РЕСПУБЛИКА КАЗАХСТАН АЛМАТИНСКИЙ УНИВЕРСИТЕТ ЭНЕРГЕТИКИ И СВЯЗИ имени Гумарбека Даукеева

Кафедра Электротехники

Расчетно-графическая работа по дисциплине «Цепи с распределенными и сосредоточенными параметрами»

Расчет четырехполюсников и линий с распределёнными параметрами (полное наименование работы)

Работа выполнена

Студентом Суворов Р.Е.

(фамилия и инициалы)

182345

(номер зачетной книжки)

Группа АУ 18-5

(шифр группы)

Отчет принят 11.04.2020

(дата принятия отчета)

Преподаватель Баймаганов А.С.

(О.И.Ф)

Задание

Два симметричных четырехполюсника каскадно соединены. Заданы схе-мы двух четырехполюсников (схема 1 и схема 2) и сопротивления четырехпо-люсников. Определить:

- 2.1 А- параметры каждого из них.
- 2.2 А-параметры каскадного соединения четырехполюсников, используя:
 - 2.2.1 А- параметры каждого из них.
 - 2.2.2 Схему эквивалентного четырехполюсника.
- 2.3 Вторичные параметры четырехполюсника (Zc1, Г, A, B), используя A-параметры, режимы холостого хода и короткого замыкания.
- 2.4 Входное сопротивление относительно первичных зажимов, при под-ключении к выходным зажимам нагрузки Rн.
- 2.5 Входное сопротивление относительно вторичных зажимов, при нагрузке четырехполюсника со стороны первичных зажимов Rr.

Табли	ца2.	1								
Год поступ-	Последняя цифра зачетной книжки									
ления										
чётный	1	2	3	4	5	6	7	8	9	0
нечётный	0	9	8	7	6	5	4	3	2	1
№ схемы 1	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.1	2.2
L, мГн	70	60	50	65	80	55	75	85	95	100
f, кГц	1	2	3	4	5	1	2	3	4	5

Таблица 2.2

	_									
Год поступ-	Предпоследняя цифра зачетной книжки									
ления										
чётный	1	2	3	4	5	6	7	8	9	0
нечётный	0	9	8	7	6	5	4	3	2	1
R, кОм	1	2	3	4	5	6	7	8	9	10
R _н , кОм	0.5	0.6	0.8	0.9	0.4	0.7	1.1	1.2	1.3	1.0

Таблипа 2.3

таолицав.										
Год поступ-	Первая буква фамилии									
ления										
чётный	БЛЦ	KX	ВМЧ	ГНШ	ДОЯ	ЕПР	ЖСЗ	ТЭИ	УЮФ	АЩ
нечётный	KX	ВМЧ	ГНШ	БЛЦ	ЕПР	доя	ТЭИ	ЖСЗ	АЩ	УЮФ
№ схемы 2	2.9	2.10	2.11	2.12	2.13	2.14	2.15	2.16	2.12	2.15
С, мкФ	0, 1	0, 3	0, 2	0, 4	0, 5	0, 6	0, 7	0, 8	0, 9	0, 6
R _г , кОм	0.2	0.19	0.18	0.17	0.16	0.15	0.14	0.13	0.12	0.11

Рисунок 1 – Варианты заданий

Задание №2

Задана линия с первичными параметрами (R0, G0, L0, C0) и частотой f, длиной линии 1. Известен ток в конце линии (I2) и сопротивление нагрузки (Rн). Определить:

- 3.1 Вторичные параметры линии.
- 3.2 Напряжение и ток в начале линии.
- 3.3 Активную мощность в начале и конце линии, кпд линии.

Полагая, что линия стала линией без потерь, определить:

- 3.4 Вторичные параметры линии.
- 3.5 Напряжение и ток в начале линии.

Содержание

Введение	5
Задание №1	6
Задание №2	13
Вывод по работе	16
Список литературы	17

Введение.

В данной расчетно-графической работе необходимо провести расчет четырехполюсников, их каскадное соединение, эквивалентное соединение, вторичные параметры и входные сопротивления при подключении сопротивления генератора и нагрузки.

В моей работе даны два четырехполюсника П-типа и Т-типа.

Цепи с распределенными параметрами - это такие электрические цепи, в которых напряжения и токи на различных участках даже неразветвленной цепи отличаются друг от друга, т.е. являются функциями двух независимых переменных: времени t и пространственной координаты x.

Смысл данного названия заключается в том, что у цепей данного класса каждый элемент их длины характеризуется сопротивлением, индуктивностью, а между проводами — соответственно емкостью и проводимостью.

Линия без потерь — это линия, у которой рассеяние энергии отсутствует, что имеет место при значениях первичных параметров R = 0 и G = 0.

Задание №1

$$L := 80 \cdot 10^{-3}$$

$$f := 5000$$

$$R := 4000$$

$$Rn := 900$$

$$C := 0.7 \cdot 10^{-6}$$

$$Rg := 140$$

$$i := \sqrt{-1} = 1i$$

$$w := 2 \cdot \pi \cdot f$$

$$XL := w \cdot L = 2.513 \cdot 10^{3}$$

$$XC := \frac{1}{w \cdot C} = 45.473$$

Рисунок 2 – Начальные условия и схемы

Рисунок 3 – А параметры 1 четырехполюсника.

Рисунок 4 – А параметры 2 четырехполюсника.

Рисунок 5 – Каскадное соединение четырехполюсников.

Рисунок 6 – А параметры каскадного соединения четырехполюсника.

Рисунок 7 – Эквивалентное соединение четырехполюсников.

Рассчиатные эквивалентные сопротивления я не вставлю в отчёт, так-как они сдлишком громоздкие.

Рисунок 8 - А параметры эквивалентного соединения четырехполюсников (холостой ход).

Рисунок 9 - А параметры эквивалентного соединения четырехполюсников (короткое замыкание).

Рисунок 10 – Сопротивление короткого замыкания и холостого хода.

Рисунок 11 — Вторичные параметры эквивалентного сопротивления четырехполюсников.

Рисунок 12 — Расчет входного сопротивления при сопротивлении нагрузки и генератора.

Задание №2

$$R0 := 9$$
 $L0 := 0.8 \cdot 10^{-3}$ $f := 5 \cdot 10^{3}$ $G0 := 1.4 \cdot 10^{-6}$ $R\mu := 250$ $l := 70$ $C0 := 7 \cdot 10^{-9}$ $I2 := 40 \cdot 10^{-3}$

Рисунок 13 – Начальные условия

Рисунок 14 – Вторичные параметры линии

Рисунок 15 – Напряжение и ток в начале линии

$$I1 = 0.054 - 0.068i$$

$$I1 = 0.054 + 0.068i$$

$$S1 := U1 \cdot I1 = 2.581 - 0.593i$$

$$S2 := U2 \cdot I2 = 0.4$$

$$P1 := Re(S1) = 2.581$$

$$P2 := Re(S2) = 0.4$$

$$Q1 := Im(S1) = -0.593$$

$$Q2 := Im(S2) = 0$$

$$K\Pi \mathcal{A} := \frac{P2}{P1} \cdot 100 = 15.497$$

Рисунок 16 – Активная мощность в начале и конце линии и КПД.

Рисунок 17 – Линия без потерь

Рисунок 18 – Активная мощность в начале и конце линии и КПД линии без потерь.

Вывод по работе

В этом задании расчетно графической работы я провел расчеты четырехполюсников.

А параметры вычислял по формуле четырехполюсников:

U1=A11*U2+A12*I2

I1=A21*U2+A22*I2

Эквивалентное соединение выполнил с помощью преобразования из треугольника в звезду. Нашел вторичные параметры четырехполюсника в эквивалентном соединении. Дальше нашел входные сопротивления при включении сопротивлений генератора и нагрузки.

В этом задании расчетно графической работы я провел расчеты линии с распределенными параметрами.

Во второй задаче были определены вторичные параметры линии, напряжение и ток в начале линии, активная мощность в начале и конце линии и КПД линии, а также рассчитаны вторичные параметры в линиях без потерь

Список литературы.

С. Ю. Креслина, А. Т Аршабекова Методические указания и задания № 1, 2 к расчетно-графической работе по дисциплине «Цепи с распределенными и сосредоточенными параметрами», содержат две задачи по темам: «Расчет четырехполюсников» и «Расчет линии с распределенными параметрами», требования к выполнению и оформлению, задания, схемы и параметры электрических цепей, методические указания. для студентов специальности 5В070200 — Автоматизация и Управление, Алматы, АУЭС, 2015.