Introducción a la Inteligencia Artificial Clase 6

Índice

Índice

- 1. Motivación
 - a. Aprendizaje No supervisado
 - b. Aplicaciones
- 2. kMeans
- 3. Teoría Principal Component Analysis
 - a. Concepto
 - b. Demostración Matemática

Algoritmos no supervisados

Aprendizaje no supervisado

en ml suppuedo definir un concepto al en me un sur concepto un teremos un concepto si un daro de ecror, si un que vomos a usar de mediclas de mediclas de celegiación (elegiación

Machine Learning Supervisado	Machine Learning no Supervisado Proceso aleatorio 🔻	
Proceso aleatorio \bar{X}, y		
$i f_{y/\bar{x}}(y \bar{x})? \longrightarrow \text{Bayes y M.V.}$	$i_{\bar{x}}f_{\bar{x}}(\bar{x})$? Bayes y M.V.	
Inferencias, predicciones	Clusterización, Reducción Dimensionalidad	

métricas de celajación / equilibrio métricas de designaldod en k means $U = \frac{\text{Varianza intra grapo}}{\text{Varianza entre grapos}}$

fiuba FACULTAD DE INGENIERÍA

Aplicaciones Generales

- Data Mining
- Pattern Recognition
- Statistical Analysis

Aplicaciones Específicas

- Density Estimation
- Clustering
- Anomaly Detection
- Object Tracking
- Speech Feature Extraction

Anomaly & oother

Clustering

La clusterización o clustering, es el proceso de agrupar objetos en grupos de manera que sean más similares entre sí que con los objetos de otros clusters.

Para generar estos grupos existen diferentes técnicas y diferentes medidas de similaridad.

kMeans

K-means es uno de los algoritmos más básicos en Machine Learning no supervisado. Es un algoritmo de **clusterización**, que agrupa los datos que comparten características similares. Recordemos que entendemos datos como n realizaciones del vector aleatorio X.

El algoritmo K-means funciona de la siguiente manera:

- 1. El usuario selecciona la cantidad de clusters a crear (n).
- 2. Se seleccionan n elementos aleatorios de X como posiciones iniciales del los centroides C.
- 3. Se calcula la distancia entre todos los puntos en X y todos los puntos en C.
- 4. Para cada punto en X se selecciona el centroide más cercano de C.
- 5. Se recalculan los centroides C a partir de usar las filas de X que pertenecen a cada centroide.
- 6. Se itera entre 3 y 5 una cantidad fija de veces o hasta que la posición de los centroides no cambie.

Implementar la función $def k_means(X, n)$ de manera tal que al finalizar devuelva la posición de los centroides y a qué cluster pertenece cada fila de X.

Hint: para (2) utilizar funciones de np.random, para (3) y (4) usar los ejercicios anteriores, para (5) es válido utilizar un for. Iterar 10 veces entre (3) y (5).

d (ti, tc) ms Euclideana ms Manhattan his city block Xc, doc $d(x_i, x_c) = \frac{1}{z} (x_{ij} - x_{cj})^2$ K means es volido poca \(\times = 12 \) = 11 ti-ta112

$$W(c) = \frac{1}{2} \sum_{k=1}^{K} \sum_{C(i)=k} \sum_{C(i')=k} ||x_i - x_{i'}||^2 \text{ mo min } W$$

pay 329 Elements of Statiscal Learning

buseamus: arg min
$$\frac{k}{2}$$
 $=$ $||x-y||^2 = arg min $\frac{k}{2}$ $||s||$ $||s||$$

arg min
$$\frac{k}{2}$$
 $\frac{1}{|s_i|}$ $\frac{1}{|s_i|}$ $\frac{1}{|s_i|}$ $\frac{1}{|s_i|}$ $\frac{1}{|s_i|}$ BCSS between cluster sum of squares

Algoritmo estandor:

- etapa de asignoción: Aca labeleamos barrolo en su centroide más cercano.

$$S_{i}^{(t)} = \left\{ x_{p} : \| x_{p} - m_{i}^{(t)} \|^{2} \leq \| x_{p} - m_{j}^{(t)} \|^{2} \quad \forall j, \ 1 \leq j \leq k \right\}$$

proceso de opdate: revolutamos la media de carla duster: $m_i^{(++1)} = \frac{1}{|S_i^{(+)}|} \sum_{\kappa_j \in S_i^{(+)}} \kappa_j$

$$\Delta m = m_i^{(t+1)} - m_i^{(t)} \sim 0$$

. Si relesitamos extender la capacicloil de clusterización con Vor. no minéricas mos K-proto, K-median, K-medoids

0.9

kMeans - Image segmentation

kMeans en R3

Reducción de dimensionalidad

El objetivo de los modelos de reducción de dimensionalidad es encontrar una "mejor" representación de los datos.

Con "mejor" nos referimos a una representación que preserve la mayor cantidad de información posible de los datos, bajo una determinada penalidad o restricción, que haga que la representación sea más accesible o simple.

Ejemplos de representaciones más simples:

- Representación de menor dimensionalidad
- Representación sparsa
- Representación independiente

Ingeniería de Features - PCA

En ocasiones los datos de entrada tienen muchas features y se torna costoso en tiempo y recursos entrenar modelos de ML con todo el dataset. En la práctica se pueden utilizar técnicas de reducción de la dimensión no supervisadas como PCA (Principal Component Analysis).

Casos de Uso

- Compresión de datos
- Identificación de patrones
- Factores latentes
- Visualización

Conocimientos Previos

- Bases y cambio de bases
- Proyecciones
- Valores y vectores propios
- Distribución gaussiana
- Optimización con restricciones

PCA

Queremos encontrar proyecciones ... de observaciones de datos ..., que sean lo más similares posibles a los originales, pero con significativamente menos dimensiones.

PCA

Dado un dataset i.i.d:

$$\chi = \{x_1, \cdots, x_N\}, x_N \in \mathbb{R}^D$$

con **media cero**, la matriz de covarianza es:

$$S = \frac{1}{N} \sum_{n=1}^{N} x_n x_n^T$$

mulicos		
x_{11}	 	x_{1n}
x_{d1}	 	x_{dn}

Definimos transformaciones lineales:

$$z_n = B^T x_n \in \mathbb{R}^M$$
 $M \leqslant D$

$$B = [b_1, \cdots, b_m] \in \mathbb{R}^{DxM}, b_i^T b_i = 0 \ \forall \ i \neq j$$

PCA

Buscamos un subespacio

$$U \subseteq \mathbb{R}^D / \dim(U) = M < D$$

donde proyectar los datos. Es decir encontrar para:

$$\tilde{x}_n \in \mathbb{R}^D$$

$$\begin{bmatrix} z_n \\ [b_1, \cdots, b_m] \end{bmatrix}$$

- i. Enfoque de máxima varianza
- ii. Enfoque de error de reconstrucción mínimo
- iii. Enfoque de variables latentes

Jamboard - Desarrollo Matemático PCA

- Introducción
- Enfoque de maximización de varianza
- Enfoque de minimización de error de reconstrucción
- Enfoque por variables latentes

De sorrollo matemático de PCA:

buscamos una proyección $\tilde{\chi}_n$ de mis datos originales χ_n / $dim(\tilde{\chi}_n)$ \leq $dim(\chi_n)$

. It es el clotoset int $\Lambda \times ER^{\circ} \wedge U_{\mathcal{X}} = \beta$

, matriz cle cov es : $5 = \frac{1}{N} \sum x_n x_n^t$

Metoclo de maxima varianza: buscamus naximiza la varianza en ma dimensión inferior

Partimos con una columna de B (R^{MXD}), b₁ ER^D Lo maximazamos la vorianza de Z₁ de ZER^M:

 $Var[2] = Var[B^{t}(x-u)] = Var[B^{t}x - B^{t}u] = Var[B^{t}x]$

$$\begin{aligned} &\text{Vor}_1 = \text{Var}\left[\ \mathcal{Z}_{1n} \right] = \frac{1}{N} \ \frac{1}{N} \ \frac{1}{N} \ \mathcal{Z}_{2n}^2 \ ; \qquad &\text{Z}_{2n} = b_1^{t} \ k_{2n} \end{aligned}$$

$$&\text{Vor}_1 = \frac{1}{N} \ \frac{N}{i = a} \left(b_1^{t} \cdot \lambda_n \right)^2 = \frac{1}{N} \ \frac{N}{i = a} \left(b_2^{t} \cdot \lambda_n \right)^t \left(b_1^{t} \cdot \lambda_n \right) \ \lambda_1 \ \text{en el sub esp uniclimansian formulo por b_1}$$

$$&= \frac{1}{N} \ \frac{N}{i = a} \ b_1^{t} \ \lambda_n \ \lambda_n^{t} \ b_1 = b_1^{t} \ \frac{1}{N} \ \frac{N}{i = a} \ \lambda_n \lambda_n^{t} \ b_1$$

$$&\text{Vor}_1 = b_2^{t} \ S \cdot b_1 \qquad \text{Si annewlo b_1} \ \Rightarrow \ \text{incremento Var_1}$$

$$&\text{Objetivo:} \ \text{max} \ b_1^{t} \ S \ b_2 \ , \ \text{11b_1 11 = 1} \ \text{maximization conditionals}$$

$$&\text{L}\left(b_2, \lambda_1 \right) = b_1^{t} \ S \ b_2 \ + \lambda_1 \left(1 - b_2^{t} \ b_2 \right)$$

$$&\text{Al} \ l = 0 \ \Rightarrow \ 1 - b_2^{t} \ b_2 = 0 \ \Rightarrow \ b_1^{t} \ b_2 = 1$$

$$&\text{Al} \ l = 0 \ \Rightarrow \ 1 - b_2^{t} \ b_2 = 0 \ \Rightarrow \ b_1^{t} \ b_2 = 1$$

(2) -0 2 b_1 ^t 3 - 2 λ_1 b_1 ^t = 0 $(b_1$ ^t s)^t = $(\lambda_1$ b_1 ^t) $s^t \cdot b_1 = b_1$ λ_1 ^t $s^t \cdot b_1 = \lambda_1$ Vector propio cle s $s \cdot b_1 = \lambda_1$ $s \cdot b_1 = \lambda$ $s \cdot b_1 = \lambda$ $s \cdot b_1$ $s \cdot b_1 = \lambda_1$ Volor propio

ms selectioner les autorectures asociales a les mantovolores mos granules de la matriz de covarianza.

con esto:
$$\begin{cases} - \text{ Varianza explicata} : \sum_{i=1}^{M} A_i \\ - u \text{ perticla} : \sum_{i=m+2}^{\infty} A_i \\ - i \text{ perticla} : \sum_{i=m+2}^{\infty} A_i \end{cases}$$

M es un parametro de mastro models.

PCA

Comparación métodos 1 y 2.

PCA

Pasos principales:

- 1. Centramos los datos
- 2. Estandarización
- 3. Autovalores de la matriz de covarianza
- 4. Proyección

$$z_n = B^T x_n$$

(b) Step 1: Centering by subtracting the mean from each

data point.

(c) Step 2: Dividing by the standard deviation to make the data unit free. Data has variance 1 along each axis.

(d) Step 3: Compute eigenvalues and eigenvectors (arrows) of the data covariance matrix (ellipse).

(e) Step 4: Project data onto the principal subspace.

(f) Undo the standardization and move projected data back into the original data space from (a).

PCA

Derivaciones

Zn =
$$\beta(B^t x_n)$$
 + Kervel - PCA
e.fn. Kervel

- Si en PCA cambiamos el mapeo lineal por uno no-lineal, obtenemos un auto-encoder. Si el mapeo no-lineal es una red neuronal, tenemos un deep auto-encoder.
- Cuando la varianza del ruido gaussiano es cero, PPCA → PCA.
- Si para cada dimensión, el ruido tiene una varianza distinta → Factor Analysis.
- Si cambiamos la distribución a priori de z por una no gaussiana → ICA

PCA

Limitaciones

Principal Component Analysis - Práctica

PCA - Ejemplo

PCA

Bibliografía

Bibliografía

- The Elements of Statistical Learning | Trevor Hastie | Springer
- An Introduction to Statistical Learning | Gareth James | Springer
- Deep Learning | Ian Goodfellow | https://www.deeplearningbook.org/
- Stanford | CS229T/STATS231: Statistical Learning Theory | http://web.stanford.edu/class/cs229t/
- Mathematics for Machine Learning | Deisenroth, Faisal, Ong
- Artificial Intelligence, A Modern Approach | Stuart J. Russell, Peter Norvig

