2.2.8.5

Dado o seguinte circuito:

Sabendo que a resistência R₃ é percorrida por uma corrente de 10 1, qual é a tensão aplicada nos terminais deste circuito?

Nota:
$$R_p = \frac{R1}{R1 + R2} = \frac{6 \times 4}{6 + 4} = \frac{24}{10} = 2.4 \Omega$$

 $R_t = R_p + R_3 = 2.4 + 3.6 = 6 \Omega$
 $V = R_t I = 6 \times 10 = 60 \text{ Volts}$

2.2.8.6

	*** -[****]-	Į
1	ov	Ś₽ι]

Para que a tensão sobre a resistência R₁ seja de 10V, o valor desta resistência deve ser de:

æ)	20 Ω		15
ъ)	30 n		_
۵)	40 Ω	**************************	<u>-</u>
d)	60 Ω	***********************************	_
Nota	r R _{pl} =	$\frac{30 \times 60}{30 + 60} = \frac{1800}{90} = 20 \Omega$; R _t = 40 + 20 = 608	L-
	V = ÿ	$_{1}^{+}$ v_{2}^{-} ou 40 = 10 + v_{2}^{-} => v_{2}^{-} 40-10= 30 Volt	<u>:</u>
		$_{t}$ I ou 30 = 60 I => I = $\frac{30}{60}$ = 0,5 A	
	V ₁ = R	$_{1}^{1}$ on $10 = R_{1} \times 0.5 \implies R_{1} = \frac{10}{0.5} = 20\Omega$	