1 测试定理 1

1 测试定理

本文分享的是关于定理定义与推论等的设计方法与设计展示,以最为简单 的定理定义为例子进行样式的展示。

♦ 定义 1.1

在 (a,b) 上给定函数 f(x), $x_0 \in (a,b)$, 若

$$\lim_{x \to x_0} f(x) = f(x_0), \tag{1}$$

则称函数 f(x) 在 x_0 点连续, x_0 称为连续点, 否则就称 x_0 为间断点。

直观地说,就是当动点 x 趋于定点 x_0 时,若动点函数值趋于定点的函数值,则函数在 x_0 点连续。若 x_0 是连续点,则当自变量在 x_0 点有无限小的变化,引起因变量的变化也无限的小。

♦ 定理 1. Darboux 定理

设 $f(x) \in C^{(1)}[a,b]$ 。若 f'(a) < f'(b),证明对任意 η ,若 η 满足

$$f'(a) < \eta < f'(b), \tag{2}$$

则存在 $\xi \in (a,b)$,使得 $f'(\xi) = \eta$ 。

证明. 不妨设 f(x) 单调上升。那么对任意 $x_0 \in (a,b)$,当 $x \to x_0 - 0$ 时,函数 值 f(x) 上升,并有上界 $f(x_0)$,所以极限存在,且

$$\lim_{x \to x_0 - 0} f(x) = f(x_0 - 0) \le f(x_0)$$

同理, 当 $x \to x_0 + 0$ 时, 函数值 f(x) 下降, 并有下界 $f(x_0)$, 所以极限存在, 且

$$\lim_{x \to x_0 + 0} f(x) = f(x_0 + 0) \ge f(x_0)$$

若 $f(x_0 - 0) = f(x_0 + 0)$,则 x_0 是函数的连续点;若 $f(x_0 - 0) \neq f(x_0 + 0)$,则 x_0 是函数的第一类间断点。由于 x_0 的任意性,所以区间上每一点不是连续点就是第一类间断点。

♦ 命题 1

设给定实数 x_1, x_2 , 且 $x_1 < x_2$, 总可以找到有理数 q_1, q_2 , 使得

$$x_1 < q_1 < q_2 < x_2,$$

因此

$$a^{x_1} = \sup_{q \le x_1} \{a^q\} \le a^{q_1} < a^{q_2} \le \sup_{q \le x_2} \{a^q\} = a^{x_2},$$

1 测试定理 2

即 a^x 在 \mathbb{R} 上严格上升。

♦ 引理 1.2

设 $a>1,\ n$ 为正整数,则存在实数 b>1, 使得 $a=b^n$ 或者 $\sqrt[n]{a}=b.$