

* Based on 2023 Slides from Prof. Rashid Ansari.

1

Topics of last and today's lectures

□ Last class:

- Review of LSI systems and convolution
- LSI system configurations Series and Parallel connections
- Frequency analysis of LSI systems

□ Today's class:

- DTFT computation and examples
- Ideal filter impulse responses
- Magnitude and Phase of DTFT
- Properties of DTFT

DTFT Key definitions

DTFT and Inverse **DTFT**

•
$$x[n] \stackrel{\text{DTFT}}{\longleftrightarrow} X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n} = \sum_{n=-\infty}^{\infty} x[n] (e^{j\omega})^{-n}$$

- $x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$
- z-Transform: $X(z) = \sum_{n=-\infty}^{\infty} x[n](z)^{-n}$

Example of DTFT computation:Digression for an important basic Math result

- \square What is the sum $S_N = \sum_{n=0}^{N-1} \alpha^n = ?$
- Under the Sum $S = S_{\infty} = \sum_{n=0}^{\infty} \alpha^n = ?$

$$\square$$
 If $\alpha = 1$, $S_N = \sum_{n=0}^{N-1} 1 = 1 + 1 + 1 + \dots + 1 = N$

If
$$\alpha \neq 1$$
, $S_N = \sum_{n=0}^{N-1} \alpha^n = 1 + \alpha + \alpha^2 + \dots + \alpha^{N-1}$

$$\alpha S_N = \alpha \sum_{n=0}^{N-1} \alpha^n = \alpha + \alpha^2 + \alpha^3 + \dots + \alpha^{N-1} + \alpha^N$$

$$S_N - \alpha S_N = 1 - \alpha^N \Rightarrow (1 - \alpha)S_N = 1 - \alpha^N$$

$$S_N = \frac{1 - \alpha^N}{1 - \alpha}, \alpha \neq 1$$

Now, if $|\alpha| < 1$, then $\lim_{N \to \infty} \alpha^N = 0$. Therefore,

$$\sum_{n=0}^{\infty} \alpha^n = \frac{1}{1-\alpha}, \qquad |\alpha| < 1$$

Example of DTFT computation

- Consider a signal $x[n] = ((\frac{1}{2})^n + (\frac{1}{3})^n)u[n]$
- ☐ ↑ Exponential sequences are key building blocks of impulse responses of commonly used filters
- □ Find the DTFT $X(e^{j\omega})$ of x[n]

- \square Recall: $\sum_{n=0}^{\infty} \alpha^n = \frac{1}{1-\alpha}$ if $|\alpha| < 1$
- Therefore, $X(e^{j\omega}) = \frac{1}{1-\frac{1}{2}e^{-j\omega}} + \frac{1}{1-\frac{1}{3}e^{-j\omega}}$

Inverse DTFT: Examples

$$1. \quad X(e^{j\omega}) = 6e^{-j4\omega}$$

$$\Rightarrow x[n] = 6\delta[n-4]$$

Equivalent representation of signal: $x[n] = [\dots 0 \ 0 \ \underline{0} \ 0 \ 0 \ 0 \ 0 \ \dots] = [\underline{0} \ 0 \ 0 \ 0 \ 6]$

2.
$$X(e^{j\omega}) = 5e^{j3\omega} \Rightarrow x[n] = 5\delta[n+3]$$

Equivalent representation of signal: $x[n] = [\dots 0 \ 5 \ 0 \ 0 \ \underline{0} \ 0 \ 0 \ \dots] = [5 \ 0 \ 0 \ \underline{0}]$

Inverse DTFT: Examples

3.
$$X(e^{j\omega}) = 3e^{j2\omega} + 4 + 5e^{-j2\omega} + e^{-j3\omega}$$

$$\Rightarrow x[n] = 3\delta[n+2] + 4\delta[n] + 5\delta[n-2] + \delta[n-3]$$

Equivalent representation of signal: $x[n] = [\dots 0 \ 0 \ 3 \ 0 \ \underline{4} \ 0 \ 5 \ 1 \ 0 \ 0 \dots] = [3 \ 0 \ \underline{4} \ 0 \ 5 \ 1]$

Inverse DTFT: Examples

4.
$$X(e^{j\omega}) = 2 + 2\cos\omega = 2 + e^{j\omega} + e^{-j\omega}$$

$$\Rightarrow x[n] = 2\delta[n] + \delta[n+1] + \delta[n-1]$$

Equivalent representation of signal: $x[n] = [\dots 0 \ 0 \ 0 \ 1 \ \underline{2} \ 1 \ 0 \ 0 \ \dots] = [1 \ \underline{2} \ 1]$

5.
$$X(e^{j\omega}) = 2 + 2\cos 2\omega = 2 + e^{j2\omega} + e^{-j2\omega}$$

 $\Rightarrow x[n] = 2\delta[n] + \delta[n+2] + \delta[n-2]$

Equivalent representation of signal: $x[n] = [\dots 0 \ 0 \ 1 \ 0 \ \underline{2} \ 0 \ 1 \ 0 \ 0 \dots] = [1 \ 0 \ \underline{2} \ 0 \ 1]$

Inverse DTFT

Inverse DTFT

Given the DTFT of a signal, the signal can be recovered from it using the so-called inverse DTFT given by

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega.$$

We will use the fact that

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j\omega(n-m)} d\omega = \delta[n-m] = \begin{cases} 1, & n=m, \\ 0, & n \neq m. \end{cases}$$

The validity of the above relation can be seen from

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\sum_{m=-\infty}^{\infty} x[m] e^{-j\omega m} \right) e^{j\omega n} d\omega$$

$$= \sum_{m=-\infty}^{\infty} x[m] \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j\omega(n-m)} d\omega = \sum_{m=-\infty}^{\infty} x[m] \delta[n-m] = x[n].$$

Inverse DTFT of an ideal lowpass filter frequency response

$$h_{ILPF}^{\omega_c}[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_{ILPF}^{\omega_c}(e^{j\omega}) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} 1 \cdot e^{j\omega n} d\omega$$

$$n = 0: \qquad \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} 1 \cdot e^{j\omega n} d\omega = \frac{\omega_c}{\pi}$$

$$n \neq 0: \qquad \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{j\omega n} d\omega = \frac{1}{2\pi} \frac{e^{j\omega n}}{jn} \Big|_{-\omega_c}^{\omega_c} = \frac{e^{j\omega_c n} - e^{-j\omega_c n}}{2\pi jn}$$

$$= \frac{2j \sin \omega_c n}{2\pi jn} = \frac{\omega_c}{\pi} \frac{\sin \omega_c n}{\omega_c n}$$

$$h_{ILPF}^{\omega_c}[n] = \frac{\omega_c}{\pi} \operatorname{sinc}(\frac{\omega_c}{\pi}n)$$

Sinc function notation: Inverse DTFT of ILPF frequency response

$$n = 0: h_{ILPF}^{\omega_c}[n] = \frac{\omega_c}{\pi}$$
$$n \neq 0: h_{ILPF}^{\omega_c}[n] = \frac{\omega_c}{\pi} \frac{\sin \omega_c n}{\omega_c n}$$

$$sinc\theta \triangleq \begin{cases}
1, & \theta = 0, \\
\frac{\sin(\pi\theta)}{\pi\theta}, & \theta \neq 0.
\end{cases}$$

$$h_{ILPF}^{\omega_c}[n] = \frac{\omega_c}{\pi} \operatorname{sinc}(\frac{\omega_c}{\pi}n)$$

Convenient to use the notation $H^{\omega_c}_{ILPF}(e^{j\omega})$ or $H^{\omega_c}_{LPF}(e^{j\omega})$, and $h^{\omega_c}_{ILPF}[n]$ or $h^{\omega_c}_{LPF}[n]$

Inverse DTFT example: Ideal bandpass filter

An ideal bandpass filter (LSI system) has the frequency response $H_{IBPF}(e^{j\omega})$ shown below:

- (a) Express $H_{IBPF}(e^{j\omega})$ in terms of ideal lowpass filter frequency responses $H_{ILPF}^{\omega_c}(e^{j\omega})$ with suitable cut-off frequencies ω_c
- (b) Determine the ideal bandpass filter impulse response.

Ideal bandpass filter frequency response using LPF frequency response

$$H_{IBPF}(e^{j\omega}) = H_{ILPF}^{3\pi/4}(e^{j\omega}) - H_{ILPF}^{\pi/4}(e^{j\omega})$$

Ideal bandpass filter impulse response using LPF impulse response: Windowing

The given $H_{IBPF}(e^{j\omega})$ can be expressed as

(a)
$$H_{IBPF}(e^{j\omega}) = H_{ILPF}^{3\pi/4}(e^{j\omega}) - H_{ILPF}^{\pi/4}(e^{j\omega})$$
$$h_{ILPF}^{\omega_c}[n] = \frac{\omega_c}{\pi} \operatorname{sinc} \frac{n\omega_c}{\pi} \iff H_{ILPF}^{\omega_c}(e^{j\omega}) = \begin{cases} 1, |\omega| < \omega_c \\ 0, \omega_c < |\omega| \le \pi \end{cases}$$

(b)
$$\Rightarrow h_{IBPF}[n] = h_{LP}^{3\pi/4}[n] - h_{LP}^{\pi/4}[n]$$
$$\Rightarrow h_{IBPF}[n] = \frac{3}{4}\operatorname{sinc}\frac{3n}{4} - \frac{1}{4}\operatorname{sinc}\frac{n}{4}$$

- □ % Finite-duration approximation: Truncated/windowed ideal BPF impulse response
- \square M = 20;
- \square n = -M:M;
- □ wc1=pi/4;
- □ wc2=3*pi/4;
- hibpf = (wc2/pi)*sinc(n*wc2/pi)-(wc1/pi)*sinc(n*wc1/pi);

Another Example: Multi-band filter 1

$$H_{MB}(e^{j\omega}) = H_{ILPF}^{\frac{3\pi}{4}}(e^{j\omega}) - H_{ILPF}^{\frac{5\pi}{8}}(e^{j\omega}) + H_{ILPF}^{\frac{\pi}{2}}(e^{j\omega}) - H_{ILPF}^{\frac{3\pi}{8}}(e^{j\omega}) + H_{ILPF}^{\frac{\pi}{4}}(e^{j\omega})$$
$$h_{MB}[n] = \frac{3}{4}\operatorname{sinc}\frac{3n}{4} - \frac{5}{8}\operatorname{sinc}\frac{5n}{8} + \frac{1}{2}\operatorname{sinc}\frac{n}{2}...$$

Another Example: Multi-band filter 2

$$H_{MB}(e^{j\omega}) = 1 - H_{ILPF}^{\frac{5\pi}{8}}(e^{j\omega}) + H_{ILPF}^{\frac{\pi}{2}}(e^{j\omega}) - H_{ILPF}^{\frac{3\pi}{8}}(e^{j\omega}) + H_{ILPF}^{\frac{\pi}{4}}(e^{j\omega})$$

$$h_{MB}[n] = \delta[n] - \frac{5}{8}\operatorname{sinc}\frac{5n}{8} + \frac{1}{2}\operatorname{sinc}\frac{n}{2}...$$

Magnitude and Phase of DTFT

- \square $X(e^{j\omega})$ is complex in general.
- \square A complex number z can be expressed as $z=re^{j\theta}$, where r and θ are real, $r\geq 0$
- So $X(e^{j\omega})$ can be expressed in the form $X(e^{j\omega}) = |X(e^{j\omega})|e^{j\phi(\omega)}$
- \square $|X(e^{j\omega})|$ is called the magnitude of the DTFT.
- $\phi(\omega)$ is called the phase of the DTFT

Frequency response $H(e^{j\omega})$: Magnitude and Phase response

- $h[n] = \frac{1}{4} [\underline{1} \ 2 \ 1]$
- $H(e^{j\omega}) = \frac{1}{4}(1 + 2e^{-j\omega} + e^{-j2\omega}) = \frac{1}{4}e^{-j\omega}(e^{j\omega} + 2 + e^{-j\omega})$
- So $H(e^{j\omega}) = \frac{1}{4}e^{-j\omega}(2+2\cos\omega)$.
- Now note: $(2 + 2 \cos \omega)$ is real and non-negative, and $|e^{-j\omega}| = 1$
- So $|H(e^{j\omega})| = \frac{1}{4}(2 + 2\cos\omega)$
- Therefore, $H(e^{j\omega}) = |H(e^{j\omega})|e^{j\phi(\omega)} = \frac{1}{4}(2 + 2\cos\omega)e^{-j\omega}$
- Magnitude response: $|H(e^{j\omega})| = \frac{1}{4}(2 + 2\cos\omega)$
- Phase response: $\phi(\omega) = -\omega$
- Phase response $\phi(\omega) = -\omega$ is linear in ω (of the form $\phi(\omega) = \beta\omega$).
- This system has a linear phase response.