

唐老狮系列教程

玻璃效果基本原理

WELCOME TO THE UNITY SPECIALTY COURSE

SPECIALTY COURSE STUDY

主要讲解内容

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

主要讲解内容

- 1. 玻璃效果基本原理
- 2. 玻璃效果实现使用的新知识点

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

玻璃效果基本原理

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

玻璃效果基本原理

根据我们目前学习的知识,想要实现玻璃效果,很多同学可能会联想到使用**透明**相关知识来进行制作。透明固然可以制作出玻璃透明的效果,但是它在许多地方有所缺陷,比如:

1. 透明无法表现出复杂的光学效果 玻璃不仅仅是透明的,它还具有反射、折射等光学效果,使用透明无法简单的实现这些效果

2. 透明物体往往会遇到深度排序问题 渲染顺序不正确时,会导致视觉错误

等等

因此我们**想要实现效果更好的玻璃效果时,往往不会选择使用透明来制作**

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

玻璃效果基本原理

我们将使用 渲染纹理 来制作玻璃效果

基本原理是

在渲染玻璃效果物体之前,先获取到当前屏幕图像,将当前屏幕图像存储在渲染纹理之中, 之后在真正处理玻璃效果物体时,再利用该渲染纹理来实现透明、折射等等效果 该过程中并不会使用混合相关知识,而是直接进行颜色相乘或相加来进行颜色叠加

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

玻璃效果基本原理

一句话总结:

在渲染玻璃效果之前,先捕获当前屏幕内容并保存到一张渲染纹理当中, 在之后的Shader处理中利用该渲染纹理进行采样,参与最终的颜色计算,实现各种玻璃效果。

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

玻璃效果实现使用的新知识点

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

玻璃效果实现使用的新知识点

- 1. 特殊渲染通道 GrabPass
- 2. 内置函数 ComputeGrabScreenPos
- 3. 模拟折射的自定义计算规则

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

特殊渲染通道GrabPass

GrabPass 的作用是捕获当前屏幕上已经渲染的内容,并将其存储到一张纹理中它需要包含在SubShader语句块中它的用法有两种:

1. 大括号中什么都不写,默认会把屏幕内容写入一个叫做 _GrabTexture 的纹理变量中直接在CG语句中声明 GrabTexture 纹理变量即可直接使用抓取的渲染纹理

```
SubShader
{
    Tags { "Queue"="
    GrabPass {}
```

```
//对应抓取的纹理变量名
sampler2D _GrabTexture;
```

2. 大括号中写入自定义变量名,会把对应屏幕内容写入该自定义纹理变量中在CG语句中声明对应纹理变量即可使用抓取的渲染纹理

```
SubShader
{
    Tags { "Queue"="Transparent" "RenderType"="0
    自定义名
    GrabPass { "_RefractionTex" }
```


内置函数 ComputeGrabScreenPos

该内置函数可以用于计算屏幕空间位置,传入顶点的裁剪空间位置

返回一个 float4 结果, 该float4中的内容分别代表:

X: 屏幕空间X坐标

Y: 屏幕空间Y坐标

Z:裁剪空间深度值,一般表示顶点距离摄像机的相对深度

W: 裁剪空间的W分量, 通常用于透视除法

即 X或Y/W 后 X或Y的范围将在 0~1之间

我们可以利用该函数得到顶点相对屏幕的坐标,从而从捕获的渲染纹理中进行采样

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

模拟折射的自定义计算规则

为了模拟出玻璃折射的效果,我们一般不会使用之前学习的折射相关知识点在立方体纹理中采样,

我们往往会自定义一些计算规则,来模拟计算出折射的效果。

总体的设计思路,就是在对捕获纹理进行采样时,进行一些偏移计算。

具体的计算规则, 我们在之后编写Shader时再来详细讲解。

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

总结

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

总结

1. 玻璃效果基本原理

在渲染玻璃效果之前,先捕获当前屏幕内容并保存到一张渲染纹理当中, 在之后的Shader处理中利用该渲染纹理进行采样,参与最终的颜色计算,实现 各种玻璃效果。

2. 玻璃效果实现使用的新知识点

捕获屏幕内容的GrabPass;

裁剪坐标转屏幕坐标的ComputeGrabScreenPos方法

捕获纹理进行采样时,进行一些偏移计算,模拟折射效果

WELCOME TO THE UNITY SPECIALTY COURSE STUDY

唐老狮系列教程

排您的您的年

WELCOME TO THE UNITY SPECIALTY COURSE

STUDY