

Machine Learning

Dr. Mehran Safayani safayani@iut.ac.ir safayani.iut.ac.ir

https://www.aparat.com/mehran.safayani

https://github.com/safayani/machine_learning_course

Department of Electrical and computer engineering, Isfahan university of technology, Isfahan, Iran

MLE (Maximum Likelihood)

يادآورى

توزیع گاوسی:

$$P(y \mid \mu, \sigma^2) = N(y \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(\frac{-(y-\mu)^2}{2\sigma^2})$$

است: Σ است: اگر y به صورت بردار باشد دارای میانگین

N (y |
$$\mu$$
, Σ) = $\frac{1}{\sqrt{(4\pi)^D \det(\Sigma)}} \exp(\frac{-1}{2} (y - \mu)^T \Sigma^{-1} (y - \mu))$

x , y دو متغیر تصادفی مستقل هستند اگر:

$$P(x, y) = P(x) P(y)$$

می خواهیم تابع چگالی P(x) را به دست آوریم.

یک تابع چگالی احتمالی پارامتری برای(P(x) تعریف میکنیم.

با فرض وجود مشاهده های $X = (x^1, ..., x^n)$ سعی می کنیم پارامتر های مدل را بهینه کنیم تا احتمال $X = (x^1, ..., x^n)$ بیشینه گردد. $X = (x^1, ..., x^n)$

فرض می کنیم هر داده از توزیع $P(x \mid \theta)$ به صورت مستقل به دست آمده اند.

$$P(X \mid \theta) = \prod_{n=1}^{N} P(x^{n} | \theta) = L(\theta)$$

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} L(\theta)$$

$$Log P(X \mid \theta) = \sum_{n=1}^{N} log P(x^n \mid \theta) = log L(\theta)$$

$$\hat{\theta}$$
 = argmax L(θ) = argmax log L(θ) θ

Let x_1, x_2 , ... , x_n be a random sample from a normal distribution with unknown mean μ and variance σ^2 .

Find Maximum Likelihood estimators of mean μ and variance σ^2 .

Answer

In finding the estimators , the first thing we will do is write the probability density function as a function of θ_1 = μ and θ_2 = σ^2

$$f(x_i; \theta_1, \theta_2) = \frac{1}{\sqrt{\theta_2} \sqrt{2\pi}} \exp\left[\frac{-(x_i - \theta_1)^2}{2\theta_2}\right]$$

For $-\infty < \theta_1 < \infty$ and $0 < \theta_2 < \infty$. We do this so as not to cause confusion when taking the derivative of the likelihood with respect to σ^2 . Now , that makes the likelihood function:

$$L(\theta_1, \theta_2) = \prod_{i=1}^n f(x_i; \theta_1, \theta_2) = \theta_2^{-n/2} (2\pi)^{-n/2} \exp\left[\frac{-1}{2\theta_2} \sum_{i=1}^n (x_i - \theta_1)^2\right]$$

And therefore the log of the likelihood function:

Log L(
$$\theta_1$$
, θ_2) = $\frac{-n}{2}$ log θ_2 - $\frac{n}{2}$ log (2π) - $\frac{\sum (x_i - \theta_1)^2}{2\theta_2}$

Now, upon taking the partial derivative of the log likelihood with respect to θ_1 , and setting to 0, we see that a few things cancel each other out, leaving us with:

$$\frac{\partial \operatorname{Log} L(\theta_1, \theta_2)}{\partial \theta_1} = \frac{-2 \sum (x_i - \theta_1) (-1)}{2\theta_2} \equiv 0$$

Now, multiplying through by $heta_2$ and distributing the summation , we get:

$$\sum (x_i - n\theta_1) = 0$$

Now , solving for θ_1 and putting on its hat we have shown that the maximum likelihood estimate of θ_1 is :

$$\hat{\theta}_1 = \hat{\mu} = \frac{\sum x_i}{n} = \bar{x}$$

Now for θ_2 taking the partial derivative of the log likelihood with respect to θ_2 , and setting to 0, we get:

$$\frac{\partial \operatorname{Log} L(\theta_1, \theta_2)}{\partial \theta_2} = \frac{-n}{2\theta_2} + \frac{\sum (x_i - \theta_1)^2}{2\theta_2^2} = 0$$

Multiplying through by $2\theta_2^2$:

$$\frac{\partial \operatorname{Log} L(\theta_1, \theta_2)}{\partial \theta_2} = \left[\frac{-n}{2\theta_2} + \frac{\sum (x_i - \theta_1)^2}{2\theta_2^2}\right] = 0 \times 2\theta_2^2$$

We get:

$$-n\theta_2 + \sum (x_i - \theta_1)^2 = 0$$

And , solving for θ_2 , and putting on its hat , we have shown that the maximum likelihood estimate of θ_2 is:

$$\hat{\theta}_2 = \hat{\sigma}^2 = \frac{\sum (x_i - \bar{x})^2}{n}$$