/ 1	$\gamma \gamma$
Lecture	1 2 3

Last time we analyzed error of Newton and Secant method.

We proved that in Newton's method

Compat

while in Secont method

lnti a club-1

lim lener | mn-revo contat n-7x5 | lent |

- > For most fixed pt iteration order of conveyence = 1
- -) For Newton's method, order = 2
- -1 For secont method order = 1+15 = 1-618---

Today we learn iterative methods to solve linear equations. It is based on fixed pt iteration We want to solve A = bIt is equivalent to find zero of f'(x) = Ax - bWe write it in equivalent form $\bar{x} = g(\bar{x})$ A fixed pt & of gix) will be not of f(x). ie A E = b. Iteration initial green x (0) and then we generale the Sephen 4 $x^{(m+1)} = g(x) \qquad m = 0, 1, 2, ...$

	For anneyens we require the following
	Heoren Cel-
	Heoren S \(\sigma \) R^n is doned if any ey \(\frac{2n^2}{2n^2} \) \(\chi_n \
	$\Rightarrow \lim_{n \to \infty} x_n \in S$
	Example: 1) (0,1] is not closed 2) [9,6] × [c,d] is closed in [R]
	example :- 1) (0) is closed in R
	21 [9,6] × [5,0]
18	even: - Suppose g: S -> S done d set
	in 127 Suppose further that g is contractions
	ug(2)-g(y) ≤ k 112-y
	g(x)-g(y) = x-y
	firall 37 & \$ and 05 K < 1
	Then
()	Then g has a unique fixed pt & in S
7	
2)	Fixed pt iteration starting with any $x^{(0)}$ in 1 converges to ξ . i.e., $\lim_{m\to\infty} \xi-x^{(m)} =0$ for such a sep $x^{(m+1)}=g(x^{(m)})$, $m=0,1,2,$ More explicitly
	converges to 5. i.e. lim 115-x(m) 11 =0
	m-t-o
	for such a see y(m+1) = g(x(m)), m =0,1,2,
	More explicits
	(m^2) (m^{-1}) (m^{-1}) (m^{-1})
ı *	$ x - x^{(m)} \le \frac{ x }{ x } x ^{(m)} = \frac{ x^{(m-1)} }{ x }$
	1-K
(X)	$0 x - x^{(m)} \leq \frac{ x^{m} }{ -x } x^{(1)} - x^{(0)} $
•	I-K

S is closed set,
$$g: S \rightarrow S$$
 contradices $\Rightarrow g$ has a fixed pt.

Thurstical theore.

Let $f = \chi^{(m)} || = || g(\xi) - g(\chi^{(m+1)}) ||$
 $f = \chi^{(m)} || = || g(\xi) - g(\chi^{(m+1)}) ||$
 $f = \chi^{(m)} || = || f = \chi^{(m)} || + || \chi^{(m)} - \chi^{(m+1)} ||$
 $f = \chi^{(m)} || \leq || f = \chi^{(m+1)} || + || \chi^{(m)} - \chi^{(m+1)} ||$
 $f = \chi^{(m)} || \leq || \chi^{(m)} - \chi^{(m+1)} ||$

This proves (x)

 $f = \chi^{(m)} || \leq || \chi^{(m+1)} - g(\chi^{(m+1)} - \chi^{(m+2)} ||$
 $f = \chi^{(m)} || \leq || \chi^{(m+1)} - \chi^{(m+2)} ||$
 $f = \chi^{(m)} || \leq || \chi^{(m+1)} - \chi^{(m+2)} ||$
 $f = \chi^{(m)} || \leq || \chi^{(m+1)} - \chi^{(m+2)} ||$
 $f = \chi^{(m)} || \leq || \chi^{(m+1)} - \chi^{(m+2)} ||$
 $f = \chi^{(m)} || \leq || \chi^{(m+1)} - \chi^{(m+2)} ||$
 $f = \chi^{(m)} || \leq || \chi^{(m+1)} - \chi^{(m+2)} ||$
 $f = \chi^{(m)} || \leq || \chi^{(m+1)} - \chi^{(m+2)} ||$
 $f = \chi^{(m)} || \leq || \chi^{(m+1)} - \chi^{(m+2)} ||$

to solve AX=b
All iteration schemes are based on the
All iteration schemes one based on the notion y approximate inverse,
by this we one an any matrix C for which
of hos we great any main's c for
which
IL T - CAIL < 1
in some matrix norm.
amma If Cisan approximere invene
for the matrix A, i.e., if II I - cA 1 < 1
in some matrix norm, Then both C and
in some matrix norm, then both cand A are invertible
f If C OR A is not invertible then
so would the matrix CA.
So would the matrix CA. Thus we can find \$\overline{\chi} \pi \overline{\chi} \overline{\chi} = 0
But then
f = (I - cA)
17 11 ~ 11 11 - 11
S IL I-CA IL ILZ II
< 11211

```
Iteration function
   Let C be an approximate invene to A
        g(\bar{x}) = C\bar{b} + (\underline{T} - cA)\bar{x}= \bar{x} + c(\bar{b} - A\bar{x})
   If 9(\(\xi\)) = \(\xi\)
      c (B-AF) =0
    Cinnertible. So A\overline{\xi} = b
     g(x)-g(y)=(5+(I-(A)x - (c6+(I-(A))
               = (I - CA)(2-g)
 So lig(21-g(5) | = 11(T-CA)(2-5) |
                      € ILI-CA | 1 112-511
  So g is contractive on the k = NI-(A11 < 1)

S = \mathbb{R}^n.
Therefore the fixed pt iteration
\chi^{(m+1)} = \chi^{(m)} + (b - A\chi^{(m)}) \quad m = 0, 12...
   stauting from any 2000 voill converge to
```

$$L_{j} = \begin{cases} a_{ij} & i > j \\ 0 & i \leq j \end{cases}$$

$$2ij = \begin{cases} \alpha ij & \text{if } i=1\\ 0 & \text{if } j \end{cases}$$

$$U:\hat{j} = \begin{cases} 0 & \text{if } i > j \\ a_{i5} & \text{if } i < j \end{cases}$$

Crample

$$Az \begin{pmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 3 & 0 & 0 \\ 6 & 7 & 8 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 6 \\ 0 & 4 & 8 \\ 0 & 0 & 8 \end{pmatrix} \hat{D}$$

$$\hat{L} \qquad + \begin{pmatrix} 0 & 2 & 3 \\ 0 & 0 & 5 \\ 0 & 0 & 0 \end{pmatrix}$$

we assume all diagonal entries of
A are non-zero
(if this is not so at the outer, we
first rearrange the equation so that
this condition is satisfied. This can
always be donne since A is invertible
Jacobi iteration
$C = \hat{D}^{-1}.$
This converge if II I - D-A II <)
for some norm.
for some norm. $x^{(m+1)} = x^{(m)} + \hat{D}^{-1} (b - A x^{(m)})$
$\frac{\chi}{(m+1)}$ Sais $\chi_i^{(m)}$
$\chi_{i}^{(m+1)} = -bi - \sum_{j \neq i} \alpha_{ij} \chi_{i}$
ai:
i=1,2, h

Example

$$10x_1 - x_2 = 9$$
 $-x_1 + 10x_2 - 2x_3 = 7$
 $-2x_2 + 10x_3 = 6$
 $\begin{cases} x_1 = 0.1 \times_2 + 0.9 \\ x_2 = 0.1 \times_2 + 0.9 \end{cases}$
 $\begin{cases} x_2 = 0.1 \times_2 + 0.9 \\ x_3 = 0.2 \times_2 + 0.4 \end{cases}$

Taushi iteration

 $\begin{cases} x_1 = 0.1 \times_2 + 0.9 \\ x_2 = 0.1 \times_1 + 0.9 \\ x_3 = 0.1 \times_2 + 0.1 \end{cases}$

Further $\begin{cases} x_1^{(0)} = 0 \\ x_2^{(0)} = 0 \\ x_3^{(0)} = 0 \end{cases}$
 $\begin{cases} x_1^{(m+1)} = 0.1 \times_2^{(m)} + 0.9 \\ x_2^{(m+1)} = 0.1 \times_1^{(m)} + 0.2 \times_3^{(m)} + 0.7 \end{cases}$
 $\begin{cases} x_1^{(m+1)} = 0.1 \times_2^{(m)} + 0.2 \times_3^{(m)} + 0.7 \\ x_2^{(m+1)} = 0.2 \times_2^{(m)} + 0.6 \end{cases}$

Iteration

M	0	l	2	3	4
X,(m)	0	0-9	0-97	0-991	0-9941
X _L (m)	O	0.7	0-91	0-941	0-9555
6.2			•		
k2	0	0.6	0-72	0-782	0.7564
•	•	b .			
~	5	6	7	8	1 9
Xm	6-99 555	0-995069	0-995778	0-995115	0-995719
•		•			1
y (24)	0.95069	0.957775	0.95115)	0-957889	0-951174
(14)	,				
(m)	0.7911	0.758220	0-791555	0-758311	0-791578
				•	
	americ	o nicely	to exact	-sol ⁿ (in	6 sig)
	converging nicely to exact sol" (in 6 sig)				
	x, = 8-995789				
	x2 = 0.957895				
	$x_3 = 0.791579$				
	$x_3 = 0.771371$				
					•

$$A = \hat{L} + \hat{D} + \hat{U}$$
for Jacob: method
$$C = \hat{D}^{-1}$$
For Gauss - Seidel iteration
$$C = (\hat{L} + \hat{D})^{-1}$$

$$\chi^{(m+1)} = \chi^{(m)} + (\hat{L} + \hat{D})^{-1} (b - A \chi^{(m)})$$

$$(\hat{L} + \hat{D}) \chi^{(m+1)} = (\hat{L} + \hat{D} - A) \chi^{(m)} + b$$

$$\hat{D} \chi^{(m+1)} = -\hat{L} \chi^{(m+1)} - \hat{U} \chi^{(m)} + b$$
This gives the formulas
$$\chi^{(m+1)} = -\sum_{j=0}^{\infty} a_{ij} \chi_{j}^{(m+1)} - \sum_{j=0}^{\infty} a_{ij} \chi_{j}^{(m)} + bi$$

$$\chi^{(m+1)} = -\sum_{j=0}^{\infty} a_{ij} \chi_{j}^{(m+1)} - \sum_{j=0}^{\infty} a_{ij} \chi_{j}^{(m)} + bi$$

$$a_{ii} = -\sum_{j=0}^{\infty} a_{ij} \chi_{j}^{(m+1)} - \sum_{j=0}^{\infty} a_{ij} \chi_{j}^{(m)} + bi$$

$$i=1,2,-n$$

This converge if for some notices were some
$$|| I - CA || < ||$$

$$I - CA = I - (\hat{L} + \hat{D})^{-1}(\hat{L} + \hat{D} + \hat{U})$$

$$= (\hat{L} + \hat{D})^{-1}\hat{U}$$
i.e if $|| C\hat{U} || < || 1$ then Gauss-Seidel method converges

Example (Same example as before)
$$|0x_1 - x_2 = 9$$

$$-x_1 + 10x_2 - 2x_3 = 7$$

$$-2x_2 + 10x_3 = 6$$

$$x_1 = 0.1x_2 + 0.9$$

$$x_2 = 0.1x_1 + 0.2x_3 + 0.7$$

$$x_3 = 0.2x_2 + 0.6$$

Iteration scheme
$$x_{1}^{(m+1)} = 0 - | x_{2}^{(m)} + 0 - 9$$

$$x_{2}^{(m+1)} = 0 - | x_{1}^{(m+1)} + 0 - 2x_{3}^{(m)} + 0 - 7$$

$$x_{3}^{(m+1)} = 0 - 2x_{2}^{(m+1)} + 0 - 6$$

$$x_{3}^{(m+1)} = 0 - 2x_{2}^{(m+1)} + 0 - 6$$

$$x_{3}^{(m+1)} = 0 - 2x_{2}^{(m+1)} + 0 - 6$$

$$x_{3}^{(m+1)} = 0 - 2x_{2}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{2}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{2}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{2}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{2}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{2}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{2}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{2}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{2}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{2}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{2}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{2}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{2}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{2}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{2}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{2}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{2}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{2}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{2}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{2}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{2}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{2}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{2}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{2}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{2}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{2}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{2}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{2}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{2}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{2}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{4}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{4}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{4}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{4}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{4}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{4}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{4}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{4}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{4}^{(m+1)} + 0 - 6$$

$$x_{4}^{(m+1)} = 0 - 2x_{4}^{$$

Gaun-Sieiler iteration is usually faster than Jacobi iteration (not always but!)

It is also easier to compute since in Jacobi iteration two iterates must be kept in memory while in yours sieder only one vector is required to be kept in memory.

Gauss-Seidel iteration can be shown to be convergent if the welficient matrix. A is strictly run diagonally-dominat. It also converge if A is the -definite ite if A is symmetric and for all non-tens vectors y, y TAy > 0.

	Broposition
	Suppose A is strictly run-dragmally dominant. Then the Jacobi-iteration converge
وا	wof A = (aij) is strictly row diagonaly dominant
	So $\{a_{ii}\} > \sum_{5 \neq i} \{a_{i5}\}$
	$\widehat{D} = \text{diay} (a_{11}, a_{22}, -a_{nn})$ be the diagnal of \mathbb{N}
	$ x _{\infty} = \max_{i} x_{i} $
	[[B]] = max Z bij Isish Isish
[]	$I - \hat{D}^{-1}A \parallel_{\infty} = \max \left\{ 1 - \sum_{j=1}^{\infty} \frac{ a_{ij} }{ a_{ii} } \right\}$
	$= \max_{i} \left\{ \sum_{\substack{5=1\\5\neq i}}^{\infty} \frac{ a_{i5} }{ a_{i6} } \right\}$
	A .
	Thus D'is an approximate innerse to A.
Th	enfre the Jacobi-Method converges

Remark

Recall that C is an approximate inverse to A if in some matrix norm

II I - cAll < 1.

note that in some other matrix norm it is possible that

Example

$$B = \begin{bmatrix} 0.9 & 0.9 \\ 0 & 8 \end{bmatrix}$$

1132 11 = 1.8 > 1

This makes it important to find ways
of telling whether IIBII<I in some matrix
norm (without howing to try out all
possible matrix norms)

p(B) = Spectral radius of B = max { 1 × 1 | > is an eigenvalue } Theorem There exist, for any e>o, a vector norm for which the amounded matrix norm 9 B satisfies 11 B 11 & p(B) + E Corollary C is an approximate inverse for A off (I-CA) < 1 Remark Iterative method are usually applied to large linear systems with sparse coefficient matrix.

