Contents

	Preface			page xi	
1	Introduction			1	
	1.1	Scientific software		1	
	1.2	The pla	an of this book	4	
	1.3	Can Py	ython compete with compiled languages?	8	
	1.4	Limita	tions of this book	9	
	1.5	Installi	ing Python and add-ons	9	
2	Gett	Getting started with IPython			
	2.1	Genera	alities	11	
	2.2	Tab co	mpletion	12	
	2.3	Introsp	pection	12	
	2.4	History	y	13	
	2.5	Magic	commands	14	
	2.6	The ma	agic %run command	15	
3	A short Python tutorial			20	
	3.1	Typing	g Python	20	
	3.2	Object	s and identifiers	21	
	3.3	Numbe	ers	23	
		3.3.1	Integers	23	
		3.3.2	Real numbers	23	
		3.3.3	Boolean numbers	24	
		3.3.4	Complex numbers	25	
	3.4	Names	spaces and modules	25	
	3.5	Contai	ner objects	27	
		3.5.1	Lists	27	
		3.5.2	List indexing	28	
		3.5.3	List slicing	28	
		3.5.4	List mutability	30	
		3.5.5	Tuples	31	
		3.5.6	Strings	31	
		3.5.7	Dictionaries	32	

	3.6	Python if statements		32
	3.7	Loop constructs		33
		3.7.1 The Python <i>for</i> loop		34
		3.7.2 The Python <i>continue</i>	statement	35
		3.7.3 The Python <i>break</i> sta	atement	35
		3.7.4 <i>List</i> comprehensions		36
		3.7.5 Python <i>while</i> loops		37
	3.8	Functions		37
		3.8.1 Syntax and scope		38
		3.8.2 Positional arguments	3	41
		3.8.3 Keyword arguments		41
		3.8.4 Variable number of p	positional arguments	41
		3.8.5 Variable number of l	keyword arguments	42
		3.8.6 The Python <i>print</i> fur	nction	42
		3.8.7 Anonymous function	1S	44
	3.9	Introduction to Python classe	S	45
	3.10	The structure of Python		47
	3.11	Prime numbers: a worked exa	ımple	48
4	Num	у		52
	4.1	One-dimensional arrays		54
		4.1.1 Ab initio constructor	'S	54
		4.1.2 Look alike construct	ors	55
		4.1.3 Arithmetical operation	ons on vectors	56
		4.1.4 Ufuncs		58
		4.1.5 Logical operations o	n vectors	59
	4.2	Two-dimensional arrays		62
		4.2.1 Broadcasting		63
		4.2.2 Ab initio constructor	rs	64
		4.2.3 Look alike construct	ors	65
		4.2.4 Operations on arrays	and ufuncs	66
	4.3	Higher-dimensional arrays		66
	4.4	Domestic input and output		67
		4.4.1 Discursive output an	d input	67
		4.4.2 <i>Numpy</i> text output an	nd input	69
		4.4.3 <i>Numpy</i> binary output	t and input	69
	4.5	Foreign input and output		70
		4.5.1 Small amounts of da	ta	70
		4.5.2 Large amounts of da	ta	71
	4.6	Miscellaneous ufuncs		71
		4.6.1 Maxima and minima	ı	71
		4.6.2 Sums and products		72
		4.6.3 Simple statistics		72
	4.7	Polynomials		73

		4.7.1	Converting data to coefficients	73
		4.7.2	Converting coefficients to data	73
		4.7.3	Manipulating polynomials in coefficient form	74
	4.8		algebra	74
		4.8.1	Basic operations on matrices	74
		4.8.2	More specialized operations on matrices	75
		4.8.3	Solving linear systems of equations	75
	4.9	More n	numpy and beyond	76
		4.9.1	Scipy	76
		4.9.2	Scikits	77
5	Two-	dimens	ional graphics	79
	5.1	Introdu		79
	5.2	Getting	g started: simple figures	80
			Front-ends	80
		5.2.2	Back-ends	80
		5.2.3	A simple figure	81
		5.2.4	Interactive controls	82
	5.3	Cartesi	ian plots	83
		5.3.1	The <i>matplotlib</i> plot function	83
		5.3.2	Curve styles	83
		5.3.3	Marker styles	84
		5.3.4	Axes, grid, labels and title	85
		5.3.5	A not-so-simple example: partial sums of Fourier series	86
	5.4	Polar p	blots	87
	5.5	Error bars		88
	5.6	Text and annotations		89
	5.7	Displa	90	
		5.7.1	Non-LaTeX users	90
		5.7.2	LATEX users	91
		5.7.3	Alternatives for LATEX users	92
	5.8	Contour plots		92
	5.9	Compo	ound figures	95
		5.9.1	Multiple figures	95
		5.9.2	Multiple plots	96
	5.10	Anima	tions	98
		5.10.1	In situ animations	99
		5.10.2	Movies	100
	5.11	Mande	elbrot sets: a worked example	102
6	Thre	e-dimer	nsional graphics	107
	6.1 Introduction			107
		6.1.1	Three-dimensional data sets	107
		6.1.2	The reduction to two dimensions	108

	6.2	Visualization software		
	6.3	A three-dimensional curve	110	
		6.3.1 Visualizing the curve with <i>mplot3d</i>	111	
		6.3.2 Visualizing the curve with <i>mlab</i>	112	
	6.4	A simple surface	114	
		6.4.1 Visualizing the simple surface with <i>mplot3d</i>	114	
		6.4.2 Visualizing the simple surface with <i>mlab</i>	116	
	6.5	A parametrically defined surface	117	
		6.5.1 Visualizing Enneper's surface using <i>mplot3d</i>	117	
		6.5.2 Visualizing Enneper's surface using <i>mlab</i>	119	
	6.6	Three-dimensional visualization of a Julia set	120	
7	Ordi	Ordinary differential equations		
	7.1	Initial value problems	122	
	7.2	Basic concepts	122	
	7.3	The odeint function	125	
		7.3.1 Theoretical background	125	
		7.3.2 Practical usage	127	
	7.4	Two-point boundary value problems	132	
		7.4.1 Introduction	132	
		7.4.2 Formulation of the boundary value problem	133	
		7.4.3 A simple example	135	
		7.4.4 A linear eigenvalue problem	136	
		7.4.5 A non-linear boundary value problem	138	
	7.5	Delay differential equations	142	
		7.5.1 A model equation	143	
		7.5.2 More general equations and their numerical solution	144	
		7.5.3 The logistic equation	145	
		7.5.4 The Mackey–Glass equation	147	
	7.6	Stochastic differential equations	150	
		7.6.1 The Wiener process	150	
		7.6.2 The Itô calculus	152	
		7.6.3 Itô and Stratanovich stochastic integrals	155	
		7.6.4 Numerical solution of stochastic differential equations	156	
8	Parti	Partial differential equations: a pseudospectral approach		
	8.1	Initial-boundary value problems		
	8.2			
	8.3			
	8.4	Spatial derivatives by spectral techniques for periodic problems		
	8.5	The IVP for spatially periodic problems		
	8.6	Spectral techniques for non-periodic problems		
	8.7	An introduction to f2py	172	
		8.7.1 Simple examples with scalar arguments	172	

		8.7.2	Vactor arguments	174
		8.7.2	Vector arguments A simple example with multi-dimensional arguments	174
		8.7.4	Undiscussed features of £2py	173
	8.8		life f2py example	170
	8.9		I example: Burgers' equation	177
	0.9	8.9.1	Boundary conditions: the traditional approach	178
		8.9.2	Boundary conditions: the traditional approach	179
_	_			
9		_	multigrid	184
	9.1		e-dimensional case	185
		9.1.1	Linear elliptic equations	185
		9.1.2	Smooth and rough modes	186
	9.2		ols of multigrid	186
		9.2.1	Relaxation methods	186
		9.2.2	Residual and error	189
		9.2.3	Prolongation and restriction	190
	9.3	_	rid schemes	191
		9.3.1	The two-grid algorithm	192
		9.3.2	The V-cycle scheme	193
		9.3.3	The full multigrid scheme (FMG)	194
	9.4	_	le Python multigrid implementation	195
		9.4.1	Utility functions	196
		9.4.2	Smoothing functions	197
		9.4.3	Multigrid functions	199
Append	ix A	Installing	g a Python environment	205
	A.1	Installir	ng Python packages	205
	A.2	Commu	unicating with Python	206
		A.2.1	Editors for programming	206
		A.2.2	The <i>IPython</i> -editor interaction	207
		A.2.3	The two windows approach	207
		A.2.4	Calling the editor from within <i>IPython</i>	208
		A.2.5	Calling <i>IPython</i> from within the editor	208
		A.2.6	The IPython pager	208
	A.3	The Pyt	thon Package Index	209
Append	ix B	Fortran7	77 subroutines for pseudospectral methods	210
		rences	, , , , , , , , , , , , , , , , , , , ,	216
	Inde			218