Control Systems Gate Question Presentation

Ritwik Sahani

IITH

February 18, 2020

Q. Consider the unity feedback control system shown. The value of K the results in the phase margin of system to be 30° is Ans: 1.047

Definition

Phase margin is the difference between phase of G(s)H(s) and -180° evaluated at gain crossover frequency (ω_{gc}).

Where ω_{gc} is defined as the frequency at which magnitude of G(s)H(s) is unity.

$$\mathsf{PM} = \phi - (-180^\circ) = \phi + 180^\circ$$

Calculation

In our case H(s) = 1, $G(s) = Ke^{-s}/s$.

Put s = $j\omega$ for frequency domain analysis, and equate $|G(j\omega_{gc})|$ to 1. We have,

$$|\frac{\mathit{Ke}^{-j\omega_{gc}}}{j\omega_{gc}}|=1 \implies \omega_{gc}=\mathsf{K}$$
 (assuming positive K)

then,
$$\angle G(j\omega_{gc})$$
 H(j ω_{gc}) = $\angle \frac{Ke^{-j\omega_{gc}}}{j\omega_{gc}}$ = $\angle \frac{Ke^{-jK}}{jK}$
 $\implies -90^{\circ} - K * 180/\pi$ [= ϕ]

Calculation

$$PM = 30^{\circ} = \phi + 180^{\circ}$$

On solving, we get K =
$$\frac{\pi}{3}$$
 = 1.047

Verification

