Взаимно положение на две афинни подпространства

Нека \mathcal{A} е n-мерно афинно пространство, моделирано върху линейното пространство $U, K = Oe_1 \dots e_n$ е афинна координатна система в \mathcal{A} и $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} : \mathcal{A} \to \mathbb{R}^n$ е координатното изображение, съответно на K.

Определение 1 Нека B_1 и B_2 са афинни подпространства на \mathcal{A} , моделирани съответно върху линейните подпространства V_1 и V_2 на U, и нека $\dim B_1 \leq \dim B_2$.

- 1. Ако от $v \parallel B_1$ следва $v \parallel B_2$, тоест ако $V_1 \subset V_2$, то казваме, че B_1 u B_2 са успоредни и пишем $B_1 \parallel B_2$. В частност, ако $B_1 \subset B_2$, то $B_1 \parallel B_2$.
- 2. Ако $B_1 \cap B_2 \neq \emptyset$ и B_1 и B_2 не са успоредни (еквивалентно, $B_1 \cap B_2 \neq \emptyset$ и B_1 не се съдържа в B_2), то казваме, че B_1 и B_2 са пресекателни.
- 3. Ако $B_1 \cap B_2 = \emptyset$ и B_1 и B_2 не са успоредни, то казваме, че B_1 и B_2 са кръстосани.

Пример 1 В геометричната равнина

- 1. успоредните прави са успоредни в смисъл на горната дефиниция.
- 2. пресекателните прави са пресекателни в смисъл на горната дефиниция.

В геометричното пространство

- 1. успоредните прави, успоредните равнини, успоредните права и равнина са успоредни в смисъл на горната дефиниция.
- 2. пресекателните прави, пресекателните равнини, пресекателните права и равнина са пресекателни в смисъл на горната дефиниция.
- 3. кръстосаните прави са кръстосани в смисъл на горната дефиниция.

Теорема 1 Нека афинните подпространства B_1 и B_2 на A имат спрямо K уравнения $A_1 x = b_1 \, u \, A_2 x = b_2 \, ($ в частност, това може да са общи уравнения). Нека

 $\dim B_1 = k_1$, $\dim B_2 = k_2$, като $k_1 \leq k_2$. Означаваме $A = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$, $\widetilde{A} = \begin{pmatrix} A_1 & b_1 \\ A_2 & b_2 \end{pmatrix}$. Тогава:

- 1. $B_1\subset B_2\ (B_1=B_2\ npu\ k_1=k_2)\Leftrightarrow r\left(\widetilde{A}\right)=n-k_1\ (u\ c$ ледователно $u\ r(A)=n-k_1)$ \Leftrightarrow редовете на $(A_2|b_2)$ са линейни комбинации на редовете на $(A_1|b_1)$.
- 2. $B_1 \parallel B_2 \ u \ B_1 \cap B_2 = \emptyset \Leftrightarrow r\left(\widetilde{A}\right) \neq r(A) = n k_1 \ (u \ c$ ледователно $r\left(\widetilde{A}\right) = n k_1 + 1)$ $\Leftrightarrow pedoвeme \ ha \ A_2 \ ca \ линейни комбинации на pedoвeme на <math>A_1$, но някой ped на $(A_2|b_2)$ не е линейна комбинация на редовете на $(A_1|b_1)$.
- 3. B_1 и B_2 са пресекателни $\Leftrightarrow r\left(\widetilde{A}\right) = r(A) \neq n k_1$ (и следователно $r\left(\widetilde{A}\right)=r(A)>n-k_1)\Leftrightarrow r\left(\widetilde{A}\right)=r(A)$ и някой ред на A_2 не е линейна комбинация
- 4. B_1 и B_2 са кръстосани $\Leftrightarrow r(A) \neq n k_1$ и $r\left(\widetilde{A}\right) \neq r(A)$ (и следователно $r(A)>n-k_1,\ r\left(\widetilde{A}\right)=r(A)+1)\Leftrightarrow r\left(\widetilde{A}\right)
 eq r(A)\ u$ някой ред на A_2 не е линейна комбинация на редовете на A_1 .

Тоя случай не може да възникне, ако B_2 е хиперравнина.

Теорема 2 Нека k-мерното афинно подпространство B на A има спрямо K общо уравнение Ax = b. Тогава всевъзможните общи уравнения на B спрямо K са уравненията от вида TAx = Tb, където T е обратима квадратна матрица от ред n - k.

Частни случаи:

1. Хиперравнини: $k_1 = k_2 = n - 1$. Следователно $n - k_1 = 1$.

Теорема 1' Нека хиперравнините B_1 и B_2 в \mathcal{A} имат спрямо K общи уравнения

$$B_i: a_{i1}x_1 + \dots + a_{in}x_n = b_i, \ i = 1, 2.$$
 Означаваме $A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \end{pmatrix}, \ \widetilde{A} = \begin{pmatrix} a_{11} & \dots & a_{1n} & b_1 \\ a_{21} & \dots & a_{2n} & b_2 \end{pmatrix}.$ Тогава:

- 1. $B_1=B_2 \Leftrightarrow r(\widetilde{A})=1$ (и следователно и $r(A)=1)\Leftrightarrow \exists \lambda \in \mathbb{R}:$ $a_{2j}=\lambda a_{1j},\ j=1,\ldots,n,\ b_2=\lambda b_1$ (автоматично $\lambda\neq 0$).
- 2. $B_1 \parallel B_2 \ u \ B_1 \neq B_2 \Leftrightarrow r(A) = 1, \ r(\widetilde{A}) = 2 \Leftrightarrow \exists \lambda \in \mathbb{R} :$ $a_{2i} = \lambda a_{1i}, \ j = 1, \dots, n, \ \text{но } b_2 \neq \lambda b_1 \ (автоматично \ \lambda \neq 0).$
- 3. B_1 и B_2 са пресекателни $\Leftrightarrow r(A)=2$ (и следователно и $r(\widetilde{A})=2) \Leftrightarrow \nexists \lambda \in \mathbb{R}$: $a_{2j} = \lambda a_{1j}, j = 1, \dots, n.$

Теорема 2' Нека хиперравнината B в A има спрямо K общо уравнение $a_1x_1 + \cdots + a_nx_n = b$. Тогава всевъзможните общи уравнения на B спрямо K са уравненията от вида $\lambda(a_1x_1 + \cdots + a_nx_n) = \lambda b$, където $\lambda \in \mathbb{R}$, $\lambda \neq 0$.

2. Прави в 2-мерно афинно пространство (в частност, в геометричната равнина): $n=2, k_1=k_2=1=n-1$. Нека координатите са (x,y) вместо (x_1,x_2) .

Теорема 1" Нека правите l_1 и l_2 в 2-мерното афинно пространство $\mathcal A$ имат

спрямо
$$K$$
 общи уравнения $l_i:A_ix+B_iy+C_i=0,\ i=1,2.$ Означаваме $A=\begin{pmatrix}A_1&B_1\\A_2&B_2\end{pmatrix},\ \widetilde{A}=\begin{pmatrix}A_1&B_1&C_1\\A_2&B_2&C_2\end{pmatrix}.$ Тогава:

- 1. $l_1=l_2 \Leftrightarrow r(\widetilde{A})=1$ (и следователно и r(A)=1) $\Leftrightarrow \exists \lambda \in \mathbb{R}:$ $A_2=\lambda A_1,\ B_2=\lambda B_1,\ C_2=\lambda C_1$ (автоматично $\lambda \neq 0$).
- 2. $l_1 \parallel l_2 \ u \ l_1 \neq l_2 \Leftrightarrow r(A) = 1, \ r(\widetilde{A}) = 2 \Leftrightarrow \exists \lambda \in \mathbb{R} :$ $A_2 = \lambda A_1, \ B_2 = \lambda B_1, \ no \ C_2 \neq \lambda C_1 \ (автоматично \ \lambda \neq 0).$
- 3. l_1 и l_2 са пресекателни $\Leftrightarrow r(A)=2$ (и следователно и $r(\widetilde{A})=2$) $\Leftrightarrow \nexists \lambda \in \mathbb{R}:$ $A_2=\lambda A_1,\ B_2=\lambda B_1 \Leftrightarrow \det A\neq 0.$

Теорема 2" Нека правата l в 2-мерното афинно пространство \mathcal{A} има спрямо K общо уравнение Ax + By + C = 0. Тогава всевъзможените общи уравнения на l спрямо K са уравненията от вида $\lambda(Ax + By + C) = 0$, където $\lambda \in \mathbb{R}$, $\lambda \neq 0$.

3. Равнини в 3-мерно афинно пространство (в частност, в геометричното пространство): $n=3, k_1=k_2=2=n-1$. Нека координатите са (x,y,z) вместо (x_1,x_2,x_3) .

Теорема 1^{'''} Нека равнините π_1 и π_2 в 3-мерното афинно пространство \mathcal{A} имат спрямо K общи уравнения π_i : $A_i x + B_i y + C_i z + D_i = 0$, i = 1, 2. Означаваме $A = \begin{pmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{pmatrix}$, $\widetilde{A} = \begin{pmatrix} A_1 & B_1 & C_1 & D_1 \\ A_2 & B_2 & C_2 & D_2 \end{pmatrix}$. Тогава:

- 1. $\pi_1=\pi_2\Leftrightarrow r(\widetilde{A})=1$ (и следователно и $r(A)=1)\Leftrightarrow \exists \lambda\in\mathbb{R}:$ $A_2=\lambda A_1,\ B_2=\lambda B_1,\ C_2=\lambda C_1,\ D_2=\lambda D_1$ (автоматично $\lambda\neq 0$).
- 2. $\pi_1 \parallel \pi_2 \ u \ \pi_1 \neq \pi_2 \Leftrightarrow r(A) = 1, \ r(\widetilde{A}) = 2 \Leftrightarrow \exists \lambda \in \mathbb{R} :$ $A_2 = \lambda A_1, \ B_2 = \lambda B_1, \ C_2 = \lambda C_1, \ no \ D_2 \neq \lambda D_1 \ (автоматично \ \lambda \neq 0).$
- 3. π_1 и π_2 са пресекателни \Leftrightarrow r(A)=2 (и следователно и $r(\widetilde{A})=2$) \Leftrightarrow $\nexists \lambda \in \mathbb{R}$: $A_2=\lambda A_1,\ B_2=\lambda B_1,\ C_2=\lambda C_1.$

Теорема 2"" Нека равнината π в 3-мерното афинно пространство \mathcal{A} има спрямо K общо уравнение Ax + By + Cz + D = 0. Тогава всевъзможните общи уравнения на π спрямо K са уравненията от вида $\lambda(Ax + By + Cz + D) = 0$, където $\lambda \in \mathbb{R}, \ \lambda \neq 0$.

4. Права и равнина в 3-мерно афинно пространство (в частност, в геометричното пространство): $n=3,\ k_1=1,\ k_2=2.$

Следователно $n-k_1=2$. Нека координатите са (x,y,z) вместо (x_1,x_2,x_3) .

Теорема 1' Нека правата l и равнината π в 3-мерното афинно пространство \mathcal{A} имат спрямо K общи уравнения

$$l: \begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}, \quad \pi: A_3x + B_3y + C_3z + D_3 = 0.$$

Означаваме
$$A=\begin{pmatrix}A_1&B_1&C_1\\A_2&B_2&C_2\\A_3&B_3&C_3\end{pmatrix},\ \widetilde{A}=\begin{pmatrix}A_1&B_1&C_1&D_1\\A_2&B_2&C_2&D_2\\A_3&B_3&C_3&D_3\end{pmatrix}.$$
 Тогава:

- 1. $l \subset \pi \Leftrightarrow r(\widetilde{A}) = 2$ (и следователно и r(A) = 2) $\Leftrightarrow \exists (\lambda_1, \lambda_2) \in \mathbb{R}^2$: $A_3 = \lambda_1 A_1 + \lambda_2 A_2, \ B_3 = \lambda_1 B_1 + \lambda_2 B_2, \ C_3 = \lambda_1 C_1 + \lambda_2 C_2, \ D_3 = \lambda_1 D_1 + \lambda_2 D_2$ (автоматично $(\lambda_1, \lambda_2) \neq 0$).
- 2. $l \parallel \pi \ u \ l \cap \pi = \emptyset \Leftrightarrow r(A) = 2, \ r(\widetilde{A}) = 3 \Leftrightarrow \exists (\lambda_1, \lambda_2) \in \mathbb{R}^2 :$ $A_3 = \lambda_1 A_1 + \lambda_2 A_2, \ B_3 = \lambda_1 B_1 + \lambda_2 B_2, \ C_3 = \lambda_1 C_1 + \lambda_2 C_2, \ \text{но } D_3 \neq \lambda_1 D_1 + \lambda_2 D_2$ (автоматично $(\lambda_1, \lambda_2) \neq 0$).
- 3. $l \ u \ \pi \ ca \ npeceкameлнu \Leftrightarrow r(A) = 3 \ (u \ cлeдователно \ u \ r(\widetilde{A}) = 3) \Leftrightarrow$ $\nexists(\lambda_1,\lambda_2) \in \mathbb{R}^2 : A_3 = \lambda_1 A_1 + \lambda_2 A_2, \ B_3 = \lambda_1 B_1 + \lambda_2 B_2, \ C_3 = \lambda_1 C_1 + \lambda_2 C_2 \Leftrightarrow \det A \neq 0.$

Първата част на горната теорема може да се преформулира по следния начин:

Теорема 3 Нека правата l в 3-мерното афинно пространство \mathcal{A} има спрямо K общо уравнение

$$l: \begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$$

Тогава равнината π съдържа $l \Leftrightarrow \pi$ има спрямо K общо уравнение от вида $\lambda_1(A_1x+B_1y+C_1z+D_1)+\lambda_2(A_2x+B_2y+C_2z+D_2)=0,$ където $(\lambda_1,\lambda_2)\in\mathbb{R}^2,~(\lambda_1,\lambda_2)\neq 0.$

5. Прави в 3-мерно афинно пространство (в частност, в геометричното пространство): $n = 3, k_1 = k_2 = 1.$

Следователно $n - k_1 = 2$. Нека координатите са (x, y, z) вместо (x_1, x_2, x_3) .

Теорема 1 $^{\mathrm{v}}$ Нека правите l_1 и l_2 в 3-мерното афинно пространство \mathcal{A} имат спрямо K общи уравнения

$$l_1: \left\{ \begin{array}{l} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{array} \right., \quad l_2: \left\{ \begin{array}{l} A_3x + B_3y + C_3z + D_3 = 0 \\ A_4x + B_4y + C_4z + D_4 = 0 \end{array} \right.$$

Означаваме
$$A=\begin{pmatrix}A_1&B_1&C_1\\A_2&B_2&C_2\\A_3&B_3&C_3\\A_4&B_4&C_4\end{pmatrix}$$
, $\widetilde{A}=\begin{pmatrix}A_1&B_1&C_1&D_1\\A_2&B_2&C_2&D_2\\A_3&B_3&C_3&D_3\\A_4&B_4&C_4&D_4\end{pmatrix}$. Тогава:

- 1. $l_1 = l_2 \Leftrightarrow r(\widetilde{A}) = 2$ (и следователно и r(A) = 2) $\Leftrightarrow \exists (\lambda_1, \lambda_2), (\mu_1, \mu_2) \in \mathbb{R}^2$: $A_3 = \lambda_1 A_1 + \lambda_2 A_2, \ B_3 = \lambda_1 B_1 + \lambda_2 B_2, \ C_3 = \lambda_1 C_1 + \lambda_2 C_2, \ D_3 = \lambda_1 D_1 + \lambda_2 D_2, A_4 = \mu_1 A_1 + \mu_2 A_2, \ B_4 = \mu_1 B_1 + \mu_2 B_2, \ C_4 = \mu_1 C_1 + \mu_2 C_2, \ D_4 = \mu_1 D_1 + \mu_2 D_2$ (автоматично $\det \begin{pmatrix} \lambda_1 & \lambda_2 \\ \mu_1 & \mu_2 \end{pmatrix} \neq 0$, в частност $(\lambda_1, \lambda_2) \neq 0$, $(\mu_1, \mu_2) \neq 0$).
- 2. $l_1 \parallel l_2 \ u \ l_1 \neq l_2 \Leftrightarrow r(A) = 2, \ r(\widetilde{A}) = 3 \Leftrightarrow \exists (\lambda_1, \lambda_2), (\mu_1, \mu_2) \in \mathbb{R}^2$: $A_3 = \lambda_1 A_1 + \lambda_2 A_2, \ B_3 = \lambda_1 B_1 + \lambda_2 B_2, \ C_3 = \lambda_1 C_1 + \lambda_2 C_2,$ $A_4 = \mu_1 A_1 + \mu_2 A_2, \ B_4 = \mu_1 B_1 + \mu_2 B_2, \ C_4 = \mu_1 C_1 + \mu_2 C_2,$ но поне едно от $D_3 = \lambda_1 D_1 + \lambda_2 D_2 \ u \ D_4 = \mu_1 D_1 + \mu_2 D_2$ не е изпълнено (автоматично $\det \begin{pmatrix} \lambda_1 & \lambda_2 \\ \mu_1 & \mu_2 \end{pmatrix} \neq 0$, в частност $(\lambda_1, \lambda_2) \neq 0$, $(\mu_1, \mu_2) \neq 0$).
- 3. l_1 и l_2 са пресекателни $\Leftrightarrow r(\widetilde{A}) = r(A) = 3$.
- 4. l_1 и l_2 са кръстосани $\Leftrightarrow r(\widetilde{A})=4$ (и следователно $r(A)=3) \Leftrightarrow \det \widetilde{A} \neq 0$.

Забележка 1 В горните неща никъде не се използват някакви специфични свойства на полето на реалните числа, така че всичко важи без промяна и ако вместо $\mathbb R$ се вземе произволно поле F, тоест ако U е линейно пространство над произволно поле.