Introduction to Sequences and Series of Functions

Pradipto Banerjee

pradipto@iith.ac.in

IIT, Hyderabad/Bhilai

October 25, 2018

• Let f and g be real valued functions on [a,b], and let $\varepsilon > 0$ be given

- Let f and g be real valued functions on [a,b], and let $\varepsilon > 0$ be given
- What does it mean to say that

$$|f(x) - g(x)| < \varepsilon$$
 for all $x \in [a, b]$

- Let f and g be real valued functions on [a,b], and let $\varepsilon > 0$ be given
- What does it mean to say that

$$|f(x) - g(x)| < \varepsilon$$
 for all $x \in [a, b]$

• "The graph of g on [a,b] lies completely within the ε -tube around the graph of f on [a,b]"

Figure: Example of $|f(x) - g(x)| < \varepsilon$ for all $x \in [a, b]$

A Basic Example

• Consider the sequence of functions

$$f_n(x) = x^n; \quad x \in [0, 1]$$

A Basic Example

• Consider the sequence of functions

$$f_n(x) = x^n; \quad x \in [0, 1]$$

• Observe that for a fixed $x_0 \in [0, 1]$

$$\lim_{n \to \infty} f_n(x_0) = \begin{cases} 0 & \text{if } x_0 \neq 1\\ 1 & \text{if } x_0 = 1 \end{cases}$$

A Basic Example

• Thus, one can define a function f on [0,1] as

$$f(x_0) = \lim_{n \to \infty} f_n(x_0) = \begin{cases} 0 & \text{if } x_0 \neq 1 \\ 1 & \text{if } x_0 = 1 \end{cases}$$

A Basic Example

• Thus, one can define a function f on [0,1] as

$$f(x_0) = \lim_{n \to \infty} f_n(x_0) = \begin{cases} 0 & \text{if } x_0 \neq 1\\ 1 & \text{if } x_0 = 1 \end{cases}$$

• The function f, thus defined, is called the **limit** function for the sequence $\{f_n\}_n$

A Basic Example

• The sequence $\{f_n\}_n \to f$ at each $x_0 \in [0,1]$

A Basic Example

- The sequence $\{f_n\}_n \to f$ at each $x_0 \in [0,1]$
- Thus $f_n(x_0) \rightarrow f(x_0)$ as a numerical sequence for every $x_0 \in [0,1]$

A Basic Example

- The sequence $\{f_n\}_n \to f$ at each $x_0 \in [0,1]$
- Thus $f_n(x_0) \rightarrow f(x_0)$ as a numerical sequence for every $x_0 \in [0,1]$
- In such a case, we say that the sequence of functions $f_n \to f$ **pointwise** on [0,1]

A Basic Example

• In terms of graphs, at every x_0 in [0,1], after a certain stage (depending on ε), the values of $f_n(x_0)$ fall within the ε -tube about f(x)

A Basic Example

- In terms of graphs, at every x_0 in [0,1], after a certain stage (depending on ε), the values of $f_n(x_0)$ fall within the ε -tube about f(x)
- Rephrasing it given a $\varepsilon > 0$ and x_0 in [0,1], there is a N_0 , depending on both, ε and x_0 , such that

$$|f_n(x_0) - f(x_0)| < \varepsilon$$
 for all $n \ge N_0$

Pointwise Convergence

Suppose that a sequence $\{f_n\}_n$ of functions and a function f are defined on [a,b]. Then $\{f_n\}$ is said to converge **pointwise** to f on [a,b] if for every $x_0 \in [a,b]$, and any $\varepsilon > 0$, there is a positive integer $N_0 = N_0(x_0,\varepsilon)$ such that

$$|f_n(x_0) - f(x_0)| < \varepsilon$$
 for all $n \ge N_0$.

Roughly speaking, a sequence of functions $f_n \to f$ on [a,b] *uniformly* if, after a certain stage (depending only on ε), the whole graph of $f_n(x)$ falls inside the ε -tube about f on [a,b]

Roughly speaking, a sequence of functions $f_n \to f$ on [a,b] *uniformly* if, after a certain stage (depending only on ε), the whole graph of $f_n(x)$ falls inside the ε -tube about f on [a,b]

Uniform Convergence

Suppose that $\{f_n\}_n$ and f are defined on [a,b]. Then $\{f_n\}$ is said to converge **uniformly** to f on [a,b] if, for a given $\varepsilon > 0$, one can find a $N_0 = N_0(\varepsilon)$ such that

$$|f_n(x_0) - f(x_0)| < \varepsilon$$

for any $n \ge N_0$, and for every $x_0 \in [a, b]$

Uniform Convergence $\frac{1}{n} + x \rightarrow x$

Uniform Convergence - An Example

Last Example in Math Language

• The sequence in question is $f_n(x) = \frac{1}{n} + x$ on [0,1]

Uniform Convergence - An Example

Last Example in Math Language

- The sequence in question is $f_n(x) = \frac{1}{n} + x$ on [0,1]
- Clearly, the <u>limit function</u> is f(x) = x, and a given $\varepsilon > 0$ and any $x_0 \in [0, 1]$, we have

$$|f_n(x_0) - f(x_0)| = \frac{1}{n} < \varepsilon$$
 for all $n \ge N_0$

Uniform Convergence - An Example

Last Example in Math Language

- The sequence in question is $f_n(x) = \frac{1}{n} + x$ on [0,1]
- Clearly, the <u>limit function</u> is f(x) = x, and a given $\varepsilon > 0$ and any $x_0 \in [0, 1]$, we have

$$|f_n(x_0) - f(x_0)| = \frac{1}{n} < \varepsilon$$
 for all $n \ge N_0$

• Note that N_0 works for any x_0 in [0,1], and depends only on ε

Notations and Further Remarks

• We shall use the following notations

$$f_n(x) \xrightarrow{\text{pointwise}} f(x); \quad f_n(x) \searrow f(x)$$

$$f_n(x) \xrightarrow{\text{uniformly}} f(x); \quad f_n(x) \searrow f(x)$$

Notations and Further Remarks

• We shall use the following notations

$$f_n(x) \xrightarrow{\text{pointwise}} f(x); \quad f_n(x) \searrow f(x)$$

$$f_n(x) \xrightarrow{\text{uniformly}} f(x); \quad f_n(x) \searrow f(x)$$

Clearly

$$f_n(x) \searrow f(x) \Rightarrow f_n(x) \searrow f(x)$$

Notations and Further Remarks

• We shall use the following notations

$$f_n(x) \xrightarrow{\text{pointwise}} f(x); \quad f_n(x) \searrow f(x)$$

$$f_n(x) \xrightarrow{\text{uniformly}} f(x); \quad f_n(x) \searrow \searrow f(x)$$

Clearly

$$f_n(x) \searrow f(x) \Rightarrow f_n(x) \searrow f(x)$$

• In the example $f_n(x) = x^n$, the convergence is not uniform (although pointwise) on [0,1], as a part of f_n always lies outside the ε -tube around f(x)

• In the example $f_n(x) = x^n$, we find that on [0,0.8], the whole graph of f_n falls within the ε -tube of the limit function (which is the *zero* function) for all n > 11 (the green curves)

- In the example $f_n(x) = x^n$, we find that on [0,0.8], the whole graph of f_n falls within the ε -tube of the limit function (which is the *zero* function) for all $n \ge 11$ (the green curves)
- Thus

$$x^n \searrow 0$$
 on $[0, 0.8]$

- In the example $f_n(x) = x^n$, we find that on [0,0.8], the whole graph of f_n falls within the ε -tube of the limit function (which is the *zero* function) for all $n \ge 11$ (the green curves)
- Thus

$$x^n \searrow 0$$
 on $[0, 0.8]$

• More generally, for any $0 < \beta < 1$,

$$x^n \searrow 0$$
 on $[0,\beta]$

• In the example $f_n(x) = x^n$, each f_n is <u>continuous</u> on [0,1], while the limit function f is clearly <u>not continuous</u> on [0,1]

- In the example $f_n(x) = x^n$, each f_n is <u>continuous</u> on [0,1], while the limit function f is clearly <u>not continuous</u> on [0,1]
- Therefore "Continuity is generally <u>not</u> preserved under pointwise convergence"

- In the example $f_n(x) = x^n$, each f_n is <u>continuous</u> on [0,1], while the limit function f is clearly <u>not continuous</u> on [0,1]
- Therefore "Continuity is generally <u>not</u> preserved under pointwise convergence"
- Is continuity preserved under uniform convergence?

- In the example $f_n(x) = x^n$, each f_n is <u>continuous</u> on [0,1], while the limit function f is clearly <u>not continuous</u> on [0,1]
- Therefore "Continuity is generally <u>not</u> preserved under pointwise convergence"
- Is continuity preserved under uniform convergence?
- The example, $x^n \searrow 0$ on [0,0.8], suggests that perhaps the answer is in the affirmative

More Examples

Consider

$$f_n(x) = \frac{nx}{1 + n^2 x^2}; \quad x \in [0, 1]$$

More Examples

Consider

$$f_n(x) = \frac{nx}{1 + n^2 x^2}; \quad x \in [0, 1]$$

Then

$$f'_n(x) = \frac{n(1 - n^2x^2)}{(1 + n^2x^2)^2}$$

More Examples

Consider

$$f_n(x) = \frac{nx}{1 + n^2x^2}; \quad x \in [0, 1]$$

Then

$$f'_n(x) = \frac{n(1 - n^2x^2)}{(1 + n^2x^2)^2}$$

• Thus $f_n(x)$ is increasing \uparrow for x < 1/n, flat at x = 1/n, and decreasing \downarrow for x > 1/n

Consider

$$f_n(x) = \frac{nx}{1 + n^2x^2}; \quad x \in [0, 1]$$

Then

$$f'_n(x) = \frac{n(1 - n^2x^2)}{(1 + n^2x^2)^2}$$

- Thus $f_n(x)$ is increasing \uparrow for x < 1/n, flat at x = 1/n, and decreasing \downarrow for x > 1/n
- Therefore, x = 1/n is a <u>local maxima</u> (also global, check!) for $f_n(x)$ and

$$f_n(1/n) = 1/2$$

• On the other hand, for each x_0 in [0,1], we have

$$\lim_{n \to \infty} f_n(x_0) = \lim_{n \to \infty} \frac{nx_0}{1 + n^2 x_0^2} = 0$$

• On the other hand, for each x_0 in [0,1], we have

$$\lim_{n \to \infty} f_n(x_0) = \lim_{n \to \infty} \frac{nx_0}{1 + n^2 x_0^2} = 0$$

• Thus, $f_n(x_0) \searrow f(x_0)$, where

$$f(x) = 0 \quad \text{for all} \quad x \in [0, 1]$$

• On the other hand, for each x_0 in [0,1], we have

$$\lim_{n \to \infty} f_n(x_0) = \lim_{n \to \infty} \frac{nx_0}{1 + n^2 x_0^2} = 0$$

• Thus, $f_n(x_0) \searrow f(x_0)$, where

$$f(x) = 0 \quad \text{for all} \quad x \in [0, 1]$$

• But for a ε -tube about f(x) where $\varepsilon < 1/2$, the whole graph of $f_n(x)$ fails to lie inside the tube, precisely the point $(1/n, f_n(1/n)) = (1/n, 1/2)$ lies outside the tube

• On the other hand, for each x_0 in [0, 1], we have

$$\lim_{n \to \infty} f_n(x_0) = \lim_{n \to \infty} \frac{nx_0}{1 + n^2 x_0^2} = 0$$

• Thus, $f_n(x_0) \setminus f(x_0)$, where

$$f(x) = 0 \quad \text{for all} \quad x \in [0, 1]$$

- But for a ε -tube about f(x) where $\varepsilon < 1/2$, the whole graph of $f_n(x)$ fails to lie inside the tube, precisely the point $(1/n, f_n(1/n)) = (1/n, 1/2)$ lies outside the tube
- Deduce that the convergence is *not* uniform

Generalizing this phenomena (Hard Exercise!)

Generalizing this phenomena (Hard Exercise!)

Proposition

If each $\{f_n\}$ is continuous and $f_n(x) \searrow f(x)$ on [a,b], and $\{x_n\} \subset [a,b]$ with $x_n \searrow \alpha \in [a,b]$. Then

$$\lim_{n\to\infty} f_n(x_n) \neq f(\alpha) \implies f_n(x) \searrow \searrow f(x).$$

That is, the convergence is <u>not</u> uniform if

$$\lim_{n \to \infty} f_n(x_n) \neq f\left(\lim_{n \to \infty} x_n\right)$$

The last proposition follows from the following.

The last proposition follows from the following.

Proposition

Suppose that each f_n is continuous and $\{f_n(x)\} \searrow f(x)$ on [a,b], and that $\{x_n\}$ is a sequence in [a,b] with $x_n \searrow \alpha \in [a,b]$. Then

$$\lim_{n\to\infty} f_n(x_n) = f(\alpha)$$

That is

$$\lim_{n\to\infty} f_n(x_n) = f\left(\lim_{n\to\infty} x_n\right)$$

• Recall the example

$$f_n(x) = \frac{1}{n} + x; \quad x \in [0, 1]$$

• Recall the example

$$f_n(x) = \frac{1}{n} + x; \quad x \in [0, 1]$$

We saw that

$$|f_n(x) - x| = \frac{1}{n} \implies f_n \searrow x$$

• Recall the example

$$f_n(x) = \frac{1}{n} + x; \quad x \in [0, 1]$$

We saw that

$$|f_n(x) - x| = \frac{1}{n} \implies f_n \searrow x$$

• The same argument will work for any $g_n(x) \setminus g(x)$ on [a,b], and satisfying

$$|g_n(x) - g(x)| \le \frac{1}{n}$$
 $x \in [a,b]$

Weierstrass test for Sequences

More generally (Not so hard Exercise.)

Weierstrass test for Sequences

More generally (Not so hard Exercise.)

Proposition

Suppose, $\{f_n(x)\} \searrow f(x)$ on [a,b]. Let $\{\alpha_n\}$ is a sequence of positive real numbers satisfying $\alpha_n \searrow 0$ such that

$$|f_n(x)-f(x)| \le \alpha_n$$
 for all $n \ge N_0$ and $x \in [a,b]$.

Then

$$f_n(x) \searrow f(x)$$
 on $[a,b]$

Consider

$$f_n(x) = \frac{\sin x}{n} + x; \quad x \in [0, \pi]$$

Consider

$$f_n(x) = \frac{\sin x}{n} + x; \quad x \in [0, \pi]$$

• Indeed,

$$|f_n(x) - x| = \frac{|\sin x|}{n} \le \frac{1}{n} \implies f_n(x) \searrow x$$

Consider

$$f_n(x) = \frac{\sin x}{n} + x; \quad x \in [0, \pi]$$

• Indeed,

$$|f_n(x) - x| = \frac{|\sin x|}{n} \le \frac{1}{n} \implies f_n(x) \searrow x$$

Consider

$$f_n(x) = \frac{\sin x}{n} + x; \quad x \in [0, \pi]$$

• Indeed,

$$|f_n(x) - x| = \frac{|\sin x|}{n} \le \frac{1}{n} \implies f_n(x) \searrow x$$

Problem.

Suppose, that $\alpha_n \ge 0$ satisfies $\alpha_n \searrow 0$, and f be defined on [a,b]. Define $f_n(x)$ on [a,b] as $f_n(x) = \alpha_n \sin x + f(x)$. Then show that $f_n(x) \searrow f(x)$ on [a,b].

Problem.

Show that the sequence of functions given by

$$f_n(x) = \frac{\sin nx}{\sqrt{n}}, \quad x \in [a, b],$$

converges uniformly to $f(x) \equiv 0$ on [a, b].

Problem.

Do the same for the sequence

$$f_n(x) = \frac{(\cos x)^n}{\log n}, \quad x \in [a, b],$$

More Examples - Weierstrass Test

• Consider the sequence

$$f_n(x) = \frac{2nx}{1 + n^4x^2}; \quad x \in [0, 1]$$

More Examples - Weierstrass Test

• Consider the sequence

$$f_n(x) = \frac{2nx}{1 + n^4x^2}; \quad x \in [0, 1]$$

• It is an easy exercise to show that

$$\lim_{n\to\infty} f_n(x) = 0; \quad \text{for all} \quad x \in [0,1]$$

More Examples - Weierstrass Test

• Consider the sequence

$$f_n(x) = \frac{2nx}{1 + n^4x^2}; \quad x \in [0, 1]$$

• It is an easy exercise to show that

$$\lim_{n\to\infty} f_n(x) = 0; \quad \text{for all} \quad x \in [0,1]$$

• Is this convergence uniform?

• Observe that from AM > GM, we have

$$1 + n^4 x^2 \ge 2n^2 x$$

• Observe that from $AM \ge GM$, we have

$$1 + n^4 x^2 \ge 2n^2 x$$

• Thus, for $x \in (0, 1]$,

$$|f_n(x)| = \frac{2nx}{1 + n^4 x^2} \le \frac{2nx}{2n^2 x} = \frac{1}{n}$$

• Observe that from $AM \ge GM$, we have

$$1 + n^4 x^2 \ge 2n^2 x$$

• Thus, for $x \in (0,1]$,

$$|f_n(x)| = \frac{2nx}{1 + n^4 x^2} \le \frac{2nx}{2n^2 x} = \frac{1}{n}$$

• Since, $f_n(0) = 0 < 1/n$ for any n, deduce that for all x in [0, 1],

$$|f_n(x)| \le \frac{1}{n}$$
 for all n

 \bullet Observe that from AM > GM, we have

$$1 + n^4 x^2 \ge 2n^2 x$$

• Thus, for $x \in (0, 1]$,

$$|f_n(x)| = \frac{2nx}{1 + n^4 x^2} \le \frac{2nx}{2n^2 x} = \frac{1}{n}$$

• Since, $f_n(0) = 0 < 1/n$ for any n, deduce that for all x in [0, 1],

$$|f_n(x)| \le \frac{1}{n}$$
 for all n

• By Weierstrass test, $f_n \searrow 0$ on [0,1]

More Examples - $f_n(x) = x^n$, Revisited

• Now, consider the sequence $f_n(x) = x^n$ on the interval [0, a], where a < 1

More Examples - $f_n(x) = x^n$, Revisited

- Now, consider the sequence $f_n(x) = x^n$ on the interval [0, a], where a < 1
- For any $x \in [0, a]$, one has

$$|f_n(x)-f(x)|=x^n\leq a^n\searrow 0$$

More Examples - $f_n(x) = x^n$, Revisited

- Now, consider the sequence $f_n(x) = x^n$ on the interval [0, a], where a < 1
- For any $x \in [0, a]$, one has

$$|f_n(x) - f(x)| = x^n \le a^n \searrow 0$$

• Deduce by Weierstrass test that $f_n \searrow 0$ on [0,a] for *every* a < 1

• Next up, consider the sequence

$$f_n(x) = nx(1-x^2)^n; \quad x \in [0,1]$$

• Next up, consider the sequence

$$f_n(x) = nx(1-x^2)^n; x \in [0,1]$$

• An easy exercise shows that $f_n \searrow 0$ on [0,1] (Ex.)

• Next up, consider the sequence

$$f_n(x) = nx(1-x^2)^n; x \in [0,1]$$

- An easy exercise shows that $f_n \searrow 0$ on [0,1] (Ex.)
- Furthermore, we have

$$f'_n(x) = n(1-x^2)^{n-1}[1-(2n+1)x^2]$$

• Next up, consider the sequence

$$f_n(x) = nx(1-x^2)^n; x \in [0,1]$$

- An easy exercise shows that $f_n \searrow 0$ on [0,1] (Ex.)
- Furthermore, we have

$$f'_n(x) = n(1-x^2)^{n-1}[1-(2n+1)x^2]$$

• Thus, $f_n(x)$ is increasing for $x < 1/\sqrt{2n+1}$, flat at $x = 1/\sqrt{2n+1}$ and increasing for $x > 1/\sqrt{2n+1}$

• Focus on the numerical sequence

$$f_n\left(\frac{1}{\sqrt{2n+1}}\right) = \frac{n}{\sqrt{2n+1}}\left(1 - \frac{1}{2n+1}\right)^n$$

• Focus on the numerical sequence

$$f_n\left(\frac{1}{\sqrt{2n+1}}\right) = \frac{n}{\sqrt{2n+1}}\left(1 - \frac{1}{2n+1}\right)^n$$

• As $n \to \infty$, we have

$$\frac{n}{\sqrt{2n+1}} \nearrow \infty$$
 and $\left(1 - \frac{1}{2n+1}\right)^n \searrow \frac{1}{\sqrt{e}}$

• Focus on the numerical sequence

$$f_n\left(\frac{1}{\sqrt{2n+1}}\right) = \frac{n}{\sqrt{2n+1}}\left(1 - \frac{1}{2n+1}\right)^n$$

• As $n \to \infty$, we have

$$\frac{n}{\sqrt{2n+1}} \nearrow \infty$$
 and $\left(1 - \frac{1}{2n+1}\right)^n \searrow \frac{1}{\sqrt{e}}$

Thus

$$\lim_{n\to\infty} f_n\left(\frac{1}{\sqrt{2n+1}}\right) = \infty$$

Example Contd. ...

• But as $n \to \infty$,

$$\frac{1}{\sqrt{2n+1}} \searrow 0$$

• Therefore, we find that

$$\lim_{n \to \infty} f_n\left(\frac{1}{\sqrt{2n+1}}\right) \neq f(0) = 0$$

• Conclude using an earlier proposition that

$$f_n(x) \times f(x) \equiv 0$$

Questions to address

Suppose that $f_n \to f$ (pointwise or uniform) on [a, b]. We would like to know whether and when

• Each f_n is continuous on $[a,b] \Longrightarrow f$ is continuous on [a,b]?

Questions to address

Suppose that $f_n \to f$ (pointwise or uniform) on [a, b]. We would like to know whether and when

- Each f_n is continuous on $[a,b] \Longrightarrow f$ is continuous on [a,b]?
- Each f_n is differentiable on $[a,b] \Longrightarrow f$ is differentiable on [a,b], and $f'_n \to f'$?

Questions to address

Suppose that $f_n \to f$ (pointwise or uniform) on [a,b]. We would like to know whether and when

- Each f_n is continuous on $[a,b] \Longrightarrow f$ is continuous on [a,b]?
- Each f_n is differentiable on $[a,b] \Longrightarrow f$ is differentiable on [a,b], and $f'_n \to f'$?
- Suppose, each f_n and f are *integrable* on [a,b], then is it true that for α , β in [a,b]

$$\lim_{n\to\infty} \left(\int_{\alpha}^{\beta} f_n(x) dx \right) \to \int_{\alpha}^{\beta} f(x) dx?$$

Pointwise Convergence and Continuity

• We saw that the sequence of *continuous* functions $\{x^n\}$ on [0,1] converges to a *discontinuous* function f(x) given by

$$f(x) = \begin{cases} 0 & \text{if } x \neq 1 \\ 1 & \text{if } x = 1 \end{cases}$$

Pointwise Convergence and Continuity

• We saw that the sequence of *continuous* functions $\{x^n\}$ on [0,1] converges to a *discontinuous* function f(x) given by

$$f(x) = \begin{cases} 0 & \text{if } x \neq 1 \\ 1 & \text{if } x = 1 \end{cases}$$

• So the answer is *negative* in general for pointwise convergence

• Recall the example $f_n(x) = nx(1-x^2)^n$ on [0,1]

- Recall the example $f_n(x) = nx(1-x^2)^n$ on [0,1]
- We found that $f_n \searrow 0 = f(x)$ on [0,1]

- Recall the example $f_n(x) = nx(1-x^2)^n$ on [0,1]
- We found that $f_n \searrow 0 = f(x)$ on [0,1]
- Each f_n is *integrable* on [0,1], and

$$\lim_{n\to\infty} \int_0^1 f_n(x)dx = \lim_{n\to\infty} \frac{n}{2n+2} = \frac{1}{2}$$

- Recall the example $f_n(x) = nx(1-x^2)^n$ on [0,1]
- We found that $f_n \searrow 0 = f(x)$ on [0,1]
- Each f_n is *integrable* on [0,1], and

$$\lim_{n \to \infty} \int_0^1 f_n(x) dx = \lim_{n \to \infty} \frac{n}{2n+2} = \frac{1}{2}$$

• Clearly, $\int_0^1 f_n(x) dx \searrow \int_0^1 f(x) dx = 0$

• Also, recall that, on $[-\pi, \pi]$

$$f_n(x) = \frac{\sin nx}{\sqrt{n}} \searrow \searrow 0 = f(x)$$

• Also, recall that, on $[-\pi, \pi]$

$$f_n(x) = \frac{\sin nx}{\sqrt{n}} \searrow \searrow 0 = f(x)$$

• Each f_n is differentiable on $(-\pi, \pi)$, and

$$f_n'(x) = \sqrt{n}\cos nx$$

• Also, recall that, on $[-\pi, \pi]$

$$f_n(x) = \frac{\sin nx}{\sqrt{n}} \searrow g = f(x)$$

• Each f_n is differentiable on $(-\pi, \pi)$, and

$$f_n'(x) = \sqrt{n}\cos nx$$

• Thus, as $n \to \infty$, at x = 0

$$f'_n(0) = \sqrt{n} \nearrow \infty \neq 0 = f'(0)$$

• Thus, even under the *uniform convergence* $f_n(x) \searrow f(x)$, we find that

$$\frac{d}{dx}\left(\lim_{n\to\infty}f_n(x)\right) \neq \lim_{n\to\infty}\frac{d}{dx}\left(f_n(x)\right)$$

• Thus, even under the *uniform convergence* $f_n(x) \searrow f(x)$, we find that

$$\frac{d}{dx}\left(\lim_{n\to\infty}f_n(x)\right) \neq \lim_{n\to\infty}\frac{d}{dx}\left(f_n(x)\right)$$

• Need more stringent conditions

• Thus, even under the *uniform convergence* $f_n(x) \searrow f(x)$, we find that

$$\frac{d}{dx}\left(\lim_{n\to\infty}f_n(x)\right) \neq \lim_{n\to\infty}\frac{d}{dx}\left(f_n(x)\right)$$

- Need more stringent conditions
- Do we have an affirmative answer to other two questions in the case of uniform convergence?

• Thus, even under the *uniform convergence* $f_n(x) \searrow f(x)$, we find that

$$\frac{d}{dx}\left(\lim_{n\to\infty}f_n(x)\right) \neq \lim_{n\to\infty}\frac{d}{dx}\left(f_n(x)\right)$$

- Need more stringent conditions
- Do we have an affirmative answer to other two questions in the case of uniform convergence?
- Indeed, we have

Uniform Convergence and Continuity

Theorem

Suppose that $\{f_n(x)\}$ is a sequence of continuous functions on [a,b] such that $f_n(x) \searrow f(x)$ on [a,b]. Then f(x) is continuous on [a,b]. In other words, for any $\alpha \in [a,b]$,

$$\lim_{x \to \alpha} f(x) = \lim_{x \to \alpha} \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \lim_{x \to \alpha} f_n(x)$$
$$= \lim_{n \to \infty} f_n(\alpha)$$
$$= f(\alpha)$$

Uniform Convergence and Integration

Theorem

Suppose that $\{f_n(x)\}$ is a sequence of continuous (hence, integrable) functions on [a,b] such that $f_n(x) \searrow f(x)$ on [a,b]. Then f(x) is continuous (hence, integrable) on [a,b] by the previous theorem. Furthermore, for any α and β in [a,b], we have

$$\int_{\alpha}^{\beta} f(x)dx = \int_{\alpha}^{\beta} \left(\lim_{n \to \infty} f_n(x) \right) dx = \lim_{n \to \infty} \int_{\alpha}^{\beta} f_n(x) dx$$

Theorem

Suppose that $\{f_n(x)\}$ is a sequence of continuously differentiable (CD) functions on [a,b] satisfying,

- (i) $f_n(x) \searrow f(x)$ on [a,b], and
- (ii) $f'_n(x) \searrow g(x)$ on [a,b],

Then f(x) is CD on [a,b] with f'(x) = g(x) on [a,b]. Furthermore, $f_n(x) \searrow f(x)$ on [a,b]. That is, there is a CD function f(x) such that $f_n(x) \searrow f(x)$ on [a,b] and

$$f'(x) = \frac{d}{dx} \left(\lim_{n \to \infty} f_n(x) \right) = \lim_{n \to \infty} f'_n(x) = g(x)$$

• *Pointwise* convergence of CD functions $\{f_n\}$ + the *uniform convergence* of $\{f'_n\}$ yields the desired scenario, i.e.,

$$\frac{d}{dx}\left(\lim_{n\to\infty}f_n(x)\right) = \lim_{n\to\infty}\frac{d}{dx}\left(f_n(x)\right)$$

• Pointwise convergence of CD functions $\{f_n\}$ + the uniform convergence of $\{f'_n\}$ yields the desired scenario, i.e.,

$$\frac{d}{dx}\left(\lim_{n\to\infty}f_n(x)\right) = \lim_{n\to\infty}\frac{d}{dx}\left(f_n(x)\right)$$

• Note that, $f'_n(x)$ -continuous \Longrightarrow g(x)-continuous, and as such, g-integrable

• Pointwise convergence of CD functions $\{f_n\}$ + the uniform convergence of $\{f'_n\}$ yields the desired scenario, i.e.,

$$\frac{d}{dx}\left(\lim_{n\to\infty}f_n(x)\right) = \lim_{n\to\infty}\frac{d}{dx}\left(f_n(x)\right)$$

- Note that, $f'_n(x)$ -continuous \Longrightarrow g(x)-continuous, and as such, g-integrable
- Then the theorem asserts that $f_n \searrow \searrow$ to the antiderivative of g(x) on [a,b]

• Given sequence of functions $\{f_n(x)\}$, defined on [a,b], define the <u>series</u> as

$$\sum_{n=0}^{\infty} f_n(x); \quad x \in [a,b]$$

• Given sequence of functions $\{f_n(x)\}$, defined on [a,b], define the <u>series</u> as

$$\sum_{n=0}^{\infty} f_n(x); \quad x \in [a,b]$$

• If the *series* converges at a given x_0 in [a,b], we define its sum to be $f(x_0)$, that is

$$f(x_0) = \sum_{n=0}^{\infty} f_n(x_0)$$

• Further, define the sequence of *partial sum functions* as

$$S_N(x) = \sum_{n=0}^{N} f_n(x); \quad x \in [a, b]$$

• Further, define the sequence of *partial sum functions* as

$$S_N(x) = \sum_{n=0}^{N} f_n(x); \quad x \in [a, b]$$

Note that

$$\sum_{n} f_n(x_0) \searrow f(x_0) \quad \Longleftrightarrow \quad S_N(x_0) \searrow f(x_0)$$

• We say the series $\sum_n f_n(x)$ converges uniformly to f(x) on [a,b] if $\{S_N(x)\} \searrow f(x)$ on [a,b], and denote it by

$$\sum_{n=0}^{\infty} f_n(x) \searrow f(x) \quad \text{on} \quad [a,b]$$

• We say the series $\sum_n f_n(x)$ converges uniformly to f(x) on [a,b] if $\{S_N(x)\} \searrow f(x)$ on [a,b], and denote it by

$$\sum_{n=0}^{\infty} f_n(x) \searrow f(x) \quad \text{on} \quad [a,b]$$

 A series converges absolutely pointwise/uniformly, according as

$$\sum_{n=0}^{\infty} |f_n(x)| \searrow f(x) \quad \text{or} \quad \sum_{n=0}^{\infty} |f_n(x)| \searrow f(x)$$

Uniform Convergence of Series

Weierstrass Test for Series

• A series $\sum_n f_n(x)$ is said to be *dominated* by a numerical series $\sum_n \alpha_n$ on [a,b] if

$$|f_n(x)| \le \alpha_n \quad \forall x \in [a,b] \quad \text{and} \quad n \in \mathbb{N}$$

Uniform Convergence of Series

Weierstrass Test for Series

• A series $\sum_n f_n(x)$ is said to be *dominated* by a numerical series $\sum_n \alpha_n$ on [a,b] if

$$|f_n(x)| \le \alpha_n \quad \forall x \in [a,b] \quad \text{and} \quad n \in \mathbb{N}$$

• Moreover, if $\sum_{n} \alpha_{n} \setminus$, then there is a function f(x) defined on [a,b] such that

$$\sum_{n=0}^{\infty} f_n(x) \searrow f(x) \quad \text{on} \quad [a,b]$$

Proof of Weierstrass Test

• Pointwise limit f exists due to dominance of $\sum_n f_n(x_0)$ by $\sum_n \alpha_n$ at all $x_0 \in [a,b]$ (Recall the comparison test)

Proof of Weierstrass Test

- Pointwise limit f exists due to dominance of $\sum_n f_n(x_0)$ by $\sum_n \alpha_n$ at all $x_0 \in [a,b]$ (Recall the comparison test)
- Now,

$$|S_N(x) - f(x)| = \left| \sum_{n \ge N} f_n(x) \right| \le \sum_{n \ge N} |f_n(x)|$$
$$\le \sum_{n \ge N} \alpha_n \searrow 0$$

Proof of Weierstrass Test

- Pointwise limit f exists due to dominance of $\sum_n f_n(x_0)$ by $\sum_n \alpha_n$ at all $x_0 \in [a,b]$ (Recall the comparison test)
- Now,

$$|S_N(x) - f(x)| = \left| \sum_{n \ge N} f_n(x) \right| \le \sum_{n \ge N} |f_n(x)|$$

$$\le \sum_{n \ge N} \alpha_n \searrow 0$$

• Conclude that $S_N \searrow f$ on [a,b]

Example

• Consider the series $\sum_{n} \frac{\sin x}{n^2}$ on $[0, 2\pi]$

Example

- Consider the series $\sum_{n} \frac{\sin x}{n^2}$ on $[0, 2\pi]$
- It is clear that we have

$$\frac{|\sin x|}{n^2} \le \frac{1}{n^2} \quad \forall \quad x \in [0, 2\pi] \quad \text{and} \quad n \in \mathbb{N}$$

Example

- Consider the series $\sum_{n} \frac{\sin x}{n^2}$ on $[0, 2\pi]$
- It is clear that we have

$$\frac{|\sin x|}{n^2} \le \frac{1}{n^2} \quad \forall \quad x \in [0, 2\pi] \quad \text{and} \quad n \in \mathbb{N}$$

• Since $\sum_{n=1}^{\infty} \frac{1}{n^2} \searrow$, deduce that on $[0, 2\pi]$,

$$\sum_{n=0}^{\infty} \frac{\sin x}{n^2} \searrow \qquad \text{some function} \quad f(x)$$

Uniform Convergence of Series and Continuity

Theorem

Suppose, $\{f_n(x)\}$ is a sequence of continuous functions on [a,b] such that $\sum_n f_n(x) \searrow f(x)$ on [a,b]. Then f(x) is continuous on [a,b]. In other words, for any $\alpha \in [a,b]$,

$$\lim_{x \to \alpha} f(x) = \lim_{x \to \alpha} \sum_{n=1}^{\infty} f_n(x) = \sum_{n=0}^{\infty} \lim_{x \to \alpha} f_n(x)$$
$$= \sum_{n=0}^{\infty} f_n(\alpha) = f(\alpha)$$

Uniform Convergence of Series and Integration

Theorem

Suppose, $\{f_n(x)\}$ is a sequence of continuous functions on [a,b] such that $\sum_n f_n(x) \searrow f(x)$ on [a,b]. Then f(x) is continuous on [a,b], and for any α , β in [a,b], we have

$$\int_{\alpha}^{\beta} f(x)dx = \int_{\alpha}^{\beta} \left(\sum_{n=0}^{\infty} f_n(x)\right) dx = \sum_{n=0}^{\infty} \int_{\alpha}^{\beta} f_n(x) dx$$

Uniform Convergence of Series and Differentiation

Suppose, $\{f_n(x)\}$ is a sequence of CD functions on [a,b] such that (i) $\sum_n f_n(x) \searrow f(x)$ pointwise in [a,b], and (ii) $\sum_n f'_n(x) \searrow g$ on [a,b]. Then, we have the following diagram:

$$\sum_{n=1}^{\infty} f_n(x) \xrightarrow{\text{uniformly!}} \int_a^x g(t)dt = f(x)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\sum_{n=1}^{\infty} f'_n(x) \xrightarrow{\text{uniformly}} g(x) = f'(x)$$

Theorem

Let $\sum_n a_n x^n$ be a power series with the radius of convergence R, and let f be its sum. Let $\alpha \in (-R,R)$. Then the series converges uniformly on $[-\alpha, \alpha]$.

Theorem

Let $\sum_n a_n x^n$ be a power series with the radius of convergence R, and let f be its sum. Let $\alpha \in (-R,R)$. Then the series converges uniformly on $[-\alpha,\alpha]$.

Proof.

One has $|a_nx^n| \le |a_n||\alpha|^n$ for all $x \in [-\alpha, \alpha]$. Since a power series also converges *absolutely* in (-R, R), deduce that $\sum_{n=1}^{\infty} |a_n||\alpha|^n < \infty$. Conclude by Weierstrass test that the series $\searrow f$ on $[-\alpha, \alpha]$.

Integration Rule for Power Series

• Fix $x_0 \in (-R, R)$

Integration Rule for Power Series

- Fix $x_0 \in (-R, R)$
- Note that each $a_n x^n$ and the sum function f are continuous (integrable), and $\sum_n a_n x^n \searrow f(x)$ on $[-R + \varepsilon, R \varepsilon]$ for any $\varepsilon > 0$

Integration Rule for Power Series

- Fix $x_0 \in (-R, R)$
- Note that each $a_n x^n$ and the sum function f are continuous (integrable), and $\sum_n a_n x^n \searrow f(x)$ on $[-R + \varepsilon, R \varepsilon]$ for any $\varepsilon > 0$
- One has

$$\int_0^{x_0} f(x)dx = \sum_n \frac{a_n}{n+1} x_0^{n+1}$$

Differentiation Rule for Power Series

• Each $a_n x^n$ is CD on (-R,R)

Differentiation Rule for Power Series

- Each $a_n x^n$ is CD on (-R,R)
- Note that $|na_nx^n| \le |na_n||\alpha|^n$ for all $x \in [-\alpha, \alpha]$ and all $n \ge 0$

Differentiation Rule for Power Series

- Each $a_n x^n$ is CD on (-R,R)
- Note that $|na_nx^n| \le |na_n||\alpha|^n$ for all $x \in [-\alpha, \alpha]$ and all $n \ge 0$
- Since $\sum_{n} |na_n| |\alpha|^{n-1} < \infty$ (**Ex.**), deduce that the series

$$\sum_{n=1}^{\infty} n a_n x^{n-1} \searrow \text{ some } g(x) \text{ on } [-\alpha, \alpha]$$

Differentiation Rule for Power Series

• By the differentiation rule theorem for series of functions, we deduce that

$$\sum_{n} a_n x^n \searrow$$
 anti-derivative of g

Differentiation Rule for Power Series

• By the differentiation rule theorem for series of functions, we deduce that

$$\sum_{n} a_n x^n \searrow$$
 anti-derivative of g

• By *uniqueness* of limit, conclude that the anti-derivative of g must be f, i.e., on (-R,R)

$$f'(x) = \frac{d}{dx} \left(\sum_{n} a_n x^n \right) = \sum_{n} n a_n x^{n-1} = g(x)$$