- 1

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION	NO. 3. RECIPIENT'S CATALOG NUMBER
Nitrolysis of CN single bonds and Chemistry of Nitro and Nitroso Groups.	Feb. 1982 - Jan. 1983
Joseph H. Boyer	N00014-82-K-0210 NR 659-800
D. PERFORMING ORGANIZATION NAME AND ADDRESS University of Illinois at Chicago Chicago, Illinois 60680 Box 4348	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Department of the Navy Office of Naval Research Code 432 Arlington, Virginia 22217	March 1983 13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office	Unclassified 15. DECLASSIFICATION/DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public selecte and sale; its distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. KEY MORCS (Centinue on reverse side if necessary and identify by block number)

Nitramines from <u>tert</u>-Amines.

a-Substitution in Nitramines.

Cyclic Nitronic-Carboxylic Acid Anhydrides.

Nitroform and Isocyanides, Products from.

Nitropyrroles, Peview of.

20. ABSTRACT (Centinus on reverse side if necessary and identify by block number)

A general procedure for the preparation of nitramines from tertamines was developed. The best procedure calls for an initial transformation of the tertiary amine into a nitrosamine followed by oxidation to the nitramine.

From tri-n-butyl amine and nitric and hydrochloric acids in acetic anhydride, di-n-butylnitrosamine was reproducibly obtained (60%). Other examples are discussed. Nitrosamines are routinely

Continued

exidized to nitramines in nearly quanititative yields.

Conversion of a carboxyl into an amino group afforded 1-nitro-2-aminopiperidine isolated as either its carbamate or urea derivative. This result has encouraged the exploration of s-aminonitramines (or selected derivatives) in synthesis of dense fused ring systems (cage compounds).

Cyclic nitronic-carboxylic acid anhydrides is a thesis research area for a graduate student. A five membered and a sixmembered (not confirmed) example have been prepared. An acyl derivative of the former readily polymerized, as expected, by spontaneous ring opening. The work is continuing.

Sydnones are energetic compounds available from certain aryl isocyanides and nitroform. This new reaction was discovered by an undergraduate research student. A report for publication is in preparation.

> Accession For ETTE GRARI TAB fination Distribution/ Availability Godes Aceta and/or mee ial

Nitrolys of CN Single Bonds and Chemistry of Nitro and Nitroso Groups.

Progress on Five Projects.

		Page
I.	Project Titles and Goals.	1
	A. Nitramines from Tertiary Amines.	1
	B. α -Substituents in Nitramines.	1
	C. Cyclic Nitronic-Carboxylic Acid Anhydrides.	1
	D. Products from Nitroform and Isocyanides.	1
	E. Nitropyrroles.	1
II.	Project Summaries (A-D).	1
III.	Project Progress Reports.	3
	A. Nitramines from Tertiary Amines.	3
	B. α -Substituents in Nitramines.	10
	C. Cyclic-Nitronic-Carboxylic Acid Anhydrides.	13
٠.	D. Products from Nitroform and Isocyanides.	15
	E. Nitropyrroles, a Review.	15

I. Project Titles and Goals.

- A. <u>Nitramines from Tertiary Amines</u>. Sparse information scattered throughout the literature was to be organized and a general procedure developed.
- B. α -Substituents in Nitramines. An exploratory survey of functional group interchange at the α -position of nitramines was undertaken.
- C. Cyclic Nitronic-Carboxylic Acid Anhydrides. Nitro derivatives of five- and six-membered ring examples of these rarely encountered molecules were sought for evaluation as monomers for polymeric binders.
- D. Products from Nitroform and Isocyanides. Further investigation on a recently discovered reaction was proposed to evaluate the potential preparation of energetic materials, e.g., nitromesoionic heterocycles.
- E. <u>Nitropyrroles</u>. A thorough review of the literature on nitropyrroles was undertaken.

II. Project Summaries.

A. Nitramines from Tertiary Amines. The nitronium cation converted tertiary amines 1 to nitrosamines 4 which were oxidized to nitramines 5. Certain exceptional examples directly gave nitramines 5 rather than nitrosamines 4; these correlated with the dissociation of a stable carbonium ion, e.g., R_3 , rather than an elimination of nitrous acid from an intermediate quaternary nitrammonium ion 2a,b. The reactions are discussed and examples given.

$$R_{2}NCH_{2}R \xrightarrow{NO_{2}^{+}} R_{2}\overset{+}{N}CH_{2}R \xrightarrow{-HNO_{2}} R_{2}\overset{+}{N}=CHR$$

$$1 \qquad \qquad 1 \qquad \qquad 3$$

$$\frac{HONO}{-RCHO} R_{2}NNO \xrightarrow{-RCHO} R_{2}NNO_{2}$$

$$4 \qquad \qquad 5$$

$$R_{2}\overset{+}{N}-CR_{3} \longrightarrow R_{2}NNO_{2} + R_{3}C^{+}$$

$$NO_{2}$$

$$2b$$

B. <u>a-Substituents in Nitramines</u>. <u>a-Pipecolinic acid 6a was converted to l-nitro-2-piperideine 7 via the isolated intermediates: l-nitropiperidine-2-carboxylic acid 6b, azide 6c, l-nitro-piperidine-2-isocyanate 6d, and methyl l-nitropiperidine-2-carbamate.</u>

C. Cyclic Nitronic-Carboxylic Acid Anhydrides. The anhydrides 8 and 9 have been prepared. The latter and its easily obtained polymer 10, a liquid, have the calculated density of 1.9.

D. Products from Nitroform and Isocyanides. From aryl isocyanides 11 and nitroform 12 sydnones 13, related aromatic amines, and unknown products were obtained.

ARNC
$$HC(NO_2)_3$$

ArN—CH

 $\downarrow 0$

C—O

13

III. Project Progress Reports.

A. Nitramines from tertiary amines.

1. Introduction. An efficient conversion of a tertiary aliphatic amine 1 to a dialkylnitrosamine 4 by treatment with nitric acid has been elucidated and developed. When followed by any of the several known oxidations of nitrosamines an additional route to nitramines 5 became available.

$$R_2NCH_2R$$
 R_2NNO R_2NNO_2

2. Background. Prior to this work there were scattered reports of tertiary amine conversions to nitramines with nitrolysis of hexamethylene tetramine to RDX and HMX being the best

known example.¹⁻³ In the generally accepted explanation for this reaction of a gem-diamine 14 a combination with a nitronium cation to give initially an N-nitroammonium cation 15 was proposed.⁴ A dissociation then afforded a nitramine 5 and an a-aminocarbenium cation 16. Stability of the cation 16 favored this dissociation over other conceivable fates of the cation 15.

$$R_{2}NCH_{2}NR_{2} + NO_{2}^{+} \rightleftharpoons R_{2}NCH_{2}^{+}NR_{2}$$

$$14 \qquad \qquad NO_{2}$$

$$15 \rightleftharpoons R_{2}NCH_{2}^{+} + 5$$

$$16$$

Attempts to extend the nitrolysis reaction to other tertiary amines met with minimal success² except for certain isolated examples,³ each of which depended on the breakdown of a nitrammonium cation into a stable carbenium cation. This was recently demonstrated in the nitrolysis of dimethyl tert-butyl amine 17 to dimethyl nitramine 5 (R = CH₃).⁵ The simultaneous formation of a trace amount of tert-butylmethylnitrosamine 18 furnished a clue for an important alternative breakdown of the nitrammonium cation 15. This competitive reaction has afforded a general method for the conversion of a tertiary aliphatic amine to a dialkylnitrosamine.

$$(CH_3)_2NC(CH_3)_3 \xrightarrow{ENO_3} (CH_3CO)_2O \xrightarrow{C(CH_3)_3} (CH_3CO)_2O \xrightarrow{C(CH_3)_3} (CH_2O)_2O$$
18 trace

A proposed elimination of nitrous acid from a nitrammonium

cation 2a is analogous to the similar elimination of nitroxyl from nitrosammonium cation intermediates 19 in the conversion of tertiary aliphatic amines to dialkylnitrosamines by nitrous acid. 6

$$1 \xrightarrow{NO_{2}^{+}} R_{2}\overset{+}{\text{NCH}}_{2}R \longrightarrow R_{2}\overset{+}{\text{N}}=\text{CHR} + \text{HNO}_{2}$$

$$1 \xrightarrow{NO_{2}^{+}} 3$$

$$2a$$

$$1 \xrightarrow{NO^{+}} R_{2}\overset{+}{\text{NCH}}_{2}R \longrightarrow 3 + \text{NOH}$$

$$19$$

There is also a similarity with an elimination of nitrous acid from an o-nitrosohydroxylammonium cation intermediate 20 in the conversion of a tertiary amine oxide 21 to a nitrosamine 4 by treatment with a nitrosating agent.

In each of these last three reactions the intermediate immonium cation 2 combined with nitrous acid (or other nitrosating agent, if present) to produce a nitrosamine 4 and a carbonyl compound via a proposed nitrite ester 21.

3. Results. Initial development of this preparative method for nitrosamines was brought about by investigating N,N-dimethylbenzyl amine 22,8 N,N-dimethyldibenzyl amine 24,8 triethyl amine 25,8 and tri-n-butylamine 26.8

 $C_{6}H_{5}CH_{2}N(CH_{3})_{2}$ $C_{6}H_{5}CH_{2}CH_{2}N(CH_{3})_{2}$ $(C_{6}H_{5}CH_{2})_{2}NCH_{3}$ 22 23 24 $(C_{2}H_{5})_{3}N$ $(CH_{3}CH_{2}CH_{2}CH_{2})_{3}N$ 25 26

Nitronium tetrafluoroborate either in various organic solvents or in concentrated sulfuric acid efficiently nitrated the aromatic rings in amines 22 and 23.10 From the reaction of 23 in sulfolane a trace of dimethylnitramine 5 (R = CH₃) was also detected. As expected, ring nitration was also brought about by a mixture of concentrated nitric and sulfuric acids and by a mixture of nitric and perchloric acids.

A mixture of the amine 22, nitric and hydrochloric acids in acetic anhydride¹¹ brought about the formation of benzylmethylnitrosamine 27 and benzaldehyde 28. It was presumed that undetected formaldehyde accompanied the formation of product 27 and that undetected dimethylnitrosamine 4 (R = CH₃) accompanied the formation of product 28. A redox reaction between nitric and hydrochloric acids ¹² produced dinitrogen trioxide, a nitrosating agent for the intermediate formation of the nitrite ester 21. Acetyl nitrate¹³ and nitrite¹⁴ were probably present, however, their contribution to product formations was not determined.

2 HCl + 2 HNO₃ + 3 (CH₃CO)₂O \rightleftharpoons 2 CH₃COCl + N₂O₃ + 4 CH₃CO₂H CH₃COCl + N₂O₃ \rightleftharpoons CH₃CO₂NO + NOCl

A similar treatment converted dibenzyl methyl amine 24 to the nitrosamine 27 and benzaldehyde 28. Diethyl nitrosamine 4 (R = C_2H_5) was obtained from triethyl amine 25.

25
$$\xrightarrow{70\text{% HNO}_3 (2 \text{ mol})}$$
 4 (R = C₂H₅)
HCl (3 mol)
(CH₃CO)₂O (10 mol) 32%
0.5 h at 50°, 16 h at 25°

Tri-n-butylamine 26 was converted to di-n-butylnitrosamime 4 (R = CH₃CH₂CH₂CH₂) in 62% yield by similar treatment with nitric and hydrochloric acids in acetic anhydride. On repeating the reaction without hydrochloric acid the yield was 47%. In the latter example the presence of the nitrosating agent depended on the breakdown of the intermediate nitrammonium cation 2a.

$$\frac{26}{(CH_3CO)_2O (10 m)} \xrightarrow{(n-C_4H_9)_2NNO}$$

References

- A-1. G.F. Wright, "Methods of Formation of the Nitramino Group and its Properties and Reactions," in "The Chemistry of the Nitro and Nitroso Groups," ed. H. Feuer, in "The Chemistry of Functional Groups," series ed. S. Patai, J. Wiley, New York, 1969, pp 613-684.
- A-2. W.P. Norris, J. Org. Chem., 1960, 25, 1244.
- A-3. O.A. Luk'yanov, N.M. Seregina, and V.A. Tartakovskii, Izv.

 Akad. Nauk SSSR, Ser. Khim., 1976, 225; Chem. Abstr., 1976,

 84, 135574w.
- A-4. Ref 1, pp 653, 654.
- A-5. D.A. Cichra and H.G. Adolph, J. Org. Chem., 1982, 47, 2474.

 From the amine 7 hydrochloride the nitramine 3 (R = CH₃)

 (55%) was obtained.
- A-6. W. Lijinsky, L. Keefer, E. Conrad, and R. Van de Bogart, J. Nat. Cancer Inst., 1972, 49, 1239.
- A-7. P.A.S. Smith and R.N. Loeppky, J. Amer. Chem. Soc., 1967,

- 89, 1147.
- A-8. Aldrich Chem. Co.
- A-9. Organic Syntheses, III, 723.
- A-10. J.H. Boyer, V.T. Ramakrishnan, T.P. Pillai and C.-B. Huang, Final Report April 1, 1979 to March 31, 1982 on Contract No. 0014-79-C-0353 to ONR.
- A-11. Triethyl and tri-n-butylamines were converted to corresponding dialkylnitrosamines by this mixture of nitric and hydrochloric acids in acetic anhydride (Y. Ogata, Y. Sawaki, and Y. Kuriyama, Tetrahedron, 1968, 1425).
- A-12. Ref. 1, p 634.
- A-13. Acetyl nitrate was produced in situ from acetic anhydride and nitric acid as reported by F.G. Bordwell and E.W. Garbisch, J. Am. Chem. Soc., 1960, 82, 3588.
- A-14. Acetyl nitrite from silver acetate and nitrosyl chloride was recently reported (A.B. Kyte, R. Jones-Parry, and D. Whittaker, J. Chem. Soc. Chem. Commun., 1982, 74). Nitrite was detected in a preparation of acetyl nitrate from dinitrogen pentoxide and acetic anhydride (A.R. Cooksey, K.J. Morgan, and D.P. Morrey, Tetrahedron, 1970, 26, 5101.

B. α -Substituent in Nitramines. Except for gem-dinitramines 29, 1 the chemnistry of α -functional groups in nitramines is underdeveloped. A few examples e.g. 30, 1 described a nitramine with a tert-amino group attached to a primary α -carbon atom; however, with a sec-amino group an example was unstable on liberation from its nitrate salt 31, 1 and an α -primary aminonitramine 32 has not been reported.

There are a few examples of nitramines with α -functions. α -Hydroxynitramines (unstable) and α -alkoxynitramines have been interconverted; α -cyano, α -chloro, α -alkoxynitramines have been α -azido, α -azido, α -azido, α -azido, α -pyrazolo, α -and α -nitraminoacids have been reported.

When it became desirable to extend amine-carbonyl condensation to α -aminonitramines the initial problem of their preparation had to be solved. We have investigated a standard sequence of converting a carboxyl group to an amino group as is shown for the conversion of 1-nitropiperidine-2-carboxylic acid <u>6b</u> to 1-nitro-2-aminopiperidine <u>6f</u> isolated as the methyl carbamate derivative <u>6e</u> (R = CH₃). Yields are shown for each conversion.

Compounds <u>6c,d.e</u> represent the first examples of nitramines with α -azidocarbonyl, α -isocyanato, and α -alkoxycarbonylamino functions.

An initial attempt to liberate the free amine $\underline{6f}$ from its carbamate $\underline{6e}$ (R = CH₃) under anhydrous conditions⁵ gave instead the olefin $\underline{7}$ apparently by a spontaneous deamination of the amine $\underline{6f}$.

$$\frac{6e}{R = CH_3} \xrightarrow{\text{CCH}_3)_3 \text{SiI}} R = \frac{6e}{(CH_3)_3 \text{Si}} \xrightarrow{\text{HOCH}_3} \text{NNO}_2$$

<u>6f</u>

Investigations are continuing.

Attempts to achieve α -functionalization in a secondary nitramine ((RCH₂)₂NNO₂) by metal interchange reactions failed when α -metallation could not be brought about.

References

- B-1. Ref A-1.
- B-2. I.J. Shishkov, N.L Sadova, L.V. Vilkov, and V.P. Ivshin, Zh. Strukt. Khim., 1982, 23, 73; Chem. Abstr. 1982, 97, 215453p.
- B-3. B. Unterhalt and F. Lieblein, Arch. Pharm., 1979, 312, 159.
- B-4. H.T. Nagasawa, W.P. Muldoon, and F.N. Shirota, J. Med. Chem., 1977, 20, 1588.
- B-5. This two step procedure with trimethylsilyl iodide followed by methanolysis has been reported: H.-J. Altenbach, B. Blech, J.A. Marco, and E. Vogel, Angew. Chem. Int. Ed. Engl., 1982, 21, 778.
- B-6. D. Siebach and D. ENders, Angew. Chem. Internat. Edit. Engl., 1975, 14, 15.

C. Cyclic Nitronic-Carboxylic Acid Anhydrides. Ring-opening polymerization has many practical applications, e.g., the conversion of caprolactam to nylon. A facile ring-opening polymerization of an isoxazolone-N-oxide was first encountered by Russian workers in attempts to transform derivatives of 2-nitro-3-hydroxybenzoic acid 33 into actinomycin analogs. Dehydration converted the acid 33 to an isoxazolone-N-oxide 35 which thermally, polymerized readily at ambient temperatures. Our investigations on similar converstions of 2,4,6-trinitro-3-hydroxybenzoic acid 34 to 2 are continuing.

$$\begin{array}{c}
\Delta t \\
2 \xrightarrow{\Delta t}
\end{array}$$

$$\begin{array}{c}
R' \\
O \\
NO_{2} \\
O
\end{array}$$

A review of the dehydration of 1-nitronaphthy1-2-acetic acid 36 is underway. A product 37 was reported in 1918. We anticipate the collection of data to permit reassignment of the compound as an oxazinone-N-oxide 8.

N O CCO₂H

<u> 36</u>

<u>37</u>

References

C-1. B.V. Tsukerman, E.N. Glibin, and O.F. Ginzburg, Zh. Org. Khim., 1982, 18, 1721.

C-2. F. Mayer and T. Oppenheimer, Ber., 1918, 51, 510.

D. <u>Products from Nitroform and Isocyanides</u>. The project initiated by an undergraduate has been investigated further by Dr. Pillai.

In addition to the sydnone 13 (Ar = $p-0_2NC_6H_5$) the reaction between p-nitrophenyl isocyanide and nitroform also produced p-nitroaniline 38.

$$ArN = C$$
 $Ar = p-O_2NC_6H_4$
 $HC(NO_2)_3$
 $13 + p-O_2NC_6H_4NH_2$
 38

The similar reaction with <u>p</u>-tolyl isocyanide gave the sydnone 13 (Ar = <u>p</u>-H₃CC₆H₅) (needs to be confirmed) and 2-nitro-4-methylaniline. NH_2

$$Ar \stackrel{=}{\text{NO}_2}$$

$$Ar = \underline{p} - \text{H}_3\text{CC}_6\text{H}_5$$

$$HC (\text{NO}_2)_3 \longrightarrow 13 + CH_2$$

E. <u>Nitropyrroles</u>. A draft of the review will be published by Verlag Chemie International by arrangement with Professor Henry Feuer, ed., Purdue University. A copy is available on request.

DISTRIBUTION LIST

No. Copies	No.	Co	pies
Dr. L. V. Schmidt 1 Dr. F. Roberto Assistant Secretary of the Navy (R, E, and S) Room 5E 731 Edwards AFB, CA 93523 Pentagon		1	
Washington, DC 20350 Dr. L. H. Caveny Air Force Office of		1	٠
Dr. A. L. Slafkosky Scientific Advisor Commandant of the Marine Corps Code RD-1 Washington, DC 20380 Scientific Research Directorate of Aerospace Sci Bolling Air Force Base Washington, DC 20332	ence	S	
Dr. Richard S. Miller Office of Naval Research Code 432 Arlington, VA 22217 Dr. De id Siegel Mr. Donald L. Ball Air Force Office of Scientific Research Directorate of Chemical Scienting Air Force Base Washington, DC 20332	nces	1	•
Office of Naval Research Code 260 Arlington, VA 22217 Dr. John S. Wilkes, Jr. FJSRL/NC USAF Academy, CO 80840		1	
Dr. R. J. Marcus 1 Dr. R. L. Lou Office of Naval Research Western Office P.O. Box 15699C 1030 East Green Street Sacramento, CA 95813 Pasadena, CA 91106	Co.	1	
Dr. V. J. Keenan Dr. Larry Peebles Office of Naval Research East Central Regional Office 666 Summer Street, Bldg. 114-D Dr. V. J. Keenan Anal-Syn Lab., Inc. P.O. Box 547 Paoli, PA 19301		1	
Boston, MA 02210 Dr. Philip Howe Army Ballistic Research Labs Dr. Phillip A. Miller 1 ARRAJCOM	i	1	
Office of Naval Research San Francisco Area Office One Hallidie Plaza, Suite 601 Code DRDAR-BLT Aberdeen Proving Ground, MD	2100	5	
San Francisco, CA 94102 Mr. L. A. Watermeier Army Ballistic Research Labs Mr. Otto K. Heiney 1 . ARRADCOM		1	
AFATL - DLDL Code DRDAR-BLI Elgin AFB, FL 32542 Aberdeen Proving Ground, MD	2100	5	
Mr. R. Geisler ATTN: MKP/MS24 AFRPL Edwards AFB, CA 93523 ATTN: MKP/MS24 Commander U.S. Army Missile Command Redstone Arsenal, AL 35898		1	

<u>No.</u>	Copies	<u>N</u>	o. Copies
Dr. A. Faulstich Chief of Naval Technology MAT Code 0716 Washington, DC 20360	1,	Dr. D. A. Flanigan Thiokol Corporation Huntsville Division Huntsville, AL 35807	1 .
Dr. E. Zimet Chief of Naval Material Office of Naval Technology MAT Code 0712 Washington, DC 20360	1	Mr. G. F. Mangum Thiokol Corporation Huntsville Division Huntsville, AL 35807	1
Mr. Joe McCartney Naval Ocean Systems Center San Diego, CA 92152	1	Mr. E. S. Sutton Thickol Corporation Elkton Division P.O. Box 241 Elkton, MD 21921	1 .
Dr. S. Yamamoto Marine Sciences Division Naval Ocean Systems Center San Diego, CA 91232		Dr. G. Thompson Thiokol Corporation Wasatch Division MS 240, P.O. Box 524	1
Dr. G. Bosmajian Applied Chemistry Division	1	Brigham City, UT 84302	
Naval Ship Research and Development Center Annapolis, MD 21401	·	Dr. T. F. Davidson Technical Director Thiokol Corporation Government Systems Group	1
Dr. H. Shuey Rohm and Haas Company Huntsville, AL 35801	1	P.O. Box 9258 Ogden, UT 84409	
Dr. J. F. Kincaid Strategic Systems Project Office	1	Dr. C. W. Vriesen Thiokol Elkton Division P.O. Box 241 Elkton, MD 21921	1
Department of the Navy Room 901 Washington, DC 20376		Dr. J. C. Hinshaw Thiokol Wasatch Division P.O. Box 524	1
Strategic Systems Project Office	1	Brigham City, UT 83402	
Propulsion Unit Code SP2731 Department of the Navy Washington, DC 20376		U.S. Army Research Office Chemical and Biological Science Division P.O. Box 12211 Research Triangle Park, NC 277	
Mr. E. L. Throckmorton Strategic Systems Project Offi Department of the Navy Room 1048 Washington, DC 20376	ice	Dr. R. F. Walker USA ARRADCOM DRDAR-LCE Dover, NJ 07801	1

No.	Copies	No.	Copies
Dr. R. G. Rhoades Commander Army Missile Command DRSMI-R	1	Dr. James H. Thacher Hercules Inc., Magna Baccus Works P.O. Box 98	1
Redstone Arsenal, AL 35898		Magna. UT 84044	•
Dr. W. D. Stephens Atlantic Research Corp. Pine Ridge Plant 7511 Wellington Road Gainesville, VA 22065	1	Mr. Theodore ff. Gilliland Johns Hopkins University APL Chemical Propulsion Info. Agency Johns Hopkins Road Laurel, MD 20810	1
Dr. A. W. Barrows Ballistic Research Laboratory USA ARRADCOM DRDAR-BLP Aberdeen Proving Ground, MD 21	.005	Dr. R. McGuire Lawrence Livermore Laboratory University of California Code L-324 Livermore, CA 94550	1 .
Dr. C. M. Frey Chemical Systems Division P.O. Box 358 Sunnyvale, CA 94086	1	Dr. Jack Linsk Lockheed Missiles and Space Co. P.O. Box 504 Code Org. 83-10, Bldg. 154 Sunnyvale, CA 94088	1
Professor F. Rodriguez Cornell University School of Chemical Engineering Olin Hall, Ithaca, NY 14853		Dr. B. G. Craig Los Alamos National Laboratory P.O. Box 1663 NSP/DOD, MS-245	1
Defense Technical Information Center DTIC-DDA-2 Cameron Station Alexandria, VA 22314 Dr. Rocco C. Musso	12	Dr. R. L. Rabie WX-2, MS-952 Los Alamos National Laboratory P.O. Box 1663 Los Alamos, NM 87545	1
Hercules Aerospace Division Hercules Incorporated Allegheny Ballistic Lab. P.O. Box 210 Washington, DC 21502		Dr. R. Rogers, WX-2 Los Alamos Scientific Laboratory P.O. Box 1663 Los Alamos, NM 87545	1
Dr. Ronald L. Simmons Hercules Inc., Eglin AFATL/DLDL Eglin AFB, FL 32542	1	Mr. R. Brown Naval Air Systems Command Code 330 Washington, DC 20361	1
Dr. E. H. Debutts Hercules, Inc. Baccus Works P.O. Box 98 Magna, UT 84044	1.	Or. H. Rosenwasser Naval Air Systems Command AIR-319C Washington, DC 20369	1

			No. Copies
Mr. B. Sobers Naval Air Systems Command	1.	Mr. John Boyle Materials Branch	1
Code 350		Naval Ship Engineering Center	
Washington, DC 20360		Philadelphia, PA 19112	
Dr. L. R. Rothstein	1	Mr. J. Murrin	1 .
Assistant Director		Naval Sea Systems Command	
Naval Explosives Dev.		Code 62R2	
Engineering Dept.		Washington, DC 20362	
Naval Weapons Station			
Yorktown, VA 23691		Dr. D. R. Derr	1
Du Idaaal Diabiaaaa	1	Naval Weapons Center	
Dr. Lionel Dickinson	1	Code 388	
Naval Explosive Ordnance	*	China Lake, CA 93555	•
Disposal Tech. Center		Mm loc N Cilbert	1
Code D Indian Head, MD 20640		Mr. Lee N. Gilbert Naval Weapons Center	1
Indian nead, in 20040		Code 3205	
Mr. C. L. Adams	1	China Lake, CA 93555	
Naval Ordnance Station	•	Cittle Earcy On 30000	
Code PM4		Dr. E. Martin	1
Indian Head, MD 20640		Naval Weapons Center	_
		Code 3858	
Mr. S. Mitchell	1	China Lake, CA 93555	
Naval Ordnance Station			
Code 5253		Mr. R. McCarten	1
Indian Head, MD 20640		Naval Weapons Center	
	_	Code 3272	
Dr. William Tolles	1	China Lake, CA 93555	
Dean of Research		D . A . W. Tana	•
Naval Postgraduate School		Dr. A. Nielsen	1
Monterey, CA 93940		Naval Weapons Center	
Naval Research Laboratory	1	Code 385 China Lake, CA 93555	
Code 6100	+	China Lake, CA 93333	
Washington, DC 20375	•	Dr. R. Reed, Jr.	1 .
nushing cont so Losi o		Naval Weapons Center	•
Dr. J. Schnur	1	Code 388	
Naval Research Laboratory	•	China Lake, CA 93555	
Code 6510		•	
Washington, DC 20375		Dr. L. Smith	1
•		Naval Weapons Center	
Mr. R. Beauregard	1	Code 3205	
Naval Sea Systems Command		China Lake, CA 93555	
SEA 64E			•
Washington, DC 20362		Dr. B. Douda	1
Mr. C. Edwards	•	Naval Weapons Support Center	
Mr. G. Edwards	1	Code 5042	•
Naval Sea Systems Command Code 62R3		Crane, Indiana 47522	
Washington, DC 20362			
meshington, be ensee			

No.	Copies	No.	Copies
Dr. T. Sinden Munitions Directorate	1	Professor J. C. Chien University of Massachusetts	1
Propellants and Explosives Defence Equipment Staff	•	Department of Chemistry Amherst, MA 03003	. •
British Embassy 3100 Massachusetts Ave. Washington, DC 20008		Professor Richard A. Reinhardt	1 .
Captain S. Shackelford	1	Naval Postgraduate School Physics and Chemistry Department Monterey, CA 93940	
AFRPL/LKLR Edwards AFB, CA 93523		Dr. J. Karle	1
•	_	Naval Research Laboratory	•
Dr. Merrill K. King Atlantic Research Corporation	1	Code 6030 Washington, DC 20375	•
5390 Cherokee Avenue Alexandria, VA 22314		Dr. R. Atkins .	1
Dr. W. Wharton	1	Naval Weapons Center Code 3852	
Army Missile Command DRSMI-RK		China Lake, CA 93555	
Redstone Arsenal, AL 35898	•	Dr. May L. Chan Naval Weapons Center	1
Dr. David C. Sayles Ballistic Missile Defense	1	Code 3244 China Lake, CA 93555	
Advanced Technology Center P.O. Box 1590		Dr. T. B. Joyner	1
Huntsville, AL 35807		Naval Weapons Center Code 3264	
Dr. Kurt Baum Fluorochem, Inc.	1	China Lake, CA 93555	
680 South Ayon Avenue Azusa, CA 91702		Dr. R. A. Rhein Naval Weapons Center Code 3244	1
Professor J. H. Boyer University of Illinois	1	China Lake, CA 93555	
Department of Chemistry Box 4348		Dr. B. David Halpern Polysciences, Inc.	1
Chicago, IL 60680		Paul Valley Industrial Park Warrington, PA 18976	
Dr. Joyce J. Kaufman The Johns Hopkins University	1	Dr. Karl O. Christe	1
Department of Chemistry Baltimore, MD 21218		Rockwell International 6633 Canoga Avenue	•
Dr. C. Coon	1	Canoga Park, CA 91304	
Lawrence Livermore Laboratory University of California P.O. Box 808 Livermore, CA 94550	-	Dr. M. B. Frankel Rockwell International Rocketdyne Division 6633 Canoga Avenue	1
שיישווושושן שיי פיוששש		Canoga Park, CA 91304	

No. Copies No. Copies Mr. M. Baron SP 27314 Dr. D. L. Ross 1 SRI International Strategic Systems Project Office Department of the Navy Washington, DC 20376 333 Ravenswood Avenue Menlo Park, CA 94025 Mr. Ed van Ribbink Space Ordnance Systems 25977 San Canyon Road Canyon Country, CA 91351

1