Lecture 3: Data Visualization

BIOF 339 September 26, 2016

Data Visualization in R

One of R's strengths is data visualization.

R can create static as well as interactive graphs with a rich set of user-contributed packages

- Static graph systems
 - Base R graphics
 - lattice (Sarkar, et al)
 - ggplot2 (Wickham)
- Dynamic graphs
 - rCharts
 - leaflet

Data visualization in R

I'm making the decision to use ggplot2 for my graphics

- Makes pretty good formatting choices out of the box
- Is declarative (tell it what you want) without getting caught up in minutae
- Strongly leverages data frames (good practice)
- There are good templates if you want to change the look

Introduction to ggplot2

Introduction to ggplot2

If you haven't installed it yet:

then

library(ggplot2)

Introduction to ggplot2

The ggplot2 package is a very flexible and (to me) intuitive way of visualizing data. It is based on the concept of layering elements on a canvas.

You need:

- · A data.frame object
- Aesthetic mappings (aes) to say what data is used for what purpose in the viz
 - x- and y-direction
 - shapes, colors, lines
- A geometry object (geom) to say what to draw
 - You can "layer" geoms on each other to build plots

Introduction to ggplot2

```
library(ggplot2)
ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point()
```

- · A data.frame object: mtcars
- Aesthetic mapping: x-axis: wt y-axis: mpg
- Geometry:
 - geom_point: draw points

Introduction to ggplot2

```
library(ggplot2)
ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point()+ geom_smooth()
```

- · A data.frame object: mtcars
- Aesthetic mapping: x-axis: wt y-axis: mpg
- Geometry:
 - geom_point: draw points
 - geom_smooth: Add a layer which draws a best-fitting line

Introduction to ggplot2

We will use the two data sets introduced last week:

Plotting one variable

Histograms

```
ggplot(data_brca, aes(x = Age.at.Initial.Pathologic.Diagnosis)) +
  geom_histogram()
```

```
# `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```

Histograms

```
ggplot(data_brca, aes(x = Age.at.Initial.Pathologic.Diagnosis)) +
  geom_histogram(binwidth=4)
```

Density plot

```
ggplot(data_brca, aes(x = Age.at.Initial.Pathologic.Diagnosis)) +
  geom_density()
```

Bar plot

ggplot(data_brca, aes(x = Tumor))+geom_bar()

Scatter plots

```
ggplot(data_spine, aes(x = Lumbar.lordosis.angle, y = Sacral.slope)) +
  geom_point()
```

Scatter plot with a smooth line

```
ggplot(data_spine, aes(x = Lumbar.lordosis.angle, y = Sacral.slope))+
  geom_point() +
  geom_smooth()
```

Scatter plot with a smooth straight line

```
ggplot(data_spine, aes(x = Lumbar.lordosis.angle, y = Sacral.slope)) +
  geom_point()+
  geom_smooth(method='lm')
```

Line plot (for time series)

```
library(forecast)
d <- data.frame(x = 1:length(gas), y = gas) # Australian monthly gas production
ggplot(d, aes(x, y)) + geom_line()</pre>
```

Continuous variable with discrete variable

Boxplots

```
ggplot(data_spine, aes(x = Class.attribute, y = Sacral.slope))+
  geom_boxplot()
```

Violin plots

```
ggplot(data_spine, aes(x = Class.attribute, y = Sacral.slope)) +
  geom_violin()
```


Vertical bars

ggplot(data_brca, aes(x = Tumor))+geom_bar()

Horizontal bars

```
ggplot(data_brca, aes(x = Tumor))+geom_bar()+
coord_flip()
```


Online resources

- The ggplot website has many resources to help create visualizations
- There are a lot of blogs showing many capabilities of ggplot2
- StackOverflow is the place for Q & A.

Group-wise descriptives and visualizations

Grouping

- · It is common to look at statistics within subgroups of the data
- The idea is to see if secondary variables affect your primary outcome or relationship

Introducing the dplyr package

dplyr is the most lucid package for manipulating and analyzing data organized in a data frame.

It has a group_by function which creates a grouped data frame

```
library(dplyr)
grouped_data_spine = group_by( data_spine, Class.attribute)
```

Note that you have to group using a discrete valued variable (factor, character, integer)

Grouped summaries

Class.attribute	mean(Pelvic.incidence)	sd(Pelvic.incidence)	min(Pelvic.incidence)	max(Pelvic.in
Abnormal	64.69256	17.66213	26.14792	12
Normal	51.68524	12.36816	30.74194	{

Grouped summaries

Class.attribute	Mean	SD	Min	Max
Abnormal	64.69256	17.66213	26.14792	129.83404
Normal	51.68524	12.36816	30.74194	89.83468

Grouped summaries

summarize all(grouped data spine, mean)

```
#
   # A tibble: 2 \times 13
      Class.attribute Pelvic.incidence Pelvic.tilt Lumbar.lordosis.angle
               <fctr>
                                 <dbl>
                                             <dbl>
                                                                   <dbl>
#
            Abnormal
                             64.69256 19.79111
                                                                55.92537
    1
#
              Normal
                              51.68524 12.82141
                                                                43.54260
   # ... with 9 more variables: Sacral.slope <dbl>, Pelvic.radius <dbl>,
       Degree.spondylolisthesis <dbl>, Pelvic.slope <dbl>, Direct.tilt <dbl>,
#
       Thoracic.slope <dbl>, Cervical.tilt <dbl>, Sacrum.angle <dbl>,
       Scoliosis.slope <dbl>
```


Density plot

ggplot(data_spine, aes(x = Sacral.slope, group = Class.attribute, color=Class.att
geom_density()

Scatter plot

Scatter plot with lines

Scatter plot with lines

```
ggplot(data_spine, aes(x = Lumbar.lordosis.angle, y = Sacral.slope))+
  geom_point()+
  geom_smooth(aes(color = Class.attribute), method='lm')
```


Facetting

Facetted graphs are a panel of graphs, each of which corresponds to a particular subgroup of the data.

Facetted scatter plot

```
ggplot(data_spine, aes(x = Lumbar.lordosis.angle, y = Sacral.slope))+
  geom_point()+
  facet_wrap( ~ Class.attribute, nrow=1)
```


Manhattan plot

```
library(qqman)
data(gwasResults)
head(gwasResults)
```

```
# SNP CHR BP P

# 1 rs1 1 1 0.9148060

# 2 rs2 1 2 0.9370754

# 3 rs3 1 3 0.2861395

# 4 rs4 1 4 0.8304476

# 5 rs5 1 5 0.6417455

# 6 rs6 1 6 0.5190959
```

```
gwasResults = transform(gwasResults, x_position = 1:nrow(gwasResults))
```

Manhattan plot

```
ggplot(gwasResults, aes(x = x_position, y = -\log(P, base=10)))+
geom_point(size=0.2)
```

Manhattan plot

```
ggplot(gwasResults, aes(x = x_position, y = -log(P, base=10), group=CHR, color=CHR))+ geom\_point(size=0.2)
```

Manhattan plot

Manhattan plot

Manhattan plot, exploded

```
ggplot(gwasResults, aes(x = BP, y = -log(P, base=10)))+
   geom_point(size=0.2)+
   facet_wrap(~ CHR, nrow=4)+
   geom_hline(yintercept = 8, color='red', linetype=2)
```

Manhattan plot, exploded

