Model Question Paper- I with effect from 2022

CBCS SCHEME

First Semester B.E Degree Examination_____

Mathematics-I for Computer Science Engineering Stream (BMATS101)

TIME: 03Hours Max.Marks:100

- 1. Note: Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**
- 2. VTU Formula Hand Book is Permitted
- 3. M: Marks, L: Bloom's level, C: Course outcomes.

				1				
		Module - 1	M	L	С			
Q.1	a	With usual notation prove that $\tan \phi = r \frac{d\theta}{dr}$.	6	L2	CO1			
	b	Find the anglebetweenthe curves $r = a \log \theta$, $r = \frac{\theta}{\log \theta}$	7	L2	CO1			
	c	Show that the radius of curvature at any point of the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 - \cos \theta)$ is $4a \cos \left(\frac{\theta}{2}\right)$.	7	L3	CO1			
		OR						
Q.2	a	Show that the curves $r = a(1 + \sin \theta)$ and $r = a(1 + \sin \theta)$ cut each other orthogonally.	7	L2	CO1			
	b	Find the pedal equation of the curve $\frac{2a}{r} = (1 + \cos \theta)$.	8	L2	CO1			
	c	Using modern mathematical tool write a program/code to plot the curve $r = 2 \cos 2\theta $.	5	L3	CO5			
Module – 2								
Q.3	a	Expand $\log(\sec x)$ by Maclaurin's series up to the term containing x^4 .	6	L2	CO1			
	b	If $u = e^{(ax+by)}f(ax-by)$, prove that $b\frac{\partial u}{\partial x} + a\frac{\partial u}{\partial y} = 2abu$ by using concepts composite functions.	7	L2	CO1			
	c	Find the extreme values of the function $f(x, y) = x^3 + 3xy^2 - 3y^2 - 3x^2 + 4$	7	L3	CO1			
	OR							
Q.4	a	Evaluate (i) $\lim_{x\to 0} \left(\frac{a^x + b^x}{2}\right)^{\frac{1}{x}}$. (ii) $\lim_{x\to 0} \left(\frac{tanx}{x}\right)^{1/x}$.	7	L2	CO1			

Model Question Paper- I with effect from 2022

	_							
	b	If $x + y + z = u$, $y + z = uv$, $z = uvw$ find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.	8	L2	CO1			
	c	Using modern mathematical tool write a program/code to show that $u_{xx} + u_{yy} = 0$ given $u = e^x(x \cos(y) - y \sin(y))$.	5	L3	CO5			
Module – 3								
Q.5	a	dy y 2 c	6	L2	CO2			
	b	Find the orthogonal trajectories of $\frac{x^2}{a^2} + \frac{y^2}{b^2 + \lambda} = 1$, where λ is a parameter.	7	L3	CO2			
	c	Solve $xyp^2 - (x^2 + y^2)y + xy = 0$.	7	L2	CO2			
		OR		•				
Q.6	a	Solve $(x^2 + y^2 + x) dx + xy dy = 0$	6	L2	CO2			
	b	When a switch is closed in a circuit containing a battery E, a resistance R and an inductance L, the current i build up at a rate given by	7	L3	CO2			
		$L\frac{di}{dt} + Ri = E$. Find i as a function of t. How long will it be, before the current has reached one-half its final value, if E=6 volts, R=100 Ohms and L=0.1 Henry?						
	c	Find the general solution of the equation $(px - y)(py + x) = a^2p$ by reducing into Clairaut's form by taking the substitution $X = x^2$, $Y = y^2$.	7	L2	CO2			
Module – 4								
Q.7	a	Find the least positive values of x such that (i) $71 \equiv x \pmod{8}$ (ii) $78 + x \equiv 3 \pmod{5}$ (iii) $89 \equiv (x+3) \pmod{4}$	6	L2	CO3			
	b	Find the remainder when $(349 \times 74 \times 36)$ is divided by 3.	7	L2	CO3			
	c	Solve: $2x + 6y \equiv 1 \pmod{7}$ and $4x + 2y \equiv 2 \pmod{7}$.	7	L3	CO3			
OR								
Q.8	a	(i) Find the last digit of 7^{2013} (ii) Find the last digit of 13^{37} .	6	L2	CO3			
	b	Find the remainder when the number 2^{1000} is divided by 13.	7	L3	CO3			
	c	Find the remainder when 14! is divided by 17.	7	L2	CO3			

Model Question Paper- I with effect from 2022

Module – 5							
Q.9	a	Find the rank of the matrix $\begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$	6	L2	CO4		
	b	Solve the system of equations by Gauss-Jordan method $x + y + z = 10$, $2x - y + 3z = 19$, $x + 2y + 3z = 22$.	7	L3	CO4		
	c	Forwhatvalues λ and μ thesystemofequations $2x+3y+5z=9$, $7x+3y-2z=8$, $2x+3y+\lambda z=\mu$, has (i) nosolution (ii) auniquesolutionand (iii) infinitenumber of solutions.	7	L2	CO4		
OR							
Q.10	a	Solve the following system of equations by Gauss – Seidel method $10x + y + z = 12$, $x + 10y + z = 12$, $x + y + 10z = 12$.	8	L3	CO4		
	b	Solve the following system of equations by Gauss-Elimination method $x + y + z = 9$, $x - 2y + 3z = 8$, $2x + y - z = 3$.	7	L3	CO4		
	С	Using modern mathematical tool write a program/code to find the largest eigen value of $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ by power method.	5	L3	CO5		