Nearly Linear Sparsification of ℓ_p Subspace Approximation

David Woodruff

Taisuke (Tai) Yasuda

ℓ_p Subspace Approximation

- ullet Cost of a k-dimensional subspace F: ℓ_p norm of the distances to F
- Goal: minimize the cost over subspaces F
- p = 2: PCA
- p = 1
 - "Median hyperplane problem"
 - Rotationally invariant L1 PCA
- p = ∞
 - "Center hyperplane problem"
 - Generalizes extent/containment problems: enclosing sphere, cylinder

Coresets for ℓ_p Subspace Approximation

- Coreset: weighted subset of the points whose cost approximates the cost of the entire set for every subspace F up to $(1 + \varepsilon)$ factors
- Prior results:
 - [Feldman-Langberg 2011]
 - Coreset of size poly (k, d, ε^{-1})
 - [Sohler-Woodruff 2018]
 - Coreset of size $k^{\max\{1,\frac{p}{2}\}}$ poly (ε^{-1})
 - Needs an additional coordinate, exp. time
 - [Huang-Vishnoi 2020]
 - Coreset of size $poly(k, \varepsilon^{-1})$
 - No additional coordinate, input sparsity time
 - Main question: best of both worlds?

Coresets for ℓ_p Subspace Approximation

Theorem. There is an algorithm which constructs a true coreset of size $k^{\max\{1,\frac{p}{2}\}}$ poly (ε^{-1}) in input sparsity time.

- Previously unknown whether coresets of this size even exist
- Notes on techniques:
 - Sampling uses ridge leverage scores (RLS)
 - Surprising, since RLS seems highly specific to the ℓ_2 /Frobenius norm
 - ullet Key ideas to make RLS work for ℓ_p norms: flattening
- Seamlessly handles online/streaming settings

Coresets for ℓ_p Subspace Approximation

Theorem. There is an algorithm which constructs a true coreset of size $k^{\max\{1,\frac{p}{2}\}}$ poly (ε^{-1}) in input sparsity time.

Notation

- \bullet A: n x d matrix with the n points in the rows
- $S: n \times n$ diagonal matrix of coreset weights
- P_F : projection matrix onto subspace F
- $\|\cdot\|_{p,2}$: (p,2) norm (ℓ_p norm of ℓ_2 norm of rows)

Coreset guarantee: $||SA(I - P_F)||_{p,2} = (1 \pm \varepsilon)||A(I - P_F)||_{p,2}$

Technical Ingredients

Proof Sketch

- Representative subspace theorem [Sohler-Woodruff 2018]
 - Informally: ℓ_p subspace approximation in d dimensions can be approximated by an instance in $k \cdot \text{poly}(1/\epsilon)$ dimensions
 - ullet Thus, our task is to preserve an (unknown) subspace of dimension $k \cdot \mathrm{poly}(1/\varepsilon)$ via sampling
- Sampling algorithm: ridge leverage scores [Cohen-Musco-Musco 2017]
 - For any d-dimensional x, we can preserve $||Ax||_p$ up to small additive error
 - ullet Problem with additive error: loses poly(n) factors
- Fix for the additive error: two different types of flattening tricks

Representative Subspace Theorem

- [Sohler-Woodruff 2018] Informally: ℓ_p subspace approximation in d dimensions can be approximated by an instance in $s = k \cdot \text{poly}(1/\epsilon)$ dimensions
 - There exists a subspace S of dimension $s = k \cdot poly(1/\epsilon)$ (the representative subspace) s.t. for any query subspace F, the cost can be approximately decomposed into...
 - The cost to project onto *S*
 - The cost within *S*
- More formally, for any k-dimensional subspace F, $||A(I-P_F)||_{p,2} = (1 \pm \varepsilon)||[A'(I-P_F),b]||_{p,2}$
 - Here, $A' = AP_S$ and b is the vector of costs to project onto S
- Thus, our task is to preserve an *unknown* subspace of dimension $s = k \cdot \text{poly}(1/\epsilon)$ via sampling
- ullet For this talk, pretend like s is just k

Ridge Leverage Scores

- [Cohen-Musco-Musco 2017] Constructing S via weighted sampling by ridge leverage scores gives nearly optimal coresets for p=2
- Score for i-th row: $a_i^{\mathsf{T}}(A^{\mathsf{T}}A + \lambda I)^{-1}a_i$, for $\lambda = \frac{1}{k}\|A A_k\|_F^2$
- Key property: additive-multiplicative subspace embedding

$$p = 2$$

Lemma. If S is constructed by RLS sampling with $\tilde{O}(\frac{k}{\varepsilon^2})$ rows, then for all $x \in \mathbb{R}^d$, we have $\|SAx\|_2^2 = \|Ax\|_2^2 \pm \varepsilon(\|Ax\|_2^2 + \lambda \|x\|_2^2)$.

$$p = 1$$

Lemma. If S is constructed by root RLS sampling with $\tilde{O}(\frac{n^{1/2}k^{1/2}}{\varepsilon^2})$ rows, then for all $x \in \mathbb{R}^d$, we have $||SAx||_1 = ||Ax||_1 \pm \varepsilon(||Ax||_1 + \lambda^{1/2}||x||_1)$.

- ullet For p=2, the sampled subspace approximation cost pays the additive error s times: once for each dimension in the representative subspace
 - In this case, this is already a proof
- For $p \neq 2$, the additive error is multiplied by a factor of $s^{p/2}$

Problems with the Additive Error: p < 2

$$p = 2$$

Lemma. If S is constructed by RLS sampling with $\tilde{O}(\frac{k}{\varepsilon^2})$ rows, then for all $x \in \mathbb{R}^d$, we have $\|SAx\|_2^2 = \|Ax\|_2^2 \pm \varepsilon(\|Ax\|_2^2 + \lambda \|x\|_2^2)$.

$$p = 1$$

Lemma. If S is constructed by root RLS sampling with $\tilde{O}(\frac{n^{1/2}k^{1/2}}{\varepsilon^2})$ rows, then for all $x \in \mathbb{R}^d$, we have $||SAx||_1 = ||Ax||_1 \pm \varepsilon(||Ax||_1 + \lambda^{1/2}||x||_1)$.

- Recall $\lambda = \frac{1}{k} ||A A_k||_F^2$ (even for $p \neq 2!$)
- WLOG assume that $d \leq n$
- Additive error for p = 1: $\lambda^{1/2} \|x\|_1 \le \frac{n^{1/2}}{k^{1/2}} \|A A_k\|_F \|x\|_2 \le \frac{n^{1/2}}{k^{1/2}} \text{ OPT } \|x\|_2$
 - This is off by $n^{1/2}$!
 - The problem: bounding $||\cdot||_F \leq ||\cdot||_{1,2}$ is loose

Problems with the Additive Error: p < 2

- The problem: bounding $||\cdot||_F \leq ||\cdot||_{1,2}$ is loose
- The solution for p < 2: flattening
 - For a vector y, if we replace an entry y_i with t copies of $y_i/t^{1/p}$, the ℓ_p norm is preserved
 - We can flatten any y to a new vector y' so that
 - y' has length at most 2n
 - $||y'||_p = ||y||_p$
 - $||y'||_2 \le O(n^{\frac{1}{2}-\frac{1}{p}})||y||_p$: this recovers the lost factor we need!
- For subspace approximation: efficiently compute a bicriteria approximation solution P' of rank k' = O(k)
 - Flatten A using the cost of the rows of A(I P'), say B
 - Then, $||B B_{k'}||_F \le ||B(I P')||_F \le O(n^{\frac{1}{2} \frac{1}{p}})||B(I P')||_{p,2} \le O(n^{\frac{1}{2} \frac{1}{p}})$ OPT
 - Additive error is small enough and completes the proof sketch

Problems with the Additive Error: p > 2

- ullet For p>2, we have a similar problem, and the previous idea does not work
- We will find a different source of flattening in the ridge leverage scores (RLS) lemma
 - RLS is just leverage score sampling on a concatenated matrix $[A; \lambda^{1/2}I]$
 - Additive error is the ℓ_p norm of $[A; \lambda^{1/2}I]x \Rightarrow \text{additive error } \lambda^{p/2} ||x||_p^p \le n^{\frac{p}{2}-1} \lambda^{p/2} ||x||_2^p$
 - lacktriangle In fact, the same proof applies if we replace I by any orthonormal matrix U
 - ullet Idea: choose U to be random orthonormal matrix
 - Additive error is the ℓ_p norm of $[A; \lambda^{1/2}U]x \Rightarrow \text{additive error } \lambda^{p/2} ||Ux||_p^p \le O(\lambda^{p/2}) ||x||_2^p$
 - lacktriangle Note: only for x in a small-dim space, which is all we need
- Additive error is small enough and completes the proof sketch

Conclusion

- lacktriangle We resolve the dependence of k in the coreset size for ℓ_p subspace approximation
- Techniques use a combination of ridge leverage scores and novel use of flattening
- Our techniques seamlessly handle online/streaming settings
- Open directions
 - lacktriangle Main question: resolving the dependence on arepsilon
 - ullet Currently, the exponent on arepsilon is p^2
 - Conjecture: ε^2