Natural Language Models and Interfaces

BSc Artificial Intelligence

Lecturer: Wilker Aziz Institute for Logic, Language, and Computation

2019, week 5, lecture b

Context-Free Grammars

A **CFG** grammar G is denoted by

- a finite set of **nonterminal** symbols \mathscr{V}
- a finite set of **terminal** symbols Σ with $\Sigma \cap \mathcal{V} = \emptyset$
- a finite set \mathcal{R} of **rules** of the form $X \to \beta$ where
 - $X \in \mathcal{V}$ and $\beta \in (\Sigma \cup \mathcal{V})^*$
- $S \in \mathcal{V}$ a distinguished **start** symbol

Let ε denote an **empty** string

Example CFG

S → NP VP	Vi → sleeps
VP → Vi	Vt → saw
VP → Vt NP	NN → man
VP → VP PP	NN → dog
NP → DT NN	NN → telescope
NP → NP PP	DT → the
PP → IN NP	IN → with

Generative Device

Left-most derivation

- sequence of strings a₁ ... an
 - $a_1 = \langle S \rangle$
 - $a_n \in \Sigma^*$
 - $\alpha_{i\geq 2}$ derived from α_{i-1} by picking the left-most nonterminal X
 - and replacing it by some a such that $X \to \beta \in \mathcal{R}$

String

Substitution

String Substitution $\alpha_1 = S \qquad S \rightarrow NP VP$ $\alpha_2 = NP VP \qquad NP \rightarrow DT NN$

	String	Substitution
$\alpha_1 =$	S	S → NP VP
$\alpha_2 =$	NP VP	NP → DT NN
a ₃ =	DT NN VP	DT → the

	String	Substitution
$a_1 =$	S	S → NP VP
$\alpha_2 =$	NP VP	NP → DT NN
a ₃ =	DT NN VP	DT → the
Q ₄ =	the NN VP	NN → man

	String	Substitution
$\alpha_1 =$	S	S → NP VP
$\alpha_2 =$	NP VP	NP → DT NN
a ₃ =	DT NN VP	DT → the
Q ₄ =	the NN VP	NN → man
a ₅ =	the man VP	VP → Vi

	String	Substitution
$\alpha_1 =$	S	S → NP VP
$\alpha_2 =$	NP VP	$NP \rightarrow DT NN$
a ₃ =	DT NN VP	DT → the
Q ₄ =	the NN VP	NN → man
a ₅ =	the man VP	VP → Vi
a ₆ =	the man Vi	Vi → sleeps

	String	Substitution
$\alpha_1 =$	S	S → NP VP
$\alpha_2 =$	NP VP	NP → DT NN
a ₃ =	DT NN VP	DT → the
Q ₄ =	the NN VP	NN → man
a ₅ =	the man VP	VP → Vi
a ₆ =	the man Vi	Vi → sleeps
a ₇ =	the man sleeps	

	String	Substitution
$\alpha_1 =$	S	S → NP VP
$\alpha_2 =$	NP VP	NP → DT NN
a ₃ =	DT NN VP	DT → the
a ₄ =	the NN VP	NN → man
a ₅ =	the man VP	VP → Vi
$\alpha_6 =$	the man Vi	Vi → sleeps
a ₇ =	the man sleeps	
a ₇ =	$S \Rightarrow^* the man sleeps$	

S

The man saw the dog

DT

The man saw the dog

Language

A string $\omega \in \Sigma^*$ is generated/accepted by G if

$$S \Rightarrow^* \omega$$

⇒* denotes a sequence of rule applications

Language of G

$$L(G) = \{\omega : S \Rightarrow^* \omega\} \subseteq \Sigma^*$$

Chomsky Normal Form

Every CFG is weakly equivalent to another such that

- $X \rightarrow YZ$ where $X, Y, Z \in \mathcal{V}$
- $X \rightarrow w$ where $w \in \Sigma$
- and possibly S → ε

[Hopcroft and Ullman, 1979]

Parsing as Deduction

Deductive process to prove claims about grammaticality [Shieber et al., 1995]

focus on strategy rather than implementation

- focus on strategy rather than implementation
- soundness/completeness easier to prove

- focus on strategy rather than implementation
- soundness/completeness easier to prove
- complexity determined by inspection

- focus on strategy rather than implementation
- soundness/completeness easier to prove
- complexity determined by inspection
- dynamic program follows directly

- focus on strategy rather than implementation
- soundness/completeness easier to prove
- complexity determined by inspection
- dynamic program follows directly
- generality

Deductive systems

Item: a statement / intermediate sound result

formula or schemata expressed with variables

Inference rule: statement derived from existing items

- $\frac{A_1 \dots A_m}{B}$ (condition) where A_i and B are items
 - Ai are called antecedents
 - B is called consequent

Deductive program

Axioms: trivial items

do not depend on previous statements

Goal: states that a proof exists

Proof:

- start from axioms
- exhaustively deduce items
 - never twice under the same premises
- accept if goal is proven

The man saw the dog

DT

The man saw the dog

Input: the man sleeps

 $S \rightarrow NP VP$

 $VP \rightarrow Vi$

VP → Vt NP

VP → VP PP

NP → DT NN

 $NP \rightarrow NP PP$

PP → IN NP

Vi → sleeps

Vt → saw

NN → man

NN → dog

NN → telescope

DT → the

IN → with

Input: the man sleeps

Rule Condition Statement Queue

 $S \rightarrow NP VP$

 $VP \rightarrow Vi$

VP → Vt NP

VP → VP PP

NP → DT NN

 $NP \rightarrow NP PP$

PP → IN NP

Vi → sleeps

Vt → saw

NN → man

NN → dog

NN → telescope

DT → the

IN → with

Rule	Condition		Statement	Queue
Axiom		1	[•,O]	1

$S \rightarrow NP VP$
VP → Vi
VP → Vt NP
VP → VP PP
$NP \rightarrow DT NN$
$NP \rightarrow NP PP$
$PP \rightarrow IN NP$
Vi → sleeps
Vt → saw
NN → man
NN → dog
NN → telescope
DT → the
IN → with

Rule	Condition		Statement	Queue
Axiom		1	[•,O]	1

$S \rightarrow NP VP$
VP → Vi
VP → Vt NP
VP → VP PP
NP → DT NN
NP → NP PP
PP → IN NP
Vi → sleeps
Vt → saw
NN → man
NN → dog
NN → telescope
DT → the
IN → with

Rule	Condition		Statement	Queue
Axiom		1	[•,O]	1
Shift: [1]		2	[the•,1]	2

$S \rightarrow NP VP$
VP → Vi
VP → Vt NP
VP → VP PP
NP → DT NN
NP → NP PP
PP → IN NP
Vi → sleeps
Vt → saw
NN → man
NN → dog
NN → telescope
DT → the
IN → with

Input: the man sleeps

Rule	Condition		Statement	Queue
Axiom		1	[•,O]	1
Shift: [1]		2	[the•,1]	2

$S \rightarrow NP VP$
VP → Vi
VP → Vt NP
VP → VP PP
NP → DT NN
NP → NP PP
PP → IN NP
Vi → sleeps
Vt → saw
NN → man
NN → dog
NN → telescope
DT → the

IN → with

Input: the man sleeps

Rule	Condition		Statement	Queue
Axiom		1	[•,O]	1
Shift: [1]		2	[the•,1]	2
Reduce: [2]	DT → the	3	[DT•,1]	3

$S \rightarrow NP VP$
VP → Vi
VP → Vt NP
VP → VP PP
NP → DT NN
$NP \rightarrow NP PP$
PP → IN NP
Vi → sleeps
Vt → saw
NN → man
NN → dog
NN → telescope
DT → the

IN → with

Rule	Condition		Statement	Queue
Axiom		1	[•,O]	1
Shift: [1]		2	[the•,1]	2
Reduce: [2]	DT → the	3	[DT•,1]	3

$S \rightarrow NP VP$
VP → Vi
VP → Vt NP
VP → VP PP
NP → DT NN
$NP \rightarrow NP PP$
PP → IN NP
Vi → sleeps
Vt → saw
NN → man
NN → dog
NN → telescope
DT → the
IN → with

Input: the man sleeps

Rule	Condition		Statement	Queue
Axiom		1	[•,O]	1
Shift: [1]		2	[the•,1]	2
Reduce: [2]	DT → the	3	[DT●,1]	3
Shift: [3]		4	[DT man •, 2]	4

$S \rightarrow NP VP$
VP → Vi
VP → Vt NP
VP → VP PP
NP → DT NN
$NP \rightarrow NP PP$
PP → IN NP
Vi → sleeps
Vt → saw
NN → man
NN → dog
NN → telescope
DT → the

IN → with

Input: the man sleeps

Rule	Condition		Statement	Queue
Axiom		1	[•,O]	1
Shift: [1]		2	[the•,1]	2
Reduce: [2]	DT → the	3	[DT•,1]	3
Shift: [3]		4	[DT man •, 2]	4

$S \rightarrow NP VP$
VP → Vi
VP → Vt NP
VP → VP PP
NP → DT NN
$NP \rightarrow NP PP$
PP → IN NP
Vi → sleeps
Vt → saw
NN → man
NN → dog
NN → telescope
DT → the

IN → with

Rule	Condition		Statement	Queue
Axiom		1	[•,O]	1
Shift: [1]		2	[the•,1]	2
Reduce: [2]	DT → the	3	[DT•,1]	3
Shift: [3]		4	[DT man •, 2]	4
Reduce: [4]	NN → man	5	[DT NN ●, 2]	5

$S \rightarrow NP VP$
VP → Vi
VP → Vt NP
VP → VP PP
NP → DT NN
NP → NP PP
PP → IN NP
Vi → sleeps
Vt → saw
NN → man
NN → dog
NN → telescope
DT → the
IN → with

Rule	Condition		Statement	Queue
Axiom		1	[•,O]	1
Shift: [1]		2	[the•,1]	2
Reduce: [2]	DT → the	3	[DT•,1]	3
Shift: [3]		4	[DT man ●, 2]	4
Reduce: [4]	NN → man	5	[DT NN ●, 2]	5

$S \rightarrow NP VP$
VP → Vi
VP → Vt NP
VP → VP PP
NP → DT NN
NP → NP PP
PP → IN NP
Vi → sleeps
Vt → saw
NN → man
NN → dog
NN → telescope
DT → the
IN → with

Rule	Condition		Statement	Queue
Axiom		1	[•,O]	1
Shift: [1]		2	[the•,1]	2
Reduce: [2]	DT → the	3	[DT•,1]	3
Shift: [3]		4	[DT man •, 2]	4
Reduce: [4]	NN → man	5	[DT NN •, 2]	5
Reduce: [5]	$NP \rightarrow DT NN$	6	[NP ●, 2]	6

$S \rightarrow NP VP$
VP → Vi
VP → Vt NP
VP → VP PP
NP → DT NN
NP → NP PP
PP → IN NP
Vi → sleeps
Vt → saw
NN → man
NN → dog
NN → telescope
DT → the
IN → with

Rule	Condition		Statement	Queue
Axiom		1	[•,O]	1
Shift: [1]		2	[the•,1]	2
Reduce: [2]	DT → the	3	[DT•,1]	3
Shift: [3]		4	[DT man •, 2]	4
Reduce: [4]	NN → man	5	[DT NN ●, 2]	5
Reduce: [5]	$NP \rightarrow DT NN$	6	[NP ●, 2]	6

$S \rightarrow NP VP$
VP → Vi
VP → Vt NP
VP → VP PP
NP → DT NN
NP → NP PP
PP → IN NP
Vi → sleeps
Vt → saw
NN → man
NN → dog
NN → telescope
DT → the
IN → with

Rule	Condition		Statement	Queue
Axiom		1	[•,O]	1
Shift: [1]		2	[the•,1]	2
Reduce: [2]	DT → the	3	[DT•,1]	3
Shift: [3]		4	[DT man ●, 2]	4
Reduce: [4]	NN → man	5	[DT NN ●, 2]	5
Reduce: [5]	$NP \rightarrow DT NN$	6	[NP ●, 2]	6
Shift: [6]		7	[NP sleeps •, 3]	7

$S \rightarrow NP VP$
VP → Vi
VP → Vt NP
VP → VP PP
NP → DT NN
NP → NP PP
PP → IN NP
Vi → sleeps
Vt → saw
NN → man
NN → dog
NN → telescope
DT → the
IN → with

Rule	Condition		Statement	Queue
Axiom		1	[•,O]	1
Shift: [1]		2	[the•,1]	2
Reduce: [2]	DT → the	3	[DT●,1]	3
Shift: [3]		4	[DT man •, 2]	4
Reduce: [4]	NN → man	5	[DT NN ●, 2]	5
Reduce: [5]	$NP \rightarrow DT NN$	6	[NP ●, 2]	6
Shift: [6]		7	[NP sleeps ●, 3]	7

$S \rightarrow NP VP$
VP → Vi
VP → Vt NP
VP → VP PP
NP → DT NN
NP → NP PP
PP → IN NP
Vi → sleeps
Vt → saw
NN → man
NN → dog
NN → telescope
DT → the
IN → with

Input: the man sleeps

Rule	Condition		Statement	Queue
Axiom		1	[•,O]	1
Shift: [1]		2	[the•,1]	2
Reduce: [2]	DT → the	3	[DT•,1]	3
Shift: [3]		4	[DT man •, 2]	4
Reduce: [4]	NN → man	5	[DT NN ●, 2]	5
Reduce: [5]	$NP \rightarrow DT NN$	6	[NP ●, 2]	6
Shift: [6]		7	[NP sleeps ●, 3]	7
Reduce: [7]	Vi → sleeps	8	[NP Vi ●, 3]	8

0 ND VD
S → NP VP
VP → Vi
VP → Vt NP
VP → VP PP
NP → DT NN
NP → NP PP
PP → IN NP
Vi → sleeps
Vt → saw
NN → man
NN → dog
NN → telescope

 $DT \rightarrow the$

IN → with

Rule	Condition		Statement	Queue
Axiom		1	[•,O]	1
Shift: [1]		2	[the•,1]	2
Reduce: [2]	DT → the	3	[DT•,1]	3
Shift: [3]		4	[DT man •, 2]	4
Reduce: [4]	NN → man	5	[DT NN ●, 2]	5
Reduce: [5]	$NP \rightarrow DT NN$	6	[NP ●, 2]	6
Shift: [6]		7	[NP sleeps ●, 3]	7
Reduce: [7]	Vi → sleeps	8	[NP Vi ●, 3]	8

$S \rightarrow NP VP$	
VP → Vi	
VP → Vt NP	
VP → VP PP	
$NP \rightarrow DT NN$	
$NP \rightarrow NP PP$	
PP → IN NP	
Vi → sleeps	
Vt → saw	
NN → man	
NN → dog	
NN → telescop	ре
DT → the	
IN → with	

Input: the man sleeps

Rule	Condition		Statement	Queue
Axiom		1	[•,O]	1
Shift: [1]		2	[the•,1]	2
Reduce: [2]	DT → the	3	[DT•,1]	3
Shift: [3]		4	[DT man ●, 2]	4
Reduce: [4]	NN → man	5	[DT NN ●, 2]	5
Reduce: [5]	$NP \rightarrow DT NN$	6	[NP ●, 2]	6
Shift: [6]		7	[NP sleeps ●, 3]	7
Reduce: [7]	Vi → sleeps	8	[NP Vi ●, 3]	8
Reduce: [8]	VP → Vi	9	[NP VP •, 3]	9

$S \rightarrow NP VP$	
VP → Vi	
VP → Vt NP	
VP → VP PP	
NP → DT NN	
$NP \rightarrow NP PP$	
PP → IN NP	
Vi → sleeps	
Vt → saw	
NN → man	
NN → dog	
NN → telescor	эе
DT → the	

IN → with

Rule	Condition		Statement	Queue
Axiom		1	[•,O]	1
Shift: [1]		2	[the•,1]	2
Reduce: [2]	DT → the	3	[DT•,1]	3
Shift: [3]		4	[DT man ●, 2]	4
Reduce: [4]	NN → man	5	[DT NN ●, 2]	5
Reduce: [5]	$NP \rightarrow DT NN$	6	[NP ●, 2]	6
Shift: [6]		7	[NP sleeps ●, 3]	7
Reduce: [7]	Vi → sleeps	8	[NP Vi ●, 3]	8
Reduce: [8]	VP → Vi	9	[NP VP •, 3]	9

$S \rightarrow NP VP$	
VP → Vi	
VP → Vt NP	
VP → VP PP	
NP → DT NN	
$NP \rightarrow NP PP$	
PP → IN NP	
Vi → sleeps	
Vt → saw	
NN → man	
NN → dog	
NN → telescop	ре
DT → the	
IN → with	

Rule	Condition		Statement	Queue
Axiom		1	[•,O]	1
Shift: [1]		2	[the•,1]	2
Reduce: [2]	DT → the	3	[DT●,1]	3
Shift: [3]		4	[DT man •, 2]	4
Reduce: [4]	NN → man	5	[DT NN ●, 2]	5
Reduce: [5]	$NP \rightarrow DT NN$	6	[NP ●, 2]	6
Shift: [6]		7	[NP sleeps ●, 3]	7
Reduce: [7]	Vi → sleeps	8	[NP Vi ●, 3]	8
Reduce: [8]	$VP \rightarrow Vi$	9	[NP VP ●, 3]	9
Reduce: [9]	$S \rightarrow NP VP$	10	[S •, 3]	10

$S \rightarrow NP VP$	
VP → Vi	
VP → Vt NP	
$VP \rightarrow VP PP$	
$NP \rightarrow DT NN$	
$NP \rightarrow NP PP$	
PP → IN NP	
Vi → sleeps	
Vt → saw	
NN → man	
NN → dog	
NN → telescop	эе
DT → the	
IN → with	

Rule	Condition		Statement	Queue
Axiom		1	[•,O]	1
Shift: [1]		2	[the•,1]	2
Reduce: [2]	DT → the	3	[DT●,1]	3
Shift: [3]		4	[DT man •, 2]	4
Reduce: [4]	NN → man	5	[DT NN ●, 2]	5
Reduce: [5]	$NP \rightarrow DT NN$	6	[NP ●, 2]	6
Shift: [6]		7	[NP sleeps ●, 3]	7
Reduce: [7]	Vi → sleeps	8	[NP Vi ●, 3]	8
Reduce: [8]	VP → Vi	9	[NP VP ●, 3]	9
Reduce: [9]	$S \rightarrow NP VP$	10	[S •, 3]	10
GOAL: [10]				Ø

$S \rightarrow NP VP$	
VP → Vi	7
VP → Vt NP	
VP → VP PP	
$NP \rightarrow DT NN$	
$NP \rightarrow NP PP$	
PP → IN NP	
Vi → sleeps	
Vt → saw	
NN → man	
NN → dog	
NN → telescop	эе
DT → the	
IN → with	

Shift-Reduce

Input: G and $x_1 \dots x_n$

Item form: $[\alpha \bullet, j]$ asserts that $\alpha \Rightarrow^* x_1 \dots x_j$ or that $\alpha x_{j+1} \dots x_n \Rightarrow^* x_1 \dots x_n$

Axiom: [•,0]

Goal: [S•,n]

Scan (shift)

asserts that $\alpha x_{j+1} \Rightarrow^* x_1 \dots x_j x_{j+1}$

Complete (reduce)

asserts that $\alpha B \Rightarrow^* x_1 \dots x_j$

SHIFT
$$\frac{[\alpha \bullet, j]}{[\alpha x_{j+1}, j+1]}$$

REDUCE
$$\frac{[\alpha \beta \bullet, j]}{[\alpha B, j]} B \to \beta \in \mathcal{R}$$

S

Input: the man sleeps

 $S \rightarrow NP VP$

 $VP \rightarrow Vi$

VP → Vt NP

VP -> VP PP

NP → DT NN

 $NP \rightarrow NP PP$

PP → IN NP

Vi → sleeps

Vt → saw

NN → man

NN → dog

NN → telescope

DT → the

IN → with

Input: the man sleeps

Rule Condition Statement Queue

 $S \rightarrow NP VP$

VP → Vi

VP → Vt NP

VP -> VP PP

 $NP \rightarrow DT NN$

 $NP \rightarrow NP PP$

PP → IN NP

Vi → sleeps

Vt → saw

NN → man

NN → dog

NN → telescope

DT → the

IN → with

Input: the man sleeps

Rule	Condition		Statement	Queue
Axiom		1	[• S, 0]	1

 $S \rightarrow NP VP$ VP → Vi VP → Vt NP $VP \rightarrow VP PP$ $NP \rightarrow DT NN$ $NP \rightarrow NP PP$ PP → IN NP Vi → sleeps Vt → saw NN → man NN → dog NN → telescope DT → the IN → with

Input: the man sleeps

Rule	Condition		Statement	Queue
Axiom		1	[• S, 0]	1

 $S \rightarrow NP VP$ VP → Vi VP → Vt NP $VP \rightarrow VP PP$ $NP \rightarrow DT NN$ $NP \rightarrow NP PP$ PP → IN NP Vi → sleeps Vt → saw NN → man NN → dog NN → telescope DT → the IN → with

Input: the man sleeps

Rule	Condition		Statement	Queue
Axiom		1	[• S, 0]	1
Predict: [1]	$S \rightarrow NP VP$	2	[• NP VP, 0]	2

 $S \rightarrow NP VP$ VP → Vi VP → Vt NP $VP \rightarrow VP PP$ $NP \rightarrow DT NN$ $NP \rightarrow NP PP$ PP → IN NP Vi → sleeps Vt → saw NN → man NN → dog NN → telescope DT → the IN → with

Rule	Condition		Statement	Queue
Axiom		1	[• S, 0]	1
Predict: [1]	$S \rightarrow NP VP$	2	[• NP VP, 0]	2

Rule	Condition		Statement	Queue
Axiom		1	[• S, 0]	1
Predict: [1]	$S \rightarrow NP VP$	2	[• NP VP, 0]	2
Predict: [2]	$NP \rightarrow DT NN$	3	[• DT NN VP, 0] 3

Rule	Condition		Statement	Queue
Axiom		1	[• S, 0]	1
Predict: [1]	$S \rightarrow NP VP$	2	[• NP VP, 0]	2
Predict: [2]	$NP \rightarrow DT NN$	3	[• DT NN VP, C)] 3

Rule	Condition		Statement	Queue
Axiom		1	[• S, 0]	1
Predict: [1]	$S \rightarrow NP VP$	2	[• NP VP, 0]	2
Predict: [2]	$NP \rightarrow DT NN$	3	[• DT NN VP, 0]	3
Predict: [3]	DT → the	4	[• the NN VP,0]	4

Rule	Condition		Statement	Queue
Axiom		1	[• S, 0]	1
Predict: [1]	$S \rightarrow NP VP$	2	[• NP VP, 0]	2
Predict: [2]	$NP \rightarrow DT NN$	3	[• DT NN VP, 0]	3
Predict: [3]	DT → the	4	[• the NN VP,0]	4

Rule	Condition		Statement	Queue
Axiom		1	[• S, O]	1
Predict: [1]	$S \rightarrow NP VP$	2	[• NP VP, 0]	2
Predict: [2]	$NP \rightarrow DT NN$	3	[• DT NN VP, 0]	3
Predict: [3]	DT → the	4	[• the NN VP,0]	4
Scan: [4]		5	[• NN VP,1]	5

Rule	Condition		Statement	Queue
Axiom		1	[• S, 0]	1
Predict: [1]	$S \rightarrow NP VP$	2	[• NP VP, 0]	2
Predict: [2]	$NP \rightarrow DT NN$	3	[• DT NN VP, 0]	3
Predict: [3]	DT → the	4	[• the NN VP,0]	4
Scan: [4]		5	[• NN VP,1]	5

Rule	Condition		Statement	Queue
Axiom		1	[• S, 0]	1
Predict: [1]	$S \rightarrow NP VP$	2	[• NP VP, 0]	2
Predict: [2]	$NP \rightarrow DT NN$	3	[• DT NN VP, 0]	3
Predict: [3]	DT → the	4	[• the NN VP,0]	4
Scan: [4]		5	[• NN VP,1]	5
Predict: [5]	NN → man	6	[• man VP, 1]	6

$S \rightarrow NP VP$	4
VP → Vi	
VP → Vt NP	
VP → VP PP	
NP → DT NN	4
$NP \rightarrow NP PP$	
PP → IN NP	
Vi → sleeps	
Vt → saw	
NN → man	4
NN → dog	
NN → telesco	ре
DT → the	4
$IN \rightarrow with$	

Rule	Condition		Statement	Queue
Axiom		1	[• S, 0]	1
Predict: [1]	$S \rightarrow NP VP$	2	[• NP VP, 0]	2
Predict: [2]	$NP \rightarrow DT NN$	3	[• DT NN VP, 0]	3
Predict: [3]	DT → the	4	[• the NN VP,0]	4
Scan: [4]		5	[• NN VP,1]	5
Predict: [5]	NN → man	6	[• man VP, 1]	6

Rule	Condition		Statement	Queue
Axiom		1	[• S, 0]	1
Predict: [1]	$S \rightarrow NP VP$	2	[• NP VP, 0]	2
Predict: [2]	$NP \rightarrow DT NN$	3	[• DT NN VP, 0]	3
Predict: [3]	DT → the	4	[• the NN VP,0]	4
Scan: [4]		5	[• NN VP,1]	5
Predict: [5]	NN → man	6	[• man VP, 1]	6
Scan: [6]		7	[• VP, 2]	7

$S \rightarrow NP VP$	4
VP → Vi	
VP → Vt NP	
VP → VP PP	
NP → DT NN	4
$NP \rightarrow NP PP$	
PP → IN NP	
Vi → sleeps	
Vt → saw	
NN → man	4
NN → dog	
NN → telesco	pe
DT → the	4
$IN \rightarrow with$	

Rule	Condition		Statement	Queue
Axiom		1	[• S, 0]	1
Predict: [1]	$S \rightarrow NP VP$	2	[• NP VP, 0]	2
Predict: [2]	$NP \rightarrow DT NN$	3	[• DT NN VP, 0]	3
Predict: [3]	DT → the	4	[• the NN VP,0]	4
Scan: [4]		5	[• NN VP,1]	5
Predict: [5]	NN → man	6	[• man VP, 1]	6
Scan: [6]		7	[• VP, 2]	7

$S \rightarrow NP VP$	4
VP → Vi	4
VP → Vt NP	
VP → VP PP	
NP → DT NN	4
$NP \rightarrow NP PP$	
PP → IN NP	
Vi → sleeps	
Vt → saw	
NN → man	4
NN → dog	
NN → telesco	ре
DT → the	4
IN → with	

Rule	Condition		Statement	Queue
Axiom		1	[• S, O]	1
Predict: [1]	$S \rightarrow NP VP$	2	[• NP VP, 0]	2
Predict: [2]	$NP \rightarrow DT NN$	3	[• DT NN VP, 0]	3
Predict: [3]	DT → the	4	[• the NN VP,0]	4
Scan: [4]		5	[• NN VP,1]	5
Predict: [5]	NN → man	6	[• man VP, 1]	6
Scan: [6]		7	[• VP, 2]	7

$S \rightarrow NP VP$	4
VP → Vi	
VP → Vt NP	4
VP → VP PP	
NP → DT NN	4
NP → NP PP	
PP → IN NP	
Vi → sleeps	
Vt → saw	
NN → man	4
NN → dog	
NN → telesco	ре
DT → the	4
IN → with	

Rule	Condition		Statement	Queue
Axiom		1	[• S, 0]	1
Predict: [1]	$S \rightarrow NP VP$	2	[• NP VP, 0]	2
Predict: [2]	$NP \rightarrow DT NN$	3	[• DT NN VP, 0]	3
Predict: [3]	DT → the	4	[• the NN VP,0]	4
Scan: [4]		5	[• NN VP,1]	5
Predict: [5]	NN → man	6	[• man VP, 1]	6
Scan: [6]		7	[• VP, 2]	7
Predict: [7]	VP → Vi	8	[• Vi, 2]	8, 9

$S \rightarrow NP VP$	
VP → Vi	
VP → Vt NP	4
VP → VP PP	
NP → DT NN	4
$NP \rightarrow NP PP$	
PP → IN NP	
Vi → sleeps	
Vt → saw	
NN → man	4
NN → dog	
NN → telesco	ре
DT → the	4
IN → with	

Rule	Condition		Statement	Queue
Axiom		1	[• S, 0]	1
Predict: [1]	$S \rightarrow NP VP$	2	[• NP VP, 0]	2
Predict: [2]	$NP \rightarrow DT NN$	3	[• DT NN VP, 0]	3
Predict: [3]	DT → the	4	[• the NN VP,0]	4
Scan: [4]		5	[• NN VP,1]	5
Predict: [5]	NN → man	6	[• man VP, 1]	6
Scan: [6]		7	[• VP, 2]	7
Predict: [7]	VP → Vi	8	[• Vi, 2]	8, 9
	VP → Vt NP	9	[• Vt NP, 2]	

$S \rightarrow NP VP$	
VP → Vi	4
VP → Vt NP	4
VP → VP PP	
NP → DT NN	4
$NP \rightarrow NP PP$	
PP → IN NP	
Vi → sleeps	
Vt → saw	
NN → man	4
NN → dog	
NN → telesco	ре
DT → the	
IN → with	

Rule	Condition		Statement	Queue
Axiom		1	[• S, 0]	1
Predict: [1]	$S \rightarrow NP VP$	2	[• NP VP, 0]	2
Predict: [2]	$NP \rightarrow DT NN$	3	[• DT NN VP, 0]	3
Predict: [3]	DT → the	4	[• the NN VP,0]	4
Scan: [4]		5	[• NN VP,1]	5
Predict: [5]	NN → man	6	[• man VP, 1]	6
Scan: [6]		7	[• VP, 2]	7
Predict: [7]	VP → Vi	8	[• Vi, 2]	8, 9
	VP → Vt NP	9	[• Vt NP, 2]	

$S \rightarrow NP VP$	
VP → Vi	
VP → Vt NP	
VP → VP PP	
$NP \rightarrow DT NN$	
$NP \rightarrow NP PP$	
PP → IN NP	
Vi → sleeps	
Vt → saw	
NN → man	
NN → dog	
NN → telesco	ре
DT → the	
$IN \rightarrow with$	

Rule	Condition		Statement	Queue
Axiom		1	[• S, O]	1
Predict: [1]	$S \rightarrow NP VP$	2	[• NP VP, 0]	2
Predict: [2]	$NP \rightarrow DT NN$	3	[• DT NN VP, 0]	3
Predict: [3]	DT → the	4	[• the NN VP,0]	4
Scan: [4]		5	[• NN VP,1]	5
Predict: [5]	NN → man	6	[• man VP, 1]	6
Scan: [6]		7	[• VP, 2]	7
Predict: [7]	VP → Vi	8	[• Vi, 2]	8, 9
	VP → Vt NP	9	[• Vt NP, 2]	
Predict: [8]	Vi → sleeps	10	[• sleeps, 2]	9, 10

$S \rightarrow NP VP$	
VP → Vi	
VP → Vt NP	
VP → VP PP	
NP → DT NN	
NP → NP PP	
PP → IN NP	
Vi → sleeps	
Vt → saw	
NN → man	
NN → dog	
NN → telesco	ре
DT → the	
IN → with	

Rule	Condition		Statement	Queue
Axiom		1	[• S, O]	1
Predict: [1]	$S \rightarrow NP VP$	2	[• NP VP, 0]	2
Predict: [2]	$NP \rightarrow DT NN$	3	[• DT NN VP, 0]	3
Predict: [3]	DT → the	4	[• the NN VP,0]	4
Scan: [4]		5	[• NN VP,1]	5
Predict: [5]	NN → man	6	[• man VP, 1]	6
Scan: [6]		7	[• VP, 2]	7
Predict: [7]	VP → Vi	8	[• Vi, 2]	8, 9
	VP → Vt NP	9	[• Vt NP, 2]	
Predict: [8]	Vi → sleeps	10	[• sleeps, 2]	9, 10

$S \rightarrow NP VP$	
VP → Vi	
VP → Vt NP	
VP → VP PP	
NP → DT NN	
NP → NP PP	
PP → IN NP	
Vi → sleeps	
Vt → saw	
NN → man	
NN → dog	
NN → telesco	ре
DT → the	
IN → with	

Input: the man sleeps

Rule	Condition		Statement	Queue
Axiom		1	[• S, 0]	1
Predict: [1]	$S \rightarrow NP VP$	2	[• NP VP, 0]	2
Predict: [2]	$NP \rightarrow DT NN$	3	[• DT NN VP, 0]	3
Predict: [3]	DT → the	4	[• the NN VP,0]	4
Scan: [4]		5	[• NN VP,1]	5
Predict: [5]	NN → man	6	[• man VP, 1]	6
Scan: [6]		7	[• VP, 2]	7
Predict: [7]	VP → Vi	8	[• Vi, 2]	8, 9
	VP → Vt NP	9	[• Vt NP, 2]	
Predict: [8]	Vi → sleeps	10	[• sleeps, 2]	9, 10
[9]				10

$S \rightarrow NP VP$	
VP → Vi	
VP → Vt NP	
VP → VP PP	
NP → DT NN	
$NP \rightarrow NP PP$	
PP → IN NP	
Vi → sleeps	
Vt → saw	
NN → man	
NN → dog	
NN → telesco	ре
DT → the	
$IN \rightarrow with$	

Input: the man sleeps

Rule	Condition		Statement	Queue
Axiom		1	[• S, 0]	1
Predict: [1]	$S \rightarrow NP VP$	2	[• NP VP, 0]	2
Predict: [2]	$NP \rightarrow DT NN$	3	[• DT NN VP, 0]	3
Predict: [3]	DT → the	4	[• the NN VP,0]	4
Scan: [4]		5	[• NN VP,1]	5
Predict: [5]	NN → man	6	[• man VP, 1]	6
Scan: [6]		7	[• VP, 2]	7
Predict: [7]	VP → Vi	8	[• Vi, 2]	8, 9
	VP → Vt NP	9	[• Vt NP, 2]	
Predict: [8]	Vi → sleeps	10	[• sleeps, 2]	9, 10
[9]				10

$S \rightarrow NP VP$	
VP → Vi	
VP → Vt NP	
VP → VP PP	
NP → DT NN	
$NP \rightarrow NP PP$	
PP → IN NP	
Vi → sleeps	
Vt → saw	
NN → man	
NN → dog	
NN → telesco	ре
DT → the	
IN → with	

Input: the man sleeps

Rule	Condition		Statement	Queue
Axiom		1	[• S, O]	1
Predict: [1]	$S \rightarrow NP VP$	2	[• NP VP, 0]	2
Predict: [2]	$NP \rightarrow DT NN$	3	[• DT NN VP, 0]	3
Predict: [3]	DT → the	4	[• the NN VP,0]	4
Scan: [4]		5	[• NN VP,1]	5
Predict: [5]	NN → man	6	[• man VP, 1]	6
Scan: [6]		7	[• VP, 2]	7
Predict: [7]	VP → Vi	8	[• Vi, 2]	8, 9
	VP → Vt NP	9	[• Vt NP, 2]	
Predict: [8]	Vi → sleeps	10	[• sleeps, 2]	9, 10
[9]				10
Scan: [10]		11	[•, 3]	11

$S \rightarrow NP VP$	
VP → Vi	
VP → Vt NP	
VP → VP PP	
NP → DT NN	
NP → NP PP	
PP → IN NP	
Vi → sleeps	
Vt → saw	
NN → man	
NN → dog	
NN → telesco	эе
DT → the	

Input: the man sleeps

Rule	Condition		Statement	Queue
Axiom		1	[• S, 0]	1
Predict: [1]	$S \rightarrow NP VP$	2	[• NP VP, 0]	2
Predict: [2]	$NP \rightarrow DT NN$	3	[• DT NN VP, 0]	3
Predict: [3]	DT → the	4	[• the NN VP,0]	4
Scan: [4]		5	[• NN VP,1]	5
Predict: [5]	NN → man	6	[• man VP, 1]	6
Scan: [6]		7	[• VP, 2]	7
Predict: [7]	VP → Vi	8	[• Vi, 2]	8, 9
	$VP \rightarrow Vt NP$	9	[• Vt NP, 2]	
Predict: [8]	Vi → sleeps	10	[• sleeps, 2]	9, 10
[9]				10
Scan: [10]		11	[•, 3]	11
GOAL: [11]		-	17	Ø

 $S \rightarrow NP VP$ $VP \rightarrow Vi$ VP → Vt NP $VP \rightarrow VP PP$ NP → DT NN $NP \rightarrow NP PP$ PP → IN NP Vi → sleeps Vt → saw NN → man NN → dog NN → telescope $DT \rightarrow the$ $IN \rightarrow with$

Top-Down recognition

Input: G and $x_1 \dots x_n$

Item form: $[\bullet \beta, j]$ asserts that $S \Rightarrow^* x_1 \dots x_j \beta$

Axiom: [•S,0]

Goal: [•,n]

SCAN $\frac{[\bullet x_{j+1} \beta, j]}{[\bullet \beta, j+1]}$

Scan

asserts that $S \Rightarrow^* x_1 \dots x_j x_{j+1} \beta$

Predict

asserts that $S \Rightarrow^* x_1 \dots x_i B \beta$

PREDICT
$$\frac{[\bullet A \beta, j]}{[\bullet \alpha \beta, j]} A \to \alpha \in \mathcal{R}$$

the man saw the dog

CKY - CNF only

Input: G and $s = x_1 \dots x_n$ Item form: [i, X, j] asserts that $X \Rightarrow^* x_{i+1} \dots x_j$

Axioms: [i, X, i+1] $X \rightarrow x_i \in \mathcal{R}$

Goal: [0, S, n]

Merge:

asserts that

$$\frac{[i,A,k][k,B,j]}{[i,C,j]} \ C \to AB \in \mathcal{R}$$

$$X_{i+1} \dots X_k X_{k+1} \dots X_j \Rightarrow^* X_{i+1} \dots X_j$$

$S \rightarrow NP VP$	Vi → sleeps
VP → Vi	Vt → saw
VP → Vt NP	NN → man
VP → VP PP	NN → dog
$NP \rightarrow DT NN$	NN → telescope
$NP \rightarrow NP PP$	DT → the
PP → IN NP	IN → with

Input: the man saw the dog

$S \rightarrow NP VP$	Vi → sleeps
VP → Vi	Vt → saw
VP → Vt NP	NN → man
VP → VP PP	NN → dog
$NP \rightarrow DT NN$	NN → telescope
$NP \rightarrow NP PP$	DT → the
PP → IN NP	IN → with

Rule Condition Statement Queue Passive

$S \rightarrow NP VP$	Vi → sleeps
VP → Vi	Vt → saw
VP → Vt NP	NN → man
VP → VP PP	NN → dog
$NP \rightarrow DT NN$	NN → telescope
$NP \rightarrow NP PP$	DT → the
PP → IN NP	IN → with

Rule	Condition		Statement		Queue	Passive
Axiom	DT → the	1	[0, DT, 1]	1		

$S \rightarrow NP VP$	Vi → sleeps
VP → Vi	Vt → saw
VP → Vt NP	NN → man
VP → VP PP	NN → dog
$NP \rightarrow DT NN$	NN → telescope
NP → NP PP	DT → the
PP → IN NP	IN → with

Rule	Condition		Statement	Queue	Passive
Axiom	DT → the	1	[0, DT, 1]	1	
	NN → man	2	[1, NN, 2]	1, 2	

$S \rightarrow NP VP$	Vi → sleeps
VP → Vi	Vt → saw
VP → Vt NP	NN → man
VP → VP PP	NN → dog
$NP \rightarrow DT NN$	NN → telescope
$NP \rightarrow NP PP$	DT → the
PP → IN NP	IN → with

Rule	Condition		Statement	Queue	Passive
Axiom	DT → the	1	[0, DT, 1]	1	
	NN → man	2	[1, NN, 2]	1, 2	
	Vt → saw	3	[2, Vt, 3]	1, 2, 3	

$S \rightarrow NP VP$	Vi → sleeps
VP → Vi	Vt → saw
VP → Vt NP	NN → man
VP → VP PP	NN → dog
$NP \rightarrow DT NN$	NN → telescope
$NP \rightarrow NP PP$	DT → the
PP → IN NP	IN → with

Rule	Condition		Statement	Queue	Passive
Axiom	DT → the	1	[0, DT, 1]	1	
	NN → man	2	[1, NN, 2]	1, 2	
	Vt → saw	3	[2, Vt, 3]	1, 2, 3	
	DT → the	4	[3, DT, 4]	1, 2, 3, 4	

$S \rightarrow NP VP$	Vi → sleeps
VP → Vi	Vt → saw
VP → Vt NP	NN → man
VP → VP PP	NN → dog
$NP \rightarrow DT NN$	NN → telescope
$NP \rightarrow NP PP$	DT → the
PP → IN NP	IN → with

Rule	Condition		Statement	Queue	Passive
Axiom	DT → the	1	[0, DT, 1]	1	
	NN → man	2	[1, NN, 2]	1, 2	
	Vt → saw	3	[2, Vt, 3]	1, 2, 3	
	DT → the	4	[3, DT, 4]	1, 2, 3, 4	
	NN → dog	5	[4, NN, 5]	1, 2, 3, 4, 5	

$S \rightarrow NP VP$	Vi → sleeps
VP → Vi	Vt → saw
VP → Vt NP	NN → man
VP → VP PP	NN → dog
$NP \rightarrow DT NN$	NN → telescope
$NP \rightarrow NP PP$	DT → the
$PP \rightarrow IN NP$	IN → with

Rule	Condition		Statement	Queue	Passive
Axiom	DT → the	1	[0, DT, 1]	1	
	NN → man	2	[1, NN, 2]	1, 2	
	Vt → saw	3	[2, Vt, 3]	1, 2, 3	
	DT → the	4	[3, DT, 4]	1, 2, 3, 4	
	NN → dog	5	[4, NN, 5]	1, 2, 3, 4, 5	
				2, 3, 4, 5	1

$S \rightarrow NP VP$	Vi → sleeps
VP → Vi	Vt → saw
VP → Vt NP	NN → man
VP → VP PP	NN → dog
$NP \rightarrow DT NN$	NN → telescope
$NP \rightarrow NP PP$	DT → the
PP → IN NP	IN → with

Rule	Condition		Statement	Queue	Passive
Axiom	DT → the	1	[0, DT, 1]	1	
	NN → man	2	[1, NN, 2]	1, 2	
	Vt → saw	3	[2, Vt, 3]	1, 2, 3	
	DT → the	4	[3, DT, 4]	1, 2, 3, 4	
	NN → dog	5	[4, NN, 5]	1, 2, 3, 4, 5	
				2, 3, 4, 5	1
Merge: [1][2]	$NP \rightarrow DT NN$	6	[0, NP, 2]	3, 4, 5, 6	2

$S \rightarrow NP VP$	Vi → sleeps
VP → Vi	Vt → saw
VP → Vt NP	NN → man
VP → VP PP	NN → dog
$NP \rightarrow DT NN$	NN → telescope
$NP \rightarrow NP PP$	DT → the
PP → IN NP	IN → with

Rule	Condition		Statement	Queue	Passive
Axiom	DT → the	1	[0, DT, 1]	1	
	NN → man	2	[1, NN, 2]	1, 2	
	Vt → saw	3	[2, Vt, 3]	1, 2, 3	
	DT → the	4	[3, DT, 4]	1, 2, 3, 4	
	NN → dog	5	[4, NN, 5]	1, 2, 3, 4, 5	
				2, 3, 4, 5	1
Merge: [1][2]	$NP \rightarrow DT NN$	6	[0, NP, 2]	3, 4, 5, 6	2
				4, 5, 6	3

$S \rightarrow NP VP$	Vi → sleeps
VP → Vi	Vt → saw
VP → Vt NP	NN → man
VP → VP PP	NN → dog
$NP \rightarrow DT NN$	NN → telescope
$NP \rightarrow NP PP$	DT → the
$PP \rightarrow IN NP$	IN → with

Rule	Condition		Statement	Queue	Passive
Axiom	DT → the	1	[0, DT, 1]	1	
	NN → man	2	[1, NN, 2]	1, 2	
	Vt → saw	3	[2, Vt, 3]	1, 2, 3	
	DT → the	4	[3, DT, 4]	1, 2, 3, 4	
	NN → dog	5	[4, NN, 5]	1, 2, 3, 4, 5	
				2, 3, 4, 5	1
Merge: [1][2]	$NP \rightarrow DT NN$	6	[0, NP, 2]	3, 4, 5, 6	2
				4, 5, 6	3
				5, 6	4

$S \rightarrow NP VP$	Vi → sleeps
VP → Vi	Vt → saw
VP → Vt NP	NN → man
VP → VP PP	NN → dog
$NP \rightarrow DT NN$	NN → telescope
$NP \rightarrow NP PP$	DT → the
PP → IN NP	IN → with

Rule	Condition		Statement	Queue	Passive
Axiom	DT → the	1	[0, DT, 1]	1	
	NN → man	2	[1, NN, 2]	1, 2	
	Vt → saw	3	[2, Vt, 3]	1, 2, 3	
	DT → the	4	[3, DT, 4]	1, 2, 3, 4	
	NN → dog	5	[4, NN, 5]	1, 2, 3, 4, 5	
				2, 3, 4, 5	1
Merge: [1][2]	$NP \rightarrow DT NN$	6	[0, NP, 2]	3, 4, 5, 6	2
				4, 5, 6	3
				5, 6	4
Merge: [4][5]	$NP \rightarrow DT NN$	7	[3, NP, 5]	6, 7	5

$S \rightarrow NP VP$	Vi → sleeps
VP → Vi	Vt → saw
VP → Vt NP	NN → man
VP → VP PP	NN → dog
$NP \rightarrow DT NN$	NN → telescope
$NP \rightarrow NP PP$	DT → the
PP → IN NP	IN → with

Rule	Condition		Statement	Queue	Passive
Axiom	DT → the	1	[0, DT, 1]	1	
	NN → man	2	[1, NN, 2]	1, 2	
	Vt → saw	3	[2, Vt, 3]	1, 2, 3	
	DT → the	4	[3, DT, 4]	1, 2, 3, 4	
	NN → dog	5	[4, NN, 5]	1, 2, 3, 4, 5	
				2, 3, 4, 5	1
Merge: [1][2]	$NP \rightarrow DT NN$	6	[0, NP, 2]	3, 4, 5, 6	2
				4, 5, 6	3
				5, 6	4
Merge: [4][5]	$NP \rightarrow DT NN$	7	[3, NP, 5]	6, 7	5
				7	6

$S \rightarrow NP VP$	Vi → sleeps
VP → Vi	Vt → saw
VP → Vt NP	NN → man
VP → VP PP	NN → dog
$NP \rightarrow DT NN$	NN → telescope
$NP \rightarrow NP PP$	DT → the
PP → IN NP	IN → with

Rule	Condition		Statement	Queue	Passive
Axiom	DT → the	1	[0, DT, 1]	1	
	NN → man	2	[1, NN, 2]	1, 2	
	Vt → saw	3	[2, Vt, 3]	1, 2, 3	
	DT → the	4	[3, DT, 4]	1, 2, 3, 4	
	NN → dog	5	[4, NN, 5]	1, 2, 3, 4, 5	
				2, 3, 4, 5	1
Merge: [1][2]	$NP \rightarrow DT NN$	6	[0, NP, 2]	3, 4, 5, 6	2
				4, 5, 6	3
				5, 6	4
Merge: [4][5]	$NP \rightarrow DT NN$	7	[3, NP, 5]	6, 7	5
				7	6
Merge: [3] [7]	VP → Vt NP	8	[2, VP, 5]	8	7

$S \rightarrow NP VP$	Vi → sleeps
VP → Vi	Vt → saw
VP → Vt NP	NN → man
VP → VP PP	NN → dog
$NP \rightarrow DT NN$	NN → telescope
NP → NP PP	DT → the
PP → IN NP	IN → with

Rule	Condition		Statement	Queue	Passive
Axiom	DT → the	1	[0, DT, 1]	1	
	NN → man	2	[1, NN, 2]	1, 2	
	Vt → saw	3	[2, Vt, 3]	1, 2, 3	
	DT → the	4	[3, DT, 4]	1, 2, 3, 4	
	NN → dog	5	[4, NN, 5]	1, 2, 3, 4, 5	
				2, 3, 4, 5	1
Merge: [1][2]	$NP \rightarrow DT NN$	6	[0, NP, 2]	3, 4, 5, 6	2
				4, 5, 6	3
				5, 6	4
Merge: [4][5]	$NP \rightarrow DT NN$	7	[3, NP, 5]	6, 7	5
				7	6
Merge: [3] [7]	VP → Vt NP	8	[2, VP, 5]	8	7
Merge: [6] [8]	$S \rightarrow NP VP$	9	[0, S, 5]	9	8

Input: the man saw the dog

$S \rightarrow NP VP$	Vi → sleeps
VP → Vi	Vt → saw
VP → Vt NP	NN → man
VP → VP PP	NN → dog
$NP \rightarrow DT NN$	NN → telescope
$NP \rightarrow NP PP$	DT → the
PP → IN NP	IN → with

Rule	Condition		Statement	Queue	Passive
Axiom	DT → the	1	[0, DT, 1]	1	
	NN → man	2	[1, NN, 2]	1, 2	
	Vt → saw	3	[2, Vt, 3]	1, 2, 3	
	DT → the	4	[3, DT, 4]	1, 2, 3, 4	
	NN → dog	5	[4, NN, 5]	1, 2, 3, 4, 5	
				2, 3, 4, 5	1
Merge: [1][2]	$NP \rightarrow DT NN$	6	[0, NP, 2]	3, 4, 5, 6	2
				4, 5, 6	3
				5, 6	4
Merge: [4][5]	$NP \rightarrow DT NN$	7	[3, NP, 5]	6, 7	5
				7	6
Merge: [3] [7]	VP → Vt NP	8	[2, VP, 5]	8	7
Merge: [6] [8]	$S \rightarrow NP VP$	9	[0, S, 5]	9	8
GOAL: [9]				Ø	9
		2	1		

21

Graphical view

Ambiguity

Some strings may have more than one derivation in G

Parse Forest

Efficient representation of the whole space $T_G(\omega)$

each and every possible tree yielding ω

Items (other than the goal) represent partial derivations

including alternative ones

Dealing with Ambiguity

Statistical model: PCFG

- weight steps in a derivation
- induces a partial ordering over derivations
- can be used to make a decision
 - e.g. best tree under the model

Probabilistic CFG

CFG extended with parameters $0 \le \theta_r \le 1$

• where $r \in \mathcal{R}$ and

$$\sum_{\beta: v \to \beta \in \mathcal{R}} \theta_{v \to \beta} = 1$$

Probabilistic CFG

Distribution over trees and their yields

$$P_{DS|NM}(R_1^m = r_1^m, X_1^n = \text{yield}(r_1^m)|n, m)$$

$$= \prod_{i=1}^m \theta_{r_i} = \prod_{i=1}^m \theta_{v_i \to \beta_i}$$

where r_i corresponds to $v_i \to \beta_i$

Joint Distribution

Each inference gets a weight

i.e. categorical parameter

$$\theta_{X\rightarrow\beta}$$

of the underlying rule

$$P_{S|n}(x_1^n|n) = I(_0S_n) = \sum_{r_1^m \in \mathcal{G}(x_1^n)} \prod_{i=1}^n \theta_{v_i \to \beta_i}$$

Let the goal item **stand** for the sentence. What's its (marginal/inside) probability I(₀S₈)?

$$P_{S|n}(x_1^n|n) = I(_0S_n) = \sum_{r_1^m \in \mathcal{G}(x_1^n)} \prod_{i=1}^n \theta_{v_i \to \beta_i}$$

•
$$I(_{0}S_{8}) =$$

• $I(_{0}S_{8}) =$

 $\Theta_{S\rightarrow NP\ VP}\ I(_0NP_2)\ I(_2VP_8)$

• $I(_0S_8) =$

 $\Theta_{S\rightarrow NP\ VP}\ I(_0NP_2)\ I(_2VP_8)$

• $I(_{0}NP_{2}) =$

• $I(_0S_8) =$ $\Theta_{S \rightarrow NP \ VP} I(_0NP_2) I(_2VP_8)$

• $I(_0NP_2) =$

 $\Theta_{NP\rightarrow DT\ NN}\ I(_0DT_1)\ I(_1NN_2)$

• $I(_0S_8) =$ $\Theta_{S \rightarrow NP \ VP} I(_0NP_2) I(_2VP_8)$

• $I(_{0}NP_{2}) =$

 $\Theta_{NP \rightarrow DT NN} I(_0DT_1) I(_1NN_2)$

• $I(_{2}VP_{8}) =$

• $I(_0S_8) =$ $\Theta_{S \rightarrow NP \ VP} I(_0NP_2) I(_2VP_8)$

• $I(_{0}NP_{2}) =$

 $\Theta_{NP\rightarrow DT\ NN}\ I(_0DT_1)\ I(_1NN_2)$

• $I(_{2}VP_{8}) =$

 $\Theta_{VP \rightarrow VP PP} I(_{2}VP_{5}) I(_{5}PP_{8})$

- $I(_{0}S_{8}) =$ $\Theta_{S\rightarrow NP VP} I(_{0}NP_{2}) I(_{2}VP_{8})$
- $I(_{0}NP_{2}) =$ $\Theta_{NP\rightarrow DT\ NN}\ I(_0DT_1)\ I(_1NN_2)$
- - $\Theta_{VP \rightarrow VP PP} I(_{2}VP_{5}) I(_{5}PP_{8})$
 - + $\theta_{VP \rightarrow Vt NP} I(2Vt_3) I(3NP_8)$

- $I(_0S_8) =$ $\Theta_{S \rightarrow NP \ VP} I(_0NP_2) I(_2VP_8)$
- $I(_0NP_2) =$ $\Theta_{NP\to DT\ NN} I(_0DT_1) I(_1NN_2)$
- $I(_{2}VP_{8}) =$

 $\Theta_{VP \rightarrow VP PP} I(_2VP_5) I(_5PP_8)$

+ $\Theta_{VP \rightarrow Vt NP} I(2Vt_3) I(3NP_8)$

. . .

Inside Weight

- Let us denote nodes/items by v, ai
- Let us denote an edge/inference by $\frac{a_1, \dots, a_n}{n \cdot \theta}$
- θ is the weight of the rule underlying the inference
- B(v) is the set of edges *incoming* to a node
 - i.e. *inferences* that prove the node

We call **Inside weight** the sum of weights of all derivations of a certain node

Inside recursion

$$I(v) = \begin{cases} 1 & \text{if } B(v) = \emptyset \\ \sum_{\substack{a_1, \dots, a_n \\ v : \theta}} \theta \times \prod_{i=1}^n I(a_i) & \text{otherwise} \end{cases}$$

For a PCFG, the **inside** of the GOAL node corresponds to the **marginal probability** of the sentence

$$P_{S|n}(x_1^n|n) = I(_0S_n) = \sum_{\substack{r_1^m \in \mathcal{G}(x_1^n) \ i=1}} \prod_{i=1}^m \theta_{v_i \to \beta_i}$$

$$\max_{r_1^m \in \mathcal{G}(x_1^n)} P_{ST|NM}(x_1^n, r_1^m | n, m) = V(_0S_n)$$

$$= \max_{r_1^m \in \mathcal{G}(x_1^n)} \prod_{i=1}^m \theta_{v_i \to \beta_i}$$

Let the goal item **stand** for the sentence. What's the probability of best tree under it V(₀S₈)?

$$\max_{r_1^m \in \mathcal{G}(x_1^n)} P_{ST|NM}(x_1^n, r_1^m | n, m) = V(_0S_n)$$

$$= \max_{r_1^m \in \mathcal{G}(x_1^n)} \prod_{i=1}^m \theta_{v_i \to \beta_i}$$

• $V(_{0}S_{8}) =$

• $V(_{0}S_{8}) =$

 $\Theta_{S\rightarrow NP\ VP}\ V(_0NP_2)\ V(_2VP_8)$

• $V(_{0}S_{8}) =$

 $\Theta_{S\rightarrow NP\ VP}\ V(_0NP_2)\ V(_2VP_8)$

• $V(_{0}NP_{2}) =$

• $V(_{0}S_{8}) =$

 $\Theta_{S\rightarrow NP\ VP}\ V(_0NP_2)\ V(_2VP_8)$

• $V(_0NP_2) =$

 $\Theta_{NP\rightarrow DT\ NN}\ V(_0DT_1)\ V(_1NN_2)$

• $V(_0S_8) =$

 $\Theta_{S\rightarrow NP\ VP}\ V(_0NP_2)\ V(_2VP_8)$

• $V(_{0}NP_{2}) =$

 $\Theta_{NP\rightarrow DT\ NN}\ V(_0DT_1)\ V(_1NN_2)$

• $V(_{2}VP_{8}) =$

- $V(_0S_8) =$ $\Theta_{S \rightarrow NP \ VP} \ V(_0NP_2) \ V(_2VP_8)$
- $V(_0NP_2) =$ $\Theta_{NP\to DT\ NN}\ V(_0DT_1)\ V(_1NN_2)$
- $V(_{2}VP_{8}) =$

max {

- $V(_0S_8) =$ $\theta_{S\rightarrow NP\ VP}\ V(_0NP_2)\ V(_2VP_8)$
- $V(_0NP_2) =$ $\Theta_{NP\to DT\ NN}\ V(_0DT_1)\ V(_1NN_2)$
- $V(_{2}VP_{8}) =$

max {

 $\Theta_{VP \rightarrow VP PP} V(_{2}VP_{5}) V(_{5}PP_{8})$,

- $V(_0S_8) =$ $\theta_{S\rightarrow NP\ VP}\ V(_0NP_2)\ V(_2VP_8)$
- $V(_0NP_2) =$ $\Theta_{NP\to DT\ NN}\ V(_0DT_1)\ V(_1NN_2)$
- $V(_{2}VP_{8}) =$

max {

$$\Theta_{VP \rightarrow VP PP} V(_{2}VP_{5}) V(_{5}PP_{8}),$$

 $\Theta_{VP \rightarrow Vt NP} V(_{2}Vt_{3}) V(_{3}NP_{8})$

- $V(_0S_8) =$ $\theta_{S\rightarrow NP\ VP}\ V(_0NP_2)\ V(_2VP_8)$
- $V(_0NP_2) =$ $\Theta_{NP\to DT\ NN}\ V(_0DT_1)\ V(_1NN_2)$
- $V(_{2}VP_{8}) =$

max {

 $\Theta_{VP \rightarrow VP PP} V(_2VP_5) V(_5PP_8)$, $\Theta_{VP \rightarrow Vt NP} V(_2Vt_3) V(_3NP_8)$ }

Viterbi

$$I_{\max}(v) = \begin{cases} 1 & \text{if } B(v) = \emptyset \\ \max_{\substack{a_1, \dots, a_n \\ v:\theta}} \theta \times \prod_{i=1}^n I(a_i) & \text{otherwise} \end{cases}$$

For a PCFG, the **inside algorithm** computed with **max** instead of sum corresponds to the **probability of the best derivation** of the sentence

$$V(_{0}S_{n}) = I_{\max}(_{0}S_{n}) = \max_{r_{1}^{m} \in \mathcal{G}(x_{1}^{n})} P_{ST|NM}(x_{1}^{n}, r_{1}^{m}|n, m)$$

Many in One

The inside recursion is very general

- It includes other dynamic programs
 - e.g. Viterbi

Semirings

Generalise sum and products

Semirings

Marginal (probability)

$$a \oplus b = a + b$$
$$a \otimes b = a \times b$$

$$\overline{1} = 1$$

$$\bar{0} = 0$$

Log-marginal (probability)

$$a \oplus b = \log(\exp a + \exp b)$$

$$a \otimes b = a + b$$

$$\overline{1} = 0$$

$$\bar{0} = -\infty$$

Viterbi (max-probability)

Log-viterbi (max-log-prob)

$$a \oplus b = \max(a, b)$$

$$a \otimes b = a \times b$$

$$\overline{1} = 1$$

$$\bar{0} = 0$$

$$a \oplus b = \max(a, b)$$

$$a \otimes b = a + b$$

$$\bar{1} = 0$$

$$\bar{0} = -\infty$$

Inside semiring

With generalised operations

$$I(v) = \begin{cases} \overline{1} & \text{if } B(v) = \emptyset \\ \bigoplus_{\substack{a_1, \dots, a_n \\ v : \theta}} \theta \otimes \bigotimes_{i=1}^n I(a_i) & \text{otherwise} \end{cases}$$

• $I(_{0}S_{8}) =$

• $I(_{0}S_{8}) =$

 $\theta_{S\rightarrow NP\ VP} \otimes I(_0NP_2) \otimes I(_2VP_8)$

• $I(_0S_8) =$ $\theta_{S \to NP \ VP} \otimes I(_0NP_2) \otimes I(_2VP_8)$

• $I(_{0}NP_{2}) =$

• $I(_0S_8) =$ $\theta_{S \to NP \ VP} \otimes I(_0NP_2) \otimes I(_2VP_8)$

• $I(_0NP_2) =$

 $\Theta_{NP \to DT NN} \otimes I(_0DT_1) \otimes I(_1NN_2)$

• $I(_0S_8) =$ $\theta_{S \to NP \ VP} \otimes I(_0NP_2) \otimes I(_2VP_8)$

• $I(_0NP_2) =$

 $\Theta_{NP \to DT \ NN} \otimes I(_0DT_1) \otimes I(_1NN_2)$

• $I(_0DT_1) =$

• $I(_0S_8) =$ $\theta_{S \rightarrow NP \ VP} \otimes I(_0NP_2) \otimes I(_2VP_8)$

• $I(_0NP_2) =$

 $\Theta_{NP \to DT NN} \otimes I(_0DT_1) \otimes I(_1NN_2)$

• $I(_0DT_1) =$

 $\theta_{DT\rightarrow the} \otimes I(the)$

- $I(_0S_8) =$ $\theta_{S \to NP \ VP} \otimes I(_0NP_2) \otimes I(_2VP_8)$
- $I(_0NP_2) =$

$$\Theta_{NP \to DT NN} \otimes I(_0DT_1) \otimes I(_1NN_2)$$

- $I(_0DT_1) =$ $\theta_{DT\rightarrow the} \otimes I(the)$
- I(the) = 1

$$X \to \alpha \bullet \beta$$
 where $|\alpha| > 1$ and $|\beta| = 1$
 $\Rightarrow X \to v(\alpha) \beta$
 $v(\alpha) \to \alpha$ where $v(\alpha)$ turns α in a nonterminal

Every CFG can be binarised (max arity = 2)

$$X \to \alpha \bullet \beta$$
 where $|\alpha| > 1$ and $|\beta| = 1$
 $\Rightarrow X \to v(\alpha) \beta$
 $v(\alpha) \to \alpha$ where $v(\alpha)$ turns α in a nonterminal

Every CFG can be binarised (max arity = 2)

$$X \to \alpha \bullet \beta$$
 where $|\alpha| > 1$ and $|\beta| = 1$
 $\Rightarrow X \to v(\alpha) \beta$
 $v(\alpha) \to \alpha$ where $v(\alpha)$ turns α in a nonterminal

Every CFG can be binarised (max arity = 2)

$$X \to \alpha \bullet \beta$$
 where $|\alpha| > 1$ and $|\beta| = 1$
 $\Rightarrow X \to v(\alpha) \beta$
 $v(\alpha) \to \alpha$ where $v(\alpha)$ turns α in a nonterminal

Every CFG can be binarised (max arity = 2)

$$X \to \alpha \bullet \beta$$
 where $|\alpha| > 1$ and $|\beta| = 1$
 $\Rightarrow X \to v(\alpha) \beta$
 $v(\alpha) \to \alpha$ where $v(\alpha)$ turns α in a nonterminal

Every CFG can be binarised (max arity = 2)

Just pre-process the grammar rules

$$X \to \alpha \bullet \beta$$
 where $|\alpha| > 1$ and $|\beta| = 1$
 $\Rightarrow X \to v(\alpha) \beta$
 $v(\alpha) \to \alpha$ where $v(\alpha)$ turns α in a nonterminal

In total we get up to 3 indices ranging from 0.. n

Every CFG can be binarised (max arity = 2)

$$X \to \alpha \bullet \beta$$
 where $|\alpha| > 1$ and $|\beta| = 1$
 $\Rightarrow X \to v(\alpha) \beta$
 $v(\alpha) \to \alpha$ where $v(\alpha)$ turns α in a nonterminal

- In total we get up to 3 indices ranging from 0.. n
- O(n³) annotated rules

Bibliography

- Hopcroft, John E. and Ullman, Jeffrey D. 1979. Introduction To Automata Theory, Languages, And Computation.
- Shieber, S. and Schabes, Y. and Pereira, F. 1995. Principles and implementation of deductive parsing. In *Journal of Logic Programming*
- Bar-Hillel, Y. and Perles, M. and Shamir, E. 1961. On formal properties of simple phrase structure grammars.
- Billot, S. and Lang, B. 1989. The Structure of Shared Forests in Ambiguous ParsingThe Structure of Shared Forests in Ambiguous Parsing. In *Proceedings of the 27th Annual Meeting of the* Association for Computational Linguistics.