華中科技大學

研究生课程报告

姓	名	赖家晨
学	号	M202474131
系、	年级	计算机科技与技术系 2024 级
类	别	课程报告
报告科目		人工智能

2025年1月3日

1 算法步骤

在梵塔问题中,我们可以用递归的思想去解决。具体来说,如图 1.1所示,给定梵塔问题有三个柱子,1号柱上放置 n个从小到大的圆盘,我们需要将 1号柱上的所有圆盘移动到 3号柱上,要求小圆盘必须要在大圆盘上且在移动过程中也要保证该要求。

图 1.1 梵塔

在梵塔问题中,我们必须要先将 1 号柱上的前 n-1 个圆盘先放置在 2 号柱上,再将 1 号柱上的第 n 个圆盘移动到 3 号柱上。整个梵塔问题就是上述过程不断重复,直到 1 号柱上第 1 个圆盘移动到 3 号柱上。于是,n 个圆盘的梵塔问题就分解成①将 n-1 个圆盘从起始柱移动到中间柱上;②将第 n 个圆盘从起始柱移动到目标柱上;③将 n-1 个圆盘从中间柱移动到目标柱。因此,n 个圆盘的梵塔问题的圆盘移动次数等于两倍的 n-1 个圆盘的梵塔问题的圆盘移动次数加上 1(第 n 个圆盘的移动次数)。设 n 阶梵塔问题移动圆盘的次数为 h(n),有

$$h(n) = 2h(n-1) + 1 (1.1)$$

考虑 1 阶梵塔问题移动圆盘次数 h(1) 为 1,根据递推公式式 1.1有,n 阶梵塔问题移动圆盘的次数:

$$h(n) = 2^n - 1 (1.2)$$

2 代码实现

依照式 1.2得出的公式,可以很轻松的实现相关代码。代码实现如下:

```
1 #include <iostream>
2 #include <cstdint>
3 #include <sstream>
5 using namespace std;
7 int main() {
       cout << "----" << endl;
8
        cout << "| 阶数 | 最少移动次数 | " << endl;
9
        for (int i = 1; i < 64; ++i) {
10
             printf("| %-2d | ", i);
11
             string str = to_string(((uint64_t)1 << i) - 1);</pre>
12
             int size = (20 - str.size()) / 2;
13
             int mod = (20 - str.size()) % 2;
14
             string str1(size, ' '), str2(size + mod, ' ');
15
             cout << str1 << str2 << "|" << endl;</pre>
16
        }
17
       cout << "----" << endl;
18
19 }
```

输出结果如图 2.1所示

		שכ ן	10/3/41023
阶数	最少移动次数	31	2147483647
1 1	1	32	4294967295
2	3	33	8589934591
3	7	34	17179869183
i 4 i	15	35	34359738367
5	31 İ	36	68719476735
6	63 I	37	137438953471
7	127	38	274877906943
8	255	39	549755813887
9	511 İ	40	1099511627775
10	1023	41	2199023255551
i 11 i	2047	42	4398046511103
1 12	4095	43	8796093022207
13	8191	44	17592186044415
14	16383	45	35184372088831
15	32767 l	46	70368744177663
16	65535 l	47	140737488355327
17	131071	48	281474976710655
18	262143	49	562949953421311
19	524287	50	1125899906842623
20	1048575	51	2251799813685247
21	2097151	52	4503599627370495
22	4194303	53	9007199254740991
23	8388607	54	18014398509481983
24	16777215	55	36028797018963967
25	33554431	56	72057594037927935
26	67108863	57	144115188075855871
27	134217727	58	288230376151711743
28	268435455	59	576460752303423487
29	536870911	60	1152921504606846975
30	1073741823	61	2305843009213693951
31	2147483647	62	4611686018427387903
32	4294967295	63	9223372036854775807
33	8589934591		
'			

图 2.1 输出结果