GATE 2025 1st Feb 25 S2

Candidate ID	CS25S21311084				
Candidate Name	JINESH NARENDRA PAGARIA				
Test Center Name	HKBK College of Engineering				
Test Date	01/02/2025				
Test Time	2:30 PM - 5:30 PM				
Subject	CS 2 Computer Science and Information Technology				

Section: General Aptitude

Q.1 In the given figure, PQRS is a square of side 2 cm and PLMN is a rectangle. The corner L of the rectangle is on the side QR. Side MN of the rectangle passes through the corner S of the square.

What is the area (in cm²) of the rectangle PLMN?

Note: The figure shown is representative.

Options A. 4

c. 8

D. 2

Question Type: MCQ

Question ID: 1422763733

Status: Not Answered

Q.2	Bird : Nest :: Bee :					
	Select the correct option to complete the analogy.					
ptions	A Hive					
	B. Hammock					
	c. Lair					
	D. Kennel					
	Question Type : MCQ Question ID : 1422763726 Status : Answered Chosen Option : A					
Q.3	Despite his initial hesitation, Rehman's to contribute to the success of the project never wavered.					
	Select the most appropriate option to complete the above sentence.					
ptions	A satisfaction					
	B. revolve					
	c. resolve					
	D. ambivalence					
	Question Type : MCQ Question ID : 1422763725 Status : Answered Chosen Option : C					

The paper as shown in the figure is folded to make a cube where each square corresponds to a particular face of the cube. Which one of the following options correctly represents the cube? Note: The figures shown are representative. Δ 0 Options C. D. Question Type : MCQ Question ID: 1422763728 Status : **Answered** Chosen Option: B

If $Pe^x = Qe^{-x}$ for all real values of x, which one of the following statements is

Options

$$A. \frac{P}{Q} = 0$$

B.
$$P = Q = 0$$

$$C.P = Q = 1$$

$$P = 1; Q = -1$$

Question Type : MCQ Ouestion ID: 1422763727 Status: Answered Chosen Option: B

The diagram below shows a river system consisting of 7 segments, marked P, Q, R, S, T, U, and V. It splits the land into 5 zones, marked Z1, Z2, Z3, Z4, and Z5. We need to connect these zones using the least number of bridges. Out of the following options, which one is correct?

Note: The figure shown is representative.

Options A Bridges on P, Q, and T

B. Bridges on P, Q, S, and T

c. Bridges on P, Q, S, U, and V

D. Bridges on Q, R, T, and V

Question Type: MCQ

Question ID: 1422763734

Status: Answered

If IMAGE and FIELD are coded as FHBNJ and EMFJG respectively then, which one among the given options is the most appropriate code for BEACH?

- Options A. IBCEC
 - B. JGIBC
 - C. CEADP
 - D. IDBFC

Question Type: MCQ Ouestion ID: 1422763731 Status: Not Answered

Chosen Option: --

Based only on the conversation below, identify the logically correct inference:

"Even if I had known that you were in the hospital, I would not have gone there to see you", Ramya told Josephine.

Options A.

Ramya and Josephine were once close friends; but now, they are not.

- B. Josephine was in the hospital due to an injury to her leg.
- c. Ramya did not know that Josephine was in the hospital.
- D. Ramya knew that Josephine was in the hospital.

Question Type: MCQ

Question ID: 1422763730 Status: Answered

Chosen Option: C

Q.9 Let p_1 and p_2 denote two arbitrary prime numbers. Which one of the following statements is correct for all values of p_1 and p_2 ?

- Options A. p_1p_2 is not a prime number.
 - ^{B.} $p_1p_2 + 1$ is a prime number.
 - c. $p_1 + p_2 + 1$ is a prime number.
 - D. $p_1 + p_2$ is not a prime number.

Question Type: MCQ

Ouestion ID: 1422763729 Status: Answered

Q.10 Which one of the following options is correct for the given data in the table?

Iteration (i)	0	1	2	3
Input (I)	20	-4	10	15
Output (X)	20	16	26	41
Output (Y)	20	-80	-800	-12000

Options A.
$$X(i) = X(i-1)I(i);$$
 $Y(i) = Y(i-1)I(i);$ $i > 0$

B.
$$X(i) = X(i-1) + I(i); \quad Y(i) = Y(i-1)I(i); \quad i > 0$$

$$X(i) = X(i-1) + I(i);$$
 $Y(i) = Y(i-1)I(i-1);$ $i > 0$

$$X(i) = X(i-1)I(i);$$
 $Y(i) = Y(i-1) + I(i);$ $i > 0$

Question Type: MCQ

Question ID: 1422763732

Status: Answered

Chosen Option: B

Section: CS 2 Computer Science and Information Technology

- Consider the following statements about the use of backpatching in a compiler for intermediate code generation:
 - (I) Backpatching can be used to generate code for Boolean expression in one pass.
 - (II)Backpatching can be used to generate code for flow-of-control statements in one pass.

Which ONE of the following options is CORRECT?

Options A. Both (I) and (II) are correct.

- в. Neither (I) nor (II) is correct.
- c. Only (I) is correct.
- Only (II) is correct.

Question Type: MCQ

Question ID: 1422763745

Status: Not Answered

Which ONE of the following languages is accepted by a deterministic pushdown automaton?

Options A. Any regular language.

в. Any decidable language.

Any language accepted by a non-deterministic pushdown automaton.

D. Any context-free language.

Question Type: MCQ Question ID: 1422763748 Status: Answered Chosen Option: D

Let P(x) be an arbitrary predicate over the domain of natural numbers.

Which ONE of the following statements is TRUE?

Options A.
$$(P(0) \land (\forall x [P(x) \Rightarrow P(x+1)])) \Rightarrow (\forall x P(x))$$

B.
$$(P(1000) \land (\forall x [P(x) \Rightarrow P(x-1)])) \Rightarrow (\forall x P(x))$$

c.
$$(P(0) \land (\forall x [P(x) \Rightarrow P(x-1)])) \Rightarrow (\forall x P(x))$$

D.
$$(P(1000) \land (\forall x [P(x) \Rightarrow P(x+1)])) \Rightarrow (\forall x P(x))$$

Question Type: MCQ

Question ID: 1422763739 Status: Answered

Q.4 Given the following syntax directed translation rules:

Rule 1:
$$R \rightarrow AB \{B. i = R. i - 1; A. i = B. i; R. i = A. i + 1; \}$$

Rule 2:
$$P \to CD \{P.i = C.i + D.i; D.i = C.i + 2; \}$$

Rule 3:
$$Q \rightarrow EF \{Q.i = E.i + F.i;\}$$

Which ONE is the CORRECT option among the following?

Options A.

Rule 1 is neither S-attributed nor L-attributed; Rule 2 is S-attributed and L-attributed; Rule 3 is S-attributed and L-attributed

В.

Rule 1 is S-attributed and L-attributed; Rule 2 is S-attributed and not L-attributed; Rule 3 is neither S-attributed nor L-attributed

C.

Rule 1 is S-attributed and not L-attributed; Rule 2 is not S-attributed and is L-attributed; Rule 3 is S-attributed and L-attributed

D.

Rule 1 is neither S-attributed nor L-attributed; Rule 2 is not S-attributed and is L-attributed; Rule 3 is S-attributed and L-attributed

Question Type : MCQ Question ID : 1422763746

Status: Not Answered

Chosen Option: --

Q.5 Consider a binary tree T in which every node has either zero or two children. Let n > 0 be the number of nodes in T.

Which ONE of the following is the number of nodes in *T* that have exactly two children?

Options

A.
$$\frac{\pi}{2}$$

B.
$$\frac{n+1}{2}$$

c.
$$\frac{n-2}{2}$$

D.
$$\frac{n-1}{2}$$

Question Type : MCQ

Question ID : 1422763737 Status : Answered

Q.6 Consider the following statements:

- Address Resolution Protocol (ARP) provides a mapping from an IP address to the corresponding hardware (link-layer) address.
- (ii) A single TCP segment from a sender S to a receiver R cannot carry both data from S to R and acknowledgement for a segment from R to S.

Which ONE of the following is CORRECT?

Options A. Both (i) and (ii) are TRUE

- в. Both (i) and (ii) are FALSE
- c. (i) is FALSE and (ii) is TRUE
- D. (i) is TRUE and (ii) is FALSE

Question Type : $\boldsymbol{\mathsf{MCQ}}$

Question ID : 1422763740

Status: Not Answered

Consider the following C program: #include <stdio.h> void stringcopy(char *, char *); int main() { char a[30] = "@#Hello World!"; stringcopy(a, a + 2);printf("%s\n", a); return 0; } void stringcopy(char *s, char *t) { while(*t) *s++ = *t++;} Which ONE of the following will be the output of the program? Options A. Hello World! B. ello World! c.@#Hello World! D. Hello World!d! Question Type: MCQ Question ID: 1422763743 Status : **Answered** Chosen Option: D

https://cdn.digialm.com//per/g01/pub/585/touchstone/AssessmentQPHTMLMode1//GATE2451/GATE2451S2D3607/1740208819884264/CS2...

Q.8 Consider a network that uses Ethernet and IPv4. Assume that IPv4 headers do not use any options field. Each Ethernet frame can carry a maximum of 1500 bytes in its data field. A UDP segment is transmitted. The payload (data) in the UDP segment is 7488 bytes.

Which ONE of the following choices has the CORRECT total number of fragments transmitted and the size of the last fragment including IPv4 header?

Options A. 6 fragments, 108 bytes

- B. 6 fragments, 116 bytes
- c. 6 fragments, 88 bytes
- D. 5 fragments, 1488 bytes

Question Type : MCQ Question ID : 1422763747 Status : Answered

Chosen Option : D

Q.9 The following two signed 2's complement numbers (multiplicand M and multiplier Q) are being multiplied using Booth's algorithm:

M: 1100 1101 1110 1101 and Q: 1010 0100 1010 1010

The total number of addition and subtraction operations to be performed is ______. (Answer in integer)

Give -n Ans

wer:

Question Type : NAT
Question ID : 1422763756
Status : Not Answered

If $A = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$, then which ONE of the following is A^8 ?

Options A.
$$\begin{pmatrix} 25 & 0 \\ 0 & 25 \end{pmatrix}$$

$$_{\text{B.}}\begin{pmatrix}125 & 0\\ 0 & 125\end{pmatrix}$$

c.
$$\binom{3125}{0}$$
 $\binom{0}{3125}$

D.
$$\binom{625}{0}$$
 $\binom{6}{0}$

Question Type : MCQ
Question ID : 1422763735
Status : Answered

Chosen Option : D

The value of x such that x > 1, satisfying the equation $\int_1^x t \ln t \, dt = \frac{1}{4}$ is

Options A. e-1

- в. \sqrt{e}
- c. e^2
- D. e

Question Type: MCQ

Question ID: 1422763736 Status: Answered

Chosen Option: B

Q.12 Let G_1 , G_2 be Context Free Grammars (CFGs) and R be a regular expression. For a grammar G, let L(G) denote the language generated by G.

Which ONE among the following questions is decidable?

Options A. Is $L(G_1) \cap L(G_2) = \emptyset$?

- B. Is $L(G_1) = L(R)$?
- c. Is $L(G_1) = \emptyset$?
- D. Is $L(G_1) = L(G_2)$?

Question Type: MCQ

Question ID: 1422763749

Status: Answered

Chosen Option: B

```
Q.13
       int x=126, y=105;
       do {
             if (x>y) x=x-y;
             else y=y-x;
       } while(x!=y);
       printf("%d",x);
```

The output of the given C code segment is ______. (Answer in integer)

Give **21** Ans

wer:

Question Type: NAT

Question ID: 1422763757 Status: Answered

Q.14 Processes P1, P2, P3, P4 arrive in that order at times 0, 1, 2, and 8 milliseconds respectively, and have execution times of 10, 13, 6, and 9 milliseconds respectively. Shortest Remaining Time First (SRTF) algorithm is used as the CPU scheduling policy. Ignore context switching times.

Which ONE of the following correctly gives the average turnaround time of the four processes in milliseconds?

Options A. 15

- в. 37
- c. 22
- D. 19

Question Type : MCQ
Question ID : 1422763750
Status : Not Answered

Chosen Option: --

Q.15 Consider the two lists List I and List II given below:

List I	List II
(i) Context free languages	(a) Closed under union
(ii) Recursive languages	(b) Not closed under complementation
(iii) Regular languages	(c) Closed under intersection

For matching of items in **List I** with those in **List II**, which of the following option(s) is/are CORRECT?

B.
$$(i) - (a)$$
, $(ii) - (c)$, and $(iii) - (b)$

c.
$$(i) - (b)$$
, $(ii) - (c)$, and $(iii) - (a)$

D.
$$(i) - (b)$$
, $(ii) - (a)$, and $(iii) - (c)$

Question Type : MSQ

Question ID : 1422763754

Status: Answered

Chosen Option: A,C

Q.16 Consider the following logic circuit diagram.

Which is/are the CORRECT option(s) for the output function F?

Options A. $X + \bar{Y}$

- в. *X Y*
- c. $\overline{X}\overline{Y} + \overline{X} + X\overline{Y}$
- D. $\bar{X} + \bar{Y} + X\bar{Y}$

Question Type : MSQ
Question ID : 1422763755
Status : Answered

Chosen Option : C,D

Q.17 A machine receives an IPv4 datagram. The protocol field of the IPv4 header has the protocol number of a protocol X.

Which ONE of the following is NOT a possible candidate for X?

Options A. Internet Control Message Protocol (ICMP)

- B. Open Shortest Path First (OSPF)
- c. Routing Information Protocol (RIP)
- D. Internet Group Management Protocol (IGMP)

Question Type : MCQ

Question ID : 1422763742

Status: Not Answered

Q.18 Consider the routing protocols given in List I and the names given in List II:

	List I		List II	
(i)	Distance vector routing	(a)	Bellman-Ford	
(ii)	Link state routing	(b)	Dijkstra	

For matching of items in **List I** with those in **List II**, which ONE of the following options is CORRECT?

Options A.
$$(i) - (b)$$
 and $(ii) - (b)$

B.
$$(i) - (b)$$
 and $(ii) - (a)$

c.
$$(i) - (a)$$
 and $(ii) - (a)$

Question Type: MCQ

Question ID: 1422763741

Not Attempted and Status: **Marked For Review**

Chosen Option: --

Which of the following statements regarding Breadth First Search (BFS) and Depth First Search (DFS) on an undirected simple graph G is/are TRUE?

Options A.

Both BFS and DFS can be used to find the connected components of G.

B. A DFS tree of G is a Shortest Path tree of G.

Every non-tree edge of G with respect to a DFS tree is a forward/back edge.

If (u, v) is a non-tree edge of G with respect to a BFS tree, then the distances from the source vertex s to u and v in the BFS tree are within ± 1 of each other.

Question Type: MSQ

Question ID: 1422763753

Status: Not Answered

Chosen Option: --

Q.20 In a 4-bit ripple counter, if the period of the waveform at the last flip-flop is 64 microseconds, then the frequency of the ripple counter in kHz is ______. (Answer in integer)

Give --

Ans

wer:

Question Type: NAT

Question ID: 1422763758 Status: Not Answered

Q.21 Consider an unordered list of N distinct integers.

What is the minimum number of element comparisons required to find an integer in the list that is NOT the largest in the list?

Options $_{\mathsf{A.}}$ N

- в. 1
- c. N 1
- D. 2N 1

Question Type : MCQ Question ID : 1422763744 Status : Answered

Chosen Option : C

Q.22 Suppose the values 10, -4, 15, 30, 20, 5, 60, 19 are inserted in that order into an initially empty binary search tree. Let *T* be the resulting binary search tree. The number of edges in the path from the node containing 19 to the root node of *T* is ______. (Answer in integer)

Give 4 n

Ans wer:

Question Type : NAT
Question ID : 1422763759
Status : Answered

Q.23 An audit of a banking transactions system has found that on an earlier occasion, two joint holders of account *A* attempted simultaneous transfers of Rs. 10000 each from account *A* to account *B*. Both transactions read the same value, Rs. 11000, as the initial balance in *A* and were allowed to go through. *B* was credited Rs. 10000 twice. *A* was debited only once and ended up with a balance of Rs. 1000.

Which of the following properties is/are certain to have been violated by the system?

Options A. Isolation

- в. Atomicity
- c. Durability
- D. Consistency

Question Type : MSQ Question ID : 1422763751 Status : Answered

Chosen Option : D

Q.24 Let L, M, and N be non-singular matrices of order 3 satisfying the equations

$$L^2 = L^{-1}$$
, $M = L^8$ and $N = L^2$.

Which ONE of the following is the value of the determinant of (M - N)?

Options A. 3

- в. 1
- c. 2
- D. 0

Question Type : MCQ

Question ID: 1422763738

Status: Answered

Chosen Option : D

Q.25 Which of the following is/are part of an Instruction Set Architecture of a processor?

Options A. The number of cache memory levels

- B. The size of the cache memory
- c. The total number of registers
- D. The clock frequency of the processor

Question Type : MSQ

Question ID: 1422763752

Status: Answered

Chosen Option : C,D

A meld operation on two instances of a data structure combines them into one single instance of the same data structure. Consider the following data structures:

- P: Unsorted doubly linked list with pointers to the head node and tail node of the list.
- Q: Min-heap implemented using an array.
- R: Binary Search Tree.

Which ONE of the following options gives the worst-case time complexities for meld operation on instances of size n of these data structures?

Options A. P:
$$\Theta(1)$$
, Q: $\Theta(n)$, R: $\Theta(n \log n)$

- B. P: $\Theta(n)$, Q: $\Theta(n \log n)$, R: $\Theta(n^2)$
- c. P: $\Theta(1)$, Q: $\Theta(n \log n)$, R: $\Theta(n)$
- D. P: $\Theta(1)$, Q: $\Theta(n)$, R: $\Theta(n)$

Question Type: MCQ

Question ID: 1422763762 Status: Answered

Chosen Option : B

Three floating point numbers X, Y, and Z are stored in three registers R_X , R_Y , and Rz, respectively in IEEE 754 single precision format as given below in hexadecimal:

 $R_X = 0xC1100000$, $R_Y = 0x40C00000$, and $R_Z = 0x41400000$

Which of the following option(s) is/are CORRECT?

Options A. 4(X+Y) + Z = 0

$$B. X + Y + Z = 0$$

$$c. 4X + 3Z = 0$$

$$D. 2Y - Z = 0$$

Question Type: MSQ

Question ID: 1422763773

Status: Not Answered

2/27/25, 8:23 PM

Q.28 Which of the following Boolean algebraic equation(s) is/are CORRECT?

Options A. $AB + \bar{A}C + BC = AB + \bar{A}C$

 $\frac{B.}{(A+\bar{B}+\bar{D})(C+D)(\bar{A}+C+D)(A+B+\bar{D})} = \bar{A}D + \bar{C}\bar{D}$

c. $(A + C)(\bar{A} + B) = AB + \bar{A}C$

D. $\bar{A}BC + A\bar{B}\bar{C} + \bar{A}\bar{B}\bar{C} + A\bar{B}C + ABC = BC + \bar{B}\bar{C} + \bar{A}\bar{B}$

Question Type : MSQ

Question ID : 1422763774

Status : Answered

Chosen Option: B

Q.29 $P = \{P_1, P_2, P_3, P_4\}$ consists of all active processes in an operating system. $R = \{R_1, R_2, R_3, R_4\}$ consists of single instances of distinct types of resources in the system.

The resource allocation graph has the following assignment and claim edges.

Assignment edges: $R_1 \to P_1$, $R_2 \to P_2$, $R_3 \to P_3$, $R_4 \to P_4$ (the assignment edge $R_1 \to P_1$ means resource R_1 is assigned to process P_1 , and so on for others)

Claim edges: $P_1 \to R_2$, $P_2 \to R_3$, $P_3 \to R_1$, $P_2 \to R_4$, $P_4 \to R_2$ (the claim edge $P_1 \to R_2$ means process P_1 is waiting for resource R_2 , and so on for others)

Which of the following statement(s) is/are CORRECT?

Options A. Aborting P_3 makes the system deadlock free.

- B. Aborting P_2 makes the system deadlock free.
- c. Aborting P_1 and P_4 makes the system deadlock free.
- D. Aborting P_1 makes the system deadlock free.

Question Type : MSQ

Question ID: 1422763772

Status: Answered

Chosen Option : C

Q.30 Let $\Sigma = \{a, b, c\}$. For $x \in \Sigma^*$, and $\alpha \in \Sigma$, let $\#_{\alpha}(x)$ denote the number of occurrences of α in x.

Which one or more of the following option(s) define(s) regular language(s)?

Options A.

$$\{w \mid w \in \{a, b\}^*, \#_a(w) \equiv 2 \pmod{7}, \text{ and } \#_b(w) \equiv 3 \pmod{9}\}$$

В.

$$\{w \mid w \in \{a, b\}^*, \#_a(w) \equiv 2 \pmod{7}, \text{ and } \#_a(w) = \#_b(w)\}$$

- c. $\{a^m b^n \mid m, n \ge 0\}$
- D. $\{a,b\}^* \cap \{a^m b^n c^{m-n} \mid m \ge n \ge 0\}$

Question Type : MSQ

Question ID : 1422763776 Status : Answered Chosen Option : A,C

Q.31 Consider a system of linear equations PX = Q where $P \in \mathbb{R}^{3\times 3}$ and $Q \in \mathbb{R}^{3\times 1}$. Suppose P has an LU decomposition, P = LU, where

$$L = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \text{ and } U = \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}.$$

Which of the following statement(s) is/are TRUE?

Options A.

If P is singular, then at least one of the diagonal elements of U is zero.

B. If P is invertible, then both L and U are invertible.

C.

The system PX = Q can be solved by first solving LY = Q and then UX = Y.

D. If P is symmetric, then both L and U are symmetric.

Question Type: MSQ

Question ID : 1422763768

Status: Not Answered

Q.32 Consider the database transactions T1 and T2, and data items X and Y. Which of the schedule(s) is/are conflict serializable?

Transaction T1

R1(X)

W1(Y)

R1(X)

W1(X)

COMMIT(T1)

Transaction T2

W2(X)

W2(Y)

COMMIT(T2)

Options A.

R1(X), W2(X), W1(Y), W2(Y), R1(X), W1(X), COMMIT(T2), COMMIT(T1)

В.

W2(X), R1(X), W1(Y), W2(Y), R1(X), COMMIT(T2), W1(X), COMMIT(T1)

C.

R1(X), W1(Y), W2(X), W2(Y), R1(X), W1(X), COMMIT(T1), COMMIT(T2)

D.

W2(X), R1(X), W2(Y), W1(Y), R1(X), COMMIT(T2), W1(X), COMMIT(T1)

Question Type : MSQ

Question ID: 1422763777

Status: Not Answered

Chosen Option: --

Q.33 A quadratic polynomial $(x - \alpha)(x - \beta)$ over complex numbers is said to be square invariant if $(x - \alpha)(x - \beta) = (x - \alpha^2)(x - \beta^2)$. Suppose from the set of all square invariant quadratic polynomials we choose one at random.

The probability that the roots of the chosen polynomial are equal is _____. (rounded off to one decimal place)

Give --

n

Ans wer:

Question Type : NAT

Question ID : 1422763788

Status: Not Answered

Q.34 Consider two grammars G_1 and G_2 with the production rules given below:

$$G_1: S \rightarrow if \ E \ then \ S \mid if \ E \ then \ S \ else \ S \mid a$$

$$E \rightarrow b$$

$$G_2: S \rightarrow if \ E \ then \ S \mid M$$

$$M \rightarrow if E then M else S \mid c$$

$$E \rightarrow b$$

where if, then, else, a, b, c are the terminals.

Which of the following option(s) is/are CORRECT?

Options A. G_1 is not LL(1) and G_2 is LL(1).

B. G_1 is LL(1) and G_2 is not LL(1).

c. G_1 and G_2 are ambiguous.

D. G_1 and G_2 are not LL(1).

Question Type : MSQ

Question ID : 1422763775

Status: Not Answered

Q.35 Consider the following algorithm someAlgo that takes an undirected graph G as input.

someAlgo(G)

- 1. Let v be any vertex in G. Run BFS on G starting at v. Let u be a vertex in G at maximum distance from v as given by the BFS.
- 2. Run BFS on G again with u as the starting vertex. Let z be the vertex at maximum distance from u as given by the BFS.
- 3. Output the distance between u and z in G.

The output of someAlgo(T) for the tree shown in the given figure is _____. (Answer in integer)

Give 6 n Ans wer:

Question Type : NAT
Question ID : 1422763783
Status : Answered

Q.36 A 5-stage instruction pipeline has stage delays of 180, 250, 150, 170, and 250, respectively, in nanoseconds. The delay of an inter-stage latch is 10 nanoseconds. Assume that there are no pipeline stalls due to branches and other hazards. The time taken to process 1000 instructions in microseconds is ______. (rounded off to two decimal places)

Give -n Ans wer :

Question Type : **NAT**Question ID : **1422763780**

Status : Not Attempted and Marked For Review

Q.37 Let G be an edge-weighted undirected graph with positive edge weights. Suppose a positive constant α is added to the weight of every edge.

Which ONE of the following statements is TRUE about the minimum spanning trees (MSTs) and shortest paths (SPs) in G before and after the edge weight update?

Options A.

MSTs need not remain MSTs, and SPs need not remain SPs.

B. Every MST remains an MST, and every SP remains an SP.

С

MSTs need not remain MSTs, and every SP remains an SP.

D.

Every MST remains an MST, and SPs need not remain SPs.

Question Type : MCQ Question ID : 1422763761 Status : Answered

Chosen Option: D

Q.38 For a direct-mapped cache, 4 bits are used for the tag field and 12 bits are used to index into a cache block. The size of each cache block is one byte. Assume that there is no other information stored for each cache block.

Which ONE of the following is the CORRECT option for the sizes of the main memory and the cache memory in this system (byte addressable), respectively?

Options A. 64 KB and 4 KB

- B. 64 KB and 8 KB
- c. 128 KB and 16 KB
- D. 128 KB and 6 KB

Question Type : MCQ Question ID : 1422763763

Status : Not Answered

Chosen Option: --

Q.39 Given a computing system with two levels of cache (L1 and L2) and a main memory. The first level (L1) cache access time is 1 nanosecond (ns) and the "hit rate" for L1 cache is 90% while the processor is accessing the data from L1 cache. Whereas, for the second level (L2) cache, the "hit rate" is 80% and the "miss penalty" for transferring data from L2 cache to L1 cache is 10 ns. The "miss penalty" for the data to be transferred from main memory to L2 cache is 100 ns.

Then the average memory access time in this system in nanoseconds is _______. (rounded off to one decimal place)

Give **1.0**

n Ans wer:

Question Type : NAT

Question ID : 1422763779 Status : Answered

```
Q.40 Consider the following relational schema:
       Students (rollno: integer, name: string, age: integer, cgpa: real)
       Courses (courseno: integer, cname: string, credits: integer)
       Enrolled (rollno: integer, courseno: integer, grade: string)
      Which of the following options is/are correct SQL query/queries to retrieve the
     names of the students enrolled in course number (i.e., courseno) 1470?
Options A
      SELECT S.name
     FROM Students S
      WHERE SIZEOF (SELECT * FROM Enrolled E
                      WHERE E.courseno = 1470
                                AND E.rollno = S.rollno) > 0;
      SELECT S.name
      FROM Students S
      WHERE 0 < (SELECT COUNT(*)
                     FROM Enrolled E
                     WHERE E.courseno = 1470
                                  AND E.rollno = S.rollno);
        SELECT S.name
     C. FROM Students S NATURAL JOIN Enrolled E
        WHERE E.courseno = 1470;
      SELECT S.name
      FROM Students S
      WHERE EXISTS (SELECT * FROM Enrolled E
                        WHERE E.courseno = 1470
                                  AND E.rollno = S.rollno);
                                                               Question Type: MSQ
                                                                Question ID: 1422763778
                                                                    Status: Answered
```

Chosen Option: B,C,D

Q.41 Let \mathcal{F} be the set of all functions from $\{1, ..., n\}$ to $\{0,1\}$. Define the binary relation \leq on \mathcal{F} as follows:

 $\forall f, g \in \mathcal{F}, f \leq g \text{ if and only if } \forall x \in \{1, ..., n\}, f(x) \leq g(x), \text{ where } 0 \leq 1.$

Which of the following statement(s) is/are TRUE?

Options A. (\mathcal{F}, \leq) is a lattice

- B. ≤ is an equivalence relation
- c. (\mathcal{F}, \leq) is a partial order
- D. ≤ is a symmetric relation

Question Type : MSQ
Question ID : 1422763766
Status : Not Answered

Chosen Option: --

Q.42 In a B⁺- tree where each node can hold at most four key values, a root to leaf path consists of the following nodes:

$$A = (49, 77, 83, -), B = (7, 19, 33, 44), C = (20*, 22*, 25*, 26*)$$

The *-marked keys signify that these are data entries in a leaf.

Assume that a pointer between keys k_1 and k_2 points to a subtree containing keys in $[k_1, k_2)$, and that when a leaf is created, the smallest key in it is copied up into its parent.

A record with key value 23 is inserted into the B+- tree.

The smallest key value in the parent of the leaf that contains 25* is _____. (Answer in integer)

Give **33** n

Ans wer:

Question Type : NAT

Question ID : 1422763781 Status : Answered

Q.43 The unit interval (0,1) is divided at a point chosen uniformly distributed over (0,1) in \mathbb{R} into two disjoint subintervals.

The expected length of the subinterval that contains 0.4 is ______. (rounded off to two decimal places)

Give **0.74** n

Ans wer:

Question Type : **NAT**Question ID : **1422763789**

Status : Answered

Q.44 Consider a stack data structure into which we can PUSH and POP records. Assume that each record pushed in the stack has a positive integer key and that all keys are distinct.

We wish to augment the stack data structure with an O(1) time MIN operation that returns a pointer to the record with smallest key present in the stack

- 1) without deleting the corresponding record, and
- 2) without increasing the complexities of the standard stack operations.

Which one or more of the following approach(es) can achieve it?

Options A.

Keep a Min-Heap in which the key values of the records in the stack are maintained.

В

Keep with every record in the stack, a pointer to the record with the smallest key below it.

C.

Keep an auxiliary array in which the key values of the records in the stack are maintained in sorted order.

D.

Keep a pointer to the record with the smallest key in the stack.

Question Type : MSQ Question ID : 1422763769 Status : Answered

Chosen Option : B

```
Q.45 Consider the following C program:
   #include <stdio.h>
   int g(int n) {
        return (n+10);
   }
   int f(int n) {
        return g(n*2);
   }
   int main() {
        int sum, n;
        sum=0;
        for (n=1; n<3; n++)
            sum += g(f(n));
        printf ("%d", sum);
        return 0;
   }
   The output of the given C program is ______. (Answer in integer)
Give 46
  n
Ans
wer:
                                                          Question Type: NAT
                                                            Question ID: 1422763787
                                                               Status: Answered
```

Q.46 Consider the following C program: #include <stdio.h>

```
#Include <std10.n>
int main() {
    int a;
    int arr[5] = {30,50,10};
    int *ptr;
    ptr = &arr[0] + 1;
    a = *ptr;
    (*ptr)++;
    ptr++;
    printf("%d", a + (*ptr) + arr[1]);
    return 0;
}
```

The output of the above program is ______. (Answer in integer)

Give 111 n Ans wer:

Question Type : NAT
Question ID : 1422763786
Status : Answered

Q.47 Suppose we are transmitting frames between two nodes using Stop-and-Wait protocol. The frame size is 3000 bits. The transmission rate of the channel is 2000 bps (bits/second) and the propagation delay between the two nodes is 100 milliseconds. Assume that the processing times at the source and destination are negligible. Also, assume that the size of the acknowledgement packet is negligible. Which ONE of the following most accurately gives the channel utilization for the above scenario in percentage?

Options A. 85.44

в. 93.75

c. 88.23

D. 66.67

Question Type : MCQ
Question ID : 1422763760
Status : Not Answered

Q.48 Consider a demand paging system with three frames, and the following page reference string: 1 2 3 4 5 4 1 6 4 5 1 3 2. The contents of the frames are as follows initially and after each reference (from left to right):

initially	after												
Ę	1*	2*	3*	4*	5*	4	1	6*	4	5	1*	3*	2*
#	1	1	1	1	1	1	1	6	6	6	6	6	2
18	8 6 8	2	2	4	4	4	4	4	4	4	1	1	1
32	- 2	<u>240</u>	3	3	5	5	5	5	5	5	5	3	3

The *-marked references cause page replacements.

Which one or more of the following could be the page replacement policy/policies in use?

Options A. Most Frequently Used page replacement policy

- B. Optimal page replacement policy
- c. Least Recently Used page replacement policy
- D. Least Frequently Used page replacement policy

Question Type : MSQ
Question ID : 1422763771
Status : Not Answered

Chosen Option: --

Q.49 Let $\Sigma = \{1,2,3,4\}$. For $x \in \Sigma^*$, let prod(x) be the product of symbols in x modulo 7. We take $prod(\epsilon) = 1$, where ϵ is the null string.

For example, $prod(124) = (1 \times 2 \times 4) \mod 7 = 1$.

Define $L = \{x \in \Sigma^* \mid prod(x) = 2\}.$

The number of states in a minimum state DFA for L is ______. (Answer in integer)

Give 7

Ans wer:

Question Type : **NAT**

Question ID : **1422763784** Status : **Answered** Q.50 Given the following Karnaugh Map for a Boolean function F(w, x, y, z):

vx	1	0	0	1
	0	1	1	0
	0	1	1	0
	1	0	0	1

Which one or more of the following Boolean expression(s) represent(s) F?

Options A.
$$\overline{w}\overline{x}\overline{y}\overline{z} + w\overline{x}\overline{y}\overline{z} + \overline{w}\overline{x}y\overline{z} + w\overline{x}y\overline{z} + xz$$

в.
$$\bar{w}\bar{x}\bar{y}\bar{z} + \bar{w}\bar{x}y\bar{z} + w\bar{x}yz + xz$$

c.
$$\bar{x}\bar{z} + xz$$

D.
$$\overline{w}\overline{x}\overline{y}\overline{z} + w\overline{x}\overline{y}\overline{z} + w\overline{x}\overline{y}z + xz$$

Question Type: MSQ

Question ID: 1422763767

Status: Not Answered

Chosen Option: --

Q.51 An application executes 6.4×10^8 number of instructions in 6.3 seconds. There are four types of instructions, the details of which are given in the table. The duration of a clock cycle in nanoseconds is ______. (rounded off to one decimal place)

Instruction type	Clock cycles required per instruction (CPI)	Number of instructions executed
Branch	2	2.25×10^{8}
Load	5	1.20×10^{8}
Store	4	1.65×10^{8}
Arithmetic	3	1.30×10^{8}

Give 3

Ans

wer:

Question Type: NAT

Question ID: 1422763785

Status: Answered

Q.52 Given a Context-Free Grammar G as follows:

$$S \rightarrow Aa \mid bAc \mid dc \mid bda$$

$$A \rightarrow d$$

Which ONE of the following statements is TRUE?

Options A. G is LALR(1), also SLR(1)

- B. G is CLR(1), not LALR(1)
- c. G is neither LALR(1) nor SLR(1)
- D. G is LALR(1), not SLR(1)

Question Type : MCQ
Question ID : 1422763764
Status : Not Answered

Chosen Option : --

Q.53 An array A of length n with distinct elements is said to be bitonic if there is an index $1 \le i \le n$ such that A[1..i] is sorted in the non-decreasing order and A[i+1..n] is sorted in the non-increasing order.

Which ONE of the following represents the best possible asymptotic bound for the worst-case number of comparisons by an algorithm that searches for an element in a bitonic array *A*?

Options A. $\Theta(n)$

- в. Θ(1)
- c. $\Theta(\log n)$
- D. $\Theta(\log^2 n)$

Question Type : MCQ

Question ID : 1422763765 Status : Answered

Olaran Ontina D

Chosen Option : D

Q.54 A computer system supports a logical address space of 2³² bytes. It uses two-level hierarchical paging with a page size of 4096 bytes. A logical address is divided into a *b*-bit index to the outer page table, an offset within the page of the inner page table, and an offset within the desired page. Each entry of the inner page table uses eight bytes. All the pages in the system have the same size.

The value of *b* is ______ . (Answer in integer)

Give **12** n

Ans wer:

Question Type : NAT
Question ID : 1422763782
Status : Answered

Q.55 Consider the following relational schema along with all the functional dependencies that hold on them.

 $RI(A, B, C, D, E): \{D \rightarrow E, EA \rightarrow B, EB \rightarrow C\}$

R2(A, B, C, D): { $A \rightarrow D, A \rightarrow B, C \rightarrow A$ }

Which of the following statement(s) is/are TRUE?

Options A. R2 is NOT in 3NF

- в. R2 is in 3NF
- c. R1 is NOT in 3NF
- R1 is in 3NF

Question Type : MSQ

Question ID : 1422763770

Status : Answered

Chosen Option: A,C