MyFEM

Generated by Doxygen 1.8.14

Contents

1	4EM	30 Finit	e Element pro	yram								1
2	Nam	espace	Index									3
	2.1	Packaç	es			 	 	 	 	 	 	3
3	Clas	s Index										5
	3.1	Class I	ist			 	 	 	 	 	 	5
4	Nam	espace	Documentation	on								7
	4.1	myFEli	b Namespace F	Reference		 	 	 	 	 	 	7
		4.1.1	Detailed Desc	ription		 	 	 	 	 	 	7
	4.2	mylOlii	Namespace F	leference		 	 	 	 	 	 	7
		4.2.1	Detailed Desc	ription		 	 	 	 	 	 	8
		4.2.2	Function Docu	imentation .		 	 	 	 	 	 	8
			4.2.2.1 plot	_solution()		 	 	 	 	 	 	8
			4.2.2.2 read	d_from_txt() .		 	 	 	 	 	 	8
	4.3	myLin/	alglib Namespa	ce Reference		 	 	 	 	 	 	8
		4.3.1	Detailed Desc	ription		 	 	 	 	 	 	9
	4.4	mymod	lelslib Namespa	ace Referenc	е	 	 	 	 	 	 	9
		441	Detailed Desc	rintion								9

ii CONTENTS

5	Clas	s Docu	mentation	11
	5.1	myFEli	b.Element Class Reference	11
		5.1.1	Detailed Description	12
		5.1.2	Constructor & Destructor Documentation	12
			5.1.2.1init()	12
		5.1.3	Member Function Documentation	12
			5.1.3.1 get_coordinate()	12
			5.1.3.2 get_integration_scheme()	13
			5.1.3.3 get_shapes()	13
			5.1.3.4 get_shapes_gradient()	13
	5.2	myLin/	Alglib.LinearSystem Class Reference	14
		5.2.1	Detailed Description	14
		5.2.2	Constructor & Destructor Documentation	14
			5.2.2.1init()	14
		5.2.3	Member Function Documentation	15
			5.2.3.1 add()	15
			5.2.3.2 add_to_lhs()	15
			5.2.3.3 add_to_rhs()	16
			5.2.3.4 solve()	16
	5.3	myFEli	b.Mesh Class Reference	16
		5.3.1	Detailed Description	17
		5.3.2	Constructor & Destructor Documentation	17
			5.3.2.1init()	17
		5.3.3	Member Function Documentation	17
			5.3.3.1 get_connectivity()	17
			5.3.3.2 get_nodal_coordinates()	17
			5.3.3.3 get_node()	18
	5.4	myFEli	b.Node Class Reference	18
		5.4.1	Detailed Description	18
		5.4.2	Constructor & Destructor Documentation	18

CONTENTS

		5.4.2.1init()	18
	5.4.3	Member Function Documentation	19
		5.4.3.1 set_coordinate()	19
5.5	mymod	delslib.PipeFlow Class Reference	19
	5.5.1	Detailed Description	19
	5.5.2	Constructor & Destructor Documentation	19
		5.5.2.1init()	20
	5.5.3	Member Function Documentation	20
		5.5.3.1 assemble()	20
5.6	myFEli	ib.StandardTriangle Class Reference	20
	5.6.1	Detailed Description	21
	5.6.2	Member Function Documentation	21
		5.6.2.1 get_integration_scheme()	21
		5.6.2.2 get_shapes()	21
		5.6.2.3 get shapes gradient()	22

4EM30 Finite Element program

This repository contains the Finite Element program to be used for the second assignment of the 4EM30 Scientific Computing for Mechanical Engineering course.

Main program

The main program can be found in the myfem.py file and can be executed using Python 3 (python myfem.py)

Modules

The following modules are used for this finite element program:

- myFElib This module contains the basic finite element data structures
- mylOlib This module contains a mesh reader and basic plotting function
- myLinAlglib This module contains the linear system class
- mymodelslib This module contains the finite element fluid flow model

Supplementary data

- meshes The meshes directory contains various finite element meshes
- · output The default (empty) output directory

Documentation

Documentation is available in the **doc** directory:

- · html/index.html can be opened to browse the documentation
- · latex/refman.pdf contains the LaTeX generated reference manual

Namespace Index

2.1 Packages

Here are the packages with brief descriptions (if available):

myFElib		
	This module contains the basic finite element data structures	7
mylOlib		
	This module contains a mesh reader and basic plotting function	7
myLinAlg	glib	
	This module contains the linear system class	8
mymode	elslib	
	This module contains the finite element fluid flow model	9

4 Namespace Index

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

myFEIID.Element	
Isoparametric finite element	11
myLinAlglib.LinearSystem	
Linear system of equations	14
myFElib.Mesh	
Finite element mesh	16
myFElib.Node	
Finite element node	18
mymodelslib.PipeFlow	
Fluid flow finite element model	19
myFElib.StandardTriangle	
Finite element triangular parent element	20

6 Class Index

Namespace Documentation

4.1 myFElib Namespace Reference

This module contains the basic finite element data structures.

Classes

class Element

Isoparametric finite element.

• class Mesh

Finite element mesh.

class Node

Finite element node.

• class StandardTriangle

Finite element triangular parent element.

4.1.1 Detailed Description

This module contains the basic finite element data structures.

4.2 mylOlib Namespace Reference

This module contains a mesh reader and basic plotting function.

Functions

• def read_from_txt (fname)

Mesh file reader.

• def plot_solution (mesh, sol, outfile)

Plot the solution on a finite element mesh.

4.2.1 Detailed Description

This module contains a mesh reader and basic plotting function.

4.2.2 Function Documentation

4.2.2.1 plot_solution()

Plot the solution on a finite element mesh.

Parameters

mesh	Finite element mesh
sol	Solution vector
outfile	Name of the output file

4.2.2.2 read_from_txt()

Mesh file reader.

Parameters

fname	Name of the mesh file

Returns

Finite element mesh Indices of constrained degrees of freedom

4.3 myLinAlglib Namespace Reference

This module contains the linear system class.

Classes

• class LinearSystem

Linear system of equations.

4.3.1 Detailed Description

This module contains the linear system class.

4.4 mymodelslib Namespace Reference

This module contains the finite element fluid flow model.

Classes

• class PipeFlow

Fluid flow finite element model.

4.4.1 Detailed Description

This module contains the finite element fluid flow model.

Class Documentation

5.1 myFElib.Element Class Reference

Isoparametric finite element.

Public Member Functions

String function.

• def get_nr_of_nodes (self)

Get the number of nodes.

• def get_dofs (self)

Get the vector of Dof indices.

• def get_coordinates (self)

Get the matrix of nodal coordinates.

• def get_coordinate (self, xi)

Get the global coordinate.

• def get_integration_scheme (self, name, npts)

Get the integration scheme.

• def get_shapes (self, xi)

Get the shape functions.

• def get_shapes_gradient (self, xi)

Get the shape functions gradient.

5.1.1 Detailed Description

Isoparametric finite element.

Maps a standard (parent) element using a node-based parametric map

5.1.2 Constructor & Destructor Documentation

Constructor.

Parameters

ID	Element ID
parent	Standard/parent element
nodes	List of finite element Nodes

nodes)

5.1.3 Member Function Documentation

5.1.3.1 get_coordinate()

```
def myFElib.Element.get_coordinate ( self, \\ xi \ )
```

Get the global coordinate.

Parameters

хi	Local coordinate vector

Returns

Global coordinate vector

5.1.3.2 get_integration_scheme()

Get the integration scheme.

Parameters

name	The type of integration scheme (e.g. 'gauss')
npts	The number of integration points

Returns

Matrix of integration point coordinates Vector of integration point weights

5.1.3.3 get_shapes()

Get the shape functions.

Parameters

```
xi | Local coordinate vector
```

Returns

Vector of shape functions

5.1.3.4 get_shapes_gradient()

```
def myFElib.Element.get_shapes_gradient ( self, xi )
```

Get the shape functions gradient.

Parameters

xi Local coordinate vector

Returns

Matrix of shape function gradients

The documentation for this class was generated from the following file:

· myFElib.py

5.2 myLinAlglib.LinearSystem Class Reference

Linear system of equations.

Public Member Functions

```
• def __init__ (self, size, zerocons)

Constructor.
```

• def __len__ (self)

Length function.

• def add (self, vec, mat, rdofs, cdofs=None)

Add contribution to the linear system.

• def add_to_rhs (self, vec, rdofs)

Add contribution to the right-hand-side.

• def add_to_lhs (self, mat, rdofs, cdofs=None)

Add contribution to the left-hand-side.

def solve (self)

Solve the constrained linear system of equations.

5.2.1 Detailed Description

Linear system of equations.

5.2.2 Constructor & Destructor Documentation

Constructor.

Parameters

size	Number of degrees of freedom
zerocons	Indices of constrained degrees of freedom

5.2.3 Member Function Documentation

5.2.3.1 add()

Add contribution to the linear system.

Parameters

vec	Vector to be added to the right-hand-side
mat	Matrix to be added to the left-hand-side
rdofs	Row degrees of freedom to add to
cdofs	Column degrees of freedom to add to

5.2.3.2 add_to_lhs()

Add contribution to the left-hand-side.

Parameters

mat	Matrix to be added to the left-hand-side
rdofs	Row degrees of freedom to add to
cdofs	Column degrees of freedom to add to

5.2.3.3 add_to_rhs()

Add contribution to the right-hand-side.

Parameters

vec	Vector to be added to the right-hand-side
rdofs	Row degrees of freedom to add to

5.2.3.4 solve()

```
\begin{tabular}{ll} \tt def myLinAlglib.LinearSystem.solve ( \\ & self ) \end{tabular}
```

Solve the constrained linear system of equations.

Returns

Solution vector

The documentation for this class was generated from the following file:

· myLinAlglib.py

5.3 myFElib.Mesh Class Reference

Finite element mesh.

Public Member Functions

def get_nodal_coordinates (self)

Get all nodal coordinates.

• def get_connectivity (self)

Get the element connectivity table.

• def get_nr_of_nodes (self)

Get the number of nodes.

5.3.1 Detailed Description

Finite element mesh.

5.3.2 Constructor & Destructor Documentation

Constructor.

Parameters

nodes	list of finite element nodes
elems	list of finite elements

5.3.3 Member Function Documentation

5.3.3.1 get_connectivity()

```
\begin{tabular}{ll} $\operatorname{def myFElib.Mesh.get\_connectivity} & ( \\ & self \end{tabular} \label{eq:self}
```

Get the element connectivity table.

Returns

Matrix (int) with element-Dof connectivities

5.3.3.2 get_nodal_coordinates()

```
\label{lem:coordinates} \mbox{def myFElib.Mesh.get\_nodal\_coordinates (} \\ self \mbox{)}
```

Get all nodal coordinates.

Returns

Matrix of nodal coordinates

5.3.3.3 get_node()

Get a node.

Parameters

```
ID Node ID
```

The documentation for this class was generated from the following file:

myFElib.py

5.4 myFElib.Node Class Reference

Finite element node.

Public Member Functions

```
    def __init__ (self, ID, coord, dof)
        Constructor.
    def __str__ (self)
        String function.
    def get_ID (self)
        Get the Node ID.
    def get_dof (self)
        Get the Dof index.
    def set_coordinate (self, coord)
        Set the coordinate.
    def get_coordinate (self)
        Get the Node coordinate.
```

5.4.1 Detailed Description

Finite element node.

5.4.2 Constructor & Destructor Documentation

Constructor.

Parameters

ID	Node ID
coord	Node coordinate
dof	Dof index

5.4.3 Member Function Documentation

5.4.3.1 set_coordinate()

```
\begin{tabular}{ll} $\operatorname{def myFElib.Node.set\_coordinate} & ( & self, \\ & coord & ) \end{tabular}
```

Set the coordinate.

Parameters

coord	Node coordinate
-------	-----------------

The documentation for this class was generated from the following file:

myFElib.py

5.5 mymodelslib.PipeFlow Class Reference

Fluid flow finite element model.

Public Member Functions

```
    def __init__ (self, params, mesh, cons)
    Constructor.
```

• def assemble (self)

Assemble the finite element system.

5.5.1 Detailed Description

Fluid flow finite element model.

5.5.2 Constructor & Destructor Documentation

cons)

Constructor.

Parameters

params	Dictionary of model parameters
mesh	Finite element mesh
cons	Indices of constrained degrees of freedom

5.5.3 Member Function Documentation

5.5.3.1 assemble()

```
\begin{tabular}{ll} \tt def mymodelslib.PipeFlow.assemble ( \\ self ) \end{tabular}
```

Assemble the finite element system.

Returns

Linear system of equations

The documentation for this class was generated from the following file:

· mymodelslib.py

5.6 myFElib.StandardTriangle Class Reference

Finite element triangular parent element.

Public Member Functions

```
• def __len__ (self)

Length function.
```

• def get_nr_of_nodes (self)

Get the number of nodes.

• def get_shapes (self, xi)

Get the shape functions.

• def get_shapes_gradient (self, xi)

Get the shape functions gradient.

def get_integration_scheme (self, name, npts)

Get the integration scheme.

5.6.1 Detailed Description

Finite element triangular parent element.

Linear triangle parent element with local coordinates (0,0), (1,0), (0,1)

5.6.2 Member Function Documentation

5.6.2.1 get_integration_scheme()

Get the integration scheme.

Parameters

name	The type of integration scheme (e.g. 'gauss')
npts	The number of integration points

Returns

Matrix of integration point coordinates Vector of integration point weights

5.6.2.2 get_shapes()

```
def myFElib.StandardTriangle.get_shapes ( self, \\ xi \ )
```

Get the shape functions.

Parameters

```
xi Local coordinate vector
```

Returns

Vector of shape functions

5.6.2.3 get_shapes_gradient()

```
def myFElib.StandardTriangle.get_shapes_gradient ( self, \\ xi \ )
```

Get the shape functions gradient.

Parameters

xi Local coordinate vector

Returns

Matrix of shape function gradients

The documentation for this class was generated from the following file:

• myFElib.py