ELLIPSIS: TRAJECTORY PREDICTION AND TARGET ACQUISITION SYSTEM

Owen King, Cindy Valerie, Patrick Nicholas, Tsi Ui-Ik

INTRODUCTION

Educational Platform

Advanced Precision in Sports

Training

Dual Camera Ellipse

Detection

Trajectory Prediction

Shuttlecock Shooting

Machine

Computer Vision (OpenCV)

SYSTEM DESIGN

- 1. Dual Cameras Setup
 - Placed in a room to view a mimic badminton court
 - Cameras are calibrated to make the court have precise 3D coordinates

SYSTEM DESIGN

- 2. OpenCV for Ellipse Detection
 - Hough Circle Algorithm
 - Edge detection, Mapping, Identification
 - Identify ellipse within a given threshold in camera view
 - Triangulation process to compute the 3D coordinates of detected ellipse

SYSTEM DESIGN

- 3. 3D Plane Trajectory Prediction
 - Aerodynamic model (gravity, air drag)
 - Search algorithm
 - Check target landing location
 - Optimal setup for directing shuttlecock

RESULTS

Two models:

- Single shot
- Continuous shot(s)with interval

RESULTS

SINGLE SHOT

RESULTS

CONTINUOUS SHOT

(INTERVAL 10S)

THANK YOU FOR LISTENING

