

Topic Assessment Form

Proj	ect	ID:
------	-----	-----

24-25J-228		

1. Topic (12 words max)

EnlightenDS:- Developing a detection System for Down Syndrome	

2. Research group the project belongs to

Centre of Excellence for AI (CEAI)

3. Research area the project belongs to

Bio-Medical and Health Informatics (HI)

4. If a continuation of a previous project:

Project ID	
Year	

5. Brief description of the research problem including references (200 – 500 words max) – references not included in word count.

Down syndrome is a genetic condition caused by the presence of an extra chromosome 21, resulting in a total of 47 chromosomes instead of the usual 46. This additional genetic material profoundly impacts various aspects of individuals' cognitive, physical, and developmental abilities.

Physically, individuals with Down syndrome typically exhibit distinct features such as almond-shaped eyes, a flat facial profile, and a smaller stature. While these physical characteristics are recognizable, it is the cognitive and developmental aspects that present significant challenges. Many individuals with Down syndrome experience intellectual disabilities of varying degrees, which can range from mild to moderate or severe. This intellectual disability affects their learning abilities, problem-solving skills, and overall cognitive function.

Children with Down syndrome (DS) often struggle more with learning numbers compared to reading. This difficulty stems from their slower pace of learning and cognitive differences associated with DS, necessitating customized learning approaches. Unfortunately, there is limited theoretical guidance specifically designed to help DS children learn and master mathematics.

Educational methods have evolved over time, progressing from traditional paper and pen methods to computer applications such as courseware, and now to the latest technologies like mobile applications on smartphones and tablets. Despite these advancements, there is currently a lack of personalized mathematics learning mobile applications tailored specifically for DS children. (Ahmad, 2014)

Topic Assessment Form

Another significant challenge for individuals with Down syndrome is speech development. Anatomical differences such as smaller oral cavities and differences in muscle tone contribute to delays and difficulties in speech production. This leads to unclear speech, articulation challenges, and reduced intelligibility. (Chapman, 1997)

Coupled with cognitive challenges such as impaired phonological awareness and language processing, individuals with Down syndrome may find it challenging to communicate effectively. Clear speech is essential for social interactions, academic achievement, and accessing employment opportunities. (Buckley, 1993)

Furthermore, late identification of Down syndrome deprives individuals of crucial early intervention services essential for their cognitive, speech, motor and social-emotional development. Without timely detection, individuals may struggle to achieve developmental milestones, face limited access to specialized educational opportunities and encounter challenges in social integration.

Delayed diagnosis also hinders early management of associated health conditions, impacting long-term health outcomes. (M. Crombie, 2024) Early identification is therefore vital to ensuring individuals with Down syndrome receive timely support tailored to their needs, optimizing their overall development and quality of life. (Ganuwala, 2023)

Another significant challenge faced by children with Down syndrome is the unrecognized potential and talents they possess in various areas. (10 famous and successful people with Down's syndrome, 2022) Despite their capabilities, these talents are often overlooked or misunderstood by parents and caregivers who may not fully appreciate their child's strengths. However, when these talents are identified and nurtured with appropriate guidance and support, children with Down syndrome can excel and achieve remarkable accomplishments.

Unfortunately, the underestimation of their potential can lead to missed opportunities for these children to explore and develop their talents fully. This lack of recognition may result in limited access to appropriate educational and extracurricular programs that could further nurture their skills and interests. (Momaya, 2024)

Our research study aims to address the challenges outlined above by developing innovative solutions that enhance learning outcomes for children with Down syndrome and our goal is to provide comprehensive support that enables children with Down syndrome to thrive academically, socially and personally, fostering a more inclusive and supportive environment for their overall well-being.

Topic Assessment Form

References

- 10 famous and successful people with Down's syndrome. (2022). Retrieved from https://disabilityhorizons.com/2022/10/10-famous-and-successful-people-with-downs-syndrome/
- Ahmad, W. F. (2014, June). *Number skills mobile application for down syndrome children*. Retrieved from https://www.researchgate.net/publication/269272801_Number_skills_mobile_application_f or down syndrome children
- Buckley, S. (1993). Developing the speech and language skills of teenagers with Down syndrome.

 Retrieved from

 https://www.researchgate.net/publication/243131885_Developing_the_speech_and_language_skills_of_teenagers_with_Down_syndrome
- Chapman, R. S. (1997). Language development in children and adolescents with Down syndrome. *Communication Processes and Developmental Disabilities, 3*(4), 312. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291098-- 2779%281997%293%3A4%3C307%3A%3AAID-MRDD5%3E3.0.CO%3B2-K
- Ganuwala, S. (2023). Down Syndrome Detection using DCNN. *Information and Communication Technology for Competitive Strategies (ICTCS 2022)*, 198. Retrieved from https://link.springer.com/chapter/10.1007/978-981-19-9638-2_17
- M. Crombie, P. G. (2024). *Early Intervention, Families, and Adolescents With Down Syndrome*. Retrieved from https://www.semanticscholar.org/paper/Early-Intervention,-Families,-and-Adolescents-With-Crombie-Gunn/78607e0b3db95fec2bf95f115f6405c11a4c0844
- Momaya, M. (2024). *onlymyhealth*. Retrieved from https://www.onlymyhealth.com/strengths-and-abilities-of-children-with-down-syndrome-1715596099
- Wan Fatimah Wan Ahmad, A. S. (2014, June). *researchgate*. Retrieved from https://www.researchgate.net/publication/269272801_Number_skills_mobile_application_f or_down_syndrome_children

Topic Assessment Form

6. Brief description of the nature of the solution including a conceptual diagram (250 words max)

Children with Down syndrome (DS) often face significant challenges in their education, primarily due to delays in speech, early detecting and cognitive development. The system proposed in this research project addresses these barriers by providing comprehensive solutions that enhance detection, speech and cognitive skills in DS children.

- 1. Detecting Down Syndrome Using Image Processing: Leveraging machine learning and image processing, we analyze facial features to detect Down Syndrome. Technologies include convolutional neural networks (CNNs) for feature extraction and classification. This requires high-quality, annotated images of children with and without Down Syndrome, covering a range of ages and ethnicities, will be crucial. These images can be sourced from public datasets like those available on Kaggle.
- 2. Enhancing Mathematical Skills Using Personalized Mathematical Quizzes: We utilize reinforcement learning algorithms to create personalized quizzes that adapt to the learning pace and style of everyone. Technologies involve Python libraries such as TensorFlow and Keras for building and training models. Data requirements include user performance data on various mathematical tasks and a diverse set of mathematical problems.
- 3. Speech and Language Processing for Enhancing Communication Skills: Natural Language Processing (NLP) and machine learning and image processing are applied to develop tools that aid speech, language and Detecting Motion and Analyzing Actions To enhance pronunciation training through motion detection and action analysis, development. Technologies include OpenCV An open-source computer vision library for real-time image processing for speech recognition and language understanding. Required data comprises speech recordings and language usage patterns of individuals with Down Syndrome.
- 4. In the proposed research to identify and enhance the talents of children with Down Syndrome, various technologies are employed to create an engaging learning environment. Artificial Intelligence (AI)is used for activity tracking and interest recognition to analyze engagement. JavaScript underpins the interactive functionalities, while React.js or Next.js frameworks are used to develop a responsive interface for multimedia activities. Databases store and update activity records, helping identify each child's interests and talents. This data-driven approach allows for tailored learning experiences, enabling parents and educators to nurture and develop the children's unique abilities.

Link of the diagram = https://bit.ly/4czMWtI

Topic Assessment Form

7. Brief description of specialized domain expertise, knowledge, and data requirements (300 words max)

In this project, we are collaborating with medical professionals, particularly a Dr. Kamalini Wanigasighe who specializes in Down syndrome. Her extensive knowledge and experience with children affected by Down syndrome have been instrumental in providing a comprehensive understanding of their unique characteristics and needs. Kamalini Wanigasighe, who has over 20 years of experience working with disabled children, including those with Down syndrome, brings invaluable expertise to our team. This expertise has guided our approach in identifying symptoms, understanding the developmental challenges these children face and recognizing their potential talents. Additionally, the insights from the doctor help in refining our data collection strategies and ensuring that our methods are both ethical and effective in addressing the needs of these children.

Data Requirements:- Our data collection will involve a combination of primary and secondary data sources. For primary data, we plan to conduct focus groups and collect information from a specialized school for students with disabilities. This will provide us with direct insights and detailed, real-world data on children with Down syndrome. On the secondary data front, we will utilize datasets from sources like Kaggle, which contain relevant information that can support our analysis. This combination of primary and secondary data will ensure a robust and comprehensive dataset that reflects a wide range of experiences and scenarios.

Knowledge:- The research areas involved in this project span several advanced domains, including image processing, natural language processing (NLP), and machine learning. Image processing techniques will be used to analyze facial features and identify distinguishing characteristics of children with Down syndrome. NLP will help in analyzing speech patterns to detect specific markers of Down syndrome, supporting early diagnosis and intervention. Machine learning models will be developed to identify patterns in the collected data, enabling us to tailor educational and developmental interventions that leverage the unique strengths of each child. This multidisciplinary approach will ensure that our project not only identifies children with Down syndrome but also helps in enhancing their learning and development.

Topic Assessment Form

8. Objectives and Novelty

Main Objective

employ advanced technologies such as image processing and machine learning to detect key challenges faced by children with Down syndrome (DS)

Member Name	Sub Objective	Tasks	Novelty
Kumarasinghe D.P	Detecting Down syndrome using image processing so that we can cater to their requirements early and provide necessary countermeasures to enhance their performance	from established repositories such as Kaggle. This dataset includes facial images of children diagnosed with	integration of advanced image processing techniques with machine learning for the detection of Down syndrome and identification of specific facial symptoms. Unlike traditional methods that focus solely on diagnosis, this system allows users to upload images of children, where the model not only determines the presence of

Topic Assessment Form

syndrome and those of typically developing children.

Alongside this, our novel approach incorporates image processing capabilities where

Alongside this, our novel approach incorporates image processing capabilities where users can upload images of children, and the model determines if the child has Down syndrome based on facial characteristics. This system not only identifies the presence of Down syndrome but also provides detailed feedback specific on symptoms present in the uploaded images. For instance, if a picture with a short neck indicative of Down syndrome is uploaded, the model will analyze and identify such symptoms. To achieve this, we will implement algorithms automatically detect and extract key facial features relevant to Down syndrome, such as eye shape, nose structure, ear size, mouth

		shape and additional physical attributes like neck length. This data will train our classification model, utilizing techniques like Support Vector Machines (SVM), Logistic Regression or simple neural networks for their straightforward implementation and interpretability. The model will then provide informative outputs upon image upload, aiding in diagnosis and support for individuals with Down syndrome.	
Jayasuriya S.H	Enhancing communication skills in children with Down Syndrome (DS) through the integration of speech and image processing technologies	Technologies: Natural Language Processing (NLP) for Speech Recognition, Image Processing for Motion Detection, Sentiment Analysis and Machine Learning (ML) for Difficulty Levels and No-SQL Database Store images along with correct pronunciations. To enhance communication skills in	To introduce novelty in pronunciation training for children with Down Syndrome (DS), advanced motion detection and action analysis will be implemented. This approach will utilize OpenCV, an open-source computer vision library for real-time image

Topic Assessment Form

children processing, and MediaPipe, with Down a Google framework for Syndrome (DS) through advanced technology, detecting facial landmarks, comprehensive hand movements, approach and involving multiple detailed estimation. The pose tasks will be employed. begins process by Initially, a set of images capturing video of the accompanied by their correct child's face and pronunciations will movements while they gathered and stored in a Nospeak These features will SQL database. This database then be compared with serves as the foundation for typical pronunciation provide interactive speech tasks. patterns to 1) In the first sub-task, Using feedback tailored and Natural Language Processing guidance, enhancing the (NLP) for Speech Recognition, child's pronunciation skills the child will be prompted to through precise and speak out the image correctly, interactive motion analysis and their response will be assessed for accuracy, pronunciation, and punctuation. Based on their performance, motivating messages or emojis will be displayed encourage to engagement. 2)The second sub-task requires the child to spell out the word, with similar

		-	
		interactive feedback provided	
		for their spelling accuracy.	
		NLP Assistance will be	
		available to help correct	
		spelling mistakes, fostering a	
		supportive learning	
		environment. 3)additionally,	
		Image Processing for Motion	
		Detection, emotion-based	
		engagement will be	
		integrated using image	
		processing techniques to	
		detect the child's mood.	
		Depending on the detected	
		mood, funny tasks, messages,	
		or music will be displayed to	
		provide emotional	
		encouragement.	
		4 To ensure continuous	
		learning and adaptation, a	
		quiz will be conducted after	
		each task to review the child's	
		knowledge. Machine learning	
		algorithms will then adjust	
		the difficulty level based on	
		the child's previous answers.	
Semini B.V.S	Detecting mathematical skills	Data Collection and Analysis:	Personalization Using
	of children with Down		Reinforcement Learning:
	Syndrome (DS) by developing		

Topic Assessment Form

Y		
a personalized quiz system that adapts to their learning	Gather user performance data on various mathematical	The use of reinforcement learning algorithms to
pace and style using	tasks. Compile a diverse set of	create quizzes that adapt
reinforcement learning	mathematical problems	to the individual learning
algorithms	covering addition,	pace and style is a novel
	subtraction, multiplication,	approach in educational
	and division.	technology for children with Down Syndrome.
	Model Development:	with Down Syndrome.
	Woder Development.	NLP for Question
	Use Python libraries such as	Generation:
	TensorFlow and Keras to build	Utilizing NLP techniques to
	and train reinforcement	generate or adapt
	learning models. Implement	mathematical problems,
	algorithms that adapt quizzes	ensuring a diverse and
	based on the user's learning	appropriate set of
	pace and performance.	questions for each
	Initial Quarties Deal Creation	difficulty level.
	Initial Question Pool Creation:	Integration of Animations:
	Create three initial question	Using animation tools to
	pools categorized by	create educational content
	difficulty: Beginner,	that helps explain concepts
	Intermediate, and Advanced.	and provides feedback in
	Ensure each pool covers	an engaging and
	fundamental arithmetic	understandable manner.
	concepts such as addition,	
	subtraction, multiplication,	

and division.

Initial Question Selection:
Start with a question from the
Beginner pool (e.g., simple
addition like 1+1). Ensure questions are basic and
understandable for initial
assessment.
Adaptive Question Logic:
Present slightly harder
questions if the answer is
correct. Provide another
question of similar or slightly
easier difficulty if the answer is incorrect. Implement a
simple rule-based system to
determine when to move to
the next difficulty level (e.g., if
correct answers > 5).
Quiz Creation at Each Level:
Quiz circution de Eden Ecvei.
After completing a set
number of questions (e.g., 10
questions) at a difficulty level,
present a quiz. Create quizzes

from random or slightly adjusted questions from the same pool. Use NLP techniques to generate or adapt questions based on existing problem sets.	
Scoring and Feedback:	
Calculate the score based on the number of correct answers out of the total questions in the quiz. Provide feedback and animation- based explanations for incorrect answers. Move to the next difficulty level if the score is above a certain threshold (e.g., 70%)	
Educational Animations:	
Use tools like Animaker or Powtoon to create animations that explain concepts and provide step-by-step solutions for incorrect answers.	

		process to make explanations	
		engaging and	
		comprehensible.	
Methsahani K.K.S.P	Identify the interests and	Down syndrome children are	Using this system, we can
	talents of a child with Down	different than the normal	identify the interest and
	syndrome and sharpen	children. Because normal	talented area of a down
	up their talents.	children are talented in	syndrome child. Through
		multiple areas. Normal	the selection of their
		children can be talented with	choice, the system will
		multiple areas like learning	identify the interested area
		dancing, singing and many	of the child and helps to
		more but down syndrome	sharpen up their talent
		children cannot do everything	through quizzes and
		in different areas. They are	activities. Quiz generation
		mostly talented for one area.	kind of stuff is generated
		In this case parents should	using AI approaches. Also,
		identify their talented and	every time new quizzes and
		interested area. After that,	new activates are getting
		parents need to improve their	generate. These stuff we
		talents. Through this research	can mention as novel
		we try to identify the	of this component.
		interested area of down	·
		syndrome children. If we	
		identify the talented are of	
		the down syndrome children,	
		we can Sharpe up their	
		talents. As an example, to do	
		that we can use couple of	

dancing video clips, play	
instrument activities and	
random quiz selection kind of	
stuff using AI technologies	
java script and next.js or	
react.js. According to the	
number of times those	
children attend the activities	
the record will be updated to	
the database. Through that	
we can identify their most	
interesting and talented	
areas. once we identify their	
interested areas, we can help	
to Sharpen up down	
syndrome children's talents.	

IT4010 - Research Project - 2024
Topic Assessment Form

9. Supervisor checklist

Co-Supervisor

External Supervisor

waste experiance

a)		en resear	ch topic possess a	comprehensive scop	e suitable for a final-year
	roject?	0			
b)	Does the prop		c exhibit novelty?		
c)	Do you believe		re the capability to	successfully execute	e the proposed project?
d)	Do the propos		jectives reflect the	students' areas of	specialization?
e)	Supervisor's E	valuation	and Recommendat	tion for the Research	n topic:
	Reon	mar.	ded.		
). Super	visor details				
		Title	First Name	Last Name	Signature
Supe	ervisor	p.J	C- 4-	E luin le	Ab.
		Lust.	Samanin	Indlijagoda	No.

in disabled chold clinical exposer 20 yrs.

Junius

Dr. W.m. K

Summary of external supervisor's (if any) experience and expertise

Dr

IT4010 – Research Project - 2024 Topic Assessment Form

This part is to be filled by the Topic Screening Panel members.

Tania Assassant Assastad	
Topic Assessment Accepted	
Topic Assessment Accepted with minor changes (should be	
followed up by the supervisor)*	
Topic Assessment to be Resubmitted with major changes*	
Topic Assessment Rejected. Topic must be changed	
* Detailed comments given below	
Comments	
The Review Panel Details	
	Signaturo
The Review Panel Details Member's Name	Signature
	Signature

Topic Assessment Form

*Important:

- 1. According to the comments given by the panel, make the necessary modifications and get the approval by the **Supervisor** or the **Same Panel**.
- 2. If the project topic is rejected, identify a new topic, and follow the same procedure until the topic is approved by the assessment panel.