

RX Family

ADC Module Using Firmware Integration Technology

Introduction

This application note describes the ADC module using Firmware Integration Technology. This module supports the functions of the 12-bit A/D converter. It is referred to below as the ADC FIT module.

Target Devices

The following is a list of devices that are currently supported by this API:

- RX110 Group
- RX111 Group
- RX113 Group
- RX130 Group
- RX13T Group
- RX140 Group
- RX231, RX230 Groups
- RX23E-A Group
- RX23E-B Group
- RX23T Group
- RX23W Group
- RX24T Group
- RX24U Group
- RX260, RX261 Groups
- RX26T Group
- RX64M Group
- RX65N, RX651 Groups
- RX660 Group
- RX66N Group
- RX66T Group
- RX671 Group
- RX71M Group
- RX72M GroupRX72N Group
- RX72T Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making modifications to comply with the alternate MCU.

Target Compilers

- Renesas Electronics C/C++ Compiler Package for RX Family
- GCC for Renesas RX
- IAR C/C++ Compiler for Renesas RX

For details of the confirmed operation contents of each compiler, refer to "6.1 Confirmed Operation Environment".

Contents

1.	Ov	erview	4
1.	1 A	ADC FIT Module	4
1.	2 A	ADC FIT Module Overview	4
1.	3 L	Jsing the ADC FIT module	7
	1.3.1	Using ADC FIT module in C++ project	7
1.	4 A	API Overview	7
1.	5 F	Processing Examples	8
1.	6 F	Restrictions	14
	1.6.1	MCU specification differences Limitations	14
	1.6.2	RAM Location Limitations	14
_			
2.		I Information	
2.		Hardware Requirements	
2.		Software Requirements	
2.		Supported Toolchain	
2.		nterrupt Vector	
2.		leader Files	
2.		nteger Types	
2.	7 (Configuration Overview	18
_	a c	Code Sizes	10
2.	0 (Jode Sizes	19
2. 2.		Arguments	
2.		Arguments	20
2.	9 A	Arguments Structures and Enumerations Used as Arguments for Callback Functions	20 20
2.	9 <i>A</i> 2.9.1	Arguments Structures and Enumerations Used as Arguments for Callback Functions Structures and Enumerations Used as Arguments for R_ADC_Open Function	20 20 21
2.	9 <i>A</i> 2.9.1 2.9.2	Arguments Structures and Enumerations Used as Arguments for Callback Functions Structures and Enumerations Used as Arguments for R_ADC_Open Function Structures and Enumerations Used as Arguments for R_ADC_Control Function	20 20 21 27
2.	9 A 2.9.1 2.9.2 2.9.3	Arguments	20 20 21 27 41
2.	9 <i>A</i> 2.9.1 2.9.2 2.9.3 2.9.4 2.9.5	Arguments Structures and Enumerations Used as Arguments for Callback Functions	20 21 27 41 42
2.	9 <i>A</i> 2.9.1 2.9.2 2.9.3 2.9.4 2.9.5	Arguments Structures and Enumerations Used as Arguments for Callback Functions	20 21 27 41 42 43
2. 2. 2.	9 A 2.9.1 2.9.2 2.9.3 2.9.4 2.9.5 10 F	Arguments	20 21 27 41 42 43
2. 2. 2.	9 A 2.9.1 2.9.2 2.9.3 2.9.4 2.9.5 10 F 11 C	Arguments Structures and Enumerations Used as Arguments for Callback Functions	20 21 27 41 42 43 43
2. 2. 2. 2.	9	Structures and Enumerations Used as Arguments for Callback Functions	20 21 27 41 42 43 44 45
2. 2. 2. 2. 3.	9 A 2.9.1 2.9.2 2.9.3 2.9.4 2.9.5 10 F 11 C 12 A 13 "	Structures and Enumerations Used as Arguments for Callback Functions	20 20 21 27 41 42 43 43 44 45
2. 2. 2. 2. 3. 3.	9 A 2.9.1 2.9.2 2.9.3 2.9.4 2.9.5 10 F 11 C 12 A 13 "	Structures and Enumerations Used as Arguments for Callback Functions	20 21 27 41 42 43 44 45 46
2. 2. 2. 2. 3. 3.	9	Arguments Structures and Enumerations Used as Arguments for Callback Functions Structures and Enumerations Used as Arguments for R_ADC_Open Function Structures and Enumerations Used as Arguments for R_ADC_Control Function Structures and Enumerations Used as Arguments for R_ADC_Read Function Structures and Enumerations Used as Arguments for R_ADC_ReadAll Function Return Values Callback Functions Adding the FIT Module to Your Project for", "while" and "do while" statements	20 21 27 41 42 43 43 44 45 46 46 49
2. 2. 2. 2. 3. 3. 3.	9	Arguments Structures and Enumerations Used as Arguments for Callback Functions Structures and Enumerations Used as Arguments for R_ADC_Open Function Structures and Enumerations Used as Arguments for R_ADC_Control Function Structures and Enumerations Used as Arguments for R_ADC_Read Function Structures and Enumerations Used as Arguments for R_ADC_ReadAll Function Return Values Callback Functions Callback Functions Structures and "do while" statements	20 21 27 41 42 43 44 45 46 46 49 63
2. 2. 2. 2. 3. 3. 3. 3.	9	Structures and Enumerations Used as Arguments for Callback Functions	20 21 27 41 42 43 44 45 46 46 49 63 64
2. 2. 2. 3. 3. 3. 3. 3. 3.	9	Arguments	20 21 27 41 42 43 44 45 46 46 49 63 64 65
2. 2. 2. 2. 3. 3. 3. 3.	9	Structures and Enumerations Used as Arguments for Callback Functions	20 21 27 41 42 43 44 45 46 46 49 63 64 65

5.	Demo Projects	68
5.1	I s12ad_int_demo_rskrx113	68
5.2	2 s12ad_poll_demo_rskrx113	68
5.3	3 s12ad_poll_demo_rskrx130	68
5.4	s12ad_demo_rskrx64m	68
5.5	5 s12ad_demo_rskrx71m	68
5.6	6 s12ad_demo_rskrx231	69
5.7	7 s12ad_demo_rskrx66t	69
5.8	Adding a Demo to a Workspace	69
5.9	Downloading Demo Projects	69
6.	Appendices	70
6.1	Confirmed Operation Environment	70
6.2	2 Troubleshooting	80
Rela	ated Technical Updates	81
Revi	isjon History	82

1. Overview

1.1 ADC FIT Module

This module can be incorporated into projects in the form of APIs. Refer to 2.12, Adding the FIT Module to Your Project, for instructions for incorporating the ADC FIT module into projects.

1.2 ADC FIT Module Overview

The ADC FIT module supports the operating modes and functions listed below. The available functions differ depending on the MCU.

Table 1.1 lists the operating modes, and Table 1.2 the functions, supported by the ADC FIT module.

Table 1.1 Operating Modes Supported by ADC FIT Module

	RX110, RX111, RX113	RX130, RX13T, RX140, RX230, RX231, RX23E-A, RX23E-B, RX23T, RX23W, RX24T, RX24U, RX260, RX261, RX26T, RX64M, RX65x, RX660, RX66N, RX66T, RX671, RX71M, RX72M, RX72N, RX72T
Single scan mode	0	0
Continuous scan mode	0	0
Group scan mode	0	0
Group scan mode (group priority control)	_	0

Table 1.2 Functions Supported by ADC FIT Module(1/2)

	RX110, RX111, RX113	RX130, RX140, RX230, RX231, RX23E-A, RX23E-B, RX23W, RX260, RX261	RX23T	RX13T, RX24T, RX24U	RX26T
Channel-dedicated sample-and-hold function	_	_	0	0	0
Variable sampling state count function	0	0	0	0	0
Self-diagnostic function	_	0	0	0	0
A/D-converted value addition mode	0	0	0	0	0
A/D-converted value average mode	_	0	0	0	0
Analog input disconnection detection assist function	_	0	0	0	0
Double trigger mode	0	0	0	0	0
12-/10-/8-bit conversion switching function	_	_	_	_	_
A/D data register automatic clear function	0	0	0	0	0
A/D data register automatic set function	_	_	_	_	0
Extended analog input function	_	_	_	_	_
Comparison function	_	0	_	_	0
Channel conversion order setting function	_	_	_	_	0
Input signal amplification function (programmable gain amplifier)	_	_	_	0	0
Temperature Sensor function	0	O *1	_		0

Note 1. Other than RX23E-A and RX23E-B

Table 1.3 Functions Supported by ADC FIT Module(2/2)

	RX64M, RX65x, RX66N, RX71M, RX72M, RX72N	RX660	RX66T, RX72T	RX671
Channel-dedicated sample-and-hold function	0	_	0	_
Variable sampling state count function	0	0	0	0
Self-diagnostic function	0	0	0	0
A/D-converted value addition mode	0	0	0	0
A/D-converted value average mode	0	0	0	0
Analog input disconnection detection assist function	0	0	0	0
Double trigger mode	0	0	0	0
12-/10-/8-bit conversion switching function	0	_	_	0
A/D data register automatic clear function	0	0	0	0
A/D data register automatic set function	_	_	_	_
Extended analog input function	0	_	_	0
Comparison function	0	0	0	0
Channel conversion order setting function	_	0	0	_
Input signal amplification function (programmable gain amplifier)	_		0	_
Temperature Sensor function	0	0	0	0

The S12AD begins conversion when it receives a trigger. When the conversion is complete, a flag is set and an interrupt issued if enabled. If the S12AD is operating in a single scan mode, only one scan takes place per trigger. If the S12AD is operating in a continuous mode, scans continue indefinitely after the initial trigger occurs.

The majority of the driver serves to initialize the A/D peripheral and provide functions to read conversion results. With the ADC FIT module, settings which are common to all channels such as conversion alignment or addition count are set in the R_ADC_Open() call. Specific channel enabling is done via the R ADC Control() function. To retrieve conversion results, use the R ADC Read() function which retrieves a single conversion value or the R_ADC_ReadAll() function which retrieves all conversion registers.

The ADC FIT module supports the following 12-bit A/D Converter (S12AD) for each RX MCU.

Table 1.4 S12AD Supported by Each MCU

	S12ADb	S12ADC	S12ADE	S12ADF	S12ADFa	S12ADH	S12ADHa
RX110	0						
RX111	0						
RX113	0						
RX130			0				
RX13T				0			
RX140			0				
RX210	0						
RX230			0				
RX231			0				
RX23E-A			0				
RX23E-B			0				
RX23T			0				
RX23W			0				
RX24T				0			
RX24U				0			
RX260			0				
RX261			0				
RX26T							0
RX64M		0					
RX65x					0		
RX660						0	
RX66N					0		
RX66T						0	
RX671					0		
RX71M		0					
RX72M					0		
RX72N					0		
RX72T						0	

1.3 Using the ADC FIT module

1.3.1 Using ADC FIT module in C++ project

For C++ project, add ADC FIT module interface header file within extern "C"{}:

```
extern "C"
{
    #include "r_smc_entry.h"
    #include "r_s12ad_rx_if.h"
}
```

1.4 API Overview

Table 1.4 lists the API functions contained in the ADC FIT module.

Table 1.5 API Functions

Functions	Description
R_ADC_Open	Initializes the 12-bit A/D converter.
R_ADC_Control	Makes function settings to the 12-bit A/D converter, performs interrupt control, and obtains the A/D conversion start/stop status.
R_ADC_Read	Reads the conversion result from the register for a single channel, sensor, double trigger, or self-diagnostic test.
R_ADC_ReadAll	Reads all registers in which conversion results are stored.
R_ADC_Close	Completes the A/D conversion being processed, disables interrupts, and ends A/D converter operation.
R_ADC_GetVersion	Returns the version number of the ADC FIT module.

1.5 Processing Examples

Figure 1.1 to Figure 1.4 show an initialization example for the ADC FIT module. Figure 1.5 and Figure 1.6 show examples of API function calls using the ADC FIT module.

The examples shown in Figure 1.1 to Figure 1.6 show all the relevant processing, with no distinction by MCU. In your projects, it is only necessary to execute the processing required by your MCU. Also, make sure to check the return value after calling an API function.

There are restrictions on the order in which commands are issued using the R_ADC_Control function. For details on issuing commands using the R_ADC_Control function, refer to 3.2, R_ADC_Control().

Figure 1.1 ADC FIT Module Initialization Example (1/4)

Figure 1.2 ADC FIT Module Initialization Example (2/4)

Figure 1.3 ADC FIT Module Initialization Example (3/4)

Figure 1.4 ADC FIT Module Initialization Example (4/4)

Figure 1.5 ADC FIT Module API Function Call Examples (1/2)

Figure 1.6 ADC FIT Module API Function Call Examples (2/2)

1.6 Restrictions

1.6.1 MCU specification differences Limitations

The registers, settings, and usage precautions differ depending on the operating mode of the 12-bit A/D converter. Use the APIs described in this application note in accordance with the description in the 12-bit A/D converter section of the hardware manual of your specific MCU.

Check to make sure that the state of the MCU and board match the settings in r_bsp_config.h before using the APIs. In particular, make sure that the package and power supply voltage settings are correct, as permanent damage could result if they are in error.

Use the latest version of the Renesas Board Support Package (r bsp).

1.6.2 RAM Location Limitations

In FIT, if a value equivalent to NULL is set as the pointer argument of an API function, error might be returned due to parameter check. Therefore, do not pass a NULL equivalent value as pointer argument to an API function.

The NULL value is defined as 0 because of the library function specifications. Therefore, the above phenomenon would occur when the variable or function passed to the API function pointer argument is located at the start address of RAM (address 0x0). In this case, change the section settings or prepare a dummy variable at the top of the RAM so that the variable or function passed to the API function pointer argument is not located at address 0x0.

In the case of CCRX project (e² studio V7.5.0), the RAM start address is set as 0x4 to prevent the variable from being located at address 0x0. In the case of GCC project (e² studio V7.5.0) and IAR project (EWRX V4.12.1), the start address of RAM is 0x0, so the above measures are necessary.

The default settings of the section may be changed due to IDE version upgrade. Please check the section settings when using the latest IDE.

2. API Information

The operation of the ADC FIT module has been confirmed under the following conditions.

2.1 Hardware Requirements

This driver requires your MCU support the following features: S12AD

2.2 Software Requirements

This driver is dependent on the following FIT module:

Renesas Board Support Package (r_bsp) Rev.5.50 or higher

2.3 Supported Toolchain

The operation of the ADC FIT module has been confirmed with the toolchain listed in 6.1, Confirmed Operation Environment.

2.4 Interrupt Vector

When the interrupt priority level is set to a value other than 0 in the R_ADC_Open() function, the interrupt (S12ADIn, S12GBADIn or GCADIn) for the interrupt source will be enabled.

Table 2.1 lists the interrupt vector used in the ADC FIT Module.

Table 2.1 Interrupt Vector Used in the ADC FIT Module (1/2)

Device	Interrupt Vector
RX110, RX111, RX113, RX130,	S12ADI0 interrupt (vector No.: 102)
RX140, RX230, RX231, RX23E-A,	GBADI interrupt (vector No.: 103)
RX23E-B, RX23W, RX260, RX261	
RX13T	S12ADI interrupt (vector No.: 102)
	GBADI interrupt (vector No.: 103)
	GCADI interrupt (vector No.: 104)
RX23T	S12ADI interrupt (vector No.: 102)
	GBADI interrupt (vector No.: 103)
RX24T, RX24U	S12ADI interrupt (vector No.: 102)
	GBADI interrupt (vector No.: 103)
	GCADI interrupt (vector No.: 104)
	S12ADI1 interrupt (vector No.: 105)
	GBADI1 interrupt (vector No.: 106)
	GCADI1 interrupt (vector No.: 107)
	S12ADI2 interrupt (vector No.: 111)
	GBADI2 interrupt (vector No.: 112)
	GCADI2 interrupt (vector No.: 113)
RX64M, RX71M	S12ADI0 interrupt (vector No.: 190)*1
·	S12ADI1 interrupt (vector No.: 192)*1
	S12GBADI0 interrupt (vector No.: 191)*1
	S12GBADI1 interrupt (vector No.: 193)*1
	GROUPBL1 interrupt (vector No.: 111)
	S12CMPI0 interrupt (group interrupt source No.: 20)
	S12CMPI1 interrupt (group interrupt source No.: 22)
RX65x, RX66N, RX671, RX72M,	S12ADI0 interrupt (vector No.: 186)*1
RX72N	S12ADI1 interrupt (vector No.: 189)*1
	S12GBADI0 interrupt (vector No.: 187)*1
	S12GBADI1 interrupt (vector No.: 190)*1
	S12GCADI0 interrupt (vector No.: 188)*1
	S12GCADI1 interrupt (vector No.: 191)*1
	GROUPBL1 interrupt (vector No.: 111)
	S12CMPAI interrupt (group interrupt source No.: 20)
	S12CMPBI interrupt (group interrupt source No.: 21)
	S12CMPAI1 interrupt (group interrupt source No.: 22)
	S12CMPBI1 interrupt (group interrupt source No.: 23)
RX660	S12ADI interrupt (vector No.:139) *1
	S12GBADI interrupt (vector No.: 140) *1
	S12GCADI interrupt (vector No.: 141) *1
	GROUPBL1 interrupt (vector No.: 111)
	S12CMPAI interrupt (group interrupt source No.: 20)
	S12CMPBI interrupt (group interrupt source No.: 20)
	1 - 0120mi bi interrupt (group interrupt source No 21)

Table 2.2 Interrupt Vector Used in the ADC FIT Module (2/2)

Device	Interrupt Vector
RX26T, RX66T, RX72T	S12ADI interrupt (vector No.: 128)
	S12ADI1 interrupt (vector No.: 132)
	S12ADI2 interrupt (vector No.: 136)
	S12GBADI interrupt (vector No.: 129)
	S12GBADI1 interrupt (vector No.: 133)
	S12GBADI2 interrupt (vector No.: 137)
	S12GCADI interrupt (vector No.: 130)
	S12GCADI1 interrupt (vector No.: 134)
	S12GCADI2 interrupt (vector No.: 138)
	GROUPBL1 interrupt (vector No.: 111)
	S12CMPAI interrupt (group interrupt source No.: 20)
	S12CMPBI interrupt (group interrupt source No.: 21)
	S12CMPAl1 interrupt (group interrupt source No.: 22)
	S12CMPBI1 interrupt (group interrupt source No.: 23)
	S12CMPAl2 interrupt (group interrupt source No.: 18)
	S12CMPBI2 interrupt (group interrupt source No.: 19)
RX671	S12ADI0 interrupt (vector No.: 183)*1
	S12ADI1 interrupt (vector No.: 186)*1
	S12GBADI0 interrupt (vector No.: 184)*1
	S12GBADI1 interrupt (vector No.: 187)*1
	S12GCADI0 interrupt (vector No.: 185)*1
	S12GCADI1 interrupt (vector No.: 188)*1
	GROUPBL1 interrupt (vector No.: 111)
	S12CMPAI interrupt (group interrupt source No.: 20)
	S12CMPBI interrupt (group interrupt source No.: 21)
	S12CMPAl1 interrupt (group interrupt source No.: 22)
	S12CMPBI1 interrupt (group interrupt source No.: 23)

Note 1. The interrupt vector numbers for software configurable interrupt B shown here are the default values specified in the board support package FIT module (BSP module).

2.5 Header Files

All API calls and their supporting interface definitions are located in the file "r_s12ad_rx_if.h" and this file should be included by the User's application.

Build-time configuration options are selected or defined in the file "r_s12ad_rx_config.h".

2.6 Integer Types

This project uses ANSI C99 "Exact width integer types" in order to make the code clearer and more portable. These types are defined in *stdint.h*.

2.7 Configuration Overview

All configurable options that can be set at build time are located in the file "r_s12ad_rx_config.h". A summary of these settings are provided in the following table:

Configuration options in r_s12ad_rx_config.h

ADC_CFG_PARAM_CHECKING_ENABLE

Note: The default value is

"BSP_CFG_PARAM_CHECKING_ENABLE."

Selects whether or not processing for parameter checking is included in the object code. When 0 is selected, processing for parameter checking is omitted from the object code, resulting in a smaller code size.

0 = Omit parameter checking from object code.

1 = Include parameter checking in object code.

The default value of

"BSP_CFG_PARAM_CHECKING_ENABLE" is a

setting in the BSP configuration options.

2.8 Code Sizes

The sizes of ROM, RAM and maximum stack usage associated with this module are listed below. Information is listed for a single representative device of the RX100 Series, RX200 Series, and RX600 Series, respectively.

The ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration options described in 2.7, Configuration Overview.

The values in the table below are confirmed under the following conditions.

Module Revision: r s12ad rx rev.4.60

Compiler Version: Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00

(The option of "lang = c99" is added to the default settings of the integrated development environment.)

GCC for Renesas RX 8.3.0.201904

(The option of "lang = c99" is added to the default settings of the integrated development environment.)

IAR C/C++ Compiler for Renesas RX version 4.14.1

(The default settings of the integrated development environment.)

Configuration Options: Default settings

			ROM, RAM	and Stack Co	de Sizes			
Device	Category	Memory Used						
		Renesas Compiler		GCC	GCC		IAR Compiler	
		With Parameter Checking	Without Parameter Checking	With Parameter Checking	Without Parameter Checking	With Parameter Checking	Without Parameter Checking	
RX130	ROM	2,682 bytes	2,125 bytes	4,840 bytes	3,632 bytes	3,600 bytes	2,791 bytes	
	RAM	12 bytes		12 bytes	12 bytes		8 bytes	
	STACK *1	136 bytes		-		136 bytes		
RX231	ROM	2,682 bytes	2,125 bytes	4,832 bytes	3,632 bytes	3,605 bytes	2,798 bytes	
	RAM	12 bytes		12 bytes	12 bytes		8 bytes	
	STACK *1	136 bytes		-		136 bytes		
RX65N	ROM	5,575 bytes	4,438 bytes	10,228 bytes	7,668 bytes	7,595 bytes	5,990 bytes	
	RAM	40 bytes		40 bytes		32 bytes		
	STACK *1	180 bytes		-		152 bytes		

Note 1. The sizes of maximum usage stack of Interrupts functions is included.

2.9 Arguments

The structures and enumerations used as arguments by the API functions are listed below. Most of the parameters used by the API functions are defined as enumerations. This is in order to reduce the number of errors when type checking is performed.

These structures and enumerations are defined in prototype declarations and also in $r_s12ad_rx_if.h$ and $r_s12ad_rx[MCU]_if.h$.

The structures and enumerations available for use differ depending on the MCU.

2.9.1 Structures and Enumerations Used as Arguments for Callback Functions

(1) 1st Argument: Callback Function Status (Structure)

```
typedef struct st_adc_cb_args
{
    /* Refer to the table below for the members. The members available for
        use differ depending on the MCU. */
} adc cb args t;
```

Member	Description
abc_cb_evt_t event	Indicates the type of event.
uint32_t compare_flags	Stores the comparison result for each channel of window A.
	The comparison result for channel n corresponds to bit n.
	0: Comparison condition not met.
	1: Comparison condition met.
uint32_t compare_flagsb	Stores the comparison result for each channel of window B.
	The comparison result for channel n corresponds to bit n.
	0: Comparison condition not met.
	1: Comparison condition met.
uint8_t unit	Indicates the unit generating the event.

(a) 1st Argument Structure Members: Callback Function Events (Enumeration)

```
typedef enum e_adc_cb_evt
{
    /* Refer to the table below for the members. The members available for
        use differ depending on the MCU. */
} adc_cb_evt_t;
```

Member	Description
ADC_EVT_SCAN_COMPLETE	Indicates completion of single scan A/D conversion or A/D conversion of group A.
ADC_EVT_SCAN_COMPLETE_GROUP B	Indicates completion of A/D conversion of group B.
ADC_EVT_SCAN_COMPLETE_GROUP C	Indicates completion of A/D conversion of group C.
ADC_EVT_CONDITION_MET	Indicates that the window A comparison condition was met.
ADC_EVT_CONDITION_METB	Indicates that the window B comparison condition was met.

2.9.2 Structures and Enumerations Used as Arguments for R_ADC_Open Function (1) 2nd Argument: Operating Mode (Enumeration)

```
typedef enum e_adc_mode
{
    /* Refer to the table below for the members. The members available for
        use differ depending on the MCU. */
} adc_mode_t;
```

Member	Description
ADC_MODE_SS_TEMPERATURE	A/D conversion is performed on the temperature sensor output
	in single scan mode.
	For channel, select the temperature sensor.
ADC_MODE_SS_INT_REF_VOLT	A/D conversion is performed on the internal reference voltage in
	single scan mode.
	For channel, select the internal reference voltage.
ADC_MODE_SS_ONE_CH	A/D conversion is performed on one channel in single scan mode.
	For channel, select a single channel.*1
ADC_MODE_SS_MULTI_CH	A/D conversion is performed on multiple channels in single scan mode.*1*3
ADC_MODE_CONT_ONE_CH	A/D conversion is performed on one channel in continuous scan mode.
	For channel, select a single channel.*1*2
ADC_MODE_CONT_MULTI_CH	A/D conversion is performed on multiple channels in continuous
	scan mode.*1*2
ADC_MODE_SS_ONE_CH_DBLTRIG	A/D conversion is performed on one channel in double trigger
	mode.
	For channel, select a single channel.*1*2
ADC_MODE_SS_MULTI_CH_GROUPE	A/D conversion is performed on multiple channels using two
D	groups (group A and group B).
ADO MODE OF AUTO DO LINE	Select different channels for group A and group B.*1*3
ADC_MODE_SS_MULTI_CH_GROUPE	A/D conversion is performed on multiple channels using three
D_GROUPC	groups (group A, group B, and group C).
ADO MODE CO MULTI OU COOLDE	Select different channels for each group.*3
ADC_MODE_SS_MULTI_CH_GROUPE D_DBLTRIG_A	A/D conversion is performed on multiple channels using two groups (group A and group B). Operation is in double trigger
D_DBLTRIG_A	mode for group A.
	For group A, select a single channel only, and for group B,
	select channels other than that selected for group A.*1*2
ADC MODE SS MULTI CH GROUPE	A/D conversion is performed on multiple channels using three
D_DBLTRIG_A_GROUPC	groups (group A, group B, and group C). Operation is in double
	trigger mode for group A.
	For group A, select a single channel only. Also, select different
	channels for each group.*2

- Note 1. On the S12ADb and S12ADE it is not possible to select the internal reference voltage and temperature sensor.
- Note 2. On the S12ADH and S12ADHa it is not possible to select the internal reference voltage and temperature sensor.
- Note 3. On the S12ADH and S12ADHa it is not possible to select the internal reference voltage or the temperature sensor and a channel with analog input at the same time.

(2) 3rd Argument: Function Settings (Structure)

```
typedef struct st_adc_cfg
{
    /* Refer to the table below for the members. The members available for
        use differ depending on the MCU. */
} adc_cfg_t;
```

Member	Description
adc_speed_t conv_speed	Specifies the operating mode for A/D conversion.
adc_res_t resolution	Specifies the precision of A/D conversion. The lower the
	resolution, the shorter the conversion time.
adc_align_t alignment	Specifies the format.*1
adc_add_t add_cnt	Specifies the addition/average mode.
adc_clear_t clearing	Enables/disables automatic clearing of A/D data registers. *2
adc_clear_t setting	Enables/disables automatic setting of A/D data registers. *2
adc_trig_t trigger	Specifies the start trigger for A/D conversion.
adc_trig_t trigger_groupb	Specifies the start trigger for A/D conversion of group B.
adc_trig_t trigger_groupc	Specifies the start trigger for A/D conversion of group C.
uint8_t priority	Sets the priority (0 to 15) of the S12ADIn interrupt.
	Specifying 0 disables the S12ADIn interrupt.
uint8_t priority_groupb	Sets the priority (0 to 15) of the S12GBADIn and GBADIn
	interrupts.
	Specifying 0 disables the S12GBADIn and GBADIn interrupts.
uint8_t priority_groupc	Sets the priority (0 to 15) of the S12GCADIn interrupt.
	Specifying 0 disables the S12GCADIn interrupt.
adc_temp_t temp_sensor	Specifies whether or not the temperature sensor is used.
adc_add_temp_t add_temp_sensor	Specifies whether the temperature sensor operates in
	addition/average mode.

Note 1. On the S12ADb the setting of this member has no effect when addition mode is enabled.

(a) 3rd Argument Structure Members: Conversion Operation (Enumeration)

```
typedef enum e_adc_speed
{
    /* Refer to the table below for the members. The members available for
        use differ depending on the MCU. */
} adc_speed_t;
```

Member	Description
ADC_CONVERT_SPEED_PCLK_DIV8	Selects PCLK/8 as the A/D conversion clock.
ADC_CONVERT_SPEED_PCLK_DIV4	Selects PCLK/4 as the A/D conversion clock.
ADC_CONVERT_SPEED_PCLK_DIV2	Selects PCLK/2 as the A/D conversion clock.
ADC_CONVERT_SPEED_PCLK	Selects PCLK as the A/D conversion clock.
ADC_CONVERT_SPEED_DEFAULT	Selects the default setting.
ADC_CONVERT_SPEED_NORM	Selects normal conversion operation.
ADC_CONVERT_SPEED_HIGH	Selects high-speed conversion operation.
ADC_CONVERT_CURRENT_LOW	Selects low-current conversion operation.

(b) 3rd Argument Structure Members: Conversion Precision (Enumeration)

```
typedef enum e_adc_res
{
    /* Refer to the table below for the members. The members available for
        use differ depending on the MCU. */
} adc_res_t;
```

Member	Description
ADC_RESOLUTION_12_BIT	A/D conversion is performed at 12-bit precision.
ADC_RESOLUTION_10_BIT	A/D conversion is performed at 10-bit precision.
ADC_RESOLUTION_8_BIT	A/D conversion is performed at 8-bit precision.

(c) 3rd Argument Structure Members: Data Register Format (Enumeration)

```
typedef enum e_adc_align
{
    /* Refer to the table below for the members. */
} adc align t;
```

Member	Description
ADC_ALIGN_RIGHT	A/D conversion results are stored in right-justified format
ADC_ALIGN_LEFT	A/D conversion results are stored in left-justified format

(d) 3rd Argument Structure Members: Converted Value Addition/Average Mode (Enumeration)

```
typedef enum e_adc_add
{
    /* Refer to the table below for the members. The members available for
        use differ depending on the MCU. */
} adc_add_t;
```

Member	Description
ADC_ADD_OFF	Neither addition nor average mode is used.
ADC_ADD_TWO_SAMPLES	Conversion is performed twice. (Addition is performed once.)
ADC_ADD_THREE_SAMPLES	Conversion is performed three times.
	(Addition is performed twice.)
ADC_ADD_FOUR_SAMPLES	Conversion is performed four times.
	(Addition is performed three times.)
ADC_ADD_ SIXTEEN _SAMPLES	Conversion is performed 16 times.
	(Addition is performed 15 times.)
ADC_ADD_AVG_2_SAMPLES	The average of two conversion values is used.
ADC_ADD_AVG_4_SAMPLES	The average of four conversion values is used.

(e) 3rd Argument Structure Members: Data Register Automatic Clearing (Enumeration)

```
typedef enum e_adc_clear
{
    /* Refer to the table below for the members. */
} adc clear t;
```

Member	Description
ADC_CLEAR_AFTER_READ_OFF	A/D data registers are not cleared automatically.
ADC_CLEAR_AFTER_READ_ON	A/D data registers are cleared automatically.

(f) 3rd Argument Structure Members: Data Register Automatic Setting (Enumeration)

```
typedef enum e_adc_set
{
    /* Refer to the table below for the members. */
} adc_set_t;
```

Member	Description
ADC_AUTO_SET_OFF	A/D data registers are not set automatically.
ADC_AUTO_SET_ON	A/D data registers are set automatically.

(g) 3rd Argument Structure Members: Conversion Start Trigger (Enumeration)

```
typedef enum e_adc_trig
      /* Refer to the table below for the members. The members available for
        use differ depending on the MCU. */
} adc_trig_t;
```

Member	Description
ADC_TRIG_ASYNC_ADTRG	External trigger (ADTRG#)
ADC_TRIG_SYNC_TRG0AN	MTU0 TGRA
ADC_TRIG_SYNC_TRG0BN	MTU0 TGRB
ADC_TRIG_SYNC_TRG1AN	MTU1 TGRA
ADC TRIG SYNC TRG2AN	MTU2 TGRA
ADC TRIG SYNC TRG3AN	MTU3 TGRA
ADC_TRIG_SYNC_TRGAN	MTUx TGRA
ADC TRIG SYNC TRGAN OR UDF4N	MTUx TGRA or MTU4 underflow (complementary PWM)
ADC_TRIG_SYNC_TRG4AN_OR_UDF4N	MTU4 TGRA or MTU4 underflow (complementary PWM)
ADC_TRIG_SYNC_TRG6AN	MTU6 TGRA
ADC_TRIG_SYNC_TRG7AN_OR_UDF7N	MTU7 TGRA or MTU7 underflow (complementary PWM)
ADC_TRIG_SYNC_TRG0EN	MTU0 TGRE
ADC_TRIG_SYNC_TRG0FN	MTU0 TGRF
ADC_TRIG_SYNC_TRG4AN	MTU4 TADCORA
ADC_TRIG_SYNC_TRG4BN	MTU4 TADCORB
ADC_TRIG_SYNC_TRG4AN_OR_TRG4BN	MTU4 TADCORA or TADCORB
ADC_TRIG_SYNC_TRG4AN_AND_TRG4BN	MTU4 TADCORA and TADCORB
ADC_TRIG_SYNC_TRG7AN	MTU7 TADCORA
ADC_TRIG_SYNC_TRG7BN	MTU7 TADCORB
ADC_TRIG_SYNC_TRG7AN_OR_TRG7BN	MTU7 TADCORA or TADCORB
ADC_TRIG_SYNC_TRG7AN_AND_TRG7BN	MTU7 TADCORA and TADCORB
ADC_TRIG_SYNC_TRG9AN	MTU9 TGRA
ADC_TRIG_SYNC_TRG9EN	MTU9 TGRE
ADC_TRIG_SYNC_TRG0AN_OR_TRG0EN	MTU0 TGRA or MTU0 TGRE
ADC_TRIG_SYNC_TRG9AN_OR_TRG9EN	MTU9 TGRA or MTU9 TGRE
ADC_TRIG_SYNC_TRG0AN_OR_TRG9AN	MTU0 TGRA or MTU9 TGRA
ADC_TRIG_SYNC_TRG0EN_OR_TRG9EN	MTU0 TGRE or MTU9 TGRE
ADC_TRIG_SYNC_TRG9AN_AND_TRG9EN	MTU9 TGRA and MTU9 TGRE
ADC_TRIG_SYNC_TRG0AN_AND_TRG0EN	MTU0 TGRA and MTU0 TGRE
ADC_TRIG_SYNC_TRG0AN_AND_TRG9AN	MTU0 TGRA and MTU9 TGRA
ADC_TRIG_SYNC_TRG0EN_AND_TRG9EN	MTU0 TGRE and MTU9 TGRE
ADC_TRIG_SYNC_GTADTR0AN	GPT0 GTADTRA
ADC_TRIG_SYNC_GTADTR0BN	GPT0 GTADTRB
ADC_TRIG_SYNC_GTADTR1AN	GPT1 GTADTRA
ADC_TRIG_SYNC_GTADTR1BN	GPT1 GTADTRB
ADC_TRIG_SYNC_GTADTR2AN	GPT2 GTADTRA
ADC_TRIG_SYNC_GTADTR2BN	GPT2 GTADTRB
ADC_TRIG_SYNC_GTADTR3AN	GPT3 GTADTRA
ADC_TRIG_SYNC_GTADTR3BN	GPT3 GTADTRB
ADC_TRIG_SYNC_GTADTR0AN_OR_GTADT R0BN	GPT0 GTADTRA or GTADTRB
ADC_TRIG_SYNC_GTADTR1AN_OR_GTADT R1BN	GPT1 GTADTRA or GTADTRB

DESCRIPTION READY	Member	Description
R2BN ADC_TRIG_SYNC_GTADTR4AN ADC_TRIG_SYNC_GTADTR4AN ADC_TRIG_SYNC_GTADTR4AN ADC_TRIG_SYNC_GTADTR4AN ADC_TRIG_SYNC_GTADTR4BN ADC_TRIG_SYNC_GTADTR5BN ADC_TRIG_SYNC_GTADTR5BN ADC_TRIG_SYNC_GTADTR5BN ADC_TRIG_SYNC_GTADTR6AN ADC_TRIG_SYNC_GTADTR6AN ADC_TRIG_SYNC_GTADTR6AN ADC_TRIG_SYNC_GTADTR6AN ADC_TRIG_SYNC_GTADTR6AN ADC_TRIG_SYNC_GTADTR6AN ADC_TRIG_SYNC_GTADTR6AN ADC_TRIG_SYNC_GTADTR7AN ADC_TRIG_SYNC_GTADTR7AN ADC_TRIG_SYNC_GTADTR7AN ADC_TRIG_SYNC_GTADTR7AN ADC_TRIG_SYNC_GTADTR7AN ADC_TRIG_SYNC_GTADTR5AN_OR_GTADT R5BN ADC_TRIG_SYNC_GTADTR5AN_OR_GTADT R5BN ADC_TRIG_SYNC_GTADTR6AN_OR_GTADT R6BN ADC_TRIG_SYNC_GTADTR6AN_OR_GTADT R6BN ADC_TRIG_SYNC_TADTR6AN ADC_TRIG_SYNC_GTADTR6AN ADC_TRIG_SYNC_GTADTRAN A		-
ADC_TRIG_SYNC_GTADTR3AN_OR_GTADT R3BN ADC_TRIG_SYNC_GTADTR4AN ADC_TRIG_SYNC_GTADTR4AN ADC_TRIG_SYNC_GTADTR5AN ADC_TRIG_SYNC_GTADTR5AN ADC_TRIG_SYNC_GTADTR5AN ADC_TRIG_SYNC_GTADTR5AN ADC_TRIG_SYNC_GTADTR5AN ADC_TRIG_SYNC_GTADTR6BN ADC_TRIG_SYNC_GTADTR6BN ADC_TRIG_SYNC_GTADTR6BN ADC_TRIG_SYNC_GTADTR6BN ADC_TRIG_SYNC_GTADTR6BN ADC_TRIG_SYNC_GTADTR6BN ADC_TRIG_SYNC_GTADTR6BN ADC_TRIG_SYNC_GTADTR7AN ADC_TRIG_SYNC_GTADTR7AN ADC_TRIG_SYNC_GTADTR7AN ADC_TRIG_SYNC_GTADTR7AN ADC_TRIG_SYNC_GTADTR5AN_OR_GTADT R4BN ADC_TRIG_SYNC_GTADTR5AN_OR_GTADT R5BN ADC_TRIG_SYNC_GTADTR6AN_OR_GTADT R6BN ADC_TRIG_SYNC_GTADTR7AN_OR_GTADT R6BN ADC_TRIG_SYNC_TMRTRG0AN ADC_TRIG_SYNC_TMRTRG0AN ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_TDETGAN ADC_TRIG_SYNC_TDETGAN ADC_TRIG_SYNC_TDETGAN ADC_TRIG_SYNC_GTADTRAN ADC_TRIG_SYNC_GTADTRAN ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_GTADTRAN ADC_TRIG_SYNC_ELCTRG0 ADC_T		GF12 GTADTRA OF GTADTRB
R3BN ADC_TRIG_SYNC_GTADTR4AN ADC_TRIG_SYNC_GTADTR4BN ADC_TRIG_SYNC_GTADTR4BN ADC_TRIG_SYNC_GTADTR5BN ADC_TRIG_SYNC_GTADTR5BN ADC_TRIG_SYNC_GTADTR5BN ADC_TRIG_SYNC_GTADTR5BN ADC_TRIG_SYNC_GTADTR5BN ADC_TRIG_SYNC_GTADTR6BN ADC_TRIG_SYNC_GTADTR6BN ADC_TRIG_SYNC_GTADTR6BN ADC_TRIG_SYNC_GTADTR7AN ADC_TRIG_SYNC_GTADTR7AN ADC_TRIG_SYNC_GTADTR7AN ADC_TRIG_SYNC_GTADTR7AN ADC_TRIG_SYNC_GTADTR7AN ADC_TRIG_SYNC_GTADTR7AN ADC_TRIG_SYNC_GTADTR7AN ADC_TRIG_SYNC_GTADTR5AN_OR_GTADT R8BN ADC_TRIG_SYNC_GTADTR5AN_OR_GTADT R8BN ADC_TRIG_SYNC_GTADTR7AN_OR_GTADT R8BN ADC_TRIG_SYNC_GTADTR7AN_OR_GTADT R7BN ADC_TRIG_SYNC_GTADTR7AN_OR_GTADT R7BN ADC_TRIG_SYNC_TMRTR60AN ADC_TRIG_SYNC_TDUTRGAN ADC_TRIG_SYNC_TDUTRGAN ADC_TRIG_SYNC_TDUTRGAN ADC_TRIG_SYNC_GTADTRAN ADC_TRIG_SYNC_ELCTRGO ADC_TRIG_SYNC_ELCTRGO		GPT3 GTADTRA or GTADTRB
ADC_TRIG_SYNC_GTADTR4AN ADC_TRIG_SYNC_GTADTR5AN ADC_TRIG_SYNC_GTADTR5AN ADC_TRIG_SYNC_GTADTR5AN ADC_TRIG_SYNC_GTADTR5AN ADC_TRIG_SYNC_GTADTR5AN ADC_TRIG_SYNC_GTADTR5BN ADC_TRIG_SYNC_GTADTR6AN ADC_TRIG_SYNC_GTADTR6AN ADC_TRIG_SYNC_GTADTR6BN ADC_TRIG_SYNC_GTADTR6BN ADC_TRIG_SYNC_GTADTR6BN ADC_TRIG_SYNC_GTADTR6BN ADC_TRIG_SYNC_GTADTR7AN ADC_TRIG_SYNC_GTADTR7AN ADC_TRIG_SYNC_GTADTR7AN ADC_TRIG_SYNC_GTADTR7AN ADC_TRIG_SYNC_GTADTR7AN ADC_TRIG_SYNC_GTADTR5AN_OR_GTADT R5BN ADC_TRIG_SYNC_GTADTR5AN_OR_GTADT R7BN ADC_TRIG_SYNC_GTADTR7AN_OR_GTADT R7BN ADC_TRIG_SYNC_GTADTR7AN_OR_GTADT R7BN ADC_TRIG_SYNC_TMRTR60AN ADC_TRIG_SYNC_TMRTR60AN ADC_TRIG_SYNC_TMRTR60AN ADC_TRIG_SYNC_TMRTR60AN ADC_TRIG_SYNC_TMRTR60AN ADC_TRIG_SYNC_TMRTR66AN ADC_TRIG_SYNC_TMRTR66AN ADC_TRIG_SYNC_TDUTR60AN ADC_TRIG_SYNC_TDUTR60AN ADC_TRIG_SYNC_GTADTR6N ADC_TRIG_SYNC_GTADTR6N ADC_TRIG_SYNC_GTADTR6N ADC_TRIG_SYNC_GTADTR6N ADC_TRIG_SYNC_GTADTR6N ADC_TRIG_SYNC_GTADTR6N ADC_TRIG_SYNC_GTADTRAN ADC_TRIG_SYNC_GTADTR6N ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0N ADC_TRIG_SYNC_ELCTRG0N ADC_TRIG_SYNC_ELCTRG0N ADC_TRIG_SYNC_ELCTRG0N ADC_TRIG_SYNC_ELCTRG0N ADC_TRIG_SYNC_ELCTRG0N ADC_TRI		CI TO CITIE TIVE CITIE THE
ADC_TRIG_SYNC_GTADTR4BN ADC_TRIG_SYNC_GTADTR5BN ADC_TRIG_SYNC_GTADTR5BN ADC_TRIG_SYNC_GTADTR5BN ADC_TRIG_SYNC_GTADTR5BN ADC_TRIG_SYNC_GTADTR6BN ADC_TRIG_SYNC_GTADTR6BN ADC_TRIG_SYNC_GTADTR6BN ADC_TRIG_SYNC_GTADTR6BN ADC_TRIG_SYNC_GTADTR7AN ADC_TRIG_SYNC_GTADTR7AN ADC_TRIG_SYNC_GTADTR7AN ADC_TRIG_SYNC_GTADTR7AN ADC_TRIG_SYNC_GTADTR7AN ADC_TRIG_SYNC_GTADTR7AN ADC_TRIG_SYNC_GTADTR7AN ADC_TRIG_SYNC_GTADTR7AN ADC_TRIG_SYNC_GTADTR7AN_OR_GTADT R6BN ADC_TRIG_SYNC_GTADTR7AN_OR_GTADT R6BN ADC_TRIG_SYNC_GTADTR7AN_OR_GTADT R7BN ADC_TRIG_SYNC_GTADTR7AN_OR_GTADT R7BN ADC_TRIG_SYNC_TMRTR60AN ADC_TRIG_SYNC_TMRTR60AN ADC_TRIG_SYNC_TMRTR60AN ADC_TRIG_SYNC_TMRTR60AN ADC_TRIG_SYNC_TMRTR60AN ADC_TRIG_SYNC_TMRTR60AN ADC_TRIG_SYNC_TMRTR60AN ADC_TRIG_SYNC_TMRTR60AN ADC_TRIG_SYNC_TDATR6AN ADC_TRIG_SYNC_TMRTR60AN ADC_TRIG_SYNC_TDATR6AN ADC_TRIG_SYNC_TDATR6AN ADC_TRIG_SYNC_GTADTR6AN ADC_TRIG_SYNC_TDATR6AN ADC_TRIG_SYNC_TDATR6AN ADC_TRIG_SYNC_TDATR6AN ADC_TRIG_SYNC_TDATR6AN ADC_TRIG_SYNC_TDATR6AN ADC_TRIG_SYNC_TDATR6AN ADC_TRIG_SYNC_TDATR6AN ADC_TRIG_SYNC_GTADTR6AN ADC_TRIG_SYNC_GTADTRANN ADC_TRIG_SYNC_ELCTRGO ADC_TRIG_SYNC_ELCTRGO ADC_TRIG_SYNC_ELCTRGO ADC_TRIG_SYNC_ELCTRGO ADC_TRIG_SYNC_ELCTRGO ADC_TRIG_SYNC_ELCTRGO ADC_TRIG_SYNC_ELCTRGO ADC_TRIG_SYNC_ELCTRGO ADC_TRIG_SYNC_ELCTRGO AD		GPT4 GTADTRA
ADC_TRIG_SYNC_GTADTRSAN ADC_TRIG_SYNC_GTADTRSBN ADC_TRIG_SYNC_GTADTRSBN ADC_TRIG_SYNC_GTADTRSBN ADC_TRIG_SYNC_GTADTRSBN ADC_TRIG_SYNC_GTADTRSBN ADC_TRIG_SYNC_GTADTRSBN ADC_TRIG_SYNC_GTADTRSBN ADC_TRIG_SYNC_GTADTRSBN ADC_TRIG_SYNC_GTADTRAN ADC_TRIG_SYNC_GTADTRAN ADC_TRIG_SYNC_GTADTRAN ADC_TRIG_SYNC_GTADTRAN ADC_TRIG_SYNC_GTADTRAN ADC_TRIG_SYNC_GTADTRAN ADC_TRIG_SYNC_GTADTRAN_OR_GTADT R4BN ADC_TRIG_SYNC_GTADTRSAN_OR_GTADT R5BN ADC_TRIG_SYNC_GTADTRSAN_OR_GTADT R6BN ADC_TRIG_SYNC_GTADTRAN_OR_GTADT R6BN ADC_TRIG_SYNC_GTADTRAN_OR_GTADT R7BN ADC_TRIG_SYNC_GTADTRAN_OR_GTADT R7BN ADC_TRIG_SYNC_TMRTRGOAN ADC_TRIG_SYNC_TMRTRGOAN ADC_TRIG_SYNC_TMRTRGAN ADC_TRIG_SYNC_TMRTRGSAN ADC_TRIG_SYNC_TMRTRGSAN ADC_TRIG_SYNC_TMRTRGSAN ADC_TRIG_SYNC_TMRTRGAN ADC_TRIG_SYNC_TPUTRGOAN ADC_TRIG_SYNC_GTADTRAN ADC_TRIG_SYNC_ELCTRGO ADC_TRIG_SYNC_ELCTRGO ADC_TRIG_SYNC_ELCTRGO ADC_TRIG_SYNC_ELCTRGON ADC_TRIG_SYNC_EL		
ADC_TRIG_SYNC_GTADTRSBN ADC_TRIG_SYNC_GTADTRSBN ADC_TRIG_SYNC_GTADTRSBN ADC_TRIG_SYNC_GTADTRSBN ADC_TRIG_SYNC_GTADTRSBN ADC_TRIG_SYNC_GTADTRSBN ADC_TRIG_SYNC_GTADTRSBN ADC_TRIG_SYNC_GTADTRSBN ADC_TRIG_SYNC_GTADTRAN ADC_TRIG_SYNC_GTADTRAN ADC_TRIG_SYNC_GTADTRAN ADC_TRIG_SYNC_GTADTRANON_GTADT R4BN ADC_TRIG_SYNC_GTADTRSAN_OR_GTADT R5BN ADC_TRIG_SYNC_GTADTRSAN_OR_GTADT R6BN ADC_TRIG_SYNC_GTADTRAN_OR_GTADT R7BN ADC_TRIG_SYNC_GTADTRAN_OR_GTADT R7BN ADC_TRIG_SYNC_GTADTRAN_OR_GTADT R7BN ADC_TRIG_SYNC_TMRTRG0AN ADC_TRIG_SYNC_TMRTRG2AN ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_TPUTRG0AN ADC_TRIG_SYNC_TPUTRG0AN ADC_TRIG_SYNC_GTADTRADN ADC_TRIG_SYNC_GTADTRADN_OR_GTADT R8NN ADC_TRIG_SYNC_GTADTRADN_OR_GTADT RBN ADC_TRIG_SYNC_GTADTRADN_OR_GTADT RBN ADC_TRIG_SYNC_GTADTRADN_OR_GTADT RBN ADC_TRIG_SYNC_GTADTRADN_OR_GTADT ADC_TRIG_SYNC_GTADTRADN_OR_GTA		
ADC_TRIG_SYNC_GTADTR6BN GPT6 GTADTRA ADC_TRIG_SYNC_GTADTR6BN GPT6 GTADTRB ADC_TRIG_SYNC_GTADTR7AN GPT7 GTADTRA ADC_TRIG_SYNC_GTADTR7BN GPT7 GTADTRB ADC_TRIG_SYNC_GTADTR7BN GPT7 GTADTRB ADC_TRIG_SYNC_GTADTR7BN GPT7 GTADTRB ADC_TRIG_SYNC_GTADTR6AN_OR_GTADT R6BN ADC_TRIG_SYNC_GTADTR6AN_OR_GTADT R6BN ADC_TRIG_SYNC_GTADTR6AN_OR_GTADT R6BN ADC_TRIG_SYNC_GTADTR7AN_OR_GTADT R7BN ADC_TRIG_SYNC_GTADTR7AN_OR_GTADT R7BN ADC_TRIG_SYNC_TMRTRG0AN ADC_TRIG_SYNC_TMRTRG2AN ADC_TRIG_SYNC_TMRTRG6AN ADC_TRIG_SYNC_TMRTRG6AN ADC_TRIG_SYNC_TMRTRG6AN ADC_TRIG_SYNC_TMRTRG6AN ADC_TRIG_SYNC_TMRTRG6AN ADC_TRIG_SYNC_TMRTRG0AN ADC_TRIG_SYNC_TMRTRG0AN ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_TDTRGAN ADC_TRIG_SYNC_GTADTR6AN ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0N ADC_TR		
ADC_TRIG_SYNC_GTADTR6BN GPT6 GTADTRB ADC_TRIG_SYNC_GTADTR7AN GPT7 GTADTRA ADC_TRIG_SYNC_GTADTR7AN GPT7 GTADTRA ADC_TRIG_SYNC_GTADTR7AN GPT7 GTADTRA ADC_TRIG_SYNC_GTADTR4AN_OR_GTADT R4BN ADC_TRIG_SYNC_GTADTR5AN_OR_GTADT R5BN ADC_TRIG_SYNC_GTADTR6AN_OR_GTADT R6BN ADC_TRIG_SYNC_GTADTR6AN_OR_GTADT R6BN ADC_TRIG_SYNC_GTADTR7AN_OR_GTADT R7BN ADC_TRIG_SYNC_GTADTR7AN_OR_GTADT R7BN ADC_TRIG_SYNC_TMRTRG0AN ADC_TRIG_SYNC_TMRTRG0AN ADC_TRIG_SYNC_TMRTRG2AN ADC_TRIG_SYNC_TMRTRG6AN ADC_TRIG_SYNC_TMRTRG6AN ADC_TRIG_SYNC_TMRTRG6AN ADC_TRIG_SYNC_TMRTRG6AN ADC_TRIG_SYNC_TMRTRG6AN ADC_TRIG_SYNC_TMRTRG0AN ADC_TRIG_SYNC_TMRTRG0AN ADC_TRIG_SYNC_TMRTRG0AN ADC_TRIG_SYNC_TMRTRG0AN ADC_TRIG_SYNC_TMRTRG0AN ADC_TRIG_SYNC_TMRTRG0AN ADC_TRIG_SYNC_TBUTRG0AN ADC_TRIG_SYNC_GTADTRANN ADC_TRIG_SYNC_GTADTRANN_OR_GTADT RBIN ADC_TRIG_SYNC_GTADTRANN_OR_GTADT RBIN ADC_TRIG_SYNC_GTADTRANN_OR_GTADT BADC_TRIG_SYNC_GTADTRANN_OR_GTADT BADC_TRIG_SYNC_GTADTRANN BADC_TRIG_SYNC_GTADTRANN BADC_TRIG_SYNC_GTADTRANN BADC_TRIG_SYNC_GTADTRANN BADC_TRIG_SYNC_GTADTRANN BADC_TRIG_SYNC_GTADTANN BADC_TRIG_SYNC_GTADTANN BADC_TRIG_SYNC_GTADT		
ADC_TRIG_SYNC_GTADTR7AN ADC_TRIG_SYNC_GTADTR7BN ADC_TRIG_SYNC_GTADTR7BN ADC_TRIG_SYNC_GTADTR7BN ADC_TRIG_SYNC_GTADTR4AN_OR_GTADT R4BN ADC_TRIG_SYNC_GTADTR5AN_OR_GTADT R5BN ADC_TRIG_SYNC_GTADTR5AN_OR_GTADT R6BN ADC_TRIG_SYNC_GTADTR6AN_OR_GTADT R6BN ADC_TRIG_SYNC_GTADTR7AN_OR_GTADT R6BN ADC_TRIG_SYNC_GTADTR7AN_OR_GTADT R7BN ADC_TRIG_SYNC_TMRTRG0AN ADC_TRIG_SYNC_TMRTRG0AN ADC_TRIG_SYNC_TMRTRG2AN ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_TMRTRG6AN ADC_TRIG_SYNC_TMRTRG6AN ADC_TRIG_SYNC_TMRTRG6AN ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_TDUTRG0AN ADC_TRIG_SYNC_GTADTRAN ADC_TRIG_SYNC_GTADTRAN ADC_TRIG_SYNC_GTADTRAN ADC_TRIG_SYNC_GTADTRAN ADC_TRIG_SYNC_GTADTRAN ADC_TRIG_SYNC_GTADTRAN ADC_TRIG_SYNC_GTADTRAN ADC_TRIG_SYNC_GTADTRAN ADC_TRIG_SYNC_GTADTRBN ADC_TRIG_SYNC_GTADTRAN ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0ON ADC_TRIG_SYNC_ELCTRG0O		
ADC_TRIG_SYNC_GTADTR7BN ADC_TRIG_SYNC_GTADTR4AN_OR_GTADT ABN ADC_TRIG_SYNC_GTADTR5AN_OR_GTADT R5BN ADC_TRIG_SYNC_GTADTR5AN_OR_GTADT R5BN ADC_TRIG_SYNC_GTADTR6AN_OR_GTADT R6BN ADC_TRIG_SYNC_GTADTR6AN_OR_GTADT R6BN ADC_TRIG_SYNC_GTADTR7AN_OR_GTADT R6BN ADC_TRIG_SYNC_GTADTR7AN_OR_GTADT R6BN ADC_TRIG_SYNC_TMRTRGOAN ADC_TRIG_SYNC_TMRTRGOAN ADC_TRIG_SYNC_TMRTRG2AN ADC_TRIG_SYNC_TMRTRGAN ADC_TRIG_SYNC_TMRTRG6AN ADC_TRIG_SYNC_TMRTRG6AN ADC_TRIG_SYNC_TMRTRG6AN ADC_TRIG_SYNC_TMRTRG6AN ADC_TRIG_SYNC_TMRTRG6AN ADC_TRIG_SYNC_TPUTRGAN ADC_TRIG_SYNC_TPUTRGAN ADC_TRIG_SYNC_GTADTRAN ADC_TRIG_SYNC_ELCTRGO ADC_TRIG_SYNC_ELCTRGO ADC_TRIG_SYNC_ELCTRGO ADC_TRIG_SYNC_ELCTRGO ADC_TRIG_SYNC_ELCTRGO ADC_TRIG_SYNC_ELCTRGO ADC_TRIG_SYNC_ELCTRGO ADC_TRIG_SYNC_ELCTRGO ADC_TRIG_SYNC_ELCTRGOON_ELCTRGI ADC_TRIG_SYNC_ELCTRGOON_ELCTRGI ADC_TRIG_SYNC_ELCTRGOON_OR_ELCTR ADC_TRIG_SYNC_ELCTRGOON_OR_ELCTR ADC_TRIG_SYNC_ELCTRGOON_OR_ELCTR ADC_TRIG_SYNC_ELCTRGOON_OR_ELCTR BLC_ELSR56 BLC_ELSR56 BCC_TRIG_SYNC_ELCTRGOON_OR_ELCTR BCO_TRIG_SYNC_ELCTRGOON_OR_ELCTR BCO_TRIG_SYNC_ELCTRGOON_OR_ELCTR BCO_TRIG_SYNC_ELCTRGOON_OR_ELCTR BCO_TRIG_SYNC_ELCTRGOON_OR_ELCTR BCO_TRIG_SYNC_ELCTRGOON_OR_ELCTR BCO_TRIG_SYNC_ELCTRGOON_OR_ELCTR BCO_TRIG_SYNC_ELCTRGOON_OR_ELCTR BCO_TRIG_SYNC_ELCTRGOON_OR_ELCTR		
ADC_TRIG_SYNC_GTADTR4AN_OR_GTADT R4BN ADC_TRIG_SYNC_GTADTR5AN_OR_GTADT R5BN ADC_TRIG_SYNC_GTADTR6AN_OR_GTADT R6BN ADC_TRIG_SYNC_GTADTR6AN_OR_GTADT R6BN ADC_TRIG_SYNC_GTADTR7AN_OR_GTADT R7BN ADC_TRIG_SYNC_TMRTRG0AN ADC_TRIG_SYNC_TMRTRG0AN ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_TMRTRG6AN ADC_TRIG_SYNC_TMRTRG6AN ADC_TRIG_SYNC_TPUTRG0AN ADC_TRIG_SYNC_TPUTRG0AN ADC_TRIG_SYNC_TPUTRGAN ADC_TRIG_SYNC_GTADTRANN ADC_TRIG_SYNC_TEMPS ADC_TRIG_SYNC_TEMPS ADC_TRIG_SYNC_TEMPS ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0ON ELCTRGS ADC_TRIG_SYNC_ELCTRG0ON ELCTRGS ADC_TRIG_SYNC_ELCTRG0ON ELCTRGS ADC_TRIG_SYNC_ELCTRGOON ADC_TRIG_SYNC_ELCTRGOON ELCTRGS ADC_TRIG_SYNC_ELCTRGOON ADC_TRIG_SYNC_ELCTRGOON ADC_TRIG_		
R4BN ADC_TRIG_SYNC_GTADTR5AN_OR_GTADT R5BN ADC_TRIG_SYNC_GTADTR6AN_OR_GTADT R6BN ADC_TRIG_SYNC_GTADTR7AN_OR_GTADT R6BN ADC_TRIG_SYNC_GTADTR7AN_OR_GTADT R7BN ADC_TRIG_SYNC_TMRTRG0AN ADC_TRIG_SYNC_TMRTRG2AN ADC_TRIG_SYNC_TMRTRG2AN ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_TMRTRG6AN ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_TPUTRG0AN ADC_TRIG_SYNC_TPUTRG0AN ADC_TRIG_SYNC_TPUTRG4AN ADC_TRIG_SYNC_GTADTRANN ADC_TRIG_SYNC_TEMPS Temperature sensor ADC_TRIG_SYNC_TEMPS Temperature sensor ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 BLCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0ON ELCTRG0 ADC_TRIG_SYNC_ELCTRG0ON ELCELSR15 ADC_TRIG_SYNC_ELCTRG0ON ADC_TRIG_SYNC_ELCTRG0ON BLC.ELSR15 BLC.ELSR15 BLC.ELSR56 BCC.ELSR56 BCC.		
R5BN ADC_TRIG_SYNC_GTADTR6AN_OR_GTADT R6BN ADC_TRIG_SYNC_GTADTR7AN_OR_GTADT R7BN ADC_TRIG_SYNC_TMRTRG0AN ADC_TRIG_SYNC_TMRTRG2AN ADC_TRIG_SYNC_TMRTRG2AN ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_TMRTRG6AN ADC_TRIG_SYNC_TMRTRG6AN ADC_TRIG_SYNC_TMRTRG6AN ADC_TRIG_SYNC_TPUTRG0AN ADC_TRIG_SYNC_TPUTRG0AN ADC_TRIG_SYNC_TPUTRG0AN ADC_TRIG_SYNC_TPUTRG0AN ADC_TRIG_SYNC_TPUTRG0AN ADC_TRIG_SYNC_GTADTRANN ADC_TRIG_SYNC_GTADTRANNO_OR_GTADT RBON ADC_TRIG_SYNC_ELC ELC ADC_TRIG_SYNC_ELC ELC ADC_TRIG_SYNC_ELC ELC ADC_TRIG_SYNC_ELC ELC ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0N ADC_TRIG_SYNC_ELCTRG0N ADC_TRIG_SYNC_ELCTRG0N ADC_TRIG_SYNC_ELCTRG0N ADC_TRIG_SYNC_ELCTRG0N ADC_TRIG_SYNC_ELCTRG0N ADC_TRIG_SYNC_ELCTRG0NON ELC.ELSR15 BLC.ELSR56 BLC.ELSR56 BLC.ELSR56 BLC.ELSR56 BLC.ELSR56 BLC.ELSR56 BLC.ELSR56 BLC.ELSR56		
R5BN ADC_TRIG_SYNC_GTADTR6AN_OR_GTADT R6BN ADC_TRIG_SYNC_GTADTR7AN_OR_GTADT R7BN ADC_TRIG_SYNC_TMRTRG0AN ADC_TRIG_SYNC_TMRTRG2AN ADC_TRIG_SYNC_TMRTRG2AN ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_TMRTRG6AN ADC_TRIG_SYNC_TMRTRG6AN ADC_TRIG_SYNC_TMRTRG6AN ADC_TRIG_SYNC_TPUTRG0AN ADC_TRIG_SYNC_TPUTRG0AN ADC_TRIG_SYNC_TPUTRG0AN ADC_TRIG_SYNC_TPUTRG0AN ADC_TRIG_SYNC_TPUTRG0AN ADC_TRIG_SYNC_GTADTRANN ADC_TRIG_SYNC_GTADTRANNO_OR_GTADT RBON ADC_TRIG_SYNC_ELC ELC ADC_TRIG_SYNC_ELC ELC ADC_TRIG_SYNC_ELC ELC ADC_TRIG_SYNC_ELC ELC ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0N ADC_TRIG_SYNC_ELCTRG0N ADC_TRIG_SYNC_ELCTRG0N ADC_TRIG_SYNC_ELCTRG0N ADC_TRIG_SYNC_ELCTRG0N ADC_TRIG_SYNC_ELCTRG0N ADC_TRIG_SYNC_ELCTRG0NON ELC.ELSR15 BLC.ELSR56 BLC.ELSR56 BLC.ELSR56 BLC.ELSR56 BLC.ELSR56 BLC.ELSR56 BLC.ELSR56 BLC.ELSR56		GPT5 GTADTRA or GTADTRB
R6BN ADC_TRIG_SYNC_GTADTR7AN_OR_GTADT R7BN ADC_TRIG_SYNC_TMRTRG0AN ADC_TRIG_SYNC_TMRTRG2AN ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_TMRTRG6AN ADC_TRIG_SYNC_TMRTRG6AN ADC_TRIG_SYNC_TPUTRG0AN ADC_TRIG_SYNC_TPUTRG0AN ADC_TRIG_SYNC_TPUTRGAN ADC_TRIG_SYNC_GTADTRANN ADC_TRIG_SYNC_GTADTRANN_OR_GTADT RBON ADC_TRIG_SYNC_GTADTRANN_OR_GTADT RB1N ADC_TRIG_SYNC_GTADTRANN_OR_GTADT RB2N ADC_TRIG_SYNC_GTADTRANN_OR_GTADT RB2N ADC_TRIG_SYNC_GTADTRANN_OR_GTADT ABC ADC_TRIG_SYNC_ELC BLC ADC_TRIG_SYNC_ELC BLC ADC_TRIG_SYNC_ELC BLC ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0ON ELCTRG0 ADC_TRIG_SYNC_ELCTRG0ON ELCTRG1 ADC_TRIG_SYNC_ELCTRG0ON ADC_TRIG_SYNC_ELCTRG0ON_OR_ELCTR ADC_TRIG_SOFTWARE Software trigger		
R6BN ADC_TRIG_SYNC_GTADTR7AN_OR_GTADT R7BN ADC_TRIG_SYNC_TMRTRG0AN ADC_TRIG_SYNC_TMRTRG2AN ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_TMRTRG6AN ADC_TRIG_SYNC_TMRTRG6AN ADC_TRIG_SYNC_TPUTRG0AN ADC_TRIG_SYNC_TPUTRG0AN ADC_TRIG_SYNC_TPUTRGAN ADC_TRIG_SYNC_GTADTRANN ADC_TRIG_SYNC_GTADTRANN_OR_GTADT RBON ADC_TRIG_SYNC_GTADTRANN_OR_GTADT RB1N ADC_TRIG_SYNC_GTADTRANN_OR_GTADT RB2N ADC_TRIG_SYNC_GTADTRANN_OR_GTADT RB2N ADC_TRIG_SYNC_GTADTRANN_OR_GTADT ABC ADC_TRIG_SYNC_ELC BLC ADC_TRIG_SYNC_ELC BLC ADC_TRIG_SYNC_ELC BLC ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0ON ELCTRG0 ADC_TRIG_SYNC_ELCTRG0ON ELCTRG1 ADC_TRIG_SYNC_ELCTRG0ON ADC_TRIG_SYNC_ELCTRG0ON_OR_ELCTR ADC_TRIG_SOFTWARE Software trigger	ADC TRIG SYNC GTADTR6AN OR GTADT	GPT6 GTADTRA or GTADTRB
R7BN ADC_TRIG_SYNC_TMRTRG0AN TMR0 TCORA ADC_TRIG_SYNC_TMRTRG4AN TMR4 TCORA ADC_TRIG_SYNC_TMRTRG6AN TMR6 TCORA ADC_TRIG_SYNC_TMRTRG6AN TMR6 TCORA ADC_TRIG_SYNC_TPUTRG0AN TPU0 TRGA ADC_TRIG_SYNC_TPUTRG0AN TPU5 TRGA ADC_TRIG_SYNC_TPUTRGAN TPU5 TRGA ADC_TRIG_SYNC_GTADTRANN GPTW0 GTADTRA ADC_TRIG_SYNC_GTADTRANN GPTW0 GTADTRA ADC_TRIG_SYNC_GTADTRANN GPTW1 GTADTRA ADC_TRIG_SYNC_GTADTRANN GPTW1 GTADTRA ADC_TRIG_SYNC_GTADTRANN GPTW2 GTADTRA ADC_TRIG_SYNC_GTADTRANN_OR_GTADT GPTW2 GTADTRA ADC_TRIG_SYNC_GTADTRANN_OR_GTADT GPTW2 GTADTRA OR GPTW2 GTADTRB ADC_TRIG_SYNC_GTADTRANN_OR_GTADT GPTW2 GTADTRB ADC_TRIG_SYNC_ELCTRG0 ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ELCTRG1 ADC_TRIG_SYNC_ELCTRG0 ELCTRG1 ADC_TRIG_SYNC_ELCTRG0ON ELCTRG1 ADC_TRIG_SYNC_ELCTRG0ON ELCTRG1 ADC_TRIG_SYNC_ELCTRG0ON ELCTRG1 ADC_TRIG_SYNC_ELCTRG0ON_OR_ELCTR ADC_TRIG_SYNC_ELCTRG0ON_OR_ELCTR ADC_TRIG_SYNC_ELCTRG0ON_OR_ELCTR ADC_TRIG_SYNC_ELCTRG0ON_OR_ELCTR ADC_TRIG_SYNC_ELCTRG0ON_OR_ELCTR ADC_TRIG_SYNC_ELCTRG0ON_OR_ELCTR ADC_TRIG_SYNC_ELCTRG0ON_OR_ELCTR ADC_TRIG_SYNC_ELCTRG0ON_OR_ELCTR ADC_TRIG_SYNC_ELCTRG0ON_OR_ELCTR ADC_TRIG_SYNC_ELCTRGOON_OR_ELCTR ADC_TRIG_SYNC_ELCTRGOON_OR_ELCTR ADC_TRIG_SYNC_ELCTRGOON_OR_ELCTR ADC_TRIG_SYNC_ELCTRGOON_OR_ELCTR ADC_TRIG_SYNC_ELCTRGOON_OR_ELCTR ADC_TRIG_SYNC_ELCTRGOON_OR_ELCTR ADC_TRIG_SOFTWARE		
ADC_TRIG_SYNC_TMRTRG0AN ADC_TRIG_SYNC_TMRTRG2AN ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_TMRTRG6AN ADC_TRIG_SYNC_TMRTRG6AN ADC_TRIG_SYNC_TPUTRG0AN ADC_TRIG_SYNC_TPUTRG0AN ADC_TRIG_SYNC_TPUTRG0AN ADC_TRIG_SYNC_GTADTRA0N ADC_TRIG_SYNC_GTADTRA0N ADC_TRIG_SYNC_GTADTRA0N ADC_TRIG_SYNC_GTADTRA1N ADC_TRIG_SYNC_GTADTRA1N ADC_TRIG_SYNC_GTADTRA2N ADC_TRIG_SYNC_GTADTRA2N ADC_TRIG_SYNC_GTADTRA2N ADC_TRIG_SYNC_GTADTRA2N ADC_TRIG_SYNC_GTADTRA2N ADC_TRIG_SYNC_GTADTRA0N ADC_TRIG_SYNC_GTADTRA0N ADC_TRIG_SYNC_GTADTRA0N ADC_TRIG_SYNC_GTADTRA0N ADC_TRIG_SYNC_GTADTRA0N ADC_TRIG_SYNC_GTADTRA1N_OR_GTADT RB0N ADC_TRIG_SYNC_GTADTRA1N_OR_GTADT RB1N ADC_TRIG_SYNC_GTADTRA2N ADC_TRIG_SYNC_GTADTRA2N ADC_TRIG_SYNC_GTADTRA2N ADC_TRIG_SYNC_GTADTRA2N_OR_GTADT RB2N ADC_TRIG_SYNC_GTADTRA2N_OR_GTADT RB2N ADC_TRIG_SYNC_TEMPS Temperature sensor ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG1 ELCTRG1 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG0ON ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG0N ADC_TRIG_SYNC_ELCTRG0N_OR_ELCTR ADC_TRIG_SOFTWARE ADC_	ADC_TRIG_SYNC_GTADTR7AN_OR_GTADT	GPT7 GTADTRA or GTADTRB
ADC_TRIG_SYNC_TMRTRG2AN ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_TMRTRG6AN ADC_TRIG_SYNC_TPUTRG0AN ADC_TRIG_SYNC_TPUTRG0AN ADC_TRIG_SYNC_GTADTRAON BELOTATION ADC_TRIG_SYNC_ELC ADC_TRIG_SYNC_ELC ADC_TRIG_SYNC_ELC ADC_TRIG_SYNC_ELC ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG0 BLC.ELSR15 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 BLC.ELSR15 ADC_TRIG_SYNC_ELCTRG0 BLC.ELSR56 ADC_TRIG_SYNC_ELCTRG0ON ADC_TRIG_SYNC_ELCT	R7BN	
ADC_TRIG_SYNC_TMRTRG4AN ADC_TRIG_SYNC_TPUTRG0AN ADC_TRIG_SYNC_TPUTRG0AN ADC_TRIG_SYNC_TPUTRGAN ADC_TRIG_SYNC_TPUTRGAN ADC_TRIG_SYNC_TPUTRGAN ADC_TRIG_SYNC_GTADTRA0N ADC_TRIG_SYNC_GTADTRA0N ADC_TRIG_SYNC_GTADTRB0N ADC_TRIG_SYNC_GTADTRA1N ADC_TRIG_SYNC_GTADTRA1N ADC_TRIG_SYNC_GTADTRA1N ADC_TRIG_SYNC_GTADTRA1N ADC_TRIG_SYNC_GTADTRA2N ADC_TRIG_SYNC_GTADTRA2N ADC_TRIG_SYNC_GTADTRA2N ADC_TRIG_SYNC_GTADTRA2N ADC_TRIG_SYNC_GTADTRA2N ADC_TRIG_SYNC_GTADTRA2N ADC_TRIG_SYNC_GTADTRA0N_OR_GTADT BON ADC_TRIG_SYNC_GTADTRA1N_OR_GTADT ADC_TRIG_SYNC_GTADTRA1N_OR_GTADT BON ADC_TRIG_SYNC_GTADTRA2N_OR_GTADT ADC_TRIG_SYNC_GTADTRA2N_OR_GTADT BON ADC_TRIG_SYNC_GTADTRA2N_OR_GTADT ADC_TRIG_SYNC_TEMPS ADC_TRIG_SYNC_ELC ADC_TRIG_SYNC_ELC ADC_TRIG_SYNC_ELC ADC_TRIG_SYNC_ELC ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG0N ADC_TRIG_SYNC_ELCTRG0N BLC.ELSR15 ADC_TRIG_SYNC_ELCTRG0NON ADC_TRIG_SYNC_ELCTRG0NON_OR_ELCTR ADC_TRIG_SYNC_ELCTRG0NON_OR_ELCTR ADC_TRIG_SYNC_ELCTRG0NON_OR_ELCTR BONN ADC_TRIG_SYNC_ELCTRG0NON_OR_ELCTR BONN ADC_TRIG_SYNC_ELCTRG0NON_OR_ELCTR BONN ADC_TRIG_SYNC_ELCTRG0NON_OR_ELCTR BONN ADC_TRIG_SOFTWARE Software trigger	ADC_TRIG_SYNC_TMRTRG0AN	TMR0 TCORA
ADC_TRIG_SYNC_TMRTRG6AN ADC_TRIG_SYNC_TPUTRG0AN ADC_TRIG_SYNC_TPUTRGAN ADC_TRIG_SYNC_TPUTRGAN ADC_TRIG_SYNC_GTADTRA0N ADC_TRIG_SYNC_GTADTRA0N ADC_TRIG_SYNC_GTADTRBON ADC_TRIG_SYNC_GTADTRBON ADC_TRIG_SYNC_GTADTRA1N ADC_TRIG_SYNC_GTADTRB1N ADC_TRIG_SYNC_GTADTRA2N ADC_TRIG_SYNC_GTADTRA2N ADC_TRIG_SYNC_GTADTRA2N ADC_TRIG_SYNC_GTADTRA2N ADC_TRIG_SYNC_GTADTRA2N ADC_TRIG_SYNC_GTADTRA2N ADC_TRIG_SYNC_GTADTRA0N_OR_GTADT RB0N ADC_TRIG_SYNC_GTADTRA1N_OR_GTADT RB1N ADC_TRIG_SYNC_GTADTRA2N ADC_TRIG_SYNC_GTADTRA2N ADC_TRIG_SYNC_GTADTRA2N_OR_GTADT RB1N ADC_TRIG_SYNC_GTADTRA2N_OR_GTADT ADC_TRIG_SYNC_TEMPS ADC_TRIG_SYNC_ELC ADC_TRIG_SYNC_ELC ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0N ELCTRG1 ADC_TRIG_SYNC_ELCTRG0N ELCTRG1 ADC_TRIG_SYNC_ELCTRG0N ADC_TR	ADC_TRIG_SYNC_TMRTRG2AN	TMR2 TCORA
ADC_TRIG_SYNC_TPUTRGOAN ADC_TRIG_SYNC_TPUTRGAN ADC_TRIG_SYNC_GTADTRAON ADC_TRIG_SYNC_GTADTRAON ADC_TRIG_SYNC_GTADTRBON ADC_TRIG_SYNC_GTADTRBON ADC_TRIG_SYNC_GTADTRAON ADC_TRIG_SYNC_GTADTRAON ADC_TRIG_SYNC_GTADTRAIN ADC_TRIG_SYNC_GTADTRAIN ADC_TRIG_SYNC_GTADTRADN ADC_TRIG_SYNC_GTADTRADN ADC_TRIG_SYNC_GTADTRADN ADC_TRIG_SYNC_GTADTRADN ADC_TRIG_SYNC_GTADTRADN ADC_TRIG_SYNC_GTADTRAON_OR_GTADT RBON ADC_TRIG_SYNC_GTADTRAIN_OR_GTADT RBIN ADC_TRIG_SYNC_GTADTRADN ADC_TRIG_SYNC_GTADTRADN ADC_TRIG_SYNC_GTADTRADN ADC_TRIG_SYNC_TEMPS ADC_TRIG_SYNC_TEMPS ADC_TRIG_SYNC_ELC ADC_TRIG_SYNC_ELC ADC_TRIG_SYNC_ELCTRGO ADC_TRIG_SYNC_ELCTRGON ELCTRGO ADC_TRIG_SYNC_ELCTRGON ELC.ELSR15 ADC_TRIG_SYNC_ELCTRGONON_OR_ELCTR BUT ADC_TRIG_SYNC_ELCTRGONON_OR_ELCTR BUT BUT BUT BUT BUT BUT BUT B	ADC_TRIG_SYNC_TMRTRG4AN	TMR4 TCORA
ADC_TRIG_SYNC_TPUTRGAN ADC_TRIG_SYNC_GTADTRA0N ADC_TRIG_SYNC_GTADTRB0N ADC_TRIG_SYNC_GTADTRB0N ADC_TRIG_SYNC_GTADTRA1N ADC_TRIG_SYNC_GTADTRA1N ADC_TRIG_SYNC_GTADTRB1N ADC_TRIG_SYNC_GTADTRA2N ADC_TRIG_SYNC_GTADTRA2N ADC_TRIG_SYNC_GTADTRB2N ADC_TRIG_SYNC_GTADTRA0N_OR_GTADT RBON ADC_TRIG_SYNC_GTADTRA0N_OR_GTADT RBON ADC_TRIG_SYNC_GTADTRA1N_OR_GTADT RB1N ADC_TRIG_SYNC_GTADTRA2N ADC_TRIG_SYNC_GTADTRA2N_OR_GTADT RB1N ADC_TRIG_SYNC_GTADTRA2N_OR_GTADT RB2N ADC_TRIG_SYNC_TEMPS ADC_TRIG_SYNC_TEMPS ADC_TRIG_SYNC_ELC ADC_TRIG_SYNC_ELC ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG0N ADC_TRIG_SYNC_ELCTRG0N ELCTRG0 ADC_TRIG_SYNC_ELCTRG0N ELCTRG0 ADC_TRIG_SYNC_ELCTRG0N ELCTRG1 ADC_TRIG_SYNC_ELCTRG0N ELCTRG5 ADC_TRIG_SYNC_ELCTRG0N ELC.ELSR15 ADC_TRIG_SYNC_ELCTRG0N ADC_TRIG_SYNC_ELCTRG0NON_OR_ELCTR G01N ADC_TRIG_SYNC_ELCTRG0NON_OR_ELCTR GSYNC_ELCTRG0NON_OR_ELCTR ELC.ELSR15 or ELC.ELSR56 BAC_TRIG_SYNC_ELCTRG0NON_OR_ELCTR BELC.ELSR15 or ELC.ELSR56 Software trigger	ADC_TRIG_SYNC_TMRTRG6AN	TMR6 TCORA
ADC_TRIG_SYNC_GTADTRAON ADC_TRIG_SYNC_GTADTRBON ADC_TRIG_SYNC_GTADTRAIN ADC_TRIG_SYNC_GTADTRAIN ADC_TRIG_SYNC_GTADTRBIN ADC_TRIG_SYNC_GTADTRAIN ADC_TRIG_SYNC_GTADTRAIN ADC_TRIG_SYNC_GTADTRAIN ADC_TRIG_SYNC_GTADTRAIN ADC_TRIG_SYNC_GTADTRAIN ADC_TRIG_SYNC_GTADTRAIN ADC_TRIG_SYNC_GTADTRAIN ADC_TRIG_SYNC_GTADTRAIN ADC_TRIG_SYNC_GTADTRAIN_OR_GTADT RBON ADC_TRIG_SYNC_GTADTRAIN_OR_GTADT RBIN ADC_TRIG_SYNC_GTADTRAIN_OR_GTADT RBIN ADC_TRIG_SYNC_GTADTRAIN_OR_GTADT RBIN ADC_TRIG_SYNC_TEMPS ADC_TRIG_SYNC_ELC ADC_TRIG_SYNC_ELC ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0ON ELCTRG0 ADC_TRIG_SYNC_ELCTRG0N ELC.ELSR15 ADC_TRIG_SYNC_ELCTRG0NON_OR_ELCTR ADC_TRIG_SYNC_ELCTRG0ON_OR_ELCTR ADC_TRIG_SYNC_ELCTRG0ON_OR_ELCTR ADC_TRIG_SYNC_ELCTRGOON_OR_ELCTR ADC_TRIG_SYNC_ELCTRGOON_OR_ELCTR ADC_TRIG_SYNC_ELCTRGOON_OR_ELCTR ADC_TRIG_SYNC_ELCTRGOON_OR_ELCTR ADC_TRIG_SYNC_ELCTRGOON_OR_ELCTR SITURD ELC.ELSR56 ADC_TRIG_SYNC_ELCTRGOON_OR_ELCTR BLC.ELSR15 or ELC.ELSR56 G01N ADC_TRIG_SOFTWARE Software trigger	ADC_TRIG_SYNC_TPUTRG0AN	TPU0 TRGA
ADC_TRIG_SYNC_GTADTRB0N ADC_TRIG_SYNC_GTADTRA1N ADC_TRIG_SYNC_GTADTRB1N ADC_TRIG_SYNC_GTADTRB1N ADC_TRIG_SYNC_GTADTRA2N ADC_TRIG_SYNC_GTADTRA2N ADC_TRIG_SYNC_GTADTRB2N ADC_TRIG_SYNC_GTADTRB2N ADC_TRIG_SYNC_GTADTRA0N_OR_GTADT RB0N ADC_TRIG_SYNC_GTADTRA1N_OR_GTADT RB1N ADC_TRIG_SYNC_GTADTRA2N ADC_TRIG_SYNC_GTADTRA2N_OR_GTADT RB2N ADC_TRIG_SYNC_GTADTRA2N_OR_GTADT RB2N ADC_TRIG_SYNC_TEMPS Temperature sensor ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG0N ADC_TRIG_SOFTWARE Software trigger	ADC_TRIG_SYNC_TPUTRGAN	TPUx TRGA
ADC_TRIG_SYNC_GTADTRA1N ADC_TRIG_SYNC_GTADTRB1N ADC_TRIG_SYNC_GTADTRA2N ADC_TRIG_SYNC_GTADTRB2N ADC_TRIG_SYNC_GTADTRA2N ADC_TRIG_SYNC_GTADTRA0N_OR_GTADT RBON ADC_TRIG_SYNC_GTADTRA1N_OR_GTADT RB1N ADC_TRIG_SYNC_GTADTRA2N_OR_GTADT RB2N ADC_TRIG_SYNC_GTADTRA2N_OR_GTADT RB2N ADC_TRIG_SYNC_TEMPS ADC_TRIG_SYNC_ELC ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG0N ADC_TRIG_SOFTWARE Software trigger	ADC_TRIG_SYNC_GTADTRA0N	GPTW0 GTADTRA
ADC_TRIG_SYNC_GTADTRB1N ADC_TRIG_SYNC_GTADTRA2N ADC_TRIG_SYNC_GTADTRB2N ADC_TRIG_SYNC_GTADTRB2N ADC_TRIG_SYNC_GTADTRA0N_OR_GTADT RB0N ADC_TRIG_SYNC_GTADTRA0N_OR_GTADT RB1N ADC_TRIG_SYNC_GTADTRA1N_OR_GTADT RB1N ADC_TRIG_SYNC_GTADTRA2N_OR_GTADT RB2N ADC_TRIG_SYNC_TEMPS ADC_TRIG_SYNC_TEMPS ADC_TRIG_SYNC_ELC ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG01 ADC_TRIG_SYNC_ELCTRG01 ADC_TRIG_SYNC_ELCTRG01 ADC_TRIG_SYNC_ELCTRG01 ADC_TRIG_SYNC_ELCTRG00N_OR_ELCTR ADC_TRIG_SYNC_ELCTRG00N_OR_ELCTR ADC_TRIG_SYNC_ELCTRG00N_OR_ELCTR ADC_TRIG_SYNC_ELCTRG00N_OR_ELCTR Software trigger	ADC_TRIG_SYNC_GTADTRB0N	GPTW0 GTADTRB
ADC_TRIG_SYNC_GTADTRA2N ADC_TRIG_SYNC_GTADTRB2N ADC_TRIG_SYNC_GTADTRA0N_OR_GTADT RB0N ADC_TRIG_SYNC_GTADTRA1N_OR_GTADT RB1N ADC_TRIG_SYNC_GTADTRA2N_OR_GTADT RB2N ADC_TRIG_SYNC_GTADTRA2N_OR_GTADT RB2N ADC_TRIG_SYNC_TEMPS ADC_TRIG_SYNC_ELC ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG0ON ADC_TRIG_SYNC_ELCTRG0N ADC_TRIG_SOFTWARE Software trigger	ADC_TRIG_SYNC_GTADTRA1N	GPTW1 GTADTRA
ADC_TRIG_SYNC_GTADTRB2N ADC_TRIG_SYNC_GTADTRA0N_OR_GTADT RB0N ADC_TRIG_SYNC_GTADTRA1N_OR_GTADT RB1N ADC_TRIG_SYNC_GTADTRA2N_OR_GTADT RB2N ADC_TRIG_SYNC_TEMPS ADC_TRIG_SYNC_ELC ADC_TRIG_SYNC_ELC ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG0N ADC_TRIG_SYNC_ELCTRG0N ELCTRG1 ADC_TRIG_SYNC_ELCTRG01N ELC.ELSR15 ADC_TRIG_SYNC_ELCTRG01N ADC_TRIG_SYNC_ELCTRG00N_OR_ELCTR G01N ADC_TRIG_SOFTWARE Software trigger	ADC_TRIG_SYNC_GTADTRB1N	GPTW1 GTADTRB
ADC_TRIG_SYNC_GTADTRA0N_OR_GTADT RB0N ADC_TRIG_SYNC_GTADTRA1N_OR_GTADT RB1N ADC_TRIG_SYNC_GTADTRA2N_OR_GTADT RB2N ADC_TRIG_SYNC_TEMPS ADC_TRIG_SYNC_ELC ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG0ON ADC_TRIG_SYNC_ELCTRG0N ADC_TRIG_SYNC_ELCTRG0N ADC_TRIG_SYNC_ELCTRG0N ADC_TRIG_SYNC_ELCTRG0N ADC_TRIG_SYNC_ELCTRG0N ADC_TRIG_SYNC_ELCTRG0N ADC_TRIG_SYNC_ELCTRG0N ELCTRG0 ADC_TRIG_SYNC_ELCTRG0N ELCTRG1 ADC_TRIG_SYNC_ELCTRG0N ELC.ELSR15 ADC_TRIG_SYNC_ELCTRG01N ELC.ELSR56 ADC_TRIG_SYNC_ELCTRG00N_OR_ELCTR G01N ADC_TRIG_SOFTWARE Software trigger	ADC_TRIG_SYNC_GTADTRA2N	GPTW2 GTADTRA
RB0N ADC_TRIG_SYNC_GTADTRA1N_OR_GTADT RB1N ADC_TRIG_SYNC_GTADTRA2N_OR_GTADT RB2N ADC_TRIG_SYNC_TEMPS ADC_TRIG_SYNC_ELC ADC_TRIG_SYNC_ELC ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG0 OR_ELCTRG1 ADC_TRIG_SYNC_ELCTRG0 OR_ELCTRG1 ADC_TRIG_SYNC_ELCTRG0ON ADC_TRIG_SYNC_ELCTRG0ON ADC_TRIG_SYNC_ELCTRG0N ADC_TRIG_SYNC_ELCTRG0N ELC.ELSR15 ADC_TRIG_SYNC_ELCTRG0N ADC_TRIG_SYNC_ELCTRGON ADC_TRIG_SYNC_ELCTRGON ADC_TRIG_SOFTWARE Software trigger	ADC_TRIG_SYNC_GTADTRB2N	GPTW2 GTADTRB
ADC_TRIG_SYNC_GTADTRA1N_OR_GTADT RB1N ADC_TRIG_SYNC_GTADTRA2N_OR_GTADT RB2N ADC_TRIG_SYNC_TEMPS ADC_TRIG_SYNC_ELC ADC_TRIG_SYNC_ELC ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG0ON ADC_TRIG_SYNC_ELCTRG0N ADC_TRIG_SYNC_ELCTRG0N ADC_TRIG_SYNC_ELCTRG01N ADC_TRIG_SYNC_ELCTRG01N ADC_TRIG_SYNC_ELCTRG00N_OR_ELCTR ADC_TRIG_SYNC_ELCTRG00N_OR_ELCTR ADC_TRIG_SYNC_ELCTRG00N_OR_ELCTR ADC_TRIG_SYNC_ELCTRG00N_OR_ELCTR ADC_TRIG_SYNC_ELCTRG00N_OR_ELCTR SOftware trigger	ADC TRIG SYNC GTADTRAON OR GTADT	GPTW0 GTADTRA or GPTW0 GTADTRB
RB1N ADC_TRIG_SYNC_GTADTRA2N_OR_GTADT RB2N ADC_TRIG_SYNC_TEMPS ADC_TRIG_SYNC_ELC ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG0ON ELCTRG0 or ELCTRG1 ADC_TRIG_SYNC_ELCTRG0N ELCTRG1 ADC_TRIG_SYNC_ELCTRG0N ELC.ELSR15 ADC_TRIG_SYNC_ELCTRG01N ADC_TRIG_SYNC_ELCTRG00N_OR_ELCTR ADC_TRIG_SYNC_ELCTRG00N_OR_ELCTR ADC_TRIG_SYNC_ELCTRG00N_OR_ELCTR SOftware trigger		
ADC_TRIG_SYNC_GTADTRA2N_OR_GTADT RB2N ADC_TRIG_SYNC_TEMPS Temperature sensor ADC_TRIG_SYNC_ELC ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG1 ELCTRG1 ADC_TRIG_SYNC_ELCTRG0_OR_ELCTRG1 ELCTRG0 or ELCTRG1 ADC_TRIG_SYNC_ELCTRG0ON ELC.ELSR15 ADC_TRIG_SYNC_ELCTRG01N ELC.ELSR56 ADC_TRIG_SYNC_ELCTRG00N_OR_ELCTR G01N ADC_TRIG_SOFTWARE Software trigger	ADC_TRIG_SYNC_GTADTRA1N_OR_GTADT	GPTW1 GTADTRA or GPTW1 GTADTRB
RB2N ADC_TRIG_SYNC_TEMPS Temperature sensor ADC_TRIG_SYNC_ELC ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG0_OR_ELCTRG1 ADC_TRIG_SYNC_ELCTRG0ON ELC.ELSR15 ADC_TRIG_SYNC_ELCTRG01N ADC_TRIG_SYNC_ELCTRG00N_OR_ELCTR ADC_TRIG_SYNC_ELCTRG00N_OR_ELCTR SOFTWARE Software trigger	RB1N	
ADC_TRIG_SYNC_TEMPS ADC_TRIG_SYNC_ELC ADC_TRIG_SYNC_ELCTRG0 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG1 ADC_TRIG_SYNC_ELCTRG0_OR_ELCTRG1 ELCTRG0 or ELCTRG1 ADC_TRIG_SYNC_ELCTRG0ON ELC.ELSR15 ADC_TRIG_SYNC_ELCTRG01N ELC.ELSR56 ADC_TRIG_SYNC_ELCTRG00N_OR_ELCTR ADC_TRIG_SYNC_ELCTRG00N_OR_ELCTR SOftware trigger	ADC_TRIG_SYNC_GTADTRA2N_OR_GTADT	GPTW2 GTADTRA or GPTW2 GTADTRB
ADC_TRIG_SYNC_ELC ADC_TRIG_SYNC_ELCTRG0 ELCTRG0 ADC_TRIG_SYNC_ELCTRG1 ELCTRG1 ADC_TRIG_SYNC_ELCTRG0_OR_ELCTRG1 ELCTRG0 or ELCTRG1 ADC_TRIG_SYNC_ELCTRG0ON ELC.ELSR15 ADC_TRIG_SYNC_ELCTRG01N ELC.ELSR56 ADC_TRIG_SYNC_ELCTRG00N_OR_ELCTR G01N ADC_TRIG_SOFTWARE Software trigger		
ADC_TRIG_SYNC_ELCTRG0 ELCTRG1 ADC_TRIG_SYNC_ELCTRG1 ELCTRG1 ADC_TRIG_SYNC_ELCTRG0_OR_ELCTRG1 ELCTRG0 or ELCTRG1 ADC_TRIG_SYNC_ELCTRG00N ELC.ELSR15 ADC_TRIG_SYNC_ELCTRG01N ELC.ELSR56 ADC_TRIG_SYNC_ELCTRG00N_OR_ELCTR ELC.ELSR15 or ELC.ELSR56 G01N ADC_TRIG_SOFTWARE Software trigger		•
ADC_TRIG_SYNC_ELCTRG1 ELCTRG1 ADC_TRIG_SYNC_ELCTRG0_OR_ELCTRG1 ELCTRG0 or ELCTRG1 ADC_TRIG_SYNC_ELCTRG00N ELC.ELSR15 ADC_TRIG_SYNC_ELCTRG01N ELC.ELSR56 ADC_TRIG_SYNC_ELCTRG00N_OR_ELCTR ELC.ELSR15 or ELC.ELSR56 G01N ADC_TRIG_SOFTWARE Software trigger		
ADC_TRIG_SYNC_ELCTRG0_OR_ELCTRG1 ELCTRG0 or ELCTRG1 ADC_TRIG_SYNC_ELCTRG00N ELC.ELSR15 ADC_TRIG_SYNC_ELCTRG01N ELC.ELSR56 ADC_TRIG_SYNC_ELCTRG00N_OR_ELCTR ELC.ELSR15 or ELC.ELSR56 G01N ADC_TRIG_SOFTWARE Software trigger		
ADC_TRIG_SYNC_ELCTRG00N	ADC_TRIG_SYNC_ELCTRG1	ELCTRG1
ADC_TRIG_SYNC_ELCTRG01N	ADC_TRIG_SYNC_ELCTRG0_OR_ELCTRG1	ELCTRG0 or ELCTRG1
ADC_TRIG_SYNC_ELCTRG00N_OR_ELCTR	ADC_TRIG_SYNC_ELCTRG00N	ELC.ELSR15
G01N Software trigger	ADC_TRIG_SYNC_ELCTRG01N	ELC.ELSR56
ADC_TRIG_SOFTWARE Software trigger		ELC.ELSR15 or ELC.ELSR56
ADC_TRIG_NONE No trigger source selected		
	ADC_TRIG_NONE	No trigger source selected

(h) 3rd Argument Structure Members: Temperature Sensor (Enumeration)

```
typedef enum e_adc_temp
{
    /* Refer to the table below for the members. */
} adc_temp_t;
```

Member	Description
ADC_TEMP_SENSOR_NOT_AD_CONVERTE	No A/D conversion is performed on the temperature
U	sensor output.
ADC_TEMP_SENSOR_AD_CONVERTED	A/D conversion is performed on the temperature sensor output in single scan mode and in group A in group scan mode.
ADC_TEMP_SENSOR_AD_CONVERTED_GR OUPB	A/D conversion is performed on the temperature sensor output in group B in group scan mode.
ADC_TEMP_SENSOR_AD_CONVERTED_GR OUPC	A/D conversion is performed on the temperature sensor output in group C in group scan mode.

(i) 3rd Argument Structure Members: Temperature Sensor Addition/Average Mode (Enumeration)

```
typedef enum e_adc_add_temp
{
    /* Refer to the table below for the members. */
} adc_add_temp_t;
```

Member	Description
ADC_TEMP_SENSOR_ADD_OFF	The temperature sensor's addition/average mode is not used.
ADC_TEMP_SENSOR_ADD_ON	The temperature sensor's addition/average mode is used.

(j) 3rd Argument Structure Members: Number of cycles required for conversion per bit (Enumeration)

```
typedef enum e_adc_cycle
{
    /* Refer to the table below for the members. */
} adc cycle t;
```

Member	Description
ADC_CONVERT_3CYCLES	The number of cycles required for conversion per bit is 3 cycles.
ADC_CONVERT_2CYCLES	The number of cycles required for conversion per bit is 2 cycles.

2.9.3 Structures and Enumerations Used as Arguments for R_ADC_Control Function

(1) 2nd Argument: R_ADC_Control Function Command (Enumeration)

```
typedef enum e_adc_cmd
{
    /* Refer to the table below for the members. The members available for
        use differ depending on the MCU. */
} adc_cmd_t;
```

What is specified using the 3rd argument (p_args) of the R_ADC_Control function will differ depending on the command used. A list of commands and the MCUs on which they can be used is presented below. For commands that do not use parameters, specify FIT_NO_PTR as the 3rd argument of the R_ADC_Control function.

Member	Description
ADC_CMD_USE_INT_VOLT_AS_HVRE	Uses the internal reference voltage as the high-side reference
F	voltage.
	No parameters are used.
ADC_CMD_USE_VREFL0	Uses VREFL0 as the low-side reference voltage.
	No parameters are used.
ADC_CMD_USE_VREFH0	Uses VREFH0 as the high-side reference voltage.
	No parameters are used.
ADC_CMD_SET_DDA_STATE_CNT	Configures the A/D disconnection detection assist function.
	Specify the disconnection detection configuration structure
	(adc_dda_t) as the parameter.
ADC_CMD_SET_SAMPLE_STATE_CNT	Changes the number of A/D sampling states.
	Specify the sampling state configuration structure (adc_time_t
ADO OMB ENABLE OLIANO	or adc_sst_t) as the parameter.
ADC_CMD_ENABLE_CHANS	Specifies the A/D conversion channel.
	Specify the conversion channel configuration structure
ADC CMD ENABLE TEMP SENSOR	(adc_ch_cfg_t) as the parameter.
ADO_CIVID_LIVABLE_I EIVIF_SENSOR	Enables the temperature sensor. No parameters are used.
ADC CMD ENABLE VOLT SENSOR	Enables the internal reference voltage sensor.
//BO_OMB_ENVISEE_VOET_OFINGOR	No parameters are used.
ADC_CMD_EN_COMPARATOR_LEVEL	Specifies that the comparison function is used with the window
/ 15 0_0 m 5_2 n _ 0 0 m / 11 0 n _ 22 v 22	function disabled (threshold comparison).
	Specify the comparison function configuration structure
	(adc_cmpwin_t) as the parameter.
ADC_CMD_EN_COMPARATOR_WIND	Specifies that the comparison function is used with the window
OW	function enabled (range comparison).
	Specify the comparison function configuration structure
	(adc_cmpwin_t) as the parameter.
ADC_CMD_COMP_COMB_STATUS	Gets the window A/B complex condition result.
	Specify a pointer to the combination result monitor (adc_comp_stat_t) variable as the parameter.
ADC CMD ENABLE TRIG	Enables A/D conversion start by synchronous or asynchronous
ADC_CIMD_ENABLE_TRIG	trigger.
	No parameters are used.
ADC CMD SCAN NOW	Enables A/D conversion start by software trigger.
	No parameters are used.
ADC CMD CHECK SCAN DONE	Checks whether A/D conversion is in progress in single scan
	mode.
	No parameters are used.
ADC_CMD_CHECK_SCAN_DONE_GR	Checks whether A/D conversion of group A is in progress in
OUPA	group scan mode.
ADO OND OUTON COMMITTEE	No parameters are used.
ADC_CMD_CHECK_SCAN_DONE_GR	Checks whether A/D conversion of group B is in progress in
OUPB	group scan mode.
ADC CMD CHECK SCAN DONE GR	No parameters are used. Checks whether A/D conversion of group C is in progress in
OUPC	group scan mode.
	No parameters are used.
ADC CMD CHECK CONDITION MET	Gets the comparison result produced by the comparison
	function.*1
	Specify a pointer to the uint32_t variable storing the comparison
	result as the parameter.

Member	Description
ADC_CMD_CHECK_CONDITION_METB	Gets the comparison result produced by the group B
	comparison function.*1
	Specify a pointer to the uint32_t variable storing the comparison result as the parameter.
ADC_CMD_DISABLE_TRIG	Disables A/D conversion start by synchronous or asynchronous
	trigger.
	No parameters are used.
ADC_CMD_DISABLE_INT	Disables the S12ADI interrupt.
	No parameters are used.
ADC_CMD_ENABLE_INT	Enables the S12ADI interrupt.
	No parameters are used.
ADC_CMD_DISABLE_INT_GROUPB	Disables the GBADI/S12GBADI interrupt.
	No parameters are used.
ADC_CMD_ENABLE_INT_GROUPB	Enables the GBADI/S12GBADI interrupt.
	No parameters are used.
ADC_CMD_DISABLE_INT_GROUPC	Disables the S12GCADI interrupt.
	No parameters are used.
ADC_CMD_ENABLE_INT_GROUPC	Enables the S12GCADI interrupt.
	No parameters are used.

Note 1. After execution of this command, the comparison result is initialized to 0 (comparison condition not met). Therefore, this command must be executed once only after A/D conversion completes.

(2) 3rd Argument: Disconnection Detection Assist (Structure)

```
typedef struct st_adc_dda
{
    /* Refer to the table below for the members. The members available for
        use differ depending on the MCU. */
} adc_dda_t;
```

Member	Description
adc_charge_t method	Makes disconnection detection assist (discharge/precharge) settings.
uint8_t num_states	Sets the number of states in the discharge/precharge period. The lower limit value for the number of states in the discharge/precharge period differs depending on the MCU. Check the user's manual before making the setting. A setting of 0 disables the disconnection detection assist function.

(a) 3rd Argument Structure Members: Discharge/Precharge (Enumeration)

```
typedef enum e_adc_charge
{
    /* Refer to the table below for the members. The members available for
        use differ depending on the MCU. */
} adc_charge_t;
```

Member	Description
ADC_DDA_DISCHARGE	Selects discharge.
ADC_DDA_PRECHARGE	Selects precharge.
ADC_DDA_OFF	The disconnection detection function is not used.

(3) 3rd Argument: Sampling States (Structure)

Member	Description
adc_sst_reg_t reg_id	Selects the channel to which the sampling state setting is applied.
uint8_t num_states	Sets the number of sampling states. The lower limit value for the number of sampling states differs depending on the MCU. Check the user's manual before making the setting.

(a) 3rd Argument Structure Members: Sampling State Setting Channel (Enumeration)

```
typedef enum e_adc_sst_reg
{
    /* Refer to the table below for the members. The members available for
        use differ depending on the MCU. */
} adc_sst_reg_t;
```

Member	Description
ADC_SST_CHn	Selects channel n.*1
(n = channel number)	Only channels implemented on your MCU may be selected.
ADC_SST_CHi_TO_j	Selects channels i to j.*1
(j and i = channel numbers)	
ADC_SST_TEMPERATURE	Selects the temperature sensor.
ADC_SST_VOLTAGE	Selects the internal reference voltage.

Note 1. The available channels differ depending on the MCU and the pin count.

(4) 3rd Argument: Conversion Channel (Structure)

```
typedef struct st_adc_ch_cfg
      /\!\!\!\!^\star Refer to the table below for the members. The members available for
         use differ depending on the MCU. */
} adc ch cfg t;
```

Member	Description
uint32_t chan_mask	Selects the channels to be used.*1*2
uint32_t chan_mask_groupb	Selects the channels to be used by group B.*1*2
	If group B is not used, specify ADC_MASK_GROUPB_OFF.
uint32_t chan_mask_groupc	Selects the channels to be used by group C.*1*2
	If group C is not used, specify ADC_MASK_GROUPC_OFF.
adc_grpa_t priority_groupa	Configures group priority control operation.
uint32_t add_mask	Selects the channels to be used in addition mode.*1*3
	If addition mode is not used, specify ADC_MASK_ADD_OFF.
	If addition mode is used, select from among the channels
	selected by chan_mask.
adc_diag_t diag_method	Configures the self-diagnostic mode.
adc_elc_t signal_elc	Sets the generation condition for the ELC scan-end event.
bool anex_enable	Specifies whether or not the extended analog input (ANEX1) is used.
uint8_t sample_hold_mask	Selects the channels to be used by the sample-and-hold circuit.*1
	Select channels used by the channel-dedicated sample-and-hold from among channels 0 to 2.
uint8_t sample_hold_states	Sets the sampling time.
	The lower limit value for the sampling time differs depending on the MCU. Check the user's manual before making the setting.
adc_conv_order_stat_t conv_order_status	Selects the channel conversion order setting method.
uint32_t conversion_order[]	Sets the channel conversion order.
	For the channel conversion order setting, use ADC_MASK_CHn
	(n being the channel number) or ADC_MASK_CONV_ORDER_OFF.*4*5*6*7
	Check the user's manual before setting the channel conversion order.
adc_path_ctrl_t_signal_path control[]	Sets the analog signal and PGA output destination.
adc_pga_amp_t pga_amp[]	Sets the amplifier in the PGA.
adc_pga_gain_t pga_gain[]	Sets the PGA gain.

- Note 1. As the channel designation, use ADC_MASK_CHn (n being the channel number), ADC_MASK_TEMP (temperature sensor), ADC_MASK_VOLT (internal reference voltage sensor), or a combination.
 - Example: (ADC_MASK_CH1 | ADC_MASK_CH3 | ADC_MASK_CH5)
- Note 2. If "A/D conversion is performed on the temperature sensor output" is selected for 2.9.2(2)(g), 3rd Argument Structure Members: Temperature Sensor (Enumeration), specify ADC_MASK_TEMP.
- Note 3. If "The temperature sensor's addition/average mode is used" is selected for 2.9.2(2)(h) 3rd Argument Structure Members: Temperature Sensor Addition/Average Mode (Enumeration), specify ADC_MASK_TEMP.
- Note 4. Specify all channels selecting as conversion targets by the A/D channel select register.
- Note 5. Set the channel conversion order starting with conversion_order[0], and set any leftover variables to ADC_MASK_CONV_ORDER_OFF.
- Note 6. Do not specify the same channel.
- Note 7. The setting value has no effect when conv_order_status is set to ADC_CONV_ORDER_AUTO_SETTING.

(a) 3rd Argument Structure Members: Group Priority Control (Enumeration)

```
typedef enum e_adc_grpa
{
    /* Refer to the table below for the members. The members available for
        use differ depending on the MCU. */
} adc grpa t;
```

Member	Description
ADC_GRPA_PRIORITY_OFF	No priority control operation is performed.
ADC_GRPA_GRPB_WAIT_TRIG	[Maximum group count of 2]
	Priority control is applied to group A, and no restart occurs after
	A/D conversion on group B is interrupted.
ADC_GRPA_GRPB_RESTART_SCAN	[Maximum group count of 2]
	Priority control is applied to group A, and a restart occurs after
	A/D conversion on group B is interrupted.*1
ADC_GRPA_GRPB_CONT_SCAN	[Maximum group count of 2]
	Continuous single scan operation is performed on group B.
	(Group A operation has priority when an A/D conversion request
	for group A is generated.)
ADC_GRPA_GRPB_GRPC_WAIT_TRIG	[Maximum group count of 3]
	Group priority control is applied, and no restart occurs after A/D
100 0004 0000 0000 700 0007	conversion on a low-priority group is interrupted.
ADC_GRPA_GRPB_GRPC_TOP_REST	[Maximum group count of 3]
ART_SCAN	Group priority control is applied, and a restart occurs from the
	first channel after A/D conversion on a low-priority group is interrupted.*1
ADC_GRPA_GRPB_GRPC_RESTART_	[Maximum group count of 3]
TOP_CONT_SCAN	Continuous single scan operation is performed on the lowest-priority group.
	Group priority control is applied, and a restart occurs from the
	first channel after A/D conversion on a low-priority group is
	interrupted.*1
ADC_GRPA_GRPB_GRPC_RESTART_	[Maximum group count of 3]
SCAN	Group priority control is applied, and a restart occurs from the
	unfinished channel after A/D conversion on a low-priority group
	is interrupted.*1

Member	Description
ADC_GRPA_GRPB_GRPC_TOP_CONT	[Maximum group count of 3]
_SCAN	Continuous single scan operation is performed on the lowest-priority group.
	Group priority control is applied, and no restart occurs after A/D conversion on a low-priority group is interrupted.
ADC_GRPA_GRPB_GRPC_RESTART_	[Maximum group count of 3]
CONT_SCAN	Continuous single scan operation is performed on the lowest-priority group.
	Group priority control is applied, and a restart occurs from the unfinished channel after A/D conversion on a low-priority group is interrupted.*1

Note 1. When making this setting on the S12ADC, S12ADE, or S12ADFa, ensure that the frequency ratio of the peripheral module clock (PCLK) and A/D conversion clock (ADCLK) is 1:1. For details, see the user's manual.

(b) 3rd Argument Structure Members: Self-Diagnostic (Enumeration)

```
typedef enum e_adc_diag
{
    /* Refer to the table below for the members. The members available for
        use differ depending on the MCU. */
} adc_diag_t;
```

Member	Description
ADC_DIAG_OFF	The self-diagnostic function is not used.
ADC_DIAG_0_VOLT	A self-diagnostic test using a voltage of 0 V is performed.
ADC_DIAG_HALF_VREFH0	A self-diagnostic test using a voltage of (reference voltage \times 1/2) is performed.
ADC_DIAG_VREFH0	A self-diagnostic test using the reference voltage is performed.
ADC_DIAG_ROTATE_VOLTS	Self-diagnostic rotation mode is used.

(c) 3rd Argument Structure Members: ELC Event Output Condition (Enumeration)

```
typedef enum e_adc_elc
{
    /* Refer to the table below for the members. The members available for
    use differ depending on the MCU. */
} adc elc t;
```

Member	Description
ADC_ELC_SCAN_DONE	Event output when scanning of group A completes
ADC_ELC_GROUPA_SCAN_DONE	
ADC_ELC_GROUPB_SCAN_DONE	Event output when scanning of group B completes
ADC_ELC_ALL_SCANS_DONE	Event output when all scanning completes
ADC_ELC_ANY_ONE_OF_SCAN_DON	Event output when scanning of a group completes (event output
E	when scanning of group A, group B, or group C completes)
ADC_ELC_GROUPC_SCAN_DONE	Event output when scanning of group C completes

(d) 3rd Argument Structure Members: Channel Conversion Order (Enumeration)

```
typedef enum e_adc_conv_order_stat
{
    /* Refer to the table below for the members. */
} adc_conv_order_stat_t;
```


Member	Description
ADC_CONV_ORDER_AUTO_SETTING	A/D conversion is performed on channels selected as conversion targets by the A/D channel select registers in order, starting from the lowest channel number.
	In this case, the conversion_order[] setting has no effect.
ADC_CONV_ORDER_MANUAL_SETTI	A/D conversion is performed in the order specified by the user
NG	(the order specified by conversion_order[]).

(e) 3rd Argument Structure Members: Signal Path Control (Enumeration)

```
typedef enum e_adc_path_ctrl
{
    /* Refer to the table below for the members. */
} adc_path_ctrl_t;
```

Member	Description
ADC_ANALOG_INPUT_1	Input analog pin signal to A/D converter.
ADC_ANALOG_INPUT_2	Input analog pin signal to CMPCm0.
ADC_ANALOG_INPUT_3	Input analog pin signal to A/D converter and CMPCm0.
ADC_PGA_SINGLE_END_INPUT_1	Input analog pin signal to CMPCm0, and input PGA signal to CMPCm1.
ADC_PGA_SINGLE_END_INPUT_2	Input analog pin signal to A/D converter and CMPCm0, and input single-end input setting PGA output to CMPCm1.
ADC_PGA_SINGLE_END_INPUT_3	Input analog pin signal to CMPCm0, and input single-end input setting PGA output to A/D converter and CMPCm1.
ADC_PGA_DIFFERENTIAL_INPUT_1	Input pseudo-differential input setting PGA output to CMPCm1.
ADC_PGA_DIFFERENTIAL_INPUT_2	Input analog pin signal to A/D converter, and input pseudo-differential input setting PGA output to CMPCm1.
ADC_PGA_DIFFERENTIAL_INPUT_3	Input pseudo-differential input setting PGA output to A/D converter and CMPCm1.
ADC_GENERAL_PORT_1	Use a general input port. (No signal input to A/D converter, CMPCm0, and CMPCm1.)

(f) 3rd Argument Structure Members: PGA Gain (Enumeration)

```
typedef enum e_adc_pga_gain
{
    /* Refer to the table below for the members. */
} adc_pga_gain_t;
```

Member	Description
ADC_PGA_GAIN_OFF	No PGA gain setting.*1
ADC_PGA_GAIN_2_000	PGA single-end input × 2.000*2
ADC_PGA_GAIN_2_500	PGA single-end input × 2.500*2
ADC_PGA_GAIN_3_077	PGA single-end input × 3.077*2
ADC_PGA_GAIN_3_636	PGA single-end input × 3.636*2
ADC_PGA_GAIN_4_000	PGA single-end input × 4.000*2
ADC_PGA_GAIN_4_444	PGA single-end input × 4.444*2
ADC_PGA_GAIN_5_000	PGA single-end input × 5.000*2
ADC_PGA_GAIN_6_667	PGA single-end input × 6.667*2
ADC_PGA_GAIN_8_000	PGA single-end input × 8.000*2
ADC_PGA_GAIN_10_000	PGA single-end input × 10.000*2
ADC_PGA_GAIN_13_333	PGA single-end input × 13.333*2
ADC_PGA_GAIN_20_000	PGA single-end input × 20.000*2
ADC_PGA_GAIN_1_500_DIFF	PGA pseudo-differential input × 1.500*3
ADC_PGA_GAIN_4_000_DIFF	PGA pseudo-differential input × 4.000*3
ADC_PGA_GAIN_7_000_DIFF	PGA pseudo-differential input × 7.000*3
ADC_PGA_GAIN_12_333_DIFF	PGA pseudo-differential input × 12.333*3

- Note 1. Select this if the PGA will not be used (if ADC_ANALOG_INPUT_n or ADC_GENERAL_PORT_n are selected by signal path control).
- Note 2. Select this if PGA single-end input will be used. (if ADC_PGA_SINGLE_END_INPUT_n is selected by signal path control)
- Note 3. Select this if PGA pseudo-differential input will be used. (if ADC_PGA_DIFFERENTIAL_INPUT_n is selected by signal path control)

(g) 3rd Argument Structure Members: PGA amplifier settings (Enumeration)

```
typedef enum e_adc_pga_amp
{
    /* Refer to the table below for the members. */
} adc pga amp t;
```

Member	Description
ADC_PGA_NOT_USE	Does not use the amplifier in the PGA.
ADC_PGA_USE	Uses the amplifier in the PGA.

(h) 3rd Argument Structure Members: PGA Gain (Enumeration)

```
typedef enum e_adc_pga_gain
     /* Refer to the table below for the members. */
} adc_pga_gain_t;
```

Member	Description
ADC_PGA_GAIN_2_000	PGA single-end input × 2.000*1
ADC_PGA_GAIN_2_500	PGA single-end input × 2.500
ADC_PGA_GAIN_3_077	PGA single-end input × 3.077
ADC_PGA_GAIN_5_000	PGA single-end input × 5.000
ADC_PGA_GAIN_8_000	PGA single-end input × 8.000
ADC_PGA_GAIN_10_000	PGA single-end input × 10.000

Note 1. Select this if the PGA will not be used.

(5) 3rd Argument: Comparison Function (Structure)

```
typedef struct st_adc_cmpwin_cfg
{
    /* Refer to the table below for the members. The members available for
        use differ depending on the MCU. */
} adc_cmpwin_t;
```

Member	Description
uint32_t compare_mask	Selects the channels used by the window A comparison function.*1
uint32_t compare_maskb	Selects the channels used by the window B comparison function.*2
uint32_t inside_window_mask	Selects a compare condition for each channel of window A. Bit n corresponds to channel n.
	Window function disabled (ADC_CMD_EN_COMPARATOR_LEVEL command) 0: Match when level_lo > A/D-converted value. 1: Match when level_lo < A/D-converted value.
	Window function enabled (ADC_CMD_EN_COMPARATOR_WINDOW command) 0: Match when A/D-converted value < level_lo or level_hi
uint32_t inside_window_maskb	Selects compare conditions for window B.
	Window function disabled (ADC_CMD_EN_COMPARATOR_LEVEL command) ADC_COMP_WINB_COND_BELOW: Match when level_lo > A/D-converted value. ADC_COMP_WINB_COND_ABOVE: Match when level_lo < A/D-converted value.
	Window function enabled (ADC_CMD_EN_COMPARATOR_WINDOW command) ADC_COMP_WINB_COND_BELOW: Match when A/D-converted value < level_lo or level_hi < A/D-converted value. ADC_COMP_WINB_COND_ABOVE:
uint16_t level_lo	Match when level_lo < A/D-converted value < level_hi. Sets the lower level for compare window A.*3
uint16_t level_lob	Sets the lower level for compare window A. Sets the lower level for compare window B.* This setting only has an effect when using the ADC_CMD_EN_COMPARATOR_WINDOW command.
uint16 t level hi	Sets the upper level for compare window A.*3
uint16_t level_hib	Sets the upper level for compare window 7.: This setting only has an effect when using the ADC_CMD_EN_COMPARATOR_WINDOW command.
adc_comp_cond_t comp_cond	Sets the window A/B complex condition.
unit8_t int_priority	Sets the priority (0 to 15) of the S12CMPAI interrupt and S12CMPBI interrupt. Specifying 0 disables the S12CMPAI interrupt and S12CMPBI interrupt.

Member	Description
bool windowa_enable	Enables/disables the compare window A function.
bool windowb_enable	Enables/disables the compare window B function.

- Note 1. As the channel designation, use ADC_MASK_CHn (n being the channel number), ADC_MASK_TEMP (temperature sensor), ADC_MASK_VOLT (internal reference voltage sensor), or a combination.
 - Example: (ADC_MASK_CH1 | ADC_MASK_CH3 | ADC_MASK_CH5)
- Note 2. As the window B channel designation, use ADC_COMP_WINB_CHn (n being the channel number), ADC_COMP_WINB_TEMP (temperature sensor), or ADC_COMP_WINB_VOLT (internal reference voltage sensor).
- Note 3. The setting details will differ depending on the A/D data register format (right-justified/left-justified), A/D conversion precision, and A/D-converted value addition mode settings. For details, refer to the hardware manual of your MCU.

(a) 3rd Argument Structure Members: Window A/B Complex Condition (Enumeration)

```
typedef enum e_adc_comp_cond
{
    /* Refer to the table below for the members. */
} adc_comp_cond_t;
```

Member	Description
ADC_COND_OR	Window A comparison condition met OR window B comparison condition met.
ADC_COND_EXOR	Window A comparison condition met EXOR window B comparison condition met.
ADC_COND_AND	Window A comparison condition met AND window B comparison condition met.

(6) 3rd Argument: Window A/B Combination Result (Enumeration)

```
typedef enum e_adc_comp_stat
{
    /* Refer to the table below for the members. */
} adc comp stat t;
```

Member	Description
ADC_COMP_COND_NOTMET	Window A/B complex condition not met.
ADC_COMP_COND_MET	Window A/B complex condition met.

2.9.4 Structures and Enumerations Used as Arguments for R_ADC_Read Function

(1) 2nd Argument: Conversion Result Read Channel (Enumeration)

```
typedef enum e_adc_reg
{
    /* Refer to the table below for the members. The members available for
        use differ depending on the MCU. */
} adc_reg_t;
```

Member	Description
ADC_REG_CHn	Specifies the channel n A/D-converted value.*1
(n = channel number)	
ADC_REG_TEMP	Specifies the temperature sensor A/D-converted value.
ADC_REG_VOLT	Specifies the internal reference voltage sensor A/D-converted value.
ADC_REG_DBLTRIG	Specifies the double trigger A/D-converted value.
ADC_REG_DBLTRIGA	Specifies the A/D-converted value in double trigger extended mode (ADDBLDRA register).
ADC_REG_DBLTRIGB	Specifies the A/D-converted value in double trigger extended mode (ADDBLDRB register).
ADC_REG_SELF_DIAG	Specifies the self-diagnostic A/D-converted value.

Note 1. The available channels differ depending on the MCU and the pin count.

2.9.5 Structures and Enumerations Used as Arguments for R_ADC_ReadAll Function (1) 1st Argument: Structure for Storing Conversion Result (Structure)

```
typedef struct st_adc_data
{
    /* Refer to the table below for the members. The members available for
        use differ depending on the MCU. */
} adc_data_t;
```

Member	Description
uint16_t chan[ADC_n_REG_ARRAY_MAX]	Stores the A/D conversion result of each channel.*1
(n = channel number)	
uint16t temp	Stores the temperature sensor A/D conversion result.
uint16t volt	Stores the internal reference voltage A/D conversion result.
uint16t dbltrig	Stores the double trigger A/D conversion result.
uint16t self_diag	Stores the self-diagnostic A/D conversion result.
adc_unitM_data_t unitM	Structure for storing A/D conversion results for each unit.*2
(M = unit number)	

- Note 1. For the channel specification, use ADC_REG_CHn (n being the channel number).
- Note 2. If there are multiple units, provide a separate structure for storing A/D conversion results for each unit.

(a) 1st Argument Structure Members: Structure for Storing Conversion Results for Each Unit (Structure)

```
typedef struct st_adc_unitM_data /* M = unit number */
{
    /* Refer to the table below for the members. The members available for
        use differ depending on the MCU. */
} adc_unitM_data_t; /* M = unit number */
```

Member	Description
uint16_t chan[ADC_n_REG_ARRAY_MAX]	Stores the A/D conversion result of each channel.*1
(n = channel number)	
uint16_t temp	Stores the temperature sensor A/D conversion result.
uint16_t volt	Stores the internal reference voltage A/D conversion result.
uint16_t dbltrig	Stores the double trigger A/D conversion result.
uint16_t dbltrigA	Stores the A/D conversion result in double trigger extended mode (ADDBLDRA register).
uint16_t dbltrigB	Stores the A/D conversion result in double trigger extended mode (ADDBLDRB register).
uint16_t self_diag	Stores the self-diagnostic A/D conversion result.

Note 1. For the channel specification, use ADC REG CHn (n being the channel number).

2.10 Return Values

These are the different error codes API functions can return. The enum is found in r_s12ad_rx_if.h along with the API function declarations.

```
typedef enum e adc err
                            // ADC API error codes
    ADC SUCCESS = 0,
    ADC ERR AD LOCKED,
                                 // Open() call is in progress elsewhere
    ADC ERR AD NOT CLOSED,
                                 // peripheral still running in another mode
                                 // missing required pointer argument
    ADC ERR MISSING PTR,
                              // argument is not valid for parameter
    ADC ERR INVALID ARG,
    ADC_ERR_ILLEGAL_ARG,
                               // argument is illegal for mode
    ADC_ERR_SCAN_NOT_DONE, // default, Group A, or Group B scan not done
ADC_ERR_TRIG_ENABLED, // scan running, cannot configure comparator
    ADC ERR CONDITION NOT MET, // no chans/sensors passed comparator condition
    ADC ERR CONFIGURABLE INT, // vector number of software configurable
                                 // interrupt B is out of range.
    ADC ERR UNKNOWN
                                 // Discharge of the high-side reference voltage
                                 // path is not completed. (RX113 only)
} adc err t;
```

2.11 Callback Functions

The ADC FIT module calls the user-specified callback function when a scan-end interrupt (S12ADIn, S12GBADIn, S12GCADIn, or GBADIn) or compare condition-met interrupt (S12CMPAIn or S12CMPBIn) occurs.

The callback function is specified using the R_ADC_Open function. For details, refer to 3.1, R_ADC_Open().

2.12 Adding the FIT Module to Your Project

This module must be added to each project in which it is used. Renesas recommends the method using the Smart Configurator described in (1) or (3) or (5) below. However, the Smart Configurator only supports some RX devices. Please use the methods of (2) or (4) for RX devices that are not supported by the Smart Configurator.

- (1) Adding the FIT module to your project using the Smart Configurator in e² studio
 By using the Smart Configurator in e² studio, the FIT module is automatically added to your project.
 Refer to "RX Smart Configurator User's Guide: e² studio (R20AN0451)" for details.
- (2) Adding the FIT module to your project using the FIT Configurator in e² studio
 By using the FIT Configurator in e² studio, the FIT module is automatically added to your project.
 Refer to "RX Family Adding Firmware Integration Technology Modules to Projects (R01AN1723)" for details.
- (3) Adding the FIT module to your project using the Smart Configurator in CS+ By using the Smart Configurator Standalone version in CS+, the FIT module is automatically added to your project. Refer to "RX Smart Configurator User's Guide: CS+ (R20AN0470)" for details.
- (4) Adding the FIT module to your project in CS+ In CS+, please manually add the FIT module to your project. Refer to "RX Family Adding Firmware Integration Technology Modules to CS+ Projects (R01AN1826)" for details.
- (5) Adding the FIT module to your project using the Smart Configurator in IAREW By using the Smart Configurator Standalone version, the FIT module is automatically added to your project. Refer to "RX Smart Configurator User's Guide: IAREW (R20AN0535)" for details.

2.13 "for", "while" and "do while" statements

In this module, "for", "while" and "do while" statements (loop processing) are used in processing to wait for register to be reflected and so on. For these loop processing, comments with "WAIT_LOOP" as a keyword are described. Therefore, if user incorporates fail-safe processing into loop processing, user can search the corresponding processing with "WAIT_LOOP".

The following shows example of description.

```
while statement example :

/* WAIT_LOOP */
while(0 == SYSTEM.OSCOVFSR.BIT.PLOVF)

{
    /* The delay period needed is to make sure that the PLL has stabilized. */
}

for statement example :

/* Initialize reference counters to 0. */

/* WAIT_LOOP */

for (i = 0; i < BSP_REG_PROTECT_TOTAL_ITEMS; i++)

{
    g_protect_counters[i] = 0;
}

do while statement example :

/* Reset completion waiting */

do

{
    reg = phy_read(ether_channel, PHY_REG_CONTROL);
    count++;
} while ((reg & PHY_CONTROL_RESET) && (count < ETHER_CFG_PHY_DELAY_RESET)); /* WAIT_LOOP */
```

3. API Functions

3.1 R_ADC_Open()

This function initializes the 12-bit A/D converter. This function must be run before calling any other API function.

Format

Parameters

unit

Unit number. Set this to 0 if your MCU supports only one unit.

mode

Operating mode. For information on operating modes, refer to 2.9.2 (1), 2nd Argument: Operating Mode (Enumeration).

p_cfg

Pointer to the configuration structure of the 12-bit A/D converter function. For information on the function configuration structure, refer to 2.9.2 (2), 3rd Argument: Function Settings (Structure).

p callback

Optional pointer to function called from interrupt when a scan completes or a comparator condition is met. When not using this parameter, set FIT_NO_PTR.

Return Values

ADC_SUCCESS: Successful

ADC_ERR_AD_LOCKED: Open() call is in progress elsewhere

ADC_ERR_AD_NOT_CLOSED: Peripheral is still running in another mode; Perform R_ADC_Close()

first

ADC_ERR_INVALID_ARG: Element of p_cfg structure has invalid value

ADC_ERR_ILLEGAL_ARG: an argument is illegal based upon mode

ADC_ERR_MISSING_PTR: p_cfg pointer is FIT_NO_PTR/NULL

ADC ERR CONFIGURABLE INT Vector number of software configurable interrupt B is out of range

Properties

Prototyped in file "r s12ad rx if.h"

Description

Applies power to the A/D peripheral, sets the operational mode, trigger sources, interrupt priority, and configurations common to all channels and sensors. With a non-zero interrupt priority (interrupt usage), a callback function is called by the interrupts whenever a scan has completed or a comparator condition is met. When setting the interrupt priority to 0, a callback function is not called. In this case, poll for scan completion with the R_ADC_Control() function when necessary.

To set values of parameters used in this function, first clear all members of parameters to 0, and then set values.

Example (S12ADb)

```
adc cfg t config;
/* Clear all members of the adc cfg t structure */
memset(&config, 0, sizeof(config));
    /* INITIALIZE FOR SINGLE SCAN OF TEMPERATURE SENSOR
     * - use software trigger to start scan; poll for completion
     * - don't do any summing of conversion values
     * - keep the data registers aligned right, and clear after reading is off
    * - use normal speed conversion
    */
    config.trigger = ADC TRIG SOFTWARE;
    config.priority = 0;
                                        // denotes polling!
    config.add cnt = ADC ADD OFF;
    config.alignment = ADC ALIGN RIGHT;
    config.clearing = ADC CLEAR AFTER READ OFF;
   config.conv speed = ADC CONVERT SPEED NORM;
   R ADC Open (0, ADC MODE SS TEMPERATURE, &config, FIT NO FUNC);
```

Special Notes (RX Family Common):

Please initialize MPC and PORT after calling R_ADC_Open(). Refer to the User's Manual: Hardware about limitations of using output pins on the same port as analog pins. The following is a sample initialization for an RSKRX111 Rev 1 board:

The application must set the A/D conversion clock prior to calling R ADC Open() function.

To stop A/D conversion which is started in continuous scan mode, call the R ADC Close function.

If continuous scan mode is selected, it is recommended not to use the S12ADI interrupt since scan completion occurs continuously. That causes the majority of the processing time to be spent at the interrupt level.

If interrupts are in use, a callback function is required which takes a single argument. This is a pointer to a structure which is cast to a void pointer (provides consistency with other FIT module callback functions). Cast to the adc_cb_args_t pointer in the interrupt handling. See 2.9.1 (1) (a), 1st Argument Structure Members: Callback Function Events (Enumeration) for details on 'adc_cb_args_t'.

An example template for a callback function is provided here:

```
void MyCallback(void *p_args)
{
   adc_cb_args_t *args;

   args = (adc_cb_args_t *)p_args;

   if (args->event == ADC_EVT_SCAN_COMPLETE)
   {
      // Read results here
      nop();
   }
   else if (args->event == ADC_EVT_GROUPB_SCAN_COMPLETE)
   {
      // Read Group B results here
      nop();
   }
   else if (args->event == ADC_EVT_CONDITION_MET)
   {
      // Process chans/sensors indicated in args->compare_flags
      nop();
   }
}
```

Special Notes (S12ADb, S12ADC, S12ADE, S12ADF, S12ADFa, S12ADH, S12ADHa):

After the R_ADC_Open() function is executed, wait at least 1 µs before executing A/D conversion.

Special Notes (S12ADC, S12ADFa, S12ADH, S12ADHa):

The interrupt vector number of the unit to be used must be set. Even when interrupts are not used, the interrupt vector numbers must be set. If the unit is not used, there is no need to set a interrupt vector number of the unused units.

S12AD interrupt is a software configurable interrupt B. The interrupt vector number of software configurable interrupt B is set in $r_bsp_interrupt_config.h$ and can be assigned in the range of 128 to 207.

The following is an example of using unit 0 and not using unit 1 on the RX72M.

3.2 R_ADC_Control()

This function makes 12-bit A/D converter function settings and acquires the interrupt control and A/D converter start/stop state.

Format

Parameters

unit

Unit number. Set this to 0 if your MCU supports only one unit.

cmd

Command to run. For commands and the arguments used with them, refer to 2.9.3, Structures and Enumerations Used as Arguments for R_ADC_Control Function.

p_args

Pointer to optional configuration structure. Clear all members of the argument to 0 before setting values to them. If the command requires no argument, set FIT_NO_PTR.

Return Values

ADC_SUCCESS: Successful

ADC_ERR_MISSING_PTR: p_args pointer is FIT_NO_PTR/NULL when required as an

argument

ADC_ERR_INVALID_ARG: Invalid value is specified to p_args structure

ADC_ERR_ILLEGAL_ARG: cmd is illegal based upon mode

ADC ERR SCAN NOT DONE: The requested scan has not completed

ADC_ERR_TRIG_ENABLED: Cannot configure comparator because scan still running

ADC_ERR_CONDITION_NOT_MET: No channels/sensors met the comparison condition

ADC ERR UNKNOWN: Discharge of the high-side reference voltage path is not completed.

(RX113 only)

Properties

Prototyped in file "r_s12ad_rx_if.h"

Description

Provides commands for enabling channels and sensors and for runtime operations. These include enabling/disabling trigger sources and interrupts, initiating a software trigger, and checking for scan completion.

After the R_ADC_Open function is called, the commands listed below can be issued by using the R_ADC_Control function.

Only the necessary commands should be issued, and in the order indicated by the No. column below. For the arguments of the R_ADC_Control function, refer to 2.9.3, Structures and Enumerations Used as Arguments for R_ADC_Control Function.

No.	Command	Description
1	ADC_CMD_SET_DDA_STATE_CNT	Configures the A/D disconnection detection assist function. Issue this command if the disconnection detection
		assist function will be used.
2	ADC_CMD_SET_SAMPLE_STATE_CNT	Specifies the A/D sampling number of states.
		Issue this command to change the value of the ADSSTRn register from the default.
3	ADC_CMD_USE_VREFH0	Sets the high-side reference voltage to VREFH0. AVCC0 is selected after the R_ADC_Open function is called. Issue this command to select VREFH0 instead.
4	ADC_CMD_USE_VREFL0	Sets the low-side reference voltage to VREFL0. AVSS0 is selected after the R_ADC_Open function is called. Issue this command to select VREFL0 instead.
5	ADC_CMD_ENABLE_CHANS	Selects and configures the channels on which A/D conversion is performed. No A/D conversion channels are selected after a reset. Issue this command before A/D conversion starts.
6	ADC_CMD_ENABLE_TEMP_SENSOR	Enables the temperature sensor. Issue this command if the temperature sensor will be used.
7	ADC_CMD_ENABLE_VOLT_SENSOR	Enables the internal reference voltage sensor. Issue this command if the internal reference voltage sensor will be used.
8	ADC_CMD_EN_COMPARATOR_LEVEL	Specifies that the comparison function is used with the window function disabled (threshold comparison). Issue this command if the comparison function will be used.
9	ADC_CMD_EN_COMPARATOR_WINDOW	Specifies that the comparison function is used with the window function enabled (range comparison). Issue this command if the comparison function will be used.
10	ADC_CMD_ ENABLE _TRIG	Enables A/D conversion start by synchronous or asynchronous trigger. Issue this command to select synchronous or asynchronous trigger.
11	ADC_CMD_SCAN_NOW	Enables A/D conversion start by software trigger. Issue this command to select software trigger.
12	ADC_CMD_CHECK_SCAN_DONE	Checks whether A/D conversion is in progress in single scan mode. Used this command when completion of A/D conversion is checked by polling, without using a callback function.
13	ADC_CMD_CHECK_SCAN_DONE_GROUPA	Checks whether A/D conversion of group A is in progress in group scan mode. Used this command when the group A interrupt priority level is set to 0 and polling is used to confirm A/D conversion.

No.	Command	Description
14	ADC_CMD_CHECK_SCAN_DONE_GROUPB	Checks whether A/D conversion of group B is in progress in group scan mode. Used this command when the group B interrupt priority level is set to 0 and polling is used to confirm A/D conversion.
15	ADC_CMD_CHECK_SCAN_DONE_GROUPC	Checks whether A/D conversion of group C is in progress in group scan mode. Used this command when the group C interrupt priority level is set to 0 and polling is used to confirm A/D conversion.
16	ADC_CMD_CHECK_CONDITION_MET	Stores the result obtained by the comparison function in the variable specified by the argument. The comparison result for channel n is stored in bit n.*1 0: Comparison condition not met. 1: Comparison condition met.
17	ADC_CMD_CHECK_CONDITION_METB	Gets the comparison result produced by the group B comparison function. Stores the group B comparison result in the variable specified by the argument.*1 0x0000: Comparison condition not met. 0x0001: Comparison condition met.
18	ADC_CMD_COMP_COMB_STATUS	Acquires the window A/B complex condition result. The window A/B combination result is stored in the variable specified by the argument. ADC_COMP_COND_NOTMET: Window A/B complex condition not met. ADC_COMP_COND_MET: Window A/B complex condition met.

Note 1. After execution of this command, the comparison result is initialized to 0 (comparison condition not met). Therefore, this command must be executed once only after A/D conversion completes.

However, Yes only when the ADC_CMD_CHECK_SCAN_DONE_GROUPA, ADC_CMD_CHECK_SCAN_DONE_GROUPB, or ADC_CMD_CHECK_SCAN_DONE_GROUPC command is being executed.

Example 1: Single Channel Polling Unit 0 (RX64M, RX71M, RX65x only)

```
uint16 t
               data;
              config;
adc cfg t
adc ch cfg t ch cfg;
adc err t
               err;
/* OPEN ADC */
/* Clear all members of the adc cfg t structure */
memset(&config, 0, sizeof(config));
/* Open ADC for software trigger, single scan of one channel, and polling */
config.resolution = ADC RESOLUTION 12 BIT;
config.trigger = ADC TRIG SOFTWARE;
                = 0;
config.priority
                                                   // denotes polling
config.add_cnt = ADC_ADD_OFF;
config.alignment = ADC_ALIGN_RIGHT;
config.clearing = ADC CLEAR AFTER READ OFF;
config.temp sensor = ADC TEMP SENSOR NOT AD CONVERTED;
config.add temp sensor = ADC TEMP SENSOR ADD OFF;
err = R ADC Open(0, ADC MODE SS ONE CH, &config, NULL);
/* ENABLE CHANNELS */
/* Clear all members of the adc ch cfg t structure */
memset(&ch cfg, 0, sizeof(ch cfg));
/* Specify and enable potentiometer channel on RSKRX64M */
ch_cfg.chan_mask = ADC_MASK_CH0;
ch_cfg.diag_method = ADC_DIAG_OFF;
ch_cfg.anex_enable = false;
ch cfg.sample hold mask = 0;
err = R ADC Control(0, ADC CMD ENABLE CHANS, &ch cfq);
/* After open, wait 1 us or longer before A/D conversion starts */
/st Repeatedly trigger, poll for completion, and read result st/
while(1)
  /* CAUSE SOFTWARE TRIGGER */
  err = R ADC Control(0, ADC CMD SCAN NOW, NULL);
  /* WAIT FOR SCAN TO COMPLETE */
  while (R ADC Control (0, ADC CMD CHECK SCAN DONE, NULL) ==
ADC ERR SCAN NOT DONE)
  }
  /* READ RESULT */
  err = R ADC Read(0, ADC REG CH0, &data);
```

Example 2: Temperature Sensor Polling and Set Sample State Count Unit 1 (RX64M, RX71M, RX65x)

```
uint16 t
           data;
adc_cfg_t config;
adc_sst_t sst;
                             // sample state
adc_ch_cfg_t ch_cfg;
             adc err;
adc err t
/* OPEN ADC */
/* Clear all members of the adc cfg t structure */
memset(&config, 0, sizeof(config));
/* Open ADC for software trigger, single scan temperature sensor, and polling
config.resolution = ADC RESOLUTION 10 BIT;
config.trigger = ADC TRIG SOFTWARE;
config.priority = 0;
                                              // denotes polling
config.add cnt = ADC ADD OFF;
config.alignment = ADC ALIGN RIGHT;
config.clearing = ADC CLEAR AFTER READ OFF;
config.temp sensor = ADC TEMP SENSOR AD CONVERTED;
config.add temp sensor = ADC TEMP SENSOR ADD OFF;
adc err = R_ADC_Open(1, ADC MODE SS ONE CH, &config, NULL);
/* DO SPECIAL HARDWARE CONFIGURATION */
/* Clear all members of the adc sst t structure */
memset(&sst, 0, sizeof(sst));
/* Clear all members of the adc ch cfg t structure */
memset(&ch cfg, 0, sizeof(ch cfg));
/* Set number of sampling states for 4us sample *
/* For PCLKD=60MHz, 1 state = 1/60MHz = 16.7ns, 4us/16.7ns = 240 states */
sst.reg id = ADC SST TEMPERATURE;
sst.num states = 240;
adc_err = R_ADC_Control(1, ADC_CMD_SET_SAMPLE_STATE_CNT, &sst);
/* CONFIGURE SCAN */
ch cfg.chan mask = ADC MASK TEMP;
ch cfg.diag method = ADC DIAG OFF;
ch cfq.anex enable = false;
ch cfg.sample hold mask = 0; // not available on unit 1
adc_err = R_ADC_Control(1, ADC_CMD_ENABLE_CHANS, &ch_cfg);
/* After open, wait 1 us or longer before A/D conversion starts */
/* CAUSE SOFTWARE TRIGGER */
adc err = R ADC Control(1, ADC CMD SCAN NOW, NULL);
/* WAIT FOR SCAN TO COMPLETE */
while (R ADC Control (1, ADC CMD CHECK SCAN DONE, NULL) ==
ADC ERR SCAN NOT DONE)
/* READ RESULT */
adc err = R ADC Read(1, ADC REG TEMP, &data);
```

Example 3: Grouped Channels with Interrupt Triggers, Double Trigger on Group A, and Averaging Four Samples (RX64M, RX71M, RX65x)

```
adc cfg t
               config;
adc ch cfg t
               ch cfg;
/* INITIALIZE MTU HERE (USED FOR TRIGGER SOURCES) */
/* OPEN ADC */
/* Clear all members of each structure */
memset(&config, 0, sizeof(config));
memset(&ch cfg, 0, sizeof(ch cfg));
/* INITIALIZE ADC FOR GROUP SCANNING WITH DOUBLE TRIGGER
   - use synchronous trigger TRGAON to start Group A scan; int priority 4
   - use synchronous trigger TRGON to start Group B scan; int priority 5
   - allow each channel to be scanned four times and averaged before
     continuing
   - do not clear registers after reading
 */
config.resolution = ADC RESOLUTION 8 BIT;
config.trigger = ADC TRIG SYNC TRG0AN;
config.priority = 4;
config.trigger_groupb = ADC_TRIG SYNC TRG0EN;
config.priority groupb= 5;
config.add cnt = ADC ADD AVG 4 SAMPLES;
config.alignment = ADC ALIGN RIGHT;
config.clearing = ADC CLEAR AFTER READ OFF;
config.temp sensor = ADC TEMP SENSOR NOT AD CONVERTED;
config.add temp sensor = ADC TEMP SENSOR ADD OFF;
R ADC Open (1, ADC MODE SS MULTI CH GROUPED DBLTRIG A, &config, MyCallback);
/* CONFIGURE SCAN */
/* Can only have 1 channel for double triggering, and is only channel in Group
   Have channel 8 as Group A, have 2, 3, and 9 as Group B
   Perform addition/average on all channels except 9
ch cfg.chan mask = ADC MASK CH8;
ch cfg.chan mask groupb = ADC MASK CH2 | ADC MASK CH3 | ADC MASK CH9;
ch cfg.priority groupa = ADC GRPA PRIORITY OFF;
ch cfg.add mask = ADC MASK CH8 | ADC MASK CH2 | ADC MASK CH3;
ch cfg.diag method = ADC DIAG OFF;
ch cfg.anex enable = false;
ch cfg.sample hold mask = 0;
R ADC Control (1, ADC CMD ENABLE CHANS, &ch cfg);
/* After open, wait 1 us or longer before A/D conversion starts */
/* ENABLE TRIGGERS */
R ADC Control (1, ADC CMD ENABLE TRIG, NULL);
/* INTERRUPT OCCURS UPON SCAN COMPLETION */
/* The callback is called twice from interrupt level- once after each
  group scan completes. The order depends upon the trigger order.
```

```
void MyCallback(void *p args)
adc_cb_args_t *args;
uint16 t
             dbltrg, data2, data3, data8, data9;
   args = (adc_cb_args_t *)p_args;
    /* READ RESULTS */
   if (args->event == ADC_EVT SCAN COMPLETE)
        /* From S12ADIO interrupt, Group A scan complete, read registers */
       R ADC Read(1, ADC REG CH8, &data8);
        R ADC Read(1, ADC REG DBLTRIG, &dbltrg);
    else if (args->event == ADC EVT SCAN COMPLETE GROUPB)
        /* From GBADI interrupt, Group B scan complete, read registers */
       R ADC Read(1, ADC REG CH2, &data2);
       R ADC Read(1, ADC REG CH3, &data3);
       R ADC Read(1, ADC REG CH9, &data9);
    /* process data, or set flag for application level to do so */
```

Example 4: Grouped Channels with Interrupt Triggers (RX65x)

```
adc cfg t
             config;
adc ch cfg t ch cfg;
/* INITIALIZE MTU HERE (USED FOR TRIGGER SOURCES) */
/* OPEN ADC */
/* Clear all members of each structure */
memset(&config, 0, sizeof(config));
/* INITIALIZE ADC FOR GROUP SCANNING WITH DOUBLE TRIGGER
 * - use synchronous trigger TRGAON to start Group A scan; int priority 4
 * - use synchronous trigger TRGA1N to start Group B scan; int priority 5
 * - use synchronous trigger TRGA2N to start Group C scan; int priority 6
   - allow each channel to be scanned four times and averaged before
     continuing
   - do not clear registers after reading
config.resolution = ADC RESOLUTION 8 BIT;
config.trigger = ADC TRIG SYNC TRGOAN;
config.priority = 4;
config.trigger groupb = ADC TRIG SYNC TRG1AN;
config.priority groupb= 5;
config.trigger groupc = ADC TRIG SYNC TRG2AN;
config.priority groupc= 6;
config.add cnt = ADC ADD OFF;
config.alignment = ADC ALIGN RIGHT;
config.clearing = ADC CLEAR AFTER READ OFF;
```

```
config.temp sensor = ADC TEMP SENSOR NOT AD CONVERTED;
config.add temp sensor = ADC TEMP SENSOR ADD OFF;
R ADC Open(0, ADC MODE SS MULTI CH GROUPED GROUPC, &config, MyCallback);
/* CONFIGURE SCAN */
/* Clear all members of the adc ch cfg t structure */
memset(&ch cfg, 0, sizeof(ch cfg));
/* Have channel 1 and 2 as Group A, have 3 and 4 as Group B,
  have 5 and 6 as Group C
   Perform addition/average on all channels except 9
ch cfg.chan mask = ADC MASK CH1 | ADC MASK CH2;
ch cfg.chan mask groupb = ADC MASK CH3 | ADC MASK CH4;
ch cfg.chan mask groupc = ADC MASK CH5 | ADC MASK CH6;
ch_cfg.priority_groupa = ADC_GRPA_PRIORITY_OFF;
ch cfg.add mask = 0;
ch cfg.diag method = ADC DIAG OFF;
ch cfg.anex enable = false;
ch cfg.sample hold mask = 0;
R ADC Control(0, ADC CMD CONFIGURE SCAN, &ch cfg);
/* After open, wait 1 us or longer before A/D conversion starts */
/* ENABLE TRIGGERS */
R ADC Control (0, ADC CMD ENABLE TRIG, NULL);
/* INTERRUPT OCCURS UPON SCAN COMPLETION */
/* The callback is called twice from interrupt level- once after each
 * group scan completes. The order depends upon the trigger order.
void MyCallback(void *p args)
adc_cb_args_t *args;
           data1,data2,data3,data4,data5,data6;
uint16 t
    args = (adc cb args t *)p args;
    /* READ RESULTS */
    if (args->event == ADC EVT SCAN COMPLETE)
        /* From S12ADIO interrupt, Group A scan complete, read registers */
       R ADC Read(0, ADC REG CH1, &data1);
       R_ADC_Read(0, ADC_REG_CH2, &data2);
    else if (args->event == ADC EVT SCAN COMPLETE GROUPB)
        /* From GBADI interrupt, Group B scan complete, read registers */
        R ADC Read(0, ADC REG CH3, &data3);
        R ADC Read(0, ADC REG CH4, &data4);
```

```
else if (args->event == ADC_EVT_SCAN_COMPLETE_GROUPC)
{
    /* From GCADI interrupt, Group C scan complete, read registers */
    R_ADC_Read(0, ADC_REG_CH5, &data5);
    R_ADC_Read(0, ADC_REG_CH6, &data6);
}

/* process data, or set flag for application level to do so */
}
```

Example 5: Multiple Channels with Interrupt Trigger and Comparator Checking (RX64M, RX71M)

```
adc cfg t config;
adc ch cfg t ch cfg;
adc cmpwin t cmpwin;
/* INITIALIZE MTU HERE (USED FOR TRIGGER SOURCES) */
/* OPEN UNIT 0 */
/* Clear all members of the adc cfg t structure */
memset(&config, 0, sizeof(config));
config.resolution = ADC RESOLUTION 12 BIT;
config.trigger = ADC TRIG SYNC TRGOAN;
config.priority = 4;
config.add cnt = ADC ADD OFF;
config.alignment = ADC ALIGN RIGHT;
config.clearing = ADC CLEAR AFTER READ OFF;
config.temp sensor = ADC TEMP SENSOR NOT AD CONVERTED;
config.add temp sensor = ADC TEMP SENSOR ADD OFF;
R ADC Open (0, ADC MODE SS MULTI CH, &config, MyCallback);
/* CONFIGURE SCAN OF CHANNELS 3-5 */
/* Clear all members of the adc ch cfg t structure */
memset(&ch cfg, 0, sizeof(ch cfg));
ch cfg.chan mask = ADC MASK CH3 | ADC MASK CH4 | ADC MASK CH5;
ch_cfg.diag_method = ADC DIAG OFF;
ch cfq.anex enable = false;
ch cfg.sample hold mask = 0;
R ADC Control (0, ADC CMD ENABLE CHANS, &ch cfg);
/* HAVE COMPARATOR CHECK ON CHANNELS 3-4 FOR DROPPING BELOW 1.65V */
/* Clear all members of the adc cmpwin t structure */
memset(&cmpwin, 0, sizeof(cmpwin));
cmpwin.compare_mask = ADC_MASK CH3 | ADC MASK CH4;
cmpwin.inside_window_mask = 0; // condition met when below level
                                       // 12-bit 3.3V=0xFFF, 1.65V=0x7FF
cmpwin.level lo = 0x7FF;
cmpwin.int priority = 3;
R ADC Control (0, ADC CMD EN COMPARATOR LEVEL, &cmpwin);
```

```
/* ENABLE TRIGGERS */
R ADC Control (0, ADC CMD ENABLE_TRIG, NULL);
/* INTERRUPT OCCURS UPON SCAN COMPLETION */
/* Callback called from interrupt level: */
void MyCallback(void *p args)
adc cb args t *args;
          data3,data4,data5;
uint16 t
    args = (adc_cb_args_t *)p_args;
    /* READ RESULTS */
    if (args->event == ADC EVT SCAN COMPLETE)
        R_ADC_Read(0, ADC_REG_CH3, &data3);
        R_ADC_Read(0, ADC_REG_CH4, &data4);
        R ADC Read(0, ADC REG CH5, &data5);
    }
    if (args->event == ADC EVT CONDITION MET)
        if (args->compare flags & ADC MASK CH3)
            // processing when channel 3 voltage is too low
        }
        else
            // processing when channel 4 voltage is too low
    }
```

Example 6: Multiple Channels with Interrupt Trigger and 2 Comparator Checking (RX65x)

```
adc_cfg_t config;
adc_ch_cfg_t ch_cfg;
adc_cmpwin_t cmpwin;

/* Clear all members of each structure */
memset(&config, 0, sizeof(config));
memset(&ch_cfg, 0, sizeof(ch_cfg));
memset(&cmpwin, 0, sizeof(cmpwin));

/* INITIALIZE MTU HERE (USED FOR TRIGGER SOURCES) */

/* OPEN UNIT 0 */

config.resolution = ADC_RESOLUTION_12_BIT;
config.trigger = ADC_TRIG_SYNC_TRGOAN;
```

```
config.priority = 4;
config.add cnt = ADC ADD OFF;
config.alignment = ADC ALIGN RIGHT;
config.clearing = ADC CLEAR AFTER READ OFF;
config.temp sensor = ADC TEMP SENSOR NOT AD CONVERTED;
config.add temp sensor = ADC TEMP SENSOR ADD OFF;
R_ADC_Open(0, ADC_MODE_SS_MULTI_CH, &config, MyCallback);
/* CONFIGURE SCAN OF CHANNELS 3-4 */
ch cfg.chan mask = ADC MASK CH3 | ADC MASK CH4 | ADC MASK CH5;
ch cfg.diag method = ADC DIAG OFF;
ch_cfg.anex enable = false;
ch cfg.sample hold mask = 0;
R ADC Control (0, ADC CMD CONFIGURE SCAN, &ch cfg);
/* HAVE COMPARATOR CHECK ON CHANNELS 3-4 FOR DROPPING BELOW 1.65V */
cmpwin.compare mask = ADC MASK CH3 | ADC MASK CH4;
cmpwin.compare maskb = ADC COMP WINB CH5;
                                           // Condition met when below level
cmpwin.inside window mask = 0;
cmpwin.inside_window_maskb = ADC_COMP_WINB_COND_BELOW;
cmpwin.level_lo = 0x7FF;
                                        // 12-bit 3.3V=0xFFF, 1.65V=0x7FF
cmpwin.level lob = 0x7FF;
                                          // 12-bit 3.3V=0xFFF, 1.65V=0x7FF
cmpwin.int priority = 3;
cmpwin.windowa enable = true;
cmpwin.windowb enable = true;
R ADC Control (0, ADC CMD EN COMPARATOR LEVEL, &cmpwin);
/* After open, wait 1 us or longer before A/D conversion starts */
/* ENABLE TRIGGERS */
R ADC Control (0, ADC CMD ENABLE TRIG, NULL);
/* INTERRUPT OCCURS UPON SCAN COMPLETION */
/* Callback called from interrupt level: */
void MyCallback(void *p args)
adc cb args t *args;
uint16 t data3,data4,data5;
    args = (adc cb args t *)p args;
    /* READ RESULTS */
    if (args->event == ADC EVT SCAN COMPLETE)
       R ADC Read(0, ADC REG CH3, &data3);
       R ADC Read(0, ADC REG CH4, &data4);
        R ADC Read(0, ADC REG CH5, &data5);
```

RENESAS

```
if (args->event == ADC_EVT_CONDITION_MET)
{
    if (args->compare_flags & ADC_MASK_CH3)
    {
        // processing when channel 3 voltage is too low
    }
    else
    {
        // processing when channel 4 voltage is too low
    }
}

if (args->event == ADC_EVT_CONDITION_METB)
{
    // processing when channel 5 voltage is too low
}
```

Special Notes (RX Family Common):

When the A/D conversion start (ADST) bit is 1, settings such as mode must not be changed using this function. However, the conversion status or the comparison result can be obtained.

When switching channels used for A/D conversion or settings, call the R_ADC_Close() function once and then call the R_ADC_Open() function again to start.

When waiting completion of A/D conversion using the R_ADC_Control function, use the following commands.

A/D Conversion Channel Settings			Commands for the R_ADC_Control Function		
Mode	A/D Conversion Start Trigger	Interrupt	Starts A/D Conversion	Waits Completion of A/D Conversion	
Single scan	Software trigger	_	ADC_CMD_SCAN_NOW	ADC_CMD_CHECK_SCAN_ DONE	
	Other than software trigger	Disabled	ADC_CMD_ENABLE_TRIG	ADC_CMD_CHECK_SCAN_ DONE_GROUPA	
Continuous scan	Software trigger	Disabled	ADC_CMD_SCAN_NOW	ADC_CMD_CHECK_SCAN_ DONE_GROUPA	
	Other than software trigger	Disabled	ADC_CMD_ENABLE_TRIG	ADC_CMD_CHECK_SCAN_ DONE_GROUPA	
Group scan	Other than software trigger	Disabled	ADC_CMD_ENABLE_TRIG	ADC_CMD_CHECK_SCAN_ DONE_GROUPA ADC_CMD_CHECK_SCAN_ DONE_GROUPB*1 ADC_CMD_CHECK_SCAN_ DONE_GROUPC*2	

Note 1. Use ADC_CMD_CHECK_SCAN_DONE_GROUPB when waiting completion of A/D conversion for Group B.

Note 2. ADC_CMD_CHECK_SCAN_DONE_GROUPC can be used with S12ADF or S12ADFa or S12ADH or S12ADHa.

When A/D conversion interrupts are enabled, the R_ADC_Control() function cannot be used to wait completion of A/D conversion except when using single scan mode with software trigger. In this case, use the callback function for the A/D conversion interrupt to wait completion of A/D conversion.

Special Notes (S12ADF):

If Group A Priority is selected such that Group B operates in continuous scan mode, it is recommended not to use the GBADI interrupt since the interrupt handling will be processed so often. That causes the majority of the processing time to be spent at the interrupt level.

Special Notes (S12ADC, S12ADFa):

Channels and sensors can be combined in the same unit.

ELC is only for S12ADI, not S12GBADI or S12CMPI. (S12ADC)

ELC is only for S12ADI, not GBADI, GCADI, S12CMPAI or S12CMPBI. (S12ADFa)

The application should wait 30 µs after configuring the scan before enabling the trigger for Temperature Sensor for best results.

If Group A Priority is selected such that Group B operates in continuous scan mode, it is recommended not to use the S12GBADI interrupt (S12ADC) and GBADI interrupt (S12ADFa) since the interrupt handling will be processed so often. That causes the majority of the processing time to be spent at the interrupt level.

Enabling the comparator should be done prior to enabling the triggers. Some features may not be used with others. The following table illustrates this.

	Dbl Trig	Group Scan	Self- Diag	Add/ Avg	ANEX	Sample & Hold	Priority Group A	Sensors	Comparator	DDA
Double trigger			X			В		Χ	Х	
Group scan					Х	S				
Self-diagnosis	Х			Х	Х				Х	Χ
Add/avg			Х							
ANEX		Х	Х					Х		Χ
Sample and hold	В	S					Α			
Priority group A						Α				
Sensors	Х				Х					Х
Comparator	Х		Х							
Disconnect detection assist			Х		Х			Х		

X: Combination may not be used. For example, ANEX may not be used with group scan modes, Self-Diagnosis, sensors or Disconnect Detection Assist.

- A: Sample and Hold channels must be in Group A.
- B: Sample and Hold channels must be in Group B or Group C.
- S: Sample and Hold channels cannot be split across groups.

Special Notes (S12ADE):

This function does not support following features.

- Compare function window B
- Compare function window A/B composite condition setting

Special Notes (S12ADC, S12ADE, S12ADFa):

When using the comparison, configure the comparison after the channel configuration.

Special Notes (S12ADb, S12ADFa, S12ADH and S12ADHa):

For temperature sensor output and internal reference voltage, the number of sampling states must be set as indicated below, at a minimum:

S12ADb, S12ADFa: 5 μs S12ADH, S12ADHa: 4 μs

3.3 R_ADC_Read()

This function reads conversion results from a single channel, sensor, double trigger, or self-diagnosis register.

Format

Parameters

unit

Unit number. Set this to 0 if your MCU supports only one unit.

reg_id

ID of the register to read. For information on the register ID, refer to 2.9.4, Structures and Enumerations Used as Arguments for R_ADC_Read Function.

p data

Pointer to variable to load value into.

Return Values

ADC_SUCCESS: Success

ADC_ERR_INVALID_ARG: unit or reg_id contains an invalid value.

ADC_ERR_MISSING _PTR: p_data is FIT_NO_PTR/NULL

Properties

Prototyped in file "r_s12ad_rx_if.h"

Description

Reads conversion results from a single channel, sensor, double trigger, or self-diagnosis register.

Example

Special Notes (S12ADb):

For temperature sensor output and internal reference voltage, discard the first A/D conversion result after the open, and use the second and the subsequent A/D conversion results.

3.4 R_ADC_ReadAll()

This function reads conversion results from all storage registers supported by the MCU.

Format

```
adc_err_t R_ADC_ReadAll(adc_data_t * const p_data);
```

Parameters

p_data

Pointer to structure in which register values are loaded. For information on the structure, refer to 2.9.5, Structures and Enumerations Used as Arguments for R_ADC_ReadAll Function.

Return Values

ADC_SUCCESS: Success

ADC_ERR_MISSING_PTR: p_data is FIT_NO_PTR/NULL

Properties

Prototyped in file "r_s12ad_rx_if.h"

Description

Reads conversion results from all potential sources, enabled or not.

Example

Special Notes:

None.

3.5 R_ADC_Close()

This function ends any scan in progress, disables interrupts, and removes power to the A/D peripheral.

Format

```
adc_err_t R_ADC_Close(uint8_t unit);
```

Parameters

unit

Unit number. Set this to 0 if your MCU supports only one unit.

Return Values

ADC_SUCCESS: Success

ADC_ERR_INVALID_ARG: unit contains an invalid value.

Properties

Prototyped in file "r_s12ad_rx_if.h"

Description

Ends the A/D conversion in progress, disables interrupts, and ends A/D converter operation. This function can be called once per unit after the R_ADC_Open function is called.

When changing A/D conversion settings, call the R ADC Open() function again after this function is called.

Example

```
:
err = R_ADC_Open(1, ADC_MODE_SS_MULTI_CH_GROUPED, &config, MyCallback);
:
R ADC Close(1);
```

Special Notes:

This function will abort any scan that may be in progress.

3.6 R_ADC_GetVersion()

This function returns the driver version number at runtime.

Format

```
uint32 t R ADC GetVersion(void)
```

Parameters

None

Return Values

Version number.

Properties

Prototyped in file "r_s12ad_rx_if.h"

Description

Returns the version of this module. The version number is encoded such that the top 2 bytes are the major version number and the bottom 2 bytes are the minor version number.

Example

```
uint32_t version;
:
version = R_ADC_GetVersion();
```

Special Notes:

None.

4. Pin Setting

To use the ADC FIT module, assign input/output signals of the peripheral function to pins with the multi-function pin controller (MPC). The pin assignment is referred to as the "Pin Setting" in this document. Please perform the pin setting after calling the R_ADC_Open function.

When using the Pin Setting feature, a source file is generated according to the option selected in the Pin Setting window in the FIT configurator or the Smart Configurator. Pins are configured by calling the function defined in the source file.

The function name output from Smart Configurator is R_ADC_PinSet_S12ADx. "x" is the unit number of the selected option. For example, if unit 0 is selected as an option, the output function name will be R ADC PinSet S12AD0.

5. Demo Projects

5.1 s12ad_int_demo_rskrx113

This demo uses periodic interrupts from MTU0 to trigger the ADC module to scan the potentiometer on the board. Each time a scan completes, the program reads the converted value at interrupt level in a callback function and places it into a global variable called "data". This variable should be added to the Expressions window and made into a Realtime Watch (double-click to make realtime). As the program runs, change the potentiometer position and observe the corresponding changes in the variable.

5.2 s12ad_poll_demo_rskrx113

This demo scans the potentiometer on the board via a software trigger in an endless loop. Each time a scan completes, the program reads the converted value at the application level and places it into a global variable called "data". This variable should be added to the Expressions window and made into a Realtime Watch (double-click to make realtime). As the program runs, change the potentiometer position and observe the corresponding changes in the variable.

5.3 s12ad poll demo rskrx130

This demo scans the potentiometer on the board via a software trigger in an endless loop. Each time a scan completes, the program reads the converted value at the application level and places it into a global variable called "data". This variable should be added to the Expressions window and made into a Realtime Watch (double-click to make realtime). As the program runs, change the potentiometer position and observe the corresponding changes in the variable.

5.4 s12ad_demo_rskrx64m

This is a simple demo of the RX64M A/D Converter (S12AD) for the RSKRX64M starter kit (FIT module "r_s12ad_rx"). The demo uses the Multi-Function Timer Pulse Unit (MTU3a) to periodically trigger the ADC module to perform conversion on channel 0 which is connected to the on-board potentiometer. Each time a scan completes, the program reads the converted value at interrupt level in a callback function and places it into a global variable called "g_data". This variable should be added to the Expressions window and made into a Realtime Watch (double-click to make realtime). As the program runs, change the potentiometer position and observe the corresponding changes in the variable.

5.5 s12ad_demo_rskrx71m

This is a demo of the RX71M A/D Converter (S12AD) for the RSKRX71M starter kit (FIT module "r_s12ad_rx"). The demo uses the Multi-Function Timer Pulse Unit 3 (MTU3a) to periodically trigger the ADC module to perform conversion on channel 0 which is connected to the on-board potentiometer. Each time a scan completes, the program reads the converted value at interrupt level in a callback function and places it into a global variable called "g_data". This variable should be added to the Expressions window and made

into a Realtime Watch (double-click to make realtime). As the program runs, change the potentiometer position and observe the corresponding changes in the variable.

5.6 s12ad_demo_rskrx231

This is a demo of the RX231 A/D Converter (S12ADE) for the RSKRX231 starter kit (FIT module "r_s12ad_rx"). The demo uses the Multi-Function Timer Pulse Unit 2 (MTU2a) to periodically trigger the ADC module to perform a conversion on channel 0, which is connected to the on-board potentiometer. Each time a scan completes, the program reads the converted value at interrupt level in a callback function and places it into a global variable called "g_data". This variable should be added to the Expressions window and made into a Realtime Watch. To do that, add it to the Expressions window then right-click it. From the drop-down menu click on "Realtime Refresh". Right click again and select "Realtime Refresh Interval" and set the refresh value to 200 ms. As the program runs, change the potentiometer position and observe the corresponding changes in the variable.

5.7 s12ad_demo_rskrx66t

This is a simple demo of the RX66T A/D converter (S12AD) for use with RSKRX66T (FIT module "r_s12ad_rx"). The demo uses multifunction timer pulse unit 3 (MTU3d) to perform A/D conversion at regular intervals on channel 0, which is connected to a variable resistor. When A/D conversion completes, the demo program reads the conversion value when a callback function interrupt occurs and stores the A/D conversion result in global variable "g_data." After running the program, change the setting of the variable resistor to alter the voltage of the A/D input channel, and check the value of "g_data" in the emulator.

5.8 Adding a Demo to a Workspace

Demo projects are found in the FITDemos subdirectory of the e² studio installation directory. To add a demo project to a workspace, select File>Import>General>Existing Projects into Workspace, then click "Next". From the Import Projects dialog, choose the "Select archive file" radio button. "Browse" to the demo subdirectory, select the desired demo zip file, then click "Finish".

5.9 Downloading Demo Projects

Demo projects are not included in the RX Driver Package. When using the demo project, the FIT module needs to be downloaded. To download the FIT module, right click on the required application note and select "Sample Code (download)" from the context menu in the *Smart Brower* >> *Application Notes* tab.

6. Appendices

6.1 Confirmed Operation Environment

This section describes confirmed operation environment for the ADC FIT module.

Table 6.1 Confirmed Operation Environment (Rev. 2.30)

Item	Contents
Integrated development environment	Renesas Electronics e ² studio Version 5.4.0 (WS Patch)
C compiler	Renesas Electronics C/C++ Compiler Package for RX Family V2.07.00
	Compiler option: The following option is added to the default settings of the integrated development environment.
	-lang = c99
Endian	Big endian/little endian
Revision of the module	Rev.2.30
Board used	Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2SxxxxxBE)
	Renesas Starter Kit for RX130-512KB (product No.: RTK5051308SxxxxxBE)

Table 6.2 Confirmed Operation Environment (Rev. 3.00)

Item	Contents
Integrated development environment	Renesas Electronics e ² studio Version 7.0.0
C compiler	Renesas Electronics C/C++ Compiler Package for RX Family V3.00.00
	Compiler option: The following option is added to the default settings of the integrated development environmentlang = c99
Endian	Big endian/little endian
Revision of the module	Rev.3.00
Board used	Renesas Starter Kit for RX66T (product No.: RTK500566T0SxxxxxBE)

Table 6.3 Confirmed Operation Environment (Rev. 3.01)

Item	Contents
Integrated development environment	Renesas Electronics e ² studio Version 7.1.0
C compiler	Renesas Electronics C/C++ Compiler Package for RX Family V3.00.00
	Compiler option: The following option is added to the default settings of the integrated development environmentlang = c99
Endian	Big endian/little endian
Revision of the module	Rev.3.01

Table 6.4 Confirmed Operation Environment (Rev. 3.10)

Item	Contents
Integrated development environment	Renesas Electronics e ² studio Version 7.3.0
C compiler	Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
	Compiler option: The following option is added to the default settings of the integrated development environmentlang = c99
Endian	Big endian/little endian
Revision of the module	Rev.3.10
Board used	Renesas Starter Kit for RX72T (product No.: RTK5572Txxxxxxxxxxxxx)

Table 6.5 Confirmed Operation Environment (Rev. 4.00)

Item	Contents		
Integrated development	Renesas Electronics e ² studio Version 7.3.0		
environment	IAR Embedded Workbench for Renesas RX 4.11.1		
C compiler	Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00 Compiler option: The following option is added to the default settings of the integrated development environment. -lang = c99		
	GCC for Renesas RX 4.8.4.201803		
	GCC for Renesas RX 4.8.4.201902 (RX66T only) Compiler option: The following option is added to the default settings of the integrated development environment. -std=gnu99		
	IAR C/C++ Compiler for Renesas RX version 4.11.1		
	Compiler option: The default settings of the integrated development environment.		
Endian	Big endian/little endian		
Revision of the module	Rev.4.00		
Board used	Renesas Starter Kit for RX113 (product No.: R0K505113xxxxxx)		
	Renesas Starter Kit for RX130-512KB (product No.: RTK505130xxxxxxxxx)		
	Renesas Starter Kit for RX231 (product No.: R0K505231xxxxxx)		
	Renesas Starter Kit+ for RX64M (product No.: R0K50564Mxxxxxx)		
	Renesas Starter Kit for RX66T (product No.: RTK500566Txxxxxxxxx)		
	Renesas Starter Kit+ for RX71M (product No.: R0K50571Mxxxxxx)		

Table 6.6 Confirmed Operation Environment (Rev. 4.10)

Item	Contents
Integrated development environment	Renesas Electronics e ² studio Version 7.5.0
C compiler	Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00 Compiler option: The following option is added to the default settings of the integrated development environmentlang = c99
Endian	Big endian/little endian
Revision of the module	Rev.4.10
Board used	Renesas Solution Starter Kit for RX23W (product No.: RTK5523Wxxxxxxxxxxx)

Table 6.7 Confirmed Operation Environment (Rev. 4.20)

Item	Contents
Integrated development	Renesas Electronics e ² studio Version 7.5.0
environment	IAR Embedded Workbench for Renesas RX 4.12.1
C compiler	Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
	Compiler option: The following option is added to the default settings of the
	integrated development environment.
	-lang = c99
	GCC for Renesas RX 4.8.4.201902 Compiler option: The following option is
	added to the default settings of the integrated development environment.
	-std=gnu99
	IAR C/C++ Compiler for Renesas RX version 4.12.1
	Compiler option: The default settings of the integrated development
	environment.
Endian	Big endian/little endian
Revision of the module	Rev.4.20
Board used	Renesas Starter Kit+ for RX72M (product No.: RTK5572Mxxxxxxxxxx)

Table 6.8 Confirmed Operation Environment (Rev. 4.30)

Item	Contents		
Integrated development	Renesas Electronics e ² studio Version 7.4.0		
environment	IAR Embedded Workbench for Renesas RX 4.12.1		
C compiler	Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00 Compiler option: The following option is added to the default settings of the integrated development environmentlang = c99		
	GCC for Renesas RX 4.8.4.201902 Compiler option: The following option is added to the default settings of the integrated development environmentstd=gnu99		
	IAR C/C++ Compiler for Renesas RX version 4.12.1		
	Compiler option: The default settings of the integrated development environment.		
Endian	Big endian/little endian		
Revision of the module	Rev.4.30		
Board used	RX13T CPU Card (product No.: RTK0EMXA10C00000BJ)		

Table 6.9 Confirmed Operation Environment (Rev. 4.40)

Item	Contents
Integrated development environment	Renesas Electronics e ² studio Version 7.6.0 Renesas Electronics e ² studio Version 7.7.0 (RX66N and RX72N only) IAR Embedded Workbench for Renesas RX 4.13.1
C compiler	Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00 Compiler option: The following option is added to the default settings of the integrated development environmentlang = c99
	GCC for Renesas RX 8.3.0.201904 Compiler option: The following option is added to the default settings of the integrated development environmentstd=gnu99
	IAR C/C++ Compiler for Renesas RX version 4.13.1 Compiler option: The default settings of the integrated development environment.
Endian	Big endian/little endian
Revision of the module	Rev.4.40
Board used	Renesas Starter Kit for RX111 (Part Number: R0K505111xxxxxx) Renesas Starter Kit for RX113 (Part Number: R0K505113xxxxxx)
	Renesas Starter Kit for RX130-512KB (Part Number: RTK505130xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
	Renesas Starter Kit for RX231 (Part Number: R0K505231xxxxxx)
	Renesas Starter Kit+ for RX64M (Part Number: R0K50564Mxxxxxx)
	Renesas Starter Kit+ for RX65N-2MB (Part Number: RTK50565Nxxxxxxxxxx)
	Renesas Starter Kit+ for RX71M (Part Number: R0K50571Mxxxxxx)
	Renesas Starter Kit for RX66T (Part Number: RTK50566Txxxxxxxxxx)
	Renesas Starter Kit for RX72T (Part Number: RTK5572Txxxxxxxxxxx)
	Renesas Starter Kit+ for RX72M (Part Number: RTK5572Mxxxxxxxxxxx)
	Renesas Starter Kit+ for RX72N (Part Number: RTK5572Nxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Table 6.10 Confirmed Operation Environment (Rev. 4.41)

Item	Contents
Integrated development	Renesas Electronics e ² studio Version 7.6.0
environment	IAR Embedded Workbench for Renesas RX 4.13.1
C compiler	Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
	Compiler option: The following option is added to the default settings of the
	integrated development environment.
	-lang = c99
	IAR C/C++ Compiler for Renesas RX version 4.13.1
	Compiler option: The default settings of the integrated development
	environment.
Endian	Big endian/little endian
Revision of the module	Rev.4.41
Board used	RX13T CPU Card (Part Number: RTK0EMXA10C00000BJ)

Table 6.11 Confirmed Operation Environment (Rev. 4.50)

Item	Contents
Integrated development	Renesas Electronics e ² studio Version 7.7.0
environment	IAR Embedded Workbench for Renesas RX 4.13.1
C compiler	Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00
	Compiler option: The following option is added to the default settings of the
	integrated development environment.
	-lang = c99
	GCC for Renesas RX 8.3.0.201904 Compiler option: The following option is
	added to the default settings of the integrated development environment.
	-std=gnu99
	IAR C/C++ Compiler for Renesas RX version 4.13.1
	Compiler option: The default settings of the integrated development
	environment.
Endian	Big endian/little endian
Revision of the module	Rev.4.50
Board used	Renesas Solution Starter Kit for RX23E-A (product No.:
	RTK0ESXB10C00001BJ)
	Renesas Starter Kit for RX113 (Part Number: R0K505113xxxxxx)

Table 6.12 Confirmed Operation Environment (Rev. 4.60)

Item	Contents
Integrated development	Renesas Electronics e ² studio Version 7.8.0
environment	IAR Embedded Workbench for Renesas RX 4.14.1
C compiler	Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00 Compiler option: The following option is added to the default settings of the integrated development environmentlang = c99
	GCC for Renesas RX 8.3.0.201904 Compiler option: The following option is added to the default settings of the integrated development environmentstd=gnu99
	IAR C/C++ Compiler for Renesas RX version 4.14.1
	Compiler option: The default settings of the integrated development environment.
Endian	Big endian/little endian
Revision of the module	Rev.4.60
Board used	Renesas Starter Kit for RX23T (Part Number: RTK500523Txxxxxxxxx)
	Renesas Starter Kit for RX24T (Part Number: RTK500524Txxxxxxxx)

Table 6.13 Confirmed Operation Environment (Rev. 4.61)

Item	Contents
Integrated development environment	Renesas Electronics e ² studio Version 2020-10 (20.10.0)
C compiler	Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00 Compiler option: The following option is added to the default settings of the integrated development environment. -lang = c99
Endian	Big endian/little endian
Revision of the module	Rev.4.61
Board used	Renesas Starter Kit+ for RX64M (Part Number: R0K50564Mxxxxxx) Renesas Starter Kit for RX66T (Part Number: RTK50566Txxxxxxxxxx) Renesas Starter Kit+ for RX71M (Part Number: R0K50571Mxxxxxxx) Renesas Starter Kit for RX113 (Part Number: R0K505113xxxxxxx) Renesas Starter Kit for RX130 (Part Number: RTK5005130SxxxxxxBE) Renesas Starter Kit for RX231 (Part Number: R0K505231xxxxxxx)

Table 6.14 Confirmed Operation Environment (Rev. 4.70)

Item	Contents
Integrated development	Renesas Electronics e ² studio 2021-01
environment	IAR Embedded Workbench for Renesas RX 4.20.1
C compiler	Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00 Compiler option: The following option is added to the default settings of the integrated development environmentlang = c99
	GCC for Renesas RX 8.3.0.202004 Compiler option: The following option is added to the default settings of the integrated development environmentstd=gnu99
	IAR C/C++ Compiler for Renesas RX version 4.20.1
	Compiler option: The default settings of the integrated development environment.
Endian	Big endian/little endian
Revision of the module	Rev.4.70
Board used	Renesas Starter Kit+ for RX72M (Part Number: RTK5572Mxxxxxxxxxxx)

Table 6.15 Confirmed Operation Environment (Rev. 4.80)

Item	Contents
Integrated development	Renesas Electronics e ² studio 2021-01
environment	IAR Embedded Workbench for Renesas RX 4.20.1
C compiler	Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00 Compiler option: The following option is added to the default settings of the integrated development environment. -lang = c99
	GCC for Renesas RX 8.3.0.202004 Compiler option: The following option is added to the default settings of the integrated development environmentstd=gnu99
	IAR C/C++ Compiler for Renesas RX version 4.20.1
	Compiler option: The default settings of the integrated development environment.
Endian	Big endian/little endian
Revision of the module	Rev.4.80
Board used	Renesas Starter Kit+ for RX671 (Part Number: RTK55671xxxxxxxxxxx)

Table 6.16 Confirmed Operation Environment (Rev. 4.90)

Item	Contents
Integrated development	Renesas Electronics e ² studio 2021-07
environment	IAR Embedded Workbench for Renesas RX 4.20.1
C compiler	Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00 Compiler option: The following option is added to the default settings of the integrated development environment. -lang = c99
	GCC for Renesas RX 8.3.0.202102 Compiler option: The following option is added to the default settings of the integrated development environmentstd=gnu99
	IAR C/C++ Compiler for Renesas RX version 4.20.1
	Compiler option: The default settings of the integrated development environment.
Endian	Big endian/little endian
Revision of the module	Rev.4.90
Board used	Target board for RX140 (Part Number: RTK5RX140xxxxxxxxxx)

Table 6.17 Confirmed Operation Environment (Rev. 4.91)

Item	Contents
Integrated development environment	Renesas Electronics e ² studio 2021-10
C compiler	Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00 Compiler option: The default settings when using the Smart Configurator.
Endian	Big endian/little endian
Revision of the module	Rev.4.91
Board used	Renesas Starter Kit+ for RX671 (Part Number: RTK55671xxxxxxxxxxx)

Table 6.18 Confirmed Operation Environment (Rev. 4.92)

Item	Contents
Integrated development	Renesas Electronics e ² studio 2021-10
environment	IAR Embedded Workbench for Renesas RX 4.20.1
C compiler	Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00
	Compiler option: The default settings when using the Smart Configurator.
	GCC for Renesas RX 8.3.0.202102
	Compiler option: The default settings when using the Smart Configurator.
	IAR C/C++ Compiler for Renesas RX version 4.20.1
	Compiler option: The default settings of the integrated development
	environment.
Endian	Big endian/little endian
Revision of the module	Rev.4.92
Board used	Renesas Starter Kit for RX140 (Part Number: RTK55140xxxxxxxxxxx)

Table 6.19 Confirmed Operation Environment (Rev. 4.93)

Item	Contents
Integrated development	Renesas Electronics e ² studio 2022-01
environment	IAR Embedded Workbench for Renesas RX 4.20.1
C compiler	Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
	Compiler option: The default settings when using smart configurator.
	GCC for Renesas RX 8.3.0.202102
	Compiler option: The default settings when using smart configurator.
	IAR C/C++ Compiler for Renesas RX version 4.20.1
	Compiler option: The default settings of the integrated development
	environment.
Endian	Big endian/little endian
Revision of the module	Rev.4.93
Board used	Renesas Starter Kit for RX66T (Part Number: RTK50566Txxxxxxxxxx)
	Renesas Starter Kit for RX140 (Part Number: RTK55140xxxxxxxxxxx)

Table 6.20 Confirmed Operation Environment (Rev. 5.00)

Item	Contents
Integrated development	Renesas Electronics e ² studio 2022-04
environment	IAR Embedded Workbench for Renesas RX 4.20.1
C compiler	Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
	Compiler option: The default settings when using smart configurator.
	GCC for Renesas RX 8.3.0.202102
	Compiler option: The default settings when using smart configurator.
	IAR C/C++ Compiler for Renesas RX version 4.20.1
	Compiler option: The default settings of the integrated development
	environment.
Endian	Big endian/little endian
Revision of the module	Rev.5.00
Board used	Renesas Starter Kit for RX660 (Part Number: RTK556609xxxxxxxxxx)

Table 6.21 Confirmed Operation Environment (Rev. 5.10)

Item	Contents		
Integrated development	Renesas Electronics e ² studio 2023-01		
environment	IAR Embedded Workbench for Renesas RX 4.20.1		
C compiler	Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00		
	Compiler option: The default settings when using smart configurator.		
	GCC for Renesas RX 8.3.0.202202		
	Compiler option: The default settings when using smart configurator.		
	IAR C/C++ Compiler for Renesas RX version 4.20.1		
	Compiler option: The default settings of the integrated development		
	environment.		
Endian	Big endian/little endian		
Revision of the module	Rev.5.10		
Board used	Renesas Flexible Motor Control Kit for RX26T MCU Group		
	(Part Number: RTK0EMXE70S00020BJ)		

Table 6.22 Confirmed Operation Environment (Rev. 5.20)

Item	Contents		
Integrated development	Renesas Electronics e ² studio 2023-04		
environment	IAR Embedded Workbench for Renesas RX 4.20.1		
C compiler	Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00		
	Compiler option: The default settings when using smart configurator.		
	GCC for Renesas RX 8.3.0.202202		
	Compiler option: The default settings when using smart configurator.		
	IAR C/C++ Compiler for Renesas RX version 4.20.1		
	Compiler option: The default settings of the integrated development		
	environment.		
Endian	Big endian/little endian		
Revision of the module	Rev.5.20		
Board used	Renesas Starter Kit for RX23E-B (Part Number: RTK0ES1001C00001B)		

Table 6.23 Confirmed Operation Environment (Rev. 5.30)

Item	Contents	
Integrated development	Renesas Electronics e ² studio 2023-01	
environment	IAR Embedded Workbench for Renesas RX 4.20.1	
C compiler	Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00	
	Compiler option: The default settings when using smart configurator.	
	GCC for Renesas RX 8.3.0.202202	
	Compiler option: The default settings when using smart configurator.	
	IAR C/C++ Compiler for Renesas RX version 4.20.1	
	Compiler option: The default settings of the integrated development	
	environment.	
Endian	Big endian/little endian	
Revision of the module	Rev.5.30	
Board used	Renesas Starter Kit for RX26T (Part Number: RTK0EMXE70S00020BJ)	

Table 6.24 Confirmed Operation Environment (Rev. 5.40)

Item	Contents		
Integrated development	Renesas Electronics e ² studio 2024-01.1		
environment	IAR Embedded Workbench for Renesas RX 5.10.1		
C compiler	Renesas Electronics C/C++ Compiler Package for RX Family V3.06.00		
	Compiler option: The default settings when using smart configurator.		
	GCC for Renesas RX 8.3.0.202305		
	Compiler option: The default settings when using smart configurator.		
	IAR C/C++ Compiler for Renesas RX version 5.10.1		
	Compiler option: The default settings of the integrated development		
	environment.		
Endian	Big endian/little endian		
Revision of the module	Rev.5.40		
Board used	Renesas Starter Kit for RX261 (Part Number: RTK5EK2610S00011BJ)		

6.2 Troubleshooting

- (1) Q: I have added the FIT module to the project and built it. Then I got the error: Could not open source file "platform.h".
 - A: The FIT module may not be added to the project properly. Check if the method for adding FIT modules is correct with the following documents:
 - When using CS+:
 - Application note "Adding Firmware Integration Technology Modules to CS+ Projects (R01AN1826)"
 - When using e² studio:
 - Application note "Adding Firmware Integration Technology Modules to Projects (R01AN1723)" When using a FIT module, the board support package FIT module (BSP module) must also be added to the project. For this, refer to the application note "Board Support Package Module Using Firmware Integration Technology (R01AN1685)".
- (2) Q: I have added the FIT module to the project and built it. Then I got the error: This MCU is not supported by the current r s12ad rx module.
 - A: The FIT module you added may not support the target device chosen in the user project. Check if the FIT module supports the target device for the project used.
- (3) Q: The voltage input to the analog input pin and the A/D conversion result do not match.
 - A: The pin setting may not be performed correctly. When using this FIT module, the pin setting must be performed. Refer to 4. Pin Setting for details.

Related Technical Updates

This module reflects the content of the following technical updates.

- TN-RX*-A124A/E
- TN-RX*-A117A/E

All trademarks and registered trademarks are the property of their respective owners.

Revision History

		Description	
Rev.	Date	Page	Summary
1.00	Nov.15.13	_	First edition issued
1.20	Apr.21.14	1,3 11,12	Added mention of support for RX110/63x. Added interface for RX210 Sample&Hold, Self-Diagnosis,
			and Disconnect Detection Assist (DDA)
1.30	Jun.05.14		Fixed bug in code that eliminated channels 8-15.
1.40	Nov.07.14		Added RX113 support.
2.00	Mar.30.15	_	Added RX64M/RX71M support. Modified interface to include a unit number.
2.10	Jun.15.15	_	Added RX231 support. Added an RX231 demo.
2.11	Mar.01.16	_	Added RX130 and RX230 support.
2.20	Dec.01.16		Added RX65N support.
		5	2.9 Code Size:
			Changed code sizes for RX111.
			Added code sizes for RX65N.
		53 to 64	3.2 R_ADC_Open(), 3.3 R_ADC_Control():
			Added the following code in each Example section.
			Code to clear all fields of each structure.
			 Comment regarding a wait time before A/D conversion
			starts after open.
		55	3.2 R_ADC_Open(): Added the Special Notes (RX 63x) and Special Notes
			(RX110/RX111/RX113/RX210/RX130/RX230/ RX231/RX65x).
		56	3.3 R_ADC_Control(): Added the sentence to clear all members of parameters in the Description.
		65	3.3 R_ADC_Control(): Added and modified the following items:
			Special Notes (RX Family Common): Added four special notes.
			 Special Notes (RX64M/RX71M/RX65x): Added a special note regarding operation under Group A Priority Control and modified the table.
			 Special Notes (RX63x) and Special Notes (RX110/RX111/RX113): Added.
		67	3.4 R_ADC_Read(): Added Special Notes (RX110/RX111/RX113).
		71	4. Pin Setting: Added.
		72	5.3 s12ad_poll_demo_rskrx130: Added.
		Program	Fixed typo on comment lines.
			Revised the initialization in the R ADC Open function.

		Description		
Rev.	Date	Page	Summary	
2.20	Dec.01.16	Program	Fixed the following issue:	
			Target Device:	
			RX64M/RX71M/RX230/RX231	
			Description:	
			There is an error in checking the range of the arguments. Thus, when the trigger source de-selection state is set as the trigger for group B, the R_ADC_Open function returns an error.	
			Condition:	
			The following combination of arguments for the R_ADC_Open function is set.	
			Second parameter (mode)	
			ADC_MODE_SS_MULTI_CH_GROUPED or	
			ADC_MODE_SS_MULTI_CH_GROUPED_DBLTRIG_A Third parameter (p_cfg->trigger_groupb)	
			ADC_TRIG_NONE_GROUPB.	
			Measure:	
			Modified the code for checking the arguments of the adc_check_open_cfg function.	
			Use Rev. 2.20 or later version of the ADC FIT module.	
			Fixed the following issue:	
			Target Device: RX230/RX231	
			Description:	
			The compare window A operation enable bit is not set to be enabled. Thus comparison for levels and windows does not work.	
			Condition:	
			Comparison does not work under any condition.	
			Measure:	
			Modified the code to enable the CMPAE bit using the adc_control function when the compare function is selected.	
			Use Rev. 2.20 or later version of the ADC FIT module.	

Rev.		Description		
	Date	Page	Summary	
2.20	Dec.01.16	Program	Fixed the following issue:	
			Target Device: RX64M/RX71M/RX230/RX231	
			Description: After Disconnection Detection Assist (DDA) is set, the register is not reset. Thus the Disconnection Detection Assist (DDA) setting remains and this causes a combination error when setting self-diagnosis. Then the R_ADC_Control function returns an error.	
			Condition: After Disconnection Detection Assist (DDA) is set, the FIT module is closed and re-opened, and then self-diagnosis is set.	
			Measure:	
			Added processing to reset all S12AD related registers in the adc_open function and deleted the check during Disconnection Detection Assist (DDA) operation from the check with self-diagnosis set in the adc_check_scan_config function.	
			Use Rev. 2.20 or later version of the ADC FIT module.	
			Fixed the following issue:	
			Target Device: RX230/RX231	
			Description:	
			The numbers of arguments (enum value) for an index of the register table do not match and the indexed value becomes out of range. Then the R_ADC_Read function cannot obtain the result of self-diagnosis.	
			Condition: Occurs under any conditions.	
			Measure:	
			Deleted unnecessary definitions from the enum (abc_reg_t) for an index of the register table.	
			Use Rev. 2.20 or later version of the ADC FIT module.	
			Fixed the following issue:	
			Target Device: RX210	
			Description:	
			A parameter needed for compiling was deleted in rev. 2.10, thus a build error occurs when compiling with RX210.	
			Condition: A project with Rev.2.10 or Rev.2.11 of the ADC FIT module is built.	
			Measure: Added ADC_CFG_PGA_GAIN to r_s12ad_rx_config.h. Use Rev. 2.20 or later version of the ADC FIT module.	
			Deleted unnecessary definitions.	
			Deleted unnecessary members.	

		Description	
Rev.	Date	Page	Summary
2.20	Dec.01.16	Program	Modified the following procedures according to the User's Manual: Hardware:
			Procedure for when A/D conversion stops
			Procedure for when entering low power consumption
			modes
			Procedure to rewrite the ADHSC bit
			Fixed the following issue:
			Target Device:
			RX64M/RX71M/RX230/RX231
			Description:
			Since the operator is incorrect in processing to avoid the upper limit voltage becoming less than the lower limit voltage, the upper and lower limit voltages cannot be set to the same value in the comparison setting.
			Condition:
			The comparison (window comparison) is used.
			Measure:
			Use Rev. 2.20 or later version of the ADC FIT module.
			Modified the code to set the delay time properly when converting the temperature sensor in RX64M and RX71M.
			Modified processing for checking an invalid channel when
			using the extended analog input in RX64M and RX71M.
			Unify the name of definitions that have same meanings but
			have different names among MCU Groups.
			RX63x
			ADC_TRIG_ASYNC_ADTRG0
			→ ADC_TRIG_ASYNC_ADTRG
			ADC_TRIG_SYNC_TRG0AN_0
			→ ADC_TRIG_SYNC_TRG0AN
			ADC_TRIG_SYNC_TRG0BN_0 → ADC_TRIG_SYNC_TRG0BN
			ADC_TRIG_SYNC_TRGUBN ADC_TRIG_SYNC_TRGAN_0
			→ ADC_TRIG_SYNC_TRGAN
			ADC_TRIG_SYNC_TRGAN_1
			→ ADC_TRIG_SYNC_TPUTRGAN
			ADC_TRIG_SYNC_TRG0EN_0
			→ ADC_TRIG_SYNC_TRG0EN
			ADC_TRIG_SYNC_TRG0FN_0
			→ ADC_TRIG_SYNC_TRG0FN ADC TRIG SYNC TRG4ABN 0
			ADC_TRIG_SYNC_TRG4ABN_0 → ADC_TRIG_SYNC_TRG4AN_OR_TRG4BN
			ADC_TRIG_SYNC_TRG4ABN_1
			→ ADC_TRIG_SYNC_TPUTRG0AN
			ADC_TRIG_SYNC_TMRTRG0AN_0
			→ ADC_TRIG_SYNC_TMRTRG0AN
			ADC_TRIG_SYNC_TMRTRG0AN_1
			→ ADC_TRIG_SYNC_TMRTRG2AN

		Description		
Rev.	Date	Page	Summary	
Rev. 2.20	Date Dec.01.16		Summary RX110 ADC_CONVERT_SPEED_HI → ADC_CONVERT_SPEED_HIGH ADC_TRIG_NONE_GROUPB → Deleted ADC_TRIG_ASYNC_ADTRG0 → ADC_TRIG_ASYNC_ADTRG RX111 ADC_CONVERT_SPEED_HI → ADC_CONVERT_SPEED_HIGH ADC_TRIG_NONE_GROUPB → Deleted ADC_TRIG_ASYNC_ADTRG0 → ADC_TRIG_ASYNC_ADTRG ADC_TRIG_SYNC_TRGAN → ADC_TRIG_SYNC_TRGAN ADC_TRIG_SYNC_TRGAN ADC_TRIG_SYNC_TRG4ABN → ADC_TRIG_SYNC_TRG4AN_AND_TRG4BN RX113 ADC_CONVERT_SPEED_HI → ADC_CONVERT_SPEED_HIGH ADC_TRIG_NONE_GROUPB → Deleted ADC_TRIG_ASYNC_ADTRG0 → ADC_TRIG_ASYNC_ADTRG0 → ADC_TRIG_ASYNC_TRGAN → ADC_TRIG_SYNC_TRGAN ADC_TRGAN ADC_TRGAN ADC_TRGAN ADC_TRGAN	
			→ ADC_TRIG_SYNC_TRGAN_OR_UDF4N ADC_TRIG_SYNC_TRG4ABN → ADC_TRIG_SYNC_TRG4AN_AND_TRG4BN RX210 ADC_TRIG_NONE_GROUPB → Deleted ADC_TRIG_ASYNC_ADTRG0 → ADC_TRIG_ASYNC_ADTRG	
			ADC_TRIG_SYNC_TRGAN → ADC_TRIG_SYNC_TRGAN_OR_UDF4N ADC_TRIG_SYNC_TRG4ABN → ADC_TRIG_SYNC_TRG4AN_AND_TRG4BN ADC_TRIG_PLACEHOLDER → ADC_TRIG_SYNC_TEMPS ADC_TRIG_SYNC_TRGAN1 → ADC_TRIG_SYNC_TPUTRGAN ADC_TRIG_SYNC_TPUTRGOAN → ADC_TRIG_SYNC_TPUTRGOAN	

		Description	
Rev.	Date	Page	Summary
2.20	Dec.01.16	Program	RX64M
			ADC CMD CONFIGURE SCAN
			→ ADC CMD ENABLE CHANS
			ADC_TRIG_NONE_GROUPB → ADC_TRIG_NONE
			ADC TRIG ASYNC ADTRG0
			→ ADC TRIG ASYNC ADTRG
			ADC TRIG SYNC TRGAON
			→ ADC_TRIG_SYNC_TRG0AN
			ADC TRIG SYNC TRGA1N
			→ ADC_TRIG_SYNC_TRG1AN
			ADC TRIG SYNC TRGA2N
			→ ADC_TRIG_SYNC_TRG2AN
			ADC TRIG SYNC TRGA3N
			→ ADC_TRIG_SYNC_TRG3AN
			ADC TRIG SYNC TRGA4N
			→ ADC_TRIG_SYNC_TRG4AN_OR_UDF4N
			ADC TRIG SYNC TRGA6N
			→ ADC_TRIG_SYNC_TRG6AN
			ADC_TRIG_SYNC_TRGA7N
			→ ADC_TRIG_SYNC_TRG7AN_OR_UDF7N
			ADC TRIG SYNC TRGON
			→ ADC_TRIG_SYNC_TRG0EN
			ADC TRIG SYNC TRG4ABN
			→ ADC_TRIG_SYNC_TRG4AN_AND_TRG4BN
			ADC TRIG SYNC TRG7ABN
			→ ADC_TRIG_SYNC_TRG7AN_AND_TRG7BN
			ADC TRIG SYNC GTADTRAON
			→ ADC_TRIG_SYNC_GTADTR0AN
			ADC TRIG SYNC GTADTRBON
			→ ADC_TRIG_SYNC_GTADTR0BN
			ADC TRIG SYNC GTADTRA1N
			→ ADC_TRIG_SYNC_GTADTR1AN
			ADC_TRIG_SYNC_GTADTRB1N
			→ ADC_TRIG_SYNC_GTADTR1BN
			ADC TRIG SYNC GTADTRA2N
			→ ADC_TRIG_SYNC_GTADTR2AN
			ADC TRIG SYNC GTADTRB2N
			→ ADC_TRIG_SYNC_GTADTR2BN
			ADC TRIG SYNC GTADTRA3N
			→ ADC_TRIG_SYNC_GTADTR3AN
			ADC TRIG SYNC GTADTRB3N
			→ ADC_TRIG_SYNC_GTADTR3BN
			ADC_TRIG_SYNC_GTADTRA0N_OR_GTADTRB0N
			→ ADC_TRIG_SYNC_GTADTROAN_OR_GTADTROBN
			ADC TRIG SYNC GTADTRAIN OR GTADTRBIN
			→ ADC_TRIG_SYNC_GTADTR1AN_OR_GTADTR1BN
			ADC TRIG SYNC GTADTRA2N OR GTADTRB2N
			→ ADC_TRIG_SYNC_GTADTR2AN_OR_GTADTR2BN
			ADC_TRIG_SYNC_GTADTRA3N_OR_GTADTRB3N
			→ ADC_TRIG_SYNC_GTADTR3AN_OR_GTADTR3BN
			ADC TRIG SYNC TMTRGOAN 0
			→ ADC_TRIG_SYNC_TMRTRG0AN
			/ ADO_INIO_OTNO_ININTINOOAN

		Description	
Rev.	Date	Page	Summary
2.20	Dec.01.16	Program	ADC_TRIG_SYNC_GTADTRA2N → ADC_TRIG_SYNC_GTADTR2AN ADC_TRIG_SYNC_GTADTRB2N
			→ ADC_TRIG_SYNC_GTADTR2BNADC_TRIG_SYNC_GTADTRA3N→ ADC_TRIG_SYNC_GTADTR3AN
			ADC_TRIG_SYNC_GTADTRB3N → ADC_TRIG_SYNC_GTADTR3BN
			ADC_TRIG_SYNC_GTADTRA0N_OR_GTADTRB0N → ADC_TRIG_SYNC_GTADTR0AN_OR_GTADTR0BN ADC_TRIG_SYNC_GTADTRA1N_OR_GTADTRB1N
			→ ADC_TRIG_SYNC_GTADTR1AN_OR_GTADTR1BN ADC_TRIG_SYNC_GTADTRA2N_OR_GTADTRB2N → ADC_TRIG_SYNC_GTADTR2AN_OR_GTADTR2BN
			ADC_TRIG_SYNC_GTADTRA3N_OR_GTADTRB3N → ADC_TRIG_SYNC_GTADTR3AN_OR_GTADTR3BN ADC_TRIG_SYNC_TMTRG0AN_0 → ADC_TRIG_SYNC_TMRTRG0AN
			→ ADC_TRIG_STNC_IMICTRGOAN ADC_TRIG_SYNC_TMTRG0AN_1 → ADC_TRIG_SYNC_TMRTRG2AN ADC_TRIG_SYNC_TPTRGAN
			→ ADC_TRIG_SYNC_TPUTRGAN ADC_TRIG_SYNC_TPTRG0AN → ADC_TRIG_SYNC_TPUTRG0AN
			ADC_TRIG_SYNC_ELCTRG → ADC_TRIG_SYNC_ELC RX130
			ADC_TRIG_NONE_GROUPB → ADC_TRIG_NONE ADC_TRIG_ASYNC_ADTRG0 → ADC_TRIG_ASYNC_ADTRG
			ADC_TRIG_SYNC_TRGAN → ADC_TRIG_SYNC_TRGAN_OR_UDF4N ADC_TRIG_SYNC_TRG4ABN
			→ ADC_TRIG_SYNC_TRG4AN_AND_TRG4BN ADC_TRIG_SYNC_ELCTRG0 → ADC_TRIG_SYNC_ELC
			RX230 ADC_TRIG_NONE_GROUPB → ADC_TRIG_NONE ADC_TRIG_ASYNC_ADTRG0 → ADC_TRIG_ASYNC_ADTRG
			ADC_TRIG_SYNC_TRGAN → ADC_TRIG_SYNC_TRGAN_OR_UDF4N ADC_TRIG_SYNC_TRG4ABN
			→ ADC_TRIG_SYNC_TRG4AN_AND_TRG4BN ADC_TRIG_SYNC_ELCTRG0N_OR_ELCTRG1N → ADC_TRIG_SYNC_ELC
			ADC_TRIG_SYNC_TRGAN1 → ADC_TRIG_SYNC_TPUTRGAN ADC_TRIG_SYNC_TRG4ABN1 → ADC_TRIG_SYNC_TPUTRG0AN

		Description	
Rev.	Date	Page	Summary
Rev. 2.20	Date Dec.01.16	Page Program	Summary RX231 ADC_TRIG_NONE_GROUPB → ADC_TRIG_NONE ADC_TRIG_ASYNC_ADTRG0 → ADC_TRIG_ASYNC_TRGAN ADC_TRIG_SYNC_TRGAN ADC_TRIG_SYNC_TRGAN_OR_UDF4N ADC_TRIG_SYNC_TRG4ABN → ADC_TRIG_SYNC_TRG4AN_AND_TRG4BN ADC_TRIG_SYNC_ELCTRG0N_OR_ELCTRG1N → ADC_TRIG_SYNC_TRGAN1 → ADC_TRIG_SYNC_TPUTRGAN ADC_TRIG_SYNC_TPUTRGAN ADC_TRIG_SYNC_TPUTRGOAN Unify the member names in the adc_ch_cfg_t structure that are different among MCU Groups. RX64M/RX71M scan_mask → chan_mask scan_mask_groupb → chan_mask_groupb Deleted processing for checking the range of enum value to
			Unify the member names in the adc_ch_cfg_t structure that are different among MCU Groups. RX64M/RX71M scan_mask → chan_mask scan_mask_groupb → chan_mask_groupb Deleted processing for checking the range of enum value to simplify the processing. * See the warning on compiling to check the enum range. Fixed the following issue: Target Device: RX210 Description: In the processing for checking arguments, ADC_TRIG_SYNC_TEMPS is checked with "trigger" instead of "trigger_groupb". Then the R_ADC_Open function returns an error even if the ADC_TRIG_SYNC_TEMPS setting is valid. Condition:
			ADC_TRIG_SYNC_TEMPS is set as the trigger of A/D conversion. Measure: Deleted the code for checking ADC_TRIG_SYNC_TEMPS in the adc_open function. * "trigger_groupb" is ignored in modes other than group scan mode. In group scan mode, if ADC_TRIG_SYNC_TEMPS is set to trigger_groupb, an error is returned. Thus the checking process for ADC_TRIG_SYNC_TEMPS is unnecessary. Use Rev. 2.20 or later version of the ADC FIT module. Added the temperature sensor (temp) and internal reference voltage (volt) to the adc_data_t structure in the RX63x, RX110, RX111, RX113, and RX210 Groups to unify the behavior of the R_ADC_ReadAll function over all MCU groups.

Description			
Rev.	Date	Page	Summary
2.20	Dec.01.16	Program	Fixed the following issue:
			Target Device:
			RX64M/RX71M
			Description:
			In the processing for checking arguments, ADC_TRIG_NONE is checked with "trigger". Then the R_ADC_Open function returns an error even if the ADC_TRIG_NONE setting is valid.
			Condition:
			ADC_TRIG_NONE is set as the trigger of A/D conversion.
			Measure:
			Deleted the code for checking ADC_TRIG_NONE in the adc_open function since ADC_TRIG_NONE can be set to the TRSA register as well as the TRSB register.
			Use Rev. 2.20 or later version of the ADC FIT module.
			Modified the code to reset the ADGSPCR register when
			setting a mode other than group scan mode in the RX130, RX230, RX231, RX64M, and RX71M.
			Changed the structure for arguments of comparison in
			RX130/RX230/RX231 to similar to the structure in RX65N.
			The adc_cmplvl_t structure has been discarded,
			accordingly. Please use the adc_cmpwin_t structure when
			using the level comparison.
			Fixed the following issue:
			Target Device: RX130/RX230/RX231
			Description:
			No processing is provided to set the compare window operation enable bit to "disabled". Thus once the compare function is enabled, only the way to disable it is reopening. However, please note that reopening does not work for RX230 and RX231.
			Condition:
			Always occurs when the compare function is used.
			Measure:
			Added "windowa_enable" to the structure for arguments of the compare function. Now the compare window operation enable bit can be set to "enabled" or "disabled" according to true/false setting of "windowa_enable", i.e. same processing as RX65N.
			Use Rev. 2.20 or later version of the ADC FIT module.

		Description	
Rev.	Date	Page	Summary
2.20	Dec.01.16	Program	Fixed the following issue:
			Target Device: RX64M/RX71M
			Description:
			No processing is provided to set the WCMPE bit to 0 (level comparison). Thus once window comparison is enabled, the comparison cannot be set to level comparison.
			Condition:
			The comparison is reset to level comparison after setting to window comparison.
			Measure:
			Modified the code to properly set the WCMPE bit according to the selection of window or level comparison.
			Use Rev. 2.20 or later version of the ADC FIT module.
			Modified the code to use the interface provided in the BSP (R_BSP_InterruptControl function) for specifying the interrupt enable bit and interrupt priority level when the compare interrupt is used in RX64M and RX71M.
			Fixed the following issue:
			Target Device: RX64M/RX71M
			Description:
			No processing is provided to set the compare interrupt enable bit to "disabled". Thus once the comparison is enabled, the compare interrupt cannot be disabled.
			Condition: The interrupt priority level is set to 1 or greater while the comparison is enabled.
			Measure: Modified the code to disable the compare interrupt when executing the adc_close function and to disable group interrupts if no FIT module uses group interrupts.
			Use Rev. 2.20 or later version of the ADC FIT module.
			Fixed the following issue:
			Target Device: RX130/RX230/RX231/RX64M/RX71M
			Description: An unspecified callback function (NULL) is executed and improper interrupt occurs.
			Condition: After the R_ADC_Open function is executed with interrupts disabled, the interrupt priority level of the compare interrupt is set to 1 or greater.
			Measure: Modified the code to check the callback function before executing it. If the callback function is NULL, the interrupt handler is exited without performing any processing.
			Use Rev. 2.20 or later version of the ADC FIT module. Deleted unnecessary processing to reset the register when enabling an output of the temperature sensor in RX210
			since the register is already reset to 0.

		Description	
Rev.	Date	Page	Summary
2.20	Dec.01.16	Program	Replaced the RX113 provided wait function (adc_delay) with the BSP provided wait function
			(R BSP SoftwareDelay). * The RX113 provided wait
			function (adc_delay) has been deleted.
			Fixed the following issue:
			Target Device:
			RX210
			Description:
			An unnecessary error determination is performed. Because of this, when specifying a setting with the channel-dedicated sample-and-hold function, the R_ADC_Control function returns an error.
			Condition:
			In group scan mode, A/D conversion channels for group A and group B are set with the channel-dedicated sample-and-hold function.
			Measure:
			Deleted an unnecessary error determination as no limitation regarding it is described in the User's Manual: Hardware.
			Use Rev. 2.20 or later version of the ADC FIT module.
			Fixed the following issue:
			Target Device:
			RX210
			Description:
			Since an error determination processing is not provided, if self-diagnosis is enabled in a mode where self-diagnosis does not work, the R_ADC_Control function cannot return an error.
			Condition:
			Self-diagnosis is enabled when double trigger mode is selected in single scan mode or group scan mode.
			Measure:
			Added the error determination processing for when self-diagnosis is enabled.
			Use Rev. 2.20 or later version of the ADC FIT module.
			Fixed the following issue:
			Target Device: RX130/RX230/RX231
			Description:
			An unnecessary error determination is performed. Because of this, when setting the disconnection detection assist function after self-diagnosis is enabled, the R_ADC_Control function returns an error.
			Condition:
			Discharge or precharge is selected for the disconnection detection assist function after self-diagnosis is enabled.
			Measure:
			Deleted unnecessary determination processing described in the Description above.
			Use Rev. 2.20 or later version of the ADC FIT module.

		Description	
Rev.	Date	Page	Summary
2.20	Dec.01.16	Program	Fixed the following issue:
			Target Device:
			Description:
			The definition to determine a valid channel is incorrect and channel 20 cannot be selected.
			Condition: A chip with 177, 176, 145, or 144 pins is selected.
			Measure: Modified the definition to determine a valid channel. Use Rev. 2.20 or later version of the ADC FIT module.
			Fixed the following issue:
			Target Device: RX631
			Description:
			There is no definition to determine a valid channel and this causes a compiling error.
			Condition: A chip with 64 pins or 48 pins is selected.
			Measure:
			Added the definition to determine a valid channel.
			Use Rev. 2.20 or later version of the ADC FIT module.
			Fixed the following issue:
			Target Device: RX64M/RX71M/RX65x
			Description: When obtaining the compare match result, the compare channel is cleared. Then, the subsequent compare match is not performed.
			Condition: When any of the unit 1 channel from channel 16 to channel 20 is specified as the compare channel, the condition is met and the compare match interrupt occurs, or the R_ADC_Control function is executed by setting ADC_CMD_CHECK_CONDITION_MET.
			Measure: Modified the register that was initialized when obtaining
			the compare match result.
			Use Rev. 2.20 or later version of the ADC FIT module.
			Fixed the following issue:
			Target Device: RX64M/RX71M/RX65x/RX130/RX230/RX231
			Description: When enabling self-diagnosis under a prohibited setting condition, the operation ends normally.
			Condition: Self-diagnosis is enabled in double trigger mode with single scan mode selected.
			Measure: Modified processing for checking the error condition when self-diagnosis is enabled. Use Rev. 2.20 or later version of the ADC FIT module.

RENESAS

		Description		
Rev.	Date	Page	Summary	
2.20	Dec.01.16	Program	In RX63x and RX210, the TEMPS register is now modified	
			only when the temperature sensor module is enabled.	
			Added the definition "ADC_CONVERT_SPEED_DEFAULT"	
			for conversion speed of A/D conversion in RX110, RX111,	
			and RX113. "ADC_CONVERT_SPEED_DEFAULT" has the	
			same value as "ADC_CONVERT_SPEED_NORM".	
			Fixed the following issue:	
			Target Device: RX110	
			Description:	
			An error occurs when attempting to set the minimum value for the number of sampling states.	
			Condition:	
			An error occurs whenever the number of sampling states can be set.	
			Measure:	
			Modified the definition of the minimum value for the number of sampling states.	
			Use Rev. 2.20 or later version of the ADC FIT module.	
			In RX64M, RX71M, RX65x, RX130, RX230, and RX231,	
			some function declarations differed from prototypes. These	
			function declarations now correspond to the prototypes.	
2.30	Jul.24.17	_	Applications of descriptions are now indicated by the	
			S12AD peripherals (not MCUs).	
			Added support for RX65N-2MB (177 pins and 176 pins).	
			Added support for RX130-512KB (100 pins).	
		1	Related Documents: Added the following document:	
			"Renesas e² studio Smart Configurator User Guide	
		2	(R20AN0451)"	
		3	Overview: Revised the descriptions. 2.5. Supported Table being: The information of the table being.	
		4	2.5 Supported Toolchains: The information of the toolchains are now described in 6.1.	
		5	2.6 Interrupt Vector: Added	
		6-7	2.10 Code Size: Updated the sizes according to changes in	
		0-7	the program.	
		7-43	2.11 API Data Structures: Revised. Now descriptions have	
		1.10	given by each structure.	
		44	2.13 Adding a FIT Module to Your Project: Revised.	
		46-48	3.2 R_ADC_Open(): Revised.	
		49-61	3.3 R_ADC_Control(): Revised.	
		66	4. Pin Setting: Revised.	
		68	5.8 Downloading Demo Projects: Added.	
		69, 70	6. Appendices: Added.	
		Program	In RX65N, deleted processing for checking the range of	
		3	enum value to simplify the processing.	
			* See the warning on compiling to check out-of-range for	
			enum.	

		Description			
Rev.	Date	Page	Summary		
2.30	Jul.24.17	Program	Fixed the following issue:		
			Target Device:		
			RX130/RX230/RX231/RX64M/RX71M/RX65N		
			Description:		
			When a channel is opened in a mode other than group scan mode, even if the parameter only available for group scan mode is set for the channel, an error does not occur.		
			Condition:		
			When in a mode other than group scan mode, a channel for group B, channel for group C (RX65N only), and group priority control is set.		
			Measure:		
			Modified processing to check invalid combination in group scan mode and return an error.		
			Use Rev. 2.30 or later version of the ADC FIT module.		
			Fixed the following issue:		
			Target Device:		
			RX130/RX230/RX231/RX64M/RX71M/RX65N		
			Description:		
			The procedure to specify the register for group priority control does not follow the procedure in the User's Manual: Hardware. Due to this, scanning operation and the result stored cannot be guaranteed.		
			Condition:		
			Group priority control is used.		
			Measure:		
			Modified the register setting procedure for group priority control.		
			Use Rev. 2.30 or later version of the ADC FIT module.		
			Fixed the following issue:		
			Target Device: RX65N		
			Description:		
			When the interrupt priority level is set (interrupt enabled) without specifying the callback function, an error does not occur.		
			Condition:		
			The interrupt priority level is set to 1 or greater.		
			Measure: Modified the checking procedure at open to return an		
			error. Use Rev. 2.30 or later version of the ADC FIT module.		

		Description	
Rev.	Date	Page	Summary
2.30	Jul.24.17	Program	Fixed the following issue:
			Target Device:
			RX65N
			Description:
			Even if addition mode is specified with an invalid combination, an error does not occur.
			Condition:
			When "16 samples" is selected for addition mode, 10-bit accuracy or 8-bit accuracy is selected.
			Measure:
			Modified the checking procedure at open to return an error.
			Use Rev. 2.30 or later version of the ADC FIT module.
			Fixed the following issue:
			Target Device:
			RX65N
			Description:
			The procedure to stop A/D conversion does not follow the procedure described in the User's Manual: Hardware. Due to this, an unexpected operation may be performed.
			Condition:
			Close processing is performed with group priority control enabled.
			Measure:
			Modified the register setting procedure at close.
			Use Rev. 2.30 or later version of the ADC FIT module.
			Fixed the following issue:
			Target Device: RX65N
			Description:
			Window B comparison condition may not be specified correctly.
			Condition:
			With comparison function, window B comparison condition is set to 2 or greater.
			Measure:
			Window B comparison condition does not have range check. Thus, the code has been modified to return an error when an out-of-range error occurs. Use Rev. 2.30 or later version of the ADC FIT module.

		Description	
Rev.	Date	Page	Summary
2.30	Jul.24.17	Program	Fixed the following issue:
			Target Device: RX65N
			Description:
			The trigger for group A cannot be set to the external trigger.
			Condition:
			Double trigger is disabled in group scan mode.
			Measure:
			The external trigger was disabled in RX65N (same as the RX64M). For RX65N, the external trigger now can be set only for group A.
			Use Rev. 2.30 or later version of the ADC FIT module.
			Fixed the following issue:
			Target Device:
			RX65N
			Description:
			The result cannot be obtained when the window A/B complex condition is set.
			Condition:
			Occurs at any time.
			Measure:
			Added I/F for obtaining the comparison result with window A/B complex condition to the R_ADC_Control function.
			Use Rev. 2.30 or later version of the ADC FIT module.

		Description		
Rev.	Date	Page	Summary	
3.00	Sep.03.18		Added RX66T support.	
	·		Updated Demo projects.	
		1	Introduction: Modified content.	
			Target Devices: Added RX66T Group.	
		4	1. Overview: Modified content.	
			1.1 ADC FIT Module: Added section.	
			1.2 ADC FIT Module Overview: Added section.	
		6	1.3 API Overview: Added section.	
		7	1.4 Processing Examples: Added section.	
		13	1.5 Restrictions: Added section.	
		14	2. API Information: Modified content.	
			2.1 Hardware Requirements: Modified content.	
			2.2 Hardware Resource Requirements: Deleted section.	
			2.3 Supported Toolchain: Modified content.	
		15	2.4 Limitations: Deleted section.	
			2.4 Interrupt Vectors: Added content.	
		16	2.7 Configuration Overview: Modified content.	
		17	2.8 Code Sizes: Added content.	
		18 to 36	2.9 Arguments: Modified content.	
		37	2.11 Callback Functions: Added section.	
		38	2.13 "for", "while" and "do while" statements: Added section.	
		39	3.1 Summary: Deleted section.	
		39 to 41	3.1 R_ADC_Open(): Modified content.	
		42 to 55	3.2 R_ADC_Control(): Modified content.	
		56	3.3 R_ADC_Read(): Modified content.	
		57	3.4 R_ADC_ReadAll(): Modified content.	
		58	3.5 R_ADC_Close(): Modified content.	
		59	3.6 R_ADC_GetVersion(): Modified content.	
		60	4. Pin Setting: Added content.	
			5. Demo Projects: Added content.	
		61, 62 62	•	
			6.1 Operation Confirmation Environment: Added content.	
		Program	Fixed the following issue:	
			Target Device: RX64M/RX65N/RX71M	
			Description:	
			The temperature sensor setting does not follow the	
			procedure in the User's Manual: Hardware.	
			Fixed the following issue:	
			Target Device:	
			RX65N	
			Description:	
			The trigger setting for group priority control does not follow the procedure in the User's Manual: Hardware.	
3.01	Dec.03.18	43	3.2 R_ADC_Control():	
			Modified command name of Description.	
		58	3.5 R_ADC_Close():	
			Modified content of Return Values.	

		Description	
Rev.	Date	Page	Summary
3.01	Dec.03.18	62	6.1 Operation Confirmation Environment:
			Corrected board used in Table 6.2 Confirmed Operation
			Environment (Rev. 3.00). Added Table 6.3 Confirmed
			Operation Environment (Rev. 3.01).
		Program	Added document number of the application note
			accompanying the sample program of the FIT module to
			xml file.
3.10	Feb.15.19		Added support for RX72T.
			Added support for RX651 with 64 pin package.
		1	Target Devices: Added RX72T Group.
		4	Table 1.1 Operating Modes Supported by ADC FIT
			Module: Updated.
		4	Table 1.2 Functions Supported by ADC FIT Module:
			Updated.
		5	Table 0.1 S12AD Supported by Each MCU: Updated.
		15	Table 0.2 Interrupt Vector Used in the ADC FIT Module:
		10	Updated. 2.8 Code Sizes: Added content.
		16	
		60	Table 0.3 Function Output by the FIT Configurator: Updated.
		64	Table 0.4 Confirmed Operation Environment (Rev. 3.10):
			Updated.
4.00	Apr.05.19	_	Supported the following compilers:
			- GCC for Renesas RX
			- IAR C/C++ Compiler for Renesas RX
		1	Deleted the RX210, RX631, and RX63N in Target Devices for end of update these devices.
			Added the section of Target compilers.
			Deleted related documents.
		4, 5	1.2 ADC FIT Module Overview:
		, -	Deleted the description of RX210, RX631, and RX63N.
		14	2.2 Software Requirements:
			Added the revision number of depending module.
		15	2.4 Interrupt Vector: Deleted the description of RX210, RX631, RX63N, and S12ADa.
		16	2.7 Configuration Overview: Deleted the macro definition of ADC_CFG_PGA_GAIN.
		17	Updated the section of 2.8 Code Size.
		19, 20	2.9.2 Structures and Enumerations Used as Arguments for
		10, 20	R_ADC_Open Function: Deleted the note of S12ADa.
			Updated the section of 2.12 Adding the FIT module to Your Project.
		40	3.1 R_ADC_Open(): Deleted the description of RX210.
		41	3.1 R_ADC_Open(): Deleted the Special Note(S12ADa).
		54	3.2 R_ADC_Control(): Deleted the note of S12ADa.
		55	3.2 R_ADC_Control(): Deleted the Special Note(S12ADa).
		56	3.3 R_ADC_Read():Deleted the description of RX210.
		59	Updated the section of 3.6 R ADC GetVersion().
		60	4. Pin Setting: Deleted the description of RX210, RX631,
			and RX63N.

		Description	
Rev.	Date	Page	Summary
4.00	Apr.05.19	64	Table 6.5 Confirmed Operation Environment (Rev. 4.00): Updated.
		66	Deleted the section of Website and Support.
		Program	Deleted the process of RX210, RX631, and RX63N for end
			of update these devices.
			Changed bellow for support GCC and IAR compiler: 1. Deleted the inline expansion of the R_ADC_GetVersion
			function. 2. Replaced evenaccess with the macro definition of BSP.
			3. Replaced nop with the intrinsic functions of BSP.
			4. Replaced the declaration of interrupt functions with the macro definition of BSP.
			Changed the processing to prevent register access
			contention between peripheral functions that occurs when using RTOS or when multiple interrupts are enabled.
			Changed the setting process of the Interrupt Request Enable Bits (IEN)
			[Description]
			Changed the setting process of the Interrupt Request Enable Bits (IEN) to use R_BSP_InterruptRequestDisable,
			and R_BSP_InterruptRequestEnable in the API functions of
			BSP.
			2. Changed the setting process of the Group Interrupt Request Enable Register (GENBL1) (RX64M, RX65N, RX66T, RX71M, and RX72T).
			[Description]
			Changed to perform the setting process of the Group
			Interrupt Request Enable Register (GENBL1) while
4.40	1 22 42		interrupts are disabled.
4.10	Jun.28.19		Added support for RX23W.
		Program	Fixed the following issue:
			Target Device: RX230/RX231
			Description:
			The value of ADC_SST_CNT_MIN changes, according
			to the clock setting.
			PCLKB < ADCLK
			#define ADC_SST_CNT_MIN (6) PCLKB >= ADCLK
4.20	Jul.31.19		#define ADC_SST_CNT_MIN (5) Added support for RX72M.
7.20	Jul. 31. 19	1	Target Devices: Added RX72M Group.
		4	Table 1.1 Operating Modes Supported by ADC FIT
			Module: Updated.
		4	Table 1.2 Functions Supported by ADC FIT Module:
			Updated.
		5	Table 1.3 S12AD Supported by Each MCU: Updated.
		15	Table 2.1 Interrupt Vector Used in the ADC FIT Module: Updated.
		61	4. Pin Setting: Revised the descriptions.

		Description		
Rev.	Date	Page	Summary	
4.20	Jul.31.19	65	Table 6.7 Confirmed Operation Environment (Rev. 4.20) : Updated.	
4.30	Aug.30.19		Added support for RX13T.	
		1	Target Devices: Added RX13T Group.	
		4	Table 1.1 Operating Modes Supported by ADC FIT Module: Updated.	
		4	Table 1.2 Functions Supported by ADC FIT Module: Updated.	
		5	Table 1.3 S12AD Supported by Each MCU: Updated.	
		15	Table 2.1 Interrupt Vector Used in the ADC FIT Module: Updated.	
		33, 34	Added the following table (g) 3rd Argument Structure Members: PGA amplifier settings (Enumeration) (h) 3rd Argument Structure Members: PGA Gain	
		67	(Enumeration) Table 6.8 Confirmed Operation Environment (Rev. 4.30): Updated.	
4.40	Nov.22.19		Added support for RX66N and RX72N.	
			Changed the comment of API functions to the doxygen style.	
		1	Target Devices: Added RX66N and RX72N Groups.	
		3	Table 1.1 Operating Modes Supported by ADC FIT Module: Updated.	
		3	Table 1.2 Functions Supported by ADC FIT Module: Updated.	
		4	Table 1.3 S12AD Supported by Each MCU: Updated.	
		14	Table 2.1 Interrupt Vector Used in the ADC FIT Module: Updated.	
		17	Updated the section of 2.8 Code Size.	
		39	2.10 Return Values: Change description of ADC_ERR_UNKOWN.	
		43	Added 3.1 R_ADC_Open(): Special Notes (S12ADC, S12ADFa, S12ADH).	
		44	3.2 R_ADC_Control (): Add ADC_ERR_UNKNOWN to Return Values.	
		67	Table 6.9 Confirmed Operation Environment (Rev. 4.40) : Updated.	
		Program	Changed the specification of software configurable interrupt B of ADC FIT module.	
			Target Device: RX64M, RX651, RX65N, RX71M, RX72M Description: Change specifications as follows	
			Before change: All S12AD interrupt vector numbers must be set regardless of the unit used.	
			After change: S12AD interrupt vector numbers must be set only for the unit to be used. No need to set interrupt vector numbers for unused units.	

	Date	Description		
Rev.		Page	Summary	
4.40	Nov.22.19	Program	Fixed the following issue:	
			Target Device:	
			All	
			Description:	
			Some registers might be accessed simultaneously by	
			multiple peripherals. Therefore, the processing has been	
			changed to ensure the atomicity of writing to the register.	
4.41	Jan.31.20	_	Added support for RX13T with IAR Compiler.	
		68	Added Table 6.10 Confirmed Operation Environment	
			(Rev.4.41)	
4.50	Feb.28.20		Added support for RX23E-A.	
		1	Target Devices: Added RX23E-A Group.	
		4	Table 1.1 Operating Modes Supported by ADC FIT	
			Module: Updated.	
		4	Table 1.2 Functions Supported by ADC FIT Module:	
			Updated.	
		5	Table 1.3 S12AD Supported by Each MCU: Updated.	
		15	Table 2.1 Interrupt Vector Used in the ADC FIT Module: Updated.	
		69	Added Table 6.11 Confirmed Operation Environment	
			(Rev.4.50)	
		Program	Fixed the following issue:	
			Target Device:	
			RX110, RX111, RX113	
			Description:	
			The register value of the A/D Data Duplication Register (ADDBLDR) cannot be obtained with the R_ADC_ReadAll function.	
			Condition:	
			This issue occurs when both of the following conditions are satisfied.	
			- Use the ADC FIT module from Rev.4.00 to 4.41.	
			- Call the R_ADC_ReadAll function.	
			Modification:	
			Added the process of read the A/D Data Duplication Register (ADDBLDR) to the R_ADC_ReadAll function.	

		Description	
Rev.	Date	Page	Summary
4.50	Feb.28.20	Program	Fixed the following issue:
		_	Target Device:
			RX110, RX111, RX113, RX130, RX230, RX231, RX23W
			Description:
			The following modes that use the group scan mode
			cannot be used.
			- ADC_MODE_SS_MULTI_CH_GROUPED
			- ADC_MODE_SS_MULTI_CH_GROUPED_DBLTRIG_A
			If these modes are specified by the R_ADC_Open
			function and A/D conversion is executed, the completion of A/D conversion of group B cannot be detected, and the
			callback function upon completion is not called.
			Condition:
			This issue occurs when both of the following conditions
			are satisfied.
			- Use the ADC FIT module from Rev.4.00 to 4.41.
			- Execute A/D conversion by specifying
			ADC_MODE_SS_MULTI_CH_GROUPED or
			ADC_MODE_SS_MULTI_CH_GROUPED_DBLTRIG_A for mode with the R ADC Open function.
			Modification:
			Added the interrupt function of A/D scan end interrupt for
			Group B.
4.60	Jun.10.20	_	Added support for RX23T, RX24T and RX24U.
		1	Target Devices: Added RX23T, RX24T, RX24U Groups.
		4	Table 1.1 Operating Modes Supported by ADC FIT
			Module: Updated.
		4	Table 1.2 Functions Supported by ADC FIT Module:
			Updated.
		5	Table 1.3 S12AD Supported by Each MCU: Updated.
		15	Table 2.1 Interrupt Vector Used in the ADC FIT Module:
			Updated.
		18	Updated the section of 2.8 Code Size.
		41	Updated the section of 2.12 Adding the FIT Module to Your
			Project.
		71	Added Table 6.12 Confirmed Operation Environment
4.04	N 00 00		(Rev.4.60)
4.61	Nov.30.20		Updated the sample code project due to the upgrade of the development environment.
4.70	Mar.01.21		Added support for RX72M with 144 pin and 100 pin
4.70	IVIAI.UI.ZI	_	packages.
			Added support for RX23W with 83 pin package.
		34	2.9.3 (4) (g) 3rd Argument Structure Members: PGA
			amplifier settings (Enumeration): Fixed.
		35	2.9.3 (4) (h) 3rd Argument Structure Members: PGA Gain
			(Enumeration): Added Note.
		72	Added Table 6.13 Confirmed Operation Environment
			(Rev.4.70)
4.80	May.31.21	_	Added support for RX671.
		1	Target Devices: Added RX671 Group.
		4	Table 1.1 Operating Modes Supported by ADC FIT
] "	Module: Updated.
			modulo. Opuatou.

RENESAS

		Description		
Rev.	Date	Page	Summary	
4.80	May.31.21	4	Table 1.2 Functions Supported by ADC FIT Module: Updated.	
		5	Table 1.3 S12AD Supported by Each MCU: Updated.	
		16	Table 2.1 Interrupt Vector Used in the ADC FIT Module:	
			Updated.	
		73	Added Table 6.15 Confirmed Operation Environment (Rev.4.80)	
4.90	Jul.30.21		Added support for RX140.	
		4	Table 1.1 Operating Modes Supported by ADC FIT Module: Updated.	
		4	Table 1.2 Functions Supported by ADC FIT Module: Updated.	
		5	Table 1.3 S12AD Supported by Each MCU: Updated.	
		15	Table 2.1 Interrupt Vector Used in the ADC FIT Module: Updated.	
		25	Added the following table	
			(i) 3rd Argument Structure Members: Number of cycles required for conversion per bit (Enumeration)	
		30, 31	Fixed the following table	
		·	(a) 3rd Argument Structure Members: Group Priority Control (Enumeration)	
		44	Fixed 3.1 R_ADC_Open(): Special Notes (RX Family Common).	
		73	Added Table 6.16 Confirmed Operation Environment (Rev.4.90)	
4.91	Nov.1.21		Fixed the following issue:	
			Target Device:	
			Description:	
			When using the smart configurator, the pin settings for S12AD1 are not displayed. Therefore, it is not possible to set the pin for S12AD1 using the smart configurator.	
			Modification:	
			Fixed the MDF file so that the terminal settings of	
			S12AD1 are displayed when using the smart configurator.	
		73	Added Table 6.17 Confirmed Operation Environment	
			(Rev.4.91)	
4.92	Oct.19.21	_	Added support for RX140 with 80 pin package.	
		5	Added 1.3 Using the S12AD FIT module.	
		74	Added Table 6.18 Confirmed Operation Environment (Rev.4.92)	
4.92	Oct.19.21	Program	Fixed the following issue:	
			Target Device:	
			Description:	
			The value of ADC_SST_CNT_MIN changes, according to	
			the clock setting.	
			PCLKB < ADCLK	
			#define ADC_SST_CNT_MIN (6)	
			PCLKB >= ADCLK	
			#define ADC_SST_CNT_MIN (5)	

		Description	
Rev.	Date	Page	Summary
4.93	Nov.30.21	_	Added support for RX66T with 48 pin package.
		4	Table 1.2 Added Temperature Sensor Function
		74	Added Table 6.19 Confirmed Operation Environment
			(Rev.4.93)
		Program	Fixed the following issue:
		, i	Target Device:
			RX140, RX66T
			Description:
			Changed stop wait time processing of R_ADC_Close ().
5.00	Apr.25.22		Added support for RX660.
	'	1	Target Devices: Added RX660 Group.
		4	Table 1.1 Operating Modes Supported by ADC FIT
			Module: Updated.
		4	Table 1.2 Functions Supported by ADC FIT Module:
			Updated.
		5	Table 1.3 S12AD Supported by Each MCU: Updated.
		15	Table 2.1 Interrupt Vector Used in the ADC FIT Module:
			Updated.
		74	Added Table 6.20 Confirmed Operation Environment
			(Rev.5.00)
5.10	Aug.10.22	_	Added support for RX26T.
		1	Target Devices: Added RX26T Group.
		4	Table 1.1 Operating Modes Supported by ADC FIT
			Module: Updated.
		4, 5	Table 1.2 Functions Supported by ADC FIT Module:
			Updated.
		6	Table 1.3 S12AD Supported by Each MCU: Updated.
		8	Fixed the following figure
			Figure 1.1 ADC FIT Module Initialization Example (1/4)
		17	Table 2.2 Interrupt Vector Used in the ADC FIT Module
			Module (2/2) Updated.
		21	Added (S12ADHa) to the notes below
			(1) 2nd Argument: Operating Mode (Enumeration)
		22	Fixed the following table
			(2) 3rd Argument: Function Settings (Structure)
		24	Added the following table
			(f) 3rd Argument Structure Members: Data Register
			Automatic Setting (Enumeration)
		48	3.1 R_ADC_Open():Added(S12ADHa) to Special Note.
			Corrected typo in A/D Converter name.
		61, 62	3.2 R_ADC_Control():Added(S12ADHa) to Special Note.
			Corrected typo in A/D Converter name.
		78	Added Table 6.21 Confirmed Operation Environment
			(Rev.5.10)
5.20	Nov.10.22	_	Added support for RX23E-B.
		1	Target Devices: Added RX23E-B Group.
		4	Table 1.1 Operating Modes Supported by ADC FIT
			Module: Updated.
		4, 5	Table 1.2 Functions Supported by ADC FIT Module:
			Updated.

	Date	Description	
Rev.		Page	Summary
5.20	Nov.10.22	6	Table 1.3 S12AD Supported by Each MCU: Updated.
		15	Table 2.1 Interrupt Vector Used in the ADC FIT Module: Updated.
		78	Added Table 6.22 Confirmed Operation Environment (Rev.5.20)
5.30	Apr.3.23	_	Added support for RX26T(48k).
		78	Added Table 6.23 Confirmed Operation Environment
			(Rev.5.30)
5.40	Feb.13.24	_	Added support for RX260, RX261.
		1	Target Devices: Added RX260, RX261 Groups.
		4	Table 1.1 Operating Modes Supported by ADC FIT Module: Updated.
		4	Table 1.2 Functions Supported by ADC FIT Module: Updated.
		6	Table 1.3 S12AD Supported by Each MCU: Updated.
		16	Table 2.1 Interrupt Vector Used in the ADC FIT Module: Updated.
		26	Added GPTW and ELC.ELSR members.
		79	Added Table 6.24 Confirmed Operation Environment (Rev.5.40)

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/.