DECISION TREE AND RANDOM FOREST

1

Decision Tree Algorithm

- Similar to how humans
 make many different
 decisions
- Decision trees look at one feature/variable at a time

Decision Tree Algorithm										
□ Training dataset										
	Day	Outlook	Temp	Humidity	Wind	Tennis?				
	1	Sunny	Hot^{1}	High	Weak	No				
	2	Sunny	Hot	High	Strong	No				
	3	Overcast	Hot	High	Weak	Yes				
	4	Rain	Mild	High	Weak	Yes				
	5	Rain	Cool	Normal	Weak	Yes				
	6	Rain	Cool	Normal	Strong	No				
	7	Overcast	Cool	Normal	Strong	Yes				
	8	Sunny	Mild	High	Weak	No				
	9	Sunny	Cool	Normal	Weak	Yes				
	10	Rain	Mild	Normal	Weak	Yes				
	11	Sunny	Mild	Normal	Strong	Yes				
	12	Overcast	Mild	High	Strong	Yes				
	13	Overcast	Hot	Normal	Weak	Yes				
	14	Rain	Mild	High	Strong	No				

Decision Tree Algorithm

□ How can we build a decision tree given a data set?

5

Decision Tree Algorithm

- □ We will make the best choice at each step
- □ Identify the best feature/attribute for the each node

Decision Tree Algorithm

- □ Identify the best feature/attribute for root node
 - Best split: results of each branch should be as homogeneous (or pure) as possible
 - a feature that reduces impurity as much as possible
 - How do we measure the impurity in a set of examples
 - Entropy from information theory
 - Alternatively, use Gini Index

7

Decision Tree Algorithm

 $\hfill\Box$ Entropy for a distribution over two outcomes

Decision Tree Algorithm

- □ Quantifying the information content of a feature
 - entropy of the examples before testing the feature minus the entropy of the examples after testing the feature - Information Gain

Decision Tree Algorithm

- □ Quantifying the information content of a feature
 - □ Information gain or entropy reduction

InfoGain =
$$I_{\text{before}} - I_{\text{after}}$$

Decision Tree Algorithm

□ Entropy of the examples before we select a feature for the root node

$$\begin{split} H_{\text{before}} &= -\left(\frac{9}{14}\log_2\left(\frac{9}{14}\right) + \frac{5}{14}\log_2\left(\frac{5}{14}\right)\right) \\ &\approx 0.94 \end{split}$$

Day	Outlook	Temp	Humidity	Wind	Tennis?
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

Generalization

21

- □ Classification Goal: Make accurate predictions for new/unseen data - Good Generalization
- □ The model should NOT be tuned to the specific characteristics of the training data — Overfitting
- □ In practice, training data is likely to contain some noise

We are better off with a slightly poorer performance on the training examples if this means that our classifier will have better performance on unseen patterns.

21

Generalization

22

 Classification Goal: Make accurate predictions for new/unseen data - Good Generalization

 A decision boundary that provides an optimal tradeoff between accuracy on the training set and unseen data

Random Forest

27

□ Ensemble learning is a machine learning technique that aggregates two or more learners to produce better predictions

committee-based learning

THE
WISDOM OF CROWDS
Why the Many Are Smarter Than the Few
JAMES SUROWIECKI

*Durding , . the most burdline book on houseness, using your descrepting life that.

*Per read in year?

Markon Calabell,

gather of The Sprag Bast.

27

Random Forest

28

- □ Base learner, base model, base estimator refers to the individual models in ensemble algorithms
- □ consolidating base learner predictions
 - □ Majority Voting, Averaging

Random Forest

29

- □ Random forest uses bagging to construct ensembles of randomized decision trees
 - □ Bagging bootstrap sampling and aggregation
 - Bootstrap sampling to derive multiple new datasets from one initial training dataset to train multiple base learners

29

Bootstrap Sampling

□ Random sampling with replacement

□ Each bootstrap sample only contains approximately
 63.2% of the unique samples from the original dataset

Random Forest

□ Random forest uses bagging to construct ensembles of randomized decision trees

31

Random Forest

32

- □ Random forest uses bagging to construct ensembles of randomized decision trees
 - considers random subsets of features when splitting a node
 - □ max_features parameter
- ☐ The greater diversity among combined models, the more accurate the resulting ensemble model

33

Thank You!