MACHINE LEARNING

Coordenação:

Prof. Dr. Adolpho Walter Pimazzi Canton

Profa. Dra. Alessandra de Ávila Montini

Machine Learning

Tema: Regressão Linear

Prof. Anderson França

Regressão

Machine Learning e Regressão

Aprendizado de Máquina (Machine Learning) é um campo de estudo que fornece a capacidade de uma Máquina de **entender dados** e **aprender com os dados**. O ML não é apenas sobre modelagem analítica, mas é uma modelagem de ponta a ponta que envolve as seguintes etapas:

Coletar dados de diversas fontes Explorar, limpar e transformar os dados Construir e selecionar o melhor algoritmo Analisar e adquirir insights dos resultados

Transformar resultados em análises gráficas

Fonte: R-Bloggers

Machine Learning e Regressão

Supervised learning

Unsupervised learning

Modelos Supervisionados e

Regressão

$$Y = f(x) + \varepsilon$$

Y = Define a variável Resposta

f(x) = define a função que depende do conjunto de recursos de entrada

ε = define o erro aleatório. Para o modelo ideal, deve ser aleatório e não deve depender de nenhuma entrada.

Equação básica para qualquer modelo Supervisionado

$$Y = f(x) + \varepsilon$$

Algoritmo Supervisionado e Regressão

A regressão linear é usada para prever o valor de uma variável de resultado Y (*outcome*) com base em uma ou mais variáveis preditoras de entrada X.

O objetivo é **estabelecer uma relação linear** (uma fórmula matemática) entre a(s) variável(is) preditora(s) e a variável resposta, dessa forma, podemos usar essa fórmula para estimar o valor da resposta Y, quando apenas os valores dos preditores (Xs) são conhecidos.

Algoritmo Supervisionado e Regressão

Na regressão linear, assumimos que a forma funcional, **f(x) é linear** e, portanto, podemos escrever a equação da seguinte forma:

$$Y = \beta O + \beta 1 X + \epsilon$$
 (Regressão Simples)

$$Y = β0 + β1 X1 + β2 X2 + + βn Xn + ε$$
 (Regressão Múltipla)

Vamos simplificar

Regressão Linear Simples

Tem o objetivo de projetar uma variável de interesse em função de uma variável auxiliar.

Por exemplo projetar o número de clientes que irão adquirir um cartão de crédito em função do número de benefícios oferecidos.

Objetivo

Estudar a relação entre duas variáveis **quantitativas**

Projetar uma variável de interesse em função de uma variável auxiliar

Aplicações

- Projetar a venda de um produto em função do preço praticado
- Projetar o salário anual em função do tempo de experiência em uma determinada empresa
- Projetar a quantidade de produtos vendidos em função do investimento em mídia
- Projetar a venda de ar-condicionado em função da temperatura

Correlação Linear

Relação entre duas variáveis

Coeficiente de Correlação

O coeficiente de correlação é uma medida descritiva da força da associação linear entre duas variáveis de escala métrica

Os valores do coeficiente de correlação estão sempre entre -1 e 1

$$ho = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^n (x_i - ar{x})^2} \cdot \sqrt{\sum_{i=1}^n (y_i - ar{y})^2}} = rac{ ext{cov}(X,Y)}{\sqrt{ ext{var}(X) \cdot ext{var}(Y)}}$$

R cor(dados[,vars]) Excel

CORREL(matrizY;matrizX)

r : Coeficiente de correlação linear

$$-1 < r < 1$$

r = 0 **não existe correlação** linear entre as variáveis

r = 1 existe correlação linear **positiva perfeita** entre as variáveis

r = - 1 existe correlação linear **negativa perfeita** entre as variáveis

| Ir | >= 0,70 existe uma **forte** correlação linear entre as variáveis

IrI < 0,70 existe uma **fraca** correlação entre as variáveis

Coeficiente de correlação: 0,98

Forte Correlação Linear Positiva entre as Variáveis

Coeficiente de correlação : -0,98

Forte Correlação Linear Negativa entre as Variáveis

Coeficiente de correlação : -0,55

Fraca Correlação Linear Negativa entre as Variáveis

Coeficiente de correlação : -0,08

Praticamente não existe Correlação Linear entre as Variáveis

Treine suas habilidades

Fonte: Guess the Correlation

Case 1 **Bebidas Refrigerantes**

Objetivo : Verificar se há <u>relação linear</u> entre o gasto com mídia e as vendas de caixas

Marca	Gastos com Mídia (milhões de dólares)	Vendas de Caixas (milhões)
Coca-Cola	131.3	1929.2
Pepsi-Cola	92.4	1384.6
Coca-Cola Light	60.4	811.4
Sprite	55.7	541.5
Dr. Pepper	40.2	536.9
Mountain Dew	29.0	535.6
7-Up	11.6	219.5

Dados de 1997

Vendas de Caixas x Gasto em Mídia

Vendas de Caixas x Gasto em Mídia

Forte Correlação Linear Positiva entre as Variáveis

Case 2 Recursos Humanos

Objetivo : Estimar salário médio anual (Y) com base no tempo de experiência do funcionário (X)

Funcionário	Tempo de Experiência (Anos) X	Salário Anual (R\$ 1.000) Y
1	1	80
2	3	97
3	4	92
4	4	102
5	6	103
6	8	111
7	10	119
8	10	123
9	11	117
10	13	136

Salário anual (Y) vs. Tempo de experiência do funcionário (X)

Coeficiente de Correlação Linear : r = 0,964

Salário anual (Y) vs. Tempo de experiência do funcionário (X)

Reta de Regressão:

$$Y = \beta_0 + \beta_1 X$$

Correlação não implica causalidade

Consumo de queijo per capta

correlacionado com

Número de pessoas que morreram enrolados em seus lençóis

Fonte: Tylervigen

LABDATA

Equação do Modelo

(Reta da regressão linear)

Modelo de Regressão Linear Simples

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$
, $i=1,...,N$

em que,

Y; : é o valor associado a i-ésima observação da variável resposta

 β_0 e β_1 : são parâmetros

X_i : é o valor associado a i-ésima observação da variável explicativa

ε_i: é o erro aleatório associado a i-ésima observação

N: número de observações

Modelo de Regressão Linear Simples

Equação da Reta:

$$Y = \beta_0 + \beta_1 X$$

intercepto inclinação da reta

$$\beta_1 = \frac{\displaystyle\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\displaystyle\sum_{i=1}^n (X_i - \overline{X})^2} \qquad \beta_0 = \overline{Y} - \beta_1 \overline{X} \qquad \text{n: número de observações}$$

$$\beta_0 = \overline{\mathbf{Y}} - \beta_1 \overline{\mathbf{X}}$$

em que

média amostral da variável X

média amostral da variável Y

Modelo de Regressão Linear Simples

Salário anual (Y) vs. Tempo de experiência do funcionário

Salário anual = 80 + 4 (anos de experiência)

Salário anual: variável dependente (Y)

Anos de experiência: variável independente (X)

Interpretação dos Parâmetros

$$Y = \beta_0 + \beta_1 X$$

Salário Anual = 80 + 4 (anos de experiência)

80 : salário anual esperado para um funcionário que não possui um ano de experiência

4 : acréscimo esperado na salário anual a cada variação de um ano no tempo de experiência do funcionário

Salário anual vs. Tempo de experiência do funcionário

Salário anual = 80 + 4 (anos de experiência)

Qual o salário anual estimado para um funcionário com 6 anos de experiência?

Análise de Regressão Linear Simples - Excel

Salário anual (Y) vs. Tempo de experiência do funcionário (X)

RESUMO DOS RESULTADOS

Estatística de regressão						
R múltiplo	0.964564633					
R-Quadrado	0.93038493					
R-quadrado ajustado	0.921683047					
Erro padrão	4.609772229					
Observações	10					

Coeficiente de determinação

93,04% da variabilidade da venda anual é explicada pelo tempo de experiência

ANOVA

	gl	SQ	MQ	F	F de significação
Regressão	1	2272	2272	106.9176	6.60903E-06
Resíduo	8	170	21.25		
Total	9	2442			

	Coeficientes	Erro padrão	Stat t	valor-P	95% inferiores	95% superiores
Interseção	80	3.075344937	26.01334	5.12E-09	72.90823727	87.09176273
Tempo de Experiência	4	0.386843492	10.3401	6.61E-06	3.107936731	4.892063269
•						

Parâmetros

Probabilidades do teste de hipótese

Funcionário	Tempo de Experiência (Anos) X	Salário anual (R\$ 1.000) Y observado	Salário Anual estimado pelo modelo Y ajustado	Resisuo
1	1	80	84	-4
2	3	97	92	5
3	4	92	96	-4
4	4	102	96	6
5	6	103	104	-1
6	8	111	112	-1
7	10	119	120	-1
8	10	123	120	3
9	11	117	124	-7
10	13	136	132	4

 ε_i : erro aleatório = resíduo = Y observado – Y ajustado

Análise de Regressão Linear Simples - R

CARS

Vamos utilizar o conjunto de dados cars. Acesse os dados digitando cars no seu console do R. Ao todo são 50 observações (linhas) e 2 variáveis (colunas) - dist e speed.

Vamos imprimir as primeiras seis observações:

```
      head(cars)
      # Exibir as 6 primeiras observações

      #> speed dist

      #> 1
      4
      2

      #> 2
      4
      10

      #> 3
      7
      4

      #> 4
      7
      22

      #> 5
      8
      16

      #> 6
      9
      10
```


Análises Gráficas

O objetivo desta análise é construir um modelo de regressão simples que podemos usar para prever a distância (dist), estabelecendo uma relação linear estatisticamente significativa com a velocidade (speed). Mas antes de entrar no modelo, vamos tentar entender essas variáveis graficamente:

Gráficos de Dispersão - Scatterplot

O scatterplot pode nos ajudar a visualizar qualquer relação linear entre a variável dependente e a independente

```
scatter.smooth(x=cars$speed, y=cars$dist, main="Dist ~ Vel.") # scatterplot
```


BoxPlot - Verificar Outlier

Geralmente, qualquer ponto de dados que esteja fora do QI - 1,5 * (1,5 * IQR) é considerado um valor *outlier*, em que o IQR é calculado como a distância entre os valores do percentil 25 e 75 para essa variável.

```
par(mfrow=c(1, 2)) # Dividir a área de gráfico em 2
boxplot(cars$speed, main="Velocidade", sub=paste("Outliers: ",
boxplot.stats(cars$speed)$out)) # box plot para a variável 'speed'
boxplot(cars$dist, main="Distancia", sub=paste("Outliers: ",
boxplot.stats(cars$dist)$out)) # box plot para 'distância'
```


Gráfico de Normalidade

Verifique se a variável de resposta está próxima da normalidade

```
library (e1071)
par(mfrow=c(1, 2)) # Dividir a área de gráfico em 2
plot(density(cars$speed),
     main="Gráfico de densidade: Velocidade",
     ylab="Frequência",
     sub=paste("Skewness:",
     round(e1071::skewness(cars$speed), 2))) # gráfico de densidade para 'speed'
     polygon(density(cars$speed), col="red")
plot(density(cars$dist), main="Gráfico de densidade: Distância",
     ylab="Frequência",
     sub=paste("Skewness:", round(e1071::skewness(cars$dist), 2))) # Densidade para 'dist'
     polygon(density(cars$dist), col="red")
```


Correlação

Se observarmos no *Scatterplot*, para cada instância onde a velocidade aumenta, a distância também aumenta junto com ela, então há uma alta correlação positiva entre eles e, portanto, é esperado que a correlação entre as variáveis esteja próxima de 1.

```
cor(cars$speed, cars$dist) # Calcular a correlação entre velocidade e distância
#> [1] 0.8068949
```


Modelo Linear

No R, a função utilizada para construir o modelo linear é lm(). A função lm() recebe dois argumentos principais: 1. Formula, 2. Dados. Normalmente os dados vem de um data.frame e a fórmula é um objeto de classe formula.

```
linearMod <- lm(dist ~ speed, data=cars) # modelo de regressão linear
print(linearMod)
#> Call:
#> lm(formula = dist ~ speed, data = cars)
#>
#> Coefficients:
#> -17.579 3.932
```


Modelo Linear

No R, a função utilizada para construir o modelo linear é lm(). A função lm() recebe dois argumentos principais: 1. Formula, 2. Dados. Normalmente os dados vem de um data.frame e a fórmula é um objeto de classe formula.

```
linearMod <- lm(dist ~ speed, data=cars) # modelo de regressão linear
print(linearMod)

#> Call:
#> lm(formula = dist ~ speed, data = cars)
#>
#> Coefficients:
#> (Intercept) speed
#> -17.579 3.932
```

Podemos notar na saída que a parte dos 'Coeficientes' possuem dois componentes: Intercepto: -17.579, velocidade: 3.932.

Modelo Linear

No R, a função utilizada para construir o modelo linear é lm(). A função lm() recebe dois argumentos principais: 1. Formula, 2. Dados. Normalmente os dados vem de um data.frame e a fórmula é um objeto de classe formula.

```
linearMod <- lm(dist ~ speed, data=cars) # modelo de regressão linear
print(linearMod)

#> Call:
#> lm(formula = dist ~ speed, data = cars)
#>
#> Coefficients:
#> (Intercept) speed
#> -17.579 3.932
```

Podemos notar na saída que a parte dos 'Coeficientes' possuem dois componentes: Intercepto: -17.579, velocidade: 3.932. Ou seja:

Equação do Modelo

$$Y = \beta_0 + \beta_1 X$$

$$Dist = -17.579 + 3.932 * Vel$$

Já podemos utilizar nosso modelo?

Diagnósticos Modelo Linear

```
summary(linearMod) # Resumo do modelo
call:
lm(formula = dist ~ speed, data = cars)
Residuals:
   Min 10 Median 30 Max
-29.069 -9.525 -2.272 9.215 43.201
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.5791 6.7584 -2.601 0.0123 *
speed 3.9324 0.4155 9.464 1.49e-12 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 15.38 on 48 degrees of freedom
Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12
```


Interpretando o Output - R

Residuals:
 Min 1Q Median 3Q Max
-123.68 -26.78 -5.07 24.66 95.04

Residuais: Os resíduos são a diferença entre os valores reais da variável que você prevê e os valores previstos da sua regressão y - ŷ.

Para a maioria das regressões, você deseja que seus resíduos pareçam uma distribuição normal quando plotados. Se nossos resíduos são normalmente distribuídos, isso indica a média da diferença entre nossas previsões e os valores reais são próximos de 0 (bom).

Interpretando o Output - R

```
Coefficients: 2 3 4 5

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.212e+02 9.352e+00 45.03 <2e-16 **

Renda 5.348e-02 2.766e-03 19.33 <2e-16 ***
```

- 2 **Coeficiente de estimação:** O coeficiente estimado é o valor da inclinação calculada pela regressão.
- 3 **Erro padrão da regressão:** Mensura a variabilidade na estimativa do coeficiente. É a raiz quadrada da variância estimada dos resíduos e indica o grau de dispersão dos erros de previsão dentro da amostra na hipótese de normalidade.
- 4 **t-valor do coeficiente estimado:** Podemos interpretar o valor de t assim: Um valor t maior indica que é menos provável que o coeficiente não seja igual a zero apenas por acaso. Então, quanto maior o valor de t, melhor.
- 5 **p-valor** (probabilidade de significância): a probabilidade de se obter uma estatística de teste igual ou mais extrema que aquela observada em uma amostra, sob a <u>hipótese nula</u>

Hipótese de Interesse

inclinação da reta

 H_0 : β_1 =0; não existe relação linear entre as variáveis

 H_1 : $\beta_1 \neq 0$; existe relação linear entre as variáveis

	Coeficientes	Erro padrão	Stat t	valor-P	95% inferiores	95% superiores
Interseção	80	3,075344937	26,01334	5,12002E-09	72,90823727	87,09176273
Tempo de Experiência	4	0,386843492	10,3401	6,60903E-06	3,107936731	4,892063269

Hipótese de Interesse

intercepto

	Coeficientes	Erro padrão	Stat t	valor-P	95% inferiores	95% superiores
Interseção	80	3,075344937	26,01334	5,12002E-09	72,90823727	87,09176273
Tempo de Experiência	4	0,386843492	10,3401	6,60903E-06	3,107936731	4,892063269

Calculando Teste t e p-valor

Quando os coeficientes do modelo e o erro padrão são conhecidos, a fórmula para calcular a estatística t e o valor-p é a seguinte:

$$t - Statistic = \frac{\beta - coefficient}{Std. Error}$$

```
modelSummary <- summary(linearMod)
modelCoeffs <- modelSummary$coefficients # Coeficientes
beta.estimate <- modelCoeffs["speed", "Estimate"] # estimativa de beta para velo
std.error <- modelCoeffs["speed", "Std. Error"] # std.error para velo
t_value <- beta.estimate/std.error # calcular teste t
p_value <- 2*pt(-abs(t_value), df=nrow(cars)-ncol(cars)) # calcuclar p Valor
f_statistic <- linearMod$fstatistic[1] # estatística de F
f <- summary(linearMod)$fstatistic # parâmetros para o calculo do modelo
model_p <- pf(f[1], f[2], f[3], lower=FALSE)</pre>
```


Interpretando o Output - R

>>>summary(fit)

```
Residuals:
   Min
            10 Median
                            3Q
                                  Max
-123.68 -26.78 -5.07
                       24.66
                                95.04
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.212e+02 9.352e+00
                                 45.03
                                         <2e-16
Renda
           5.348e-02 2.766e-03
                                 19.33
                                         <29-16
Signif. codes: 0 '***' 0.001 '**' 0.01 '*'
Residual standard error: 38.93 on 103 degrees of freedom
Multiple R-squared: 0.784, Adjusted R-squared: 0.7819
F-statistic: 373.8 on 1 and 103 DF, p-value: < 2.2e-16
```

Coeficiente de determinação 78,4% da variabilidade da venda anual é explicada pelo tempo de experiência

Fonte: <u>Im-summary (yhat)</u>

Interpretando o Output - R

```
Residual standard error: 38.93 on 103 degrees of freedom
Multiple R-squared: 0.784, Adjusted R-squared: 0.7819
F-statistic: 373.8 on 1 and 103 DF, p-value: < 2.2e-16
7
```

Erro padrão da regressão: é a raiz quadrada da variância estimada dos resíduos e indica o grau de dispersão dos erros de previsão dentro da amostra na hipótese de normalidade.

R²: é uma medida do grau do grau de proximidade entre os valores estimados e observados da variável dependente dentro da amostra utilizada para estimar a regressão, sendo portanto uma medida do sucesso da estimativa.

R² Ajusted: é uma medida semelhante ao R-quadrado mas que, ao contrário deste, não aumenta com a inclusão de variáveis independentes não significativas.

R-Quadrado

Basicamente, o que o R-Quadrado nos diz é a proporção da variação na variável dependente (resposta) que foi explicada por este modelo.

$$R^2 = 1 - \frac{SSE}{SST}$$

$$SSE = \sum_{i}^{n} (y_i - \hat{y_i})^2$$
 and $SST = \sum_{i}^{n} (y_i - \bar{y_i})^2$

Análise Gráfica

par(mfrow=c(2,2)) #Criar matriz com duas linhas e duas colunas
plot(linearMod) #plotar gráfico

Principais Métricas

Estatística	Critério
R-Quadrado	Maior melhor (>0,7)
R-Quadrado Ajustado	Maior Melhor
Teste-F	Maior melhor
Std. Error	Próximo de 0 melhor
Teste. T	Deve ser maior que 1,96 para o p-valor ser menor que 0,05
MAPE (Erro percentual absoluto médio)	Menor melhor
MSE (Erro quadrático médio)	Menor melhor

Análise de Regressão Linear Múltipla

Modelo de Regressão Linear Múltipla - Teórico

$$Y = \beta_0 + \beta_1 X_1 + ... + \beta_n X_n + \epsilon$$

Y: variável dependente

X₁,..., X_n: variáveis independentes

 β_0 e β_1 : são parâmetros

ε: erro aleatório associado ao modelo

Modelo de Regressão Linear Múltipla

Tem o objetivo de projetar uma variável de interesse em função de várias variáveis auxiliares.

Por exemplo projetar o número de clientes que irão adquirir um cartão de crédito em função do número de benefícios oferecidos.

Representação Gráfica

Regressão Linear Múltipla

Case 3 Marketing

Objetivo: Estimar o faturamento (Y) com base no investimento em anúncios (X1 e X2)

Anúncio de Televisão		Faturamento Bruto
(R\$ 1.000)	(R\$ 1.000)	Semanal (R\$ 1.000)
X 1	X_2	Y
5,0	1,5	96
2,0	2,0	90
4,0	1,5	95
2,5	2,5	92
3,0	3,3	95
3,5	2,3	94
2,5	4,2	94
3,0	2,5	94

Resumo dos Resultados no Excel

Estatistica de regressão	
R múltiplo	0,958663444
R-Quadrado	0,9190356
R-quadrado ajustado	0,88664984
Erro padrão	0,642587303
Observações	8

É < 0,10 → existe relação linear entre as variáveis

	gl	SQ	MQ	F	F de significação
Regressão	2	23,43540779	11,7177039	28,37776839	0,001865242
Resíduo	5	2,064592208	0,412918442		
Total	7	25,5			

	Coeficientes	Erro padrão	Stat t	valor-P	95% inferiores	95% superiores
Interseção	83,230092	1,573868952	52,88247894	0,000000	79,18433275	87,27585063
Anuncio de Televisao	2,2901836	0,304064556	7,531899313	0,000653	1,508560796	3,071806446
Anuncio de Jomal	1,3009891	0,320701597	4,056696662	0,009761	0,476599398	2,125378798

Resumo dos Resultados

```
call:
lm(formula = "Faturamento ~ AnuncioTelevisao + AnuncioJornal",
   data = vendas)
Residuals:
-0.6325 -0.4124 0.6577 -0.2080 0.6061 -0.2380 -0.4197 0.6469
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept) 83.2301 1.5739 52.882 4.57e-08 ***
AnuncioTelevisao 2.2902 0.3041 7.532 0.000653 ***
Anunciolornal
                 1.3010 0.3207 4.057 0.009761 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.6426 on 5 degrees of freedom
Multiple R-squared: 0.919, Adjusted R-squared: 0.8866
F-statistic: 28.38 on 2 and 5 DF, p-value: 0.001865
```


Equação de Projeção

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

Fatur =
$$83,23 + 2,29 * tv + 1,30 * jornal$$

R-Quadrado Ajustado

À medida que vamos adicionando mais variáveis (X) ao nosso modelo, o valor do R-Quadrado do novo modelo sempre será maior que o do subconjunto menor.

Então o R-Quadrado Ajustado "penaliza" o valor total do número de termos (preditores de leitura) em seu modelo. Portanto, ao comparar modelos, é uma boa prática observar o valor R-Quadrado Ajustado ao R-quadrado.

$$R_{adj}^2 = 1 - rac{MSE}{MST}$$

$$MSE = \frac{SSE}{(n-q)}$$
 $MST = \frac{SST}{(n-1)}$

n é o número de observações e o q é o número de coeficientes no modelo

R-Quadrado Ajustado

Portanto, movendo-se em torno dos numeradores e denominadores, a relação entre R^2 e R^2 -adj torna-se:

$$R_{adj}^2=1-\left(rac{\left(1-R^2
ight)\left(n-1
ight)}{n-q}
ight)$$

Teste F

O teste F valida se ao menos uma variável explica o modelo

Test F | Hipótese de Interesse

$$\begin{cases} H_0: \ \beta_1 = \beta_2 = ... = \beta_n = 0 \\ H_1: \ \beta_1 \neq 0 \text{ ou } \beta_2 \neq 0 \text{ ou ou } \beta_n \neq 0 \end{cases}$$

10	ANOVA			2.0		Oual	ndo este número for < 0,10
11		gl	SQ	MQ	F	H do signif	· · · · · · · · · · · · · · · · · · ·
12	Regressão	2	14243,09333	7121,547	9,4E+29	2,01,04 exist	:e relação linear entre as
13	Resíduo	3	2,27294E-26	7,58E-27		variá	íveis
14	Total	5	14243,09333				
15							
16		Coeficientes	Erro padrão	Stat t	valor-P	95% inferiores	
17	Interseção	0,5	1,08879E-13	4,59E+12	2,28E-38	0,5	
18	Variável X 1	2	4,95082E-14	4,04E+13	3,35E-41	2	
19	Variável X 2	1,2	4,45143E-15	2,7E+14	1,13E-43	1,2	
20							

Análise de Regressão Linear Múltipla

The Boston Housing Dataset

O conjunto de dados contém informações coletadas pelo Serviço de Censo dos EUA sobre habitação na área de Boston.

Os dados foram originalmente publicados por Harrison, D. e Rubinfeld, D.L. "Hedonic prices and the demand for clean air", J. Environ. Economics & Management, volume 5, 81-102, 1978. <u>Link para a publicação</u>

O trabalho investiga os problemas metodológicos associados ao uso de dados do mercado habitacional para medir a disposição de pagar por ar limpo.

Dataset

O Dataset disponibilizado contém 506 observações com 14 variáveis, sendo:

- 1. **CRIM -** taxa de criminalidade per capita por cidade
- 2. **ZN -** proporção de terrenos residenciais destinados a lotes com mais de 25.000 pés quadrados $(25.000 \text{ pés}^2 = 2.322,576 \text{ mts}^2)$
- 3. **INDUS -** proporção de hectares comerciais não varejistas por cidade.
- 4. **CHAS -** Variável dummy de Charles River (1 se o setor delimita rio; 0 caso contrário)
- 5. **NOX -** concentração de óxidos nítricos (partes por 10 milhões)
- 6. **RM -** número médio de quartos por habitação
- 7. **AGE -** proporção de unidades ocupadas pelo proprietário construídas antes de 1940
- 8. **DIS -** distâncias ponderadas para cinco centros de emprego de Boston
- 9. **RAD -** índice de acessibilidade para rodovias radiais
- 10. **TAX -** taxa de imposto sobre propriedades de valor integral por US \$ 10.000
- 11. **PTRATIO -** proporção aluno-professor por cidade
- 12. **B 1000(Bk 0.63)^2** onde Bk é a proporção de negros por cidade
- 13. **LSTAT -** % lower status da população
- 14. **MEDV -** Valor mediano de residências ocupadas pelo proprietário em US \$ 1.000

Utilizar a folha de exercícios Boston Housing

Referências Bibliográficas

Anderson, R. A., Sweeney, J. D. e Williams, T. A. Estatística Aplicada à Administração e Economia. Pioneira. Thomson Learning. 2003

Statistics for Business By Robert Stine, Dean Foster

An Introduction to Statistical Learning, with Application in R. By G. Casella, S. Fienberg, I. Olkin

