21. fejezet: Mátrixok diagonalizálhatósága

Matematikai alapozás, 2023-2024/I.

Mátrixok hasonlósága

Legyen $A, B \in \mathbb{K}^{n \times n}$. Azt mondjuk, hogy B hasonló az A-hez (jel.: $A \sim B$), ha

$$\exists C \in \mathbb{K}^{n \times n}$$
 : $\det(C) \neq 0, B = C^{-1}AC$

Megjegyzés: A hasonlóság szimmetrikus tulajdonság: $A \sim B \iff B \sim A$.

Ha
$$A \sim B$$
, akkor $P_A \equiv P_B$.

Megjegyzés: Ha $A \sim B$, akkor ugyanazok a sajátértékeik.

Bizonyítás. Hasonlóság $\Longrightarrow B = C^{-1}AC$. Így:

$$P_B(\lambda) = \det(B - \lambda I)$$

$$= \det(C^{-1}AC - \lambda I)$$

$$= \det(C^{-1}AC - \lambda C^{-1}C)$$

$$= \det(C^{-1}(A - \lambda I)C)$$

$$= \det(C) \cdot \det(A - \lambda I) \cdot \det(C)$$

$$= \det(C) \cdot \det(C^{-1}) \cdot \det(A - \lambda I)$$

$$= \det(A - \lambda I)$$

$$= P_A(\lambda) \qquad (\lambda \in \mathbb{K})$$

Diagonalizálhatóság

Azt mondjuk, hogy egy $A \in \mathbb{K}^{n \times n}$ mátrix diagonalizálható \mathbb{K} felett, ha

$$\exists C \in \mathbb{K}^{n \times n}$$
 : $\det(C) \neq 0$, $C^{-1}AC$ diagonális.

A $D := C^{-1}AC$ mátrixot az A diagonális alakjának nevezzük, a C mátrixot pedig a diagonalizáló mátrixnak.

Kérdés: Hol vannak az A diagonalizálható mátrix sajátértékei?

Legyen $A \in \mathbb{K}^{n \times n}$. A pontosan akkor diagonalizálható \mathbb{K} felett, ha létezik sajátbázisa \mathbb{K}^n -ben.

Bizonyítás: (\Longrightarrow) Tfh. A diagonalizálható: $\exists C \in \mathbb{K}^{n \times n}$ invertálható és $D \in \mathbb{K}^{n \times n}$ diagonális mátrix úgy, hogy

$$C^{-1}AC = D$$

$$C = \begin{bmatrix} c_1 & \dots & c_n \end{bmatrix}$$

Megmutatjuk, hogy $c_1, \ldots, c_n \in \mathbb{K}^n$ SB \mathbb{K}^n -ben.

$$\det(C) \neq 0 \implies c_1, \dots, c_n(\widehat{F}) \implies c_1, \dots, c_n(\widehat{B})$$

$$C^{-1}AC = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} =: D$$

$$C^{-1}AC = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} =: D$$

$$AC = CD$$

$$C^{-1}AC = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} =: D$$

$$AC = CD$$

$$A \begin{bmatrix} c_1 & \dots & c_n \end{bmatrix} = \begin{bmatrix} c_1 & \dots & c_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$$

$$C^{-1}AC = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} =: D$$

$$AC = CD$$

$$A \begin{bmatrix} c_1 & \dots & c_n \end{bmatrix} = \begin{bmatrix} c_1 & \dots & c_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$$

$$\begin{bmatrix} Ac_1 & \dots & Ac_n \end{bmatrix} = \begin{bmatrix} \lambda_1 c_1 & \dots & \lambda_n c_n \end{bmatrix}$$

$$C^{-1}AC = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} =: D$$

$$AC = CD$$

$$A \begin{bmatrix} c_1 & \dots & c_n \end{bmatrix} = \begin{bmatrix} c_1 & \dots & c_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$$

$$\begin{bmatrix} Ac_1 & \dots & Ac_n \end{bmatrix} = \begin{bmatrix} \lambda_1 c_1 & \dots & \lambda_n c_n \end{bmatrix}$$

$$Ac_j = \lambda_j c_j \qquad (j = 1, \dots, n)$$

$$C^{-1}AC = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} =: D$$

$$AC = CD$$

$$A \begin{bmatrix} c_1 & \dots & c_n \end{bmatrix} = \begin{bmatrix} c_1 & \dots & c_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$$

$$\begin{bmatrix} Ac_1 & \dots & Ac_n \end{bmatrix} = \begin{bmatrix} \lambda_1 c_1 & \dots & \lambda_n c_n \end{bmatrix}$$

$$Ac_j = \lambda_j c_j \qquad (j = 1, \dots, n)$$

 (\longleftarrow) Tfh. c_1, \ldots, c_n sajátbázis \mathbb{K}^n -ben.

$$C:=\begin{bmatrix}c_1 & \dots & c_n\end{bmatrix}$$

Ekkor $\det(C) \neq 0$, mivel c_1, \ldots, c_n (F) rendszer \mathbb{K}^n -ben.

$$Ac_j = \lambda_j c_j \implies A \begin{bmatrix} c_1 & \dots & c_n \end{bmatrix} = \begin{bmatrix} \lambda_1 c_1 & \dots & \lambda_n c_n \end{bmatrix} \implies AC = CD$$

ahol

$$D := \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$$

Végül C^{-1} -zel beszorozva:

$$AC = CD \implies C^{-1}AC = D,$$

