

Flexible and Efficient Ordinal Regression with Bayesian Nonparametrics

Jizhou Kang May 31st. 2024

Department of Statistics, UC Santa Cruz

Ph.D. Oral Defense

• Ordinal data are widely encountered in many fields:

• Ordinal data are widely encountered in many fields:

Personal credit rating

• Ordinal data are widely encountered in many fields:

Personal credit rating

 $Symptom\ of\ in somnia$

• Ordinal data are widely encountered in many fields:

Personal credit rating

Symptom of insomnia

Attitude to a bill

• Ordinal data are widely encountered in many fields:

• Ordinal responses together with covariates form up the ordinal regression problem;

• Ordinal data are widely encountered in many fields:

- Ordinal responses together with covariates form up the ordinal regression problem;
- Study settings: cross-sectional and longitudinal studies.

Objectives

- Flexible and efficient ordinal regression modeling:
 - Flexible: allow general forms for ordinal response distribution, ordinal regression relationship, and temporal dependence in longitudinal settings;
 - Efficient: demand fewer computational resources and less tuning sophistication;

Objectives

- Flexible and efficient ordinal regression modeling:
 - Flexible: allow general forms for ordinal response distribution, ordinal regression relationship, and temporal dependence in longitudinal settings;
 - Efficient: demand fewer computational resources and less tuning sophistication;
- Challenges:
 - Incorporate the ordinal discrete nature of the responses;
 - Balance between model flexibility and implementation efficiency;
 - Features of a specific problem: heterogeneous effects, missingness, overdispersion, etc.;

Objectives

- Flexible and efficient ordinal regression modeling:
 - Flexible: allow general forms for ordinal response distribution, ordinal regression relationship, and temporal dependence in longitudinal settings;
 - Efficient: demand fewer computational resources and less tuning sophistication;
- Challenges:
 - Incorporate the ordinal discrete nature of the responses;
 - Balance between model flexibility and implementation efficiency;
 - Features of a specific problem: heterogeneous effects, missingness, overdispersion, etc.;
- Use Bayesian nonparametrics (BNP)! Flexibility is a designed virtue of BNP models, and
 efficient implementation techniques have been developed for BNP models.

Latent variable models for ordinal responses

- Modeling a univariate ordinal response Y with C categories. Encode the response as $\mathbf{Y}=(Y_1,\cdots,Y_C)$, such that Y=j if-f $Y_j=1$ and $Y_k=0$, for any $k\neq j$;
- It is typically assumed $\mathbf{Y} \sim Mult(1, \pi_1, \cdots, \pi_C)$. The remaining task is how to acknowledge the order of the categories;

Latent variable models for ordinal responses

- Modeling a univariate ordinal response Y with C categories. Encode the response as $\mathbf{Y} = (Y_1, \dots, Y_C)$, such that Y = j if-f $Y_i = 1$ and $Y_k = 0$, for any $k \neq j$;
- It is typically assumed $\mathbf{Y} \sim Mult(1, \pi_1, \cdots, \pi_C)$. The remaining task is how to acknowledge the order of the categories;
- Cumulative link model (McCullagh, 1980):
 - A single latent continuous variable *Z*;
 - Cut-off points:

$$-\infty = \varkappa_0 < \varkappa_1 < \ldots < \varkappa_{C-1} < \varkappa_C = \infty;$$

 $\bullet \ \ Y=j \ \text{if-f} \ Z\in (\varkappa_{j-1},\varkappa_j].$

Latent variable models for ordinal responses

- Modeling a univariate ordinal response Y with C categories. Encode the response as $\mathbf{Y} = (Y_1, \dots, Y_C)$, such that Y = j if-f $Y_i = 1$ and $Y_k = 0$, for any $k \neq j$;
- It is typically assumed $\mathbf{Y} \sim Mult(1, \pi_1, \cdots, \pi_C)$. The remaining task is how to acknowledge the order of the categories;
- Cumulative link model (McCullagh, 1980):
 - A single latent continuous variable *Z*;
 - Cut-off points:

$$-\infty = \varkappa_0 < \varkappa_1 < \ldots < \varkappa_{C-1} < \varkappa_C = \infty;$$

• Y = j if-f $Z \in (\varkappa_{j-1}, \varkappa_j]$.

- Sequential model (Tutz, 1991):
 - C-1 latent continuous variable $(\mathcal{Z}_1, \cdots, \mathcal{Z}_{C-1});$
 - Binary split for each \mathcal{Z}_j ;
 - $\bullet \ \ Y=j \ \text{if-f} \ \mathcal{Z}_j>0 \ \text{and} \ \mathcal{Z}_k\leq 0, \ k=1,\cdots, \\ j-1.$

Which structure should we use?

• The two approaches are compatible in modeling ordinal responses. There are scenarios where the two model formulations are equivalent;

Which structure should we use?

- The two approaches are compatible in modeling ordinal responses. There are scenarios where the two model formulations are equivalent;
- Choose a specific structure:
- Cumulative link model:
 - Determine response scale:

- Sequential model:
 - Inference for the covariate effect on conditional probability:

Which structure should we use?

- The two approaches are compatible in modeling ordinal responses. There are scenarios where the two model formulations are equivalent;
- Choose a specific structure:
- Cumulative link model:
 - Determine response scale:

- Incorporate certain prior beliefs;
- Study theoretical properties.

- Sequential model:
 - Inference for the covariate effect on conditional probability:

- Flexible model for the ordinal regression relationship;
- Efficient implementation through parallel computing.

Outline

- Project 1: Structured Mixture of Continuation-ratio Logits Models for Ordinal Regression
- Project 2: Bayesian Nonparametric Methods for Risk Assessment in Developmental Toxicity Studies with Ordinal Responses

Outline

- Project 1: Structured Mixture of Continuation-ratio Logits Models for Ordinal Regression
- Project 2: Bayesian Nonparametric Methods for Risk Assessment in Developmental Toxicity Studies with Ordinal Responses

- Project 3: Flexible Bayesian Modeling for Longitudinal Binary and Ordinal Responses
- Project 4: A Case Study: Estimating Maturity of Sheepshead Minnows

Models for Cross-sectional

Ordinal Regression

Motivation

- In ordinal regression problems, flexible inference methods need to capture the covariate-response relationship, as well as incorporate the ordinal discrete nature of the responses;
- The covariate-response relationship is depicted by the probability response curves;

Motivation

- In ordinal regression problems, flexible inference methods need to capture the covariate-response relationship, as well as incorporate the ordinal discrete nature of the responses;
- The covariate-response relationship is depicted by the probability response curves;
- Challenges:
 - Non-standard response distributions;
 - Non-standard regression relationships between the ordinal response categories and covariates;
 - In terms of computation, the proposed method should have tractable inference algorithm.

Summary of existing literature

	Cumulative link model	Sequential model
Parametric model	Probit regression (Albert & Chib, 1993)	Logits regression family (Agresti, 2013), continuation-ratio logits models (Tutz, 1991)
Semiparametric model	Relaxing normality assumption (Newton et al., 1996), linearity assumption (Mukhopadhyay & Gelfand, 1997), or both (Chib & Greenberg, 2010)	Replacing systematic component with Gaussian process (Linderman et al., 2015), Adding random effects term with DP prior to the systematic component (Tang & Duan, 2012)
Nonparametric model	Bayesian density estimation for the joint distribution of covariates and responses, for categorical variables (Shahbaba & Neal, 2009; Dunson & Bhattacharya, 2010), and ordinal variables (DeYoreo & Kottas, 2018)	Common-atoms DDP model for specific type of problems (Fronczyk & Kottas, 2013)

$$\mathbf{Y}|G_{\mathbf{x}} \sim \int K(\mathbf{Y}|\mathbf{m}, \boldsymbol{\theta}) dG_{\mathbf{x}}(\boldsymbol{\theta}), \quad G_{\mathbf{x}} = \sum_{\ell=1}^{\infty} \omega_{\ell}(\mathbf{x}) \delta_{\boldsymbol{\theta}_{\ell}(\mathbf{x})}$$

• The general logit stick-breaking process (LSBP) model for ordinal regression:

$$\mathbf{Y}|\mathit{G}_{\mathbf{x}} \sim \int \mathit{K}(\mathbf{Y}|\mathbf{m}, oldsymbol{ heta}) \mathit{dG}_{\mathbf{x}}(oldsymbol{ heta}), \quad \mathit{G}_{\mathbf{x}} = \sum_{\ell=1}^{\infty} \omega_{\ell}(\mathbf{x}) \delta_{oldsymbol{ heta}_{\ell}(\mathbf{x})}$$

Continuation-ratio logits as the kernel:

$$K(\mathbf{Y}|\mathbf{m}, \theta(\mathbf{x})) = Bin(Y_1 \mid m_1, \varphi(\theta_1(\mathbf{x}))) \cdots Bin(Y_{C-1} \mid m_{C-1}, \varphi(\theta_{C-1}(\mathbf{x}))),$$
 where $\varphi(x) = e^x/(e^x + 1);$

$$\mathbf{Y}|G_{\mathbf{x}} \sim \int K(\mathbf{Y}|\mathbf{m}, \boldsymbol{\theta}) dG_{\mathbf{x}}(\boldsymbol{\theta}), \quad G_{\mathbf{x}} = \sum_{\ell=1}^{\infty} \omega_{\ell}(\mathbf{x}) \delta_{\boldsymbol{\theta}_{\ell}(\mathbf{x})}$$

- Continuation-ratio logits as the kernel:
 - $K(\mathbf{Y}|\mathbf{m}, \theta(\mathbf{x})) = Bin(Y_1 \mid m_1, \varphi(\theta_1(\mathbf{x}))) \cdots Bin(Y_{C-1} \mid m_{C-1}, \varphi(\theta_{C-1}(\mathbf{x}))),$ where $\varphi(x) = e^x/(e^x + 1);$
- The weights $\omega_{\ell}(\mathbf{x})$ are generated by LSBP: $\omega_{1}(\mathbf{x}) = \varphi(\mathbf{x}^{T} \gamma_{1})$ and $\omega_{\ell}(\mathbf{x}) = \varphi(\mathbf{x}^{T} \gamma_{\ell}) \prod_{h=1}^{\ell-1} (1 \varphi(\mathbf{x}^{T} \gamma_{h})), \ \ell = 2, 3, \cdots;$

$$\mathbf{Y}|G_{\mathbf{x}} \sim \int K(\mathbf{Y}|\mathbf{m}, \boldsymbol{\theta}) dG_{\mathbf{x}}(\boldsymbol{\theta}), \quad G_{\mathbf{x}} = \sum_{\ell=1}^{\infty} \omega_{\ell}(\mathbf{x}) \delta_{\boldsymbol{\theta}_{\ell}(\mathbf{x})}$$

- Continuation-ratio logits as the kernel: $K(\mathbf{Y}|\mathbf{m}, \theta(\mathbf{x})) = Bin(Y_1 \mid m_1, \varphi(\theta_1(\mathbf{x}))) \cdots Bin(Y_{C-1} \mid m_{C-1}, \varphi(\theta_{C-1}(\mathbf{x})))$, where $\varphi(x) = e^x/(e^x + 1)$;
- The weights $\omega_{\ell}(\mathbf{x})$ are generated by LSBP: $\omega_{1}(\mathbf{x}) = \varphi(\mathbf{x}^{T} \gamma_{1})$ and $\omega_{\ell}(\mathbf{x}) = \varphi(\mathbf{x}^{T} \gamma_{\ell}) \prod_{h=1}^{\ell-1} (1 \varphi(\mathbf{x}^{T} \gamma_{h})), \ \ell = 2, 3, \cdots;$
- The atoms, $\theta_{\ell}(\mathbf{x}) = \{\theta_{j\ell}(\mathbf{x}) : j = 1, \cdots, C 1\}$, have linear regression structure, $\theta_{j\ell}(\mathbf{x}) = \mathbf{x}^T \beta_{j\ell} \stackrel{ind.}{\sim} N(\mathbf{x}^T \mu_j, \mathbf{x}^T \Sigma_j \mathbf{x})$, and are independent across ℓ ;

$$\mathbf{Y}|G_{\mathbf{x}} \sim \int K(\mathbf{Y}|\mathbf{m}, \boldsymbol{\theta}) dG_{\mathbf{x}}(\boldsymbol{\theta}), \quad G_{\mathbf{x}} = \sum_{\ell=1}^{\infty} \omega_{\ell}(\mathbf{x}) \delta_{\boldsymbol{\theta}_{\ell}(\mathbf{x})}$$

- Continuation-ratio logits as the kernel: $K(\mathbf{Y}|\mathbf{m}, \theta(\mathbf{x})) = Bin(Y_1 \mid m_1, \varphi(\theta_1(\mathbf{x}))) \cdots Bin(Y_{C-1} \mid m_{C-1}, \varphi(\theta_{C-1}(\mathbf{x})))$, where $\varphi(x) = e^x/(e^x + 1)$;
- The weights $\omega_{\ell}(\mathbf{x})$ are generated by LSBP: $\omega_{1}(\mathbf{x}) = \varphi(\mathbf{x}^{T} \gamma_{1})$ and $\omega_{\ell}(\mathbf{x}) = \varphi(\mathbf{x}^{T} \gamma_{\ell}) \prod_{h=1}^{\ell-1} (1 \varphi(\mathbf{x}^{T} \gamma_{h})), \ \ell = 2, 3, \cdots;$
- The atoms, $\theta_{\ell}(\mathbf{x}) = \{\theta_{j\ell}(\mathbf{x}) : j = 1, \cdots, C 1\}$, have linear regression structure, $\theta_{j\ell}(\mathbf{x}) = \mathbf{x}^T \beta_{j\ell} \stackrel{ind.}{\sim} N(\mathbf{x}^T \mu_j, \mathbf{x}^T \Sigma_j \mathbf{x})$, and are independent across ℓ ;
- $\blacksquare \text{ Hyperprior: } \boldsymbol{\gamma}_{\ell} \overset{i.i.d.}{\sim} \mathit{N}(\boldsymbol{\gamma}_{0}, \boldsymbol{\Gamma}_{0}) \text{ and } \boldsymbol{\mu}_{j} | \boldsymbol{\Sigma}_{j} \overset{\mathit{ind.}}{\sim} \mathit{N}(\boldsymbol{\mu}_{j} | \boldsymbol{\mu}_{0j}, \boldsymbol{\Sigma}_{j} / \kappa_{0j}), \ \boldsymbol{\Sigma}_{j} \overset{\mathit{ind.}}{\sim} \mathit{IW}(\boldsymbol{\Sigma}_{j} | \nu_{0j}, \boldsymbol{\Lambda}_{0j}^{-1}).$

Model structure illustration

• The continuation-ratio logits structure offers a sequential mechanism to allocate the ordinal response *Y*:

Model structure illustration

• The continuation-ratio logits structure offers a sequential mechanism to allocate the ordinal response Y:

• The stick-breaking weights are also determined by it.

Simplified models

- Common-weights: defining the weights through the stick-breaking process that defines DP, we obtain the common-weights model:
 - $G_{\mathbf{x}} = \sum_{\ell=1}^{\infty} \omega_{\ell} \delta_{\boldsymbol{\theta}_{\ell}(\mathbf{x})};$
 - $\eta_{\ell} \overset{i.i.d.}{\sim} Beta(1, \alpha), \ \omega_1 = \eta_1 \ \text{and} \ \omega_{\ell} = \eta_{\ell} \prod_{h=1}^{\ell-1} (1 \eta_{\ell}), \ \text{for} \ \ell = 2, 3, \cdots;$
 - lackbox $heta_\ell(\mathbf{x})$ are defined as in the general model;

Simplified models

- Common-weights: defining the weights through the stick-breaking process that defines DP, we obtain the common-weights model:
 - $G_{\mathbf{x}} = \sum_{\ell=1}^{\infty} \omega_{\ell} \delta_{\boldsymbol{\theta}_{\ell}(\mathbf{x})};$
 - $\eta_{\ell} \stackrel{i.i.d.}{\sim} Beta(1,\alpha), \ \omega_1 = \eta_1 \ \text{and} \ \omega_{\ell} = \eta_{\ell} \prod_{h=1}^{\ell-1} (1-\eta_{\ell}), \ \text{for} \ \ell = 2,3,\cdots;$
 - lacksquare $\theta_{\ell}(x)$ are defined as in the general model;

- Common-atoms: we formulate the common-atoms model:
 - $\mathbf{G}_{\mathbf{x}} = \sum_{\ell=1}^{\infty} \omega_{\ell}(\mathbf{x}) \delta_{\boldsymbol{\theta}_{\ell}};$
 - $\bullet \theta_{j\ell}|\mu_j,\sigma_j^2 \stackrel{ind.}{\sim} N(\mu_j,\sigma_j^2);$
 - ullet $\omega_{\ell}(\mathbf{x})$ are determined as in the general model.

Flexible ordinal regression relationships

Model properties

The general model allows flexible estimate of the probability response curves.

Marginal regression relationships:

$$Pr(\mathbf{Y} = j | G_{\mathbf{x}}) = \sum_{\ell=1}^{\infty} \omega_{\ell}(\mathbf{x}) \left\{ \varphi(\theta_{j\ell}(\mathbf{x})) \prod_{k=1}^{j-1} [1 - \varphi(\theta_{k\ell}(\mathbf{x}))] \right\}$$

Onditional regression relationships:

$$Pr(\mathbf{Y} = j | \mathbf{Y} \ge j, G_{\mathbf{x}}) = \sum_{\ell=1}^{\infty} w_{j\ell}(\mathbf{x}) \left\{ \varphi(\theta_{j\ell}(\mathbf{x})) \right\}$$

where
$$w_{j\ell}(\mathbf{x}) = \frac{\omega_{\ell}(\mathbf{x}) \prod_{k=1}^{j-1} [1-\varphi(\theta_{k\ell}(\mathbf{x}))]}{\sum_{\ell=1}^{\infty} \omega_{\ell}(\mathbf{x}) \prod_{k=1}^{j-1} [1-\varphi(\theta_{k\ell}(\mathbf{x}))]}$$
.

• Both have a weighted sum form with locally adjustable weights.

Formal assessment of model flexibility

Full Kullback-Leibler (KL) support of the proposed model

Denote by $\mathcal{P}_{\mathbf{x}}$ the prior induced by the mixture model, and consider $\{p_{\mathbf{x}}^0:\mathbf{x}\in\mathcal{X}\}$, a generic collection of covariate-dependent probabilities for an ordinal response with C categories. Assume that the probability of each response category is strictly positive. Then, the mass functions $\{p_{\mathbf{x}}^0:\mathbf{x}\in\mathcal{X}\}$ are in the KL support of $\mathcal{P}_{\mathbf{x}}$.

Formal assessment of model flexibility

Full Kullback-Leibler (KL) support of the proposed model

Denote by $\mathcal{P}_{\mathbf{x}}$ the prior induced by the mixture model, and consider $\{p_{\mathbf{x}}^0:\mathbf{x}\in\mathcal{X}\}$, a generic collection of covariate-dependent probabilities for an ordinal response with C categories. Assume that the probability of each response category is strictly positive. Then, the mass functions $\{p_{\mathbf{x}}^0:\mathbf{x}\in\mathcal{X}\}$ are in the KL support of $\mathcal{P}_{\mathbf{x}}$.

• Sketch of the proof:

- Leverage the existing results regarding the KL support of prior for continuous responses (Barrientos et al. 2012);
- Formulate the ordinal LSBP mixture model in terms of latent continuous responses;
- Find the connection between the KL support of the prior for continuous responses and the induced prior for categorical outcomes arising from discretizing the continuous responses.

Model implementation

Prior specification:

- $\qquad \textbf{Conjugate hyperprior, } \boldsymbol{\gamma_{\ell}} \overset{i.i.d.}{\sim} \textit{N}(\boldsymbol{\gamma_{0}}, \boldsymbol{\Gamma_{0}}), \; \boldsymbol{\mu_{j}} | \boldsymbol{\Sigma_{j}} \overset{ind.}{\sim} \textit{N}(\boldsymbol{\mu_{0j}}, \boldsymbol{\Sigma_{j}}/\kappa_{0j}), \; \boldsymbol{\Sigma_{j}} \overset{ind.}{\sim} \textit{IW}(\boldsymbol{\nu_{0j}}, \boldsymbol{\Lambda_{0j}^{-1}});$
- "Baseline choice" of hyperparameter: $\mu_{0j} = \gamma_0 = \mathbf{0}_p$, $\Sigma_j = \Gamma_0 = 10^2 \mathbf{I}_p$, and $\kappa_{0j} = \nu_{0j} = p + 2$;
- Under the baseline prior, $E(Pr(\mathbf{Y}=j|G_{\mathbf{x}})) \equiv 2^{-j}$, $j=1,\cdots,C-1$, and $E(Pr(\mathbf{Y}=C|G_{\mathbf{x}})) \equiv 2^{-(C-1)}$;

Model implementation

Prior specification:

- Conjugate hyperprior, $\gamma_{\ell} \stackrel{i.i.d.}{\sim} N(\gamma_0, \Gamma_0)$, $\mu_j | \Sigma_j \stackrel{ind.}{\sim} N(\mu_{0j}, \Sigma_j / \kappa_{0j})$, $\Sigma_j \stackrel{ind.}{\sim} IW(\nu_{0j}, \Lambda_{0j}^{-1})$;
- "Baseline choice" of hyperparameter: $\mu_{0j} = \gamma_0 = \mathbf{0}_p$, $\Sigma_j = \Gamma_0 = 10^2 \mathbf{I}_p$, and $\kappa_{0j} = \nu_{0j} = p + 2$;
- Under the baseline prior, $E(Pr(\mathbf{Y}=j|G_{\mathbf{x}})) \equiv 2^{-j}$, $j=1,\cdots,C-1$, and $E(Pr(\mathbf{Y}=C|G_{\mathbf{x}})) \equiv 2^{-(C-1)}$;

Posterior inference:

- Blocked Gibbs sampler: truncating G_x at a large enough level L and introducing latent configuration variable \mathcal{L}_i for $i=1,\cdots,n$;
- Pólya-Gamma augmentation: introduce two groups of Pólya-Gamma latent variables for the weights and atoms;
- Same structure for the weights and atoms: same sampling strategy;
- All model parameters can be sampled via Gibbs sampling.

Real Data Application (Credit Ratings of U.S. Companies)

- Standard and Poor's (S&P) credit ratings for 921 U.S. firms;
- For each firm, a credit rating on a seven-point ordinal scale is available, along with five characteristics;
- Combined the first two categories and the last two categories to produce an ordinal response with five levels;
- The covariates are: (1) book leverage X_1 , (2) earnings before interest and taxes divided by total assets X_2 , (3) standardized log-sales X_3 , (4) retained earnings divided by total assets X_4 , (5) working capital divided by total assets X_5 ;
- Quantities of interest: the first and second order marginal probability curves $Pr(\mathbf{Y} = j | G_{\mathbf{x}}; \mathbf{x_s})$ for $j = 1, \dots, 5$ and $\mathbf{s} \in \{1, \dots, 5\}$.

First order marginal probability curves

Second order marginal probability surfaces

Summary and Discussion

- We propose a unified toolbox for ordinal regression by directly modeling the discrete response distribution. The virtues of the proposed models rely on the following key ingredients:
 - Continuation-ratio logits representation;
 - Pólya-Gamma data augmentation technique;
 - Logit stick-breaking process prior;
- Some practical suggestions in picking the model:
 - Common-weights model: the most parsimonious formulation with practically sufficient flexibility;
 - Common-atoms model: a more appropriate choice when expecting complicated covariate-response relationships;
 - General model: the most versatile structure, benefits especially in applications involving sufficiently large amounts of data and non-standard regression relationships.

Models for Ordinal Regression

with Heterogeneous Responses

Data structure from developmental toxicity study

- Data at dose levels, x_d , $d=1,\cdots,N$, including a control group (dose= 0);
- n_d pregnant laboratory animals (dams) at dose level x_d ;
- For the *i*-th dam at dose x_d :
 - \blacksquare m_{di} : number of implants;
 - $ightharpoonup R_{di}$: number of resorptions and prenatal deaths;
 - y_{di} : number of live pups with a malformation;
- The ordinal responses are $\mathbf{Y}_{di} = (R_{di}, y_{di}, m_{di} R_{di} y_{di})$, which can be equivalently encoded by standard ordinal responses $\{\tilde{\mathbf{Y}}_{diq} = (\tilde{R}_{diq}, \tilde{y}_{diq}, 1 \tilde{R}_{diq} \tilde{y}_{diq})\}$, for $q = 1, \cdots, m_{di}$, such that $\mathbf{Y}_{di} = \sum_{q=1}^{m_{di}} \tilde{\mathbf{Y}}_{diq}$;
- Focus on the dose-response curves of the clustered categorical endpoints, embryolethality $D(x) = \Pr(\tilde{R} = 1 \mid x)$, fetal malformation for live pups $M(x) = \Pr(\tilde{y} = 1 \mid \tilde{R} = 0, x)$, and combined negative outcomes $r(x) = \Pr(\tilde{R} = 1 \text{ or } \tilde{y} = 1 \mid x)$.

Motivating example

 Data from a development toxicity study that evaluates the toxic effects of ethylene glycol (EG), using pregnant rats;

- Features of the data:
 - an overall increasing trend, with no obvious parametric form to model it;
 - vast variability in the responses, of which the magnitude also differs across dose levels;
 - a potentially different dose-response relationship for non-viable fetuses and malformed pups.

Parametric continuous mixture models

- Beta-Binomial distribution $BB(m, \theta, \lambda)$, Logistic-Normal-Binomial distribution $LNB(m, \theta, \sigma^2)$;
- Postulating the sequential mechanism of the ordinal responses, we have
 - "CR-BB" model: $(R, y) \mid m, \theta_1(\mathbf{x}), \theta_2(\mathbf{x}), \lambda \sim BB(R \mid m, \theta_1(\mathbf{x}), \lambda_1)BB(y \mid m R, \theta_2(\mathbf{x}), \lambda_2);$
 - "CR-LNB" model: $(R, y) \mid m, \theta_1(\mathbf{x}), \theta_2(\mathbf{x}), \sigma^2 \sim LNB(R \mid m, \theta_1(\mathbf{x}), \sigma_1^2)LNB(y \mid m R, \theta_2(\mathbf{x}), \sigma_2^2);$
- Posterior inference for the dose-response curves:

"CR-BB model"

"CR-LNB model"

Nonparametric discrete mixture models

• The general model proposed in the last section can be applied here ("Gen-Bin" model):

$$(R,y) \mid m, G_{\mathbf{x}} \sim \sum_{\ell=1}^{\infty} \omega_{\ell}(\mathbf{x}) \operatorname{Bin}(R \mid m, \varphi(\theta_{1\ell}(\mathbf{x}))) \operatorname{Bin}(y \mid m-R, \varphi(\theta_{2\ell}(\mathbf{x})));$$

- The common-weights model is also applicable ("CW-Bin" model), while the common-atoms model is not because its induced prior expected dose-response curves cannot have monotone shape;
- Based on the results for probability response curves, the induced dose-response curves under these models have flexible shapes;
- We can also establish a positive intracluster correlation result, demonstrating that the model enables overdispersion.

Nonparametric mixture models with overdispersed kernel

- We consider a combination of these two types of mixture models, which potentially combines the advantage of these two types of models;
- We adopt the LNB model as the kernel, which is then encapsulated in the general nonparametric mixing structure ("Gen-LNB" model)

$$(R, y) \mid m, G_{\mathbf{x}}, \sigma^2 \sim \sum_{\ell=1}^{\infty} \omega_{\ell}(\mathbf{x}) LNB(R \mid m, \theta_{1\ell}(\mathbf{x}), \sigma_1^2) LNB(y \mid m - R, \theta_{2\ell}(\mathbf{x}), \sigma_2^2);$$

- The mixing structure is inherited from the "Gen-Bin" model, rendering the computational techniques developed for it readily adaptable here. We do not use BB as the kernel because it breaks the developed Gibbs sampling scheme;
- Similarly, we can formulate the model with a common-weights mixing structure and the product of LNB kernel ("CW-LNB" model).

Posterior estimate of dose-response curves

Model comparison

- We perform model comparison based on posterior predictive loss (PPL) and interval score (IS);
- We use one randomly chosen sample comprising roughly 20% of the data as the test set, denoted by $\{(m'_{di}, R'_{di}, y'_{di}) : d = 1, \dots, N, i = 1, \dots, n'_{d}\};$
- Fitting the model to the reduced data, and obtain posterior predictive samples at each observed dose level, denoted as m_d^* , R_d^* , and y_d^* ;
- The criteria are defined separately for embryolethality (R/m), malformation (y/(m-R)), and combined risk (R+y)/m. Using embryolethality as an example:
 - PPL, goodness-of-fit: $G(\mathcal{M}) = \sum_{d=1}^{N} \sum_{i=1}^{n'_d} \{ R'_{di} / m'_{di} \mathsf{E}(R_d^* / m_d^* \mid \mathsf{data}) \};$
 - PPL, penalty: $P(\mathcal{M}) = \sum_{d=1}^{N} n'_d \text{Var}(R_d^*/m_d^* \mid \text{data});$
 - IS: $S(\mathcal{M}) = \sum_{d=1}^{N} \sum_{i=1}^{n'_d} \{ (u_d^e l_d^e) + \frac{2}{\alpha} (l_d^e \frac{R'_{di}}{m'_{di}}) \mathbf{1} (\frac{R'_{di}}{m'_{di}} < l_d^e) + \frac{2}{\alpha} (\frac{R'_{di}}{m'_{di}} u_d^e) \mathbf{1} (\frac{R'_{di}}{m'_{di}} > u_d^e) \},$ where l_d^e denote the limits of the 95% posterior predictive credible interval.

Summary of model comparison results

Endpoint	Criterion	"CW-Bin"	"CW-LNB"	"Gen-Bin"	"Gen-LNB"
Embryolethality	$G(\mathcal{M})$	0.72	0.72	0.71	0.72
	$P(\mathcal{M})$	0.56	0.53	0.45	0.58
	$\mathcal{S}(\mathcal{M})$	20.73	18.45	20.46	18.73
Malformation	$G(\mathcal{M})$	1.34	1.39	1.33	1.36
	$P(\mathcal{M})$	1.18	1.10	0.95	1.17
	$\mathcal{S}(\mathcal{M})$	16.07	14.97	16.81	14.93
Combined risk	$G(\mathcal{M})$	1.46	1.50	1.43	1.49
	$P(\mathcal{M})$	1.08	1.01	0.89	1.03
	$S(\mathcal{M})$	25.84	23.50	27.11	20.91

Remarks

- The parametric continuous mixture models fail in providing reliable uncertainty quantification for the dose-response curves;
- Contrarily, nonparametric discrete mixture models, with enhanced flexibility, offer rich inference for the response distributions and for the dose-response curves;
- The key advantage of incorporating overdispersed kernel within a nonparametric mixture model lies in improved posterior predictive interval estimation;
- The modeling approaches examined here are directly applicable in other areas, which may involve more ordered categories and/or more covariates.

and Ordinal Responses

Models for Longitudinal Binary

Motivation and objectives

• Focus on longitudinal studies with binary outcome, then extend the method to deal with longitudinal studies with ordinal outcome;

Motivation and objectives

- Focus on longitudinal studies with binary outcome, then extend the method to deal with longitudinal studies with ordinal outcome;
- The main quantities of interests in such a study are:
 - the probability response curve;
 - the lead-lag correlations among repeated measurements;

Motivation and objectives

- Focus on longitudinal studies with binary outcome, then extend the method to deal with longitudinal studies with ordinal outcome;
- The main quantities of interests in such a study are:
 - the probability response curve;
 - the lead-lag correlations among repeated measurements;
- Motivating application: ecological momentary assessment (EMA) studies, which involve
 the repeated measuring of people's current thoughts, emotions, behavior, and
 physiological states, in their natural environment. Non-response is inevitable.

A taxonomic review of models

- Marginal models: Molenberghs and Verbeke (2006);
- Conditional models: Di Lucca et al. (2013), DeYoreo and Kottas (2018);
- Subject-specific models:
 - Continuous: Ghosh and Hanson (2010); Quintana et al. (2016);
 - Binary: Jara et al. (2007); Tang and Duan (2012);
 - Mixed-scale: Kunihama et al. (2019);
- Functional data analysis tools: functional principal components analysis Van Der Linde (2009); Matuk et al. (2022).

• Adopt a functional data perspective, treating each observed data vector \mathbf{Y}_i as the evaluation of trajectory $Y_i(\tau)$ on grid $\boldsymbol{\tau}_i = (\tau_{i1}, \dots, \tau_{iT_i})^{\top}$, for $i = 1, \dots, n$;

- Adopt a functional data perspective, treating each observed data vector \mathbf{Y}_i as the evaluation of trajectory $Y_i(\tau)$ on grid $\boldsymbol{\tau}_i = (\tau_{i1}, \cdots, \tau_{iT_i})^{\top}$, for $i = 1, \cdots, n$;
- At the observed data level, we assume:

$$Y_i(au_{it}) \mid Z_i(au_{it}), \epsilon_{it} \stackrel{ind.}{\sim} Bin(1, \varphi(Z_i(au_{it}) + \epsilon_{it})), \quad t = 1, \cdots, T_i, \quad i = 1, \cdots, n,$$
 where $\varphi(x) = \exp(x)/\{1 + \exp(x)\}$, and the error terms $\epsilon_{it} \mid \sigma^2_{\epsilon} \stackrel{i.i.d.}{\sim} N(0, \sigma^2_{\epsilon});$

- Adopt a functional data perspective, treating each observed data vector \mathbf{Y}_i as the evaluation of trajectory $Y_i(\tau)$ on grid $\boldsymbol{\tau}_i = (\tau_{i1}, \dots, \tau_{iT_i})^{\top}$, for $i = 1, \dots, n$;
- At the observed data level, we assume:

$$Y_i(\tau_{it}) \mid Z_i(\tau_{it}), \epsilon_{it} \stackrel{ind.}{\sim} Bin(1, \varphi(Z_i(\tau_{it}) + \epsilon_{it})), \quad t = 1, \cdots, T_i, \quad i = 1, \cdots, n,$$
 where $\varphi(x) = \exp(x)/\{1 + \exp(x)\}$, and the error terms $\epsilon_{it} \mid \sigma_\epsilon^2 \stackrel{i.i.d.}{\sim} N(0, \sigma_\epsilon^2)$;

• The main building block for the model construction is a hierarchical Gaussian process prior for $Z_i(\cdot)$, which we termed the signal process.

$$Z_i \mid \mu, \Sigma \stackrel{i.i.d.}{\sim} GP(\mu, \Sigma), \quad \mu \mid \Sigma \sim GP(\mu_0, \Sigma/\kappa), \quad \Sigma \sim IWP(\nu, \Psi_{\phi}).$$

Specifically we set $\kappa = (\nu - 3)^{-1}$;

- Adopt a functional data perspective, treating each observed data vector \mathbf{Y}_i as the evaluation of trajectory $Y_i(\tau)$ on grid $\boldsymbol{\tau}_i = (\tau_{i1}, \cdots, \tau_{iT_i})^{\top}$, for $i = 1, \cdots, n$;
- At the observed data level, we assume:

$$Y_i(\tau_{it}) \mid Z_i(\tau_{it}), \epsilon_{it} \stackrel{\textit{ind.}}{\sim} \textit{Bin}(1, \varphi(Z_i(\tau_{it}) + \epsilon_{it})), \quad t = 1, \cdots, T_i, \quad i = 1, \cdots, n,$$
 where $\varphi(x) = \exp(x)/\{1 + \exp(x)\}$, and the error terms $\epsilon_{it} \mid \sigma_\epsilon^2 \stackrel{\textit{i.i.d.}}{\sim} \textit{N}(0, \sigma_\epsilon^2)$;

• The main building block for the model construction is a hierarchical Gaussian process prior for $Z_i(\cdot)$, which we termed the signal process.

$$Z_i \mid \mu, \Sigma \stackrel{i.i.d.}{\sim} GP(\mu, \Sigma), \quad \mu \mid \Sigma \sim GP(\mu_0, \Sigma/\kappa), \quad \Sigma \sim IWP(\nu, \Psi_{\phi}).$$

Specifically we set $\kappa = (\nu - 3)^{-1}$;

• We use an Inverse-Wishart process (IWP) prior for the covariance kernel. It is defined such that, on any finite grid $\tau = (\tau_1, \cdots, \tau_T)$ the projection $\Sigma(\tau, \tau)$ follows $IW(\nu, \Psi_{\phi}(\tau, \tau))$. Here, $\Psi_{\phi}(\cdot, \cdot)$ is a non-negative definite function with parameters ϕ .

Model properties

Proposition

Under the proposed model formulation, the signal process $Z(\tau)$ follows marginally a student-t process (TP). That is, for a generic grid vector $\boldsymbol{\tau} = (\tau_1, \cdots, \tau_T)^{\top}$, $\mathbf{Z}_{\tau} = Z(\tau) \sim MVT(\nu, \mu_{0\tau}, \Psi_{\tau,\tau})$, where $\mu_{0\tau} = \mu_0(\tau)$, and $\Psi_{\tau,\tau} = \Psi_{\phi}(\tau, \tau)$;

- TP is closed under marginalization. We can utilize the analytical form of the TP predictive distribution to develop a predictive inference scheme that resembles that of GP-based models. It is particularly useful in posterior inference;
- We can study the local behavior, such as smoothness, of the signal process trajectories by modeling them as TP;
- ullet Modeling as TP facilitates the interpretation of the degrees of freedom parameter u. It controls how heavy tailed the process is.

Highlights of the MCMC algorithm

- Recall that under unbalanced setting, the grid vectors for each subject τ_i are different. We consider pooled grid $\tau = \bigcup_{i=1}^n \tau_i$;
- Let $\tilde{\mathbf{Z}}_i = Z_i(\boldsymbol{\tau})$, $\mathbf{Z}_i = Z_i(\boldsymbol{\tau}_i)$, and $\mathbf{Z}_i^* = \tilde{\mathbf{Z}}_i \setminus \mathbf{Z}_i$;
- Factorizing the prior of $\tilde{\mathbf{Z}}_i$ as $p(\tilde{\mathbf{Z}}_i|\mu,\mathbf{\Sigma}) = p(\mathbf{Z}_i^* \mid \mathbf{Z}_i,\mu,\mathbf{\Sigma})p(\mathbf{Z}_i \mid \mu,\mathbf{\Sigma})$. In a MCMC iteration, we first sample \mathbf{Z}_i , then conditioning on \mathbf{Z}_i to sample \mathbf{Z}_i^* (GP-based predictive sampling);
- Binary response to continuous latent process with errors, $Y_i(\tau_{it}) \mid Z_i(\tau_{it}), \epsilon_{it} \stackrel{ind.}{\sim} Bin(1, \varphi(Z_i(\tau_{it}) + \epsilon_{it}))$, reminds us the Pólya-Gamma technique;
- All model parameters can be sampled via Gibbs sampling, with standard full condition distributions.

Prediction and uncertainty

- We can make predictions on any time grid. Consider predicting $\mathbf{Z}_i^+ = Z_i(\tau^+)$, where $\tau^+ \supset \tau$ is a finer grid. Let $\check{\tau} = \tau^+ \setminus \tau$ and $\check{\mathbf{Z}}_i = Z_i(\check{\tau})$;
- We have the joint distribution:

$$\begin{pmatrix} \tilde{\mathbf{Z}}_i \\ \check{\mathbf{Z}}_i \end{pmatrix} \sim MVT \begin{pmatrix} \boldsymbol{\nu}, \begin{pmatrix} \boldsymbol{\mu}_{0\tau} \\ \boldsymbol{\mu}_{0\check{\tau}} \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Psi}_{\tau,\tau} & \boldsymbol{\Psi}_{\tau,\check{\tau}} \\ \boldsymbol{\Psi}_{\check{\tau},\tau} & \boldsymbol{\Psi}_{\check{\tau},\check{\tau}} \end{pmatrix} \end{pmatrix},$$

and the prediction for $\check{\mathbf{Z}}_i$ are made based on the conditional distribution:

$$\check{\mathbf{Z}}_{i} \mid \tilde{\mathbf{Z}}_{i} \sim MVT\left(\nu + |\tau|, \check{\boldsymbol{\mu}}_{i\check{\tau}}, \frac{\nu + S_{i\boldsymbol{\tau}} - 2}{\nu + |\tau| - 2}\check{\mathbf{\Psi}}_{\check{\tau},\check{\tau}}\right);$$

- For an in-sample subject, we first predict $Z_i(\tau_i^*)$ conditioning on $Z_i(\tau_i)$ by the GP predictive distribution, and next predict $Z_i(\check{\tau})$ conditioning on $Z_i(\tau_i)$ and $Z_i(\tau_i^*)$ by the TP predictive distribution;
- TP is scaling the predictive covariance by a factor that is related to the prediction error on observed grid, which can adjust the predictive covariance at unobserved grid points.

Model extension to deal with longitudinal ordinal responses

- Suppose the observation on subject i at time τ_{it} , denoted by Y_{it} , takes C possible categories;
- We encode the response as a vector with binary entries $\mathbf{Y}_{it} = (Y_{i1t} \cdots, Y_{iCt})$, such that $Y_{it} = j$ is equivalent to $Y_{ijt} = 1$ and $Y_{ikt} = 0$ for any $k \neq j$;
- We assume a multinomial response distribution for Y_{it}, factorized in terms of binomial distributions (continuation-ratio logits),

$$Mult(\mathbf{Y}_{it} \mid m_{it}, \omega_{i1t}, \cdots, \omega_{iCt}) = \prod_{j=1}^{C-1} Bin(Y_{ijt} \mid m_{ijt}, \varphi(Z_{ijt} + \epsilon_{ijt}))$$

where
$$m_{it} = \sum_{j=1}^{C} Y_{ijt} \equiv 1$$
, $m_{i1t} = m_{it}$, and $m_{ijt} = m_{it} - \sum_{k=1}^{j-1} Y_{ikt}$;

• We adopt the proposed hierarchical GP-IWP modeling framework on $\{Z_{ijt}\}$ separately.

Sequential treatment of ordinal response and its practical implication

• The continuation-ratio logits structure offers a sequential mechanism to allocate the ordinal response Y_{it} ;

• We can re-organize the original data set containing longitudinal ordinal responses to create C-1 data sets with longitudinal binary outcomes. Then, fit the proposed model for binary responses parallelly on the C-1 re-organized data sets.

• Ecological momentary assessment (EMA) studies, which involve repeated measurements of subjects on uncommon grids; Missing values are typically considered to be a nuisance.

- Ecological momentary assessment (EMA) studies, which involve repeated measurements
 of subjects on uncommon grids; Missing values are typically considered to be a nuisance.
- A specific example: *Studentlife study*. The study integrates automatic sensing data and EMA components to probe students' mental health status;

- Ecological momentary assessment (EMA) studies, which involve repeated measurements
 of subjects on uncommon grids; Missing values are typically considered to be a nuisance.
- A specific example: *Studentlife study*. The study integrates automatic sensing data and EMA components to probe students' mental health status;
- The data were collected by 48 students over a 10-week term at Dartmouth College;

- Ecological momentary assessment (EMA) studies, which involve repeated measurements
 of subjects on uncommon grids; Missing values are typically considered to be a nuisance.
- A specific example: *Studentlife study*. The study integrates automatic sensing data and EMA components to probe students' mental health status;
- The data were collected by 48 students over a 10-week term at Dartmouth College;
- We focus on the subset of the data that corresponds to assess the students' emotional status using the Photographic Affect Meter (PAM);

- Ecological momentary assessment (EMA) studies, which involve repeated measurements
 of subjects on uncommon grids; Missing values are typically considered to be a nuisance.
- A specific example: *Studentlife study*. The study integrates automatic sensing data and EMA components to probe students' mental health status;
- The data were collected by 48 students over a 10-week term at Dartmouth College;
- We focus on the subset of the data that corresponds to assess the students' emotional status using the Photographic Affect Meter (PAM);
- The outcome of PAM have two attributes, valence and arousal. Each of them are integer scores from -2 to 2 (excluding 0). We start from dichotomize them by their sign, representing the positive values by 1;

- Ecological momentary assessment (EMA) studies, which involve repeated measurements
 of subjects on uncommon grids; Missing values are typically considered to be a nuisance.
- A specific example: *Studentlife study*. The study integrates automatic sensing data and EMA components to probe students' mental health status;
- The data were collected by 48 students over a 10-week term at Dartmouth College;
- We focus on the subset of the data that corresponds to assess the students' emotional status using the Photographic Affect Meter (PAM);
- The outcome of PAM have two attributes, valence and arousal. Each of them are integer scores from -2 to 2 (excluding 0). We start from dichotomize them by their sign, representing the positive values by 1;
- Objective: analyzing the change of valence and arousal responses to evaluate students' affects as the term progresses.

Binary response case: result

• Valence:

• Arousal:

The mood coordinate space

Categorizing emotional status

Green Key

Final Exams Begin

Memorial Day

Final Exams End

Four levels ordinal arousal score data

Summary of contributions

- We model the mean and covariance jointly and nonparametrically, avoiding potential biases caused by a pre-specified model structure;
- The model unifies the toolbox for balanced and unbalanced longitudinal studies;
- The model encourages borrowing of strength, preserving systematic patterns that are common across all subject responses;
- We develop a computationally efficient posterior simulation method by taking advantage of conditional conjugacy;
- The model can be extended to deal with ordinal responses with a moderate to large number of categories.

Models for Estimating Maturity

of Sheepshead Minnows

Data structure

- Data from a longitudinal study consisting of the maturity status of sheepshead minnows under pre-determined experiment conditions;
- Three categorical experiment conditions (parent temperature (26 or 32), offspring temperature (26 or 32), and exposure time (7, 30 or 45)) split data into 12 groups;
- For each fish, we have observations at eight equally spaced time points;
- Ordinal response is the color stage, indicating maturity status; We use a binary version (immature vs mature).

Objectives

• Estimate differences in trends in maturity across the treatment combinations;

Objectives

- Estimate differences in trends in maturity across the treatment combinations;
- Investigate the relationship between transgenerational plasticity (TGP) and environment predictability;

- TGP occurs when phenotypes are shaped by parent and offspring environments;
- The fish are collected from three locations, Connecticut (CT), Maryland (MD) and South Carolina (SC);
- US east coast exhibits a latitudinal gradient in thermal predictability; Location with higher latitude corresponds to smaller thermal predictability;
- By theory, TGP has a positive relationship with thermal predictability; We are expected to show TGP decreases with increasing latitude.

Main methodology

- Let \mathbf{Y}_{gi} denote the observed binary maturity status sequence at grid $\boldsymbol{\tau} = (\tau_1, \cdots, \tau_T)^{\top}$ of the *i*-th subject in *g*-th group;
- At the observed data level, we assume

$$Y_{git} \mid Z_{git}, \epsilon_{git} \stackrel{ind.}{\sim} Bin(1, \varphi(Z_{git} + \epsilon_{git})), \ t = 1, \dots, T, \ i = 1, \dots, n_g, \ g = 1, \dots, G;$$
 where the error term $\epsilon_{git} \stackrel{i.i.d.}{\sim} N(0, \sigma_{\epsilon}^2);$

- We assume Z_{git} is the evaluation of a continuous signal process $Z_{gi}(\tau)$ at time t;
- Model continuous signal process $Z_{gi}(\tau)$ through GP:

$$Z_{gi}(\tau)|\mu_g(\tau), \Sigma_g(\tau,\tau) \stackrel{i.i.d.}{\sim} GP(\mu_g(\tau), \Sigma_g(\tau,\tau)), \quad i=1,\ldots,n_g, \ g=1,\ldots,G;$$

• Joint hierarchical nonparametric prior for the mean and covariance function of the GP:

$$\begin{array}{lll} \mu_g(\tau)|\Sigma_g(\tau,\tau),\mu_{0g}(\tau),\nu_g & \stackrel{ind.}{\sim} & GP(\mu_{0g}(\tau),(\nu_g-3)\Sigma_g(\tau,\tau)), \\ \Sigma_g(\tau,\tau)|\nu_g,\Psi_{\sigma_g^2,\rho_g}(\tau,\tau) & \stackrel{ind.}{\sim} & IWP(\nu_g,\Psi_{\sigma_g^2,\rho_g}(\tau,\tau)). \end{array}$$

Prior specification

- We further assume $\mu_{0g}(\tau) \equiv \mu_{0g}$, and specify the covariance kernel of IWP as Matérn covariance kernel with smoothness 5/2;
- Denote the aforementioned joint prior for the mean and covariance function as $JP(\mu_{0g}, \sigma_g^2, \rho_g, \nu_{0g})$;
- We seek to introduce an appropriate level of dependence across groups through prior placed on $\{\mu_{0g}, \sigma_g^2, \rho_g, \nu_{0g} : g = 1, \cdots, 12\}$;
- The best option, selected by multiple model comparison criteria, is
 - we assume $\mu_{0g} = \mathbf{x}_g^{\top} \boldsymbol{\alpha}$, where \mathbf{x}_g is a vector of indicators for each group. We further place a shrinkage prior on $\boldsymbol{\alpha}$;
 - We assume conditionally independent scale parameters σ_g^2 , i.e., $\sigma_g^2 \mid \theta \sim \text{Gamma}(a_\sigma, a_\sigma \theta^{-1})$, and $\theta \sim \text{IG}(a_\theta, b_\theta)$;
 - lacktriangle We assume a common smoothness parameter shared by groups, i.e., $ho_{m{g}} \equiv
 ho \sim \textit{Unif}(a_{
 ho},b_{
 ho});$
 - we assume a common degrees of freedom parameter shared by groups, i.e., $\nu_{\sigma} \equiv \nu \sim \textit{Unif}(a_{\nu}, b_{\nu}).$

Posterior estimate of maturity probability

Comparison of treatment effect on maturity

• Relative effect between groups with offspring temperature (OT) 26:

• Relative effect between groups with offspring temperature (OT) 32:

Thermal TGP and latitude

SC, with offspring temperature 26

SC, with offspring temperature 32

Concluding Remarks

Conclusions

- We have developed a suite of statistical models for ordinal regression;
- Key of the model: the continuation-ratio factorization;
- Possible future works:
 - The structural similarity between nonparametric priors for discrete distributions and models for categorical data boost new models for categorical data analysis;
 - Extensions of the proposed models, enhancing flexibility and keeping efficiency;
 - Scale up inference in the big data era: variational inference algorithms.

Scholarly articles from dissertation research

- Kang, J. and Kottas, A. (2022+), "Structured Mixture of Continuation-ratio Logits Models for Ordinal Regression", arXiv:2211.04034, (revised, under review);
- Kang, J. and Kottas, A. (2023+), "Flexible Bayesian Modeling for Longitudinal Binary and Ordinal Responses", arXiv:2307.00224, (submitted, under review);
- Kang, J. and Kottas, A. (2024+), "Bayesian Nonparametric Risk Assessment in Developmental Toxicity Studies with Ordinal Responses", (in preparation);
- Kang, J., Kottas, A., Lee, W. and Munch, S. (2024+), "Bayesian Modeling of Repeated Ordinal Responses Collected Under Different Treatments: An application to estimating maturity of Sheepshead Minnows", (in preparation).

Acknowledgments

Acknowledgments

MANY THANKS!

I am happy to answer any questions.

© Jizhou Kang (jkang37@ucsc.edu)

Synthetic data examples

- In both experiments, n pairs of ordinal response and covariate (\mathbf{Y}_i, x_i) are generated, where $x_i \stackrel{i.i.d.}{\sim} Unif(x_i|-10,10)$ such that with the intercept, the covariate vector is $\mathbf{x}_i = (1,x_i)^T$;
- First experiment: We generate n = 100 responses by first sampling a latent continuous variable \tilde{y}_i from normal distribution, then discretizing \tilde{y}_i with cut-off points to get the ordinal response \mathbf{Y}_i ;

Second experiment:

- We generate data from $\mathbf{Y} \sim \sum_{k=1}^{3} \omega_k(\mathbf{x}) K(\mathbf{Y}|\mathbf{m}, \boldsymbol{\theta}_k(\mathbf{x}));$
- The true probability response curves have nonstandard shape.
- Perform the experiment with n = 800 simulated data.

First experiment result (baseline prior)

First experiment result (specified prior)

Second experiment result

Common-weights and general models

Posterior distributions of the intracluster correlations

- The correlations depict an overall increasing trend with toxin levels;
- The intracluster correlation at the new dose level indicates a smooth borrowing of strength across dose levels;
- The correlation distribution from models with overdispersed kernel spread a wider range.

General settings

• In both experiments, we simulate longitudinal binary responses from:

$$Y_i(\boldsymbol{\tau}_i) \mid \mathcal{Z}_i(\boldsymbol{\tau}_i) \stackrel{ind.}{\sim} Bin(1, \eta(\mathcal{Z}_i(\boldsymbol{\tau}_i))), \quad \boldsymbol{\tau}_i = (\tau_{i1}, \cdots, \tau_{iT_i}), \quad i = 1, \cdots, n,$$

$$\mathcal{Z}_i(\boldsymbol{\tau}_i) = f(\boldsymbol{\tau}_i) + \boldsymbol{\omega}_i + \boldsymbol{\epsilon}_i \quad \boldsymbol{\epsilon}_i \stackrel{i.i.d.}{\sim} N(\mathbf{0}, \sigma_{\epsilon}^2 \mathbf{I}),$$

a generic data generating process with:

- $\eta(\cdot)$: a generic link function mapping \mathbb{R} to (0,1);
- $f(\tau)$: a generic signal function of time;
- $oldsymbol{\omega}_i$: a realization from a mean 0 continuous process that depicts the temporal covariance within the *i*-th subject.

First set of experiments: result

- Focusing on the performance in recovering the fluctuation of the temporal trend;
- We simulate data with different link function, signal function, and temporal covariance structure combinations;
- To enforce an unbalanced study design, we randomly drop out a proportion of the simulated data. We consider different choices of drop out proportions.

First set of experiments: comparison

- We compare the proposed model with its simplified backbone;
- Instead of modeling the mean function μ through a GP, we consider modeling it parametricly by $\mu(\tau) \equiv \mu_0$, and $\mu_0 \sim N(a_\mu, b_\mu)$;
- For criterion, we use the rooted mean square error (RMSE) between the model estimated signal process and the truth.

Second set of experiments: result

- Focusing on the performance in the within subject covariance structure;
- We simulate data with a number of possible choices for ω_i ;
- None of these choices imply covariance structures that are in the same form as the covariance kernel used in the proposed model.

Second set of experiments: comparison

- We consider an alternative, simplified modeling approach, instead of modeling the covariance function nonparametricly, we assume a covariance kernel of certain parametric form;
- Specifically, $Z_i \overset{i.i.d.}{\sim} GP(\mu, \Psi_{\phi}), \ \mu \sim GP(\mu_0, \Psi_{\phi}/\kappa)$, with parametric Ψ_{ϕ} ;
- ullet We compute the 2-Wasserstein distance between the model estimated distribution of ω_i and the truth.

