Given: ABCD is a parallelogram;

$$\overline{AD} \cong \overline{AC}; \overline{AE} \cong \overline{EC}$$

$$\angle ADF \cong \angle CDF$$
;  $m \angle DAC = 36$ 

Complete each statement about the diagram.



19. 
$$\angle ADF \cong \angle CDF$$
, so  $\overline{DF}$  is  $a(n)$  ? of  $\angle ADC$ .

**20.** 
$$\triangle ADC$$
 is  $a(n) \stackrel{?}{=}$  triangle.

**21.** 
$$m \angle DAC = 36$$
, so  $m \angle ADC = ?$  and  $m \angle ADF = ?$ .

**22.** 
$$\triangle ADF$$
 is a(n)  $\stackrel{?}{\underline{\hspace{0.1cm}}}$  triangle.

23. 
$$\angle ADC \cong \angle ? \cong \angle ? \cong \angle ? \cong \angle ?$$

In the diagram,  $m \angle VOZ = 90$ .

 $\overrightarrow{OW}$  is an altitude of  $\triangle VOZ$ .

 $\overline{OX}$  bisects  $\angle VOZ$ .

 $\overline{OY}$  is a median of  $\triangle VOZ$ .

Find the measures of the four numbered angles.

**24.** 
$$m \angle Z = 30$$
 **25.**  $m \angle Z = k$ 

25. 
$$m \angle Z = k$$



In Exercises 26-29, complete each statement about the diagram. Then state the definition, postulate, or theorem that justifies your answer.

**26.** If 
$$LM = ON$$
 and  $LO = MN$ , then  $LMNO$  is a  $\frac{?}{}$ .

27. If LMNO is a rhombus, then 
$$\angle LOM \cong ?? \cong ??$$

**28.** If 
$$MP = PO$$
 and  $\overline{PQ} \parallel \overline{ON}$ , then  $Q$  is the  $\underline{?}$  of  $\underline{?}$ .

**29.** If 
$$\overline{PQ} \parallel \overline{ON}$$
,  $PR = RO$  and  $QS = SN$ , then  $RS = \frac{1}{2}(\frac{?}{Q} + \frac{?}{Q})$ .



30. Given: WP = ZP; PY = PX

Prove: 
$$\angle WXY \cong \angle ZYX$$



31. Given:  $\overline{AD} \cong \overline{BC}$ ;  $\overline{AD} \parallel \overline{BC}$ Prove:  $\overline{EF} \cong \overline{FG}$ 

