第5章 DES算法和AED算法

DES

Feature (特征)

data encryption standard

多表替换: sbox(数组)

- 块加密
- 每次加密8字节,明文64位,密钥64位
- 加密与解密的密钥相同(对称密钥加密算法)加密函数与解密函数并不相同

SBOX

- 每个sbox内容都不一样,相当于多表
- 每行16个元素,且每行元素一定在0-15之间
- 一个SBOX有4行,一共有8个SBOX
- SBOX输入48位,输出32位
- 48位分成8组,对应8个sbox,每一组6位。
- 进入48位,输出32位

	第1组	第2组	第3组	第4组	第5组	第6组	第7组
	101101	101101	101011	011001	010101	010101	100101
	sbox[0]	sbox[1]	sbox[2]	sbox[3]	sbox[4]	sbox[5]	sbox[6]
sbox行号	11	11	11	01	01	01	11
sbox列号	0110	0110	0101	1100	1010	1010	0010

 \int 第5位和第0位 sbox行号 \int 第4位到第1位 sbox列号

据此查找sbox[i],找到对应数值(0-15之间)即为输出的4位二进制值 所以sbox每个4行16列,且每个元素都在0-15之间

Procedure

- 打乱 permutation
 - 。 64位明文进入16位循环前需要对各个位的顺序进行打乱
 - 。 完成16轮加密后需要对64位密文的各个位的顺序进行打乱
 - 。 sbox的32位输出要打乱
 - 。 L_{28}, R_{28} 变成28位时也要打乱 打乱查询表IP (initial permutation)

```
static char ip[64] = { /* [%] source Bit58-> target Bit1, Bit50->Bit2, ..., Bit7->Bit64 */
58, 50, 42, 34, 26, 18, 10, 2,
60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6,
64, 56, 48, 40, 32, 24, 16, 8,
57, 49, 41, 33, 25, 17, 9, 1,
59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5,
63, 55, 47, 39, 31, 23, 15, 7
};
//以1为基数的位的编号,下标是目标位号,数组元素的值是源数据的位号
//ip[0]=58 表示源第57位数据要变成第0位
```

ByteIndex = SrcBit/8

BitIndex = SrcBit%8

• 外迭代 DES对位的表示采用**大端格式**

 L_{32} 表示明文的高32位, R_{32} 表示明文的低32位 左右32位各加密8轮,两边一共加密16轮,每轮加密的密钥要不相同第一轮

 $L'_{32} = L_{32} \bigoplus f(R_{32}, key)$

 $R'_{32} = R_{32} \bigoplus f(L'_{32}, key)$

第二轮

 $L_{32}'' = L_{32}' \bigoplus f(R_{32}', key)$

 $R_{32}'' = R_{32}' \bigoplus f(L_{32}'', key)$

• F()函数的操作

A R_{32} 通过重复某些位(在DES中是固定的位)使其展开位48位

B 对于64位密钥key,丢弃8位变成56位,并分成左右各28位(L_{28},R_{28}),循环左移后,合并成56位,再丢弃8位变成48位

С=А⊕В

C进入SBOX,输出的32位值就是F()的输出结果