1) Текстовое описание набора данных

Датасет: suicide-rates-overview-1985-to-2016.csv

Источник: https://www.kaggle.com/russellyates88/suicide-rates-overview-1985-to-2016 (<a href="https://www.kaggle.com/russellyates88/suicide-rates-overview-1985-to-2

Зависимость количества самоубийств по годам и странам от социальных (возраст, пол, поколение) и экономических составляющих (ИЧР, ВВП)

Колонки:

- country страна
- year год (1985 2016)
- sex пол
- age возраст (6 диапазонов)
- suicides_no кол-во самоубийств
- population кол-во людей в данном возрастном диапазоне
- suicides/100k pop suicides_no / (population / 100 000)
- country-year конкатенация страна + год
- HDI for year Human Development Index Индекс человеческого развития
- gdp_for_year (doll.) ВВП на год
- gdp_per_capita (doll.) ВВП на человека
- generation поколение (базируется на среднем значении для данного возраста) всего 6

2) Основные характеристики датасета

```
In [1]: import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

```
In [2]: data = pd.read csv('data/suicide-rates-overview-1985-to-2016.csv', sep=',', thousands=',')
In [3]: data.shape
Out[3]: (27820, 12)
In [4]: data.columns
Out[4]: Index(['country', 'year', 'sex', 'age', 'suicides no', 'population',
               'suicides/100k pop', 'country-year', 'HDI for year',
               ' gdp for year ($) ', 'gdp per capita ($)', 'generation'],
              dtype='object')
In [5]: data.dtypes
Out[5]: country
                               object
                                int64
        year
                               object
        sex
                               object
        age
        suicides no
                                int64
        population
                                int64
        suicides/100k pop
                              float64
        country-year
                               object
        HDI for year
                              float64
         gdp for year ($)
                                int64
        gdp per capita ($)
                                int64
        generation
                               object
        dtype: object
```

```
In [6]: def count empty values(data):
            for col in data.columns:
                temp null count = data[data[col].isnull()].shape[0]
                print('{} - {}'.format(col, temp null count))
        count empty values(data)
        country - 0
        year - 0
        sex - 0
        age - 0
        suicides no - 0
        population - 0
        suicides/100k pop - 0
        country-year - 0
        HDI for year - 19456
         gdp for year (\$) - 0
        gdp per capita ($) - 0
        generation - 0
In [7]: # удалим пустые значения
        data = data.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)
        count empty values(data)
        country - 0
        year - 0
        sex - 0
        age - 0
        suicides no - 0
        population - 0
        suicides/100k pop - 0
        country-year - 0
        HDI for year - 0
         gdp for year (\$) - 0
        gdp per capita ($) - 0
        generation - 0
```

In [8]: data.describe()

Out[8]:

	year	suicides_no	population	suicides/100k pop	HDI for year	gdp_for_year (\$)	gdp_per_capita (\$)
count	8364.000000	8364.000000	8.364000e+03	8364.000000	8364.000000	8.364000e+03	8364.000000
mean	2005.348637	206.124342	1.852173e+06	11.991936	0.776601	5.476639e+11	21074.371593
std	8.803020	681.004457	3.969754e+06	17.361772	0.093367	1.720106e+12	22579.186968
min	1985.000000	0.000000	8.750000e+02	0.000000	0.483000	3.962700e+08	313.000000
25%	2000.000000	3.000000	1.216425e+05	1.040000	0.713000	1.430751e+10	4862.000000
50%	2010.000000	27.000000	4.722505e+05	5.720000	0.779000	6.175779e+10	12584.000000
75%	2012.000000	127.250000	1.500290e+06	15.442500	0.855000	3.115395e+11	30271.000000
max	2014.000000	11767.000000	4.350934e+07	187.060000	0.944000	1.742761e+13	126352.000000

3) Визуальное исследование датасета

Диаграмма рассеяния

```
In [9]: fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='gdp_per_capita ($)', y='suicides_no', data=data)
```

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x120a72b00>

Очевидна обратная зависимость: чем больше ВВП на человека, тем меньше кол-во самоубийств.

```
In [10]: fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='gdp_per_capita ($)', y='suicides_no', data=data, hue='sex')
```

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x120fe56a0>

Больше самоубийств среди мужчин.

Гистограмма

```
In [11]: # плотность вероятности распределения
fig, ax = plt.subplots(figsize=(10,10))
sns.distplot(data['suicides/100k pop'])
```

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x12142bf60>

Jointplot

```
In [12]: sns.jointplot(x='HDI for year', y='suicides_no', data=data)
```

Out[12]: <seaborn.axisgrid.JointGrid at 0x12143a6a0>


```
In [13]: sns.jointplot(x='HDI for year', y='suicides_no', data=data, kind='hex')
```

Out[13]: <seaborn.axisgrid.JointGrid at 0x125ae4da0>


```
In [14]: sns.jointplot(x='HDI for year', y='suicides_no', data=data, kind='kde')
```

Out[14]: <seaborn.axisgrid.JointGrid at 0x125c533c8>

[&]quot;Парные диаграммы"

In [15]: sns.pairplot(data)

Out[15]: <seaborn.axisgrid.PairGrid at 0x125e60630>


```
In [16]: sns.pairplot(data, hue='generation')
```

Out[16]: <seaborn.axisgrid.PairGrid at 0x12738b780>

Ящик с усами

```
In [17]: sns.boxplot(x=data['suicides_no'])
```

Out[17]: <matplotlib.axes._subplots.AxesSubplot at 0x12a438b70>


```
In [18]: sns.boxplot(y=data['suicides_no'])
```

Out[18]: <matplotlib.axes._subplots.AxesSubplot at 0x12a3ed0b8>

In [19]: sns.boxplot(x='generation', y='suicides_no', data=data)

Out[19]: <matplotlib.axes._subplots.AxesSubplot at 0x12ad7d550>

Violin plot

```
In [20]: sns.violinplot(x=data['HDI for year'])
Out[20]: <matplotlib.axes._subplots.AxesSubplot at 0x12adf5630>
```



```
In [21]: sns.violinplot(x='generation', y='HDI for year', data=data)
```

Out[21]: <matplotlib.axes._subplots.AxesSubplot at 0x12aeadf98>


```
In [22]: sns.catplot(x='generation', y='HDI for year', data=data, kind="violin", split=True)
Out[22]: <seaborn.axisgrid.FacetGrid at 0x12aead940>
```


4) Информация о корреляции признаков

In [23]: data.corr()

Out[23]:

	year	suicides_no	population	suicides/100k pop	HDI for year	gdp_for_year (\$)	gdp_per_capita (\$)
year	1.000000	-0.024297	-0.012628	-0.077410	0.366786	0.079105	0.297888
suicides_no	-0.024297	1.000000	0.698758	0.237169	0.151399	0.607203	0.105182
population	-0.012628	0.698758	1.000000	-0.023197	0.102943	0.750296	0.073701
suicides/100k pop	-0.077410	0.237169	-0.023197	1.000000	0.074279	0.020231	-0.002339
HDI for year	0.366786	0.151399	0.102943	0.074279	1.000000	0.305193	0.771228
gdp_for_year (\$)	0.079105	0.607203	0.750296	0.020231	0.305193	1.000000	0.275643
gdp_per_capita (\$)	0.297888	0.105182	0.073701	-0.002339	0.771228	0.275643	1.000000

In [24]: data.corr(method='pearson') # no умолчанию

Out[24]:

	year	suicides_no	population	suicides/100k pop	HDI for year	gdp_for_year (\$)	gdp_per_capita (\$)
year	1.000000	-0.024297	-0.012628	-0.077410	0.366786	0.079105	0.297888
suicides_no	-0.024297	1.000000	0.698758	0.237169	0.151399	0.607203	0.105182
population	-0.012628	0.698758	1.000000	-0.023197	0.102943	0.750296	0.073701
suicides/100k pop	-0.077410	0.237169	-0.023197	1.000000	0.074279	0.020231	-0.002339
HDI for year	0.366786	0.151399	0.102943	0.074279	1.000000	0.305193	0.771228
gdp_for_year (\$)	0.079105	0.607203	0.750296	0.020231	0.305193	1.000000	0.275643
gdp_per_capita (\$)	0.297888	0.105182	0.073701	-0.002339	0.771228	0.275643	1.000000

In [25]: data.corr(method='kendall')

Out[25]:

	year	suicides_no	population	suicides/100k pop	HDI for year	gdp_for_year (\$)	gdp_per_capita (\$)
year	1.000000	-0.030382	-0.014514	-0.042359	0.234793	0.123667	0.233916
suicides_no	-0.030382	1.000000	0.575942	0.542566	0.121828	0.450226	0.055232
population	-0.014514	0.575942	1.000000	0.117592	0.090117	0.573964	0.035116
suicides/100k pop	-0.042359	0.542566	0.117592	1.000000	0.099305	0.126114	0.043455
HDI for year	0.234793	0.121828	0.090117	0.099305	1.000000	0.435299	0.762445
gdp_for_year (\$)	0.123667	0.450226	0.573964	0.126114	0.435299	1.000000	0.409464
gdp_per_capita (\$)	0.233916	0.055232	0.035116	0.043455	0.762445	0.409464	1.000000

In [26]: data.corr(method='spearman')

Out[26]:

_		year	suicides_no	population	suicides/100k pop	HDI for year	gdp_for_year (\$)	gdp_per_capita (\$)
	year	1.000000	-0.042841	-0.020724	-0.060357	0.329094	0.173595	0.327475
	suicides_no	-0.042841	1.000000	0.762456	0.717508	0.184755	0.619786	0.084085
	population	-0.020724	0.762456	1.000000	0.179320	0.133076	0.765920	0.053653
	suicides/100k pop	-0.060357	0.717508	0.179320	1.000000	0.152627	0.187876	0.067476
	HDI for year	0.329094	0.184755	0.133076	0.152627	1.000000	0.612349	0.928608
	gdp_for_year (\$)	0.173595	0.619786	0.765920	0.187876	0.612349	1.000000	0.591147
	gdp_per_capita (\$)	0.327475	0.084085	0.053653	0.067476	0.928608	0.591147	1.000000

In [27]: sns.heatmap(data.corr())

Out[27]: <matplotlib.axes._subplots.AxesSubplot at 0x12b201d30>


```
In [28]: sns.heatmap(data.corr(), annot=True, fmt='.3f')
```

Out[28]: <matplotlib.axes._subplots.AxesSubplot at 0x12b3537b8>


```
In [29]: sns.heatmap(data.corr(), cmap='YlGnBu', annot=True, fmt='.3f')
```

Out[29]: <matplotlib.axes._subplots.AxesSubplot at 0x12b33c1d0>


```
In [30]: mask = np.zeros_like(data.corr(), dtype=np.bool)
mask[np.tril_indices_from(mask)] = True
sns.heatmap(data.corr(), mask=mask, annot=True, fmt='.3f')
```

Out[30]: <matplotlib.axes. subplots.AxesSubplot at 0x12b0a2048>


```
In [31]: fig, ax = plt.subplots(1, 3, sharex='col', sharey='row', figsize=(15,5))
    sns.heatmap(data.corr(method='pearson'), ax=ax[0], annot=True, fmt='.2f')
    sns.heatmap(data.corr(method='kendall'), ax=ax[1], annot=True, fmt='.2f')
    sns.heatmap(data.corr(method='spearman'), ax=ax[2], annot=True, fmt='.2f')
    fig.suptitle('Koppenяционные матрицы, построенные различными методами')
    ax[0].title.set_text('Pearson')
    ax[1].title.set_text('Kendall')
    ax[2].title.set_text('Spearman')
```


Как видно, отличия между различными методами построения корреляционной матрицы незначительны.