MA 102 (Mathematics II)

Department of Mathematics, IIT Guwahati

Tutorial Sheet No. 6

- (1) Find all the critical points of $f(x,y) = \sin x \sin y$ in the domain $-2 \le x \le 2, -2 \le y \le 2$.
- (2) Find all the local maxima, local minima and saddle points of the following functions:

(a) $f(x, y) = x^2 + xy + y^2 + 3x - 3y + 4$ (b) $f(x, y) = 6x^2 - 2x^3 + 3y^2 + 6xy$

- $x \le 1$ and $0 \le y \le 1$. Find the extreme values of f on R.
- (4) Verify that $f(x, y, z) = x^4 + y^4 + z^4 4xyz$ has a critical point (1, 1, 1), and determine the nature of this critical point by computing the eigenvalues of its Hessian matrix.
- (5) Using the method of Lagrange multipliers, find the extremum values of f(x, y) = xysubject to the constraint $g(x, y) = x^2 + y^2 - 10 = 0$.
- (6) Using the method of Lagrange multipliers, find the points on the curve $xy^2 = 54$ nearest to the origin.
- (7) Evaluate the double integral $\iint_R f(x,y) dxdy$ for f and R given below.
 - (a) $f(x,y) := x^2 + y^2$ and $R = [-1,1] \times [0,1]$.
 - (b) $f(x,y) := x^2 + y$ and $R = [0,1] \times [0,1]$.
 - (c) $f(x,y) := \sin(x+y)$ and $R = [0,\pi] \times [0,\pi]$.
- (8) Evaluate the following double integrals.

(a) $\int_0^3 \int_{-y}^y (x^2 + y^2) dx dy$ (b) $\int_0^\pi \int_0^\pi |\cos(x+y)| dx dy$

(c) $\int_0^{\pi} \int_x^{\pi} \frac{\sin y}{y} dy \ dx$ (d) $\int_0^{3/2} \int_0^{9-4x^2} 16x dy \ dx$

- (9) Evaluate the following double integrals.
 - (a) $\iint_R \frac{dA}{\sqrt{xy-x^2}}$, where R is the region bounded by x=0, x=1, y=x and y=x+1.

(b) $\int_0^1 \int_0^{1-x} e^{\frac{x-y}{x+y}} dx dy$ (c) $\int_0^{1/\sqrt{2}} \int_u^{\sqrt{1-y^2}} (x+y) dx dy$

- (10) Find the volume of the following:
 - (a) Region under the paraboloid $z = x^2 + y^2$ and above the triangle enclosed by the lines y = x, x = 0, and x + y = 2 in the xy plane.
 - (b) Region bounded above by the cylinder $z=x^2$ and below by the region enclosed by the parabola $y = 2 - x^2$ and pline y = x in the xy plane.
 - (c) Region bounded in the first octant bounded by the coordinate planes, the cylinder $x^2 + y^2 = 4$, and the plane z + y = 3.
 - (d) Solid cut from the first octant by the cylinder $z = 12 3y^2$ and the plane x + y = 2.

- (e) Tetrahedron bounded by the planes y = 0, z = 0, x = 0 and -x + y + z = 1.
- (11) Evaluate the following triple integrals:

(a)
$$\iiint_{\mathbb{R}} (z^2 x^2 + z^2 y^2) \ dV, \text{ where } D = \{(x, y, z) \in \mathbb{R}^3, x^2 + y^2 \le 1, -1 \le z \le 1\}$$

(b)
$$\iiint_D xyz \ dV$$
 where $D = \{(x, y, z) \in \mathbb{R}^3, x^2 + y^2 \le 1, \ 0 \le z \le x^2 + y^2\}$

(b)
$$\iiint_D xyz \ dV \text{ where } D = \{(x, y, z) \in \mathbb{R}^3, x^2 + y^2 \le 1, \ 0 \le z \le x^2 + y^2\}$$
(c)
$$\iiint_D e^{(x^2 + y^2 + z^2)^{3/2}} \ dV \text{ where } D = \{(x, y, z) \in \mathbb{R}^3 : \ x^2 + y^2 + z^2 \le 1\}$$

- (12) Find the volume of the following regions using triple integrals:
 - (a) The region in the first octant bounded by the coordinate planes and the planes x+z=1, y + 2z = 2.
 - (b) The region in the first octant bounded by the coordinate planes, the plane y+z=2, and the cylinder $x = 4 - y^2$.
 - (c) The tetrahedron in the first octant bounded by the coordinate planes and the plane x + y/2 + z/3 = 1.
 - (d) The region common to the interiors of the cylinders $x^2 + y^2 = 1$ and $x^2 + z^2 = 1$.
 - (e) The region cut from the cylinder $x^2 + y^2 = 4$ by the plane z = 0 and the plane x + z = 3.
 - (f) The region enclosed by $y = x^2$, y = x + 2, $4z = x^2 + y^2$ and z = x + 3.
 - (g) The region bounded above by the sphere $x^2 + y^2 + z^2 = 2$ and below by the paraboloid $z = x^2 + y^2.$
 - (h) The solid bounded by the cone $z = \sqrt{x^2 + y^2}$ and the paraboloid $z = x^2 + y^2$.
- (13) Evaluate the line integral $\int_{\Gamma} F \bullet dr$ of the vector field F given below.
 - (a) $F(x,y) := (x^2 + 2xy, y^2 2xy)$ from (-1,1) to (1,1) along $y = x^2$.
- (b) $F(x,y) := (x^2 y^2, x y)$ and $\Gamma : \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in the counterclockwise direction. (14) Evaluate the line integral $\int_{\Gamma} \frac{(x+y)dx (x-y)dy}{x^2 + y^2}$ along $\Gamma : x^2 + y^2 = a^2$ traversed once in the counter clockwise direction
- (15) Evaluate the line integral $\int_{\Gamma} \frac{x^2ydx x^3dy}{(x^2 + y^2)^2}$, where Γ is the square with vertices $(\pm 1, \pm 1)$ oriented in the counter clockwise direction
- (16) Verify Green's theorem in each of the following cases:

- (a) $f(x,y) := -xy^2$; $g(x,y) := x^2y$; the region R is given by $x \ge 0, 0 \le y \le 1 x^2$.
- (b) f(x,y) := 2xy; $g(x,y) := e^x + x^2$; the region R is the triangle with vertices (0,0), (1,0)and (1, 1).
- (17) Evaluate $\int_{\Gamma} (y^2 dx + x dy)$ using Green's theorem, where Γ is boundary of R and
 - (a) R is the square with vertices (0,0), (0,2), (2,2), (2,0).
 - (b) R is the square with vertices $(\pm 1, \pm 1)$.
 - (c) R is the disc of radius 2 and center (0,0).

- (18) Determine which of the following vector fields F is conservative and find a scalar potential when it exists.
 - (a) $F(x,y) = (\cos(xy) xy\sin(xy), x^2\sin(xy)).$
 - (b) F(x,y) = (xy, xy).
 - (c) $F(x, y, z) = (x^2, xy, 1)$.