Generalitie
Properties of Power Serie
Representing Functions as Power Serie
Application to differential equation

Mathematical analysis 2 Chapter 4 : Power series

R. KECHKAR

2023/2024

Course outline

- Generalities
- Properties of Power Series
- 3 Representing Functions as Power Series
- 4 Application to differential equations

Generalities

Definition

A **power series** is defined as a series of the form $\sum a_n x^n$, where (a_n) is a numerical sequence and $x \in \mathbb{R}$.

• The sequence of partial sums (S_n) defined by

$$S_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = \sum_{k=0}^n a_k x^k$$

is a polynomial of degree n.

• $\sum a_n(x-x_0)^n$, where $x_0 \in \mathbb{R}$, represents a power series centered at x_0 .

Domain of Convergence

In the study of power series, one seeks a set D such that

$$D = \{x \in \mathbb{R} \text{ such that } \sum a_n x^n \text{ converges}\}$$

which is called the domain of convergence.

Example.

The series $\sum x^n$ is a convergent geometric series if and only if $x \in]-1,1[$, hence D=]-1,1[.

Radius of convergence

For any power series $\sum a_n x^n$, there exists a unique real number $R \in [0, +\infty[$ (R can be equal to $+\infty$) called the **radius of convergence** such that

- If |x| < R, the series $\sum a_n x^n$ converges absolutely.
- If |x| > R, the series $\sum a_n x^n$ diverges.
- If |x| = R, nothing can be said about the nature of the series $\sum a_n x^n$.
- The open interval]-R,R[is called the interval of convergence.

Example.

The series $\sum x^n$ converges absolutely if and only if |x| < 1 and diverges if $|x| \ge 1$. Hence, the radius of convergence of the series $\sum x^n$ is R = 1.

Proposition (D'Alembert's ratio test)

Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series, $(a_n)_n$ a numerical such that $a_n > 0$, $\forall n \ge n_0$.

If
$$\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = l \in [0, +\infty],$$

Then the radius of convergence of the series $\sum_{n=0}^{\infty} a_n x^n$ is $R = \frac{1}{l}$.

Remark

- 1 If $\ell = 0$, then $R = +\infty$. In this case, the series $\sum a_n x^n$ converges absolutely for all $x \in \mathbb{R}$.
- ② If $\ell = +\infty$, then R = 0. In this case, the series $\sum a_n x^n$ converges absolutely only for x = 0.

Example.

Determine the convergence domain of the power series: $P = \sum_{n=0}^{\infty} \frac{x^n}{n!}$.

Solution: Given $a_n = \frac{1}{n!} > 0$, $\forall n \in \mathbb{N}$, let's apply D'Alembert's ratio

test:

$$l = \lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = \lim_{n \to +\infty} \frac{n!}{(n+1)!} = \lim_{n \to +\infty} \frac{1}{n+1} = 0,$$

Thus, we deduce that $R = \frac{1}{I} = +\infty$, and hence $D = \mathbb{R}$.

Example.

Determine the radius of convergence and the domain of convergence of the series ∞ y^n

$$\sum_{n=0}^{\infty} \frac{x^n}{n^2}.$$

We have
$$a_n = \frac{1}{n^2}$$
 and $\ell = \lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to +\infty} \frac{n^2}{(n+1)^2} = 1$.

Therefore, the radius of convergence is given by $R = \frac{1}{\ell} = 1$.

The series $\sum_{n=0}^{\infty} \frac{x^n}{n^2}$ converges absolutely if |x| < 1 and diverges for |x| > 1.

- If x = 1, then $u_n = \frac{1}{n^2}$ and the series $\sum_{n=0}^{\infty} \frac{1}{n^2}$ converges (convergent Riemann series).
- If x = -1, then $u_n = \frac{(-1)^n}{n^2}$ and the series $\sum_{n=0}^{\infty} \frac{(-1)^n}{n^2}$ is convergent (convergent alternating series).

Therefore, the convergence domain is D = [-1, 1].

Example.

Determine the radius of convergence and the convergence domain of the series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ and $\sum_{n=0}^{\infty} n! x^n$.

• For the series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$, we have $a_n = \frac{1}{n!}$ and $\ell = \lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to +\infty} \frac{n!}{(n+1)!} = 0$.

$$\ell = \lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to +\infty} \frac{n!}{(n+1)!} = 0.$$

Hence, the radius of convergence $R = +\infty$, and thus the series

Hence, the radius of convergence
$$R = +\infty$$

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 converges absolutely for all $x \in \mathbb{R}$.

• For the series $\sum_{n=0}^{\infty} n! x^n$, we have R = 0, and thus the series converges only for x = 0.

Example.

Determine the radius of convergence and the convergence domain of the series $\sum_{n=0}^{\infty} \frac{(x-2)^n}{3^n}$.

We have
$$a_n = \frac{1}{3^n}$$
 and $\ell = \lim_{n \to +\infty} \sqrt[n]{|u_n|} = \frac{1}{3}$. Hence,

$$R = \frac{1}{\ell} = 3.$$

Thus, the series $\sum_{n=0}^{\infty} \frac{(x-2)^n}{3^n}$ converges for all |x-2| < 3, that is,

$$-3 < x - 2 < 3$$

 $2 - 3 < x < 2 + 3$

 $x \in]-1.5[$

and diverges for |x-2| > 3.

Let's verify the boundaries:

• If
$$x = -1$$
, then $u_n = \frac{(-3)^n}{3^n} = \frac{(-1)^n (3)^n}{3^n} = (-1)^n$ and the series
$$\sum_{n=0}^{\infty} (-1)^n \text{ diverges.}$$

• If
$$x = 5$$
, then $u_n = \frac{3^n}{3^n} = 1$ and the series $\sum_{n=0}^{\infty} 1$ diverges.

Therefore, we conclude that the convergence domain is D =]-1,5[.

Proposition (Cauchy root test)

Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series, If

$$\lim_{n\to+\infty} \sqrt[n]{|a_n|} = l \in [0,+\infty],$$

Then the radius of convergence of the series $\sum_{n=0}^{\infty} a_n x^n$ is

$$R=\frac{1}{l}$$
.

Example.

Determine the radius of convergence and the domain of convergence of the series $\sum_{n=0}^{\infty} \frac{x^n}{2^n}$.

We have

$$a_n = \frac{1}{2^n}$$
 and $\ell = \lim_{n \to +\infty} \sqrt[n]{|u_n|} = \frac{1}{2}$.

Therefore,

$$R = \frac{1}{\ell} = 2.$$

Hence, the series $\sum_{n=0}^{\infty} \frac{x^n}{2^n}$ converges absolutely on] – 2,2[, which

means the series converges absolutely for |x| < 2 and diverges for all x such that |x| > 2.

Let's examine the case |x| = 2:

- If x = 2, then $u_n = 1$ and the series $\sum_{n=0}^{\infty} 1$ diverges because $\lim_{n \to +\infty} u_n \neq 0$.
- If x = -2, then $u_n = \frac{(-2)^n}{2^n} = (-1)^n$ and the series $\sum_{n=0}^{\infty} (-1)^n$ diverges.

Therefore, we conclude that the convergence domain is D =]-2,2[.

Lemma (d'Hadamard)

The radius of convergence of a power series $\sum a_n x^n$ is given by

$$R = \frac{1}{\ell}$$
 where $\ell = \limsup_{n \to +\infty} \sqrt[n]{|a_n|}$.

Example.

Determine the radius of convergence and the domain of convergence of the series $\sum_{n=0}^{\infty} e^{n\cos(n)} x^n$.

- We have $a_n = e^{n\cos(n)}$, and $\limsup_{n \to +\infty} \sqrt[n]{|a_n|} = \limsup_{n \to +\infty} \sqrt[n]{e^{n\cos(n)}} = e$ then $R = \frac{1}{e^{n\cos(n)}}$
- For $x = \frac{1}{e}$, the series $\sum_{n=0}^{\infty} \left(e^{\cos(n)-1} \right)^n$ is divergent (since $a_{2n\pi} \to 0$)
- $x = -\frac{1}{e}$, the series $\sum_{n=0}^{\infty} \left(e^{\cos(n)-1} \right)^n (-1)^n$ is divergent (since $a_{2n\pi} \to 0$).
- Then the domain of convergence is]-1/e; 1/e[.

Lacunary series $\sum a_n x^{kn+l}$

Definition

A Lacunary series is a series that has an infinite number of zero terms.

Example.

The series $\sum_{n=0}^{\infty} 3^n x^{2n}$ is a Lacunary power series. Indeed,

$$\sum_{n=0}^{\infty} 3^n x^{2n} = 1 + 3x^2 + 3^2 x^4 + 3^3 x^6 + \cdots$$
$$= 1 + 0x + 3x^2 + 0x^3 + 3^2 x^4 + \cdots$$

↑ To calculate the radius of convergence of a Lacunary power series, we apply the **D'Alembert and Cauchy tests** as specified in the following examples:

Examples of lacunary series

Example.

Determine the radius of convergence for the series $\sum_{n=0}^{\infty} 3^n x^{2n}$.

Let's define $f_n(x) = 3^n x^{2n}$.

We have
$$\lim_{n \to +\infty} \sqrt[n]{|f_n(x)|} = \lim_{n \to +\infty} \sqrt[n]{|3^n x^{2n}|} = |3x^2|$$

Therefore, the series converges if $|3x^2| < 1$.

$$|3x^2| < 1 \implies |x^2| < \frac{1}{3} \implies |x| < \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$

Hence,

$$R=\frac{\sqrt{3}}{3}$$
.

Examples of lacunary series

Example.

Find the radius of convergence for the series $\sum_{n=0}^{\infty} 2^n x^{2n+3}$.

We have

$$\lim_{n \to +\infty} \left| \frac{f_{n+1}(x)}{f_n(x)} \right| = \lim_{n \to +\infty} \left| \frac{2^{n+1} x^{2n+5}}{2^n x^{2n+3}} \right| = |2x^2|$$

The series converges if $|2x^2| < 1$.

$$|2x^2| < 1 \implies |x^2| < \frac{1}{2} \implies |x| < \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

Hence.

$$R = \frac{\sqrt{2}}{2}.$$

Application to differential equations Comparison of radius of convergence

Proposition

Let $\sum_{n=0}^{\infty} a_n x^n$ and $\sum_{n=0}^{\infty} b_n x^n$ be two power series with respective radius of convergence R_a and R_b . Then

- 2 If $|a_n| \sim |b_n|$, then $R_a = R_b$.

Corollaire

Let $\sum_{n=0}^{\infty} a_n x^n$ be a divergent power series at $x_0 \in \mathbb{R}$, then it diverges for all $x \in \mathbb{R}$ such that $|x| \ge |x_0|$. That is to say, The power series diverges on $]-\infty; -|x_0|] \cup [|x_0|; +\infty[$.

Comparison of radius of convergence

Proposition

Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series.

- If there exist two strictly positive real numbers m and M such that for all n, $m \le |a_n| \le M$, then R = 1.
- ② If a_n is a non-zero rational fraction, then R = 1.

Proposition

The series $\sum_{n=0}^{\infty} a_n x^n$ and $\sum_{n=0}^{\infty} \alpha a_n x^n$ have the same radius of convergent for all $\alpha \in \mathbb{R}^*$

Comparison of radius of convergence

Proposition (Sum of power series)

Let $\sum_{n=0}^{\infty} a_n x^n$ and $\sum_{n=0}^{\infty} b_n x^n$ be two power series with respective radius of convergence R_a and R_b . Then

- The power series $\sum_{n=0}^{\infty} c_n x^n = \sum_{n=0}^{\infty} (a_n + b_n) x^n$ has a radius of convergence $R_c \ge \inf\{R_a, R_b\}$.
- For all x such that $|x| < \inf\{R_a, R_b\}$, we have

$$\sum_{n=0}^{\infty} (a_n + b_n) x^n = \sum_{n=0}^{\infty} a_n x^n + \sum_{n=0}^{\infty} b_n x^n.$$

• Moreover, if $R_a \neq R_b$, then $R_c = \inf\{R_a, R_b\}$.

Course outline

- Generalities
- Properties of Power Series
- Representing Functions as Power Series
- 4 Application to differential equations

Properties of Power Series

Theorem (Continuity)

The sum function of a power series $S(x) = \sum_{n=0}^{\infty} a_n x^n$ with a convergence radius R is a continuous function on the interval]-R,R[.

Theorem (**Integration**)

Let $\sum_{n\geq 0} a_n x^n$ be a power series with a convergence radius R. For any compact interval $[a,b] \subset]-R,R[$,

$$\int_{a}^{b} S(x)dx = \int_{a}^{b} \sum_{n \ge 0} a_{n} x^{n} dx = \sum_{n \ge 0} a_{n} \int_{a}^{b} x^{n} dx = \left[\sum_{n \ge 0} a_{n} \frac{x^{n+1}}{n+1} \right]_{a}^{b}.$$

The sum of a power series with a convergence radius R is integrable over any segment $[a,b] \subset]-R,R[$.

Properties of Power Series

Proposition

Any power series $\sum_{n\geq 0} a_n x^n$ with a convergence radius R is integrable and has a primitive on]-R,R[given by

$$F(x) = cste + \sum_{n>0} \frac{a_n}{n+1} x^{n+1}, \quad cste \in \mathbb{R},$$

which is a power series with the same convergence radius.

Example

Example.

$$Let f(x) = \sum_{n \ge 0} x^n, \ R = 1, \ x \in]-1,1[.$$

We have

$$f(x) = \sum_{n \ge 0} x^n = \frac{1}{1 - x} \quad \forall x \in]-1, 1[.$$

The primitive series is

$$F(x) = cste + \sum_{n \ge 0} \frac{x^{n+1}}{n+1} \quad \forall x \in]-1,1[.$$

$$= \int \frac{1}{1-x} dx + cste$$

$$= -\ln(1-x) + cste.$$

$$ln(1-x) = -\sum_{n \to \infty} \frac{x^{n+1}}{n+1}, \quad R = 1, \quad x \in]-1,1[.$$

Properties of Power Series

Theorem (Derivative of a Power Series)

Any power series $f(x) = \sum_{n \ge 0} a_n x^n$ with a convergence radius R is differentiable on]-R,R[, and its derivative is

$$f'(x) = \sum_{n \ge 1} n a_n x^{n-1}.$$

It is a power series with the same convergence radius R.

Corollaire

The sum function of a power series $\sum_{n\geq 0} a_n x^n$ with a convergence radius R is \mathscr{C}^{∞} on]-R,R[.

Example

Example.

Let
$$f(x) = \sum_{n \ge 0} \frac{x^{2n+1}}{2n+1}$$
, $R = 1$. Determine the function f' on $]-1,1[$.

We have

$$f'(x) = \sum_{n \ge 0} \frac{d}{dx} \left(\frac{x^{2n+1}}{2n+1} \right) = \sum_{n \ge 1} x^{2n} = \sum_{n \ge 1} (x^2)^n = \frac{1}{1-x^2}.$$

Hence,

$$f'(x) = \sum_{n>1} x^{2n} = \frac{1}{1-x^2}.$$

Course outline

- Generalities
- Properties of Power Series
- 3 Representing Functions as Power Series
- Application to differential equations

Representing Functions as Power Series

Definition

A real function defined on $I \subset \mathbb{R}$ has a representation as power series in the neighborhood of $x_0 \in I$ if there exists a real numerical sequence (a_n) and R > 0 such that

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n \quad \forall x \in]x_0 - R, x_0 + R[.$$

Example.

The function f defined on] – 1,1[by
$$f(x) = \frac{1}{1-x}$$

has a representation as power series in the neighborhood of $x_0 = 0$, and we have $f(x) = \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, \quad \forall x \in]-1,1[, \quad R=1, \quad a_n=1.$

Representation functions as power series: Examples

Example.

Expand the function defined by $f(x) = \frac{1}{2-x}$ into a power series around $x_0 = 1$.

We have

$$f(x) = \frac{1}{2-x} = \frac{1}{1-(x-1)} = \sum_{n=0}^{\infty} (x-1)^n$$
, $\forall x \text{ such that } |x-1| < 1$,

With
$$R=1$$
, $a_n=1$.

Therefore,

$$f(x) = \frac{1}{2-x} = \sum_{n=0}^{\infty} (x-1)^n, \quad \forall x \in]0, 2[, \quad R = 1.$$

Representation functions as power series:Examples

Example.

Expand the function defined by $f(x) = \frac{1}{1+x^2}$ into a power series around $x_0 = 0$.

We have

$$f(x) = \frac{1}{1+x^2} = \frac{1}{1-(-x^2)}$$

$$= \sum_{n=0}^{\infty} (-x^2)^n$$

$$= \sum_{n=0}^{\infty} (-1)^n x^{2n}, \quad \forall x \in]-1, 1[, R = 1, a_n = (-1)^n$$

Therefore,

$$f(x) = \frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n}, \quad \forall x \in]-1, 1[, R = 1.$$

Representation functions as power series: Taylor series

Definition

Let f be a real function indefinitely differentiable on]-R,R[. We call **Taylor series** of the function f in the neighborhood of $x_0 = 0$ the power series :

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n.$$

Remark

In the neighborhood of $x_0 = a$, Taylor series associated to the function f is written as

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n.$$

Representation functions as power series: Taylor series

Example.

Expand the function defined by $f(x) = e^x$ to a power series in the neighborhood of $x_0 = 0$.

The function $f(x) = e^x$ is infinitely differentiable $(f \in \mathscr{C}^{\infty}(\mathbb{R}))$ with $f^{(n)}(x) = e^x$.

Therefore, the Taylor series of the functin f around $x_0 = 0$, is

$$f(x) = e^x = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{x^n}{n!} \quad \forall x \in \mathbb{R}, \quad R = +\infty.$$

Representation functions as power series

Proposition

Let $f: I \to \mathbb{R}$ be a function that can be represented as a power series around 0. Then, there exists r > 0 such that $f \in C^{\infty}(]-r,r[)$ and f is equal to its Taylor series on]-r,r[, that is to say

$$\forall x \in]-r, r[, f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n,$$

where $f^{(n)}(0)$ denotes the nth derivative of f evaluated at 0.

Proposition

Let f be a function in C^{∞} on]-r,r[. If there exists a real number M>0 such that for all $x\in]-r,r[$ and for all $n\in \mathbb{N}$, $|f^{(n)}(x)|\leq M$, then f can be expanded as a power series around 0.

Power series associated to some elementary functions

The function f defined by

•
$$f(x) = \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$
, $\forall x \in]-1,1[$, $R = 1$.

•
$$f(x) = \frac{1}{1+x} = \frac{1}{1-(-x)} = \sum_{n=0}^{\infty} (-x)^n = \sum_{n=0}^{\infty} (-1)^n x^n, \quad \forall x \in]-1,1[,$$

 $R = 1.$

•
$$f(x) = \ln(1+x) \implies f'(x) = \frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n$$
.

By integrating the derivative series, we get

$$f(x) = \ln(x+1) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^{n+1}, \quad \forall x \in]-1, 1[, \quad R = 1.$$

•
$$f(x) = \ln(1-x) \implies f'(x) = \frac{-1}{1-x} = -\sum_{n=0}^{\infty} x^n$$

By integrating the derivative series, we get

$$f(x) = \ln(1-x) = -\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}, \quad \forall x \in]-1,1[, \quad R = 1.$$

•
$$f(x) = \frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} (-1)^n x^{2n}, \quad \forall x \in]-1,1[, \quad R=1.$$

•
$$f(x) = \arctan(x) \implies f'(x) = \frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n}$$

By integrating the derivative series, we get

$$f(x) = \arctan(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, \quad \forall x \in]-1, 1[, \quad R = 1.$$

• The sine function $f(x) = \sin(x)$

The function f is defined over \mathbb{R} and $f \in \mathscr{C}^{\infty}(\mathbb{R})$.

$$f(x) = \sin(x) \qquad f(0) = 0.$$

$$f'(x) = \cos(x) \qquad f'(0) = 1.$$

$$f''(x) = -\sin(x) \qquad f''(0) = 0.$$

$$f^{(3)}(x) = -\cos(x) \qquad f^{(3)}(0) = -1.$$

$$f^{(4)}(x) = \sin(x) \qquad f^{(4)}(0) = 0.$$

$$f^{(5)}(x) = \cos(x) \qquad f^{(5)}(0) = 1.$$

$$\vdots$$

$$f^{(n)}(x) = \sin(x + \frac{n\pi}{2}) \qquad f^{(n)}(0) = \sin(\frac{n\pi}{2})$$

By the Taylor series expansion around $x_0 = 0$, we obtain

$$f(x) = \sin(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$
$$= x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} + \cdots$$

We conclude that

$$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \quad \forall x \in \mathbb{R}, \quad R = +\infty.$$

• The cosine function $f(x) = \cos(x)$

The function f is defined over \mathbb{R} , and we have

$$f(x) = \cos(x) = \frac{d}{dx}\sin(x) = \frac{d}{dx}\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}.$$

Consequently,

$$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}.$$

The hyperbolic cosine function

$$f(x) = \cosh(x) = \frac{e^x + e^{-x}}{2}$$

The function f is defined and infinitely differentiable over \mathbb{R} . We have

$$\cosh(x) = \frac{e^x + e^{-x}}{2}$$

$$= \frac{1}{2} \left(\sum_{n=0}^{\infty} \frac{x^n}{n!} + \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n!} \right)$$

$$= \frac{1}{2} \sum_{n=0}^{\infty} (1 + (-1)^n) \frac{x^n}{n!}$$

$$= \frac{1}{2} \left(2 + 0 + \frac{2x^2}{2!} + 0 + \frac{2x^4}{4!} + 0 + \frac{2x^6}{6!} + \cdots \right)$$

$$= 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \cdots$$

$$= \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$$

The hyperbolic sine function

$$f(x) = \sinh(x) = \frac{e^x - e^{-x}}{2}$$

The function f is defined and infinitely differentiable over \mathbb{R} . We have

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$

$$= \frac{1}{2} \left(\sum_{n=0}^{\infty} \frac{x^n}{n!} - \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n!} \right)$$

$$= \frac{1}{2} \sum_{n=0}^{\infty} (1 - (-1)^n) \frac{x^n}{n!}$$

$$= \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$$

$$\sinh(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} \quad \forall x \in \mathbb{R}, \quad R = +\infty.$$

Course outline

- Generalities
- Properties of Power Series
- 3 Representing Functions as Power Series
- 4 Application to differential equations

Example.

Solve the following differential equation:

$$y'(x) - 2y(x) = 0$$
, $y(0) = 1$. (1)

We seek the solution in the form of a power series, therefore, we assume

$$y(x) = \sum_{n=0}^{\infty} a_n x^n, \quad x \in]-R, R[.$$

$$y(0) = 1 \Longrightarrow a_0 = 1.$$

We have

$$y(x) = \sum_{n=0}^{\infty} a_n x^n \implies y'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1} = \sum_{n=0}^{\infty} (n+1) a_{n+1} x^n$$

R. KECHKAR

Substituting into equation (1), we obtain

$$y' - 2y = 0 \implies \sum_{n \ge 0} (n+1)a_{n+1}x^n - 2\sum_{n \ge 0} a_n x^n = 0$$

$$\implies \sum_{n \ge 0} [(n+1)a_{n+1} - 2a_n]x^n = 0$$

$$\implies (n+1)a_{n+1} - 2a_n = 0$$

$$\implies a_{n+1} = \frac{2}{n+1}a_n, \quad n = 0, 1, \dots$$

We have
$$a_0 = 1$$

$$a_1 = \frac{2}{0+1}a_0 = \frac{2}{1}$$

$$a_2 = \frac{2}{1+1}a_1 = \frac{2}{2} \cdot \frac{2}{1} = \frac{2^2}{2!}$$

$$a_3 = \frac{2}{2+1}a_2 = \frac{2}{3} \cdot \frac{2^2}{2!} = \frac{2^3}{3!}$$

$$a_4 = \frac{2}{3+1}a_3 = \frac{2}{4} \cdot \frac{2^3}{3!} = \frac{2^4}{4!}$$

$$\vdots$$

$$a_n = \frac{2^n}{n!} \quad \forall n \in \mathbb{N}$$
Therefore $y(x) = \sum_{n=0}^{\infty} \frac{2^n}{n!} x^n = \sum_{n=0}^{\infty} \frac{(2x)^n}{n!} = e^{2x}$.

Example.

Solve the differential equation

$$2x(1+x)y'' + (5x+3)y' + y = 0$$

The previous equation can be written as

$$2xy'' + 2x^2y'' + 5xy' + 3y' + y = 0$$
 (1)

Let's assume

$$y(x) = \sum_{n=0}^{\infty} a_n x^n \quad \text{on }] - R, R[.$$

$$y'(x) = \sum_{n\geq 1} na_n x^{n-1} = \sum_{n\geq 0} (n+1)a_{n+1} x^n.$$

$$y''(x) = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} = \sum_{n\geq 0} n(n+1)a_{n+1} x^{n-1}.$$

$$xy'(x) = \sum_{n\geq 1} na_n x^n = \sum_{n\geq 0} na_n x^n.$$

$$xy''(x) = \sum_{n\geq 1} n(n+1)a_{n+1} x^n = \sum_{n\geq 0} n(n+1)a_{n+1} x^n.$$

$$x^2 y''(x) = \sum_{n=2}^{\infty} n(n-1)a_n x^n = \sum_{n\geq 0} n(n-1)a_n x^n.$$

By substituting into equation (1), we obtain

$$\sum_{n\geq 0} (2n(n+1)a_{n+1} + 2n(n-1)a_n + 5na_n + 3(n+1)a_{n+1} + a_n)x^n = 0.$$

$$\implies 2n(n+1)a_{n+1} + 2n(n-1)a_n + 5na_n + 3(n+1)a_{n+1} + a_n = 0.$$

$$\implies (2n+3)(n+1)a_{n+1} + (2n(n-1) + 5n + 1)a_n = 0.$$

$$\implies (2n+3)(n+1)a_{n+1} + (2n^2 + 3n + 1)a_n = 0.$$

$$\implies a_{n+1} = \frac{-(2n^2 + 3n + 1)}{(2n+3)(n+1)}a_n.$$

We have

$$(2n^2 + 3n + 1) = (2n + 1)(n + 1)$$

$$a_{n+1} = \frac{-(2n+1)}{(2n+3)} a_n$$

$$n = 0 a_1 = \frac{-1}{3}a_0.$$

$$n = 1 a_2 = \frac{-3}{5}a_1 = \frac{-3}{5}\left(\frac{-1}{3}a_0\right) = \frac{1}{5}a_0$$

$$n = 2 a_3 = \frac{-5}{7}a_2 = \frac{-5}{7}\left(\frac{1}{5}a_0\right) = \frac{-1}{7}a_0$$

$$\vdots \vdots$$

$$a_n = \frac{(-1)^n}{2n+1}a_0$$

$$y(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} a_0 x^n = a_0 \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^n, \quad x \in]-1,1[.$$

Let's determine the expression of y.

• For $x \in]0,1[$: We know that

Arctan(x) =
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$
.

Furthermore, we have

$$y(x) = a_0 \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{2n+1}.$$

$$= a_0 \sum_{n=0}^{\infty} (-1)^n \frac{(\sqrt{x})^{2n}}{2n+1}.$$

$$= \frac{a_0}{\sqrt{x}} \sum_{n=0}^{\infty} (-1)^n \frac{(\sqrt{x})^{2n+1}}{2n+1}.$$

Therefore, $y(x) = \frac{a_0}{\sqrt{x}} \operatorname{Arctan}(\sqrt{x})$.

• For $x \in]-1,0[$: We know that

$$\operatorname{argth}(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}.$$

Furthermore, we have
$$y(x) = a_0 \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{2n+1}.$$

$$= a_0 \sum_{n=0}^{\infty} \frac{(-x)^n}{2n+1}.$$

$$= a_0 \sum_{n=0}^{\infty} \frac{(\sqrt{-x})^{2n}}{2n+1}.$$

$$= \frac{a_0}{\sqrt{-x}} \sum_{n=0}^{\infty} \frac{(\sqrt{-x})^{2n+1}}{2n+1}.$$

Consequently

$$y(x) = \frac{a_0}{\sqrt{-x}} \operatorname{argth}(\sqrt{-x}).$$

• forr x = 0 we have

$$y(0) = a_0$$

Example.

Find the function y as a power series around 0, which is a solution to the differential equation

$$x^2y'' + 4xy' + 2y = e^x (2)$$

We seek a solution to the equation in the form of a power series given by $\sum_{n=1}^{\infty} x_n d^n$

$$y(x) = \sum_{n=0}^{\infty} a_n x^n$$

Thus, we have
$$y'(x) = \sum_{n \ge 1} n a_n x^{n-1}$$
 and $y''(x) = \sum_{n \ge 2} n(n-1) a_n x^{n-2}$.

We then have

$$\sum_{n} n(n-1)a_{n}x^{n} + \sum_{n} 4na_{n}x^{n} + \sum_{n} 2a_{n}x^{n} = \sum_{n} \frac{x^{n}}{n!} \quad \text{(since } e^{x} = \sum_{n} \frac{x^{n}}{n!})$$

hence we deduce

$$\sum_{n} \left(n^2 + 3n + 2 \right) a_n x^n = \sum_{n} \frac{x^n}{n!}$$

Consequently

$$\left(n^2 + 3n + 2\right)a_n = \frac{1}{n!}$$

Now

$$n^2 + 3n + 2 = (n+2)(n+1).$$

which yields

$$a_n = \frac{1}{(n+2)(n+1)n!} = \frac{1}{(n+2)!}$$

Finally

$$y(x) = \sum_{n=0}^{\infty} \frac{x^n}{(n+2)!}, \quad R = +\infty.$$

Let's now determine the expression of *y*:

• For $x \neq 0$, we have

$$y(x) = \frac{1}{x^2} \sum_{n=2}^{+\infty} \frac{x^n}{(n+2)!} = \frac{1}{x^2} \sum_{n=2}^{+\infty} \frac{x^n}{n!} = \frac{1}{x^2} \left(\sum_{n=0}^{+\infty} \frac{x^n}{n!} - 1 - x \right) = \frac{e^x - 1 - x}{x^2}.$$

For x = 0, we have

$$y(0)=\frac{1}{2}.$$