Problem 2 (Ch. 1.3)

Show that the two groups given in examples 11 and 13 on pages 33 and 34 are isomorphic. Obtain a subgroup of S_n isomorphic to these groups.

Solution. We provide the bijection $\phi: R_n \to U_n$ below. If $\tau = \frac{2j\pi}{n} \in R_n$ where $j \in \mathbb{Z}, 0 \le j < n$, then

$$\phi(\tau) = e^{i2j\pi/n}$$

If $\tau_1 = \frac{2j_1\pi}{n}$, $\tau_2 = \frac{2j_2\pi}{n}$, (so $0 \le j_1, j_2 < n$) and $\phi(\tau_1) = \phi(\tau_2)$, in other words $e^{i2j_1\pi/n} = e^{i2j_2\pi/n}$, then $\tau_1 = \tau_2$ (since if $\theta \in [0, 2\pi)$, $e^{i\theta}$ is unique so we must have $\theta_1 = \theta_2 \implies i2j_1\pi/n = i2j_2\pi/n \implies \tau_1 = \tau_2$). So ϕ is injective. Now let $y \in U_n$ where $y = e^{i2j\pi/n}$ for $0 \le j < n$, we have that $\phi(\frac{i2j\pi}{n}) = y$, so ϕ is surjective, therefore ϕ is bijective.

Now we show that ϕ respects the group operations. Let $\tau_1 = \frac{2j_1\pi}{n}$, $\tau_2 = \frac{2j_2\pi}{n}$ $(0 \le j_1, j_2 < n)$. We have

$$\phi(\tau_1 \tau_2) = \phi(\frac{2j_1 \pi}{n} + \frac{2j_2 \pi}{n})$$

$$= \phi(\frac{2(j_1 + j_2) \pi}{n})$$

$$= e^{i2(j_1 + j_2) \pi/n}$$

$$= e^{i2j_1 \pi/n} e^{i2j_2 \pi/n}$$

$$= \phi(\tau_1) \phi(\tau_2)$$

Thus, $R_n \cong U_n$.

Problem 4 (Ch. 1.3)

Is the additive group of integers isomorphic to the additive group of rationals (examples 1 and 2 on p. 32)?

Solution. For the sake of contradiction, assume there exists a bijection $\phi: (\mathbb{Z}, +) \to (\mathbb{Q}, +)$ that preserves the group operations (it's isomorphic). Note that there exists an element $n \in (\mathbb{Z}, +)$ such that for all $z \in \mathbb{Z}$, there exists $m \in \mathbb{Z}$ where $z = n^m$. For concreteness, we know that n = 1. Thus, for all $q \in \mathbb{Z}$, we must have a $m \in \mathbb{Z}$ such that $q = \phi(n)^m$, otherwise we have $z \in \mathbb{Z}$ such that $q = \phi(z)$ by surjectivity of ϕ , but $q \neq \phi(n+n+\cdots+n) =$

 $\underbrace{\phi(n) + \phi(n) + \dots + \phi(n)}_{} = \phi(z) = q \text{ which is a contradiction. Let } \underbrace{\frac{p}{r}}_{} = \phi(n) \text{ where } p \in \mathbb{Z} \setminus \{0\}, r \in \mathbb{N} \setminus \{0\} \text{ and } r \in \mathbb{N} \setminus \{0\}$

 $\gcd(p,r)=1$ (we have excluded $\phi(n)\neq 0$ by saying $p\neq 0$, because $\underbrace{0+0+\cdots+0}_{m \text{ times}}=0$ and so will never have the desired property since $\{0\}\neq \mathbb{Q}$). But for all $m\in \mathbb{N}$, $\underbrace{\frac{p}{r}+\frac{p}{r}+\cdots\frac{p}{r}}_{r}=\underbrace{\frac{pm}{r}\neq\frac{1}{r+1}}_{r+1}\in \mathbb{Q}$, since if we did have m where

 $\frac{pm}{r} = \frac{1}{r+1}$, then we would have pm(r+1) = r, but if p < 0 since $m, r+1 \ge 0$ then $pm(r+1) \le 0 < r$ and so we can't have equality, and if p>0 (and $m\neq 0$, otherwise pm(r+1)=0< r) then the left side of the equality is r+1times positive constants, so $pm(r+1) \ge r+1 \ge r$, so we can't have equality again. But then we have $q \in \mathbb{Q}$ that is not $\phi(n)^m$, which is a contradiction, thus ϕ is not an isomorphism.

Problem 5 (Ch. 1.3)

Is the additive group of rationals isomorphic to the multiplicative group of non-zero rationals (examples 2 and 5 on p. 32)?

Solution. For the sake of contradiction, assume that $\phi: (\mathbb{Q}, \times) \to (\mathbb{Q}, +)$ that preserves the group operation (it's isomorphic). Then, we have $\phi(4) = \phi(2 \times 2) = \phi(2) + \phi(2)$. We also have $\phi(4) = \phi(-2 \times -2) = \phi(-2) + \phi(-2)$. So $\phi(2)+\phi(2)=\phi(-2)+\phi(-2)$. But $2\neq -2$ so $\phi(2)\neq \phi(-2)$ since ϕ is injective. Now for $q_1,q_2\in\mathbb{Q}$, if $q_1\neq q_2$ then we know that $2q_1 \neq 2q_2$ (a property we know of the rationals). But then $\phi(4) = \phi(2) + \phi(2) \neq \phi(-2) + \phi(-2) = \phi(4)$, but then ϕ maps 4 to more than one value in \mathbb{Q} , thus ϕ is not a function, a contradiction.

Problem 1 (Ch. 1.5)

As in section 1.4, let C(A) denote the centralizer of the subset A of a monoid M (or a group G). Note that $C(C(A)) \supset A$ and if $A \subset B$ then $C(A) \supset C(B)$. Show that these imply that C(C(C(A))) = C(A). Without using the explicit form of the elements of $\langle A \rangle$ show that $C(A) = C(\langle A \rangle)$. (Hint: Note that if $c \in C(A)$ then $A \subset C(c)$ and hence $\langle A \rangle \subset C(c)$.) Use the last result to show that if a monoid (or a group) is generated by a set of elements A which pair-wise commute, then the monoid (group) is commutative.

Solution. Let A be an arbitrary subset of a monoid M (or group G). Since $A \subset C(C(A))$, then we know that $C(A) \supset C(C(C(A)))$ by the second given property. Now let B = C(A), then plugging B into the first given property, we have $C(C(B)) \supset B$. But substituting C(A) back in for B, we get $C(C(C(A))) \supset C(A)$. Thus, we have set inclusion in both ways, so C(C(C(A))) = C(A).

Note that by definition, $\langle A \rangle$ is the smallest submonoid of M (or subgroup of G) that contains A, thus $\langle A \rangle \supset A$. From the hint, we know that $\langle A \rangle \subset C(c)$ where $c \in C(A)$, but then applying the second property we have $C(\langle A \rangle) \supset C(C(c))$. But we know that $c \in C(C(c))$, since if c commutes with element $m \in M$, then $m \in C(c)$ and $c \in C(m)$. But this is for all $m \in C(c)$, thus $c \in C(C(c))$. And since since $C(\langle A \rangle) \supset C(C(c))$, we have that $c \in C(\langle A \rangle)$. But since c was an arbitrary element in C(A), we have that $C(A) \subset C(\langle A \rangle)$. Thus $C(\langle A \rangle) = C(A)$.

Now let M be generated by a set of elements A which pair-wise commute. Then $M = \langle A \rangle$ and $C(A) \supset A$. We are seeking to prove that M = C(M). Since M and $\langle A \rangle$ are equal, we have that their centralizer is the same, so $C(M) = C(\langle A \rangle)$. But recall we jsut proved $C(\langle A \rangle) = C(A)$, thus C(M) = C(A). But C(A) is a submonoid that contains A, and $\langle A \rangle$ is, by definition, the smallest submonoid that contains A and is contained in all submonoids that contain A, thus $\langle A \rangle \subset C(A) = C(M)$. But then $M \subset C(M)$. But note that we also have $M \supset C(M)$, since C(M) is a submonoid of M, thus we have proved M = C(M).

Problem 3 (Ch. 1.5)

Let G be an abelian group with a finite set of generators which is periodic in the sense that all of its elements have finite order. Show that G is finite.

Solution. Let g_1, g_2, \ldots, g_k be the generators with orders o_1, o_2, \ldots, o_k respectively. If $g \in G$, then $g = g_1^{e_1} g_2^{e_2} \cdots g_k^{e_k}$ where $0 \le e_1 < o_1$, $o \le e_2 < o_2$ etc. Note that we do not care about the permutations of g_1, g_2, \ldots, g_k , because the set is abelian and so changing the order does not change the value. Thus, the number of possible elements in g is the different combinations of e_1, e_2, \ldots, e_k , which is a finite value. Thus, G contains finite number of elements, so G is finite.

Problem 4 (Ch. 1.5)

Show that if g is an element of a group and o(g) = n then $g^k, k \neq 0$, has order [n, k]/k = n/(n, k). Show that the number of generators of $\langle g \rangle$ is the number of positive integers $\langle n \rangle$ which are relatively prime to n. This number is denoted as $\phi(n)$ and ϕ is called the Euler ϕ -function.

Solution. We assert that [n,k]/k is the order of g^k . First, we have $(g^k)^{[n,k]/k} = g^{[n,k]} = (g^n)^j = 1^j = 1$ (where $j \in \mathbb{N} \setminus \{0\}$). Now we show that this is the smallest value. Assume that $e \in \mathbb{N} \setminus \{0\}$ where e < [n,k]/k and $(g^k)^e = g^{ke} = 1$. But then we must have ke be some multiple of n, say nm ($m \in \mathbb{N} \setminus \{0\}$), however, nm = ke < [n,k], which contradicts that [n,k] is the lowest common multiple of n and k. Thus, we have [n,k]/k is the order, and since kn = n,k, thus n/(n,k) = [n,k]/k.

We know g^k is a generator of $\langle g \rangle$ if and only if $o(\langle g^k \rangle) = n$. We just showed that $o(g^k) = \frac{n}{(n,k)}$ so we require that (n,k) = 1, thus they must be coprime.