Introduction to NP-Completeness: Lecture 18

Lecturer: S. S. Ravi

Affiliation: Biocomplexity Institute and Initiative, UVA

Email: ssravi@virginia.edu

Date: Oct. 27, 2020

Request: If you send email to Ravi regarding this lecture, please be sure to cc the message to Professor Haifeng Xu (hx4ad@virginia.edu).

Outline for Lecture 18

- 1 Basic Definitions (Decision Problems and Examples)
- Complexity Classes P and NP
- 3 Polynomial Time Reductions with Examples

Basic Definitions

Terminology and Notation:

- "Efficiently solvable" and "Polynomial time solvable" are synonyms.
- For graph problems, "vertex" and "node" are synonyms.
- The Boolean values True and False are represented by 1 and 0 respectively.

Decision Problem:

- Problem specification consists of an instance and question.
- The answer to the question is "YES" or "NO".

Example – Minimum Spanning Tree (MST):

<u>Instance:</u> An undirected graph G(V, E) with a weight w(e) for each edge $e \in E$ and a number B.

Question: Does G have a spanning tree of weight at most B?

- For this graph G, choosing B = 8 leads to a "YES" instance.
- For the same graph, choosing B = 7 leads to a "NO" instance.

Additional Terminology:

- For a Boolean variable x, its **complement** is \overline{x} ; x and \overline{x} are **literals**.
- A clause is a disjunction (i.e., the OR) of literals.

Examples:
$$(\overline{x_2})$$
, $(x_1 \vee \overline{x_3})$, $(x_1 \vee \overline{x_2} \vee \overline{x_3})$

■ When we assign a 0 or 1 value to each Boolean variable, a clause evaluates to 1 (i.e., it is **satisfied**) or 0 (it is not satisfied).

Satisfiability (SAT) Problem:

Instance: A set $X = \{x_1, x_2, ..., x_n\}$ of Boolean variables and a set $F = \{C_1, C_2, ..., C_m\}$ of m clauses using the variables in X.

Note: Think of F as the formula $C_1 \wedge C_2 \wedge \cdots \wedge C_m$. Such a formula is in **Conjunctive Normal Form** (CNF).

Question: Is F satisfiable, i.e., is there an assignment of 0-1 values to variables in X such that each clause in F is satisfied?

Examples:

Let $X=\{x_1,x_2,x_3,x_4\}$ and let F_1 consist of $C_1=(x_1\vee\overline{x_3}\vee x_4)$ and $C_2=(\overline{x_2}\vee x_3\vee\overline{x_4})$. This is a "YES" instance of SAT. (Choose $x_1=1,\ x_2=0,\ x_3=0$ and $x_4=0$.)

Satisfiability (SAT) Problem:

Instance: A set $X = \{x_1, x_2, ..., x_n\}$ of Boolean variables and a set $F = \{C_1, C_2, ..., C_m\}$ of m clauses using the variables in X.

Note: Think of F as the formula $C_1 \wedge C_2 \wedge \cdots \wedge C_m$. Such a formula is in **Conjunctive Normal Form** (CNF).

Question: Is F satisfiable, i.e., is there an assignment of 0-1 values to variables in X such that each clause in F is satisfied?

Examples:

- 1 Let $X=\{x_1,x_2,x_3,x_4\}$ and let F_1 consist of $C_1=(x_1\vee\overline{x_3}\vee x_4)$ and $C_2=(\overline{x_2}\vee x_3\vee\overline{x_4})$. This is a "YES" instance of SAT. (Choose $x_1=1,\ x_2=0,\ x_3=0$ and $x_4=0$.)
- 2 Let $X = \{x_1, x_2\}$. Suppose F_2 consists of $C_1 = (x_1 \lor x_2)$, $C_2 = (\overline{x_1})$ and $C_3 = (\overline{x_2})$. This is a "NO" instance of SAT. (Why?)

Complexity Classes P and NP

Class P: Contains problems that can be solved in polynomial time. (MST is an example of such a problem.)

Class NP (Nondeterministic Polynomial time): Contains problems for which a *given solution can be verified efficiently*.

Note: The given solution *S* is also called a **certificate**.

This verification requires two conditions.

1 The size of the given solution S should be a polynomial in the size of the problem instance I.

Complexity Classes P and NP

Class P: Contains problems that can be solved in polynomial time. (MST is an example of such a problem.)

Class NP (Nondeterministic Polynomial time): Contains problems for which a *given solution can be verified efficiently*.

Note: The given solution *S* is also called a **certificate**.

This verification requires two conditions.

- **1** The size of the given solution S should be a polynomial in the size of the problem instance I.
- 2 The verification algorithm must run in time that is a polynomial in the sum of the sizes of the problem instance *I* and the solution *S*.

Example – SAT is in NP:

• Consider a given instance I of SAT with n variables and m clauses. (The size of the instance I can be taken as O(mn).)

Example – SAT is in NP:

- Consider a given instance I of SAT with n variables and m clauses. (The size of the instance I can be taken as O(mn).)
- A proposed solution (certificate) is:

$$S=(b_1,b_2,\ldots,b_n),$$

where $b_i \in \{0,1\}$, is the value of x_i , $1 \le i \le n$. (The size of this certificate is O(n).)

Example – SAT is in NP:

- Consider a given instance I of SAT with n variables and m clauses. (The size of the instance I can be taken as O(mn).)
- A proposed solution (certificate) is:

$$S=(b_1,b_2,\ldots,b_n),$$

where $b_i \in \{0, 1\}$, is the value of x_i , $1 \le i \le n$. (The size of this certificate is O(n).)

■ Given S, we can substitute the values into each clause check that all clauses are satisfied in O(mn) time.

Example – SAT is in NP:

- Consider a given instance I of SAT with n variables and m clauses. (The size of the instance I can be taken as O(mn).)
- A proposed solution (certificate) is:

$$S=(b_1,b_2,\ldots,b_n),$$

where $b_i \in \{0, 1\}$, is the value of x_i , $1 \le i \le n$. (The size of this certificate is O(n).)

- Given S, we can substitute the values into each clause check that all clauses are satisfied in O(mn) time.
- Thus, SAT is in **NP**.

Minimum Vertex Cover (MVC):

Instance: An undirected graph G(V, E) and an integer $k \le |V|$.

Question: Does G have a **vertex cover** of size at most k, that is, is there a subset $V' \subseteq V$ such that $|V'| \le k$ and for each edge $\{v_i, v_i\} \in E$, at least one of v_i and v_i is in V'?

Example:

- For this graph G, $V_1 = \{v_2, v_4\}$ is a vertex cover. (It is also a minimum vertex cover.)
- For G, $V_2 = \{v_1, v_3\}$ is <u>not</u> a vertex cover. (Edge $\{v_2, v_5\}$ is not covered.)

Example – Minimum Vertex Cover (MVC) is in NP:

■ A given instance I of MVC has a graph G(V, E), with |V| = n, |E| = m, and an integer $k \le n$. (The size of instance I is O(m + n).)

Example – Minimum Vertex Cover (MVC) is in NP:

- A given instance I of MVC has a graph G(V, E), with |V| = n, |E| = m, and an integer $k \le n$. (The size of instance I is O(m + n).)
- A proposed solution (certificate) is $V' \subseteq V$. (Size of the certificate is O(n).)

Example – Minimum Vertex Cover (MVC) is in NP:

- A given instance I of MVC has a graph G(V, E), with |V| = n, |E| = m, and an integer $k \le n$. (The size of instance I is O(m + n).)
- A proposed solution (certificate) is $V' \subseteq V$. (Size of the certificate is O(n).)
- Given V', one can efficiently check that |V'| ≤ k and that for each edge {v_i, v_j} ∈ E, at least one of v_i and v_j is in V'.
 (Exercise: Explain how the verification can be done in O(m + n) time.)

Example – Minimum Vertex Cover (MVC) is in NP:

- A given instance I of MVC has a graph G(V, E), with |V| = n, |E| = m, and an integer $k \le n$. (The size of instance I is O(m + n).)
- A proposed solution (certificate) is $V' \subseteq V$. (Size of the certificate is O(n).)
- Given V', one can efficiently check that |V'| ≤ k and that for each edge {v_i, v_j} ∈ E, at least one of v_i and v_j is in V'.
 (Exercise: Explain how the verification can be done in O(m + n) time.)
- Thus, MVC is in **NP**.

Relationship between P and NP

Observation: $P \subseteq NP$.

Reason: For any problem in **P**, a polynomial time algorithm can construct a solution and use the solution as the certificate.

Example: For the MST problem, an algorithm can construct a minimum spanning tree T and use T as the certificate.

Famous Open Question: Is P = NP?

- Considered a very important problem in Computer Science and Mathematics.
- Clay Institute offers a prize of \$1 Million for its solution.
- Most CS researchers believe that $P \neq NP$.

Polynomial Time Reductions

Definition: A **reduction** from a problem P to a problem Q is a deterministic algorithm $\mathbb A$ which transforms any instance I of problem P to an instance I' of problem B such that

- 1 A runs in polynomial time and
- 2 I is a "YES" instance of P if and only if I' is a "YES" instance of Q.

Note: A reduction \mathbb{A} efficiently transforms each instance I of P into an instance I' of Q such that there is a solution to I iff there is a solution to I'.

Terminology/Notation: "P is reducible to Q" or $P \leq_p Q$.

Example – Reducing MVC to Maximum Independent Set:

Maximum Independent Set (MIS):

Instance: An undirected graph G(V, E) and an integer $\ell \leq |V|$.

Question: Does G have an **independent set** with at least ℓ vertices, that is, is there a subset $V_1 \subseteq V$ such that $|V_1| \ge \ell$ and there is no edge in G between any pair of vertices in V_1 ?

Example:

- For this graph G, $V_1 = \{v_1, v_3, v_5\} \text{ is an independent set. (It is also a maximum independent set.)}$
- For G, $V_2 = \{v_1, v_4, v_5\}$ is <u>not</u> an independent set (since G has the edge $\{v_1, v_4\}$).

Lemma 1: For any graph G(V, E), V' is a vertex cover iff V - V' is an independent set.

Proof idea:

Corollary 1: G(V, E) has a vertex cover of size k iff it has an independent set of size |V| - k.

Theorem 1: MVC \leq_p MIS.

Proof:

■ MVC instance I consists of graph G(V, E) and integer k.

Theorem 1: MVC \leq_p MIS.

- MVC instance I consists of graph G(V, E) and integer k.
- MIS instance I' consists of graph G'(V', E') and integer ℓ .

Theorem 1: MVC \leq_p MIS.

- MVC instance I consists of graph G(V, E) and integer k.
- MIS instance I' consists of graph G'(V', E') and integer ℓ .
- Steps of the Reduction:

Theorem 1: MVC \leq_p MIS.

- MVC instance I consists of graph G(V, E) and integer k.
- MIS instance I' consists of graph G'(V', E') and integer ℓ .
- Steps of the Reduction:
 - 1 G'(V', E') is the same as G(V, E).

Theorem 1: MVC \leq_p MIS.

- MVC instance I consists of graph G(V, E) and integer k.
- MIS instance I' consists of graph G'(V', E') and integer ℓ .
- Steps of the Reduction:
 - **11** G'(V', E') is the same as G(V, E).
 - $2 \ell = |V| k.$

Theorem 1: MVC \leq_p MIS.

- MVC instance I consists of graph G(V, E) and integer k.
- MIS instance I' consists of graph G'(V', E') and integer ℓ .
- Steps of the Reduction:
 - G'(V', E') is the same as G(V, E).
 - $2 \ell = |V| k.$
- Time for reduction: O(|V| + |E|).

Theorem 1: MVC \leq_p MIS.

- MVC instance I consists of graph G(V, E) and integer k.
- MIS instance I' consists of graph G'(V', E') and integer ℓ .
- Steps of the Reduction:
 - G'(V', E') is the same as G(V, E).
 - $2 \ell = |V| k.$
- Time for reduction: O(|V| + |E|).
- From Corollary 1, Instance I has a solution iff I' has a solution.

Theorem 1: MVC \leq_p MIS.

- MVC instance I consists of graph G(V, E) and integer k.
- MIS instance I' consists of graph G'(V', E') and integer ℓ .
- Steps of the Reduction:
 - 1 G'(V', E') is the same as G(V, E).
 - $2 \ell = |V| k.$
- Time for reduction: O(|V| + |E|).
- From Corollary 1, Instance I has a solution iff I' has a solution.
- Thus, MVC \leq_p MIS.

2SAT: Version of SAT in which each clause has at most 2 literals. 2SAT is efficiently solvable.

Graph 2-Coloring: (G2C)

Instance: Undirected graph G(V, E).

Question: Can each vertex in V be assigned a color from {Red, Blue}, so that for each edge $\{v_i, v_j\} \in E$, the colors assigned to v_i and v_j are different?

Example:

Theorem 2: G2C \leq_p 2SAT.

Proof:

Intuitive idea:

Theorem 2: G2C \leq_p 2SAT.

- Intuitive idea:
 - Each node in G2C corresponds to a variable in 2SAT.

Theorem 2: G2C \leq_p 2SAT.

Proof:

Intuitive idea:

- Each node in G2C corresponds to a variable in 2SAT.
- Blue corresponds to 1 and Red corresponds to 0.

Theorem 2: G2C \leq_p 2SAT.

Proof:

Intuitive idea:

- Each node in G2C corresponds to a variable in 2SAT.
- Blue corresponds to 1 and Red corresponds to 0.
- Coloring condition enforced by setting up appropriate clauses.

Theorem 2: G2C \leq_p 2SAT.

- Intuitive idea:
 - Each node in G2C corresponds to a variable in 2SAT.
 - Blue corresponds to 1 and Red corresponds to 0.
 - Coloring condition enforced by setting up appropriate clauses.
- Steps of the Reduction:

Theorem 2: G2C \leq_p 2SAT.

Proof:

Intuitive idea:

- Each node in G2C corresponds to a variable in 2SAT.
- Blue corresponds to 1 and Red corresponds to 0.
- Coloring condition enforced by setting up appropriate clauses.

Steps of the Reduction:

■ G2C Instance *I*: G(V, E), where $V = \{v_1, v_2, \dots, v_n\}$.

Theorem 2: G2C \leq_p 2SAT.

Proof:

Intuitive idea:

- Each node in G2C corresponds to a variable in 2SAT.
- Blue corresponds to 1 and Red corresponds to 0.
- Coloring condition enforced by setting up appropriate clauses.

Steps of the Reduction:

- G2C Instance *I*: G(V, E), where $V = \{v_1, v_2, \dots, v_n\}$.
- For each node v_i , create a Boolean variable x_i , $1 \le i \le n$.

Theorem 2: G2C \leq_p 2SAT.

Proof:

Intuitive idea:

- Each node in G2C corresponds to a variable in 2SAT.
- Blue corresponds to 1 and Red corresponds to 0.
- Coloring condition enforced by setting up appropriate clauses.

Steps of the Reduction:

- G2C Instance *I*: G(V, E), where $V = \{v_1, v_2, \dots, v_n\}$.
- For each node v_i , create a Boolean variable x_i , $1 \le i \le n$.
- For each edge $\{v_i, v_j\}$ in G, create two clauses: $(x_i \lor x_j)$ and $(\overline{x_i} \lor \overline{x_j})$.

Theorem 2: G2C \leq_p 2SAT.

Proof:

Intuitive idea:

- Each node in G2C corresponds to a variable in 2SAT.
- Blue corresponds to 1 and Red corresponds to 0.
- Coloring condition enforced by setting up appropriate clauses.

Steps of the Reduction:

- G2C Instance *I*: G(V, E), where $V = \{v_1, v_2, \dots, v_n\}$.
- For each node v_i , create a Boolean variable x_i , $1 \le i \le n$.
- For each edge $\{v_i, v_j\}$ in G, create two clauses: $(x_i \lor x_j)$ and $(\overline{x_i} \lor \overline{x_i})$.
- Resulting 2SAT instance I' has |V| variables and 2|E| clauses.

Example:

Boolean variables: x_1 , x_2 , x_3

Clauses:
$$(x_1 \lor x_2)$$
, $(\overline{x_1} \lor \overline{x_2})$, $(x_2 \lor x_3)$, $(\overline{x_2} \lor \overline{x_3})$

■ Time used for reduction: O(|V| + |E|)

Example:

Clauses:
$$(x_1 \lor x_2)$$
, $(\overline{x_1} \lor \overline{x_2})$, $(x_2 \lor x_3)$, $(\overline{x_2} \lor \overline{x_3})$

- Time used for reduction: O(|V| + |E|)
- Reason for the Choice of Clauses:

Example:

Clauses:
$$(x_1 \lor x_2)$$
, $(\overline{x_1} \lor \overline{x_2})$, $(x_2 \lor x_3)$, $(\overline{x_2} \lor \overline{x_3})$

- Time used for reduction: O(|V| + |E|)
- Reason for the Choice of Clauses:
 - For edge $\{v_i, v_j\}$, v_i and v_j must have different colors.

Example:

Clauses:
$$(x_1 \lor x_2)$$
, $(\overline{x_1} \lor \overline{x_2})$, $(x_2 \lor x_3)$, $(\overline{x_2} \lor \overline{x_3})$

- Time used for reduction: O(|V| + |E|)
- Reason for the Choice of Clauses:
 - For edge $\{v_i, v_j\}$, v_i and v_j must have different colors.
 - So, corresponding Boolean variables x_i and x_j must have different values.

Example:

Clauses:
$$(x_1 \lor x_2)$$
, $(\overline{x_1} \lor \overline{x_2})$, $(x_2 \lor x_3)$, $(\overline{x_2} \lor \overline{x_3})$

- Time used for reduction: O(|V| + |E|)
- Reason for the Choice of Clauses:
 - For edge $\{v_i, v_j\}$, v_i and v_j must have different colors.
 - So, corresponding Boolean variables x_i and x_j must have different values.
 - In every assignment that satisfies both $(x_i \lor x_j)$ and $(\overline{x_i} \lor \overline{x_j})$, x_i and x_i have different values.

Proof of Theorem 2 (continued):

■ Part 1: Suppose 2SAT instance I' has a solution.

- Part 1: Suppose 2SAT instance I' has a solution.
- **Goal:** Construct a solution to the G2C instance *I* (i.e., find a 2-coloring of *G*).

- Part 1: Suppose 2SAT instance I' has a solution.
- **Goal:** Construct a solution to the G2C instance *I* (i.e., find a 2-coloring of *G*).
 - For $1 \le i \le n$: if variable x_i is set to 1, assign color Blue to node v_i ; otherwise, assign color Red to v_i .

- Part 1: Suppose 2SAT instance I' has a solution.
- **Goal:** Construct a solution to the G2C instance *I* (i.e., find a 2-coloring of *G*).
 - For $1 \le i \le n$: if variable x_i is set to 1, assign color Blue to node v_i ; otherwise, assign color Red to v_i .
 - Why is this a valid 2-coloring?

- Part 1: Suppose 2SAT instance I' has a solution.
- **Goal:** Construct a solution to the G2C instance *I* (i.e., find a 2-coloring of *G*).
 - For $1 \le i \le n$: if variable x_i is set to 1, assign color Blue to node v_i ; otherwise, assign color Red to v_i .
 - Why is this a valid 2-coloring?
 - Consider any edge $\{v_i, v_j\}$.

- Part 1: Suppose 2SAT instance I' has a solution.
- **Goal:** Construct a solution to the G2C instance *I* (i.e., find a 2-coloring of *G*).
 - For $1 \le i \le n$: if variable x_i is set to 1, assign color Blue to node v_i ; otherwise, assign color Red to v_i .
 - Why is this a valid 2-coloring?
 - Consider any edge $\{v_i, v_j\}$.
 - The two chosen clauses ensure that variables x_i and x_j have different values.

- Part 1: Suppose 2SAT instance I' has a solution.
- **Goal:** Construct a solution to the G2C instance *I* (i.e., find a 2-coloring of *G*).
 - For $1 \le i \le n$: if variable x_i is set to 1, assign color Blue to node v_i ; otherwise, assign color Red to v_i .
 - Why is this a valid 2-coloring?
 - Consider any edge $\{v_i, v_j\}$.
 - The two chosen clauses ensure that variables x_i and x_j have different values
 - So, v_i and v_j have different colors.

Proof of Theorem 2 (continued):

Part 2: Suppose G2C instance *I* has a solution.

Goal: Construct a solution to the 2SAT instance I'.

■ Proof similar to that of Part 1. (Exercise)

Why are reductions useful?

Lemma 2: Suppose $P \leq_{p} Q$.

If Q is efficiently solvable, then so is P.

Proof of Theorem 2 (continued):

Part 2: Suppose G2C instance *I* has a solution.

Goal: Construct a solution to the 2SAT instance I'.

■ Proof similar to that of Part 1. (Exercise)

Why are reductions useful?

Lemma 2: Suppose $P \leq_p Q$.

- If *Q* is efficiently solvable, then so is *P*.
- If P is not efficiently solvable, then so is Q.

Notes:

- The reduction from G2C to 2SAT shows that G2C is efficiently solvable (since 2SAT has an efficient algorithm).
- The reduction from MVC to MIS can be used to conclude that MIS is also **NP**-complete (since MVC is **NP**-complete).
- Thus, reductions are useful to obtain efficient algorithms as well as to prove hardness results.

What we know about NP-complete problems:

- **NP**-complete problems are the "hardest" ones in **NP**.
- The problems are all "equivalent": they are all efficiently solvable or none of them is efficiently solvable.
- We don't know which of these possibilities is true.
- General conjecture: NP-complete problems are not efficiently solvable. (All known algorithms for NP-complete problems have exponential running times.)
- **NP**-complete problems are said be "computationally intractable".

Steps to Prove **NP**-completeness

Goal: To prove that Problem Q is **NP**-complete.

- Show that Q is in NP. (This step shows the membership in NP.)
- Identify a suitable problem P which is known to be NP-complete.
- Show that $P \leq_p Q$. This shows the **NP-hardness** of Q.

Example:

- It is easy to show that the MIS problem is in NP.
- We showed that MVC \leq_p MIS (Theorem 1).
- Since MVC is NP-complete, so is MIS.

■ To show that a problem *P* is "easy" (i.e., efficiently solvable):

- To show that a problem *P* is "easy" (i.e., efficiently solvable):
 - 1 You must first identify a problem Q that is known to be easy.

- To show that a problem *P* is "easy" (i.e., efficiently solvable):
 - 1 You must first identify a problem Q that is known to be easy.
 - 2 Show that $P \leq_{p} Q$.

- To show that a problem *P* is "easy" (i.e., efficiently solvable):
 - 1 You must first identify a problem Q that is known to be easy.
 - **2** Show that $P \leq_p Q$.
- To show that a problem P is "hard" (i.e., **NP**-complete):

- To show that a problem *P* is "easy" (i.e., efficiently solvable):
 - 1 You must first identify a problem Q that is known to be easy.
 - **2** Show that $P \leq_p Q$.
- To show that a problem P is "hard" (i.e., **NP**-complete):
 - 1 You must first identify with a problem Q that is known to be NP-complete.

- To show that a problem *P* is "easy" (i.e., efficiently solvable):
 - 1 You must first identify a problem Q that is known to be easy.
 - **2** Show that $P \leq_p Q$.
- To show that a problem P is "hard" (i.e., **NP**-complete):
 - 1 You must first identify with a problem Q that is known to be **NP**-complete.
 - 2 Show that $Q \leq_p P$.