

DATASHEET

SD3.0/SDIO3.0/eMMC4.51 -Host Controller

SD Host Spec Ver 3.0 compliant SD Physical Layer Spec Ver 3.0 compliant SDIO Spec Ver 3.0 compliant e•MMC Spec Ver 4.51 compliant

Arasan Chip Systems, Inc 2010 North First Street, Suite #510 San Jose, CA 95131 Ph:408-282-1600 Fx:408-282-7800 www.arasan.com

June 21, 2012

Revision Number: 2.01

DISCLAIMER

This document is written in good faith with the intent to assist the readers in the use of the product. Circuit diagrams and other information relating to Arasan Chip Systems' products are included as a means of illustrating typical applications. Although the information has been checked and is believed to be accurate, no responsibility is assumed for inaccuracies. Information contained in this document is subject to continuous improvements and developments.

Arasan Chip Systems' products are not designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or contribute to personal injury or severe property damage. Any and all such uses without prior written approval of an Officer of Arasan Chip Systems Inc. will be fully at the risk of the customer.

Arasan Chip Systems Inc. disclaims and excludes any and all warranties, including without limitation any and all implied warranties of merchantability, fitness for a particular purpose, title, and infringement and the like, and any and all warranties arising from any course or dealing or usage of trade.

This document may not be copied, reproduced, or transmitted to others in any manner. Nor may any use of information in this document be made, except for the specific purposes for which it is transmitted to the recipient, without the prior written consent of Arasan Chip Systems, Inc. This specification is subject to change at any time without notice. Arasan Chip Systems Inc. is not responsible for any errors contained herein.

In no event shall Arasan Chip Systems Inc. be liable for any direct, indirect, incidental, special, punitive, or consequential damages; or for lost of data, profits, savings or revenues of any kind; regardless of the form of action, whether based on contract; tort; negligence of Arasan Chip Systems or others; strict liability; breach of warranty; or otherwise; whether or not any remedy of buyers is held to have failed of its essential purpose, and whether or not Arasan Chip Systems Inc. has been advised of the possibility of such damages.

Restricted Rights

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in FAR52.227-14 and DFAR252.227-7013 et seq. or its successor.

Copyright Notice

No part of this specification may be reproduced in any form or means, without the prior written consent of Arasan Chip Systems, Inc.

Questions or comments may be directed to:

Arasan Chip Systems Inc 2010 North First Street, Suite #510 San Jose, CA 95131. Ph: 408-282-1600

Fax: 408-282-7800 Email: sales@arasan.com

www.arasan.com

CONTENTS

1 INTRODUCTION	1
1.1 Overview	1
1.2 Features	1
2 ARCHITECURE	3
2.1 Functional Description	3
2.2 Functional Block Diagram	4
2.3 Functional Block Diagram Description	4
2.3.1 Host Interface (Master/Target)	4
2.3.2 Host DMA	5
2.3.3 SD3.0 Host Registers	5
2.3.4 Block Buffer	5
2.3.5 SD/UHS-I Interface Control (CMD/DAT/RES)	6
2.3.6 Clock/ Power Management	6
3 PINOUTS	7
3.1 I/O Description	7
4 SoC LEVEL INTEGRATION	19
4.1 IP Deliverables for RTL Version	19
4.2 Verification Environment	19
4.3 Related Items for Total Solution	20

TABLES

Table 1: AHB Bus Interface Signals	7
Table 2: OCP Bus Interface Signals	8
Table 3: AXI Bus Interface Signals	9
Table 4: SD3.0 / SDIO3.0 / eMMC4.51 Interface	12
Table 5: Power Control Signals	14
Table 6: Clock, Special Controls and Test Mode Signals	14
Table 7: Block RAM (SRAM) Interface Signals	15
Table 8: Core Configuration Signals	16
FIGURES	
Figure 1: SD3.0/SDIO3.0/eMMC3.5 Host Controller Functional Block Diagram	4
Figure 2: Verification Environment	19

1 INTRODUCTION

1.1 Overview

Arasan Chip Systems' SD3.0/SDIO3.0/eMMC4.51 Host Controller IP is a highly integrated Intellectual Property (IP) solution that supports three key memory and I/O technologies:

- 1. Secured Digital (SD)3.0
- 2. Secured Digital Input Output (SDIO)3.0
- 3. Embedded Multi Media Card (eMMC)4.5

This IP handles all of the timing and interface protocol requirements to access these media as well as processing the commands in hardware, thereby scaling in both performance and access speeds.

The IP supports connection to a single slot and performs multi-block writes and erases that lower access overhead. In addition, a host can utilize this IP to boot directly from an attached eMMC memory, thereby simplifying system initialization during power up. The host interface is based on a standard 32-bit Advanced High-Performance Bus (AHB) bus which is used to transfer data and configure the IP.

1.2 Features

- Compliant with the following specification versions:
 - Part A2 SD Host controller Version 3.00
 - Part 1 Physical Layer specification Version 3.00
 - Part E1 SDIO specification Version 3.00
 - eMMC Specification Version 4.5
 - Advanced Microprocessor Bus Architecture (AMBA), AHB Specification Version 2. 00
 - AMBA, Advanced Extensible Interface (AXI) Specification Version 1.00 (optional)
 - Open Core Protocol (OCP) specification Version 2.2 (Optional)
- The core feature supports:
 - 32-bit and 64-bit system bus
 - Interrupts and wake up functionality
 - Internal Clock divider for various card operational modes
 - One of the AHB, AXI or OCP System/Host bus
 - The data is transferred using:
 - Programmed Input Output (PIO) mode on the Host Bus Slave interface
 - Direct Memory Access (DMA) mode on the Host Bus Master interface

Note: The Host Bus is AHB or AXI or OCP

- Configurable First In First Out (FIFO) size to support different block sizes
- UHS- I features (SD3.0/SDIO3.0) supports:
 - 1.8V voltages switch operation
 - Tuning for SDR104 and SDR50
 - Host clock rate variable between 0 and 208 MHz
 - Up to 832Mbps data rate using 4 parallel data lines (SDR104 mode)
 - Transfers the data in 1-bit and 4-bit SD modes and SPI mode
 - Transfers the data in SDR104, DDR50, SDR50, SDR25, SDR12, DS and HS modes
 - Cyclic Redundancy Check (CRC) CRC7 for command and CRC16 for data integrity
 - Variable-length data transfers
 - Performs Read wait Control, Suspend/Resume operation with SDIO CARD
 - Designed to work with I/O cards, Read-only cards and Read/Write cards
 - Card Detection (Insertion / Removal)
- eMMC4.51 feature supports:
 - eMMC4.51 Security Protocol Commands
 - Primary and alternate boot modes
 - Packed commands, Data Tags, Discard and Sanitize features
 - 4KB block support
 - Tuning for HS200 mode
 - MMC Plus and MMC Mobile
 - Host clock rate variable between 0 and 200 MHz
 - Up to 1.6Gbps (HS200) data rate using 8 bit parallel data lines
 - Transfers the data in 1-bit, 4-bit and 8-bit modes
 - CRC7 for command and CRC16 for data integrity
 - Password protection of cards

2 ARCHITECURE

2.1 Functional Description

The **Arasan SD3.0** / **SDIO3.0** / **eMMC4.51 Host Controller** is a Host Controller with an AHB/AXI/OCP processor interface. This product conforms to SD Host Controller Standard Specification Version 3.00.

The SD3.0/SDIO3.0/eMMC4.51 Host Controller handles SDIO/SD Protocol at transmission level, packing data, adding CRC, Start/End bit, and checking for transaction format correctness. This Host Controller provides Programmed IO method and DMA data transfer method. In programmed IO method, the Host processor transfers data using the Buffer Data Port Register.

The SD3.0/SDIO3.0/eMMC4.51 Host Controller support for DMA can be determined by checking the DMA support in the Capabilities register. DMA allows a peripheral to read or write memory without the intervention from the CPU. This Host Controller's Host Controller system address register points to the first data address, and data is then accessed sequentially from that address. It supports connection to a single slot and performs multiblock writes and erases the lower access.

2.2 Functional Block Diagram

Figure 1: SD3.0/SDIO3.0/eMMC4.51 Host Controller Functional Block Diagram

2.3 Functional Block Diagram Description

2.3.1 Host Interface (Master/Target)

The Master Bus Interface is used to access the DMA Controller (when using DMA or Advanced Direct Memory Access (ADMA)2 Modes). The DMA Controller module interfaces to the Host (AHB/AXI/OCP) Master Module to generate Transfers and on the other side it interfaces with the Block Buffer to store/fetch block data. The DMA Controller implements a separate DMA for Simple Direct Memory Access (SDMA) Operation and Separate DMA for the ADMA2 Operation. In addition it implements Host Transaction Generator that generates controls for the Host Master Interface Module.

The DMA Controller uses the Master DMA Interfaces to transfer data between the Host Controller and the System Memory and vice-versa and also to fetch the Descriptors while operating in ADMA2 mode.

The Host Controller interfaces to the System bus using the AHB, AXI, or OCP Master and Slave Interface. The Slave Interface is used to access the Registers inside the Host controller. The Slave Interface supports only single transfer access (no Burst Support) and only one outstanding read/write transaction in case of AXI or OCP interface.

2.3.2 Host DMA

The PIO/DMA Controller Module implements the SDMA and ADMA2 Engines as defined in the SD Host Controller Specification and maintains the block transfer counts for PIO operation. It interacts with the Registers Set and starts the DMA Engine when a Command with Data Transfer is involved.

The DMA Controller interfaces to the Host (AHB/AXI/OCP) Master Module to generate Transfers and on the other side it interfaces with the Block Buffer to store/fetch block data. It implements a separate DMA for SDMA Operation and Separate DMA for the ADMA2 Operation and in addition implements Host Transaction Generator that generates controls for the Host Master interface module.

2.3.3 SD3.0 Host Registers

The Host Controller Register Set implements the Registers defined by the SD Host Controller Specification. The Registers are Byte/DWORD accessible from the Slave interface. The Host Controller Register Set also implements the Data Port Registers for the PIO Mode transfers.

The SD/SDIO Host Controller uses a Dual Port Block Buffer (read/write on both ports) that is used to store the Block Data during SD Transfers. The size of the Block Buffer is Configurable and has to be a minimum of 1 Block Size (Block Size is 512 Bytes in SD Memory and up to 2K Bytes in SDIO).

The Register Set provides the control signals and monitors the status signals from the blocks to set Interrupt Status Bits and eventually generate Interrupt signal to the Host Bus.

2.3.4 Block Buffer

The SD/SDIO Host Controller uses a Dual Port Block Buffer (read/write on both ports) that is used to store the Block Data during SD Transfers. The size of the Block Buffer is Configurable and has to be a minimum of 1 Block Size (Block Size is 512 Bytes in SD Memory and up to 2K Bytes in SDIO).

To achieve maximum performance the Block buffer has to be sized to twice the maximum Block Size supported by Host Controller. The Block Buffer uses Circular Buffer Architecture. One side of the Block Buffer is interfaced with the DMA Controller and operates on the Host Clock. The other side of the Block Buffer interfaces with SD Control Logic and operates on SD Clock. During a write transaction (data transferred from ARM Processor to SD3.0 / SDIO3.0 / eMMC4.51 card), the data is fetched from the System Memory and is stored in the Block Buffer. When a Block of data is available, the SD Control logic will transfer it onto the SD Interface.

The DMA Controller continues to fetch additional block of data when the Block Buffer has space. During a read transaction (data transferred from SD3.0 / SDIO3.0 / eMMC4.51 card to ARM Processor), the data from SD3.0 / SDIO3.0 / eMMC4.51 card will be written in to block buffer and at the end when the CRC of the Block is valid, the data is committed. When a block of data is available, then the DMA Controller transfers this data to the System Memory. The SD Control logic meanwhile receives the next block of data provided there is space in the Block Buffer. If the Host controller cannot accept any data from SD3.0 / SDIO3.0 / eMMC4.51 card, then it will issue read wait (if card supports read wait mechanism) to stop the data transfer from card or by stopping the clock.

Note: FIFO depth can be varied using parameter passed to the Core using the 'dot parameter instantiation'. When the Block Buffer size is twice that of the Block Size, the Block Buffer behaves like a ping-pong buffer.

2.3.5 SD/UHS-I Interface Control (CMD/DAT/RES)

The SD Interface Control block maps the internal signals to the External SD Interface and vice versa. Based on the Bus Width (1/4/8) the internal signals are driven out appropriately. In case of DS, the outputs are driven on the negative edge of the sd clk.

The input from RxFlops module are latched on the rx_clk (looped back or tuned clock) and is output to the Receive Control Module for further processing.

2.3.6 Clock/ Power Management

The SD Clock Generator module generates the SD Clock from the Reference Clock (xin_clk), based on the Controls programmed in the Clock Control Register. These include the Clock Divide Value, SD Clock Enable and so on. The outputs from this module are the SD_CLK and the SD_CARD Clock. The SD_CLK is used by the SD Control Logic and the SD_CARD Clock connected to the "CLK" Pin on the SD Interface. This module also generates system resets to various clock domains.

3 PINOUTS

3.1 I/O Description

The Arasan SD3.0/SDIO3.0/eMMC4.51 Host Controller has following interface groups:

- System (AHB/AXI/OCP) Bus Interface Signals
- SD3.0 / SDIO3.0 / eMMC4.51 Interface that forms the main card interface
- Power Control Signals
- Clock, Special Controls and Test Mode Signals
- Block RAM, Static Random Access Memory (SRAM) Interface Signals
- Core Configuration Signals

Table 1: AHB Bus Interface Signals

Pin	Direction	Description
ahb_clk	IN	AHB System Clock.
ahb_reset_n	IN	AHB System Reset (Active Low)
ahbmaster_hbusreq	OUT	AHB Bus request
ahbmaster_hgrant	IN	AHB Bus Grant
ahbmaster_haddr[31:0]	OUT	DWord Address (Assuming 32-bit Address Bus)
ahbmaster_hwdata[31:0]	OUT	AHB master write data (Assuming 32-bit Data Bus width)
ahbmaster_hrdata[31:0]	IN	Read data (Assuming 32-bit Data Bus width)
ahbmaster_hwrite	OUT	Write / Read Direction Indication
ahbmaster_hsize[2:0]	OUT	Size (byte, half word or word)
ahbmaster_hburst[2:0]	OUT	Burst Size
ahbmaster_hready	IN	Ready signal
ahbmaster_htrans[1:0]	OUT	Transfer type
ahbmaster_hresp[1:0]	IN	Transfer response
ahb_intr	OUT	Interrupt to the ARM
ahb_wkup	OUT	Wakeup Indication to ARM
ahbtarget_hsel	IN	Slave Select
ahbtarget_haddr[15:0]	IN	DWord Address (256 bytes)
ahbtarget_hwdata[31:0]	IN	Write Data
ahbtarget_hrdata[31:0]	OUT	Read Data
ahbtarget_hwrite	IN	Write / Read Direction Indication
ahbtarget_hsize[2:0]	IN	Size (Byte, Half Word or Word)
ahbtarget_htrans[1:0]	IN	Transfer Type
ahbtarget_hready_in	IN	Slave Ready Input
ahbtarget_hready	OUT	Slave Ready

Pin	Direction	Description
ahbtarget_hresp[1:0]	OUT	Transfer Response

Note: Target Interface doesn't support BURST transaction.

Table 2: OCP Bus Interface Signals

Pins	Direction	Description
clk_ocp	IN	OCP System Clock.
OCPMaster_MAddr	OUT	OCP Master read/write address.
_		The address bus width is based on the selected
		OCP Address width using the
		SDHC_MSTOCP_AW parameter at
		the SDHC_OCP_TOP Instantiation
OCPMaster_MCmd[2:0]	OUT	Indicates the type of transaction that the OCP
		Master has initiated
OCPMaster_MData	OUT	Write data from OCP Master to the slave
		The Data Bus width can be 32 or 64 bits wide
		and is based on the selected bus width using
		the SDHC_MSTOCP_DW parameter at the
OCDM A MD A W. W.	OXX	SDHC_OCP_TOP Instantiation.
OCPMaster_MDataValid	OUT	Is the qualifier for OCPMAster_MData
OCPMaster_SCmdAccept	IN	Indicates that the OCP Slave has accepted the
O CDM CD .	D.	command
OCPMaster_SData	IN	Read data from OCP Slave
		The Data Bus width can be 32 or 64 bits wide
		and is based on the selected bus width using
		the SDHC_MSTOCP_DW parameter at the SDHC_OCP_TOP Instantiation.
OCPMaster SDataAccept	IN	Asserted by OCP slave to indicate that the
OCI Wiastei_SDataAccept	111	current Master write data is accepted
OCPMaster_SResp[1:0]	IN	Response signal for Master write transfers
OCPMaster MByteEn[3:0]	OUT	Byte enable from the master for write/read
Oct Master_MbyteEn[5.0]	001	transactions
OCPMaster_MBurstLength[4:0]	OUT	Indicates the burst length of the transaction
OCPMaster MBurstPrecise	OUT	Indicates that the given burst length is precise
OCPMaster_MBurstSeq[2:0]	OUT	Indicates the type of burst
OCPMaster MBurstSingleReq	OUT	Indicates the number of requests associated
		with the burst
OCPMaster MDataLast	OUT	Last Data of the burst
OCPMaster MReqLast	OUT	Last request in a burst
OCPMaster_SRespLast	IN	Last response in a burst
OCPMaster MDataByteEn[3:0]	OUT	Write Byte enables to the OCP slave during
		Data handshake phase
OCPMaster max burst size config	IN	Configurable burst length
OCPSlave_MCmd[2:0]	IN	Type of transaction from the Master
OCPSlave_MAddr[31:0]	IN	Transfer address from Master
	,	

Pins	Direction	Description
OCPSlave_MData[31:0]	IN	Write data from OCP Master
OCPSlave_SCmdAccept	OUT	Acceptance signal to the external OCP master
		for the request phase
OCPSlave_SResp[1:0]	OUT	Response signal from OCP Slave
OCPSlave_SData[31:0]	OUT	Read data from OCP Slave
OCPSlave_MByteEn[3:0]	IN	Byte Enable from OCP Master
OCPSlave_MReset_n	IN	Reset signaling from OCP Master
OCPSlave_MRespAccept	IN	Master accepts response

Table 3: AXI Bus Interface Signals

Pins	Direction	Description
aximst_wstrb	OUT	Write strobes. This signal indicates which byte lanes to update in memory. There is one write strobe for each eight
		bits of the write data bus. Therefore, WSTRB[n] corresponds to WDATA[(8 \text{P} n) + 7:(8 \text{P} n)].
aximst_wlast	OUT	Write last. This signal indicates the last transfer in a write burst.
aximst_wvalid	OUT	Write valid. This signal indicates that valid write data and strobes are available:
		1 = write data and strobes available 0 = write data and strobes not available.
aximst_wready	IN	Write ready. This signal indicates that the slave can accept the write data:
		1 = slave ready
		0 = slave not ready.
aximst_bid[3:0]	IN	Response ID. The identification tag of the write response.
		The BID value must match the AWID value of the write
1 1 1 1 1 1	Di	transaction to which the slave is responding.
aximst_bresp[1:0]	IN	Write response. This signal indicates the status of the write
		transaction. The allowable responses are OKAY, EXOKAY, SLVERR, and DECERR.
aximst bvalid	IN	Write response valid. This signal indicates that a valid write
axiiist_bvanu	111	response is available:
		1 = write response available
		0 = write response not available.
aximst_bready	IN	Response ready. This signal indicates that the master can
		accept the response information.
		1 = master ready
		0 = master not ready.
aximst_arid[3:0]	OUT	Read address ID. This signal is the identification tag for the
		read address group of signals.
aximst_araddr[31:0]	OUT.	Read address. The read address bus gives the initial address
		of a read burst transaction. Only the start address of the burst
		is provided and the control signals that are issued alongside
		the address detail how the address is calculated for the
animat aula (2.0)	OUT	remaining transfers in the burst
aximst_arlen[3:0]	OUT	Burst length. The burst length gives the exact number of

Pins	Direction	Description
		transfers in a burst. This information determines the number
		of data transfers associated with the address.
aximst_arsize[2:0]	OUT	Burst size. This signal indicates the size of each transfer in
	OLUE	the burst.
aximst_arburst[1:0]	OUT	Burst type. The burst type, coupled with the size information, details how the address for each transfer within the burst is
		calculated.
aximst arvalid	OUT	Read address valid. This signal indicates, when HIGH, that
aximst_ai vanu	001	the read address and control information is valid and will
		remain stable until the address acknowledge signal,
		ARREADY, is high.
		1 = address and control information valid
		0 = address and control information not valid.
aximst_rid[3:0]	IN	Read ID tag. This signal is the ID tag of the read data group
		of signals. The RID value is generated by the slave and must
		match the ARID value of the read transaction to which it is
aximst rdata	IN	responding.
axiiist_ruata	IIN	Read data. The read data bus can be 8, 16, 32, 64, 128, 256, 512, or 1024 bits wide.
aximst rresp[1:0]	IN	Read response. This signal indicates the status of the read
warmov_110sp[110]	11,	transfer. The allowable responses are OKAY, EXOKAY,
		SLVERR, and DECERR.
aximst_rlast	IN	Read last. This signal indicates the last transfer in a read
		burst.
aximst_rvalid	IN	Read valid. This signal indicates that the required read data is
		available and the read transfer can complete:
		1 = read data available 0 = read data not available
aximst_rready	OUT	Read ready. This signal indicates that the master can accept
aximst_iready	001	the read data and response information:
		1= master ready
		0 = master not ready.
axislv_awid[7:0]	IN	Write address ID. This signal is the identification tag for the
		write address group of signals.
axislv_awaddr[31:0]	IN	Write address. The write address bus gives the address of the
		first transfer in a write burst transaction. The associated
		control signals are used to determine the addresses of the
axislv_awlen[3:0]	IN	remaining transfers in the burst. Burst length. The burst length gives the exact number of
uaisiv_awien[5.0]	111	transfers in a burst. This information determines the number
		of data transfers associated with the address.
axislv_awsize[2:0]	IN	Burst size. This signal indicates the size of each transfer in
		the burst. Byte lane strobes indicate exactly which byte lanes
		to update.
axislv_awburst[1:0]	IN	Burst type. The burst type, coupled with the size information,
		details how the address for each transfer within the burst is
111	D.I.	calculated.
axislv_awvalid	IN	Write address valid. This signal indicates that valid write
		address and control information are available:

Pins	Direction	Description
		1 = address and control information available
		0 = address and control information not available
		The address and control information remain stable until the
		address acknowledge signal, AWREADY, goes HIGH.
axislv_awready	OUT	Write address ready. This signal indicates that the slave is
		ready to accept an address and associated control signals:
		1 = slave ready
		0 = slave not ready.
axislv_wid[7:0]	IN	Write ID tag. This signal is the ID tag of the write data
		transfer. The WID value must match the AWID value of the
		write transaction.
axislv_wdata[31:0]	IN	Write data. The write data bus can be 8, 16, 32, 64, 128, 256, 512, or 1024 bits wide.
axislv_wstrb[3:0]	IN	Write strobes. This signal indicates which byte lanes to
		update in memory. There is one write strobe for each eight
		bits of the write data bus. Therefore, WSTRB[n] corresponds
		to WDATA[$(8 \triangleright n) + 7:(8 \triangleright n)$].
axislv_wlast	IN	Write last. This signal indicates the last transfer in a write
		burst.
axislv_wvalid	IN	Write valid. This signal indicates that valid write data and
		strobes are available:
		1 = write data and strobes available
	OXIT	0 = write data and strobes not available.
axislv_wready	OUT	Write ready. This signal indicates that the slave can accept
		the write data:
		1 = slave ready
axisly bid[7:0]	OUT	0 = slave not ready. Response ID. The identification tag of the write response.
axisiv_blu[7:0]	001	The BID value must match the AWID value of the write
		transaction to which the slave is responding.
axislv bresp[1:0]	OUT	Write response. This signal indicates the status of the write
axisiv_bresp[1.0]	001	transaction. The allowable responses are OKAY, EXOKAY,
		SLVERR, and DECERR.
axisly byalid	OUT	Write response valid. This signal indicates that a valid write
	_	response is available:
		1 = write response available
		0 = write response not available.
axislv_bready	IN	Response ready. This signal indicates that the master can
		accept the response information.
		1 = master ready
		0 = master not ready
axislv_arid[7:0]	IN	Read address ID. This signal is the identification tag for the read address group of signals.
axislv_araddr[31:0]	IN	Read address. The read address bus gives the initial address
[2.244]		of a read burst transaction. Only the start address of the burst
		is provided and the control signals that are issued alongside
		the address detail how the address is calculated for the
		remaining transfers in the burst.
axislv_arlen[3:0]	IN	Burst length. The burst length gives the exact number of

Pins	Direction	Description
		transfers in a burst. This information determines the number
		of data transfers associated with the address.
axislv_arsize[2:0]	IN	Burst size. This signal indicates the size of each transfer in
		the burst.
axislv_arburst[1:0]	IN	Burst type. The burst type, coupled with the size information,
		details how the address for each transfer within the burst is
		calculated.
axislv_arvalid	IN	Read address valid. This signal indicates, when HIGH, that
		the read address and control information is valid and will
		remain stable until the address acknowledge signal,
		ARREADY, is high. 1 = address and control information valid
		0 = address and control information not valid.
axislv_arready	OUT	Read address ready. This signal indicates that the slave is
axisiv_arready	001	ready to accept an address and associated control signals:
		1 = slave ready
		0 = slave not ready.
axisly rid[7:0]	OUT	Read ID tag. This signal is the ID tag of the read data group
		of signals. The RID value is generated by the slave and must
		match the ARID value of the read transaction to which it is
		responding.
axislv_rdata[31:0]	OUT	Read data. The read data bus can be 8, 16, 32, 64, 128, 256,
		512, or 1024 bits wide.
axislv_rresp[1:0]	OUT	Read response. This signal indicates the status of the read
		transfer. The allowable responses are OKAY, EXOKAY,
	OLIT	SLVERR, and DECERR.
axislv_rlast	OUT	Read last. This signal indicates the last transfer in a read burst.
axisly rvalid	OUT	Read valid. This signal indicates that the required read data is
axisiv_i vanu	001	available and the read
		transfer can complete:
		1 = read data available
		0 = read data not available.
axisly rready	IN	Read ready. This signal indicates that the master can accept
_ ,		the read data and response information:
		1= master ready
		0 = master not ready.
int_to_arm	OUT	Interrupt to the ARM
cfg_mstid	IN	programmable ID for master interface

Table 4: SD3.0 / SDIO3.0 / eMMC4.51 Interface

Pins	Direction	Description
sdif_cd_n	IN	Active Low. Card Detection for single Slot
sdif_wp	IN	Active High. SD Card Write Protect
sdif_clkout	OUT	SD/SDIO/MMC Clock to Card (CLK)
rxclk_in	IN	SD/SDIO/MMC Clock looped back from PAD
sdif_cmdin	IN	SD1/SD4/MMC8 : Command Input

Pins	Direction	Description
sdif_cmdout	OUT	SD1/SD4/MMC8: Command Output
sdif_cmdena	OUT	SPI : Command output and write data
		SD1/SD4/MMC8 mode: Command Output Enable
		SPI mode: Command output enable and write data enable
sdif_dat0in	IN	SD1/SD4/MMC8 mode: Data0 Input
sdif_dat0out	OUT	SPI mode: Command response input, read data and CRC
sdif_dat0en		status for write data
	OUT	SD1/SD4/MMC8 mode: Data0 Output
W0 1 44	D.I.	SD1/SD4/MMC8 mode: Data0 Output Enable
sdif_dat1in	IN	SD1 mode: Interrupt
sdif_dat1out	OUT	SD4 mode: Data1 Input or Interrupt (optional)
sdif_dat1en	OUT	MMC8 mode: Data1 Input
		SD4/MMC8 mode: Data1 Output SD4/MMC8 mode: Data1 Output Enable
sdif dat2in	IN	SD4/MMC8 mode: Data1 Output Enable SD4/MMC8 mode: Data2 Input
sdif_dat2out	OUT	SD1 mode: Read Wait(optional)
sdif_dat2en	OUT	SD4 mode: Data2 Output or Read Wait (optional)
Sun_uat2cn	001	MMC8 mode: Data2 Output
		SD1 mode: Read Wait Enable(optional)
		SD4 mode: Data2 Output Enable or Read Wait Enable
		(optional)
		MMC8 mode: Data2 Output Enable
sdif_dat3in	IN	SD4/MMC8 mode: Data3 Input
sdif_dat3out	OUT	SD4/MMC8 mode: Data3 Output
sdif_dat3en	OUT	SPI mode : chip select
		SD4/MMC8 mode: Data3 Output Enable
		SPI mode : chip select enable
sdif_dat4in	IN	MMC8 mode: Data4 Input
sdif_dat4out	OUT	MMC8 mode: Data4 Output
sdif_dat4en	OUT	MMC8 mode: Data4 Output Enable
sdif_dat5in	IN	MMC8 mode: Data5 Input
sdif_dat5out	OUT	MMC8 mode: Data5 Output
sdif_dat5en	OUT	MMC8 mode: Data5 Output Enable
sdif_dat6in	IN	MMC8 mode: Data6 Input
sdif_dat6out	OUT	MMC8 mode: Data6 Output
sdif_dat6en	OUT	MMC8 mode: Data6 Output Enable
sdif_dat7in	IN	MMC8 mode: Data7 Input
sdif_dat7out	OUT	MMC8 mode: Data7 Output
sdif_dat7en	OUT	MMC8 mode: Data7 Output Enable
		<u>^</u>

Note:

CMD/ DATA output enables are active high signals.

Table 5: Power Control Signals

Pins	Direction	Description
sdhc_ledcontrol	OUT	LED ON: To Caution the user not to
		remove the card while the SD card is being
		accessed.
sdhc_sdbuspower	OUT	Control SD Card Power Supply.
sdhc_sdbusvoltage[2:0]	OUT	SD Bus voltage select.
sdhc_1p8vsigenable	OUT	1.8V Signaling Enable
sdhc_driverstrength[1:0]	OUT	Driver Strength Select
		00b Driver Type B is Selected
		01b Driver Type A is Selected
		10b Driver Type C is Selected
		11b Driver Type D is Selected

Table 6: Clock, Special Controls and Test Mode Signals

Pins	Direction	Description
xin_clk	IN	This clock input is used to generate SD Clock. For maximum efficiency this should be around 50MHz (for SD)/ 208MHz (for SD3.0)
corectrl_itapdlyena	IN	Used to enable selective Tap delay line on the Looped back SD Clock (rxclk_in). This signal along with the corectrl_itapdlysel[4:0] selects the amount of delay to be inserted on the line. When Tuning is enabled (for SDR104 and optionally for SDR50), this signal is ignored and internal controls are used instead. This should not be asserted when operating in DS mode.
corectrl_itapdlysel[4:0]	IN	Selects one of the 32 Taps on the rxclk_in line. This is effective only when corectrl_itapdlyena is asserted and Tuning is not enabled.
corectrl_itapchgwin	IN	This is used to gate the output of the Tap Delay lines so as to avoid glitches being propagated into the Core. This signal should be asserted few clocks before the corectrl_itapdlysel changes and should be asserted for few clocks after.
corectrl_otapdlyena	IN	Used to enable the selective Tap delay on the sdcard_clk so as to generate the delayed sdcard_clk. This is used to latch the CMD/DAT outputs to generate delay on them w.r.t CLK going out. This signal along with corectrl_otapdlysel[3:0] selects the amount of delay to be inserted on the Clock line. This signal should not be asserted when operating in DS mode
corectrl_otapdlysel[3:0]	IN	Selects one of the 16 Taps on the sdcard_clk. This is effective only when corectrl_otapdlyena is asserted.

Pins	Direction	Description
test_mode	IN	Test mode signal is used for DFT purpose. Muxes in the AXI_reset_n signal for all internally generated resets. (Active High)
scan_mode	IN	Scan Mode signal for selecting Scan Clocks for internally generated clocks
scan_clk1	IN	Scan Clock#1 used to mux in for the internally generated sd_clk
scan_clk2	IN	Scan Clock#2 used to mux in for the final rxclk_in (after the tap delay etc)

Table 7: Block RAM (SRAM) Interface Signals

Pins	Direction	Description
sram_clka	OUT	Clock for PORT A
sram_addra [N-1:0]	OUT	Address bus for PORT A.
		The width of the Address bus is based on the size of the
		SRAM (SDHC_BUFFER_SIZE)
sram_writea	OUT	Write Enable for PORT A
sram_reada	OUT	Read Enable for PORT A
sram_wrdata[N-1:0]	OUT	Write Data for PORT A. N is based on the
		SDHC_MSTAXI_DW parameter
sram_rddataa [N-1:0]	IN	Read Data from SRAM on PORT A. N is based on the
		SDHC_MSTAXI_DW parameter
sram_clkb	OUT	Clock for PORT B
sram_addrb [N-1:0]	OUT	Address bus for PORT B.
		The width of the Address bus is based on the size of the
		SRAM (SDHC_BUFFER_SIZE)
sram_writeb	OUT	Write Enable for PORT B
sram_readb	OUT	Read Enable for PORT B
sram_wrdatab [N-1:0]	OUT	Write Data for PORT B. N is based on the
		SDHC_MSTAXI_DW parameter
sram_rddatab [N-1:0]	IN	Read Data from SRAM on PORT B. N is based on the
		SDHC_MSTAXI_DW parameter

Table 8: Core Configuration Signals

Pins	Direction	Description
corecfg tuningcount[5:0]	IN	Configures the Number of Taps (Phases) of the
9_ 9 1 1		rxclk_in that is supported.
		The Tuning State machine uses this information to
		select one of the Taps (Phases) of the rxclk_in
		during the Tuning Procedure.
corecfg_timeoutclkfreq[5:0]	IN	Timeout Clock Frequency
		Suggested Value is 1. (KHz or MHz). Internally the
		1msec /1usecTimer is used for Timeout Detection.
6 4 11 4	DI	The 1msec Timer is generated from the xin_clk.
corecfg_timeoutclkunit	IN	Timeout Clock Unit
sounds has all function	IN	Suggested value is 1'b1 to Select MHz Clock.
corecfg_baseclkfreq[7:0]	IIN	Base Clock Frequency for SD Clock. This is the frequency of the xin clk.
corecfg maxblklength[1:0]	IN	Max Block Length
corecig_maxbikiciigtii[1.0]	111	Maximum Block Length supported by the
		Core/Device
		00: 512 (Bytes)
		01: 1024
		10: 2048
		11: Reserved
corecfg_8bitsupport	IN	8-bit Support for Embedded Device
		Suggested Value is 1'b1 (The Core supports 8-bit
		Interface).
		Optionally an be set to 1'b0 if the Application
	INI	supports only 4-bit SD Interface.
corecfg_adma2support	IN	ADMA2 Support Suggested Value is 1'b1 (The ADMA2 is supported
		by Core).
		Optionally can be set to 1'b0 if the application
		doesn't want to support ADMA2 Mode
corecfg highspeedsupport	IN	High Speed Support
		Suggested Value is 1'b1 (The High Speed mode is
		supported by Core).
corecfg_sdmasupport	IN	SDMA Support
		Suggested Value is 1'b1 (The SDMA is supported
		by Core).
		Optionally can be set to 1'b0 if the application
age of a sugar wag are a set	INI	doesn't want to support SDMA Mode
corecfg_suspressupport	IN	Suspend/Resume Support Suggested Value is 1'b1 (The Suspend/Resume is
		supported by Core).
		Optionally can be set to 1'b0 if the application
		doesn't want to support Suspend/Resume Mode
corecfg_3p3voltsupport	IN	3.3V Support
8_ r		Suggested Value is 1'b1 as the 3.3 V is the default
		voltage on the SD Interface.

Pins	Direction	Description
corecfg_3p0voltsupport	IN	3.0V Support
_opovonsuppore	11,	Should be set based on whether 3.0V is supported
		on the SD Interface.
corecfg_1p8voltsupport	IN	1.8V Support
poversupport	11,	Suggested Value is 1'b1 (The 1.8 Volt Switching is
		supported by Core).
		Optionally can be set to 1'b0 if the application
		doesn't want 1.8V switching (SD3.0)
corecfg 64bitsupport	IN	64-bit System Bus Support
<u> </u>		This should be set based on the System Address
		Bus. When set to 1'b0 the Core supports only 32-bit
		System
		Bus. When set to 1'b1 the Core supports 64-bit
		System
		Address.
corecfg asyncintrsupport	IN	Asynchronous Interrupt Support
<u> </u>		Suggested Value is 1'b1 (The Core supports
		monitoring of Asynchronous Interrupt)
corecfg_slottype[1:0]	IN	Slot Type
		Should be set based on the final product usage
		00 - Removable SCard Slot
		01 - Embedded Slot for One Device
		10 - Shared Bus Slot
		11 – Reserved
corecfg_sdr50support	IN	SDR50 Support
		Suggested Value is 1'b1 (The Core supports SDR50
		mode of operation)
		Optionally can be set to 1'b0 if the application
		doesn't want to support SDR50
corecfg_sdr104support	IN	SDR104 Support
		Suggested Value is 1'b1 (The Core supports
		SDR104 mode of operation)
		Optionally can be set to 1'b0 if the application
2 1 2 2		doesn't want to support SDR104
corecfg_ddr50support	IN	DDR50 Support
		Suggested Value is 1'b1 (The Core supports
		DDR50 mode of operation)
		Optionally can be set to 1'b0 if the application
and Constitution of	TNT	doesn't want to support DDR50
corecfg_adriversupport	IN	Driver Type A Support
		This bit should be set based on whether Driver Type
aguada aduirana	INI	A for 1.8 Signaling is supported or not.
corecfg_cdriversupport	IN	Driver Type C Support
		This bit should be set based on whether Driver Type
aavaafa ddrivansunnaut	INI	C for 1.8 Signaling is supported or not.
corecfg_ddriversupport	IN	Driver Type D Support This bit should be set besed on whether Driver Type
		This bit should be set based on whether Driver Type D for 1.8 Signaling is supported or not
aanaafa natuninatimaaanti2.01	INI	D for 1.8 Signaling is supported or not.
corecfg_retuningtimercnt[3:0]	IN	Timer Count for Re-Tuning

Pins	Direction	Description
2 0000		This is the Timer Count for Re-Tuning Timer for Re-Tuning Mode 1 to 3. Setting to 4'b0 disables Re-Tuning Timer.
corecfg_tuningforsdr50	IN	Use Tuning for SDR50 This bit should be set if the Application wants Tuning be used for SDR50 Modes. The Core operates with or without tuning for SDR50 mode as long as the Clock can be manually tuned using tap delay.
corecfg_retuningmodes[1:0]	IN	Re-Tuning Modes Should be set to 2'b00 as the Core supports only the Mode0 Retuning.
corecfg_spisupport	IN	SPI Mode Support Suggested Value is 1'b1 (The Core supports SPI mode of operation) Optionally can be set to 1'b0 if the application doesn't want to support SPI Mode
corecfg_spiblkmode	IN	SPI Block Mode Reserved and should be set to 1'b0
corecfg_initpresetval[12:0]	IN	Preset Value for Initialization.
corecfg_dsppresetval[12:0]	IN	Preset Value for Default Speed
corecfg_hsppresetval[12:0]	IN	Preset Value for High Speed
corecfg_sdr12presetval[12:0]	IN	Preset Value for SDR12
corecfg_sdr25presetval[12:0]	IN	Preset Value for SDR25
corecfg_sdr50presetval[12:0]	IN	Preset Value for SDR50
corecfg_sdr104presetval[12:0]	IN	Preset Value for SDR104
corecfg_ddr50presetval[12:0]	IN IN	Preset Value for DDR50 Maximum Current for 1.8V
corecfg_maxcurrent1p8v[7:0] corecfg_maxcurrent3p0v[7:0]	IN	Maximum Current for 3.0V
corecfg_maxcurrent3p3v[7:0]	IN	Maximum Current for 3.3V
corecfg_asyncwkupena	IN	Determines the Wakeup Signal Generation Mode.
		O: Synchronous Wakeup Mode: The xin_clk has to be running for this mode. The Card Insertion/Removal/Interrupt events are detected synchronously on the xin_clk and the Wakeup Event is generated. The Assertion and deassertion of the wakeup Event signal synchronous to xin_clk. 1: Asyncrhonous Wakeup Mode: The xin_clk and the host_clk can be stopped in this mode and the Wake up Event is asynchronously generated based on the Card Insertion/Removal/Interrupt Events. The Assertion and de-assertion of the wakeup Event signal is asynchronous.

4 Soc Level Integration

4.1 IP Deliverables for RTL Version

- Verilog HDL of the IP Core
- Synthesis scripts
- Test Environment and test scripts
- User guide

4.2 Verification Environment

This section provides information on the architecture of the SD Host Controller Verification Environment.

The SD Host Controller Design Under Test (DUT) is written in synthesizable Verilog. On the processor side it interfaces with AXI/AHB/OCP Master BFM and AXI/AHB/OCP Slave BFM. On the device side it interfaces with a user selectable device BFM (SD, SDIO, eMMC). The Host Controller Capability is selected by connecting the capability pins to power and ground. The device side interface is 8 bits wide bi-directional data lane supporting DDR (double data rate). The width of the bus is user selectable (1, 4 or 8). The data can be sent or received either by processor input and output or by DMA. The data flow can be aborted by the processor side sending an abort command. The data transfer goes through a ping-pong buffer which achieves back to back frames transfer.

Figure 2: Verification Environment

4.3 Related Items for Total Solution

- SD3.0 Device IP
- eMMC4.51 Device IP
- SD3/eMMC4.51 Hardware Validation Platform
- SD4.0 Device IP
- SD4/SDIO4/eMMC4.51 Host Controller IP

Note: Arasan Chip Systems Inc. is an Executive Member of the SD Card Association since 2001 and participates in the SD/SDIO Standards and Compliance Workgroups.