Improved Hessian estimation for adaptive random directions stochastic approximation

Danda Sai Koti Reddy*

Joint work with Prashanth L.A.[†] and Shalabh Bhatnagar*

- * Indian Institute of Science, Bangalore
- † University of Maryland, College Park

Overview

Simulation Optimization

Random directions stochastic approximation (RDSA) + improved Hessian estimation

Numerical Results

Simulation Optimization

Optimization under uncertainity

Energy Demand Management

- Consumer demand, energy generation are uncertain
- Objective is to minimize the absolute difference

Optimization under uncertainity

Energy Demand Management

- Consumer demand, energy generation are uncertain
- Objective is to minimize the absolute difference

Traffic Signal Control

- Optimal order to switch traffic lights
- Objective is to minimize waiting time

Basic optimization problem

To find θ^* that minimizes the objective function $f(\theta)$:

$$\theta^* = \operatorname*{arg\,min}_{\theta \in \Theta} f(\theta) \tag{1}$$

- $f: \mathbb{R}^N \to \mathbb{R}$ is called the objective function
- θ is tunable N-dimensional parameter
- $\Theta \subseteq \mathbb{R}^{N}$ is the feasible region in which θ takes values

Classification of optimization problems

Deterministic optimization problem

- Complete information about objective function f
- First and higher order derivatives
- Feasible region

Classification of optimization problems

Deterministic optimization problem

- Complete information about objective function f
- First and higher order derivatives
- Feasible region

Stochastic optimization problem

- We have little knowledge on the structure of f
- f cannot be obtained directly
- $f(\theta) \equiv E_{\xi}[h(\theta, \xi)]$, where ξ comprises the randomness in the system

Difficult to find θ^* only on the basis of noisy samples

Stochastic optimization via simulation

Stochastic optimization deals with highly nonlinear and high dimensional systems. The challenges with these problems are:

- Too complex to solve analytically
- $\bullet\,$ Many simplifying assumptions are required

Stochastic optimization via simulation

Stochastic optimization deals with highly nonlinear and high dimensional systems. The challenges with these problems are:

- Too complex to solve analytically
- Many simplifying assumptions are required

A good alternative of modelling and analysis is "Simulation"

Figure 1: Simulation optimization

Stochastic approximation + Gradient descent

Stochastic analog of gradient descent

$$\theta_{n+1} = \Gamma_{\Theta} \left[\theta_n - a_n \widehat{\nabla} f(\theta_n) \right]$$
 (2)

- $\widehat{\nabla} f(\theta_n)$ is a noisy estimate of the gradient $\nabla f(\theta_n)$, and it should satisfy $\mathbb{E}\left[\widehat{\nabla} f(\theta_n)\right] \nabla f(\theta_n) \to 0$
- $\{a_n\}$ are pre-determined step-sizes satisfying:

$$\sum_{n=1}^{\infty}a_n=\infty,\quad \sum_{n=1}^{\infty}a_n^2<\infty$$

• Γ_{Θ} denotes the projection of a point onto Θ

7

1-slide summary

Related second-order methods

$(Spall \ 2000)^1$	Second-order SPSA (2SPSA)	4 simulations/iteration
(Spall 2009) ²	2SPSA + feedback	4 simulations/iteration
(Prashanth L.A. et al 2016) ³	Second-order RDSA (2RDSA)	3 simulations/iteration

Our work

We propose feedback and weighting mechanisms for improving Hessian estimate for 2RDSA algorithm

¹J. C. Spall (2000), "Adaptive stochastic approximation by the simultaneous perturbation method," IEEE TAC.

 $^{^2}$ J. C. Spall (2009), "Feedback and weighting mechanisms for improving Jacobian estimates in the adaptive simultaneous perturbation algorithm," IEEE TAC.

Prashanth L. A. et al. (2016) "Adaptive system optimization using random directions stochastic approximation," IEEE TAC.

Random directions stochastic approximation (RDSA) + improved Hessian estimation

Our algorithm

- Matrix projection <
- Gradient estimate -

Our algorithm

- Matrix projection \(
- Gradient estimate

$$\theta_{n+1} = \theta_n - a_n \Upsilon(\overline{H}_n)^{-1} \widehat{\nabla} f(\theta_n)$$
(3)

$$\overline{H}_{n} = (1 - b_{n})\overline{H}_{n-1} + b_{n}(\widehat{H}_{n} - \widehat{\Psi}_{n})$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad (4)$$

- Optimal step-sizes
- Hessian estimate
- Feedback term -

Overall flow of 2RDSA-IH

RDSA gradient estimate

Function measurements

$$y_n^+ = f(\frac{\theta_n + \delta_n d_n}{}) + \xi_n^+, \quad y_n^- = f(\frac{\theta_n - \delta_n d_n}{}) + \xi_n^-$$

RDSA gradient estimate

Function measurements

$$y_n^+ = f(\theta_n + \delta_n d_n) + \xi_n^+, \quad y_n^- = f(\theta_n - \delta_n d_n) + \xi_n^-$$

Gradient estimate

$$\widehat{\nabla}f(\theta_n) = \frac{1}{1+\epsilon} d_n \left[\frac{y_n^+ - y_n^-}{2\delta_n} \right]$$
 (5)

Asymmetric Bernoulli distribution for $d_n^i, i = 1, \dots, N$:

2RDSA Hessian estimate

Function measurements

$$y_n^+ = f(\begin{array}{c} \theta_n + \delta_n d_n \end{array}) + \xi_n^+, \ \ y_n^- = f(\begin{array}{c} \theta_n - \delta_n d_n \end{array}) + \xi_n^-, \ \ y_n = f(\begin{array}{c} \theta_n \end{array}) + \xi_n$$

2RDSA Hessian estimate

Function measurements

$$y_n^+ = f(\frac{\theta_n + \delta_n d_n}{\theta_n}) + \xi_n^+, \ y_n^- = f(\frac{\theta_n - \delta_n d_n}{\theta_n}) + \xi_n^-, \ y_n = f(\frac{\theta_n}{\theta_n}) + \xi_n$$

Hessian estimate \widehat{H}_n

$$\begin{split} \widehat{H}_{n} &= M_{n} \left(\frac{y_{n}^{+} + y_{n}^{-} - 2y_{n}}{\delta_{n}^{2}} \right) \\ &= M_{n} \left[\left(\frac{f(\theta_{n} + \delta_{n} d_{n}) + f(\theta_{n} - \delta_{n} d_{n}) - 2f(\theta_{n})}{\delta_{n}^{2}} \right) \\ &+ \left(\frac{\xi_{n}^{+} + \xi_{n}^{-} - 2\xi_{n}}{\delta_{n}^{2}} \right) \right] \\ &= M_{n} \left(\frac{d_{n}^{T} \nabla^{2} f(\theta_{n}) d_{n}}{\delta_{n}^{2}} + O(\delta_{n}^{2}) + \frac{\left(\frac{\xi_{n}^{+} + \xi_{n}^{-} - 2\xi_{n}}{\delta_{n}^{2}} \right)}{\delta_{n}^{2}} \right) \end{split}$$
Want to recover
$$\nabla^{2} f(\theta_{n}) \text{ from this}$$
Zero-mean

How to choose M_n?

Asymmetric Bernoulli Perturbation

$$M_{n} = \begin{bmatrix} \frac{1}{\kappa} \left((d_{n}^{1})^{2} - (1 + \epsilon) \right) & \cdots & \frac{1}{2(1 + \epsilon)^{2}} d_{n}^{1} d_{n}^{N} \\ \frac{1}{2(1 + \epsilon)^{2}} d_{n}^{2} d_{n}^{1} & \cdots & \frac{1}{2(1 + \epsilon)^{2}} d_{n}^{2} d_{n}^{N} \\ \cdots & \cdots & \cdots \\ \frac{1}{2(1 + \epsilon)^{2}} d_{n}^{N} d_{n}^{1} & \cdots & \frac{1}{\kappa} \left((d_{n}^{N})^{2} - (1 + \epsilon) \right) \end{bmatrix}$$
(7)

where
$$\kappa = \tau \left(1 - \frac{(1+\epsilon)^2}{\tau}\right)$$
 and $\tau = E(d_n^i)^4 = \frac{(1+\epsilon)(1+(1+\epsilon)^3)}{(2+\epsilon)}$, for any $i=1,\dots,N$

Zero-mean term-

Mean of the Hessian estimate

 $^{^{1}}$ For any matrix P, [P]_D refers to a matrix that retains only the diagonal entries of P and replaces all the remaining entries with zero

 $^{^{2}}$ [P]N to refer to a matrix that retains only the off-diagonal entries of P, while replaces all the diagonal entries with zero

Zero-mean term-

Mean of the Hessian estimate

$$\mathbb{E}\left[\widehat{H}_{n}\middle|\mathcal{F}_{n}\right] = \nabla^{2}f(\theta_{n}) + \frac{\mathbb{E}\left[\Psi_{n}(\nabla^{2}f(\theta_{n}))\middle|\mathcal{F}_{n}\right]}{\mathbb{E}\left[\left(\frac{\xi_{n}^{+} + \xi_{n}^{-} - 2\xi_{n}}{\delta_{n}^{2}}\right)\middle|\mathcal{F}_{n}\right]} + O(\delta_{n}^{2})$$

$$+ \mathbb{E}\left[\left(\frac{\xi_{n}^{+} + \xi_{n}^{-} - 2\xi_{n}}{\delta_{n}^{2}}\right)\middle|\mathcal{F}_{n}\right]$$
Zero-mean (8)

Feedback term

$$\Psi_{n}(H) = [M_{n}]_{D} \left(d_{n}^{T} [H]_{N} d_{n} \right) + [M_{n}]_{N} \left(d_{n}^{T} [H]_{D} d_{n} \right)$$
(9)

¹For any matrix P, $[P]_D$ refers to a matrix that retains only the diagonal entries of P and replaces all the remaining entries with zero

 $^{^{2}}$ [P]N to refer to a matrix that retains only the off-diagonal entries of P, while replaces all the diagonal entries with zero

Problem

Feedback term is function of current Hessian $\nabla^2 f$

Problem

Feedback term is function of current Hessian $\nabla^2 f$

Solution

Use \overline{H}_{n-1} as a proxy for $\nabla^2 f$

$$\widehat{\Psi}_{n} = \Psi_{n} (\overline{\overline{H}}_{n-1}) \tag{10}$$

Recall the Hessian recursion, $\overline{H}_n = (1-b_n)\overline{H}_{n-1} + b_n(\widehat{H}_n - \widehat{\Psi}_n)$

Recall the Hessian recursion, $\overline{H}_n=(1-b_n)\overline{H}_{n-1}+b_n(\widehat{H}_n-\widehat{\Psi}_n)$

Rewriting the Hessian recursion

$$\overline{H}_{n} = \sum_{i=0}^{n} \tilde{b}_{i} (\widehat{H}_{i} - \widehat{\Psi}_{i})$$
(11)

Recall the Hessian recursion, $\overline{H}_n = (1 - b_n)\overline{H}_{n-1} + b_n(\widehat{H}_n - \widehat{\Psi}_n)$

Rewriting the Hessian recursion

$$\overline{H}_{n} = \sum_{i=0}^{n} \tilde{b}_{i} (\widehat{H}_{i} - \widehat{\Psi}_{i})$$
(11)

Optimization problem for weights

$$\min_{\{\tilde{b}_i\}} \sum_{i=0}^{n} (\tilde{b}_i)^2 \delta_i^{-4}, \text{ subject to}$$
 (12)

$$\tilde{\mathbf{b}}_{i} \ge 0 \,\,\forall i \,\,\text{and}\,\, \sum_{i=0}^{n} \tilde{\mathbf{b}}_{i} = 1$$
 (13)

Above optimization problem solution

$$\tilde{b}_{i}^{*} = \delta_{i}^{4} / \sum_{j=0}^{n} \delta_{j}^{4}, i = 1, \dots, n$$
 (14)

 $^{^1\}mathrm{Step\text{-}size}$ optimization is a relatively straightforward migration from Spall 2009

Above optimization problem solution

$$\tilde{\mathbf{b}}_{i}^{*} = \delta_{i}^{4} / \sum_{i=0}^{n} \delta_{j}^{4}, i = 1, \dots, n$$
 (14)

Optimal weights for original Hessian recursion

$$b_i = \delta_i^4 / \sum_{i=0}^i \delta_j^4 \tag{15}$$

¹Step-size optimization is a relatively straightforward migration from Spall 2009

Convergence analysis

Lemma

(Bias in Hessian estimate) From Prashanth L. A. et al. $(2016)^1$, we have a.s. $that^2$, for i, j = 1, ..., N,

$$\left| \mathbb{E} \left[\widehat{H}_{n}(i,j) \middle| \mathcal{F}_{n} \right] - \nabla_{ij}^{2} f(\theta_{n}) \right| = O(\delta_{n}^{2})$$
 (16)

Theorem

(Strong Convergence of Hessian) Under assumptions similar to those for 2SPSA and 2RDSA, we have that

$$\theta_n \to \theta^*, \overline{H}_n \to \nabla^2 f(\theta^*) \text{ a.s. as } n \to \infty$$

¹Prashanth L. A. et al. (2016) "Adaptive system optimization using random directions stochastic approximation," IEEE TAC.

²Here $\widehat{H}_n(i,j)$ and $\nabla^2_{ij}f(\cdot)$ denote the (i,j)th entry in the Hessian estimate \widehat{H}_n and the true Hessian $\nabla^2 f(\cdot)$, respectively.

Numerical Results

Numerical Results

Quadratic loss

$$f(\theta) = \theta^{T} A \theta + b^{T} \theta \tag{17}$$

Fourth-order loss

$$f(\theta) = \theta^{T} A^{T} A \theta + 0.1 \sum_{j=1}^{N} (A \theta)_{j}^{3} + 0.01 \sum_{j=1}^{N} (A \theta)_{j}^{4}$$
 (18)

Additive Noise : $[\theta^T, 1]Z$, where $Z \approx \mathcal{N}(0, \sigma^2 I_{N+1 \times N+1})$

The implementation is available at https://github.com/prashla/RDSA/archive/master.zip

Numerical Results

Normalized MSE (NMSE)

$$\|\theta_{n_{end}} - \theta^*\|^2 / \|\theta_0 - \theta^*\|^2$$
 (19)

Normalized loss

$$f(\theta_{n_{end}})/f(\theta_0)$$
 (20)

Table 1: Normalized loss values for fourth-order objective (18) with noise: simulation budget = 10,000 and standard error from 500 replications shown after \pm

Noise parameter $\sigma = 0.1$			
	Regular	Improved Hessian estimation	
2SPSA	0.132 ± 0.0267	0.104 ± 0.0355	
2RDSA-Unif ¹	0.115 ± 0.0214	0.0271 ± 0.0538	
2RDSA-AsymBer	0.0471 ± 0.021	0.0099 ± 0.0014	

 $^{^{1}}$ 2RDSA-Unif uses Unif[-1, 1] with a different M_{n}

 $^{^2}$ Observation 1: Schemes with improved Hessian estimation performs better than their respective regular schemes

Observation 2: 2RDSA-IH-AsymBer is performing the best overall

Table 2: NMSE values for quadratic objective (17) with noise: simulation budget = 10,000 and standard error from 500 replications shown after \pm

Noise parameter $\sigma = 0.1$				
	Regular	Improved Hessian estimation		
2SPSA	0.9491 ± 0.0131	0.5495 ± 0.0217		
2RDSA-Unif	1.0073 ± 0.0140	0.1953 ± 0.0095		
2RDSA-AsymBer	0.1667 ± 0.0095	0.0324 ± 0.0007		

Observation 1: Schemes with improved Hessian estimation performs better than their respective regular schemes

Observation 2: 2RDSA-IH-AsymBer is performing the best overall

Conclusions and Future work

Conclusions

- Improved Hessian estimation scheme for the 2RDSA algorithm
- 2RDSA-IH requires only 75% of the simulation cost per-iteration for 2SPSA, 2SPSA-IH

Future work

To derive finite time bounds for 2RDSA-IH

Thank You