

Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System

Kandler Smith*, Aron Saxon, Matthew Keyser, Blake Lundstrom
National Renewable Energy Laboratory

Ziwei Cao, Albert Roc SunPower Corp.

American Control Conference Seattle, WA May 23-26, 2017

*kandler.smith@nrel.gov

Applications of Energy Storage (ES) on the Grid

Example Application: Behind-the-meter ES enables PV use in locations such as Hawaii (where power export is prohibited)

Figure: "Solar Plus: An Holistic Approach to Distributed Solar PV" Eric O'Shaughnessy, Kristen Ardani, Dylan Cutler, Robert Margolis (NREL Pub #68371)

Outline

- Degradation mechanisms
- Modeling approach
- Aging tests
- Model and parameter identification
- Example life prediction

Li-ion Working Principles

Neg. Electrode
Graphite
Hard carbon
Silicon
Titanate
Li metal

Pos. Electrode
LiXO₂, X = NiMnCoCo NiCoAlLiMn₂O₄,
LiFePO₄

Figure credit: Gi-Heon Kim

Electrochemical Operating Window

Electrochemical Window – Degradation

NREL Battery Life Predictive Model Framework

Reduced-order models for physical fade mechanisms, e.g.

- SEI growth & damage
- Particle fracture
- Electrode isolation
- Electrolyte decomposition
- Gas generation, delamination
- Li plating

Semi-automated software aids model equation selection and parameter identification

ł	Mechanism	Trajectory equation	State equation	Parameters
	Diffusion- controlled reaction	$x(t) = kt^{1/2}$	$\dot{x}(t) = \frac{k}{2} \left(\frac{k}{x(t)} \right)$	k-rate (p=1/2)
	Kinetic- controlled reaction	x(t) = kt	$\dot{x}(t) = k$	k – rate (p=1)
	Mixed diffusion/ kinetic	$x(t) = kt^p$	$\dot{x}(t) = kp \left(\frac{k}{x(t)}\right)^{\left(\frac{1-p}{p}\right)}$	k – rate p – order, 0.3 <p<1< td=""></p<1<>
	Diffusion controlled reaction with mechanical damage	See Appendix A	$\dot{D} = \frac{dN}{dt} k_D \cdot \left(\sqrt{D}\right)^p$ $\dot{x}_0(t) = \frac{k}{2} \left(\frac{k}{x(t)}\right)$	k – rate p – order
	Cyclic fade-	x(N) = kN	$\dot{x}_{j}(t) = D \frac{k}{2} \left(\frac{k}{x(t)} \right)$ $\dot{x}(N) = k$	k-rate
	linear Cyclic fade – accelerating.	$x(N) = \left[x_0^{1+p} + kx_0^p (1+p)N\right]^{\frac{1}{1+p}}$	$\dot{x}(N) = k \left(\frac{x_0}{x(N)}\right)^p$	$(p=0)$ $k-rate$ $p-order,$ $0 \ge p > 3$
	Break-in process	$x(t) = M(1 - \exp(-kt))$ or $x(N) = \dots$	$\dot{x}(t) = k\big(M - x(t)\big)$	M- maximum fade k-rate
	Sigmoidal reaction	$x(t) = M \left[1 - \frac{2}{1 + \exp(kt^p)} \right]$ or $x(N) = \dots$	$\dot{x}(t) = \frac{2MkpX(t)\exp(kX(t))}{\left[1 + \exp(kX(t))\right]^2}$ $X(t) = \left\{\frac{1}{k}\ln\left(\frac{2}{1 - \frac{x(t)}{M}} - 1\right)\right\}^{\frac{1}{p}}$	M- maximum fade k-rate p-order
	x, D: st			

 k, k_D : fade rates

p: order

M: maximum extent of fade

S. Santhanagopalan, **K. Smith**, J. Neubauer, G.-H. Kim, A. Pesaran, M. Keyser, Design and Analysis of Large Lithium-Ion Battery Systems, Artech House, 2015.

Model assumes measured capacity is minimum of:

- 1. Cycleable lithium, Q_{Li}
- 2. Negative electrode sites, Q_{neg}
- 3. Positive electrode sites, Q_{pos}

Aging tests – Kokam 75Ah Gr/NMC Li-ion cells

- Tests design to include both benign and highly accelerated aging
 - Some real-world, some reaching 30% capacity fade in 6-9 months
- Pure storage (0%), partial cycling (50% DC*), & fully accelerated cycling (100% DC)
 - Separate calendar from cycling fade
- Capacity check run at test temperature
 - Simplifies testing but makes model ID more difficult
- Ideal test matrix would include more aging conditions

Gr = Graphite negative electrode NMC = Nickel-Manganese-Cobalt positive electrode

Cycling tests					
Temperature	DOD	Dis./charge rate	Duty- cycle*	# of cells	
23°C	80%	1C/1C	100%	2	
30°C	100%	1C/1C	100%	1	
30°C	80%	1C/1C	50%	1	
0°C	80%	1C/0.3C	100%	2	
45°C	80%	1C/1C	100%	1	
Storage tests					
Temperature	nperature SOC				
30°C 100%				1	
45°C 65%				1	
45°C 100%				1	
55°C 100%			1		

C/5 Capacity vs. Time

- Tight agreement for replicate cells 1&2 at 23°C
- Some divergence for replicate cells 6&7 at 0°C
- Unexplained temporary capacity increase for 55°C storage cell

C/5 Capacity vs. Cycles

- Storage data omitted
- Just 6% capacity loss after 3000 cycles at 23°C, 80% DOD

Capacity Evolution-Reversible and Irreversible

Q_{Pos} Capacity Break-in & Initial Temperature Dependence

 Hypothesize initial cycles induce microcracks in NMC particles, increasing electrolyte wetting and surface area

Q_{Li} Local Models

- Local models: Separately fit b₀, b₁, b₂ for each data set, excluding
 - First 50 days of data (allows y-intercept to vary with break-in)
 - Knee at 0°C (to be captured later with Q_{neg} model)

 Choice of mechanisms justified by R²=0.990 and flat residuals

Q₁; Magnitude of break-in Li-loss

- Least degraded cells show ~3-4% excess Li capacity
- High temperature causes rapid loss in first 50 days
 - Open-circuit voltage and DOD also increase loss
 - Evidence of film layer formation at positive electrode?

$$y_0 - b_3 (1 - \exp(-t/\tau_{b3}))$$

$$y_0 - b_3 \left(1 - \exp(-t/\tau_{b3}) \right)$$
 $b_3 = b_{3,ref} \exp \left[-\frac{E_{a,b_3}}{R_{ug}} \left(\frac{1}{T(t)} - \frac{1}{T_{ref}} \right) \right] \exp \left[\frac{\alpha_{b_3} F}{R_{ug}} \left(\frac{V_{OC}(t)}{T(t)} - \frac{V_{ref}}{T_{ref}} \right) \right] \left(1 + \theta DOD_{max} \right)$

× 10 -3

Q_{Li} Calendar fade rate

Local model $Q_{Li} = d_0 \left[b_0 \left(b_1 \right)^{1/2} - b_2 N \right]$

b₁ rate model

$$b_{1} = b_{1,ref} \exp \left[-\frac{E_{a,b_{1}}}{R_{ug}} \left(\frac{1}{T(t)} - \frac{1}{T_{ref}} \right) \right] \exp \left[\frac{\alpha_{b_{1}} F}{R_{ug}} \left(\frac{U_{-}(t)}{T(t)} - \frac{U_{ref}}{T_{ref}} \right) \right] \exp \left[\gamma_{b_{1}} (DOD_{\text{max}})^{\beta_{b_{1}}} \right]$$

- Visualization of rates suggests rate model equations
- Fitted rate model parameters provide initial guess for global model parameters

Q_{Li} Global Model

- With equations known, parameters fit to all data simultaneously
- R² = 0.985, RMSE = 1% of capacity, flat residuals

Q_{Li} global model

$$Q_{Li} = d_0 \begin{bmatrix} b_0 - b_1 t^{1/2} - b_2 N - b_3 (1 - \exp(-t/\tau_{b3})) \\ \frac{SEI\ growth}{with\ calendar} - \frac{Loss\ with}{cycling} & \frac{Break-in\ mechanism}{at\ BOL} \end{bmatrix}$$

$$b_{1} = b_{1,ref} \exp \left[-\frac{E_{a,b_{1}}}{R_{ug}} \left(\frac{1}{T(t)} - \frac{1}{T_{ref}} \right) \right] \exp \left[\frac{\alpha_{b_{1}} F}{R_{ug}} \left(\frac{U_{-}(t)}{T(t)} - \frac{U_{ref}}{T_{ref}} \right) \right] \exp \left[\gamma_{b_{1}} (DOD_{\text{max}})^{\beta_{b_{1}}} \right]$$

$$b_{2} = b_{2,ref} \exp \left[-\frac{E_{a,b_{2}}}{R_{ug}} \left(\frac{1}{T(t)} - \frac{1}{T_{ref}} \right) \right]$$

$$b_{3} = b_{3,ref} \exp \left[-\frac{E_{a,b_{3}}}{R_{ug}} \left(\frac{1}{T(t)} - \frac{1}{T_{ref}} \right) \right] \exp \left[\frac{\alpha_{b_{3}} F}{R_{ug}} \left(\frac{V_{OC}(t)}{T(t)} - \frac{V_{ref}}{T_{ref}} \right) \right] \left(1 + \theta \ DOD_{\text{max}} \right)$$

Q_{Neg} Model

- Captures knee with cold temperature cycling
- Minor importance in most real-world scenarios

Q_{Neg} global model

$$\frac{dQ_{neg}}{dN} = -\left(\frac{c_2}{Q_{neg}}\right)$$

$$Q_{neg} = \left[c_0^2 - 2c_2c_0 \ N\right]^{\frac{1}{2}}$$

$$c_0 = c_{0,ref} \exp \left[-\frac{E_{a,c0}}{R_{ug}} \left(\frac{1}{T(t)} - \frac{1}{T_{ref}} \right) \right]$$

$$c_2 = c_{2,ref} \exp \left[-\frac{E_{a,c_2}}{R_{ug}} \left(\frac{1}{T(t)} - \frac{1}{T_{ref}} \right) \right] (DOD)^{\beta_{c_2}}$$

Lifetime analysis – PV self consumption

- Model reformulated in rate-based form
- SOC(t) discretized into microcycles, DOD_i, using Rainflow algorithm
- Application data

- Multi-year,4-seasonsimulation
- Same cycle each

Impact of DOD and thermal management

Conclusions

- Battery energy storage can enable increased integration of renewable power generation on the grid
- Battery life modeling methodology formalized, aiding systems design process
 - Capacity error: $L_2 = 1\%$, $L_{\infty} = 5\%$
 - For studied Gr/NMC Li-ion ES technology, best to restrict daily cycles < 55% DOD with occasional larger excursions
 - Thermal management extends life from 7 to 10 years
- Battery aging experiments are time consuming & expensive
- Additional model validation needed
 - Longer duration
 - Variable cycling & temperature
- Life model accuracy may be enhanced in the future by coupling with electrochemical modeling & diagnostics

Acknowledgements

- U.S. DOE Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Program
- SunPower Corporation

Extra Slides

Previous Validation of Life Model

Pack Resistance (Ω)

Eaton Corp. ARPA-E AMPED project resulting in 35% smaller HEV battery (PI: Dr. Chinmaya Patil/Eaton)

Cell-level aging tests

Prognostic model

characterization

Pack-level HIL tests
HEV prognostic control
algorithm validation

Model tuned to 6 months simple cell aging data matches 33 months 4-season cycling with same accuracy