

4. Übung zur Vorlesung Algorithmen auf Graphen Musterlösungen

Aufgabe 1: Diese Aufgabe hat die folgenden Lösungen:

- a) Der Knoten g ist nur von sich selbst aus erreichbar. Wenn man also von irgendeinem anderen Knoten mit dem DFS-Verfahren starten würde, so würde g nicht markiert. Daher würde g auch nie auf dem DFS-Keller landen, und somit könnten insbesondere nie alle acht Knoten gleichzeitig im Keller stehen. Als Startknoten kommt deshalb nur g in Frage.
- b) Die einzige mögliche Folge ist g, f, b, a, e, c, h, d.

Aufgabe 2: Nach dem Auflegen von v auf den Keller zum Zeitpunkt d[v] vergehen f[v] - d[v] viele Schritte bis zum Entfernen von v zum Zeitpunkt f[v]. Wenn man also das Entfernen von v nicht mitzählt, so vergehen zwischen dem Speichern und dem Entnehmen von v genau f[v] - d[v] - 1 viele Schritte. Diese Zahl muss jedoch gerade sein (und damit ist f[v] - d[v] dann ungerade). Denn jeder Knoten, der zwischenzeitlich auf den Keller gelangt, muss auch vor dem Entfernen von v wieder gelöscht werden, d.h. für jeden solchen Knoten wird die Uhr um insgesamt zwei Schritte und damit um einen gerade Zahl weitergezählt.

Aufgabe 3: In den nachstehenden Durchmusterungsergebnissen sind für jeden Knoten v die Push- und Pop-Zeiten als Zahlenpaare (d[v]/f[v]) eingetragen.

a) Hier reicht der einfache Graph

Die beiden möglichen Durchmusterungen sind dann diese:

b) Ein mögliche Lösung wäre dieser Graph:

Die drei möglichen DFS–Durchmusterungen lauten dann:

c) Ein Graph mit vier möglichen DFS–Durchmusterungen ist dieser:

Wir erhalten diese vier möglichen DFS–Ergebnisse:

Aufgabe 4: Wir geben die Konfigurationen an, die jeweils beim Erreichen des Kopfes der while-Schleife in Zeile 5 gelten.

Die ersten vier Zeilen werden durchlaufen

$$Q = (a) \qquad N[a] = \{e, f\}$$

In Zeile 6 gilt head(Q) = a; wähle z.B. $e \in N[a]$ in Zeile 8

$$Q = (a, e)$$
 $N[a] = \{f\}$ $N[e] = \{a, f\}$

$$Q = (a, e, f) \qquad N[a] = \emptyset \qquad N[e] = \{a, f\} \qquad N[f] = \{g\}$$

 $\downarrow \hspace{-0.2cm} \downarrow \hspace{-0.2cm} a \text{ wird wegen } N[a] = \emptyset \text{ in Zeile 16 aus } Q \text{ entfernt}$

$$Q = (e, f)$$
 $N[e] = \{a, f\}$ $N[f] = \{g\}$

In Zeile 6 gilt head(Q) = e; wähle z.B. markiertes $a \in N[e]$ in Zeile 8

$$Q = (e, f)$$
 $N[e] = \{f\}$ $N[f] = \{g\}$

In Zeile 6 gilt head(Q) = e; wähle markiertes $f \in N[e]$ in Zeile 8

$$Q=(e,f) \qquad N[e]=\emptyset \qquad N[f]=\{g\}$$

||e| wird wegen $N[e] = \emptyset$ in Zeile 16 aus Q entfernt

$$Q = (f) \qquad N[f] = \{g\}$$

In Zeile 6 gilt head(Q) = f; wähle (eindeutig) $g \in N[f]$ in Zeile 8

$$Q = (f,g) \qquad N[f] = \emptyset \qquad N[g] = \{d\}$$

 $\parallel f$ wird wegen $N[f] = \emptyset$ in Zeile 16 aus Q entfernt

$$Q = (g) \qquad N[g] = \{d\}$$

In Zeile 6 gilt head(Q) = g; wähle (eindeutig) $d \in N[g]$ in Zeile 8

$$Q = (g, d)$$
 $N[g] = \emptyset$ $N[d] = \{h\}$

g wird wegen $N[f] = \emptyset$ in Zeile 16 aus Q entfernt

$$Q = (d) \qquad N[d] = \{h\}$$

In Zeile 6 gilt head(Q) = d; wähle (eindeutig) $h \in N[d]$ in Zeile 8

$$Q = (d, h) \qquad N[d] = \emptyset \qquad N[h] = \{g\}$$

d wird wegen $N[d] = \emptyset$ in Zeile 16 aus Q entfernt

$$Q = (h) \qquad N[h] = \{g\}$$

In Zeile 6 gilt head(Q) = h; wähle markiertes $g \in N[h]$ in Zeile 8

$$Q = (h)$$
 $N[h] = \emptyset$

h wird wegen $N[h] = \emptyset$ in Zeile 16 aus Q entfernt

$$Q = ()$$

Wegen der Leere von Q terminiert der Algorithmus dann an dieser Stelle. Die von BFS ermittelten Attribute sind in dem folgenden Graph eingetragen:

Die Knotenattribute geben wie erwartet die kürzesten Entfernungen (d.h. die Anzahl der Kanten) auf Pfaden von a aus an.

Aufgabe 5: Die Lösungen zu der geforderte Analyse von BFS sind:

a) Von e aus sind alle acht Knoten des Graphen erreichbar. Die von BFS ermittelten Distanzen lauten:

b) Es handelt sich um die Knoten a (Maximalwert 0), f (Maximalwert 1) und g (Maximalwert 2).