Problem Set 1 for EE227C (Spring 2018): Convex Optimization and Approximation

Instructor: Moritz Hardt

Email: hardt+ee227c@berkeley.edu

Graduate Instructor: Max Simchowitz

Email: msimchow+ee227c@berkeley.edu

January 22, 2018

Problem 1: Existence of the Subgradients

Let \mathcal{X} be a convex set. Prove that that given any convex function $f: \mathcal{X} \to \mathbb{R}$ and any $x \in \mathcal{X}$, there exists at least one vector g - called a *subgradient* of f at x - such that $f(y) \ge f(x) + \langle g, y - x \rangle$ for all $y \in \mathcal{X}$. You will do so following the steps below.

- i) Define the *Epigraph* of f, $Epi(f) := \{(x, t) \in \mathcal{X} \times \mathbb{R} : f(x) \leq t\}$. Prove the Epi(f) is convex.
- ii) Recall the following definitions from real analysis

Definition 1 (Boundary and Interior). For a set $\mathcal{X} \subset \mathbb{R}^d$, its closure $\overline{\mathcal{X}}$ is defined as the set of all $x \in \mathbb{R}^d$ (not necessarily in \mathcal{X}) such that, for all $\epsilon > 0$, there exists a $y \in \mathcal{X}$ such that $||x - y|| \le \epsilon$. In other words, for every $\epsilon > 0$, the ball of radius ϵ around ϵ intersects ϵ . Int(ϵ) is defined as the set of all points ϵ such that there exists an $\epsilon > 0$ for which, for all ϵ is entirely in ϵ if other words, for some $\epsilon > 0$, the ball of radius $\epsilon > 0$ around ϵ lies entirely in ϵ . Lastly, we define the boundary ϵ is $\epsilon > 0$.

Using the separating hyperplane theorem from the notes (the full version, which applies to arbitrary convex sets not just compact ones), prove the supporting hyperplane theorem.

Theorem 1 (Supporting Hyperplane). Let $C \subset \mathbb{R}^d$ be a convex set, and let $x \in \text{Bd}(C)$. Then, there exists a $w \in \mathbb{R}^d$ such that, for all $y \in C$, $\langle w, y - x \rangle \geq 0$.

Hint: Find two (not-necessarily compact!) convex sets to apply the separating hyperplane theorem. You might want Int(C) to be one of them - and you should check that Int(C) is convex

- **iii)** Using part *i*) and *ii*), prove the existence of a subgradient.
- **iv)** Let $\{g_{\alpha}\}$ be a (possibly infinite, uncountable) family of convex functions, and suppose that $g_{\alpha}(x) < \infty$ for all $x \in \mathcal{X}$. Show that $g(x) := \sup_{\alpha} g_{\alpha}(x)$ is convex on \mathcal{X} (you may assume g(x) is finite).
- **v)** Using what we've proven about subgradients, prove that a function $g: \mathcal{X} \to \mathbb{R}$ is convex if and only if it can be written as the supremum of affine functions (e.g. supremum of functions of the form $g_{\alpha}(x) = \langle a_{\alpha}, x \rangle + b_{\alpha}$)

Problem 2: Properties of Subgradients

- i) Show by way of example that the subgradient is not necssarily unique, but that the set of all subgradients is closed and convex. We will denote this *set* $\partial f(x)$.
 - ii) Show that a convex f is differentiable at x if and only if $\partial f(x) = {\nabla f(x)}$.
 - iii) Show that if $g_1 \in \partial f_1(x)$ and $g_2 \in \partial f_2(x)$, then $g_1 + g_2 \in \partial (f_1 + f_2)(x)$.
- **vi)** Let $f(x) = \sup_{\alpha} g_{\alpha}(x)$ which g_{α} convex. Show that $\operatorname{Conv}\{\partial g_{\alpha}(x)|g_{\alpha}(x) = f(x)\} \subseteq \partial f$.
- (v) Prove that if $g_{\alpha}(x) = w_{\alpha}^{\top} x + b_{\alpha}$ are a compact family of affine functions (i.e. $\{(w_{\alpha}, b_{\alpha})\} \subset \mathbb{R}^{d+1}$ is compact), then the converse is true, namely $\partial f \subset \text{Conv}\{\partial g_{\alpha}(x)|g_{\alpha}(x)=f(x)\}$.

Problem 3: Subgradients of Norms

- **A)** Subgradient of the L_1 and L_{∞} -norms
 - $\textbf{i))} \quad \text{Prove that, for all } x \in \mathbb{R}^d, \|x\|_1 = \sup_{y:\|y\|_{\infty} \leqslant 1} \langle x,y \rangle, \|x\|_{\infty} = \sup_{y:\|y\|_1 \leqslant 1} \langle x,y \rangle.$
 - ii)) Compute $\partial ||x||_1$ and $\partial ||x||_{\infty}$

A) Subgradient of the L_1 -norm

i)) Let $A \in \mathbb{R}^{m \times n}$. Let $\sigma_i(\cdot)$ denote the i-th singular value of a matrix. Using the inequality $\sum_{i=1}^{\min(n,m)} \sigma_i(AB) \leqslant \sum_{i=1}^{\min(n,m)} \sigma_i(A)\sigma_i(B)$ for all $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times m}$, prove the follow: For all $X \in \mathbb{R}^{m \times n}$,

$$||X||_{\text{op}} := \max_{Y \in \mathbb{R}^{m \times n} ||Y||_{\text{nuc}} \leqslant 1} \langle X, Y \rangle \text{ and } ||X||_{\text{nuc}} = \max_{Y \in \mathbb{R}^{m \times n} : ||Y||_{\text{op}} \leqslant 1} \langle X, Y \rangle , \qquad (1)$$

where $\|X\|_{\text{op}} := \sigma_{\max}(X)$, $\|Y\|_{\text{nuc}} := \sum_{i=1}^{\min(n,m)} \sigma_i(Y)$, and $\langle X,Y \rangle := \text{tr}(X^\top Y)$. You may want to refresh yourself on the relationship between traces, eigenvalues and singular values.

- ii)) Compute $\partial ||X||_{op}$ and $\partial ||X||_{nuc}$. Under what conditions is each subgradient unique?
- C) Let $\|\cdot\|$ be an arbitary norm (not necessarily Euclidean!) on \mathbb{R}^d . Define the dual norm $\|y\|_* := \sup_{x:\|x\| \leqslant 1} \langle x,y \rangle$.
 - i) Show that the dual norm is a norm, and describe its subgradient.
- ii) Let f be a convex function on a convex domain \mathcal{X} . Show that f is L-Lipschitz on \mathcal{X} if an only if, for all $x \in \mathcal{X}$ and all $g \in \partial f(x)$, $||g||_* \leq L$.

Problem 4: Extensions for Gradient Descent

- **A)** Generalizations of SGD
 - i)) Prove the following statement:

Proposition 1. Let Ω be a convex domain of radius R, and let f be a convex function on Ω . Let $x_0 \in \Omega$, and let $x_t = \Pi_{\Omega}(x_{t-1} - \eta g_t)$, where $\operatorname{Exp}[g_t | g_1, \dots, g_{t-1}] \in \partial f(x_t)$, and $\sup_t \operatorname{Exp}[\|g_t\|^2] \leqslant L$ and $\eta = \frac{LR}{\sqrt{T}}$. Prove that

$$f(\frac{1}{T}\sum_{t=1}^{T}x_t) \leqslant \inf_{x \in \Omega}f(x) + \dots$$
 (2)

You fill in the

ii) Prove the following statement:

Proposition 2. Let Ω be a convex domain of radius R, Let f_1, f_2, \ldots, f_T be L-Lipschitz, convex functions on Ω . Given any $x_0 \in \Omega$, let $x_t = \Pi_{\Omega}(x_{t-1} - \eta g_t))$, where $g_t \in \partial f_t(x_t)$, and $\eta = \frac{LR}{\sqrt{T}}$. Prove that

$$\frac{1}{T} \sum_{t=1}^{T} f(\frac{1}{T} \sum_{t=1}^{T} x_t) \leqslant \frac{1}{T} \sum_{t=1}^{T} f_t(x_t) \leqslant \inf_{x \in \Omega} \frac{1}{T} \sum_{t=1}^{T} f_t(x_t) + \frac{\dots}{2}$$
(3)

You fill in the

B) In this problem we show that in the stochastic setting, smoothness of the function f does not help. Let $\Omega = [-1,1]$, let σ be a random variable with $\Pr[\sigma = 1] = \Pr[\sigma = -1] = 1/2$, fix an $\epsilon \in (0,1/4)$. Let z_1, z_2, \ldots, z_T be T i.i.d random variables, such that $z_i | \sigma$ are mutually independent, and

$$\Pr[z_i = 1|\sigma] = 1/2 + \sigma\epsilon \text{ and } \Pr[z_i = -1|\sigma] = 1/2 - \sigma\epsilon$$
 (4)

You will need the following information

Lemma 1. Let σ and z_1, z_2, \ldots, z_T be as above. Then there exists a universal constant C such that, if $T \leq C\epsilon^2$, any algorithm which returns an estimate $\widehat{\sigma}$ of σ from observing z_1, z_2, \ldots, z_T satisfies $\Pr[\widehat{\sigma} \neq \sigma] \geqslant \frac{1}{4}$, where \Pr is taking over the randomness in σ , z_1, \ldots, Z_T , and any randomness in the algorithm.

- i) Construct a function on f_{σ} such that $\text{Exp}[z_i|\sigma] = \nabla f_{\sigma}(x)$ for all $x \in \Omega$. What is the optimum x_{σ}^* of f_{σ} ? What is the "smoothness" of f_{σ} ?
- ii) Show that there exists a universal constant c such that the following hold: Fix a $T \in \mathbb{N}$, and let A be an algorithm which is allowed to make T queries $x_t \in [-1,1]$ and g_t , where A decides x_t , and recieves responses g_t such that $\operatorname{Exp}[g_t] = \nabla f(x_t)$ and $|g_t| \leq 1$ as.s. Then, there is a 0-smooth, 1-Lipschitz function f and a mechanism for generating noisy subgradients g_t such, for any algorithm using g_t as gradient queries, the iterate x_{T+1} satisfies

$$\exp[f(x_{T+1})] - \inf_{x \in [-1,1]} f(x) \ge c/\sqrt{T}$$
 (5)

Problem 5: Generalized Projections

In this problem, we introduce a useful generalization of gradient descent. Let $\mathcal{X} \subseteq \mathcal{D} \subseteq \mathbb{R}^d$ be convex sets, and let $\Phi : \mathcal{D} \to \mathbb{R}$ be a strictly convex, continuously differentiable map such that $\|\nabla \Phi(x)\|$ diverges on Bd(\mathcal{D}), and $\nabla \Phi(\mathcal{D}) = \mathbb{R}^d$. We call Φ a *mirror map*.

A) Define the *Bregman Divergence*

$$D_{\Phi}(x,y) = f(x) - f(y) - \nabla f(y)^{\top}(x-y)$$
(6)

and the associated Φ projection

$$\Pi_{\mathcal{X}}^{\Phi}(y) := \arg\min_{x \in \mathcal{X}} D_{\Phi(x,y)} \tag{7}$$

Show that $\Phi(x) = \frac{1}{2} ||x||_2^2$ is a mirror map, and compute $D_{\Phi}(x, y)$ and explain what $\Pi_{\mathcal{X}}^{\Phi}(y)$ corresponds to

B) Prove that, for all $x \in \mathcal{X}$ and $y \in \mathcal{D}$,

$$(\nabla \Phi(\Pi_{\mathcal{X}}^{\Phi}(y)) - \nabla \Phi(y))^{\top} (\Pi_{\mathcal{X}}^{\Phi}(y) - x) \le 0$$
(8)

and conclude that

$$D_{\phi}(x, \Phi_{x}(y)) + D_{\phi}(\Phi_{x}(y), y) \leqslant D_{\Phi}(x, y) \tag{9}$$

What does this reduce to when $\Phi(x) = \frac{1}{2} ||x||_2^2$?

C) Consider the following algorithm, known as mirror descent. Let $\mathcal{X} \subset \mathcal{D}$ and Φ be as above, let $f: \mathcal{X} \to \mathbb{R}$ be convex, let $x_1 \in \mathcal{X}$. Fix an $\eta > 0$. For $t \ge 1$, define y_{t+1} such that $\nabla \Phi(y_{t+1}) - \nabla \Phi(x_t) = \eta g_t$, where $g_t \in \partial f(x_t)$. Prove the following:

Theorem 2. Let $\|\cdot\|$ be an *arbitrary* norm on \mathcal{X} , and suppose that Φ is a κ strongly-convex mirror map with respect to $\|\cdot\|$ on \mathcal{X} . Suppose that f is L-Lipschitz with respect to $\|\cdot\|$. Prove that

$$f(\sum_{s=1}^{T} x_s) - \min_{x \in \mathcal{X}} f(x) \leqslant \frac{D(x, \pi)}{\eta} + \eta \frac{L^2 T}{\kappa}$$
(10)

Recall that Φ is κ -strongly convex with respect to $\|\cdot\|$ if and only $\Phi(x) - \Phi(y) \le \nabla \Phi(x)^{\top} (x-y) + \frac{\kappa}{2} \|x-y\|^2$.

D) A common setup for mirror descent is on the simplex, where $\mathcal{D}: \{x: x_i > 0 \forall i \in [d]\}$, and $\mathcal{X}:=\{x\in\mathcal{D}: \|x\|_1=1\}$. Given an iterate x_t , compute the updates y_{t+1} and x_{t+1} .