MOHIDLagrangian 0.01

Generated by Doxygen 1.8.14

Contents

1	Mod	lules Ind	dex													1
	1.1	Module	es List						 	 	 	 	 		 	1
2	Data	Type I	ndex													3
	2.1	Class	Hierarchy						 	 	 	 	 		 	3
3	Data	a Type II	ndex													5
	3.1	Data T	ypes List						 	 	 	 	 		 	5
4	File	Index														7
	4.1	File Lis	st						 	 	 	 	 		 	7
5	Mod	ule Doo	cumentation	on												9
	5.1	commo	om_modul	es Mod	ule Re	ferenc	ce .		 	 	 	 	 		 	9
		5.1.1	Detailed	Descrip	otion				 	 	 	 	 		 	9
	5.2	geome	etry Module	e Refere	ence				 	 	 	 	 		 	9
		5.2.1	Detailed	Descrip	otion				 	 	 	 	 		 	10
	5.3	initializ	e Module	Referen	ice .				 	 	 	 	 		 	10
		5.3.1	Detailed	Descrip	otion				 	 	 	 	 		 	10
		5.3.2	Function	/Subrou	itine D	ocum	entati	ion .	 	 	 	 	 		 	10
			5.3.2.1	init_ca	asecor	estants	s() .		 	 	 	 	 		 	10
			5.3.2.2	init_pa	arame	ters()			 	 	 	 	 		 	11
			5.3.2.3	init_si	mdefs	()			 	 	 	 	 		 	12
			5.3.2.4	init_sc	ources	()			 	 	 	 	 		 	13
			5.3.2.5	initmo	hidlag	rangia	เท() .		 	 	 	 	 		 	13

ii CONTENTS

		5.3.2.6	read_xml_geometry()	14
		5.3.2.7	readxmlatt()	15
		5.3.2.8	readxmlvector()	15
5.4	simula	tion_globa	als Module Reference	16
	5.4.1	Detailed	Description	17
	5.4.2	Function	n/Subroutine Documentation	17
		5.4.2.1	getintegratorname()	17
		5.4.2.2	printsimdefs()	18
		5.4.2.3	printsimparameters()	18
		5.4.2.4	setboundingbox()	18
		5.4.2.5	setdp()	18
		5.4.2.6	setgravity()	19
		5.4.2.7	setparameter()	19
		5.4.2.8	setrho()	19
	5.4.3	Variable	Documentation	20
		5.4.3.1	constants	20
		5.4.3.2	parameters	20
		5.4.3.3	simdefs	20
5.5	simula	tion_precis	sion Module Reference	20
	5.5.1	Detailed	Description	21
	5.5.2	Variable	Documentation	21
		5.5.2.1	dp	21
		5.5.2.2	err_dist	21
		5.5.2.3	err_ind	21
		5.5.2.4	missing_value_default	21
		5.5.2.5	mv	21
		5.5.2.6	mv_int	22
		5.5.2.7	prec	22
		5.5.2.8	prec_time	22
		5.5.2.9	prec_wrt	22

CONTENTS

		5.5.2.10 sp	22
5.6	source	Module Reference	22
	5.6.1	Detailed Description	22
5.7	source	_emitter Module Reference	22
	5.7.1	Detailed Description	23
5.8	source	_identity Module Reference	23
	5.8.1	Detailed Description	23
	5.8.2	Function/Subroutine Documentation	23
		5.8.2.1 allocsources()	23
		5.8.2.2 initialize()	24
		5.8.2.3 printout()	24
	5.8.3	Variable Documentation	25
		5.8.3.1 source	25
5.9	tracer N	Module Reference	25
	5.9.1	Detailed Description	25
5.10	tracer2	d Module Reference	25
	5.10.1	Detailed Description	25
5.11	tracer3	d Module Reference	25
	5.11.1	Detailed Description	26
	5.11.2	Function/Subroutine Documentation	26
		5.11.2.1 tracer_init()	26
5.12	tracer_	interp Module Reference	27

iv CONTENTS

6	Data	Type D	Documentation	29
	6.1	geome	etry::box Type Reference	29
		6.1.1	Detailed Description	30
		6.1.2	Member Data Documentation	30
			6.1.2.1 size	30
	6.2	simula	tion_globals::constants_t Type Reference	30
		6.2.1	Detailed Description	30
		6.2.2	Member Function/Subroutine Documentation	31
			6.2.2.1 setgravity()	31
			6.2.2.2 setrho()	31
		6.2.3	Member Data Documentation	31
			6.2.3.1 gravity	31
			6.2.3.2 rho_ref	31
	6.3	geome	etry::line Type Reference	32
		6.3.1	Detailed Description	32
		6.3.2	Member Data Documentation	32
			6.3.2.1 last	33
	6.4	simula	tion_globals::parameters_t Type Reference	33
		6.4.1	Member Function/Subroutine Documentation	33
			6.4.1.1 printout()	33
			6.4.1.2 setparameter()	33
		6.4.2	Member Data Documentation	34
			6.4.2.1 cfl	34
			6.4.2.2 integrator	34
			6.4.2.3 timemax	34
			6.4.2.4 timeout	34
			6.4.2.5 warmuptime	34
	6.5	geome	etry::point Type Reference	35
		6.5.1	Detailed Description	35
	6.6	geome	etry::shape Type Reference	36

CONTENTS

	6.6.1	Detailed Description	36
	6.6.2	Member Data Documentation	36
		6.6.2.1 pt	36
6.7	simulat	on_globals::simdefs_t Type Reference	36
	6.7.1	Detailed Description	37
	6.7.2	Member Function/Subroutine Documentation	37
		6.7.2.1 printout()	37
		6.7.2.2 setboundingbox()	37
		6.7.2.3 setdp()	37
	6.7.3	Member Data Documentation	37
		6.7.3.1 dp	38
		6.7.3.2 pointmax	38
		6.7.3.3 pointmin	38
6.8	source	identity::source_class Type Reference	38
	6.8.1	Detailed Description	39
	6.8.2	Member Function/Subroutine Documentation	39
		6.8.2.1 initialize()	39
		6.8.2.2 printout()	39
	6.8.3	Member Data Documentation	39
		6.8.3.1 now	39
		6.8.3.2 par	40
		6.8.3.3 stats	40
6.9	source	identity::source_par Type Reference	40
	6.9.1	Member Data Documentation	40
		6.9.1.1 emitting_rate	40
		6.9.1.2 geometry	41
		6.9.1.3 id	41
		6.9.1.4 name	41
		6.9.1.5 property_name	41
		6.9.1.6 source_geometry	41

vi

6.10	source	_identity::source_state Type Reference	41
	6.10.1	Detailed Description	42
	6.10.2	Member Data Documentation	42
		6.10.2.1 active	42
		6.10.2.2 age	42
		6.10.2.3 depth	42
		6.10.2.4 pos	43
		6.10.2.5 t	43
		6.10.2.6 vel	43
6.11	source	_identity::source_stats Type Reference	43
	6.11.1	Detailed Description	43
	6.11.2	Member Data Documentation	43
		6.11.2.1 acc_t	44
		6.11.2.2 ns	44
		6.11.2.3 particles_emitted	44
6.12	geome	try::sphere Type Reference	44
	6.12.1	Detailed Description	45
	6.12.2	Member Data Documentation	45
		6.12.2.1 radius	45
6.13	tracer3	d::tracer_class Type Reference	46
	6.13.1	Detailed Description	46
	6.13.2	Member Data Documentation	46
		6.13.2.1 now	46
		6.13.2.2 par	47
		6.13.2.3 stats	47
6.14	tracer3	d::tracer_par_class Type Reference	47
	6.14.1	Detailed Description	48
		Member Data Documentation	48
		6.14.2.1 group	48
		6.14.2.2 id	48
			. •

CONTENTS vii

	6.14.2.3 interp_method	1 8
	6.14.2.4 noise	48
	6.14.2.5 tpar	48
	6.14.2.6 vel_max	49
6.15 tracer3	d::tracer_par_trans_class Type Reference	49
6.15.1	Member Data Documentation	49
	6.15.1.1 par_trans_file	49
	6.15.1.2 use_par_trans	49
6.16 tracer3	d::tracer_state_class Type Reference	49
6.16.1	Detailed Description	50
6.16.2	Member Data Documentation	50
	6.16.2.1 acc	50
	6.16.2.2 active	50
	6.16.2.3 age	50
	6.16.2.4 depth	51
	6.16.2.5 pos	51
	6.16.2.6 t	51
	6.16.2.7 vel	51
6.17 tracer3	d::tracer_stats_class Type Reference	51
6.17.1	Detailed Description	52
6.17.2	Member Data Documentation	52
	6.17.2.1 acc_depth	52
	6.17.2.2 acc_pos	52
	6.17.2.3 acc_t	52
	6.17.2.4 acc_vel	52
	6.17.2.5 ns	52

viii CONTENTS

7

File I	Documentation	53
7.1	C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/app/main.f90 File Reference	53
7.2	C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/common_modules.f90 File Reference	53
7.3	C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/geometry.f90 File Reference .	53
7.4	C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/initialize.f90 File Reference .	54
7.5	C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/simulation_globals.f90 File Reference	54
7.6	C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/simulation_precision.f90 File Reference	55
7.7	C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/source.f90 File Reference	56
7.8	C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/source_emitter.f90 File Reference	56
7.9	C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/source_identity.f90 File Reference	56
7.10	C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer.f90 File Reference	57
7.11	C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer2D.f90 File Reference .	57
7.12	C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer3D.f90 File Reference .	57
7.13	C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer_interp.f90 File Reference	58

Chapter 1

Modules Index

1.1 Modules List

Here is a list of all modules with brief descriptions:

commom_modules	
Module to hold all of the commonly used base modules	9
geometry	
Module that defines geometry classes and related methods	9
initialize	
Module with the simulation initialization related definitions and methods. Has one public access routine that is incharge of building the simulation space from input files	10
simulation_globals	
Module to finalize the simulation. This presents a public routine that is in charge of deallocating all global variables, closing all files and print some simulation-related statistics	16
simulation_precision	
Module to control the precision of the variables trough the project	20
source	
Module to hold and wrap all the tracer sources respective modules. Defines a source class and related methods	22
source_emitter	
Module that defines an emitter class and related methods	22
source_identity	
Module that defines a source class and related methods	23
tracer	
Module to hold and wrap all the tracer respective modules. Defines a pure Lagrangian tracer class. This is intended to serve as the base class for every type of tracer class needed, that should be	
built as derived of this class, with the necessary modifiers to model the desired behaviour. Basic tracer data (parameters, variables) are implemented. Tracer methods such as I/O, integration	
and interpolation routines are implemented	25
tracer2d	
Module that holds the functions for 2D tracer models - typicaly these are called to cancel the vertical component computed for a general tracer	25
tracer3d	
Module that defines a pure Lagrangian tracer class and related methods	25
tracer_interp	27

2 Modules Index

Chapter 2

Data Type Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

simulation_globals::constants_t	30
simulation_globals::parameters_t	33
geometry::shape	36
geometry::box	29
geometry::line	32
geometry::point	35
geometry::sphere	14
simulation_globals::simdefs_t	36
source_identity::source_class	38
source_identity::source_par	40
source_identity::source_state	41
source_identity::source_stats	43
**************************************	46
**************************************	47
**************************************	49
	49
tracer3d·tracer_stats_class	51

Data Type Index

Chapter 3

Data Type Index

3.1 Data Types List

Here are the data types with brief descriptions:

geometry::box	
Type - point class	26
simulation_globals::constants_t	
Case Constants class	3(
geometry::line	
Type - line class	12
simulation_globals::parameters_t	13
geometry::point	
Type - point class	įĘ
geometry::shape	
Type - extendable shape class	36
simulation_globals::simdefs_t	
Simulation definitions class	36
source_identity::source_class	
Type - The source class	38
source_identity::source_par	(
source_identity::source_state	
Type - state variables of a source object	F1
source_identity::source_stats	
Type - statistical variables of a source object	3
geometry::sphere	
Type - sphere class	4
tracer3d::tracer_class	
Type - The pure Lagrangian tracer class	•
tracer3d::tracer_par_class	
Type - parameters of a pure Lagrangian tracer object	7
tracer3d::tracer_par_trans_class	Ş
tracer3d::tracer_state_class	
Type - state variables of a pure Lagrangian tracer object	Ş
tracer3d::tracer_stats_class	
Type - statistical variables of a pure Lagrangian tracer object	j

6 Data Type Index

Chapter 4

File Index

4.1 File List

Here is a list of all files with brief descriptions:

C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/app/main.f90	53
C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/common_modules.f90	53
C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/geometry.f90	53
C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/initialize.f90	54
C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/simulation_globals.f90	54
C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/simulation_precision.f90	55
C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/source.f90	56
C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/source_emitter.f90	56
C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/source_identity.f90	56
C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer.f90	57
C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer2D.f90	57
C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer3D.f90	57
C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer_interp.f90	58

8 File Index

Chapter 5

Module Documentation

5.1 commom_modules Module Reference

Module to hold all of the commonly used base modules.

5.1.1 Detailed Description

Module to hold all of the commonly used base modules.

Author

Ricardo Birjukovs Canelas

5.2 geometry Module Reference

Module that defines geometry classes and related methods.

Data Types

```
    type box
```

Type - point class.

• type line

Type - line class.

type point

Type - point class.

• type shape

Type - extendable shape class.

• type sphere

Type - sphere class.

5.2.1 Detailed Description

Module that defines geometry classes and related methods.

Author

Ricardo Birjukovs Canelas

5.3 initialize Module Reference

Module with the simulation initialization related definitions and methods. Has one public access routine that is incharge of building the simulation space from input files.

Functions/Subroutines

```
• subroutine readxmlatt (xmlnode, tag, att_name, att_value)
```

```
Birjukovs Canelas - MARETEC
```

• subroutine readxmlvector (xmlnode, tag, vec)

```
Birjukovs Canelas - MARETEC
```

• subroutine read_xml_geometry (source, source_detail, geometry)

```
Birjukovs Canelas - MARETEC
```

• subroutine init sources (parsedxml)

```
Birjukovs Canelas - MARETEC
```

subroutine init_simdefs (parsedxml)

```
Birjukovs Canelas - MARETEC
```

• subroutine init_caseconstants (parsedxml)

```
Birjukovs Canelas - MARETEC
```

• subroutine init_parameters (parsedxml)

```
Birjukovs Canelas - MARETEC
```

• subroutine, public initmohidlagrangian (xmlfilename)

```
Birjukovs Canelas - MARETEC
```

5.3.1 Detailed Description

Module with the simulation initialization related definitions and methods. Has one public access routine that is incharge of building the simulation space from input files.

Author

Ricardo Birjukovs Canelas

5.3.2 Function/Subroutine Documentation

5.3.2.1 init_caseconstants()

Birjukovs Canelas - MARETEC

Private case constant parser routine. Builds the simulation parametric space from the input xml case file.

Parameters

in	parsedxml	
in	parsedxml	.xml file handle

Here is the call graph for this function:

Here is the caller graph for this function:

5.3.2.2 init_parameters()

Birjukovs Canelas - MARETEC

Private parameter parser routine. Builds the simulation parametric space from the input xml case file.

Parameters

in	parsedxml		
in	parsedxml	.xml file handle	

Here is the caller graph for this function:

5.3.2.3 init_simdefs()

Birjukovs Canelas - MARETEC

Private simulation definitions parser routine. Builds the simulation geometric space from the input xml case file.

Parameters

in	parsedxml	
in	parsedxml	.xml file handle

Here is the call graph for this function:

Here is the caller graph for this function:

5.3.2.4 init_sources()

Birjukovs Canelas - MARETEC

Private source definitions parser routine. Builds the tracer sources from the input xml case file.

Parameters

in	parsedxml	
in	parsedxml	.xml file handle

Here is the call graph for this function:

Here is the caller graph for this function:

5.3.2.5 initmohidlagrangian()

Birjukovs Canelas - MARETEC

Public xml parser routine. Builds the simulation space from the input xml case file.

Parameters

in	in <i>xmlfilename</i> in <i>xmlfilename</i>		
in			.xml file name

Here is the call graph for this function:

5.3.2.6 read_xml_geometry()

Birjukovs Canelas - MARETEC

Private geometry xml parser routine. Reads a geometry from the xml depending on the geometry type of the node

Parameters

	in source,geometry in source		
			Working xml node
Ì	in	source_detail	Working xml node details

Here is the call graph for this function:

Here is the caller graph for this function:

5.3.2.7 readxmlatt()

Birjukovs Canelas - MARETEC

Private attribute xml parser routine. In the format <Tag att_name="att_value"

Parameters

in	xmlnode,tag,vec	
in	xmlnode	Working xml node
in	tag	Tag to search in xml node
in	att_name	Atribute name to collect from tag
out	att_value	Attribute value

Here is the caller graph for this function:

5.3.2.8 readxmlvector()

```
type(string), intent(in) tag,
type(vector), intent(out) vec ) [private]
```

Birjukovs Canelas - MARETEC

Private vector xml parser routine. Vector must be in format <Tag x="vec%x" y="vec%y" z="vec%z">

Parameters

in	xmlnode,tag,vec	
in	xmlnode	Working xml node
in	tag	Tag to search in xml node
out	vec	Vector to fill with read contents

Here is the caller graph for this function:

5.4 simulation_globals Module Reference

Module to finalize the simulation. This presents a public routine that is in charge of deallocating all global variables, closing all files and print some simulation-related statistics.

Data Types

- type constants_t
 - Case Constants class.
- type parameters_t
- · type simdefs_t

Simulation definitions class.

Functions/Subroutines

• subroutine setparameter (parm, parmkey, parmvalue)

Birjukovs Canelas - MARETEC

• subroutine printsimparameters (parm)

Birjukovs Canelas - MARETEC

• subroutine getintegratorname (name, code)

Birjukovs Canelas - MARETEC

• subroutine setgravity (self, grav)

Birjukovs Canelas - MARETEC

```
    subroutine setrho (self, read_rho)
        Birjukovs Canelas - MARETEC
    subroutine setdp (self, read_dp)
        Birjukovs Canelas - MARETEC
    subroutine setboundingbox (self, point_, coords)
        Birjukovs Canelas - MARETEC
    subroutine printsimdefs (self)
        Birjukovs Canelas - MARETEC
```

Variables

- type(parameters_t), public parameters
- type(simdefs_t), public simdefs
- type(constants_t), public constants

5.4.1 Detailed Description

Module to finalize the simulation. This presents a public routine that is in charge of deallocating all global variables, closing all files and print some simulation-related statistics.

Author

Ricardo Birjukovs Canelas

5.4.2 Function/Subroutine Documentation

5.4.2.1 getintegratorname()

Birjukovs Canelas - MARETEC

private routine to get integrator scheme name Here is the caller graph for this function:

5.4.2.2 printsimdefs()

```
subroutine simulation_globals::printsimdefs ( {\tt class(simdefs\_t)} \ \ self \ ) \ \ [private]
```

Birjukovs Canelas - MARETEC

Public simulation definitions printing routine.

5.4.2.3 printsimparameters()

Birjukovs Canelas - MARETEC

Private parameter printing routine. Here is the call graph for this function:

5.4.2.4 setboundingbox()

Birjukovs Canelas - MARETEC

Public bounding box setting routine.

Parameters

```
in point_,coords
```

5.4.2.5 setdp()

```
\verb|subroutine simulation_globals::setdp| (
```

```
class(simdefs_t) self,
type(string), intent(in) read_dp ) [private]
```

Birjukovs Canelas - MARETEC

Public dp setting routine.

Parameters

```
in read_dp
```

5.4.2.6 setgravity()

Birjukovs Canelas - MARETEC

Public Gravity setting routine.

Parameters

```
in grav
```

5.4.2.7 setparameter()

Birjukovs Canelas - MARETEC

Private parameter setting routine. Builds the simulation parametric space from the input case file.

Parameters

```
in parmkey,parmvalue
```

5.4.2.8 setrho()

```
\verb|subroutine| simulation_globals::setrho (\\
```

```
class(constants_t) self,
type(string), intent(in) read_rho ) [private]
```

Birjukovs Canelas - MARETEC

Public Rho_Ref setting routine.

Parameters

```
in read_rho
```

5.4.3 Variable Documentation

5.4.3.1 constants

```
type(constants_t), public simulation_globals::constants
```

5.4.3.2 parameters

```
type(parameters_t), public simulation_globals::parameters
```

5.4.3.3 simdefs

```
type(simdefs_t), public simulation_globals::simdefs
```

5.5 simulation_precision Module Reference

Module to control the precision of the variables trough the project.

Variables

```
• integer, parameter sp = kind(1._R4P)
```

Simple precision definition switch.

• integer, parameter dp = kind(1._R8P)

Double precision definition switch.

- integer, parameter, public prec = sp
- integer, parameter, public prec_time = sp
- integer, parameter, public prec wrt = sp
- real(prec), parameter, public missing_value_default = -9999.0_dp
- real(prec), parameter, public mv = MISSING_VALUE_DEFAULT
- real(prec), parameter, public mv_int = int(MISSING_VALUE_DEFAULT)
- real(prec), parameter, public err_dist = 1E8_dp
- integer, parameter, public err_ind = -1

5.5.1 Detailed Description

Module to control the precision of the variables trough the project.

Author

Ricardo Birjukovs Canelas

5.5.2 Variable Documentation

```
5.5.2.1 dp
```

```
integer, parameter simulation_precision::dp = kind(1._R8P) [private]
```

Double precision definition switch.

5.5.2.2 err_dist

```
real(prec), parameter, public simulation_precision::err_dist = 1E8_dp
```

5.5.2.3 err_ind

```
integer, parameter, public simulation_precision::err_ind = -1
```

5.5.2.4 missing_value_default

```
real(prec), parameter, public simulation_precision::missing_value_default = -9999.0_dp
```

5.5.2.5 mv

```
real(prec), parameter, public simulation_precision::mv = MISSING_VALUE_DEFAULT
```

```
5.5.2.6 mv_int
real(prec), parameter, public simulation_precision::mv_int = int(MISSING_VALUE_DEFAULT)

5.5.2.7 prec
integer, parameter, public simulation_precision::prec = sp

5.5.2.8 prec_time
integer, parameter, public simulation_precision::prec_time = sp

5.5.2.9 prec_wrt
integer, parameter, public simulation_precision::prec_wrt = sp

5.5.2.10 sp
integer, parameter simulation_precision::sp = kind(1._R4P) [private]
```

5.6 source Module Reference

Simple precision definition switch.

Module to hold and wrap all the tracer sources respective modules. Defines a source class and related methods.

5.6.1 Detailed Description

Module to hold and wrap all the tracer sources respective modules. Defines a source class and related methods.

Author

Ricardo Birjukovs Canelas

5.7 source_emitter Module Reference

Module that defines an emitter class and related methods.

5.7.1 Detailed Description

Module that defines an emitter class and related methods.

Author

Ricardo Birjukovs Canelas

5.8 source_identity Module Reference

Module that defines a source class and related methods.

Data Types

```
• type source_class
```

Type - The source class.

- · type source_par
- · type source_state

Type - state variables of a source object.

· type source_stats

Type - statistical variables of a source object.

Functions/Subroutines

• subroutine, public allocsources (nsources)

```
Birjukovs Canelas - MARETEC
```

• subroutine initialize (src, id, name, emitting rate, source geometry, geometry)

Birjukovs Canelas - MARETEC

• subroutine printout (src)

Birjukovs Canelas - MARETEC

Variables

• type(source_class), dimension(:), allocatable, public source

5.8.1 Detailed Description

Module that defines a source class and related methods.

Author

Ricardo Birjukovs Canelas

5.8.2 Function/Subroutine Documentation

5.8.2.1 allocsources()

Birjukovs Canelas - MARETEC

source allocation routine - allocates the sources objects

Parameters

```
in nsources
```

Here is the caller graph for this function:

5.8.2.2 initialize()

Birjukovs Canelas - MARETEC

source initialization proceadure - initializes Source variables

Parameters

```
in src,id,name,emitting_rate,source_geometry
```

5.8.2.3 printout()

Birjukovs Canelas - MARETEC

source print routine - prints a source info on console/log

Parameters

in *src*

5.8.3 Variable Documentation

5.8.3.1 source

type(source_class), dimension(:), allocatable, public source_identity::source

5.9 tracer Module Reference

Module to hold and wrap all the tracer respective modules. Defines a pure Lagrangian tracer class. This is intended to serve as the base class for every type of tracer class needed, that should be

built as derived of this class, with the necessary modifiers to model the desired behaviour. Basic tracer data (parameters, variables) are implemented. Tracer methods such as I/O, integration and interpolation routines are implemented.

5.9.1 Detailed Description

Module to hold and wrap all the tracer respective modules. Defines a pure Lagrangian tracer class. This is intended to serve as the base class for every type of tracer class needed, that should be

built as derived of this class, with the necessary modifiers to model the desired behaviour. Basic tracer data (parameters, variables) are implemented. Tracer methods such as I/O, integration and interpolation routines are implemented.

Author

Ricardo Birjukovs Canelas

5.10 tracer2d Module Reference

Module that holds the functions for 2D tracer models - typicaly these are called to cancel the vertical component computed for a general tracer.

5.10.1 Detailed Description

Module that holds the functions for 2D tracer models - typicaly these are called to cancel the vertical component computed for a general tracer.

Author

Ricardo Birjukovs Canelas

5.11 tracer3d Module Reference

Module that defines a pure Lagrangian tracer class and related methods.

Data Types

type tracer_class

Type - The pure Lagrangian tracer class.

type tracer_par_class

Type - parameters of a pure Lagrangian tracer object.

- type tracer_par_trans_class
- type tracer_state_class

Type - state variables of a pure Lagrangian tracer object.

type tracer_stats_class

Type - statistical variables of a pure Lagrangian tracer object.

Functions/Subroutines

```
    subroutine, public tracer_init (trc, id, time, x, y, z)
    Birjukovs Canelas - MARETEC
```

5.11.1 Detailed Description

Module that defines a pure Lagrangian tracer class and related methods.

Author

Ricardo Birjukovs Canelas

5.11.2 Function/Subroutine Documentation

5.11.2.1 tracer_init()

Birjukovs Canelas - MARETEC

Tracer inititialization routine - Generates a tracer and initializes its variables

Parameters

out	trc	
in	filename	

5.12 tracer_interp Module Reference

28 Module Documentation

Chapter 6

Data Type Documentation

6.1 geometry::box Type Reference

Type - point class.

Inheritance diagram for geometry::box:

Collaboration diagram for geometry::box:

Public Attributes

• type(vector) size

Box size.

6.1.1 Detailed Description

Type - point class.

6.1.2 Member Data Documentation

6.1.2.1 size

```
type(vector) geometry::box::size
```

Box size.

The documentation for this type was generated from the following file:

• C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/geometry.f90

6.2 simulation_globals::constants_t Type Reference

Case Constants class.

Private Member Functions

- procedure setgravity
- procedure setrho

Private Attributes

· type(vector) gravity

Gravitational acceleration vector (default=(0 0 -9.81)) (m s-2)

• real(prec) rho_ref = 1000.0

Reference density of the medium (default=1000.0) (kg m-3)

6.2.1 Detailed Description

Case Constants class.

6.2.2 Member Function/Subroutine Documentation

6.2.2.1 setgravity() procedure simulation_globals::constants_t::setgravity () [private] 6.2.2.2 setrho() procedure simulation_globals::constants_t::setrho () [private]

6.2.3 Member Data Documentation

6.2.3.1 gravity

```
type(vector) simulation_globals::constants_t::gravity [private]
```

Gravitational acceleration vector (default=(0 0 -9.81)) (m s-2)

6.2.3.2 rho_ref

```
real(prec) simulation_globals::constants_t::rho_ref = 1000.0 [private]
```

Reference density of the medium (default=1000.0) (kg m-3)

The documentation for this type was generated from the following file:

• C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/simulation_globals.f90

6.3 geometry::line Type Reference

Type - line class.

Inheritance diagram for geometry::line:

Collaboration diagram for geometry::line:

Public Attributes

• type(vector) last

Coordinates of the end point.

6.3.1 Detailed Description

Type - line class.

6.3.2 Member Data Documentation

6.3.2.1 last

```
type(vector) geometry::line::last
```

Coordinates of the end point.

The documentation for this type was generated from the following file:

• C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/geometry.f90

6.4 simulation_globals::parameters_t Type Reference

Private Member Functions

- procedure setparameter
- procedure printout => printsimparameters

Private Attributes

```
• integer integrator = 1
```

```
Integration Algorithm 1:Verlet, 2:Symplectic, 3:RK4 (default=1)
```

• real(prec) cfl = 0.5

Courant Friedrichs Lewy condition number.

• real(prec) warmuptime = 0.0

Time to freeze the tracers at simulation start (warmup) (s) (default=0.0)

• real(prec) timemax = MV

Simulation duration (s)

• real(prec) timeout = MV

Time out data (1/Hz)

6.4.1 Member Function/Subroutine Documentation

6.4.1.1 printout()

```
\verb|procedure simulation_globals::parameters_t::printout () | [private]|
```

6.4.1.2 setparameter()

```
\verb|procedure simulation_globals::parameters_t::setparameter ( ) [private]|\\
```

6.4.2 Member Data Documentation

```
6.4.2.1 cfl
real(prec) simulation_globals::parameters_t::cfl = 0.5 [private]
Courant Friedrichs Lewy condition number.
6.4.2.2 integrator
integer simulation_globals::parameters_t::integrator = 1 [private]
Integration Algorithm 1:Verlet, 2:Symplectic, 3:RK4 (default=1)
6.4.2.3 timemax
real(prec) simulation_globals::parameters_t::timemax = MV [private]
Simulation duration (s)
6.4.2.4 timeout
```

```
real(prec) simulation_globals::parameters_t::timeout = MV [private]
```

Time out data (1/Hz)

6.4.2.5 warmuptime

```
real(prec) simulation_globals::parameters_t::warmuptime = 0.0 [private]
```

Time to freeze the tracers at simulation start (warmup) (s) (default=0.0)

The documentation for this type was generated from the following file:

 $\bullet \ C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/simulation_globals.f90$

6.5 geometry::point Type Reference

Type - point class.

Inheritance diagram for geometry::point:

Collaboration diagram for geometry::point:

Additional Inherited Members

6.5.1 Detailed Description

Type - point class.

The documentation for this type was generated from the following file:

 $\bullet \ \ C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/geometry.f90$

6.6 geometry::shape Type Reference

Type - extendable shape class.

Inheritance diagram for geometry::shape:

Public Attributes

type(vector) pt
 Coordinates of a point.

6.6.1 Detailed Description

Type - extendable shape class.

6.6.2 Member Data Documentation

6.6.2.1 pt

type(vector) geometry::shape::pt

Coordinates of a point.

The documentation for this type was generated from the following file:

• C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/geometry.f90

6.7 simulation_globals::simdefs_t Type Reference

Simulation definitions class.

Private Member Functions

- procedure setdp
- procedure setboundingbox
- procedure printout => printsimdefs

Private Attributes

- real(prec) dp = MV
 - Initial particle spacing at source generation.
- type(vector) pointmin

Point that defines the lowest corner of the simulation bounding box.

type(vector) pointmax

Point that defines the upper corner of the simulation bounding box.

6.7.1 Detailed Description

Simulation definitions class.

6.7.2 Member Function/Subroutine Documentation

6.7.2.1 printout()

```
\verb|procedure simulation_globals::simdefs_t::printout () | [private]|\\
```

6.7.2.2 setboundingbox()

```
\verb|procedure simulation_globals::simdefs_t::setboundingbox () | [private]|\\
```

6.7.2.3 setdp()

```
procedure simulation_globals::simdefs_t::setdp ( ) [private]
```

6.7.3 Member Data Documentation

6.7.3.1 dp

```
real(prec) simulation_globals::simdefs_t::dp = MV [private]
```

Initial particle spacing at source generation.

6.7.3.2 pointmax

```
type(vector) simulation_globals::simdefs_t::pointmax [private]
```

Point that defines the upper corner of the simulation bounding box.

6.7.3.3 pointmin

```
type(vector) simulation_globals::simdefs_t::pointmin [private]
```

Point that defines the lowest corner of the simulation bounding box.

The documentation for this type was generated from the following file:

C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/simulation globals.f90

6.8 source_identity::source_class Type Reference

Type - The source class.

Collaboration diagram for source_identity::source_class:

Private Member Functions

- procedure initialize
- procedure printout

Private Attributes

• type(source_par) par

To access parameters.

• type(source_state) now

To access state variables.

• type(source_stats) stats

To access statistics.

6.8.1 Detailed Description

Type - The source class.

6.8.2 Member Function/Subroutine Documentation

6.8.2.1 initialize()

```
procedure source_identity::source_class::initialize ( ) [private]
```

6.8.2.2 printout()

```
procedure source_identity::source_class::printout ( ) [private]
```

6.8.3 Member Data Documentation

6.8.3.1 now

```
type(source_state) source_identity::source_class::now [private]
```

To access state variables.

6.8.3.2 par

```
type(source_par) source_identity::source_class::par [private]
```

To access parameters.

6.8.3.3 stats

```
type(source_stats) source_identity::source_class::stats [private]
```

To access statistics.

The documentation for this type was generated from the following file:

• C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/source_identity.f90

6.9 source_identity::source_par Type Reference

Private Attributes

· integer id

unique source identification (integer)

• real(prec) emitting_rate

Emitting rate of the source (Hz)

• type(string) name

source name

• type(string) property_name

source property name

• type(string) source_geometry

Source type: 'point', 'line', 'sphere', 'box'.

• class(shape), allocatable geometry

Source geometry.

6.9.1 Member Data Documentation

6.9.1.1 emitting_rate

```
real(prec) source_identity::source_par::emitting_rate [private]
```

Emitting rate of the source (Hz)

```
6.9.1.2 geometry
class(shape), allocatable source_identity::source_par::geometry [private]
Source geometry.
6.9.1.3 id
integer source_identity::source_par::id [private]
unique source identification (integer)
6.9.1.4 name
type(string) source_identity::source_par::name [private]
source name
6.9.1.5 property_name
type(string) source_identity::source_par::property_name [private]
source property name
6.9.1.6 source_geometry
type(string) source_identity::source_par::source_geometry [private]
```

The documentation for this type was generated from the following file:

• C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/source_identity.f90

6.10 source_identity::source_state Type Reference

Type - state variables of a source object.

Source type: 'point', 'line', 'sphere', 'box'.

Private Attributes

```
real(prec_time) age
```

· logical active

active switch

type(vector) pos

Position of the source baricenter (m)

• type(vector) vel

Velocity of the source (m s-1)

• real(prec) depth

Depth of the source baricenter (m)

real(prec) t

Temperature of the source (Celcius)

6.10.1 Detailed Description

Type - state variables of a source object.

6.10.2 Member Data Documentation

6.10.2.1 active

```
logical source_identity::source_state::active [private]
```

active switch

6.10.2.2 age

```
real(prec_time) source_identity::source_state::age [private]
```

6.10.2.3 depth

```
real(prec) source_identity::source_state::depth [private]
```

Depth of the source baricenter (m)

6.10.2.4 pos

```
type(vector) source_identity::source_state::pos [private]
```

Position of the source baricenter (m)

6.10.2.5 t

```
real(prec) source_identity::source_state::t [private]
```

Temperature of the source (Celcius)

6.10.2.6 vel

```
type(vector) source_identity::source_state::vel [private]
```

Velocity of the source (m s-1)

The documentation for this type was generated from the following file:

• C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/source_identity.f90

6.11 source_identity::source_stats Type Reference

Type - statistical variables of a source object.

Private Attributes

- integer particles_emitted
 - Number of emitted particles by this source.
- real(prec_wrt) acc_t

Accumulated temperature of the tracer (Celcius)

• integer ns

Number of sampling steps.

6.11.1 Detailed Description

Type - statistical variables of a source object.

6.11.2 Member Data Documentation

6.11.2.1 acc_t

```
real(prec_wrt) source_identity::source_stats::acc_t [private]
```

Accumulated temperature of the tracer (Celcius)

6.11.2.2 ns

```
integer source_identity::source_stats::ns [private]
```

Number of sampling steps.

6.11.2.3 particles_emitted

```
integer source_identity::source_stats::particles_emitted [private]
```

Number of emitted particles by this source.

The documentation for this type was generated from the following file:

• C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/source_identity.f90

6.12 geometry::sphere Type Reference

Type - sphere class.

Inheritance diagram for geometry::sphere:

Collaboration diagram for geometry::sphere:

Public Attributes

real(prec) radius
 Sphere radius.

6.12.1 Detailed Description

Type - sphere class.

6.12.2 Member Data Documentation

6.12.2.1 radius

real(prec) geometry::sphere::radius

Sphere radius.

The documentation for this type was generated from the following file:

 $\bullet \ \ C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/geometry.f90$

6.13 tracer3d::tracer_class Type Reference

Type - The pure Lagrangian tracer class.

Collaboration diagram for tracer3d::tracer_class:

Private Attributes

• type(tracer_par_class) par

To access parameters.

type(tracer_state_class) now

To access state variables.

• type(tracer_stats_class) stats

To access statistics.

6.13.1 Detailed Description

Type - The pure Lagrangian tracer class.

6.13.2 Member Data Documentation

6.13.2.1 now

type(tracer_state_class) tracer3d::tracer_class::now [private]

To access state variables.

6.13.2.2 par

```
type(tracer_par_class) tracer3d::tracer_class::par [private]
```

To access parameters.

6.13.2.3 stats

```
type(tracer_stats_class) tracer3d::tracer_class::stats [private]
```

To access statistics.

The documentation for this type was generated from the following file:

• C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer3D.f90

6.14 tracer3d::tracer_par_class Type Reference

Type - parameters of a pure Lagrangian tracer object.

Collaboration diagram for tracer3d::tracer_par_class:

Private Attributes

· integer id

unique tracer identification (integer)

· integer group

Group to which the tracer belongs (usually by source)

real(prec) vel_max

Maximum velocity of tracer to track (m/s)

- · logical noise
- character(len=56) interp_method

interpolation method this tracer calls

• type(tracer_par_trans_class) tpar

access to the transient parameters is done through this

6.14.1 Detailed Description

Type - parameters of a pure Lagrangian tracer object.

6.14.2 Member Data Documentation

```
6.14.2.1 group
```

```
integer tracer3d::tracer_par_class::group [private]
```

Group to which the tracer belongs (usually by source)

6.14.2.2 id

```
integer tracer3d::tracer_par_class::id [private]
```

unique tracer identification (integer)

6.14.2.3 interp_method

```
character(len=56) tracer3d::tracer_par_class::interp_method [private]
```

interpolation method this tracer calls

6.14.2.4 noise

```
logical tracer3d::tracer_par_class::noise [private]
```

6.14.2.5 tpar

```
type(tracer_par_trans_class) tracer3d::tracer_par_class::tpar [private]
```

access to the transient parameters is done through this

```
6.14.2.6 vel_max
```

```
real(prec) tracer3d::tracer_par_class::vel_max [private]
```

Maximum velocity of tracer to track (m/s)

The documentation for this type was generated from the following file:

• C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer3D.f90

6.15 tracer3d::tracer_par_trans_class Type Reference

Private Attributes

- character(len=512) par_trans_file
- logical use_par_trans

6.15.1 Member Data Documentation

6.15.1.1 par_trans_file

```
character(len=512) tracer3d::tracer_par_trans_class::par_trans_file [private]
```

6.15.1.2 use_par_trans

```
logical tracer3d::tracer_par_trans_class::use_par_trans [private]
```

The documentation for this type was generated from the following file:

• C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer3D.f90

6.16 tracer3d::tracer_state_class Type Reference

Type - state variables of a pure Lagrangian tracer object.

Private Attributes

```
• real(prec_time) age
```

• logical active

active switch

type(vector) pos

Position of the tracer (m)

• type(vector) vel

Velocity of the tracer (m s-1)

• type(vector) acc

Acceleration of the tracer (m s-2)

• real(prec) depth

Depth of the tracer (m)

real(prec) t

Temperature of the tracer (Celcius)

6.16.1 Detailed Description

Type - state variables of a pure Lagrangian tracer object.

6.16.2 Member Data Documentation

```
6.16.2.1 acc
```

```
type(vector) tracer3d::tracer_state_class::acc [private]
```

Acceleration of the tracer (m s-2)

6.16.2.2 active

```
logical tracer3d::tracer_state_class::active [private]
```

active switch

6.16.2.3 age

```
real(prec_time) tracer3d::tracer_state_class::age [private]
```

6.16.2.4 depth real(prec) tracer3d::tracer_state_class::depth [private] Depth of the tracer (m) 6.16.2.5 pos type(vector) tracer3d::tracer_state_class::pos [private] Position of the tracer (m) 6.16.2.6 t real(prec) tracer3d::tracer_state_class::t [private] Temperature of the tracer (Celcius)

6.16.2.7 vel

```
type(vector) tracer3d::tracer_state_class::vel [private]
```

Velocity of the tracer (m s-1)

The documentation for this type was generated from the following file:

• C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer3D.f90

6.17 tracer3d::tracer_stats_class Type Reference

Type - statistical variables of a pure Lagrangian tracer object.

Private Attributes

```
• type(vector) acc_pos
```

Accumulated position of the tracer (m)

• type(vector) acc_vel

Accumulated velocity of the tracer (m s-1)

• real(prec_wrt) acc_depth

Accumulated depth of the tracer (m)

real(prec_wrt) acc_t

Accumulated temperature of the tracer (Celcius)

• integer ns

Number of sampling steps.

6.17.1 Detailed Description

Type - statistical variables of a pure Lagrangian tracer object.

6.17.2 Member Data Documentation

```
6.17.2.1 acc_depth

real (prec_wrt) tracer3d::tracer_stats_class::acc_depth [private]

Accumulated depth of the tracer (m)

6.17.2.2 acc_pos

type (vector) tracer3d::tracer_stats_class::acc_pos [private]

Accumulated position of the tracer (m)

6.17.2.3 acc_t

real (prec_wrt) tracer3d::tracer_stats_class::acc_t [private]

Accumulated temperature of the tracer (Celcius)

6.17.2.4 acc_vel

type (vector) tracer3d::tracer_stats_class::acc_vel [private]

Accumulated velocity of the tracer (m s-1)
```

6.17.2.5 ns

```
integer tracer3d::tracer_stats_class::ns [private]
```

Number of sampling steps.

The documentation for this type was generated from the following file:

• C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer3D.f90

Chapter 7

File Documentation

- 7.1 C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/app/main.f90 File Reference
- 7.2 C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/common_← modules.f90 File Reference

Modules

• module commom_modules

Module to hold all of the commonly used base modules.

7.3 C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/geometry.f90 File Reference

Data Types

• type geometry::shape

Type - extendable shape class.

· type geometry::point

Type - point class.

• type geometry::line

Type - line class.

• type geometry::sphere

Type - sphere class.

· type geometry::box

Type - point class.

Modules

· module geometry

Module that defines geometry classes and related methods.

54 File Documentation

7.4 C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/initialize.f90 File Reference

Modules

· module initialize

Module with the simulation initialization related definitions and methods. Has one public access routine that is incharge of building the simulation space from input files.

Functions/Subroutines

• subroutine initialize::readxmlatt (xmlnode, tag, att name, att value)

Birjukovs Canelas - MARETEC

• subroutine initialize::readxmlvector (xmlnode, tag, vec)

Birjukovs Canelas - MARETEC

• subroutine initialize::read_xml_geometry (source, source_detail, geometry)

Birjukovs Canelas - MARETEC

• subroutine initialize::init_sources (parsedxml)

Birjukovs Canelas - MARETEC

· subroutine initialize::init_simdefs (parsedxml)

Birjukovs Canelas - MARETEC

subroutine initialize::init_caseconstants (parsedxml)

Birjukovs Canelas - MARETEC

• subroutine initialize::init_parameters (parsedxml)

Birjukovs Canelas - MARETEC

• subroutine, public initialize::initmohidlagrangian (xmlfilename)

Birjukovs Canelas - MARETEC

7.5 C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/simulation_ globals.f90 File Reference

Data Types

- · type simulation globals::parameters t
- type simulation globals::simdefs t

Simulation definitions class.

· type simulation_globals::constants_t

Case Constants class.

Modules

• module simulation_globals

Module to finalize the simulation. This presents a public routine that is in charge of deallocating all global variables, closing all files and print some simulation-related statistics.

Functions/Subroutines

• subroutine simulation_globals::setparameter (parm, parmkey, parmvalue)

Birjukovs Canelas - MARETEC

subroutine simulation_globals::printsimparameters (parm)

Birjukovs Canelas - MARETEC

• subroutine simulation globals::getintegratorname (name, code)

Birjukovs Canelas - MARETEC

subroutine simulation_globals::setgravity (self, grav)

Birjukovs Canelas - MARETEC

subroutine simulation globals::setrho (self, read rho)

Birjukovs Canelas - MARETEC

• subroutine simulation_globals::setdp (self, read_dp)

Birjukovs Canelas - MARETEC

subroutine simulation_globals::setboundingbox (self, point_, coords)

Birjukovs Canelas - MARETEC

· subroutine simulation_globals::printsimdefs (self)

Birjukovs Canelas - MARETEC

Variables

- type(parameters_t), public simulation_globals::parameters
- type(simdefs_t), public simulation_globals::simdefs
- type(constants_t), public simulation_globals::constants

7.6 C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/simulation_ precision.f90 File Reference

Modules

• module simulation_precision

Module to control the precision of the variables trough the project.

Variables

- integer, parameter simulation_precision::sp = kind(1._R4P)
 - Simple precision definition switch.
- integer, parameter simulation_precision::dp = kind(1._R8P)

Double precision definition switch.

- integer, parameter, public simulation_precision::prec = sp
- integer, parameter, public simulation_precision::prec_time = sp
- integer, parameter, public simulation_precision::prec_wrt = sp
- real(prec), parameter, public simulation_precision::missing_value_default = -9999.0_dp
- real(prec), parameter, public simulation_precision::mv = MISSING_VALUE_DEFAULT
- real(prec), parameter, public simulation precision::mv int = int(MISSING VALUE DEFAULT)
- real(prec), parameter, public simulation precision::err dist = 1E8 dp
- integer, parameter, public simulation_precision::err_ind = -1

56 File Documentation

7.7 C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/source.f90 File Reference

Modules

· module source

Module to hold and wrap all the tracer sources respective modules. Defines a source class and related methods.

7.8 C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/source_← emitter.f90 File Reference

Modules

· module source_emitter

Module that defines an emitter class and related methods.

7.9 C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/source_← identity.f90 File Reference

Data Types

- type source identity::source par
- type source_identity::source_state

Type - state variables of a source object.

• type source_identity::source_stats

Type - statistical variables of a source object.

• type source_identity::source_class

Type - The source class.

Modules

· module source identity

Module that defines a source class and related methods.

Functions/Subroutines

• subroutine, public source_identity::allocsources (nsources)

Birjukovs Canelas - MARETEC

• subroutine source_identity::initialize (src, id, name, emitting_rate, source_geometry, geometry)

Birjukovs Canelas - MARETEC

• subroutine source_identity::printout (src)

Birjukovs Canelas - MARETEC

Variables

• type(source_class), dimension(:), allocatable, public source_identity::source

7.10 C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer.f90 File Reference

Modules

· module tracer

Module to hold and wrap all the tracer respective modules. Defines a pure Lagrangian tracer class. This is intended to serve as the base class for every type of tracer class needed, that should be

built as derived of this class, with the necessary modifiers to model the desired behaviour. Basic tracer data (parameters, variables) are implemented. Tracer methods such as I/O, integration and interpolation routines are implemented.

7.11 C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer2D.f90 File Reference

Modules

· module tracer2d

Module that holds the functions for 2D tracer models - typicaly these are called to cancel the vertical component computed for a general tracer.

7.12 C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer3D.f90 File Reference

Data Types

- type tracer3d::tracer_par_trans_class
- type tracer3d::tracer_par_class

Type - parameters of a pure Lagrangian tracer object.

• type tracer3d::tracer state class

Type - state variables of a pure Lagrangian tracer object.

• type tracer3d::tracer_stats_class

Type - statistical variables of a pure Lagrangian tracer object.

· type tracer3d::tracer class

Type - The pure Lagrangian tracer class.

Modules

· module tracer3d

Module that defines a pure Lagrangian tracer class and related methods.

58 File Documentation

Functions/Subroutines

subroutine, public tracer3d::tracer_init (trc, id, time, x, y, z)
 Birjukovs Canelas - MARETEC

7.13 C:/Users/administrator/Documents/GitHub/MOHID-Lagrangian/src/lib/tracer_← interp.f90 File Reference

Modules

• module tracer_interp