz),

± 5% (above 5 MHz).

cont'd.

Square/Pulse Characteristics:

Duty cycle: 20, 50, 80% selectable. Transition times (10% to 90%): < 5 ns.

 $< 7 \text{ ns} (1 \text{ k}\Omega \text{ into } 50 \Omega).$

Preshoot/Overshoot/Ringing: ± 5%,

 $\pm 10\%$ (1 k Ω into 50 Ω).

Operating Modes

Norm: continuous waveform is generated, phase locked to an internal 10 MHz crystal reference.

VCO: external voltage (100 kHz max) from 10 mV to 10 V linearly sweeps 3 decades up to top of decade in which the 8165A frequency is set. Four bands limited to less than 3 decades:

100 mV - 10 V for 100 kHz - 10 MHz and 10 Hz - 1 kHz,

10 mV - 2 V for 100 kHz - 20 MHz,50 mV - 5 V for 500 kHz - 50 MHz.

Trig: pos. ext input pulse ≥ 10 ns wide generates one output cycle. Upper level $\geq +250$ mV, lower level ≤ 0 V.

Gate: oscillator enabled when ext input \geq +250 mV, disabled when \leq 0 V. First and last output cycles are always complete.

Burst: a preprogrammed number of output cycles is generated. Min. time between bursts 50 ns. Burst length 0 to 9999 cycles. Min. trigger pulse width 10 ns, upper level ≥ + 250 mV, lower level ≤ 0 V.

FM: $0 \text{ to } \pm 1 \text{ V}$ modulates $0 \text{ to } \pm 1\%$ deviation.

Modulating Frequency: 100 Hz to 20 kHz (Norm mode), dc to 20 kHz (Gate mode with carrier frequency ≥ 1 kHz).

Input Impedance: $10 \text{ k}\Omega$ typical.

AM (Option 002 only): 0 to 2.5 V_{pp} modulates 0 to 100% modulation depth.

Modulating Frequency: dc to 10 MHz (-3 dB).

Input Impedance: $10 \text{ k}\Omega$ typical.

Pulse Modulation: transition times < 50 ns. Envelope Distortion (dc to 250 kHz mod. freq.):

 Carrier
 Modulation
 Distortion

 ≤ 1 MHz
 0 to 90%
 < 1%</td>

 > 1 MHz
 0 to 30%
 < 3%</td>

Carrier Frequency Deviation: < 0.01%, 0 to 30% modulation

Sweep (Option 002 only): provides logarithmic up/down sweep up to 3 decades between limits set on the 8165A. As in VCO mode, 4 bands limited to less than 3 decades Min frequency 1 mHz.

Sweep-rate: 0.01, 0.1, 1, 10, 100, 1000 seconds per decade selectable.

Trigger: one up-down sweep per trigger pulse (upper level $\geq +250 \text{ mV}$, lower level $\leq 0 \text{ V}$, width $\geq 10 \text{ ns}$).

Accuracy: sweep start frequency \pm (15% + 0.5% of max. stop frequency), sweep stop frequency \pm 15%.

Resolution: 2 digits.

Auxiliary outputs and inputs

Ext. Input: external signals used in VCO, Trig, Gate, Burst and (Option 001) Sweep ext. trig.

Signal range in VCO: 10 mV to 10 V for 3-decade sweep. Signal thresholds in Trig, Gate, Burst, Sweep ext trig: +250 mV (upper), 0 V (lower).

Max. input: $\pm 20 \text{ V}$,

Input impedance: $10 \text{ k}\Omega$ typical.

Sync. output: one trigger pulse per main output cycle. Amplitude: $3 V_{pp}$ into open circuit (1.5 V_{pp} into 50 Ω).

Ext. 10 MHz ref.: external 10 MHz, TTL, system clock. Rear panel switch selects ext or int clock as intrument reference.

Mod Inp: FM and (Option 002 only) AM input.

Signal range in FM:0 to \pm 1 V for 0 to \pm 1% deviation. Signal range in AM: 0 to 2.5 V_{pp} for 0 to 100% modulation depth.

Max. input: ± 20 V.

Input impedance: 10 kΩ typical.

Sweep out (Option 002, only): triangular sweep voltage, 0 to 2.99 V amplitude for 3 decades (1 V/decade).

HP-IB capability and microprocessor

Code	Interface Function	Code	Interface Function
SH 1	Source Handshake	SR 1	Service Request
AH 1	Acceptor Handshake	RL 1	Remote/Local
Т6	Talker (basic talker,	PP 0	No Parallel Poll
	serial poll, unaddress	DC 0	No Device Clear
	to talk if addressed	DT 1	Device Trigger
1	to listen)	C 0	No Controller
1.4	Listener (Basic listener),	E 1	Three-state Bus
	unaddress to listen if		Drivers
	addressed to talk)		

Accuracy: See Frequency and Output Characteristics

Settling times:

Frequency: $< 20 \text{ ms to } \pm 5\% \text{ of programmed value. In}$ Norm mode, and in Trig, Gate, Burst at frequencies $< 1 \text{ kHz} : < 70 \text{ ms to } \pm 2\% \text{ of programmed value,}$ < 300 ms to final value.

Other Functions: 20 ms. The following range changes can take up to 200 ms:

Change of duty cycle.

Selection to or from Sweep/VCO.

Changing up to/down from the following decades: Frequency 1 kHz, 10 kHz, 100 kHz, 1 MHz, 20 MHz. Amplitude 100 mV, 1 V Offset 1 V.

Number of bytes sent/received

Listener: up to 65 bytes (89 in Option 002) for one complete set of operating parameters.

Talker-Learn Mode: 8 lines. Each line up to 16 bytes

plus CR LF. Total: 144 bytes max. Talker-Error Message: 1 byte.

Byte Rate:

Function Time (typical values): set up as talker/listener 1.1 ms, receiving time per character 0.1 ms, processing per parameter 3.0 ms, entry time per digit 2.0 ms, check time per parameter entry 5—10 ms, waveform/duty cycle/modulation 1.0 ms, input mode 6.5 ms, output modes 9.0 ms, recall 25 ms, store 380 ms.

Memory: 10 addressable locations plus one for existing operating state.

Capacity: each location can store a complete set of

operating parameters and modes. Access time: 20 ms each location.

Storage time: internal battery provides memory retention for approx. 4 weeks at room temperature. Battery re-

charges when 8165A is switched on.

General

Power Requirements: 100 V, 120 V, 220 V or 240 V; +5 V to -10%, 48 to 66 Hz, 200 VA max.

Environmental: operates to specifications from 0 to 50°C, and with relative humidity to 95% at 40°C. Storage: -20 to +70°C.

Weight: net 12 kg (26.5 lbs.). Shipping 16 kg (35.3 lbs.).

Dimensions: 426 mm wide, 145 mm high, 450 mm deep (16.8 x 5.7 x 17.7 inches).

Accessories Available: The following cables for interconnecting HP-IB instruments to the bus are available:

10631A 1 m (3.28 ft) 10631C 4 m (13.1 ft) 10631B 2 m (6.56 ft) 10631D 0.5 m (1.64 ft)

The following adapters for connecting to the DUT are available:

15104A Adder/Splitter 15450A Adapter for terminating at DUT 15451A TTL-CMOS Translator. CMOS level

originates from DUT thus protecting it.

OPTIONS

Option 002: Sweep and Amplitude Modulation

Option 907: Front Handle Kit,

p.n. 5061-0089

Option 908: Rack Mounting Kit,

p.o. 5061-0077

Option 909: Combined Front Handle and Rack Mounting Kit, p.n. 5061-0083

O , 1

Option 910: extra Operating and Service Manual

Specifications describe the instrument's warranted performance. Supplement characteristics — identified by the word "typical"— are intended to provide information useful in applying the instrument by giving typical, but non-warranted, performance parameters.

Data subject to change

SECTION II INSTALLATION

2-1 INTRODUCTION

2-2 This section provides installation instructions for the instrument and its accessories. It also includes information about initial inspection and damage claims, preparation for use, and packaging, storage and shipment.

2-3 INITIAL INSPECTION

2–4 Inspect the shipping container for damage. If the container or cushioning material is damaged, it should be kept until the contents of the shipment have been checked for completeness and the instrument has been checked mechanically and electrically. The contents of the shipment should be as shown in Figure 1–1 plus any accessories that were ordered with the instrument. Procedures for checking the electrical operation are given in Section 3. If the contents are incomplete, if there is mechanical damage or defect, or if the instrument does not pass the operator's checks, notify the nearest Hewlett-Packard office. Keep the shipping materials for carrier's inspection. The HP office will arrange for repair or replacement without waiting for settlement.

2-5 PREPARATION FOR USE

2-6 Power Requirements

- 2-7 The instrument requires a power source of 100V, 120V, 220V or 240V (+5%, -10%) at a frequency of 48 to 66 Hz single phase. The maximum power consumption is 200 VA.
- 2-8 Line Voltage Selection

CAUTION

BEFORE SWITCHING ON THIS INSTRUMENT make sure that the instrument is set to the local line voltage.

2-9 Figure 2-1 provides information for line voltage and fuse selection:

Figure 2–1. Switch Settings for the various Nominal Powerline Voltages

2-10 Power Cable

WARNING

To avoid the possibility of injury or death, the following precautions must be followed before the instrument is switched on:

- a. If this instrument is to be energized via an autotransformer for voltage reduction, make sure that the common terminal is connected to the neutral pole of the power source (non-symmetrical supplies). Ensure that the ground connection is preserved).
- b. The power cable plug shall only be inserted into a socket outlet provided with a protective ground contact. The protective action must not be negated by the use of an extension cord without a protective conductor.
- c. Before switching on the instrument, the protective ground terminal of the instrument must be connected to a protective conductor of the power cable. This is verified by checking that the resistance between the instrument chassis and the front panel and the ground pin of the power cabla plug is zero ohms.
- 2-11 In accordance with international safety standards, this instrument is equipped with a three-wire power cable. When connected to an appropriate ac power receptacle.

this cable grounds the instrument cabinet. The type of power cable shipped with each instrument depends on the country of destination. Refer to Figure 2–2 for the part number of the power cords available.

2—12 If the plug on the cable supplied does not fit your power outlet, then cut the cable at the plug end and connect a suitable plug. The plug should meet local safety requirements and include the following features:

Minimum current rating of 2A Ground connection Cable clamp.

The colour coding used in the cable will depend on the cable supplied (see Figure 2—2).

Figure 2-2. Power Cables Available: Plug Identification

2-13 HP-IB Connector

2–14 The rear panel HP-IB connector (Figure 2–3) is compatible with the connectors on Cable Assemblies 10631A, B, C and D. If a cable is to be locally-manufactured, use connector male, HP part number 1251–0293.

Figure 2-3, HP-IB Connector

2-15 HP-IB Logic Levels

2—16 The 8165A HP-IB lines use standard TTL logic. Logic levels are as follows:

True = low = digital ground or 0V dc to +0.4V dc, False = high = open or +2.5V dc to +5V dc.

All HP-IB lines have LOW assertion ("1") states. High states are held at +3V dc by pullups within the instrument. When a line functions as an input, approximately 3.2mA of current is required to pull it low through a closure to digital ground. When a line functions as an output, it will sink up to 48mA in the low state and approximately 0.6mA in the high state.

Isolation. The HP-IB line screens are not isolated from outer chassis (frame) ground.

2-17 Operating Environment

2–18 The instrument will operate within specifications when the ambient temperature is between 0°C and 50°C.

SECTION III OPERATION AND PROGRAMMING

3-1 INTRODUCTION

3–2 This section explains the functions of controls, connectors and indicators, and provides operating and programming information. The sweep and AM option (002) is included.

3-3 SPECIAL OPERATING CONSIDERATIONS

- 3-4 The following steps must be taken before applying power to the Model 8165A.
 - a) Read the safety summary at the front of this manual.
 - b) Be sure the power selector switches are set properly for the power source being used to avoid instrument damage.
 - c) Ensure load is not overdriven (up to 20 V p-p or 400 mA can be delivered).

CAUTION

Do not change the LINE SELECTOR Switch setting with the instrument on or with power connected to the rear panel.

3-5 OPERATORS CHECKS

3-6 Use the performance checks in Section IV to verify proper operation of the 8165A.

3-7 CONTROLS, CONNECTORS AND INDICATORS

3-8 Refer to Figure 3-1.

3-9 OPERATING INSTRUCTIONS

3–10 Opereting modes and parameters can be set on the front panel (local operation) or programmed using the HP-IB. The operating modes, selected by pushbuttons with built-in indicators, are explained in the following paragraphs. Signal parameter selection, involving a 3-step operation (select PARAMETER, select DATA, ENTER units) and using a numerical display with a units indicator, is dealt with in § 3–45.

3-11 Commence by setting the LINE switch on and press the DISABLE/ENABLE button (the lamp should

go out, indicating that the output is enabled). The 8165A will have automatically assumed the operating state prevailing et switch-off (see also § 3–59). Should the ERROR lamp flash, an incompatible setting has been attempted and reference should be mede to § 3–60.

Figure 3—2 Normal Mode (50 % duty cycle/symmetry)

Figure 3-3 Normal Mode (20 and 80% duty cycle/symmetry)

3-12 Function and Duty cycle

3–13 As shown in Figures 3–2 and 3–3, triangular or square wave output with 20, 50 or 80% symmetry/duty cycle, or sine wave may be selected by pressing the appropriate FUNCTION and DUTY CYCLE buttons. The Figures, in which NORM input mode (§3–15) and NORM output (§ 3–44) are assumed, also shows the relationship between OUTPUT and SYNC OUTPUT.

3-14 Input Modes (Note: frequency generation above and below 1kHz are dissimilar, see §3-37).

3-15 Normal Mode (NORM) (Figures 3-2, 3-3).

3–16 When normal mode is selected, the output is continuous and its frequency is determined by the FREQUENCY setting (§3–46).

3-17 Voltage-controlled Oscillator Mode (VCO)

3–18 In this mode, a signal applied to the EXT INPUT connector determines the output frequency. The applied signal may change at rates up to 100 kHz. The working

Figure 3-4. Example of operation in VCO mode

range of input voltage (10 mV - 10V) sweeps the output frequency over a maximum range of 1:1000; the actual range swept depends, as shown in Table 3–1, on the 8165A's frequency setting.

3–19 As an example, suppose a sweep from 50 Hz up to 500 Hz is required. This means that, when the 8165A is set to a frequency anywhere in the range 100 Hz — 999 Hz (which brackets the desired sweep maximum), the desired sweep can be obtained by applying an external signal which varies between + 500 mV and + 5 V levels. See Figure 3–5.

Figure 3-5 VCO mode characteristics

Table 3-1, Bands in VCO Mode

FREQUE	FREQUENCY setting		Sweepab	le band	
of 8165A	of 8165A			,	То
	·	V _{in} mln	f _{out} mìn	V _{in} max	^f out max
1 mHz	- 9.99 mHz	10m∨	10μHz	10V	10mHz
10 mHz	99.9 mHz	10mV	100µHz	10∨	100 mHz
100 mHz	999 mHz	10mV	1mHz	10∨	1Hz
1 Hz	- 9.99 Hz	10mV	10mHz	10 V	10Hz
10 Hz	- 99.9 Hz	10mV	100mHz	10 V	100Hz
100 Hz	- 999 Hz	100mV	10 Hz	10V	1kHz
1 kHz	9,99 kHz	10mV	10Hz	10V	10kHz
10 kHz	- 99.9 kHz:	10mV	100Hz	10V	100kHz
100 kHz	- 999 kHz	10mV	1kHz	10V	1MHz
1 MHz	9.99 MHz	100mV	100kHz	10V	10MHz
10 MHz	- 19.99 MHz	10mV	100kHz	2V	20MHz
20 MHz	- 50 MHz	50mV	500kHz	5V	50MHz

3-20 External Trigger Mode (TRIG)

3–21 When externally triggered, the positive-going edge of the pulse applied to the EXT INPUT connector initiates one complete output cycle (Figure 3–6), the frequency (and also the maximum trigger frequency) being defined by the 8165A's frequency setting. Thus, a pulse train of desired repetition rate and pulse width can be set up. By using different duty cycle settings a variety of waveform possibilities are realized (Figure 3–7). Triggering may also be done manually or by programming.

Figure 3—6 External Trigger Mode (50 % duty cycle/symmetry)

Figure 3—7. External Trigger Mode (20 and 80% duty cycle/symmetry)

3-22 Gate Mode (GATE)

3–23 In gate mode, the leading edge of a positive pulse applied to the EXT INPUT connector initiates the output stream, end the treiling edge causes the following

Figure 3-8. Example of Gate Mode

positive edge of the SYNC OUTPUT to terminate the stream at the next crossover. A whole number of complete output pulses are always generated.

3-24 Burst Mode (BURST)

3–25 A preset number of output cycles can be generated on each leading edge of a positive-going trigger pulse signal applied to EXT INPUT when burst mode is selected. The burst length may be set up to 9999 cycles as described in §3–50. At least 50 ns must separate consecutive bursts, Can be triggered manually.

Figure 3-9. Example of Burst Mode

3-26 Sweep Modes - OPTION 002 Only

3–27 Internal Trigger Sweep selection will cause the output frequency to make one up/down sweep from the SWEEP START to the SWEEP STOP limits set on the 8165A (§3–48). As shown in Table 3–2, the sweep takes place within a band whose top decade brackets the SWEEP STOP value. The internally-generated, triengular, sweep voltage V_{sweep} is available at the rear panel SWEEP OUT BNC. Frequency change rate is logarithmic.

Table 3-2. Bands in Sweep Mode

SWEEP ST	TART min	SWEEP STOP max		
fout	V _{sweep}	fout	V _{sweep}	
1 mHz	2.0 V	9.9 mHz	2.99 V	
1 mHz	1.0 V	99 mHz	2.99 V	
1 mHz	0.0 V	.99 Hz	2.99 V	
10 mHz	0.0 V	9.9 Hz	2,99 V	
.10 Hz	0.0 V	99 Hz	2.99 V	
10 Hz	1.0 V	.99 kHz	2.99 V	
10 Hz	0.0 V	9.9 kHz	2.99 V	
.10 kHz	0,0 V	99 kHz	2.99 V	
1 kHz	0.0 V	.99 MHz	2.99 V	
100 kHz	1.0 V	9.9 MHz	2.99 V	
500 kHz	0.69 V	50 MHz	2.69 V	

Figure 3–10. Sweep Mode Characteristics

3-28 As an example, suppose a sweep is required from 10 Hz (SWEEP START) to 700 Hz (SWEEP STOP), then V sweep varies between the levels 1.00 V (i.e., log 10) and 2.84 V (i.e., log 700).

3—29 Sweep times of 0.01, 0.1, 1, 10, 100, 1000 seconds per decade can be selected on the SWEEP TIME push-buttons.

3-30 External Trigger Sweep requires the application of a positive pulse at the EXT INPUT connector to initiate a single up/down sweep (Figure 3-11). In other respects, operation is the same as internal trigger sweep.

Figure 3-11. Example of Sweep Mode

3-31 Frequency Modulation (FM)

3–32 The 8165A's output can be frequency modulated by applying a voltage to the rear panel.MOD INP connector. The maximum deviation is \pm 1 % of carrier frequency for which an external voltage of \pm 1 V is needed. In normal mode, the modulating voltage can vary in the range 100 Hz to 20 kHz. In trigger, gate or burst modes, the modulating frequency may be extended down to dc, but the 8166A's (carrier) frequency must be set to at least 1.000 kHz.

3-33 Amplitude Modulation (AM)

3–34 A signal can be applied to the rear panel MOD INP connector to provide a precisely amplitude — modulated signal at the 8165A output. Amplitude range for the modulating signal is 0–2.5 V_{pp} to provide a modulation range of 0–100 %. Modulating frequency is dc to 100 MHz (–3 dB points).

3-35 Frequency Reference

3—36 Phase lock techniques, using an internal, precision 10 MHz crystal reference, achieve very stable output frequencies. A 8NC and switch on the rear panel permit the use of an external, 10 MHz, TTL, system

master clock instead of the internal reference.

3-37 Frequency Generation

3–38 Because of the 8165A's wide frequency range, two methods of frequency generation are used. These lead to different distortion and stability considerations – but first, a brief description of the two methods.

3—39 The heart of the 8165A is a voltage-controlled. 1 kHz-50 MHz, oscillator which usually operates in phase lock using, as already mentioned, a crystal reference. For frequencies below 1 kHz, the output of the voltage-controlled oscillator is arranged to be an exact multiple of the required frequency, and a programmed divider reduces it to that needed. A triangular waveform is approximated by means of an up/down counter (programmed for 20, 50, or 80% duty cycle) and a D/A converter. (Sinewave is derived from the 50% duty cycle triangle using the same sine shaper as is used for frequencies above 1 kHz; square wave is derived by detecting the highest and lowest count of the up/down counter.) The D/A converter output consists of 1000 amplitude steps per output cycle; this means that, at 1 mHz for example, the amplitude changes from one discrete level to the next every second.

10 ms/div, 10 mV/div 8165A: 50Hz, triangle, 1 V.

Figure 3—12. Example of Triangle Output below 1 kHz 3—40 Differences in operation cen now be summarized as follows:

frequencies below 1 kHz amplitude steps through 1000 discrete levels per cycle, phase lock in all modes,

frequencies above 1 kHz amplitude continuous, phase lock in normal mode only.

3-41 Output Parameters

 $3-42\,$ The 8165A is designed so that source/load configurations of 50Ω into 50Ω , 50Ω into high impedance, and $1~k\Omega$ into 50Ω can be easily arranged.

Amplitude and offset are independently variable and depend upon the source/load configuration (Table 3–3). As shown in Figure 3–13, reflections are minimized when the system is terminated by a low-capacitance 50Ω -load at the device which the 8165A drives. However, termination at the 8165A may be preferred if the device impedance is reactive.

20 V AMPLITUDE CAPABILITY OUTPUT MODE 50 Ω , LOAD IMPEDANCE 1K Ω

EXT INPUT (TRIGGER) 1V/DIV OUTPUT

AT DEVICE 2V/DIV

0.1 µs/DIV

20 V AMPLITUDE CAPABILITY OUTPUT MODE 1K $\!\Omega_{\!\scriptscriptstyle 1}$, LOAD IMPEDANCE 50 $\!\Omega_{\!\scriptscriptstyle 2}$

EXT INPUT (TRIGGER) 1V/DIV

OUTPUT AT DEVICE 2V/DIV

 $0.1\mu s/DIV$

10 V AMPLITUDE CAPABILITY OUTPUT MODE 50 Ω , LOAD IMPEDANCE 50 Ω

EXT INPUT (TRIGGER) 1V/DIV

OUTPUT AT DEVICE 1V/DIV

0.1µs/DIV

8165A SETTINGS: SINE, BURST (3 CYCLES), 20 MHz, AMPLITUDE 2.5V (DIGITAL DIS-PLAY), ZERO OFFSET

Figure 3—13. Source/load configurations (Low-capacitance load)

Table 3-3 Output Voltage Summary

OUTPUT	EXT	AMPLIT	rude1 v _{pp}	OFFSET	1 V _{dc}	VOLTAGE AT
MODE	LOAD	MIN	MAX	MIN	MAX	EXT LOAD Vpp/Vdc
$50\Omega^2$	50Ω	10mV	10V	0±10mV	±5∨	As digital display
50Ω²	HIGHZ	20mV	20V	0±26mV	±10V	Approx 2x digital display
1k Ω^3	50Ω	2V	20V	0±20mV	±10V	As digital display

Notes

- Amplitude + offset must lie within a ± 10 V window. Voltages set as in \$3-52.
- 2. Applies only to displayed amplitudes ≤ 10Vpp
- 3. Applies only to displayed amplitudes ≥ 2Vpp
 Attempts to select incompatible impedance/voltage
 configurations will not be accepted and will cause the
 ERROR lamp to light.

3-43 In addition to $50^{\circ}\Omega$ systems, the instrument is also suitable for driving any desired impedance. This is due to the current mode output configuration (Figure 3–14) where the maximum current available with $1~k\Omega$ source impedance is \pm 200mA peak signal and \pm 200mA offset.

Figure 3-14. Configuration of Output Stage

3–44 The output can be turned on and off with the DISABLE/ENABLE button and may be inverted using the INV/NORM button. The OUTPUT MODE buttons are respectively lit when disable, invert and 1 $k\Omega$ are effective. Disable is automatic at switch-on. For threshold testing, the offset can be obtained without signal by selecting trigger, gate or burst modes in the absence of a trigger signal.

3-45 Selection and Storage of Parameters

3-46 Frequency

3-47 The 8165A's frequency is set as follows:

press FRQ key, check that FREQUENCY lamp blinks,

press the required DATA keys sequentially (e.g., 4 then 3, than 2, then · , then 6) and observe that the display above the FREQUENCY lamp displays the desired number,

press the appropriate ENTRY key for the unit desired (e.g., "Hz or V") verify that the correct unit appears to the right of the FREOUENCY display and that the lamp glows steadily. The 8165A is now operating at the new frequency (432.6 Hz, in this example).

Use may be made of the VERNIER controls as follows: press FRO key,

press the appropriate VERNIER key for fast or slow, up or down shift. The output frequency changes with the display during this process so that it is only necessary to press an ENTRY key if the unit is to be changed.

When setting frequency for the VCO mode, refer to Table 3-1.

3-48 Sweep Start/Stop (Option 002 only)

3–49 When sweep mode is required, set the start and stop frequencies using procedures similar to \$3–45 in conjunction with the SWEEP START and SWEEP STOP keys. Refer to Table 3–2 for the permissible bands.

3-50 Burst

3-51 The number of cycles per burst is set as follows:

press PARAMETER key BURST, check that
BURST lamp blinks,
press the desired DATA keys, check that the
required number shows in the display above
the BURST lamp,
press the ENTRY key "kHz or BURST".

3-52 Amplitude and Offset

3-53 Amplitude and offset are each set in a manner similar to frequency, using the AMPL and OFFSET keys.

If a negative offset is required, press the CHS (change sign) key any time during DATA entry but before pressing the mV or V key.

3-54 Storage and Recall

3-55 Tan addressable store locations are available, each of which is capable of storing a complete sat of 8165A operating modes and parameters. To store a current set of modes and parameters:

press STO (store) key, press a DATA key (0 to 9, as dasired). To put the 8165A into a previously-stored set of operating modes and parameters:

press RCL (recall) key press the required DATA key (0 to 9).

3-56 Power-fail Memory

3–57 When power is removed from the 8165A, the current operating parameters are automatically stored in the power-fail memory so that, when the supply is restored, the 8165A can return to its previous operating state. However, to protect external circuits and prevent possible remote control ambiguities:

the output is disabled, local control is implemented.

Consequently, deliberate (manual or programmed) intervention is required to obtain an output or to acquire remote control.

3-58 Storage and Access Times

3-59 Addressable memories and the power-fail memory remain effective for approx 4 weeks at room temperature after power has been removed. Access time is 20ms, see Table 1-2 for settling times.

Note: If the internal batteries are allowed to run down, data must be re-entered and the instrument should be left switched on so that the batteries can recharge.

3-60 Error Indication

3-61 If it is attempted to select incompatible operating modes or parameters, the ERROR lamp will flash and the 8165A will remain in its previous operating state. To clear an error, correct DATA and ENTRY. Common causes of errors are:

frequency out of range, duty cycle/frequency, output impedance/voltage (see §3-41).

3-62 PROGRAMMING INSTRUCTIONS

3—63 The 8165A operates on the HP-IB as follows:
listens to messages from the HP-IB system
controller by means of which all*
8165A operating parameters and modes
can be programmed; access time (the time
between program command and the implementation at the 8165A output, refer also
to specifications, Table 1—2) is 20 ms,
*vernier operation is simulated by programming a loop which increments/decrements a value.
talks; provides error messages and reports

3-64 The bus lines are as follows (all use negative logic):
8-bit data bus (lines DIO 1 to 8),

operating state.

handshake lines — DAV (data valid), NRFD (not ready for data), NDAC (data not accepted),

control lines — IFC (interface clear), ATN (attention), SRO (service request), REN (remote enable), EOI (end or identify).

The 8165A uses all lines except EOI. Terminations, logic levels and pinouts are described in Section II. In this manual, bus information will generally be restricted to 8165A specifics, for this reason, the handshake lines will not be discussed and the control lines will only be mentioned in connection with specific 8165A activity.

Permissible codes are presented in Table 3–8. For more bus information, refer to the condensed description in HP publication 59401–90030 and to IEEE Standard 488.

3-65 To use the 8165A on the bus, remote control must be implemented. This is done by setting the REN line true. A return to local control can be made manually (LOCAL RESET button), by sending the command GTL (go to local), or by setting REN false. Refer to \$3-73.

3-66 Addressing

3–67 Talk and listen addresses are transmitted by the system controller over the data bus with the ATN line true. When an instrument recognizes its address, it will adopt the appropriate bus mode (i.e., it will listen to the bus if its listen address has been transmitted, talk if the talk address has been transmitted). The 8165A's addresses are selected by a switch on the rear panel from the possibilities presented in Table 3–4. When allocating addresses, make sure no two instruments have the same address.

When programming an address, set ATN true and arrange that the ASCII character derived from Table 3—4 appears on the bus. To deaddress, use UNL, UNT commands (or address another device as talker).

Table 3-4 Available Addresses (ATN true)

Data bu (DIO lir		Addr ASC	ess in	
Fixed 8 7 6	Selectable 5 4 3 2 1	Talk	Listen	
8 7 6 0 T L 0	!	Talk @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [/] ^	Listen Space! #\$% &, () * +, -, / 0 1 2 3 4 5 6 7 8 9 : ; < = >	8165A set to this address at factory. Usually controller address!
OTL	ી તું કર્યો હતાં હતા હતાં છે. -		? (********	Forbidden set- ting! UNT, UNL commands.

Selector on 8165A rear panel (factory setting).

L = 1 for listen address, 0 for talk address T = 1 for talk address, 0 for listen address

3-68 Mode and Parameter Setting

3-69 When the 8165A has been listen-addressed, it will be prepared to accept messages which will change a parameter or its operating mode. Each mode and parameter-setting message consists of a number of ASCII data bytes transmitted serially over the data lines with

ATN false. The coding for the bytes is given on the front panel and also shown in Table 3—5 which summarizes all mode and parameter-setting messages, and provides an example. Reference may be made to Table 3—8 to convert each ASCII byte to a bit pattern on the data bus.

Table 3-5 Mode and Parameter-setting Messages (ATN false)

Message	Serial ASCII bytes	Comments
Function		
select sine	F1	
select triangle	F2	
select triangle	F3	
•	13	
Duty cycle: select 20%	D1	See §3-76
select 50%	D1	See 93-76
	D3	
select 80%	DS	
Input mode:	11	
select normal	11	
select VCO	12	Triang (T. (1. O. O)
select trigger	13	Trigger message (Table 3–6) can be used.
select gate	14	
select burst	15	Trigger message (Table 3–6) can be used.
select ext trig sweep	16	Option 002 only.
select int trig sweep	17	Option 002 only.
Modulation:		
select FM	FM1	
reject FM	$FM\phi$	
select AM	AM1	AM Option 002 only
reject AM	$AM\phi$) Aut option out only
Parameters:		
set frequency to f mHz	FRO/MZ	f a number 1—9999
set frequency to f Hz	FROfHZ	f a number 0.001–9999
set frequency to f kHz	FRQfKHZ	f a number 0,001–9999
set frequency to f MHz	FROfMHZ	f a number 0.001–50 (50% duty cycle), 0.001–19.99 (20,80%).
set amplitude to v mV	AMPvMV	v a number 10/20–999
set amplitude to v V	AMPvV	v a number 0.01 = 10/20
set offset to v mV *	OFSvMV	ν a number ± 10/20 $-$ ± 5/10 \rightarrow see \$3-42.
set offset to v V *	OFSvV	ν a number $\pm 0.01 - \pm 5/10$
*If no sign is given, the	0.000	Validifiber 2 0.01 = 2 5/10 3
previous sign is assumed.		
	BURABT	n an integer 0-9999
set burst to n cycles set sweep start to f mHz	STAAMZ	7 an integer 0—3333
set sweep start to findz	STA/WZ	
	STAFKHZ	
set sweep start to f kHz	STAMHZ	Ontion 002 only for firefort
set sweep start to f MHz	STP/MZ	Option 002 only, for f refer to
set sweep stop to f mHz	i	§3-26.
set sweep stop to f Hz	STPfHZ	
set sweep stop to f kHz	STPfKHZ	
set sweep stop to f MHz	STP/MHZ	

Table 3-5 (cont'd)

Message	Serial ASCII bytes	Comments
Sweep time: select 0.01s/decade select 0.1s/decade select 1 s/decade select 10s/decade select 100s/decade select 100os/decade select 100us/decade Output mode: disable output enable output invert input normal output select 1 kΩ output imped. select 50 Ω output imped.	S1 S2 S3 S4 S5 S6 OD OE OI ON O1 O5	Option 002 anly
Memory: store current operating modes and parameters in 8165A store location n adopt parameters in store location n	STOn RCLn	n an integer 0–9, see § 3–54

Example: a serial byte transmission

F2 D1 I4 FRQ99,9MZ AMP1.3V OFS-20MV 0E 0I 05 STO2

sets a listen-addressed 8165A to the following parameters: triangle, 20% duty cycle, gate mode, 99.9 mHz, 1.3V amplitude, -20 mV offset, output enabled, output inverted, 50 Ω output impedance. This entire set of parameters is then stored in the 8165A's memory location 2.

Example using Model 9825A Desktop Computer:

Notes

Lower-case (small) letters may replace any or all of the ASCII capitals.

Separators (i.e. space or comma) should be inserted between messages as shown in the above example In sweep mode, a separator must be inserted after a 'set sweep start' or 'set sweep stop' message.

Omission of a separator may cause malfunction in error reporting (§ 3-77).

The order in which parameters are programmed is not significant.

3-70 Control Messages and Commands (Table 3-6)

3-71 Programmed trigger

3–72 When the 8165A is in trigger or burst modes, a trigger message (GET) will initiate a single cycle or a burst. Exemple using HP 9825A Desktop Computer: trg 716.

3-73 Local, Remote end Local Lockout

3-74 When in remote, the 8165A's LOCAL RESET button can be inhibited by the local lockout command. To cancel local lockout, send GTL (go to local) or set the REN line false (or, the 8165A may be switched off, and on again at the LINE switch). The 9825A's GTL command is programmed by: Icl 7.

3-75 Learn Mode

3–76 When the 8165A is addressed as a talker subsequent to receiving the message 'SET':, the 8165A will output its current operating parameters to the bus (same coding as in Table 3–5). The message 'SETn' accesses addressable memory n. In neither case are the store contents changed in any way. The parameters are transmitted in 8 strings, as follows:

String 1 — function, duty cycle, input mode, FM status, AM status.

String 2 – sweep time, output status, output norm/comp, output 50 $\Omega/1$ k Ω .

String 3 - frequency.

String 4 - amplitude.

String 5 - offset.

String 6 - burst.

Each string has up to 16 characters and is terminated by CR/LF. Note that, in pulse operation, the learn mode duty cycle message is changed. Use the following teble to check the interpretation:

		Program (Listen)	Learn (Taik)
Duty cycle			
(Square/pulse)	20 %	D1	D3
	50 %	D2	D2
	80 %	D3	D1
Symmetry (Triangle/			
tramp)	2 0 %	D1	D1
	5 0 %	D2	D2
	8 0 %	D3	D3

Example using the HP 9825A Desktop Computer:

F1 D2 I6 FM0 AM0-9825A prints first string.

Step 2 is repeated for other strings (A\$ [x]) as required.

3-77 Error Reporting

3–78 In the event of a program attempting to put the 8165A into an error condition, the 8165A will remain in its previous operating condition and make a service request (sets SRQ line true). Under these circumstances, when addressed as a talker for purposes of a serial poll (i.e. SPE command sent from system controller), the 8165A puts an error message on the data bus. This message consists of a single byte in which bit 7 is set true when the 8165A has set the SRQ line true, and bits 1 to 4 comprise an error code (Table 3–7). See step 6 of Figure 3–16 overleaf.

Table 3-7. Error Messages

Data bus DIQ lines	Message
87654321	
01001000	Amplitude out of range
01001001	Offset out of range
01001010	Frequency out of range
01001011	Output impedance error
010011.00	Duty cycle/frequency in- compatible
01001101	Sweep start/stop incompatible
01001110	Sweep out of range
01001111	Syntax error

Table 3-6. Control Messages and Commands

Message/Command	8165A Status	Bus data (ASCII)	9825A program example	Comments
Remote control	Local Listen/talk	Listen/talk address	rem 716	REN line true
Go to local	Listen Local	[SOH] *	lcl 716	ATN line true
Local lockout (LLO)	Listen	[DC1] *	llo 7	ATN line true
Give current operating parameters	Listen Talk	SET: As Table 3–5	wrt 716, ''SET:"'	
Give parameter set in location <i>n</i>	Listen Talk	SET n As Table 3–5	wrt 716, "SET n "	n is an integer 0–9
Trigger (GET)	Listen	[BS]*	trg.716	
Serial poll (SPE)	Any Talk	[CAN] * Error message (Table 3-7)	rds 716	with SRQ true DIO 7 true if 8165A has set SRQ true,

[] * = Single ASCII character. Do not program the individual characters within the brackets.

3-79 Program Example

3–80 The flow chart in Figure 3–15 illustrates typical 8165A bus activity when used with a computing controller. An imaginary situation has been chosen in which sequential operation at ten harmonically-related frequencies is required, each frequency being active for a duration of one second. The frequencies (as, indeed, all other operating modes and parameters) are stored in the 8165A's memory, counter loops being employed to generate location address and frequencies. A programmed loop reads the 8165A status and prints a report in the event of an error.

 $3-81\,$ A possible way of implementing the flow chart using the Model 9825A Desktop Computer with HP-IB

interface 98034A is shown in the program example of Figure 3-16. In this example, the 98034A's address is assumed to be 7, thus the address of an instrument on the HP-IB is 7XX where XX is the decimal equivalent of the five least significant bits of the bus address. As an 8165 A address selector setting of 10000 (Table 3-4) is assumed, for which the decimal equivalent is 16, the 8165A's address for purposes of programming with the 9825A is 716. Talk or listen addresses (more specifically, bits 6 and 7 of the HP-IB address) are automatically specified by the kind of statement governing the 9825A's activity, e.g., the statement rds 716 tells the 9825A to read from the bus and tells the 8165A to talk (talk address 16, ASCII P); the statement wrt 716 tells the 9825A to output to the bus and tells the 8165A to listen (listen address 16, ASCII zero).

Figure 3-15. Illustrative Flow Chart

Figure 3-16. Program Example

Model 8165A Programming

Table 3-8, HP-IB Code Assignments (ASCII) for the 8165A

III. Oli Andria Andria Andria					1.
And the second s					
		r			
3					
to me transfer and making a making a memorana managana making making a memorana managana making making making					
3,000,000,000,000,000,000,000,000,000,0					

SECTION IV PERFORMANCE TESTS

4-1 INTRODUCTION

4-2 The procedures in this section test the electrical performance of the instrument using the specifications of Tabla 1-2 as parformance standards. All tests can be performed without access to the interior of the instrument.

4-3 EQUIPMENT REQUIRED

4-4 Equipment required for the performance tests is listed in Table 1-1, Recommended Test Equipment. Any equipment that satisfies the critical specifications given in the table may be substituted for the recommended model(s).

4-5 TEST RECORD

4–6 Results of the performance tests may be tabulated on the Test Record at the end of the test procedures. The Test Record lists all of the tested specifications and their acceptable limits. Test results recorded at incoming

inspection can be used for comparison in periodic maintenance, troubleshooting, and after repairs or adjustments.

4-7 PERFORMANCE TESTS

- 4—8 The performance tests given in this section are suitable for incoming inspection, troubleshooting, or preventive maintenance. During any performance test, all shields and connecting hardware must be in place. The tests are designed to verify the published instrument specifications, perform the tests in the order given and record the data on the test card and/or in the data spaces provided at the end of each procedure.
- 4—9 Each test is arranged so that the specification is written as it appears in Table 1—2. Next, a description of the test and any special instructions or problem areas are included. Each test that requires test equipment has a setup drawing and a list of the required equipment. The initial steps of each procedure give control settings required for that particular test.

4-10 FREQUENCY

SPECIFICATION

1.000 mHz to 50.00 MHz (1.000 mHz to 19.99 MHz for 20 % and 80 % duty cycle/symmetry). Accuracy in NORM input mode: 0.001 %.

Figure 4-1. Test Setup for Frequency and Burst

EQUIPMENT

Counter

Cable Assembly 8NC (61 cm)

Feedthrough Termination 50 Ω (if necessary).

PROCEDURE

- 1. Connect equipment as shown in Figure 4-1
- 2. Set 8165A as follows:

INPUT MOOE																	NORM
FUNCTION																	SQUARE
DUTY CYCLE																	50%
FM																	OFF
AMPL		 															1 V
OFFSET					 		+										0 V
OUTPUT MODE					 												ENABLE
																	NORM
																	50 Ω

- 3. Set counter to frequency measurement.
- 4. Set 8165A frequency and verify counter frequency reading as follows:

8165A setting	Counter reading
50.0 MHz	50,0000 MHz ± 500 Hz
10.0 MHz	10,0000 MHz ± 100 Hz
10.0 kHz	10.0000 kHz ± 0.1 Hz
1.00 kHz	$1.00000 \text{ kHz} \pm 0.01 \text{ Hz}$

5. Set 8165A frequency and verify counter period reading as follows:

8165A setting	Counter reading
1.00 Hz	1.00000 s \pm 10 μ s
100 mHz	10.00000 s ± 100 us

4-11 BURST

SPECIFICATION

A pre-programmed number of output cycles is generated on receipt of an input trigger signal or manual command, min time between bursts: 50 ns. Burst length: 1 to 9999 cycles.

EQUIPMENT :

Counter

Cable Assembly BNC (61 cm)

Feedthrough Termination 50 Ω (if necessary).

PROCEDURE

- 1. Load Burst number 8165 into 8165A.
- 2. Set 8165A as follows:

INPUT MODE	BURST
FUNCTION	
DUTY CYCLE	
FM	
FRO	
AMPL	
OFFSET	
	8165
OUTPUT MODE	
	NORM
	50 Ω

- 3. Use figure 4-1 test setup and set counter to START.
- 4. Press 8165A's MAN button and verify that counter now displays the set number (8165) of output cycles. (5345A reading will be 8164, since first pulse arms the counter).

4-12 AMPLITUDE AND OFFSET

SPECIFICATION

Amplitude and offset independently variable within \pm 10 V. Source impedance: selectable 50 Ω \pm 1 % or 1 k Ω \pm 10 %, in parallel with 50 pF.

Ranges: 10.0 mVpp to 10.0 Vpp (50 Ω into 50 Ω) and 2.00 Vpp to 20.0 Vpp (1 k Ω into 50 Ω).

Accuracy:	Sine	Square	Triangle (50%)	Ramp (20%, 80%)	Pulse (20%, 80%)
< 1 kHz	± 2%	± 2%	± 2%	± 2%	± 2%
1 kHz - 5 MHz	± 2%	± 2%	± 2%	± 5%	± 2%
5 MHz - 20 MHz	± 5%	± 5%	± 10%	± 10%	± 5%
20 MHz - 50 MHz	± 5%	± 5%	± 5% to	20%	-

Figure 4-2. Test Setup for Amplitude and Offset.

EQUIPMENT

Digital Voltmeter Cable Assembly BNC (1 x 61 cm) Feedthrough Termination 50 Ω Power Attenuator 20 dB, 20 W

Total attenuation to be within ± 0.5 % of nominal.

PROCEDURE

- 1. Connect the equipment as shown in Figure 4-2.
- 2. Set 8165A as follows:

																		NORM
																		SINE
DUTY CYCLE .																		
FM													ï					OFF
FRQ																		
OFFSET																		
OUTPUT MODE														ï				ENABLE
																		NORM
																		1 k Ω

3. Using best DVM resolution, measure the RMS voltages for the following 8165A settings:

	OUTPUT MODE	AMPL	FUNCTION	DVM Reading
	1 kΩ	20.0 V	Sine triangle square	0.693 V - 0.721 V 0.566 V - 0.589 V 0.980 V - 1.02 V
	50 Ω	10,0 V	Sine triangle square	0.347 V - 0.361 V 0.283 V - 0.294 V 0.49 V - 0.51 V
4.	Remove 20 dB	attenuator and cont	inue:	
	50 Ω	5,00 V	Sine triangle square	1.73 V — 1.80 V 1.41 V — 1.47 V 2.45 V — 2.55 V
	50 Ω	3,00 V	Sine triangle square	1.039 V — 1.082 V .849 V — .883 V 1.47 V — 1.53 V
	50 Ω	1.00 V	Sine triangle square	0.347 V - 0.361 V 0.283 V - 0.294 V 0.49 V - 0.51 V
	50 Ω	100 mV	Sine triangle square	34.7 mV - 36.1 mV 28.3 mV - 29.4 mV 49 mV - 51 mV

- 5. Set 8165A to TRIG mode.
- 6. Using best DVM resolution, measure the dc voltages for the following 8165A settings:

OUTPUT MODE	OFFSET	DVM Reading					
1 k Ω	10.0 V	9,880 V — 10, 12 V					
50 Ω	5.00 V	4.930 V - 5,070 V					
50 Ω	3.00 V	2.950 V - 3,050 V					

7. Remove 20 dB attenuator, and continue:

50 Ω	1.00 V	0.970 V - 1.030 V
	1,00 4	0,570 4 - 1,030 4
50 Ω	100 mV	79 mV - 121 mV

4-13 SINE CHARACTERISTICS

SPECIFICATION

Harmonic Components: Up to 5 MHz, THD < 1% of fundamental. Above 5 MHz, all harmonics at least 30 dB below fundamental.

Spurious: all non-harmonically related outputs at least

40 dB below fundamental.

Figure 4-3. Test Setup for Sine Characteristics

EQUIPMENT

Spectrum analyzer
Cable assembly BNC (1 x 61 cm)

PROCEDURE

- 1. Connect the equipment as shown in Figure 4-3.
- 2. Set 8165A as follows:

INPUT MODE)RM
	,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.	
DUTY CYCLE	,,,,,,,,,,,	1%
FM		F F
FRQ		MHz
AMPL		99 V
OFFSET		V
OUTPUT MODE	Ef	VABLE
	N	ORM
	50	LΩ
OFFSET		V VABLE

3. Tune spectrum analyzer for minimum display amplitude. Adjust gain so that fundamental corresponds to 0 dB. Verify that the 2nd and 3rd harmonics do not exceed the -42 and -47 dB levels, respectively.

Figure 4-4. Typical Spectrum Analyzer Display at 1 MHz

- 4. Verify that THD < 1 % (THD = $(U_1^2 + U_2^2 + U_3^2 +)$ 1/2, 100/U₀)
- 5. Set 8165A FRQ to 50 MHz.
- 6. Tune spectrum analyzer for minimum display amplitude. Adjust gain so that fundamental corresponds to 0 dB. Verify that no harmonics exceed the 30 dB level.

Figure 4-5. Typical Spectrum Analyzer Display at 50 MHz

4-14 PULSE CHARACTERISTICS

SPECIFICATION

Transition times (10% to 90%): < 5 ns,

 $< 7 \text{ ns} (1 \text{ k}\Omega \text{ into } 50 \Omega).$

Preshoot/Overshoot/Ringing: ± 5%,

 $\pm 10\%$ (1 k Ω into 50 Ω).

Figure 4-6. Test Setup for Pulse Characteristics.

EQUIPMENT

Sampling oscilloscope Cable assembly BNC (2 x 61 cm) Feedthrough termination 50 Ω Power attenuator 20 dB, 20 W

PROCEDURE

- 1. Connect the equipment as shown in Figure 4-6.
- 2. Set the 8165A as follows:

INPUT MODE .	 	 NORM
DUTY CYCLE ,	 	 50 %
FM	 	 OFF
FRQ	 	 1 MHz
AMPL	 	 1 V
OFFSET	 	 0 V
OUTPUT MODE	 	 ENABLE
		NORM
		50 Ω

3. Set scope so that one cycle fills the display (Figure 4-7).

leading edge (risetime) ≤ 5 ns trailing edge (risetime) ≤ 5 ns preshoot $\leq \pm 5$ % of amplitude overshoot and ringing $\leq \pm 5$ % of amplitude

4-15 RAMP CHARACTERISTICS

SPECIFICATION

Linearity (10 % to 90 %): ± 1 % (up to 5 MHz), ± 5 % (above 5 MHz)

EQUIPMENT

Sampling oscilloscope Cable assembly BNC (2 x 61 cm) Feedthrough termination 50 Ω Power attenuator 20 dB, 20W

- 1. Connect the equipment as shown in Figure 4-6.
- 2. Set the 8165A as follows:

INPUT MODE	NORM
FUNCTION	TRIANGLE
DUTY CYCLE	50 %
FM	OFF
FRQ	1 MHz
AMPL	1 V
OFFSET	0 V
OUTPUT MODE	ENABLE
	NORM
4 600 3 3	50 Ω

- 3. Set scope so that one cycle fills the display.
- 4. Verify leading edge non-linearity (Figure 4–7) $\leq \pm 1 \%$ of amplitude.
- 5. Set 8165A output mode to INV and verify that signal changes polarity.

Figure 4-7. Pulse Parameters

4-16 GATE AND TRIGGER PERFORMANCE

SPECIFICATION

Trig: pos. ext input pulse ≥ 10 ns wide generates one output cycle. Upper level ≥ +250 mV, lower level ≤ 0V.

Gate: oscillator enabled when ext input > +250 mV, disabled when ≤ 0 V. First and last output cycles are always complete.

Max input: ± 20 V

Input impedance: 10 kΩ typical

Figure 4-8. Test Setup for Burst Gate and Trigger Performance

EQUIPMENT

Pulse generator Oscilloscope Cable assembly (3 x 61 cm, 2 x 30 cm) BNC Tee, Feedthrough termination 50 Ω

- 1. Connect the equipment as shown in Figure 4-8.
- 2. Set the 8165A as follows:

	<i>.</i>	
FM		OFF
FRO		100 kHz
AMPL		1 V
OFFSET) V
OUTPUT MODE		ENABLE
	Ŷ	NORM
	Ę	Ω 05

Model 8165A Performance Tests

PERFORMANCE TESTS

3. Set pulse generator for output pulse approx 50 μ s wide, rep. rate 1 kHz, baseline zero or more negative, pulse top + 250 mV. Verify that each positive gate releases a burst of output cycles and that each cycle is complete (Figure 4–9).

Figure 4-9. Example of correct gate operation

4. Set 8165A to TRIG mode. Verify that each trigger pulse generator one complete output cycle (Figure 4-10).

Figure 4-10. Example of correct trigger operation

4-17 FM.

SPECIFICATION

Output is frequency modulated by an external voltage applied to a rear panel BNC, 0 to ± 1 V modulates 0 to ± 1 % deviation.

Figure 4-11. Test Setup for FM

EQUIPMENT

Oscillator Oscilloscope Cable assembly BNC (3 x 61 cm)

- 1. Connect the equipment as shown in Figure 4-11.
- 2. Set oscillator to 10 kHz, 2 Vpp
- 3. Set oscilloscope to 1 μ s/div main timebase, 0.05 μ s/div delayed time base.
- 4. Set the 8165A as follows:

INPUT MODE							ï			 				ï						NORM
FUNCTION										 										SQUARE
DUTY CYCLE						ï				 										50 %
FΜ				 			ï			 			·							0 N
FRQ				 				ï		 				ï						1 MHz
AMPL										 			,							1 V
OFFSET				 			ï			 						,				0 V
OUTPUT MODE	Ê			 						 										ENABLE
																				NORM
																				50 Ω

- 5. Check the delayed sweep for a jitter of 2 div \pm 10 %.
- 6. Turn FM off, verify that the delayed sweep litter ≤ 0.2 div.

4-18 SWEEP (OPTION 002 ONLY)

SPECIFICATION

Provides logarithmic up/down sweep up to 3 decades between limits set on the 8165A. As in VCO mode, 4 bands limited to less then 3 decades Min frequency 1 mHz.

Sweep-rate: 0.01, 0.1, 1, 10, 100, 1000 seconds per decade selectable.

Trigger: one up-down sweep per trigger pulse (upper level $\geq +250$ mV, lower level ≤ 0 V, width ≥ 10 ns).

Accuracy: sweep start frequency: ±

± 15 % ± 0.5 % of max. stop frequency

sweep stop frequency:

± 15 %

Resolution: 2 digits

Figure 4-12. Test Setup for Sweep Option 002

EQUIPMENT

Counter

Cable assembly BNC (1 x 61 cm)

Feedthrough termination 50 Ω (if necessary).

PROCEDURE

1. Connect the equipment as shown in Figure 4-12.

2. Set the 8165A as follows:

INPUT MODE SWEEP: INT	TRIG
FUNCTION SINE	
DUTY CYCLE 50 %	
FM OFF	
FRO 1 kHz	
AMPL 2 V	
OFFSET 0 V	
OUTPUT MODE ENABLE	
NORM	
50 Ω	
SWEEP START 10 kHz	
SWEEP STOP 10 kHz	
SWEEP TIME	

3. Verify counter reading for the following settings:

SWEEPSTART	SWEEP STOP	Counter reading
10 kHz 1 MHz	10 kHz 1 MHz	10 kHz ± 1,5 kHz 1 MHz ± 150 kHz
40 MHz	40 MHz	40 MHz ± 4.2 MHz

4-19 AMPLITUDE MODULATOR (Option 002 only)

SPECIFICATION

(Option 002 only): 0 to 2.5 $\rm V_{pp}$ modulates 0 to 100 % modulation depth. Modulating Frequency: dc to 10 MHz (- 3 dB).

Input Impedance: 10 k Ω typical,

Pulse Modualtion: transition times < 50 ns. Envelope Distortion: (dc to 250 kHz mod. freq.):

- 1. Connect the equipment as shown in Figure 4-13,
- 2. Set the 8165A as follows:

INPUT MODE NORM
FUNCTION
DUTY CYCLE 50 %
FMOFF
FRO 100 kHz
AMPL
OFFSET 0 V
OUTPUT MODE ENABLE
NORM
50 Ω
SWEEP START
SWEEP STOP 10 kHz
SWEEP TIME 1 s/decade
AM

- 3. Set oscillator for 1 kHz and 2.5 Vpp amplitude.
- The display should be of a modulation depth of 100 %. 4.

4-20 STORE/RECALL CAPABILITY

SPECIFICATION

10 addressable store locations plus one for existing operating state. Each location can store a complete set of operating parameters and modes.

Access time: 20 ms each location.

Storage time: internal battery provides memory retention for approx 4 weeks at room temperature.

PROCEDURE

1. Set the 8165A as follows:

INPUT MODE					ï					ï								NORM
FUNCTION				 ٠	ï				·			 						TRIANGLE
DUTY CYCLE					ï													20 %
FM																		ON
FRO																		11.11 kHz
AMPL												 						2 V
OFFSET												 						+ 1 V
OUTPUT MODI	Ξ																	ENABLE
																		NORM
																		50 Ω

- 2. Press STO and 1.
- 3. Set the 8165A as follows:

INPUT MODE																			BURST
FUNCTION																			SOUARE
DUTY CYCLE	1	'																	80 %
FM																			OFF
FRO																			19.9 MHz
AMPL					٠														5 V
OFFSET																			– 2 V
BURST																			99
OUTPUT MODI	Ξ																		DISABLE
																			INV
																			1 k Ω

- 4. Press STO and 2.
- 5. Press RCL and 1, verify that the settings of step 1 are displayed.
- Press RCL and 2, verify that the settings of step 3 are displayed.

4-21 HP-IB CAPABILITY

SPECIFICATION

Accuracy: See Frequency Characteristics, Output Characteristics.

Settling times:

Frequency: < 20 ms to ± 5% of programmed value. In Norm mode, and in Trig, Gate, Burst at frequencies < 1 kHz: < 70 ms to ± 2% of programmed value, < 300 ms to final value.

Other Functions: 20 ms. The following range changes can take up to 200 ms:

Change of duty cycle.

Selection to or from Sweep/VCO.

Changing up to/down from the following decades:

Frequency 1 kHz, 10 kHz, 100 kHz, 1 MHz, 20 MHz.

Amplitude 100 mV, 1 V

Offset 1 V.

Figure 4-14. Test Setup for HP-IB Operation

EQUIPMENT

System controller Counter Cable assembly (1 x 61 cm)

- 1. Connect the equipment as shown in Figure 4-14.
- 2. Load program presented in Figure 3-16 (modify wait command in step 13 to 10 s or as desired).
- 3. Run program and verify functional operation.
- 4. Verify accuracy of first and last programmed frequencies:

Programmed frequency	Counter reading
440 Hz	440 Hz ±4.4 mHz
739.99 Hz	739 Hz ± 7.4 mHz

Table 4-4, Performance Test Record (1 of 3)

Model 8165A	ard Company \/8165A Option e Signal Source	002		Tested By	THE STATE OF THE S	
	e orginal source			Date	79900019991Nalan	
					Results	
Para. No.	Test Descrip	otion		Actual	Min	Max
4–10	Frequency	50,0 MHz 10,0 MHz 10,0 kHz 1,00 kHz 1,00 Hz 100 mHz		49.9995 MHz 9.9999 MHz 9.9999 kHz 0.9999 kHz 0.99999 s 9.99990 s		50.0005 MHz 10.0001 MHz 10.0001 kHz 1.00001 kHz 1.00001 s 10.00001 s
4-11	1	actual output as set burst le			yes/no	
4-12	Amplitude a	and Offset				
	OUTPUT MODE	AMPL	FUNCTION			
	1 kΩ	20.0 V	sine triangle square	0.693 V 0.566 V 0.980 V		0.721 V 0.589 V 1.02 V
	50 Ω	10.0 V	sìne triangle square	0.347 V 0.283 V 0.49 V		0.361 V 0.294 V 0.51 V
	50 Ω	5.00 V	sine * triangle * square *	1.73 V 1.41 V 2.45 V		1.80 V 1.47 V 2.55 V
	50 Ω	3,00 ∨	sine * triangle * square *	1 .03 9 V 0.849 V 1.47 V		1,082 V 0,883 V 1,53 V
	50 Ω	1.00 V	sine * triangle * square *	0.347 V 0.283 V 0.49 V		0.361 V 0.294 V 0.51 V
	50 Ω	100 mV	sine * triangle * square *	34.7 mV 28.3 mV 49 mV	and the second s	36.1 mV 29.4 mV
	* Remove 20 d	B attenuator	ayuare	ተ3 1117		51 mV

Table 4-4, Performance Test Record (2 of 3)

***************************************			Results	The state of the s
Para No.	Test Description	Min	Actual	Max
	OUTPUT OFFSET MODE			
	1 kΩ 10.0 V 50 Ω 5.00 V 50 Ω 3.00 V	9.880 V 4.930 V 2.950 V		10.12 V 5.070 V 3.050 V
•	50 Ω 1.00 V 50 Ω 100 mV	0.970 V 79 mV	No.	1.030 V 121 mV
4—13	Sine Characteristics (Harmonic level)			
	FRQ = 1 MHz (2 nd harmonic) FRQ = 1 MHz (3 rd harmonic) FRQ = 1 MHz (THD) FRQ = 50 MHz (worst harmonic)			42 dB 47 dB 1 % 30 dB
4—14	Pulse Characteristics Leading edge Trailing edge Preshoot Overshoot and ringing	≤ -5 % ≤ -5 %		 ≤ 5 ns ≤ 5 ns ≤ +5 % ≤ +5 %
4–15	Ramp Characteristics Leading edge linearity INV/NORM selection o.k. ?	≤ -1%	yes/no	≤ +1 %
4—16	Gate and Trigger Positive gata raleases a burst of output cycles, first and last cycles completa ? Positive trigger releases one complete output cycle ?		yes/no yes/no	
4-17	FM Mode Jitter, FM on Jitter, FM off	1.8 div		2,2 div 0.2 div

Table 4-4, Performance Test Record (3 of 3)

			Results	
Para No.	Test Description	Min	Actual	Max
4—18	Sweep Mode (Option 002 only) Sweep start = sweep stop: 10 kHz 1 MHz 40 MHz	8.5 kHz 850 kHz 35,8 MHz		11.5 kHz 1.15 MHz 44.2 MHz
4–19	Amplitude Modular (Option 002 only) Modulation depth 100 %		yes/no	
4-20	Store/Recall Capability Satisfactory ?		yes/no	
4-21	HP-IB Capability Functionally ? Settling accuracy: 440 Hz 739.99 Hz	439.9956 Hz 738.9926 Hz	yes/no	440.0044 Hz 739.0074 Hz
8–6	Safety Check Satisfactory ?		yes/no	

SECTION V ADJUSTMENTS

5-1 INTRODUCTION

5-2 This section describes the edjustments which will return the instrument to peak operating condition efter repairs are completed. An adjustment location diagram is given on a fold-out page at the end of this section.

5-3 SAFETY CONSIDERATIONS

5–4 Although this instrument has been designed in accordance with international safety standards, this manual contains information, cautions, and warnings which must be followed to ensure safe operation and to retain the instrument in safe condition (see Sections II and III). Service and adjustments should be performed only by qualified service personnel.

WARNING

Any interruption of the protective (grouding) conductor (inside or outside the instrument or disconnection of the protective earth terminal is likely to make the instrument dangerous. Intentional interruption is prohibited.

- 5–5 Any adjustment, maintenance, and repair of the opened instrument with voltage applied should be avoided as much as possible and, when inevitable, should be carried out only by a skilled person who is aware of the hazard involed.
- 5-6 Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply.
- 5-7 Make sure that only fuses with the required rated current end of the specified type (normal blow, time delay, etc.) are used for replacement. The use of repaired fuses and the shortcircuiting of fuseholders must be avoided.
- 5–8 Whenever it is likely that the protection offered by fuses has been impaired, the instrument must be made inoperative and secured against any unintended operation.

WARNING

Adjustments described herein are performed with power supplied to the instrument while protective covers are removed. Energy available at many points may, if contacted, result in personal injury.

5-9 EQUIPMENT REQUIRED

5–10 The test equipment required for the adjustment procedures is listed in Table 1–1, Recommended Test Equipment. The critical specifications of substitute test instruments must meet or exceed the standards listed in the table if the instrument is to meet the standards set forth in Table 1–2, Specifications.

5-11 ADJUSTMENT PROCEDURE

§ 5-17 Power Supplies

§ 5-18 VCO

§ 5-19 Output Amplifier and Offset Generator

§ 5-20 High Frequency

§ 5–21 VCO Control

§ 5-22 Reference Loop

§ 5-23 Baseline Centering

§ 5-24 Sweep Generator (option 002)

§ 5-25 Amplitude Modulator (option 002)

When repairs have been made, § 5—17 Power Supplies should always be carried out. Of the remaining paragraphs, only those which the repairs could affect need be done. Execute a paragraph completely and in the order in which it is presented. Only the significant instrument settings are given.

5–13 Allow e 1 hour warm-up time before starting the adjustments. During edjustments, keep the covers in place as fer as is possible so that the instrument's temperature remains steady.

5-14 ADJUSTMENT RECORD

5–15 Results of adjustments may be tabulated on the Adjustment Record at the end of the adjustment paragraphs.

5-16	ADJUSTMENTS Power Supplies			INPUT MODE						
5-17										
EQUIPMENT Digital Voltmeter			OFFSET 0.0 V OUTPUT MODE ENABLE							
	Oscilloscope						NORM 50 Ω			
PROCED				1.2		DVM (dc,	floating), measure and			
1.	Set the 8165			DVM	DVM	Adjust	Result			
	ODE			Low	High	Adjust	Hesgit			
DUTY CY	CLE		50 % off	A5TP1	A5TP2	AMITE	Note voltage E (should lie between + 5 mV			
FRO			A5TP4	A5TP3	A15R33	and 5 mV), Adjust for same voltage and polarity as E.				
0011 01	WOOL TO THE	-	NORM 50 Ω	2	TRIANO	GLE AMPLI	TUDE (VCO)			
2.	Set DVM to dc. Measure and, if necessary, adjust the supply voltages as follows:			2.1		Connect DVM (ac) to A5TP9 and ground. Adjust A5R71 for 695 mV rms \pm 1 mV.				
	TP	Adjust	Result	3	OUTPU	T DRIVER E	BALANCE			
	$A5 + 5 V$ $A6R516 + 5 V \pm 10 mV$ $A5 - 5 V$ $A6R523 - 5 V \pm 10 mV$ $A5 + 20 V$ $A6R302 + 20 V \pm 20 mV$ $A5 - 20 V$ $A6R402 -20 V \pm 20 mV$		3.1		Connect DVM (dc, floating) between A5TP10 and A5TP11. Adjust A16R430 for 0 \pm 0.5 mV.					
	A5 + 17 V A5 - 29 V	-	+ 17 V ± 500 mV -29 V ± 500 mV	3.2	Disconn	ect DVM.				
3.	test points i	n turn and	each of the above verify that the	4	LF D/A	CONVERTE	R: RAMP DISTORTION			
	ripple < 5 r	mVp-p in e	ach case.	4.1		: 10:1 scope SA FRQ to 9:	probe to A10TP1 and			
5—18	Voltage Co	ontrolled (Oscillator		261 0 100	7 FNQ 10 9	99 FIZ.			

A re-adjustment of the VCO also requires adj. procedure 5-19 to be performed.

EQUIPMENT

Digital voltmeter Spectrum analyzer

Oscilloscope

1:1 Scope probe

Counter

Voltage source

Capacitor 0.47 μ F

Note:

Use shielded cable for all dc-adjustments.

PROCEDURE

- CURRENT SOURCE BALANCE
- 1.1 Set 8165A as follows:

Adjust A10R212 for min. ramp distortion

Figure 5-1. Ramp Distortion Adjustment

(Figure 5-1).

4.3 Disconnect scope.

4.2

5	HE RAMP DISTORTION
5.1	Set 8165A frequency to 9.999 kHz.
5.2	Connect 10:1 Probe from Analyzer to A5TP10.
5.3	Set Analyzer:
Frequency sp	andwidth 300 Hz pan/div 5 kHz
	tiv 0,2 s
	repetitive
Input sensitiv	vity 0,2 V

5.4 Adjust A15R35 for minimum 2nd harmonic (Figure 5-2). Verify level is 50 dB below fundamental or lower.

(Figure 5-2. Triangle Distortion Adjustment: LF)

TRIANGLE DISTORTION: HF
Connect the capacitor (0.47 μF) between junction A5R50/R60 and ground.
Set 8165A FRO to 50 MHz.
Adjust A15R37 for minimum 2nd harmonic. (Figure 5–3). Verify level is 50 dB below fundamental or lower.

Figure 5-3. Triangle Adjustment: HF

6.4	Disconnect spectrum analyzer and capaci-
	tor.
7	VCO RANGE 1:999

7.1	Connect counter to 8165A's SYNC OUT- PUT and set counter as follows:
-	Frequency A
7,2 Set	Set 8165A's INPUT MODE to VCO and FRO to 999 kHz.
7.3	Connect voltage source to 8165A's EXT INPUT and adjust source for 1 kHz reading on counter.
7.4	Measure voltage source, value should be 10 mV ± 30 mV. Leave at setting obtained in 7.3 for the following adjustment. Disconnect counter.

8 VCO DISTORTION

8.1 Connect spectrum analyzer to 8165A's OUTPUT and set analyzer as follows:

Resolution bandwidth	٠		r						300 Hz
Frequency span/div	ĸ			,	٠			٠	1 kHz
Sweep time/div							,		0.1 s
Sweep mode									repetitive

8.2 Adjust A15R39 for min 2nd harmonic (Figure 5-4). Verify level is 35 dB below fundamental or lower.

Figure 5-4. VCO Distortion Adjustment

8.3 Disconnect voltage source.

9	HF SINE DISTORTION
9.1	Connect spectrum analyzer to 8165A's OUTPUT and set as follows:
	n bandwidth

9.2	Change	the	fol	lovv	ing	8	165/	A settings:
FUNCTION	,		. , ,		٠,		w r 4	Sine
INPUT MOE	DE		,			٠.	, , ,	Norm
and check ti	hat FRQ							9,999 kHz

9.3 Adjust A17R340/A16R350 for minimum harmonic (Figure 5–5). Verify that these levels are 42 dB below fundamental or lower.

Figure 5-5, Sine Distortion Adjustment: 9,999 kHz

9.4 Set 8165A FRO to 999 Hz.

Set spectrum analyzer as follows:

Resolution bandwidth 100 Hz Frequency span 0.5 kHz

9.5 Adjust A10R227/206 for minimum harmonic (Figure 5–6). Verify that these levels are 42 dB below fundamental or lower.

Figure 5-6. Sine Distortion Adjustment: 999 Hz

_	
9.6	Disconnect the spectrum analyzer.
10	TRIANGLE AMPLITUDE
10.1	Connect DVM (ac) to A5TP9 and ground,
10.2	Set 8165A FRQ to 110 Hz and TRIANGLE.
10.3	Adjust A10R241 for 695 mV rms \pm 1 mV.
10.4	Change 8165A frequency to 9.999 kHz. Verify DVM reading of 695 mV \pm 2 mV.
10.5	Leave DVM in position.

11	SINE AND SOUARE AMPLITUDE
11,1	Set 8165A FUNCTION to sine, Adjust A17R360 for 850.7 mV rms ± 1 mV.
11.2	Change frequency to 110 Hz. Verify DVM reading of 850.7 mV \pm 2 mV rms.
11,3	Set 8165A FUNCTION to square. Frequency

to 9,999 kHz. Adjust A17R230 for 1204 mV rms \pm 2 mV.

11.4 Set 8165A frequency to 110 Hz, Verify DVM reading of 1204 mV \pm 3 mV rms.

12 SINE AND SQUARE DC BALANCE

12.1 Connect DVM (dc, floating between A5TP10/TP11.

12.2 Change 8165A's FUNCTION to sine, FRQ to 9.999 kHz.

12.3 Adjust A16R243 for $0 V \pm 1 mV$.

12.4 Change 8165A's FUNCTION to square, adjust A16R240 for 0 V \pm 1 mV.

13 TRIANGLE DC BALANCE

13.1 Set 8165A's FUNCTION to triangle, FRQ to 999 Hz, INPUT MODE to TRIG. Leave DVM in its position (step 12.1).

13.2 Adjust A10R235 for 0 V \pm 1 mV.

5–19 Output Amplifier and Offset Generator

Pre-condition for this adjustment is a correctly adjusted VCO(5–18).

EQUIPMENT

Digital voltmeter, with cable and termination: total error < 0.5% at 1 kHz. Oscilloscope, 1:1 probe

Note: Use shielded cable for all dc-adjustments.

PROCED	JRE	4	OP AMP BALANCE: U4
1	VOLTAGE SOURCE PRE-AMP BALANCE	4,1	Set B165A OFFSET to −1.0 V.
1.1	Set 8165A as follows:	4,2	Connect DVM (dc, floating) to A12TP5/6.
FUNCTION DUTY CYC	DE	4.3	Adjust A12R31 for 0 V \pm 0.1 mV. Remove DVM.
FRO . AMPL . OFFSET .	9.99 kHz 10.0 V0.0 V IODEENABLE NORM 50 Ω	4.4	Set 8165A FRQ to 110 Hz, INPUT MODE to TRIG. OFS to 0 V. FUNCTION to TRIANGLE.
1.2	Connect scope via 1:1 probe to A4TP3.	5	PRE-AMP DC 8ALANCE
1.3 1.4	Adjust A4R161 for minimum amplitude. Set 8165A OUTPUT MODE to INV. Verify	5,1	Connect DVM (dc mode) to 8165A OUTPUT via 50 Ω cable and 50 Ω feedthrough termination. Note: total error DVM/cable/termination
	scope display ≤ 10 mVp-p. Disconnect scope.		must be $<$ 0.5 $\%$ at 1 kHz,
		5.2	While switching 8165A OUTPUT MODE between NORM and INV, adjust A4R111 for a
2	VERNIER D/A CONVERTER		minimum offset change ≤ 5 mV.
2.1	Set 8165A AMPL to 1.0 V, OUTPUT to NORM, and connect DVM (dc mode) to	6	X1 AMPLIFIER BALANCE
2.2	A6TP1. Adjust A6R805 for -4.00 V ± 3 mV.	6.1	Set 8165A AMPL to 1.99 V and OUTPUT MODE to NORM.
2.3	Disconnect DVM.	6.2	Adjust A6R1 for an output offset of 0 V \pm 1 mV.
3	OP AMP BALANCE: U3	6.3	Set 8165A OUTPUT MODE to INV. Verify offset is 0 V \pm 10 mV.
3.1	Set 8165A as follows:		
	+ 1.0 V	7	X2 AMPLIFIER 8ALANCE
	NORM 50 Ω	7.1	Set 8165A AMPL to 10 V and OUTPUT MODE to NORM.
3.2	Connect DVM (dc,floating) to A12TP1/2.	7.2	Adjust A6R2 for an output offset of 0 V \pm 2 mV.
3.3	Adjust A12R20 for 0 V \pm 0.1 mV.	7.3	Set B165A OUTPUT MODE to INV. Verify offset is $0 \text{ V} \pm 20 \text{ mV}$.
3.4	OP AMP BALANCE: U2		
3.5	Connect DVM (dc, floating) to A12TP3/4.	8	X1 AMPLIFIER GAIN
3.6	Adjust A12R12 for 0 V \pm 0.1 mV.	8,1	Connect DVM (ac mode) to 8165A OUTPUT

5-6

		-l 1 EO	O foodshunink towns	12.2	Adjust A6R610 for + 5,000 V.			
	via 50 Ω cable and 50 Ω feedthrough termination. Note: total error DVM/cable/termi-			12,2	Adjust Adnoto for + 5,000 V.			
	nation must	t be < 0.5 °	% at 1 kHz,	12.3	Set 8165A OUTPUT MODE to 50 Ω and verify DVM reads + 5,000 V \pm 10 mV,			
8,2	Set 8165A (SQUARE.	OUTPUT N	MODE to NORM,					
8.3	Adjust the following amplitude settings:			13	OFFSET: + 999 mV RANGE			
	8165A AMPL (p-p)	Adjust	DVM Reading (rms)	13,1	Set 8165A OFFSET to + 999 mV, IMP 50 Ω , AMPL 10 mV.			
	1.00 V	A6R912 A6R810 A6R826	995 mV rms ± 1 mV 500 mV rms ± 0.5 mV 750 mV rms ± 0.5 mV	13,2	Adjust A12R4 for +999 mV ± 1 mV,			
				14	OFFSET: - 999 mV RANGE			
9	X2 AMPLIF	FIER GAIN	V	14,1	Set 8165A OFFSET to - 999 mV.			
9.1	Leave DVM	connected	d as given in step 8.1.	***	A			
9.2	Adjust the f	following a	ımplitude settings:	14.2	Adjust A12R23 for 999 mV ± 1 mV.			
	8165A	Adjust	DVM	14.3	Set 8165A OFFSET to $-5.00~\text{V}$ and verify that DVM reads $-5.000~\text{V} \pm 10~\text{mV}$.			
	AMPL 3.99 V	A4R306	Reading 1,995 V rms ± 1 mV	14.4	Disconnect DVM.			
	5.99 V	A6R920 A6R915	2.995 V rms ± 2 mV 3.995 V rms ± 3 mV					
			3,000 1 1110 = 0 1111					
10	OFFSET RA		G,550 V IIII		HIGH FREQUENCY ADJUSTMENTS			
10 10. ï	Set 8165A	ANGE OFFSET T PUT MODI	FO +2.56 V, AMPL E to TRIG, FUNCTION	5–20 EQUIPM				
	Set 8165A 10 mV, INF to TRIANG	ANGE OFFSET T PUT MODI GLE.	ΓΟ +2.56 V, ΑΜΡ L		ENT: Sampling scope			
10.1	Set 8165A 10 mV, INF to TRIANG	ANGE OFFSET T PUT MODI GLE, 'M (dc) to	FO +2.56 V, AMPL E to TRIG, FUNCTION		ENT: Sampling scope			
10.1	Set 8165A 10 mV, INF to TRIANG	ANGE OFFSET T PUT MODI GLE, 'M (dc) to	FO +2.56 V, AMPL E to TRIG, FUNCTION 8165A OUTPUT.	EQUIPM	ENT: Sampling scope Power attenuator 20 dB SQUARE WAVE RESPONSE Connect sampling scope via 20 dB attenuator and feedthrough termination to 8165A OUT-			
10.1	Set 8165A 10 mV, INF to TRIANG	ANGE OFFSET TO THE PUT MODIFIES OFFSET TO THE PUT MODIFIE	TO +2.56 V, AMPL E to TRIG, FUNCTION 8165A OUTPUT. 2.560 V ± 1 mV.	EQUIPM	ENT: Sampling scope Power attenuator 20 dB SQUARE WAVE RESPONSE Connect sampling scope via 20 dB attenuator			
10.1 10.2 10.3	Set 8165A 10 mV, INF to TRIANG Connect DV Adjust A6R	ANGE OFFSET TO THE PUT MODIFIES OFFSET TO THE PUT MODIFIE	TO +2.56 V, AMPL E to TRIG, FUNCTION 8165A OUTPUT. 2.560 V ± 1 mV.	EQUIPM	ENT: Sampling scope Power attenuator 20 dB SQUARE WAVE RESPONSE Connect sampling scope via 20 dB attenuator and feedthrough termination to 8165A OUT-PUT, Trigger from SYNC OUTPUT. Set 8165A FRQ to 10 MHz, square wave. Adjust for best pulse shape in each of the			
10.1 10.2 10.3	Set 8165A (10 mV, INF to TRIANG Connect DV Adjust A6R(OFFSET D/ Set 8165A (ANGE OFFSET TO THE PUT MODIFIES OFFSET TO THE PUT MODIFIES OFFSET TO THE PUT MODIFIES A CONVE	TO +2.56 V, AMPL E to TRIG, FUNCTION 8165A OUTPUT. 2.560 V ± 1 mV.	EQUIPM	ENT: Sampling scope Power attenuator 20 dB SQUARE WAVE RESPONSE Connect sampling scope via 20 dB attenuator and feedthrough termination to 8165A OUT-PUT, Trigger from SYNC OUTPUT. Set 8165A FRQ to 10 MHz, square wave. Adjust for best pulse shape in each of the following ranges:			
10.1 10.2 10.3 11 11.1	Set 8165A (10 mV, INF to TRIANG Connect DV Adjust A6R(OFFSET D/ Set 8165A (ANGE OFFSET TO THE PUT MODIFIES OFFSET TO THE PUT MODIFIES OFFSET TO THE PUT MODIFIES A CONVE	FO +2.56 V, AMPL E to TRIG, FUNCTION 8165A OUTPUT. 2.560 V ± 1 mV. RTER 5 + 2.55 V.	EQUIPM	ENT: Sampling scope Power attenuator 20 dB SQUARE WAVE RESPONSE Connect sampling scope via 20 dB attenuator and feedthrough termination to 8165A OUT-PUT. Trigger from SYNC OUTPUT. Set 8165A FRQ to 10 MHz, square wave. Adjust for best pulse shape in each of the following ranges: 8165A Adjust			
10.1 10.2 10.3 11 11.1	Set 8165A (10 mV, INF to TRIANG Connect DV Adjust A6R(OFFSET D/ Set 8165A (ANGE OFFSET TO THE PUT MODIFICATION (dc) to 614 for + 2000 CONVERTO CONVERT	TO +2.56 V, AMPL E to TRIG, FUNCTION 8165A OUTPUT. 2.560 V ± 1 mV. RTER 0 + 2.55 V. 2.550 V ± 1 mV.	EQUIPM	ENT: Sampling scope Power attenuator 20 dB SQUARE WAVE RESPONSE Connect sampling scope via 20 dB attenuator and feedthrough termination to 8165A OUT-PUT, Trigger from SYNC OUTPUT. Set 8165A FRQ to 10 MHz, square wave. Adjust for best pulse shape in each of the following ranges:			

1.3	Set 8165A OUTPUT MODE to 1 k Ω and	PROCE	DURE
	verify that the transition times at the above amplitude ranges are \leq 7 ns and pulse perturbation is \leq \pm 10 %.	1	D/A CONVERTER
	batton is ~ = 10 /6.	1.1	Set 8165A as follows:
2 2.1	50 MHz WAVEFORMS Set 8165A FRQ to 1 MHz, AMPL 1.99 V, square wave.	FUNCTI DUTY C FM FRO AMPL	ON
2.2	Connect sampling scope to 8165A output. Adjust sampling scope for an exact 10-div. p-p amplitude display as reference.	OUTPUT	MODE ENABLE NORM 50 Ω
2,3	Set 8165A FRQ to 50 MHz, waveform to triangle.	1,2	Connect DVM (dc mode) between A8TP3 and ground. Apply voltage source to EXT INPUT.
2.4	Adjust the triangle offset and amplitude for a signal between 0.5 Div to 9.0 Div via A5R10	1,3	Adjust A8R318 for 2.56 V \pm 1 mV.
	and A5R51. 8e sure frequency is 50 MHz as in 5–21 step 3.2.	1.4	Set 8165A FRQ to 2.55 kHz.
	So tare frequency to so with a transfer size	1.5	Adjust A8R313 for 2.55 V ± 1 mV.
	50 MHz SQUARE		Re-check steps 1.3 to 1.5.
3.1	Set 8165A FUNCTION to square.		
3.2	Adjust A5R235 for 50 % duty cycle.	2	RANGE START
3.3	Set 8165A FUNCTION to sine.	2.1	Connect counter to SYNC OUTPUT. Set 8165A FRQ to 1.00 kHz, connect DVM
3.4	Adjust A5C309 for 9.7 Div. signal.		(dc, floating) across A8TP4/5. Change polarity of DVM if counter reading drops.
3.5	Remove sampling scope.		
		2.2	Adjust A9R429 for 0 V \pm 0.5 mV.
		2.3	Remove DVM.
		3	RANGE END
5–21	VCO Control	3.1	Connect voltage source to EXT INPUT. Verify and, if necessary, adjust the frequency
EQUIPME			at the following settings:
	Digital voltmeter Counter Voltage source (TTL)	3.2	8165A Adjust Counter FRQ Reading
Note:	Use shielded cable for all dc-adjustments.		9.999 kHz A8R405 9.999 kHz ± 1 % 99.9 kHz A5(*C23) 99.9 kHz ± 2 % 999 kHz A5(*C23) 999 kHz ± 2 % 9.99 MHz A8R409 9.99 MHz 1.00 MHz A8(*R433) 1 MHz ± 3 %

5-8

	40.0 Mil. AQD412 30.0 Mil-	2.4	Adjust with A9R313 and A9R310 the signal
	19.9 MHz A8R412 19.9 MHz 10.0 MHz A8(*R436) 10.0 MHz ± 3 %	2.4	amplitude and offset for best sine waveform.
	20.0 MHz A8R407 20.0 MHz		
	35.0 MHz A8R420 35.0 MHz	2,5	Check the signal waveform between 1 kHz
	50.0 MHz A8R418 50.0 MHz **	, -	and 9.9 kHz.
* If frequer	ncy is out of specification in one of the		
	nge factory selected part.	2,6	Re-adjust A9R313, R310, if necessary, for
** If fromus	ency is to high, lower 20 MHz adjust and re-adj		best compromise.
35 MHz and	d 50 MHz. If necessary find best compromise		
between ste	ep 3.2 and para 5—20 steps 2 to 2.4.		
	r	3	MIXER BALANCE
		3,1	Connect scope via 10:1 probe to A9TP5.
		٠, I	Connect scope via 10.1 probe to A011 01
E 00	Deference Loop	3.2	Set 8165A to 2 kHz.
5–22	Reference Loop		
EQUIPM	ENT	3.3	Adjust A9R406 for min. pulse amplitude.
	Counter	ند بس	01 1. d
	Spectrum analyzer	3,4	Check the pulse amplitude between 1 kHz and 9.9 kHz for \leq 130 mVp-p.
	Pulse generator		מות שיש אים ומו איף.
	Voltage source		
	Oscilloscope		
	10:1 probe		
	1:1 probe	5-23	BASELINE CENTERING
PROCED	NIRE		
1110000			
1	OSCILLATOR FREQUENCY	1	EXTERNAL TRIGGER LEVEL
		1.1	Set external pulse generator to: frequency
1.1	Set 8165A as follows:	1.1	500 Hz, amplitude 150 mV p-p, offset
INPLIT MC	ODENORM		+ 25 mV.
	N Sine		- 20
FM	OFF	1.2	Connect pulse generator to EXT INPUT and
		- · · -	oscilloscope to 8165A output.
1.2	Connect counter via 10:1 probe to A9TP1.		
		1.3	Set 8165A INPUT MODE to GATE, FRQ
1.3	Adjust A9C602 for a frequency of 10,000000 kHz		to 1 kHz.
	± 5 mHz.		
1 /	Disconnect counter.	1.4	Adjust A7R4 for a stable gated output signal.
1.4	Disconligat counter.	1.5	Check operation with 8165A FRQ 999 Hz.
			·
2	SINE SHAPER DISTORTION (PLL)		
2	GHAL GHALLH DIGION (1 mm)		
		0	GATE BASELINE .
	a compart 40-4	2	GATE DASELINE .
2.1	Connect scope to A9TP4 via 10:1 probe.	2.1	Connect pulse generator output to 8165A's
	Set 8165A INPUT MODE to GATE and	۷, ۱	EXT INPUT, pulse generator trigger output to
2.2	FRQ to 3 kHz.		scope ext trigger, 8165A OUTPUT to scope
	FNQ IO 3 KHZ.		channel A.
2.3	Apply + 1 V from voltage source to 8165A		
e w	EXT INPUT.	2.2	Set pulse generator to square wave, baseline

	0 V, pulse to + 2 V, rate 100 kHz. Set 8165A as follows:	1,2	Connect DVM (dc) to rear panel SWEEP OUT connector (or A11TP2).
FUNCTIO	ODE GATE ON Triangle	1,3	Adjust A11R410 for 3.00 V ± 5 mV.
	'CLE	1.4	Set 8165A SWEEP START to 1 kHz.
0,1001		1.5	Adjust A11R404 for 0 V \pm 2 mV.
2.3	Observe gated output waveform on scope. Adjust A5R115 to center baseline (Figure 5-9).		
		2	SWEEP FREQUENCY
		2.1	Connect counter to SYNC OUTPUT and adjust A11R423 for 1.00 kHz reading on counter.
		2,2	Set 8165A SWEEP START to 990 kHz.
		2.3	Adjust A11R428 for 990 kHz reading on counter.
Figure 5-	-9. Gate Baseline Adjustment	2,4	Set 8165A SWEEP START to 100 kHz.
2.4	Change frequency and observe baseline. Shift should be $\leq 3\%$.	2.5	Adjust A11R426 for 100 kHz reading on counter.
2.5	Change duty cycle and observe baseline. Shift should be ≤ 4 %.	2.6	Set sweep start to 1.00 kHz, Check for 1 kHz \pm 5 %.
		2.7	Set sweep start to 990 kHz. Check for 990 kHz \pm 2 %.
5-24	Sweep Generator (Option 002 only)	2.8	Set sweep start to 100 kHz. Check for 100 kHz \pm 2 %.
EQUIPM	ENT Digital voltmeter Counter	2.9	Repeat steps 2.1 to 2.5 if necessary.
PROCED	URE		
1	SWEEP VOLTAGE	3	SWEEP TIME
1,1	Set 8165A as follows:	3.1	Connect counter to SWEEP OUTPUT.
FUNCTIO DUTY CY FM FRQ AMPL			
SWEEP ST SWEEP ST SWEEP TI	OP 990 kHz	3.3	Adjust A11R203 for a 20 ms period.

5-25 Amplitude Modulator (Option 002 only)

EQUIPMENT

Digital Voltmeter. Use shielded cabe for all adjustments. LF Spectrum Analyzer.

PROCEDURE

Set 8165A as follows:

FUNCTION DUTY CYCL FM FRQ AMPL OFFSET OUTPUT MO	PE
AM	ON
1	INPUT BALANCE
1.1	Connect DVM (dc) to MOD INPUT.
1,2	Adjust A13R102 for 0 V \pm 1 mV. (If necessary change R101).
2	AMPLITUDE AT 0 % MODULATION
2.1	Set 8165A FUNCTION to SQR.
2.2	Connect DVM (ac) to 8165A output via 50 Ω termination. Note: total Error DVM/cable/termination must be ≤ 0.5 %.
2,3	Adjust A13R142 for 497.5 mV \pm 1 mV. Remove DVM.
3	ENVELOPE DISTORTION
3.1	Set 8165A AMPL 999 mV, FUNCTION SINE.
3,2	Connect LF spectrum analyzer via 50 Ω termination to 8165A output.
3.3	Apply a 1 kHz/2.55 V p-p sinewave (THD \leq 0.1 %) to MOD INPUT.

3.4 The display should be of a modulation depth between 6 dB to 7 dB below the fundamental carrier frequency.

Figure 5-10. Envelope Distortion

- 3.5 Adjust A13R210 for a minimum distortion by the third sideband signal.
- 3.6 Adjust A13R128 for minimum modulating frequency (≤ -60 d8). Remove spectrum analyzer.
- 4 OUTPUT DC BALANCE
- 4.1 Set 8165A AMPL 10 V.
- 4.2 Connect DVM (dc) to 8165A output,
- 4.3 Adjust A13R123 for $0 V \pm 2 mV$.
- 4.4 Set OUTPUT MODE to INV, DVM reading should be 0 V ± 10 mV. Remove DVM.

Table 5-1. Adjustment Record (1 of 6)

	ett-Packar 8165A	d Company			Adjusted by				
Progra	ımmable	Signal Source			Date				
Para	Adjus	tment		Results					
No.	Step	Description	Adjust	Min	Actual	Max.			
5-17	2	Power Supplies TP A5 + 5 V TP A5 - 5 V TP A5 + 20 V TP A5 - 20 V TP A5 + 17 V TP A5 - 29 V	A6R516 A6R523 A6R302 A6R402 —	4.990 V dc 4.990 V dc 19.98 V dc 19.98 V dc 16.5 V dc 28.5 V dc		5.010 V dc -5.010 V dc 20.02 V dc -20.02 V dc 17.5 V dc 29.5 V dc			
5–18	THE STATE OF THE S	Voltage-Controlled Oscillator (use shielded cables)							
	1	Current Source 8alance		-		1			
	1.2	A5 TP1/2 A5TP3/4	A5R33	−5 mV dc E		+5 mV dc E			
	2	Triangle Amplitude (VCO)		Account of the control of the contro					
	2.1	A5 TP9	A5R71	694 mV rms	P-94440	695 mV rms			
	3 3.1	Output Driver 8laance A5 TP10/11	A16R430	−0.5 mV dc	P-state AAA	+ 0.5 mV dc			
	4 4.1	LF D/A Conv. Ramp Dist. A10 TP1	A10R212			,			
	5 5.2 5.3	HF Ramp Distortion A5 TP10	A15R 3 5			50 dB			
	6 6.1 6.3	Triangle Distortion A5 R50/R60	A15R37			– 50 dB			
Act of the control of	7	VCO Range 1:999 (Ext INPUT dc) (1 kHz output)				40 mV dc			

Table 5-1. Adjustment Record (2 of 6)

Para				Results				
No.	Step	Description	Adjust	Min	Actual	Max.		
5-18	8	VCO Distortion						
	8.2		A15R39		Marriages positions and a second positions and a second position of the second positions and a second position of the second position of	- 35 d8		
	9	HF Sine Distortion						
	9,3	(9.999 kHz)	A17R340 A16R350			– 42 d8		
	9.5	(999 Hz)	A10R227 A10R206			42 dB		
	10	Triangle Amplitude						
	10.1	A5 TP9 (110 Hz) (9.999 kHz)	A10R241	694 mV rms 693 mV rms	uptyoninggassagurini, kuluntraatraatraania	696 mV rms 697 mV rms		
	11	Sine and Square Amplitude			W-1100			
***************************************	11.1	A5 TP9 (9.999 kHz) Sine (110 Hz)	A17R360	B49.7 mV rms 848.7 mV rms	i i	851 mV rms 852 mV rms		
	11.3	A5 TP9 (9.999 kHz) Square (110 Hz)	A17R230	1202 mV rms 1201 mV rms	1	1206 mV rms 1207 mV rms		
	12	Sine and Square DC Balance			·			
	12.1	A5 TP10/11 Sine Square	A16R243 A16R240	-1 mV dc -1 mV dc		+ 1 mV dc + 1 mV dc		
	13	Triangle DC Blanace A5 TP10/11	A10R235	— 1 mV dc		+ 1 mV dc		
5–19		OUTPUT AMPLIFIER and OFFSET GENERATOR (use shielded cables)						
	1	Voltage Source Pre-Amp 8alance						
	1.2	A4 TP3 (NORM) (INV)	A4R161	min. ampl.		≤ 10 mV p•p		
***************************************	2	Vernier D/A Converter						
	2.1	A6 TP1	A6R805	3.997 V dc		4.003 V dc		
				- Commission of the Commission				

Table 5-1. Adjustment Record (3 of 6)

Para No.	Adjust			Results					
No.	Step	Description	Adjust	Min	Actual	Max,			
5-19	3	OP Amp Balance U3							
,	3.2	A12 TP1/2	A12 R2 0	-0.1 mV dc		+ 0.1 mV dc			
	3.4	OP Amp Balance U2							
	3,5	A12 TP3/4	A12R12	- 0.1 mV dc		+ 0 .1 mV d c			
	4	OP Amp Balance U4							
	4.2	A12 TP5/6	A12R31	-0.1 mV dc	<u></u>	+ 0.1 mV dc			
***************************************	5	Pre-Amp Dc-Balance							
	5.2	Output NORM-INV	A4R111	≤ 5 mV	<u> </u>				
***************************************	6	X1 Amplifier Balance		Andrew Control of the					
***************************************	6.2	Output (NORM) (INV)	A6R1	-1 mV dc -10 mV dc		+ 1 mV dc 10 mV dc			
	7	X2 Amplifier Balance		**************************************	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
AAGAMATTA A	7.2	Output (NORM) (INV)	A6R2	−2 mV dc −20 mV dc		+ 2 mV dc + 20 mV dc			
	8	X1 Amplifier Gain		i i i i i i i i i i i i i i i i i i i	***************************************				
	8.3	Output (1,99 V)	A6R912	994 mV rms		996 mV rms			
		(1.00 V)	A6R810	499.5 mV rms	1	500.5 mV rms 750.5 mV rms			
		(1.50 V)	A6R826	749.5 mV rms		750.5 in v Tins			
	9	X2 Amplifier Gain							
	9.2	Output (3.99 V)	A4R306	1.994 V rms		1.996 V rms			
		(5.99 V)	A6R920 A6R915	2.993 V rms	***************************************	2.997 V rms 3.998 V rms			
		(7.99 V)	Agraio	3.992 V rms		2.990 A LIII2			
	10	Offset Range							
	10.3	Output	A6R614	2.559 V dc	***************************************	2 .5 61 V dc			
	11	Offset D/A Converter							
	11,2	Output	A6R6 01	2,549 V dc	20 (a)	2.551 V dc			
	12	Offset Linearity							
	12.2	Output (1 k Ω) (50 Ω)	A6R610	4.999 V dc 4.990 V dc	gh.	5.001 V dc 5.010 V dc			

Table 5-1. Adjustment Record (4 of 6)

Para	Adjust	ment			Results	
No.	Step	Description	Adjust	Min.	Actual	Max.
F 40	40	Office (000 V Donne	The state of the s			
5-19	13 13.2	Offset +999 mV Range	A12R4	998 mV dc		1,000 V dc
	14	Offset -999 mV Range	A12R23	-998 mV dc		-1.000 V dc
	14.3	(–5 V Range)		-4.990 V dc		-5.010 V dc
5-20	wArmin (Mr.)	HIGH FREQUENCY ADJUSTMENTS				
	1	Square Wave Response			minasawwa manaka minasawa samini	Photogramma and the state of th
	1.2	Output via 20 dB (10.0 V)	A4R115 A4C513 A4R526	Best response		overshoot ≤ ± 5% transition
		(999 mV)	A4C512 A4R525	Best response		\leq 5 ns (50 Ω)
		(99 mV)	A4R511 A4R524	Best response		≤ 7 ns (1 kΩ)
	2	50 MHz Waveforms				An universal (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
	2.4	Triangle offset/amplitude	A5R10 A5R51	0.5 div		9.0 div
	3	50 MHz Square				ocopolization and the state of
	3.2	Output 50% Duty cycle (sine)	A5R235 A5C309	9.7 div		
521		VCO-CONTROL	**************************************			
	1	D/A Converter				
	1.2	A6 TP3 (2.56 kHz)	A8R318	2.55 ∨		2 .57 V
	# 8 Km	(2.55 kHz)	A8R318	2.54 V	***************************************	2.56 V
	2	Range Start				
	2.1	AB TP4/5	A9R429	-0.5 mV dc		+0.5 mV dc
				e e e e e e e e e e e e e e e e e e e		

Adjustments

Table 5-1. Adjustment Record (5 of 6)

Para Adjustment			Results					
No.	Step	Description	Adjust	Min	Actual	Max.		
5–21	3	Range End						
	3. 2	9.99 kHz	A8R405	± 1 %				
	0,2	99.9 kHz	A5 (* C23)	± 2 %				
		999 kHz	A5 (* C23)	± 2 %				
		9,99 MHz	A8R409					
		1.00 MHz	A8 (*R433)	±3%				
		19.9 MHz 10.0 MHz	A8R412 A8 (* R436)	± 3 %	****			
		20.0 MHz	A8R407	± 3 //				
		35.0 MHz	A8R420					
		50.0 MHz	A8R418		•			
5–22		REFERENCE LOOP		***************************************				
	1	Oscillator Frequency						
	1.3	A9 TP1	A9 C 602	9.999995 kHz		10.000005 kHz		
	2	Sine Shaper Distortion				Company of the control of the contro		
***************************************	2.1	A9 TP4 (Gate Mode 3 kHz)	A9R313 A9R310	8est sine waveform				
		(1 kHz and 9.9 kHz)		8est compro- mise		The state of the s		
	3	Mixer Balance						
***************************************	3.3	A9 TP5 (2 kHz)	A9R406	minimum				
				amplitude				
		(1 kHz and 9.9 kHz)		≤ 130 mV p-p	·			
5-23		BASELINE CENTERING						
	1	External Trigger Level						
	1.4	Output	A7R4	stable signal				
			THE PROPERTY OF THE PROPERTY O	Trabio digitar				
ĺ	2	Gate baseline	A de la companya de l					
PO-THERE AND	2,3	Output	A5R115	center baseline	**************************************			
			-					

Table 5-1. Adjustment Record (6 of 6)

Para	Adjust	ment		Results					
No.	Step	Description	Adjust	Min	Actual	Max.			
5–24		SWEEP GENERATOR (OPTION)							
	1	Sweep Voltage	•	[
	1.3	Sweep out or A11 TP2	A11R410	2,995 V	war and the second seco	3.005 V			
	1.5		A11R404	- 2 mV		+ 2 mV			
	2	Sweep Frequency		dere Art de constitución de co					
	2.1	Sync out (1 kHz)	A11R423	1 kHz					
	2.3	(990 kHz)	A11R428	990 kHz	Minde after a second				
	2.5	(100 kHz)	A11R426	100 kHz	Shado walk from the first of th				
	3	Sweep Time							
	3.3	Sweep out	A11R203	20 ms					
5–25		AMPLITUDE MODULATOR (OPTION)							
	1	Input Balance		And the state of t					
	1.2	Mod. Input	A13R102	-1 mV		+ 1 mV			
A to the total of	2	0 % Modulation							
	2.3	Output	A13R142	496,5 mV		498.5 mV			
	3	Envelope Distortion							
	3.5	Output	A13R210 A13R128	min, dist,	•••	≤ - 60 dB			
	4	Output DC Balance							
	4.3	Output (NORM)	A13R123	−2 mV	***************************************	+ 2 mV			
	4.4	(INV)		- 10 mV		+ 10 mV			

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
					100	
A1 A2 A3 A4 A5	0816566501 0816566502 0816566503 0816566504 0816566506	5 6 7 8		BD AY KEY BD AY DISPLAY BD AY PRCR BD AY OUT AMPL BD AY TIMING		
A6 A7 A8 A9 A10	0816566506 0816566507 0816566508 0816566509 0616466510	9 0 1 2 5		BD AY PWR CONT BD AY INP MOD BD AY VCO CONT BD AY REF LCOP BD AY LOW FREO G		'
A12 A14 A15 A16 A17	08165-66512 08165-66614 08165-66515 08165-66516 08165-66517	7 9 0 1 2		BD AY OFFSET GEN BD AY HP-18 BD AY-RAMP ADJ BD AY-SOURCES AD BD AY-APTD ADJ		
81	7160=0209	4	i	FAN-TBAX 32-CFM 105-125V 50/60-HZ	23936	85000
C1 C2 C3	0160-3731 0160-3731 0160-4084	0 0 8	a 1	CAPACITOR=FXD .01UF +=20% 1KVDC CER CAPACITOR=FXD .01UF +=20% 1KVDC CER CAPACITOR=FXD .1UF +=20% 50VDC CER	28480 28480 28480	0160=3731 0160=3731 0160=4084
C#5	1901=0496 1901=0496	1	2	DIODE-PWR RECT 100V 12A DO-4 DIODE-PWR RECT 100V 12A DO-4	04713 04715	MR1121 MR1121
]2 J3 J4	1250=0118 1250=0118 1250=0118 1250=0118 1250=0118	*****	A	CONNECTOR-RF BNC FEM 8GL-HOLE-FR 50-0HM CONNECTOR-RF BNC FEM 8GL-HOLE-FR 50-0HM CONNECTOR-RF BNC FEM 8GL-HOLE-FR 50-0HM CONNECTOR-RF BNC FEM SGL-HOLE-FR 50-0HM CONNECTOR-RF BNC FEM SGL-HOLE-FR 50-0HM	26480 26480 26480 26480 26480	1250=0118 1250=0118 1250=0118 1250=0118 1250=0118
J7 J8 J9	1250-0118 1250-0118 1250-0118	3 3 3		CONNECTOR-PF ANC FEM 8GL-HOLE-FR 50-DHW CONNECTOR-RF BNC FEM 8GL-HOLE-FR 50-OHM CONNECTOR-RF BNC FEM 8GL-HOLE-FR 50-OHM	28480 28480 28480	1250=0118 1250=0118 1250=0118
WR1 MP2 MP3 MP4 MP5	01830=23201 0370=0914 0380=0599 0400=0077 0400=0193	3 0 8 1 2	- 1 1 1 5	COUPLER, SWITCH 10=24 BEZEL=PB KNOB, 490LG, 330×, 165HI, JADE SRACER=HEADED .125 ID3 .438 DIA HD1 .237 GPOMMET=RND .375=IN=ID .5-IN=GRV=OD GROWMET=SPCL .221=IN=ID	28480 28480 28480 28480 28480	01630=23201 0370=0914 0380=0599 0400=0077 0400=0193
MP6 MP7 MP8 WP10 MP11	2260+0009 08165-00202 08165-00203 08165+01201 08165-01202	34556	† 1 1	NUT-HEX-W/LKWR 4-40-THD .094-IN-THK PANEL, FRONT PANEL, 6UB BRACKET, PC 80ARD BRACKET, FAN	00000 28480 28480 28480 28480	OPDER 8Y DESCRIPTION 08165-00202 08165-00203 08165-01201 08165-01202
MP12 MP13 MP14 MP15 MP16	08165=01204 08165=21101 08165=28101 08165=60101 08165=60201	8 50 8 9	† † †	RRACKET, HP-IS BOARD HEAT SINK WINDOW CHASSIS ASSEMBLY PANEL ASSEMBLY, REAR	28480 28480 28480 28480 28480	08165-01204 08165-21101 08165-28101 08165-69101 08165-60201
MP17 MP18 MP19 MP19 MP20	1200+0080 1460+1345 5000-8915 5040+6011 5001+0439	35000	1 1 1 2	INSULATOR-DIO ALUMINUM HD-ANDZ TILT STAND 8ST COVER, TRANSFORMER, OLIVE BLACK TRIM, FRONT SIDE	28480 28480 28480 28480	1200=0080 1460=1345 5000=2915 5040=0011 5001=0439
MP22 MP24 MP25 MP25 MP26	5001=1206 5001=1207 5020=8803 5020=8804 5020=8836	9 0 6 7 5	1 5 6 1	PLATE, SAFETY POWER INSULATOR, POWER SWITCH FRAME, FRONT FRAME, REAR CORNER STRUT 15	56460 56460 56460 56460	\$001=1206 \$001=1207 \$020=6603 \$020=6804 \$020=6835
MP27 MP28 MP29 MP30 MP31	5040-1124 5040-6010 5040-6011 5040-6012 5040-6013	25678	1 1 1	KNOB, PUSHBUTTON, POWER KEY CAP, 0 KEY CAP, 1 KEY CAP, 2 KEY CAP, 3	28480 28480 28480 28480 28480	5040-1124 5040-6010 5040-6011 5040-6012 5040-6013

Table 6-3. Replaceable Parts (cont'd)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
MP32 MP33 MP34 MP35 MP36	5040-6014 5040-6015 5040-6016 5040-6017 5040-6018	9 0 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 1 1 1 1 1	KEY CAP, 4 KEY CAP, 5 KEY CAP, 6 KEY CAP, 7 KEY CAP, 8	28480 28480 26480 26480 28480	5040-6014 5040-6015 5040-6016 5040-6018
MP37 MP38 MP39 MP40 MP41	5040-6019 5040-6020 5040-7201 5040-7202 5040-7219	4 7 8 9 8	1 1 1	KEY CAP, 9 KEY CAP, 9 FOOT(STANDARD) TRIM, TOP STPAP, HANDLE, CAP-FRDNT	26460 26460 26460 26460	5040-6019 5040-6020 5040-7201 5040-7202 5040-7219
MP49 WP42 WP43 WP43	5040-7220 5040-7221 5040-7756 5040-9305 5040-9306	8	1 1 1	STRAP, HANDLE, CAP-REAP KEY, LARGE, OLIVE BEIGE KEY, LARGE, OLIVE GREY	56480 56480 56480 56480	5040-7220 5040-7221 5040-7756 5040-9305 5040-9306
MP47 MP48 MP49 MP50 MP51	5040-9307 5041-0309 5041-0318 5060-9803 5060-9834	0 M O M O	1	KEY, LARGE, GOLD KEY CAR, QUARTER LOCK CAP, PTY GREY COVEP ASSY, TOR	28460 28460 28460 28460	5040-9307 5041-0309 5041-0318 5060-9803 5060-9834
MP52 MP53 MP54 MP55 MP60 G1 G2 G3 G4	08170 -64111 5060 -9911 5060 -9936 9222-0608 08165-45201 5040-0702 1853-0251 1853-0251 1853-0251 1853-0251	SARWY MERMA	1 1 1 6 3 2	COVER ASSY, BOTTOM COVER, SIDE COVER, SIDE 15° COVER, SIDE 15° COVER, OPERATION CARD HOUSING, LAMP INSULATING WASHER TRANSISTOR PNP 81 PDB90M FTE2MM7	28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480	08170m64111 5060=9911 5060=9936 922=0608 08165=45201 5040-0702 1853=0251 1854=0433 1854=0433 1854=0433 1853=0251
S 1	3101=1720 08165=61101	s	1	SMITCH=PB DPDT 44 250VAC TRANSFORMER, POWER	28480 28480	3101=1720 08165=61101
W1 W2 W3 W4 W5 W6 W10 W10	08165=61601	ଦେଉଏବ ଓ	2	CBL AY INPUT CBL AY SIGN OUTPUT CBL AY SIGN OUTPUT CABLE ASSEMBLY, REFERENCE CBL AY CONTROL CURRENT CABLE, REAR PANEL CABLE, ASSEMBLY, COAX CABLE ASSEMBLY, COAX CABLE ASSEMBLY, COAX CABLE ASSEMBLY, COAX CABLE ASSEMBLY, COAX	28480 28480 28480 28480 28480 28480 28480 28480 28480	08165-61602 08165-61603 08165-61603 08165-61605 08165-61605 08165-61606 08165-61601 08165-61601
XF(21:0=0569 21:0=0565 21:0=0566 1400=0090	3909	1 1	FUSEHOLDER CAP 12A MAX FOR UL FUSEHOLDER-EXTR POST 12A 250 V FUSEHOLDER COMPONENT FOR USE ON	28480 28480 28480 28480	2110-0569 2110-0565 2110-0566 1400-0090
				,		

Table 6-3. Replaceable Parts (cont'd)

Reference Designation	HP Part Number	00	Qty	Description	Mfr Code	Mfr Part Number
						•
1	08165-66501	4	1	BDARD ASSEMBLY, KEY	28480	08165-66501
1w9	5081=1968	2	1	CARLE, RIBBON 14C 330MM	28480	5081=1962
2	08165-66502	5	1	BDARD ASBEMBLY, Display	28480	U81 65=66 502
201	0160-0174	9	54	CAPACITOR=FXD .47UF +80-20% 25VDC CER	28480	0160-0174
202 203 204	0160=0174 0180=1704 0180=1704	9 5	11	CAPACITOR-FXO .47UF +80-20% 25YOC CER CAPACITOR-FXD 47UF+-10% 6YOC TA CAPACITOR-FXD 47UF+-10% 6VDC TA	26480 56269 56289	0160=0174 1500476×900682 1500476×900682
2051	1990-0467	۱, ٔ	21	LED-VISIBLE LUM-INTHIMCD IFH20MA-MAX	28480 28480	2085-4284 2085-4284
2082 2083 2084	1990±0487 1990±0487 1990±0487	7 7 7		FED-AISIBRE FOW-INIAIWCD 12=50WF*WYX FED-AISIBRE FOW-INIAIWCD 12=50WF*WYX	28480 28480	5082-4584 5082-4584
2085	1990-0487	7		LED-VISIBLE LUM-INTERMED IFEROMA-MAX	28480	5082-4584
12086 12087 120810	1990-0487 1990-0487 1990-0487	7 7 7		LED-VISIBLE LUM-INT#1MCD IF#20MA-MAX LED-VISIBLE LUM-INT#1MCD IF#20MA-MAX LED-VISIBLE LUM-INT#1MCD IF#20MA-MAX	28480 28480 28480	5082=4584 5082=4584 5082=4584
20811 20811	1990-0487	7		LED-VISIBLE LUM-INT#1MCD IF#20MA-MAX LED-VISIBLE LUM-INT#1MCD IF#20MA-MAX	28480 28480	5082-4584 5082-4584
120813 120814	1990±0487 1990±0487	7 7		LED-VISIBLE LUM-INTBIMCD IFBZOMA-MÁX LED-VISIBLE LUM-INTBIMCD IFBZOMA-MÁX	28480 28480	5082=4584 5082=4584
20815 20816	1990=0487 1990=0487	7		LED-VISIBLE LUM-INTEIMCD IFE20MA-MAX LED-VISIBLE LUM-INTEIMCD IFE20MA-MAX	28480 28480	5082-4584 5082-4584
20\$17	1990=0487	7		LED-VISIBLE LUM-INTEIMCD IF#20MA-MAX LED-VISIBLE LUM-INTEIMCD IF#20MA-MAX	28480 28480	5082+4584 5082-4584
120819 120819	1990-0457	7 7		LED-VISIBLE LUM-INTEIMCD IF#20MA-MAX LED-VISIBLE LUM-INTEIMCD IF#20MA-MAX	28480 28480	5082-4584 5082-4584
20839 20830	1990=0487 1990=0487	7		LED-VISIBLE LUM-INTEIMCD IF#20MA-MAX LED-VISIBLE LUM-INTEIMCD IF#20MA-MAX	28480 28480	5082-4584 5082-4584
20831	1990=0487 1990=0485	7 5	1	LFD=VISIBLE LUM=INT#1MCD IF#20MA=MAX LFD=VISIBLE LUM=INT#800UCD IF#30MA=MAX	28486 28480	5082=4584 5082=4984
2D833 2D834	2140=0016 2140=0016	8	7	LAMP-INCAND 683 5VDC 60MA T=1-BULB LAMP-INCAND 683 5VDC 60MA T=1-BULB	L0000	683 683
20835	2140=0016 2140=0016	8		LAMP-INCAND 683 5VDC 60MA T-1-BULB	00003	683
120841 120842	2140=0016 2140=0016	8		LAMP-INCAND 683 5VDC 60MA T-1-BULB LAMP-INCAND 683 5VDC 60MA T-1-BULB	00001	683 683
120891	2140=0016 1990=0452	8	12	LAMP-INCAND 683 5VDC 60MA T-1-BULB DISPLAY-NUM-SEG 1-CHAP .3-H	0000J 28480	683 5082=7731; CAT C=E
120853 120853	1990=0452	6		DISPLAY-NUM-SEG 1-CHAR .3-H DISPLAY-NUM-SEG 1-CHAR .3-H	28480 28480	5082-7731, CAT C-E 5082-7731, CAT C-E
420854 420855 420856	1990=0452 1990=0452 1990=0452	6		DISPLAY=NUM-SEG 1=CHAR .3=H DISPLAY=NUM-SEG 1=CHAR .3=H DISPLAY=NUM-SEG 1=CHAR .3=H	28480 28480 28480	5082-7731, CAT C-E 5082-7731, CAT C-E 5082-7731, CAT C-E
A2D\$\$7	1990=0452	6		DISPLAY-NUM-BEG 1-CHAR .3-H	26480	5082-7731, CAT C-E
420\$58 470\$59 420\$60	1990-0452 1990-0452 1990-0452	6 6		DISPLAY-NUM-SEG 1-CHAR 3-H DISPLAY-NUM-SEG 1-CHAR 3-H DISPLAY-NUM-SEG 1-CHAR 3-H	28480 28480 28480	5082-7731, CAT C-E 5082-7731, CAT C-E 5082-7731, CAT C-E
A20861	1990-0452	٥		DISPLAY-NUM-SEG 1-CHAR .3-H	28480	5082-7731, CAT C-E
12D862 12J4	1990-0452	6	12	DISPLAY-NUM-SEG 1-CHAR .3-H SOCKET-IC 14-CONT DIP-SLDR	28480 28480	5082-7731, CAY C-E
₹ L SA ∂ LSA	1200-0589 1200-0589	7 7	''	SDCKET-IC 14-CONT DIP-SLDR SOCKET-IC 14-CONT DIP-SLDR	26480 26480	1200-0569 1200-0569 1200-0569
42J7 42J8	1200=0569 1200=0569	7 7		SDCKET-IC 14-CONT DIP-SLOR SDCKET-IC 14-CONT DIP-SLOR	28480 28480	1200-0589 1200-0589
42J9 42J10	1200=0589 1200=0589	7		SDCKET-IC 14-CDNT DIP-SLDR SDCKET-IC 14-CDNT DIP-SLDR	28480 28480	1200=0589 1200=0589
11 L S A 2 L L S A	1200=0589 1200=0589 1200=0589	7 7 7		SOCKET-IC 14-CONT DIP-SLOR BOCKET-IC 14-CONT DIP-SLOR	28480 28480	1200+0589 1200+0589
12J13 12J14	1200-0589	7		SOCKET-IC 14-CONT DIP-SLOR SOCKET-IC 14-CONT DIP-SLOR	28480 28460	1200-0589 1200-0589
12J15 1201	1200-0589	7	54	SOCKET-IC 14-CONT DIP-8LDR TRANSISTOR NPN 81 PD#350Mw FT#300MHz	28480 04713	1200+0589
4 2 Q 2 4 2 Q 3	1854-0215 1854-0215	1	3"	TRANSISTOR NPN 81 PD#350MW FT#300MHZ TRANSISTOR NPN 81 PD#350MW FT#300MHZ TRANSISTOR NPN 81 PD#350MW FT#300MHZ	04713	2N3904 2N3904
1204 1205	1854-0215 1854-0477	17	11	TRANSISTOR NPN SI PD#350MW FT#300MMZ TRANSISTOR NPN 2N2222A 8I TO=18 PD#500MW	04713 04713	2N3904 2N3222A
1206	1854=0477	7		TPANSISTOR NPN 2N22224 SI TO-18 PD=500MW	04713	*************************
42R1 42R2	0757=0706 0757=0706	8	9	RESISTOR 51.1 1% .25W F TC#0+=100 RESISTOR 51.1 1% .25W F TC#0+=100	24546 24546	CS=1/4=TO=51R1=F CS=1/4=TO=51R1=F
1283 1284 1285	0757-0706 0757-0706 0757-0280	8 8	78	RESISTOR 51, 1 1% 25W F TCm+=100 RESISTOR 51,1 1% 25W F TCm0+=100 RESISTOR 1K 1% ,125W F TCm0+=100	24546 24546 24546	C5=1/4=T0=51R1=F C5=1/4=T0=51R1=F C4=1/8=T0=1001=F

Table 6-3. Replaceable Parts (cont'd)

Designation	HP Part Number	C D	Oty	Description	Mfr Code	Mfr Part Number
6286 6287 6289 6289 62810	0757~0260 0757~0260 0757~0280 0757~0280 0757~0280	المولا كاميا أيوا كولا المياة		PESTATOR 14 1% 125m F TC#0**100 PESTATOR 14 1% 125m F TC#0**100 RESTATOR 14 1% 125m F TC#0**100	2.44 2.44 2.44 2.44 2.44 2.44 2.44 2.44	[.4 m 1 / 8 m] 0 m 1 0 0 1 m F C 4 m 1 / 8 m 7 0 m 1 0 0 1 m F C 4 m 1 / 8 m 7 0 m 1 0 0 1 m F C 4 m 1 / 8 m 7 0 m 1 0 0 1 m F C 4 m 1 / 8 m 7 0 m 1 0 0 1 m F
67817 62817 62818 62816 62818	0757~0261 0757~0261 0757~0261 0757~0261 0257~0261	4 4 4	1 f	PESISTOR 2, 74K X , 125K F TC=0*=100 RESISTOR 2,74K X , 125K F TC=0*=100 PESISTOR 2,74K X , 125K F TC=0*=100 PESISTOR 2,74K X , 125K F TC=0*=100 PESISTOR 4,64K X , 125K F TC=0*=100	24546 24546 24546 24546	C4=1/8=70=2741=F C4=1/8=70=2741=F C4=1/8=70=2741=F C4=1/8=70=2741=F C4=1/8=70=4641=F
수 없 위 1 선 소요 위 1 가 소요 위 1 원 소요 위 1 원 소요 위 1 원 소요 유 2 원 소요 유 2 원	0098+5185 0757+0417 18:0=0162 8159+0805 8159+0805	18500	4 1 3	PESISTOR 4.64K 1X .125W F TCx0+=100 RESISTOR 50P 1X .125W F TCx0+=100 NETWOPK=RES 14-D3P4.7X CPM X 13 NIRE 224WG W PVC 1222 BOC WIPE 224WG W PVC 1222 BOC	24546 24546 11236 26460	C4=1/8=T0=4641=F C4=1/8=T0=562R=F 76(=1=R4,7k R159=005 R159=005 R159=0005
1545A	8159×0005	0		WIRE BYOME W PVC 1YRR BOC	28480	H 1 5 9 * 0 0 0 5
4281 4282 4283 4284 4285	5060~9436 5060~9436 5060~9436 5060~9436 5066~9436	7 7 7 7	17	PUSHBUTTON SPITCH P.C. MOUNT PUSHBUTTON SWITCH P.C. MOUNT PUSHBUTTON SWITCH P.C. MOUNT PUSHBUTTON SWITCH P.C. MOUNT PUSHBUTTON SWITCH P.C. MOUNT	28480 28480 28480 58480	\$060~9436 \$060~9436 \$060~9436 \$060~9436 \$060~9436
A286 A287 A288 A288 A286 A286 A2810	5060-9436 5060-9436 5060-9436 5060-9436 5060-9436	7-7-9-7-7-		PUSHBUTTON SWITCH P.C. MOUNT PUSHPUTTON SWITCH P.C. MOUNT PUSHPUTTON SWITCH P.C. MOUNT PUSHBUTTON SWITCH P.C. MOUNT PUSHBUTTON SWITCH P.C. MOUNT	08485 08485 08485 08485	5060=9436 5060=9436 5060=9436 5060=9436 5060=9436 5060=9436
A 28 6 1 A 28 1 2 A 28 1 4 A 28 1 9 A 28 2 4	5060-9436 5060-9436 5060-9436 5060-9436	7 7 7 7		PUSHBUTTON SWITCH P.C. MOUNT	26480 26480 26480 26480 26480	\$160~9436 \$160~9436 \$360~9436 \$160~9436 \$060~9436
82824 62834	5060-9436 5060-9436	7		PUSHEUTTON SKITCH P.C. MOUNT PUSHEUTTON SWITCH P.C. MOUNT	28480 28480	5060-943a
1 1 1 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1820-1200 1820-0628 1820-0491	15.9.4	<u>\$</u> %	IC INV TIL LS MEX IC TIL 6400FIT FAM 600NS 00C IC DCDP TIL 8C00TC00EC ##TG0100LINE	01295 01295 01295	8N74L805N SN7489N SN74145N
1 W S A S W S	5081*1980 5081*1980 5081*1981	4 4 5	, 2°	CABLE, RIBBON ILC 279MM CABLE, RIBBON ILC 279MM CABLE, PIBBON 26C 305MM	25450 25450 25470	5061=1980 5081=1980 5081=1981
A.Z.	n8165*66503	٨	ŧ	BOAFD ASSEMBLY, PROCESSOR	28480	08165066503
A3871 A3872	1420-0574 1420-0574	6	2	EATTERY 1.2V (15A-HR NI-CO SLOR-TAB PATTERY 1.2V (15A-HR NI-CO SLOR-TAB	28460	1420-0576
A 3 C 3 A 3 C 3 A 3 C 3 A 3 C 5	0160-4299 0160-1715 0160-4212 0169-4212 0160-4212	7 4 4	2 2 7	CAPACITOR=FXD 2200FF +=20% 250VDC CER CAPACITOR=FXD 150UF+=10% 6VDC TA CAPACITOR=FXD 066UF +=20% 50VDC POLYE CAPACITOR=FXD 066UF +=20% 50VDC POLYE CAPACITOR=FXD 066UF +=20% 50VDC POLYE CAPACITOR=FXD 066UF +=20% 50VDC POLYE	%6289 %6289 %6289 26460 26460 26460	C067F251F222M322-CDH 1500157X9006R2 0160-4212 0160-4212
4306 A307 A308 A309 A309	0160=0174 0180=1714 0160=1704 0160=0228 0160=0174	07500	t a	CAPACITOR=FXO .47UF +80=20% 25VDC CER CAPACITOR=FXD 330UF+=10% 6VDC TA CAPACITOR=FXD 47UF+=10% 6VDC TA CAPACITOR=FXD 22UF+=10% 15VDC TA CAPACITOR=FXD .47UF +80=20% 25VDC CER	26460 56269 56289 56289 56460	0160=0174 1500337x900682 1500476x900682 1500226x901582 0160=0174
43C:1 43C:2 43C:3 43C:4 43C:15	0180-1704 0180-0197 0160-2150 0160-2150 0160-2150	14 15 16 18 US	6 7	CAPACITOR=FXD 47UF+=10% 6VDC TA CAPACITOR=FXD 2,2UF+=10% 20VDC TA CAPACITOR=FXD 33FF +=5% 360VDC MICA CAPACITOR=FXD 33FF +=5% 360VDC MICA CAPACITOR=FXD 33FF +=5% 360VDC MICA	\$6269 \$6269 28460 88460 88460	150047ex900682 1500225x902042 0160-2150 0160-2150
13616 13617 13618 13619 13620	0140-0192 0160-2150 0140-0192 0160-2055 0180-0155	0 0 0 0 0	3 10 1	CAPACITOR=FXD 68PF +=5% 300VDC MICA CAPACITOR=FXD 33PF +=5% 300VDC MICA CAPACITOR=FXD 68PF +=5% 300VDC MICA CAPACITOR=FXD 001F ***000PO 001 00VDC CER CAPACITOR=FXD 3300PF +=10% 200VDC POLYE	72136 28460 72136 26460 28480	DM15E680J0300HV1CR 0160=2150 DM15E680J0300WV1CR 0160≈2055 0160≈0155
43021 43022	0160=4210 0160=3724 0160=3874	2 1 2	1	CAPACITOR-FXD .022UF +-20% 50VDC POLYE CAPACITOR-FXD .47UF +-10% 40VDC CAPACITOR-FXD 10PF +5PF 200VDC CER	28480 28480 28480	0160-4210 0160-3724 0160-3674
30R1 30R2 30R3 30R4	1901 = 0050 1901 = 0050 1901 = 0050 1901 = 0050	hat too too too	2n	DIODE-SWITCHING BOY 200MA 2NS DO-35 DIODE-SWITCHING BOY 200MA 2NS DO-35 DIODE-SWITCHING BOY 200MA 2NS DO-35 DIODE-SWITCHING BOY 206MA 2NS DO-35	28480 28480 28480 28480	1901-0050 1901-0050 1901-0050 1901-0050

Table 6-3. Replaceable Parts (cont'd)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
45J1 43J2 43J3 43J4 43J5	1251-3024 1251-3024 1251-3024 1200-0548 1200-0654	12 30 00 00 00), 1 †	CONNECTOR 26-PIN M RECTANGULAR CONNECTOR 26-PIN M RECTANGULAR CONNECTOR 26-PIN M RECTANGULAR 30CKET-IC 14-CONT DIP DIP-SLOR 30CKET-IC 40-CONT DIP-SLOR	28480 28480 28480 28480 28480	1251-3024 1251-3024 3251-3026 1200-0548 1200-0659
A3MP1 A3MP2 A3MP4	08160-02301 4040-0750 4040-0750 0340+0451	37777	1 P	PC BOARD HOLDER EXTR-PC BD RED POLYC .062-RD-THKNS EXTP-PC BD RED POLYC .062-BO-THKNS INBULATOR-X8TP MICA	28480 28480 28480 28480	08160-02301 4040-0750 4040-0750 0340-0451
43g1 43g2 43g3 43g4 43g5	1854-0330 1854-0477 1853-0086 1853-0086 1854-0215	17221	1 16	TRANSISTOR NPN SI PDEZIM FYBIOMMZ TPANSISTOR NPN 2N2222A SI TD+18 PD#500MW TPANSISTOP PNP SI RD#310MW FT#40MMZ TPANSISTOR PNP SI PD#310MW FT#40MMZ TPANSISTOR NPN SI PD#350MW FY#30GMMZ	26480 04713 27014 27014 04713	1854-0330 28222A 285087 285087 28304
A 306 A 307 A 308 A 309 A 3010	1853-0036 1853-0086 1854-0392 1854-0215 1854-0215	2 2 5 1 1	3.4 R	TRANSISTOR PNP SI PD#310MW FT#250MMZ TRANSISTOR PNP SI PD#310MW FT#40MHZ TRANSISTOR NPN SI PD#310MW FT#50MHZ TRANSISTOR NPN SI PD#350MW FT#500MMZ TRANSISTOR NPN SI PD#350MW FT#300MMZ	28480 27014 04713 04713 04713	1853-0036 2N5087 2N5088 2N3904 2N3904
A3Q11 A3Q12	1854-0215 1854-0215	1		TRANSISTOR NON 81 PD#350Mm FT#300MHZ TRANSISTOR NON 81 PD#350Mm FT#300MHZ	04713 04713	2N3904 2N3904
A 3 R 1 A 3 P 2 A 3 R 3 A 3 R 4 A 3 R 5	1810-0055 0757-0442 0757-0401 0757-0412 0757-0417	5 9 0 3 8	3 40 27 1	NETWORK-RES 9-SIP10.UK OHM X 5 RESISTOR 10k 1% .125W F TC#0+-100 RESISTOR 100 1% .125W F TC#0+-100 RESISTOR 365 1% .125W F TC#0+-100 RESISTOR 562 1% .125W F TC#0+-100	28480 24546 24546 24546 24546	1810=0055 C4=1/8=10=1002=F C4=1/8=10=101=F C4=1/8=10=365R=F C4=1/8=10=365R=F
A3P6 A3R7 A3R8 A3R9 A3R10	0757-0706 0757-0280 0757-0438 0698-4458 0698-3447	83394	22 3 3	RESISTOR 51.1 1% .25W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 5.11K 1% .125W F TC=0+=100 RESISTOR 590 1% .125W F TC=0+=100 RESISTOR 422 1% .125W F TC=0+=100	24546 54246 54246	C5-1/4-TD-51R1-F C4-1/6-TO-1001-F C4-1/6-TO-5111-F C4-1/8-TO-500R-F C4-1/8-TO-422R-F
A3R11 A3P12 A3R13 A3R14 A3R15	0757-0438 0757-0439 0757-0444 0757-0458 0696-3260	34179	16 27 14 2	RESISTOR 5.11K 1% .125W F TCm0+=100 RESISTOR 6.61K 1% .125W F TCm0+=100 RESISTOR 12.1K 1% .125W F TCm0+=100 RESISTOR 51.1K 1% .125W F TCm0+=100 RESISTOR 51.1K 1% .125W F TCm0+=100	24546 54246 54246 54546	C4-1/8-T0-5113-F C4-1/8-T0-6811-F C4-1/8-T0-1212-F C4-1/8-T0-5112-F 0698-3260
A3P16 A3R18 A3R19 A3R20 A3R21	0757-0123 0757-0291 0757-0280 0757-0280 0757-0401	36330	1	RESISTOR 34,8K 1% .125W F YCm0+=100 RESISTOR 24,9 1% .125W F TCm0+=100 RESISTOR iK 1% .125W F TCm0+=100 RESISTOR IK 1% .125W F TCm0+=100 RESISTOR 100 1% .125W F TCm0+=100	28480 19701 24546 24546 24546	0757-0123 MFMC1/8-T0-2492-F C4-1/8-T0-1001-F C4-1/8-T0-101-F C4-1/8-T0-101-F
A3R22 A3R23 A3R24 A3R25 A3R26	0757=0465 0698=3447 0757=0465 0698=4486 0757=0283	64 + 3 6	6 5 11	RESISTOR 100K 1% ,125W F TC=0+=100 RESISTOR 422 1% ,125W F TC=0+=100 RESISTOR 100K 1% ,125W F TC=0+=100 RESISTOP 24_9K 1% ,125W F TC=0+=100 RESISTOR 2K 1% ,125W F TC=0+=100	24546 24546 24546 24546	C4-1/8-T0-1003-F C4-1/8-T0-1003-F C4-1/8-T0-2003-F C4-1/8-T0-2492-F C4-1/8-T0-2001-F
A3R27 A3R28 A3R29 A3R30 A3R31	0698-4486 0698-3178 0698-4444 0757-0280 0757-0442	3 3 9	8 6	RESISTOR 24,9K 1% .125W F TC=0+=100 RESISTOR 487 1% .125W F TC=0+=100 RESISTOR 4.87K 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100	24246 54246 54246 54246	C4-1/8-T0-2492=F C4-1/8-T0-487P=F C4-1/8-T0-4871=F C4-1/8-T0-1001=F C4-1/8-T0-1002=F
A3R32 A3R33 A3R34 A3R35 A3R36	0698-4086 0757-0346 0698-3178 0698-4444 0757-0280	9 2 8 3	20	RESISTOP 22.6 ix .125W F TC=0+=100 PESISTOR 10 1% .125W F TC=0+=100 RESISTOP 40.7 ix .125W F TC=0+=100 PESISTOP 4.87K 1x .125W F TC=0+=100 RESISTOP 1K 1X .125W F TC=0+=100	03888 24546 24546 24546 24546	PME55-1/8-T0-22R6-F C4-1/8-T0-10R0-F C4-1/8-T0-487R-F C4-1/8-T0-4871-F C4-1/8-T0-1001-F
A 300 30 4 50 4 50 4 50 4 50 4 50 4 50 4	0757+0442 0698-4086 0757+0346 0757-0349 0757-0438	99253	12	RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 22.6 1% .125W F TC=0+-100 RESISTOR 10 1% .125W F TC=0+-100 RESISTOR 22.6K 1% .125W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100	24546 24546 24546	C4-1/8-T0-1002-F PME55-1/8-T0-22P6-F C4-1/8-T0-10R0-F C4-1/8-T0-2282-F C4-1/8-T0-5111-F
A3P44 A3R44 A3R46 A3R46 A3R47	0757-0263 6757-0263 1810-0055 0757-0442	6 5 5 9 9		RESISTOR 2K 1% .125W F TC=0+-100 PESISTOR 2K 1% .125W F TC=0+-100 NETWORK-KES 9-SIP10.0K OHW X 8 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100	24546 24546 28480 24546 24546	C4-1/8-T0-2001-F C4-1/8-T0-2001-F 1810-0055 C4-1/8-T0-1002-F C4-1/8-T0-1002-F
A 3 R 4 6 A 3 R 5 0 A 3 R 5 1 A 3 R 5 2 A 3 R 5 3	0757-0450 0757-0442 0757-0465 0698-4460 0757-0472	99635	6 1	RESISTOR 22.1K 1% 125W F TC=0+=100 RESISTOR 10K 1% 125W F TC=0+=100 RESISTOR 10K 1% 125W F TC=0+=100 RESISTOR 649 1% 125W F TC=0+=100 RESISTOR 200K 1% 125W F TC=0+=100	24546 24246 24246 24246	C4-1/8-T0-2212-F C4-1/8-T0-1002-F C4-1/8-T0-1003-F C4-1/8-T0-649R-F C4-1/8-T0-2003-F
A 3R 55 A 3R 56 A 3R 57 A 3P 58 A 3P 59	0648=4460 0648=4460 0648=4460 0648=4460	3 3 3 3		RESISTOR 649 1% .125W F TC=0+-100	24546 24546 24546 24546	C4-1/8-T0-649R=F C4-1/8-T0-649R=F C4-1/8-T0-649R=F C4-1/8-T0-649R=F C4-1/8-T0-649R=F

Table 6-3. Replaceable Parts (cont'd)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
43R60 43R61 43R62 43R63 43P64	1810-0055 0757-0493 0757-0493 0757-0493 0757-0493	\$0000	ß	NETWORK-RES 9-SIP10.0K OPM x R RESISTOR 19 1% ,25 F F TC=0+=100 RESISTOR 15 1% ,25 F F TC=0+=100 RESISTOR 15 1% ,25 F TC=0+=100 RFSISTOR 15 1% ,25 F TC=0+=100	28480 19701 19701 19701 19701	1810-0055 MF52C1/4-T0-1580-F MF52C1/4-T0-1580-F MF52C1/4-T0-1580-F MF52C1/4-T0-1580-F
47865 43866 43867 43868 43870	0757=0493 0757=0493 0757=0493 0757=0493 1810=0041	0000	3	RESISTOR 15 1% ,25% F TC*0+-100 NFTWORK*RES 9-SIP2,7% OHM x 8	19701 19701 19701 19701 25480	MF52C1/4=T0=15R0=F MF52C1/4=T0=15R0=F MF52C1/4=T0=15R0=F MF52C1/4=T0=15R0=F 1810=0041
A3R71 A3R72 A3R73 A3R74 A3R75	0698-3439 0698-3439 0698-3439 0698-3439 0698-3439	3 44 4 4	13	PERISTOR 178 1% .125W F TC#0+=100 RESISTOR 178 1% .125W F TC#0+=100	54246 54246 54246 54246 54246	C4-1/8-T0-178R-F C4-1/8-T0-178R-F C4-1/8-T0-178R-F C4-1/8-T0-178R-F C4-1/8-T0-178R-F
A3F76 ±3G77 43G78 A3G79 A3G60	0698=3439 0698=3439 0698=3439 1810=0041 1810=0041	44400		RESISTOR 178 1% ,125W F TC=0+-100 RESISTOR 178 1% ,125W F TC=0++100 RESISTOR 178 1% ,125W F TC=0+-100 NETWORK-RES 9-SIP2,7K OHV X 8 NETWORK-RES 9-SIR2,7K OHV X 8	24546 24546 24546 28480	C4=1/8=T0=178R=F C4=1/8=T0=178R=F C4=1/8=T0=178R=F 1810=0041 1810=0041
43R81 43R82 43R83 43R84 A3R87	0698=3439 0698=3439 0698=3439 0698=3439 0757=0442	4440		RESISTOR 178 1% .125W F TC=0+=100 RESISTOR 10K 1% .125W F TC=0+=100	24546 24546 24546 24546	C4-1/8-T0-178R-F C4-1/8-T0-178R-F C4-1/8-T0-178R-F C4-1/8-T0-178R-F C4-1/8-T0-1002-F
43686 43690 43691 43692 43684	0683-5645 0757-0384 0757-0384 0757-0384 0757-0384	7 8 8 8	1 R	RESISTOR 560K 5% .25W FC TCm-800/+900 RESISTOR 20 1% .125W F TCm0+=100	01121 19701 19701 19701 19701	CR5645 MF4C1/6=T0=20R0=F MF4C1/8=T0=20R0=F MF4C1/8=T0=20R0=F MF4C1/8=T0=20R0=F
A 3R 9 4 A 3R 9 5	0757=0384 0757=0384	8		RESISTOR 20 1% .125W F TC#0+=100 RESISTOR 20 1% .125W F TC#0+=100	19701 19701	MF4C1/8=T0=20R0=F MF4C1/8=T0=20R0=F
43RT1	0837-0050	5	t	THERMISTOR DISC 3K+OHM TCm+4,4%/C+DEG	\$8480	0837=0050
A3U1 A3U2 A3U3 A3U4 A3U5	1820=1491 1820=1217 1820=1481 1820=1201 1820=1201	9900	1 1 3 2	IC BFR TIL LS NON-INV HEX :-INP IC MUXR/DATA-SEL TIL LB 8-TO-1-LINE IC NMOB IC GATE TIL LS AND GUAD 2-INP IC GATE TIL LB AND GUAD 2-INP	01295 01295 04713 01295 01295	SN74L3367AN SN74L8151N MC6621L SN74LSOBN SN74LSOBN
A 3U6 A 3U7 A 3U8 A 3U9 A 3U1 O	1820-1445 1820-1445 1820-1445 1820-1445 1820-1445	00000	8	IC LCH TTL LS 4-BIT	01295 01295 01295 01295 01295	8N74L8375N SN74L3375N SN74L8375N SN74L8375N SN74L8375N
A3U11 21UEA 3U13 43U14 43U15	1820-1423 1820-1804 1820-1480 1820-1199 1820-1281	4 5 1 2	***************************************	IC MV TTL LS MONOSTBL RETRIG DUAL IC BFR NMOS CLOCK DRVR IC MICPROC NMOS 8-BIT IC INV TTL LS HEX 1-INP IC DUAL 2-INP IC DCDR TTL LS 2-TO-4-LINE DUAL 2-INP	01295 04713 04713 01295 01295	8N74L9123N Mpg6842 Mc6680L 8N74L804N 9N74L8039N
A3U16 A3U17 A3U18 A3U19 A3U20	1620=1199 1820=1208 1820=1144 1820=1425 1818=0319	13660	2 3 1 3	IC INV TIL LS HEX 1-INP IC GATE TIL LS OR QUAD 2-INP IC GATE TIL LS NOR QUAD 2-INP IC SCHMITT-TRIG TIL LS NAND QUAD 2-INP IC CMOS 1K RAM STAT 650-NS 3-S	01295 01295 01295 01295 34649	SN74LS04N SN74LS32N SN74LS02N SN74LS132N P5101L=3
A3U21 A3U22 A3U23 A3U24 A3U24	1818-0319 1818-0319 1818-0364 1818-0362 1818-0363	00534	1 1 1	IC CMOS 1K RAM STAT 650-NS 3+9 IC CMOS 1K RAM STAT 650-NS 3-8 IC NMOS 16584-BIT ROM 550-NS 3-8 IC NMOS 16584-BIT ROM 550-NS 3-8 IC NMOS 16584-BIT ROM 550-NS 3-8 IC NMOS 16384-8IT ROM 550-NS 3-8	34649 34649 04713 04713	PS101L=3 RS101L=3 MCM6332L PROGRAMMED MCM6832L PROGRAMMED MCM6832L PROGRAMMED
A3U26 A3U27 A3U28 A3U29 A3U30	1818-0361 1820-1423 1820-1746 1820-1199 1820-1266	444	1 3	IC NMOS 16384-BIT ROM 550-NS 3-S IC MV TTL L8 MONOSTBL RETRIG DUAL IC BFR CMOS INV HEX IC INV TTL L3 HEX 1-INP IC BFR CMOS NON-INV HEX	04713 01295 04713 01295 07263	MCM6332L PROGRAMMED SN74L8123N MC14049UBCP SN74L804N 40097PC
43U31 A3U32 A3U33 A3U34 A3U35	1820=1144 1820=1194 1820=1418 1820=1746 1820=1197	6 6 7 4 9	1 1	IC GAYE ITL LS NOR GUAD 2-INP IC CNTR TTL LS BIN UP/DOWN SYNCHRO IC DCOR TTL LS BCD-TO-DEC 4-TO-10-LINE IC BAR CMOS INV HEX IC GATE TTL LS NAND GUAD 2-INP	01295 01295 01295 01295 04743 01295	\$N74L 302N \$N74L 3193N \$N74L 342N MC14049UBCP \$N74L 300N
A3U36 A3U37 A3U38 A3U39 A3U40	1820=0628 1820=0628 1820=1644 1858=0023 1820=0495	9 9 1 7 8	† 1	IC TTL 64-BIT RAM 60-NS 0-C IC TTL 64-BIT RAM 60-NS 0-C IC DCDR TTL LS BCD-TO-7-8EG 4-TO-7-LINE TRANSISTOR ARRAY IC DCDR TTL 4-TO-16-LINE 4-INP	01295 01295 01295 01928 01295	8

Table 6-3. Replaceable Parts (cont'd)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
2042 12044 12042 12042 12043	1858-0014 1858-0014 1858-0014 1859-1445 1820-1445	00000	3	TRANSISTOR APRAY TRANSISTOR ARRAY TRANSISTOR ARRAY TC LCH TTL LS 4-BIT TC LCH TTL LS 4-BIT	28480 28480 28480 01295 01295	1656-0014 1858-0014 1858-0014 587415375N SN7415375N
3046 3047 3048 3049 3050	1820=1845 1820=1197 1820=1281 1820=1451 1820=1451	000000	6	IC LCH TTL LS 4=BIT IC GATE TTL LS NAND GUAD 2=INP IC GATE TTL LS 2=TD=4=LINE DUAL 2=INP IC GATE TTL S NAND DUAD 2=INP IC GATE TTL S NAND DUAD 2=INP IC GATE TTL S NAND DUAD 2=INP	01295 01295 01295 01295 01295	9N74L8375N 9N74L500N 9N74L5139N 9N74S38N 8N74938N 8N74938N
13U51 13U52 13U53 13U54 13U56	1820=1197 1820=1197 1820=1197 1820=1451 1820=1451	4 4 4 B B		IC GATE TTL LS NAND DUAD 2=INP IC GATE TTL LS NAND GUAD 2=INP IC GATE TTL LS NAND GUAD 2=INP IC GATE TTL S NAND GUAD 2=INP IC GATE TTL S NAND GUAD 2=INP	01295 01295 01295 01295 01295	8N74L800N 8N74L800N 8N74L800N 8N74836N 8N74836N
13056	1820=1451	8		IC GATE FIL S NAND QUAD 2-1NP	01295	BN74836N
3vR1 13VR2	1902-3188 1902-0048	6	3	DIODE-ZNR 12.7V 2% DO-7 PDE,4% 1CE+.061% DIODE-ZNR 6.81V 5% DO-7 PDE,4% TCE+.043%	28480 28480	1902=3188 1902=0048
14	08165#66504	7	1	BOARD ASSEMBLY, OUTPUT AMPLIFIER	28480	n8165#6650#
1461 1462 1463 1464 1465	0180-2837 0180-2240 0180-0677 0180-0677 0160-3731	76990	1 1 2	CAPACITOR-FXD .032F+75-10% 20VDC AL CAPACITOR-FXD 2400UF+75-10% 25VDC AL CAPACITOR-FXD 5800UF+75-10% 40VDC AL CAPACITOR-FXD 5800UF+75-10% 40VDC AL CAPACITOR-FXD .01UF +-20% 1KVDC CER	26480 56289 28480 26480 26480	0180=2837 3902486025JL6=088 0180=0677 0180=3637 0160=3731
1466 1467 1468 1469 14610	0160=3731 0160=3731 0160=3731 0160=3731 0160=3731	00000		CAPACITOR=FXO .01UF +=20% 1KVDC CER	28480 28480 28480 28480 28480	0160-3731 0160-3731 0160-3731 0160-3731 0160-3731
44C11 44C101 44C102 44C103 44C104	0140-0228 0160-3879 0160-3879 0160-2306 0160-0573	6 7 7 3 2	40 1 2	CAPACITOR=FXD 22UF+=10% 15VDC TA CAPACITOR=FXD .01UF +=20% 100VDC CER CAPACITOR=FXD .01UF +=20% 100VDC CER CAPACITOR=FXD 27PF +=5% 300VDC MICA CAPACITOR=FXD 4700PF +=20% 100VDC CER	56289 28480 28480 28480 28480	1500226x901582 0160-3879 0160-3879 0160-2306 0160-0573
14C105 14C106 14C107 14C109 14C110	0160=0134 0121=0475 0160=0174 0160=0570 0160=0576	1 1005	2 20	CAPACITOR=FXD 220PF +=5% 300VDC MICA CAPACITOR=V TRMR=PDLYP 2=22PF 100V CAPACITOR=FXD .47UF +80=20% 25VDC CER CAPACITOR=FXD 220PF +=20% 100VDC CER CAPACITOR=FXD ,1UF +=20% 50VDC CER	28480 02540 28480 20932 28480	0160-0134 2222 606 11229 0160-0174 5024EM100RD221M 0160-0576
140111 140112 140113 140114 140115	0160=0174 0160=0174 0160=3879 0160=3879 0160=0576	99775		CAPACITOR=FXD .47UF +R0=20% 25VDC CER CAPACITOR=FXD .47UF +80=20% 25VDC CER CAPACITOR=FXD .01UF +=20% 100VDC CER CAPACITOR=FXD .01UF +=20% 100VDC CER CAPACITOR=FXD .1UF +=20% 50VDC CER	28480 28480 28480 28480 28480	0:60=0:74 0:60=0:74 0:60=3679 0:60=3679 0:60=0576
44C117 44C118 44C119* 44C120	0160-3873 0160-0576 0160-3872 0160-3873 0160-3878	1 5 0 1 6	4 1 9	CAPACITOR-FXD 4.7PF +5PF 200VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD 2.2PF +25PF 200VDC CER CAPACITOR-FXD 4.7PF +5PF 200VDC CER CAPACITOR-FXD 1000PF *-20% 100VDC CER	28480 28480 28480 28480 28480	0160=3673 0160=0576 0160=3672 0160=3673 0160=3878
14C202 14C124 14C124 14C202	0160-0571 0160-0127 0160-4386 0160-0576 0160-0128	02353	1 1 1	CAPACITOR-FXD 470PF +-20% 100VDC CER CAPACITOR-FXD 1UF +-20% 25VDC CER CAPACITOR-FXD 3PF +-5% 200VDC CER 0+-30 CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .2UF +-20% 50VDC CER	28480 28480 51642 28480 28480	0160-0571 0160-0127 200-20u-NF0-330J 0160-0576 0160-0128
44C203 44C204 44C205 44C206 44C207	0180=1704 0160=3879 0160=3879 0160=0174 0160=3879	57797		CAPACITOR=FXD 47UF+=10X 6VDC TA CAPACITOR=FXD .01UF +=20X 100VDC CER CAPACITOR=FXD .01UF +=20X 100VDC CER CAPACITOR=FXD .47UF .400-20X 29VDC CER CAPACITOR=FXD .01UF +=20X 100VDC CER	56269 28480 28480 28480 28480	1500476X900682 0160-3879 0160-3879 0160-0174 0160-3879
14C208 14C209 14C210 14C211	0160=0576 0160=0128 0180=1704 0160=3879 0160=4210	53572		CAPACITOR-FXD .luf +-20% 50VDC CER CAPACITOR-FXD 2.2Uf +-20% 50VDC CER CAPACITOR-FXD 40Uf +-10% 64VDC TA CAPACITOR-FXD .01Uf +-20% 100VDC CER CAPACITOR-FXD .022Uf +-20% 50VDC POLYE	28480 28480 55289 28480 28480	0160-0576 0160-0128 1500476x900682 0160-3879 0160-4210
14C213 14C214 14C301 14C302 14C303	0160-3879 0160-0174 0160-3879 0160-0575 0160-3879	7 9 7 4 7	1	CAPACITOR-FXD .01UF +-20% 100VDC CER CAPACITOR-FXD .47UF +80-20% 25VDC CER CAPACITOR-FXD .01UF +-20% 100VDC CER CAPACITOR-FXD .047UF +-20% 50VDC CER CAPACITOR-FXD .01UF +-20% 100VDC CER	28480 28480 28480 28480 28480	0160=3879 0160=0174 0160=3879 0160=0575 0160=3879
A4C304 A4C305 A4C501 A4C502 A4C503	0160-3879 0160-3879 0160-0576 0160-3879 0160-3879	7 7 5 7		CAPACITOR-FXD .01UF +-20% 100VDC CER CAPACITOR-FXD .01UF +-20% 100VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .01UF +-20% 100VDC CER CAPACITOR-FXD .01UF +-20% 100VDC CER	28480 28480 28480 28480 28480	0160=3879 0160=3879 0160=0576 0160=3879 0160=3879

Table 6-3. Replaceable Parts (cont'd)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
440504 440505 440506 440508 440508	0180+1743 0180+0197 0160+4209 0160+4209 6160+3879	4 & & B B	1	CAPACITOR-FXD .1UF+=10X 35VDC TA CAPACITOR=FXD 2.2UF+=10X 76VDC TA CAPACITOR=FXD .01UF +=20X 50VDC POLYE CAPACITOR=FXD .01UF +=20X 50VDC POLYE CAPACITOR=FXD .01UF +=20X 100VDC CER	56289 56289 28480 28480 28480	1500104x903542 1500225x902042 0160-4209 0160-4209 0160-3879
A4C510 A4C511 A4C512 A4C513	0160-4209 0121-0475 0121-0475 0121-0475	9 1 1		CAPACITOR-FXD #01UF +=20X 50VDC POLYE CAPACITOR=V TRMM=POLYP 2=22PF 100V CAPACITOR=V TRMM=POLYP 2=22PF 100V CAPACITOR=V TRMM=POLYP 2=22PF 100V	26480 02540 02540 02540	0160-4209 2222 808 11229 2222 808 11229 2222 808 11229
44CP1 44CR3 44CR3 44CR4 44CR5	1901-0731 1901-0731 1901-0522 1901-0522 1901-0522	7 7 4 4 4	4	OIODE-PWR RECT 400V 14 OIODE-PWR RECT 400V 14 OIODE-GEN PRP 200V 3A 2US DIODE-GEN PRP 200V 3A 2US DIODE-GEN PRP 200V 3A 2US	28480 28480 28480 28480 28480	\$905-0731 \$901-0731 \$901-0522 \$901-0522
&4CR6 &4CR7 &4CRA &4CR101 &4CR201	1901-0522 1901-0731 1901-0731 1901-0440 1901-0050	4 7 7 9 3	1	DIODE-GEN PPP 200V 3A 2US DIDDE-PHR RECT 400V 1A DIODE-PHR RECT 400V 1A DIODE-STABISTOR 30V 150MA DD-7 DIODE-SWITCHING 80V 200MA 2NS DG-35	26480 28480 26480 26480 28480	1901-0522 1901-0731 1901-0731 1901-0460 1901-0050
#4CR203 #4CR204 #4CR206 #4CR301 #4CR302	1901-0620 1901-0050 1901-0620 1901-0050 1901-0460	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	5	DIDDE-SWITCHING BOV 400MA DO-35 DICDE-SWITCHING BOV 200MA 2NS DO-35 DIODE-SWITCHING BOV 400MA DO-35 DIODE-SWITCHING BOV 400MA 2NB DO-35 DIODE-SWITCHING BOV 200MA 2NB DO-35 DIODE-STABLISTOR 30V 150MA DO-7	0004G 28480 0004G 28480 28480	NDP250 1901-0050 NDP250 1901-0050 1901-0460
A4CR304 A4CR305 A4CR301 A4CR502 A4CR503	1901-0050 1901-0460 1901-0040 1901-0040 1901-0040	3 9 1 1 1	58	DIODE SWITCHING BOV 200MA 2NS DO-35 DIODE STABISTUR 30V 150MA DO-7 DIODE SWITCHING 30V 50MA 2NS DO-35 DIODE SWITCHING 30V 50MA 2NS DO-35 DIODE SWITCHING 30V 50MA 2NS DO-35	26480 26480 26480 26480 28460	1901 = 0050 1901 = 0460 1901 = 0040 1901 = 0040 1901 = 0040
A4CR504 A4CR505 A4CR506	1901-0040 1901-0040 1901-0040	1		DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480	1901~0040 1905~0040 1905~0040
AUJ; AUJ3 AUJ3 AUJ4 AUJ5	1200=0814 1200=0814 1200=0814 1200=0814 1200=0814	1	5	SOCKET-XSTR 3-CONT DIP-8LDR	28480 28480 28480 28480 28480	1200~0814 1200~0814 1200~0814 1200~0814 1200~0814
Auj7 Auj8 Auj9 Auj12	1251-3785 1251-3708 1251-1365 1251-1626 1251-0472	85624	1 1 1	CONNECTOR 20-PIN F METRIC CIS CONNECTOR 10-PIN F METRIC CIS CONNECTOR-PC EDGE 22-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 12-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 1-CONT/ROW 2-ROWS	28480 28480 28480 28480 28480	1251+3785 1251+3708 1251+1365 1251+1626 1251+0472
44K101 44K102 44K402 44K403	0490=1034 0490=1079 0490=1079 0490=1079 0490=1079	1 4 4 4	14	RELAY 2C 12VDC=COIL .5A 350VDC RELAY=PEED 1A 500MA 100VDC 5VDC=COIL RELAY=REED 1A 500MA 100VDC 5VDC=COIL RELAY=REED 1A 500MA 100VDC 5VDC=COIL RELAY=REED 1A 500MA 100VDC 5VOC=COIL	28480 28480 28480 28480 28480	0490=1034 0490=1079 0490=1079 0490=1079 0490=1079
94K402	0490+0617 0490+1034	1	3	RELAY-REED 10 250MA 28VDC 5VDC-COIL RELAY 20 12VDC-COIL .5A 350VDC	28480 28480	0490*0617 0490*1034
##F501 ##F104 ##F105 ##F105		មានមាន	16	INDUCTANCE, 3-BEAD INDUCTANCE, 3-BEAD INDUCTANCE, 3-BEAD CORE-SHIELDING BEAD INDUCTANCE, 3-BEAD	28480 28480 28480 28480 28480	5081-1973 5081-1973 5081-1973 9170-0029 5081-1973
##F509 ##F504 ##F503	5081-1973 9170-0029 9170-0029 9170-0029	55555		CORE-SHIELDING BEAD CORE-SHIELDING BEAD CORE-SHIELDING BEAD CORE-SHIELDING BEAD	28480 28480 28480 28480 28480	\$061+1973 9170-0029 9170-0029 9170-0029 9170-0029
44L301 44L302	5081=1973 5081=1973	5	,	INDUCTANCE, 3-BEAD INDUCTANCE, 3-BEAD	28480 28480	5081+1973 5081+1973
74Mb1 74Mb2 74Mb1	1205-0236	9 4 1 8	1 1 1	COUPLER, THERMAL HEAT SINK, GUTPUT AMPLIFIER HEAT SINK (MISC ITEM) SHIELD, ATTENUATOR	28480 28480 28480 28480	08165-03201 08165-01101 1205-0236 08165-00602
446101 446103 446104 440105	1853=0315 1853=0315 1854=0477 1854=0477 1854=0477	0 7 7 7	6	TRANSISTOR PNP SI TO-39 PD=1W FT=1GHZ TRANSISTOR PNP SI TO-39 PD=1W FT=1GHZ TRANSISTOR NPN 2N2222A SI TO-18 PD=500MW TRANSISTOR NPN 2N2222A SI TO-18 PD=500MW TRANSISTOR NPN 2N2222A SI TO-16 PD=500MW	28480 28480 04713 04713	1853-0315 1853-0315 2N2222A 2N2222A 2N2222A
A4G106 A4G107 A4G108 A4G111 A4G201	1853-0086 5081-1978 5081-1978 1854-0368 1854-0498	Nacon	2 1 2	TRANSISTOR PNP SI PD#310MW FT#40MHZ TRANSISTOR, MATCHES PAIR TRANSISTOR NPN 2N5191 SI PD#40W FT#2MHZ TRANSISTOR NPN SI TO-39 PD#1W	27014 28480 28480 04713 28480	2N5087 5081-1978 5081-1978 2N5191 1854-0498

Table 6-3. Replaceable Parts (cont'd)

Reference Designation	HP Part Number	C D	Ωty	Description	Mfr Code	Mfr Part Number
440505 440505 440505 440506	1853=0314 1853=0315 1853=0315 1854=0637 1854=0332	9 0 0 1 3	8 7 2	TRANSISTOR PNP 2N2905A SI TO-39 POR600MM TRANSISTOR PNP SI TO-39 PDmiW FImigHZ TRANSISTOR PNP SI TO-39 PDmiW FImigHZ TRANSISTOR PNP SI TO-39 PDm W FIMIGHZ TRANSISTOR NPN 2N22194 SI TO-5 POR800MM TRANSISTOR NPN SI TO-39 PDm W FIm600MMZ	04713 28480 28480 01295 28480	2N2905A 1853-0315 1853-0315 2N22174 1854-0332
14G207 44G208 44G209 44G210 44G301	1853-0281 1854-0392 1853-0036 1854-0477 1854-0498	95272	ą	TRANSISTOR PNR 2N29074 SI TO-18 PD=400MW TRANSISTOR NPN SI PO#310MW FT#50MHZ TRANSISTOR RNP 8I PD#310MW FT#250MHZ TRANSISTOR NPN PN22224 8I TO=18 RD#500MW TRANSISTOR NRN SI TO=39 PO#1W	04713 04713 28480 04713 28480	2N2907A 2N508B 1853-0036 2N222ZA 1854-0498
A40302 A40303 A40304 A40305 A40306	1653=0314 1653=0315 1653=0315 1654=0637 1654=0332	9 0 0 1 3		TRANSISTOR RNP 202054 61 TO-39 PD=600MW TRANSISTOR PNP 61 TO-39 PD=14 FT=1GHZ TRANSISTOR PNP 51 TO-39 PD=14 FT=1GHZ TRANSISTOR PNP 302149 81 TO-5 PD=800MW TRANSISTOR NPN 81 TO-39 PD=14 FT=800MHZ	04713 28480 28480 01295 28480	2029054 1853-0315 1853-0315 2022194 1854-0332
A40307 A40308 A40309 A40310 A40501	1853=0314 1854=0392 1853=0036 1854=0637 1854=0215	9 5 1 1		TPANSISTOR PNR 2N29DSA SI TO-39 PD#600MW TRANSISTOR NPN SI PD#310MW FT#50MHZ TRANSISTOR PNP 8I PD#310MW FT#250MHZ TPANSISTOR NPN 8I PD#310MW FT#3600MW TPANSISTOR NPN SI PD#350MW FT#300MHZ	04713 04713 28480 01295 04713	2N29054 2N5088 1853-0036 2N22194 2N3904
A40502 A40503 A40504 A40505 A40506	1853-0086 1854-0392 1854-0392 1853-0086 1853-0086	2 to 2 a		TPANSISTOR PNP 81 PD#310MW FT#40MHZ TRANSISTOR NPN 81 PD#310MW FT#50MHZ TRANSISTOR NPN 81 PD#310MW FT#50MHZ TRANSISTOR NPP 81 PD#310MW FT#40MHZ TRANSISTOR PNP 81 PD#310MW FT#40MHZ TRANSISTOR PNP 81 PD#310MW FT#40MHZ	27014 04713 04713 27014 27014	2N5087 2N5088 2N5088 2N5087 2N5087
A 4 0507 A 4 0506 A 4 0509 A 4 0510	1854-0215 1853-0086 1854-0215 1854-0215			TRANSISTOR NPN SI PD#350MW FT#300MHZ TRANSISTOR PNP SI PD#310MW FT#40MHZ TRANSISTOR NPN SI PD#350MW FT#300MHZ TRANSISTOR NPN SI PD#350MW FT#300MHZ	04713 27014 04713 04713	2N3904 2N3904 2N3904 2N3904
AUR1 AUR2 AUR3 AUR4 AUR5	0757=0706 0811=1827 0757=0706 0812=0040 0757=0407	828 = 6	2 1 21	RESISTOR 51,1 1%, 25W F TC#0+=100 RESISTOR 11 10% 3W PW TC#0+=90 RESISTOR 51,1 1%, 25W F TC#0+=100 RESISTOR 25% 5% 5% PW TC#0+=300 RESISTOR 200 1%, 125W F TC#0+=100	24546 28480 24546 75042	C5-1/4-T0-51R1-F 0811-1827 C5-1/4-T0-51R1-F 8-20-1/2-27/100-J C4-1/8-T0-201-F
A4R6 A4R7 A4R8 A4R9 A4R10	0812-0045 0757-0407 0812-0045 0811-1827 0757-0407	00000	2	RESISTOR .15 5% 3W PW TC#0+-90 RESISTOR 200 1% .125W F TC#0+-100 RESISTOR .15 5% 3W PW TC#0+-90 RESISTOR .1 10% 3W PW TC#0+-90 RESISTOR .200 1% .125W F TC#0+-100	54246 58480 58480 54248 58480	0812-0045 C4-1/8-T0-201-F 0812-0045 O811-1827 C4-1/8-T0-201-F
A4R101 A4R102 A4R103 A4R104 A4R105	0757-0394 0757-0346 0757-0394 0757-0346 0757-0796	9 NO NO	≵ 4	RESISTOR 51.1 1% .125W F TC#0+=100 RESISTOR 10 1% .125W F TC#0+=100 RESISTOR 51.1 1% .125W F TC#0+=100 RESISTOR 10 1% .125W F TC#0+=100 RESISTOR 82.5 1% .5W F TC#0+=100	58480 54249 54249 54249	C4=1/8=T0=51R1=F C4=1/8=T0=10R0=F C4=1/8=T0=51R1=F C4=1/8=T0=10R0=F 0757=0796
44R106 A4R107 A4R108 A4R109 A4R110	0757-0796 0757-0499 0698-4086 0698-4086 0757-0199	6 6 9 3	1 7	RESISTOR 82.5 1% .5W F TC=0+=100 RESISTOR 27.4 1% .25W F TC=0+=100 RESISTOR 22.6 1% .125W F TC=0+=100 RESISTOR 22.6 1% .125W F TC=0+=100 RESISTOR 21.5K 1% .125W F TC=0+=100	28480 19701 03888 03888 24546	0757=0796 MF53C1/4=T0=27R4=F PWE55=1/8=T0=22R6=F PWE55=1/8=T0=22R6=F C4=1/8=T0=2!52=F
A4R111 A4R112 A4R113 A4R114 A4R115	2100=2030 0757=1094 0757=0200 0698=3558 2100=2061	69 7 8 3	1 14 3 9	RESISTOR-TRMR 20K 10% C TOP-ADJ 1-TRN RESISTOR 1.47K 1% .125W F 1C=0+-100 RESISTOR 5.62K 1% .125W F TC=0+-100 RESISTOR 4.02K 1% .125W F TC=0+-100 RESISTOR-TRMR 200 10% C TOP-ADJ 1-TRN	73138 24546 24546 24546 73138	82PR20K C4=1/8=T0=1471=F C4=1/8=T0=5621=F C4=1/8=T0=4021=F 82PR200
AUR116 AUR117 AUR118 AUR119 AUR120	0757-0706 8757-0995 0757-0706 0698-4425 0698-4425	8 7 6 0	1	RESISTOR 51.1 1% .25W F TC#0+=100 RESISTOR 33.2 1% .5M F TC#0+=100 RESISTOR 51.1 1% .25W F TC#0+=100 RESISTOR 15.4K 1% .125W F TC#0+=100 RESISTOR 1.54K 1% .125W F TC#0+=100	24546 24546 24546 24546	C5+1/4-TC-51R1+F 0757-0995 C5-1/4-TC-51R1+F C4-1/8-T0-1541+F C4-1/8-T0-1541+F
44R121 44R122 44R123 44R124 44R124	0757-0260 0757-0401 0757-0387 0698-5418 0698-5418	3 0 1 3 3	1 4	RESISTOR 1K 1% ,125W F TCm0+=100 PESISTOR 100 1% ,125W F TCm0+=100 RESISTOR 27,4 1% ,125W F TCm0+=100 RESISTOR 50 ,1% ,125W F TCm0+=50 RESISTOR 50 ,1% ,125W F TCm0+=50	24546 24546 19701 28460 28460	C4-1/8-T0-1001-F C4-1/8-T0-101-F MF4C1/8-T0-27R4-F 0-96-5418 0698-5418
A4R12b A4R127 A4R128 A4R129 A4R130	0698=7205 0757=0401 0757=0180 0698=5418 0698=5418	0 0 2 3 3	6	RESISTOR 51,1 1% .05W F TC#0+=100 RESISTOR 100 1% .125W F TC#0+=100 RESISTOR 31.6 1% .125W F TC#0+=100 RESISTOR 50 .1% .125W F TC#0+=50 RESISTOR 50 .1% .125W F TC#0+=50	28480 28480 28480 28480	C3-1/8-T00-51R1-G C4-1/8-T0-101-F 0757-0180 0698-5418 0698-5418
A4R131 A4R132 A4R133 A4R134 A4R135	0698-7205 0757-0401 0757-0276 0698-4343 0698-4343	0 0 7 1 1	1 2	RESISTOR 51.1 1% .05% F TC#0+=100 RESISTOR 100 1% .125% F TC#0+=100 RESISTOR 61.9 1% .125% F TC#0+=100 RESISTOR 100 .1% .125% F TC#0+=50 RESISTOR 100 .1% .125% F TC#0+=50	28480 24249 24249 24249	C3mi/8mT00=51R1=G C4o1/8=T0=101=F C4=1/8=T0=6192=F 0698=4343 0698=4343

Table 6-3. Replaceable Parts (cont'd)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
448136 448138 448139 448140 448141	0698-7205 0757-0273 0757-0283 0757-0418 0698-5174	04008	4	RESISTOR 51.1 1% .05% F TC*0+-100 RESISTOR 3.01% 1% .125% F TC*0+-100 RESISTOR 2% 1% .125% F TC*0+-100 RESISTOR 619 1% .125% F TC*0+-100 RESISTOR 619 1% .125% F TC*0+-100 RESISTOR 200 5% .125% CC TC*-330/+800	24546 24546 24546 24546 01121	C3-1/8-T00-51R1-G C4-1/8-T0-5011-F C4-1/8-T0-2001-F C4-1/8-T0-619R-F RH2015
A4R142 A4R144 A4R151 A4R152 A4R153	0698-5174 0698-3113 0157-0199 0757-0199 0698-0084	6 1 3	1	RESISTOR 200 5% .125W CC TC=-330/+800 RESISTOR 100 5% .125W CC TC=-270/+540 RESISTOR 21.5K 1% .125W F TC=0+=100 RESISTOR 21.5K 1% .125W F TC=0+=100 RESISTOR 2.5K 1% .125W F TC=0+=100	24546 24546 24546	882015 881015 C4-1/8-T0-2152-F C4-1/8-T0-2152-F C4-1/8-T0-2151-F
442154 A42155 A42156 A42157 A42158	0757=0273 0757=0401 0757=1001 0757=1001 0757=0280	40883	7	RESISTOR 3,01K 1% ,125k F TC=0+=100 RESISTOR 100 1% ,125k F TC=0+=100 RESISTOR 56,2 1% ,5k F TC=0+=100 RESISTOR 56,2 1% ,5k F TC=0+=100 RESISTOR 1k 1% ,125k F TC=0+=100	24546 24546 28480 28480 24546	C4=1/8=T0=3611=F C4=1/8=T0=101=F 0757=1001 0757=1001 C4=1/8=T0=1001=F
AGR159 AGR160 AGR161 AGR162 AGR201	0757=0280 0698=3442 2100=2061 0698=3132 0757=0346	39342	3	RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 237 1% .125W F TC=0+=100 RESISTOR=TRMR 200 10% C TCP=40J 1=TRN RESISTOR 261 1% .125W F TC=0+=100 RESISTOR 10 1% .125W F TC=0+=100	24546 24546 73138 24546 24546	C4+1/8-T0=1001=F C4=1/8-T0=237R=F A2PH200 C4=1/8-T0=2610=F C4=1/8-T0=10R0=F
A4R202 A4R203 A4R204 A4R205 A4R206	0757+0405 0698-4825 0757-0794 0757-0394 0698-4425	44400	3 4 5	PESISTOR 162 1% ,125W F TC#0+=100 RESISTOR 64.9 1% ,5W F TC#0+=100 RESISTOR 68.1 1% ,5W F TC#0+=100 RESISTOR 51.1 1% ,125W F TC#0+=100 RESISTOR 1,54K 1% ,125W F TC#0+=100	24546 28480 28480 24546 24546	C4-1/8-T0-162R-F 0698-4825 0757-0794 C4-1/8-T0-51R1-F C4-1/8-T0-1541-F
A4R207 A4R208 A4R209 A4R211 A4R212	0698-5022 0757-0280 0757-0401 0757-0346 0757-0405	5 0 2 4	\$	RESISTOR 40.2 1% .5% F TC≈0+=100 RESISTOR 1% 1% .125% F TC≈0+=100 RESISTOR 100 1% .125% F TC≈0+=100 RESISTOR 10 1% .125% F TC≈0+=100 RESISTOR 162 1% .125% F TC≈0+=100	24546 24546 24546 284846	0698-5022 C4-1/8-T0-1001-F C4-1/8-T0-1080-F C4-1/8-T0-1080-F C4-1/8-T0-1080-F
A4R213 A4R214 A4R215 A4R216 A4R217	0698=4825 0757=0794 0757+0394 0698+4425 0698=4367	4000	5	RESISTOR 64,9 1%,5% F TCR0+=100 RESISTOR 68,1 1% "5% F TCR0+=100 RESISTOR 51,1 1% "125% F TCR0+=100 RESISTOR 1,54% 1% 125% F TCR0+=100 RESISTOR 20,5 1% "125% F TCR0+=100	28480 28480 24546 24546 03888	0698-4825 0757-0794 C4-1/8-70-51R1-F C4-1/8-70-1541-F PME55-1/8-70-2085-F
A4R218 A4R219 A4R220 A4R221 A4R222	0757=0702 0757=0280 0757=0401 0698=3162 0757+0438	4 0 3	2	RESISTOR 36,5 1% .25W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 100 1% .125W F TC=0+=100 RESISTOR 46.4K 1% .125W F TC=0+=100 RESISTOR 5.11K 1% .125W F TC=0+=100	24546 24546 24546 24546 24546	C5-1/4-T0-36R5-F C4-1/6-T0-1001-F C4-1/6-T0-101-F C4-1/8-T0-4042-F C4-1/8-T0-511-F
14R223 14R225 14R226 14R227 14R228	0698=3162 0757=0421 0757=0394 0757=0421 0757=0421	04044	6	RESISTOR 46,4K 1% ,125W F TC=0++100 RESISTOR 825 1% ,125W F TC=0+=100 RESISTOR 51.1 1% ,125W F TC=0+=100 RESISTOR 825 1% ,125W F TC=0+=100 RESISTOR 825 1% ,125W F TC=0+=100	24546 24546 24546 24546 24546	C4=1/8=T0=4642=F C4=1/8=T0=825R=F C4=1/8=T0=51R1=F C4=1/8=T0=825R=F C4=1/8=T0=825R=F
A4R229 A4R230 A4R301 A4R302 A4R303	0757=0394 0757=0421 0757=0346 0698=4413 0698=4825	0486	ä	RESISTOR 51.1 1% 125W F TC=0+=100 RESISTOR 825 1% 125W F TC=0+=100 RESISTOR 10 1% 125W F TC=0+=100 RESISTOR 154 1% 125W F TC=0+=100 RESISTOR 64.9 1% 5W F TC=0+=100	24546 24546 24546 24546 28480	C4-1/8-T0-51R1-F C4-1/8-T0-825R-F C4-1/8-T0-10R0-F C4-1/8-T0-154R-F 0698-4825
A4R304 A4R305 A4R306 A4R307 A4R308	0757=0794 0757=0794 2100=2060 0698=5022 0757=0280	4 4 2 5 3	3	RESISTOR 68,1 1%,5W F TC=0+=100 RESISTOR 68,1 1%,5W F TC=0+=100 RESISTOR=TRMR 50 20% C TOP=ADJ 1=TRN RESISTOR 40,2 1%,5W F TC=0+=100 RESISTOR 1% 1%,125W F TC=0+=100	28480 28480 73138 28480 24546	0757=0794 0757=0794 82PR50 0698=5022 C4=1/8=10=1001=F
A4R309 A4R310 A4R311 A4R312 A4R313	0757-0401 0757-0394 0757-0346 0698-4413 0698-4825	00264		PESISTOR 100 1% .125W F TC#0+=100 RESISTOR 51.1 1% .125W F TC#0+=100 RESISTOR 10 1% .125W F TC#0+=100 RESISTOR 154 1% .125W F TC#0+=100 RESISTOR 64.9 1% .5W F TC#0+=100	24546 24546 24546 24546 24546	C4-1/8-T0-101-F C4-1/8-T0-51R1-F C4-1/8-T0-15R0-F C4-1/8-T0-154R-F 0698-4825
A4R314 A4R315 A4R317 A4R318 A4R318	0757-0794 0757-0394 0698-4367 0757-0702 0757-0260	40042		RESISTOR 68.1 1% .5W F TC=0+>100 RESISTOR 51.1 1% .125W F TC=0+>100 RESISTOR 20.5 1% .125W F TC=0+>100 RESISTOR 36.5 1% .25W F TC=0+>100 RESISTOR 1K 1% .125W F TC=0+>100	\$4546 \$4546 \$4549 \$4549	0757=0794 C4=1/8=T0=51R1=F P4E55=1/8=T0=20R5=F C5-1/4=T0=36R5=F C4=1/8=T0=1001=F
±420 447321 447322 ±47323 442401	0757-0394 0698-3162 0757-0438 0698-3162 0698-8387	0 0 3 0 1	2	RESISTOR 51.1 1% .125W F TCm0+-100 RESISTOR 46,4K 1% .125W F TCm0+-100 RESISTOR 5,11K 1% .125W F TCm0+-100 RESISTOR 46,4K 1% .125W F TCm0+-100 RESISTOR 247.5 .1% .25W F TCm0+-100	24546 24546 24546 24546 19701	C4-1/8-T0-51R1=F C4-1/8-T0-4642=F C4-1/8-T0-5111=F C4-1/8-T0-4642=F MF52C1/4-T2-247R5=B
4 R 4 Q 2 5 Q B 4 B B B B B B B B B B B B B B B B B	0698=7984 0698=7448 0698=7448 0698=8387 0698=7984	いかいしい	3 2	#FS[STOR 61.1 .1% .5W F TC#0+=50 RESISTOR 100 .1% .25W F TC#0+=25 RESISTOR 100 .1% .25W F TC#0+=25 RESISTOR 247.5 .1% .25W F TC#0+=50 RESISTOR 61.1 .1% .5W F TC#0+=50	28480 19701 19701 19701 28486	11698-7984 MF52C1/4-T9-100R-8 MF52C1/4-T9-100R-8 MF52C1/4-T2-247R5-8 0698-7984

Table 6-3. Replaceable Parts (cont'd)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A1P407 448408 448409 A48410 648501	0598=7984 0596=8584 0598=8684 0598=3488 0757=0438	2 3 3 3 3	, 6	RESISTOR 61.1 .1% .5% F TC#0+-50 RESISTOR 150 .1% .5% F TC#0+-25 PESISTOR 150 .1% .5% F TC#0+-25 PESISTOR 442 1% .125% F TC#0+-100 RESISTOR 5.11% 1% .125% F TC#0+-100	28480 28480 28460 24546 24546	069A-7984 0698-8884 0698-8888 C4=1/8→T0-422R+F C4=1/8→T0-5111+F
A4P502 A4P503 A4P504 A4P505 A4P506	0757-0721 0757-0349 0757-0447 0757-0349 0698-3443	7 5 4 5 0	ł 1	RESISTOR R74 1% .25W F TC=0+-100 RESISTOP 22.6K 1% .125W F TC=0+=100 RESISTOR 10.2K 1% .125W F TC=0+=100 RESISTOR 22.6K 1% .125W F TC=0+=100 PESISTOR 287 1% .125W F TC=0+=100	54549 54549 54549 54549	C5+1/4+T0-274R=F C4+1/8-T0-2262=F C4-1/8-T0-1622=F C4-1/8-T0-2262=F C4-1/8-T0-287R=F
A4R507 A4R508 A4R510 A4R511 A4R512	0757-0394 0757-0394 0757-0349 0757-0438 0757-0416	0 0 5 3 7	3	RESISTOR 51.1 1% .125W F TC=0+=100 RESISTOR 52.1 1% .125W F TC=0+=100 RESISTOR 52.6W 1% .125W F TC=0+=100 PESISTOR 5.11% 11% .125W F TC=0+=100 RESISTOR 511 1% .125W F TC=0+=100	\$4249 \$4249 \$4249 \$4249 \$4249	C4-1/6-T6-51R1-F C4-1/8-T0-51R1-F C4-1/8-T0-2262-F C4-1/8-T0-5111-F C4-1/8-T0-511F-F
44R513 44R514 44R515 44R516 44R516 44P517	0698-4539 0698-4539 0698-3162 0757-0349 0698-3162	6 7 0 5 0	1	RESISTOR 316K 1% ,125M F TC@0+=100 RESISTOR 402K 1% ,125M F TC@0+=100 RESISTOR 46,4K 1% ,125M F TC@0+=100 RESISTOP 22,6K 1% ,125M F TC@0+=100 RESISTOR 46,4K 1% ,125M F TC@0+=100	28480 28480 24546 24546 24546	0698-3457 0698-4539 C4-1/8-70-4642-F C4-1/8-70-2662-F C4-1/8-70-4642-F
A4R520 A4R521 A4R522 A4R523 A4R524	0757-0349 0757-0438 0757-0349 0757-0438 2100-2061	53533		RESISTOR 22.6K ix .i25W F TC=0+-100 RESISTOR 5.11K ix .125W F TC=0+-100 RESISTOR 22.6K ix .125W F TC=0+-100 PESISTOP 5.11K ix .125W F TC=04-100 RESISTOR-TRMP 200 10% C TOP-ADJ :-TRN	24546 24546 24546 24546 73138	C4=1/8=T0=2262=F C4=1/8=T0=5111=F C4=1/8=T0=2262=F C4=1/8=T0=5111=F 62PP200
A4R525 A4R526	2100-2061 2100-2061	3		RESISTOR-TRMP 200 10% C TOP-ADJ 1-TRN RESISTOR-TPMR 200 10% C TOP-ADJ 1-TRN	7 3 138 73138	82PR200 82PP200
A4U101 A4U102 A4U201 A4U202 A4U501	1826=0389 1826=0315 1826=0043 1826=0043 1820=1961	1 3 4 4 5	; 3 13	TE IC OP AMP GP QUAD 14-DIP-P IC OP AMP GP 10-99 IC OP AMP GP 10-99 IC GATE CMOS NAND TPL 3-INP	28480 27014 01928 01928 04713	1826-0389 LM348N CA307Y CA307Y MC14023BCP
44U503	1820-1961 1820-1485	5 8	1	IC GATE CMOS NAND TPL 3-INP	04713 27014	MC14023BCP MM74C221N
A4VP101 A4VP103 A4VP104 A4VP105	1902-0935 1902-0935 1902-3094 1902-0534 1902-0534	5 5 3 0	6 5 3	DTODE-ZNR 9.1V 5% RD=5% IR=100UA DTODE-ZNR 9.1V 5% PD=5% IR=100UA DTODE-ZNR 5.11V 2% DO=7 PD= 4% TCB=_009% DIODE-ZNR 3.74V 2% DO=15 PD=1% TCB=_053% DIODE-ZNR 3.74V 2% DO=15 PD=1% TCB=_053%	28480 28480 28480 28480 28480	1902-0935 1902-0935 1902-3094 1902-0534 1902-0534
A4VR107 A4VR201 A4VR203 A4VR203 A4VR204	1902-3182 1902-3094 1902-3188 1902-1285 1902-3094	0 3 6 0 3	2	DIODE-ZNR 12.1V 5% DO-7 PDB.4W TCB+.064% OIODE-ZNP 5.11V 2% DO-7 PDB.4W TCB009% DIODE-ZNP 12.7V 2% DO-7 PDB.4W TCB+.061% DIODE-ZNR 12V 5% PDB5W IRB50UA DIODE-ZNR 5.11V 2% DD-7 PDB.4W TCB009%	28480 28480 28480 28480 28480	1902-3182 1902-3094 1902-3188 1902-3285 1902-3094
A4VR205 A4VR206 A4VR207 A4VR208 A4VR301	1902-3188 1902-1285 1902-0935 1902-0935 1902-0935	60555		DIODE-ZNR 12.7V 2% DO-7 PDs.4W TCs+.061% DIODE-ZNR 12V 5% PDs5W IPs501A DIODE-ZNR 9.1V 5% PDs5W IPs100UA DIODE-ZNR 9.1V 5% PDs5W IRs100UA DIODE-ZNR 9.1V 5% PDs5W IRs100UA	28480 28480 28480 28480 28480	1902-3188 1902-1285 1902-0935 1902-0935 1902-0935
AGVR302	1902-0935	5		DIODE-ZNP 9.1V SX PD#SW IR=100UA	28480	1902-0935
AS	08165*66505	8	,]	BOARD ASSEMBLY, TIMING	28480	08165-66505
A5C1 A5C2 A5C3 A5C4 A5C5	0160-3712 0180-0375 0160-0174 0160-0573 0160-0576	74025	*	CAPACITOR-FXD 3300PF +-10% 250VDC CAPACITOR-FXD 68UF++10% 20VDC TA CAPACITOR-FXD ,47UF +60-20% 25VDC CER CAPACITOR-FXD 47VDPF +-20% 10VVDC CER CAPACITOP-FXD ,1UF +-20% 50VDC CER	28480 26480 26480 26480	0160-3712 1500686x902082 0160-0174 0160-0573 0160-0576
A506 A507 A508 A509 A5011	0140-0196 0140-0196 0140-0196 0160-3878 0160-3879	37367	6	CAPACITOR=FXO 150PF +=5% 300VDC MICA CAPACITOR=FXO .01UF +=20% 100VDC CER CARACITOR=FXO 150RF +=5% 300VDC MICA CARACITOR=FXD 100VBF +=20% 100VDC CER CARACITOR=FXD .01UF +=20% 100VDC CER	72136 28480 72136 28480 28480	0415F151J0300WV1CR 0180-3879 0415F151J0300WV1CR 0180-3879
45C14 45C14 45C15 45C16 45C17	0160=3694 0160=0174 0180=2435 0180=0149 0160=3879	4 9 1 0 7	2 1 1	CAPACITOR-FXD 330PF +=10% 100VDC CER CAPACITOR-FXD .47UF +80-20% 25VDC CER CAPACITOR-FXD 220UF+50=10% 40VDC AL CAPACITOR-FXD 65UF+100-10% 60VDC AL CAPACITOR-FXD .01UF +=20% 100VPC CEP	28480 28480 28480 28480 28480	0160-3694 0160-0174 0180-2435 0180-0149 0160-3879
45018 45019 45021 45022 45023	0140-0196 0160-3879 0160-0683 0160-4270 0160-0134	37541	1	CAPACITOR=FXD 150PF ++5% 300VDC MICA CAPACITOP=FXD .01UF ++20% 100VDC CER CAPACITOR=FXD .02UF ++2% 50VDC POLYSTY CAPACITOP=FXD .2UF ++1% 50VDC MET&POLYC CAPACITOP=FXD .2VF ++5% 300VDC MICA	72136 28480 28480 28480 28480	DM15F151J0300WV1CR 0160=3879 0160=0663 0160=0270 0160=0134

Table 6-3. Replaceable Parts (cont'd)

Reference Designation	HP Part Number	ОD	Qty	Description	Mfr Code	Mfr Part Number
45020 45025 45027 45028 45028	0160-4040 0160-4040 0160-3879 0160-3878 0160-3878	56767	7	CAPACITOR-FXD 1000FF +-5% 100VDC CER CAPACITOR-FXD 1000FF +-5% 100VDC CER CAPACITOR-FXD .01UF +-20% 100VDC CER CAPACITOR-FXD 1000FF +-20% 100VDC CER CAPACITOR-FXD .01UF +-20% 100VDC CER	26486 26486 26486 26486 26460	0160-4040 0160-4040 0160-3679 0160-3678 0160-3879
45032 45033 45034 45038	0160=3878 0160=3873 0180=0229 0160=3879 0160=3879	6 1 7 7 7	>	CAPACITOR-FXD 1000FF +-ZOX 100VDC CER CAPACITOR-FXD 4.7PF +5PF ZOOVDC CER CAPACITOR-FXD 33UF+-10% 10VDC TA CAPACITOR-FXD .01UF +-ZOX 100VDC CER CAPACITOR-FXD .01UF +-ZOX 100VDC CER	28480 28480 28480 28480	n;60=3878 d160=3873 1500336x901082 d160=3879 160=3879
A5036 A5038 A5039 A5040	0160-3878 0160-0174 0160-0570 0160-0576 0160-0174	00.0.50	,	CAPACITOR=FXO 1000FF +-20% 100VDC CEP CAPACITOR=FXD .47UF +80-20% 25VDC CEP CAPACITOR=FXD 220FF +-20% 100VDC CER CAPACITOR=FXD .1UF +-20% 50VDC CER CAPACIYOR=FXD .47UF +P0-20% 25VDC CER	28480 28480 20932 28480 28480	0160-3878 0160-0174 5024EM100PD221M 0160-0576 0160-0174
ASC41 ASC101 ASC102 ASC103 ASC104	0160-0576 0160-3877 0160-0576 0160-3877 0160-3879	55557	>	CAPACITOR-FXD .1UF +-20% 50VOC CER CAPACITOR-FXD 100PF +-20% 200VOC CER CAPACITOR-FXD .1UF +-20% 50VOC CER CAPACITOR-FXD 100PF +-20% 200VOC CER CAPACITOR-FXD .01UF +-20% 100VOC CER	28480 28480 28480 28480 28480	0160=3578 0160-3877 0160-3575 0160-3677 0160-3879
ASC105 ASC106 ASC107 ASC201 ASC202	0160-3879 0180-0197 0160-0576 0160-3879 0160-0576	7 8 5 7 5		CAPACITOR-FXD .01UF +-20x 100VDC CER CAPACITOR-FXD 2.2UF++10% 20VDC TA CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .01UF +-20% 100VDC CER CAPACITOR-FXD .01UF +-20% 50VDC CER	28480 56289 26480 28480 28480	0160=3879 1500225x9020&2 0160=0576 0160=3879 0160=0576
A50203 A50204 A50205 A50206 A50207	0160=3879 0160=0174 0160=3879 0180=1974 0160=3879	7 9 7 1 7	1	CAPACITOR-FXD .01UF +-20X 180VDC CER CAPACITOR-FXD .47UF +80-20X 25VDC CER CAPACITOR-FXD .01UF20X 130VDC CER CAPACITOR-FXD 10UF+-10X 35VDC TA CAPACITOR-FXD .01UF +-20X 180VDC CER	28480 28480 28480 36289 28480	0160-3879 0160-0174 0160-3879 15001002903582 0160-3879
ASC208 ASC210 ASC211 ASC212 ASC301	0160-3878 0160-0576 0160-0128 0160-0576 0160-3878	65356		CAPACITOR=FXD 1000PF +=20X 100VDC CER CAPACITOR=FXD .1UF +=20X 50VDC CER CAPACITOR=FXD 2.2UF +=20X 50VDC CER CAPACITOR=FXD 1000PF +=20X 100VDC CER CAPACITOR=FXD 1000PF +=20X 100VDC CER	28480 28480 28480 28480 28480	0160-3878 0160-0576 0160-0128 0160-0576 0160-3878
A5C302 A5C303 A5C304 A5C305 A5C306	0160+0576 0160+0576 0160+3879 0160+3694 0160+0576	5 5 7 4 5		CAPACITOR=FXD .1UF +=20% 50VOC CER CAPACITOR=FXD .1UF +=20% 50VDC CEP CAPACITOR=FXD .01UF +=20% 100VDC CER CAPACITOR=FXD 30VPF +=10% 100VDC CER CAPACITOR=FXD .1UF +=20% 50VDC CER	28480 28480 28480 28480	0160-0576 0160-0576 0160-3679 0160-3694 0160-0576
A5C307 A5C308 A5C309 A5C310 A5C311	0160-3879 0160-3879 0121-0467 0160-3878 0160-3875	7 7 1 6 3	1 2	CAPACITOR-FXD .01UF +-20% 100VDC CER CAPACITOR-FXD .01UF +-20% 100VDC CER CAPACITOR-FX TAME-CER 2,5-9PF 100V PC-MTG CAPACITOR-FXD 1000PF +-20% 190VDC CEP CAPACITOR-FXD 22PF +-5% 200VDC CER 0++30	28480 28480 28480 28480	0160-3879 0160-3879 0121-0467 0160-3878 0160-3875
A5C312 A5C401 A5C402 A5C403 A5C404	0160=3873 0160=3879 0160=3879 0160=3879 0160=3879	17777		CAPACITOR-FXD 4.7PF +5PF 200VDC CER CAPACITOR-FXD .01UF +-20% 100VDC CER CAPACITOR-FXD .01UF +-20% 100VDC CER CAPACITOR-FXD .01UF -20% 100VDC CER CAPACITOR-FXD .01UF +-20% 100VDC CER	28480 28480 28480 08480	0160=3873 0160=3879 0160=3879 0160=3879 0160=3879
A50405 A50501 A50502 A50503 A50504	0160-0174 0160-3878 0160-0576 0180-2207 0160-3879	9 65 87	1	CAPACITOR-FXD ,47UF +80=20% 25VOC CER CAPACITOR-FXD 1000FF +-20% 100VOC CER CAPACITOR-FXD ,1UF +-20% 50VOC CEP CAPACITOR-FXD 100UF+-10% 10VDC TA CAPACITOR-FXD ,01UF +-20% 100VOC CER	28480 28480 28480 56289 28480	0160=0174 6160=3878 0160=0578 1500107X9010R2 0160=3679
A50505 A50506	0160+3879 0180-2208	7 6	1	CAPACITOR=FXD .01UF +-20% 100VDC CEP CAPACITOR=FXD 220UF+=10% 10VDC TA	28480 56289	0160*3879 1500227×9010\$2
ASCR1 ASCR2 ASCR101 ASCR102 ASCR103	1901=0363 1901=0050 1901=1068 1901=1068 1901=0533	13557	1 9	DICDE=FW BRDS 100V 1A DIODE=8WIYCHING 80V 200MA 2NS DC+35 DIODE=8CHOTYKY DIODE=8CHOTYKY DIODE=8CHOTYKY	28480 28480 58480 58480	1001=0363 1001=0050 1001=1068 1001=1068 1001=0533
ASCR104 ASCR201 ASCR202 ASCR203 ASCR204	1901=0533 1901=1068 1901=1068 1901=1068 1901=1068	7 5 5 5 5		DIDDE=SCHDITKY DIDDE=SCHOTTKY DIDDE=SCHOTTKY DIDDE=SCHOTTKY OIDDE=SCHOTTKY	26480 28480 28480 28480 28480	1901=0533 1901=1068 1901=1068 1901=1068 1901=1068
A5CR205 A5CR301 A5CR401 A5CR501 A5CR502	1901-1068 1901-1068 1901-1068 1901-0040 1901-0040	555	And to 1 to Cold distribution of the Cold dist	DIODE-SCHOTTKY DIODE-SCHOTTKY DIODE-SCHOTTKY DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480 28480 28480	1001-1068 1901-1068 1901-1068 1901-0040 1901-0040
ASCR503 ASCR504 ASCR505 ASCR506 ASCR507	1901=0040 1901=0040 1901=0040 1901=0040 1901=0040	1 1 1 1 1	\$44-0	DIODE-SWITCHING 30V 50MA 2NS D0-35	28480 28480 28480 28480 28480	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040

Table 6-3. Replaceable Parts (cont'd)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
ASCRSOR ASCRSOR ASCRSIO ASCRSIZ ASCRSIZ	1901-0040 1901-0047 1901-0047 1901-0040 1901-0040	1 8 1	₹	DIDDE-SWITCHING 30V 50MA 2NS DO-35 DIDDE-SWITCHING 20V 75MA 10NS DIDDE-SWITCHING 20V 75MA 11NS DIDDE-SWITCHING 30V 50MA 2NS DO-35 DIDDE-SWITCHING 30V 50MA 2NS DO-35 DIDDE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28460 28460 28480	1901-0040 1901-0047 1901-0047 1901-0040 1901-0040
45CR51# 45CR601 45CR701	1901-0040 1901-0040 1901-0731	1 1 7		OIDDE-SWITCHING BOV SOMA 2NS DO-35 DIDDE-SWITCHING BOV SOMA 2NS DO-35 DIDDE-PNP RECT 400V 14	28480 28480	1901=0040 1901=0040 1901=0731
4511 4512 4513 4514 4515	1251=2026 1251=2026 1251=2026 1251=252 1251=252	56515	ž.	CONNECTOR-PC EDGE 18-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 18-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 18-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 24-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 24-CONT/ROW 2-ROWS	26460 26460 26460 26460 26460	1291 w 2026 1251 = 2026 1251 = 2026 1251 = 2026 1251 = 2026
45J6 45J7 45J8 45J11	1251-2562 1251-4504 1251-4504 1251-3119	1	<i>2</i> *	CONNECTOR=PC EDGE 24-CONT/ROW 2-ROWS CONNECTOR 10-P1N M POST TYPE CONNECTOR 10-P1N M POST TYPE CONNECTOR 20-P1N M RECTANGULAR	28480 28480 28480 28480	1251 = 2582 1251 = 4504 1251 = 4504 1251 = 3119
45K1 45K2 45K3 45K4 45K5	0490=1079 0490=1079 0490=1079 0490=1079 0490=1079	4 4 4		RELAY-REED 1A 500MA 100VDC 5VDC-COIL RELAY-REED 1A 500MA 100VDC 5VDC-COIL RELAY-REED 1A 500MA 100VDC 5VDC-COIL RELAY-REED 1A 500MA 100VDC 5VDC-COIL RELAY-REED 1A 500MA 100VDC 5VDC-COIL	28480 28480 28480 28480 28480	0490=1079 0490=1079 9490=1079 0490=1079 0490=1079
A5K301 A5K302 A5K401	0490=0617 0490=1079 0490=0617	4 4 4		RELAY=REED 1C 250MA 28VDC 5VDC=COIL RELAY=REED 1A 500MA 100VDC 5VDC=COIL RELAY=REED 1C 250MA 28VDC 5VDC=COIL	28480 28480 28480	0490=0617 0490=1079 0490=0617
45L1 45L2 45L3 45L5 45L6	9100=1647 5081=1973 5081=1973 9170=0029 9170=0029		?	COIL-MLD 470UH %% Q%65 ,;90%,44LG=NOM INDUCTANCE, 3-BEAD INDUCTANCE, 3-BEAD CORE-SHIELDING READ CORE-SHIELDING BEAD	26460 28480 28480 28480 28480	9100=1047 5081=1973 5081=1973 9170=0029 9170=0029
A5L7 A5L8 A5L9 A5L10 A5L11	9170=0029 9170=0029 9170=0029 9170=2251 9100=2252	33301	1	CORE-SHIELDING BEAD CORE-SHIELDING BEAD CORE-SHIELDING BEAD COIL-MLD 220NH 10% 0#32 .095DX.25LG-NOM COIL-MLD 270NH 10% 0#30 .095DX.25LG-NOM	28480 28480 28480 28480 28480	9170=0029 9170=0029 9170=0029 9170=0025 9100=2251 9100=2252
A5L12 A5L201 A5L301 A5L302 A5L303	9170=0029 9170=0029 9170=0029 9100=2247 9170=0029	3 3 4 3	1	CORE-SHIELDING READ CORE-SHIELDING BEAD CORE-SHIELDING BEAD COIL-MLD 100NH 10% Q=34 .095DX.25LG=NOM CORE-SHIELDING BEAD	26480 28480 59480 59480	9170=0029 9170=0029 9170=0029 9100=2247 9170=0029
A51401 A51402 A51403 A51405 A51406	9170×0029 9100=1647 5081=1973 9100×0346 9170=0029	36503	\$	CORE-SHIELDING BEAD COIL-MLD 470UH 5% 0865 .19DX.44LG-NOM INDUCTANCE, 3-BEAD COIL-MLD 50MH 20% 0840 .095DX.25LG-NOM CORE-SHIELDING SEAD	28480 28480 28480 28480	9170=0029 910=1647 5081=1973 9100=0346 9170=4029
A51501	0140-0210	1	1	COIL-MLD 100UH 5% Q#50 .1550X.375LG+NOM	28480	9140+0210
A5MP1 A5MP2 A5MP3 A5MP4 A5MP5	1205-0011 01801-22301 1205-0204 1205-0037 08165-03202	0 7 3 0	1 1 7 1	HEAT SINK TO-5/TO-39-CS WEAT SINK HEAT SINK TO-18-CS HEAT SINK TO-18-CS COUPLER, THERMAL	28480 28480 28480 28480	1205-001 01801-2230; 1205-0204 1205-0037 09;65-03202
A5MP6 A5MP7 A5MP201 A5MP202 A5MP301	1205-0037 1205-0037 1205-0037 1205-0037 1205-0011	0 0 0 0		HEAT SINK TO-18-CS HEAT SINK TO-18-CS HEAT SINK TO-18-C9 HEAT SINK TO-18-C9 HEAT SINK TO-5/TO-19-CS	28480 28480 28480 28480	1205-0037 1205-0037 1205-0037 1205-0037 1205-0011
45MP302 45MP401	1205=0037 1205=0037	0	ļ	HEAT SINK TO-18-CS HEAT SINK TO-18-CS	28480 28480	1205-0437 1205-0437
A501 A502 A503 A504 A505	1854-0477 1854-0472 1853-086 1853-0281 1853-086	72202	*5	TRANSISTOR NPN PN2222A SI TO-18 PD=500MW TRANSISTOR NPN SI DARL PD=500MW TRANSISTOR PNP SI PD=310MW FT=40MHZ TRANSISTOR PNP 2N297A SI TO-18 PD=400MW TRANSISTOR PNP SI PD=310MW FT=40MHZ	04713 04713 27014 04713 27014	2N2222A MPS=A14 2N5067 2N2907A 2N5087
A506 A507 A508 A509 A5010	1853=0086 1853=0075 1853=0314 1854=0472 1855=0215	20023	3	TRANSISTOR PNP SI PD=310MP FT=40MMZ TRANSISTOR=DUAL PNP PD=400MW TRANSISTOR PNP 2N29054 SI TD=39 PD=600MW TRANSISTOR NPN SI DARL PD=500MW TRANSISTOR MOSFET N-CHAN E-MODE TO-72 SI	27014 28480 04713 04713 28480	2N5087 1853-0075 2N2905A PRS=114 1855-0215
A5012 A5013 A5014 A5016 A5017	5081+1977 1854=0485 1854=0354 1854=0485 1854=0485	97977	1 4 7	PET, SELECTED TRANSISTOR NPN SI TO-104 PD=175MK TRANSISTOR NPN SI TO-52 PD=360MW TRANSISTOR NPN SI TO-104 PD=175MW TRANSISTOR NPN SI TO-104 PD=175MW	28480 28480 28480 28480	5081=1977 1854=0485 1854=0354 1854=0485 1854=0485

Table 6-3. Replaceable Parts (cont'd)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
450;8 45019 45020 45021 45021	1854~0305 1854~0305 1854~0305 1854~0215 1854~0472 1854~0485	0 0 3 2 7	2	TRANSISTOR NPN SI TO-18 PD=400MW TRANSISTOR NPN SI TO-18 PN=400MW TRANSISTOR NOSFET N=CHAN g=MODE TO=72 S1 TRANSISTOR NPN SI DARL PD=500MW TRANSISTOR NPN SI TO-104 PD=175MW	28480 28480 28480 04713 28480	1854=0305 1854=0305 1855=0215 WPS=414 1854=0485
45023 45024 45025 450101 450102	1854-0354 1854-0215 1853-0357 1853-0357 1853-0357	9 1 0 0	Ą	TPÁNSISTOR NPN 81 TO=52 PD=360MW TPANSISTOR NPN 81 PD=350MW FT=360MM TRANSISTOR PNP 81 TD=18 PD=360MW TRANSISTOR PNP 81 TD=18 PD=360MW TRANSISTOR PNP 81 TD=18 PD=360MW	28480 04713 28480 28480 28480	1834-0354 2N3904 1853-0357 1853-0357 1853-0357
A5G103 A5G104 A5G105 A5G106 A5G107	1853-0357 1853-0314 1854-0472 1854-0354 1854-0637	0000		TPANSISTOR PNP SI TC-15 PD=360MW TPANSISTOR PNP 2N2905A SI TC-39 PD=600MW TPANSISTOR NPN SI DARL PC-5U0MW TPANSISTOR NPN SI TC-52 PD=360MW TPANSISTOR NPN 2N2219A SI TC-5 PD=800MW	28480 04713 04713 28480 01295	1853-0357 2N2905A MBS-414 1854-0354 2N2219A
A50108 A50109 A50201 A50202 A50203	1855-0215 1853-0036 1854-0354 1854-0215 1853-0357	3 2 9		TRANSISTOR MOSFET N=CHAN E=MODE TO=72 SI TRANSISTOR PNP SI PD#310hW FT#250MH2 TRANSISTOR NPN SI TO=52 PD#360MW TRANSISTOR NPN SI PD#350MM FT#300MH2 TRANSISTOR PNP SI TO=18 PD#360MW	28480 28480 28480 04713 28480	1855-0215 1853-0036 1854-0354 2N3904 1853-0357
A50204 A50205 A50206 A50207 A50208	1853=0357 1854=0215 1853=0357 1853=0281 1853=0357	0 1 0 9		TRANSISTOR PNP SI TO-18 PD=360MW TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR PNP SI TO-18 PD=360MW TRANSISTOR PNP 2N29074 SI TO-18 PD=400MW TRANSISTOR PNP SI TO-18 PD=360MW	28480 04713 28480 04713 28480	1853-0357 2N3904 1853-0357 2N2907A 1853-0357
A50209 A50210 A50211 A50212 A50301	1853=0036 1853=0036 1854=0215 1853=0314 1854=0354	2 2 1 9		TRANSISTOP PNP 81 PD#310Mw FT#250MHZ TRANSISTOR PNP 81 PD#310Mw FT#250MHZ TRANSISTOR NPN 81 PD#350Mw FT#300MHZ TRANSISTOR NPN 81 PD#350Mw FT#300MHZ TRANSISTOR NPN 81 T0#82 PD#360Mw TRANSISTOR NPN 81 T0#82 PD#360Mw	28480 28480 04713 04713 28480	1853-0036 1853-0036 283904 2829054 1854-0354
A50302 A50303 A50304 A50401 A50402	1853=0281 1853=0075 1853=0036 1854=0354 1854=0477	9 9 2 9 7		TPANSISTOR PNP 2N2907A SI TO-18 PD=400MW TPANSISTOR-DUAL PNP PD=400MW TPANSISTOR PNP SI PD=510MW FT=250MHZ TPANSISTOR NPN SI TG-52 PD=360MW TPANSISTOR NPN 2N2222A SI TO-18 PD=500MW	04713 28480 28480 28480 04713	2N29074 1853-0075 1853-0036 1854-0354 2N22224
A50403 A50404 A50501 A50502 A50503	1853-0036 1854-0354 1854-0215 1854-0215 1854-0215	29 1		TRANSISTOR PNP SI PD#310MW FT#250MHZ TRANSISTOR NPN SI TD#52 PD#360MW TRANSISTOR NPN SI PD#350MW FT#300MHZ TRANSISTOR NPN SI PD#350MW FT#300MHZ TRANSISTOR NPN SI PD#350MW FT#300MHZ TRANSISTOP NPN SI PD#350MW FT#300MHZ	28480 28480 04713 04713 04713	1853-0036 1854-0354 2N3904 2N3904 2N3904
A50504 A50505 A50506 A50507 A50508	1854-0215 1854-0215 1854-0215 1854-0215 1854-0215	1 1 1		TRANSISTOR NPN SI PD#350MW FT#300MHZ	04713 04713 04713 04713 04713	2N3904 2N3904 2N3904 2N3904 2N3904
A50509 A50510 A50511 A50512 A50513	1853-0036 1853-0036 1854-0215 1854-0215 1854-0583	2 1 1 6	6	TPANSISTOR PNP SI PD#310MW FT#250MHZ TRANSIBTOR PNP SI PD#310MW FT#250MHZ TRANSISTOR NPN SI PD#350MW FT#300MHZ TRANSISTOR NPN SI PD#350MW FT#300MHZ TRANSISTOR NPN SI PD#350MW FT#30MW	28480 28480 04713 04713	1853=0036 1853=0036 2N3904 MP3=418
A50514 A50515 A50516 A50517 A50518	1854-9215 1854-9215 1854-9215 1853-9036 1854-9215	1 2 1		TRANSISTOR NPN 81 PD#350MW FT#300MHZ TRANSISTOR NPN 81 PD#350MW FT#300MHZ TPANSISTOR NPN 81 PD#350MW FT#300MMZ TRANSISTOR PNP 81 PD#310MW FT#250MHZ TRANSISTOR NPN 81 PD#350MW FT#300MHZ	04713 04713 04713 28480 04713	2N3904 2N3904 2N3904 2N3904 2N3904
A5Q601	1854+0215	1		TRANSISTOR NPN SI PD#350MW FT#300MH2	04713	243904
A5R1 A5R2 A5R3 A5R4 A5R5	0757=0280 0757=0449 0698=4428 0757=0401 0757=0465	2000	7 5	RESISTOR 1K 1% ,125W F TC=0+=100 RESISTOR 20K 1% ,125W F TC=0+=100 RESISTOR 1,69K 1% ,125W F TC=0+=100 RESISTOR 100 1% ,125W F TC=0+=100 RESISTOR 100K 1% ,125W F TC=0+=100	\$45 \$45 \$45 \$45 \$45 \$45 \$45 \$45 \$45	C4=1/8=T0=1001=F C4=1/8=T0=2002=F C4=1/8=T0=1691=F C4=1/8=T0=101=F C4=1/8=T0=1003=F
A5R6 A5R7 A5R8 A5R8 A5R8 A5R10	0698#6615 0757-0453 0698-6624 0757-0407 2100-3210	4050	1 1 1	RESISTOR 3.75K .1X .125W F TC=0+=25 RESISTOR 30.1K 1% .125W F TC=0+=100 RESISTOR 2K .1% .125W F TC=0+=25 RESISTOR 200 1% .125W F TC=0+=100 RESISTOR = 100 K .105W F TC=0+=100 RESISTOR=TRWR 10K 10% C TOP=ADJ 1-7RN	25.55 25.55 25.55 25.55 26.55	0698*6615 C4-1/8-T0-3012*F 0698-6624 C4-1/8-T0-201-F 2100-3210
A5R11 A5R12 A5R13 A5R14 A5R15	0698-3558 0757-0200 0698-5453 0698-5453	87069	ŧ	RESISTOR 4.02K 1% .125W F TC#0+-100 RESISTOR 5.62K 1% .125W F TC#0+-100 RESISTOR 900 .1% .125W F TC#0+-50 RESISTOR 900 .1% .125W F TC#0+-100 RESISTOR 22.6 1% .125W F TC#0+-100	24546 24546 03888 03888 03888	C4-1/8-T0-4021=F C4-1/8-T0-5621=F PME55 T-2-960R-8 PME55 T-2-900R-8 PME55-1/5-T0-22R6=F
ASR16 ASR17 ASR18 ASR19 ASR20	0008=0616 0008=4424 0757-0280 0008=4435 0008+3499	50726	1 4 5 2	RESISTOR 750 .1% .125w F TC=0+-25 PEBISTOR 1.4K 1% .125w F TC=0+-100 PESISTOR 1K 1% .125w F TC=0+-100 PEBISTOR 2.49K 1% .125w F TC=0+-100 PESISTOR 40.2K 1% .125w F TC=0+-100	28480 24546 24546 24546 24546	0698-6616 C4-1/8-T0-1401-F C4-1/8-T0-1001-F C4-1/8-T0-2491-F C4-1/8-T0-4022-F

Table 6-3. Replaceable Parts (cont'd)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
15821 15822 15823 15824 15825	0698-3178 0698-8824 0698-7709 0698-3152 0698-7188	60 to 47 60 80	† 1 3	RESISTOR 487 1% ,125W F TC#0+=100 RESISTOR 562K 1% ,125W F TC#0+=100 PESISTOR 75 1% ,05W F TC#0+=100 PESISTOR 3,48K 1% ,125W F TC#0+=100 RESISTOR 10 1% ,05W F TC#0+=100	54246 54246 54249 54249 54249	C4-1/8-10-4878-F 0698-8822 C3-1/8-100-7580-G C4-1/8-1005481-F C3-1/8-100-108-G
45026 45027 45028 45028 45024 45031	0698-4444 0757-0449 0698-3223 0757-0401 0757-0407	3 4 0 6	>	#FSISTOR 4.87k 1% ,125k F TC#0+=100 #ESISTOR 20k 1% ,125k F TC#0+=100 RESISTOR 1,24k 1% ,125k F TC#0+=100 RESISTOR 100 1% ,125k F TC#0+=100 RESISTOR 200 1% ,125k F TC#0+=100	24546 24546 24546 24546	C4-1/8-T0-2871-F C4-1/8-T0-2002-F C4-1/8-T0-1241-F C4-1/8-T0-1012-F C4-1/8-T0-201-F
A5634 A5634 A5636 A5636 A5640	0698-3223 0698-5094 0698-3557 0698-4456 0757-0476	1 7 7 9	3 1 1 1	RESISTOR 1,24K 1% ,125W F TC=0+=100 RESISTOR 5.1M 5% .25W FC TC=-900/+1100 RESISTOR 806 1% .125W F TC=0+=100 RESISTOR 509 1% .125W F TC=0+=100 RESISTOR 501K 1% .125W F TC=0+=100	24546 24546 24546 24546	C4-1/8-T0-1241-F CA5155-T0-806R-F C4-1/8-T0-804R-F C4-1/8-T0-548R-F C4-1/8-T0-3013-F
ASR41 ASR43 ASR43 ASR45 ASR50	0757=0346 0757=0263 0698=4435 0757=0394 0698=3437	NONPR	и	RESISTOR 10 1% ,125W F TC=0+-100 RESISTOR 2K 1% ,125W F TC=0+-100 RESISTOR 2,49K 1% ,125W F TC=0+-100 RESISTOR 51,1 1% ,125W F TC=0+-100 RESISTOR 133 1% ,125W F TC=0+-100	24546 24546 24546 24546	C4-1/8-Y0-10R0-F C4-1/8-Y0-2001-F C4-1/8-Y0-2491-F C4-1/8-T0-51R1-F C4-1/8-T0-133R-F
45R51 45R52 45R53 45R54 45R55	2100=2060 0757=0346 0757=0407 0698=4455 0698=7221	22000	2 1	RESISTOR-TRMR 50 20% C TOP-ADJ 1-TRN RESISTOR 10 1% .125% F TC=0+-100 RESISTOR 200 1% .125% F TC=0+-100 RESISTOR 536 1% .125% F TC=0+-100 RESISTOR 237 1% .05% F TC=0+-100	73138 24546 24546 24546 24546	82PR50 C4=1/8=T0=10R0=F C4=1/8=T0=201=F C4=1/8=T0=536R=F C3=1/8=T0=237R=G
49256 49257 49258 49260 49261	0757-0394 0757-0274 0757-0388 0757-0346 0698-4422	05227	10 6 3	RESISTOR 51.1 1% .125W F TC#0+=100 RESISTOR 1.21K 1% .125W F TC#0+=100 RESISTOR 30.1 1% .125W F TC#0+=100 RESISTOR 10 1% .125W F TC#0+=100 RESISTOR 1.27K 1% .125W F TC#0+=100	24546 24546 24546 64546	C4-1/8-T0-51R1-F C4-1/8-T0-1213-F C4-1/8-T0-30R1-F C4-1/8-T0-10R0-F C4-1/8-T0-1271-F
&5R62 &5R63 &5R64 &5R65 &5R66	0757-0407 0598-4455 0598-3111 0598-7205 0598-4424	00000	Ą	RESISTOR 200 1% .125% F TC=0+-100 RESISTOR 516 1% .125% F TC=0+-100 RESISTOR 30 5% .125% C TC=-270/+540 RESISTOR 51.1 1% .05% F TC=0+-100 RESISTOR 1.4% 1% .125% F TC=0+-100	24546 24546 24546 24546	C4-1/8-T0-201-F C4-1/8-T0-536R-F B83005 C3-1/8-T00-51R1-G C4-1/8-T0-1401-F
45R67 45R68 45R69 45R70 45R71	0757-0438 0757-0290 0757-0407 0757-0405 2100-3288	35648	4 1	RESISTOR 5,11K 1X ,125W F TC=0+-100 RESISTOR 6,19K 1X ,125W F TC=0+-100 RESISTOR 200 1X ,125W F TC=0+-100 RESISTOR 162 1X ,125W F TC=0+-100 RESISTOR=TRWR 50 20X C TC=-40J 17=TRN	24546 19701 24546 24546 28480	C4=1/8=T0=5111=F MF4C1/8=T0=6191=F C4=1/8=T0=201=F C4=1/8=T0=162R=F 2500=3288
A5R73 A5R74 A5R76 A5R77 A5R78	0698=4424 0757-0385 0698-3439 0757-0384 0698-3442	9 2 4 8 9		RESISTOR 1,4K 1% .125W F TC#0+=100 RESISTOR 30,1 1% .125W F TC#0+=100 RESISTOR 178 1% .125W F TC#0+=100 RESISTOR 20 1% .125W F TC#0+=100 RESISTOR 237 1% .125W F TC#0+=100	24546 24546 24546 19701 24546	C4-1/8-Y0-1401-F C4-1/8-Y0-30R1-F C4-1/8-Y0-178R-F MF4C1/8-T0-2RR-F C4-1/8-Y0-237R-F
A5R80 A5R81 A5R82 A5R83 A5R84	0757=1094 0757=0433 0698=4435 0757=0816 0698=4379	8 2 1 3	5 1	PESISTOR 1.47K 1% 125W F TC=0+=100 RESISTOR 3.32K 1% 125W F TC=0+=100 RESISTOR 2.49K 1% 125W F TC=0+=100 RESISTOR 68: 1% 5W F TC=0+=100 RESISTOR 44:2 1% 125W F TC=0+=100	24546 24546 24546 54546	C4-1/8-T0-1471-F C4-1/8-T0-3321-F C4-1/8-T0-2491-F 0757-0816 C4-1/8-T0-4482-F
A5R85 A5R86 A5R87 A5R86 A5R101	0757+0398 0757+0407 0757+0428 0757+0388 0757+0401	4 6 1 2 0	1	RESISTOR 75 1% .125W F TC=0+=100 RESISTOR 200 1% .125W F TC=0+=100 RESISTOR 1.62K 1% .125W F TC=0+=100 RESISTOR 30.1 1% .125W F TC=0+=100 RESISTOR 100 1% .125W F TC=0+=100	24546 24546 24546 24546 24546	C4-1/8-T0-75R0-F C4-1/8-10-201-F C4-1/8-T0-1621-F C4-1/8-T0-30R1-F C4-1/8-T0-1010-F
A5R102 A5R103 A5R105 A5R106 A5R107	0757-0402 0698-4453 0757-0416 0757-0416 0757-0725	1 4 7 7 1	49 10 5	RESISTOR 110 1% .125W F TC=0+=100 RESISTOR 402 1% .125W F TC=0+=100 RESISTOR 511 1% .125W F TC=0+=100 RESISTOR 511 1% .125W F TC=0+=100 RESISTOR 475 1% .25W F TC=0+=100	24546 24546 24546	C4-1/5-T0-111-F C4-1/8-T0-402R-F C4-1/8-T0-511R-F C4-1/8-T0-511R-F C5-1/4-T0-478R-F
A5R108 A5R109- A5R110 A5R111 A5R112	0757+0410 0757-0410 0757-0401 0695-7188 0757-0438	1 0 6 3	4	RESISTOR 301 1% .125W F TC=0+-100 RESISTOR 301 1% .125W F TC=0+=100 RESISTOR 100 1% .125W F TC=0+=100 RESISTOR 10 1% .105W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100	54249 54249 54249 54249	C4=1/8=T0=301R=F C4=1/8=T0=301R=F C4=1/8=T0=101=F C3=1/8=T0=10R=G C4=1/8=T0=511=F
A5R115 A5R116 A5R117 A5R118 A5R119	2100-0567 0698-3154 0698-3450 0757-0273 0698-0085	0 0 4 0	3	RESISTOR=TRMR 2K 10% C TOP=ADJ 1=TRN RESISTOR 4.22K 1% .125W F TC=0+=100 RESISTOR 42.2K 1% .125W F TC=0+=100 RESISTOR 3.01K 1% .125W F TC=0+=100 RESISTOR 2.61K 1% .125W F TC=0+=100	28480 24546 24546 24546 24546	2100-0507 Ca-1/8-T0-4221-F C4-1/8-T0-4222-F C4-1/8-T0-3011-F C4-1/8-T0-2011-F
A5R120 A5R121 A5R122 A5R123 A5R124	0757-0407 0757-0805 0698-3495 0757-0410 0757-0442	8 2 1 9	5 5	#ESISTOR 200 1% .125% F TC=0+-100 #ESISTOR 221 1% .5% F TC=0+-100 #ESISTOR 366 1% .125% F TC=0+-100 #ESISTOR 301 1% .125% F TC=0+-100 #ESISTOR 10% 1% .125% F TC=0+-100 #ESISTOR 10% 1% .125% F TC=0+-100	24546 28460 24546 24546 24546	C4-1/8-10-201-F 0757-0805 C4-1/8-10-8668-F C4-1/8-10-301R-F C4-1/8-10-1002-F

Table 6-3, Replaceable Parts (cont'd)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A5R125 45R126 45R201 45R201 45R203	0757-0449 0757-0438 0757-0384 0698-3176 0757-0280	63883		RESISTOR 20K 1% .125w F TC=0+-100 RESISTOR 5.11K 1% .125w F TC=0+-100 RESISTOR 20 1% .125w F TC=0+-100 RESISTOR 467 1% .125w F TC=0+-100 RESISTOR 467 1% .125w F TC=0+-100 RESISTOR 1K 1% .125w F TC=0+-100	24546 24546 19701 24546 24646	C4-1/8-10-2002-F C4-1/8-T0-5111-F MF4C1/8-T0-20R0-F C4-1/8-T0-487P=F C4-1/8-T0-487P=F
ASR204 ASR205 ASR207 ASR208 ASR209	0757-0401 0757-0394 0757-0410 0757-0401 0698-3176	00108		PESISTOR 100 1% .125W F TC#04=100 RESISTOR 51.1 1% .125W F TC#04=100 RESISTOR 301 1% .125W F TC#04=100 RESISTOR 100 1% .125W F TC#04=100 PESISTOR 487 1% .125W F TC#04=100	545 545 545 545 545 645 645 645 645 645	C4=1/8=T0=101=F C4=1/8=10=51R1=F C4=1/8=T0=501R=F C4=1/8=T0=101=F C4=1/8=T0=101=F
A5R210 A5R211 A5R212 A5R213 A5R214	0757-0280 0757-0419 0757-0419 0757-0407 0696-4473	* O C 6 8	11	RESISTOR 1K 1% ,125W F TC=0+=100 RESISTOR 661 1% ,125W F TC=0+=100 RESISTOR 661 1% ,125W F TC=0+=100 RESISTOR 200 1% ,125W F TC=0+=100 RESISTOR 1,37W 1% ,125W F TC=0+=100	54246 54246 54246 54246	Cu=1/8=T0=1001=F Cu=1/8=T0=681R=F Cu=1/8=T0=681R=F Cu=1/8=T0=501=F Cu=1/8=T0=1371=F
ASR215 ASR216 ASR217 ASR218 ASR218	0757-0346 0757-0805 0698-3258 0698-4423 0757-0407	28586	5	RESISTOR 10 1% ,125W F TCm0+-100 RESISTOR 221 1% ,5W F TCm0+-100 RESISTOR 5,36K 1% ,125W F TCm0+-100 RESISTOR 1,37K 1% ,125W F TCm0+-100 RESISTOR 200 1% ,125W F TCm0+-100	24546 24546 24546 24546	C4-1/8-10-10R0-F 0757-0805 C4-1/8-10-5361-F C4-1/8-10-1371-F C4-1/8-10-201-F
A5R220 A5R221 A5R223 A5R224 A5R225	0757=0346 0757=0394 0757+0394 0757+0394 0757=0438	2000		RESISTOR 10 1% ,125% F TC=0+=100 RESISTOR 51,1 1% ,125% F TC=0+=100 RESISTOR 51,1 1% ,125% F TC=0+=100 RESISTOR 51,1 1% ,125% F TC=0+=100 RESISTOR 5,11K 1% ,125% F TC=0+=100	72 22 22 22 22 22 22 22 22 22 22 22 22 2	C4-1/8-T0-10R0-F C4-1/8-T0-51R1-F C4-1/8-T0-51R1-F C4-1/8-T0-51R1-F C4-1/8-T0-5111-F
A5R228 A5R229 A5R231 A5R232 A5R233	0757-0407 0757-0280 0698-3447 0757-0407 0757-0424	6 3 4 6 7	3	RESISTOR 200 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 422 1% .125W F TC=0+=100 RESISTOR 200 1% .125W F TC=0+=100 RESISTOR 1,1K 1% .125W F TC=0+=100	22555 5555 5555 5555 5555 5555 5555 55	C4-1/8-T0-201-F C4-1/8-T0-1001-F C4-1/8-T0-422R-F C4-1/8-T0-211-F C4-1/8-T0-1101-F
A5R234 A5R235 A5R236 A5R237 A5R238	0757-0345 2100-2060 0757-0401 0698-3159 0757-0438	1 2 0 5 3	1	RESISTOR 56,2 1% ,125W F TCHO++100 RESISTOR-TRWR 50 20% C TOP-40J 1-TRN RESISTOR 100 1% ,125W F TCHO++100 RESISTOR 26.1% 1% ,125W F TCHO++100 RESISTOR 5,11% 1% ,125W F TCHO++100	24546 73138 24546 24546 24546	C4-1/8-T0-56R2-F 82PR50 C4-1/8-T0-101-F C4-1/8-T0-2612-F C4-1/8-T0-5111-F
A5R239 A5R241 A5R242 A5R244 A5R244	0757-0454 0757-0449 0757-0290 0698-4424 0757-0283	3656	7	REBISTOR 33,2K 1% ,125K F TC=0++100 RESISTOR 20K 1% ,125K F TC=0++100 RESISTOR 6,19K 1% ,125K F TC=0+-100 RESISTOR 1,4K 1% ,125K F TC=0++100 RESISTOR 2K 1% ,125K F TC=0+-100	24546 19701 24546 24546	C4=1/8=T0=3322=F C4=1/8=T0=2002=F MF4C1/8=T0=190191=F C4=1/8=T0=1401=F C4=1/8=T0=2001=F
A5R246 A5R248 A5R301 A5R302	0757-0407 0757-0801 0698-4408 0698-3374 0757-0458	6 9 6 7	i 1 2	RESISTOR 200 1% ,125W F TC#0+=100 RESISTOR 150 1% ,5W F TC#0+=100 RESISTOR 121 1% ,125W F TC#0+=100 RESISTOR 20 5% ,125W C TC#==270/+540 RESISTOR 51,1K 1% ,125W F TC#0+=100	24546 24546 24546 24546	C4-1/8-T0-201-F 0757-0801 C4-1/8-T0-124R-F 8B2005 C4-1/8-T0-5112-F
A5R303 A5R304 A5R305 A5R306 A5R307	0698-7212 0698-4413 0698-4413 0698-3111 0698-7223	9 6 9 8	6 1 n	RESISTOR 100 1% .05W F TC#0+-100 RESISTOR 154 1% .125W F TC#0+-100 RESISTOR 154 1% .125W F TC#0+-100 RESISTOR 154 1% .125W C TC#=270/+540 RESISTOR 267 1% .05W F TC#0+-100	24546 24546 24546 01121 24546	C3-1/8-TG-100R-G C4-1/8-TG-154R-F C4-1/8-TG-154R-F B3305 C3-1/8-TG-287R-G
A5R308 A5R309 A5R310 A5R311 A5R312	0648**4404 0648**4804 0648**4804 0648**4554	24000	ş 3	RESISTOR 287 1% .05W F TC=0+-100 RESISTOP 1.87K 1% .125W F TC=0+-100 RESISTOP 100 1% .05W F TC=0+-100 RESISTOR 127 1% .125W F TC=0+-100 RESISTOR 127 1% .125W F TC=0+-100	24546 24546 24546 24546	C3-1/6-T0-287R-G C4-1/6-T0-1871-F C3-1/8-T0-100R-G C4-1/8-T0-127R-F C4-1/8-T0-127R-F
A5R313 A5R314 A5R315 A5R316 A5R317	0698-3111 0698-7223 0698-7223 0757-0421 0698-7212	92049		RESISTOR 30 5% ,125W CC TCR-270/+540 RESISTOR 287 1% ,05W F TC=0+-100 RESISTOR 287 1% ,05W F TC=0+-100 RESISTOR 325 1% ,125W F TC=0+-100 RESISTOR 100 1% ,05W F TC=0+-100	01121 24546 24546 24546	RB3005 C3=1/8=T0=267R=G C3=1/8=T0=267R=G C4=1/8=T0=285R=F C3=1/6=T0=10GR=G
ASR318 ASR319 ASR320 ASR321 ASR322	0698-4406 0698-4406 0698-3111 0698-7223 0698-7223	7 9 2 2	5	RESISTOR 115 1% .125W F TC=0+-100 RESISTOR 115 1% .125W F TC=0+-100 RESISTOR 30 5% .125W CC TC=-270/+540 RESISTOR 387 1% .05W F TC=0+-100 RESISTOR 287 1% .05W F TC=0+-100	54249 54249 01151 54249	C4-1/8-T0-115R-F : C4-1/8-T0-115R-F : 883005 : C3-1/8-T0-287R-G : C3-1/8-T0-287R-G
A5R323 A5R324 A5R325 A5R326 A5R326 A5R327	0757-0418 0698-7212 0698-3132 0698-3132 0698-3111	***		RESISTOR 619 1% .125W F TC=0+=100 RESISTOR 100 1% .05W F TC=0+=100 RESISTOR 261 1% .125W F TC=0+=100 RESISTOR 261 1% .125W F TC=0+=100 RESISTOR 30 5% .125W CC TC==270/+540	24546 24546 24546 24546	C4+1/8-10+619R=F C3-1/8-T0-100R-G C4-1/8-T0-2610=F C4-1/8-T0-2610=F BR3005
A5R328 A5R329 A5R330 A5R331 A5R332	0698-7223 0698-7223 0698-3518 0698-7212 0698-4411	N 0 0 4	1	RESISTOR 287 1% .05% F TC=0+=100 RESISTOR 287 1% .05% F TC=0+=100 RESISTOR 7,32K 1% .125% F TC=0+=100 RESISTOR 100 1% .05% F TC=0+=100 RESISTOR 140 1% .125% F TC=0+=100	24546 24546 24546 54546	C3-1/8-T0-287R-G C3-1/8-T0-287R-G C4-1/8-T0-7321-F C3-1/8-T0-100R-G C4-1/8-T0-140R-F

Table 6-3. Replaceable Parts (cont'd)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
58333 58334 58335 58336 58337	0698-4411 0698-3111 0698-7223 0698-7223 0698-4468	468	1	RESISTOR 140 1% .125W F TC=0+-100 RESISTOR 30 5% ,125W CC TC=-270/+540 RESISTOR 267 1% .05W F TC=0+-100 RESISTOR 267 1% .05W F TC=0+-100 RESISTOR 1,13K 1% .125W F TC=0+-100	24546 24546 24546 24546	C4-1/6-T0-140P-F R83005 C3-1/8-T0-287FFG C3-1/8-T0-267R+G C4-1/8-T0-1131+F
58338 58339 58341 58342 58343	0698-4422 0757-0273 0757-0438 0698-7238 0698-7212	7 4 5 9 9	1	RESISTOR 1,27M 1% ,125M F TC=0+-100 RESISTOR 3,01K 1% ,125M F TC=0++100 RESISTOR 5,11K 1% ,125M F TC=0+-100 RESISTOR 1,21K 1% ,05M F TC=0++100 RESISTOR 100 1% ,05M F TC=0++100	54246 54246 54246 54246	C4=1/8+T0=1271=F C4=1/8=T0=3011=F C4=1/8=T0=5111=F C3=1/8=T0=1211=G C3=1/8=T0=100R=G
58344 58345 58346 58347 58348	0757-0402 0696-3202 0757-0394 0757-0274 0757-0407	1 9 0 5 6	1	RESISTOR 110 1% ,125W F TC=0+=100 RESISTOR 1,74K 1% ,125W F TC=0+=100 RESISTOR 51,1 1% ,125W F TC=0+=100 RESISTOR 1,21K 1% ,125W F TC=0+=100 RESISTOR 200 1% ,125W F TC=0+=100	54246 54246 54246 54246 54246	C4-1/6-T0-11;-F C4-1/8-T0-1741-F C4-1/8-T0-55R1-F C4-1/8-T0-1213-F C4-1/8-T0-201-F
158349 158351 158352 158353 158354	0698-4428 0698-4425 0757-0280 0698-3178 0698-3178	30388		PESISTOR 1.69K 1% .125W F TC#0+-100 RESISTOR 1.54K 1% .125W F TC#0+-100 RESISTOR 1K 1% .125W F TC#0+-100 RESISTOR 487 1% .125W F TC#0+-100 RESISTOR 487 1% .125W F TC#0+-100	\$4240 \$4240 \$4240 \$4240 \$4240	C4-1/8-T6-169;
45R355 45R356 45R357 45R358 45R359	0757-0407 0698-3437 0698-4386 0698-4386 0698-7229	8 2 2 2 8	2	RESISTOP 200 1% ,125% F TC#0++100 RESISTOR 133 1% ,125% F TC#0++100 RESISTOR 59 1% ,125% F TC#0++100 RESISTOR 59 1% ,125% F TC#0++100 RESISTOR 511 1% ,05% F TC#0++100	24546 24546 24546 24546	C4=1/8=T0=201=F C4=1/8=T0=133R=F C4=1/8=T0=59R0=F C4=1/8=T0=59R0=F C3=1/8=T0=51R=G
45R361 45R362 45R363 45R364 45R365	0698-7229 0757-0401 0757-0346 0757-0401 0757-0401	800		RESISTOR 511 1% .05W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 10 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 PESISTOR 100 1% .125W F TC=0+-100	24546 24546 24546 24546	C3-1/8-T0-511R-G C4-1/8-T0-101-F C4-1/8-T0-10R0-F C4-1/8-T0-101-F C4-1/8-T0-101-F
45R366 45R367 45R401 45R402 45R403	0757=0438 0698=3442 0698=3111 0757=0274 0698=3111	30000		RESISTOR 5,11k 1% ,125% F TC#0+=100 RESISTOR 237 1% ,125% F TC#0+=100 RESISTOR 30 5% ,125% CC TC#=270/+540 RESISTOR 1,21k 1% ,125% F TC#0+=100 RESISTOR 30 5% ,125% CC TC#=270/+540	24546 24546 01121 24546 01121	C4-1/8-T0-51:1-F C4-1/8-T0-237R-F 883005 C4-1/8-T0-12:3-F 883005
458404 458405 458406 458407 458408	0757=1094 0757=1094 0757=0402 0757=0402 0698=4422	6 9 1 1 7		RESISTOR 20 5% ,125% CC TC==270/+540 RESISTOR 1,47% 1% ,125% F TC=0+=100 RESISTOR 110 1% ,125% F TC=0+=100 RESISTOR 110 1% ,125% F TC=0+=100 RESISTOR 1,27% 1% ,125% F TC=0+=100	01121 24546 24546 24546 24546	862005 C4-1/8-T0-1471-F C4-1/8-T0-111-F C4-1/8-T0-111-F C4-1/8-T0-1271-F
45R409 45R410 45R411 45R412 45R413	0787-0401 0757-0401 0698-4037 0698-4037 0698-7205	00000	6	RESISTOR 100 1% ,125W F TC#0+=100 RESISTOR 100 1% ,125W F TC#0+=100 RESISTOR 46,4 1% ,125W F TC#0+=100 RESISTOR 46,4 1% ,125W F TC#0+=100 RESISTOR 51,1 1% ,05W F TC#0+=100	24546 24546 24546 24546	C4-1/8-T0-101-F C4-1/8-T0-101-F C4-1/8-T0-406R4-F C4-1/8-T0-40F4-F C3-1/8-T00-51R1-G
ASR418 ASR415 ASR416 ASR417 ASR41R	0698-7205 0696-4037 0698-4037 0757-0388 0757-0394	06000		RESISTOR 51,1 1% .05W F TC=0+=100 RESISTOR 46,4 1% .125W F TC=0+=100 RESISTOR 46,4 1% .125W F TC=0+=100 RESISTOR 30,1 1% .125W F TC=0+=100 RESISTOR 51,1 1% .125W F TC=0+=100	24246 24246 24246 24246	C3-1/8-T00-51R1-G C4-1/8-T0-46R4-F C4-1/8-T0-46R4-F C4-1/8-T0-50R1-F C4-1/8-T0-51R1-F
A5R419 A5R420 A5R421 A5R425 A5R426	0696=4383 0698=4383 0684=0271 0698=8428 0698=4458	99739	2 1	RESISTOR 53,6 1% .125W F TC#0+=100 RESISTOR 53,6 1% .125W F TC#0+=100 RESISTOR 2.7 10% .25W FC TC#0400/+500 RESISTOR 1.69K 1% .125W F TC#0+=100 RESISTOR 590 1% .125W F TC#0+=100	24546 01121 24546 24546 24546	C4-1/8-T0-53R6-F C4-1/8-T0-53R6-F C8-761 C4-1/8-T0-1691-F C4-1/8-T0-590R-F
458428 458428 458429 458431 458432	0698-3258 0757-0407 0698-4428 0757-0274 0757-0394	50350		RESISTOR 5,36K 1% ,125W F TC#0+=100 RESISTOR 200 1% ,125W F TC#0+=100 RESISTOR 1,69K 1% ,125W F TC#0+=100 RESISTOR 1,21K 1% ,125W F TC#0+=100 RESISTOR 51,1 1% ,125W F TC#0+=100	\$4546 \$4246 \$4246 \$4246 \$4246	C4-1/8-T0-5361+F C4-1/8-T0-201+F C4-1/8-T0-1691=F C4-1/8-T0-1213+F C4-1/8-T0-51R1+F
458501 458502 458503 458504 458505	0757=0449 0757=0449 0757=0449 0757=0438 0757=0438	6 6 3 3		RESISTOR 20K 1% .125W F TC=0+=100 RESISTOR 20K 1% .125W F TC=0+=100 RESISTOR 20K 1% .125W F TC=0+=100 RESISTOR 5.11K 1% .125W F TC=0+=100 RESISTOR 5.11K 1% .125W F TC=0+=100	24546 24546 24546 24546	C4-1/8-T0-2002-F C4-1/8-T0-2002-F C4-1/8-T0-2002-F C4-1/8-T0-5111-F C4-1/8-T0-5111-F
\$58506 \$58507 \$58508 \$58509 \$58510	0757-0442 0757-0442 0757-0442 0698-4428 0698-3136	99938	9	RESISTOR 10K 1% ,125W F TC#0+=100 RESISTOR 10K 1% ,125W F TC#0+=100 RESISTOR 10K 1% ,125W F TC#0+=100 RESISTOR 1,64K 1% ,125W F TC#0+=100 PESISTOR 17.8K 1% ,125W F TC#0+=100	24546 24546 24546 24546	C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1041-F C4-1/8-T0-1782-F
ASRS:1 ASRS:2 ASRS:13 ASRS:14 ASRS:15	0757=0283 0757=0421 0757=0442 0698=3499 0757=0442	49449		RESISTOR 2K 1X ,125W F TCmu+=100 RESISTOR 825 1X ,125W F TCmu+=100 RESISTOR 10K 1X ,125W F TCmu+=100 RESISTOR 40,2K 1x ,125W F TCmu+=100 RESISTOR 10K 1X ,125W F TCmu+=100	24546 24546 24546 24546 24546	C4-1/8-T0-2001-F C4-1/8-T0-825R-F C4-1/8-T0-1002-F C4-1/8-T0-1022-F C4-1/8-T0-1002-F

Table 6-3, Replaceable Parts (cont'd)

	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
158517 01 458518 00 458520 00	698~4453 757~0280 683~1065 698~7188 757~0280	43783	3	RESISTOR 402 1% .125% F TC=0+-100 PESISTOR 1K 1% .125% F TC=0+-100 RESISTOR 10 1% .25% FC TC=-900/+1100 RESISTOR 10 1% .05% F TC=0+0100 RESISTOR 1 1% .125% F TC=0+-100	24546 24546 01121 24546 24546	Ca-1/8-T0-402R-F CA-1/8-T0-1001-F CB1065 C3-1/8-T00-10R-G C4-1/8-70-1001-F
158524 0: 158525 0: 158526 0:	698-7188 757-0280 757-0438 757-0438 757-0442	4 m mm 0		PESISTOR 10 1% ,05% F TC*0+-100 RESISTOR 1% 1% ,125% F TC#0+-100 RESISTOR 5,11% 1% ,125% F TC#0+-100 RESISTOR 5,11% 1% ,125% F TC#0+-100 PESISTOR 10% 1% ,125% F TC#0+-100	24546 24546 24546 24546	C3-1/8-T0-100-G C4-1/8-T0-1001-P C4-1/8-T0-5111-F C4-1/8-T0-1114-F C4-1/8-T0-1002-F
158529 n 158601 n 158602 n		99933		RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100	24546 24546 24546 24546 24546	C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1001-F C4-1/8-T0-1001-F
	£10≈0049 810≈0049	7 7	,	NETWOPK-PES 12-SIP6.8K OHM X 10 NETWOPK-PES 12-SIP6.8K OHM X 10	28480 28480	1810+004 9 1810+0049
	837-0085	6	1	THERMISTOR ROD 680-DHM TC=+.7%/C-DEG	28480	6837*0085
A5U2 A5U3 A5U4	826-0059 826-0059 826-0059 826-0147 826-0315	2000	1	IC OP AMP GP TO-99 IC OP AMP GP TC-99 IC OP AMP GP TO-99 IC 7A12 V RGLTR TO-200 IC OP AMP GP GUAD 14-DIP-P	01295 01295 01295 04713 27014	LM201AL LM201AL MC7812CP (M348N
10 101 10 ASU	826-0043 820-0802 820-0791 820-0802 858-0040	4 1 9 1 8	4. 1	IC OP AMP GP 10-99 IC GATE ECL NOR GUAD 2-IAP IC CNTR ITL DECD NEG-EDGE-TRIG PRESET IC GATE ECL NOR GUAD 2-IAP TPANSISTOR ARRAY	01928 04713 01295 04713 01928	CA307T MC10102P BM74196N MC10102P CA3127E
ASU303 1 ASU304 1 ASU305 1	855~0040 855~0040 825~0043 826~0043 826~0111	8 8 4 7	11	TRANSISTOR ARRAY TRANSISTOR ARRAY IC OP AMP GP TO-99 IC OP AMP GP TO-99 IC OP AMP GP DUAL TO-99	01928 01928 01928 01928 04713	CA3127E CA3127E CA307Y CA307Y MC1458G
45U402 1	858-0030 826-0111 826-0081	6 7 0	•	TRANSISTOR ARRAY 16-PIN CER DIP IC OP AMP GP DUAL TO-99 IC OP AMP WB TO-99	28480 04713 27014	1858-0030 MC1458G LM318H
ASVR2 1 ASVR3 1 ASVR4 1	902-3024 902-0032 902-0032 902-3024	93339	?	DIODE-ZNR 2,87V 5% DO-7 PDm.4W TC=07% DIODE-ZNR 5,49V 5% DO-7 PDm.4W TC=+.009% DIODE-ZNR 5,49V 5% DO-7 PDm.4W TC=+.009% DIODE-ZNR 5,49V 5% DO-7 PDm.4W TC=+.009% DIODE-ZNR 2,87V 5% DO-7 PDm.4W TC=07%	28480 28480 28480 28480	1902=3024 1902=0032 1902=0032 1902=0032 1902=3024
AŠVRŽ 1 ASVRB 1 ASVRG 1	902=3094 902=0692 902=3002 902=0685 902=0048	3 2 1	† 1	DIDDE-ZNR 5,11V 2% DG-7 PDR.4W TCR009% DIDDE-ZNR 6.3V ;% DG-7 PDR.4W TCR001% DIDDE-ZNR 2.37V 5% DG-7 PDR.4W TCR074% DIDDE-ZNR 9V 2% DG-7 PDR.5W TCR001% DIDDE-ZNR 6.81V 5% DG-7 PDR.4W TCR043%	28480 28480 28480 28480 28480	1902=3094 1902=0092 1902=3002 1902=0085 1902=0048
A5VR103 1 A5VR104 1 A5VR201 1	902-0041 902-3149 902-0126 902-0126 902-0126	30.000	6 1 3	DIODE-ZNR 5.11V 5% DO-7 PD=,4W YC=-,009% DIODE-ZNR 9,09V 5% DO-7 PD=,4W YC=+,057% DIODE-ZNR 2,61V 5% DO-7 PD=,4W YC=-,072%	28480 26480 28480 28480 28480	1902-0841 1902-3149 1902-0126 1902-0126 1902-0126
A5VR301 f A5VR302 1 A5VR401 1	902-0786 902-0786 902-0786 902-3094 902-0777	4 4 3 3	7	OIODE-ZNR 1N937 9V 5% DO-7 PO=,5% DIQUE-ZNR 1N937 9V 5% OD-7 PD=,5% DIQUE-ZNR 1N937 9V 5% DO-7 PD=,5% DIQUE-ZNR 5,11V 2% DO-7 PD=,4% TC#=,009% OIODE-ZNR 1N825 6,2V 5% DO-7 PO=,4%	24046 24046 24046 26480 04713	1 N 9 3 7 1 N 9 3 7 1 N 9 3 7 1 9 0 2 = 3 0 9 4 1 N 8 2 5
A6 0	8165=66506	9	ţ	BOARO ASSEMBLY, POWER CONTROL	28480	Q8165=66506
A6C107 0 A6C103 0 A6C104 0	1160-3650 160-0174 160-2265 160-3879 180-1704	29375	1	CAPACITOR-FXO .018UF +=10% 50VOC CER CAPACITOR-FXD .47UF +80-20% 25VOC CER CAPACITOR-FXO 22PF +-5% 500VOC CER 0+=30 CAPACITOR-FXO .01UF +=20% 100VOC CER CAPACITOR-FXO 47UF++10% 6VOC TA	28480 28480 28480 28480 56289	0160~3650 0160~0174 0166~2265 0160~3879 1500478X900882
A6C302 0 A6C302 0 A6C302 0	0160~0174 0180~1704 0160=0174 0160~2257 0180~0116	9999	3 5	CAPACITOR-FXO .47UF +80-20% 25VOC CER CAPACITOR-FXD 47UF+-10% 6VDC TA CAPACITOR-FXD .47UF +80-20% 25VDC CER CAPACITOR-FXO 10PF +-5% 500VDC CER 0+-60 CAPACITOR-FXD 6.8UF+-10% 35VDC TA	28480 56289 28480 28480 56289	0160=0174 1500476×900682 0160=0174 0160=2257 1500685×903582
A6C403 0 A6C501 0	0160=0174 0160=2257 0180=0116 0160=2055 0180=0291	9 3 1 9 3	1	CAPACITOR-FXD .47UF +80-20% 25VDC CER CAPACITOR-FXD 10PF +-5% 508VDC CER 0+-60 CAPACITOR-FXD 6,8UF+-10% 35VDC TA CAPACITOR-FXD 01UF +80-20% 100VDC CER CAPACITOR-FXD 1UF+-10% 35VDC TA	28480 28480 56289 28480 56289	0160=0174 0160=2257 1500685x903582 0160=2055 1500105x903582

Table 6-3. Replaceable Parts (cont'd)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A6C503 A6C505 A6C506 A6C601 A6C602	0180=0229 0160=0174 0160=0174 0160=0174 0160=2150	70000		CAPACITOR-FXD 33UF+-10% 10VDC TA CAPACIYOR-FXD .47UF +80-20% 25VDC CER CAPACITOR-FXD .47UF +80-20% 25VDC CER CAPACITOR-FXD .47UF +80-20% 25VDC CER CAPACITOR-FXD .33PF +-5% 300VDC MICA	56289 28480 28480 28480 28480	150D336X901082 0160=0174 0160=0174 0160=0174 0160=2150
A6C603 A6C801	0160=4212 0140=0196	3		CAPACITOR-FXD .058UF 4-20% 50VDC POLYE CAPACITOR-FXD 150PF +-5% 300VDC MICA	2848P 72136	0160+4212 0M15F191J0300#V1CR
A6CR101 A6CR201 A6CR301 A6CR401 A6CR401	1901=0040 1901=0040 1901=0040 1901=0040 1901=0044		23	DIGDE-SWITCHING 30V 50MA 2NS DD-35 DIGDE-SWITCHING 30V 50MA 2NS DO-35 DIGDE-SWITCHING 30V 50MA 2NS DO-35 DIGDE-SWITCHING 30V 50MA 2NS DO-35 DIGDE-SWITCHING 30V 50MA 6NS	28480 28480 28480 28480 28480	1901-0040 1901-0040 1901-0040 1901-0044
A6CR502 A6CR503 A6CR504 A6CR505 A6CR506	1901-0044 1901-0044 1901-0044 1901-0044 1901-0050	w m m m		DIODE-SWITCHING 50V 50MA 6MS DIODE-SWITCHING 80V 200MA 2MS DO=35	26480 26480 26480 26480 26480	1901-0044 1901-0044 1901-0044 1901-0040 1901-0050
A6CR507 A6CR601 A6CR602 A6CR603 A6CR604	1901-0044 1901-0044 1901-0044 1901-0044	30000		DIDDE-SWITCHING 86V 200MA 2NS DD-35 DIODE-SWITCHING 50V 50MA 6NS DIODE-SWITCHING 50V 50MA 6NS DIODE-SWITCHING 50V 50MA 6NS DIODE-SWITCHING 50V 50MA 6NS	28480 28480 26480 26480 28480	1901-0050 1901-0044 1901-0044 1901-0044 1901-0044
A6CR801 A6CR802 A6CR803 A6CR804 A6CR805	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040	1 1 1 1		DIODE-SWITCHING 30V 50MA 2NS 00-35 DIODE-SWITCHING 30V 50MA 2NS 00-35 DIODE-SWITCHING 30V 50MA 2NS 00-35 DIODE-SWITCHING 30V 50MA 2NS 00-35 DIODE-SWITCHING 30V 50MA 2NS 00-35	28480 28480 28480 28480	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040
A6MP1 A6MP2	1205-0284 4040-0753	9	1 t	HEAT SINK PLSTC-PMR+CS Extr-PC BD GRM POLYC .062-BD+THKMS	28480 28480	1205=0284 4040=0753
A6G101 A6G102 A6G201 A6G301 A6G401	1853-0212 1854-0477 1853-0281 1854-0637 1853-0314	67919	1	TRANSISTOR PNP 2NS194 SI POE40W FTE2MMZ TRANSISTOR NPN 2N22224 SI TO=18 RDE500MW TRANSISTOR 2NP 2N29074 SI TO=18 PDE400MW TRANSISTOR NPN 2N2194 SI TO=5 PDE600MW TRANSISTOR RNP 2N29054 SI TO=39 PDE600MW	04713 04713 04713 04713 01295 04713	2N5194 2N2222A 2N2907A 2N2219A 2N2905A
A60501 A60502 A60503 A60504 A60601	1854-0637 1853-0314 1854-0477 1853-0281 1853-0036	1 7 9 2		TRANSISTOR NPN 2N2219A SI TO-5 PDE800MM TPAMSISTOR RNP 2N2905A SI TO-39 RDE600MM TRAMSISTOR NPN 2N2222A SI TO-18 PDE500MM TPAMSISTOR NPN 2N2222A SI TO-18 RDE400MM TPAMSISTOR RNP SI PDE310MM FTE250MHZ	01295 04713 04713 04713 28480	2N2219A 2N2905A 2N2222A 2N2907A 1833-0036
A60602 A60603 A60604 A60605 A60606	1853=0036 1853=0036 1855=0081 1855=0081 1855+0081	2 1 1	y	TRANSISTOR RNR SI PD=310MW FT=250MHZ TRANSISTOR PNP SI PD=310MW FT=250MHZ TRANSISTOR J=FET N=CHAN D=MODE SI TRANSISTOR J=FET N=CHAN D=MODE SI TRANSISTOR J=FET N=CHAN D=MODE SI	28480 28480 01295 01295 01295	1853~0036 1853~0036 2N5245 2N5245 2N5245
A5Q507 A5Q801 A6Q802 A5Q803 A5Q804	1854-0472 1853-0460 1853-0036 1853-0036 1854-0215	24221	6	TRANSISTOR NPN SI DARL PDESOOMM TRANSISTOR PNP SI DARL TO-92 RDESOOMM TRANSISTOR PNP SI PDESIOMM FTEZSOMMZ TRANSISTOR PNP SI PDESIOMM FTEZSOMMZ TRANSISTOR NPN SI PDESSOMM FTESOOMMZ	04713 28480 28480 28480 04713	MPS-A14 1853-0400 1853-0036 1853-0036 2N3704
A5Q906 A5Q907 A6Q908 A5Q909 A5Q910	1853-0400 1853-0400 1853-0466 1853-0281 1853-0400	44004		TRANSISTOR PNP SI DARL TD-92 PD=500MW TRANSISTOR PNP SI DARL TD-92 PD=500MW TRANSISTOR PNP SI PD=310MW FT=40MMZ TRANSISTOR PNP SI PD=310MW FT=40MMZ TRANSISTOR PNP SI PD=31 TO-18 PD=400MW TRANSISTOR PNP SI DARL TO-92 PD=500MW	28480 28480 27014 04713 28480	1853-0400 1853-0400 285087 282907A 1853-0400
A60911 A60912 A60913	1853±0086 1854±0637 1853±0281	2 1 9		TRANSISTOR PNP SI PDE310MW FT#40MMZ TRANSISTOR NPN 2N2219A SI TO-5 RD#800MW TRANSISTOR PNP 2N2907A 81 TO-18 PD#400MW	27014 01295 04713	2N5087 2N2219A 2N2907A
A6R1 A6R2 A6R101 A6R102 A6R103	2100#3053 2100#3053 0757#0280 0757#0280 0757#0280	5533	*	RESISTOR-TRMR 20 20% C SIDE-ADJ 17-TRN RESISTOR-TRMR 20 20% C SIDE-ADJ 17-TRN RESISTOR 1% 1% 125W F TC=00+=100 RESISTOR 1% 1% 125W F TC=00+=100 RESISTOR 1% 1% 125W F TC=00+=100	02111 02111 24546 24546 24546	43P200 43P200 C4=1/8-T0=1001=F C4=1/8=T0=1001=F C4=1/8=T0=1001=F
A6R104 A6R105 A6R106 A6R107 A6R108	0698-3444 0698-4389 0698-3445 0757-0346 0757-0984	15224	3 1 1 1	RESISTOR 316 1% .125W F TC=0+=100 RESISTOR 64.9 1% .125W F TC=0+=100 RESISTOR 348 1% .125W F TC=0+=100 RESISTOR 10 1% .125W F TC=0+=100 RESISTOR 10 1% .525W F TC=0+=100	24546 24546 24546 24546	C4-1/8-T0-316R-F C4-1/8-T0-54R9-F C4-1/8-T0-348R-F C4-1/8-T0-10R0-F 0757-0984
A6R109 A6R110 A6R111 A6R112 A6R201	0757+0280 0757+0280 0698-3159 0698-3159 0757-0280	3 5 5 3		RESISTOR 1K 1% .125W F TCm0+=100 PESISTOR 1K 1% .125W F TCm0+=100 RESISTOR 26.1K 1% .125W F TCm0+=100 RESISTOR 26.1K 1% .125W F TCm0+=100 RESISTOR 1K 1% .125W F TCm0+=100	24546 24246 24246 34246	C4-1/8-T0-1001-F C4-1/8-T0-1001-F C4-1/8-T0-2612-F C4-1/8-T0-2612-F C4-1/8-T0-1001-F
A6R202 A6R203 A6R204 A6R205 A6R206	0757+0280 0757+0280 0757+0401 0757+0280 0757+0280	3 0 3		RESISTOR 1K 1% .125W F TCm0+=100 PESISTOR 1K 1% .125W F TCm0+=100 RESISTOR 100 1% .125W F TCm0+=100 RESISTOR 1K 1% .125W F TCm0+=100 RESISTOR 1K 1% .125W F TCm0+=100	24546 24546 24546 24546 24546	C4=1/8=T0=1001+F C4=1/8=T0=1001+F C4=1/8=T0=101+F C4=1/8=T0=1001+F C4=1/8=T0=1001+F

Table 6-3. Replaceable Parts (cont'd)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A6F207 A6F201 A6F301 A6F302 A6F303	0048~4486 0048~4486 0048~4471 2100~5351 0048~4435	3 3 6 6 0	4 4 10	RESISTER 24.9K 1% .125W F TC#0+=100 PESISTER 24.9K 1% .125W F TC#0+=100 RESISTER 7.5K 1% .125W F TC#0+=100 PESISTER*FRW 500 10% C SIDE=40J 1*7RN PESISTER*FRW 500 10% C SIDE=40J 1*7RN PESISTER*FRW 500 10% C SIDE=40J 1*7RN	24546 24546 24546 24546 24546	C4=1/6=T0=2492=F C4=1/6=T0=2492=F C4=1/6=T0=7151=F 2100=3351 C4=1/6=T0=2261=F
#6P304 #6P305 #6P306 #6P307 #6R308	0695+4433 0695+4442 6757+0280 0757+0715 0757+0280	0 1 3 3 3 5	ë,	REBISTOR 2,26K 12 ,125W F TC*0+*100 RESISTOR A,42K 1% ,125W F YC*0+*100 RESISTOR 1K 1% ,125W F YC*0+*100 RESISTOR 1K 1% ,25% F TC*0+*100 RESISTOR 1K 1% ,125W F TC*0+*100	245 245 245 245 245 245 245 245 245 245	C4-1/8-70-2201=F C4-1/8-70-4421-F C4-1/8-70-1001+F C5-1/4-70-201=F C4-1/8-70-1001=F
A6R309 A6R310 A6R311 A6R312 A6P401	0757~0280 0695~3158 0698~3158 0757~0716 0698~4471	あるながら	45	RESISTOR 1< 1% .1250 F TC*0+0100 RESISTOR 23.7% 1% .1250 F TC*0+0100 RESISTOR 23.7% 1% .1250 F TC*0+0100 RESISTOR 200 1% .250 F TC*0+0100 RESISTOR 7.15% 1% .1≥50 F TC*0+0100 RESISTOR 7.15% 1% .1≥50 F TC*0+0100	24549 24549 24549 24549	C4-1/8-T0-1001-F C4-1/8-T0-2372-F C4-1/8-T0-2372-F C5-1/4-T0-201-F C4-1/8-T0-7151-F
468402 A68403 A68404 A68405 A68406	P100*3351 0006*4433 0006*4433 0006*4433 0006*4433	\$00 to		PESISTOR-TRMR 500 10% C SIDE-ADJ 1-TRN PESISTOR 2,26K 1% ,125W F 7C=00+0100 PESISTOR 2,26K 1% ,125W F 7C=00+100 RESISTOR 4,42K 1% ,125W F 7C=00+100 RESISTOR 1K 1% ,125W F 7C=00+100	\$02.00 \$42.00 \$42.00 \$42.00 \$60.00	2100-3351 C4-1/8-T0-2261-F C4-1/8-T0-2261-F C4-1/8-T0-4421-F C4-1/8-T0-4001-F
A68407 A68408 A68408 A68410 A68411	07570718	NOOLO	et d	RESISTOR 200 1% 25W F TC=0*~100 RESISTOR 5K .1% .125W F TC=0*~50 RESISTOR 5K .1% .125W F TC=0*~50 RESISTOR 56K .1% .125W F TC=0*~50 RESISTOR 133K 1% .125W F TC=0*~100	24546 19701 19701 24546	C5=1/4=T0=201=F MF4C1/6=72=5001=6 MF4C1/6=72=5001=6 0>96=6=6743 C4=1/6=70=1333=F
A6R413 A6R501 A6R502 A6R503	0.595.6508	902-36	2	RESISTOR 23.5K .1% .125W F TC#04-25 PESISTOR 26.6 1% .25W F TC#0+=100 RESISTOR 6.49K 1% .125W F TC#0+=100	7.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	0698-6608 C5=1/4-70-201-F C4-4/8-70-8491-F C4-1/8-70-4028-F C4-1/8-70-6491-F
A6R504 A6R505 A6R506 A6R507 A6R508	0698×4453 0757×0271 0757×0444 0757×0444	U 72 1: 0 0	3	001-0007 7 W851, %1 500 001-000 PES1818 W 5 1 W 5 1 W 5 1 W 5 1 W 5 1 W 5 1 W 5 1 W 5 1 W 5 1 W 5 1 W 5 1 W 5 1 W 5 1 W 5 1 W 6 1 W 5 1 W 6 1 W	245825 94584 94694 94694 94694	C4-1/8-70-402k=F C4-1/8-70-1241-F C4-1/8-70-1212-F C4-1/8-70-1002-F C4-1/8-70-2672-F
A&R<00 A&R510 A&R511 A&R512 A&R513	0098-4521 0797-0280 0757-0280 0757-0246	7 13 M D O	\$	PESISTOR 154K 1% 125W P TC=0+=100 RESISTOR 1K 1% 125W F TC=0+=100 RESISTOR 1K 1% 125W F TC=0+=100 RESISTOR 10 1% 125W F TC=0+=100 PESISTOR 661 1% 125W F TC=0+=100	24200 24200 24200 54200 54200	C4-1/F=T0=1543-F C4-1/B=T0=1001=F C4-1/B=T0=1001=F C4-1/B=T0=1080=F C4-1/B=T0=1080=F C4-1/B=T0=0B1R=F
A6R514 A6R515 A6R516 A6R517 A6R518	0698-0085 0698-0085 0698-3351 0698-3259 0698-4429	0 8 6	. z	RESISTOR 2.6:K 1% 125h F TC#07**100 PESISTOR 1.º6k 1% 125k F TC#07**100 RESISTOR**TRMH 500 10% C STDE**ADJ 1**TRN PESISTOR 7.87k 1% 125h F TC#0**100 PESISTOR 1.87k 1% 125k F TC#0**100	24549 24249 24249 24249	C4-1/8-T0-2611=F C4-1/8-T0-1961=F 2100-3351 C4-1/8-T0-7871=F C4-1/8-T0-1871=F
A6R510 A6R520 A6R521 A6R523	0757-0288 0757-0439 0698-4442 0757-0458 >100-3351	1 4 1 7 6	2	PESISTOR 9.09K 1% .125W F TC#0+=100 PESISTOR 6.81K 1% .125W F TC#0+=100 RESISTOR 4.42K 1% .125W F TC#0+=100 RESISTOR 51.1K 1% .125W F TC#0+=100 RESISTOR 51.1K 1% .125W F TC#0+=100 RESISTOR=1R*R 500 10% C SIDE=ADJ 1=7RN	19701 24546 24546 24546 26480	M\$4C1/8~70~9091~\$ C4~1/8~70~8811~\$ C4~1/8~70~84421~\$ C4~1/8~70~\$112~\$ 2100~3351
A6R601 A6R602 A6R603 A6R604 A6R605	2100+3350 0757+0422 0757+0280 0757+0454 0757+0458	55337	3	PESISTOR=TRMR 200 10% C SIDE=ADJ 1=TRN PESISTOR 909 1% ,125w F 1C=0+=100 RESISTOR 14 1% ,125w F 1C=0+=100 RESISTOR 14 1% ,125w F 1C=0+=100 RESISTOR 31,21 1% ,125w F 1C=0+=100 RESISTOR 51,11 1% ,125w F 1C=0+=100	24546 64646 64646 64646	2100=3350 C4=1/8=70=909=F C4=1/8=70=1001=F C4=1/8=70=3322=F C4=1/8=70=3112=F
A6R606 A6R607 A6R609 A6R610 A6R611	0757-0454 0757-0458 0757-0442 2100-3356 0598-4521	3 7 9 1 7	1	RESISTOR 33,2K 1% ,125W F TC#0+=100 RESISTOR 51,1K 1% ,125W F TC#0+=100 RESISTOR 10K 1% ,125W F TC#0+=100 RESISTOR=TRNK 200K 10% C SIDE=ADJ 1=TRN RESISTOR 154K 1% ,125W F TC#0+=100	24546 24546 24546 26546	C4=1/0=T0=3322=F C4=1/0=T0=5112=F C4=1/0=T0=1002=F 2100=3356 C4=1/0=T0=1541=F
Abrói2 Abrói3 Abrói4 Abrói5 Abrói6	0098-4444 0098-4442 2100-3352 0757-0274 0757-0438	1 7 5 3	P	RESISTOR 4,87K 1% ,125W F TCBO+=100 RESISTOR 4,42K 1% ,125W F TCBO+=100 RESISTOR=TRMR 1K 10% C SIRE=AD# 1=TRN RESISTOR 1,21K 1% ,125W F TCBO+=100 RESISTOR 5,11K 1% ,125W F TCBO+=100	90948 90948 90948 94949	C4-1/8-T0-48-71-F C4-1/8-T0-4421-F 2100-3352 C4-1/8-T0-1213-F C4-1/8-T0-3111-F
A6R617 A6R618 A6R619 A6R619	0698-5449 0698-3158 0698-5449 0698-5449 0698-3152	. 0 4 0 0 8		RESISTOR SK .1% .125W F TC#0+=50 RESISTOR 23.7K 1% .125W F TC#0+=50 RESISTOR 5K .1% .125W F TC#0+=50 RESISTOR 5K .1% .125W F TC#0+=50 RESISTOR 3.48K 1% .125W F TC#0+=100	19701 24546 19701 19701 24546	##4C1/8-T2-5001-8 C4-1/8-T0-2372-F ##4C1/8-T2-5001-8 ##4C1/6-T2-5001-8 C4-1/8-T0-3481-F
A6R802 A6R803 A6R804 A6R805 A6R807	0698=3152 0757=1094 0698=4425 2100=3154 0757=0280	8 9 0 7 3	ū	RESISTOR 3.48K 1% .125W F TC#0+-100 RESISTOR 1.47K 1% .125W F TC#0+-100 RESISTOR 1.54K 1% .125W F TC#0+-100 RESISTOR 1K 1% .125W F TC#0+-100 RESISTOR-TPMR 1K 10% C \$10E=ADJ 17-TRN RESISTOR 1K 1% .125W F TC#0+-100	24546 24546 24546 02111 24546	C4=1/8=T0=3481=F C4=1/8=T0=1471=F C4=1/8=T0=1541=F 43P102 C4=1/6=T0=1001=F

Table 6-3. Replaceable Parts (cont'd)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A6F606 A6R809 A6R810 A6R811 A6R812	0698-4409 0698-3495 2100-3103 0698-4470 0698+3156	ないのもつ	6 1 6	RESISTOR 127 1% .125W F TC=0+=100 RESISTOR 866 1% .125W F TC=0+=100 RESISTOR=THMR 10K 10% C SIDE=ADJ 17-TRN RESISTOR 6,98K 1% .125W F TC=0+=100 PESISTOR 14,7K 1% .125W F TC=0+=100	24546 24546 02111 24546 24546	C4-1/8-T0-127R-F C4-1/8-T0-866R-F 43P103 C4-1/8-T0-6981-F C4-1/8-T0-1472-F
A6R813 A6R814 A6P815 A6R816 A6R817	0757-0411 0757-0280 0757-0442 0698-3150 0698-4458	60 6 te fu	6	RESISTOR 332 1% .125W F TC=0+=100 RESISTOP 1K 1% .125W F TC=0+=100 RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 2,37K 1% .125W F TC=0+=100 PESISTOR 590 1% .25W F TC=0+=100	245 245 245 245 45 45 45 45 45 45 45 45 45 45 45 45 4	C4=1/8=T0=332R=F C4=1/8=T0=1001=F C4=1/8=T0=2371=F C4=1/8=T0=2371=F C4=1/8=T0=590R=F
A6R518 A6R519 A6R520 A6R821 A6R822	0698=4467 0698=3446 0698=3440 0757=0401 0698=3150	0 3 7 0 6	1 1 1	RESISTOR 1.05% 1% .125W F TC=0+-100 RESISTOR 383 1% .125W F TC=0+-100 RESISTOR 196 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 2.37K 1% .125W F TC=0+-100	545 545 545 645 645 645 645 645	C4-1/8-T0=1051-F C4-1/8-T0=383R-F C4-1/8-T0=106R-F C4-1/8-T0=101-F C4-1/8-T0=2371-F
468823 468824 468825 468826 468909	6757=0424 0757=0436 0757=0283 2100=3207 0698=3259	7 3 6 1 6	5	RESISTOR 1,1K 1% ,125W F TCm0+=100 RESISTOR 5,11K 1% ,125W F TCm0+=100 RESISTOR 2K 1% ,125W F TCm0+=100 RESISTOR=TRMS FX 10% C SIDE=ADJ 1=TRN RESISTOR 7,87K 1% ,125W F TCm0+=100	24249 26480 54249 54249 54249	C4-1/8-T0-1101=F C4-1/8-T0-5111=F C4-1/8-T0-2001=F 2100-3207 C4-1/8-T0-7871=F
A6R910 A6R911 A6R912 A6R913 A6R914	0698-3154 0757-0280 2100-3056 0757-0280 0757-0280	0 10 11	ž	RESISTOR 4,22k 1% 125W F TC=0+=100 RESISTOR 1K 1% 125W F TC=0+=100 RESISTOR=TRMR 5K 10% C SIDE=ADJ 17=TRN RESISTOR 1K 1% 125W F TC=0+=100 RESISTOR 1K 1% 125W F TC=0+=100	24546 24546 02111 24546 24546	C4-1/8-T0-4221-F C4-1/8-T0-1001-F 43R502 C4-1/8-T0-1001-F C4-1/8-T0-1001-F
A6R915 A6R916 A6R917 A6R918 A6R919	2100-3056 0757-0280 0757-0439 0757-0442 0757-0442	83400		RESISTOR-TRMR 5K 10% C SIDE-ADJ 17-TRN RESISTOR 1K 1% ,125W F TC#0+-100 RESISTOR 0,81K 1% ,125W F TC#0+-100 RESISTOR 10K 1% ,125W F TC#0+-100 RESISTOR 10K 1% ,125W F TC#0+-100	24546 24546 24546 24546	439502 C4=1/8=T0=1001=F C4=1/8=T0=6611=F C4=1/8=T0=1002=F C4=1/8=T0=1002=F
A6R920 A6R921 A6R922 A6R923 A6R924	2100-3103 0698-0083 0757-0280 0757-0439 0757-0442	68340		PESISTOR-TRMR 10% 10% C SIDE-ADJ 17-TRN RESISTOR 1,96% 1% ,125% F TC#0+-100 RESISTOR 1% 1% ,125% F TC#0+-100 RESISTOR 6,81% 1% ,125% F TC#0+-100 RESISTOR 10% 1% ,125% F TC#0+-100	02:11 24546 24546 24546	43P103 C4=1/6=T0=1961=F C4=1/6=T0=1001=F C4=1/8=T0=6811=F C4=1/8=T0=1002=F
A6R925 A6R926 A6R927	0757-0442 0757-0705 0757-0346	9 7 2	1	RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 47.5 1% .25W F TC=0+-100 RESISTOR 10 1% .125W F TC=0+-100	24546 28480 24546	C4=1/8=10=1002=# 0757=0705 C4=1/8=10=10R0=#
A6U101 A6U201 A6U301 A6U302 A6U302	1826-0111 1826-0111 1826-0043 1826-0059 1826-0043	7 4 2 4		IC OP AMP GP DUAL TO-99 IC OP AMR GP DUAL TO-99 IC OP AMP GP TO-99	04713 04713 01928 01295 01928	MC1458G MC1458G CA307T LM201AL CA307Y
A6U402 A6U501 A6U502 A6U503 A6U601	1826-0059 1826-0043 1826-0160 1826-0111 1826-0188	24078	1	IC OP AMP GP TO=99 IC OP AMP GR TO=99 IC TIMER TIL MONO/ASTBL IC OR AMP GP DUAL TO=99 IC CONV 8-8-D/A 16-DIP-C	01295 01928 04713 04713 04713	L M 201AL CA 307T MC1 455P1 MC1 458G MC1 408L=8
A6U602 A6U701 A6U702 A6U703 A6U704	1826=0161 1820=1745 1820=1963 1820=1956 1820=1956	7 3 7 8 8	10 9 29	IC OP AMP GP GUAD 14-DIP-P IC GATE CMOS NOR GUAD 2-INP IC FF CMOS D-IYPE POS-EDGE-TRIG DUAL IC LCH CMOS COM CLOCK GUAD IC LCH CMOS CGM CLOCK GUAD	04713 04713 01926 01928 01928	MLM324P MC140018CP CD40138AE CD40428E CD40428E
A6U705 A6U708 A6U707 A6U708 A6U710	1820-1956 1820-1956 1820-1976 1820-1976 1820-1745	8 8 8 B	6	IC LCH CMOS COM CLOCK GUAD IC LCH CMOS COM CLOCK GUAD IC BFR CMOS NON-INV MEX IC BFR CMOS NON-INV MEX IC GATE CMOS NOR GUAD Z-INR	01928 01928 01928 01928 04713	C040428E C040428E C04050BE MC14001BCP
A6U711 A6U712 A6U713 A6U714 A6U715	1820+1956 1820+1956 1820+1956 1820+1976 1820+1976	42000		IC LCH CMOS COM CLOCK QUAD IC LCH CMOS COM CLOCK QUAD IC LCH CMOS COM CLOCK QUAD IC BFR CMOS NON-INV HEX IC BFR CMOS NON-INV HEX	01928 01928 01928 01928 01928	C040428E C040428E C04050BE C04050BE
46U801 46U802 46U901	1826=0188 1826=0161 1826=0161	8 7 7		IC CONV 8-8-D/A 16-DIP=C IC OP AMP GP GUAD 14-DIP=R IC OP AMP GP GUAD 14-DIP=P	04713 04713 86713	MC1408L≈8 MLM324P MLM324P
A6VR501 A6VR502 A6VR503 A6VR504 A6VR601	1902-3171 1902-3171 1902-0041 1902-0777 1902-0041	7 7 4 3	2	DIODE-ZNR 11V 5% DO-7 PD= 4W TC=+.062% DIODE-ZNR 11V 5% DO-7 PD= 4W TC=+.062% DIODE-ZNR 5,11V 5% DO-7 RD=,4W TC=009% DIODE-ZNR 1N825 6,2V 5% DO-7 RD= 4W DIODE-ZNR 5,11V 5% DO-7 PD=,4W TC=009%	28480 28480 28480 04713 28480	1902-3171 1902-3171 1902-0041 1902-0041
A6VR602 A6VR801 A6VR802 A6VR803 A6VR804	1902-0786 1902-0049 1902-0786 1902-0025 1902-0025	5 G G G G G G G G G G G G G G G G G G G	1	DIODE-ZNR 1N937 9V 5% DO-7 PDB.5W DIODE-ZNR 6.19V 5% DO-7 PDB.4W TCB+.022% DIODE-ZNR 1N937 9V 5% DO-7 PDB.5W DIODE-ZNR 10V 5% DO-7 PDB.4W TCB+.06% DIODE-ZNR 10V 5% DO-7 PDB.4W TCB+.06%	24046 28480 24046 26480 26480	1N937 1902-0049 1N937 1902-0025 1902-0025

Table 6-3. Replaceable Parts (cont'd)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
17	η Α 165=66507	0	1	HOARD ASSEMBLY, INPUT MODULATOR	28480	02165-66507
1701 1702 1703 1704 1705	0160+2241 0160*0574 0160*0574 0160+4213 0160+0578	医医毒素	1 2 3	CAPACITOR-FXD 2.2PF +25PF 500VDC CER CAPACITOR-FXD .022UF +-20X 100VDC CER CAPACITOR-FXD .022UF20X 100VDC CER CAPACITOR-FXD .1UF +-20X 50VDC PCLYE CAPACITOR-FXD .1UF +-20X 50VDC CER	26460 26460 28480 28480 28480	0160=2241 0160=0574 0160=0578 0160=4213 0160=0576
1766 1767 1768 17611 17612	0160m4210 0160m2150 0160m3675 0160m2055 0160m4299	25307		CAPACITOR-FXD .022UF +=20% 50VDC POLYE CAPACITOR-FXD 33PF +=5% 300VOC MICA CAPACITOR-FXD 22PF +=5% 200VOC CER 0+=30 CAPACITOR-FXD .01UF &A0=20% 100VDC CER CAPACITOR-FXD 2200PF +=20% 250VDC CER	26480 26480 26480 5629	0160=4210 0160=2150 0160=3875 0160=2055 Cn67F251F222M322=CDH
47C14 47C15 47C16 47C21 47C22	0160=4210 0140=0196 0160=4210 0180=0374 0180=0374	W IN IN IN IN	ž.	CAPACITOR=FXD .022UF +-20% 50VDC POLYE CAPACITOR=FXD 150PF +-5% 100VDC MICA CAPACITOR=FXD .022UF +-20% 50VDC POLYE CAPACITOR=FXD 10UF+-10% 20VDC TA CAPACITOR=FXD 10UF+-10% 20VDC TA	28480 72136 28480 56289 56289	0160-4210 OM15#151J0300WV1CR 0160-4210 1500100x9020B2 1500100x9020B2
47C101 47C102	0160-4210	2		CAPACITOR-FXD .622UF +-20% 50VDC POLYE CAPACITOR-FXD .622UF +-20% 50VDC POLYE	28480 28480	0160-4210 0160-4210
A7CR† A7CR3 A7CR3 A7CR4 A7CR4	1901-0050 1901-0050 1901-0050 1901-0050 1901-0050	أمرا أميا أميا أميا		DIDDE-SWITCHING BOV ZOUMA ZNS DO-35 DIDDE-SWITCHING BOV ZOUMA ZNS DO-35 DIDDE-SWITCHING BOV ZOUMA ZNS DO-35 DIDDE-SWITCHING BOV ZOUMA ZNS DO-35 DIDDE-SWITCHING BOV ZOUMA ZNS DO-35	28480 28480 28480 28480 28480	1901=0050 1901=0050 1901=0050 1901=0050 1901=0050
A7CR6 A7CR7 A7CR0 A7CR0 A7CR9	1901-0050 1901-0050 1901-0050 1901-0535	\$ 200 to set	1	DIDDE-SWITCHING SOV 200MA 2NS DO-35 DIDDE-SWITCHING SOV 200MA 2NS DO-35 DIDDE-SWITCHING SOV 200MA 2NS DO-35 DIDDE-SWITCHING SOV 200MA 2NS DO-35	26480 26480 26480	1901=0050 1901=0050 1901=0050 1901=00535
A7MP;	4040-0752	Ģ	\$	EXTRAPE BD YEL POLYE .062-BD-THKNS	28480	4040-0752
4701 4702 4703 4705 4706	1854-0215 1853-0036 1853-0036 1853-0216 1853-0036	~~~~	<i>‡</i>	TRANSISTOR NPN SI PD#350*W FT#300MHZ TRANSISTOR PNP SI PD#310*W FT#250MHZ TPANSISTOR PNP SI PD#310*W FT#250MHZ TRANSISTOR PNP SI TO#18 PD#360*W TRANSISTOR PNP SI PD#310*W FT#250*MHZ	04713 28480 28480 28480 28480	2N3904 1853-0036 1853-0036 1853-0218 1853-0036
A708 A70101	1853-0218 1854-0215	2		TRANSISTOR PNP SI TO-18 PD#360MW TRANSISTOR NPN SI PD#350MW FT#300MMZ	28480 94713	1853-0218 2N3904
A7R1 A7R2 A7R3 A7R4 A7R5	0698-4444 0698-3153 0797-0317 2100-3274 0757-0442	397740	1 1 1	RESISTOR 4,87K 1% ,125W F TC#0+-100 RESISTOR 3,83K 1% ,125W F TC#0+-100 RESISTOR 1,33K 1% ,125W F TC#0+-100 RESISTOR-THMR 10K 10% C \$10E#ADJ 1=TRN RESISTOR 10K 1% ,125W F TC#0+-100	24546 24546 24546 24546	C4-1/8-T0-4871-F C4-1/8-T0-3831-F C4-1/8-T0-3831-F 2100-3274 C4-1/8-T0-1002-F
A7R6 A7R7 A7R8 A7R9 A7R10	0757-0407 0698-4453 0698-4453 0757-0280 0757-0280	64433		RESISTOR 200 1% .125W F TC#00-100 PESISTOR 402 1% .125W F TC#00-100 RESISTOR 402 1% .125W F TC#00-100 RESISTOR 1K 1% .125W F TC#00-100 RESISTOR 1K 1% .125W F TC#00-100	24249 54249 54249 54249	C4=1/8-T0=201=F C4=1/8-T0=402R=F C4=1/8-T0=402R=F C4=1/8-T0=1001=F C4=1/8-T0=1001=F
A7R11 A7R12 A7R13 A7R14 A7R15	0757-0280 0757-0458 0757-0349 0757-0465 0757-0280	37563		RESISTOR 1K 1% ,125W F TC#0+=100 RESISTOR 51,1K 1% ,125W F TC#0+=100 RESISTOR 22,6K 1% ,125W F TC#0+=100 RESISTOR 100K 1% ,125W F TC#0+=100 RESISTOR 1K 1% ,125W F TC#0+=100	24546 24546 24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-5112-F C4-1/8-T0-2262-F C4-1/8-T0-1003-F C4-1/8-T0-1001-F
A7R16 A7R17 A7R18 A7R19 A7R20	0698*4435 0757*0394 0757*0283 0757*0411 0757*0280	SOOR		RESISTOR 2:49K 1% :125W F TC=0+=100 RESISTOR 51:1 1% :125W F TC=0+=100 RESISTOR 32 1% :125W F TC=0+=100 RESISTOR 332 1% :125W F TC=0+=100 RESISTOR 1K 1% :125W F TC=0+=100	24546 24546 24546 24546 24546	C4-1/8-T0-2491-F C4-1/8-T0-51R1-F C4-1/8-T0-2001-F C4-1/8-T0-32R-F C4-1/8-T0-1001-F
A7R21 A7R22 A7R23 A7R24 A7R25	0757=0283 0757=0411 0757=0418 0757=0433 0757=0419	0 0 0 0 0		RESISTOR 2K 1% ,125W F TC=0+-100 RESISTOR 332 1% ,125W F TC=0+-100 RESISTOR 519 1% ,125W F TC=0+-100 RESISTOP 3,32K 1% ,125W F TC=0+-100 RESISTOR 681 1% ,125W F TC=0+-100	24546 24546 24546 24546	C4-1/8-T0-2001-F C4-1/8-T0-332R-F C4-1/8-T0-619R-F C4-1/8-T0-3521-F C4-1/8-T0-361R-F
ATR26 ATR27 ATR28 ATR29 ATR30	0698+3155 0757=0419 0757=0419 0757+0280 0757-0419	0 3 0		PESISTOR 4.64% 1% ,125% F TC#0+=100 RESISTOR 681 1% ,125% F TC#0+=100 RESISTOR 681 1% ,125% F TC#0+=100 RESISTOR 16 1% ,125% F TC#0+=100 RESISTOR 681 1% ,125% F TC#0+=100	24546 24546 24546 24546	C4-1/8-T0-4641-P C4-1/8-T0-681R-F C4-1/8-T0-681R-F C4-1/8-T0-1001-F C4-1/8-T0-881R-F
A7R31 A7R32 A7R33 A7R35 A7R36	0648-3433 0648-3488 0757-0401 0757-0390 0757-0419	8 0 6 0	1	RESISTOR 28,7 1% ,125W F TC*0++100 PESISTOR 442 1% ,125W F TC*0++100 RESISTOR 100 1% ,125W F TC*0++100 RESISTOR 36,5 1% ,125W F TC*0++100 RESISTOR 681 1% ,125W F TC*0++100	03888 24546 24546 24546 24546	PMES5=1/8=T0=28R7=F C4=1/8=T0=422R=F C4=1/8=T0=101=F C4=1/8=T0=36R5=F C4=1/8=T0=681R=F
A7P37 A7P38 A7P39 A7P40 A7P43	0757-0280 0757-0280 0598-3468 0757-0280 0598-3488	3 3 3		RESISTOR 1K 1% ,125W F TCm0+=100 RESISTOR 1K 1% ,125W F TCm0+=100 RESISTOR 442 1% ,125W F TCm0+=100 RESISTOR 1K 1% ,125W F TCm0+=100 RESISTOR 442 1% ,125W F TCm0+=100	54249 54249 54249 54249	C4=1/8=T0=1001=F C4=1/8=T0=1001=F C4=1/8=T0=422R=F C4=1/8=T0=1001=F C4=1/8=T0=422R=F

Table 6-3. Replaceable Parts (cont'd)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
17844 17845 17846 17850 17851	0698-4392 0698-4469 0698-4420 0698-3488 0698-3155	1 50	, ,	PESISTOF 71,5 1% .125w F TC=0+-100 PESISTOR 1,15% 1% .125w F TC=0+-100 RESISTOR 220 1% .125w F TC=0+-100 PESISTOR 442 1% .125w F TC=0+-100 RESISTOR 44,64% 1% .125w F TC=0+-100	24546 24546 24546 24546 24546	C4=1/8=T0=71R5=F C4=1/8=T0=1151=F C4=1/8=T0=226R=F C4=1/8=T0=422R=F C4=1/8=T0=422R=F
17852 17853 17854 17855 17856	0698-3155 0698-3155 0698-3155 0757-0419 0757-0400	1 1 0 9	1	RESISTOR 4,64K 1% ,125W F TCRO+=100 RESISTOR 4,64K 1% ,125W F TCRO+=100 PESISTOR 4,64K 1% ,125W F TCRO+=100 RESISTOR 651 1% ,125W F TCRO+=100 RESISTOR 90.9 1% ,125W F TCRO+=100	24249 54249 54249 54249	C4=1/8=T0=4641=F C4=1/8=T0=4641=F C4=1/8=T0=6641=F C4=1/8=T0=681R=F C4=1/8=T0=90R9=F
17857 17858 17859 17860 17861	0698-3150 0698-3443 0757-0419 0757-0280 0757-0409	60038	1	RESISTOR 2.37K 1% .125W F TC#0+=100 RESISTOR 267 1% .125W F TC#0+=100 RESISTOR 681 1% .125W F TC#0+=100 RESISTOR 1K 1% .125W F TC#0+=100 RESISTOR 274 1% .125W F TC#0+=100	54249 54249 54249 54249 54249	C4+1/8+T0+2371+F C4+1/8+T0+267R+F C4+1/8+T0+261R+F C4+1/8+T0+100101+F C4-1/8+T0+274R+F
17862 17863 178101 178102	0698-4452 0698-3488 0757-0349 0757-0349	3355	1	RESISTOR 374 1% .125W F TC#0+=100 RESISTOR 442 1% .125W F TC#0+=100 RESISTOR 22.6K 1% .125W F TC#0+=100 RESISTOR 22.6K 1% .125W F TC#0+=100	54249 54249 54249 54249	C4-1/8-Y0-374R-F C4-1/8-Y0-422R-F C4-1/8-Y0-2262of C4-1/8-Y0-2262oF
17U1 17U2 17U3 17U4 17U5	1820-0810 1820-1400 1820-0802 1820-0817 1820-0802	1 7 1 5	2	IC ROVE ECL LINE ROVE TRL 2-INP IC GATE ECL AND GUAD 2-INP IC GATE ECL D-M'S GUAD 2-INP IC FF ECL D-M'S GUAD 2-INP IC GATE ECL NOR GUAD 2-INP	04713 04713 04713 04713 04713	MC10116F MC10104P MC10131F MC10131F MC10102P
17U6 17U7 17U8 17U9 17U10	1820-1400 1820-0804 1820-0802 1820-0820 1820-1193	7 3 1 3 5	1 1 3	IC GATE ECL AND QUAD 2-INR IC GATE ECL NOR TPL IC GATE ECL NOR GUAD 2-INP IC FF ECL J-BAR K-BAR COM CLOCK DUAL IC CNTR TIL L8 8IN A88NCHRO	04713 04713 04713 04713 04713	MC10104P MC10106P MC10102P MC10135L BN74L3197N
17011 17012 17013 17014 170101	1820=1193 1820=1193 1820=1130 1820=1746 1820=1745	5 5 0 4 3	1	IC CNTP TTL LS BIN ASYNCHRO IC CNTR TTL LS BIN ASYNCHRO IC GATE TTL S NAND 13-INP IC BFP CMOS INV HEX IC GATE CMOS NOR GUAD 2-INP	01295 01295 01295 04713 04713	SN74L8197N SN74L3197N SN748133N MC14049USCR MC14001BCP
17U102 17U103 17U104 17U105 17U106	1820-1963 1820-1745 1820-1956 1820-1956 1820-1956	7 3 8 8 8		IC FF CMOS D=TYPE POS=EDGE=TRIG DUAL IC GATE CMOB NOR GUAD Z=INR IC LCH CMOS COM CLOCK GUAD	01928 04713 01928 01928 01928	CD4013BAE MC14001BCP CD4042BE CD4042BE CD4042BE
17U107 17U108	1820+1956 1820+1956	8		IC LCH CMOS COM CLOCK QUAD	0192B 0192B	CD40458E CD40458E
1.8	n8165=66508	1	1	BOARD ABSEMBLY, VCO CONTROL	28480	08165-66508
ABC101 ABC102 ABC103 ABC104 ABC105	0160-3048 0160-3048 0160-3048 0160-3048	~~~~	6	CAPACITOR-FXD 8000PF +=1% 100VDC MICA	28480 28480 28480 28480 28480	0160-3048 0160-3048 0160-3048 0160-3048 0160-3048
A8C106 A8C107 A8C108 A8C109 A8C110	0160-3048 0160-4209 0160-0174 0160-4209 0180-1704	M O O O W		CAPACITOR-FXD 8000PF +-1% 100VDC MICA CAPACITOR-FXD .01UF +-20% 50VDC POLYE CAPACITOR-FXD .47UF +800-20% 25VDC CER CAPACITOR-FXD .01UF +-20% 50VDC POLYE CAPACITOR-FXD 47UF+-10% 6VDC TA	28480 28480 28480 28480 56289	0160=3048 0160=4209 0160=0174 0160=4209 1500476X900682
11138 51138 10801 10808 80808	0180=0375 0180=0375 0180=1704 0160=0128 0160=4211	44000	1	CAPACITOR-FXD 68UF+-10% 20VDC TA CAPACITOR-FXD 68UF+-10% 20VDC TA CAPACITOR-FXD 47UF+-10% 6VDC TA CAPACITOR-FXD 2,2UF +-20% 50VDC CER CAPACITOR-FXD 2,4UF +-20% 50VDC POLYE	56289 56289 56289 26480 28460	15006654902082 15006864902082 15004764900682 0160-0128 0160-4211
182203 182301 182302 182402 182501	0160-4213 0140-0193 0160-0174 0160-2150 0140-0196	50053	4	CAPACITOR-FXD .1UF +-20% SOVDC POLYE CAPACITOR-FXD 82PF +-5% 300VDC MICA CAPACITOR-FXD .47UF +80-20% 25VDC CER CAPACITOR-FXD 33PF +-5% 100VDC MICA CAPACITOR-FXD 150PF +-5% 300VDC MICA	26480 72136 28480 28480 72136	0160-4213 DM15E820J0300WV1CR 0160-0174 0160-2150 DM15F151J0300WV1CR
180502	0140-0196	3		CAPACITOR-FXD 150PF +=5% 300VDC MICA	72136	DM15F15IJ0300WV1CQ
AACR201 ABCR202 ARCR301 ABCR302 ABCR303	1901-0046 1901-0040 1901-0044 1901-0044 1901-0044	1 5 5 5		DIDDE-SWITCHING 30V 50MA 2NB DO-35 DIDDE-SWITCHING 30V 50MA 2NB DD-35 DIDDE-SWITCHING 50V 50MA 6NB DIDDE-SWITCHING 50V 50MA 6NB DIDDE-SWITCHING 50V 50MA 6NS	28480 28480 28480 28480 28480	1901-0040 1901-0040 1901-0044 1901-0044 1901-0044
18CR304 18CR401 18CR402 18CR403 18CR404	1901-0044 1901-0040 1901-0040 1901-0044 1901-0044	v v v		DIODE-SWITCHING 50V 50MA 6NS DIODE-6WITCHING 30V 50MA 2N6 DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 50V 50MA 6NS DIODE-6WITCHING 50V 50MA 6NS	28480 28480 28480 28480 28480	1901-0044 1901-0040 1901-0040 1901-0044 1901-0044

Table 6-3, Replaceable Parts (cont'd)

4 (4) 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	P Part umber	C	Qty	Description	Mfr Code	Mfr Part Number
8CR496 190 PCR501 190	01m0044 01m0044 01m0040 01m0040	5 1 1	A COLUMN TO THE PARTY OF THE PA	DIOCE-SWITCHING SOV SOMA 648 DICCE-EWRITCHING SOV SOMA 6N8 DICCE-EWRITCHING 30V SOMA 2NS DO~35 DICCE-EWRITCHING 30V SOMA 2NS DO~35	28489 28480 28480 28480 28480	1901=00044 1901=0004 1901=00040
	90-1079 90-1079	4 4		RELAY-PEED 14 SOOMA 100VCC SVDC-CDIL RELAY-PEED 14 SOOMA 100VCC SVDC-CDIL	28480 28481	0490=1079 0490=1079
	165=00601 00=0751	7 8	1 1	SKIELD Extrape 8D OAN POLYC "G63-a8D×7mkns	28480 28480	08165=00001 4040+0751
80108 185 80201 165 80202 185	54=0215 54=0215 53=0036 53=0036 54=0215			TPANSISTOR NPN S1 PDE350MH FT830MHZ TPANSISTOR NPN S1 PD8350MM FT8360MMZ TPANSISTOR PNP S1 PD8310MM FT8250MMZ TPANSISTOR PNP S1 PD8310MM FT8250MMZ TPANSISTOR NPN S1 PD8350MM FT8300MMZ	04713 04713 26460 26460 04713	2N3904 2N3904 1853-0036 2N3904
80302 185 80303 185 80304 165	55=0081 55=0081 55=0036 53=0036 53=0036	11200		TPANSISTOR JOFET NOCHAN COMMODE SI TRANSISTOR JOFET NOCHAN COMMODE SI TPANSISTOR JOFET NOCHAN COMMODE SI TPANSISTOR PNP SI POBSIONW FTW250MMZ TPANSISTOR PNP SI POBSIONW FTW250MMZ	01295 01295 01295 08480 08480	2N5245 2N5245 2N5245 1653-0036 1653-0036
181 E0084 20084 301 E0084	54-0215 54-0215 53-0086 54-0215 53-0086	+ + 2 1 1 %	en Arma e e e e e e e e e e e e e e e e e e e	TPANSISTOR NPN SI PDB350Mm FTB360MHZ TRANSISTOR NPN SI PDB350Mm FTB300MHZ TPANSISTOR PNP SI PDB310Mm PTB40MHZ TPANSISTOP NPN SI PDB310Mm FTB400MHZ TPANSISTOR PNP SI PDB310Mm FTB40MHZ	04713 04713 27014 04713 27014	2N3904 2N3904 2N5967 2N5067
ABG407 189 ABG408 185 AAG409 185	4400265 4400265 240265 7400265 4400518	G &: U:	9	TPANSISTOP NPN SI PDE350MW FTE300MMZ TPANSISTOR NPN SI PDE350MW FTE300MMZ TPANSISTOR J=FET 2N4362 N=CM2N D=MODE TPANSISTOR NPN SI PDE310MW FTE50MMZ TPANSISTOR NPN SI PDE310MW FTE50MMZ	04713 04713 04713 04713 04713	203904 204392 204398 205088 205088
AEG412 189 ABG413 189 ABG501 189	54=0583 54=0583 54=0215 54=0215 53=0036	6 6 1 1 2	A PARTIES AND A	TPANSISTOR NAN SI TOC2 PDB310MW TRANSISTOR NAN SI TOC2 PDB310MW TPANSISTOR NAN SI PDB350MW FTB300MHZ TRANSISTOR NAN SI PDB350MW FTB360MHZ TRANSISTOR FNA SI PDB350MW FTB350MHZ TRANSISTOR FNA SI PDB310MW FTB350MHZ	04713 04713 04713 04713 04713 26450	MPS-A16 MPS-A16 2N3-004 1653-0056
A8R102 069 A8R103 069 A8R104 079	98=3158 98=3158 98=4482 57=0444 98=3450	4 9 1 6	1	PESISTOR 23,7K 1% 125W F "CM00-100 RESISTOR 23,7K 1% 125W F TCM0+=100 RESISTOR 17,4K 1% 125W F TCM0+=100 RESISTOR 12,1K 1% 125W F TCM0+=100 RESISTOR 42,2K 1% 125W F TCM0+=100	25 C C C C C C C C C C C C C C C C C C C	C4-1/8-T0-2372-F C4-1/8-T0-2372-F PME55-1/8-T0-1742-F C4-1/8-T0-1312-F C4-1/8-T0-4222-F
ABR107 064 ABR108 074 ABR109 075	98=3450 98=3540 57=0444 57=0199 57=0199	0 6 4 3 3	2	PESISTOP 42,2K 1% ,125W F TC#00-100 PESISTOP 15,4K 1% ,125W F TC#00-100 PESISTOP 12,1K 1% ,125W F TC#00-100 RESISTOR 21,5K 1% ,125W F TC#00-100 RESISTOR 21,5K 1% ,125W F TC#00-100	\$4246 \$4246 \$4246 \$4246	C4-1/8-T0-4322-F C4-1/8-T0-1542-F C4-1/8-T0-21212-F C4-1/8-T0-2152-F C4-1/8-T0-2152-F
ABR112 07 ABR113 07 ABR115 07	57-0199 57-0444 57-0288 57-0200 57-1094	3 1 1 7 9		RESISTOR 21.5K 1% ,125W F TC%0+-100 RESISTOR 12.1K 1% ,125W F TC%0+-100 RESISTOR 9,09K 1% ,125W F TC%0+-100 RESISTOR 5,62K 1% ,125W F TC%0+-100 RESISTOR 1,47K 1% ,125W F TC%0+-100	24546 19701 24546 24546	C4=1/8=70=2152=F C4=1/8=70=1212=F MF4C1/8=70=691=F C4=1/8=70=5821=F C4=1/8=70=1471=F
ABR119 06' ABR120 07' ABR121 07'	57-0346 98-3441 57-0441 57-0417 57-0442	8 8 9	2	RESISTOR 10 1% ,125% F TC=0+=100 PESISTOR 215 1% ,125% F TC=0+=100 RESISTOR 8,25% 1% ,125% F TC=0+=100 RESISTOR 502 1% ,125% F TC=0+=100 RESISTOR 10% 12 ,125% F TC=0+=100	545546 545546 545646 545646	CGa1/8~TO~10RO~P C4m1/8~T0~215R~F C4m1/8~T0~8251~F C4m1/8~T0~825R~F C4m1/8~T0~802R~F C4m1/8~T0~802~F
45R203 07 A8R204 06 A6R205 07	98-3155 57-0452 96-3245 57-0459 57-0439	1 0 8 4	Pg tel bet	RESISTOR 4.64K 1% .125W F TC#0+-100 RESISTOR 27.4K 1% .125W F TC#0+-100 RESISTOR 20.5K 1% .125W F TC#0+-100 RESISTOR 56.2K 1% .125W F TC#0+-100 RESISTOR 6.81K 1% .125W F TC#0+-100	2000 2000 2000 2000 2000 2000 2000 200	C4-1/5-70-4641-F C4-1/5-70-2742-F C4-1/5-70-2052-F C4-1/5-70-5622-F C4-1/5-70-6811-F
ASR208 07 ASR209 07 ASR210 06	57-0419 57-0444 57-0442 98-3155 98-0082	4 1 9 1 7	6	RESISTOR 6.81K 1% ,125W F TC#00-100 RESISTOR 12.1K 1% ,125W F TC#04-100 RESISTOR 10K 1% ,125W F TC#04-100 RESISTOR 4.044 1% ,125W F TC#04-200 RESISTOR 4.044 1% ,125W F TC#04-100 RESISTOR 4644 1% ,125W F TC#04-100	24444 44444 44444 44444 9444 9444	C4=1/8=T0=6811=F C4=1/8=T0=1212=F C4=1/8=T0=1012=F C4=1/8=T0=4641=F C4=1/8=Y0=4640=F
AFF301 07 AFF302 06 AFF303 06	57.0452 57.1094 98.4485 98.3268	1 9 0 7	1	RESISTOR 27,4k 1% ,125% F TC804+100 RESISTOR 1,47K 1% ,125% F TC804+100 RESISTOR 10,7K 1% ,125% F TC804+100 RESISTOR 11,5K 1% ,125% F TC804+100 RESISTOR 4,02K 1% ,125% F TC804+100	2000 2000 2000 2000 2000 2000 2000 200	C4-1/8-T0-2742-F C4-1/8-T0-1471-F C4-1/8-T0-1872-F C4-1/8-T0-1872-F C4-1/8-T0-4021-F
ABR306 07 ABR307 06 ABR308 07	98-6320 57-6280 98-6320 57-0439 98-3136	8 4 8	a	RESISTOR 5K .1% .125W F TCmo+=25 RESISTOR 1K 1% _125W F TCmo+=100 RESISTOR 5K .1% .125W F TCm0+=25 RESISTOR 6,81K 1% .125W F TCm0+=100 RESISTOR 17.8K 1% .125W F TCm0+=100	54246 54246 03888 54246 03888	PME55*;/6*T9=5001*B C4-1/8*T0=1001*F PME55*1/8*T9=5001*B C4-1/8*T0=6811*F C4-1/8*T0=1782*F

Table 6-3. Replaceable Parts (cont'd)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
45#310 46#311 46#312 48#313 46#314	0757-0439 0698-3136 0757-0422 2100-3350 0698-6320	48556		PESISTOR 6.81K 1% .125W F TC=0+-100 RESISTOR 17.8K 1% .125W F TC=0+-100 RESISTOR 909 1% .125W F TC=0+-100 RESISTOR=FRWR 200 10% C SIDE=ADJ 1-TPN RESISTOR 5K .1% .125W F TC=0+-25	24546 24546 246466 246466 03688	C4-1/8-T0-6811-F C4-1/8-T0-1782-F C4-1/8-T0-909R-F 2100-3350 PME55-1/8-T9-5001-8
ARR315 ARR317 ARR316 ARR319 ARR320	0698-6320 0757-0260 2100-3350 0698-6348 0698-6348	83500	2	RESISTOR 5K .1% .125W F TC#0+-25 RESISTOR 1K 1% .125W F TC#0+=100 RESISTOR=TRMP 200 10% C SIDE=ADJ 1+TRN RESISTOR 3K .1% .125W F TC#0+-25 RESISTOR 3K .1% .125W F TC#0+-25	28480 28480 28480	PME55-1/8-T9-5001-8 C4-1/8-T0-1001-F 2100-335-0 0698-6348 0698-6348
ASF401 A6F402 A6F403 A6F404 A8F405	0757-0439 0757-0439 0698-3245 0698-3156 2100-3207	44011		PESISTOR 6.81M 1% .125W F TCR0+=100 RESISTOR 6.81M 1% .125W F TCR0+=100 RESISTOR 20.5M 1% .125W F TCR0+=100 RESISTOR 14.7M 1% .125W F TCR0+=100 RESISTOR=YPMR 5M 10% C SIDE=A0J 1=TRN	282 2424 2424 2424 2424 2424	C4-1/8-70-6811-F C4-1/8-70-6811-F C4-1/8-70-2052-F C4-1/8-70-1472-F 2100-3207
A8R406 A8R408 A8R409 A8R410	0757-0458 2100-3354 0698-3245 2100-3352 0698-4444	7 9 0 7	5	RESISTOR 51,1K 1X ,125W F TCm0+=100 RESISTOR=TRMR 50K 10% C SIDE=ADJ 1=TRN RESISTOP 20,5K 1% ,125W F TCm0+=100 RESISTOR=TRMR 1K 10% C SIDE=ADJ 1=TRN RESISTOR 4,87K 1% ,125W F TCm0+=100	24546 28480 28480 28480	C4-1/8-T0-5112-F 2100-3354 C4-1/8-T0-2052-F 2100-3352 C4-1/8-T0-4871-F
A8R411 A8R413 A8R414 A8R415	0757=0459 2100=3355 0757=0199 0698=3178 0757=0444	80381	*	RESISTOR 56,2K 1% ,125W F TC=0+=100 RESISTOR=TRMR 100K 10% C SIDE=A0J 1=TRN RESISTOR 21,5K 1% ,125W F TC=0+=100 RESISTOR 487 1% ,125W F TC=0+=100 RESISTOR 12,1K 1% ,125W F TC=0+=100	54246 54246 54246 54246	C4-1/8-T0-5622=F 2100-3355 C4-1/8-T0-2152=F C4-1/8-T0-467R=F C4-1/8-T0-1212=F
A8R416 A8R417 A8R418 A8R419 A8R420	0757-0444 0757-0417 2100-3207 0757-1094 2100-3207	1 8 1 9 1		RESISTOR 12,1K 1% ,125W F TCm0+-100 RESISTOR 562 1% ,125W F TCm0+-100 RESISTOR-TRMM 5K 10% C SIDE-ADJ 1-TRN PESISTOR 1,47K 1% 1% F TCm0+-100 RESISTOR-TPMR 5K 10% C SIDE-ADJ 1-TRN	59480 54849 54849 54849	C4-1/8-T0-1212=F C4-1/8-T0-562R=F 2100-3207 C4-1/8-T0-1471=F 2100-3207
A 6 R 4 2 1 A 5 R 4 2 2 A 6 R 4 2 3 A 6 R 4 2 4 A 6 R 4 2 5	0757-0433 0757-0439 0698-3156 0757-0290 0698-3156	8 4 2 5 2		RESISTOR 3.32K 1% 125W F TC#0+=100 RESISTOR 6.81K 1% 125W F TC#0+=100 RESISTOR 14.7K 1% 125W F TC#0+=100 RESISTOR 6.9K 1% 125W F TC#0+=100 RESISTOR 14.7K 1% 125W F TC#0+=100	24546 24546 24546 19701 24546	C4=1/8=T0=3321=F C4=1/8=T0=6811=F C4=1/8=T0=61472=F MF4C1/8=T0=6191=F C4=1/8=T0=1472=F
A SP 4 2 6 A SP 4 2 7 A SP 4 2 8 A SP 4 2 9 A SP 4 2 9	0757-0290 0698-0083 0698-4442 2100-3358 0698-5094	581	3	RESISTOR 6.19K ix .125W F TC#0+=100 RESISTOR 1.96K ix .125W F TC#0+=100 RESISTOR 4.25K ix .125W F TC#0+=100 RESISTOR A.25K ix .125W F TC#0+=100 RESISTOR TRMR IM 20X C SIDE=40J 1=TRN RESISTOR 5.1M 5X .25W FC TC==900/+1100	19701 24546 24546 28480 01121	MF4C1/8=T0=6191=F C4=1/8=T0=1961=F C4=1/8=T0=4421=F 2100=3358 C85155
A8R432 A8R432 A8R433 A8R433 A8R435	0757-0467 0757-0454 0683-6855 0757-0467 0757-0454	8 3 3 8 3	1	PESISTOR 121K 1% .125W F TC=0+=100 PESISTOR 33,2K 1% .125W F TC=0+=100 PESISTOR 0.6M 5% .25W FC TC==000/+1100 PESISTOR 121K 1% .125W F TC=0+=100 PESISTOR 33,2K 1% .125W F TC=0+=100	24546 24546 24546 24546	C4-1/8-T0-1213-F C4-1/8-T0-3322-F C8-685 C4-1/8-T0-1213-F C4-1/8-T0-3322-F
ABR436 ABR437 ABR438 ABR439 ABR440	0683-1065 0757-0448 0757-0439 0757-0444 0757-0444	7 1 4 1 1		RESISTOP 10M 5% .25W FC TC#=900/+1100 RESISTOR 12.1K 1% .125W F TC#0+-100 RESISTOR 6.81K 1% .125W F TC#0+-100 RESISTOR 12.1K 1% .125W F TC#0+-100 RESISTOR 12.1K 1% .125W F TC#0+-100	01121 24546 24546 24546 24546	C81065 C4-1/8-T0-1212-F C4-1/8-T0-6611-F C4-1/8-T0-1212-F C4-1/8-T0-1212-F
A 8 R 5 O 1 A 8 R 5 O 3 A 8 R 5 O 4 A 8 R 5 O 5	0757-0442 0757-0442 0757-0439 0757-0439 0757-0444	9 4 4 1		RESISTOR 10K 1% ,125W F TC=0+=100 RESISTOR 10K 1% ,125W F TC=0+=100 RESISTOR 6,81K 1% ,125W F TC=0+=100 RESISTOR 6,81K 1% ,125W F TC=0+=100 RESISTOR 12,1K 1% ,125W F TC=0+=100	24546 24546 24546 24546	C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-631-F C4-1/8-T0-6811-F C4-1/8-T0-1212-F
A6R506 A6R507	0757-0452 0757-0274	1 5		RESISTOR 27.4K 1% .125W F YC#0++100 RESISTOR 1,21K 1% .125W F TC#0++100	24546 24546	C4=1/6=T0=2742=F C4=1/6=T0=1213=F
ARU101 ABUR01 ABU302 ABU301 ABU302	1826=0315 1820=1186 1826=0043 1826=0043 1826=0188	36946	2	IC OP AMR GP QUAO 14-DIP-P IC PL LOOP 16-DIR-R IC OP AMP GR TO-99 IC OP AMP GP TO-99 IC CONV 8-8-D/A 16-DIP-C	27014 01928 01928 01928 04713	LM346N CD4046AF CA307T MC1408L=8
ABU303 ABU401 ABU402 ABU501 ABU601	1826-0161 1826-0059 1826-0415 1826-0415 1826-0111 1820-1956	7 2 4 7 8	1	IC OP AMP BP BUAD 14-DIP-P IC OP AMP BP TO-99 IC SMITCH ANLS BUAD 16-DIP-P IC OP AMP BP DUAL TO-99 IC LCH CMOS COM CLOCK GUAD	04713 01295 18324 04713 01928	MLM324P LM201AL 3D5000B MC1456G CD40426E
A8U602 A8U603 A8U604 A8U605 A8U606	1820-1956 1820-1956 1820-1976 1820-1976 1820-1956	8 2 2 6		IC LCH CMOS COM CLOCK QUAD IC LCH CMOS COM CLOCK QUAD IC BFR CMOS NON-INV HEX IC BFR CMOS NON-INV HEX IC LCH CMOS COM CLOCK QUAD	01928 01928 01928 01928 01928	CD40458E CD40420BE CD4042BE CD4045BE CD4045BE
A8U701 A8U702 A8U703 A8U704 A8U705	1820-1745 1820-1745 1820-1745 1820-1956 1820-1956	3 7 3 8 8		IC GATE CMOS NOR QUAD 2-INP IC FF CMOS 0-TYRE POS-EDGE-TRIG DUAL IC GATE CMOS NOR QUAD 2-INP IC LCH CMOS COM CLOCK QUAD IC LCH CMOS COM CLOCK QUAD	04713 01928 04713 01928 01928	MC14001BCP CD4013BAE MC14001BCR CD4002BE CD4042BL

Table 6-3. Replaceable Parts (cont'd)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
&&U707 &&U708 &&U709	1870-1956 1820-1956 1870-1956	8 8	-	IC LCM CMOS COM CLOCK QUAD IC LCM CMOS COM CLOCK QUAD IC LCM CMOS COM CLOCK QUAD	0192B 01928 01926	CD40458F CD40458F CD40458F
ARVR201 ARVR202 ARVR301 ARVR302 ARVR303	1902-0025 1902-0025 1902-3105 1902-0041 1902-0041	44744	1	DIDDE-ZNR 164 5% 00-7 PDm,4M TCm+,06% DIDDE-ZNR 164 5% DD0-7 PDm,4M TCm+,06% DIDDE-ZNR 5,62V 2% DQ-7 PDm,4M TCm+,016% DIDDE-ZNR 5,11V 5% 00-7 PDm,4M TCm+,009% DIDDE-ZNR 5,11V 5% D0-7 PDm,4M TCm+,009%	28480 28480 28480 28480	1902-0425 1902-045 1902-3165 1902-3041 1902-0441
A 9	08165-66509	ş	1	BOARD ASSEMBLY, REFERENCE LOOP	28480	08165-66509
10509A 20509A 495294 495294 20509	0160-4209 0180-0374 0160-0174 0160-4209 0140-0196	9 3 9 5		CAPACITOR-FYD .niuF +-20x 50VDC POLYE CAPACITOR-FXD 10UF+-10X 20VDC TA CAPACITOR-FXD .4YUF +80-20X 25VDC CEP CAPACITOR-FXD .01UF +-20X 50VDC POLYE CAPACITOR-FXD 150PF +-5X 300VDC PICA	28480 56269 28480 28480 72136	0;60#4209 1500106×902082 0160-017a 0160-4209 0M15f151J0300WV1CR
# 90302 # 90304 # 90401 # 90402	0160-3220 0180-0197 0180-0197 0180-0116 0160-0174	8 1 9	1	CAPACITOR=FXD 6800PF +=5x 250VDC CAPACITOR=FXD 2,2UF+=10X 20VDC TA CAPACITOR=FXD 2,2UF+=10X 20VDC TA CAPACITOR=FXD 6,8UF+=10X 35VDC TA CAPACITOR=FXD 6,8UF+=10X 35VDC TA CAPACITOR=FXD 447UF 480=20X 25VDC CER	28480 56289 56289 56289 28480	0160-3220 1500225×9020A2 1500225×9020A2 150085×903582 0160-0174
A 40 403 A 40 404 A 40 405 A 40 501 A 40 502	0160-4712 0160-0174 0180-1704 0160-0174 0160-0174	49500		CAPACITOR-FXD .068UF +=20% 50VDC POLYE CAPACITOR-FXD .47UF +80=20% 25VDC CEP CAPACITOR-FXD .47UF+=10% 6VDC TA CAPACITOR-FXD .47UF +80=20% 25VDC CEH CAPACITOR-FXD .47UF +80=20% 25VDC CER	28480 28480 56289 28480 28480	0100~4212 0160~0174 1500470×900682 0160~0174 0160~0174
A9C503 A9C602 A9C603 A9C604 A9C701	0160-0576 0121-0165 0160-0174 0160-4209 0160-2055	5 6 9 0 ¢	1	CAPACITOR FXD .1UF +-20% 50VDC CER CAPACITOR V YRMP-CER 7-25PF 350V PC-MYG CAPACITOR FXD .47UF +80-20% 25VDC CER CAPACITOR FXD .61UF +-20% 50VDC POLYE CAPACITOR FXD .61UF +80-20% 100VDC CER	28480 52763 28480 28480 28480	0160=U576 304324 7/25PF N300 0160=0174 0160=4209 0160=2055
A 9 C 7 O 2 A 9 C 7 O 3 A 9 C 7 O 4 * A 9 C 7 O 5 A 9 C 7 O 6	0160~2055 0160~4210 0140-0190 0160-0174 0160-4213	9 2 7 9 5	Í	CAPACITOR=FXD .01UF +80=20% 100VDC CER CAPACITOR=FXD .022UF +=20% 50VDC PDLYE CAPACITOR=FXD 30PF +=5% 300VDC MICA CAPACITOR=FXD .47UF +80=20% 25VDC CER CAPACITOR=FXD .4UF +=20% 50VDC PDLYE	28480 28480 72136 28480 28480	0160=2055 0160=4210 DM15E390J0300W1CR 0160=0174 0160=4213
A9CR201 A9CR202 A9CR301 A9CR302 A9CR303	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040	1 1 1 1		DIODE-SHITCHING 30V 50MA 2NS 0D-35 DIODE-SHITCHING 30V 50MA 2NS 0D-35 DIODE-SHITCHING 30V 50MA 2NS 0D-35 DIODE-SHITCHING 30V 50MA 2NS 0D-35 DIODE-SHITCHING 30V 50MA 2NS 0D-35	28480 28480 28480 28480 28480	1901+0040 1901+0040 1901+0040 1901+0040 1901+0040
A9CR304 A9CR301 A9CR302 A9CR303 A9CR304	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040	1 1 1 1 1		DIDDE-SWITCHING 30V 50MA 2NS DD-35 DIODE-SWITCHING 30V 50MA 2NS D0-35 DIODE-SWITCHING 30V 50MA 2NS D0-35 DIODE-SWITCHING 30V 50MA 2NS D0-35 DIODE-SWITCHING 30V 50MA 2NS D0-35	28480 28480 28480 28480 28480	1901+0040 1901+0040 1901+0040 1901+0040 1901+0040
A9CR505 A9CR506 A9CR507 A9CR508 A9CR508	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040	1 1 1 1		DIDDE-SWITCHING 30V 50MA 2N8 OD-35 DIDDE-SWITCHING 30V 50MA 2N8 DO-35 DIODE-SWITCHING 30V 50MA 2N8 DD-35 DIODE-SWITCHING 30V 50MA 2N8 OD-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480 28480 28480	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040
A9CR510 A9CR511 A9CR512 A9CR601 A9CR701	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040			DIODE-SWITCHING BOY SOMA 2NS CO-35 CIODE-SWITCHING BOY SOMA 2NS DC-35 DIODE-SWITCHING BOY SOMA 2NS DC-35 DIODE-SWITCHING BOY SOMA 2NS DC-35 DIODE-SWITCHING BOY SOMA 2NS DC-35 DIODE-SWITCHING BOY SOMA 2NS DC-35	28480 28480 28480 28480 28480	1901=0040 1901=0040 1901=0040 1901=0040 1901=0040
A9CR702 A9CR703 A9CR704	1901=0046 1901=0040	1		DIODE SWITCHING 30V 50MA 2NS DC=35 DIODE SWITCHING 30V 50MA 2NS DC=35	28480 28460	1901+0040 1901-0040
40K704	1901=0040 1251=4047	,	1	DIDOE-SWITCHING 30V 50MA 2NS DO-35 CONNECTOR 3-PIN M POST TYPE	28480 28480	\$901=0040 1251=4047
190201 190202 190301 190302 190303	1654-0215 1854-0215 1853-0400 1853-0086 1854-0392	1 4 25		TRANSISTOR NPN SI PDESSOMM FTESOGMMZ TRANSISTOR NPN SI PDESSOMM FTESOMMZ TRANSISTOR PNP SI DARL TC-92 PDESSOMM TRANSISTOR PNP SI PDESSOMM FTESOMMZ TRANSISTOR NPN SI PDESSOMM FTESOMMZ TRANSISTOR NPN SI PDESSOMM FTESOMMZ	04713 04713 28480 27014 04713	2N3904 2N3904 1853-0400 2N5087 2N5088
A90304 A90305 A90306 A90501 A90502	1853=0036 1854=0215 1853=0036 1854=0215 1854=0215	2 1 1 1		TRANSISTOR PNP SI PD=310MM FT=250MHZ TRANSISTOR NPN SI PD=350MM FT=300MHZ TRANSISTOR PNP SI PD=350MM FT=250MHZ TPANSISTOR NPN SI PD=350MM FT=300MHZ TRANSISTOR NPN SI PD=350MM FT=300MHZ	28480 04713 28480 04713	1853=0036 2N3904 1853=0036 2N3904 2N3904
A q Q 5 0 3 A 9 Q 5 0 4 A 9 Q 6 0 1 A 9 Q 7 0 1	1853-0036 1853-0036 1853-0036 1855-0062	8 28 8	1	TRANSISTOR PNP SI PD#310M# FT#250MHZ TRANSISTOR PNP SI PD#310M# FT#250MHZ TRANSISTOR PNP SI PD#310M# FT#250MHZ TRANSISTOR J=FET N=CHAN D=MODE SI	28480 28480 28480 28480	1853-0036 1853-0036 1853-0036 1855-0062

Table 6-3. Replaceable Parts (cont'd)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A9R101' A9R20; A9R203 A9R204	0698-3155 0698-4433 0698-4433 0757-0444	1 0 1 1		RESISTOR 4,64x 1% ,325w F TC#0+-100 RESISTOR 2,26K 1% ,125w F TC#0+-100 RESISTOR 2,26K 1% ,125w F TC#0+-100 RESISTOR 12,1K 1% ,125w F TC#0+-100 RESISTOR 12,1K 1% ,125w F TC#0+-100	245 245 245 245 245 245 245 246 246 246	C4-1/8-T0-4641-F C4-1/8-T0-2261-F C4-1/8-T0-2261-F C4-1/8-T0-1212-F C4-1/8-T0-1212-F
A9R205 A9R206 A9R207 A9R208 A9R209	0757-0274 0757-0444 0757-0439 0698-4433 0757-0444	5 - 4 0 1		RESISTOR 1.21k 1% ,125W F TC=0+=100 RESISTOR 12.1k 1% ,125W F TC=0+=100 RESISTOR 6.81k 1% ,125W F TC=00+=100 RESISTOR 6.26k 1% ,125W F TC=0+=100 RESISTOR 12.1k 1% ,125W F TC=0+=100	24546 24546 24546 24546	C4-1/8-T0-1213-F C4-1/8-T0-1212-F C4-1/8-T0-8611-F C4-1/8-T0-2261-F C4-1/8-T0-1212-F
A9R210 A9R211 A9R212 A9R213 A9R214	0698-3260 0757-0442 0757-0844 0698-3558 0698-4433	99180		RESISTOR 464K 1% ,125W F TC=0+-100 RESISTOR 10K 1% ,125W F TC=0+-100 RESISTOR 12,1K 1% ,125W F TC=0+-100 RESISTOR 4,02K 1% ,125W F TC=0+-100 RESISTOR 2,26K 1% ,125W F TC=0+-100	54549 54249 54249 54249 59490	0698-3260 C4=1/6-70=1002=F C4=1/8-70=1012=F C4=1/8-70=4021=F C4=1/8-70=201=F
A9R301 A9R302 A9R303 A9R304 A9R306	0698=6942 0698=6942 0698=6608 0698=6942 0757=0280	0 0 5 0 3	3	RESISTOR 25k .1x .125W F TC=0+=50 RESISTOR 25K .1x .125W F TC=0+=50 RESISTOR 25k .1x .125W F TC=0+=25 RESISTOR 25k .1x .125W F TC=0+=50 RESISTOR 1K 1x .125W F TC=0+=100	28480 28480 28480 28480 24546	0698-6942 0698-6942 0698-6608 0698-642 C4=178-70-1001-F
A9R307 A9R308 A9R309 A9R310 A9R311	0757-0280 0698-3558 0698-3558 2100-3207 0757-0444	3 8 8		RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 4.02K 1% .125W F TC=0+=100 RESISTOR 4.02K 1% .125W F TC=0+=100 RESISTOR TRWR 5K 10% C SIDE=40J 1=TRN RESISTOR 12.1K 1% .125W F TCa0+=100	24546 24546 24546 28480 24546	C4=1/8=T0=1001=F C4=1/8=T0=4021=F C4=1/8=T0=4021=F 2100=3207 C4=1/8=T0=1212=F
A9R312 A9R313 A9R314 A9R315 A9R316	0757-0274 2106-3353 0757-0407 0698-3136 0698-3155	5 8 6 8	1	RESISTOR 1,21K 1% ,125W F TC#0+=100 RESISTOR=TRMR 20K 10% C SIDE=ADJ 1=TRN RESISTOR 200 1% ,125W F TC#0+=100 RESISTOR 17.6K 1% 12.5W F TC#0+=100 RESISTOR 4,64K 1% ,125W F TC#0+=100	24546 32997 24546 24546 24546	C4=1/8=T0=1213=F 3386x=Y46=203 C4=1/8=T0=201=F C4=1/8=T0=1782=F C4=1/8=T0=4641=F
A9R401 A9R402 A9R403 A9R404 A9R405	0698=3156 0757=0394 0757=0394 0757=0442 0757=0442	20099		RESISTOR 14,7K 1% ,125W F TC=0+=100 RESISTOR 51,1 1% ,125W F TC=0+=100 RESISTOR 51,1 1% ,125W F TC=0+=100 RESISTOR 10K 1% ,125W F TC=0+=100 RESISTOR 10K 1% ,125W F TC=0+=100	24546 24546 24546 24546	C4=1/8=T0=1472=F C4=1/8=T0=51R1=F C4=1/8=T0=51R1=F C4=1/8=T0=1002=F C4=1/8=T0=1002=F
498406 498407 498408 498409 498410	2100-3103 0698-0082 0757-0394 0757-0280 0757-0280	67033		RESISTOR=TRMR 10K 10X C SIDE=ADJ 17=TRN RESISTOR 464 1X ,125W F TC=0+=100 RESISTOR 51,1 1X ,125W F TC=0+=100 RESISTOR 1K 1X ,125W F TC=0+=100 RESISTOR 1K 1X ,125W F TC=0+=100	24546 24546 24546 24546	43P103 C4=1/8=T0=4640=F C4=1/8=T0=51R1=F C4=1/8=T0=1001=F C4=1/8=T0=1001=F
A9R411 A9R412 A9R413 A9R414 A9R501	0757=0439 0698=3154 0698=3154 0757=0280 0757=0283	40036		RESISTOR 6,81K 1% ,125W F TC#0+=100 RESISTOR 4,22K 1% ,125W F TC#0+=100 RESISTOR 4,22K 1% ,125W F TC#0+=100 RESISTOR 1K 1% ,125W F TC#0+=100 RESISTOR 2K 1% ,125W F TC#0+=100	24546 24546 24546 24546	C4-1/8-T0-6811=F C4-1/8-T0-4221=F C4-1/8-T0-4221=F C4-1/8-T0-1001=F C4-1/8-T0-2001=F
A9R502 A9R503 A9R504 A9R505 A9R506	0698=3437 0757=0280 0698=3437 0757=0399 0698=0082	2 3 2 5 7	s	RESISTOR 133 1% 125W F TC=0+=100 RESISTOR 1K 1% 125W F TC=0+=100 RESISTOR 133 1% 125W F TC=0+=100 RESISTOR 82.5 1% 125W F TC=0+=100 RESISTOR 464 1% 125W F TC=0+=100	24546 24546 24546 24546	C4=1/8=T0=133R=F C4=1/8=T0=1001=F C4=1/8=T0=133R=F C4=1/8=T0=82RS=F C4=1/8=T0=4640=F
49R507 A9R508 A9R509 A9R510 A9R511	0757=0399 0698=4037 0757=0411 0698=4037 0757=0388	50202		PESISTOR 82.5 1% ,125W F TC=0+=100 RESISTOR 46.4 1% ,125W F TC=0+=100 PESISTOR 332 1% ,125W F TC=0+=100 RESISTOR 46.4 1% ,125W F TC=0+=100 RESISTOR 30.1 1% ,125W F TC=0+=100	54240 54240 54240 54240 54240	C4=1/8=T0=82R5=# C4=1/8=T0=46R4=F C4=1/8=T0=332R=F C4=1/8=T0=46R4=F C4=1/8=T0=30R1=F
A9R512 A9R513 A9R514 A9R515 A9R516	0757-0403 0757-0388 0698-3435 0698-3435 0757-0444	5 0 0 1	3	RESISTOR 121 1% ,125W F TC=0+=100 RESISTOR 30,1 1% ,125W F TC=0+=100 RESISTOR 38,3 1% ,125W F TC=0+=100 RESISTOR 38,3 1% ,125W F TC=0+=100 RESISTOR 38,3 1% ,125W F TC=0+=100 RESISTOR 12,1K 1% ,125W F TC=0+=100	24249 24249 54249 54249	C4=1/A=Y0=121R=F C4=1/8=T0=30R1=F C4=1/8=T0=38R3=F C4=1/8=T0=18R3=F C4=1/8=T0=1212=F
498517 498518 498519 498520 498521	0498=3134 0757=0433 0757=1094 0757=1094 0757+0433	8 8 9 9 8		RESISTOR 17.8% 1% ,125W F TC=0+=100 RESISTOR 3.32K 1% ,125W F TC=0+=100 RESISTOR 1.47K 1% ,125W F TC=0+=100 RESISTOR 1.47K 1% ,125W F TC=0+=100 RESISTOR 3.32K 1% ,125W F TC=0+=100	54249 54249 54249 54249	C4-1/8-T0-1782-F C4-1/8-T0-3321-F C4-1/8-T0-1471-F C4-1/8-T0-1471-F C4-1/8-T0-4371-F
A9R522 A9R523 A9R601 A9R602 A9R603	0757-0444 0698-3136 0698-0082 0757-0424 0757-1094	1 8 7 7 9		RESISTOR 12.1K 1% ,125W F TCW0++100 RESISTOR 17,8K 1% ,125W F TCw0++100 RESISTOR 464 1% ,125W F TCw0++100 RESISTOR 1,4K 1% ,125W F TCW0++100 RESISTOR 1,4K 1% ,125W F TCW0++100	24546 24546 24546 24546	C4=1/8=T0=1212=F C4=1/8=T0=1782=F C4=1/8=T0=4640=F C4=1/8=T0=101=F C4=1/8=T0=1471=F
498604 498605 498606 498607 498608	0757-1094 0757-1094 0757-1094 0598-3435 0698-4420	00005		RESISTOR 1.47K 1% ,125W F TC#0+=100 RESISTOR 1.47K 1% ,125W F TC#0+=100 RESISTOR 1.47K 1% ,125W F TC#0+=100 RESISTOR 38.3 1% ,125W F TC#0+=100 RESISTOR 226 1% ,125W F TC#0+=100	24546 24546 24546 24546 24546	C4=1/8=T0=1471=F C4=1/8=T0=1471=F C4=1/8=T0=1471=F C4=1/8=T0=38R3=F C4=1/8=T0=38R3=F C4=1/8=T0=226R=F

Table 6-3. Replaceable Parts (cont'd)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
APR60P APR610 APR611 APP612 APK701	0757-0422 0757-1094 0757-0419 0757-0274 0757-0454	ಕಾಯಾದರುವ		QESISTER 909 IX 4125W F TERO+-100 RESISTER 1,47K 1% ,125W F TERO+-100 RESISTER 681 1% ,125W F TERO+-100 RESISTER 1,21K 1% ,125W F TERO+-100 RESISTER 33,2K 1% ,125W F TERO+-100	8. 20 20 20 20 20 20 20 20 20 20 20 20 20	C4-1/5-T0-909P=F C4-1/6-T0-4471=F C4-1/6-T0-651R=F C4-1/6-T0-1213=F C4-1/6-T0-3322=F
APP702 APP703 APP704 APP705 APP706	0098-3130 0757-0454 0698-3130 0757-0467 0698-3136	8 3 6 4 8		RESISTOR 17.6K 1% 125W F TC*0+*100 RESISTOR 35.2K 1% 125W F TC*0+*100 RESISTOR 17.6K 1% 125W F TC*0+*100	24546 24546 24546 24546	C4=1/8-10=1782=P C4=1/8-10=3322=F C4=1/8-10=1782=F C4=1/8-10=1213=F C4=1/8-10=1782=F
492707 A92768 A92709	0095*0085 0757*0280 0757*0274	0 3 5		RESISTOR 2.61K 1% 125W F TC*0+-100 RESISTOR 1K 1% ,125W F TC*0+-100 RESISTOR 1,21K 1% ,125W F TC*0+-100	54246 54246 54846	C4=1/8=TD=2611=F C4=1/8=T0=1001=F C4=1/8=T0=1213=F
APU103 APU103 APU104 APU104 APU105	1820-1943 1820-1963 1820-1747 1820-1745 1820-1745	77550	a	TO FF CMOS D=TYPE POS=EDGE=TPIG DUAL TO FF CMOS D=TYPE POS=EDGE=TRIG DUAL TO GATE CMOS NOR GUAD 2=TNP TO GATE CMOS NOR GUAD 2=TNP TO GATE CMOS COV CLOCK GUAD	01928 01928 04713 04713 01928	CD40138AE CD40138AE MC140118CP MC140018CP CC40428E
AGU106 AGU107 AGU108 AGU109 AGU110	1820 - 1963 1820 - 1956 1820 - 1956 1820 - 1956 1820 - 1956	7 8 8 8		IC LCH CMDS COM CLOCK QUAD	01928 01928 01928 01928	CD40136AE CD4042BE CD4042BE CD4042BE
AQU111 AQU112 AQU113 AQU114 AQU114	1820-1442 1820-1442 1820-1442 1820-148 1820-1442	57 7 07	10	IE GATE CMOS NAND QUAD 201NP IC ENTR TIL LS DEED ASYNCHRO IC ENTR TIL LS DEED ASYNCHRO IC GATE TIL LS DEED ASYNCHRO IC GATE TIL LS DEED ASYNCHRO IC ENTR TIL LS DEED ASYNCHRO	04713 01295 01295 01295	MC14011BCP 8N74L82°0N 8N74L82°0N 8N74L833N 8N74L82°90N
A9U201 A9U203 A9U204 A9U205	1820-1279 1820-1279 1820-1112 1820-1202 1820-1197	8 8 7 9	\$ 1 ₽	IC CNTP TYL LE DECD UP/DOWN SYNCHRO IC ENTP TYL LE DECD UP/DOWN SYNCHRO IC FF TYL LE DETPE POSWERGEWTRIG IC GATE TYL LE NAND TPL 3-INP IC GATE TYL LE NAND GUAD 2-INP	01295 01295 01295 01295 01295	8N74L8190N 8N74L8190N 8N74L874N 8N74L810N 8N74L810N
A0U206 A0U207 A0U208 A0U209 A0U210	1820~1963 1826~0188 1820~1188 1820~1442 1820~1442	7 8 7 7		TO BE CMOS DWIVE POSMEDGEWIRIG DUAL IC OF AMP GP TOWAGE IC PL LOOP 18-DIP-P IC CNIP TIL LS DECD ASYNCHRO IC CNIR TIL LS DECD ASYNCHRO	01928 01928 01928 01295 01295	CD40138AE CA3071 CD4046AF SN74L3290N SN74L3290N
VANAO 1 VANZOA VANZOS VANZOS VANZOS	1826-0111 1826-0043 1826-0043 1826-0111 1820-0427	7 4 7 6	Ŷ	IC OF AMP OF DUAL TD=99 IC OF AMP OF TD=99 IC OP AMP OF TD=99 IC OP AMP OF DUAL TG=99 IC MODULATOR TO=100	04713 01928 01928 01928 04713	C1458G C4307T C4307T MC1458G MC1496G
A9U601 A9U602 A9U603 A9U603	1820=0802 1820=1442 1820=1122 1820=1279 1820=1279	1 7 0 8 8	2	IC GATE ECL NOR GUAD 2=INP IC CNTR TIL LS DECD ASYNCHRO IC CNTR CMOS BED SYNCHRO DUAL IC CNTR TIL LS DECD UP/DOWN SYNCHRO IC CNTR TIL LS DECD UP/DOWN SYNCHRO IC CNTR TIL LS DECD UP/DOWN SYNCHRO	04713 01295 04713 01295 01295	MC10102P 8N74L829ON MC14518BCP 8N74L819ON 8N74L819ON
AGU703 AGU704 AGU705 AGU706 AGU707	1820-1270 1820-1629 1820-1197 1820-1202 1820-1963	6 0 7 7	۶	IC ENTR ITL LS DECO UP/DDWN SYNCHRO IC FF ITL S J-K NEG=EDGE=TRIG IC GATE TTL LS NAND GUAD 2-INP IC GATE ITL LS NAND IPL 3-INP IC FF GMOS D=TYPE POS=EDGE=TRIG DUAL	01295 01295 01295 01295 01928	5N74L5190N 5N743112N 6N74L510N 5N74L510N CD4013BAE
49U708 49U709 49U710 49U711	1820-0567 1820-1442 1820-1442 1820-1122	5 7 7 0	1	IC MY TIL DUAL IC CNTR TIL LB DECD ABYNCHRO IC CNTR TIL LB DECD ABYNCHRO IC CNTR CMOB BED BYNCHRO DUAL	04713 01295 01295 04713	MC4024P 8N7415290N 8N7415290N MC145188CP
A9VR201 A9VR301 A9VR302 A9VR401 A9VR401	1902=0048 1902=3036 1902=3036 1902=3139 1902=0025	1 3 7 4	<i>2</i> 1	DIDDE-ZNR 6.81V 5% DD-7 PDm.4W TCm+.043% DIDDE-ZNR 3.16V 5% DD-7 PDm.4W TCm+.064% DIDDE-ZNR 3.16V 5% DD-7 PDm.4W TCm+.064% DIDDE-ZNR 6.25V 5% DD-7 PDm.4W TCm+.053% DIDDE-ZNR 10V 5% DD-7 PDm.4W TCm+.053% DIDDE-ZNR 10V 5% DD-7 PDm.4W TCm+.053%	26460 26460 26460 28460 28460	1902=0046 1902=3036 1902=3036 1902=3139 1902=0025
49VR502 49VR701	1902-0025	8 0		DIODE-ZNR 10V 5% DO-7 PDB.4W TC8+,06% DIODE-ZNR 12,1V 5% DO-7 POM,4W TC8+,064%	26480 28480	1902~0025 1902~3182
497661	0410=0423	2	1	CRYSTAL DGUARTZ (MISC TYEM)	28480	0410-0423
A10	08165-66510	5	1	BOARD ASSEMBLY, LOW FREGUENCY G	28480	08165=66510
A10C1 A10C2 A10C3 A10C4	0160-2257 0160-0116 0160-4209 0160-4209 0160-4209	1 9 9		CAPACITOR=FXD 10PF +-5% 500VDC CER 0+=60 CAPACITOR=FXD 6.8UF+=10% 35VDC TA CAPACITOR=FXD 01UF +-20% 50VDC POLYE CAPACITOR=FXD 01UF +-20% 50VDC POLYE CAPACITOR=FXD 01UF +-20% 50VDC POLYE	26480 56289 28480 28480	0160*2257 \$500655x 9035 82 0160*4209 0160*4209

Table 6-3. Replaceable Parts (cont'd)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A10C6 A10C7 A10C201 A10C202 A10C203	0160 = 2208 0160 = 4209 0180 = 0116 0180 = 0197 0180 = 0374	1 8 3	1	CAPACITOR-FXD 330PF +-5% 300VDC MICA CAPACITOR-FXD .010F +-20% 50VDC POLYE CAPACITOR-FXD 6,80F+-10% 35VDC TA CAPACITOR-FXD 2,20F+-10% 20VDC TA CAPACITOR-FXD 10UF+-10% 20VDC TA	28480 28480 56289 56289 56289	0160-2208 0160-4209 15002355903582 15001065903082 15001065903082
A100204 A100205 A100206 A100207 A100208	0160-0174 0140-0193 0140-0192 0160-2055 0160-4210	00002		CAPACITOR-FXO 47UF +80-20X 25VDC DER CAPACITOR-FXD 82PF +-5X 300VDC MICA CAPACITOR-FXD 88PF +-5X 300VDC MICA CAPACITOR-FXD 01UF +80-20X 100VDC CER CAPACITOR-FXD 022UF +20X 50VDC POLYE	28480 72136 72136 28480 28480	0160=0174 DM15E820J0300mV1CR DM15E650J0300mV1CR 0160=2055 0160=4210
A100209	0160=2055	ą		CAPACITOR-FXD .01UF +80-20% 10040C CER	28480	0190-5022
¥10C#201	1901=0040 1901=0040	i 1		DIDDE-SWITCHING BOV 50MS 2NS DO-35 DIDDE-SWITCHING BOV 50MS 2NS DO-35	28480 28480	1901-0040 1901-0040
AIOMPi	4040-0749	4	1	EXTR-PC BD BRN POLYC .062-BD-THKNS YERMINAL, TEST POINT	28480 28480	4040-0749 5000-8991
A10g201 A10g202 A10g203 A10g204 A10g205	1854-0583 1854-0583 1854-0583 1853-0281 1853-0036	00000	-	TRÂNSISTOR NPN SI 10-92 PD#310MW TRÂNSISTOR NPN SI 10-92 PD#310MW TRÂNSISTOR NPN SI 10-92 PD#310MW TRÂNSISTOR PNP 2N2907A SI 10-18 PD#400MW TRÂNSISTOR PNP SI PD#310MW FT#250MHZ	04713 04713 04713 04713 26480	Mpg=A16 Mpg=A16 Mpg=A18 ang907A 1853=0036
A109206	1854-0215	1		TRANSISTOR NPN 91 PDB350MW FTB300MHZ	04713	2N3904
A10R201 A10R202 A10R202 A10R203 A10R204	0698=4471 0698=3540 0698=4442 0698=3558 0698=4453	6 8 1 8 #		RESISTOR 7.15K 1% .125W F TC=0+=100 RESISTOR 15, 4k 1% .125W F TC=0+=100 RESISTOR 4.26K 1% .125W F TC=0+=100 RESISTOR 4.26K 1% .125W F TC=0+=100 RESISTOR 4.26K 1% .125W F TC=0+=100	24546 24546 24546 24546	C4-1/8-T0-7151-F C4-1/8-T0-4821-F C4-1/8-T0-4421-F C4-1/8-T0-402R-F C4-1/8-T0-402R-F
A10R205 A10R206 A10R207 A10R208 A10R209	0757-0280 2100-3154 0698-3558 0757-0428 0698-3484	3 7 8 1 9	1	RESISTOR 1K 1% ,125W F TCH0+=100 RESISTOR=TRMR 1K 10% C SIDE=ADJ 17=TRN RESISTOR 4,02K 1% ,125W F TCH0+=100 RESISTOR 1,02K 1% ,125W F TCH0+=100 RESISTOR 6,05K 1% ,125W F TCH0+=100	54246 54246 54246 54246 54246	C4-1/8-T0-1001-F 43P102 C4-1/8-T0-4021-F C4-1/8-T0-1621-F C4-1/8-T0-6651-F
A10R210 A10R211 A10R212 A10R213 A10R214	9757=0441 9757=0401 2100=3154 9696=3558 9757=0280	8 0 7 8 3		RESISTOR 8,25% 1% ,125% F TC=0+=100 RESISTOR 100 1% ,125% F TC=0+=100 RESISTOR=TRWR 1% 10% C SIDE=ADJ 17=TRN RESISTOR 4,02% 1% ,125% F TC=0+=100 RESISTOR 1% 1% ,125% F TC=0+=100	24249 24249 24249 24249	C4=1/8=T0=8251=F C4=1/8=T0=101=F #39502 C4=1/8=T0=4021=F C4=1/8=T0=1001=F
A10R215 A10R216 A10R217 A10R218 A10R219	0698=4425 0698=4477 9696=3156 0757=0458 9698=4435	2 7 2	1	PESISTOR 1,54K 1% ,125W F TCB0+-100 RESISTOR 10,5K 1% ,125W F TCB0+-100 RESISTOR 14,7K 1% ,125W F TCB0+-100 RESISTOR 51,1K 1% ,125W F TCB0+-100 PESISTOR 2,49K 1% ,125W F TCB0+-100	54249 54249 54249 54249 54249	C4-1/8-T0-1541-F C4-1/8-T0-1052-F C4-1/8-T0-1472-F C4-1/8-T0-5112-F C4-1/8-T0-2491-F
A10R220 A10R221 A10R222 A10R223 A10R224	0598-3451 0757-0465 0698-3451 0698-3451 0698-4207	9004	. 1	RESISTOR 133K 1% .125W F TCBO+-100 RESISTOR 100K 1% .125W F TCBO+-100 RESISTOR 135K 1% .125W F TCBO+-100 RESISTOR 135K 1% .125W F TCBO+-100 RESISTOR 44.2K 1% .125W F TCBO+-100	54549 54249 54249 54249	C4-1/8-T0-1333-F C4-1/8-T0-1003-F C4-1/8-T0-1333-F C4-1/8-T0-1333-F C4-1/8-T0-4422-F
A10R225 A10R226 A10R227 A10R230 A10R231	0757-0442 0698-4471 2100-3109 0757-0458 0757-0349	9 6 2 7 5	5	PESISTOR 10K 1% .125W F TC#0+=100 RESISTOR 7.15K 1% .125W F TC#0+=100 RESISTOR=T#WR 2K 10% C SIDE=ADJ 17**TRN RESISTOR51.1K 1% 1.25W F TC#0+=100 RESISTOR 22.6K 1% .125W F TC#0+=100	24546 24546 24546	C4-1/8-T0-1002-F C4-1/8-T0-7151-F U3P2O2 C4-1/8-T0-512-F C4-1/8-T0-2262-F
A10R232 A10R233 A10R234 A10R235 A10R236	0757-0349 0757-0458 0757-0280 2100-3123 0698-4014	57303	1 1	RESISTOR 22.6K 1% ,125W F TC#0+-100 RESISTOR 51,1K 1% ,125W F TC#0+-100 RESISTOR 1K 1% ,125W F TC#0+-100 RESISTOR TOK 500 10% C 850E-4DJ 17-TRN RESISTOR 787 1% ,125W F TC#0+-100	24546 24546 24546 24546	C4-1/8-T0-2262-F C4-1/8-T0-5112-F C4-1/8-T0-1001-F 439501 C4-1/8-T0-787R-F
A10R237 A10R238 A10R239 A10R240 A10R241	0757-0458 0757-0458 0757-0458 0698-0082 2100-3122	77779	8	REBISTOR \$1.1K 1% .125W F TC#0+-100 REBISTOR 51.1K 1% .125W F TC#0+-100 REBISTOR 51.1K 1% .125W F TC#0+-100 REBISTOR 464 1% .125W F TC#0+-100 REBISTOR 464 1% .125W F TC#0+-100 REBISTOR-YRMR 100 10% C SIDE-ADJ 17-TRN	24546 24546 24546 24546	C4-1/8-T0-5112-F C4-1/8-T0-5112-F C4-1/8-T0-4640-F 43P101
A10@242 A10@244 A10@245 A10@246	0757-0442 0698-4486 0757-0458 0698-0082 0698-3132	9 3 7 7 4		RESISTOR 10k 1% .125W F TC=0+=100 RESISTOR 24.9K 1% .125W F TC=0+=100 RESISTOR 25.1K 1% .125W F TC=0+=100 RESISTOR 464 14 .125M F TC=0+=100 RESISTOR 261 1% .125W F TC=0+=100	24546 24546 24546 24546	C4-1/8-70-1002-F C4-1/8-70-2492-F C4-1/8-70-5112-F C4-1/8-70-2610-F C4-1/8-70-2610-F
A10U1 A10U2 A10U3 A10U4 A10U5	1820=1199 1826=1423 1820=1442 1820=1442 1820=1244	1 4 7 7 7	1	IC INV TIL LS HEX 1-INP IC MV TIL LS MONOSTBL RETRIG DUAL IC CNIR TIL LS DECD ABYNCHRO IC CNIR TIL LS DECD ASYNCHRO IC MUXR/DATA-SEL TIL LS 4-T0-1-LINE DUAL	01295 01295 01295 01295 01295	8N74L804N 8N74L8123N 8N74L829ON 8N74L829ON 8N74L8153N
A10U6 A10U7 A10UR A10U9 A10U10	1820=0629 1820=1197 1820=1212 1820=1197 1820=1262	00000	1	IC FF TIL S J=K NEG=EDGE=TRIG IC GATE TIL LS NAND QUAD 2=INP IC FF TIL LS J=K NEG=EDGE=TRIG IC GATE TIL LS NAND QUAD 2=INP IC CNIP TIL DECD ASYNCHRO NEG=EDGE=TRIG	01295 01295 01295 01295 01295	SN74S112N SN74LS00N SN74LS112N SN74LS00N SN74290N

Table 6-3. Replaceable Parts (cont'd)

Reference HP Par Designation Number			Description	Mfr Code	Mfr Part Number
110U11 1 1820-144 110U12 1820-119 110U13 1620-119 110U14 1820-110 110U15 1820-121	7 9 4 6 7 9	ı	IC CNTR TTL LS BIN ASYNCHRO IC GATE TTL LS NAND QUAD 2-INP IC GATE TTL LS NAND QUAD 2-INP IC GATE TTL LS NAND QUAD 2-INP IC GATE TTL LS EXCL-OP QUAD 2-INP	01295 01295 01295 01295 01295	8 N 7 4 L 5 2 7 3 N 8 N 7 4 L 5 0 0 N 8 N 7 4 L 5 0 2 N 8 N 7 4 L 5 0 0 N 9 N 7 4 L 5 6 6 N
10U16 1820=127 10U17 1820=127 110U18 1820=127 110U19 1820=128 110U20 1820=120	8 7 8 7 4 5	1	IC CNIR ITL LS BIN UP/DOWN SYNCHRO IC CNIR ITL LS BIN UP/DOWN SYNCHRO IC CNIP ITL LS BIN UP/DOWN SYNCHPO IC GATE ITL LS ANO-OP-INV 4-INP IC GATE ITL LS NAND 8-INP	01295 01295 01295 01295 01295	\$N74L\${9}N \$N74L\${9}N \$N74L\${9}N \$N74L555N \$N74L555N
10U21 1820-120 10U101 1820-174 110U102 1820-174 110U103 1820-195 110U104 1820-195	5 3 5 7		IC GATE TIL LS NAND 8-INP IC GATE CMOS NOP QUAO 2-INP IC GATE CMOS NOR QUAO 2-INP IC FF CMOS O-ITPE POS-EDGE-TRIG DUAL IC LCH CMOS COM CLOCK QUAD	01295 04713 04713 01928 01928	\$N74L830N MC14001BCP MC14001BCP CD4013BAE CD4042BE
10U105 1820=195 10U106 1820=195 110U201 1826=018 110U202 1826=018 110U203 1826=011	5 8 8 8 1 7		IC LCH CMOS COM CLOCK QUAD IC LCH CMOS COM CLOCK QUAD IC CONV 8-8-D/A 16-DIP-C IC OP AMP GP DUAL TO-99 IC OP AMP GP DUAL TO-99	01928 01928 04713 04713 04713	CD40428E CD40428E MC1458G MC1458G
110-6581 POSU011	1 7		IC OP AMP GP DUAL TO-99	04713	HC1458G
110VR201	1 4 6 4 6 4	1	DIODE-ZNR 10V 5% DD-7 PDs.4% 7Cs+.06% DIODE-ZNR 5.11V 5% DO-7 PDs.4% 7Cs009% DIODE-ZNR 1N937 9V 5% DD-7 PDs.5% DIODE-ZNR 1N937 9V 5% DD-7 PDs.5% DIODE-ZNR 1N937 9V 5% DD-7 PDs.5% DIODE-ZNR 10V 5% DD-7 PDs.4% TCs+.06%	28480 24046 28480 28480	1902-0025 1902-0041 1937 1937 1902-0025
0A165-66	512 7	1	BOAPD ASSEMBLY, OFFSET GENERATOR	28480	08165-66512
112C1 0160-017 12C2 0140-019 112C3 0160-020 112C4 0160-020 112C5 0140-019	3 0 9 9	1	CAPACITOR-FXD 47UF +80-20% 25VDC CER CAPACITOR-FXD 82PF +-5% 300VDC MICA CAPACITOR-FXD 01UF +-20% 50VDC POLYE CAPACITOR-FXD 01UF +-20% 50VDC POLYE CAPACITOR-FXD 56PF 4-5% 300VDC MICA	28480 72136 28480 28480 72136	0160-0174 DM15E820J0300WV1CP 0160-4209 0160-4209
12C6 0140=019 12C7 0160=420 112C8 0160=420 112C9 0160=220 112C10 0180=037	9 9 9 5 1	1	CAPACITOR=FXD 82PF +=5% 300VDC MICA CAPACITOP=FXD .01UF +=20% 50VDC POLYE CAPACITOR=FXD .01UF +=20% 50VDC POLYE CAPACITOR=FXD 120PF +=5% 300VDC MICA CAPACITOR=FXD 68UF+=10% 20VDC TA	72136 28480 28480 28480 56289	DM15EB20J0300*V1CR 0160-4209 0160-4209 0160-2205 1500666X902082
112C1: 0160-421 112C12 0180-037 112C13 0160-421	5 4		CAPACITOR-FXD .068UF +-20% 50VDC POLYE CAPACITOR-FXD 68UF+-10% 20VDC TA CAPACITOP-FXD .068UF +-20% 50VDC POLYE	28480 56289 28480	0160=4212 1500686X902082 0160=4212
A:2CP: 1901=004 A:2CP2 1901=004 A:2CP3 1901=004 A:2CP4 1901=004 A:2CR5 1901=004	4 5 4 5		DIODE -SWITCHING 50V 50MA 6NS DIODE -SWITCHING 50V 50MA 6NS DIODE -SWITCHING 50V 50MA 6NS DIODE -SWITCHING 50V 50MA 6NS DIODE -SWITCHING 50V 50MA 6NS	28480 28480 28480 28480 28480	1901=0044 1901=0044 1901=0044 1901=0044 1901=0044
12CR6 1901-004	4 5		DIODE-SWITCHING SOV SOMA 6N8	28480	1901-0044
1271 2110-053		1	FugE .5A 125V FAar-BLO .281x.093	75915	276.500
112K1 0490-107			RELAY-REED 1A 500MA 100VDC 5VDC-COIL RELAY-PEED 1A 500MA 100VDC 5VDC-COIL	28480 28480	0490-1079 0490-1079
112E1 9140+013		1	COIL-MLO 180UH 5% G#65 .1550%,375EG-NOM	28460	9140+0138
12MP1 1205-003			HEAT SINK TO+5/TO-39-CS HEAT SINK TO-5/70-39-C8	28480 28460	1205-0033 1205-0033
A1201 1853-003 A1202 1854-021 A1203 1855-003 A1204 1853-003 A1205 1853-003	5 1 1 2		TRANSISTOR PNP SI PODSIONW FTD250MMZ TRANSISTOR NPN SI PD0350MW PTD300MMZ TRANSISTOR J=FET N=CHAN P=MODE SI TRANSISTOR J=FET N=CHAN P=MODE SI TRANSISTOR PNP SI PD3510MW FTD250MMZ TPANSISTOR PNP SI PD3510MW FTD250MMZ	26460 04713 01295 28460 28460	1853-0036 2N3904 2N3245 £653-0036 1853-0036
1854-058 1207 1853-040 1208 1853-003 1854-021 1854-021	6 2 5 1		TRANSISTOR NPN SI PD=12.5W FT=50MHZ TRANSISTOR PNP SI DARL TO=92 PD=500MW TRANSISTOP PNP SI PD=310MW FT=250MMZ TRANSISTOR NPN SI PD=350MW FT=500MHZ TRANSISTOR NPN SI PD=350MW FT=300MHZ	04713 28480 28480 04713 04713	MJE182 1853-0400 1853-0036 2N3904 2N3904
412011 1853-034 412012 1854-003 412013 1853-004	9 7	1 1	TRANSISTOR PNP SI PDE12.5W FTE50MHZ TRANSISTOR NPN 2N30538 SI T0-39 PDm1W TPANSISTOP PNP SI T0-39 PDm5W FTE60MMZ	04713 01928 01928	MJE172 2N30538 2N4036
A12P1 0698-412 A12R2 6698-441 A12P3 6698-445 A12R4 2100-338 A12R5 757-044	1 4	1	RESISTOR 953 1% .125W F TC#0+=100 RESISTOR 140 1% .125W F TC#0+=100 PESISTOR 402 1% .125W F TC#0+=100 RESISTOR=TPMR 100 10% C STDE=ADJ 1=TPN RESISTOR 12.1K 1% .125W F TC#0+=100	24546 24546 24546 28480 24546	C4=1/8=T0=953R=F C4=1/8=T0=140R=F C4=1/8=T0=402R=F 2100=3349 C4=1/8=T0=1212=F

Table 6-3. Replaceable Parts (cont'd)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A12R6 A12R7 A12RR A12R9 A12R10	0757-0444 0757-0444 0757-0444 0698-4541 0683-3055	1 1 1 9	1 1	RESISTOR 12.1K 1% .125W F TC=0+-100 RESISTOR 12.1K 1% .125W F TC=0+-100 RESISTOR 12.1K 1% .125W F TC=0+-100 RESISTOR 442K 1% .125W F TC=0+-100 RESISTOR 442K 1% .125W F TC=0+100 RESISTOR 3M 5% .25W FC TC=-900/+1100	24546 24546 24546 26480 01121	C4-1/8-T0-1212-F C4-1/8-T0-1212-F C4-1/8-T0-1212-F 0496-4541 C83055
A12R11 A12R12 A12R13 A12R14 A12R15	0698-4497 p100-3358 0643-3358 0757-0401 0698-4453	6 M N O 4	æ æ	RESISTOR 48,7K 1X ,125W F TC=0++100 RESISTOR-TRMR 1M 20% C SIDE=ADJ 1=TRN RESISTOR 3,3M 5% ,25W FC TC=0=00/+1100 RESISTOR 100 1% ,125W F TC=0+-100 RESISTOR 402 1% ,125W F TC=0+-100	24546 28480 01121 24546 24546	C4-1/8-T0-4872-F 2100-3358 C83555 C4-1/8-T0-101-F C4-1/8-T0-402k-F
A12R16 A12R17 A12R18 A12R20 A12R21	0757=0346 0757=0988 0757=0411 2100=3354 0698=5094	いまれなー	2	RESISTOR 10 1% .125W F TC#0+-100 RESISTOR 15 1% .5W F TC#0+-100 RESISTOR 33P 1% .125W F TC#0+-100 RESISTOP-TRMR 50K 10% C 81DE-ADJ 1-TRN RESISTOR 5.4M 5% .25W FG TC#-900/+1100	24546 28480 28546 28480 01121	C4-1/8-T0-1080-F 0757-0988 C4-1/8-T0-332R-F 2100-3354 C85155
A12R22 A12R23 A12R24 A12R25 A12R26	0683-1065 2100-3122 0698-4125 0757-0444 0757-0444	79711		PERISTOR 10M 5% ,25% FC TC=-900/+1100 RESISTOR-TRMR 100 10% C SIDE-ADJ 17-TRN RESISTOR 953 1% ,125% F TC=0++100 RESISTOR 12,1% 1% 125% F TC=0+-100 RESISTOR 12,1% 1% ,125% F TC=0+-100	01121 02111 24546 24546	CB1065 43P101 C4-1/8-T0-953R-F C4-1/8-T0-1212-F C4-1/8-T0-1212-F
A12R27 A12R28 A12R29 A12R30 A12R31	0757-0444 0698-4447 0757-0280 0683-3358 2100+3358	-6525		REBISTOR 12,1K 1% ,125W F TC#0+-100 RESISTOR 48,7K 1% ,125W F TC#0+-100 RESISTOR 1K 1% ,125W F TC#0+-100 RESISTOR 3,3M 5% ,25W FC TC#-940/+1100 RESISTOR-TRMR 1M 20% C SIDE-ADJ 1-TRN	24546 24546 24546 01121 28460	C4-1/8-T0-1212-F C4-1/8-T0-4872-F C4-1/8-T0-1001-F C53355 2100-3358
A12R32 A12R33 A12R34 A12R35 A12R36	0757+0401 0698+4453 0757+0346 0757+0988 0757+0411	28250		RESISTOR 100 1% .125W F TC=0+=100 RESISTOR 402 1% ,125W F TC=0+=100 RESISTOR 10 1% .125W F TC=0+=100 RESISTOR 15 1% .5W F TC=0+=100 RESISTOR 332 1% .125W F TC=0+=100	54546 54546 54546 54546	C4-1/8-T0-101-F C4-1/8-T0-402R=F C4-1/8-T0-10R0-F 0757-0988 C4-1/8-T0-332R-F
A12R37 A12R36 A12R40 A12R41 A12R43 A12R43	0757-0280 0757-0280 0698-3444 0698-3444 0698-3444	3 5 0 1 0		RESISTOR 1K 1% ,125W F TC#0+=100 RESISTOR 1K 1% ,125W F TC#0+=100 RESISTOR 316 1% ,125W F TC#0+=100 RESISTOR 2,26K 1% ,125W F TC#0+=100 RESISTOR 316 1% ,125W F TC#0+=100 RESISTOR 2,26K 1% ,125W F TC#0+=100 RESISTOR 2,26K 1% ,125W F TC#0+=100	24546 24246 24246 24246 24246 24246	C4-1/8-T0-1001-F C4-1/8-T0-1001-F C4-1/8-T0-310ReF C4-1/8-T0-316ReF C4-1/8-T0-316ReF C4-1/8-T0-3261-F
#1504 #1503 #1501	1820-1745 1826-0059 1826-0059 1826-0059	3 2 2 2		IC GATE CMOB NOR QUAD 2-INP IC OP AMP GP 10-99 IC OP AMP GP 10-99 IC OP AMP GP 10-99	04713 01295 01295 01295	MC140018CP LM201AL LM201AL LM201AL
A12VR1 A12VR2 A12VR3	1902-0025 1902-3224 1902-3224	4 1 1	\$	DIODE-ZNR 10V 5% DO-7 PD=,4W TC=+,06% DIODE-ZNR 17.6V 5% DO-7 PD=,4W TC=+,067% DIODE-ZNR 17.6V 5% DO-7 PD=,4W TC=+,067%	58490 58490 58490	1902=0025 1902=3224 1902=3224
Aşq	08165=66514	9	1	BOARD ASSE≪BLY, HP=IB	28480	08165-66514
14C1 414C2 414C3 414C4 414C5	0180-1715 0160-0174 0160-2055 0160-2055 0160-2055	89999		CAPACITOR=FXD 150UF++10% 6VDC TA CAPACITOR=FXD .47UF +80=20% 25VDC CER CAPACITOR=FXD .01UF +80=20% 100VDC CER CAPACITOR=FXD .01UF +80=20% 100VDC CER CAPACITOR=FXD .01UF +80=20% 100VDC CER	56289 28480 28480 28480	1500157X9006R2 0160=0174 0160=2055 0160-2055 0160-2055
A14C6	0160=3455	5	1	CAPACITOR#FXD #70PF +=10% 1KVDC CER	28480	0160-3455
A19J1 A19J3	1251-3263 1200-0485	5	ŧ Ī	CONNECTOR 24=PIN F MICROPIBBON BOCKET-IC 14-CONT DIP DIP+SLDR	28480 28480	1251-3263 1200-0485
A14MP1 A14MP2	0380-0643 08165-00205	3 7	1 1	STANOOFF=MEX .255=IN+LG 6-32THD Panel, Hidden	00000 28480	ORDER BY DESCRIPTION OB165m00205
Å14R1 A14R2 A14R3 A14R4 A14R5	1810-0136 1810-0136 0757-0442 0757-0442	3 9 9	٠.	NETWORK-RES 10-SIP MULTI-VALUE NETWORK-RES 10-SIP MULTI-VALUE RESISTOR 10K 1% .125W F TC#0+-100 RESISTOR 10K 1% .125W F TC#0+-100 RESISTOR 10K 1% .125W F TC#0+-100	\$4249 \$4249 \$4249 \$9490 \$9490	1810-0136 1810-0136 C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F
A14R6 A14R7 A14R8 A14R9	0757=0442 0757=0442 0757=0482 0757=0407	9996		RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 200 1% .125W F TC=0+=100	24546 24546 24546 24546	C4=1/8=T0=1002=F C4=1/8=T0=1002=F C4=1/8=T0=1002=F C4=1/8=T0=201=F
A1481	3101=1860	1	1	SWITCH-SL 5-14 DIP-SLIDE-ASSY .14 50VDC	28460	3101-1860
A14U1 A14U2 A14U3 A14U4 A14U5	1620-1481 1620-1481 1620-1624 1620-1451 1620-1197	4 4 7 8 9	1	IC NMOS IC NMOS IC NMOS IC BFR TIL 8 OCTL 1-INP IC GATE TIL S NAND QUAD 2-INP IC GATE TIL L8 NAND QUAD 2-INP	04713 04713 01295 01295 01295	MC6821L MC6621L 8N748241N 8N74538N 8N74L500N
A14U6 A14U7 A14U8 A14U9	1820-1416 1820-1197 1820-1208 1820-1416	5935	2	IC SCHMITT-TRIG TTL LS INV HEX 1-INP IC GATE TTL LS NAND GUAD 2-INP IC GATE TTL LS OR GUAD 2-INP IC SCHMITT-TRIG TTL L8 INV HEX 1-INP	01295 01295 01295 01295	8N74L334N 8N74L300N 8N74L332N 8N74L814N

Table 6-3. Replaceable Parts (cont'd)

Reference Designation	HP Part Number	CD	Qty	Description	Mfr Code	Mfr Part Number
4 14#1	5081+1979		\$	CABLE, RIGBON 279MM	25480	5081+1979
A 5	08165-06515	0	t	ROAPD ASSEMBLY, RAMP ADJUST	26480	08165-06515
419833 A15835 A15837 A15839	2100-3162 2100-3052 2100-3162	7 4 4 7	2	RESISTOR-TRMR 200K 10% C SIDE-ADJ 17-TRN RESISTOR-TRMR 50 10% C SIDE-ADJ 17-TRN RESISTOR-TRMR 50 10% C SIDE-ADJ 17-TRN RESISTOR-TRMR 200K 10% C SIDE-ADJ 17-TRN	02111 02111 02111 02111	43P204 43P500 43P500 43P204
A16	08165-66516	ı	1	BOARD ASSEMBLY, SOURCES AD	28480	08165-66516
A16R240 A16R243 A16R250 A16R436	2100+3161 2100+3103 2100-3103 2100-3103	4444	1	RESISTOR-TRMR 20K 10% C SIDE-ADJ 17-TRN PESISTOR-TRMR 10K 10% C SIDE-ADJ 17-TRN RESISTOR-TRMR 10K 10% C SIDE-ADJ 17-TRN RESISTOR-TRMR 10K 10% C SIDE-ADJ 17-TRN	02111 02111 02111 02111	43P203 43P103 43P103 43P103
A17R23G A17R340 A17R360	2100=3052 2100=3154 2100=3109	4 7 2		RESISTOR-TAMR 50 10% C SIDE-ADJ 17-TRN RESISTOR-TRWR 1K 10% C SIDE-ADJ 17-TRN RESISTOR-TRWR 2K 10% C SIDE-ADJ 17-TRN	02111 02111 02111	43P500 43P102 43P202
					THE PROPERTY OF THE PROPERTY O	
		The state of the s				

Table 6-3. Replaceable Parts (cont'd)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
N2	0816566519	4	1	BOARD ASSEMBLY, DISPLAY	28480	0816566519
48 411 413	08185-66520 08165-66511 08165-66513	6	1	BD AY VCO CONTROL BOARD ASSEMBLY, SWEEP GENERATOR BOARD ASSEMBLY, AMPLITUDE MODULATION	28480 28480 28480	06165-66620 08165-66511 08165-66513
16	12500118	3	1	CONNECTOR-RF BNC FEM SGL HOLE FR 50 OHM	28480	1250-0118
MP7 MP14	0816500206 0816528102	8	1	PANEL, FRONT (FOR OPT 002 ONLY) WINDOW	28480 28480	08165002D6 0816528102
W10 W11	08165-61610 08165-61610	6	2	CABLE ASSEMBLY, AM OUTPUT CABLE ASSEMBLY, AM OUTPUT	28480 28480	0816561610 0816561610
CR4 (A8)	19010040	1 1	3	DIODE-SWITCHING 30 V 50 MA 2 NS DO-35 DIODE-SWITCHING 30 V 50 MA 2 NS DO-35	28480 28480	1901-0040 1901-0040
CR407 (A8) K403 (A8)	1901-0040 04901079	4	2	RELAY-REED I A 50 MA 100 VDC 5 VDC-COIL	28480	0490-1079
Q414 (A8)	1854-0215	1	2	TRANSISTOR NPN SI PD = 350 MW FT = 300 MHZ	04713	2N3904
R441 (A8) R501 (A8)	0.7570439 0.7570442	4 9.	2 2	RESISTOR 6.81K 1 % .125 W F TC = 0 + 100 RESISTOR 10 K 1 % .125 W F TC = 0 + 100	24546 24546	C4-1/8-TO-6811-F C4-1/8-TO-1002-F
U607 (A8)	1820—1747	5	2	IC GATE CMOS NAND QUAD 2-INP	04713	MC14011BCP
		mannenmannende file behaviories beste author con volt				

	N.					

Table 6-3. Replaceable Parts (cont'd)

Reference Designation			Description	Mfr Code	Mfr Part Number	
A 2	n8165=66519	4	1	BOARD ASSEMBLY, DISPLAY	28480	08165=66519
4203 4203 4204 4204	0160+0174 0160=0174 0180+1704 0180+1704	995	2	CAPACITOR=FXD _47UF +80-20X 25VDC CER CAPACITOR=FXD 47UF +80-20X 25VDC CER CAPACITOR=FXD 47UF+=10X 6VDC TA CAPACITOR=FXD 47UF+=10X 6VDC TA	26460 26460 56269 56269	0160=0174 0160=0174 1500476x900682 1500476x900682
A2082 A2083 A2084 A2084	1990-0487 1990-0487 1990-0487 1990-0487 1990-0487	7 7 7 7 7	31	LED-VISIBLE LUM-INTEIMCD IF@20M4-MAX LED-VISIBLE LUM-INTEIMCD IF@20M4-MAX LED-VISIBLE LUM-INTEIMCD IF@20M4-MAX LED-VISIBLE LUM-INTEIMCD IF@20M4-MAX LED-VISIBLE LUM-INTEIMCD IF@20M4-MAX	28480 28480 28480 28480	2085-4284 2085-4284 2085-4284 2085-4284 2085-4284
A 2086 A 2088 A 2088 A 2089 A 20810	1990=0487 1990=0487 1990=0487 1990=0487 1990=0487	7 7 7 7 7 7		LED-VISIBLE LUM-INTSIMCD IFSZOMA-MAX LED-VISIBLE LUM-INTSIMCD IFSZOMA-MAX LED-VISIBLE LUM-INTSIMCD IFSZOMA-MAX LED-VISIBLE LUM-INTSIMCD IFSZOMA-MAX LED-VISIBLE LUM-INTSIMCD IFSZOMA-MAX	28480 28480 28480 28480 28480	5082~4584 5082~4584 5082~4584 5082~4584
A2D311 A2D312 A2D313 A2D314 A2D315	1990-0487 1990-0487 1990-0487 1990-0487 1990-0487	7 7 7 7		LED-VISIBLE LUM-INTSIMCD 1F820MA-MAX LED-VISIBLE LUM-INTSIMCD 1F820MA-MAX LED-VISIBLE LUM-INTSIMCD 1F820MA-MAX LED-VISIBLE LUM-INTSIMCD 1F820MA-MAX LED-VISIBLE LUM-INTSIMCD 1F820MA-MAX	28480 28480 28480 28480	5082-4584 5082-4584 5082-4584 5082-4584
A20816 A20317 A20318 A20319 A20320	1990*0487 1990*0487 1990*0487 1990*0487 1990*0487	7 7 7 7		LED-VISIBLE LUM-INTERMCD IFEZOMA-MAX	28480 28480 28480 28480 28480	5082~4564 5082~4564 5082~4564 5082~4584 5082~4584
12805A 55805A 55805A 45805A 25805A	1990+0487 1990+0487 1990+0487 1990+0487 1990+0487	7 7 7 7 7		LED-VISIBLE LUM-INTSIMCD JF@20MA-MAX LED-VISIBLE LUM-INTBIMCD JF@20MA-MAX LED-VISIBLE LUM-INTSIMCD JF@20MA-MAX LED-VISIBLE LUM-INTSIMCD JF@20MA-MAX LED-VISIBLE LUM-INTSIMCD JF@20MA-MAX	28480 28480 28480 28480 28480	5082 = 4584 \$082 = 4584 \$082 = 4584 \$082 = 4584 \$082 = 4584
A20826 A20828 A20828 A20829 A20830	1990 = 0487 1990 = 0487 1990 = 0487 1990 = 0487 1990 = 0487	7 7 7 7		LED-VISIBLE LUM-INTE:MCD IF=20M4-MAX LED-VISIBLE LUM-INTE:MCD IF=20M4-MAX LED-VISIBLE LUM-INTE:MCD IF=20M4-MAX LED-VISIBLE LUM-INTE:MCD IF=20M4-MAX LED-VISIBLE LUM-INTE:MCD IF=20M4-MAX	28480 28480 28480 28480	5082 0 4 5 8 4 5082 0 4 5 8 4 5082 0 4 5 8 4
A20831 A20832 A20833 A20834 A20835	1990=0487 1990=0485 2140=0016 2140=0016 2140=0016	7 8 8 8	1 1 1	LED-VIBIBLE LUM-INTEIMCD IF#20Ma-MAX LED-VIBIBLE LUM-INT#800UCD IF#30MA-MAX LAMP=INCAND 683 5VDC 60MA T-1-BULB LAMP=INCAND 683 5VDC 60MA T-1-BULB LAMP=INCAND 683 5VDC 60MA T-1-BULB	28480 0000J 0000J 0000J	5082~4584 683 683 683
A20836 A20837 A20838 A20839 A20840	2140=0016 2140=0016 2140=0016 2140=0016	80 80 80 80		LAMP-INCAND 683 SVDC 60MA T-1-BULB LAMP-INCAND 683 SVDC 60MA T-1-BULB LAMP-INCAND 683 SVDC 60MA T-1-BULB LAMP-INCAND 683 SVDC 60MA T-1-BULB LAMP-INCAND 683 SVDC 60MA T-1-BULB	10000 10000 10000 10000	683 683 683 683
A20341 A20342 A20343 A20351 A20352	2140-0016 2140-0016 2140-0016 1990-0452 1990-0452	8888	12	LAMP-INCAND 683 5VDC 60MA T=1=BULB LAMP-INCAND 683 5VDC 60MA T=1=BULB LAMP-INCAND 683 5VDC 60MA T=1=BULB DISPLAY-NUM=SEG 1=CHAR ,3=M DISPLAY-NUM=SEG 1=CHAR ,3=M	28480 0000J 28480 28480	603 603 683 5002-7731, CAT C=E 5002-7731, CAT C=E
A20554 A20555 A20555 A20556 A20657	1990-0452 1990-0452 1990-0452 1990-0452	4444		DISPLAY=NUM=SEG 1=CHAR ,3-H	26480 26480 26480	5082-7731, CAT C-E 5082-7731, CAT C-E 5082-7731, CAT C-E 5082-7731, CAT C-E 5082-7731, CAT C-E
A2D358 A2D359 A2D360 A2D361 A2D362	1990-0452 1990-0452 1990-0452 1990-0452	00000		DISPLAY=NUM=SEG 1-CHAR ,3-H	28480 28480 28480 28480	5082-7731, CAT C-E 5082-7731, CAT C-E 5082-7731, CAT C-E 5082-7731, CAT C-E 5082-7731, CAT C-E
A2J4 7USA 3USA 7USA 8USA	1200+0589 1200+0589 1200+0589 1200+0589 1200+0589	77777	12	SOCKET-IC 14-CONT DIP-SLDR SOCKET-IC 14-CONT DIP-SLDR SOCKET-IC 14-CONT DIP-SLDR SOCKET-IC 14-CONT DIP-SLDR SOCKET-IC 14-CONT DIP-SLDR	28480 28480 28480 28480 28480	1200=0569 1200=0589 1200=0589 1200=0589 1200=0589
A2J9 A2J10 A2J11 A2J12 A1USA	1200-0589 1200-0589 1200-0589 1200-0589	7 7 7 7 7		SOCKET-IC 14-CONT DIP-SLDR	28480 28480 28480 28480 28480	1200~0589 1200~0589 1200~0589 1200~0589 1200~0589
A2J14 A2J15	1200-0589 1200-0589	7		SOCKET-IC 14-CONT DIP-SLDR	28480 28480	1200=0589 1200=0589

Table 6-3. Replaceable Parts (cont'd)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A 2 G 1 A 2 G 2 A 2 G 3 A 2 G 4 A 2 G 5	1654=0215 1854=0215 1854=0215 1854=0215 1854=0477	11177	a 2	TRANSISTOR NPN 81 PD=350MW FT=300MHZ TRANSISTOR NPN 2N2222A 81 TD=18 PD=500MW TRANSISTOR NPN 2N2222A 81 TO=18 PD=500MW	04713 04713 04713 04713 04713	2N3904 2N3904 2N3904 2N3904 2N2222A
A 2 0 6 A 2 P 1 A 2 P 2 A 2 P 3 A 2 P 5 A 2 P 5	0757=0706 0757=0706 0757=0706 0757=0706 0757=0706	86883	4	RESISTOR 51.1 1% .25W F TCm0+=100 RESISTOR 1K 11 .255W F TCm0+=100	84246 84246 84246 84246	CS=1/4=TO=5;R1=F CS=1/4=TO=5;R1=F CS=1/4=TO=5;R1=F CS=1/4=TO=5;R1=F C4=1/4=TO=1001=F
A 2R 6 A 2R 7 A 2R 8 A 2R 9 A 2R 1 0	0757=0280 0757=0280 0757=0280 0757=0280 0757=0280	24 to 104 to 108		RESISTOR 1K 1% .125W F TC#0+=100	5445 5446 5446 54646 54646	C4=1/8=T0=1001=F C4=1/8=T0=1001=F C4=1/8=T0=1002=F C4=1/8=T0=1001=F C4=1/8=T0=1001=F
A 2 R 1 2 A 2 R 1 3 A 2 R 1 3 A 2 R 1 4 A 2 R 1 S	0757-0281 0757-0281 0757-0281 0757-0281 0698-3155	44441	5	RESISTOR 2,74K 1% .125W F TC=0+=100 RESISTOR 4,64K 1% .125W F TC=0+=100	24546 24546 24546 24546 24546	C4=1/8=T0=2741=F C4=1/8=T0=2741=F C4=1/8=T0=2741=F C4=1/8=T0=2741=F C4=1/8=T0=4641=F
A2R16 A2R17 A2R18 A2R19 A2R20	0698-3155 0757-0417 1810-0162 6159-0005 8159-0005	-8900	1 1 3	RESISTOR 4,64K 1% .125W F TC#0+=100 RESISTOR 562 1% .125W F TC#0+=100 NETWORK=HES 14=DIP4_7K OHM X 13 WIRE 22AWG W PVC 1X22 80C WIRE 22AWG W PVC 1X22 80C	28480 28480 11236 24546	C4=1/8=T0=4641=F C4=1/8=T0=562R=F 760=1=R4,7K 8159=0605 8159=0605
A 2 R 2 1 A 2 8 2 A 2 8 2 A 2 8 3 A 2 8 5 A 2 8 5	8159-0005 5060-9436 5060-9436 5060-9436 5060-9436 5060-9436	0 7 7 7 7	26	WIRE 22AWG W PVC 1X22 80C PUSHBUTTON SWITCH P.C. MOUNT PUSHBUTTON SWITCH P.C. MOUNT PUSHBUTTON 8WITCH P.C. MOUNT PUSHBUTTON SWITCH P.C. MOUNT PUSHBUTTON SWITCH P.C. MOUNT PUSHBUTTON SWITCH P.C. MOUNT	28480 28480 28480 28480 28480 28480	8159=0005 \$060=9436 \$060=9436 \$060=9436 \$060=9436 \$060=9436
A286 A287 A286 A289 A2810	5060=9436 5060=9436 5060=9436 5060=9436 5060=9436	7 7 7 7		PUSHBUTTON SMITCH P.C. MOUNT PUSHBUTTON SWITCH P.C. MOUNT PUSHBUTTON SMITCH P.C. MOUNT PUSHBUTTON SMITCH P.C. MOUNT PUSHBUTTON SMITCH P.C. MOUNT	28480 28480 28480 28480 28480	5060≈9436 5060≈9436 5060≈9436 5060≈9436 5060≈9436
A 2 8 1 1 A 2 8 1 2 A 2 8 1 3 A 2 8 1 4 A 2 8 1 5	5060-9436 5060-9436 5060-9436 5060-9436 5060-9436	7 7 7 7		PUSHBUTTON SWITCH P.C. MOUNT	28480 28480 25480 28480 28480	5060=9436 \$060=9436 \$060=9436 \$060=9436 \$060=9436
A2816 A2817 A2818 A2819 A2820	5060-9436 5060-9436 5060-9436 5060-9436 5060-9436	7 7 7 7		PUSHBUTTON SWITCH P.C. MOUNT	26480 26480 26480 28480 28480	5060-9436 5060-9436 5060-9436 5060-9436 5060-9436
A2824 A2824 A2825 A2824	5060=9436 5060=9436 5060=9436 5060=9436	7 7 7 7		PUSHBUTTON SWITCH P.C. MOUNT	28480 28480 28480 28480 28480	5060=9436 5060=9436 5060=9436 5060=9436
1028 1028 1028 1028	5060=9#36 1820=1200 1820=0626 1820=0491	7 5 9 4	1 1	PUSHBUTTON SWITCH P.C. MOUNT IC INV ITL L8 HEX IC ITL 64-BIT RAM 60-N8 0-C IC DCDR ITL BCD-TO-DEC 4-TG-10-LINE	28480 01295 01295 01295	5060°9436 Sn741805N Sn7489N Sn74145N
4 2 W 1 4 2 W 2 4 2 W 3	5081=1980 5081=1980 5081=1981	4 4 5	2	CABLE, RIBBON 279MM CABLE, RIBBON 279MM CABLE, RIBBON 26C 305MM	28480 28480 26460	5081=1980 5081=1980 5081=1981
:						

Table 6-3. Replaceable Parts (cont'd)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
	AG14#-A4#14			BOARD ASSEMBLY, SMEEP GENERATOR	28480	08165-66511
A11 A11C101 A11C201 A11C202 A11C203 A11C401	08165=06511 0160=4211 0160=4209 0160=0598 0160=4211 0180=0116	6 3 6 13 1	5 R 1 R	CAPACITOR=FXD .047UF +=70% 50VDC POLYE CAPACITOR=FXD .01UF +=20% 50VDC POLYE CAPACITOR=FXD 2200PF +=10% 250VDC CAPACITOR=FXD .047UF +=20% 50VDC POLYE CAPACITOR=FXO b.&UF+=10% 35VDC TA	26480 26480 26480 56289	0160-4211 0160-4209 0160-0598 0160-4211 1500665x903582
A110402 A116403 A116404 A116405 A116406	0160=0116 0160=4211 0160=4211 0180=1704 0160=4298	13356	\$ 1	CAPACITOR=FXD 6.8UF+=10% 35VOC TA CAPACITOR=FXD .047UF +=20% 50VDC FOLYE CAPACITOR=FXD .047UF +=20% 50VDC POLYE CAPACITOR=FXD 47UF+=10% 6VOC TA CAPACITOR=FXD 4700PF +=20% 250VDC CER	56289 26480 26489 56289	1500685xq03582 0160~4211 0160~4211 1500476xq00682
A11C407 A11C408 A11C409 A11C410	0160m0134 0160m4211 0140m0193 0160m4209	1 30 0	1	CAPACITOR=FXD 220PF +=5% 300VDC MICA CAPACITOR=FXD 0047UF +=20% 50VDC POLYE CAPACITOR=FXD 82PF +=5% 300VDC MICA CAPACITOR=FXD 01UF +=20% 50VDC POLYE	28480 28480 72136 28480	0160-4211 0160-4211 0160-42030300HV1CR 0160-4209
A11CR461 A11CR402 A11CR403 A11CR404	1901-004# 1901-004# 1901-0460 1901-0460	81 B) O O	,	DIDDE-SMITCHING SOV SOMA 6NS DIDDE-SMITCHING SOV SOMA 6NS OIDDE-STABISTOR 30V 150MA DO=7 DIODE-STABISTOR 30V 150MA DO=7	26480 26480 26480	1901-0044 1901-0044 1901-0460 1901-0460
A11G101 A11G102 A11G401 A11G402 A11G403	1854=0215 1854=0215 1854=0215 1853=0036 1853=0036	1 1 2 2	3	TRANSISTOR NPN SI POW350MW FTW300MMZ TRANSISTOR NPN SI PDW350MW FTW300MMZ TRANSISTOR NPN SI PDW350MW FTW300MMZ TRANSISTOR PNP SI PDW310MW FTW250MMZ TRANSISTOR PNP SI PDW310MW FTW250MMZ	04713 04713 04713 28480 28480	2N3904 2N3904 2N3904 1853-0036 1853-0036
A11R101 A11R102 A11R103 A11R201 A11R202	0757-0442 0698-4444 0757-0349 0757-0280 0757-0440	9 35 37	3 1 4 1	RESISTOR 10K 1% ,125W F TC#0+=100 RESISTOR 4,87K 1% ,125W F TC#0+=100 RESISTOR 22,6K 1% ,125W F TC#0+=100 RESISTOR 1K 1% ,125W F TC#0+=100 RESISTOR 7,5K 1% ,125W F TC#0+=100	24546 24546 24546 24546	C4=1/8=T0=1002=F C4=1/8=T0=2862=F C4=1/8=T0=1001=F C4=1/8=T0=1001=F C4=1/8=T0=7501=F
A11R203 A11R401 A11R402 A11R403 A11R404	2100=3273 0698=4435 0698=4435 0698=3700 2100=3122	12229	1 1 1	RESISTOR=TRMP 2K 10% C SIDE=ADJ 1=TRN RESISTOR 2.49k 1% :125w F TC#0+=100 RESISTOR 2.49k 1% :125w F TC#0+=100 RESISTOR 715 1% :125w F TC#0+=100 RESISTOR=TRMR 100 10% C SIDE=ADJ 17=TRN	24546 24546 24546 24546	2100-3273 C4=1/8=10=2491=F C4=1/8=10=2491=F C4=1/8=10-715R=F 43P101
A11R405 A11R406 A11R407 A11R408 A11R409	0757=0442 0757=0442 0757=0280 0757=0419 0757=0438	99303	3	RESISTOR 10K 1% .125W F TC#0++100 RESISTOR 10K 1% .125W F TC#0++100 RESISTOR 1K 1% .125W F TC#0++100 RESISTOR 661 1% .125W F TC#0++100 RESISTOR 5.11K 1% .125W F TC#0++100	24246 24246 24246 24246 34246	C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1001-F C4-1/8-T0-601R-F C4-1/8-T0-6111-F
A11R410 A11R411 A11R420 A11R421 A11R422	2100=3351 0698=0083 0757=0419 0698=4479 0683=1055	68045	1 1	RESISTOR-TRMR 500 10% C SIDE-ADJ 1-TRN RESISTOR 1,96K 1% .125W F TC=0+-100 RESISTOR 681 1% .125W F TC=0+-100 RESISTOR 14K 1% .125W F TC=0+-100 RESISTOR 14K 1% .125W F TC=0+-100 RESISTOR 1M 5% .25W FC TC=-800/+900	01121 24546 24546 24546	2100=3351 C4=1/8=70=1961=F C4=1/8=70=681R=F C4=1/8=70=1402=F C81055
A11R423 A11R424 A11R425 A11R426 A11R427	2100-3109 0698-3449 0757-0419 2100-3154 0757-0465	26076	4: 9	RESISTOR-TRMR 2K 10% C SIDE-ADJ 17-TRN RESISTOR 26,7K 1% ,125W F TC=0+-100 RESISTOR 681 1% ,125W F TC=0+-100 RESISTOR-TRMR 1K 10% C SIDE-ADJ 17-TRN RESISTOR 100K 1% ,125W F TC=0+-100	02111 24546 24546 02111 24546	43P202 C401/8=70=2872=F C4=1/8=70=681R=F 43P102 C4=1/8=70=1003=F
A11R428 A11R429 A11R430 A11R431 A11R432	2100-3123 0698-3178 0698-4444 0698-3178 0698-4444	0 8 3 8 %	1 2	RESISTOR-TRMR 500 10% C SIDE-AOJ 17-TRN RESISTOR 487 1% .125W F TC#04-100 RESISTOR 487 1% .125W F TC#04-100 RESISTOR 487 1% .125W F TC#04-100 RESISTOR 487% 1% .125W F TC#04-100	02111 24546 24546 24546 24546	43P901 C4=1/8=10=4871=F C4=1/6=10=4871=F C4=1/8=70=4871=F C4=1/8=70=4871=F
A11R440 A11R441	0757=0280 0757=0280	3		RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100	24546 24546	C#=1/8=T0=1001=F C#=1/8=T0=1001=F
A11U101 A11U102 A11U103 A11U104 A11U105	1820=1956 1820=1956 1820=1956 1820=1956 1820=1956	8 8 8 8	5	IC LCH CMOS CDM CLDCK QUAD IC LCH CMOS COM CLDCK QUAD IC LCH CMOS CDM CLOCK QUAD IC LCH CMOS CDM CLOCK QUAD IC LCH CMOS COM CLOCK QUAD	01928 01928 01928 01928 01928	COUO428E CO40428E CO40428E CO40428E
A11U106 A11U107 A11U108 A11U109 A11U110	1820=1963 1820=1963 1820=1963 1820=1965 1820=1970	7 7 7 9 6	3	IC FF CMOS DOTYPE POS-EDGE-TRIG DUAL IC FF CMOS DOTYPE POS-EDGE-TRIG DUAL IC FF CMOS DOTYPE POS-EDGE-TRIG DUAL IC GATE CMOS NOR TPL 3-1NP IC GATE CMOS OR GUAD 2-1NP	01928 01928 01928 01928 04713	CD40138AE CD40138AE CD40138AE MC140258CP MC140718CP
A11U111 A11U112 A11U113 A11U114 A11U201	1820-0629 1820-1964 1820-1961 1820-1747 1826-0180	08550	1 7 1	IC FF TYL S J-K NEG-EDGE-TRIG IC FF CMOS J-K POS-EDGE-TRIG DUAL IC GATE CMOS NAND TPL 3-INP IC GATE CMOS NAND GUAD 2-INP IC TIMER TYL MOND/ASTBL	01295 01928 04713 04713 04713	8N748112N CD4027BE MC14023BCP MC14011BCP MC1455P1

Table 6-3. Replaceable Parts (cont'd)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A11U202 A11U203 A11U203 A11U204 A11U205 A11U301	1820*1241 1820*1122 1820*1122 1820*1122 1820*1964	40008	1 3	IC MUXR/DATA-SEL CMOS 8-TO-L-LINE 8-INP IC CNTR CMOS 8CD SYNCHRO DUAL IC CNTR CMOS BCD SYNCHRO DUAL IC CNTR CMOS BCD SYNCHRO DUAL IC CNTR CMOS BCD SYNCHRO DUAL IC FF CMOS J-K POS-EDGE-TRIG DUAL	04713 04713 04713 04713 04713 01928	MC14512CP MC14518BCP MC14518BCP MC14518BCP CD4027BE
A:10302 A:10303 A:10304 A:10305 A:10306	1820=1114 1820=1114 1820=1340 1820=1340 1820=1340	00444	2	IC CNTR CMOS BEN SYNCHRO POSREDGE-TRIG IC CNTR CMOS BIN SYNCHRO POSREDGE-TRIG IC COMPTR CMOS MAGTO 4-817 IC COMPTR CMOS MAGTO 4-817 IC COMPTR CMOS MAGTO 4-817	04713 04713 04713 04713 04713	MC14510CP MC14510CP MC14585BCP MC14585BCP MC14585BCP
A11U307 A11U308 A11U309 A11U401 A11U402	1820-1340 1820-2015 1820-2037 1826-0462 1826-0111	4 2 8 4 7	1 1	IC COMPTR CMOS MAGTO 4-BIT IC GATE CMOS EXCL-OR QUAD IC GATE CMDS AND QUAD 2-INP IC CONV 10-8-07A 16-01P-C IC OP AMP GP DUAL T0-99	04713 04713 04713 04713 04713	MC14565BCP MC14070BCP MC14061BCP MC3410CL MC145BG
A11U403	1826-0432	5	1	IC 16-DIP==	32293	ICL 8049 CC PE
A11VR401 A11VR402 A11VR403 A11VR464	1902=0184 1902=0184 1902=0041 1902=0041	0049	2	DIODE=ZNR 16.2V 5% DO=7 PDs.4W TCs+.066% DIODE=ZNR 16.2V 5% DO=7 PDs.4W TCs+.066% DIODE=ZNR 5.11V 5% DO=7 PDs.4W TCs+.009% DIODE=ZNR 5.11V 5% DO=7 PDs.4W TCs+.009%	28480 28480 28480	1902-0184 1902-0184 1902-0041
		A-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1				
!				,		
				,		
						٠

Table 6-3. Replaceable Parts (cont'd)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
413	08165=66513 08165=26513	8 4	† 1	BOARD ASSEMBLY, AMPLITUDE MODULATION PC BOARD, BLANK	28480 28480	08165~66513 08165~26513
413C1 413C2 413C3 413C4 413C5	0180=1746 0180=1746 0160=0174 0160=0174 0160=0174	20000	5	CAPACITOR=FXD 15UF+=10% 20VDC TA CAPACITOR=FXD 15UF+=10% 20VDC TA CAPACITOR=FXD 447UF +80=20% 25VDC CER CAPACITOR=FXD 447UF +80=20% 25VDC CER CAPACITOR=FXD 447UF +80=20% 25VDC CER	56289 28480 28480 28480	150D156X9020B2 150D156X9030B2 0160-0174 0160-0174
1306 1307 1308 4130100 4130300	0160=0174 0160=3879 0160=3879 0160=4209 0160=0174	7 7 9	5 1	CAPACITOR=FXD .47UF +80-20% 25VDC CER CAPACITOR=FXD .01UF +=20% 100VDC CER CAPACITOR=FXD .01UF +=20% 100VDC CER CAPACITOR=FXD .01UF +=20% 50VDC POLYE CAPACITOR=FXD .47UF +60=20% 25VDC CER	28480 26480 26480 26480 26480	0160=0174 0160=3879 01600=3879 0160=4209 0160=0174
A 13C 301 A 13C 302 A 13C 303 A 13C 304	0160-3879 0160-0576 0160-3879 0160-3879	7 5 7 7	*	CAPACITOR-FXD .01UF +-20% 100VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .01UF +-20% 100VDC CER CAPACITOR-FXD .01UF +-20% 100VDC CER	28480 28480 28480 28480	0:60~3679 0:60~0576 0:60~3679 0:60~3679
A13CR1 A13CR2 A13CR100 A13CR101 A13CR102	1901-0040 1901-0050 1901-0460 1901-0040 1901-0460	1 3 9 1	2	DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-STABLISTOR 30V 150MA DD-7 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SYABISTOR 30V 150MA D0-7	\$8480 \$8480 \$8480 \$8480 \$8480	1901=0040 1901=0050 1901=0460 1901=0400 1901=0460
A13CR103 A13CR104 A13CR105 A13CR106	1901=0040 1901=0040 1901=0050 1901=0040	1 3		DIODE-SWITCHING BOV SOMA 2NS DO-35 DIODE-SWITCHING BOV 200MA 2NS DO-35 DIODE-SWITCHING BOV 200MA 2NS DO-35 DIODE-SWITCHING BOV 50MA 2NS DO-35	28480 28480 28480 28480	1901-0040 1901-0040 1901-0050 1901-0040
A13K1 A13K2 A13K3	0490+1034 0490+1034 0490+1079	1 1 4	2	RELAY 2C 12VDC-CDIL .5A 350VDC RELAY 2C 12VDC-CDIL .5A 350VDC RELAY-REED 1A 500MA 100VDC 5VDC-CDIL	28480 28480 28480	0490-1034 0490-1034 0490-1079
A:3MP1	01801=22301	7	1	HEAT SINK	28480	01801@22301
A 1301 A 1303 A 1304 A 1305	1854-0215 1854-0215 1854-0215 1854-0215 1853-0086	2 1 2 2	7 3	TRANSISTOR NPN SI PD#350MW FT#300MHZ TRANSISTOR PNP SI PD#310MW FT#250MHZ TRANSISTOR NPN SI PD#350MW FT#300MHZ TRANSISTOR NPN SI PD#350MW FT#300MHZ TRANSISTOR PNP SI PD#310MW FT#40MHZ	04713 28480 04713 04713 27014	2N3904 1853-0036 2N3904 2N3904 2N3087
A13G6 A13G7 A13G100 A13G101 A13G102	1853-0036 1853-0036 1854-0392 1854-0392 1854-0215	22551	₹ 6	TRANSISTOR PNP SI PDB310MW FTB250MHZ TRANSISTOR PNP SI PDB310MW FTB250MHZ TRANSISTOR NPN SI PDB310MW FTB50MMZ TRANSISTOR NPN SI PDB310MW FTB50MMZ TRANSISTOR NPN SI PDB350MW FTB50MHZ TRANSISTOR NPN SI PDB350MW FTB500MHZ	28480 28480 04713 04713	1833-0036 1853-0036 2N5088 2N3904
A130103 A130104 A130105 A130106 A130200	1854-0215 1854-0215 1853-0086 1853-0086 1854-0215	1 2 2 1		TRANSISTOR NPN 81 PDE350MM FTE300MMZ TRANSISTOR NPN 81 PDE350MM FTE300MHZ TRANSISTOR PNP 81 PDE310MM FTE40MMZ TRANSISTOR PNP 81 PDE310MM FTE40MMZ TRANSISTOR NPN 81 PDE350MM FTE300MHZ	04713 04713 27014 27014 04713	2N3904 2N3904 2N3087 2N5087 2N3904
A13Q301 A13Q302 A13Q303 A13Q304 A13Q305	1853-0218 1853-0218 1854-0354 1854-0354 1854-0637	22 O O	2 2	TRANSISTOR PNP SI TO-18 PD=360MW TRANSISTOR PNP SI TO-18 PD=360MW TRANSISTOR NPN SI TO-52 PD=360MW TRANSISTOR NPN SI TO-52 PD=360MW TRANSISTOR NPN SNZ19A SI TO-5 PD=800MW	28480 28480 28480 26480 0129%	1653-0216 1853-0218 1854-0354 1854-0354 2N22198
A13R1 A13R2 A13R3 A13R4 A13R5	0757-0438 0757-0349 0757-0280 0757-0349 0757-0349	3555	1 4 5	RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 22.6K 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 22.6K 1% .125W F TC=0+=100 RESISTOR 22.6K 1% .125W F TC=0+=100	54240 54240 54240 54240	C4-1/8-T0:5111-F C4-1/8-T0-2252-F C4-1/8-T0-2101-F C4-1/8-T0-2262-F C4-1/8-T0-2262-F
A13R6 A13R8 A13R8 A13R10 A13R11	0757-0349 0698-4425 0757-0123 0757-0433 0698-4425	50360	5 1	RESISTOR 22.6K 1% .125M F TC=0+-100 RESISTOR 1.54K 1% .125M F TC=0+-100 RESISTOR 34.6K 1% .125M F TC=0+-100 RESISTOR 34.5K 1% .125M F TC=0+-100 RESISTOR 1.54K 1% .125M F TC=0+-100 RESISTOR 1.54K 1% .125M F TC=0+-100	54249 54249 54249 54249	C401/807002862=F C401/8070015410F O75700123 CA01/807003321=F C401/8070035410F
A13R12 A13R13 A13R14 A13R15 A13R100	0757-0401 0698-4421 0757-0401 0757-0422 0757-0338	0 9 0 8 9	9 3 2 1	RESISTOR 100 1% .125W F TC=00+=100 RESISTOR 249 1% .125W F TC=00+=100 RESISTOR 100 1% .125W F TC=00+=100 RESISTOR 909 1% .125W F TC=00+=100 RESISTOR 1K 1% .25W F TC=00+=100	54846 54246 54246 54246	C4=1/8=70=101=F C3=1/8=70=249R=F C4=1/8=70=101=F C4=1/8=70=909R=F C5=1/4=70=1001oF
A13R101 A13R102 A13R103 A13R104 A13R105	0083-1055 2100-3358 0757-0442 0098-4421 0698-4421	53966	1 1 2	RESISTOR 1M 5% 25W FC TC#=800/+900 RESISTOR=TRWR 1M 20% C SIDE=ADJ 1=TRN RESISTOR 10K 1% 125W F TC#0+0100 RESISTOP 249 1% 125W F TC#0+0100 RESISTOR 249 1% 125W F TC#0+0100	01121 28480 24546 24546 24546	CB1055 2100-3358 CA-1/8-70-1002-F C4-1/8-70-249R-F C4-1/8-70-249R-F
Ai3R106 Ai3R107 Ai3R108 Ai3R109 Ai3R110	0698-0082 0698-0082 0698-4435 0698-4435	77227	6	RESISTOR 464 1% 125W F TC=0+=100 RESISTOR 464 1% 125W F TC=0+=100 RESISTOR 2.49K 1% 125W F TC=0+=100 RESISTOR 2.49K 1% 125W F TC=0+=100 RESISTOR 7.49K 1% 125W F TC=0+=100 RESISTOR 511 1% 125W F TC=0+=100	24546 24546 24546 24546	C4-1/8-T0-4640=F C4-1/8-T0-4640=F C4-1/8-T0-2491=F C4-1/8-T0-2491=F C4-1/8-T0-5118=F

Table 6-3. Replaceable Parts (cont'd)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A13R111 A13R112 A13R120 A13R121 A13R122	0698-4469 6757-0442 6757-0407 0757-0407 0757-0407	29 6 7	1 .a	RESISTOR 1.15K 1X .125W F TC#0+=100 RESISTOR 10K 1% .125W F TC#0+=100 RESISTOR 200 1X .125W F TC#0+=100 RESISTOR 200 1X .125W F TC#0+=100 RESISTOR 1.33K 1% .125W F TC#0+=100	54246 54246 54246 54246	C4=1/8=T0=1151=F C4=1/8=T0=1002=F C4=1/8=T0=201=F C4=1/8=T0=211=F C4=1/8=T0=31331=F
A13R123 A13R124 A13R125 A13R126 A13R127	2100=3351 0698-4425 0757-0401 0757-0401 0757-0417	80008	1	#ESISTOR-TRMR 500 10% C SIGE-ADJ 1-TRN #ESISTOR 1,54K 1% ,125W F TC=0+-100 #ESISTOR 100 1% ,125W F TC=0+-100 #ESISTOR 100 1% ,125W F TC=0+-100 #ESISTOR 562 1% ,125W F TC=0+-100	\$4249 \$4249 \$4249 \$4249 \$4249	2100=3351 C401/8=T0=1541=F C401/8=T0=101=F C401/8=T0=101=F C401/8=T0=562R=F
A13R128 A13R129 A13R130 A13R131 A13R140	2100-3095 0757-0417 0757-0401 0757-0401 0757-0401	5 8 0 0 0	1	RESISTOR-TRMR 200 10% C SIDE-ADJ 17-TRN RESISTOR 562 1% .125W F TC=0+-100 RESISTOR 100 1% .175W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100	\$4246 \$4246 \$4246 \$4249	#3R201 C4=1/8=T0=562R=F C4=1/8=T0=101=F C4=1/8=T0=101=F C4=1/8=T0=101=F
A13R141 A13R142 A13R143 A13R144 A13R200	0757-0422 2100-3550 0757-0407 0757-0407 0757-0394	W W O O O	1 8	RESISTOR 909 1% .125W F TC=04-100 RESISTOR-TPMR 200 10% C SIDE-ADJ 1-TRN RESISTOR 200 1% .125W F TC=04-100 RESISTOR 200 1% .125W F TC=04-100 RESISTOR 51.1 1% .125W F TC=04-100	24549 24549 24549 24549	C4-4/8-T0-909R-F 2100-3350 C4-1/8-T0-201-F C4-1/8-T0-21:F C4-1/8-T0-91R1-F
A13R201 A13R202 A13R203 A13R204 A13R205	0757+0394 0757+0346 0757+0346 0757+0260 0757+0280	0 2 2 3 3	S	RESISTOR 51,1 1% .125W F TC=0+=100 RESISTOR 10 1% .125W F TC=0+=100 RESISTOR 10 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100	54546 54546 54546 64546	C4-1/8-T0-91P1-F C4-1/8-T0-10P0-F C4-1/8-T0-10P0-F C4-1/8-T0-1001-F C4-1/8-T0-1001-F
A13R206 A13R207 A13R206 A13R209 A13R210	0757-0280 0757-0280 0698-4444 0698-4444 2100-3123	33350	2	RESISTOR 1K 1% .125W F TC#0+0100 RESISTOR 1K 1% .125W F TC#0+0100 RESISTOR 4.87K 1% .125W F TC#0+0100 RESISTOR 4.87K 1% .125W F TC#0+0100 RESISTOR 4.87K 1% .125W F TC#0+0100 RESISTOR-TRMR 500 10% C SIDE+ADJ 17+TRN	24546 24546 24546 24546 02111	C4 = 1 /8 = T0 = 1 0 0 1 = F C4 = 1 /8 = T0 = 1 0 0 1 = F C4 = 1 /6 = T0 = 48 7 1 = F C4 = 1 /8 = T0 = 48 7 1 = F 4 3 P 5 0 1
A13R211 A13R212 A13R230 A13R231 A13R232	0098-4435 0698-4425 0698-4425 0757-0401 0757-0416	4000N		RESISTOR 2,49K 1% ,125W F TC80+0100 RESISTOR 1,54K 1% ,125W F TC80+0100 RESISTOR 1,54K 1% ,125W F TC80+0100 RESISTOR 100 1% ,125W F TC80+100 RESISTOR 511 1% ,125W F TC80+0100	24546 24546 24546 24546 24546	C4-1/8-70-2491-F C4-1/8-70-1541-F C4-1/8-70-101-F C4-1/8-70-511R-F C4-1/8-70-511R-F
A13R300 A13R301 A13R302 A13R303 A13R304	0698-4435 0757-0394 0757-0394 0757-0417 0757-0417	**************************************		RESISTOR 2,49K 1% ,125W F 1C80+-100 RESISTOR 51,1 1% ,125W F 1C80+-100 RESISTOR 51,1 1% ,125W F 1C80+-100 RESISTOR 502 1% ,125W F 1C80+-100 RESISTOR 502 1% ,125W F 1C80+-100	24546 24546 24546 24546	C4=1/8=70=2491=F C4=1/8=70=51Rt=F C4=1/8=70=51Rt=F C4=1/8=70=562R=F C4=1/8=70=562R=F
413R305 413R306 413R307 413R306 413R310	0698+4037 0698+4435 0698+4037 0698+4435 0757-0384	TAORO	6	RESISTOR 46,4 1% .125W P TC#0+*100 RESISTOR 2.49K 1% .125W F TC#0+*100 RESISTOR 46,4 1% .125W F TC#0+*100 RESISTOR 2.49K 1% .125W F TC#0+*100 RESISTOR 20 1% .125W F TC#0+*100	24546 24546 24546 24546 19701	C4+1/8+10+46R4+F C4+1/8+10+46R4+F C4+1/8+10+46R4+F C4+1/8+10+2491+F MF4C1/8+10+20R0+F
A13R311 A13R312 A13R313 A13R314 A13R315	0757-0384 0698-4037 0698-4037 0757-0394 0757-0394	80000		RESISTOR 20 1% ,125W F TCmg+-100 RESISTOR 46,4 1% ,125W F TCm0+-100 RESISTOR 46,4 1% ,125W F TCm0+-100 RESISTOR 51,1 1% ,125W F TCm0+-100 RESISTOR 51,1 1% ,125W F TCm0+-100	19701 24546 24546 24546 24546	MF4C1/8=70=20R0=F C4=1/8=70=46R4=F C4=1/8=70=46R4=F C4=1/8=70=51R1=F C4=1/8=70=51R1=F
A13R316 A13R317 A13R318 A13R319 A13R320	0698-4037 0698-4037 0698-3437 0698-3437 0757-0401	08800	ű	RESISTOR 46.4 1% .125W F TC=0+=100 RESISTOR 46.4 1% .125W F TC=0+=100 RESISTOR 133 1% .125W F TC=0+=100 RESISTOR 133 1% .125W F TC=0+=100 RESISTOR 100 1% .125W F TC=0+=100	242 242 242 242 242 242 242 242 242 242	C4-1/8-T0-46R4-F C4-1/8-T0-46R4-F C4-1/8-T0-133R-F C4-1/8-T0-133R-F C4-1/8-T0-101-F
A13R321 A13R322 A13R323 A13R324	0698-3437 0698-3437 0757-0394 0757-0394	Soons		RESISTOR 133 1% .125W F TC#0+=100 RESISTOR 133 1% .125W F TC#0+=100 RESISTOR 51.1 1% .125W F TC#0+=100 RESISTOR 51.1 1% .125W F TC#0+=100	54249 54249 54249 54249	Cq=1/8=T0=133R=F Cq=1/8=T0=133R=F Cq=1/8=T0=51R1=F Cq=1/8=T0=51R1=F
A1301 A1302 A1303 A1304	1826=0111 1826=0111 1826=0389 1858=0030	7 7 1 6	? 1 1	IC OP AMP GP DUAL TO-99 IC DP AMP GR OUAL TO-99 IC TRANSISTOR ARRAY 16-RIN CER DIF	04713 04713 28480 28460	MC1458G MC1458G 1826-0389 1836-0030
A13VR1 A13VR100 A13VR200 A13VR300 A13VR301	1902=0041 1902=0048 1902=3048 1902=3048 1902=3203	4 1776	1 1 2	DIODE-ZNR 5,11V 5% DO-7 PDR,4W TCR-,009% DIODE-ZNR 6,81V 5% DO-7 PDR,4W TCR+,043% DIODE-ZNR 3,48V 5% DO-7 PDR,4W TCR-,058% DIODE-ZNR 3,48V 5% DO-7 PDR,4W TCR-,058% DIODE-ZNR 14,7V 5% DO-7 PDR,4W TCR+,057%	28480 28480 28480 28480	1902=0041 1902=0048 1902=3048 1902=3048 1902=3008
A13W1 A13W2	08165=61609 08165=61609		\$	CABLE ASSEMBLY, VCO/AM CABLE ASSEMBLY, VCO/AM	28480 28480	08165-01609 08165-61609

Ŷ			4)	
			ŧ	
940 197 207				
(4)	er.		4	
940			*	
			-i	
	Å,			181