Assignment -4

PROJECT NAME	REAL TIME COMMUNICATION SYSTEM POWERED BY AI FOR SPECIAL
NAME	VAISHNAVI. S
ROLL NO	620619106042
TEAM ID	PNT2022MID41505

1. Download the dataset

Dataset Downloaded and uploaded to drive https://www.kaggle.com/code/kredy10/simple-lstm-for-textclassification/data

2. Import the necessary libraries

import pandas as pd import

numpy as np

import matplotlib.pyplot as plt import seaborn as sns

from sklearn.model_selection import train_test_split from

 $sklearn.preprocessing \ import \ Label Encoder \ from \ keras.models \ import$

Model

from keras.layers import LSTM, Activation, Dense, Dropout, Input, Embedding from keras.optimizers import RMSprop

from keras.preprocessing.text import Tokenizer from keras.preprocessing import sequence from keras.utils import

pad_sequences from keras.utils import to_categorical

from keras.callbacks import EarlyStopping

3. Read dataset and do pre-processing

(i) Read dataset

df = pd.read_csv('/content/spam.csv',delimiter=',',encoding='latin-1') df.head()

	V1	v2	V n	mamed: 2	Unnanæd: 3	Unnamed: 4
0	ham	Go until jurong point, crazy Available only	NaN	NaN	NaN	
1	ham	Ok lar Joking wif u oni NaN NaN NaN	NaN			
2	spam	Free entry in 2 a wkly comp to win FAfi Cupna	NaN	NaN	NaN	

```
    3 ham U dun say so early hor... U c already then say... NaN NaN NaN
    4 ham Nah I don't think he goes to usf, he lives aro... NaN NaN NaN
```



```
(ii) Preprocessing the dataset
df.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'],axis=1,inplace=True) df.info()
       <class 'pandas.core.frame.DataFrame'> RangeIndex:
       5572 entries, 0 to 5571
       Data columns (total 2 columns):
                Column Non-Null Count
                                               Dtype
              -----
        0
              v1
                      5572 non-null object 1
              5572 non-null object
       dtypes: object(2) memory
       usage: 87.2+ KB
X = df.v2 Y = df.v1
le = LabelEncoder() Y
le.fit_transform(Y)
Y = Y.reshape(-1,1)
X train, X test, Y train, Y test = train test split(X, Y, test size=0.15)
max_words = 1000 max_len =
150
tok = Tokenizer(num_words=max_words)
tok.fit_on_texts(X_train)
sequences = tok.texts_to_sequences(X_train)
sequences matrix = pad sequences(sequences,maxlen=max len)
 4.,5. Create model and Add Layers(LSTM, Dense-(Hidden Layers), Output)
inputs = Input(name='inputs',shape=[max_len])
layer = Embedding(max_words,50,input_length=max_len)(inputs)
LSTM(64)(layer)
                   layer
                           =
                                Dense(256,name='FC1')(layer)
                                                               layer
                                           Dropout(0.5)(layer)
Activation('relu')(layer)
                                                               layer
                      layer
                                   =
Dense(1,name='out layer')(layer) layer = Activation('sigmoid')(layer) model =
Model(inputs=inputs,outputs=layer) model.summary()
       Model: "model"
```

inputs (InputLayer)	[(None, 150)]	0	
embedding (Embedding)	(None, 150, 50)	50000	
lstm (LSTM)	(None, 64)	29440	
FC1 (Dense)	(None, 256)	16640	
activation (Activation)	(None, 256)	0	
dropout (Dropout)	(None, 256)	0	
out_layer (Dense)	(None, 1)	257	
activation_1 (Activation)	(None, 1)	0	

Total params: 96,337 Trainable params: 96,337 Non-trainable params: 0

6. Compile the model

 $model.compile(loss='binary_crossentropy', optimizer=RMSprop(), metrics=['accuracy'])$

7. Train and Fit the model

 $model.fit (sequences_matrix, Y_train, batch_size=128, epochs=10, \ validation_split=0.2)$

Epoch 1/10			
30/30 [======] - 8s 20	63ms/step - loss: 0.0060	- accurac	
Epoch 2/10			
30/30 [========]	- 8s 263ms/step	- loss:	0.0036 - accurac
Epoch 3/10			
30/30 [=========]	- 8s 263ms/step	- loss:	0.0572 - accurac
Epoch 4/10			
30/30 [======] - 8s 20	62ms/step - loss: 0.0038	- accurac Epoch	5/10
30/30 [=======]	- 8s 261ms/step	- loss: 0.0018	- accurac
Epoch 6/10			
30/30 [=======]	- 8s 263ms/step	- loss: 0.0022	- accurac
Epoch 7/10			
30/30 [====================================	- 9s 310ms/step	- loss:	0.0020 - accurac
Epoch 8/10	_		
30/30 [======]	- 8s 261ms/step	- loss: 0.0015	- accurac

Epoch 9/1 30/30 [=			:====]	- 8s 2	64ms/step	- loss: 0.0015	- accurac
Epoch 10/	10	:======================================			263ms/step	- loss:	0.0021 - accurac
<keras.call< td=""><td>backs.His</td><td>tory at 0x7f2b60b5f110></td><td>•</td><td></td><td>-</td><td></td><td></td></keras.call<>	backs.His	tory at 0x7f2b60b5f110>	•		-		
8. Save the mod	<u>lel</u>						
model.save('sms_cla	ssifier.h5')						
Preprocessing th	ne Test D	ataset					
test_sequences pad_sequences(test_		tok.texts_to_sequences(X_maxlen=max_len)	_test) tes	t_sequenc	ces_matrix =		
9. Testing the n	<u>nodel</u>						

 $accr \ = \ model.evaluate(test_sequences_matrix, Y_test)$

print('Test set\n Loss: {:0.3f}\n Accuracy: {:0.3f}'.format(accr[0],accr[1]))

Test set

Loss: 0.262 Accuracy: 0.977