Aplicacions Estadístiques

Enginyeria Edificació 2009/10.

Antonio E. Teruel

Exercici 1

En una enquesta sobre inmigració s'han obtingut les següents dades sobre la nacionalitat de 1000 persones:

Nacionalitat	Quantitat
Colómbia	350
Equador	250
Perú	120
Argentina	100
Romania	80
Marroc	70
Senegal	30

a) Quins estadístics de tendència central es poden calcular per aquesta distribució? Calculau-los.

Exercici 1

En una enquesta sobre inmigració s'han obtingut les següents dades sobre la nacionalitat de 1000 persones:

Nacionalitat	Quantitat
Colómbia	350
Equador	250
Perú	120
Argentina	100
Romania	80
Marroc	70
Senegal	30

 a) Quins estadístics de tendència central es poden calcular per aquesta distribució? Calculau-los.

Resp. Moda. Moda=Colómbia.

Exercici 2

En una enquesta entre els estudiants de la UIB s'han obtingut les següents dades sobre la seva edat:

Edat	Quantitat
18	120
19	150
20	90
21	70
22	65
23	50
24	30
25	20
26	10
27	7
28	8
29	2
30	1
34	1
35	1
40	1

(a) Calcula la taula de freqüències.

Edat	Quantitat
18	120
19	150
20	90
21	70
22	65
23	50
24	30
25	20
26	10
27	7
28	8
29	2
30	1
34	1
35	1
40	1

(a) Calcula la taula de freqüències.

Xi	n _i	N _i	f _i	F_i	p_i	P_i
18	120	120	0,1917	0,1917	19,1693	19,1693
19	150	270	0,2396	0,4313	23,9617	43,1310
20	90	360	0,1438	0,5751	14,3770	57,5080
21	70	430	0,1118	0,6869	11,1821	68,6901
22	65	495	0,1038	0,7907	10,3834	79,0735
23	50	545	0,0799	0,8706	7,9872	87,0607
24	30	575	0,0479	0,9185	4,7923	91,8530
25	20	595	0,0319	0,9505	3,1949	95,0479
26	10	605	0,0160	0,9665	1,5974	96,6454
27	7	612	0,0112	0,9776	1,1182	97,7636
28	8	620	0,0128	0,9904	1,2780	99,0415
29	2	622	0,0032	0,9936	0,3195	99,3610
30	1	623	0,0016	0,9952	0,1597	99,5208
34	1	624	0,0016	0,9968	0,1597	99,6805
35	1	625	0,0016	0,9984	0,1597	99,8403
40	1	626	0,0016	1,0000	0,1597	100,0000

(a) Calcula la moda

Xi	ni	N_i	f_i	F_i	p_i	P_i
18	120	120	0,1917	0,1917	19,1693	19,1693
19	150	270	0,2396	0,4313	23,9617	43,1310
20	90	360	0,1438	0,5751	14,3770	57,5080
21	70	430	0,1118	0,6869	11,1821	68,6901
22	65	495	0,1038	0,7907	10,3834	79,0735
23	50	545	0,0799	0,8706	7,9872	87,0607
24	30	575	0,0479	0,9185	4,7923	91,8530
25	20	595	0,0319	0,9505	3,1949	95,0479
26	10	605	0,0160	0,9665	1,5974	96,6454
27	7	612	0,0112	0,9776	1,1182	97,7636
28	8	620	0,0128	0,9904	1,2780	99,0415
29	2	622	0,0032	0,9936	0,3195	99,3610
30	1	623	0,0016	0,9952	0,1597	99,5208
34	1	624	0,0016	0,9968	0,1597	99,6805
35	1	625	0,0016	0,9984	0,1597	99,8403
40	1	626	0,0016	1,0000	0,1597	100,0000

(a) Calcula la moda

Xi	ni	N_i	fi	F_i	p_i	P_i
18	120	120	0,1917	0,1917	19,1693	19,1693
19	(150)	270	0,2396	0,4313	23,9617	43,1310
20	90	360	0,1438	0,5751	14,3770	57,5080
21	70	430	0,1118	0,6869	11,1821	68,6901
22	65	495	0,1038	0,7907	10,3834	79,0735
23	50	545	0,0799	0,8706	7,9872	87,0607
24	30	575	0,0479	0,9185	4,7923	91,8530
25	20	595	0,0319	0,9505	3,1949	95,0479
26	10	605	0,0160	0,9665	1,5974	96,6454
27	7	612	0,0112	0,9776	1,1182	97,7636
28	8	620	0,0128	0,9904	1,2780	99,0415
29	2	622	0,0032	0,9936	0,3195	99,3610
30	1	623	0,0016	0,9952	0,1597	99,5208
34	1	624	0,0016	0,9968	0,1597	99,6805
35	1	625	0,0016	0,9984	0,1597	99,8403
40	1	626	0,0016	1,0000	0,1597	100,0000

(a) Calcula la moda Resp. moda=19

Xi	n _i	N _i	f _i	F_i	p _i	P_i
18	120	120	0,1917	0,1917	19,1693	19,1693
19	(150)	270	0,2396	0,4313	23,9617	43,1310
20	90	360	0,1438	0,5751	14,3770	57,5080
21	70	430	0,1118	0,6869	11,1821	68,6901
22	65	495	0,1038	0,7907	10,3834	79,0735
23	50	545	0,0799	0,8706	7,9872	87,0607
24	30	575	0,0479	0,9185	4,7923	91,8530
25	20	595	0,0319	0,9505	3,1949	95,0479
26	10	605	0,0160	0,9665	1,5974	96,6454
27	7	612	0,0112	0,9776	1,1182	97,7636
28	8	620	0,0128	0,9904	1,2780	99,0415
29	2	622	0,0032	0,9936	0,3195	99,3610
30	1	623	0,0016	0,9952	0,1597	99,5208
34	1	624	0,0016	0,9968	0,1597	99,6805
35	1	625	0,0016	0,9984	0,1597	99,8403
40	1	626	0,0016	1,0000	0,1597	100,0000

(a) Calcula la mediana

Xi	ni	Ni	fi	Fi	pi	P_i
18	120	120	0,1917	0,1917	19,1693	19,1693
19	150	270	0,2396	0,4313	23,9617	43,1310
20	90	360	0,1438	0,5751	14,3770	57,5080
21	70	430	0,1118	0,6869	11,1821	68,6901
22	65	495	0,1038	0,7907	10,3834	79,0735
23	50	545	0,0799	0,8706	7,9872	87,0607
24	30	575	0,0479	0,9185	4,7923	91,8530
25	20	595	0,0319	0,9505	3,1949	95,0479
26	10	605	0,0160	0,9665	1,5974	96,6454
27	7	612	0,0112	0,9776	1,1182	97,7636
28	8	620	0,0128	0,9904	1,2780	99,0415
29	2	622	0,0032	0,9936	0,3195	99,3610
30	1	623	0,0016	0,9952	0,1597	99,5208
34	1	624	0,0016	0,9968	0,1597	99,6805
35	1	625	0,0016	0,9984	0,1597	99,8403
40	1	626	0,0016	1,0000	0,1597	100,0000

(a) Calcula la mediana

Xi	ni	Ni	fi	Fi	p _i	P_i
18	120	120	0,1917	0,1917	19,1693	19,1693
19	150	270	0,2396	0,4313	23,9617	43,1310
20	90	360	0,1438	0,5751	14,3770	57,5080
21	70	430	0,1118	0,6869	11,1821	68,6901
22	65	495	0,1038	0,7907	10,3834	79,0735
23	50	545	0,0799	0,8706	7,9872	87,0607
24	30	575	0,0479	0,9185	4,7923	91,8530
25	20	595	0,0319	0,9505	3,1949	95,0479
26	10	605	0,0160	0,9665	1,5974	96,6454
27	7	612	0,0112	0,9776	1,1182	97,7636
28	8	620	0,0128	0,9904	1,2780	99,0415
29	2	622	0,0032	0,9936	0,3195	99,3610
30	1	623	0,0016	0,9952	0,1597	99,5208
34	1	624	0,0016	0,9968	0,1597	99,6805
35	1	625	0,0016	0,9984	0,1597	99,8403
40	1	626	0,0016	1,0000	0,1597	100,0000

(a) Calcula la mediana

Resp.
$$n = 626$$
, mediana = $\frac{x_{313} + x_{314}}{2} = \frac{20 + 20}{2} = 20$

Xi	ni	Ni	fi	Fi	p _i	P_i
18	120	120	0,1917	0,1917	19,1693	19,1693
19	150	270	0,2396	0,4313	23,9617	43,1310
20	90	360	0,1438	0,5751	14,3770	57,5080
21	70	430	0,1118	0,6869	11,1821	68,6901
22	65	495	0,1038	0,7907	10,3834	79,0735
23	50	545	0,0799	0,8706	7,9872	87,0607
24	30	575	0,0479	0,9185	4,7923	91,8530
25	20	595	0,0319	0,9505	3,1949	95,0479
26	10	605	0,0160	0,9665	1,5974	96,6454
27	7	612	0,0112	0,9776	1,1182	97,7636
28	8	620	0,0128	0,9904	1,2780	99,0415
29	2	622	0,0032	0,9936	0,3195	99,3610
30	1	623	0,0016	0,9952	0,1597	99,5208
34	1	624	0,0016	0,9968	0,1597	99,6805
35	1	625	0,0016	0,9984	0,1597	99,8403
40	1	626	0,0016	1,0000	0,1597	100,0000

Xi	ni	N _i	f _i	F_i	p_i	P_i
18	120	120	0,1917	0,1917	19,1693	19,1693
19	150	270	0,2396	0,4313	23,9617	43,1310
20	90	360	0,1438	0,5751	14,3770	57,5080
21	70	430	0,1118	0,6869	11,1821	68,6901
22	65	495	0,1038	0,7907	10,3834	79,0735
23	50	545	0,0799	0,8706	7,9872	87,0607
24	30	575	0,0479	0,9185	4,7923	91,8530
25	20	595	0,0319	0,9505	3,1949	95,0479
26	10	605	0,0160	0,9665	1,5974	96,6454
27	7	612	0,0112	0,9776	1,1182	97,7636
28	8	620	0,0128	0,9904	1,2780	99,0415
29	2	622	0,0032	0,9936	0,3195	99,3610
30	1	623	0,0016	0,9952	0,1597	99,5208
34	1	624	0,0016	0,9968	0,1597	99,6805
35	1	625	0,0016	0,9984	0,1597	99,8403
40	1	626	0,0016	1,0000	0,1597	100,0000

x_i	ni	N_i	f_i	F_i	p_i	P_i
18	120	120	0,1917	0,1917	19,1693	(19,1693)
19	150	270	0,2396	0,4313	23,9617	43,1310
20	90	360	0,1438	0,5751	14,3770	57,5080
21	70	430	0,1118	0,6869	11,1821	68,6901
22	65	495	0,1038	0,7907	10,3834	79,0735
23	50	545	0,0799	0,8706	7,9872	87,0607
24	30	575	0,0479	0,9185	4,7923	91,8530
25	20	595	0,0319	0,9505	3,1949	95,0479
26	10	605	0,0160	0,9665	1,5974	96,6454
27	7	612	0,0112	0,9776	1,1182	97,7636
28	8	620	0,0128	0,9904	1,2780	99,0415
29	2	622	0,0032	0,9936	0,3195	99,3610
30	1	623	0,0016	0,9952	0,1597	99,5208
34	1	624	0,0016	0,9968	0,1597	99,6805
35	1	625	0,0016	0,9984	0,1597	99,8403
40	1	626	0,0016	1,0000	0,1597	100,0000

Resp.
$$k = \frac{25 * 626}{100} = 156.5 \Rightarrow Q_1 = P_{25} = d_{157} = 19$$

x_i	ni	N_i	f_i	F_i	p_i	P_i
18	120	120	0,1917	0,1917	19,1693	(19,1693)
19	150	270	0,2396	0,4313	23,9617	43,1310
20	90	360	0,1438	0,5751	14,3770	57,5080
21	70	430	0,1118	0,6869	11,1821	68,6901
22	65	495	0,1038	0,7907	10,3834	79,0735
23	50	545	0,0799	0,8706	7,9872	87,0607
24	30	575	0,0479	0,9185	4,7923	91,8530
25	20	595	0,0319	0,9505	3,1949	95,0479
26	10	605	0,0160	0,9665	1,5974	96,6454
27	7	612	0,0112	0,9776	1,1182	97,7636
28	8	620	0,0128	0,9904	1,2780	99,0415
29	2	622	0,0032	0,9936	0,3195	99,3610
30	1	623	0,0016	0,9952	0,1597	99,5208
34	1	624	0,0016	0,9968	0,1597	99,6805
35	1	625	0,0016	0,9984	0,1597	99,8403
40	1	626	0,0016	1,0000	0,1597	100,0000

Resp.
$$k = \frac{25 * 626}{100} = 156.5 \Rightarrow Q_1 = P_{25} = d_{157} = 19$$

Xi	ni	N_i	f_i	F_i	p_i	P_i
18	120	120	0,1917	0,1917	19,1693	19,1693
19	150	270	0,2396	0,4313	23,9617	43,1310
20	90	360	0,1438	0,5751	14,3770	57,5080
21	70	430	0,1118	0,6869	11,1821	68,6901
22	65	495	0,1038	0,7907	10,3834	79, 073 5
23	50	545	0,0799	0,8706	7,9872	87,0607
24	30	575	0,0479	0,9185	4,7923	91,8530
25	20	595	0,0319	0,9505	3,1949	95,0479
26	10	605	0,0160	0,9665	1,5974	96,6454
27	7	612	0,0112	0,9776	1,1182	97,7636
28	8	620	0,0128	0,9904	1,2780	99,0415
29	2	622	0,0032	0,9936	0,3195	99,3610
30	1	623	0,0016	0,9952	0,1597	99,5208
34	1	624	0,0016	0,9968	0,1597	99,6805
35	1	625	0,0016	0,9984	0,1597	99,8403
40	1	626	0,0016	1,0000	0,1597	100,0000

Resp.
$$k = \frac{25 * 626}{100} = 156.5 \Rightarrow Q_1 = P_{25} = d_{157} = 19$$

 $k = \frac{75 * 626}{100} = 469.5 \Rightarrow Q_3 = P_{75} = d_{470} = 22$

Xi	ni	Ni	fi	F_i	p_i	P_i
18	120	120	0,1917	0,1917	19,1693	19,1693
19	150	270	0,2396	0,4313	23,9617	43,1310
20	90	360	0,1438	0,5751	14,3770	57,5080
21	70	430	0,1118	0,6869	11,1821	68,6901
22	65	495	0,1038	0,7907	10,3834	79, 073 5
23	50	545	0,0799	0,8706	7,9872	87,0607
24	30	575	0,0479	0,9185	4,7923	91,8530
25	20	595	0,0319	0,9505	3,1949	95,0479
26	10	605	0,0160	0,9665	1,5974	96,6454
27	7	612	0,0112	0,9776	1,1182	97,7636
28	8	620	0,0128	0,9904	1,2780	99,0415
29	2	622	0,0032	0,9936	0,3195	99,3610
30	1	623	0,0016	0,9952	0,1597	99,5208
34	1	624	0,0016	0,9968	0,1597	99,6805
35	1	625	0,0016	0,9984	0,1597	99,8403
40	1	626	0,0016	1,0000	0,1597	100,0000

		A /	,			
Xi	n _i	N_i	f_i	Fi	p_i	P_i
18	120	120	0,1917	0,1917	19,1693	19,1693
19	150	270	0,2396	0,4313	23,9617	43,1310
20	90	360	0,1438	0,5751	14,3770	57,5080
21	70	430	0,1118	0,6869	11,1821	68,6901
22	65	495	0,1038	0,7907	10,3834	79,0735
23	50	545	0,0799	0,8706	7,9872	87,0607
24	30	575	0,0479	0,9185	4,7923	91,8530
25	20	595	0,0319	0,9505	3,1949	95,0479
26	10	605	0,0160	0,9665	1,5974	96,6454
27	7	612	0,0112	0,9776	1,1182	97,7636
28	8	620	0,0128	0,9904	1,2780	99,0415
29	2	622	0,0032	0,9936	0,3195	99,3610
30	1	623	0,0016	0,9952	0,1597	99,5208
34	1	624	0,0016	0,9968	0,1597	99,6805
35	1	625	0,0016	0,9984	0,1597	99,8403
40	1	626	0,0016	1,0000	0,1597	100,0000

x_i	ni	N_i	f_i	F_i	p_i	P_i
18	120	120	0,1917	0,1917	19,1693	(19,1693)
19	150	270	0,2396	0,4313	23,9617	43,1310
20	90	360	0,1438	0,5751	14,3770	57,5080
21	70	430	0,1118	0,6869	11,1821	68,6901
22	65	495	0,1038	0,7907	10,3834	79,0735
23	50	545	0,0799	0,8706	7,9872	87,0607
24	30	575	0,0479	0,9185	4,7923	91,8530
25	20	595	0,0319	0,9505	3,1949	95,0479
26	10	605	0,0160	0,9665	1,5974	96,6454
27	7	612	0,0112	0,9776	1,1182	97,7636
28	8	620	0,0128	0,9904	1,2780	99,0415
29	2	622	0,0032	0,9936	0,3195	99,3610
30	1	623	0,0016	0,9952	0,1597	99,5208
34	1	624	0,0016	0,9968	0,1597	99,6805
35	1	625	0,0016	0,9984	0,1597	99,8403
40	1	626	0,0016	1,0000	0,1597	100,0000

Resp.
$$k = \frac{30 * 626}{100} = 187.80.5 \Rightarrow P_{30} = d_{188} = 19$$

Xi	n _i	N _i	f _i	F_i	p _i	P_i
18	120	120	0,1917	0,1917	19,1693	(19,1693)
19	150	270	0,2396	0,4313	23,9617	43,1310
20	90	360	0,1438	0,5751	14,3770	57,5080
21	70	430	0,1118	0,6869	11,1821	68,6901
22	65	495	0,1038	0,7907	10,3834	79,0735
23	50	545	0,0799	0,8706	7,9872	87,0607
24	30	575	0,0479	0,9185	4,7923	91,8530
25	20	595	0,0319	0,9505	3,1949	95,0479
26	10	605	0,0160	0,9665	1,5974	96,6454
27	7	612	0,0112	0,9776	1,1182	97,7636
28	8	620	0,0128	0,9904	1,2780	99,0415
29	2	622	0,0032	0,9936	0,3195	99,3610
30	1	623	0,0016	0,9952	0,1597	99,5208
34	1	624	0,0016	0,9968	0,1597	99,6805
35	1	625	0,0016	0,9984	0,1597	99,8403
40	1	626	0,0016	1,0000	0,1597	100,0000

Resp.
$$k = \frac{30 * 626}{100} = 187.80.5 \Rightarrow P_{30} = d_{188} = 19$$

Xi	ni	N_i	f_i	F_i	p_i	P_i
18	120	120	0,1917	0,1917	19,1693	19,1693
19	150	270	0,2396	0,4313	23,9617	43,1310
20	90	360	0,1438	0,5751	14,3770	57,5080
21	70	430	0,1118	0,6869	11,1821	68, 69 01
22	65	495	0,1038	0,7907	10,3834	79,0735
23	50	545	0,0799	0,8706	7,9872	87,0607
24	30	575	0,0479	0,9185	4,7923	91,8530
25	20	595	0,0319	0,9505	3,1949	95,0479
26	10	605	0,0160	0,9665	1,5974	96,6454
27	7	612	0,0112	0,9776	1,1182	97,7636
28	8	620	0,0128	0,9904	1,2780	99,0415
29	2	622	0,0032	0,9936	0,3195	99,3610
30	1	623	0,0016	0,9952	0,1597	99,5208
34	1	624	0,0016	0,9968	0,1597	99,6805
35	1	625	0,0016	0,9984	0,1597	99,8403
40	1	626	0,0016	1,0000	0,1597	100,0000

Resp.
$$k = \frac{30 * 626}{100} = 187.80.5 \Rightarrow P_{30} = d_{188} = 19$$

 $k = \frac{60 * 626}{100} = 375.6 \Rightarrow P_{60} = d_{376} = 21$

Xi	n _i	N _i	f _i	F_i	p_i	P_i
18	120	120	0,1917	0,1917	19,1693	19,1693
19	150	270	0,2396	0,4313	23,9617	43,1310
20	90	360	0,1438	0,5751	14,3770	57,5080
21	70	430	0,1118	0,6869	11,1821	68,6 9 01
22	65	495	0,1038	0,7907	10,3834	79,0735
23	50	545	0,0799	0,8706	7,9872	87,0607
24	30	575	0,0479	0,9185	4,7923	91,8530
25	20	595	0,0319	0,9505	3,1949	95,0479
26	10	605	0,0160	0,9665	1,5974	96,6454
27	7	612	0,0112	0,9776	1,1182	97,7636
28	8	620	0,0128	0,9904	1,2780	99,0415
29	2	622	0,0032	0,9936	0,3195	99,3610
30	1	623	0,0016	0,9952	0,1597	99,5208
34	1	624	0,0016	0,9968	0,1597	99,6805
35	1	625	0,0016	0,9984	0,1597	99,8403
40	1	626	0,0016	1,0000	0,1597	100,0000

(a) Calcula la mitjana.

Xi	ni	Ni	fi	Fi	pi	P_i
18	120	120	0,1917	0,1917	19,1693	19,1693
19	150	270	0,2396	0,4313	23,9617	43,1310
20	90	360	0,1438	0,5751	14,3770	57,5080
21	70	430	0,1118	0,6869	11,1821	68,6901
22	65	495	0,1038	0,7907	10,3834	79,0735
23	50	545	0,0799	0,8706	7,9872	87,0607
24	30	575	0,0479	0,9185	4,7923	91,8530
25	20	595	0,0319	0,9505	3,1949	95,0479
26	10	605	0,0160	0,9665	1,5974	96,6454
27	7	612	0,0112	0,9776	1,1182	97,7636
28	8	620	0,0128	0,9904	1,2780	99,0415
29	2	622	0,0032	0,9936	0,3195	99,3610
30	1	623	0,0016	0,9952	0,1597	99,5208
34	1	624	0,0016	0,9968	0,1597	99,6805
35	1	625	0,0016	0,9984	0,1597	99,8403
40	1	626	0,0016	1,0000	0,1597	100,0000

(a) Calcula la mitjana.

Resp.
$$\bar{x} = \frac{18 * 120 + 19 * 150 + \ldots + 40 * 1}{626} = 20.69$$

Xi	ni	Ni	fi	Fi	pi	P_i
18	120	120	0,1917	0,1917	19,1693	19,1693
19	150	270	0,2396	0,4313	23,9617	43,1310
20	90	360	0,1438	0,5751	14,3770	57,5080
21	70	430	0,1118	0,6869	11,1821	68,6901
22	65	495	0,1038	0,7907	10,3834	79,0735
23	50	545	0,0799	0,8706	7,9872	87,0607
24	30	575	0,0479	0,9185	4,7923	91,8530
25	20	595	0,0319	0,9505	3,1949	95,0479
26	10	605	0,0160	0,9665	1,5974	96,6454
27	7	612	0,0112	0,9776	1,1182	97,7636
28	8	620	0,0128	0,9904	1,2780	99,0415
29	2	622	0,0032	0,9936	0,3195	99,3610
30	1	623	0,0016	0,9952	0,1597	99,5208
34	1	624	0,0016	0,9968	0,1597	99,6805
35	1	625	0,0016	0,9984	0,1597	99,8403
40	1	626	0,0016	1,0000	0,1597	100,0000

(b) Repetiu l'apartat anterior peró amb les dades agrupades en els següents intervals: "Menors de 21", [21,23), [23,25), [25,27), "Majors de 27".

Edat	Quantitat
18	120
19	150
20	90
21	70
22	65
23	50
24	30
25	20
26	10
27	7
28	8
29	2
30	1
34	1
35	1
40	1

(b) Repetiu l'apartat anterior peró amb les dades agrupades en els següents intervals: "Menors de 21", [21, 23), [23, 25), [25, 27), "Majors de 27".

$[x_i,x_i+1]$	m_i	ni	N_i	f_i	F_i	p_i	P_i
[18,21)	19	360	360	0,5751	0,5751	57,5080	57,5080
[21,23)	22	135	495	0,2157	0,7907	21,5655	79,0735
[23,25)	24	80	575	0,1278	0,9185	12,7796	91,8530
[25,27)	26	30	605	0,0479	0,9665	4,7923	96,6454
[27,40)	33	21	626	0,0335	1,0000	3,3546	100,0000

(b) Repetiu l'apartat anterior peró amb les dades agrupades en els següents intervals: "Menors de 21", [21, 23), [23, 25), [25, 27), "Majors de 27".

Resp.

Moda

ı	$[x_i,x_i+1]$	m_i	ni	N_i	f_i	F_i	p_i	P_i
ſ	[18,21)	19	360	360	0,5751	0,5751	57,5080	57,5080
ſ	[21,23)	22	135	495	0,2157	0,7907	21,5655	79,0735
ſ	[23,25)	24	80	575	0,1278	0,9185	12,7796	91,8530
ſ	[25,27)	26	30	605	0,0479	0,9665	4,7923	96,6454
I	[27,40)	33	21	626	0,0335	1,0000	3,3546	100,0000

(b) Repetiu l'apartat anterior peró amb les dades agrupades en els següents intervals: "Menors de 21", [21, 23), [23, 25), [25, 27), "Majors de 27".

Resp.

Moda

Menor de 21 anys

	$[x_i,x_i+1]$	m_i	ni	N_i	f_i	F_i	p_i	P_i
Г	[18,21)	19	360	360	0,5751	0,5751	57,5080	57,5080
Г	[21,23)	22	135	495	0,2157	0,7907	21,5655	79,0735
Г	[23,25)	24	80	575	0,1278	0,9185	12,7796	91,8530
Г	[25,27)	26	30	605	0,0479	0,9665	4,7923	96,6454
	[27,40)	33	21	626	0,0335	1,0000	3,3546	100,0000

(b) Repetiu l'apartat anterior peró amb les dades agrupades en els següents intervals: "Menors de 21", [21, 23), [23, 25), [25, 27), "Majors de 27".

Resp.

Mediana= P_{50}

$[x_i,x_i+1]$	mi	ni	Ni	fi	Fi	p _i	P_i
[18,21)	19	360	360	0,5751	0,5751	57,5080	57,5080
[21,23)	22	135	495	0,2157	0,7907	21,5655	79,0735
[23,25)	24	80	575	0,1278	0,9185	12,7796	91,8530
[25,27)	26	30	605	0,0479	0,9665	4,7923	96,6454
[27,40)	33	21	626	0,0335	1,0000	3,3546	100,0000

(b) Repetiu l'apartat anterior peró amb les dades agrupades en els següents intervals: "Menors de 21", [21, 23), [23, 25), [25, 27), "Majors de 27".

Resp.

Mediana= P_{50}

$$[x_k, x_k + 1] \Rightarrow P_p = x_k + \frac{\frac{p*n}{100} - N_{k-1}}{n_k} (x_{k+1} - x_k)$$

	$[x_i,x_i+1]$	m_i	ni	N_i	f_i	Fi	p_i	P_i
Г	[18,21)	19	360	360	0,5751	0,5751	57,5080	57,5080
Γ	[21,23)	22	135	495	0,2157	0,7907	21,5655	79,0735
Г	[23,25)	24	80	575	0,1278	0,9185	12,7796	91,8530
Г	[25,27)	26	30	605	0,0479	0,9665	4,7923	96,6454
	[27,40)	33	21	626	0,0335	1,0000	3,3546	100,0000

(b) Repetiu l'apartat anterior peró amb les dades agrupades en els següents intervals: "Menors de 21", [21, 23), [23, 25), [25, 27), "Majors de 27".

Resp.

Mediana= P_{50}

$$[x_k, x_k + 1] \Rightarrow P_p = x_k + \frac{\frac{p*n}{100} - N_{k-1}}{n_k} (x_{k+1} - x_k)$$
$$[18, 21] \Rightarrow P_{50} = 18 + \frac{0.5 * 626 - 0}{360} (21 - 18) = 20,60833$$

	$[x_i,x_i+1]$	m_i	ni	N_i	f_i	Fi	p_i	P_i
Г	[18,21)	19	360	360	0,5751	0,5751	57,5080	57,5080
Γ	[21,23)	22	135	495	0,2157	0,7907	21,5655	79,0735
Г	[23,25)	24	80	575	0,1278	0,9185	12,7796	91,8530
Г	[25,27)	26	30	605	0,0479	0,9665	4,7923	96,6454
	[27,40)	33	21	626	0,0335	1,0000	3,3546	100,0000

(b) Repetiu l'apartat anterior peró amb les dades agrupades en els següents intervals: "Menors de 21", [21, 23), [23, 25), [25, 27), "Majors de 27".

Quartils
$$Q_1 = P_{25}$$
 i $Q_3 = P_{75}$

$[x_i, x_i]$	+ 1]	m_i	n _i	N _i	f_i	Fi	p_i	P_i
[18,2	1)	19	360	360	0,5751	0,5751	57,5080	57,5080
[21,2	3)	22	135	495	0,2157	0,7907	21,5655	79,0735
[23,2	5)	24	80	575	0,1278	0,9185	12,7796	91,8530
[25,2	7)	26	30	605	0,0479	0,9665	4,7923	96,6454
[27,4	0)	33	21	626	0,0335	1,0000	3,3546	100,0000

(b) Repetiu l'apartat anterior peró amb les dades agrupades en els següents intervals: "Menors de 21", [21, 23), [23, 25), [25, 27), "Majors de 27".

Quartils
$$Q_1 = P_{25}$$
 i $Q_3 = P_{75}$
 $[x_k, x_k + 1] \Rightarrow P_p = x_k + \frac{\frac{p*n}{100} - N_{k-1}}{n_k} (x_{k+1} - x_k)$

ſ	$[x_i,x_i+1]$	m_i	ni	N _i	f_i	F_i	p_i	P_i
ſ	[18,21)	19	360	360	0,5751	0,5751	57,5080	57,5080
ſ	[21,23)	22	135	495	0,2157	0,7907	21,5655	79,0735
ſ	[23,25)	24	80	575	0,1278	0,9185	12,7796	91,8530
ĺ	[25,27)	26	30	605	0,0479	0,9665	4,7923	96,6454
ĺ	[27,40)	33	21	626	0,0335	1,0000	3,3546	100,0000

(b) Repetiu l'apartat anterior peró amb les dades agrupades en els següents intervals: "Menors de 21", [21, 23), [23, 25), [25, 27), "Majors de 27".

Quartils
$$Q_1 = P_{25}$$
 i $Q_3 = P_{75}$
 $[x_k, x_k + 1] \Rightarrow P_p = x_k + \frac{\frac{p*n}{100} - N_{k-1}}{n_k} (x_{k+1} - x_k)$
 $[18, 21] \Rightarrow Q_1 = 18 + \frac{0.25*626 - 0}{360} (21 - 18) = 19,3041$

$[x_i, x_i + 1]$	m _i	n _i	N _i	f_i	F_i	p _i	P_i
[18,21)	19	360	360	0,5751	0,5751	57,5080	57,5080
[21,23)	22	135	495	0,2157	0,7907	21,5655	79,0735
[23,25)	24	80	575	0,1278	0,9185	12,7796	91,8530
[25,27)	26	30	605	0,0479	0,9665	4,7923	96,6454
[27,40)	33	21	626	0,0335	1,0000	3,3546	100,0000

(b) Repetiu l'apartat anterior peró amb les dades agrupades en els següents intervals: "Menors de 21", [21, 23), [23, 25), [25, 27), "Majors de 27".

Quartils
$$Q_1 = P_{25}$$
 i $Q_3 = P_{75}$
 $[x_k, x_k + 1] \Rightarrow P_p = x_k + \frac{\frac{p*n}{100} - N_{k-1}}{n_k} (x_{k+1} - x_k)$
 $[18, 21] \Rightarrow Q_1 = 18 + \frac{0.25*626 - 0}{360} (21 - 18) = 19,3041$
 $[21, 23] \Rightarrow Q_3 = 21 + \frac{0.75*626 - 360}{360} (23 - 21) = 21,6083$

1	$[x_i, x_i + 1]$	m _i	ni	N_i	f_i	F_i	p _i	P_i
	[18,21)	19	360	360	0,5751	0,5751	57,5080	57,5080
	[21,23)	22	135	495	0,2157	0,7907	21,5655	79,0735
	[23,25)	24	80	575	0,1278	0,9185	12,7796	91,8530
	[25,27)	26	30	605	0,0479	0,9665	4,7923	96,6454
	[27,40)	33	21	626	0,0335	1,0000	3,3546	100,0000

(b) Repetiu l'apartat anterior peró amb les dades agrupades en els següents intervals: "Menors de 21", [21, 23), [23, 25), [25, 27), "Majors de 27".

Resp.

Percentils P_{30} i $Q_3 = P_{60}$

$[x_i,x_i+1]$	m_i	n _i	N _i	f_i	Fi	p_i	P_i
[18,21)	19	360	360	0,5751	0,5751	57,5080	57,5080
[21,23)	22	135	495	0,2157	0,7907	21,5655	79,0735
[23,25)	24	80	575	0,1278	0,9185	12,7796	91,8530
[25,27)	26	30	605	0,0479	0,9665	4,7923	96,6454
[27,40)	33	21	626	0,0335	1,0000	3,3546	100,0000

(b) Repetiu l'apartat anterior peró amb les dades agrupades en els següents intervals: "Menors de 21", [21, 23), [23, 25), [25, 27), "Majors de 27".

Percentils
$$P_{30}$$
 i $Q_3 = P_{60}$

$$[x_k, x_k + 1] \Rightarrow P_p = x_k + \frac{\frac{p*n}{100} - N_{k-1}}{n_k} (x_{k+1} - x_k)$$

$[x_i, x_i]$	+ 1]	m_i	n _i	N _i	f_i	Fi	p_i	P_i
[18,2	1)	19	360	360	0,5751	0,5751	57,5080	57,5080
[21,2	3)	22	135	495	0,2157	0,7907	21,5655	79,0735
[23,2	5)	24	80	575	0,1278	0,9185	12,7796	91,8530
[25,2	7)	26	30	605	0,0479	0,9665	4,7923	96,6454
[27,4	0)	33	21	626	0,0335	1,0000	3,3546	100,0000

(b) Repetiu l'apartat anterior peró amb les dades agrupades en els següents intervals: "Menors de 21", [21, 23), [23, 25), [25, 27), "Majors de 27".

Percentils
$$P_{30}$$
 i $Q_3 = P_{60}$
 $[x_k, x_k + 1] \Rightarrow P_p = x_k + \frac{\frac{p*n}{100} - N_{k-1}}{n_k} (x_{k+1} - x_k)$
 $[18, 21] \Rightarrow P_{30} = 18 + \frac{0.30*626 - 0}{360} (21 - 18) = 19,565$

ſ	$[x_i,x_i+1]$	m _i	n _i	N_i	f_i	F_i	p_i	P_i
Ī	[18,21)	19	360	360	0,5751	0,5751	57,5080	57,5080
Ī	[21,23)	22	135	495	0,2157	0,7907	21,5655	79,0735
ſ	[23,25)	24	80	575	0,1278	0,9185	12,7796	91,8530
Ī	[25,27)	26	30	605	0,0479	0,9665	4,7923	96,6454
Ī	[27,40)	33	21	626	0,0335	1,0000	3,3546	100,0000

(b) Repetiu l'apartat anterior peró amb les dades agrupades en els següents intervals: "Menors de 21", [21, 23), [23, 25), [25, 27), "Majors de 27".

Percentils
$$P_{30}$$
 i $Q_3 = P_{60}$
 $[x_k, x_k + 1] \Rightarrow P_p = x_k + \frac{\frac{p*n}{100} - N_{k-1}}{n_k} (x_{k+1} - x_k)$
 $[18, 21] \Rightarrow P_{30} = 18 + \frac{0.30*626 - 0}{360} (21 - 18) = 19,565$
 $[21, 23] \Rightarrow P_{60} = 21 + \frac{0.60*626 - 360}{360} (23 - 21) = 21,0866$

Ī	$[x_i, x_i + 1]$	m _i	ni	N_i	f_i	F_i	p _i	P_i
ĺ	[18,21)	19	360	360	0,5751	0,5751	57,5080	57,5080
ſ	[21,23)	22	135	495	0,2157	0,7907	21,5655	79,0735
ſ	[23,25)	24	80	575	0,1278	0,9185	12,7796	91,8530
ĺ	[25,27)	26	30	605	0,0479	0,9665	4,7923	96,6454
ĺ	[27,40)	33	21	626	0,0335	1,0000	3,3546	100,0000

(b) Repetiu l'apartat anterior peró amb les dades agrupades en els següents intervals: "Menors de 21", [21, 23), [23, 25), [25, 27), "Majors de 27".

Resp.

Mitjana

$[x_i,x_i+1]$	mi	ni	Ni	fi	Fi	pi	Pi
[18,21)	19	360	360	0,5751	0,5751	57,5080	57,5080
[21,23)	22	135	495	0,2157	0,7907	21,5655	79,0735
[23,25)	24	80	575	0,1278	0,9185	12,7796	91,8530
[25,27)	26	30	605	0,0479	0,9665	4,7923	96,6454
[27,40)	33	21	626	0,0335	1,0000	3,3546	100,0000

(b) Repetiu l'apartat anterior peró amb les dades agrupades en els següents intervals: "Menors de 21", [21, 23), [23, 25), [25, 27), "Majors de 27".

Resp.

Mitjana

$$\bar{x} = \frac{m_1 n_1 + m_2 n_2 + \dots + m_k n_k}{n}$$

$[x_i,x_i+1]$	mi	ni	Ni	fi	Fi	pi	P_i
[18,21)	19	360	360	0,5751	0,5751	57,5080	57,5080
[21,23)	22	135	495	0,2157	0,7907	21,5655	79,0735
[23,25)	24	80	575	0,1278	0,9185	12,7796	91,8530
[25,27)	26	30	605	0,0479	0,9665	4,7923	96,6454
[27,40)	33	21	626	0,0335	1,0000	3,3546	100,0000

(b) Repetiu l'apartat anterior peró amb les dades agrupades en els següents intervals: "Menors de 21", [21, 23), [23, 25), [25, 27), "Majors de 27".

Resp.

Mitjana

$$\bar{x} = \frac{m_1 n_1 + m_2 n_2 + \dots + m_k n_k}{n}$$

$$\bar{x} = \frac{19 * 360 + 22 * 135 + 24 * 80 + 26 * 30 + 33 * 21}{626} = 21,091$$

$[x_i, x_i +$	1] m	: n _i	Ni	fi	Fi	pi	P_i
[18,21)	19	360	360	0,5751	0,5751	57,5080	57,5080
[21,23)	22	135	495	0,2157	0,7907	21,5655	79,0735
[23,25)	24	. 80	575	0,1278	0,9185	12,7796	91,8530
[25,27)	26	30	605	0,0479	0,9665	4,7923	96,6454
[27,40)	33	21	626	0,0335	1,0000	3,3546	100,0000