ANALIZA MATEMATYCZNA

LISTA ZADAŃ 13

17.01.2022

-1	\bigcirc 11.	1	C		•	1	•
	()blioz	$\mathbf{n} \cap \mathbf{n}$	ti cui ra	ograniczone	. 1	L 12 17 3 7 3 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3	11
		$D \cup D \subset$	пеши	OPIAILCZOHE		KIZVVVVII	11.

- (a) $y = x^2$ i y = 2x + 5, (b) $y = e^x$ i prostą przechodzącą przez punkty (0,1) i (1,e),
- (c) $y = \sin(x)$ i $y = \frac{2x}{\pi}$, (d) $y = x^4$ i $y = x^3$,
- (e) $y = \frac{1}{x}$ i $y = \frac{5}{2} x$, (f) $y = \frac{1}{x^2}$, $y = \frac{1}{x^3}$ i x = 2.
- 2. Oblicz długość łuku krzywej $y = f(x), a \le x \le b$ dla podanych f(x) i [a, b]:
 - (a) x, [1,2], (b) 2x-3, [-7,12], (c) e^x , [1,2], (d) $\sqrt{x^3}$, [6,10], (e) $\frac{e^x+e^{-x}}{2}$, [0,1].
- 3. Dla danych f(x) i [a,b] oblicz pole powierzchni bocznej bryły powstałej przez obrót krzywej $y = f(x), a \le x \le b$ wokół osi OX:
 - (a) x^3 , [0, 5], (b) e^{-x} , [0, 10], (c) \sqrt{x} , [0, 4], (d) $\sin(x)$, $[0, \pi]$, (e) $\cos(7x)$, $[0, 2\pi]$.
- 4. Dla danych f(x) i [a,b] oblicz objętość bryły powstałej przez obrót obszaru $0 \le y \le$ f(x), $a \le x \le b$ wokół osi OX:
 - (a) \sqrt{x} , [0,1], (b) x, [1,5], (c) x^7 , [0,10], (d) e^x , [-3,0], (e) $\sin(x)$, $[0,\frac{3\pi}{2}]$.
- 5. Oblicz długość łuku krzywej $y = \sqrt{(x+5)^3}, \ 0 \le x \le 8.$
- 6. Oblicz objętość bryły powstałej przez obrót obszaru $0 \le y \le xe^x$, $0 \le x \le 1$ wokół osi OX.
- 7. Oblicz długość łuku krzywej $y = \log(x)$, $1 \le x \le \sqrt{3}$.
- 8. Oblicz objetość bryły powstałej przez obrót obszaru $\arctan(x) \le y \le \sqrt{\arctan^2(x) + 1 + \sin(x)}, \ 0 \le x \le 2\pi \text{ wokół osi } OX.$
- 9. Od pomarańczy o grubej skórce odcięto końce, tak, że ukazał się miąższ. Pomarańcze następnie pokrojono w równe plastry. Pokaż, że każdy plaster zawiera tyle samo skórki.

10. Zbadaj zbieżność całek niewłaściwych i oblicz te, które są zbieżne:

- (a) $\int_{0}^{\infty} \frac{dx}{x^{2}+1},$ (b) $\int_{0}^{4} \frac{dx}{\sqrt{x}},$ (c) $\int_{1}^{\infty} \frac{dx}{\sqrt{x}},$ (d) $\int_{-1}^{1} \frac{x-1}{x^{2}-1} dx,$ (e) $\int_{2}^{\infty} \frac{dx}{x \log(x)},$ (f) $\int_{0}^{\infty} \frac{dx}{e^{\sqrt[3]{x}}},$ (g) $\int_{0}^{\infty} \cos(x) dx,$ (h) $\int_{1}^{\infty} x^{\frac{1}{x}} dx,$ (i) $\int_{-\infty}^{\infty} e^{x} dx,$

- (j) $\int_0^1 e^{\frac{1}{x}} dx$, (k) $\int_1^\infty \frac{e^{-\frac{1}{x}}}{x^3} dx$, (l) $\int_2^\infty \frac{dx}{x \log^2(x)}$
- (m) $\int_{-\infty}^{\infty} x^3 \sin(x^4) dx.$