Problema A Sort! Sort!! e Sort!!!

Limite de tempo: 1s

Dada uma sequência $V = (v_1, \dots v_n)$ de n inteiros e um valor m, ordene a sequência de acordo com a ordem crescente em relação ao resto por m. Caso dois números v_i e v_j possuam o mesmo resto quando divididos por m, adotam-se os seguintes critérios de desempate:

- Se um número for par e o outro for ímpar, o número ímpar precede o número par.
- Se os dois números forem pares, o menor deve preceder o maior.
- Se os dois números forem ímpares, o maior deve preceder o menor.

A operação de resto envolvida é a utilizada pelo operator % da linguagem C. Isto é, números negativos nunca poderão ter um resto positivo. Por exemplo, -100 % 3 deixa o resto -1 em C.

Entrada

A primeira linha da entrada possui dois inteiros, n ($1 \le 10^5$) e m ($1 \le m \le 10^5$), separados por um espaço, que indicam, respectivamente, o tamanho da sequência V e o número m descrito no enunciado.

As próximas n linhas possuem, cada, um inteiro, representando cada elemento da sequência. Cada inteiro pode assumir um valor no intervalo $[-10^9, 10^9]$.

Saída

Imprima cada elemento da sequência em uma linha na ordem estipulada pelo enunciado.

Entrada	Saída	
15 3	15	
1	9	
2	3	
3	6	
4	12	
5	13	
6	7	
7	1	
8	4	
9	10	
10	11	
11	5	
12	2	
13	8	
14	14	
15		
3 3	9	
9	12	
12	10	
10		

Problema B Elemento mais próximo

Limite de tempo: 1s

Dada uma sequência de elementos $V=(v_1,\ldots,v_n)$ e um elemento v_i qualquer da sequência, forneça o valor do elemento da sequência com o valor mais próximo, mas diferente de v_i . Em caso de empate, o menor elemento deve ser escolhido.

Entrada

A primeira linha da entrada possui inteiros n $(1 \le n \le 10^5)$ e q $(1 \le q \le 10^5)$, que indicam, respectivamente, o tamanho da sequência e o número de perguntas a serem respondidas. A segunda linha possui n inteiros com valor no intervalo $[-10^9, 10^9]$, os quais representam a sequência $V = (v_1, \ldots, v_n)$. As próximas q linhas possuem, cada, um inteiro x, no intervalo $[-10^9, 10^9]$, que indica a pergunta a ser respondida . Obrigatoriamente, x é um elemento da sequência.

Saída

Para cada pergunta, imprima uma linha com o valor do elemento que mais se aproxima de x, mas não é x. Caso existam elementos distintos na sequência que atendam a propriedade, imprima o de menor valor. Caso não exista elemento que atenda essa propriedade, imprima uma linha com -1.

Entrada	Saída
5 3	2
1 2 3 4 5	2
1	4
3	
5	
5 2	-1
2 2 2 2 2	-1
2	
2	
5 2	3
5 3 1 4 5	3
1	
4	

Problema C Repetições na chamada

Limite de tempo: 1s

O professor Nunes, ao fazer a chamada de sua aula, reparou que havia muitos nomes repetidos. Houve uma vez em que o professor chamou 5 variações do nome Matheus, o que ocasionou rouquidão de sua voz. Para se precaver, o professor resolveu comprar uma balinha de gengibre para tratar a sua garganta nesses casos extremos. Ajude o professor a contar o nome que aparece mais vezes na chamada e a quantidade de vezes que ele ocorre para que o docente decida se vale a pena ou não usar a balinha de gengibre. Caso existam dois nomes que ocorram a mesma quantidade de vezes, deve-se dar precedência para o menor na ordem alfabética.

Entrada

A primeira linha da entrada possui um inteiro n ($1 \le n \le 10^5$). As próximas n linhas, descrevem cada, um nome da chamada. Os nomes possuem no máximo 10 caracteres minúsculos.

Saída

Imprima uma linha com o nome que ocorre mais vezes e o número de ocorrências, separados por um espaço. Em caso de empate, utilize a regra disposta no enunciado.

D / . 1.	0.71
Entrada	Saída
5	matheus 3
matheus	
mateus	
mateus	
matheus	
matheus	
5	carol 2
carol	
carolina	
caroline	
carol	
carolina	
5	astrogildo 1
felipe	
astrogildo	
hortolina	
epaminonda	
godofredo	

Notas

Em C, você pode utilizar a função strcmp para comparar duas strings.

Problema D Procurando pontos

Limite de tempo: 1s

O prof. Dhiego está elaborando a sua prova de geometria analítica, que envolve uma coleção de pontos $P = ((x_1, y_1), \dots, (x_n, y_n))$ sobre o plano cartesiano \mathbb{N}^2 . Contudo, são tantos os pontos envolvidas em uma questão que ele acabou se perdendo. Ajude ele a verificar se um determinado ponto (x', y') se encontra na coleção P.

Entrada

A primeira linha da entrada possui dois inteiros n $(1 \le n \le 10^5)$ e q $(1 \le q \le 10^5)$, que representam, respectivamente, a quantidade de pontos da coleção e o número de pontos que Dhiego está procurando. As próximas n linhas possuem, cada, dois inteiros, x e y $(-10^9 \le x, y \le 10^9)$, que indicam, respectivamente, a abcissa e a ordenada de um ponto da coleção no plano \mathbb{N}^2 . As próximas q linhas contém, cada uma, um par de inteiros x' e y' $(-10^9 \le x', y' \le 10^9)$, que representam um ponto (x', y') que Dhiego quer achar.

Saída

Para cada ponto que Dhiego está procurando, imprima a mensagem "SIM" se ele se encontra na coleção de pontos, ou "NAO", caso contrário.

Entrada	Saída	
3 3	SIM	
0 0	NAO	
1 1	SIM	
2 2		
0 0		
1 2		
1 1		