Floating Point Representation Error Free Transformations Applications to Root Solvers

On Error Free Transformations and Applications to Polynomial Equations

Aidan C O'Neill

MathFest

August 3, 2018

IEEE 754

Storage

Sign	Exponent	Mantissa
------	----------	----------

- Exceptions
 - 0
 - Overflow
 - Underflow
 - Not a Number
- Rounding
 - To the Nearest Even

Example of Floating Point Conversion

1 10000011 0110110000000000000

Example of Floating Point Conversion

1 10000011 0110110000000000000

 $-1.011011 * 2^{131-127}$

Example of Floating Point Conversion

1 10000011 01101100000000000000

$$-1.011011 * 2^4$$

$$-(2^4+2^2+2^1+2^{-1}+2^{-2})$$

$$-(16+4+2+\frac{1}{2}+\frac{1}{4})$$

$$-(22\frac{3}{4})$$

Naïve Operations

$$\big[10^{16}, 1.0, 1.0, -1*10^{16}\big]$$

Naïve Operations

Naïve Operations

$$[10^{16}, 1.0, 1.0, -1 * 10^{16}]$$

 $[10^{16}, -1 * 10^{16}, 1.0, 1.0]$

Error Free Transformations

```
Knuth's Algorithm [4]:

twoSum(double a, double b){
    double first = a + b
    double temp = ans.a - a
    double second = (a - (first - temp)) + (b - temp)
    return (first, second)
}
```

Error Free Transformations

Veltkamp-Dekker Algorithm:

Note:

$$k = \lceil \frac{p}{2} \rceil$$

$$m = 2^k + 1$$
 split(double a){ double temp = m * a; double x = temp - (temp - a); double y = a - x; return (x, y);

Error Free Transformations

```
Veltkamp-Dekker Algorithm [1]:

twoProduct(double a, double b){
        double x = a * b;
        doubles (c, d) = split(a);
        doubles (e, f) = split(b);
        double y = d*f - (((x - c*e) - d*e) - c*f);
        return (x, y);
}
```

Horner's Method

```
double standardHorner(double* poly, int deg, double x){
          double res = poly[deg];
          for(int i = deg-1; i>=0; i--){
                res = res*x + poly[i];
          }
          return res;
}
```

Compensated Horner's Method

```
double compensatedHorner(double* poly, int deg, double x){
        double res = poly[deg];
        double c = 0;
        two_double pres, sres;
        for(int i = deg-1; i >= 0; i--){
                pres = twoProduct(res, x)
                sres = twoSum(pres.a, poly[i];
                res = sres.a;
                c = x*c + (pres.b + sres.b);
        return res+c;
```

Results of Compensated Horner

[3]

Results of Compensated Newton's Method

[2]

Our Results

Poly No.	Description	Deg.	Roots
1	Wilkinson polynomial	10	$1, \dots, 10$
2	Wilkinson polynomial	15	$1, \ldots, 15$
3	Wilkinson polynomial	20	$1, \ldots, 20$
4	scale and shifted Wilkinson polynomial	20	$-2.1, -1.9, \ldots, 1.7$
5	reverse Wilkinson polynomial	10	$1, 1/2, \ldots, 1/10$
6	reverse Wilkinson polynomial	15	$1, 1/2, \ldots, 1/15$
7	reverse Wilkinson polynomial	20	$1, 1/2, \ldots, 1/20$
8	prescribed roots of varying scale	20	$2^{-10}, 2^{-9}, \dots, 2^9$
9	prescribed roots of varying scale -3	20	$2^{-10} - 3, 2^{-9} - 3, \dots, 2^9 - 3$
10	Chebyshev polynomial	20	$\cos(\frac{2j-1}{40}\pi)$ $e^{i\frac{2j}{21}\pi}$
11	$z^{20} + z^{19} + \dots + z + 1$	20	$e^{i\frac{2j}{21}\pi}$
12	C. Traverso	24	known
13	Mandelbrot	31	known
14	Mandelbrot	63	known

Our Results

Poly No.	FPML	Polzeros	AMVW	•	Poly No.	FPML Comp
1	$3.82 \cdot 10^{-11}$	$3.84 \cdot 10^{-10}$	$1.04 \cdot 10^{-10}$		1	$6.78 \cdot 10^{-17}$
2	$4.14 \cdot 10^{-6}$	$3.63 \cdot 10^{-6}$	$1.75 \cdot 10^{-6}$		2	$4.89 \cdot 10^{-17}$
3	$3.69 \cdot 10^{-2}$	$2 \cdot 10^{-2}$	1.05		3	$1.2 \cdot 10^{-5}$
4	$8.23 \cdot 10^{-13}$	$1.89 \cdot 10^{-13}$	$5.95 \cdot 10^{-13}$		4	$9.64 \cdot 10^{-14}$
5	$4.66 \cdot 10^{-10}$	$1.07 \cdot 10^{-10}$	$6.61 \cdot 10^{-7}$		5	$3.28 \cdot 10^{-11}$
6	$1.51\cdot 10^{-6}$	$2.85 \cdot 10^{-7}$	0.25		6	$1.54 \cdot 10^{-7}$
7	$7.87 \cdot 10^{-2}$	$1.53 \cdot 10^{-2}$	1.28		7	$3.09 \cdot 10^{-5}$
8	$8.12 \cdot 10^{-15}$	$2.21 \cdot 10^{-15}$	$5.95 \cdot 10^{-2}$		8	$1.3 \cdot 10^{-15}$
9	0.76	$2.2 \cdot 10^{-2}$	$3.72 \cdot 10^{-2}$		9	$9.38 \cdot 10^{-3}$
10	$1.36 \cdot 10^{-10}$	$3.72 \cdot 10^{-11}$	$9.8 \cdot 10^{-11}$		10	$6.82 \cdot 10^{-15}$
11	$1.01 \cdot 10^{-15}$	$2.65 \cdot 10^{-16}$	$6.32 \cdot 10^{-16}$		11	$2.23 \cdot 10^{-16}$
12	$3.93 \cdot 10^{-8}$	$3.83 \cdot 10^{-8}$	9.89		12	$7.86 \cdot 10^{-9}$
13	$5.35\cdot10^{-8}$	$3.94 \cdot 10^{-7}$	$4.38 \cdot 10^{-8}$		13	$1.04\cdot 10^{-8}$
14	0.14	0.18	0.15		14	$1.88\cdot10^{-2}$

References I

T. J. Dekker, A floating-point technique for extending the available precision, Numer. Math., 18 (1971), pp. 224–242.

S. Graillat, Accurate simple zeros of polynomials in floating point arithmetic, Comput. Math. Appl., 56 (2008), pp. 1114-1120.

S. Graillat, N. Louvet, and P. Langlois, Compensated horner scheme, tech. rep., Université de Perpignan Via Domitia, 2005.

D. E. Knuth, The Art of Computer Programming: Seminumerical Algorithms, vol. 2, Addison-Wesley, Reading, Massachusetts, 1969.