

NPTEL ONLINE CERTIFICATION COURSES

Course Name: Deep Learning

Faculty Name: Prof. P. K. Biswas

Department: E & ECE, IIT Kharagpur

Topic

Lecture 21: Multilayer Perceptron

CONCEPTS COVERED

Concepts Covered:

- Neural Network
 - ☐ AND Logic
 - ☐ OR Logic
 - ☐ XOR Logic
- ☐ Feed Forward NN
- Back Propagation Learning

AND/ OR/ XOR

Neural Network Function

$$f^{(K)}(f^{(K-1)}.....(f^{(i)}....(f^{(2)}(f^{(1)}(X)))))$$

Multilayer

Perceptron

 $M_k \to \text{No. of nodes in } k^{th} \text{ layer}$

Back Propagation Learning

Single Layer Network- Single Output without nonlinearity

$$E = \frac{1}{2} \sum_{i=1}^{N} (W^{t} X_{i} - y_{i})^{2} = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_{i} - y_{i})^{2}$$

$$\nabla_W E = \sum_{i=1}^N (\hat{y}_i - y_i) X_i$$

Weight updation rule

$$W \leftarrow W - \eta \sum_{i=1}^{N} (\hat{y}_i - y_i) X_i$$

 \overline{W}

NPTEL ONLINE CERTIFICATION COURSES

Thank you

NPTEL ONLINE CERTIFICATION COURSES

Course Name: Deep Learning

Faculty Name: Prof. P. K. Biswas

Department: E & ECE, IIT Kharagpur

Topic

Lecture 22: Multilayer Perceptron -II

CONCEPTS COVERED

Concepts Covered:

☐ Neural Network

☐ Feed Forward NN

■ Back Propagation Learning

Single Layer Network- Single Output with nonlinearity

Single Layer Network- Single Output with nonlinearity

$$E = \frac{1}{2}(\hat{y}_i - y_i)^2 = \frac{1}{2}(\sigma(W^t X_i) - y_i)^2$$

$$\nabla_{\mathbf{W}} E = \hat{\mathbf{y}}_i (1 - \hat{\mathbf{y}}_i) (\hat{\mathbf{y}}_i - \mathbf{y}_i) X_i$$

Weight updation rule \Rightarrow

$$W \leftarrow W - \eta \hat{y}_i (1 - \hat{y}_i) (\hat{y}_i - y_i) X_i$$

Back Propagation Learning: Single Layer Multiple Output

$$o_j = \frac{1}{1 + e^{-\theta_j}} \qquad \theta_j = \sum_{i=1}^D W_{ij} x_i$$

$$E = \frac{1}{2} \sum_{j=1}^{M} (o_j - t_j)^2$$

$$\frac{\partial E}{\partial W_{ij}} = \frac{\partial E}{\partial o_j} \cdot \frac{\partial o_j}{\partial \theta_j} \cdot \frac{\partial \theta_j}{\partial W_{ij}}$$

$$= (o_j - t_j)o_j(1 - o_j)x_i$$

Weight updation rule ⇒

$$W_{ij} \leftarrow W_{ij} - \eta(o_j - t_j)o_j(1 - o_j)x_i$$

Multilayer

Perceptron

 $M_k \to \text{No. of nodes in } k^{th} \text{ layer}$

NPTEL ONLINE CERTIFICATION COURSES

Thank you

NPTEL ONLINE CERTIFICATION COURSES

Course Name: Deep Learning

Faculty Name: Prof. P. K. Biswas

Department: E & ECE, IIT Kharagpur

Topic

Lecture 23: Back Propagation Learning

CONCEPTS COVERED

Concepts Covered:

- ☐ Learning in Single Layer Perceptron
- ☐ Back Propagation Learning in MLP

Single Layer Network- Single Output with nonlinearity

Single Layer Network- Single Output with nonlinearity

$$E = \frac{1}{2}(\hat{y}_i - y_i)^2 = \frac{1}{2}(\sigma(W^t X_i) - y_i)^2$$

$$\nabla_{\mathbf{W}} E = \hat{\mathbf{y}}_i (1 - \hat{\mathbf{y}}_i) (\hat{\mathbf{y}}_i - \mathbf{y}_i) X_i$$

Weight updation rule \Rightarrow

$$W \leftarrow W - \eta \hat{y}_i (1 - \hat{y}_i) (\hat{y}_i - y_i) X_i$$

Back Propagation Learning: Single Layer Multiple Output

$$o_j = \frac{1}{1 + e^{-\theta_j}} \qquad \theta_j = \sum_{i=1}^D W_{ij} x_i$$

$$E = \frac{1}{2} \sum_{j=1}^{M} (o_j - t_j)^2$$

$$\frac{\partial E}{\partial W_{ij}} = \frac{\partial E}{\partial o_j} \cdot \frac{\partial o_j}{\partial \theta_j} \cdot \frac{\partial \theta_j}{\partial W_{ij}}$$

$$= (o_j - t_j)o_j(1 - o_j)x_i$$

Weight updation rule ⇒

$$W_{ij} \leftarrow W_{ij} - \eta(o_j - t_j)o_j(1 - o_j)x_i$$

Multilayer

Perceptron

 $M_k \to \text{No. of nodes in } k^{th} \text{ layer}$

Back Propagation Learning:- Output Layer

$$O_{j}^{K} = \frac{1}{1 + e^{-\theta_{j}^{K}}} \qquad \theta_{j}^{K} = \sum_{i=1}^{M_{K-1}} W_{ij}^{K} x_{i}^{K-1}$$

$$E = \frac{1}{2} \sum_{j=1}^{M_K} \left(O_j^K - t_j \right)^2$$

Back Propagation Learning: Output Layer

Find
$$W_{ij}^{K}$$
 that minimizes $E = \frac{1}{2} \sum_{j=1}^{M_K} (O_j^K - t_j)^2$

$$\frac{\partial E}{\partial W_{ij}^{K}}$$

Back Propagation Learning: Output Layer

$$\frac{\partial E}{\partial W_{ij}^{K}} = \frac{\partial E}{\partial O_{j}^{K}} \cdot \frac{\partial O_{j}^{K}}{\partial \theta_{j}^{K}} \cdot \frac{\partial \theta_{j}^{K}}{\partial W_{ij}^{K}}$$

$$= (O_j^K - t_j)O_j^K (1 - O_j^K)O_i^{K-1}$$

Let
$$\delta_{j}^{K} = O_{j}^{K} (1 - O_{j}^{K}) (O_{j}^{K} - t_{j})$$

$$\Rightarrow \frac{\partial E}{\partial W_{ii}^{K}} = \delta_{j}^{K} O_{i}^{K-1}$$

$$O_{j}^{K} = \frac{1}{1 + e^{-\theta_{j}^{K}}} \qquad \theta_{j}^{K} = \sum_{i=1}^{M_{K-1}} W_{ij}^{K} O_{i}^{K-1}$$

Weight updation rule
Output Layer

$$W_{ij}^{K} \leftarrow W_{ij}^{K} - \eta \delta_{j}^{K} O_{i}^{K-1}$$

$$E = \frac{1}{2} \sum_{j=1}^{M_K} (O_j^K - t_j)^2$$

Find
$$W_{pi}^{K-1}$$
 that minimizes $E = \frac{1}{2} \sum_{j=1}^{M_K} (O_j^K - t_j)^2$

Gradient Descent
$$\Rightarrow \frac{\partial E}{\partial W_{pi}^{K-1}}$$

$$O_i^{K-1} = \frac{1}{1 + e^{-\theta_i^{K-1}}}$$

$$\theta_i^{K-1} = \sum_{p=1}^{M_{K-2}} W_{pi}^{K-1} O_p^{K-2}$$

$$\frac{\partial E}{\partial W_{pi}^{K-1}} = \frac{\partial E}{\partial O_{i}^{K-1}} \cdot \frac{\partial O_{i}^{K-1}}{\partial W_{pi}^{K-1}}$$

$$= \frac{\partial E}{\partial O_{i}^{K-1}} \cdot \frac{\partial O_{i}^{K-1}}{\partial \theta_{i}^{K-1}} \cdot \frac{\partial \theta_{i}^{K-1}}{\partial W_{pi}^{K-1}}$$

$$= \frac{\partial E}{\partial O_{i}^{K-1}} \cdot O_{i}^{K-1} (1 - O_{i}^{K-1}) \cdot O_{p}^{K-2}$$

$$O_i^{K-1} = \frac{1}{1 + e^{-\theta_i^{K-1}}}$$

$$\theta_i^{K-1} = \sum_{p=1}^{M_{K-2}} W_{pi}^{K-1} O_p^{K-2}$$

$$\frac{\partial E}{\partial O_i^{K-1}} = \frac{\partial E}{\partial O_j^K} \cdot \frac{\partial O_j^K}{\partial \theta_j^K} \cdot \frac{\partial \theta_j^K}{\partial O_i^{K-1}}$$

$$= \sum_{j=1}^{M_K} (O_j^k - t_j) O_j^K (1 - O_j^K) W_{ij}^K$$

$$=\sum_{j=1}^{M_K}\partial_{\ j}^{\ K}W_{ij}^{\ K}$$

$$E = \frac{1}{2} \sum_{j=1}^{M_K} (O_j^K - t_j)^2$$

$$O_j^K = \frac{1}{1 + e^{-\theta_j^K}} \qquad \theta_j^K = \sum_{i=1}^{M_{K-1}} W_{ij}^K O_i^{K-1}$$

$$\delta_j^K = O_j^K (1 - O_j^K) (O_j^K - t_j)$$

$$\frac{\partial E}{\partial W_{pi}^{K-1}} = \frac{\partial E}{\partial x_i^{K-1}} \cdot O_i^{K-1} (1 - O_i^{K-1}) \cdot O_p^{K-2} = O_i^{K-1} (1 - O_i^{K-1}) \cdot O_p^{K-2} \sum_{j=1}^{M_K} \partial_j^K W_{ij}^K$$

Putting
$$\delta_i^{K-1} = O_i^{K-1} (1 - O_i^{K-1}) \sum_{j=1}^{M_K} \partial_j^K W_{ij}^K$$

Weight updation rule Last but Output Layer

$$W_{pi}^{K-1} \leftarrow W_{pi}^{K-1} - \eta \delta_i^{K-1} O_p^{K-2}$$

For any hidden layer weight W_{ij}^{k}

Putting
$$\delta_i^k = O_i^k (1 - O_i^k) \sum_{j=1}^{M_{k+1}} \partial_j^{k+1} W_{ij}^{k+1}$$

Weight updation rule

$$W_{ij}^k \leftarrow W_{ij}^k - \eta \delta_j^k O_i^{k-1}$$

NPTEL ONLINE CERTIFICATION COURSES

Thank you

NPTEL ONLINE CERTIFICATION COURSES

Course Name: Deep Learning

Faculty Name: Prof. P. K. Biswas

Department: E & ECE, IIT Kharagpur

Topic

Lecture 24: Cross Entropy Loss

CONCEPTS COVERED

Concepts Covered:

- ☐ Back Propagation Learning in MLP
 - ☐ Squared Error
- ☐ Cross Entropy Loss

Problem with Quadratic Loss Function

$$E = \frac{1}{2} \sum_{j=1}^{M_K} \left(O_j^K - t_j \right)^2$$

$$W_{ij}^{K} \leftarrow W_{ij}^{K} - \eta \delta_{j}^{K} O_{i}^{K-1}$$

$$\delta_{j}^{K} = O_{j}^{K} (1 - O_{j}^{K}) (O_{j}^{K} - t_{j})$$

Cross Entropy Loss

Cross Entropy Loss- Two Class Problem

 $o \Rightarrow$ likelihood that y is 1

 $(1-o) \Rightarrow$ likelihood that y is 0

Likelihood that is to be maximized $\Rightarrow o^{y}(1-o)^{(1-y)}$

Loglikelihood $\Rightarrow y \log o + (1 - y) \log(1 - o)$

Cross Entropy Loss

Minimize
$$\Rightarrow C = -\frac{1}{N} \sum_{\forall X} [y \log o + (1 - y) \log(1 - o)]$$

$$\frac{\partial C}{\partial W_i} = -\frac{1}{N} \sum_{\forall X} \left[\frac{y}{\sigma(\theta)} - \frac{(1-y)}{1-\sigma(\theta)} \right] \frac{\partial \sigma(\theta)}{\partial W_i}$$

$$= -\frac{1}{N} \sum_{\forall X} \left[\frac{y}{\sigma(\theta)} - \frac{(1-y)}{1-\sigma(\theta)} \right] \frac{\partial \sigma(\theta)}{\partial \theta} \cdot \frac{\partial \theta}{\partial W_i}$$

Cross Entropy Loss

$$\frac{\partial C}{\partial W_i} = -\frac{1}{N} \sum_{\forall X} \left[\frac{y}{\sigma(\theta)} - \frac{(1-y)}{1-\sigma(\theta)} \right] \frac{\partial \sigma(\theta)}{\partial \theta} \cdot \frac{\partial \theta}{\partial W_i}$$

$$= -\frac{1}{N} \sum_{\forall X} \left[\frac{y}{\sigma(\theta)} - \frac{(1-y)}{1-\sigma(\theta)} \right] \frac{\partial \sigma(\theta)}{\partial \theta} \cdot \frac{\partial \theta}{\partial W_i}$$

$$= -\frac{1}{N} \sum_{\forall X} \left[\frac{y-\sigma(\theta)}{\sigma(\theta)(1-\sigma(\theta))} \right] \sigma(\theta)(1-\sigma(\theta).x_i)$$

$$= \frac{1}{N} \sum_{\forall X} x_i (\sigma(\theta) - y) \qquad = \frac{1}{N} \sum_{\forall X} x_i (o - y)$$

Cross Entropy Loss- Multiclass Problem

$$C = -\frac{1}{N} \sum_{\forall X} \sum_{j} \left[y_{j} \log o_{j}^{K} + (1 - y_{i}) \log(1 - o_{j}^{K}) \right]$$
$$\frac{\partial C}{\partial W_{ij}^{K}} = \frac{1}{N} \sum_{\forall X} o_{i}^{K-1} (o_{j}^{K} - y_{j})$$

$$W_{ij}^{K} \leftarrow W_{ij}^{K} - \eta \frac{1}{N} \sum_{\forall X} o_i^{K-1} (o_j^{K} - y_j)$$

NPTEL ONLINE CERTIFICATION COURSES

Thank you

NPTEL ONLINE CERTIFICATION COURSES

Course Name: Deep Learning

Faculty Name: Prof. P. K. Biswas

Department: E & ECE, IIT Kharagpur

Topic

Lecture 25: Back propagation Learning – Examples

CONCEPTS COVERED

Concepts Covered:

- ☐ Back Propagation Learning in MLP
- ☐ Different Loss Functions
- Back Propagation Learning Example
- Back Propagation Node Level

Back Propagation Learning an Example

Multilayer Perceptron

Multilayer Perceptron

W_{01}^{1}	W_{11}^{1}	W_{21}^{1}
0.5	1.5	0.8
W_{02}^1	W_{12}^{1}	W_{22}^{1}
0.8	0.2	-1.6

$$X = \begin{bmatrix} 0.7 \\ 1.2 \end{bmatrix}$$
 from category $1 \Rightarrow t = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Feed Forward

Pass

$$\mathbf{W}^{1} \qquad \mathbf{\chi}_{i}^{0} \quad \theta_{j}^{1} = \sum W_{ij}^{1} x_{i}^{0} \quad x_{j}^{1} = \frac{1}{1 + e^{-\theta_{j}^{1}}}$$

$$\begin{bmatrix} 0.5 & 1.5 & 0.8 \\ 0.8 & 0.2 & -1.6 \end{bmatrix} \begin{bmatrix} 1 \\ 0.7 \\ 1.2 \end{bmatrix} = \begin{bmatrix} 2.51 \\ -9.8 \end{bmatrix} \Rightarrow \begin{bmatrix} 0.92 \\ 0.27 \end{bmatrix}$$

$$W^2$$

$$\chi_i^1$$
 $\theta_j^2 = \sum_i W_{ij}^2 x_i^1$ $\chi_j^2 = \frac{1}{1 + e^{-\theta_j^2}}$

$$\begin{bmatrix} 0.9 & -1.7 & 1.6 \\ 1.2 & 2.1 & -1.-0.26 \end{bmatrix} \begin{bmatrix} 1 \\ 0.92 \\ 0.27 \end{bmatrix} = \begin{bmatrix} -0.232 \\ 3.057 \end{bmatrix} \Rightarrow \begin{bmatrix} 0.44 \\ 0.95 \end{bmatrix}$$

Back Propagation Learning: Output Layer

$$E = \frac{1}{2} \sum_{i=1}^{2} (x_j^2 - t_j)^2 \qquad x_j^2 = \frac{1}{1 + e^{-\theta_j^2}} \qquad \theta_j^2 = \sum_{i=0}^{2} W_{ij}^2 x_i^1$$

$$\frac{\partial E}{\partial W_{ij}^2} = \frac{\partial E}{\partial x_i^2} \cdot \frac{\partial x_j^2}{\partial \theta_i^2} \cdot \frac{\partial \theta_j^2}{\partial W_{ij}^2} = (x_j^2 - t_j) x_j^2 (1 - x_j^2) x_i^1$$

We set
$$\left[\delta_j^2 = x_j^2 (1 - x_j^2)(x_j^2 - t_j)\right] \Rightarrow \frac{\partial E}{\partial W_{ij}^2} = \delta_j^2 x_i^1$$

$$W_{ij}^2 \leftarrow W_{ij}^2 - \eta \frac{\partial E}{\partial W_{ij}^2}$$

NPTEL ONLINE CERTIFICATION COURSES

Thank you