Trust Aware Recommendation Systems

Problem

(a) Social Network Graph

	i_1	i ₂	i ₃	i ₄	i ₅	i ₆	i,	i ₈
u_1	5	2		3		4		
u_2	4	3			5			
u_3	4		2				2	4
u_4								
u_5	5	1	2		4	3		
u_6	4	3		2	4		3	5

(b) User-Item Matrix

	i_1	i ₂	i ₃	i ₄	i ₅	i_6	i,	i ₈
u_1	5	2	2.5	3	4.8	4	2.2	4.8
u_2	4	3	2.4	2.9	5	4.1	2.6	4.7
u_3	4	1.7	2	3.2	3.9	3.0	2	4
u_4	4.8	2.1	2.7	2.6	4.7	3.8	2.4	4.9
u_5	5	1	2	3.4	4	3	1.5	4.6
u_6	4	3	2.9	2	4	3.4	3	5

(c) Predicted User-Item Matrix

Regularization Methods: SocialMF

Regularization methods focus on a user's preferences and assume that a user's preferences should be similar to that of her trust network.

SocialMF

$$\min \sum_{i=1}^{n} (\mathbf{u}_i - \sum_{u_k \in \mathcal{N}_i} \mathbf{T}_{ik} \mathbf{u}_k)^2,$$

$$\min_{\mathbf{U}, \mathbf{V}} \|\mathbf{W} \odot (\mathbf{R} - \mathbf{U}^{\top} \mathbf{V})\|_F^2 + \alpha \sum_{i=1}^n (\mathbf{u}_i - \sum_{u_k \in \mathcal{N}_i} \mathbf{T}_{ik} \mathbf{u}_k)^2
+ \lambda(\|\mathbf{U}\|_F^2 + \|\mathbf{V}\|_F^2)$$

SocialMF

$$\mathcal{L}(R, T, U, V) = \frac{1}{2} \sum_{u=1}^{N} \sum_{i=1}^{M} I_{u,i}^{R} (R_{u,i} - g(U_{u}^{T} V_{i}))^{2}$$

$$+ \frac{\lambda_{U}}{2} \sum_{u=1}^{N} U_{u}^{T} U_{u} + \frac{\lambda_{V}}{2} \sum_{i=1}^{M} V_{i}^{T} V_{i}$$

$$+ \frac{\lambda_{T}}{2} \sum_{u=1}^{N} \left((U_{u} - \sum_{v \in N_{u}} T_{u,v} U_{v})^{T} (U_{u} - \sum_{v \in N_{u}} T_{u,v} U_{v}) \right)$$

SocialMF

$$\frac{\partial \mathcal{L}}{\partial U_{u}} = \sum_{i=1}^{M} I_{u,i}^{R} V_{i} g'(U_{u}^{T} V_{i}) (g(U_{u}^{T} V_{i}) - R_{u,i}) + \lambda_{U} U_{u}$$

$$+ \lambda_{T} (U_{u} - \sum_{v \in N_{u}} T_{u,v} U_{v})) - \lambda_{T} \sum_{\{v \mid u \in N_{v}\}} T_{v,u} \Big(U_{v} - \sum_{w \in N_{v}} T_{v,w} U_{w} \Big)$$
(13)

$$\frac{\partial \mathcal{L}}{\partial V_i} = \sum_{u=1}^{N} I_{u,i}^R U_v g'(U_u^T V_i) (g(U_u^T V_i) - R_{u,i}) + \lambda_V V_i \quad (14)$$

Efficiency

Users/Items	Root Mean Square Error	RMSE in paper	Training Data
7000/21000	1.12	1.075	90%
3000/9000	1.078	1.075	90%
7000/21000	1.17	1.075	80%
3000/9000	1.13	1.075	80%

Regularization Methods: SocialMF

One advantage of these approaches is that they indirectly model the propagation of tastes in social networks, which can be used to mitigate cold-start problem and increase the coverage of items for recommendations.

Co-factorization Methods

- The underlying assumption of systems in this group is that the i-th user u_i should share the same user preference vector u_i in the rating space (rating information) and the trust relation space.
- Systems in this group perform a co-factorization in the user-item matrix and the user-user trust relation matrix by sharing the same user preference latent factor.

Sorec

$$\min \sum_{i=1}^n \sum_{u_k \in \mathcal{F}_i} (\mathbf{S}_{ik} - \mathbf{U}_i^{\mathsf{T}} \mathbf{Z}_k)^2,$$

$$\begin{aligned} \min_{\mathbf{U}, \mathbf{V}, \mathbf{Z}} \| \mathbf{W} \odot (\mathbf{R} - \mathbf{U}^{\top} \mathbf{V}) \|_{F}^{2} + \alpha \sum_{i=1}^{n} \sum_{u_{k} \in \mathcal{F}_{i}} (\mathbf{S}_{ik} - \mathbf{U}_{i}^{\top} \mathbf{Z}_{k})^{2} \\ + \lambda (\| \mathbf{U} \|_{F}^{2} + \| \mathbf{V} \|_{F}^{2} + \| \mathbf{Z} \|_{F}^{2}), \end{aligned}$$

Hybrid: Sorec and SocialMF

- The i-th user u_i should share the same user preference vector u_i in the rating space (rating information) and the trust relation space.
- A user's preferences should be similar to that of his trust network.

Sorec

$$\min \sum_{i=1}^n \sum_{u_k \in \mathcal{F}_i} (\mathbf{S}_{ik} - \mathbf{U}_i^{\mathsf{T}} \mathbf{Z}_k)^2,$$

$$\min \sum_{i=1}^{n} (\mathbf{u}_i - \sum_{u_k \in \mathcal{N}_i} \mathbf{T}_{ik} \mathbf{u}_k)^2,$$

Has Potential

90% Train, 10% Test, 3000 Users, 9000 items.

SocialMF: 1.078 RMSE

Hybrid: 1.054 RMSE

This was the least error across multiple runs.

Zomato

- Very few datasets with trust relations and item ratings.
- Most just use epinions, some papers introduce new ones with slightly different density.
- Api exists but only for restaurants and their ratings.
- Idea was to use "followers" as one way trust relation.

Zomato: Challenges

- Default scraping didn't work.
- User agent spoofing, but got static web pages.
- Selenium worked but very slow.
- Had to find post URL and use it for scraping.

Zomato: Comparison with Epinions

Parameters\Datasets	Epinions	Zomato
Users	49,290	8028
Items	1,39,738	92,324
Items Ratings	6,64,823	2,33,974
Trust Relations	4,87,182	38,84,886

More Trust, Lesser Error

• 90% Train, 10% Test, 3000 Users, 9000 items. Sorec.

Epinions: 0.87 MAE

Zomato: 0.53 MAE

Overview

- Identified core ideas/papers in Trust Based Recommendation Systems and implemented and compared them to know advantages and disadvantages of each.
- Tried to leverage previous understanding to create a hybrid approach and improve performance.
- Contributions: Created a new dataset with high trust density.

Thanks!

Student Info:

P. Rishith Reddy 201401159

rishith.reddy@students.iiit.ac.in

