Sample Student Intro to Examples October 17, 2025

Homework 1

Question 1. Simple Theorems and Proofs Consider the following basic examples:

Theorem 1. For any integer n, $n^2 > 0$.

Proof. Any integer squared is either zero or positive.

 $egin{array}{c} quod \\ erat \\ dem \blacksquare \end{array}$

a) Even or Odd

Theorem 2. Every integer is either even or odd.

Proof. Let n be any integer. Define:

- Case 1: n = 2k for some $k \in \mathbb{Z}$, then n is even.
- Case 2: n = 2k + 1 for some $k \in \mathbb{Z}$, then n is odd.

These cases cover all integers.

 $\begin{array}{c} quod\\ erat\\ dem \blacksquare \end{array}$

b) Positive Numbers

Theorem 3. There exists a positive integer less than 10.

Proof. Simply choose n = 5, which is positive and less than 10.

 $\begin{array}{c} quod\\ erat\\ dem \blacksquare \end{array}$

Question 2. Identifying Mistakes

- a) Consider a faulty induction attempt to prove that n! > 0 for $n \ge 0$. Spot the error. The error occurs if the base case is skipped. For induction, we must verify 0! = 1 > 0 first.
- b) Another example: Assuming $n^2 > n$ for all n without checking n = 0. The mistake is not considering n = 0, for which $0^2 = 0 \neq 0$.

Question 3. Simple State Machine Consider a counter that halves a number until it reaches zero.

- a) Starting from n = 10, show the sequence of states. Sequence: $10 \to 5 \to 2 \to 1 \to 0$.
- b) Define invariant $P(n) := n \ge 0$ and verify. Base case: $n = 10 \ge 0$. Step: Halving preserves non-negativity, so P(n) holds for all transitions.
- c) Explain termination. Each transition decreases n, and the process stops when n = 0. Hence, the state machine always terminates.