Linear Regression Analysis - Maximum Likelihood Approach

Tseng-Ching James Shen, PhD

Linear Regression Model

- Assumptions
 - \sim W₀ is a random variable from a Gaussian distribution
 - \sim w₁, w₂, ... w_d are scalars
- For each dataset point (\mathbf{x}_i, y_i) i=1, 2, ..., N, y_i can be estimated by the following linear equation:

$$y_i = W^T x_i + W_0 W_0 \sim N(0,)$$

Training Loss

- Suppose there exists a distribution density function from $f(\mathbf{x}_i)$ which y_i is drawn
- The estimated density function $g(\mathbf{x}_i | \mathbf{w}_i)$ is

$$w^{T} x_{i} + w_{0} w_{0} \sim N(0,)$$

• Use Kullback-Leibler (KL) divergence to measure the distance between two density functions, which is also called Training Loss

The goal is to find the optimal which will minimize the training loss

Likelihood

• In fact, minimizing the training loss is equivalent to maximizing the likelihood $p(y_1, y_2, ..., y_N|)$ which can be expressed as

• Since the Gaussian distribution assumption of $W_{0,}$ will be also a Gaussian distribution

$$N(w^T x_i,)$$

Therefore, the likelihood equation becomes

We will find optimal which maximizes the likelihood

Natural Logarithm of Likelihood

Take the natural logarithm of likelihood

$$log L = log$$
 ()

Finding Optimal w

Take the partial derivative on w

• The optimal w, is arrived when = 0, so we will get = $(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$ where $\mathbf{X} = (\mathbf{x}_1^T, \mathbf{x}_2^T, ..., \mathbf{x}_N^T)^T$

Finding Optimal

• Take the partial derivative on w =

• The optimal, is arrived when = 0, so we will get

=

Variability in Model Parameters

- For a given set of observed dataset points, we can get one pair of optimal and
- If we use different datasets to train the model, we will get multiple pairs of and
- The potential variability of estimated is encapsulated in the covariance matrix of

 $(X^TX)^{-1}$

- The diagonal elements tell us how much variability to be expected in the individual parameters
- The off-diagonal elements tell us how parameters co-vary
- Section 2.10.3 uses Olympic data example to illustrate the above points