Analysis questions for teams

1. Suppose that $f \in C_c^{\infty}(\mathbf{R}^2)$ has the property that $\int_L f = 0$ for every line $L \subset \mathbf{R}^2$. Show that f = 0.

2. Let $D \subset \mathbf{C}$ be an open set. Let Aut(D) denote the set of invertible conformal self-maps $\psi: D \to D$.

- (a) Show that there is a domain D such that Aut(D) is countably infinite.
- (b) Show that there is a domain D such that Aut(D) is isomorphic to the integers **Z**.
- (c) Is it possible for Aut(D) to be isomorphic to the real numbers \mathbf{R} ?
- 3. Suppose that $f: \mathbf{R} \to \mathbf{R}$ is of class C^1 and satisfies

$$\int_{-\infty}^{\infty} \frac{1}{|f(x)|} dx = +\infty$$

Prove that the maximal interval of existence for the solution of

$$\frac{dx}{dt} = f(x)$$

is $(-\infty, \infty)$.