

Architecture Analysis with AADL

The Speed Regulation Case- Study

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Julien Delange

Software Engineering Institute

Carnegie Mellon University

Report Documentation Page			Form Approved OMB No. 0704-0188	
<p>Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.</p>				
1. REPORT DATE NOV 2014	2. REPORT TYPE	3. DATES COVERED 00-00-2014 to 00-00-2014		
4. TITLE AND SUBTITLE Architecture Analysis with AADLThe Speed Regulation Case-Study			5a. CONTRACT NUMBER	
			5b. GRANT NUMBER	
			5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)			5d. PROJECT NUMBER	
			5e. TASK NUMBER	
			5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Carnege Mellon University,Software Engineering Institute,Pittsburgh,PA,15213			8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)	
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited				
13. SUPPLEMENTARY NOTES				
14. ABSTRACT				
15. SUBJECT TERMS				
16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT c. THIS PAGE unclassified unclassified unclassified			17. LIMITATION OF ABSTRACT Same as Report (SAR)	18. NUMBER OF PAGES 56
				19a. NAME OF RESPONSIBLE PERSON

Copyright 2014 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM-0001524

Software Engineering Institute

Carnegie Mellon University

What this talk is about?

- 1. Actual issues for Safety-Critical systems design**
- 2. Why Model-Based Engineering techniques are helpful**
- 3. How AADL can detect issues early and avoid potential rework**

Agenda

Introduction on Model-Based Engineering

Presentation of the Case Study

System Overview

AADL model description

Architecture Analysis

Conclusion

Agenda

Introduction on Model-Based Engineering

Presentation of the Case Study

System Overview

AADL model description

Architecture Analysis

Conclusion

Software Engineering Institute

Carnegie Mellon University

Polling Question 1

Do you know what Model-Based Engineering is?

Software Engineering Institute

Carnegie Mellon University

Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Safety-Critical Systems are Intensively Software-Reliant

Source: “*Delivering Military Software Affordably*” in Defense AT&L

Software Engineering Institute

Carnegie Mellon University

Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Errors are introduced early but detected (too) lately

Many Errors stems from Architecture or Integration Issues

Global Variable used among different functions

Potential issues: inconsistent values

Root Cause: Architecture Design

Use of COTS components with

Potential impact

Root Cause

Timing issue

Enforced, bad values

Integration policy, lack of analysis

Fact1: All these errors could be detected at Design-Time

Fact2: They are actually detected during integration tests

Fact3: They incur rework costs and postpone product delivery

Why Model-Based Engineering Matters?

Capture system architecture with designers requirements

- Focus on system structure/organization (e.g. shared components)
- Tailor architecture to specific engineering domain (e.g. safety)

Validate the architecture

- Check requirements enforcement (e.g. no global variable)
- Detect Potential issues (e.g. interfaces consistency)

Early Analysis

- Avoid late re-engineering efforts (e.g. less rework after integration)
- Support decisions between different architecture variations

Polling Question 2

Do you already know AADL?

Software Engineering Institute

Carnegie Mellon University

Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Architecture Analysis Design Language

SAE Standard for Model-Based Engineering

First version in 2003, actual version 2.1

Definition of System and Software Architecture

Specialized components with interfaces (not just “blocks”)

Interaction with the Execution Environment (processor, buses)

Extension mechanisms

User-Defined Properties (integrate your own constraints)

Annexes (existing for safety, behavior, etc.)

AADL Model Example

Architecture Analysis Design Language

Safety & Reliability

- MTBF
- FMEA
- Hazard analysis

Agenda

Introduction on Model-Based Engineering

Presentation of the Case Study

System Overview

AADL model description

Architecture Analysis

Conclusion

Software Engineering Institute

| Carnegie Mellon University

Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Objectives of this Study

Learn Architecture Modelling with AADL and the OSATE workbench

Model a family of systems with their variability factors

Analyze the Architecture from a performance perspective

Discover Safety Issues using Architecture Models

Support Architecture Alternatives Selection

Illustrate the Process with a relevant case study

Case-Study Description

Self-Driving car speed regulation

Obstacle detection with user warning

Camera detection

Infra-red sensor

Automatic Speed and Brake

Two speed (wheel, laser) sensors

Redundant GPS

Polling Question 3

On what aspect would you like to focus?

Case-Study Objectives

Help designers to choose the *best* Architecture

- Best reliability, avoid potential failure/error

- Meet timing and performance requirements

Analyze Architecture according to stakeholders criteria

- Try to analyze what really matters

Quantify architecture quality from different perspectives

- Latency**

- Resources and Budgets**

- Safety/Reliability**

Agenda

Introduction on Model-Based Engineering

Presentation of the Case Study

System Overview

AADL model description

Architecture Analysis

Conclusion

Software Engineering Institute

Carnegie Mellon University

Functional Architecture

Functional Architecture, timing perspective

Functional Architecture, criticality perspective

Redundancy Groups (performs the same function)

Deployment Alternatives

Alternative 1: reduce cost and complexity

Two processors and one shared bus

Potential interactions for functions collocated on the same processor

Alternative 2: reduce potential fault impact

Increase potential production cost (more hardware)

Three processors inter-connected with two buses

Architecture Alternative 1

Reduce Cost and Complexity
Potential interactions for functions collocated
on the same processor

Architecture Alternative 2

Reduce Fault Impact
Might increase production costs

Agenda

Introduction on Model-Based Engineering

Presentation of the Case Study

System Overview

AADL model description

Architecture Analysis

Conclusion

Software Engineering Institute

Carnegie Mellon University

Modeling Guidelines

Separate architecture aspects in different files

Leverage AADL extension and refinement mechanisms

Capture common characteristics, avoid copy/paste

Extend generic components

Use properties to quantify quality attributes

Processed by tools to evaluate architecture quality

Specify once, use by several analysis tools

Ensure Analyses Consistency

Model Organization – devices

Model Organization – devices – textual model

Model Organization – Interfaces Specifications

Data types being used to communicate across functions

```
data gps_position  
properties  
    data_size => 50 Bytes;  
    data_model::data_representation => Array;  
end gps_position;
```

```
data speed_command_type  
properties  
    data_model::data_representation => enum;  
    model_enumerators => ("brake", "accel");  
    size => 2 bits;  
end speed_command_type;
```

One property, several analyses
⇒ Ensure Analyses Consistency

```
data boolean  
properties  
    data_size => 1 bits;  
end boolean;
```

Data size properties
(resource allocation and latency analysis)

```
data implementation speed_command.i  
subcomponents  
    kind : data speed_command_type;  
    value : data base_types::unsigned_16;  
end speed_command.i;  
  
data distance extends base_types::unsigned_32  
end distance;
```


Model Organization – platform

Processor extension, specify bus connections
Share properties of inherited component

Timing information
(latency analysis)

Model Organization – software (1)

Model Organization – software – textual notation (1)

```
process radar_acquisition
Features
  obstacle_distance : in data port speed_regulation::icd::distance;
  ...
flows
  f0 : flow path obstacle_distance -> obstacle_detected;
annex_EHv2 {**}

use behavior speed_regulation::error_library::simple;

error propagations
  obstacle_distance : in propagation {NoValue,InvalidValue};
  obstacle_detected : out propagation {NoValue,InvalidValue};
  processor : in propagation {SoftwareFailure, HardwareFailure};
flows
  ef0 : error path obstacle_distance{NoValue} -> obstacle_detected{NoValue};
  ef1 : error path obstacle_distance{NoValue} -> obstacle_detected{InvalidValue};
  ef3 : error path obstacle_distance{InvalidValue} -> obstacle_detected{InvalidValue};
  ef2 : error path processor{HardwareFailure,SoftwareFailure} -> obstacle_detected{NoValue};
end propagations;

component error behavior
transitions
  t0 : Operational -[processor{SoftwareFailure}]-> Failed;
  t1 : Operational -[processor{HardwareFailure}]-> Failed;
  t2 : Failed -[processor{NoError}]-> Operational;
propagations
  p1 : Failed -[]-> obstacle_detected{NoValue};
end component;
};

end radar_acquisition;
```

Communication interfaces

Data flow specification
(latency analysis)

Error specification
(safety analyses)

Component type

Subcomponents
and connections

```
process implementation_radar_acquisition
subcomponents
  thr : thread radar_acquisition_thr.;
connections
  c0 : port obstacle_distance -> thr.obstacle_distance;
  c1 : port thr.obstacle_detected -> obstacle_detected;
flows
  f0 : flow path obstacle_distance -> c0 -> thr.f0 -> c1 -> obstacle_detected;
end radar_acquisition.i;
```

Component implementation

Model Organization – software – textual notation (2)

```
thread radar_acquisition_thr
features
    obstacle_distance : in data port speed_regulation::icd::distance;
    obstacle_detected : out data port speed_regulation::icd::boolean;
flows
    f0 : flow path obstacle_distance -> obstacle_detected;
properties
    Dispatch_Protocol => Periodic;
    Period              => 10ms;
    sei::mipsbudget    => 4.0 mips;
end radar_acquisition_thr;
```

Data flow
(latency analysis)

Time information
(latency analysis)

Resource Budgets
(resource allocation analysis)

Model Organization – safety specification

```
package speed_regulation::error_library
public
annex EMV2 {**
    error types
        NoPower           : type;
        ValueError        : type;
        NoValue           : type;
        Invalid           : type;
        HardwareFailure   : type;
    end types;

    error behavior simple
        states
            Operational : initial state;
            Failed      : state;
        end
    **};
end speed
```

Error types that could be raised

Error states

Component-specific error transitions
(to be added on a component-basis)
Reusable error state machines
to be attached to components

Model Organization – define error flows – error source

```
device camera
features
    picture : out data port speed_regulation::icd::picture;
flows
    f0 : flow source picture;
properties
    Period => 200ms;
annex EMV2 {**
    use types speed regulation::error library;
    error propagations
        picture : out propagation {NoValue};
    tions
        ef0 : error source picture{NoValue};
    end propagations;
**};
end camera;
```

Reuse predefined types

Define error types propagated on component interfaces

Define the error sources, what interfaces initiates an error flow

Component camera

picture

NoValue error propagated

Software Engineering Institute

Carnegie Mellon University

Model Organization – define error flows – error path

```
annex EMV2 {**  
    use types      speed_regulation::error_library;  
    use behavior   speed regulation::error library::simple;  
  
    error_propagations  
        obstacle_distance : in propagation {NoValue,InvalidValue};  
        obstacle_detected : out propagation {NoValue,InvalidValue};  
        processor : in propagation {SoftwareFailure, HardwareFailure};  
  
    flows  
        ef0 : error path obstacle_distance{NoValue} -> obstacle_detected{NoValue};  
        ef1 : error path obstacle_distance{NoValue} -> obstacle_detected{InvalidValue};  
        ef3 : error path obstacle_distance{InvalidValue} -> obstacle_detected{InvalidValue};  
        ef2 : error path processor{HardwareFailure, SoftwareFailure} -> obstacle_detected{?};  
    end propagations;  
};
```

Reuse predefined types and behavior

Define error types propagated on component interfaces

Define the propagations flows

Model Organization – error sink & define component error behavior

```
device warning_device
features
    warning : in data port speed_regulation::icd::boolean;
flows
    f0 : flow sink warning;
properties
    Period => 500ms;
annex EMV2 {**
    use types      speed_regulation::error_library;
    use behavior   speed_regulation::error_library::simple;
}
error propagations
    warning : in propagation {NoValue,InvalidValue};
flows
    ef0 : error sink warning{NoValue,InvalidValue};
end propagations;
component error behavior
events
    Reset : recover event;
transitions
    t0 : Operational -[warning{NoValue}]-> Failed;
    t1 : Operational -[warning{InvalidValue}]-> Failed;
    t2 : Failed -[Reset]-> Operational;
end component;
**};
end warning_device;
```

Use predefined error types and component behavior

Define component-specific error events

Component-specific error transitions

Model Organization – architecture alternatives

Architecture Alternative 1: model instance

Architecture Alternative 2: model instance

Variability Factors with Alternative 1

Software Engineering Institute

Carnegie Mellon University

Agenda

Introduction on Model-Based Engineering

Presentation of the Case Study

System Overview

AADL model description

Architecture Analysis

Conclusion

Software Engineering Institute

Carnegie Mellon University

Latency Analysis, principles

Potential impact
on latency

Bus characteristics

	Alternative1	Alternative2
Acquisition Time	10 to 30 ms	200 to 500 ms
Transmission Time (/B)	1 to 10us	2 to 5 ms

Latency Analysis, results

Architecture Alternative 1

flow	model element	name	deadline or conn delay	total	expected
f0: End to End Latency report					
f0 (Synchronous)	device	obstacle_camera:f0	200.0 ms	200.0 ms	900.0 ms
f0 (Synchronous)	Connection	obstacle_camera.picture:0.0 us	200.0 ms	900.0 ms	
f0 (Synchronous)	thread	image_acquisition.thr:f 50.0 ms	250.0 ms	900.0 ms	
f0 (Synchronous)	Connection	image_acquisition.thr.c 0.0 us	250.0 ms	900.0 ms	
f0 (Synchronous)	thread	obstacle_detection.thr: 100.0 ms	350.0 ms	900.0 ms	
f0 (Synchronous)	Connection	obstacle_detection.thr.30.00125 ms	380.00125 ms	900.0 ms	
f0 (Synchronous)	thread	obstacle_distance_eval: 10.0 ms	390.00125 ms	900.0 ms	
f0 (Synchronous)	Connection	obstacle_distance_eval:0.0 us	390.00125 ms	900.0 ms	
f0 (Synchronous)	thread	emergency_detection.t4: 0.4 ms	394.00125 ms	900.0 ms	
f0 (Synchronous)	Connection	emergency_detection.t0:0.0 us	394.00125 ms	900.0 ms	
f0 (Synchronous)	thread	warning_activation.thr: 2.0 ms	396.00125 ms	900.0 ms	
f0 (Synchronous)	Connection	warning_activation.thr.ac: 0.0 us	396.00125 ms	900.0 ms	
f0 (Synchronous)	device	warning_alert:f0	500.0 ms	896.00125 ms	900.0 ms
f0 (Synchronous)	Total		0.0 us	896.00125 ms	900.0 ms

f0: End-to-end flow f0 calculated latency (Synchronous) 896.00125 ms is less than expected latency 900.0 ms

Architecture Alternative 2

flow	model elemen	name	deadline or conn	total	expected
f0: End to End Latency report					
f0 (Synchronous)	device	obstacle_camera:f0	200.0 ms	200.0 ms	900.0 ms
f0 (Synchronous)	Connection	obstacle_camera.picture: -0.0 us	200.0 ms	900.0 ms	
f0 (Synchronous)	thread	image_acquisition.thr:f0 50.0 ms	250.0 ms	900.0 ms	
f0 (Synchronous)	Connection	image_acquisition.thr.ob: 0.0 us	250.0 ms	900.0 ms	
f0 (Synchronous)	thread	obstacle_detection.thr:ob: 100.0 ms	350.0 ms	900.0 ms	
f0 (Synchronous)	Connection	obstacle_detection.thr.ok: 100.00625 ms	450.00625 ms	900.0 ms	
f0 (Synchronous)	thread	obstacle_distance_eval: 10.0 ms	460.00625 ms	900.0 ms	
f0 (Synchronous)	Connection	obstacle_distance_eval:0.0 us	460.00625 ms	900.0 ms	
f0 (Synchronous)	thread	emergency_detection.thr: 4.0 ms	464.00625 ms	900.0 ms	
f0 (Synchronous)	Connection	emergency_detection.thr:0.0 us	464.00625 ms	900.0 ms	
f0 (Synchronous)	thread	warning_activation.thr:f0 2.0 ms	466.00625 ms	900.0 ms	
f0 (Synchronous)	Connection	warning_activation.thr.ac: 0.0 us	466.00625 ms	900.0 ms	
f0 (Synchronous)	device	warning_alert:f0	500.0 ms	966.00625 ms	900.0 ms
f0 (Synchronous)	Total		0.0 us	966.00625 ms	900.0 ms

ERROR: f0: End-to-end flow f0 calculated latency (Synchronous) 966.00625 ms exceeds expected latency 900.0 ms

Resources Allocation Analysis, principles

Resources Allocation Analysis, results

Architecture
Alternative 1

Architecture
Alternative 2

Safety Analyses Overview

Functional Hazard Analysis (FHA)

Failures inventory with description, classification, etc.

Fault-Tree Analysis (FTA)

Dependencies between errors event and failure modes

Fault-Impact Analysis

Error propagations from an error source to impacted component

Need to combine analyses

Connect results to see impact on critical components

Safety Analysis, FHA, results

Architecture Alternative 1: 15 errors contributors

Architecture Alternative 2: 17 errors contributors

Difference stems from additional platform components (ecu)

Have to consider criticality of fault impacts

Safety Analysis, FTA results

Architecture Alternative 1: 15 errors contributors

Architecture Alternative 2: 17 errors contributors

Difference stems from additional platform components (ecu)

Have to consider criticality of fault impacts

Safety Analysis, Fault Impact, results

Architecture Alternative 1 & 2: 443 error paths

Use the same paths

The additional ECU in alternative 2 covers path from ecu2
in Alternative 1

Impact on components criticality

Defect on the additional bus in Architecture 2 impact low-critical functions

Isolate defect from low-critical functions to affect high-critical

Analysis Summary

	Architecture 1	Architecture 2
Latency		
Resources Budgets		
Safety		
Cost		

What is the “best” architecture?

Agenda

Introduction on Model-Based Engineering

Presentation of the Case Study

System Overview

AADL model description

Architecture Analysis

Conclusion

Software Engineering Institute

Carnegie Mellon University

Speed Regulation Case-Study
Julien Delange
© 2014 Carnegie Mellon University

Conclusions

Safety-Critical Systems Development issues is not a fatality

Late detection of errors is no longer possible

Need for new methods and tools

AADL supports Architecture Study and Reasoning

Evaluate quality among several architectures

Ease decision making between different architecture variations

Analysis of Architectural change on the whole system

User-friendly and open-source workbench

Graphical Notation

Interface with other Open-Source Tools

Useful Resources

AADL wiki – <http://www.aadl.info/wiki>

Model-Based Engineering with AADL book

SEI blog post series <http://blog.sei.cmu.edu>

Mailing-List

see. https://wiki.sei.cmu.edu/aadl/index.php/Mailing_List

Software Engineering Institute

Carnegie Mellon University

Questions & Contact

Dr. Julien Delange

Member of the Technical Staff
Architecture Practice
Telephone: +1 412-268-9652
Email: info@sei.cmu.edu

U.S. Mail

Software Engineering Institute
Customer Relations
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
USA

Web

www.sei.cmu.edu
www.sei.cmu.edu/contact.cfm

Customer Relations

Email: info@sei.cmu.edu
Telephone: +1 412-268-5800
SEI Phone: +1 412-268-5800
SEI Fax: +1 412-268-6257

