PnS 2018

Deep Learing with Raspberry Pi

Session 3

PnS 2018 Team

Institute of Neuroinformatics University of Zürich and ETH Zürich

Outline

- Multi-Layer Perceptron
- 2 Regularization
- Convolution
- 4 Convolutional Neural Networks

Artifical Neuron: Overview

- A basic computational model of the biological model
- Single neuron as linear/logistic regression

Multi-Layer Perceptron

hidden layer 2

- Neurons in an acyclic feed-forward graph
- Fully connected layers
- Each fully connected layer computation is a matrix multiplication, matrix addition and an activation function

What can an MLP learn?

- Neural Networks with at least one hidden layer are universal approximators¹
- More neurons are expected to approximate better

4 / 14

¹Approximation by superpositions of a sigmoidal function, by Cybenko G. http://cs231n.github.io/neural-networks-1/

Regularization

- Overfitting more probable with larger models
- Could be prevented by using a regularization term in the loss function

Regularization

• Use bigger networks but take measures to prevent overfitting

Working with images

- MLPs do not work well with images
- Hierarchy of local spatial features
- Extract these local spatial features through filters

2D convolution operation

LeNet-5

MLP->ConvNet

Feature maps: activations of ConvNets

- Network activations in ConvNets are feature maps.
- All ConvNets feature maps arranged in 3 dimensions.
- Each feature maps has size of (HEIGHT, WIDTH)
- Input image can be a special kind of feature map (e.g. color image is feature maps of some size with depth 3, one for each RGB channel).

Convolution Layer: simple cell

- ullet Accepts a volume of size $N_f imes N_h imes N_w$
- Number of filters K_m with shape $K_n \times K_h \times K_w$, stride S_h, S_v , amount of zero-padding P_h, P_v
- ullet Produce a volume of size $\hat{N}_f imes \hat{N}_h imes \hat{N}_h$ where

$$\hat{N}_f = K_m$$

 $\hat{N}_h = (N_h - K_h + 2P_v)/S_v + 1$
 $\hat{N}_w = (N_w - K_w + 2P_h)/S_h + 1$

Live Demo of convolution

Pooling Layer: complex cell

Q&A

