IUT Victor Fotso de Bandjoun

Recherche Opérationnelle (2/2)

CHAPITRE 2: PROBLEME DE CIRCULATION FLOTS SUR UN GRAPHE

2-1 – CHEMINS EXTREMAUX DANS UN GRAPHE ORIENTE ET VALUE A- RAPPELS

- le degré d'un sommet est aussi appelé Niveau de ce sommet.
- Soit N_0 l'ensemble des sommets d'un graphe G exempts de précédents, pour tout $x_i \in N_0$ le rang $(x_i)=0$, N_0 constitue l'ensemble des sommet de niveau 0 du graphe G.
- Soit G_1 =(X_1 , U_1) le sous-graphe de G engendré par la suppression dans G de l'ensemble N_0 des sommet de niveau $0: X_1$ =X- N_0 . N_1 est l'ensemble des sommets de G_1 exempts de précédents dans G_1 . Pour tout sommet x_i de N_1 , le rang(x_i)=1. N_1 constitue l'ensemble des sommets de niveau 1 du graphe G.
- Le processus est itéré et s'arrête aussitôt que l'ensemble de sommets dans lequel on cherche à supprimer des sommets est vide, et permet de classer tous les sommets par niveaux.
- Le graphe peut être redessiner en plaçant sur la même verticale tous les sommets du graphe (se servir du dictionnaire des précédents).

B- PRECEDENTS ET SUIVANTS D'UN SOMMET. DICTIONNAIRES D'UN GRAPHE ORIENTE.

1- soit l'arc (x_i,x_j) d'un graphe G=(X,U)

 x_j est le suivant de x_i (ou encre que x_j est le descendant de x_i); x_i est le précédent de x_j (ou encore x_i est l'ascendant de x_j)

NB: x_i peut être à la fois ascendant et descendant x_i ce ci dans le cas d'un circuit passant par x_i et x_i .

P(x_i) représente l'ensemble des précédents de x_i.

S(x_i) désigne l'ensemble des suivant de x_i.

Si Γ et Γ^{-1} désignent les correspondance directe et réciproque définie sur X par U, on a :

 $P(x_i) = \Gamma^{-1}(x_i)$

 $S(x_i)=\Gamma(x_i)$.

2- Dictionnaires d'un graphe.

On appelle dictionnaire des suivants (Resp. dictionnaire des précédents) d'un graphe G=(X,U), un tableau à simple entrée dont chaque ligne se réfère à un sommet et porte l'énumération des suivants (Resp. des précédents) de ce sommet.

Exemples : E-1: Considérons le graphe de la figure 1-18.

X	S(x)	X	P(x)
A	D	A	В,В
В	A,B,C,A	В	B,D
С		C	B,D
D	В,С	D	A

E-2- on considère le graphe suivant :

A	В,С	A	
В	C,D	В	A,E,F
С	E,F	C	A,B
D	E,F	D	E,B
Е	D,B,F	Е	D,C
F	B,F	F	F,C,E,D

C- ALGORITHME DE RECHERCHE DU CHEMIN EXTREMAUX;

1- Soit un graphe G=(X,U) un graphe valué, sans boucle. La longueur d'un chemin quelconque d'un graphe G, est par définition la somme des longueurs des arcs qui composent ce chemin : $L=\sum l(u)$.

Soit G=(X,U) un graphe dont l'ensemble des sommets est X= $\{x_1,x_2,...x_n\}$.

- On appelle Chemin k_i -extrémal, tout chemin d'origine x_k , d'extrémité x_i , de longueur extrémale.
- On appelle graphe k-extrémal tout arc emprunté par au moins un chemin extrémal d'origine x_k;
- ullet On appelle Graphe k-extrémal G_k de G sous-ensemble partiel de G dont les sommets sont les descendants de x_k et dont les arcs sont les seuls arcs k-extrémaux de G

2-algorithme de recherche du graphe k-extrémal G_k de G.

Considérons un graphe G sans circuit.

- Ordonnancer en niveaux
- Poser $\lambda_{k,k}$ =0, ce qui sera la marque du sommet initial x_k . Alors la marque $\lambda_{k,i}$ de tout les sommet initial x_i sera calculée par la formule : $\lambda_{k,i} = Ext \left[\lambda_{k,h} + a_{h,i} \right]$ dans cette relation,

P(i) est l'ensemble des indices des précédents de xi, $a_{h,i}$ la longueur de l'arc (x_h,x_i) , Ext est suivant le cas Max ou Min.

- La marque $\lambda_{k,i}$ de tout descendant x_i de x_k donne la longueur de tout chemin k_i -extrémal. Les sommets x_h qui réalisent effectivement l'extremum dans la formule précédente, définissent les arcs k-extrémaux d'extrémité x_i , ce qui permet de déterminer le graphe k-extrémal G_k de G.

3- Exemple

Soit le graphe suivant :

• Dictionnaire des précédents et des suivants:

X	S(X)
A	B,E,D,I,J,C
В	D,L
С	B,D
D	K,M
E	F,L,B
F	N,L

X	P(x)
A	
В	A,E,C,I
C	A
D	C,A,B
E	A
F	E,I

Н	M
I	B,J,F,N
J	K,M
K	M
L	K,H,M
M	
N	TT

Н	N,L,J
I	A
J	I,A
K	J,D
L	E,F,B
M	H,K,L,J,D
N	F,I

a- Ordonnancement par niveau du graphe

 $N_0 {=} \{A\}$; $N_1 {=} \{C,\!E,\!I\}$; $N_2 {=} \{F,\!B,\!J\}$; $N_3 {=} \{N,\!L,\!D\},\,N_4 {=} \{H,\!K\},\,N_5 {=} \{M\}$ Graphe ordonné par niveau.

b- chemins de longueur minimale

Détermination des marques

Marque de A : $\lambda_{A,A}=0$

Marque de C : $\lambda_{A,C} = \lambda_{AA} + 2 = 2$

Marque de E : $\lambda_{A,E} = \lambda_{AA} + 2 = 2$

Marque de I : $\lambda_{A,I} = \lambda_{AA} + 1 = 1$

Marque de B : $\lambda_{A,B}$ =Min[λ_{AA} +4, $\lambda_{A,C}$ +1, $\lambda_{A,E}$ +3, $\lambda_{A,I}$ +2]=3

Marque de F : $\lambda_{A,F}$ =Min[$\lambda_{A,E}$ +5, $\lambda_{A,I}$ +2]=3

Marque de J : $\lambda_{A,J}=Min[\lambda_{AA}+9, \lambda_{A,I}+8]=9$

Marque de D : $\lambda_{A,D} = Min[\lambda_{AA} + 7, \lambda_{A,C} + 3, \lambda_{A,B} + 5] = 5$

Marque de L : $\lambda_{A,L}$ =Min[λ_{AE} +6, $\lambda_{A,F}$ +6, $\lambda_{A,B}$ +4]=7

Marque de N : $\lambda_{A,N}=Min[\lambda_{AF}+6, \lambda_{A,I}+7]=8$

Marque de H : $\lambda_{A,H}$ =Min[λ_{AD} +3, $\lambda_{A,L}$ +7, $\lambda_{A,N}$ +5]=8

Marque de K : $\lambda_{A,K}$ =Min[λ_{AL} +3, $\lambda_{A,J}$ +3]=10

Marque de M : $\lambda_{A,M}$ =Min[λ_{AJ} +5, $\lambda_{A,K}$ +2, $\lambda_{A,H}$ +5, $\lambda_{A,L}$ +6, $\lambda_{A,D}$ +8]=12

Les chemins minimaux de A à M sont (A,I,J,K,M) ou (A,J,K,M)

c- chemins de longueur maximale

Les marques de A, C, E et I restent identiques

Marque de B : $\lambda_{A,B}$ =Max[λ_{AA} +4, $\lambda_{A,C}$ +1, $\lambda_{A,E}$ +3, $\lambda_{A,I}$ +2]=5

Marque de F : $\lambda_{A,F} = Max[\lambda_{A,E} + 5, \lambda_{A,I} + 2] = 7$

Marque de J : $\lambda_{A,J} = Max[\lambda_{AA} + 9, \lambda_{A,I} + 8] = 9$

Marque de D : $\lambda_{A,D}=Max[\lambda_{AA}+7, \lambda_{A,C}+3, \lambda_{A,B}+5]=10$

Marque de L : $\lambda_{A,L}=Max[\lambda_{AE}+6, \lambda_{A,F}+6, \lambda_{A,B}+4]=13$

Marque de N : $\lambda_{A,N}=Max[\lambda_{AF}+6, \lambda_{A,I}+7]=13$

Marque de H : $\lambda_{A,H}$ =Max[$\lambda_{A,D}$ +3, $\lambda_{A,L}$ +7, $\lambda_{A,N}$ +5]=20

Marque de K : $\lambda_{A,K}=Max[\lambda_{AL}+3, \lambda_{A,J}+3]=15$

Marque de M : $\lambda_{A,M}$ =Min[$\lambda_{A,J}$ +5, $\lambda_{A,K}$ +2, $\lambda_{A,H}$ +5, $\lambda_{A,L}$ +6, $\lambda_{A,D}$ +8]= 25

Le chemin maximal de A à M est (A,E,F,L,H,M)

2-2 - RESEAU DE CIRCULATION

1- Définition

Le problème de circulation a pour objet d'optimiser l'exécution d'un certain mouvement de matière, sur un réseau donné.

Exemples

- E-1- le problème de l'expédition du pétrole brut depuis les régions productrices vers les raffineries des régions consommatrices
- E-2- le problème du déplacement des individus dans une ville pour se rendre à leur travail,
- E-3- le problème de l'acheminement de moyens militaires en hommes et en matériel.

Dans toute la suite, les hypothèses suivantes seront considérées :

Le mouvement de « matière » peut être décomposé en un nombre fini de mouvements partiels, chacun d'un point de départ i vers un point d'arrivée j de telle sorte que :

H1- chaque mouvement partiel (i,j) se comporte entre i et j, de façon indépendante des autres mouvements partiels ;

H2- par contre en i comme en j, différents mouvements partiels peuvent se séparer ou se réunir.

la redistribution des mouvements partiels n'est possible qu'en des points privilégiés du réseau, tels que i et j appelés **nœuds du réseau**.

Le réseau (qui est une donnée du problème) étant constitué de :

- l'ensemble des nœuds (1, 2, ..., i, ..., j, ...n);
- l'ensemble de liaisons(i, j) pour lesquelles i existe au moins une manière de réaliser le mouvement global impliquant un mouvement partiel de i vers j.

Exemples de réseau :

- Un réseau de rue, de route ;
- Un réseau métropolitain
- un réseau de transports aériens (ou maritimes),
- un réseau téléphonique (où la « matière » qui circule est constituée par des conversations téléphoniques),
- un réseau de canalisations de gaz ou d'eau,
- un réseau électrique,
- etc...

2- Nœuds d'entrée, de sortie, de transit

La matière qui circule dans le réseau est supposé constituée par un seul « produit homogène » dont deux unités seront regardées comme équivalentes.

Cette matière :

- pénètre par certains nœuds appelés nœuds d'entrée,
- sort du réseau en certains nœuds appelés nœuds de sortie.

Les nœuds du réseau qui ne sont ni des nœuds d'entrée, ni des nœuds de sortie sont appelés nœuds de transit.

2-3 – GRAPHE ASSOCIE A UN RESEAU DE CIRCULATION

1-Méthode d'obtention

Un réseau étant composé de nœuds et de liaisons joignant entre eux certains nœuds, on peut chercher à lui associer un graphe G de la façon suivante :

- * A chaque nœud i on associe un sommet x_i ;
- * A chaque liaison (i,j) on associe un arc $(x_i x_j)$ si le mouvement partiel entre i et j ne peut se faire que de i vers j et deux arcs de sens contraires si le mouvement peut s'effectuer dans les deux sens.

2- Notion de multigraphe

L'application de la méthode précédente peut conduire à placer entre deux sommets x_i x_j plusieurs « arcs » de même sens : en effet plusieurs liaisons distincts (i,j) peuvent conduire de i à j (ce qui arrive fréquemment lorsqu'il s'agit de routes) sans rencontrer de nœud intermédiaire. On parle dans ce cas d'un multigraphe.

Exemple:

Figure 2-1 : Exemple de multigraphe

On supposera possible l'une des opérations suivantes :

- condenser diverses liaisons de même sens (« parallèles ») (i,j) en une seule liaison fictive (i,j) dont les caractéristiques pourront résumer celles des liaisons initiales ;
- S'il est impossible de condenser en une seule liaison k liaisons parallèles (i,j), c'est que certains particularités les distinguent. Alors « éclater » k-1 de ces liaisons successives séparées par un nœud fictif. Ainsi on peut toujours associer un graphe G à un réseau de circulation.

2-3-HYPOTHESES GENERALES SUR LES RESEAUX DE CIRCULATION

1- Hypothèses fondamentales

H1- le mouvement de matière est indépendant du temps

(L'aspect dynamique de l'analyse est mis de côté soit en considérant une période de référence suffisamment longue pour couvrir la totalité du phénomène soit au contraire suffisamment courte pour que le phénomène puisse alors être considéré comme stationnaire.)

H2-Il y a conservation de la matière tout le long des liaisons

(Ainsi, il y a conservation de la matière sur tous les arcs $u = (x_i, x_j)$ du graphe associé au réseau. Cette condition jointe à la condition H1 précédente implique que la quantité de matière partant du nœud i et empruntant la liaison (i,j) pendant une période de référence est égale à la quantité de matière arrivant au nœud j et ayant emprunté la même liaison (i,j) pendant cette même période).

On appelle **flux sur l'arc u** = $(\mathbf{x}_i \mathbf{x}_j)$ et qui se note $\phi(u)$, la quantité de matière s'écoulant pendant une durée égale à la période de référence sur l'arc u.

Si U est l'ensemble des arcs du graphe G associé au réseau on a: $\forall u_i \in U : \phi(u_i) \ge 0$.

H3 – Il y a conservation de la matière aux nœuds de transit

(ce qui revient à dire que pendant une période de référence la quantité de matière qui arrive à un nœud de transit est égale à celle qui en sort : il y a conservation et non accumulation de matière aux nœuds de transit.) Cette hypothèse peut se formuler ainsi :

$$\forall x \in C_X^{E \cup S} : \sum_{\boldsymbol{u}_j \in \boldsymbol{\omega}^{-}(x)} \varphi(\boldsymbol{u}_j) - \sum_{\boldsymbol{u}_j \in \boldsymbol{\omega}^{+}(x)} \varphi(\boldsymbol{u}_j) = 0$$
 (2-1)

Avec:

X : l'ensemble des sommets du graphe G associé au réseau ;

E : l'ensemble des sommets du graphe G représentant les nœuds d'entrée ;

S: l'ensemble des sommets du graphe G représentant les nœuds de sortie ;

 $\omega^{-}(x)$: l'ensemble des arcs de G aboutissant au sommet x ;

 $\omega^+(x)$: l'ensemble des arcs de G sortant du sommet x.

H4- Contraintes de limitations des flux

Elle se traduit par : $\forall u_i \in U$, $0 \le b_i \le \varphi(u_i) \le c_i$

(2-2)

C'est à dire sur chaque arc $u_i \in U$ le flux est soumis à une **canalisation** ou encore que ce flux ne doit pas être:

- supérieur à une certaine valeur c_i appelée **capacité** de l'axe u_i ;
- inférieur à une certaine valeur b_i appelée **borne** de l'axe u

H5 Contraintes d'entrée et de sortie

Si x_k est le sommet associé au nœud d'entrée k et e_k la quantité entrante par le nœud k la contrainte d'entrée se traduit par:

$$\forall \chi_k \in E: \sum_{\boldsymbol{u}_j \in \boldsymbol{\omega}^{\top}(\chi_k)} \varphi(\boldsymbol{u}_j) - \sum_{\boldsymbol{u}_j \in \boldsymbol{\omega}^{\top}(\chi_k)} \varphi(\boldsymbol{u}_j) = \boldsymbol{\varrho}_k \ge 0$$
(2-3)

C'est à dire en un nœud d'entrée la différence entre le flux total partant de ce nœud et le flux total y aboutissant représente la quantité de matière s'introduisant pendant la période considérée par ce nœud dans le réseau. Aussi pour un nœud de sortie, en désignant par s_1 la quantité sortante du nœud l représenté par le sommet x_1 pendant la période de référence on a comme contrainte de sortie:

$$\forall \chi_l \in S: \sum_{\boldsymbol{\mathcal{U}}_j \in \boldsymbol{\omega}^{\top}(\chi_l)} \varphi(\boldsymbol{\mathcal{U}}_j) - \sum_{\boldsymbol{\mathcal{U}}_j \in \boldsymbol{\omega}^{+}(\chi_l)} \varphi(\boldsymbol{\mathcal{U}}_j) = S_l \ge 0$$
(2-4)

2-Remarques

- Dans le cas où tous les b_j sont nuls, le réseau ainsi que le graphe associé sont dits **«avec capacités»** Toutefois, pour un arc particulier si aucune limitation supérieure n'est imposée au flux c'est à dire $c_j = \infty$ et dans le cas où l'un au moins des b_j n'est pas nul le réseau et le graphe associé sont dits **«avec bornes»** Par la suite toutes les bornes seront nulles.
- Les équations (2-3) et (2-4) expriment que la matière peut transiter par un nœud d'entrée ou de sortie. Exemple de graphe associé à un réseau :

La matière peut transiter par les nœuds d'entrée x₇ et x₈ ainsi que par le nœud de sortie x₉

• Une conséquence immédiate des hypothèses **H3** et **H5** ce traduit par :

$$\sum_{\mathbf{X}_k \in E} \mathbf{e}_k = \sum_{\mathbf{X}_l \in S} \mathbf{S}_l \tag{2-5}$$

C'est à dire que pendant une période considérée la quantité totale de matière entrant dans le réseau est égale à la quantité totale sortant de celui-ci.

- En général, il apparaît des contraintes portant sur les quantités entrantes et les quantités sortantes :
- a- une limitation des disponibilités à une entrée x_k qui se traduit par :

$$e_k \le c_k$$
 (2-6)

b- L'existence d'une demande maximale à une sortie x_1 qui se traduit par :

 $s_l \leq c_l \tag{2-7}$

2-4- GRAPHE CANONIQUE ASSOCIE A UN RESEAU DE CIRCULATION

1- Représentation canonique d'un réseau.

Soit le graphe G=(X,U) associé à un réseau de circulation, ayant n sommet $x_1, x_2, x_3, ..., x_n$.

- On appelle graphe canonique G_c associé à ce même réseau le graphe obtenu à partir de G de la façon suivante :
- Introduction d'un sommet fictif x_0 relié à tout sommet d'entrée $x_k \in E$ par un arc $u_k = (x_0, x_k)$. Associer à chaque arc u_k le flux $\phi(u_k) = e_k$.

x₀ jouant le rôle d'une entrée fictive remplaçant toutes entrées réelles.

Introduction d'un sommet fictif xn+1 et relier à ce sommet tout sommet de sortie $xl \in S$ par un arc $u_l = (x_l, x_{n+1})$. Associer à chaque arc u_l le flux $\varphi(u_l) = s_l$.

x₁ jouant le rôle d'une sortie fictive remplaçant toutes les sorties réelles.

Introduction d'un arc fictif $u_0 = (x_{n+1}, x_0)$ appelé arc retour et lui associer le flux $\varphi(u_0) = \sum_{x_i \in E} e_k = \sum_{x_i \in S} s_i$. Et

attribuer conventionnellement à u0 une borne nulle et une capacité infinie.

2- exemple

Reprenons le graphe de la figure 2-2, associé à un certain réseau et construisons son graphe canonique associé :

3-propriétés du graphe canonique associé à un réseau de circulation

Soit $G_c = (X_c, U_c)$ le graphe canonique associé au graphe G = (X U).

• En considérant conservation de la matière aux nœuds de transit et les contraintes d'entrée et de sortie les formules (2-1), (2-3) et (2-4) conduisent au résultat suivant: Dans le graphe canonique G_c, le flux est conservatif en tout sommet :

$$\forall x \in \boldsymbol{X}_{c} : \sum_{\boldsymbol{u}_{i} \in \boldsymbol{\omega}^{-(x)}} \varphi(\boldsymbol{u}_{j}) - \sum_{\boldsymbol{u}_{i} \in \boldsymbol{\omega}^{+(x)}} \varphi(\boldsymbol{u}_{j}) = 0$$
(2-8)

• En considérant les contraintes de limitation des flux et les contraintes sur quantités entrantes et sortantes, les formules (2-2) (2-6) et(2-7), montre que sur chaque arc du graphe canonique G, on a les limitations de flux : $\forall u_i \in U_c$, $0 \le \varphi(u_i) \le c_i$ (2-9)

2-5- FLOT SUR UN GRAPHE

Soit un graphe G=(X,U) avec U= $\{u_1,u_2,...,u_m\}$

On appelle flot sur G tout vecteur Φ =($\phi(u_1)$, $\phi(u_2)$,..., $\phi(u_m)$) dont les coordonnées $\phi(u_j)$ \in R, dans la base canonique de R^m , vérifient :

$$\bullet \quad \forall x \in X : \sum_{u_j \in \boldsymbol{\omega}^{-(x)}} \varphi(\boldsymbol{u}_j) - \sum_{u_j \in \boldsymbol{\omega}^{+(x)}} \varphi(\boldsymbol{u}_j) = 0$$
 (2-10)

•
$$0 \le b_i \le \varphi(u_i) \le c_i$$
 (2-11)

On dit que le flot est Canalisé

Etant donné que la relation (2-10) n'est autre que la relation (2-8) vérifiée par les flux sur les arcs du graphe canonique associé à un réseau, on peut alors énoncer, compte- tenu de (2-9) :

Dans le graphe canonique G_c associé à un réseau de circulation, toute politique de circulation dans le réseau apparaît comme un flot canalisé défini sur G_c (En d'autre terme la recherche d'une politique de circulation dans un réseau, vérifiant des conditions imposées revient à déterminer un flot canalisé vérifiant ces conditions dans le graphe canonique associé qui désormais sera noté simplement G = (X, U))

On appelle **valeur du flot** le flux de l'arc retour $\phi(u_0)$ du graphe canonique du réseau, c'est aussi la quantité de totale matière qui traverse le réseau pendant la période considérée.

« Le problème que nous nous proposons de résoudre est celui de la recherche d'un flot canalisé Φ_m de valeur $\varphi(u_0)$ maximale, dans un réseau avec capacités. (problème dit « du flot maximal ».) »

2-6-RECHERCHE D'UN FLOT MAXIMAL DANS UN RESEAU AVEC CAPACITES

1- Définitions :

Soit G = (X,U) le graphe canonique (figure 2-4) d'un réseau de circulation avec capacités.

Figure 2-4

Les nombres inscrits sur les arcs représentent la capacité de l'arc. Ces nombres sont entiers . Dans la pratique, on peut toujours faire en sorte qu'il en soit ainsi en choisissant une unité de flux assez petite.

Dans ce graphe:

x₁, x₂, x₃ représentent les entrées réelles ;

x₅ et x₆ les sorties réelles ;

x₀ est l'entrée fictive et x₇ la sortie fictive ;

x₄ est le seul nœud de transit;

on a donc ici : n =6 c'est à dire le réseau est à 6 sommets.

Soit $A \subset X$ un sous – ensemble de sommets tel que $x_0 \in A$ et $x_{n+1} \in A$

On appelle Coupe d'un réseau associée à A le sous ensemble d'arcs défini par :

$$\omega^+(A) = \{(x, y) / x \in A, y \notin A\}$$

Dont l'origine est dans A et l'extrémité est hors de A.

On appelle capacité de coupe la somme des capacités des arcs constituant la coupe $C = \sum_{u_j \in \omega^+ + (A)} C_j$

Exemple: déterminons la coupe associé à $A=\{x_0,x_1,x_2,x_4\}$

- $\omega^{+}(A) = \{(x_0, x_3), (x_1, x_5), (x_2, x_5), (x_2, x_6), (x_4, x_5), (x_4, x_6)\}$
- Sa capacité est : C(A)=5+3+2+4+2+1=17

Figure 2-5

A Désigne encore un sous – ensemble de sommets tel que $x_0 \in A$ et $x_{n+1} \notin A$

• On désigne par ω (A) l'ensemble des arcs du graphe canonique dont l'origine est hors de A et l'extrémité dans A : ω (A) = $\{(x, y) | x \notin A, y \in A\}$. L'arc retour u_0 est nécessairement élément de ω (A).

Exemple : E-1- Si $A = \{x_0, x_1, x_2, x_4\}$ alors $\omega(A) = \{(x_3, x_4)\} \cup \{u_0\}$

E-2- Si $A = \{x_0, x_1, x_2\}$ alors $\omega^{-}(A) = \{u_0\}$

Remarques :a- Si l'on supprime tous les arcs d'une coupe on supprime en même temps tous les chemins reliant x_0 à x_{n+1} dans le graphe canonique. C'est là l'origine du nom de coupe donné à $\omega^+(A)$.

b- Si Φ est un flot canalisé sur G tout mouvement de matière de x_0 à x_{n+1} emprunte au moins un arc de la coupe quelle qu'elle soit . La valeur $\phi(u_0)$ de ce flot canalisé et la capacité C(A) de cette coupe vérifient alors : $\phi(u_0) \leq C(A)$ (2-12)

quel que soit Φ canalisé quelle que soit la coupe

- Un arc u_i est saturé pour le flot canalisé Φ si et seulement si $\varphi(u_i)=c_i$
- La quantité c_{i} - $\varphi(u_{i})$ s'appelle capacité résiduelle de l'arc u_{i} pour le flot Φ .
- Un arc saturé est donc de capacité résiduelle nulle
- Un arc non saturé s'appelle encore « arc fluide » lorsque son flux n'est pas nul ;

2- Etude théorique

proposition 1

Soit Φ un flot canalisé défini sur G et μ un chemin reliant x_0 à x_{n+1} . Si aucun des arcs de μ n'est saturé pour Φ il existe un flot canalisé Φ ' défini tel que : $\varphi'(u_0) > \varphi(u_0)$.

Exemple:

Nous aurons les notations suivantes :

 $\phi(u_j)$ est le flux de l'arc pour un flot Φ et $\,c_j$ la capacité de l'arc ϕ

Figure 2-5

Considérons la figure 2-6, on a écrit les différents flux relatifs à un flot canalisé de valeur $\varphi(u_0)=8$ Le chemin $\mu=(x_0,x_2,x_4,x_6,x_7)$ ne contient aucun arc saturé pour Φ dans ce cas le chemin μ n'est pas saturé pour le flot Φ . Sur μ , les capacités résiduelles δ_j valent dans l'ordre : 1,1,1,4 ; donc $\delta=1$.

En augmentant de 1 les flux sur chaque arc de ce chemin ainsi que sur l'arc retour u_0 (figure 2-7) on obtient encore un flot sur G (la conservativité des flux en tout sommet est encore respectée) ce flot est encore canalisé et sa valeur est $\varphi'(u_0) = \varphi(u_0) + \delta = 8 + 1 = 9$.

PROPOSITION 2

Soit Φ un flot canalisé défini sur G et c une chaîne reliant x_0 et x_{n+1} n'empruntant pas l'arc retour u0.

• On appelle chaîne, dans un graphe orienté, une suite d'arcs tels que deux arcs consécutifs de la suite aient une extrémité commune, qu'elle soit initiale ou terminale pour chacun de ces deux arcs.

Si en parcourant la chaîne c depuis x_0 jusqu'à x_{n+1} , un arc est emprunté dans son sens, on le note : \vec{u}_j ; sinon on

le note \overleftarrow{u}_{j} . On note :

• $\delta_1 = Min \left[c_{j-\varphi} - \varphi(u_j) \right]$ la plus petite capacité résiduelle des arcs de c parcourus dans leur sens

• $\delta_2 = Min \left[c_{j \to c} - \varphi(u_j) \right]$ le plus petit flux circulant sur les arcs de c parcourus à l'opposé de leur sens.

Figure 2-6

• $\delta = Min(\delta_1, \delta_2)$.

Si $\delta > 0$, il existe un flot canalisé Φ ' défini sur G tel que $\varphi'(u_0) > \varphi(u_0)$.

Exemple:

10

A partir du flot Φ ' (obtenu lui- même à partir du flot Φ en utilisant le résultat de la proposition 1) décrit par la figure 2-7, on peut obtenir le flot Φ '' en considérant la chaîne:

$$C = (x_0, x_3, x_4, x_2, x_6, x_7)$$

Pour laquelle on a : $\delta_1 = \text{Min}(5-2,2-0,4-1,7-4)=2$; $\delta_2 = \text{Min}(2)=2$ et $\delta = \text{Min}(\delta_1,\delta_2)=2$

La figure 2-8 représente la chaîne c pour le « flot de départ » Φ ' de la figure 2-7. La figure 2-9 représente le nouveau flot Φ '' obtenu ainsi :

- On ajoute 2 aux flux des arcs $\vec{u}_j \in c$ ainsi qu'au flux de l'arc retour ;
- On retranche 2 flux de l'unique arc $\overline{u}_i \in c$

sur cet exemple on constate bien que ces modifications de flux à partir du flot canalisé Φ:

- a) respectent la conservativité du flux en toue sommet, donc conduisent à un nouveau flot ;
- b) conduisent à un nouveau flot encore canalisé;
- c) augmentent de 2 la valeur du « flot de départ » $\varphi''(u_0) = \varphi'(u_0) + \delta = 9 + 2 = 11$

Remarques

- la proposition 1 est un cas particulier de la proposition2
- Soit un flot sur G. On dit que Φ est un **flot complet** si et seulement si tout chemin μ reliant x0 à xn+1 contient au moins un arc saturé pour Φ .
- Un chemin μ reliant x0 à xn+1 comportant au moins un arc saturé pour Φ sera dit : « chemin saturé » pour Φ
- Un flot complet n'est pas nécessairement de valeur maximale.

Ainsi on peut voir que le flot Φ ' de la figure 2-7 est complet : si l'on supprimait tous les arcs saturés par Φ ', il ne resterait aucun chemin reliant x_0 à x_7 . Cependant Φ ' n'est pas un flot de valeur maximale car la proposition 2 a permis de l'« améliorer » en obtenant Φ '' de valeur supérieure.

• Toute chaîne c reliant x_0 à x_{n+1} sans emprunter l'arc retour pour laquelle on a : δ =Min(δ_1 , δ_2)=0 relativement à un flot canalisé Φ , est dit «saturée» pour le flot Φ . la chaîne c qui intervient dans la figure 2-8 est instaurée pour le flot complet Φ '.

PROPOSITION 3

Une condition nécessaire et suffisante pour qu'un canalisé Φ_m sur G soit un flot de valeur maximale est que **toute chaîne** c reliant x_0 à x_{n+1} (sans emprunter l'arc retour) soit saturée pour le flot Φ_m .

Exemple:

La proposition précédente permet de s'assurer que le flot Φ de la figure 2-9 est un flot de valeur maximale :11, car toute chaîne c reliant x_0 à x_7 sans emprunter l'arc retour est saturée pour Φ ''. Recherchons alors l'ensemble de sommets A_0 correspondant : en reprenant les alinéas de la construction de A_0 , on trouve tout simplement :

$$A_0 = (x_0, x_3)$$

Engendrant la coupe : $\omega^+(A_0) = \{(\chi_0, \chi_1), (\chi_0, \chi_2), (\chi_3, \chi_4), (\chi_3, \chi_5)\}$

Dont la capacité est : C(A_0)= 2+5+2+2=11= φ ''(u_0)

THEOREME DE FORD-FULKERSON (1956)

Dans un graphe G avec capacités, la valeur maximale d'un flot canalisé est égale à la capacité minimale d'une coupe.

3-Algorithme de FORD-FULKERSON (1957)

- Enoncé de l'algorithme
 - « Cet algorithme permet de recherché la chaîne c insaturées reliant x_0 à x_{n+1} . »
- 1. Choisir un flot initial Φ_{θ} canalisé sur G, en prenant par exemple $\varphi(u_i) = 0$ pour tout arc $u_i \in U$;
- 2. Recherche d'un flot complet sur G

Considérer le graphe partiel G_0 de G obtenu en supprimant dans G tous les arcs saturés par Φ_0 (et en conservant tous les sommets de G).

- a- Si G_0 ne contient aucun chemin reliant x_0 à x_{n+1} , le flot Φ est complet (Tout chemin reliant x_0 à x_{n+1} dans G est saturé pour Φ .)
- b- Sinon, il existe dans G0 un chemin μ de x_0 à x_{n+1} : c'est un chemin de G instauré pour Φ_0 .
- Calculer pour un tel chemin : $\delta = Min[c_j \varphi_0(u_j)]$
- Augmenter de δ le flux sur chaque arc de μ ainsi que sur l'arc retour u_{θ} . On obtient ainsi un flot Φ_{I} et un graphe partiel G_{I} de G par suppression dans G de tous les arcs saturés par Φ_{I} .
- c-Recommencer sur G_I la recherche des chemins de x_0 à x_{n+I} . Si G_I ne contient aucun tel chemin, Φ_I est un flot complet. Sinon appliquer pour un tel chemin la procédure décrite en b-.
- c- En itérant un nombre fini de fois une telle procédure on parvient à un flot canalisé Φ_l et à un graphe partiel G_l de G ne possédant aucun chemin de X_0 à X_{n+1} . Φ_l Est alors un flot complet sur G.
- 3. Recherche d'un flot de valeur maximale sur G

Considérer le flot complet Ol obtenu précédemment, ainsi que le graphe privé de l'arc retour u0.

- a) Marquage des sommets
- Marquer «0» tout suivant x_k de x_0 tel que pour l'arc u_j = (x_0 , x_k), on ait : $\varphi_l(u_j) < c_j$

.x_i étant un sommet déjà marqué, marquer «i»

- tout suivant x_k non encore marqué de x_i , tel que pour l'arc $u_i = (x_i, x_k)$, on ait : $\varphi_i(u_i) < c_i$
- tout précédent x_k non encore marqué de x_i , tel que pour l'arc $u_i = (x_k, x_i)$: on ait $\varphi_i(u_i) > 0$

Si , par cette procédure, x_{n+1} ne peut pas être marqué, alors Φ_1 est un flot canalisé de valeur maximale.

b) Modification des flux

Si au contraire, la procédure précédente permet de marquer xn+1, on obtient à partir de xn+1, en utilisant la marque de certains sommets marqués, une chaîne insaturée c, reliant x0 à xn+1 et n'empruntant pas l'arc retour u₀.

Cette chaîne se construit « à l'envers » de la façon suivante :

- Relier x_{n+1} au sommet dont l'indice est la marque de x_{n+1} ,
- Recommencer à partir du sommet obtenu, et ainsi de suite jusqu'à ce que l'on atteigne x_0 Calculer pour cette chaîne c:

•
$$\delta_1 = Min \left[c_{j - \varphi} (u_j) \right]$$

•
$$\delta_2 = Min \left[c_{j - \varphi} (u_j) \right]$$

• $\delta = Min(\delta_1, \delta_2)$.

- Sur chaque arc $\overrightarrow{\mathcal{U}}_i \in c$, ainsi que sur l'arc retour u0 augmenter le flux de δ ;
- . Sur chaque arc $\overleftarrow{\mathcal{U}}_i \in c$ uj , diminuer le flux de δ .

On obtient ainsi un flot Φ_{l+1} à partir duquel on recommence la procédure a) de marquage des sommets.

c) itérer alternativement les procédures de marquage des sommets et de modification des flux jusqu'à l'obtention d'un flot Φ_m à partir duquel la procédure de marquage ne permet plus de marquer x_{n+1} . Φ_m est alors **un flot canalisé de valeur maximale** sur G.

Remarque: La convergence de l'algorithme est évidente si, dans G, il existe aucun chemin de x_0 à x_{n+1} dont tous les arcs aient une capacité infinie.

2- Exemple

Reprenons le graphe de la figure 2-4

Partons du « flot nul » Φ_0 qui est nécessairement canalisé : pour tout arc u_j : $\varphi(u_j) = 0$ en particulier : $\varphi(u_0) = 0$ $G_0 = G$. Prenons le chemin : $\mu = (x_0, x_1, x_5, x_7)$ non saturé pour lequel on a : $\delta = Min[c_j - \varphi_0(u_j)] = 2$

D'où le flot Φ_1 (figure 2-11), de valeur : $\varphi_1(u_0)=2$

• Pour Φ_1 , G_1 se déduit de G par suppression de l'arc saturé (arcs (x_0,x_1) en trait épais sur la figure 2-11) On a pris le chemin : μ = (x_0,x_2,x_5,x_7)

Pour lequel :
$$\delta = Min[c_j - \varphi_1(u_j)] = 2$$

D'où le flot Φ_2 de valeur : $\phi_2(u_0)=4$

Figure 2-12

Pour Φ_2 , G_2 se déduit de G par suppression de l'arc saturé $(\operatorname{arc}(x_0,x_1),(x_2,x_5))$ en trait épais sur la figure 2-12) On a pris le chemin : $\mu = (x_0, x_2, x_4, x_5, x_7)$

Pour lequel:
$$\delta = Min \left[c_j - \varphi_2(u_j) \right] = 1$$

D'où le flot Φ_3 de valeur : $\varphi_3(u_0)=5$

Pour Φ_3 , G_3 se déduit de G par suppression de l'arc saturé (arcs en trait épais sur la figure 2-13)

On a pris le chemin : $\mu(x_0,x_2,x_4,x_6,x_7)$

Pour lequel:
$$\delta = Min \left[c_j - \varphi_3(u_j) \right] = 1$$

D'où le flot Φ_4 de valeur : $\varphi_4(u_0)=6$

Pour Φ_4 , G_4 se déduit de G par suppression de l'arc saturé (arcs en trait épais sur la figure 2-14) On a pris le chemin : $\mu(x_0, x_2, x_6, x_7)$

Pour lequel:
$$\delta = Min[c_j - \varphi_4(u_j)] = 1$$

D'où le flot Φ_5 de valeur : $\varphi_5(u_0)=7$

Pour Φ_5 , G_5 se déduit de G par suppression de l'arc saturé (arcs en trait épais sur la figure 2-15)

On a pris le chemin :
$$\mu(x_0, x_3, x_6, x_7)$$

Pour lequel : $\delta = Min \begin{bmatrix} c_j - \varphi_5(u_j) \end{bmatrix} = 2$

D'où le flot Φ_6 de valeur : $\varphi_6(u_0)=9$

Pour Φ_6 , G_6 se déduit de G par suppression des arcs saturés entrait épais (figure2-16). Dans G_6 il n'y a plus de chemin reliant x_0 à x_7 : Φ_6 est donc un flot complet.

On passe alors à la phase 3 de l'algorithme de FORD-FULKERSON

Marquages:

- x₃ peut être marqué 0
- x₄ peut être marqué 3 ainsi que x₀
- x₅ et x₂ peuvent être marqués 4
- x_1 peut être marqué 5 ; x_6 peut être marqué 2
- x₇ peut être marqué 6

puisque x_7 peut être marqué, le flot complet n'est pas de valeur maximale. En utilisant les marques, on obtient la chaîne instaurée c de à x_7 sans passer par u_0 :

chaîne qui est celle de la figure 2-8 décrite de x₀ à x₇ elle s'écrit :

$$c = (x_0, x_3, x_4, x_2, x_6, x_7)$$

Modifications des flux:

 $\delta_1 = Min[5-2,2-0,4-1,7-4] = 2$; $\delta_2 = Min[2] = 2$ et $\delta = Min[\delta_1,\delta_2] = 2$ En ajoutant $\delta = 2$ aux flux des arcs $(x_0,x_3),(x_3,x_4),(x_2,x_6)$, (x_6,x_7) ainsi qu'au flux de l'arc retour u_0 :

En retranchant δ =2 au flux de l'arc (x_2, x_4) on obtient le flot canalisé Φ_7 de valeur $\phi_7(u_0)$ =11. On recommence alors relativement à Φ_7 la procédure de marquage. Φ_7 est encore un flot complet. Il convient de noter que, dans le cas général, même si la flot n'est pas complet, la procédure de marquage est efficace : elle conduit à la mise en évidence d'un chemin insaturé de x_0 à x_{n+1} .

 x_3 peut être marqué 0, x_0 peut être marqué 3 sur la figure 2-17. Il est impossible de marquer d'autres sommets. Comme x_7 ne peut pas être marqué, Φ_7 est un flot canalisé de valeur maximale, puisqu'il n'existe aucune chaîne c instaurée reliant x_0 à x_7 sans emprunter u_0 (proposition 3). Φ_7 est le flot Φ '' de la figure 2-9.

Recherche à partir du marquage relatif à d'une coupe de capacité minimale

La procédure de marquage conduit à la construction de l'ensemble A_0 , lorsqu'elle est appliquée à partir d'un flot pour lequel x_{n+1} ne peut pas être marqué, donc de valeur maximale.

L'ensemble A_0 = (x_0 , x_3), qui a été trouvé dans l'exemple illustrant la proposition 3, n'est autre que *l'ensemble des sommets marqués*.

La marque associé à A_0 est :

$$\omega + (A_0) = ((x_0, x_1), (x_0, x_2), (x_3, x_4), (x_3, x_6))$$

Elle est évidemment composée uniquement d'arcs saturés pour Φ_7 , elle est de capacité minimale, de valeur : 2+5+2+2=c (A₀).

On a bien, conformément au théorème de FORD-FULKERSON:

$$\varphi(u_0) = c (A_0) = 11$$

Cette coupe est visualisée sur la figure 2-17.

3-Remarque

Dans la seconde phase de l'algorithme (recherche d'un flot complet) nous avons successivement «saturé» les chemins dans un ordre systématique «de haut en bas». Dans l'application manuelle de l'algorithme on peut souvent gagner du temps en saturant en priorité les chemins pour lesquels δ est aussi grand que possible : il peut arriver alors que le flot complet obtenu en fin de phase 2 soit de valeur maximale.

(Un marquage testant l'optimalité)

C'est le cas lorsqu'on choisit successivement les chemins :

$$\begin{array}{ll} \mu = (x_0,\,x_2,\,x_6,\,x_7) & (\delta\,{=}4) \\ \mu = (x_0,\,x_1\,,x_5,\,x_7\,) & (\delta\,{=}\,2) \\ \mu = (x_0,\,x_3,x_6,\,x_7\,) & (\delta\,{=}\,2) \\ \mu = (x_0\,,x_3,\,x_4,\,x_5,\,x_7) & (\delta\,{=}2) \\ \mu = (\,x_0,\,x_2,\,x_5,\,x_7) & (\delta\,{=}\,1) \end{array}$$

Les modifications de flux se font par correction successives (figure 2-18) la non indication d'un flot traduit qu'il est nul.

Après saturation successive des cinq chemins précédents, on parvient au flot complet Φ_m de la figure 2-18 de valeur $\phi_m(u_0) = 11$.

 x_3 peut être marqué 0, x_0 peut être marqué 3 et les marquages s'arrêtent : x_7 ne pouvant être marqué Φ_m est de valeur maximale, ce qui est évident puisque Φ_m a même valeur que le flot Φ_7 , lui- même de valeur maximale. Il résulte de ce qui précède que, puisque les flots Φ_m et Φ_7 sont distincts : **Un flot canalisé de valeur maximale peut ne pas être unique.**

Précisons que la non – unicité est le cas général. Il en est d'ailleurs de même pour une coupe de capacité minimale . Cependant, il se trouve que, relativement à Φ_7 et à Φ_m , les sommets marqués sont les mêmes ce qui conduit à la même coupe de capacité minimale pour les deux flots ;

Le choix des chemins, qui, ont conduit aux flots $\Phi_1, \Phi_2, ..., \Phi_6$ ne donne donc pas la solution la plus rapide : il a eu simplement pour but d'illustrer complètement la phase 3 de l'algorithme.