WORK

b)
$$\lim_{x \to 4} \frac{(x^2 - 3x - 4)^2}{x - 4} = \frac{(4^2 - 3(4) - 4)^2}{(4) - 4} = \frac{\emptyset}{\emptyset} \text{ work}$$
 $\lim_{x \to 4} \frac{(x - 4)(x + 1)^2}{(x - 4)(x + 1)^2} = > (4 - 4)(4 + 1)^2 = > \emptyset$

$$1:m (x-4)(x+1)^{2} \Rightarrow (4-4)(4+1)^{2} \Rightarrow 0$$

$$x \Rightarrow 4$$

$$x \Rightarrow 4$$

$$x \Rightarrow 4$$

$$x \Rightarrow 4$$

1:m Sin 4x x
$$\frac{4/3}{3}$$

x+0 $\frac{3}{3}$

= 1:m $\frac{5:n4x}{4x}$

= $\frac{5:n4x}{4x}$

= $\frac{4}{3}$

= $\frac{5:n4x}{4x}$

= $\frac{4}{3}$

= $\frac{4}{3}$

= $\frac{4}{3}$

= $\frac{4}{3}$

$$(x \cot 3x)$$

$$(x \cot 3x)$$

$$(x \cot 3x)$$

$$(x \times \cos 3x)$$

$$x^{2} + y^{2} = r^{2} \quad (\div r^{2})$$

$$x^{2} + y^{3} = r^{2}$$

$$= (1) (4/3)$$

$$= (4/3)$$

$$= \lim_{x \to 0} (x \cos 3x)$$

$$= \lim_{x \to 0} (x \frac{x}{x} \cdot \frac{\cos 3x}{\sin 3x})$$

$$= \lim_{x \to 0} (\frac{x}{\sin x} \cdot \frac{\cos 3x}{\sin 3x})$$

$$= \lim_{x \to 0} (\frac{x}{\sin x} \cdot \frac{\cos 3x}{\sin 3x})$$

$$= \lim_{x \to 0} (\frac{x}{\sin 3x} \cdot \frac{3}{3} \cdot \cos 3x)$$

$$= \lim_{x \to 0} (\frac{3x}{\sin 3x} \cdot \frac{3}{3} \cdot \cos 3x)$$

$$= \lim_{x \to 0} (\frac{3x}{\sin 3x} \cdot \frac{3}{3} \cdot \cos 3x)$$

$$= \lim_{x \to 0} (\frac{3x}{\sin 3x} \cdot \frac{3}{3} \cdot \cos 3x)$$

$$= \lim_{x \to 0} (\frac{3x}{\sin 3x} \cdot \frac{3}{3} \cdot \cos 3x)$$

$$= \lim_{x \to 0} (\frac{3x}{\sin 3x} \cdot \frac{3}{3} \cdot \cos 3x)$$

$$= \lim_{x \to 0} (\frac{3x}{\sin 3x} \cdot \frac{3}{3} \cdot \cos 3x)$$

$$= \lim_{x \to 0} (\frac{3x}{\sin 3x} \cdot \frac{3}{3} \cdot \cos 3x)$$

$$= \lim_{x \to 0} (\frac{3x}{\sin 3x} \cdot \frac{3}{3} \cdot \cos 3x)$$

Extra examples (ex. 2)

Criven,
$$f(x) = \begin{cases} \sqrt{x_{-1}} & \text{if } x > 4 \\ 8 - 2x & \text{if } x < 4 \end{cases}$$

Determine

$$\lim_{x \to 4} f(x) = \lim_{x \to 4^{+}} f(x) = \lim_{x \to 4^{+}} f(x) = 0$$

$$\lim_{x \to 4} f(x) = \lim_{x \to 4^{+}} f(x) = \lim_{x \to 4^{+}} f(x) = 0$$

Example 2

$$f(x) = \begin{cases} \sqrt{x_{-3}} & \text{if } x > 4 \\ 8 - 2x & \text{if } x < 4 \end{cases}$$
Determine

$$\lim_{x \to 4} f(x) = \lim_{x \to 4^{+}} f(x) = \lim_{x \to 4^{+}} f(x) = 0$$

$$\lim_{x \to 4^{+}} f(x) = \lim_{x \to 4^{+}} f(x) = 0$$

$$\lim_{x \to 4^{+}} f(x) = \lim_{x \to 4^{+}} f(x) = 0$$
Example 3

$$\lim_{x \to 4^{+}} f(x) = \lim_{x \to 4^{+}} f(x) = 0$$
Example 4

$$\lim_{x \to 4^{+}} f(x) = \lim_{x \to 4^{+}} f(x) = 0$$
Example 4

$$\lim_{x \to 4^{+}} f(x) = \lim_{x \to 4^{+}} f(x) = 0$$
Mare

MORE

Example 8

Determine.

1:m
$$\left(\frac{1}{x-2} - \frac{4}{x^2-4}\right)$$
 = $O(6)$

1:m $\left(\frac{1}{x+2} - \frac{4}{x^2-4}\right)$ = $O(6)$

1:m $\left(\frac{1}{x+2} - \frac{4}{x^2-4}\right)$ = $O(6)$

1:m $\left(\frac{1}{x+2} - \frac{4}{x^2-2}\right)$ = $O(6)$

1:m $\left(\frac{1}{x+2} - \frac{1}{x+2}\right)$ = $O(6)$

1:m $\left(\frac{1}{x+2} - \frac{1}{x+$

1:0

5:05×

0

X +0 5:07x

f(x) = - sinx (0 = x = 2x)
Continuous everywhere in its domain
S:nx ≥ Ø 310
$S: n \times \geq \emptyset$ $\emptyset \leq \times \leq \mathcal{H}$ $T \subset \mathbb{R}$
Thus, f is continuous on [0,70]
2014.10003 On [8, 10]
Tologopaliala
Intermed: ate Value Theorem
,