三、模(方法:几何意义(距离);代数: $\sqrt{a^2}$)

(05 竞赛) 已知 \vec{a} , \vec{b} 是两个互相垂直的单位向量,而 $|\vec{c}|=13$, \vec{c} · $\vec{a}=3$, \vec{c} · $\vec{b}=4$.则对于任意的实数 t_1 , t_2 ,

 $|\vec{c} - t_1 \vec{a} - t_2 \vec{b}|$ 的最小值为() A.5 B.7 C.12 D.13

(07 文理) 非零向量 \vec{a} , \vec{b} 满足 $|\vec{a}+\vec{b}|=|\vec{b}|$,则()C

 $A. |2\vec{a}| > |2\vec{a} + \vec{b}|$ $B. |2\vec{a}| < |2\vec{a} + \vec{b}|$ $C. |2\vec{b}| > |\vec{a} + 2\vec{b}|$ $D. |2\vec{b}| < |\vec{a} + 2\vec{b}|$

(13 文理) 设 $\vec{e_1}, \vec{e_2}$ 为单位向量,非零向量 $\vec{b} = x\vec{e_1} + y\vec{e_2}, x, y \in R$,若 $\vec{e_1}, \vec{e_2}$ 的夹角为 $\frac{\pi}{6}$,则 $\frac{|y|}{|\vec{b_1}|}$ 的最大值等于

$$\frac{2}{key: \frac{|y|}{|\vec{b}|}} = \sqrt{\frac{y^2}{x^2 + y^2 + \sqrt{3}xy}} = \frac{1}{\sqrt{t^2 + \sqrt{3}t + 1}} \le 2(t = \frac{x}{y})$$

$$key2: \frac{|y|}{|\vec{b}|} \le \frac{|y|}{\frac{1}{2}|y|} = 2$$

变式: 已知单位向量 $\vec{e_1}$, $\vec{e_2}$ 的夹角为 $\frac{\pi}{3}$, 设 $\vec{a} = 2\vec{e_1} + \lambda \vec{e_2}$, 则当 $\lambda < 0$ 时, $\lambda + |\vec{a}|$ 的取值范围为_

变式 $key1: \lambda + |\vec{a}| = \lambda + \sqrt{4 + 2\lambda + \lambda^2} = (1,1) \cdot (\lambda, \sqrt{(\lambda+1)^2 + 3})$ $= \overrightarrow{OA} \cdot \overrightarrow{OP}(点 A(1,1), P(\lambda, \sqrt{(\lambda+1)^2+3}) 在曲线y^2 - (x+1)^2 = 3(x<0) 上)$

(16竞赛) 已知向量 $|\overrightarrow{OA}|$ = $|\overrightarrow{OB}|$ = 24, $|\overrightarrow{OA}|$ 4 $|\overrightarrow{OB}|$ 5.若 $t \in [0,1]$ 6,则 $|t\overrightarrow{AB} - \overrightarrow{AO}|$ 4|t|5 $|\overrightarrow{BO}|$ 6.

的最小值为_____. 26

 $16 竞赛 key: |t\overrightarrow{AB} - \overrightarrow{AO}| + |\frac{5}{12}\overrightarrow{BO} - (1-t)\overrightarrow{BA}| = |\overrightarrow{OP}| + |\overrightarrow{PM'}| \ge |\overrightarrow{OM'}| = 26$

变式:已知非零平面向量 \vec{a} , \vec{b} 夹角为 $\frac{\pi}{3}$,且 $|\vec{a}+\vec{b}|=1$,若 λ , $\mu>0$,则 $|\lambda\vec{a}-\mu\vec{b}|+|\alpha(1-\lambda)\vec{a}+\vec{b}|+|\vec{a}+(1-\mu)\vec{b}|$

的最小值为_

key:如图,设 $\vec{a} = \overrightarrow{OA}, \vec{b} = \overrightarrow{OB}, \overrightarrow{OM} = \vec{a} + \vec{b}, -\vec{b} = \overrightarrow{OB}', 则 | \overrightarrow{AB'}| = 1, \angle AOB' = \frac{2\pi}{2},$

$$= |\overrightarrow{A_1B_1}| + |\overrightarrow{A_1M}| + |\overrightarrow{B_1M}| = |\overrightarrow{A_1B_1}| + |\overrightarrow{A_1M_1}| + |\overrightarrow{B_1M_2}|$$

$$\geq |\overrightarrow{M_1M_2}| = 2\sqrt{p^2 + q^2 + pq} = \sqrt{3}(\cancel{\sharp} + \alpha) = \angle MOA,$$

$$=\sin^2\alpha + (\frac{\sqrt{3}}{2}\cos\alpha - \frac{1}{2}\sin\alpha)^2 + \sin\alpha \cdot (\frac{\sqrt{3}}{2}\cos\alpha - \frac{1}{2}\sin\alpha) = \frac{3}{4})$$

(2017 高考) (15) 已知向量 \vec{a} , \vec{b} 满足 $|\vec{a}|=1$, $|\vec{b}|=2$,则 $|\vec{a}+\vec{b}|+|\vec{a}-\vec{b}|$ 的最小值是

最大值是_____. 4,2√5

变式 2 (1) ①函数 $y = 2\sqrt{1-x} - \sqrt{3+x}$ 的值域为_____;

$$y = (2,-1) \cdot (\sqrt{1-x}, \sqrt{3+x}) \in [-2,4]$$

③函数
$$y = 2\sin\alpha - 3\cos\alpha (\alpha \in [-\frac{\pi}{6}, \frac{2\pi}{3}])$$
的值域为______; $[-\frac{3\sqrt{3}}{2} - 1, \frac{3}{2} + \sqrt{3}]$

④ (19 福建) 函数
$$y = x + \sqrt{2x - x^2}$$
 的值域为 .[0, $\sqrt{2} + 1$]

⑤已知实数
$$a,b,c,d$$
满足 $a+b+c+d=1,a^2+2b^2+3c^2+4d^2=1$,则 d 的取值范围为_____.

$$key: |1-d| = |1\cdot a + \frac{1}{\sqrt{2}}\cdot\sqrt{2}b + \frac{1}{\sqrt{3}}\cdot\sqrt{3}c| \le \sqrt{(1+\frac{1}{2}+\frac{1}{3})(a^2+2b^2+3c^2)} = \sqrt{\frac{11}{6}(1-4d^2)}$$

$$d \in \left[\frac{6 - \sqrt{259}}{50}, \frac{6 + \sqrt{259}}{50}\right]$$

(2) ①函数
$$y = 2x - \sqrt{x^2 + 1}$$
 的值域为______;

$$key: y = (2, -1) \cdot (x, \sqrt{x^2 + 1}) \in (-\infty, +\infty)$$

$$\frac{2x-y}{\sqrt{x^2+y^2}}$$
的取值范围为_____. (-1,2)

(3) ① (2008 重庆) 函数
$$y = \frac{\sin \alpha - 1}{\sqrt{3 - 2\cos \alpha - 2\sin \alpha}}$$
的值域为_____. [-1,0]

$$key: y = \frac{(1,1) \cdot (\sin \alpha - 1)}{\sqrt{(\cos \alpha - 1)^2 + (\sin \alpha - 1)^2}}$$

$$A.\sqrt{2}$$

B.
$$\sqrt{3}$$

$$key: y = \frac{|(t\cos\alpha - \sqrt{2}, t\sin\alpha) \cdot (1, \sqrt{2})|}{\sqrt{(t\cos\alpha - \sqrt{2})^2 + (t\sin\alpha)^2} \cdot \sqrt{3}}$$

$$f(a_1, a_2, a_3, a_4)$$
的最小值为() A.1 B. $\sqrt{3}$ C.2 D.2 $\sqrt{3}$ B

$$key: \vec{a} = (a_1, a_4), \vec{b} = (a_3, a_2), \vec{c} = (a_4, -a_1), \forall \vec{b} \cdot \vec{c} = a_3 a_4 - a_1 a_2 = 1 = ab \cos(\frac{\pi}{2} - \theta) = ab \sin \theta$$

$$\therefore f(a_1, a_2, a_3, a_4) = \vec{a}^2 + \vec{b}^2 + \vec{a} \cdot \vec{b} = a^2 + b^2 + ab\cos\theta \ge ab(2 + \cos\theta) = \frac{2 + \cos\theta}{\sin\theta} \ge \sqrt{3}$$

(17竞赛) 已知平面向量
$$\vec{a}$$
, \vec{b} , \vec{c} 满足 $|\vec{a}|=1$, $|\vec{b}|=2$, $|\vec{c}|=3$,若 $\vec{b}\cdot\vec{c}=0$,则 $|\vec{a}-\lambda\vec{b}-(1-\lambda)\vec{c}|$ (0 < λ < 1)

所有取不到的值的集合为____.
$$(-\infty, \frac{6}{\sqrt{13}} - 1) \cup [4, +\infty)$$

变式: 已知平面向量
$$\vec{a}$$
, \vec{b} , \vec{c} 满足 $|\vec{a}|=3$, $|\vec{b}|=|\vec{c}|=5$, $0<\lambda<1$,若 $\vec{b}\cdot\vec{c}=0$,则 $|\vec{a}-\vec{b}+\lambda(\vec{b}-\vec{c})|+|\frac{3}{5}\vec{c}+(1-\lambda)(\vec{b}-\vec{c})|$

的最小值为____.

$$key$$
:如图: $\overrightarrow{OC'} = -\overrightarrow{c}, \overrightarrow{OE} = -\frac{2}{5}\overrightarrow{c}, 则\overrightarrow{OD} = \overrightarrow{b} - \overrightarrow{c}, \overrightarrow{OF} = \overrightarrow{b} - \frac{2}{5}\overrightarrow{c}$

设
$$\overrightarrow{OP} = \lambda \overrightarrow{OD}$$
,则 $\overrightarrow{b} - \lambda (\overrightarrow{b} - \overrightarrow{c}) = \overrightarrow{PB}$, $\overrightarrow{b} - \frac{2}{5}\overrightarrow{c} - \lambda (\overrightarrow{b} - \overrightarrow{c}) = \overrightarrow{PF}$

(18高考)已知 \vec{a} , \vec{b} , \vec{e} 是平面向量 \vec{e} 是单位向量.若非零向量 \vec{a} 与 \vec{e} 的夹角为 $\frac{\pi}{3}$,向量 \vec{b} 满足 $\vec{b}^2 - 4\vec{e} \cdot \vec{b} + 3 = 0$,

则 $|\vec{a} - \vec{b}|$ 的最小值为() $A.\sqrt{3} - 1$ $B.\sqrt{3} + 1$ C.2 $D.2 - \sqrt{3}$ A

18高考 $key: (\vec{b} - 2\vec{e})^2 = 1, : |\vec{a} - \vec{b}|_{min} = \sqrt{3} - 1$

(19高考) 已知正方形ABCD的边长为1,当每个 $\lambda_i(i=1,2,3,4,5,6)$ 取遍±1时,

 $|\lambda_1\overrightarrow{AB} + \lambda_2\overrightarrow{BC} + \lambda_3\overrightarrow{CD} + \lambda_4\overrightarrow{DA} + \lambda_5\overrightarrow{AC} + \lambda_6\overrightarrow{BD}|$ 的最小值是____,最大值是_

 $key: M = |\lambda_1 \overrightarrow{AB} + \lambda_2 \overrightarrow{BC} + \lambda_3 \overrightarrow{CD} + \lambda_4 \overrightarrow{DA} + \lambda_5 \overrightarrow{AC} + \lambda_6 \overrightarrow{BD}|$

 $= |\lambda_1(1,0) + \lambda_2(0,1) + \lambda_3(-1,0) + \lambda_4(0,-1) + \lambda_5(1,1) + \lambda_6(-1,1)|$

 $= |(\lambda_1 - \lambda_3 + \lambda_5 - \lambda_6, \lambda_2 - \lambda_4 + \lambda_5 + \lambda_6)|$

$$=\sqrt{(\lambda_{1}-\lambda_{3}+\lambda_{5}-\lambda_{6})^{2}+(\lambda_{2}-\lambda_{4}+\lambda_{5}+\lambda_{6})^{2}}(a=\lambda_{1}-\lambda_{3},b=\lambda_{2}-\lambda_{4})$$

$$= \sqrt{a^2 + b^2 + 2a(\lambda_5 - \lambda_6) + 2b(\lambda_5 + \lambda_6) + 4}$$

当
$$\lambda_5 + \lambda_6 = 0$$
时, $M = \sqrt{b^2 + a^2 \pm 4a + 4} = \sqrt{b^2 + (a \pm 2)^2} \in [0, 2\sqrt{5}]$

(19A)在平面直角坐标系中, \vec{e} 是单位向量,向量 \vec{a} 满足 $\vec{a} \cdot \vec{e} = 2$,且 $|\vec{a}|^2 \le 5|\vec{a} + t\vec{e}|$ 对任意实数t成立,

则 $|\vec{a}|$ 的取值范围是____.[$\sqrt{5}, 2\sqrt{5}$]

$$key: \frac{1}{5}a^2 \le \sqrt{a^2 - 4} \notin |\vec{a}| \in [\sqrt{5}, 2\sqrt{5}]$$

(20 重庆) 1.已知向量 \vec{a} , \vec{b} 满足 $|\vec{a} - \vec{b}| = 3$, $|\vec{a} + 2\vec{b}| = 6$, $|\vec{a}| + |\vec{a}| + |\vec{b}| = 2\vec{b}^2 = -9$ 则 $|\vec{b}| = 1$. $\sqrt{7}$

(2020竞赛) 设平面上三个不共线单位向量 \vec{a} , \vec{b} , \vec{c} ,满足 \vec{a} + \vec{b} + \vec{c} = $\vec{0}$.若 $\vec{0}$ 0 $\vec{0}$ 1 $\vec{0}$ 1 $\vec{0}$ 1 $\vec{0}$ 1 $\vec{0}$ 2 $\vec{0}$ 1 $\vec{0}$ 1 $\vec{0}$ 2 $\vec{0}$ 2 $\vec{0}$ 1 $\vec{0}$ 2 $\vec{0}$ 2 $\vec{0}$ 2 $\vec{0}$ 3 $\vec{$

2020:key:由
$$(\vec{a} + \vec{b})^2 = (-\vec{c})^2$$
得 $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = -\frac{1}{2}$

$$| \vec{-1} \cdot \vec{$$

(2021北京)2.向量 \vec{a} , \vec{b} , \vec{c} 满足 $\vec{a} \neq \vec{b}$, $\vec{c} \neq \vec{0}$, $(\vec{c} - \vec{a}) \cdot (\vec{c} - \vec{b}) = 0$,则 $\frac{|\vec{c}|}{|\vec{a} + \vec{b}| + |\vec{a} - \vec{b}|}$ 的最大值为_____

(2021北京)
$$key: \frac{|\vec{c}|}{|\vec{a}+\vec{b}|+|\vec{a}-\vec{b}|} = \frac{|\overrightarrow{OC}|}{2(|\overrightarrow{OD}|+|\overrightarrow{DC}|)} \le \frac{1}{2}$$

(2022 乙) 3. 已知向量 \vec{a} , \vec{b} 满足| \vec{a} |=1,| \vec{b} |= $\sqrt{3}$,| \vec{a} -2 \vec{b} |=3,则 \vec{a} · \vec{b} =(C)

A. -2 B. -1 C. 1 D. 2

变式 1 (1)①已知平面向量 $\vec{e_1}$, $\vec{e_2}$ 满足 | $2\vec{e_2}$ $-\vec{e_1}$ | = 2,设 \vec{a} = $\vec{e_1}$ + $4\vec{e_2}$, \vec{b} = $\vec{e_1}$ + $\vec{e_2}$, 若 $1 \le \vec{a} \cdot \vec{b} \le 2$,则 $|\vec{a}|$ 的取值范围为______.

$$key: \boxplus \begin{cases} \overrightarrow{e_1} + 4\overrightarrow{e_2} = \overrightarrow{a} \\ \overrightarrow{e_1} + \overrightarrow{e_2} = \overrightarrow{b} \end{cases} \begin{cases} \overrightarrow{e_1} = \frac{-\overrightarrow{a} + 4\overrightarrow{b}}{3} \\ \overrightarrow{e_2} = \frac{\overrightarrow{a} - \overrightarrow{b}}{3} \end{cases}, \therefore 2 = |2\overrightarrow{e_2} - \overrightarrow{e_1}| = |\overrightarrow{a} - 2\overrightarrow{b}|, \therefore 4 = a^2 - 4ab\cos\theta + 4b^2, \, \text{$\underline{\square}$} ab\cos\theta \in [1, 2] \end{cases}$$

 $\therefore 4ab\cos\theta = a^2 + 4b^2 - 4 \in [4,8], \, \pm a^2 + 4b^2 - 4 \le 4ab$

②已知 $|\overrightarrow{OA}| = |\overrightarrow{OB}| = 1$,若存在 $m, n \in R$,使得 $m\overrightarrow{AB} + \overrightarrow{OA} = n\overrightarrow{AB} + \overrightarrow{OB}$ 夹角为60°,且

 $|(m\overrightarrow{AB} + \overrightarrow{OA}) - (n\overrightarrow{AB} + \overrightarrow{OB})| = \frac{1}{2}$,则 $|\overrightarrow{AB}|$ 的最小值为_____.

 $key: \overrightarrow{OM} = m\overrightarrow{AB} + \overrightarrow{OA}, \overrightarrow{ON} = n\overrightarrow{AB} + \overrightarrow{OB}, ||||\overrightarrow{MN}|| = \frac{1}{2},$

$$|\overrightarrow{AB}| = 2\sqrt{1 - d^2} \ge \frac{\sqrt{13}}{2} (d \le \frac{\sqrt{3}}{4})$$

③已知平面向量 $\vec{e_1}, \vec{e_2}, \vec{e_3}, |\vec{e_1}| = |\vec{e_2}| = |\vec{e_3}| = 1, <\vec{e_1}, \vec{e_2}> = 60^{\circ}$.若对区间[$\frac{1}{2}$,1]内的三个任意的实数 λ , λ ₂, λ ₃,

都有 $|\lambda_1\vec{e_1} + \lambda_2\vec{e_2} + \lambda_3\vec{e_3}| \ge \frac{1}{2}|\vec{e_1} + \vec{e_2} + \vec{e_3}|$, 则向量 $\vec{e_1}$ 与 $\vec{e_3}$ 夹角的最大值的余弦值为(

$$A. - \frac{3+\sqrt{6}}{6}$$
 $B. - \frac{3+\sqrt{5}}{6}$ $C. - \frac{3-\sqrt{6}}{6}$ $D. - \frac{3-\sqrt{5}}{6}$

$$B. - \frac{3 + \sqrt{5}}{6}$$

$$C.-\frac{3-\sqrt{6}}{6}$$

$$D. - \frac{3 - \sqrt{5}}{6}$$

key: 如图, $|\lambda_1\overrightarrow{e_1} + \lambda_2\overrightarrow{e_2} + \lambda_3\overrightarrow{e_3}| = |\overrightarrow{PQ}| \ge \frac{1}{2} |\overrightarrow{e_1} + \overrightarrow{e_2} + \overrightarrow{e_3}| = |\overrightarrow{C_1M_1}|$

设 $\langle \vec{e_1}, \vec{e_2} \rangle$ 的最大值为 θ ,

$$\therefore \overrightarrow{e_3} \cdot \frac{1}{2} (-\overrightarrow{e_1} - \overrightarrow{e_2} - \overrightarrow{e_3}) = 0 \Leftrightarrow \cos\theta + \cos(\theta - 60^\circ) + 1 = \frac{3}{2} \cos\theta + \frac{\sqrt{3}}{2} \sin\theta + 1 = 0 \stackrel{\rightleftharpoons}{\rightleftharpoons} \cos\theta = \frac{-3 - \sqrt{6}}{6}$$

(2)①已知非零平面向量 $\vec{a}, \vec{b}, \vec{c}$,满足 $|\vec{a}| = 4, |\vec{b}| = 2|\vec{c}|$,且 $(\vec{a} - \vec{c}) \cdot (\vec{b} - \vec{c}) = 3$,则 $|\vec{a} - \vec{b}|$ 的最小值是(A)

A.
$$\frac{2\sqrt{6}}{3}$$
 B. $\frac{3\sqrt{5}}{5}$

B.
$$\frac{3\sqrt{5}}{5}$$

$$key: (\vec{a} - \vec{c}) \cdot (\vec{b} - \vec{c}) = \overrightarrow{CA} \cdot \overrightarrow{CB} = \overrightarrow{CD}^2 - x^2 = 3, : |\overrightarrow{CD}| = \sqrt{3 + x^2} (: |\overrightarrow{CC}| = c, x = \frac{1}{2} |\overrightarrow{AB}|)$$

 $|\overrightarrow{OD}|^2 = \frac{2\overrightarrow{OA}^2 + 2\overrightarrow{OB}^2 - (\overrightarrow{OA} - \overrightarrow{OB})^2}{4} = 8 + 2c^2 - x^2$

$$\therefore \begin{cases} c + \sqrt{3 + x^2} \ge \sqrt{8 + 2c^2 - x^2} \\ c + \sqrt{8 + 2c^2 - x^2} \ge \sqrt{3 + x^2} \Leftrightarrow |c - \sqrt{3 + x^2}| \le \sqrt{8 + 2c^2 - x^2} \le c + \sqrt{3 + x^2} \\ \sqrt{3 + x^2} + \sqrt{8 + 2c^2 - x^2} \ge c \end{cases}$$

$$\Leftrightarrow |5 + c^2 - 2x^2| \le 2c\sqrt{3 + x^2} \Leftrightarrow c^4 - 2(4x^2 + 1)c^2 + (2x^2 - 5)^2 \le 0$$

②已知平面向量 $\vec{a}, \vec{b}, \vec{c}$ 满足 $|\vec{a}|=1, |\vec{b}|=2, |\vec{c}-\vec{a}|=|\vec{c}-\vec{b}|$,则 $|\vec{c}|$ 的最小值为____,此时 $\vec{a}\cdot\vec{b}=$ _____.

$$key1: |\vec{c}|_{min} = \frac{|\vec{a} + \vec{b} \cdot (\vec{b} - \vec{a})|}{|\vec{b} - \vec{a}|} = \frac{3}{2|\vec{b} - \vec{a}|} \ge \frac{1}{2}$$

key2:由 $|\vec{c}-\vec{a}|^2$ = $|\vec{c}-\vec{b}|^2$ 得 $\vec{c}\cdot(\vec{b}-\vec{a})=\frac{3}{2}$,如图:

$$|\vec{c}| = \frac{3}{2|\vec{b} - \vec{a}| \cdot |\cos |\vec{b} - \vec{a}|} \ge \frac{1}{2}, \vec{a} \cdot \vec{b} = -2$$

④平面向量 $\vec{a_i}$ 满足: $|\vec{a_i}| = 1$ (i = 0,1,2,3),且 $\sum_{i=1}^{3} \vec{a_i} = \vec{0}$,则 $|\vec{a_0} + \vec{a_1} + \vec{a_2}| + |\vec{a_0} + \vec{a_1} + \vec{a_3}| + |\vec{a_0} + \vec{a_2} + \vec{a_3}|$ 的取值范

$$key$$
: 沒 $\overrightarrow{OA_i} = \overrightarrow{a_i}$ $(i = 1, 2, 3)$, $\therefore \overrightarrow{a_1} + \overrightarrow{a_2} + \overrightarrow{a_3} = \overrightarrow{0}$, 且 $|\overrightarrow{a_1}| = |\overrightarrow{a_2}| = |\overrightarrow{a_3}| = 1$,

则 $\triangle A_1A_2A_3$ 为正三角形,设 $\overrightarrow{OA_0} = \overrightarrow{a_0}$,不妨设点 A_0 在圆弧 A_1A_2 上,记 $\angle A_0A_3A_1 = \theta \in [0, \frac{\pi}{3}]$,

$$\boxed{\mathbb{N}[|\vec{a_0} + \vec{a_1} + \vec{a_2}| + |\vec{a_0} + \vec{a_1} + \vec{a_3}| + |\vec{a_0} + \vec{a_2} + \vec{a_3}| = |\vec{a_0} - \vec{a_3}| + |\vec{a_0} - \vec{a_2}| + |\vec{a_0} - \vec{a_1}| = |\vec{A_0A_1}| + |\vec{A_0A_2}| + |\vec{A_0A_3}|,}$$

$$|\mathbb{M}||\overrightarrow{A_0A_1}| + ||\overrightarrow{A_0A_2}| + ||\overrightarrow{A_0A_3}|| = 2\sin\theta + 2\sin(\frac{\pi}{3} - \theta) + 2\sin(\frac{\pi}{3} + \theta) = 4\sin(\theta + \frac{\pi}{3}) \in [2\sqrt{3}, 4]$$

(3) 已知向量 \vec{a} 与 \vec{b} 夹角为 $\frac{\pi}{3}$,向量 \vec{c} 满足 $|\vec{b}-\vec{c}|$ =1且 $\frac{\vec{a}+\vec{b}}{|\vec{b}|} = \frac{\vec{a}+\vec{c}}{|\vec{c}|}$,则下列说法正确的是()A

$$A.|\vec{b}|+|\vec{c}|<2$$
 $B.|\vec{a}|+|\vec{b}|>2$ $C.|\vec{b}|<1$ $D.|\vec{a}|>1$

$$key:\overrightarrow{OE}=\overrightarrow{a}+\overrightarrow{c},\overrightarrow{OC}=\overrightarrow{AE}=\overrightarrow{c}, \forall \exists EE_1\perp OA, \quad \exists \exists \mid \overrightarrow{OE}\mid = \mid \overrightarrow{OE_1}\mid$$

则
$$\frac{|\overrightarrow{OD}|}{|\overrightarrow{OE_1}|} = \frac{|\overrightarrow{b}|}{|\overrightarrow{c}|}, \therefore E_1, A, D 三点共线, \therefore \angle BOC = 60^\circ$$

$$\vec{a} + \vec{b} = \overrightarrow{OD}, \vec{a} + \vec{c} = \overrightarrow{OE}, \because \frac{\vec{a} + \vec{b}}{|\vec{b}|} = \frac{\vec{a} + \vec{c}}{|\vec{c}|} \mathbb{H} \frac{\overrightarrow{OD}}{|\overrightarrow{OB}|} = \frac{\overrightarrow{OE}}{|\overrightarrow{AE}|}$$

$$\therefore O, E, D$$
共线,且 $\frac{\sin \angle 120^{\circ}}{\sin \angle ODB} = \frac{|\overrightarrow{OD}|}{|\overrightarrow{OB}|} = \frac{|\overrightarrow{OE}|}{|\overrightarrow{AE}|} = \frac{\sin \angle OAE}{\sin \angle AOE}$

$$\therefore \angle AOE = \angle BDO, \therefore \angle OAE = 60^{\circ}, \therefore \angle AOC = 120^{\circ}, \therefore \angle COB = 60^{\circ}$$

$$\therefore 1 = \vec{b}^2 + \vec{c}^2 - |\vec{b}| \cdot |\vec{c}| = \frac{3}{4} (|\vec{b}| + |\vec{c}|)^2 + \frac{1}{4} (|\vec{b}| - |\vec{c}|)^2 \ge \frac{3}{4} (|\vec{b}| + |\vec{c}|)^2, \therefore |\vec{b}| + |\vec{c}| < \frac{2}{\sqrt{3}} < 2$$

(2018河北) 在 $\triangle ABC$ 中,AC=3, $\sin C=k\sin A(k\geq 2)$,则 $\triangle ABC$ 的面积最大值为____

2018河北 $key: |\overrightarrow{AB}| = k |\overrightarrow{BC}|,$ 如图B的轨迹是阿波罗尼斯圆,

其直径
$$B_1B_2 = \frac{3}{k+1} + \frac{3}{k-1} = \frac{6k}{k^2-1}, \therefore S_{\triangle ABC} = \frac{1}{2} \cdot 3 \cdot \frac{3k}{k^2-1} = \frac{9}{2} \cdot \frac{1}{k-\frac{1}{k}} \le 3$$

变式 2(1) 设O为 $\triangle ABC$ 的外心,满足 $\overrightarrow{CO} = t\overrightarrow{CA} + (\frac{1}{2} - \frac{3}{4}t)\overrightarrow{CB}, t \in R, \ddot{A} \mid \overrightarrow{AB} \mid = 3,$ 则 $\triangle ABC$ 面积的

最大值为_____

$$key:\overrightarrow{CO}=\frac{3}{2}t(\frac{2}{3}\overrightarrow{CA})+(1-\frac{3}{2}t)(\frac{1}{2}\overrightarrow{CB}),:|\overrightarrow{DB}|=2\mid\overrightarrow{DA}\mid,::S_{_{\triangle ABC}}=3S_{_{\triangle ABD}}\leq 9$$

(2) ①已知向量 $\vec{a}, \vec{b}, |\vec{a}| = |\vec{b}| = 2, \exists \vec{a} \cdot \vec{b} = 2, \exists |\vec{c} - \vec{a}| = |\vec{c} - \vec{b}|$,则 $(\vec{c} - \vec{a}) \cdot (\vec{c} - \vec{b})$ 的最小值是

key:由 $|\frac{1}{2}\vec{c}-\vec{a}|$ = $|\vec{c}-\vec{b}|$ 得 $|\overline{CA_1}|$ = $2|\overline{CB}|$,

 $\therefore C$ 在以M为圆心半径为 $\frac{4\sqrt{3}}{3}$ 的圆上,如图,

$$\therefore (\vec{c} - \vec{a}) \cdot (\vec{c} - \vec{b}) = \overrightarrow{CA} \cdot \overrightarrow{CB} = \overrightarrow{CD}^2 - 1(D \to AB)$$
的中点)

$$(\overrightarrow{m}\overrightarrow{MD} = \frac{1}{2}(\vec{a} + \vec{b}) - (2\vec{a} + \frac{4}{3}(\vec{b} - 2\vec{a})) = \frac{7}{6}\vec{a} - \frac{5}{6}\vec{b}, : |\overrightarrow{MD}| = \frac{\sqrt{39}}{3})$$

$$\geq \left(\frac{4\sqrt{3}}{3} - \frac{\sqrt{39}}{3}\right)^2 - 1 = \frac{26 - 8\sqrt{3}}{3}$$

A.
$$\frac{\sqrt{17}}{2}$$
 B. 2 C. $\frac{5}{2}$ D. $\sqrt{5}$

C.
$$\frac{5}{2}$$

 $key: |\vec{2c} - \vec{a}| + |\vec{\frac{1}{2}}\vec{c} - \vec{b}| = 2|\vec{c} - \frac{1}{2}\vec{a}| + |\vec{\frac{1}{2}}|\vec{c} - 2\vec{b}| = 2|\vec{A'C}| + |\vec{\frac{1}{2}}|\vec{B'C}| = |\vec{CE}| + |\vec{CD}| \ge |\vec{DE}| = \frac{\sqrt{17}}{2}$

$$key1: |\vec{c} + \frac{1}{2}\vec{a}| + \frac{1}{2}|\vec{c} - \vec{b}| = |\overrightarrow{CA_1}| + \frac{1}{2}|\overrightarrow{CB}| = \frac{1}{2}(|\overrightarrow{CA_2}| + |\overrightarrow{CB}|) \ge \frac{1}{2}|\overrightarrow{A_2B}| = \sqrt{3}$$

$$|\vec{c} + \frac{1}{2}\vec{a}| + \frac{1}{2}|\vec{c} - \vec{b}| = |\overrightarrow{CA_1}| + \frac{1}{2}|\overrightarrow{CB}| = \frac{1}{2}(|\overrightarrow{CA_2}| + |\overrightarrow{CB}|) \le \frac{1}{2}(|\overrightarrow{A_2C_3}| + |\overrightarrow{BC_3}|) = \sqrt{7}$$

④已知 \vec{a} , \vec{b} 是平面内两个互相垂直的单位向量,若向量 \vec{c} 满足 $|\vec{c}-\vec{a}|=\frac{1}{2}$,则 $2|\vec{c}-\vec{b}|-|\vec{a}+\vec{b}-\vec{c}|$

的最大值为_

$$key$$
: 如图,2 $|\overrightarrow{c}-\overrightarrow{b}|-|\overrightarrow{a}+\overrightarrow{b}-\overrightarrow{c}|=2|\overrightarrow{BC}|-|\overrightarrow{DC}|=2|\overrightarrow{BC}|-2|\overrightarrow{CE}|$

$$=2(|\overrightarrow{BC}|-|\overrightarrow{CE}|) \leq 2(|\overrightarrow{FB}|-|\overrightarrow{FE}|) = 2|\overrightarrow{BE}| = \frac{5}{2}$$

