Distribution Theory — Example Sheet 2

Lucas Riedstra

18 November 2020

Question 1. Let $u, v \in \mathcal{D}'(\mathbb{R}^n)$, one of which has compact support. Show that the convolution u * v, defined as in your notes, is uniquely defined and gives rise to an element of $\mathcal{D}'(\mathbb{R}^n)$.

Proof. The convolution between $u, v \in \mathcal{D}'(\mathbb{R}^n)$ is defined by the formula

$$(u * v) * \varphi = u * (v * \varphi) \text{ for all } \varphi \in \mathcal{D}(\mathbb{R}^n).$$
 (1)

To show that this is uniquely defined, recall that for all $u \in \mathcal{D}'(\mathbb{R}^n)\varphi \in \mathcal{D}(\mathbb{R}^n)$, we have $\langle u, \varphi \rangle = (u * \check{\varphi})(0)$. Therefore, we have

$$\langle u * v, \varphi \rangle = ((u * v) * \check{\varphi})(0) = (u * (v * \check{\varphi}))(0),$$

which shows that the formula eq. (1) uniquely defines $\langle u * v, \varphi \rangle$ for any $\varphi \in \mathcal{D}(\mathbb{R}^n)$, and therefore that u * v is well-defined.

Now we prove that $u * v \in \mathcal{D}'(\mathbb{R}^n)$: by the previous equation we have

$$\langle u * v, \varphi \rangle = (u * (v * \check{\varphi}))(0) = \langle u, v * \check{\varphi} \rangle.$$

Suppose u is compactly supported. Since $v*\check{\varphi}\in\mathcal{E}(\mathbb{R}^n)$, there exists a compact $K\subseteq X$ and nonnegative C,N such that

$$\begin{split} \left| \langle u, \widetilde{v * \check{\varphi}} \rangle \right| &\leqslant C \sum_{\alpha \leqslant N} \sup_{x \in K} \left| \widehat{\partial}^{\alpha} (\widetilde{v * \check{\varphi}}) \right| = C \sum_{\alpha \leqslant N} \sup_{x \in -K} \left| \widehat{\partial}^{\alpha} (v * \check{\varphi}) \right| = C \sum_{\alpha \leqslant N} \sup_{x \in -K} \left| v * \widehat{\partial}^{\alpha} \check{\varphi} \right| \\ &= C \sum_{|\alpha| \leqslant N} \sup_{x \in -K} \left| \langle v, \tau_x \widetilde{\partial}^{\alpha} \check{\varphi} \rangle \right|. \end{split}$$

Note that if supp $\varphi \subseteq K'$, then supp $\check{\varphi} \subseteq -K'$, and for $x \in -K$ we find supp $\tau_x \widetilde{\partial^{\alpha} \check{\varphi}} \subseteq -K' - K$. Then by the previous equation we find that there exists C', M with

$$|\langle u*v,\varphi\rangle|\leqslant C'\sum_{|\alpha|\leqslant N}\sum_{|\beta|\leqslant M}\sup_{x\in -K'-K}\partial^{\beta}(\tau_{x}\widecheck{\partial^{\alpha}\widecheck{\varphi}})\leqslant C'\sum_{|\alpha|\leqslant N}\sum_{|\beta|\leqslant M}\sup_{x}\left|\partial^{\alpha+\beta}\varphi\right|\leqslant C''\sum_{|\alpha|\leqslant M+N}\sup_{x}\left|\partial^{\alpha}\varphi\right|,$$

which shows that $u * v \in \mathcal{D}'(\mathbb{R}^n)$. An analogous argument holds if v is compactly supported.

Question 2. Show that if $u, v, w \in \mathcal{D}'(\mathbb{R}^n)$ and at least two of them have compact support, then the convolution is associative (i.e., (u * v) * w) = u * (v * w)).

Proof. Note that the convolution between two compactly supported distributions is again compactly supported, which ensures that both expressions 'make sense'. Now, let $\varphi \in \mathcal{D}(\mathbb{R}^n)$, then we have

$$((u*v)*w)*\varphi = (u*v)*(w*\varphi) = u*(v*(w*\varphi)) = u*((v*w)*\varphi) = (u*(v*w))*\varphi,$$

which proves the theorem.

Question 3. Let $\varphi \in \mathcal{D}(\mathbb{R})$ and choose $\varepsilon > 0$ sufficiently small so that $\operatorname{supp}(\varphi) \subset I_{\varepsilon} = (-1/\varepsilon, 1/\varepsilon)$. Given that φ has a uniformly convergent Fourier series on I_{ε} in the form

$$\varphi(x) = \sum_{n \in \mathbb{Z}} c_n e^{i\varepsilon \pi nx}, \quad c_n = \frac{\varepsilon}{2} \int_{\mathbb{R}} \varphi(x) e^{-i\varepsilon \pi nx} dx,$$

prove the Fourier inversion theorem on $\mathcal{D}(\mathbb{R})$ by taking a suitable limit.

Proof. Since $\mathcal{D}(\mathbb{R}) \subseteq \mathcal{S}(\mathbb{R})$, we know that the Fourier inversion formula holds. We only need to show that the Fourier transform of φ is again an element of $\mathcal{D}(\mathbb{R})$. (??)

Question 4. For $\varphi \in \mathcal{S}(\mathbb{R}^n)$ prove that $\sum_m \varphi(m) = \sum_n \hat{\varphi}(2\pi n)$. This is the famous Poisson summation formula.

Proof. We have

$$\sum_{m} \varphi(m) = \frac{1}{(2\pi)^n} \sum_{m} \int e^{i\lambda m} \hat{\varphi}(\lambda) \, d\lambda = \sum_{m} \int e^{2\pi i \lambda m} \hat{\varphi}(2\pi \lambda) \, d\lambda$$

(??)

Question 5. If $u \in H^s(\mathbb{R}^n)$ show that $D^{\alpha}u \in H^{s-|\alpha|}(\mathbb{R}^n)$. If s > t show that $H^s(\mathbb{R}^n) \subseteq H^t(\mathbb{R}^n)$.

Proof. Assuming $u \in H^s(\mathbb{R}^n)$, we have

$$\int_{\mathbb{R}^n} \langle \lambda \rangle^{2(s-|\alpha|)} \left| \widehat{D^{\alpha} u}(\lambda) \right|^2 d\lambda = \int_{\mathbb{R}^n} \langle \lambda \rangle^{2(s-|\alpha|)} ||\lambda||^{2|\alpha|} |\hat{u}(\lambda)|^2 d\lambda
\lesssim \int_{\mathbb{R}^n} \langle \lambda \rangle^{2s} |\hat{u}(\lambda)|^2 d\lambda < \infty,$$

which proves $D^{\alpha}u \in H^{s-|\alpha|}(\mathbb{R}^n)$.

The second claim follows immediately from the fact that $\langle \lambda \rangle^t \leq \langle \lambda \rangle^s$ for $s \geq t$ and λ sufficiently large.

Question 6. Show that $S(\mathbb{R}^n)$ is dense in $L^2(\mathbb{R}^n) = H^0(\mathbb{R}^n)$ and deduce that $S(\mathbb{R}^n)$ is dense in $H^s(\mathbb{R}^n)$.

Hint: Use Parseval's theorem.

Proof. We will show that $\mathcal{D}(\mathbb{R}^n)$ is dense in $L^2(\mathbb{R}^n)$: since $\mathcal{D}(\mathbb{R}^n) \subseteq \mathcal{S}(\mathbb{R}^n)$, this shows that $\mathcal{S}(\mathbb{R}^n)$ is dense in $L^2(\mathbb{R}^n)$ as well.

TODO: Give proof.

Now, for $u \in H^s(\mathbb{R}^n)$, let $(\varphi_m) \to u$ in L^2 . Then we have

$$\|\varphi_m - u\|_{H^s}^2 = \int \langle \lambda \rangle^{2s} |(\varphi_m - u)(\lambda)|^2 d\lambda$$

Question 19. Compute the Fourier transforms of the functions

- (a) sign(x);
- (b) $\arctan(x)$;
- (c) $x \log |x| x$;
- (d) $\exp(i\omega x^2)$

in $\mathcal{S}'(\mathbb{R})$, where $\omega \in \mathbb{R}$.

Proof. (a) We have for $\varphi \in \mathcal{S}(\mathbb{R})$ that

$$\begin{split} \widehat{\langle \mathrm{sign}}, \varphi \rangle &= \langle \mathrm{sign}, \hat{\varphi} \rangle = \int_{\mathbb{R}} \mathrm{sign}(\lambda) \hat{\varphi}(\lambda) \, \mathrm{d}\lambda = \int_{\mathbb{R}} \mathrm{sign}(\lambda) \int_{\mathbb{R}} e^{-i\lambda x} \varphi(x) \, \mathrm{d}x \, \mathrm{d}\lambda \\ &\stackrel{\star}{=} \int_{\mathbb{R}} \varphi(x) \int_{\mathbb{R}} \mathrm{sign}(\lambda) e^{-i\lambda x} \, \mathrm{d}\lambda \, \mathrm{d}x = \int_{\mathbb{R}} \varphi(x) \lim_{R \to \infty} \left(\int_{0}^{R} e^{-i\lambda x} \, \mathrm{d}\lambda - \int_{-R}^{0} e^{-i\lambda x} \, \mathrm{d}\lambda \right) \mathrm{d}x \\ &= \lim_{\varepsilon \to 0} \lim_{R \to \infty} \int_{|x| > \varepsilon} \varphi(x) \left(\frac{e^{ixR} + e^{-ixR}}{ix} - \frac{2}{ix} \right) \mathrm{d}x \\ &= \lim_{\varepsilon \to 0} \lim_{R \to \infty} \int_{\mathbb{R}} \frac{\varphi(x) \mathbbm{1}_{|x| > \varepsilon}}{ix} \cdot e^{ixR} \, \mathrm{d}x + \lim_{\varepsilon \to 0} \lim_{R \to \infty} \int_{\mathbb{R}} \frac{\varphi(x) \mathbbm{1}_{|x| > \varepsilon}}{ix} \cdot e^{-ixR} \, \mathrm{d}x + 2i \mathrm{P.V.} \left(\frac{1}{x} \right). \end{split}$$

We claim the first two terms go to 0: this is because the term in the integral is the Fourier transform of $\frac{\varphi(x)\mathbbm{1}_{|x|>\varepsilon}}{ix}$ evaluated at $\pm R$, and since the function is in L^1 , its Fourier transform decays to 0 as $|R| \to \infty$.

We conclude $\widehat{\text{sign}} = 2i\text{P.V.}(\frac{1}{x})$.

(b) We know that $\arctan'(x) = \frac{1}{1+x^2} =: f(x)$, then we have $\widehat{\arctan(\lambda)} = \frac{1}{i\lambda} \hat{f}(\lambda)$ (in the distributional sense).

We have, using Fubini and the fact that $\langle \hat{f}, \varphi \rangle$ is finite, that

$$\langle \hat{f}, \varphi \rangle = \int_{\mathbb{R}} \frac{\hat{\varphi}(\lambda)}{1 + \lambda^2} \, \mathrm{d}\lambda = \int_{\mathbb{R}} \varphi(x) \lim_{R \to \infty} \int_{-R}^{R} \frac{e^{-i\lambda x}}{1 + \lambda^2} \, \mathrm{d}\lambda \, \mathrm{d}x \stackrel{\star}{=} \int_{\mathbb{R}} \varphi(x) \Big(\pi e^{-|x|} \Big) \, \mathrm{d}x \,,$$

from which it follows that the Fourier transform of $\frac{1}{1+x^2}$ is given by $\pi e^{-|\lambda|}$, and therefore the Fourier transform of arctan is given by $\frac{\pi}{i\lambda}e^{-|\lambda|}$.

- (c) The derivative of this function, outside of 0, is $\log |x|$.
- (d) Clearly, if $\omega = 0$, the function is 1 and its Fourier transform is $2\pi\delta_0$, so assume $\omega \neq 0$. We have analogously to (b), with $f(x) = \exp(i\omega x^2)$, that

$$\langle \hat{f}, \varphi \rangle = \int_{\mathbb{R}} \hat{\varphi}(\lambda) e^{i\omega\lambda^2} d\lambda = \int_{\mathbb{R}} \varphi(x) \lim_{R \to \infty} \int_{-R}^{R} e^{i\omega\lambda^2 - i\lambda x} d\lambda dx.$$

Now, by completing the square we have

$$i(\omega\lambda^2 - x\lambda) = i\bigg(\sqrt{\omega}\lambda - \frac{x}{2\sqrt{\omega}}\bigg)^2 - \frac{ix^2}{4\omega},$$

and therefore

$$\lim_{R \to \infty} \int_{-R}^{R} e^{i\omega\lambda^2 - i\lambda x} d\lambda = e^{-ix^2/(4\omega)} \lim_{R \to \infty} \int_{-R}^{R} e^{i(\sqrt{\omega}\lambda - \frac{x}{2\sqrt{\omega}})^2} d\lambda = \frac{e^{-ix^2/(4\omega)}}{\sqrt{\omega}} \lim_{R \to \infty} \int_{-R}^{R} e^{i\lambda^2} d\lambda$$
$$= \frac{e^{-ix^2/(4\omega)}}{\sqrt{\omega}} (1+i)\sqrt{\frac{\pi}{2}},$$

where we use that the Fresnel integral $\int_{-\infty}^{\infty} e^{ix^2} dx$ is known.

Plugging this back into our original equation yields

$$\langle \hat{f}, \varphi \rangle = \int_{\mathbb{R}} \varphi(x) \frac{e^{-ix^2/(4\omega)}}{\sqrt{\omega}} (1+i) \sqrt{\frac{\pi}{2}} \, \mathrm{d}x \,,$$

which shows that

$$\hat{f}(\lambda) = (1+i)e^{-i\lambda^2/(4\omega)}\sqrt{\frac{\pi}{2\omega}}.$$

in the distributional sense.