Στοχαστικές Ανελίξεις Εξετάσεις Σεπτεμβρίου 2005 ΣΕΜΦΕ

Ζήτημα 1°. An g(t) είναι η κοινή ροπογεννήτρια συνάρτηση των ανεξαρτήτων και ισονόμων τ.μ. X_1, \ldots, X_n και $S = \sum_{i=1}^n X_i$, δείξτε ότι για κάθε $s \ge 0$ και $t \ge 0$ ισχύει η ανισότητα:

$$P[S \ge ns] \le e^{-nst} \{g(t)\}^n$$
.

Με εφαρμογή της παραπάνω ανισότητας να αποδείξετε ότι όταν η κατανομή των ανεξαρτήτων τ.μ. X_i ($i=1,\ldots,n$) είναι η Κανονική N(0,1) τότε ισχύει η σχέση:

$$P[S \ge ns] \le \exp\{-\frac{1}{2}ns^2\}.$$

Ζήτημα 2°. Στον, χωρίς απορροφητικά φράγματα, απλό τυχαίο περίπατο $\{X_n: n=0,1,2,\ldots\}$ με αρχική κατάσταση $X_0=0$ και θετική τάση $\mu=p-q$ να δείξετε ότι η χαμηλότερη θέση $X=\min\{X_n: n=0,1,2,\ldots\}$ έχει κατανομή πιθανότητας την $P[X=-m]=\lambda^m(1-\lambda)$ $(m=0,1,2,\ldots)$ με $\lambda=q/p$ (<1).

Ζήτημα 3°. Δίνεται ότι στον απλό τυχαίο περίπατο η γεννήτρια συνάρτηση των πιθανοτήτων επανόδου στην αρχική κατάσταση $X_0=0$, δηλαδή των πιθανοτήτων $p_{00}^{(n)}=P[X_n=0|X_0=0]$ με

$$p_{00}^{(n)} = \begin{cases} \binom{2m}{m} \{pq\}^m & \text{\'otan } n = 2m, \\ 0 & \text{\'otan } n = 2m + 1. \end{cases} \quad (m = 0, 1, 2, ...)$$

είναι η

$$P(s) = \sum_{m=0}^{\infty} p_{ii}^{(2m)} = \{1 - 4pqs^2\}^{-1/2} \ \mu\epsilon \ | \ s \ | \ < \{4pq\}^{-1/2}.$$

(i) Να προσδιορίσετε την γεννήτρια συνάρτηση F(s) του χρόνου της $1^{\eta s}$ επανόδου στην αρχική κατάσταση $X_0=0$. (ii) Να δείξετε ότι: η αρχική κατάσταση $X_0=0$ είναι επαναληπτική όταν p=q και παροδική όταν $p\neq q$. (iii) Να δείξετε ότι η αρχική κατάσταση $X_0=0$ δεν μπορεί να είναι γνήσια επαναληπτική. Ισχύουν τα ως άνω συμπεράσματα και για οποιαδήποτε άλλη αρχική κατάσταση x_0 ; (Να δικαιολογήσετε την απάντησή σας).

Ζήτημα 4°. Να δείξετε ότι σε μια απεριοδική και μη υποβιβάσιμη Μ.Α. με πεπερασμένο πλήθος καταστάσεων και πίνακα πιθανοτήτων μετάβασης \mathbf{P} διπλά στοχαστικό, δηλαδή με την επιπρόσθετη ιδιότητα $\sum_{i=1}^n p_{ij} = 1$ για όλα τα $j = 1, \ldots, n$, η κατανομή ισορροπίας $\mathbf{\pi} = (\pi_1, \ldots, \pi_n)$ είναι η ομοιόμορφη $(1/n, \ldots 1/n)$. Ποιος ο μέσος χρόνος επανόδου στην αρχική κατάσταση;

Διάρκεια εξέτασης: 2.30 h. Τα θέματα είναι ισοδύναμα

