A Network Tour Of Data Science Final Project

Course Suggester

Cherqui Alexandre

Gusset Frédérick

El Hamamsy Laila

Triquet Thomas

Course Suggester

STUDY PLANS 2017-2018

Propedeutics Bachelor Cycle Master Cycle Minor Doctoral School

Search within coursebooks and study plans

Courses

Advanced search

2017-2018	GÉNIE ÉLECTRIQUE ET ÉLECTRONIQUE	- Spécialisations et options													Су
Codes	Matières	Enseignants sous réserve	Sections	Spécialisations				1			mestres			Crédits	Période
		de modification		A B C D	E F G	c	MA1 e	p		MA2 e	рс	MA3	p		
		de modificación	<u> </u>	X 0 C 0		٠.	-	μ	-	-	,	-	,		
E-520	Advanced analog and RF IC-design I	Enz	EL	В		2	 		\vdash	+	2	 			
E-521	Advanced analog and RF IC-design II	Enz	EL	В		-	 		2	+		1			
CS-470	Advanced computer architecture	lenne	IN	A		\vdash	_		2	+	2				
E-588	Advanced computer architecture Advanced lab in electrical energy systems	Hodder	EL		F G		 		- 	_	4 1				sem P
E-598	Advanced lab in electrical engineering	Divers enseignants	EL	A B C D			 	4	\vdash	-	4				sem A ou P
S-471	Advanced multiprocessor architecture (biennal - donné en 2017-2018)	Falsafi	IN	Α		4					1				sem A
EE-543	Advanced wireless receivers	Burg	EL	D					2	1				3	sem P
E-518	Analog circuits for biochip	Carrara/Dehollain/Skrivervik	EL	В					2	1				3	E
CS-401	Applied data analysis	West	IN			2		2	\Box	\top	2	T	2	6	Н
/IICRO-455	Applied machine learning	Billard	MT	С		4				\top	4		П	4	Н
E-548	Audio	Lissek	EL	ВС		2	1			\neg	2	1	\Box	3	H
E-554	Automatic speech processing	Bourlard	EL	С		2	1			\neg	2	1	\Box	3	H
E-519	Bioelectronics and biomedical microelectronics	Schmid	EL	В		2	1			\neg	2	1		3	
IIO-465	Biological modeling of neural networks	Gerstner	IN						2	2			П	4	
E-512	Biomedical signal procesing	Vesin	EL			4		2		\neg	4		2	6	
ICRO-561	Biomicroscopy I	Altug	SV		E	3				\neg		\top	\Box	3	
1ICRO-562	Biomicroscopy II	Altug+Seitz A.	SV		E	2	1	1	2	1	1		\Box	4	
E-517	Bio-nano-chip design	Carrara	EL			2	1			\neg	2	1		3	
E-514	Brain computer interaction	Millàn	EL						2	2				4	
E-559	Deep learning	Fleuret	EL	С					2	2				4	
S-472	Design technologies for integrated systems	De Micheli	IN	A		3		2			3		2	6	SemA
MATH-261	Discrete optimization	Eisenbrand	MA		F				2	2				5	E
CS-423	Distributed information systems	Aberer	SC		F				2	1		\top	П	4	E
E-539	Electrical filters	Dehollain	EL	В		2	1			\neg	2	1	П	3	H
E-576	Electromagnetic compatibility	Rachidi	EL		G				2	\neg			П	2	
S-473	Embedded systems	Beuchat	IN	A		2		2		\neg	2		2	4	
1E-409	Energy conversion and renewable energy	Van Herle/Haussener/Maréchal	GM		G	2	1		\Box		2	1	П	3 /	
E-466	Energy storage systems	Rufer	EL		G	2	1				2	1	П	3	
MICRO-514	Flexible bioelectronics	Lacour S.	MT	В		3					3		П	3	
MICRO-565	Fundamentals & processes for photovoltaic devices	Ballif/Haug	MT		G				2	1			П	3	
E-515	Fundamentals of biosensors and electronic biochips	Guiducci	EL	В		2	1				2	1	П	3	$\overline{}$
EE-525	HF and VHF circuits and techniques II	Dehollain	EL	В					2				П	2	-
EE-456	Hydropower plants: generating and pumping units	Avellan	GM		G	1	1				1	1	П	2	Н
EE-550	Image and video processing	Ebrahimi	EL	С		4	$\overline{}$	2	$\overline{}$	-	- 4	$\overline{}$	2	6	Н

- 2. Data Exploration
- 3. Data Exploitation
- 4. Conclusion

What is needed?

- List of all courses taken by all students between 2007 and 2016
- Standardized data, minimal cleaning required

- Enrich the data with specific course attributes
- Manually input, fastidious to standardize.

2. DataExploration

3. DataExploitation4. Conclusion

Baseline: Enrolments

Weight between two courses proportional to number of students who took both

2. DataExploration

3. Data Exploitation

4. Conclusion

Baseline: Enrolments

 Weight between two courses proportional to number of students who took both

2. DataExploration

3. Data Exploitation

4. Conclusion

Enriching: Study Plans

• Redundant with the enrolments as students tend to stick to their study plans

2. DataExploration

3. Data Exploitation

4. Conclusion

Enriching: Study Plans

• Redundant with the enrolments as students tend to stick to their study plans

2. DataExploration

3. Data Exploitation

4. Conclusion

Baseline: Enrolments

- Removing Architects
- Spectral clustering on first eigenvectors of the normalized Laplacian
- Distinction between faculties
- Distinction between sections

2. DataExploration

3. Data Exploitation

4. Conclusion

Baseline: Enrolments

- Decision to focus on the STI faculty for Master courses
- Objective: propose a diverse ensemble of courses by enriching this graph

Isolating Sections

2. DataExploration

3. Data Exploitation

4. Conclusion

Enriching: Professors

Sparse

- Largest giant component 16 due to courses with multiple professors
- Highest node degree 8

2. DataExploration

- 3. Data Exploitation
- 4. Conclusion

Enriching: Assistants

- Even more sparse
- Assistants are not necessarily specified on the course descriptions

- Largest giant component (4): due to courses with multiple assistants
- Second largest component: 3

2. DataExploration

3. Data Exploitation

4. Conclusion

Enriching: Topics

- Keywords, contents, summaries, etc...
- Topic detection to create links between courses
- Matrix factorization to get a Course x Topic matrix
- Graph constructed based on distance between courses

Topics in LDA model:

Topic #0: direct diode dimensional digital different differential difference diagnostic device development determine develop detection detail described design description dept h describe depend

Topic #1: direct diode dimensional digital different differential difference diagnostic device development determine develop detection detail described design description dept h describe depend

Topic #2: direct diode dimensional digital different differential difference diagnostic device development determine develop detection detail described design description dept h describe depend

Topic #3: 6ghz aberration ability able abstract acoustic acquaint acquire acquires acqui sition active act activity actuator add addition address adaptive advance afm

2. Data Exploration

3. Data Exploitation

4. Conclusion

Enriching: Requirements

- 3 graphs:
 - Link a course to its requirement.
 - Link the requirements of the same course.
 - Link the courses that have the same requirements.

- Courses with same requirements : not enough connections, courses recommended are irrelevant although in the same section.
- Requirements of same course : immediate neighbours are pertinent
- Course to its requirements : similar results as the requirements of the same course but with less information.

2. DataExploration

3. Data Exploitation

4. Conclusion

Enriching: Final Graph

Data	Status	Reason
Students	Kept	Baseline
Study Plans	Discarded	Same information as the enrolments
Requirements	Kept	Links based on common topics of the courses
Keywords	Discarded	Interesting but needed more information
Professors	Discarded	Too sparse
Assistants	Discarded	Too sparse

- · Weighted sum of the requirements and the baseline to obtain the final graph
- Empirical weights: not possible to do supervised learning
 - Using the probability of taking two courses would overfit the baseline graph
 - Did not have the data required to do a good metric

2. DataExploration

3. Data Exploitation

4. Conclusion

Graph Diffusion

- Low pass filter.
- Diffuse from multiple courses.
- Recommendation: sort the courses in descending order

2. Data Exploration

3. Data Exploitation

4. Conclusion

Unsupervised Spectral Clustering With K-Means

- Selection of k based on the eigenvalues of the normalized Laplacian
- Selection of k based on the silhouette analysis to assess the distance between clusters

2. Data Exploration

3. Data Exploitation

4. Conclusion

Unsupervised Spectral Clustering With GMMs

- Selection of k based on AIC and BIC citerions
- 15 clusters with BIC

2. DataExploration

3. Data Exploitation

4. Conclusion

Results

Recommendation From Automatic Speech Processing

	Results
K-means	Biomedical signal processing Microwaves Systems and architectures for signal processing Wireless receivers Image analysis and pattern recognition microwaves Speech processing
GMM soft clustering	Biomedical signal processing Image analysis and pattern recognition Systems and architectures for signal processing Microwaves Speech processing
Diffusion	Advanced machine learning Applied machine learning Biomicroscopy I Biomicroscopy II Image optics Optical communications

2. DataExploration

3. Data Exploitation

4. Conclusion

Assessment

Promising outputs

Risk of biasing the system towards popular courses

Future Improvements

Course rankings and or ratings for supervised learning

Other methods of incorporating topics in the final graph

Reinforcement learning for online adaptation