GAMMON played consistently at world champion level. The BGBLITZ program was the winner of the 2008 Computer Olympiad.

Go is a deterministic game, but the large branching factor makes it challeging. The key issues and early literature in computer Go are summarized by Bouzy and Cazenave (2001) and Müller (2002). Up to 1997 there were no competent Go programs. Now the best programs play most of their moves at the master level; the only problem is that over the course of a game they usually make at least one serious blunder that allows a strong opponent to win. Whereas alpha-beta search reigns in most games, many recent Go programs have adopted Monte Carlo methods based on the UCT (upper confidence bounds on trees) scheme (Kocsis and Szepesvari, 2006). The strongest Go program as of 2009 is Gelly and Silver's MoGo (Wang and Gelly, 2007; Gelly and Silver, 2008). In August 2008, MoGo scored a surprising win against top professional Myungwan Kim, albeit with MoGo receiving a handicap of nine stones (about the equivalent of a gueen handicap in chess). Kim estimated MoGo's strength at 2-3 dan, the low end of advanced amateur. For this match, MoGo was run on an 800-processor 15 teraflop supercomputer (1000 times Deep Blue). A few weeks later, MoGo, with only a five-stone handicap, won against a 6-dan professional. In the 9 × 9 form of Go, MoGo is at approximately the 1-dan professional level. Rapid advances are likely as experimentation continues with new forms of Monte Carlo search. The Computer Go Newsletter, published by the Computer Go Association, describes current developments.

Bridge: Smith *et al.* (1998) report on how their planning-based program won the 1998 computer bridge championship, and (Ginsberg, 2001) describes how his GIB program, based on Monte Carlo simulation, won the following computer championship and did surprisingly well against human players and standard book problem sets. From 2001–2007, the computer bridge championship was won five times by JACK and twice by WBRIDGE5. Neither has had academic articles explaining their structure, but both are rumored to use the Monte Carlo technique, which was first proposed for bridge by Levy (1989).

Scrabble: A good description of a top program, MAVEN, is given by its creator, Brian Sheppard (2002). Generating the highest-scoring move is described by Gordon (1994), and modeling opponents is covered by Richards and Amir (2007).

Soccer (Kitano *et al.*, 1997b; Visser *et al.*, 2008) and **billiards** (Lam and Greenspan, 2008; Archibald *et al.*, 2009) and other stochastic games with a continuous space of actions are beginning to attract attention in AI, both in simulation and with physical robot players.

Computer game competitions occur annually, and papers appear in a variety of venues. The rather misleadingly named conference proceedings *Heuristic Programming in Artificial Intelligence* report on the Computer Olympiads, which include a wide variety of games. The General Game Competition (Love *et al.*, 2006) tests programs that must learn to play an unknown game given only a logical description of the rules of the game. There are also several edited collections of important papers on game-playing research (Levy, 1988a, 1988b; Marsland and Schaeffer, 1990). The International Computer Chess Association (ICCA), founded in 1977, publishes the *ICGA Journal* (formerly the *ICCA Journal*). Important papers have been published in the serial anthology *Advances in Computer Chess*, starting with Clarke (1977). Volume 134 of the journal *Artificial Intelligence* (2002) contains descriptions of state-of-the-art programs for chess, Othello, Hex, shogi, Go, backgammon, poker, Scrabble, and other games. Since 1998, a biennial *Computers and Games* conference has been held.

EXERCISES

- **5.1** Suppose you have an oracle, OM(s), that correctly predicts the opponent's move in any state. Using this, formulate the definition of a game as a (single-agent) search problem. Describe an algorithm for finding the optimal move.
- **5.2** Consider the problem of solving two 8-puzzles.
 - a. Give a complete problem formulation in the style of Chapter 3.
 - b. How large is the reachable state space? Give an exact numerical expression.
 - **c.** Suppose we make the problem adversarial as follows: the two players take turns moving; a coin is flipped to determine the puzzle on which to make a move in that turn; and the winner is the first to solve one puzzle. Which algorithm can be used to choose a move in this setting?
 - d. Give an informal proof that someone will eventually win if both play perfectly.

Figure 5.16 (a) A map where the cost of every edge is 1. Initially the pursuer P is at node **b** and the evader E is at node **d**. (b) A partial game tree for this map. Each node is labeled with the P, E positions. P moves first. Branches marked "?" have yet to be explored.

- 5.3 Imagine that, in Exercise 3.3, one of the friends wants to avoid the other. The problem then becomes a two-player **pursuit–evasion** game. We assume now that the players take turns moving. The game ends only when the players are on the same node; the terminal payoff to the pursuer is minus the total time taken. (The evader "wins" by never losing.) An example is shown in <u>Figure 5.16.</u>
 - a. Copy the game tree and mark the values of the terminal nodes.
 - **b.** Next to each internal node, write the strongest fact you can infer about its value (a number, one or more inequalities such as "≥ 14", or a "?").
 - **c.** Beneath each question mark, write the name of the node reached by that branch.
 - d. Explain how a bound on the value of the nodes in (c) can be derived from consideration of shortest-path lengths on the map, and derive such bounds for these nodes. Remember the cost to get to each leaf as well as the cost to solve it.
 - **e.** Now suppose that the tree as given, with the leaf bounds from (d), is evaluated from left to right. Circle those "?" nodes that would *not* need to be expanded further, given the bounds from part (d), and cross out those that need not be considered at all.
 - f. Can you prove anything in general about who wins the game on a map that is a tree?

PURSUIT-CEVASION

197**5.4** Describe and implement state descriptions, move generators, terminal tests, utility functions, and evaluation functions for one or more of the following stochastic games: Monopoly, Scrabble, bridge play with a given contract, or Texas hold'em poker.

- **5.5** Describe and implement a *real-time*, *multiplayer* game-playing environment, where time is part of the environment state and players are given fixed time allocations.
- **5.6** Discuss how well the standard approach to game playing would apply to games such as tennis, pool, and croquet, which take place in a continuous physical state space.
- **5.7** Prove the following assertion: For every game tree, the utility obtained by MAX using minimax decisions against a suboptimal MIN will be never be lower than the utility obtained playing against an optimal MIN. Can you come up with a game tree in which MAX can do still better using a *suboptimal* strategy against a suboptimal MIN?

Figure 5.17 The starting position of a simple game. Player A moves first. The two players take turns moving, and each player must move his token to an open adjacent space in either direction. If the opponent occupies an adjacent space, then a player may jump over the opponent to the next open space if any. (For example, if A is on 3 and B is on 2, then A may move back to 1.) The game ends when one player reaches the opposite end of the board. If player A reaches space 4 first, then the value of the game to A is +1; if player B reaches space 1 first, then the value of the game to A is -1.

- **5.8** Consider the two-player game described in Figure 5.17.
 - **a.** Draw the complete game tree, using the following conventions:
 - Write each state as (s_A, s_B) , where s_A and s_B denote the token locations.

- Put each terminal state in a square box and write its game value in a circle.
- Put *loop states* (states that already appear on the path to the root) in double square boxes. Since their value is unclear, annotate each with a "?" in a circle.
- **b.** Now mark each node with its backed-up minimax value (also in a circle). Explain how you handled the "?" values and why.
- **c.** Explain why the standard minimax algorithm would fail on this game tree and briefly sketch how you might fix it, drawing on your answer to (b). Does your modified algorithm give optimal decisions for all games with loops?
- **d.** This 4-square game can be generalized to n squares for any n > 2. Prove that A wins if n is even and loses if n is odd.
- **5.9** This problem exercises the basic concepts of game playing, using tic-tac-toe (noughts and crosses) as an example. We define X_n as the number of rows, columns, or diagonals with exactly n X's and no O's. Similarly, O_n is the number of rows, columns, or diagonals with just n O's. The utility function assigns +1 to any position with $X_3 = 1$ and -1 to any position with $O_3 = 1$. All other terminal positions have utility 0. For nonterminal positions, we use a linear evaluation function defined as $Eval(s) = 3X_2(s) + X_1(s) (3O_2(s) + O_1(s))$.
 - a. Approximately how many possible games of tic-tac-toe are there?
 - **b.** Show the whole game tree starting from an empty board down to depth 2 (i.e., one *X* and one *O* on the board), taking symmetry into account.
 - **c.** Mark on your tree the evaluations of all the positions at depth 2.
 - **d.** Using the minimax algorithm, mark on your tree the backed-up values for the positions at depths 1 and 0, and use those values to choose the best starting move.
 - **e.** Circle the nodes at depth 2 that would *not* be evaluated if alpha—beta pruning were applied, assuming the nodes are generated in the optimal order for alpha—beta pruning.
- **5.10** Consider the family of generalized tic-tac-toe games, defined as follows. Each particular game is specified by a set S of squares and a collection W of winning positions. Each winning position is a subset of S. For example, in standard tic-tac-toe, S is a set of 9 squares and W is a collection of 8 subsets of W: the three rows, the three columns, and the two diagonals. In other respects, the game is identical to standard tic-tac-toe. Starting from an empty board, players alternate placing their marks on an empty square. A player who marks every square in a winning position wins the game. It is a tie if all squares are marked and neither player has won.
 - **a.** Let N = |S|, the number of squares. Give an upper bound on the number of nodes in the complete game tree for generalized tic-tac-toe as a function of N.
 - **b.** Give a lower bound on the size of the game tree for the worst case, where $W = \{\}$.
 - **c.** Propose a plausible evaluation function that can be used for any instance of generalized tictac-toe. The function may depend on *S* and *W*.
 - **d.** Assume that it is possible to generate a new board and check whether it is a winning position in 100N machine instructions and assume a 2 gigahertz processor. Ignore memory limitations. Using your estimate in (a), roughly how large a game tree can be completely solved by alpha—beta in a second of CPU time? a minute? an hour?

- **5.11** Develop a general game-playing program, capable of playing a variety of games.
 - **a.** Implement move generators and evaluation functions for one or more of the following games: Kalah, Othello, checkers, and chess.
 - **b.** Construct a general alpha—beta game-playing agent.
 - c. Compare the effect of increasing search depth, improving move ordering, and improving the evaluation function. How close does your effective branching factor come to the ideal case of perfect move ordering?
 - **d.** Implement a selective search algorithm, such as B* (Berliner, 1979), conspiracy number search (McAllester, 1988), or MGSS* (Russell and Wefald, 1989) and compare its performance to A*.

Figure 5.18 Situation when considering whether to prune node n_i .

5.12 Describe how the minimax and alpha—beta algorithms change for two-player, nonzero- sum games in which each player has a distinct utility function and both utility functions are known to both players. If there are no constraints on the two terminal utilities, is it possible for any node to be

pruned by alpha—beta? What if the player's utility functions on any state differ by at most a constant *k*, making the game almost cooperative?

5.13 Develop a formal proof of correctness for alpha—beta pruning. To do this, consider the situation shown in Figure 5.18. The question is whether to prune node n_j , which is a max-node and a descendant of node n_1 . The basic idea is to prune it if and only if the minimax value of n_1 can be shown to be independent of the value of n_i .

- **a.** Mode n_1 takes on the minimum value among its children: $n_1 = \min(n_2, n_{21}, \dots, n_{2b_2})$. Find a similar expression for n_2 and hence an expression for n_1 in terms of n_i .
- **b.** Let I_i be the minimum (or maximum) value of the nodes to the *left* of node n_i at depth i, whose minimax value is already known. Similarly, let r_i be the minimum (or maximum) value of the unexplored nodes to the right of n_i at depth i. Rewrite your expression for n_1 in terms of the I_i and I_i values.
- **c.** Now reformulate the expression to show that in order to affect n_1 , n_j must not exceed a certain bound derived from the l_i values.
- **d.** Repeat the process for the case where n_i is a min-node.
- **5.14** Prove that alpha-beta pruning takes time $O(2^{m/2})$ with optimal move ordering, where m is the maximum depth of the game tree.
- **5.15** Suppose you have a chess program that can evaluate 10 million nodes per second. Decide on a compact representation of a game state for storage in a transposition table. About how many entries can you fit in a 2-gigabyte in-memory table? Will that be enough for the three minutes of search allocated for one move? How many table lookups can you do in the time it would take to do one evaluation? Now suppose the transposition table is stored on disk. About how many evaluations could you do in the time it takes to do one disk seek with standard disk hardware?

Figure 5.19 The complete game tree for a trivial game with chance nodes.

- **5.16** This question considers pruning in games with chance nodes. Figure 5.19 shows the complete game tree for a trivial game. Assume that the leaf nodes are to be evaluated in leftto-right order, and that before a leaf node is evaluated, we know nothing about its value—the range of possible values is $-\infty$ to ∞ .
 - a. Copy the figure, mark the value of all the internal nodes, and indicate the best move at the root with an arrow.
 - **b.** Given the values of the first six leaves, do we need to evaluate the seventh and eighth leaves? Given the values of the first seven leaves, do we need to evaluate the eighth leaf? Explain your answers.
 - **c.** Suppose the leaf node values are known to lie between –2 and 2 inclusive. After the first two leaves are evaluated, what is the value range for the left-hand chance node?
 - **d.** Circle all the leaves that need not be evaluated under the assumption in (c).

5.17 Implement the expectiminimax algorithm and the *-alpha—beta algorithm, which is described by Ballard (1983), for pruning game trees with chance nodes. Try them on a game such as backgammon and measure the pruning effectiveness of *-alpha—beta.

- **5.18** Prove that with a positive linear transformation of leaf values (i.e., transforming a value x to ax + b where a > 0), the choice of move remains unchanged in a game tree, even when there are change nodes
- **5.19** Consider the following procedure for choosing moves in games with chance nodes:
 - Generate some dice-roll sequences (say, 50) down to a suitable depth (say, 8).
 - With known dice rolls, the game tree becomes deterministic. For each dice-roll sequence, solve the resulting deterministic game tree using alpha—beta.
 - Use the results to estimate the value of each move and to choose the best.

Will this procedure work well? Why (or why not)?

- **5.20** In the following, a "max" tree consists only of max nodes, whereas an "expectimax" tree consists of a max node at the root with alternating layers of chance and max nodes. At chance nodes, all outcome probabilities are nonzero. The goal is to *find the value of the root* with a bounded-depth search. For each of (a)—(f), either give an example or explain why this is impossible.
 - a. Assuming that leaf values are finite but unbounded, is pruning (as in alpha-beta) ever possible in a max tree?
 - b. Is pruning ever possible in an expectimax tree under the same conditions?

- c. If leaf values are all nonnegative, is pruning ever possible in a max tree? Give an example, or explain why not.
- **d.** If leaf values are all nonnegative, is pruning ever possible in an expectimax tree? Give an example, or explain why not.
- **e.** If leaf values are all in the range [0, 1], is pruning ever possible in a max tree? Give an example, or explain why not.
- f. If leaf values are all in the range [0, 1], is pruning ever possible in an expectimax tree?
- **g.** Consider the outcomes of a chance node in an expectimax tree. Which of the following evaluation orders is most likely to yield pruning opportunities?
 - (i) Lowest probability first
 - (ii) Highest probability first
 - (iii) Doesn't make any difference
- **5.21** Which of the following are true and which are false? Give brief explanations.
 - **a.** In a fully observable, turn-taking, zero-sum game between two perfectly rational players, it does not help the first player to know what strategy the second player is using—that is, what move the second player will make, given the first player's move.
 - **b.** In a partially observable, turn-taking, zero-sum game between two perfectly rational players, it does not help the first player to know what move the second player will make, given the first player's move.
 - c. A perfectly rational backgammon agent never loses.
- **5.22** Consider carefully the interplay of chance events and partial information in each of the games in Exercise 5.4.
 - a. For which is the standard expectiminimax model appropriate? Implement the algorithm and run it in your game-playing agent, with appropriate modifications to the gameplaying environment.
 - **b.** For which would the scheme described in Exercise 5.19 be appropriate?
 - **c.** Discuss how you might deal with the fact that in some of the games, the players do not have the same knowledge of the current state.

clearly violated.

There are many good introductory textbooks on probability theory, including those by Bertsekas and Tsitsiklis (2008) and Grinstead and Snell (1997). DeGroot and Schervish (2001) offer a combined introduction to probability and statistics from a Bayesian standpoint. Richard Hamming's (1991) textbook gives a mathematically sophisticated introduction to probability theory from the standpoint of a propensity interpretation based on physical symmetry. Hacking (1975) and Hald (1990) cover the early history of the concept of probability. Bernstein (1996) gives an entertaining popular account of the story of risk.

EXERCISES

- **13.1** Show from first principles that $P(a \mid b^{\hat{}} a) = 1$.
- **13.2** Using the axioms of probability, prove that any probability distribution on a discrete random variable must sum to 1.
- **13.3** For each of the following statements, either prove it is true or give a counterexample.
 - **a.** If P(a | b, c) = P(b | a, c), then P(a | c) = P(b | c)
 - **b**. If P(a | b, c) = P(a), then P(b | c) = P(b)
 - **c**. If P(a | b) = P(a), then P(a | b, c) = P(a | c)
- **13.4** Would it be rational for an agent to hold the three beliefs P(A) = 0.4, P(B) = 0.3, and $P(A \lor B) = 0.5$? If so, what range of probabilities would be rational for the agent to hold for $A^{\hat{}}$ B? Make up a table like the one in Figure 13.2, and show how it supports your argument about rationality. Then draw another version of the table where $P(A \lor B) = 0.7$. Explain why it is rational to have this probability, even though the table shows one case that is a loss and three that just break even. (*Hint:* what is Agent 1 committed to about the probability of each of the four cases, especially the case that is a loss?)
- **13.5** This question deals with the properties of possible worlds, defined On <u>page 488</u> as assignments to all random variables. We will work with propositions that correspond to exactly one possible world because they pin down the assignments of all the variables. In probability theory, such propositions are called **atomic events**. For example, with Boolean variables X_1 , X_2 , X_3 , the proposition $x_1 \hat{\ } x_2 \hat{\ } x_3$ fixes the assignment of the variables; in the language of propositional logic, we would say it has exactly one model.
 - **a.** Prove, for the case of *n* Boolean variables, that any two distinct atomic events are mutually exclusive; that is, their conjunction is equivalent to *false*.
 - **b**. Prove that the disjunction of all possible atomic events is logically equivalent to *true*.
 - **c.** Prove that any proposition is logically equivalent to the disjunction of the atomic events that entail its truth.

ATOMIC EVENT

- **13.6** Prove Equation (13.4) from Equations (13.1) and (13.2).
- 13.7 Consider the set of all possible five-card poker hands dealt fairly from a standard deck of fifty-two cards
 - **a.** How many atomic events are there in the joint probability distribution (i.e., how many five-card hands are there)?
 - **b**. What is the probability of each atomic event?
 - c. What is the probability of being dealt a royal straight flush? Four of a kind?
- **13.8** Given the full joint distribution shown in Figure 13.3, calculate the following:
 - a. P(toothache).
 - b. P(Cavity).
 - c. P(Toothache | cavity).
 - **d**. **P**(Cavity | toothache ∨ catch).
- **13.9** In his letter of August 24, 1654, Pascal was trying to show how a pot of money should be allocated when a gambling game must end prematurely. Imagine a game where each turn consists of the roll of a die, player *E* gets a point when the die is even, and player *O* gets a point when the die is odd. The first player to get 7 points wins the pot. Suppose the game is interrupted with *E* leading 4–2. How should the money be fairly split in this case? What is the general formula? (Fermat and Pascal made several errors before solving the problem, but you should be able to get it right the first time.)
- **13.10** Deciding to put probability theory to good use, we encounter a slot machine with three independent wheels, each producing one of the four symbols BAR, BELL, LEMON, or CHERRY with equal probability. The slot machine has the following payout scheme for a bet of 1 coin (where "?" denotes that we don't care what comes up for that wheel):

BAR/BAR pays 20 coins

BELL/BELL pays 15 coins

LEMON/LEMON/LEMON pays 5 coins

CHERRY/CHERRY pays 3 coins

CHERRY/CHERRY/? pays 2 coins

CHERRY/?/? pays 1 coin

- a. Compute the expected "payback" percentage of the machine. In other words, for each coin played, what is the expected coin return?
- b. Compute the probability that playing the slot machine once will result in a win.
- **c**. Estimate the mean and median number of plays you can expect to make until you go broke, if you start with 10 coins. You can run a simulation to estimate this, rather than trying to

compute an exact answer.

- **13.11** We wish to transmit an n-bit message to a receiving agent. The bits in the message are independently corrupted (flipped) during transmission with ϵ probability each. With an extra parity bit sent along with the original information, a message can be corrected by the receiver if at most one bit in the entire message (including the parity bit) has been corrupted. Suppose we want to ensure that the correct message is received with probability at least 1δ . What is the maximum feasible value of n? Calculate this value for the case $\epsilon = 0.001$, $\delta = 0.01$.
- 13.12 Show that the three forms of independence in Equation (13.11) are equivalent.
- 13.13 Consider two medical tests, A and B, for a virus. Test A is 95% effective at recognizing the virus when it is present, but has a 10% false positive rate (indicating that the virus is present, when it is not). Test B is 90% effective at recognizing the virus, but has a 5% false positive rate. The two tests use independent methods of identifying the virus. The virus is carried by 1% of all people. Say that a person is tested for the virus using only one of the tests, and that test comes back positive for carrying the virus. Which test returning positive is more indicative of someone really carrying the virus? Justify your answer mathematically.
- **13.14** Suppose you are given a coin that lands heads with probability *x* and tails with probability 1 *x*. Are the outcomes of successive flips of the coin independent of each other given that you know the value of *x*? Are the outcomes of successive flips of the coin independent of each other if you do *not* know the value of *x*? Justify your answer.
- 13.15 After your yearly checkup, the doctor has bad news and good news. The bad news is that you tested positive for a serious disease and that the test is 99% accurate (i.e., the probability of testing positive when you do have the disease is 0.99, as is the probability of testing negative when you don't have the disease). The good news is that this is a rare disease, striking only 1 in 10,000 people of your age. Why is it good news that the disease is rare? What are the chances that you actually have the disease?
- **13.16** It is quite often useful to consider the effect of some specific propositions in the context of some general background evidence that remains fixed, rather than in the complete absence of information. The following questions ask you to prove more general versions of the product rule and Bayes' rule, with respect to some background evidence **e**:
 - **a.** Prove the conditionalized version of the general product rule:

 $\mathbf{P}(X, Y \mid \mathbf{e}) = \mathbf{P}(X \mid Y, \mathbf{e})\mathbf{P}(Y \mid \mathbf{e})$.

- b. Prove the conditionalized version of Bayes' rule in Equation (13.13).
- **13.17** Show that the statement of conditional independence

$$\mathbf{P}(X,Y \mid Z) = \mathbf{P}(X \mid Z)\mathbf{P}(Y \mid Z)$$

is equivalent to each of the statements

$$\mathbf{P}(X \mid Y, Z) = \mathbf{P}(X \mid Z)$$
 and $\mathbf{P}(B \mid X, Z) = \mathbf{P}(Y \mid Z)$.

- **13.18** Suppose you are given a bag containing n unbiased coins. You are told that n-1 of these coins are normal, with heads on one side and tails on the other, whereas one coin is a fake, with heads on both sides.
 - **a.** Suppose you reach into the bag, pick out a coin at random, flip it, and get a head. What is the (conditional) probability that the coin you chose is the fake coin?
 - **b.** Suppose you continue flipping the coin for a total of *k* times after picking it and see *k* heads. Now what is the conditional probability that you picked the fake coin?
 - **c**. Suppose you wanted to decide whether the chosen coin was fake by flipping it *k* times. The decision procedure returns fake if all *k* flips come up heads; otherwise it returns *normal*. What is the (unconditional) probability that this procedure makes an error?
- **13.19** In this exercise, you will complete the normalization calculation for the meningitis example. First, make up a suitable value for $P(s \mid \neg m)$, and use it to calculate unnormalized values for $P(m \mid s)$ and $P(\neg m \mid s)$ (i.e., ignoring the P(s) term in the Bayes' rule expression, Equation (13.14)). Now normalize these values so that they add to 1.
- **13.20** Let X, Y, Z be Boolean random variables. Label the eight entries in the joint distribution P(X, Y, Z) as a through h. Express the statement that X and Y are conditionally independent given Z, as a set of equations relating a through h. How many *nonredundant* equations are there?
- **13.21** (Adapted from Pearl (1988).) Suppose you are a witness to a nighttime hit-and-run accident involving a taxi in Athens. All taxis in Athens are blue or green. You swear, under oath, that the taxi was blue. Extensive testing shows that, under the dim lighting conditions, discrimination between blue and green is 75% reliable.
 - **a**. Is it possible to calculate the most likely color for the taxi? (*Hint:* distinguish carefully between the proposition that the taxi *is* blue and the proposition that it *appears* blue.)
 - **b**. What if you know that 9 out of 10 Athenian taxis are green?
- **13.22** Text categorization is the task of assigning a given document to one of a fixed set of categories on the basis of the text it contains. Naive Bayes models are often used for this task. In these models, the query variable is the document category, and the "effect" variables are the presence or absence of each word in the language; the assumption is that words occur independently in documents, with frequencies determined by the document category.
 - a. Explain precisely how such a model can be constructed, given as "training data" a set of documents that have been assigned to categories.
 - **b**. Explain precisely how to categorize a new document.
 - **c.** Is the conditional independence assumption reasonable? Discuss.
- **13.23** In our analysis of the wumpus world, we used the fact that each square contains a pit with probability 0.2, independently of the contents of the other squares. Suppose instead that exactly N/5 pits are scattered at random among the N squares other than [1,1]. Are the variables $P_{i,j}$ and $P_{k,l}$ still independent? What is the joint distribution $\mathbf{P}(P_{1,1}, ..., P_{4,4})$ now? Redo the calculation for the probabilities of pits in [1,3] and [2,2].
- 13.24 Redo the probability calculation for pits in [1,3] and [2,2], assuming that each square contains

a pit with probability 0.01, independent of the other squares. What can you say about the relative performance of a logical versus a probabilistic agent in this case?

13.25 Implement a hybrid probabilistic agent for the wumpus world, based on the hybrid agent in Figure 7.20 and the probabilistic inference procedure outlined in this chapter.

