IE 678 Deep Learning

02 – Feedforward Neural Networks

Part 1: Embeddings

Prof. Dr. Rainer Gemulla

Universität Mannheim

Version: 2024-1

From linear models to FNNs (1)

- ullet Consider: prediction task with inputs $x \in \mathcal{X}$ and outputs $y \in \mathcal{Y}$
 - ▶ Goal: learn a function from \mathcal{X} to \mathcal{Y}
- Simple approach: use a (generalized) linear model
 - lacktriangle Inputs must be real-valued feature vectors $oldsymbol{x} \in \mathbb{R}^D$
 - Outputs are a real value (e.g., linear or logistic regression)
- Visually:

- Recall: $\hat{y} = \phi(\boldsymbol{w}^{\top}\boldsymbol{x} + b)$, where
 - $oldsymbol{w} \in \mathbb{R}^D$ is a weight vector (one weight per feature, learned)
 - ▶ $b \in \mathbb{R}$ is a bias term (learned)
 - lacktriangledown ϕ is a mean function (e.g., identity or logistic function)
- Problem: low representational capacity due to linearity assumption

Example: Logistic regression (from ML course)

From linear models to FNNs (2)

- Representational capacity can be addressed by feature engineering or using kernel methods
 - ▶ Allows to use arbitrary inputs spaces $x \in \mathcal{X}$ by mapping them to real-valued vectors
 - lacktriangle To do so, uses *pre-specified* feature extractor $f:\mathcal{X} o \mathbb{R}^F$
- Visually:

- Problem: which feature extractor?
 - ► Key to good performance
 - ▶ Hard to get right (domain experts, extensive experimentation, ...)
 - To see this: can you write a suitable feature extractor for classifying images? (if not, see here)

Example: L1VM (from ML course)

L1VM, RBF kernel, logistic regression

$$\lambda = 0.1$$
, $\sigma^2 = 0.571$

From linear models to FNNs (3)

- DL methods can be interpreted as an approach to *learn* features
 - ▶ Input objects $x \in \mathcal{X}$ are transformed into dense, continuous, low-dimensional representations called **embeddings** $z \in \mathbb{R}^Z$
 - ► Useful to represent complex objects (categorical data, textual data, graph data, tabular data, images, ...)
 - ► Think: complex to work with objects, simple to work with embeddings
 - ► Useful embedding space = goal of representation learning
 - ightharpoonup E =embedding dimensionality
- Visually:

- ullet Key point: instead of engineering features manually, embeddings are learned from data ullet Main topic of this course
 - ► Embeddings also called: latent code, distributed representations
 - ► Embedding space also called: latent space

Example: Document embeddings

804414 newswire stories, inputs = per-document rel. frequencies of 2000 most common word stems $(x \in \mathbb{R}^{2000})$, shown here is 2D embedding $(z \in \mathbb{R}^2)$ of two different methods (left: linear, right: autoencoder)

Fig. 4. (A) The fraction of retrieved documents in the same class as the query when a query document from the test set is used to retrieve other test set documents, averaged over all 402,207 possible queries. (B) The codes produced by two-dimensional LSA. (C) The codes produced by 2000-500-250-125-2 autoencoder.

Encoders and prediction heads

- Functions that transform objects $x \in \mathcal{X}$ to embeddings $z \in \mathbb{R}^Z$ are known as encoders
- Functions that transform embeddings $z \in \mathbb{R}^Z$ to predictions $y \in \mathbb{R}$ are known as prediction heads
 - ► Can be linear or more complex
 - Typically much simpler than encoder
 - ► E.g., when prediction head is logistic regression, then positive and negative instances are ideally linearly separable in embedding space
- Visually:

Both encoder and prediction head are learned neural (sub)networks

Contrastive learning

- Embeddings can be used in other ways as well
- E.g., to compare objects, potentially across multiple modalities
 - Useful, for example, for zero- and few-shot prediction
 - ► Learned via a "contrastive learning" approach (more later)
- Example: CLIP embeddings for images and text

Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the target dataset's classes.

Structured prediction / deep generative models

- To handle more complex output spaces \mathcal{Y} , we may replace the prediction head by a component that "generates" output
- Functions that transform embeddings $z \in \mathbb{R}^Z$ to (complex) outputs $y \in \mathcal{Y}$ are known as decoders
 - \blacktriangleright Note: in such models, embedding dimensionality Z may or may not depend on input x
- Visually:

Example: unCLIP (DALL-E 2)

Figure 2: A high-level overview of unCLIP. Above the dotted line, we depict the CLIP training process, through which we learn a joint representation space for text and images. Below the dotted line, we depict our text-to-image generation process: a CLIP text embedding is first fed to an autoregressive or diffusion prior to produce an image embedding, and then this embedding is used to condition a diffusion decoder which produces a final image. Note that the CLIP model is frozen during training of the prior and decoder.