

Outline

• Chapter 5.1 Free-Electron Theory of Metals (金属自由电子论)

• Chapter 5.2 Electron Theory of Semiconductors (半导体电子论)

Objectives

- > To understand the basic properties of semiconductors.
- > To learn the classification of semiconductors.

- ➤ Semiconductors (半导体)
 - ❖ From the standpoint of **band theory**, a semiconductor is **a special insulator with a small band gap** such that the electrons at the top of the valence band can be thermally excited to the bottom of the conduction band.

Conduction band (导带):

The lowest unoccupied energy band.

Valence band (价带):

The highest occupied energy band.

Semiconductor

➤ Band Gap (带隙)

❖ Direct band gaps (直接带隙)

The wave vector k of the electronic state at the top of valence band is **the same** as the wave vector k' at the bottom of the conduction band.

$$k = k'$$

Direct bandgap semiconductors (直接带隙半导体):

Direct bandgap Semiconductors	GaAs	InAs	PbS	
E_{g} (eV)@0K	1.52	0.43	0.29	

➤ Band Gap (带隙)

❖ Indirect band gaps (间接带隙)

The wave vector k of the electronic state at the top of valence band is **different from** the wave vector k' at the bottom of the conduction band.

$$k \neq k'$$

Indirect bandgap semiconductors (间接带隙半导体):

Indirect bandgap Semiconductors	Diamond	Si	Ge	
E _g (eV)@0K	5.4	1.17	0.74	

- ➤ Charge Carriers (载流子)
 - ❖ Electrons and Holes (电子与空穴)

The charge carriers in conduction band are **electrons** (电子).

The charge carriers in valence band are holes (空穴).

➤ Charge Carriers (载流子)

- ❖ Effective mass of charge carriers (载流子有效质量)
 - **Effective mass** m^* **at the band edges (带边有效质量)** represents an important parameter for semiconductors.

$$\frac{1}{m_{\alpha}^*} = \frac{1}{\hbar^2} \frac{\partial^2 E}{\partial k_{\alpha}^2}$$

The energy dispersion at the band edges can be approximately expressed as:

$$E(k) \approx E(k_0) + \frac{\hbar^2 (k_x - k_{0x})^2}{2m_x^*} + \frac{\hbar^2 (k_y - k_{0y})^2}{2m_y^*} + \frac{\hbar^2 (k_z - k_{0z})^2}{2m_z^*}$$

➤ Charge Carriers (载流子)

- ❖ Effective mass of charge carriers (载流子有效质量)
 - Effective masses m^* have significant impacts on both the **electrical conductivity** (电导率) and **mobility** (迁移率) of charge carriers in semiconductors:

Conductivity:
$$\sigma = \frac{ne^2\tau}{m^*}$$

Mobility:
$$\mu = \frac{e\tau}{m^*}$$
 $\sigma = ne\mu$

➤ Charge Carriers (载流子)

❖ Effective mass of charge carriers (载流子有效质量)

The charge-carrier effective masses of real semiconductors (m_0 denotes electron rest mass):

m^*/m_0	Si	Ge	GaAs	InSb	ZnO
$m_{ m e}^*$ (electron)	1.09	0.55	0.067	0.013	0.29
$m_{ m h}^*$ (hole)	1.15	0.37	0.45	0.6	1.21

- ➤ Charge Carriers (载流子)
 - ❖ Statistics of charge carriers (载流子统计分布)
 - The Fermi level E_f of semiconductors is **in band gap**:

Fermi distribution of charge carriers:

$$f(E) = \frac{1}{e^{(E-E_{\rm f})/k_{\rm B}T} + 1}$$

➤ Charge Carriers (载流子)

- ❖ Statistics of charge carriers (载流子统计分布)
 - In band gap of semiconductors, the position of Fermi level is usually far from band edges:

$$E_{\rm c} - E_{\rm f} \gg k_{\rm B}T$$
 $E_{\rm f} - E_{\rm v} \gg k_{\rm B}T$

As a result, charger carriers at band edges approximately obey **Boltzmann distribution**:

$$f(E) = \frac{1}{e^{(E-E_f)/k_BT} + 1}$$

$$f(E) \approx e^{-(E-E_f)/k_BT}$$

- ➤ Charge Carriers (载流子)
 - ❖ Density of charge carriers (载流子密度)
 - lacktriangledown At thermal equilibrium, the density of electrons $n_{
 m e}$ and holes $n_{
 m h}$ satisfies:

$$n_{\rm e}n_{\rm h}=N_{\rm c}N_{\rm v}{\rm e}^{-E_{\rm g}/k_{\rm B}T}$$

It suggests that the more electrons in the conduction band, the less holes in the valence band, and vice versa.

➤ Dopants (掺杂物)

A dopant is an **impurity element** intentionally inserted into a solid/crystal in order to modify the electrical, optical, and magnetic properties of the material.

An impurity atom of **P** is introduced to replace a **Si** atom in a silicon crystal.

➤ Dopants (掺杂物)

❖ Electron donors (电子施主):

- A dopant that donates electrons to the doped semiconductors;
- The energy level of an electron donor is in the band gap and more close to the edge of conduction band;
- The electrons of donor levels can be thermally activated to conduction band at finite temperature.

➤ Dopants (掺杂物)

- ❖ Electron acceptors (电子受主):
 - A dopant that accepts electrons from the doped semiconductors;
 - The energy level of an electron acceptor is in the band gap and more close to the edge of valence band;
 - The electrons of valence band can be thermally activated to acceptor levels at finite temperature.

- ➤ Dopants (掺杂物)
 - ❖ The dopant energy levels with respect to the band structures of semiconductors:

OF THE ONE OF THE PROPERTY OF

- ➤ Intrinsic and Extrinsic Semiconductors (本征与非本征半导体)
 - ❖ Intrinsic semiconductors (本征半导体)

■ Undoped semiconductors (未掺杂半导体);

The Fermi level is in the middle of band gap;

The amounts of electrons and holes are equal.

Conduction Band

*E*_f -----

Valence Band

- ➤ Intrinsic and Extrinsic Semiconductors (本征与非本征半导体)
 - ❖ Extrinsic semiconductors (非本征半导体)

■ Doped semiconductors (掺杂半导体);

The Fermi level is more close to conduction band (N-type) or valence band (P-type);

■ There are more electrons in N-type semiconductors (N型半导体) and more holes in P-type semiconductors (P型半导体).

NOWG UNIVERSITY

- ➤ Intrinsic and Extrinsic Semiconductors (本征与非本征半导体)
 - ❖ Extrinsic semiconductors (非本征半导体)

➤ Hall Effect (霍尔效应)

The generation of transverse voltage by longitudinal electric current and perpendicular

➤ Hall Effect (霍尔效应)

❖ The Hall effect is usually used to probe the types (electron or hole) and density of charge carriers in semiconductors.

Hall voltage (霍尔电压):

Hall coefficient (霍尔系数):

$$V_{\rm H} = \frac{BI}{ned} = R \frac{BI}{d}$$

$$R = \frac{1}{ne}$$

$$n=\frac{1}{Re}$$

Quantum AHE

(2013)

➤ Hall Effect (霍尔效应)

Q. K. Xue 薛其坤

(1963-)

Chinese Physicist

❖ The Hall effect family (霍尔效应家族) Nobel Prize in Physics 1985 Quantum HE (1980)K. von Klitzing (1943-)**Fractional** Quantum German Physicist SHE QHE (2007)(1982)S. C. Zhang 张首晟 (1963-2018) Nobel Prize in Physics 1998 HE Chinese-American Theoretical Physicist (1879)**Anomalous Spin HE** HE (2004)(1881)

D. Tsui 崔琦 (1939-)American Physicist Chinese-American Physicist

H. L. Stormer

(1949-)

R. B. Laughlin

(1950-)

American Physicist

Summary (总结)

> Summary

- **!** Important properties of semiconductors:
 - Band gap
 - Charge-carrier types: electrons and holes
 - Charge-carrier effective mass at band edges
 - Dopants

- Classification of semiconductors:
 - Intrinsic semiconductors
 - Extrinsic semiconductors
 - N-type semiconductors
 - o **P-type** semiconductors

Thank you!