

DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction

Itai Lang*, Dvir Ginzburg*, Shai Avidan, Dan Raviv

*Equal contribution

Source shape

Dense Correspondence Applications

Character Animation

Medical Alignment

Virtual Try-on

Action Recognition

Spectral Approach

Spatial Approach

DPC

Cross Similarity and Construction

Cross Similarity and Construction

Self Similarity and Construction

Results for Human Shapes

SURREAL, Groueix, et al., 2018; SHREC'19, Melzi et al., 2019 Marin, et al., 2020, 3D-CODED, Groueix, et al., 2018; Elementary, Deprelle et al., 2019; CorrNet3D, Zeng et al., 2021

Visual Comparison for SHREC'19

Error Visualization

3D-CODED, Groueix, et al., 2018; Elementary, Deprelle et al., 2019; CorrNet3D, Zeng et al., 2021

Resolution Robustness

Noise Resilience

Visual Comparison for TOSCA

Processing Time Analysis

	Method	Pre-process I	nference	Total [ms]
Spectral -	SURFMNet GeoFMNet	1593 1997	163 215	1756 (2212)
	Diff-FMaps	0	121.7	121.7
Spatial -	3D-CODED	0	32.1	32.1
	Elementary	0	35.3	35.3
	CorrNet3D	0	175.4	17 <u>5</u> .4
	DPC (ours)	38 shape pairs per-second	26.3	(26.3)

SURFMNet, Roufosse et al., 2019; GeoFMNet, Donati et al., 2020; Diff-Fmaps, Marin et al., 2020; 3D-CODED, Groueix, et al., 2018; Elementary, Deprelle et al., 2019; CorrNet3D, Zeng et al., 2021

Summary

- A new method for dense shape correspondence
 - Directly on point clouds, unsupervised, real-time
- Assignment by construction
 Rather than regression by a decoder
- Surpasses existing methods by a large margin For both human and animal shapes
- Paper and code are available https://github.com/dvirginz/DPC

THANK YOU!

Reference shape

Our result