Proof Theory and Logical Complexity

Jean-Yves Girard

January 30, 2020

Contents

1	Preliminaries		
	1.1	Languages	2
	1.2	occurrences	2
	1.3	free and bound variables	3
2	The Fall of Hilbert Program		
	2.1	Hilbert's Program	3
	2.2	Recursive Functions	4

1 Preliminaries

1.1 Languages

A (first-order) language is defined as follows: **L** is built up from the following atmoic symbols:

- 1. for all integers n, **predicate letters** p_i^n (p_i^n is n-ary)
- 2. for all integers n, function letters \mathring{f}_j^n (\mathring{f}_j^n is n-ary). A 0-ary function letter is a **constant**
- 3. the **connectives** \land , \lor , \neg , \rightarrow
- 4. variables x_i $(j \in \mathbb{N})$
- 5. the quantifiers \forall and \exists

We shall always assume that our languages are **denumerable**; this means that the set of function and predicate letters is denumerable.

The **terms** of **L** are inductively defined as follows:

- 1. a variable x_i is a term
- 2. if t_1, \ldots, t_n are terms and f_j^n is an n-ary function letter, then $f_j^n t_1 \ldots t_n$ is a term
- 3. the only terms of L are given by (1) and (2)

The **formulas** of **L** are inductively defined as follows:

- 1. if t_1, \ldots, t_n are terms and p_j^n is an n-ary function letter, then $p_j^n t_1 \ldots t_n$ is a formula (atomic formula)
- 2. if A and B are formulas, so are $\land AB, \lor AB, \rightarrow AB, \neg A$
- 3. if *A* is a formula and x_j is a variable, $\forall x_j A$ and $\exists x_j A$ are formulas
- 4. the only formulas of L are given by (1)-(3)

1.2 occurrences

- 1. in $\forall x(px \rightarrow pfx)$ there are
 - \bullet three occurrences of x
 - two occurrences of p
 - one occurrence of ∀
 - one occurrence of \rightarrow
 - one occurrence of *f*
- 2. in $A, A \rightarrow A, A \vdash A$ there are
 - three occurrences of *A*
 - one occurrence of $A \rightarrow A$
 - one occurrence of ⊢

3. in the proof

$$\frac{A \vdash A \qquad A \vdash A}{A, A \vdash A \land A} \land \mathbf{I} \qquad A \vdash A \\ \hline A, A, A \vdash (A \land A) \land A} \land \mathbf{I}$$

- the sequent $A \vdash A$ occurs three times
- $A, A \vdash A \land A$ occurs once
- $A, A, A \vdash (A \land A) \land A$ occurs once
- $\wedge I$ occurs twice

If one wants to distinguish between various occurrences of sequents and rules, one can add indices, say:

$$\frac{A \vdash^{1} A \qquad A \vdash^{2} A}{A, A \vdash^{1} A \land A} \land^{1} I \qquad A \vdash^{3} A \atop A, A, A \vdash^{1} (A \land A) \land A} \land^{2} I$$

1.3 free and bound variables

We shall use square brackets to denote all free occurrences of variables of one or several variables in an expression; if A is $A[x_1, \ldots, x_n]$, then $A[x_1, \ldots, x_n]$ denotes $A[t_1, \ldots, t_n/x_1, \ldots, x_n]$

A bound variable has no individuality

2 The Fall of Hilbert Program

2.1 Hilbert's Program

2.1.1 the formalist philosophy

For the **formalist**, mathematical activity is *mechanical*: a machine could as well form sequences of strings of symbols, according to fixed laws.

2.1.2 Hilbert's ontology

The idea of Hilbert was to use this formal aspect of mathematics (which has the consequence that a mathematical proof can be viewed as a mathematical object itself) in order to *prove* some general facts concerning mathematical activity. Hilbert's ontology of mathematics distinguished between:

- 1. Real (or elementray, finitist) objects which do exists
- 2. Abstract objects which do not actually exist

2.1.3 Hilbert's program

purity of methods

- 2.1.4 consistency proofs
- 2.1.5 the fall

2.2 Recursive Functions

Definition 2.1. A function is **recursive** iff it maps \mathbb{N}^k into \mathbb{N} ($k \ge 0$), and is obtained by means of the following schemes:

- (R1) $I_i^n(a_1,\ldots,a_n) = a_i, a_1 + a_2, a_1 \cdot a_2, \chi_{<}(a_1,a_2)$
- (R2) composition
- (R3) μ -operator

Church's Thesis: every computable function is recursive.

Theorem 2.2. 1. The set of recursive functions is denumerable

2. the set of recursive functions cannot be enumerated by a recursive function

Proof. (2) means that if $(f_n)_{n\in\mathbb{N}}$ is an enumeration of all recursive functions, then the function $F(n,m)=f_n(m)$ is not recursive: one easily sees that the function g(n)=F(n,m)+1 would otherwise be recursive, but if $g=f_k$, one would have g(k)=g(k)-1

Theorem 2.3. (R4) Constant functions are recursive

(R5) Let F and G be recursive functions with respectively n and n+2 arguments; then one can define a recursive function H, with n+1 arguments and such that

$$H(a_1, \dots, a_n, 0) = F(a_1, \dots, a_n)$$

 $H(a_1, \dots, a_n, k+1) = G(a_1, \dots, a_n, k, H(a_1, \dots, a_n, k))$

Definition 2.4. F is **primitive recursive** if F can be obtained by means of (R1), (R2), (R4), (R5)

Theorem 2.5. 1. the set of primitive recursive functions is denumerable

- 2. the set of unary primitive recursive functions can be enumerated by means of a recursive binary function, called the **Ackermann function**
- 3. The Ackermann function is not primitive recursive

Definition 2.6. 1. A predicate P is **recursive** iff its characteristic function χ_p is recursive

- 2. A problem is **decidable** iff the predicate which represents the problem is recursive
- **Example 2.1.** 1. Predicate calculus is undecidable: if one encodes formulas by integers, then the set of integers which are codes of theorems of predicate calculus is not recursive
 - 2. The **word problem** is undecidable: take the free group G generated by a finite number of points, and let g_1, \ldots, g_k be elements of this group; let H be the normal subgroup generated by g_1, \ldots, g_k ; then the equivalence relation $st^{-1} \in H$ is undecidable for a suitable choice of G and g_1, \ldots, g_k

Definition 2.7. L_o is the language of arithmetic: constant: \overline{o} , one unary function letter S, two binary function letters + and \cdot , and two binary predicate letters = and <

- 1. \sum is the smallest class formulas of L_0 s.t.
 - (a) atomic formulas and their negation belong to \sum
 - (b) if $A, B \in \Sigma$, then $A \wedge B, A \vee B \in \Sigma$
 - (c) if $A \in \Sigma$, x is not free in term t, then $\forall x < t \ A \in \Sigma$
 - (d) if $A \in \sum$ and x is a variable, then $\exists x A \in \sum$
- 2. Δ with the following differences:
 - (d) if $A \in \Delta$ and x is not free in term t, then $\exists x < t \ A \in \Delta$
 - (e) if $A \in \Delta$, then $\neg A \in \Delta$
- 3. A formula is $\sum_{n=0}^{\infty} (\text{resp. } \prod_{n=0}^{\infty})$ iff it can be written $Q_0 x_0 \dots Q_{n-1} x_{n-1} A$ where A is \prod and the quantifiers Q_i are alternating, and $Q_0 = \exists$ (resp. $Q_0 = \forall$). For instance, Fermat's last theorem for a given n is $\prod_{n=0}^{\infty}$:

$$\forall z \forall a < z \forall b < z \forall c < z (abc \neq \overline{o} \rightarrow a^n + b^n \neq c^n)$$

Proposition 2.8. Any \sum formula is equivalent to a \sum_{1}^{0} -formula

Proof. If $A \in \Sigma$, form A^x by replacing all existential quantifiers $\exists z$ of A by bounded quantifiers $(\exists z < x : A^x) \in \Delta$. And A is equivalent to the \sum_{1}^{0} -formula $\exists x A^x$

Theorem 2.9. The properties $F(x_1, ..., x_n) = y$ and $P(x_1, ..., x_n)$ when F is a partial recursive function and P and r.e. predicate, can be expressed by means of \sum formulas

Definition 2.10. 1. Given integers a_0, a_{n-1} , one defines $\langle a_0, \dots, a_{n-1} \rangle = 2^{a_0+1}3^{a_1+1}\dots p_{n-1}^{a_{n-1}+1}$, Seq(x) is the predicate: for some x_0, \dots, x_{n-1} , $x = \langle x_0, \dots, x_{n-1} \rangle$

2. length

$$lh(x) = \begin{cases} 0 & x \notin Seq \\ n & x = \langle x_0, \dots, x_{n-1} \rangle \end{cases}$$

3. projection

$$(x)_i = \begin{cases} a_i & i < lh(x) \\ 0 & i \ge lh(x) \end{cases}$$

4. concatenation

$$\langle a_0, \dots, a_{n-1} \rangle * \langle b_0, \dots, b_{m-1} \rangle = \langle a_0, \dots, a_{n-1}, b_0, \dots, b_{m-1} \rangle$$

- 5. $\langle a_0, \dots, a_{n-1} \rangle \upharpoonright i = \langle a_0, \dots, a_{i-1} \rangle$ if i < n, otherwise $x \upharpoonright i = 0$
- **Definition 2.11.** 1. A **numeral** is a term of L_o which canonically represents an integer; \overline{n} is the nth numeral; hence $\overline{0}$ is the constant of L_0 , and $\overline{n+1}=S\overline{n}$
 - 2. One defines the following prim. rec. predicates:
 - Term(a): a is a term
 - Form(a): a is a formula
 - Fr(a, b): b is the Gödel number of a variable occurring freely in the expression encoded by a
 - Cl(a): a is the Gödel number of a closed expression L_0
 - Subst(a, b, c): c is the Gödel number of a term substitutable for the variable with Gödel b in the formula with Gödel number a
 - 3. prim. rec. functions
 - $Num(a) = \lceil \overline{a} \rceil$, the Gödel number of the *a*th numeral
 - Sub(a,b,c)= the Gödel number of $A[t/x_n]$ if $a=\lceil A\rceil,b=\lceil x_n\rceil,c=\lceil t\rceil$
- **Theorem 2.12.** 1. There exists a prim. rec. function $Val\ s.t.$ if a is the Gödel number of a closed term of \mathbf{L}_0 , Val(a) is the integer represented by this term; in particular, Val(Num(a)) = a
 - 2. There exists a prim. rec. predicate Tr s.t. if a is the Gödel number of a closed Δ -formula of \mathbf{L}_0 , then Tr(a) iff the formula is true
- **Theorem 2.13** (Kleene Normal Form Theorem). 1. For each integer $n \ge 0$, one can define a prim. rec. predicate T_n with n+2 arguments and a prim. rec. function U with the following property: if F is a partial recursive function of n arguments, then there is an integer e (an **index** of F) s.t. for all x_1, \ldots, x_n

$$F(x_1,\ldots,x_n) \simeq U(\mu y T_n(e,x_1,\ldots,x_n,y))$$

2. If P is an r.e. predicate of n arguments, then there is an integer c (an **index** of P) s.t. for all x_1, \ldots, x_n

$$P(x_1,\ldots,x_n) \leftrightarrow \exists y T_n(e,x_1,\ldots,x_n,y)$$

Proof. 1. We represent $F(x_1) \simeq y$ by a formula $A[x_1,y]$ which is \sum ; hence there is a Δ -formula $B[z,x_1,y]$ s.t. $F(x_1) \simeq y$ iff $\exists z B[z,x_1,y]$). If one defines $T_1(e,a_1,b)$ by

$$Tr(Sub(Sub(Sub(e, \lceil x_0 \rceil, Num((b)_0)), \lceil x_1 \rceil, Num(a_1)), \lceil x_2 \rceil, Num((b)_1))))$$

- and $U(b) = (b)_1$, one sees that the result holds with $e = \lceil B \rceil$
- 2. P(x) can be written "F(x) is defined" for an appropriate F (if $P(x) \leftrightarrow G(x) \simeq 0$, let $F(x) \simeq \mu y(G(x) \simeq 0)$)

Corollary 2.14. 1. A non-void subset of \mathbb{N} is r.e. iff it is the range of a prim. rec. function

- 2. A set is recursive iff it and its complement are r.e.
- 3. A partial recursive function which is total is a recursive function

Proof. 1. The range of a partial recursive function is always an r.e. set. Conversely, if $A \subset \mathbb{N}$ is defined by the index e, and $a_0 \in A$ define F by $F(\langle x,b\rangle) = x$ if $T_1(e,x,b)$, $F(x) = a_0$ otherwise