- Spanish-speaking caregivers' use of referential labels with toddlers is a better predictor of later vocabulary than their use of referential gestures
- Janet Y. Bang^{1,2,*}, Manuel Bohn^{1,3,*}, Joel Ramírez, Jr^{1,4}, Virginia A. Marchman¹, & Anne
- $Fernald^1$
- ¹ Department of Psychology, Stanford University
- ² Department of Child and Adolescent Development, San José State University
- ³ Department of Comparative Cultural Psychology, Max Planck Institute for Evolutionary
- Anthropology 8
- ⁴ Department of Symbolic Systems, Stanford University
- * These authors contributed equally 10

2

- We are grateful to the families for their contribution to this research. We would also 12 like to thank Jazmin Reyes for her work on the reliability coding, and to Vanessa 13 Bermudez, Monica A. Munévar, Arlyn Mora, Ruby Roldan, Karina Gonzalez, and the Language Learning Lab staff for their contributions to data management and collection. 15 This work was supported by grants from the National Institutes of Health (R01 HD42235, DC008838, HD092343), the Schusterman Foundation, the W.K. Kellogg Foundation, the 17 David and Lucile Packard Foundation, and the Bezos Family Foundation to Anne Fernald, and a Postdoctoral Support Award from the Stanford Maternal and Child Health Research 19 Institute to J. Bang. Manuel Bohn received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant 21 agreement no. 749229. Joel Ramírez, Jr. received funding from the Linguistics summer 22 research internship and the Undergraduate Advising and Research program from Stanford University. The authors declare no potential conflicts of interest. Pre-registration of study design and analyses are available on the Open Science Framework: https://osf.io/s2jqy. The coding protocol is publicly available: https://osf.io/fmvyc/. All data and reproducible code are available on GitHub: https://github.com/manuelbohn/SocPop Janet Y. Bang
- ²⁹ https://orcid.org/0000-0001-6006-1348

https://orcid.org/0000-0002-6014-3009 Manuel Bohn

- The authors made the following contributions. Janet Y. Bang: Conceptualization,
- 31 Analysis, Writing Original Draft Preparation, Writing Review & Editing; Manuel Bohn:
- ³² Conceptualization, Analysis, Writing Original Draft Preparation, Writing Review &
- 33 Editing; Joel Ramírez, Jr.: Investigation, Writing Review & Editing; Virginia A.
- Marchman: Conceptualization, Writing Review & Editing; Anne Fernald:
- 35 Conceptualization, Writing Review & Editing.
- 36 Correspondence concerning this article should be addressed to Janet Y. Bang, One

Washington Square, San Jose, CA, 95192. E-mail: janet.bang@sjsu.edu

4

Abstract 38

Variation in how frequently caregivers engage with their children is associated with 39 variation in children's later language outcomes. One explanation for this link is that 40 caregivers use both verbal behaviors, such as labels, and non-verbal behaviors, such as 41 gestures, to help children establish reference to objects or events in the world. However, 42 few studies have directly explored whether language outcomes are more strongly associated with referential behaviors that are expressed verbally, such as labels, or non-verbally, such as gestures, or whether both are equally predictive. Here, we observed caregivers from 42 Spanish-speaking families in the US engage with their 18-month-old children during 5-min lab-based, play sessions. Children's language processing speed and vocabulary size were assessed when children were 25 months. Bayesian model comparisons assessed the extent to which the frequencies of caregivers' referential labels, referential gestures, or labels and gestures together, were more strongly associated with children's language outcomes than a 50 model with caregiver total words, or overall talkativeness. The best-fitting models showed 51 that children who heard more referential labels at 18 months were faster in language 52 processing and had larger vocabularies at 25 months. Models including gestures, or labels 53 and gestures together, showed weaker fits to the data. Caregivers' total words predicted 54 children's language processing speed, but predicted vocabulary size less well. These results suggest that the frequency with which caregivers of 18-month-old children use referential 56 labels, more so than referential gestures, is a critical feature of caregiver verbal engagement 57 that contributes to language processing development and vocabulary growth.

Keywords: communicative reference, gestures, labels, word learning, language 59 processing, vocabulary size

Word count: 7269 61

64

65

66

67

71

72

73

Spanish-speaking caregivers' use of referential labels with toddlers is a better predictor of
later vocabulary than their use of referential gestures

Research highlights

- We examined the frequency of referential communicative behaviors, via labels and/or gestures, produced by caregivers during a 5-min play interaction with their 18-month-old children.
- We assessed predictive relations between labels, gestures, their combination, as well
 as total words spoken, and children's processing speed and vocabulary growth at 25
 months.
 - Bayesian model comparisons showed that caregivers' referential labels at 18 months best predicted both 25-month vocabulary measures, although total words also predicted later processing speed.
- Frequent use of referential labels by caregivers, more so than referential gestures, is a critical feature of communicative behavior that supports children's later vocabulary learning.

77 Introduction

Children learn language through interactions with others. Studies of caregiver-child interactions have documented extensive variability in the frequency with which caregivers use verbal behaviors (e.g., words) and nonverbal behaviors (e.g., gestures) when they engage with their children. Individual differences among caregivers have been noted in studies of families across diverse linguistic, cultural, and socioeconomic status (SES) backgrounds (Casillas, Brown, & Levinson, 2019; Hart & Risley, 1995; Hoff, 2003; Weber, Fernald, & Diop, 2017). Moreover, variability in the frequency of caregivers' use of verbal behaviors (Gilkerson et al., 2018; Huttenlocher, Haight, Bryk, Seltzer, & Lyons, 1991;

- Rowe, 2012; Shneidman & Goldin-Meadow, 2012; Walker, Greenwood, Hart, & Carta,
- 87 1994; Weisleder & Fernald, 2013) and nonverbal behaviors (Cartmill et al., 2013; Pan,
- Rowe, Singer, & Snow, 2005; Rowe & Goldin-Meadow, 2009; Rowe, Özçalışkan, &
- ⁸⁹ Goldin-Meadow, 2008) has been shown to be positively associated with children's later
- 90 language development.
- There are multiple proposals to explain how caregivers' verbal and nonverbal behaviors support later language learning. Both can be used to refer to objects and events. By using verbal behaviors, such as labels in the presence of objects, caregivers support children's learning of word-referent mappings, a critical step in children's early comprehension and subsequent word production (Baldwin, 1993; Bohn & Frank, 2019; 95 McMurray, Horst, & Samuelson, 2012). Nonverbal behaviors, such as gestures, can also be used to refer to and communicate about the identity of referents (e.g., by pointing to, 97 holding out, or giving a cup to someone). For example, caregivers' deictic gestures, such as pointing, can help children disambiguate the referent of a label from other candidate referents (Iverson, Capirci, Longobardi, & Caselli, 1999; Puccini, Hassemer, Salomo, & 100 Liszkowski, 2010: Rowe, 2000: Tfouni & Klatzky, 1983: Yuksel & Brooks, 2017: 101 Zukow-Goldring, 1996). Labels and gestures can also be used together (e.g., saying "give 102 me the cup," while pointing to a cup), providing the child with two cues to reference in 103 differing modalities. Thus, caregivers' use of labels, gestures, or both together, can help 104 children to map language onto specific concepts, strengthening their understanding of how 105 language represents objects or events in their world. In this study, we focus on early language development in the second year of life: we compare Spanish-speaking caregivers' use of verbal behaviors (i.e., total words and referential labels) and non-verbal behaviors 108 (i.e., referential gestures) during a play session with their 18-month-old children. We then 109 assess the degree to which these behaviors are linked to children's language processing 110

efficiency and vocabulary outcomes at 25 months.

111

Variation in caregivers' verbal and non-verbal behaviors

Documenting variability among caregivers in their frequency of communicative 113 behaviors is critical for establishing links between these behaviors and later child outcomes. 114 Verbal behaviors have been examined using numerous measures that capture the quantity 115 and quality of caregivers' speech – although they mostly do so ignoring the referential 116 context. Using the LENA technology, Gilkerson et al. (2017) collected daylong recordings 117 of the speech children heard in 329 American-English-speaking families with 2- to 118 48-month-old children from varying SES backgrounds. Speech recognition software provided automated estimates of the quantity of caregivers' speech, i.e., adult word counts 120 (AWC), revealing that children were exposed to as few as 8,000 and as many as 17,000 words in a 12-hour day. Bergelson, Casillas, et al. (2019) collected LENA daylong recordings with 3- to 20-month-old children in 61 American families. Instead of total 123 adult-word counts, they assessed variation in caregiver talk by measuring the amount of 124 time each child was exposed to child-directed speech (CDS). The authors found that 125 children were exposed to CDS for 11.36 min per hour, on average, with a standard 126 deviation over a third of the mean (SD = 4.24 min). Studies of caregiver-child interactions 127 in different sociocultural contexts, such as subsistence farming communities, have found 128 that children were exposed to far less speech, on average, than in other communities; 129 however, there was still substantial variability among families (Bunce et al., 2020; Casillas 130 et al., 2019; Casillas, Brown, & Levinson, 2021; Shneidman & Goldin-Meadow, 2012; 131 Yuksel & Brooks, 2017). Other studies have specifically examined caregivers' use of nouns 132 in verbal interactions and noted variability among caregivers in multiple languages, 133 including English, Italian, French, Spanish, Turkish, Mandarin, and Korean (Altınkamış, 134 Kern, & Sofu, 2014; Bergelson, Casillas, et al., 2019; Choi, 2000; Rosemberg et al., 2020; 135 Tardif, Shatz, & Naigles, 1997).

Substantial variability among caregivers in their use of nonverbal gestures is also well

137

documented. Studies examining caregivers' use of gestures have primarily focused on gestures that are symbolic or representational to some degree (Rowe, Wei, & Salo, 2022), 139 such as iconic gestures (e.g., flapping hands for a bird), conventional gestures (e.g., nodding 140 one's head to mean "yes" in the U.S.), and referential gestures (e.g., holding out objects or 141 deictic gestures such as pointing). For example, Rowe et al. (2008) videotaped 90-min 142 interactions in 53 American-English-speaking families with children from 14 to 34 months. 143 They found that caregivers produced, on average, 100-115 symbolic, conventional, and 144 deictic gestures, with values ranging from only a few gestures to over 400. Other studies 145 have examined deictic gesture use in families speaking non-English languages and living in 146 different sociocultural contexts, e.g., in families speaking Yucatec Mayan in Mexico 147 (Salomo & Liszkowski, 2013) and Lazuri in Turkey (Yuksel & Brooks, 2017), also noting 148 extensive variability among caregivers in both groups.

Variability among caregivers in their use of verbal behaviors and gestures has been 150 linked to child language outcomes. In some studies, language samples are used to capture 151 variation in the frequency of young children's production of recognizable words during 152 interactions with their caregiver (Huttenlocher et al., 1991). Studies with older school-age 153 children have also revealed links between the frequency of caregiver verbal engagement and 154 children's scores on standardized tests of language, such as vocabulary (Gilkerson et al., 155 2018). When children are infants and toddlers, many studies rely on parent-reports 156 assessments of children's vocabulary size, such as the MacArthur-Bates Communicative 157 Developmental Inventories (CDI, Fenson et al., 2007), which ask parents to indicate which 158 words their child "understands and says" from among several hundred words on a checklist (e.g., Weisleder & Fernald, 2013). Still other studies have explored links between caregivers' verbal behaviors and children's performance in tasks that capture skill at processing 161 language in real time, such as the Looking-While-Listening task (Fernald, Zangl, Portillo, & 162 Marchman, 2008). For example, in a sample of 27 Spanish-speaking caregiver-child dyads, 163 Hurtado, Marchman, and Fernald (2008) reported that children who experienced more

speech from their caregivers during a lab-based play session were reported both to know 165 more words on the CDI and to be more efficient at recognizing spoken words in real time. 166 Weisleder and Fernald (2013) reported similar findings based on estimates of caregivers' 167 child-directed word counts during daylong recordings. In both of these studies, mediation 168 models explored possible pathways among caregiver talk, vocabulary size, and processing 169 efficiency. Results suggested that frequent engagement with caregivers may be "tuning up" 170 children's abilities to map real-time spoken language onto referents in the world around 171 them, allowing for more efficient use of the input to support language learning. 172

Links between caregivers' use of gesture and children's later vocabulary abilities have 173 also been reported (Iverson et al., 1999; Pan et al., 2005; Rowe et al., 2008). Rowe and Goldin-Meadow (2009) examined socioeconomically-diverse caregivers and children across 175 multiple home visits, beginning when children were 14 months. They found that variation 176 among children in their use of gesture at 14 months was related to their vocabulary skills 177 at 54 months, based on a standardized test. Moreover, this study and others have found 178 that the frequency of caregivers' gesture use is related to the frequency of children's gesture 179 use. In particular, caregivers' use of deictic gestures, such as pointing, is viewed as a 180 potential means of influencing children's own use of deictic gestures, an important 181 prelinguistic skill (Matthews, Behne, Lieven, & Tomasello, 2012; Rowe & Leech, 2019). 182 Other studies propose that caregivers' use of different gestures can support word learning 183 by bringing attention to an object and reducing spatial ambiguity, thus allowing children to 184 attend more effectively to the referent and/or the auditory signal (Iverson et al., 1999; 185 Puccini et al., 2010; Rowe, 2000; Tfouni & Klatzky, 1983; Yuksel & Brooks, 2017; 186 Zukow-Goldring, 1996).

Labels, gestures, or both?

Taken together, there is substantial evidence that how frequently caregivers use communicative behaviors is linked to children's language learning. However, few studies

have directly contrasted how verbal versus non-verbal behaviors that establish reference are predictive of children's outcomes. The referential function of labels and gestures is 192 important because it serves as a means to support children's early label-referent 193 associations. It is also critical to remember that these behaviors frequently occur together 194 in real time (Iverson et al., 1999; Pan et al., 2005; Puccini et al., 2010; Rowe & 195 Goldin-Meadow, 2009; Tfouni & Klatzky, 1983; Yuksel & Brooks, 2017; Zukow-Goldring, 196 1996). Thus, it is difficult to address whether links between caregiver verbal or nonverbal 197 behaviors and children's outcomes may in fact be better explained by caregivers' combined 198 use of labels and gestures. For example, Rowe (2000) proposed that there may be a shared 199 construct underlying caregivers' use of verbal behaviors and gestures, such as 200 communicativeness. This hypothesis is supported by evidence of a small to moderate 201 positive correlation between the frequency of caregivers' verbal behaviors and gestures; those caregivers who used more total words also gestured more frequently than caregivers 203 who used fewer words (Pan et al., 2005; Rowe, 2000; Rowe & Goldin-Meadow, 2009; Rowe et al., 2008; Salo, Reeb-Sutherland, Frenkel, Bowman, & Rowe, 2019). Here we ask 205 whether the predictive power of caregivers' communicative use of reference during 206 children's second year of life may be captured more fully by measures that reflect the 207 combined use of referential labels and gestures, rather than each measure taken alone. 208

How caregivers combine labels and gestures in real time has been widely discussed in 200 the experimental literature on early word learning (Gogate, Bahrick, & Watson, 2000; 210 Tincoff, Seidl, Buckley, Wojcik, & Cristia, 2019; Villiers Rader & Zukow-Goldring, 2012; 211 Zukow-Goldring, 1996). For example, Kalagher and Yu (2006) found that novel word learning was more successful when caregivers introduced words while pointing to the 213 objects as they narrated a story than when narrating a story without pointing. Gogate et al. (2000) examined European American and Hispanic American families residing in a 215 major metropolitan area in the United States. They found that when they were teaching 216 novel labels to young infants, caregivers were more likely to use labels while moving 217

objects. Moreover, caregivers of linguistically less-advanced infants, compared to
more-advanced infants, were more likely to synchronize labels with object motion. These
findings suggest that caregivers are sensitive to children's level of language skills when
using labels and gestures together to highlight new label-referent associations.

222 The Current Study

In this longitudinal study, we observed 42 Spanish-speaking caregivers during play 223 interactions with their 18-month-old children. We coded the frequency and duration of 224 caregivers' referential labels to objects and referential gestures to objects. At 25 months, 225 children's language skills were assessed using an on-line language processing task and 226 caregiver reports of productive vocabulary size. Bayesian methods were used to construct 227 different models of the frequency of caregivers' use of labels, gestures, and both in 228 combination, as predictors of child outcomes. We hypothesized that if children's language 229 gains in the second year of life are best predicted by the frequency of caregivers' use of 230 labels or gestures taken independently, this would suggest a primary role for learning based 231 on either modality. However, if language learning is supported more by the frequency of 232 caregivers' use of reference across verbal and nonverbal modalities, then one or more 233 models including both labels and gestures would be stronger predictors of our measures of 234 language outcomes (Cartmill et al., 2013). We also included a model capturing the total 235 number of words spoken by caregivers to explore the specific contribution of their use of 236 referential labels to children's later language skills, in contrast to a separate predictor of overall talkativeness. In all models we included covariates of children's language skills and SES. By comparing these models, we sought to identify the smallest set of caregiver's communicative behaviors at 18 months that best predicts children's language outcomes at 25 months, over and above covariates that reflect children's language skills and family 241 background.

Table 1

Participant age and SES.

	Μ	SD	Range
Age (pre-test)	18.54	0.84	17.1 - 19.8
Age (post-test)	25.46	0.68	24.2 - 26.8
SES (pre-test)	26.44	11.82	8 - 62

Note. SES was calculated based on the Hollingshead Index (possible range 8 - 66).

243 Methods

Participants

Participants were 42 primarily Spanish-speaking children¹ (21 females) and their 245 caregivers who were participating in a longitudinal study examining language development 246 in primarily monolingual Spanish-speaking families in the US. Families were recruited from 247 birth records or community contacts in Northern California and were excluded if the child 248 was born preterm, had a known neurodevelopmental disorder, or loss of hearing or vision. 249 As shown in Table 1, children were approximately 18 months at the start of the study and 250 approximately 25 months when we assessed language processing speed and vocabulary size. 251 We calculated SES using the Hollingshead Index, which reflects education and occupation 252 for both mothers and fathers. SES was included as a covariate based on prior studies 253 (Daneri, Blair, & Kuhn, 2018; Hoff, 2003; Huttenlocher, Waterfall, Vasilyeva, Vevea, & 254 Hedges, 2010), to examine the unique role of caregiver behaviors in supporting children's 255

¹ As seen in our pre-registration, we determined a sample size of n = 50 based on a priori frequentist power analyses, but stopped at n = 42 because at the time of analysis there were no more available families to include in the study.

language skills over and above potential confounding variables. Families represented a
diverse range of SES backgrounds, ranging from a score of 8 to 62 (for reference, a score of
40 often reflects those from college-educated backgrounds). All mothers reported that they
were native Spanish speakers. All families lived in the U.S. but the mothers were primarily
born in Mexico (33), with a few born in Central America (5) or the U.S. (4).

261 Procedure

Native Spanish-speaking research staff met with the caregiver to explain study 262 protocol, and all caregivers gave their informed consent prior to study participation. 263 Caregivers participated in a 15-min videotaped lab-based play session with their 264 18-month-old children at a community laboratory. Families first engaged in a book-sharing 265 activity (5 min) and then an activity using toys designed to elicit scaffolding (shape sorter 266 and stacking ring, 5 min). Finally, each caregiver was asked to engage with their child for 267 approximately 5 min using a standard set of toys (e.g., plates, pretend food, cutlery, pots, 268 doll) designed to elicit communicative behaviors and pretend play. The final 5 min of 269 engagement during this session was selected for analysis because it involved the most 270 diverse set of toys and caregivers, and children had sufficient opportunity to warm up and feel comfortable in the context. During the session, the child wore a LENA recorder placed 272 inside a specially-designed vest to capture the adult speech spoken during the play session (Marchman, Weisleder, Hurtado, & Fernald, 2021). At 18 and 25 months, children participated in the Looking-While-Listening task to assess spoken language understanding 275 (Fernald et al., 2008). At both time points, caregivers completed parent-report assessments of their child's productive vocabulary size (Jackson-Maldonado, Thal, & Fenson, 2003).

78 Measures

Coding of caregiver referential gestures and labels. A native Spanish-speaker used ELAN (version 5.0, Wittenburg, Brugman, Russel, Klassman, & Sloetjes, 2006) to

code all caregivers' referential gestures and labels from the video recordings of the play 281 sessions. Gestures were coded first without audio. Referential gestures were defined as 282 those gestures used to attract infants' attention to the toys or other objects in the 283 environment. Gestures included holding out objects/giving, pointing, descriptive or iconic 284 gestures (e.g., making a chopping motion with their hand), and touching with an open 285 hand. Physically playing with toys was not included as a gesture (e.g., holding the knife 286 and pretending to cut vegetables in front of the child). A standardized protocol used to 287 define the onset and offset of each gesture is available in our full codebook 288 (https://osf.io/fmvyc/?view_only=7fd65681a7154f43aa5b5a67c38a1392). Frequency of 280 gestures was derived for each caregiver, and the onset and offset of gestures were used for 290 our overlap measure below. 291

Caregivers' use of object labels was then coded by the same coder, who listened to
the video and marked the onset and offset of all object labels that referred to objects in the
play session. Labels could occur in isolation (e.g., "manzana" [apple]) or not (e.g.,
"¿quieres una manzana?" [do you want an apple?]). Frequency counts of label tokens were
derived for each caregiver. Successive repetitions of a single label were counted as
individual tokens. General category terms (e.g., "comida" [food], or "juguetes" [toys]) were
excluded because our goal was to focus on specific labels rather than on category names for
available objects. All English labels were excluded, given that we were assessing children's
later Spanish language outcomes.

Finally, we determined the number of times that each caregiver produced an object label while using a gesture (overlaps: labels + gestures). An R script used the duration coding of each label and gesture in the ELAN output to identify the number of labels that occurred within a 1-sec window before or after a gesture (Cartmill et al., 2013).

Figure 1 depicts examples of the final label and gesture coding for three caregivers over the 5-min observation window. These examples illustrate variation among caregivers in the overall frequency of labels and gestures, as well as variation in the number of overlapping labels and gestures.

Figure 1. Examples from three caregivers chosen to illustrate the variability in frequency and duration of label and gesture use. Ticks represent each instance and the size depicts the duration. For the sample, Caregiver 1 provided an average number of labels and gestures, Caregiver 2 provided an above average number of labels and a below average number of gestures, and Caregiver 3 provided an above average number of labels and gestures.

Reliability Coding. A second native Spanish-speaking research assistant coded labels and gestures for approximately 20% of the families (n = 8). The second coder was blind to the study hypotheses and to the coding by the first coder. Intraclass correlations (ICC) showed strong reliability for number of labels (ICC = .996, 95% CI [.96, 1]) and gestures (ICC = .89, 95% CI [.54, .98]), as well as the number of overlaps determined from the R script (ICC = .99, 95% CI [.98, 1]).

Caregiver verbal engagement during play session. During the play session, a
LENA audio recorder was used to provide an estimate of the number of adult word counts
(AWC) produced during the session. The AWC measure generated by the LENA speech

recognition software was converted to a rate per hour based on the 5-min sample, to
account for minor differences in the duration of play sessions. This measure was included
as an estimate of overall caregiver talkativeness.

Spoken language processing. At each time point, the child participated in the 321 Looking-While-Listening task (LWL, Fernald et al., 2008). In this task, the child sits on 322 their caregiver's lap while viewing pictures of two familiar objects on a screen. After 2 sec, 323 a voice of a female, native-Spanish speaker names one of the objects (e.g., "¿Dónde está el 324 perro?", Where's the doggy?), followed by an attention-getter phrase (e.g., "¿Te gustan las 325 fotos?, Do you like the pictures?). On each trial, the pictures were presented in fixed pairs, 326 matched for salience, and the target words were matched in grammatical gender. At 18 327 months, auditory stimuli consisted of eight familiar words presented 6 times each as target 328 and distracter. At 25 months, auditory stimuli consisted of twelve familiar words presented 329 4 times each as target and distracter. Each word in the pair served an equal number of 330 times as target and distracter, for a total of 48 experimental trials, with target picture 331 counterbalanced across side across trials.

After a brief calibration session, trials were presented in two fixed pseudo-random 333 orders such that the target picture was not presented on the same side for more than two 334 trials in a row. Patterns of children's eye-gaze were captured at 60 frames/sec by a Tobii 335 X60 eye-tracker, mounted to the bottom of the monitor. A video camera attached to the 336 top of the monitor also provided a record of children's eye gaze across the full session. All 337 video-recordings of the testing sessions were prescreened to exclude trials when the child 338 was inattentive or if there was any concern that the caregiver was biasing the child. Based on which picture the child was fixated on at target noun onset, trials were defined as distracter or target initial. Trials on which the child was not looking at either picture at target noun onset were not analyzed. Trials were also later removed on a child-by-child basis if the parent reported that the child did not know the target word. Due to calibration 343 failures or experimental error, some portion of the sessions (11/42, 26%) were hand-coded

by trained coders following standard protocols (Fernald et al., 2008). Processing speed was calculated on all distracter-initial trials as the mean reaction time (RT) in milliseconds to shift from the distracter to the target picture measured from the onset of the target noun. Trials were excluded if shifts were faster than 300 ms or slower than 1800 ms from target noun onset, since these shifts are unlikely to be in response to the target word. Given that children could have different numbers of distracter-initial trials, the mean number of trials per child varied (M = 9.81, SD = 4.70), however, all children had at least 2 trials contributing to the computation of RT (range = 2 - 21).

Vocabulary size. Children's vocabulary size in Spanish was assessed at each time 353 point by parent report with the Mexican Spanish MacArthur-Bates Inventarios del Desarollo de Habilidades Communicativas (CDI, Jackson-Maldonado et al., 2003). These 355 instruments ask parents to indicate what words their child can "understand and say" from 356 a list of hundreds of items. At 18 months, some parents completed the Inventario I form 357 and others completed Inventario II form, due to slight changes in protocol over time. For 358 those children whose parents completed Inventario I, scores were converted to proportions 359 based on the number of items on the Inventario II form. At 25 months, all parents 360 completed Inventario II. Vocabulary size was the number of words chosen (680 words 361 maximum). Due to missing data, 37 families are included for analyses with the CDI. 362

363 Analysis Strategy

We first present descriptive statistics of all variables at 18 and 25 months. We then
present a series of Bayesian model comparisons that allowed direct comparisons of
non-nested models to examine the predictive roles of labels, gestures, or their combination
(i.e., overlaps), on child outcomes (Donnellan, Bannard, McGillion, Slocombe, &
Matthews, 2020; Mahr & Edwards, 2018). This approach contrasts with prior studies that
have sought to isolate unique contributions of caregivers' verbal behaviors or gestures to
outcomes using nested hierarchical regression (Iverson et al., 1999; Pan et al., 2005). We

compared seven independent models per outcome measure, each representing a different 371 hypothesis about how caregivers' communicative behaviors contribute to children's 372 language processing speed and vocabulary size at 25 months. Thus, a total of 14 models 373 were tested. Language processing speed reflects how quickly children shifted from a 374 distracter picture to a named target picture, on average, and vocabulary reflects the 375 number of vocabulary words that caregivers reported children could "understand and say" 376 from a list of items. These models assessed the independent contributions of labels and 377 gestures, the conditional relation between labels and gestures, as well as the overlapping 378 use of labels and gestures (overlap). We also tested a model including AWC, to evaluate 379 the separate effect of caregiver talkativeness on children's later language skills. All models 380 included covariates of SES and 18-month language measures for the respective outcome 381 measure. Thus, models predicting 25-month processing speed included SES and 18-month processing speed, and models predicting 25-month vocabulary size included SES and 383 18-month vocabulary size. By including 18-month language skills, we are able to ask the more specific question of which input variable(s) best predict gains in language processing 385 or vocabulary size over and above SES and children's earlier language skills. 386

For each dependent variable (dv), we compared the same set of models²: (1) dv ~ 387 labels; (2) dv ~ gestures; (3) dv ~ overlaps; (4) dv ~ adult words per hour, which 388 considers all speech using AWC; (5) dv ~ labels + gestures, which assumes that both 380 labels and gestures contribute independently; (6) dv ~ labels * gestures, which 390 assumes that the contribution of labels and gestures are conditional on one another, and 391 (7) dv ~ covariates is the baseline model. If a model performs at or worse than the 392 baseline, its predictor(s) do not contribute to predicting gains in processing or vocabulary 393 over and above the covariates. 394

² The preregistration did not include a) the adult word count model and b) the baseline model. We added these models later a) to see if the number of labels was simply an indicator of overall caregiver talkativeness and b) to be able to judge if the inclusion of covariates improved predictions at all.

All models were fit in a Bayesian framework as linear models in R (Team, 2021) via 395 the function brm from the R-package brms (Bürkner, 2017) using default priors for all 396 model parameters.³ All caregiver behavior variables were scaled to have a mean of 0 and a 397 standard deviation of 1. Following McElreath (2020), we compared models using WAIC 398 (widely applicable information criterion) scores and weights, an indicator of the model's 390 predictive accuracy for out-of-sample data; models with lower scores are preferred. 400 Roughly speaking, WAIC scores reflect the model's predictive accuracy with a penalty for 401 the number of effective parameters. As such, model comparisons favor simpler models and 402 thereby guard against overfitting. WAIC weights are an estimate of the probability that 403 each model (compared to all models considered) will make the best predictions on new 404 data. We next inspected the posterior distributions of the model predictors in the best 405 models via their means and 95% credible intervals (CI) to inform the nature (positive or negative) and strength of the influence of the respective caregiver engagement variable on the dependent variable.

Results

410 Descriptive statistics

Figure 2A provides descriptives for the four measures of caregiver communication.

Caregivers produced approximately 3500 words per hour (M = 3,447.26, SD = 1,491.97, 1300)range = 531.94 - 6,683.38), on average, based on the automated LENA counts. Caregivers produced just over 40 labels (M = 44.19, SD = 25.35, range = 0 - 120) and about 18 gestures (M = 18.12, SD = 8.11, range = 2 - 41). When considering overlaps, caregivers produced about 16 labels that were also accompanied with a referential gesture, (M = 16.31, SD = 10.88, range = 0 - 41). Conversely, parents produced on average 13 gestures

³ Please see supplemental materials to examine how Bayesian model comparison differs from standard hierarchical regressions using frequentist methods.

Figure 2. A) Descriptive distribution of independent variables with mean and 95% CI (in red), B) Zero-order correlations between dependent variables and input variables. Circle size and color intensity increase with the absolute magnitude of correlation.

that overlapped with at least one label (M = 12.83, SD = 7.65, range = 0 - 29).

Figure 2B shows the zero-order correlations among all variables. As expected, the 419 three measures capturing caregivers' language (AWC per hour, labels, overlaps) were 420 significantly correlated. Notably, caregivers who used more labels also used more words 421 overall, reflecting an r2 of 45% shared variance, though over half of the variability is not 422 accounted for. Numbers of referential gestures also correlated with verbal behavior 423 variables (e.g., referential labels and gestures, r2 = 30%), also suggesting some shared 424 underlying variance. However, none of the correlations indicated that any two measures 425 were redundant (i.e., all r < .90), which justifies assessing their independent predictive relation to the dependent variable in the model comparison.

Spanish language processing

Table 2 shows WAIC scores and weights for each model predicting children's language processing speed (RT). Only two models outperformed the baseline model: labels and AWC per hour, with both models similar in their weights (model weights: 0.23 labels; 0.18

Table 2

WAIC scores and weights for models predicting language processing speed.

Model	waic	se_waic	weight
Labels	554.55	9.99	0.23
Adult words per hour	555.04	10.05	0.18
Baseline (covariates only)	555.23	10.22	0.16
Labels + gestures	555.90	9.96	0.12
Label-gestures overlap	556.72	9.98	0.08
Gestures	557.01	9.94	0.07
Labels * gestures	557.17	9.82	0.06

AWC per hour). None of the models that included gestures, either as the only test
predictor or in combination with labels, made better predictions compared to the baseline
model than models that included labels. Thus, children's language processing speed at 25
months was best predicted by models that included some form of caregivers' verbal
behavior as predictors, though differences between models are small.

Figure 3A-i shows the posterior distribution of the model estimates for number of labels to be negative ($\beta = -39.96$) and largely different from 0 (95% credible interval (CrI) = -91.91 - 12.11). This indicates a positive relation: the more labels the caregiver used at 18 months, the more the child improved in their reaction time from 18 to 25 months. However, the fact that the 95% CrI included zero, cautions against an overly strong interpretation. A similar pattern was found when investigating the estimate for adult word count in the respective model: more adult talk was related to gains in reaction time – with considerable uncertainty ($\beta = -27.88$, 95% CrI = -80.57 - 25.19). The effect of SES was also similar. Children from families higher in SES tended to have greater developmental

gains in reaction time, however, this effect was weak in magnitude ($\beta = -27.67$, 95% CrI = -79.96 - 24.31). Finally, children with a slower reaction time at 18 months were also slower at 25 months ($\beta = 52.69$, 95% CrI = 0.12 - 105.42). Figure A-ii shows the observed vs. predicted values from the model with labels as the test predictor.

Figure 3. Left: Posterior distributions for model estimates, right: model predictions. On the left, the green area denotes the section of the distribution that is supportive (i.e. faster reaction time and larger vocabulary). Points below each distribution show means, and error bars show 80% (thick) and 95% (thin) CrIs. A-i shows the posterior distribution of all model estimates in the labels model for reaction time. B-i shows the same in the model predicting vocabulary size. On the right, A-ii and B-ii contrast the observed (black) values with the values predicted by the model (red) for reaction time (A) and for vocabulary size (B).

Vocabulary size

Table 3 shows the model comparisons for vocabulary size. All predictor models made better predictions compared to the baseline model. As with RT, the model including the

Table 3

WAIC scores and weights for models predicting vocabulary size.

Model	waic	se_waic	weight
Labels	480.08	7.61	0.38
Labels + gestures	482.46	7.69	0.12
Adult words per hour	482.55	5.96	0.11
Label-gestures overlap	482.99	6.68	0.09
Labels * gestures	484.81	7.62	0.04
Gestures	486.45	6.57	0.02
Baseline (covariates only)	486.62	6.98	0.01

number of labels produced by the caregiver made the best predictions – this time, however, it clearly outperformed all the other models (model weight = 0.38). Models including gestures were given more weight only when they also included labels.

As shown in Figure 3B-i, the posterior distribution for the model estimate for labels was positive, large and reliably different from 0 ($\beta = 72.29$, 95% CrI = 21.95 - 122.26). Children who heard more labels at 18 months increased more in their reported vocabulary size from 18 to 25 months. SES had a weak effect ($\beta = -20.34$, 95% CrI = -70.46 - 30.14). Finally, children who had a larger reported vocabulary at 18 months also had a larger reported vocabulary at 25 months ($\beta = 83.57$, 95% CrI = 33.10 - 133.49). Figure 3B-ii shows the observed versus predicted values from the model with labels as the test predictor.

63 Comparing the contribution of labels and gestures

The model comparisons suggested that including the number of gestures as a predictor did not contribute to a model's predictive accuracy above baseline for RT,

although gestures performed better than baseline for vocabulary size. Nevertheless, it is 466 still interesting to see how the number of gestures related to the dependent variable in the 467 different models. Thus, we compared the posterior distributions of the model estimates for 468 labels and gestures across the models that included them. Figure 4 shows this comparison. 469 Looking first at labels, regardless of model, the supportive contribution of labels was stable 470 whether tested as the only predictor or together with gestures for both reaction time and 471 vocabulary size. In contrast, gestures supported the outcome of vocabulary growth only 472 when considered as the sole test predictor. When combined with labels, the model 473 estimates were essentially zero. This pattern affirms the conclusion based on the model 474 comparisons, i.e., that knowing the number of gestures in the input – in addition to the 475 number of labels - did not improve predictions. 476

Figure 4. Comparing estimates for labels and gestures across models. Points show means of the posterior distribution (95% CrIs) for the estimates. Estimates were extracted from all models that included one or both of the predictors.

Discussion

Our goal was to compare variation among Spanish-speaking caregivers in the number of words, labels, gestures, and combined labels and gestures used when interacting with

their toddlers at 18 months, in order to determine the smallest set of caregivers' communicative behaviors that best predicted children's language outcomes at 25 months. 481 We found that over and above SES and children's earlier language skills, the model with 482 caregivers' use of referential labels was the strongest predictor of children's vocabulary, 483 when compared against models including variability in total words, referential gestures, or 484 in different combinations of labels and gestures. There were small but notable differences 485 between models for children's processing speed whether predictors were referential labels, total words, or covariates only. We discuss two questions raised by these results: Why 487 might caregivers' use of referential labels predict children's language processing efficiency 488 and vocabulary size in the second year of life? Why are labels more predictive than 489 gestures?

Why might caregivers' use of referential labels predict children's language processing efficiency and vocabulary size?

Those caregivers who used more referential labels also used more words overall 493 (Figure 2B), reflecting an r2 of 45% shared variance and demonstrating a strong relation 494 between these measures. However, while both measures of talk predicted children's 495 reaction time, only models with caregivers' use of labels better predicted their vocabulary size, with a similar, albeit weaker, pattern found for reaction time. One possibility is that 497 the frequency of caregiver labels is more closely linked to children's understanding of word 498 meaning, which is reflected in outcome measures of both language processing and 499 vocabulary size. Labels themselves are symbols that refer to the objects, ideas, or events they represent (Acredolo & Goodwyn, 1988; Bates, Thal, Whitesell, Fenson, & Oakes, 1989; Colonnesi, Stams, Koster, & Noom, 2010), and both the mapping of a label to a referent and the learning of a label for a referent are directly assessed in both of our 503 outcome measures. Language processing speed reflects children's ability to map a spoken 504 object name in real time onto one of two familiar pictures, assessed only on trials when the 505

child demonstrates a clear shift from the distracter to the target picture. Thus, this task 506 taps into children's familiar knowledge of these everyday objects where children who are 507 faster at processing the object label may have stronger conceptual and linguistic 508 representations than those who are slower. Vocabulary size, as reported by parents on the 509 CDI, reflects children's abilities to produce the names of objects and concepts. Therefore, 510 variation among caregivers in the frequency of specific use of referential labels may provide 511 a closer link to individual differences in children's linguistic knowledge about objects or 512 events. While caregivers' use of total words may help "tune" up children's language 513 processing speed, and provide children with the practice of hearing language, our findings 514 suggest that caregivers' use of labels is more predictive of language gains because it 515 provides the linguistic information that enables early word learning. These results suggest 516 that during early stages of language learning, repeated and varied exposure to labels embedded within day-to-day conversations may help children associate, prune, and 518 strengthen these links (McMurray et al., 2012), quickly process how labels map onto 519 objects in real time (Fernald, Perfors, & Marchman, 2006), and build a vocabulary that 520 reflects their understanding about the world (Weisleder & Fernald, 2013). 521

Why are labels more predictive than gestures?

Caregivers who used more referential labels also used more referential gestures with children at 18 months, (r=.55, percent shared variance = 30%, Figure 2B). The strength of this association is within expectations based on prior studies of children across a broad age range (i.e., 8 to 36 months), in spite of slightly different operationalizations of total words, labels, and gestures (e.g., Pan et al., 2005: rs=.35 - .54; Rowe, 2000: r=.58; Rowe & Goldin-Meadow, 2009: r=.67; Salo et al., 2019: r=.30; Salomo & Liszkowski, 2013: r=.63). However, we did not find support for our hypothesis that an underlying shared characteristic of caregivers' communicative reference across referential labels and gestures was predictive of children's language skills during this second year of life (Rowe,

2000; Rowe et al., 2008). Instead, the models that included the frequency in caregivers' use
of labels best predicted later language outcomes, with stronger evidence seen for children's
vocabulary than for processing speed. Rather than the shared referential function that
both labels and gestures serve, there is information in the linguistic signal specifically
associated with caregivers' label use that supports children's later vocabulary outcomes.

It is important to note that as in previous studies, our measures of referential labels
and gestures were not mutually exclusive. Labels may have occurred alone in an utterance
or embedded in a multi-word utterance, with each instance co-occurring with a variety of
socio-pragmatic behaviors such as eye-gaze, facial expressions, body movement, in addition
to referential and non-referential gestures. Our findings suggest that variability in
caregivers' use of referential labels, regardless of how these labels are combined with
nonverbal behaviors, is most strongly associated with later vocabulary in 25-month-old
children.

These results should not be taken as evidence that caregivers' gesture use plays a less 545 influential role in children's language learning. In exploratory analyses, we found that 546 caregivers' use of referential gestures predicted vocabulary growth when the model included gestures as the only test predictor, although not in combination with labels. These links are in line with those of prior studies showing that variation in caregiver gestures or nonverbal behaviors predicted children's later vocabulary, although those studies differed in whether or not they controlled for children's earlier language skills (Cartmill et al., 2013; 551 Rowe & Goldin-Meadow, 2009). By directly contrasting the use of referential labels and 552 gestures in the same sample, our study demonstrated that knowing the number of 553 referential gestures did not improve our predictions for growth in children's language 554 processing or vocabulary size at 25 months, if the number of labels was already known 555 (Iverson et al., 1999; Pan et al., 2005). 556

It is also possible that caregivers' use of referential labels and gestures differs in

557

importance for certain words over others or at different phases of children's communicative 558 development. For example, for unfamiliar words or different types of words (e.g., actions), 559 the combination of referential labels and gestures may be especially helpful. Additionally, 560 children in our study were 17 to 19 months old, whereas prior studies linking caregivers' 561 gesture use to later outcomes examined gestures when children were around 14 to 16 562 months old (Iverson et al., 1999; Pan et al., 2005; Rowe & Goldin-Meadow, 2009). At 563 earlier ages more children are in an early pre-linguistic stage, and thus may benefit more 564 from the support for learning provided by caregivers' use of referential gestures. Children 565 who produce more gestures early in life have been found to have stronger vocabulary later 566 on (e.g., Colonnesi et al., 2010; Kirk et al., 2022, but see Donnellan et al., 2020). 567 Caregivers' gestures may be particularly supportive of children's prelinguistic gestures and short-term language outcomes (Rowe & Leech, 2019), an effect that is less evident as children become more linguistically advanced. It is also important to note that the current study focused specifically on referential gestures, whereas prior work has considered a larger set of caregivers' communicative behaviors, including symbolic gestures (e.g., cutting 572 motion with hands) and conventional gestures (e.g., nodding to mean "yes" in the United 573 States). Therefore, at any given moment, caregivers can use both referential and non-referential gestures to direct children's attention to the label-object link, support 575 visual object recognition, and resolve ambiguity of the intended referent (Tincoff et al., 576 2019; Villiers Rader & Zukow-Goldring, 2012; Zukow-Goldring, 1996), all of which are 577 likely to provide a foundation for stronger language learning. 578

579 Limitations

While our results shed light on specific features of caregiver communicative behaviors
that may be important for language learning, we are unable to establish definitively the
direction of any causal link between caregivers' verbal behaviors and children's language
skills. Though we included a covariate of children's initial language skills on the respective

outcome measure to assess caregivers' contribution to children's growth in language skills, 584 we cannot rule out the possibility that caregivers who use more labels do so because their 585 children are more verbal. Correlational links represent average effects, with much still left 586 unexplained (Bailey, Duncan, Watts, Clements, & Sarama, 2018). Rather than a causal 587 pathway of caregivers influencing children, correlations may represent relatively stable 588 individual differences among children and families with shared genes and/or environments. 580 Correlations may also be attributable to individual differences in children's propensity or 590 ability to elicit engagement from others or in children's ability to effectively process 591 information (Pace, Luo, Hirsh-Pasek, & Golinkoff, 2017; Weisleder & Fernald, 2013). 592 Though there is growing research examining whether intervening with caregivers in their 593 use of verbal and nonverbal behaviors can influence children's early language development 594 (Matthews et al., 2012; McGillion, Pine, Herbert, & Matthews, 2017; Rowe & Leech, 2019; Suskind et al., 2016), findings to date are mixed. Our results point to the importance of caregivers' use of referential labels as a specific supportive feature to children's vocabulary growth. Ongoing research should continue to explore the effectiveness of such interventions 598 for children's short- and long-term outcomes, as well as potential moderators that influence 590 which families are likely to benefit the most (Rowe & Leech, 2019). It is also important to 600 note that while we have identified caregivers' use of referential labels as an important 601 predictor for children's later vocabulary outcomes, explanatory research is critical to better 602 understand how we can apply this information. For example, while we sampled children's 603 exposure to labels when children were directly engaged with their caregivers, there is still 604 much to understand regarding how children are exposed to and learn from labels during 605 periods of direct engagement with others or in less child-directed settings. 606

In addition, the potential for short- or long-term causal impacts of caregivers' verbal or nonverbal behaviors for children's language outcomes should be considered within the context of broader socioeconomic and political systems that underlie families' day-to-day experiences (Rowe & Weisleder, 2020). This work examined caregiver behaviors in a

lab-based interaction, which may be consistent with caregivers' densest periods of interactions in the home; however, testing children in a lab still differs from the ebb and 612 flow of interactions over the course of a day, when children may engage with multiple 613 individuals (Bergelson et al., 2019; Reynolds, Vernon-Feagans, Bratsch-Hines, Baker, & 614 Investigators, 2019). Our study also included children with typical development from one 615 unique cultural context, primarily Spanish-speaking families raising their children in an 616 English-dominant community in the United States. More work is needed to understand if 617 these links are seen in comparative studies across cultures, languages, and in populations 618 which include neurodiverse children (Bang, Adiao, Marchman, and Feldman (2019); Choi, 619 Shah, Rowe, Nelson, and Tager-Flusberg (2020); Salomo and Liszkowski (2013)]. Across 620 contexts, children and parenting practices may vary widely (Rowe & Weisleder, 2020), 621 likely influencing how frequently children are exposed to labels and gestures during direct engagement with caregivers. There is still much to understand about what processes may be shared, and also what may very well be different pathways that support language acquisition in different populations. 625

626 Conclusion

Spanish-learning children who engage more frequently with their caregivers tend to 627 have stronger language outcomes. Here, we explored one possible explanation of that 628 relation, namely, that caregiver engagement is more supportive of learning because 629 caregivers use a variety of verbal and non-verbal behaviors to help children establish 630 reference to objects and events in the world. Specifically, we investigated how caregivers' use of referential labels and gestures predicted children's later vocabulary skills, rather than focusing on a single form of reference. Contrary to our predictions, our model 633 comparisons revealed that the frequency of caregivers' use of referential labels when 634 communicating with children at 18 months, but less so their frequency of labels and 635 gestures in combination, best predicted growth in children's vocabulary skills at 25 months. 636

Caregivers' overall talkativeness was also associated with children's later processing speed, 637 suggesting that overall experience with language supports skill in real-time language 638 comprehension. However, vocabulary development was best predicted by models including 639 caregivers' use of labels, more strongly than overall talkativeness, suggesting that it is the 640 use of labels, per se, that provides important cues to vocabulary learning. Taken together, 641 these findings reveal that specific properties of caregiver verbal engagement at 18 months 642 may support different aspects of language learning at 25 months, providing important 643 insights into the pathways through which caregiver engagement during this developmental period supports children's learning.

References

- Acredolo, L., & Goodwyn, S. (1988). Symbolic gesturing in normal infants. *Child*Development, 59(2), 450–466. https://doi.org/10.2307/1130324
- Altınkamış, N. F., Kern, S., & Sofu, H. (2014). When context matters more than
- language: Verb or noun in French and Turkish caregiver speech. First Language, 34(6),
- 651 537–550. https://doi.org/10.1177/0142723714560179
- Bailey, D. H., Duncan, G. J., Watts, T., Clements, D. H., & Sarama, J. (2018). Risky
- business: Correlation and causation in longitudinal studies of skill development. American
- Psychologist, 73(1), 81–94. https://doi.org/10.1037/amp0000146
- Baldwin, D. A. (1993). Infants' ability to consult the speaker for clues to word
- reference. Journal of Child Language, 20(2), 395–418.
- 657 https://doi.org/10.1017/S0305000900008345
- Bang, J. Y., Adiao, A. S., Marchman, V. A., & Feldman, H. M. (2019). Language
- 659 nutrition for language health in children with disorders: A scoping review. Pediatric
- 660 Research, 87(2), 300–308. https://doi.org/10.1038/s41390-019-0551-0
- Bates, E., Thal, D., Whitesell, K., Fenson, L., & Oakes, L. (1989). Integrating
- language and gesture in infancy. Developmental Psychology, 25(6), 1004–1019.
- 663 https://doi.org/10.1037/0012-1649.25.6.1004
- Bergelson, E., Amatuni, A., Dailey, S., Koorathota, S., & Tor, S. (2019). Day by day,
- 665 hour by hour: Naturalistic language input to infants. Developmental Science, 22(1),
- 666 e12715. https://doi.org/10.1111/desc.12715
- Bergelson, E., Casillas, M., Soderstrom, M., Seidl, A., Warlaumont, A. S., &
- Amatuni, A. (2019). What do north American babies hear? A large-scale cross-corpus
- analysis. Developmental Science, 22(1), e12724. https://doi.org/10.1111/desc.12724
- Bohn, M., & Frank, M. (2019). The pervasive role of pragmatics in early language.

- 671 Annual Review of Developmental Psychology, 1, 223–249.
- 672 https://doi.org/10.1146/annurev-devpsych-121318-%20085037
- Bunce, J., Soderstrom, M., Bergelson, E., Rosemberg, C., Stein, A., Alam, F., ...
- 674 Casillas, M. (2020). A cross-cultural examination of young children's everyday language
- experiences. https://doi.org/10.31234/osf.io/723pr
- Bürkner, P. (2017). Brms: An R package for Bayesian Multilevel Models using Stan.
- Journal of Statistical Software, 80(1), 1–28. https://doi.org/10.18637/jss
- Cartmill, E. A., Armstrong, B. F., Gleitman, L. R., Goldin-Meadow, S., Medina, T.
- N., & Trueswell, J. C. (2013). Quality of early parent input predicts child vocabulary 3
- years later. Proceedings of the National Academy of Sciences, 110(28), 11278–11283.
- 681 https://doi.org/10.1073/pnas.1309518110
- 682 Casillas, M., Brown, P., & Levinson, S. C. (2019). Early language experience in a
- Tseltal Mayan village. Child Development, 91(5), 1819–1835.
- 684 https://doi.org/10.1111/cdev.13349
- Casillas, M., Brown, P., & Levinson, S. C. (2021). Early language experience in a
- Papuan community. Journal of Child Language, 48(4), 792–814.
- 687 https://doi.org/10.1017/S0305000920000549
- Choi, B., Shah, P., Rowe, M. L., Nelson, C. A., & Tager-Flusberg, H. (2020). Gesture
- development, caregiver responsiveness, and language and diagnostic outcomes in infants at
- 690 high and low risk for Autism. Journal of Autism and Developmental Disorders, 50(7),
- 691 2556–2572. https://doi.org/10.1007/s10803-019-03980-8
- 692 Choi, S. (2000). Caregiver input in English and Korean: Use of nouns and verbs in
- book-reading and toy-play contexts. Journal of Child Language, 27(1), 69–96.
- 694 https://doi.org/10.1017/S0305000999004018
- Colonnesi, C., Stams, G. J. J. M., Koster, I., & Noom, M. J. (2010). The relation

- between pointing and language development: A meta-analysis. Developmental Review, 696 30(4), 352–366. https://doi.org/10.1016/j.dr.2010.10.001 697 Daneri, M. P., Blair, C., & Kuhn, L. J. (2018). Maternal language and child 698 vocabulary mediate relations between socioeconomic status and executive function during 699 early childhood. Child Development, 90(6), 1-18. https://doi.org/10.1111/cdev.13065 700 Donnellan, E., Bannard, C., McGillion, M. L., Slocombe, K. E., & Matthews, D. 701 (2020). Infants' intentionally communicative vocalizations elicit responses from caregivers 702 and are the best predictors of the transition to language: A longitudinal investigation of 703 infants' vocalizations, gestures and word production. Developmental Science, 23(1), e12843. https://doi.org/10.1111/desc.12843 705 Fenson, L., Marchman, V. A., Thal, D. J., Dale, P. S., Reznick, J. S., & Bates, E. 706 (2007). MacArthur-Bates Communicative Development Inventories: User's guide and 707 technical manual (2nd editio). Baltimore: Paul H. Brookes. 708 Fernald, A., Perfors, A., & Marchman, V. A. (2006). Picking up speed in 709 understanding: Speech processing efficiency and vocabulary growth across the 2nd year. 710 Developmental Psychology, 42(1), 98–116. https://doi.org/10.1037/0012-1649.42.1.98 711 Fernald, A., Zangl, R., Portillo, A. L., & Marchman, V. (2008). Looking while 712 listening: Using eye movements to monitor spoken language comprehension by infants and 713 young children. In Developmental Psycholinquistics: Online methods in children's language 714 processing (I. A. Sekerina, E. M. Fernández, & H. Clahsen (Eds.), Vol. 44, pp. 97–135). 715 Amsterdam, The Netherlands: John Benjamins. 716 Gilkerson, J., Richards, J. A., Warren, S. F., Montgomery, J. K., Greenwood, C. R., 717 Kimbrough Oller, D., ... Paul, T. D. (2017). Mapping the early language environment 718 using all-day recordings and automated analysis. American Journal of Speech-Language Pathology, 26(2), 248-265. https://doi.org/10.1044/2016 AJSLP-15-0169
- Gilkerson, J., Richards, J. A., Warren, S. F., Oller, D. K., Russo, R., & Vohr, B.

- (2018). Language experience in the second year of life and language outcomes in late
- childhood. *Pediatrics*, 142(4), e20174276. https://doi.org/10.1542/peds.2017-4276
- Gogate, L. J., Bahrick, L. E., & Watson, J. D. (2000). A study of multimodal
- motherese: The role of temporal synchrony between verbal labels and gestures. Child
- 726 Development, 71(4), 878-894. https://doi.org/10.1111/1467-8624.00197
- Hart, B., & Risley, T. (1995). Meaningful differences in the everyday experience of
- young American children. Paul H Brookes Publishing.
- Hoff, E. (2003). The specificity of environmental influence: Socioeconomic status
- affects early vocabulary development via maternal speech. Child Development, 74(5),
- 731 1368–1378. https://doi.org/10.1111/1467-8624.00612
- Hurtado, N., Marchman, V. A., & Fernald, A. (2008). Does input influence uptake?
- Links between maternal talk, processing speed and vocabulary size in Spanish-learning
- children. Developmental Science, 11(6), 31–39.
- 735 https://doi.org/10.1111/j.1467-7687.2008.00768.x
- Huttenlocher, J., Haight, W., Bryk, A., Seltzer, M., & Lyons, T. (1991). Early
- vocabulary growth: Relation to language input and gender. Developmental Psychology,
- 27(2), 236-248. https://doi.org/10.1037/0012-1649.27.2.236
- Huttenlocher, J., Waterfall, H., Vasilyeva, M., Vevea, J., & Hedges, L. V. (2010).
- Sources of variability in children's language growth. Cognitive Psychology, 61(4), 343–365.
- 741 https://doi.org/10.1016/j.cogpsych.2010.08.002
- Iverson, J., M., Capirci, O., Longobardi, E., & Caselli, M. C. (1999). Gesturing in
- mother-child interactions. Cognitive Development, 14(1), 57–75.
- 744 https://doi.org/10.1016/S0885-2014(99)80018-5
- Jackson-Maldonado, D., Thal, D., J., & Fenson, L. (2003). MacArthur Inventarios
- 746 del Desarrollo de Habilidades Comunicativas: User's guide and technical manual. Brookes

- 747 Publishing.
- Kalagher, H., & Yu, C. (2006). The effects of deictic pointing in word learning. In
- Proceedings of the 5th International Conference of Development and Learning.
- 750 Bloomington, IN.
- Kirk, E., Donnelly, S., Furman, R., Warmington, M., Glanville, J., & Eggleston, A.
- 752 (2022). The relationship between infant pointing and language development: A
- meta-analytic review. Developmental Review, 64, 101023.
- 754 https://doi.org/10.1016/j.dr.2022.101023
- Mahr, T., & Edwards, J. (2018). Using language input and lexical processing to
- predict vocabulary size. Developmental Science, 21(6), e12685.
- 757 https://doi.org/10.1111/desc.12685
- Marchman, V. A., Weisleder, A., Hurtado, N., & Fernald, A. (2021). Accuracy of the
- Language Environment Analyses (LENA) system for estimating child and adult speech in
- laboratory settings. Journal of Child Language, 48(3), 605–620.
- 761 https://doi.org/10.1017/S0305000920000380
- Matthews, D., Behne, T., Lieven, E., & Tomasello, M. (2012). Origins of the human
- pointing gesture: A training study. Developmental Science, 15(6), 817–829.
- 764 https://doi.org/10.1111/j.1467-7687.2012.01181.x
- McElreath, R. (2020). Statistical rethinking: A bayesian course with examples in r
- 766 and stan. Chapman; Hall/CRC.
- McGillion, M., Pine, J. M., Herbert, J. S., & Matthews, D. (2017). A randomised
- controlled trial to test the effect of promoting caregiver contingent talk on language
- development in infants from diverse socioeconomic status backgrounds. Journal of Child
- 770 Psychology and Psychiatry and Allied Disciplines, 58(10), 1122–1131.
- 771 https://doi.org/10.1111/jcpp.12725

- McMurray, B., Horst, J. S., & Samuelson, L. K. (2012). Word learning emerges from
 the interaction of online referent selection and slow associative learning. *Psychological*Review, 119(4), 831–877. https://doi.org/10.1037/a0029872
- Pace, A., Luo, R., Hirsh-Pasek, K., & Golinkoff, R. M. (2017). Identifying pathways between socioeconomic status and language development. *Annual Review of Linguistics*, 3, 285–308. https://doi.org/10.1146/annurev-linguistics-011516-034226
- Pan, B. A., Rowe, M. L., Singer, J. D., & Snow, C. E. (2005). Maternal correlates of growth in toddler vocabulary production in low-income families. *Child Development*, 76(4), 763–782. https://doi.org/10.1111/j.1467-8624.2005.00876.x
- Puccini, D., Hassemer, M., Salomo, D., & Liszkowski, U. (2010). The type of shared activity shapes caregiver and infant communication. *Gesture*, 10(2-3), 279–296.

 https://doi.org/10.1075/gest.10.2-3.08puc
- Reynolds, E., Vernon-Feagans, L., Bratsch-Hines, M., Baker, C., & Investigators, T.
 F. L. P. K. (2019). Mothers' and fathers' language input from 6 to 36 months in rural
 two-parent-families: Relations to children's kindergarten achievement. *Early Childhood*Research Quarterly, 47(2), 385–395. https://doi.org/10.1016/j.ecresq.2018.09.002
- Rosemberg, C. R., Alam, F., Audisio, C. P., Ramirez, M. L., Garber, L., & Migdalek,
 M. J. (2020). Nouns and verbs in the linguistic environment of Argentinian toddlers:
 Socioeconomic and context-related differences. First Language, 40(2), 192–217.
 https://doi.org/10.1177/0142723719901226
- Rowe, M. L. (2000). Pointing and talk by low-income mothers and their 14-month-old children. First Language, 20(60), 305–330. https://doi.org/10.1177/014272370002006005
- Rowe, M. L. (2012). A longitudinal investigation of the role of quantity and quality of child-directed speech in vocabulary development: Child-directed speech and vocabulary.

 Child Development, 83(5), 1762–1774. https://doi.org/10.1111/j.1467-8624.2012.01805.x

- Rowe, M. L., & Goldin-Meadow, S. (2009). Differences in early gesture explain SES
- disparities in child vocabulary size at school entry. Science, 323(5916), 951–953.
- 799 https://doi.org/10.1126/science.1167025
- Rowe, M. L., & Leech, K. A. (2019). A parent intervention with a growth mindset
- approach improves children's early gesture and vocabulary development. Developmental
- 802 Science, 22(4), e12792. https://doi.org/10.1111/desc.12792
- Rowe, M. L., Özçalışkan, Ş., & Goldin-Meadow, S. (2008). Learning words by hand:
- Gesture's role in predicting vocabulary development. First Language, 28(2), 182–199.
- 805 https://doi.org/10.1177/0142723707088310
- Rowe, M. L., Wei, R., & Salo, V. C. (2022). Early gesture predicts later language
- development. In A. Morgenstern & S. Goldin-Meadow (Eds.), Gesture in language:
- Development across the lifespan (A. Morgenstern & S. Goldin-Meadow (Eds.), pp. 93–111).
- Boston: De Gruyter Mouton. https://doi.org/10.1037/0000269-004
- Rowe, M. L., & Weisleder, A. (2020). Language development in context, 2, 201–223.
- 811 https://doi.org/10.1146/annurev-devpsych-042220-121816
- Salo, V. C., Reeb-Sutherland, B., Frenkel, T. I., Bowman, L. C., & Rowe, M. L.
- 813 (2019). Does intention matter? Relations between parent pointing, infant pointing, and
- developing language ability. Journal of Cognition and Development, 20(5), 635–655.
- https://doi.org/10.1080/15248372.2019.1648266
- Salomo, D., & Liszkowski, U. (2013). Sociocultural settings influence the emergence
- of prelinguistic deictic gestures. Child Development, 84(4), 1296–1307.
- 818 https://doi.org/10.1111/cdev.12026
- Shneidman, L. A., & Goldin-Meadow, S. (2012). Language input and acquisition in a
- Mayan village: How important is directed speech? Developmental Science, 15(5), 659–673.
- 821 https://doi.org/10.1111/j.1467-7687.2012.01168.x

- Suskind, D. L., Leffel, K. R., Graf, E., Hernandez, M. W., Gunderson, E. A., 822 Sapolich, S. G., ... Levine, S. C. (2016). A parent-directed language intervention for 823 children of low socioeconomic status: A randomized controlled pilot study. Journal of 824 Child Language, 43(2), 366-406. https://doi.org/10.1017/S0305000915000033 825 Tardif, T., Shatz, M., & Naigles, L. (1997). Caregiver speech and children's use of 826 nouns versus verbs: A comparison of English, Italian, and Mandarin. Journal of Child 827 Language, 24, 535-565. https://doi.org/10.1017/S030500099700319X 828 Team, R. C. (2021). R: A language and environment for statistical computing. 829 Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/ 831 Tfouni, L. V., & Klatzky, R. L. (1983). A discourse analysis of deixis: Pragmatic, 832 cognitive and semantic factors in the comprehension of "this", "that", "here" and "there". 833 Journal of Child Language, 10(1), 123–133. https://doi.org/10.1017/S030500090005183 834 Tincoff, R., Seidl, A., Buckley, L., Wojcik, C., & Cristia, A. (2019). Feeling the way 835 to words: Parents' speech and touch cues highlight word-to-world mappings of body parts. 836 Language Learning and Development, 15(2), 103–125. 837 https://doi.org/10.1080/15475441.2018.1533472 838 Villiers Rader, N. de, & Zukow-Goldring, P. (2012). Caregivers' gestures direct infant 839 attention during early word learning: The importance of dynamic synchrony. Language 840 Sciences, 34(5), 559–568. https://doi.org/10.1016/j.langsci.2012.03.011 841 Walker, D., Greenwood, C., Hart, B., & Carta, J. (1994). Prediction of school 842 outcomes based on early language production and socioeconomic factors. Child Development, 65(2), 606-621. Retrieved from https://doi.org/10.1111/j.1467-8624.1994.tb00771.x
- Weber, A., Fernald, A., & Diop, Y. (2017). When cultural norms discourage talking to babies: Effectiveness of a parenting program in rural senegal. *Child Development*, 88(5),

- $_{848}$ 1513–1526. https://doi.org/10.1111/cdev.12882
- Weisleder, A., & Fernald, A. (2013). Talking to children matters: Early language
- experience strengthens processing and builds vocabulary. Psychological Science, 24 (11),
- 851 2143–2152. https://doi.org/10.3399/096016407782317928
- Wittenburg, P., Brugman, H., Russel, A., Klassman, A., & Sloetjes, H. (2006).
- ELAN: A professional framework for multimodality research. Proceedings of LREC 2006,
- Fifth International Conference on Language Resources and Evaluation. Retrieved from
- 855 https://archive.mpi.nl/tla/elan
- Yuksel, P., & Brooks, P. J. (2017). Encouraging usage of an endangered ancestral
- language: A supportive role for caregivers' deictic gestures. First Language, 37(6),
- 858 561–582. https://doi.org/10.1177/0142723717713502
- Zukow-Goldring, P. (1996). Sensitive caregiving fosters the comprehension of speech:
- When gestures speak louder than words. Early Development and Parenting: An
- International Journal of Research and Practice, 5(4), 195–211.
- https://doi.org/10.1002/(SICI)1099-0917(199612)5:4%3C195::AID-EDP133%3E3.0.CO;2-H