Álgebra Relacional

Adaptado do Prof Alexander Roberto Valdameri

Álgebra Relacional

 A Álgebra Relacional é uma linguagem de consulta procedural que agrega um conjunto de operações sobre modelos relacionais de dados.

Operações:

Seleção, Projeção, Junção, União, Intersecção, Diferença, Produto Cartesiano,

Divisão e Renomear.

Representação Gráfica

Representação Gráfica

Produto Cartesiano

X X X 2 = Y1 Y2 Y3

Divisão

Simbologia

• Seleção $\sigma_F(R)$

• Projeção $\Pi_{i_1, i_2, ..., in}(R)$

• Junção R ⋈ S

• União R ∪ S

• Intersecção R ∩ S

• Diferença R – S

Produto Cartesiano R x S

DivisãoR ÷ S

• Renomear $\rho_T(R)$

Relações de Dados

emprestimos

Nome_agencia	Nro_emprestimo	Total
Timbo	17	1000
Indaial	23	2000
Blumenau	15	1500
Pomerode	93	500
Gaspar	11	900
Blumenau	16	1300

devedores

Nome_Cliente	Nro_emprestimo	
Jonas	17	
Silvio	23	
Henrique	15	
Carlos	93	
Silvio	11	
William	17	
Adalberto	16	

contas

Nome_Client e	Nro_conta
Jonas	11111
Silvio	22222
Henrique	33333
Jackson	44444

Operação de Seleção

 A operação de select seleciona linhas que satisfazem um determinado predicado.

Ex. $\sigma_{\text{nome_agencia} = "Blumenau"}}$ (emprestimo)

Nome_agencia	Nro_emprestimo	Total
Blumenau	15	1500
Blumenau	16	1300

SELECT nome_agencia, nro_emprestimo, total FROM emprestimo WHERE nome_agencia = 'Blumenau'

Pode-se combinar vários predicados (condições) em um predicado usando operadores lógicos E (λ) e OU (\forall).

Operação de Projeção

 A operação de project seleciona as colunas que se deseja listar.

Ex. $\Pi_{\text{nro_emprestimo, total}}$ (emprestimo)

Nro_emprestimo	Total
17	1000
23	2000
15	1500
93	500
11	900
16	1300

SELECT nro_emprestimo, total FROM emprestimo

Operação de Projeção

Operação de projeção com comparação.

```
Ex. \Pi_{\text{nro\_emprestimo}}(\sigma_{\text{nome\_agencia}} = \text{"Blumenau"} (emprestimo))
```

Nro_emprestim o
15
16

SELECT nro_emprestimo FROM emprestimo WHERE nome_agencia = 'Blumenau'

Operação de Junção

 A operação de join é uma operação binária que permite combinar certas relações e um produto cartesiano dentro de uma operação.

Ex. ∏ nome_cliente, nro_emprestimo, total (emprestimo ⋈

devedores) Nome_Cliente	Nro_emprestimo	Total
	Jonas	17	1000
	Silvio	23	2000
	Henrique	15	1500
	Carlos	93	500
	Silvio	11	900
	William	17	1000
SELECT nome	Adalberto Cliente nro er	mprestimo, total	1300

FROM emprestimo, devedores

WHERE emprestimo.nro emprestimo = devedores.nro_emprestimo

Operação de Junção

 A operação de join é uma operação binária que permite combinar certas relações e um produto cartesiano dentro de uma operação.

```
Ex. \Pi_{\text{nome\_cliente, nro\_emprestimo, total}}
(\sigma_{\text{nome\_agencia} = \text{"Blumenau"}}
(\text{emprestimo} \bowtie \text{devedores}))
```

Nome_Cliente	Nro_emprestimo	Total
Henrique	15	1500
Adalberto	16	1300

SELECT nome_cliente, nro_emprestimo, total FROM emprestimo, devedores
WHERE emprestimo.nro_emprestimo = devedores.nro_emprestimo and nome_agencia = 'Blumenau'

Operação de União

 A operação de union é uma operação binária que permite unir dois conjuntos ou relações de dados. Nesta operação, os conjuntos duplicados são eliminados.

Ex. $\Pi_{\text{nome_cliente}}$ (devedores) $\bigcup \Pi_{\text{nome_cliente}}$ (contas)

Nome_Cliente
Adalberto
Carlos
Henrique
Jackson
Jonas
Silvio
William

SELECT nome_cliente FROM devedores

UNION

SELECT nome_cliente FROM contas

Operação de Intersecção

 A operação de intersection permite encontrar conjuntos de dados comuns entre duas relações de dados. Nesta operação, os conjuntos duplicados são eliminados.

Ex.
$$\Pi_{\text{nome_cliente}}(\text{devedores}) \cap \Pi_{\text{nome_cliente}}(\text{contas})$$

Nome_Cliente
Henrique
Jonas
Silvio

SELECT nome_cliente FROM devedores

INTERSECT

SELECT nome_cliente FROM contas

Operação de Diferença

 A operação de minus permite encontrar conjuntos de dados que estão em uma relação e que não estão em outra.

Ex.
$$\Pi_{\text{nome_cliente}}$$
 (devedores) – $\Pi_{\text{nome_cliente}}$ (contas)

Nome_Cliente
Adalberto
Carlos
William

SELECT nome_cliente FROM devedores LEFT JOIN contas on devedores.nome_cliente = contas.nome_cliente Where contas.nome_cliente is null.

Árvore de Expressões

 Pode-se combinar vários operadores da Álgebra Relacional em uma expressão, constituindo uma árvore de expressões.

```
Ex. \Pi_{\text{nome\_cliente, nro\_emprestimo, total}}
(\sigma_{\text{nome\_agencia} = \text{"Blumenau"}}
(\text{emprestimo} \bowtie \text{devedores}))
SELECT nome\_cliente, nro_emprestimo, total
```

FROM emprestimo, devedores WHERE emprestimo.nro_emprestimo = devedores.nro_emprestimo and nome_agencia = 'Blumenau'

Atividade

```
Pessoas ( <u>nome</u>, idade, gênero)
frequentadores ( <u>nome, nome_pizzaria</u>)
pedidos(<u>nome, tipo_pizza</u>)
Cardápio (nome_pizzaria, tipo_pizza, preco )
```

- 1) Encontre todas as pizzaria que possuem pelo menos um frequentador menor de 18 anos.
- 2) Encontre todas as mulheres que comeram pizza italiana OU queijo
- 3) Encontre todas as mulheres que comeram pizza italiana E queijo

Atividade

Dado uma tabela R (A,B) e S (B,C) contendo inteiros, verifique se as 3 expressões são equivalentes.

a.
$$\pi_{A,C}(R \bowtie \sigma_{B=1}S)$$

b.
$$\pi_A(\sigma_{B=1}R) \times \pi_C(\sigma_{B=1}S)$$

c.
$$\pi_{A,C}(\pi_A R \times \sigma_{B=1} S)$$

