Comenzado el	omingo, 21 de julio de 2024, 15:50					
Estado	nalizado					
Finalizado en	ngo, 21 de julio de 2024, 16:49					
Tiempo empleado	9 minutos 19 segundos					
Puntos	25,00/32,00					
Calificación	7,81 de 10,00 (78,13 %)					

Correcta

Se puntúa 2,00 sobre 2,00

Considere las proposiciones p: verdadero y q: falso.

Determine el valor de verdad de las siguientes expresiones, donde "V" es verdadero y "F" es falso.

a)
$$(p
ightarrow q) ee
eg p \leftrightarrow q$$
 $ee ee$.

b)
$$(p \lor q) o (q \leftrightarrow p)$$
 F .

Utilizando las proposiciones dadas se puede determinar los valores de verdad de las expresiones de la siguiente manera:

a)
$$(p o q)ee
eg p \leftrightarrow q$$
 $(V o F)ee F \leftrightarrow F$ $Fee F \leftrightarrow F$ $F \leftrightarrow F$ V

b)
$$(p \lor q) o (q \leftrightarrow p)$$
 $(V \lor F) o (F \leftrightarrow V)$ $V o F$

Pregunta 2	
Correcta	
Se puntúa 2,00 sobre 2,00	

Considere la siguiente proposición

"Si la familia se organiza bien, entonces será más eficiente la limpieza del hogar"

Según la proposición anterior seleccione la opción correspondiente a: Contrapositiva, la Recíproca e Inversa.

1). Contrapositiva	Si no es más eficiente la limpieza del hogar, es porque la familia no se organiza bier		
2). Recíproca : Si	es más eficiente la limpieza del hogar, es porque la familia se organiza bien.		

Dada la proposición

"Si la familia se organiza bien, entonces será más eficiente la limpieza del hogar"

Se representar de la siguiente manera

p: Si la familia se organiza bien

q : Será más eficiente la limpieza del hoga

Que se representa p o q

Por lo que la manera de representar de la contrapositiva, recíproca y inversa respectivamente es:

- 1) Si no es más eficiente la limpieza del hogar, es porque la familia no se organiza bien: se representa $\neg q \to \neg p$ por lo que corresponde a la **contrapositiva**.
- 2) Si es más eficiente la limpieza del hogar, es porque la familia se organiza bien: q o p por lo que es la ${f recíproca}$
- 3) Si la familia no se organiza bien, entonces no será más eficiente la limpieza del hogar: se representa $\neg p \to \neg q$ por lo que corresponde a la **inversa**.

Correcta

Se puntúa 2,00 sobre 2,00

Considere las proposiciones:

- P: El automóvil hace un ruido.
- Q: Voy al mecánico
- R: Riega aceite

Según la información anterior, determine la representación simbólica de las siguientes proposiciones compuestas:

- a) "Si el auto hace un ruido y riega aceite, voy al mecánico": $(P \land R) \rightarrow Q$
- b) "Si no voy al mecánico, entonces el automóvil no hace ruido": $\neg Q \rightarrow \neg P$
- c) "Si el automóvil hace ruido o no riega aceite, no voy al mecánico": $(PV \neg R) \rightarrow \neg Q$

Observe que según las proposiciones dadas y utilizando los operadores correctos: (entonces: \rightarrow), (si y solo si: \leftrightarrow), (0: \vee), (Y: \wedge) y (no: \neg) se tiene

- a)"Si el auto hace un ruido y riega aceite, voy al mecánico": $(P \land R) \rightarrow Q$
- b) "Si no voy al mecánico, entonces el automóvil no hace ruido": $\neg Q \rightarrow \neg P$
- c) "Si el automóvil hace ruido o no riega aceite, no voy al mecánico": (P $V \neg R$) $\rightarrow \neg Q$

Pregunta 4

Incorrecta

Se puntúa 0.00 sobre 2.00

Considere las proposiciones r y s, tales que

- r: No hay cactus amarillos
- s: No hay claveles rojos

La expresión $\neg(r \land s)$ es lógicamente equivalente a

"Todos los cactus son amarillos o todos los claveles son rojos"

Para resolver el ejercicio, es importante notar que:

 $\neg(r \land s)$ es lógicamente equivalente a $\neg r \lor \neg s$ (Ley de De Mogan).

Por tanto, si se tiene que

- r: No hay cactus amarillos
- q: No hay claveles rojos

la expresión $\neg r \lor \neg s$ equivale a la frase: "Algunos cactus son amarillos o algunos claveles son rojos".

Correcta

Se puntúa 3,00 sobre 3,00

Al efectuar la tabla de verdad de la expresión lógica siguiente

$$(p o q) \wedge
eg (p o q)$$

se puede clasificar como:

Contradicción

Es necesario hacer la tabla de verdad, como la que sigue:

p	q	p o q	$\lnot (p ightarrow q)$	$(p o q) \wedge eg (p o q)$
٧	٧	V	F	F
٧	F	F	V	F
F	٧	V	F	F
F	F	V	F	F

En consecuencia la expresión es una Contradicción.

Pregunta 6

Incorrecta

Se puntúa 0,00 sobre 2,00

Considere el siguiente argumento

El argumento anterior es

válido

Se debe hacer la tabla de verdad de las premisas y conclusiones como sigue:

p	q	r	p ightarrow r	q ightarrow r	r
٧	٧	٧	V	V	٧
V	V	F	F	F	F
V	F	V	V	V	٧
V	F	F	F	V	F
F	V	V	V	V	٧
F	V	F	V	F	F
F	F	V	V	V	٧
F	F	F	V	V	F

Se puede apreciar en la fila 8 que las premisas son verdaderas pero la conclusión es falsa. Por lo tanto, el argumento no es válido, es decir una falacia.

	-
Prequinta	· /

Correcta

Se puntúa 3,00 sobre 3,00

Considere el siguiente argumento:

La radio enciende y la radio tiene carga.

La radio enciende o la radio tiene carga.

La radio tiene carga.

Si se escriben las primitivas en su forma simbólica de la siguiente forma:

- r: La radio enciende.
- $s:\ensuremath{\mathsf{La}}$ radio tiene carga.

Complete la tabla de verdad y determine la validez del argumento anterior:

Según la información y la tabla de verdad el argumento dado es

Considerando las proposiciones:

r: La radio enciende , s: La radio no tiene carga, se tienen las siguientes premisas y conclusión:

 P_1 : $r \wedge s$

 $P_2\colon \ ree s$

 $Q\colon s$

De esta manera se completa la tabla de verdad correspondiente:

r	s	$r \wedge s$	r ee s
٧	٧	V	V
٧	F	F	V
F	٧	F	V
F	F	F	F

Como puede observarse en fila 1 siempre que las premisas son verdaderas la conclusión es verdadera. Por lo tanto el argumento es válido.

Correcta

Se puntúa 2,00 sobre 2,00

Sea
$$A = \{1, 2, 3, 4, 5\}.$$

Determine el valor de verdad de cada uno de los siguientes enunciados:

a)
$$(\exists x \in A)(x+3=10)$$
 Falso

b)
$$(orall x \in A)(x+2 < 9)$$
 Verdadero

c)
$$(\exists x \in A)(x^2=16)$$
 Verdadero $ightharpoonup$.

- a) Es **falso**, ya que ninguno de los elementos de A cumple con la igualdad, pues el mayor elemento es 5 y 5+3=8.
- b) Es **verdadero**, pues: $1+2=3<9,\ \ 2+2=4<9,\ \ 3+2=5<9,\ \ 4+2=6<9,\ \ 5+2=7<9.$ Por lo tanto, todo número en A cumple la proposición.
- c) Es **verdadero**, ya que para $x=4\in A$ se cumple que $4^2=16$.

Pregunta 9

Correcta

Se puntúa 2,00 sobre 2,00

La negación de la siguiente proposición $(\forall x \in \mathbb{N})(\exists y \in \mathbb{Z})(|x| \geq |y|)$ corresponde a:

(
$$\exists$$
 $x \in \mathbb{N}$) (\forall $y \in \mathbb{Z}$)($|x|$ $<$ $|y|$)

Al negar la proposición dada se obtiene:

$$\neg \left[(\forall x \in \mathbb{N}) (\exists y \in \mathbb{Z}) (|x| \geq |y|) \right] \equiv \neg (\forall x \in \mathbb{N}) \neg (\exists y \in \mathbb{Z}) \neg (|x| \geq |y|)$$

$$(\exists x \in \mathbb{N})(\forall x \in \mathbb{Z})(|x| < |y|)$$

Correcta

Se puntúa 2,00 sobre 2,00

Considere la siguiente proposición:

Existe un numero natural para todo número natural tal que el cuadrado del primero es menor a la suma del segundo más uno.

La representación simbólica de la expresión anterior, haciendo uso de los cuantificadores y operaciones necesarias corresponde a

Para dar solución al ejercicio debemos colocar cuantificador universal \forall y el cuantificador existencial \exists , así como el símbolo de menor < junto a la suma.

Con ello, la proposición en su representación simbólica sería: $\exists x \in \mathbb{N}, \forall y \in \mathbb{N}: x^2 < y+1$

Finalizado

Se puntúa 2,00 sobre 5,00

Determine mediante una tabla de verdad si es válido o no el siguiente argumento: (5 puntos)

Alexander va al gimnasio o va a la universidad

Alexander no va a la Universidad y va de compras

Alexander va al gimnasio

Nota: Recuerde que debe subir una fotografía del procedimiento de respuesta de este ítem. El mismo debe desarrollarlo a mano (no digital) y deberá agregar su nombre, número de cédula y firmar al final del ejercicio si esto no se presenta la respuesta no será calificada.

Pregunta11 AndrewLopez.jpeg

Se debe escribir el argumento en su forma simbólica, para esto se considera:

p: Alexander va al gimnasio

q: Alexander va a la Universidad

r: Alexander va de compras

Por lo tanto, P_1, P_2 y Q son:

$$P_1 = p \lor q$$
 (1 punto)
$$P_2 = \neg q \land r$$
 (1 punto)

$$Q = p$$
 (1 punto)

Se realiza la tabla de verdad: (2 puntos)

p	q	r	$\neg q$	p ee q	$ eg q \wedge r$	$(p \vee q) \wedge (\neg q \wedge r)$	$(p ee q) \wedge (\lnot q \wedge r) o p$
V	V	V	F	V	F	F	V
V	V	F	F	V	F	F	V
V	F	V	V	V	V	V	V
V	F	F	V	V	F	F	V
F	V	V	F	V	F	F	V
F	V	F	F	V	F	F	V
F	F	V	V	F	V	F	V
F	F	F	V	F	F	F	V

Se puede apreciar en la tabla que el argumento es válido ya que la tabla de verdad es tautología.

Comentario:

Finalizado

Se puntúa 5,00 sobre 5,00

Demuestre utilizando las leyes del álgebra, la equivalencia entre la siguientes proposiciones. (5 puntos)

$$[\lnot r \land \lnot (p \land q)] \equiv \lnot [\lnot (p \land q)
ightarrow r]$$

Nota: Recuerde que debe subir una fotografía del procedimiento de respuesta de este ítem. El mismo debe desarrollarlo a mano (no digital) y deberá agregar su nombre, número de cédula y firmar al final del ejercicio si esto no se presenta la respuesta no será calificada.

Pregunta12 AndrewLopez.jpeg

$$[\lnot r \land \lnot (p \land q)] \equiv \lnot [\lnot (p \land q)
ightarrow r]$$

Aplicando ley de Morgan (2 puntos)

$$eg [r \lor (p \land q)] \equiv \neg [\neg (p \land q) \rightarrow r]$$

Aplicando ley Conmutativa (1 punto)

$$\neg \left[(p \land q) \lor r \right] \equiv \neg \left[\neg \left(p \land q \right) \to r \right]$$

Aplicando Ley Condicional (2 puntos)

$$eg [\neg (p \land q) \to r] \equiv \neg [\neg (p \land q) \to r]$$

Es así como se demuestra por las leyes del álgebra que ambas expresiones son equivalentes.

Comentario: