Options Assignment I

Ze Yang (zey@andrew.cmu.edu)

November 5, 2017

Problem 1. Solution. (Part-a)

Table 1: State Prices and RN Probabilities

Macro State	Objective Prob	State Price	RN Prob	$\mathbb{E}\left[\operatorname{Ret}\right] - R_f$	Pricing Kernel
Strong	0.1000	\$ 0.0950	0.0964	0.0374	0.9500
Weak	0.3000	\$ 0.2800	0.2843	0.0562	0.9333
Flat	0.2500	\$ 0.2500	0.2538	-0.0152	1.0000
Continued Recession	0.3500	\$ 0.3600	0.3655	-0.0430	1.0286
Sums	1.0000	0.9850	1.0000		
T-t	0.5				

 $r_{t,T}(a_t) \qquad \qquad 0.03023$

Let $a_T \in A_T = \{strong, weak, flat, continued recession\}$ be the four future states. Our inputs are the objective probabilities $p(a_T|a_t)$ in the second column of table 1, and the state prices $\pi(a_T|a_t)$ in the third column of table 1.

The risk neutral probabilities are listed in the fourth column:

$$q^{RN}(a_T|a_t) = \frac{\pi(a_T|a_t)}{\sum_{a_T \in A_T} \pi(a_T|a_t)} = \pi(a_T|a_t)e^{-r_{t,T}(a_t)(T-t)}$$
(1)

Therefore we can calculate the continuously compounded annualized risk-free interest rate:uo

$$r_{t,T}(a_t) = -\frac{1}{T-t} \log \left(\sum_{a_T \in A_T} \pi(a_T | a_t) \right)$$

$$= -\frac{1}{0.5} \log(0.985) \approx 0.03023$$
(2)

The pricing kernels are listed in the sixth column:

$$m(a_T|a_t) = \frac{\pi(a_T|a_t)}{p(a_T|a_t)} \tag{3}$$

The expected risk premium are in the fifth column:

$$\mathbb{E}_{t}[R_{i}] - R_{f} = \left(\frac{p(a_{T}|a_{t})}{q^{RN}(a_{T}|a_{t})} - 1\right) e^{r_{t,T}(a_{t})(T-t)}$$
(4)

Now we calculate the option price via risk neutral valuation, see the third column of table-2. We have:

$$c_{jt} = \sum_{a_T \in A_T} \pi(a_T | a_t) c_j^*(a_T)$$
 (5)

- · Price of reverse macro straddle that pays \$1 million if $a_T \in \{weak, flat\}$: $c_{1t} = 0.53$ million \$.
- · Price of reverse macro straddle that pays \$25 million if $a_T \in \{weak, flat\}$: $c_{2t} = 13.25$ million \$.
- · Price of long macro straddle that pays \$1 million if $a_T \in \{strong, recession\}$: $c_{3t} = 0.46$ million \$.

By the DCF valuation:

$$c_{jt} = \frac{\sum_{a_T \in A_T} p(a_T | a_t) c_j^*(a_T)}{1 + RAD_{jt}}$$
(6)

- · RAD of reverse macro straddle that pays \$1 million if $a_T \in \{weak, flat\}$: $RAD_{1t} = 0.0377$.
- · RAD of reverse macro straddle that pays \$25 million if $a_T \in \{weak, flat\}$: $RAD_{2t} = 0.0377$.
- · RAD of long macro straddle that pays \$1 million if $a_T \in \{strong, recession\}$: $RAD_{3t} = -0.0110$.

Explaination:

- · As we have seen in the table, the reverse macro straddle is a portfolio of state claim for flat and weak. Hence $c_{1t} = \pi(weak|a_t) + \pi(flat|a_t)$. By our calculation, the risk premium of state claim weak is positive (0.0562), and the risk premium of state claim flat is negative (-0.0152), but a lot smaller than that of weak in absolute value. The positive risk premium dominates. As a result, the overall impact on risk-adjusted discount rate is a positive risk premium. Hence RAD_{1j} is greater than the risk-free rate.
- · The Second case is just 25 shares of the reverse macro straddle in the First case. $c_{2t} = 25c_{1t}$. Holding more shares of options does **not** change the payoff probabilities, preferences or timing. So the RAD does not change for the second one.
- · For the third case, the long macro straddle is a portfolio of state claim for strong and recession. Hence $c_{3t} = \pi(strong|a_t) + \pi(recession|a_t)$. By our calculation, the risk premium of state claim strong is positive (0.0374), and the risk premium of state claim recession is negative (-0.0430), but greater than that of strong in absolute value. The negative risk premium dominates. As a result, the overall impact on risk-adjusted discount rate is a negative risk premium. The negative risk-premium is so deep that it wiped out risk-free rate. As a result, the RAD ends up to be negative.

Table 2: Option Valuations

Reverse Macro Straddle				
Macro State	Payoffs $c^*(a_T)$	RN Valuations	$p(a_T a_t)c^*(a_T)$	RAD
Strong	0	0.00	0.00	
Weak	1	0.28	0.30	
Flat	1	0.25	0.25	
Continued Recession	0	0.00	0.00	
value		\$0.53	\$0.55	0.0377358
Reverse Macro Straddle (25)				
Macro State	Payoffs $c^*(a_T)$	RN Valuations	$p(a_T a_t)c^*(a_T)$	RAD
Strong	0	0.00	0.00	
Weak	25	7.00	7.50	
Flat	25	6.25	6.25	
Continued Recession	0	0.00	0.00	
option value		\$13.25	\$13.75	0.0377358
Long straddle				
Macro State	Payoffs $c^*(a_T)$	RN Valuations	$p(a_T a_t)c^*(a_T)$	RAD
Strong	1	0.10	0.10	
Weak	0	0.00	0.00	
Flat	0	0.00	0.00	
Continued Recession	1	0.36	0.35	
option value		\$0.46	\$0.45	-0.010989

(Part-b)
$$F_{t,T} = \mathbb{E}_t^{RN} [S_T^*] = 1074.7462 \tag{7}$$

Table 3: Future Price

Payoffs	RN Probs	$S_T^* q^{RN}(a_T a_t)$
1195	0.0964	115.25381
1150	0.2843	326.90355
1110	0.2538	281.72589
960	0.3655	350.86294
		1074.7462
	1195 1150 1110	1195 0.0964 1150 0.2843 1110 0.2538

(Part-c) State price $\pi(a_T|a_t)$ summarizes combined valuation impact of timing, probabilities and preferences.

Since the objective probabilities and the timing of the states are unchanged, the **preferences** would need to have changed to account for the changes in state prices.