Testprüfung (Abitur 2013)

Steve Göring, stg7@gmx.de 3. April 2013

Bearbeitungszeit:	270 Minuten
Zugelassene Hilfsmittel:	Taschenrechner (nicht programmierbar, nicht grafikfähig), Tafelwerk
Name:	
Punkte:	A/30 B/20 C/10
	∑/60
Note/%:	

"May the force be with you!" – $\mathrm{Viel}\ \mathrm{Erfolg}!$

1 Analysis - A1

Für jede reelle Zahl t ist eine Funktion f_t gegeben durch:

GF03

$$y = f_t(x) = e^x \cdot (x^2 + t)$$

 $mit \ x \in \mathbb{R}.$

a)

Untersuchen Sie den Graphen von f_{-3} auf Schnittpunkte mit den Koordinatenachsen und lokale Extrempunkte!

Geben Sie gegebenenfalls die Koordinaten dieser Punkte an!

Geben Sie das Verhalten von f_{-3} im Unendlichen an, und leiten Sie daraus mit Hilfe der eventuell ermittelten Extrema den Wertebereich der Funktion f_{-3} ab!

Begründen Sie, dass der Graph von f_{-3} zwei Wendepunkte besitzt!

Skizzieren Sie den Graphen von f_{-3} in einem geeigneten Intervall!

14 BE

b)

Eine Gerade g verläuft durch den Punkt $P(0;f_{-3}(0))$ und steht senkrecht zur Tangente h an den Graphen von f_{-3} in diesem Punkt.

Skizze!

Die Tangente h, die Gerade g und die x-Achse begrenzen ein Dreieck. Bestimmen Sie die Größe der Innenwinkel und den Flächeninhalt des Dreiecks.

Bei Rotation dieses Dreiecks um die x-Achse entsteht ein Körper.

Berechnen Sie dessen Volumen!

8 BE

c)

Weisen Sie nach, dass die Funktion F_t mit

$$F_t(x) = e^x \cdot (x^2 - 2x + 2 + t) + 2013$$

Skizze!

eine Stammfunktion von f_t ist.

In welchem Verhältnis teilt die y-Achse die Fläche, die der Graph von Funktion f_{-3} und die x-Achse vollständing einschließen?

5 BE

d)

Untersuchen Sie, für welche Werte von t gilt:

Der Graph der Funktion f_t besitzt keine Schnittpunkte mit der x-Achse, aber zwei lokale Extrempunkte!

2 Analysis - A2

Gegeben ist eine Funktion f durch

GF07

$$y = f(x) = \frac{6x^2 - x^3}{4}$$

 $\mathsf{mit}\ x \in \mathbb{R}.$

a)

Untersuchen Sie den Graphen von f auf Schnittpunkte mit den Koordinatenachsen, lokale Extrempunkte, Wendepunkte und geben Sie gegebenenfalls deren Koordinaten an! Skizzieren Sie den Graphen von f im Intervall $-2 \le x \le 6,5$

10 BE

b)

Skizze!

Skizze

Auf dem Graphen der Funktion f existiert ein Punkt Q(q;f(q)) mit 0 < q < 6. Die Parallele zur y-Achse durch Q schneidet die x-Achse im Punkt P.

O bezeichnet den Koordinatenursprung.

Ermitteln Sie die Koordinaten von Q so, dass der Flächeninhalt des Dreiecks OPQ maximal ist!

5 BE

c)

Bestimmen Sie eine Gleichung der Wendetangente an den Graphen von f!

Ermitteln Sie, wie viele Tangenten es an den Graphen von f gibt, die die Wendetangente senkrecht schneiden?

4 BE

d)

Der Graph von f und die x-Achse begrenzen eine Fläche vollständig. Bestimmen Sie, in welchem Verhältnis diese Fläche durch die Gerade mit der Gleichung y=2x geteilt wird!

6 BE

e)

Für jede reelle Zahl a mit $a \neq 0$ ist eine Funktion g_a durch

$$y = g_a(x) = a \cdot (x^2 - 6x)$$

mit $x \ge -2$ gegeben. Skizzieren sie den Graphen von g_1 in das Koordinatensystem aus Teilaufgabe a)!

Unter welchem Winkel schneiden sich die Graphen f und g_1 in dem vom Ursprung verschiedenen Schnittpunkt? (Kontrolle S(6,0))

Untersuchen Sie, ob man a so wählen kann, dass sich die Graphen von f und g_a an der Stelle 6 berühren?

3 Analytische Geometrie - B1

In einem kartesischen Koordinatensystem sind die Punkte P(7;4;1), Q(1;8;5), $R_a(4;a;9-a)$,

GF03

$$S(4;4;5)$$
, $T(5;0;1)$ sowie der Vektor $\overrightarrow{v}=\begin{pmatrix} -6\\1\\7 \end{pmatrix}$ gegeben (mit $a\in\mathbb{R}$).

___ a)

NF/KF

Ermitteln Sie eine Gleichung der Ebene η , die die Punkte P, Q und R_3 enthält! Bestimmen Sie die Koordinaten des Punktes, in welchem die x-Achse die Ebene η durchstößt!

Die Gerade g verläuft durch den Punkt T und besitzt den Richtungsvektor \overrightarrow{v} . Weisen Sie nach, dass die Gerade g parallel zur Ebene η liegt und berechnen Sie den Abstand von g zur Ebene η !

7 BE

b)

Die Punkte P,Q,U und T bilden in dieser Reihenfolge ein Viereck. Wie müssen die Koordinaten des Punktes U gewählt werden, damit das Viereck ein Parallelogramm ist? Berechnen Sie die Größe des Winkels, den die Parallelogrammseiten \overline{PT} und \overline{PQ} einschließen!

Bestimmen Sie den Abstand des Punktes T von der Geraden h, die durch die Punkte P und Q verläuft!

6 BE

c)

Zeigen Sie, dass der Punkt S auf der Strecke $\overline{R_3R_6}$ liegt! In welchem Verhältnis teilt S die Strecke $\overline{R_3R_6}$?

3 BE

d)

Weisen Sie nach, dass das Dreieck PR_aQ gleichschenklig ist! Für welche Werte von a ist das Dreieck PR_aQ bei R_a rechtwinklig?

4 Teil - C

Gegeben sind zwei Folgenglieder $a_3=63$ und $a_7=263$. Ermitteln Sie das Folgenglied a_{42} , wenn (a_n) eine arithmetische Zahlenfolge ist!

2 BE

b) Die Gerade g mit der Gleichung y=-2x+4 begrenzt mit den Koordinatenachsen ein Dreieck. Dieses Dreieck erzeugt bei Rotation um die x-Achse einen Kegel. Bestimmen Sie das Volumen dieses Kegels!

GF02

XY

2 BE

Gegeben sind die Vektoren $\overrightarrow{a}=\begin{pmatrix} t\\-t\\1 \end{pmatrix}$ und $\overrightarrow{b}=\begin{pmatrix} 2t\\1\\2 \end{pmatrix}$. Untersuchen Sie, ob es reelle

GF05

Zahlen t gibt, so dass die Vektoren \vec{a} und \vec{b} zueinander orthogonal sind!

2 BE

d) Lösen Sie die Gleichung $2^{x+1} = 8 \cdot 2^{3x-1} \; (x \in \mathbb{R})!$

GF04

1 BE

e)
Ein Würfel wird drei Mal geworfen. Wie groß ist die Wahrscheinlichkeit, dass insgesamt mindestens zwei Sechsen gewürfelt werden?

XY

2 BE

Bestimmen Sie alle reellen Zahlen c, für die gilt $\int\limits_0^c (x^2-2x)dx=0!$

XY

1 BE

z) Zusatzaufgabe (optional):

ZA

Am 25. Januar 2013 wurde mit einem CPU Cluster der mathematischen Fakultät an der University of Central Missouri die derzeit größte bekannte Primzahl berechnet. Sie kann in der Form

$$2^{57885161} - 1$$

angegeben werden. Wie viele Dezimalstellen hat diese Primzahl?

Angenommen 4067 Zeichen passen auf eine A4 Seite, wie viele A4 Seiten würde die bisher größte bekannte Primzahl einnehmen?