

K Nearest Neighbour

Anshu Pandey

Objectives

After completing this module, you should be able to understand:

- K Nearest Neighbour
- 1 Nearest Neighbour for Classification
- 1 nearest Neighbour for Regression
- Model Complexity
- Overfitting

K Nearest Neighbours

Conceptually one of the simplest Machine Learning algorithms.

Uses the proximity or similarity of observations to make predictions about them

Method:

For the 1-Nearest Neighbour algorithm, find the closest labelled observation to the unlabelled observation and apply the same label.

For k Nearest Neighbour, find k closest labelled data points, take majority vote.

While it may seem very simple, it is often very effective!

It can be used for classification or regression

Here there is some ambiguity. We are equal distance from both classes.

In this case, for 1-NN we would just flip a coin to choose a class at random

Regression 1 Nearest Neighbour predictions

Regression 1 Nearest Neighbour predictions

Model complexity

Larger k = smoother decision boundary = less complex model

Smaller k = more complex model = can lead to overfitting

Model complexity

Model complexity and Overfitting/Underfitting

Summary

This module covered the following topics:

K Nearest Neighbour

1 Nearest Neighbour for Classification

1 nearest Neighbour for Regression

Model Complexity

Overfitting

Thank you

Anshu Pandey