Family list

4 application(s) for: JP7312290 (A)

Organic thin film electroluminescent device.

Applicant: NIPPON ELECTRIC CO [JP] Inventor: UTSUGI KOJI [JP]

IPC: H05B33/26; C09K11/06; G09F9/30; (+10) EC: H01L51/52B4

Publication info: DE69507196 (T2) — 1999-08-12

Organic thin film electroluminescent device.

Inventor: UTSUGI KOJI C O NEC CORPORATIO [JP] Applicant: NIPPON ELECTRIC CO [JP]

IPC: H05B33/26; C09K11/06; G09F9/30; (+10) ec: H01L51/52B4

Publication info: EP0684753 (A1) — 1995-11-29 EP0684753 (B1) — 1999-01-13

ORGANIC THIN FILM EL ELEMENT

Applicant: NIPPON ELECTRIC CO Inventor: UTSUKI KOJI

EC: H01L51/52B4 IPC: H05B33/26; C09K11/06; G09F9/30; (+11)

Publication info: JP7312290 (A) - 1995-11-28 JP2701738 (B2) - 1998-01-21

Organic thin film electroluminescent device

Applicant: NIPPON ELECTRIC CO [JP] Inventor: UTSUGI KOJI [JP]

IPC: H05B33/26; C09K11/06; G09F9/30; (+9) EC: H01L51/52B4

Publication info: US5747930 (A) — 1998-05-05

Data supplied from the esp@cenet database — Worldwide

Also published as:

JP2701738 (B2)

EP0684753 (A1)

EP0684753 (B1)

US5747930 (A)

DE69507196 (T2)

ORGANIC THIN FILM EL ELEMENT

Publication number: JP7312290 (A)

Publication date:

1995-11-28

Inventor(s):

UTSUKI KOJI

Applicant(s):

NIPPON ELECTRIC CO

Classification:

- international:

H05B33/26; C09K11/06; G09F9/30; H01L51/50; H01L51/52; H05B33/12;

H05B33/26; C09K11/06; G09F9/30; H01L51/50; H05B33/12; (IPC1-

7): H05B33/26; C09K11/06; G09F9/30

- European:

H01L51/52B4

Application number: JP19940101468 19940517 **Priority number(s):** JP19940101468 19940517

Abstract of JP 7312290 (A)

PURPOSE:To provide an organic thin film EL element which effectively exhibits low power property, and is improved in driving stability and physical stability in manufacturing process. CONSTITUTION:As a negative electrode 14, an alloy in which 0.01-5 mole % of scandium and 0.01-0.3 mole % of alkali metal are contained in a metal having a work function of 4eV or more is used. The negative electrode 14 preferably has a film thickness of about 1-30nm. An aluminium alloy 50nm or more in film thickness which contains 0.1-5 mole % of silicon, copper, scandium, or manganese may be used on the negative electrode 14 as a negative electrode protecting layer 15.

Data supplied from the esp@cenet database — Worldwide

(19) 日本国特許庁 (JP) (12) 公開特許公報(A) (11)特許出願公開番号

特開平7-312290

(43)公開日 平成7年(1995)11月28日

(51)	Int.	C1	6

識別記号 庁内整理番号

 \mathbf{F} I

技術表示箇所

H 0 5 B 33/26

CO9K 11/06

Z 9280-4H

G09F 9/30

365 C 7610-5G

審査請求 有 請求項の数3 OL (全 11 頁)

(21)出願番号

(22)出顧日

特顯平6-101468

平成6年(1994)5月17日

(71)出顧人 000004237

日本電気株式会社

東京都港区芝五丁目7番1号

(72)発明者 宇津木 功二

東京都港区芝五丁目7番1号 日本電気株

式会社内

(74)代理人 弁理士 京本 直樹 (外2名)

(54) 【発明の名称】 有機薄膜EL素子

(57)【要約】

【目的】 低電力性を有効に発揮し、かつ駆動安定性や 製造プロセスにおける物理的安定性を向上させた有機薄 膜EL素子を提供する。

【構成】 陰極14として、仕事関数が4eV以上の金 属に0.01~5モル%のスカンジウム及び0.01~ 0. 3モル%のアルカリ金属を含有させた合金を用い る。陰極14の膜厚としては1~30m程度が好適であ る。又、陰極14上に陰極保護層15としてシリコン、 銅、スカンジウム、マンガン等が 0.1~5モル%含ま れる膜厚50nm以上のアルミニウム合金を用いることも できる。

【特許請求の範囲】

【請求項1】陽極と陰極の間に少なくとも1以上の発光 層を有する有機薄膜層を挟持してなる有機薄膜EL素子 に於いて、前記陰極は0.01~5モル%のスカンジウ ムと0.01~0.3モル%のアルカリ金属を含有した 金属よりなることを特徴とする有機薄膜EL素子。

【請求項2】陰極が銀、アルミニウム、インジウムより 選ばれた少なくとも1以上の金属よりなることを特徴と する請求項1記載の有機薄膜EL素子。

【請求項3】膜厚1~30mの陰極上に膜厚50~300mの陰極保護層を有し、かつ前記陰極保護層はスカンジウム、シリコン、マンガン、銅より選ばれた少なくとも1つ以上を0.1~5モル%含有するアルミニウム合金よりなることを特徴とする請求項1記載の有機薄膜EL素子。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は有機薄膜EL素子やマトリクス状に発光画素が配置されてなる有機薄膜ELデバイスの陰極に関する。

[0002]

【従来の技術】有機物質を原料とした発光素子は、タング(Tang)とバンスリケ(VanSlyke)らの新しい構成の有機薄膜EL素子の報告(アプライド・フィジックス・レターズ(Applied Physics Letters)、51巻、913ページ、1987年)以来、その豊富な材料数と分子レベルの合成技術で、安価な大面積カラー表示デバイスを実現するものとして注目され、その発光特性が検討されている。

【0003】有機薄膜EL素子は、陽極から注入された 正孔と陰極から注入された電子が発光層内で再結合し、 励起状態を経て発光する現象を利用するもである。従っ て、有機薄膜層は発光層の発光材料の性質によって種々 の素子構成が検討されているが基本的には強い蛍光を発 する有機発光層を陽極と陰極で挟むことで素子が完成で きる。更に、発光の高効率化や安定駆動のためには、正 孔注入層、正孔輸送層、電子注入層、および電子輸送層 を設けたり、有機発光層へゲスト分子をドービングする ことが有効とされている。また、有機発光層への電子及 び正孔の注入を効率良く行う目的で電極、特に陰極材料 の検討も進んでいる。

【0004】発光層への電荷注入を容易にするためにできるだけ低い仕事関数をもつ金属を陰極として使用することがよく、その点でタングらの報告に示されたマグネシウム合金が効果的であった。有機薄膜との密着の小さなマグネシウム蒸着の困難性も、微量の銀を共蒸着法で添加することでマグネシウム単独の場合より電極が均一に形成できるようになる。添加する銀は少なすぎると効果がなく、また多すぎると仕事関数の増加をもたらし好ましくない。通常は10モル%程度の銀を添加してい

る。更に、アルミニウムにリチウムを含有させた合金陰極は、マグネシウム一銀合金よりも電荷注入特性に優れ、発光量子効率、輝度においても優れている(特開平5-121172号公報)。発光層にキナクリドン誘導体をドーピングし、アルミニウムーリチウム合金を陰極として使用した系で、1平方メートル当たり10万カンデラ以上の輝度と1ワット当たり最高で10ルーメン以上の視感度効率を達成している(第54回応用物理学学術講演会講演予稿集、1127頁、1993年)。これは無機のELやプラズマディスプレイ等他の発光デバイスの性質を越えるものである。(但し、上記の性能は、直流駆動した場合である)。

【0005】この様な高性能な性質を損なわず、有機薄膜EL素子を利用した高精細なマトリクスディスプレイとその駆動方法の例が報告されている(特願平05-253866号公報)。前記報告によると新規の電流制御用薄膜トランジスタ(以下TFTと記す)を含む構成の駆動回路が有機薄膜EL素子に適用された。単純マトリクス型の有機ELデバイスで課題とされた駆動パルスの高デューティ化に伴う輝度低下が抑えられた。すなわち、画素が増加しても輝度低下を伴わず有機薄膜EL素子を駆動できることが示された。

【0006】このように、有機薄膜EL素子を高輝度、 高効率で発光表示させるために、有機薄膜EL素子の研 究開発は材料を含んだ素子の改良から駆動方法の改良に 到るまで幅広く行われている。

[0007]

【発明が解決しようとする課題】前述に示した有機薄膜 E L 素子やマトリクス型の有機薄膜 E L デバイスは他の 発光デバイスでは達成できなかった高輝度・高効率発光 を示す。しかし、素子を定電圧駆動すると電流が流れに くくなり発光効率が経時に減少する。また、素子を定電 流駆動すると、電圧上昇と効率低下を招く。これらの現 象は、有機薄膜と陰極との界面の密着性が経時に低下し 接触界面の剥離が生じやすくなることや、酸化や電気化 学反応によって前記界面のエネルギー障壁が大きくなる ために生じると考えられている。界面の密着性の低下や エネルギー障壁が大きくなる原因は、陰極を構成する材 料に依存するところが大きい。

【0008】有機薄膜EL素子の陰極の材料に使用する 金属はマグネシウムなど仕事関数の低い金属でなければ 充分な発光特性が得られない。しかし、このような仕事 関数が低い金属と有機物の密着性は悪い。陰極の密着性 はセロテープによるピーリング試験で容易に有機薄膜層 やTFTから剥離するほど弱いものであった。このよう な状況では、信頼性ある素子が得られにくい。

【0009】陰極は有機薄膜EL素子の界面の密着性や 界面のエネルギー障壁の制御において重要であり、更 に、TFT駆動のマトリクス型有機薄膜ELデバイスの 実現において重要である。図3に示すようにTFT駆動 のマトリクス型有機薄膜ELデバイスにおいて陰極はTFTの上部に形成される。このため、従来報告されている陰極、例えばマグネシウム一銀合金、アルミニウムーリチウム合金など軽量でもろい合金をTFT上に成長する場合、TFTの凹凸のために陰極の段差切れが生じた。その結果、例えばマグネシウム一銀合金の陰極では画素全体の20%に、アルミニウムーリチウム合金では15%に非発光部すなわち欠陥が生じた。また、陰極をパターニングする際に、上記金属材料では陰極表面にマグネシウムやリチウムなどの柔らかく、また腐食され易い金属が存在しているのでエッチングによって表面が腐食されたり、微小な傷や凹凸を形成した。これらは、TFT駆動のマトリクス型有機薄膜ELデバイスの発光効率を減少させたり、劣化の加速と不均一な発光を招いた

【0010】従って、キャリヤー注入特性の安定性やプロセス上の物理的安定性の高い陰極および陰極保護層を設けることが、有機薄膜EL素子やTFT駆動のマトリクス型有機薄膜ELデバイスの実用化の上で極めて重要である。しかし、従来の陰極と陰極保護層を使用する限りこれらの課題解決が困難であった。

【0011】本発明の目的は、有機薄膜EL素子やマトリクス型有機ELデバイスにおいて低電力性を有効に発揮しながら駆動安定性の向上や製造プロセスにおける物理的安定性を向上させるために、新規の陰極と陰極保護層を備えた有機薄膜EL素子を提供することにある。

[0012]

【課題を解決するための手段】前記の課題を解決するために、低仕事関数であり、しかも有機薄膜との密着性に優れ、合金の安定性や強度を増すアルカリ金属含有の合金を探索した結果、銀、アルミニウム、インジウムなどの金属にスカンジウムを含有させることで、物理的安定性にも優れた合金が作成できることを見いだし本発明に到った。

【0013】すなわち本発明が提供する手段は、陽極と陰極の間に少なくとも1以上の発光層を有する有機薄膜を挟持してなる有機薄膜EL素子に於いて、前記陰極は0.01~5モル%のスカンジウムと0.01~0.3モル%のアルカリ金属を含有した金属よりなることを特徴とする有機薄膜EL素子である。更に好ましくは、前記陰極が銀、アルミニウム、インジウムより選ばれた少なくとも1以上の金属よりなることが望ましい。更に好ましくは、膜厚1~30mの陰極上に膜厚50~300mの陰極保護層を有し、かつ前記陰極保護層は50~3000mの厚さで且つ、スカンジウム、シリコン、マンガン、銅より選ばれた少なくとも1つ以上を0.1~5モル%含有するアルミニウム合金よりなることが望ましい。

【0014】陰極に混入させるスカンジウムは0.01 から5モル%程度が適当である。スカンジウムが0.0 1モル%未満である場合、素子特性の本質的な改善には 到らない。また、スカンジウムの量が少ないと有機薄膜 層やTFTとの密着性が弱くなり、剥離が問題となる。 さらには、陰極の仕事関数が下がらないために電荷注入 に十分な威力を発揮しない。十分に仕事関数を下げ、電 荷注入特性を改善すべくアルカリ金属の濃度を増すこと は、素子の駆動による劣化の加速と製造プロセスにおけ る物理的安定性の減少を招く。一方、スカンジウムが5 モル%を越えると完全固溶とならず均一な組成とならな い。そのため、陰極に混入させるスカンジウムは0.0 1から5モル%の範囲に混入させる必要がある。

【0015】前記陰極に含まれるアルカリ金属は0.0 1から0.3モル%程度が適当であった。アルカリ金属は、陰極の仕事関数を下げることと有機薄膜層との密着性の向上の役割をなす。石田らの報告によると、アルミニウムなどの金属にアルカリ金属が添加される場合、理論的には25モル%のアルカリ金属が添加される場合が、仕事関数を下げるのに最も有効である。例えば、アルミニウムにナトリウムを25モル%添加した合金の仕事関数は2.2 eVまで下げることができる(フィジカルレビューB(Physical Review B)、38巻、5752頁、1988年)。

【0016】有機薄膜EL素子の陰極にアルカリ金属を多量に添加すれば、仕事関数を下げるのに有効であるが、アルカリ金属は腐食速度が大きく素子の劣化を加速させる結果を招く。また、有機薄膜EL素子のように高電界が有機薄膜に印加される場合、陰極のアルカリ金属が有機薄膜層にマイグレーションすると考えられている。その結果、陰極近傍での有機薄膜層の発光効率を減少させる結果を招く。これは、アルカリ金属の添加量が多いほど顕著に観測される。従って、有機薄膜層に接する陰極に含まれるアルカリ金属は、適切な量の範囲に抑える必要がある。

【0017】本発明者が鋭意探索したところ、スカンジウム含有の金属にアルカリ金属を添加する場合、アルカリ金属が0.01から0.3モル%の微量でも仕事関数が下げられることが分かった。スカンジウム含有の金属においては添加するアルカリ金属は0.3モル%で仕事関数が極小値に達する。アルカリ金属の添加量が少なくても十分仕事関数を下げることができるのは、スカンジウムによって金属内部の電子状態が変化し、仕事関数を下げるのに有効に作用したためであると考えられる。アルカリ金属が0.01モル%未満の場合には、仕事関数を本質的に変動させるものではなかった。

【0018】陸極に含まれるスカンジウム及びアルカリ 金属はそれ自体不安定なものであるから、他の安定な金属に少量含ませることが理想的であり、酸化や水分による影響を考慮すると4eV以上の金属にスカンジウムとアルカリ金属を含ませることが望ましい。4eV以上の金属としては、例えばミカエルソン(Michaels

on)の報文(IBM、ジャーナル・オブ・リサーチ・ディベロップメント(Journal of Research Development)、22巻、1号、72頁、1978年)から選択できる。スカンジウムとの合金形成の容易性や成膜の安定性の観点から、本発明の陰極の金属として銀、アルミニウム、インジウムを少なくとも1つ以上含むものでなくてはならない。

【0019】本発明の陰極上に陰極保護層を設ける場合には、陰極は、1nm以上30nm以下の厚さが好ましい。前記陰極が1nm以下の場合には、有機薄膜層を前記陰極成分で完全に覆うことが困難であるからである。有機薄膜層を前記陰極成分で完全に覆うには30nmで十分である。不必要に陰極を厚くすることは素子全体の膜厚を厚くすることになり好ましくない。

【0020】陰極上に形成する陰極保護層は安価で耐食 性や加工性に優れたアルミニウム合金が好ましい。アル ミニウムに添加する添加物質としては合金形成の容易性 や成膜の安定性の観点からスカンジウム、シリコン、マ ンガン、銅が特に好ましい。有機薄膜EL素子やTFT 駆動のマトリクス型有機薄膜ELデバイスにおいて、単 独のアルミニウムは物理的強度が十分ではなく、素子駆 動時に熱膨張による局部的な凹凸や亀裂を生じ段差切れ の原因になった。一方、前記添加物質を添加するこで、 熱膨張を抑えることができ、特に輝度が大きい場合、す なわち発光による発熱が大きい場合、局部的な凹凸や亀 裂が格段に減少する。前記添加物質は前記保護層を形成 する合金の0.1~5モル%であると明瞭な効果が得ら れる。0、1モル%未満ではアルミニウム単独のものと 比べ熱膨張係数をはじめ諸物性に影響を与えないためで ある。一方、5モル%を越える場合には、アルミニウム と添加物質の間で層分離が生じ易くなる。特に、シリコ ンを5モル%を越えて添加したアルミニウム合金では層 分離が著しく、合金表面の約50%に粒界を生じ、保護 層のみならず陰極層や有機薄膜層の膜構造の乱れを招い た。陰極保護層は、陰極への酸素や水分の影響を防ぐ目 的で50~3000mが望ましい。

【0021】上記陰極や陰極保護層は抵抗加熱式の真空蒸着法で形成してもよいし、密着性を向上させる目的で、例えば特開平4-019993号公報に示すように蒸着物質を不活性ガスイオンでスパッタする方法を用いてもよい。前記スパッタによる陰極及び陰極保護層の成膜方法は数eV以上の運動エネルギーをもつイオンを成膜に用いているために表面マイグレーションが大きく、有機薄膜層やTFTとの密着性に優れた成膜が可能であることを特徴としている。成膜条件を適切に選ぶことによって有機薄膜層への物理的あるいは化学的ダメージを少なくし、かつ従来より密着性が格段に向上した陰極ととなくし、かつ従来より密着性が格段に向上した陰極と陰極保護層を形成することができるようになる。蒸気圧が大きく異なる金属の混合物をターゲットと陰極としてはターゲットと陰極もしくはターゲットと陰極保護層と

の組成のずれは少ない。大きな基板を用いても均一に電 極が形成できるため、実用的である。

【0022】尚、素子を酸素や湿気から守る目的で、金 属酸化物、金属硫化物、金属沸化物等から形成される封 止層を設けることも有効である。

[0023]

【実施例】以下、本発明の実施例について詳細に説明す ス

【0024】 (実施例1) 図1を用いて本発明の実施例 1について説明する。ガラス基板上に I T O (インジウ ム錫酸化物)をスパッタリングによってシート抵抗が1 5Ω/口になるように製膜し、陽極とした。その上に正 孔注入層として、昇華精製した無金属フタロシアニンを 抵抗加熱式の真空蒸着によって10mm形成した。次にポ リ (メチルフェニルシリレン) 約60重量%にN, N, ェニルを約40重量%混合したポリシリレンからなる有 機正孔輸送層3を46mm、トルエン溶媒を使用したディ ップコーティング法で形成した。充分乾燥させた後、分 子線蒸着法によって6×10゚゚゚Torr真空下、有機 発光層としてN-(2, 4-キシリル)-4-アミノナ フタルイミドと3,9-ペリレンジカルボン酸ジフェニ ルエステルとを各々別の蒸着源からの共蒸着法によって 3, 9ーペリレンジカルボン酸ジフェニルエステルが発 光層の1、4モル%含まれるように70nm形成した。

【0025】次に陰極としてスカンジウムが1モル%含まれるアルミニウム合金をアルゴンガス中でRFスパッタ法で蒸発し、リチウムを抵抗加熱源から蒸発させる方法でリチウムが陰極の0.3モル%を占めるように20nm形成した。更に、陰極の保護層としてスカンジウムが1モル%含まれるアルミニウム合金をアルゴンガス中のRFスパッタ法により300nm形成した。尚、本実施例1に用いた陰極の仕事関数を光電子放出法で調べた結果、約3.1 e Vであった。

【0026】この素子の発光特性を乾燥空気中で測定し た。図5に示すように、本実施例における電流密度一電 圧特性は、比較例1と比べて同じ電流密度において電圧 が小さい。これは、本発明の陰極を用いたことで電荷の 注入効率が向上したことを示唆するものである。図7に 示すように、本実施例における輝度ー電圧特性は、比較 例1と比べて同じ輝度において電圧が小さい。印加電圧 10Vの直流電圧で6300cd/m゚の明るい黄色の 発光が得られた。また、2mA/cm²の一定電流密度で 10時間エージングした後、4mA/cm の一定電流密 度で連続して発光させた(このときの電圧は6.64V である)ところ、500時間経過しても面発光の状態を 持続し、電圧は7.87Vに上昇し、発光輝度は105 cd/m から64cd/m に減少した。これは、比 較例1と比べ本発明の有機薄膜EL素子の陰極と陰極保 護層の効果による駆動安定性の向上を示唆するものであ る。

【0027】(実施例2)陰極としてスカンジウムが1 モル%含まれるアルミニウム合金をアルゴンガス中でR Fスパッタ法で蒸発し、ナトリウムとインジウムからなる合金を抵抗加熱源からナトリウムが蒸発するよう制御してナトリウムが陰極の0.1モル%を占めるように20m形成した。更に、陰極の保護層としてシリコンが1モル%含まれるアルミニウム合金をアルゴンガス中のR Fスパッタ法により450m形成した以外、実施例1と間様にして素子を作成した。尚、本実施例2に用いた陰極の仕事関数を光電子放出法で調べた結果、約3.0 e Vであった。

【0028】この素子の発光特性を乾燥空気中で測定し た。図5に示すように、本実施例における電流密度一電 圧特性は、比較例1と比べて同じ電流密度において電圧 が小さい。これは、本発明の陰極を用いたことで電荷の 注入効率が向上したことを示唆するものである。図7に 示すように、本実施例における輝度-電圧特性は、比較 例1と比べて同じ輝度において電圧が小さい。印加電圧 10Vの直流電圧で5100cd/m゚の明るい黄色の 発光が得られた。また、2mA/cm^{*}の一定電流密度で 10時間エージングした後、4mA/cmの一定電流密 度で連続して発光させた(このときの電圧は6.93V である)ところ、500時間経過しても面発光の状態を 持続し、電圧は7.98Vに上昇し、発光輝度は95c d/m から56cd/m に減少した。これは、比較 例1と比べ本発明の有機薄膜EL素子の陰極と陰極保護 層の効果による駆動安定性の向上を示唆するものであ

【0029】(実施例3)陰極としてスカンジウムが1 モル%含まれる銀合金をアルゴンガス中でRFスパッタ 法で蒸発し、リチウムを抵抗加熱源から蒸発させる方法 でリチウムが陰極の0.3モル%を占めるように20nm 形成した。更に、陰極の保護層としてスカンジウムが1 モル%含まれるアルミニウム合金をアルゴンガス中のR Fスパッタ法により300nm形成した以外実施例1と同様にして素子を作成した。尚、本実施例3で用いた陰極 の仕事関数を光電子放出法で調べた結果、約3.1 eV であった。

【0030】この素子の発光特性を乾燥空気中で測定した。図5に示すように、本実施例における電流密度一電圧特性は、比較例1と比べて同じ電流密度において電圧が小さい。これは、本発明の陰極を用いたことで電荷の注入効率が向上したことを示唆するものである。図7に示すように、本実施例における輝度一電圧特性は、比較例1と比べて同じ輝度において電圧が小さい。印加電圧10Vの直流電圧で2650cd/m²の明るい黄色の発光が得られた。また、2mA/cm²の一定電流密度で10時間エージングした後、4mA/cm²の一定電流密度で連続して発光させた(このときの電圧は7.25V

である)ところ、500時間経過しても面発光の状態を持続し、電圧は8.31Vに上昇し、発光輝度は81cd $/m^2$ から48cd $/m^2$ に減少した。これは、比較例1と比べ本発明の有機薄膜EL素子の陰極と陰極保護層の効果による駆動安定性の向上を示唆するものである。

【0031】(実施例4)陰極としてスカンジウムが1 モル%含まれるインジウム合金をアルゴンガス中でRF スパッタ法で蒸発し、リチウムを抵抗加熱顔から蒸発させる方法でリチウムが陰極の0.3モル%をしめるように20mm形成した。更に、陰極の保護圏としてスカンジウムが1モル%含まれるアルミニウム合金をアルゴンガス中のRFスパッタ法により300mm形成した以外実施例1と同様にして素子を作成した。尚、本実施例4で用いた陰極の仕事関数を光電子放出法で調べた結果、約3.1eVであった。

【0032】この素子の発光特性を乾燥空気中で測定し た。図6に示すように、本実施例における電流密度一電 圧特性は、比較例1と比べて同じ電流密度において電圧 が小さい。これは、本発明の陰極を用いたことで電荷の 注入効率が向上したことを示唆するものである。図8に 示すように、本実施例における輝度-電圧特性は、比較 例1と比べて同じ輝度において電圧が小さい。印加電圧 10Vの直流電圧で2100cd/m゜の明るい黄色の 発光が得られた。また、2mA/cm²の一定電流密度で 10時間エージングした後、4mA/cmの一定電流密 度で連続して発光させた(このときの電圧は6.25V である)ところ、500時間経過しても面発光の状態を 持続し、電圧は6.98Vに上昇し、発光輝度は51c d/m fから32cd/m に減少した。これは、比較 例1と比べ本発明の有機薄膜Eし素子の陰極と陰極保護 層の効果による駆動安定性の向上を示唆するものであ

【0033】(実施例5)陰極としてスカンジウムが1 モル%含まれるアルミニウム合金をアルゴンガス中でR Fスパッタ法で蒸発し、リチウムを抵抗加熱源から蒸発する方法でリチウムが陰極の0.3モル%を占めるように20mm形成した。更に、陰極の保護層としてシリコンが1モル%、更に銅が1.5モル%含まれるアルミニウム合金をアルゴンガス中のRFスパッタ法により450mm形成した以外、実施例1と同様にして素子を作成した。尚、本実施例5で用いた陰極の仕事関数を光電子放出法で調べた結果、約3.0eVであった。

【0034】この素子の発光特性を乾燥空気中で測定した。図6に示すように、本実施例における電流密度一電圧特性は、比較例1と比べて同じ電流密度において電圧が小さい。これは、本発明の陰極を用いたことで電荷の注入効率が向上したことを示唆するものである。図8に示すように、本実施例における輝度一電圧特性は、比較例1と比べて同じ輝度において電圧が小さい。印加電圧

10 Vの直流電圧で1910 c d $/ m^2$ の明るい黄色の発光が得られた。また、2 m A $/ cm^2$ の一定電流密度で10 時間エージングした後、4 m A $/ cm^2$ の一定電流密度で連続して発光させた(このときの電圧は6.2 Vである)ところ、500 時間後経過しても面発光の状態を持続し、電圧は6.94 Vに上昇し、発光輝度は75 c d $/ m^2$ から42 c d $/ m^2$ に減少した。これは、比較例1と比べ本発明の有機薄膜E L 素子の陰極と陰極保護層の効果による駆動安定性の向上を示唆するものである。

【0035】(実施例6) 陰極としてスカンジウムが1 モル%含まれるアルミニウム合金をアルゴンガス中でR Fスパッタ法で蒸発し、ナトリウムとインジウムからなる合金を抵抗加熱源からナトリウムが蒸発するよう制御してナトリウムが陰極の0.1モル%を占めるように20m形成した。更に、陰極の保護層としてマンガンが1モル%含まれるアルミニウム合金をアルゴンガス中のRFスパッタ法により350m形成した以外、実施例1と同様にして素子を作成した。尚、本実施例5で用いた陰極の仕事関数を光電子放出法で調べた結果、約3.0 eVであった。

【0036】この素子の発光特性を空気中で測定した。 図6に示すように、本実施例における電流密度ー電圧特 性は、比較例1と比べて同じ電流密度において電圧が小 さい。これは、本発明の陰極を用いたことで電荷の注入 効率が向上したことを示唆するものである。図8に示す ように、本実施例における輝度一電圧特性は、比較例1 と比べて同じ輝度において電圧が小さい。印加電圧10 Vの直流電圧で1920cd/m ^{*}の明るい黄色の発光 が得られた。また、 $2mA/cm^2$ の一定電流密度で10時間エージングした後、4mA/cm の一定電流密度で 連続して発光させた(このときの電圧は6.75Vであ る)ところ、500時間経過しても面発光の状態を持続 し、電圧は7.88Vに上昇し、発光輝度は42cd/ m^2 から28 c d/m^2 に減少した。これは、比較例1 と比べ本発明の有機薄膜EL素子の陰極と陰極保護層の 効果による駆動安定性の向上を示唆するものである。

【0037】(実施例7)図2及び図3は有機薄膜EL素子に逆スタガ型のa-SiTFTを適用し、ガラス基板上に有機薄膜EL素子を駆動する回路を作成した場合の実施例7の平面図および断面図である。以下、図2および図3を用いて実施例7の作成手順について述べる。

【0038】はじめに、ガラス基板上にCr & 200 nm 成長し、走査電極線 3 $_{80}$ 及び 3 $_{80}$ 、電荷保持容量 Co 一方の電極、スイッチングトランジスタのゲート電極 G $_{60}$ 電流制御トランジスタのゲート電極 G $_{60}$ を 400 nm 成長した後、第一コンタクトホール 56 A を 開ける。

【0039】次にSiO₂上にTFTのアイランドを形成するためのイントリンジックアモルファスシリコン

【0040】次にCrを100m堆積し、パターニングして信号線1_u、電流制御用トランジスタQ_tのソース電極S_{qt}及びドレイン電極D_{qt}、スイッチングトランジスタQ_sのドレイン電極及びソース電極、電荷保持容量Cのもう一方の電極を形成する。更に、電流制御用及びスイッチングの各TFTのアイランドのiーaーSi及びnⁱーaーSiを、各TFTのソース電極及びドレイン電極用のCrをマスクとしてiーaーSiの途中までエッチングし、各TFTのチャネル部を形成する。

【0.041】次に、 SiO_2 を2.00 m成長し、電流制御用トランジスタ Q_1 のソース電極 S_{er} とこの後の工程で成長される陰極(有機薄膜EL素子の一方の電極) 5 5 とを接続するための第2 コンタクトホール 5 6 B をエッチングして開ける。

【0042】次に、シリコンが1モル%、更に銅が1.5モル%含まれるアルミニウム合金をアルゴンガス中でRFスパッタ法にて陰極保護層として300m形成したした後、陰極としてスカンジウムが1モル%含まれるアルミニウム合金をアルゴンガス中でRFスパッタ法にて蒸発させ、リチウムを抵抗加熱源から蒸発させる方法でリチウムが陰極の0.3モル%を占めるように30m形成した。こうして形成した陰極と陰極保護層をリフトオフ法によりパターニングして有機薄膜EL素子の陰極と陰極保護層を形成する。

【0043】 このようにして1 画素が100×300 μ m ² サイズで400×640 画素数のパネルが作られる。

【0044】次にこのようにして作られたパネル上に有機薄膜層を形成する。本実施例に用いる有機薄膜EL素子の有機薄膜層52は陰極側からスペサー層52C、有機発光層52Bおよび正孔注入層52Aが積層された3層構造となっている。スペサー層52CとしてNー

ス型有機ELデバイスが完成する。

【0045】次に、上述したマトリクス型有機薄膜EL デバイスの動作を図4を用いて説明する。図4におい て、いま、走査電極線3点が選択されスイッチングト ランジスタ \mathbf{Q}_{ς} がオン状態になると、 \mathbf{M} 列目の信号電極 線 1 の電圧がスイッチングトランジスタ Q を通して 電荷保持用容量Cに供給される。走査電極線3ggが非 選択の状態になるとスイッチングトランジスタQ。がオ フになって、信号線1 の電圧が電荷保持用容量Cに保 持される。容量Cの端子電圧は電流制御用トランジスタ Q_{τ} のゲート・ソース間に印加され、トランジスタ Q_{τ} のゲート電圧・ドレイン電流特性に応じた電流が、電源 電極5→有機薄膜EL素子→トランジスタQ,→走査電 極線3、という経路で流れ、有機薄膜EL素子が発光す る。この時、有機薄膜EL素子の輝度と容量Cに印加す る電圧との関係が分かっていれば、所定の輝度で有機薄 膜EL素子を発光させるとが可能である。

【0046】本実施例において、有機薄膜EL素子の両端の電圧が7Vで駆動したところ、約420cd/m²の輝度を示した。この時、全画素に対するの画素欠陥部の割合は約7%であり、比較例2の陰極で作成した場合より大幅に欠陥部が少なくなったことを示した。また、有機薄膜EL素子部分の消費電力は1.4W以下であり、比較例2のそれの約半分であった。

【0047】尚、本実施例7においては、有機薄膜EL素子はTFT上に陰極保護層,陰極,スペーサー層,有機発光層,正孔注入層,陽極の順に形成し、光を陽極を通して取り出す方法を用いたが、TFT上に陽極,正孔注入層,有機発光層,スペーサー層,陰極,陰極保護層の順に形成し、光をTFTのガラス基板を通して取り出す方法を用いても良い。

【0048】(実施例8)基板、有機薄膜層は実施例1と同様である。陰極としてスカンジウムが1モル%含まれるアルミニウム合金をアルゴンガス中でRFスパッタ法で蒸発し、リチウムを抵抗加熱源から蒸発させる方法でリチウムが陰極の0.3モル%を占めるるように120mm形成した。陰極保護層は形成しなかった。尚、本実施例1に用いた陰極の仕事関数を光電子放出法で調べた結果、約3.1eVであった。

【0049】この素子の発光特性を乾燥空気中で測定した。図10に示すように、本実施例における電流密度ー電圧特性は、比較例3と比べて同じ電流密度において電圧が小さい。これは、本発明の陰極を用いたことで電荷の注入効率が向上したことを示唆するものである。図11に示すように、本実施例における輝度一電圧特性は、比較例3と比べて同じ輝度において電圧が小さい。印加電圧10Vの直流電圧で5940cd/m²の明るい黄色の発光が得られた。また、2mA/cm²の一定電流密度で10時間エージングした後、4mA/cm²の一定電流密度で連続して発光させた(このときの電圧は6.6

8 Vである)ところ、500時間経過しても面発光の状態を持続し、電圧は7.98 Vに上昇し、発光輝度は102cd/m²から58cd/m²に減少した。これは、比較例3と比べ本発明の有機薄膜EL素子の陰極の効果による駆動安定性の向上を示唆するものである。

【0050】(比較例1) ガラス基板上にITOをスパ ッタリングによってシート抵抗が**15Ω**/口になるよう に製膜し、陽極とした。その上に正孔注入層として、昇 華精製した無金属フタロシアニンを抵抗加熱式の真空蒸 着によって10nm形成した。次にポリ(メチルフェニル シリレン) 約60重量%にN, N, N', N'ーテトラ フェニルー4, 4′ージアミノビフェニルを約40重量 %混合したポリシリレンからなる有機正孔輸送層3を4 6 nm、トルエン溶媒を使用したディップコーティング法 で形成した。充分乾燥させたのち、分子線蒸着法によっ て6×10 Torr真空下、有機発光層としてNー (2, 4ーキシリル) -4ーアミノナフタルイミドと 3, 9-ペリレンジカルボン酸ジフェニルエステルとを 各々別の蒸着源からの共蒸着法によって3,9ーペリレ ンジカルボン酸ジフェニルエステルが発光層の1.4モ ル%含まれるように70m形成した。次に陰極としてリ チウムが0.3モル%含まれるようにアルミニウムと共 蒸着して陰極を20nm形成した。更に、陰極保護層とし てアルミニウムを抵抗加熱の蒸着法で80mm形成した。 このようにして、比較例1の有機薄膜EL素子が完成す る。

【0051】この素子の発光特性を空気中で測定したところ、印加電圧10 Vの直流電圧で380 c d / m 黄色の発光が得られた。また、2 m A / cm の一定電流密度で10 時間エージングした後、4 m A / cm の一定電流密度で連続して発光させた(このときの電圧は7.98 V である)ところ、500 時間経過後、面発光は維持されず、素子全体の40% が黒点に覆われていた。電圧は13.4 V に上昇し、発光輝度は24 c d / m 2 か 58 c d / m 2 に減少した。

【0052】(比較例2)陰極の保護層としてアルミニウムを抵抗加熱の蒸着法で300m形成し、更に陰極としてリチウムが陰極の2モル%含まれるようにアルミニウムと共蒸着して20m形成した以外、実施例2と同様のTFT駆動のマトリクス型有機EL素子を作成した。【0053】本比較例において、有機薄膜EL素子の両端の電圧を7Vで駆動したところ、約100cd/mの輝度を示した。この時、全画素に対するの画素欠陥部の割合は約15%であった。また、有機薄膜EL素子部分の消費電力は2、7Wであった。

【0054】 (比較例3) 陰極としてリチウムが0.3 モル%含まれるようにアルミニウムと共蒸着して陰極を120m形成した以外、実施例8と同様に素子を形成した。

【0055】この素子の発光特性を空気中で測定したと

ころ、印加電圧 $10\,\mathrm{V}$ の直流電圧で $3\,5\,8\,\mathrm{c}\,\mathrm{d/m}^2$ の 黄色の発光が得られた。また、 $2\,\mathrm{mA/cm}^2$ の一定電流 密度で $10\,\mathrm{時間}$ エージングした後、 $4\,\mathrm{mA/cm}^2$ の一定電流密度で連続して発光させた(このときの電圧は $8.18\,\mathrm{V}$ である)ところ、 $3\,5\,0\,\mathrm{時間経過後、電圧は }15.3\,\mathrm{V}$ に上昇し、発光輝度は $2\,0\,\mathrm{c}\,\mathrm{d/m}^2$ から $3\,\mathrm{c}\,\mathrm{d/m}^2$ に減少した。 $4\,2\,0\,\mathrm{b}$ 間後、素子は完全に消光した。

[0056]

【発明の効果】以上説明したように本発明の陰極および 陰極保護層を有機薄膜EL素子に適用することで、電荷 注入特性など素子の基本特性を従来のものより高めるこ とができる。また、有機薄膜EL素子やマトリクス型有 機ELデバイスにおいて低電力性を有効に発揮しながら 駆動安定性の向上や物理的強度を向上させることがで き、高精細のマトリクス型有機ELデバイスの作成が可 能となる。

【図面の簡単な説明】

【図1】本発明の実施例1から実施例6に用いた陰極保護層を有する有機薄膜EL素子の説明図である。

【図2】本発明の実施例7に用いたマトリクス型有機薄膜ELデバイスを構成する画素を示す平面レイアウト図である。

【図3】本発明の実施例7に用いたマトリクス型有機薄膜ELデバイスを構成する画素の断面図である。

【図4】本発明の実施例7に用いたマトリクス型有機薄膜ELデバイスを駆動する回路図である。

【図5】本発明の実施例1から3および比較例1の電流 密度一電圧特性を示すグラフである。

【図6】本発明の実施例4から6および比較例1の電流 密度-電圧特性を示すグラフである。

【図7】本発明の実施例1から3および比較例1の輝度

一電圧特性を示すグラフである。

【図8】本発明の実施例4から6および比較例1の輝度 一電圧特性を示すグラフである。

【図9】本発明の実施例8に用いた陰極保護層を持たない有機薄膜EL素子の説明図である。

【図10】本発明の実施例8および比較例3の電流密度 一電圧特性を示すグラフである。

【図11】本発明の実施例8および比較例3の輝度-電 圧特性を示すグラフである。

【符号の説明】

1,,1,, 信号電極線

5 電源電極

7 共通電極線

10 単位画素

11 基板

12 陽極

13 有機薄膜層

13A 正孔注入層

13B 正孔輸送層

13C 発光層

14 陰極

15 陰極保護層

50 ガラス基板

52 有機薄膜層

52A 正孔注入層

52B 有機発光層

52C スペーサー層

54 陽極

5 5 陰極

56A. 56B コンタクトホール

57 陰極保護層

図1]

[図3]

