

Projeto 2: Sistema aleatórios

Anderson Araujo de Oliveira 11371311

1 Questão A

O resultados obtidos se aproximam aos resultado da area de baixo das curvas x^n no intervalo 0 a 1, assim quando fazemos a média $< x^n >$ estamos calculando a area de baixo dessa curvas nesse intervalo.

Valor do expoente	$\int_0^1 x^n dx$	$\langle x^n \rangle$
1	0.5	0.5
2	0.333	0.33
3	0.25	0.25
4	0.20	0.19999

Tabela 1: Valores da área da curva

Nessa tabela a quantidade de ponto utilizidas para fazer média foram 50000000 pontos, portanto tem uma incerteza $\pm 10^{-5}$.

2 Questão B

Na figuras abaixo vemos que a distribuição dos bebados tendem a um gaussiana, nesse gráficos foram colocados 1000 bebados e 2000 passos.

Figura 1: Probabilidade de $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$ e $\frac{1}{5}$ respectivamente

Forma analitica < x > de < $x^2 >$ como sabemos que a probabilidade da posição

$$\langle x \rangle = \sum_{n=0}^{N} {N \choose n} p^n p^m (n-m)$$

$$< x > = \sum_{n=0}^{N} {N \choose n} p^n p^m n - \sum_{n=0}^{N} {N \choose n} p^n p^m m$$

Note que $p\frac{\partial p^n}{\partial p}=np^n$ e $q\frac{\partial q^m}{\partial q}=nq^m$, então podemos escrever

$$\langle x \rangle = p \frac{\partial}{\partial * p} \sum_{n=0}^{N} \binom{N}{n} p^n p^m - q \frac{\partial}{\partial q} \sum_{n=0}^{N} \binom{N}{n} p^n p^m$$

Se $(p+q)^n = \sum_{n=0}^N \binom{N}{n} p^n q^m$, portanto substituindo esse valor na equação acima.

$$\langle x \rangle = p \frac{\partial}{\partial p} (p+q)^n - q \frac{\partial}{\partial q} (p+q)^n$$

 $\langle x \rangle = pN(p+q)^n - qN(p+q)^n$
 $\langle x \rangle = N(p-q)$

Indo para $\langle x^2 \rangle$

$$\langle x^2 \rangle = \sum_{n=0}^{N} \binom{N}{n} p^n q^m (n-m)^2$$

$$\langle x^2 \rangle = \sum_{n=0}^{N} \binom{N}{n} n^2 p^n p^m - 2 \sum_{n=0}^{N} \binom{N}{n} n p^n m p^m + \sum_{n=0}^{N} \binom{N}{n} m^2 p^n p^m$$

Utilizando a relação

$$n^2 p^n = p^2 \frac{\partial^2 p^n}{\partial p^2} + \frac{\partial p^n}{\partial p}$$

Assim chegamos que

$$\sum_{n=0}^{N} \binom{N}{n} n^2 p^n p^m = p^2 N(N-1) + pN$$

$$\sum_{n=0}^{N} \binom{N}{n} m^2 p^n p^m = q^2 N(N-1) + qN$$

$$2 \sum_{n=0}^{N} \binom{N}{n} n p^n m p^m = Npq(N-1)$$

Somando todos os termos acima

$$\langle x^2 \rangle = p^2 N(N-1) + pN + q^2 N(N-1) + qN + Npq(N-1)$$

3 Questão C

Foram utilizados 5000 bebados para fazer os histogramas, vemos nas figuras abaixo que conforme aumetamos o numero de passos os bebados tendem ficar mais longe da origem sendo assim mais difudido ficam.

Figura 2: Difusão em 10 passos

Figura 3: Difusão em 10^2 passos

Figura 4: Difusão em 10^3 passos

Figura 5: Difusão em 10^4 passos

Figura 6: Difusão em 10^5 passos

Figura 7: Difusão em 10^6 passos

4 Questão D

Como é visto na tabela 2 abaixo á entropia aumenta conforme colocamos mais particulas e passos, portanto como segunda a lei da termodinamica diz "A quantidade de entropia de qualquer sistema isolado termodinamicamente tende a incrementar-se com o tempo, até alcançar um valor máximo" as particulas tendem a cada vez ficar mais espalhada.

Numeros de particulsa	Numeros de passos	$S = \sum P_i ln(P_i)$
1000	1000	26.02
1000	2000	26.76
1000	3000	26.96
1000	4000	27.10
5000	1000	29.21
5000	2000	30.95
5000	3000	31.74
5000	4000	32.21

Tabela 2: Entropia