

Institutt for matematiske fag

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

e formler og not X College eller	ater, Casio fx-82ES PLUS.
	Kontrollert av
Dato	Sign
	X College eller

Oppgave 1

La $X_1, X_2, ..., X_n$ være et tilfeldig utvalg fra en kontinuerlig fordeling med sannsynlighetstetthet

$$f(x) = \frac{xe^{-x/\beta}}{\beta^2}, \ x > 0.$$

Det oppgis at denne fordelingen har $E(X) = 2\beta$ og $Var(X) = 2\beta^2$. Verdien til parameteren β er ukjent og skal estimeres.

a) Vis at sannsynlighetsmaksimeringsestimatoren for β er

$$\hat{\beta} = \frac{1}{2n} \sum_{i=1}^{n} X_i.$$

La $Z_i = 2X_i/\beta$.

b) Vis at Z_i er χ^2 -fordelt med fire frihetsgrader. Vis/begrunn at $4n\hat{\beta}/\beta \sim \chi_{4n}^2$.

Vi ønsker så å benytte observerte verdier for $X_1, X_2, ..., X_n$ til å teste om det er grunnlag for å påstå at $\beta > \beta_0$ der β_0 er et gitt tall.

- c) Angi passende hypoteser H_0 og H_1 for denne situasjonen. Velg en testobservator og utled en tilhørende beslutningsregel med signifikansnivå lik α . Hva blir konklusjonen på testen dersom $\beta_0 = 2$, n = 10, $\sum_{i=1}^n x_i = 25.87$ og $\alpha = 0.05$.
- d) Utled styrkefunksjonen for testen du fant i forrige punkt (finn uttrykk for generelle β_0 , n og α).

For $\beta_0 = 2$, n = 10 og $\alpha = 0.05$, for hvilken verdi av β blir teststyrken lik 0.99? Gi også en presis beskrivelse av hvilken hendelse som har sannsynlighet lik 0.99 her.

Oppgave 2

En anleggsbedrift har undersøkt hvordan forventet opptak av fuktighet varierer mellom fire typer betong. I undersøkelsen benyttet bedriften seks prøver av hver av de fire betongtypene. Hver av de totalt 24 prøvene ble utsatt for fuktighet i 48 timer og det ble målt hvor mye fuktighet som ble tatt opp i prøvene. Dataene ble som følger (første tabell).

En delvis utfylt variansanalysetabell (ANOVA-tabell) for disse målingene er som følger (andre tabell).

Betongtype:	1	2	3	4
Y_{ij}	551	595	639	550
	457	580	615	449
	450	508	511	517
	731	583	573	438
	499	633	648	415
	632	517	677	555
$\sum_{i=1}^{6} Y_{ij}$	3320	3416	3663	2924
$S_i^2 = \frac{1}{5} \sum_{i=1}^6 (Y_{ij} - \bar{Y}_{ij})^2$:	12133.87	2302.67	3593.50	3704.27

Kilde	df	SS	MS	F
Betong	*	*	15734.38	*
Error	*	108671.50	*	
Total	*	*		

- a) Skriv opp den fullstendige ANOVA-tabellen. Vis hvordan du beregner verdiene der det står ⋆ i den oppgitte tabellen.
- b) I ANOVA-tabellen inngår det en testobservator F. Spesifiser hvilke hypoteser H_0 og H_1 denne testobservatoren relaterer seg til. Forklar spesielt hva eventuelle parametre du benytter i spesifikasjonen av H_0 og H_1 representerer i situasjonen beskrevet over.

Utfør hypotesetesten for signifikansnivå $\alpha = 0.05$ og konkluder.

c) Angi modellen som to-utvalg t-test baserer seg på.
Utfør en to-utvalg t-test for å teste om det er grunnlag for å påstå at forventningsverdiene for opptatt fuktighet for betong av type 3 og 4 er ulike.

Sammenlign konklusjonene på de to hypotesetestene du har utført og kommenter.

Oppgave 3

I denne oppgaven skal vi regne på en regresjonsmodell som er noe modifisert i forhold til den som er behandlet i læreboka. Anta at vi har variabelpar

$$(x_1, Y_1), (x_2, Y_2), ..., (x_n, Y_n)$$

der $x_1, x_2, ..., x_n$ ikke betraktes som stokastiske, mens $Y_1, Y_2, ..., Y_n$ antas å være uavhengige stokastiske variabler med

$$Y_i \sim N(\alpha + \beta x_i, \sigma_0^2 x_i).$$

Variansen til Y_i antas altså å være proporsjonal med x_i . I denne oppgaven skal vi anta at σ_0^2 har en kjent verdi, mens de to parameterene α og β skal estimeres basert på de tilgjengelige data.

a) Utled sannsynlighetsmaksimeringsestimatorene (SME) for α og β og vis at de kan skrives på formen

$$\hat{\alpha} = \bar{Y} - \hat{\beta}\bar{x}$$

og

$$\hat{\beta} = \frac{\bar{Y} \sum_{i=1}^{n} \frac{1}{x_i} - \sum_{i=1}^{n} \frac{Y_i}{x_i}}{\bar{x} \sum_{i=1}^{n} \frac{1}{x_i} - n}$$

der

$$\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i, \ \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

- **b)** Vis at $\hat{\beta}$ er forventningsrett.
- c) Hvilken sannsynlighetsfordeling har $\hat{\beta}$? Svaret skal begrunnes. Utled et $100(1-\delta)\%$ -konfidensintervall for β hvis det er kjent at

$$Var(\hat{\beta}) = \frac{\sigma_0^2}{n} \cdot \frac{\frac{1}{n} \sum_{i=1}^n \frac{1}{x_i}}{\bar{x} \left(\frac{1}{n} \sum_{i=1}^n \frac{1}{x_i} \right) - 1}.$$