Mathematical Formulae

A Book of High School and Engineering Common Core Mathematical Formulae

Agnij Mallick

December, 2020

Contents

Ι	Al	gebra	1
1	Log	arithm	2
	1.1	Basic Formulae	2
	1.2	Series	2
2	Cor	nplex Number	3
	2.1	Basic Formulae	3
	2.2	Arithmetic Operation of Complex Number	3
	2.3	Euler's Formula	3
	2.4	Trigonometric Ratios in Complex Form	4
	2.5	De Moivre's Formula	4
	2.6	Application of Euler's and De Moivre's Formula	4
	2.7	Roots of Unity	4
	2.8	Important Relations of Complex Numbers	4
3	Pro	gression	5
	3.1	Arithmetic Progression (A.P.)	5
		3.1.1 Sum of A.P. Series	5
		3.1.2 Important Relation	5
	3.2	Geometric Progression (G.P.)	5
		3.2.1 The Value of 'r'	5
		3.2.2 Sum of a G.P. Series	6
		3.2.3 Important relations	6
	3.3	Harmonic Progression (H.P.)	6
	3.4	Arithmetico-Geometric Progression (A.G.P.)	6
		3.4.1 Sum of A.G.P.:	6
	3.5	Special Series	6
		3.5.1 Riemann Zeta Function	7
		3.5.2 Riemann's Infinite Series as an Integration	7
4	Tes	t of Convergence of Infinite Series	8
	4.1	Definition	8
	4.2	Tests of Convergence	8
		4.2.1 Comparison Test	8
		4.2.2 Limit Form	8
		4.2.3 Integral Test or Maclaurin-Cauchy Test	9

CONTENTS	ii
----------	----

		4.2.4 Ratio Test	9
		4.2.5 D'Alembert's Ratio Test	9
		4.2.6 Rabbe's Test	9
		4.2.7 Cauchy's Root Test	10
		4.2.8 Logarithmic Test	10
5	Det	erminants	11
	5.1	Definition	11
		5.1.1 Minor and Cofactor	11
	5.2	Important Properties	11
	5.3	Cramer's Rule	12
		5.3.1 Consistency Test	12
6		rices	13
	6.1	Sum of Two Matrices	13
	6.2	Multiplication of Two Matrices	13
		6.2.1 Multiplicative Properties	13
	6.3	Adjoint of a Matrix	14
	6.4	Martin's Rule	14
7		omial Theorem	15
	7.1	Expansion of a binomial expression	15
	7.2	Trinomial Expansion	15
	7.3	Properties of Coefficients	15
	7.4	Pascal's Rule	16
8	Boo	lean Algebra	17
9	Ren	nainder Theorems	18
	9.1	Remainder Theorem	18
	9.2	Euler's Remainder Theorem	18
		9.2.1 Euler's Totient Function	18
	9.3	Wilson Theorem	19
II	\mathbf{C}	o-Ordinate Geometry	21
10	2- D	Co-ordinate Geometry	22
		•	23
		ngles	
		ight Line	24
13	Gen	eral Theory of Second Degree Equation	26

CONTENTS	iii
----------	-----

14	Con	ics	27
	14.1	Parabola	27
	14.2	Ellipse and Hyperbola	27
	14.3	Parametric Form of Conics	2
		14.3.1 Hyperbola	2
		14.3.2 Ellipse	28
		14.3.3 Parabola	28
15	Circ	·les	29
10		Locus Form	29
		Diameter Form	29
		General Form	29
		Important Relations	29
	10.1		_`
16	Vect		3
		Modulus of a Vector	3
	16.2	Sum of Vectors	3
	16.3	Product of Vectors	3
		16.3.1 Dot Product	3
		16.3.2 Cross Product	3
	16.4	Test of Co-planarity	3
18	17.2 17.3 Line 18.1	Distance between two points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$. Section Formula of a Line Segment Divided in the ratio $m:n$ Centroid of a Triangle	3; 3; 3; 3; 3; 3;
	18.3	Distances	3
		18.3.1 The shortest distance between r_1 and r_2	3
		18.3.2 Cartesian Form	3
		18.3.3 Distance Between Parallel Lines	3
		18.3.4 Distance of a Point to a Line	3
10	a D	Plane	30
19	_	Angle Between Two Planes	3
		Distance of a Point from a Plane	
	19.2		3
		19.2.1 Catesian Form	3
		19.2.2 Vector Form	3
ΙI	ΤS	Statistics	38
11.	·	, octoriories	<i>)</i> (
2 0		<u> </u>	3
	20.1	Measure of Location	3
		20.1.1 Mean	3

CONTENTS	iv
----------	----

		20.1.2 Median	39
		20.1.3 Mode	39
		20.1.4 Quartile	39
	20.2	Measure of Spread	39
		20.2.1 Variance	39
		20.2.2 Sample Variance	40
		20.2.3 Standard Deviation and Sample Standard	40
		20.2.4 Co-efficient of Variance	40
	20.3	Skewness	40
		20.3.1 Types of Skewness	40
		20.3.2 Measure of Skewness	40
	20.4	Kurtosis	41
		20.4.1 Type of Kurtosis	41
21		oothesis Testing	42
		T-Test	42
	21.2	χ^2 Test	42
າາ	Rose	earch and Survey Design	43
22		Population Covariance	43
		Sample Covariance	43
		Bravais-Pearson Correlation Co-efficient	43
		Spearman's Rank Correlation Co-efficient	43
	22.4	Spearman's Italik Correlation Co-emclent	40
23		mation of Regression Function	44
	23.1	Sum of Squares Error	45
		23.1.1 $R_{\underline{-}}^2$: Coefficient of Determination	45
		23.1.2 \bar{R}^2 : Coefficient of Determination	46
		T-Test	46
		F-Test	46
	23.4	Test for Heteroskedasticity	46
		23.4.1 Definition	46
		23.4.2 Durbin-Watson Test	46
24	Dun	nmy Variables	47
		Dummy Variable	47
		Slope Dummy Variable	48
		Slope & Dummy Variable	48
		Multi-Categories Dummy Variable	48
25	Logi	istic Regression	50
ΙV	\mathbf{r}	Trigonometry	51
26	Circ	cular Trigonometric Functions	52
		Negative Angle Formula	53

CONTENTS

	26.3 Difference of Angles Formula	53
	26.4 Multiples and Sub-multiples of π and $\frac{\pi}{2}$	53
	26.5 $\left(\frac{\pi}{2} \pm \theta\right)$ Formula	54
	26.6 $\left(\frac{\pi}{4} \pm \theta\right)$ Formula	54
	26.7 Trigonometric Identities	54
	26.8 Double Angle Formula	54
	26.9 Triple Angle Formula	55
	26.10Sum and Product of Two Ratios	55
	26.11General Solutions	55
	26.12 Taylor Series Expansion of Trigonometric Ratios	56
27	Inverse Circular Trigonometric Function	57
	27.1 Definition of Inverse Circular Trigonometric Function	57
	27.1.1 For $\sin x$	57
	$27.1.2 \text{ For } \cos x \dots \dots \dots \dots \dots \dots \dots \dots$	57
	$27.1.3$ For $\tan x$	58
	27.1.4 For $\cot x$	58
	$27.1.5 \; \text{For } \csc x \dots \dots \dots \dots \dots \dots \dots \dots$	58
	27.2 Negative Arguments	59
	27.3 Reciprocal Relations	59
	27.4 I.T.F. Identities	59
	27.5 Sum of Two Angles	59
	27.6 Difference of Two Angles	59
	27.7 Interconversion of Ratios	60
	27.8 Miscellaneous Relations	60
28	Hyperbolic Trigonometric Function	61
	28.1 Definition	61
	28.2 Identities	61
	28.3 Inverse Hyperbolic Function	62
	28.4 Relation to Circular Trigonometric Functions	62
. .		
V	Calculus	63
29	Limits	64
	29.1 L'Hospital Rule	65
30	Differentiation	66
	30.1 Differentiation by First Principle	66
	30.2 Standard Differentiation Formulae	66
	30.2.1 Circular Trigonometric Functions	67
	30.2.2 Inverse Circular Trigonometric Functions	67
	30.2.3 Hyperbolic Trigonometric Function	67
	30.2.4 Inverse Hyperbolic Trigonometric Function	68
	30.3 Rules of Differentiation	68
	30.4 Chain Rule	68

CONTENTS	vi
----------	----

32 Partial Derivative 70 32.1 Chain Rule 70 32.2 Euler's Theorem 70 33 Application of Differentiation 71 33.1 Rolle's Theorem 71 33.2 Mean Value Theorem or LaGrange's Theorem 71 33.4 Maxima and Minima 72 33.4.1 Maxima 72 33.4.2 Minima 72 33.5.1 Remainder Term 73 33.5.2 Conditions for Validity of Expansion 73 33.5.3 Taylor's Theorem for Two Variables 73 33.6 Maclaurin's Series 73 33.6.1 Maclaurin's Series with Two Variables 73 33.7.1 Radius of Curvature 74 33.7.2 Newton's Formula 74 33.7.3 Tangent at Origin 74 33.8 Asymptotes 75 33.8.1 Asymptote of Algebraic Curves 75 34 Integration 76 34.1 General Formulae 76 34.2 Circular Trigonometric Functions 77 34.3 Inverse Circular Trigonometric Function 77 34.5 Special Forms 78 34.5 Properties of Definite Integration 79 35.2 Properties of	31	Successive Differentiation 31.1 Leibnitz's Theorem	69
32.1 Chain Rule 70 32.2 Euler's Theorem 70 33 Application of Differentiation 71 33.1 Rolle's Theorem 71 33.2 Mean Value Theorem or LaGrange's Theorem 71 33.3 Maxima and Minima 72 33.4 Maxima and Minima 72 33.4.2 Minima 72 33.5.1 Remainder Term 73 33.5.2 Conditions for Validity of Expansion 73 33.5.3 Taylor's Theorem for Two Variables 73 33.6 Maclaurin's Series 73 33.6.1 Maclaurin's Series with Two Variables 73 33.7.1 Radius of Curvature 74 33.7.2 Newton's Formula 74 33.7.3 Tangent at Origin 74 33.8 Asymptotes 75 34.1 General Formulae 76 34.2 Circular Trigonometric Functions 77 34.3 Inverse Circular Trigonometric Function 77 34.5 Special Forms 78 34.5 Special Forms 78 34.5 Integration by Part 78 35 Definite Integral 79 35.1 Sum of Infinite Series as a Definite Integral 80 36 Reduc		51.1 Leibnitz's Theorem	09
32.2 Euler's Theorem 70 33 Application of Differentiation 71 33.1 Rolle's Theorem 71 33.2 Mean Value Theorem or LaGrange's Theorem 71 33.3 Cauchy's Mean Value Theorem 71 33.4 Maxima and Minima 72 33.4.1 Maxima 72 33.4.2 Minima 72 33.5.1 Remainder Term 73 33.5.2 Conditions for Validity of Expansion 73 33.5.3 Taylor's Theorem for Two Variables 73 33.6 Maclaurin's Series 73 33.6.1 Maclaurin's Series with Two Variables 73 33.7 Curvature 74 33.7.1 Radius of Curvature 74 33.7.2 Newton's Formula 74 33.8.1 Asymptotes 75 34.1 General Formulae 76 34.2 Circular Trigonometric Functions 76 34.3 Inverse Circular Trigonometric Function 77 34.4 Standard Integrals 78 34.5.1 Integration by Part 78 35 Definite Integral 79 35.1 Definition 79 35.2 Special Formulae 81 36 Reduction Formulae	32	Partial Derivative	
33 Application of Differentiation 71 33.1 Rolle's Theorem 71 33.2 Mean Value Theorem or LaGrange's Theorem 71 33.3 Cauchy's Mean Value Theorem 71 33.4 Maxima and Minima 72 33.4.1 Maxima 72 33.4.2 Minima 72 33.5.1 Taylor's Theorem 72 33.5.2 Conditions for Validity of Expansion 73 33.5.3 Taylor's Theorem for Two Variables 73 33.6 Maclaurin's Series 73 33.6.1 Maclaurin's Series with Two Variables 73 33.7 Curvature 74 33.7.1 Radius of Curvature 74 33.7.2 Newton's Formula 74 33.8.1 Asymptotes 75 34 Integration 76 34.1 General Formulae 76 34.2 Circular Trigonometric Functions 77 34.3 Inverse Circular Trigonometric Function 77 34.4 Standard Integrals 78 34.5 Special Forms 78 34.5 Properties of Definite Integration 79 35.1 Definition 79 35.2 Properties of Definite Integration 79 35.4 Sum			70
33.1 Rolle's Theorem 71 33.2 Mean Value Theorem or LaGrange's Theorem 71 33.3 Cauchy's Mean Value Theorem 71 33.4 Maxima and Minima 72 33.4.1 Maxima 72 33.4.2 Minima 72 33.5.1 Remainder Term 73 33.5.2 Conditions for Validity of Expansion 73 33.5.3 Taylor's Theorem for Two Variables 73 33.6 Maclaurin's Series 73 33.6.1 Maclaurin's Series with Two Variables 73 33.7 Curvature 74 33.7.2 Newton's Formula 74 33.7.3 Tangent at Origin 74 33.8.1 Asymptotes 75 33.8.1 Asymptote of Algebraic Curves 75 34 Integration 76 34.1 General Formulae 76 34.2 Circular Trigonometric Functions 77 34.3 Inverse Circular Trigonometric Function 77 34.5 Special Forms 78 34.5.1 Integration by Part 78 35 Definite Integral 79 35.3 Approximation 79 35.4 Sum of Infinite Series as a Definite Integral 80 36 Reductio		32.2 Euler's Theorem	70
33.2 Mean Value Theorem or LaGrange's Theorem 71 33.3 Cauchy's Mean Value Theorem 71 33.4 Maxima and Minima 72 33.4.1 Maxima 72 33.4.2 Minima 72 33.5 Taylor's Theorem 72 33.5.1 Remainder Term 73 33.5.2 Conditions for Validity of Expansion 73 33.5.3 Taylor's Theorem for Two Variables 73 33.6 Maclaurin's Series 73 33.6.1 Maclaurin's Series with Two Variables 73 33.7 Curvature 74 33.7.1 Radius of Curvature 74 33.7.2 Newton's Formula 74 33.7.3 Tangent at Origin 74 33.8 Asymptotes 75 33.8.1 Asymptote of Algebraic Curves 75 34 Integration 76 34.1 General Formulae 76 34.2 Circular Trigonometric Functions 77 34.3 Inverse Circular Trigonometric Function 77 34.5 Special Forms 78 34.5 Special Forms 78 35.1 Definition 79 35.2 Properties of Definite Integration 79 35.4 Sum of Infinite Series	33	Application of Differentiation	71
33.3 Cauchy's Mean Value Theorem 71 33.4 Maxima and Minima 72 33.4.1 Maxima 72 33.4.2 Minima 72 33.5 Taylor's Theorem 72 33.5.1 Remainder Term 73 33.5.2 Conditions for Validity of Expansion 73 33.5.3 Taylor's Theorem for Two Variables 73 33.6 Maclaurin's Series 73 33.6.1 Maclaurin's Series with Two Variables 73 33.7 Curvature 74 33.7.1 Radius of Curvature 74 33.7.2 Newton's Formula 74 33.7 Tangent at Origin 74 33.8 Asymptotes 75 33.8.1 Asymptote of Algebraic Curves 75 34 Integration 76 34.1 General Formulae 76 34.2 Circular Trigonometric Functions 77 34.3 Inverse Circular Trigonometric Function 77 34.5 Special Forms 78 34.5.1 Integration by Part 78 35 Definite Integral 79 35.1 Definition 79 35.2 Properties of Definite Integration 79 35.3 Approximation 79 <		33.1 Rolle's Theorem	71
33.4 Maxima and Minima 72 33.4.1 Maxima 72 33.4.2 Minima 72 33.5.1 Taylor's Theorem 72 33.5.1 Remainder Term 73 33.5.2 Conditions for Validity of Expansion 73 33.5.3 Taylor's Theorem for Two Variables 73 33.6 Maclaurin's Series 73 33.6.1 Maclaurin's Series with Two Variables 73 33.7 Curvature 74 33.7.1 Radius of Curvature 74 33.7.2 Newton's Formula 74 33.7.3 Tangent at Origin 74 33.8 Asymptotes 75 33.8.1 Asymptote of Algebraic Curves 75 34 Integration 76 34.1 General Formulae 76 34.2 Circular Trigonometric Functions 77 34.3 Inverse Circular Trigonometric Function 77 34.4 Standard Integrals 78 34.5.1 Integration by Part 78 35.1 Definite Integral 79 35.3 Approximation 79 35.4 Sum of Infinite Series as a Definite Integral 80 36 Reduction Formulae 81 37 Multiple Integrals		33.2 Mean Value Theorem or LaGrange's Theorem	71
33.4.1 Maxima 72 33.4.2 Minima 72 33.5.1 Taylor's Theorem 72 33.5.1 Remainder Term 73 33.5.2 Conditions for Validity of Expansion 73 33.5.3 Taylor's Theorem for Two Variables 73 33.6 Maclaurin's Series 73 33.6.1 Maclaurin's Series with Two Variables 73 33.7 Curvature 74 33.7.1 Radius of Curvature 74 33.7.2 Newton's Formula 74 33.7.3 Tangent at Origin 74 33.8 Asymptotes 75 33.8.1 Asymptote of Algebraic Curves 75 34 Integration 76 34.1 General Formulae 76 34.2 Circular Trigonometric Functions 77 34.3 Inverse Circular Trigonometric Function 77 34.4 Standard Integrals 78 34.5.1 Integration by Part 78 35 Definite Integral 79 35.2 Properties of Definite Integration 79 35.4 Sum of Infinite Series as a Definite Integral 80 36 Reduction Formulae 81 37 Multiple Integrals 83 37.1 Two Variab		33.3 Cauchy's Mean Value Theorem	71
33.4.2 Minima 72 33.5 Taylor's Theorem 72 33.5.1 Remainder Term 73 33.5.2 Conditions for Validity of Expansion 73 33.5.3 Taylor's Theorem for Two Variables 73 33.6 Maclaurin's Series 73 33.6.1 Maclaurin's Series with Two Variables 73 33.7 Curvature 74 33.7.1 Radius of Curvature 74 33.7.2 Newton's Formula 74 33.7.3 Tangent at Origin 74 33.8 Asymptotes 75 33.8.1 Asymptote of Algebraic Curves 75 34 Integration 76 34.1 General Formulae 76 34.2 Circular Trigonometric Functions 77 34.3 Inverse Circular Trigonometric Function 77 34.4 Standard Integrals 78 34.5 Special Forms 78 34.5.1 Integration by Part 78 35.1 Definite Integral 79 35.3 Approximation 79 35.4 Sum of Infinite Series as a Definite Integral 80 36 Reduction Formulae 81 37 Multiple Integrals 83 37.1 Two Variables <		33.4 Maxima and Minima	72
33.5 Taylor's Theorem 72 33.5.1 Remainder Term 73 33.5.2 Conditions for Validity of Expansion 73 33.5.3 Taylor's Theorem for Two Variables 73 33.6 Maclaurin's Series 73 33.6.1 Maclaurin's Series with Two Variables 73 33.7 Curvature 74 33.7.1 Radius of Curvature 74 33.7.2 Newton's Formula 74 33.7.3 Tangent at Origin 74 33.8 Asymptotes 75 33.8.1 Asymptote of Algebraic Curves 75 34 Integration 76 34.1 General Formulae 76 34.2 Circular Trigonometric Functions 77 34.3 Inverse Circular Trigonometric Function 77 34.4 Standard Integrals 78 34.5.1 Integration by Part 78 35.1 Definite Integral 79 35.2 Properties of Definite Integration 79 35.4 Sum of Infinite Series as a Definite Integral 80		33.4.1 Maxima	72
33.5.1 Remainder Term 73 33.5.2 Conditions for Validity of Expansion 73 33.5.3 Taylor's Theorem for Two Variables 73 33.6 Maclaurin's Series 73 33.6.1 Maclaurin's Series with Two Variables 73 33.7 Curvature 74 33.7.1 Radius of Curvature 74 33.7.2 Newton's Formula 74 33.7.3 Tangent at Origin 74 33.8 Asymptotes 75 33.8.1 Asymptote of Algebraic Curves 75 34 Integration 76 34.1 General Formulae 76 34.2 Circular Trigonometric Functions 77 34.3 Inverse Circular Trigonometric Function 77 34.4 Standard Integrals 78 34.5.1 Integration by Part 78 35 Definite Integral 79 35.1 Definition 79 35.2 Properties of Definite Integration 79 35.3 Approximation 79 35.4 Sum of Infinite Series as a Definite Integral 80 36 Reduction Formulae 81 37 Multiple Integrals 83 37.1 Two Variables 83		33.4.2 Minima	72
33.5.1 Remainder Term 73 33.5.2 Conditions for Validity of Expansion 73 33.5.3 Taylor's Theorem for Two Variables 73 33.6 Maclaurin's Series 73 33.6.1 Maclaurin's Series with Two Variables 73 33.7 Curvature 74 33.7.1 Radius of Curvature 74 33.7.2 Newton's Formula 74 33.7.3 Tangent at Origin 74 33.8 Asymptotes 75 33.8.1 Asymptote of Algebraic Curves 75 34 Integration 76 34.1 General Formulae 76 34.2 Circular Trigonometric Functions 77 34.3 Inverse Circular Trigonometric Function 77 34.4 Standard Integrals 78 34.5.1 Integration by Part 78 35 Definite Integral 79 35.1 Definition 79 35.2 Properties of Definite Integration 79 35.3 Approximation 79 35.4 Sum of Infinite Series as a Definite Integral 80 36 Reduction Formulae 81 37 Multiple Integrals 83 37.1 Two Variables 83		33.5 Taylor's Theorem	72
33.5.3 Taylor's Theorem for Two Variables 73 33.6 Maclaurin's Series 73 33.6.1 Maclaurin's Series with Two Variables 73 33.7 Curvature 74 33.7.1 Radius of Curvature 74 33.7.2 Newton's Formula 74 33.7.3 Tangent at Origin 74 33.8 Asymptotes 75 33.8.1 Asymptote of Algebraic Curves 75 34 Integration 76 34.1 General Formulae 76 34.2 Circular Trigonometric Functions 77 34.3 Inverse Circular Trigonometric Function 77 34.4 Standard Integrals 78 34.5 Special Forms 78 34.5.1 Integration by Part 78 35 Definite Integral 79 35.2 Properties of Definite Integration 79 35.3 Approximation 79 35.4 Sum of Infinite Series as a Definite Integral 80 36 Reduction Formulae 81 37 Multiple Integrals 83 37.1 Two Variables 83			73
33.5.3 Taylor's Theorem for Two Variables 73 33.6 Maclaurin's Series 73 33.6.1 Maclaurin's Series with Two Variables 73 33.7 Curvature 74 33.7.1 Radius of Curvature 74 33.7.2 Newton's Formula 74 33.7.3 Tangent at Origin 74 33.8 Asymptotes 75 33.8.1 Asymptote of Algebraic Curves 75 34 Integration 76 34.1 General Formulae 76 34.2 Circular Trigonometric Functions 77 34.3 Inverse Circular Trigonometric Function 77 34.4 Standard Integrals 78 34.5 Special Forms 78 34.5.1 Integration by Part 78 35 Definite Integral 79 35.2 Properties of Definite Integration 79 35.3 Approximation 79 35.4 Sum of Infinite Series as a Definite Integral 80 36 Reduction Formulae 81 37 Multiple Integrals 83 37.1 Two Variables 83		33.5.2 Conditions for Validity of Expansion	73
33.6 Maclaurin's Series 73 33.6.1 Maclaurin's Series with Two Variables 73 33.7 Curvature 74 33.7.1 Radius of Curvature 74 33.7.2 Newton's Formula 74 33.7.3 Tangent at Origin 74 33.8 Asymptotes 75 33.8.1 Asymptote of Algebraic Curves 75 34 Integration 76 34.1 General Formulae 76 34.2 Circular Trigonometric Functions 77 34.3 Inverse Circular Trigonometric Function 77 34.4 Standard Integrals 78 34.5 Special Forms 78 34.5.1 Integration by Part 78 35 Definite Integral 79 35.1 Definition 79 35.2 Properties of Definite Integration 79 35.3 Approximation 79 35.4 Sum of Infinite Series as a Definite Integral 80 36 Reduction Formulae 81 37 Multiple Integrals 83 37.1 Two Variables 83			73
33.6.1 Maclaurin's Series with Two Variables 73 33.7 Curvature 74 33.7.1 Radius of Curvature 74 33.7.2 Newton's Formula 74 33.7.3 Tangent at Origin 74 33.8 Asymptotes 75 33.8.1 Asymptote of Algebraic Curves 75 34 Integration 76 34.1 General Formulae 76 34.2 Circular Trigonometric Functions 77 34.3 Inverse Circular Trigonometric Function 77 34.4 Standard Integrals 78 34.5.1 Integration by Part 78 35 Definite Integral 79 35.1 Definition 79 35.2 Properties of Definite Integration 79 35.3 Approximation 79 35.4 Sum of Infinite Series as a Definite Integral 80 36 Reduction Formulae 81 37 Multiple Integrals 83 37.1 Two Variables 83			73
33.7 Curvature 74 33.7.1 Radius of Curvature 74 33.7.2 Newton's Formula 74 33.7.3 Tangent at Origin 74 33.8 Asymptotes 75 33.8.1 Asymptote of Algebraic Curves 75 34 Integration 76 34.1 General Formulae 76 34.2 Circular Trigonometric Functions 77 34.3 Inverse Circular Trigonometric Function 77 34.4 Standard Integrals 78 34.5 Special Forms 78 34.5.1 Integration by Part 78 35 Definite Integral 79 35.2 Properties of Definite Integration 79 35.3 Approximation 79 35.4 Sum of Infinite Series as a Definite Integral 80 36 Reduction Formulae 81 37 Multiple Integrals 83 37.1 Two Variables 83			
33.7.1 Radius of Curvature 74 33.7.2 Newton's Formula 74 33.7.3 Tangent at Origin 74 33.8 Asymptotes 75 33.8.1 Asymptote of Algebraic Curves 75 34 Integration 76 34.1 General Formulae 76 34.2 Circular Trigonometric Functions 77 34.3 Inverse Circular Trigonometric Function 77 34.4 Standard Integrals 78 34.5 Special Forms 78 34.5.1 Integration by Part 78 35 Definite Integral 79 35.1 Definition 79 35.2 Properties of Definite Integration 79 35.3 Approximation 79 35.4 Sum of Infinite Series as a Definite Integral 80 36 Reduction Formulae 81 37 Multiple Integrals 83 37.1 Two Variables 83			
33.7.2 Newton's Formula 74 33.7.3 Tangent at Origin 74 33.8 Asymptotes 75 33.8.1 Asymptote of Algebraic Curves 75 34 Integration 76 34.1 General Formulae 76 34.2 Circular Trigonometric Functions 77 34.3 Inverse Circular Trigonometric Function 77 34.4 Standard Integrals 78 34.5 Special Forms 78 34.5.1 Integration by Part 78 35.1 Definite Integral 79 35.2 Properties of Definite Integration 79 35.3 Approximation 79 35.4 Sum of Infinite Series as a Definite Integral 80 36 Reduction Formulae 81 37 Multiple Integrals 83 37.1 Two Variables 83			. –
33.7.3 Tangent at Origin 74 33.8 Asymptotes 75 33.8.1 Asymptote of Algebraic Curves 75 34 Integration 76 34.1 General Formulae 76 34.2 Circular Trigonometric Functions 77 34.3 Inverse Circular Trigonometric Function 77 34.4 Standard Integrals 78 34.5 Special Forms 78 34.5.1 Integration by Part 78 35 Definite Integral 79 35.1 Definition 79 35.2 Properties of Definite Integration 79 35.3 Approximation 79 35.4 Sum of Infinite Series as a Definite Integral 80 36 Reduction Formulae 81 37 Multiple Integrals 83 37.1 Two Variables 83			. –
33.8 Asymptotes 75 33.8.1 Asymptote of Algebraic Curves 75 34 Integration 76 34.1 General Formulae 76 34.2 Circular Trigonometric Functions 77 34.3 Inverse Circular Trigonometric Function 77 34.4 Standard Integrals 78 34.5 Special Forms 78 34.5.1 Integration by Part 78 35 Definite Integral 79 35.1 Definition 79 35.2 Properties of Definite Integration 79 35.3 Approximation 79 35.4 Sum of Infinite Series as a Definite Integral 80 36 Reduction Formulae 81 37 Multiple Integrals 83 37.1 Two Variables 83			
33.8.1 Asymptote of Algebraic Curves 75 34 Integration 76 34.1 General Formulae 76 34.2 Circular Trigonometric Functions 77 34.3 Inverse Circular Trigonometric Function 77 34.4 Standard Integrals 78 34.5 Special Forms 78 34.5.1 Integration by Part 78 35 Definite Integral 79 35.1 Definition 79 35.2 Properties of Definite Integration 79 35.3 Approximation 79 35.4 Sum of Infinite Series as a Definite Integral 80 36 Reduction Formulae 81 37 Multiple Integrals 83 37.1 Two Variables 83			. –
34 Integration 76 34.1 General Formulae 76 34.2 Circular Trigonometric Functions 77 34.3 Inverse Circular Trigonometric Function 77 34.4 Standard Integrals 78 34.5 Special Forms 78 34.5.1 Integration by Part 78 35 Definite Integral 79 35.1 Definition 79 35.2 Properties of Definite Integration 79 35.3 Approximation 79 35.4 Sum of Infinite Series as a Definite Integral 80 36 Reduction Formulae 81 37 Multiple Integrals 83 37.1 Two Variables 83			
34.1 General Formulae 76 34.2 Circular Trigonometric Functions 77 34.3 Inverse Circular Trigonometric Function 77 34.4 Standard Integrals 78 34.5 Special Forms 78 34.5.1 Integration by Part 78 35 Definite Integral 79 35.1 Definition 79 35.2 Properties of Definite Integration 79 35.3 Approximation 79 35.4 Sum of Infinite Series as a Definite Integral 80 36 Reduction Formulae 81 37 Multiple Integrals 83 37.1 Two Variables 83		33.3.1 Asymptote of Algebraic Curves	10
34.2 Circular Trigonometric Functions 77 34.3 Inverse Circular Trigonometric Function 77 34.4 Standard Integrals 78 34.5 Special Forms 78 34.5.1 Integration by Part 78 35 Definite Integral 79 35.1 Definition 79 35.2 Properties of Definite Integration 79 35.3 Approximation 79 35.4 Sum of Infinite Series as a Definite Integral 80 36 Reduction Formulae 81 37 Multiple Integrals 83 37.1 Two Variables 83	34	<u> </u>	
34.3 Inverse Circular Trigonometric Function 77 34.4 Standard Integrals 78 34.5 Special Forms 78 34.5.1 Integration by Part 78 35 Definite Integral 79 35.1 Definition 79 35.2 Properties of Definite Integration 79 35.3 Approximation 79 35.4 Sum of Infinite Series as a Definite Integral 80 36 Reduction Formulae 81 37 Multiple Integrals 83 37.1 Two Variables 83			
34.4 Standard Integrals 78 34.5 Special Forms 78 34.5.1 Integration by Part 78 35 Definite Integral 79 35.1 Definition 79 35.2 Properties of Definite Integration 79 35.3 Approximation 79 35.4 Sum of Infinite Series as a Definite Integral 80 36 Reduction Formulae 81 37 Multiple Integrals 83 37.1 Two Variables 83			
34.5 Special Forms 78 34.5.1 Integration by Part 78 35 Definite Integral 79 35.1 Definition 79 35.2 Properties of Definite Integration 79 35.3 Approximation 79 35.4 Sum of Infinite Series as a Definite Integral 80 36 Reduction Formulae 81 37 Multiple Integrals 83 37.1 Two Variables 83		· · · · · · · · · · · · · · · · · · ·	
34.5.1 Integration by Part 78 35 Definite Integral 79 35.1 Definition 79 35.2 Properties of Definite Integration 79 35.3 Approximation 79 35.4 Sum of Infinite Series as a Definite Integral 80 36 Reduction Formulae 81 37 Multiple Integrals 83 37.1 Two Variables 83		<u> </u>	
35 Definite Integral 79 35.1 Definition 79 35.2 Properties of Definite Integration 79 35.3 Approximation 79 35.4 Sum of Infinite Series as a Definite Integral 80 36 Reduction Formulae 81 37 Multiple Integrals 83 37.1 Two Variables 83			78
35.1 Definition 79 35.2 Properties of Definite Integration 79 35.3 Approximation 79 35.4 Sum of Infinite Series as a Definite Integral 80 36 Reduction Formulae 81 37 Multiple Integrals 83 37.1 Two Variables 83		34.5.1 Integration by Part	78
35.1 Definition 79 35.2 Properties of Definite Integration 79 35.3 Approximation 79 35.4 Sum of Infinite Series as a Definite Integral 80 36 Reduction Formulae 81 37 Multiple Integrals 83 37.1 Two Variables 83	35	Definite Integral	79
35.3 Approximation 79 35.4 Sum of Infinite Series as a Definite Integral 80 36 Reduction Formulae 81 37 Multiple Integrals 83 37.1 Two Variables 83			79
35.3 Approximation 79 35.4 Sum of Infinite Series as a Definite Integral 80 36 Reduction Formulae 81 37 Multiple Integrals 83 37.1 Two Variables 83		35.2 Properties of Definite Integration	79
35.4 Sum of Infinite Series as a Definite Integral 80 36 Reduction Formulae 81 37 Multiple Integrals 83 37.1 Two Variables 83			79
37 Multiple Integrals 83 37.1 Two Variables			
37.1 Two Variables	36	Reduction Formulae	81
37.1 Two Variables	37	Multiple Integrals	83
	- •		

CONTENTS	vii

38	Differential Equation	85
	38.1 1 st Order, 1 st Degree Differential Equation	85
	38.2 2 nd Order, 1 st Degree Differential Equation	85
	38.3 Special Cases of Differential Equation	86
	38.3.1 Definition of Inverse Operator	86
	38.3.2 Special Cases	86
	38.4 Method of Variation of Parameters	87
	38.5 Singular and Ordinary Point	88
39	Beta and Gamma Functions	89
	39.1 Important Relations between $\beta(m,n)$ and $\Gamma(n)$ Functions $% \alpha =1$.	89
40	Laplace Transformations	91
	40.1 Basic Transformations	91
	40.2 Important Relations	92
	40.3 Convolution	92
	40.4 Laplace Transforms of Differentials	92
V]	I Operations Research	93
41	Linear Programming Problems	94
	41.1 Basic Feasible Solution	94
	41.1.1 Adjacent Basic Feasible Solutions	95
	41.2 Simplex Method	95

Part I Algebra

Logarithm

1.1 Basic Formulae

For $a^x = b$:

$$\log_a x$$
, for all $x \le 0$ is undefined (1.1)

$$\log_a b = x, \ bax \neq 1, \ a \neq 1 \tag{1.2}$$

$$\log_b a^m = m \log_b a, \text{ for } a^m = b \tag{1.3}$$

$$a^{\log_a x} = x \tag{1.4}$$

$$a^{\log_b c} = c^{\log_b a} \tag{1.5}$$

$$\frac{1}{\log_a b} = \log_b a \tag{1.6}$$

$$\log_c(ab) = \log_c a + \log_c b \tag{1.7}$$

$$\log_c(\frac{a}{b}) = \log_c a - \log_c b \tag{1.8}$$

$$|\log_a x| = \begin{cases} -\log_a x, & \text{if } 0 < x < 1\\ \log_a x, & \text{if } 1 \le x < \infty \end{cases}$$
 (1.9)

1.2 Series

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{i=0}^{\infty} \frac{x^i}{i!}$$
 (1.10)

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots = \sum_{i=1}^{\infty} (-1)^{(i-1)} \frac{x^i}{i}$$
 (1.11)

Complex Number

2.1 Basic Formulae

For z = x + iy,

$$|z| = \sqrt{x^2 + y^2} \tag{2.1}$$

$$\tan \theta = \frac{y}{x} \tag{2.2}$$

$$\bar{z} = x - iy \tag{2.3}$$

2.2 Arithmetic Operation of Complex Number

For two complex numbers $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$:

$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$$
(2.4)

$$z_1 \cdot z_2 = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1) \tag{2.5}$$

$$|z_1 \cdot z_2| = |z_1| \cdot |z_2| \tag{2.6}$$

$$\frac{z_1}{z_2} = \frac{(x_1x_2 + y_1y_2) + i(x_2y_1 - x_1y_2)}{a_2^2 + b_2^2}$$
 (2.7)

$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|} \tag{2.8}$$

2.3 Euler's Formula

$$z = re^{i\theta}$$
, where $r = |z|$, $e^{i\theta} = \cos \theta + i \sin \theta$, and $\theta = \tan^{-1} \frac{y}{x}$ (2.9)

2.4 Trigonometric Ratios in Complex Form

$$e^{i\theta} + e^{-i\theta} = 2\cos\theta \tag{2.10}$$

$$\implies \cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} \tag{2.11}$$

$$e^{i\theta} - e^{-i\theta} = 2\sin\theta \tag{2.12}$$

$$\implies \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2} \tag{2.13}$$

2.5 De Moivre's Formula

$$(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta) \tag{2.14}$$

2.6 Application of Euler's and De Moivre's Formula

For $z_1 = r_1 e^{i\theta_1}$ and $z_2 = r_2 e^{i\theta_2}$

$$z_1 \cdot z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)} \tag{2.15}$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)} \tag{2.16}$$

2.7 Roots of Unity

$$\sqrt[n]{1} = e^{i\frac{2k\pi}{n}}, \text{ where } k \in [0, n-1]$$
 (2.17)

2.8 Important Relations of Complex Numbers

$$|z_1 + z_2| \le |z_1| + |z_2| \tag{2.18}$$

$$|z_1 - z_2| \le |z_1| + |z_2| \tag{2.19}$$

$$|z_1 - z_2| \ge |z_1| - |z_2| \tag{2.20}$$

$$|z_1 + z_2| \ge ||z_1| - |z_2|| \tag{2.21}$$

$$|z_1 + z_2|^2 = 2(|z_1|^2 + |z_2|^2) (2.22)$$

Progression

3.1 Arithmetic Progression (A.P.)

An arithmetic sequence is $a, a+n, a+2n, \ldots$ or $t_n=a+(n-1)d$, where a is the first term, d is the common difference, and n is the n^{th} -term.

An arithmetic series is $a + (a + d) + (a + 2d) + \dots$

3.1.1 Sum of A.P. Series

$$S_n = a + (a+d) + \dots + (a+\overline{n-2}d) + (a+\overline{n-1}d)$$

$$S_n = (a+\overline{n-1}d) + (a+\overline{n-2}d + \dots + (a+d) + a$$

$$\implies 2S_n = n(2a+\overline{n-1}d)$$

$$\implies S_n = \frac{n}{2}(2a+\overline{n-1}d)$$
(3.1)

3.1.2 Important Relation

If the three terms a, b, c are in A.P., then

$$2b = a + c \tag{3.2}$$

3.2 Geometric Progression (G.P.)

An geometric sequence is a, ar, ar^2, \ldots or $t_n = ar^{n-1}$, where a is the first term, r is the common ratio, and n is the n^{th} -term.

An geometric series is $a + ar + ar^2 + ... \infty$.

3.2.1 The Value of 'r'

$$r = \frac{t_2}{t_1} = \frac{t_3}{t_2} = \dots = \frac{t_n}{t_{n-1}}$$
 (3.3)

3.2.2 Sum of a G.P. Series

For a definite G.P. series, where there are n terms in the series, the sum of the series is:

$$S_n = \frac{a|r^n - 1|}{|r - 1|} \tag{3.4}$$

For an infinite G.P. series the sum of the series is defined for r < 1. Sum of such a series is:

$$S_{\infty} = \frac{a}{1 - r} \tag{3.5}$$

3.2.3 Important relations

If the three terms a, b, c are in G.P., then:

$$b^2 = ac (3.6)$$

3.3 Harmonic Progression (H.P.)

If a, b, c are terms of an H.P. then $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A.P.

$$\frac{2}{b} = \frac{1}{a} + \frac{1}{c} \tag{3.7}$$

$$\implies b = \frac{2ac}{a+c} \tag{3.8}$$

3.4 Arithmetico-Geometric Progression (A.G.P.)

Sequence $a, (a+d)r, (a+2d)r^2, \ldots, (a+\overline{n-1}d)r^{n-1}$, where a is first term of A.G.P., d is the common difference, and r is the common ratio.

3.4.1 Sum of A.G.P.:

For an infinite A.G.P. series, the sum is defined for r < 1:

$$S_{\infty} = \frac{a}{1-r} + \frac{dr}{(1-r)^2} \tag{3.9}$$

3.5 Special Series

For $n \in \mathbb{N}$

$$1 + 2 + 3 + \dots + (n-1) + n = \frac{n(n-1)}{2}$$
 (3.10)

$$1^{2} + 2^{2} + 3^{2} + \dots + (n-1)^{2} + n^{2} = \frac{n(n+1)(2n+1)}{6}$$
 (3.11)

$$1^{3} + 2^{3} + 3^{3} + \dots + (n-1)^{3} + n^{3} = \left\lceil \frac{n(n-1)}{2} \right\rceil^{2}$$
 (3.12)

3.5.1 Riemann Zeta Function

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \tag{3.13}$$

3.5.2 Riemann's Infinite Series as an Integration

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=r_1}^{r_2} f\left(\frac{i}{n}\right) = \int_{r_1/n}^{r_2/n} f(x) \, dx \tag{3.14}$$

Test of Convergence of Infinite Series

If $a_1, a_2, a_3, \ldots, a_n$ is a sequence by a_n and their sum of series is S_n , then the following apply.

4.1 Definition

If

$$\lim_{n\to\infty} S_n = l$$

where l is a finite value, the series S_n is said to converge. A non-convergent series is called a divergent series.

4.2 Tests of Convergence

4.2.1 Comparison Test

If u_n and v_n are two positive series, then:

- 1. (a) v_n converges
 - (b) $u_n \leq v_n \forall n$ Then u_n converges.
- 2. (a) v_n diverges
 - (b) $u_n \ge v_n \forall n$ Then u_n diverges.

4.2.2 Limit Form

If

$$\lim_{x\to\infty}\frac{u_n}{v_n}=l$$

where l is a finite quantity $\neq 0$, then u_n and v_n converge and diverge together.

4.2.3 Integral Test or Maclaurin-Cauchy Test

For a series

$$\sum_{i=N}^{\infty} f(x), \text{ where } N \in \mathbb{Z}$$
 (4.1)

will only converge if the improper integral

$$\int_{N}^{\infty} f(x)dx \tag{4.2}$$

is finite.

If the improper integral is finite, the upper and lower limit of the infinite series is given by:

$$\int_{N}^{\infty} f(x)dx \le \sum_{i=N}^{\infty} f(x) \le f(N) + \int_{N}^{\infty} f(x)dx \tag{4.3}$$

4.2.4 Ratio Test

If, for two series $\sum u_n$ and $\sum v_n$:

- 1. (a) $\sum v_n$ converges
 - (b) from or after a particular term $\frac{u_n}{u_{n+1}} > \frac{v_n}{v_{n+1}}$, then u_n converges.
- 2. (a) $\sum v_n$ diverges
 - (b) from or after a particular term $\frac{u_n}{u_{n+1}} < \frac{v_n}{v_{n+1}}$, then u_n diverges.

4.2.5 D'Alembert's Ratio Test

$$\lim_{n \to \infty} \frac{u_n}{u_{n+1}} = \lambda \tag{4.4}$$

- series converges if $\lambda < 1$
- series diverges if $\lambda > 1$
- fails if $\lambda = 1$

4.2.6 Rabbe's Test

$$\lim_{n \to \infty} n\left[\frac{u_n}{u_{n+1}} - 1\right] = \kappa \tag{4.5}$$

- series converges if $\kappa < 1$
- series diverges if $\kappa > 1$
- fails if $\kappa = 1$

4.2.7 Cauchy's Root Test

$$\lim_{n \to \infty} |u_n| = \lambda \tag{4.6}$$

- series converges for $\lambda < 1$
- series diverges for $\lambda > 1$
- test fails for $\lambda = 1$

4.2.8 Logarithmic Test

$$\lim_{n \to \infty} n \log(\frac{u_n}{u_{n+1}}) = \kappa \tag{4.7}$$

- series converges for $\kappa < 1$
- series diverges for $\kappa > 1$
- test fails for $\kappa = 1$

Determinants

5.1 Definition

For a determinant:

$$\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix}$$
 (5.1)

5.1.1 Minor and Cofactor

For a third order determinant $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$, the minor of a_{11} is $M_{11}=$

 $\begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix}$, i.e., all the terms of the determinant expect those in the same row and columns as the one of which the minor is being calculated.

Cofactor $C_{ij} = (-1)^{i+j} M_{ij}$

5.2 Important Properties

- 1. Transposing a determinant does not alter its value.
- 2. If rows and columns are interchanges m times, the value of the new determinant is

$$\Delta' = (-1)^m \Delta \tag{5.2}$$

3. If two parallel lines are equal, then $\Delta = 0$

4. For
$$\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
 and $\Delta_1 = \begin{vmatrix} ka_1 & kb_1 & kc_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$, then $\Delta_1 = k\Delta$

5. For
$$\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
 and $\Delta_1 = \begin{vmatrix} ka_1 & b_1 & c_1 \\ ka_2 & b_2 & c_2 \\ ka_3 & b_3 & c_3 \end{vmatrix}$, then $\Delta_1 = k\Delta$

6. For
$$C_n \to k_1 C_l + k_2 C_m + k_3 C_n$$
 or $R_n \to k_1 R_l + k_2 R_m + k_3 R_n$, $\Delta' = \Delta$

5.3 Cramer's Rule

For a system of equations:

$$a_1x + b_1y + c_1z = d_1$$

 $a_2x + b_2y + c_2z = d_2$
 $a_3x + b_3y + c_3z = d_3$

the following determinants are defined:

$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

$$D_x = \begin{vmatrix} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end{vmatrix}$$

$$D_y = \begin{vmatrix} a_1 & d_1 & c_1 \\ a_2 & d_2 & c_2 \\ a_3 & d_3 & c_3 \end{vmatrix}$$

$$D_z = \begin{vmatrix} a_1 & b_1 & d_1 \\ a_2 & b_2 & d_2 \\ a_3 & b_3 & d_3 \end{vmatrix}$$

The solution of the system of equations is:

$$x = \frac{D_x}{D} \tag{5.3}$$

$$y = \frac{D_y}{D} \tag{5.4}$$

$$z = \frac{D_z}{D} \tag{5.5}$$

5.3.1 Consistency Test

- 1. If $D \neq 0$, the system is consistent and has unique solutions.
- 2. If $D = D_x = D_y = D_z = 0$, the system may or may not be consisten and it will have infinite solutions and the system will be dependent.
- 3. If D=0 and at least one of D_x,D_y,D_z is non zero, the system is inconsistent

Matrices

For a matrix,

$$A_{m \times n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

and where I_p is an identity matrix of the p^{th} order, the following relations are applicable.

6.1 Sum of Two Matrices

$$A_{m \times n} + B_{m \times n} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{21} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{bmatrix}$$
(6.1)

6.2 Multiplication of Two Matrices

If

$$C_{m \times p} = A_{m \times n} \cdot B_{n \times p}$$

then,

$$c_{ik} = \sum_{j=1}^{n} a_{ij} b_{jk} \tag{6.2}$$

6.2.1 Multiplicative Properties

- 1. Multiplication of matrices is associative, hence (AB)C = A(BC).
- 2. AI = A
- 3. $A \cdot A^{-1} = I$

4.
$$A \cdot (adjA) = (adjA) \cdot A = |A|I$$

5.
$$A^{-1} = \frac{1}{|A|} (adjA)^t$$

6.
$$(AB)^t = B^t A^t$$

6.3 Adjoint of a Matrix

$$adjA = \begin{bmatrix} M_{11} & M_{12} & \cdots & M_{1n} \\ M_{21} & M_{22} & \cdots & M_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ M_{m1} & M_{m2} & \cdots & M_{mn} \end{bmatrix}^{t}, \text{ where } M_{ij} \text{ is the minor of } a_{ij} \quad (6.3)$$

6.4 Martin's Rule

For a system of equation,

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_n$$

The system can be written as:

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

$$(6.4)$$

$$\Rightarrow AX = B \tag{6.5}$$

$$\Rightarrow X = A^{-1}B \tag{6.6}$$

Binomial Theorem

For a binomial expansion $(a+b)^n$, there are (n+1) terms and $(a+b+c)^n$ has $\frac{(n+1)(n+2)}{2}$ terms.

7.1 Expansion of a binomial expression

$$(a+b)^{n} = {}^{n}C_{0}a^{n}b^{0} + {}^{n}C_{1}a^{n-1}b^{1} + {}^{n}C_{2}a^{n-2}b^{2} + \cdots + {}^{n}C_{n}a^{0}b^{n} \ \forall n \in \mathbb{N}$$

$$= \sum_{i=0}^{n} {}^{n}C_{i}a^{n-i}b^{i} \ \forall n \in \mathbb{N}$$
(7.1)

$$(a+b)^{n} = a^{n}b^{0} + na^{n-1}b + \frac{n(n-1)}{2!}a^{n-2}b^{2} + \dots + \frac{n(n-1)\cdots 3\cdot 2\cdot 1}{n!}a^{0}b^{n} + \dots \infty \ \forall n \in \mathbb{R}$$

$$(7.2)$$

7.2 Trinomial Expansion

For $(a+b+c)^n$:

$$(a+b+c+)^n = \sum \frac{n!}{i!j!k!} a^i b^j c^k$$

$$\forall (i+j+k) = n; i,j,k,n \in \mathbb{N}$$

$$(7.3)$$

7.3 Properties of Coefficients

Sum of Co-efficients:
$$C_0 + C_1 + C_2 + \dots + C_{n-1} + C_n = 2^n$$
 (7.4)

Sum of Odd Co-efficients:
$$C_0 + C_2 + C_4 + \dots + C_{2n-3} + C_{2n-1} = 2^{n-1}$$
 (7.5)

$$C_0 - C_1 + C_2 - \dots + C_{2n-1} - C_{2n} = 0$$
 (7.6)

7.4 Pascal's Rule

For $1 \le k \le n$ and $k, n \in \mathbb{N}$:

$$\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k} \tag{7.7}$$

Boolean Algebra

Let B be a set of a, b, c with operations sum (+) and product (\cdot) . Then B is said to belong to the Boolean Structure if the following conditions are satisfied:

Property	Name of Property	
$a+b \in B$		
$a \cdot b \in B$	Closure Property	
a + b = b + a		
$a \cdot b = b \cdot a$	Associative Law	
a(b+c) = ab + ac		
a + bc = (a+b)(a+c)	Commutative Law	
$\{0,1\} \in B$		
a + 0 = a		
a + 1 = 1		
$a \cdot 0 = 0$		
$a \cdot 1 = a$	Laws of 1 and 0	
a + ab = a		
a(a+b) = a	Absorption Law	
(a+b)' = (a'b')	De Morgan's Law	

Table 8.1: Properties of Boolean Algebraic Structure

Remainder Theorems

9.1 Remainder Theorem

If a function f(x) is divided by a binomial x - a, then the remainder is provided by f(a).

$$\frac{f(x)}{x-a} \equiv f(a) \mod (x-a) \tag{9.1}$$

Worked Example

Find the remainder when $f(x) = x^3 - 4x^2 - 7x + 10$ is divided by (x - 2). The remainder:

$$R = (x^3 - 4x^2 - 7x + 10) \mod (x - 2)$$

is given by:

$$R = f(2) = (2)^3 - 4(2)^2 - 7(2) + 10$$
$$= 8 - 16 - 14 + 10 = -12$$

9.2 Euler's Remainder Theorem

According to Euler's Remainder Theorem, if x and n are two co-prime numbers:

$$x^{\varphi(n)} \equiv 1 \mod n, x, n \in \mathbb{Z}^+ \tag{9.2}$$

where, $\varphi(n)$ is Euler's totient function.

9.2.1 Euler's Totient Function

For a number defined as:

$$n = \prod_{i=1}^{r} a_r^{b_r} \tag{9.3}$$

then Euler's totient function is defined as:

$$\varphi(n) = n \cdot \left[\left(1 - \frac{1}{a_1} \right) \cdot \left(1 - \frac{1}{a_2} \right) \cdot \left(1 - \frac{1}{a_3} \right) \cdots \right]$$

$$= n \prod_{i=1}^r \left(1 - \frac{1}{a_r} \right)$$
(9.4)

Worked Example

Find the remainder if 3^{76} is divided by 35. Since:

$$35 = 5^1 \times 7^1$$

Hence the totient quotient of 35 is:

$$\varphi(35) = 35 \cdot \left(1 - \frac{1}{5}\right) \cdot \left(1 - \frac{1}{7}\right)$$
$$= 35 \times \frac{4}{5} \times \frac{6}{7}$$
$$= 24$$

Hence Euler's Theorem yields:

$$3^{24} \equiv 1 \mod 35$$

$$3^{76} \equiv 3^{24 \times 3 + 4}$$

$$\equiv (3^{24})^3 \times 3^4 \mod 35$$

$$\equiv (1)^3 \times 3^4 \mod 35$$

$$\equiv 81 \mod 35$$

$$\equiv 11 \mod 35$$

The remainder when 3^{76} is divided by 35 is 11.

9.3 Wilson Theorem

According to Wilson Theorem:

$$(n-1)! \equiv -1 \mod n \tag{9.5}$$

Worked Example

Find the remainder when 28! is divided by 31.

By Wilson's Theorem:

$$30! \equiv -1 \mod 31$$

$$\Rightarrow 30 \cdot 29 \cdot 28! \equiv -1 \mod 31$$
Let 28! mod 31
$$= x$$

$$\Rightarrow (-1) \cdot (-2) \cdot x \equiv 30 \mod 31$$

$$\Rightarrow 2x = 30$$

$$\Rightarrow x = 15$$

The remainder when 28! is divided by 31 is 15.

Part II Co-Ordinate Geometry

2-D Co-ordinate Geometry

For the ordered pairs, $A(x_1, y_1)$ and $B(x_2, y_2)$:

$$AB = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$
 (10.1)

Mid point of AB =
$$(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$$
 (10.2)

Point C, which divides AB in the ratio
$$m: n = (\frac{nx_1 + mx_2}{m+n}, \frac{ny_1 + my_2}{m+n})$$
 (10.3)

Triangles

For a triangle defined with three vertices $A(x_1, y_1), B(x_2, y_2), C(x_3, y_3)$ and corresponding sides of length a, b, c, then:

Centroid of
$$\triangle ABC = (\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3})$$
 (11.1)

Area of
$$\triangle ABC = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$
 (11.2)

For a triangle, the semiperimeter, s, is defined as:

$$s = \frac{a+b+c}{2}$$

Then the radius, r, and centre of incircle, o, is:

$$o = \left(\frac{ax_1 + bx_2 + cx_3}{a + b + c}, \frac{ay_1 + by_2 + cy_3}{a + b + c}\right)$$
(11.3)

$$r = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}}$$
 (11.4)

The radius, R, and centre, O, of circumcircle is defined as:

$$O = \left(\frac{x_1 \sin 2A + x_2 \sin 2B + x_3 \sin 2C}{\sin 2A + \sin 2B + \sin 2C}, \frac{y_1 \sin 2A + y_2 \sin 2B + y_3 \sin 2C}{\sin 2A + \sin 2B + \sin 2C}\right)$$
(11.5)

$$2R = \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \tag{11.6}$$

Straight Line

A straight line can be defined as:

$$y = mx + c \tag{12.1}$$

 $\frac{x}{a} + \frac{y}{b} = 1$, where a and b are the intercepts at x and y axes respectively (12.2)

$$x \cos \alpha + y \sin \alpha = p$$
 (Normal Form) (12.3)

$$Ax + By + C = 0$$
 (General Form) (12.4)

Equation of Straight Line Passing Through (x_0, y_0) and Slope m

$$(y - y_0) = m(x - x_0) (12.5)$$

Distance Between Two Points on a Line

$$\frac{y_1 - y_2}{\sin \theta} = \frac{x_1 - x_2}{\cos \theta} = \gamma \tag{12.6}$$

$$\theta = \tan^{-1} m \tag{12.7}$$

Angle Between Two Lines For two lines with slopes m_1, m_2 , the angle between them, θ :

$$\theta = \arctan\left(\frac{m_1 - m_2}{1 + m_1 m_2}\right) \tag{12.8}$$

Distance of a Point from a Line Line: ax + by + c = 0 Point: (g, h)

$$S = \frac{ag + bh + c}{\sqrt{a^2 + b^2}} \tag{12.9}$$

Angle Bisector of a Line For the two lines: $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$, the angle bisector is:

$$\frac{a_1x + b_1y + c_1}{\sqrt{a_1^2 + b_1^2}} = \frac{a_2x + b_2y + c_2}{\sqrt{a_2^2 + b_2^2}}$$
(12.10)

If the sign of c_1 and c_2 is the same, then the equation obtained is the internal bisector.

Equation of a Straight Line Passing through the Intersection of Two Lines

$$(a_1x + b_1y + c_1) + k(a_2x + b_2y + c_2) = 0 \ \forall k \in \mathbb{R}$$
 (12.11)

Relative Position of Points w.r.t. a Line For the points (x_1, y_1) and (x_2, y_2) :

$$k_1 = ax_1 + by_1 + c$$
$$k_2 = ax_2 + by_2 + c$$

If k_1 and k_2 have the same sign, they are on the same side of a line, otherwise on opposite sides.

Ratio of Division of Line Segment For any line, f(x, y) = 0, the ratio in which it divides (x_1, y_1) and (x_2, y_2) is given by:

$$r = -\frac{f(x_1, y_1)}{f(x_2, y_2)} \tag{12.12}$$

If $\begin{cases} r > 0, \text{ then division is internal} \\ r < 0, \text{ then division is external} \end{cases}$

General Theory of Second Degree Equation

For any general equation of the form:

$$ax^{2} + by^{2} + 2gx + 2fy + 2hxy + c = 0 (13.1)$$

 Δ is defined as:

$$\Delta = \begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix}$$
 (13.2)

If $\Delta=0$ then the equation is a pair of straight lines. If a+b=0 then the lines are \perp .

If the $\Delta \neq 0$:

- 1. $a = b, h = 0 \rightarrow \text{circle}$
- 2. $h^2 = ab \rightarrow parabola$
- 3. $h^2 < ab \rightarrow \text{ellipse}$
- 4. $h^2 > ab \rightarrow \text{hyperbola}$

Conics

The four conic sections are: circle, parabola, ellipse, and hyperbola. Circle has been done separately in the next chapter.

14.1 Parabola

Property	$y^2 = 4ax$	$x^2 = 4ay$
Axis	y = 0	x = 0
Eccentricity	1	1
Directrix	x + a = 0	y + a = 0
Focus	(a,0)	(0,a)
Vertex	(0, 0)	(0, 0)
Length of latus rectum	4a	4a
Equation of latus rectum	x - a = 0	y - a = 0

Table 14.1: Properties of a Parabola

14.2 Ellipse and Hyperbola

For a > b:

14.3 Parametric Form of Conics

14.3.1 Hyperbola

$$x = a \sec \theta \tag{14.1}$$

$$y = b = \tan \theta \tag{14.2}$$

Property	Ellipse $\frac{x^2}{a} + \frac{y^2}{b} = 1$	
Length of Major Axis	2a	2a
Length of Minor Axis	2b	2b
Equation of Major Axis	x = 0	x = 0
Equation of Minor Axis	y = 0	y = 0
Eccentricity e	$\sqrt{1-rac{b^2}{a^2}}$	$\sqrt{1+rac{b^2}{a^2}}$
Vertices	$(\pm a,0)$	$(\pm a,0)$
Foci	$(\pm ae,0)$	$(\pm ae,0)$
Equation of Directrix	$x \pm \frac{a}{e} = 0$	$x = \pm \frac{a}{e}$
Length of latus rectum	$\frac{2b^2}{a}$	$\frac{2b^2}{a}$
Equation of latus rectum	$x \pm ae = 0$	
Centre	(0,0)	(0,0)

Table 14.2: Properties of Ellipse and Hyperbola

14.3.2 Ellipse

$$x = a\cos\phi\tag{14.3}$$

$$y = b\sin\phi \tag{14.4}$$

14.3.3 Parabola

$$x = at^2 (14.5)$$

$$y = 2at (14.6)$$

Circles

15.1 Locus Form

$$(x-g)^2 + (y-h)^2 = r^2 (15.1)$$

where the centre is (g,h) and the radius is r.

15.2 Diameter Form

$$(x-a)(x-c) + (y-b)(y-d) = 0 (15.2)$$

where (a, b) and (c, d) are the two ends of the diamter.

15.3 General Form

If the equation of a circle is in the form:

$$x^2 + y^2 + 2gx + 2fy + c = 0 (15.3)$$

Then the following is true about the circle:

- 1. centre of the circle is (-g, -f)
- 2. radius of circle is $\sqrt{g^2 + f^2 c}$

15.4 Important Relations

- 1. If the circle passes through the origin, g = 0, f = 0.
- 2. If the circle touches the x-axis $c = g^2$.
- 3. If the circle touches the y-axis $c = f^2$.

Common for Two Circles

1. The common chord passing between two circles \mathcal{S}_1 and \mathcal{S}_2 are:

$$S_1 - S_2 = 0 (15.4)$$

2. Circles passing through the intersection of two circles is:

$$S_2 + k(S_1 - S_2) = 0 \ \forall k \in \mathbb{R}$$
 (15.5)

Vectors

Let two vectors be $\vec{a}=a\hat{i}+b\hat{j}+c\hat{k}$ and $\vec{b}=x\hat{i}+y\hat{j}+z\hat{k}$:

16.1 Modulus of a Vector

For a vector \vec{a} , the modulus of the vector is:

$$|\vec{a}| = \sqrt{a^2 + b^2 + c^2} \tag{16.1}$$

16.2 Sum of Vectors

The sum of two vectors is:

$$|\vec{a} + \vec{b}| = \sqrt{|\vec{a}|^2 + |\vec{b}|^2 + 2|\vec{a}||\vec{a}|\cos\theta}$$
 (16.2)

$$\vec{a} + \vec{b} = (a+x)\hat{i} + (b+y)\hat{j} + (c+z)\hat{k}$$
 (16.3)

The direction of the resultant vector is:

$$\tan \alpha = \frac{b \sin \theta}{a + b \cos \theta} \tag{16.4}$$

where, θ is the angle between the two vectors.

16.3 Product of Vectors

16.3.1 Dot Product

$$\vec{a} \cdot \vec{b} = |a||b|\cos\theta \tag{16.5}$$

$$\vec{a} \cdot \vec{b} = ax + by + cz \tag{16.6}$$

16.3.2 Cross Product

$$\vec{a} \times \vec{b} = |a||b|\sin\theta\hat{n} \tag{16.7}$$

where \hat{n} is a vector $\perp \vec{a}, \vec{b}$.

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a & b & c \\ x & y & z \end{vmatrix}$$
 (16.8)

16.4 Test of Co-planarity

Three vectors are called co-planar if:

$$\lambda \vec{a} + \mu \vec{b} = \vec{c} \tag{16.9}$$

$$(\vec{a} \times \vec{b}) \cdot \vec{c} = 0 \tag{16.10}$$

3-D Geometry

17.1 Distance between two points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$

$$AB = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$
 (17.1)

17.2 Section Formula of a Line Segment Divided in the ratio m:n

$$P = \left(\frac{nx_1 + mx_2}{m+n}, \frac{ny_1 + my_2}{m+n}, \frac{nz_1 + mz_2}{m+n}\right)$$
(17.2)

17.3 Centroid of a Triangle

$$G = \left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}, \frac{z_1 + z_2 + z_3}{3}\right)$$
(17.3)

Line in 3-D Space

For a line which is defined as $\vec{a} = a\hat{i} + b\hat{j} + c\hat{k}$:

1. Line numbers of the line is

$$\langle a, b, c \rangle \tag{18.1}$$

2. The line cosines are:

$$<\frac{a}{\sqrt{a^2+b^2+c^2}}, \frac{b}{\sqrt{a^2+b^2+c^2}}, \frac{c}{\sqrt{a^2+b^2+c^2}}>$$
 (18.2)

$$= \langle l, m, n \rangle \tag{18.3}$$

18.1 Angle between Two Lines

$$\cos \theta = \frac{a_1 a_2 + b_1 b_2 + b_1 b_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$$
(18.4)

$$\Rightarrow \cos \theta = l_1 l_2 + m_1 m_2 + n_1 n_2 \tag{18.5}$$

When two lines are \perp , $l_1l_2 + m_1m_2 + n_1n_2 = 0$. When two lines are $\parallel \frac{l_1}{l_2} = \frac{m_1}{m_2} = \frac{n_1}{n_2} = 1$.

18.2 Skew and Co-planar Lines

Let there be two lines $\vec{r_1}$ and $\vec{r_2}$,

$$\vec{r_1} = \vec{a_1} + \mu \vec{b_1} \vec{r_2} = \vec{a_2} + \lambda \vec{b_2} \tag{18.6}$$

18.3 Distances

18.3.1 The shortest distance between r_1 and r_2

$$S = \left| \frac{(\vec{a_1} - \vec{a_2}) \cdot (\vec{b_1} \times \vec{b_2})}{|\vec{b_1} \times \vec{b_2}|} \right|$$
(18.7)

If S = 0, the lines intersect.

18.3.2 Cartesian Form

For two lines defined as $\frac{x-x_1}{a_1}=\frac{y-y_1}{b_1}=\frac{z-z_1}{c_1}$ and $\frac{x-x_2}{a_2}=\frac{y-y_2}{b_2}=\frac{z-z_2}{c_2}$:

$$S = \begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}$$
 (18.8)

18.3.3 Distance Between Parallel Lines

$$S = \left| \frac{\vec{b} \cdot (\vec{a_2} - \vec{a_1})}{|\vec{b}|} \right| \tag{18.9}$$

18.3.4 Distance of a Point to a Line

For a point, (x_1, y_1, z_1) the distance to a line $\frac{x - \alpha}{l} = \frac{y - \beta}{m} = \frac{z - \gamma}{n}$:

$$S = \left(\begin{vmatrix} x_1 - \alpha & y_1 - \beta \\ l & m \end{vmatrix} + \begin{vmatrix} y_1 - \beta & z_1 - \gamma \\ m & n \end{vmatrix} + \begin{vmatrix} z_1 - \gamma & x_1 - \alpha \\ n & l \end{vmatrix} \right)^{\frac{1}{2}}$$
 (18.10)

3-D Plane

A plane in 3-D space can be defined as:

1. Cartesian Form:

$$ax + by + cz + d = 0$$
 (19.1)

2. Vectorial Form:

$$\vec{r} \cdot \vec{n} = p \tag{19.2}$$

, where \vec{r} is a line on the plane, \vec{n} is a normal to the plane, and p is perpendicular distance to the plane from the origin.

19.1 Angle Between Two Planes

For two planes, $\vec{r_1} \cdot \vec{n_1} = p_1$ and $\vec{r_2} \cdot \vec{n_2} = p_2$, the angle between the planes, θ is:

$$\cos \theta = \frac{\vec{n_1} \cdot \vec{n_2}}{|\vec{n_1}||\vec{n_2}|} \tag{19.3}$$

In the Cartesian Form:

$$\cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$$
(19.4)

19.2 Distance of a Point from a Plane

19.2.1 Catesian Form

For the point (p, q, r) and the plane, ax + by + cz + d = 0:

$$S = \frac{ap + bq + cr + d}{\sqrt{a^2 + b^2 + c^2}}$$
 (19.5)

19.2.2 Vector Form

For the point $\vec{g} = p\hat{i} + q\hat{j} + r\hat{k}$ and the plane $\vec{r} \cdot (a\hat{i} + b\hat{j} + c\hat{k}) + d = 0$:

$$S = \frac{(a\hat{i} + b\hat{j} + c\hat{k}) \cdot (p\hat{i} + q\hat{j} + r\hat{k})}{\sqrt{a^2 + b^2 + c^2}}$$
(19.6)

$$\Rightarrow S = \frac{(a\hat{i} + b\hat{j} + c\hat{k}) \cdot \vec{g}}{|a\hat{i} + b\hat{j} + c\hat{k}|}$$
(19.7)

Part III Statistics

Descriptive Statistics

20.1 Measure of Location

20.1.1 Mean

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{20.1}$$

20.1.2 Median

For odd number of elements in a dataset:

$$\tilde{x} = x_{\frac{n+1}{2}} \tag{20.2}$$

For even number of elements in a dataset:

$$\tilde{x} = \frac{x_{\frac{n}{2}} + x_{\left(\frac{n}{2} + 1\right)}}{2} \tag{20.3}$$

20.1.3 Mode

$$Mo(x) = \max(f(x_i)) \tag{20.4}$$

20.1.4 Quartile

Measure of percentage of elements less than or equal to a term

20.2 Measure of Spread

20.2.1 Variance

Variance measured on the whole population

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$
 (20.5)

20.2.2 Sample Variance

Variance measured on a sample population

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$
 (20.6)

20.2.3 Standard Deviation and Sample Standard

$$\sigma = \sqrt{\sigma^2} \tag{20.7}$$

$$s = \sqrt{s^2} \tag{20.8}$$

20.2.4 Co-efficient of Variance

$$v = \frac{s}{\bar{x}} \tag{20.9}$$

20.3 Skewness

20.3.1 Types of Skewness

Name	Other Name	Characteristic
Right Skew	Positive Skew	Data concentrated on the lower side
Symmetric Distribution	Normal Distribution	Data distributed evenly
Left Skew	Negative Skew	Data concentrated on the higher side

20.3.2 Measure of Skewness

Skewness is measured by the Moment Co-efficient of Skewness.

$$g_m = \frac{m_3}{s^3}$$
, where (20.10)

$$m_3 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^3$$
 (20.11)

Type of Skewness

The type of skewness from the value is g_m is:

Value of g_m	Type	
$g_m = 0$	Symmetric	
$g_m > 0$	Positive Skew	
$g_m < 0$	Negative Skew	

Degree of Skewness

The degree of skewness from the value is g_m is:

Value of g_m	Degree	
$ g_m > 1$	High Skewness	
$0.5 < g_m \ge 1$	Moderate Skewness	
$ g_m \le 0.5$	Low Skewness	

20.4 Kurtosis

Kurtosis is the measure of peakedness of data. Fisher's kurtosis measure is defined as:

$$\gamma = \frac{m_4}{s^4}, \text{ where}$$
 (20.12)

$$m_4 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^4$$
 (20.13)

20.4.1 Type of Kurtosis

The types of kurtosis from the value of γ are:

Value of γ	${\bf Type}$
$\gamma = 0$	Normal Distribution or Mesokurtic
$\gamma < 0$	Flattened or Platykurtic
$\gamma > 0$	Peaked or Lepokurtic

Hypothesis Testing

21.1 T-Test

$$T = \frac{\bar{X} - \mu}{\frac{s}{\sqrt{n}}} \tag{21.1}$$

where:

 $\bar{X} = \text{Sample Mean}$

 $\mu = Assumed Mean$

s = Number of Samples

n =Number of observations

If $T < t_c$ the H_0 is not rejected. t_c is a functions of level of significance (α) and degrees of freedom (v = n - 1).

21.2 χ^2 Test

$$\chi^2 = \sum_{i} \sum_{j} \frac{(h_{ij}^o - h_{ij}^e)^2}{h_{ij}^e}$$
 (21.2)

where:

 $h_e = \text{Expected Value}$

 $h_o = \text{Actual Value}$

If $\chi^2 < \chi_c^2$ then H_0 is not rejected. χ_c is a functions of level of significance (α) and degrees of freedom (v = (i-1)(j-1)).

Research and Survey Design

22.1 Population Covariance

$$Cov(x,y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_x)(y_i - \mu_y)$$
 (22.1)

22.2 Sample Covariance

$$Cov(x,y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$
 (22.2)

22.3 Bravais-Pearson Correlation Co-efficient

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \cdot \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$
(22.3)

$$= \frac{\operatorname{Cov}(x,y)}{\sqrt{\operatorname{Var}(x) \cdot \operatorname{Var}(y)}}$$
 (22.4)

$$=\frac{\operatorname{Cov}(x,y)}{\sigma_x \cdot \sigma_x} \tag{22.5}$$

22.4 Spearman's Rank Correlation Co-efficient

$$r_s = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)} \tag{22.6}$$

$$d_i = R(X_i) - R(Y_i) (22.7)$$

Estimation of Regression Function

For the regression functions:

$$Y_i = \beta_0 + \beta_1 X_1 \tag{23.1}$$

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_1 \tag{23.2}$$

(23.3)

where Y_i is the observed dependent variable (DV), \hat{Y}_i is the estimated DV, and X_i is the independent variable (IV).

$$u_i = Y_i - \hat{Y}_i \tag{23.4}$$

$$\Rightarrow Y_i = \hat{Y}_i + u_i \tag{23.5}$$

$$\Rightarrow Y_i = \hat{\beta}_0 + \hat{\beta}_1 X_1 + u_i \tag{23.6}$$

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i \tag{23.7}$$

The objective function is:

$$\begin{split} & \underset{u_i}{\min} \sum u_i = \min \sum_i \left[Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i \right]^2 \\ & \text{Since the regression function passes through: } \left(\bar{X}, \bar{Y} \right) \\ & \beta_0 = \bar{Y} - \hat{\beta}_1 \bar{X} \\ & \underset{u_i}{\min} \sum u_i = \min \sum_i \left[Y_i - \bar{Y} + \hat{\beta}_1 \bar{X} - \hat{\beta}_1 X_i \right]^2 \\ & = \min \sum_i \left[\left(Y_i - \bar{Y} \right) - \hat{\beta}_1 \left(X_i - \bar{X} \right) \right]^2 \\ & = \min \sum_i \left[\left(Y_i - \bar{Y} \right)^2 - 2 \cdot \left(Y_i - \bar{Y} \right) \cdot \hat{\beta}_1 \left(X_i - \bar{X} \right) + \hat{\beta}_1^{\ 2} \left(X_i - \bar{X} \right)^2 \right] \\ & = \min \left[\sum_i \left(Y_i - \bar{Y} \right)^2 - 2 \cdot \hat{\beta}_1 \sum_i \left(Y_i - \bar{Y} \right) \cdot \left(X_i - \bar{X} \right) + \hat{\beta}_1^{\ 2} \sum_i \left(X_i - \bar{X} \right)^2 \right] \\ & \Rightarrow u_i^{\beta_1} = -2 \sum_i \left(Y_i - \bar{Y} \right) + 2 \hat{\beta}_1 \left(X_i - \bar{X} \right)^2 = 0 \quad \text{(For optima Conditions)} \\ & \Rightarrow \hat{\beta}_1 = \left[\frac{\sum_i (Y_i - \bar{Y}) (X_i - \bar{X})}{\sum_i (X_i - \bar{X})^2} \right] \\ & \Rightarrow \hat{\beta}_0 = \left[\bar{Y} - \hat{\beta}_1 \bar{X} \right] \end{split}$$

23.1 Sum of Squares Error

$$TSS = \sum_{i} (Y_i - \bar{Y})^2$$

$$= \sum_{i} (\hat{Y}_i - \bar{Y}) + \sum_{i} u_i^2$$
Explained Sum of Square Error (ESS) Residual Sum of Squares Error (RSS) (23.9)

23.1.1 R^2 : Coefficient of Determination

$$R^2 = \frac{\text{ESS}}{\text{TSS}} \tag{23.10}$$

$$=1-\frac{RSS}{TSS} \tag{23.11}$$

$$=1-\frac{\sum_{i}u_{i}^{2}}{\sum_{i}(Y_{i}-\bar{Y})^{2}}$$
(23.12)

For a regression analysis with single IV:

$$\sqrt{R^2} = v$$

23.1.2 \bar{R}^2 : Coefficient of Determination

$$\bar{R}^2 = 1 - \frac{\sum_i u_i^2}{\frac{(N - K - 1)}{\sum_i (Y_i - \bar{Y})^2}}$$

$$\frac{\sum_i (Y_i - \bar{Y})^2}{(N - 1)}$$
(23.13)

where, N is the number of observations and K is the number of independent variables.

23.2 T-Test

Test for statistical significance of a single IV.

$$T = \frac{\hat{\beta}_1 - 0}{S_e(\hat{\beta}_1)} \tag{23.14}$$

23.3 F-Test

Test for statistical significance of all IVs together.

$$F = rac{rac{ ext{ESS}}{(K-1)}}{rac{ ext{RSS}}{(N-K)}}$$
 $(F \ge F_c, H_0 ext{ is rejected})$

23.4 Test for Heteroskedasticity

23.4.1 Definition

$$\sigma_{\epsilon_i} \forall \epsilon_i \in [X_a, X_b] = \sigma_{\epsilon_i} \forall \epsilon_i \in [X_{b+1}, X_c]$$

23.4.2 Durbin-Watson Test

$$d_e = \frac{\sum_{t=2}^{n} (\hat{u}_t - \hat{u}_{t-1})^2}{\sum_{t=2}^{n} \hat{u}_t^2}$$
 (23.15)

For the H_0 : No autocorrelation:

d	H_0
$0 \le d_e \le d_L \& (4 - d_L) \le d_e \le 4 \ d_L < d_e \le d_U \& (4 - d_U) < d_e \le (4 - d_L) \ d_L < d_e < D_U$	Rejected Decision Free Zone Not rejected

Dummy Variables

24.1 Dummy Variable

$$P_i = \beta_0 + \beta_1 S_1 + \beta_2 D_i + \epsilon_i \tag{24.1}$$

$$E(P_i) = \begin{cases} (\hat{\beta}_0 + \hat{\beta}_2) + \hat{\beta}_1 S_i, & D_i = 1\\ \hat{\beta}_0 + \hat{\beta}_1 S_i, & D_i = 0 \end{cases}$$
(24.2)

$$\frac{---\beta_0 + \beta_1 S_i}{---(\beta_0 + \beta_2) + \beta_1 S_i}$$

24.2 Slope Dummy Variable

$$P_{i} = \beta_{0} + \beta_{1} S_{1} + \beta_{2} (S_{i} \cdot D_{i}) + \epsilon_{i}$$
 (24.3)

$$E(P_i) = \begin{cases} \hat{\beta}_0 + (\hat{\beta}_1 + \hat{\beta}_2) S_i, & D_i = 1\\ \hat{\beta}_0 + \hat{\beta}_1 S_i, & D_i = 0 \end{cases}$$
 (24.4)

 $-\beta_0 + (\beta_1 + \beta_2)S_i$

24.3 Slope & Dummy Variable

$$P_{i} = \beta_{0} + \beta_{1}S_{1} + \beta_{2}D_{i} + \beta_{3}S_{i}D_{i} + \epsilon_{i}$$
 (24.5)

$$E(P_i) = \begin{cases} (\hat{\beta}_0 + \hat{\beta}_2) + (\hat{\beta}_1 + \hat{\beta}_3)S_i, & D_i = 1\\ \hat{\beta}_0 + \hat{\beta}_1S_i, & D_i = 0 \end{cases}$$
(24.6)

24.4 Multi-Categories Dummy Variable

$$P_{0} = b_{0} \begin{pmatrix} 1\\1\\1 \end{pmatrix} + b_{1} \begin{pmatrix} 1\\0\\0 \end{pmatrix} + b_{2} \begin{pmatrix} 0\\1\\0 \end{pmatrix} + b_{3} \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$
Leads to Perfect Multicollinearlity (24.7)

$$\frac{---\beta_0 + \beta_1 S_i}{---(\beta_0 + \beta_2) + (\beta_1 + \beta_3) S_i}$$

Alternatives

• B_n captures the mean of each category, but F-Test is impossible

$$y = \beta_1 D_{1i} + \beta_2 D_{2i} + \beta_3 D_{3i} \tag{24.8}$$

• Computer drops automatically drops a variable

$$y = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + \beta_3 D_{3i}$$
 (24.9)

• Manually dropping a variable

$$y = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} \tag{24.10}$$

Logistic Regression

For $Y_i \in \{0, 1\}$:

$$z_k = \beta_0 + \sum_{j=1}^n \beta_{jk} x_j + \epsilon_k, \beta_j \to \text{Logit Coefficient}$$
 (25.1)

$$p = \frac{\exp^k}{1 + \exp^k} = \frac{1}{1 + \exp^{-k}} \tag{25.2}$$

where p is the probability of y = 1.

Part IV Trigonometry

Circular Trigonometric Functions

θ	$\sin heta$	$\cos \theta$	an heta
0°	0	1	0
15°	$\frac{1}{4}$	$\frac{1}{4(2-\sqrt{3})}$	$2-\sqrt{3}$
18°	$\frac{\sqrt{5}-1}{4}$	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\frac{\sqrt{5}-1}{\sqrt{10+2\sqrt{5}}}$
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
36°	$\frac{\sqrt{5}+1}{4}$	$\frac{\sqrt{10-2\sqrt{5}}}{4}$	$\frac{\sqrt{5}+1}{\sqrt{10-2\sqrt{5}}}$
45°	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
60°	$\frac{1}{\sqrt{3}}$	$\frac{\frac{1}{\sqrt{2}}}{\frac{1}{2}}$	$\sqrt{3}$
72°	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\frac{\sqrt{5}-1}{4}$	$\frac{\sqrt{10+2\sqrt{5}}}{\sqrt{5}-1}$
90°	1	0	∞

Table 26.1: Trigonometric Ratios of Standard Angles

For any given triangle:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R \tag{26.1}$$

, where 2R is the radius of circumcircle.

26.1 Negative Angle Formula

$$\sin(-\theta) = -\sin\theta \tag{26.2}$$

$$\cos(-\theta) = \cos\theta \tag{26.3}$$

$$\tan(-\theta) = -\tan\theta \tag{26.4}$$

$$\csc(-\theta) = -\csc\theta \tag{26.5}$$

$$\sec(-\theta) = \sec\theta \tag{26.6}$$

$$\cot(-\theta) = -\cot\theta\tag{26.7}$$

26.2 Sum of Angles Formula

$$\sin(A+B) = \sin A \cos B + \cos A \sin B \tag{26.8}$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B \tag{26.9}$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \tag{26.10}$$

26.3 Difference of Angles Formula

$$\sin(A - B) = \sin A \cos B - \cos A \sin B \tag{26.11}$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B \tag{26.12}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} \tag{26.13}$$

26.4 Multiples and Sub-multiples of π and $\frac{\pi}{2}$

$$orall k \in \mathbb{Z}$$

$$\sin\left((4k+1)\frac{\pi}{2}\right) = 1\tag{26.14}$$

$$\sin\left((4k-1)\frac{\pi}{2}\right) = -1\tag{26.15}$$

$$\sin k\pi = 0 \tag{26.16}$$

$$\sin\left((2k+1)\frac{\pi}{2}\right) = 0\tag{26.17}$$

$$\sin\left((2k-1)\frac{\pi}{2}\right) = 0\tag{26.18}$$

$$\sin k\pi = (-1)^k \tag{26.19}$$

26.5 $\left(\frac{\pi}{2} \pm \theta\right)$ Formula

$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta \qquad (26.20)$$

$$\sin\left(\frac{\pi}{2} + \theta\right) = \cos\theta \qquad (26.21)$$

$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta \qquad (26.22)$$

$$\cos\left(\frac{\pi}{2} + \theta\right) = -\sin\theta \qquad (26.23)$$

$$\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta \qquad (26.24)$$

$$\tan\left(\frac{\pi}{2} + \theta\right) = -\cot\theta \qquad (26.25)$$

$$\cot\left(\frac{\pi}{2} - \theta\right) = \tan\theta \qquad (26.26)$$

$$\cot\left(\frac{\pi}{2} + \theta\right) = -\tan\theta \qquad (26.27)$$

$$\csc\left(\frac{\pi}{2} - \theta\right) = \sec\theta \qquad (26.28)$$

$$\csc\left(\frac{\pi}{2} + \theta\right) = \sec\theta \qquad (26.29)$$

$$\sec\left(\frac{\pi}{2} - \theta\right) = \csc\theta \qquad (26.30)$$

$$\sec\left(\frac{\pi}{2} + \theta\right) = -\csc\theta \qquad (26.31)$$

26.6 $\left(\frac{\pi}{4} \pm \theta\right)$ Formula

$$\tan\left(\frac{\pi}{4} + \theta\right) = \frac{1 + \tan\theta}{1 - \tan\theta} \tag{26.32}$$

$$\tan\left(\frac{\pi}{4} - \theta\right) = \frac{1 - \tan\theta}{1 + \tan\theta} \tag{26.33}$$

26.7 Trigonometric Identities

$$\sin^2\theta + \cos^2\theta = 1\tag{26.34}$$

$$\tan^2 \theta + 1 = \sec^2 \theta \tag{26.35}$$

$$\cot^2 \theta + 1 = \csc^2 \theta \tag{26.36}$$

26.8 Double Angle Formula

$$\sin 2\theta = 2\sin\theta\cos\theta
= \frac{2\tan\theta}{1+\tan^2\theta}$$
(26.37)

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$

$$= 2\cos^2 \theta - 1$$

$$= 1 - 2\sin^2 \theta$$

$$= \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}$$

$$\tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta}$$
(26.38)

26.9 Triple Angle Formula

$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta \tag{26.40}$$

$$\cos 3\theta = 4\cos^3 \theta - 3\cos\theta \tag{26.41}$$

$$\tan 3\theta = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^3\theta} \tag{26.42}$$

26.10 Sum and Product of Two Ratios

For A > B:

$$\sin A + \sin B = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) \tag{26.43}$$

$$\sin A - \sin B = 2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right) \tag{26.44}$$

$$2\sin A\cos B = \sin(A+B) + \sin(A-B)$$
 (26.45)

$$2\cos A \sin B = \sin(A+B) - \sin(A-B)$$
 (26.46)

$$\cos A + \cos B = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) \tag{26.47}$$

$$\cos A - \cos B = -2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right) \tag{26.48}$$

$$2\cos A\cos B = \cos(A+B) + \cos(A-B)$$
 (26.49)

$$2\cos A\sin B = \cos(A+B) - \cos(A-B)$$
 (26.50)

$$\sin(A - B)\sin(A + B) = \sin^2 A - \sin^2 B$$
 (26.51)

$$\cos(A - B)\cos(A + B) = \cos^2 A - \sin^2 B \tag{26.52}$$

$$\tan(A - B)\tan(A + B) = \frac{\tan^2 A - \tan^2 B}{1 - \tan^2 A \tan^2 B}$$
 (26.53)

26.11 General Solutions

If $\sin \theta = \sin \alpha$:

$$\theta = n\pi + (-1)^n \alpha \tag{26.54}$$

If $\cos \theta = \cos \alpha$:

$$\theta = 2n\pi \pm \alpha \tag{26.55}$$

 $n \in \mathbb{Z}$

If $\tan \theta = \tan \alpha$:

$$\theta = n\pi \pm \alpha \tag{26.56}$$

 $n \in \mathbb{Z}$

26.12 Taylor Series Expansion of Trigonometric Ratios

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots = \sum_{i=1}^{\infty} (-1)^{i+1} \frac{x^{2i-1}}{(2i-1)!}$$
 (26.57)

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots = \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i}}{(2i)!}$$
 (26.58)

Inverse Circular Trigonometric Function

27.1 Definition of Inverse Circular Trigonometric Function

27.1.1 For $\sin x$

 $y = \arcsin x$ iff $x = \sin y$, then:

- 1. $y \in [-\frac{\pi}{2}, \frac{\pi}{2}]$
- 2. domain of $x \in [-1, 1]$
- 3. $\sin(\arcsin x) = x, \forall x \in [-1, 1]$
- 4. $\arcsin(\sin y) = y, \forall y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
- 5. $\sin x$ is a strictly increasing in the domain $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ and one-one.

27.1.2 For $\cos x$

 $y = \arccos x$ iff $x = \cos y$, then:

- 1. $y \in [0, \pi]$
- 2. domain of $x \in [-1, 1]$
- 3. $\cos(\arccos x) = x, \forall x \in [-1, 1]$
- 4. $\arccos(\cos y) = y, \forall y \in [0, \pi]$
- 5. $\cos x$ is a strictly decreasing in the domain $[0, \pi]$ and one-one.

CHAPTER 27. INVERSE CIRCULAR TRIGONOMETRIC FUNCTION58

27.1.3 For $\tan x$

 $y = \arctan x$ iff $x = \tan y$, then:

- 1. $y \in [-\frac{\pi}{2}, \frac{\pi}{2}]$
- 2. domain of $x \in \mathbb{R}$
- 3. $tan(\arctan x) = x, \forall x \in \mathbb{R}$
- 4. $\arctan(\tan y) = y, \forall y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
- 5. $\tan x$ is a strictly increasing in the domain $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ and one-one.

27.1.4 For $\cot x$

 $y = \cot^{-1} x$ iff $x = \cot y$, then:

- 1. $y \in (0, \pi)$
- 2. domain of $x \in \mathbb{R}$
- 3. $\cot(\cot^{-1} x) = x, \forall x \in \mathbb{R}$
- 4. $\cot^{-1}(\cot y) = y, \forall y \in (0, \pi)$
- 5. $\cot x$ is a strictly decreasing in the domain $(0,\pi)$ and one-one.

For $\sec x$

 $y = \sec^{-1} x$ iff $x = \sec y$

- 1. $y \in \{[0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi]\}$
- 2. $x \in \{(-\infty, -1] \cup [1, \infty)\}$
- 3. $\sec(\sec^{-1} x) = x, \forall |x| \ge 1$
- 4. $\sec^{-1}(\sec y) = y, \forall y \in \{[0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi]\}$

27.1.5 For $\csc x$

 $y = \csc^{-1} x$ iff $x = \csc y$

- 1. $y \in \{[-\frac{\pi}{2}, 0) \cup (0, \frac{\pi}{2}]\}$
- 2. $x \in \{(-\infty, -1] \cup [1, \infty)\}$
- 3. $\csc(\csc^{-1} x) = x, \forall |x| \ge 1$
- 4. $\csc^{-1}(\csc y) = y, \forall y \in \{[-\frac{\pi}{2}, 0) \cup (0, \frac{\pi}{2}]\}$

Negative Arguments 27.2

$$\arcsin(-x) = -\arcsin x \tag{27.1}$$

$$\arctan(-x) = -\arctan x \tag{27.2}$$

$$\csc^{-1}(-x) = -\csc^{-1}x\tag{27.3}$$

$$\arccos(-x) = \pi - \arccos x$$
 (27.4)

$$\cot^{-1}(-x) = \pi - \cot^{-1}x \tag{27.5}$$

$$\sec^{-1}(-x) = \pi - \sec^{-1}x\tag{27.6}$$

Reciprocal Relations 27.3

$$\csc^{-1} x = \arcsin \frac{1}{x} \tag{27.7}$$

$$\csc^{-1} x = \arcsin \frac{1}{x}$$

$$\sec^{-1} x = \arccos \frac{1}{x}$$
(27.7)

$$\sec^{-1} x = \begin{cases} \arctan \frac{1}{x}, x > 0\\ \pi + \arctan \frac{1}{x}, x < 0 \end{cases}$$
 (27.9)

I.T.F. Identities 27.4

$$\arcsin x + \arccos x = \frac{\pi}{2}, |x| \le 1 \tag{27.10}$$

$$\arctan x + \cot^{-1} x = \frac{\pi}{2}, x \in \mathbb{R}$$
 (27.11)

$$\sec^{-1} x + \csc^{-1} x = \frac{\pi}{2}, |x| \ge 1$$
 (27.12)

Sum of Two Angles 27.5

$$\arctan x + \arctan y = \arctan\left(\frac{x+y}{1-xy}\right)$$
 (27.13)

$$\arcsin x + \arcsin y = \arcsin(y\sqrt{1-x^2} + x\sqrt{1-y^2}) \tag{27.14}$$

$$\arccos x + \arccos y = \arccos(xy - \sqrt{1 - x^2}\sqrt{1 - y^2}) \tag{27.15}$$

Difference of Two Angles 27.6

$$\arctan x - \arctan y = \arctan\left(\frac{x-y}{1+xy}\right)$$
 (27.16)

$$\arcsin x - \arcsin y = \arcsin(x\sqrt{1 - y^2} - y\sqrt{1 - x^2}) \tag{27.17}$$

$$\arccos x - \arccos y = \arccos(xy + \sqrt{1 - x^2}\sqrt{1 - y^2}) \tag{27.18}$$

27.7 Interconversion of Ratios

$$\arcsin x = \arccos \sqrt{1 - x^2}$$

$$= \arctan \left(\frac{x}{\sqrt{1 - x^2}}\right)$$
(27.19)

$$\arccos x = \arcsin \sqrt{1 - x^2}$$

$$= \arctan \left(\frac{\sqrt{1 - x^2}}{x}\right)$$
(27.20)

$$2 \arctan x = \arcsin\left(\frac{2x}{1+x^2}\right)$$

$$= \arccos\left(\frac{1-x^2}{1+x^2}\right)$$

$$= \arctan\left(\frac{2x}{1-x^2}\right)$$
(27.21)

27.8 Miscellaneous Relations

$$\cos(\arcsin x) = \sin(\arccos x) = \sqrt{1 - x^2}$$
 (27.22)

$$\arctan x = \frac{\pi}{2} - \arctan\left(\frac{1}{x}\right), x > 1 \tag{27.23}$$

Hyperbolic Trigonometric **Function**

28.1 **Definition**

Hyperbolic trigonometric functions are defined such that $(\cosh t, \sinh t)$ form the right half of an equilateral hyperbola. The functions are defined as follows:

$$\sinh x = \frac{\exp(x) - \exp(-x)}{2} \tag{28.1}$$

$$cosh x = \frac{\exp(x) + \exp(-x)}{2}$$
(28.2)

$$\tanh x = \frac{\sinh x}{\cosh x} = \frac{\exp(x) - \exp(-x)}{\exp(x) + \exp(-x)}$$
(28.3)

$$\coth x = \frac{1}{\tanh x} = \frac{\exp(x) + \exp(-x)}{\exp(x) - \exp(-x)}$$
(28.4)

$$cschx = \frac{1}{\sinh x} = \frac{2}{\exp(x) - \exp(-x)}$$
 (28.5)

$$cschx = \frac{1}{\sinh x} = \frac{2}{\exp(x) - \exp(-x)}$$

$$sechx = \frac{1}{\cosh x} = \frac{2}{\exp(x) + \exp(-x)}$$
(28.5)

28.2 **Identities**

$$\coth^2 x - \sinh^2 x = 1 \tag{28.7}$$

$$\tanh^2 x + \operatorname{sech}^2 x = 1 \tag{28.8}$$

$$\coth^2 x - csch^2 x = 1 \tag{28.9}$$

28.3 Inverse Hyperbolic Function

$$\sinh^{-1} z = \ln(z + \sqrt{z^2 + 1}) \tag{28.10}$$

$$\cosh^{-1} z = \ln(z \pm \sqrt{z^2 - 1}) \tag{28.11}$$

$$\tanh^{-1} z = \frac{1}{2} \ln \left(\frac{1+z}{1-z} \right) \tag{28.12}$$

$$\coth^{-1} z = \frac{1}{2} \ln \left(\frac{z+1}{z-1} \right) \tag{28.13}$$

$$csch^{-1}z = \ln\left(\frac{1 \pm \sqrt{z^2 + 1}}{z}\right)$$
 (28.14)

$$sech^{-1}z = \ln\left(\frac{1 \pm \sqrt{1 - z^2}}{2}\right)$$
 (28.15)

28.4 Relation to Circular Trigonometric Functions

$$\sinh(z) = -i\sin(iz) \tag{28.16}$$

$$\coth(z) = \cos(iz) \tag{28.17}$$

$$tanh(z) = -i tan(iz)$$
(28.18)

$$csch(z) = i\csc(iz) \tag{28.19}$$

$$sech(z) = \sec(iz) \tag{28.20}$$

$$\coth(z) = i\cot(iz) \tag{28.21}$$

Part V Calculus

Limits

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \tag{29.1}$$

$$\lim_{x \to 0} \frac{\tan x}{x} = 1 \tag{29.2}$$

$$\lim_{x \to 0} \cos x = 1 \tag{29.3}$$

$$\lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}$$
 (29.4)

$$\lim_{x \to a} f(x)g(x) = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$$
 (29.5)

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \lim_{x \to a} g(x) \neq 0$$
 (29.6)

$$\lim_{x \to 0} \exp(x) = 1 \tag{29.7}$$

$$\lim_{x \to a} \exp(x) = \exp(c) \tag{29.8}$$

$$\lim_{x \to 0} \frac{\exp(x) - 1}{x} = 1 \tag{29.9}$$

$$\lim_{x \to a} c^x = c^a \tag{29.10}$$

$$\lim_{x \to a} \ln x = \ln a \tag{29.11}$$

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e \tag{29.12}$$

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1 \tag{29.13}$$

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a \tag{29.14}$$

$$\lim_{n \to \infty} \frac{x^n}{n!} = 0, \forall x \in \mathbb{R}$$
 (29.15)

29.1 L'Hospital Rule

If:

$$L = \lim_{x \to a} \frac{f(x)}{g(x)}$$

is such that f(a)=0 and g(a)=0, or $f(a)=\infty$ and $g(a)=\infty,$ then:

$$L = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Differentiation

Differentiation by First Principle 30.1

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 (30.1)

30.2 Standard Differentiation Formulae

$$\frac{dk}{dx} = 0 (30.2)$$

$$\frac{dk}{dx} = 0 \tag{30.2}$$

$$\frac{dx^n}{dx} = nx^{n-1} \tag{30.3}$$

$$\frac{da^x}{dx} = \ln a \cdot a^x \tag{30.4}$$

$$\frac{d \exp(x)}{dx} = \exp(x) \tag{30.5}$$

$$\frac{d \ln x}{dx} = \frac{1}{x} \tag{30.6}$$

$$\frac{d\ln x}{dx} = \frac{1}{x} \tag{30.6}$$

$$\frac{d\sqrt{x}}{dx} = \frac{1}{2\sqrt{2}}\tag{30.7}$$

(30.8)

30.2.1 Circular Trigonometric Functions

$$\frac{d\sin x}{dx} = \cos x \tag{30.9}$$

$$\frac{d\cos x}{dx} = -\sin x\tag{30.10}$$

$$\frac{d\tan x}{dx} = \sec^2 x \tag{30.11}$$

$$\frac{d \sec x}{dx} = \sec x \tan x \tag{30.12}$$

$$\frac{d\csc x}{dx} = -\csc x \cot x \tag{30.13}$$

$$\frac{d\cot x}{dx} = -\csc^2 x\tag{30.14}$$

30.2.2 Inverse Circular Trigonometric Functions

$$\frac{d\arcsin x}{dx} = \frac{1}{\sqrt{1-x^2}}, |x| \le 1 \tag{30.15}$$

$$\frac{d\arccos x}{dx} = -\frac{1}{\sqrt{1 - x^2}}, |x| \le 1$$
 (30.16)

$$\frac{d\arctan x}{dx} = \frac{1}{1+x^2} \tag{30.17}$$

$$\frac{d\cot^{-1}x}{dx} = -\frac{1}{1+x^2} \tag{30.18}$$

$$\frac{d\sec^{-1}x}{dx} = \frac{1}{x\sqrt{x^2 - 1}}, |x| \ge 1 \tag{30.19}$$

$$\frac{d\csc^{-1}x}{dx} = -\frac{1}{x\sqrt{x^2 - 1}}, |x| \ge 1$$
 (30.20)

30.2.3 Hyperbolic Trigonometric Function

$$\frac{d\sinh x}{dx} = \cosh x \tag{30.21}$$

$$\frac{d\cosh x}{dx} = \sinh x \tag{30.22}$$

$$\frac{d\tanh x}{dx} = 1 - \tanh^2 x = \operatorname{sech}^2(x) \tag{30.23}$$

$$\frac{d \coth x}{dx} = 1 - \coth^2 x = -\operatorname{csch}^2(x) \tag{30.24}$$

$$\frac{d[sech(x)]}{dx} = -\tanh x \operatorname{sech} x \tag{30.25}$$

$$\frac{d[\operatorname{csch}(x)]}{dx} = -\coth x \operatorname{csch} x \tag{30.26}$$

30.2.4 Inverse Hyperbolic Trigonometric Function

$$\frac{d\sinh x}{dx} = \frac{1}{\sqrt{x^2 + 1}}\tag{30.27}$$

$$\frac{d\cosh x}{dx} = \frac{1}{\sqrt{x^2 - 1}}\tag{30.28}$$

$$\frac{d\tanh x}{dx} = \frac{1}{1-x^2} \tag{30.29}$$

$$\frac{d\coth x}{dx} = \frac{1}{1 - x^2} \tag{30.30}$$

$$\frac{d[sech(x)]}{dx} = \frac{1}{x\sqrt{1-x^2}}$$
 (30.31)

$$\frac{d[csch(x)]}{dx} = \frac{1}{|x|\sqrt{1+x^2}}$$
 (30.32)

30.3 Rules of Differentiation

$$\frac{d[cf(x)]}{dx} = c\frac{df(x)}{dx} \tag{30.33}$$

$$\frac{d[f_1(x) + f_2(x)]}{dx} = \frac{d[f_1(x)]}{dx} + \frac{d[f_2(x)]}{dx}$$
(30.34)

$$\frac{d[f_1 f_2]}{dx} = f_1 f_2' + f_2 f_1' \tag{30.35}$$

$$\frac{d\left(\frac{f_1}{f_2}\right)}{dx} = \frac{f_2f_1' - f_1f_2'}{f_2^2} \tag{30.36}$$

30.4 Chain Rule

If two functions are defined as z = f(y) and y = g(x):

$$\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx} \tag{30.37}$$

If two functions are defined as $x = f(\theta)$ and $y = g(\theta)$:

$$\frac{d^2y}{dx^2} = \left[\frac{d}{d\theta} \left(\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}\right)\right] \frac{d\theta}{dx}$$
 (30.38)

Successive Differentiation

$$D^{n}(ax+b)^{m} = m(m-1)\cdots(m-n+1)a^{n}(ax+b)^{m-n}$$
 (31.1)

$$D^{n}\left(\frac{1}{ax+b}\right) = \frac{(-1)^{n} n! a^{n}}{(ax+b)^{n+1}}$$
(31.2)

$$D^{n}\ln(ax+b) = \frac{(-1)^{n-1}(n-1)!a^{n}}{(ax+b)^{n}}, n \ge 2$$
 (31.3)

$$D^{n}(a^{mx}) = m^{n}(\ln a)^{n}a^{mx}$$
 (31.4)

$$D^n(e^{mx}) = m^n e^{mx} (31.5)$$

$$D^{n}\sin(ax+b) = a^{n}\sin(ax+b+n\frac{\pi}{2})$$
 (31.6)

$$D^{n}\cos(ax+b) = a^{n}\cos(ax+b+n\frac{\pi}{2})$$
 (31.7)

$$D^{n}[e^{ax}\sin(bx+c)] = (a^{2} + b^{2})^{\frac{n}{2}}e^{ax}\sin(bx+c+n\arctan\frac{b}{a})$$
 (31.8)

$$D^{n}[e^{ax}\cos(bx+c)] = (a^{2} + b^{2})^{\frac{n}{2}}e^{ax}\cos(bx+c+n\arctan\frac{b}{a})$$
 (31.9)

31.1 Leibnitz's Theorem

For two functions u and v of x, the successive differentiation of their product is defined as:

$$(uv)_{n} = {}^{n}C_{0}u_{n}v + {}^{n}C_{1}u_{n-1}v_{1} + \dots + {}^{n}C_{0}uv_{n}$$

$$= \sum_{i=0}^{n} {}^{n}C_{i}u_{n-i}v_{i}$$
(31.10)

Partial Derivative

If f(x,y) is a function of (x,y), then $\frac{\delta f(x,y)}{\delta x}$ is the differentiation of f(x,y) w.r.t. x, keeping all other parameters constant.

32.1 Chain Rule

If f is a function of u and v, which are functions of x and y, then:

$$\frac{\delta f}{\delta x} = \frac{\delta f}{\delta u} \frac{\delta u}{\delta x} + \frac{\delta f}{\delta v} \frac{\delta v}{\delta x} \tag{32.1}$$

$$\frac{\delta f}{\delta y} = \frac{\delta f}{\delta u} \frac{\delta u}{\delta y} + \frac{\delta f}{\delta v} \frac{\delta v}{\delta y}$$
 (32.2)

If f is a function of x and y, which are functions of t, then:

$$\frac{df}{dt} = \frac{\delta f}{\delta x} \frac{dx}{dt} + \frac{\delta f}{\delta y} \frac{dy}{dt}$$
 (32.3)

32.2 Euler's Theorem

For a homogeneous function 1 , $f(x_{i})$ of degree n:

$$\sum x_i \frac{\delta f}{\delta x_i} = n f(x_i) \tag{32.4}$$

¹Homogeneous functions are defined as $f(ax, ay) = a^{\kappa} f(x, y)$, where κ is the degree of homogeneity.

E.g. $f(x,y) = x^2 + y^2$, then $f(tx,ty) = t^2(x^2 + y^2)$, and the degree of homogeneity is 2.

Application of Differentiation

33.1 Rolle's Theorem

For a function f(x):

- 1. is continuous in [a, b]
- 2. is differentiable in (a, b)
- 3. f(a) = f(b),

then there exists a point x = c such that f'(c) = 0, $c \in (a, b)$

33.2 Mean Value Theorem or LaGrange's Theorem

For a function f(x):

- 1. is continuous in [a, b]
- 2. is differentiable in (a, b),

then there exists a point x=c such that $f'(c)=\frac{f(b)-f(a)}{b-a},\ c\in(a,b),$ i.e., the tangent is parallel to the line joining the points (a,f(a)) and (b,f(b)).

33.3 Cauchy's Mean Value Theorem

For a function f(x) and g(x):

1. are continuous in [a, b]

- 2. are differentiable in (a, b)
- 3. $g'(x) \neq 0$ in (a, b),

then there exists a point $c \in (a,b)$, such that $\frac{f(x)}{g(x)} = \frac{f(b) - f(a)}{g(b) - g(a)}$.

33.4 Maxima and Minima

33.4.1 Maxima

For the local maxima of a function f(x):

1. f'(c) = 0 and

$$\lim_{\epsilon \to c^{-}} f'(\epsilon) > 0$$
$$\lim_{\epsilon \to c^{+}} f'(\epsilon) < 0$$

OR

2.
$$f'(c) = 0$$
 and $f''(x) < 0$,

then f(c) is the local maxima point of the function f(x).

33.4.2 Minima

For the local minima of a function f(x):

1. f'(c) = 0 and

$$\lim_{\epsilon \to c^{-}} f'(\epsilon) < 0$$

$$\lim_{\epsilon \to c^{+}} f'(\epsilon) > 0$$

OR

2.
$$f'(c) = 0$$
 and $f''(x) > 0$,

then f(c) is the local minima point of the function f(x).

33.5 Taylor's Theorem

For a function which is differentiable n times:

$$f(a+h) = f(a) + hf'(a) + \frac{h^2}{2!}f''(a) + \dots + \frac{h^{n-1}}{(n-1)!}f^{n-1}(a) + \frac{h^n}{x!}R_n$$
 (33.1)

where R_n is the remainder term.

33.5.1 Remainder Term

LeGrange's Form

$$R_n = f^n(a + \theta h), \theta \in (0, 1)$$
 (33.2)

Cauchy's Form

$$R_n = n(1 - \theta)^{n-1} f^n(a + \theta h), \theta \in (0, 1)$$
(33.3)

33.5.2 Conditions for Validity of Expansion

For validity of Taylor Expansion, the condition

$$\lim_{n \to \infty} R_n = 0 \tag{33.4}$$

needs to be satisfied either where R_n is the remainder term in either LeGrange's Form or Cauchy's Form. If the condition is satisfied in a certain domain, then the expansion is valid within that domain only.

33.5.3 Taylor's Theorem for Two Variables

$$f(a+x,b+y) = f(x,y) + \left(a\frac{\delta}{\delta x} + b\frac{\delta}{\delta y}\right) f(x,y) + \frac{1}{2!} \left(a^2 \frac{\delta^2}{\delta x^2} + b^2 \frac{\delta^2}{\delta y^2}\right) f(x,y) + \dots + (33.5)$$
$$\frac{1}{n!} \left(a^n \frac{\delta^n}{\delta x^n} + b^n \frac{\delta^n}{\delta y^n}\right) f(x+\theta a, y+\theta b), \theta \in (0,1)$$

33.6 Maclaurin's Series

$$f(x) = f(0) + xf'(0) + \frac{1}{2!}x^2f''(0) + \frac{1}{3!}x^3f'''(0) + \cdots \infty$$

$$= \sum_{i=0}^{\infty} \frac{1}{i!}x^if^i(0)$$
(33.6)

33.6.1 Maclaurin's Series with Two Variables

$$f(a,b) = f(0,0) + \left(a\frac{\delta}{\delta x} + b\frac{\delta}{\delta x}\right)f(0,0) + \frac{1}{2!}\left(a^2\frac{\delta^2}{\delta x^2} + b^2\frac{\delta^2}{\delta x^2}\right)f(0,0) + \cdots \infty$$

$$= \sum_{i=0}^{\infty} \frac{1}{n!}\left(a^i\frac{\delta^i}{\delta x^i} + b^i\frac{\delta^i}{\delta x^i}\right)f(0,0)$$
(33.7)

33.7 Curvature

Curvature is the rate of change of direction w.r.t. arc. Mathematically:

Curvature =
$$\frac{d(\text{direction})}{d(\text{arc})}$$

$$\lim_{\Delta s \to 0} \frac{\Delta \psi}{\Delta s} = \frac{d\psi}{ds}$$
(33.8)

33.7.1 Radius of Curvature

Cartesian Form

For a curve y = f(x):

$$\rho = \frac{(1+y'^2)^{\frac{3}{2}}}{y''} \tag{33.9}$$

However, this formula fails for $y' \to \infty$.

Parametric Form

For a curve defined as $x = \phi(t)$ and $y = \psi(t)$:

$$\rho = \frac{(\ddot{x}^2 + \ddot{y}^2)^{\frac{3}{2}}}{x\ddot{y} - y\ddot{x}} \tag{33.10}$$

33.7.2 Newton's Formula

1. If the curve passes through origin, and the tangent at origin is the x-axis:

$$\rho = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^2}{2y} \tag{33.11}$$

2. If the curve passes through origin, and the tangent at origin is the y-axis:

$$\rho = \lim_{\substack{y \to 0 \\ y \to 0}} \frac{y^2}{2x} \tag{33.12}$$

3. If the curve passes through origin and ax + by + c = 0 is the tangent at origin:

$$\rho(0,0) = \frac{1}{2}\sqrt{a^2 + b^2} \lim_{\substack{x \to 0 \\ y \to 0}} \frac{a^2 + y^2}{ax + by}$$
 (33.13)

33.7.3 Tangent at Origin

For a curve

$$\sum c_i x^j y^k = 0, i \in \mathbb{N} \text{ and } j, k \in \mathbb{Z} - \{0\}$$
 (33.14)

The curve passes through origin c = 0. Then the lowest degree term equated to x gives the tangent at origin.

33.8 Asymptotes

If the distance between a line P and a curve f(x), s is such that $s \to 0$, as $x \to \infty$, then P is the asymptote of f(x). For asymptotes not parallel to x-axis:

Let y = mx + c be the asymptote of the function y = f(x), then:

$$m = \lim_{x \to \infty} \frac{y}{x} \tag{33.15}$$

$$c = \lim_{x \to \infty} (y - mx) \tag{33.16}$$

33.8.1 Asymptote of Algebraic Curves

For an algebraic curve, passing through origin, defined as:

$$(a_0x^n + a_1x^{n-1}y^1 + a_2x^{n-2}y^2 + \dots + a_{n-1}xy^{n-1} + a_ny^n) + (b_0x^{n-1} + b_1x^{n-2}y^1 + b_2x^{n-3}y^2 + \dots + b_{n-1}xy^{n-2} + a_ny^{n-1}) + \dots = 0$$

$$\Rightarrow x^n \phi_n \left(\frac{y}{x}\right) + x^{n-1} \phi_{n-1} \left(\frac{y}{x}\right) + \dots + x \phi_1 \left(\frac{y}{x}\right) = 0$$

The asymptote(s) defined as y = mx + c,

1. m is the solution for the equation

$$\phi_n(m) = 0 \tag{33.17}$$

2.

$$c = -\frac{\phi_{n-1}(m)}{\phi_n(m)} \tag{33.18}$$

where c is a finite value.

Integration

34.1 General Formulae

1

$$\int nx^{n-1}dx = x^n + A \tag{34.1}$$

$$\int x^n dx = \frac{1}{n+1} x^{n+1} + A \tag{34.2}$$

$$\int e^x dx = e^x + A \tag{34.3}$$

$$\int \frac{1}{x} dx = \ln x + A \tag{34.4}$$

$$\int \ln x dx = x(\ln x - 1) + A \tag{34.5}$$

 $^{^1\}mathrm{A}$ is the constant of integration in all cases

34.2 Circular Trigonometric Functions

$$\int \sin x dx = -\cos x + A \tag{34.6}$$

$$\int \cos x dx = \sin x + A \tag{34.7}$$

$$\int \sec^2 x dx = \tan x + A \tag{34.8}$$

$$\int \csc^2 x dx = -\cot x + A \tag{34.9}$$

$$\int \sec x \tan x dx = \sec x + A \tag{34.10}$$

$$\int \csc x \cot x dx = -\csc x + A \tag{34.11}$$

$$\int \sec x dx = \ln(\sec x + \tan x) + A \tag{34.12}$$

$$\int \csc x dx = -\ln(\csc x + \cot x) + A \tag{34.13}$$

$$\int \tan x dx = -\ln(\cos x) + A$$

$$= \ln(\sec x) + A \tag{34.14}$$

$$\int \cot x dx = \ln(\sin x) + A \tag{34.15}$$

34.3 Inverse Circular Trigonometric Function

$$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + A \tag{34.16}$$

$$\int \frac{-1}{\sqrt{1-x^2}} dx = \cos^{-1} x + A \tag{34.17}$$

$$\int \frac{1}{1+x^2} dx = \tan^{-1} x + A \tag{34.18}$$

$$\int \frac{-1}{1+x^2} dx = \cot^{-1} x + A = -\tan^{-1} x + A \tag{34.19}$$

$$\int \frac{1}{x\sqrt{x^2 - 1}} dx = \sec^{-1} x + A = -\csc^{-1} x + A \tag{34.20}$$

$$\int \frac{-1}{x\sqrt{x^2 - 1}} dx = \csc^{-1} x + A = -\sec^{-1} x + A \tag{34.21}$$

34.4 Standard Integrals

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \frac{x}{a} + A \tag{34.22}$$

$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln(x + \sqrt{x^2 + a^2}) + A \tag{34.23}$$

$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + A \tag{34.24}$$

$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln(x + \sqrt{x^2 - a^2}) + A \tag{34.25}$$

$$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a}\sec^{-1}\frac{x}{a} + A \tag{34.26}$$

$$\int \sqrt{a^2 - x^2} dx = \frac{x\sqrt{a^2 - x^2}}{2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + A$$
 (34.27)

$$\int \sqrt{a^2 + x^2} dx = \frac{x\sqrt{a^2 + x^2}}{2} + \frac{a^2}{2} \ln(x + \sqrt{x^2 + a^2}) + A$$
 (34.28)

$$\int \sqrt{x^2 - a^2} dx = \frac{x\sqrt{x^2 - a^2}}{2} - \frac{a^2}{2} \ln(x + \sqrt{a^2 - x^2}) + A$$
 (34.29)

$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + A \tag{34.30}$$

$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + A \tag{34.31}$$

2

34.5 Special Forms

For a function f(x):

$$\int [f(x)]^n f'(x) dx = \begin{cases} \frac{[f(x)]^{n+1}}{n+1} + A, & n \neq 1\\ \ln|f(x)| + A, & n = 1 \end{cases}$$
(34.32)

34.5.1 Integration by Part

For two functions u(x) and v(x):

$$\int u(x)v(x)dx = u(x)\left[\int v(x)dx\right] - \int \left[\frac{du(x)}{dx}\left(\int v(x)dx\right)dx\right]$$
(34.33)

 $^{^2}a$ is a constant $\in \mathbb{R}$

Definite Integral

35.1 Definition

For a function f(x) for which $\int f(x)dx = F(x) + A$,

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$
 (35.1)

35.2 Properties of Definite Integration

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(t)dt \tag{35.2}$$

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx \tag{35.3}$$

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$
 (35.4)

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(a+b-x)dx$$
 (35.5)

$$\int_{0}^{a} f(x)dx = \int_{0}^{a} f(a-x)dx$$
 (35.6)

$$\int_0^{2a} f(x)dx = \begin{cases} 2\int_0^a f(x)dx, & f(2a-x) = f(x) \\ 0, & f(2a-x) = f(x) \end{cases}$$
(35.7)

$$\int_{-a}^{a} f(x)dx = \begin{cases} 2 \int_{0}^{a} f(x)dx, & f(x) \text{ is even} \\ 0, & f(x) \text{ is odd} \end{cases}$$
 (35.8)

35.3 Approximation

$$f(a)(b-a) \le \int_{a}^{b} f(x)dx \le f(b)(b-a)$$
 (35.9)

35.4 Sum of Infinite Series as a Definite Integral

Refer to ??.

Reduction Formulae

$$\int \sin^n x dx = -\frac{1}{n} \sin^{n-1} x \cos x dx +$$

$$\frac{n-1}{n} \int \sin^{n-2} x dx$$
(36.1)

$$\int \cos^n x dx = -\frac{1}{n} \cos^{n-1} x \sin x dx + \frac{n-1}{n} \int \cos^{n-2} x dx$$
(36.2)

$$\int_{0}^{\frac{\pi}{2}} \sin^{n} x dx = \int_{0}^{\frac{\pi}{2}} \cos^{n} x dx = \begin{cases} \frac{(n-1) \cdot (n-3) \cdots 3 \cdot 1}{n \cdot (n-2) \cdots 4 \cdot 2} \left(\frac{\pi}{2}\right), n \to \text{ even} \\ \frac{(n-1) \cdot (n-3) \cdots 4 \cdot 2}{n \cdot (n-2) \cdots 3 \cdot 1}, n \to \text{ odd} \end{cases}$$
(36.3)

$$\int \sin^m x \cos^n x dx = \frac{-\sin^{m-1} x \cos^{n+1} x}{m+n} + \frac{m-1}{m+n} \int \sin^{m-2} x \cos^n x dx$$
(36.4)

For $I(m,n) = \int_0^{\frac{\pi}{2}} \sin^m x \cos^n x dx$: When m and n are both even:

$$I(m,n) = \frac{[(m-1).(m-3)\cdots 3.1][(n-1).(n-3)\cdots 3.1]}{(m+n).(m+n-1)\cdots (4).(2)} \cdot \frac{\pi}{2}$$
 (36.5)

Otherwise:

$$I(m,n) = \frac{[(m-1).(m-3)\cdots(2 \text{ or } 1)][(n-1).(n-3)\cdots()(2 \text{ or } 1)]}{(m+n).(m+n-1)\cdots(2 \text{ or } 1))}$$
(36.6)

$$I_n = \int \tan^n x dx$$

$$\Rightarrow I_n = \frac{\tan^{n-2} x}{n-1} - I_{n-2}$$
(36.7)

$$I_n = \int \cot^n x dx$$

$$\Rightarrow I_n = -\frac{\cot^{n-2} x}{n-1} - I_{n-2}$$
(36.8)

$$I_n = \int \sec^n x dx$$

$$\Rightarrow I_n = \frac{\sec^{n-2} x \tan x}{n-1} + \frac{n-2}{n-1} I_{n-2}$$
(36.9)

$$I_n = \int \csc^n x dx$$

$$\Rightarrow I_n = -\frac{\csc^{n-2} x \cot x}{n-1} + \frac{n-2}{n-1} I_{n-2}$$
(36.10)

$$I_n = \int x^n e^{ax} dx \tag{36.11}$$

$$\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} I_{n-2}$$
 (36.12)

$$I(m,n) = \int x^m (\ln x)^n dx \qquad (36.13)$$

$$\int x^m (\ln x)^n dx = \frac{x^{m+1}}{m+1} (\ln x)^n - \frac{n}{m+1} I_{m,n-1}$$
 (36.14)

Multiple Integrals

37.1 Two Variables

For

$$I = \iint_{R} f(x, y) dx dy \tag{37.1}$$

The following substitution are made:

$$x = g(r, \theta) \tag{37.2}$$

$$y = h(r, \theta) \tag{37.3}$$

$$\therefore dxdy = |J|drd\theta \tag{37.4}$$

Where J is the Jacobian, defined as:

$$J = \begin{vmatrix} \frac{\delta x}{\delta r} & \frac{\delta y}{\delta r} \\ \frac{\delta x}{\delta \theta} & \frac{\delta y}{\delta \theta} \end{vmatrix}$$
 (37.5)

The equivalent integral is:

$$I = \iint_{R_1} f(g(r,\theta), h(r,\theta)) |J| dr d\theta$$
 (37.6)

37.2 Three Variables

For

$$I = \iiint_{R} f(x, y, z) dx dy dz$$
 (37.7)

The following substitution are made:

$$x = g(r, \theta, \phi) \tag{37.8}$$

$$y = h(r, \theta, \phi) \tag{37.9}$$

$$z = k(r, \theta, \phi) \tag{37.10}$$

$$\therefore dxdydz = |J|drd\theta d\phi \tag{37.11}$$

Where J is the Jacobian, defined as:

$$J = \begin{vmatrix} \frac{\delta x}{\delta r} & \frac{\delta y}{\delta r} & \frac{\delta z}{\delta r} \\ \frac{\delta x}{\delta \theta} & \frac{\delta y}{\delta \theta} & \frac{\delta z}{\delta \theta} \\ \frac{\delta x}{\delta \phi} & \frac{\delta y}{\delta \phi} & \frac{\delta z}{\delta \phi} \end{vmatrix}$$
(37.12)

The equivalent integral is:

$$I = \iiint_{R_1} f(g(r, \theta, \phi), h(r, \theta, \phi), k(r, \theta, \phi)) |J| dr d\theta d\phi$$
 (37.13)

Differential Equation

38.1 1st Order, 1st Degree Differential Equation

For the equation:

$$\frac{dy}{dx} + P(x)y = Q(x) \tag{38.1}$$

Then an Integral Function (I.F.) is defined as:

$$I.F. = e^{\int P(x)dx} \tag{38.2}$$

Then the solution of the equation 38.1 is given by:

$$y(I.F.) = \int Q(I.F.)dx \tag{38.3}$$

38.2 2nd Order, 1st Degree Differential Equation

For the equation:

$$\frac{d^2y}{dx^2} + a\frac{dy}{dx} + by = 0 ag{38.4}$$

$$y'' + ay' + by = 0 (38.5)$$

By substituting $y = e^{\lambda x}$, the equation obtained is:

$$\lambda^{2}e^{\lambda x} + \lambda e^{\lambda x} + be^{\lambda x} = 0$$

$$\therefore e^{\lambda x} \neq 0$$

$$\Rightarrow \lambda^{2} + a\lambda + b = 0$$
(38.6)

If α and β are the solutions of the equation 38.6, then the solution of 38.4 can be:

1. If $\alpha = \beta$ and $\alpha, \beta \in \mathbb{R}$:

$$y = (c_1 + c_2 x)e^{\alpha x} (38.7)$$

2. If $\alpha \neq \beta$ and $\alpha, \beta \in \mathbb{R}$:

$$y = c_1 e^{\alpha x} + c_2 e^{\beta x} \tag{38.8}$$

3. If $\lambda = \alpha + i\beta$: $y = e^{\alpha x} [A\cos(\beta x) + B\sin(\beta x)] \tag{38.9}$

38.3 Special Cases of Differential Equation

38.3.1 Definition of Inverse Operator

The operator D is equivalent to $\frac{d}{dx}$. If Df(x) = X, then $f(x) = \frac{1}{D}X = \int X dx$.

38.3.2 Special Cases

1. $f(x) = \frac{1}{D-a}X = e^{ax} \int Xe^{-ax}dx$ (38.10)

2. $\frac{1}{f(D)}e^{ax} = \begin{cases}
\frac{e^{ax}}{f(a)}, f(a) \neq 0 \\
x \frac{e^{ax}}{f'(a)}, f(x) = 0 \text{ and } f'(a) \neq 0 \\
x^2 \frac{e^{ax}}{f''(a)}, f(x) = 0 \text{ and } f'(a) = 0
\end{cases}$ (38.11)

3. $\frac{1}{f(D)}x^m = [f(D)]^{-1}x^m \tag{38.12}$

 $[f(D)]^{-1}$ is expanded and arranged in terms of ascending powers of D and operated on x^m .

4. (a) $\frac{1}{f(D)}\sin(ax) = \frac{1}{\phi(D^2)}\sin(ax) = \frac{1}{\phi(-a^2)}\sin(ax)$ (38.13)

(b) $\frac{1}{f(D)}\cos(ax) = \frac{1}{\phi(D^2)}\cos(ax)$ $= \frac{1}{\phi(-a^2)}\cos(ax)$ (38.14)

5. (a)
$$\frac{1}{f(D)}\sin(ax) = \frac{1}{\phi(D^2, D)}\sin(ax)$$
$$= \frac{1}{\phi(-a^2, D)}\sin(ax)$$
(38.15)

(b)
$$\frac{1}{f(D)}\cos(ax) = \frac{1}{\phi(D^2, D)}\cos(ax) = \frac{1}{\phi(-a^2, D)}\cos(ax)$$
 (38.16)

6. (a)
$$\frac{1}{f(D)}\sin(ax) = \frac{\psi(D)}{\phi(D^2)}\sin(ax)$$

$$= \frac{\psi(D)}{\phi(-a^2)}\sin(ax)$$
(38.17)

(b)
$$\frac{1}{f(D)}\cos(ax) = \frac{\psi(D)}{\phi(D^2)}\cos(ax)$$
$$= \frac{\psi(D)}{\phi(-a^2)}\cos(ax)$$
(38.18)

7. (a)
$$\frac{1}{f(D)}\sin(ax) = x\frac{1}{f'(D)}\sin(ax)$$
 (38.19)

(b)
$$\frac{1}{f(D)}\cos(ax) = x\frac{1}{f'(D)}\cos(ax)$$
 (38.20)

38.4 Method of Variation of Parameters

If the equation is of the form:

$$\frac{d^2y}{dx^2} + a\frac{dy}{dx} + by = f \tag{38.21}$$

where a, b, f are functions of x. The solution for 38.21 is obtained by solving for:

$$\frac{d^2y}{dx^2} + a\frac{dy}{dx} + by = 0 ag{38.22}$$

If y_1 and y_2 are the two independent solution of equation 38.22.

Then the general solution of the equation is:

$$y = c_1 y_1 + c_2 y_2 \tag{38.23}$$

where c_1 and c_2 are the constants.

The particular solution of equation 38.22 will be:

$$y = y_1 \left(\int \frac{y_2(-f)}{W} dx \right) + y_2 \left(\int \frac{y_1 f}{W} dx \right)$$
 (38.24)

W is the Wronskian, which is defined by:

$$W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} \tag{38.25}$$

38.5 Singular and Ordinary Point

For a differential equation:

$$P_0 \frac{d^n y}{dx^n} + P_1 \frac{d^{n-1} y}{dx^{n-1}} + \dots + P_{n-1} \frac{dy}{dx} + P_n y = R(x)$$
 (38.26)

where $P_0 \cdots P_n$ are functions of x.

If at a point $x = x_0$:

- 1. $P_0(x_0) \neq 0$, x_0 is an ordinary point.
- 2. $P_0(x_0) = 0$, x_0 is an singular point:

(a)

$$\lim_{x \to x_0} (x - x_0) P_1(x) = c_1 \tag{38.27}$$

$$\lim_{x \to x_0} (x - x_0)^2 P_2(x) = c_2 \tag{38.28}$$

(38.29)

where c_1 and c_2 are both finite quantities x_0 is a regular singular point.

(b) otherwise it is an irregular singular point.

Beta and Gamma Functions

For m, n > 0:

$$\beta(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx$$

$$= 2 \int_0^{\frac{\pi}{2}} \sin^{2m-1} x \cos^{2n-1} x dx$$
(39.1)

$$\Gamma(n) = \int_0^\infty e^{-1} x^{n-1} dx \tag{39.2}$$

39.1 Important Relations between $\beta(m,n)$ and $\Gamma(n)$ Functions

$$\Gamma(n) = \frac{\Gamma(n+1)}{n} \tag{39.3}$$

$$\Gamma(1) = 1 \tag{39.4}$$

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} \approx 1.772\tag{39.5}$$

$$\Gamma(n+1) = n!, n \in \mathbb{N} \tag{39.6}$$

$$\Gamma(m)\Gamma\left(m + \frac{1}{2}\right) = \sqrt{\pi}\Gamma(2m)$$
 (39.7)

$$\Gamma(m)\Gamma(m-1) = \pi \csc(m\pi) \tag{39.8}$$

$$\beta(m,n) = \beta(n,m) \tag{39.9}$$

$$\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$$
 (39.10)

$$\beta\left(\frac{1}{2}, \frac{1}{2}\right) = \pi \tag{39.11}$$

$$\int_0^{\frac{\pi}{2}} \sin^p x \cos^q x = \frac{1}{2} \frac{\Gamma(\frac{p+1}{2})\Gamma(\frac{q+1}{2})}{\Gamma(\frac{p+2}{2})}$$
(39.12)

(39.13)

Laplace Transformations

The Laplace Transformation of a function f(t) is defined as:

$$F(s) = \mathcal{L}\{f(t)\} = \lim_{x \to \infty} \int_0^x e^{-st} f(t) dt$$
 (40.1)

40.1 Basic Transformations

f(t)	F(s)
af(t) + bg(t)	aF(s) + bG(s)
1	1 -
t	$\frac{s}{1}$
t^n	$rac{\overline{s^2}}{n!} \over \overline{s^{n+1}}$
e^{at}	
$\cos(\omega t)$	$\frac{s-a}{s^2+\omega^2}$
$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$
$\sinh at$	<i>u</i>
$\cosh at$	$\frac{\overline{s^2 - a^2}}{\overline{s^2 - a^2}}$

Table 40.1: Table of Laplace Transformations

40.2 Important Relations

$$\mathcal{L}\lbrace e^{at}f(t)\rbrace = F(s-a) \tag{40.2}$$

$$\mathcal{L}\{tf(t)\} = -F'(s) \tag{40.3}$$

$$\mathcal{L}\{t^n f(t)\} = (-1)^n F^n(s) \tag{40.4}$$

$$\mathcal{L}\left\{\frac{f(t)}{t}\right\} = \lim_{x \to \infty} \int_{0}^{x} F(u)du \tag{40.5}$$

$$\mathcal{L}\left\{\frac{f(t)}{t^n}\right\} = \lim_{x \to \infty} \int_1 \int_2 \cdots \int_{s-n}^x F(u) du \cdots du$$
 (40.6)

40.3 Convolution

For two functions f(t) and g(t) be given such that their Laplace transforms are F(s) and G(s), then:

$$\mathcal{L}\{f(t) \star g(t)\} = F(s)G(s) \tag{40.7}$$

where $f(t) \star g(t)$ is defined as:

$$\int_0^t f(u)g(t-u)du \tag{40.8}$$

40.4 Laplace Transforms of Differentials

If the Laplace Transform of f(t) is $F(s)^1$:

$$\mathcal{L}\{f'(t)\} = sF(s) - y(0) \tag{40.9}$$

$$\mathcal{L}\{f''(t)\} = s^2 F(s) - [sy(0) + y'(0)] \tag{40.10}$$

:

$$\mathcal{L}\{f^n(t)\} = s^n F(s) - \left[\sum_{i=0}^{n-1} s^{n-i} y^i(0)\right]$$
 (40.11)

 $^{^{1}\}mathrm{Used}$ in initial value problems

Part VI Operations Research

Linear Programming Problems

41.1 Basic Feasible Solution

The standard LPP problem has an objective function and conditions.

$$Z = a_1x_1 + a_2x_2 + \dots + a_nx_n$$
 Subject to:
$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \le b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le b_m$$

For a system with n variables and m conditions, the number of basic solutions are: $\binom{n}{k}$. For any n - m system there are n-m non-basic variables (NBV) and m basic variables (BV).

For the above system, the basic solutions are obtained by:

NBV	BV		BFS
$x_1, x_2, \cdots, x_{n-m} = 0$	$ \begin{aligned} x_{n-m+1} \\ c_1, \cdots, x_n &= c_n \end{aligned} $	=	If $x_{n-m+1,\dots,x_n} \geq 0$ then it is a basic feasible solution.
÷	:		

41.1.1 Adjacent Basic Feasible Solutions

If two adjacent BFS share m-1 BV then they are called adjacent varibales. The optimal solution is always a extreme point. Thus, graphically:

41.2 Simplex Method