

Этикетка

КСНЛ.431295.001 ЭТ

Микросхема интегральная 1564ИП5ТЭП Функциональное назначение: 9-ти разрядная схема контроля четности Микросхема 156ИП5ТЭП

Схема расположения выводов Номера выводов показаны условно Условное графическое обозначение

Таблица назначения выводов

№	Обозначение	Назначение	N₂	Обозначение	Назначение
вывода	вывода	вывода	вывода	вывода	вывода
1	D6	Вход	8	D0	Вход
2	D7	Вход	9	D1	Вход
3	NC	Не подключен	10	D2	Вход
4	D8	Вход	11	D3	Вход
5	Q1	Выход четности	12	D4	Вход
6	Q2	Выход нечетности	13	D5	Вход
7	0V	Общий	14	V_{CC}	Питание

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

Основные электрические параметры (при $t = 25 \pm 10$ °C)

Centibilities stiektiph reckine hapamerphi (hph t 25-10 C)				
Наименование параметра, единица измерения, режим измерения	Буквенное Норма обозначение не менее не б			
	ооозначение	не менее	не более	
1	2	3	4	
1. Максимальное выходное напряжение низкого уровня, В, при:				
U_{CC} =2,0 B, U_{IL} =0,3 B, U_{IH} =1,5 B, I_{O} = 20 MKA	$U_{ m OLmax}$	-	0,1	
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} =4,0 mA		-	0,26	
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 5,2 MA		-	0,26	
2. Минимальное выходное напряжение высокого уровня, В, при:				
$U_{CC}=2.0 \text{ B}, U_{IL}=0.3 \text{ B}, U_{IH}=1.5 \text{ B}, I_{O}=20 \text{ MKA}$	$ m U_{OHmin}$	1,9	-	
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B I_{O} =4,0 MA		4,0	-	
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} =5,2 MA		5,5	-	
3. Входной ток низкого уровня, мкА, при:				
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	${ m I}_{ m IL}$	-	/-0,1/	
			1	

4. Входной ток высокого уровня, мкА, при: $U_{CC}\!=\!6,\!0\;B,U_{IL}\!=\!0\;B,U_{IH}\!=\!U_{CC}$	I _{IH}	-	0,1
5.Ток потребления, мкА, при: $U_{CC}\!\!=\!6,\!0$ B, $U_{IL}\!\!=\!0$ B, $U_{IH}\!\!=\!\!U_{CC}$	I_{CC}	-	4,0
6. Динамический ток потребления, мА, при: $U_{CC}\!=\!6,\!0\;B,f\!=\!10,\!0\;M\Gamma ц$	I _{occ}	-	1,0
7. Время задержки распространения при включении (выключении), нс, при: $U_{CC}=2,0 \ B, \ C_L=50 \ п\Phi$ $U_{CC}=4,5 \ B, \ C_L=50 \ n\Phi$ $U_{CC}=6,0 \ B, \ C_L=50 \ n\Phi$	t _{PHL,} t _{PLH}	- - -	205 41 35
8. Входная емкость, пФ	$C_{\rm I}$	-	10

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото Γ. серебро

в том числе:

золото Γ/MM на 14 выволах ллиной

Цветных металлов не содержится

2 НАДЕЖНОСТЬ

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

MM

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) °С не менее 100000ч., а в облегченном режиме: при $U_{CC} = 5B \pm 10\%$ - не менее 120000ч.

2.2 Гамма – процентный срок сохраняемости (ТСу) при ү = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям АЕЯР.431200.424-13 ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564ИП5ТЭП соответствуют техническим условиям АЕЯР.431200.424-13ТУ и признаны годными для эксплуатации.

Приняты по	OT		
(извещение, акт і	и др.)	(дата)	
Место для штампа ОТК			Место для штампа ПЗ
Место для штампа « Перепро	оверка произ	ведена	»
Приняты по (извещение, ак	ти др.)	(дата)	_
Место для штампа ОТК	_		Место для штампа ПЗ
Цена договорная			

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общий, вход-питание.

Остальные указания по эксплуатации – в соответствии с АЕЯР.431200.424 ТУ.