Types of Scales

Scale type	Admissible transformations	Statistics	Examples
Nominal	1-1 mapping	Mode, Frequency (counts)	Labeling, classifying entities
Ordinal	Monotonic increasing function	Mode, Median, Percentile, Spearman r, Kendall r, Frequency (counts), order, <,>,=	Preference, hardness, air quality, intelligence tests (raw scores)
Interval	M'=aM+b, a >0	Mode, Median, Mean, Standard deviation, Pearson product-moment correlation, Multiple product-moment correlation +,-	Relative time, temperature (Fahrenheit, Celsius), intelligence tests (standardized scores)
Ratio	M'=aM, a> 0	Geometric mean, Coefficient of variation +,-,*,/	Time interval, length, temperature (Kelvin)
Absolute	M'=M	All stats	Counting entities

Levels of Measurement

Various scales of measurements exist:

- Nominal Scale
- Ordinal Scale
- Interval Scale
- Ratio Scale

The Nominal Scale (1/2)

Example: A <u>religion</u> nominal scale

Joe Michelle

Rachel Christine

Michael James

Clyde Wendy

Other

Catholic

Muslim

The Nominal Scale (2/2)

- The most simple measurment scale
- Involves sorting elements into categories with regards to a certain attribute
- There is no form of ranking
- Categories must be:
 - Jointly exhaustive
 - Mutually exclusive

The Ordinal Scale (1/2)

Example: A <u>degree-classification</u> ordinal scale

Joe Michelle

Rachel Christine

Michael James

Clyde Wendy

Failed 3rd Class

1st Class

2nd Class

The Ordinal Scale (2/2)

- Elements classified into categories
- Categories are ranked
- Categories are transitive A > B & B > C → A > C
- Elements in one category can be said to be better (or worse) than elements in another category
- Elements in the same category are not rankable in any way
- As with nominal scale, categories must be:
 - Jointly exhaustive
 - Mutually exclusive

Interval Scale

- Indicates exact differences between measurement points
- Addition and subtraction can be applied
- Multiplication and Division CANNOT be applied
- We can say that product D has 8 more crashes per month but we cannot say that it has 3 times as more crashes

Temperature of Different CPUs

Ratio Scale

- The highest level of measurement available
- When an absolute zero point can be located on an interval scale, it becomes a ratio scale
- Multiplication and division can be applied (product D crashes 4 times as much per month than product B)
- For all practical purposes almost all interval measurement scales are also ratio scales

Measurement Scales Hierarchy

- Scales are hierarchical
- Each higher-level scale possesses all the properties of the lower ones
- A higher-level of measurement can be reduced to a lower one but not vice-versa

