Computational aspects of modular parametrizations of elliptic curves

Hao Chen

University of Washington Ph.D. defense

Advisor: William Stein

April 26, 2016

Critical subgroups of elliptic curves

- Critical subgroups of elliptic curves
 - Ellipitc curves and modular curves
 - The critical subgroup and critical polynomials
 - ullet Application of results to $E_{crit}(\mathbb{Q})$
- q-expansion of newforms at non-unitary cusps
 - Computing twists and pseudo-eigenvalues
 - Examples
- Chow-Heegner points
 - Computing Chow-Heegner points

Elliptic curves over $\mathbb Q$

Definition

An **elliptic curve** over $\mathbb Q$ is a nonsingular projective curve $E\subseteq \mathbb P^2$ with defining equation

$$y^2z = x^3 + Axz^2 + Bz^3,$$

where $A, B \in \mathbb{Q}$ and $4A^3 + 27B^2 \neq 0$.

Theorem (Mordell-Weil)

 $E(\mathbb{Q})$ is a finitely generated abelian group, i.e.,

$$E(\mathbb{Q}) \cong \mathbb{Z}^r \oplus T$$
,

for some $r \ge 0$ and T finite.

r is called the rank. T is the torsion subgroup.

The BSD conjecture

There is an entire function L(E, s) called the L-function of E.

The rank part of the Birch and Swinnerton-Dyer (BSD) conjecture is:

$$rank(E(\mathbb{Q})) = ord_{s=1} L(E, s).$$

RHS is the analytic rank, denoted by $r_{an}(E)$.

The BSD conjecture is open when $r_{an}(E) > 1$.

The proof of BSD for $r_{an}(E) = 1$ uses a construction called Heegner points.

Modular curves

Let $N \ge 1$ be an integer, consider the group

$$\Gamma_0(N) = \left\{ \left(egin{array}{cc} a & b \\ c & d \end{array}
ight) \in SL_2(\mathbb{Z}) : N \mid c
ight\}.$$

Let $\mathcal{H}^* = \{z \in \mathbb{C} : im(z) > 0\} \cup \mathbb{P}^1 \mathbb{Q}$. $\Gamma_0(N)$ acts on $\mathcal{H}^* = \mathcal{H} \cup \mathbb{Q} \cup \{\infty\}$.

Definition

$$X_0(N) = \Gamma_0(N) \backslash \mathcal{H}^*$$
.

- $X_0(N)$ has the structure of a nonsingular projective curve.
- Rational functions on $X_0(N)$ are called modular functions. They have q-expansions at infinity:

$$u(q) = \sum_{n>-m} b_n q^n, \ q = e^{2\pi i z}.$$

The modularity theorem

Theorem (Modularity)

For every elliptic curve E/\mathbb{Q} , there exists an integer N>1 and a surjective morphism $\varphi: X_0(N) \to E$ defined over \mathbb{Q} .

The smallest N is called the conductor of E.

Let $\omega = \varphi^*(\frac{dx}{y})$. Then $\omega = cf(z)dz$, where f is the modular form attached to E.

We assume E is optimal. Then φ is unique up to sign.

The critical subgroup $E_{crit}(\mathbb{Q})$

Let $R_{\varphi} = \sum (e_{\varphi}(z) - 1)[z]$ be the ramification divisor of φ .

Definition (Mazur, Swinnerton-Dyer)

The critical subgroup of E is

$$E_{crit}(\mathbb{Q}) = \langle tr(\varphi([z])) : [z] \in \operatorname{supp} R_{\varphi} \rangle \subseteq E(\mathbb{Q}),$$

where $tr(P) = \sum_{\sigma: \mathbb{Q}(P) \to \bar{\mathbb{Q}}} P^{\sigma}$.

• $R_{\varphi} = \operatorname{div}(\omega)$. In particular, $\deg R_{\varphi} = 2g(X_0(N)) - 2$.

Question

Is there an elliptic curve E/\mathbb{Q} with $r_{an}(E) \geq 2$ and $rank(E_{crit}(\mathbb{Q})) > 0$?

Critical *j*-polynomial

Definition

Write $\operatorname{div}(\omega) = \sum n_z[z]$. The critical j-polynomial of E is

$$F_{E,j}(x) = \prod_{z \in \text{supp div}(\omega), j(z) \neq \infty} (x - j(z))^{n_z}.$$

 $F_{E,j}(x) \in \mathbb{Q}[x]$, deg $F_{E,j} \leq 2g-2$. Equality holds if N is square free. For $h \in \mathbb{Q}(X_0(N))$, can define $F_{E,h}(x)$.

Polynomial Relation (I)

Let $r, u \in \mathbb{Q}(C)$, a minimal polynomial relation of r and u is an irreducible polynomial $P(x, y) \in \mathbb{Q}[x, y]$, such that P(r, u) = 0. Say $P(x, y) = f_n(y)x^n + \cdots + f_1(y)x + f_0(y)$.

Proposition (C.)

If
$$\mathbb{Q}(C) = \mathbb{Q}(r, u)$$
 and $\gcd(f_0(y), f_n(y)) = 1$, then
$$f_0(y) = c \prod_{z \in \mathsf{div}_0(r) \setminus \mathsf{div}_\infty(u)} (y - u(z))^{mult_z(\mathsf{div}_0(r))}.$$

Polynomial Relation (II)

Set

$$r = j(j-1728)\frac{\omega}{\mathrm{d}j}, \ u = \frac{1}{j}.$$

Then $r, u \in \mathbb{Q}(X_0(N))$, and $\operatorname{div}_0(r) = \operatorname{div}(\omega) + D_0$, where points in supp D_0 have j-value 0 or 1728.

Proposition (C.)

For $T \gg 0$, let $P(x,y) = f_n(y)x^n + \cdots + f_1(y)x + f_0(y)$ is a minimal polynomial relation of rj^T and u. Then

$$F_{E,j}(x) = f_0(1/x) \cdot x^A (x - 1728)^B$$

where A, B are explicitly computable integers.

The Algorithm to compute $F_{E,i}$

Example

$$F_{44a,j}(x) = H_{-44}(x)^2$$
. $F_{37a,j}(x) = H_{-148}(x)$. $F_{37b,j}(x) = H_{-16}(x)^2$.

The critical subgroup $E_{crit}(\mathbb{Q})$

For i = 2, 3, let $\mathcal{E}_i(N)$ denote the set of elliptic points on $X_0(N)$ of period i.

Lemma (C.)

$$6P_{\mathit{all}} = -3\sum_{c \in \mathscr{E}_2(N)} \varphi(c) - 4\sum_{d \in \mathscr{E}_3(N)} \varphi(d).$$

Theorem (C.)

Suppose $r_{an}(E) \ge 2$, and assume at least one of the following holds:

- (1) $F_{E,j} = \prod_{m=1}^k H_{D_m}^{s_i} \cdot F_0$, where $\mathbb{Q}(\sqrt{D_m}) \neq \mathbb{Q}(\sqrt{D_n})$ for all $m \neq n$, and F_0 is irreducible.
- (2) $F_{E,h}$ is irreducible for some non-constant function $h \in \mathbb{Q}(X_0(N))$. Then $rank(E_{crit}(\mathbb{Q})) = 0$.

Critical polynomials for elliptic curves of rank 2 and conductor $<1000\ \mbox{(I)}$

E^1	$g(X_0(N))$	h	Factorization of $F_{E,h}(x)$
389a	32	j	$H_{-19}(x)^2(x^{60}+\cdots)$
433a	35	j	$x^{68}+\cdots$
446d	55	j	$x^{108} + \cdots$
563a	47	j	$H_{-43}(x)^2(x^{90}-\cdots)$
571b	47	j	$H_{-67}(x)^2(x^{90}-\cdots)$
643a	53	j	$H_{-19}(x)^2(x^{102}-\cdots)$
664a	81	$\frac{\eta_4 \eta_8^2 \eta_{332}^5}{\eta_{166} \eta_{664}^6 \eta_2}$	$x^{160}-\cdots$
655a	65	j	$x^{128}-\cdots$
681c	75	j	$x^{148}-\cdots$
707a	67	j	$x^{132}-\cdots$

Critical polynomials for elliptic curves of rank 2 and conductor $<1000\ (\mbox{II})$

Ε	$g(X_0(N))$	h	Factorization of $F_{E,h}(x)$
709a	58	j	$x^{114} - \cdots$
718b	89	j	$H_{-52}(x)^2(x^{172}-\cdots)$
794a	98	j	$H_{-4}(x)^2(x^{192}-\cdots)$
817a	71	j	$x^{140}-\cdots$
916c	113	j	$H_{-12}(x)^8(x^{216}+\cdots)$
944e	115	$\frac{\eta_{16}^{4}\eta_{4}^{2}}{\eta_{8}^{6}}$	$x^{224}-\cdots^2$
997b	82	j	$H_{-27}(x)^2(x^{160}-\cdots)$
997c	82	j	$x^{162}-\cdots$

¹Here 4 of the critical points are cusps, so deg F = 2g - 6.

Discussion

Corollary

For all elliptic curves E of rank 2 and conductor N < 1000, the rank of $E_{crit}(\mathbb{Q})$ is 0.

Future work

- Compute $E_{crit}(\mathbb{Q})$ for E = 5077a.
- Prove or disprove that $rank(E_{crit}(\mathbb{Q})) = 0$ whenever $r_{an}(E)$ is even.

q-expansion of newforms at non-unitary cusps

- Critical subgroups of elliptic curves
 - Ellipitc curves and modular curves
 - The critical subgroup and critical polynomials
 - Application of results to $E_{crit}(\mathbb{Q})$
- 2 q-expansion of newforms at non-unitary cusps
 - Computing twists and pseudo-eigenvalues
 - Examples
- Chow-Heegner points
 - Computing Chow-Heegner points

Modular forms

Let f be a function $f: \mathcal{H} \to \mathbb{C}$, $\alpha = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in SL_2(\mathbb{Z})$, and let $k \in \mathbb{Z}$. The weight-k action of α on f is defined by

$$f|[\alpha]_k(z):=(cz+d)^{-k}f(\alpha z).$$

Definition

A **modular form** of weight k and level N is a holomorphic function

- $f:\mathcal{H}\to\mathbb{C}$ s.t.
- (1) $f(z) = f|[\alpha]_k(z), \forall \alpha \in \Gamma_0(N) (\Gamma_1(N)).$
- (2) f has holomorphic extension to all cusps of $X_0(N)$ $(X_1(N))$.

Cusp forms = modular forms that are zero at all cusps.

Modular forms have **q-expansions**: $f(q) = \sum_{n\geq 0} a_n q^n$, $q = \exp(2\pi i z)$. The space of cusp forms $= S_k(N)$.

17/3

Operators

- Hecke operators is a family $\{T_n, n \ge 1\} \cup \{\langle d \rangle : (d, N) = 1\}$ of commuting linear operators on $S_k(N)$.
- B_d operators: $B_d(\sum a_n q^n) = \sum a_n q^{nd}$.
- The Atkin-Lehner involution W_N .

Newforms

- When $M \mid N$, \exists degeneracy maps $S_k(M) \rightarrow S_k(N)$.
- Old subspace = span of images of all degenaracy maps.
- New subspace = (Old subspace) $^{\perp}$.
- $S_k(N)^{new}$ has a basis of simultaneous eigenforms for all Hecke operators. These eigenforms are called newforms.

Fourier expansion

Let $f \in S_k(\Gamma_0(N))$ be a newform and let $\mathfrak{c} \in X_0(N)$ be a cusp other than ∞ .

Goal: compute the expansion of f at \mathfrak{c} . First, only well-defined for $denom(\mathfrak{c})^2 \mid N$. Equivalent to computing the expansion of

$$f | \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ Id & 1 \end{pmatrix} \end{bmatrix}$$

at ∞ for all $d^2 \mid N, I \in (\mathbb{Z}/N\mathbb{Z})^{\times}$.

Idea of computing

Idea (ctnd)

Algorithm for twists

f: a newform of level N. χ : a Dirichlet character modulo N.

$$f_{\chi}(q) = \sum a_n(f)\chi(n)q^n$$
 is a modular form of level N' .

 $f \otimes \chi :=$ the unique newform such that $a_p(f \otimes \chi) = a_p(f_\chi)$ for almost all p. (We call $f \otimes \chi$ the twist of f by χ).

Lemma

Let ϵ be the character of f. Then the level of $f \otimes \chi$ divides $lcm(N, cond(\epsilon) cond(\chi), cond(\chi)^2)$.

Lemma

For every $N \ge 1$, there exists an integer B = B(N) such that if g_1 , g_2 be two normalised newforms of levels N_1 , N_2 dividing N and

$$a_n(g_1) = a_n(g_2)$$
, for all $1 \le n \le B$ such that $gcd(n, N) = 1$,

then $g_1 = g_2$.

fixme: replace with pseudocode

Algorithm 1 Identifying $f \otimes \chi$

Input: $f \in S_k(\Gamma_1(N), \epsilon)$ a normalized newform; χ – Dirichlet character of prime power conductor $Q = a^{\beta}$; Assume $Q^2 \mid N$.

Output: The newform $f \otimes \chi$.

1:
$$Q' := \operatorname{cond}(\chi^2)$$
; $N_0 := \frac{N}{q^{\nu_q(N)}}$; $M_0 := Q'N_0$; $t := \frac{N}{M_0} \in \mathbb{Z}$.

- 2: **for** each *d* | *t* **do**
- Compute a basis $\{g_1^{(d)}, \dots, g_{S^d}^{(d)}\}\$ of $S_k(M_0d, \chi^2)^{new}$. 3:
- $B_d := \text{the Sturm bound for } \Gamma_1(M_0 dq^2).$ 4:
- for $1 < i < s_d$ do 5:
- if $a_n(g_i^{(d)}) = a_n(f)\chi(n)$ for all $1 \le n \le B_d$, $\gcd(n,q) = 1$ then 6:
- return $g_i^{(d)}$. 7:
- end if 8:
- end for 9:
- 10: end for
- 11: return Error.

Computing the pseudo-eigenvalue

Recall that modular symbols are linear combinations of $\{\alpha, \beta\}$, $\alpha, \beta \in \mathbb{Q} \cup \infty$, and we put

$$\langle f, \{\alpha, \beta\} \rangle := \int_{\alpha}^{\beta} f dz.$$

Lemma

There exists a weight-k modular symbol M be such that $W_N(M) = N^{k/2-1}M^*$. Moreover, if $\langle f, M \rangle \neq 0$, then

$$w(f) = \frac{\langle f, M \rangle}{\langle f, M \rangle}.$$

Examples (I)

Example

 $E=\mathbf{50a}$. f_E is twist-minimal. Let $\mathfrak{c}=[\frac{1}{10}]$, write $\alpha_0=0$ and

$$x^4 + x^3 + x^2 - x + \frac{1}{5} = (x - \alpha_1)(x - \alpha_2)(x - \alpha_3)(x - \alpha_4).$$

Then

$$f_{\mathfrak{c}}(q) = \sum_{n \geq 1} \alpha_n \mod 5 a_n(f) q^n.$$

Example

Let E = 48a and let $\mathfrak{c} = \left\lceil \frac{1}{12} \right\rceil$. We computed that

$$f_c(a) = -2ia^2 + 2ia^6 + O(a^7).$$

Since the first coefficient vanishes, we conclude that the modular parametrization $\varphi: X_0(48) \to E$ is ramified at the cusp \mathfrak{c} .

Examples (II)

Definition

A newform f is twist-minimal if it is not a twist of a newform of lower level.

Example

Let E=98a and $\mathfrak{c}=\left[\frac{1}{14}\right]$. Then f_E is not twist-minimal. More precisely, if χ is the quadratic character modulo 7, then

$$f \otimes \chi(q) = q - q^2 - 2q^3 + q^4 + O(q^6)$$

is a newform of level 14. We computed numerically that

$$f_{c}(q) = (-0.755 - 0.172i) q + (0.441 - 0.916i) q^{2} + (1.392 + 1.110i) q^{3}$$

$$+ (0.696 - 0.555i) q^{4} + (1.510 - 0.344i) q^{6} - 3.023iq^{7} + O(q^{8})$$

Further work

Assume E/\mathbb{Q} , $f = f_E$ is minimal by twist.

- relation to automorphic side: psuedo-eigenvalues relates to epsilon factors of $\pi_{f \otimes \chi}$. Another way to determine the local components of π_f .
- Let $\mathfrak c$ be a cusp of prime denominator $p \geq 5$. Seems that $a_1(f_{\mathfrak c})$ is only divisible by primes that are $\pm 1 \mod p$. Can we prove this?

Definition: Chow-Heegner points

29/34

Even index of Chow-Heegner points

Darmon et al., Stein

asdf

Future work

Thank you!