US Patent & Trademark Office Patent Public Search | Text View

United States Patent

Kind Code

B2

Date of Patent

Inventor(s)

12387999

August 12, 2025

Sankman; Robert L. et al.

Planar integrated circuit package interconnects

Abstract

Generally discussed herein are systems, methods, and apparatuses that include conductive pillars that are about co-planar. According to an example, a technique can include growing conductive pillars on respective exposed landing pads of a substrate, situating molding material around and on the grown conductive pillars, removing, simultaneously, a portion of the grown conductive pillars and the molding material to make the grown conductive pillars and the molding material about planar, and electrically coupling a die to the conductive pillars.

Inventors: Sankman; Robert L. (Phoenix, AZ), Ganesan; Sanka (Chandler, AZ)

Applicant: Intel Corporation (Santa Clara, CA)

Family ID: 60786507

Assignee: Intel Corporation (Santa Clara, CA)

Appl. No.: 17/592887

Filed: February 04, 2022

Prior Publication Data

Document IdentifierUS 20220157701 A1

Publication Date
May. 19, 2022

Related U.S. Application Data

continuation parent-doc US 16842954 20200408 US 11276630 child-doc US 17592887 continuation parent-doc US 15198107 20160630 US 10651116 child-doc US 16842954

Publication Classification

Int. Cl.: H01L23/498 (20060101); H01L21/48 (20060101); H01L21/56 (20060101); H01L23/00 (20060101); H01L23/31 (20060101)

U.S. Cl.:

CPC H01L23/49811 (20130101); H01L21/4853 (20130101); H01L21/565 (20130101); H01L23/49827 (20130101); H01L23/49838 (20130101); H01L24/09 (20130101); **H01L24/13** (20130101); **H01L24/16** (20130101); H01L23/3114 (20130101); H01L23/49822 (20130101); H01L24/81 (20130101); H01L2224/08238 (20130101); H01L2224/131 (20130101); H01L2224/13294 (20130101); H01L2224/133 (20130101); H01L2224/16237 (20130101); H01L2224/16238 (20130101); H01L2224/81191 (20130101); H01L2224/81192 (20130101); H01L2224/81401 (20130101); H01L2224/81411 (20130101); H01L2224/81416 (20130101); H01L2224/81438 (20130101); H01L2224/81439 (20130101); H01L2224/81444 (20130101); H01L2224/81447 (20130101); H01L2224/81455 (20130101); H01L2224/81464 (20130101); H01L2224/81473 (20130101); H01L2224/81815 (20130101); H01L2924/01004 (20130101); H01L2924/01028 (20130101); H01L2924/01029 (20130101); H01L2924/01045 (20130101); H01L2924/01046 (20130101); H01L2924/01047 (20130101); H01L2924/01048 (20130101); H01L2924/0105 (20130101); H01L2924/01079 (20130101); H01L2924/01082 (20130101); H01L2924/14 (20130101); H01L2924/1532 (20130101); H01L2924/15747 (20130101); H01L2224/13294 (20130101); H01L2924/00014 (20130101); H01L2224/81411 (20130101); H01L2924/00014 (20130101); H01L2224/81401 (20130101); H01L2924/01048 (20130101); H01L2224/81444 (20130101); H01L2924/00014 (20130101); H01L2224/81439 (20130101); H01L2924/00014 (20130101); H01L2224/81464 (20130101); H01L2924/00014 (20130101); H01L2224/81473 (20130101); H01L2924/00014 (20130101); H01L2224/81447 (20130101); H01L2924/0105 (20130101); H01L2224/81416 (20130101); H01L2924/00014 (20130101); H01L2224/81455 (20130101); H01L2924/01047 (20130101); H01L2224/81438 (20130101); H01L2924/01004 (20130101); H01L2924/01029 (20130101); H01L2224/133 (20130101); H01L2924/00014 (20130101); H01L2224/131 (20130101); H01L2924/014 (20130101); H01L2224/81815 (20130101); H01L2924/00014 (20130101)

Field of Classification Search

CPC: H01L (23/49811); H01L (23/49822); H01L (23/49838); H01L (23/3114); H01L (21/4853); H01L (21/565); H01L (24/09); H01L (24/13); H01L (23/49827); H01L (24/16); H01L (24/81); H01L (2224/08238); H01L (2224/131); H01L (2224/13294); H01L (2224/133); H01L (2224/16237); H01L (2224/16238); H01L (2224/81191); H01L (2224/81192); H01L (2224/81401); H01L (2224/81411); H01L (2224/81416); H01L (2224/81438); H01L (2224/81439); H01L (2224/81444); H01L (2224/81447); H01L (2224/81455); H01L (2224/81464); H01L (2224/81473); H01L (2224/81815); H01L (2924/01004); H01L (2924/01028); H01L (2924/01029); H01L (2424/01045); H01L (2924/01079); H01L (2924/01047); H01L (2924/01048); H01L (2924/0105); H01L (2924/01079); H01L (2924/01082); H01L (2924/0104); H01L (2924/014); Y02P (80/30)

USPC: 257/698

References Cited

U.S. PATENT DOCUMENTS

Patent No.	Issued Date	Patentee Name	U.S. Cl.	CPC
10651116	12/2019	Sankman	N/A	H01L 21/4853
11276630	12/2021	Sankman	N/A	H01L 24/13
2011/0169150	12/2010	Su et al.	N/A	N/A
2011/0316117	12/2010	Kripesh et al.	N/A	N/A
2012/0086120	12/2011	Chen et al.	N/A	N/A
2012/0205800	12/2011	Shen et al.	N/A	N/A
2014/0036454	12/2013	Caskey et al.	N/A	N/A
2015/0048503	12/2014	Chiu et al.	N/A	N/A
2015/0366064	12/2014	Hsu et al.	N/A	N/A
2016/0005685	12/2015	Rokugawa	N/A	N/A
2016/0013147	12/2015	Cheng et al.	N/A	N/A
2016/0118312	12/2015	Hu et al.	N/A	N/A
2016/0118333	12/2015	Lin	N/A	N/A
2018/0005928	12/2017	Sankman et al.	N/A	N/A
2020/0235047	12/2019	Sankman et al.	N/A	N/A

FOREIGN PATENT DOCUMENTS

Patent No.	Application Date	Country	CPC
102197478	12/2010	CN	N/A
2958141	12/2014	EP	N/A
2996146	12/2015	EP	N/A
WO-2018005006	12/2017	WO	N/A

OTHER PUBLICATIONS

- "European Application Serial No. 17820867.4, Communication Pursuant to Article 94(3) EPC mailed Feb. 14, 2022", 6 pgs. cited by applicant
- "European Application Serial No. 17820867.4, Response filed May 17, 2022 to Communication Pursuant to Article 94(3) EPC mailed Feb. 14, 2022", 13 pgs. cited by applicant
- "Chinese Application Serial No. 201780034003.9, Office Action mailed Oct. 26, 2022", With English translation, (24 pgs). cited by applicant
- "Chinese Application Serial No. 201780034003.9, Response filed Mar. 8, 2023 to Office Action mailed Oct. 26, 2022", w English claims, 20 pgs. cited by applicant
- "U.S. Appl. No. 15/198,107, Corrected Notice of Allowability mailed Mar. 6, 2020", 4 pgs. cited by applicant
- "U.S. Appl. No. 15/198,107, Corrected Notice of Allowability mailed Apr. 15, 2020", 6 pgs. cited by applicant
- "U.S. Appl. No. 15/198,107, Non Final Office Action mailed Aug. 6, 2019", 9 pgs. cited by applicant
- "U.S. Appl. No. 15/198,107, Notice of Allowance mailed Jan. 10, 2020", 7 pgs. cited by applicant "U.S. Appl. No. 15/198,107, Response filed Oct. 14, 2019 to Non-Final Office Action mailed Aug. 6, 2019", 9 pgs. cited by applicant
- "U.S. Appl. No. 16/842,954, Non Final Office Action mailed Apr. 1, 2021", 7 pgs. cited by applicant
- "U.S. Appl. No. 16/842,954, Notice of Allowance mailed Nov. 4, 2021", 10 pgs. cited by applicant "U.S. Appl. No. 16/842,954, Response filed Jun. 24, 2021 to Non Final Office Action mailed Apr. 1, 2021", 6 pgs. cited by applicant

- "European Application Serial No. 17820867.4, Extended European Search Report mailed Jan. 30, 2020", 9 pgs. cited by applicant
- "European Application Serial No. 17820867.4, Response filed Jul. 31, 2020 to Extended European Search Report mailed Jan. 30, 2020", 10 pgs. cited by applicant
- "International Application Serial No. PCT/US2017/035795, International Search Report mailed Aug. 31, 2017", 3 pgs. cited by applicant
- "International Application Serial No. PCT/US2017/035795, Written Opinion mailed AUg. 31, 2017", 8 pgs. cited by applicant
- U.S. Appl. No. 15/198,107 U.S. Pat. No. 10,651,116, filed Jun. 30, 2016, Planar Integrated Circuit Package Interconnects. cited by applicant
- U.S. Appl. No. 16/842,954 U.S. Pat. No. 11,276,630, filed Apr. 8, 2020, Planar Integrated Circuit Package Interconnects. cited by applicant

Primary Examiner: Ha; Nathan W

Attorney, Agent or Firm: Akona IP PC

Background/Summary

CROSS-REFERENCE TO RELATED APPLICATION (1) This patent application is a continuation of U.S. patent application Ser. No. 16/842,954, filed Apr. 8, 2020, which is a continuation of U.S. application Ser. No. 15/198,107, filed Jun. 30, 2016, each of which is incorporated by reference herein in its entirety.

TECHNICAL FIELD

(1) Examples generally relate to integrated circuit (IC) packages, and more specifically to processes for creating an IC package that includes generally planar conductive columns and the devices resulting from such processes.

TECHNICAL BACKGROUND

(2) IC package technology has a tendency to move towards making ICs smaller and smaller. The smaller IC packages generally include more signal routing per unit area than larger IC packages. Manufacturing such smaller packages can be challenging. Smaller packages can include a higher yield loss than larger packages.

Description

BRIEF DESCRIPTION OF THE DRAWINGS

- (1) In the drawings, which are not necessarily drawn to scale, like numerals may describe similar components in different views. Like numerals having different letter suffixes may represent different instances of similar components. The drawings illustrate generally, by way of example, but not by way of limitation, various embodiments discussed in the present document.
- (2) FIG. 1 illustrates, by way of example, a cross-section diagram of an example of an IC package.
- (3) FIGS. 2A-2H illustrate, by way of example, cross-section diagrams of stages of an example of a process of creating an IC package.
- (4) FIGS. **3**A-**3**D illustrate, by way of example, cross-section diagrams of stages of an example of another process for creating an IC package.
- (5) FIGS. **4**A-**4**D illustrate, by way of example, cross-section diagrams of stages of an example of another process for creating an IC package.

(6) FIG. **5** illustrates, by way of example, a schematic diagram of an example of an electronic system.

DESCRIPTION OF EMBODIMENTS

- (7) Examples in this disclosure relate to processes for creating IC packages with conductive pillars that are generally planar (e.g., to within about five (5) um of each other or less). Examples also relate to apparatuses and systems created using such processes.
- (8) The following description includes terms, such as upper, lower, first, second, etc. that are used for descriptive purposes only and are not to be construed as limiting. The examples of an apparatus or article described herein can be manufactured, used, or shipped in a number of positions and orientations. The terms "die" and "chip" generally refer to the physical object that is the basic workpiece that is transformed by various process operations into the desired integrated circuit device. A die is usually singulated from a wafer and wafers may be made of semiconducting, non-semiconducting, or combinations of semiconducting and non-semiconducting materials.
- (9) As IC package interconnects (e.g., flip chip or other interconnects) continue to scale to finer pitches, the ability of the solder used in/on an interconnect to provide room for random or systematic fluctuations in bump height or surface co-planarity becomes more limited. Discussed herein are processes for creating an IC package with conductive pillars that are generally co-planar. The generally co-planar conductive pillars can help increase manufacturing yields, such as by reducing a variation in a gap between the conductive pillar and a chip to be attached to the pillar. The generally co-planar conductive pillars can help make pitch scaling more feasible. Finer pitches can be tolerated due to the more predictable gap distance between a respective conductive pillar and a pad to which the conductive pillar is to be connected.
- (10) In a high level summary, the process can include creating a conductive pillar (e.g., about forty (40) um tall in some manufacturing processes) on each bump location on a surface of a package substrate. The substrate can be covered with a mold compound thicker than the height of the conductive pillar, such that the mold compound extends beyond and covers the conductive pillar. The conductive pillars can then be exposed, such as through a controlled grinding process that can remove a specified amount of the mold (e.g., several microns of the mold). After grinding, conductive adhesive material (e.g., a solder ball, solder, or paste, among others) can be attached to the pillar or the pillar can be capped with a patterned pad and then the conductive adhesive can be added to the pad. A die can then be attached to the conductive pillars, such as through the conductive adhesive material.
- (11) Current substrate conductive pillar co-planarity combined with current substrate warpage can result in height variations between about ten (10) um and twenty (20) um across a die attach area on a package. This variation makes chip attach difficult and can negatively impact package yields. This variation also compromises advantages in die placement precision and accuracy achieved by a thermocompression bonding (TCB) tool. Embodiments discussed herein can help create absolute height variations less than (or equal to) five (5) um across the surfaces of conductive pillars. Such co-planarity can help enable a high yielding TCB chip attach process, such as at pitches of less than one hundred thirty (130) um. Further, such co-planarity can help reduce the size of the substrate landing pad under the conductive pillars. Reducing the size of the landing pad can help increase I/O routing density, such as without modifying a substrate patterning process.
- (12) Reference will now be made to the drawings wherein like structures will be provided with like suffix reference designations. In order to show the structures of various examples clearly, the drawings included herein are diagrammatic representations of integrated circuit structures. Thus, the actual appearance of the fabricated structures, for example in a photomicrograph, may appear different while still incorporating subject matter of the illustrated examples. Moreover, the drawings show the structures to aid in understanding the illustrated examples.
- (13) FIG. **1** illustrates, by way of example, a cross-section diagram of an embodiment of an integrated circuit (IC) package **100** prior to attaching a die **103** to a substrate **101**. Variation in

```
ball 106 and a contact pad 104 of the die 103. The gaps 108 can cause electrical shorts, such as
where the conductive ball 106, after reflow, does not span the entirety of the gap 108. The gaps 108
can cause the die 103 to be misaligned, such as by causing a shift or rotation in the die 103 relative
to the substrate 101 after the die 103 is situated on one or more of the conductive bumps 106.
(14) FIG. 2A illustrates, by way of example, a cross-section diagram of an embodiment of a device
200A. The device 200A as illustrated includes a substrate 201 with conductive pillars 202 situated
on landing pads 204 of the substrate 201. The device 200A as illustrated includes interconnect
circuitry 204 in and/or on the substrate 201. The device 200A as illustrated includes a landing pad
206 electrically connected to the interconnect circuitry 204 and on the substrate 201. The device
200A as illustrated includes a conductive pad 208, such as can be electrically and mechanically
connected to a circuit, such as to electrically connect the device 200A to the circuit.
(15) In one or more embodiments, the substrate 201 can include a bumpless buildup layer (BBUL)
substrate or other substrate. The substrate 201 can be built-up by situating a dielectric (e.g., an
Ajinomoto buildup film (ABF), patterning the dielectric, adding conductive material to the
patterned dielectric, patterning the conductive material, and repeating until the substrate is built.
Generally, any number of buildup layers can be used in creating the substrate 201 and the layers
can be of a variety of thicknesses.
(16) The conductive pillars 202 generally are made of copper, but can include other conductive
material, such tin, cadmium, gold, silver, palladium, rhodium, copper, bronze, brass, lead, nickel
silver, beryllium copper, nickel, combinations thereof, or the like. The conductive pillars 202 can
be created by situating a thin seed layer of conductive material on the substrate, patterning the seed
layer with photoresist, etching openings over each conductive pillar location, plating conductive
material in the openings in the photoresist, removing the photoresist, and then etching the seed
layer that was protected by the photoresist (e.g., where the conductive pillars are not present).
(17) The conductive pillars 202 each include a respective height 210A, 210B, 210C, 210D, 210E,
210F, 210G, 210H, and 210I. A difference in the heights 210A-H can cause chip attach problems in
later processing, such as is described with regard to FIG. 1, among others. To help alleviate the
problems with the chip attach, it can be beneficial to make the heights 210A-H more uniform, such
as to reduce a distance between a conductive ball on the conductive pillar and an exposed surface
of a contact pad of a die to be attached to the conductive pillar (see FIGS. 2E and 2F).
(18) The conductive pillars 202 can be grown to include a height that is greater than a final height
of the pillars, such as to allow the conductive pillars 202 to be planarized prior to die attach. In one
or more embodiments, the conductive pillars 202 can be grown to be thirty (30) um or greater in
height. Some embodiments may include conductive pillars that are shorter than 30 um.
(19) The interconnect circuitry 204 can provide electrical pathways through the substrate 201. The
interconnect circuitry 204 can provide an electrical pathway for current to flow between a die
attached to conductive pillars 202 and contact pads 208. The interconnect circuitry 204 can include
electrical routing, such as can include, traces, planes, redistribution layer interconnect circuitry,
vias, contact pads, or the like. The interconnect circuitry 204 can include conductive material, such
as conductive material previously discussed with regard to the conductive pillars 202.
(20) The landing pads 206 are electrically connected to the interconnect circuitry 204. The landing
pads 206 can be made of conductive material, such as conductive material previously discussed
with regard to the conductive pillars. The landing pads 206 provide a location at which to
electrically and mechanically connect a conductive pillar 202 to the interconnect circuitry 204.
(21) The contact pads 208 are electrically connected to the interconnect circuitry 204. The contact
pads 208 provide electrical signals from the interconnect circuitry 204 to an external device (e.g., a
printed circuit board (PCB), such as a flexible or rigid PCB, another package, a die, or other
device). The contact pads 208 can include conductive material, such as conductive material
previously discussed with regard to the conductive pillars 202.
```

height of conductive pillars 102 on the substrate 101 causes gaps 108 to form between a conductive

- (22) FIG. 2B illustrates, by way of example, a cross-section diagram of an embodiment of a device **200**B that includes the device **200**A after a molding material **212** is situated on the substrate **201** and the conductive pillars **202**. The molding material **212** can be situated over and around exposed portions of the conductive pillars **202**, the substrate **201**, and/or the landing pads **206**. A height **213** of the molding material **212** can be greater than a height of the tallest conductive pillar **202** (e.g., greater than height **210**H in the example of the device **200**A). The molding material **212** can include a polymer, prepreg, and/or a material that is photo-imagable (i.e. a material that can be removed using a photo-imaging process), such as polyimide. The mold material **212** can be chosen based on chemical, electrical, mechanical, or manufacturing properties of the mold material **212**. The molding material **212** is generally a dielectric insulator.
- (23) FIG. 2C illustrates, by way of example, a cross-section diagram of an embodiment of a device 200C that includes the device 200B after the molding material 212 and the conductive pillars 202 are ground. Grinding the conductive pillars 202 forms conductive pillars 214 with more uniform heights 216A, 216B, 216C, 216D, 216E, 216F, 216G, 216H, and 216I than the conductive pillars 202 (i.e. the heights 210A-I). The grinding forms a molding material 218 that includes a height (generally the same as the heights 216A-I) that is less than the height 213 of the molding material 212. The grinding can include a mechanical grinding. The heights of the molding material 218 and the conductive pillar 214 can be generally uniform (e.g., within about 5 um of uniform) after the grinding process. That is a maximum height variation between any two points across the surface that was ground is at most 5 um.
- (24) FIG. 2D illustrates, by way of example, a cross-section diagram of an embodiment of a device **200**D that includes the device **200**C after a soft etch (e.g., a chemical etch) has removed a portion of the conductive pillars **214** to form the pillars **220**. The amount of material removed from the conductive pillars **214** can be controlled by an amount of time the conductive pillars **214** are exposed to a chemical and/or a concentration of the etching agent in the chemical. A height **222**A, **222**B, **222**C, **222**D, **222**E, **222**F, **222**G, **222**H, and **222**I of the conductive pillars **220** is less than the respective height **216**A-I of the conductive pillars **214**. The height **222**A-I of the conductive pillars **220** is less than the height of the molding material **218**, which is generally the same as the height **216**A-I.
- (25) Reducing the height of the conductive pillar **220** can introduce greater variation in the coplanarity of the conductive pillars **220**, but generally does not affect the co-planarity of the molding material **218**. Reducing the height of the conductive pillars **214** can recess the conductive pillars **220**, such that they include a height **222**A-I that is less than a height of the molding material **218**. Reducing the height of the conductive pillars **214** can help increase a bond strength between a conductive adhesive (see FIG. **2E**) and the conductive pillar **220**.
- (26) FIG. 2E illustrates, by way of example, a cross-section diagram of an embodiment of a device 200E that includes the device 200D after conductive adhesive 224 has been situated on and connected to the conductive pillars 220. The soft etch of the conductive pillars 214 can remove oxidation or other material from a contact surface of the conductive pillars 214, such as to form conductive pillars with a surface that is more amenable to forming a reliable electrical and/or mechanical connection with the conductive adhesive 224. The conductive adhesive 224 will form an electrical connection between the conductive pillars 220 and interconnect circuitry of a die (see FIG. 2F). The conductive adhesive 224 can include solder (e.g., solder balls), a conductive paste, or other conductive material that can form an electrical and mechanical bond between the conductive pillars 220 and contact pads of the die (see FIG. 2F). The conductive adhesive 224 can be situated by forming a mask that cover the molding material 218 and leaves the conductive pillars 220 exposed. The conductive adhesive 224 can be situated on the exposed conductive pillars 220 through the holes in the mask. The conductive adhesive 224 can be heated, such as to flow or at least partially cure the conductive adhesive 224 and bond the conductive adhesive 224 to the conductive pillar 220.

- (27) FIG. 2F illustrates, by way of example, a cross-section diagram of an embodiment of a device **200**F that includes the device **200**E as a die **226** is being situated on the conductive adhesive **224**. The conductive adhesive **224** can be softened, such as by heating the conductive adhesive **224**, and hardened to form an electrical and mechanical connection between a contact pad **228** of the die **226** and the conductive pillars **220**. FIG. **2**G illustrates, by way of example, a cross-section diagram of an embodiment of an IC package **200**G that includes the device **200**F after the die **226** is electrically and mechanically connected to the conductive pillars **220** through the conductive adhesive **224**.
- (28) FIG. 2H illustrates, by way of example, an exploded view diagram of the dashed box labelled "FIG. 2H" in FIG. 2G. The conductive adhesive 224 is on the conductive pillar 220. The conductive adhesive 224 is over and in contact with a top surface 230 of the mold material 218. The conductive adhesive 224 fills the area that was occupied by the conductive pillar 214 prior to the soft etch. The conductive adhesive lines a portion of a sidewall 232 that extends beyond a top surface 234 of the conductive pillar 220.
- (29) FIG. **3**A illustrates, by way of example, a cross-section diagram of an embodiment of a device **300**A that includes the device **200**C depicted in FIG. **2**C after some of the molding material **218** is removed to form the molding material **302**. The molding material **302** has a height **304** that is less than the height **216**A-I. The molding material **218** can be removed using photo-imaging, laser ablation, or other process. The molding material **302** can be recessed in embodiments in which the conductive adhesive **224** is attached to the die **226** prior to electrically and mechanically connecting the die **226** to the substrate **201**, such as through the conductive pillars **214**.
- (30) FIG. 3B illustrates, by way of example, a cross-section diagram of an embodiment of a device 300B that includes the device 300A as a die 226 and the conductive adhesive 224 are being situated thereon. The conductive adhesive 224 can be softened, such as by heating the conductive adhesive 224, and hardened to form an electrical and mechanical connection between a contact pad 228 of the die 226 and the conductive pillars 214. FIG. 3C illustrates, by way of example, a cross-section diagram of an embodiment of an IC package 300C that includes the device 300B after the die 226 is electrically and mechanically connected to the conductive pillars 214 through the conductive adhesive 224.
- (31) FIG. 3D illustrates, by way of example, an exploded view diagram of the dashed box labelled "FIG. 3D" in FIG. 3C. The conductive adhesive **224** is on the conductive pillar **214**. The conductive adhesive **224** is on and in contact with sidewalls **306**A and **306**B of the conductive pillar **214**. The conductive adhesive **224** fills the area that was occupied by the conductive pillar **214** prior to the soft etch. The conductive adhesive **224** extends beyond the sidewalls **306**A-B of the conductive pillar **214**, such as to overhang the conductive pillar **224**.
- (32) FIG. **4**A illustrates, by way of example, a cross-section diagram of an embodiment of a device **400**A that includes the device **200**C depicted in FIG. **2**C after a contact pads **402** are formed on respective conductive pillars **214**. The contact pads **402** can be used in, for example, instances in which a width **408** (see FIG. **4**D) of the conductive pillar **214** is too small to support a direct connection to the conductive adhesive **224**. The contact pad **402** can be created by situating a layer of conductive material on the conductive pillars **214** and molding material **218**, a patterned mask can then be situated on the conductive material, the conductive material can be etched and the mask can be removed. A width **404** of the contact pad **402** can be greater than a width **406** of the landing pad **206**. Having a narrower landing pad width **406** can help increase I/O density in the substrate **101**.
- (33) FIG. **4**B illustrates, by way of example, a cross-section diagram of an embodiment of a device **400**B that includes the device **400**A after a conductive adhesive **224** is situated on respective contact pads **402** and as a die **226** being situated on the conductive adhesive. The conductive adhesive **224** can be softened, such as by heating the conductive adhesive **224**, and hardened to form an electrical and mechanical connection between a contact pad **228** of the die **226** and the

- contact pad **402**. FIG. **4**C illustrates, by way of example, a cross-section diagram of an embodiment of an IC package **400**C that includes the device **400**B after the die **226** is electrically and mechanically connected to the conductive pillars **214** through the conductive adhesive **224** and the contact pad **402**.
- (34) FIG. 4D illustrates, by way of example, an exploded view diagram of the dashed box labelled "FIG. 3D" in FIG. 3C. The conductive adhesive 224 is on the conductive pillar 214. The conductive adhesive 224 is on and in contact with sidewalk 306A and 306B of the conductive pillar 214. The conductive adhesive 224 fills the area that was occupied by the conductive pillar 214 prior to the soft etch. The conductive adhesive 224 extends beyond the sidewalls 306A-B of the conductive pillar 214, such as to overhang the conductive pillar 224.
- (35) FIG. **5** illustrates, by way of example, a logical block diagram of an embodiment of system **500**. In one or more embodiments, system **500** includes one or more components that can include a package with planar interconnects as discussed herein.
- (36) In one embodiment, processor **510** has one or more processing cores **512** and **512**N, where **512**N represents the Nth processor core inside processor **510** where N is a positive integer. In one embodiment, system 500 includes multiple processors including 510 and 505, where processor 505 has logic similar or identical to the logic of processor **510**. In some embodiments, processing core **512** includes, but is not limited to, pre-fetch logic to fetch instructions, decode logic to decode the instructions, execution logic to execute instructions and the like. In some embodiments, processor **510** has a cache memory **516** to cache instructions and/or data for system **500**. Cache memory **516** may be organized into a hierarchal structure including one or more levels of cache memory. (37) In some embodiments, processor **510** includes a memory controller **514**, which is operable to perform functions that enable the processor 510 to access and communicate with memory 530 that includes a volatile memory 532 and/or a non-volatile memory 534. In some embodiments, processor **510** is coupled with memory **530** and chipset **520**. Processor **510** may also be coupled to a wireless antenna **578** to communicate with any device configured to transmit and/or receive wireless signals. In one embodiment, the wireless antenna interface **578** operates in accordance with, but is not limited to, the IEEE 802.11 standard and its related family, Home Plug AV (HPAV), Ultra Wide Band (UWB), Bluetooth, WiMax, or any form of wireless communication protocol. (38) In some embodiments, volatile memory **532** includes, but is not limited to, Synchronous Dynamic Random Access Memory (SDRAM), Dynamic Random Access Memory (DRAM), RAMBUS Dynamic Random Access Memory (RDRAM), and/or any other type of random access memory device. Non-volatile memory **534** includes, but is not limited to, flash memory, phase change memory (PCM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), or any other type of non-volatile memory device.
- (39) Memory **530** stores information and instructions to be executed by processor **510**. In one embodiment, memory **530** may also store temporary variables or other intermediate information while processor **510** is executing instructions. In the illustrated embodiment, chipset **520** connects with processor **510** via Point-to-Point (PtP or P-P) interfaces **517** and **522**. Chipset **520** enables processor **510** to connect to other elements in system **500**. In some embodiments of the invention, interfaces **517** and **522** operate in accordance with a PtP communication protocol such as the Intel® QuickPath Interconnect (QPI) or the like. In other embodiments, a different interconnect may be used.
- (40) In some embodiments, chipset **520** is operable to communicate with processor **510**, **505**N, display device **540**, and other devices. Chipset **520** may also be coupled to a wireless antenna **578** to communicate with any device configured to transmit and/or receive wireless signals.
- (41) Chipset **520** connects to display device **540** via interface **526**. Display **540** may be, for example, a liquid crystal display (LCD), a plasma display, cathode ray tube (CRT) display, or any other form of visual display device. In some embodiments of the invention, processor **510** and chipset **520** are merged into a single SOC. In addition, chipset **520** connects to one or more buses

550 and 555 that interconnect various elements 574, 560, 562, 564, and 566. Buses 550 and 555 may be interconnected together via a bus bridge 572. In one embodiment, chipset 520 couples with a non-volatile memory 560, a mass storage device(s) 562, a keyboard/mouse 564, and a network interface 566 via interface 524 and/or 504, etc.

- (42) In one embodiment, mass storage device **562** includes, but is not limited to, a solid state drive, a hard disk drive, a universal serial bus flash memory drive, or any other form of computer data storage medium. In one embodiment, network interface **566** is implemented by any type of well-known network interface standard including, but not limited to, an Ethernet interface, a universal serial bus (USB) interface, a Peripheral Component Interconnect (PCI) Express interface, a wireless interface and/or any other suitable type of interface. In one embodiment, the wireless interface operates in accordance with, but is not limited to, the IEEE 802.11 standard and its related family, Home Plug AV (HPAV), Ultra Wide Band (UVB), Bluetooth, WiMax, or any form of wireless communication protocol. While the components shown in FIG. **5** are depicted as separate blocks within the system **500**, the functions performed by some of these blocks may be integrated within a single semiconductor circuit or may be implemented using two or more separate integrated circuits. For example, although cache memory **516** is depicted as a separate block within processor **510**, cache memory **516** (or selected aspects of **516**) can be incorporated into processor core **512**. EXAMPLES AND NOTES
- (43) The present subject matter may be described by way of several examples.
- (44) In Example 1 a method of making an integrated circuit package includes growing conductive pillars on respective exposed landing pads of a substrate, situating molding material around and on the grown conductive pillars, removing, simultaneously, a portion of the grown conductive pillars and the molding material to make the grown conductive pillars and the molding material about planar, and electrically coupling a die to the conductive pillars.
- (45) In Example 2, Example 1 can further include after removing the portion of the grown conductive pillars and the molding material, removing another portion of the conductive pillars to recess the conductive pillars in the molding material.
- (46) In Example 3, Example 2 can further include, wherein removing another portion of the conductive pillars includes etching the conductive pillars.
- (47) In Example 4, Example 2 can further include situating conductive adhesive on each of the conductive pillars before electrically connecting the die to the substrate.
- (48) In Example 5, Example 4 can further include, wherein electrically connecting the die to the conductive pillars includes reflowing the conductive adhesive to electrically connect a contact pad of the die to a respective conductive pillar of the conductive pillars.
- (49) In Example 5 can further include, wherein the conductive adhesive, after reflowing, lines a portion of sidewalls and a portion of a surface of the molding material.
- (50) In Example 7, at least one of Examples 1-6 after removing the portion of the grown conductive pillars and the molding material, removing another portion of the molding material to recess the molding material relative to the conductive pillars.
- (51) In Example 8, Example 7 can further include, wherein removing another portion of the molding material includes photo-imaging the molding material.
- (52) In Example 9, Example 7 can further include situating conductive adhesive on the die before electrically connecting the die to the substrate.
- (53) In Example 10, Example 9 can further include, wherein electrically connecting the die to the conductive pillars includes reflowing the conductive adhesive to electrically connect a contact pad of the die to a respective conductive pillar of the conductive pillars.
- (54) In Example 11, Example 10 can further include, wherein the conductive adhesive, after reflowing, lines exposed portions of side-walls of the conductive pillars.
- (55) In Example 12, at least one of Examples 1-11 can further include after removing the portion of the grown conductive pillars and the molding material, forming contact pads on respective

conductive pillars.

- (56) In Example 13, Example 12 can further include, wherein forming the contact pads includes forming the contact pads to include a width greater than a width of the landing pads.
- (57) In Example 14, Example 13 can further include situating conductive adhesive on each of the contact pads before electrically connecting the die to the substrate.
- (58) In Example 15 an IC package includes a substrate comprising interconnect circuitry embedded in buildup layers and a plurality of landing pads exposed at a top surface thereof, a plurality of conductive pillars electrically connected to respective landing pads, a molding material around at least a portion of sidewall of the conductive pillars and on the substrate, and a die on the substrate, the die including contact pads electrically coupled to the interconnect circuitry through the conductive pillars, wherein the conductive pillars each include top surfaces that are generally planar with respect to one another to within a five micron deviation.
- (59) In Example 16, Example 15 can further include, wherein the contact pads of the die are first contact pads and the package further comprises second contact pads connected to respective conductive pillars, the second contact pads including a width greater than the landing pads, the second contact pads situated between the conductive pillars and the first contact pads.
- (60) In Example 17, Example 15 can further include, wherein the conductive pillars include a height that is greater than a height of the molding material and the IC package further comprises a conductive adhesive electrically connecting the first contact pads to the conductive pillars, wherein the conductive adhesive is in contact with sidewalls of the conductive pillars.
- (61) In Example 18, Example 15 can further include, wherein the conductive pillars include a height that is less than a height of the molding material and the IC package further comprises a conductive adhesive electrically connecting the first contact pads to the conductive pillars, wherein the conductive adhesive is in contact with sidewalls of the molding material.
- (62) In Example 19 a method of making an integrated circuit package can include growing copper pillars on respective exposed landing pads of a substrate, situating molding material around and on the grown copper pillars, removing, simultaneously, a portion of the grown copper pillars and the molding material to make the grown copper pillars planar with respect to each other to within a five micron deviation, and reflowing solder balls to electrically couple contact pads of the die to the copper pillars and to interconnect circuitry of the substrate.
- (63) In Example 20, Example 19 can further include after removing the portion of the grown copper pillars and the molding material, etching another portion of the copper pillars to recess the copper pillars in the molding material, attaching the solder balls to respective copper pillars before reflowing the solder balls, and wherein the solder balls after reflowing, line a portion of sidewalls and a portion of a surface of the molding material.
- (64) In Example 21, Example 19 can further include after removing the portion of the grown conductive pillars and the molding material, removing another portion of the molding material to recess the molding material relative to the conductive pillars.
- (65) In Example 22, Example 21 can further include, wherein removing another portion of the molding material includes photo-imaging the molding material.
- (66) In Example 23, Example 21 can further include situating conductive adhesive on the die before electrically connecting the die to the substrate.
- (67) In Example 24, Example 23 can further include, wherein electrically connecting the die to the conductive pillars includes reflowing the conductive adhesive to electrically connect a contact pad of the die to a respective conductive pillar of the conductive pillars.
- (68) In Example 25, Example 24 can further include, wherein the conductive adhesive, after reflowing, lines exposed portions of sidewalls of the conductive pillars.
- (69) In Example 26, Example 25 can further include after removing the portion of the grown conductive pillars and the molding material, forming contact pads on respective conductive pillars. (70) In Example 27, Example 26 can further include, wherein forming the contact pads includes

forming the contact pads to include a width greater than a width of the landing pads.

- (71) In Example 28, Example 27 can further include situating conductive adhesive on each of the contact pads before electrically connecting the die to the substrate.
- (72) Each of these non-limiting examples can stand on its own, or can be combined in various permutations or combinations with one or more of the other examples.
- (73) The above detailed description includes references to the accompanying drawings, which form a part of the detailed description. The drawings show, by way of illustration, specific embodiments in which methods, apparatuses, and systems discussed herein can be practiced. These embodiments are also referred to herein as "examples." Such examples can include elements in addition to those shown or described. However, the present inventors also contemplate examples in which only those elements shown or described are provided. Moreover, the present inventors also contemplate examples using any combination or permutation of those elements shown or described (or one or more aspects thereof), either with respect to a particular example (or one or more aspects thereof), or with respect to other examples (or one or more aspects thereof) shown or described herein. (74) In this document, the terms "a" or "an" are used, as is common in patent documents, to include one or more than one, independent of any other instances or usages of "at least one" or "one or more." In this document, the term "or" is used to refer to a nonexclusive or, such that "A or B" includes "A but not B," "B but not A," and "A and B," unless otherwise indicated. In this document, the terms "including" and "in which" are used as the plain-English equivalents of the respective terms "comprising" and "wherein." Also, in the following claims, the terms "including" and "comprising" are open-ended, that is, a system, device, article, composition, formulation, or process that includes elements in addition to those listed after such a term in a claim are still deemed to fall within the scope of that claim. Moreover, in the following claims, the terms "first," "second," and "third," etc. are used merely as labels, and are not intended to impose numerical requirements on their objects.
- (75) The above description is intended to be illustrative, and not restrictive. For example, the above-described examples (or one or more aspects thereof) may be used in combination with each other. Other embodiments can be used, such as by one of ordinary skill in the art upon reviewing the above description. The Abstract is provided to comply with 37 C.F.R. § 1.72(b), to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. Also, in the above Detailed Description, various features may be grouped together to streamline the disclosure. This should not be interpreted as intending that an unclaimed disclosed feature is essential to any claim. Rather, inventive subject matter may lie in less than all features of a particular disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description as examples or embodiments, with each claim standing on its own as a separate embodiment, and it is contemplated that such embodiments can be combined with each other in various combinations or permutations. The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.

Claims

- 1. An integrated circuit (IC) package, comprising: a substrate comprising electrical pathways; landing pads at a surface of the substrate; conductive pillars electrically connected to respective landing pads, wherein heights of the conductive pillars are within five micrometers of one another; and a die comprising contact pads electrically coupled to the electrical pathways through the conductive pillars.
- 2. The IC package of claim 1, wherein the contact pads are first contact pads, the IC package further includes second contact pads coupled to respective conductive pillars, the second contact

pads are between the conductive pillars and the first contact pads, and the second contact pads have widths greater than the respective landing pads.

- 3. The IC package of claim 2, further comprising an insulating material around at least portions of sidewalls of the conductive pillars, wherein the heights of the conductive pillars are greater than a height of the insulating material.
- 4. The IC package of claim 3, further comprising a conductive adhesive between the first contact pads and the conductive pillars, wherein the conductive adhesive is in contact with at least portions of the sidewalls of the conductive pillars.
- 5. The IC package of claim 2, further comprising an insulating material around at least portions of sidewalls of the conductive pillars, wherein the heights of the conductive pillars are smaller than a height of the insulating material.
- 6. The IC package of claim 5, further comprising a conductive adhesive between the first contact pads and the conductive pillars, wherein the conductive adhesive is in contact with portions of the insulating material.
- 7. The IC package of claim 1, wherein the heights of the conductive pillars are measured from the respective landing pads.
- 8. The IC package of claim 1, further comprising an insulating material around at least portions of sidewalls of the conductive pillars.
- 9. The IC package of claim 8, wherein the heights of the conductive pillars are greater than a height of the insulating material.
- 10. The IC package of claim 9, further comprising a conductive adhesive between the contact pads and the conductive pillars, wherein the conductive adhesive is in contact with at least portions of the sidewalls of the conductive pillars.
- 11. The IC package of claim 10, wherein the conductive adhesive is in electrically conductive contact with the contact pads.
- 12. The IC package of claim 8, wherein the heights of the conductive pillars are smaller than a height of the insulating material.
- 13. The IC package of claim 11, further comprising a conductive adhesive between the contact pads and the conductive pillars, wherein the conductive adhesive is in contact with portions of the insulating material.
- 14. A method of fabricating an integrated circuit package, the method comprising: forming conductive pillars on respective landing pads of a substrate; providing an insulating material around and on the conductive pillars; removing portions of the conductive pillars and the insulating material to make heights of the conductive pillars within five micrometers of one another; and providing a die electrically coupled to the conductive pillars.
- 15. The method of claim 14, wherein the method further includes recessing the conductive pillars in the insulating material.
- 16. The method of claim 14, wherein the conductive pillars are in direct contact with the respective landing pads.
- 17. An integrated circuit (IC) package, comprising: a substrate comprising electrical pathways; landing pads at a surface of the substrate; conductive pillars electrically connected to respective landing pads; a die comprising first contact pads electrically coupled to the electrical pathways through the conductive pillars; and second contact pads between the conductive pillars and the first contact pads and having widths greater than the respective landing pads.
- 18. The IC package of claim 17, wherein the second contact pads are coupled to respective conductive pillars.
- 19. The IC package of claim 17, wherein heights of the conductive pillars are within five micrometers of one another.
- 20. The IC package of claim 17, wherein the conductive pillars are coplanar to within a deviation of five micrometers.