CLASA a XI-a, varianta 2

Problema 1. Arătați că, dacă $n \geq 2$ este un număr întreg, atunci există matricele inversabile $A_1, A_2, \ldots, A_n \in \mathcal{M}_2(\mathbb{R})$, cu elementele nenule, așa încât $A_1^{-1} + A_2^{-1} + \ldots + A_n^{-1} = (A_1 + A_2 + \ldots + A_n)^{-1}$. Gazeta Matematică
Soluție. Egalitatea este echivalentă cu $(A_1 + A_2 + \ldots + A_n)(A_1^{-1} + A_2^{-1} + \ldots + A_n^{-1}) = I_2 \ldots 2\mathbf{p}$ Vom lua $A_1 = A, A_2 = \ldots = A_n = B$. Cerința devine $I_2 + (n-1)AB^{-1} + (n-1)BA^{-1} + (n-1)^2I_2 = I_2$. Notând $AB^{-1} = X$, căutăm X astfel încât $X + X^{-1} + (n-1)I_2 = 0_2$, sau $X^2 + (n-1)X + I_2 = 0_2$. Astfel, putem lua $X = \begin{pmatrix} 1 & n+1 \\ -1 & -n \end{pmatrix}$
Pentru acest X putem lua $A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$, $B = \begin{pmatrix} -2n-1 & -3n-2 \\ 2 & 3 \end{pmatrix}$ 2p
Problema 2. Considerăm mulțimea $M = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{C}) \mid ab = cd \right\}$. a) Dați exemplu de matrice $A \in M$ astfel încât $A^{2017} \in M$ și $A^{2019} \in M$, dar $A^{2018} \notin M$. b) Arătați că, dacă $A \in M$ și există numărul întreg $k \geq 1$ astfel încât $A^k \in M$, $A^{k+1} \in M$ și $A^{k+2} \in M$, atunci $A^n \in M$, oricare ar fi numărul întreg $n \geq 1$. Soluție. a) Luăm $A \in M$ astfel încât $A^2 \notin M$ și $A^2 + A + I_2 = 0_2$, deci $A^3 = I_2 = A^{2019} \in M$,
$A^{2017} = A \in M$ şi $A^{2018} = A^2 \notin M$. Un exemplu este $A = \begin{pmatrix} 1 & \sqrt{6} \\ -\sqrt{3/2} & -2 \end{pmatrix}$
b) Din teorema Hamilton-Cayley reiese recursiv că există $\alpha, \beta \in \mathbb{C}$ astfel încât $A^{k+2} = \alpha A + \beta I_2$.
Dacă $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, obţinem $(\alpha a + \beta)\alpha b = \alpha c(\alpha d + \beta)$, de unde $\alpha \beta (b - c) = 0 \dots 1$
I) Dacă $b = c$, atunci $A = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$ sau $A = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$; în ambele cazuri $A^n \in M, \forall n \in \mathbb{N}^* \dots \mathbf{1p}$
II) Dacă $b \neq c$, atunci $\alpha = 0$ sau $\beta = 0$, $A^{k+2} = \beta I_2$ sau $A^{k+2} = \alpha A$ și analizăm în funcție de $\delta = \det(A)$. II.1) Dacă $\delta = 0$, atunci $A \in M$ și $A^n = (\operatorname{tr}(A))^{n-1} A \in M$ pentru $n \geq 2 \dots 1$
II.2) Dacă $\delta \neq 0$, atunci $A^{-1} = \frac{1}{\beta}A^{k+1}$, $\beta \neq 0$ sau $A^{-1} = \frac{1}{\alpha}A^k$, $\alpha \neq 0$, deci $A^{-1} \in M$. Cum
$A^{-1} = \frac{1}{\delta} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$, obţinem $bd = ac$, iar $ab = cd$ duce la $b(a+d) = c(a+d)$, deci $a+d = 0$. Aceasta
duce mai departe la $a=d=0$, caz în care $A^n=\begin{pmatrix}0&b^n\\c^n&0\end{pmatrix}$ pentru n impar și $A^n=\begin{pmatrix}b^n&0\\0&c^n\end{pmatrix}$ pentru
n par, sau la $a=-d\neq 0$, de unde $b=-c$ și $A^{2n}=(a^2-b^2)^nI_2$, $A^{2n+1}=(a^2-b^2)^nA$; în toate cazurile reiese $A^n\in M, \forall n\in\mathbb{N}^*$
Problema 3. Fie şirul $(a_n)_{n\geq 1}$ cu proprietățile $a_n>1$ şi $a_{n+1}^2\geq a_na_{n+2}$, oricare ar fi $n\geq 1$. Arătați că şirul $(x_n)_{n\geq 1}$ dat de $x_n=\log_{a_n}a_{n+1}$ pentru $n\geq 1$ este convergent și calculați-i limita. Soluție. Din ipoteză reiese $2\geq \log_{a_{n+1}}a_n+\log_{a_{n+1}}a_{n+2}=\frac{1}{x_n}+x_{n+1}$ (*)
Problema 4. Fie $a < b$ numere reale și $f:(a,b) \to \mathbb{R}$ o funcție astfel încât funcțiile $g:(a,b) \to \mathbb{R}$, $g(x) = (x-a)f(x)$ și $h:(a,b) \to \mathbb{R}$, $h(x) = (x-b)f(x)$ să fie crescătoare. Arătați că funcția f este continuă pe (a,b) .
Soluție. Fie $a < c < b$. Pentru $x \in (c,b)$ avem $g(x) \ge g(c)$ și, cum $x - a > 0$, $f(x) \ge \frac{c-a}{x-a} f(c)$.
Apoi, din $n(x) \ge n(c)$ şi $x - b < 0$ fezulta $f(x) \le \frac{1}{x-b} f(c)$. Decarece $\lim_{x \to c} \frac{1}{x-a} = \lim_{x \to c} \frac{1}{x-b} = 1$, folosind criteriul cleştelui, deducem $\lim_{x \to c} f(x) = f(c) = 1$.
Apoi, din $h(x) \ge h(c)$ şi $x - b < 0$ rezultă $f(x) \le \frac{c - b}{x - b} f(c)$. Deoarece $\lim_{x \to c} \frac{c - a}{x - a} = \lim_{x \to c} \frac{c - b}{x - b} = 1$, folosind criteriul cleştelui, deducem $\lim_{x \to c} f(x) = f(c)$