

Network Basics

CMSC 498J: Social Media Computing

Department of Computer Science University of Maryland Spring 2015

Hadi Amiri hadi@umd.edu

Lecture Topics

- Graphs as Models of Networks
- Graph Theory
 - Nodes, links, node degree, etc
 - Graph density
 - Complete Graph
 - Graph Connectivity
 - Walks, trails, and paths
 - Reachability
 - Distance and Diameter
 - Adjacency matrix
 - Sub-graphs
 - Graph Types
 - · Digraphs, Isomorphic, Bipartite, Multigraphs, Hypergraphs.

- A graph consists of
 - N: a set of nodes (items, entities, people, etc), and
 - E: a set of links or edges between nodes
- Graph is a way to specify relationships / links amongst a set of nodes.
- We define
 - $N=|N| \rightarrow \text{size of } N$
 - $E=|E| \rightarrow size of E$

Graph Theory. Cnt.

- Nodes i and j are adjacent or neighbors if:
 - There is an edge btw them!
 - $\cdot i \in \mathbf{N}$
 - $\cdot j \in \mathbb{N}$
 - $(i,j) \in \mathbf{E}$

Sample Graphs 2.

Brand Proximity Graph

Graphs as Models of Networks

- ARPANET: Early Internet precursor
- December 1970 with 13 nodes

Graphs as Models of Networks- Ent.

- Only the connectivity matters
 - Could capture distance as weights if needed

Graphs as Models of Networks-Ent.

- Graph terminology often derived from transportation metaphors
 - E.g. "shortest path", "flow", "diameter"

(b) Subway map

Graphs as Models of Networks- Ent.

- Abstract graph theory is interesting in itself
- But in network science, items typically represent real-world entities
 - Several examples (from Lecture 1.)
 - Communication networks
 - Companies, telephone wires
 - Social networks
 - People, friendship/contacts
 - Information networks
 - Web sites, hyperlinks

- Given Node i, its degree
 d(i) is:
 - the number nodes adjacent to it.

	Actor	Lives near:	Degree
n_1	Allison	Ross, Sarah	2
n_2	Drew	Eliot	1
n_3	Eliot	Drew	1
n_4	Keith	Ross, Sarah	2
n5	Ross	Allison, Keith, Sarah	3
n_6	Sarah	Allison, Keith, Ross	3

$$l_1 = (n_1, n_5)$$

$$l_2 = (n_1, n_6)$$

$$l_3 = (n_2, n_3)$$

$$l_4 = (n_4, n_5)$$

$$l_5 = (n_4, n_6)$$

$$l_6 = (n_5, n_6)$$

Graph Density

How many edges are possible?

• 5

• 5 + 4

$$\bullet$$
 5 + 4 + 3

$$\bullet$$
 5 + 4 + 3 + 2

$$\bullet$$
 5 + 4 + 3 + 2 + 1

•
$$(N-1) + (N-2) + (N-3) + ... + 1 = ?$$

•
$$(N-1) + (N-2) + (N-3) + ... + 1 = N * (N-1) / 2$$

- Graph Density of a given graph G is determined by:
 - the proportion of all possible edges that are present in the graph, i.e.
 - If the graph has N nodes and E edges, then graph density is:
 - Number of edges in G / Number of all possible edges in G

$$\frac{E}{N * (N-1)/2}$$

Graph Density

$$\frac{E}{N * (N-1)/2}$$

$$6 / [6*(6-1)/2] = 6/15$$

	Actor	Lives near:	Degree
n_1	Allison	Ross, Sarah	2
n_2	Drew	Eliot	1
n_3	Eliot	Drew	1
n_4	Keith	Ross, Sarah	2
n_5	Ross	Allison, Keith, Sarah	3
n_6	Sarah	Allison, Keith, Ross	3

$$l_1 = (n_1, n_5)$$

$$l_2 = (n_1, n_6)$$

$$l_3 = (n_2, n_3)$$

$$l_4 = (n_4, n_5)$$

$$l_5 = (n_4, n_6)$$

$$l_6 = (n_5, n_6)$$

What is the density of this graph?

Complete Graph

• If all edges are present, then all nodes are adjacent (neighbors), and the graph is a *Complete Graph*.

Graph Connectivity

- Indirect connections between nodes
- We discuss about:
 - Walks
 - Trails
 - Paths

Walk

 A sequence of nodes and edges that starts and ends with nodes where each node is incident to the edges following and preceding it.

Trail

 A trail is a walk in which all edges are distinct, although some node(s) may be included more than once.

Path

- A path is a walk in which all nodes and all edges are distinct.
- The length of a walk, trail, or path is the number of edges in it.

Walk

 A sequence of nodes and edges that starts and ends with nodes where each node is incident to the edges following and preceding it.

Walk

 A sequence of nodes and edges that starts and ends with nodes where each node is incident to the edges following and preceding it.

Sample Walk:

$$W=n_1 l_2 n_4 l_3 n_2 l_3 n_4$$

Trail

 A trail is a walk in which all edges are distinct, although some node(s) may be included more than once.

Trail

 A trail is a walk in which all edges are distinct, although some node(s) may be included more than once.

Sample Trail:

$$T=n_4 l_3 n_2 l_4 n_3 l_5 n_4 l_2 n_1$$

Path

 A path is a walk in which all nodes and all edges are distinct.

Path

 A path is a walk in which all nodes and all edges are distinct.

Sample Path:

$$P=n_1 l_2 n_4 l_3 n_2$$

- Is this a Walk? Trail? Path?
 - Yes, Yes, No
 - We call a closed walk with distinct edges Cycle!

$$n_2 l_4 n_3 l_5 n_4 l_3 n_2$$

Reachability

• If there is a **path between nodes** *i* and *j*, then *i* and *j* are reachable from each other.

Connected Graph

- A graph is connected if *every pair of its nodes* are reachable from each other
 - i.e. there is a path between them.

Disconnected Graph

How can we make this graph connected?

Connected Graph

and this graph disconnected?

Distance and Diameter

- Distance btw node i and j: d(i,j)
 - Length of the shortest path between i and j
- Diameter of a graph
 - $^{ ext{ iny Diameter of a graph is the maximum value of } d(i,j) ext{ for all } i ext{ and } j$

Next session! for now: The path with min number of edges.

Distance and Diameter- Cnt.

distance

$$d(1,2) = 1$$

$$d(1,3)=1$$

$$d(1,4) = 2$$

$$d(1,5) = 3$$

$$d(2,3) = 1$$

$$d(2,4) = 1$$

$$d(2,5) = 2$$

$$d(3,4) = 1$$

$$d(3,5) = 2$$

$$d(4,5) = 1$$

Diameter of graph = max d(i, j) = d(1, 5) = 3

What is the distance and diameter of a complete graph?

Adjacency Matrix

$$A = \begin{bmatrix} n_1 & n_2 & n_3 & n_4 & n_5 \\ n_1 & 0 & 1 & 1 & 0 & 0 \\ n_2 & 1 & 0 & 1 & 1 & 0 \\ n_3 & 1 & 1 & 0 & 1 & 0 \\ n_4 & 0 & 1 & 1 & 0 & 1 \\ n_5 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Each row or column represents a node!

$$A = A^{T}$$

Properties of adjacency matrix → next session

Sub-graphs

• Graph G_s is a sub-graph of G if its nodes and edges are a subset of G's nodes and edges respectively.

Sub-graphs- Cnt.

 Graph G_s is a sub-graph of G if its nodes and edges are a subset nodes and edges of G respectively.

Graph Types

- We study a few types of graphs:
 - Isomorphic graphs
 - Bipartite graphs
 - Digraphs
 - Multigraphs
 - Hypergraphs

Graph Types- Isomorphic

- Isomorphic
 - Two graphs are isomorphic if:
 - there is a one-to-one mapping btw their nodes that preserves adjacency!

Graph Types- Bipartite Graphs

- A bipartite graph is an undirected graph in which
 - nodes can be partitioned into two (disjoint) sets N_1 and N_2 such that:
 - $(u, v) \in E$ implies either $u \in N_1$ and $v \in N_2$ or vice versa.
 - In other words, all edges go between the two sets N_1 and N_2 but are not allowed within N_1 and N_2 .

Graph Types- Digraphs

- Digraphs or Directed Graphs
 - Edges are directed
- Adjacency:
 - There is a direct edge btw nodes!
 - $\cdot i \in N$
 - $\cdot j \in \mathbb{N}$
 - $(i,j) \in E$

- Node Indegree and Outdegree
 - Indegree
 - The indegree of a node, $d_I(i)$, is the number of nodes that links i,
 - Outdegree
 - The outdegree of a node, $d_O(i)$, is the number of nodes that are linked by i,
- Indegree: number of edges terminating at *i*.
- Outdegree: number of edges originating at *i*.

 $d_O(n_i) = \sum_{j=1}^n A_{ij}$

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$d_I(n_j) = \sum_{i=1}^n A_{ij}$$
 O 3 1 O 2 2

$$A != A^T$$

- Density of Digraph:
 - Number of all possible edges in Digraph?

$$\frac{E}{N * (N-1)}$$

- Connectivity
 - Walks
 - Trails
 - Paths
- The same as before just links are directed!

Graph Types- Multigraphs

- A Multigraph [or multivariate (directed) graph] *G* consists of:
 - a set of nodes, and
 - two or more sets of edges, $E^+ = \{E_1, E_2, ..., E_r\}$, r is the number of sets of edges

Multigraph 1.

Multigraph 2.

- Number of edges btw any two nodes in a multigraph?
 - $E^+ = \{E_1, E_2, ..., E_r\}, r \text{ is the number of sets of edges}$
 - Undirected multigraph
 - [o, r]
 - Directed multigraph
 - [0, 2*r]

- Each E_i indicated one type of relationship, e.g.:
 - E_1 : lives near relationship
 - \mathbf{E}_{2} : friends at the beginning of the year
 - E_3 : friends at the end of the year

Graph Types- Hypergraphs

- A hypergraph is a graph in which an edge can connect any number of nodes.
- In a hypergraph, *E* is a set of non-empty subsets of *N* called *hyperedges*.

Graph Types- Hypergraphs- Cnt.

- A hypergraph is a graph in which an edge can connect any number of nodes.
- In a hypergraph, *E* is a set of non-empty subsets of *N* called *hyperedges*.

$$\mathbf{N} = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$$

$$\mathbf{E} = \{e_1, e_2, e_3, e_4\} =$$

$$\{\{v_1, v_2, v_3\}, \{v_2, v_3\}, \{v_3, v_5, v_6\}, \{v_4\}\}$$

- Edges may carry additional information
 - □ Tie strength → how good are two nodes as friends?
 - □ Distance → how long is the distance btw two cities?
 - Delay → how long does the transmission take btw two cities?
 - □ Signs → two nodes are friends or enemies?
- Such graphs are called weighted or signed graphs and we will study them later.

Questions?

- Ch.o2 Graphs [NCM]
- Ch. 04 Social network analysis: Methods and applications. Wasserman, Stanley. Cambridge university press, 1994.