HINWEIS:

Sollte wieder erwarten das speedup.gnuplot Script nicht funktionieren so können die Diagramme alternativ mittels eines Bash Script erzeugt werden, welches der Abgabe beiliegt.

Dieses war nötig, da gnuplot manchmal Probleme beim erzeugen vieler Diagramme auf einmal hat. Daher erzeugt das Script buildPlot.sh alle png als auch gnuplot Dateien. Die gnuplot Dateien können aber wie gewohnt mittels gnuplot geplotet werden.

Des Weiteren wurde der Test einmal mit Berechnung über die ganze Matrix durch geführt und einmal die Symmetrieeigenschaften der Matrix ausgenutzt.

Leistungstest mit ganzer Matrix

Die Wahl der Interlines mit der Anzahl der Prozesse kann sich evtl. damit erklären lassen, dass bei wenigen Knoten die Interlines sehr groß sind, was Automatisch zu einem Slowdown der Anwendung führt und bei vielen Prozessen die Teilmatrizen sehr klein sind. Diese kleinen Teilmatrizen verursachen aber eine erhöhte Kommunikation bei sehr wenig Berechnungen, was ebenfalls ein Slowdown nach sich zieht.

Prozesse	Knoten	Interlines	Zeit in Sekunden
1	1	100	37.2353
2	1	141	36.7564
4	2	200	37.3686
8	4	282	39.5706
16	4	400	40.0696
24	4	490	40.0879
64	8	800	39.2513

Der Graph verhält sich sehr merkwürdig, da der Speedup weder Weak skaliert sondern bei sehr wenigen Prozessen sogar Strong. Die könnte sich erklären lassen, damit, dass die Kommunika-

tion bei über mehrere Rechner verläuft und damit die Daten erst hin und her gesendet werden müssen. Dies wird ebenfalls unterstützt dadurch, dass pro Mainboard 2 CPUs verbaut sind und somit die Rechnungen mit zwei Knoten noch auf dem gleichen Mailboard ausgeführt werden.

Weak Scaling Test Gauss Seidel mit 800 Interlines

Prozesse	Knoten	Interlines	Zeit in Sekunden
1	1	100	36.7030
2	1	141	71.8596
4	2	200	73.0463
8	4	282	82.2029
16	4	400	76.5996
24	4	490	77.1833
64	8	800	77.6653

Dieser Verlauf verhält sich nicht äquivalent zu dem Jacobi Verfahren. Allerdings existiert bei beim Jakobi Verfahren keine Pipeline, somit kann es sein, dass hier die Laufzeit deutlich durch das Pipelining verzögert wird.

Strong Scaling Test Jacobi mit 960 Interlines

Prozesse	Knoten	Interlines	Zeit in Sekunden
12	1	960	186.6984
24	2	960	94.7785
48	4	960	49.3370
96	8	960	25.8823
120	10	960	21.7832
240	10	960	16.8659

Bei diesen Messungen tritt wie erwartet das Strong-Scaling auf, allerdings ist auch zu sehen, dass ab einer bestimmten Prozesszahl kaum noch Speedup auftritt. Dies kann sich damit erklären, dass die Kommunikation zwischen den Knoten zu lange dauert, als dass es noch zu einem Speedup kommt.

Strong Scaling Test Gauss Seidel mit 960 Interlines

Prozesse	Knoten	Interlines	Zeit in Sekunden
12	1	960	371.0067
24	2	960	190.9016
48	4	960	96.5915
96	8	960	51.3105
120	10	960	42.3742
240	10	960	31.5057

Auch hier tritt das Strong-Scaling auf, allerdings ist hier wie schon bei Weak-Scaling zu sehen, dass das Gauss Seidel Verfahren deutlich langsamer ist, als das Jacobi Verfahren, was ebenfalls auf eine erhöhte kommunikation zurück führen könnte.

Communikations Test Jacobi mit 200 Interlines

Prozesse	Knoten	Interlines	Zeit in Sekunden
10	1	200	19.8375
10	2	200	19.8375
10	3	200	22.9522
10	4	200	27.3824
10	6	200	29.9228
10	8	200	30.7260
10	10	200	73.8324

Communikations Test Gauss Seidel mit 200 Interlines

Prozesse	Knoten	Interlines	Zeit in Sekunden
10	1	200	44.9182
10	2	200	48.7818
10	3	200	54.1011
10	4	200	55.8813
10	6	200	55.6212
10	8	200	57.5855
10	10	200	115.6501

Auf den letzten beiden Diagrammen ist der Tradeoff zwischen der Anzahl der Knoten und den Prozessen zu sehen. Hierbei ist deutlich zu erkennen, dass der Speedup deutlich zu nimmt je weniger Prozesse benutzt werden. Auffällig ist auch, dass bei 10 Prozessen mit 10 Knoten die Laufzeit deutlich zu nimmt. Dies folgt daraus, dass die Daten zwar bei vielen Prozessen besser auf geteilt werden, aber die Kommunikation zu lange im Vergleich zur Rechnung braucht. Auch hier ist zu erkennen, dass das Gauss Seidel verfahren deutlich langsamer ist als das Jacobi Verfahren.

Leistungstest mit halber Matrix

Generell gelten alle Aussagen wie bei der Berechnung mit der ganzen Matrix es gibt aber aber ein paar Auffälligkeiten (abgesehen vom deutlichen Speedup).

Prozesse	Knoten	Interlines	Zeit in Sekunden
1	1	100	16.5776
2	1	141	16.9267
4	2	200	19.2339
8	4	282	20.6576
16	4	400	18.4460
24	4	490	19.4137
64	8	800	20.6017

Hier ist schon deutlich zu sehen, dass der Speedup nicht äquivalent zu dem mit der ganzen Matrix ist. Des Weiteren ist dieser enormen Schwankungen unterworfen, für die es schwierig ist eine Erklärung zu finden.

Weak Scaling Test Gauss Seidel mit 800 Interlines

Prozesse	Knoten	Interlines	Zeit in Sekunden
1	1	100	16.5143
2	1	141	31.8934
4	2	200	38.4988
8	4	282	42.3797
16	4	400	37.8935
24	4	490	39.2747
64	8	800	40.6173

Dieses entspricht wieder dem Diagramm wie es bei der ganzen Matrix vorkommt. Auch hier ist der Peek bei 8 Prozessen auf 4 Knoten deutlich zu sehen. Daher gelten hier die gleichen Annahmen wie für die ganze Matrix.

Strong Scaling Test Jacobi mit 960 Interlines

Prozesse	Knoten	Interlines	Zeit in Sekunden
12	1	960	92.5276
24	2	960	46.7365
48	4	960	23.6457
96	8	960	13.1495
120	10	960	11.1422
240	10	960	8.3299

Auch dies entspricht im wesentlichen dem Diagramm der ganzen Matrix, allerdings mit deutlichem Speedup.

Strong Scaling Test Gauss Seidel mit 960 Interlines

Prozesse	Knoten	Interlines	Zeit in Sekunden
12	1	960	180.0979
24	2	960	91.7301
48	4	960	47.0823
96	8	960	25.3110
120	10	960	20.9114
240	10	960	15.0807

Auch hier ist der Speedup wie bei der ganzen Matrix. Des Weiteren tritt hier das gleiche Phänomen auf, dass die Gauss Seidel Implementierung deutlich langsamer ist als die Jacobi.

Communikations Test Jacobi mit 200 Interlines

Prozesse	Knoten	Interlines	Zeit in Sekunden
10	1	200	8.9073
10	2	200	11.1802
10	3	200	16.4681
10	4	200	20.2083
10	6	200	18.8340
10	8	200	18.2863
10	10	200	90.7397

Auch hier ist noch deutlich zu erkennen, dass die Laufzeit zu erst mit steigender Prozessorzahl zu nimmt, dann aber bei 10 Knoten mit 10 Prozessen ebenfalls wie mit der ganzen Matrix einen erheblichen Leistungsverlust aufweist. Des Weiteren ist ein Speedup bei 6 Knoten und 8 Knoten zu sehen, welcher mit 1 Sekunde aber noch im Bereich der Messungenauigkeit liegen könnte.

Communikations Test Gauss Seidel mit 200 Interlines

	i	1	1
Prozesse	Knoten	Interlines	Zeit in Sekunden
10	1	200	21.3640
10	2	200	29.9315
10	3	200	28.8721
10	4	200	27.5717
10	6	200	27.3327
10	8	200	27.8565
10	10	200	90.8006

Auch hier ist das Phänomen zu erkennen, dass der Speedup mit steigender Prozessanzahl steigt, dann aber das Programm bei 10 Knoten mit 10 Prozessen einen erheblichen Leistungsverlust hat.