EXERCÍCIOS - PESQUISA OPERACIONAL

1. FORMULAÇÃO

Ex. 1.1

Um fabricante produz duas ligas metálicas, e quer maximizar o lucro obtido com sua venda. A tabela mostra as composições das ligas, os lucros e as disponibilidades de matéria prima para fabricação dessas ligas. Formule o problema como de PL.

	liga A	liga B	Disponib.
cobre	2	1	16
zinco	1	2	11
chumbo	1	3	15
lucro/ un.	30	50	

Ex. 1.2

Um fazendeiro deseja otimizar as plantações de arroz e milho na sua fazenda. O seu lucro por unidade de área plantada de arroz é 5 u.m., e por unidade de área plantada de milho é 2 u.m.As áreas plantadas de arroz e milho não devem ser maiores que 3 e 4 respectivamente. Cada unidade de área plantada de arroz consome 1 homem-hora, e cada unidade de área plantada de milho consome 2 homens-hora. Há disponibilidade total de 9 homens-hora para as plantações.

Ex. 1.3

Uma empresa fabrica produtos 1 e 2. Cada produto requer um tempo de processamento em cada um dos tres departamentos da empresas. Os lucros de cada produto são respectivamente \$1,00 e \$1,50. Maximizar o lucro, respeitando a capacidade de produção.

Tempo de pro<u>cessamento</u> em horas

	Departa	Departamentos					
Produto	A	В	С				
1	2	1	4				
2	2	2	2				

Disponibilidade em horas

A	160
В	120
С	280

Ex. 1.4

Uma fornalha é usada para produzir 4000 kg de uma liga metálica, que deve ter as seguintes características:

%	mínima	máxima
Si	3,25	3,4
C	2.05	2.25

As matérias primas disponíveis para produzir a liga são:

Materia prima	%C	%Si	Custo/k
Sucata A	0,45	0,1	0,30
Sucata B	0,402	0,15	0,315
Sucata C	3,5	2,3	0,034
Sucata D	3,30	2,2	0,02
Carbono	100	0	0,3
Silício	0	100	0,5

Formule de modo a minimizar o custo de produção da liga.

Ex. 1.5

Uma empresa faz 3 produtos, a partir de 3 matérias-primas os dados estão na tabela. Observe que a fabricação do produto 2 gera um resíduo que pode ser usado como matéria-prima do tipo2, e a fabricação do produto 3 gera um resíduo que pode ser usado com matéria-prima do tipo 1. Dado que o objetivo é maximizar o lucro, formular como um problema de programação linear (P.L.)

	PRODU	TOS		
Recurso	1	2	3	Disponib.
1	6	3		60
2	2		4	40
3	3	3	3	60
Residuo 1			4	
Residuo 2		4		
Lucro	3	2	6	

Ex. 1.6

Uma empresa produz quatro produtos, cujo lucro é respectivamente 4,5,9 e 11. Esses produtos utilizam 3 insumos segundo a tabela. Dado que o objetivo é maximizar o lucro, formule o problema

	Insumo 1	Insumo 2	Insumo 3		
Produto 1	1	7	3		
Produto 2	1	5	5		
Produto 3	1	3	10		
Produto 4	1	2	15		
Disponib.	15	120	100		

Ex. 1.7

As necessidades minimas diárias de certas vitaminas, bem como a quantidade fornecida por varios tipos de alimentos e seus preços encontram-se na tabela a seguir. Determine as quantidades de cada alimento a ser ingeridas diariamente, ao minimo custo possivel.

Vitamina	leite	carne (kg)	ovos (dúzia)	Quant. mínima
A	0,25	2	10	1
С	25	20	10	50
D	2,5	200	10	10
Custo	2,2	17	4,2	

Ex. 1.8

Uma fazenda deve comprar grãos para compor uma ração para o gado; existem tres tipos de grão. As necessidades mínimas de nutrientes, os níveis desses nutrientes em cada tipo de grão e seus custos estão na tabela. Determinar a composição da mistura de grãos para satisfazer as necessidades mínimas dos nutrientes ao mínimo custo.

	Nutrientes	Nutrientes / unidade						
	Grão 1	Grão 2	Grão 3	Nec. minimas				
Nutr. A	2	3	7	1250				
Nutr. B	1	1	0	250				
Nutr. C	5	3	0	900				
Nutr. D	0,6	0,25	1	232				
Custo/ unidade	41	35	96					

Ex. 1.9

Uma refinaria produz 2 tipos de gasolina (1 e 2) a partir de 2 tipos de petróleo (A e B). Os requisitos, preços de venda e custos são:

Petróleo	Qtd disp	custo	Gasolina	% mín de A	Preço venda
A	100	6	1	60	8
В	200	3	2	30	5

Formular, de modo a decidir quanto comprar de A e B e quanto fabricar de 1 e 2, maximizando o lucro.

Ex. 1.10

A Politoy S/A fabrica soldados e trens de madeira. Cada soldado é vendido por \$27 e utiliza \$10 de matéria-prima e \$14 de mão-de-obra. Duas horas de acabamento e 1 hora de carpintaria são demandadas para produção de um soldado. Cada trem é vendido por \$21 e utiliza \$9 de matéria-prima e \$10 de mão-de-obra. Uma hora de acabamento e 1 h de carpintaria são demandadas para produção de um trem. A disponibilidade de horas para as operações de acabamento e carpintaria são 100 e 80 horas, respectivamente. Devido a problemas de demanda, não devem ser produzidas mais do que 40 unidades de soldados. Formular o problema, de modo a maximizar o lucro.

2. SOLUÇÃO GRÁFICA

Ex. 2.1

max
$$z = 30 x_1 + 50 x_2$$

S.A.
$$\begin{cases} 2 x_1 + x_2 \leq 16 \\ x_1 + 2x_2 \leq 11 \\ x_1 + 3x_2 \leq 15 \\ x_1 , x_2 \geq 0 \end{cases}$$

Ex. 2.2

$$\max z = 5x_1 + 2x_2$$

$$S. \ A \ . \begin{cases} x_1 & \leq \ 3 \\ x_2 & \leq \ 4 \\ x_1 + \ 2x_2 & \leq \ 9 \\ x_1, \ x_2 & \geq \ 0 \end{cases}$$

Ex. 2.3

max
$$z = 4x_1 + 2x_2$$

$$S. \ A \begin{cases} 2x_1 + x_2 \leq 12 \\ x_1 \leq 8 \\ x_2 \leq 4 \\ x_1, \ x_2 \geq 0 \end{cases}$$

Ex. 2.4

$$\max z = x_1 + 2x_2$$

$$S.A. \begin{cases} -x_1 + 3x_2 \leq 9 \\ x_1 - 2x_2 \leq 0 \\ 2x_1 + x_2 \leq 10 \\ 2x_1 + x_2 \geq 5 \\ x_1, x_2 \geq 0 \end{cases}$$

Ex. 2.5

$$\max z = 2x_1 + 3x_2$$

$$S.~A~. \begin{cases} -4x_1 + 2x_2 \ \leq \ 8 \\ -4x_1 + 4x_2 \ \geq \ 4 \\ x_1 + x_2 \ \geq \ 5 \\ x_1, \ x_2 \ \geq \ 0 \end{cases}$$

Ex. 2.6

$$\max z = 2x_1 + x_2$$

$$S. \ A \ . \left\{ \begin{array}{lll} x_1 \ - \ x_2 & \leq \ 0 \\ & x_2 & \leq \ 2 \\ x_1 + 2x_2 & \geq \ 8 \\ x_1, \ x_2 & \geq \ 0 \end{array} \right.$$

Ex. 2.7

$$\max z = 2x_1 + 2x_2$$

S.A.
$$\begin{cases} x_1 + x_2 & \leq 10 \\ x_1 + 2x_2 & \geq 8 \\ -x_1 + x_2 & = 2 \\ x_1, x_2 & \geq 0 \end{cases}$$

Ex. 2.8

$$\max z = 3x_1 + 2x_2$$

S.A.
$$\begin{cases} 2x_1 + 1x_2 \le 100 \\ x_1 + 1x_2 \le 80 \\ x_1 \le 40 \\ x_1, x_2 \ge 0 \end{cases}$$

Ex. 2.9

max
$$z = 2x_1 - x_2$$

S. A.
$$\begin{cases} x_1 - x_2 \le 1 \\ 2x_1 + x_2 \le 6 \\ x_1, x_2 \ge 0 \end{cases}$$

3. SIMPLEX

Ex. 3.1

Resolver Ex. 2.1 por SIMPLEX

Ex. 3.2

Resolver Ex. 2.2 por SIMPLEX

Ex. 3.3

Resolver Ex. 2.3 por SIMPLEX

Ex. 3.4

max
$$z = 3x_1 + 2x_2 + 6x_3$$

$$S. \ A \ \begin{cases} 6x_1 + 3x_2 - 4x_3 & \leq 60 \\ 2x_1 - 4x_2 + 4x_3 & \leq 40 \\ 3x_1 + 3x_2 + 3x_3 & \leq 60 \\ x_1, \ x_2\,, \, x_3 \geq 0 \end{cases}$$

Ex. 3.5

Resolver Ex. 1.10 por SIMPLEX

Ex. 3.6

Resolver Ex. 2.4 por SIMPLEX Repita, minimizando

Ex. 3.7

Resolver Ex. 2.5 por SIMPLEX

Ex. 3.8

Resolver Ex. 2.6 por SIMPLEX

Ex. 3.9

Resolver Ex. 2.7 por SIMPLEX

Ex. 3.10

$$\max z = 3x_1 + 2x_2$$

S.A.
$$\begin{cases} 2x_1 + x_2 \ge 4 \\ x_1 - 2x_2 = 0 \\ x_1 + 2x_2 \le 8 \\ x_1, x_2 \ge 0; \end{cases}$$

Ex. 3.11

 $\max z = x_1 + 1.5 x_2$

$$S.A. \begin{cases} 2x_1 + 2x_2 \leq 160 \\ x_1 + 2x_2 \leq 120 \\ 4x_1 + 2x_2 \leq 280 \\ x_2 \geq 45 \\ x_1 = 25 \end{cases}$$

Ex. 3.12

 $min z= 5x_1 +8x_2 +4x_3$

S.A.
$$\begin{cases} x_1 + x_2 + x_3 \ge 2 \\ x_1 + x_2 \ge 1 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

Ex. 3.13

 $\max z = 3x_1 - x_2$

$$S.A. \begin{cases} 2x_1 - x_2 \ge 0 \\ x_2 \ge 2 \\ x_2 \le 4 \\ x_1 + 2 x_2 \ge 12 \\ x_1, x_2 \ge 0; \end{cases}$$

Ex. 3.14

 $\max z=2 x_1 + x_2$

$$S.A \begin{cases} x_1 \leq & 10 \\ x_1 \geq & 5 \\ x_2 \leq & 20 \\ x_2 \geq & 10 \\ x_1, x_2 \geq & 0 \end{cases}$$

Ex. 3.15

$$min z = x_1 + x_2 + x_3$$

S.A.
$$\begin{cases} x_1 + x_2 + x_3 & \leq 10 \\ x_1 + x_2 & \geq 20 \\ x_1 + x_3 & \geq 5 \\ x_1, x_2, , x_3 \geq 0 \end{cases}$$

RESPOSTAS LISTA 1

 $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

Objetivo: maximizar o lucro Restrições: disponibilidade de matéria prima Ex. 1.1 x_1 = quantidade da liga A a ser fabricada x_2 = quantidade da liga B a ser fabricada $\max z = 30x_1 + 50x_2$ S.A. $\begin{cases} 2x_1 + x_2 \le 16 \text{ (cobre)} \\ x_1 + 2x_2 \le 11 \text{ (zinco)} \\ x_1 + 3x_2 \le 15 \text{ (chumbo)} \\ x_1 \cdot x_2 > 0 \end{cases}$ objetivo: maximizar o lucro restrições: área máxima, mão de obra Ex. 1.2 x_1 = área plantada de arroz x₂ = área plantada de milho $\max z = 5x_1 + 2x_2$ $S.~A~. \begin{cases} x_1 & \leq 3 \text{ (área de arroz)} \\ x_2 \leq 4 \text{ (área de milho)} \\ x_1 + 2x_2 \leq 9 \text{ (mão de obra)} \\ x_1,~x_2 \geq 0 \end{cases}$ objetivo: maximizar o lucro Ex. 1.3 restrições: horas disponíveis nos departamentos x_1 = quantidade do produto 1 a ser fabricado x_2 = quantidade do produto 2 a ser fabricado $\max z = x_1 + 1,5x_2$ $S.~A~. \begin{cases} 2x_1 + 2x_2 & \leq ~160 \\ x_1 + 2x_2 & \leq ~120 \\ 4x_1 + 2x_2 & \leq ~280 \\ x_1, ~x_2 & \geq ~0 \end{cases}$ Ex. 1.4 Objetivo: minimizar custo de produção Restrições: níveis de C e Si x_1 = quantidade de sucata A a ser usada, em kg x₂ = quantidade de sucata B a ser usada, em kg x_3 = quantidade de sucata C a ser usada, em kg x_4 = quantidade de sucata D a ser usada, em kg x_5 = quantidade de carbono a ser usada, em kg x_6 = quantidade de silicio a ser usada, em kg min $z = 0.3x_1 + 0.315x_2 + 0.034x_3 + 0.02x_4 + 0.3x_5 + 0.5x_6$ (custo total) S.A. $0,0045x_1 + 0,00402x_2 + 0,035x_3 + 0,033x_4 + x_5 \ge 0,0205.4000$ (% min carbono) $0.0045x_1 + 0.00402x_2 + 0.035x_3 + 0.033x_4 + x_5 \le 0.0225.4000$ (% max carbono) $0.001x_1 + 0.0015x_2 + 0.023x_3 + 0.022x_4 + x_6 \ge 0.0325.4000$ (% min silício) $0,001x_1 + 0,0015x_2 + 0,023x_3 + 0,022x_4 + x_6 \leq 0,034.4000$ (% max silício) $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 4000$ (quantidade total a ser feita)

```
maximizar o lucro
Ex. 1.5
           restrições: disponibilidade de matéria prima
           x_1 = quantidade produto 1 a ser fabricado
           x_2 = quantidade produto 2 a ser fabricado
           x_3 = quantidade produto 3 a ser fabricado
           max z=3x_1+2x_2+6x_3 (lucro total)
           S.A.
           (matéria prima 1) 6x_1+3x_2 \le 60+4x_3 \implies 6x_1+3x_2 - 4x_3 \le 60
           (matéria prima 2) 2x_1+4x_3 \le 40+4x_2 \Rightarrow 2x_1-4x_2+4x_3 \le 40
           (matéria prima 3) 3x_1 + 3x_2 + 3x_3 \le 60
           x_1, x_2, x_3 \ge 0
           Objetivo: maximizar o lucro
Ex. 1.6
           Rerstrições: matéria prima
           x_1 = quantidade produto 1 a ser fabricada
           x_2 = quantidade produto 2 a ser fabricada
           x_3 = quantidade produto 3 a ser fabricada
           x_4 = quantidade produto 4 a ser fabricada
           \max z = 4x_1 + 5x_2 + 9x_3 + 11x_4
           S.A.
           x_1 + x_2 + x_3 + x_4 \le 15
                                             (disponibilidade insumo 1)
           7x_1 + 5x_2 + 3x_3 + 2x_4 \le 120 (disponibilidade insumo 2)
           3x_1 + 5x_2 + 10x_3 + 15x_4 \le 100 (disponibilidade insumo 3)
           x_1, x_2, x_3, x_4 \ge 0
           Objetivo: minimizar custo
Ex. 1.7
           Rerstrições: necessidades minimas diarias de vitaminas
           x_1 = quantidade de leite a ser comprada
           x_2 = quantidade de carne a ser comprada
           x_3 = quantidade de ovos a ser comprada
           min z = 2,2x_1 + 17x_2 + 4,2x_3
           S.A.
           0.25x_1 + 2x_2 + 10x_3 \ge 1
            25x_1 + 20x_2 + 10x_3 \ge 50
            2.5x_1 + 200x_2 + 10x_3 \ge 10
           x_1, x_2, x_3 \ge 0
           Objetivo: minimizar custo
Ex. 1.8
           Restrições: quantidades minimas de nutrientes
           x_1 = quantidade grão 1
           x_2 = quantidade grão 2
           x_3 = quantidade grão 3
           min z = 41x_1 + 35x_2 + 96x_3
           S.A.
             2x_1 + \ 3x_2 + \ 7x_3 \ \geq 1250
             x_1 + x_2 \ge 250
5x_1 + 3x_2 \ge 900
           0.6x_1 + 0.25x_2 + x_3 \ge 232
           x_1, x_2, x_3 \ge 0
```

Objetivo: maximizar lucro Ex. 1.9 Restrições: quantidades minima de petroleo A, disponibilidade de petroleo x_{A1} = Quantidade de petroleo A usado para fabricar gasolina tipo 1 x_{A2} = Quantidade de petroleo A usado para fabricar gasolina tipo 2 x_{B1} = Quantidade de petroleo B usado para fabricar gasolina tipo 1 x_{B2} = Quantidade de petroleo B usado para fabricar gasolina tipo 2 max z= 8.($x_{A1} + x_{B1}$) + 5. ($x_{A2} + x_{B2}$) - 6.($x_{A1} + x_{A1}$) - 3.($x_{B1} + x_{B2}$) S.A. $x_{A1} + x_{A2} \le 100$ (disponibilidade de petróleo A) $x_{B1} + x_{B2} \le 200$ (disponibilidade de petróleo B) $x_{A1}/(x_{A1}+x_{B1}) \ge 0.6$ (proporção de petróleo A na gasolina 1) x_{A2} /(x_{A2} + x_{B2}) \geq 0,3 (proporção de petróleo A na gasolina 2) x_{A1} , x_{A2} , x_{B1} , $x_{B2} \ge 0$ Ex. 1.10 objetivo: maximizar lucro variáveis: $\max z = 3x_1 + 2x_2$ x_1 = quantidade de soldados x_2 = quantidade de trens $2x_1 + x_2 \le 100$ (acabamento) S.A. $1x_1 + x_2 \le 80$ (carpintaria) $x_1 \leq 40 \text{ (demanda)}$ lucro de $x_1 = 27 - (10 + 14) = 3$ $x_1, x_2 \ge 0$ lucro de $x_2 = 21 - (9 + 10) = 2$

Ex. 3.1	$x_1 = 7$ (quant			0	uadro	final:					
	$x_2 = 2$ (quant $x_3 = 0$ (sobra		ga 2)	اً ا	0	0	1/3	-5/3	1	2	
	$x_4 = 0$ (sobra	zinco)			1	0	2/3	-1	0	7	
	$x_5 = 2$ (sobra	chumbo)		0	1	•	2/3	0	2	
	z = 310 (lucro)			0	0	10/3	*	0	310	
Ex. 3.2	2 /:	1 \		0	uadro	final·					
	$x_1 = 3$ (área d $x_2 = 3$ (área d			Ţ	1	0	1	0	0	3	
	$x_3 = 0$ (folga á	rea de a	rroz)		0	0	1/2	1	-1/2	1	
	$x_4 = 1$ (folga á $x_5 = 0$ (folga n				0	1	-	0	1/2	3	
	z = 21 (lucro)		,		0	0	4	0	1	21	
Ex. 3.3	Resposta1:										
	$x_1 = 6$	1	1/2	1/2	0	0	6				
	$\mathbf{x}_2 = 0$ $\mathbf{x}_3 = 0$	0	-1/2	-	1	0	2				
	$x_4 = 2$	0	1	0	0	1	4				
	$x_5 = 4$ $z = 24$	0	101	2	0	0	24				
	Resposta2:										
	$x_1 = 4$	Μú	∟ iltiplas								
	$ \begin{aligned} x_2 &= 4 \\ x_3 &= 0 \end{aligned} $		uções								
	$x_4 = 4$										
	$x_5 = 0$ $z = 24$	1	0	1/2	0	-1/2	4				
	·	0	0	-1/2	1	1/2	4				
		0	1	0	0	1	4				
		0	0	2	0	0	24				
Ex. 3.4				Ouadr	o final		•				
	$ \begin{aligned} x_1 &= 0 \\ x_2 &= 5 \end{aligned} $			33/4	0	0	1	7/8	1/6	105	1
	$x_3 = 15$ $x_4 = 105$			3/4	0	1	0	1/8	1/6	15	
	$x_4 - 103$ $x_5 = 0$			1/4	1	0	0	-1/8	1/6	5	
	$x_6 = 0$ $z=100$			2	0	0	0	1/2	4/3	100	
Ex. 3.5	$x_1 = 20$										
ZA. 3.3	$x_2 = 60$		Γ	0	1	-1	2	0 60)		
	$x_3 = 0$ $x_4 = 0$			0	0	-1		1 20			
	$x_5 = 20$			1	0	1		0 20			
			-	0	0	1		0 18			
	z = 180		_					1			
	12 100										

Ex. 3.6												
	Max:				dro final							
	$\mathbf{x}_1 = 3$ $\mathbf{x}_2 = 4$				0 0	,		1	-1/7		5	
	$x_3 = 0$				1 (0	3/7	0	3	
	$x_4 = 5$			(0 0) ()	0	1	1	5	
	$\mathbf{x}_5 = 0$ $\mathbf{x}_6 = 5$			(0 1	2,	17	0	1/7	0	4	
	Z = 11			(0 () 3,	/7	0	5/7	0	11	
	Min:			Quad	ro final	min:						7
	$\mathbf{x}_1 = 2$			() ()]	1 7	/5	0	1/5	8	
	$x_2 = 1$				1 C	() 1	/5	0	-2/5	2	
	$\mathbf{x}_3 = 8$ $\mathbf{x}_4 = 0$			(0 0	()	0	1	1	5	
	$x_5 = 5$			(0 1	() -2	2/5	0	-1/5	1	
	$x_6 = 0$ $Z = 4$) (/ /5	0	4/5	- 4	
Ex. 3.7							1					
	0	0	1	3/4	-1	10						
	0	1	0	-1/8	-1/2	3						
	1	0	0	1/8	$-\frac{1}{2}$	2						
	0	0	0	-1/8	-5/2	13						
							l					
				0-1								
					ção ótin limitada							
Ex. 3.8	Quadro	final·										
	1	0	1	1	0	0	2					
	0	1	0	1	0	0	2					
		0	-1									
	0			-3	-1	1	2					
	0	0	2	3	0	0	6					
	0	0	1	3	1	0	-2					
	Final Fa	<u>se I</u> e w	$y \neq 0$, :	não há	solução	<u>viáv</u> el						
Ex. 3.9					adro fina							
	$\mathbf{x}_1 = 4$ $\mathbf{x}_2 = 6$. 1					
	$x_3 = 0$				0 0	3/2		8				
	$x_4 = 8$				1 0	1/2	0	4				
	z = 20				0 1	1/2	2 0	6				
					0 0	2	0	2	0 z			

Ex. 3.10	TT 4								
Ex. 5.10	$\mathbf{x}_1 = 4$ $\mathbf{x}_2 = 2$								
	$x_2 - 2$ $x_3 = 8$	0	1	0 1/4	2				
	$\mathbf{x}_4 = 0$	1	0	0 1/2	4				
	z = 16								
		0	0	1 5/4	8				
		0	0	0 2	16				
						1			
Ex. 3.11	$x_1 = 25$								
	$x_2 = 95/2$ $x_3 = 15$								
	$x_3 - 13$ $x_4 = 0$								
	$x_5 = 85$								
	$x_6 = 5/2$								
	z=385/4								
	a:				7				
Ex. 3.12	0 0	1 -1	1 1	1					
	1 1	0 0) -1	. 1					
					1				
	0 3	0 4	1	9					
	A solução inicial	l encontro	da iá é c	a entraño á	tima				
	A solução inicial encontrada já é a solução ótima $x_1 = 1$								
	$\mathbf{x}_2 = 0$								
	$x_3 = 1$								
	$x_4 = 0$								
	$x_5 = 0$								
	$-z = 9 \implies z = 9$								
	b:								
					7				
	0 0	1 -1	1 1	1					
	1 1	0 i 0) -1	. 1					
	0 -3	0 -4	4 -1	9					
			<+						
	solução								
	ótima ilimitada								
Ex. 3.13	Solução ótima ilimitada								
	$x_1 = 10$								
Ex. 3.14	$x_2 = 20$								
	$x_3 = 0$								
	$x_4 = 5$								
	$x_5 = 0$								
	$x_6 = 10$ $z = 40$								
	12 10								
Ex. 3.15	$\mathbf{x}_1 \qquad \mathbf{x}_2$	\mathbf{x}_3	X 4	\mathbf{x}_5	\mathbf{x}_6	y_1	y_2	В	
								1	
	0 1	0	1	0	1	0	-1	5	
	0 0	-1	-1	-1	0	1	0	10	
	1 0	1	0	0	-1	0	1	5	
	0 0	0	-1	0	0	0	0	-10	
	0 0	1	1	1	0	0	1	-10	
	Final fase I e w ≠ 0, ∴não há solução viável								