

GCE

Edexcel GCE

Mathematics

Statistics 3 S3 (6691)

June 2008

Mark Scheme

advancing learning, changing lives

Mathematics

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

June 2008 6691 Statistics S3 Mark Scheme

Question number	Scheme		Marks
1. (a)	$\overline{x} = \left(\frac{6046}{36}\right) = 167.94$	awrt 168	B1
	$s^2 = \frac{1016338 - 36 \times \overline{x}^2}{35}$		M1
	= 27.0253	awrt 27.0	A1 (3)
		(Accept 27)	
(b)	99% Confidence Interval is: $\bar{x} \pm 2.5758 \times \frac{5.1}{\sqrt{36}}$		M1A1ft
		2.5758	B1
	= (165.755, 170.133)	awrt (166,170)	A1 A1 (5)
			8 marks
(a)	M1 for a correct expression for s^2 , follow through	their mean, beware it is ver	ry "sensitive"
	$167.94 \rightarrow \frac{999.63}{35} \rightarrow 28.56$		
	$167.9 \rightarrow \frac{1483.24}{35} \rightarrow 42.37$	These would all score M1A0	
	$168 \longrightarrow \frac{274}{35} \longrightarrow 7.82$		
	Use of 36 as the divisor (= 26.3) is M0A0		
(b)	M1 for substituting their values in $\bar{x} \pm z \times \frac{5.1 \text{ or } s}{\sqrt{36}}$	where z is a recognizable va	alue from tables
	1^{st} A1 follow through their mean and their z (to 2dp)	in $\overline{x} \pm z \times \frac{5.1}{\sqrt{36}}$	
	Beware: $167.94 \pm 2.5758 \times \frac{5.1^2}{36} \rightarrow (166.07, 100)$	69.8) but scoresB1M0A0A	A0A0
	Correct answer only in (b) scores 0/5		
	2 nd & 3 rd A marks depend upon 2.5758 and M mark.		

Question number	Scheme			Marks		
2.	$\frac{115 \times 70}{217} = 37.0967 \text{ or } \frac{1150}{31} \text{ (etc) } \frac{1265}{31}, \frac{1020}{31}, \frac{1122}{31}$			M1		
	Expected (Obs)	A	S	Н		
	Boy	37.1 (30)	37.1 (50)	40.8 (35)	-	
	Girl	32.9 (40)	32.9 (20)	36.2 (42)		
	II TI		1 1		-	A1A1
	H_0 : There is no assoc		-			
	H_1 : There is some a	ssociation betwee	en course and gende	r	(both)	B1
	$\sum \frac{\left(O-E\right)^2}{E} = \frac{\left(37.1\right)^2}{3^2}$	$\frac{(32.9-4)^2}{7.1} + \frac{(32.9-4)^2}{32.9}$	$\left(\frac{40}{36.2}\right)^2 + \dots + \frac{\left(36.2 - 42\right)}{36.2}$	$(2)^{2}$		M1A1ft
	= 1.358 + 4.485 + 0.3	824 + 1.532 + 5.0	0.58 + 0.929 = 14.18	9 awrt 14	.2	A1
	v = (3-1)(2-1) = 2	$\chi_2^2(1\%)$ c	ritical value is 9.21	0 (condon	e 9.21)	B1, B1ft
	Significant result or reject null hypothesis			M1		
				A1ft (11)		
	[Correct answ	vers only score fu	ll marks]			11 marks
ALT	$\sum \frac{O^2}{E} - N = \frac{30^2}{37.1} + \frac{40^2}{32.9} + \dots + \frac{42^2}{36.2} - 217$			M1A1ft		
	1 st M1 for some use	of the $\frac{\text{row total} \times \text{constant}}{\text{grand total}}$	col total otal			
	1 st A1 for one correc	ct row or one corr	ect column of expe	cted frequencies t	o neare	st integer
	2 nd A1 for all expect	ed frequencies co	rrect to awrt 1 dp (Allow exact fract	ions)	
	1^{st} B1 for hypotheses. Independence is OK. Must mention courses and gender at least once. Use of ρ or "correlation" is B0 but allow ISW.				least once.	
				ne correct express	sion ft	expected frea
	2 nd M1 for an attempt to calculate test statistic. At least one correct expression, ft expected freq. 3 rd A1 follow through expected frequencies for at least 3 expressions			emperiou moq.		
	3 rd M1 for a correct statement relating their test statistic and their cv (may be implied by comment)				ied by comment)	
	5^{th} A1 for a contextualised comment relating their test statistic and their cv. Ignore their H_0 or H_0					
	or assume that they were correct. Must mention courses and gender					

Question number	Scheme	Marks		
3. (a)	(i)	(i) B1		
	+ + + + + + + + + + + + + + + + + + +	(ii) B1B1 (3)		
(b)(i)		M1M1		
(b)(i)		M1M1		
	A B C D E F G Rank (Judge 1) 1 4 2 3 5 6 7 Rank (Judge 2) 1 2 4 3 5 7 6 d² 0 4 4 0 0 1 1			
	$\sum d^2 = 10$	M1A1		
	$r_s = 1 - \frac{6 \times 10}{7 \times (49 - 1)} = 1 - \frac{5}{28} = \frac{23}{28}$ or awrt 0.821	M1A1 (6)		
(ii)	$H_0: \rho = 0$ $H_1: \rho > 0$ (Allow ρ_S) $(H_1: \rho \neq 0 \text{ scores B0})$	B1,B1		
	r_s 5% one tail critical value is 0.7143	B1		
	Significant result or reject null hypothesis	M1		
	There is evidence of a (positive) correlation between the judges or the judges agree	A1ft (5)		
		14 marks		
(a) (i)	1 st B1 for 5 or more points on a straight line of positive gradient			
(ii)	2^{nd} B1 for 4 or more points satisfying -1< r < 0			
(b)(i)	3 rd B1 for 5 or more points of decreasing ranks not on a straight line			
(0)(1)	1 st M1 for attempting to rank one of the judges (at least 2 correct rankings) 2 nd M1 for ranking both (may be reversed) (at least 2 correct rankings)			
	3^{rd} M1 for attempting d^2 .			
	$1^{\text{st}} \text{ A1 for } \sum d^2 = 10$			
	4^{th} M1 for correct use of the r_s formula			
(ii)	3^{rd} B1 for the correct critical value - depends upon their H ₁ : $\rho > 0$ needs 0.7143,	$\rho \neq 0 0.7857$		
(11)				
	The H_1 may be in words so B0B1 is possible. If no H_1 award for 0.7143 only.			
	5^{th} M1 for a correct statement relating their r_s and their cv (may be implied by correct comment)			
	3^{rd} A1ft follow through their r_s and their cv. Comment in context. Must mention judges.			
	Don't insist on "positive" and condone it if they are using $\rho \neq 0$.			

Question number	Scheme		Marks	
4. (a)	$X = M_1 + M_2 + M_3 + M_4 \sim N(336, 22^2)$	μ = 336	B1	
		$\sigma^2 = 22^2 \text{ or } 484$	B1	
	$P(X < 350) = P(Z < \frac{350 - 336}{22})$		M1	
	= P(Z < 0.64)	awrt 0.64	A1	
	=	awrt 0.738 or 0.739	A1	(5)
(b)	$M \sim N(84, 121)$ and $W \sim N(62, 100)$ Let $Y = M - 1.5W$		M1	
	$E(Y) = 84 - 1.5 \times 62 = -9$		A1	
	$Var(Y) = Var(M) + 1.5^{2} Var(W)$		M1	
	$= 11^2 + 1.5^2 \times 10^2 = 346$		A1	
	P(Y < 0), $= P(Z < 0.48) =$	awrt 0.684 ~ 0.686	M1, A1	(6)
			11 marks	,
(b)	2 nd B1 for $\sigma = 22$ or $\sigma^2 = 22^2$ or 484 M1 for standardising with their mean and standard deviation (ignore direction of inequality) 1 st M1 for attempting to find Y. Need to see $\pm (M-1.5W)$ or equiv. May be implied by Var(Y). 1 st A1 for a correct value for their E(Y) i.e. usually \pm 9. Do not give M1A1 for a "lucky" \pm 9. 2 nd M1 for attempting Var(Y) e.g+1.5 ² ×10 ² or 11 ² +1.5 ² × 3 rd M1 for attempt to calculate the correct probability. Must be attempting a probability > 0.5. Must attempt to standardise with a relevant mean and standard deviation Using $\sigma^2_M = 11$ or $\sigma^2_W = 10$ is not a misread.			

Question number	Scheme	Marks		
5. (a)	Only cleaners - no managers i.e. not all <u>types</u> . OR Not a random sample 1 st 50 may be in same shift/group/share <u>same views</u> . OR Not a random sample (Allow "not a representative sample" in place of "not a random sample")	B1g B1h	(2)	
(b)(i)	Label employees (1-550) or obtain an ordered list Select <u>first</u> using <u>random numbers</u> (from 1 - 11) Then select every 11 th person from the list	B1 B1 B1		
(ii)	Label managers (1-55) and cleaners (1-495) Use random numbers to select5 managers and 45 cleaners	M1 M1 A1	(6)	
(c)	390, 372 (They must be in this order)	B1, B1 10 marks	(2)	
(a)	After 1 st B1, comments should be in context , i.e. mention cleaners, managers, type 1 st B1g for one row 2 nd B1h for both rows. "Not a random sample" only counts once. Score B1B0 or B1B1 or B0B0 on EPEN	es of worker e	tc	
(b)(i)	1^{st} B1 for idea of labelling or getting an ordered list. No need to see 1-550. 2^{nd} B1 selecting first member of sample using random numbers (1-11 need not be mentioned) 3^{rd} B1 selecting every n th where $n = 11$.			
(ii)	 1st M1 for idea of two groups and labelling both groups. (Actual numbers used not required) 2nd M1 for use of random numbers within each strata. Don't give for SRS from all 550. "Assign random numbers to managers and cleaners" scores M0M1 A1 for 5 managers and 45 cleaners. (This mark is dependent upon scoring at least one M) 			

Question number	Scheme	Marks	
6. (a)	$p = \frac{0 \times 11 + 1 \times 21 + \dots}{10 \times (11 + 21 + \dots) \text{ or } 10 \times 100}, = \frac{223}{1000} = 0.223 \text{ (*)} $ (Accept $\frac{223}{1000}$)	M1, A1cso (2)	
(b)		M1A1	
	$s = {10 \choose 2} (0.8)^8 \times (0.2)^2 \times 100 = 30.198$ awrt 30.2	A1	
	t = 100 - [r + s + 26.84 + 20.13 + 8.81] = awrt 3.28	A1cao (4)	
(c)	H_0 : Binomial ([$n = 10$], $p = 0.2$) is a suitable model for these data	B1	
	H_1 : Binomial ([$n = 10$], $p = 0.2$) is NOT a suitable model for these data	B1 (2)	
(d)	Since $t < 5$, the last two groups are combined	M1	
	and $v = 4 = 5 - 1$	A1 (2)	
(e)	Critical value $\chi_4^2(5\%) = 9.488$	B1	
	Not significant or do not reject null hypothesis	M1	
	The binomial distribution with $p = 0.2$ is a suitable model for the number of		
	cuttings that do not grow	A1 (3)	
		13 marks	
(a)	M1 Must show clearly how to get either 223 or 1000. As printed or better.		
	A1cso for showing how to get both 223 and 1000 and reaching $p = 0.223$		
(b)	M1 for any correct method (a correct expression) seen for r or s .		
	1^{st} A1 for correct value for r awrt 10.74		
	$2^{\text{nd}} \text{ A1 for } s = \text{awrt } 30.2$		
	3^{rd} A1 for $t = 3.28$ only		
(c)	B1 for each. The value of p must be mentioned at least once. Accept B(1)	0, 0.2)	
	If hypotheses are correct but with no value of p then score B0B1		
	Minimum is $X \sim B(10, 0.2)$. If just $B(10, 0.2)$ and not $B(10, 0.2)$ award B1B	0	
(d)	M1 for combining groups (must be stated or implied by a new table with combi	ined cell seen)	
	A1 for the calculation $4 = 5 - 1$		
(e)	M1 for a correct statement based on 4.17 and their cv(context not required) (ma	y be implied)	
	Use of 4.17 as a critical value scores B0M0A0		
	A1 for a correct interpretation in context and $p = 0.2$ and cuttings mentioned.		

Question number	Scheme	Marks	
7. (a)	$H_0: \mu_F = \mu_M$ $H_1: \mu_F \neq \mu_M$ (Allow μ_1 and μ_2)	B1	
	$z = \frac{6.86 - 5.48}{\sqrt{\frac{4.51^2}{200} + \frac{3.62^2}{100}}}$	M1 A1	
	= 2.860 awrt (\pm) 2.86	A1	
	2 tail 5% critical value (\pm) 1.96 (or probability awrt 0.0021~0.0022)	B1	
	Significant result or reject the null hypothesis (o.e.)	M1	
	There is evidence of a difference in the (mean) amount spent on junk food by		
	male and female teenagers	A1ft (7)	
(b)	CLT enables us to assume \overline{F} and \overline{M} are normally distributed	B1 (1)	
	_	8 marks	
(a)	1 st M1 for an attempt at $\frac{a-b}{\sqrt{\frac{c}{100 \text{ or } 200} + \frac{d}{100 \text{ or } 200}}}$ with 3 of a , b , c or d correct $\frac{c}{\sqrt{\frac{c}{100 \text{ or } 200} + \frac{d}{100 \text{ or } 200}}}$ with 3 of a , b , c or d correct $\frac{c}{\sqrt{\frac{c}{100 \text{ or } 200} + \frac{d}{100 \text{ or } 200}}}$ 1 st A1 for a fully correct expression $\frac{c}{\sqrt{\frac{c}{100 \text{ or } 200} + \frac{d}{100 \text{ or } 200}}}$ with 3 of a , b , c or d correct $\frac{c}{\sqrt{\frac{c}{100 \text{ or } 200} + \frac{d}{100 \text{ or } 200}}}$ with 3 of a , b , c or d correct $\frac{c}{\sqrt{\frac{c}{100 \text{ or } 200} + \frac{d}{100 \text{ or } 200}}}}$ with 3 of a , b , c or d correct $\frac{c}{\sqrt{\frac{c}{100 \text{ or } 200} + \frac{d}{100 \text{ or } 200}}}}$ with 3 of a , b , c or d correct $\frac{c}{\sqrt{\frac{c}{100 \text{ or } 200} + \frac{d}{100 \text{ or } 200}}}}$ or $\frac{c}{\sqrt{\frac{c}{100 \text{ or } 200} + \frac{d}{100 \text{ or } 200}}}}$ with 3 of a , b , c or d correct $\frac{c}{\sqrt{\frac{c}{100 \text{ or } 200} + \frac{d}{100 \text{ or } 200}}}}$ 1 $\frac{c}{\sqrt{\frac{c}{100 \text{ or } 200} + \frac{d}{100 \text{ or } 200}}}}$ with 3 of a , b , c or d correct $\frac{c}{\sqrt{\frac{c}{100 \text{ or } 200} + \frac{d}{100 \text{ or } 200}}}}$ 1 $\frac{c}{\sqrt{\frac{c}{100 \text{ or } 200} + \frac{d}{100 \text{ or } 200}}}}}$ with 3 of a , b , c or d correct $\frac{c}{\sqrt{\frac{c}{100 \text{ or } 200} + \frac{d}{100 \text{ or } 200}}}}$ 1 $\frac{c}{\sqrt{\frac{c}{100 \text{ or } 200} + \frac{d}{100 \text{ or } 200}}}}$ 1 $\frac{c}{\sqrt{\frac{c}{100 \text{ or } 200} + \frac{d}{100 \text{ or } 200}}}}$ 1 $\frac{c}{\sqrt{\frac{c}{100 \text{ or } 200} + \frac{d}{100 \text{ or } 200}}}}$ 1 $\frac{c}{\sqrt{\frac{c}{100 \text{ or } 200} + \frac{d}{100 \text{ or } 200}}}}$ 1 $\frac{c}{\sqrt{\frac{c}{100 \text{ or } 200} + \frac{d}{100 \text{ or } 200}}}}$ 2 $\frac{c}{\sqrt{\frac{c}{100 \text{ or } 200} + \frac{d}{100 \text{ or } 200}}}}$ 2 $\frac{c}{\sqrt{\frac{c}{100 \text{ or } 200} + \frac{d}{100 \text{ or } 200}}}}$ 2 $\frac{c}{\sqrt{\frac{c}{100 \text{ or } 200} + \frac{d}{100 \text{ or } 200}}}}}$ 2 $\frac{c}{\sqrt{\frac{c}{100 \text{ or } 200} + \frac{d}{100 \text{ or } 200}}}}$ 2 $\frac{c}{\sqrt{\frac{c}{100 \text{ or } 200} + \frac{d}{100 \text{ or } 200}}}}}$ 2 $\frac{c}{\sqrt{\frac{c}{100 \text{ or } 200} + \frac{d}{100 \text{ or } 200}}}}}$ 3 $\frac{c}{\sqrt{\frac{c}{100 \text{ or } 200}}}}$ 2 $\frac{c}{\sqrt{\frac{c}{100 \text{ or } 200} + \frac{d}{100 \text{ or } 200}}}}}$ 2 $\frac{c}{\sqrt{\frac{c}{100 \text{ or } 200}}}}}$ 3 $\frac{c}{\frac{c$		
	2^{nd} M1 for a correct statement based on comparison of their z with their cv. May be implied		
3 rd A1 for a correct conclusion in context based on their z and 1.96.			
	Must mention junk food or money and male vs female.		
(b)	B1 for \overline{F} or \overline{M} mentioned. Allow "mean (amount spent on junk food) is normally distributed" Read the whole statement e.g. "original distribution is normal so mean is" scores B0		