

РАЗБОР КЕЙСОВ РЕАЛЬНЫХ БИЗНЕСОВ. ПОИСК ИНСАЙДОВ В ДАННЫХ

Максим Чикуров

Data Scientist и руководитель команды аналитики

Работал в компаниях Citibank, BNP Paribas, Barclays Bank, Teradata

О ЧЕМ ПОГОВОРИМ И ЧТО СДЕЛАЕМ

План лекции

- Статистические тесты
- а/b тестирование
- Корреляция
- Практика в Gretl

Статистические тесты

Z-test

Применяется при проверке нулевой гипотезы о том,

что математическое ожидание случайной величины равно некоторому значению m

Z-оценки являются стандартными отклонениями. Если, например, инструмент возвращает z-оценку +2.5, вы сказали бы, что результат – это 2.5 стандартных отклонений. И z-оценки, и р-значения связаны со стандартным нормальным распределением, как показано на картинке.

Z-test

Z-test

Важно понимать!

Z-test - класс методов статистической проверки гипотез (статистических критериев), основанных на нормальном распределении.

Продолжение кейса грузоперевозок

Известно, что наша компания испытывает существенные проблемы с задержками в доставке грузов. При этом компания конкурент распространила информацию о том, что якобы не более 70% грузов доставляются нашей компанией вовремя. Информация о времени доставки не фиксируется в информационных системах (CRM / ERP). Вы выбрали 100 случайных накладных на перевозки и определи, что в 82 случаях грузы были доставлены во время.

Вопрос: Можем ли мы говорить о том, что конкурент распространяет ложную информация о нашей компании?

Распределение Бернулли

Случайная величина **X** имеет распределение Бернулли, если она принимает всего два значения: **1 и 0** с вероятностями **p** и **q = 1-p** соответственно.

Математическое ожидание (среднее) = ${f p}$ Дисперсия ${f v}=p imes q$ Стандартное отклонение ${f \sigma}=\sqrt{p imes q}$

Решение задачи

Исходя из условий задачи определяем характеристики распределение генеральной совокупности при вероятности успеха 70%:

- 1. Это распределение Бернулли
- 2. Среднее (p) = 0.7
- 3. Стандартное отклонение (sigma) = 0,45

Решение задачи

Для решения задачи необходимо определить вероятность получения выборки из 100 значений со средним 0,82. (р = 0.82)

$$SE = \frac{\sigma}{\sqrt{n}} \approx \frac{0.45}{10} \approx 0.05$$

$$Z = \frac{0.82 - 0.7}{0.05} = 2.4$$

Такое Z, соответствует P-value = 0,99. Что следует интерпретировать как вероятность получения выборки из 100 значений со средним меньше 0,82.

ПРАВИЛО ДВУХ СИГМ

a/b тестирование

Формально:

А/В тестирование – способ сравнения двух вариантов переменной (выборок А и В), основанный на методах статистики. Результатом А/В тестирования является оценка большей эффективности одного из вариантов. Другими словами это способ ответить на вопрос является ли вариант А лучше варианта В или наоборот.

a/b тестирование

Это мощный маркетинговый инструмент для повышения эффективности работы вашего интернет-ресурса.

С помощью A/B тестов повышают конверсию посадочных страниц, подбирают оптимальные заголовки объявлений в рекламных сетях, улучшают качество поиска.

Зачем?

Представим, наш проект запущен в жизнь, на нем собирается трафик, пользователи активно используют ресурс.

И в один прекрасный день мы решили что-то поменять, например, разместить всплывающий виджет для удобства подписки на новости.

Ho

Наши предположения и гипотезы строятся на основе личного опыта и наших взглядов, которые совсем не обязательно совпадают со взглядами аудитории нашего ресурса.

Для чего используют а/б тесты

UI/UX

2Эластичность спроса

3 Микро-запуски

Раздача листовок

Промоутеры раздали по 3 000 листовок двух видов:

- На листовку А пришли 134 человека
- На листовку Б пришел 121 человек

Можем ли мы сделать вывод, что листовка А работает лучше?

Раздача листовок

	Всего	Успех	Конверсия	95% доверительный интервал	
Α	3000	134	4,47%	3,73%	5,21%
В	3000	121	4,03%	3,33%	4,74%

Формулы

$$Z = \frac{p_1 - p_2}{\sqrt{SE_1^1 + SE_2^2}}$$
 $SE = \sqrt{\frac{p \times (1 - p)}{n}}$

https://vwo.com/ab-split-test-significance-calculator/

https://vwo.com/downloads/ab testing significance calculator.xls

Peeking problem

Разработчики проявили инициативу и написали скрипт, который каждые несколько часов считал конверсию в первую покупку для тестовой и контрольной версий и проверял, является ли разница значимой.

Спустя несколько дней система выдала сообщение о наличии значимой разницы.

Эксперимент признали успешным и новую версию раскатили на всех пользователей.

Вы могли не заметить, но в процесс анализа эксперимента закралась коварная ошибка.

Peeking problem

Peeking problem

Заметить разницу в 1 %

Мы хотим обновить страницу товара нашего интернет магазин и ожидаем прирост конверсии в покупку на 1% в абсолютном значении

в аосолютном значении

Знаем, что средняя историческая конверсия в покупку — 5 %

На какое количество пользователей нам нужно раскатить решение, чтобы добиться статистической значимости?

Вывод: Перед проведением а/б теста необходимо предварительно оценить размер выборки

ПРАКТИКА

Email рассылка

	Получили	Открыли	Доля, %	Перешли	Доля, %	Заказали	Доля, %
Базовый вариант	35000	3150	9.0	2025	63.3	59	2.90
Зеленая кнопка	2050	189	9.2	134	71.2	4	2.87
Красная кнопка	1950	199	10.2	131	66.1	3	2.60

Что делать дальше?

Запускаем приложение

	Перешли	Скачали	Конверсия, %	Купили	Конверсия, %
Лендинг 1	2427	457	18.8	14	0.58
Лендинг 2	2144	622	29.0	16	0.75

Что делать дальше?

КОРРЕЛЯЦИЯ

Scatterplot for quality characteristic XXX

Корреляция

Коротко:

Взаимозависимость двух или нескольких случайных величин.

Суть ее заключается в том, что при изменении значения одной переменной происходит закономерное изменение (уменьшению или увеличению) другой (-их) переменной (-ых).

Коэффициент корреляции

параметр, который характеризует степень линей-ной взаимосвязи между двумя выборками,

рассчитывается по формуле:

$$r_{xy} = \frac{\sum (x_i - \overline{x}) \cdot (y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \cdot \sum (y_i - \overline{y})^2}}$$

Практика с набором данных "Цены на квартиры"

ЗАВИСИМОСТИ

Area и Price

Rooms и Price

DistMetro и Price

ПРАКТИКА

Дополнительные материалы

- 1. ru.wikihow.com/рассчитать-линейный-коэффициент-корреляции
- gopractice.ru
- retailrocket.ru/blog/
- 4. <u>habr.com/post/233911/</u>
- 5. <u>www.evanmiller.org/ab-testing/sample-size.html</u>
- 6. <u>hungrysites.ru/ab</u>
- 7. <u>www.evanmiller.org/how-not-to-run-an-ab-test.html</u>
- 8. https://netology.ru/blog/03-2019-statisticheskaya-znachimost

СПАСИБО ЗА ВНИМАНИЕ