Bestemmelse af motor parametere

Resultater

$$R = 2.08\Omega$$

 $L = 44.93 \mu \text{H}$
 $K_e = 4.68 \cdot 10^{-3} \text{Vs}$
 $K_t = 0.247 \frac{\text{Nm}}{\text{A}}$
 $B = 0.526 \cdot 10^{-3} \text{Nms}$

Resistance (R)

Spændingen skrues langsom op til lige inden motoren starter. Herefter aflæses spændingen og strømmen til motoren for at beregne modstanden af motoren.

$$U = 2.5 \mathrm{V}$$

$$I = 1.2 A$$

Det resulterer til:

$$R=\frac{U}{I}=2.08\Omega$$

Inductance (L)

Spænd bolten så motoren forbliver i stilstand.

Giv en 14V step voltage til motoren aflæs strømkurven(grønne kurve) ved brug af tang amperet koblet til oscilloscopet.

Scope indstillinger og måling:

Aflæs maks strømmen (22A) udfra grafen og herefter udregn strømmen ved 63.2% som er 13.9A.

Derefter ses tidskontanten udfra grafen ved 13.9A at den er 21.6 μS . Herefter kan man udregne L som er 44.93 μH hvilket er givet af: $\tau = \frac{L}{R} \Leftrightarrow L = \tau \cdot R$

```
%% 1
%L
clear; close all;
[File1,Path1] = uigetfile('*.csv', '');
FullFile1 = fullfile(Path1,File1);
table1 = readtable(FullFile1);

plot(table1.Var1,table1.Var3);
grid on;
```

\mathbf{Ke}

Lad motoren køre frit ved forskellige spændinger og aflæs rotationer ved hjælp af tachometer.

Angular velocity er givet som:

$$\omega = RPM \cdot 2 \cdot \frac{\pi}{60}$$

 K_e er givet som:

$$K_e = \frac{U - Ri}{\omega}$$

Tachometeret giver RPM som kan omregnes til ω og spændingen er givet fra strømforsyningen. Resultaterne for K_e kan se i tabellen:

Voltage [V]	Current [A]	RPM	Angular velocity [rad/s]	K_e
2.5	0.9	250	26.18	2.398783e-02
5	1.2	950	99.48	2.516994e-02
7.5	1.4	1680	175.92	2.607867e-02
10	1.5	2420	253.421	2.714841e-02
12.5	1.6	3130	327.77	2.798279e-02
14	1.7	3560	372.49	2.806849e-02

Matlab beregninger:

```
%% 2
close all; clear;
R = 2.08;
RPM = [250 950 1680 2420 3130 3560];
U = [2.5 5 7.5 10 12.5 14];
current = [0.9 1.2 1.4 1.5 1.6 1.7];
for i = 1:length(RPM)
        angular(i) = (RPM(i) * 2 * pi)/60;
end

for k = 1:length(U)
        Ke(k) = (U(k)-(R*current(k)))/(angular(k));
end
fprintf('Angular %d,\n', angular);
fprintf('Ke %d,\n', Ke);
```

Kt and B

Indstil bolten så det bremser motoren og derefter aflæs spændingen fra torquemeter gradvist ved forskellige spændings intervaller fra strømforsyningen til motoren.

Newton meter relation til spænding for motoren: 10Nm = 5.001V

Torque findes som:

$$\frac{\text{meassured voltage}}{\text{torquemeter voltage}} \cdot \text{torquemeter Nm}$$

 K_t er

 $\frac{\text{torque}}{current}$

Dernæst lader vi motoren køre frit ved forskellige RPMs og finder B ved hældningen af torque vs angular velocity plot.

Voltage [V]	Current [A]	Newton/meter voltage	Torque [Nm]
1	0.3	$30 \mathrm{mV}$	0.059
2	0.9	$60 \mathrm{mV}$	0.119
3	2.1	$200 \mathrm{mV}$	0.399
4	4.1	$500 \mathrm{mV}$	0.999
5	6	770 mV	1.539
6	8.4	1.1V	2.199
7	10.6	1.37V	2.739
8	12.7	1.68V	3.359
9	14.6	2V	3.999
10	16.8	2.3V	4.599
11	18.6	2.56V	5.118
12	20.1	2.76V	5.518
13	20.5	2.88V	5.758
14	24.2	3.22V	6.438

Plot:

Matlab beregninger:

```
%% 3
close all; clear;
current = [0.3 0.9 2.1 4.1 6 8.4 10.6 12.7 14.6 16.8 18.6 20.1 20.5 24.2];
torquevol = 5.001;
torqueconstant = 10;
torquevoltage = [30E-3 60E-3 200E-3 500E-3 770E-3 1.1 1.37 1.68 2 2.3 2.56 2.76 2.88 3.22];
for i = 1:length(torquevoltage)
    torque(i) = (torquevoltage(i)/ torquevol) * torqueconstant
end
fprintf('torque %d, \n', torque)
```