Data Visualization with ggplot2

Cheat Sheet

Basics

ggplot2 is based on the grammar of graphics, the idea that you can build every graph from the same few components: a data set, a set of geoms—visual marks that represent data points, and a coordinate system.

To display data values, map variables in the data set to aesthetic properties of the geom like size, color, and x and y locations.

Build a graph with **qplot()** or **ggplot()**

qplot(x = cty, y = hwy, color = cyl, data = mpg, geom = "point") Creates a complete plot with given data, geom, and mappings. Supplies many useful defaults.

ggplot(data = mpg, aes(x = cty, y = hwy))

Begins a plot that you finish by adding layers to. No defaults, but provides more control than gplot().

ggplot(mpg, aes(hwy, cty)) + geom_point(aes(color = cyl)) +
geom_smooth(method ="lm") + coord cartesian() + scale_color_gradient() +
theme_bw()

additional

Add a new layer to a plot with a **geom_*()** or stat *() function. Each provides a geom, a set of aesthetic mappings, and a default stat and position adjustment.

last_plot()

Returns the last plot

ggsave("plot.png", width = 5, height = 5)

Saves last plot as 5' x 5' file named "plot.png" in working directory. Matches file type to file extension.

Geoms - Use a geom to represent data points, use the geom's aesthetic properties to represent variables. Each function returns a layer.

One Variable

Continuous

a <- ggplot(mpg, aes(hwv))

+ geom_area(stat = "bin")

x, y, alpha, color, fill, linetype, size b + geom area(aes(y = ..density..), stat = "bin")

a + geom_density(kernel = "gaussian") x, y, alpha, color, fill, linetype, size, weight

+ geom_dotplot()

x, y, alpha, color, fill

+ geom_freqpoly()

x, y, alpha, color, linetype, size b + geom_freqpoly(aes(y = ..density..))

geom_histogram(binwidth = 5)

x, y, alpha, color, fill, linetype, size, weight b + geom_histogram(aes(y = ..density..))

Discrete

b <- ggplot(mpg, aes(fl))

b + geom_bar() x, alpha, color, fill, linetype, size, weight

Graphical Primitives

c <- ggplot(map, aes(long, lat))

+ geom_polygon(aes(group = group)) x, y, alpha, color, fill, linetype, size

d <- ggplot(economics, aes(date, unemploy))

+ geom_path(lineend="butt", linejoin="round', linemitre=1) x, y, alpha, color, linetype, size

d + geom_ribbon(aes(ymin=unemploy - 900, vmax=unemploy + 900) x, ymax, ymin, alpha, color, fill, linetype, size

e <- ggplot(seals, aes(x = long, y = lat))

+ geom_segment(aes(xend = long + delta_long, yend = lat + delta_lat))

x, xend, y, yend, alpha, color, linetype, size

+ geom_rect(aes(xmin = long, ymin = lat, xmax=long + delta long. vmax = lat + delta lat))

xmax, xmin, ymax, ymin, alpha, color, fill, linetype, size

Two Variables

Continuous X. Continuous Y f <- ggplot(mpg, aes(cty, hwy))

f + geom blank()

f + geom iitter()

x, y, alpha, color, fill, shape, size

+ geom point()

x, y, alpha, color, fill, shape, size

geom_quantile()

x, y, alpha, color, linetype, size, weight

+ geom_rug(sides = "bl") alpha, color, linetype, size

+ geom_smooth(model = lm)

x, y, alpha, color, fill, linetype, size, weight

+ geom text(aes(label = ctv))

x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust

Discrete X. Continuous Y g <- ggplot(mpg, aes(class, hwy))

g + geom_bar(stat = "identity") x, y, alpha, color, fill, linetype, size, weight

g + geom_boxplot() lower, middle, upper, x, ymax, ymin, alpha, color, fill, linetype, shape, size, weight

g + geom_dotplot(binaxis = "y", stackdir = "center")

x, y, alpha, color, fill g + geom_violin(scale = "area")

x, y, alpha, color, fill, linetype, size, weight

Discrete X. Discrete Y

h <- ggplot(diamonds, aes(cut, color))

h + geom_jitter()

x, y, alpha, color, fill, shape, size

Continuous Bivariate Distribution

i <- ggplot(movies, aes(year, rating))

geom bin2d(binwidth = c(5, 0.5)) xmax, xmin, ymax, ymin, alpha, color, fill, linetype, size, weight

geom_density2d() x, y, alpha, colour, linetype, size

geom_hex()

x, y, alpha, colour, fill size

Continuous Function

i <- ggplot(economics, aes(date, unemploy))</pre>

j + geom_area()

+ geom_line()

x, y, alpha, color, fill, linetype, size

x, y, alpha, color, linetype, size

j + geom_step(direction = "hv") x, y, alpha, color, linetype, size

Visualizing error

df < -data.frame(grp = c("A", "B"), fit = 4:5, se = 1:2)k <- ggplot(df, aes(grp, fit, ymin = fit-se, ymax = fit+se))

geom_crossbar(fatten = 2)

x, y, ymax, ymin, alpha, color, fill, linetype,

k + geom_errorbar()

x, ymax, ymin, alpha, color, linetype, size, width (also geom_errorbarh())

+ geom_linerange() x, ymin, ymax, alpha, color, linetype, size

+ geom_pointrange()

x, y, ymin, ymax, alpha, color, fill, linetype, shape, size

data <- data.frame(murder = USArrests\$Murder, state = tolower(rownames(USArrests))) map <- map_data("state") l <- ggplot(data, aes(fill = murder))</pre>

+ geom_map(aes(map_id = state), map = map) + expand_limits(x = map\$long, y = map\$lat) map id. alpha, color, fill, linetype, size

Three Variables

seals\$z <- with(seals, sqrt(delta_long^2 + delta_lat^2)) m <- ggplot(seals, aes(long, lat))

m + geom_contour(aes(z = z))

x, y, z, alpha, colour, linetype, size, weight

m + geom_raster(aes(fill = z), hjust=0.5, vjust=0.5, interpolate=FALSE) x, y, alpha, fill

m + geom_tile(aes(fill = z))

x, y, alpha, color, fill, linetype, size