National University of Computer and Emerging Sciences, Lahore Campus

Course Name:	Theory of Automata	Course Code:	CS-3005
Degree Program:	BS (CS)	Semester:	Fall 2023
Exam Duration:	60 Minutes	Total Marks:	30
Paper Date:	11-11-2023	Weight	17.5%
Section:	ALL	Page(s):	6
Exam Type:	Midterm-II	-	

Student: Name: Roll No. Section:

Instruction/Notes:

Answer in the space provided, showing complete working.

You can take ROUGH SHEETS but don't attach them with the question paper. Solve the paper with a pen. Paper solved with a pencil will not be marked.

In case of confusion or ambiguity make a reasonable assumption.

Good luck!

Question 1: (5 points):

Prove that the following language is not regular using pumping Lemma I

$$\Sigma = \{a,b\}$$

L= $\{x \mid x \in \sum^* \text{ and } x=a^ib^j \text{ where } i\neq j \text{ and } 2i\neq j\}$

So laving S= 1 & i=0

ap-1 a b° = a b° d L so L & P2L

Roll Number:	Section:

Roll Number:_____

Section: _____

Question 2: (15 points):

Develop a PDA for the following language.

L= $\{x \mid x \in \sum^* \text{ and } x=a^ic^kb^j \text{ where } k \text{ is even and } k>0 \text{ and } i\neq 2j\}$

Note:

Please be neat in drawing PDA. No marks if it is not readable.

Roll Number:	Section:	

Question 3 (10 points)

Apply CYK algorithm to tell whether the string x=abcba is acceptable by the following grammar

 $X \rightarrow SA \mid a$ $Y \rightarrow SB \mid b$

You have to fill the table.

As Start Variable belongs to j=5 cell so x belongs to L

j=5	S,So				
j=4	-	X			
j=3	-	S,So	-		
j=2	-	-	Υ	X	
j=1	A,X	B,Y,S,So	S,So	B,Y,S,So	A,X
Note:	а	b	С	b	а

Use only the required cells.

Roll Number:		Section:
	Rough Work	