

()	Prelim	inary	Spec	cifica	ition
-----	--------	-------	------	--------	-------

(V) Final Specification

Module 27" Color TFT-LCD			
Model Name M270DAN02.6			
Suffix Name Q0			
Document version	D05		

Document						
APPROVED BY	James Kuo	Date : Jul 17, 2015				
PREPARED BY	Tess Chen	Date : Jul 17, 2015				

CUSTOMER APPROVED AND FEEDBACK					
CUSTOMER					
APPROVED BY		Date :			

Note: This Specification is subject to change without notice.

<u>Contents</u>	
Item	Page
1. Handling Precautions	4
2. General Description	5
3. Functional Block Diagram	10
4. Absolute Maximum Ratings	П
5. Electrical characteristics	12
6. Signal Characteristic	16
7. Connector & Pin Assignment	25
8. Reliability Test	26
9. Shipping Label	27
10.Packing Precautions	28
11. Drawing	29

	Record of Revision					
Document Version	Date (Y/M/D)	Page	Description			
D01	2015/05/26		First Version			
D02	2015/07/17	6	Modify Viewing Angle Spec.			
D03	2015/07/27	5	Panel Weight			
		6	Optical Characteristics			
D04	2015/09/01	5	Power Consumption(LED line)			
		14	Backlight Unit			
D05	2015/10/05	31	Add Reliability Test			

1. Handling Precautions

- 1. Since front polarizer is easily damaged, pay attention not to scratch it.
- 2. Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3. Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4. When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5. Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6. Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7. Do not open or modify the Module Assembly.
- 8. Do not press the reflector sheet at the back of the module to any directions.
- 9. In case if a Module has to be put back into the packing container slot after once it was taken out from the container, do not press the center of the LED lightbar edge. Instead, press at the far ends of the LED light bar edge softly. Otherwise the TFT Module may be da
- 10. At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- II. After installation of the TFT Module into an enclosure, do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.
- 12. Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption.
- 13. Please avoid touching COF Position while you are doing mechanical design.
- 14. When storing modules as spares for a long time, the following precaution is necessary:
 - a. Store them in a dark place. Do not expose the module to sunlight or fluorescent light.
 - b. Keep the temperature between 5° C and 35° C at normal humidity.

2. General Description

This specification applies to the 27 inch wide Color a-Si TFT-LCD Module M270DAN02.6. The display supports the QHD - $2560(H) \times 1440(V)$ screen format and 1.07B colors (8bits RGB data input). The input interface is 8 channel LVDS.

Display Characteristics

The following items are characteristics summary on the table under 25°C condition:

ITEMS	Unit	SPECIFICATIONS
Screen Diagonal	mm	684.7(27.0")
Active Area	mm	596.74 (H) × 335.66 (V)
Pixels H x V		2560(x3) x 1440
Pixel Pitch	um	233.1 (per one triad) ×233.1
Pixel Arrangement		R.G.B. Vertical Stripe
Display Mode		Normally Black
White Luminance (Center)	cd/m²	350 cd/m ² (Typ.)
Contrast Ratio		1000 (Typ.)
Optical Response Time	msec	12ms (Typ., Gray to Gray)
Power Consumption (VDD line + LED line)	Watt	Total=32.2W (Typ.) LCD module: PDD(Typ.)=5.3W @ white pattern, Fv=144Hz Backlight unit: P _{BLU} (Typ.)=26.9 W @ I _{RLED} =95 mA
Color Gamut		sRGB
Weight	Grams	3400 (Typ.)
Outline Dimension	mm	606.44(H)×355.81(V)×13.03(D) Typ.
Electrical Interface		8 channel LVDS (8bits RGB data input)
Support Color		16.7M colors
Surface Treatment		Anti-Glare, 3H
Temperature Range Operating Storage (Shipping)	°C °C	0 to +50 -20 to +60
RoHS Compliance		RoHS Compliance
TCO Compliance		TCO 6.0 Compliance

Optical Characteristics

The optical characteristics are measured on the following test condition.

Test Condition:

I. Equiment setup: Please refer to Note I

2. Panel Lighting: 30 minutes

3. VDD=5.0V, Fv=144Hz, Is=110 mA, Ta=25 $^{\circ}$ C

ltem	Unit	Conditions	Min.	Тур.	Max.	Note
Viewing Angle	degree	Horizontal (Right) CR = 10 (Left)	75 75	89 89	-	
Viewing Angle	degree	Vertical (Up) CR = 10 (Down)	75 75	89 89	- -	2
Contrast ratio (Center of Screen)		Normal Direction	600	1000	-	3
Response Time	msec	Gray to Gray	-	12		4
		Red x	0.638	0.668	0.698	
		Red y	0.303	0.332	0.363	
Color / Chromaticity		Green x	0.270	0.300	0.330	
Coordinates (CIE)	Green y		0.595	0.625	0.655	
		Blue x	0.113	0.143	0.173	5
		Blue y	0.025	0.052	0.082	
		White x	0.283	0.313	0.343	
Color Coordinates (CIE) White		White y	0.299	0.329	0.359	
Central Luminance	cd/m²		280	350	-	6
Luminance Uniformity	%		75	80	-	7
Crosstalk	%				1.5	8
Flicker (Center od Screen)	dB				-20	9

Note 1: Measurement method

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring (at surface 35° C). In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a stable, windless and dark room.

Note 2: Definition of viewing angle measured by ELDIM (EZContrast 88)

Viewing angle is the measurement of contrast ratio \geq 10, at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as follows; 90° (θ) horizontal left and right and 90° (Φ) vertical, high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated about its center to develop the desired measurement viewing angle.

Note 3: Contrast ratio is measured by TOPCON SR-3

Definition:

 $Contrast Ratio = \frac{Luminance of White pattern}{Luminance of Black pattern}$

Measured position: Center of screen (P5) & perpendicular to the screen ($\theta = \phi = 0^{\circ}$)

Note 4: Definition of Response time measured by Westar TRD-100A

The output signals of photo detector are measured when the input signals are changed from "Black" to "White" (rising time, T_R), and from "White" to "Black" (falling time, T_F), respectively. The response time is interval between the 10% and 90% of optical response.

The gray to gray response time is defined as the following table. The algorithm is $|Gray Level A - 8a Gray level B| \ge 256$.

Gray Level to Gray Level		Falling Time						
Gray Level to G	oray Lever	G0	G255	G511	G767	G1023		
	G0							
	G255							
Rising Time	G511							
	G767							
	G1023				103			

- T_{GTG_typ} is the total average time at rising time and falling time of gray to gray.
- T_{GTG max} is the maximum time at rising time or falling time of gray to gray.

Note 5: Color chromaticity and coordinates (CIE) is measured by TOPCON SR-3

Note 6: Central luminance is measured by TOPCON SR-3

Note 7: Luminance uniformity of these 9 points is defined as below and measured by TOPCON SR-3

Uniformity = $\frac{\text{Minimum Luminance in 9 points (1-9)}}{\text{Maximum Luminance in 9 Points (1-9)}}$

Note 8: Crosstalk is defined as below and measured by TOPCON SR-3

Definition:

 $CT = Max. (CT_H, CT_V);$

Where

a. Maximum Horizontal Crosstalk:

Maximum Vertical Crosstalk:

b. Y_{AU}, Y_{AD}, Y_{AL}, Y_{AR} = Luminance of measured location without Black pattern
 Y_{BU}, Y_{BD}, Y_{BL}, Y_{BR} = Luminance of measured location with Black pattern

Black pattern

Note 9: Flicker is measured by TOPCON SR-3

Flicker measurement

a. Test pattern: It is listed as following.

Gray level = L0

Gray level = L127

R: Red, G: Green, B:Blue

- b. Measured position: Center of screen & perpendicular to the screen
- b. Measure position: Center of screen (P5) & perpendicular to the screen ($\theta = \phi = 0 \text{ deg}$)

3. Functional Block Diagram

TFT LCD Module

The following shows the block diagram of the 27.0 inch Color TFT-LCD Module.

Control Board

Backlight Unit

The following shows the block diagram of 27 inch Backlight Unit. And it includes 68 ea LEDs in the LED light bar . (4 strings and 17 pcs LED of one string).

4. Absolute Maximum Ratings

Permanent damage may occur if exceeding the following maximum rating:

TFT-LCD Module

Symbol	Descripition	Min	Max	Unit	Remark
VDD	Power Supply Input Voltage	GND-0.3	14	[Volt]	Ta=25°℃

Backlight Unit

(Ta=25°℃)

Symbol	Description	Min.	Max.	Unit	Remark
			150	[mA]	100% duty ratio
ls	LED String Current	0	300 -	[mA]	Duty ratio 10% Pulse time=10ms

Duty ratio= (A / B) X 100%; (A: Pulse time, B: Period)

5. Electrical characteristics-TFT LCD Module

Input power specifications are as following:

Recommended Operating Condition

TFT-LCD Module

Symbol	Descripition	Min	Тур	Max	Unit	Remark
VDD	Power Supply Input Voltage	10.8	12.0	13.2	[Volt]	
IDD	Power Supply Input Current (RMS)	-	0.44	0.94	[A]	VDD= 12.0V, All Black Pattern At 144Hz,
PDD	VDD Power Consumption	-	5.3	11.28	[Watt]	VDD= 12.0V, All Black Pattern At 144Hz
IRush	Inrush Current	-	-	3.0	[A]	Note /
VDDrp	Allowable VDD Ripple Voltage	-	-	VDD*10%	[mV]	VDD= 12.0V, All Black Pattern At 144Hz

Note 1: Inrush Current measurement:

Test circuit:

The duration of VDD rising time: 470us.

Backlight Unit

Symbol	Description	Min	Тур.	Max	Unit	Remark
ls	LED String Current	-	95	105	[mA]	100% duty ratio of LED chip
Vs	LED String Voltage	47.6	56.1	61.2	[Volt]	Is=95mA @ 100% duty ratio; Note I, Note 5
ΔVs	Maximum Vs Voltage Deviation of light bar	-	-	3.6	[Volt]	Is=95mA @ 100% duty ratio; <i>Note 2</i>
P _{BLU}	LED Light Bar Power Consumption	-	21.4	25.1	[Watt]	Note 3
LT _{LED}	LED Life Time	30,000	-	-	[Hour]	Note 4
OVP	Over Voltage Protection insystem board	II0% Vs _{max}	-	-	[Volt]	Note 5

Note 1: Vs (Typ.) = VF (Typ.) X LED No. (one string);

- a. V_F: LED chip forward voltage, V_F (Min.)=2.8V, V_F(Typ.)=3.3V, V (Max.)=3.6V
- b. The same euqation to calculate Vs(Min.) & Vs(Max.) for respective $V_F(Min.)$ & $V_F(Max.)$;

Note 2: ΔVs (Max.) = $\Delta VF X LED$ No. (one string);

a. ΔVF : LED chip forward voltage deviation; (0.2 V , each Bin of LED VF)

Note 3: P_{BLU} (Typ.) = Vs (Typ.) X Is (Typ.) X 4; (4 is total String No. of LED Light bar)

 P_{BLU} (Max.) = Vs (Max.) X Is (Typ.) X 4;

Note 4: Definition of life time:

- a. Brightness of LED becomes to 50% of its original value
- b. Test condition: Is = 120mA and $25^{\circ}C$ (Room Temperature)

Note 5: Recommendation for LED driver power design:

Due to there are electrical property deviation in LED & monitor set system component after long time operation. AUO strongly recommend the design value of LED driver board OVP (over voltage protection) should be 10% higher than max. value of LED string voltage (Vs) at least.

Note 6: AUO strongly recommend "Analog Dimming" method for backlight brightness control for Wavy Noise Free. Otherwise, recommend that Dimming Control Signal (PWM Signal) should be synchronized with Frame Frequency.

6. Signal Characteristic

LCD Pixel Format

Following figure shows the relationship between the input signals and LCD pixel format.

Note 1: The module use 8port-LVDS interface.

Port I: 4N+I	N=0,~ 319 (1,5 1277pixel)
Port 2: 4N+2	N=0,~ 319 (2,6 1278pixel)
Port 3: 4N+3	N=0,~ 319 (3,7 1279pixel)
Port 4: 4N+4	N=0,~ 319 (4,8 1280pixel)
Port 5: 4N+1281	N=0,~ 319 (1281,1285 2557pixel)
Port 6: 4N+1282	N=0,~ 319 (1282,1286 2558pixel)
Port 7: 4N+1283	N=0,~ 319 (1283,1287 2559pixel)
Port 8: 4N+1284	N=0,~ 319 (1284,1288 2560pixel)

LVDS Data Format

ata i Oi	<u> </u>	
	RCLKP	
	RCLKN	
	R1_0NP	R1G0
	R1_1NP	R1B1 R1B0 R1G5 R1G4 R1G3 R1G2 R1G1 R5B1
port 1	R1_2NP	DE
	R1_3NP	R1B7 R1B6 R1G7 R1G6 R1R7 R1R6
	R2_ONP	R2G0
port 2	R2_1NP	R2B1
,	R2_2NP	R2B5 R2B4 R2B3 R2B2
	R2_3NP	R2B7 R2B6 R2G7 R2G6 R2R7 R2R6
	7250 SUTE	
	R3_ONP	X R3G0 X R3R5 X R3R4 X R3R3 X R3R2 X R3R1 X R3R0 X R7G0 X
port 3	R3_1NP	X R3B1 X R3B0 X R3G5 X R3G4 X R3G3 X R3G2 X R3G1 X R7B1 X
	R3_2NP R3_3NP	X R3B5 X R3B4 X R3B3 X R3B2 X X R3B7 X R3B6 X R3B7 X R3B6 X R3G6 X R3R7 X R3R6 X X
	K2_SINE	ROBE ROSE ROSE ROSE ROSE
	R4_0NP	R4G0
nort 1	R4_1NP	R4B1 R4B0 R4G5 R4G4 R4G3 R4G2 R4G1 R8B1
port 4	R4_2NP	R4B5 R4B4 R4B3 R4B2 X
	R4_3NP	R4B7 R4B6 R4G7 R4G6 R4R7 R4R6
	R5_0NP	R1281G0 X R1281R4 X R1281R3 X R1281R2 X R1281R1 X R1281R0 X R1285G0 X
port 5	R5_1NP	R1281B1 R1281B0 R1281G5 R1281G4 R1281G3 R1281G2 R1281G1 R1285B1
	R5_2NP	DE R1281B5 R1281B4 R1281B3 R1281B2 DE
	R5_3NP	R1281B7 R1281B6 R1281G7 R1281G6 R1281R7 R1281R6
	R6_0NP	R1282G0 X R1282R5 X R1282R4 X R1282R3 X R1282R2 X R1282R1 X R1282R0 X R1286GD X
	- R6_1NP	R1282B1
port 6		
	R6_2NP	
	R6_3NP	X R1282B7 X R1282B6 X R1282G7 X R1282G6 X R1282R7 X R1282R6 X
	R7_0NP	R1283G0 R1283R4 R1283R3 R1283R2 R1283R1 R1283R0 R1297G0
port 7	R7_1NP	R1283B1 R1283B0 R1283G5 R1283G4 R1283G3 R1283G2 R1283G1 R1287B1
port 7	R7_2NP	R1283B5 R1283B4 R1283B3 R1283B2
	R7_3NP	R1283B7 R1283B6 R1283^7 R1283G6 R1283R7 R1283R6
	R8_0NP	R1284R0 R1284R4 R1284R3 R1284R2 R1284R1 R1284R0 R1284G0
port 8	R8_1NP	R1284B1 R1284B0 R1284G5 R1284G4 R1284G3 R1284G2 R1284G1 R1284B1
p311 0	R8_2NP	R1284B5 R1284B4 R1284B3 R1284B2
	R8_3NP	R1284B7 R1284B6 R1284G7 R1284G6 R1284R7 R1284R6

Product Specification

Color versus Input Data

The following table is for color versus input data (8bit). The higher the gray level, the brighter the color.

		Color Input Data																								
Color Gray Level	Gray Level	RED data (MSB:R7, LSB:R0)						GREEN data (MSB:G7, LSB:G0)				BLUE data (MSB:B7, LSB:B0)					Remark									
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	B6	B5	B4	В3	B2	B1	BO	
Black	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
White	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Gray 127	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	
	Ш	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Black
Red	:	• • •	:						:	:	:	:	:	:	• •	:	:	:	:	:	:	:	:	:	:	
	L255	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	ம	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Black
Green	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	
	L255	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	
	Ш	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Black
Blue	:	:	:	:		:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	
	L255	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	

LVDS Specification

a. DC Characteristics:

Symbol	Parameter	Min	Тур	Max	Units	Condition
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	LVDS Differential			+100	[mV]	\\ _ I 2\\
V_{TH}	Input High Threshold	-	-			$V_{CM} = 1.2V$
V	LVDS Differential	100			F\ /1	\\
V_{TL}	Input Low Threshold	-100	-	-	[mV]	$V_{CM} = 1.2V$
lv l	LVDS Differential	100		(00	F \/7	
V _{ID}	Input Low Threshold	100	-	600	[mV]	
	LVDS Common Mode				F\ /1	V V - 200 V
V _{CM}	Voltage	+1.0	+1.2	+1.5	[V]	$V_{TH}-V_{TL} = 200 \text{mV}$

LVDS Signal Waveform:

Single-End

b. AC Characteristics

Symbol	Description	Min	Max	Unit	Remark
F _{DEV}	Maximum deviation ofinput clock frequencyduring Spread Spectrum	-	± 3	%	
F _{MOD}	Maximum modulationfrequency of input clockduring Spread Spectrum	-	200	KHz	

Fclk: LVDS Clock Frequenc

Input Timing Specification

It only support DE mode, and the input timing are shown as the following table.

Symbol	Descripti	on	Min	Тур	Max	Unit	Remark
Tv		Period	1452	1481	8192	Th	
Tdisp(v)	Vertical Section	Active	1440	1440	1440	Th	
Tblk(v)	ver deal deciren	Blanking	12	41	6752	Th	
Fv		Frequency	119	120	144	Hz	*
Th		Period	345	360	1023	Tclk	
Tdisp(h)	Horizontal Section	Active	320	320	320	Tclk	
Tblk(h)		Blanking	25	40	703	Tclk	
Fh		Frequency	173	177.8	25 4 .2	KHz	Note I
Tclk	LVDS Clock	Period	11.5	15.6	16.7	ns	I/Fclk
Fclk		Frequency	59.6	64	87.7	MHz	Note 2

Note 1: The equation is listed as following. Please don't exceed the above recommended value.

Note 2: The equation is listed as following. Please don't exceed the above recommended value.

Fclk (Min.) = Fv (Min.)
$$\times$$
 Th ((Min.) \times Tv (Min.);

Fclk (Typ.) = Fv (Typ.)
$$\times$$
 Th ((Typ.) \times Tv (Typ.);

Input Timing Diagram

3D Control

3D control I/O Characteristics

Pin#	Symbol	mbol I/O Buffer De		Description	Remark
CN2_pin 30	Polarity_SYNC	0	4mA	Frame Inversion polarity Index 3D_EN=L:I-frame inversion 3D_EN=H:2-frame inversion	Note 1
CN2_pin 30	3D_EN	I	IPL*	3D enable control signal	

^{*} IPL: internal pull low

Absolute Maximum Rating

Symbol	Descripition	Min	Max	Unit	Remark
3D_EN	3D enable control signal	GND-0.3	5.0	[Volt]	Ta=25°℃

Recommended Operating Condition

Symah al	Descripition	Condition		Rating		l lais
Symbol	Descripition	Condition	Min	Тур	Max	Unit
V _{IH}	Input High Voltage		2.0	-	3.6	[Volt]
V _{IL}	Input Low Voltage		0	-	0.8	[Volt]
V _{OH}	Output High Voltage	I =4mA	2.4	-	3.4	[Volt]
V _{OL}	Output Low Voltage	ľ _{oL} =4mA	0	-	0.4	[Volt]

3D_EN=L

Power ON/OFF Sequence

VDD power,LVDS signal and backlight on/off sequence are as following. LVDS signals from any system sha Hi-Z state when VDD is off.

Power Sequence Timing

C		Value		Domonic		
Symbol	Min.	Тур.	Max.	Unit	Remark	
TI	0.5	-	10	[ms]		
T2	0	-	200	[ms]		
Т3	500	-	-	[ms]		
T4	100	-	-	[ms]		
Т5	0	-	-	[ms]		
T/			F0	[Feen]	Note I	
T6	0	-	50	[ms]	Note 2	
Т7	1000	-	150	[ms]		

Note 1: Recommend setting T5 = 0ms to avoid electronic noise when VDD is off.

Note 2: During T6 and T7 period, please keep the level of input eDP signals with Hi-Zstate.

7. Connector & Pin Assignment

Physical interface is described as for the connector on module. These connectors are capable of accommodating the following signals and will be following components.

TFT LCD Module

Connector Type

	Manufacturer	STM	Starconn	
TFT-LCD Connector	Part Number	MSCKT2407P30HB (CN1 / CN2 /CN3)	115F40-R000RA-M3 (CN4)	
	Manufacturer	STM or compatible	JAE or compatible	
Mating Connector	Part Number	PK2407P30V	FI-NX40HL	

Connector Pin Assignment

CNI

PIN#	Symbol	DESCRIPTION	
ı	RI_0N	Negative LVDS differential data input (Port1 data)	
2	RI_OP	Positive LVDS differential data input (Port I data)	
3	RI_IN	Negative LVDS differential data input (Port1 data)	
4	RI_IP	Positive LVDS differential data input (Port1 data)	
5	RI 2N	Negative LVDS differential data input (Port1 data)	
6	RI 2P	Positive LVDS differential data input (Port I data)	
7	GND	Ground	
8	RI_CLKN	Negative LVDS differential clock input (Port1 clock)	
9	RI_CLKP	Positive LVDS differential clock input (Port1 clock)	
10	GND	Ground	
11	RI 3N	Negative LVDS differential data input (Port1 data)	
12	RI 3P	Positive LVDS differential data input (Port I data)	
13	NC	No connection (for AUO test only. Do not connect)	
14	NC	No connection (for AUO test only. Do not connect)	
15	GND	Ground	
16	R2_0N	Negative LVDS differential data input (Port2 data)	
17	R2_0P	Positive LVDS differential data input (Port2 data)	
18	R2_IN	Negative LVDS differential data input (Port2 data)	
19	R2_IP	Positive LVDS differential data input (Port2 data)	
20	R2 2N	Negative LVDS differential data input (Port2 data)	

21	R2 2P	Positive LVDS differential data input (Port2 data)	
22	GND	Ground	
23	R2 CLKP	Negative LVDS differential clock input (Port2 clock)	
24	R2 CLKP	Positive LVDS differential clock input (Port2 clock)	
25	GND	Ground	
26	R2_3N	Negative LVDS differential data input (Port2 data)	
27	R2_3P	Positive LVDS differential data input (Port2 data)	
28	NC	No connection (for AUO test only. Do not connect)	
29	NC	No connection (for AUO test only. Do not connect)	
30	NC	No connection (for AUO test only. Do not connect)	

CN2

PIN#	Symbol	DESCRIPTION		
I	R3_0N	Negative LVDS differential data input (Port3 data)		
2	R3_0P	Positive LVDS differential data input (Port3 data)		
3	R3 IN	Negative LVDS differential data input (Port3 data)		
4	R3 IP	Positive LVDS differential data input (Port3 data)		
5	R3 2N	Negative LVDS differential data input (Port3 data)		
6	R3 2P	Positive LVDS differential data input (Port3 data)		
7	GND	Ground		
8	R3_CLKN	Negative LVDS differential clock input (Port3 clock)		
9	R3_CLKP	Positive LVDS differential clock input (Port3 clock)		
10	GND	Ground		
- 11	R3 3N	Negative LVDS differential data input (Port3 data)		
12	R3 3P	Positive LVDS differential data input (Port3 data)		
13	NC	No connection (for AUO test only. Do not connect)		
14	NC	No connection (for AUO test only. Do not connect)		
15	GND	Ground		
16	R4_0N	Negative LVDS differential data input (Port4 data)		
17	R4_0P	Positive LVDS differential data input (Port4 data)		
18	R4_IN	Negative LVDS differential data input (Port4 data)		
19	R4_IP	Positive LVDS differential data input (Port4 data)		
20		Negative LVDS differential data input (Port4 data)		
21		Positive LVDS differential data input (Port4 data)		
22		Ground		
23	R4 CLKP	Negative LVDS differential clock input (Port4 clock)		
24	R4 CLKP	Positive LVDS differential clock input (Port4 clock)		
25	GND	Ground		
26	R4 3N	Negative LVDS differential data input (Port4 data)		

27	R4_3P	Positive LVDS differential data input (Port4 data)
28	NC	No connection (for AUO test only. Do not connect)
29	NC	No connection (for AUO test only. Do not connect)
30	Polarity_SYNC	Polarity SYNC (O)

CN3

PIN#	Symbol	DESCRIPTION	
I	R5_0N	Negative LVDS differential data input (Port5 data)	
2	R5_0P	Positive LVDS differential data input (Port5 data)	
3	R5 IN	Negative LVDS differential data input (Port5 data)	
4	R5 IP	Positive LVDS differential data input (Port5 data)	
5	R5 2N	Negative LVDS differential data input (Port5 data)	
6	R5 2P	Positive LVDS differential data input (Port5 data)	
7	GND	Ground	
8	R5_CLKN	Negative LVDS differential clock input (Port5 clock	
9	R5_CLKP	Positive LVDS differential clock input (Port5 clock)	
10	GND	Ground	
- 11	R5 3N	Negative LVDS differential data input (Port5 data)	
12	R5 3P	Positive LVDS differential data input (Port5 data)	
13	NC	No connection (for AUO test only. Do not connect)	
14	NC	No connection (for AUO test only. Do not connect)	
15	GND	Ground	
16	R6_0N	Negative LVDS differential data input (Port6 data)	
17	R6_0P	Positive LVDS differential data input (Port6 data)	
18	R6_IN	Negative LVDS differential data input (Port6 data)	
19	R6_IP	Positive LVDS differential data input (Port6 data)	
20	R6 2N	Negative LVDS differential data input (Port6 data)	
21	R6 2P	Positive LVDS differential data input (Port6 data)	
22	GND		
23	R6 CLKP	Negative LVDS differential clock input (Port6 clock)	
24	R6 CLKP	Positive LVDS differential clock input (Port6 clock)	
25	GND	Ground	
26	R6_3N	Negative LVDS differential data input (Port6 data)	
27	R6_3P	Positive LVDS differential data input (Port6 data)	
28	NC	No connection (for AUO test only. Do not connect)	
29	NC	No connection (for AUO test only. Do not connect)	
30	3D EN	3D EN (I)	

CN4

PIN#	Symbol	DESCRIPTION	
I	R7_0N	Negative LVDS differential data input (Port7 data)	
2	R7_0P	Positive LVDS differential data input (Port7 data)	
3	R7 IN	Negative LVDS differential data input (Port7 data)	
4	R7 IP	Positive LVDS differential data input (Port7 data)	
5	R7 2N	Negative LVDS differential data input (Port7 data)	
6	R7 2P	Positive LVDS differential data input (Port7 data)	
7	GND	Ground	
8	R7_CLKN	Negative LVDS differential clock input (Port7 clock)	
9	R7_CLKP	Positive LVDS differential clock input (Port7 clock	
10	GND	Ground	
П	R7 3N	Negative LVDS differential data input (Port7 data)	
12	R7 3P	Positive LVDS differential data input (Port7 data)	
13	NC	No connection (for AUO test only. Do not connect)	
14	NC	No connection (for AUO test only. Do not connect)	
15	GND	Ground	
16	R8_0N	Negative LVDS differential data input (Port8 data)	
17	R8_0P	Positive LVDS differential data input (Port8 data)	
18	R8_IN	Negative LVDS differential data input (Port8 data)	
19	R8_IP	Positive LVDS differential data input (Port8 data)	
20	R8 2N	Negative LVDS differential data input (Port8 data)	
21	R8 2P	Positive LVDS differential data input (Port8 data)	
22	GND	Ground	
23	R8 CLKP	Negative LVDS differential clock input (Port8 clock)	
24	R8 CLKP	Positive LVDS differential clock input (Port8 clock)	
25	GND	Ground	
26	R8_3N	Negative LVDS differential data input (Port8 data)	
27	R8_3P	Positive LVDS differential data input (Port8 data)	
28	NC	No connection (for AUO test only. Do not connect)	
29	NC	No connection (for AUO test only. Do not connect)	
30	NC	No connection (for AUO test only. Do not connect)	
31	NC	No connection (for AUO test only. Do not connect)	
32	NC	No connection (for AUO test only. Do not connect)	
33	NC	No connection (for AUO test only. Do not connect)	
34	GND	Ground	
35	GND	Ground	
36	NC	No connection (for AUO test only. Do not connect)	
37	VDD	Power Supply Input Voltage	

38	VDD	Power Supply Input Voltage
39	VDD	Power Supply Input Voltage
40	VDD	Power Supply Input Voltage

Backlight Unit

Connector Type

	Manufacturer	ENTERY	
Backlight Connector	Part Number	3707K-S06N-21R	
_	Manufacturer	ENTERY	
Mating Connector	Part Number	HII2K-P06N-00B (Non-Locking type) HII2K-P06N-03B (Locking type)	

Backlight Connector dimension:

 $H \times V \times D = 13.9 \times 3.00 \times 4.25$, Pitch = 1.0(unit = mm)

Mating Connector dimension

Connector Pin Assignment

Pin#	Symbol	Description	Remark
1	Ch1	LED Current Feedback Terminal (Channel 1)	
2	Ch2	LED Current Feedback Terminal (Channel 2)	
3	$V_{\sf SLED}$	LED Power Supply Voltage Input Terminal	
4	$V_{\sf SLED}$	LED Power Supply Voltage Input Terminal	
5	Ch3	LED Current Feedback Terminal (Channel 3)	
6	Ch4	LED Current Feedback Terminal (Channel 4)	

8. Reliability Test

Environment test conditions are listed as following Monitor test condition.

	Test Item
ı	TST (Thermal Shock Test) -20 $^{\circ}$ C/0.5h \sim 60 $^{\circ}$ C/0.5h, 100 cycles
2	THB (Temperature Humidity Bias) 50°C/80%RH, 300hrs
3	LTO (Low Temperature Operation) $0^{\circ}\mathbb{C}$ /dry, 300hrs
4	LTS (Low Temperature Storage -20°℃, 300hrs
5	Optical
6	Vibration (X、Y、Z 軸各半小時)

Note I: a. A cycle of rapid temperature change consists of varying the temperature from -20 $^{\circ}$ C to 60 $^{\circ}$ C, and back again. Power is not applied during the test.

- b. After finish temperature cycling, the unit is placed in normal room ambient for at
- c. least 4 hours before power on.

Note 2: According to EN61000-4-2, ESD class B: Certain performance degradation allowed:

No data lost.

Self-recoverable.

No hardware failures.

9. Shipping label

The label is on the panel as shown below:

- Note 6-1: For Pb Free products, AUO will add 🔊 for identification.
- Note 6-2: For RoHS compatible products, AUO will add RoHS for identification.
- Note 6-3: For China RoHS compatible products, AUO will add 6 for identification.
- **Note 6-4:** The Green Mark will be presented only when the green documents have been ready by AUO Internal Green Team.

10. Packing Precautions

TFT-LCD Module (or monitor) should be stand or be placed face up in traffic or storage conditions; please do not keep TFT-LCD Module face down (polarizer side down).

Monitor maker should add the notice above in packing description; See the configuration example as bel

栈板尺寸参照: 1199*1061*120

18*5+12=102 PCS

