

Hashing

Database System Concepts, 7th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Static Hashing

- A bucket is a unit of storage containing one or more entries (a bucket is typically a disk block).
 - we obtain the bucket of an entry from its search-key value using a hash function
- Hash function h is a function from the set of all search-key values K to the set of all bucket addresses B.
- Hash function is used to locate entries for access, insertion as well as deletion.
- Entries with different search-key values may be mapped to the same bucket; thus entire bucket has to be searched sequentially to locate an entry.
- In a hash index, buckets store entries with pointers to records
- In a hash file-organization buckets store records

Handling of Bucket Overflows

- Bucket overflow can occur because of
 - Insufficient buckets
 - Skew in distribution of records. This can occur due to two reasons:
 - multiple records have same search-key value
 - chosen hash function produces non-uniform distribution of key values
- Although the probability of bucket overflow can be reduced, it cannot be eliminated; it is handled by using overflow buckets.

Handling of Bucket Overflows (Cont.)

- Overflow chaining the overflow buckets of a given bucket are chained together in a linked list.
- Above scheme is called closed addressing (also called closed hashing or open hashing depending on the book you use)
 - An alternative, called open addressing (also called open hashing or closed hashing depending on the book you use) which does not use overflow buckets, is not suitable for database applications.

Example of Hash File Organization

bucket 0			
bucket 1			
15151	Mozart	Music	40000
bucket 2			
32343	El Said	History	80000
58583	Califieri	History	60000
bucket 3			
22222	Einstein	Physics	95000
33456	Gold	Physics	87000
98345	Kim	Elec. Eng.	80000

Hash file organization of *instructor* file, using *dept_name* as key.

Deficiencies of Static Hashing

- In static hashing, function h maps search-key values to a fixed set of B of bucket addresses. Databases grow or shrink with time.
 - If initial number of buckets is too small, and file grows, performance will degrade due to too much overflows.
 - If space is allocated for anticipated growth, a significant amount of space will be wasted initially (and buckets will be underfull).
 - If database shrinks, again space will be wasted.
- One solution: periodic re-organization of the file with a new hash function
 - Expensive, disrupts normal operations
- Better solution: allow the number of buckets to be modified dynamically.

Dynamic Hashing

- Periodic rehashing
 - If number of entries in a hash table becomes (say) 1.5 times size of hash table,
 - create new hash table of size (say) 2 times the size of the previous hash table
 - Rehash all entries to new table
- Linear Hashing
 - Do rehashing in an incremental manner
- Extendable Hashing
 - Tailored to disk based hashing, with buckets shared by multiple hash values
 - Doubling of # of entries in hash table, without doubling # of buckets

Comparison of Ordered Indexing and Hashing

- Cost of periodic re-organization
- Relative frequency of insertions and deletions
- Is it desirable to optimize average access time at the expense of worst-case access time?
- Expected type of queries:
 - Hashing is generally better at retrieving records having a specified value of the key.
 - If range queries are common, ordered indices are to be preferred
- In practice:
 - PostgreSQL supports hash indices, but discourages use due to poor performance
 - Oracle supports static hash organization, but not hash indices
 - SQLServer supports only B⁺-trees

Multiple-Key Access

- Use multiple indices for certain types of queries.
- Example:

select ID

from instructor

where dept_name = "Finance" and salary = 80000

- Possible strategies for processing query using indices on single attributes:
 - 1. Use index on *dept_name* to find instructors with department name Finance; test *salary* = 80000
 - 2. Use index on *salary* to find instructors with a salary of \$80000; test *dept_name* = "Finance".
 - 3. Use *dept_name* index to find pointers to all records pertaining to the "Finance" department. Similarly use index on *salary*. Take intersection of both sets of pointers obtained.

Indices on Multiple Keys

- Composite search keys are search keys containing more than one attribute
 - E.g. (dept_name, salary)
- Lexicographic ordering: (a₁, a₂) < (b₁, b₂) if either
 - $a_1 < b_1$, or
 - $a_1 = b_1$ and $a_2 < b_2$

Indices on Multiple Attributes

Suppose we have an index on combined search-key (dept_name, salary).

- With the where clause where dept_name = "Finance" and salary = 80000 the index on (dept_name, salary) can be used to fetch only records that satisfy both conditions.
 - Using separate indices in less efficient we may fetch many records (or pointers) that satisfy only one of the conditions.
- Can also efficiently handlewhere dept_name = "Finance" and salary < 80000
- But cannot efficiently handle where dept_name < "Finance" and balance = 80000</p>
 - May fetch many records that satisfy the first but not the second condition

Other Features

- Covering indices
 - Add extra attributes to index so (some) queries can avoid fetching the actual records
 - Store extra attributes only at leaf
 - Why?
- Particularly useful for secondary indices
 - Why?

Creation of Indices

- E.g.
 create index takes_pk on takes (ID,course_ID, year, semester, section)
 drop index takes pk
- Most database systems allow specification of type of index, and clustering.
- Indices on primary key created automatically by all databases
 - Why?
- Some database also create indices on foreign key attributes
 - Why might such an index be useful for this query:
 - $takes \bowtie \sigma_{name='Shankar'}$ (student)
- Indices can greatly speed up lookups, but impose cost on updates
 - Index tuning assistants/wizards supported on several databases to help choose indices, based on query and update workload