Tarea 4 matemática estructural y lógica

Sebastián Valencia Calderón Universidad de los Andes

Abril, 2013

Ejercicio 1. Dadas las relaciones, defina las relaciones pedidas.

$$VendeF = join(Vende_{\langle a,p,m,c \rangle}, Fabrica_{\langle f,m \rangle})_{Almacen, Fabrica}$$

 $Produce = join(DeMarca_{\langle p,m \rangle}, Fabrica_{\langle f,m \rangle})_{Fabrica, Producto}$

Sea $\hat{c} = \langle c \in PRECIO : c < 25.00 \rangle$ y $\hat{p} = \langle p \in PRODUCTO : p = manosLibreIphone \rangle$, la relación pedida, la llamaremos L y se define como

$$L = join(Vende_{\langle a,\hat{p},m,\hat{c}\rangle} \circ DeMarca_{\langle \hat{p},m\rangle})_m$$

Sea $\hat{a}=\langle a\in ALMACENES: a=Carulla\rangle,$ la relación pedida, la llamaremos M y se define como

$$M = join(Vende_{\langle \hat{a}, p, m, c \rangle} \circ Fabrica_{\langle f, m \rangle})_m$$

Supongase que: $P_1=P_2\iff M_1=M_2$, donde P y M son productos y marcas respectivamente, además, $P_1=P_2\to C_1=C_2$

$$X = join(Fabrica \circ DeMarca \circ Vende)_m$$

La relación X, es claramente reflexiva, por la falta de deficnición de restricciones sobre igualdad de fabrica, por lo tanto, no es irrefelexiva. Es simétrica, pues si f produce el mismo producto, y es vendido por los mismos almacenes que la fabrica g, g así lo hará con f. Como es simétrica, no es antisimétrica ni asimétrica.

Finalmente, como la relacin determina igualdades, por las restricciones y suposiciones hechas, puede considerarse como reflexiva, sí y sólo si, las suposiciones son ciertas,

Ejercicio 2.Considere la función suma entre $\mathbb{A} \subset \mathbb{Z} : |\mathbb{A}| \in \mathbb{N}$ y los enteros $Suma : \mathbb{A} \to \mathbb{Z}$ $Suma(\{a, b, c, d, \dots, n\}) = a + b + c + d + \dots + n$, es inyectiva, es sobreyectiva, justifique.

No es inyectiva desde que $\forall n \in \mathbb{Z} \to suma(n, -n) = 0$, además, $suma(\{4, 5\}) = 9 = suma(8, 1)$. Para mostrar si es o no sobre, debe tenerse en cuenta que el conjunto de salida de la función, puede verse como el conjunto de todos los subconjuntos finitos de \mathbb{Z} , por lo tanto, a, b, c, d, \ldots, n , deben ser distintos, pues $suma(\{n, n\}) = suma(\{n\})$.

Para esto, se recurre a la definición se sobreyectividad para la función en cuestión, $Suma(\{a,b,c,d,\ldots,n\})$, es sobreyectiva sí y solo si, $\forall n \in \mathbb{Z}, \exists S \in \mathbb{A} : suma(S) = n$. Sea k, un elemento arbitrario de \mathbb{Z} , y S un conjunto arbitrario de \mathbb{A} , debe mostrarse que $Suma\{S\} = k$.Particularmente, se tiene que todo úmero k puede formarse como $Suma\{0,k\} = k$, todo número -k, puede formarse como $Suma\{0,-k\} = -k$ y 0 puede formarse con $Suma\{k,-k\} = 0$, luego la función es sobreyectiva.

Ejercicio 3.Considere la función $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, definida así: f(m,n) = 2m - n, diga si es biyectiva y justifique.

Es sobreyectiva, pues todo k entero puede ser obtenido con f(k,k) = k. No es inyectiva, pues es fácil ver que $f(0,0) = 0 = f(1,2) = f(2,4) = \ldots = f(k,2k); \forall k \in \mathbb{Z}$. Luego no es biyectiva.