Additional Formulae

Absolute value Inequalities: (i) |x-a| < k is equivalent to -k < x-a < k

(ii) $\left|x-a\right|>k$ is equivalent to $\left|x-a\right|>k$ or $\left|x-a\right|<-k$

VECTOR EQUATION OF A LINE

$$\underline{r} = \underline{r}_0 + \lambda \underline{v}$$
 , $\lambda \in \mathbb{R}$

where

 $\underline{r} = \langle x, y, z \rangle$ is the position vector of any point on the line,

 $\underline{r}_0 = \langle x_0, y_0, z_0 \rangle$ is the position vector of a known point on the line,

 $y = \langle a, b, c \rangle$ is a non-zero vector parallel to the line.

PARAMETRIC EQUATIONS OF A LINE

$$x = x_0 + \lambda a$$
, $y = y_0 + \lambda b$, $z = z_0 + \lambda c$ where $\lambda \in \mathbb{R}$

EQUATION OF A PLANE

The plane in \mathbb{R}^3 that passes through the point $P_0\left(x_0,y_0,z_0
ight)$ and is normal to the non-zero vector

 $\underline{n} = \langle a,b,c \rangle = a\underline{i} + b\underline{j} + c\underline{k}$ has equations:

$$\underline{n} \cdot \overrightarrow{P_0 P} = 0$$
 or $\underline{r} \cdot \underline{n} = \underline{r_0} \cdot \underline{n}$

In vector form: $n \cdot \overrightarrow{P_0P} = 0$ or $r \cdot n = r_0 \cdot n$ In point-normal form: $a(x-x_0)+b(y-y_0)+c(z-z_0)=0$

