Résolution de Problèmes Recherche Locale - Suite

Marie Pelleau marie.pelleau@unice.fr

Master 1 - Semestre 1

Recherche locale

Principe

- On part d'une solution initiale
- À chaque étape, on modifie la solution
 - en essayant d'améliorer la valeur de la fonction objectif
 - en espérant obtenir l'optimum global
- Approche locale
 - suivant les problèmes pas de garantie d'optimalité (heuristique)
 - peu coûteuse

Remarque

- Cela suppose qu'il existe une fonction objectif
- Comment faire s'il n'en existe pas ?

Principe

- Étant donné un problème sous la forme
 - $\mathcal{V} = \{v_1, \dots, v_n\}$: variables
 - $\mathcal{D} = \{D_1, \dots, D_n\}$: domaines
 - $C = \{C_1, \dots, C_p\}$: contraintes
- Fonction objectif à minimiser : nombre de contraintes non satisfaites

Intuition

- Recherche guidée par la structure du problème
 - les contraintes donnent de la structure au problème et les variables les lient ensemble
- Tout type de contraintes peut être utilisé

N-reines

- Sur un échiquier de $n \times n$
- Placer n reines de telle sorte qu'aucune reine ne puisse en capturer une autre

Formulation

- l_i : colonne de la reine sur le ligne i
- $l_i \neq l_j$
- $l_i + i \neq l_j + j$ (diagonale montante)
- $l_i i \neq l_j j$ (diagonale descendante)

Fonction objectif

Nombre de contraintes non satisfaites

Formulation

Fonction objectif: 4

Formulation

Fonction objectif: 3

Formulation

Fonction objectif: 1

Formulation

Fonction objectif: 0

Carré Magique

Description

- Placer tous les nombres de 1 à n^2 sur un carré de $n \times n$
- La somme de chaque ligne, chaque colonne, et les 2 diagonales sont égales

	17	24	1	8	15	ightarrow 65
	23	5	7	14	16	\rightarrow 65
	4	6	13	20	22	\rightarrow 65
	10	12	19	21	3	\rightarrow 65
	11	18	25	2	9	\rightarrow 65
/	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	7
	65	65	65	65	65	65

6 / 8

65

Musique : série tous intervalles

Description

- Dans les années 20, Arnold Schönberg crée un principe de composition : le dodécaphonisme
- On considère la gamme chromatique, on cherche un motif dans lequel
 - toutes les notes apparaissent exactement une fois
 - les intervalles (entre 2 notes successives) doivent être différents

Example (Solution triviale)

Alice et Bob vont au travail

Description

- Alice va au travail en voiture (30 à 40 min) ou par bus (au moins 60 min)
- Bob s'y rend en vélo (40 ou 50 min) ou en moto (20 à 30 min)
- Ce matin :
 - Alice a quitté sa maison entre 7h10 et 7h20
 - Bob est arrivé au travail entre 8h00 et 8h10
 - Alice est arrivée 10 à 20 min après que Bob soit parti
- Modélisez ce problème
- L'histoire est-elle cohérente ?
- Quand Bob est-il parti? Est-il possible qu'il ait pris son vélo?
- L'histoire est-elle cohérente si on ajoute le fait que :
 - la voiture d'Alice est en panne
 - Alice et Bob se sont rencontrés en chemin