s-robotisees-a-double-embrayage-22,

Sciences
Industrielles de
l'Ingénieur

Chapitre 3

Application du Principe Fondamental de la Dynamique

Savoirs et compétences :

Cours

- *Mod2.C16 : torseur cinétique*
- □ *Mod2.C17* : torseur dynamique
- Mod2.C17.SF1: déterminer le torseur dynamique d'un solide, ou d'un ensemble de solides, par rapport à un autre solide
- *Mod2.C15 : matrice d'inertie*
- □ Res1.C2: principe fondamental de la dynamique
- Res1.C1.SF1 : proposer une démarche permettant la détermination de la loi de mouvement
- □ Res1.C2.SF1 : proposer une méthode permettant la détermination d'une inconnue de liaison

Toupie

Volants d'inertie d'un vilebrequin

	Enonce du Frincipe Fondamental de la Dynamiq		
	cas général	2	
1.1	Théorème de la résultante dynamique	2	
1.2	Théorème du moment dynamique	2	
2	Torseur cinétique	2	
2.1	Définition	2	
2.2	Écriture avec l'opérateur d'inertie	2	
2.3	Cas particuliers	2	
2.4	Méthodologie de Calcul	3	
3	Torseur dynamique	3	
3.1	Définition	3	
3.2	Relations entre les torseurs cinétiques et dynamiques .	4	
3.3	Cas particuliers	4	
3 4	Méthodologie de calcul	5	

Énoncé du Principe Fondamental de la Dynamique : cas général

Définition — Énoncé du Principe Fondamental de la Dynamique. Soit un ensemble matériel E en mouvement par rapport à un référentiel galiléen (R_0) , alors la somme des actions mécaniques extérieures s'appliquant sur E est égale au torseur dynamique du mouvement de E par rapport à R_0 :

$$\{\mathscr{D}(E/R_0)\} = \{\mathscr{T}(\overline{E} \to E)\}.$$

De plus le Principe Fondamental de la Dynamique postule que pour tout mouvement, il existe au moins un référentiel dans lequel le PFD est vérifié. Ce sera donc un référentiel galiléen.

Le torseur dynamique est de la forme :

• On note
$$\overline{R_d(S/R_0)}$$
 la résultante dynamique où l'accélération est **toujours** calculée au centre d'inertie G .

• On note $\overline{R_d(S/R_0)}$ la résultante dynamique où l'accélération est **toujours** calculée au centre d'inertie G .

• Le **moment dynamique** dépend du point A et se note $\overline{\delta(A, E/R_0)}$.

- On note $R_d(S/R_0)$ la résultante dynamique où

Du Principe Fondamental de la dynamique découle plusieurs théorèmes généraux.

Théorème de la résultante dynamique

Théorème — Théorème de la résultante dynamique. Pour tout ensemble matériel (E) de masse m et de centre d'inertie G en mouvement par rapport à un référentiel galiléen (R_0) , la somme des résultantes des efforts extérieurs s'appliquant sur E est égale à la résultante dynamique du mouvement de E par rapport à R_0 :

$$\overrightarrow{R\left(\bar{E}\to E\right)} = \overrightarrow{R_d\left(E/R_0\right)} = m \ \overrightarrow{\Gamma(G\in E/R_0)}.$$

Théorème du moment dynamique

Théorème — **Théorème du moment dynamique**. Pour tout ensemble matériel (E) de masse m en mouvement par rapport à un référentiel galiléen (R_0) , la somme des moments des efforts extérieurs s'appliquant sur E en un point quelconque A est égale au moment dynamique du mouvement de E par rapport à R_0 en A:

$$\overrightarrow{\mathcal{M}}(A, \overline{E} \to E) = \overrightarrow{\delta}(A, E/R_0).$$

Torseur cinétique

Définition

Définition Le torseur cinétique d'un solide S dans son mouvement par rapport à R_0 exprimé en un point Aquelconque se définit de la façon suivante,

$$\{\mathscr{C}(S/R_0)\} = \left\{ \begin{array}{l} \overrightarrow{R_c}(S/R_0) = \int_{P \in S} \overrightarrow{V}(P/R_0) \, \mathrm{d}m \\ \overrightarrow{\sigma(A, S/R_0)} = \int_{P \in S} \overrightarrow{AP} \wedge \overrightarrow{V}(P/R_0) \, \mathrm{d}m \end{array} \right\}_A.$$

- La résultante du torseur cinétique $\overrightarrow{R_c}(S/R_0)$ s'exprime en kg m s⁻¹ et ne dépend pas du point A mais uniquement du centre d'inertie G de S (de masse m): $\overrightarrow{R_c(S/R_0)} = m \overrightarrow{V}(G/R_0)$.
- Le moment cinétique dépend du point A et peut s'exprimer avec la formule fondamentale de changement de point: $\overrightarrow{\sigma(B,S/R_0)} = \overrightarrow{\sigma(A,S/R_0)} + \overrightarrow{BA} \wedge \overrightarrow{R_c(S/R_0)}$.

Écriture avec l'opérateur d'inertie

Propriété Pour un solide S de masse m dans son mouvement par rapport au repère R_0 et soit un point A quelconque.

$$\overrightarrow{\sigma(A,S/R_0)} = I_A(S) \cdot \overrightarrow{\Omega(S/R_0)} + m \overrightarrow{AG} \wedge \overrightarrow{V(A \in S/R_0)}.$$

Cas particuliers

- En appliquant cette formule en un point A fixe dans le mouvement de S/R_0 , on a : $\overline{\sigma(A,S/R_0)} = I_A(S) \cdot \overline{\Omega(S/R_0)}$.
- En appliquant cette formule en G, centre d'inertie de S, on a : $\overrightarrow{\sigma(G,S/R_0)} = I_G(S) \cdot \overrightarrow{\Omega(S/R_0)}$.

2.4 Méthodologie de Calcul

On considère un ensemble matériel E composé de solides S_i . On étudie son mouvement dans le référentiel R_0 . On donne la méthodologie de calcul du moment cinétique en un point A sur la figure suivante.

3 Torseur dynamique

3.1 Définition

Définition Le **torseur dynamique** d'un solide S dans son mouvement par rapport à R_0 se définit de la façon suivante,

$$\{\mathscr{D}(S/R_0)\} = \left\{ \begin{array}{l} \overrightarrow{R_d}(S/R_0) = \int_{P \in S} \overrightarrow{\Gamma}(P/R_0) \, \mathrm{d}m \\ \overrightarrow{\delta(A, S/R_0)} = \int_{P \in S} \overrightarrow{AP} \wedge \overrightarrow{\Gamma}(P/R_0) \, \mathrm{d}m \end{array} \right\}_A$$

• La résultante du torseur dynamique, $\overrightarrow{R_d}(S/R_0)$ ne dépend pas du point A mais uniquement du centre de gravité G de S (de masse m) et vérifie :

$$\overrightarrow{R_d}(S/R_0) = m \overrightarrow{\Gamma}(G/R_0).$$

• Le moment dynamique dépend du point A et peut s'exprimer avec la formule fondamentale de changement de point :

$$\overrightarrow{\delta}(B,S/R_0) = \overrightarrow{\delta}(A,S/R_0) + \overrightarrow{BA} \wedge \overrightarrow{R_d}(S/R_0).$$

3.2 Relations entre les torseurs cinétiques et dynamiques

Propriété — Relations entre les torseurs cinétiques et dynamiques. Pour un solide S de masse M dans son mouvement par rapport au repère R_0 et soit un point A quelconque.

• Relation entre les **résultantes** :

$$\overrightarrow{R_d}(S/R_0) = \left[\frac{d\overrightarrow{R_c}(S/R_0)}{dt}\right]_{R_0}.$$

• Relation entre les **moments** :

$$\overrightarrow{\delta(A,S/R_0)} = \left[\frac{d\overrightarrow{\sigma(A,S/R_0)}}{dt} \right]_{R_0} + \overrightarrow{V(A/R_0)} \wedge \overrightarrow{R_c}(S/R_0).$$

3.3 Cas particuliers

• En appliquant cette formule en un point O fixe dans R_0 , on a:

$$\overrightarrow{\delta(O,S/R_0)} = \left[\overrightarrow{\frac{\mathrm{d}\sigma(O,S/R_0)}{\mathrm{d}t}} \right]_{R_0}.$$

• En appliquant cette formule en un point G, centre d'inertie de S, on a :

$$\overline{\delta}(G,S/R_0) = \left[\frac{d\overline{\sigma}(G,S/R_0)}{dt}\right]_{R_0}.$$

4

3.4 Méthodologie de calcul

On considère un ensemble matériel E composé de solides S_i . On étudie son mouvement dans le référentiel R_0 . On donne l'algorigramme de calcul du moment dynamique en un point A sur la figure ci-dessous.

Références

- [1] Emilien Durif, Cinétique des solides, Lycée La Martinière Monplaisir, Lyon.
- [2] Florestan Mathurin, Cinétique, Lycée Bellevue, Toulouse, http://florestan.mathurin.free.fr/.

Bilan

Point fixe dans $\mathscr{R}_0 A$	$\left\{\begin{array}{c} \overrightarrow{R_c}(S/R_0) = m \ \overrightarrow{V}(G/R_0) \\ \overrightarrow{\sigma}(A, S/R_0) = I_A(S) \cdot \overrightarrow{\Omega}(S/R_0) \end{array}\right\}_A$	$\left\{\begin{array}{l} \overrightarrow{R_d}(S/R_0) = m \ \overrightarrow{\Gamma}(G/R_0) \\ \overline{\delta(A,S/R_0)} = \left[\overrightarrow{\frac{d\sigma(A,S/R_0)}{dt}} \right]_{R_0} \end{array}\right\}_A$
Centre de gravité G	$ \left\{ \begin{array}{l} \overrightarrow{R_c}(S/R_0) = m \ \overrightarrow{V}(G/R_0) \\ \overrightarrow{\sigma}(G, S/R_0) = I_G(S) \cdot \overrightarrow{\Omega}(S/R_0) \end{array} \right\}_G $	$\left\{\begin{array}{l} \overrightarrow{R_d}(S/R_0) = m \ \overrightarrow{\Gamma}(G/R_0) \\ \overline{\delta}(G, S/\overline{R_0}) = \left[\overrightarrow{\frac{\operatorname{d}\sigma(G, S/R_0)}{\operatorname{d}t}} \right]_{R_0} \end{array}\right\}_G$
Point quelconque A	$\left\{\begin{array}{c} \overrightarrow{R_c}(S/R_0) = m \ \overrightarrow{V}(G/R_0) \\ \overrightarrow{\sigma}(A, S/R_0) = I_A(S) \cdot \overrightarrow{\Omega}(S/R_0) + m \ \overrightarrow{AG} \wedge \overrightarrow{V(A \in S/R_0)} \end{array}\right\}_A$	$\left\{ \begin{array}{l} \overrightarrow{R_d}(S/R_0) = m \ \overrightarrow{\Gamma}(G/R_0) \\ \overline{\delta(A, S/R_0)} = \left[\overrightarrow{\frac{d\sigma(A, S/R_0)}{dt}} \right]_{R_0} + \overrightarrow{V(A/R_0)} \wedge \overrightarrow{R_c}(S/R_0) \end{array} \right\}_A$
Point considéré	Torseur cinétique $\{\mathscr{C}\left(S/R_{0} ight)\}$	Torseur dynamique $\{\mathscr{D}\left(S/R_{0} ight)\}$