PATENT ABSTRACTS OF JAPAN

10093880 A (11) Publication number:

(43) Date of publication of application: 10 . 04 . 98

(51) Int. CI

H04N 5/445 H04N 7/08 H04N 7/081

(21) Application number: 08241728

(22) Date of filing: 12 . 09 . 96

(71) Applicant:

HITACHI LTD

(72) Inventor:

KOMI HIRONORI FUJII YUKIO

(54) THREE-DIMENSIONAL DISPLAY PROGRAM GUIDE GENERATION DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To inexpensively provide a program guide display device which can intuitively be operated through the use of a three-dimensional graphic and displays program data at high speed.

SOLUTION: CPU 5 receives program guide information from a distribution circuit 2. A CG(computer graphics) rendering circuit 8 makes a response to the operation of a user at high speed and extracts only program data required for texture data to be plotted, and it is accumulated in RAM 7. Texture data showing respective program names are designated in font ROM 16 from correspondence information of respective program data and a polygon on a virtual three-dimensional solid. The polygon is mapped and a program table is constructed in the virtual three-dimensional solid. At the time of scrolling the program table, line information between program data is used and the mapping position of only the program of a necessary minimum is changed.

COPYRIGHT: (C)1998,JPO

THIS PAGE BLANK (USPTO)

!

(19) 日本国特許庁(JP)

5/445

7/08 7/081

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-93880

(43)公開日 平成10年(1998) 4月10日

(51) Int.Cl.6 H04N

識別記号

FΙ

5/445 H04N

Z

7/08

Z

(21) 出願番号

特顏平8-241728

(71)出願人 000005108

株式会社日立製作所

審査請求 未請求 請求項の数11 OL (全 10 頁)

東京都千代田区神田駿河台四丁目6番地

(22)出顧日

平成8年(1996)9月12日

小味 弘典 (72)発明者

神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所マルチメディアシステム関

発本部内

(72)発明者 藤井 由紀夫

神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所マルチメディアシステム開

発本部内

(74)代理人 弁理士 小川 勝男

3次元表示番組ガイド発生装置 (54) 【発明の名称】

(57) 【要約】

【課題】3次元グラフィックスを用いて直感的に操作で き、高速に番組データを表示する番組ガイド表示装置を 安価に実現する。

【解決手段】分配回路2より番組ガイド情報をCPU5 が受け取り、CGレンダリング回路8においてユーザの 操作に高速に応答し描画すべきテクスチャデータに必要 な番組データのみを抽出し、RAM7に蓄積する。各番 組データと仮想3次元立体上のポリゴンとの対応情報よ り、各番組名を示すテクスチャデータをフォントROM 16中に指定し、ポリゴンにマッピングし番組表を仮想 3次元立体に構築する。番組表のスクロール時には、各 番組データ間のリンク情報を利用し必要最小限の番組に 関してのみマッピング位置の変更を行う。

【請求項1】符号化映像音声信号と多重送信された第1 の番組ガイド情報を受け取り,ユーザに番組を選択させ るための番組ガイド画面をコンピュータグラフィックス (以下CG) を用いて発生する装置であって、上記第1 の番組ガイド情報を解析して該第1の番組ガイド情報か ら第2の番組ガイド情報を抽出し、ユーザ操作情報に従 い番組ガイド画面作成指示を出すプロセッサと、上記第 2 の番組ガイド情報を保持するメモリと, 上記番組ガイ ド画面作成指示に従って、上記番組ガイド画面を生成す 10 るCGレンダリング回路を具備し、上記番組ガイド画面 には上記ユーザ操作情報に高速に応答して生成される画 面モードがあり、上記第2の番組ガイド情報は上記画面 モードの生成に必要なデータ項目のみを含み、さらに該 データ項目は上記第1の番組ガイド情報に含まれる全番

組分について上記メモリに保持されることを特徴とする

3次元表示番組ガイド発生装置。

【請求項2】符号化映像音声信号と多重送信された第1 の番組ガイド情報を受け取り、ユーザに番組を選択させ るための番組ガイド画面をCGを用いて発生する装置で 20 あって、上記第1の番組ガイド情報を解析して該第1の 番組ガイド情報から第2の番組ガイド情報を抽出し、ユ ーザ操作情報に従い番組ガイド画面作成指示を出すプロ セッサと,上記第2の番組ガイド情報を保持するメモリ と, 上記番組ガイド画面作成指示に従って, 上記番組ガ イド画面を生成するCGレンダリング回路を具備し,上 記番組ガイド画面には上記ユーザ操作情報に高速に応答 して生成される画面モードがあり、上記第2の番組ガイ ド情報は上記画面モードの生成に必要なデータ項目のみ を含み、該データ項目は予め選択された一つ以上のカテ 30 ゴリに属する番組分について上記メモリに保持されるこ とを特徴とする3次元表示番組ガイド発生装置。

【請求項3】符号化映像音声信号と多重送信された第1 の番組ガイド情報を受け取り、ユーザに番組を選択させ るための番組ガイド画面をCGを用いて発生する装置で あって、上記第1の番組ガイド情報を解析して該第1の 番組ガイド情報から第2の番組ガイド情報を抽出し,ユ ーザ操作情報に従い番組ガイド画面作成指示を出すプロ セッサと、上記第2の番組ガイド情報を保持するメモリ と、上記番組ガイド画面作成指示に従って、上記番組ガ 40 イド画面を生成するCGレンダリング回路を具備し、上 記番組ガイド画面には上記ユーザ操作情報に高速に応答 して生成される画面モードがあり、上記第2の番組ガイ ド情報は上記画面モードの生成に必要なデータ項目のみ を含み,該データ項目は予め選択された一つ以上のチャ ネルに属する番組分について上記メモリに保持されるこ とを特徴とする3次元表示番組ガイド発生装置。

【請求項4】符号化映像音声信号と多重送信された第1 の番組ガイド情報を受け取り、ユーザに番組を選択させ るための番組ガイド画面をCGを用いて発生する装置で 50 って,上記仮想3次元立体に投影される番組テクスチャ

あって、上記第1の番組ガイド情報を解析して該第1の 番組ガイド情報から第2の番組ガイド情報を抽出し、ユ ーザ操作情報に従い番組ガイド画面作成指示を出すプロ セッサと、上記第2の番組ガイド情報を保持するメモリ と、上記番組ガイド画面作成指示に従って、上記番組ガ イド画面を生成するCGレンダリング回路を具備し、上 記番組ガイド画面には上記ユーザ操作情報に高速に応答 して生成される画面モードがあり、上記第2の番組ガイ ド情報は上記画面モードの生成に必要なデータ項目のみ を含み、該データ項目は予め選択された一つ以上の放送 日に属する番組分について上記メモリに保持されること を特徴とする3次元表示番組ガイド発生装置。

【請求項5】特許請求の範囲第1項, 第2項, 第3項ま たは第4項に記載の装置であって,上記CGレンダリン グ回路には該CGレンダリング回路が直接アドレッシン グ可能なフォントメモリが接続され、上記第2の番組ガ イド情報はデータ項目として、各番組の番組名を含み、 該番組名を表すテクスチャ(以下番組テクスチャと呼 ぶ)を生成し、仮想空間内の仮想3次元立体に投影する マッピング回路を上記CGレンダリング回路内に具備 し、上記マッピング回路は、上記番組名を上記プロセッ サから受け取り、該番組名を表す文字パターンを上記フ ォントメモリから読み出し、上記番組テクスチャを生成 することを特徴とする3次元表示番組ガイド発生装置。

【請求項6】特許請求の範囲第5項に記載の装置であっ て、上記仮想3次元立体を多角形(以下ポリゴンと呼 ぶ) の集合で表現し、各ポリゴンと該ポリゴンに投影さ れる番組テクスチャとの対応表が上記メモリ内に格納さ れることを特徴とする3次元表示番組ガイド発生装置。

【請求項7】特許請求の範囲第5項に記載の装置であっ て、上記CGレンダリング回路は直接アドレッシング可 能な描画用グラフィックメモリを具備し、上記第2の番 組ガイド情報のうち、各番組の番組名は上記グラフィッ クメモリ内に蓄積されることを特徴とする3次元表示番 組ガイド発生装置。

【請求項8】特許請求の範囲第5項に記載の装置であっ て、上記ユーザ操作情報はユーザがポインタにより画面 中で指定した指定座標を含み、上記プロセッサは番組テ クスチャを生成するために番組名と該番組に固有の番組 I Dと上記指定座標を上記マッピング回路に送り、上記 マッピング回路が描画するピクセルと該指定座標が一致 した場合に該ピクセルに対応する番組IDを保持するこ とを特徴とする3次元表示番組ガイド発生装置。

【請求項9】特許請求の範囲第6項に記載の範囲であっ て、上記ポリゴンと番組テクスチャ対応表は、上記番組 テクスチャの投影面を視聴者が見ることが可能なポリゴ ンのみについて構成されることを特徴とする3次元表示 番組ガイド発生装置。

【請求項10】特許請求の範囲第6項に記載の装置であ

10

3

は番組表を表すように配置され、上記第2の番組ガイド情報が上記メモリに保持される際、各番組の番組データ間に上記番組表内の近接関係を示すリンク情報を与え、上記リンク情報は、上記番組表において上記各番組テクスチャから該番組テクスチャに最も近く配置される番組テクスチャに対する上記第2の番組ガイド情報内の相対アドレス値を示し、上記番組表を投影する上記仮想3次元立体内の位置を変更する際、上記リンク情報を用いて上記ポリゴンと番組テクスチャの対応表を変更する事を特徴とする3次元表示番組ガイド発生装置。

【請求項11】特許請求の範囲第10項に記載の装置であって、さらに、上記番組データ間のリンク情報を、予め与えられた条件に該当する番組データ間にのみ与え、上記番組データのうち上記リンク情報を持つ番組についてのみ番組テクスチャを上記仮想3次元立体に投影することを特徴とする3次元表示番組ガイド発生装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、符号化映像音声信号に時分割多重されて送られてきた番組ガイド情報を表 20 示し、ユーザが現在視聴希望する番組の選択、将来視聴希望する番組の予約を行うためのグラフィックユーザインタフェース (以下GUIと略記) に関する。

[0002]

【従来の技術】ディジタル衛星放送等では一つの周波数に複数のチャネル分の映像音声信号を時分割多重化し、複数周波数の放送により多数のチャネル分の情報を送信する。これらの放送では、ユーザが放送を視聴している時刻より未来の番組データも提供し、見たい番組を予約する機能や見た番組分のみの料金を支払うベイ・パー・ビュー方式(以下、PPVと略記)等の新しいサービスが付加されている。大量の番組データ情報をユーザに提供する方法は、特開平8-70451や特開平7-288783等で記載されているように、放送局側から番組に関する情報である番組ガイド(以下、EPGと略記)情報を符号化映像音声信号に多重化して送る方式が一般的である。

【0003】EPG情報には各番組のチャネル情報,周波数情報,プログラム名,プログラム開始,終了時間,プログラム解説文等が含まれ,ユーザが多くの番組から 40上記情報を参照し自分の好みに合った番組を選択できる。

【0004】図12に従来のディジタル衛星放送受信機(Integrated Receiver Decoder:以下、IRDと略記)内で番組ガイド用グラフィックユーザーインターフェース(以下GUIと略記)を提供するシステムを示す。図12の装置はISO/IEC13818-1~13818-3(通称MPEG-2)に基づいて符号化、および時分割多重されたディジタル衛星放送信号を受信するIRDである。

【0005】図12において、分配装置2は入力端子1よりトランスポートストリーム(以下TSと略記)と呼ばれる画像と音声の時分割多重信号を受け取る。TSは188パイトのパケット(以下TSパケットと略記)からなり、各TSパケットはパケットへッダとペイロードと呼ばれる2つの情報を含む。ペイロードには、PESパケット(Packetized Elementary Stream)、PSI(Program Specific Information)、およびSI(Service Information)と呼ばれる情報が含まれる。PESパケットは符号化された映像、音声信号を含む。PSIは各チャネルにおいて放送中のデータ(プログラム)とTSパケットの対応関係を示す情報である。SIはMPEG-2で規定されていな

いサービス情報である。
【0006】TSパケットのヘッダにはパケット識別情報PID (Packet ID) が含まれ、該当TSパケットの属性が何であるかを示す。後述するように分配装置2はCPU5から指定されたPIDをもつTSパケットのペイロードを取り出し、該当TSパケットが、音声信号または画像信号のPESパケットの一部の場合、それぞれオーディオデコーダ3、ビデオデコーダ4に送る。オーディオデコーダ3、ビデオデコーダ4でデコードされた信号はそれぞれディジタル音声信号、ディジタル画像信号として出力端子19、20から出力される。分配装置2で得られたTSパケットの属性がPSIまたはSIの場合、分配装置2はCPU5に該当TSパケットのペイロードを転送する。

【0007】CPU5に送られるPSIには各プログラムの画像、音声信号とPIDの対応を表したPMT(Program Map Table)と各プログラムとPMTの対応を表したPAT(Program Association Table)が含まれる。これらの情報を解析することにより、現在選択しているプログラムに関する情報をもつTSパケットのPIDを求め、分配装置2に送る。

【0008】CPU5に送られるSIは番組ガイド、各番組の説明文等を含む。一般に、ディジタル衛星放送などで放送されるプログラム数は50を越え、EPG用情報として、現在放送されているもの、当日分以外に数日先の番組データまでも提供する。したがって、EPG情報に含まれる番組数は数千に及び、全番組情報をメモリに蓄積するためには数Mバイト近いメモリ容量を必要とする。

【0009】図12の例では、CPU5が現状のEPG用GUIの状態に即して、分配回路2を介して現在放送で送信されているEPG情報から必要なデータを受けとるか、メモリ7、あるいは画像デコーダ4に設けられているメモリに予め保存したEPG情報から必要データを読み込む。一般に、放送信号は数秒から数十秒ごとに全

番組分のEPG情報を送信する。読み込んだEPGデータはCPU5によりEPGメニュー画面として加工され、OSD (On Screen Display)プロセッサ18に送られる。ディスプレイ上のEPGメニュー画面を見て、ユーザは番組選択などの操作を行い、リモコン等により入力端子6からCPU5に選択情報を入力する。選択された番組が現在放送中のものである場合、CPU5は分配回路2に選択されたチャネルを指定し受信チャネルの変更を行う。また、将来の番組を選択された場合、メモリ7内にある番組予約データベースの10更新を行う。

【〇〇1〇】従来のEPGメニューでは画面上の水平軸, 垂直軸を例えばチャネル軸, 時間軸に対応させて番組表を記述する。ユーザがカーソル移動等の方法で番組を指定した場合,その番組に関する詳細情報を別途表示する。画面内には情報の一部を表示し,画面外の情報を見る場合には上下左右スクロールや画面全体の書き換えにより表示内容を更新する。さらに3次元CGを用いて番組ガイドを表現する際,番組情報を表すテクスチャをCPU5で生成し,仮想3次元立体に投影し2次元画面20に透視変換をして番組ガイド画面を生成する。

[0011]

【発明が解決しようとする課題】しかし、従来例では全 EPGデータをメモリに保持しようとすると大きなメモ リ容量を必要とするため、装置のコスト高を招く。

【0012】メニュー画面作成の度に分配回路を介して、放送中のEPGデータより必要情報を得ようとすると必要番組データ取得に数秒~数十秒時間がかかり、ユーザが番組選択のために大量の番組をサーチする時には、多くの待ち時間を要する。

【0013】本発明の目的はユーザがEPG情報から所望の番組データを選択する効率を妨げない程に十分高速な3次元表示番組ガイド発生装置を安価に提供することである。

[0014]

【課題を解決するための手段】本発明では、ユーザ操作情報に高速に応答する画面モードの番組ガイド画面をもち、上記画面モードに必要な番組データのみを常時保持する。

【0015】ポリゴンと該ポリゴンに投影される番組テ 40 クスチャとの対応情報,および番組データ間のリンク情報をもち,ポリゴンに投影する番組テクスチャを探索する際,探索範囲を限定する手段を備え、さらにユーザがポインタによって選択する番組を画面描画回路内の処理を利用して検出する手段を具備する。

[0016]

【発明の実施の形態】以下,本発明の実施の形態を図面を用いて説明する。図1は,本発明の第1の実施形態に係る装置の機能ブロック図である。図12と共通のブロックに関しては,同一の符号を記し,説明を省略する。

【0017】本実施形態では、番組名を並べた番組表をユーザが確認し、例えば、7日分の放送スケジュールの概略を得て、さらに興味のある番組に関して詳細情報表示を選択するものとする。番組表は放送チャネルを並べるチャネル軸と放送時間帯を表す時間軸を用いて表すものとする。上記番組表はユーザから送られる操作情報に常に高速に応答し描画されるようにし、視聴者が番組表をチェックする際、待ち時間が生じないようにする。このため、CPU5では、受け取ったEPG情報から、番組名、放送日、チャネル、時間帯のデータ項目を抽出しRAM7に書き込む。図2に示すように、各番組データは各番組を特定するための番号である番組IDが付加された固定バイト数のデータ構造内に保持する。

【0018】抽出したEPG情報内のデータ項目は後述の仮想3次元立体に投影(以下、マッピング)する番組表を決定するために必要なデータであり、全ての番組分のデータをメモリに持つことにより、分配回路2よりEPGデータを受ける必要がなく、あらゆる範囲の番組表を高速に作成することができる。また、他の番組情報にくらべ多くのバイト数を必要とする番組説明文等は保持しないため、抽出した番組データには比較的少ないメモリ容量しか必要としない。

【0019】本実施例では必要なデータ項目を送信されるEPG情報内の全番組分について抽出するが,予め指定されたカテゴリ,チャネル或いは放送日に属する番組分について抽出しても良い。この場合,番組表の範囲は限定されるが,EPG情報を保持するためのメモリ容量はさらに少なくできる。

【0020】CPU5では、入力端子6よりユーザーの操作情報を受け、ユーザが画面上で指示している座標、画面モード等を決定する。この後、CPU5は仮想3次元立体、表示すべき番組情報の構成を計算する。

【0021】ここでは、番組表を表示する画面として図3のようなGUIを考える。各円柱の側面部には1日分の番組表が描かれている。画面より遠くの円柱ほど現在日より遠い未来の日になり、7日分の円柱が配置されているものとする。

【0022】円柱の回転方向には24時間の時間軸,円柱の垂直方向にはチャネル軸が対応しており,各番組名は該当チャネルの放送時間帯部分に表示される。円柱側面に表示されるチャネルの範囲は番組ガイド情報内の一部であり,ユーザ操作情報に基づき円柱側面内で縦方向にスクロールする。また別のユーザ操作により円柱軸を中心として側面の番組表が回転することにより24時間すべての番組を連続的に確認することが可能である。

【0023】本GUIでは、遠近法を用いて各円柱を描画しており、ユーザ操作情報により円柱が奥ー手前方向にスライドする。このGUIにより、ユーザが注視している日付の円柱をより大きく表示し、それ以外の情報は 50 小さく表示したり画面外に出すことで、注目している情

3-13 3

40

報をより強調することができる。

【0024】上記番組ガイド画面を描画するための処理を以下説明する。CPU5は入力端子6からの操作情報を監視しながら、円柱位置、円柱側面の番組表のチャネル軸、時間軸の可視範囲を決定する。

【0025】仮想3次元空間内の円柱は、図4のようにポリゴンと呼ばれる多角形で囲まれた多面体として表現され、図4に示すように各頂点の座標がCPU5によって視点座標系と呼ばれる3次元座標系の中で与えられる。ここでは、各ポリゴンの大きさは等しいものとする。視点座標系に変換されたポリゴン表面には番組名を表すテクスチャである番組テクスチャがマッピングされる。

【0026】図4中のID0は図2の番組データ例に示すように番組IDが0、番組名が「あの町」、放送時間が17:15~18:45、チャネル番号が210、放送日が1996/8/1とする。以下、円柱の各ポリゴンを鉛直方向の番号cと回転方向のhを用いてPh,cとして表す。

【0027】現在,各円柱のユーザ側から見える側の範 20 囲が15:00~21:00とすると,ID0のマッピングされるhの範囲は4~7となる。チャネル210の番組テクスチャがマッピングされるcの範囲が0から1であったとすると,図5に示すように,1996/8/1分の円柱のポリゴンと番組テクスチャの対応表であるデータ列p(h,c)の該当範囲にID0の番組ID=0が書き込まれる。各番組テクスチャが対応するポリゴンには複数の番組IDが書き込みされるようにp(h,c)は多次元配列とする。CPU5では,番組データをRAM7に保存する際,各番組データのチャネル番号と 30 放送時間帯,現在の円柱の番組表表示範囲より;p(h,c)を決定し,RAM7に保存する。

【0028】上記対応表p(h, c)を一度作成した後は、放送チャネル、放送時間帯などを逐次比較することなしに各ポリゴンにマッピングされる番組テクスチャを特定できるため、CPU5の処理量を少なくすることができる。

【0029】また、本実施の形態では対応表 p (h, c) の範囲を、番組表の投影された面をユーザが見ることができるポリゴンの範囲に限定しているため、 p (h, c) の設定にかかる C P U 5 の処理量を低減している。

【0030】ユーザからの操作情報に基づき番組表を円柱側面上で回転させる時、あるいはチャネル範囲を変更する場合、CPU5はポリゴンの頂点位置は変化させず番組テクスチャのマッピング位置を変更し、ポリゴンと番組テクスチャの対応p(h,c)を更新する。

【0031】p(h, c)の更新を高速に行うため、図2に示した各番組データ内には同放送日、同チャネルの番組データの中で放送時間帯がその番組の前後で最も近50

い番組データに対してのリンク情報を付加する(時間前方リンク,時間後方リンク)。また,番組表を表示する際,上下最も近いチャネルに関して,同放送日で放送時間が最も近い番組へのリンク情報を持つ。同じチャネルで放送時間が重なる番組が複数有る場合は最も放送時間が長く重なる番組へのリンク情報を付加する(チャネル前方リンク,チャネル後方リンク)。番組表の端等,リンク先がない場合はリンク情報はその番組データ自身へのリンクとする。ここでは、各データ情報は分配回路2005取得する際,49バイト単位でRAM7上に格納し、その放送日,チャネル,時間帯を参照してリンク情報を形成するものとする。各番組データのリンク情報はその番組データからリンク先への相対アドレス位置で表すものとする。

8

【0032】上記リンク情報を用いてp(h, c)を更 新する処理を図6を用いて説明する。現在からの時間軸 の変化量,チャネル軸方向の変化量より,まず現在の p (h, c) 内にある番組テクスチャについてポリゴンの 対応関係を再計算する。さらに、新たにポリゴンとの対 応関係が生じる番組テクスチャに関しては、図6のよう に,新しいp'(h,c)内でスクロールする側にある 番組データよりリンク先を探索する。リンク先の番組テ クスチャを再起的に検査し,p(h, c)内に入る可能 性のあるすべてのリンク先を探索する。現在検査してい る番組データが既に p'(h, c)の範囲外に有る場 合,さらにp'(h, c)から離れる方向へのリンク先 はそれ以上検査する必要がない。この条件を利用し, p' (h, c) に入る可能性のあるすべての番組テクス チャを検査したら,p (h, c)の変更を終了する。な お, 更新後 p (h, c) 内に対応する番組テクスチャが 存在しない場合、更新前のp(h,c)にあった番組テ クスチャからのリンク情報をもとに次の p (h, c) に 対応する候補番組テクスチャを探索する。

【0033】一般に、スクロール時には、多くの番組データは再度 p (h, c) 内に存在するため、リンク情報に基づく番組データの探索は小さな範囲で済む。このため、各ポリゴンと番組テクスチャの対応は高速に変更することができる。また上記方法は、ポリゴンを移動し、円柱の回転を表現する時のように、処理量の多い3次元頂点位置変換を大量に行うことはないため、CPU5の処理量を削減することができる。

【0034】ポリゴンで構成された円柱の各頂点は図7に示すように視点座標系 (x, y, z) からスクリーン座標系 (x', y', z') へと透視変換される。スクリーン座標の (x', y') は実際にユーザが見ることができる番組ガイド面の座標に対応する。 z' は各頂点の奥行きを表す z の逆数である。

【0035】CPU5では、ユーザ操作情報により円柱 のスライドが生じた場合、各頂点の3次元位置を変更 し、各頂点の透視変換と各頂点における法線ベクトル計 算を行う。

【0036】CPU5で作成されたEPGデータおよび、ポリゴンに関するデータはそれぞれ、ポリゴン単位でCGレンダリング回路8に転送され、最終的なレンダリングが行われる。

【0037】CPU5よりCPU1/F9を介して、各ポリゴン頂点のスクリーン座標がラスタライズ回路10に送られる。ラスタライズ回路10に送られたスクリーン座標より、スクリーン上に透視変換されたポリゴンの内部領域に該当するピクセル(画素)が決定される。図 108に示すように、ポリゴン内の領域はP1の透視変換後の点P1'からy方向にスキャンされ、スパンと呼ばれる境界線間のx方向の線分の集まりとして考えられる。さらにスパン内をx方向にスキャンし、ピクセル位置が 2バッファ更新回路11に渡される。

【0038】 zバッファ更新回路 11 では各ピクセルのz'の値を求め、グラフィック RAM15のzバッファ内に格納する。もし、現在のピクセルに関してそれ以前に求めたz'値が今回求めたz'値より小さい場合、今回求めたポリゴン内部点の方がスクリーンにより近い場別に位置しているため、グラフィック RAM15 中のz バッファに現在のz'値を書き込み、ピクセル対応色を求める以降の処理に進む。もし、以前のz)値の方が大きい場合、このピクセルに対して、これ以上のレンダリング処理は行わない。

【0039】次に、マッピング回路12において各番組 テクスチャを生成し、ピクセル色を求める。図4に示す ように、CPU5は各ポリゴンのデータをCGレンダリ ング回路8に送る際、ポリゴンと番組テクスチャ対応デ ータp (h, c) を参照し, 各ポリゴンに対応する文字 30 列のキャラクタコード及びポリゴン頂点から番組テクス チャへのオフセットをマッピング回路12に転送する。 マッピング回路12では送られてきたキャラクタコード よりフォントROM16のキャラクタデータを読み込 む。さらにCPU5より送られてきたポリゴン頂点と番 組テクスチャのオフセット値より必要なビットマップデ ータ領域を計算し、さらにポリゴン内での位置を決定し マッピングする。例えば、図4において、ID0の番組 名は"あの町"であり、CPU5はP5,0のレンダリン グを指示する際、文字列"あの"のキャラクタコード列 40 および"ポリゴンP5,0の開始頂点Aから"あ"の開始 点までのオフセットABをマッピング回路12に与え る。以上の情報よりマッピング回路12はP5,0の各点 におけるテクスチャパターンをフォントROM16内よ り読み込む。

【0040】本実施例では、仮想3次元立体全てを覆うようなテクスチャデータを保持しないため、テクスチャ用記憶領域をワーク用グラフィックRAM15に持つ必要がない。このため、グラフィックRAM15のメモリ容量を小さくすることができる。また、CPU5からは 50

番組テクスチャデータではなく文字列を送るため、CP U5とCGレンダリング回路間のデータ転送量は少なく て落む。

10

【0041】マッピング回路12で対応色が決定されたピクセルはシェーディング回路13に送られ、スムーズな陰影処理が施される。シェーディング回路にはCPU5から各ポリゴンの頂点における法線ベクトルが送られ、これらを基に各ピクセルにおける対応色が最終的に決定される。以上計算された各ピクセルの色情報はグラフィックRAM15内にあるフレームバッファ内に書き込まれる。

【0042】上記CGレンダリング回路ではインターレース形式、29.97Hzフレームレートの画像を生成する。画像を生成する際、 $1/(29.97\times2)$ 秒以内に全てのポリゴンについて上記レンダリング処理を行い、データ項目画像を生成する。各データ項目画像はグラフィックRAM15内のフレームバッファ内に書き込まれ、ディスプレイ I/F17を介してOSD合成回路18に送られた後、MPEGー2のデコード画面に合成されて出力端子20より出力される。

【0043】出力端子20より出力された画像をディスプレイで確認し、ユーザは番組表を回転、スクロール、あるいは日付別円柱をスライドさせることにより番組名をチェックする。興味のある番組をさらに詳細に確かめるためには、ポインタを興味ある番組テクスチャの上部に移動させ、選択ボタンにより番組を選択する。本実施の形態では、番組選択処理をマッピング回路12において行う。図9を用いてこの処理を説明する。

【0044】CPU5は選択ボタン信号を受け取ると、 1データ項目分の画像レンダリング開始時にCPU 1/ F9を介して、マッピング回路12中のテクスチャ処理 部21に番組選択の指示を送る。さらにスクリーン上の ポインタ位置をポインタ位置バッファメモリ24に送 り、さらに各ポリゴンにマッピングする番組テクスチャ 情報を送る際、番組テクスチャに対応する番組IDもテ クスチャ処理部21に送る。テクスチャ処理部21は番 組選択指示を受けた場合,テクスチャ対応番組IDバッ ファメモリ26を「該当番組なし」を表す番号NPによ って初期化する。さらに、各ピクセルのマッピング処理 を行う際, テクスチャバッファメモリ22に現在参照中 の番組テクスチャの番組IDをバッファメモリ23に書 き込む。もし、現在、マッピング処理を行っているピク セルのスクリーン上の位置とバッファメモリ24内のポ インタ位置が比較回路25で一致した場合, 比較回路2 5はテクスチャ番組IDバッファメモリ23から選択番 組IDバッファメモリ26への書き込み許可を出し、テ クスチャ対応番組IDバッファメモリ23はバッファメ モリ内の番組 I Dを選択番組 I Dバッファメモリ26に

【0045】以上の処理を全てのポリゴンに関して行っ

た時、最後に選択番組IDバッファメモリ26に保持された番組IDがポインタの指示した番組としてCPUI/F9を介してCPU5に転送される。ポインタ位置に対応する番組テクスチャがない場合、CPU5は番号NPを検出する。以上の手段により、番組選択処理は常に1フレームの表示期間0.034秒で処理でき、常に高速にユーザの番組選択情報に応答する事ができる。

【0046】CPU5はCPUI/F9より選択番組I Dを受けた場合,番組解説分などの詳細表示用データを 分配回路2から抽出し,別途表示する。

【0047】次に本発明における第2の実施の形態を図面を用いて説明する。第2の実施の形態の構成は第1の実施の形態とほぼ同様で、本実施の形態において第1の実施の形態と同じ機能を持つブロックに関しては図1と同じ番号を使用し、説明を省略する。

【0048】第1の実施の形態同様、CPU5において番組テクスチャを生成するために必要なEPGデータを抽出し、RAM7に保持する。RAM7に保持されるデータは図2の番組データから番組名を除いたデータ構造を持つ。各番組IDに対応する番組名は分配回路2よりデータを受け取った時点でCGレンダリング回路9に転送する。CGレンダリング回路9は番組名データを受け取り、図10に示すようにグラフィックRAM15内の番組名データ領域に書き込む。番組名データ領域のデータは番組ID順に並んだ30バイトの固定長の配列に保持され、番組IDによりアドレス位置を参照できる。この転送はEPGデータを更新するときにのみ行い、EPGの操作時間内には生じない。

【0049】CPU5はユーザからの操作情報に基づいて仮想3次元立体の各頂点をスクリーン座標系で求め、透視変換したのち、各ポリゴン単位で頂点に関するデータとそのポリゴンに対応する番組テクスチャの情報を与える。このとき、番組テクスチャの情報には、該当ポリゴンの頂点から番組テクスチャへのオフセット情報と番組IDが含まれる。番組IDを受けたマッピング回路12はグラフィックRAM15内に保持した番組名データ領域のベースアドレスと番組IDで決定されるアドレスより文字列を読みとり、上記番組テクスチャの文字パターンを決定する。この方法では、第1の実施形態のように、番組データ中の番組名を逐次転送することがないので、CPU5からCPUI/F9へのデータ転送量を削減することができる。

【0050】次に本発明における第3の実施の形態を図面を用いて説明する。第3の実施の形態の構成は本発明の第1の実施の形態の構成と同様であり、図1に示す通りである。

【0051】第3の実施の形態では、RAM7に保存する番組データが図11のような固定データ項目を持つ構造となる。番組データ構造のうちカテゴリのデータ項目にはその番組の属するカテゴリコードが保持される。カ 50

テゴリコードはEPGの規格として予め決められており、放送時に各番組に与えれているものとする。

12

り、放送時に各番組に与えれているものとする。 【0052】今,すでに全番組データが分配回路2から 送られ、図11に示す番組データが抽出されていた時 に、入力端子6より、CPU5にカテゴリ別選択情報が 送られ、選択カテゴリとして「スポーツ」が指定された とする。CPU5は現在の番組データ間のリンク情報よ り、「スポーツ」のカテゴリコードを持つ番組データ間 についてのみリンクを作成する。該当カテゴリの番組デ ータに関しては、それ以前とそれ以降の同放送日、同チ ャネル、同カテゴリの番組データの中で放送時間帯が最 も近い前後2つの番組データに対してのリンク情報を書 き込む。また、同放送日、同カテゴリで放送時間が最も 近く,番組表中の前後チャネルにある番組へのリンク情 報を書き込む。放送時間帯が重なる番組が同チャネル内 に複数有る場合は最も放送時間が長く重なる番組ヘリン クを生成する。リンク先がない場合、リンク情報はその 番組データ自身へのリンク情報とする。該当カテゴリで ない番組データのリンク情報は全てリンク情報なしを意 味するNULLコードを入れる。また、ここでは、時間 軸両端の各データ情報は51バイト単位でRAM7上で 格納され、各番組データのリンク情報はその番組データ からリンク先への相対アドレス位置で表すものとする。 格納されている番組データを順番に検査し、隣接番組デ ータへのリンク情報を更新することにより, 最終的に 7 日分の番組データリンクが指定カテゴリについてのみ形 成される。このリンク情報を用いてポリゴンと番組デー タの対応表であるp (h, c) を構築する。第1の実施 の形態同様にCGレンダリング回路にポリゴン単位でレ ンダリングの指示を出すことにより、該当カテゴリの番 組のみを円柱側面の番組表として表示することができ る。他のカテゴリを指定された場合も、新たに番組情報 間のデータリンクおよびp(h, c)を形成し直すこと で番組ガイドの画面を変更することができる。以上の実 施形態により、番組データのリンク構造を変更するのみ で、他の処理を変更せずにカテゴリ別選択の番組ガイド 画面を作成することができる。 したがって、プログラム サイズを少なくすることができ,メモリ容量の低減に有 利である。本実施の形態では、リンク情報を選択カテゴ りに該当する番組データに限定したが、予め選択された チャネルに属する番組データに限定することにより、ユ ーザが興味ある番組のみの番組テクスチャをマッピング することが可能であるのは言うまでもない。

[0053]

【発明の効果】本発明の3次元表示番組ガイド発生装置では、高速応答を必要とされる画面に必要な情報のみを膨大なEPGデータの中から抽出、保存することで、必要とするメモリ容量を低減した高速な番組ガイドを生成することができる。

【0054】仮想3次元立体を表現するためのポリゴン

10

と番組名を表示する番組テクスチャとの対応関係, さらに各番組情報のリンク情報を備えたことで, 高速に番組表を構築することが可能である。

【0055】テクスチャデータのマッピング処理を利用して、ポインタの指示位置に対応する番組を検出するため、ユーザ操作情報に常に高速に応答して選択番組を検出できる。

【図面の簡単な説明】

【図1】本発明の第1の実施形態に係る装置の構成図で ある。

【図2】番組データの構造およびリンク情報を表す図で ある。

【図3】3次元表示された番組ガイドの概略図である。

【図4】仮想3次元立体の各ポリゴンと番組テクスチャの対応を説明するための図である。

【図 5】ポリゴンと番組テクスチャの対応表を表す図で ある。

【図 6 】ポリゴンと番組テクスチャの対応関係の更新を 表す図である。

【図7】視点座標からスクリーン座標への透視変換を表 20 す図である。

【図8】ピクセルのレンダリング順序を説明するための 図である。

【図1】

【図9】ポインタで指定された番組を選択する回路を説明するための図である。

14

【図10】本発明第2の実施の形態におけるメモリ内の 使用領域を表す図である。

【図11】本発明第3の実施の形態における番組データ の構造を示す図である。

【図12】従来例の番組ガイドメニュー発生装置を説明 する図である。

【符号の説明】

1…時分割多重信号入力端子, 2…分配装置, 3…オーディオデコーダ, 4…ビデオデコーダ, 5…CPU, 6 …ユーザ操作情報入力端子, 7…RAM, 8…CGレンダリング回路, 9…CPUI/F, 10…ラスタライズ回路, 11…zバッファ更新回路, 12…マッピング回路, 13…シェーディング回路, 14…RAMI/F, 15…グラフィックRAM, 16…フォントROM, 17…ディスプレイI/F, 18…OSD合成回路, 19…ディジタル音声信号出力端子, 20…ディジタル映像信号出力端子, 21…テクスチャ処理部, 22…ポリゴン用テクスチャバッファ, 23…テクスチャ対応番組IDバッファメモリ, 25…位置比較器, 26…選択番組IDバッファメモリ, 25…位置比較器, 26…選択番組IDバッファメモリ

【図2】

図2

.

【図9】

【図12】

図12

【図10】

