Correction proposée par El Amdaoui École Royale de l'Air-Marrakech.Maroc

Partie I

1.1.

- **1.1.1.** $A \in \mathcal{U}_2$ si, et seulement, si χ_A admet deux racines distinctes. Avec $\chi_A = X^2 \operatorname{Tr}(A) X + \det(A)$ dont le discriminant $\Delta = (\operatorname{Tr}(A))^2 4 \det(A)$, il vient que $A \in \mathcal{U}_2$ si, et seulement, si $(\operatorname{Tr}(A))^2 4 \det(A) > 0$
- **1.1.2.** $A \longmapsto \det(A)$ et $A \longmapsto \operatorname{Tr}(A)$ sont des fonctions polynomiales en coefficients de A, donc elles sont continues sur $M_n(\mathbb{R})$
- **1.1.3.** Par les théorèmes généraux $\varphi = \operatorname{Tr}^2 4 \operatorname{det}$ est continue sur $M_2(\mathbb{R})$ à valeurs dans \mathbb{R} , puisque $\mathcal{U}_2 = \varphi^{-1}(]0, +\infty[)$ est l'image réciproque d'un ouvert par une fonction continue, donc il s'agit d'un ouvert de $M_2(\mathbb{R})$.

$$\mathcal{U}_2 \neq \emptyset$$
, car $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \in \mathcal{U}_2$

1.1.4. Notons \mathcal{C} la courbe de l'application $x \longmapsto \frac{1}{4}x^2$

1.1.5. – Une matrice de \mathcal{U}_2 est carrée et elle admet deux valeurs propres distinctes, donc elle est diagonalisable.

- Soit
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{V}_2$$
. Les valeurs propres de M sont $\lambda_1 = \frac{\operatorname{Tr}(M) - \sqrt{\operatorname{Tr}(M)^2 - 4\det(M)}}{2}$ et $\lambda_2 = \frac{\operatorname{Tr}(M) + \sqrt{\operatorname{Tr}(M)^2 - 4\det(M)}}{2}$. Le système $MX = \lambda X$, avec $\lambda \in \{\lambda_1, \lambda_2\}$ et $X = \begin{pmatrix} x \\ y \end{pmatrix} \in M_{2,1}(\mathbb{R})$ fournit

$$\begin{cases} ax + by &= \lambda x \\ cx + dy &= \lambda y \end{cases} \Longleftrightarrow X \in \mathbf{Vect} \left(\begin{pmatrix} b \\ \lambda - a \end{pmatrix} \right)$$

Posons alors $f(M) = \begin{pmatrix} b & b \\ \lambda_1 - a & \lambda_2 - a \end{pmatrix}$, on a bien $f(M) \in GL_2(\mathbb{R})$ et l'application f est continue car ses fonctions composantes sont continues. En outre

$$f(M)^{-1}Mf(M) = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$

1.2.

1.2.1. Soit $M \in M_n(\mathbb{R})$, on pose $M = \sum_{1 \leq i,j \leq n} m_{ij} E_{ij}$ avec $(E_{ij})_{1 \leq i,j \leq n}$ est la base canonique de $M_n(\mathbb{R})$. On a

$$AM = \sum_{1 \leqslant k, i, j \leqslant n} \alpha_k m_{ij} E_{kk} E_{ij} = \sum_{1 \leqslant i, j \leqslant n} \alpha_i m_{ij} E_{ij}$$

et

$$MA = \sum_{1 \leqslant k, i, j \leqslant n} \alpha_k m_{ij} E_{ij} E_{kk} = \sum_{1 \leqslant i, j \leqslant n} \alpha_j m_{ij} E_{ij}$$

Donc AM = MA équivaut à $\forall i, j \in [[1, n]]^2$, $\alpha_i m_{ij} = \alpha_j m_{ij}$ équivaut à $\forall i \neq j \in [[1, n]]^2$, $m_{ij} = 0$. Ainsi $\mathcal{C}(A)$ est l'ensemble de matrices diagonales

- **1.2.2.** L'égalité $UAU^{-1} = VAV^{-1}$ équivaut à $V^{-1}UA = AV^{-1}U$ ou encore équivaut à $V^{-1}U \in \mathcal{C}(A)$. Avec $\mathcal{C}(A)$ égale l'ensemble des matrices diagonales
- **1.3.** Notons M_i la ième colonne de M et posons $D = \operatorname{diag}(d_1, \dots, d_n)$

$$\begin{split} P^{-1}MP &= D &\iff MP = PD \\ &\iff \forall i \in \llbracket 1, n \rrbracket \,, \quad [MP]_i = [PD]_i \\ &\iff \forall i \in \llbracket 1, n \rrbracket \,, \quad MP_i = PD_i \\ &\iff \forall i \in \llbracket 1, n \rrbracket \,, \quad MP_i = d_iP_i \\ &\iff \forall i \in \llbracket 1, n \rrbracket \,, \quad P_i \ \overrightarrow{vp} \ \text{de} \ M \ \text{associ\'e} \ \grave{\textbf{a}} \ \text{la vp} \ d_i \end{split}$$

Partie II

- **2.1.** On montre que $O_n(\mathbb{R})$ est un sous-groupe de $\mathrm{GL}_n(\mathbb{R})$
 - $-O_n(\mathbb{R}) \subset \mathrm{GL}_n(R), I_n \in O_n(\mathbb{R}).$
 - Soient $A, B \in O_n(\mathbb{R})$.

AB est inversible et $(AB)^{-1} = B^{-1}A^{-1} = {}^tB^tA = {}^t(AB)$ donc $AB \in O_n(\mathbb{R})$.

- Soit $A \in O_n(\mathbb{R})$.

 A^{-1} est inversible et $(A^{-1})^{-1} = {}^{t}A^{-1} = {}^{t}(A^{-1})$ donc $A^{-1} \in O_n(\mathbb{R})$.

Donc $O_n(\mathbb{R})$ est un sous-groupe de $(GL_n(\mathbb{R}), \times)$.

 $SO_n(\mathbb{R})$ est le noyau de morphisme de groupes det, donc c'est un sous-groupe de $O_n(\mathbb{R})$

2.2. Soit
$$M = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \in M_2(\mathbb{R})$$
 tel que $a^2 + b^2 = 1$, on a bien

$${}^{t}MM = I_{2}$$
 et $\det(M) = a^{2} + b^{2} = 1$

Donc $M \in SO_2(\mathbb{R})$.

Inversement soit $M = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in SO_2(\mathbb{R})$, les relations ${}^tMM = I_2$ et $M^tM = I_2$ entraı̂nent

le système $\begin{cases} a^2+b^2 &= 1 \\ c^2+d^2 &= 1 \end{cases}$ et le calcul du déterminant de M donne ad-bc=1, ainsi on

obtient

$$(a-d)^{2} + (b+c)^{2} = a^{2} + d^{2} + c^{2} + b^{2} + 2(bc - ad) = 0$$

Donc d = a et c = -b

2.3.

- **2.3.1.** Φ est continue car ses fonctions composantes sin et cos sont continues
- **2.3.2.** Soit $\theta \in \mathbb{R}$, d'après la question **2.2.**, la matrice $\Phi(\theta)$ appartient à $SO_2(\mathbb{R})$. Ainsi la première inclusion $\Phi(\mathbb{R}) \subset SO_2(\mathbb{R})$.

Inversement soit $M \in SO_2(\mathbb{R})$, d'après la question 2.2., il existe $a, b \in \mathbb{R}$ tels que

 $a^2+b^2=1$ et $M=\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$. Mais l'égalité $a^2+b^2=1$ assure l'existence d'un réel $\theta\in\mathbb{R}$ tel que $a=\cos\theta$ et $b=\sin\theta$ et par suite $M=\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}=\Phi\left(\theta\right)$. On en déduit la deuxième inclusion $\mathrm{SO}_2\left(\mathbb{R}\right)\subset\Phi\left(\mathbb{R}\right)$

- **2.3.3.** $SO_2(\mathbb{R}) = \Phi(\mathbb{R})$ est l'image de \mathbb{R} , qui est connexe par arcs, par une application continue, donc c'est un connexe par arcs
- **2.4.** Le groupe $SO_n(\mathbb{R})$ est connexe par arcs pour $n \ge 3$
 - **2.4.1.** $U \in SO_n(\mathbb{R})$ si, et seulement, si det(U) = 1. Or

$$\det(U) = \det\left(P^{-1}UP\right) = \det\left(-I_q\right) \prod_{i=1}^r \det\left(\Phi\left(\theta_i\right)\right) = (-1)^q$$

Cette dernière valeur vaut 1 si, et seulement, si q est pair

- **2.4.2.** Soit $U \in SO_n(\mathbb{R}) \setminus \{I_n\}$
 - (i) On écrit

$${}^{t}PUP = \begin{pmatrix} I_{p} & 0 & \cdots & \cdots & 0 \\ 0 & -I_{q} & \ddots & & \vdots \\ \vdots & \ddots & \Phi\left(\theta_{1}\right) & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & \Phi\left(\theta_{r}\right) \end{pmatrix}$$

On ne peut pas avoir à la fois r=0 et q=0 car $U\neq I_n$. Ainsi si q=0 c'est fini, sinon q est pair et la matrice $-I_q$ peut s'exprimer par blocs

$$-I_{q} = \begin{pmatrix} -I_{2} & & & (0) \\ & -I_{2} & & \\ & & \ddots & \\ (0) & & & -I_{2} \end{pmatrix} \in M_{q}(\mathbb{R})$$

Puisque $-I_2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = \Phi(\pi)$, on prend alors $\phi_1 = \cdots = \phi_{\frac{q}{2}} = \pi$ et on change d'indice pour obtenir l'expression demandée

(ii) Il est clair que Γ à valeurs dans $SO_n(\mathbb{R})$ et que $\Gamma(0)=I_n$ et $\Gamma(1)=U$. L'application

$$t \in [0,1] \longmapsto \begin{pmatrix} I_{p} & 0 & \cdots & 0 \\ 0 & \Phi(t\theta_{1}) & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \Phi(t\theta_{s}) \end{pmatrix} \in SO_{n}(\mathbb{R})$$

est continue car ses composantes son continues à savoir les identités de \mathbb{R} et les fonctions $t \in [0,1] \longmapsto \cos(t\theta_i)$ et $t \in [0,1] \longmapsto \sin(t\theta_i)$. En outre

$$A \in SO_n(\mathbb{R}) \longmapsto PA^tP$$

est continue, car c'est la restriction d'une application linéaire en dimension finie. Ainsi par composition Γ est continue sur [0,1]

- **2.4.3.** Soient $U_1, U_2, \in SO_n(\mathbb{R})$.
 - Si l'une des matrices U_1 ou U_2 égale I_n , c'est fini
 - Sinon, soit Γ_1 (resp Γ_2) le chemin défini au paravant joignant I_n et U_1 (resp I_n et U_2). On considère l'application Γ définie sur [0,1] par

$$\Gamma(t) = \begin{cases} \Gamma_1(1 - 2t) & \text{si } t \in [0, \frac{1}{2}] \\ \Gamma_2(2t - 1) & \text{si } t \in [\frac{1}{2}, 1] \end{cases}$$

 Γ est continue sur [0,1] à valeurs dans $\mathrm{SO}_n\left(\mathbb{R}\right)$ et elle vérifie $\Gamma(0)=U_1$ et $\Gamma(1)=U_2$

- **2.5.** Soit $A \in M_n(\mathbb{R})$
 - **2.5.1.** L'application $M \mapsto {}^t M$ est linéaire de en dimension finie, donc elle est continue sur $M_n(\mathbb{R})$
 - **2.5.2.** Notons que pour tout $U \in SO_n(\mathbb{R})$, $U^{-1} = {}^tU$, donc l'application $U \longmapsto U^{-1}$ est continue sur $SO_n(\mathbb{R})$ car elle est la restriction d'une application continue
 - **2.5.3.** L'application $X \in M_n(\mathbb{R}) \longmapsto (X, {}^tX)$ est continue car elle est linéaire en dimension finie. De plus l'application $(X, Y) \in M_n^2(\mathbb{R}) \longmapsto XAY$ est bilinéaire en dimension finie, donc elle est continue, puis par composition

$$X \in M_n(\mathbb{R}) \longmapsto XA^tX \in M_n(\mathbb{R})$$

est continue sur $M_n(\mathbb{R})$. Puisque $\mathrm{SO}_n(\mathbb{R})$ est connexe par arcs et pour tout $U \in \mathrm{SO}_n(\mathbb{R})$, ${}^tU = U^{-1}$, alors l'ensemble considéré est l'image d'un connexe par arcs par une application continue donc il s'agit d'un connexe par arcs

Partie III

- 3.1.
 - **3.1.1** D'après la question **1.3.** les colonnes de $f_2(M)$ sont les vecteurs propres de M. Par hypothèse les valeurs propres de M sont simples. Notons λ_i la valeur propre associé à $C_i(M)$ où $i \in \{1, 2\}$. D'une part, on a

$${}^{t}C_{1}(M) MC_{2}(M) = \lambda_{2}{}^{t}C_{1}(M) C_{2}(M)$$

Et d'autre part

$${}^{t}C_{1}(M)MC_{2}(M) = {}^{t}(MC_{1}(M))C_{2}(M) = \lambda_{1}{}^{t}C_{1}(M)C_{2}(M)$$

Donc $\lambda_1 < C_1(M), C_2(M) >= \lambda_2 < C_1(M), C_2(M) >$, et comme $\lambda_1 \neq \lambda_2$ alors $< C_1(M), C_2(M) >= 0$

- **3.1.2** Les deux vecteurs colonnes $\frac{C_1(M)}{\|C_1(M)\|}$ et $\frac{C_2(M)}{\|C_2(M)\|}$ constitue une famille orthonormée, donc la matrice considérée est orthogonale
- **3.1.3** On a $\alpha(M) = \pm 1$, la matrice $g_2(M)$ est orthogonale et $\det(g_2(M)) = \alpha^2(M) = 1$, donc $g_2(M) \in SO_2(\mathbb{R})$
- **3.1.4** Les fonctions C_1 et C_2 sont continues: Elles sont les composantes de f_2 vue comme applications de $M_2(\mathbb{R})$ à valeurs dans $M_{2,1}(\mathbb{R}) \times M_{2,1}(\mathbb{R})$. Par composition $M \mapsto \|C_i(M)\|$ est continue et elle ne s'annule pas sur \mathcal{U}_2 , donc les deux fonctions $M \mapsto \frac{C_i(M)}{\|C_i(M)\|}$ sont continues. Enfin $\alpha: M \mapsto \det\left(\frac{C_1(M)}{\|C_1(M)\|}, \frac{C_2(M)}{\|C_2(M)\|}\right)$ est continue car det : $M_{2,1}(\mathbb{R}) \times M_{2,1}(\mathbb{R}) \to \mathbb{R}$ est bilinéaire. Ainsi g_2 est continue. Pour $M\mathcal{U}_2 \cap S_2(\mathbb{R})$, les vecteurs $\alpha(M) \frac{C_1(M)}{\|C_1(M)\|}$ et $\frac{C_2(M)}{\|C_2(M)\|}$ sont propres de M et ils constituent les vecteurs colonnes de $g_2(M)$, alors , d'après la question **1.3.**, la matrice $g_2(M)^{-1}Mg_2(M)$ est diagonale
- **3.2.** On considère une matrice diagonale $B = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \in M_2(\mathbb{R})$, avec $\alpha \neq \beta$
 - **3.2.1.** Soit $A \in S_B$, alors A est semblable à B, donc elle admet deux valeurs propres distinctes et par suite $A \in \mathcal{U}_2$. En outre pour toute matrice $U \in SO_2(\mathbb{R})$, on a $U^{-1} = {}^tU$ et

$${}^t(UB^tU) = {}^{t}{}^tU^tB^tU = UB^tU$$

Donc $UBU^{-1} \in S_2(\mathbb{R})$

- **3.2.2.** Le résultat de la question **3.1.4.** affirme que la matrice $h_2(M)^{-1}Mh_2(M)$ est diagonale. De plus la matrice M est semblable aux deux matrices B et $h_2(M)^{-1}Mh_2(M)$, alors par transitivité $h_2(M)^{-1}Mh_2(M)$ et B sont semblables. La matrice $h_2(M)^{-1}Mh_2(M)$ est diagonale dont les éléments de la diagonale sont α et β , donc il n'y a que deux valeurs possibles de $h_2(M)^{-1}Mh_2(M)$ qui sont B et $B' = \begin{pmatrix} \beta & 0 \\ 0 & \alpha \end{pmatrix}$
- **3.2.3.** L'application $M \mapsto h_2(M)^{-1}Mh_2(M)$ est continue sur le connexe par arcs à valeurs dans $\{B, B'\}$, avec $B \neq B'$, donc elle est constante, car sinon $\{B, B'\}$ sera connexe par arcs dans $M_2(\mathbb{R})$, ce qui est absurde
- **3.2.4.** Si la constante vaut B c'est fini, sinon $h_2(M)^{-1}Mh_2(M) = \begin{pmatrix} \beta & 0 \\ 0 & \alpha \end{pmatrix}$. Dans un tel cas la première (resp deuxième) colonne de $h_2(M)$ est un vecteur propre de M associé à la valeur propre β (resp α), alors pour obtenir B il faut permuter les colonnes de $h_2(M)$. On redéfinit $g_2(M)$ comme étant la matrice dont la première colonne $\alpha(M) \frac{C_2(M)}{\|C_2(M)\|}$ et dont la deuxième colonne $\frac{C_2(M)}{\|C_2(M)\|}$, avec $\alpha(M) = \det \left(\frac{C_2(M)}{\|C_2(M)\|}, \frac{C_1(M)}{\|C_1(M)\|}\right)$
- 3.3
 - **3.3.1.** Soit $U \in SO_2(\mathbb{R})$ et posons $M = UBU^{-1}$, la relation $h_2(M)^{-1}Mh_2(M) = B$ donne $h_2(M)^{-1}UBU^{-1}h_2(M) = B$, soit

$$h_2(M)^{-1}UB = Bh_2(M)^{-1}U$$

La matrice B vérifie les conditions de la question **1.2.** et $h_2(M)^{-1}U$ une matrice commutant avec B, donc d'après la question **1.2.1.** la matrice $h_2(M)^{-1}U$ est diagonale. $h_2(M)^{-1}U \in SO_2(\mathbb{R})$, alors il existe $\theta \in \mathbb{R}$ tel que $h_2(M)^{-1}U = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ et puisque elle est diagonale, alors $\sin \theta = 0$, soit $\theta \equiv 0$ $[\pi]$, en conséquence

$$h_2\left(M\right)^{-1}U = \pm I_2$$

- **3.3.2.** Les deux applications φ_2 et ψ_2 sont bien définies.
 - Pour $U \in SO_2(\mathbb{R})$, on a:

$$\psi_{2} \circ \varphi_{2} (U) = \psi_{2} \left(UBU^{-1}, h_{2} \left(UBU^{-1} \right)^{-1} U \right)$$

$$= h_{2} \left(UBU^{-1} \right) h_{2} \left(UBU^{-1} \right)^{-1} U$$

$$- U$$

 $\begin{array}{l} \text{Donc } \psi_2 \circ \varphi_2 = \mathrm{id}_{\mathrm{SO}_2(\mathbb{R})} \\ - \text{ Soit } (M,D) \in S_B \times \{-I_2,I_2\}, \text{ on a :} \end{array}$

$$\varphi_{2} \circ \psi_{2} (M, D) = \varphi_{2} (h_{2} (M) D)$$
$$= \left(M_{B}, h_{2} (M_{B})^{-1} h_{2} (M) D \right)$$

Avec

$$M_B = h_2(M) DBD^{-1}h_2(M)^{-1}$$

= $h_2(M) Bh_2(M)^{-1}$
= M

Il vient que

$$\varphi_2 \circ \psi_2(M, D) = (M, h_2(M)^{-1}h_2(M)D) = (M, D)$$

Donc $\varphi_2 \circ \psi_2 = \mathrm{id}_{S_B \times \{-I_2, I_2\}}$

Donc les applications φ_2 et ψ_2 sont des bijections réciproques l'une de l'autre

- **3.3.3.** L'application $U \mapsto h_2\left(UBU^{-1}\right)$ est continue sur $\mathrm{SO}_2\left(\mathbb{R}\right)$ à valeurs dans $\mathrm{SO}_2\left(\mathbb{R}\right)$, d'après la question **2.5.2.** l'application $U \mapsto h_2\left(UBU^{-1}\right)^{-1}$ est continue sur $\mathrm{SO}_2\left(\mathbb{R}\right)$. Puis $U \mapsto h_2\left(UBU^{-1}\right)^{-1}U$ et par composition par la trace qui est linéaire en dimension finie, alors la fonction considérée est continue sur $\mathrm{SO}_2\left(\mathbb{R}\right)$ à valeurs dans \mathbb{R} . D'après la question **3.3.1**, pour tout $U \in \mathrm{SO}_2\left(\mathbb{R}\right)$, $h_2\left(UBU^{-1}\right)^{-1}U = \pm I_2$, donc $\mathrm{Tr}\left(h_2\left(UBU^{-1}\right)^{-1}U\right) \in \{-2,2\}$. La question **3.3.2** montre que φ est une bijection, donc I_2 et $-I_2$ admettent des antécédents, donc l'ensemble des valeurs prises est exactement $\{-2,2\}$
- **3.3.4.** SO₂ (\mathbb{R}) est connexe par arcs dont l'image, par une application continue, égale $\{-2,2\}$ qui n'est pas connexe. Ce qui est absurde. Donc une telle fonction f_2 n'existe pas

Partie IV

4.1.

4.1.1 D'après la question **1.3.** les colonnes de $f_n(M)$ sont les vecteurs propres de M. Par hypothèse les valeurs propres de M sont simples. Notons λ_i la valeur propre associé à $C_i(M)$ où $i \in [1, n]$. D'une part, on a pour tout $i, j \in [1, n]$ tels que $i \neq j$:

$${}^{t}C_{i}\left(M\right)MC_{j}\left(M\right) = \lambda_{j}{}^{t}C_{i}\left(M\right)C_{j}\left(M\right)$$

Et d'autre part

$${}^{t}C_{i}\left(M\right)MC_{j}\left(M\right) = {}^{t}\left(MC_{i}\left(M\right)\right)C_{j}\left(M\right) = \lambda_{i}{}^{t}C_{i}\left(M\right)C_{j}\left(M\right)$$

Donc $\lambda_{i} < C_{i}\left(M\right), C_{j}\left(M\right) >= \lambda_{j} < C_{i}\left(M\right), C_{j}\left(M\right) >$, et comme $\lambda_{i} \neq \lambda_{j}$ alors $< C_{i}\left(M\right), C_{j}\left(M\right) >= 0$. Ainsi la famille $\left(C_{1}\left(M\right), \cdots, C_{n}\left(M\right)\right)$ est orthogonale, et puisqu'elle est sans vecteur nul, donc la famille $\left(\frac{C_{1}\left(M\right)}{\|C_{1}\left(M\right)\|}, \cdots, \frac{C_{n}\left(M\right)}{\|C_{n}\left(M\right)\|}\right)$ est orthonormale dans $M_{n,1}\left(\mathbb{R}\right)$ qui est de dimension n, donc c'est une BON

- **4.1.2** On a $\alpha(M) = \pm 1$, la matrice $g_n(M)$ est orthogonale car la famille constituée de ses vecteurs colonnes est orthonormée, en outre $\det(g_n(M)) = \alpha^2(M) = 1$, donc $g_n(M) \in SO_n(\mathbb{R})$
- **4.1.3** Les fonctions $(C_i)_{i=1}^n$ sont continues : Elles sont les composantes de f_n vue comme applications de $M_n(\mathbb{R})$ à valeurs dans $M_{n,1}(\mathbb{R})^n$. Par composition pour tout $i \in [\![1,n]\!]$, l'application $M \longmapsto \|C_i(M)\|$ est continue et elle ne s'annule pas sur \mathcal{U}_n , donc les fonctions $M \longmapsto \frac{C_i(M)}{\|C_i(M)\|}$ sont continues. Enfin $\alpha: M \longmapsto \det\left(\frac{C_i(M)}{\|C_i(M)\|}, \cdots, \frac{C_n(M)}{\|C_n(M)\|}\right)$ est continue car det $:M_{n,1}(\mathbb{R})^n \longrightarrow \mathbb{R}$ est multinéaire. Ainsi g_n est continue. Pour $M \in \mathcal{U}_n \cap S_n(\mathbb{R})$, les vecteurs $\alpha(M) \frac{C_1(M)}{\|C_1(M)\|}$, $\frac{C_2(M)}{\|C_2(M)\|}, \cdots \frac{C_n(M)}{\|C_n(M)\|}$ sont propres de M et ils constituent les vecteurs colonnes de $g_n(M)$, alors , d'après la question **1.3.**, la matrice $g_n(M)^{-1}Mg_n(M)$ est diagonale
- **4.2.** On considère une matrice diagonale $A = \mathbf{diag}(\alpha_1, \dots, \alpha_n)$, avec $\alpha_1, \dots, \alpha_n$ deux à deux distincts
 - **4.2.1.** Soit $M \in S_A$, alors M est semblable à A, donc elle admet n valeurs propres distinctes et par suite $M \in \mathcal{U}_n$. En outre pour toute matrice $U \in SO_n(\mathbb{R})$, on a $U^{-1} = {}^tU$ et

$$^t \big(UA^t U \big) = {^t}^t U^t A^t U = UA^t U$$

Donc $UAU^{-1} \in S_n(\mathbb{R})$

- **4.2.2.** Le résultat de la question **3.1.4.** affirme que la matrice $h_n(M)^{-1}Mh_n(M)$ est diagonale. De plus la matrice M est semblable aux deux matrices B et $h_n(M)^{-1}Mh_n(M)$, alors par transitivité $h_n(M)^{-1}Mh_n(M)$ et B sont semblables. Donc il n'y a que n! valeurs possibles de $h_n(M)^{-1}Mh_n(M)$ qui sont $\operatorname{diag}(\alpha_{\sigma(1)}, \dots, \alpha_{\sigma(n)})$, avec σ parcourt le groupe symétrique \mathcal{G}_n
- **4.2.3.** L'application $M \mapsto h_n(M)^{-1}Mh_n(M)$ est continue sur le connexe par arcs à valeurs dans $\{\operatorname{diag}(\alpha_{\sigma(1)}, \cdots, \alpha_{\sigma(n)}), \sigma \in \mathcal{G}_n\}$, donc elle est constante, car sinon $\{\operatorname{diag}(\alpha_{\sigma(1)}, \cdots, \alpha_{\sigma(n)}), \sigma \in \mathcal{G}_n\}$ sera connexe par arcs dans $M_n(\mathbb{R})$, ce qui est absurde
- **4.2.4.** Il existe $\sigma \in \mathcal{G}_n$ tel que $h_n\left(M\right)^{-1}Mh_n\left(M\right) = \operatorname{diag}\left(\alpha_{\sigma(1)},\cdots,\alpha_{\sigma(n)}\right)$. On redéfinit la matrice dont la ième colonne est le vecteur $\frac{C_k(M)}{\|C_k(M)\|}$ associé à la valeur propre α_i , puis $\alpha(M)$, comme auparavant, le déterminant de cette matrice construite et enfin $g_n(M)$ la matrice obtenue de cette dernière en multipliant sa première colonne par $\alpha(M)$

4.3

4.3.1. Soit $U \in SO_n(\mathbb{R})$ et posons $M = UAU^{-1}$, la relation $h_n(M)^{-1}Mh_n(M) = A$ donne $h_n(M)^{-1}UAU^{-1}h_n(M) = A$, soit

$$h_n\left(M\right)^{-1}UA = Ah_n\left(M\right)^{-1}U$$

La matrice A vérifie les conditions de la question **1.2.** et $h_n(M)^{-1}U$ une matrice commute avec A, donc d'après la question **1.2.1.** la matrice $h_n(UAU^{-1})^{-1}U$ est diagonale.

4.3.2.
$$\mathcal{D}_n = \left\{ \mathbf{diag}\left(\varepsilon_1, \cdots, \varepsilon_n\right), \ \varepsilon_i \in \{-1, 1\} \ \text{et} \ \prod_{i=1}^n \varepsilon_i = 1 \right\} \ \text{est un ensemble fini car}$$

$$\varphi : \left\{ \begin{array}{ccc} \mathcal{D}_n & \longrightarrow & \{-1, 1\}^n \\ \mathbf{diag}\left(\varepsilon_1, \cdots, \varepsilon_n\right) & \longmapsto & (\varepsilon_1, \cdots, \varepsilon_n) \end{array} \right.$$

est injective et $\{-1,1\}^n$ un ensemble fini de cardinal 2^n .

Le cardinal de \mathcal{D}_n est le nombre de n-uplets $(\varepsilon_1, \dots, \varepsilon_n)$ de $\{-1,1\}^n$ pour lesquels $\prod_{i=1}^n \varepsilon_i = 1$, qui vaut aussi le nombre de n-uplets $(\varepsilon_1, \dots, \varepsilon_n)$ de $\{-1,1\}^n$ qui contiennent un nombre pair de composantes valant -1, ce nombre vaut $\sum_{0 \leqslant 2s \leqslant n} C_n^{2s} = 2^{n-1}$, donc $\mathbf{Card}(\mathcal{D}_n) = 2^{n-1}$

- **4.3.3.** Les deux applications φ_n et ψ_n sont bien définies.
 - Pour $U \in SO_n(\mathbb{R})$, on a :

$$\psi_n \circ \varphi_n (U) = \psi_n \left(UAU^{-1}, h_n \left(UAU^{-1} \right)^{-1} U \right)$$

$$= h_n \left(UAU^{-1} \right) h_n \left(UAU^{-1} \right)^{-1} U$$

$$= U$$

Donc $\psi_2 \circ \varphi_2 = \mathrm{id}_{\mathrm{SO}_n(\mathbb{R})}$

- Soit $(M, D) \in S_B \times \mathcal{D}_n$, on a :

$$\varphi_{n} \circ \psi_{n} (M, D) = \varphi_{n} (h_{n} (M) D)$$
$$= \left(M_{A}, h_{n} (M_{A})^{-1} h_{n} (M) D \right)$$

Avec

$$M_A = h_n(M) DAD^{-1}h_n(M)^{-1}$$
$$= h_n(M) Ah_n(M)^{-1}$$
$$= M$$

Il vient que

$$\varphi_n \circ \psi_n (M, D) = \left(M, h_n (M)^{-1} h_n (M) D \right) = (M, D)$$

Donc $\varphi_n \circ \psi_n = \mathrm{id}_{S_B \times \mathcal{D}_n}$

Donc les applications φ_2 et ψ_2 sont des bijections réciproques l'une de l'autre

- **4.3.4.** D'après la question **4.1.3** l'application $U \mapsto h_n \left(UAU^{-1}\right)$ est continue sur $\operatorname{SO}_n(\mathbb{R})$ à valeurs dans $\operatorname{SO}_n(\mathbb{R})$, d'après la question **2.5.2**. l'application $U \mapsto h_n \left(UBU^{-1}\right)^{-1}$ est continue sur $\operatorname{SO}_n(\mathbb{R})$. Puis $U \mapsto h_n \left(UBU^{-1}\right)^{-1}U$ et par composition par la trace qui est linéaire en dimension finie, alors la fonction considérée est continue sur $\operatorname{SO}_2(\mathbb{R})$ à valeurs dans \mathbb{R} . D'après la question **4.3.3**. pour tout $U \in \operatorname{SO}_n(\mathbb{R})$, $h_n \left(UBU^{-1}\right)^{-1}U \in \mathcal{D}_n$, donc $\operatorname{Tr}\left(h_n \left(UBU^{-1}\right)^{-1}U\right) \in \operatorname{Tr}(\mathcal{D}_n)$. La question **4.3.3**. montre que φ_n est une bijection, donc tout élément de \mathcal{D}_n admet un antécédent, donc l'ensemble des valeurs prises est exactement $\operatorname{Tr}(\mathcal{D}_n)$
- **4.3.5.** $SO_n(\mathbb{R})$ est connexe par arcs dont l'image par une application continue égale $Tr(\mathcal{D}_n)$, qui n'est pas un intervalle, qui n'est pas connexe. Ce qui est absurde, car les connexes par arcs de \mathbb{R} sont les intervalles. Donc une telle fonction f_n n'existe pas