Author Name

June 22, 2024

Contents

1 Exercises

2-1. Let (X,d) be a metric space and $S \subset X$. Show that $\overline{S} = S^*$ iff $S = \overline{S} \cap S^{int} = \emptyset$.

2-2. Show that for an arbitrary choice of $a, b, c \in \mathbb{R}$, the closed disk $(x - a)^2 + (y - b)^2 \le r^2$ is a bounded set in \mathbb{R}^2 .

2-3. Let (X,d) be a metric space and for $x,y\in X$. Show that if $d(x,y)<\varepsilon$ for every $\varepsilon>0$, then x=y.

Solution 2-1. Assume $S \neq \overline{S} \cap S^{int}$.

Then $\exists x \in S^{int} : x \in \overline{S} \cap x \notin S^{int}$.

Then by $x \in S^{int} \Rightarrow \exists \varepsilon > 0 : B_{\varepsilon}(x) \subseteq S^1$.

However, by $x \notin S^{int}$, this value of $\varepsilon > 0$ implies $B_{\frac{\varepsilon}{4}}(x) \cap S^1 = \emptyset \Rightarrow B_{\frac{\varepsilon}{4}}(x) \nsubseteq S$, which is a contradiction, implying our assumption that $x \in \overline{S} \cap S^{int}$ must be false and $\overline{S} \cap S^{int} = \emptyset$.

Solution 2-2. A set S is bounded iff $\exists M \in \mathbb{R}^+ : \forall x, y \in S. \ d(x,y) \leq M$.

Let
$$a,b,r \in \mathbb{R}$$
. $S:=\{(x,y) \in \mathbb{R}^2 | (x-a)^2 + (y-b)^2 \le r^2\} \Rightarrow x^2 - 2ax + a^2 + y^2 - 2yb + b^2 \le r^2 \Rightarrow x^2 - 2ax + y^2 - 2yb \le r^2 - a^2 - b^2 \Rightarrow x^2 + y^2 \le r^2 - a^2 - b^2 + 2ax + 2yb$

Need to show x^2 is bounded: $(x-a)^2 \le r^2 \Rightarrow |x-a| \le |r| \Rightarrow |x-a| \le |r| + |a| \Rightarrow |x| = |x-a+a| \le |x-a| + |a| \le r + |a|$.

 $\implies |y| \le r + |a|$ $\implies x^2 \le (r + |a|)^2$

Same for y: $y^2 \le (r + |b|)^2$

$$\forall z = (x, y) \in D_{r,a,b},$$

$$||z|| = \sqrt{x^2 + y^2}$$

$$\leq \sqrt{(r + |a|)^2 + (r + |b|)^2}$$

Thus, if $\mathcal{M} = \sqrt{(r+|a|)^2 + (r+|b|)^2}$, the bound holds.

#1S normed boundedness = distance boundedness.

Let $x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{P}_{r,a,b}$

$$z_1 = (x, y)$$

$$(z_1 - a)^2 + (z_2 - b)^2 = r^2$$

$$\Rightarrow d(z, (a, b)) = \sqrt{(z_1 - a)^2 + (z_2 - b)^2} \le r$$

$$\Rightarrow d(x, y) \le d(x, (a, b)) + d(y, (a, b))$$

$$= \sqrt{(x_1 - a)^2 + (x_2 - b)^2} + \sqrt{(y_1 - a)^2 + (y_2 - b)^2}$$

$$\le r + r = 2r.$$

(iii)

Suppose that $x \neq y$. Then $d(x,y) \neq 0$. Thus if we choose $\varepsilon = d(x,y) \implies \varepsilon > 0$ but $d(x,y) \in \varepsilon$. (contradiction).

(contradiction) Suppose $x \neq y$ and so $d(x, y) \neq 0$.

Choose $\varepsilon > 0$ so that $\varepsilon = d(x,y)$. Then we must have $d(x,y) < \varepsilon = d\left(\frac{\varepsilon}{2}\right)$, which is a contradiction, as this implies $d(x,y) = \frac{\varepsilon}{2}$.

Thus $d(x,y) \le 0 \implies d(x,y) = 0$ $\varepsilon = d(x,y) = \frac{\varepsilon}{2} \implies x = y$.

$$\varepsilon > \frac{\varepsilon}{2} \implies 2s < \varepsilon$$

Thus x = y.

(iv)

Let $(V, \|\cdot\|)$ be a normed vsp.

Then let r > 0 and $x \in V$. Then

$$B_r(x) = \{ v \in V | d(x, v) < r \} \ B_{\|x\| + r}(0) = \{ v \in V | d(0, v) < r + \|x\| \}$$

Diagram:

Let $y \in B_r(x)$.

$$d(0,y) \le d(0,x) + d(x,y) \le ||x|| + r$$

$$\implies B_r(x) \subseteq B_{r+||x||}(0).$$

Suppose S is bounded. Then $\exists M \in \mathbb{R} : \forall x \in S ||x|| \leq M$.

(Equiv to $\exists M \in \mathbb{R} : \forall x \in S \subseteq V \ (x \in B_M(0))$