6. COORDINATION COMPOUNDS

LIGAND /

UNIDENTATE

CN, H₂O, NH₃, Cl, Br etc

BIDENTATE

-0 C-C 0

POLYDENTATE

Complex Salt /

Doesn't dissociate completely into ions

HOMOLEPTIC COMPLEX

H₃N NH₃ NH₃ NH₃

HETEROLEPTIC COMPLEX

NOMENCLATURE /

AMBIDENTATE

Naming of Mononuclear Complex

Naming of mononuclear complex

- 1. Cation is named first
- 2. Naming of ligands is done in alphabetical order
- 3. Anionic ligands end in -O, neutral and cationic are same.
- 4. Prefixes mono, di, tri, etc are used. It is followed by roman numeral in parenthesis.

Example: Triamminetriaqua chromium (III) chloride

Formula of Mononuclear Complex

- 1. Central atom is listed first.
- 2. Ligands are placed in alphabetical order.
- 3. Formula is enclosed in square bracket.
- 4. No space between ligands and metal.
- 5. Charge is indicated outside brackets. Charge on cation(s) balanced by charge of anions(s)

Example: $[Cr(NH_3]_3(H_2O)_3]Cl_3$

STEREO ISOMERS / ISOMERISM /

OPTICAL ISOMERS

en Cl Cl Cl Cl Pt en Dextro Laevo

GEOMETRICAL ISOMERS

(i) COORDINATION NUMBER 4

$$H_3N$$
 Cl H_3N Cl Pt NH_3 Cl Cl NH_4 $Cis-platin) (trans-platin)$

(ii) Coordination number 6

→ STRUCTURAL ISOMERS /

Ionisation isomer

Different ions are produced in aqueous solution. Ex: [Co(NH₃)₅(SO₄)]Br and [Co(NH₃)₅Br]SO₄

Solvate isomer

Difference in number of water molecules attached. Ex: $[Cr(H_2O)_6)]Cl_3$ and $[Cr(H_2O)_5Cl]Cl_2.H_2O$

Cordination isomer

Cordination entities are different. Ex: $[Co(NH_3)_6][Cr(CN)_6]$ and $[Co(CN)_6][Cr(NH_3)_6]$

Linkage isomer

Occurs in ambidentate ligands Ex: $[Co(NH_3)_5(NO_2)]$ and $[Co(NH_3)_5(ONO)]$

Limitation

- + Only certain elements form coordination complex.
- + Why coordination bonds have directional property
- + Couldn't explain magnetic and optical properties of complex.

WERNER'S THEORY

- + Central metal ion shows primary and secondary valences
- + Primary valences are ionisable.
- + Secondary valences are non-ionisable.
- + Ions bonded to metal via secondary linkages have different spatial arrangement

VALENCE BOND THEORY

Shape	Coordination	Hybridisation	Example
	Number		
Tetrahedral	4	sp³	[CuCl ₄] ²⁻
Square Planar	4	dsp ²	[Ni(CN) ₄] ²⁻
Trigonal Bipyramidal	5	sp³d	[Fe(CO) ₅]
Square Pyramidal	5	sp³d	[SbF ₅] ²⁻
		sp³d²	[Ti(H ₂ O) ₆] ³⁺
Octahedral	6	d²sp³	$[Co(NH_3)_6]^{3+}$

MAGNETIC PROPERTY /

Magnetic moment = $\sqrt{n(n+2)}$ BM

PARAMAGNETIC

One or more than one unpaired electron present.

 $Eg-[CoF_6]^{3-}$

DIAMAGNETIC

No unpaired electron present.

Eg-[Ni(CN)₄]²⁻

HIGH SPIN COMPLEX

 Δ_0 < Pairing Energy Ex: $[Cr(NH_3)_6]^3+$

LOW SPIN COMLEX

 Δ_0 > Pairing Energy Ex: [CrCl₆]³⁻

COLOUR IN COMPLEX /

Caused by d-d transition. Colour is complementary to wavelength absorbed.

SPECTRO CHEMICAL SERIES

 $I^- < Br^- < SCN^- < Cl^- < S^{2-} < F^- < OH^- < C_2O_4^{-2-} < H_2O < NCS^ < EDTA^{4-} < NH_3 < en < CN^- < CO$

THEORIES OF COORDINATION COMPOUNDS

STABILITY /

$$M^{+} + nL^{x-} \longrightarrow [ML_{n}]^{y-}$$
 Stability constant,
$$K = \frac{[ML_{n}]^{y-}}{[M^{+}][L^{x-}]^{n}}$$

FACTOR AFFECTING STABILITY

- + Charge density on the central metal ion.
- + Nature of ligands.

METAL CABONYL

metal Carbonyl posses both s and p bond.

USES OF COORDINATION COMPOUNDS

- + EDTA is used in estimation of hardness of water.
- + Haemoglobin is a coordination compound of Iron.
- + Coordination compounds are used in extraction of metals like gold.