

PRODUCT SPECIFICATION

Doc. Number:

- □Tentative Specification
- □ Preliminary Specification
- ■Approval Specification

MODEL NO.: NJ080IA SUFFIX: 10D

Customer:						
APPROVED BY	SIGNATURE					
Name / Title						
Only for reference Please return 1 copy for your your signature and comments						

Approved By	Checked By	Prepared By

InnoLux copyright 2014
All rights reserved,
Copying forbidden.

Record of Revision

Version	Revise Date	Page	Content
Pre-Spec.01	2016/06/01	All	Initial Release
Final-Spec.01	2016/08/30	Page8	Absolute Maximum Ratings—Note2 & Note3
Final-Spec.02	2016/11/09	Page4	Panel power consumption
		Page9	Typical Operation Conditions
		Page9	Current Consumption
		Page10~11	Power Sequence
		Page12~14	Timing Characteristics
		Page 20	Mechanical Drawing
		Page 21~22	Package Drawing
Final-Spec.03	20170220	Page 4	General Specifications
		Page 9	Typical Operation Conditions
		Page 10	Backlight Driving Conditions
		Page 11~12	Power Sequence
		Page 21~22	Package Drawing
Final-Spec.04	20170510	Page 20	Mechanical Drawing
		Page 21~22	Package Drawing
		Page2~4	Pin Assignment- Note2 & Note4
Final-Spec.05	20170821	Page4	Pin Assignment- Note3 Data Input Format_Note
Final-Spec.06	20180514	Page20	Mechanical Drawing
Final-Spec.07	20180612	Page20	Mechanical Drawing

Contents

1.	Purpose	1
	1.1 General Specifications	1
2.	Pin Assignment	2
3.	Operation Specifications	5
	3.1. Absolute Maximum Ratings	5
	3.1.1. Typical Operation Conditions	6
	3.3. Timing Characteristics	10
4.	3.3.1. AC Electrical Characteristics	11
5.	Reliability Test Items	17
6.	General Precautions	19
	6.1. Safety	19
	6.2. Handling	19
	6.3. Static Electricity	19
	6.4. Storage	19
	6.5. Cleaning	19
	o.s. cicaming	
7.	Mechanical Drawing	
	-	20
	Mechanical Drawing	20 21
	Mechanical Drawing Package Drawing	2021

1. Purpose

The specification NJ080IA-10D is a 8 "(1024x600) TFT Liquid Crystal Display module with LED Backlight unit, 40 pin LVDS interface, normally black transmissive display mode.

1.1 General Specifications

No.	Item	Specification	Remark
1	LCD size	8.0 inch(Diagonal)	
2	Driver element	a-Si TFT active matrix	
3	Resolution	1024 × 3(RGB) × 600	
4	Display mode	Normally Black, Transmissive	
5	Dot pitch	0.1725(W) × 0.1656(H) mm	
6	Active area	176.64(W) × 99.36(H) mm	
7	Module size	192.8(W) × 116.9(H) ×6.4(D) mm	Note 1
8	Surface treatment	Anti-Glare	
9	Color arrangement	RGB-stripe	
10	Interface	LVDS	
11	View direction(Gray Inversion)	Free	
12	Panel power consumption	634mW(Typ.)	
13	Weight	184g(Typ.)	
14	IC	ILI5120 & ILI6150M5	
15	Inversion	1+2dot	

Note 1: Refer to Mechanical Drawing.

2. Pin Assignment

FPC Connector is used for the module electronics interface. The recommended model is FH12A-40S-0.5SH manufactured by Hirose.

Pin No.	Symbol	I/O	Function	Remark
1	NC		No connection	Note4
2	VDD	Р	Power Voltage for digital circuit	
3	VDD	Р	Power Voltage for digital circuit	
4	NC		No connection	Note4
5	Reset	I	Global reset pin	
6	STBYB	I	Standby mode, Normally pulled high STBYB = "1", normal operation STBYB = "0", timing controller, source driver will turn off, all output are High-Z	
7	GND	Р	Ground	
8	RXIN0-	I	- LVDS differential data input	
9	RXIN0+	l	+ LVDS differential data input	
10	GND	Р	Ground	
11	RXIN1-	I	- LVDS differential data input	
12	RXIN1+	_	+ LVDS differential data input	
13	GND	Р	Ground	
14	RXIN2-	ĺ	- LVDS differential data input	
15	RXIN2+	l	+ LVDS differential data input	
16	GND	Р	Ground	
17	RXCLKIN-	ĺ	- LVDS differential clock input	
18	RXCLKIN+	I	+ LVDS differential clock input	
19	GND	Р	Ground	
20	RXIN3-	I	- LVDS differential data input	
21	RXIN3+	I	+ LVDS differential data input	
22	GND	Р	Ground	
23	NC	-	No connection	Note4
24	NC	-	No connection	Note4

T				
25	GND	Р	Ground	
26	NC		No connection	Note4
27	DIMO	0	Backlight CABC controller signal output	Note3
28	SELB	I	6bit/8bit mode select	Note1
29	AVDD	Р	Power for Analog Circuit	
30	GND	Р	Ground	
31	LED-	Р	LED Cathode	
32	LED-	Р	LED Cathode	
33	L/R	I	Horizontal inversion	Note2
34	U/D	I	Vertical inversion	Note2
35	VGL	Р	Gate OFF Voltage	
36	CABCEN1	I	CABC H/W enable	Note3
37	CABCEN0	I	CABC H/W enable	Note3
38	VGH	Р	Gate ON Voltage	
39	LED+	Р	LED Anode	
40	LED+	Р	LED Anode	

I: input, O: output, P: Power

Note1: If LVDS input data is 6 bits, SELB must be set to High

If LVDS input data is 8 bits, SELB must be set to Low

Note2: When L/R="0", set right to left scan direction.

When L/R="1", set left to right scan direction.

When U/D="0", set up to down scan direction.

When U/D="1", set down to up scan direction.

Note3: When CABC EN[1:0]="00", CABC OFF(Default)

When CABC_EN[1:0]="01", user interface image.

When CABC_EN[1:0]="10", still picture. When CABC EN[1:0]="11", moving image.

If CABC no using, DIMO must be NC, Else DIMO is controlled by CABC.

Note4: NC pin must be floated.

Note5: Definition of scanning direction.

Refer to the figure as below:

3. Operation Specifications

3.1. Absolute Maximum Ratings

(Note 1)

léana	Sures had	Val	ues	Unit	Remark
Item	Symbol	Min.	Max.	Unit	Remark
	DV_{DD}	-0.3	5.0	V	
	AV _{DD}	6.5	13.5	V	
Power voltage	V_{GH}	-0.3	42	V	
	V_{GL}	-20.0	0.3	V	
	V _{GH} -V _{GL}	-	40	V	
Operation Temperature (LCD panel surface overall)	T _{OP}	-20	70	$^{\circ}\!\mathbb{C}$	Note 2 Note 3
Storage Temperature	T _{ST}	-30	80	$^{\circ}\!\mathbb{C}$	Note 2 Note 3

- Note 1: The absolute maximum rating values of this product are not allowed to be exceeded at any times. Should a module be used with any of the absolute maximum ratings exceeded, the characteristics of the module may not be recovered, or in an extreme case, the module may be permanently destroyed.
- Note 2: If users use the product out of the environmental operation range (temperature and humidity), it will have visual quality concerns.
- Note 3: If the product were used out of the operation and storage range, it will have quality issue.

3.1.1. Typical Operation Conditions

(Note 1)

ltem	Symbol		Values	Unit	Remark	
item	Symbol	Min.	Тур.	Max.	Onit	Remark
	DV_DD	3.0	3.3	3.6	V	Note 2
	AV_DD	12.9	13	13.1	V	
Power voltage	V_{GH}	23.5	24.0	24.5	V	
	V_{GL}	-6.1	-5.6	-5.1	V	
Input logic high voltage	V _{IH}	0.7DV _{DD}	0.9 DV _{DD}	DV_{DD}	V	Note 3
Input logic low voltage	V _{IL}	0	0.1DV _{DD}	0.3DV _{DD}	V	Note 3

- Note 1: Be sure to apply DV_{DD} and V_{GL} to the LCD first, and then apply V_{GH} .
- Note 2: DV_{DD} setting should match the signals output voltage (refer to Note 3) of customer's system board.
- Note 3: RESET, STBYB, SELB, L/R, U/D, CABCENO, CABCEN1.

3.1.2. Current Consumption

ltem	Symbol	Values			Unit	Domoule
	Symbol	Min.	Тур.	Max.	Onn	Remark
Current for Driver	I_{GH}	0.07	0.30	1.0	mA	-
	I_{GL}	0.08	0.31	1.0	mA	-
	IDV_DD	6	24	40	mA	-
	IAV _{DD}	10.5	42	70	mA	-

3.1.3. Backlight Driving Conditions

	Symbol		Values		llmit	Domask
Item	Symbol Min.		Тур.	Max.	Unit	Remark
Voltage for LED backlight	V L	8.4	9.3	10.2	V	Note 1
Current for LED backlight	lι	-	540	585	mA	
LED life time		(20000)			Hr	Note 2

Note 1: The LED Supply Voltage is defined by the number of LED at Ta=25 $^{\circ}$ C and IL=((TBD)) Note 2: The "LED life time" is defined as the module brightness decrease to 50% original brightness at Ta=25 $^{\circ}$ C and IL=((TBD)). The LED lifetime could be decreased if operating IL is larger than ((TBD)).

3.2. Power Sequence

a. Power on:

		11!4		
Symbol	Min.	Тур.	Max.	Unit
t1	1	10	20	ms
t2	20	35	50	us
t3	0.5	1	16	ms
t4	16	50	100	ms
t5	20	70	120	us
t6	40	90	140	ms
t7	150	170	200	ms
t8	0.1	1	16	ms

b. Power off:

		l lnit		
Symbol	Min.	Тур.	Max.	_ Unit
t9	0.1	1	10	ms
t10	100	120	200	ms
t11	50	100	200	ms
t12	0.1	10	100	ms
t13	1	10	20	ms

3.3. Timing Characteristics

3.3.1. AC Electrical Characteristics

Parameter	Symbol	Min	Тур.	Max	Unit	Conditions
Clock frequency	RxFCLK	26.2	51.2	71	MHz	
Input data skew margin	TRSKM	500	500	1/(2x RxFCLK)	ps	VID =400mv RxVCM=1.2V RxFCLK=71MHz VDD_LVDS=3.3V
Clock high time	TLVCH	4/(7x RxFCLK)		ns		
Clock low time	TLVCL	3/(7xRxFCLK)		ns		
VSD setup time	TenPLL	0 <tenpll<150< td=""><td>us</td><td></td></tenpll<150<>		us		

3.3.2. Input Clock and Data Timing Diagram

3.3.3. DC Electrical Characteristics

Parameter	Symbol	Min	Тур.	Max	Unit	Conditions
Differential input high threshold voltage	RxVTH	0.1	0.2	VID	V	RxVCM=1.2V
Differential input low threshold voltage	RxVTL	- VID	-0.2	-0.1	V	RXV GIVI-1.2 V
Input voltage range (singled-end)	RxVIN	0	1.2±0.4	2.4	V	
Differential input common mode voltage	RxVCM	VID /2	1.2	2.1- VID /2	V	
Differential input voltage	VID	0.2	0.4	0.6	V	
Differential input leakage current	RVxliz	-10	0	+10	uA	
LVDS Digital Operating Current	Iddlvds	8	22	30	mA	Fclk=65MHz,VDD=3.3V
LVDS Digital Standby Current	Istlvds	0	200	300	uA	Clock & all Functions are stopped

3.3.4. **Timing**

Parameter	Symbol		Unit		
raiailletei	Symbol	Min	Тур.	Max	Offic
DCLK frequency Frame rate = 60Hz	fclk	42.6	51.2	67.2	MHz
Horizontal display area	thd		1024		DCLK
HSYNC period time	th	1164	1344	1400	DCLK
HSYNC blanking	thb+thfp	140	320	376	DCLK
Vertical display area	tvd		600		Н
VSYNC period time	tv	610	635	800	Н
VSYNC blanking	tvb+tvfp	10	35	200	Н

Note: Frame rate is 60Hz.

3.3.5. Data Input Format

6bit LVDS input

Note: Support DE mode only, SYNC mode not support.

4. Optical Specifications

Note: Base on INNOLUX LCM

14 0	Comple of	O = 12 di4: = 12	Values			Unit	Downsule
Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
	θ_{L}	Φ=180(9 o'clock)	75	85	-		
Viewing angle	θ_{R}	Ф=0°(3 o'clock)	75	85	-		Note 1
(CR≥ 10) B/L ON	θτ	Φ=90°(12 o'clock)	75	85	-	degree	Note i
	θ_{B}	Φ=270°(6 o'clock)	75	85	-		
Response time	T _{ON +} T _{OFF}		-	25	50	msec	Note 2 Note 3
Contrast ratio	CR	Normal θ=Φ=0°	600	1000	-	-	Note 4 Note 6
	W _X		0.27	0.31	0.35	-	Note 2 Note 5
Color chromaticity	W _Y		0.29	0.33	0.37	-	Note 6 Note 7
Luminance	L		400	500	-	cd/m²	Note 2 Note 6 Note 7
Luminance uniformity	Yu		70	75		%	Note 2 Note 8
NTSC			65	70		%	Note 2 Note 5 Note 6 Note 7

Test Conditions:

- 1. DV_{DD} =3.3V, the ambient temperature is 25°C.
- 2. The test systems refer to Note 2.

Note 1: Definition of viewing angle range

Fig. 4-1 Definition of viewing angle

Note 2: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 30 minutes operation, the optical properties are measured at the center point of the LCD screen. (Viewing angle is measured by ELDIM-EZ contrast/Height :1.2mm, Response time is measured by Photo detector TOPCON BM-7, other items are measured by SR3-AR/ Field of view: 1°/Height: 500mm.)

Fig. 4-2 Optical measurement system setup

Note 3: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 10% to 90%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 90% to 10%.

Fig. 4-3 Definition of response time

Note 4: Definition of contrast ratio

Contrast ratio (CR) = $\frac{\text{Luminance measured when LCD on the "White" state}}{\text{Luminance measured when LCD on the "Black" state}}$

Note 5: Definition of color chromaticity (CIE1931) Color coordinates measured at center point of LCD.

Note 6: All input terminals LCD panel must be ground while measuring the center area of the panel.

Note 7: Base on backlight structure of LCM is 3014C-W3M6 sa626&627 BS530+KL77-215+SH26-155+LGP(T=2mm) E6SR-188

Note 8: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer to Fig. 4-4). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (Yu) =
$$\frac{B_{min}}{B_{max}}$$

L-----Active area length W----- Active area width

Fig. 4-4 Definition of measuring points

 \mathbf{B}_{max} : The measured maximum luminance of all measurement position. \mathbf{B}_{min} : The measured minimum luminance of all measurement position.

5. Reliability Test Items

Item	Test	Remark	
High Temperature Storage	Ta = 80°C	240hrs	Note 1, Note3, Note 4, Note5
Low Temperature Storage	Ta = -30°C	240hrs	Note 1 ,Note3 ,
High Temperature Operation	Ts = 70°℃	240hrs	Note 2 , Note3 , Note 4 , Note5
Low Temperature Operation	Ta = -20°C	240hrs	Note 1 , Note3 ,
Operate at High Temperature and Humidity	+60°C, 90%RH	240hrs	Note3 , Note 4 Note5
Thermal Shock	-30°C/30 min ~ +80 cycles, Start with c with high temperat	Note3 , Note 4 Note5	
Vibration Test	Frequency: 10 ~55 Sweep Mode: Log 1Oct/min;Accelera Test time:2hrs for 6		
Mechanical Shock	100G 6ms,±X, ±Y, direction		
Package Vibration Test	[Spectrum: 5Hz(0	hree axis (30min /axis) .015G2/Hz) , z) , 200Hz(0.0037G2/Hz)]	
Package Drop Test	Height: 0kg≦W<10kg: 76 10kg≦W<19kg: 6 19kg≦W<28kg: 6 28kg≦W<45kg: 3 45kg≦W≤68kg: 1 corner, 3 edges,	61cm, 46cm, 31cm, 20cm	
Electro Static Discharge	± 2KV, Human Boo	dy Mode, 100pF/1500Ω	

Note 1: Ta is the ambient temperature of samples.

Note 2: Ts is the temperature of panel's surface.

Note 3: In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation, but don't guarantee all of the cosmetic specification.

- Note 4: Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.
- Note 5: A certain level of Mura (non-uniformity) of dark / black image will happen several days after high temperature testing (H.T.T.). There is a slowly part recovery over a long time (several months). Such a long exposure time like in H.T.T. will normally not happen in a real application. Therefore the test H.T.T. was introduced to simulate cycles with normal conditions in-between but with the same total exposure time what show a significant reduced Mura.

The root cause is related to tension generated due to different amount of shrinking in the stack of layers in the polarizer sheet. The effect is more significant on larger displays like this size. An investigation into alternative polarizer material showed that there is no better alternative currently available.

Page:19/25

Date: 2018/06/12

6. General Precautions

6.1. Safety

- 1.Liquid crystal is poisonous. Do not put it in your mouth. If liquid crystal touches your skin or clothes, wash it off immediately by using soap and water.
- 2.The temperature for using is no more than this product SPEC, otherwise, only promise the function is OK, but the quality may be changed.

6.2. Handling

- 1. The LCD panel is plate glass. Do not subject the panel to mechanical shock or to excessive force on its surface.
- 2. The polarizer attached to the display is easily damaged. Please handle it carefully to avoid scratch or other damages.
- 3. To avoid contamination on the display surface, do not touch the module surface with bare hands.
 - 4. Keep a space so that the LCD panels do not touch other components.
- 5. Put cover board such as acrylic board on the surface of LCD panel to protect panel from damages.
- 6. Transparent electrodes may be disconnected if you use the LCD panel under environmental conditions where the condensation of dew occurs.
 - 7. Do not leave module in direct sunlight to avoid malfunction of the ICs.

6.3. Static Electricity

- 1. Be sure to ground module before turning on power or operating module.
- 2. Do not apply voltage which exceeds the absolute maximum rating value.

6.4. Storage

- 1. Store the module in a dark room where must keep at 25±10°C and 65%RH or less.
- 2. Do not store the module in surroundings containing organic solvent or corrosive gas.
 - 3. Store the module in an anti-electrostatic container or bag.

6.5. Cleaning

- 1. Do not wipe the polarizer with dry cloth. It might cause scratch.
- 2. Only use a soft sloth with IPA to wipe the polarizer, other chemicals might permanent damage to the polarizer.

7. Mechanical Drawing

8. Package Drawing

8.1. Packaging Material Table

No.	Item	Model (Material)	Dimensions(mm)	Unit Weight (kg)	Quantity (PCS)	Remark	
1	LCM Module	NJ080IA-10D	192.8×116.9 ×6.4	0.184	30pcs		
2	Partition	BC Corrugated paper	512 × 349 × 230	1.184	1set		
3	Cushion	EPE	251.2x178.6x45.5	0.155	4pcs		
4	AL Bag	LLDPE/ AL	213.0 ×182.0 × 0.2	0.0088	30pcs		
5	Carton	Corrugated paper	530 × 355 × 255	0.95	1pcs		
6	Total weight	8.54kg ±5%Kg					

8.2. Packaging Quantity

Total LCM quantity in Carton: no. of Partition 2 Rows × quantity per Row 15 = 30

8.3. Packaging Drawing

