Matrix Theory Assignment 12

Ritesh Kumar EE20RESCH11005

Abstract—This problem is all about to to introducing the concept of linear algebra over a filed.

All the codes for this document can be found at

https://github.com/Ritesh622/Assignment_EE5609/ tree/master/Assignment 12

1 Problem

If a and b are element of a filed \mathbb{F} and $a \neq 0$, show that the ploynomial $1, ax + b, (ax + b)^2, (ax + b)^3, \dots$ form a basis of $\mathbb{F}[x]$.

2 solution

Let consider we have a set S such that,

$$S = \left\{1, ax + b, (ax + b)^2, (ax + b)^3, \dots\right\} \quad (2.0.1)$$

And let $\langle S \rangle$ be the subspace, that is spanned by S. We know that if any set which is forms with combination of two elements, and if no two elements of S have the same degree in S, then all elements in S will be independent set in $\mathbb{F}[x]$.

Since $1 \in S, ax + b \in S$, and hence $b.1 + \frac{a}{a}(a + bx) \in \langle S \rangle$, it follows $x \in \langle S \rangle$.

Now to prove $x^2 \in \langle S \rangle$ let consider another element form S which is $(ax + b)^2$.

Subtracting, $1.a^2 + 2.a.b.x$ from $(ax + b)^2$

$$(ax + b)^{2} - a^{2} - 2.a.b.x = a^{2}.x^{2}$$
 (2.0.2)

from 2.0.2 we conclude that $a^2.x^2$ will also $\in \langle S \rangle$. Now, $\frac{1}{a^2}.a^2.x^2 \in S$. Thus $x^2 \in \langle S \rangle$. Hence using this concept with higher degree we can prove that, $x^n \in \langle S \rangle \ \forall \ n$.

Consider,

$$S' = \{1, x, x^2, x^3, \dots\}$$
 (2.0.3)

Hence we can say that, (2.0.3) span the space of all polynomials which form with $(ax + b)^n$. Hence we conclude that S spans the space of all polynomials.

1