(NATURAL SCIENCE)

Vol. 60 No. 6 JUCHE103(2014).

빚증감제 N719(시스-디리오시아나토 비스(2, 2'-비피리딜-4, 4'-디카르본산)Ru(Ⅱ)레트라부틸 암모니움염)의 빚전기화학적특성

류 권 일

위대한 령도자 김정일동지께서는 다음과 같이 지적하시였다.

《새 재료부문의 과학자, 기술자들은 전자공업에 절실히 필요한 화합물반도체와 정밀사기재료를 개발하고 그 생산을 공업화하기 위한 연구사업을 다그치며 초전도재료와 금속수지복합재료를 비롯한 새 재료들과 우리 나라에 없는것을 대신할수 있는 재료를 개발하기 위한 연구사업도 전망성있게 밀고나가야 합니다.》(《김정일선집》 제15권 중보판 487폐지)

현재까지 알려진 빛증감제 N3보다 빛전류를 더 효률높이 생성할수 있는 빛증감제로서 N719가 주목되고있다.[4, 5] 빛증감제 N719는 빛증감제 N3의 피리딘 4위치의 카르본산자리

에 테트라부틸암모니움을 치환시킨 착체로서 려기된 전 자가 다른 피리딘의 카르본산기를 통해 나노TiO₂막으로 더 잘 흐르도록 전자내줌체의 역할을 수행한다.(그림 1)

일반적으로 금속과 배위된 전자받는체인 비피리딘은 LUMO의 에네르기준위를 결정하고 전자내줌체인 티오시안기는 HOMO의 준위를 결정한다.[4, 5] 빛증감제 N719는 빛증감제 N3보다 LUMO준위가 높기때문에 전압과 빛전류가 더 크다.

우리는 빛증감제 N719를 합성하고 그 빛전기화학적 특성을 고찰하기 위한 연구를 하였다.

그림 1. 빛증감제 N719의 구조

재료 및 방법

메타놀은 분석순을 리용하였으며 테트라부틸암모니움히드록시드와 디메틸포름아미드 는 화학순을 리용하였다.

선구체로서 빛증감제 N3은 자체로 합성한것을 리용하였다.[1, 2]

빛증감제 N3과 N719의 생성물확인은 적외선분광광도계(《FT-IR 8101 Shimadzu》)를 리용하여 KBr알림약법으로 진행하였으며 생성물의 가시선스펙트르는 자동기록분광광도계(《HITACHI EPS-3T》)를 리용하여 측정하였다.

빛증감제 N719의 합성은 아래와 같이 하였다.

순수한 메타놀 50mL에 빛증감제 N3(시스-디티오시아나토 비스(2, 2'-비피리딜-4, 4'-디카르본산)Ru(Ⅱ)착체)를 30mg 풀고 여기에 테트라부틸암모니움히드록시드(10%) 0.026mL 넣어 상온에서 2h동안 반응시켰다. 다음 생성물을 디에틸에테르로 재결정화하고 거른 다음 다시 디에틸에테르로 세척하여 건조하였다.

빚전기화학적특성은 다음과 같은 방법으로 측정하였다.

먼저 아세톤으로 세척한 전도성투명유리전극(저항 25Ω/cm²)의 량끝에 테프를 붙이고 티탄부톡시드(혹은 P25, 루틸 30%, 아나라즈 70%)를 리용하여 제조한 나노TiO₂파스타를 칼도포법으로 피복하고 450°C에서 30min동안 소결하였다.

이렇게 제조한 나노TiO₂전극을 80°C정도로 식히고 색소용액(6×10⁻³mol/L)에 잠그어 하루밤 방치하였다.

다음 헥사클로로백금산용액을 같은 면적의 전도성투명유리전극에 입히고 $450\sim500^{\circ}$ C에서 소결하여 상대극(백금촉매전극)을 제조하였다. 두 전극을 서로 맞대고(쌘드위치형) 그사이로 전해질(50mL의 γ -부틸로락톤에 0.5mol/L KI와 0.05mol/L I_2 , 0.25mol/L TBP를 푼것)을 실관력으로 주입하고 태양빛조건에서 열린회로전압(V_{OC})과 닫긴회로전류(J_{SC})를 측정하였다.

결과 및 고찰

1) 빛증감제 N719의 합성

합성한 빚증감제 N719의 적외선스펙트르는 그림 2와 같다.

그림 2에서 보는것처럼 1 200~1 650cm⁻¹구간에서 비피리딘의 특성흡수띠가 나타났으며 2 186cm⁻¹에서 티오시안기에 의한 진동띠가, 2 800~3 100cm⁻¹에서는 테트라부틸암모니움히드록시드의 3급부틸기에 해당한 특성진동띠가 나타났다.

빛증감제 N3과 N719을 디메틸포름아미드용액에 풀고 가시선흡수스펙트르를 측정한 결과(그림 3) 빛증감제 N3은 396nm와 520nm에서 흡수극대가, 빛증감제 N719는 398nm와 515∼530nm에서 흡수극대가 나타났다.

그림 2. 빛증감제 N719의 IR스펙트르 1-빛증감제 N3, 2-빛증감제 N719

그림 3. 빛증감제 N719의 가시선 흡수스펙트르 1) 빛증감제 N719, 2) 빛증감제 N3

이 결과는 선행연구[3]의 결과와 일치한다. 따라서 우리가 합성한 물질이 정확히 빛 증감제 N719라는것을 알수 있다.

2) 빛증감제 N719의 빛전기화학적특성

우와 같은 방법(실험방법)으로 제조한 나노TiO2을 빛증감제 N3과 N719색소용액에 하 루밤 방치하고 전지를 구성하여 빚전기화학적특성을 검사하였다.

2가지 방법으로 제조한 나노 TiO_2 막에서 V_{OC} 와 J_{SC} 를 측정한 결과는 표 1과 같다.

표 1에서 보는것처럼 높은 빛세기에서는 빛증감제 N3보다 빛증감제 N719의 J_{SC} 가 $2.40 \,\mathrm{mA/cm^2}$ 로서 더 높았다. 그와 반대로 V_{OC} 는 상대적으로 낮았다. 그러나 $\mathrm{P25}$ 를 리용 하여 제조한 나노 ${
m TiO_2}$ 막에서는 빛증감제 N719의 $V_{
m OC}$ 와 $J_{
m SC}$ 가 빛증감제 N3보다 높았 다.(표 2)

표 1. 리탄부록시드를 리용한 나노 ${
m TiO_2}$ 막에서 표 2. ${
m P25}$ 를 리용한 나노 ${
m TiO_2}$ 막에서 빚증감제 빛증감제 N719의 빛전기화학적특성

N719의 빛전기화학적특성

빛세기 /lx	N3		N719		빛세기	N3		N719	
	V _{OC} /V	$J_{\rm SC}$ /(mA·cm ⁻²)	V _{OC} /V	$J_{\rm SC}$ /(mA·cm ⁻²)	/lx	V _{OC} /V	$J_{\rm SC}$ /(mA·cm ⁻²)	V _{OC} /V	$J_{\rm SC}$ /(mA·cm ⁻²)
6 000	0.539	0.350	0.534	0.210	6 000	0.547	0.300	0.600	0.280
18 000	0.589	0.800	0.590	0.430	18 000	0.588	0.600	0.620	0.570
36 000	0.630	1.250	0.620	1.300	36 000	0.617	1.130	0.650	1.140
60 000	0.663	1.500	0.660	1.800	60 000	0.629	2.000	0.680	1.870
65 000	0.685	1.800	0.670	2.400	65 000	0.660	2.430	0.710	2.850

대조로 빛증감제 N3을 리용

우와 같은 결과는 나노TiO2막을 어떻게 제조하는가에 따라 빛증감제의 특성이 달라 진다는것을 보여준다. 그것은 빛증감제 N3과 N719의 분자크기가 다르므로 나노TiO₂막을 어떻게 제조하는가에 따라 나노TiOz립자들과 결합하는 색소의 량이 달라지기때문이라고 생각하다.

다음 우리는 티탄부톡시드와 P25를 리용하여 제조한 나노TiO2막을 0.2mol/L TiCl4수 용액속에 잠그고 70℃에서 1h동안 처리한 다음 다시 전극을 색소용액에 하루밤 방치하고 에타놀로 세척하였다. 이 전극으로 전지를 구성하고 빛증감제들의 특성을 고찰한 결과는 표 3, 4와 같다.

표 3. TiCl₄수용액으로 후처리한 나노TiO₂막에서 표 4. 나노TiO₂막의 TiCl₄수용액 빛증감제 N719의 $V_{\rm OC}$ 와 $J_{\rm SC}$ 특성

후처리효과

00 - 30 -									
	N3		N719		ਸੀ ਹੀ ਤੀ:	N3		N719	
빛세기		$J_{ m SC}$		$J_{ m SC}$	빛세기 /lx	$V_{\rm OC}/{ m V}$	$J_{ m SC}$	$V_{\rm OC}/{ m V}$	$J_{ m SC}$
/lx	$V_{\rm OC}/{ m V}$	$/(\text{mA} \cdot \text{cm}^{-2})$	$V_{\rm OC}/{ m V}$	$/(\text{mA} \cdot \text{cm}^{-2})$		V OC/ V	$/(\text{mA}\cdot\text{cm}^{-2})$	VOC/ V	$/(\text{mA} \cdot \text{cm}^{-2})$
6 000	0.558	0.800	0.540	0.400	6 000	0.524	0.900	0.580	0.600
18 000	0.565	1.700	0.560	1.700	18 000	0.562	1.300	0.598	1.250
36 000	0.605	2.400	0.600	2.200	36 000	0.601	2.100	0.627	2.300
60 000	0.630	3.200	0.620	3.400	60 000	0.620	4.070	0.650	4.890
65 000	0.660	3.700	0.652	4.500	65 000	0.656	4.660	0.680	5.700
05 000	0.000	3.700	0.052	1.500	000	0.000		0.000	200

티탄부톡시드를 리용하여 제조한 나노TiO2막

P25를 리용하여 제조한 나노TiO2막

표 3에서 보는것처럼 티란부톡시드를 리용하여 제조한 나노 TiO_2 막($TiCl_4$ 수용액으로 후처리하지 않음.)에서와 같이 높은 빛세기에서 빛증감제 N719의 J_{SC} 는 증가하였지만 V_{OC} 는 빛증감제 N3보다 감소하였다. 그러나 P25로 제조한 나노 TiO_2 막에서는 빛증감제 N719의 V_{OC} 와 J_{SC} 가 다같이 증가하였다.(표 4) 이것은 나노 TiO_2 막을 제조하는 출발물질에 따라서 막을 형성하는 립자들의 크기와 기공크기가 달라져 색소흡착량이 감소하기때문이라고 생각한다.

맺 는 말

- 1) 빛증감제 N719의 흡수극대는 398nm와 515~530nm이다.
- 2) 빛증감제 N719의 J_{SC} 는 티탄부톡시드를 리용하여 제조한 나노 TiO_2 막에서 증가하지만 V_{OC} 는 감소한다. 빛증감제 N719의 V_{OC} 와 J_{SC} 는 P25로 제조한 막에서 다같이 증가하다.
- 3) TiCl₄수용액으로 막을 후처리하는 경우 빛증감제 N719의 빛전기화학적특성이 향상 된다.

참 고 문 헌

- [1] 김일성종합대학학보(자연과학), 53, 11, 145, 주체96(2007).
- [2] 김일성종합대학학보(자연과학), 53, 12, 96, 주체96(2007).
- [3] M. K. Nazeeruddin et al.; J. Am. Chem. Soc., 115, 6382, 1993.
- [4] Kun-Mu Lee et al; J. Power Sources, 196, 2416, 2011.
- [5] 荒川榕則; 表面技術, 55, 12, 887, 2004.

주체103(2014)년 2월 5일 원고접수

Photo-Electrical and Chemical Property of Photosensitizer N719 (Cis-Ditiocyanato Bis(2, 2'-Biprydil-4, 4'-Dicarboxylate) Ruthenium([]) Tetrabutylammonium)

Ryu Kwon Il

The absorption peak of photosensitizer N719 is 398nm and 515~530nm.

The $J_{\rm SC}$ of photosensitizer N719 increases on nano-TiO₂ film manufactured by titanbutocide, but $V_{\rm OC}$ decreases. The $V_{\rm OC}$ and $J_{\rm SC}$ of photosensitizer N719 increase respectivly on film manufactured by P25.

Treating TiO₂ film with aqueous solvent of TiCl₄, photo-electrical and chemical property of photosensitizer N719 is improvemented.

Key words: photosensitizer, N719, nano-TiO₂ film, TiCl₄