topologia-3.04

3.04.2020

$\mathbf{Z}\mathbf{1}$

(\Rightarrow)

Niech (X, \mathcal{T}) Hausdorffa. Weźmy dowolny punkt $(x, y) \in X^2 (x \neq y)$. Wtedy $x, y \in X$, istnieją $U_x, U_y \in \mathcal{T}$, takie, że $x \in U_x, y \in U_y, U_x \cap U_y = \emptyset$. Zbiór $U_x \times U_y$ jest otwarty w $(X, \mathcal{T})^2$ oraz nie ma w nim żadnego punktu o równych współrzędnych. Suma takich zbiorów po wszystkich punktach o różnych współrzędnych także jest otwarta, więc jej dopełnienie: Δ jest domknięte.

(⇔)

Niech (X,\mathcal{T}) takie, że Δ domknięta w $(X,\mathcal{T})^2$. Weźmy $x \neq y (\in X)$ Skoro zbiór $X^2 \setminus \Delta$ otwarty, to jest on sumą iloczynów par zbiorów otwartych w (X,\mathcal{T}) . Weźmy dowolny składnik tej sumy do którego należy punkt (x,y). Powiedzmy, że ów składnik to $U_1 \times U_2$. Skoro żaden punkt postaci (z,z) nie należy do $X^2 \setminus \Delta$, więc także do $U_1 \times U_2$. Stąd U_1, U_2 rozłączne. Ponadto $x \in U_1$ oraz $y \in U_2$. Stąd (X,\mathcal{T}) Hausdorffa.