Customer Churn Classification Model

Table of Contents

- 1. Dataset Overview
- 2. Assumptions
- 3. Exploratory Data Analysis (EDA) Findings
- 4. Feature Selection and Engineering
- 5. Hyperparameter Optimization and Modeling
- 6. Model Evaluation
- 7. Model Strength and Segmentation
- 8. Future Improvements
- 9. Summary

1. Dataset Overview

This study was conducted to predict customer churn using data from a telecom operator. The dataset contains **66 features**, and the target variable is churn (1: churned customer, 0: active customer).

Key Features:

- General User Information: user_account_id, year, month, user_lifetime
- Financial Information: user_account_balance_last, user_spendings
- **Usage Information**: user_no_outgoing_activity_in_days, user_has_outgoing_calls, user_has_outgoing_sms
- Last 100 Usage Records: last_100_calls_outgoing_duration, last_100_sms_outgoing_count, last_100_gprs_usage

Data Balance:

- 79.1% active (non-churn) customers
- 20.9% churned customers
- Since the dataset is **imbalanced**, strategies to handle class imbalance were considered during modeling.

2. Assumptions

 Recent usage patterns may be crucial for churn prediction. Variables like user_no_outgoing_activity_in_days, user_spendings, and user_has_outgoing_calls may indicate churn tendencies.

- Low balance or low spending could signal churn risk. Customers with lower user_account_balance_last and user_spendings are more likely to churn.
- Last 100 call, SMS, and internet usage data may play a critical role in churn prediction. Identifying whether a user is still active in recent months can be key.

3. Exploratory Data Analysis (EDA) Findings

An analysis of missing values was conducted, and **no missing values** were found in the dataset. All features are complete, and no imputation was required during data preprocessing.

Key Findings:

- Customers who churn generally have lower balance and lower spending profiles.
- Users with long periods of inactivity in calls and SMS have significantly higher churn rates.
- Users with low data usage are more likely to churn compared to those with high data usage.
- The last 100 transactions play a crucial role in churn prediction. Users with low call duration and SMS count in their last 100 transactions tend to have a higher churn risk.
- The initial subscription period (user_intake) is an important factor; users with lower spending in the early stages are more likely to churn.

4. Feature Selection and Engineering

To maximize churn prediction performance, extensive **feature selection and engineering** was applied. Several new variables were created to better model customer behavior. Some key derived variables include:

- Call and Spending Ratios: calls_outgoing_avg_spending was created to determine the average spending per call duration.
- SMS Usage Analysis: sms_onnet_ratio, sms_offnet_ratio, and sms_abroad_ratio were calculated to understand the distribution of sent SMSs across different categories.
- Data Usage vs. Call Duration Balance: data_to_call_ratio was created to analyze the relationship between a user's data consumption and call duration.
- **Spending Habits:** reload_to_spending_ratio was derived to evaluate the relationship between top-up amounts and spending habits.
- Inactivity Ratios: Features such as calls_inactive_ratio,
 sms_inactive_ratio, and gprs_inactive_ratio were created to measure user inactivity over time.

• Last 100 Usage Trends: To assess churn risk based on recent activity, features like last_100_calls_ratio, last_100_sms_ratio, and last_100_gprs_ratio were computed.

These derived features significantly enhanced the model's churn prediction accuracy and provided better insights into customer behavior.

5. Hyperparameter Optimization and Modeling

To maximize model performance, **Grid Search CV** and **Bayesian Optimization** were used for hyperparameter tuning. A **Boruta-like algorithm** was employed to identify the most relevant features. Additionally, a **0.05 threshold** was used to minimize overfitting risk.

Best Hyperparameters:

Colsample by Tree: 0.7Enable Categorical: False

Eval Metric: 'auc'Learning Rate: 0.01

Max Depth: 8Min Child Weight: 5

• Missing: NaN

• N Estimators: 500

• N Jobs: -1

Random State: 42Subsample: 0.8Gamma: 0.2

These hyperparameters improved the model's performance while reducing overfitting.

6. Model Evaluation

Confusion Matrix:

[[8828 649]

[811 1712]]

Classification Report:

precision		recall f1-score		support	
0	0.92	0.93	0.92	9477	
1	0.73	0.68	0.70	2523	
accuracy	/		0.88	12000	

macro avg 0.82 0.81 0.81 12000 weighted avg 0.88 0.88 0.88 12000

Accuracy: 87.83%Gini Test Score: 0.8275

7. Model Strength and Segmentation

Customer segmentation was performed to create **proactive intervention plans**. The following segmentation table illustrates different churn risk groups:

Segment	Customer Count	Churn Count	Churn Rate
1	1200	9	0.75%
2	1200	22	1.83%
3	1200	24	2.00%
4	1200	28	2.33%
5	1200	38	3.17%
6	1200	83	6.92%
7	1200	167	13.92%
8	1200	426	35.50%
9	1202	728	60.57%
10	1198	998	83.31%

This segmentation allows businesses to take early actions to reduce churn risk and improve customer retention. Customer segmentation was performed to create **proactive intervention plans**.

8. Future Improvements

- Real-time predictions
- Advanced feature engineering
- Model variety
- Expanding customer segmentation
- Proactive action plans

9. Summary

This study successfully applied advanced machine learning techniques for **churn prediction**. The model achieved **a Gini Test Score of 0.8275** and **an Accuracy of 87.83%**, demonstrating **strong predictive power**. Customer segmentation helped identify high-risk customers, allowing businesses to take preventive actions.