topic: general-purpose optimization/learning algorithms for control

refs:

Annual Review of Control, Robotics, and Autonomous Systems

A Tour of Reinforcement Learning: The View from Continuous Control

Benjamin Recht

Annu. Rev. Control Robot. Auton. Syst. 2019. 2:253–79

Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning

RONALD J. WILLIAMS

Machine Learning, 8, 229-256 (1992)

Random Gradient-Free Minimization of Convex Functions

Foundations of Computational Mathematics 17, 527–566 (2017) Cite this article

Sampling can be faster than optimization

Yi-An Ma^a, Yuansi Chen^b, Chi Jin^a, Nicolas Flammarion^a, and Michael I. Jordan^{a,b,1}

PNAS | October 15, 2019 | vol. 116 | no. 42 | 20881-20885

consider the unconstrained nonlinear program

(NLP) min c(u) $c: \mathbb{R}^m \to \mathbb{R}$ s.t. $u \in \mathbb{R}^m$: $u \mapsto c(u)$ *want: u^* s.t. $c(u^*) < c(u)$ for all $u \neq u^*$ (s.t. $||u - u^*|| < \epsilon$)

global minimizer local minimizer

idea. iteratively choose u^+ such that $c(u^+) < c(u)$ and hope that $u \mapsto u^+ \mapsto u^{++} \mapsto \cdots \mapsto u^*$ * well usually assume c has some regularity — continuous, differentiable, etc.

Those to choose u^+ ?

overview Page 1

-> how to choose ut?

* two main strategies:

1º rondomize u+ ~ P(u)

ut is a random variable w/ probability density p

ex:

· genetic/sworm clopathons

· simulated annualing

· Markov Chain Mante Carlo

properties.

+ approximate alobal uk

+ easy implementation

- sample-inefficient

* neld continuous c

step size/ learning rate/ DC: IRM > IRMXI 2° descend) is the gradient

 $u^{\dagger} = u - \vec{x} \cdot \vec{D} C(u)^{T}$

need to have access to gradient, exactly or approxim ately

· gradient descent

· Newton-Raphson, canjugate-gradient

· zero-th order methods

- approximate local ux

+ easy [-isli] implementation

+ sample-efficient

x need differentiable c

· let's consider a specific class of randomized algorithms that leverage gradient-like information * Instead of min c(u) consider min E[c(u)] pis a probability distribution s.t. UEIRM s.t. UNP distribution

-> how do minima/minimizers of these two problems relate?

-> how do minima/minimizers of these two problems relate? - if "S" distributions are clowed, then minima/minimizers coincide (and also note that, since fp = 1, the 2nd problem's cost can't be lover than first) * but there are (uncountable) in finite "8"-distributions * Instead of min E[c(u)] consider min E[c(u)] by 0 E A

s.t. unp st. unpo oin practice, we go one step forther: > ridiness of parameterization of po trades of: tractability us supoptimality idea: "log-likelihoob trick" $P_0 = C(u) = D_0 C(u) \cdot P_0(u) du$ - def. of expectation $u \sim P_0 = C(u) \cdot D_0 P_0(u) du$ - assuming $D_0 \stackrel{?}{>} f$ commote = $\int C(u) \cdot D_{\Theta} P_{\Theta}(u) \cdot \frac{P_{\Theta}(u)}{P_{\Theta}(u)} du - assuming P_{\Theta}(u) \neq 0$ $= \int [C(u) \cdot D_{\Theta} \log P_{\Theta}(u)] \cdot P_{\Theta}(u) du - D_{\chi} \log f(\chi) = \frac{D_{\chi} f(\chi)}{f(\chi)}$ = E[c(u). Do log po(u)] - def. of expectation

then by averaging samples we can approximate derivative of E[c/w]

without documentary D. r. T

* if we sample un po(re), compute Do log po(re), & evaluate c(u),

then by averaging samples we can approximate while of Licinis