Lab 8

NEURAL NETWORKS AND DEEP LEARNING ADVANCED MACHINE LEARNING DATA 442/642

Exercise 1

Consider a two-dimensional class problem that involves two classes $\omega_1(+1)$ and $\omega_2(-1)$. Each one of them is modeled by a mixture of equiprobable Gaussian distributions. Specifically, the means of the Gaussians associated with ω_1 are $[-5,5]^{\top}$ and $[5,-5]^{\top}$, while the means of the Gaussians associated with ω_2 are $[-5,-5]^{\top}$, $[0,0]^{\top}$, and $[-5,-5]^{\top}$. The covariances of all Gaussians are $\sigma^2 \mathbf{I}$, where $\sigma^2 = 1$.

- (a) Generate and plot a data set X_1 (training set) containing 100 points from ω_1 (50 points from each associated Guassian) and 150 points from ω_2 (again 50 points from each associated Gaussian). In the same way, generate an additional set X_2 (test set).
- (b) Based on the training set X_1 , train a train a two-layer neural network with two nodes in the hidden layer, each one having the rectified linear activation function or ReLU and a single output node with linear activation function using the standard backpropagation algorithm for 6000 iterations and step size equal to 0.01. Compute the training and test errors, based on X_1 and X_2 respectively. Also, plot the test points as well as the decision lines formed by the network.
- (c) Repeat step (b) for step size equal to 0.0001 and comment on the results.
- (d) Repeat step (b) for step size equal to 0.0001 and k = 1, 4, 20, 50 hidden layer nodes and comment on the results.