Chapitre 18: Analyse asymptotique

1 Relations de comparaison : cas de suites

1.1 Définitions

Dans cette section, les suites considérées sont des suites à valeurs dans R.

Définition

Soient (u_n) et (v_n) deux suites. On suppose que la suite (v_n) ne s'annule pas à partir d'un certain rang n_0 . On dit que :

- (u_n) est dominée par (v_n) si et seulement si $\left(\frac{u_n}{v_n}\right)_{n\geq n_0}$ est bornée. On note alors : $u_n=O(v_n)$.
- (u_n) est négligeable devant (v_n) (ou que (v_n) est prépondérante devant la suite (u_n)) si et seulement si $\left(\frac{u_n}{v_n}\right)_{n\geq n_0}$ converge vers 0. On note alors $u_n=o(v_n)$.
- $(u_n)_{n\in\mathbb{N}}$ est équivalente à $(v_n)_{n\in\mathbb{N}}$, et on note $u_n \sim v_n$ si et seulement si $\left(\frac{u_n}{v_n}\right)_{n\geq n_0}$ converge vers 1. On note alors $u_n \sim v_n$.

Exemple:

- On a: $\frac{\cos(n) + 4}{n^2} = O\left(\frac{1}{n^2}\right) \operatorname{car}(\cos(n) + 4)$ est bornée.
- On a: $n^3 \sin(n) = o(n^5) \operatorname{car} \lim_{n \to +\infty} \frac{n^3 \sin(n)}{n^5} = \lim_{n \to +\infty} \frac{\sin(n)}{n^2} = 0.$

Proposition

Soient (u_n) , (v_n) et (w_n) trois suites telles que (v_n) et (w_n) ne s'annulent pas à partir d'un certain rang.

- Si $u_n = O(v_n)$ et $v_n = O(w_n)$, alors $u_n = O(w_n)$ (transitivité de la relation O).
- Si $u_n = o(v_n)$ et $v_n = o(w_n)$, alors $u_n = o(w_n)$ (transitivité de la relation o).
- Si $u_n \sim v_n$ et $v_n \sim w_n$, alors $u_n \sim w_n$ (transitivité de la relation \sim).
- Si $u_n = o(v_n)$ et $v_n = O(w_n)$, alors $u_n = o(w_n)$.
- Si $u_n = O(v_n)$ et $v_n = o(w_n)$, alors $u_n = o(w_n)$.
- Si $u_n \sim v_n$ alors $v_n \sim u_n$.

Démonstration. • Supposons que $u_n = O(v_n)$ et $v_n = O(w_n)$.

 $\left(\frac{u_n}{w_n}\right)_{n\geq n_0} = \left(\frac{u_n}{v_n}\right)_{n\geq n_0} \times \left(\frac{v_n}{w_n}\right)_{n\geq n_0} \text{ est bornée en tant que produit de suites bornées. Donc } u_n = O(w_n).$

- Supposons que $u_n = o(v_n)$ et $v_n = o(w_n)$. $\lim_{n \to +\infty} \frac{u_n}{w_n} = \lim_{n \to +\infty} \frac{u_n}{v_n} \times \frac{v_n}{w_n} = 0 \times 0 = 0.$ Ainsi, $u_n = o(w_n)$.
- preuve identique au premier point.
- Supposons que $u_n = o(v_n)$ et $v_n = O(w_n)$.

 Par hypothèse, $\left(\frac{u_n}{v_n}\right)_{n \geq n_0}$ converge vers 0 et $\left(\frac{v_n}{w_n}\right)_{n \geq n_0}$ est bornée donc $\left(\frac{u_n}{v_n}\right)_{n \geq n_0} \times \left(\frac{v_n}{w_n}\right)_{n \geq n_0} = \left(\frac{u_n}{w_n}\right)_{n \geq n_0}$ converge vers 0.

 Ainsi, $u_n = o(w_n)$.
- preuve identique au point précédent.
- supposons que $u_n \sim v_n$. $\left(\frac{u_n}{v_n}\right)$ converge vers 1. Ainsi, $v_n = o(u_n)$.

1.2 Liens entre les relations de comparaison

Proposition

Soient (u_n) , (v_n) deux suites telles que (v_n) ne s'annule pas à partir d'un certain rang n_0 .

- Si $u_n = o(v_n)$ alors $u_n = O(v_n)$.
- Si $u_n \sim v_n$ alors $u_n = O(v_n)$ et $v_n = O(u_n)$
- $u_n \sim v_n$ si et seulement si $u_n v_n = o(v_n)$

Démonstration. • Supposons $u_n = o(v_n), \left(\frac{u_n}{v_n}\right)$ converge vers 0 donc est bornée. Ainsi, $u_n = O(v_n)$.

• Supposons $u_n \sim v_n$ alors $\left(\frac{u_n}{v_n}\right)$ converge vers 1 donc est bornée. De plus, $\left(\frac{v_n}{u_n}\right)$ converge vers 1, ainsi $\left(\frac{v_n}{u_n}\right)$ est bornée.

 $\bullet \ u_n \sim v_n \quad \Longleftrightarrow \quad \lim_{n \to +\infty} \frac{u_n}{v_n} = 1 \quad \Longleftrightarrow \quad \lim_{n \to +\infty} \left(\frac{u_n}{v_n} - 1 \right) = 0 \quad \Longleftrightarrow \quad \lim_{n \to +\infty} \left(\frac{u_n - v_n}{v_n} \right) = 0 \quad \Longleftrightarrow \quad u_n - v_n = o(v_n).$

1.3 Opérations sur les relations de comparaison

Proposition

Soient (u_n) , (v_n) , (w_n) et (t_n) quatre suites telles que (w_n) et (t_n) ne s'annulent pas à partir d'un certain rang. Soit $(\lambda, \mu) \in \mathbb{R}^2$.

- Si $u_n = O(w_n)$ alors $\lambda u_n = O(w_n)$.
 - Si $u_n = O(w_n)$ et $v_n = O(w_n)$, alors $u_n + v_n = O(w_n)$.
 - Si $u_n = O(w_n)$ et $v_n = O(t_n)$, alors $u_n v_n = O(w_n t_n)$.
- Si $u_n = o(w_n)$ alors $\lambda u_n = o(w_n)$.
 - Si $u_n = o(w_n)$ et $v_n = o(w_n)$, alors $u_n + v_n = o(w_n)$.
 - Si $u_n = o(w_n)$ et $v_n = o(t_n)$, alors $u_n v_n = o(w_n t_n)$.
 - Si $u_n = o(w_n)$ alors $u_n t_n = o(w_n t_n)$.
- Si $u_n \sim w_n$ et $v_n \sim t_n$, alors $u_n v_n \sim w_n t_n$ et $\frac{u_n}{v_n} \sim \frac{w_n}{t_n}$.

Soit $\alpha \in \mathbb{R}$ (indépendant de n), si $u_n \sim w_n$ et de plus (u_n^{α}) et (v_n^{α}) sont bien définies à partir d'un certain d'un rang,

alors $u_n^{\alpha} \sim w_n^{\alpha}$.

Démonstration. On suppose que (w_n) et (t_n) ne s'annulent pas à partir d'un certain rang n_0 .

- Supposons que $u_n = O(w_n)$.
 - On a $\left(\frac{\lambda u_n}{w_n}\right) = \lambda \left(\frac{u_n}{w_n}\right)$ qui est bornée. Donc $\lambda u_n = O(w_n)$.
 - Supposons que $u_n = O(w_n)$ et $v_n = O(w_n)$.

$$\left| \frac{u_n + v_n}{w_n} \right| = \left| \frac{u_n}{w_n} + \frac{v_n}{w_n} \right| \le \left| \frac{u_n}{w_n} \right| + \left| \frac{v_n}{w_n} \right|.$$

- Or, $\left(\frac{u_n}{w_n}\right)$ et $\left(\frac{v_n}{w_n}\right)$ sont bornées donc $\left(\frac{u_n+v_n}{w_n}\right)$ est bornée donc $u_n+v_n=O(w_n)$.
- Supposons $u_n = O(w_n)$ et $v_n = O(t_n)$. On a

$$\left|\frac{u_n v_n}{w_n t_n}\right| = \left|\frac{u_n}{w_n}\right| \times \left|\frac{v_n}{t_n}\right|.$$

Or, $\left(\frac{u_n}{w_n}\right)$ et $\left(\frac{v_n}{t_n}\right)$ sont bornées donc $\left(\frac{u_nv_n}{w_nt_n}\right)$ est bornée. D'où $u_nv_n=O(w_nt_n)$.

- Démonstration similaire pour les o
- $\bullet \quad \lim_{\substack{n \to +\infty \\ \text{Ainsi}, \ u_n v_n \sim w_n t_n}} \frac{u_n v_n}{w_n} = \lim_{\substack{n \to +\infty \\ w_n < w_n t_n}} \frac{u_n}{w_n} \times \frac{v_n}{t_n} = 1 \times 1 = 1.$

• Comme $\lim_{n \to +\infty} \frac{v_n}{t_n} = 1$, $\frac{v_n}{t_n}$ et donc v_n est non nul à partir d'un certain rang. Ainsi, les quotients sont bien définies à partir d'un certain rang.

De plus,

$$\lim_{n \to +\infty} \frac{\frac{u_n}{v_n}}{\frac{w_n}{t_n}} = \lim_{n \to +\infty} \frac{u_n t_n}{v_n w_n} = \lim_{n \to +\infty} \frac{u_n}{w_n} \times \frac{1}{\frac{v_n}{t_n}} = 1 \times 1 = 1.$$

Donc $\frac{u_n}{v_n} \sim \frac{w_n}{t_n}$.

• Supposons $u_n \sim w_n$. Soit $\alpha \in \mathbb{R}$.

$$\lim_{n \to +\infty} \frac{u_n^{\alpha}}{v_n^{\alpha}} = \lim_{n \to +\infty} \left(\frac{u_n}{v_n}\right)^{\alpha} = 1^{\alpha} = 1.$$

Donc $u_n^{\alpha} \sim w_n^{\alpha}$.

Remarque:

• \triangle On ne peut, ni ajouter, ni soustraire, les équivalents, comme le montre l'exemple suivant : $n^2 + n \sim n^2 + 1$ et $-n^2 \sim -n^2$ mais on n'a pas $n \sim 1$!

• \bigwedge On ne compose pas les équivalents i.e si f est une fonction (même continue sur \mathbb{R}) et si $u_n \sim v_n$, on n'a pas forcément $f(u_n) \sim f(v_n)$.

Contre exemple : pour tout $n \in \mathbb{N}$, on pose : $u_n = n^2 + n$ et $v_n = n^2$. Alors, $u_n \sim v_n$.

$$\forall n \in \mathbb{N}, \ \frac{e^{u_n}}{e^{v_n}} = e^{n^2 + n - n^2} = e^n$$

Donc $\lim_{n\to+\infty} \frac{e^{u_n}}{e^{v_n}} = +\infty$ donc $f(u_n) \not\sim f(v_n)$.

• Maria Lorsque l'on effectue un produit d'équivalents, le nombre de termes doit être fixe. De même lors d'une mise en puissance d'un équivalent, l'exposant doit être constant.

$$e^{1/n} \sim 1 \text{ mais } (e^{1/n})^n \neq 1.$$

Résultats fondamentaux

Proposition

Soit (u_n) une suite et $l \in \mathbb{R}^*$.

$$\lim_{n \to +\infty} u_n = l \quad \Longleftrightarrow \quad u_n \sim l$$

Démonstration.

$$\lim_{n \to +\infty} u_n = l \iff \lim_{n \to +\infty} \frac{u_n}{l} = 1$$

$$\iff u_n \sim l$$

Exemple:

• $\tan\left(\frac{\pi}{3} + \frac{1}{n}\right) \underset{n \to +\infty}{\longrightarrow} \tan\left(\frac{\pi}{3}\right) = \sqrt{3}$ par continuité de la fonction tan.

Ainsi: $\tan\left(\frac{\pi}{2} + \frac{1}{n}\right) \sim \sqrt{3}$.

• $\left(\tan\left(\frac{\pi}{3} + \frac{1}{n}\right)\right)^{\pi} \underset{n \to +\infty}{\to} \left(\sqrt{3}\right)^{\pi}$ par produit

Ainsi: $\left(\tan\left(\frac{\pi}{3} + \frac{1}{n}\right)\right)^{\pi} \underset{n \to +\infty}{\sim} \left(\sqrt{3}\right)^{\pi}$.

Proposition

Soient (u_n) et (v_n) deux suites avec (v_n) ne s'annulant pas à partir d'un certain rang n_0 . Si $u_n \sim v_n$ alors :

- u_n et v_n ont même signe strict à partir d'un certain rang. En particulier, (u_n) ne s'annule pas à partir d'un certain rang.
- $(u_n)_{n\in\mathbb{N}}$ admet une limite (finie ou infinie) si et seulement si $(v_n)_{n\in\mathbb{N}}$ admet une limite et on a alors $\lim_{n\to+\infty}u_n=\lim_{n\to+\infty}v_n$.

Démonstration. • Comme (u_n) et (v_n) sont équivalentes, on a $\lim_{n \to +\infty} \frac{u_n}{v_n} = 1$ donc $\left(\frac{u_n}{v_n}\right)_{n \ge n_0}$ est minorée par $\frac{1}{2}$ donc est strictement positif à partir d'un certain rang. Donc u_n et v_n sont de même signe à partir d'un certain rang.

• Supposons que $(v_n)_{n\in\mathbb{N}}$ admet une limite l. $\lim_{n\to+\infty}u_n=\lim_{n\to+\infty}\left(\frac{u_n}{v_n}\times v_n\right)=1\times l=l. \text{ Donc }(u_n) \text{ admet pour limite } l \text{ par opérations sur les limites.}$ Réciproquement, supposons que $(u_n)_{n\in\mathbb{N}}$ admet une limite l. On sait que $u_n\sim v_n$ donc $v_n\sim u_n$. L'implication précédente permet de conclure.

Proposition croissances comparées

Soit α , β , $\gamma \in \mathbb{R}_+^*$.

$$(\ln n)^{\beta} = o(n^{\alpha})$$
 $n^{\alpha} = o(e^{\gamma n})$

Remarque : Les suites de la forme $(e^{\gamma n})$ sont en fait les suites géométriques. En effet, si on pose $q = e^{\gamma}$, pour tout $n \in \mathbb{N}$, on a $e^{\gamma n} = q^n$. Le cas q > 1 correspond à $q = e^{\gamma}$ et le cas 0 < q < 1 correspond au cas $q = e^{-\gamma}$ avec $\gamma > 0$.

2 Relations de comparaison : cas des fonctions

2.1 Définitions et propriétés

Soit I un intervalle de \mathbb{R} non vide et non réduit à un point et a un point de I ou une extrémité de I (éventuellement $\pm \infty$).

Définition

Soient f, $g: I \to \mathbb{K}$ telles que g ne s'annule pas sur un voisinage de a, sauf éventuellement en a avec dans ce cas f(a) = 0. On dit que :

- f est dominée par g au voisinage de a ssi $\frac{f}{g}$ est bornée au voisinage de a. On note f(x) = O(g(x)) ou f = O(g).
- f est négligeable devant g au voisinage de a ssi $\lim_{x \to a} \frac{f(x)}{g(x)} = 0$. On note f(x) = o(g(x)) ou f = o(g).
- f est équivalente à g au voisinage de a ssi $\lim_{x \to a} \frac{f(x)}{g(x)} = 1$. On note $f(x) \underset{x \to a}{\sim} g(x)$ ou $f \underset{a}{\sim} g$.

Exemple

• On a $x^2 \sin\left(\frac{1}{x}\right) = O(x^2)$ car:

$$\forall x \in \mathbb{R}^*, \left| \frac{x^2 \sin\left(\frac{1}{x}\right)}{x^2} \right| = \left| \sin\left(\frac{1}{x}\right) \right| \le 1.$$

4

• $\frac{1}{x}\sin(x^2) \sim x \operatorname{car}\sin(x^2)$ est bornée.

Proposition

Si $P(x) = a_p x^p + a_{p+1} x^{p+1} + ... + a_q x^q$ avec $p \le q$ et $a_p \ne 0$ et $a_q \ne 0$, alors:

$$P(x) \underset{x \to 0}{\sim} a_p x^p$$
 et $P(x) \underset{x \to +\infty}{\sim} a_q x^q$

Démonstration.

$$\frac{P(x)}{a_p x^p} = 1 + \sum_{k=p+1}^q \frac{a_k}{a_p} x^{k-p} \underset{x \to 0}{\longrightarrow} 1 + \sum_{k=p+1}^q \frac{a_k}{a_p} 0^{k-p} = 1 \qquad (q-p > 0).$$

$$\frac{P(x)}{a_q x^q} = \sum_{k=p}^{q-1} \frac{a_k}{a_q} x^{q-k} + 1 \underset{x \to \pm \infty}{\longrightarrow} \sum_{k=p}^{q-1} \frac{a_k}{a_q} 0^{q-k} + 1 = 1 \qquad (q-p > 0).$$

Ainsi, $P(x) \sim a_q x^q$.

Dans toute la suite du II, on considère $f, g, h, u : I \to \mathbb{K}$. Chaque fois que l'on écrira une relation de la forme f = o(g) ou f = O(g) ou $f \sim g$, on supposera que g ne s'annule pas sur au voisinage de a sauf éventuellement en a avec dans ce cas f(a)=0.

• Si f = o(g) alors f = O(g).

• Si $f \sim_a g$ alors f = O(g) et g = O(f).

• $f \sim g$ si et seulement si f - g = o(g).

Proposition: Opérations sur les relations de comparaison

Soit $\lambda \in \mathbb{R}$.

• Si f = O(g) alors $\lambda f = O(g)$ Si f = O(g) et h = O(g) alors f + h = O(g)Si f = O(g) et h = O(u) alors f = O(gu)

• Si f = o(g) alors $\lambda f = o(g)$

Si f = o(g) et h = o(g) alors f + h = o(g)Si f = o(g) et h = o(u) alors f h = o(gu)Si f = o(g) alors uf = o(ug).

• Si $f \sim g$ et $h \sim u$ alors $fh \sim gu$ et $\frac{f}{h} \sim \frac{g}{u}$. soit $\alpha \in \mathbb{R}$ si de plus, f^{α} et g^{α} sont bien définies alors, $f^{\alpha} \sim g^{\alpha}$.

Démonstration. Preuve similaire à celle réalisée sur les suites.

Remarque: On veillera à ne pas additionner, soustraire ou composer à gauche des équivalents sans justification.

• $x+1 \underset{x \to +\infty}{\sim} x+2 \text{ et } -x \underset{x \to +\infty}{\sim} -x \text{ mais } 1 \underset{x \to +\infty}{\not\sim} 2.$

• $x + 1 \underset{x \to +\infty}{\sim} x$ mais $\exp(x + 1) \underset{x \to +\infty}{\not\sim} \exp(x)$

Proposition

Soit f une fonction à valeur réelle et $l \in \mathbb{R}^*$.

$$\lim_{x \to a} f(x) = l \iff f(x) \underset{x \to a}{\sim} l.$$

Démonstration. Preuve similaire à celle réalisée sur les suites.

Proposition: Résultats fondamentaux

- *f* et *g* ont même signe strict au voisinage de *a*.
- *f* admet une limite (finie ou infinie) en *a* si et seulement si *g* admet une limite en *a*. On a alors $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$.

Démonstration. Preuve similaire à celle réalisée sur les suites.

Proposition: Croissances comparées

Soit α , β , $\gamma \in \mathbb{R}^+_*$.

$$(\ln x)^{\beta} \underset{x \to +\infty}{=} o(x^{\alpha}), \quad x^{\alpha} \underset{x \to +\infty}{=} o(e^{\gamma x})$$

Démonstration. Preuve similaire à celle réalisée sur les suites.

2.2 Equivalents classiques

Proposition : Equivalents classiques au voisinage de 0

$$e^{x} - 1 \underset{x \to 0}{\sim} x \qquad \ln(1+x) \underset{x \to 0}{\sim} x$$

$$\sin x \underset{x \to 0}{\sim} x \qquad \tan x \underset{x \to 0}{\sim} x$$

$$\arcsin x \underset{x \to 0}{\sim} x \qquad \arctan x \underset{x \to 0}{\sim} x$$

$$\sinh x \underset{x \to 0}{\sim} x$$

$$(1+x)^{\alpha} - 1 \underset{x \to 0}{\sim} \alpha x \quad \text{avec } \alpha \in \mathbb{R}^{*}$$

$$1 - \cos(x) \underset{x \to 0}{\sim} \frac{x^{2}}{2} \qquad 1 - \operatorname{ch}(x) \underset{x \to 0}{\sim} -\frac{x^{2}}{2}$$

Démonstration. Ces équivalents (hormis les 2 derniers) sont obtenus grâce à la limite du taux d'accroissement. Soit $x \in]-\pi,\pi[$, on a:

$$1 - \cos x = \frac{1 - (\cos x)^2}{1 + \cos x} = \frac{(\sin x)^2}{1 + \cos x}.$$

On a $\sin x \sim x \text{ donc } (\sin x)^2 \sim x^2$. De plus, $\lim_{x\to 0} (1 + \cos x) = 2 \text{ donc } 1 + \cos x \sim x \sim 2$.

Ainsi, on obtient: $1 - \cos x \sim \frac{x^2}{2}$.

Soit $x \in \mathbb{R}$, on a:

$$1 - \operatorname{ch} x = \frac{1 - (\operatorname{ch} x)^2}{1 + \operatorname{ch} x} = \frac{-(\operatorname{sh} x)^2}{1 + \operatorname{ch} x}.$$

On a sh $x \sim x$ donc $(sh x)^2 \sim x^2$. De plus, $\lim_{x\to 0} (1 + ch x) = 2$ donc $1 + ch x \sim x \sim 2$.

Ainsi, on obtient: $1 - \operatorname{ch} x \sim_{x \to 0} - \frac{x^2}{2}$.

Exemple : Déterminer un équivalent en 0 de $\frac{(1-e^x)\sin x}{x^2+x^3}$.

Or, $x^2 + x^3 \underset{x \to 0}{\sim} x^2$, $\sin x \underset{x \to 0}{\sim} x$ et $1 - e^x \underset{x \to 0}{\sim} -x$.

Donc par produit et quotient, on a : $\frac{(1-e^x)\sin x}{x^2+x^3} \underset{x\to 0}{\sim} \frac{-x^2}{x^2}.$

Donc $\frac{(1-e^x)\sin x}{x^2+x^3} \underset{x\to 0}{\sim} -1.$

2.3 Composition à droite dans un équivalent et calcul de limites

Proposition: Composition à droite dans un équivalent

Soit ϕ une fonction à valeurs dans I telle que $\lim_{t\to h}\phi(t)=a$ avec $b\in\mathbb{R}\cup\{\pm\infty\}$.

Si $f(x) \sim_{x \to a} g(x)$ alors, $f \circ \phi(t) \sim_{b} g \circ \phi(t)$.

Démonstration. On a $\lim_{t \to b} \phi(t) = a$ et $\lim_{x \to a} \frac{f(x)}{g(x)} = 1$.

Donc par composition $\lim_{t\to b} \frac{f(\phi(t))}{g(\phi(t))} = 1$. Ainsi, $f(\phi(t)) \underset{t\to b}{\sim} g(\phi(t))$.

Remarque : On a un résultat analogue pour les autres relations de comparaison (avec les mêmes hypothèses sur ϕ) :

Si f(x) = O(g(x)) alors $(f \circ \phi)(t) = O(g \circ \phi(t))$ Si f(x) = O(g(x)) alors $(f \circ \phi)(t) = O(g \circ \phi(t))$

Exemple:

• $\limsup_{t\to 0} t = 0$ et $\ln(1+x) \sim x$ donc $\ln(1+\sin t) \sim \sin t$.

 $1 - (1 - x^2)^{1/2} \sim_{x \to 0} -\frac{1}{2}(-x^2)$

Ainsi,
$$\left(1 - \sqrt{1 - x^2}\right)^{1/2} \underset{x \to 0}{\sim} \left(\frac{1}{2}(x^2)\right)^{1/2}$$
.
Donc $\left(1 - \sqrt{1 - x^2}\right)^{1/2} \underset{x \to 0}{\sim} \frac{|x|}{\sqrt{2}}$.

Développements limités 3

Dans toute cette partie, n désignera un élément de \mathbb{N} , I désignera un intervalle non vide de \mathbb{R} et a un élément ou une extrémité de I (ou éventuellement $\pm \infty$).

3.1 Généralités

On dit que $f: I \to \mathbb{K}$ admet un développement limité à l'ordre n en a ssi il existe $(a_0, ..., a_n) \in \mathbb{K}^{n+1}$ tel que :

 $f(x) = \sum_{k=0}^{n} a_k (x-a)^k + o((x-a)^n)$

• si $a = \pm \infty$

$$f(x) \underset{x \to a}{=} \sum_{k=0}^{n} \frac{a_k}{x^k} + o\left(\frac{1}{x^n}\right)$$

Remarque : Cette définition se généralise au cas où f est définie sur $I \setminus \{a\}$.

Désormais, on suppose que a est fini.

admet un développement limité à tout ordre en 0. Exemple: La fonction

Soit $n \in \mathbb{N}$:

$$\forall x \in \mathbb{R} \setminus \{1\}, \ \sum_{k=0}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x},$$

Donc:

$$\forall x \in \mathbb{R} \setminus \{1\}, \ \frac{1}{1-x} = \sum_{k=0}^{n} x^k + \frac{x^{n+1}}{1-x}.$$

On a:

$$\frac{x^{n+1}}{(1+x)x^n} = \frac{x}{1+x} \xrightarrow[x \to 0]{} 0.$$

Ainsi,
$$\frac{x^{n+1}}{1+x} = o(x^n)$$
.
Donc $\frac{1}{1-x} = \sum_{x=0}^{n} \sum_{k=0}^{n} x^k + o(x^n)$.
On a alors : $\frac{1}{1+x} = \sum_{x=0}^{n} \sum_{k=0}^{n} (-x)^k + o((-x)^n)$.

Donc:

$$\frac{1}{1+x} = \sum_{x\to 0}^{n} \sum_{k=0}^{n} (-1)^k x^k + o(x^n)$$

Proposition

Une fonction f admet un développement limité à l'ordre n en a si et seulement si la fonction $g:h\mapsto f(a+h)$ admet un développement limité à l'ordre n en 0. On a :

$$f(x) = \sum_{k=0}^{n} a_k (x-a)^k + o((x-a)^n) \iff g(h) = f(a+h) = \sum_{k=0}^{n} a_k h^k + o(h^k)$$

Démonstration. Il suffit d'écrire x = a + h, alors x - a = h et la dernière équivalence est vérifiée.

Remarque: Cette proposition justifie que dans la suite, on privilégie les développements limités au voisinage de 0.

Proposition: Unicité d'un DL

Si f admet un développement limité à l'ordre n au voisinage de a, celui-ci est unique.

De plus, si $f(x) = \sum_{k=0}^{n} a_k (x-a)^k + o((x-a)^n)$ alors, la fonction polynomiale $P_n : x \mapsto \sum_{k=0}^{n} a_k (x-a)^k$ est appelée partie régulière du développement limité de f à l'ordre n en a

Démonstration. Par l'absurde.

Supposons qu'il existe $(a_0, ..., a_n), (b_0, ..., b_n) \in \mathbb{K}^{n+1}$ avec $(a_0, ..., a_n) \neq (b_0, ..., b_n)$ tels que $f(x) = \sum_{k=0}^{n} a_k (x-a)^k + o((x-a)^n)$

et
$$f(x) = \sum_{k=0}^{n} b_k (x-a)^k + o((x-a)^n)$$
.

$$0 = \sum_{x \to a}^{n} a_k (x - a)^k - \sum_{k=0}^{n} b_k (x - a)^k + o((x - a)^n).$$

Posons $p = \min\{k \in [0, n], a_k \neq b_k\}.$

D'où:

$$0 = \sum_{x \to a}^{n} \sum_{k=p}^{n} (a_k - b_k)(x - a)^k + o((x - a)^n).$$

Ainsi,

$$0 = \underset{x \to a}{=} (a_p - b_p)(x - a)^p + \sum_{k=p+1}^n (a_k - b_k)(x - a)^k + o((x - a)^n).$$

En divisant par $(x - a)^p$, on obtient :

$$b_p - a_p = \sum_{x \to a}^n \sum_{k=p+1}^n (a_k - b_k)(x - a)^{k-p} + o((x - a)^{n-p}).$$

Or, si
$$g(x) = o((x-a)^{n-p})$$
, alors $\frac{g(x)}{(x-a)^{n-p}} \xrightarrow{x \to a} 0$.

D'où
$$g(x) = \frac{g(x)}{(x-a)^{n-p}} \times (x-a)^{n-p} \xrightarrow[x \to a]{} 0 \quad (n-p \ge 0).$$

De plus,
$$\lim_{x \to a} \sum_{k=p+1}^{n} (a_k - b_k)(x - a)^{k-p} = \sum_{k=p+1}^{n} (a_k - b_k)0^{k-p} = 0.$$

Ainsi, on obtient : $\lim_{p \to a_p} (b_p - a_p) = 0$.

Donc $a_p = b_p$. Absurde.

Proposition: Troncature d'un DL

Si f admet un développement limité à l'ordre n au voisinage de a,

$$f(x) = \sum_{k=0}^{n} a_k (x-a)^k + o((x-a)^n)$$

alors pour tout $p \in [0, n]$, f admet un développement limité à l'ordre p au voisinage de a obtenu en tronquant le développement limité à l'ordre n:

$$f(x) = \sum_{x \to a}^{p} \sum_{k=0}^{p} a_k (x-a)^k + o((x-a)^p).$$

 $D\'{e}monstration$. Supposons que f admette un développement limité à l'ordre n au voisinage a de partie régulière $P_n: x \mapsto \sum_{k=0}^n a_k (x-a)^k$. Soit $p \le n$, on a:

$$f(x) = \sum_{x \to a}^{n} \sum_{k=0}^{n} a_k (x - a)^k + o((x - a)^n)$$
$$= \sum_{a=0}^{p} a_k (x - a)^k + \sum_{k=p+1}^{n} a_k (x - a)^k + o((x - a)^n)$$

On a:

$$\frac{\sum\limits_{k=p+1}^{n}a_{k}(x-a)^{k}}{(x-a)^{p}}=\sum\limits_{k=p+1}^{n}a_{k}(x-a)^{k-p}\underset{x\rightarrow a}{\longrightarrow}\sum\limits_{k=p+1}^{n}a_{k}0^{k-p}=0.$$

Ainsi,
$$\sum_{k=p+1}^{n} a_k (x-a)^k \underset{x \to a}{=} o\left((x-a)^p\right).$$

Si $g(x) = o((x-a)^n)$ alors:

$$\frac{g(x)}{(x-a)^p} = \frac{g(x)}{(x-a)^n} \times (x-a)^{n-p} \xrightarrow[x \to a]{} 0 \times 0^{n-p} = 0.$$

Donc $g(x) = o((x-a)^p)$. Ainsi, $f(x) = o((x-a)^p)$.

$$f(x) = \sum_{x \to a}^{p} a_k (x - a)^k + o((x - a)^p)$$

Forme normalisée

Soit f une fonction admettant un développement limité à l'ordre n en a. Alors, il existe $a_0,...a_n \in \mathbb{K}$ tel que :

$$f(x) = \sum_{x \to a}^{n} \sum_{k=0}^{n} a_k (x-a)^k + o((x-a)^n)$$

Autrement dit,

$$f(a+h) = \sum_{h\to 0}^{n} a_k h^k + o(h^n)$$

On suppose que $(a_0, ..., a_n) \neq (0, ..., 0)$.

Soit $p = \min\{k \in [0, n], a_k \neq 0\}$, alors :

$$f(a+h) = a_p h^p + \dots + a_n h^n + o(h^n)$$

= $h^p (a_p + \dots + a_n h^{n-p} + o(h^{n-p}))$

Définition

Avec les notations précédentes, on appelle forme normalisée d'un développement limité la forme :

$$f(a+h) = a_p h^p + ... + a_n h^n + o(h^n)$$

avec $a_p \neq 0$.

Proposition

Avec les notations précédentes :

$$f(a+h) \underset{h\to 0}{\sim} a_p h^p$$

Donc:

$$f(x) \underset{x \to a}{\sim} b_0(x-a)^p$$
.

Ainsi, f(x) est du signe de $a_p(x-a)^p$ au voisinage de a.

Démonstration. On a :

$$f(a+h) = \sum_{k=p}^{n} a_k h^k + o(h^n)$$
$$= a_p h^p + o(h^p)$$

Donc $f(a+h) \underset{h\to 0}{\sim} a_p h^p$. D'où $f(x) \underset{x\to a}{\sim} a_p (x-a)^p$.

3.2 Développements limités usuels

Proposition Formule de Taylor-Young

Soient $n \in \mathbb{N}$ et $f: I \to \mathbb{K}$ de classe \mathscr{C}^n sur I. Alors f admet un développement limité à l'ordre n en a qui est

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + o((x-a)^n).$$

Démonstration. Montrons par récurrence sur N que

$$\forall n \in \mathbb{N}, \ \forall f \in \mathcal{C}^n(I, \mathbb{R}), f(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k + o((x-a)^n).$$

Au rang n = 0. Soit f une fonction continue sur I. En particulier f est continue en a et donc f(x) = f(a) + o(1).

Soit $n \in \mathbb{N}$. On suppose la propriété vraie jusqu'au rang n. Soit $f \in \mathscr{C}^{n+1}(I,\mathbb{R})$. On en déduit que f' est de classe \mathscr{C}^n sur I. Ainsi par hypothèse de récurrence,

$$f'(x) = \sum_{k=0}^{n} \frac{(f')^{(k)}(a)}{k!} (x-a)^k + o((x-a)^n)$$
$$= \sum_{k=0}^{n} \frac{f^{(k+1)}(a)}{k!} (x-a)^k + o((x-a)^n).$$

On définit la fonction h sur I par l'expression

$$h(x) = f(x) - \sum_{k=0}^{n+1} \frac{f^{(k)}(a)}{k!} (x - a)^k,$$

pour tout nombre $x \in I.$ Par combinaison linéaire, h est dérivable sur I et

$$h'(x) = f'(x) - \sum_{k=1}^{n+1} \frac{f^{(k)}(a)}{(k-1)!} (x-a)^{k-1}$$
$$= f'(x) - \sum_{k=0}^{n} \frac{f^{(k+1)}(a)}{(k)!} (x-a)^{k}$$
$$= o((x-a)^{n}).$$

Soit $\epsilon > 0$. Il existe $\eta > 0$ tel que

$$\forall x \in I \setminus \{a\}, \ |x-a| \le \eta \Rightarrow \left| \frac{h'(x)}{(x-a)^n} \right| \le \epsilon$$

Soit $x \in I \setminus \{a\}$, $|x - a| \le \eta$. On a donc

$$\forall t \in]a, a + x[, |h'(t)| \le \epsilon |x - a|^n.$$

Donc h est $\epsilon |x-a|^n$ -lipschitzienne et donc

$$|h(x) - h(a)| \le (\epsilon |x - a|^n) \times |x - a|$$

 $\le \epsilon |x - a|^{n+1}.$

On en déduit que $h(x) - h(a) = o((x - a)^{n+1})$. Or h(a) = 0, donc

$$h(x) = f(x) - \sum_{k=0}^{n+1} \frac{f^{(k)}(a)}{k!} (x - a)^k = o(x - a)^{n+1}).$$

d'où la propriété au rang n + 1.

Remarque:

• Toute fonction \mathscr{C}^{∞} admet donc un développement limité à tout ordre.

• En pratique, cette formule est difficilement applicable pour l'obtention d'un DL, car elle impose de calculer les dérivées successives de *f* en *a*.

Exemple:

• exp est \mathscr{C}^{∞} sur \mathbb{R} donc admet un développement limité à tout ordre en 0. Pour tout $k \in \mathbb{N}$, $\exp^{(k)} = \exp \operatorname{donc} \exp^{(k)}(0) = 1$. Ainsi, pour tout $n \in \mathbb{N}$, on a :

$$e^x = \sum_{k=0}^{n} \frac{x^k}{k!} + o(x^n).$$

• cos est \mathscr{C}^{∞} sur \mathbb{R} donc admet un développement limité à tout ordre en 0. Pour tout $p \in \mathbb{N}$, pour tout $x \in \mathbb{R}$, $\cos^{(p)}(x) = \cos(x + p\frac{\pi}{2})$.

En effet, posons $h: x \mapsto e^{ix}$. On a: $\forall p \in \mathbb{N}, \forall x \in \mathbb{R}, h^{(p)}(x) = i^p e^{ix} = e^{ip\frac{\pi}{2} + ix}$. Or, $\cos = \operatorname{Re}(h)$ d'où: $\forall p \in \mathbb{N}, \cos^{(p)} = \operatorname{Re}(h^{(p)})$.

Ainsi, pour tout $k \in \mathbb{N}$, $\cos^{(2k)}(0) = \cos(k\pi) = (-1)^k$ et $\cos^{(2k+1)}(0) = \cos\left(k\pi + \frac{\pi}{2}\right) = 0$.

Ainsi, pour tout $n \in \mathbb{N}$, on a :

$$\cos(x) = \sum_{x \to 0}^{2n+1} \frac{\cos^{(p)}(0)}{p!} x^p + o(x^{2n+1})$$

$$= \sum_{x \to 0} \sum_{\substack{p \in [0,2n+1]\\ p \text{ pair}}} \frac{\cos^{(p)}(0)}{p!} x^p + \sum_{\substack{p \in [0,2n+1]\\ p \text{ impair}}} \frac{\cos^{(p)}(0)}{p!} x^p + o(x^{2n+1})$$

$$= \sum_{x \to 0}^{n} \frac{\cos^{(2k)}(0)}{(2k)!} x^{2k} + \sum_{k=0}^{n} \frac{\cos^{(2k+1)}(0)}{(2k+1)!} x^{2k+1} + o(x^{2n+1})$$

$$= \sum_{x \to 0}^{n} \frac{(-1)^k}{(2k)!} x^{2k} + o(x^{2n+1})$$

• De même pour la fonction sinus, on a cette fois : $\forall p \in \mathbb{N}$, $\forall x \in \mathbb{R}$, $\sin^{(p)}(x) = \sin(x + p\frac{\pi}{2})$. Ainsi, pour tout $k \in \mathbb{N}$, $\sin^{(2k)}(0) = \sin(k\pi) = 0$ et $\sin^{(2k+1)}(0) = \sin\left(k\pi + \frac{\pi}{2}\right) = (-1)^k$. Ainsi, pour tout $n \in \mathbb{N}$, on a :

$$\sin(x) = \sum_{x \to 0}^{2n+2} \frac{\sin^{(p)}(0)}{p!} x^p + o(x^{2n+2})$$

$$= \sum_{x \to 0}^{2n+2} \frac{\sin^{(p)}(0)}{p!} x^p + \sum_{\substack{p \in [0,2n+2] \\ p \text{ impair}}} \frac{\sin^{(p)}(0)}{p!} x^p + o(x^{2n+1})$$

$$= \sum_{x \to 0}^{2n+1} \frac{\sin^{(2k)}(0)}{(2k)!} x^{2k} + \sum_{k=0}^{2n+2} \frac{\sin^{(2k+1)}(0)}{(2k+1)!} x^{2k+1} + o(x^{2n+1})$$

$$= \sum_{x \to 0}^{2n+1} \frac{(-1)^k}{(2k+1)!} x^{2k+1} + o(x^{2n+2})$$

• $f: x \mapsto (1+x)^{\alpha}$ est \mathscr{C}^{∞} sur $]-1,+\infty[$ donc admet un développement limité à tout ordre en 0. De plus : $\forall k \in \mathbb{N}, f^{(k)}(0) = \alpha(\alpha-1)...(\alpha-k+1)$. Ainsi, on a pour tout $n \in \mathbb{N}$:

$$(1+x)^{\alpha} = \sum_{k=0}^{n} \frac{\alpha(\alpha-1)...(\alpha-k+1)}{k!} x^{k} + o(x^{n}).$$

Par exemple pour $\alpha = 1/2$ et -1/2, on obtient à l'ordre 2 :

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{1}{8}x^2 + o(x^2)$$
 et $\frac{1}{\sqrt{1+x}} = 1 - \frac{x}{2} + \frac{3}{8}x^2 + o(x^2)$.

Opérations sur les développements limités

Combinaison linéaire et produit de DL

Proposition

Supposons que f, g admettent un développement limité à l'ordre n en a:

$$f(x) = \sum_{k=0}^{n} a_k (x-a)^k + o((x-a)^n)$$
 et $g(x) = \sum_{k=0}^{n} b_k (x-a)^k + o((x-a)^n)$.

• pour tout $\lambda, \mu \in \mathbb{K}$, $\lambda f + \mu g$ admet un développement limité à l'ordre n en a et on a :

$$(\lambda f + \mu g)(x) = \sum_{k=0}^{n} (\lambda a_k + \mu b_k)(x - a)^k + o((x - a)^n).$$

• fg admet un développement limité à l'ordre n en 0. Posons $c_0,...,c_{2n}\in\mathbb{K}$ tel que

$$\left(\sum_{k=0}^{n} a_k X^k\right) \left(\sum_{k=0}^{n} b_k X^k\right) = \left(\sum_{k=0}^{2n} c_k X^k\right). \text{ On a :}$$

$$(fg)(x) = \sum_{x \to a}^{n} c_k(x-a)^k + o((x-a)^n).$$

Démonstration.

$$\lambda f(x) + \mu g(x) \underset{x \to a}{=} \lambda \left(\sum_{k=0}^{n} a_k (x-a)^k + o((x-a)^n) \right) + \mu \left(\sum_{k=0}^{n} b_k (x-a)^k + o((x-a)^n) \right)$$

$$= \sum_{k=0}^{n} (\lambda a_k + \mu b_k) (x-a)^k + o((x-a)^n)$$

$$f(x)g(x) \underset{x \to a}{=} \left(\sum_{k=0}^{n} a_k (x-a)^k + o((x-a)^n) \right) \left(\sum_{k=0}^{n} b_k (x-a)^k + o((x-a)^n) \right)$$

$$= \underset{x \to a}{=} \left(\sum_{k=0}^{n} a_k (x-a)^k \right) \left(\sum_{k=0}^{n} b_k (x-a)^k \right) + \left(\sum_{k=0}^{n} a_k (x-a)^k \right) o((x-a)^n) + \left(\sum_{k=0}^{n} b_k (x-a)^k \right) o((x-a)^n) + o((x-a)^n)$$

Or, si $g(x) = o((x-a)^n$ alors:

$$\frac{\sum_{k=0}^{n} a_k (x-a)^k \times g(x)}{(x-a)^n} = \left(\sum_{k=0}^{n} a_k (x-a)^k\right) \times \frac{g(x)}{(x-a)^n} \underset{x \to a}{\longrightarrow} \left(\sum_{k=0}^{n} a_k 0^k\right) \times 0 = 0.$$

On prouve de même que : $\lim_{x \to a} \frac{\sum_{k=0}^{n} b_k (x-a)^k \times g(x)}{(x-a)^n} = 0.$ De plus, si $g(x) = o((x-a)^{2n})$ alors :

$$\frac{g(x)}{(x-a)^n} = \frac{g(x)}{(x-a)^{2n}} \times (x-a)^n \xrightarrow{x \to a} 0.$$

Ainsi, on obtient:

$$f(x)g(x) \underset{x \to a}{=} \sum_{k=0}^{2n} c_k (x-a)^k + o((x-a)^n)$$

$$\underset{x \to a}{=} \sum_{k=0}^{n} c_k (x-a)^k + \sum_{k=n+1}^{2n} c_k (x-a)^k + o((x-a)^n)$$

Or,

$$\frac{\sum\limits_{k=n+1}^{2n}c_k(x-a)^k}{(x-a)^n} = \sum\limits_{k=n+1}^{2n}c_k(x-a)^{k-n} \underset{x \to a}{\longrightarrow} \sum\limits_{k=n+1}^{2n}c_k0^{k-n} = 0.$$

Ainsi,
$$\sum_{k=n+1}^{2n} c_k (x-a)^k = o((x-a)^n)$$
.
Donc:

$$f(x)g(x) = \sum_{x \to a}^{n} \sum_{k=0}^{n} c_k (x-a)^k + o((x-a)^n).$$

Remarque : MOn fait la combinaison linéaire ou le produit de DL au même ordre. Exemple:

• On a ch $(x) = \frac{e^x + e^{-x}}{2}$ et sh $(x) = \frac{e^x - x^{-x}}{2}$. On sait que pour tout $p \in \mathbb{N}$:

$$e^x = \sum_{k=0}^{p} \frac{x^k}{k!} + o(x^p)$$

et que:

$$e^{-x} = \sum_{x \to 0}^{p} \frac{(-x)^k}{k!} + o((-x)^p)$$
$$= \sum_{x \to 0}^{p} \frac{(-x)^k}{k!} + o(x^p)$$

Ainsi:

$$\operatorname{ch}(x) = \frac{1}{x \to 0} \frac{1}{2} \left(\sum_{k=0}^{2n} \frac{x^k}{k!} + \sum_{k=0}^{2n} \frac{(-x)^k}{k!} \right) + o(x^{2n})$$

$$= \frac{1}{x \to 0} \frac{1}{2} \left(\sum_{k=0}^{2n} \left(1 + (-1)^k \right) \frac{x^k}{k!} \right) + o(x^{2n})$$

$$= \frac{1}{x \to 0} \frac{1}{2} \left(\sum_{\substack{k \in [0,2n] \\ k \text{ pair}}} \left(1 + (-1)^k \right) \frac{x^k}{k!} \right) + \frac{1}{2} \left(\sum_{\substack{k \in [0,2n] \\ k \text{ impair}}} \left(1 + (-1)^k \right) \frac{x^k}{k!} \right) + o(x^{2n})$$

$$= \sum_{x \to 0}^{n} \frac{x^{2l}}{(2l)!} + o(x^{2n})$$

Et:

$$\operatorname{sh}(x) = \frac{1}{x \to 0} \frac{1}{2} \left(\sum_{k=0}^{2n+1} \frac{x^k}{k!} - \sum_{k=0}^{2n+1} \frac{(-x)^k}{k!} \right) + o(x^{2n+1})$$

$$= \frac{1}{x \to 0} \frac{1}{2} \left(\sum_{k=0}^{2n+1} \left(1 - (-1)^k \right) \frac{x^k}{k!} \right) + o(x^{2n+1})$$

$$= \frac{1}{x \to 0} \frac{1}{2} \left(\sum_{\substack{k \in [0,2n+1] \\ k \text{ pair}}} \left(1 - (-1)^k \right) \frac{x^k}{k!} \right) + \frac{1}{2} \left(\sum_{\substack{k \in [0,2n+1] \\ k \text{ impair}}} \left(1 - (-1)^k \right) \frac{x^k}{k!} \right) + o(x^{2n+1})$$

$$= \sum_{x \to 0}^{n} \frac{x^{2l+1}}{(2l+1)!} + o(x^{2n+1})$$

Prédiction et optimisation de l'ordre :

Si
$$f(x) = x^p(a_0 + ... + o(x^r))$$
 DL de f à l'ordre $p + r$

$$g(x) = x^q (b_0 + ... + o(x^r))$$
 DL de g à l'ordre $q + r$ alors, $f(x)g(x) = x^{p+q} (a_0 + ... + o(x^r))(b_0 + ... + o(x^r))$.

En effectuant, le produit, on obtient ainsi un DL de fg à l'ordre p+q+r (ce qui est mieux que $\min(p+r,q+r)$).

- pour $n , <math>f(x)g(x) = o(x^n)$.
- Si $n \ge p + q$ pour obtenir un DL de fg à l'ordre n, il suffit de choisir r tel que n = p + q + r. ie. r = n (p + q).

Composition

Proposition

Soit f admettant un DL à l'ordre n en a et g admettant un DL à l'ordre n en b, Si $f(x) = P_n(x-a) + o((x-a)^n)$ (avec $\deg(P_n) \le n$)

(avec
$$\deg(P_n) \le n$$
)

$$g(x) = Q_n(x-b) + o((x-b)^n) \text{ (avec } \deg(Q_n) \le n)$$
et $\lim_{x \to a} f(x) = b$

alors $g \circ f$ admet un DL à l'ordre n en a. Notons $c_0, ..., c_{n^2} \in \mathbb{R}^{n^2}$ tels que $Q_n \circ P = \sum_{k=0}^{n^2} c_k X^k$.

On a:
$$g(f(x)) = \sum_{x \to a}^{n} c_k (x-a)^k + o((x-a)^n).$$

Quotient de DL

Proposition

Si f et g admettent un DL à l'ordre n en a et si $\lim_{x\to a} g(x) \neq 0$ alors $\frac{1}{g}$ admet un DL à l'ordre n en a.

Méthode

Si $g(x) = a_0 + ... + a_n(x-a)^n + o((x-a)^n)$ avec $a_0 \neq 0$, on a:

$$\frac{f(x)}{g(x)} = f(x) \times \frac{1}{a_0 + \dots + a_n(x-a)^n + o((x-a)^n)}$$
$$= \sum_{x \to a} \frac{f(x)}{a_0} \times \frac{1}{1 + \dots + \frac{a_n}{a_0}(x-a)^n + o((x-a)^n)}$$

On utilise alors le DL de $u \mapsto \frac{1}{1+u}$

Remarque : Si $\lim_{x \to a} g(x) = 0$, il est encore possible (dans certains cas) que la fonction $\frac{f}{g}$ possède un développement limité. Si :

$$f(x) = x^{p} (b_{0} + ... + o(x^{r}))$$

$$g(x) = x^{q} (c_0 + ... + o(x^r))$$

avec $b_0 \neq 0$, $c_0 \neq 0$ alors, le quotient s'écrit : $\frac{f(x)}{g(x)} = x^{p-q}$

$$\frac{f(x)}{g(x)} = x^{p-q} \underbrace{\left(\frac{b_0 + \dots + o(x^r)}{c_0 + \dots + o(x^r)}\right)}_{= \nu(x)}$$

On sait alors que v admet un développement limité à l'ordre r en 0 comme $c_0 \neq 0$ et le terme constant de ce DL vaut $\frac{b_0}{c_0} \neq 0$.

Ainsi, $\frac{f}{g}$ admet un développement limité en 0 si et seulement si $p-q\in\mathbb{N}$ (c'est à dire $q\leq p$) et ce développement limité est d'ordre p-q+r.

Pour déterminer un développement limité de $\frac{f}{g}$ à l'ordre $n \ge p-q$, il suffit de choisir $r \in \mathbb{N}$ tel que p-q+r=n.

3.3.1 Primitivation d'un DL

Proposition

Soit $f: I \to \mathbb{K}$ dérivable. Si f admet un développement limité à l'ordre n en a:

$$f'(x) = \sum_{x \to a}^{n} \sum_{k=0}^{n} b_k (x-a)^k + o((x-a)^n)$$

alors f admet un DL à l'ordre n+1 en a et on a :

$$f(x) = \int_{x \to a}^{\infty} f(a) + \sum_{k=0}^{n} \frac{b_k}{k+1} (x-a)^{k+1} + o((x-a)^{n+1})$$

Démonstration. Posons $P_n(x) = \sum_{k=0}^n b_k (x-a)^k$ et $Q_n(x) = \sum_{k=0}^n \frac{b_k}{k+1} (x-a)^{k+1}$.

On a $Q'_n = P_n$.

De plus, $f'(x) - P_n(x) = o((x - a)^n)$ donc $\frac{f'(x) - Q'_n(x)}{(x - a)^n} \xrightarrow{x \to a} 0$.

Soit $\epsilon > 0$, il existe $\eta > 0$ tel que :

$$\forall x \in I \setminus \{a\}, \ |x - a| \le \eta \quad \Longrightarrow \quad \left| \frac{f'(x) - Q'_n(x)}{(x - a)^n} \right| \le \epsilon.$$

Ainsi:

$$\forall x \in I \setminus \{a\}, |x-a| \le \eta \implies |f'(x) - Q'_n(x)| \le \varepsilon |x-a|^n.$$

Soit $x \in I \setminus \{a\}$ tel que $|x - a| \le \eta$.

Soit $t \in]a, x[$ (ou]x, a[), on a : $|t - a| \le |x - a| \le \eta$.

Ainsi:

$$|f'(t) - Q'_n(t)| \le \epsilon |t - a|^n$$

$$\le \epsilon |x - a|^n$$

(avec $|x - a|^n$ ne dépendant pas de t).

Ainsi:

$$\forall t \in]a, x[(ou]x, a[), |f'(t) - Q'_n(t)| \le \epsilon |x - a|^n.$$

Or, $f - Q_n$ est continue sur [a, x] (ou [x, a]) et dérivable sur]a, x[(ou]x, a[) donc d'après l'inégalité des accroissement finis, on a :

$$|f(x) - Q_n(x) - f(a) + Q_n(a)| \le \epsilon |x - a|^n |x - a|$$

Or,
$$Q_n(a) = \sum_{k=0}^n \frac{b_k}{k+1} 0^{k+1} = 0.$$

Donc:

$$\forall x \in I \setminus \{a\}, |x-a| \le \eta \implies \left| \frac{f(x) - (Q_n(x) + f(a))}{(x-a)^{n+1}} \right| \le \epsilon$$

Donc:

$$f(x) - (Q_n(x) + f(a)) = o((x-a)^{n+1}).$$

Exemple:

• On sait que $x \mapsto \ln(1+x)$ est une primitive de $x \mapsto \frac{1}{1+x}$ et que $x \mapsto \frac{1}{1+x}$ admet un DL à tout ordre en 0. Ainsi, $x \mapsto \ln(1+x)$ admet un DL à tout ordre en 0. Soit $n \ge 1$, on sait que :

$$\frac{1}{1+x} = \sum_{k=0}^{n-1} (-1)^k x^k + o(x^{n-1}).$$

Ainsi, on obtient:

$$\ln(1+x) = \sum_{x\to 0}^{n-1} \frac{(-1)^k}{k+1} x^{k+1} + o(x^n)$$
$$= \sum_{x\to 0}^{n} \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} x^k + o(x^n)$$

• On sait que $x \mapsto \arctan(x)$ est une primitive de $x \mapsto \frac{1}{1+x^2}$ et que $x \mapsto \frac{1}{1+x^2}$ admet un DL à tout ordre en 0. Ainsi, $x \mapsto \arctan(x)$ admet un DL à tout ordre en 0. Soit $n \in \mathbb{N}$, on sait que :

$$\frac{1}{1+x} = \sum_{k=0}^{n} (-1)^k x^k + o(x^n).$$

Ainsi:

$$\frac{1}{1+x^2} \underset{x\to 0}{=} \sum_{k=0}^{n} (-1)^k x^{2k} + o(x^{2n}).$$

Comme $x \mapsto \frac{1}{1+x^2}$ est \mathscr{C}^{n+1} , elle admet un DL à l'ordre n+1 en 0. De plus, cette fonction est impair, on a donc :

$$\frac{1}{1+x^2} = \sum_{x\to 0}^{n} (-1)^k x^{2k} + o(x^{2n+1}).$$

On obtient alors:

$$\arctan(x) = \sum_{x \to 0}^{n} (-1)^k \frac{x^{2k+1}}{2k+1} + o(x^{2n+2})$$

4 Applications des développements limités

4.1 Recherche de limites et d'équivalents

Méthode

Pour déterminer un équivalent de f, il faut trouver le premier terme non nul de son développement limité.

4.2 Etude locale d'une fonction

Proposition: DL d'ordre 0

Une fonction f admet un développement limité à l'ordre 0 en a si, et seulement si elle admet une limite finie en a. Dans ce cas, en notant $l = \lim_{x \to a} f(x)$, on a : f(x) = l + o(1).

Démonstration. • Soit f une fonction admettant une limite finie l en a. Alors, $\lim_{x \to a} (f(x) - l) = 0$, donc f(x) - l = o(1). Ainsi, f(x) = l + o(1) ce qui prouve que f admet un développement limité à l'ordre o en a.

• Réciproquement, si une fonction f possède un développement limité à l'ordre 0 en $a: f(x) = a_0 + o(1)$, alors on a $\lim_{x \to a} \frac{f(x) - a_0}{1} = 0$. Ainsi, $\lim_{x \to a_0} (f(x) - a_0) = 0$ donc $\lim_{x \to a} f(x) = a_0$.

Corollaire

Soit f une fonction admettant un développement limité à l'ordre 0 en a : $f(x) = a_0 + o(1)$. Alors :

- si f est définie en a, alors f est continue en a et $f(a) = a_0$.
- si f n'est pas définie en a, alors, on peut prolonger f par continuité en a en posant $f(a) = a_0$.

Proposition: DL d'ordre 1

Soit f une fonction définie en a.

Alors, f est dérivable en a si et seulement si f admet un développement limité à l'ordre 1 en a. Ce développement limité est alors : f(x) = f(a) + (x-a)f'(a) + o((x-a)).

Démonstration. Voir chapitre dérivabilité.

Corollaire

Soit f est une fonction définie sur $I \setminus \{a\}$ admettant un développement limité à l'ordre 1 en a: $f(x) = a_0 + a_1(x-a) + o((x-a))$. Alors :

- f est prolongeable par continuité en a en posant $f(a) = a_0$;
- le prolongement par continuité de f en a est dérivable en a, et $f'(a) = a_1$.

Remarque: Ce résultat ne se généralise pas pour des développements limités d'ordre supérieur.

Méthode: position de la tangente par rapport à la courbe

Lorsque f admet un DL à l'ordre 1 en a, on sait que f est dérivable en a et la courbe représentative de f admet une tangente en a.

L'étude du signe de f(x) - f(a) - (x - a)f'(a) permet de préciser la position de la courbe représentative de la fonction f par rapport à sa tangente.

Si:

$$f(x) = f(a) + f'(a)(x-a) + a_p(x-a)^p + o((x-a)^p)$$
 avec $p \in \mathbb{N} \setminus \{0,1\}$ et $a_p \in \mathbb{R}^*$

alors:

$$f(x) - f(a) - f'(a)(x-a) \underset{x \to a}{\sim} a_p(x-a)^p$$
.

Ainsi f(x) - f(a) - f'(a)(x - a) est du signe de $a_p(x - a)^p$ au voisinage de a:

- si p est pair, f(x) f(a) f'(a)(x a) est de signe constant au voisinage de a. La courbe est localement au-dessus ou en-dessous de sa tangente en a (suivant le signe de a_p).
- si p est impair, f(x) f(a) f'(a)(x a) change de signe en a. La courbe traverse sa tangente en a.

Méthode d'étude d'un extremum

Supposons que $f(x) = a f(a) + a_p(x-a)^p + o((x-a)^p)$ avec $p \in \mathbb{N}^*$ et $a_p \in \mathbb{R}^*$. Alors $f(x) - f(a) = a f(x-a)^p$.

- si p est pair, f(x) f(a) est de signe constant au voisinage de a. La courbe admet un extremum local en a.
- si p est impair, f(x) f(a) change de signe au voisinage de a. La courbe n'admet pas d'extremum local en a.

Corollaire

Soit $f \in \mathcal{C}^2(I)$. Soit $a \in I$ tel que f'(a) = 0.

- Si f''(a) < 0 alors f admet un maximum local en a
- Si f''(a) > 0 alors f admet un minimum local en a.

Démonstration. Comme f est de classe \mathscr{C}^2 sur I d'après la formule de Taylor Young, on a :

$$f(x) = f(a) + \frac{(x-a)^2}{2} f''(a) + o((x-a)^2).$$

donc $f(x) - f(a) \underset{x \to a}{\sim} \frac{(x-a)^2}{2} f''(a)$.

Donc si f''(a) < 0, $f(x) - \overline{f(a)} \le 0$ au voisinage de a donc f admet un maximum local en a.

De même, si f''(a) > 0, $f(x) - f(a) \ge 0$ au voisinage de a donc f admet un minimum local en a.

4.3 Application à l'étude d'asymptotes obliques

Définition

Soit $f: I \to \mathbb{R}$ définie au voisinage de $\pm \infty$. S'il existe $(a, b) \in \mathbb{R}^2$ tel que f(x) - (ax + b) tend vers 0 quand x tend vers $\pm \infty$, on dit que la courbe représentative de f admet une asymptote oblique en $\pm \infty$ d'équation y = ax + b.

Méthode d'étude d'une asymptote oblique

Soit
$$f: I \to \mathbb{R}$$
 telle que $f(x) \underset{x \to +\infty}{\longrightarrow} \pm \infty$.

Soit $f: I \to \mathbb{R}$ telle que $f(x) \underset{x \to +\infty}{\longrightarrow} \pm \infty$. Pour prouver l'existence éventuelle d'une asymptote oblique et étudier sa position relative par rapport à \mathscr{C}_f , on procède comme suit :

• On effectue un développement limité au voisinage de $+\infty$ de $x \mapsto \frac{f(x)}{r}$.

$$\frac{f(x)}{x} \underset{x \to +\infty}{=} a_0 + \frac{a_1}{x} + \frac{a_p}{x^p} + o\left(\frac{1}{x^p}\right) \quad \text{avec } p \in \mathbb{N} \setminus \{0, 1\} \quad \text{et} \quad a_p \neq 0$$

- Alors $f(x) = a_0 x + a_1 + \frac{a_p}{x^{p-1}} + o\left(\frac{1}{x^{p-1}}\right)$. La courbe admet alors la droite d'équation $y = a_0 x + a_1$ pour asymptote oblique en $+\infty$.
- De plus, $f(x) a_0 a_1 x \underset{x \to +\infty}{\sim} \frac{a_p}{x^{p-1}}$. Ainsi, $f(x) a_0 a_1 x$ est du signe de $\frac{a_p}{x^{p-1}}$ au voisinage de $+\infty$.

Remarque : La relation $f(x) = ax + b + \frac{c}{x} + o\left(\frac{1}{x}\right)$ est appelée **développement asymptotique** de f au voisinage de l'infini.