한국교통대학교 Embedded Vision & Al Lab 2025학년도 2학기 연구보고서

1차 OVERFLOW 연구보고서

2025. 9. 10.

학과/전공	컴퓨터공학과
부원	서민호, 박정민, 김예은, 유성식
지도교수	Dat Ngo
분야	Iamge processing

목 차

Ι.	서론 ·······	1
Ι.	본론1	2
	A. 1-1 풀이	
	B. 1-2 풀이	
Ⅲ.	본론2	3
	A. 2-1 풀이	
N.	본론3	4
	A. 3-1 풀이 ······	4
	B. 3-2 풀이 ·····	
	C. 3-3 풀이 ······	4
٧.	결론	5
참고	고무허	6

I . 서론

- 교수님이 문제를 주신 이유와 이 문제를 어떻게 풀 것인지 작성할 것이다.
- 따라서 이번 보고서에서는 교수님이 주신 문제를 해결하는 과정을 작성할 계획이다.

Ⅱ. 본론 1

$$H(z) = \frac{b_0 + b_1 z^{-1} + \dots + b_{n-1} z^{-(n-1)} + b_n z^{-n}}{a_0 + a_1 z^{-1} + \dots + a_{m-1} z^{-(m-1)} + a_m z^{-m}} = \frac{\sum_{i=0}^n b_i z^{-i}}{\sum_{j=0}^m a_j b^{-j}}$$

전달함수 공식

A. 1-1 문제 Given a low-pass filter with b = [1,2,1] and a = [4,0], plot its <u>frequency response</u> (with the cut-off frequency showed in the figure) and its <u>phase response</u>.

주어진 값 :
$$b = [1,2,1]$$
 $a = [4,0]$

풀이 :

Y(z): 출력의 z-변환

X(z): 입력의 z-변환

b(z): 입력 계수

a(z): 출력 계수

$$\mathit{H}(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{a_0 + a_1 z^{-1}} \Longrightarrow A(z) = 4 + 0 \, \cdot \, z - 1 = 4 \Longrightarrow \mathit{H}(z) = \frac{1 + 2 z^{-1} + 1 z^{-2}}{4}$$

그러므로 a = [4,0]에서 0은 없는 취급되었음

B. 1-2 문제 Given a high-pass filter with b = [-1,2,-1] and a = [4,0], plot is <u>frequency response</u> (with the cut-off frequency showed in the figure) and its <u>phase response</u>.

주어진 값 :
$$b = [-1,2,-1]$$
 $a = [4,0]$

풀이 :
$$H(z) = \frac{-1 + 2z^{-1} - 1z^{-2}}{4}$$

$$y[n] = \frac{4}{1}(-x[n] + 2x[n-1] - x[n-2])$$

위와 같은 전달함수로 만들었으므로 a=[4,0]에서 0은 없는 취급되었음

Ⅱ. 본론 2

$$z(x) = C_w \cdot \cos(\pi \frac{x^2}{T}) + C_{offset}$$

A. 2-1 문제 The mathematical expression of the 1-D CZP(Circular Zone Plate) signal is as follows:

where

$$egin{array}{ll} C_w & {
m gain} \\ C_{offset} & {
m offset} \\ T & {
m period} \end{array}$$

 C_{offset} offset T period Plot the 1-D CZP signal (Cw, Coffset, and T can be freely determined).

$$x=$$
위치, $C_w=$ 전체파형의크기를조절함, $T=$ 주기, $C_{O\!f\!f\!s\!c\!t}=$ 그래프의높이

풀이 :
$$z(x) = C_w \cdot \cos(\pi \frac{x^2}{T}) + C_{offset}$$

$$\cos(\pi \frac{x^2}{T}) \rightarrow (\pi \frac{x^2}{T}) = 2\pi$$

$$\therefore x = -10 \le x \le 10, C_w = 10, T = 5, C_{Offset} = 3$$

$$z(x) = 10\cos(\frac{\pi x^2}{5}) + 3$$

Ⅱ. 본론 3

The mathematical expression of the 2-D CZP signal is as follows:

$$z(x,y) = C_w \cdot \cos(\pi \frac{x^2 + y^2}{T}) + C_{offset}$$

A. 3-1 문제 Plot the 2-D CZP signal (C_w , C_{offset} , and T can be freely determined).

풀이 $: C_w$, C_{offset} , T는 자유롭게 선택 가능한 상수

이 신호는 반지름 $r=\sqrt{x^2+y^2}$ 에 따라 위상이 $\phi=\frac{\pi r^2}{T}$ 로 결정되므로 중심 근처($r\approx 0$)는 위상 변화가 느리고 상대적으로 저주파 성분을 가짐 바깥쪽으로 갈수록 위상이 빠르게 변해 링 간격이 좁아져 고주파 성분을 포함하게 됨 따라서 신호는 중심에서 바깥으로 갈수록 점점 촘촘한 링 패턴을 형성함.

B. 3-2 문제 Given a low-pass filter represented by the matrix $\frac{1}{4} \cdot \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$, plot the result of filtering the CZP signal.

주어진 값 : $\frac{1}{4} \cdot \begin{bmatrix} 121\\242\\121 \end{bmatrix}$

풀이 : 이 필터의 항목 합은 1로, 평균값을 보존하며 주변 값들과의 평균화 과정을 통해 신호를 부드럽게 만듦

고주파 성분을 제거하고 저주파 성분을 강조하는 스무딩 효과를 내어, 필터링 결과에서는 중심의 넓은 링 패턴이 더욱 뚜렷하게 나타나게 됨

C. 3-3 문제 Given a high-pass filter represented by the matrix $\frac{1}{4} \cdot \begin{bmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{bmatrix}$, plot

the result of filtering the CZP signal.

주어진 값:
$$\frac{1}{4} \cdot \begin{bmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{bmatrix}$$

풀이 : 이 필터의 항목 합은 0으로, DC 성분이 제거되어 전체 평균값이 0에 가까움 고주파 성분, 곧 신호 내 국부적인 변화만을 강조하여 엣지 같은 미세 공간 변화를 부각시킴 CZP 신호의 경우 변화가 완만한 중심부는 필터링 결과에 거의 나타나지 않고, 촘촘한 바깥쪽 링에서만 감지됨

V. 결론

전달함수 공식과 1D Circular Zone Plate 문제를 풀어보았다. 처음이라 난이도가 되었지만 그래도 혼자가 아니었기에 이렇게 첫 보고서를 마무리할 수 있었던 것 같다.

참 고 문 헌

chat gpt("이미지 제공" 이 문제는 어떻게 풀어나가야 할까?)

- 3 -
