Paul Gustafson

Texas A&M University - Math 666

Instructor: Igor Zelenko

Bonus exercises

1 Let $\lambda:[0,T]\to[0,1]$ be measurable. Let

$$A_n = \bigcup_{k=0}^{n-1} [kT/n, kT/n + \int_{kT/n}^{(k+1)T/n} \lambda(t) dt).$$

Show that for any $\phi \in L_1[0,T]$,

$$\int_0^t \chi_{A_n}(\tau)\phi(\tau) d\tau \to \int_0^t \lambda(\tau)\phi(\tau) d\tau,$$

uniformly on [0, T].

Proof. We first consider the case $\phi = \chi_{(a,b)}$. Pick nonnegative integers $k_a, k_b \le n$ such that $|k_a T/n - a| < T/n$ and $|b - k_b T/n| < T/n$. Then

$$\left| \int_{0}^{t} (\lambda(\tau) - \chi_{A_{n}}(\tau)) \phi(\tau) d\tau \right| = \left| \int_{a}^{b} (\lambda(\tau) - \chi_{A_{n}}(\tau)) d\tau \right|$$

$$= \left| \left(\int_{a}^{k_{a}T/n} + \int_{k_{b}T/n}^{b} + \int_{k_{a}T/n}^{k_{b}T/n} \right) (\lambda(\tau) - \chi_{A_{n}}(\tau)) d\tau \right|$$

$$\leq |k_{a}T/n - a|(2) + |b - k_{b}T/n|(2) + 0$$

$$\leq 4T/n,$$

which goes to 0 uniformly in t.

By linearity, we get the same result for step functions.

Let $\epsilon > 0$ and $\phi \in L_1[0,T]$ be arbitrary. We can pick a step function h such that $\|\phi - h\|_{L_1[0,T]} < \epsilon/(2T)$. Then

$$\left| \int_{0}^{t} (\lambda(\tau) - \chi_{A_{n}}(\tau))\phi(\tau) d\tau \right| \leq \left| \int_{0}^{t} (\lambda(\tau) - \chi_{A_{n}}(\tau))h(\tau) d\tau \right| + \left| \int_{0}^{t} (\lambda(\tau) - \chi_{A_{n}}(\tau))(h - \phi)(\tau) d\tau \right|$$

$$\leq \left| \int_{0}^{t} (\lambda(\tau) - \chi_{A_{n}}(\tau))h(\tau) d\tau \right| + 2t\epsilon/(2T)$$

$$\leq \left| \int_{0}^{t} (\lambda(\tau) - \chi_{A_{n}}(\tau))h(\tau) d\tau \right| + \epsilon.$$

$$\leq 2\epsilon,$$

uniformly in t for n sufficiently large by the step function case.

2 Let Y_1 and Y_2 be two complete vector fields on \mathbb{R}^n , which are also Lipshitzian, i.e. there exist $L_i > 0$ such that $||Y_i(x_1) - Y_i(x_2)|| \le L_1 ||x_1x_2||$ for any $x_1, x_2 \in \mathbb{R}^n$, $i \in \{1, 2\}$. Let T, λ, A_n be as in the previous problem. Further, assume that q(t) is the trajectory of the vector field $\lambda(t)Y_1 + (1 - \lambda(t))Y_2$ with $q(0) = q_0$ and $(q_n(t))$ are the trajectories of the vector fields $\chi_{A_n}Y_1 + (1 - \chi_{A_n}(t))Y_2$ with $q_n(0) = q_n$ and such that $q_n \to q_0$. Prove that $q_n(t) \to q(t)$ uniformly on [0, T]. (Hint: Use the Gronwall inequality: if $y(\tau), \beta(\tau)$ are continuous and take nonnegative values on [0, T] and $\alpha \ge 0$ with $y(t) \le \alpha + \int_0^t \beta(\tau)y(\tau) \, d\tau$ for $t \in [0, T]$, then $y(t) \le \alpha e^{\int_0^t \beta(\tau) \, d\tau}$.)

Proof.

3 Let V be a finite dimensional complex vector space and $T: V \to V$ be a linear transformation. Let p(x) denote the characteristic polynomial of T, and m(x) denote the minimal polynomial of T. Find a necessary and sufficient condition on the Jordan Normal Form of T for p(x) = m(x).

Proof. I claim that p=m if and only if the geometric multiplicity of each eigenvalue of T is 1. This means that each Jordan block has a distinct eigenvalue. Let (λ_j) be an enumeration of the eigenvalues of T without multiplicity. Let s_j denote the size of the largest Jordan block corresponding to each eigenvalue λ_j . Then $(T-\lambda_j I)^{s_j}$ kills the generalized eigenspace V_j for λ_j . Thus m(x) divides $\prod_j (x-\lambda_j)^{s_j}$. Moreover, each $(x-\lambda_j)^{s_j}$ generates the T-annihilator for the basis vector acted on by the last column of the largest Jordan block for λ_j . Thus, each $(x-\lambda_j)^{s_j}$ divides m(x). Hence $m(x) = \prod_j (x-\lambda_j)^{s_j}$. It follows that p=m iff each λ_j corresponds to exactly one Jordan block.