Asymptotics of Entropy-Regularized Optimal Transport via Chaos Decomposition

Lang Liu

Department of Statistics, University of Washington

November 23, 2020

Collaborators

Zaid Harchaoui

Soumik Pal

Optimal matching

- ρ_0 and ρ_1 densities on \mathbb{R}^d .
- $\{X_i\}_{i=1}^N$ and $\{Y_i\}_{i=1}^N$ independent i.i.d. samples from ρ_0 and ρ_1 .
- c nonnegative and continuous with c(x,x)=0.
- \bullet σ permutation or matching.
- S_N set of permutations on $[N] := \{1, \dots, N\}$.

$$\hat{\mathbf{C}} := \min_{\sigma \in \mathcal{S}_N} \frac{1}{N} \sum_{i=1}^N c(X_i, Y_{\sigma_i}). \tag{1}$$

Monge-Kantorovich optimal transport

Monge-Kantorovich optimal transport (OT)

$$\mathbf{C} := \mathbf{C}(\rho_0, \rho_1) := \inf_{\nu \in \mathsf{CP}(\rho_0, \rho_1)} \int c(x, y) d\nu(x, y). \tag{2}$$

• $CP(\rho_0, \rho_1)$ set of couplings (joint distributions) with marginals ρ_0 and ρ_1 .

The limiting behavior of $(\hat{\mathbf{C}} - \mathbf{C})$ has been studied extensively (in special cases) in the literature.

- Rate of convergence.
- Limiting distributions when $\rho_0 \neq \rho_1$ and $\rho_0 = \rho_1$.

Previous work

Optimal matching:

- · Combinatorics (Ajtai, Komlós, Tusnády '84).
- Probability and statistics (Talagrand '92, Fournier & Guillin '15, Weed & Bach '19, Lei '20).
- Economics (Kosowsky & Yuille '94, Galinchon & Salanié '09).

Discrete optimal transport (OT):

- On R (Munk & Czado '98, del Barrio, Giné, Matran '99, del Barrio, Giné, Utzet '05).
- On \mathbb{R}^d (Ripple, Munk, Sturm '16, del Barrio & Loubes '19).
- On a finite metric space (Sommerfeld & Munk '18, Klatt, Munk, Zemel '20).
- On a countable metric space (Tameling, Sommerfeld, Munk '19)

Discrete optimal transport

Notice that

$$\hat{\mathbf{C}} := \min_{\sigma \in \mathcal{S}_N} \frac{1}{N} \sum_{i=1}^N c(X_i, Y_{\sigma_i}) = \min_{A_{\sigma} : \sigma \in \mathcal{S}_N} \frac{1}{N} \sum_{i=1}^N \sum_{j=1}^N C_{ij} [A_{\sigma}]_{ij}.$$

- C cost matrix, i.e., $C_{ij} := c(X_i, Y_j)$.
- A_{σ} permutation matrix, i.e., $A_{i\sigma_i} = 1$ and 0 elsewhere.

Matrix relaxation (linear programming):

$$\hat{\mathbf{C}} = \min_{M \in DS} \langle C, M \rangle. \tag{3}$$

- DS (normalized) doubly stochastic matrices (convex hull of $\{\frac{1}{N}A_{\sigma}\}$).
- $\langle C, M \rangle := \sum_{i=1}^{N} \sum_{j=1}^{N} C_{ij} M_{ij}$.

Discrete optimal transport

Let $\hat{\rho}_0:=\frac{1}{N}\sum_{i=1}^N \delta_{X_i}$ and $\hat{\rho}_1:=\frac{1}{N}\sum_{i=1}^N \delta_{Y_i}$ be empirical measures.

$$\min_{M \in DS} \langle C, M \rangle = \min_{\nu \in CP(\hat{\rho}_0, \hat{\rho}_1)} \int c(x, y) d\nu(x, y).$$

- $M_{ij} \longleftrightarrow \nu(X_i, Y_j)$.
- $\frac{1}{N}A_{\sigma}$ (permutation matrix) $\longleftrightarrow \frac{1}{N}\sum_{i=1}^{N}\delta_{(X_{i},Y_{\sigma_{i}})}$ (Monge coupling).

Entropic regularization

Entropy-regularized optimal transport (EOT) (Cuturi '13, Ferradans, Papadakis, Peyré, Aujol '14)

$$\min_{M \in DS} \left[\langle C, M \rangle + \epsilon \operatorname{Ent}_0(M) \right]. \tag{4}$$

- $\epsilon > 0$ regularization parameter.
- $\operatorname{Ent}_0(M) := \sum_{i,j=1}^N M_{ij} \log M_{ij}$ (negative Shannon entropy).

Asymptotics of entropy-regularized OT

Gaussian and chi-squares limits can be obtained (Bigot, Cazelles, Papadakis '19, Klatt, Tameling, Munk '20) for the EOT (4)

- ρ_0 and ρ_1 have **finite support** \Rightarrow finite-dimensional simplex.
- $c(x,y) := ||x-y||^p$ for $p \ge 1$.
- Core idea: calculus on finite-dimensional simplex.

Can we extend these results to densities and arbitrary cost functions?

Entropic regularization in continuum

Let $H(\nu) := \int \nu(x,y) \log \nu(x,y) dxdy$, if ν is a density, and infinity otherwise.

$$\mu := \mu_{\epsilon} := \underset{\nu \in \mathsf{CP}(\rho_0, \rho_1)}{\mathsf{arg\,min}} \left[\int c(x, y) d\nu(x, y) + \epsilon H(\nu) \right]. \tag{5}$$

 \exists functions a and b (Csiszar '75, Rüschendorf & Thomsen '93) such that

$$\mu(x,y) \stackrel{\text{a.s.}}{=} \xi(x,y)\rho_0(x)\rho_1(y), \tag{6}$$

where $\xi(x,y) := \exp\left(-\frac{1}{\epsilon}(c(x,y) - a(x) - b(y))\right)$, and

$$\int \xi(x,y)\rho_1(y)dy \stackrel{\text{a.s.}}{=} 1 \quad \text{and} \quad \int \xi(x,y)\rho_0(x)dx \stackrel{\text{a.s.}}{=} 1. \tag{7}$$

Markov transition kernels.

Remark. μ is the *Schrödinger bridge* between ρ_0 and ρ_1 (Schrödinger '32, Föllmer '88, Léonard '12).

Reformulation with a Gibbs measure

How to estimate the Schrödinger bridge μ ?

An explicit convex combination of all pairwise empirical measures:

$$\hat{\mu} := \sum_{\sigma \in \mathcal{S}_N} q^*(\sigma) \frac{1}{N} \sum_{i=1}^N \delta_{(X_i, Y_{\sigma_i})}, \tag{8}$$

where q^* is a Gibbs measure, with $c(X, Y_\sigma) := \sum_{i=1}^N c(X_i, Y_{\sigma_i})$,

$$q^*(\sigma) := \frac{\exp\left(-\frac{1}{\epsilon}c(X, Y_{\sigma})\right)}{\sum_{\tau \in S_N} \exp\left(-\frac{1}{\epsilon}c(X, Y_{\tau})\right)}.$$
 (9)

Remark. $\hat{\mu}$ can be viewed as the Schrödinger bridge between $\hat{\rho}_0$ and $\hat{\rho}_1$. We will call it the discrete Schrödinger bridge.

Reformulation with a Gibbs measure

Define

- $\mathcal{P}(\mathcal{S}_N)$ probability measures on the set of permutations \mathcal{S}_N .
- $\operatorname{Ent}(q) := \sum_{\sigma \in \mathcal{S}_N} q(\sigma) \log q(\sigma)$ for $q \in \mathcal{P}(\mathcal{S}_N)$.

$$q^* = \operatorname*{arg\,min}_{q \in \mathcal{P}(\mathcal{S}_N)} \left[\sum_{\sigma \in \mathcal{S}_N} q(\sigma) \frac{1}{N} c(X, Y_\sigma) + \frac{\epsilon}{N} \mathrm{Ent}(q) \right]. \tag{10}$$

$$\begin{array}{ccc}
& M = \sum_{\sigma \in \mathcal{S}_N} q(\sigma) \frac{1}{N} A_{\sigma} & \\
& \longrightarrow & DS
\end{array}$$

$$\sum_{\sigma \in \mathcal{S}_N} q(\sigma) \frac{1}{N} c(X, Y_{\sigma}) \qquad \qquad = \qquad \qquad \langle C, M \rangle$$

Recap

The discrete Schrödinger bridge $\hat{\mu} := \sum_{\sigma \in \mathcal{S}_N} q^*(\sigma) \frac{1}{N} \sum_{i=1}^N \delta_{(X_i, Y_{\sigma_i})}$, where

$$q^*(\sigma) := \frac{\exp\left(-\frac{1}{\epsilon}c(X, Y_\sigma)\right)}{\sum_{\tau \in \mathcal{S}_N} \exp\left(-\frac{1}{\epsilon}c(X, Y_\tau)\right)}.$$

The continuum Schrödinger bridge

$$\mu := \mathop{\arg\min}_{\nu \in \mathsf{CP}(\rho_0, \rho_1)} \left[\int c(x,y) d\nu(x,y) + \epsilon H(\nu) \right].$$

- Pal and Wong ('20) considered a particular cost and decaying $\epsilon = \epsilon_N$.
- We consider an arbitrary cost c and fixed ϵ .

Theorem 1 (Consistency, Harchaoui, L., Pal '20)

Under appropriate assumptions, the discrete Schrödinger bridge $\hat{\mu}$ converges weakly to the continuum Schrödinger bridge μ , in probability, as $N \to \infty$.

To get the CLT-type result, we consider $\int \eta d\hat{\mu} - \int \eta d\mu$.

- η arbitrary test function.
 - $\int \eta d\hat{\mu}$ the *EOT statistic*.
 - $\int \eta d\mu$ the population parameter.

Theorem 2 (First order chaos, Harchaoui, L., Pal '20)

Under appropriate assumptions, \exists functions $f := f^{\eta}$ and $g := g^{\eta}$ such that

$$\int \eta(d\hat{\mu}-d\mu)=\mathcal{L}_1+o_p(N^{-1/2}),$$

where

$$\mathcal{L}_1 := \frac{1}{N} \sum_{i=1}^{N} [f(X_i) + g(Y_i)].$$

We call \mathcal{L}_1 the first order chaos of the EOT statistic $\int \eta d\hat{\mu}$.

Corollary 3 (Functional CLT)

Under appropriate assumptions, $\sqrt{N} \int \eta(d\hat{\mu} - d\mu) \rightarrow_d \mathcal{N}(0,\varsigma^2)$, where

$$arsigma^2:=arsigma^2(\eta):=\int f^2(x)
ho_0(x)dx+\int g^2(y)
ho_1(y)dy.$$

Theorem 4 (Second order chaos, Harchaoui, L., Pal '20)

Under appropriate assumptions, there exists $C:=C^\eta$, $f:=f^\eta$, $g:=g^\eta$ and $h:=h^\eta$ such that

$$\int \eta \ d(\hat{\mu} - \mu) = \mathcal{L}_1 + \mathcal{L}_2 - \frac{C}{N} + o_p(N^{-1}),$$

where

$$\mathcal{L}_2 := \frac{1}{N(N-1)} \Big\{ \sum_{i \neq j} [f(X_i, X_j) + g(Y_i, Y_j)] + \sum_{i,j=1}^{N} h(X_i, Y_j) \Big\}.$$

We call \mathcal{L}_2 the second order chaos of the EOT statistic $\int \eta d\hat{\mu}$.

Corollary 5 (Second order functional convergence)

Under appropriate assumptions, there exists $\{\lambda_{kl}\}, \{s_k\}$ such that

$$N\left[\int \eta \ d(\hat{\mu}-\mu)-\mathcal{L}_1
ight]+C
ightarrow_d Z,$$

where

$$Z := \sum_{k,l \ge 1} \lambda_{kl} \left\{ U_k V_l + s_k s_l U_l V_k - s_l U_k U_l - s_k V_k V_l + (s_l + s_k) \mathbb{1} \{ k = l \} \right\},$$

and $\{U_k\}, \{V_k\}$ are two independent i.i.d. samples from $\mathcal{N}(0,1)$.

Remark. In particular, we can choose η to be the cost c.

Contiguity

Definition 6 (Le Cam '60)

Consider two sequences of probability measures $(P^N, N \ge 1)$ and $(Q^N, N \ge 1)$. We say P^N is contiguous w.r.t. Q^N , denoted by

$$P^N \triangleleft Q^N$$
, if $Q^N(A_N) \rightarrow 0$ implies $P^N(A_N) \rightarrow 0$.

An asymptotic version of absolute continuity:

$$P \ll Q$$
 if $Q(A) = 0$ implies $P(A) = 0$.

• If $P^N \triangleleft Q^N$, then $Z_N = o_p(1)$ under Q^N implies $Z_N = o_p(1)$ under P^N .

Contiguity

We will change the model $(X_i, Y_i) \stackrel{\text{i.i.d.}}{\sim} \rho_0 \otimes \rho_1$ to $(X_i, Y_i) \stackrel{\text{i.i.d.}}{\sim} \mu$.

- $(\rho_0 \otimes \rho_1)^{\infty}$ and μ^{∞} are mutually singular.
- The empirical measures $\hat{\rho}_0 \rightarrow_{a.s.} \rho_0$ and $\hat{\rho}_1 \rightarrow_{a.s.} \rho_1$ under both models.
- Consider the law of $(\hat{\rho}_0, \hat{\rho}_1)$ under $(\rho_0 \otimes \rho_1)^N$ and under $\mu^N P^N$ and Q^N .

 P^N is contiguous¹ w.r.t. Q^N .

- $Z_N = o_p(1)$ under Q^N implies $Z_N = o_p(1)$ under P^N .
- If $Z_N := Z_N(\hat{\rho}_0, \hat{\rho}_1)$, then $o_p(1)$ under μ^N implies $o_p(1)$ under $(\rho_0 \otimes \rho_1)^N$.

How to characterize a function of $(\hat{\rho}_0, \hat{\rho}_1)$? Permutation symmetry.

$$f(X_1,\ldots,X_N,Y_1,\ldots,Y_N)=f(X_{\sigma_1},\ldots,X_{\sigma_N},Y_{\tau_1},\ldots,Y_{\tau_N}).$$

¹See Theorem 7 in (Harchaoui, L., Pal '20).

Theorem 1: consistency

Recall Theorem 1: $\hat{\mu}$ converges weakly to μ , in probability.

Proof sketch of Theorem 1.

- Change the measure to $(X_i, Y_i) \stackrel{\text{i.i.d.}}{\sim} \mu$ (Schrödinger bridge).
- $\int \eta d\hat{\mu} = \mu^{N}[\eta(X_1,Y_1)\mid \mathcal{G}_N]$ with

 \mathcal{G}_N is the σ -algebra generated by empirical measures $\hat{\rho}_0$ and $\hat{\rho}_1$.

• By reverse martingale convergence theorem,

$$\int \eta d\hat{\mu} \rightarrow_{\text{a.s.}} \int \eta d\mu \text{ under } \mu^{\text{N}}.$$

• Contiguity to pull back the result to $(X_i, Y_i) \stackrel{\text{i.i.d.}}{\sim} \rho_0 \otimes \rho_1$.

Remark. $\int \eta d\hat{\mu}$ is unbiased under μ^N , i.e., $\mu^N \left[\int \eta d\hat{\mu} \right] = \int \eta d\mu$.

L² projection for paired samples

Recall $\int \eta d\mu = \mu^N [\int \eta d\hat{\mu}]$.

• \mathbf{L}^2 projection of $\int \eta d\hat{\mu}$ onto the space of constants.

What's the "best" $f(X_1) + g(Y_1)$ that approximates $\int \eta d(\hat{\mu} - \mu)$?

- L^2 projection of $\int \eta d(\hat{\mu} \mu)$ onto $Span\{f(X_1) + g(Y_1)\}.$
- · How to compute?

Matching conditional expectations:

$$\mu^{N}\left[\int \eta \ d(\hat{\mu} - \mu) \mid X_{1}\right] = \mu[f(X_{1}) + g(Y_{1}) \mid X_{1}] = f(X_{1}) + \mu[g(Y_{1}) \mid X_{1}]$$

$$\mu^{N}\left[\int \eta \ d(\hat{\mu} - \mu) \mid Y_{1}\right] = \mu[f(X_{1}) + g(Y_{1}) \mid Y_{1}] = \mu[f(X_{1}) \mid Y_{1}] + g(Y_{1}).$$

L² projection for paired samples

How to compute $\mu^N [\int \eta d(\hat{\mu} - \mu) \mid X_1]$?

By the tower property and symmetry,

$$\mu^{N} \left[\int \eta \ d(\hat{\mu} - \mu) \mid X_{1} \right] = \frac{1}{N} \mu \left[\eta(X_{1}, Y_{1}) - \int \eta d\mu \mid X_{1} \right] =: \frac{1}{N} \kappa_{1,0}(X_{1})$$

$$\mu^{N} \left[\int \eta \ d(\hat{\mu} - \mu) \mid Y_{1} \right] = \frac{1}{N} \mu \left[\eta(X_{1}, Y_{1}) - \int \eta d\mu \mid Y_{1} \right] =: \frac{1}{N} \kappa_{0,1}(Y_{1}).$$

How to compute $\mu[f(X_1) \mid Y_1]$?

- · Direct computation.
- Markov operators induced by Markov transition kernels.

Projection with Markov operators

Recall
$$\mu(x,y)=\xi(x,y)\rho_0(x)\rho_1(y)$$
 and
$$\int \xi(x,y)\rho_0(x)dx \stackrel{\text{a.s.}}{=} 1 \quad \text{and} \quad \int \xi(x,y)\rho_1(y)dy \stackrel{\text{a.s.}}{=} 1.$$

Conditional probability densities

$$p_{X_1|Y_1}(x \mid y) = \xi(x, y)\rho_0(x)$$
 and $p_{Y_1|X_1}(y \mid x) = \xi(x, y)\rho_1(y)$.

Markov operators
$$\mathcal{A}: \mathbf{L}^2(\rho_0) \to \mathbf{L}^2(\rho_1)$$
 and $\mathcal{A}^*: \mathbf{L}^2(\rho_1) \to \mathbf{L}^2(\rho_0)$,
$$\mathcal{A}f(y) := \int f(x)\xi(x,y)\rho_0(x)dx = \mu[f(X_1) \mid Y_1](y)$$

$$\mathcal{A}^*g(x) := \int g(y)\xi(x,y)\rho_1(y)dy = \mu[g(Y_1) \mid X_1](x).$$

Projection with Markov operators

Goal: compute the projection of $\int \eta d(\hat{\mu} - \mu)$ onto $\operatorname{Span}\{f(X_1) + g(Y_1)\}$. Strategy: match conditional expectations:

$$\frac{1}{N}\kappa_{1,0}(x) = f(x) + \mathcal{A}^*g(x) \quad \text{and} \quad \frac{1}{N}\kappa_{0,1}(y) = g(y) + \mathcal{A}f(y).$$

Solutions:

$$f = rac{1}{N}(I - A^*A)^{-1}(\kappa_{1,0} - A^*\kappa_{0,1})$$

 $g = rac{1}{N}(I - AA^*)^{-1}(\kappa_{0,1} - A\kappa_{1,0}).$

Theorem 2: first order chaos

What's the projection of $\int \eta d(\hat{\mu} - \mu)$ onto Span $\{\sum_{i=1}^{N} [f(X_i) + g(Y_i)]\}$?

First order chaos \mathcal{L}_1 :

$$\frac{1}{N}\sum_{i=1}^{N}\left[(I-\mathcal{A}^{*}\mathcal{A})^{-1}(\kappa_{1,0}-\mathcal{A}^{*}\kappa_{0,1})(X_{i})+(I-\mathcal{A}\mathcal{A}^{*})^{-1}(\kappa_{0,1}-\mathcal{A}\kappa_{1,0})(Y_{i})\right].$$

It can be shown that²

$$\int \eta \ d(\hat{\mu}-\mu) - \mathcal{L}_1 = o_{
ho}(\mathit{N}^{-1/2}), \quad ext{under } \mu^{\mathit{N}}.$$

Remark. This is an extension of the Hoeffding decomposition in the U-statistics theory, where $(X_i, Y_i) \stackrel{\text{i.i.d.}}{\sim} \rho_0 \otimes \rho_1$.

²See Proposition 28 in (Harchaoui, L., Pal '20).

Theorem 3: second order chaos

What about second order terms?

• Projection onto

$$\operatorname{Span}\left\{\sum_{i\neq j}[f(X_i,X_j)+g(Y_i,Y_j)]+\sum_{i,j=1}^Nh(X_i,Y_j)\right\}.$$

• Tensor products of operators, e.g., $\mathcal{A} \otimes \mathcal{A}^* : \mathbf{L}^2(\rho_0 \otimes \rho_1) \to \mathbf{L}^2(\rho_1 \otimes \rho_0)$,

$$(A \otimes A^*) f(Y_1, X_2) = \mu^2 [f(X_1, Y_2) \mid Y_1, X_2].$$

Building block $C := (I - A^*A) \otimes (I - AA^*)$.

- C^{-1} is well-defined on a proper domain.
- $C^{-1} = (I A^*A)^{-1} \otimes (I AA^*)^{-1}$.

Control of remainders

Let $R_1 := \int \eta d(\hat{\mu} - \mu) - \mathcal{L}_1$. By a change of measure,

$$\mu^N[|R_1|] \leq \sqrt{\mathbb{E}[U_N^2]},$$

where U_N , the numerator of R_1 , reads

$$U_N := \frac{1}{N!} \sum_{\sigma \in \mathcal{S}_N} \frac{1}{N} \widetilde{\eta}(X, Y_{\sigma}) \xi^{\otimes}(X, Y_{\sigma})$$

- $\widetilde{\eta}$ is the *degenerate* version of η .
- $\xi^{\otimes}(X, Y_{\sigma}) := \prod_{i=1}^{N} \xi(X_i, Y_{\sigma_i}).$

How to control $\mathbb{E}[U_N^2]$?

- Hoeffding decomposition up to the Nth order terms.
- Variance bound using a chain of Markov operators.

Schrödinger bridge in the continuum

Suppose (Z(0), Z(1)) is distributed according to a Markov transition kernel

$$p(x,y) := \frac{1}{\Lambda(x)} \exp\left(-\frac{1}{\epsilon}c(x,y)\right).$$

What is Law(Z(0), Z(1)), conditioned on $Z(0) \sim \rho_0$ and $Z(1) \sim \rho_1$?

A first guess: $R(x, y) := \rho_0(x)p(x, y)$.

- A valid probability distribution.
- Marginal of x is ρ_0 .
- Marginal of y may NOT be ρ_1 .

How to fix it? Information projection.

Schrödinger bridge in the continuum

The joint law is the *I-projection* (Föllmer '88, Léonard '12)

$$\mu := \mathop{\arg\min}_{\nu \in \mathsf{CP}(\rho_0, \rho_1)} \mathit{H}(\nu \mid R),$$

where $H(\nu_1 \mid \nu_2) = \int \log\left(\frac{d\nu_1}{d\nu_2}\right) d\nu_1$, if $\nu_1 \ll \nu_2$, and infinity otherwise.

- μ is called the **Schrödinger bridge** connecting ρ_0 and ρ_1 .
- A simple algebra shows

$$\mu = \operatorname*{\mathsf{arg\,min}}_{
u \in \mathsf{CP}(
ho_0,
ho_1)} \left[\int c(x,y) d
u(x,y) + \epsilon H(
u)
ight].$$

The Schrödinger problem

Schrödinger's lazy gas experiment.

- Gas particles moving as $BM(\epsilon)$.
- Initial configuration $L_N(0) \approx \nu_0$.
- Question: conditioned on $\{L_N(1) \approx \nu_1\}$, what are the most likely paths of these particles?

How to get the paths?

- Solve for the Schrödinger bridge, i.e., Law(Z(0), Z(1)).
- Connect Z(0) and Z(1) with a Brownian bridge.

Discrete Schrödinger bridge

Consider

- *N* i.i.d. particles $\{Z_i\}_{i=1}^N$.
- $(Z_i(0), Z_i(1))$ is distributed as a Markov transition kernel

$$p(x,y) := \frac{1}{\Lambda(x)} \exp\left(-\frac{1}{\epsilon}c(x,y)\right).$$

• Two discrete measures $\nu_0:=\frac{1}{N}\sum_{i=1}^N \delta_{x_i}$ and $\nu_1:=\frac{1}{N}\sum_{i=1}^N \delta_{y_i}.$

Conditioned on $L_N(0) = \nu_0$ and $L_N(1) = \nu_1$, what is the joint law

$$\frac{1}{N} \sum_{i=1}^{N} \delta_{(Z_i(0), Z_i(1))}?$$

$$\sum_{\sigma \in \mathcal{S}_N} q^*(\sigma) \frac{1}{N} \sum_{i=1}^N \delta_{(x_i, y_{\sigma_i})}!$$

Summary

We are interested in the Schrödinger bridge:

$$\mu := \mathop{\arg\min}_{\nu \in \mathsf{CP}(\rho_0, \rho_1)} \left[\int c(x,y) d\nu(x,y) + \epsilon H(\nu) \right].$$

We proposed the discrete Schrödinger bridge using the Gibbs measure q^* :

$$\hat{\mu} := \sum_{\sigma \in \mathcal{S}_{\mathcal{N}}} q^*(\sigma) rac{1}{\mathcal{N}} \sum_{i=1}^{\mathcal{N}} \delta_{(X_i, Y_{\sigma_i})}.$$

We proved that

- $\hat{\mu}$ converges weakly to μ in probability.
- Functional CLT for $\hat{\mu}$.
- Second order functional Gaussian chaos limit when the Gaussian limit is degenerate.

Thank you!

Paper: arxiv.org/abs/2011.08963

Webpage: langliu95.github.io

Change of measure

The Gibbs measure q^* can be rewritten as

$$q^*(\sigma) = \frac{\prod_{i=1}^{N} \mu(X_i, Y_{\sigma_i})}{\sum_{\tau \in \mathcal{S}_N} \prod_{i=1}^{N} \mu(X_i, Y_{\tau_i})}.$$
 (11)

 σ gets the largest probability if $\{(X_i, Y_{\sigma_i})\}_{i=1}^N$ is roughly i.i.d. from μ .

Remark. This change of measure is reminiscent of exponential tilting—we change the original product measure to μ by adding an exponential factor $\exp\left(-\frac{1}{\epsilon}(c(x,y)-a(x)-b(y))\right)$.

Discrete Schrödinger bridge

Recall that the discrete Schrödinger bridge is

$$\hat{\mu} := \sum_{\sigma \in \mathcal{S}_{\mathcal{N}}} q^*(\sigma) rac{1}{\mathcal{N}} \sum_{i=1}^{\mathcal{N}} \delta_{(X_i, Y_{\sigma_i})}.$$

To see this, assume $X_i = x_i$, leading to the initial law $\nu_0 := \frac{1}{N} \sum_{i=1}^N \delta_{x_i}$.

• Given $\nu_1:=\frac{1}{N}\sum_{i=1}^N \delta_{y_i}$, the event $\{L_N(1)=\nu_1\}=\cup_{\sigma\in\mathcal{S}_N} E_\sigma$, where

$$E_{\sigma}:=\{Y_i=y_{\sigma_i}:i\in[N]\}.$$

- On E_{σ} , the joint law $\frac{1}{N} \sum_{i=1}^{N} \delta_{(X_i, Y_i)}$ reads $\frac{1}{N} \sum_{i=1}^{N} \delta_{(x_i, y_{\sigma_i})}$.
- The conditional probability of E_{σ} given $L_N(1) = \nu_1$ is

$$\frac{\prod_{i=1}^{N} \frac{1}{\Lambda_{\epsilon}(x_{i})} \exp\left(-\frac{1}{\epsilon}c(x_{i}, y_{\sigma_{i}})\right) dx_{i} dy_{i}}{\sum_{\tau \in \mathcal{S}_{N}} \prod_{i=1}^{N} \frac{1}{\Lambda_{\epsilon}(x_{i})} \exp\left(-\frac{1}{\epsilon}c(x_{i}, y_{\tau_{i}})\right) dx_{i} dy_{i}} = \frac{\exp\left(-\frac{1}{\epsilon}c(x, y_{\sigma})\right)}{\sum_{\tau \in \mathcal{S}_{N}} \exp\left(-\frac{1}{\epsilon}c(x, y_{\tau})\right)},$$

which is exactly $q^*(\sigma)$ (with $X_i = x_i$ and $Y_i = y_i$).