3 TD3

3.1 Régions HPD

- 1. Si une loi a posteriori sur \mathbb{R} a une densité continue, symétrique, (str.) croissante sur \mathbb{R}^- et (str.) décroissante sur \mathbb{R}^+ , montrer que les régions HPD de niveau 1α coïncident avec les intervalles définis par les quantiles $\alpha/2$ et $1 \alpha/2$ de la densité a posteriori.
- 2. Donner un exemple de densité a posteriori pour laquelle les deux types de régions $1-\alpha$ -crédibles de la question précédente ne coïncident pas.

3.2 Modèle multinomial

Soient X_1, \ldots, X_n des variables i.i.d. à valeurs dans un espace fini \mathcal{X} de cardinal $k+1 \geq 2$, que l'on identifiera à $\{0, 1, 2, \ldots, k\}$. Notons, pour $j = 0, \ldots, k$,

$$N_j = \sum_{i=1}^n \mathbb{1}_{X_i = j} = \sum_{i=1}^n \mathbb{1}_{\{j\}}(X_i)$$
 et $p_j = \mathbb{P}[X_i = j]$.

- 1. Quelle est la loi de N_0 ? Celle de N_i ?
- 2. Dans le cas où k=1, décrire la loi du couple (N_0,N_1) .
- 3. Pour $k \geq 1$ arbitraire, montrer que la loi jointe des N_j est donnée par

$$\mathbb{P}[N_j = x_j, \ 0 \le j \le k] = \binom{n}{x_0, x_1, \dots, x_k} \prod_{j=0}^k p_j^{x_j} \mathbb{1}_{\{\sum_{j=0}^k x_j = n\}},$$

où $\binom{n}{x_0, x_1, \dots, x_k} = n!/(x_0! x_1! \dots x_k!)$ désigne le nombre de façons de regrouper n éléments en k+1 groupes de tailles respectives x_0, x_1, \dots, x_k .

Cette famille est celle des *lois multinomiales* de paramètres (p_0, p_1, \ldots, p_k) .

4. Montrer qu'on peut l'écrire comme un modèle exponentiel sur $(\mathbb{R}^+)^k$ avec pour paramètres naturels $\eta_j = \log(p_j/p_0)$ pour $1 \leq j \leq k$.

3.3 Familles binomiale-beta et multinomiale-Dirichlet

La loi Beta (a_1, a_2) sur [0, 1] a pour densité, pour $a_1, a_2 \in \mathbb{R}^+$, et $B(a_1, a_2)$ défini ci-dessous,

$$x \to \frac{1}{B(a_1, a_2)} x^{a_1 - 1} (1 - x)^{a_2 - 1}.$$

La loi de Dirichlet $\operatorname{Dir}(a) = \operatorname{Dir}(a_1, \dots, a_k)$ avec $a = (a_1, \dots, a_k) \in \mathbb{R}^{+k}$ est la loi sur le simplexe $\mathcal{S}_k = \{x = (x_1, \dots, x_k) \in [0, 1]^k, \sum_{i=1}^k x_i = 1\}$ de densité

$$x \to \frac{1}{B(a)} \prod_{i=1}^{k} x_i^{a_i - 1} \mathbb{1}_{S_k}(x), \qquad B(a) = \frac{\prod_{i=1}^{k} \Gamma(a_i)}{\Gamma(\sum_{i=1}^{K} a_i)}.$$

- 1. Montrer que si $Z = (Z_1, \ldots, Z_k) \sim \text{Dir}(a)$, alors Z_1 suit une loi Beta que l'on déterminera (on pourra considérer le changement de variables $x_i = (1 x_1)y_i$, pour $2 \le i \le k 1$).
- 2. Soit $X = (X_1, ..., X_n)$ avec X_i i.i.d. de loi de Bernoulli $Be(\theta)$. Montrer que la famille des lois a priori Beta(a, b) sur θ , avec a, b dans [0, 1], est conjuguée pour ce modèle.

- 3. Même question pour la famille des lois de Dirichlet $Dir(a_0, ..., a_k)$ lorsque l'on observe $(N_0, ..., N_k)$ avec $\sum N_i = N$, de loi multinomiale $Mult(p_0, ..., p_k)$.
- 4. Soit $X = (X_1, ..., X_n)$ avec X_i i.i.d. suivant un modèle exponentiel de dimension k, de paramètre η sous forme canonique, donc de densité $p_{\eta}(x) = \exp\{\eta^T T(x) A(\eta)\}$ par rapport à une mesure μ de référence. Montrer que la famille de lois Π_{τ} de densités proportionnelles à $\eta \to \exp\{\tau^T \eta n_0 A(\eta)\}$, est conjuguée.

3.4 Mélanges

On appelle loi de mélange à deux composantes une loi Q de la forme

$$Q = (1 - \rho)Q_0 + \rho Q_1,$$

où Q_0 et Q_1 sont deux lois de probabilité et $\rho \in [0,1]$. On supposera Q_0 et Q_1 de densités notées q_0 et q_1 par rapport à une mesure de référence μ .

1. Montrer qu'une variable aléatoire Y de loi Q peut s'obtenir par le schéma suivant

$$Z \sim \mathrm{Be}(\rho),$$

 $Y \mid Z \sim Q_Z.$

- 2. Soit $\mathcal{P} = \{P_{\theta} = \mathcal{N}(\theta, 1), \ \theta \in \mathbb{R}\}$. On met une loi a priori Π sur θ de la forme mélange à deux composantes $(1 \rho)Q_0 + \rho Q_1$ avec $Q_0 = \mathcal{N}(0, 1)$ et $Q_1 = \mathcal{N}(5, 1)$ et $\rho > 0$. On dispose d'observations $X_1, \ldots, X_n \mid \theta \sim P_{\theta}^{\otimes n}$.
 - (a) Déterminer la densité de la loi a posteriori $\theta \mid X_1, \dots X_n$.
 - (b) Montrer que la loi a posteriori est à nouveau un mélange à deux composantes. On déterminera le nouveau poids $\rho_n(X)$ correspondant.
- 3. Dans le cadre d'observations de tirages à pile ou face, on soupçonne les pièces d'être biaisées avec probabilité 2/3 d'obtenir face. On propose la modélisation suivante $X_1, \ldots, X_n \mid \theta$ i.i.d. Be (θ) et $\theta \sim (1-\rho)Q_0 + \rho Q_1$, avec $Q_0 = \text{Beta}(2,4)$ et $Q_1 = \text{Beta}(3,3)$.
 - (a) Justifier le choix de la loi a priori.
 - (b) Répondre aux mêmes questions qu'en 2. On pourra s'aider de l'expression de la fonction Beta rappelée à l'exercice ci-dessus. On rappelle aussi que $\Gamma(p+1) = p!$.
- 4. Montrer que le fait observé dans les exemples en 2. et 3. que la loi a posteriori est encore une loi mélange à deux composantes est un phénomène général et donner l'expression de $\rho_n(X)$ en fonction des données du problème.

3.5 Intervalles de crédibilité, intervalle de confiance

Soit $X = (X_1, ..., X_n)$ avec X_i i.i.d. de loi de Bernoulli $Be(\theta)$. On met une loi a priori Beta(a, b) sur θ , avec a > 0 et b > 0. On donne

$$\mathrm{E}[\mathrm{Beta}(a,b)] = \frac{a}{a+b}, \qquad \mathrm{Var}[\mathrm{Beta}(a,b)] = \frac{ab}{(a+b)^2(a+b+1)}.$$

- 1. Donner la loi a posteriori $\Pi[\cdot \mid X]$. On notera m_X sa moyenne et v_X sa variance.
- 2. Construire un intervalle $I^T(X)$ de crédibilité au moins 1α , $(\alpha > 0)$, centré en m_X , en utilisant l'inégalité de Tchébychev.
- 3. On se demande si $I^T(X)$ peut être utilisé comme un intervalle de confiance asymptotique, au sens fréquentiste sous P_{θ_0} . Répondre à cette question en cherchant une minoration asymptotique du niveau de $I^T(X)$ en fonction de α .