Correction détailée TD 1, exo2, (r)

Etude de la série

$$\sum_{n\geqslant 1}\left[\prod_{k=1}^n\left(1+\frac{k}{n^\alpha}\right)-1\right]\ \text{avec}\ \alpha\in\mathbb{R}$$

Correction:

Posons pour tout $n \in \mathbb{N}^*$, $a_n = \prod_{k=1}^n \left(1 + \frac{k}{n^{\alpha}}\right) - 1$. On a

$$a_n = \prod_{k=1}^n \left(1 + \frac{k}{n^{\alpha}} \right) - 1$$

$$= \exp \left[\ln \left(\prod_{\substack{k=1 \\ \text{strictement positif}}}^n \left(1 + \frac{k}{n^{\alpha}} \right) \right] - 1$$

$$= \exp \left[\sum_{k=1}^n \ln \left(1 + \frac{k}{n^{\alpha}} \right) \right] - 1.$$

Pour la suite, supposons $\alpha > 2$. Cela permettra de ne pas avoir de problème avec les développements limités. Nous déduirons ensuite le comportement pour $\alpha \leq 2$.

En utilisant le développement limité de la fonction ln au voisinage de 1 on a

$$a_n \ge \exp\left[\sum_{k=1}^n \frac{k}{n^{\alpha}}\right] - 1$$
$$\ge \exp\left[\frac{n(n+1)}{n^{\alpha}}\right] - 1$$
$$\ge \frac{n(n+1)}{n^{\alpha}} + o(n^{\alpha-2}).$$

Par comparaison avec les séries de Riemann, $\sum b_n$ diverge pour tout $2 < \alpha \le 3$ et donc il en est de même pour $\sum a_n$.

Comme pour tout $\alpha' \leq \alpha$, on a $\prod_{k=1}^{n} \left(1 + \frac{k}{n^{\alpha'}}\right) - 1 \leq \prod_{k=1}^{n} \left(1 + \frac{k}{n^{\alpha}}\right) - 1$, on en déduit que $\sum a_n$ diverge pour tout $\alpha \leq 3$.

Maintenant, supposons $\alpha > 3$. On a

$$a_n \le \exp\left[\sum_{k=1}^n \ln\left(1 + \frac{n}{n^\alpha}\right)\right] - 1$$

$$\le \exp\left[n\ln\left(1 + \frac{n}{n^\alpha}\right)\right] - 1$$

$$\le \exp\left(\frac{n^2}{n^\alpha}\right) - 1$$

$$\le \frac{1}{n^{\alpha-2}} + o(n^{-1})$$

$$\le o(n^{-1}) \quad \text{car } \alpha > 3.$$

Ainsi, $\sum a_n$ converge pour $\alpha > 3$.