Równanie Kwadratowe

PREOI 2025

Dzień 1 – 25 stycznia 2025

Dla danych liczb całkowitych l, r znajdź liczbę takich par liczb całkowitych (x_1, x_2) , dla których istnieje równanie kwadratowe $x^2 + bx + c$, takie że:

Kod zadania:

Limit pamięci:

row

64 MiB

- $b, c \in \mathbb{Z}$,
- $1 \le b + c \le r$,
- pierwiastkami równania są x_1 , x_2 (x_1 może być równe x_2).

Pary (x_1, x_2) , (x_2, x_1) liczymy jako jedną.

Wejście

W pierwszym wierszu wejścia standardowego znajduje się jedna liczba całkowita q ($q \le 10^3$) oznaczająca liczbę zapytań. W kolejnych q wierszach znajdują się po dwie liczby całkowite l oraz r ($l \le r$) oznaczające kolejne zapytania.

 $\sum_{\text{zapytania}} \max(|I|, |r|) \le 10^{12}.$

Wyjście

Na wyjściu powinno znaleźć się dokładnie q wierszy zawierających po jednej liczbie całkowitej, będących odpowiedziami na kolejne zapytania. Jeśli szukanych par jest nieskończenie wiele twój program powinien wypisać -1.

Przykłady

Wejście dla testu row0a:	Wyjście dla testu row0a:
1	16
3 7	
Wejście dla testu row0b:	Wyjście dla testu row0b:
2	3
-3 -2	-1
-16 16	

Ocenianie

Niech S oznacza $\sum_{\text{zapytania}} \max(|I|,|r|)$, niech M_r oznacza $\max_{\text{zapytania}} r$, niech M_l oznacza $\min_{\text{zapytania}} l$.

Podzadanie	Ograniczenia	Limit czasu	Liczba punktów
1	$S \le 10^3$	1 s	9
2	$S \le 10^5$	1 s	17
3	$S \leq 10^7$	1 s	12
4	W każdym zapytaniu: $ I , r \leq 10^7$	1 s	23
5	$M_r - M_l \le 10^3$	1 s	7
6	$M_r - M_l \le 10^7$	1 s	13
7	brak dodatkowych ograniczeń	1 s	19