# 2. Software Life Cycle Model

- Software Life Cycle Model
- 2. Types of SLCM
- 3. Classical Waterfall Model
- 4. Spiral Model
- 5. Prototyping Model
- 6. Evolutionary Model

## 1. Software Life Cycle Model:

- Software life cycle consists of all the phases from its inception to retirement
- Descriptive and diagrammatic representation of the software life cycle
- Maintains orders among phases
- Defines entry and exit criteria for every phase

#### 2. Types of SLCM:

- Classical Waterfall Model
- Iterative Waterfall Model
- Prototyping Model
- Evolutionary Model
- Spiral Model
  - ➤ Also called **SDLCM**
  - > Each of them has some pros and cons

## 3. Classical Waterfall Model:

- Theoretical way of developing software
- Other models are essentially derived from it
- Divides the life cycle into six phases
  - > Feasibility Study
  - > Requirements Analysis and Specification
  - Design
  - Coding and Unit Testing
  - ➤ Integration and System Testing
  - Maintenance

# Classical Waterfall Model: (Con..)



## Feasibility Study:

- Understand the problem social feasibility
- Know the overall requirements of the client
- Investigate different possible solutions
- Examine and pick the best solution technical and financial feasibility

## Requirements Analysis & Specification:

- Understand the exact requirements
- Collect all relevant data through interviews and discussions
- Identify all ambiguities and contradictions
- Remove all ambiguities, inconsistencies, and incompleteness

# RA & Specification: (Con..)

- Prepare SRS document
- SRS document consists of
  - functional requirements
  - nonfunctional requirements
  - > goals of implementation
- SRS document is signed by both the parties

## Design:

Software architecture is derived from the SRS document

- Two approaches are
  - > traditional design approach: structured analysis and structured design
  - object-oriented design approach
- Structure chart is produced

## **Coding & Unit Testing:**

- Translate software design into source code
- Each module is coded and unit tested
  - ➤ **Module**: smallest part that can't be divided further
- Unit or module testing ensures debugging of errors identified at this stage

Module documentation is produced

## **Integration & System Testing:**

Modules are integrated and tested in a planned manner

- Carried out incrementally over a number of steps
- System testing ensures fulfillment of the requirements laid out in the SRS document

#### Integration & System Testing: (Con..)

- System testing activities are
  - $\triangleright \alpha$  testing: performed by development team
  - $\triangleright$   $\beta$  testing: performed by a friendly set of customers
  - ➤ acceptance testing: performed by the customer after the product delivery to determine whether to accept or reject the delivered product
- System testing is carried out in a planned manner according to the test plan document

#### Maintenance:

- Development to maintenance effort ratio is roughly 40:60
- Consists of three types
  - Corrective maintenance
  - > Perfective maintenance
  - > Adaptive maintenance

## **Shortcomings:**

- Idealistic, not practical
- Defects usually get detected much later in the life cycle
- Need to go back to correct the defect and its effect on the later phases
- Need of Iterative Waterfall Model

#### 4. Spiral Model:

- Looks like a spiral with many loops
- Each loop corresponds to a phase
- Each loop / phase is split into four quadrants
  - > 1<sup>st</sup> quadrant: **objective setting**
  - > 2<sup>nd</sup> quadrant: risk assessment and reduction
  - > 3<sup>rd</sup> quadrant: **development and validation**
  - > 4<sup>th</sup> quadrant: **review and planning**

## Spiral Model: (Con..)



# Spiral Model: (Con..)

- Number of loops varies
- Encompasses all other life cycle models
- Suitable for software products with several risks
- More complex than others

## 5. Prototyping Model:

- Toy implementation of actual system
- Limited functionalities, low reliability, and inefficient performance
- Preferred in situations such as
  - > user requirements are not complete
  - > technical issues are not clear

# Prototyping Model: (Con..)

- Suitable when customer needs
  - how the screens might look like
  - > how the user interface would behave
  - how the system would produce outputs
- Customer checks whether the prototype is acceptable or not

## 6. Evolutionary Model:

- Incremental development and delivery
- No customer resentment

- Gradually increasing customer confidence while using the system
- Customer orders the incremental versions as and when affordable