TI.

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΏΝ ΜΑΘΗΜΑΤΙΚΏΝ & ΦΥΣΙΚΏΝ ΕΠΙΣΤΗΜΏΝ ΤΟΜΕΛΣ ΜΑΘΗΜΑΤΙΚΏΝ

Στοχαστικές Ανελίξεις- 4 Σεπτεμβρίου 2012

ΑΣΚΗΣΗ 1 Έστω X τυχαία μεταβλητή με ροπογεννήτρια συνάρτηση $g(s) = \mathbb{E}[e^{sX}], s \in S \subset \mathbb{R}$.

α) Αν c είναι μια θετική σταθερά αποδείξτε την ανισότητα Chernoff:

$$\mathbb{P}[X \ge c] \le e^{-cs} g(s) \quad \text{yia } s > 0.$$

- β) Ποια είναι η αντίστοιχη ανισότητα για την $\mathbb{P}[X \leq c]$ και για s < 0;
- γ) Έστω T η διάρκεια ενός απλού συμμετρικού τυχαίου περιπάτου $\{X_n\}_{n=0,1,\dots}$ με απορροφητικά φράγματα στις θέσεις -a και b, για κάποια $a,b\in\mathbb{N}$. Να δείξετε ότι ισχύει η σχέση $\mathbb{E} \left[\begin{array}{ccc} T \mid X_0=0 \end{array} \right] = ab$.

ΑΣΚΗΣΗ 2 Στο μοντέλο διάχυσης Ehrenfest τα μόρια ενός αερίου διαπερνούν μια μεμβράνη που χωρίζει το δοχείο σε δύο περιοχές A και B. Ας είναι C ο συνολικός αριθμός των μορίων που βρίσκονται εντός του δοχείου και X_n ο αριθμός των μορίων στην περιοχή A κατά τη χρονική στιγμή t=n. Δίνεται ότι $X_{n+1}=X_n-1$ με πιθανότητα X_n/C και $X_{n+1}=X_n+1$ με πιθανότητα $(C-X_n)/C$. Ορίζουμε*

$$M_n = \mathbb{E}\big[X_n \mid X_0\big] \quad \text{for} \quad P_n = \mathbb{E}\big[X_n(C-X_n) \mid X_0\big], \ n=0,1,2,\dots.$$

α) Να δείξετε ότι ισχύουν οι παρακάτω αναδρομικές σχέσεις

$$M_{n+1} = \left(1 - \frac{2}{C}\right)M_n + 1$$
 xau $P_{n+1} = \left(1 - \frac{4}{C}\right)P_n + C - 1, \ n = 0, 1, 2, \dots$

 β) Να προσδιορίσετε την δεσμευμένη μέση τιμή και την δεσμευμένη διασπορά της X_n με δεδομένη την αρχική κατάσταση X_0 .

ΑΣΚΗΣΗ 3 α) Αντικαταστήστε τα σύμβολα * με αριθμούς ώστε ο πίνακας

$$P = \begin{pmatrix} 0 & 3/4 & * & 0 & 0 & 0 & 0 \\ 3/4 & 0 & 0 & 1/11 & * & 0 & 0 \\ 0 & 1/2 & 1/4 & 1/4 & * & * & * \\ * & * & * & 1 & * & * & * \\ 0 & 0 & 0 & 0 & 1/5 & 1/5 & * \\ 0 & 0 & 0 & 0 & 1/10 & 1/5 & * \\ * & * & * & * & 1/3 & 1/3 & 1/3 \end{pmatrix}$$

να είναι πίνακας πιθανοτήτων μετάβασης μιας μαρκοβιανής αλυσίδας $\{X_n\}_{n\in\mathbb{N}}$ στο σύνολο καταστάσεων $\mathbb{X}=\{1,2,\ldots,7\}$, και $P_{ij}=\mathbb{P}\big[X_{n+1}=j\mid X_n=i\big]$ για κάθε $i,j\in\mathbb{X}$ και $n\in\mathbb{N}$.

- β) Ταξινομήστε τις καταστάσεις σε κλάσεις επικοινωνίας. Ποιες κλάσεις είναι παροδικές και ποιες επαναληπτικές;
- γ) Για κάθε σύνολο $A \subset \mathbb{X}$ ορίζουμε τον χρόνο πρώτης άφιξης στο $A, T_A = \inf\{k \in \mathbb{N}: X_k \in A\}$. Ποια είναι η δεσμευμένη πιθανότητα $\mathbb{P}[T_{\{7\}} < T_{\{4\}} \mid T_{\{5,6,7\}} < T_{\{4\}}];$ Δικαιολογήστε την απάντησή σας.
- δ) Αν $X_1=1$, υπολογίστε τις πιθανότητες $\mathbb{P}ig[T_{\{5,6,7\}} < T_{\{4\}}ig]$ και $\mathbb{P}ig[T_{\{7\}} < T_{\{4\}}ig]$.

 $\mathbf{A}\Sigma\mathbf{K}\mathbf{H}\Sigma\mathbf{H}$ 4 Έστω $\{X_n\}_{n=0,1,\dots}$ μαρχοβιανή αλυσίδα στο σύνολο καταστάσεων $\mathbb{X}=\{0,1,2,\dots\}$, με πιθανότητες μετάβασης $p_{i,j}=\mathbb{P}\big[X_{n+1}=j\mid X_n=i\big],\ i,j\in\mathbb{X},\ n\geq 0.$

α) Αν $T_0=\inf\{n\geq 0: X_n=0\}$ είναι ο χρόνος πρώτης άφιξης στο 0, αποδείξτε χρησιμοποιώντας την μαρχοβιανή ιδιότητα ότι η συνάρτηση $h:\mathbb{X}\to [0,1]$ με $h(x)=\mathbb{P}\big[T_0<+\infty\mid X_0=x\big]$ ιχανοποιεί την εξίσωση

$$\phi(x) = \sum_{y \in \mathbb{X}} p_{x,y} \ \phi(y), \ \forall x \in \mathbb{N}. \eqno(*)$$

- β) Αν για κάθε $k \in \mathbb{N}$ έχουμε $p_{k,k+1} + p_{k,k+1} = 1$ και $p_{k,k+1} = \left(\frac{k+1}{k}\right)^2 p_{k,k-1}$, δείξτε για κάθε συνάρτηση $\phi : \mathbb{X} \to \mathbb{R}$ που ικανοποιεί την εξίσωση (*) του ερωτήματος (α) η ποσότητα $k^2 \left(\phi(k-1) \phi(k)\right)$ είναι ανεξάρτητη του k.
- γ) Θεωρώντας γνωστό ότι $\sum_{k=1}^{\infty}k^{-2}=\pi^2/6$, αποδείξτε ότι $h(k)=1-\frac{6}{\pi^2}\sum_{m=1}^k\frac{1}{m^2}$ για κάθε $k\in\mathbb{N}$.
- δ) Αν $p_{0,1}=1$, είναι το 0 παροδική ή επαναληπτική κατάσταση; Δ ικαιολογήστε την απάντησή σας.

Διάρχεια Εξέτασης 2 ώρες χαι 30 λεπτά