Podstawy Gymnasium

Bartosz Zieliński, Serhii Zeliuk Projekt 3

May 6, 2025

1. Wprowadzenie

Celem projektu było zapoznanie sie z podstawami uczenia ze wzmocnieniem przy użyciu środowisk gymnasium. Projekt został zrealizowany w trzech cześciach: rozwiazanie klasycznego problemu Taxi przy użyciu Q-learningu, rozwiazanie problemu z przestrzenia ciagła (MountainCarContinuous-v0), a także implementacja własnego środowiska i agenta do gry Blackjack, z porównaniem kilku metod.

2. Zadanie 1: Taxi-v3

2.1 Opis środowiska

Taxi-v3 to klasyczne środowisko ze skończona liczba stanów i akcji, gdzie agent (taksówka) ma za zadanie odebrać i odstawić pasażera do celu. Każdy ruch kosztuje -1 punkt, błedne podniesienie pasażera -10, a sukces to +20 punktów.

2.2 Parametry uczenia

• Algorytm: Q-learning

• Liczba epizodów: 1000

• Współczynnik uczenia: $\alpha=0,\!1$

• Współczynnik dyskontowy: $\gamma=0.9$

 $\bullet\,$ Poczatkowa eksploracja: $\varepsilon=1.0,$ malejaca do 0.1

2.3 Wyniki

Najlepsza suma nagród osiagnieta przez agenta wyniosła 15 punktów w 864 epizodzie. Wyniki pokazuja, że agent z czasem nauczył sie podejmować lepsze decyzje.

Figure 1: Krzywa uczenia agenta Taxi (suma nagród na epizod)

3. Zadanie 2: MountainCarContinuous-v0

3.1 Przestrzeń ciagła

W tym środowisku agent musi rozpedzić sie pod górke, korzystajac z przestrzeni ciagłej. Problem został zdyskretyzowany dla potrzeb Q-learningu.

3.2 Eksperymenty z AI

W ramach eksperymentu porównaliśmy wpływ trzech różnych wartości γ :

- $\gamma = 0.8$
- $\gamma = 0.9$
- $\gamma = 0.99$

Wyniki pokazały, że wiekszy γ (czyli wieksze znaczenie przyszłych nagród) poprawia zdolność agenta do nauki.

Figure 2: Krzywe uczenia agenta Mountain Car
Continuous dla różnych γ

4. Zadanie 3: Blackjack

4.1 Algorytmy

W tym zadaniu zaimplementowano trzech agentów:

- Q-learning
- Monte Carlo
- Q-learning z ocena ryzyka (risk-aware)
- Dodatkowo: DQN z siecia neuronowa i licznikiem kart

4.2 Wyniki

Wyniki sugeruja, że podejście risk-aware oraz DQN dawały lepsze wyniki niż klasyczny Qlearning. Współczynnik zwyciestw wzrósł do ponad 44

Figure 3: LC dla podejścia bez brania pod uwage ryzyka

Figure 4: LC biorac pod uwage zliczanie kart

Figure 5: LC dla sieci neuronowej (DQN)

5. Podsumowanie

Projekt umożliwił praktyczne poznanie różnych metod uczenia ze wzmocnieniem w środowiskach dyskretnych i ciagłych. Przeprowadziliśmy eksperymenty z parametrami γ , ε i α , a także porównaliśmy klasyczne i nowoczesne podejścia (Monte Carlo, DQN).