Análise e Projeto de Sistemas

Universidade Federal do Ceará – UFC
Campus de Quixadá
Curso de Sistemas de Informação
Prof. Lincoln Souza Rocha (lincolnrocha@ufc.br)

"Na época, Nixon estava normalizando as relações com a China. Eu pensei que se ele podia normalizar relações, eu também podia."

(E.F. Codd)

MAPEAMENTO DE OBJETOS PARA O MODELO RELACIONAL

Esses slides são uma adaptação das notas de aula do professor Eduardo Bezerra autor do livro Princípios de Análise e Projeto de Sistemas com UML

Índice

- Introdução
- Projeto de banco de dados

INTRODUÇÃO

Introdução

- Relevância do mapeamento de objetos para o modelo relacional
 - A tecnologia OO como forma usual de desenvolver sistemas de software
 - Sem dúvida os SGBDR dominam o mercado comercial

Os princípios básicos do paradigma da orientação a objetos e do modelo relacional são bastante diferentes. No modelo de objetos, os elementos (objetos) correspondem a abstrações de comportamento. No modelo relacional, os elementos correspondem a dados no formato tabular.

Introdução

- Os objetos de um sistema podem ser classificados em *persistentes* e *transientes*
 - Objetos transientes: existem somente na memória principal
 - Objetos de controle e objetos de fronteira
 - Objetos persistentes: têm uma existência que perdura durante várias execuções do sistema
 - Precisam ser armazenados quando uma execução termina, e restaurados quando uma outra execução é iniciada
 - Tipicamente objetos de entidade

Introdução

- Para objetos persistentes, surge o problema de conciliar as informações representadas pelo estado de um objeto e pelos dados armazenados em registros de uma tabela
- O descasamento de informações (impedance mismatch) é um termo utilizado para denotar o problema das diferenças entre as representações do modelo OO e do modelo relacional

PROJETO DE BANCO DE DADOS

Projeto de Banco de Dados

- Uma das primeiras atividades do <u>projeto detalhado</u> de um SSOO é o desenvolvimento do banco de dados a ser utilizado, se este não existir. Essa atividade corresponde ao *projeto do* banco de dados
- As principais tarefas no projeto do banco de dados são
 - Construção do esquema do banco de dados
 - Criação de índices
 - Armazenamento físico dos dados
 - Definição de visões sobre os dados armazenados.
 - Atribuição de direitos de acesso
 - Políticas de backup dos dados

Conceito do Modelo Relacional

Alguns Conceitos

- ✓O modelo relacional é fundamentado no conceito de *relação*.
- ✓ Cada coluna de uma relação pode conter apenas *valores atômicos*.
- ✓ Uma *chave primária*: colunas cujos valores podem ser utilizados para identificar unicamente cada linha de uma relação.
- ✓ Associações entre linhas: valores de uma coluna fazem referência a valores de uma outra coluna. (*chave estrangeira*).
 - ✓ Uma chave estrangeira também pode conter valores nulos, representados pela constante *NULL*.
- ✓O **NULL** é normalmente é usado para indicar que um valor não se aplica, ou é desconhecido, ou não existe.

Conceito do Modelo Relacional

Departamento							
<u>id</u>	sigla	nome	<u>idGerente</u>				
13	RH	Recursos Humanos	5				
14	INF	Informática	2				
15	RF	Recursos Financeiros	6				

Alocação							
<u>id</u>	<u>idProjeto</u>	<u>idEmpregado</u>					
100	1	1					
101	1	2					
102	2	1					
103	3	5					
104	4	2					

Projeto						
<u>id</u>	nome	Verba				
1	PNADO	R\$ 7.000,00				
2	ВММО	R\$ 3.000,00				
3	SGILM	R\$ 6.000,00				
4	ACME	R\$ 8.000,00				

Conceito do Modelo Relacional

Empregado									
<u>id</u>	matrícula	CPF	nome	endereço	CEP	<u>idDepartamento</u>			
1	10223	038488847-89	Carlos	Rua 24 de Maio, 40	22740-002	13			
2	10490	024488847-67	Marcelo	Rua do Bispo, 1000	22733-000	13			
3	10377	NULL	Adelci	Av. Rio Branco, 09	NULL	NULL			
4	11057	0345868378-20	Roberto	Av. Apiacás, 50	NULL	14			
5	10922	NULL	Aline	R. Uruguaína, 50	NULL	14			
6	11345	0254647888-67	Marcelo	NULL	NULL	15			

Mapeamento: Classes e seus Atributos

- Classes são mapeadas para relações
 - Caso mais simples: mapear cada classe como uma relação, e cada atributo como uma coluna
 - No entanto, pode não haver correspondência unívoca entre classes e relações
- Para atributos o que vale de forma geral é que <u>um</u> atributo será mapeado para uma ou mais colunas
- Nem todos os atributos de uma classe são persistentes (atributos derivados)

Mapeamento: Classes e seus Atributos

Cliente (<u>id</u>, CEP, nome, telefone, logradouro, dataNascimento, <u>idCPF</u>) CPF(id, número, sufixo)

Cliente (<u>id</u>, nome, telefone, logradouro, dataNascimento, CPF, CEP)

Mapeamento de Associações

- O procedimento utiliza o conceito de chave estrangeira
- Há três casos, cada um correspondente a um tipo de conectividade
- Nos exemplos dados a seguir, considere, sem perda de generalidade, que
 - Há uma associação entre objetos de duas classes, Ca e Cb
 - Ca e Cb foram mapeadas para duas relações separadas, Ta e
 Tb

Mapeamento de Associações

Considere o diagrama de classes abaixo

Mapeamento de Associações 1:1

- Deve-se adicionar uma chave estrangeira em uma das duas relações para referenciar a chave primária da outra relação
- Escolha da relação na qual a chave estrangeira deve ser adicionada com base na participação
- Há três possibilidades acerca da conectividade
 - Obrigatória em ambos os extremos
 - Opcional em ambos os extremos
 - Obrigatória em um extremo e opcional no outro extremo

Mapeamento de Associações 1:1

Mapeamento de Associações 1:*

- Seja Ca a classe na qual cada objeto se associa com muitos objetos da classe Cb
- Sejam Ta eTb as relações resultantes do mapeamento de Ca e Cb, respectivamente
- Neste caso, deve-se adicionar uma chave estrangeira em Ta para referenciar a chave primária de Tb

Mapeamento de Associações 1:*

Departamento (<u>id</u>, sigla, nome, <u>idEmpregadoGerente</u>)
Empregado (<u>id</u>, matrícula, CPF, nome, endereço, CEP, idDepartamento)

Mapeamento de Associações *:*

- Seja Ca a classe na qual cada objeto se associa com muitos objetos da classe Cb
- Sejam Ta eTb as relações resultantes do mapeamento de Ca e Cb, respectivamente
- Uma relação de associação deve ser criada
 - Uma relação de associação serve para representar a associação muitos para muitos entre duas ou mais relações.

Mapeamento de Associações *:*

- Equivalente à aplicação do mapeamento um para muitos duas vezes, considerando-se os pares (Ta, Tassoc) e (Tb, Tassoc)
- Alternativas para definir a chave primária de Tassoc
 - Definir uma chave primária composta
 - Criar uma coluna de implementação que sirva como chave primária simples da relação de associação

Mapeamento de Associações *:*

Empregado

-matrícula : String

-CPF : String

-nome : String

-endereço : String

-CEP : String

Alocado

1100000

*

Projeto

-nome : String

-verba : Decimal

Departamento(<u>id</u>, sigla, nome, <u>idEmpregadoGerente</u>)

Empregado(<u>id</u>, matrícula, CPF, nome, endereço, CEP, <u>idDepartamento</u>)

Alocação(<u>idProjeto</u>, <u>idEmpregado</u>, nome, verba)

Projeto(<u>id</u>, nome, verba)

Departamento (<u>id</u>, sigla, nome, <u>idEmpregadoGerente</u>) Empregado (<u>id</u>, matrícula, CPF, nome, endereço, CEP, idDepartamento) Alocação (<u>id</u>, idProjeto, idEmpregado, nome, verba) Projeto (id, nome, verba)

Mapeamento de Agregações

- A diferença semântica entre agregações e associações influi na forma como o SGBDR deve agir quando um registro da relação correspondente ao todo deve ser excluído ou atualizado
 - Remoção ou atualização em cascata
 - Pode ser implementado como gatilhos e procedimentos armazenados

Mapeamento de Associações Reflexivas

Empregado (<u>id</u>, matrícula, nome, dataContratação, idCônjunge, idSupervisor)

COITI OIVIL - Z- EUIÇAG

Mapeamento de Associações n-áreas


```
Técnico( <u>id</u>, nome )
Projeto( <u>id</u>, nome, verba )
Computador( <u>id</u>, modelo )
Alocação( id, idProjeto, idTécnico, idComputador )
```

Mapeamento de Classes Associativas


```
Empregado (<u>id</u>, matrícula, nome)
Projeto (<u>id</u>, sigla, nome, verbaAnual, idEmpregadoLíder)
Ferramenta (<u>id</u>, nome, descrição)
Utilização (<u>id</u>, idFerramenta, idProjeto, dataUso)
Trabalho (<u>id</u>, idEmpregado, idProjeto, cargaHorária, remuneração)
```

Mapeamento de Generalizações


```
Contribuinte (<u>id</u>, endereço)

PessoaFísica (<u>id</u>, nome, dataNascimento, CPF, idContribuinte)

PessoaJurídica (<u>id</u>, CNPJ, razãoSocial, idContribuinte)

Pessoa (<u>id</u>, nome, endereço, dataNascimento, CPF, CNPJ, razãoSocial, tipo)

PessoaFísica (<u>id</u>, dataNascimento, nome, endereço, CPF)

PessoaJurídica (<u>id</u>, CNPJ, endereço, razãoSocial)
```

Referências

• BEZERRA, E. Princípios de Análise e Projeto de Sistemas com UML. 2ª ed. Rio de Janeiro: Elsevier, 2007.

• FOWLER, M. 3. UML Essencial. 3. ed. Porto Alegre: Bookman, 2007.