Analysis of Image Tranforms for Sketch-based Retrieval

Felix Stürmer

Technische Universität Berlin Fakultät IV - Elektrotechnik und Informatik Computer Graphics

02.11.2012

Introduction and Background

Introduction and Background

Motivation and Challenges of CBIR

Prior Work

Anatomy of a CBIR System

Proposed Solution

Proposed Retrieval Pipelines

Acquisition

The Curvelet Transform

Feature Extraction

Ranking

Results

Benchmarking

Cross-Domain Results

Intra-Domain Results

Conclusions

Motivation

Challenges of CBIR

The Semantic Gap

"The semantic gap is the **lack of coincidence** between the information that one can extract from the **visual data** and the **interpretation** that the same data have for a user in a given situation." – Smeulders et al.

The Sensory Gap

"The sensory gap is the gap between the **object in the** world and the information in a (computational) description derived from a **recording of that scene**." – Smeulders et al.

Introduction and Background

Prior Work on Human Recognition

Figure: "Face recognition using curvelet based PCA.", T. Mandal and Q. M.J Wu, ICPR 2008

Prior Work on Human Recognition

Figure: "Histograms of oriented gradients for human detection", Dalal and Triggs, CVPR 2005

Prior Work on Visual Codebooks

Results

Figure: "Video Google: A text retrieval approach to object matching in videos", Sivic and Zisserman, ICCV 2003

Introduction and Background

Prior Work on Scene Classification

Figure: "Spatial pyramid matching", Lazebnik et al., 2009

Anatomy of a CBIR System

Figure: Global Descriptors

Figure: Local Descriptors

Proposed Retrieval Pipelines (Global)

Proposed Retrieval Pipelines (Local)

Introduction and Background

Figure: Original Image

Figure: Luma Conversion

Introduction and Background

Figure: Original Image

Figure: Canny Operator

Introduction and Background

Figure: Original Image

Figure: Sobel Operator

Introduction and Background

Figure: Original Image

Figure: gPb-owt-ucm Transform

Properties of the Curvelet Transform

- ► An extension of the wavelet transform
- Localized in position, scale and orientation
- ► Curvelets obey parabolic scaling: $width \approx length^2$
- ▶ Approximation error along edges using m largest coefficients decays with $\frac{log(m)^3}{m^2}$ (compare $\frac{1}{m}$ for wavelets)
- Defined in frequency domain using

Constructing the Curvelets

Figure: Frequency Domain

Figure: Spatial Domain

Introduction and Background

Constructing the Curvelets

Figure: Frequency Domain

Figure: Spatial Domain

Constructing the Curvelets

Figure: Frequency Domain

Figure: Spatial Domain

Constructing the Curvelets

Figure: Frequency Domain

Figure: Spatial Domain

Introduction and Background

Example Curvelets

Figure: Frequency Domain

Figure: Spatial Domain

Introduction and Background

The Fast Discrete Curvelet Transform

Figure: Frequency Domain

Figure: Parallelogram Support

The Fast Discrete Curvelet Transform

Figure: Frequency Domain

Figure: Parallelogram Support

The Fast Discrete Curvelet Transform

Figure: Frequency Domain

Figure: Parallelogram Support

The Fast Discrete Curvelet Transform

Figure: Frequency Domain

Figure: Parallelogram Support

Global Feature Extraction

Figure: Curvelet coefficients at a specific scale and angle

Figure: Mean values on an 8×8 grid

Introduction and Background

Local Feature Extraction (Sampling)

PMEAN Collect $(n-m+1)^2$ sample vectors of length $N_s \cdot N_{\theta_s} \cdot m^2$ by concatenating across scales and angles

PMEAN2 Collect $N_s \cdot (n-m+1)^2$ sample vectors of length $N_{\theta_a} \cdot m^2$ by concatenating across angles

Figure: 8×8 mean coefficient grid sampled using 3×3 window

n image width and height

- m window width and height
- N_s Number of scales
- N_{θ} . Number of angles at scale s

Local Feature Extraction (Clustering)

- k-means clustering
- ightharpoonup Codebook size k = 1000
- ▶ Each sample vector is assigned to the closest cluster S_i , i = 1, ..., k

Proposed Solution

► Image signature is the number of occurences of each "visual word" in the image:

$$\tilde{I} = [|S_1|, |S_2|, \dots, |S_k|]$$

Ranking

Benchmarking Method

Cross-Domain Results

Results ○○●

Intra-Domain Results

