Lista 1, Geometria Riemanniana

Diego N. Guajardo

17 de agosto de 2020

- 1. Seja $\pi:M\to N$ uma submersão sobrejetiva e $f:M\to P$ suave tal que f(x)=f(y) para todo x,y tais que $\pi(x)=\pi(y)$ provar que existe entao uma aplicação suave $\overline{f}:N\to P$ tal que $f=\overline{f}\circ\pi$
- 2. Provar os seguintes difeomorfismos: $\mathbb{C}P^1=\mathbb{S}^2$ e $T\mathbb{S}^1=\mathbb{S}^1\times\mathbb{R}$
- 3. Seja $f:M\to N$ suave e $X,Y\in\mathfrak{X}(M),\ \overline{X},\overline{Y}\in\mathfrak{X}(N)$ campos f-relacionados, então [X,Y] está f-relacionado com $[\overline{X},\overline{Y}]$
- 4. Dada uma subvariedade $N \subseteq M$ mergulhada e un campo $X \in \mathfrak{X}(N)$. Entao para cada $p \in N$ para extender o campo localmente para M, isto é, para cada $p \in N$, existe um aberto $U_p \subseteq M$ onde $p \in U_p$ e um campo $\overline{X} \in \mathfrak{X}(U_p)$ tal que $\overline{X}(x) = X(x)$ para todo $X \in U_p \cap N$. Provar que dá para extender globalmente se N for fechado e mostre um exemplo de um campo que nao da para extender globalmente.
- 5. Seja $X \in \mathfrak{X}(M)$ tal que $X_p \neq 0$, então existe carta local $\varphi = (x_1, \dots, x_n)$ tal que $X = \frac{\partial}{\partial x_1}$ nesta carta.
- 6. Sejam $X_1, \dots X_k \in \mathfrak{X}(M)$ campos tais que $[X_i, X_j] = 0$ e que em $p \in M$ são linealmente independentes, mostrar que existe carta local $\varphi = (x_1, \dots, x_n)$ tal que $X_i = \frac{\partial}{\partial x_i}$ nesta carta e para todo $i \leq k$.
- 7. Provar que toda variedade possui uma metrica Riemanniana. Provar que M possui uma metrica de Lorentz se e somente se, TM tem um subfibrado de linha, isto é $L \subseteq TM$ com dimL=1. (Isto permite concluir que as esferas pares não possuim nenhuma metrica de Lorentz, pelo teorema da bola peluda)
- 8. Toda variedade M possui uma métrica Riemanniana g tal que como espaco métrico é um espaco completo.
- 9. Seja G um grupo de Lie conexo. Provar que existe uma métrica Riemanniana bi-invariante em G se e somente se, existe um produto interno na algebra de Lie $(\mathfrak{g}, \langle \cdot, \cdot \rangle)$ tal que: $\langle [u, v], w \rangle = \langle u, [v, w] \rangle \ \forall u, v, w \in \mathfrak{g}$
- 10. Suponha que G (grupo de Lie) age por isometrias em (M,g) e suponha que M/G é uma variedade suave tal que $\pi: M \to M/G$ é uma submersão. Provar que existe uma metrica $(M/G, \overline{g})$ tal que $\pi: M \to M/G$ é uma submersão Riemanniana. Construa assim uma métrica para $\mathbb{C}P^n$ (métrica Fubini Study)
- 11. Seja $(V, \langle \cdot, \cdot \rangle)$ com dimV finita. Provar que existem produtos internos induzidos em V^* e $\bigwedge^k V$ (e logo em $\bigwedge^k V^*$) que não depende da escolha de base