a) 180

a) 4

b) 175

b) 5

e) none of these

e) none of these

	listance from point A to nich could NOT be the	1		n point B to point C is 8 at C?
a) 2	b) 8	c) 16	d) 18	e) none of these

- 2. The sum of two numbers is two. The difference of the two numbers is one. The product of the two numbers is $\frac{a}{b}$ where $\frac{a}{b}$ is in lowest terms and 0 < a < b. Find ab.
- a) 10 b) 12 c) 16 d) 18 e) none of these
- 3. If x = -7 and $\frac{1}{2y} = -14$, find y in terms of x. a) x - 7 b) 2x - 7 c) $\frac{1}{2x}$ d) $\frac{1}{4x}$ e) none of these
- 4. Find $3042_5 + 2340_5$.

 Hint: If 123 is a number in base 4, then we can write $123_4 = 3(4)^0 + 2(4)^1 + 1(4)^2$ 123₄ = 27₁₀

 a) 5382₅ b) 10432₅ c) 1432₅ d) 742₅ e) none of these
- 5. Sam can paint a room in 7 hours. Emily can paint the room in 5 hours. It should take them *x* minutes to paint the room if they work together. Find *x*.

d) 165

6. If (a,b,c) = a+b-c, then ((1,3,4),(2,8,4),(3,1,2)) equals

c) 6 d) 10

c) 170

λ		gers, how many DI	STINCT ordered p	pairs (x, y) will satisfy			
the equation $x + y$ a) 7		c) 5	d) 4	e) none of these			
	henever $(a-b)^2 =$ b) 72		d) 68	e) none of these			
9. Three of the si having equations	des of a square are	line segments which $y = -x + 6$ y = x + 4	ch are contained in	the straight lines			
		y = -x + 10					
Which of these cosquare?	ould be an equation	of the straight line	which contains the	e fourth side of this			
•	b) $y = x + 10$	c) $y = x - 10$	d) y = x	e) none of these			
10. The largest possible circle is cut out of a square piece of tin with perimeter 8 inches and this circular piece of tin is sold to a banker. If the total area of the tin remaining is <i>x</i> square inches where <i>x</i> is rounded to the nearest 0.001, find <i>x</i> . a) 0.854 b) 0.856 c) 0.858 d) 0.860 e) none of these							
11. Find the area circumference.	of a circle whose of	liameter equals fou	r times the reciproc	cal of the			
a) π^2	b) π	c) 1	d) $\frac{1}{\pi}$	e) none of these			
12. If <i>a</i> , <i>b</i> , and <i>c</i> a) 10	are consecutive od b) 8	d integers where <i>a</i> c) 6	< b < c, find the va d) 4	alue of $a^2 - 2b^2 + c^2$. e) none of these			

a < b < c < d. Find -a + b + c + d.

b) 510

a) 540

e) none of these

13. Find the sum times the other ro-	_	constant c in the e	quation $x^2 = 18x -$	c if one root is five
a) 10	b) 9	c) 8	d) 7	e) none of these
14. If $i^2 = -1$, sin	inplify $\frac{i}{i-2}$ and pu	t the final answer is	in the form $x + yi$.	Find $3x - 5y$.
u) 2.0	0) 2.0	c) 3	u) 3.2	c) hone of these
through the point	where line A inters		ne equation of line	the A and line B passes B is $y = mx + b$. Find e) none of these
16. $11^{5x+6} = 22^{8x+4}$ a) 21		the digits of 1000 <i>x</i> c) 19	•	ed to the nearest 0.001. e) none of these
	e final answer to th			and perimeter P. Find e) none of these
18. The solution	set for $\sqrt{3} \csc 2x^{\circ} =$	= 2 over the domain	n 0°≤ x°< 360° is -	$\{a^{\circ},b^{\circ},c^{\circ},d^{\circ}\}$ where

c) 480

d) 440

19.
$$\lim_{h \to 0} \frac{\sqrt[3]{8+h} - 2}{h}$$
a) 12^{-1} b) 16^{-1}

- c) 18^{-1}
- d) 0
- e) none of these
- 20. An airplane has an airspeed of 450 mph and is pointed in the direction N 30° E [30° east of north]. The wind is 20 mph FROM the west. The ground speed of this plane is x mph where x is rounded to the nearest 0.1 mph. Find x.
- a) 460.3
- b) 460.4
- c) 460.5
- d) 460.6
- e) none of these
- 21. There are 3 different roads from town A to town B and 4 different roads from town B to town C (a total of 7 different roads). How many different round trip routes are possible in going from A to B to C to B to A in that order without being on the same road more than once during any one round trip route?
- a) 144
- b) 72
- c) 36
- d) 18
- e) none of these
- 22. Find $\frac{d^2y}{dx^2}$ at $\theta = 2$ for the curve with parametric equations $\begin{cases} 3x = \theta^3 \\ 4y = 4\theta \theta^4 \end{cases}$.

 a) $\frac{-1}{4}$ b) $\frac{-5}{16}$ c) $\frac{-3}{8}$ d) $\frac{-7}{16}$ e) none of these

- 23. If the point (P, Q) is on the graph of f(x) = y in the (x, y) plane, then $f\left(\frac{a}{b}x\right) = \frac{c}{d}y$ must have what point?

- a) $\left(\frac{aP}{b}, \frac{cQ}{d}\right)$ b) (abP, cdQ) c) $\left(\frac{bP}{a}, \frac{dQ}{c}\right)$ d) $\left(\frac{P}{ab}, \frac{Q}{cd}\right)$ e) none of these

- 24. If $\frac{7x^2 23x + 10}{(3x 1)(x 1)(x + 2)} = \frac{A}{3x 1} + \frac{B}{x 1} + \frac{C}{x + 2}$ is true for all x except those which cause denominators to equal zero, find A + B + C.

- b) 2 c) $\frac{5}{2}$
- d) 3 e) none of these

Solutions:

- 1. E
- 2. B
- 3. D
- 4. B
- 5. B
- 6. A
- 7. A
- 8. C
- 9. D
- 10. C
- 11. C
- 12. B
- 13. B
- 14. A
- 15. C
- 16. B
- 17. E
- 18. C
- 19. A
- 20. A
- 21. B
- 22. B
- 23. C
- 24. E