Chapter 4: 6, 12, 13, 28, 30, 35.

Due date: Friday, 10/03

(Exercise numbers correspond to the printed textbook, generated from 2013/08/16 source files.)

6. Find the order of every element in the symmetry group of the square, D_4 .

12. Find a cyclic group with exactly one generator. Can you find cyclic groups with exactly two generators? Four generators? How about n generators?

13.	For $n \leq 20$, which groups $U(n)$ are cyclic? Make a conjecture as to what is true in general. you prove your conjecture?	Can
28	Let a be an element in a group G. What is a generator for the subgroup $\langle a^m \rangle \cap \langle a^n \rangle$?	
-0.	200 w 80 wh clement in a group or while is a generator for the subgroup (w) + (w).	

30.	Suppose that G is a group and let $a, b \in G$. Prove that if $ a = m$ and $ b = n$ with $gcd(m, n) = 1$
	then $\langle a \rangle \cap \langle b \rangle = \{e\}.$

35. Prove that the subgroups of $\mathbb Z$ are exactly $n\mathbb Z$ for $n=0,1,2,\ldots$

38.	Prove	that '	the ord	ler of a	n elemer	nt in a o	cyclic g	roup G	must	divide	the ord	ler of th	ne group).