Design and Analysis of Algorithm

Lecture-3:

Contents

1 Master Method

Master Theorem

The master method provides a "cookbook" method for solving recurrences of the form

T(n) = a T(n/b) + f(n), where, $a \ge 1$ and b > 1 and f(n) should always be asymptotically positive function

```
1. if f(n) = O(n^{\log_b a - \epsilon}) where \epsilon > 0

then T(n) = \theta(n^{\log_b a})

2. if f(n) = \theta(n^{\log_b a})

then T(n) = \theta(n^{\log_b a})

3. if f(n) = \Omega(n^{\log_b a + \epsilon})

if af(\frac{n}{b}) \leq cf(n) for some c < 1

then T(n) = \theta(f(n))
```

Numerical on Master Theorem

$$T(n) = 9T(n/3) + n$$

$$T(n) = T(2n/3) + 1$$

Step 1:
$$a = 9$$
 and $b = 3$ and $f(n) = n$
Step 2: compute $\log_b a \Rightarrow \log_3 9$

Step 3: compute
$$n^{\log_b a} \Rightarrow n^{\log_3 9} \Rightarrow n^2$$

Step 4: compare $f(n)$ with $n^{\log_b a} \Rightarrow n < n^2$
Step 5: Choose the case: Case 1

Step 4. Compare
$$f(n)$$
 with $n \to n \to n$
Step 5: Choose the case: Case 1
Step 6: $T(n) = \theta(n^2)$

$$\begin{array}{l}
^{9} \Rightarrow n^{2} \\
^{a} \Rightarrow n < n^{2}
\end{array}$$

$$n < n^2$$
 Ste

Step 5: Choose the case Step 6:
$$T(n) = \theta(\log(n))$$

$$T(n) = 3T(n/4) + nlog(n)$$

Step 1: $a = 3$ and $b = 4$ and $f(n) = n log(n)$

Step 2: compute
$$\log_b a \Rightarrow \log_4 3$$

Step 3: compute $n^{\log_b a} \Rightarrow n^{\log_4 3} \Rightarrow n^{0.793}$

Step 3: compute
$$n^{\log_b a} \Rightarrow n^{\log_4 3} \Rightarrow n^{0.793}$$

Step 4: compare $f(n)$ with $n^{\log_b a} \Rightarrow n \log(n) > n^{.793}$
Step 5: Choose the case: Case 3

Step 6: $af\left(\frac{n}{h}\right) = 3\left(\frac{n}{4}\right)\lg\left(\frac{n}{4}\right) \le \frac{3}{4}nlog(n) = cf(n); c = 3/4$

Step 4: compare
$$f(n)$$
 with $n^{\log_b a} \Rightarrow 1 = 1$
Step 5: Choose the case: Case 2

Step 3: compute
$$n^{\log_b a} \Rightarrow n^{\log_{3/2} 1} \Rightarrow 1$$

Step 4: compare $f(n)$ with $n^{\log_b a} \Rightarrow 1 = 1$
Step 5: Choose the case: Case 2

Step 1: a = 1 and b = 3/2 and f(n) = 1

 $T(n) = \theta(nlog(n))$

Step 2: compute $\log_b a \Rightarrow \log_{3/2} 1$

$$b^{a} \Rightarrow 1 = 0$$
se 2

$$T(n) = 4T(n/2) + n^2$$

$$a = 4,$$
 $b = 2,$ $f(n) = n^2$

$$f(n) = n^2$$

$$\log_b a = \log_2 4 = 2$$

$$n^{\log_b a} = n^2$$

Compare f(n) with $n^{\log_b a}$

$$f(n) = n^{\log_b a}$$

$$T(n) = \theta(n^2 \log n)$$

$$T(n) = 16T\left(\frac{n}{4}\right) + n!$$

$$a = 16, \qquad b = 4, \qquad f(n) = n!$$

$$\log_b a = \log_4 16 = 2$$

$$n^{\log_b a} = n^2$$
Comp

Compare
$$f(n)$$
 with $n^{\log_b a}$

$$f(n) > n^{\log_b a}$$
 Case 3 $a\left(f\left(\frac{n}{b}\right)\right) = cf(n) \Rightarrow 16\left(\frac{n}{4}\right)! \leq 0.5 \, n!$ this imples $c = 0.5$ which is less than 1

$$T(n) = \theta(n!)$$

$$T(n) = 3T(n/2) + n^2$$

$$T(n) = 3T(\frac{n}{2}) + n^{2}$$

$$a = 3 \qquad b = 2 \qquad f(n) = n^{2}$$

$$\log_{b} a = \log_{2} 3$$

$$f(n) > n^{\log_{b} 9}$$

$$n^{\log_{b} 9} = n^{\log_{2} 3}$$

$$Case - 3$$

$$a f(\frac{h}{b}) = 3(\frac{h}{2})^{2} = \frac{3}{4}h^{2}$$

$$c f(h) = ch^{2}$$

$$\frac{3}{4}h^{2} = ch^{2}$$

$$c = \frac{3}{4}h^{3}$$

$$T(n) = \theta(f(n)) = \theta(n^2)$$

a)
$$T(n) = 2^n T\left(\frac{n}{2}\right) + n^n$$

Master method does not apply as α is not constant

b)
$$T(n) = T(n/2) + n$$

 $T(n) = \theta(n)$

$$=\theta(n)$$

$$c) T(n) = 2T(n/2) + 2$$
$$T(n) = \theta(n)$$

$$d) T(n) = 4T(n/2) + n$$
$$T(n) = \theta(n^2)$$

e)
$$T(n) = 0.5T(\frac{n}{2}) + 1/n$$

Master method does not apply as α is less than

f)
$$T(n) = 8T(n/2) + n^2$$

$$T(n) = \theta(n^3)$$

(a)
$$T(n) = \sqrt{2} T\left(\frac{n}{2}\right) + \log n$$

(b)
$$T(n) = 3T\left(\frac{n}{2}\right) + n$$

(c)
$$T(n) = 3T\left(\frac{n}{3}\right) + \sqrt{n}$$

(d)
$$T(n) = 7 T\left(\frac{n}{3}\right) + n^2$$

(e)
$$T(n) = 2T(\sqrt{n}) + c$$

$$(f) \ T(n) = T(\sqrt{n}) + \log(n)$$

(g)
$$T(n) = T(\sqrt{n}) + c$$