Predicting Income and Employment in the US

Junchan Byeon, Alex Chen, David —— Chen, Suzanne Papik, Yinqi Zhang

AMERICAN COMMUNITY SURVEY

U.S. CENSUS BUREAU

Motivation

• Determine factors that predict Income/Unemployment

Procedure

Data Cleaning

Exploratory Analysis

Variable Selection

Data Modeling

Visualization

Analysis

Conclusion

Data Cleaning

- Remove NAs (***)
- 2. Training and Testing datasets (75-25)
- 3. Removed the Census Id, State, County
- 4. Remove Puerto Rico
- 5. Dependent variables

CensusId	State	County	TotalPop	Men	Women	Hispanic	White	Black	Native
1001	Alabama	Autauga	55221	26745	28476	2.6	75.8	18.5	0.4
1003	Alabama	Baldwin	195121	95314	99807	4.5	83.1	9.5	0.6
1005	Alabama	Barbour	26932	14497	12435	4.6	46.2	46.7	0.2
1007	Alabama	Bibb	22604	12073	10531	2.2	74.5	21.4	0.4

Exploratory Data Analysis

Income Map of United States

Map based on Longitude (generated) and Latitude (generated). Color shows sum of Income. Details are shown for State and County.

Unemployment

Unemployment by State

Unemployment by County

36.50

Map based on Longitude (generated) and Latitude (generated). Color shows average of Unemployment. Details are shown for State and County.

Variable Selection

<pre>vif(lm_allt)</pre>			
TotalPop	Men	Hispanic	White
7451.110911	6464.941914	183.156687	266.644104
Black	Native	Asian	Pacific
102.734727	31.231106	6.858992	1.858937
Citizen	IncomeErr	IncomePerCap	IncomePerCapErr
205.375209	2.332470	5.922559	2.403603
Poverty	ChildPoverty	Professional	Service
13.696823	9.911041	10078.101624	3283.472130
Office	Construction	Production	Drive
2539.436610	4408.171850	8183.775501	12253.759251
Carpool	Transit	Walk	OtherTransp
1788.326863	1976.091792	2892.623242	578.205941
WorkAtHome	MeanCommute	Employed	PrivateWork
2129.373124	1.572328	278.635023	19203.702994
PublicWork	SelfEmployed	FamilyWork	Unemployment
13105.435953	4808.750795	65.538771	2.746457

Multiple Linear Regression - Income

Data Modeling-Income

```
vif(lm_manual)
  TotalPop
                 White
                             Black
                                         Native
                                                       Asian
 1.431200
              2.720177
                          2.576476
                                       1.653097
                                                    2.123701
  Pacific IncomePerCap
                           Poverty Professional
                                                       Drive
 1.283367
              4.443992
                           3.580224
                                       2.820479
                                                    2.043680
WorkAtHome MeanCommute
                        PrivateWork Unemployment
  2.091952
              1.290788
                          1.975467
                                       2.208786
```

Transforming the Data

Influential Obs by Cooks distance

AIC/BIC Model

```
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.641e+02 3.763e+00 43.618 < 2e-16 ***
TotalPop
           -5.636e-06 9.780e-07 -5.763 9.36e-09 ***
White
        -2.861e-01 1.676e-02 -17.070 < 2e-16 ***
Black
       -1.948e-01 2.196e-02 -8.868 < 2e-16 ***
Native
        3.678e-01 3.709e-02 9.917 < 2e-16 ***
Asian
       9.716e-01 1.085e-01 8.953 < 2e-16 ***
Pacific -5.640e-01 2.661e-01 -2.120 0.03413 *
IncomePerCap 2.160e-03 7.023e-05 30.751 < 2e-16 ***
Poverty -1.843e+00 5.677e-02 -32.463 < 2e-16 ***
Professional 4.734e-01 5.132e-02 9.224 < 2e-16 ***
WorkAtHome -4.268e-01 7.704e-02 -5.540 3.36e-08 ***
MeanCommute 5.848e-01 4.037e-02 14.484 < 2e-16 ***
PrivateWork 3.642e-01 3.598e-02 10.123 < 2e-16 ***
Unemployment -2.320e-01 8.378e-02 -2.769 0.00567 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 9.531 on 2342 degrees of freedom
Multiple R-squared: 0.8802, Adjusted R-squared: 0.8795
F-statistic: 1324 on 13 and 2342 DF, p-value: < 2.2e-16
```

Data Modeling-Income

Fit the LASSO, Ridge, and Elastic Net models:

```
fit.lasso<-glmnet(x.train,y.train,family='gaussian',alpha=1)
fit.ridge<-glmnet(x.train,y.train,family='gaussian',alpha=0)
fit.elnet<-glmnet(x.train,y.train,family='gaussian',alpha=0.5)</pre>
```

Creates 10-fold Cross Validation for each alpha:

Plot the solution path and cross-validated MSE as function of λ

```
plot(fit.lasso,xvar='lambda')
plot(fit10,main='LASSO')

plot(fit.ridge,xvar='lambda')
plot(fit0,main='RIDGE')

plot(fit.elnet,xvar='lambda')
plot(fit5,main='Elastic Net')
```

LASSO

RIDGE

ELASTIC NET

Prediction-Income

Predict yhat0 to yhat10 using the fit for each alpha

```
yhat0<-predict(fit0,s=fit0$lambda.1se,newx=x.test)</pre>
```

Compute the Mean Absolute Error and Mean Square Error for each yhat

```
(mean(abs(y.test-yhat0)))
```

```
(mse0 < -mean((y.test-yhat0)^2))
```

Fitting the Income Model

fit.AIC.BIC <- step(lm_manual2, direction = "both", k = 1, trace = 0)

MAE= 3171

MSE=19660025

fit.lasso<-glmnet(x.train,y.train,family='gaussian',alpha=1)

MAE= 3187.912

MSE=18104664

fit.ridge<-glmnet(x.train,y.train,family='gaussian',alpha=0)</pre>

MAE= 43654.52

MSE=19009876

fit.elnet<-glmnet(x.train,y.train,family='gaussian',alpha=0.5)</pre>

MAE= 3152.585

MSE=17675860

Elastic Net

- Reduce VIF
- Remove Insignificant Predictors

(Intercept)	2.767746e+04		
TotalPop			
Men	54. 100 to 100 to 100 to		
Hispanic	7.130313e+01		
White	-2.642650e+01		
Black			
Native	1.528397e+02		
Asian	5.238716e+02		
Pacific	-9.184375e+00		
Citizen	-1.316442e-03		
IncomeErr	2.811070e-01		
IncomePerCap	1.181609e+00		
IncomePerCapErr	-1.088883e+00		
Poverty	-4.964837e+02		
ChildPoverty	-1.041434e+02		

Professional	1.002065e+02
Service	-1.888259e+02
Office	
Construction	1.054030e+01
Production	-1.322014e+01
Drive	
Carpool	6.691704e+01
Transit	-1.106874e+02
Walk	
OtherTransp	
WorkAtHome	
MeanCommute	2.258283e+02
Employed	
PrivateWork	
PublicWork	3.672546e+01
SelfEmployed	-3.794166e+02
FamilyWork	
Unemployment	-8.190530e+01

Logistic Regression - Unemployment

Data Manipulation

- Had to create new binary variable in the dataset
- National unemployment rate in January of 2015 was 5.7%
- Created a binary variable that took the value 1 when the unemployment rate was greater than or equal to 5.7, and 0 when the unemployment rate was less than 5.7

cendata\$unemploy<-ifelse(cendata\$Unemployment>=5.7,cendata\$unemploy<-1,cendata\$unemploy<-0)

Employed	PrivateWork	PublicWork	SelfEmployed	FamilyWork =	Unemployment *	unemploy
2838	68.9	26.0	5.1	0.0	20.8	1
8894	74.3	16.0	9.6	0.1	9.6	1
2519	78.6	15.4	5.9	0.2	2.9	0
3787	77.9	18.9	3.2	0.0	2.1	0
152355	73.3	20.9	5.7	0.1	6.7	1

Data Modeling-Unemployment

Fit the LASSO, Ridge, and Elastic Net models:

```
fit.lasso2<-glmnet(x.train2,y.train2,family='binomial',alpha=1)
fit.ridge2<-glmnet(x.train2,y.train2,family="binomial",alpha=0)
fit.elnet2<-glmnet(x.train2,y.train2,family='binomial',alpha=0.5)</pre>
```

Creates 10-fold Cross Validation for each alpha:

```
for (i in 0:10) {
   assign(paste('fit',i,sep=''),cv.glmnet(x.train2,y.train2,type.measure='mse',alpha=i/10,family='binomial'))
}
```

Plot the solution path and cross-validated MSE as function of λ

```
plot(fit.lasso2,xvar='lambda')
plot(fit10,main='LASSO')

plot(fit.ridge2,xvar='lambda')
plot(fit0,main='RIDGE')

plot(fit.elnet2,xvar='lambda')
plot(fit5,main='Elastic Net')
```

LASSO

RIDGE

ELASTIC NET

Prediction-Unemployment

Predict yhat0 to yhat10 using the fit for each alpha

```
yhat0.2<-predict(fit0,s=fit0$lambda.1se,newx=x.test2)</pre>
```

Compute The ROC curve and AUC for each model

```
roc.res0=roc(yhat0.2,factor(y.test2)) #Ridge
auc(roc.res0)
roc.res5=roc(yhat5.2,factor(y.test2)) #Elnet
auc(roc.res5)
roc.res10=roc(yhat10.2,factor(y.test2)) #LASS0
auc(roc.res10)
```


Fitting the Unemployment Model

fit.lasso2<-glmnet(x.train2,y.train2,family='binomial',alpha=1)

AUC=0.9070913

fit.ridge2<-glmnet(x.train2,y.train2,family="binomial",alpha=0)

AUC=0.903377

fit.elnet2<-glmnet(x.train2,y.train2,family='binomial',alpha=0.5)

AUC=0.9048422

LASSO Regression

- Removes insignificant predictors
- Shrinks insignificant predictors to 0

(Intercept)	9.399631e-01	Professional	-3.714666e-02
TotalPop		Service	9.031317e-02
Men	ė.	Office	6.369201e-02
Hispanic	-1.470381e-02	Construction	-3.027857e-02
White	-1.642101e-02	Production	
Black	1.727910e-02	Drive	-3.209371e-02
Native	7.595874e-03	Carpool	3.335307e-03
		Transit	
Asian	-2.301892e-02	Walk	1.633950e-02
Pacific	· ·	OtherTransp	1.345186e-01
Citizen	5.820210e-06	WorkAtHome	
Income	-6.375330e-05	MeanCommute	1.710650e-01
IncomeErr	-8.213828e-05	Employed	·
IncomePerCap	2.067713e-05	PrivateWork	
IncomePerCapErr	-1.418053e-04	PublicWork	1.615714e-02
Poverty	1.184282e-01	SelfEmployed	-1.240718e-01
ChildPoverty	1.116098e-02	FamilyWork	-2.772516e-01

Final Models

Model for predicting income(Elastic net)

fit.elnet<-glmnet(x.train,y.train,family='gaussian',alpha=0.5)</pre>

Model for predicting unemployment rate(Lasso)

fit.lasso2<-glmnet(x.train2,y.train2,family='binomial',alpha=1)</pre>

Residual Heat Map through Forward/Backward Selection

Map based on Longitude (generated) and Latitude (generated). Color shows sum of AIC Resids. Details are shown for State and County

Residual Heat Map through Forward/Backward Selection

AIC Resids New Hampshire Massachusetts Rhode Island New Jersey Delaware Maryland District of Columbia Baja California Sinaloa Durango Mexico Nayarit

-233,731 228,422

Map based on Longitude (generated) and Latitude (generated). Color shows sum of AIC Resids. Details are shown for State.

Conclusion

Use of these models:

- o If you have current county information, you can predict income and unemployment levels
- o If you have a projection of where the county is going in the future, these models can determine what the unemployment and income levels may be
- Look at variables to determine which conditions could be improved to increase income or lower unemployment

Future study:

- Refit these models when the 2020 census data comes out
- Use these models to predict what income and unemployment may look like for the 2020 census