HW5

Zachary Palmore

5/13/2021

Overview

```
library(tidyverse)
library(psych)
library(kableExtra)
library(caret)
library(reshape2)
library(ggpubr)
theme_set(theme_minimal())
```

In this homework assignment, you will explore, analyze and model a data set containing information on approximately 12,000 commercially available wines. The variables are mostly related to the chemical properties of the wine being sold. The response variable is the number of sample cases of wine that were purchased by wine distribution companies after sampling a wine. These cases would be used to provide tasting samples to restaurants and wine stores around the United States. The more sample cases purchased, the more likely is a wine to be sold at a high end restaurant. A large wine manufacturer is studying the data in order to predict the number of wine cases ordered based upon the wine characteristics. If the wine manufacturer can predict the number of cases, then that manufacturer will be able to adjust their wine offering to maximize sales.

Your objective is to build a count regression model to predict the number of cases of wine that will be sold given certain properties of the wine. HINT: Sometimes, the fact that a variable is missing is actually predictive of the target. You can only use the variables given to you (or variables that you derive from the variables provided).

Introduction

```
tdata <- read.csv(
   "https://raw.githubusercontent.com/palmorezm/msds/main/621/HW5/wine-training-data.csv")
edata <- read.csv(
   "https://raw.githubusercontent.com/palmorezm/msds/main/621/HW5/wine-evaluation-data.csv")

tdata[1:5,] %>%
   t() %>%
   kbl(booktabs = T, caption = "Raw Data") %>%
   kable_styling(latex_options = c("striped", "HOLD_position"), full_width = F) %>%
   footnote(c("Includes the initial observations of all variables in the data"))
```

Table 1: Raw Data

	1	2	3	4	5
ïINDEX	1.0000	2.00000	4.00000	5.0000	6.00000
TARGET	3.0000	3.00000	5.00000	3.0000	4.00000
FixedAcidity	3.2000	4.50000	7.10000	5.7000	8.00000
VolatileAcidity	1.1600	0.16000	2.64000	0.3850	0.33000
CitricAcid	-0.9800	-0.81000	-0.88000	0.0400	-1.26000
ResidualSugar	54.2000	26.10000	14.80000	18.8000	9.40000
Chlorides	-0.5670	-0.42500	0.03700	-0.4250	NA
FreeSulfurDioxide	NA	15.00000	214.00000	22.0000	-167.00000
TotalSulfurDioxide	268.0000	-327.00000	142.00000	115.0000	108.00000
Density	0.9928	1.02792	0.99518	0.9964	0.99457
pН	3.3300	3.38000	3.12000	2.2400	3.12000
Sulphates	-0.5900	0.70000	0.48000	1.8300	1.77000
Alcohol	9.9000	NA	22.00000	6.2000	13.70000
LabelAppeal	0.0000	-1.00000	-1.00000	-1.0000	0.00000
AcidIndex	8.0000	7.00000	8.00000	6.0000	9.00000
STARS	2.0000	3.00000	3.00000	1.0000	2.00000

Includes the initial observations of all variables in the data

Exploration

```
tdata %>%
  describe() %>%
  round(digits = 1) %>%
  mutate(missing = 12975 - n) %>%
  select(n, missing, median, mean, sd, min, max, range, skew, se) %>%
  kbl(booktabs = T, caption = "Raw Summary") %>%
  kable_styling(latex_options = c("striped", "HOLD_position", "scale_down"), full_width = F) %>%
  column_spec(1, width = "8em") %>%
  footnote(c("Missing variables calculated based on the assumption of 12795 observations for each"))
```

Table 2: Raw Summary

	n	missing	median	mean	sd	min	max	range	skew	se
ïINDEX	12795	180	8110.0	8070.0	4656.9	1.0	16129.0	16128.0	0.0	41.2
TARGET	12795	180	3.0	3.0	1.9	0.0	8.0	8.0	-0.3	0.0
FixedAcidity	12795	180	6.9	7.1	6.3	-18.1	34.4	52.5	0.0	0.1
VolatileAcidity	12795	180	0.3	0.3	0.8	-2.8	3.7	6.5	0.0	0.0
CitricAcid	12795	180	0.3	0.3	0.9	-3.2	3.9	7.1	-0.1	0.0
ResidualSugar	12179	796	3.9	5.4	33.7	-127.8	141.2	269.0	-0.1	0.3
Chlorides	12157	818	0.0	0.1	0.3	-1.2	1.4	2.5	0.0	0.0
FreeSulfurDioxide	12148	827	30.0	30.8	148.7	-555.0	623.0	1178.0	0.0	1.3
TotalSulfurDioxide	12113	862	123.0	120.7	231.9	-823.0	1057.0	1880.0	0.0	2.1
Density	12795	180	1.0	1.0	0.0	0.9	1.1	0.2	0.0	0.0
pН	12400	575	3.2	3.2	0.7	0.5	6.1	5.7	0.0	0.0
Sulphates	11585	1390	0.5	0.5	0.9	-3.1	4.2	7.4	0.0	0.0
Alcohol	12142	833	10.4	10.5	3.7	-4.7	26.5	31.2	0.0	0.0
LabelAppeal	12795	180	0.0	0.0	0.9	-2.0	2.0	4.0	0.0	0.0
AcidIndex	12795	180	8.0	7.8	1.3	4.0	17.0	13.0	1.6	0.0
STARS	9436	3539	2.0	2.0	0.9	1.0	4.0	3.0	0.4	0.0

Missing variables calculated based on the assumption of 12795 observations for each

```
# Remove index variable
tdata <- tdata[-1]</pre>
```

```
tdata %>%
  melt() %>%
  ggplot(aes(variable, value, color = variable)) +
  geom_tile(aes()) + coord_flip() + ggtitle("Data Value Exploration", subtitle = "Grouping Wines by the
  theme(legend.position = "none", plot.title = element_text(hjust = 0.45), plot.subtitle = element_text
```

Data Value Exploration


```
spread.misc <- tdata %>%
  select(-TotalSulfurDioxide, -FreeSulfurDioxide, -ResidualSugar, -FixedAcidity, -Alcohol, -AcidIndex)
  melt() %>%
  ggplot() +
  geom_boxplot(aes(variable, value, alpha = .15, color=variable)) +
  coord_flip() +
  ggtitle("Spread of Data Properties", subtitle = "Comparison of Similar Contents in Wine") +
  theme(legend.position = "none", plot.title = element_text(hjust = 0.25), plot.subtitle = element_text
spread.misc
```

Spread of Data Properties

Comparison of Similar Contents in Wine


```
spread.ferments <- tdata %>%
    select(ResidualSugar, FixedAcidity, Alcohol, AcidIndex) %>%
    melt() %>%
    ggplot() +
    geom_boxplot(aes(variable, value, alpha = .15, color=variable)) +
    coord_flip() +
    ggtitle("Spread of Data Properties", subtitle = "Comparison of Similar Contents in Wine") +
    theme(legend.position = "none", plot.title = element_text(hjust = 0.25), plot.subtitle = element_text
spread.ferments
```

Spread of Data Properties

Spread of Sulfur Dioxides

Comparison of Free and Total Contents in Wine


```
corrplot::corrplot.mixed(cor(tdata, method = "pearson", use="pairwise.complete.obs"),
   bg = "light blue",
   addgrid.col = "black",
   diag = c("l"),
   lower.col = NULL,
   mar = c(0, 1, 0, 1),
   tl.pos = c("lt"),
   lower = "square",
   upper = "color",
   plotCI = "n")
```


Preparation

```
# Consider realistic values and adjust accordingly
tdata <- abs(tdata)
tdata %>%
  describe() %>%
  round(digits = 1) %>%
  mutate(missing = 12975 - n) %>%
  select(n, missing, median, mean, sd, min, max, range, skew, se) %>%
  kbl(booktabs = T, caption = "Updated Summary") %>%
  kable_styling(latex_options = c("striped", "HOLD_position", "scale_down"), full_width = F) %>%
  column_spec(1, width = "8em") %>%
  footnote(c("Minimum values were adjusted where applicable to describe the data realisticly"))
```

Table 3: Updated Summary

	n	missing	median	mean	sd	min	max	range	skew	se
TARGET	12795	180	3.0	3.0	1.9	0.0	8.0	8.0	-0.3	0.0
FixedAcidity	12795	180	7.0	8.1	5.0	0.0	34.4	34.4	1.2	0.0
VolatileAcidity	12795	180	0.4	0.6	0.6	0.0	3.7	3.7	1.7	0.0
CitricAcid	12795	180	0.4	0.7	0.6	0.0	3.9	3.9	1.6	0.0
ResidualSugar	12179	796	12.9	23.4	24.9	0.0	141.2	141.2	1.5	0.2
Chlorides	12157	818	0.1	0.2	0.2	0.0	1.4	1.4	1.5	0.0
FreeSulfurDioxide	12148	827	56.0	106.7	108.1	0.0	623.0	623.0	1.5	1.0
TotalSulfurDioxide	12113	862	154.0	204.3	163.1	0.0	1057.0	1057.0	1.6	1.5
Density	12795	180	1.0	1.0	0.0	0.9	1.1	0.2	0.0	0.0
рН	12400	575	3.2	3.2	0.7	0.5	6.1	5.7	0.0	0.0
Sulphates	11585	1390	0.6	0.8	0.7	0.0	4.2	4.2	1.7	0.0
Alcohol	12142	833	10.4	10.5	3.6	0.0	26.5	26.5	0.2	0.0
LabelAppeal	12795	180	1.0	0.6	0.6	0.0	2.0	2.0	0.4	0.0
AcidIndex	12795	180	8.0	7.8	1.3	4.0	17.0	13.0	1.6	0.0
STARS	9436	3539	2.0	2.0	0.9	1.0	4.0	3.0	0.4	0.0

Minimum values were adjusted where applicable to describe the data realisticly

```
# Impute missing values
tdata <- tdata %>%
  mutate(
  ResidualSugar = ifelse(is.na(ResidualSugar), median(ResidualSugar, na.rm = T), ResidualSugar),
  Chlorides = ifelse(is.na(Chlorides), median(Chlorides, na.rm = T), Chlorides),
  FreeSulfurDioxide = ifelse(is.na(FreeSulfurDioxide), median(FreeSulfurDioxide, na.rm = T), FreeSulfurDioxide, na.rm = T), FreeSulfurDioxide, na.rm = T), FreeSulfurDioxide
  TotalSulfurDioxide = ifelse(is.na(TotalSulfurDioxide), median(TotalSulfurDioxide, na.rm = T), TotalSu
  pH = ifelse(is.na(pH), median(pH, na.rm = T), pH),
  Sulphates = ifelse(is.na(Sulphates), median(Sulphates, na.rm = T), Sulphates),
  Alcohol = ifelse(is.na(Alcohol), median(Alcohol, na.rm = T), Alcohol),
  STARS_imputed = ifelse(is.na(STARS), 1, 0),
  STARS = ifelse(is.na(STARS), 1, STARS))
set.seed(1225)
train_index <- createDataPartition(tdata$TARGET, p = .7, list = FALSE, times = 1)</pre>
train <- tdata[train_index,]</pre>
eval <- tdata[-train_index,]</pre>
train[1:5,] %>%
  t() %>%
  kbl(booktabs = T, caption = "Training Data") %>%
  kable_styling(latex_options = c("striped", "HOLD_position"), full_width = F) %>%
  footnote(c("Includes the initial observations of all variables in the data"))
```

Table 4: Training Data

	4	5	6	8	10
TARGET	3.0000	4.00000	0.0000	4.00000	6.00000
FixedAcidity	5.7000	8.00000	11.3000	6.50000	5.50000
VolatileAcidity	0.3850	0.33000	0.3200	1.22000	0.22000
CitricAcid	0.0400	1.26000	0.5900	0.34000	0.39000
ResidualSugar	18.8000	9.40000	2.2000	1.40000	1.80000
Chlorides	0.4250	0.09800	0.5560	0.04000	0.27700
FreeSulfurDioxide	22.0000	167.00000	37.0000	523.00000	62.00000
${\bf Total Sulfur Dioxide}$	115.0000	108.00000	15.0000	551.00000	180.00000
Density	0.9964	0.99457	0.9994	1.03236	0.94724
рН	2.2400	3.12000	3.2000	3.20000	3.09000
Sulphates	1.8300	1.77000	1.2900	0.59000	0.75000
Alcohol	6.2000	13.70000	15.4000	11.60000	12.60000
LabelAppeal	1.0000	0.00000	0.0000	1.00000	0.00000
AcidIndex	6.0000	9.00000	11.0000	7.00000	8.00000
STARS	1.0000	2.00000	1.0000	3.00000	4.00000
STARS_imputed	0.0000	0.00000	1.0000	0.00000	0.00000

Includes the initial observations of all variables in the data

```
eval[1:5,] %>%
   t() %>%
   kbl(booktabs = T, caption = "Evaluation Data") %>%
   kable_styling(latex_options = c("striped", "HOLD_position"), full_width = F) %>%
   footnote(c("Includes the initial observations of all variables in the data"))
```

Table 5: Evaluation Data

	1	2	3	7	9
TARGET	3.0000	3.00000	5.00000	0.00000	3.0000
FixedAcidity	3.2000	4.50000	7.10000	7.70000	14.8000
VolatileAcidity	1.1600	0.16000	2.64000	0.29000	0.2700
CitricAcid	0.9800	0.81000	0.88000	0.40000	1.0500
ResidualSugar	54.2000	26.10000	14.80000	21.50000	11.2500
Chlorides	0.5670	0.42500	0.03700	0.06000	0.0070
FreeSulfurDioxide	56.0000	15.00000	214.00000	287.00000	213.0000
TotalSulfurDioxide	268.0000	327.00000	142.00000	156.00000	154.0000
Density	0.9928	1.02792	0.99518	0.99572	0.9962
рН	3.3300	3.38000	3.12000	3.49000	4.9300
Sulphates	0.5900	0.70000	0.48000	1.21000	0.2600
Alcohol	9.9000	10.40000	22.00000	10.30000	15.0000
LabelAppeal	0.0000	1.00000	1.00000	0.00000	0.0000
AcidIndex	8.0000	7.00000	8.00000	8.00000	6.0000
STARS	2.0000	3.00000	3.00000	1.00000	1.0000
STARS_imputed	0.0000	0.00000	0.00000	1.00000	1.0000

Includes the initial observations of all variables in the data

```
train %>%
  describe() %>%
  round(digits = 1) %>%
  mutate(missing = 8958 - n) %>%
  select(n, missing, median, mean, sd, min, max, range, skew, se) %>%
  kbl(booktabs = T, caption = "Raw Summary") %>%
  kable_styling(latex_options = c("striped", "HOLD_position", "scale_down"), full_width = F) %>%
  column_spec(1, width = "8em") %>%
  footnote(c("Missing variables calculated based on the assumption of 8958 observations for each"))
```

Table 6: Raw Summary

	n	missing	median	mean	sd	min	max	range	skew	se
TARGET	8958	0	3.0	3.0	1.9	0.0	8.0	8.0	-0.3	0.0
FixedAcidity	8958	0	7.0	8.1	5.0	0.0	34.4	34.4	1.2	0.1
VolatileAcidity	8958	0	0.4	0.6	0.6	0.0	3.7	3.7	1.7	0.0
CitricAcid	8958	0	0.4	0.7	0.6	0.0	3.9	3.9	1.6	0.0
ResidualSugar	8958	0	12.9	23.0	24.4	0.0	140.7	140.7	1.5	0.3
Chlorides	8958	0	0.1	0.2	0.2	0.0	1.4	1.4	1.5	0.0
FreeSulfurDioxide	8958	0	56.0	104.3	106.1	0.0	623.0	623.0	1.6	1.1
TotalSulfurDioxide	8958	0	154.0	203.0	160.4	0.0	1057.0	1057.0	1.7	1.7
Density	8958	0	1.0	1.0	0.0	0.9	1.1	0.2	0.0	0.0
pН	8958	0	3.2	3.2	0.7	0.5	6.0	5.6	0.0	0.0
Sulphates	8958	0	0.6	0.8	0.6	0.0	4.2	4.2	1.8	0.0
Alcohol	8958	0	10.4	10.5	3.5	0.0	26.5	26.5	0.2	0.0
LabelAppeal	8958	0	1.0	0.6	0.6	0.0	2.0	2.0	0.4	0.0
AcidIndex	8958	0	8.0	7.8	1.3	4.0	17.0	13.0	1.7	0.0
STARS	8958	0	1.0	1.8	0.9	1.0	4.0	3.0	0.9	0.0
STARS_imputed	8958	0	0.0	0.3	0.4	0.0	1.0	1.0	1.1	0.0

Missing variables calculated based on the assumption of 8958 observations for each

```
eval %>%
  describe() %>%
  round(digits = 1) %>%
  mutate(missing = 3837 - n) %>%
  select(n, missing, median, mean, sd, min, max, range, skew, se) %>%
  kbl(booktabs = T, caption = "Raw Summary") %>%
  kable_styling(latex_options = c("striped", "HOLD_position", "scale_down"), full_width = F) %>%
  column_spec(1, width = "8em") %>%
  footnote(c("Missing variables calculated based on the assumption of 3837 observations for each"))
```

Table 7: Raw Summary

	n	missing	median	mean	sd	min	max	range	skew	se
TARGET	3837	0	3.0	3.0	1.9	0.0	8.0	8.0	-0.3	0.0
FixedAcidity	3837	0	7.0	8.1	4.9	0.0	34.1	34.1	1.1	0.1
VolatileAcidity	3837	0	0.4	0.6	0.6	0.0	3.5	3.5	1.6	0.0
CitricAcid	3837	0	0.4	0.7	0.6	0.0	3.8	3.8	1.6	0.0
ResidualSugar	3837	0	12.9	22.5	24.6	0.0	141.2	141.2	1.6	0.4
Chlorides	3837	0	0.1	0.2	0.2	0.0	1.3	1.3	1.6	0.0
FreeSulfurDioxide	3837	0	56.0	103.6	105.5	0.0	618.0	618.0	1.6	1.7
TotalSulfurDioxide	3837	0	154.0	198.4	156.0	0.0	1054.0	1054.0	1.7	2.5
Density	3837	0	1.0	1.0	0.0	0.9	1.1	0.2	0.0	0.0
рН	3837	0	3.2	3.2	0.7	0.6	6.1	5.5	0.1	0.0
Sulphates	3837	0	0.6	0.8	0.6	0.0	4.2	4.2	1.9	0.0
Alcohol	3837	0	10.4	10.5	3.5	0.1	26.0	25.9	0.2	0.1
LabelAppeal	3837	0	1.0	0.7	0.6	0.0	2.0	2.0	0.4	0.0
AcidIndex	3837	0	8.0	7.8	1.3	5.0	17.0	12.0	1.6	0.0
STARS	3837	0	2.0	1.8	0.9	1.0	4.0	3.0	0.9	0.0
STARS_imputed	3837	0	0.0	0.3	0.4	0.0	1.0	1.0	1.1	0.0

Missing variables calculated based on the assumption of 3837 observations for each

Model Building

```
model1 <- glm(TARGET ~ FixedAcidity + VolatileAcidity + Alcohol, family = quasipoisson, train)</pre>
summary(model1)
##
## Call:
## glm(formula = TARGET ~ FixedAcidity + VolatileAcidity + Alcohol,
      family = quasipoisson, data = train)
## Deviance Residuals:
      Min 1Q Median
                                  3Q
                                          Max
## -2.7215 -0.7003 0.1346 0.7012
                                       2.4663
##
## Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                 1.099366  0.024787  44.352  < 2e-16 ***
                              0.001353 -4.877 1.10e-06 ***
## FixedAcidity -0.006599
                              0.012524 -6.651 3.09e-11 ***
## VolatileAcidity -0.083292
                  0.010835
                              0.001881
                                        5.760 8.67e-09 ***
## Alcohol
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for quasipoisson family taken to be 1.207516)
##
##
      Null deviance: 15871 on 8957 degrees of freedom
```

```
## Residual deviance: 15747 on 8954 degrees of freedom
## ATC: NA
##
## Number of Fisher Scoring iterations: 5
train1 <- train %>%
 select(-LabelAppeal, -AcidIndex, -STARS, -STARS_imputed)
model2 <- glm(TARGET ~ ., family = quasipoisson, train1)</pre>
summary(model2)
##
## Call:
## glm(formula = TARGET ~ ., family = quasipoisson, data = train1)
## Deviance Residuals:
##
      Min
                10
                    Median
## -2.8123 -0.7224 0.1528 0.7229
                                      2.5676
## Coefficients:
##
                       Estimate Std. Error t value Pr(>|t|)
                      2.181e+00 2.537e-01 8.598 < 2e-16 ***
## (Intercept)
                     -6.430e-03 1.355e-03 -4.744 2.12e-06 ***
## FixedAcidity
## VolatileAcidity -8.070e-02 1.254e-02 -6.437 1.28e-10 ***
## CitricAcid
                     7.202e-03 1.096e-02 0.657 0.51104
                     6.899e-05 2.732e-04
                                          0.253 0.80065
## ResidualSugar
## Chlorides
                     -8.595e-02 2.945e-02 -2.919 0.00352 **
## FreeSulfurDioxide 1.581e-04 6.203e-05 2.549 0.01081 *
## TotalSulfurDioxide 1.136e-04 4.101e-05 2.770 0.00561 **
                     -1.073e+00 2.522e-01 -4.254 2.12e-05 ***
## Density
                     -7.518e-03 1.003e-02 -0.749 0.45371
## pH
## Sulphates
                     -3.056e-02 1.084e-02 -2.820 0.00481 **
                     1.105e-02 1.882e-03 5.872 4.47e-09 ***
## Alcohol
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for quasipoisson family taken to be 1.207704)
      Null deviance: 15871 on 8957 degrees of freedom
## Residual deviance: 15685 on 8946 degrees of freedom
## AIC: NA
## Number of Fisher Scoring iterations: 5
model3 <- glm(TARGET ~ LabelAppeal + STARS + AcidIndex + STARS_imputed, family = quasipoisson, train)
summary(model3)
##
## Call:
## glm(formula = TARGET ~ LabelAppeal + STARS + AcidIndex + STARS_imputed,
      family = quasipoisson, data = train)
##
## Deviance Residuals:
##
      Min
           1Q Median
                                 3Q
                                         Max
```

```
## -2.7256 -0.8539 0.0154 0.5614
                                    4.0784
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
               0.001062 0.009607
                                   0.111
                                            0.912
## LabelAppeal
## STARS
                0.244117 0.006723 36.311
                                           <2e-16 ***
                          0.005248 -14.000
               -0.073467
                                           <2e-16 ***
## AcidIndex
## STARS_imputed -0.802386  0.021243 -37.771
                                           <2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for quasipoisson family taken to be 0.9603535)
##
##
      Null deviance: 15871 on 8957 degrees of freedom
## Residual deviance: 10102 on 8953 degrees of freedom
## AIC: NA
##
## Number of Fisher Scoring iterations: 6
```

Model Selection

```
modstats <- function(model, df, yhat = FALSE){</pre>
  y \leftarrow data.frame(yhat=c(0:8), TARGET = c(0:8), n=c(0))
  if(vhat){
    df$yhat <- yhat
  } else {
    df$yhat <- round(predict.glm(model, newdata=df, type="response"), 0)</pre>
  df <- df %>%
    group_by(yhat, TARGET) %>%
    tally() %>%
    mutate(accuracy = ifelse(yhat > TARGET, "Over", ifelse(yhat < TARGET, "Under", "Accurate"))) %>%
    mutate(cases_sold = ifelse(yhat > TARGET, TARGET, yhat) * n,
           glut = ifelse(yhat > TARGET, yhat - TARGET, 0) * n,
           missed opportunity = ifelse(yhat < TARGET, TARGET - yhat, 0) * n) %%
    mutate(net_cases_sold = cases_sold - glut,
           adj_net_cases_sold = cases_sold - glut - missed_opportunity)
  results <- df %>%
    group_by(accuracy) %>%
    summarise(n = sum(n)) %>%
    spread(accuracy, n)
  Ac <- results$Accurate
  over <- results $0 ver
  under <- results$Under
  cases_sold <- sum(df$cases_sold)</pre>
  net_cases_sold <- sum(df$net_cases_sold)</pre>
  adj_net_cases_sold <- sum(df$adj_net_cases_sold)</pre>
  missed_opportunity <- sum(df$missed_opportunity)</pre>
  glut <- sum(df$glut)</pre>
  cm <- df %>%
    bind rows(y) %>%
```

```
group_by(yhat, TARGET) %>%
    summarise(n = sum(n)) %>%
    spread(TARGET, n, fill = 0)
  return(
   list("confusion_matrix" = cm,
         "results" = results,
         df'' = df,
         "accuracy" = Ac,
         "over" = over,
         "under" = under,
         "cases_sold" = cases_sold,
         "net_cases_sold" = net_cases_sold,
         "adj_net_cases_sold" = adj_net_cases_sold,
         "glut" = glut,
         "missed_opportunity" = missed_opportunity))
}
```

modstats(model1, eval)

```
## $confusion_matrix
## # A tibble: 9 x 10
## # Groups: yhat [9]
                                            0'
                                                                                      '2'
                                                                                                          '3'
                                                                                                                               '4'
                                                                                                                                                    '5'
                                                                                                                                                                         66
                                                                                                                                                                                             '7'
                                                             '1'
##
                    yhat
##
                 <dbl> 
## 1
                              0
                                                                                                                 0
                                                                                                                                     0
                                                                                                                                                         0
                                                  0
                                                                       0
                                                                                            0
                                                                                                                                                                               0
                                                                                                                                                                                                   0
## 2
                              1
                                                  0
                                                                       0
                                                                                            0
                                                                                                                0
                                                                                                                                     0
                                                                                                                                                          0
                                                                                                                                                                               0
                                                                                                                                                                                                   0
                                                                                                                                                                                                                        0
## 3
                              2
                                               14
                                                                                                                7
                                                                                                                                     9
                                                                                                                                                          6
                                                                                                                                                                                                   0
                                                                       1
                                                                                            4
                                                                                                                                                                               1
                                                                                                                                                                                                                        0
## 4
                              3
                                                                                                          774
                                           824
                                                                    75
                                                                                     297
                                                                                                                               931
                                                                                                                                                   595
                                                                                                                                                                        217
                                                                                                                                                                                                44
                                                                                                                                                                                                                     10
                                                  2
## 5
                              4
                                                                                            3
                                                                                                                2
                                                                                                                                  13
                                                                                                                                                         6
                                                                                                                                                                                                   1
                                                                                                                                                                                                                        0
                                                                       0
                                                                                                                                                                              1
## 6
                              5
                                                  0
                                                                       0
                                                                                            0
                                                                                                                0
                                                                                                                                     0
                                                                                                                                                         0
                                                                                                                                                                               0
                                                                                                                                                                                                   0
                                                                                                                                                                                                                        0
## 7
                              6
                                                  0
                                                                       0
                                                                                            0
                                                                                                                0
                                                                                                                                     0
                                                                                                                                                         0
                                                                                                                                                                               0
                                                                                                                                                                                                   0
                                                                                                                                                                                                                        0
## 8
                              7
                                                  0
                                                                       0
                                                                                            0
                                                                                                                0
                                                                                                                                     0
                                                                                                                                                         0
                                                                                                                                                                               0
                                                                                                                                                                                                   0
                                                                                                                                                                                                                        0
## 9
                              8
                                                   0
                                                                       0
                                                                                            0
                                                                                                                0
                                                                                                                                     0
                                                                                                                                                                                                   0
                                                                                                                                                                                                                        0
##
## $results
## # A tibble: 1 x 3
                Accurate Over Under
                           <int> <int> <int>
##
## 1
                                 791 1218 1828
##
## $df
## # A tibble: 23 x 9
## # Groups:
                                                  yhat [3]
##
                       yhat TARGET
                                                                             n accuracy cases_sold glut missed_opportun~ net_cases_sold
##
                     <dbl>
                                           <int> <int> <chr>
                                                                                                                                     <dbl> <dbl>
                                                                                                                                                                                                                    <dbl>
##
          1
                                  2
                                                          0
                                                                          14 Over
                                                                                                                                                   0
                                                                                                                                                                     28
                                                                                                                                                                                                                                  0
                                                                                                                                                                                                                                                                                -28
##
          2
                                  2
                                                          1
                                                                              1 Over
                                                                                                                                                   1
                                                                                                                                                                        1
                                                                                                                                                                                                                                  0
                                                                                                                                                                                                                                                                                      0
         3
                                  2
                                                          2
##
                                                                              4 Accurate
                                                                                                                                                   8
                                                                                                                                                                        0
                                                                                                                                                                                                                                  0
                                                                                                                                                                                                                                                                                      8
## 4
                                  2
                                                          3
                                                                              7 Under
                                                                                                                                               14
                                                                                                                                                                                                                                 7
                                                                                                                                                                        0
                                                                                                                                                                                                                                                                                   14
## 5
                                  2
                                                          4
                                                                              9 Under
                                                                                                                                                18
                                                                                                                                                                                                                               18
                                                                                                                                                                                                                                                                                   18
##
         6
                                  2
                                                          5
                                                                              6 Under
                                                                                                                                                12
                                                                                                                                                                                                                               18
                                                                                                                                                                                                                                                                                   12
                                                                                                                                                                        0
##
         7
                                  2
                                                          6
                                                                              1 Under
                                                                                                                                                   2
                                                                                                                                                                        0
                                                                                                                                                                                                                                 4
                                                                                                                                                                                                                                                                                     2
##
            8
                                  3
                                                          0
                                                                      824 Over
                                                                                                                                                   0 2472
                                                                                                                                                                                                                                  0
                                                                                                                                                                                                                                                                        -2472
```

```
3
                                                                    75 Over
                                                                                                                                       75
                                                                                                                                                                                                                                                                -75
                                                  1
                                                                                                                                                        150
                                                                                                                                                                                                                     0
                                                                    297 Over
                                                                                                                                                        297
                               3
                                                      2
                                                                                                                                    594
                                                                                                                                                                                                                     0
                                                                                                                                                                                                                                                                297
## # ... with 13 more rows, and 1 more variable: adj_net_cases_sold <dbl>
## $accuracy
## [1] 791
##
## $over
## [1] 1218
##
## $under
## [1] 1828
## $cases_sold
## [1] 8533
##
## $net_cases_sold
## [1] 5569
## $adj_net_cases_sold
## [1] 2513
##
## $glut
## [1] 2964
##
## $missed_opportunity
## [1] 3056
modstats(model2, eval)
## $confusion_matrix
## # A tibble: 9 x 10
## # Groups: yhat [9]
                                        '0' '1'
                                                                                 '2'
                                                                                                    '3'
                                                                                                                       '4'
                                                                                                                                        '5'
                                                                                                                                                              '6'
                                                                                                                                                                                  '7'
                   yhat
                <dbl> 
##
## 1
                             0
                                                0
                                                                    0
                                                                                       0
                                                                                                          0
                                                                                                                              0
                                                                                                                                                 0
                                                                                                                                                                     0
                                                                                                                                                                                         0
## 2
                             1
                                                0
                                                                    0
                                                                                       0
                                                                                                          0
                                                                                                                              0
                                                                                                                                                 0
                                                                                                                                                                     0
                                                                                                                                                                                         0
                                                                                                                                                                                                            0
## 3
                             2
                                            26
                                                                    3
                                                                                       7
                                                                                                       17
                                                                                                                           18
                                                                                                                                                 5
                                                                                                                                                                     3
                                                                                                                                                                                                            0
                                                                                                                                                                                        1
## 4
                             3
                                     800
                                                                73
                                                                                291
                                                                                                    746
                                                                                                                        897
                                                                                                                                           580
                                                                                                                                                               212
                                                                                                                                                                                      43
                                                                                                                                                                                                         10
## 5
                             4
                                                                                                       20
                                                                                                                           38
                                                                                                                                               22
                                            14
                                                                    0
                                                                                       6
                                                                                                                                                                     4
                                                                                                                                                                                        1
                                                                                                                                                                                                            0
## 6
                             5
                                           0
                                                                    0
                                                                                       0
                                                                                                          0
                                                                                                                              0
                                                                                                                                                 0
                                                                                                                                                                     0
                                                                                                                                                                                        0
                                                                                                                                                                                                            0
## 7
                             6
                                                0
                                                                    0
                                                                                       0
                                                                                                          0
                                                                                                                              0
                                                                                                                                                 0
                                                                                                                                                                     0
                                                                                                                                                                                        0
                                                                                                                                                                                                            0
                             7
## 8
                                                0
                                                                    0
                                                                                                          0
                                                                                                                              0
                                                                                                                                                 0
                                                                                                                                                                     0
                                                                                                                                                                                         0
                                                                                       0
                                                                                                                                                                                                            0
## 9
                             8
                                                                                                          0
                                                                                                                              0
                                                0
                                                                    0
                                                                                       0
                                                                                                                                                 0
                                                                                                                                                                                         0
                                                                                                                                                                                                            0
##
## $results
## # A tibble: 1 x 3
            Accurate Over Under
                         <int> <int> <int>
                               791 1233 1813
## 1
##
## $df
## # A tibble: 24 x 9
## # Groups: yhat [3]
```

```
##
       yhat TARGET
                        n accuracy cases_sold glut missed_opportun~ net_cases_sold
##
      <dbl>
              <int> <int> <chr>
                                          <dbl> <dbl>
                                                                   <dbl>
                                                                                   <dbl>
##
    1
          2
                  0
                       26 Over
                                              0
                                                    52
                                                                       0
                                                                                      -52
    2
          2
                         3 Over
                                              3
                                                     3
                                                                       0
                                                                                        0
##
                  1
##
    3
          2
                  2
                        7 Accurate
                                             14
                                                     0
                                                                       0
                                                                                       14
##
    4
          2
                  3
                       17 Under
                                             34
                                                                                       34
                                                     0
                                                                      17
##
    5
          2
                  4
                       18 Under
                                             36
                                                     0
                                                                      36
                                                                                       36
##
    6
          2
                  5
                        5 Under
                                             10
                                                     0
                                                                      15
                                                                                       10
##
    7
          2
                  6
                         3 Under
                                              6
                                                     0
                                                                      12
                                                                                        6
##
          2
                  7
                                              2
                                                                       5
                                                                                        2
    8
                         1 Under
                                                     0
##
    9
          3
                  0
                      800 Over
                                              0
                                                  2400
                                                                       0
                                                                                    -2400
                                                                                      -73
## 10
          3
                       73 Over
                                             73
                                                                       0
                  1
                                                   146
  # ... with 14 more rows, and 1 more variable: adj_net_cases_sold <dbl>
##
## $accuracy
## [1] 791
##
## $over
## [1] 1233
##
## $under
## [1] 1813
##
## $cases sold
## [1] 8556
## $net_cases_sold
## [1] 5576
##
## $adj_net_cases_sold
## [1] 2543
##
## $glut
## [1] 2980
## $missed_opportunity
## [1] 3033
```

modstats(model3, eval)

```
## $confusion_matrix
## # A tibble: 9 x 10
## # Groups:
                yhat [9]
                                                               '7'
               0,
                     '1'
                             '2'
                                   '3'
                                          '4'
                                                 '5'
                                                        66
##
      yhat
##
            <dbl> <dbl>
                                <dbl>
                                       <dbl>
                                              <dbl> <dbl>
                                                            <dbl>
                                                                   <dbl>
     <dbl>
                          <dbl>
## 1
          0
                0
                        0
                              0
                                     0
                                            0
                                                   0
                                                          0
                                                                 0
                                                                        0
## 2
          1
              618
                      42
                             83
                                   135
                                           81
                                                  25
                                                          6
                                                                 2
                                                                        1
## 3
          2
               48
                        2
                                                   5
                                                                 0
                             10
                                    10
                                            8
                                                          1
                                                                        0
## 4
          3
              166
                      30
                            160
                                   410
                                          385
                                                 179
                                                         45
                                                                 1
                                                                        0
## 5
          4
                                          330
                                                 201
                8
                        2
                             40
                                   184
                                                         62
                                                                10
                                                                        1
## 6
          5
                 0
                        0
                             11
                                    44
                                          123
                                                 135
                                                         57
                                                                14
                                                                        1
          6
                0
                              0
                                           25
                                                  56
                                                         44
                                                                15
                                                                        7
## 7
                        0
                                     0
## 8
          7
                 0
                        0
                              0
                                     0
                                            1
                                                   6
                                                          4
                                                                 3
                                                                        0
## 9
                 0
                        0
                                     0
                                            0
                                                   0
                                                          0
                                                                 0
                                                                        0
          8
                              0
```

```
##
## $results
## # A tibble: 1 x 3
   Accurate Over Under
##
        <int> <int> <int>
## 1
          974 1528 1335
##
## $df
## # A tibble: 49 x 9
## # Groups:
               yhat [7]
       yhat TARGET
                       n accuracy cases_sold glut missed_opportun~ net_cases_sold
##
      <dbl> <int> <int> <chr>
                                        <dbl> <dbl>
                                                                <dbl>
                                                                                <dbl>
##
   1
                 0
                     618 Over
                                            0
                                                618
                                                                                -618
          1
                                                                    0
   2
##
                 1
                      42 Accurate
                                           42
                                                                    0
                                                                                   42
          1
                                                  0
##
   3
                 2
                      83 Under
                                           83
                                                   0
                                                                   83
                                                                                   83
          1
##
   4
                 3
                     135 Under
                                          135
                                                                  270
                                                                                  135
##
  5
                 4
                      81 Under
                                           81
                                                                  243
                                                                                   81
          1
                                                  0
##
  6
                 5
                      25 Under
                                           25
                                                                  100
                                                                                   25
##
  7
                 6
                       6 Under
                                            6
                                                  0
                                                                   30
                                                                                   6
          1
                 7
                       2 Under
                                            2
                                                                                    2
## 8
          1
                                                  0
                                                                   12
## 9
          1
                 8
                       1 Under
                                            1
                                                  0
                                                                    7
                                                                                    1
          2
                 0
                      48 Over
                                            0
                                                 96
                                                                    0
                                                                                  -96
## # ... with 39 more rows, and 1 more variable: adj_net_cases_sold <dbl>
## $accuracy
## [1] 974
##
## $over
## [1] 1528
##
## $under
## [1] 1335
##
## $cases_sold
## [1] 9441
##
## $net_cases_sold
## [1] 7336
##
## $adj_net_cases_sold
## [1] 5188
##
## $glut
## [1] 2105
## $missed_opportunity
## [1] 2148
```

Stuff to delete

Conclusion

When basing the assumption soley on how many cases are sold, it looks like model 3 is best. This model also has the greatest accuracy and was the best estimate of total cases for the business. If choosing a model based only the number of cases sold, this model should take priority.