\sim	•	•
()	$\mathbf{u}_{1}\mathbf{z}$	h
w.	uiz	v

Math 54-Lec 3, Linear Algebra, Fall 2017

SECTION: NAME:

You have 30 minutes to complete this quiz. To receive full credit, you must justify your answers. For this quiz you may assume all vectors are in \mathbb{R}^n unless otherwise stated.

Problem 1.(4 points) Let $\{\vec{u}, \vec{v}\}$ be an orthogonal set of nonzero vectors and let c_1, c_2 be constants. Show that $\{c_1\vec{u}, c_2\vec{v}\}$ is also an orthogonal set.

Problem 2.(5 points) Suppose \vec{y} is orthogonal to the vectors \vec{u} and \vec{v} . Show that \vec{y} is also orthogonal to every vector in $Span\{\vec{u}, \vec{v}\}$.

Problem 3.(2 point each) Label the following statements true or false. If the statement is true, explain why. If it is false, explain why or provide a counterexample. Correct answers without justification will receive no credit.

- (a.) The orthogonal projection of \vec{y} onto $Span\{\vec{v}\}$ is not necessarily the same as the orthogonal projection of \vec{y} onto $Span\{c\vec{v}\}$ whenever c is a non-zero constant.
- (b.) If W is a subspace of \mathbb{R}^n spanned by n nonzero, orthogonal vectors then $W = \mathbb{R}^n$.
- (c.) Let \vec{u} be a non-zero vector in \mathbb{R}^2 . Then the mapping, $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(\vec{y}) = proj_{\vec{u}}(\vec{y})$ is a linear transformation.