Measure Theory Problem Set

OSE Bootcamp 2019 Week 3

Alan Shenkerman

Monday, July 22, 2019

Exercise 1.3

- 1. Not an algebra. The complement of an open set is closed, so for example, if $A = (-\infty, 3)$ then $A^c = [3, \infty) \notin G_1$.
- 2. We claim G_2 is an algebra, but not a σ -algebra. To see G_2 is an algebra, note that by definition G_2 is closed under finite union. Moreover, note that

$$(a,b]^c = (-\infty, a] \cup (b, \infty) \in G_2$$
$$(-\infty, b]^c = (b, \infty) \in G_2$$
$$(a, \infty)^c = [-\infty, a] \in G_2,$$

and clearly finite unions of such intervals will have their complements in G_2 as well, because their complements are just finite unions of the exact same types of intervals.

Note, however, that G_2 is not a sigma algebra because by definition it does not contain countable unions of such intervals.

3. This is a σ algebra. As in G_2 , the set is closed under complements and by definition closed under countably infinite unions.

Exercise 1.7

Suppose A was a 'smaller' σ -algebra than $\{\emptyset, X\}$. Since by definition $\emptyset \in A$ then we must have $A = \{\emptyset\}$ but then $\emptyset^c = X \notin A$, contradiction. Thus $\{\emptyset, X\}$ is minimal.

Suppose B is 'larger' than $\mathcal{P}(X)$. Then \exists a set S such that $S \in B$ and $S \notin \mathcal{P}(X)$ since a σ -algebra is a family of subsets of the space $X, S \subset X$, which automatically implies $S \subset \mathcal{P}(X)$ by definition, contradiction.

Exercise 1.10

Suppose a set $S \in \bigcap_{\alpha} S_{\alpha}$, we must have $\emptyset \in \bigcap_{\alpha} S_{\alpha}$ as the empty set is in each σ -algebra by definition. Moreover, we have that $S \in S_{\alpha}^{\alpha} \forall \alpha$. Since each S_{α} is a σ -algebra, we see that $S^c \in S_{\alpha} \forall \alpha$ and thus S^c is in the intersection.

Next, take countably infinite unions of A_i such that $A_i \in \bigcap_{\alpha} S_{\alpha}$, then $A_i \in S_{\alpha} \forall \alpha$. Again by the fact that S_{α} are σ -algebras, we have that:

$$\bigcup_{i=1}^{\infty} A_i \in S_{\alpha} \forall \alpha \implies \bigcup_{i=1}^{\infty} A_i \in \bigcap_{\alpha} S_{\alpha},$$

which completes the proof.

Exercise 1.22

First we show monotonicity. Take C such that $B = A \cup C$ where $A \cap C = \{\emptyset\}$. Then we have:

$$\mu(B) = \mu(A \cup C) = \mu(A) + \mu(C) \ge \mu(A),$$

which proves the result.

Next we show countable subadditivity. For $\bigcup_{i=1}^{\infty} A_i$, construct a sequence of sets B_i such that: $B_1 = A_1, B_2 = A_2 \setminus A_1, \dots B_n = A_n \setminus A_{n-1} \setminus \dots A_1$. By construction, these B_i are disjoint, $B_i \subset A_i$ and moreover, their union is equivalent to the union of the A_i . We have:

$$\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(B_i) \le \sum_{i=1}^{\infty} \mu(A_i),$$

which completes the proof.

Exercise 1.23

Note $\lambda(\emptyset) = \mu(\emptyset \cap B) = \mu(\emptyset) = 0$. Next take $\{A_i\}_{i=1}^{\infty} \subset S$ such that $A_i \cap A_j = \emptyset$. We see that

$$\lambda(\bigcup_{i=1}^{\infty} A_i) = \mu(\bigcup_{i=1}^{\infty} A_i \cap B)$$

$$= \mu(\bigcup_{i=1}^{\infty} (A_i \cap B))$$

$$= \sum_{i=1}^{\infty} \mu(A_i \cap B)$$

$$= \sum_{i=1}^{\infty} \lambda(A_i),$$

which completes the proof.

Exercise 1.26

Note that $A_1 = \bigcap_{i=1}^{\infty} A_i \cup A_1 \setminus \bigcap_{i=1}^{\infty} A_i$. Taking the measure on both sides, we get:

$$\mu(A_1) = \mu(\bigcap_{i=1}^{\infty} A_i) + \mu(A_1 \setminus \bigcap_{i=1}^{\infty} A_i)$$

$$= \mu(\bigcap_{i=1}^{\infty} A_i) + \mu(\bigcup_{n=1}^{\infty} A_1 \setminus A_n)$$

$$= \lim_{n \to \infty} \mu(A_1 \setminus A_n)$$

$$= \lim_{n \to \infty} (\mu(A_1) - \mu(A_n)),$$

which implies the result.

Exercise 2.10

Note that $B = (B \cap E) \cup (B \cap E^c)$ and by subadditivity,

$$\mu^*(B) \le \mu^*(B \cap E) + \mu^*(B \cap E^c),$$

so equality follows in the theorem condition.

Exercise 2.14

Since $\sigma(O)$ is a sigma algebra, for any open set $S \in \sigma(O)$, $S^c \in \sigma(O)$, note S^c is closed. Moreover, since $\sigma(O)$ is closed under countable union, it contains unions of all closed/open sets in \mathbb{R} . Now consider $\sigma(A)$, which is nearly A but with the addition of countable unions of these intervals. Any countable intersection of intervals is an intersection of open and closed sets in \mathbb{R} . Moreover, any

open/closed set in \mathbb{R} is an intersection of countably many intervals, this implies that there is a bijection between $\sigma(O)$ and $\sigma(A)$, so they are equivalent. Caratheodory implies the result.

Exercise 3.1

Note the Lebesgue measure of a point is 0, as a point is a trivial interval. If we have a countable subset of \mathbb{R} , this is just a countable union of disjoint points P_i , thus by definition of a measure:

$$\mu(\bigcup_{i=1}^{\infty} P) = \sum_{i=1}^{\infty} \mu(P_i) = 0.$$

Exercise 3.7

We can replace w/ less than or equal to as a single point has measure zero in \mathbb{R} . Note that if $\{x \in X : f(x) < a\} \in M$ then $\{x \in X : f(x) < a\}^c \in M$ as M is a sigma-algebra, thus we get the greater than or equal to case and from previous logic we see that we also get the greater than case.

Exercise 3.10

For f + g, f * g, |f|, take: F(x,y) = x + y; F(x,y) = x * y; $F(x,y) = \sqrt{x^2} = |x|$ note all of these are continuous, so we see that by (4), each of these functions are measureable.

Since we have the sup and inf condition, the functions:

$$F(x,y) = \frac{1}{2}(x + y + |x - y|) = max(x,y)$$

and

$$F(x,y) = \frac{1}{2}(x + y - |x - y|) = min(x,y)$$

are well defined and clearly continuous, and so max and min are measurable. These statements imply condition 1.

Exercise 3.17

Suppose $f \leq M$, $f \geq M$ for some $M \in \mathbb{R}$. For any x, since we have $f \in [-M, M]$, for every ϵ there exists N such that

$$\frac{1}{2^n} < \epsilon; \quad n \ge N.$$

We can construct finitely many E_i (same E_i as in the constructive proof), that cover all of f, in that the union of the E_i is the entire real line, as we can partition the range into finitely many intervals, none of which contains infinity. Choose an N that fits the bound for ϵ , and then by the construction of s_n we see that

$$|f(x) - s_N(x)| < \epsilon$$

for all x, which implies the uniform convergence of $s_n \to f$.

Exercise 4.13

If |f| < M then we see that $f^+ < M, f^- > -M$, so both are finite on E. Thus from the definition of the Lebesgue integral we find that we are taking the \sup over simple measurable bounded functions for both f^+ and f^- , which are necessarily bounded and thus $\int\limits_E f^+ d\mu < \infty$ and $\int\limits_E f^- d\mu < \infty$, which by definition implies that f is integrable.

Exercise 4.14

Suppose otherwise, then there exists some $E_{\alpha} \subset E$ such that $\mu(E_{\alpha}) > 0$ and where $f(x) = \infty$. Consider the Lebesgue integral on E_{α} . For any $a \in \mathbb{R}$, take an $x \in E_{\alpha}$ such that f(x) > a. Then by proposition 4.5 we have that:

$$a\mu(E_{\alpha}) \le \int_{E} f d\mu$$

. Since $\mu(E_{\alpha})$ is greater than 0, and for any a there exists $x \in E_{\alpha}$ such that f(x) > a, we can take the \sup of both sides, to find that the Lebesgue integral is infinite. This is a contradiction, hence the result.

Exercise 4.15 Note that since $f \leq g$, it must be true that:

$${s: 0 \le s \le f^+} \subset {s: 0 \le s \le g^+},$$

a similar argument holds true for f^- and g^- . Then the result follows from Proposition 4.7.

Exercise 4.16

Observe that

$$\int\limits_A f^+ d\mu = \sup\{\int\limits_A s d\mu, 0 \le s \le f\} \le \sup\{\int\limits_E s d\mu, 0 \le s \le f\} < \infty,$$

where the inequality comes from the fact that $A \subset E$. Similarly f^- is finite, so we are done.