

Packet Tracer – Redundância do roteador e do switch

Tabela de Endereçamento

Dispositivo	Endereço IP	Máscara de sub-rede	Gateway padrão	Site
Servidor externo da Web	209,165.201,10	255.255.255.0	N/D	Internet
R1	10.44.1.2	255.255.255.0	N/D	Metropolis Bank HQ
R2	10.44.1.3	255.255.255.0	N/D	Metropolis Bank HQ
Computador do Phil	10.44.1.12	255.255.255.0	10.44.1.1	Metropolis Bank HQ
Computador do Tim	10.44.2.11	255.255.255.0	10.44.2.1	Gotham Healthcare Branch

Objetivos

Parte 1: Observe um failover de rede com roteadores redundantes.

Parte 2: Observe um failover de rede com switches redundantes.

Histórico

Nessa atividade, você observará o failover com sucesso da rede do Metropolis, utilizando vários roteadores para fornecer redundância do gateway padrão. Depois disso, no mundo todo, você observará o failover com sucesso da rede da rede do Gotham, utilizando vários switches para fornecer caminhos de rede redundantes. O endereçamento IP, a configuração de rede e as confirmações de serviço já estão preenchidos. Você usará os dispositivos clientes nas diferentes regiões geográficas para testar os caminhos, antes e depois de um failover com sucesso da rede.

Parte 1: Observe um failover de rede com roteadores redundantes.

Passo 1: Acesse o command prompt (prompt de comando) no computador do Phil.

- a. Clique no site Metropolis Bank HQ e clique no laptop do Phil.
- b. Clique na guia Desktop (Área de Trabalho) e depois clique em Command Prompt (Prompt de Comando).

Passo 2: Trace o caminho para o servidor externo da Web.

- a. Pingue o servidor **externo da Web** na **Internet** digitando **ping 209.165.201.10** no command prompt (prompt de comando).
- b. Trace o caminho para o servidor **externo da Web** na **Internet** digitando **tracert 209.165.201.10** no command prompt (prompt de comando).
- c. Cada endereço IP mostrado na saída do comando tracert é um dispositivo de rede que o tráfego de rede está cruzando.
 - Quais são os endereços IP dos dispositivos que o tráfego do notebook de Phil está cruzando para atingir o servidor externo da Web?

O primeiro endereço da saída tracert é o gateway padrão (ponto de saída) da rede.

d. Comparando a saída do comando **tracert** com a Tabela de endereçamento no início deste laboratório, qual roteador está funcionando como o gateway padrão?

Passo 3: Cause um failover da rede.

- a. No site Metropolis Bank HQ, clique no switch HQ_S1.
- b. Clique na guia CLI.
- c. Desative a porta de uplink Gig0/2 usando os seguintes comandos:

enable
configure terminal
interface GigabitEthernet0/2
shutdown

Passo 4: Trace o caminho para o servidor externo da Web novamente.

- a. No site Metropolis Bank HQ, clique no notebook Phil.
- b. Clique na guia Desktop (Área de Trabalho) e depois clique em Command Prompt (Prompt de Comando).
- c. Pingue o servidor **externo da Web** na **Internet** digitando **ping 209.165.201.10** no command prompt (prompt de comando).
- d. Trace o caminho para o servidor **externo da Web** na **Internet** digitando **tracert 209.165.201.10** no command prompt (prompt de comando).
 - Cada endereço IP mostrado na saída do comando **tracert** é um dispositivo de rede que o tráfego de rede está cruzando.
 - Quais são os endereços IP dos dispositivos que o tráfego do notebook de Phil está cruzando para atingir o servidor externo da Web?
- e. O primeiro endereco da saída tracert é o gateway padrão (ponto de saída) da rede.
 - Qual roteador está agora funcionando como o gateway padrão atual?

f. No **Command Prompt** (Prompt de comando), digite o comando **ipconfig**. O gateway padrão é listado como 10.44.1.1, que não é nem 10.44.1.2 da primeira vez que o comando tracert foi dado, nem 10.44.1.3 da segunda vez que o comando tracert foi dado. Isso mostra que o gateway padrão de 10.44.1.1 é, na verdade, roteado pelos roteadores redundantes com diferentes endereços IP, roteador R1 em 10.44.1.2 ou roteador R2 em 10.44.1.3, se R1 não estiver disponível.

Parte 2: Observe um failover de rede com switches redundantes.

Passo 1: Acesse o command prompt (prompt de comando) no computador do Tim.

- a. Clique no site Gotham Healthcare Branch e, em seguida, clique no computador Tim.
- b. Clique na guia **Desktop (Área de Trabalho)** e depois clique em **Command Prompt (Prompt de Comando)**.

Passo 2: Trace o caminho para o servidor externo da Web.

- a. Pingue o servidor **externo da Web** na **Internet** digitando **ping 209.165.201.10** no command prompt (prompt de comando).
- b. Para observar o failover da rede, um ping constante pode ser usado.

Pingue o servidor **externo da Web** com um ping constante digitando **ping -t 209.165.201.10** no command prompt (prompt de comando).

Minimize a janela do computador do Tim.

Passo 3: Cause um failover da rede.

- a. No site Gotham Healthcare Branch, clique no switch S3.
- b. Clique na guia CLI.
- c. Desative a porta de uplink Gig0/2 usando os seguintes comandos:

```
enable
configure terminal
interface GigabitEthernet0/2
shutdown
```

Passo 4: Trace o caminho para o servidor externo da Web novamente.

- a. No site Gotham Healthcare Branch, maximize a janela do computador do Tim.
- Aguarde cerca de 30 a 60 segundos. Você também pode observar as luzes do link do switchport na rede do Gotham Healthcare Branch.
- c. A saída no computador do Tim deve ser semelhante à seguinte:

```
PC> ping -t 209.165.201.10
Pinging 209.165.201.10 with 32 bytes of data:
Reply from 209.165.201.10: bytes=32 time=47ms TTL=126
Reply from 209.165.201.10: bytes=32 time=42ms TTL=126
Reply from 209.165.201.10: bytes=32 time=42ms TTL=126
Reply from 209.165.201.10: bytes=32 time=43ms TTL=126
Solicitação interrompida.
Reply from 209.165.201.10: bytes=32 time=41ms TTL=126
Reply from 209.165.201.10: bytes=32 time=42ms TTL=126
Reply from 209.165.201.10: bytes=32 time=42ms TTL=126
```

d. Feche a janela.

O cabo que os dados estavam cruzando durante o ping com sucesso responde **antes** da mensagem "Tempo de solicitação esgotado" aparecer?

O cabo que os dados estavam cruzando durante o ping com sucesso responde **depois** da mensagem "Tempo de solicitação esgotado" aparecer?

e. O que esse cenário prova sobre a redundância de failover do switch quando uma porta Gigabit Ethernet é fechada de repente?

Pontuação Sugerida

Seção da Atividade	Etapa da Pergunta	Pontos Possíveis	Pontos Obtidos
Parte 1: Observe um	Etapa 2	10	
failover de rede com roteadores redundantes	Etapa 2	10	
	Etapa 4	10	
	Etapa 4	10	
Parte 2: Observe um	Etapa 4	5	
failover de rede com	Etapa 4	5	
switches redundantes	Etapa 4	10	
	Perguntas	60	
Pontuação do	40		
Р	100		