Tutorium B01: Mengen, Mengenoperationen und kartesisches · Fragen? · Menge oder nicht? - {1,2,2,3} - { } - {:-), :-(, ;-)} - { 1, 3, ... } - {50,13,513,503} - {1,2,3,43= {0,1,2,3,43 - 81,2,38 = 83,2,17 · "teilmenge" oder "Element" Sei M= {1,23. - 1 s M - {1} 2 M - {3} 2 M - "1" 2 M

•	Mengenoperationen
	Seien $M_1 = \{0,1,2\}, \ M_2 = \{2,3,4\} \ \text{and} \ M = \{0,1,2,3,4,5\}.$ Berechnen Sie $M_1 \cup M_2$, $M_1 \cap M_2, \ M \setminus M_1, \ M \setminus M_2, \ M_1^{c(M)} \ \text{und} \ M_2^{c(M)}.$
	· Mu v Mz =
	·M1 n M2 =
	$\cdot M \setminus M =$
	$M \setminus M_2 =$
	(Augabensammlung 1 Skript Kapitel D.1)
	Aufgabe 2 Es seien $M := \{-3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}, M_1 := \{-2, -1, 0\},$ $M_2 := \{1, 4, 9\} \text{ und } M_3 := \{2, 4, 6, 8\}.$ Bestimmen Sie
	$M_1 \cup M_2, \ M_2 \cup M_3, \ M_1 \cap M_2, \ M_1^{c(M)}, \ (M_2 \cup M_3)^{c(M)}, \ M \setminus (M_1 \cup M_3)$
	· M v M2 =
	$M_2 U M_3 =$
	$\mathcal{M}_{1} \cap \mathcal{M}_{2} =$ $\mathcal{M}_{1} \cap \mathcal{M}_{3} =$ $\mathcal{M}_{1} \cap \mathcal{M}_{3} =$
	· Maccin =
	$(M_2 \cup M_3) =$
	· M/ (M, v M3) =
9	Kartesisches Produkt

- Der Hauptteil"

 ist der zum Rechnen oder Anwenden interessante Teil. Hier stehen häufig irgendwelche Symbole und Funktionen, die bereits definiert wurden. (Diese Definitionen kann men im Zweißlisfall
- □ Die . Bedingungen "
 ist der Teil, in denen verwendete Symbole geneum fentgelegt werden. Falls hier so etwas
 wie x ∈ R" steht, wasen wir, dass x ein Vektor mit n-komponenten im reelwertigem Bereich ist
- □ Die definierten Begriffe" in diesem Bereich werden Sellässelwörter eingeführt, die später in anderen Definitionen wieder auftanchen können.

(Mini-Test-Autgabensammlung 1.2.2)

Seien $M_1 = \{1, 2\}, M_2 = \{-1, -2\}$. Berechnen Sie $M_1 \times M_2, M_1^2$ und M_2^2

· Mx Mz =

· M2 =

· M2 =

(Augabensammlung / Skript Kapitel D. 1)

Aufgabe 7 a) Bestimmen Sie alle Element aus

 $(\{1,2\} \times \{3,7\})^2$

a) $(\{1,2\} \times \{3,7\})^2 =$

(Augabensammlung / Skript Kapik \mathbb{D} . 1) Aufgabe 5 a) Skizzieren Sie die Menge $[4,8] \times \{-1,1,2\}$.

b) Schreiben Sie folgende Menge durch Aufzählen all ihrer Elemente $(\mathbb{Z} \times \{1,3\}) \cap$ $(\{1,2\}\times\mathbb{Z}).$

(Beispielklausur Aufgabe 1d))

Schreiben Sie folgende Menge in der Mengenschreibweise (d.h. Mengenklammern, etc.): Die Menge aller Teilmengen der Menge der rationalen Zahlen, die die Null nicht enthalten.

(BeispielHausur Aufgabe 1d1)

Schreiben Sie folgende Menge in der Mengenschreibweise (d.h. Mengenklammern, etc.): Die Menge aller Teilmengen der reellen Zahlen, die alle negativen Zahlen enthalten.

									apitel												
	b) S	Far	= Me	enge näle	$all \epsilon$	er B	lilder	r mi	it 10	0 me	al 10	00 P	Pixel	n, u	vobei	jed	es P	lixel	dure	oweis ch di ehm	rei $_{-}$
	7																				
	U																				
	1		9	· .																	
•	Fra	zger	7 4																		