MODELLI E ALGORITMI PER IL SUPPORTO ALLE DECISIONI

ESERCIZIO 1. (10 punti) Si applichi l'algoritmo ungherese a un problema con questa tabella dei costi

		b_1	b_2	b_3	b_4	b_5
$T_0 =$	a_1	3	1	4	8	5
	a_2	6	2	9	16	8
	a_3	5	1	7	12	8
	a_4	8	2	8	14	10
	a_5	7	1	8	11	9

individuando un assegnamento ottimo e il relativo costo. Si risponda alle seguenti domande motivando la risposta:

- cosa succede se aumento di 1 il costo di (a_4, b_4) ?;
- cosa succede se aumento di 1 il costo di tutte le coppie in cui è coinvolto b_2 ?

ESERCIZIO 2. (9 punti) Per ciascuna delle seguenti affermazioni dire se è vera o falsa **motivando la risposta**:

- la soluzione ottima del problema di taglio a costo minimo non cambia se si abbassa di due unità la capacità di un arco appartenente a essa;
- la soluzione ottima del problema di taglio a costo minimo non cambia se si alza di due unità la capacità di un arco appartenente a essa;
- la soluzione ottima del problema di taglio a costo minimo non cambia se si alza di un'unità la capacità di tutti gli archi della rete.

ESERCIZIO 3. (6 punti) Si discuta come si calcolano i coefficienti di costo ridotto associati agli archi fuori base in un problema di flusso a costo minimo, si dica quale significato hanno e come sono usati nell'algoritmo del simplesso.

ESERCIZIO 4. (6 punti) Dimostrare che l'algoritmo Double Spanning Tree è un algoritmo di 1-approssimazione per il problema TSP metrico.