GEOMETRÍA II. Examen del Tema 3

— Doble Grado en Ingeniería Informática y Matemáticas — Curso 2015/16

Nombre:

- 1. En cada caso¹, probar la afirmación o dar un ejemplo de que es falsa.
 - (a) Todo endomorfismo f que satisface $M(f, B) \in O(n)$ es una isometría.
 - (b) Todo endomorfismo f que satisface que M(f, B) es simétrica es autoadjunto.
 - (c) Toda isometría diagonalizable es una simetría ortogonal.
- 2. En \mathbb{R}^2 con la métrica $M_{B_u}(g) = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ hallar la imagen del vector v = (2,1) respecto de la reflexión respecto de $U = \{(x,y) \in \mathbb{R}^2 : 2x + y = 0\}$.
- 3. Sean U y W dos planos perpendiculares² en un espacio euclídeo (V^3, g) . Clasificar la isometría $S_U \circ S_W$, calculando los elementos geométricos que la define.
- 4. Clasificar la isometría siguiente de (\mathbb{R}^3, g_u) y calcular los elementos geométricos que la define:

$$M(f, B_u) = \frac{1}{2} \begin{pmatrix} 0 & -\sqrt{2} & -\sqrt{2} \\ \sqrt{2} & -1 & 1 \\ \sqrt{2} & 1 & -1 \end{pmatrix}.$$

Importante: razonar todas las respuestas

¹Para espacios euclídeos

²= sus subespacios ortogonales son perpendiculares

Soluciones

- 1. (a) Falsa. Matricialmente dice que si A es ortogonal y G es una matriz simétrica definida positiva, entonces $A^tGA = G$. Tomamos $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $G = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$.
 - (b) Falsa. Matricialmente dice que si A es simétrica y G es una matriz simétrica definida positiva, entonces GA es simétrica. Vale el mismo ejemplo que antes.
 - (c) Verdadero. Hecho en teoría (hacer).
- 2. Se tiene U = <(1, -2) >. Usando la matriz de la métrica, $(x, y) \in U^{\perp}$ si y = 0, luego $U^{\perp} = <(1, 0) >$. Se escribe v en combinación lineal de la base $\{(1, -2), (1, 0)\}$: v = (-1/2)(1, -2) + (5/2)(1, 0), luego el simétrico es (-1/2)(1, -2) (5/2)(1, 0) = (-3, 1).
- 3. Se sabe que el derminante de la composición es 1. La intersección es un subespacio de dimensión 1. Sea $e_1 \in U \cap W$ de módulo 1. Extendemos a bases ortonormales de U y W respectivamente: $\{e_1, e_2\}$ y $\{e_1, e_3\}$. Con un dibujo se ve que $U^{\perp} = \langle e_3 \rangle$ y $W^{\perp} = \langle e_2 \rangle$. Probamos que $B = \{e_1, e_2, e_3\}$ es una base ortonormal. Es base pues los dos primeros son linealmente independientes y si $e_3 = ae_1 + be_2$, multiplicando por e_1 da a = 0, luego U = W, que no es posible. Como $U \cap W \subset U$, W entonces U^{\perp} , $W^{\perp} \subset (U \cap W)^{\perp} = \langle e_1 \rangle^{\perp} = \langle e_2, e_3 \rangle$. Si $xe_2 + ye_3 \in U^{\perp}$ y $x'e_2 + y'e_3 \in W^{\perp}$, al multiplicar por e_2 y e_3 respectivamente da 0, y entre ellos es 0, obteniendo ($\alpha = g(e_2, e_3)$

$$x + y\alpha = 0, x'\alpha + y' = 0, xx' + yy' + (xy' + x'y)\alpha = 0.$$

Sustituyendo las dos primeras ecuaciones en la tercera, tenemos $(\alpha^3 - \alpha)x'y = 0$. Si $\alpha = \pm 1$, entonces $U \perp = W^{\perp}$, que no es posible. Si x'y = 0, entonces x' = 0 o y = 0, dando x = x' = y = y' =, que tampoco es posible. Por tanto $\alpha = 0$, como se quería probar.

Finalmente, es inmediato que $S_U \circ S_W(e_1) = e_1$, $S_U \circ S_W(e_2) = -e_2$ y $S_U \circ S_W(e_3) = -e_3$, obteniendo que $S_U \circ S_W$ es la simetría axial respecto de $\langle e_1 \rangle = U \cap W$.

4. Como el determinante es -1 y la traza es -1, es un giro de ángulo θ respecto de V_{-1} seguido de la reflexión respecto del plano V_{-1}^{\perp} , con $-1+2\cos\theta=-1$, es decir $\cos\theta=0$. El subespacio V_{-1} está generado por (0,-1,1). El ortogonal es $V_{-1}^{\perp}=< e_2, e_3>=< (1,0,0), (0,1/\sqrt{2},1/\sqrt{2})>$. Como esta base es ortonormal, para hallar el seno de θ se tiene $\sin\theta=g(f(e_2),e_3)=g((0,\sqrt{2}/2,\sqrt{2}/2),(0,1/\sqrt{2},1/\sqrt{2}))=1$.