APS – Programação Prof^a Talita Salles Coelho

Resolva os exercícios abaixo:

1- URI - 1020 - Leia um valor inteiro correspondente à idade de uma pessoa em dias e informe-a em anos, meses e dias

Obs.: apenas para facilitar o cálculo, considere todo ano com 365 dias e todo mês com 30 dias. Nos casos de teste nunca haverá uma situação que permite 12 meses e alguns dias, como 360, 363 ou 364. Este é apenas um exercício com objetivo de testar raciocínio matemático simples.

Entrada: O arquivo de entrada contém um valor inteiro.

Saída: Imprima a saída conforme exemplo fornecido.

Exemplo de Entrada	Exemplo de Saída
400	1 ano(s)
	1 mes(es)
	<u>5 dia</u> (s)
800	<u>2 ano(s)</u>
	2 mes(es)
	10 dia(s)
30	0 ano(s)
	1 mes(es)
	0 dia(s)

2- URI -1036 (adaptado) - Faça um programa que calcule e imprima as raízes de uma equação do segundo grau, do tipo $ax^2 + bx + c = 0$, onde a, b e c representam os coeficientes da equação (dados de entrada), e x1 e x2 são as variáveis onde devem ser guardadas as raízes da equação.

Dicas para o cálculo:

- A variável a deve ser diferente de zero
- Fórmula do delta: ((b*b) (4*(a*c)))
- Se delta < 0, não existe raiz real, logo, x1=0 e x2=0;
- Se delta = 0, existe apenas uma raiz real, logo, x1 = x2 = ((-b) + raiz(delta)) / (2*a);
- -Se delta > 0, existem duas raízes reais, logo, x1 = ((-b) + raiz(delta)) / (2*a);x2 = ((-b) - raiz(delta)) / (2*a)

3- URI – 1048 - A empresa ABC resolveu conceder um aumento de salários a seus

funcionários de acordo com a tabela abaixo:

Salário	Percentual de Reajuste
0 - 400.00	15%
400.01 - 800.00	12%
800.01 - 1200.00	10%
1200.01 - 2000.00	7%
Acima de 2000.00	4%

Leia o salário do funcionário e calcule e mostre o novo salário, bem como o valor de reajuste ganho e o índice reajustado, em percentual.

Entrada: A entrada contém apenas um valor de ponto flutuante, com duas casas decimais.

Saída: Imprima 3 linhas na saída: o novo salário, o valor ganho de reajuste (ambos devem ser apresentados com 2 casas decimais) e o percentual de reajuste ganho, conforme exemplo abaixo.

Exemplo de Entrada	Exemplo de Saída
400.00	Novo salario: 460.00 Reajuste ganho: 60.00 Em percentual: 15 %
800.01	Novo salario: 880.01 Reajuste ganho: 80.00 Em percentual: 10 %
2000.00	Novo salario: 2140.00 Reajuste ganho: 140.00 Em percentual: 7 %

4- URI - 1078 - Leia 1 valor inteiro N (2<N<1000). A seguir, mostre a tabuada de N:

$$1 \times N = N$$
 $2 \times N = 2N$... $10 \times N = 10N$

Entrada: A entrada contém um valor inteiro N $(2 \le N \le 1000)$.

Saída: Imprima a tabuada de N, conforme o exemplo fornecido.

Exemplo de Entrada	Exemplo de Saída
140	$1 \times 140 = 140$
	$2 \times 140 = 280$
	$3 \times 140 = 420$
	$4 \times 140 = 560$
	$5 \times 140 = 700$
	$6 \times 140 = 840$
	$7 \times 140 = 980$
	$8 \times 140 = 1120$
	$9 \times 140 = 1260$
	$10 \times 140 = 1400$

5- URI – 1064 - Leia 6 valores. Em seguida, mostre quantos destes valores digitados foram positivos. Na próxima linha, deve-se mostrar a média de todos os valores positivos digitados, com um dígito após o ponto decimal.

Entrada: A entrada contém 6 números que podem ser valores inteiros ou de ponto flutuante. Pelo menos um destes números será positivo.

Saída: O primeiro valor de saída é a quantidade de valores positivos. A próxima linha deve mostrar a média dos valores positivos digitados.

Exemplo de Entrada	Exemplo de Saída
7 -5 6 -3.4 4.6 12	4 valores positivos 7.4

^{*}Exercícios retirados do site URI- Beecrowd:

https://www.urionlinejudge.com.br/judge/pt/problems/index/1

Regras da APS:

- O trabalho pode ser feito: individual ou em grupo de até 4 pessoas;
- Deverá conter as resoluções dos 5 algoritmos e os prints das telas de execução;
- Deverá conter uma capa: Logo da FMU (topo da folha centralizado), Título do trabalho (centralizado e no meio da folha), Nomes e RA (centralizado à direita), cidade e data (final da página);
- O trabalho deverá ser submetido para análise do professor por meio do Ambiente Acadêmico: (Material de Aula → Anexo APS);
- Proibido o envio da APS por e-mail;
- Obrigatório todos os alunos enviarem a APS individualmente, caso contrário a autoavaliação será zerada;
- Envio o trabalho no formato pdf ou word;
- Tamanho da fonte 12, Fonte: Times ou Arial;
- Data de entrega: até 26/05/2023 às 23:59 (Não haverá prorrogação da data de entrega);

- Certifique-se que o seu trabalho realmente foi enviado;
- DICA: envie a APS com antecedência, pois caso ocorra algum problema durante seu envio poderá tentar novamente mais tarde.

ATIVIDADE PRÁTICA SUPERVISIONADA (APS)

ALGORITMOS E PROGRAMAÇÃO

Implantação 2020.1 Versão 10/02/2020

OBJETIVOS DE APRENDIZAGEM

- Criar algoritmos visando a resolução de problemas
- Resolver problemas utilizando estruturas de repetição
- Programar soluções que utilizem vetores e matrizes
- Utilizar procedimentos e funções para estruturação de softwares

ATIVIDADE 1

O professor deverá utilizar uma ferramenta tecnológica para selecionar ou propor desafios de níveis diferentes que abordem os tópicos da disciplina. Como sugestão de ferramenta tecnologia, tem-se o URI Online Judge (https://www.urionlinejudge.com.br) que é um juiz online que recebe submissões em várias linguagens de programação (Java, C, entre outras). A característica mais importante desta ferramenta é que após o aluno submeter uma solução, o juiz julga o código submetido e indica se o código foi aceito ou a porcentagem de erro. Tendo erro, o aluno pode fazer novas submissões até conseguir atingir o objetivo do desafio.

A ferramenta é disponível em português e possui uma área acadêmica reservada para os professores (https://www.urionlinejudge.com.br/academic/). Nesta área, o professor realiza a solicitação de cadastro e após aceite, pode criar listas de desafios e disparar convite aos seus alunos.

Para a atividade, após analisar e definir a lista de desafios (entre 5 e 10 desafios), o professor deve apresentar um ou dois exemplos de submissão aos seus alunos, para eles entenderem como devem construir e submeter suas soluções. Após resolver e submeter os problemas da lista, o aluno deve imprimir (PDF) a tela de seu homework que exibe o seu progresso e enviar pela unidade web. É importante que os desafios contemplem estruturas de repetição, procedimentos e funções.

O professor pode visualizar na área acadêmica todo o histórico de evolução de cada aluno para julgar se atingiram ou não o objetivo da APS.

ATIVIDADE 2

Os estudantes devem elaborar um jogo da forca na linguagem de programação utilizada ao longo da disciplina em modo console.

- As palavras do jogo devem estar cadastradas em um arquivo chamado gamewords.txt;
- Ao iniciar o jogo, você deve carregar as palavras em uma matriz (array de strings) e sortear a palavra da partida;
- Em cada rodada o usuário poderá escolher uma letra. Você deve verificar se a letra está na palavra sorteada e mostrá-la gradualmente, assim como um indicador que mostre os erros cometidos (desenhar o corpo do personagem na forca).

Exemplo simples de corpo:

O

-|-| |

Exemplos mais complexos com ASCII art: https://text-symbols.com/ascii-art/

- Ao finalizar uma partida, uma nova palavra deve ser sorteada na matriz de palavras.
- As palavras cadastradas e os comentários do código devem estar em inglês.
- O código deve estar otimizado, bem escrito e indentando da maneira correta.

AVALIAÇÃO

A avaliação da APS será baseada nos princípios de autonomia pedagógica, feedback significativo e metacognição, culminando na autoavaliação do estudante. A nota da APS será atribuída no valor de 0,0 (zero) até 1,0 (um) ponto e vai compor a nota da A2, com base na rubrica de autoavaliação disponível no Ambiente Virtual de Aprendizagem. Só poderá

realizar a autoavaliação o estudante que finalizar a atividade conforme instruções deste documento, postando-a até o dia solicitado pelo professor.