Probabilités sur un ensemble fini

Vocabulaire

- Une **expérience aléatoire** est une expérience renouvelable, dont le résultat ne peut pas être prévu, et qui, renouvelée dans des conditions identiques ne donne pas forcément le même résultat à chaque renouvellement
- Chaque renouvellement de l'expérience est appelé une **épreuve**.
- Un **univers** est l'ensemble de tous les résultats possibles d'une expérience aléatoire, il est souvent noté $\,\Omega\,$.
- Chaque résultat possible d'une expérience aléatoire est appelé une **issue**.
- Un ensemble d'issues est appelé un **évènement**. Un évènement A est un sous-ensemble de Ω : $A \subset \Omega$.
- Un **évènement élémentaire** est un évènement qui contient une seule issue.
- L'évènement contraire de A est l'ensemble \bar{A} des éléments de Ω n'appartenant pas à A .
- L'évènement certain est la partie égale à l'univers : $A = \Omega$.
- L'évènement impossible est l'ensemble vide : $A = \emptyset$.
- La **réunion** de deux événements A et B , notée $A \cup B$, est l'événement qui contient toutes les éventualités de A **ou** de B .
- L'**intersection** de deux événements A et B , notée $A \cap B$, est l'événement qui contient les éventualités communes à A et à B .
- Si $A \cap B = \emptyset$ on dit que A et B sont **incompatibles**.

Définition

L'ensemble des événements de l'univers Ω est noté $\wp(\Omega)$.

Une **probabilité** définie sur Ω est une application P de $\wp(\Omega)$ dans [0;1] telle que :

- $P(\Omega)=1$.
- Pour tout $A \in \wp(\Omega)$ et tout $B \in \wp(\Omega)$, si $A \cap B = \emptyset$, on a $P(A \cup B) = P(A) + P(B)$.
- « P(A) » se lit « probabilité que A se réalise ».

Propriétés

Pour tout $A \in \wp(\Omega)$ et tout $B \in \wp(\Omega)$:

- $P(\mathcal{O})=0$;
- $P(\bar{A})=1-P(A)$;
- $0 \le P(A) \le 1$;
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$.

Équiprobabilité

On dit qu'il y a **équiprobabilité** quand tous événements élémentaires ont **la même** probabilité.

- Si Ω contient n éléments, la probabilité d'un événement élémentaire est: $\frac{1}{n}$.
- Si un événement A contient k éléments: $P(A) = \frac{k}{n}$,

$$P(A) = \frac{nombre \ de \ cas \ favorables}{nombre \ de \ cas \ possibles}$$
.

Exemples:

· Soit le jeu de lancer d'un dé.

On utilise comme notation : $P(\{i\}) = p_i$ pour $i \in \{1, 2, 3, 4, 5, 6\}$.

Les probabilités des événements élémentaires du jeu de dé (dé non pipé) sont :

$$p_1 = p_2 = p_3 = p_4 = p_5 = p_6 = \frac{1}{6}$$
.

On dit qu'il y a équiprobabilité.

On a ainsi : $p_1 + p_2 + p_3 + p_4 + p_5 + p_6 = 1$.

- Pour une pièce équilibrée : $P(\{F\}) = P(\{P\}) = \frac{1}{2}$.
- Pour un jeu de 52 cartes non truqué : $P(\{As \text{ de cœur}\}) = \frac{1}{52}$.

Exercices

- **Ex 1 :** On lance un dé à 12 faces bien équilibré. On lit après chaque lancer le numéro de la face supérieure.
 - **1.** Déterminer l'univers Ω associé à cette expérience.
 - **2.** Calculer la probabilité de l'événement A : « Faire apparaître un numéro pair inférieur à 9 ». On notera P(A) la probabilité de A .
 - **3.** Calculer la probabilité de l'événement B : « Faire apparaître un numéro pair ou un numéro inférieur à 5 ».
- **Ex 2 :** Dans une boite, on place quatre cartons portant chacun une des lettres du mot « NOTE ». On tire au hasard un carton et on le pose à côté de la boite. On recommence cette opération deux autres fois et, à chaque nouveau tirage, on place la lettre à droite de la précédente. On obtient ainsi un mot de trois lettres (il n'est pas nécessaire qu'il figure dans le dictionnaire). On donnera les résultats sous forme de fraction, puis on en donnera une valeur approchée à 10^{-2} près.
 - 1. Vérifier à l'aide d'un arbre, que l'on peut ainsi former 24 mots différents.
 - 2. Déterminer la probabilité d'obtenir le mot : « NET ».
 - **3.** On note A l'événement « le mot obtenu commence par une consonne » et B l'événement « le mot obtenu comporte une voyelle en son milieu ».
 - **a)** Calculer la probabilité P(A) de l'événement A.
 - **b)** Calculer la probabilité P(B) de l'événement B.
 - **c)** Calculer la probabilité $P(A \cap B)$ de l'événement « A et B ».
 - **4.** En déduire la probabilité $P(A \cup B)$ de l'événement « A ou B ».

Ex 3 : À la cantine on peut lire :

Menu

3 entrées au choix : carottes, tomates, jambon 4 plats au choix : œufs, steak, mouton, canard 2 dessert au choix : fromage, tarte

- 1. Combien de repas différents peut-on composer en choisissant une entrée, un plat et un dessert ?
- 2. Un élève distrait choisit au hasard une entrée, un plat et un dessert. Quelle est la probabilité pour qu'il choisisse un repas sans viande ?
- **Ex 4 :** On lance un dé à six faces truqué : les probabilités de chaque résultat pair sont égales au double des probabilités de chaque résultat impair. Déterminer les probabilités des événement élémentaires.
- **Ex 5 :** On donne les événements A et B tels que : P(A)=0,61 et P(B)=0,27 . Calculer $P(A \cup B)$ dans les cas suivants :
 - **1.** A et B sont incompatibles;
 - 2. $P(A \cap B) = 0.13$.

Ex 6: Une machine fabrique 10000 pièces par jour. En sortie de fabrication, on a constaté qu'une pièce pouvait présenter deux sortes de défauts : *a* et *b*.

- 8 % des pièces présentent le défaut *a* au moins.
- 15 % des pièces présentent le défaut *b* au moins.
- 5 % des pièces présentent à la fois les défauts *a* et *b* et sont directement mises au rebut.
- 90 % des pièces qui présentent un seul défaut peuvent être réparées et les autres sont mises au rebut.
- 1. Compléter le tableau suivant :

	Nombre de pièces présentant le défaut <i>a</i>	Nombre de pièces ne présentant pas le défaut <i>a</i>	Total
Nombre de pièces présentant le défaut <i>b</i>			
Nombre de pièces ne présentant pas le défaut <i>b</i>			
Total			10000

- 2. On prélève une pièce au hasard dans la production d'une journée. Toutes les pièces ont la même probabilité d'être choisies.
 - **a)** Calculer la probabilité p_1 qu'elle présente un seul défaut.
 - **b)** Calculer la probabilité p_2 qu'elle n'ait aucun défaut.
- 3. Montrer que la probabilité pour qu'une pièce prise au hasard soit acceptée (directement ou après réparation) est de 0,937.

Ex 7 : Une personne possède une cave de 2400 bouteilles de vin, rouge et blanc, de trois régions : Bordeaux, Bourgogne et Loire. 75 % de vins sont rouges et, parmi eux, 54 % viennent du Bordelais. Dans le vins de Loire, il y a autant de blancs que de rouges.

1. Compléter le tableau suivant :

	Bordeaux	Bourgogne	Loire	Total
Blanc				
Rouge				
Total				

- 2. On prend au hasard, une bouteille dans cette cave. Calculer la probabilité des événements suivants :
 - a) $A: \ll \text{Le vin est blanc} \gg ;$
 - **b)** B: « Le vin vient de Bordeaux » ;
 - c) $A \cap B$
 - d) $A \cup B$
- 3. On choisit une bouteille de vin blanc. Calculer la probabilité que ce soit un Bordeaux.
- 4. On choisit une bouteille de Bourgogne. Calculer la probabilité que ce soit un vin blanc.

Probabilités conditionnelles

Définition

Soit *A* un événement de probabilité non nulle.

On appelle **probabilité conditionnelle relative à** *A*, la probabilité définie par :

Pour tout
$$B \in \Omega$$
 , $P_A(B) = \frac{P(A \cap B)}{P(A)}$

On lit : « la probabilité de B sachant A » ou « la probabilité de B si A », c'est-à-dire : la probabilité que B se réalise sachant que A est réalisé.

Formules pratiques:

- si $P(A) \neq 0$ alors $P(A \cap B) = P(A) \times P_A(B)$;
- si $P(B) \neq 0$ alors $P(A \cap B) = P(B) \times P_B(A)$.

Construire et utiliser un arbre pour résoudre un problème faisant intervenir des probabilités conditionnelles

Dans un atelier, deux machines M_1 et M_2 , fonctionnant de manière indépendante, produisent des pièces de même type. M_1 fournit les 80 % de la production, M_2 en fournit 20 %.

Parmi ces pièces, certaines sont défectueuses : c'est le cas pour 5 % des pièces produites par M_1 et pour 4 % des pièces produites par M_2 .

On prélève au hasard une pièce dans la production de l'atelier.

- 1. Démontrer que la probabilité que cette pièce soit défectueuse est 0,048.
- 2. Sachant que cette pièce est défectueuse, déterminer la probabilité qu'elle ait été fabriquée par la machine M_1 .

Exercices

Ex 8 : À l'atelier de coupe, deux machines M_1 et M_2 découpent les pièces, puis celles-ci sont stockées sans distinction de provenance.

Indépendance de deux événements

On dit que **deux événements** *A* **et** *B* **sont indépendants** si la probabilité de leur intersection est égale au produit de leurs probabilités :

$$P(A \cap B) = P(A) \times P(B)$$

Conséquence : Si *A* et *B* sont deux événements indépendants de probabilité non nulle :

$$P_B(A) = P(A)$$
 et $P_A(B) = P(B)$.