Lossy Image Compression

Review of Theory and State-of-the-Art Techniques

Agenda

- 1. The Problem of Lossy Compression
- 2. Transform Coding Lossy Compression
 - a. Traditional Techniques
 - b. Basic Learning-Driven Techniques
- 3. Current Research and SOTA Techniques
 - a. Directions of Research
 - b. Notable Works
- 4. Discussion
- 5. Summary

The Problem of Lossy Compression

What is Lossy Compression?

- Entropy model P(z) to write prefix code
- Traditional compression: deterministic
- Neural compression: stochastic

Key Problems of Lossy Compression

- Which information can be discarded?
- How do we evaluate lossy compression?

Which one is the 'best'?

Shannon's Rate-Distortion Theory

• Distortion Metric: $D = \mathbb{E}[d(x, \hat{x})]$

$$\circ$$
 e.g. $d(x,\hat{x}) = ||x - \hat{x}||^2$

- \hat{z} is losslessly transmitted as bits
 - Entropy model *P*
- Rate Metric: $R = \mathbb{E}[-\log P(\hat{z})]$

Lossy Compression Goal: Choose encoder, decoder and entropy model such that R and D is minimized.

Shannon's Rate-Distortion Theory

Shannon defines Rate-Distortion function:

$$R(D) = \inf_{p(\hat{x}|x): \mathbb{E}[d(x,\hat{x})] \le D} I(x;\hat{x})$$

Best operational Rate-Distortion defined as:

$$R_O(D) = \min_{(e,d,P): \mathbb{E}[d(x,\hat{x})] < D} \mathbb{E}[-\log P(\hat{z})]$$

Shannon's lossy source coding theorem:

$$R_O(D) \ge R(D)$$

Shannon's Rate-Distortion Theory

Transform Coding Lossy Compression

Transform Coding Framework

Traditional Techniques

Traditional Techniques

JPEG Committee. "JPEG - The Still Image Compression Standard." JPEG, jpeg.org/. Accessed 30 Aug. 2024. Bellard, Fabrice. "BPG Image Format." BPG - Better Portable Graphics, bellard.org/bpg/. Accessed 30 Aug. 2024.

Traditional Technique Example - JPEG

Jennings, Chris. "JPEG Compression: Visualizing the Loss of Quality." CGJennings.ca, cgjennings.ca/articles/jpeg-compression/. Accessed 30 Aug. 2024.

Basic Learning-Driven Techniques

Basic Learning-Driven Techniques

Key Principle: Use end-to-end trained neural networks for the analysis and synthesis transforms.

- Learned entropy model as in lossless compression
- The loss function is defined as: $\min_{(g_a,g_s,P)} \mathbb{E}[-\log P(\hat{z})] + \lambda \mathbb{E}[d(x,\hat{x})]$

Example Autoencoder Architecture

End-to-End Learning Quantization Problem

Loss function depends on quantized data:

$$\min_{(g_a,g_s,P)} \mathbb{E}[-\log P(\hat{z})] + \lambda \mathbb{E}[d(x,\hat{x})]$$

- Quantized data is discrete
- Entropy model is discrete (PMF)
- Discrete data -> gradient = 0 almost everywhere
- Gradient descent is ineffective

End-to-End Learning Quantization Problem

 Add uniform noise to z to approximate quantized data

$$\hat{z} \approx \tilde{z} = z + u \quad u \sim \mathcal{U}(-\frac{1}{2}, \frac{1}{2})$$

$$\tilde{p}(\cdot) = P(\cdot)$$

$$\min_{(g_a,g_s,\tilde{p})} \mathbb{E}[-\log \tilde{p}(\tilde{z})] + \lambda \mathbb{E}[d(x,\tilde{x})]$$

Objective function for SGD

Example Variational Autoencoder Architecture

Current Research and State-of-the-Art

Techniques

Rate-Distortion Curves of SOTA Models

The limit of how much we can improve is R(D)

Breakdown of Research by Model Architecture

Mishra, Dipti, Satish Kumar Singh, and Rajat Kumar Singh. "Deep Architectures for Image Compression: A Critical Review." Signal Processing, vol. 191, 2022, article 108346, doi:10.1016/j.sigpro.2022.108346.

Hu, Yueyu, et al. "Learning End-to-End Lossy Image Compression: A Benchmark." arXiv, 2020, <u>arxiv.org/abs/2002.03711</u>.

Mishra, Dipti, Satish Kumar Singh, and Rajat Kumar Singh. "Deep Architectures for Image Compression: A Critical Review." Signal Processing, vol. 191, 2022, article 108346, doi:10.1016/j.sigpro.2022.108346.

Notable Works

Balle et al. 2017 (AE)

Generalized Divisive Normalization

- GDN Intuition: decorrelates different features, i.e. reduces redundancy
- Better estimates optimal transform b.c. non-linear

Balle et al. 2017

JPEG, 4283 bytes (0.121 bit/px), PSNR: luma 24.85 dB/chroma 29.23 dB, MS-SSIM: 0.8079

JPEG 2000, 4004 bytes (0.113 bit/px), PSNR: luma 26.61 dB/chroma 33.88 dB, MS-SSIM: 0.8860

 $\textbf{Proposed method}, 3986 \ \text{bytes} \ (0.113 \ \text{bit/px}), \ PSNR: \ luma \ 27.01 \ dB/chroma \ 34.16 \ dB, \ MS-SSIM: 0.9039$

Balle et al. 2017

Figure 7: Rate-distortion curves for the luma component of image shown in figure 5. Left: perceptual quality, measured with multi-scale structural similarity (MS-SSIM; Wang, Simoncelli, and Bovik (2003)). Right: peak signal-to-noise ratio $(10 \log_{10}(255^2/\text{MSE}))$.

Balle et al. 2018 (VAE)

Balle et al. 2018

(0.1864 bpp, PSNR=27.99, MS-SSIM=0.9803) trained on MS-SSIM

(0.1932 bpp, PSNR=32.26, MS-SSIM=0.9713) trained on MSE

Balle et al. 2018

Mentzer et al. 2019 (CNN)

- Deeper NN with resblocks and skip connections
- Uses learned importance map for efficient bit allocation
- Uses 3D-CNN context model to estimate entropy

Input

$$\mathbf{v} \in \mathbb{R}^{\frac{W}{8} \times \frac{H}{8} \times 1} \longrightarrow \mathbf{m} \in \mathbb{R}^{\frac{W}{8} \times \frac{H}{8} \times K}$$

$$m_{i,j,k} = \begin{cases} 1 & \text{if } k < y_{i,j} \\ (y_{i,j} - k) & \text{if } k \le y_{i,j} \le k + 1 \\ 0 & \text{if } k + 1 > y_{i,j} \end{cases}$$

$$\mathbf{z} \leftarrow \mathbf{z} \odot [\mathbf{m}]$$

- As a result, parts of the feature map z are "zeroed out"
- Allocates more bits to important parts of the image

Toderici et al. (RNN)

- Sharp rectangles: convolution layers, rounded rectangles: deconvolution layers
- Uses Long Short-Term Memory (LSTM) to learn sequential dependencies
- Does not explicitly use entropy coding, but it would improve compression for larger images

Toderici et al.

Figure 6: The effect of the first four bits on compressing a cat image. The image on the top left has been created by using a single bit for each 8×8 block. The subsequent images add one additional bit to be processed by the LSTM decoder (the ordering is top-left going to bottom-right). The final image (bottom right) has been created by running four steps of the algorithm, thus allowing a total of four bits to be used to encode each 8×8 block.

Toderici et al.

Original (32×32)

		From left to right			
	JPEG	0.641	0.875	1.117	1.375
Average bits per pixel (bpp)	WebP	0.789	0.914	1.148	1.398
	LSTM	0.625	0.875	1.125	1.375
	(De)Convolutional LSTM	0.625	0.875	1.125	1.375

Compressed images with conv/deconv LSTM architecture

Toderici et al.

Mentzer et al. (GAN)

Figure 2: Our architecture. ConvC is a convolution with C channels, with 3×3 filters, except when denoted otherwise. $\downarrow 2, \uparrow 2$ indicate strided down or up convolutions. Norm is ChannelNorm (see text), LReLU the leaky ReLU [56] with α =0.2, $NN\uparrow16$ nearest neighbor upsampling, Q quantization.

- Encoder E, hyperprior entropy model P, generator G, discriminator D
- Use a combination loss function
 - Rate-distortion function
 - Adversarial (GAN) loss
 - MSE
 - LPIPS

Mentzer et al. (GAN)

Discussion

Architecture Comparison

Architecture	Advantages	Challenges		
AE	 Simple to implement Easy to train Small size, fast processing 	 Cannot capture complex patterns Blurry reconstruction 		
VAE	 Easy to train Small size, fast processing Better generalization than AEs 	 More complex than AEs, require more computation Blurry reconstruction 		
CNN	 Can capture more complex patterns Fast processing High performance (low rate) 	 Can be very large and computationally expensive Prone to overfitting 		
RNN	 Produce variable bit-rates Can be used for video compression 	 Prolonged training leads to distorted behavior Slow training Not naturally suited for still image processing, less efficient 		
GAN	 High-quality, sharp reconstructions even at low bit-rates High compression efficiency 	 Very large size and high computational costs Complex architecture and difficult to train Can "hallucinate" features not present in original image 		

Summary

$$\min_{(g_a,g_s,P)} \mathbb{E}[-\log P(\hat{z})] + \lambda \mathbb{E}[d(x,\hat{x})]$$

- Fundamental goal: rate-distortion optimization
- Transform coding is most commonly used
- Many possible model architectures: AE, VAE, CNN, RNN, GAN
- There is a limit to how much we can optimize rate-distortion