25 Spring 439/639 TSA: Lecture 10

Dr Sergey Kushnarev

Table of contents

More on $ARIMA(p, d, q)$	1
Review the previous example	1
AR and MA polynomial for ARIMA (p,d,q)	2
Overdifferencing	2
$\mathbf{ARFIMA}(p,d,q)$	2
GLP-like ("GLP") representation of $ARIMA(p, d, q)$	2
The corresponding non-stationary ARMA $(p+d,q)$ for ARIMA (p,d,q)	3
"GLP" representation of ARIMA $(0,1,1)$	3
"GLP" representation of ARIMA $(1,1,0)$	3
Transformations of time series	4

More on ARIMA(p, d, q)

Last time, we introduced ARIMA(p,d,q), a model for non-stationary time series. If $Y_t \sim \text{ARIMA}(p,d,q)$, taking difference d times gives a stationary time series $W_t = \nabla^d Y_t \sim \text{ARMA}(p,q)$.

Review the previous example

Let's take another look at the random walk + noise example from last lecture.

$$Y_t = X_t + \eta_t = \sum_{j=1}^t e_j + \eta_t, \quad \eta_t \sim \mathrm{iid}(0, \sigma_\eta^2), \quad e_t \sim \mathrm{iid}(0, \sigma_e^2)$$

where (X_t) is a random walk, (η_t) is a sequence of noise, and (η_t) is independent of (e_t) . Taking the difference gives

$$W_t = \nabla Y_t = e_t + \eta_t - \eta_{t-1}.$$

We can verify (W_t) is stationary:

$$\begin{split} \mathbb{E}W_t &= \mathbb{E}\left[e_t + \eta_t - \eta_{t-1}\right] = 0,\\ \operatorname{Var}(W_t) &= \operatorname{Var}\left(e_t + \eta_t - \eta_{t-1}\right) = \sigma_e^2 + 2\sigma_\eta^2 \qquad \text{(by independence)},\\ \gamma_1 &= \operatorname{Cov}(W_t, W_{t-1}) = \operatorname{Cov}\left(e_t + \eta_t - \eta_{t-1}, \, e_{t-1} + \eta_{t-1} - \eta_{t-2}\right) = -\operatorname{Cov}(\eta_{t-1}, \eta_{t-1}) = -\sigma_\eta^2, \end{split}$$

$$\gamma_k = \mathrm{Cov}(W_t, W_{t-k}) = \mathrm{Cov}\left(e_t + \eta_t - \eta_{t-1}, \, e_{t-k} + \eta_{t-k} - \eta_{t-k-1}\right) = 0, \quad \text{for all } k \geq 2.$$

So (W_t) is stationary. Then by the reasoning from last time, there exist an uncorrelated stationary process $(\tilde{\epsilon}_t)$ (think of $(\tilde{\epsilon}_t) \sim \operatorname{iid}(0, \tilde{\sigma}_e^2)$) and a constant $\tilde{\theta}$ such that

$$W_t = \tilde{e}_t - \tilde{\theta} \, \tilde{e}_{t-1} \sim \mathrm{MA}(1) \implies Y_t \sim \mathrm{IMA}(1,1) = \mathrm{ARIMA}(0,1,1).$$

AR and MA polynomial for ARIMA(p, d, q)

If $Y_t \sim \text{ARIMA}(p,d,q)$, then $W_t = \nabla^d Y_t \sim \text{ARMA}(p,q)$. So it can be characterized by the AR polynomial $\Phi(x)$ and MA polynomial $\Theta(x)$:

$$\Phi(B)W_t = \Theta(B)e_t.$$

Note that $W_t = (1 - B)^d Y_t$, we have

$$\Phi(B) (1-B)^d Y_t = \Theta(B) e_t.$$

So $\Phi^*(x) = \Phi(x) \ (1-x)^d$ can be seen as an AR polynomial for Y_t . **Assume** (W_t) is **causal**, then $\Phi^*(x)$ has p+d roots, with z=1 repeated d times and the other p roots (i.e. the roots of $\Phi(x)$) are all outside the unit disk.

Overdifferencing

In reality, usually d = 1 or d = 2. If d is too large, this is called overdifferencing, and it has the following issues:

- Leads to more complicated than necessary models.
- Leads to non-invertible models.

For example, consider the random walk $Y_t = \sum_{i=1}^t e_i$. (Y_t) is non-stationary. Take the difference:

$$W_t = \nabla Y_t = Y_t - Y_{t-1} = \sum_{i=1}^t e_i - \sum_{i=1}^{t-1} e_i = e_t.$$

So W_t can by modeled by an MA(0), which is stationary (and invertible). If we take the difference one more time:

$$Z_t = \nabla^2 Y_t = W_t - W_{t-1} = e_t - e_{t-1} \sim \text{MA}(1)$$

Although it can still be modeled by an ARMA model MA(1), but it is more complicated than MA(0), and this MA(1) above is not invertible (since $|\theta| = 1$).

ARFIMA(p, d, q)

This part will not be tested, just for your information. The FI in ARFIMA stands for fractionally integrated (recall that the letter I in ARIMA stands for integrated).

For a real number $d \in (0, 0.5)$, we can define the operator ∇^d by a series

$$\nabla^d := (1-B)^d = \sum_{i=0}^\infty b_i \, B^i$$

where the coefficients $\{b_i\}$ are determined by d.

It can be used in modelling long-range dependencies. It has slow decaying ACFs (polynomially, not exponentially).

GLP-like ("GLP") representation of ARIMA(p, d, q)

As we discussed earlier,

$$Y_t \sim \text{ARIMA}(p,d,q) \implies Y_t \sim \text{a non-stationary ARMA}(p+d,q)$$

since

$$\Phi(B) \ \nabla^d Y_t = \Theta(B) e_t \implies \Phi(B) \, (1-B)^d \, Y_t = \Theta(B) \, e_t.$$

For a non-stationary time series, we cannot get a GLP representation (because GLP is stationary.) But we will try to derive a similar form of GLP for ARIMA(p,d,q) processes, to get a sense of the ACF behavior.

The corresponding non-stationary ARMA(p+d,q) for ARIMA(p,d,q)

Example: Suppose $Y_t \sim \text{ARIMA}(p, 1, q)$. Let $W_t = \nabla Y_t$, then $W_t \sim \text{ARMA}(p, q)$, so

$$\begin{split} W_t - \phi_1 W_{t-1} - \cdots - \phi_p W_{t-p} &= e_t - \theta_1 e_{t-1} - \cdots - \theta_q e_{t-q}. \\ (Y_t - Y_{t-1}) - \phi_1 (Y_{t-1} - Y_{t-2}) - \phi_2 (Y_{t-2} - Y_{t-3}) - \cdots - \phi_p (Y_{t-p} - Y_{t-p-1}) &= e_t - \theta_1 e_{t-1} - \cdots - \theta_q e_{t-q}. \\ Y_t - (1 + \phi_1) Y_{t-1} - (\phi_2 - \phi_1) Y_{t-2} - \cdots - (\phi_p - \phi_{p-1}) Y_{t-p} + \phi_p Y_{t-p-1} &= e_t - \theta_1 e_{t-1} - \cdots - \theta_q e_{t-q}. \end{split}$$

As we already know, the last equation above is an ARMA(p+1,q), but not stationary. Indeed, its AR polynomial is

$$\Phi^*(x) = 1 - (1 + \phi_1)x - (\phi_2 - \phi_1)x^2 - \dots - (\phi_p - \phi_{p-1})x^p + \phi_p x^{p+1} = (1 - x)\left(1 - \phi_1 x - \phi_2 x^2 - \dots - \phi_p x^p\right)$$

which has a root z = 1.

"GLP" representation of ARIMA(0,1,1)

As we mentioned before, we cannot really derive a GLP representation for a non-stationary process. Some steps in the following analysis are not rigorous. Keep in mind that the big idea is to get a sense of the ACF behavior through an analogous way of GLP.

Suppose $Y_t \sim \text{ARIMA}(0,1,1)$, with $\nabla Y_t = e_t - \theta e_{t-1}$. Then $Y_t - Y_{t-1} = e_t - \theta e_{t-1}$. So

$$\begin{split} Y_t &= Y_{t-1} + e_t - \theta \, e_{t-1} = Y_{t-2} + e_{t-1} - \theta \, e_{t-2} + e_t - \theta \, e_{t-1} \\ &= Y_{t-2} + e_t + (1-\theta) \, e_{t-1} - \theta \, e_{t-2} \\ &= \dots = Y_{t-m} + e_t + (1-\theta) \, e_{t-1} + \dots + (1-\theta) \, e_{t-m+1} - \theta \, e_{t-m} \\ &\approx e_t + \sum_{j=1}^{\infty} (1-\theta) e_{t-j} \end{split}$$

where the last step is not rigorous, but can be thought as: $Y_{t-m} \to 0$ as $m \to \infty$ (assuming the process started at zero).

The last line above $e_t + \sum_{j=1}^{\infty} (1-\theta)e_{t-j}$ looks like a GLP, but it is not a GLP because $\sum_{j=1}^{\infty} |1-\theta|$ diverges (assuming $\theta \neq 1$), the condition $\sum |\psi_j| < \infty$ fails.

One can also show that:

$$\mathrm{Var}(Y_t) = \left[1 + \theta^2 + (1-\theta)^2(t+m)\right]\sigma_e^2 \qquad \text{(which grows linearly in t)},$$

and the following results (not rigorous) for moderate k and large t

$$\rho_{t,t-k} = \frac{[1-\theta+\theta^2+(1-\theta)^2(t+m-k)]\sigma_e^2}{\sqrt{{\rm Var}(Y_t)\,{\rm Var}(Y_{t-k})}} \approx \frac{(1-\theta)^2(t+m)\,\sigma_e^2}{\sqrt{(1-\theta)^2(t+m)\cdot(1-\theta)^2(t+m-k)}\,\sigma_e^2} \approx 1.$$

So for an IMA(1,1) process, the ACF $\rho_{t,t-k} \approx 1$ for moderate k and large t, which behaves similar to a random walk (for large t). If we plot the time series, it will exhibit wandering behavior (RW-like).

"GLP" representation of ARIMA(1,1,0)

Suppose $Y_t \sim \text{ARIMA}(1,1,0)$, with $Y_t - Y_{t-1} - \phi(Y_{t-1} - Y_{t-2}) = e_t$. So

$$Y_{t} = (1 + \phi)Y_{t-1} - \phi Y_{t-2} + e_{t}$$

which is a non-stationary AR(2).

As before, we suppose there is a "GLP" representation $Y_t = \psi_0 e_t + \psi_1 e_{t-1} + \psi_2 e_{t-2} + \cdots$. Plug into the non-stationary AR(2) above:

$$\left(\psi_{0}e_{t}+\psi_{1}e_{t-1}+\psi_{2}e_{t-2}+\cdots\right)=\left(1+\phi\right)\left(\psi_{0}e_{t-1}+\psi_{1}e_{t-2}+\psi_{2}e_{t-3}+\cdots\right)-\phi\left(\psi_{0}e_{t-2}+\psi_{1}e_{t-3}+\psi_{2}e_{t-4}+\cdots\right)+e_{t-2}+\psi_{2}e_{t-3}+\cdots$$

Comparing the coefficients of e_{t-k} :

$$\begin{cases} \psi_0 = 1 \\ \psi_1 = (1+\phi)\psi_0 \\ \psi_k = (1+\phi)\psi_{k-1} - \phi\psi_{k-2} \quad \text{for } k \geq 2 \end{cases}$$

which gives

$$\psi_k = 1 + \phi + \dots + \phi^k = \frac{1 - \phi^{k+1}}{1 - \phi}, \quad \text{for any } k \geq 0.$$

Exercise: verify this result.

As we expected, this "GLP" is not a GLP, since the condition $\sum |\psi_i| < \infty$ fails.

Transformations of time series

Suppose a time series (Y_t) satisfies $\mathbb{E}Y_t = \mu_t$ and $\mathrm{Var}(Y_t) \approx \mu_t^2 \cdot \sigma^2$ (the latter implies $\mathrm{SD}(Y_t) \approx \mu_t \cdot \sigma$). Also assume (Y_t) is positive. A useful transformation for this type of time series is taking the logarithm:

$$\widetilde{Y}_t = \log Y_t$$
.

This transformation has some nice property. First, using Taylor Series, we have the approximation $\log y \approx y_0 + \log'(y_0) \cdot (y - y_0)$. Replace y with Y_t , and let $y_0 = \mu_t$:

$$\log Y_t \approx \mu_t + \frac{1}{\mu_t} (Y_t - \mu_t).$$

Since μ_t is a non-random constant,

$$\operatorname{Var}(\log Y_t) \approx \operatorname{Var}\left[\frac{1}{\mu_t}(Y_t - \mu_t)\right] = \frac{1}{\mu_t^2}\operatorname{Var}(Y_t) = \frac{1}{\mu_t^2} \cdot \mu_t^2 \cdot \sigma^2 = \sigma^2 = \text{constant}.$$

So the variance of $\log Y_t$ is approximately the constant σ^2 . For this reason, we call this transformation $\widetilde{Y}_t = \log Y_t$ (under the setting above) Variance Stabilizing Transformation.