Training Neural Networks

주재걸교수 KAIST 김재철AI대학원

Training Neural Networks via Gradient Descent

loss function

Given the optimization problem, $\min_{W} L(W)$, where W is the neural network parameters, we optimize W using gradient descent approach:

$$W \coloneqq W - \alpha \frac{dL(W)}{dW}$$

Poor Convergence Case of Naïve Gradient Descent

Suppose loss function is steep vertically but shallow horizontally:

Q:What is the trajectory along which we converge towards the minimum with SGD?

Very slow progress along flat direction, jitter along steep one

Various Gradient Descent Methods

http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

^[1] Zeiler, M. D. (2012). ADADELTA: An Adaptive Learning Rate Method. http://arxiv.org/abs/1212.5701

^[2] H. Brendan McMahan et. al., (2013). Ad Click Prediction: a View from the Trenches, KDD

Backpropagation to Compute Gradient in Neural Networks

First, given an input data item, compute the loss function value via

Forward Propagation

Backpropagation to Compute Gradient in Neural Networks

Afterwards, compute the gradient with respect to each neural network parameter via Backpropagation

Backpropagation to Compute Gradient in Neural Networks

Finally, update the parameters using gradient descent algorithm

Computational Graph of Logistic Regression

Forward Propagation of Logistic Regression

Sigmoid local formula
$$\frac{\partial}{\partial x} [\sigma(x)] = \frac{e^{-x}}{(1+e^{-x})^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = (1-\sigma(x))\sigma(x)$$

Gradient $\frac{\partial}{\partial x} [\sigma(x)] = \frac{e^{-x}}{(1+e^{-x})^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = (1-\sigma(x))\sigma(x)$

Sigmoid Activation

Sigmoid

$$\sigma(x) = \frac{e^x}{e^x + 1} = \frac{1}{1 + e^{-x}}$$

- Maps real numbers in $(-\infty, \infty)$ into a range of [0,1]
- gives a probabilistic interpretation

Historically, sigmoid activation function gives nice interpretation of saturating firing rate of a neuron

Problems of Sigmoid Activation

Sigmoid

$$0 < \widehat{\mathfrak{f}(x)} \cdot (1 - \mathfrak{f}(x)) \leq \frac{1}{4}$$

$$e^{x} \qquad 1$$

- Saturated neurons kills the gradients
- The gradient value $\sigma(x) \leq \frac{1}{4}$, which decreases the gradient during backpropagation, i.e., causing a gradient to vanishing problem gradient with which

Tanh Activation

Tanh

- $tanh(x) = 2 \times sigmoid(x) 1$
- Squashes numbers to range [-1, 1]

Strength

Weakness

• Still kills gradients when saturated, i.e., still causing a gradient vanishing problem

ReLU Activation

$$-\infty, \infty \Rightarrow 0, \infty$$

ReLU (Rectified Linear Unit)

•
$$f(x) = \max(0, x)$$

Strength

- Does not saturate (in + region)
- Very computationally efficient
- Converge much faster than sigmoid/tanh

Weakness

- Not zero-centered output
- Gradient is completely zero for x < 0

Batch Normalization

Motivation of Batch Normalization

- Saturated gradients when random initialization is done
- The parameters are not updated \rightarrow Hard to optimize (in red region)

Definition of Batch Normalization

"You want unit Gaussian activations? just make them so."

- We consider a batch of activations at some layer to make each dimension unit Gaussian
- I. Compute the empirical mean $\mathbb{E}[x^{(k)}]$ and variance $\mathrm{Var}[x^{(k)}]$ independently for each dimension k

This is a vanilla differentiable function

Batch Normalization Process

$$\hat{x}_i^{(k)} = \frac{x_i^{(k)} - \mathbb{E}[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

In Proceedings of the 32nd International Conference on Machine Learning (pp. 448-456). PMLR, 2015.

Batch Normalization

भित्रा क्षेत्र स्मा ज्ञाम क्षेत्र अर्था.

Normalize:

$$\hat{x}_{i}^{(k)} = \frac{x_{i}^{(k)} - \mathbb{E}[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

And then allow the network to squash the range if it wants to:

$$y_i^{(k)} = \gamma^{(k)} \hat{x}_i^{(k)} + \beta^{(k)}$$

→ 對 b,

보산 0² 으킨 바꿈

Note, the network can learn:

$$\gamma^{(k)} = \sqrt{\text{Var}[x^{(k)}]}$$

$$\beta^{(k)} = \mathbb{E}[x^{(k)}]$$

to recover the identity mapping

Determined while training neural network

Batch Normalization

Input: Values of x over a mini-batch: $B = \{x_{1...m}\}$; Parameters to be learned; γ , β

Output:
$$\{y_i = BN_{\gamma,\beta}(x_i)\}$$

$$\mu_B \leftarrow \frac{1}{m} \sum_{i=1}^m x_i$$
 // mini-batch mean
$$\sigma_B^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_B)^2$$
 // mini-batch variance
$$\hat{x}_i \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$
 // normalize

- Improves gradient flow through the network
- Reduces the strong dependence on initialization

2012

 $\widehat{\gamma} \hat{x}_i + \widehat{\beta} \equiv BN_{\gamma,\beta}(x_i)$ // scale and shift

THANK YOU