"Life has got all those twists and turns. You've got to hold on tight and off you go."

— Nicole Kidman

Network models

LINEAR PROGRAMMING AND OPTIMIZATION

Network Models

Network Models – models that describe the pattern of flow in a connected system

Nodes – system elements that are points in time and space

Arcs (edges) – paths of flow from one element/node to another

Example of a Network

Example of a Network

Example of a Network

Types of Models

- There are 2 common types of network models:
 - Transportation Model
- goods are shipped from suppliers to customers)

(Supply chain model optimizes how

2. Assignment Model

(special case of transportation model)

Transportation Model

Transportation Model Example

Bonner Electronics

- 3 Manufacturing Plants (different capacities)
- 4 Distribution Warehouses (different demands)
- Different costs between each shipping path combination
- (No fixed costs)
- Want to minimize cost

Transportation Model Example

Plant	Atlanta Warehouse	Boston Warehouse	Chicago Warehouse	Denver Warehouse	Capacity
Minneapolis	\$0.60	\$0.56	\$0.22	\$0.40	9,000
Pittsburgh	\$0.36	\$0.30	\$0.28	\$0.58	12,000
Tuscon	\$0.65	\$0.68	\$0.55	\$0.42	13,000
Demand	7,500	8,500	9,500	8,000	

Transportation Model Example

Optimization set-up

12 Decision variables: $x_{i,j}$ for i = 1...3 (plants) and j = 1...4 (warehouses)

Objective function: Minimize cost = $\sum_{i} \sum_{j} C_{i,j} x_{i,j}$

Constraints (12 constraints):

Capacity constraints: For every plant (i..3 of these): $\sum_{j} x_{i,j} \leq Capacity_i$

<u>Demand constraints:</u> For every warehouse (j...there are 4 of these): $\sum_i x_{i,j} \ge Demand_j$

```
ShipCost = [[0.60, 0.56, 0.22, 0.40],
        [0.36, 0.30, 0.28, 0.58],
         [0.65, 0.68, 0.55, 0.42]
Capacity = [9000, 12000, 13000]
Demand = [7500, 8500, 9500, 8000]
plants = len(Capacity) #should be 3
warehouses = len(Demand) #should be 4
m=Model()
x = {} #Amount to ship (continuous)
for i in range(plants):
  for j in range(warehouses):
     x[(i,j)] = m.addVar(vtype=GRB.CONTINUOUS, lb=0, name='x%d,%d' % (i,j))
m.setObjective(quicksum(quicksum(ShipCost[i][j]*x[(i,j)]
          for i in range(plants)) for j in range(warehouses)), GRB.MINIMIZE)
for i in range(plants):
  m.addConstr(quicksum(x[(i,j)] for j in range(warehouses)) <= Capacity[i])
for j in range(warehouses):
  m.addConstr(quicksum(x[(i,j)] for i in range(plants)) >= Demand[j])
m.optimize()
for v in m.getVars():
  print('%s: %g' % (v.varName, v.x))
print('Obj: %g' % m.objVal)
m.printAttr('Pi')
m.printAttr('rc')
```

Output

Solved in 8 iterations and 0.02				
seconds				
Optimal objective	1.202500000e+04			
x0,0: 0				
x0,1: 0				
x0,2: 9000				
x0,3: 0				
x1,0: 3500				
x1,1: 8500				
x1,2: 0				
x1,3: 0				
x2,0: 4000				
x2,1: 0				
x2,2: 500				
x2,3: 8000				
Obj: 12025				

Variable	rc
x0,0	0.28
x0,1	0.3
x0,3	0.31
x1,2	0.02
x1,3	0.45
x2,1	0.09

Assignment Model

Assignment Model Example

Buchanan Swim Club

- Need to assign 4 swimmers to the relay (4 strokes)
- Have times for each person's best of each stroke
- Want to minimize relay time

Assignment Model Example

Person	Butterfly Stroke (sec.)	Breast Stroke (sec.)	Back Stroke (sec.)	Free Style (sec.)
Todd	38	75	44	27
Betsy	34	76	43	25
Lee	41	71	41	26
Carly	33	80	45	30

Optimization set-up

There are 16 decision variables (all binary): $x_{i,j}$ (i is for person and j is for event)

Objective function: Minimize time: $\sum_{i} \sum_{j} x_{i,j} T_{i,j}$

Constraints:

Person Constraints: For every i: $\sum_{i} x_{i,j} = 1$

Event Constraints: For every j: $\sum_{i} x_{i,j} = 1$

Gurobi

```
m=Model()
Time = [[38, 75, 44, 27],
     [34, 76, 43, 25],
     [41, 71, 41, 26],
     [33, 80, 45, 30]]
for i in range(4):
  for j in range(4):
     x[(i,j)]=m.addVar(vtype=GRB.BINARY, name='swim%d,%d' % (i,j))
m.setObjective(quicksum(quicksum(Time[i][j]*x[(i,j)] for i in range(4)) for j in
range(4)), GRB.MINIMIZE)
for i in range(4):
  m.addConstr(quicksum(x[(i,j)] for j in range(4)) ==1)
for j in range(4):
  m.addConstr(quicksum(x[(i,j)] for i in range(4)) ==1)
m.optimize()
for v in m.getVars():
  print('%s: %g' % (v.varName, v.x))
print('Obj: %g' % m.objVal)
```

Output

Optimal solution found (tolerance 1.00e-04)
Best objective 1.73000000000e+02, best bound 1.730000000000e+02, gap 0.0000% swim0,0: -0 swim0,1: -0

swim0,1: -0

swim0,2: 1

swim1,0: 0

swim1,1: -0

swim1,2: -0

swim1,3: 1

swim2,0: -0

swim2,1: 1

swim2,2: 0

swim2,3: -0

swim3,0: 1

swim3,1: -0

swim3,2: 0

swim3,3: -0

Obj: 173

Transshipment Model

Transshipment Model

- The transshipment model is a more complex version of the transportation model.
- Transshipment models have more than one stage in the system.

Transportation Cost

TRANSPORTATION COST

	Dist1	Dist2	Сар
Factory1	1.28	1.36	2500
Factory2	1.33	1.38	2500
Factory3	1.68	1.55	2500

TRANSPORTATION COST

	W1	W2	W3	W4	W5
Dist1	0.6	0.42	0.32	0.44	0.68
Dist2	0.57	0.3	0.4	0.38	0.72
Dem:	1200	1300	1400	1500	1600

Optimization set-up

There are 14 decision variables (6 deciding how much to ship from each factory to distribution center...and 8 from each distribution center to warehouse): $\mathsf{FtoD}_{i,j}$ and $\mathsf{DtoW}_{j,k}$

```
Objective function: Minimize Cost: \sum_{i} \sum_{j} C1_{i,j} FtoD_{i,j} + \sum_{j} \sum_{k} C2_{j,k} DtoW_{j,k}
```

Constraints:

Capacity: For every i (Factory): $\sum_{j} FtoD_{i,j} \leq Capacity_i$

Demand: For every k (Warehouse): $\sum_{j} DtoW_{j,k} \ge Demand_k$

Inflow=Outflow: For every j (Distribution Center): $\sum_i FtoD_{i,j} = \sum_k DtoW_{j,k}$

```
m=Model()
C1 = [[1.28, 1.36],
       [1.33, 1.38],
       [1.68, 1.55]]
C2 = [[0.60, 0.42, 0.32, 0.44, 0.68],
       [0.57, 0.30, 0.4, 0.38, 0.72]]
Demand = [1200, 1300, 1400, 1500, 1600]
FtoD={}
DtoW={}
for i in range(3):
  for j in range(2):
     FtoD[(i,j)] = m.addVar(vtype=GRB.CONTINUOUS, lb=0, name='F2D%d,%d' % (i,j))
for j in range(2):
  for k in range(5):
     DtoW[(i,i)]=m.addVar(vtype=GRB.CONTINUOUS, lb=0, name='D2W%d,%d' % (i,i))
m.setObjective(quicksum(quicksum(C1[i][i]*FtoD[(i,j)] for i in range(3)) for j in range(2)) +
         quicksum(quicksum(C2[j][k]*DtoW[(j,k)] for j in range(2)) for k in range(5)), GRB.MINIMIZE)
for i in range(3):
  m.addConstr(quicksum(FtoD[(i,j)] for j in range(2)) \le 2500)
for k in range(5):
  m.addConstr(quicksum(DtoW[(j,k)] for j in range(2)) >= Demand[k])
for j in range(2):
  m.addConstr(quicksum(DtoW[(j,k)] for k in range(5)) == quicksum(FtoD[(i,j)] for i in range(3)))
m.optimize()
for v in m.getVars():
  print('%s: %g' % (v.varName, v.x))
print('Obj: %g' % m.objVal)
```

Output

Solved in 11 iterations and 0.02 seconds

Optimal objective 1.288100000e+04

F2D0,0: 2500

F2D0,1: 0

F2D1,0: 1700

F2D1,1: 800

F2D2,0: 0

F2D2,1: 2000

D2W0,0: 1200

D2W0,1: 0

D2W0,2: 1400

D2W0,3: 0

D2W0,4: 1600

D2W1,0: 0

D2W1,1: 1300

D2W1,2: 0

D2W1,3: 1500

D2W1,4: 0

Obj: 12881

