Predicción de Churn en Telecomunicaciones

1. Problema de Negocio (ficticio)

Una empresa de telecomunicaciones necesita identificar qué clientes tienen mayor probabilidad de abandonar sus servicios (churn) para implementar estrategias de retención proactivas. El objetivo es:

- 1. **Identificar factores de riesgo** que llevan al abandono de clientes
- 2. Cuantificar el impacto individual de cada variable en la decisión de churn
- 3. Priorizar acciones de retención basadas en probabilidades de abandono

2. Desafíos Técnicos

- Dataset con 85+ variables de comportamiento del cliente
- Propuesta de un entorno de trabajo: Docker + Airflow
- Construcción de un DAG que represente el ciclo de vida típico de construcción y aplicación de un modelo de analítica avanzada
- Propuestas de mejoras: uso de PostgresSQL, MLFlow, Grafana y Prometheus

3. Desarrollo de la prueba

- 1. EDA sobre el dataset proporcionado:
 - a. Exploración básica de los datos (estadísticas, nulos, distribución de la variable objetivo)
 - b. Análisis univariado de variables numéricas y categóricas
 - c. Análisis bivariado y correlaciones
 - d. Análisis de características importantes para el churn
 - e. Análisis de segmentación entre algunas variables clave

Link al notebook:

https://github.com/Tessie295/dag_system/tree/main

-0.25

Conclusiones generales EDA

- 1. **Abandono multifactorial:** El churn parece ser un fenómeno complejo determinado por múltiples factores, no por variables individuales aisladas.
- 2. **Importancia de la antigüedad del equipo:** Los días de antigüedad del equipo ("**eqpdays**") tienen la correlación positiva más alta con el abandono, sugiriendo que los clientes con dispositivos más antiguos podrían ser un segmento a priorizar para retención.
- 3. Valor del dispositivo como factor de retención: Los clientes con dispositivos más caros ("hnd_price") tienden a ser más leales, posiblemente debido a un mayor compromiso financiero o mejor experiencia de usuario.
- 4. **Segmentos de alto riesgo:** Aunque no hay una separación clara, podríamos identificar segmentos de alto riesgo como:
- Clientes con equipos antiguos
- Clientes con dispositivos de bajo costo
- Algunos casos atípicos con patrones de uso inusuales

3. Desarrollo de la prueba

2. Selección de características

- a. Análisis de outliers
- b. Selección de características:
 - i. Preparación de datos para análisis de correlación
 - ii. Eliminación de características numéricas altamente correlacionadas
 - iii. Selección basada en ANOVA F-value (solo variables numéricas)
 - iv. Selección basada en Información Mutua (solo variables numéricas)
 - v. Selección basada en Random Forest (solo variables numéricas)
 - vi. Análisis de características categóricas y selección con Random Forest
 - vii. Lista final de características numéricas y categóricas seleccionadas

Top 15 Características Numéricas según Random Forest eqpdays change_mou mou_Mean totrev months change_rev totcalls Feature avgqty avgmou avgrev rev_Mean mou_peav_Mean mou_cvce_Mean mou_opkv_Mean mouowylisv_Mean

0.02

0.03

Importance

0.04

0.05

0.00

0.01

3. Desarrollo de la prueba

- 3. Preparación de los datos para el modelado
 - a. Manejo de valores faltantes (mediana numéricas, moda categóricas)
 - b. Manejo de outilers (percentiles capping)
 - c. Codificación de variables categóricas
 - d. Escalado de características (teniendo en cuenta la selección anterior)
 - e. División en conjuntos de entrenamiento y prueba

3. Desarrollo de la prueba

4. Modelado

- a. Modelo de Regresión Logística
- b. Modelo de Random Forest
 - i. Entrenamiento con validación cruzada para ver rendimiento
 - ii. Optimización de parámetros con GridSearchCV
- c. Modelo de XGBoost
 - i. Entrenamiento con validación cruzada para ver rendimiento
 - ii. Optimización de parámetros con RandomizedSearchCV

Comparación de modelos

3. Desarrollo de la prueba

5. Arquitectura/pipeline

Creación de los contenedores de servicios en Docker

CONTAINER ID NAMES	IMAGE	COMMAND		CREATED	STATUS	PORTS		
2a29b94588b3	dag_telecom-mlflow	"bash -c '\n	mkdir"	3 minutes ago	Up 3 minutes	0.0.0.0:5000-	>5000/tcp, [::]:5000->	-5000/tc
p dag_teleco 2f31da4561d7 p dag_teleco	grafana/grafana:9.5.1 m-grafana-1	"/run.sh"		3 minutes ago	Up 3 minutes	0.0.0.0:3000-	>3000/tcp, [::]:3000->	-3000/tc
62df82758528	apache/airflow:2.7.1 m-airflow-triggerer-1	"/usr/bin/dum	b-init"	3 minutes ago	Up 3 minutes (healthy)	8080/tcp		
fbfcb4f70f4f	apache/airflow:2.7.1 m-airflow-webserver-1	"/usr/bin/dum	/usr/bin/dumb-init"		Up 3 minutes (healthy) 0.0.0.0:8080		->8080/tcp, [::]:8080->8080/tc	
c28f1781f2e6		"/usr/bin/dumb-init" "docker-entrypoint.s"		3 minutes ago	Up 3 minutes (healthy)	8080/tcp		
48e733cf55bc				3 minutes ago	Up 3 minutes (healthy)	0.0.0.0:5435->5432/tcp, [::]:5435->5432/tc		
e3deefea00fd		"/usr/bin/d	bioit "	3 minutes acc	Un 2 minutes (healthu)	0000/+co		_
b79b00baffca p dag_teleco 4cc41be4ec6a p dag_teleco b46af602aa35		"/bin/prome "docker-ent "docker-ent	Servicio		URL		Credenciales	00/tc
			Airflow		http://localhost:8080	5000	airflow/airflow No requiere admin/admin	32/tc
			MLflow		http://localhost:5000			
			Grafana		http://localhost:3000			
			Prometh	ieus	http://localhost:9090		No requiere	
			4	1				

Configuración y puesta en marcha del DAG en Airflow

Explicación pipeline - DAG

1. Setup PostgreSQL (setup_postgres_tables)

- Creación de tablas en PostgreSQL
- Establecimiento de permisos

2. Preparación de Datos (prepare_data)

- Carga el dataset CSV
- Limpieza y formateado datos
- Manejo de valores faltantes y outliers
- Codificación de variables categóricas
- Selección de características importantes
- Escalado de datos y división en train/holdout
- Guarda registros en MLflow

3. Entrenamiento del Modelo (train_model)

- Configuración hiperparámetros de XGBoost
- Validación cruzada
- Entrenamiento del modelo final
- Cálculo de importancia de características
- Guardado del modelo entrenado
- Registro métricas en MLflow

4. Evaluación del Modelo (evaluate_model)

- Evaluación el modelo en conjunto holdout
- Cálculo de métricas de rendimiento
- Generación de visualizaciones (ROC, Confusion Matrix)
- Creación explicaciones SHAP
- Análisis de clientes específicos
- Guardado de resultados en PostgreSQL

Métricas y Evaluación

Métricas del Modelo

- Accuracy: Precisión general del modelo
- Precision: Proporción de verdaderos positivos
- Recall: Capacidad de detectar churns
- F1-Score: Media armónica de precision y recall
- AUC-ROC: Área bajo la curva ROC

Explicabilidad SHAP

- Análisis de importancia de características
- Explicaciones a nivel individual
- Visualizaciones de factores de riesgo

Métrica	Valor		
Accuracy	62.38%		
Precision	61.29%		
Recall	65.40%		
F1-Score	63.28%		
AUC-ROC	67.89%		

Métricas y Evaluación

Gráfico SHAP

- Eje horizontal: Representa el impacto en la predicción de churn, donde:
 - Valores negativos (izquierda): Reducen la probabilidad de abandono
 - Valores positivos (derecha): Aumentan la probabilidad de abandono
 - La línea vertical en 0.0: Representa el punto neutro
- Eje vertical: Lista las características ordenadas por su importancia global en el modelo, con las más influyentes en la parte superior.
 - Puntos de colores: Cada punto representa un cliente en el conjunto de datos.
 - Azul: Valores bajos de esa característica
 - Rojo: Valores altos de esa característica

Análisis SHAP

Cliente de ALTO Riesgo (Probabilidad: >0.9)

Factores que INCREMENTAN el riesgo:

- 1. **mou_Mean**: +1.2145 (Uso muy bajo de minutos)
- 2. **change_mou**: +0.2944 (Sin cambio en el patrón de uso)
- 3. **eqpdays**: +0.2286 (Equipo relativamente reciente)
- 4. rev_Mean: +0.1971 (Ingresos bajos)
- 5. avgqty: +0.1951 (Alto consumo en cantidad)

Factores que REDUCEN el riesgo:

- 1. **hnd_price**: -0.0399 (Dispositivo de precio medio)
- 2. **totmou**: -0.0329 (Total de minutos moderado)

Cliente de BAJO Riesgo (Probabilidad: <0.1)

Factores que PROTEGEN del churn:

- 1. **months**: -0.9502 (Cliente muy antiguo 3.38 años)
- 2. avgqty: -0.4246 (Consumo moderado)
- 3. **totmrc_Mean**: -0.3098 (Facturas moderadas)
- 4. **rev_Mean**: -0.3075 (Ingresos consistentes)
- 5. **avg3rev**: -0.3003 (Ingresos promedio estables)

High

Feature valu

Estrategias teóricas para reducir el churn

Ciclo de renovación de equipos: La variable más importante (eqpdays - antigüedad del dispositivo) sugiere implementar programas proactivos de renovación de equipos antes de que los clientes lleguen al punto crítico donde consideran el cambio.

Segmentación por patrón de uso: Los patrones en mou_Mean y change_mou (Minutes Of Usage) indican la necesidad de monitorear cambios en los patrones de uso para identificar señales tempranas de abandono.

Optimización de planes: La relación entre totmrc_Mean (Cargo Mensual Recurrente Total) y el churn indica que se debe revisar la estructura de precios y ofrecer planes más ajustados a las necesidades reales para evitar cobros excesivos.

Retención de clientes por valor: El impacto del precio del terminal (hnd_price - precio del dispositivo) sugiere desarrollar programas de fidelización centrados en dispositivos premium para los clientes de mayor valor.

Atención a señales de alarma: Monitorear excesos en el uso (ovrmou_Mean, ovrrev_Mean - excendentes del plan) puede permitir intervenciones preventivas antes de que el cliente decida abandonar.

Logs de ejecución en Airflow

Ejecución completada con éxito:

Almacenamiento en Postgres

Datos crudos y procesados:

- churn_raw_data: Muestra de los datos originales
- churn_processed_data: Datos después de la preparación y transformación

2. Métricas y resultados del modelo:

- churn_model_metrics: Métricas de evaluación (accuracy, precision, recall, F1, AUC-ROC)
- churn_feature_importance: Importancia de las características del modelo
- churn_feature_importance_temp: Tabla temporal para la importancia de características

3. Predicciones y explicaciones:

- churn_predictions: Predicciones individuales para cada cliente con sus probabilidades
- churn_shap_values: Valores SHAP para explicar predicciones individuales

4. Datos de monitoreo:

- churn_model_monitoring: Eventos de monitoreo del modelo
- churn_action_plans: Planes de acción basados en predicciones

Almacenamiento en Local

Datos procesados:

- processed_data.pkl: Datos de entrenamiento, escalador y nombres de características
- holdout_data.pkl: Datos de validación para evaluación final

Modelo entrenado:

 churn_model.pkl: Modelo XGBoost serializado con sus metadatos

Métricas y visualizaciones:

- model_metrics.json: Métricas de evaluación en formato JSON
- feature_importance.csv: Importancia de características
- confusion_matrix.png: Matriz de confusión visualizada
- roc_curve.png: Curva ROC
- precision_recall_curve.png: Curva Precision-Recall
- shap_summary_plot.png: Visualización de valores SHAP

Datos para Prometheus:

prometheus_metrics.txt: Métricas en formato para Prometheus

"evaluation date": "2025-05-21T14:1

Visibilidad de métricas del entrenamiento en MLFlow

Integración con herramientas de monitorización

¡Gracias!