Prova MATLAB Tipo – C

Esame di "FONDAMENTI DI AUTOMATICA" (9 CFU)

Istruzioni per lo svolgimento: lo studente deve consegnare al termine della prova una cartella nominata **Cognome_Nome** contenente:

- Un **Matlab script file** (i.e. file di testo con estensione .m o .txt) riportante i comandi eseguiti <u>e la risposta alle eventuali richieste teoriche sotto forma di commento</u> (i.e. riga di testo preceduta dal simbolo %)
 - **NOTA**: per copiare i comandi dalla Command History, visualizzarla tramite menu "Layout → Command History → Docked", selezionare in tale finestra le righe di interesse tramite *Ctrl+mouse left-click* e dal menu visualizzato tramite *mouse right-click* selezionare "create script"
- Le figure rilevanti per la dimostrazione dei risultati ottenuti in formato JPEG o PNG avendo cura di <u>salvare i file delle figure quando queste mostrano le caratteristiche di</u> <u>interesse per la verifica del progetto</u> (es. Settling Time, Stability Margins, ecc.).
 - **NOTA:** per salvare una figura Matlab in formato PNG o JPG, usare il menu "File → Save as" dalla finestra della figura di interesse, assegnarle un nome e selezionare l'estensione *.PNG o *.JPG nel menu a tendina "salva come".

INTRODUZIONE

Si consideri il modello della dinamica longitudinale di un aereo, con particolare riferimento al movimento rispetto all'angolo di beccheggio (*pitch angle*) schematizzato dalla figura:

Il modello matematico del sistema, linearizzato rispetto a piccole variazioni degli angoli, è descritto nella pagina web https://ctms.engin.umich.edu/ (Control Tutorials for Matlab & Simulink). Le relative matrici A, B, C, D (leggermente adattate per gli scopi di questo testo) sono inizializzate dallo script InitAutomaticaTipoC.m.

ESERCIZIO 1

- a) Date le matrici inizializzate dallo script InitAutomaticaTipoC.m, si ricavi la funzione di trasferimento G(s) del sistema in esame.
- b) Si determinino i poli della funzione di trasferimento e si verifichi se coincidono con gli autovalori di A. Descrivere il motivo di eventuali discrepanze tramite righe di commento (i.e. precedute dal simbolo %) sul file .m

ESERCIZIO 2

Si consideri il sistema in retroazione rappresentato in figura:

Con G(s) ricavata al punto a) dell'Esercizio 1 e $H(s) = \frac{1}{1 + \frac{s}{50}}$ funzione di trasferimento associata al sensore per la misura dell'uscita.

- a) Si verifichi se il sistema ad anello chiuso, con guadagno K=1, risulti o meno stabile tramite l'analisi della risposta y(t) al gradino unitario.
- b) Si determini il valore del guadagno K_{lim} per il quale il sistema risulta semplicemente stabile, tramite l'analisi del margine di ampiezza o equivalentemente tramite l'analisi del luogo delle radici (NOTA: in entrambi i casi l'analisi va svolta sulla funzione guadagno d'anello L(s) = G(s)H(s))
- c) Si ponga $K_1=0.8\,K_{lim}$, si visualizzi l'andamento della risposta al gradino y(t) del sistema chiuso in retroazione con tale guadagno e si determini il tempo d'assestamento al 5%.
- d) Si determini l'errore a regime motivandone il valore tramite righe di commento (i.e. precedute dal simbolo %) sul file .m

ESERCIZIO 3

Si consideri il sistema rappresentato in figura

Con G(s) e H(s) come al punto a) dell'Esercizio 2.

- a) Si determinino come possibili funzioni di trasferimento alternative per il controllore $G_c(s)$ quelle di un regolatore di tipo **PD** e di uno di tipo **PID**, considerati entrambi nella formulazione classica e con i parametri K_p, T_i, T_d tarati secondo il metodo di Ziegler-Nichols basato sull'oscillazione critica ad anello chiuso (vedi tabella allegata).
- b) Si verifichi tramite l'analisi della risposta al gradino del sistema compensato e chiuso in retroazione quale tra i regolatori proposti sia il più efficace in termini di massima sovraelongazione percentuale e tempo di assestamento.

TIPO	Kp	T _i	T _d
Р	0.5 K ₀	-	-
PI	0.45 K ₀	0.85 T ₀	-
PD	0.5 K ₀	-	0.2 T ₀
PID	0.6 K ₀	0.5 T ₀	0.125 T ₀

NOTA:

 K_0 = guadagno critico, di fatto corrispondente al guadagno K_{lim} determinato al punto b) dell'Esercizio 2, cioè tale per cui il sistema chiuso in retroazione risulti semplicemente stabile (i.e. con oscillazione persistente della risposta).

 T_0 = periodo delle oscillazioni della risposta in condizione di stabilità semplice ad anello chiuso.