SEQUENCE LISTING

	Prouty, Stephen Zhang, Lin Stenn, Kurt	
<120>	Stearyl-CoA Desaturase Promoter	
<130>	J&J2065	
	10/016,725	
<141>	2001-10-30	
<160>	(22)	
<170>	PatentIn version 3.1	
<210>	1	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	oligonucleotide	
<400>	1	
gattca	ccac tgtttcctga ga	22
33		
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	oligonucleotide	
	3	
<400>	2	
gatgcc	gggc agaggcccag cg	22
<210>	3	
<211>		
<212>		
	artificial sequence	
	-	
<220>		
<223>	oligonucleotide	
<400>	3	
	ggca ggacgaggtg gca	23
JJ		
015		
<210>	4	
<211>		
<413>	artificial sequence	

<220> <223>	oligonucleotide	S. A.
<400> ccgcgg	4 tgcg tggaggtccc cg	22
<210> <211>	20	
<212>		
<213>	artificial sequence	
<220>		
<223>	primer	
<400>	5	
gccagt	caac teetegeact	20
<210>	6	
<211>		
<212>	artificial sequence	
12137	arctitotar boquomoc	
<220>		
<223>	primer	
<400>	6	
atcgtc	ctgc agcaagtggg c	21
<210>		
<211> <212>		
	artificial sequence	
<220>	oligonygloctido	
<223>	oligonucleotide	
<400>	7	
gcccag	cggc gggtggaaga g	21
<210>		
<211> <212>		
	artificial sequence	
<220>	oligonucleotide	
~~~	0119011401000140	
<400>	8	
ctcttc	cacc cgccgctggg c	21
<210>	9	

Cont

<711>	21	
<212>	DNA	
<213>	artificial sequence	
	-	
<220>		
<223>	oligonucleotide	
<400>	9	
aacagag	gggg agggggagcg a	21
<210>	10	
<211>		
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide	
	10	
tcgctc	cccc tcccctctgt t	21
.010.	11	
<210>		
<211>		
<212>		
<213>	artificial sequence	
<220>		
<223>	oligonucleotide	
400	11	
<400>	11	21
gegeeg	agcc aatggcaacg g	21
<210>	12	
<211>		
<212>		
<213>	artificial sequence	
<220>		
	oligonucleotide	
(2237	origonacieocide	
<400>	12	
	ccat tggctcggcg c	21
<210>	13	
	35	
<212>		
	artificial sequence	
-010/	arterial bodacinos	
<220>		
	oligonucleotide	
	J	
<400>	13	
	aaac agaggaaagg gggagcgagg agctg	35

al Cont.

<210><211><211><212><213>	14 35 DNA arti	ificial sequ	ience				
<220> <223>							
<400> agcagat	14 tgc	gccgagaaaa	tggcaacggc	aggac			35
<210><211><211><212><213>	15 4150 DNA Homo	o sapiens					
<400>	15	ccatttaaat	catacaattt	aatggctttt	agtatattca	caggttgtgc	60
							120
			gaacagtttt				180
			ctccatcctc	_			
tttctgt	ctc	tataaatttg	ccaattctgg	acatttcata	taaatggaag	caaacaacat	240
gtgagad	cttt	gtgactggct	gctttcactt	agcattctat	ttttaaggct	cattatgtta	300
cagtact	tag	cagtacttca	ttctttttta	ttctcaaatg	gtattccact	gtgtgggtat	360
cccatat	cat	attattagag	acaggttctc	actctgtcac	ccaggctgga	gtgcagtggc	420
acaatca	atag	ctcactgtaa	cctcaaactc	ctgggctcaa	gtgatcctac	tacctcagcc	480
tccagag	gtag	ctaggactac	aggcacacac	agccatacct	ggctaatttt	tttttttaat	540
tttcatt	tta	tgtattcatt	ttctttcttt	tttgttgttg	ttgttttgag	atagggtctc	600
actttgt	tac	ccaggctgga	gggcagtggc	atggtgacag	ctgagcagcc	ttgacttcct	660
gggctca	aagt	gatcctcctg	cctcagcctc	ccaagtagct	gggactacaa	acacgtgtca	720
ccatgco	ctgg	ctgatatttt	ttttcttgaa	acagggtatc	actctgttgc	ccaggctgga	780
gtacagt	ggc	gtaataatag	ctcactgcag	cctcccctcc	tgggctcaag	caatccgctg	840
gcctcag	gcat	cctgagtagc	tgggactaca	ggcttgtgcc	accaggccca	gctaagtttt	900
aaaaaat	tgat	ttttggtata	gaggaggtct	tgctatgttg	ctcaggctgt	atttttattg	960
			gttgccatga				1020
			gttgacagac				1080
tgaataa	atac	tccagtgaat	attcatgtat	acatttgtgt	gggcatatgt	tttcatttct	1140

Cons

gttgggttta tatctaggag tggaattgct ggatcccggg taatattttg acaggcagag 1200 ttcaggggaa gaaaaacttg ggaaaatgaa gcatgtttag aaatcagcaa gagtgcaggg 1260 1320 gtttttcgga gttttatttt atattctgtt gacaaatgtg cagtttgatg aagatacaag 1380 ttatactaag tgagaagtga gaattaaggc tggaataggg cgttcagagt aaaatcatga agcactttga ataccaaaat taaggagctt ggctgtaaac aaaataataa aaaatcacaa 1440 ttttttttt ttttttgaga aagagtcttg ctctttcacc ctggctggag ggcagtggtg 1500 tgatctcagc tcactgcaac tttcgcctcc cgggttcaag caattctcct gcttcagcct 1560 cccaagtagc tgggactaca ggcacttccc accatgccca gctgattttt gtatttttag 1620 tagagatggg atttcacttt gttggccaag ctggtctcaa actttttgct gtcataattg 1680 ttgtaactat tgttcctttt gctgaggtag ggcccccaga ccaaaaaaaa taaatcttag 1740 aatccaaatc agtgtgttgg tttgaccact gtcacttgag aaccacagtg tgaccagggc 1800 1860 ctcaggagta gaggtgatct ctgctcgaaa gagaaataga atgaaaatat tctccgggcc 1920 aggegtggtg geteatgeet gtaateeeag caetttggga ggeeaaggea tgtggateae ctgaggtcag gagttcaaaa ccagcctggc caacatggtg aaaccccgtc tctactaaaa 1980 atacaaaaaa ttagctaagt gtggtggcgc atgcctgtaa tcccagctac ttgggagggt 2040 gaggcaggag aatttcttga acccgggagg cagaggttgc agtgaagcga gatcacacca 2100 2160 ctgcactcca gcctggggga gagagcgaga cttcctctca aaaaaacaaa aaacaaaaga 2220 attaagcaaa ttagacattg cagagagaac ctgaaggggg tcagaccacg tacagatttc 2280 tgtgccacat gccaagtact tctgaggcat gactggatga gctgtccaca tctgaaatca 2340 tccagtcttg ttcagaactt tcacaccgga cagggagcca ggactggaat gcagtctcct 2400 ggtcactggc cagagagttg gccttgaccc tgagaccagt ggccaacaaa ggagctgctt 2460 agtctacctc ccaggaaatc ccaggtgctt gtcttcctgg gaagtgaatc attggcgcag 2520 cactccgtat tttctcctct tcccagggga aggatcctag ggcagtattt gggaaagaca tgggcatgga aggacaccgg gtgaatgcat agcctgcctg gttctgagct ctcatggtaa 2580 ggctcctaca gacacggaaa agatgggggc acagggacag atcagtaggg tcagagcatc 2640 2700 tcagggaccg agggcaatat ggtcctgagc agggattaag agcttgggct ctcatatggt 2760 gtttctgggc tcaactgcca gctccgtcac ttactggttg ctgtgaccat gggcaagtta ttccatctct ccatatctct ttcctcactt ttaaaatgga ataatggggt acccacctcc 2820

al Cond

cagggtcaca	gagaggctta	cagaaaacga	ttcttgtgaa	ttggcttgca	gtaataattc	2880
aatacctgcc	agctattctt	attccacatc	caagcccttt	cgcctgctgc	tgggtgaaaa	2940
cacatgtcag	tgtttcctga	cggtttccac	aaagaagatt	ccaaaattac	aacctgccag	3000
tctgaagaat	ctccaaaaca	tcccgcacgc	atcctggagg	cgcgggcttg	gggatgggac	3060
tgcccgcccg	ggtcctgaac	aggatgcgtg	cgcgcaggca	cacacacacc	agccagcctg	3120
tgtgtgcggc	cggagtccgg	tgcggtcccg	ggtgagcagc	gcgtggctgg	tgggcggggc	3180
agagccattg	ttcgcaggcg	taccgagccc	cccgcgctcg	cccgggaggg	aggcggggct	3240
tcccgcgtcc	ccaagctcca	gatcctgggg	tggctgccac	gtctccctgc	cacgcgcctg	3300
gggggacggg	aagacgggac	ggagatgtta	gtggtgggcg	cccccgagg	gttcaccact	3360
gtttcctgag	aaacttcccc	agtgcccacc	cacccgttct	ccgtgtgccc	gagggccggt	3420
cctgggctag	gctccgcgcc	ccagccccaa	accgggtccc	cagccccttc	cagagagaaa	3480
gctcccgacg	cgggatgccg	ggcagaggcc	cagcggcggg	tggaagagaa	gctgagaagg	3540
agaaacagag	gggagggga	gcgaggagct	ggcggcagag	ggaacagcag	attgcgccga	3600
gccaatggca	acggcaggac	gaggtggcac	caaattccct	tcggccaatg	acgagccgga	3660
gtttacagaa	gcctcattag	catttcccca	gaggcagggg	caggggcaga	ggccgggtgg	3720
tgtggtgtcg	gtgtcggcag	catccccggc	gccctgctgc	ggtcgccgcg	agcctcggcc	3780
tctgtctcct	cccctcccg	cccttacctc	cacgcgggac	cgcccgcgcc	agtcaactcc	3840
tcgcactttg	cccctgcttg	gcagcggata	aaagggggct	gaggaaatac	cggacacggt	3900
cacccgttgc	cagctctagc	ctttaaattc	ccggctcggg	gacctccacg	caccgcggct	3960
agcgccgaca	accagctagc	gtgcaaggcg	ccgcggctca	gcgcgtaccg	gcgggcttcg	4020
aaaccgcagt	cctccggcga	ccccgaactc	cgctccggag	cctcagcccc	ctggaaagtg	4080
atcccggcat	ccgagagcca	agatgccggc	ccacttgctg	caggacgatg	tgagtttccc	4140
agcctggccc						4150

ant Cont

<210> 16

<211> 16

<212> PRT

<213> Homo sapiens

<400> 16

Met Pro Ala His Leu Leu Gln Asp Asp Val Ser Phe Pro Ala Trp Pro 1 5 10 15

<210> 17 301 <211> <212> DNA <213> mouse <400> 17 acctecacge etggetteet tggetageta tetetgeget etttaccett tgetggeage 60 120 cgataaaagg gggctgagga aatactgaac acggtcatcc catcgcctgc tctacccttt 180 aaaatcccag cccaggagat ctgtgcacag ccagaccggg ctgaacaccc atcccgagag tcaggagggc aggtttccaa gcgcagttcc gccactcgcc tacaccaacg ggctccggaa 240 ccgaagtcca cgctcgatct cagcactggg aaagtgaggc gagcaactga ctatcatcat 300 301 g <210> 18 <211> 300 <212> DNA <213> Homo sapiens <400> acctccacgc gggaccgccc gcgccagtca actcctcgca ctttgcccct gcttggcagc 60 ggataaaagg gggctgagga aataccggac acggtcaccc gttgccagct ctagccttta 120 180 aattecegge teggggaeet ceaegeaeeg eggetagege egacaaeeag etagegtgea aggegeegeg geteagegeg taceggeggg ettegaaace geagteetee ggegaeeeeg 240 300 aactccgctc cggagcctca gcccctgga aagtgatccc ggcatccgag agccaagatg 19 <210> 250 DNA <212> Homo sapiens <400> 19 accgggtccc cagccccttc cagagagaaa gctcccgacg cgggatgccg ggcagaggcc 60 120 cagcggcggg tggaagagaa gctgagaagg agaaacagag gggaggggga gcgaggagct 180 ggcggcagag ggaacagcag attgcgccga gccaatggca acggcaggac gaggtggcac caaattccct tcggccaatg acgagccgga gtttacagaa gcctcattag catttcccca 240 250 gaggcagggg <210> 20 <211> 78

a Cont

<212> DNA

	<213> Mouse							
	<400> gggagga	20 agag	acggagaagc	tagaggcaga	gggaacagca	gattgcgcct	agccaatgga	60
	aaaggca	agga	caaggtgg					78
		21 78 DNA Mous	se					
			ggggcggagc cgaggtgg	tggaggcaga	gggaacagca	gattgtgcag	agccaatgag	60 78
1	<212>	22 77 DNA Homo	o sapiens					
nt				ggcggcagag	ggaacagcag	attgcgccga	gccaatggca	60
	acggcag	ggac	gaggtgg					77

al Cont