PHASE-III

Penalty Function Method & Method of Multipliers

GROUP NO: G7

ANUPAM KHANDELWAL(160108008) & KONARK JAIN(160108022)

BACKGROUND

Constrained Optimization Problem formulation:

The problem of constrained optimization is formulated as follows:

```
Minimize: f(x)

Subject to: g_j(x) \ge 0 j = 1, 2,..., J

h_k(x) = 0 k = 1, 2,..., K

x^{(L)} \le x \le x^{(U)} where x is a vector
```

- g_i(x) are the inequality constraints
- h_k(x) are the equality constraints
- $x^{(L)}$ and $x^{(U)}$ are the lower bounds and upper bounds for the vector x.

BACKGROUND

Penalty Function Method:

The penalty function P, is defined as:

$$P(x,R) = f(x) + \Omega(R, g(x), h(x))$$

where f(x) is the objective function, g(x) and h(x) are the inequality and equality constraints respectively, R is a set of penalty parameters, and Ω being the penalty term.

We are using bracket operator penalty for computing penalty terms.

$$\Omega = R < g(x) >^2$$

where $< \alpha > = \alpha$ when $\alpha < 0$ and zero otherwise.

In this method instead of minimizing the objective function directly, we instead minimize the penalty function so as to account for constraint violation.

BACKGROUND

Method of Multipliers:

The penalty function here is defined as:

$$P(x,\sigma^{(t)},\tau^{(t)}) = f(x) + R \sum_{j=1}^{J} [\left(\langle g_j(x) + \sigma_j^{(t)} \rangle \right)^2 - (\sigma_j^{(t)})^2] + R \sum_{k=1}^{K} \left[(h_k(x) + \tau_k^{(t)})^2 - (\tau_k(x))^2 \right]$$

where the σ_i and τ_k are updated iteratively as:

$$\sigma_j^{(t+1)} = \langle g_j(x^{(t)}) + \sigma_j^{(t)} \rangle \tau_k^{(t+1)} = h_k(x^{(t)}) + \tau_k^{(t)}$$

Similarly here also we minimize the penalty function instead.

RESULTS - PROBLEM 1

Problem 1:

$$\min f(x) = (x_1 - 10)^3 + (x_2 - 20)^3,$$
subject to $g_1(x) = (x_1 - 5)^2 + (x_2 - 5)^2 - 100 \ge 0,$

$$g_2(x) = 82.81 - (x_1 - 5)^2 - (x_2 - 5)^2 \le 0,$$

$$13 \le x_1 \le 100, \qquad 0 \le x_2 \le 100.$$

- Number of variables: 2 variables.
- The global minima: $x^* = (14.095, 0.84296)$, $f(x^*) = -6961.81388$.

Method name	Epsilon value	Optima Value	Function value	No. of function evaluations
Penalty	10^{-2}	(13.274, 2.542)	-5287.74	116
Penalty	10 ⁻³	(13.966, 0.981)	-6818.58	137
Penalty	10 ⁻⁴	(14.098, 0.844)	-6960.53	163
Multiplier	10 ⁻²	(13.865, 1.124)	-6667.84	97
Multiplier	10 ⁻³	(14.022, 0.923)	-6877.66	128
Multiplier	10^{-4}	(14.096, 0.868)	-6934.23	154

RESULTS – PROBLEM 2

Problem 2:

$$\max f(x) = \frac{\sin^3(2\pi x_1)\sin(2\pi x_2)}{x_1^3(x_1 + x_2)},$$

$$\text{subject to } g_1(x) = x_1^2 - x_2 + 1 \le 0,$$

$$g_2(x) = 1 - x_1 + (x_2 - 4)^2 \le 0,$$

$$0 \le x_1 \le 10, \qquad 0 \le x_2 \le 10$$

- Number of variables: 2 variables.
- The global minima: x* = (1.2279713, 4.2453733), f(x*) = 0.095825.

$x^{(0)} = (1, 1)^T$
$\Delta = 0.00001$
R = 0.1(for both)
c = 10(for penalty

Method name	Epsilon value	Optima Value	Function value	No. of iterations
Penalty	10-2	(1.2293, 4.2424)	0.0958	4
,	10^{-3}	,	+	4
Penalty		(1.2280, 4.2456)	0.0958	/
Penalty	10 ⁻⁴	(1.2280, 4.2454)	0.0958	11
Multiplier	10 ⁻²	(1.2285, 4.2477)	0.0958	4
Multiplier	10^{-3}	(1.2284, 4.2472)	0.0958	5
Multiplier	10^{-4}	(1.2280, 4.2460)	0.0958	7

RESULTS – PROBLEM 3

Problem 3:

$$\min f(x) = x_1 + x_2 + x_3$$

$$subject \ to \ g_1(x) = -1 + 0.0025(x_4 + x_6) \le 0,$$

$$g_2(x) = -1 + 0.0025(-x_4 + x_5 + x_7) \le 0,$$

$$g_3(x) = -1 + 0.01(-x_6 + x_8) \le 0,$$

$$g_4(x) = 100x_1 - x_1x_6 + 833.33252x_4 - 83333.333 \le 0,$$

$$g_5(x) = x_2x_4 - x_2x_7 - 1250x_4 + 1250x_5 \le 0,$$

$$g_6(x) = x_3x_5 - x_3x_8 - 2500x_5 + 1250000 \le 0,$$

$$100 \le x_1 \le 10000$$

$$1000 \le x_i \le 10000, i = 2, 3$$

$$10 \le x_i \le 1000, i = 4, 5, ..., 8$$

- Number of variables: 8 variables.
- The global minima: x* = (579.3167, 1359.943, 5110.071, 182.0174, 295.5985, 217.9799, 286.4162,395.5979), f(x*) = 7049.3307.

OBSERVATIONS

P2: Objective function contour

P2: Distorted penalty function contour

Heavy distortion in contour plot for penalty function was observed in penalty function method.