

Applied Software Development Project

Writing the Methodology

Lecturer: Dr. Muhammad Iqbal

Email: miqbal@cct.ie

What Should You Include in Your

Research Methodology?

Title of research project		✓
• Abstract		✓
Table of Contents	✓	
• Introduction		✓
Research Question and Rationale		✓
Literature reviews or Related Material	✓	
Research Method and Specification		√
 Proposed Research Implementation and Evaluation 		✓
Research timeline	✓	
 Potential problems and remedies (If Applicable) 	✓	
• Conclusions		✓
• References		✓
• Appendix		✓

Agenda

- Research Report: Area of Interest
- Research Report: Algorithms in Energy Optimizations
- Research Report: Planning for Research
- Proposed Approach: Focus on your Research Area
- Proposed Approach: Purpose/ Objectives
- Research Methodology: Design Algorithms
- Research Methodoly: Presentation of Algorithm
- Research Methodology and Specification: Deductive Coding
- Research Methodology and Specification: Equipment, code and tools
- Research Methodology and Specification: Summary (6 8 pages)

Area of Interest

- Virtualization
- Distributed computing
- Algorithm optimization
- Transaction and other processing systems
- Resource allocation & Scheduling
- Service discovery & Scalability
- IT Systems and Architectures
- On-demand Task scheduling
- Energy efficient scheduling etc. in large scale environments
- Big data analytics

Algorithms in Energy Optimizations

Bhabani Shankar, Prasad Mishra,
Himansu Das, Satchidananda
Dehuri, Alok Kumar Jagadev, Cloud
Computing for Optimization:
Foundations, Applications, and
Challenges, ISBN 978-3-31973675-4, 2018 Springer.

Developed strategy	Optimization algorithm	Purpose	Year	Reference
	Multi objective PSO	Identification of power models of enterprise servers	2014	[41]
Smart VM overprovision	Mixed integer linear programming	Solving the energy efficiency problem	2017	[42]
===	Convex predictive optimization	Energy efficient resource utilization	2017	[43]
Dynamic backlight scaling optimization	-	Minimization of energy consumption	2014	[44]
_	Generic optimization	Cost optimality	2014	[45]
=	Improved PSO	Optimization of energy in virtual data centers	2013	[46]
-	SLA based optimization	Minimization of energy cost	2012	[47]
-	Immune Clonal optimization	Energy efficiency	2014	[48]
_	PSO	Virtual machine allocation	2014	[49]
ACO-VM placement	ACO	Effective use of physical resources	2014	[50]

Planning for Research

- Focus on your research question that you have already written.
- Define what is to be evaluated or measured what system, what properties of the system that will be used for the research.
- Sketch/ Draw a computational experiment or trial:
 - To get output to be used as evidence in the research report/ paper.
 - To gather information for your own learning.
- Brainstorm different ways of investigating the research question.
- Consider simple preliminary investigations, or case studies, before embarking on a large-scale implementation.
- Search for definitive experiments small differences are not convincing.
- Distinguish exploratory work from substantial and confirming experiments.

Planning for Research

- Do you need to plan a controlled computational experiment, or are case studies sufficient for your research?
- Which operating system will be used to perform your experiment and/or which cloud computing environment you would like to use?
- Will a payment be required for the computational experiment?
- What instructions are considered as special for the computational experiments?
- What kind of architectures/ OS/ and hardware will be preferred to use?
- Can you achieve all objectives with a planned experiment?
- Are you aware of the relevant ethical guidelines?

Proposed Approach

Focus on your Research Area

- Serverless Computing: Current Trends and Open Problems
- Big Data Analytics in Cloud: A Streaming Approach
- Resource Procurement, Allocation, Metering, and Pricing in Cloud Computing
- Dynamic Selection of Virtual Machines for Application Servers in Cloud Environments
- Improving the Energy Efficiency in Cloud Computing Data Centres Through Resource Allocation Techniques
- Performance Modelling and Optimization of Live Migration of Virtual Machines in Cloud Infrastructure
- Analysis of Security in Modern Container Platforms
- Importance of Cryptographic techniques in Cloud Computing

Proposed Approach

Purpose/ Objectives

- The big question may consider the following points:
 - A major purpose of investigations is to establish facts (observations) on which a hypothesis might be based.
 - Another purpose of investigations is to establish the validity of, or to confirm a hypothesis.
 - What allows us to use some finite set of investigations to assert that a theory is established, that is, to assert that something can for all practical purposes be regarded as true?
 - What allows us to claim that a certain experimental design is good, or sufficient, or superior to the alternatives?

Research Methodology

Design Algorithms

- Presentation of Algorithm
- When an algorithm is presented in a computer science research paper
 - Purpose or details of the algorithm
 - Number of program steps involved
- You must demonstrate that the algorithm is a worthwhile contribution: for example, show that given appropriate input, it terminates with appropriate outcomes;
- Show, by a combination of proof and experiment, that it meets some claimed performance bound.

Research Methodology

Presentation of Algorithm

- As part of a description of an algorithm, a reader would expect to find of some or all of the following:
 - The steps that make up the algorithm.
 - The input and output, and the internal data structures used by the algorithm.
 - The scope of application of the algorithm and its limitations.
 - The properties that will allow demonstration of correctness, which might be formally expressed as pre- and post-conditions and loop invariants.
 - A demonstration of correctness.
 - A formal analysis of cost, for both space and time requirements.
 - Experiments confirming the theoretical results.

Research Methodology Presentation of Algorithm

Algorithm 1 Pseudo-code for PSO

```
Inputs: size of the problem, size of the population;
Output: Optimized solution;
Description:
 population = \theta
 s_g_optimal = \theta
 for (i = 1 to size\_of\_population) do
 S_velocity = Random_Velocity();
 S_position = RandomPosition(size_of_population);
 s_g_{optimal} = s_{position};
 if Cost(S_s_best) <= Cost(S_g_best)
 S_g optimal = (S_s best);
 end
 end
 while: StopCondition () do
 for each p \varepsilon population do
 S_velocity = UpdateVelocity(S_velocity, S_s_best, S_s_best);
 S_position = UpdatePosition(S_position, S_velocity);
 if Cost(S_position) \le Cost(S_s_best)
 s_s_best = s_position;
 if Cost(S_s_best) < = Cost(S_g_best)
 s_g_optimal = S_g_optimal;
 end
 end
 end
 end
 return P_g_best
```

Research Methodology and Specification

Deductive Coding

- When you have very specific and focused research questions, you may use "top-down" (deductive) coding process.
- First, construct a coding scheme.
- Then, find in the data the elements corresponding to the pre-constructed codes.
- Develop coding schemes based on theory, another study, and/or your research questions.
- Even deductive coding will require switching back and forth between inductive and deductive modes of coding.
- Be prepared to modify pre-constructed coding scheme in light of some emerging patterns.

Research Methodology and Specification cct

Equipment, code and tools

- You may need to trade off ease of implementation against realism of the result.
 Computational examples:
 - If you plan to measure algorithmic efficiency, implement in a suitable language.
 - Coding for a day followed by execution for a month is a lot less efficient than coding for five days followed by execution for 20 minutes . . . especially if you have to run again.
- Don't over-implement or invest in unnecessary effort.
 - Download code banks and use libraries.
 - Leave off unnecessary features.
 - Decompose into simple and separate pieces of code.

Research Methodology and Specification Co

Summary (6 – 8 pages)

- This section must:
- provide a specification to describe the techniques analysis methods that will eventually underlie the implementation (max 1 2 pages).
- furnish a complete analysis and design documentation in order to explain each of the major design decisions and choices to be made.
 - Consider using software engineering diagrams to illustrate your proposed approach e.g. class and object diagrams, component diagrams, deployment diagrams, CRC cards, activity diagrams, communication diagrams, state-charts, and/or sequence diagrams (max 4 - 5 pages).
- include a project plan which specifies the expected tasks to be carried out during the capstone project semester. It should have a Gantt chart with the related dependencies (max 1 page).

References/ Resources

- Student Research and Report Writing, From Topic Selection to the Complete Paper, Gabe T. Wang and Keumjae Park, WILEY Blackwell, 2016 John Wiley & Sons Ltd.
- Thanks to Horacio Gonzalez Velez for providing a presentation for this lecture.
- Some images used from Google Search Repository.