

Nombre:		
Curso:	4º ESO A-B	Examen Extraordinario
Fecha:	3 de septiembre de 2018	Septiembre 2018

1.- (0,75 puntos) Calcula indicando los pasos intermedios:

a)
$$\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2} - 1} - \frac{1}{\sqrt{2} + 1} = \frac{1}{\sqrt{2} + 1}$$

b)
$$\frac{2^5 \cdot 27^2 \cdot 4^{-1} \cdot 8^{-3}}{2^{-3} \cdot 16 \cdot 81}$$

a)
$$\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2} - 1} - \frac{1}{\sqrt{2} + 1} =$$
 b) $\frac{2^5 \cdot 27^2 \cdot 4^{-1} \cdot 8^{-3}}{2^{-3} \cdot 16 \cdot 81}$ c) $(\sqrt{200} - \sqrt{75} + 2\sqrt{27} + \sqrt{12})^2$

- 2.- (0,75 puntos) Un autobús deja en la primera parada 1/5 de los viajeros, en la segunda parada $\frac{1}{4}$ de los que quedaban; en la tercera deja $\frac{1}{3}$ del resto y en la cuarta $\frac{1}{2}$ de los que aún permanecían a bordo. Por fin, en la quinta y última parada deja 10 viajeros y se queda vacío.
 - a) ¿Cuántas personas había al principio en el autobús?
 - **b)** ¿Cuántas personas bajan en cada parada?
- 3.- (0,5 puntos) Calcula el valor de x en las siguientes expresiones logarítmicas y exponenciales:

a)
$$\frac{\left(3^{x+1}\right)^2 \cdot 9^{-x}}{81^{1-x} \cdot 3^{2x}} = 1$$

a)
$$\frac{\left(3^{x+1}\right)^2 \cdot 9^{-x}}{81^{1-x} \cdot 3^{2x}} = 1$$
 b) $\log \sqrt{x-1} = \log(x+1) - \log \sqrt{x+4}$

4.- (0,5 puntos) Realiza las siguientes operaciones de polinomios:

a)
$$(3x^3 - 7x^2 + 5)^2$$

a)
$$(3x^3 - 7x^2 + 5)^2$$
 b) $2x^5 + 6x^4 - 4x^2 + 10x + 4 | x^3 - x + 1 |$

5.- (1 punto) Resuelve las siguientes ecuaciones:

a)
$$2\sqrt{x+4} - \sqrt{5x+4} = 0$$
 amentb) $\frac{(2x-1)\cdot(2x+1)}{3} + \frac{(x-2)^2}{4} = \frac{3x+4}{6} + \frac{x^2}{3}$

- 6.- (1 punto) Una persona tarda 3 horas más que otra en hacer el mismo trabajo. Si lo hacen entre las dos, tardan dos horas. ¿Cuánto tarda cada una por separado?
- 7.- (1 punto) ¿Cuántos peldaños tiene una escalera si subiéndolos de dos en dos hay que dar tres saltos más que si los subimos de 3 en tres?
- 8.- (1 punto) Un anticuario vendió dos relojes de bolsillo por 210€, con uno obtuvo una ganancia del 10% y con el otro una pérdida del 10%. En total obtuvo una ganancia del 5% sobre el precio de compra. ¿Cuál fue el precio de compra de cada uno de los relojes?

- **9.-** (0,5 puntos) Calcula el dominio de la función: $f(x) = (x-2) \cdot \sqrt{\frac{1+x}{1-x}}$
- 10.- (1 punto) El beneficio de una empresa, en miles de euros, viene dado por la función:

$$B(x) = -3x^2 + 120x + 675$$

donde x representa el gasto en publicidad, en miles de euros.

- a) Calcule el gasto a partir del cual la empresa no obtiene beneficios.
- b) Calcule el valor de x que produce máximo beneficio. ¿Cuánto es ese beneficio?
- **11.-** (1 punto) Dada la distribución estadística:

x_i	[0, 5)	[5, 10)	[10, 15)	[15, 20)	[20, 25)	[25, 30)
f_i	3	5	7	8	2	6

Calcular:

- a) El percentil 96.
- **b)** El coeficiente de Variación.
- **12.-** (0,5 puntos) Para formar el equipo de baloncesto del Juan Ramón Jiménez hacen falta 5 jugadores y el entrenador dispone de 10 alumnos.
 - a) ¿Cuántos equipos distintos puede formar?
 - **b)** Si elige a dos jugadores y los mantiene fijos, ¿cuántos equipos distintos podrá hacer con los ocho que le quedan?
- **13.-** (0,5 puntos) Hay dos urnas, la primera con 7 bolas blancas y 3 negras, la segunda con 3 bolas blancas y 6 negras. Se extrae al azar una bola de la primera urna y se pasa a la segunda. De esta urna, también al azar se saca una bola. Calcular la probabilidad de que sea blanca.

1.- (1 punto) Calcula indicando los pasos intermedios:

a)
$$\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}-1} - \frac{1}{\sqrt{2}+1} =$$

b)
$$\frac{2^5 \cdot 27^2 \cdot 4^{-1} \cdot 8^{-3}}{2^{-3} \cdot 16 \cdot 81}$$

a)
$$\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2} - 1} - \frac{1}{\sqrt{2} + 1} =$$
 b) $\frac{2^5 \cdot 27^2 \cdot 4^{-1} \cdot 8^{-3}}{2^{-3} \cdot 16 \cdot 81}$ c) $(\sqrt{200} - \sqrt{75} + 2\sqrt{27} + \sqrt{12})^2$

Sol: a) $2+\sqrt{2}/2$; b) 9/128 d) $227+60\sqrt{6}$

- 2.- (0,75 puntos) Un autobús deja en la primera parada 1/5 de los viajeros, en la segunda parada ¼ de los que quedaban; en la tercera deja 1/3 del resto y en la cuarta ½ de los que aún permanecían a bordo. Por fin, en la quinta y última parada deja 10 viajeros y se queda vacío.
 - a) ¿Cuántas personas había al principio en el autobús?
 - **b)** ¿Cuántas personas bajan en cada parada?

Sol: a) 50 pasajeros; b) 10 personas por parada.

3.- (0,5 puntos) Calcula el valor de x en las siguientes expresiones logarítmicas y exponenciales:

a)
$$\frac{\left(3^{x+1}\right)^2 \cdot 9^{-x}}{81^{1-x} \cdot 3^{2x}} = 1$$

a)
$$\frac{\left(3^{x+1}\right)^2 \cdot 9^{-x}}{81^{1-x} \cdot 3^{2x}} = 1$$
 b) $\log \sqrt{x-1} = \log(x+1) - \log \sqrt{x+4}$ Sol:

Sol: a) x=1: b) x=5

4.- (0,5 puntos) Realiza las siguientes operaciones de polinomios:

a)
$$(3x^3 - 7x^2 + 5)^2$$

a)
$$(3x^3 - 7x^2 + 5)^2$$
 b) $2x^5 + 6x^4 - 4x^2 + 10x + 4 | x^3 - x + 1 |$

Sol: a) $9x^6-42x^5+49x^4+30x^3-70x^2+25$; b) $C(x)=2x^2+6x+2$; R(x)=6x+2

5.- (1 punto) Resuelve las siguientes ecuaciones:

a)
$$2\sqrt{x+4} - \sqrt{5x+4} = 0$$

a)
$$2\sqrt{x+4} - \sqrt{5x+4} = 0$$
 b) $\frac{(2x-1)\cdot(2x+1)}{3} + \frac{(x-2)^2}{4} = \frac{3x+4}{6} + \frac{x^2}{3}$

Sol: a) x=12; b) $x_1=0$ y $x_2=6/5$

6.- (0,75 puntos) Una persona tarda 3 horas más que otra en hacer el mismo trabajo. Si lo hacen entre las dos, tardan dos horas. ¿Cuánto tarda cada una por separado?

I.E. JUAN RAMÓNSol: Una persona tarda 3 horas y la otra, 6 horas.

7.- (0,75 puntos) ¿Cuántos peldaños tiene una escalera si subiéndolos de dos en dos hay que dar tres saltos más que si los subimos de 3 en tres?

Sol: 18 peldaños.

8.- (0,75 puntos) Un anticuario vendió dos relojes de bolsillo por 210€, con uno obtuvo una ganancia del 10% y con el otro una pérdida del 10%. En total obtuvo una ganancia del 5% sobre el precio de compra. ¿Cuál fue el precio de compra de cada uno de los relojes?

9.- (0,5 puntos) Calcula el dominio de la función:
$$f(x) = (x-2) \cdot \sqrt{\frac{1+x}{1-x}}$$

Sol: [-1,1)

10.- (0.75 puntos) Tras un test realizado al nuevo Volkswagen Touareg, se ha observado que el consumo de gasóleo, C(x), expresado en litros, viene dado por la función:

$$C(x) = 7,5 - 0,05x + 0,00025x^2$$

Siendo x la velocidad en Km/h y $25 \le x \le 175$

- a) Determine el consumo de combustible a las velocidades de 50 km/h y 150 km/h.
- **b)** Estudie el crecimiento y decrecimiento de la función.
- c) ¿A qué velocidades se obtiene el mínimo consumo?, ¿y el máximo? Calcula el consumo máximo y mínimo.

Sol: a) 5,625 litros; b) f decreciente en (25,100) y f creciente en (100,175); c) El consumo mínimo se consigue a 100 km/h y es de 5 litros, y el consumo máximo se consigue a 25 o 175 km/h y es de 6,4 litros.

11.- (0,75 puntos) Dada la distribución estadística:

x_i	[0, 5)	[5, 10)	[10, 15)	[15, 20)	[20, 25)	[25, 30)
f_i	3	5	7	8	2	6

Calcular:

- c) El percentil 96.
- d) El coeficiente de Variación.

La tabla de valores es:

x_i Intervalos x_i		f_i	F_{i}	h_i	H_{i}	$x_i \cdot f_i$	$x_i^2 \cdot f_i$
5 – 10	7,5	5	8	0,1613	0,2581	37,5	281,25
10 – 15	12,5	7	15	0,2258	0,4839	87,5	1093,75
15 – 20	17,5	8	23	0,2580	0,7419	140	2450
20 – 25	22,5	2	25	0,0645	0,8064	45	1012,5
25 – 30	27,5	6	31	0,1935	1	165	4537,5
Totales:			N=31			$\sum x_i \cdot f_i = 482,5$	$\sum x_i^2 \cdot f_i = 9.393,75$

El percentil 96
$$\frac{96.31}{100}$$
 = 29,76 se encuentra en la clase (25 – 30) y su valor es: P_{96} = 25 + $\frac{29,76-25}{6}$ ·5 = 28,97

Para el coeficiente de variación necesito la media y la varianza:

La media aritmética viene dada por:
$$Media: \overline{x} = \frac{\sum x_i \cdot f_i}{N} = \frac{482,5}{31} = 15,56$$

La Varianza la calculamos mediante la expresión
$$Var = \frac{\sum f_i \cdot x_i^2}{N} - \overline{x}^2 = \frac{9393,75}{31} - 15,56^2 = 60,91$$

La Desviación típica es la raíz cuadrada de la varianza:
$$\sigma = \sqrt{\overline{Var}} = \sqrt{\frac{\sum f_i \cdot x_i^2}{N} - \overline{x}^2} = \sqrt{60,91} = 7,80$$

El coeficiente de variación es:
$$C.V. = \frac{\sigma}{\overline{x}} = \frac{7.8}{15,56} = 0,501$$

12.- (0,5 puntos) Para formar el equipo de baloncesto del Juan Ramón Jiménez hacen falta 5 jugadores y el entrenador dispone de 10 alumnos.

- a) ¿Cuántos equipos distintos puede formar?
- **b)** Si elige a dos jugadores y los mantiene fijos, ¿cuántos equipos distintos podrá hacer con los ocho que le quedan?

Sol: $C_{10}^5 = 252$ equipos puede formar; b) $C_8^3 = 56$ equipos.

13.- (0,5 puntos) Hay dos urnas, la primera con 7 bolas blancas y 3 negras, la segunda con 3 bolas blancas y 6 negras. Se extrae al azar una bola de la primera urna y se pasa a la segunda. De esta urna, también al azar se saca una bola. Calcular la probabilidad de que sea blanca.

Sol: $P(B) = P(N \cap B) + P(B \cap B) = 0.09 + 0.28 = 0.37$

Departamento de Matemáticas

I.E. JUAN RAMÓN JIMÉNEZ

Casablanca (Marenecos)