ÜBERBLICK: ORIENTIERUNG IM ZWEIDIMENSIONALEN KOORDINATENSYSTEM

Inhalt

Abschnitt

- 1. Geraden
- 2. Koordinatenbereiche
- 3. Kreise

Dieses Kapitel (ohne Trainings- und Quizaufgaben) als pdf-Dokument herunterladen. (> 1MB)

Wenn Sie denken, dass Sie den Inhalt des Kapitels schon beherrschen, können Sie direkt zur Schlussprüfung gelangen.

Lernziele

- Sie können analytisch gegebene Geraden zeichnen (Abschnitt 1).
- Sie können Geradengleichungen mithilfe vorgegebener Geraden aufstellen (Abschnitt 1).
- Sie kennen mehrere Möglichkeiten Geraden zu beschreiben und können sie ineinander überführen (Abschnitt 1).
- Sie können analytisch gegebene Koordinatenbereiche im zweidimensionalen Koordinatensystem identifizieren und skizzieren (Abschnitt 2).
- Sie können mithilfe von Koordinatengleichungen und Funktionsgleichungen Kreise skizzieren (Abschnitt 3).
- Sie können Kreisgleichungen in ihre Winkeldarstellung überführen und etwaige Schnittpunkte von Kreisen berechnen (Abschnitt 3).

ZUSAMMENFASSUNG

In diesem Kapitel werden Fragestellungen im zweidimensionalen Koordinatensystem behandelt. Es werden Koordinatenbereiche erörtert, sowie Geraden und Kreise auf verschiedene Weisen eingeführt. Insbesondere werden dabei Betragsungleichungen, lineare sowie quadratische Gleichungen gelöst.

Allgemeine Bezeichnungen

Einige Bezeichnungen, die im ganzen Kapitel verwendet werden:

Die Variablen x und y werden im Folgenden zur Bezeichnung der *Koordinaten* verwendet, indem jedem Punkt P zwei reelle Zahlen x und y als *Koordinaten* zugeordnet werden. Man schreibt ihn als *Zeilenvektor* $P=(x;y)\in\mathbb{R}^2$.

Noch Fragen? Dann schauen Sie bitte ins Forum oder fragen per Skype bei OMB+ tutor (ombplus).

1. GERADEN

Inhalt

- 1.1 Geradengleichung
- 1.2 Zweipunktform
- 1.3 Punkt-Steigungs-Form
- 1.4 Punkt-Richtungs-Form
- 1.5 Allgemeine Form

Wenn Sie denken, dass Sie den Inhalt des Abschnitts schon beherrschen, können Sie zu den zugehörigen Übungs-, Trainings- und Quizaufgaben gehen.

Lernziele:

- Sie sind mit dem *zweidimensionalen kartesischen Koordinatensystem* vertraut.
- Sie besitzen die Fähigkeit, eine analytisch gegebene Gerade zu zeichnen.
- Sie können verschiedene Beschreibungen einer Geraden ineinander umformen.

1.1 Geradengleichung

Ein *zweidimensionales kartesisches Koordinatensystem* besteht aus zwei Richtungsachsen, die senkrecht aufeinander stehen. Man bezeichnet die waagerechte Achse als *Abszissenachse*. Die senkrechte Achse heißt *Ordinatenachse*. Man spricht dann auch von der *x-Achse* statt Abszissenachse und der *y-Achse* statt Ordinatenachse.

Die Variablen x und y werden im Folgenden zur Bezeichnung der *Koordinaten* verwendet, indem jedem Punkt P zwei reelle Zahlen x und y als *Koordinaten* zugeordnet werden. Man schreibt ihn als *Zeilenvektor* $P=(x;y)\in\mathbb{R}^2$. Die x-bzw. y-Koordinate eines Punktes wird als *Abszisse* bzw. *Ordinate* bezeichnet. Jede *Gerade* wird eindeutig durch eine *Geradengleichung* beschrieben. Die Gerade besteht aus all den Punkten, deren x- und y-Koordinaten die Geradengleichung erfüllen.

1.1 DEFINITION (GERADE, GERADENGLEICHUNG)

Jede $Gerade\ g$, die nicht parallel zur y-Achse (also nicht senkrecht) ist, ist der Graph einer linearen Funktion auf \mathbb{R} , definiert durch

$$f(x) = mx + b \tag{1.1}$$

für alle $x \in \mathbb{R}$, wobei m und b reelle Zahlen sind. Jede Wahl von m und b charakterisiert also genau eine Gerade. Die *Gerade g* besteht somit aus allen Punkten (x; y), die die *Geradengleichung* y = f(x) = mx + b erfüllen, d.h.

$$g = \{(x; y) \in \mathbb{R}^2 \mid y = mx + b\}. \tag{1.2}$$

Statt dieser Mengenschreibweise ist es auch gebräuchlich,

$$g: y = mx + b, \ x \in \mathbb{R} \tag{1.3}$$

zu schreiben (ähnlich wie in Regel 5.1 in Kapitel X Abschnitt 5).

WARNUNG

"Lineare Funktionen" im Sinne der obigen Definition $\underline{1.1}$ sind nicht "linear" im Sinne der Hochschulmathematik. Dort bezeichnet man Funktionen der Form y=mx+b als "affin" und nur dann als "linear", falls b=0 ist.

1.2 BEISPIEL

[online-only]

Mit der Zahl m bezeichnen wir die *Steigung der Geraden* und mit b den *Ordinatenabschnitt*, d.h. die Gerade schneidet die y-Achse im Punkt (0;b). Diese Darstellung bezeichnet man auch als *Steigungsform*. Ist b=0, so verläuft die Gerade durch den *Ursprung*, (0;0), des Koordinatensystems. Dann ist die zu der Geradengleichung y=mx gehörende Funktion eine *Proportionalität*, d.h.

$$f(x) = mx$$
 für alle $x \in \mathbb{R}$. (1.4)

1.3 BEMERKUNG

Geraden, die parallel zur y-Achse verlaufen, sind nicht Graph einer Funktion, die von x abhängt. Sie lassen sich durch eine Gleichung der Form

$$x = a , \qquad (1.5)$$

darstellen, wobei a eine reelle Zahl ist. Eine Gerade g mit der Gleichung x=a schneidet die x-Achse im Punkt (a;0), d.h.

$$g = \{(a; y) \mid y \in \mathbb{R}\}. \tag{1.6}$$

1.2 Zweipunktform

Sind $P_1=(x_1;y_1)$ und $P_2=(x_2;y_2)$ zwei beliebige Koordinatenpunkte mit $x_1\neq x_2$, so gibt es genau eine Gerade g, die durch P_1 und P_2 verläuft. Ihre Steigung m kann folgendermaßen errechnet werden:

$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} \ . \tag{1.7}$$

Aus der Geradengleichung y = mx + b erhalten wir

$$b = y - mx, (1.8)$$

für jeden Punkt (x; y), der auf der Geraden liegt. Setzen wir zum Beispiel P_1 ein, so erhalten wir

$$b = y_1 - mx_1 = y_1 - \frac{y_2 - y_1}{x_2 - x_1} x_1.$$
 (1.9)

Setzt man die gerade berechneten Werte für m und b in die Gleichung y = mx + b ein, dann erhält man die sogenannte Zweipunktform der Geradengleichung, nämlich

$$y = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1) + y_1 \text{ für alle } x \in \mathbb{R}.$$
 (1.10)

Diese kann man sich besonders einfach in der Form

$$\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1} \quad \text{für } x \neq x_1 \tag{1.11}$$

merken.

1.4 REGEL

Diese Formeln erlauben, zwischen der Zweipunktform und der Steigungsform einer Geraden hin- und herzuwechseln, nämlich

$$P_1 = (x_1; y_1), P_2 = (x_2; y_2), x_1 \neq x_2 \quad \Rightarrow \quad m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}, b = y_1 - mx_1,$$
 (1.12)

und für beliebige $x_1 \neq x_2$

$$m, b \in \mathbb{R} \quad \Rightarrow \quad P_1 = (x_1; y_1), \ P_2 = (x_2; y_2), \ \text{mit } y_1 = mx_1 + b, \ y_2 = mx_2 + b.$$
 (1.13)

Sind $P_1 = (x_1; y_1)$ und $P_2 = (x_1; y_2)$ zwei verschiedene Koordinatenpunkte mit derselben x-Koordinate und $y_1 \neq y_2$, so gibt es genau eine Gerade g, die durch P_1 und P_2 verläuft. Sie wird durch eine Gleichung der Form

$$x = x_1$$

beschrieben.

1.5 BEISPIEL

[online-only]

[video-online-only]

1.3 Punkt-Steigungs-Form

Eine Gerade durch den Punkt $P = (x_p; y_p)$ mit der Steigung m erfüllt

$$y - y_p = m(x - x_p)$$
. (1.14)

Diese Formel kann man nutzen, wenn ein Punkt der Geraden und die Steigung der Geraden bekannt sind.

1.6 REGEL

Auflösen von $y-y_p=m\left(x-x_p\right)$ nach y ergibt die Geradengleichung

$$y = m(x - x_p) + y_p = mx + (y_p - mx_p).$$
 (1.15)

Der Ordinatenabschnitt ist somit

$$b = y_p - m x_p . (1.16)$$

1.7 BEISPIEL

[online-only]

1.4 Punkt-Richtungs-Form

Eine weitere Möglichkeit, Geraden zu beschreiben, liefert die Punkt-Richtungs-Form:

1.8 DEFINITION

Zwei reelle Funktionen x und y, definiert durch

$$x(t) := t m_x + b_x,$$
 (1.17)

$$y(t) := t m_y + b_y,$$
 (1.18)

mit $m_x, m_y, b_x, b_y \in \mathbb{R}$, definieren eine Gerade g durch

$$g = \{(x(t); y(t)) \in \mathbb{R}^2 \mid t \in \mathbb{R}\}.$$
 (1.19)

Hierbei werden die Koordinaten x und y durch den Parameter t ausgedrückt, der alle Werte mit $t \in \mathbb{R}$ annehmen kann.

Wir verweisen an dieser Stelle auf Kapitel X Abschnitt 5, dort wird die Punkt-Richtungsform näher erläutert.

1.5 Allgemeine Form

Die Geradengleichungen aus Definition $\underline{1.1}$ und Bemerkung $\underline{1.3}$ kann man einheitlich in der folgenden Form schreiben:

1.9 DEFINITION

Die allgemeine Form der Geradengleichung in der Ebene lautet

$$px + qy + c = 0, (1.20)$$

wobei $p \neq 0$ oder $q \neq 0$ (p und q sind nicht beide Null).

Für $q \neq 0$ erhält man durch Auflösen der obigen Gleichung nach y die Steigungsform

$$y = -\frac{p}{q}x - \frac{c}{q} \tag{1.21}$$

mit der Steigung $m=-rac{p}{q}$ und dem Ordinatenabschnitt $b=-rac{c}{q}$. Falls q=0 ist, verläuft die Gerade parallel zur y-Achse, d.h $x=-rac{c}{p}$ (für $p\neq 0$).

1.10 BEISPIEL

[online-only]

Noch Fragen? Dann schauen Sie bitte ins Forum oder fragen per Skype bei OMB+ tutor (ombplus).

ÜBUNG 1

[online-only]

2. KOORDINATENBEREICHE

Inhalt

- 2.1 Koordinatenbereiche
- 2.2 Verallgemeinerung

Wenn Sie denken, dass Sie den Inhalt des Abschnitts schon beherrschen, können Sie zu den zugehörigen Übungs-, Trainings- und Quizaufgaben gehen.

Lernziele:

• Sie besitzen die Fähigkeit, durch Kurven begrenzte *Koordinatenbereiche* zu zeichnen.

2.1 Koordinatenbereiche

Im vorherigen Abschnitt <u>Geraden</u> haben Sie unter anderem die **allgemeine Form** von Geraden kennengelernt, nämlich

$$px + qy + c = 0$$
, (2.1)

wobei $p \neq 0$ oder $q \neq 0$ (oder p und q sind nicht beide 0).

Die Gerade g besteht aus allen Punkten P=(x;y), die diese Gleichung erfüllen, d.h.

$$g = \{(x; y) \in \mathbb{R}^2 \mid px + qy + c = 0\}.$$
 (2.2)

2.1 DEFINITION

Ein Koordinatenbereich K ist eine Menge von Punkten (Punktmenge) in der Ebene, die durch Kurven gegeben oder begrenzt ist.

Somit ist *g* als Gerade auch ein Beispiel eines Koordinatenbereichs.

Das für uns wichtigste Beispiel für Koordinatenbereiche sind Ungleichungen der Form

$$px + qy + c > 0$$
. (2.3)

Das heißt, es gilt

$$K = \{(x; y) \in \mathbb{R}^2 \mid px + qy + c > 0\}.$$
 (2.4)

- Für q>0 ist K, graphisch gesehen, die oberhalb von g liegende Halbebene,
- Für q < 0 ist K die unterhalb von g liegende Halbebene,
- Für q=0 ist g senkrecht, und K ist die rechts (p>0) bzw. links (p<0) von g liegende Halbebene.

2.2 BEISPIEL

[online-only]

2.3 BEMERKUNG

Auch Punktmengen der Form

$$L = \{(x, y) \in \mathbb{R}^2 \mid |px + qy + c| < e\}, \qquad (2.5)$$

$$M = \{(x; y) \in \mathbb{R}^2 \mid |px + qy + c| > f\}, \qquad (2.6)$$

wobei $e, f \ge 0$, sind Koordinatenbereiche.

Wir verweisen an dieser Stelle auf <u>Kapitel III Abschnitt 3</u>, dort wird das Lösen von Betragsungleichungen erläutert.

Die Ungleichung |px + qy + c| < e bedeutet, dass sowohl

$$px + qy + c < e \qquad (\Leftrightarrow -px - qy + e - c > 0) \tag{2.7}$$

als auch

$$-(px + qy + c) < e \qquad (\Leftrightarrow px + qy + e + c > 0) \tag{2.8}$$

gilt. Also ist der in Bemerkung 2.3 definierte Koordinatenbereich

$$L = K_1 \cap K_2 , \qquad (2.9)$$

der Durchschnitt der beiden Mengen

$$K_1 = \{(x; y) \in \mathbb{R}^2 \mid -px - qy + e - c > 0\},$$
 (2.10)

$$K_2 = \{(x; y) \in \mathbb{R}^2 \mid px + qy + e + c > 0\}.$$
 (2.11)

2.4 BEISPIEL

[online-only]

WARNUNG

Fall e<0

Beträge sind stets nicht negativ. Das heißt der Koordinatenbereich, der beispielsweise durch

$$|x+3| < -2 \tag{2.12}$$

gegeben ist, ist die leere Menge.

Wegen $f \ge 0$ bedeutet |px + qy + c| > f hingegen, dass mindestens eine der beiden Ungleichungen

$$px + qy + c > f \qquad (\Leftrightarrow px + qy + c - f > 0), \qquad (2.13)$$

$$-(px + qy + c) > f \qquad \left(\Leftrightarrow -px - qy - c - f > 0 \right) \tag{2.14}$$

gilt. Also ist der in Bemerkung 2.3 definierte Koordinatenbereich

$$M = K_3 \cup K_4 \tag{2.15}$$

die Vereinigung der beiden Mengen

$$K_3 = \{(x; y) \in \mathbb{R}^2 \mid px + qy + c - f > 0\},$$
 (2.16)

$$K_4 = \{(x; y) \in \mathbb{R}^2 \mid -px - qy - c - f > 0\}.$$
 (2.17)

2.5 BEISPIEL

[online-only]

Auch eine Menge von Punkten $P=(x;y)\in\mathbb{R}^2$, die der Ungleichung

$$|p_1x + q_1y + c_1| \pm |p_2x + q_2y + c_2| > C$$
 (2.18)

mit $p_1, p_2, q_1, q_2, c_1, c_2, C \in \mathbb{R}$, genügen, ist ein Koordinatenbereich (dasselbe gilt für < statt > in der obigen Gleichung).

2.6 BEISPIEL

Zeichnen Sie den Koordinatenbereich, der aus allen Punkten $P=(x;y)\in\mathbb{R}^2$ besteht, die der Gleichung

$$|2x + 2| + |x - y - 1| > 5$$
. (2.19)

genügen.

Den Koordinatenbereich erhalten Sie nun durch sukzessives "Auflösen" der Beträge. Sie erhalten die Gleichungen

$$2x + 2 + |x - y - 1| > 5$$
, (2.20)

$$-(2x+2) + |x-y-1| = -2x - 2 + |x-y-1| > 5$$
 (2.21)

und schließlich

$$2x + 2 + x - y - 1 = 3x - y + 1 > 5$$
, (2.22)

$$-2x - 2 + x - y - 1 = -x - y - 3 > 5, (2.23)$$

$$2x + 2 - (x - y - 1) = 2x + 2 - x + y + 1 = x + y + 3 > 5,$$
(2.24)

$$-2x - 2 - (x - y - 1) = -2x - 2 - x + y + 1 = -3x + y - 1 > 5.$$
 (2.25)

Durch Äquivalenzumformungen erhalten Sie somit für $x \in \mathbb{R}$ die Bedingungen

$$y < 3x - 4$$
 (2.26)

oder
$$y < -x - 8$$
 (2.27)

oder
$$y > -x + 2$$
 (2.28)

oder
$$y > 3x + 6$$
. (2.29)

Der Koordinatenbereich entspricht somit den Punkten $P=(x;y)\in\mathbb{R}^2$, die den obigen Ungleichungen genügen, und ist in der folgenden Graphik durch blaue Punkte visualisiert:

[online-only]

2.2 Verallgemeinerung

2.7 DEFINITION

Ist allgemein f eine Funktion auf $\mathbb R$ und

$$G_f = \{(x; f(x)) \in \mathbb{R}^2 \mid x \in \mathbb{R}\}\$$
 (2.30)
= $\{(x; y) \in \mathbb{R}^2 \mid y = f(x)\}$ (2.31)

ihr Graph, so ist auch

$$H_f = \{(x, y) \in \mathbb{R}^2 \mid y > f(x)\}$$
 (2.32)

ein Koordinatenbereich, und zwar die Menge aller Punkte, die oberhalb vom Graphen G liegen. Ersetzt man für H_f in der obigen Gleichung > durch <, so bleibt H_f ein Koordinatenbereich, der dann jedoch aus der Menge aller Punkte, die unterhalb vom Graphen G_f liegen, besteht.

2.8 BEISPIEL

[online-only]

Noch Fragen? Dann schauen Sie bitte ins Forum oder fragen per Skype bei OMB+ tutor (ombplus).

ÜBUNG 1

[online-only]

3. KREISE

Inhalt

- 3.1 Koordinatengleichung
- 3.2 Darstellung als Graph zweier Funktionen
- 3.3 Winkeldarstellung
- 3.4 Schnittpunkte von Kreisen berechnen

Wenn Sie denken, dass Sie den Inhalt des Abschnitts schon beherrschen, können Sie zu den zugehörigen Übungs-, Trainings- und Quizaufgaben gehen.

Lernziele:

Sie besitzen die Fähigkeit, einen durch eine Gleichung gegebenen Kreis zu zeichnen.

3.1 Koordinatengleichung

3.1 DEFINITION

Jeder *Kreis* hat einen *Mittelpunkt* $P_M = (x_M; y_M) \in \mathbb{R}^2$ und einen *Radius* r > 0. Der zugehörige Kreis K ist die Menge aller Punkte P in der Ebene, deren Abstand vom Mittelpunkt P_M genau r beträgt.

Ein Kreis besteht also aus der Menge aller Punkte $P=(x;y)\in\mathbb{R}^2$, die der Gleichung

$$(x - x_M)^2 + (y - y_M)^2 = r^2$$
, (3.1)

 $\operatorname{mit} x, x_M, y, y_M \in \mathbb{R} \text{ und } r > 0, \operatorname{genügen}.$

Eine solche Gleichung nennt man Kreisgleichung. Zu gegebenem x_M, y_M und r, ist ein Kreis K die Menge

$$K = \{(x; y) \in \mathbb{R}^2 \mid (x - x_M)^2 + (y - y_M)^2 = r^2 \}.$$
(3.2)

3.2 BEISPIEL

[online-only]

$$x^2 + ax + y^2 + by + c = 0 (3.3)$$

mit $a,b,c\in\mathbb{R}$ vor, so erhält man mittels quadratischer Ergänzung (siehe Kapitel II Abschnitt 2.5)

$$x^{2} + ax + y^{2} + by + c = \left(x + \frac{a}{2}\right)^{2} - \frac{a^{2}}{4} + \left(y + \frac{b}{2}\right)^{2} - \frac{b^{2}}{4} + c = 0.$$
 (3.4)

Daraus ergibt sich mittels Äquivalenzumformungen (was eine Äquivalenzumformung ist, wird in <u>Kapitel II</u> Abschnitt 1 erläutert):

3.3 REGEL

Die Kreisgleichung lautet für $c < \frac{a^2}{4} + \frac{b^2}{4}$

$$\left(x + \frac{a}{2}\right)^2 + \left(y + \frac{b}{2}\right)^2 = \frac{a^2}{4} + \frac{b^2}{4} - c,$$
 (3.5)

mit $P_M=(x_M;y_M)=\left(-\frac{a}{2};-\frac{b}{2}\right)$ als Mittelpunkt und $r=\sqrt{\frac{a^2}{4}+\frac{b^2}{4}-c}$ als Radius.

WARNUNG

Ist der Radikand $\frac{a^2}{4} + \frac{b^2}{4} - c$ negativ, so liegt keine Kreisgleichung vor und man erhält für K die leere Menge.

3.4 BEISPIEL

[online-only]

3.2 Darstellung als Graph zweier Funktionen

Ein Kreis kann nicht in der Form y=f(x) mit einer einzigen Funktion f dargestellt werden, wohl aber mit Hilfe eines Paares f_+, f_- von Funktionen. Dabei wird durch f_+ die obere und durch f_- die untere Kreishälfte dargestellt.

Herleitung

Ausgehend von der Kreisgleichung $(x - x_M)^2 + (y - y_M)^2 = r^2$ erhält man

$$(x - x_M)^2 + (y - y_M)^2 = r^2$$
 (3.6)

$$\Leftrightarrow (y - y_M)^2 = r^2 - (x - x_M)^2$$
 (3.7)

$$\Leftrightarrow y - y_M = \sqrt{r^2 - (x - x_M)^2} \ oder \tag{3.8}$$

$$y - y_M = -\sqrt{r^2 - (x - x_M)^2}$$
 (3.9)

$$\Leftrightarrow y = y_M + \sqrt{r^2 - (x - x_M)^2} \text{ oder}$$
 (3.10)

$$y = y_M - \sqrt{r^2 - (x - x_M)^2} . (3.11)$$

Die obigen Gleichungen fassen wir als Funktionen in Abhängigkeit von x auf und benennen sie als f_+ bzw. f_- .

3.5 DEFINITION

Ist $P_M = (x_M; y_M) \in \mathbb{R}^2$ der Mittelpunkt eines Kreises mit Radius r > 0, so ist der Kreis zusammengesetzt aus den Graphen der beiden Funktionen f_-, f_+ , definiert durch

$$f_{+}(x) := y_{M} + \sqrt{r^{2} - (x - x_{M})^{2}}, wobei x_{M} - r \le x \le x_{M} + r,$$
 (3.12)

$$f_{-}(x) := y_M - \sqrt{r^2 - (x - x_M)^2}, \text{ wobei } x_M - r < x < x_M + r.$$
 (3.13)

Der "obere" Halbkreis entspricht der Bildmenge von f_+ , wohingegen der "untere" Halbkreis der Bildmenge von f_- entspricht.

3.6 BEISPIEL

[online-only]

3.3 Winkeldarstellung

Eine weitere Möglichkeit, einen Kreis zu beschreiben, ist ihn durch Winkel zu parametrisieren. Das führt auf seine *Winkeldarstellung*.

3.7 DEFINITION

Die Winkeldarstellung eines Kreises K mit Mittelpunkt $P_M=(x_M;y_M)\in\mathbb{R}^2$ und Radius r>0 ist folgendermassen definiert:

Der Kreis K besteht aus allen Punkten in \mathbb{R}^2 mit den Koordinaten

$$x(\varphi) := x_M + r\cos(\varphi), \qquad (3.14)$$

$$y(\varphi) := y_M + r\sin(\varphi), \qquad (3.15)$$

wobei φ folgende Werte annimmt: $0 \le \varphi < 2\pi$.

Gleichwertig dazu ist folgende Schreibweise:

$$K = \left\{ \left(x(\varphi); y(\varphi) \right) \in \mathbb{R}^2 \mid 0 \le \varphi < 2\pi, \quad x(\varphi) = x_M + r \cos(\varphi), \right.$$
 (3.16)

$$y(\varphi) = y_M + r\sin(\varphi) \right\}. \tag{3.17}$$

In der Winkeldarstellung nimmt φ alle Werte zwischen 0 (einschliesslich) und 2π (ausschliesslich) an, d.h. $0 \le \varphi < 2\pi$.

Würde man für φ alle reellen Werte zulassen, so würde man keine neuen Punkte erhalten, da $\cos(\varphi+2\pi)=\cos(\varphi)$ und $\sin(\varphi+2\pi)=\sin(\varphi)$. Jeder Punkt des Kreises würde dann unendlich oft überstrichen.

3.8 BEISPIEL

[online-only]

3.4 Schnittpunkte von Kreisen berechnen

Liegen zwei Kreise

$$K_1 := \{(x; y) \in \mathbb{R}^2 \mid (x - x_{M,1})^2 + (y - y_{M,1})^2 = r_1^2 \},$$
 (3.18)

$$K_2 := \{(x; y) \in \mathbb{R}^2 \mid (x - x_{M,2})^2 + (y - y_{M,2})^2 = r_2^2 \}$$
 (3.19)

vor, so sind deren Schnittpunkte alle Punkte $P=(x;y)\in K_1\cap K_2$, d.h. alle Punkte P=(x;y), die sowohl

$$(x - x_{M,1})^2 + (y - y_{M,1})^2 = r_1^2$$
 (3.20)

als auch

$$(x - x_{M,2})^2 + (y - y_{M,2})^2 = r_2^2$$
 (3.21)

erfüllen.

3.9 BEMERKUNG

Zwei Kreise in der Ebene können sich in

- keinem Punkt schneiden (d.h. sie schneiden sich gar nicht).
- genau einem Punkt schneiden. In diesem Fall sagt man, dass sich die Kreise berühren (bzw. tangieren).
- zwei Punkten schneiden.
- unendlich vielen Punkten schneiden, die Kreise sind dann identisch.

3.10 BEISPIEL

[online-only]

Noch Fragen? Dann schauen Sie bitte ins Forum oder fragen per Skype bei OMB+ tutor (ombplus).

ÜBUNG 1

Die Gleichung

$$x^2 - 2x + y^2 + 4y - 11 = 0$$

beschreibt einen Kreis K.

Berechnen Sie die

- a) Koordinatengleichung
- b) Koordinaten des Zentrums und den Radius des Kreises
- c) Darstellung des Kreises als Graph zweier Funktionen.
- d) Winkeldarstellung
- a) Koordinatengl.

Die Koordinatengleichung des Kreises K ist

$$(x-1)^2 + (y+2)^2 = 4^2$$
.

Transformieren Sie die Gleichung durch quadratische Ergänzung auf die Form:

$$(x - x_M)^2 + (y - y_M)^2 = r^2$$

Die Methode der quadratischen Ergänzung geht wie folgt:

$$x^2 - 2x + y^2 + 4y - 11 = 0 (1)$$

$$(x-1)^2 - 1 + (y+2)^2 - 4 - 11 = 0 (2)$$

$$(x-1)^2 + (y+2)^2 - 16 = 0 (3)$$

$$(x-1)^2 + (y+2)^2 = 4^2$$
 (4)

b) Zentrum, Radius

Die Koordinaten des Zentrums M sind ($x_M = 1; y_M = -2$).

Der Radius des Kreises r ist 4.

In Teilaufgabe a) wurde die Koordinatengleichung hergeleitet.

$$(x-1)^2 + (y+2)^2 = 4^2$$

Sie sagt aus, dass Punkte auf dem Kreis vom Zentrum M mit den Koordinaten ($x_M=1;y_M=-2$) den Abstand r=4 haben.

c) 2 Funktionen

$$f_{+}(x) = -2 + \sqrt{16 - (x - 1)^2}, -3 \le x \le 5,$$
 (5)

$$f_{-}(x) = -2 - \sqrt{16 - (x - 1)^2}, -3 \le x \le 5.$$
 (6)

Starten Sie von der Koordinatengleichung (Teilaufgabe a))

$$(x-1)^2 + (y+2)^2 = 16$$

und gehen Sie wie folgt vor:

$$(x-1)^2 + (y+2)^2 = 16 \Leftrightarrow (y+2)^2 = 16 - (x-1)^2$$
 (7)

$$\Leftrightarrow y + 2 = \sqrt{16 - (x - 1)^2} \text{ oder}$$
 (8)

$$y + 2 = -\sqrt{16 - (x - 1)^2} \tag{9}$$

$$\Rightarrow y = -2 + \sqrt{16 - (x - 1)^2} \text{ oder}$$
 (10)

$$y = -2 - \sqrt{16 - (x - 1)^2}$$
 (11)

Die obigen Gleichungen definieren die beiden Funktionen $f_+(x), f_-(x)$ und sind für alle $-3 \le x \le 5$ definiert.

d) Winkeldarst.

$$x(\varphi) = 1 + 4 \cdot \cos(\varphi), \tag{12}$$

$$y(\varphi) = -2 + 4 \cdot \sin(\varphi). \tag{13}$$

Die Winkeldarstellung eines Kreises K mit Mittelpunkt $M=(x_M;y_M)\in\mathbb{R}^2$ und Radius r>0 ist folgendermaßen definiert:

Der Kreis K besteht aus allen Punkten in \mathbb{R}^2 mit den Koordinaten

$$x(\varphi) := x_M + r\cos(\varphi), \qquad (14)$$

$$y(\varphi) := y_M + r \sin(\varphi), \qquad (15)$$

wobei φ folgende Werte annimmt: $0 \le \varphi < 2\pi$.

Setzen Sie die Werte x_M, y_M und r aus Teilaufgabe a) hier ein.

ÜBUNG 2

Von einem Kreis ist Folgendes bekannt:

- 1. Der Mittelpunkt liegt auf der x-Achse.
- 2. Der Ursprung liegt auf dem Kreis.
- 3. Der Punkt $P = (x_P; y_P)$ liegt auf dem Kreis, er liegt nicht auf der y-Achse.

Berechnen Sie

- (a) die Koordinaten des Mittelpunktes
- (b) den Radius

(a) Zur Berechnung des Mittelpunktes

Der Mittelpunkt M hat die Koordinaten (x; 0). x kennen wir noch nicht. Die y-Koordinate ist Null, weil M auf der x-Achse liegt.

Um x zu berechnen, verwenden wir, dass der Abstand von M zum Ursprung O gleich dem Abstand von M zu P ist (siehe dazu die Einleitung zum Kapitel Geometrie):

$$\overline{MO} = \overline{MP}, \tag{1}$$

$$\overline{MO} = \overline{MP}, \qquad (1)$$

$$\sqrt{(x-0)^2 + 0^2} = \sqrt{(x-x_P)^2 + y_P^2}. \qquad (2)$$

Wenn wir jetzt beide Seiten quadrieren, erhalten wir eine quadratische Gleichung für die Variable x, in der sich allerdings der quadratische Term weghebt. Dies führt auf die lineare Gleichung

$$0 = -2xx_P + x_P^2 + y_P^2$$

mit der Lösung

$$x = \frac{x_P^2 + y_P^2}{2x_P}.$$

Bemerkung:

Da der Punkt P nach Voraussetzung nicht auf der y-Achse liegt, ist $x_P \neq 0$. Somit darf durch x_P dividiert werden.

(b) Zur Berechnung des Radius

Der Radius des Kreises ist gleich dem Abstand von ${\cal M}$ vom Ursprung:

$$r = \left| \frac{x_P^2 + y_P^2}{2x_P} \right|.$$

Alternativ zu der hier gezeigten rechnerischen Lösung, gibt es eine geometrische. Sie verwendet die Idee, dass der Mittelpunkt des Kreises der Schnittpunkt der x-Achse mit der Mittelsenkrechten der Strecke OP ist.