Introducción a la Lógica y la Computación - Estructuras de orden Práctico 3: Poset Reticulados — Retículos.

Recuerden que cuando utilizamos el término reticulado a secas, nos referimos tanto al poset como a su estructura algebraica de retículo, según corresponda.

- 1. Considere el reticulado L_2 . Encuentre $v \vee x$, $s \vee v$ y $u \vee v$.
- 2. Demuestre que en todo poset reticulado se cumple $x \vee (y \wedge z) \leq (x \vee y) \wedge (x \vee z)$.
- 3. Determine cuáles de los siguientes mapeos f de P a Q son isomorfismos. En caso de no serlo determine qué es lo que falla.
 - a) $P = Q = (\mathbb{Z}, \leq) \text{ y } f(x) = x + 1.$

 - b) $P = Q = (\mathbb{Z}, \leqslant)$ y f(x) = 2x. c) $P = Q = (\mathcal{P}(\{a, b, c\}, \subseteq)$ y $f(A) = A^c$.
- 4. Determine si se dan los isomorfismos indicados.
 - $a) (D_6, |) \cong (\mathcal{P}(\{a, b\}), \subseteq).$
 - b) $(D_{30}, |) \cong (\mathcal{P}(\{a, b, c\}), \subseteq).$
- 5. Demuestre que si $f:(P,\leq) \to (Q,\leq')$ es isomorfismo entonces f^{-1} también lo es.
- 6. Suponga que $f:(P,\leq)\to(Q,\leq')$ es un isomorfismo de posets.
 - a) Si $m \in P$ es minimal, entonces f(m) es minimal.
 - b) Probar que si Q tiene algún minimal, entonces P tiene un minimal (Ayuda: usar f^{-1}).
- 7. (*) Determine cuántos isomorfismos hay de $(\mathcal{P}(\{a,b,c\}),\subseteq)$ en sí mismo.
- 8. a) Defina una función biyectiva f del reticulado (L_3, \leq_3) en el reticulado (L_4, \leq_4) que preserve el orden, es decir, tal que $x \leq_3 y \Longrightarrow f(x) \leq_4 f(y)$.
 - b) Compruebe que no se cumple $x \leq_3 y \iff f(x) \leq_4 f(y)$. La función f es un ejemplo que muestra que preservación del orden no implica isomorfismo.
 - c) Pruebe también que f no preserva supremo ni infimo.
- 9. Sea $(L, \emptyset, \emptyset)$ un retículo. Demostrar que $x \otimes (y \otimes z) = z \otimes (y \otimes x)$.
- 10. (del teórico) Sea $(L, \emptyset, \emptyset)$ un retículo y considere la relación de orden parcial definida por $x \leq y \iff x \otimes y = y$. Probar que $x \otimes y$ es cota superior del conjunto $\{x,y\}$.
- 11. Decida, y fundamente, cuáles de los reticulados L_1, L_2, L_3 y L_4 son complementados.
- 12. (*) Supongamos que un poset P tiene la siguiente propiedad: para todo subconjunto S de P se tiene que $\sup(S)$ existe (en particular existe $\sup(P)$ y $\sup(\emptyset)$). Demostrar que $\inf(S)$ existe para cualquier S.
- 13. ¿Para qué valores n se tiene que D_n se incrusta en L_3 ?