First evaluation report

Esther Robb

Project Website: e-271.github.io

Completed in the first month

- Set up a project website and GitHub repository
 - o e-271.github.io
 - https://github.com/vtsuperdarn/clustering_superdarn_data
- Create poster for presentation at 2018 SuperDARN Workshop
 - https://e-271.github.io/docs/robb_superdarn_clustering.pdf
- Test out high-latitude and mid-latitude radars to compare Gaussian Mixture Model performance
 - Performance is similar on the day we tried (2-7-18)
- Study statistics of the data
 - Some data does not appear Gaussian, but PCA transformation helps (?)
- Select a good model (using BIC and forward-selection)
 - o BIC: Found that GMM full covariance is best
 - Forward selection: Preliminary results unclear, more research is needed

Demo: Project setup and running scripts

CVW 2-7-18

CVW 2-7-18

Mid-latitude

- GMM is doing a bad job (so is empirical model)
 - Likely low-velocity 0.5 hop IS
- Threshold should be adjusted

Studying the dataset

Some features don't look Gaussian
Phi0 (above), beam, power

PCA transformation makes features look more Gaussian

- PCA does an axis transformation so our data looks more Gaussian after axis change
- PCA tries to get rid of 'noise' by dropping lowest-variance axis - assuming 'signal' has high variance 'noise' has low variance

Selecting GMM covariance type (BIC)

BIC for different covariances, # clusters

Running BIC with different covariance types found that full covariance is best

GMM Covariance types

Next Steps

- Study a few days worth of data and use human expert analysis as 'ground truth' to:
 - Compare different GMM models
 - Adjust the threshold
 - Test out Ribiero method, test an adjustment of the traditional method
 - Test results of removing non-Gaussian features
 - Beam and power are low importance on all tests, sometimes phi0
 - Test transformations to capture edge behavior

Thank you!

Selecting features/clusters (forward selection)

CVW, 2/7/18, beam 12

 Used 50 as max # of clusters

Model #	Features	# Clusters	-60,929	
1	Freq	9		
2	Freq, time	20	-80,932	
3	Freq, time, nsky	35	-45,856	
4	Freq, time, nsky, phi0	50	-11,452	
5	Freq, time, nsky, phi0, elev	45	-2,317	
6	Freq, time, nsky, phi0, elev, nsch	50	64,805	
7	Freq, time, nsky, phi0, elev, nsch, gate	50	165,587	
8	Freq, time, nsky, phi0, elev, nsch, gate, power	25	299,981	
9	Freq, time, nsky, phi0, elev, nsch, gate, power, wid	25	441,036	
10	Freq, time, nsky, phi0, elev, nsch, gate, power, wid, vel	20	623,056	

The old feature selection method

03:00

06:00

00:00

12:00

15:00

18:00

21:00

00:00

09:00

CVW 2-7-18

	beam	gate	vel	wid	power	phi0	time
var	36.855498625514166	720.8709707119998	139546.84563549238	5366.414710805141	24.344025027322395	4.170622114823706	0.06321287378376932
med	7.0	53.0	-0.7506966590881348	27.274415969848633	10.879316806793213	-0.3799201250076294	736732.8154141551
mean	10.067556060175987	57.09977292080613	4.997717326808907	43.79629185254508	12.06709424413269	-0.158927113260468	736732.7212298575
max	23.0	99.0	3669.947021484375	798.5252075195312	37.452022552490234	75.33321380615234	736732.9999608797
min	4.0	11.0	-3456.23388671875	-512.9129638671875	6.000430583953857	-12.399154663085938	736732.0001034491

- High-variance data gets grouped into 1 cluster
- Ways to solve:
 - Data transformation
 - Covariance matrix that limits shape of clusters

Selecting features/clusters (PCA)

CVW, 2/7/18, all beams

Importance order:

- 1. Gate
- 2. Beam
- 3. Elev
- Power
- 5. Width
- 6. Nsky
- 7. Freq
- 8. Phi0
- 9. Nsch
- 10. Vel
- 11. Time

Covariance matrices

- **Full** means the components may independently adopt any position and shape.
- **Tied** means they have the same shape, but the shape may be anything.
- Diagonal means the contour axes are oriented along the coordinate axes, but otherwise the eccentricities may vary between components.
- Tied Diagonal is a "tied" situation where the contour axes are oriented along the coordinate axes. (I have added this because initially it was how I misinterpreted "diagonal.")
- **Spherical** is a "diagonal" situation with circular contours (spherical in higher dimensions, whence the name).

https://stats.stackexchange.com/questions/326671/different-covariance-types-for-gaussian-mixture-models