

c-M2DP: A FAST POINT CLOUD DESCRIPTOR WITH COLOR INFORMATION TO PERFORM LOOP CLOSURE DETECTION

Leonardo Perdomo Edson Prestes e Silva Junior November, 2019

OUTLINE

- 1. Introduction
- Proposal
- 3. Related Work
- 4. c-M2DP
- 5. Loop Closure Detection
- 6. Dataset Sequences
- 7. Experiments
- 8. Results

- Several examples of recent autonomous robots applications;
- Perform tasks in distinct realworld environments:
 - Simultaneous Localization and Mapping (SLAM).

Self-driving, inspection, delivery, retail, among others.

Estimates its own pose and incrementally builds an map, using sensor measurements and odometry while moving in the environment.

Example of the SLAM problem (DURRANT-WHYTE; BAILEY, 2006)

- Estimation errors accumulated during movement increase the pose uncertainty and drifting;
- Recognize previously visited places, reducing uncertainty and updating the map.

Map built using only odometry (CADENA et al., 2016).

HOW TO DETECT LOOP CLOSURES?

- Correspondence search using appearance signatures from places visited during the trajectory;
- Signatures can be built using shape, color and other data available from sensors:
 - Several visual-based methods¹ for cameras developed over the past years;
 - 3D LIDAR-based methods are considered less mature².

¹⁽CUMMINS; NEWMAN, 2008; MILFORD; WYETH, 2012; LOWRY et al., 2016)

²(HE; WANG; ZHANG, 2016; DUBÉ et al., 2017)

POINT CLOUD DESCRIPTORS

- Typically, loop closure detection with 3D LIDARs employ point cloud matching approaches³ using feature descriptors:
 - Global descriptors represent the entire cloud geometry into a single descriptor;
 - Local descriptors compute the characteristics around multiple keypoints:
 - Quality and performance issues with keypoint detection techniques⁴.

³(BOSSE; ZLOT, 2013; CIESLEWSKI et al., 2016; HE; WANG; ZHANG, 2016) ⁴(DUBÉ et al., 2017)

MULTIVIEW 2D PROJECTION (M2DP)

- Recently, the M2DP⁵ descriptor presented significant results when applied to loop closure detection:
 - Outperforms other descriptors, such as SHOT⁶'s global variant;
 - Avoids using normals, which can be costly to estimate for large clouds;
 - Spatial density distributions are computed from multiple 2D projections of a point cloud;
- We noticed that it could be extended to compute additional information from each projection.

⁵(HE; WANG; ZHANG, 2016)

⁶⁽TOMBARI; SALTI; STEFANO, 2011

- Alongside 3D spatial data, color can provide more descriptive scenes:
 - Object recognition works⁷ report increase in descriptiveness;
 - Insufficiently investigated approach for loop closure detection.

Colored point cloud generated using LIDAR and camera.

⁷(TOMBARI; SALTI; STEFANO, 2011; FENG; LIU; LIAO, 2015; LOGOGLU; KALKAN; TEMIZEL, 2016)

Color M2DP (c-M2DP)

- A global descriptor comprising of color and shape data computed from the point cloud;
- An improved loop closure detection, using the c-M2DP descriptor on point cloud sequences generated through camera-LIDAR fusion, or stereo depth estimation.

- Both avoid using normals, measuring point distributions from the point clouds;
- However, both are local descriptors, and compute only shape data from the cloud.

3D Gestalt (BOSSE; ZLOT, 2013).

NBLD (CIESLEWSKI et al., 2016).

RELATED WORK COLOR AND SHAPE POINT CLOUD DESCRIPTORS

- Local descriptors designed for object recognition applications:
 - Histograms of normals and color characteristics are computed from a local support split in concentric spheres;
- Additionally, CSHOT have a global variant that uses the whole cloud as support.

CSHOT (TOMBARI; SALTI; STEFANO, 2011).

CoSPAIR (LOGOGLU; KALKAN; TEMIZEL, 2016).

- Our proposal takes advantage of M2DP's existing structure:
 - Reference frame, shape signatures, and dimensionality reduction steps remains unchanged;
 - Color signatures are computed alongside shape, from the multiple 2D projections;
 - Increased length of signature matrix and descriptor vector.

C-M2DP REFERENCE FRAME

- Point cloud P centroid is computed and used as the reference frame origin;
- PCA is performed on P, with the 1st and 2nd PCs defined as the x-axis and y-axis, respectively.

- Distinct 2D planes are generated by varying $[\theta, \phi]$;
- P is projected onto each 2D plane, in order to compute shape and color signatures from each 2D projection.

Projecting P on multiple 2D planes.

- Each plane is split into l concentric circles;
- Each concentric circle is divided in h shape bins, indexed by the x-axis;
- Shape signature s^X is computed by counting the points within each bin.

Computing the shape signature s^X .

- We build color histograms, in which each channel is divided in g bins;
- Histograms are computed for every concentric circle, and are concatenated into a single color signature vector c^X:

Computing the color signature c^X .

- Both s^X and c^X are normalized and concatenated into a single signature vector;
- The signature matrix A is augmented by a row with the concatenated vector.

Concatenated shape and color signatures.

- For every 2D projection, both shape and color signatures are computed, concatenated and included into A;
- SVD of A is computed, with the resulting 1st left and right singular vectors being concatenated and used as the final descriptor.

- Compute a descriptor for each point cloud and query them against the database:
 - Brute-force matching approach using the L2 norm;
 - Detection comes down to finding the most similar descriptor under a predefined threshold (later used for PR curves).

- KITTI⁸ sequences 00, 05, 06 and 07 were used:
 - 3D LIDAR with 360° FoV, and a forward facing stereo color camera system, providing synchronized frames and rectified images;
- For each sequence, we generated semi-dense and dense point clouds offline, using sensors readings and public available tools;

⁸(GEIGER; LENZ; URTASUN, 2012)

- kitti_lidar_camera⁹ package (ROS) was used:
 - LIDAR limited to forward facing FoV;
 - 3D points were projected onto 2D image, associating color values.

3D LIDAR points projected on 2D image. Frame from the KITTI odometry dataset

 $^{^9 {\}tt https://github.com/LidarPerception/kitti_lidar_camera}$

- image_undistort¹⁰ package (ROS) was used:
 - Employs block matching technique from OpenCV¹¹;
 - Point clouds generated using default parameters for KITTI sequences.

Depth estimated from stereo camera.
Frame from the KITTI odometry
dataset.

 $^{^{10}}_{\rm https://github.com/ethz-asl/image_undistort}$ $^{11}_{\rm https://opencv.org/}$

- Laptop Intel i7 quad-core 2.00 GHz CPU and 8 GB RAM;
- Both M2DP and c-M2DP were implemented in C++, using PCL¹² and Eigen¹³;
- In order to compare our results, we used the global variant of the CSHOT descriptor provided by PCL.

¹² http://pointclouds.org

¹³ http://eigen.tuxfamily.org/

- M2DP and c-M2DP parameters were the same from original work;
- c-M2DP color bins parameter was set as g = h;

M2DP and c-M2DP Parameters

Parameter	M2DP	c-M2DP
Azim. angles (b)	4	4
Elev. angles (q)	16	16
Conc. circles (l)	8	8
Shape bins (h)	16	16
Color bins (g)	-	16
Vector length	192	576

- CSHOT default parameters from PCL (vector length: 1344);
- Normals are estimated for CSHOT using the neighborhood around each point, requiring a radius parameter:
 - It can be insufficient, generating invalid results, or be a costly process due to the amount of points;
 - Before each sequence, using the 1st frame:
 - Radius was set as 5 times the average distance of the nearest point.

- Times to compute each descriptor and perform the matching process were measured;
- Precision-recall curves were generated by varying the descriptor similarity threshold:
 - Two locations are considered as the ground truth loop closure if their distance is < 10m;
- Recall rates at 100% precision are highlighted:
 - False loop closures are catastrophic for the map building and can be irrecoverable for SLAM.

- At first, we evaluated each descriptor with semi-dense clouds, generated through camera-LIDAR fusion;
- After that, we experimented with more dense clouds, generated through stereo depth estimation.

 c-M2DP color space was chosen after evaluating it using RGB, HSV and CIELab.

Color Space	Recall F	Rates
	Pr. 100%	Pr. 90%
RGB	82.5 %	89.2%
HSV	71.4%	91.5%
CIELab	49.8%	86.8%

KITTI 06 camera-LIDAR.

- In camera-LIDAR sequences:
 - c-M2DP computing time is only 23.2% higher than M2DP;
 - c-M2DP is **22.6**% faster to compute than CSHOT.

Descriptor	Computing (s)	Matching (s)
M2DP	0.0674 ± 0.0041	0.0043 ± 0.0004
c-M2DP*	0.0830 ± 0.0052	0.0051 ± 0.0006
CSHOT	0.1072 ± 0.0168	0.0059 ± 0.0005

^{*}Ours

Descriptor	Recall F	Rates
	Pr. 100%	Pr. 90%
c-M2DP*	82.5 %	89.2%
M2DP	66.8%	82.1%
CSHOT	81.9%	90.6%

*Ours

KITTI 06 camera-LIDAR.

Descriptor	Recall Rates	
	Pr. 100%	Pr. 90%
c-M2DP*	70.9 %	76.5%
M2DP	40.9%	78.2%
CSHOT	70.8 %	83.5%

^{*}Ours

KITTI 05 camera-LIDAR.

Descriptor	Recall I	Rates
	Pr. 100%	Pr. 90%
c-M2DP*	67.3%	85.4%
M2DP	57.4%	78.2%
CSHOT	79.2 %	88.6%

^{*}Ours

KITTI 00 camera-LIDAR.

Descriptor	Recall Rates
	Pr. 100%
c-M2DP*	10.2%
M2DP	-
CSHOT	17 %

*Ours

KITTI 07 camera-LIDAR.

- In stereo sequences:
 - Overall increase in the average times computing the descriptors;
 - c-M2DP computing time is only 18.8% higher than M2DP;
 - CSHOT heavy computational burden, with an average time 315.9% higher than c-M2DP.

Descriptor	Computing (s)	Matching (s)
M2DP	0.3584 ± 0.0816	0.0044 ± 0.0008
c-M2DP*	0.4259 ± 0.0956	0.0054 ± 0.0006
CSHOT	1.7711 ± 1.0159	0.0061 ± 0.0005

^{*}Ours

Descriptor	Recall Rates	
	Pr. 100%	Pr. 90%
c-M2DP*	50.2%	82.2%
M2DP	22.8%	54.5%
CSHOT	82.3 %	91.7%

*Ours

KITTI 06 stereo camera.

Descriptor	Recall I	Rates
	Pr. 100%	Pr. 90%
c-M2DP*	69.2%	79.2%
M2DP	35.3%	64.9%
CSHOT	77.9 %	87%

^{*}Ours

KITTI 05 stereo camera.

Descriptor	Recall F	Rates
	Pr. 100%	Pr. 90%
c-M2DP*	69.8%	85.3%
M2DP	27%	63.2%
CSHOT	70.9 %	92.2%

^{*}Ours

KITTI 00 stereo camera.

Descriptor	Recall Rates
	Pr. 100%
c-M2DP*	37.2%
M2DP	15.9%
CSHOT	44.2 %

^{*}Ours

KITTI 07 stereo camera.

- Our proposal successfully incorporates color along shape data, extending the M2DP descriptor;
- We performed loop closure detection using c-M2DP:
 - Accuracy improvement over M2DP, while avoiding a large increase in time consumption;
 - Smaller, faster to compute, and shows competitive results against CSHOT in semi-dense point clouds;
 - Although dense point clouds were challenging for M2DP and c-M2DP, CSHOT higher accuracy comes at the cost of being several times slower than our proposal.

- Our paper was accepted in IEEE CASE 2019.
- In future works:
 - Evaluate performance using 360° colored point clouds sequences¹⁴, and on different environments¹⁵;
 - Investigate potential improvements for signatures, such as image pre-processing and point cloud sampling techniques.

^{14 (}PANDEY; MCBRIDE; EUSTICE, 2011)

^{15 (}BLANCO-CLARACO; MORENO-DUEÑAS; GONZÁLEZ-JIMÉNEZ, 2014)

Leonardo Perdomo Edson Prestes e Silva Junior Instituto de Informática — UFRGS

- Precision is the proportion of correctly detected loop closures (TP) among the total of detected loop closures (TP+FP);
- (TP) among the total of detected loop closures (TP+FP);
 Recall is the proportion of correctly detected loop closures (TP) among the actual loop closures in the sequence (TP+FN);

- Azimuth angles progression starts from 0 with a stride of $\frac{\pi}{b}$;
- Elevation angles progression starts from 0 with a stride of $\frac{\pi}{2a}$;
- Concentric circles are generated with varying radii $[r, 2^2r, \dots, l^2r]$, where r is derived from the maximum radius, which is the dis-

tance between the farthest point of the cloud and the centroid.

- PCA is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called PCs:
- The 1st PC has the largest possible variance, and each succeeding PC has the highest variance possible under the constraint that it is orthogonal to the preceding PC.
- SVD is a factorization of a real or complex matrix:
 - In ${\bf A}=USV^T$, the columns of U and the columns of V are called the left-singular vectors and right-singular vectors of ${\bf A}$.