

SRM Institute of Science and Technology

Kattankulathur

DEPARTMENT OF MEATHEMATICS

18MAB102T ADVANCED CALCULUS & COMPLEX ANALYSIS

UNIT - II Vector Calculus

Tutorial Sheet - 1

	Tutorial Sheet - 1			
Sl.No. Questions		Answer		
Part - A				
1		ional derivative of $\phi = 2xy + 5yz + zx$ at the 1 the direction of $3\vec{i} - 5\vec{j} + 4\vec{k}$	$\nabla \phi . \hat{n} = -2\sqrt{2}$	
2	Find the angle of intersection at the point (2, -1, 2) of the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$		$\theta = \cos^{-1} \left[\frac{-8}{3\sqrt{21}} \right]$	
3	_	between the normals to the surface $xy = z^2$ 2, -2, 2) and (1, 9, -3).	$\theta = \cos^{-1} \left[\frac{-11}{\sqrt{177}} \right]$	
4	The temperature of points in space is given by $T(x, y, z) = x^2 + y^2 - z$. A mosquito located at $(1, 1, 2)$ desires to fly in such a direction that it will get warm as soon as possible. In what direction should it move?		$\nabla T = 2\vec{i} + 2\vec{j} - \vec{k}$	
5	If $\overline{F} = (x + y + 1)$	$)\vec{i} + \vec{j} - (x+y)\vec{k}$ show that $\vec{F}.curl \vec{F} = 0$	\vec{F} . ϵ	$\operatorname{curl} \vec{F} = 0$
Part - B				
6	solenoidal a potential of	it normal to the surface $x^4 - 3xyz + z^2 + 1 = 0$		$= x^{2} + 2y^{2} - 3z^{2} + xyz + k$ $\frac{1}{11}(\vec{i} - 3\vec{j} - \vec{k})$
7	Prove that div() if and only if n	$(r^n \vec{r}) = (n+3)r^n$. Deduce that $r^n \vec{r}$ is solenoidal $r^n \vec{r} = -3$.		
8	i) If \vec{A} and \vec{B} solenoidal. ii) Show that t	are irrotational, prove that $ec{A} imesec{B}$ is		$\vec{A} \cdot (\vec{A} \times \vec{B}) = 0$ $= xz^3 - yz + 3x^2y + k$
	and find its	$(z^3)\vec{i} + (3x^2 - z)\vec{j} + (3xz^2 - y)\vec{k}$ is irrotational scalar potential.		
9	$\mathbf{If} \nabla \phi = (y^2 - 2x)$ $\mathbf{find} \phi.$	$(yz^3)\vec{i} + (3+2xy-x^2z^3)\vec{j} + (6z^3-3x^2yz^2)\vec{k}$,	+	$xy^{2} - x^{2}yz^{3} + 3y$ $-\frac{3}{2}z^{4} + k$
10		s of 'a' and 'b' so that the surfaces $3x^2$ and $4x^2y-z^3=11$ may cut orthogonally at	<i>a</i> =	-2.33, b = 7.11