(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 13. November 2003 (13.11.2003)

PCT

(10) Internationale Veröffentlichungsnummer WO 03/093904 A1

(51) Internationale Patentklassifikation7:

. .

G03F 7/20

(21) Internationales Aktenzeichen:

PCT/EP03/04477

(22) Internationales Anmeldedatum:

30. April 2003 (30.04.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(20) vorontenanagospinon

(30) Angaben zur Priorität: PCT/EP02/04846 102 24 361.1

3. Mai 2002 (03.05.2002) EP 24. Mai 2002 (24.05.2002) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): CARL ZEISS SMT AG [DE/DE]; Carl-Zeiss-Strasse 22, 73447 Oberkochen (DE).

- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): SCHUSTER, Karl-Heinz [DE/DE]; Rechbergweg 24, 89551 Königsbronn (DE).
- (74) Anwalt: RUFF, WILHELM, BEIER, DAUSTER & PART NER; Kronenstrasse 30, 70174 Stuttgart (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

[Fortsetzung auf der nächsten Seite]

- (54) Title: PROJECTION LENS COMPRISING AN EXTREMELY HIGH APERTURE
- (54) Bezeichnung: PROJEKTIONSOBJEKTIV HÖCHSTER APERTUR

(57) Abstract: The invention relates to a purely refractive projection lens comprising an extremely large aperture. Said projection lens is embodied as a double-convexity system having one convexity on the object side, one convexity on the image side, and a throat (7) which is located between the same. The system diaphragm (5) is arranged at a distance from the image plane in the convexity on the image side. A negative group (LG5) is arranged between the throat and the system diaphragm in the region of the divergent radiation, said negative group having an effective swell with a concave side oriented towards the image plane. The system is characterised by a high numeric aperture, few chromatic aberrations and a compact, material-saving structure.

(57) Zusammenfassung: Ein höchstaperturiges, rein refraktives Projektionsobjektiv ist als Zweibauchsystem mit einem objektseitigem Bauch, einem bildseitigen Bauch und einer dazwischenliegenden Taille (7) ausgebildet. Im bildseitigen Bauch sitzt mit Abstand vor der Bildebene die Systemblende (5). Zwischen der Taille und der

VO 03/093904

[Fortsetzung auf der nächsten Seite]

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Erklärung gemäß Regel 4.17:

- Erfindererklärung (Regel 4.17 Ziffer iv) nur für US

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

-1-

Beschreibung

Projektionsobjektiv höchster Apertur

Die Erfindung bezieht sich auf ein Projektionsobjektiv zur Abbildung eines in der Objektebene des Projektionsobjektivs angeordneten Musters in die Bildebene des Projektionsobjektivs mit Ultraviolettlicht einer vorgegebenen Arbeitswellenlänge.

Photolithographische Projektionsobjektive werden seit mehreren Jahrzehnten zur Herstellung von Halbleiterbauelementen und anderen fein strukturierten Bauteilen verwendet. Sie dienen dazu, Muster von Photomasken oder Strichplatten, die nachfolgend auch als Masken oder Retikel bezeichnet werden, auf einen mit einer lichtempfindlichen Schicht beschichteten Gegenstand mit höchster Auflösung 15 verkleinerndem Maßstab zu projizieren.

Zur Erzeugung immer feinerer Strukturen in der Größenordnung 100nm oder darunter wird versucht, die bildseitige numerische Apertur (NA) der Projektionsobjektive über die derzeit erzielbare Werte hinaus in den 20 Bereich von NA = 0,8 oder darüber zu vergrößern. Außerdem werden immer kürzere Arbeitswellenlängen von Ultraviolettlicht verwendet, vorzugsweise Wellenlängen von weniger als 260nm, beispielsweise 248nm, 193nm, 157nm oder darunter. Gleichzeitig wird versucht, die steigenden Anforderungen an die Abbildungsfähigkeit mit rein refraktiven, dioptrischen Systemen zu erfüllen, die im Vergleich zu katadioptrischen Systemen hinsichtlich Aufbau und Fertigung vorteilhaft sind. Bei immer kürzer werdenden Wellenlängen stehen jedoch nur noch wenige ausreichend transparente Materialien zur Verfügung, deren Abbekonstanten relativ nahe beieinander liegen. Dadurch wird eine 30 Teilachromatisierung und erst recht eine Vollachromatisierung der die Projektionsobjektive. d.h. weitgehende Vermeidung oder Verminderung chromatischer Aberrationen problematisch. Insbesondere

25

ist es schwierig, höchstaperturige Systeme mit hinreichenden kleinen chromatischen Aberrationen bereitzustellen. Weiterhin wächst mit steigender Apertur und zusätzlich notwendig verbesserten Abbildungsqualitäten bei gleichbleibendem Objekt- und Bildfeld die Dimension des Projektionsobjektives in allen drei Raumrichtungen. Insbesondere die Volumenzunahme des optischen Linsenmateriales verteuert derartige Projektionsobjektive überproportional gegenüber dem Gewinn an Strukturbreitenverkleinerung.

- 10 Der Erfindung liegt die Aufgabe zugrunde, ein Projektionsobjektiv zu schaffen, welches sich durch hohe bildseitige numerische Apertur und verbesserte chromatische Korrektion auszeichnet. Insbesondere soll ein materialsparender, kompakter Aufbau ermöglicht werden.
- Diese Aufgabe wird gelöst durch ein Projektionsobjektiv mit den Merkmalen von Anspruch 1. Vorteilhafte Weiterbildungen sind in den abhängigen Ansprüchen angegeben. Der Wortlaut sämtlicher Ansprüche wird durch Bezugnahme zum Inhalt der Beschreibung gemacht.
- 20 Gemäß einem Aspekt der Erfindung hat ein Projektionsobjektiv zur Abbildung eines in der Objektebene des Projektionsobjektivs angeordneten Musters in die Bildebene des Projektionsobjektivs mit Ultraviolettlicht einer vorgegebenen Arbeitswellenlänge eine Vielzahl von optischen
- 25 Elementen, die entlang einer optischen Achse angeordnet sind, sowie eine mit Abstand vor der Bildebene angeordnete Systemblende. Das Projektionsobjektiv ist als rein refraktives (dioptrisches) Ein-Taillensystem mit einem objektnahen Bauch, einem bildnahen Bauch und einer dazwischenliegenden Taille ausgebildet. Im Bereich der Taille kann der maximale als der deutlich geringer sein Strahldurchmesser 30 Bäuche, wobei der Bereich eines der Strahldurchmesser im Strahldurchmesser im Taillenbereich beispielsweise weniger als 50%

des maximalen Strahldurchmesser betragen kann. In einem Bereich divergenter Strahlung zwischen der Taille und der Systemblende ist eine Negativgruppe angeordnet, die eine effektive Wölbung mit einer bildwärts gerichteten Konkavseite hat.

5

Eine "Negativgruppe" in diesem Sinne ist eine Linsengruppe mit insgesamt negativer Brechkraft, wobei die Linsengruppe eine oder mehrere Linsen umfassen kann. Die effektive Wölbung bewirkt, dass die Negativgruppe insgesamt gegen den Strahlverlauf gekrümmt ist. Diese Krümmung kann durch eine Wölbungsfläche charakterisiert sein, deren Krümmungsmittelpunkt bildseitig liegt. Die effektive Wölbung der Linse (bzw der Wölbungsfläche) wird durch einen Wölbungsradius rc charakterisiert, der sich für eine Linse, deren Eintrittsfläche den Radius r1 und deren Austrittsfläche den Radius r2 hat, wie folgt berechnet:

15

$$1/r_c = 1/(2*r_1) + 1/(2*r_2). \tag{1}$$

Besteht die Negativgruppe aus zwei oder mehr Linsen, so wird die effektive Wölbung der Gruppe wie folgt berechnet:

20

$$1/r_c = 1/(n^*r_1) + 1/(n^*r_2) + 1/(n^*r_3) + 1/(n^*r_4) + ...,$$
 (2)

wobei n die Anzahl der Oberflächen angibt.

Die bildwärts konkave effektive Wölbung bewirkt zusammen mit der Divergenz der Strahlung im Bereich der Linsen, dass besonders an den Austrittsseiten der einen oder mehreren Linsen der Negativgruppe hohe Inzidenzwinkel auftreten. Diese sind vor allem für die Korrektur von Bildfehlern hoher Ordnung sehr wirksam, insbesondere für die öffnungsabhängige Korrektur, (wirken überkorrigierend) von monochromatischen Bildfehlern in Bildfeldzone und Bildfeldrand. Um das Projektionsobjektiv besonders wirtschaftlich herstellen zu können,

ist es notwendig, dessen Materialeinsatz zu minimieren. Dieses gelingt zum einen durch die Beschränkung auf eine Taille und andererseits durch eine immer größer werdende Feldbelastung des Systems. Erst durch die Erfindung ist es möglich, eine wirksame Korrektur aller 5 monochromatischen Fehler mit nur einer Taille bei einer derart hohen Feldbelastung zu erreichen. Bei den gezeigten Beispielen ist die Feldbelastung schon massiv erhöht, die Grenze ist aber noch nicht erreicht. Die Korrektionsmöglichkeiten der Gruppe in Verbindung mit höherer Gesamtasphärizität lassen eine weitere Steigerung der der Kostenreduktion zukünftige und damit 10 Feldbelastung lithographischen Projektionsobjektive erwarten. Dabei ist es klar, daß die Apertur des Projektionsobjektives und die Feldbelastung des Objektives, ohne den schon dargestellten gezielten Einsatz von Asphären nicht so hoch getrieben werden könnte. Die Negativgruppe kann dabei mindestens teilweise korrektive Funktionen schaffen, wie sie sonst nur durch Bereitstellung einer weiteren Taille möglich wären. Gegenüber Dreibauchsystemen kann herkömmlichen solchen wesentliche erfindungsgemäßen Projektionsobjektiven aber eine Reduktion der Baulänge, der Durchmesser, und eine Reduktion des zur Herstellung benötigten Materialvolumens und damit eine wesentliche Reduktion des Gesamtpreises erreicht werden. Durch die Erhöhung der Feldbelastung und die Kombination mit nur einer Taille läßt sich der Farblängsfehler signifikant reduzieren. Damit kann auch bei sehr hoher Apertur auf einen CaF₂ -Einsatz etwa bei 193 nm in den größten Linsen um die Blende verzichtetet werden.

Bei einer Weiterbildung umfasst die Negativgruppe mindestens eine Linse mit negativer Brechkraft und einer bildwärts gerichteter Konkavfläche. Die negative Brechkraft kann durch Aufspalten auch auf mehrere aufeinanderfolgende, derartige Linsen negativer Brechkraft verteilt werden, wobei für die bildseitigen Austrittsflächen die Krümmungsmittelpunkte jeweils bildseitig liegen. Dabei ist bei

25

- 5 -

Verwendung von nur einer oder zweier solcher Linsen negativer Brechkraft ein besonders materialsparender, kompakter Aufbau möglich. Werden zwei Linsen aneinandergereiht, ist es vorteilhaft, wenn die Brechkraft des ersten, objektseitigen Linse stärker ist als diejenige des darauffolgenden, bildseitigen Linse der Gruppe. Diese Negativlinsen können als Negativ-Meniskuslinsen gestaltet sein.

Es hat sich als günstig herausgestellt, wenn die Negativgruppe in einem Mittelbereich zwischen einem Ort engster Einschnürung der Taille und 10 der Systemblende angeordnet ist. Dementsprechend wirkt die Negativgruppe auf Strahlbüschel mittleren Querschnitts und kann moderate Durchmesser aufweisen. Linsen mit negativer Brechkraft befinden sichnaturgemäß im Bereich der Taille. Weiterhin sollte es wenigstens eine große Linse negativer Brechkraft zur sphärischen 15 Korrektur im Bereich der Blende geben. Besonders vorteilhaft ist die vorgestellte negative Gruppe im aufsteigenden Bereich der zweiten Taille. Die Linsen in der Taille besitzen oftmals und dies besonders im Zentrum der Taille ein Durchbiegung, die dem Prinzip der minimalen Strahlablenkung gehorchen um möglichst wenig Aberrationen zu 20 induzieren. Die Aufgabe der zersteuenden Linsen in der Taille ist zunächst die Umlenkung eines konvergenten Büschels auf ein divergentes Büschel. Dies in Verbindung mit den großen Bäuchen erlaubt die Bildfeldebung des Systems oder die Petzvalkorrektur.

25 Eine weitere Aufgabe besteht in der geschickten Korrektion von Aberrationsbeiträgen aus den Bäuchen mit positiver Brechkraft. Die negative Gruppe im ersten Teil des zweiten Bauches weicht bezüglich der Durchbiegung grundlegend von den inneren negativen Taillenlinsen ab. Nicht eine Büschelumformung mit ausgeglichenen Belastungen auf Ein- und Austrittsseite ist das Ziel, sondern eine bewusst asymmetrische Belastung. Das divergente Büschel gelangt unter mäßiger Umlenkung in die Linse, um dann unter extremer Belastung wieder auszutreten. Diese

hochbelastete Fläche erlaubt die erwünschte Korrekturwirkung. Die charakterisierenden Wölbungsflächen der außenliegenden negativen Linsen der Taille wölben sich zum Zentrum der Taille. Diese außenliegenden Linsen "verletzen" in vorteilhafter Weise das Prinzip der 5 minimalen Ablenkung. Die objektseitige Fläche der ersten negativen Taillenlinse und die bildseitige Fläche der letzten Taillenlinse wirken in Verbindung mit erhöhter Winkelbelastung besonders gut auf die Bildfehlerkorrektur. Die wichtigere von diesen beiden Taillenlinsen ist diejenige, auf die der zweite Bauch folgt. Bei dieser Linse ist wiederum 10 die bildseitige Außenfläche die entscheidende, mittelhochbelastete vorteilhafte Negativgruppe vorgestellte die Ohne Fläche. aufsteigenden Bereich der zweiten Taille hätte sie wichtige Anteile der Korrektur der feld- und öffungsabhänigen Bildfehlerkorrektur zu tragen. Bei zunehmender Apertur- und Feldbelastung bleiben aber trotz 15 massiver Asphärisierung unzulässige Zonenbeiträge bezüglich Feld und Apertur für schiefe Büschel übrig.

Gelöst wird dieses Problem durch die negative Gruppe im aufsteigenden Bereich der zweiten Taille, und zwar mit Hilfe einer geeigneten Abstimmung der mittleren Winkelbelastung an der Austrittsfäche der letzten Taillenlinse mit mittlerer Büschelvariation und der hohen Winkelbelastung der Austrittsfläche bzw. Austrittsflächen der negativen Linse bzw. Linsen im aufsteigenden Bereich der zweiten Taille mit geringer Büschelvariation. Die korrektiven Beiträge für die schiefen spärischen Aberrationen ergänzen sich dann so passend, daß höchste Feldbelastungen und höchste Aperturen, etwa wie NA = 0.95, bei gleichzeitig kleinster Wellenfrontabweichung erreicht werden können.

Geeignete Verhältnisse lassen sich insbesondere dann realisieren, 30 wenn für die Parameter: A = maximale Winkelbelastung in Gas der bildseitigen Austrittsfläche einer Linse der negativen Gruppe im aufsteigenden Bereich des zweiten Bauches in Grad.

B = maximale Winkelbelastung in Gas der bildseitigen Austrittsfläche der letzten Linse mit negativer Brechkraft in der Objektivtaille in Grad.

- C = Verhältnis von Randstrahlhöhe von A zur maximalen Komastrahlhöhe von A
- D = Verhältnis von Randstrahlhöhe von B zur maximalen

 Komastrahlhöhe von B
- 10 die Bedingung: A/B > C/D gilt

Die Winkelbelastung kann z.B. durch die entsprechenden maximalen Inzidenzwinkel der Strahlung (in Gas) quantifiziert werden.

- Die charakterisierenden Wölbungsflächen der negativen Gruppe im ersten Teil des zweiten Bauches wölben sich zum Bild. Der Scheitel der insgesamt charakterisierenden Wölbungsfläche der Negativgruppe, sollte im Bereich zwischen ca. 30% und ca. 70%, insbesondere zwischen ca. 40% und ca. 60% des Axialabstandes zwischen dem Bereich engster Einschnürung der Taille und der Systemblende liegen.
 - . Die effektive Wölbung der Negativgruppe kann zur Optimierung der Systemeigenschaften angepasst werden. Vorzugsweise hat die effektive Wölbung einen Wölbungsradius r_c , dessen Verhältnis r_c / DB zum Blendendurchmesser DB im Bereich zwischen ca. 0,8 und ca. 2,2 liegt, vorzugsweise im Bereich zwischen ca. 1,0 und ca. 2,0, insbesondere im Bereich zwischen ca. 1,1 und ca. 1,9.

Bei bevorzugten Ausführungsformen hat das Projektionsobjektiv im Bereich der Systemblende einen im Bezug auf eine senkrecht auf der optischen Achse stehende Symmetrieebene im wesentlichen symmetrischen Aufbau mit bikonvexen Positivlinsen und negativ

Meniskuslinsen. Dieser im wesentlichen symmetrische Aufbau erlaubt es, auch bei großen Öffnungen einen guten Korrektionszustand bei geringerer Gesamtasphärizität zu erzielen. Die Symmetrieebene liegt der Systemblende. Ein Verlassen dieses nahe vorzugsweise symmetrischen Aufbaus ist möglich in Richtung Brechkraftsaufbau bzw. -erhöhung der negativen Linse hinter der Blende und einem vor der Blende. Diese Brechkraftsabbau der negativen Linse geringeren mit einem symmetrische Anordnung erlaubt es. die Prüfund Sind Asphärisierungsaufwand auszukommen. 10 Fertigungsmöglichkeiten von komplexeren und stärkeren Asphärizitäten verbessert, kann die Symmetrie zu Lasten der der Blende vorgelagerten Negativlinse verändert werden, also geringere Brechkraft oder durch Asphärizität im Gesamtsystem. Die große Substitution Negativlinse nach der Blende sollte stets die selbe Ausrichtung der 15 effektiven Wölbung wie die schon dargestellte Wölbung Bereich zwischen Taille und Negativgruppe im aufsteigenden Systemblende haben.

Die Systemblende im Sinne dieser Anmeldung ist der Bereich näher an der Bildebene, in dem entweder der Hauptstrahl der Abbildung die optische Achse schneidet, oder Orte vorhanden sind, an denen die Höhe eines Komastrahles mit der Höhe eines Randstrahles übereinstimmt. Eine Blende (Aperturblende) zur Begrenzung und gegebenenfalls Verstellung der genutzten Apertur kann im Bereich der 25 Systemblende angeordnet sein. Durch die Erfindung ist es möglich, eine wirksame Korrektur aller Fehler mit nur einer Taille zu erreichen. Die Negativgruppe kann dabei mindestens teilweise die Funktion einer herkömmlichen wie sie bei übernehmen, Taille zweiten Gegenüber solchen ist. vorhanden Dreibauchsystemen Dreibauchsystemen kann bei erfindungsgemäßen Projektionsobjektiven eine wesentliche Reduktion der Baulänge, eine Reduktion des zur

30

Herstellung benötigten Materialvolumens und eine Reduktion der Farbfehler erreicht werden.

Es hat sich als günstig herausgestellt, wenn unmittelbar vor der Systemblende eine Negativmeniskuslinse mit objektseitiger Konkavfläche und unmittelbar hinter der Systemblende eine Negativ-Meniskuslinse mit bildseitiger Konkavfläche angeordnet ist. Zwischen diesen kann die Systemblende frei zugänglich sein, um beispielsweise eine verstellbare Blende zur Begrenzung des Strahlbündeldurchmessers anzubringen. Diese Blende kann zusätzlich axial beim Öffnen und Schließen bewegt werden. Eine vorteilhafte Ausgestaltung bieten auch sphärische Blenden in Verbindung mit diesen Eintaillensystemen, da die Blendenkrümmung von bevorzugten Ausführungsformen hierfür noch brauchbar sind.

15

Die Symmetrie kann sich weit in den objektseitigen und bildseitigen Nahbereich der Systemblende fortsetzen. Beispielsweise kann unmittelbar vor der Systemblende ein Positiv-/Negativ-Doublett mit einer objektseitigen Bikonvexlinse und einer darauffolgenden Negativ20 Meniskuslinse mit objektseitiger Konkavfläche und hinter der Systemblende ein spiegelbildlich dazu aufgebautes Doublett angeordnet sein. In machen Ausführungsformen werden die Doubletts objektseitig bzw. bildseitig noch von Bikonvexlinsen eingerahmt.

25

Die Systeme können so aufgebaut werden, dass alle transparenten optischen Elemente aus dem gleichen Material gefertigt sind. Dies gilt insbesondere für 248nm, eine reine Quarzglaslösung ist technisch anzuraten. Bei einer für eine Arbeitswellenlänge von 193nm ausgelegten Ausführungsform wird für alle Linsen auch 193nm taugliches synthetisches Quarzglas verwendet. Allerdings können eine oder mehrere bildnahe Linsen oder Linsen erhöhter Strahlungs- und

- 10 -

Settingsbelastung (Dipol, Quadrupol bei kleinem Sigma) aus einem anderen Material bestehen, z.B. CaF₂. Auch Ausführungsformen für 157nm, bei denen alle Linsen aus Kalziumfluorid oder kombiniert mit einem anderen Fluoridkristallmaterial bestehen, sind möglich. Auch Kombinationen mehrerer unterschiedlicher Materialien sind möglich, beispielsweise um die Korrektur von Farbfehlern zu erleichtern oder um Compaction oder Lensheating zu verringern. Beispielsweise kann bei 193nm das synthetische Quarzglas bei einigen oder allen Linsen durch ein Kristallmaterial, z.B. Kalziumfluorid ersetzt werden.

10

Im Rahmen der Erfindung sind höchstaperturige Projektionsobjektive, insbesondere auch rein refraktive Projektionsobjektive möglich, bei denen die bildseitige numerische Apertur NA \geq 0,85 ist. Sie beträgt vorzugsweise mindestens 0,9.

15

Bevorzugte Projektionsobjektive zeichnen sich durch eine Anzahl günstiger konstruktiver und optischer Merkmale aus, die alleine oder in Kombination miteinander für die Eignung des Objektivs für die höchstauflösende Mikrolithographie förderlich sind.

20

Im Bereich der Systemblende ist vorzugsweise mindestens eine asphärische Fläche angeordnet. Vorzugsweise kommen hinter den Blende dicht aufeinander folgend mehrere Flächen mit Asphären. Es kann weiter günstig sein, wenn die letzte optische Fläche vor der Systemblende und die erste optische Fläche nach der Systemblende asphärisch ist. Hier können insbesondere gegenüberliegende asphärische Flächen mit von der Blende wegweisender Krümmung vorgesehen sein. Die hohe Anzahl von asphärischen Flächen im Bereich der Systemblende ist günstig für die Korrektion der sphärischen Aberration und wirkt sich günstig auf die Einstellung der Isoplanasie aus.

Weiterhin kann es günstig sein, wenn zwischen der Taille und der Systemblende in der Nähe der Taille mindestens eine Positiv-Meniskuslinse mit objektseitiger Konkavfläche angeordnet ist. Es können statt einer derartigen Meniskuslinse mehrere, beispielsweise zwei, aufeinanderfolgende Linsen dieses Typs vorgesehen sein.

Besonders vorteilhaft sind Ausführungsformen, bei denen zwischen Taille und Systemblende in dieser Reihenfolge mindestens zwischen zwei Linsen die effektive Wölbung wechselt, wobei die effektive Wölbung der ersten Linse objektseitig und die effektive Wölbung der direkt nachfolgenden Linse bildseitig liegt. Vorzugsweise sind jeweils zwei aufeinanderfolgende positive Linsen der jeweiligen Krümmungen vorgesehen. Im Bereich zwischen diesen Linsen bzw. Linsengruppen findet somit ein Wechsel in der Lage der Krümmungsmittelpunkte der

Im Bereich der Taille sind bevorzugt mehrere Negativlinsen aufeinander folgend angeordnet, bei bevorzugten Ausführungsformen sind es mindestens zwei, vorzugsweise drei Negativlinsen. Diese tragen die Hauptlast der Petzvalkorrektur und einen Teil der Korrektur der Schiefen Büschel.

effektiven Wölbung statt.

Am objektseitigen Eingang des Systems beim Eintritt in den ersten Bauch sind wenigstens zwei Negativlinsen vorteilhaft, um das vom Objekt kommende Strahlbündel aufzuweiten. Drei oder mehr derartiger Negativlinsen sind bevorzugt. Bei hohen Eingangsaperturen ist es günstig, wenn auf mindestens einer der ersten Linsen mindestens eine asphärische Fläche vorgesehen ist. Vorzugsweise hat jede der eingangsseitigen Negativlinsen mindestens eine asphärische Fläche.

Unabhängig von der Brechkraft der Linsen ist es vorteilhaft, wenn bei einem Eintaillenobjektiv jeweils für die ersten beiden Linsen eine waferseitige Asphärisierung stattfindet. Je näher die erste Asphäre dem Retikel steht, um so höher ist die Büscheltrennung und umso wirksamer ist die Asphärisierung. Die Asphäre auf der Vorderseite der zweiten Linse ist dann auch noch sehr retikelnah, hat aber schon ganz andere Büschelquerschnitte, so daß sich das Asphärenpaar ideal ergänzen kann und überdies optimal wirkt. Zur Vorsicht sei aber erwähnt, daß die Büschelquerschnitte besonders klein sind und daraus die Forderung erwächst, besonders glatte asphärische Linsen zu fertigen.

Hinter dieser Eingangsgruppe folgt bevorzugt eine Linsengruppe mit starker positiver Brechkraft, welche den ersten Bauch der Strahlführung darstellt. Besonders vorteilhaft sind Ausführungsformen, bei denen 15 zwischen Retikel und Taille mindestens zwischen zwei Linsen die effektive Wölbung wechselt, wobei die effektive Wölbung der ersten Linse objektseitig und die effektive Wölbung der direkt nachfolgenden jeweils zwei sind Vorzugsweise bildseitig liegt. Linse aufeinanderfolgende positive Linsen der jeweiligen Krümmungen 20 vorgesehen. Im Bereich zwischen diesen Linsen bzw. Linsengruppen findet somit ein Wechsel in der Lage der Krümmungsmittelpunkte der effektiven Wölbung statt. In dieser Gruppe kann im Bereich noch großer Strahlhöhen im Nahbereich der Objektebene mindestens eine Meniskuslinse mit positiver Brechkraft und bildseitigen Konkavflächen günstig sein, da diese zur Petzvalentlastung des Objektives beiträgt.

Die vorstehenden und weiteren Merkmale gehen außer aus den Ansprüchen auch aus der Beschreibung und der Zeichnung hervor, wobei die einzelnen Merkmale jeweils für sich alleine oder zu mehreren in Form von Unterkombinationen bei einer Ausführungsform der Erfindung und auf anderen Gebieten verwirklicht sein und vorteilhafte sowie für sich schutzfähige Ausführungen darstellen können.

- 13 -

Fig. 1 ist ein Linsenschnitt durch eine Ausführungsform eines refraktiven Projektionsobjektivs, das für 193nm Arbeitswellenlänge ausgelegt ist

5

- Fig. 2 ist ein Linsenschnitt durch eine Ausführungsform eines refraktiven Projektionsobjektivs, das für 157nm Arbeitswellenlänge ausgelegt ist;
- 10 Fig. 3 ist ein Linsenschnitt durch eine Ausführungsform eines refraktiven Projektionsobjektivs, das für 193nm Arbeitswellenlänge ausgelegt ist; und
- Fig. 4 ist ein Linsenschnitt durch eine Ausführungsform eines refraktiven Projektionsobjektivs, das für 157nm Arbeitswellenlänge ausgelegt ist.

Bei der folgenden Beschreibung der bevorzugten Ausführungsform bezeichnet der Begriff "optische Achse" eine gerade Linie durch die Krümmungsmittelpunkte der sphärischen optischen Komponenten bzw. durch die Symmetrieachsen von asphärischen Elementen. Richtungen und Abstände werden als bildseitig, waferseitig oder bildwärts beschrieben, wenn sie in Richtung der Bildebene bzw. des dort befindlichen, zu belichtenden Substrats gerichtet sind und als objektseitig, retikelseitig oder objektwärts, wenn sie in Bezug auf die optische Achse zum Objekt gerichtet sind. Das Objekt ist in den Beispielen eine Maske (Retikel) mit dem Muster einer integrierten Schaltung, es kann sich aber auch um ein anderes Muster, beispielsweise eines Gitters handeln. Das Bild wird in den Beispielen auf einem als Substrat dienenden, mit einer Photoresistschicht dienenden Wafer gebildet, jedoch sind auch andere Substrate möglich,

PCT/EP03/04477 WO 03/093904

beispielsweise Elemente für Flüssigkristallanzeigen oder Substrate für optische Gitter.

In Fig. 1 ist ein charakteristischer Aufbau eines erfindungsgemäßen, rein 5 refraktiven Reduktionsobjektivs 1 gezeigt. Es dient dazu, ein in einer Objektebene 2 angeordnetes Muster eines Retikels oder dergleichen in eine zur Objektebene konjugierte Bildebene 3 in reduziertem Maßstab ohne Obskurationen bzw. Abschattungen im Bildfeld abzubilden, beispielsweise im Maßstab 4: 1. Es handelt sich um ein 10 rotationssymmetrisches Ein-Taillensystem, dessen Linsen entlang einer zur senkrecht Objekt- und Bildebene stehenden optischen Achse 4 angeordnet sind und einen objektseitigen Bauch 6, einen bildseitigen Bauch 8 sowie eine dazwischenliegende Taille 7 bilden. Die Systemblende 5 liegt im bildnahen Bereich großer Strahldurchmesser.

Die Linsen können in mehrere aufeinanderfolgende Linsengruppen mit spezifischen Eigenschaften und Funktionen eingeteilt werden. Eine der Objektebene 2 folgende erste Linsengruppe LG1 am Eingang des 20 Projektionsobjektivs hat insgesamt negative Brechkraft und dient der Aufweitung des vom Objektfeld kommenden Strahlbündels. Eine darauffolgende zweite Linsengruppe LG2 mit insgesamt positiver Brechkraft bildet den ersten Bauch 6 und führt den Strahl vor der nachfolgenden Taille 7 wieder zusammen. Im Bereich der Taille 7 befindet sich eine dritte Linsengruppe LG3 mit negativer Brechkraft. Dieser folgt eine aus Positiv-Meniskuslinsen bestehende vierte Linsengruppe LG4 mit positiver Brechkraft, der eine aus Negativ-Meniskuslinsen bestehende fünfte Linsengruppe LG5 mit negativer Brechkraft folgt. Die darauffolgende Linsengruppe LG6 mit positiver Brechkraft führt die Strahlung zur Systemblende 5. Hinter dieser liegt die siebte und letzte Linsengruppe LG7, die überwiegend aus Einzellinsen

30

- 15 -

mit positiver Brechkraft besteht und den Hauptbeitrag zur Erzeugung der sehr hohen bildseitigen numerischen Apertur von NA = 0,93 leistet.

Die erste Linsengruppe LG1 eröffnet mit drei Negativlinsen 11, 12, 13, 5 die in dieser Reihenfolge eine Negativlinse 11 mit asphärischer mit bildseitigem Negativ-Meniskuslinse 12 Eintrittsseite, eine Krümmungsmittelpunkt und asphärischer Eintrittsseite und eine Negativ-Meniskuslinse 13 mit objektseitigem Krümmungsmittelpunkt und asphärischer Austrittsseite umfasst. Bei der vorliegenden hohen 10 Eingangsapertur sollte auf wenigstens einer der ersten beiden Linsen 11, 12 mindestens eine asphärische Fläche vorgesehen sein, um die Erzeugung von Abberationen in diesem Bereich zu begrenzten. Vorzugsweise ist, wie im vorliegenden Beispiel, an jeder der drei Negativlinsen (mindestens) eine asphärische Fläche vorgesehen.

15

Die zweite Linsengruppe LG2 hat mit geringem Luftabstand hinter der letzten Linse 13 der ersten Linsengruppe LG1 eine bikonvexe Positivlinse 14, eine weitere bikonvexe Positivlinse 15, eine Positiv-Meniskuslinse 16 mit bildseitigem Krümmungsmittelpunkt, eine weitere 20 Positivlinse 17 mit nahezu ebener Austrittsseite, eine Positiv-Meniskuslinse 18 mit bildseitigem Krümmungsmittelpunkt der Flächen 21 gleicher 19, 20, Meniskuslinse weitere drei sowie Krümmungsrichtung. Die Eintrittsseite der Linse 15 und die an die Taille heranreichende Austrittsseite der letzten Meniskuslinse 21 sind asphärisch. Dadurch liegt im Bereich der Taille eine Asphäre vor. Diese zweite Linsengruppe LG2 stellt den ersten Bauch 6 des Objektivs dar. Eine Besonderheit bildet die beim größten Durchmesser angeordnete Positiv-Meniskuslinse 16, deren Krümmungsmittelpunkte bildseitig liegen. Diese Linsengruppe dient vor allem der Petzvalkorrektur, der 30 Verzeichnungs- und Telezentriekorrektur und der Bildfeldkorrektur außerhalb der Hauptschnitte.

- 16 -

Die dritte Linsengruppe LG3 besteht aus drei Negativ-Meniskuslinsen 22, 23, 24, deren Grenzflächen jeweils sphärisch sind. Diese Linsengruppe trägt die Hauptlast der Korrektur der Bildfeldkrümmung und ist so gestaltet, dass trotz der hohen Systemapertur von NA = 0,93 die maximalen Inzidenzwinkel der auf die Linsenflächen treffenden Strahlen unterhalb ca. 60° bzw. der Sinus der Inzidenzwinkel jeweils unterhalb 0,85 liegt. Die erste Negativlinse 22 der dritten Gruppe ist bevorzugt eine stark bikonkave Linse, so dass die Haupttaille 7 mit stark gekrümmten Flächen eröffnet.

10

Die der Taille 7 folgende vierte Linsengruppe LG4 besteht aus zwei Positiv-Meniskuslinsen 24, 25 mit objektseitigen Konkavflächen, wobei die Austrittsseite der eingangsseitigen Meniskuslinse 24 asphärisch, die übrigen Flächen sphärisch sind. Bei anderen Ausführungsformen kann an dieser Stelle auch nur einziger Positiv-Meniskus entsprechender Krümmung vorgesehen sein.

Die darauffolgende fünfte Linsengruppe LG5 hat ebenfalls zwei Meniskuslinsen 27, 28, jedoch haben diese jeweils negative Brechkraft und die konkaven Flächen sind zum Bildfeld 3 gerichtet. Gegebenenfalls kann an dieser Stelle auch nur ein negativer Meniskus vorgesehen sein, dessen Krümmungsmittelpunkt waferseitig liegt. Eine solche Gruppe mit mindestens eine Linse mit negativer Brechkraft ist für die Funktion des Ein-Taillensystems ein zentrales Korrektionselement, um elegant außeraxiale Bildfehler zu korrigieren. Insbesondere wird dadurch ein kompaktes Design mit relativ geringen Linsendurchmessern ermöglicht.

Aufgrund der insgesamt negativen Brechkraft wird die fünfte Linsengruppe LG5 hier auch als Negativgruppe bezeichnet. Jede der Negativ-Meniskuslinsen 27, 28 kann durch eine gestrichelt gezeichnete Wölbungsfläche gekennzeichnet werden, die mittig zwischen Eintrittsund Austrittsfläche verläuft und deren Radius rc sich gemäß Gl. (1)

30

berechnen lässt. Die strichpunktiert gezeigte Wölbungsfläche der gesamten Negativgruppe LG5, die sich gemäß Gl. (2) berechnen lässt, hat, genau wie die Wölbungsflächen der Einzellinsen 27, 28, eine zur Bildfläche 3 gerichtete Konkavseite bzw. einen bildseitig liegenden 5 Krümmungsmittelpunkt. Sie liegt mittig zwischen den Wölbungsflächen der einzelnen Linsen 27, 28. Die Negativgruppe ist etwa in der Mitte zwischen dem Bereich engster Einschnürung der Taille 7 und der Systemblende 5 im Bereich divergierender Strahlbündel angeordnet. Die gegen den Strahlverlauf gerichtete Krümmung bewirkt, dass an den 10 Austrittsflächen der beiden Negativ-Meniskuslinsen, insbesondere an der Austrittsfläche des ersten Meniskus 27, hohe Inzidenzwinkel der austretenden Strahlung auftreten, die eine starke Korrekturwirkung haben, insbesondere für die monochromatischen, stark feld- und pupillenabhängigen Bildfehler. Bei anderen Ausführungsformen kann an 15 dieser Stelle auch eine einzelne Negativlinse mit bildwärts konkaver Wölbungsfläche vorgesehen sein. Auch Negativgruppen mit drei oder mehr Linsen sind möglich. Bei mehreren Linsen muss nicht jede der Linsen eine Negativlinse sein, solange sich insgesamt negative Brechkraft ergibt. Sowohl zu starke, als auch zu schwache Krümmungen der Wölbungsfläche sollten vermieden werden, um einen Kompromiss fertigungstechnisch und Korrekturwirkung optimaler zwischen beherrschbaren, großen Inzidenzwinkeln zu ermöglichen. Das Verhältnis zwischen Radius r_c der strichpunktiert gezeichneten Wölbungsfläche des der Linsengruppe LG5 und dem Blendendurchmesser sollte zwischen 25 ca. 0,8 und 2,2 liegen und liegt bei dieser Ausführungsform bei ca. 1,035 (Gesamtwert).

Besonders wichtig ist weiterhin, dass in dem der Taille 7 folgenden Eingangsbereich des zweiten Bauches 8 ein Wechsel in der Lage der Krümmungsmittelpunkte zwischen Menisken der vierten Linsengruppe LG4 und den Linsen der fünften Linsengruppe LG5 stattfindet. Dadurch

kann erreicht werden, dass schiefe sphärische Aberration bei extremer Apertur geglättet werden kann.

Die sechste Linsengruppe LG6 beginnt mit einer Abfolge von bikonvexen Positivlinsen 29, 30. Deren sammelnde Wirkung wird durch einen nachfolgenden, stark durchgebogenen Negativ-Meniskus 31 wieder aufgefangen. Dieser negative Meniskus vor der Blende 5 ist zur Blende gebogen, hat also eine objektseitige Konkavfläche. Das entsprechende Gegenüber sitzt unmittelbar hinter der Blende. Dieser Negativ-Meniskus 32 ist ebenfalls zur Blende durchgebogen, er hat eine bildseitige Konkavfläche. Diesem folgen zwei große bikonvexe Positivlinsen 33, 34 mit größtem Durchmesser. Darauf folgen zwei zur Bildebene konkave Positiv-Meniskuslinsen 35, 36, eine schwach negative Meniskuslinse 37, eine schwache Positivlinse mit schwach gekrümmter Eintrittsseite und fast ebener Austrittsseite sowie eine planparallele Abschlussplatte 39.

Der Aufbau des zweiten Bauches, der relativ langgestreckt ist und sich langsam von der Taille zum größten Durchmesser erweitert, ist im Bereich der Systemblende 5 im wesentlichen symmetrisch zu einer Symmetrieebene aufgebaut, die senkrecht zur optischen Achse verläuft und in der Nähe der Systemblende liegt. Nahezu spiegelbildlich korrespondieren dabei die Negativ-Meniskuslinsen 31, 32, die diese einschließenden Positivlinsen 30, 33 und die außerhalb dieser Doubletts angeordneten Bikonvexlinsen 29 und 34. Der Zentralbereich des zweiten Bauches um die Blende enthält somit als Positivlinsen nur Bikonvexlinsen und als negative Linsen nur durchgebogene Menisken. In den Doubletts 30, 32 bzw. 32, 33 ist jeweils ein meniskusförmiger Luftraum gebildet.

30

Der erste Bauch beinhaltet im absteigenden Bereich eine schwach positive Meniskuslinse 19. Diese bildet mit der nachfolgenden dickeren

Meniskuslinse 20 einen stark durchgebogenen, sich nach außen öffnenden Luftraum. In den darauffolgenden Luftraum findet sich ein weniger durchbogener, sich nach außen schließender Luftmeniskus. Hierdurch ist eine verbesserte Schalenabstimmung im sagittalen und tangentialen Schnitt möglich. Gleichzeitig kann dadurch auch die Winkelbelastung

im Bereich der konkaven Eintrittsfläche der Negativlinse 22 unter der Aperturbelastung gehalten werden. Die Petzvalkorrektur wird im wesentlichen von den Linsen im Taillenbereich in Verbindung mit den großen Bäuchen geleistet. Dennoch reicht eine einzige Taille aus. Bei der bildwärts gewölbten Linse 27 negativer Brechkraft der fünften Linsengruppe ist besonders auf gute Zentrierung zu achten, da eine leichte Dezentrierung sofort Komabeiträge auf der hochbelasteten Austrittsfläche liefern würde.

15

In Tabelle 1 ist die Spezifikation des Designs in bekannter Weise in tabellarischer Form zusammengefasst. Dabei gibt Spalte 1 die Nummer einer brechenden oder auf andere Weise ausgezeichneten Fläche, Spalte 2 den Radius r der Fläche (in mm), Spalte 3 den als Dicke bezeichneten Abstand d der Fläche zur nachfolgenden Fläche (in mm), Spalte 4 das Material der optischen Komponenten und Spalte 5 die Brechzahl bzw. den Brechungsindex des Materials des Bauelementes an, welches der Eintrittsfläche folgt. In Spalte 6 sind die nutzbaren, freien Radien bzw. der halbe freie Durchmesser der Linsen (in mm) angegeben.

Bei der Ausführungsform sind zwölf der Flächen, nämlich die Flächen 2, 4, 7, 10, 23, 31, 36, 41, 43, 45, 48 und 50 asphärisch. Tabelle 2 gibt die entsprechenden Asphärendaten an, wobei sich die asphärischen Flächen nach folgender Vorschrift berechnen:

Dabei gibt der Kehrwert (1/r) des Radius die Flächenkrümmung und h den Abstand eines Flächenpunktes von der optischen Achse an. Somit gibt p(h) die sogenannten Pfeilhöhe, d.h. den Abstand des Flächenpunktes vom Flächenscheitel in z-Richtung, d.h. in Richtung der optischen Achse. Die Konstanten K, C1, C2, ... sind in Tabelle 2 wiedergegeben.

Das mit Hilfe dieser Angaben reproduzierbare optische System 1 ist für eine Arbeitswellenlänge von ca. 193nm ausgelegt, bei der das für alle Linsen verwendete, synthetisches Quarzglas einen Brechungsindex n = 1,56029 hat. Die bildseitige numerische Apertur beträgt 0,93. Das Objektiv hat eine Baulänge (Abstand zwischen Bildebene und Objektebene) von 1342mm, die Feldgröße beträgt 10,5 * 26,0mm.

Damit ist ein Projektionsobjektiv geschaffen, das bei einer Arbeitswellenlänge von 193nm arbeitet, mit Hilfe konventioneller Techniken für Linsenherstellung und Beschichtungen hergestellt werden kann und eine Auflösung von Strukturen deutlich unterhalb 100nm erlaubt und sehr gut korrigiert ist. Deutlich wird dies an geringen Queraberrationswerten und an einem Wellenfront-RMS-Wert von maximal 3,3mλ bei 193nm über alle Bildhöhen.

Anhand von Fig. 2 sowie Tabellen 3 und 4 wird eine andere Ausführungsform erläutert, die für 157nm Arbeitswellenlänge ausgelegt ist und ausschließlich aus Kalziumfluorid-Komponenten aufgebaut ist.

Die Art und Abfolge der Linsen entspricht der Ausführungsform gemäß Fig. 1. Die einander entsprechenden Linsen und Linsengruppen sind daher mit den gleichen Bezugszeichen bezeichnet. Das Objektiv 100 ist mit einer Baulänge von 1000mm etwas kompakter, hat eine numerische Apertur von 0,93 und eine Feldgröße von 12 * 17mm. Ein maximaler Wellenfront-RMS-Wert von 3mλ über alle Bildhöhen belegt einen

- 21 -

hervorragenden Korrekturzustand des Objektivs. Das Beispiel zeigt, dass die Grundprinzipien der Erfindung einfach auf Objektive für andere Wellenlängen übertragbar sind.

5 Anhand von Fig. 3 sowie Tabellen 5 und 6 wird eine weitere Ausführungsform 300 erläutert, die für 193nm Arbeitswellenlänge ausgelegt ist. Mit Ausnahme der vorletzten Linse 38 nahe der Bildebene 3 bestehen alle Linsen aus synthetischem Quarzglas. Die Positivlinse 38 besteht aus Kalziumfluorid und hat einen positiven Effekt 10 auf, Farbquerfehler, während gleichzeitig unerwünschter wenig Farblängsfehler erzeugt werden. Die Art und Abfolge der Linsen entspricht im wesentlichen der Ausführungsform gemäß Fig. 1, wobei im Unterschied zu dieser die dortige, bildwärts konkave Positiv-Meniskuslinse 36 hier in zwei Positiv-Meniskuslinsen 36, 36' mit ist. Die einander aufgespalten Krümmungssinn 15 gleichem entsprechenden Linsen und Linsengruppen sind mit aleichen Bezugszeichen bezeichnet. Das Objektiv 300 hat eine Baulänge von 1250 mm, eine numerische Apertur von NA = 0,9 und eine Feldgröße von 10,5 x 26mm. Der maximale Wellenfront-RMS-Wert liegt zwischen 5 und 6mλ. 20

Anhand von Fig. 4 sowie Tabellen 7 und 8 wird eine andere, für 157nm eines Ausführungsform ausgelegte Arbeitswellenlänge dem alle Linsen aus 400 erläutert, bei Projektionsobjektivs 25 Kalziumfluorid bestehen. Die kristallografischen <111>-Achsen der meisten oder aller Linsen liegen dabei im wesentlichen parallel zur optischen Achse. Die Art und Abfolge der Linsen entspricht weitgehend der Ausführungsform gemäß Fig. 1, weshalb einander entsprechende Linsen und Linsengruppen mit den gleichen Bezugszeichen bezeichnet 30 sind. Bei einer Baulänge von ca. 1069mm und einer Feldgröße von 6,0 x 22mm wird eine numerische Apertur von NA = 0,95 erzielt. Ein

- 22 -

maximaler Wellenfront-RMS-Wert von ca. 2,6mλ über alle Bildhöhen belegt einen hervorragenden Korrektionszustand des Objektivs. Die Linsen 13, 15, 16, 18, 21, 24, 26, 28, 30, 33, 35 und 36 sind gegenüber den übrigen Linsen jeweils um 60° um die optische Achse verdreht, um eine Korrektur von Doppelbrechungseffekten zu erzielen, die durch die intrinsische Doppelbrechung von Kalziumfluorid hervorgerufen werden kann. Diese Maßnahme kann auch bei der Ausführungsform gemäß Fig. 2 vorgesehen sein. In Tabellen 9 und 10 sind die Designdaten eines vergleichbaren Projektionsobjektivs mit NA=0,95 angegeben, das für Werden berechnet ist. 193nm eine Arbeitswellenlänge von Ausführungsformen mit <100>-orientierten Kristalllinsen vorgesehen, so sind diese immer gemischt mit <111>-orientierten Linsen. Die für eine Kompensation geeignete Relativverdrehung von <100>-Linsen beträgt ca. 45°, bei <111>-Linsen dagegen beträgt sie ca. 60°. Grundsätzich ist eine gute Kompensation dann erzielbar, wenn Linsen mit vergleichbaren optischen Wegen und vergeichbaren Inzidenzwinkeln innerhalb des Materials in planmäßiger Weise paarweise gegeneinander verdreht werden.

10

TABELLE 1 (Shs2003)

		TABELLE I (311520037		
				BRECHZAHL	1/2 FREIER
FLAE	CHE RADIEN	DICKEN	GLAESER	193.304 nm	DURCHMESSER
0	0.000000000	33.600000000	L710	0.99998200	56.080
1	0.000000000	2.116348742	L710	0.99998200	64.111
2	543769.142501049AS	8.000000000	SIO2HL	1.56028895	64.830
3	161.642131585	4.159723042	HE193	0.99971200	67.531
4	218.691761237AS	8.400000000	SIO2HL	1.56028895	69.959
5	219.026045883	37.232327077	HE193	0.99971200	70.564
6	-126.273541233	9.059812069	SIO2HL	1.56028895	71.879
7	590.000664984AS	5.888594676	HE193	0.99971200	91.812
8	874.341541676	45.211384116	SIO2HL	1.56028895	98.202
9	-198.096216449	0.750325389	HE193	0.99971200	103.786
10	946.848097810AS	38.538214934	SIO2HL	1.56028895	123.489
11	-425.263923111	1.158522801	HE193	0.99971200	125.869
12	350.163434277	30.488033825	SIO2HL	1.56028895	134.676
13	1009.701801617	1.197549469	HE193	0.99971200	134.221
14	286.135356357	98.148093037	SIO2HL	1.56028895	134.698
15	19301.429695110	0.70000000	HE193	0.99971200	123.374
16	272.045958073	31.009665217	SIO2HL	1.56028895	116.140
17	737.805495222	0.70000000	HE193	0.99971200	111.526
18	250.056020156	17.945571560	SIO2HL	1.56028895	104.536
19	331.911514310	0.700000000	HE193	0.99971200	99.743
20	254.183348934	45.167991817	SIO2HL	1.56028895	97.168 75.317
21	168.278221248	12.633486164	HE193	0.99971200	73.766
22	333.410550457	8.000000000	SIO2HL	1.56028895	69.745
23	305.673163674AS	33.620359548	HE193	0.99971200 1.56028895	68.517
24	-126.882359261	8.400000000	SIO2HL	0.99971200	69.269
25	623.561065898	22.920166250	HE193	1.56028895	69.579
26	-159.640135295	21.959811493	SIO2HL	0.99971200	79.613
27	612.121329616	25.136797688	HE193	1.56028895	82.648
28	-256.899270677	16.106811172	SIO2HL HE193	0.99971200	95.151
29	-6721.059689803	10.198456701	SIO2HL	1.56028895	98.551
30	-759.091077253	33.505555154 2.955259188	HE193	0.99971200	110.248
31	-373.512212393AS	42.142366706	SIO2HL	1.56028895	113.540
32	-482.275268598	24.912342267	HE193	0.99971200	117.230
33	-167.944569801	12.417917014	SIO2HL	1.56028895	140.307
34	352.644000465 239.800147366	38.495163859	HE193	0.99971200	139.720
35	919.430222419AS	12.380604737	SIO2HL	1.56028895	142.518
36	415.408472297	13.298822306	HE193	0.99971200	148.485
37	448.474261455	47.786431536	SIO2HL	1.56028895	160.368
38	-1304.870981174	0.700000000	HE193	0.99971200	162.101
39	549.477937127	77.507833077	SIO2HL	1.56028895	175.924
40 41	-411.968607019AS	30.091104049	HE193	0.99971200	176.606
42	-264.054542030	15.750000000	SIO2HL	1.56028895	176.112
43	-528.210359924AS	37.000000000	HE193	0.99971200	186.586
44	0.00000000	-10.000000000	HE193	0.99971200	183.991
45	435.061723432AS	15.750000000	SIO2HL	1.56028895	198.802
46	280.349256994	17.105701219	HE193	0.99971200	193.492
47	322.068458373	94.193714724	SIO2HL	1.56028895	197.207
48	-987.718496827AS	1.636340795	HE193	0.99971200	196.856
49	335.441022838	82.947217201	SIO2HL	1.56028895	188.622
50	-1114.388548306AS	1.270418444	HE193	0.99971200	185.311
51	160.565830600	40.174196562	SIO2HL	1.56028895	132.555
52	202.910977254	1.342289784	HE193	0.99971200	
53	157.797608135	61.229633415	SIO2HL	1.56028895	114.327
54	535.601426702	12.273585235	HE193	0.99971200	
55	15736.124930284	15.585688667	SIO2HL	1.56028895	
56	394.939976545	3.776081840	HE193	0.99971200	
57	316.842290121	22.015913317	SIO2HL	1.56028895	
58	7602.251381444	2.700000000	L710	0.99998200 1.56028895	
59	0.00000000	3.150000000	SIO2HL	0.99998200	
60	0.00000000	9.000000000	L710	1.00000000	
61	0.00000000	0.00000000		1.00000000	14.020

- 24 -

FLAECH	ENR. 2	FLAECI	HE NR. 31	FLAEC	HE NR. 45
		••	0.0000	ĸ	0.0000
K	0.0000	K	0.0000	C1	-3.73975169e-009
C1	1.22433248e-008	C1	1.22715232e-008		
C2	9.17630275e-012	C2	-5.90002335e-013	C2	-3.74336974e-015
C3	5.91043068e-016	C3	-1.03677463e-017	C3	9.45872960e-019
C4	-2.47816893e-019	C4	1.00008208e-022	C4	-1.44091264e-024
C5	3.41011256e-023	C5	1.75475591e-026	C5	1.88129553e-028
C6	-2.42906864e-027	C6	-6.61198967e-031	C6	2.31885357e-033
Co	-2.425000016 027	•		C7	-7.26295145e-038
FLAEC	CHE NR. 4	FLAE	CHE NR. 36	FLAE	CHE NR. 48
	0.0000	К	0.0000	к	0.0000
K	0.0000		3.01531517e-009	C1	-4.13086555e-010
C1	2.09935818e-007	C1		C2	3.90501705e-014
C2	-1.58583859e-011	C2	-4.91017017e-014		
C3	-7.02615456e-016	C3	2.75994489e-019	C3	3.91619841e-020
C4	3.85802113e-019	C4	2.00585563e-023	C4	3.21475780e-024
C5	-7.10886225e-023	C5	-1.33495290e-027	C5	1.41056342e-028
C6	7.34912873e-027	C6	7.55261132e-032	C6	7.14264851e-034
C7	-3.35590933e-031	C7	-3.14630848e-037	C7	1.33303621e-038
Ο,					
FLAE	CHE NR. 7	FLAE	CHE NR. 41	FLAE	CHE NR. 50
K	0.0000	к	0.0000	ĸ	0.0000
C1	6.30425513e-009	C1	-3.34727519e-010	C1	8.02621332e-010
	-3.91904384e-013	C2	-1.54638784e-014	C2	1.98373377e-014
C2		C3	-2.56886946e-019	C3	1.35524355e-022
C3	-1.31611782e-017			C4	-1.48469224e-024
C4	-2.73217947e-021	C4	2.42822109e-025		-1.00499822e-030
		C5	1.92288995e-029	C5	
C5	-3.04177451e-025	C6	7.09209045e-033	C6	-1.45678875e-033
C6	6.68937241e-029			C7	5.08658073e-038
C7	-3.22999413e-033				
FLAE	CHE NR. 10	FLAE	CHE NR. 43		
к	0.0000	ĸ	0.0000		
	4.51583031e-009	. C1	-6.26438092e-010		
C1	1.37702459e-013	C2	-2.42562722e-015		
C2		C3	-1.54495891e-019		
C3 ·	-6.06055882e-018	_			
C4	-2.53779695e-022	C4	-1.83563042e-024		
C5	-3.73570196e-027	C5	4.03910963e-029		
C6	1.13076924e-030	C6	2.69828997e-033		
C7	-3.82690442e-035	C7	-1.10606501e-037		
pr s c	CHE NR. 23				
FLAE	CHE NR. 23				
K	0.0000				
C1	7.72459905e-008				
C2	3.04280743e-012				
C3	2.31066672e-016				
C4	4.78460943e-021				
	4.57773509e-024				
C5	-5.03222417e-028				
C6					
C7	5.93537498e-032				

TABELLE 3 (Shs2004)

				DDBCUZNUI	1/2 FREIER
FLAEC	CHE RADIEN	DICKEN	GLAESER	BRECHZAHL 157.629nm	DURCHMESSER
	0.000000000	25.017498240	N2V157	1.00031429	41.617
1	0.00000000	1.905032434	N2V157	1.00031429	47.527
2	19166.139614900AS	5.960085409	CAF2V157	1.55929035	48.157
3	119.172116093	3.094631417	N2V157	1.00031429	50.106
4	160.220213679AS	6.254374560	CAF2V157	1.55929035	51.869
5	162.519152248	27.782451972	N2V157	1.00031429	52.305
6	-94.077615349	6.711100917	CAF2V157	1.55929035	53.364
7	434.801298224AS	4.386889894	N2V157	1.00031429	67.969
8	645.264518232	33.749703361	CAF2V157	1.55929035	72.538
9	-148.333939508	0.521197880	N2V157	1.00031429	76.917
10	709.275977518AS	29.000976049	CAF2V157	1.55929035	91.242 93.166
11	-317.503191065	0.562186502	N2V157	1.00031429	99.645
12	259.994970434	20.919102516	CAF2V157	1.55929035	99.389
13	776.574450968	0.791803254	N2V157	1.00031429 1.55929035	99.739
14	215.152145251	73.117973823	CAF2V157	1.00031429	91.408
15	20868.347899500	0.521197880	N2V157	1.55929035	86.145
16	202.493483250	23.070977801	CAF2V157 N2V157	1.00031429	82.759
17	558.418132627	0.521197880	CAF2V157	1.55929035	77.613
18	186.405556634	13.439476629	N2V157	1.00031429	74.394
19	267.922416674	0.521197880 33.723938177	CAF2V157	1.55929035	72.415
20	200.469246207	9.365001399	N2V157	1.00031429	55.894
21	125.811608898 248.201572583	5.956547200	CAF2V157	1.55929035	54.715
22	223.381908745AS	25.172315656	N2V157	1.00031429	51.710
23	-94.453554360	6.254374560	CAF2V157	1.55929035	50.681
24 25	485.764221114	17.150487522	N2V157	1.00031429	51.201
25 26	-117.021217251	16.344741038	CAF2V157	1.55929035	51.440
2 0 27	453.448396924	18.745918625	N2V157	1.00031429	58.835
28	-192.539933332	12.040746634	CAF2V157	1.55929035	61.189
29	-10110.942296700	7.631352005	N2V157	1.00031429	70.434
30	-598.476704330	24.995144443	CAF2V157	1.55929035	73.019
31	-277.690546428AS	2.270348155	N2V157	1.00031429	81.569
32	-357.341411711	31.502092471	CAF2V157	1.55929035	83.988
33	-124.901240251	18.757658255	N2V157	1.00031429	86.879
34	262.323405524	9.339597466	CAF2V157	1.55929035	103.686
35	178.666624180	28.718074096	N2V157	1.00031429	103.248
36	686.201269935AS	9.311366752	CAF2V157	1.55929035	105.517
37	309.588340572	9.899187354	N2V157	1.00031429	109.811 119.166
38	334.272397140	35.656478162	CAF2V157	1.55929035	
39	-969.269108454	0.543015101	N2V157	1.00031429	120.560 131.252
40	408.715545997	57.937117409	CAF2V157	1.55929035	131.758
41	-306.960999184AS	22.291849608	N2V157	1.00031429	131.730
42	-196.797761340	11.726952300	CAF2V157		139.222
43	-394.026784416AS	27.549030800	N2V157	1.00031429 1.00031429	137.237
44	0.00000000	-7.445684000	N2V157	1.55929035	148.288
45	324.234131088AS	11.726952300	CAF2V157 N2V157	1.00031429	144.316
46	208.898767751	12.784071759 70.883531850	N2V157 CAF2V157	1.55929035	147.077
47	239.964906784	0.747525039	N2V157	1.00031429	146.792
48	-736.057578242AS	61.833878347	CAF2V157	1.55929035	140.681
49	249.829910804 -825.134407817AS	1.050234898	N2V157	1.00031429	138.269
50	119.514360013	29.939342632	CAF2V157	1.55929035	98.761
51		1.047402614	N2V157	1.00031429	91.482
52 53	151.480856759 117.647396280	45.612524461	CAF2V157	1.55929035	85.201
53 54	398.984860293	9.163549260	N2V157	1.00031429	70.387
54 55	10414.727506900	11.628662517	CAF2V157	1.55929035	61.739
55 56	294.280794199	2.821757461	N2V157	1.00031429	49.745
57	237.014551128	16.417043400	CAF2V157	1.55929035	45.331
58	5516.098537170	2.010334680	N2V157	1.00031429	35.814
59	0.00000000	2.345390460	CAF2V157	1.55929035	30.321
60	0.00000000	6.701115600	N2V157	1.00031429	28.554
61	0.00000000				10.404

	_		THE NR. 31	FLAEC	:HE NR. 45
FLAEC	THE NR. 2	FLAE	CHE NR. 31	LIMBO	
к	0.0000	K	0.0000	K	0.0000
C1	4.04200750e-008	C1	3.00166168e-008	C1	-9.04760702e-009
C2	3.81876586e-011	C2	-2.58415596e-012	C2	-1.63991553e-014
C3	5.03315092e-015	C3	-8.33331517e-017	C3	7.44005317e-018
	-3.49627521e-018	C4	1.36287634e-021	C4	-2.09009335e-023
C4	8.55465831e-022	C5	4.56615511e-025	C5	4.81547907e-027
C5		C6	-3.21288704e-029	C6	1.07329470e-031
C6	-1.10162987e-025	CU	5.21200,010	C7	-6.06561304e-036
DV 3 D	CHE NR. 4	FLAE	CHE NR. 36	FLAE	CHE NR. 48
FLAE	CHE NR. 4				
к	0.0000	K	0.0000	K	0.0000
C1	5.00885457e-007	C1	7.42096101e-009	C1	-1.01554668e-009
C2	-6.73594057e-011	C2	-2.14890363e-013	C2	1.70305715e-013
C3	-5.63021479e-015	C3	2.10259884e-018	C3	2.95803828e-019
C4	5.25874660e-018	C4	2.93924925e-022	C4	4.48800481e-023
	-1.72712950e-021	C5	-3.44512052e-026	C5	3.60194072e-027
C5	3.18784558e-025	C6	3.42432345e-030	· C6	3.09218205e-032
C6	3.18784558e-025	C7	-2.42014198e-035	C7	1.11798441e-036
C7	-2.59898831e-029	C1	-2.420141906 033	0.	
	_		CHE NR. 41	FY.AF	CHE NR. 50
FLAE	CHE NR. 7	F.PWF	CHE NR. 41	LDAD	OID III.
ĸ	0.0000	ĸ	0.0000	K	0.0000
C1	1.63223882e-008	C1	-8.35434016e-010	C1	1.93111104e-009
	-1.63813024e-012	C2	-6.91469747e-014	C2	8.65128317e-014
C2	-1.08828380e-016	C3	-2.02033656e-018	C3	6.58669900e-021
C3		C4	2.25402896e-024	C4	-2.03332737e-023
C4	-5.14236275e-020		3.72242911e-028	C5	-2.20168557e-029
C5	-4.70980651e-024	C5	3.20803731e-031	C6	-6.84618723e-032
C6	2.65671689e-027	С6	3.20803/31e-031	C7	4.14434278e-036
C7	-2.41428161e-031			C,	1.111312100 000
			- A2		
FLAE	CHE NR. 10	FLA	ECHE NR. 43		
K	0.0000	к	0.0000		
C1	1.08458836e-008	C1	-1.52986987e-009		
C2	6.34606387e-013	C2	-1.10887104e-014		
	-4.79999941e-017	C3	-1.19044876e-018		
C3	-3.88550006e-021	C4	-2.65113635e-023		
C4	-7.97813456e-026	C5	1.01435593e-027		
C5		C6	1.25351252e-031		
C6	5.17810873e-029		-9.10473118e-036		
C7	-3.15751405e-033	C7	-9.104731106 030		
FLA	ECHE NR. 23				
K	0.0000				
C1	1.86228378e-007				
C2	1.34530827e-011				
C3	1.90817638e-015				
	2.47700195e-020				
C4	1.48998352e-022				
C5	-3.26357684e-026				
C6	6.39194153e-030		•		
C7	6.391941536-030				

TABELLE 5 (m1659a)

			(BRECHZAHL	1/2 FREIER
		DICKEN	GLAESER	193.304nm	DURCHMESSER
FLAEC	CHE RADIEN				56.080
0	0.00000000	32.000000000	L710	0.99998200	63.460
1	0.00000000	3.100000000	L710	0.99998200	64.175
2	0.00000000	8.000000000	SIO2HL	1.56028900 0.99971200	66.898
3	214.374691678	6.768422494	HE193		68.402
4	678.966348965AS	8.000000000	SIO2HL	1.56028900 0.99971200	69.900
5 6	295.639011035	37.169733715	HE193		71.248
6	-111.652887331	16.192909187	SIO2HL	1.56028900 0.99971200	97.000
7	1435.846896630AS	2.614024194	HE193		100.696
8	1427.381076990	41.812512207	SIO2HL	1.56028900	106.045
9	-207.640254189	0.700000000	HE193	0.99971200	132.378
10	584.088602595AS	42.576490437	SIO2HL	1.56028900	134.179
11	-481.678249044	0.700000000	HE193	0.99971200	142.827
12	406.807321876	35.706452882	SIO2HL	1.56028900	142.670
13	-5625.700893160	0.700000000	HE193	0.99971200	140.967
14	298.176737082	79.446714434	SIO2HL	1.56028900	131.651
15	-13921.627398000	3.719595268	HE193	0.99971200	123.944
16	448.349842071	28.279136919	SIO2HL	1.56028900	118.744
17	1417.631668090	0.792030769	HE193	0.99971200	107.384
18	223.937979671	14.944850216	SIO2HL	1.56028900	
19	146.318064199	3.170742365	HE193	0.99971200	95.625
20	122.769528398	41.476354079	SIO2HL	1.56028900	92.370
21	392.244315955	7.795170437	HE193	0.99971200	86.941
22	704.124769671	12.864149054	SIO2HL	1.56028900	84.284
23	206.226483591AS	41.697630229	HE193	0.99971200	71.571
24	-136.542261472	8.000000000	SIO2HL	1.56028900	68.125
25	188.276100920	34.851670699	HE193	0.99971200	66.714
	-266.296401208	11.337537040	SIO2HL	1.56028900	68.908
26	828.502027259	27.472554480	HE193	0.99971200	73.632
27	-188.039957784	10.048803630	SIO2HL	1.56028900	76.651
28	-286.338776941	11.364281707	HE193	0.99971200	82.442
29	-195.263210167	27.977992639	SIO2HL	1.56028900	84.451
30	-210.425554231AS	2.668847644	HE193	0.99971200	95.869
31	-210.425554251A5	33.263873624	SIO2HL	1.56028900	100.866
32	-359.454820504	19.520108899	HE193	0.99971200	105.926
33	-179.268898245	12.000000000	SIO2HL	1.56028900	123.535
34	301.090725759	31.394452961	HE193	0.99971200	122.750
35	210.449149431	12.000000000	SIO2HL	1.56028900	124.201
36	708.827802225AS	9.972701330	HE193	0.99971200	128.960
37	368.041113973		SIO2HL	1.56028900	136.284
38	399.107567619	44.538775677	HE193	0.99971200	137.910
39	-764.045549260	0.700000000	SIO2HL	1.56028900	145.979
40	551.145029040	48.906287759	HE193	0.99971200	146.810
41	-510.329983328AS	33.432166582	SIO2HL.	1.56028900	146.808
42	-234.804925584	15.000000000	HE193	0.99971200	156.860
43	-435.743783861	24.039044390		0.99971200	158.282
44	0.000000000	1.800000000	HE193	1.56028900	173.490
45	548.700219435AS	15.000000000	SIO2HL	0.99971200	174.191
46	301.445277190	13.491008474	HE193	1.56028900	176.150
47	366.662373729	87.073931844	SIO2HL	0.99971200	177.412
48	-550.992057843AS	0.700000000	HE193	1.56028900	176.239
49	470.272792479	71.690763514	SIO2HL		175.005
50	-524.235839398AS	0.700000000	HE193	0.99971200 1.56028900	
51	143.906521816	40.003798335	SIO2HL	0.99971200	
52	189.600309947	1.071971036	HE193	0.99971200	108.008
53	144.836316227	31.828068261	SIO2HL	1.56028900	
54	218.443210665	0.700000000	HE193	0.99971200	
55	190.712173887	25.768276703	SIO2HL	1.56028900	
56	370.701088466	9.564358749	HE193	0.99971200	
57	807.447019199	15.749130690	SIO2HL	1.56028900	
58	171.924005396	7.148775604	HE193	0.99971200	61.353
59	181.279659482	24.378394256	CAF2HL	1.50143600	
60	1752.925125720	3.615508978	L710	0.99998200	42.509
61	0.00000000	3.000000000	SIO2HL	1.56028900	
62	0.00000000	8.000000000	L710	0.99998200	
63	0.00000000				14.020
0.3	0.0000000	•			

FLAE	CHE NR. 4	FLA	ECHE NR.	31	FLAE	CHE NR.	48
	0.0000	к	0.00	000	ĸ	0.00	00
K	0.0000 1.89471885e			066257e-00	9 C1	-2.57	047835e-011
C1	-6.027102296	=-012 C2		3712565e-01		2.34	238635e-014
C2				360493e-01	-	2.59	035963e-019
C3	1.534179036			3576425e-02		2.27	193081e-024
C4	-2.428176426	-020 C4 C5		3992339e-02			554954e-029
				3381570e-03	•		561363e-033
C5	5.70562716	9-024 60	-0.7.	33013706 03	C7		140368e-038
C6	-7.466714426				٠.		
C7	4.25930704	3-032					
FLAE	CHE NR. 7	FL	AECHE NR	. 36	FLA	ECHE NR.	50
					72	0.00	100
ĸ	0.0000	K	0.0		K		128359e-010
C1	3.66131696			5923077e-00			5597086e-015
C2	-1.30949841			3075485e-01			1693849e-010
C3	1.06295513		3.0	4931813e-01	.8 C3	-	1837039e-024
C4	-9.94272982	e-021 C4		1476591e-02			10370336-024 1089127e-028
C5	3.83041775			2954081e-02			3482220e-033
C6	2.71682194			0719952e-03			1932955e-037
C7	-5.66222517	e-034 C7	-1.3	2616533e-03	35 C7	1.0	15325336-031
FLAE	CHE NR. 10	FI	LAECHE NR	. 41			
K	0.0000	K		000			
C1	-5.39079178	e-010 C		7964979e-01			
C2	1.65472968			1624211e-01			
C3	-1.48200988			7941632e-01			
C4	-4.26542196			5032922e-02			
C5	2.23375010	e-026 C		5648624e-02			
C6	-4.68780777		5 3.1	.2077825e-03	33		
C7	2.49086051	.e-036					
IA.TT	ECHE NR. 23	FL	AECHE NR.	45			
K	0.0000	K		0000	00		
C1	1.12693938			08398365e-00			
C2	3.12498460		-	3014001e-0			
C3	1.69981511			8554002e-0			
C4	3.48067953		4 3.8	33549756e-0	25		
C5	-5.03222312	2e-024 C		00933881e-0			
C6	8.68868128			51369375e-0			
C7	-3.8828642	le-032 C	7 -2.0)9514835e-0	31		

TABELLE 7 (Shs2010)

				BRECHZAHL	1/2 FREIER
	DAOTEN	DICKEN	GLAESER	157.629nm	DURCHMESSER
FLAECH	E RADIEN				45.607
0	0.00000000	27.200000000	N2V157	1.00031429	52.255
1	0.00000000	1.078880752	N2V157	1.00031429	53.175
2	1045.314373860AS	7.513476207	CAF2V157	1.55929035	54.906
3	114.248430605	5.626540893	N2V157	1.00031429	57.362
4	186.055500442AS	9.260588934	CAF2V157	1.55929035	
Š	182.393999171	22.566534529	N2V157	1.00031429	58.070
5 6	-183.513133835	7.502341067	CAF2V157	1.55929035	59.394
ž	283.035779024AS	6.154441203	N2V157	1.00031429	69.752
8	401.580615857	36.640413384	CAF2V157	1.55929035	74.376
9	-281.777697307	0.861477292	N2V157	1.00031429	82.029
10	353.134032777AS	21.777939897	CAF2V157	1.55929035	96.624
11	6025.441766310	0.939333289	N2V157	1.00031429	97.803
12	215.727113313	16.642509432	CAF2V157	1.55929035	104.912
13	311.039356614	1.720069535	N2V157	1.00031429	104.543
14	228.409410676	53.091993802	CAF2V157	1.55929035	105.751
15	-758.217583901	0.700000000	N2V157	1.00031429	103.603
16	132.798453265	34.216733306	CAF2V157	1.55929035	92.164
	325.068121782	0.700376490	N2V157	1.00031429	87.829
17	274.542764700	14.522646582	CAF2V157	1.55929035	86.310
18		0.701615532	N2V157	1.00031429	81.119
19	338.880545591 290.554636535	35.428116482	CAF2V157	1.55929035	79.777
20	290.554656555	8.536647573	N2V157	1.00031429	66.983
21	3517.019128770	7.503695666	CAF2V157	1.55929035	63.895
22	-432.647390565	27.713652572	N2V157	1.00031429	55.675
23	351.066950680AS	6.786155040	CAF2V157	1.55929035	54.460
24	-96.698497704	22.127454363	N2V157	1.00031429	55.555
25	409.131134381	7.514387520	CAF2V157	1.55929035	56.043
26	-112.905403831		N2V157	1.00031429	63.374
27	648.671802143	18.457185848 13.993219919	CAF2V157	1.55929035	65.303
28	-184.515622336	11.356478659	N2V157	1.00031429	79.407
29	1230.992852820		CAF2V157	1.55929035	87.263
30	-2362.593927680	29.065160418	N2V157	1.00031429	96.738
31	-316.217892752AS	1.235135355	CAF2V157	1.55929035	98.349
32	-382.379645390	44.746901069	N2V157	1.00031429	102.434
33	-129.769453881	0.793115744	CAF2V157	1.55929035	119.942
34	340.264743344	12.064670296	N2V157	1.00031429	120.145
35	229.694535355	31.128991673		1.55929035	121.539
36	1287.330025580AS	9.736539177	CAF2V157	1.00031429	127.928
37	364.756756968	9.358478921	N2V157	1.55929035	136.576
38	397.094346162	41.827853290	CAF2V157	1.00031429	138.444
39	-976.995908198	0.786915821	N2V157	1.55929035	150.286
40	410.514102518	80.508348674	CAF2V157	1.00031429	150.806
41	-324.940917692AS	28.497218849	N2V157		149.372
42	-210.576089850	12.724040700	CAF2V157	1.55929035	157.522
43	-405.186570491AS	54.127665200	N2V157	1.00031429	161.249
44	0.00000000	-32.315024000	N2V157	1.00031429	163.212
45	367.399928082AS	12.724040700	CAF2V157	1.55929035	158.116
46	234.556148176	15.776145720	N2V157	1.00031429	162.673
47	262.828171603	81.195503690	CAF2V157	1.55929035	
48	-725.847919437AS	0.700158254	N2V157	1.00031429	162.170
49	246.701752532	66.006758182	CAF2V157	1.55929035	152.284
50	-2127.666595970AS	0.700000000	N2V157	1.00031429	148.983
51	139.223624657	30.839009177	CAF2V157	1.55929035	110.611
52	186.041725727	0.70000000	N2V157	1.00031429	103.950
53	144.468793673	48.246174525	CAF2V157	1.55929035	97.488
54	576.304531006AS		N2V157	1.00031429	82.155
55	-1203.254778000	12.806934866	CAF2V157	1.55929035	73.193
56	670.188680719	2.550471395	N2V157	1.00031429	60.877
57	358.370758649	16.126420420	CAF2V157	1.55929035	
	-2011.367216580	2.181264120	N2V157	1.00031429	
58	0.000000000	7.500000000	CAF2V157	1.55929035	38.403
59 60	0.00000000	7.000000000	N2V157	1.00031429	32.640
60	0.000000000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			11.402
61	0.0000000				

FLAE	CHE NR. 2	FLAE	CHE NR. 31	FLAE	CHE NR. 48
	0.0000	к	0.0000	К	0.0000
K	0.0000		3.37616068e-008	C1	-1.11964446e-009
Cl	1.43214516e-007	C1			
C2	-1.05523323e-011	C2	-1.35772165e-012	C2	1.27445676e-013
C3	1.33937296e-014	C3	-9.13855026e-017	C3	-6.74866729e-020
C4	-3.81541827e-018	C4	2.55494973e-021	C4	3.35598915e-023
	7.71238693e-022	C5	8.18743728e-026	C5	1.67085809e-027
C5	7.71238693e-U22			C6	-9.92306326e-033
С6	-1.24242959e-025	C6	-3.21333945e-030		
C7	1.04382716e-029	C7	-1.70882417e-034	C7	4.04149705e-037
FLAE	CHE NR. 4	FLAE	CHE NR. 36	FLAE	CHE NR. 50
		к	0.0000	К	0.0000
K	0.0000			C1	1.68697911e-009
C1	4.22469071e-007	C1	3.39133645e-009		
C2	-2.02044975e-011	C2	-1.01165561e-013	C2	6.71519010e-014
C3	-9.99096667e-015	C3	-4.16392158e-018	C3	-1.12711844e-018
	2.57319928e-018	C4	-4.60775252e-023	C4	-3.58730491e-023
C4	2.575199200-010		-4.18366165e-027	C5	4.82205527e-028
C5	-3.55404240e-022	C5			2.73665299e-032
C6	2.76031008e-026	C6	-3.56809896e-032	C6	
C7	-1.04425360e-030	C7	6.85585311e-036	C7	-6.49697083e-037
			•		
FLAE	CHE NR. 7	FLAE	CHE NR. 41	FLAE	CHE NR. 54
17	0.0000	K	0.0000	ĸ	0.0000
K		C1	-1.50447859e-009	C1	8.11862732e-010
C1	6.69007068e-008			C2	9.24410971e-014
C2	-8.14794171e-012	C2	-4.05442091e-014		
C3	1.44046983e-016	C3	-7.06684952e-019	C3	4.20674572e-018
C4	-6.18733673e-020	C4	-2.92843853e-023	C4	1.09384658e-021
C5	1.33863248e-024	C5	4.58323842e-028	C5	-1.19932277e-025
		C6	2.24810472e-032	C6	5.78613553e-030
C6	6.01771051e-028			C7	-3.28204739e-034
C7	-4.18169671e-032	C7	3.26320529e-037	Ci	-3.202047356 034
			CHE NR. 43		
FLAE	CCHE NR. 10	FLAR	CHE NR. 43		
K	0.0000	K	0.0000		
C1	2.09103125e-008	C1	-1.43187993e-009		
C2	3.74013441e-013	C2	8.61397718e-015		
	-4.28287142e-017	02	0.0220112011		
C3		~~	-4.27133053e-019		
Ç4	-7.74198571e-021	C3			
C5	7.15651505e-025	C4	-1.67623847e-023		
С6	-2.00926873e-029	C5	7.56870039e-028		
C7	-1.13570242e-034	C6	4.59600825e-032		
C,	1.133/02/120 001	C7	-1.56107786e-036		
FLA	ECHE NR. 23	FLA	CHE NR. 45		
K.	0.0000	K	0.0000		
C1	2.79935405e-007	C1	-7.40459945e-009		
	1.51575623e-011	C2	-9.68327166e-015		
C2	1.010/30206-011	C3	4.20547857e-018		
C3	1.48076409e-015				
C4	1.82749522e-019	C4	-2.29946961e-023		
C5	4.42569184e-023	C5	1.66748551e-027		
C6	-6.88248081e-027	C6	4.76274324e-032		
	2.98012936e-030	C7	-1.41676650e-036		
C7	2.300123306-030	٠.			

TABELLE 9 (SHS2007)

	. DADTEN	DICKEN	GLAESER	BRECHZAHL 193.304nm	1/2 FREIER DURCHMESSER
FLAECHE	0.00000000	33.600000000	L710	0.99998200	54.406
0	0.000000000	0.700000000	L710	0.99998200	62.622
1	6082.059008953AS	8.000000000	SIO2HL	1.56028895	63.203
2	143.971066538	5.220564877	HE193	0.99971200	65.679
3		14.894807261	SIO2HL	1.56028895	67.999
4	220.728491318AS	25.437504335	HE193	0.99971200	69.274
5	255.425625405	8.000767193	SIO2HL	1.56028895	70.782
6	-213.790257832		HE193	0.99971200	82.296
7	363.835685805AS	7.715328993		1.56028895	86.335
8	609.577684342	43.913943130	SIO2HL	0.99971200	96.478
9	-315.746821165	0.872144807	HE193		113.107
10	455.762005384AS	27.106087992	SIO2HL	1.56028895 0.99971200	115.284
11	7229.021339243	0.704758668	HE193		124.960
12	251.626671247	20.976022785	SIO2HL	1.56028895	124.571
13	363.067076891	3.470948804	HE193	0.99971200	
14	282.856636492	67.559653556	SIO2HL	1.56028895	126.222
15	-901.244370913	2.358079827	HE193	0.99971200	123.665
16	160.340001669	41.155799240	SIO2HL	1.56028895	111.328
17	490.332334286	1.787006860	HE193	0.99971200	107.624
18	400.692503878	17.482624917	SIO2HL	1.56028895	105.263
19	1050.089846531	1.273289975	HE193	0.99971200	101.323
20	682.408004442	43.747762196	SIO2HL	1.56028895	98.609
21	3103.102640660	10.767552226	HE193	0.99971200	79.838
22	-449.343998255	8.151994354	SIO2HL	1.56028895	76.964
23	481.606355829AS	34.236197830	HE193	0.99971200	67.953
24	-121.665966102	8.400000000	SIO2HL	1.56028895	65.854
25	374.980814433	26.204024332	HE193	0.99971200	67.217
26	-143.249767685	8.035536657	SIO2HL	1.56028895	67.743
27	884.703729247	23.779221943	HE193	0.99971200	76.105
28	-243.498696219	18.114116074	SIO2HL	1.56028895	80.078
29	11014.244296721	14.108602625	HE193	0.99971200	95.668
30	-1710.670778965	36.476108265	SIO2HL	1.56028895	105.564
	-509.290793668AS	3.799046038	HE193	0.99971200	120.040
31	-522.760271037	55.102056532	SIO2HL	1.56028895	121.425
32 33	-162.101214724	0.700000000	HE193	0.99971200	126.271
	408.832035177	12.000000000	SIO2HL	1.56028895	148.654
34	285.314514094	38.599460894	HE193	0.99971200	148.869
35	1647.197381837AS	12.000000000	SIO2HL	1.56028895	150.501
36	452.111295331	11.431144357	HE193	0.99971200	158.593
37	495.143365449	50.265656014	SIO2HL	1.56028895	169.187
38		0.700000000	HE193	0.99971200	171.160
39	-1181.451218240	108.309739630	SIO2HL	1.56028895	186.338
40	504.444538837	35.218931962	HE193	0.99971200	187.299
41	-402.406909600AS	15.750000000	SIO2HL	1.56028895	185.680
42	-260.687700983	67.00000000	HE193	0.99971200	196.016
43	-501.804439493AS	-40.000000000	HE193	0.99971200	200.793
44	0.000000000	15.750000000	SIO2HL	1.56028895	203.535
45	439.023921910AS		HE193	0.99971200	196.728
46	286.281672961	18.419961595		1.56028895	201.435
47	320.640783540	98.196888764	SIO2HL	0.99971200	200.897
48	-938.097514827AS	0.70000000	HE193	1.56028895	188.254
49	302.624264758	84.618876500	SIO2HL	0.99971200	182.786
50	-3200.587702255AS	0.730670643	HE193		136.139
51	170.842340056	38.317749380	SIO2HL	1.56028895	127.200
52	222.792535873	1.144357720	HE193	0.99971200	118.623
53	170.961511698	59.825366410	SIO2HL	1.56028895	
54	671.886005497AS	14.144748840	HE193	0.99971200	100.059
55	-1782.275044587	16.050043219	SIO2HL	1.56028895	86.783
56	683.979935539	3.683343415	HE193	0.99971200	71.293
57	415.132395267	20.066273975	SIO2HL	1.56028895	64.045
58	-3089.397426921	2.700000000	L710	0.99998200	53.104
59	0.00000000	3.150000000	SIO2HL	1.56028895	
60	0.00000000	9.000000000	L710	0.99998200	41.056 13.602
00					

Tabelle 10

PCT/EP03/04477

FLAECH	ENR. 2	C5	2.76794296e-027	K	0.0000
		C6	-3.72884626e-031	C1	9.18566931e-010
**	0.0000	C7	5.44983867e-037	C2	2.34181695e-014
K		٠.		C3	-2.37718980e-019
C1	6.13378195e-008			C4	-4.99822008e-024
C2	-1.21093962e-012		26		4.49770758e-029
C3	4.03974995e-015	FLAE	CHE NR. 36	C5	1.89095883e-033
C4	-9.55444255e-019			C6	
C5	1.47785598e-022	K	0.0000	C7	-3.25678700e-038
C6	-1.63598785e-026	C1	1.62423735e-009		
	8.81916303e-031	C2	-2.90322074e-014		
C7	8.813163036-031		-1.28032707e-018	ביו אני	CHE NR. 54
		C3		ביייני	CIE HILL 51
		C4	-8.13073474e-024		
FLAEC	CHE NR. 4	C5	-2.82547328e-028	K	0.0000
		C6	-1.12054203e-032	C1	4.98993424e-010
17	0.0000	C7	3.63330556e-037	C2	2.96497812e-014
K	=	٠,	3.033000000	С3	7.13814561e-019
C1	2.40106346e-007			C4	6.37411566e-023
C2	-1.01253531e-011				
C3	-3.29559355e-015	FLAE	CHE NR. 41	C5	-9.87253699e-027
C4	7.33617239e-019			C6	8.78681835e-031
C5	-8.72083684e-023	K	0.0000	C7	-3.08278753e-035
		C1	-8.25877332e-010		
C6	6.00312066e-027		-1.35293772e-014		
C7	-1.80286882e-031	C2			
		C3	-1.52207044e-019		
		C4	-3.79513424e-024		
ET AF	CHE NR. 7	C5	4.70194280e-029		
E DAE	CHE NK.	C6	1.38778762e-033		
			2.29251252e-038		
K	0.0000	C7	2.292312326-030		
C1	4.18009370e-008				
C2	-2.90287476e-012				
C3	-6.63126937e-017	FLAE	CHE NR. 43		
	-1.02006062e-020				
C4		7.5	0.0000		
C5	1.19401776e-024	K			
C6	-3.86272749e-029	.C1	-7.55685880e-010		
C7	1.07942556e-033	C2	3.51491917e-015		
		C3	-1.00447098e-019		
		C4	-2.72274784e-024		
	10	C5	7.10036568e-029		
FLAE	CHE NR. 10				
		C6	2.88999682e-033		
K	0.0000	C7	-6.70709105e-038		
C1	1.02570958e-008				
C2	1.91710967e-013				
	-2.01472753e-017	IA.TH	ECHE NR. 45		
C3			30112 11111		
C4	-9.85838048e-022		0.0000		
C5	8.93935503e-026	K	• • •		
C6	-2.25592871e-030	C1	-3.91274835e-009		
C7	6.58672348e-036	C2	-3.25534545e-015		
•		C3	9.56631278e-019		
		C4	-3.12533946e-024		
	oup up 02	C5	1.54402231e-028		
FLAE	CHE NR. 23		3.02878298e-033		
		C6			
K	0.0000	C7	-6.01532104e-038		
C1	1.54526224e-007				
C2	5.83194952e-012				
	3.45258425e-016	ET.N	ECHE NR. 48		
C3		Lun	Boile Mr. 10		
C4	3.91617672e-020				
C5	4.12332466e-025	K	0.0000		
C6	3.60449958e-028	C1	-5.54279925e-010		
C7	5.30220523e-032	C2	4.37404892e-014		
٠.		C3	-2.36005962e-020		
		C4	5.02991088e-024		
	1000 NB 31		1.62614899e-028		
FLA	ECHE NR. 31	C5			
		C6	-6.64121367e-034		
ĸ	0.0000	C7	1.69853177e-038		
C1	1.96722680e-008				
C2	-5.31456030e-013				
	-2.13215304e-017	ፍፕ. Δ	ECHE NR. 50		
C3		ה ביי			
C4	7.69697830e-022				

<u>Patentansprüche</u>

Projektionsobjektiv zur Abbildung eines in der Objektebene des 5 1. Projektionsobjektivs angeordneten Musters in eine Bildebene des einer vorgegeben Ultraviolettlicht mit Projektionsobjektivs Arbeitswellenlänge, das Projektionsobjektiv mit: einer Vielzahl von optischen Elementen, die entlang einer optischen Achse angeordnet sind; und 10 einer mit Abstand vor der Bildebene angeordneten Systemblende (5); wobei das Projektionsobjektiv als rein refraktives Ein-Taillensystem mit einem objektnahen Bauch (6), einem bildnahen Bauch (8) und einer dazwischenliegenden Taille (7) ausgebildet ist und in einem 15 Bereich divergenter Strahlung zwischen der Taille (7) und der

20

hat.

 Projektionsobjektiv nach Anspruch 1, bei dem die Negativgruppe (LG5) mindestens eine Linse (27, 28) mit negativer Brechkraft und einer bildwärts gerichteten Konkavfläche umfasst.

Systemblende (5) eine Negativgruppe (LG5) angeordnet ist, die eine effektive Wölbung mit einer bildwärts gerichteten Konkavseite

25 3. Projektionsobjektiv nach Anspruch 1 oder 2, bei dem die Negativgruppe (LG5) mindestens zwei, insbesondere genau zwei, Linsen (27, 28) mit negativer Brechkraft und jeweils bildwärts gerichteten Konkavflächen umfasst, wobei vorzugsweise die Brechkraft der objektseitigen Linse (27) dieser Gruppe größer ist als die Brechkraft einer darauffolgenden Linse (28) der Gruppe.

4. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem die Negativgruppe (LG5) in einem Mittelbereich zwischen einem Ort engster Einschnürung der Taille (7) und der Systemblende (5) angeordnet ist, wobei vorzugsweise ein Scheitelpunkt einer Wölbungsfläche der Negativgruppe im Bereich zwischen ca. 30% und ca. 70%, insbesondere zwischen ca. 40% und ca. 60% des Axialabstandes zwischen dem Bereich engster Einschnürung der Taille (7) und der Systemblende (5) liegt.

5

- 10 5. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem die Negativgruppe (LG5) eine effektive Wölbung mit einem Wölbungsradius r_c hat, dessen Verhältnis r_c / DB zum Blendendurchmesser DB der Systemblende (5) im Bereich zwischen ca. 0,8 und ca. 2,2 liegt, vorzugsweise im Bereich zwischen ca. 1,0 und ca. 2,0, insbesondere im Bereich zwischen ca. 1,1 und ca. 1,9.
- 6. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem im Bereich der Systemblende (5) ein im wesentlichen symmetrischer Aufbau mit Bikonvexlinsen (29, 30, 33, 34) und Negativ-Meniskuslinsen (31, 32) vorliegt.
- Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem unmittelbar vor der Systemblende (5) eine Negativ-Meniskuslinse (31) mit objektseitiger Konkavfläche und unmittelbar hinter der Systemblende eine Negativ-Meniskuslinse (32) mit bildseitiger Konkavfläche angeordnet ist.
- 8. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem unmittelbar vor der Systemblende (5) ein Positiv-/Negativ-Doublett mit einer Bikonvexlinse (30) und einer nachfolgenden Negativ-Meniskuslinse (39) mit objektseitiger Konkavfläche und un-

WO 03/093904 PCT/EP03/04477

- 35 -

mittelbar hinter der Systemblende ein Negativ-/Positiv-Doublett mit einer Negativ-Meniskuslinse (32) mit bildseitiger Konkavfläche und einer nachfolgenden Bikonvexlinse (33) angeordnet ist.

- 9. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem zwischen der Systemblende (5) und der Bildebene (3), mindestens eine bikonvexe Positivlinse angeordnet ist, vorzugsweise zwei bikonvexe Positivlinsen (33, 34).
- 10 10. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem die letzte optische Fläche vor der Systemblende (5) und/oder die erste optische Fläche nach der Systemblende asphärisch ist.
- 11. Projektionsobjektiv nach einem der vorhergehenden Ansprüche,
 15 das für eine Arbeitswellenlänge von 248nm, 193nm oder 157 nm ausgelegt ist.
 - 12. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem alle transparenten optischen Elemente, gegebenenfalls mit Ausnahme mindestens einer bildnahen Linse kleinen Durchmessers und einer Abschlussplatte, aus dem gleichen Material gefertigt sind, insbesondere aus synthetischem Quarzglas.

20

30

- 13. Projektionsobjektiv nach einem der vorhergehenden Ansprüche,
 25 das eine bildseitige numerische Apertur NA ≥ 0,85 hat, wobei vorzugsweise NA ≥ 0,9 ist.
 - 14. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem zwischen der Taille (7) und der Systemblende (5) in der Nähe der Taille mindestens eine Positiv-Meniskuslinse (26) mit objektseitiger Konkavfläche angeordnet ist.

WO 03/093904 PCT/EP03/04477

- 15. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem zwischen der Taille (7) und der Systemblende (5) in dieser Reihenfolge mindestens eine Linse (26) mit einer bildseitigen Konvexfläche und darauffolgend mindestens eine Linse (27, 28) mit objektseitiger Konvexfläche angeordnet ist, wobei vorzugsweise die erste Linse mit bildseitiger Konvexfläche eine positive Brechkraft hat.
- 10 16. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, wobei im Bereich der Taille (7) eine Negativgruppe mit mindestens zwei Negativlinsen (2, 3, 4) angeordnet ist, wobei die Negativgruppe vorzugsweise mindestens drei aufeinanderfolgende Negativlinsen aufweist.

15

5

- Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem eine der Objektebene folgende erste Linsengruppe mindestens zwei Negativlinsen (11, 12) aufweist.
- 20 18. Projektionsobjektiv nach Anspruch 17, bei dem in der ersten Linsengruppe mindestens eine der auf die Objektebene folgenden ersten vier optischen Flächen asphärisch ist, wobei vorzugsweise in der ersten Linsengruppe mindestens zwei optische Flächen asphärisch sind, und insbesondere objektseitig liegen.

25 .

19. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem im Bereich großer Strahldurchmesser im Nahbereich der Objektebene (2) mindestens eine Meniskuslinse (16, 18) mit positiver Brechkraft und bildseitiger Konkavfläche angeordnet ist.

30

20. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem mindestens eine asphärische Fläche im Bereich der Taille (7)

WO 03/093904 PCT/EP03/04477

und mindestens eine asphärische Fläche im Bereich der Systemblende (5) angeordnet ist.

- 5 21. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem für die Parameter:
 - A = maximaler Inzidenzwinkel (in Gas) der bildseitigen Austrittsfläche einer Linse der Negativgruppe (LG5) im aufsteigenden Bereich des zweiten Bauches (8);
- 10 B = maximaler Inzidenzwinkel (in Gas) der bildseitigen Austrittsfläche der letzten Linse (24) mit negativer Brechkraft in der Taille (7).
 - C = Verhältnis zwischen Randstrahlhöhe bei A und maximaler Komastrahlhöhe bei A
- D = Verhältnis zwischen Randstrahlhöhe bei B und maximaler Komastrahlhöhe bei B die Bedingung: A/B > C/D gilt
- 22. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem eine große Negativlinse (32) nach der Systemblende (5) eine effektive Wölbung hat, die die selbe Ausrichtung hat wie eine effektiven Wölbung der Negativgruppe (LG5) im aufsteigenden Bereich zwischen Taille (7) und Systemblende (5).
- 23. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem zwischen der Taille (7) und Systemblende (5) mindestens zwischen zwei Linsen (26, 27) die effektive Wölbung wechselt, so dass ein Wechsel in der Lage der Krümmungsmittelpunkte der effektiven Wölbung stattfindet.

- 24. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem im Bereich der Systemblende eine verstellbare sphärische Blende vorgesehen ist.
- 5 25. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem in einem Bereich großer Strahldurchmesser im Nahbereich der Objektebene (2) mindestens zwischen zwei Linsen (14, 15) mit positiver Brechkraft die effektive Wölbung von objektseitig nach bildseitig wechselt, so dass ein Wechsel der Lage der Krümmungsmittelpunkte der effektiven Wölbung stattfindet.
 - 26. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem in einem Bereich großer Strahldurchmesser in der Nähe der Bildebene (3) hinter der Systemblende (5) wenigstens zwei asphärische Linsen (33, 34) mit bildseitigen Asphärenflächen existieren, deren Durchmesser wenigstens 75% des Durchbessers der Systemblende beträgt.
- 27. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem in einem Bereich zwischen Systemblende (5) und Bildebene (3) wenigstens drei Linsen (33, 34, 36) mit positiver Brechkraft bildseitig asphärisiert sind und sich keine weitere asphärisierte Linse mit objektseitiger Äsphärenfläche zwischen diesen Linsen befindet.

25

15

5

INTERNATIONAL SEARCH REPORT

Interns Application No PCT/EY 03/04477

A. CLASSI IPC 7	FICATION OF SUBJECT MATTER G03F7/20				
According to	o International Patent Classification (IPC) or to both national classifi	cation and IPC			
B. FIELDS	SEARCHED				
Minimum do IPC 7	ocumentation searched (classification system followed by classification sy	tion symbols)			
Documenta	tion searched other than minimum documentation to the extent that	such documents are included in the	fields searched		
Electronic d	ata base consulted during the international search (name of data b	ase and, where practical, search ten	ms used)		
EPO-In	terna]				
C. DOCUMI	ENTS CONSIDERED TO BE RELEVANT				
Category •	Citation of document, with indication, where appropriate, of the re	elevant passages	Relevant to claim No.		
A	US 2002/005938 A1 (OMURA YASUHIR 17 January 2002 (2002-01-17) the whole document	0)	1–27		
A	US 2002/001141 A1 (ULRICH WILHEL 3 January 2002 (2002-01-03) the whole document	M ET AL)	1-27		
A	US 6 097 537 A (MISAWA JUNICHI 1 August 2000 (2000-08-01) the whole document	1–27			
Furth	er documents are listed in the continuation of box C.	χ Patent family members are	listed in annex.		
Special categories of cited documents:					
A document defining the general state of the art which is not or priority date and not in conflict with the application but					
considered to be of particular relevance invention E' earlier document but published on or after the international					
Ting date "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to cannot be considered to inventive step when the document is taken alone					
which is	s cited to establish the publication date of another or other special reason (as specified)	"Y" document of particular relevance	e: the claimed invention		
"O" document referring to an oral disclosure, use, exhibition or cannot be considered to involve an inventive step when the document is combined with one or more other such docu-					
P documer	nt published prior to the International filling date but	ments, such combination being in the art.	, i		
later tha	an the priority date claimed ctual completion of the international search	*&* document member of the same			
		Date of mailing of the Internation 17/07/2003	nai search report		
3 July 2003 Name and mailing address of the ISA		Authorized officer			
	European Palent Cifice, P.B. 5818 Palentlaan 2 NL ~ 2280 HV Rijswijk				
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Daffner, M			

INTERNATIONAL SEARCH REPORT

mation on patent family members

Intern I Application No PCT/EP 03/04477

				<u>-</u>
	Publication date		Patent family member(s)	Publication date
A1	17-01-2002	JP	2001343582 A	14-12-2001
A1	03-01-2002	EP JP TW US	1111425 A2 2001201682 A 448307 B 2001050820 A1	27-06-2001 27-07-2001 01-08-2001 13-12-2001
A	01-08-2000	JP JP	11295605 A 11295606 A	29-10-1999 29-10-1999
	A1	A1 17-01-2002 A1 03-01-2002	A1 17-01-2002 JP A1 03-01-2002 EP	A1 17-01-2002 JP 2001343582 A A1 03-01-2002 EP 1111425 A2

Form PCT/ISA/210 (patent family ennex) (July 1992)

INTERNATIONALER RECHERCHENBERICHT

PCT/Er 03/04477

a. klassifizierung des anmeldungsgegenstandes IPK 7 G03F7/20				
	ternationalen Patentklassifikation (IPK) oder nach der nationalen Kla	ssifikation und der IPK		
	RCHIERTE GEBIETE ter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbo	ole)		
IPK 7	GO3F	,		
Recherchie	te aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, so	oweit diese unter die recherchierten Geblete	fallen	
Während de	r internationalen Recherche konsultierte etektronische Datenbank (N	larne der Datenbank und evtl. verwendete S	Suchbegriffe)	
EPO-In	ternal			
			·	
C. ALS WE	SENTLICH ANGESEHENE UNTERLAGEN			
Kategorie*	Bezeichnung der Veröffentlichung, sowelt erforderlich unter Angab	e der in Beiracht kommenden Teile	Betr. Anspruch Nr.	
A	US 2002/005938 A1 (OMURA YASUHIRO 17. Januar 2002 (2002-01-17) das ganze Dokument))	1–27	
A	US 2002/001141 A1 (ULRICH WILHELM 3. Januar 2002 (2002-01-03) das ganze Dokument	1 ET AL)	1-27	
Α	US 6 097 537 A (MISAWA JUNICHI E 1. August 2000 (2000-08-01) das ganze Dokument	ET AL)	1-27	
			·	
	ere Veröffentlichungen sind der Fortsetzung von Feld C zu ehmen	X Slehe Anhang Patentfamilie		
"A" Veröffer	Kategorlen von angegebenen Veröffentlichungen : ntlichung, die den altgemeinen Stand der Technik definiert, Icht als besonders bedeutsam anzusehen ist	*T* Spätere Veröffentlichung, die nach dem oder dem Prioritätsdatum veröffentlicht Anmeidung nicht kollidiert, sondern nur	worden ist und mit der zum Verständnis des der	
E älteres	Dokument, das jedoch erst am oder nach dem internationalen dedatum veröffentlicht worden ist	Erfindung zugrundeliegenden Prinzips of Theorie angegeben ist *Y* Voröffentlichung von beconderer Bodeut		
"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden anderen im Recherchenbericht genannten Veröffentlichung belegt werden "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung von besonderer Bedeutung; die beanspruchte Erfindung veröffentlichung von besonderer Bedeutung; die beanspruchte veröffentlichung				
ausget	ühri)	kann nicht als auf erfinderischer Tätigke werden, wenn die Veröffentlichung mit (eit beruhend betrachtet	
eine B "P" Veröffer	ntlichung, die sich auf eine mündliche Offenbarung, enutzung, eine Ausstellung oder andere Maßnahmen bezieht ntlichung, die vor dem internationalen Anmekledatum, aber nach eanspruchten Prioritätsdatum veröffentlicht worden ist	Veröffentlichungen dieser Kategorie in diese Verbindung für einen Fachmann i *&" Veröffentlichung, die Mitglied derselben	Verbindung gebracht wird und naheliegend ist	
	Abschlusses der internationalen Recherche	Absendedatum des internationalen Red	herchenberichts	
3	. Juli 2003	17/07/2003		
Name und F	Postanschrift der Internationalen Recherchenbehörde	Bevollmächtigter Bediensteter		
	Europäisches Patentamf, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Daffner, M		

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen zur selben Patentfamilie gehören

Interns Aktenzelchen
PCT/EW 03/04477

lm Recherchenbericht ngeführtes Patentdokum		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
US 2002005938	A1	17-01-2002	JP	2001343582 A	14-12-2001
US 2002001141	A1	03-01-2002	EP JP TW US	1111425 A2 2001201682 A 448307 B 2001050820 A1	27-06-2001 27-07-2001 01-08-2001 13-12-2001
US 6097537	Α	01-08-2000	JP JP	11295605 A 11295606 A	29-10-1999 29-10-1999

Formblatt PCT/ISA/210 (Anhang Patentfamille) (Juli 1992)