Insetos Raros

Há N insetos, indexados de 0 a N-1, circulando pela casa de Pak Blangkon. Cada inseto tem um **tipo**, que é um inteiro entre 0 e 10^9 , inclusive. Insetos diferentes podem ter o mesmo tipo.

Suponha que os insetos sejam agrupados por tipo. Definimos a cardinalidade do tipo de inseto **mais frequente** como o número de insetos em um grupo com o maior número de insetos. Da mesma forma, a cardinalidade do tipo de inseto **menos frequente** é o número de insetos em um grupo com o menor número de insetos.

Por exemplo, suponha que hajam 11 insetos, cujos tipos são [5,7,9,11,11,5,0,11,9,100,9]. Neste caso, a cardinalidade do tipo de inseto **mais frequente** é 3. Os grupos com o maior número de insetos são do tipo 9 e do tipo 11, cada um consistindo de 3 insetos. A cardinalidade do tipo de inseto **menos frequente** é 1. Os grupos com menor número de insetos são do tipo 7, tipo 90 e tipo 1000, cada um consistindo de 91 inseto.

Pak Blangkon não conhece o tipo de nenhum inseto. Ele possui uma máquina com um único botão que pode fornecer algumas informações sobre os tipos de insetos. Inicialmente, a máquina está vazia. Para usar a máquina, três tipos de operações podem ser realizadas:

- 1. Mover um inseto para dentro da máquina.
- 2. Mover um inseto para fora da máquina.
- 3. Apertar o botão da máquina.

Cada tipo de operação pode ser realizado no máximo $40\ 000$ vezes.

Sempre que o botão é apertado, a máquina informa a cardinalidade do tipo de inseto **mais frequente**, considerando apenas os insetos dentro da máquina.

Sua tarefa é determinar a cardinalidade do tipo de inseto **menos frequente** entre todos os N insetos presentes na casa de Pak Blangkon utilizando a máquina. Além disso, em algumas subtarefas, sua pontuação depende do número máximo de operações de um determinado tipo que são realizadas (consulte a seção Subtarefas para obter detalhes).

Detalhes de Implementação

Você deve implementar o seguinte procedimento:

int min_cardinality(int N)

- *N*: o número de insetos.
- Este procedimento deve retornar a cardinalidade do tipo **menos frequente** entre todos os N insetos presentes na casa de Pak Blangkon.
- Este procedimento é chamado exatamente uma vez.

O procedimento acima pode fazer chamadas para os seguintes procedimentos:

```
void move_inside(int i)
```

- i: o índice do inseto a ser movido para dentro da máquina. O valor de i deve estar entre 0 e N-1 inclusive.
- Se este inseto já estiver dentro da máquina, a chamada não tem efeito sobre o conjunto de insetos dentro da máquina. Entretanto, ela ainda é contada como uma chamada separada.
- Este procedimento pode ser chamado no máximo 40 000 vezes.

```
void move_outside(int i)
```

- i: o índice do inseto a ser movido para fora da máquina. O valor de i deve estar entre 0 e N-1 inclusive.
- Se este inseto já estiver fora da máquina, a chamada não tem efeito sobre o conjunto de insetos na máquina. Entretanto, ela ainda é contada como uma chamada separada.
- Este procedimento pode ser chamado no máximo 40 000 vezes.

```
int press_button()
```

- Este procedimento retorna a cardinalidade do tipo de inseto **mais frequente**, considerando apenas os insetos dentro da máquina.
- Este procedimento pode ser chamado no máximo $40\ 000$ vezes.
- ullet O corretor é **não adaptativo**. Isto é, os tipos de todos os N insetos são fixados antes de min_cardinality ser chamado.

Exemplo

Considere um cenário no qual há 6 insetos dos tipos [5,8,9,5,9,9] respectivamente. O procedimento min_cardinality é chamado da seguinte forma:

```
min_cardinality(6)
```

O procedimento pode chamar move_inside, move_outside e press_button da seguinte forma.

Chamada	Valor de retorno	Insetos na máquina	Tipos dos insetos na máquina
		{}	
<pre>move_inside(0)</pre>		{0}	[5]
<pre>press_button()</pre>	1	{0}	[5]
move_inside(1)		$\{0,1\}$	[5,8]
<pre>press_button()</pre>	1	$\{0,1\}$	[5,8]
move_inside(3)		$\{0, 1, 3\}$	[5, 8, 5]
<pre>press_button()</pre>	2	$\{0, 1, 3\}$	[5, 8, 5]
move_inside(2)		$\{0,1,2,3\}$	[5, 8, 9, 5]
move_inside(4)		$\{0,1,2,3,4\}$	[5, 8, 9, 5, 9]
move_inside(5)		$\{0,1,2,3,4,5\}$	[5, 8, 9, 5, 9, 9]
<pre>press_button()</pre>	3	$\{0,1,2,3,4,5\}$	[5, 8, 9, 5, 9, 9]
move_inside(5)		$\{0,1,2,3,4,5\}$	[5, 8, 9, 5, 9, 9]
<pre>press_button()</pre>	3	$\{0,1,2,3,4,5\}$	[5, 8, 9, 5, 9, 9]
move_outside(5)		$\{0,1,2,3,4\}$	[5, 8, 9, 5, 9]
<pre>press_button()</pre>	2	$\{0,1,2,3,4\}$	[5, 8, 9, 5, 9]

Neste ponto, há informações suficientes para concluir que a cardinalidade do tipo de inseto menos frequente é 1. Portanto, o procedimento min_cardinality deve retornar 1.

Neste exemplo, move_inside é chamado 7 vezes, move_outside é chamado 1 vez e press_button é chamado 6 vezes.

Restrições

• $2 \le N \le 2000$

Subtarefas

- 1. (10 pontos) $N \leq 200$
- 2. (15 pontos) $N \leq 1000$
- 3. (75 pontos) Nenhuma restrição adicional.

Se em qualquer um dos casos de teste, as chamadas para os procedimentos move_inside, move_outside ou press_button não estiverem de acordo com as restrições descritas em

Detalhes de Implementação ou o valor de retorno de min_cardinality estiver incorreto, a pontuação de sua solução para essa subtarefa será 0.

Seja q o **máximo** dos três seguintes valores: o número de chamadas a move_inside, o número de chamadas a move_outside e o número de chamadas a press_button.

Na subtarefa 3, você pode obter uma pontuação parcial. Seja m o valor máximo de $\frac{q}{N}$ em todos os casos de teste nesta subtarefa. Sua pontuação para esta subtarefa é calculada de acordo com a tabela a seguir:

Condição	Pontos		
20 < m	0 (reportado como "Output isn't correct" no CMS)		
$6 < m \leq 20$	$\frac{225}{m-2}$		
$3 < m \le 6$	$81-rac{2}{3}m^2$		
$m \leq 3$	75		

Corretor Exemplo

Seja T um vetor de N inteiros onde T[i] é o tipo do inseto i.

O corretor exemplo lê a entrada no seguinte formato:

- linha 1: N
- linha 2: T[0] T[1] ... T[N-1]

Se o corretor exemplo detectar uma violação de protocolo, a saída do corretor exemplo é Protocol Violation: <MSG>, onde <MSG> é uma das seguintes:

- ullet invalid parameter: em uma chamada a move_inside ou move_outside, o valor de i não está entre 0 e N-1 inclusive.
- \bullet too many calls: o número de chamadas a ${\bf algum}$ entre move_inside, move_outside ou press_button excede 40~000.

Caso contrário, a saída do corretor exemplo está no seguinte formato:

- linha 1: o valor de retorno de min_cardinality
- linha 2: *q*