CMPE 310 Systems Design and Programming

L1: Chapter 1 – Introduction to the Microprocessor and Computer

Why Assembly?

- * We're going to do assembly language programming, for crying out loud!
- * This is obviously some sort of punishment, right?
 - * The Good!
 - * Able to graduate
 - In order to write high-level language, it is necessary to have some knowledge of assembly they translate into
 - To debug higher-level language, you have to review the resulting assembly language
 - * Complier writers must know how to write assembly
 - * In order to have the complier do code generation
 - * Earn more than programmers who can't write assembly
 - * (those applications where assembly is required)
 - * Writing assembly language is fun
 - * The Bad!
 - * Takes too much effort to write in assembly language
 - * The Ugly!
 - * It is not going to be easy

L1 Objectives

- Trace the evolution of microprocessors
- * Understand the difference between General purpose computing systems and embedded systems

CMPE 310

2

Computer components

- What are the key components of a computer?
 - ☐ Microprocessor (MPU/CPU) performs computation
 - ☐ Input to read data from external devices
 - Examples: Keyboard, mouse, ports (Ethernet, USB, etc.)
 - □ Output to transmit data to external devices
 - Examples: screen, speaker, VGA interface, ports (Ethernet, USB, etc.)
 - ☐ Storage to hold program code and data
 - RAM, hard disk, possibly other media (CD/DVD, external drive)
- Microcontroller contains smaller-scale versions of these components
 - ☐ Computation engine
 - □ I/O interface
 - ☐ Internal storage

+

The History

The first general-purpose electronic computer – ENIAC, built in UPenn in 1946

Source: http://ei.cs.vt.edu/~history/ENIAC.Richey.HTML

- Thirty tons (1500 sq. ft)
- · 200KW -- Forced air cooling
- •17,000+ vacuum tubes
- · Punch card
- Manual wiring (500 mi)
- Numerical computation (100KIPS)
- •Intel 4004 microprocessor

4004 had 2,250 transistors

- 4-bit microprocessor
- * 4KB main memory
- * 45 instructions
- PMOS technology
- * 50,000 instructions/sec
- * **8008** 1971
 - 8-bit version of 4004
 - * 16KB main memory
 - * 48 instructions
 - NMOS technology
 - * 20 μs clock cycle time
- * **8080 -** 1973
 - 8-bit microprocessor
 - * 64KB main memory
 - 2 μs clock cycle time; 500,000 instructions/sec
 - * 10X faster than 8008

The Intel 4004, it was supposed to be the brains of a calculator. Instead, it turned into a general-purpose microprocessor as powerful as ENIAC.

80x86 Evolution

8085 - 1977

- * 8-bit microprocessor upgraded version of the 8080
- * 64KB main memory
- * 1.3 μs clock cycle time; 769,230 instructions/sec
- * 246 instructions
- * Intel sold 200 million copies of this 8-bit microprocessor
- * **8086** 1978**; 8088** 1979
 - * 16-bit microprocessor
 - * 1MB main memory
 - * 2.5 MIPS (400 ns)
 - * 4- or 6-byte instruction cache
 - * Other improvements included more registers and additional instructions
- * **80286 -** 1983
 - * 16-bit microprocessor very similar in instruction set to the 8086
 - * 16MB main memory.
 - 4.0 MIPS (250 ns; 8MHz)

- * **80386** 1986
 - * 32-bit microprocessor
 - * 4GB main memory
 - * 12-33MHz
 - * Memory management unit added
 - Variations: DX, EX, SL, SLC (cache) and SX.
 80386SX: 16MB through a 16-bit data bus and 24 bit address bus
- * 80486 1989
 - Incorporated an 80386-like microprocessor, 80387-like floating point coprocessor and an 8K byte cache on one package
 - About half of the instructions executed in 1 clock instead of 2 on the 386
 - * 32-bit microprocessor, 32-bit data bus and 32-bit address bus
 - * 4GB main memory
 - 50 MIPs (25ns,50MHz); Later at 66 and 100MHz (Memory transfers at 33MHz)
 - * Variations: SX, DX2, DX4

DX2: Double clocked version DX4: Triple-clocked version

80x86 Evolution

Pentium - 1993

- * 32-bit microprocessor, 64-bit data bus and 32-bit address bus
- * 4GB main memory
- * 60, 66, 90MHz
 - 1½ clocked 100MHz version

Double clocked 120 and 133MHz versions

Fastest version is the 233MHz (3 ½ clocked version)

- * 16KB L1 cache (split instruction/data: 8KB each)
- * Memory transfers at 66MHz (instead of 33MHz)
- Dual integer processors

Pentium Pro - 1995

- * 32-bit microprocessor, 64-bit data bus and 36-bit address bus
- * 64GB main memory
- * Initial clock speed: 150 and 166MHz
- * 16KB L1 cache (split instruction/data: 8KB each)
- * 256KB L2 cache
- * Memory transfers at 66MHz
- * 3 integer processors

80x86 Evolution

Pentium II - 1997

- * 32-bit microprocessor, 64-bit data bus and 36-bit address bus
- * 64GB main memory
- * Starts at 266MHz
- * 32KB split instruction/data L1 caches (16KB each)
- Module integrated 512KB L2 cache (133MHz)
- * Memory transfers at 66MHz to 100MHz (1998)

- * Pentium III -1999
 - * 32-bit microprocessor, 64-bit data bus and 36-bit address bus
 - * 64GB main memory
 - * 800MHz and above
 - * 32KB split instruction/data L1 caches (16KB each)
 - * On-chip 256KB L2 cache (at clock speed)
 - * Memory transfers 100MHz to 133MHz
 - * Dual Independent Bus (simultaneous L2 and system memory access)

80x86 Evolution

- * Pentium IV- 2002
 - * 1.4 to 1.9GHz and the latest at 3.20 GHz and 3.46GHz (Hyper-Threading)!
 - * 1MB/512KB/256KB L2 cache
 - * 800 MHz (about 6.4GB/s)/533 MHz (4.3 GB/s)/ 400MHz (3.2 GB/s) system bus
 - * 1066 MHz front side bus
 - Specialized for streaming video, game and DVD applications (144 new SIMD 128-bit instructions)
 - 0.13um, more than 55 million transistors
 - * Newer ones are in 90nm transistors, >125 million possible
- * Pentium D, Core2 Duo, Core Duo, Core2 Extreme Edition 2005-2008
 - * 64-bit core and multiple cores
 - Dual and Quad processing cores
 - * Up to 4MB L2 cache and 1066 MHz FSB
 - * 65 nm and 45 nm transistors (and lots of them!!!)
- * For more details visit http://www.intel.com/design/

Systems Overview

- General Purpose Computing Systems
 - * Personal Computers, laptops, workstations, mainframes and servers
- Systems for Dedicated Functions
 - * Usually embedded within larger electronic devices (embedded systems)
 - * Definitions from several authors:
 - * Any computing systems other than a general purpose computer
 - * A systems consisting of hardware, main application software and an optional real time operating systems (RTOS)
 - * Loosely defined:
 - * Any device that includes a programmable computer but is not itself intended to be a general-purpose computer
 - Electronic systems that contain a microprocessor or microcontroller, but we do not think of them as computers - the computer is hidden or embedded in the system
 - It is a system whose principal function is not computational, but which is controlled by a computer embedded within it,

A Few Definitions...

Microprocessor (MPU)

- * A single IC that accepts and executes coded instructions
- * Manipulating data and controlling the associated circuitry (memory & I/O)
 - Fetches and processes a set of general-purpose instructions data transfer, ALU operations, stack operations, IO operations and program control, sequencing and supervising operations
- * Microcomputer
 - * An integrated system of computer components
 - * Data storage ICs →RAM and ROM
 - * Mass storage elements → External Drives, Hard Drives, CD-ROM
 - * Standard I/O devices → monitor, keyboard, mouse, printer, etc.
 - * Contains a microprocessor at the heart of the system
- * Microcontroller (MCU)
- Similar to a microprocessor except that it also contains MPU, RAM, ROM, and I/O circuitry in that single IC package
 - Allows miniaturization of single application

So... You're a system designer?

System designer

- * Needs to understand the architecture related to the programming of the processor's memory to carry out the required functionality
- * Unit cost may be low in small quantities compared with designing a dedicated chip
- * Performance varies by application (MIPS, iCOMP), size and power might be higher due to unnecessary processor hardware

Next time

* 80x86 Hardware Specification

STOP