Unit Testing

zyBook Chap 5.11

Testing

• "The *dynamic* verification of the behavior of a program on a finite set of test cases, *suitably selected* from the usually infinite executions domain, against the *expected behavior*"

[ISO/IEC TR 19759:2005. Software Engineering - Guide to the Software Engineering Body of Knowledge (SWEBOK)]

 A process of verifying the behavior of our programs and revealing software faults (i.e., logic errors)

Unit Testing

- The most basic level of software testing
- Testing the functionality of individual methods
 - Independent paths within the source code
 - Logical decisions as both true and false
 - Loops at their boundaries
 - Internal data structures
 - •

Testing Strategies

- Test Requirements
- Test Equivalence Classes
- Test Boundary Values
- Test All Paths
- Test Exceptions

Testing Strategies – Test Requirements

Testing the main functionality of the method

For example, to test the method

public static boolean isPalindrome (int userNum)

in PA05-A: Numeric Palindromes.

We need to verify if this method can return true when the parameter userNum is a palindrome, and return false otherwise.

Testing Strategies – Test Equivalence Classes

- Testing representative values from equivalence classes
 - We break up the possible inputs for each parameter into equivalence classes and test representative values for each parameter
 - Preferably the "middle" input values
- Ensure each equivalence class is tested

Testing Strategies – Test Equivalence Classes

As stated in the Program Description, the userNum should be within the range of 1 - 999, inclusive.

Hence, we divide the range of possible inputs into

- \square < 1
- **1** 999
- > 999

Can the possible user input be further divided into more equivalent classes?

Testing Strategies – Test Equivalence Classes

As stated in the Program Description, the userNum should be within the range of 1 - 999, inclusive.

Hence, we divide the range of possible inputs into

- \square < 1
- □ 1 999
 - □ 1 9
 - **10 99**
 - **100 999**
- > 999

Testing Scenarios/Values:

Test our program with at least one value (in this case, a palindrome and a non-palindrome) from each equivalence class.

Testing Strategies – Test Boundary Values

 Once representative values of a method are tested, boundary values (if any) between the equivalence classes should be tested

- \square < 1
- 1 999
 - □ 1 9
 - **10 99**
 - **100 999**
- □ > 999

Boundary Values (in this case): **-1**, **0**, 1, 9, 10, 99, 100, 999, 1000

How to improve the PA05-A test cases?

Current PA05-A test cases verify the program behavior given:

- -15
- 151
- 511
- 999
- 1000
- 456