# **PROJECT REPORT**

#### 1. INTRODUCTION

#### 1.1 Project Overview:

Inflation plays a vital role in shaping economies, influencing purchasing power, market stability, and government policies. Over the years, inflation rates have fluctuated due to various factors such as policy changes, supply chain disruptions, global conflicts, and advancements in technology. This project utilizes Power BI to explore worldwide inflation patterns, offering valuable insights into economic shifts, regional disparities, and key contributing elements from a data-driven perspective.

### 1.2 Purpose:

- **1. Examine Inflation Trends** Analyze historical inflation data across different time periods and economic sectors to understand long-term patterns.
- **2. Identify Key Drivers** Investigate the major causes of inflation, including market demand, production costs, global trade, and financial policies.
- **3.** Compare Regional Variations Study how inflation differs across various nations and economic zones, identifying significant trends and commonalities.
- **4. Assess Economic Impact** Evaluate how inflation affects employment, wages, cost of living, and overall economic growth.
- **5. Visualize Data with Power BI** Use Power BI to develop interactive dashboards, simplifying the interpretation of complex inflation data for better decision-making.

## 2. IDEATION PHASE

## 2.1 Problem Statement





#### Ideation phase Problem statement



| DATE          |                                         |
|---------------|-----------------------------------------|
|               | 12 March 2025                           |
| TEAM ID       | PNT2025TMID06643                        |
| PROJECT NAME  | POWER BI INFLATION ANALYSIS; JOURNEYING |
|               | THROUGH ECONOMIC TERRAIN.               |
| MAXIMUM MARKS | 4                                       |

| PS       | lam              | I am trying to                                      | But                     | Because                                                                  | Which make me feel                                                               |
|----------|------------------|-----------------------------------------------------|-------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| PS-<br>1 | Data<br>analysts | Get real-time<br>data                               | Data is<br>overwhelming | Lack of<br>integration<br>between Power<br>BI and other<br>data sources. | amounts of data that require processing and                                      |
| PS-<br>2 | Economists       | Make data<br>driven insight<br>on economic<br>shift | from certain            | Limited data<br>sources with<br>complexity                               | I need a way to present<br>complex data in a way<br>that's understandable<br>for |

## 2.2 Empathy Map Canvas:



## 2.3 Brainstroming:



#### 3. REQUIREMENT ANALYSIS

## **3.1Customer Journey Map:**



# 3.2 Solution Requirement

| Date          | 12 March 2025                                                         |
|---------------|-----------------------------------------------------------------------|
| Team ID       | PNT2025TMID06643                                                      |
| Project Name  | Power BI Inflation Analysis; Journey Through Global Economic Terrain. |
| Maximum Marks | 4 Marks                                                               |

#### **Functional Requirements:**

Following are the functional requirements of the proposed solution.

| FR No. | Functional Requirement (Epic)            | Sub Requirement (Story / Sub-Task)                                                                                                                                                                                                      |
|--------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FR-1   | Global Inflation Trends<br>Visualization | Power BI in inflation analysis is its ability to display global inflation trends through visually intuitive dashboards.                                                                                                                 |
| FR-2   | Sectoral Impact                          | Power BI tracks inflation's effect on sectors like food, energy, housing, and healthcare, aiding businesses in pricing, supply chain, and investment decisions. It integrates external data sources to deepen sector-specific analysis. |
| FR-3   | Country and Region<br>Comparisons        | By analyzing inflation across regions, Power BI highlights economic disparities, helping businesses and investors assess market opportunities and risks.                                                                                |
| FR-4   | Forecasting                              | Power BI's predictive analytics tools forecast inflation trends using historical data and economic indicators, helping businesses and governments plan for future economic conditions.                                                  |

#### Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

| FR No. | Non-Functional Requirement                                                                 | Description                                                                                                               |  |  |  |
|--------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|
| NFR-1  | Usability                                                                                  | Easy-to-use interface with customizable<br>visualizations and drag-and-drop features, making<br>accessible for all users. |  |  |  |
| NFR-2  | Security                                                                                   | End-to-end encryption and role-based access ensure the protection of sensitive data.                                      |  |  |  |
| NFR-3  | Reliability  Cloud-based with continuous updates, ens availability and real-time analysis. |                                                                                                                           |  |  |  |
| NFR-4  | Performance                                                                                | Handles large datasets and complex queries, ensuring high performance in inflation analysis.                              |  |  |  |

| NFR-5 | Availability | Accessible on various devices, providing flexibility for decision-makers.               |
|-------|--------------|-----------------------------------------------------------------------------------------|
| NFR-6 | Scalability  | Power BI grows with organizations, accommodating increasing data and complex analytics. |

# 3.3 Data Flow Diagram And User Stories Documentation

#### ❖ DFD LEVEL 0



# 3.4 Technology Stack:



# **Technical Architecture:**

| ı                                          |                |                                                           |                                                                       |  |
|--------------------------------------------|----------------|-----------------------------------------------------------|-----------------------------------------------------------------------|--|
| SR<br>NO                                   | Component      | Description                                               | Technology                                                            |  |
| 1                                          | User Interface | Interactive dashboards for inflation trend analysis       | Power BI, DAX, Power Query                                            |  |
| 2                                          | Data Ingestion | Extracting inflation data from various sources            | Python (Pandas), SQL, API Integrations                                |  |
| 3 Data Processing 4 Machine Learning Model |                | Cleaning, transforming, and structuring data for analysis | Power Query, Python, SQL  Python (Scikit-learn), Power BI AI Insights |  |
|                                            |                | Predicting inflation trends based on historical data      |                                                                       |  |
| USER                                       | IBM CI         | LOUD                                                      |                                                                       |  |
| 6 Cloud Integration                        |                | Storage of historical and real-time inflation data        | SQL Server, Azure Data Lake                                           |  |
|                                            |                | Hosting datasets and enabling scalable analytics          | Azure, Google Cloud, AWS                                              |  |
|                                            |                | Fetching live inflation data from financial sources       | World Bank API, IMF API                                               |  |

#### Table-2: Application Characteristics:

Security Measures

| S.No | Characteristics          | Description                                                       | Technology                                 |  |
|------|--------------------------|-------------------------------------------------------------------|--------------------------------------------|--|
| 1.   | Security Implementations | Protecting financial data from unauthorized access                | Role-based authentication, Data Encryption |  |
| 2.   | Scalable                 | Handling large-scale inflation datasets across multiple economies | Cloud-based architecture (Azure, AWS)      |  |
| 3.   | Availability             | Ensuring continuous access to real-time insights                  | Load Balancing, Distributed Computing      |  |
| 4.   | Performance Optimization | Optimizing queries and reports for fast processing                | Caching, Indexing, Power BI Aggregations   |  |
| 5    | Open-Source Frameworks   | Use of open-source tools for analytics and visualization          | Python, Pandas, Scikit-learn               |  |

Ensuring data integrity and access control

Data Encryption, Role-Based Access Control (RBAC)

#### **4.PROJECT DESIGN**

### **4.1 Problem Fit Template:**

#### **Problem- Solution Fit Template:**

The Power BI Inflation Analysis project aims to provide a comprehensive view of global inflation trends using Power BI. By analyzing economic indicators, historical inflation rates, and country-specific data, this project enables users to make informed decisions. It helps economists, analysts, and policymakers understand inflation patterns, identify economic shifts, and predict future trends based on data-driven insights.

### **Purpose:**

- Analyze global inflation trends and their impact on different economies.
- Provide interactive data visualizations to help stakeholders understand inflationary patterns.
- Enhance decision-making by identifying key factors influencing inflation rates.
- Compare inflation data across different countries and time periods to detect economic fluctuations.
- Improve financial planning and economic forecasting with accurate and real-time data analysis.



#### **4.2 Proposed Solution:**

| S. No. | Parameter                                | Description                                                                                                                                                                                  |
|--------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.     | Problem Statement (Problem to be solved) | Inflation impacts economies worldwide, affecting purchasing power, business growth, and policy decisions. Analysing inflation trends across regions is crucial for informed decision-making. |
| 2.     | Idea / Solution description              | Using Power BI, we will create an interactive dashboard to visualize inflation trends, compare regional impacts, and identify key economic factors influencing inflation.                    |
| 3.     | Novelty / Uniqueness                     | Our approach integrates real-time data,<br>advanced analytics, and predictive modelling to<br>provide dynamic insights                                                                       |
| 4.     | Social Impact / Customer Satisfaction    | The dashboard will help businesses, policymakers, and researchers make datadriven decisions, improving economic stability and strategic planning.                                            |
| 5.     | Business Model (Revenue Model)           | The solution can be monetized through subscription-based access, consultancy services, or integration with financial platforms.                                                              |
| 6.     | Scalability of the Solution              | It can be expanded by incorporating additional economic indicators, industry-specific insights, and global datasets for broader applicability.                                               |

#### 4.3 Solution Architecture:

Solution architecture is a complex process – with many sub-processes – that bridges the gap between business problems and technology solutions. Its goals are to:

- Find the best tech solution to solve existing business problems.
- Describe the structure, characteristics, behavior, and other aspects of the software to project stakeholders.
- Define features, development phases, and solution requirements.
- Provide specifications according to which the solution is defined, managed, and delivered.

### **Architecture Overview: Power BI Inflation Analysis**

The **Power BI Inflation Analysis** architecture is designed to process and visualize global economic inflation data efficiently. It follows a structured flow:

- 1. Data Sources Collects data from CSV files, APIs (World Bank, IMF), and databases.
- 2. **Data Ingestion** Uses **Power BI Dataflows** and API connectors for seamless integration.
- 3. **Processing & Transformation** Utilizes **Power Query (ETL)** for data cleaning and **DAX calculations** for inflation trends.
- 4. **Data Storage** Stores processed data in **Power BI Cloud, On-Premises Gateway, or Azure SQL**.
- 5. Visualization & Reporting Generates interactive dashboards, KPI metrics, and geographical heatmaps for insights.
- 6. End Users Serves economists, analysts, policymakers, and businesses for decision- making.

#### **Example - Solution Architecture Diagram:**



Figure 1: shows Power BI Inflation Analysis

# **5. PROJECT PLANNING & SCHEDULING**

# **5.1 Project Planning:**

## Product Backlog, Sprint Schedule, and Estimation (4 Marks)

| Sprint   | Functional Requirement (Epic) | User Story<br>Number | User Story / Task                                        | Story Points | Priority | Team Members                    |
|----------|-------------------------------|----------------------|----------------------------------------------------------|--------------|----------|---------------------------------|
| Sprint-1 | Data Collection               | USN-1                | Identify and gather data sources for global inflation.   | 5            | High     | Gaurav thakur                   |
|          | Data Preparation              | USN-2                | Clean and preprocess collected data for analysis.        | 7            | High     | Jaya bijore                     |
|          | Dashboard Design              | USN-3                | Create frames for Power BI dashboard layout.             | 4            |          | Prerna kirne                    |
|          |                               | USN-4                | Define key metrics and visualizations for the dashboard. | 5            | High     | Kaveri bhiogade                 |
| Sprint-2 | Data Modeling                 | USN-5                | Build data models in Power BI to connect data sources.   | 8            | High     | Jaya Bijore, Kaveri<br>bhiogade |
|          | Visualization<br>Development  | USN-6                | Create interactive visualizations for key metrics.       | 8            | High     | Gaurav thakur, Prerna<br>kirne  |

|          | Testing                    | USN-7  | Conduct testing of dashboard functionality and accuracy.      | 5 | Medium | Kaveri bhiogade                                                   |
|----------|----------------------------|--------|---------------------------------------------------------------|---|--------|-------------------------------------------------------------------|
|          | Feedback Collection        | USN-8  | Gather feedback from stakeholders on initial dashboard.       | 4 | Medium | Gaurav thakur                                                     |
| Sprint-3 | Training and Documentation | USN-9  | Develop training materials for stakeholders.                  | 5 | High   | Jaya bijore                                                       |
|          |                            | USN-10 | Conduct training sessions for users on Power BI dashboard.    | 5 | High   | Prerna kirne                                                      |
|          | Launch                     | USN-11 | Officially launch the Power BI dashboard.                     | 4 | High   | Gaurav thakur , jaya<br>Bijore , kaveri<br>bhiogade, Prerna kirne |
|          | Evaluation                 | USN-12 | Evaluate dashboard effectiveness and gather further feedback. | 5 | Medium | Gaurav thakur , jaya<br>Bijore , kaveri<br>bhiogade, Prerna kirne |

#### Project Tracker, Velocity & Burndown Chart: (4 Marks)

| Sprint   | Total Story<br>Points | Duration | Sprint Start Date | Sprint End Date<br>(Planned) | Story Points<br>Completed (as<br>on Planned End<br>Date) | Sprint Release<br>Date (Actual) |
|----------|-----------------------|----------|-------------------|------------------------------|----------------------------------------------------------|---------------------------------|
| Sprint-1 | 21                    | 10 Days  | 20 Feb 2025       | 01 March 2025                | 21                                                       | 01 March 2025                   |

| Sprint-2 | 25 | 10 Days | 2 March 2025  | 11 March 2025 | 25 | 11 March 2025 |
|----------|----|---------|---------------|---------------|----|---------------|
| Sprint-3 | 19 | 2 Days  | 13 March 2025 | 14 March 2025 | 19 | 14 March 2025 |

#### Velocity:

Total Story Points Completed: 60

Total Number of Sprints = 3

Velocity = Total Story Points Completed / Number of Sprints

 $Velocity = 60 \ / \ 3 \approx 20$ 

#### **Burndown Chart:**

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

| Sprint | Day | Total Story Points | Story Points completed | Remaining Story Points |
|--------|-----|--------------------|------------------------|------------------------|
| 1      | 1   | 60                 | 0                      | 60                     |
|        | 2   | 60                 | 0                      | 60                     |
|        | 3   | 60                 | 0                      | 60                     |
|        | 4   | 60                 | 0                      | 60                     |
|        | 5   | 60                 | 0                      | 60                     |
|        | 6   | 60                 | 0                      | 60                     |
|        | 7   | 60                 | 0                      | 60                     |
|        | 8   | 60                 | 0                      | 60                     |
|        | 9   | 60                 | 0                      | 60                     |
|        | 10  | 60                 | 21                     | 39                     |
| 2      | 1   | 60                 | 21                     | 39                     |
|        | 2   | 60                 | 21                     | 39                     |
|        | 3   | 60                 | 21                     | 39                     |

|   | 4  | 60 | 21 | 39 |
|---|----|----|----|----|
|   | 5  | 60 | 21 | 39 |
|   | 6  | 60 | 21 | 39 |
|   | 7  | 60 | 21 | 39 |
|   | 8  | 60 | 21 | 39 |
|   | 9  | 60 | 21 | 39 |
|   |    |    |    |    |
|   | 10 | 60 | 19 | 41 |
| 3 | 1  | 60 | 19 | 41 |
|   | 2  | 60 | 60 | 0  |

# **6.FUCTIONAL AND PERFORMANCE TESTING**

#### **6.1 Model Performance Testing:**

Project team shall fill the following information in the model performance testing template.

| S.No. | Parameter                   | Screenshot / Values                                                                                        |
|-------|-----------------------------|------------------------------------------------------------------------------------------------------------|
| 1.    | Data Rendered               | Number Of Rows- 7952                                                                                       |
|       |                             | Number Of Columns- 7                                                                                       |
| 2.    | Data Preprocessing          | Data cleaning, added regions data, created new measures, Converted text columns into whole number columns. |
|       |                             | Converted text columns into whole number columns.                                                          |
| 3.    | Utilization of Data Filters | Country Slicer                                                                                             |
|       |                             |                                                                                                            |
| 4.    | DAX Queries Used            | AdjustedInflationRate =                                                                                    |
|       |                             | global inflation data[Inflationrate]*.1                                                                    |
|       |                             | InflationrateCategory =                                                                                    |
|       |                             | IF('global inflation data'[Inflationrate] <2,                                                              |
|       |                             | "Low",                                                                                                     |
|       |                             | IF('global inflation data'[Inflationrate] <5,                                                              |
|       |                             | "Moderate", "High"))                                                                                       |
|       |                             | InflationRateDifference =                                                                                  |
|       |                             | 'global inflation data'[Inflationrate] -                                                                   |
|       |                             | 'global inflation data' [AdjustedInflationRate]                                                            |
|       |                             | InflationRateChange =                                                                                      |
|       |                             | VAR CurrentYear =                                                                                          |
|       |                             | MAX('global inflation data'[Year])                                                                         |
|       |                             | VAR <u>CurrentInflationRate</u> =                                                                          |
|       |                             | CALCULATE (MAX ('global inflation data' [InflationRa                                                       |
|       |                             | te]), ALL('global inflation data'),                                                                        |
|       |                             | 'global inflation data' [Year] = CurrentYear)                                                              |

```
VAR PreviousInflationRate =
                          Calculate(
                              MAX('global_inflation_data'[InflationRate]),
                              ALL ('global inflation data'),
                              'global inflation data'[Year] = CurrentYear -
                          1
                          RETURN
                          IF(ISBLANK(PreviousInflationRate),
                                                                       BLANK(),
                          (CurrentInflationRate - PreviousInflationRate) /
                          PreviousInflationRate)
Dashboard design
                          No of Visualizations - 1. Cards
                                             2. Slicer
                                             3. Pie Chart
                                             4. Area Chart
                                             5. Stacked Column Chart
                                             6. Scatter Chart
                                             7. Text Box
                         No of Visualizations - 1. Filled Map
Report Design
                                             2. Text Box
                                             3. Donut Chart
                                             4. Clustered Column Chart
```

## **7.RESULTS**

#### 7.1 Dashboard



### **General Insights**

### **Average and Maximum Inflation Rate**

- The average inflation rate is 15.25, which suggests a moderately high inflationary environment.
- The maximum inflation rate recorded is 71.50, indicating extreme inflationary spikes at certain points.

#### **Inflation Trends Over Time**

- The sum of inflation rate by year shows fluctuations, with noticeable peaks in the late 1980s and 1990s.
- The trend appears to have stabilized post-2000, with relatively lower volatility.

#### **Inflation Distribution**

- A majority (97.44%) of the inflation rates fall into the low category, while only 2.56% are classified as high inflation.
- This suggests that inflation is mostly under control, with occasional spikes.

## **Country Selection:**

- The dashboard seems to be analazing data for only one region at a time, currently set to Afghanistan.
- The option to switch between countries (Albania, Algeria) indicates a comparative study potential.

## Recommendations

# **Expand the Dataset:**

- If possible, include multiple countries simultaneously for a comparative inflation analysis.
- Introduce more economic indicators such as GDP growth, interest rates, and unemployment to correlate inflation trends.

### **Highlight Key Economic Events:**

• Mark significant global and regional economic events (like financial crises or wars) on the timeline to explain spikes in inflation.

### **Improve Category Breakdown:**

• Instead of just low, moderate, and high inflation, provide a more detailed breakdown, e.g., hyperinflation (>50%), stable (0-5%), and deflation (<0%).

### **Interactive Forecasting:**

• Use Power BI forecasting models to predict future inflation trends based on historical data.

#### **Trends & Patterns:**

- Volatility in the 1980s and 1990s: A major spike, likely linked to economic or political turmoil.
- Relative Stability Post-2000: Inflation fluctuations have been much smoother after 2000.
- Most Inflation Data Falls in the Low Category: This suggests that, despite occasional spikes, inflation is generally manageable

#### **Conclusion:**

- The dashboard effectively presents inflation trends but could benefit from additional contextual insights and comparative analysis.
- Incorporating global economic events and predictive analytics could make the findings more actionable.
- If the goal is to compare multiple countries, adjusting filters to show sideby-side comparisons would enhance insights.

#### 7.2 Report:



Observation from the Power BI Report: "Power BI inflation analysis through journey through global economic Terrain"

#### 1. General Overview

- The dashboard is titled "Power BI Inflation Analysis: Journeying Through Global Economic Terrain."
- It presents key insights into inflation rates across different countries and regions.
- The visual design includes a world map, bar charts, and pie charts.

#### 2. Inflation by Country & Region:

- A world map categorizes countries based on regions (Africa, Americas, Asia, Europe, Oceania).
- Venezuela recorded the highest inflation rate (65,374.10), followed by the Democratic Republic of Congo and Nicaragua.

#### 3. Sum of Inflation Rate by Countries:

- A pie chart highlights the proportion of inflation rates across various nations.
- Venezuela appears to dominate with a significant share.

### 4. Sum of Inflation Rate by Category:

- A bar chart displays inflation distribution into High, Moderate, and Low categories.
- The "High" category overwhelmingly contributes to total inflation.

#### 5. Report Summary:

- Venezuela alone contributed to 58.18% of the total inflation.
- The high inflation category (3,27,105.57) is significantly larger (by 2,37,618.45%) than the low category (137.66).

#### 6. Chart Analysis

- The world map effectively visualizes geographic inflation trends.
- The pie chart provides a clear distribution of inflation by countries.
- The bar chart categorizes inflation levels efficiently.

### **8.ADVANTAGES & DISADVANTAGES**

# ✓ Advantages:

- 1. Real-time Data Visualization: Power BI enables dynamic and interactive visualizations, allowing users to monitor inflation trends in real time.
- 2. Data Integration: It integrates various data sources (e.g., GDP, CPI, market trends) to provide comprehensive insights for better inflation analysis.
- 3. Advanced Analytics: Users can apply advanced analytics and forecasting tools to predict inflationary trends.
- 4. User-friendly Interface: The intuitive drag-and-drop interface helps non-technical users understand complex data without requiring advanced knowledge.
- 5. Customizable Dashboards: Power BI dashboards can be customized to focus on specific inflation metrics for different regions or sectors.

### **\*** Disadvantages:

- 1. Data Quality Dependency: The quality of analysis is reliant on the accuracy and timeliness of the input data.
- 2. Complexity for Advanced Features: While basic features are user-friendly, advanced analysis may require deeper expertise in Power BI.
- 3. Integration Challenges: Integrating complex or non-standard data formats can be difficult, especially for organizations with legacy systems.
- 4. Performance Issues with Large Datasets: As data grows, Power BI may face performance slowdowns, especially with large-scale data processing

## 9. Future Scope of Power BI in Inflation Analysis:

- AI & Machine Learning Integration: The future could see more integration of AI/ML algorithms to predict inflation trends and provide deeper insights.
- Cloud-Based Collaboration: With cloud-based solutions, real-time collaboration among global stakeholders could improve decision-making.
- Automation of Inflation Reports: Automating reports based on triggers (e.g., inflation hitting certain thresholds) will improve operational efficiency.
- Global Data Integration: Enhanced capabilities to integrate global datasets for comparative inflation analysis across different countries.

#### **10. CONCLUSION:**

Power BI serves as a powerful tool for inflation analysis, offering the advantages of real-time data visualization, integration, and predictive analytics. Despite its limitations in handling large datasets and requiring quality data, its ability to provide actionable insights into inflation trends makes it a valuable asset for businesses and policymakers. Looking forward, the integration of AI and cloud-based capabilities will significantly enhance its scope, driving more accurate predictions and better-informed economic decisions.

#### 11. APPENDIX

#### **Dataset Link:**

https://www.kaggle.com/datasets/sazidthe1/global-inflation-data

#### **GithHub Link:**

https://github.com/Tsar-Alfredo/Power-BI-Inflation-Analysis-Journeying-Through-Global-Economic-Terrain

#### **Project Demo Link:**

https://drive.google.com/file/d/1OcHaroIOjMy626ejCeXyFWkJVbXzbVk6/view?usp=sharing