Nonlinear Information Processing

University of Chinese Academy of Sciences

Spring 2024

Zuobing Wu

Homework 1

Chenkai GUO

2024.3.27

1. 已知 Sierpinski 地毯的构造:将一个实心正方形划分为的 9 个小正方形,去掉中间的小正方形,再对余下的小正方形重复这一操作便能得到谢尔宾斯基地毯。如图:

求 Sierpinski 地毯的面积和分数维。

解:由题可得,假设该实心正方形的边长为 1,则可得初始正方形面积 $S_0 = 1$,则:

$$S_1 = 1 - 1 \times \left(\frac{1}{3}\right)^2$$

$$S_2 = 1 - 1 \times \left(\frac{1}{3}\right)^2 - 8 \times \left(\frac{1}{9}\right)^2$$

$$S_3 = 1 - 1 \times \left(\frac{1}{3}\right)^2 - 8 \times \left(\frac{1}{9}\right)^2 - 8^2 \times \left(\frac{1}{27}\right)^2$$

$$S_n = 1 - 1 \times \left(\frac{1}{3}\right)^2 - 8 \times \left(\frac{1}{9}\right)^2 - \dots - \frac{1}{8} \times \left(\frac{8}{9}\right)^n$$

因此当 $n \to \infty$ 时,可得 $S_n = 0$

根据 Hausdorff 维数,有边扩大 m=3 倍,面积扩大 K=8 倍,故 Sierpinski 地毯的分数维为:

$$D_H = \frac{\log K}{\log m} = \frac{\log 8}{\log 3} = 1.894$$

2. 已知下列生成元,求人造海岸线的分数维。

解: 由题可得:

①生成元 1: 局部构成 N=8, 相似比 $\beta=\frac{1}{4}$, 因此:

$$D_s = \frac{\log N}{\log(\frac{1}{\beta})} = \frac{\log 8}{\log \frac{1}{4}} = 1.5$$

②生成元 2: 局部构成 N=3,相似比 $\beta=\frac{1}{\sqrt{5}}$,因此:

$$D_s = \frac{\log N}{\log(\frac{1}{\beta})} = \frac{\log 3}{\log \frac{1}{\sqrt{5}}} = 1.365$$

③生成元 3: 局部构成 N=18,相似比 $\beta=\frac{1}{6}$,因此:

$$D_s = \frac{\log N}{\log(\frac{1}{\beta})} = \frac{\log 18}{\log \frac{1}{6}} = 1.613$$

3. 根据下面给定的 IFS 码表生成分形树。

ω	a	b	C	d	e	f	p
1	0	0	0	0.5	0	0	0.05
2	0.42	-0.42	0.42	0.42	0	0.2	0.4
3	0.42	0.42	-0.42	0.42	EY 80/	MI012 MU	900.4
4	0.1	0	0	0.1	0	0.2	0.15

解,根据所给 IFS 码生成的分形树如下:

4. 画出下列参数下的 Julia 集

$$C = -1, m = 2$$
 $C = -0.5 + 0.5i, m = 2$ $C = -0.2 + 0.75i, m = 2$ $C = 0.64i, m = 2$ $C = 0.188 + 0.78602i, m = 5$

解,如下图所示,ABCDE图分别代表题干的五个 Julia 集生成条件:

5. 已知广义维数为:

$$D_q = \lim_{\delta \to 0} \frac{1}{(q-1)} \frac{\log \sum_{i=1}^{N} p_i(\delta)^q}{\log \delta}$$

试证明: 当 q=1 时, $D_q=D_1$ 为信息维数。

解: 由题可得, 根据洛必达法则有:

$$D_{1} = \lim_{\delta \to 0} \frac{\log \sum_{i=1}^{N} p_{i}(\delta)^{q}}{(q-1)\log \delta} = \lim_{\delta \to 0} \frac{\left(\sum_{i=1}^{N} p_{i}(\delta)^{q}\right)^{-1} \sum_{i=1}^{N} p_{i}(\delta)^{q} \log p_{i}(\delta)}{\log \delta}$$
$$= \lim_{\delta \to 0} \frac{\sum_{i=1}^{N} p_{i}(\delta) \log p_{i}(\delta)}{\left(\sum_{i=1}^{N} p_{i}(\delta)\right) \log \delta} = -\lim_{\delta \to 0} \frac{I(\delta)}{\log \delta} \quad \left(\sum_{i=1}^{N} p_{i}(\delta) = 1\right)$$

当 q=1 时, $D_q=D_1$ 为信息维数, 证毕。