Report of Martingale

Course: CS 7646 ML4T Name: Yichao Zhang GT User ID: yzhang3414

1. In Experiment 1, estimate the probability of winning \$80 within 1000 sequential bets. Explain your reasoning.

The probability is about 100%.

Figure 1,2,3 show that all the episodes win \$80 before 300 spins, we can see that both mean and median hit \$80 and standard deviation decreased to 0. This is because we have unlimited bank rolls, no matter how many times we lose, we can win a spin after each losing list, and increase \$1 after each win. Sooner or later, we will win 80 times and get \$80 after enough spins.

2. In Experiment 1, what is the estimated expected value of our winnings after 1000 sequential bets? Explain your reasoning. Go here to learn about expected value: https://en.wikipedia.org/wiki/Expected_value

\$80.

In this experiment, the expected value is the mean value. As shown in figure 2, after enough sequential bets (here < 300), the mean value converges to \$80.

3. In Experiment 1, does the standard deviation reach a maximum value then stabilize as the number of sequential bets increases? Explain why it does (or does not).

No.

As shown in figure 2, after enough sequential bets (here < 300), both mean value + standard deviation and mean value - standard deviation converge to mean value \$80. So that standard deviation converges to \$0.

4. In Experiment 2, estimate the probability of winning \$80 within 1000 sequential bets. Explain your reasoning.

The probability is about 66.9%.

According to the simulation results, we count the number where episode winning = \$80, and get 669. Then divide by the total episodes 1000.

5. In Experiment 2, what is the estimated expected value of our winnings after 1000 sequential bets? Explain your reasoning.

The expected value (mean value) is about \$-31 after 1000 bets. As shown in Figure 4, the mean value almost levels about \$-28 after 300 bets, and according to the whole simulation results, it levels about \$-31 after 1000 bets.

6. In Experiment 2, does the standard deviation reach a maximum value then stabilize as the number of sequential bets increases? Explain why it does (or does not).

Yes.

The standard deviation converges to the maximum value, about \$158. As shown in Figure 5, the median converges to \$80, and median – standard deviation leaves away from median as the bets increase, and levels at about \$-78 after enough bets. So the standard deviation converges to the maximum value, about \$158.

7. Include figures 1 through 5.

Figure 1: Winnings of each Spin, where episodes = 10, unlimited bank rolls

Figure 2: Mean values with Standard Deviations for Winnings of each Spin, where episodes = 1000, unlimited bank rolls

Figure 3: Median values with Standard Deviations for Winnings of each Spin, where episodes = 1000, unlimited bank rolls

Figure 4: Mean values with Standard Deviations for Winnings of each Spin, where episodes = 1000, bank rolls = \$256

Figure 5: Median values with Standard Deviations for Winnings of each Spin, where episodes = 1000, bank rolls = \$256