## Modeling Input Uncertainty in A Neural Network Dependency Parser.



Rob van der Goot & Gertjan van Noord





## New Treebank

- All tweets from Owoputi and LexNorm which are still available (10,005 tokens)
- Annotated tokenization, Normalization, POS tags and dependency structure
- Also version available with predicted normalization
- Guidelines similar to PoSTWITA-UD (Sanguinetti et al., 2018), UD-TwitterAAE (Blodgett et al., 2018) and Tweebank v2 (Liu et al., 2018)

# **Settings**

Original:  $\vec{v}_i = \vec{w}_i$ 

1-BEST:  $\vec{v}_i = \vec{n}_{i0}$ 

N-BEST:  $\vec{v}_i = \sum p_{ij} * \vec{n}_{ij}$ 

GOLD:  $\vec{v}_i = \vec{g}_i$ 



#### **Conclusions**

- Using normalization directly is useful for dependency parsing, even when exploiting external and character embeddings
- Integrating normalization results in even higher performance
- When using normalization and external embeddings, character embeddings do not improve results

### Source code

www.bitbucket.org/robvanderg/normpar