Chapter 3 Applications of Derivatives

3.3 How Derivatives affect the Shape of a Graph

	Α		В		С		D
f'(x)	∄	+	0	ı	٥	+	
f(x)	į	1		7		1	
	×		,		•	1	' ×

Increasing/Decreasing Test

- (a) If $f'(x) \ge 0$ on an interval, then f is increasing on that interval.
- (b) If $f'(x) \le 0$ on an interval, then f is decreasing on that interval.

EXAMPLE 1 Find where the function $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$ is increasing and where it is decreasing.

$$f'(x) = 12x^3 - 12x^2 - 24x$$

$$= 12x(x^2 - x - 2)$$

$$= 12x(x-2)(x+1)$$

2) Table

L	VOIC					ı		•
	factors		-1		٥		2	
	12	+		+		+		+
	×)	٥	+		+
	<i>2</i> L-Z	_)		_	O	+
_	7C+1	_	٥	+		+		+
	4(2)	\ -	O	+	O	_	0	+
	f172)	1				>		
	•							

The First Derivative Test Suppose that c is a critical number of a continuous function f.

- (a) If f' changes from positive to negative at c, then f has a local maximum at c.
- (b) If f' changes from negative to positive at c, then f has a <u>local minimum</u> at c.
- (c) If f' is positive to the left and right of c, or negative to the left and right of c, then f has no local maximum or minimum at c.

f'(x) > 0

loc. mux or min

0

EXAMPLE 3 Find the local maximum and minimum values of the function

$$g(x) = x + 2\sin x \qquad 0 \le x \le 2\pi$$

1) Derivative.

$$g'(x) = 1 + 2\cos x$$

$$\Leftrightarrow$$

Zeros.
$$g(x) = 0 \Leftrightarrow 1+2\cos x = 0$$

 $\Leftrightarrow \cos x = -\frac{1}{2}$

$$\Leftrightarrow$$

$$x = \frac{2\pi}{3}$$
 or $x = \frac{4\pi}{3}$.

2) Table.

at
$$z=2\pi/3$$
 -o $f(2\pi/3)$ is a local max. with

$$f(2\pi/3) = \frac{2\pi}{3} + 2\sin \frac{2\pi}{3} \approx \boxed{3.83}$$

at
$$2c = 4\pi/3$$
 - $4\pi/3$) is a local min. with $4(4\pi/3) = \frac{24\pi}{3} + 2\sin\frac{24\pi}{3} \approx 2.46$.

Two important definitions:

- Definition If the graph of <u>f lies above all of its tangents</u> on an interval *I*, then it is called **concave upward** on *I*. If the graph of *f* lies below all of its tangents on *I*, it is called **concave downward** on *I*.
- Definition A point P on a curve y = f(x) is called an **inflection point** if f is continuous there and the curve changes from concave upward to concave downward or from concave downward to concave upward at P.

Concavity Test

- (a) If f''(x) > 0 for all x in I, then the graph of f is concave upward on I.
- (b) If f''(x) < 0 for all x in I, then the graph of f is concave downward on I.

Example. Find the interval(s) of concavity of the function $f(x) = x^3 - 3x^2 - 9x + 4$.

1) Second derivative.

$$f'(x) = 3x^2 - bx - 9 - b f''(x) = bx - b = b(x-1)$$

$$Zero. f''(x) = 0 \implies b(x-1) = 0$$

$$\implies x = 1$$

		1		χ-1 > 0
7"6)	_	O	+	ces >171.
- (11)			\bigcup	

The Second Derivative Test Suppose f'' is continuous near c.

- (a) If f'(c) = 0 and f''(c) > 0, then f has a local minimum at c.
- (b) If $\underline{f'(c)} = \underline{0}$ and $\underline{f''(c)} < \underline{0}$, then f has a local maximum at c.

REMARK!

•
$$f'(c) = 0$$
 $f''(c) = 0$! — we can't conclude! (example $f(x) = x^3$)

• $f''(x) > 0$ for all $x \Rightarrow c$ is an absolute minimum. (Same $f''(x) = x^3$)

EXAMPLE 7 Sketch the graph of the function $f(x) = x^{2/3}(6-x)^{1/3}$.

$$f'(x) = \frac{1-x}{x^{1/3}(b-x)^{2/3}}$$

$$\int_{0}^{11} (5i) = \frac{-8}{x^{4/3} (6-5i)^{5/3}}.$$

$$f'(x) = 0 \iff 4-x=0 \iff 1''(x) = 0 \implies \text{impossible} -8 \neq 0.$$

Zeros:
$$f'(x) = 0 \iff 4-x=0 \iff x=4$$
.
 $f''(x) = 0 \text{ impossible } -8 \neq 0$.
evistence: $f' \not\exists \text{ if } x=0 \text{ or } x=6$.

0,4,6

		0		4		6
7)	_	A	+	0	_	<u></u>
7	+	#	~		7	# 5

Plot the graph of f.

