

Método dos investimentos Incrementais

Conrado A. Melo

Método da TIR para duas alternativas

Incremento de investimento entre alternativas

- Calcular a taxa de retorno incremental Δ TIR sobre o investimento incremental entre as alternativas
 - Se ∆TIR ≥ TMA, escolher alternativa de custo mais alto
 - Se ∆TIR ≤ TMA, escolher alternativa de custo mais baixo

Exemplo 1

 Instalando-se um eletromagneto na esteira de entrada de uma usina de processamento de carvão, ele retirará do carvão as limalhas de metal. A remoção dessas limalhas proporcionará uma economia anual estimada em \$ 1.200 em danos causados à maquinaria pelo refugo do metal. O equipamento eletromagnético tem uma vida útil estimada de 5 anos, sem valor residual. Dois fornecedores apresentam proposta: a empresa A fornecerá o equipamento contra 3 pagamentos anuais de \$ 1.000; a empresa B fornecerá por 2.783. Se TMA é de 10%, qual dos fornecedores deve ser escolhido?

Exemplo 1 - Resolução

- Mesma vida útil e mesmos benefícios
- Método da TIR: avaliar a diferença entre as alternativas: Empresa B – Empresa A

Ano	Empresa A	Empresa B	Diferença B-A
0	-1000	-2.783	-1.783
1	1200-1000	1200	1000
2	1200-1000	1200	1000
3	1200	1200	0
4	1200	1200	0
5	1200	1200	0

Exemplo 1 - Resolução

		0%		2%		4%		6%		8%		10%		12%		14%
n	fluxo	de caixa														
0	-R\$	1.783,00	-R\$	1.783,00	-R\$	1.783,00	-R\$	1.783,00	-R\$	1.783,00	-R\$	1.783,00	-R\$	1.783,00	-R\$	1.783,00
1	R\$	1.000,00	R\$	1.000,00	R\$	1.000,00	R\$	1.000,00	R\$	1.000,00	R\$	1.000,00	R\$	1.000,00	R\$	1.000,00
2	R\$	1.000,00	R\$	1.000,00	R\$	1.000,00	R\$	1.000,00	R\$	1.000,00	R\$	1.000,00	R\$	1.000,00	R\$	1.000,00
3	R\$	F20	R\$	2	R\$	- 6	R\$	020	R\$	2	R\$	- 5	R\$	829	R\$	2
4	R\$.7:	R\$	-	R\$.0	R\$	-	R\$	-	R\$		R\$	-	R\$	-
5	R\$	170	R\$	-	R\$	5	R\$	-	R\$	=	R\$	5	R\$	1 .	R\$	=
		R\$ 217,0		R\$ 158,6		R\$ 103,1		R\$ 50,4		R\$ 0,3		-R\$ 47,5		-R\$ 92,9		-R\$ 136,3

Como ∆TIR ≤ 10%, deve ser escolhida a empresa com menor custo inicial, ou seja, a empresa A

Exercício 1

 Considerando TMA de 6%, qual das alternativas mutuamente excludentes deve ser escolhida?

Ano	Α	В
0	-10	-20
1	15	28

 Considerando TMA de 6%, qual das alternativas mutuamente excludentes deve ser escolhida?

Ano	Α	В	Diferença B-A
0	-10	-20	-10
1	15	28	13

VPB = VPC, Logo: 13(P/F,i,1)=10

(P/F,i,1) = 0,7692

 Δ TIR = 30%, B é a melhor opção

 Calcule separadamente a TIR para cada alternativa do exercício 1. Qual opção deve ser escolhida? Explique.

TIR

A,
$$10 = 15 (P/F,i,1)$$

(P/F,i,1) = 0,6667 TIR = 50%

B,
$$20 = 28 (P/F,i,1)$$

 $(P/F,i,1) = 0.7143$ TIR = 40%

 O critério econômico é maximizar o retorno, não a taxa interna de retorno

Método dos investimentos incrementais – 3 ou mais alternativas

- Apropriado para avaliar três ou mais alternativas
- Examina as diferenças entre alternativas
- Responde se os custos diferencias são ou não justificados por benefícios diferenciais
- Método gráfico e método numérico

Etapas

- 1. Identificar todas as alternativas do problema
- 2. Calcular a TIR de cada alternativa, rejeitar quaisquer alternativas que TIR≤TMA
- Dispor as alternativas restantes em ordem crescente de investimentos
- 4. Fazer análise de duas alternativas para as duas primeiras alternativas
- 5. Tomar a alternativa preferida da etapa 4 e a próxima da lista da etapa 3
- 6. Prosseguir até que todas as alternativas tenham sido examinadas e a melhor tenha sido identificada

Critérios de decisão

- Se Δ TIR ≥ TMA, reter a alternativa de custo mais alto
- Se ∆TIR < TMA, reter a alternativa de custo mais baixo
- Rejeitar a outra alternativa usada na análise

Para decisão de empréstimos incrementais

- Se ΔTIR ≤ TMA, o empréstimo de maior valor é aceitável
- Se ΔTIR > TMA, o empréstimo de menor valor não é aceitável

Método gráfico

- Gráfico: VPB x VPC
- Existe uma reta VPL=0 que divide uma área desejável de uma não desejável
 - Essa reta representa a taxa de juro considerada (TMA)
- O coeficiente angular das retas representam as TIRs de cada opção
- Para cada investimento incremental entre as opções, deve-se escolher a última alternativa cujo coeficiente angular é maior que o coeficiente angular da reta TMA

Método numérico

Exemplo

– Considere três alternativas mutuamente excludentes detalhadas abaixo. A vida útil é de 20 anos, a TMA é 6% e não existe valor residual. Qual deve ser escolhida?

	Α	В	C
Custo inicial	2000	4000	5000
Benefício anual	410	639	700

Resolução - 1

Passo 1 - Calcular a TIR de cada alternativa, rejeitar quaisquer alternativas que TIR≤TMA

A,
$$2000 = 410 (P/A,i,20), (P/A,i,20)=4,878 i=20%$$

B,
$$4000 = 639 (P/A,i,20)$$
, $(P/A,i,20)=6,259 i=15\%$

C,
$$5000 = 700 (P/A,i,20)$$
, $(P/A,i,20)=4,878$
 $i=12,8\%$

Não rejeitamos nenhuma alternativa

Resolução - 2

Passo 2 - Dispor as alternativas restantes em ordem crescente de investimentos

	Α	В	C	
Custo inicial	2000	4000	5000	
Benefício anual	410	639	700	
TIR	20%	15%	12,8%	
Inv. Incremental		B-A		C-B
Custo incremen	tal	2000)	1000
Benefício incren	229		61	

Resolução - 3

Passo 3 - Fazer análise de duas alternativas para as duas primeiras alternativas

Inv.	Incremental	B-A	C-B

B-A,
$$2000 = 229(P/A,i,20)$$
 $\Delta TIR = 9,6$

C-B,
$$1000 = 61(P/A,i,20)$$
 $\Delta TIR = 2,0\%$

B-A é satisfatório (>TMA), no entanto C-B não (<TMA). Logo, a alternativa B deve ser escolhida.

Exercício 3

Para TMA de 6% e vida útil de 20 anos, qual das alternativas abaixo deve ser escolhida?

	Α	В	C	D	Ε
Custo inicial	4000	2000	6000	1000	9000
Benefício anual	639	410	761	117	785

Passo 1 - Calcular a TIR

	Α	В	С	D	Ε
Custo inicial	4000	2000	6000	1000	9000
Benefício anual	639	410	761	117	785
VPB	7330	4700	8730	1340	9000
TIR	15%	20%	11%	10%	6%

Nenhuma alternativa é rejeitada

Passo 2 – Colocar em ordem crescente de custo

	D	В	Α	С	Ε
Custo inicial	1000	2000	4000	6000	9000
Benefício anual	117	410	639	761	785
TIR	10%	20%	15%	11%	6%

Passo 3 - Fazer análise incremental

Inv. Incremental D-B

Custo incremental 1000

Benefício incremental 293

1000 = 293(P/A,i,20) $\Delta TIR = 29\%$

B é preferível

Passo 3 - Fazer análise incremental

Inv. Incremental A-B

Custo incremental 2000

Benefício incremental 229

2000 = 229(P/A,i,20) $\Delta TIR = 10\%$

A é preferível

Passo 3 - Fazer análise incremental

Inv. Incremental C-A

Custo incremental 2000

Benefício incremental 122

2000 = 122(P/A,i,20) $\Delta TIR = 2\%$

A é preferível e continua

Passo 3 - Fazer análise incremental

Inv. Incremental E-A

Custo incremental 5000

Benefício incremental 146

20*146=2920, o que é inferior a custo incremental, logo E deve ser descartado (Δ TIR<0%)

A é a melhor alternativa

Exercício 4

O Engenheiro de Energia de uma empresa que produz alimentos precisa decidir sobre 3 opções de motores elétricos para um novo projeto de expansão de transporte de produtos que usa esteiras transportadoras. Considerando vida útil de 10 anos e TMA de 10% qual das opções deve ser escolhida?

	Básico	Premium	Super Premium
Custo inicial	R\$15.000	R\$ 20.000	R\$ 26.000
Custo operacional (anual)	R\$1.000	R\$ 800	R\$ 500
Benefício anual	R\$ 8.000	R\$ 8.000	R\$ 8.000