

GW precision: comparison between different software

Francisco A Delesma

Department of Applied Physics, Aalto University, Finland

Towards exascale solutions in Green function methods and advanced DFT Paphos, Cyprus, October 3-8, 2023

Participants

Novel Materials Discovery - Center of Excellence (NOMAD-CoE)

Work Package 2: Exascale Green-Function-Based Methods

- Abinit: Maryam Azizi, Mateo Giantomassi, Xavier Gonze
- Exciting: Alexander Bucheri, Claudia Draxl, Andris Gulans, Davis Zavickis
- FHI-aims: Francisco Delesma, Dorothea Golze, Patrick Rinke
- GPAW: Mikael Kuisma, Kristian Thyghesen

2

Outline

Introduction

Parameters tuning

Precision benchmarks

Conclusions

Outline

Introduction

Parameters tuning

Precision benchmarks

Conclusions

To be considered

With respect to the computer-generated data

- ► How much can we rely on it?
- ► How to evaluate it?
- How to improve it?

In practice

- Validation/Accuracy
 - -Comparison with high-level of theory
 - -Comparison with experiment
- ► Verification/Precision
 - Comparison between other implementations

$\begin{array}{c|cccc} \text{Heaven of} \\ \hline \textbf{Chemical accuracy} \\ \hline \psi_i(\mathbf{r}) \xrightarrow{uno} & 5 \\ \psi_i(\mathbf{r}) \xrightarrow{occ} & 4 \\ \nabla^2 \rho(\mathbf{r}) & 3 \\ \nabla \rho(\mathbf{r}) & 2 \\ \rho(\mathbf{r}) & 1 \\ \hline \end{array} \text{ generalized RPA} \\ \text{hybrids} \\ \text{meta-GGA} \\ \text{GGA} \\ \text{LDA} \\ \end{array}$

Theoretical Spectroscopy (The success of the GW approach)

D. Golze et. al., Front. Chem. 7, 377 (2019)

Ionization energies of molecular sytems

F. Caruso, et. al., Phys. Rev. B 86, 081102 (2012)

Theoretical Spectroscopy (The success of the GW approach)

D. Golze et. al., Front. Chem. 7, 377 (2019)

Band-gap for periodic systems

M. Grumet, et al. Phys. Rev. B 98, 155143 (2018).

G₀**W**₀ approach

Solve iteratively the quasi-particle equation (QPE)

$$\epsilon_{n\mathbf{k}}^{\mathit{QP}} = \epsilon_{n\mathbf{k}}^{\mathit{KS}} + \langle \psi_n^\mathbf{k} | \Sigma(\epsilon_{n\mathbf{k}}^{\mathit{QP}}) - v_{\mathit{xc}}^{\mathit{KS}} | \psi_n^\mathbf{k} \rangle$$

or by the linealized QPE

$$\epsilon_{n\mathbf{k}}^{QP} = \epsilon_{n\mathbf{k}}^{KS} + Z_{n\mathbf{k}} \langle \psi_n^{\mathbf{k}} | \Sigma(\epsilon_{n\mathbf{k}}^{QP}) - v_{xc}^{KS} | \psi_n^{\mathbf{k}} \rangle$$

$$Z_{n\mathbf{k}} = \left[1 - \left.rac{d}{d\omega}\langle\psi_n^\mathbf{k}|\Sigma(\omega)|\psi_n^\mathbf{k}
angle
ight|_{\omega=\epsilon_{n\mathbf{k}}^{KS}}
ight]^{-1}$$

The self-energy

$$\Sigma(\omega) = rac{\mathsf{i}}{2\pi} \int d\omega G(\omega + \omega') W(\omega') e^{\mathsf{i}\omega\eta}$$

 Σ is analytically continued from the imaginary to real frequency axis

Previous works (representatives)

GW100: Benchmarking G₀W₀ for Molecular Systems

M. Van Setten et al, J. Chem. Theory Comput. 11, 5665-5687 (2015)

Software: FHI-aims, Turbomole, Berkeley-GW

All-electron codes agree withing 1.0 meV range for QP-HOMO and QP-LUMO

Selection of the basis set, analytical continuation

Reproducibility in G₀W₀ Calculations for Solids

T. Rangel et al. Computer Phys. Commun. 255, 107242 (2020)

Softwares: Abinit, Yambo, Berkeley-GW Method: pseudopotential + plane waves

Systems: Au, Si, TiO₂, ZnO

For Si, TiO₂ all codes agree within 50 meV

Motivation

Provide G_0W_0 calculations for solids with different software

To know the state-of-art of the canonical $\mbox{\bf G}_0\mbox{\bf W}_0$ implementations

Impulse for the development of low-scaling GW algorithms Please follow Thursday morning's session.

Towards exascale calculations of Green-function-based methods

Aim of this school

7

Demonstrator Codes

Demonstrator Codes

Characteristics of the codes

Abinit Pseudopotentials-planewaves (PW) + projector augmented waves (PAW)

exciting \quad Linearized augmented planewave + local-orbital (LAPW + lo)

FHI-aims Numeric atom-centered orbitals (NAOs)

GPAW Projector-augmented wave (PAW)

Systems

Outline

Introduction

Parameters tuning

Precision benchmarks

Conclusions

Basis set quality (FHI-aims)

In other codes:

- -Choose the pseudo potential, plane-wave cutoff
- -Converge the LAPW+localized orbitals
- -SCF convergence

k-point convergence (FHI-aims)

Analytic continuation (FHI-aims)

2-pole model

Pade model

Outline

Introduction

Parameters tuning

Precision benchmarks

Conclusions

Starting point: PBEsol (Kohn-Sham band-gap)

k-point	Abinit	exciting	FHI-aims	GPAW
6x6x6	3.320	3.321	3.309	3.32
$4 \times 4 \times 4$	2.769	2.754	2.742	2.75
12×12×1	1.215		1.212	1.25
8x8x8	0.460	0.482	0.459	0.51
6×6×10	1.830	1.809	1.794	1.74
8x8x5	0.763	0.714	0.713	0.67
	6x6x6 4x4x4 12x12x1 8x8x8 6x6x10	6x6x6 3.320 4x4x4 2.769 12x12x1 1.215 8x8x8 0.460 6x6x10 1.830	6x6x6 3.320 3.321 4x4x4 2.769 2.754 12x12x1 1.215 8x8x8 0.460 0.482 6x6x10 1.830 1.809	6x6x6 3.320 3.321 3.309 4x4x4 2.769 2.754 2.742 12x12x1 1.215 1.212 8x8x8 0.460 0.482 0.459 6x6x10 1.830 1.809 1.794

 $\begin{array}{lllll} & & & & \\ \text{xc} & & & & \\ \text{k-points} & & & \\ \text{grid} & & & & \\ \text{Gauss-Legendre} \\ & & & & \\ \omega & & & \\ \omega_{max} & & & \\ \text{AC} & & & \\ \text{Pade (16)} & & \\ \end{array}$

 $\begin{array}{lllll} & & & & \\ \text{xc} & & & & \\ \text{k-points} & & & \\ \text{grid} & & & & \\ \text{Gauss-Legendre} \\ & & & & \\ \omega & & & \\ \omega_{max} & & & \\ \text{AC} & & & \\ \text{Pade (16)} & & \\ \end{array}$

FHI-aims

Abinit and FHI-aims

 $\begin{array}{lll} \text{xc} & \text{PBEsol} \\ \text{k-points} & 8\text{x}8\text{x}8 \\ \text{grid} & \text{Gauss-Legendre} \\ \omega & 60 \\ \omega_{max} & 10 \text{ Ha} \\ \text{AC} & \text{Pade (16)} \end{array}$

Abinit and FHI-aims

 $\begin{array}{lll} \text{xc} & \text{PBEsol} \\ \text{k-points} & 8\text{x}8\text{x}8 \\ \text{grid} & \text{Gauss-Legendre} \\ \omega & 60 \\ \omega_{max} & 10 \text{ Ha} \\ \text{AC} & \text{Pade (16)} \end{array}$

PBEsol ХC k-points 8x8x8 grid Gauss-Legendre 60 10 Ha ω_{max} AC Pade (16)

G_0W_0 band-gap

System	k-point	Abinit	exciting	FHI-aims	GPAW
ZrO ₃ (A1)	6×6×6	5.144	5.319	5.366	5.41
$Zr_2Y_2O_7$ (C1)	$4 \times 4 \times 4$	4.136	4.346	4.127	4.42
Si	8x8x8	1.164	1.252	1.064	1.25
TiO_2	6×6×10	3.653	3.364	3.347	3.59
ZnO	8x8x5	2.764	2.834	2.431	2.46

MaxAD 0.4

Band-gap extrapolation $\Delta E(E_c^\chi) = \Delta E_g(\infty) + B_3 E_c^{\chi(-3/2)} + B_5 E_c^{\chi(-5/2)}$

Problems to be solved

- k-point sampling
- complete basis set limit
 - LAPW: adding high-energy localized orbitals improves ZnO (D. Nabok et al, Phys. Rev. B 94, 035118 (2016)).
 - NAOs: adding STOs (X. Ren et al. Phys. Rev. Mat. 5, 013807 (2021)) e.g. Si (1.13 eV) and ZnO (2.70 eV) -> (20x expensive)
- ightharpoonup Γ -point singularity (q=0)
 - Bilayer MoWS₄

Computational cost

Outline

Introduction

Parameters tuning

Precision benchmarks

Conclusions

Preliminary conclusions

We must take into account

- ► The quality of the basis set (Auxiliary basis)
- Number of imaginary frequency points
- k-point sampling
- Analytic continuation

Kohn-Sham band-gaps agree within 0.1 eV

 G_0W_0 band-gaps agree within 0.4 eV

Acknowledgements

Novel Materials Discovery - Center of Excellence (NOMAD-CoE)

Work Package 2: Exascale Green-Function-Based Methods

- Abinit: Maryam Azizi, Mateo Giantomassi, Xavier Gonze
- Exciting: Alexander Bucheri, Claudia Draxl, Andris Gulans, Davis Zavickis
- FHI-aims: Francisco Delesma, Dorothea Golze, Patrick Rinke
- ► GPAW: Mikael Kuisma, Kristian Thyghesen

Thank you!