

COMBINATIONAL LOGIC CIRCUITS

TOPIC OUTLINE

Signed-Magnitude Form

1's Complement Form

2's Complement Form

SUBTRACTOR CIRCUIT

SIGNED-MAGNITUDE

Binary Addition

Drawback

To subtract the smaller number from the larger one, logic circuits for <u>comparison</u> and <u>subtraction</u> are needed.

1's COMPLEMENT

To obtain the <u>1's complement</u> of a negative binary number, <u>invert each bit</u> – changing all 1s to 0s and all 0s to 1s.

Formula

$$K = (2^n - 1) - P$$

where:

K =negative number

P = positive number

Binary Addition

Drawback

In some cases, a correction is needed which amounts to an extra addition that must be performed.

1/s COMPLEMENT

Equivalent Logic Circuit

To obtain the <u>1's complement</u> of a negative binary number, <u>invert each bit</u> – changing all 1s to 0s and all 0s to 1s.

Formula

$$K = (2^n - 1) - P$$

where:

K =negative number

P = positive number

2's COMPLEMENT

To obtain the <u>2's complement</u> of a negative number, first find its 1's complement (invert all bits), then <u>add</u> <u>1</u> to the result.

Formula

$$K = 2^n - P$$

where:

K =negative number

P = positive number

Binary Addition

Range

$$-2^{n-1}$$
 to $2^{n-1} - 1$

The addition process is the same, regardless of the signs of the operands.

2's COMPLEMENT

To obtain the <u>2's complement</u> of a negative number, first find its 1's complement (invert all bits), then <u>add</u> <u>1</u> to the result.

<u>Formula</u>

$$K = 2^n - P$$

where:

K =negative number

P = positive number

Equivalent Logic Circuit

EXERCISE

Create a block-level representation of a 2-bit binary subtractor using 2's complements method.

Solution

EXERCISE

Synthesize a 2-bit parallel binary subtractor using 2's complement method, and design a corresponding printed circuit board (PCB) layout for its implementation.

<u>note</u>

The use of XOR or XNOR gates is not allowed.

Solution

LABORATORY

