

Vorausgesetzt: A_j müssen paarweise disjunkt sein...

$$\lambda_M(A) = \sum_{j=1}^{\infty} \lambda_{M,V_j}(A_j)$$

Aufgabe 1: (Parametrisierung) Sei $M \subseteq \mathbb{R}^n$ eine k-dimensionale Untermannigfaltigkeit der Klasse C^{α} und $f \in \mathcal{L}^1(\lambda_M)$. Außerdem existieren offene Mengen $U, V \subseteq \mathbb{R}^k$ und lokale Parameterdarstellungen $\varphi : U \to \mathbb{R}^n$ und $\psi : V \to \mathbb{R}^n$ von M mit $\varphi(U) \cup \psi(V) = M$ und $\varphi(U) = M \setminus A$, wobei $A = \psi(N)$ mit einer λ_k -Nullmenge $N \subseteq V$ gilt. Zeigen Sie, dass A messbar ist und

$$\int_{M} f \, d\lambda_{M} = \int_{M \setminus A} f \, d\lambda_{M} = \int_{U} f \circ \varphi \cdot \sqrt{\det \varphi'^{T} \varphi'} \, d\lambda_{k} \,.$$

Proof. $\varphi(U)$ ist messbar, weil für jedes Punkt in $\varphi(U)$ eine offene Umgebung $\varphi(U)$ gibt, deren Urbild $\mathcal{L}(n)$ als offene Menge noch messbar ist. Weil \mathcal{L}_M eine σ -Algebra ist, ist

 $A = M \setminus \varphi(U)$ messbar.

Wir betrachten den endlichen Atlas $\varphi: U \to \varphi(U)$, $\psi: V \to \psi(V)$ mit passender Zerlegung der Eins $\chi_{\varphi(U)}, \chi_A$. Diese ist eine Zerlegung der Eins, da die Mengen messbar sind.

Es gilt

$$\int_{M} f \, d\lambda_{M} = \int_{U} (f \cdot \chi_{\varphi(U)}) \circ \varphi \cdot \sqrt{\det(\varphi'^{T}\varphi')} \, d\lambda_{k}
+ \int_{V} (f \cdot \chi_{A}) \circ \psi \sqrt{\det(\psi'^{T}\psi')} \, d\lambda_{k}
= \int_{U} f \circ \varphi \cdot \sqrt{\det(\varphi'^{T}\varphi')} \, d\lambda_{k}
+ \int_{N} f \circ \psi \cdot \sqrt{\det(\psi'^{T}\psi')} \, d\lambda_{k}
\leq \int_{U} f \circ \varphi \cdot \sqrt{\det(\varphi'^{T}\varphi')} \, d\lambda_{k}
+ \int_{N} \infty \, d\lambda_{k}
= \int_{U} f \circ \varphi \cdot \sqrt{\det(\varphi'^{T}\varphi')} \, d\lambda_{k} + \infty \lambda_{k}(N)
= \int_{U} f \circ \varphi \cdot \sqrt{\det(\varphi'^{T}\varphi')} \, d\lambda_{k} + \infty \cdot 0
= \int_{U} f \circ \varphi \cdot \sqrt{\det(\varphi'^{T}\varphi')} \, d\lambda_{k}$$

$$= \int_{M \setminus A} f \, d\lambda_{M} . \qquad \Box$$