

planetmath.org

Math for the people, by the people.

Scott topology

Canonical name ScottTopology

Date of creation 2013-03-22 16:49:29 Last modified on 2013-03-22 16:49:29

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 10

Author CWoo (3771)
Entry type Definition
Classification msc 06B35
Defines Scott open

Let P be a dcpo. A subset U of P is said to be $Scott\ open$ if it satisfies the following two conditions:

- 1. U an upper set: $\uparrow U = U$, and
- 2. if D is a directed set with $\bigvee D \in U$, then there is a $y \in D$ such that $(\uparrow y) \cap D \subseteq U$.

Condition 2 is equivalent to saying that U has non-empty intersection with D whenever D is directed and its supremum is in U.

For example, for any $x \in P$, the set $U(x) := P - (\downarrow x)$ is Scott open: if $y \in \uparrow U(x)$, then there is $z \in U(x)$ with $z \leq y$. Since $z \notin \downarrow x$, $y \notin \downarrow x$. So $y \in U(x)$, or that U(x) is upper. If D is directed and $e \leq x$ for all $e \in D$, then $d := \bigvee D \leq x$ as well. Therefore, $d \in U(x)$ implies $e \in U(x)$ for some $e \in D$. Hence U(x) is Scott open.

The collection $\sigma(P)$ of all Scott open sets of P is a topology, called the Scott topology of P, named after its inventor Dana Scott. Let us prove that $\sigma(P)$ is indeed a topology:

Proof. We verify each of the axioms of an open set:

- Clearly P itself is Scott open, and \varnothing is vacuously Scott open.
- Suppose U and V are Scott open. Let $W = U \cap V$ and $b \in \uparrow W$. Then for some $a \in W$, $a \leq b$. Since $a \in U \cap V$, $b \in \uparrow U = U$ and $b \in \uparrow V = V$. This means $b \in W$, so W is an upper set. Next, if D is directed with $\bigvee D \in W$, then, $\bigvee D \in U \cap V$. So there are $y, z \in D$ with $(\uparrow y) \cap D \subseteq U$ and $(\uparrow z) \cap D \subseteq V$. Since D is directed, there is $t \in D$ such that $t \in (\uparrow y) \cap (\uparrow z)$. So $(\uparrow t) \cap D \subseteq (\uparrow y) \cap (\uparrow z) \cap D = ((\uparrow y) \cap D) \cap ((\uparrow z) \cap D) \subseteq U \cap V = W$. This means that W is Scott open.
- Suppose U_i are open and $i \in I$ an index set. Let $U = \bigcup \{U_i \mid i \in I\}$ and $b \in \uparrow U$. So $a \leq b$ for some $a \in U$. Since $a \in U_i$ for some $i \in I$, $b \in \uparrow U_i = U_i$ as U_i is upper. Hence $b \in U_i \subseteq U$, or that U is upper. Next, suppose D is directed with $\bigvee D \in U$. Then $\bigvee D \in U_i$ for some $i \in I$. Since U_i is Scott open, there is $y \in D$ with $(\uparrow y) \cap D \subseteq U_i \subseteq U$, so U is Scott open.

Since the Scott open sets satisfy the axioms of a topology, $\sigma(P)$ is a topology on P.

Examples. If P is the unit interval: P = [0,1], then P is a complete chain, hence a dcpo. Any Scott open set has the form (a,1] if $0 < a \le 1$, or [0,1]. If $P = [0,1] \times [0,1]$, the unit square, then P is a dcpo as it is already a continuous lattice. The Scott open sets of P are any upper subset of P that is also an open set in the usual sense.

References

G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove, D. S. Scott, *Continuous Lattices and Domains*, Cambridge University Press, Cambridge (2003).