Data Sheet No. PD60299

IRS212(7, 71, 8, 81)(S)PbF

CURRENT SENSING SINGLE CHANNEL DRIVER

Features

- Floating channel designed for bootstrap operation Fully operational to +600 V
 Tolerant to negative transient voltage dV/dt immune
- Application-specific gate drive range: Motor Drive: 12 V to 20 V (IRS2127/IRS2128) Automotive: 9 V to 20 V (IRS21271/IRS21281)
- Undervoltage lockout
- 3.3 V, 5 V, and 15 V input logic compatible
- FAULT lead indicates shutdown has occured
- Output in phase with input (IRS2127/IRS21271)
- Output out of phase with input (IRS2128/IRS21281)
- · RoHS compliant

Description

The IRS2127/IRS2128/IRS21271/IRS21281 are high voltage, high speed power MOSFET and IGBT drivers. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL outputs, down to 3.3 V. The protection circuity detects over-current in the driven power transistor and terminates the gate drive voltage. An open drain FAULT signal is provided to indicate that an over-current shutdown has occurred. The output

Product Summary

VOFFSET 600 V max.

I_O+/- 200 mA / 420 mA

VOUT 12 V - 20V 9 V - 20 V
(IRS2127/IR2128) (IRS21271/IR21281)

VCSth 250 mV or 1.8 V

ton/off (typ.) 150 ns & 150 ns

Packages

driver features a high pulse current buffer stage designed for minimum cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side or low-side configuration which operates up to 600 V.

Typical Connection

IRS212(7, 71, 8, 81)(S)PbF

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units	
V _B	High-side floating supply voltage	-0.3	625		
VS	High-side floating offset voltage		V _B - 25	V _B + 0.3	
V _{HO}	High-side floating output voltage		V _S - 0.3	V _B + 0.3	
V _{CC}	Logic supply voltage		-0.3	25	V
VIN	Logic input voltage	-0.3	V _{CC} + 0.3		
V _{FLT}	FAULT output voltage	-0.3	V _{CC} + 0.3		
Vcs	Current sense voltage	V _S - 0.3	V _B + 0.3		
dV _S /dt	Allowable offset supply voltage transient	_	50	V/ns	
D ₅	P _D Package power dissipation @ TA ≤ +25 °C 8-Lead DIP 8-Lead SOIC		_	1.0	W
r _D			_	0.625	VV
Dth	8-Lead DIP		ı	125	°C/W
Rth _{JA}	Thermal resistance, junction to ambient	8-Lead SOIC	_	200	C/VV
TJ	Junction temperature	_	150		
TS	Storage temperature	-55	150	°C	
TL	Lead temperature (soldering, 10 seconds)		300		

Recommended Operating Conditions

The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at 15 V differential.

Symbol	Definition		Min.	Max.	Units
\/_	High-side floating supply voltage	(IRS2127/IRS2128)	V _S + 12	V _S + 20	
V _B		(IRS21271/IRS21281)	V _S + 9	V _S + 20	
٧s	High-side floating offset voltage		Note 1	600	
V _{HO}	High-side floating output voltage		Vs	V _B	
Vcc	Logic supply voltage		10	20	V
V _{IN}	Logic input voltage		0	Vcc	
V _{FLT}	FAULT output voltage		0	V _{CC}	
V _{CS}	Current sense signal voltage		VS	V _S + 5	
T _A	Ambient temperature		-40	125	°C

Note 1: Logic operational for V_S of -5 V to +600 V. Logic state held for V_S of -5 V to -V_{BS}. (Please refer to the Design Tip DT97-3 for more details).

IRS212(7, 71, 8, 81)(S)PbF

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15 V, C_L = 1000 pF and T_A = 25 °C unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Fig. 3.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
t _{on}	Turn-on propagation delay	_	150	200		V _S = 0 V
t _{off}	Turn-off propagation delay	_	150	200		V _S = 600 V
t _r	Turn-on rise time	_	80	130		
t _f	Turn-off fall time	_	40	65	ns	
t _{bl}	Start-up blanking time	550	750	950		•
t _{cs}	CS shutdown propagation delay	_	65	360		<u></u>
t _{flt}	CS to FAULT pull-up propagation delay	_	270	510		

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15 V and T_A = 25 °C unless otherwise specified. The V_{IN} , V_{TH} , and I_{IN} parameters are referenced to COM. The V_O and I_O parameters are referenced to V_S .

Symbol	Definition		Min.	Тур.	Max.	Units	Test Conditions	
V _{IH}	Logic "1" input voltage Logic "0" input voltage	(IRS2127/IRS21271) (IRS2128/IRS21281)	2.5	ı	_	V		
V _{IL}	Logic "0" input voltage Logic "1" input voltage	(IRS2127/IRS21271) (IRS2128/IRS21281)	_		0.8	V	$V_{CC} = 10 \text{ V to } 20 \text{ V}$	
V _{CSTH+}	CS input positive	(IRS2127/IRS2128)	180	250	320	mV		
· CS1H+	going threshold	(IRS21271/IRS21281)	1.5	1.8	2.1			
V _{OH}	High level output voltage, V	BIAS - VO	_	0.05	0.2	V	IO = 2 mA	
V_{OL}	Low level output voltage, V	0	_	0.02	0.1		10 = 2 111A	
I_{LK}	Offset supply leakage curre	ent	_	_	50		VB = VS = 600 V	
I _{QBS}	Quiescent V _{BS} supply curr	ent	_	300	800		V _{IN} = 0 V or 5 V	
I _{QCC}	Quiescent V _{CC} supply current		_	60	120	μΑ	V - 0	
I _{IN+}	Logic "1" input bias current		_	7.0	15		VIN = 5 V	
I _{IN-}	Logic "0" input bias current		_	_	5.0		$V_{IN} = 0 V$	
I _{CS+}	"High" CS bias current		_	_	5.0		$V_{CS} = 3 V$	
I _{CS} -	"High" CS bias current		_	_	5.0		$V_{CS} = 0 V$	
V _{BSUV+}	V _{BS} supply undervoltage	(IRS2127/IRS2128)	8.8	10.3	11.8			
VBSUV+	positive going threshold	(IRS21271/IRS21281)	6.3	7.2	8.2	V		
V _{BSUV-}	V _{BS} supply undervoltage	(IRS2127/IRS2128)	7.5	9.0	10.6			
*BSUV-	negative going threshold	(IRS21271/IRS21281)	6.0	6.8	7.7			
I _{O+}	Output high short circuit pulsed current		200	290	_	mA	$V_{O} = 0 \text{ V}, V_{IN} = 5 \text{ V}$ PW \le 10 \mus	
I _O -	Output low short circuit pulsed current		420	600	_	1117.	$V_{O} = 15 \text{ V}, V_{IN} = 0 \text{ V}$ PW \le 10 \mus	
R _{on,FLT}	FAULT - low on resistance		_	125	_	Ω		

IRS212(7, 71, 8, 81)(S)PbF

Functional Block Diagram IRS2127/IRS21271

Functional Block Diagram IRS2128/IRS21281

IRS212(7, 71, 8, 81)(S)PbF

Lead Definitions

Symbol	Description
V _{CC}	Logic and gate drive supply
IN	Logic input for gate driver output (HO), in phase with HO (IRS2127/IRS21271) out of phase with HO (IRS2128/IRS21281)
FAULT	Indicates over-current shutdown has occurred, negative logic
COM	Logic ground
V _B	High-side floating supply
НО	High-side gate drive output
V _S	High-side floating supply return
CS	Current sense input to current sense comparator

Lead Assignments

IRS212(7, 71, 8, 81)(S)PbF

Figure 1. Input/Output Timing Diagram

Figure 3. Start-Up Blanking Time Waveform Definitions

Figure 4. CS Shutdown Waveform Definitions

Figure 5. CS to FAULT Waveform Definitions

IRS212(7, 71, 8, 81)(S)PbF

Figure 6A. Turn-On Delay Time vs. Temperature

Figure 6B. Turn-On Delay Time vs. Voltage

Figure 7A. Turn-Off Delay Time vs.

Temperature

Figure 7B. Turn-Off Delay Time vs. Voltage

IRS212(7, 71, 8, 81)(S)PbF

Figure 8A. Turn-On Rise Time vs.
Temperature

Figure 8B. Turn-On Rise Time vs. Voltage

Figure 9A. Turn-Off Fall Time vs.
Temperature

Figure 9B. Turn-Off Fall Time vs. Voltage

IRS212(7, 71, 8, 81)(S)PbF

Figure 10A. Start-Up Blanking Time vs.
Temperature

Figure 10B. Start-Up Blanking Time vs. Voltage

Figure 11A. CS Shutdown Prop. Delay vs .

Temperature

Figure 11B. CS Shutdown Prop. Delay vs. Voltage

IRS212(7, 71, 8, 81)(S)PbF

Figure 12A. CS to FAULT Pull-Up Prop. Delay vs. Temperature

Figure 12B. CS to FAULT Pull-Up Prop. Delay vs. Voltage

Figure 13A. Logic "1" ("0" for 2128) V_{IH}
Threshold vs. Temperature

Figure 13B. Logic "1" ("0" for 2128) $\rm V_{IH}$ Threshold vs. Voltage

18

20

IRS212(7, 71, 8, 81)(S)PbF

Figure 14A. Logic "0" ("1" for 2128) $V_{\rm IL}$ Threshold vs. Temperature

Figure 14B. Logic "0" ("1" for 2128) $V_{\rm IL}$ Threshold vs. Voltage

Figure 15A. CS Input Positive Going Voltage vs. Temperature

Figure 15B. CS Input Positive Going Voltage vs. Voltage

IRS212(7, 71, 8, 81)(S)PbF

Figure 16A. High Level Output (I_o = 2 mA) vs. Temperature

Figure 16B. High Level Output ($I_0 = 2 \text{ mA}$) vs . Voltage

Figure 17A. Low Level Output (I_o = 2 mA) vs. Temperature

Figure 17B. Low Level Output ($I_0 = 2 \text{ mA}$) vs . Voltage

IRS212(7, 71, 8, 81)(S)PbF

Figure 18A. Offset Supply Leakage Current vs. Temperature

Figure 18B. High-Side Floating Well Offset Supply Leakage vs. Voltage

Figure 19A. $V_{\rm BS}$ Supply Current vs. Temperature

Figure 19B. $V_{\rm BS}$ Supply Current vs. Voltage

IRS212(7, 71, 8, 81)(S)PbF

Figure 20A. V_{cc} Supply Current vs. Temperature

Figure 20B. $V_{\rm cc}$ Supply Current vs. Voltage

Figure 21A. Logic "1" Input Bias Current vs.

Temperature

Figure 21B. Logic "1" Input Bias Current vs . Voltage

IRS212(7, 71, 8, 81)(S)PbF

Figure 22A. Logic "0" Input Bias Current vs.
Temperature

Figure 22B. Logic "0" Input Bias Current vs.
Voltage

Figure 23A. Logic "1" CS Bias Current vs .

Temperature

Figure 23B. Logic "1" CS Bias Current vs. Voltage

IRS212(7, 71, 8, 81)(S)PbF

Figure 24A. Logic "0" CS Bias Current vs .
Temperature

Figure 24B. Logic "0" CS Bias Current vs. Voltage

Figure 25A. $V_{\rm BS}$ UV Thre shold (+) vs. Temperature

Figure 25B. $V_{\rm BS}$ UV Threshold (+) vs. Voltage

IRS212(7, 71, 8, 81)(S)PbF

Figure 26A. $V_{\rm BS}$ UV Threshold (-) vs. Temperature

Figure 26B. \mathbf{V}_{BS} UV Threshold (-) vs. Voltage

Figure 27A. Output Source Current vs.
Temperature

Figure 27B. Output Source Current vs.
Voltage

IRS212(7, 71, 8, 81)(S)PbF

Figure 28A. Output Sink Current vs.
Temperature

Figure 28B. Output Sink Current vs. Voltage

IRS212(7, 71, 8, 81)(S)PbF

Case outlines

www.irf.com 19

8-Lead SOIC

IRS212(7, 71, 8, 81)(S)PbF

Tape & Reel 8-lead SOIC

CARRIER TAPE DIMENSION FOR 8SOICN

	M etric		Im p erial		
Code	Min	Max	Min	Max	
Α	7.90	8.10	0.311	0.318	
В	3.90	4.10	0.153	0.161	
С	11.70	12.30	0.46	0.484	
D	5.45	5.55	0.214	0.218	
E	6.30	6.50	0.248	0.255	
F	5.10	5.30	0.200	0.208	
G	1.50	n/a	0.059	n/a	
Н	1.50	1.60	0.059	0.062	

REEL DIMENSIONS FOR 8SOICN

	M etric		Im p erial		
Code	Min	Max	Min	Max	
Α	329.60	330.25	12.976	13.001	
В	20.95	21.45	0.824	0.844	
С	12.80	13.20	0.503	0.519	
D	1.95	2.45	0.767	0.096	
E	98.00	102.00	3.858	4.015	
F	n/a	18.40	n/a	0.724	
G	14.50	17.10	0.570	0.673	
Н	12.40	14.40	0.488	0.566	

IRS212(7, 71, 8, 81)(S)PbF

LEADFREE PART MARKING INFORMATION

ORDER INFORMATION

8-Lead PDIP IRS2127PbF 8-Lead PDIP IRS21271PbF 8-Lead SOIC IRS2127SPbF 8-Lead SOIC IRS21271SPbF 8-Lead SOIC Tape & Reel IRS2127STRPbF 8-Lead SOIC Tape & Reel IRS21271STRPbF 8-Lead PDIP IRS2128PbF 8-Lead PDIP IRS21281PbF 8-Lead SOIC IRS2128SPbF 8-Lead SOIC IRS21281SPbF 8-Lead SOIC Tape & Reel IRS2128STRPbF 8-Lead SOIC Tape & Reel IRS21281STRPbF

International

TOR Rectifier

The SOIC-8 is MSL2 qualified.

This product has been designed and qualified for the industrial level.

Qualification standards can be found at www.irf.com

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

Data and specifications subject to change without notice. 6/27/2007