COCOMO II

Main technologies used:

• Backend: Python (70%)

Frontend: JavaScript (React) (30%)

1. Convert Function Points to SLOC (Source Lines of Code)

Language	% Usage	FP Allocation	SLOC/FP	Estimated SLOC
Python	50%	85 FP	53	4,505
JavaScript	50%	85 FP	47	3,995
Total	100%	170		8,500

Total Estimated SLOC = 8,500.

2. Determine Scale Drivers (5 factors)

Each one rated from Very Low to Extra High, affecting the exponential factor E.

Driver	Estimate	Rationale
PREC (Precedentedness)	Low	New system, innovative features
FLEX (Development Flexibility)	Nominal	Some flexibility, but user needs must be met
RESL (Architecture/Risk Resolution)	Nominal	Basic architecture assumed, no major risk management detailed
TEAM (Team Cohesion)	Nominal	Assuming student team or moderate cohesion
PMAT (Process Maturity)	Low	Likely student-level or early development phase

COCOMO II assigns numeric values to these. For now, let's assume this leads to an **E value around 1.10–1.15**.

3. Effort Multipliers (EM)

These are 7 cost drivers like:

- Product Reliability
- Platform Difficulty
- Personnel Capability
- Tool Support

Schedule Constraints

Let's take **Nominal values** for now across the board \rightarrow total **Effort Adjustment Factor (EAF)** \approx **1.0** (we can refine this if needed).

4. COCOMO II Estimation – Early Design Model

Model Assumptions

• COCOMO II Model: Early Design

A (constant): 2.94

• EAF (Effort Adjustment Factor): Initially assumed as 1.0 (nominal)

• Scale Exponent (E): 1.12 (typical assumption)

• Size: 9.524 KSLOC

Using default COCOMO II values:

• Effort:

Effort =
$$2.94 \times (8.5)^{1.12} \approx 2.94 \times 11.57 \approx 34.01$$
 person-months

• Schedule (TDEV):

TDEV=
$$3.67 \times (34.01)^{0.304} \approx 3.67 \times 2.88 \approx 10.57$$
 months

Average Team Size:

TeamSize = 10.5734.01 ≈ 3.22 developers

6. Real-World Project Data

Metric	Value
Team Size →	2 developers
Time Duration →	4 months
Total Effort →	8 person-months
Actual Productivity →	8500/8 = 1062 SLOC/person-month

This real-world effort is significantly lower than the COCOMO $\,$ II estimate.

7. Reverse Engineering the COCOMO II Model

To understand this gap, we reverse-calculated the COCOMO II exponent E to align with the actual effort. From:

$$8 = 2.94 \times (8.5)^{E} \Rightarrow E \approx 0.468$$

The discrepancy between estimated and actual effort highlights the importance of contextualizing COCOMO II predictions, particularly for small, agile teams working with modern technologies. While COCOMO II is a powerful early estimation tool, real-world productivity may vary significantly.