Enrol. No. / ID							

KADI SARVA VISHWAVIDYALAYA LDRP INSTITUTE OF TECHNOLOGY & RESEARCH, GANDHINAGAR

B.E. MID-SEMESTER EXAMINATION AUGUST 2016

Date: 4/09/2015	Branch : CE/IT
Subject Name & Code: Operating System CE 503/IT 503	Semester: 5
Time: 8:30 AM TO 10:00 AM	Max. Marks: 30

Instructions:

- 1) All questions are **compulsory**.
- 2) Figures to the **right** indicate full marks.
- 3) Use of scientific calculator is permitted.
- 4) Indicate clearly, the options you attempt along with its respective question number.
- 5) Use the last page of main supplementary for **rough work**.

Q.1	(A)	List the types of operating systems and explain any one in detail	Marks [5]
	(B)	What is Mutex? Write a pseudo code to achieve mutual exclusion using Mutex. OR	[5]
	(B)	Explain system call and types of system calls in detail.	[5]
Q.2	(A)	Define a process. Explain the process state transition with a neat diagram.	[5]
	(B)	Explain the IPC Problem known as Dining Philosopher problem. OR	[5]
	(A)	Explain the use of Banker's algorithm for multiple resources for deadlock avoidance with illustration.	[5]
	(B)	What is critical section? What is Mutual exclusion? Explain Peterson's solution for mutual exclusion problem.	[5]

Q.3	(A)	Consider the Following set of Processes,	with the length of the CPU-burst time given in	[5]
		milliseconds:		

Process	Burst	Time Priority				
P1	10	3				
P2	10	3 1				
P3	2	3				
P4	1	4				
P5	5	2				

The processes are assumed to have arrived in the order P1, P2, P3, P4, P5 all at time=0.

- (a) Draw Four Gantt charts illustrating the execution of these processes using FCFS, SJF, non-preemptive Priority (a small priority number implies a higher priority), and Round Robin (quantum = 1) scheduling.
- (b) What is the average waiting time of all processes for each of the scheduling algorithms in part a ?
- (c) What is the average Turn around time of all processes for each of the scheduling algorithms in part a ?

(B) Explain the following UNIX commands (i) grep (ii) cut (iii) chmod (iv) pwd

OR

- **Q.3** (A) Explain recovery from deadlock.
 - B) Suppose that the following processes arrive for the execution at the times indicated. Each process will run the listed amount of time. Assume preemptive scheduling.

Process	Arrival Time(ms)	Burst Time(ms)
P1	0.0	8
P2	0.4	4
P3	1.0	1

What is the turnaround time for these processes with Shortest Job First scheduling algorithm?

[5]

[5]