

GEOMETRÍA

ECUACIÓN DE LA CIRCUNFERENCIA

4th

SECONDARY

Capitulo 23

Circunferencia de Mohr

Una de las aplicaciones de la circunferencia en física es el círculo de Mohr, cuya ecuación de su circunferencia es $x^2 + y^2 = r^2$, que sirve para calcular los esfuerzos máximos y mínimos, pandeo a que es sometido una estructura metálica, una viga o una columna para construir puentes o edificios.

ECUACIÓN DE LA CIRCUNFERENCIA

Es un c<mark>onjunto de infinitos puntos del plano cartesia</mark>no cuyos pares ordenados cumplen la siguiente ecuación:

ECUACIÓN ORDINARIA

$$(x-h)^2 + (y-k)^2 = r^2$$

Forma general

$$x^2 + y^2 + \mathbf{D}\mathbf{x} + \mathbf{E}\mathbf{y} + \mathbf{F} = \mathbf{0}$$

C(h, k) es el centro.

$$\mathbf{C}\left(-\frac{D}{2};-\frac{E}{2}\right)$$

$$r=\frac{\sqrt{D^2+E^2-4F}}{2}$$

ECUACIÓN CANÓNICA DE LA CIRCUNFERENCIA

El centro de la circunferencia coincide con el origen de coordenadas.

ECUACIÓN DE LA RECTA TANGENTE A UNA CIRCUNFERENCIA

$$(x_1 - h)(x - h) + (y_1 - k)(y - k) = r^2$$

1. Halle la ecuación de la circunferencia mostrada.

Ecuación canónica de la circunferencia

$$x^2 + y^2 = 9$$

2. Halle la ecuación ordinaria de la circunferencia mostrada.

Resolución

Piden: La ecuación ordinaria de la circunferencia

$$(x-h)^2 + (y-k)^2 = r^2$$

$$(x-3)^2 + (y-4)^2 = 2^2$$

$$(x-3)^2 + (y-4)^2 = 4$$

3. Determine las coordenadas del centro de la circunferencia de ecuación $x^2 + y^2 = y$.

Forma general

$$x^{2} + y^{2} + Dx + Ey + F = 0$$

$$C\left(-\frac{D}{2}; -\frac{E}{2}\right)$$

Completando la ecuación:

$$x^2 + y^2 + 0x - 1y + 0 = 0$$

$$\mathbf{C}\left(-\frac{0}{2};-\frac{(-1)}{2}\right)$$

$$C\left(0;\frac{1}{2}\right)$$

4. Halle la ecuación ordinaria de la circunferencia mostrada.

Resolución

Piden: La ecuación ordinaria de la circunferencia

$$(x-h)^2 + (y-k)^2 = r^2$$

$$(x-0)^2 + (y-3)^2 = 5^2$$

$$x^2 + (y-3)^2 = 25$$

5. Halle la distancia de la pileta a la pared (d).

Forma general

$$x^{2} + y^{2} + Dx + Ey + F = 0$$
 $c\left(-\frac{D}{2}; -\frac{E}{2}\right)$
 $r = \frac{\sqrt{D^{2} + E^{2} - 4F}}{2}$

Completando la ecuación:

$$x^2 + y^2 - 12x + 0y + 32 = 0$$

Reemplazando.

$$\mathbf{C}\left(-\frac{-12}{2};-\frac{0}{2}\right)$$

$$C\left(-\frac{-12}{2}; -\frac{0}{2}\right) \qquad r = \frac{\sqrt{(12)^2 + (0)^2 - 4(32)}}{2}$$

$$C(6;0) \qquad r = \frac{\sqrt{144 - 128}}{2} = \frac{\sqrt{16}}{2} = 2$$

Del gráfico:
$$d + 2 = 6$$

$$\therefore d = 4$$

6. Si $x^2 + y^2 - 2x + 3y + 1 = 0$ es la ecuación de una circunferencia. Halle la longitud de su radio.

Resolución

$$x^2 + y^2 - 2x + 3y + 1 = 0$$

- Piden: r
- Forma general

$$x^{2} + y^{2} + Dx + Ey + F = 0$$

$$r = \frac{\sqrt{D^{2} + E^{2} - 4F}}{2}$$

Reemplazando

$$r = \frac{\sqrt{(-2)^2 + (3)^2 - 4(1)}}{2} = \frac{\sqrt{4 + 9 - 4}}{2}$$

$$\mathbf{r} = \frac{\sqrt{9}}{2}$$

$$r = 3/2$$

7. Halle la ecuación ordinaria de una circunferencia mostrada.

Resolución

- Piden: La ecuación ordinaria de la circunferencia
- Teorema de Pitágoras.

$$(1)^2 + (2)^2 = r^2$$

$$\sqrt{5} = r$$

Calculando la ecuación ordinaria

$$(x-h)^2 + (y-k)^2 = r^2$$

$$(x-1)^2 + (y-2)^2 = (\sqrt{5})^2$$

$$(x-1)^2 + (y-2)^2 = 5$$

8. En una llanta, cuyos diámetros interior y exterior son 20 cm y 40 cm. Halle la ecuación de la circunferencia de su borde interior.

Resolución

Piden: La ecuación de la circunferencia menor.

$$(x-h)^2 + (y-k)^2 = r^2$$

$$(x-20)^2 + (y-20)^2 = 10^2$$

$$(x-20)^2 + (y-20)^2 = 100$$