Monopsony in Movers: The Elasticity of Labor Supply to Firm Wage Policies

Arindrajit Dube (UMass Amherst and NBER)

(Joint with Ihsaan Bassier and Suresh Naidu)

9/22/2020

CES/Census Presentation

Table of Contents

Introduction

Data

Theoretical Framework

AKM-based approach

Matched event study approach

Conclusion

Monopsony on the move

- Monopsony is everywhere!
 - Quasi-experimental: Caldwell and Oehlsen (2018), Cho (2018), Kroft et al. (2020), Dube, Manning and Naidu (2019)
 - Concentration: Azar, Marinescu, Steinbaum (2017), Rinz (2018), Arnold (2019), Prager and Schmitt (2019)
 - Observational (separations): Webber (2015, 2018), Bachmann, Demir Frings (2018)
 - Meta analysis: Sokolova and Sorensen (2018)

Monopsony on the move

- Monopsony is everywhere!
 - Quasi-experimental: Caldwell and Oehlsen (2018), Cho (2018), Kroft et al. (2020), Dube, Manning and Naidu (2019)
 - Concentration: Azar, Marinescu, Steinbaum (2017), Rinz (2018), Arnold (2019), Prager and Schmitt (2019)
 - Observational (separations): Webber (2015, 2018), Bachmann, Demir Frings (2018)
 - Meta analysis: Sokolova and Sorensen (2018)
- Some outstanding questions:
 - Has monopsony power really changed over time?
 - Is monopsony mostly non-competes and concentration (newly re-discovered)?

Monopsony on the move

- Monopsony is everywhere!
 - Quasi-experimental: Caldwell and Oehlsen (2018), Cho (2018), Kroft et al. (2020), Dube, Manning and Naidu (2019)
 - Concentration: Azar, Marinescu, Steinbaum (2017), Rinz (2018), Arnold (2019), Prager and Schmitt (2019)
 - Observational (separations): Webber (2015, 2018), Bachmann, Demir Frings (2018)
 - Meta analysis: Sokolova and Sorensen (2018)
- Some outstanding questions:
 - Has monopsony power really changed over time?
 - Is monopsony mostly non-competes and concentration (newly re-discovered)?
 - How can we measure monopsony power?

Measuring monopsony power

- A key approach since Card and Krueger (1996), Manning (2003): separations elasticity
- Dynamic monopsony:
 - $L_t(w) = R_t(w) S_t(w)$
 - TLAD: $\epsilon = \gamma \eta$
 - Manning further shows that with constant elasticities, in steady state, $\gamma=-\eta$, and so $\epsilon=-2\eta$
- The separations elasticity (η) is a key proximate measure of labor market power!

Example from retail labor market

 In 2017, both Target and Walmart both had a voluntary \$11 minimum wage

Example from retail labor market

- In 2017, both Target and Walmart both had a voluntary \$11 minimum wage
- But in 2020, Target's minimum is \$15, while Walmart's is still \$11.
 - how does a higher "wage policy" affect separations at WM versus Target?
 - this is the key mesure of labor market power, η , were $2\eta=\epsilon$

Example from retail labor market

- In 2017, both Target and Walmart both had a voluntary \$11 minimum wage
- But in 2020, Target's minimum is \$15, while Walmart's is still \$11.
 - how does a higher "wage policy" affect separations at WM versus Target?
 - this is the key mesure of labor market power, $\eta,$ were $2\eta=\epsilon$
- Wage markdown under monopsony:
 - $w = \left(\frac{\epsilon}{1+\epsilon}\right) \times MRPL$

Problems with existing estimates

- Source of wage variation idosyncratic wage change, skills, pay premia/penalty at a firm
- Lack of hours (earnings versus wage)
- Problem of attenuation
- Estimates << newer quasi-exp estimates (internal/external validity?)

Proposed approach

- Key idea:
 - isolate firm component of wages (firm wage policies)
 - estimate separation response to this component of wages
 - use of all wage variation likely to attenuate separation elasticity and overstate monopsony

Proposed approach

- Key idea:
 - isolate firm component of wages (firm wage policies)
 - estimate separation response to this component of wages
 - use of all wage variation likely to attenuate separation elasticity and overstate monopsony
- Two approaches to measuring firm component of wages:
 - AKM. Advantage: simple, well known. Disadvantage: inability to account for worker sorting, match effects, heterogeneous elasticities by worker types
 - Matched event study: allows sorting, heterogeneous elasticities, match effects.

Key Findings

- Separation elasticity of around -2. Firm labor supply elasticity of around 4 is:
 - pro-cyclical
 - lower for low-wage workers
 - mostly unrelated to concentration measures

Key Findings

- Separation elasticity of around -2. Firm labor supply elasticity of around 4 is:
 - pro-cyclical
 - lower for low-wage workers
 - mostly unrelated to concentration measures
- Moderate monopsony power, less than "traditional approach"

Key Findings

- Separation elasticity of around -2. Firm labor supply elasticity of around 4 is:
 - pro-cyclical
 - lower for low-wage workers
 - mostly unrelated to concentration measures
- Moderate monopsony power, less than "traditional approach"

 AKM estimates are broadly similiar; however, fail a number of falsification tests.

Table of Contents

Introduction

Data

Theoretical Framework

AKM-based approach

Matched event study approach

Conclusion

Data description

- Matched employer-employee data from Oregon (2000-2017)
 - near universe of all workers
 - advantage: hours!
- Focus on workers in firms >20 workers
 - reduced measurement errors for estimating AKM effects
- Exclude very low earnings workers (<\$2/hr, <3quarter spells, <100)

Descriptive Statistics

	Workers	Firms	Earnings	Separations			
	(millions)		(annual)	(quarterly)			
Full panel: 2000-2017							
All	5.3	316,910	27,169	16.6%			
Hours>100	4.7	302,541	29,636	12.1%			
Spell>2q	3.7	249,034	32,057	7.6%			
Private large	3.4	54,663	44,103	7.7%			
By period							
2000-2005	2.1	31,429	42,147	8.1%			
2006-2011	2.1	31,788	44,975	7.5%			
2012-2017	2.2	32,913	45,023	7.6%			

Table of Contents

Introduction

Data

Theoretical Framework

AKM-based approach

Matched event study approach

Conclusion

- Productivity of worker *i* at firm *j*: $y_{ij} = A_i p_j$
- Workers transition from $j \to j'$ with $Pr(f_{ij't+1}|f_{ijt})$, so $s_{ijt} \equiv 1 Pr(f_{ijt+1}|f_{ijt})$ is separations rate

- Productivity of worker i at firm j: $y_{ij} = A_i p_i$
- Workers transition from $j \to j'$ with $Pr(f_{ij't+1}|f_{ijt})$, so $s_{ijt} \equiv 1 Pr(f_{ijt+1}|f_{ijt})$ is separations rate
- Steady state:

$$\underbrace{\sum_{j'\neq j} Pr(f_{ij}|f_{ij'})Pr(f_{ij'})}_{R_{ii}} = \underbrace{Pr(f_{ij})}_{q_{ij}} \underbrace{(1 - Pr(f_{ij}|f_{ij}))}_{s_{ij}}$$

- Productivity of worker i at firm j: $y_{ij} = A_i p_i$
- Workers transition from $j \to j'$ with $Pr(f_{ij't+1}|f_{ijt})$, so $s_{ijt} \equiv 1 Pr(f_{ijt+1}|f_{ijt})$ is separations rate
- Steady state:

$$\underbrace{\sum_{j'\neq j} Pr(f_{ij}|f_{ij'})Pr(f_{ij'})}_{P_{i'i}} = \underbrace{Pr(f_{ij})}_{q_{ij}} \underbrace{\left(1 - Pr(f_{ij}|f_{ij})\right)}_{s_{ij}}$$

- Monopsonist maximizes $\sum_i q_{ij} (A_i p_j W_{ij})$ subject to $q_{ij} = \frac{R_{ij}(W_{ij})}{s_{ii}(W_{ii})}$.
 - inverse labor suppply elasticity $\frac{dw_{ij}}{dlog(q_{ij})} = \frac{1}{\epsilon_j}$ (where $w = \log(W)$)
 - equilibrium $w_{ij} = \alpha_i + \phi_j$, where $\alpha_i \equiv log(A_i)$ is portable component, while $\phi_j \equiv log(\beta_j p_j)$ is the firm-specific component of the wage that is chosen by firms, with a markdown of $\beta_j = \frac{e_j}{1+\epsilon_i}$.

- Assumption: Labor supply is solely a function of ϕ_j and $\frac{dw_{ij}}{d\log(q_{ii})} = \frac{d\phi_j}{d\log(q_{ii})}$.
- By steady-state assumption, $\frac{d\phi_j}{dlog(q_{ij})} = \frac{1}{\gamma(\phi_j) \eta(\phi_j)}$, where $\gamma(\phi_j)$ and $\eta(\phi_j)$ are the recruitment and separation elasticities
- The labor supply elasticity facing the firm is given by $\epsilon(\phi_j) = \gamma(\phi_j) \eta(\phi_j)$

- Assumption: Labor supply is solely a function of ϕ_j and $\frac{dw_{ij}}{dlog(q_{ij})} = \frac{d\phi_j}{dlog(q_{ij})}$.
- By steady-state assumption, $\frac{d\phi_j}{d\log(q_{ij})} = \frac{1}{\gamma(\phi_j) \eta(\phi_j)}$, where $\gamma(\phi_j)$ and $\eta(\phi_j)$ are the recruitment and separation elasticities
- The labor supply elasticity facing the firm is given by $\epsilon(\phi_j) = \gamma(\phi_j) \eta(\phi_j)$
- If γ, η constant they are equal, and $\epsilon = -2\eta$; generally average recruitment and separations elasticities equal for some weights (Manning, 2003).
 - Note $y_{ij} = A_i p_j$ rules out match effects and complementarities, and imposes constant markdown across workers; consistent with AKM but we generalize this later.

- Assumption: Labor supply is solely a function of ϕ_j and $\frac{dw_{ij}}{d\log(a_{ii})} = \frac{d\phi_j}{d\log(a_{ii})}$.
- By steady-state assumption, $\frac{d\phi_j}{dlog(q_{ij})} = \frac{1}{\gamma(\phi_j) \eta(\phi_j)}$, where $\gamma(\phi_j)$ and $\eta(\phi_j)$ are the recruitment and separation elasticities
- The labor supply elasticity facing the firm is given by $\epsilon(\phi_i) = \gamma(\phi_i) \eta(\phi_i)$
- If γ, η constant they are equal, and $\epsilon = -2\eta$; generally average recruitment and separations elasticities equal for some weights (Manning, 2003).
 - Note $y_{ij} = A_i p_j$ rules out match effects and complementarities, and imposes constant markdown across workers; consistent with AKM but we generalize this later.
- One can additionally allow for recruitment from non-employment: $\epsilon = -(1 + \theta_R)\eta^{EE} (1 \theta_R)\eta^{EN} \gamma_a^{EE}$

Table of Contents

Introduction

Data

Theoretical Framework

AKM-based approach

Matched event study approach

Conclusion

Connecting monopsony to a model of earnings: AKM

- AKM earnings model: $w_{ijt} = \sum_{j} \phi_{j} f_{ijt} + \alpha_{i} + \alpha_{t} + \epsilon_{ijt}$
- Assignment needed for identification of AKM model (CHK): $f_{ijt} = E(\mathbf{J_{it}} = j) = E(\mathbf{J_{it}} = j | \epsilon) = G_{jt}(\phi_1, ..., \phi_J, \alpha_i)$
- If we want to estimate η by causally interpreting the coefficient from a regression of separations on $\hat{\phi}_j$ need additional assumption:
 - $G_{jt}(\phi_1,...,\phi_J,\alpha_i) = \epsilon(\phi_j,\{\phi_{j'}\}_{j\neq j}) + h(\alpha_i,\{\phi_{j'}\}_{j\neq j})$
 - rules out sorting.

Estimation of AKM based model

- AKM estimate of $\hat{\phi}_j$ is a generated regressor, and variance may be overstated due to limited mobility bias (Bonhomme, Lamadon, Manresa 2019).
- Solution: sample splitting
 - estimate $\hat{\phi}^A_j$ and $\hat{\phi}^B_j$ in 6 year periods
 - regress s_{ijt} on $\hat{\phi}^A_j$ while instrumenting the latter with $\hat{\phi}^B_j$

Estimation of AKM based model

- AKM estimate of $\hat{\phi}_j$ is a generated regressor, and variance may be overstated due to limited mobility bias (Bonhomme, Lamadon, Manresa 2019).
- Solution: sample splitting
 - estimate $\hat{\phi}_{i}^{A}$ and $\hat{\phi}_{i}^{B}$ in 6 year periods
 - regress s_{ijt} on $\hat{\phi}^A_j$ while instrumenting the latter with $\hat{\phi}^B_j$
- Method 1 (calculate LSE): 2 times sep elasticity
- Method 2 (calculate LSE): accounting for hires out of non-emp (also estimate elasticity of share of recruits out of non-emloyment)

Baseline AKM decompositions – Firm Fixed Effects

Baseline AKM decompositions - Sorting

Firm effect and separations

Separations and labor supply elasticities

All Seps elasticity	-1.448	(0.095)
EE Seps elasticity E-N seps elasticity EE recruit share elasticity Pct EE-recruits	-1.811 -1.303 0.438 0.465	(0.141) (0.085) (0.064)
Labor Supply Elasticity	2.912	(0.221)

Testing assumptions behind AKM based approach

- AKM may be wrong (e.g., match effects)
- Test 1: symmetry of wage gains passes

Testing assumptions behind AKM based approach 2

- AKM may be wrong (e.g., match effects)
- Test 1: symmetry of wage gains passes

Testing the assumptions behind AKM based approach 3

- AKM may be wrong (e.g., match effects)
- Test 2: match residuals uncorrelated with direction of future move fails

	Future Firm FE		Positive	Positive change	
	(1)	(2)	(3)	(4)	
Match effect	0.058	0.058	0.156	0.158	
	(0.003)	(0.003)	(0.007)	(0.006)	
Firm effect	0.513	0.43	-1.045	-1.202	
	(0.011)	(0.011)	(0.029)	(0.031)	
Obs (millions)	1.6	1.5	1.6	1.5	
Controls		Υ		Υ	

Testing the assumptions behind AKM based approach 4

Even if AKM right for wages, sorting biases separation elasticity estimate

	(1)	(2)	
	Firm	Firm	Worker
Separations	-1.342	-0.739	-0.641
	(0.085)	(0.078)	(0.016)
Labor Supply Elasticity	2.69 (0.199)	1.38 (0.185)	1.496 (0.038)

Table of Contents

Introduction

Data

Theoretical Framework

AKM-based approach

 ${\sf Matched}\ {\sf event}\ {\sf study}\ {\sf approach}$

Conclusion

Alternative approach: matched event study

Assignment rule (conditional on past matches):

$$f_{ijt} = G_{jt}(\{\bar{w_k}\}, \{w_{ir}, f_{ik'r}\}_{r < t})$$

- ullet can additionally condition on \hat{lpha}_i
- allows for sorting
- Earnings equation: $w_{ijt} = \sum_{j} \phi_{j} \bar{w}_{j} f_{ijt} + \underbrace{L(\{w_{ir}, f_{ik'r}\}_{r < t})}_{L(History_{i,t})} + \epsilon_{ijt}$
- For movers at time t:
 - $w_{ijt} w_{ijt-1} = \tilde{\phi}(\bar{w}_j \bar{w}_{j'})(f_{it}^i f_{j't-1}^i) + L(history_{i,t}) + \nu_{ijt}$
 - $s_{it+k} = \eta \Delta w_{ijt} + L(history_{i,t}) + \epsilon_{ijt+k}$

Matched event study design

First Stage:

$$w_{i,I(i),t} - w_{i,O(i),t-1} = \phi(\bar{w}_{i,I(i),t} - \bar{w}_{i,O(i),t-1}) + L(History_{i,t,d}) + \epsilon_{i,t}$$

Reduced Form:

$$s_{i,t+k}^{I} = \delta(\bar{w}_{i,I(i),t} - \bar{w}_{i,O(i),t-1}) + L(\textit{History}_{i,t,d}) \times \mathbf{1}_{t+k} + \epsilon_{i,t+k}$$

Matched event study - wage effects

Matched event study - Reduced Form (Retention)

Matched event study - main findings

First stage:	
Own wage on firm wage	0.176
	(0.004)
IV estimate:	
Separations elasticity	-2.1
	(0.054)
Labor supply elasticity	4.2
	(0.108)

Matched event study - robustness

Heterogeneity

Monopsony power, and firm component of wages

Over-concentration on concentration?

Table of Contents

Introduction

Data

Theoretical Framework

AKM-based approach

Matched event study approach

Conclusion

Conclusions

- Monopsony is pervasive
 - moderate sized LS elasticites (around 3-4) consistent with new quasi-exp literature
 - contrary to received wisdom: not very different in "concentrated" versus "not-concentrated" segments
- However, mis-measuring firm wage policies can suggest implausibly high monopsony power
- Monopsony power is high in low-wage industries and for low-wage workers
 - contary to received wisdom: high turnover in a low-wage industry doesn't imply it's a fluid, competitive, market.