

## Olimpiada de Fizică - Etapa naţională 1 – 6 aprilie 2012 Ilfov



## Problema a III-a (10 puncte)

O bandă din platină, practic unidimensională (având lungimea  $L\!=\!100\mathrm{cm}$ , lățimea  $l\!=\!2,\!00\mathrm{mm}$  și grosimea  $h\!=\!0,\!05\mathrm{mm}$ ) este complet înnegrită și plasată în vid. Temperatura exterioară este  $t_0\!=\!0\,^{\circ}\mathrm{C}$ , iar constanta lui Stefan este  $\sigma\!=\!5,\!67\!\cdot\!10^{-8}~\mathrm{Wm}^2\mathrm{K}^{-4}$ .

- A. Prin bandă trece un curent electric. Se constată că între tensiunea u la capetele ei și intensitatea i a curentului electric există relația  $u=Ci^{\beta}+Di^{\delta}$ , unde C, D,  $\beta$ ,  $\delta$  sunt constante distincte. Să se determine expresiile și valorile numerice ale acestor constante
  - a. la temperaturi ale benzii mult superioare celei exterioare;
  - b. la temperaturi ale benzii apropiate de cea exterioară.

Se cunoaște rezistivitatea platinei la temperatura exterioară  $\rho_0=9,78\cdot 10^{-8}~\Omega\cdot m$  și că variația ei relativă este de 1/273, pentru o creștere a temperaturii benzii cu  $1~^{\circ}C$ . În plus, se neglijează dilatarea termică a benzii (până la  $1000~^{\circ}C$  variația relativă a lungimii ei este sub 1~%).

- B. Banda de Pt se folosește drept rezistența R din puntea Wheatstone alăturată. Rezistențele  $R_{\rm l}=1\Omega$  și  $R_{x}$  variabilă, nu depind de temperatură. Bateria are  $E=500\,\mathrm{mV}$ , iar rezistența ei internă, ca și cea a firelor de legătură, este nulă. Ce valoare trebuie să aibă rezistența  $R_{x}$  pentru a echilibra puntea și care este temperatura benzii în acest caz? Pentru a simplifica calculele, se va considera creșterea de temperatură a benzii foarte mică.
- C. O față a benzii de Pt, montată în puntea Wheatstone, este expusă radiației solare. După atingerea stării staționare se constată că pentru echilibrarea punții  $R_{\scriptscriptstyle X}=1{,}04\,\Omega$ . Să se calculeze intensitatea radiației solare.
- D. Se fixează valoarea rezistenței  $R_x$  la valoarea  $1,10~\Omega$  și se expune acțiunii radiației solare o față a benzii. Să se arate că echilibrul punții se poate stabili prin modificarea t.e.m. a unei surse de tensiune reglabilă și să se determine valoarea corespunzătoare a t.e.m., dacă intensitatea radiației solare este cea găsită la punctul C.

Observație: O ecuație algebrică neliniară sau transcendentă se poate rezolva prin metoda aproximațiilor succesive, scriind-o adecvat sub forma f(x) = g(x), unde f(x) se alege ca o funcție liniară. Pentru a găsi punctul de intersecție al graficelor celor două funcții, adică soluția ecuației, se pornește cu o valoare particulară  $x_0$  și se calculează funcția neliniară  $g(x_0)$ . Apoi se rezolvă, pe rând, ecuațiile  $f(x_1) = g(x_0)$ ,  $f(x_2) = g(x_1)$  etc., până când  $x_n = x_{n-1}$ , cu același număr de cifre semnificative. În acest caz se spune că s-a realizat convergența, iar  $x_n$  astfel găsit reprezintă soluția ecuației inițiale.

Problemă propusă de

Conf. univ. dr. Sebastian POPESCU - Facultatea de Fizică, Universitatea "Alexandru Ioan Cuza" din Iași