

Applicants: Graham P. Allaway et al.
Serial No.: 09/904,356
Filed: July 12, 2001
Exhibit 6

BEST AVAILABLE COPY

Application
for
United States Letters Patent

To all whom it may concern:

Be it known that we, William C. Olson and Paul J. Maddon
have invented certain new and useful improvements in

COMPOSITIONS AND METHODS FOR INHIBITION OF HIV-1 INFECTION

of which the following is a full, clear and exact description.

Applicants: Graham P. Allaway et al.
Serial No.: 09/904,356
Filed: July 12, 2001
Exhibit 6

COMPOSITIONS AND METHODS FOR INHIBITION OF HIV-1 INFECTION

5 Throughout this application, various publications are referenced within parentheses. Disclosures of these publications in their entireties are hereby incorporated by reference into this application to more fully describe the state of the art to which this invention pertains. Full 10 bibliographic citations for these references may be found immediately preceding the claims.

Background of the Invention

15 Infection of cells by human immunodeficiency virus type 1 (HIV-1) is mediated by the viral envelope (env) glycoproteins gp120 and gp41, which are expressed as a noncovalent, oligomeric complex on the surface of virus and virally infected cells. HIV-1 entry into target cells 20 proceeds at the cell surface through a cascade of events that include (1) binding of the viral surface glycoprotein gp120 to cell surface CD4, which is the primary receptor for HIV-1, (2) env binding to fusion coreceptors such as CCR5 and CXCR4, and (3) multiple conformational changes in gp41. During fusion, gp41 adopts transient conformations that 25 include a prehairpin fusion intermediate that ultimately folds into a conformation capable of mediating fusion. These events culminate in fusion of the viral and cellular membranes and the subsequent introduction of the viral genome into the target cell. A similar sequence of 30 molecular events is required for infection to spread via fusion of infected and uninfected cells. Each stage of the viral entry process can be targeted for therapeutic intervention.

HIV-1 attachment can be inhibited both by agents that bind the viral envelope glycoproteins and by agents that bind human CD4. Notably, HIV-1 attachment can be inhibited by compounds that incorporate the gp120-binding domains of human CD4 and molecular mimics thereof [1-7]. Because this interaction between gp120 and CD4 is essential for virus infection, CD4-based molecules have the potential to target most if not all strains of HIV-1. In addition, viruses have limited ability to develop resistance to such molecules.

10

The determinants for gp120 binding map to the first extracellular domain (D1) on CD4 [1], and the amino acids critical for binding center on a loop comprising amino acids 36-47. Potent HIV-1 inhibitory activity has been reproduced in a 27-amino acid peptide that mimics this loop and surrounding structures [7].

20 A number of recombinant CD4-based molecules have been developed and tested for clinical activity in man. The first of these contained the four extracellular domains (D1-D4) of CD4 but lacked the transmembrane and intracellular regions. This molecule, termed soluble CD4 (sCD4), demonstrated excellent tolerability when administered to humans at doses ranging to 10 mg/kg [8,9]. Transient reductions in plasma levels of infectious HIV-1 were observed in certain patients treated with sCD4. The short half-life of sCD4 in humans (45 minutes following intravenous administration) was identified as one obstacle to using this agent for chronic therapy.

25

30 Second-generation CD4-based proteins were developed with increased serum half-life. These CD4-immunoglobulin fusion proteins comprised the D1D2 domains of CD4 genetically fused to the hinge CH2 and CH3 regions of human IgG molecules. These divalent proteins derive HIV-1 neutralizing capacity

35

from their CD4 domains and Fc effector functions from the IgG molecule. A CD4-IgG1 fusion protein was shown to have excellent tolerability and improved pharmacokinetics in Phase I clinical testing [10]. The antiviral evaluations
5 were inconclusive.

More recently, a third-generation tetravalent CD4-IgG2 fusion protein was developed that comprises the D1D2 domains of CD4 genetically fused to the heavy and light chain constant regions of human IgG2. This agent binds the HIV-1 envelope glycoprotein gp120 with nanomolar affinity [5] and may inhibit virus attachment both by receptor blockade and by detaching gp120 from the virion surface, thereby irreversibly inactivating the virus. In standard PBMC-based
10 neutralization assays, CD4-IgG2 neutralized primary HIV-1 isolates derived from all major subtypes and outlier groups. The CD4-IgG2 concentrations required to achieve a 90% reduction in viral infectivity, the in vitro IC90, were approximately 15-20 μ g/ml [11], concentrations that are
15 readily achievable in vivo. CD4-IgG2 was similarly effective in neutralizing HIV-1 obtained directly from the plasma of seropositive donors in an ex vivo assay, indicating that this agent is active against the diverse viral quasispecies
20 that are encountered clinically [12]. CD4-IgG2 also provided protection against infection by primary isolates in the hu-PBL-SCID mouse model of HIV-1 infection [13]. Recent analyses have demonstrated that CD4-IgG2's ability to
25 neutralize primary viruses is independent of their coreceptor usage [14].

30 Compared with mono- or divalent CD4-based proteins, CD4-IgG2 has consistently demonstrated as much as 100-fold greater potency at inhibiting primary HIV-1 isolates [5,12,14,15]. The heightened potency may derive from CD4-IgG2's ability to
35 bind virions with increased valency/avidity and its steric

5 juxtaposition of two gp120 binding sites on each Fab-like arm of the immunoglobulin molecule. The larger Fab-like arms of CD4-IgG2 are also more likely to span HIV-1 envelope spikes on the virion. In a variety of preclinical models,
10 CD4-IgG2's anti-HIV-1 activity has been shown to compare favorably with those of the rare human monoclonal antibodies that broadly and potently neutralize primary HIV-1 isolates [5,11,14,15]. In addition, CD4-IgG2 therapy is in principle less susceptible to the development of drug-resistant viruses than therapies employing anti-env monoclonal antibodies or portions of the highly mutable HIV-1 envelope glycoproteins. These properties suggest that CD4-IgG2 may have clinical utility as an agent that neutralizes cell-free virus before it has the opportunity to establish new rounds
15 of infection. In addition to treatment, CD4-IgG2 may have utility in preventing infection resulting from occupational, perinatal or other exposure to HIV-1.

20 In Phase I clinical testing, single-dose CD4-IgG2 demonstrated excellent pharmacology and tolerability. In addition, measurable antiviral activity was observed by each of two measures. First, a statistically significant acute reduction in plasma HIV RNA was observed following administration of a single 10 mg/kg dose. In addition,
25 sustained reductions in plasma levels of infectious HIV were observed in each of two patients tested. Taken together, these observations indicate that CD4-IgG2 possesses antiviral activity in humans [16].

30 In addition to CD4-based proteins and molecular mimics thereof, HIV-1 attachment can also be inhibited by antibodies and nonpeptidyl molecules. Known inhibitors include (1) anti-env antibodies such as IgG1b12 and F105 [17,18], (2) anti-CD4 antibodies such as OKT4A, Leu 3a, and
35 humanized versions thereof [19,20], and (3) nonpeptidyl

agents that target either gp120 or CD4 [21], [22-24]. The latter group of compounds includes aurintricarboxylic acids, polyhydroxycarboxylates, sulfonic acid polymers, and dextran sulfates.

5

Several agents have been identified that block HIV-1 infection by targeting gp41 fusion intermediates. These inhibitors may interact with the fusion intermediates and prevent them from folding into final fusogenic conformations. The first such agents to be identified comprised synthetic or recombinant peptides corresponding to portions of the gp41 ectodomain predicted to form hydrophobic alpha helices. One such region is present in both the amino and carboxy segments of the extracellular portion of gp41, and recent crystallographic evidence suggests that these regions interact in the presumed fusogenic conformation of gp41 [25,26]. HIV-1 infection can be inhibited by agents that bind to either N- or C-terminal gp41 epitopes that are exposed during fusion. These agents include the gp41-based peptides T-20 (formerly known as DP178), T-1249, DP107, N34, C28, and various fusion proteins and analogues thereof [27-33]. Other studies have identified inhibitors that comprise non-natural D-peptides and nonpeptidyl moieties [34,35]. Clinical proof-of-concept for this class of inhibitors has been provided by T-20, which reduced plasma HIV RNA levels by as much as 2 logs in Phase I/II human clinical testing [36]. The broad antiviral activity demonstrated for this class of inhibitors reflects the high degree of gp41 sequence conservation amongst diverse strains of HIV-1.

Recent studies [37] have demonstrated the possibility of raising antibodies against HIV-1 fusion intermediates. This work employed "fusion-competent" HIV vaccine immunogens that capture transient fusion intermediates formed upon

interaction of gp120/gp41 with CD4 and fusion coreceptors. The immunogens used in these studies were formalin-fixed cocultures of cells that express HIV-1 gp120/gp41 and cells that express human CD4 and CCR5 but not CXCR4. The 5 antibodies elicited by the vaccines demonstrated unprecedented breadth and potency in inhibiting primary HIV-1 isolates regardless of their coreceptor usage, indicating that the antibodies were raised against structures such as gp41 fusion intermediates that are highly conserved and 10 transiently exposed during HIV-1 entry. This class of antibodies does not include the anti-gp41 monoclonal antibody known as 2F5, which interacts with an epitope that is constitutively presented on virus particles prior to fusion [38].

15 Previously, synergistic inhibition of HIV-1 entry has been demonstrated using certain anti-env antibodies used in combination with other anti-env antibodies [39-44], anti-CD4 antibodies [45], or CD4-based proteins [6]. Similarly, 20 synergies have been observed using anti-CCR5 antibodies used in combination with other anti-CCR5 antibodies, CC-chemokines, or CD4-based proteins [46]. Our prior studies described in U.S. Serial No. 09/493,346 examined combinations of fusion inhibitors and attachment inhibitors. 25 Our prior studies described in PCT International Application No. PCT/US99/30345, WO 00/35409, published June 22, 2000 examined combinations of HIV-1 attachment inhibitors and CCR5 coreceptor inhibitors. However, no prior studies have examined the combination of fusion inhibitors and CCR5 coreceptor inhibitors, nor the triple combination of fusion 30 inhibitors, CCR5 coreceptor inhibitors and HIV-1 attachment inhibitors.

Summary of the Invention

This invention provides a composition which comprises an admixture of two compounds, wherein: (a) one compound is an antibody or portion thereof which binds to a CCR5 receptor; 5 and (b) one compound retards gp41 from adopting a conformation capable of mediating fusion of HIV-1 to a CD4+ cell by binding noncovalently to an epitope on a gp41 fusion intermediate; wherein the relative mass ratio of the compounds in the admixture ranges from about 100:1 to about 10 1:100, the composition being effective to inhibit HIV-1 infection of the CD4+ cell.

This invention provides a composition which comprises an admixture of three compounds, wherein: (a) one compound is 15 an antibody or portion thereof which binds to a CCR5 receptor; (b) one compound retards attachment of HIV-1 to a CD4+ cell by retarding binding of HIV-1 gp120 envelope glycoprotein to CD4 on the surface of the CD4+ cell; and (c) one compound retards gp41 from adopting a conformation 20 capable of mediating fusion of HIV-1 to a CD4+ cell by binding noncovalently to an epitope on a gp41 fusion intermediate; wherein the relative mass ratio of any two of the compounds in the admixture ranges from about 100:1 to about 25 1:100, the composition being effective to inhibit HIV-1 infection of the CD4+ cell.

This invention provides a method of inhibiting HIV-1 infection of a CD4+ cell which comprises contacting the CD4+ cell with an amount of the composition of the subject 30 invention effective to inhibit HIV-1 infection of the CD4+ cell so as to thereby inhibit HIV-1 infection of the CD4+ cell.

This invention provides a method of inhibiting HIV-1

infection of a CD4+ cell which comprises contacting the CD4+ cell with (1) an amount of an antibody which binds to a CCR5 receptor and (2) an amount of a compound which retards gp41 from adopting a conformation capable of mediating fusion of 5 HIV-1 to a CD4+ cell by binding noncovalently to an epitope on a gp41 fusion intermediate, so as to thereby inhibit HIV-1 infection of the CD4+ cell.

10 This invention provides a method of inhibiting HIV-1 infection of a CD4+ cell which comprises contacting the CD4+ cell with (1) an amount of an antibody which binds to a CCR5 receptor, (2) an amount of a compound which retards attachment of HIV-1 to the CD4+ cell by retarding binding of 15 HIV-1 gp120 envelope glycoprotein to CD4 on the surface of the CD4+ cell effective to inhibit HIV-1 infection of the CD4+ cell, and (3) an amount of a compound which retards gp41 from adopting a conformation capable of mediating fusion of HIV-1 to a CD4+ cell by binding noncovalently to an epitope on a gp41 fusion intermediate, so as to thereby 20 inhibit HIV-1 infection of the CD4+ cell.

Brief Description of the Figures

Figure 1

Synergistic inhibition of HIV-1 entry

5 CD4-IgG2 (---■---), T-20 (---●---), and a 25:1 CD4-IgG2:T-20
combination (---▲---) were analyzed for inhibition of HIV-1
entry in an env-mediated membrane fusion (RET) assay.
Inhibitors were added to a mix of HeLa-Env_{JR-FL}⁺ and PM1 cells
previously labeled with F18 and R18 respectively.
10 Fluorescence RET was measured after 4h of incubation, and
percent inhibition was calculated as described [19]. Results
are mean values from three independent experiments. The data
were analyzed according to the median effect principle
described in Equation (1). The best-fit parameters for K and
15 m are 0.31 μ g/ml and 0.73 for CD4-IgG2, 0.017 μ g/ml and 0.92
for T-20, and 0.11 μ g/ml and 1.0 for their combination.
These curves are plotted and indicate a reasonable goodness-
of-fit between experiment and theory ($r^2 = 0.983$, 0.998, and
0.996 for CD4-IgG2, T-20, and their combination,
20 respectively). To normalize for the differences in potencies
of the compounds, separate concentrations scales are used
for CD4-IgG2 and the 25:1 CD4-IgG2:T-20 mixture and for T-
20, as indicated.

25

Figure 2

Combination indices for inhibition of HIV-1 entry by
combinations of CD4-IgG2 and T-20. CD4-IgG2, T-20 and fixed
mass ratios thereof were analyzed in the RET assay for the
ability to inhibit env-mediated membrane fusion. The 25:1
30 (high) combination examined 10 three-fold serial dilutions
of 250 μ g/ml CD4-IgG2, 10 μ g/ml T-20 and their combination.
The 25:1 (low) combination examined 10 three-fold serial
dilutions of 50 μ g/ml CD4-IgG2, 2 μ g/ml T-20 and their

combination. The 5:1 combination examined 10 three-fold serial dilutions of 50 μ g/ml CD4-IgG2, 2 μ g/ml T-20, and their combination. The 1:1 combination examined 10 three-fold serial dilutions of 10 μ g/ml CD4-IgG2, 10 μ g/ml T-20 and their combination. Inhibition data from three or more independent assays were averaged prior to analysis. Dose-response curves for the various inhibitors and combinations were fit to Equation (1), which was then rearranged to calculate the inhibitor concentrations required to effect a given percent inhibition. The concentrations of the individual agents in an inhibitory mixture were calculated from their known mass ratios. These values were then used to calculate the Combination Index (CI) according to Equation (2). CI < 1 indicates synergy, CI = 1 indicates additive effects, and CI > 1 indicates antagonism.

Figure 3

Dose reductions observed for synergistic combinations of CD4-IgG2 and T-20. CD4-IgG2, T-20 and a 25:1 fixed mass ratio thereof were tested in the RET assay for the ability to inhibit env-mediated membrane fusion. Inhibition data from six independent assays were averaged. K and m were determined by curve-fitting the dose-response curves, and Equation (1) was rearranged to allow calculation of c for a given f for the single agents and their combination. Dose Reduction is the ratio of the inhibitor concentrations required to achieve a given degree of inhibition when the inhibitor is used alone v. in a synergistic combination.

30

Figure 4

Dose reductions observed for combinations of CD4-IgG2, PRO 140, PA12 and T-20. The agents were tested individually and in combination for the ability to inhibit HIV env-mediated

membrane fusion in the RET assay. a.) CD4-IgG2, PA12, T-20 and a ~1:1:10 fixed molar ratio thereof. b.) CD4-IgG2, PRO 140, T-20 and a ~2:1:20 fixed molar ratio thereof, c.) CD4-IgG2, PRO 140, T-20 and a ~4:1:30 fixed molar ratio thereof, 5 and d.) PRO 140, T-20 and a 1:30 fixed molar ratio thereof where Dose Reduction is the ratio of the inhibitor concentrations required to achieve a given degree of inhibition when the inhibitor is used alone v. in a synergistic combination. 6-8 three-fold serial dilutions of 10 a.) 125 nM CD4-IgG2, 167 nM PA12, 1100 nM T-20 and their combination, b.) 125 nM CD4-IgG2, 67 nM PRO 140, 1100 nM T-20 and their combination, c.) 125 nM CD4-IgG2, 33 nM PRO 140, 1100 nM T-20 and their combination, and d.) 36 nM PRO 140, 1100 nM T-20 and their combination were examined. The 15 inhibitor concentrations required to effect a given percent inhibition were calculated. The concentrations of the individual agents in an inhibitory mixture were calculated from their known molar ratios. These values were then used to calculate the Combination Index (CI) according to 20 Equation (2). CI < 1 indicates synergy, CI = 1 indicates additive effects, and CI > 1 indicates antagonism.

Figure 5:

25 Triple combination of PRO 542, PRO 140 and T-20 synergistically blocks HIV-1 entry. PRO 542, PRO 140 and T-20 were used alone and in ~3:1:30 molar combination to inhibit HIV-1_{JR-FL} env-mediated cell-cell fusion. The methodology for this assay is described in Litwin et al. (67).

Detailed Description of the Invention

The plasmids CD4-IgG2-HC-pRcCMV and CD4-kLC-pRcCMV were deposited pursuant to, and in satisfaction of, the requirements of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms (the "Budapest Treaty") for the Purposes of Patent Procedure with the American Type Culture Collection (ATCC), 10801 University Blvd, Manassas, VA 20110-2209 under ATCC Accession Nos. 75193 and 75194, respectively. The plasmids were deposited with ATCC on Jan. 30, 1992. The plasmid designated pMA243 was similarly deposited in accordance with the Budapest Treaty with ATCC under Accession No. 75626 on December 16, 1993.

The murine hybridomas PA8, PA9, PA10, PA11, PA12 and PA14 were deposited pursuant to, and in satisfaction of, the requirements of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms (the "Budapest Treaty") for the Purposes of Patent Procedure with the American Type Culture Collection (ATCC), 10801 University Blvd, Manassas, VA 20110-2209 under the following ATCC Accession Nos.: PA8 (ATCC No. HB-12605), PA9 (ATCC No. HB-12606), PA10 (ATCC No. HB-12607), PA11 (ATCC No. HB-12608), PA12 (ATCC No. HB-12609) and PA14 (ATCC No. HB-12610). The hybridomas were deposited on December 2, 1998.

As used herein, the following standard abbreviations are used throughout the specification to indicate specific amino acids:

30

A=ala=alanine

R=arg=arginine

N=asn=asparagine

D=asp=aspartic acid

C=cys=cysteine

Q=gln=glutamine

E=glu=glutamic acid

G=gly=glycine

H=his=histidine	I=ile=isoleucine
L=leu=leucine	K=lys=lysine
M=met=methionine	F=phe=phenylalanine
P=pro=proline	S=ser=serine
5 T=thr=threonine	W=trp=tryptophan
Y=tyr=tyrosine	V=val=valine

This invention provides a composition which comprises an admixture of two compounds, wherein: (a) one compound is an antibody or portion thereof which binds to a CCR5 receptor; and (b) one compound retards gp41 from adopting a conformation capable of mediating fusion of HIV-1 to a CD4+ cell by binding noncovalently to an epitope on a gp41 fusion intermediate; wherein the relative mass ratio of the compounds in the admixture ranges from about 100:1 to about 1:100, the composition being effective to inhibit HIV-1 infection of the CD4+ cell.

This invention provides a composition which comprises an admixture of three compounds, wherein: (a) one compound is an antibody or portion thereof which binds to a CCR5 receptor; (b) one compound retards attachment of HIV-1 to a CD4+ cell by retarding binding of HIV-1 gp120 envelope glycoprotein to CD4 on the surface of the CD4+ cell; and (c) one compound retards gp41 from adopting a conformation capable of mediating fusion of HIV-1 to a CD4+ cell by binding noncovalently to an epitope on a gp41 fusion intermediate; wherein the relative mass ratio of any two of the compounds in the admixture ranges from about 100:1 to about 1:100, the composition being effective to inhibit HIV-1 infection of the CD4+ cell.

As used herein, "HIV-1" means the human immunodeficiency virus type-1. HIV-1 includes but is not limited to extracellular virus particles and the forms of HIV-1

associated with HIV-1 infected cells. HIV-1_{JR-FL} is a strain that was originally isolated at autopsy from the brain tissue of an AIDS patient [47]. The virus was co-cultured with lectin-stimulated normal human peripheral blood mononuclear cells. The virus has been cloned and the DNA sequences of its envelope glycoproteins are known (Genbank Accession #U63632). In terms of sensitivity to inhibitors of viral entry, HIV-1_{JR-FL} is known to be highly representative of primary HIV-1 isolates [11,14,15,48-50].

10

15

20

25

30

35

As used herein, "gp41 fusion intermediates" includes structures, conformations, and oligomeric states that are preferentially and transiently presented or exposed on the HIV-1 envelope glycoprotein gp41 during the process of HIV-1 env-mediated membrane fusion. These intermediates may form upon interaction of HIV-1 with cellular receptors or may be present in partially or fully occluded states on HIV-1 prior to its interaction with cellular receptors. "gp41 fusion intermediates" do not include fusogenic gp41 conformations that cannot provide targets for therapeutic intervention.

The gp41 fusion intermediates may contain multiple epitopes that are transiently exposed during fusion and can provide targets for therapeutic intervention. As used herein, an "N-terminal gp41 epitope" may comprise all or portions of the sequences from amino acid A541 to Q590. As used herein, a "C-terminal gp41 epitope" may comprise all or portions of the sequences from amino acid W628 to L663. These epitopes have the potential to form coiled-coils of interacting alpha helical segments by virtue of heptad (sequence of seven amino acids) repeats containing hydrophobic amino acids at positions 1 and 4 of the heptad. The amino acid numbering system is for the HxB2 isolate of HIV-1 (Genbank Protein Accession No. AAB50262). Because of the sequence variability of HIV-1 envelope proteins, the composition,

size and precise location of such sequences may be different for different viral isolates. The gp41 fusion intermediates may also present other linear or conformational epitopes that are transiently expressed during HIV-1 entry. An 5 inhibitor may target multiple epitopes present on gp41 fusion intermediates. Alternatively, separate inhibitors may be used in combination to target one or more epitopes present on gp41 fusion intermediates.

10 As used herein, "fusogenic" means capable of mediating membrane fusion. As used herein, "HIV-1 fusion coreceptor" means a cellular receptor that mediates fusion between the target cell expressing the receptor and HIV-1 or an HIV-1 envelope glycoprotein⁺ cell. HIV-1 fusion co-receptors 15 include but are not limited to CCR5, CXCR4 and other chemokine receptors. As used herein, "fusion" means the joining or union of the lipid bilayer membranes found on mammalian cells or viruses such as HIV-1. This process is distinguished from the attachment of HIV-1 to a target cell. 20 Attachment is mediated by the binding of the HIV-1 exterior glycoprotein to the human CD4 receptor, which is not a fusion co-receptor.

25 As used herein, "retards" means that the amount is reduced. As used herein, "attachment" means the process that is mediated by the binding of the HIV-1 envelope glycoprotein to the human CD4 receptor, which is not a fusion co-receptor. As used herein, "CD4" means the mature, native, 30 membrane-bound CD4 protein comprising a cytoplasmic domain, a hydrophobic transmembrane domain, and an extracellular domain which binds to the HIV-1 gp120 envelope glycoprotein.

35 As used herein, "epitope" means a portion of a molecule or molecules that form a surface for binding antibodies or other compounds. The epitope may comprise contiguous or

noncontiguous amino acids, carbohydrate or other nonpeptidyl moieties or oligomer-specific surfaces.

5 The compounds of the subject invention have shown to demonstrate a synergistic effect. As used herein, "synergistic" means that the combined effect of the compounds when used in combination is greater than their additive effects when used individually.

10 In one embodiment of the composition of this invention, the compound which retards attachment of HIV-1 to the CD4+ cell by retarding binding of HIV-1 gp120 envelope glycoprotein to CD4 on the surface of the CD4+ cell is a CD4-based protein. As used herein, "CD4-based protein" means any protein comprising at least one sequence of amino acid residues corresponding to that portion of CD4 which is required for CD4 to form a complex with the HIV-1 gp120 envelope glycoprotein.

15 20 In one embodiment the CD4-based protein is a CD4-immunoglobulin fusion protein. In one embodiment the CD4-immunoglobulin fusion protein is CD4-IgG2, wherein the CD4-IgG2 comprises two heavy chains and two lights chains, wherein the heavy chains are encoded by an expression vector designated CD4-IgG2HC-pRcCMV (ATCC Accession No. 75193) and the light chains are encoded by an expression vector designated CD4-kLC-pRcCMV (ATCC Accession No. 75194). As used herein, CD4-IgG2 is also referred to as PRO 542.

25 30 35 In one embodiment of the composition of this invention, the compound which retards attachment of HIV-1 to the CD4+ cell by retarding binding of HIV-1 gp120 envelope glycoprotein to CD4 on the surface of the CD4+ cell is a protein, the amino acid sequence of which comprises that of a protein found in HIV-1 as an envelope glycoprotein. In one embodiment, the

protein binds to an epitope of CD4 on the surface of the CD4+ cell. In one embodiment the envelope glycoprotein is selected from the group consisting of gp120, gp160, and gp140.

5

In one embodiment of the composition of this invention, the compound which retards the attachment of HIV-1 to the CD4+ cell by retarding binding of HIV-1 gp120 envelope glycoprotein to CD4 on the surface of the CD4+ cell is an antibody or portion of an antibody. In one embodiment, the antibody is a monoclonal antibody. In one embodiment, the monoclonal antibody is a human, humanized or chimeric antibody. In one embodiment, the portion of the antibody is a Fab fragment of the antibody. In one embodiment, the portion of the antibody comprises the variable domain of the antibody. In one embodiment, the portion of the antibody comprises a CDR portion of the antibody. In one embodiment, the monoclonal antibody is an IgG, IgM, IgD, IgA, or IgE monoclonal antibody.

As used herein, "antibody" means an immunoglobulin molecule comprising two heavy chains and two light chains and which recognizes an antigen. The immunoglobulin molecule may derive from any of the commonly known classes, including but not limited to IgA, secretory IgA, IgG and IgM. IgG subclasses are also well known to those in the art and include but are not limited to human IgG1, IgG2, IgG3 and IgG4. It includes, by way of example, both naturally occurring and non-naturally occurring antibodies. Specifically, "antibody" includes polyclonal and monoclonal antibodies, and monovalent and divalent fragments thereof. Furthermore, "antibody" includes chimeric antibodies, wholly synthetic antibodies, single chain antibodies, and fragments thereof. The antibody may be a human or nonhuman antibody.

35

A nonhuman antibody may be humanized by recombinant methods to reduce its immunogenicity in man. Methods for humanizing antibodies are known to those skilled in the art.

5 This invention provides humanized forms of the above antibodies. As used herein, "humanized" describes antibodies wherein some, most or all of the amino acids outside the CDR regions are replaced with corresponding amino acids derived from human immunoglobulin molecules. In one embodiment of
10 the humanized forms of the antibodies, some, most or all of the amino acids outside the CDR regions have been replaced with amino acids from human immunoglobulin molecules but where some, most or all amino acids within one or more CDR regions are unchanged. Small additions, deletions,
15 insertions, substitutions or modifications of amino acids are permissible as long as they would not abrogate the ability of the antibody to bind a given antigen. Suitable human immunoglobulin molecules would include IgG1, IgG2, IgG3, IgG4, IgA and IgM molecules. A "humanized" antibody
20 would retain a similar antigenic specificity as the original antibody, i.e., in the present invention, the ability to bind CCR5.

25 One skilled in the art would know how to make the humanized antibodies of the subject invention. Various publications, several of which are hereby incorporated by reference into this application, also describe how to make humanized antibodies. For example, the methods described in United States Patent No. 4,816,567 (58) comprise the production of
30 chimeric antibodies having a variable region of one antibody and a constant region of another antibody.

35 United States Patent No. 5,225,539 (59) describes another approach for the production of a humanized antibody. This patent describes the use of recombinant DNA technology to

produce a humanized antibody wherein the CDRs of a variable region of one immunoglobulin are replaced with the CDRs from an immunoglobulin with a different specificity such that the humanized antibody would recognize the desired target but 5 would not be recognized in a significant way by the human subject's immune system. Specifically, site directed mutagenesis is used to graft the CDRs onto the framework.

Other approaches for humanizing an antibody are described in 10 United States Patent Nos. 5,585,089 (60) and 5,693,761 (61) and WO 90/07861 which describe methods for producing humanized immunoglobulins. These have one or more CDRs and possible additional amino acids from a donor immunoglobulin and a framework region from an accepting human immunoglobulin. These patents describe a method to increase 15 the affinity of an antibody for the desired antigen. Some amino acids in the framework are chosen to be the same as the amino acids at those positions in the donor rather than in the acceptor. Specifically, these patents describe the preparation of a humanized antibody that binds to a receptor by combining the CDRs of a mouse monoclonal antibody with 20 human immunoglobulin framework and constant regions. Human framework regions can be chosen to maximize homology with the mouse sequence. A computer model can be used to identify 25 amino acids in the framework region which are likely to interact with the CDRs or the specific antigen and then mouse amino acids can be used at these positions to create the humanized antibody.

30 The above patents 5,585,089 and 5,693,761, and WO 90/07861 (62) also propose four possible criteria which may be used in designing the humanized antibodies. The first proposal was that for an acceptor, use a framework from a particular 35 human immunoglobulin that is unusually homologous to the donor immunoglobulin to be humanized, or use a consensus

framework from many human antibodies. The second proposal was that if an amino acid in the framework of the human immunoglobulin is unusual and the donor amino acid at that position is typical for human sequences, then the donor 5 amino acid rather than the acceptor may be selected. The third proposal was that in the positions immediately adjacent to the 3 CDRs in the humanized immunoglobulin chain, the donor amino acid rather than the acceptor amino acid may be selected. The fourth proposal was to use the 10 donor amino acid reside at the framework positions at which the amino acid is predicted to have a side chain atom within 3Å of the CDRs in a three dimensional model of the antibody and is predicted to be capable of interacting with the CDRs. The above methods are merely illustrative of some of the 15 methods that one skilled in the art could employ to make humanized antibodies.

In one embodiment, the monoclonal antibody binds to an HIV-1 envelope glycoprotein. In one embodiment, the HIV-1 envelope 20 glycoprotein is selected from the group consisting of gp120 and gp160.

In one embodiment, the HIV-1 envelope glycoprotein is gp120 and the monoclonal antibody which binds to gp120 is IgG1b12 25 or F105. IgG1b12 is listed as item #2640 in the NIH AIDS Research and Reference Reagent Program Catalog. F105 is listed as item #857 in the NIH AIDS Research and Reference Reagent Program Catalog.

30 In one embodiment, the antibody binds to an epitope of CD4 on the surface of the CD4+ cell.

In one embodiment of the composition of this invention, the compound which retards attachment of HIV-1 to the CD4+ cell 35 by retarding binding of HIV-1 gp120 envelope glycoprotein to

CD4 on the surface of the CD4+ cell is a peptide. In one embodiment of the composition of this invention, the compound which retards attachment of HIV-1 to the CD4+ cell by retarding binding of HIV-1 gp120 envelope glycoprotein to CD4 on the surface of the CD4+ cell is a nonpeptidyl agent. As used herein, "nonpeptidyl" means that the agent does not consist in its entirety of a linear sequence of amino acids linked by peptide bonds. A nonpeptidyl agent may, however, contain one or more peptide bonds.

10

In one embodiment of the composition of this invention, the compound which retards gp41 from adopting a conformation capable of mediating fusion of HIV-1 to a CD4+ cell by binding noncovalently to an epitope on a gp41 fusion intermediate is an antibody. In one embodiment the antibody is a monoclonal antibody. In one embodiment, the antibody is a polyclonal antibody.

15

In one embodiment of the composition of this invention, the compound which retards gp41 from adopting a conformation capable of mediating fusion of HIV-1 to a CD4+ cell by binding noncovalently to an epitope on a gp41 fusion intermediate is a peptide.

20

25

30

35

In one embodiment of the composition of this invention, the compound which retards gp41 from adopting a conformation capable of mediating fusion of HIV-1 to a CD4+ cell by binding noncovalently to an epitope on a gp41 fusion intermediate is a fusion protein which comprises a peptide which includes but is not limited to T-20 (SEQ ID NO: 1), DP107 (SEQ ID NO: 2), N34 (SEQ ID NO: 3), C28 (SEQ ID NO: 4), and N34(L6)C28 (SEQ ID NO: 5). In one embodiment the peptide is selected from the group consisting of T-20 (SEQ ID NO: 1), DP107 (SEQ ID NO: 2), N34 (SEQ ID NO: 3), C28 (SEQ ID NO: 4), and N34(L6)C28 (SEQ ID NO: 5). In one

embodiment, the peptide is T-20 (SEQ ID NO: 1).

As used herein, "T-20" and "DP178" are used interchangeably to denote a peptide having the following amino acid sequence: YTSЛИHSLIEESQNQQEKNEQELLELDKWASLWNWF (SEQ ID NO:1) and as described [29, 32]. DP107 has the following amino acid sequence: NNLLRAIEAQHQHLLQLTVWGIKQLQARILAVERYLKDQ (SEQ ID NO:2). N34 has the following amino acid sequence: SGIVQQQNLLRAIEAQHQHLLQLTVWGIKQLQAR (SEQ ID NO:3). C28 has the following amino acid sequence: WMEWDREINNYTSЛИHSLIEESQNQQEK (SEQ ID NO:4). N34(L6)C28 has the following amino acid sequence: SGIVQQQNLLRAIEAQHQHLLQLTVWGIKQLQARSGGRRGGWMEWDREINNYTSЛИHSLIEESQNQQEK (SEQ ID NO:5).

15

In one embodiment of the above composition, the peptide is a mutant peptide which (1) consists of amino acids having a sequence identical to that of a wildtype peptide selected from the group consisting of T-20 (SEQ ID NO: 1), DP-107 (SEQ ID NO: 2), N34 (SEQ ID NO: 3), C28 (SEQ ID NO: 4), and N34(L6)C28 (SEQ ID NO: 5), except for an addition of at least one glycine residue to a 5' end of the peptide, to a 3' end of the peptide, or to both ends of the peptide and (2) retards gp41 from adopting a conformation capable of mediating fusion of HIV-1 to a CD4+ cell by binding noncovalently to an epitope on a gp41 fusion intermediate.

20
25
30

In one embodiment of the composition of this invention, the compound which retards gp41 from adopting a conformation capable of mediating fusion of HIV-1 to a CD4+ cell by binding noncovalently to an epitope on a gp41 fusion intermediate is a non-peptidyl agent.

35
In one embodiment of the composition of this invention, the antibody which binds to a CCR5 receptor includes but is not

limited to PA8 (ATCC Accession No. HB-12605), PA10 (ATCC Accession No. 12607), PA11 (ATCC Accession No. HB-12608), PA12 (ATCC Accession No. HB-12609), and PA14 (ATCC Accession No. HB-12610). In one embodiment, the antibody is a monoclonal antibody. In one embodiment, the monoclonal antibody is a human, humanized or chimeric antibody. In one embodiment, the portion of the antibody is a Fab fragment of the antibody. In one embodiment, the portion of the antibody comprises the variable domain of the antibody. In one embodiment, the portion of the antibody comprises a CDR portion of the antibody. In one embodiment, the monoclonal antibody is an IgG, IgM, IgD, IgA, or IgE monoclonal antibody.

In one embodiment of the composition of this invention, the relative mass ratio of each such compound in the admixture ranges from about 25:1 to about 1:1. In one embodiment, the mass ratio is about 25:1. In one embodiment, the mass ratio is about 5:1. In one embodiment, the mass ratio is about 1:1.

In one embodiment of the composition of this invention, the composition is admixed with a carrier. The carriers of the subject invention include but are not limited to aerosol, intravenous, oral or topical carriers. Pharmaceutically acceptable carriers are well known to those skilled in the art. Such pharmaceutically acceptable carriers may include but are not limited to aqueous or non-aqueous solutions, suspensions, and emulsions. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, saline and buffered media. Parenteral vehicles include sodium chloride solution, Ringer's dextrose,

5 dextrose and sodium chloride, lactated Ringer's or fixed oils. Intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers such as those based on Ringer's dextrose, and the like. Preservatives and other additives may also be present, such as, for example, antimicrobials, antioxidants, chelating agents, inert gases and the like.

10 This invention provides a method of inhibiting HIV-1 infection of a CD4+ cell which comprises contacting the CD4+ cell with an amount of the composition of the subject invention effective to inhibit HIV-1 infection of the CD4+ cell so as to thereby inhibit HIV-1 infection of the CD4+ cell.

15 In one embodiment, the CD4+ cell is present in a subject and the contacting is effected by administering the composition to the subject.

20 As used herein, "subject" includes any animal or artificially modified animal capable of becoming HIV-infected. Artificially modified animals include, but are not limited to, SCID mice with human immune systems. The animals include but are not limited to mice, rats, dogs, cats, 25 guinea pigs, ferrets, rabbits, and primates. In the preferred embodiment, the subject is a human.

30 As used herein, "administering" may be effected or performed using any of the methods known to one skilled in the art, which includes intralesional, intraperitoneal, intramuscular, subcutaneous, intravenous, liposome mediated delivery, transmucosal, intestinal, topical, nasal, oral, anal, ocular or otic delivery. The compounds may be administered separately (e.g., by different routes of 35 administration, sites of injection, or dosing schedules) so

as to combine in synergistically effective amounts in the subject.

5 The dose of the composition of the invention will vary depending on the subject and upon the particular route of administration used. Dosages can range from 0.1 to 100,000 $\mu\text{g}/\text{kg}$. Based upon the composition, the dose can be delivered continuously, such as by continuous pump, or at periodic intervals. For example, on one or more separate occasions.

10 Desired time intervals of multiple doses of a particular composition can be determined without undue experimentation by one skilled in the art.

15 As used herein, "effective dose" means an amount in sufficient quantities to either treat the subject or prevent the subject from becoming infected with HIV-1. A person of ordinary skill in the art can perform simple titration experiments to determine what amount is required to treat the subject.

20 In one embodiment, the effective amount of the composition comprises from about 0.000001 mg/kg body weight to about 100 mg/kg body weight of the subject.

25 This invention provides a method of inhibiting HIV-1 infection of a CD4+ cell which comprises contacting the CD4+ cell with (1) an amount of an antibody which binds to a CCR5 receptor and (2) an amount of a compound which retards gp41 from adopting a conformation capable of mediating fusion of HIV-1 to a CD4+ cell by binding noncovalently to an epitope on a gp41 fusion intermediate, so as to thereby inhibit HIV-1 infection of the CD4+ cell.

30 This invention provides a method of inhibiting HIV-1 infection of a CD4+ cell which comprises contacting the CD4+

cell with (1) an amount of an antibody which binds to a CCR5 receptor, (2) an amount of a compound which retards attachment of HIV-1 to the CD4+ cell by retarding binding of HIV-1 gp120 envelope glycoprotein to CD4 on the surface of the CD4+ cell effective to inhibit HIV-1 infection of the CD4+ cell, and (3) an amount of a compound which retards gp41 from adopting a conformation capable of mediating fusion of HIV-1 to a CD4+ cell by binding noncovalently to an epitope on a gp41 fusion intermediate, so as to thereby inhibit HIV-1 infection of the CD4+ cell.

In one embodiment, the CD4+ cell is present in a subject and the contacting is effected by administering the compounds to the subject. In one embodiment, the compounds are administered to the subject simultaneously. In one embodiment, the compounds are administered to the subject at different times. In one embodiment, the compounds are administered to the subject by different routes of administration.

The subject invention has various applications which includes HIV treatment such as treating a subject who has become afflicted with HIV. As used herein, "afflicted with HIV-1" means that the subject has at least one cell which has been infected by HIV-1. As used herein, "treating" means either slowing, stopping or reversing the progression of an HIV-1 disorder. In the preferred embodiment, "treating" means reversing the progression to the point of eliminating the disorder. As used herein, "treating" also means the reduction of the number of viral infections, reduction of the number of infectious viral particles, reduction of the number of virally infected cells, or the amelioration of symptoms associated with HIV-1. Another application of the subject invention is to prevent a subject from contracting HIV. As used herein, "contracting HIV-1" means becoming

infected with HIV-1, whose genetic information replicates in and/or incorporates into the host cells. Another application of the subject invention is to treat a subject who has become infected with HIV-1. As used herein, "HIV-1 infection" means the introduction of HIV-1 genetic information into a target cell, such as by fusion of the target cell membrane with HIV-1 or an HIV-1 envelope glycoprotein⁺ cell. The target cell may be a bodily cell of a subject. In the preferred embodiment, the target cell is a bodily cell from a human subject. Another application of the subject invention is to inhibit HIV-1 infection. As used herein, "inhibiting HIV-1 infection" means reducing the amount of HIV-1 genetic information introduced into a target cell population as compared to the amount that would be introduced without said composition.

This invention will be better understood from the Experimental Details that follow. However, one skilled in the art will readily appreciate that the specific methods and results discussed are merely illustrative of the invention as described more fully in the claims that follow thereafter.

Experimental Details

A. Materials and Methods

1) Reagents

5 Purified recombinant CD4-IgG2 protein was produced by Progenics Pharmaceuticals, Inc. from plasmids CD4-IgG2-HC-pRCCMV and CD4-kLC-pRCCMV (ATCC Accession Nos. 75193 and 75194, respectively) as described [5]. HeLa-env cells were prepared by transfecting HeLa cells (ATCC Catalog # CCL-2) 10 with HIV-1 gp120/gp41 env-expressing plasmid pMA243 as described [51]. PM1 cells are available from the National Institutes of Health AIDS Reagent Program (Catalog #3038). The T-20 peptide was synthesized using standard solid-phase 15 Fmoc chemistry and purified and characterized as described [31,32].

2) Inhibition of HIV-1 env-mediated membrane fusion
HIV-1 envelope-mediated fusion between HeLa-Env_{JR-FL} and PM1 cells was detected using a Resonance Energy Transfer (RET) assay. Equal numbers (2x10⁴) of fluorescein octadecyl ester

20 (F18)-labeled envelope-expressing cells and octadecyl rhodamine (R18)-labeled PM1 cells were plated in 96-well plates in 15% fetal calf serum in phosphate buffered saline and incubated for 4h at 37 °C in the presence of varying 25 concentrations of CD4-IgG2, T-20 or combinations thereof. Fluorescence RET was measured with a Cytofluor plate-reader (PerSeptive Biosystems) and % RET was determined as previously described [19].

30 3) Quantitative analysis of the synergistic, additive or antagonistic effects of combining the agents

HIV-1 inhibition data were analyzed according to the Combination Index method of Chou and Talay [52,53]. The

data are modeled according to the median-effect principle, which can be written

$$f = 1 / [1 + (K/C)^m]. \quad (1)$$

where f is the fraction affected/inhibited, c is concentration, K is the concentration of agent required to produce the median effect, and m is an empirical coefficient describing the shape of the dose-response curve. Equation (1) is a generalized form of the equations describing Michaelis-Menton enzyme kinetics, Langmuir adsorption isotherms, and Henderson-Hasselbalch ionization equilibria, for which $m = 1$ in all cases. In the present case, K is equal to the IC_{50} value. K and m are determined by curve-fitting the dose-response curves.

After the best-fit parameters for K and m are obtained for the experimental agents and their combination, Equation (1) is rearranged to allow for calculation of c for a given f . The resulting table of values (e.g., Figure X) is used to calculate the Combination Index (CI) using the equation

$$CI = c_{1m}/c_1 + c_{2m}/c_2 + c_{1m}c_{2m}/c_1c_2$$

(2)

where

c_1 = concentration of compound 1 when used alone
 c_2 = concentration of compound 2 when used alone
 c_{1m} = concentration of compound 1 in the mixture
 c_{2m} = concentration of compound 2 in the mixture

35 All concentrations are those required to achieve a given degree of inhibition. Equation (2) is used when the

5 molecules are mutually nonexclusive, i.e., have different sites of action. Since this is the likely scenario for inhibitors of HIV-1 attachment and gp41 fusion intermediates, Equation (2) was used for all Combination Index calculations. Mutually nonexclusive calculations provide a more conservative estimate of the degree of synergy than mutually exclusive calculations, for which the $c_{1m}c_{2m}/c_1c_2$ term is dropped. CI < 1 indicates synergy, CI = 1 indicates purely additive effects, and CI > 1 indicates antagonism. In general, CI values are most relevant at the higher levels of inhibition that are required to achieve a measurable clinical benefit.

10 15 B. Results and Discussion

20 25 Combinations of inhibitors of HIV-1 attachment and gp41 fusion intermediates were first tested for the ability to inhibit HIV-1 env-mediated membrane fusion in the RET assay. This assay has proven to be a highly successful model of the HIV-1 entry process. In this assay, env-dependent coreceptor usage patterns and cellular tropisms of the parental viruses are accurately reproduced [19]. Indeed, the assay was instrumental in demonstrating that CCR5 functions as a requisite fusion coreceptor and acts at the level of viral entry [54]. The fusion assay and infectious virus are similarly sensitive to inhibition by metal chelators and agents that target the full complement of viral and cellular receptors [19, 46, 55].

30 35 Dose-response curves were obtained for the agents used individually and in combination in both assays. Data were analyzed using the median effect principle [52, 53]. The concentrations of single-agents or their mixtures required to produce a given effect were quantitatively compared in a term known as the Combination Index (CI). CI > 1 indicates

antagonism, CI = 1 indicates a purely additive effect, and CI < 1 indicates a synergistic effect wherein the presence of one agent enhances the effect of another.

5 Combinations of CD4-IgG2 and T-20 were observed to be potently synergistic in inhibiting env-mediated membrane fusion. Figure 1 illustrates representative dose-response curves obtained in the membrane fusion assay for CD4-IgG2, T-20, and combinations of the two. The curve for the
10 combination is highly displaced towards lower inhibitor concentrations and provides qualitative evidence that CD4-IgG2 and T-20 act in a synergistic manner.

15 To quantitatively calculate the degree of synergy observed between CD4-IgG2 and T-20, we analyzed the dose-response curves according to the Combination Index method [52,53]. The analysis included data obtained at 25:1, 5:1, and 1:1
20 CD4-IgG2:T-20 mass ratios. At the 25:1 mass ratio, both high (0-250 μ g/ml CD4-IgG2 and 0-10 μ g/ml T-20) and low (0-50 μ g/ml CD4-IgG2 and 0-2 μ g/ml T-20) concentration ranges were evaluated. As indicated in Figure 2, potent synergies
25 were observed over these broad ranges of inhibitor ratios and concentrations, with CI values as low as 0.20 under optimal conditions. This degree of synergy is remarkable since CI values of 0.2 are rarely observed for combinations involving anti-HIV-1 antibodies [41-44], reverse transcriptase inhibitors [56], or protease inhibitors [57]. The observed synergies indicate that HIV-1 attachment and formation of gp41 fusion intermediates are inter-dependent
30 steps. One possibility is that attachment inhibitors, when used at suboptimal concentrations, may slow but not abrogate the binding of gp120 to CD4. In this case, gp41 fusion intermediates may be formed and persist on the virus (or infected cell) for longer periods of time at levels below
35 that required for membrane fusion and thus provide better

targets for inhibitory agents.

The observed synergies translate into significant reductions in the amounts of CD4-IgG2 and T-20 needed for inhibition.

5 These reductions are illustrated in Figure 3 for CD4-IgG2 and T-20 used in a 25:1 mass ratio. By way of example, inhibition of viral entry by 95% requires 0.21 μ g/ml of T-20 used alone, 19 μ g/ml of CD4-IgG2 used alone and 1.14 μ g/ml of a combination containing 0.044 μ g/ml of T-20 and 1.1 μ g/ml of CD4-IgG2. The combination reduces the respective 10 doses of T-20 and CD4-IgG2 by 5- and 17-fold, respectively. Still greater dose reductions are observed at higher levels of inhibition.

15 Second Series of Experiments

HIV-1 entry proceeds via a cascade of at least three sequential events: (1) the attachment of the HIV-1 surface glycoprotein gp120 to CD4, which is the primary cellular receptor for HIV-1, (2) the interaction of the gp120-CD4 20 complex with fusogenic coreceptors such as CCR5 and CXCR4, and (3) membrane fusion mediated by the HIV-1 transmembrane glycoprotein gp41. PRO 542 (CD4-IgG2) is an antibody-like molecule that binds to gp120 and thereby inhibits attachment of the virus to host cells via CD4. PRO 140 (PA14) and PA12 25 are monoclonal antibodies to CCR5 that block its function as an HIV-1 coreceptor. Lastly, T-20 is a 36-mer peptide derived from the highly conserved C-terminal ectodomain of gp41. T-20 blocks gp41-mediated membrane fusion events. PRO 542 is thus an attachment inhibitor that blocks the 30 first step of HIV-1 entry; PRO 140 and PA12 are both CCR5 coreceptor inhibitors that block the second step; and T-20 is a fusion inhibitor that blocks the third step. Attachment, coreceptor and fusion inhibitors are all members 35 of a broad category of antiviral agents collectively known as HIV-1 entry inhibitors. CCR5 coreceptor inhibitors and

CXCR4 coreceptor inhibitors constitute two distinct subclasses of coreceptor inhibitors.

When used individually, each of these compounds inhibit HIV-1 infection in vitro. PRO 542 and T-20 have also both demonstrated significant antiviral activity when used individually in human clinical trials, providing clinical proof-of-concept for inhibitors of HIV-1 entry (1,2).

10 The multi-step, inter-dependent nature of HIV-1 entry suggests that combinations of entry inhibitors may act in a non-additive or cooperative manner that either enhances (synergizes) or diminishes (antagonizes) the antiviral effect. Significant synergies have been observed for certain
15 2-way combinations of entry inhibitors, including attachment inhibitors used with CCR5 coreceptor inhibitors, attachment inhibitors used with fusion inhibitors, CCR5 coreceptor inhibitors used with other CCR5 coreceptor inhibitors, and CXCR4 coreceptor inhibitors used with fusion inhibitors
20 (3,4).

However, whereas synergies are observed with certain members of a given class of inhibitor, purely additive or even antagonistic effects are seen when other members of the same
25 class are used (3), highlighting the complexity of the HIV-1 entry process and the difficulty of predicting synergistic combinations. No prior study has examined either 2-way combinations of CCR5 coreceptor inhibitors and fusion inhibitors or triple or higher combinations that include
30 members of all three classes of HIV-1 entry inhibitors. We have discovered that synergistic inhibition of HIV-1 can be obtained using the CCR5 coreceptor inhibitor PRO 140 in combination with the fusion inhibitor T-20. See Figure 4D. In addition, remarkable synergies are observed using a
35 triple combination containing an attachment inhibitor (PRO

542), a CCR5 coreceptor inhibitor (either PRO 140 or PA12) and a fusion inhibitor (T-20). See Figures 4A-C and Figure 5. The synergies observed with the triple combination are surprisingly potent and translate into dose reductions 5 ranging to 260-fold.

REFERENCES

- 10 1. Arthos J, Deen KC, Chaikin MA et al. Identification of the residues in human CD4 critical for the binding of HIV. *Cell* 1989; 57:469-481.
- 15 2. Clapham PR., Weber JN., Whitby D. et al. Soluble CD4 blocks the infectivity of diverse strains of HIV and SIV for T cells and monocytes but not for brain and muscle cells. *Nature* 1989; 337:368-370.
3. Deen KC., McDougal JS., Inacker R. et al. A soluble form of CD4 (T4) protein inhibits AIDS virus infection. *Nature* 1988; 331:82-84.
- 20 4. Capon DJ, Chamow SM, Mordenti J et al. Designing CD4 immunoadhesins for AIDS therapy. *Nature* 1989; 337:525-531.
- 25 5. Allaway GP, Davis-Bruno KL, Beaudry GA et al. Expression and characterization of CD4-IgG2, a novel heterotetramer which neutralizes primary HIV-1 isolates. *AIDS Research and Human Retroviruses* 1995; 11:533-539.
- 30 6. Allaway GP, Ryder AM, Beaudry GA, Maddon PJ. Synergistic inhibition of HIV-1 envelope-mediated cell fusion by CD4-based molecules in combination with antibodies to gp120 or gp41. *AIDS Research & Human Retroviruses* 1993; 9:581-587.
7. Vita C, Drakopoulou E, Vizzavona J et al. Rational engineering of a miniprotein that reproduces the core

of the CD4 site interacting with HIV-1 envelope glycoprotein. Proc Natl Acad Sci U S A 1999; 96:13091-13096.

8. Schacker T., Coombs RW., Collier AC. et al. The effects of high-dose recombinant soluble CD4 on human immunodeficiency virus type 1 viremia. Journal of Infectious Diseases 1994; 169:37-40.

5 9. Schacker T, Collier AC, Coombs R. et al. Phase I study of high-dose, intravenous rsCD4 in subjects with advanced HIV-1 infection. J Acquir Immune Defic Syndr Hum Retrovirol 1995; 9:145-152.

10 10. Collier AC, Coombs RW, Katzenstein D et al. Safety, pharmacokinetics, and antiviral response of CD4-immunoglobulin G by intravenous bolus in AIDS and AIDS-related complex. J Acquir Immune Defic Syndr Hum Retrovirol 1995; 10:150-156.

15 11. Trkola A., Pomales AP., Yuan H. et al. Cross-clade neutralization of primary isolates of human immunodeficiency virus type 1 by human monoclonal antibodies and tetrameric CD4-IgG2. Journal of Virology 1995; 69:6609-6617.

20 12. Gauduin M-C., Allaway GP., Maddon PJ., Barbas CF3, Burton DR, Koup RA. Effective ex vivo neutralization of plasma HIV-1 by recombinant immunoglobulin molecules. Journal of Virology 1996; 70:2586-2592.

25 13. Gauduin M-C., Allaway GP, Olson WC, Weir R., Maddon PJ, Koup RA. CD4-immunoglobulin G2 protects Hu-PBL-SCID mice against challenge by primary human immunodeficiency virus type 1 isolates. Journal of Virology 1998; 72:3475-3478.

30 14. Trkola A, Ketas T, KewalRamani VN et al. Neutralization sensitivity of human immunodeficiency virus type 1 primary isolates to antibodies and CD4-based reagents is independent of coreceptor usage. J Virol 1998; 72:1876-1885.

35

15. Fouts TR, Binley JM, Trkola A, Robinson JE, Moore JP. Neutralization of the human immunodeficiency virus type 1 primary isolate JR-FL by human monoclonal antibodies correlates with antibody binding to the oligomeric form of the envelope glycoprotein complex. *Journal of Virology* 1997; 71:2779-2785.
- 5 16. Jacobson J, Lowy I, Trkola A et al. Results of a Rhase I Trial of Single-Dose PRO 542, a Novel Inhibitor of HIV Entry. *Abstracts of the 39th Interscience Conference on Antimicrobial Agents and Chemotherapy* 1999; 14.
- 10 17. Burton DR, Pyati J, Koduri R et al. Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. *Science* 1994; 266:1024-1027.
- 15 18. Posner MR., Cavacini LA., Emes CL., Power J., Byrn R. Neutralization of HIV-1 by F105, a human monoclonal antibody to the CD4 binding site of gp120. *Journal of Acquired Immune Deficiency Syndromes* 1993; 6:7-14.
- 20 19. Litwin V, Nagashima KA, Ryder AM et al. Human immunodeficiency virus type 1 membrane fusion mediated by a laboratory-adapted strain and a primary isolate analyzed by resonance energy transfer. *Journal of Virology* 1996; 70:6437-6441.
- 25 20. Poignard P, Peng T, Sabbe R, Newman W, Mosier DE, Burton DR. Blocking of HIV-1 Co-receptor CCR5 in the hu-PBL-SCID Mouse Leads to a Co-receptor Switch. *6th Conference on Retroviruses and Opportunistic Infections* 1999;
- 30 21. Cushman M, Wang PL, Chang SH et al. Preparation and anti-HIV activities of aurintricarboxylic acid fractions and analogues: direct correlation of antiviral potency with molecular weight. *J Med Chem* 1991; 34:329-337.
- 35 22. Mohan P, Schols D, Baba M, De Clercq E. Sulfonic acid

polymers as a new class of human immunodeficiency virus inhibitors. *Antiviral Res* 1992; 18:139-150.

5 23. Schols D, Pauwels R, Desmyter J, De Clercq E. Dextran sulfate and other polyanionic anti-HIV compounds specifically interact with the viral gp120 glycoprotein expressed by T-cells persistently infected with HIV-1. *Virology* 1990; 175:556-561.

10 24. Schols D, Wutzler P, Klocking R, Helbig B, De Clercq E. Selective inhibitory activity of polyhydroxycarboxylates derived from phenolic compounds against human immunodeficiency virus replication. *J Acquir Immune Defic Syndr* 1991; 4:677-685.

15 25. Weissenhorn W, Dessen A, Harrison SC, Skehel JJ, Wiley DC. Atomic structure of the ectodomain from HIV-1 gp41. *Nature* 1997; 387:426-430.

20 26. Chan DC, Fass D, Berger JM, Kim PS. Core Structure of gp41 from the HIV Envelope Glycoprotein. *Cell* 1997; 89:263-273.

27. Ji H, Shu W, Burling FT, Jiang S, Lu M. Inhibition of human immunodeficiency virus type 1 infectivity by the gp41 core: role of a conserved hydrophobic cavity in membrane fusion. *Journal of Virology* 1999; 73:8578-8586.

25 28. Jiang S, Lin K, Strick N, Neurath AR. HIV-1 inhibition by a peptide. *Nature* 1993; 365:113.

29. Wild C, Greenwell T, Matthews T. A synthetic peptide from HIV-1 gp41 is a potent inhibitor of virus-mediated cell-cell fusion. *AIDS Res Hum Retroviruses* 1993; 9:1051-1053.

30 30. Wild C, Greenwell T, Shugars D, Rimsky-Clarke L, Matthews T. The inhibitory activity of an HIV type 1 peptide correlates with its ability to interact with a leucine zipper structure. *AIDS Res Hum Retroviruses* 1995; 11:323-325.

35 31. Wild C, Oas T, McDanal C, Bolognesi D, Matthews T. A

synthetic peptide inhibitor of human immunodeficiency virus replication: correlation between solution structure and viral inhibition. Proc Natl Acad Sci U S A 1992; 89:10537-10541.

5 32. Wild CT, Shugars DC, Greenwell TK, McDanal CB, Matthews TJ. Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc Natl Acad Sci U S A 1994; 91:9770-9774.

10 33. Chan DC, Chutkowski CT, Kim PS. Evidence that a prominent cavity in the coiled coil of HIV type 1 gp41 is an attractive drug target. Proc Natl Acad Sci U S A 1998; 95:15613-15617.

15 34. Ferrer M, Kapoor TM, Strassmaier T et al. Selection of gp41-mediated HIV-1 cell entry inhibitors from biased combinatorial libraries of non-natural binding elements. Nat Struct Biol 1999; 6:953-960.

20 35. Eckert DM, Malashkevich VN, Hong LH, Carr PA, Kim PS. Inhibiting HIV-1 entry: discovery of D-peptide inhibitors that target the gp41 coiled-coil pocket. Cell 1999; 99:103-115.

25 36. Kilby JM, Hopkins S, Venetta TM et al. Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nat Med 1998; 4:1302-1307.

30 37. LaCasse RA, Follis KE, Trahey M, Scarborough JD, Littman DR, Nunberg JH. Fusion-competent vaccines: broad neutralization of primary isolates of HIV. Science 1999; 283:357-362.

35 38. Neurath AR, Strick N, Lin K, Jiang S. Multifaceted consequences of anti-gp41 monoclonal antibody 2F5 binding to HIV type 1 virions. AIDS Res Hum Retroviruses 1995; 11:687-696.

39. Thali M, Furman C, Wahren B et al. Cooperativity of neutralizing antibodies directed against the V3 and CD4

binding regions of the human immunodeficiency virus gp120 envelope glycoprotein. *J Acquir Immune Defic Syndr* 1992; 5:591-599.

40. Tilley SA, Honnen WJ, Racho ME, Chou TC, Pinter A. Synergistic neutralization of HIV-1 by human monoclonal antibodies against the V3 loop and the CD4-binding site of gp120. *AIDS Res Hum Retroviruses* 1992; 8:461-467.

5 41. Laal S, Burda S, Gorny MK, Karwowska S, Buchbinder A, Zolla-Pazner S. Synergistic neutralization of human immunodeficiency virus type 1 by combinations of human monoclonal antibodies. *Journal of Virology* 1994; 68:4001-4008.

10 42. Vijh-Warrier S, Pinter A, Honnen WJ, Tilley SA. Synergistic neutralization of human immunodeficiency virus type 1 by a chimpanzee monoclonal antibody against the V2 domain of gp120 in combination with monoclonal antibodies against the V3 loop and the CD4-binding site. *Journal of Virology* 1996; 70:4466-4473.

15 43. Li A, Baba TW, Sodroski J et al. Synergistic neutralization of a chimeric SIV/HIV type 1 virus with combinations of human anti-HIV type 1 envelope monoclonal antibodies or hyperimmune globulins. *AIDS Res Hum Retroviruses* 1997; 13:647-656.

20 44. Li A, Katinger H, Posner MR et al. Synergistic neutralization of simian-human immunodeficiency virus SHIV- vpu+ by triple and quadruple combinations of human monoclonal antibodies and high-titer anti-human immunodeficiency virus type 1 immunoglobulins. *Journal of Virology* 1998; 72:3235-3240.

25 45. Burkly L, Mulrey N, Blumenthal R, Dimitrov DS. Synergistic inhibition of human immunodeficiency virus type 1 envelope glycoprotein-mediated cell fusion and infection by an antibody to CD4 domain 2 in combination with anti-gp120 antibodies. *Journal of Virology* 1995; 69:4267-4273.

30

35

46. Olson WC, Rabut GE, Nagashima KA et al. Differential inhibition of human immunodeficiency virus type 1 fusion, gp120 binding, and CC-chemokine activity by monoclonal antibodies to CCR5. *J Virol* 1999; 73:4145-4155.

5

47. O'Brien WA., Koyanagi Y., Namazie A. et al. HIV-1 tropism for mononuclear phagocytes can be determined by regions of gp120 outside the CD4-binding domain. *Nature* 1990; 348:69-73.

10 48. Trkola A, Matthews J, Gordon C, Ketas T, Moore JP. A cell line-based neutralization assay for primary human immunodeficiency virus type 1 isolates that use either the CCR5 or the CXCR4 coreceptor. *J Virol* 1999; 73:8966-8974.

15 49. Fouts TR, Trkola A, Fung MS, Moore JP. Interactions of polyclonal and monoclonal anti-glycoprotein 120 antibodies with oligomeric glycoprotein 120-glycoprotein 41 complexes of a primary HIV type 1 isolate: relationship to neutralization. *AIDS Res Hum Retroviruses* 1998; 14:591-597.

20

50. Dreyer K, Kallas EG, Planelles V, Montefiori D, McDermott MP, Hasan MS. Primary isolate neutralization by HIV type 1-infected patient sera in the era of highly active antiretroviral therapy. *AIDS Research and Human Retroviruses* 1999; 15:1563-1571.

25

51. Allaway GP, Litwin VM, Madden PJ. Progenics Pharmaceuticals, Inc. Methods for using resonance energy transfer-based assay of HIV-1 envelope glycoprotein-mediated membrane fusion, and kits for practicing same. International Filing Date June 7, 1996. International Patent Application No. PCT/US96/09894. 1996;

30

52. Chou TC. The median effect principle and the combination index for quantitation of synergism and antagonism. *Synergism and Antagonism in Chemotherapy*

35

1991; 61-102.

5 53. Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. *Advances in Enzyme Regulation* 1984; 22:27-55.

10 54. Dragic T., Litwin V., Allaway GP. et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. *Nature* 1996; 381:667.

15 55. Donzella GA, Schols D, Lin SW et al. AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. *Nature Medicine* 1998; 4:72-77.

20 56. Johnson VA, Merrill DP, Videler JA et al. Two-drug combinations of zidovudine, didanosine, and recombinant interferon-alpha A inhibit replication of zidovudine-resistant human immunodeficiency virus type 1 synergistically in vitro. *Journal of Infectious Diseases* 1991; 164:646-655.

25 57. Merrill DP, Manion DJ, Chou TC, Hirsch MS. Antagonism between human immunodeficiency virus type 1 protease inhibitors indinavir and saquinavir in vitro. *Journal of Infectious Diseases* 1997; 176:265-268.

58. United States Patent No. 4,816,567, issued March 28, 1989 to Cabilly et al.

25 59. United States Patent No. 5,225,539, issued July 6, 1993 to Gregory Winter.

60. United States Patent No. 5,585,089, issued December 17, 1996 to Queen et al.

61. United States Patent No. 5,693,761, issued December 2, 1997 to Queen et al.

30 62. PCT International Application No. PCT/US89/05857, filed December 28, 1989, published July 26, 1990, WO 90/07861.

63. Jacobson, J.M. et al. Single-dose safety, pharmacology and antiviral activity of the human immunodeficiency virus (HIV) type 1 entry inhibitor PRO 542 in HIV-

35

infected adults. *J. Infect. Dis* 182:326-329.

64. Kilby, J.M. et al. 1998 Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp-41 mediated virus entry. *Nat. Med* 4:1302-1307.

5 65. Olson. W.C. et al. 1999. Differential inhibition of human immunodeficiency virus type 1 fusion, gp120 binding, and CC-chemokine activity by monoclonal antibodies to CCR5. *J. Virol* 73:4145-4155.

10 66. Tremblay, C. et al. 2000. Strong in vitro synergy observed between the fusion inhibitor T-20 and a CxCR4 blocker AMD-3100. 7th Conference on Retroviruses and Opportunistic Infections, San Francisco.

67. Litwin, V. et al 1996, *J. Virol* 70:6437-6441.

What is claimed:

1. A composition which comprises an admixture of two compounds, wherein: (a) one compound is an antibody or portion thereof which binds to a CCR5 receptor; and (b) one compound retards gp41 from adopting a conformation capable of mediating fusion of HIV-1 to a CD4+ cell by binding noncovalently to an epitope on a gp41 fusion intermediate; wherein the relative mass ratio of the compounds in the admixture ranges from about 100:1 to about 1:100, the composition being effective to inhibit HIV-1 infection of the CD4+ cell.
2. A composition which comprises an admixture of three compounds, wherein: (a) one compound is an antibody or portion thereof which binds to a CCR5 receptor; (b) one compound retards attachment of HIV-1 to a CD4+ cell by retarding binding of HIV-1 gp120 envelope glycoprotein to CD4 on the surface of the CD4+ cell; and (c) one compound retards gp41 from adopting a conformation capable of mediating fusion of HIV-1 to a CD4+ cell by binding noncovalently to an epitope on a gp41 fusion intermediate; wherein the relative mass ratio of any two of the compounds in the admixture ranges from about 100:1 to about 1:100, the composition being effective to inhibit HIV-1 infection of the CD4+ cell.
3. The composition of claim 2, wherein the compound which retards attachment of HIV-1 to the CD4+ cell by retarding binding of HIV-1 gp120 envelope glycoprotein to CD4 on the surface of the CD4+ cell is a CD4-based protein.
4. The composition of claim 3, wherein the CD4-based

protein is a CD4-immunoglobulin fusion protein.

5. The composition of claim 4, wherein the CD4-immunoglobulin fusion protein is CD4-IgG2, wherein the

5 CD4-IgG2 comprises two heavy chains and two light chains, wherein the heavy chains are encoded by an expression vector designated CD4-IgG2HC-pRcCMV (ATCC Accession No. 75193) and the light chains are encoded by an expression vector designated CD4-kLC-pRcCMV (ATCC Accession No. 75194).

10

6. The composition of claim 2, wherein the compound which retards attachment of HIV-1 to the CD4+ cell by retarding binding of HIV-1 gp120 envelope glycoprotein to CD4 on the surface of the CD4+ cell is a protein, the amino acid sequence of which comprises that of a protein found in HIV-1 as an envelope glycoprotein.

15

20

7. The composition of claim 6, wherein the protein binds to an epitope of CD4 on the surface of the CD4+ cell.

25

8. The composition of claim 7, wherein the envelope glycoprotein is selected from the group consisting of gp120, gp160, and gp140.

30

9. The composition of claim 2, wherein the compound which retards the attachment of HIV-1 to the CD4+ cell by retarding binding of HIV-1 gp120 envelope glycoprotein to CD4 on the surface of the CD4+ cell is an antibody or portion of an antibody.

10. The composition of claim 9, wherein the antibody is a monoclonal antibody.

35

11. The composition of claim 10, wherein the monoclonal antibody is a human, humanized or chimeric antibody.
- 5 12. The composition of claim 9, wherein the portion of the antibody is a Fab fragment of the antibody.
13. The composition of claim 9, wherein the portion of the antibody comprises the variable domain of the antibody.
- 10 14. The composition of claim 9, wherein the portion of the antibody comprises a CDR portion of the antibody.
- 15 15. The composition of claim 10, wherein the monoclonal antibody is an IgG, IgM, IgD, IgA, or IgE monoclonal antibody.
16. The composition of claim 10, wherein the monoclonal antibody binds to an HIV-1 envelope glycoprotein.
- 20 17. The composition of claim 16, wherein the HIV-1 envelope glycoprotein is selected from the group consisting of gp120 and gp160.
- 25 18. The composition of claim 16, wherein HIV-1 envelope glycoprotein is gp120 and the monoclonal antibody which binds to gp120 is IgG1b12 or F105.
19. The composition of claim 9, wherein the antibody binds to an epitope of CD4 on the surface of the CD4+ cell.
- 30 20. The composition of claim 2, wherein the compound which retards attachment of HIV-1 to the CD4+ cell by retarding binding of HIV-1 gp120 envelope glycoprotein to CD4 on the surface of the CD4+ cell is a peptide.

21. The composition of claim 2, wherein the compound which
retards attachment of HIV-1 to the CD4+ cell by
retarding binding of HIV-1 gp120 envelope glycoprotein
to CD4 on the surface of the CD4+ cell is a nonpeptidyl
agent.

5

22. The composition of claim 1 or 2, wherein the compound
which retards gp41 from adopting a conformation
capable of mediating fusion of HIV-1 to a CD4+ cell by
10 binding noncovalently to an epitope on a gp41 fusion
intermediate is an antibody.

23. The composition of claim 22, wherein the antibody is a
monoclonal antibody.

15

24. The composition of claim 1 or 2, wherein the compound
which retards gp41 from adopting a conformation
capable of mediating fusion of HIV-1 to a CD4+ cell by
binding noncovalently to an epitope on a gp41 fusion
20 intermediate is a peptide.

25

25. The composition of claim 1 or 2, wherein the compound
which retards gp41 from adopting a conformation
capable of mediating fusion of HIV-1 to a CD4+ cell by
binding noncovalently to an epitope on a gp41 fusion
intermediate is a fusion protein which comprises a
peptide selected from the group consisting of T-20 (SEQ
ID NO: 1), DP107 (SEQ ID NO: 2), N34 (SEQ ID NO: 3),
C28 (SEQ ID NO: 4), and N34(L6)C28 (SEQ ID NO: 5).

30

26. The composition of claim 24, wherein the peptide is
selected from the group consisting of T-20 (SEQ ID NO:
1), DP107 (SEQ ID NO: 2), N34 (SEQ ID NO: 3), C28 (SEQ
ID NO: 4), and N34(L6)C28 (SEQ ID NO: 5).

35

27. The composition of claim 24, wherein the peptide is T-20 (SEQ ID NO: 1).
28. The composition of claim 1 or 2, wherein the compound which retards gp41 from adopting a conformation capable of mediating fusion of HIV-1 to a CD4+ cell by binding noncovalently to an epitope on a gp41 fusion intermediate is a non-peptidyl agent.
29. The composition of claim 1 or 2, wherein the antibody which binds to a CCR5 receptor is selected from the group consisting of PA8 (ATCC Accession No. HB-12605), PA10 (ATCC Accession No. 12607), PA11 (ATCC Accession No. HB-12608), PA12 (ATCC Accession No. HB-12609), and PA14 (ATCC Accession No. HB-12610).
30. The composition of claim 1 or 2, wherein the antibody is PA14 (ATCC Accession No. HB-12610).
31. The composition of claim 29, wherein the antibody is a monoclonal antibody.
32. The composition of claim 29, wherein the monoclonal antibody is a human, humanized or chimeric antibody.
33. The composition of claim 1 or 2, wherein the portion of the antibody is a Fab fragment of the antibody.
34. The composition of claim 1 or 2, wherein the portion of the antibody comprises the variable domain of the antibody.
35. The composition of claim 1 or 2, wherein the portion of the antibody comprises a CDR portion of the antibody.

36. The composition of claim 31, wherein the monoclonal antibody is an IgG, IgM, IgD, IgA, or IgE monoclonal antibody.
- 5 37. The composition of claim 1 or 2, wherein the relative mass ratio of each such compound in the admixture ranges from about 25:1 to about 1:1.
- 10 38. The composition of claim 37, wherein the mass ratio is about 25:1
39. The composition of claim 37, wherein the mass ratio is about 5:1.
- 15 40. The composition of claim 37, wherein the mass ratio is about 1:1.
41. The composition of claim 1 or 2, wherein the composition is admixed with a carrier.
- 20 42. The composition of claim 41, wherein the carrier is an aerosol, intravenous, oral or topical carrier.
- 25 43. A method of inhibiting HIV-1 infection of a CD4+ cell which comprises contacting the CD4+ cell with an amount of the composition of claim 1 or 2 effective to inhibit HIV-1 infection of the CD4+ cell so as to thereby inhibit HIV-1 infection of the CD4+ cell.
- 30 44. The method of claim 43, wherein the CD4+ cell is present in a subject and the contacting is effected by administering the composition to the subject.
45. The method of claim 43, wherein the effective amount of the composition comprises from about 0.000001 mg/kg

body weight to about 100 mg/kg body weight of the subject.

46. A method of inhibiting HIV-1 infection of a CD4+ cell which comprises contacting the CD4+ cell with (1) an amount of an antibody which binds to a CCR5 receptor and (2) an amount of a compound which retards gp41 from adopting a conformation capable of mediating fusion of HIV-1 to a CD4+ cell by binding noncovalently to an epitope on a gp41 fusion intermediate, so as to thereby inhibit HIV-1 infection of the CD4+ cell.

5

47. A method of inhibiting HIV-1 infection of a CD4+ cell which comprises contacting the CD4+ cell with (1) an amount of an antibody which binds to a CCR5 receptor, (2) an amount of a compound which retards attachment of HIV-1 to the CD4+ cell by retarding binding of HIV-1 gp120 envelope glycoprotein to CD4 on the surface of the CD4+ cell effective to inhibit HIV-1 infection of the CD4+ cell, and (3) an amount of a compound which retards gp41 from adopting a conformation capable of mediating fusion of HIV-1 to a CD4+ cell by binding noncovalently to an epitope on a gp41 fusion intermediate, so as to thereby inhibit HIV-1 infection of the CD4+ cell.

10

20

15

25

30

48. The method of claim 46 or 47, wherein the CD4+ cell is present in a subject and the contacting is effected by administering the compounds to the subject.

49. The method of claim 48, wherein the compounds are administered to the subject simultaneously.

50. The method of claim 48, wherein the compounds are administered to the subject at different times.

35

51. The method of claim 48, wherein the compounds are administered to the subject by different routes of administration.

5

10

COMPOSITIONS AND METHODS FOR INHIBITION OF HIV-1 INFECTION

Abstract of the Disclosure

This invention provides a composition which comprises an
5 admixture of three compounds, wherein: (a) one compound is
an antibody which binds to a CCR5 receptor; (b) one compound
retards attachment of HIV-1 to a CD4+ cell by retarding
binding of HIV-1 gp120 envelope glycoprotein to CD4 on the
surface of the CD4+ cell; and (c) one compound retards gp41
10 from adopting a conformation capable of mediating fusion of
HIV-1 to a CD4+ cell by binding noncovalently to an epitope
on a gp41 fusion intermediate; wherein the relative mass
ratio of any two of the compounds in the admixture ranges
from about 100:1 to about 1:100, the composition being
15 effective to inhibit HIV-1 infection of the CD4+ cell. This
invention also provides a method of inhibiting HIV-1
infection of a CD4+ cell which comprises contacting the CD4+
cell with an amount of the composition of the subject
invention effective to inhibit HIV-1 infection of the CD4+
20 cell so as to thereby inhibit HIV-1 infection of the CD4+
cell.

25

30

Figure 1

Figure 2

Percent Inhibition	Combination Index			
	CD4-IgG2:T-20 Mass Ratio			
	25:1 (low)	25:1 (high)	5:1	1:1
95	0.32	0.20	0.22	0.50
90	0.38	0.25	0.27	0.55
85	0.43	0.29	0.30	0.59
80	0.47	0.33	0.34	0.62
75	0.51	0.36	0.37	0.65
70	0.54	0.39	0.40	0.67
65	0.58	0.42	0.43	0.70
60	0.61	0.45	0.45	0.73
55	0.65	0.48	0.49	0.75
50	0.69	0.51	0.52	0.78

Figure 3

3/8

T-20			CD4-IgG2		
Percent Inhibition	Concentration, $\mu\text{g/ml}$	Dose Reduction	Concentration, $\mu\text{g/ml}$	Dose Reduction	Concentration, $\mu\text{g/ml}$
99	1.1	0.17	6.6	130	4.3
95	0.21	0.044	4.9	19	1.10
90	0.10	0.024	4.2	7.8	0.59
70	0.025	0.0076	3.3	1.6	0.19
50	0.011	0.0039	2.8	0.60	0.095
					6.3

Figure 4A

4/8

Percent Inhibition	Combination Index	PRO 542			PA12			T-20		
		Concentration, nM	Dose nM	Concentration, nM	Dose nM	Concentration, nM	Dose nM	Alone	Mix	Reduction
		Alone	Mix	Reduction	Alone	Mix	Reduction	Alone	Mix	Reduction
95	0.41	10	2.1	4.8	730	2.8	260	94	19	4.9
90	0.45	7.0	1.6	4.4	320	2.1	150	63	14	4.5
70	0.47	4.1	0.92	4.5	72	1.2	60	30	8.1	3.7
50	0.48	3.1	0.66	4.7	28	0.87	32	19	5.8	3.3

PRO 542, PA12 and T-20 were used in an approximate 1:1:10 molar concentration ratio.

Figure 4B

5/8

PRO 542			PRO 140			T-20			
Percent Inhibition	Combination Index	Concentration, nM		Dose nM		Concentration, nM		Dose nM	
		Alone	Mix	Reduction	Alone	Mix	Reduction	Alone	Mix
95	0.40	8.5	1.9	4.5	19	1.0	19	140	17
90	0.39	7.1	1.5	4.7	13	0.77	17	100	13
70	0.37	5.3	0.87	6.1	7.2	0.46	16	57	7.7
50	0.35	4.6	0.63	7.3	4.9	0.34	14	40	5.6

PRO 542, PRO 140 and T-20 were used in an approximate 2:1:20 molar concentration ratio.

Figure 4C

6/8

Percent Inhibition	Combination Index	PRO 542		PRO 140		T-20				
		Concentration, nM	Dose nM	Concentration, nM	Dose nM	Concentration, nM	Dose			
	Alone	Mix	Reduction	Alone	Mix	Reduction	Alone	Mix	Reduction	
95	0.24	61	2.5	24	11.9	0.72	17	156	22	7.1
90	0.22	32	1.4	23	8.4	0.40	21	96	13	7.4
70	0.19	9.8	0.50	20	4.5	0.14	32	40	4.5	8.9
50	0.18	4.7	0.26	18	3.0	0.074	41	23	2.3	10

PRO 542, PRO 140 and T-20 were used in an approximate 4:1:30 molar concentration ratio.

Figure 4D

7/8

Percent Inhibition	Combination Index	PRO 140			T-20		
		Concentration, nM		Dose Reduction	Concentration, nM		Dose Reduction
		Alone	Mix		Alone	Mix	
95	0.56	12	1.8	6.7	156	55	2.8
90	0.55	8.4	1.1	7.4	96	35	2.7
70	0.55	4.5	0.51	8.8	40	16	2.5
50	0.56	3.0	0.31	9.9	23	10	2.4

PRO 140 and T-20 were used in an approximate 1:30 molar concentration ratio.

Figure 5

Triple Combination Synergistically Blocks HIV-1 Entry (I)

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.