Reg / DFA / NFA

	$\overline{\text{REG}}$	REG	CFL	DEC.	REC.	P	NP	NPC	
$L_1 \cup L_2$	no	✓	✓	√	✓	√	√	no	
$L_1\cap L_2$	no	✓	no	✓	✓	√	√	no	
\overline{L}	✓	✓	no	✓	no	√	?	?	
$L_1 \cdot L_2$	no	✓	✓	✓	✓	√	✓	no	
L^*	no	✓	✓	√	✓	√	√	no	
$_L\mathcal{R}$	✓	✓	✓	✓	✓	✓			
$L_1 \setminus L_2$	no	✓	no	✓	no	√	?		
$L\cap R$	no	✓	✓	✓	✓	√			

- (DFA) $M=(Q,\Sigma,\delta,q_0,F),\,\delta:Q imes\Sigma o Q$
- (NFA) $M=(Q,\Sigma,\delta,q_0,F),\,\delta:Q imes\Sigma_arepsilon o\mathcal{P}(Q)$

- (GNFA) $(Q, \Sigma, \delta, q_0, q_a)$,
- $\delta: (Q\setminus \{q_\mathtt{a}\}) imes (Q\setminus \{q_\mathtt{start}\} \longrightarrow \mathcal{R}$ (where
- $\mathcal{R} = \{\text{all regex over }\Sigma\}$
- GNFA accepts $w \in \Sigma^*$ if $w = w_1 \cdots w_k$, where $w_i \in \Sigma^*$ and there exists a sequence of states q_0, q_1, \ldots, q_k s.t. $q_0 = q_{\mathrm{start}}, \, q_k = q_{\mathrm{a}}$ and for each i, we have $w_i \in L(R_i)$, where $R_i = \delta(q_{i-1}, q_i)$.
- $\begin{array}{ll} ^{\circ} & \textbf{(DFA} \leadsto \textbf{GNFA)} \ G = (Q', \Sigma, \delta', s, a), \\ Q' = Q \cup \{s, a\}, \quad \delta'(s, \varepsilon) = q_0, \quad \text{For each } q \in F, \\ \delta'(q, \varepsilon) = a, \quad \text{((TODO...))} \end{array}$
- Every NFA can be converted to an equivalent one that has a single accept state.
- $(\text{reg. grammar}) \ G = (V, \Sigma, R, S). \ \text{Rules:} \ A \to aB,$ $A \to a \ \text{or} \ S \to \varepsilon. \ (A, B, S \in V; \ a \in \Sigma).$
- $(NFA \rightsquigarrow DFA)$

- $N = (Q, \Sigma, \delta, q_0, F)$
- $D = (Q' = \mathcal{P}(Q), \Sigma, \delta', q'_0 = E(\{q_0\}), F')$
- $\bullet \quad F' = \{q \in Q' \mid \exists p \in F : p \in q\}$
- $E(\{q\}) := \{q\} \cup \{ ext{states reachable from } q ext{ via } arepsilon ext{-arrows}\}$

$$ullet \ orall R\subseteq Q, orall a\in \Sigma, \delta'(R,a)=E\left(igcup_{r\in R}\delta(r,a)
ight)$$

- $\quad \quad L(\varepsilon \cup \mathtt{0}\Sigma^*\mathtt{0} \cup \mathtt{1}\Sigma^*\mathtt{1}) = \{ w \mid \#_w(\mathtt{01}) = \#_w(\mathtt{10}) \},$
- $L=\{a^nwb^n:w\in\Sigma^*\}\equiv a(a\cup b)^*b$
- $L=\{w\in\Sigma^*: \#_w(\mathtt{0})\geq 2\wedge \#_w(\mathtt{1})\leq 1\}\equiv ((0\cup 1)^*0(0\cup 1)^*)$

$\textbf{PL:}\ A \in \mathrm{REG} \implies \exists p: \forall s \in A, \ |s| p, s = x p$

 $\begin{array}{ll} \bullet & \{w=a^{2^k}\}; & k=\lfloor \log_2 |w| \rfloor, s=a^{2^k}=xyz. \\ \\ 2^k=|xyz|<|xy^2z|\leq |xyz|+|xy|\leq 2^k+p<2^{k+1}. \end{array}$

 $\{w = w^{p}\}; \quad N = 0^{p} 10^{p} = xyz. \text{ then } 1$

 $|y^iz$ A, (ii) |y|>0 and (iii) $|xy|\leq p$.

Then $xy^2z=a^{p+|y|}b^p
ot\in L.$

 $L = \{a^p : p ext{ is prime}\}; \quad s = a^t = xyz ext{ for prime } t \geq p.$ r := |y| > 0

CFL / CFG / PDA

- $\text{(CFG) } G = (\underset{\mathsf{n.t. ter.}}{V}, \underset{\mathsf{ter.}}{\Sigma}, R, S). \text{ Rules: } A \to w. \text{ (where } A \in V \\ \text{and } w \in (V \cup \Sigma)^*).$
- A derivation of w is a leftmost derivation if at every step the leftmost remaining variable is the one replaced.
- w is derived ambiguously in G if it has at least two different I.m. derivations. G is ambiguous if it generates at least one string ambiguously. A CFG is ambiguous iff it generates some string with two different parse trees. A CFL is inherently ambiguous if all CFGs that generate it are ambiguous.
- (CNF) $A \to BC$, $A \to a$, or $S \to \varepsilon$, (where $A, B, C \in V$, $a \in \Sigma$, and $B, C \neq S$).
- (CFG \leadsto CNF) (1.) Add a new start variable S_0 and a rule $S_0 \to S$. (2.) Remove ε -rules of the form $A \to \varepsilon$ (except for $S_0 \to \varepsilon$). and remove A's occurrences on the RH of a rule (e.g.: $R \to uAvAw$ becomes
- $R o uAvAw \mid uAvw \mid uvAw \mid uvw$. where $u,v,w \in (V \cup \Sigma)^*$). (3.) Remove unit rules $A \to B$ then whenever $B \to u$ appears, add $A \to u$, unless this was a unit rule previously removed. $(u \in (V \cup \Sigma)^*)$. (4.) Replace each rule $A \to u_1u_2 \cdots u_k$ where $k \geq 3$ and $u_i \in (V \cup \Sigma)$, with the rules $A \to u_1A_1$, $A_1 \to u_2A_2$, ..., $A_{k-2} \to u_{k-1}u_k$, where A_i are new variables. Replace terminals u_i with $U_i \to u_i$.
- If $G \in \mathsf{CNF}$, and $w \in L(G)$, then $|w| \leq 2^{|h|} 1$, where h is the height of the parse tree for w.
- $L \in \mathbf{CFL} \Leftrightarrow \exists egin{array}{c} G : L = L(G) \Leftrightarrow \exists egin{array}{c} M : L = L(M) \end{array}$
- $\forall L \in \mathsf{CFL}, \exists G \in \mathsf{CNF} : L = L(G).$
- (derivation) $S\Rightarrow u_1\Rightarrow u_2\Rightarrow \cdots\Rightarrow u_n=w$, where each u_i is in $(V\cup \Sigma)^*$. (in this case, G generates w (or S derives w), $S\overset{*}{\Rightarrow}w$)
- $\begin{array}{l} \text{(PDA) } M = (Q, \underset{\mathsf{input}}{\Sigma}, \ \underset{\mathsf{stack}}{\Gamma}, \delta, q_0 \in Q, \underset{\mathsf{accepts}}{F} \subseteq Q). \ \text{(where} \\ Q, \ \Sigma, \ \Gamma, \ F \ \mathsf{finite}). \ \delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon}). \end{array}$

- M accepts $w\in \Sigma^*$ if there is a seq. $r_0,r_1,\ldots,r_m\in Q$ and $s_0,,s_1,\ldots,s_m\in \Gamma^*$ s.t.:
- $ullet r_0=q_0 ext{ and } s_0=arepsilon$
- For $i=0,1,\ldots,m-1$, we have $(r_i,b)\in \delta(r_i,w_{i+1},a)$, where $s_i=at$ and $s_{i+1}=bt$ for some $a,b\in \Gamma_{\varepsilon}$ and $t\in \Gamma^*.$
- $r_m \in F$
- A PDA can be represented by a state diagram, where each transition is labeled by the notation " $a,b \to c$ " to denote that the PDA: **Reads** a from the input (or read nothing if $a=\varepsilon$). **Pops** b from the stack (or pops nothing if $b=\varepsilon$). **Pushes** c onto the stack (or pushes nothing if $c=\varepsilon$)
- (CSG) $G=(V,\Sigma,R,S)$. Rules: $S \to \varepsilon$ or $\alpha A\beta \to \alpha \gamma\beta$ where: $\alpha,\beta \in (V \cup \Sigma \setminus \{S\})^*$; $\gamma \in (V \cup \Sigma \setminus \{S\})^+$; $A \in V$.

$\textbf{PL:}\ L\in \mathrm{CFL} \implies \exists p: \forall s\in L, |s|\geq p,\ s=uvxyz, \textbf{(i)}\ \forall i\geq 0, uv^ixy^iz\in L, \textbf{(ii)}\ |vxy|\leq p, \textbf{ and (iii)}\ |vy|>0.$

 $\{w=a^nb^nc^n\}; \quad s=a^pb^pb^p=uvxyz.\ vxy$ can't contain all of a,b,c thus uv^2xy^2z must pump one of them less

than the others.

• $\{ww : w \in \{a,b\}^*\};$

$L \in \mathrm{DECIDABLE} \iff (L \in \mathrm{REC.} \ \mathrm{and} \ L \in \mathrm{co\text{-}REC.}) \iff \exists \ M_{\mathsf{TM}} \ \mathrm{decides} \ L$.

- (TM) $M=(Q,\sum\limits_{\mathsf{input}}\subseteq\Gamma,\prod\limits_{\mathsf{tape}},\delta,q_0,q_{\mathsf{accept}},q_{\mathsf{reject}}),$ where
 - $\sqcup\in\Gamma$ (blank), $\sqcup
 otin \Sigma$, $q_{ ext{reject}}
 eq q_{ ext{accept}}$, and $\delta:Q imes\Gamma\longrightarrow Q imes\Gamma imes\{ ext{L}, ext{R}\}$
- (recognizable) accepts if $w \in L$, rejects/loops if $w \notin L$.
- $\quad \bullet \quad L \in {\tt RECOGNIZABLE} \iff L \leq_{\tt m} A_{\sf TM}.$
- A is **co-recognizable** if \overline{A} is recognizable.

 $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM halts on } w \},$

- Every inf. recognizable lang. has an inf. dec. subset.
- (decidable) accepts if $w \in L$, rejects if $w \notin L$.
- $L \in \text{DECIDABLE} \iff L \leq_{\text{m}} 0^*1^*$.
- $L \in \text{DECIDABLE} \iff L^{\mathcal{R}} \in \text{DECIDABLE}.$
 - (decider) TM that halts on all inputs.
- (Rice) Let P be a lang. of TM descriptions, s.t. (i) P is nontrivial (not empty and not all TM desc.) and (ii) for
- each two TM M_1 and M_2 , we have $L(M_1)=L(M_2) \implies (\langle M_1 \rangle \in P \iff \langle M_2 \rangle \in P).$ Then P is undecidable.
- {all TMs} is countable; Σ^* is countable (for every finite Σ); {all languages} is uncountable; {all infinite binary sequences} is uncountable.
- $\mathsf{DFA} \equiv \mathsf{NFA} \equiv \mathsf{GNFA} \equiv \mathsf{REG} \, \subset \, \mathsf{NPDA} \equiv \mathsf{CFG} \, \subset \, \mathsf{DTM} \equiv \mathsf{NTM}$

(not CFL) $\{a^ib^jc^k\mid 0\leq i\leq j\leq k\},\,\{a^nb^nc^n\mid n\in\mathbb{N}\},$

- (unrecognizable) $\overline{A_{TM}}$, $\overline{EQ_{\mathsf{TM}}}$, EQ_{CFG} , $\overline{HALT_{\mathsf{TM}}}$, REGULAR $_{\mathsf{TM}} = \{M \text{ is a TM and } L(M) \text{ is regular}\}$, E_{TM} , $EQ_{\mathsf{TM}} = \{M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2)\}$, ALL_{CFG} , EQ_{CFG} (recognizable but undecidable) A_{TM} ,
- $\overline{E_{\mathsf{TM}}},$ (decidable) $A_{\mathsf{DFA}}, \, A_{\mathsf{NFA}}, \, A_{\mathsf{REX}}, \, E_{\mathsf{DFA}}, \, EQ_{\mathsf{DFA}}, \, A_{\mathsf{CFG}},$ $E_{\mathsf{CFG}}, \, A_{\mathsf{LBA}}, \, ALL_{\mathsf{DFA}} = \{ \langle M \rangle \mid M \text{ is a DFA}, L(A) = \Sigma^* \},$ $A\varepsilon_{\mathsf{CFG}} = \{ \langle G \rangle \mid G \text{ is a CFG that generates } \varepsilon \},$ $\mathsf{INFINITE}_{\mathsf{DFA}}, \, \mathsf{INFINITE}_{\mathsf{PDA}}$

Mapping Reduction: $A \leq_{\mathrm{m}} B$ if $\exists f : \Sigma^* \to \Sigma^* : \forall w \in \Sigma^*, \ w \in A \iff f(w) \in B$ and f is computable.

- $f: \Sigma^* o \Sigma^*$ is **computable** if there exists a TM M s.t. for every $w \in \Sigma^*$, M halts on w and outputs f(w) on its tape.
- If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is dec.
- If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undec.
- If $A \leq_{\mathrm{m}} B$ and B is recognizable, then A is rec.
- If $A \leq_{\mathrm{m}} B$ and A is unrecognizable, then B is unrec.
- (transitivity) If $A \leq_{\mathrm{m}} B$ and $B \leq_{\mathrm{m}} C$, then $A \leq_{\mathrm{m}} C$.
- $A \leq_{\mathrm{m}} B \iff \overline{A} \leq_{\mathrm{m}} \overline{B} \text{ (esp. } A \leq_{\mathrm{m}} \overline{A} \iff \overline{A} \leq_{\mathrm{m}} A \text{)}$

If $A \leq_{\mathrm{m}} \overline{A}$ and $A \in \operatorname{RECOGNIZABLE}$, then $A \in \operatorname{DEC}$.

EXAMPLES

- $$\begin{split} & \quad A_{TM} \leq_{\mathrm{m}} S_{TM} = \{ \langle M \rangle \mid w \in L(M) \iff w^{\mathcal{R}} \in L(M) \}, \\ & \quad f(\langle M, w \rangle) = \langle M' \rangle, \text{ where } M' = \text{"On x, if } x \not \in \{01, 10\}, \\ & \quad \text{reject; if } x = 01, \text{ return } M(x); \text{ if } x = 10, \text{ accept;"} \end{split}$$
- $ullet A_{TM} \leq_{\mathrm{m}} L = \{\langle \underbrace{M}_{\mathsf{TM}}, \underbrace{D}_{\mathsf{DFA}}
 angle \mid L(M) = L(D)\},$
- $f(\langle M,w\rangle)=\langle M',D\rangle, \text{ where }M'=\text{"On x: if }x=w \text{ return} \\ M(x); \text{ otherwise, reject," and }D \text{ is DFA s.t. }L(D)=\{w\}$
- $f(w)=A\leq_{\mathrm{m}}HALT_{\mathsf{TM}}, \quad f(w)=\langle M,arepsilon
 angle,$ where M= "On x: if $w\in A$, halt; if $w
 ot\in A$, loop forever;"
- $$\begin{split} A_{TM} &\leq_{\mathrm{m}} CF_{\mathsf{TM}} = \{ \langle M \rangle \mid L(M) \text{ is CFL} \}, \\ f(\langle M, w \rangle) &= \langle N \rangle, \text{ where } N = \text{"On } x \text{: if } x = a^n b^n c^n, \\ \text{accept; otherwise, return } M(w); \text{"} \end{split}$$
- $\begin{array}{ll} A \leq_{\mathrm{m}} B = \{0w: w \in A\} \cup \{1w: w \not\in A\}, & f(w) = 0w. \\ & E_{\mathrm{TM}} \leq_{\mathrm{m}} \mathrm{USELESS_{\mathrm{TM}}}; \; f(\langle M \rangle) = \langle M, q_{\mathrm{accept}} \rangle \end{array}$
- $A_{\rm TM} \leq_{\rm m} EQ_{\rm TM}; \quad f(\langle M,w\rangle) = \langle M_1,M_2\rangle, \text{ where } M_1 = \text{"Accept everything"}; \ M_2 = \text{"On } x \text{: return } M(w); \text{"}$
- $A_{\mathrm{TM}} \leq_{\mathrm{m}} \overline{EQ_{\mathrm{TM}}}; \quad f(\langle M, w \rangle) = \langle M_1, M_2 \rangle, \text{ where } M_1 =$ "Reject everything"; M_2 ="On x: return M(w);"
- $ALL_{\mathrm{CFG}} \leq_{\mathrm{m}} EQ_{\mathrm{CFG}}; \, f(\langle G \rangle) = \langle G, H \rangle$, where $L(H) = \Sigma^*.$

Polytime Reduction: $A \leq_{\mathrm{P}} B$ if $\exists f : \Sigma^* \to \Sigma^* : \forall w \in \Sigma^*, \, w \in A \iff f(w) \in B$ and f is polytime computable.

- ((**Running time**) decider M is a f(n)-time TM.) $f: \mathbb{N} \to \mathbb{N}$, where f(n) is the max. num. of steps that DTM (or NTM) M takes on any n-length input (and any branch of any n-length input. resp.).
- $\mathsf{TIME}(t(n)) = \{L \mid L \text{ is dec. by } O(t(n)) \text{ DTM} \}.$
- $\mathsf{NTIME}(t(n)) = \{L \mid L \text{ is dec. by } O(t(n)) \text{ NTM}\}.$
- $\mathbf{P} = \bigcup_{k \in \mathbb{N}} \mathsf{TIME}(n^k)$
- (verifier for L) TM V s.t.
- $L = \{w \mid \exists c : V(\langle w, c
 angle) = \mathsf{accept}\}.$
- $\bullet \quad \text{(certificate for } w \in L \text{) str. } c \text{ s.t. } V(\langle w, c \rangle) = \text{accept.}$
- $\mathbf{NP} = igcup_{k \in \mathbb{N}} \mathsf{NTIME}(n^k)$
- $\mathbf{NP} = \{L \mid L \text{ is decidable by a PT verifier}\}.$ • $\mathbf{P} \subset \mathbf{NP}.$
- f · \(\nabla^* \)
- $f: \Sigma^* \to \Sigma^*$ is **PT computable** if there exists a PT TM M s.t. for every $w \in \Sigma^*$, M halts with f(w) on its tape.
- $\bullet \quad \text{If } A \leq_{\mathrm{P}} B \text{ and } B \in \mathrm{P} \text{, then } A \in \mathrm{P}.$
- If $A \leq_P B$ and $B \leq_P A$, then A and B are **PT** equivalent, denoted $A \equiv_P B$. \equiv_P is an equivalence

- relation on NP. $P \setminus \{\emptyset, \Sigma^*\}$ is an equivalence class of \equiv_{P} .
- NP-complete = {B | B ∈ NP, ∀A ∈ NP, A ≤_P B}.
 CLIQUE, SUBSET-SUM, SAT, 3SAT,
- VERTEX-COVER, HAMPATH, UHAMATH, $3COLOR \in \text{NP-complete}.$
- $\emptyset, \Sigma^* \notin NP$ -complete.
- If $B \in NP$ -complete and $B \in P$, then P = NP.
- If $B \in \text{NP-complete}$ and $C \in \text{NP s.t. } B \leq_{\text{P}} C$, then $C \in \text{NP-complete}.$
- If $\mathrm{P}=\mathrm{NP},$ then $orall A\in \mathrm{P}\setminus \{\emptyset,\Sigma^*\},\ A\in \mathrm{NP\text{-}complete}.$

EXAMPLES

- SAT \leq_{P} DOUBLE-SAT; $f(\phi) = \phi \land (x \lor \neg x)$
- SUBSET-SUM \leq_P SET-PARTITION;
- $f(\langle x_1,\ldots,x_m,t\rangle)=\langle x_1,\ldots,x_m,S-2t\rangle$, where S sum of x_1,\ldots,x_m , and t is the target subset-sum.
- $3COLOR \leq_{
 m P} 3COLOR_{almost}; \quad f(\langle G
 angle) = \langle G'
 angle,$ where $G' = G \cup K_4$

- $egin{aligned} ext{VERTEX-COVER} &\leq_{ ext{P}} ext{WVC}; \quad f(\langle G, k
 angle) = (G, w, k), \ \forall v \in V(G), w(v) = 1 \end{aligned}$
- $HAM-PATH \leq_P 2HAM-PATH;$
- $f(\langle G,s,t
 angle)=\langle G',s',t'
 angle$, where
- $V'=V\cup \{s',t',a,b,c,d\},$
- $E' = E \cup \{(s', a), (a, b), (b, s)\} \cup \{(s', b), (b, a), (a, s)\} \cup \{(t, c), (c, d), (d, t')\} \cup \{(t, d), (d, c), (c, t')\}.$
- $\quad \quad \underset{\text{undir. } G \text{ has } k\text{-clique}}{\text{clique}} \leq_{\text{P}} \underset{\text{undir. } G \text{ has } |V|/2\text{-clique}}{\text{HALF-CLIQUE}} \; ;$
- undir. G has k-enque undir. G has |V|/2-enque $f(\langle G=(V,E),k \rangle) = \langle G'=(V',E')
 angle,$ if $k=rac{|V|}{2},\,E=E',$
- V'=V. if $k>\frac{|V|}{2},$ $V'=V\cup\{j=2k-|V| \text{ new nodes}\}.$ if $k<\frac{|V|}{2},$ $V'=V\cup\{j=|V|-2k \text{ new nodes}\}$ and
- $E' = E \cup \{ \text{edges for new nodes} \}$
- $egin{aligned} ext{UHAMPATH} &\leq_{ ext{P}} ext{PATH}_{\geq k}; \ f(\langle G, a, b
 angle) &= \langle G, a, b, k = |V(G)|
 angle \end{aligned}$
- CLIQUE \leq_P INDEPENDENT-SET
- SET-COVER \leq_P VERTEX-COVER
- $3SAT \leq_P SET-SPLITTING$
- INDEPENDENT-SET \leq_{P} VERTEX-COVER
- $\bullet \quad VERTEX\text{-}COVER \leq_p CLIQUE$

Counterexamples

- $\begin{array}{ll} \bullet & A \leq_{\mathrm{m}} B \text{ and } B \in \mathrm{REG}, \text{ but, } A \not \in \mathrm{REG}; \\ & A = \{0^n 1^n \mid n \geq 0\}, \, B = \{1\}, \, f : A \rightarrow B, \\ & f(w) = \begin{cases} 1 & \text{if } w \in A \\ 0 & \text{if } w \not \in A. \end{cases} \end{array}$
- $\begin{array}{ll} L \in \mathrm{CFL} \ \mathrm{but} \ \overline{L} \not \in \mathrm{CFL} \colon & L = \{x \mid \forall w \in \Sigma^*, x \neq ww\}, \\ \overline{L} = \{ww \mid w \in \Sigma^*\}. \end{array}$
- $\begin{array}{ll} ^{\circ} & L_1,L_2 \in \mathrm{CFL} \ \mathrm{but} \ L_1 \cap L_2 \not\in \mathrm{CFL} \colon & L_1 = \{a^nb^nc^m\}, \\ L_2 = \{a^mb^nc^n\}, \ L_1 \cap L_2 = \{a^nb^nc^n\}. \end{array}$
- $L_1\in \mathrm{CFL}, L_2$ is infinite, but $L_1\setminus L_2
 ot\in\mathrm{REG}: L_1=\Sigma^*$, $L_2=\{a^nb^n\mid n\geq 0\}, L_1\setminus L_2=\{a^mb^n\mid m\neq n\}.$
- $\begin{array}{ll} & L_1, L_2 \in \mathrm{REG}, \ L_1 \not\subset L_2, \ L_2 \not\subset L_1, \ \mathsf{but}, \\ & (L_1 \cup L_2)^* = L_1^* \cup L_2^*: \quad L_1 = \{\mathsf{a}, \mathsf{b}, \mathsf{ab}\}, \ L_2 = \{\mathsf{a}, \mathsf{b}, \mathsf{ba}\} \end{array}$
- $L_1\in \mathrm{REG},\, L_2
 otin \mathrm{REG},\, \mathrm{but},\, L_1\cap L_2\in \mathrm{REG},\, \mathrm{and}$ $L_1\cup L_2\in \mathrm{REG}:\quad L_1=L(\mathtt{a}^*\mathtt{b}^*),\, L_2=\{\mathtt{a}^n\mathtt{b}^n\mid n\geq 0\}.$
- $$\begin{split} \bullet & \quad L_1, L_2, L_3, \dots \in \mathrm{REG}, \, \mathsf{but}, \, \bigcup_{i=1}^\infty L_i \not \in \mathrm{REG}: \\ L_i &= \{ \mathbf{a}^i \mathbf{b}^i \}, \, \bigcup_{i=1}^\infty L_i = \{ \mathbf{a}^n \mathbf{b}^n \mid n \geq 0 \}. \end{split}$$
- $L_1\cdot L_2\in \mathrm{REG}$, but $L_1
 ot\in \mathrm{REG}:$ $L_1=\{\mathtt{a}^n\mathtt{b}^n\mid n\geq 0\},$ $L_2=\Sigma^*.$
 - $L_2\in \mathrm{CFL}$, and $L_1\subseteq L_2$, but $L_1
 otin \mathrm{CFL}: \quad \Sigma=\{a,b,c\}, \quad L_1=\{a^nb^nc^n\mid n\geq 0\}, \ L_2=\Sigma^*.$
- $L_1,L_2\in {
 m DECIDABLE}$, and $L_1\subseteq L\subseteq L_2$, but $L\in {
 m UNDECIDABLE}: \quad L_1=\emptyset,\, L_2=\Sigma^*,\, L$ is some undecidable language over $\Sigma.$
- $L_1\in \mathrm{REG},\, L_2
 otin \mathrm{CFL},\, \mathsf{but}\,\, L_1\cap L_2\in \mathrm{CFL}:\quad L_1=\{arepsilon\}, \ L_2=\{a^nb^nc^n\mid n\geq 0\}.$
- $egin{aligned} & L^* \in ext{REG}, ext{ but } L
 otin ext{REG}: & L = \{a^p \mid p ext{ is prime}\}, \ & L^* = \Sigma^* \setminus \{a\}. \end{aligned}$
- $\begin{tabular}{ll} \bullet & A \nleq_m \overline{A}: & A = A_{TM} \in {\tt RECOGNIZABLE}, \\ \overline{A} = \overline{A_{TM}} \not \in {\tt RECOG}. \\ \end{tabular}$
- $A \notin DEC., A \leq_m \overline{A}$: