Fonctions de deux variables

QCOP F2V.1

Soit \mathcal{U} un ouvert de \mathbb{R}^2 . Soit $f:\mathcal{U}\longrightarrow\mathbb{R}$. On considère les assertions suivantes :

- (i) f est continue sur \mathcal{U} ;
- (ii) f admet des dérivées partielles sur \mathcal{U} ;
- (iii) f est de classe \mathscr{C}^1 sur \mathcal{U} .
- Définir (i), (ii) et (iii).
- Quelles implications a-t-on entre (i), (ii) et (iii)?
- Quelles implications sont fausses? Justifier à l'aide d'un contre-exemple.

QCOP F2V.2

Soit \mathcal{U} un ouvert de \mathbb{R}^2 . Soit $f:\mathcal{U}\longrightarrow\mathbb{R}$ de classe \mathscr{C}^1 sur \mathcal{U} .

- Soit $(x_0, y_0) \in \mathcal{U}$. Définir le gradient de f en (x_0, y_0) .
- Soit $(x_0, y_0) \in \mathcal{U}$. Écrire le développement limité de f à l'ordre 1 au voisinage de (x_0, y_0) avec un gradient.
- E Soit $\gamma: \mathbb{R} \longrightarrow \mathcal{U}$ un arc \mathscr{C}^1 . Écrire, pour $t \in \mathbb{R}$, $(f \circ \gamma)'(t)$ à l'aide d'un gradient et retrouver la « règle de la chaîne ».

QCOP F2V.3

Pour $A := (x, y) \in \mathbb{R}^2$, on pose :

$$||A||_1 := |x| + |y|, \quad ||A||_2 := \sqrt{x^2 + y^2}, \quad ||A||_{\infty} := \max(|x|, |y|).$$

On admet que les applications $A \longmapsto \|A\|_p$ pour $p \in \{1,2,\infty\}$ définissent des normes au sens qui sera étudié en deuxième année.

- Dessiner, pour $p \in \{1, 2, \infty\}$, les boules unités fermées de \mathbb{R}^2 pour les normes $\|\cdot\|_p$, *i.e.* les ensembles $\{A \in \mathbb{R}^2 \mid \|A\|_p \leqslant 1\}$.
- \blacksquare Rappeler l'inégalité de Cauchy-Schwarz dans \mathbb{R}^2 muni de sa structure euclidienne canonique.
- Établir l'inégalité triangulaire pour les trois normes considérées.
- **?** Soit $A \in \mathbb{R}^2$. Montrer que

$$\begin{cases} \|A\|_{\infty} \leqslant \|A\|_{1} \leqslant 2\|A\|_{\infty} \\ \|A\|_{\infty} \leqslant \|A\|_{2} \leqslant \sqrt{2}\|A\|_{\infty}. \end{cases}$$

 $% \mathbb{R}^{2}$ Soit $(A_{n})_{n}\in(\mathbb{R}^{2})^{\mathbb{N}}.$ Soit $\ell\in\mathbb{R}^{2}.$ Montrer que

$$\|A_n-\ell\|_1 \longrightarrow 0 \quad \iff \quad \|A_n-\ell\|_2 \longrightarrow 0 \quad \iff \quad \|A_n-\ell\|_\infty \longrightarrow 0.$$