Towards Dynamic Switching in Per-Run Algorithm Selection

July 3, 2025

Why is Dynamic Switching Necessary?

- ▶ Approach from Kostovska et al. 2022:
 - After 150 evaluations, calculate ELA features from CMA-ES samples
 - 2. Random Forest regression models predict target precisions of the six $\mathcal{A}2$ algorithms
 - 3. Choose $\mathcal{A}2$ algorithm with lowest predicted precision
 - 4. Warm-start second algorithm
- A1 budget is static!

Why is Dynamic Switching Necessary?

Switching point 1 is optimal here

Why is Dynamic Switching Necessary?

First Approach

- ▶ For each run, we try to find the switching points defined as above
- Selection process consists of two parts:

Switching Decision

- Let s_1, \ldots, s_n be the considered switching points
- At switching point s_i , we predict the precision of the best algorithm at $s_i, s_{i+1}, \ldots, s_n$
- We switch if the predicted precision of the current switching point is the lowest

Algorithm Selection

Predict the precisions of all six algorithms, switch to the algorithm with the lowest precision

First Approach: Our setup

- ► Switching points: 8, 16, ..., 96, 100, 150, 200, ..., 1000
- Machine learning input:
 - ► ELA features from CMA-ES samples
 - CMA-ES internal state during the last iteration
- Model training on first 5 instances of all BBOB functions, 20 runs each
- Evaluation on instances 6 and 7, 20 runs each
- Metric:

$$\frac{m_{SBS} - m_{selector}}{m_{SBS} - m_{VBS}}$$

First Approach: Results

Poor Performance

- Switching decision based on performance of best algorithm
 ⇒ Switch too early
- ▶ ELA features do not capture enough run-specific information

Second Approach

Let s_1, \ldots, s_n be the switching points, a_1, \ldots, a_n be the algorithm selectors

- 1. Record the performances of a_1, \ldots, a_n on first five instances
- 2. If a_i performs best on function f, define all s_l as the optimal switching point for all runs on that function for all $l \ge i$
- 3. Define binary switching models for each switching point
- 4. Train them on first five instances
- 5. Evaluation on instances 6 and 7
- \Rightarrow Switching decision is now function-specific and takes algorithm selector performance into account

Second Approach: Results

Second Approach: Results

Second Approach: Statistical Significance

▶ p-value: 0.029

Conclusion

- Dynamic Switching leads to improvements over static switching
- First approach did not work
 - ▶ ELA features do not seem to capture run-specific information
 - Suboptimal performance of algorithm selectors across budgets
- Second approach leads to significant improvements over static switching

Detailed Boxplots

