武汉大学 2006—2007 学年第二学期《高等数学》》(总学时 180) 考试 A 试题参考解答

一、解: 1、由
$$\lim_{n\to\infty} \left| \frac{b_n}{b_{n+1}} \right| = \lim_{n\to\infty} \frac{n+1/n!}{n+2/(n+1)!} = \lim_{n\to\infty} \frac{(n+1)^2}{n+2} = +\infty$$
 放级数收敛域为: $(-\infty, +\infty)$

令
$$f(x) = \sum_{n=0}^{\infty} \frac{n+1}{n!} x^n$$
 两边积分,有: $\int_0^x f(x) dx = \sum_{n=0}^{\infty} \int_0^x \frac{n+1}{n!} x^n dx = \sum_{n=0}^{\infty} \frac{1}{n!} x^{n+1} = x \sum_{n=0}^{\infty} \frac{1}{n!} x^n = xe^x$ 故 $f(x) = (1+x)e^x$

2.
$$a_0 = \frac{1}{2} \int_{-2}^{2} (1+x) dx = \int_{0}^{2} dx = 2$$

$$a_n = \frac{1}{2} \int_{-2}^{2} (1+x) \cos \frac{n\pi x}{2} dx = \frac{1}{2} \int_{-2}^{2} \cos \frac{n\pi x}{2} dx = \int_{0}^{2} \cos \frac{n\pi x}{2} dx = 0$$

$$b_n = \frac{1}{2} \int_{-2}^{2} (1+x) \sin \frac{n\pi x}{2} dx = \frac{1}{2} \int_{-2}^{2} x \sin \frac{n\pi x}{2} dx = \int_{0}^{2} x \sin \frac{n\pi x}{2} dx = \frac{4(-1)^{n+1}}{2} (1, 2\cdots),$$

二、解: 1) 由偏导数定义知
$$f_x(0,0) = \lim_{\Delta x \to 0} \frac{f(0+\Delta x,0) - f(0,0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{0-0}{\Delta x} = 0$$

同理 $f_y(0,0) = 0$. 所以, f(x,y) 在点 (0,0) 的偏导数存在,

2)
$$\frac{\partial f}{\partial l}\Big|_{(0,0)} = \lim_{t \to 0} \frac{f(0 + t\cos\theta, 0 + t\sin\theta)}{t} = \lim_{t \to 0} \frac{t^3\cos^2\theta\sin\theta/t^2}{t} = \cos^2\theta\sin\theta$$

3)
$$\pm \lim_{\begin{subarray}{c} \Delta x \to 0 \\ \Delta y \to 0 \end{subarray}} \frac{f(0 + \Delta x, 0 + \Delta y) - f(0, 0)}{\sqrt{\Delta x^2 + \Delta y^2}} = \lim_{\begin{subarray}{c} \Delta x \to 0 \\ \Delta y \to 0 \end{subarray}} \frac{\Delta x^2 \Delta y}{\sqrt{(\Delta x^2 + \Delta y^2)^3}} \quad \text{in } \lim_{\begin{subarray}{c} \Delta x \to 0 \\ \Delta y \to 0 \end{subarray}} \frac{\Delta x^3}{\sqrt{(2\Delta x^2)^3}} = \frac{\sqrt{2}}{2} \neq 0.$$

将
$$\frac{dy}{dx}$$
, $\frac{d^2y}{dx^2}$, $x = e^t$ 代入原方程得 $\frac{d^2y}{dt^2} - 3\frac{dy}{dt} + 2y = te^t$ 由 $t^2 - 3r + 2 = 0$ 得方程 $\frac{d^2y}{dt^2} - 3\frac{dy}{dt} + 2y = 0$ 的一般

解:
$$y = c_1 e' + c_2 e^{2t}$$
 设 $\frac{d^2 y}{dt^2} - 3 \frac{dy}{dt} + 2y = te'$ 的特解为 $y' = (At^2 + Bt)e'$ 由待定系数法得: $A = -\frac{1}{2}, B = -1$ 故

得方程
$$\frac{d^2y}{dt^2} - 3\frac{dy}{dt} + 2y = te^t$$
 的一般解: $y = c_1e^t + c_2e^{2t} + (-\frac{1}{2}t^2 - t)e^t$

四、解: 1、
$$\frac{\partial f}{\partial y} = -2yze^{-(x^2+y^2+z^2)}$$
 $\frac{\partial^2 f}{\partial y \partial z} = 2y(2z^2-1)e^{-(x^2+y^2+z^2)}$ $\frac{\partial^3 f}{\partial y \partial z \partial x} = 4xy(1-2z^2)e^{-(x^2+y^2+z^2)}$

$$2$$
、利用积分域的对称性、被积函数的奇偶性和球坐标, $\iint_{\Omega} f(x,y,z) dv = 2 \int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{2} d\theta \int_{0}^{2} r^{3} \cos \varphi \sin \varphi e^{-r^{2}} dr$

$$\int_{1}^{2} r^{3} e^{-r^{2}} dr = \frac{1}{2} \int_{1}^{2} r^{2} e^{-r^{2}} dr^{2} = \frac{1}{2} \int_{1}^{4} u e^{-u} du = \frac{1}{2e^{4}} (2e^{3} - 5)$$

$$\int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{\frac{\pi}{2}} \cos\varphi \sin\varphi d\theta = \int_{0}^{\frac{\pi}{2}} \frac{\pi}{2} \cos\varphi \sin\varphi d\varphi = \frac{\pi}{4} \quad \text{id} \quad \iint_{\Omega} f(x, y, z) dv = \frac{\pi}{4e^{4}} (2e^{3} - 5)$$

五、解: 1、旋转抛物面位于第一卦限部分上任意一点(x, y, z)处的平面方程为:

$$2xX + 2yY + Z = 4 - z \quad \text{IP} \frac{X}{\frac{4-z}{2x}} + \frac{Y}{\frac{4-z}{2y}} + \frac{Z}{4-z} = 1$$

所以四面体的体积为:
$$V = \frac{(4-z)^3}{24xy}$$

故令: $F(x, y, z, \lambda) = 3\ln(4-z) - \ln x - \ln y + \lambda(x^2 + y^2 + z - 2)$ 由 $\begin{cases} F_x = -\frac{1}{x} + 2\lambda x = 0; F_z = -\frac{3}{4-z} + \lambda = 0 \\ F_y = -\frac{1}{y} + 2\lambda y = 0; F_\lambda = x^2 + y^2 + z - 2 = 0 \end{cases} \Rightarrow x = y = \frac{\sqrt{2}}{2}, z = 1$ 因为只有一个胜点,所以 $(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 1)$ 为所求; 2、 $\frac{\partial V}{\partial z} = \frac{-3}{4-z} - \frac{24}{x} \frac{\partial x}{\partial z}$ $\frac{\partial x}{\partial z} = \frac{-1}{2x} \frac{\partial V}{\partial z}|_{(1,1,3)} = -3 + 12 = 9$ 六、解: 1、 $z = \frac{1}{2}(x^2 + y^2)$ 2. $S = \iint_{L} z ds = \iint_{x^2 + (y-1)^2 = 1} \frac{1}{2} (x^2 + y^2) ds = \int_{0}^{2\pi} \frac{1}{2} [\cos^2 t + (\sin t + 1)^2] dt = 2\pi$ 3、由高斯公式,补充有向平面 Σ_1 : z=2 方向向上, Ω 由 z=2 , $z=\frac{1}{2}(x^2+y^2)$ 所围成的闭区域, $I = \iint_{\Sigma} xzdydz + 2zydxdz + 3xydxdy = \iiint_{\Sigma} (z + 2z + 0)dv - \iint_{\Sigma} xzdydz + 2zydxdz + 3xydxdy$ $=3\iiint_{\Omega}zdv-3\iint_{x^2+y^1\leq 2}xydxdy=3\int_{0}^{2\pi}dt\int_{0}^{2}rdr\int_{\frac{1}{2}r^2}^{2}zdz+0=16\pi$ 或 $3 \iint_{\Omega} z dv - 3 \iint_{x^2+y^2 \le 2} xy dx dy = 3 \int_{0}^{z} (z \iint_{D} d\sigma) dz = 6\pi \int_{0}^{z} z^2 dz = 2\pi z^3 \Big|_{0}^{2} = 16\pi$ 七、解: 设 $Q = 7g^{\bullet\prime\prime}(x)$ $P = (g^{\prime\prime\prime}(x) + 9g(x) + 2x^2 - 5x + 1)y^2$ 由 $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$ 得 $2y(\bar{g}''(x)+9g(x)+2x^2-5x+1)=7g''(x)$ 由此得: $\begin{cases} g'''(x)=0 \\ y'(x) + 2x^2-5x+1=0 \end{cases}$ (1) 曲 (1) 得: $g(x) = ax^2 + bx + c 代 \lambda$ (2) 得: $a = \frac{2}{g}$, $b = \frac{2}{g}$, $c = \frac{2}{g}$ $g(x) = -\frac{2}{9}x^2 + \frac{5}{9}x - \frac{3}{81}$ $\&I = \iint_D e^y f(y) d\sigma + \iint_D (y-x) d\sigma - (e-1) \int_0^x f(y) dy = \iint_D (e^y f(y) d\sigma + \iint_D (y-x) d\sigma - (e-1) \int_D^x f(x) dx$ $= \iint_{D} e^{y} f(y) d\sigma - \iint_{D} e^{y} f(x) d\sigma + \iint_{D} (y - x) d\sigma = \iint_{D} e^{y} [f(y) - f(x)] d\sigma + \iint_{D} (y - x) d\sigma$ 因为 D 关于 y=x 为称,故 $\iint yd\sigma=\iint xd\sigma$, $\iint e^{y}[f(y)-f(x)]d\sigma=\iint e^{x}[f(x)-f(y)]d\sigma$ 所以 $\iint_{D} (y-x)d\sigma = 0 \text{ d} 2I = \iint_{D} e^{y} [f(y) - f(x)]d\sigma + \iint_{D} e^{x} [f(x) - f(y)]d\sigma = \iint_{D} (e^{y} - e^{x}) [f(y) - f(x)]d\sigma$ 由函数 e^x , f(x) 在[0,1] 上连续单调增加,故 $2I \ge 0$ 所以 $I \ge 0$ 即 $\iint (e^y f(y) + y - x) d\sigma \ge (e - 1) \iint f(y) dy$ 几 可则 有效 $I = \iint e^y f(y) dx dy = (e - 1) \iint f(y) dy$ 几 可见 $I = \iint e^y f(y) dx dy dx dy = \iint e^y f(y) dx dy dx dy = \iint e^y f(y) dx dy dx dx dy dx dx$ 积分积级的标志的孩 to $L = SS f(x) (e^x - e^z) dxdy$ MP 2 = $\int f(y)(e^{y}-e^{y})d\sigma + \int f(y)(e^{y}-e^{y})d\sigma = \int (f(y)-f(y))(e^{y}-e^{y})dy$ 由 e^{x} , f(x) を f(x) に f(y) を f(y) の f(y) に f(y) の f(y) で f(y) の f(y) で f(y) の f

2

武汉大学 2007—2008 学年第二学期《高等数学 B2》(180 学时 A 卷)考试试题参考角 一、解: 1、通过直线 $\begin{cases} 2x+y=0 \\ 4x+2y+3z=6 \end{cases}$ 的平面東方程为: $4x+2y+3z-6+\lambda(2x+y)=0$ 欲使平面 (1) 平行于直线 $\frac{x}{1} = \frac{y}{2} = \frac{z}{4}$, 则 $4+2\lambda+2(2+\lambda)+12=0$ $\Rightarrow \lambda=-5$ 代入(1)得所求平面方程为: 2x+y-z+2=02、 $\triangle ABC$ 的面积为: $S = \frac{1}{2} | \overline{AB} \times \overline{BC} | = \frac{1}{2} \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 0 & 4 & -3 \\ 4 & -5 & 0 \end{vmatrix} = \frac{25}{2}$, 又 $S = \frac{h}{2} |\overline{AB}|$, $|\overline{AB}| = \sqrt{0 + 16 + 9} = 5$, 故h = 53. $\Re F = x^2 + y^2 + z^2 - 6$, $F_x = 2x$, $F_y = 2y$, $F_z = 2z$ 故得曲面在点(1,-2,1)处的法向量为: $\{2,-4,2\} = 2\{1,-2,1\}$ 。 故切平面方程为: (x-1)-2(y+2)+(z-1)=0即 x-2y+z=6法线方程为: $\frac{x-1}{1} = \frac{y+2}{-2} = \frac{z-1}{1}$ $4, \quad z_x = ye^{xy} + \frac{y^2}{x} \quad \text{,} \quad z_{xy} = e^{xy} + yxe^{xy} + \frac{2y}{x} = \frac{xe^{xy}\left(1 + xy\right) + 2y}{x}$ 5. $\iint xy dx dy = \int_{0}^{2} \cos \theta \sin \theta d\theta \int_{0}^{4} r^{3} dr = \frac{a^{4}}{8}$ 6、由己知得: $0 \le y \le 1, -\sqrt{1-y^2} \le x \le y-1$, 所以有: 原式= $\int_0^1 dy \int_{\sqrt{1-y^2}}^{y-1} f(x,y) dx$ 二、解: $\frac{\frac{\partial z}{\partial x} = 1 - \frac{1}{x^2 y} = 0}{\frac{\partial z}{\partial y} = 1 - \frac{1}{xy^2} = 0} = \begin{cases} x = 1 \\ y = 1 \end{cases}$ 又求二阶导数: $A = z_{xx} = 2x^{-3}y^{-1}, B = z_{xy} = x^{-2}y^{-2}, C = z_{yy} = 2y^{-3}x^{-1}$ 在点(1,1)处, $B^2 - AC = -3 < 0, A = 2 > 0$,故z(1,1) = 3为所求极小值。 三、解: 1、由Q = -g(x) $P = [e^x + g(x)]y$ 且 $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$ 得 $g'(x) + g(x) = -e^x \Re \{\theta: g(x) = e^{-\int dx} [\int (-e^x e^{\int dx} dx + c] = e^{-x} [-\frac{1}{2}e^{2x} + c]$ 由 $g(0) = -\frac{1}{2}$, 得: c = 0 所以 $g(x) = -\frac{1}{2}e^x$ 2. $\int_{0}^{(1,1)} \frac{1}{2} e^{x} y dx + \frac{1}{2} e^{x} dy = \int_{0}^{1} \frac{1}{2} e dy = \frac{1}{2} e$ 四、解: 级数可写为 $\sum_{n=1}^{\infty} \frac{2n-1}{2^n}$, 由 $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \lim_{n\to\infty} \frac{2(n+1)-1}{2^{n+1}} / \frac{2n-1}{2^n} = \frac{1}{2}$ 故级数收敛。 $\sum_{n=1}^{\infty} \frac{2n-1}{2^n} = \sum_{n=1}^{\infty} \frac{n}{2^{n-1}} - \sum_{n=1}^{\infty} \frac{1}{2^n} = \sum_{n=1}^{\infty} \frac{n}{2^{n-1}} - 1$ 作函数级数 $s(x) = \sum_{n=1}^{\infty} nx^{n-1}$ 此级数的收敛区间为 |x| < 1,两边积分,有: $\int_{0}^{x} s(x)dx = \sum_{n=1}^{\infty} \int_{0}^{x} nx^{n-1} dx = \sum_{n=1}^{\infty} x^{n} = \frac{x}{1-x}$ 将上式两边微分得: $s(x) = \frac{1}{(1-x)^2}$ | x < 1故 $\sum_{n=1}^{\infty} \frac{2n-1}{2^n} = s(\frac{1}{2}) - 1 = 4 - 1 = 3$

五、解: 1、
$$f_x(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = \lim_{x \to 0} \frac{0 - 0}{x} = 0$$

$$\stackrel{\text{出}}{=} x^2 + y^2 \neq 0 \text{ 时}, \quad f_x(x,y) = \frac{2xy(x^2 + y^2) - 2x^3y}{(x^2 + y^2)^2} = \frac{2xy^3}{(x^2 + y^2)^2}$$
所以 $f_{xy}(0,0) = \lim_{y \to 0} \frac{f_x(0,y) - f_x(0,0)}{y} = \lim_{y \to 0} \frac{0 - 0}{y} = 0$

- 2、此方程的特征方程为: $r^3 r^2 2r = 0$, 解得: $r_1 = 0$, $r_2 = 2$, $r_3 = -1$, 即微分方程的通解为: $y = c_1 + c_2 e^{2z} + c_3 e^{-z}$, 由积分曲线通过点 (0, -3). 故得 $c_1 + c_2 + c_3 = -3$, (1) 又在这点处有倾角为 $\arctan 6$ 的切线,故有 $y'|_{z=0} = (2c_2 e^{2z} c_3 e^{-z})|_{z=0} = \tan(\arctan 6)$, 即 $2c_2 c_3 = 6$, (2) 由题设知 $y''|_{z=0} = (4c_2 e^{2z} + c_3 e^{-z})|_{z=0} = 0$, 即 $4c_2 + c_3 = 0$ 联立 (1)、(2)、(3)解得: $c_1 = 0$, $c_2 = 1$, $c_3 = -4$
- 则所求积分曲线为: $y=e^{2z}-4e^{-z}$ 六、解: 补充有向平面 $\Sigma_1:z=1,\Sigma_2:z=2$ 方向分别向下和上,记 Σ 为圆台外侧,法向向外, Ω 是由 $z=1,z=2,z=\sqrt{x^2+y^2}$ 所围成的闭区域, Σ' 为 Ω 的边界曲面的外侧,则所求流量为:

$$\begin{split} \Phi &= \iint\limits_{\Sigma} \overline{F} d\overline{s} = (\iint\limits_{\Sigma_{r}} - \iint\limits_{\Sigma_{r}}) dy dz + z dx dz + \frac{e^{z}}{\sqrt{x^{2} + y^{2}}} dx dy \\ \iint\limits_{\Sigma_{r}} dy dz + z dx dz + \frac{e^{z}}{\sqrt{x^{2} + y^{2}}} dx dy = \iint\limits_{\Omega} \frac{e^{z}}{\sqrt{x^{2} + y^{2}}} dv = \int\limits_{1}^{2} e^{z} dz \int\limits_{0}^{2\pi} d\theta \int\limits_{0}^{z} dr = 2\pi e^{z} \\ \iint\limits_{\Sigma_{t}} dy dz + z dx dz + \frac{e^{z}}{\sqrt{x^{2} + y^{2}}} dx dy = - \iint\limits_{X+y \le 1} \frac{e}{\sqrt{x^{2} + y^{2}}} dx dy = -2\pi e \\ \iint\limits_{\Sigma_{t}} dy dz + z dx dz + \frac{e^{z}}{\sqrt{x^{2} + y^{2}}} dx dy = \iint\limits_{\Sigma_{t}+y \le 4} \frac{e^{z}}{\sqrt{x^{2} + y^{2}}} dx dy = 4\pi e^{z} \\ \iint\limits_{\Sigma_{t}} \mathcal{L} \Phi = 2\pi e (1 - e) \end{split}$$

武汉大学 2006—2007 学年第二学期《高等数学 B2》试题 A 参考解答

- 一、(30分)试解下列各题:
- 1、(6分) 求解微分方程 $\frac{dx}{t} + \frac{dy}{e^*} = 0$ 满足 $y|_{x=0} = 2$ 的特解。
- 解: 由 $\frac{dx}{y} + \frac{dy}{e'} = 0$, 得 e'dx + ydy = 0. 即 $d(e' + \frac{y'}{2}) = 0 \Rightarrow e' + \frac{y'}{2} = c_1 \Rightarrow 2e' + y' = c'$ 而 $y_1 = 2 \Rightarrow 2 + 4 = c \Rightarrow c = 6$, 故 2e' + y' = 6
- 2、(6分) 求曲面 $x^2 + 2y^2 + 3z^2 = 12$ 在点(1,-2,1) 处的切平面方程。
- 解 设F(x,y,z) = x' + 2y' + 3z' 12 F(1,-2,1) = 2, F(1,-2,1) = -6, F(1,-2,1) = 6故曲面在点(1,-2,1)处的切平面的法向量为: n=(2,-8,6) 所以切平面方程为: x-4y+3z-12=0
- 3、(6分) 已知级数 $\sum a_n(x-1)^n$ 在 x=-1 处收敛,试讨论此级数在 x=2 处的敛散性。
- 解 由阿贝尔定理知,此级数在 $|x-1|\sqrt{-1-1}|=2$ 即 -1<x<3时绝对收敛,故此级数在 x=2 处绝对收敛。
- 4、(6分) 计算 $\iint x' dx dy$, 其中 D 由 y = 2-x', y = x' 所围成的区域。
- 解: 由对称性, $\iint x' dx dy = 2 \iint x' dx dy = 2 \iint dx \iint_{x'}^{x'} x' dy = 4 \iint (x' x') dx = \frac{8}{15}.$
- 解: $\lim_{n\to\infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n\to\infty} \frac{\frac{(n+1)}{2^{n+1}}}{n^4} = \frac{1}{2} < 1$,由比值判别法知原级数的绝对值级数收敛,故原级数绝对收敛.
- 二、(10 分) 函数 z=z(x,y) 由方程 $x-az=\sin(y-bz)$ 所确定, a,b 是不全为零的常数, 证明: $a\frac{\partial z}{\partial x}+b\frac{\partial z}{\partial x}=1$ 证明: 方程 $x-az = \sin(y-bz)$ 两边同时对x, y 求偏导得

$$1 - a\frac{\partial z}{\partial x} = \cos(y - bz) \cdot (-b\frac{\partial z}{\partial x}) \Rightarrow \frac{\partial z}{\partial x} = \frac{1}{a - b\cos(y - bz)} \qquad -a\frac{\partial z}{\partial y} = \cos(y - bz) \cdot (1 - b\frac{\partial z}{\partial y}) \Rightarrow \frac{\partial z}{\partial y} = \frac{-\cos(y - bz)}{a - b\cos(y - bz)}$$

- 三、(12分) 设 $z=x^2f(u)$, 而 $u=\frac{y}{x}$, 其中f(u)二阶可导, 求 $\frac{\partial^2 z}{\partial x \partial y}$.
- 解 因为 $\frac{\partial z}{\partial x} = 2xf + x^2(\frac{y}{-x^2})f' = 2xf yf'$ 所以 $\frac{\partial^2 z}{\partial x \partial y} = 2x \times \frac{1}{x}f' f' yf'' \times \frac{1}{x} = f' \frac{y}{x}f''$
- - 解 因为 $\arctan x = \sum_{n=1}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$ $(-1 \le x \le 1)$, 则得 $f(x) = 2\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$ $(-1 \le x \le 1)$

(也可利用 $(\arctan x)' = \frac{1}{1+x^2} = \sum_{i=1}^{n} (-1)^i x^{i*}$ 求解)

- 五、(10 分) 设 $f(x, y, z) = x^3 xy^2 z$
 - (1) 求 f(x,y,z) 在点 $P_0(1,1,0)$ 处的梯度及方向导数的最大值:
 - (2) 问: f(x,y,z)在哪些点的梯度垂直于x轴。

故 $\nabla f|_{x,y,z} = 2i - 2j - k$ 所以 f(x,y,z) 在点 $P_{\epsilon}(1,1,0)$ 处方向导数的最大值为: $|\nabla f|_{x,y,z} = \sqrt{2^2 + (-2)^2 + (-1)^2} = 3$

(2) 由 $\nabla f = (3x^2 - y^2)i - 2xyj - k$,而 $\nabla f \perp x$ 轴,即 $\nabla f \cdot (1,0,0) = 0$,由此得: $y = \pm \sqrt{3}x$

所以平面 $y = \pm \sqrt{3}x$ 上的点处的梯度垂直于x 轴。

 $I = \iint 2xz'dydz + y(z'+1)dzdx + (9-z')dxdy$,其中 Σ 为曲面 $z = x^2 + y^2 + 1$ $(1 \le z \le 2)$, 六、(10分)计算曲面积分

解: 取平面 Σ : $\lambda=2$,取上侧,则 Σ 与 Σ 构成封闭曲面,取外侧,令 Σ 与 Σ , 所围空间区域为 Ω ,由 Gauss 公式,得

$$I = \bigoplus_{i \in I} - \iint_{\Omega} dx dy dz - \iint_{\Omega} (9 - 2^{\circ}) dx dy = \int_{0}^{3\pi} d\theta \int_{0}^{\pi} r dr \int_{0}^{\pi} dz - \iint_{\Omega} dx dy = -\frac{\pi}{2}$$

七、(10 分) 个 点数 $\varphi(x)$ 具有连续的二阶 导数,并使 曲线积分 $\int_{L} [3\varphi'(x) - 2\varphi(x) + xe^{2x}]ydx + \varphi'(x)dy$ 与路径无关,求函数 $\varphi(x)$.

特征方程 $r^2-3r+2=0$, 特征根式=1,式=2 对应齐次方程的通解为: $y=c_1e^x+c_2e^2$

又因为 $\lambda=2$ 是告征根。故其特解可设为: $y^*=x(Ax+B)e^{2x}$ 代入方程并整理得: $A=\frac{1}{2}$,B=-1 即 $y^*=\frac{1}{2}x(x-2)e^{2x}$...

故所求函数为: $\varphi(x) = c_1 e^x + c_2 e^{2x} + \frac{1}{2} x(x-2)e^{2x}$

八、(8分) 将正数 a 分为正数 x,y,z 之和, 使得 $u=x^*y^*z^*$ 最大。(其中 m,n,p 为已知正数) 解法一 化为无条件极值求解, 即求 $u=x^*y^*(a-x-y)^*$ 的极值。

$$\begin{cases} u'_{s} = mx^{n-1}y^{*}(a-x-y)' - px^{n}y^{*}(a-x-y)^{-1} = 0 \\ v'_{s} = nx^{n}y^{*-1}(a-x-y)' - px^{n}y^{*}(a-x-y)^{-1} = 0 \end{cases}$$

$$\begin{cases} m(a-x-y) - px = 0 \\ n(a-x-y) - py = 0 \end{cases}$$

解之得 $x = \frac{ma}{m+n+p}$, $y = \frac{na}{m+n+p}$ 再由 x+y+z=a 求得 $z = \frac{pa}{m+n+p}$

当s=0(s=a), 或y=0(y=a)或z=0(z=a)时, u 均为 0, 不可能为最大, 故将 a 分成的三个正数为 $a=\frac{\pi a}{s^2+n+n}$

$$y = \frac{no}{m \div n \div p}$$
, $z = \frac{po}{m + n + p}$

解法二 利用拉格朗日乘数法求解. 作函数 $F(x,y,z) = x^*y^*z^* + \lambda(x+y+z-a)$

$$\begin{cases}
F_{r}''(x, y, z) = mx^{-1}y^{n}z' + \lambda = 0 & (1) \\
F_{r}''(x, y, z) = nx^{n}y^{-1}z' + \lambda = 0 & (2) & \mathcal{R} & x + y + z - a = 0 \\
F_{r}''(x, y, z) = px^{n}y^{n}z^{-1} + \lambda = 0 & (3)
\end{cases}$$

将(1), (2), (3)中之 λ 移至等式右端, 记为 (1'), (2'), (3'), 然后由 (1') + (2') 得

$$x = \frac{m}{n}y(3') + (2')$$
, 得 $y = \frac{p}{n}y$ 并将其代入(4), 从而得到所求三个正数为

$$z = \frac{ma}{m+n+p}, \quad y = \frac{na}{m+n+p}, \quad z = \frac{pa}{m+n+p}$$

解法三 因为 $u=x^*y^*z^*>0$,故当u最大时 $\ln u=m\ln x+n\ln y+p\ln z$ 也最大。利用拉格朗日乘数法,作函数 $\Phi(x,y,z)=m\ln x+n\ln y+p\ln z+\lambda(x+y+z-a)$

$$\Phi'_{\star}(x,y,z) = \frac{m}{x} + \lambda = 0 \qquad (1)$$

$$\Phi'_{\star}(x,y,z) = \frac{n}{y} + \lambda = 0 \qquad (2) \quad \cancel{R} \quad x + y + z - a = 0 \qquad (4)$$

$$\Phi'_{\star}(x,y,z) = \frac{p}{z} + \lambda = 0 \qquad (3)$$

由(1), (2) 得 $x = \frac{m}{n}y$, 由 (2), (3) 得 $z = \frac{p}{n}y$ 并代入(4), 从而得 $x = \frac{ma}{m+n+p}$, $y = \frac{na}{m+n+p}$, $z = \frac{pa}{m+n+p}$

/ S ·

武汉大学 2009-2010 学年第二学期《高等数学 B2》试题答案

一、1、解: 由
$$(\bar{a}+3\bar{b})$$
 \perp $(7\bar{a}-5\bar{b})$, $(\bar{a}-4\bar{b})$ \perp $(7\bar{a}+2\bar{b})$, 得 $(\bar{a}+3\bar{b})$ \cdot $(7\bar{a}-5\bar{b})$

$$=7|\vec{a}|^2+16\vec{a}\cdot\vec{b}-15|\vec{b}|^2=0, \quad (\vec{a}-4\vec{b})\cdot(7\vec{a}+2\vec{b})=7|\vec{a}|^2-30\vec{a}\cdot\vec{b}+8|\vec{b}|^2=0,$$

、两式相减得,
$$46\bar{a}\cdot\bar{b}=23|\bar{b}|^2\Rightarrow 2\bar{a}\cdot\bar{b}=|\bar{b}|^2\Rightarrow \cos(\bar{a},\bar{b})=\frac{|\bar{b}|}{2|\bar{a}|}2|\bar{a}||\bar{b}|\cos(\bar{a},\bar{b})$$

$$=|\bar{b}|^2, 两式相加得, 322\bar{a}\cdot\bar{b}=161|\bar{a}|^2 \Rightarrow 2\bar{a}\cdot\bar{b}=|\bar{a}|^2 \Rightarrow \Rightarrow \cos(\bar{a},\bar{b})=\frac{|\bar{a}|}{2|\bar{b}|}, 由此推得 \frac{|\bar{a}|}{2|\bar{b}|}=\frac{|\bar{b}|}{2|\bar{a}|},$$

即 $|\bar{a}|$ = $|\bar{b}|$, 所以 $\cos(\bar{a},\bar{b}) = \frac{1}{2}$, $(\bar{a},\bar{b}) = \frac{\pi}{3}$ 。

2、解:设切点为 (x_0,y_0,z_0) ,于是曲面在该点的法向量为 $(x_0,2y_0,-1)$,所给平面的法向量为

$$(2,2,-1)$$
, 由条件知 $\frac{x_0}{2} = \frac{2y_0}{2} = \frac{-1}{-1}$, 所以切点坐标为 $x_0 = 2, y_0 = 1$,

$$z_0 = \frac{{x_0}^2}{2} + {y_0}^2 = 3$$
, 所以所求切平面方程为 $2x + 2y - z - 3 = 0$.

3、解:利用极坐标,则
$$\iint_{D} \sqrt{x^{2} + y^{2}} d\sigma = \int_{0}^{\frac{\pi}{4}} d\theta \int_{0}^{2\cos\theta} r^{2} dr = \frac{10\sqrt{2}}{9}$$

4、方程两端对
$$x$$
求偏导, $z_x + e^{z-y-x} + xe^{z-y-x} (z_x - 1) = 0 \Rightarrow z_x = \frac{(x-1)e^{z-y-x}}{1 + xe^{z-y-x}}$

方程两端对y求偏导, $z_y - 1 + xe^{z-y-x}(z_y - 1) = 0 \Rightarrow z_y = 1$,从而

$$dz = \frac{(x-1)e^{z-y-x}}{1+xe^{z-y-x}}dx + dy$$

5.
$$f(x) = \frac{1}{3-x} = \frac{1}{3} \frac{1}{1-\frac{x}{3}} = \frac{1}{3} \sum_{n=0}^{\infty} (\frac{x}{3})^n = \sum_{n=0}^{\infty} \frac{x^n}{3^{n+1}}$$

6.
$$M: \iiint_{\Omega} x^2 dx dy dz = \int_{0}^{1} x^2 dx \int_{0}^{1-x} dy \int_{0}^{1-x-y} dz = \frac{1}{60}$$

二、解: 做辅助线 CA, 由格林公式得
$$\int_{L+CA} (x+e^{\sin y}) dy - (y-\frac{1}{2}) dx = 2 \iint_D dx dy = \frac{\pi}{2} + 1$$
.

而
$$\int_{\mathcal{A}} (x + e^{\sin y}) dy - (y - \frac{1}{2}) dx = \int_{1}^{1} \frac{1}{2} dx = 1$$
, 所以原式 = $\frac{\pi}{2} + 1 - 1 = \frac{\pi}{2}$.

三、记Σ, 为曲面
$$z = 1(x^2 + y^2 \le 1)$$
,取下侧,则 $\iint_{\Sigma} (2x + z) dy dz + z dx dy$

=- $\iint\limits_{x^2+p^2\leq 1} dxdy=-\pi$, 用 Ω 表 示 Σ 和 Σ₁ 所 围 成 的 空 间 区 域 , 则 由 高 斯 公 式 知

$$\iiint_{\Sigma+\Sigma_{i}} (2x+z) dy dz + z dx dy = -\iiint_{\Omega} (2+1) dV = -3 \int_{0}^{2\pi} d\theta \int_{0}^{1} r dr \int_{r^{2}}^{1} dz = -6\pi \int_{0}^{1} (r-r^{3}) dr = -\frac{3}{2}\pi$$

因此原式= $-\frac{\pi}{2}$ 。

四、先考虑级数 $\sum_{n=2}^{\infty} \left| (-1)^n \frac{\ln n}{n} \right| = \sum_{n=2}^{\infty} \frac{\ln n}{n}$,由于 $\lim_{n \to \infty} \frac{\frac{\ln n}{n}}{\frac{1}{n}} = \infty$,而级数 $\sum_{n=2}^{\infty} \frac{1}{n}$ 发散,由比较审敛法的

极限形式知 $\sum_{n=2}^{\infty} \frac{\ln n}{n}$ 发散。再考虑级数 $\sum_{n=2}^{\infty} (-1)^n \frac{\ln n}{n}$,显然 $\lim_{n\to\infty} u_n = 0$,

再由 $f(x) = \frac{\ln x}{x} (x \ge 2), f'(x) = \frac{1 - \ln x}{x^2},$ 当 $x \ge e$ 时, f'(x) < 0, f(x) 单调减少, 故当 $n \ge 3$ 时,

 $u_n > u_{n+1}$,由 Leibniz 定理知 $\sum_{n=2}^{\infty} (-1)^n \frac{\ln n}{n}$ 收敛,故为条件收敛。

五、因为 $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=1$, 且在 $x=\pm 1$ 处级数均发散,所以收敛域为 (-1,1). 设

$$S(x) = \sum_{n=1}^{\infty} nx^{n-1}, x \in (-1,1). \text{ If } \int_{0}^{x} S(t) dt = \int_{0}^{x} \sum_{n=1}^{\infty} nt^{n-1} dt = \sum_{n=1}^{\infty} \int_{0}^{x} nt^{n-1} dt = \sum_{n=1}^{\infty} x^{n} = \frac{x}{1-x},$$

然后两边对x求导,得 $S(x) = \frac{1}{(1-x)^2}$ 。

六、解: 先求 f(x,y) 在 D 内可能取极值的点,令 $f_x = 2x = 0$, $f_y = -2y = 0$, 得唯一驻点(0,0),

f(x,y)在D内没有偏导数不存在的点. 再求f(x,y)在D的边界 $x^2 + \frac{y^2}{4} = 1$ 上可能取极值的点,用拉格朗日乘数法,令 $F(x,y) = x^2 - y^2 + 3 + \lambda(x^2 + y^2)$

 $\frac{y^2}{4}$ -1),则 $F_x = 2x + 2\lambda x = 0$, $F_y = -2y + \frac{\lambda}{2}y = 0$, $x^2 + \frac{y^2}{4} = 1$, $\Rightarrow x = 0$, $y = \pm 2$,或 $x = \pm 1$, y = 0,所以边

界上有四个驻点,最后算 f(0,0)=3, $f(0,\pm 2)=-1$, $f(\pm 1,0)=4$, 所以 f(x,y) 在 D 上最大值和最小值分别为 $f_{\max}=4$, $f_{\min}=-1$ 。

| |

武汉大学试卷纸

专业		年级		_学号_		女	生名:			
科目2010-	2011	中意味	1	2 3	4	6	7	8	9	10
•								<u> </u>		
一. (每超7	公共63%	>				·····				
	4部3160万	AX-	+ 139-	+63 =						
的名	海恒			+2C = C)	38-25	b	A= (B 3	<u></u> B #
	,			t 2C = C						
tallor		x+135-			•			-38	0	
2. 33	= fi(x	(4, 4900)	y +	f2(xy,	y9(x).!	19'x)				
∂^2	$\frac{3}{3y} = [f]$.« - (X4,49	w) . ',	x+f ((x	y,4900	(x) p. (4+	f'(x)	4,49	(W)
	my · · · ·	f ₁₂ (x9,	1. Gavi	· · · · · · ·	ray 40	(x1) .G1	r) 44	2/1/2) +	-f(×4, 4900
	•			11x + 522		J'	√) 1)			
		9'(2) = 0)				7		1	
	2x32 X=	2 4=1		f"(2,1						,
					. 2	F11(2	, i) -	t f.	2(2	1) +f
3 77	x2-6xy	+1042-2	43 -	82+18=	0 2 /2	in PE	物分	刘和	经大X	y in Ka
	VX -6"	1-24 3	<u>₹</u> -	23 33 =	-0		· 	0		
		33 =	\sim	-3 h						
	-l ₁ \ 12	04-28	- 24 - 24	33 -2	33=	0.		(2)		
	-0 ~ 10	$\frac{\sqrt{1-2}}{\sqrt{1-2}}$								
	· 	78 =		1-104-8						
36	20 23	- 0 4.4 - 0 4.4		+ 3 X=39 4=3	4212	×K.	425	7:	y= 1	:3.
4 - 8X	1922) In (7 7				
7-11		<u></u>	=-/-1=			· · ·	. ¬			

线内请勿答题

武汉大学试卷纸

# $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{4}$ $\frac{1}{5}$ $\frac{1}{6}$ $\frac{1}{7}$ $\frac{1}{8}$ $\frac{1}{9}$ $\frac{1}{10}$ $\frac{1}{7}$ $\frac{1}{9}$ \frac	争业		年级		学号.		•	<u></u> 姓	名-	•	•	
7. $Q_{0} = \frac{2}{6} \left(\frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} \right) = \frac{2}{6} \left(\frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} \right) = \frac{2}{6} \left(\frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} \right) = \frac{2}{6} \left(\frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} \right) = \frac{2}{6} \left(\frac{1}{1} + \frac{1}{1$	科目	成绩	总分,	1	2 3	4	5	6	7	8	9	10
$Q_{n} = \frac{2}{\rho} \int_{0}^{\rho} f(x) dx \int_{0}^{\pi} f(x) dx = 2 \int_{0}^{\rho} (z+x) dx \cdot \pi \pi x dx$ $= \frac{2}{\rho} \int_{0}^{\rho} f(x) dx \int_{0}^{\pi} f(x) dx + 2 \int_{0}^{\rho} f(x) dx \cdot \pi \pi x dx$ $= \frac{2}{\rho} \int_{0}^{\rho} f(x) dx \int_{0}^{\pi} f(x) dx + 2 \int_{0}^{\rho} f(x) dx dx = \frac{2}{\rho} \int_{0}^{\rho} f(x) dx dx dx dx = \frac{2}{\rho} \int_{0}^{\rho} f(x) dx $												
$= \frac{4}{\sqrt{10}} \int_{0}^{\sqrt{10}} \frac{1}{\sqrt{10}} $	<u>7.</u> a	$a = \frac{2}{\ell} \int_0^{\ell} f dx$	CONTROL OLX	= 2	S (2	+X) e	lx =	5				
$= \frac{1}{\sqrt{100}} \int_{0}^{\sqrt{100}} \frac{1}{\sqrt{100}} \frac{1}{\sqrt{100}}$	a	$=\frac{2}{6}\left(fx\right)$) Wy dx	= 2	- (ν+X)	(57)	 1 โi ≿d	<u> </u>			
$=\frac{4}{h\pi}\int_{0}^{\infty}\int$											·	
$=\frac{2}{n\pi}\left(\chi\sin n\pi\chi\right) - \int_{0}^{\infty}\sin n\pi\chi dx = \frac{2}{n\pi}\frac{2\pi}{n\pi}$ $=-\frac{2}{h^{2}\pi^{2}}\int_{0}^{1}\sin n\pi\chi dx = \frac{2}{h^{2}\pi^{2}}\cos n\pi\pi\chi dx = \frac{2}{h^{2}\pi^{2}}\cos n\pi\chi dx = \frac{2}{h^{2}}\cos n\pi\chi dx = \frac{2}{h^{2}\pi^{2}}\cos n\pi\chi dx = \frac{2}{h^{2}}\cos n\pi\chi dx = \frac{2}{h^{2$		4 (4	Canar J	1. Z	, 2, 1	,(ما ح		. ./	•		
$= \frac{2}{n^{2}\pi^{2}} \int_{0}^{\infty} \sin n\pi x dn\pi x = \frac{2}{n^{2}\pi^{2}} \cos n\pi x dn\pi x dn\pi x = \frac{2}{n^{2}\pi^{2}} \cos n\pi x dn\pi x dn\pi x = \frac{2}{n^{2}\pi^{2}} \cos n\pi x dn\pi x dn\pi x = \frac{2}{n^{2}\pi^{2}} \cos n\pi x dn\pi x dn\pi x dn\pi x = \frac{2}{n^{2}\pi^{2}} \cos n\pi x dn\pi x dn$		= 1/11)	1/ 2	11112	WTI)	b	<u> </u>			,		
$ \frac{n^{2}\pi^{2}}{1-4} = \frac{1}{n-2k+1} $ $ \frac{-4}{1-4} = \frac{1}{1-4} $ $ \frac{-4}{1-4} $ $\frac{-4}{1-4} $		$=\frac{2}{1}\int_{0}^{\infty}$	X Sinnii:	$\times $	- S,	Sina	πχα	K :	2 ~	VII		bH
$ \frac{n^{2}\pi^{2}}{1-4} = \frac{1}{n-2k+1} $ $ \frac{-4}{1-4} = \frac{1}{1-4} $ $ \frac{-4}{1-4} $ $\frac{-4}{1-4} $		711 へ	ر ا		74	,	2		_ . . T	#	2	(LOZn
$\int_{0}^{\infty} \frac{dr}{r} \int_{0}^{\infty} \frac$		$=-\overline{\mu^2 \overline{l_1}^2}$	Joseph	uxa,	· · ·	h ²	112	ω·	7 1/11	^ 0		NzII
$ \frac{(pkt1)}{h} \frac{T^{2}}{h} = 0. $ $ \frac{b}{h} = 0. $ $ \frac{5}{h} = \frac{5}{2} + \sum_{n=1}^{2} \frac{2(wnn+1)}{h^{2} + 2^{2}} cwshn x = \frac{5}{2} - \frac{4}{11^{2}} \sum_{k=0}^{2} \frac{(2k+1)^{2}}{(2k+1)^{2}} xel $ $ \frac{8}{h} = \frac{1}{2} + \sum_{n=1}^{2} \frac{1}{h^{2} + 2^{2}} cwshn x = \frac{5}{2} - \frac{4}{11^{2}} \sum_{k=0}^{2} \frac{(2k+1)^{2}}{(2k+1)^{2}} xel $ $ = \frac{11}{2} \ln 2 $ $ \frac{7}{h} = \frac{1}{2} \ln 2 $ $ \frac{7}{h} = \frac{7}{2} \ln 2 $ $ \frac{7}{h} = \frac{7}{4} \ln 2 $ $ \frac{7}{h} = \frac{7}{h} \ln 2 $ $ \frac{7}{h} = \frac{7}$		=	и=.	2 K								
$f(x) = \frac{5}{2} + \sum_{n=1}^{\infty} \frac{2(u s_{n} \pi_{1} + 1)}{n^{2} \pi^{2}} c_{0} s_{n} \pi_{1} \times = \frac{5}{2} - \frac{7}{11^{2}} \sum_{k=0}^{\infty} \frac{(2k+1)\pi_{1} \times \pi_{2}}{(2k+1)^{2}} \times e^{\left[\frac{\pi_{1}}{2}\right]} \frac{1}{\sqrt{2}} \int_{0}^{\pi_{1}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} dx dx = \int_{0}^{\pi_{1}} \frac{1}{\sqrt{2}} du \int_{0}^{\pi_{1}} \frac{1}{\sqrt{2}} dx = \frac{\pi_{1}}{\sqrt{2}} dx dx = \int_{0}^{\pi_{1}} \frac{1}{\sqrt{2}} du \int_{0}^{\pi_{1}} \frac{1}{\sqrt{2}} dx = \frac{\pi_{1}}{\sqrt{2}} du \int_{0}^{\pi_{1}} \frac{1}{\sqrt{2}} dx = \frac{\pi_{1}}{\sqrt{2}} du \int_{0}^{\pi_{1}} \frac{1}{\sqrt{2}} dx = \frac{\pi_{1}}{\sqrt{2}} du \int_{0}^{\pi_{1}} \frac{1}{\sqrt{2}} dx = \int_{0}^{\pi_{1}} \frac{1}{\sqrt{2}} du \int_{0}^{\pi_{1}} \frac{1}{\sqrt{2}} dx = \int_{0}^{\pi_{1}} \frac{1}{\sqrt{2}} dx $	٠.	1-4-	. <u>n</u> =	2 <u>ktl</u>	•			•			· ·	
$f(x) = \frac{5}{2} + \sum_{n=1}^{\infty} \frac{2(w_{n}n + 1)}{n^{2}n^{2}} c_{n} $						-				<u></u>	-	
8. $I = \int \frac{1}{1+x^{2}+y^{2}} dx dy = \int \frac{\pi}{1} d\theta \int \frac{r}{1+r^{2}} dr = \pi \cdot \frac{1}{2} d\theta$ $= \frac{\pi}{2} \ln 2$ 9. $\frac{\partial P}{\partial x} = \frac{\partial Q}{\partial x} - e^{\frac{x}{4}} \left(-\frac{x}{4^{2}}\right)$ $= (1+e^{x}) dx + \int e^{\frac{x}{4}} (1-\frac{x}{4}) dy$ $= (1+e^{x}) dx + \int e^{\frac{x}{4}} (1-\frac{x}{4}) dy$ $= (1+e^{x}) - \int \frac{x}{4} dx + \int \frac{x}{4} dx$		5 5 2	(43 n 11-1)			·	4	<i>\$</i>	65	(2K+	1)T/X	. Xe[
$=\frac{11}{2}\ln 2$ $\frac{g}{2\pi} = \frac{3p}{2\pi} = \frac{3p}{2\pi} = \frac{x}{2\pi} \cdot \left(-\frac{x}{4^{2}}\right)$ $\frac{g}{2\pi} = \frac{3p}{2\pi} = \frac{x}{2\pi} \cdot \left(-\frac{x}{4^{2}}\right)$ $\frac{g}{2\pi} = \frac{g}{2\pi} = \frac{g}{2\pi} \cdot \left(-\frac{x}{4^{2}}\right)$ $\frac{g}{2\pi} = \frac{g}{2\pi} \cdot \left(-\frac{x}{4^{2}}\right)$ $= \frac{g}{2\pi} \cdot \left(-\frac{x}{4^{2}$	<u>fv) =</u>	2+4-	1 4 CV	5>411/2	0 7 =	2	Ti-	K=0	(2K+1)2	
$=\frac{11}{2}\ln 2$ $\frac{g}{2\pi} = \frac{3p}{2\pi} = \frac{3p}{2\pi} = \frac{x}{2\pi} \cdot \left(-\frac{x}{4^{2}}\right)$ $\frac{g}{2\pi} = \frac{3p}{2\pi} = \frac{x}{2\pi} \cdot \left(-\frac{x}{4^{2}}\right)$ $\frac{g}{2\pi} = \frac{g}{2\pi} = \frac{g}{2\pi} \cdot \left(-\frac{x}{4^{2}}\right)$ $\frac{g}{2\pi} = \frac{g}{2\pi} \cdot \left(-\frac{x}{4^{2}}\right)$ $= \frac{g}{2\pi} \cdot \left(-\frac{x}{4^{2}$	87 /	т ((- d	v dle	_ (:	7 ,	1.19	(+ (γ~	- d V	·	-
$\frac{q}{\partial y} = \frac{\partial p}{\partial x} = e^{\frac{x}{y}} \left(-\frac{x}{y^{2}}\right)$ $\frac{u(x,y)}{\partial y} = \int_{(1,1)}^{(x,y)} \rho dx + Q dy = \int_{1}^{x} \frac{(1+e^{\frac{x}{y}})dx}{y^{2}} + \int_{1}^{y} e^{\frac{x}{y}} \frac{(1-\frac{x}{y})dy}{y^{2}}$ $= x - 1 + e^{x} - e + \left(-\frac{x}{y} - \frac{x}{y} - \frac{x}{$	0.	$L = \frac{1}{D} \frac{1}{1}$	+X2th2	× 7		<u> </u>) <u> </u>	(+	3ª/	 1	1.27
$u(x,y) = \int_{(1,1)}^{(x,y)} \rho dx + \varrho dy = \int_{1}^{x} \frac{1+e^{x}}{1+e^{x}} dx + \int_{1}^{y} \frac{e^{\frac{x}{y}}}{1+e^{x}} dy$ $= x-1+e^{x}-e+\int_{1}^{y} \frac{e^{x}}{1+e^{x}} dx + \int_{1}^{y} \frac{e^{\frac{x}{y}}}{1+e^{x}} dx$		= 11 ln	2						<u> </u>			
$u(x,y) = \int_{(1,1)}^{(x,y)} \rho dx + \varrho dy = \int_{(1+e^{-x})}^{x} (1+e^{-x}) dx + \int_{(1+e^{-x})}^{y} e^{\frac{x}{y}} (1-\frac{x}{y}) dy$ $= x-1+e^{x}-e+(-e^{-x}) + e^{-x} + e^{-x$	a	2D 00	X		х .							
$= x - 1 + e^{x} - e + (e^{\frac{x}{2}}ax - (e^{\frac{x}{2}}ax)$	7	m m	6		y-) .	•						
$= x - 1 + e^{x} - e + (e^{\frac{x}{2}}ax - (e^{\frac{x}{2}}ax)$	NIX	(4) = (x.4)	D dx+Q	y =	(X	+0"	スノイト	· + (y 0	× (1	_ <u>X</u>	114
= x-1+ex-e+(1ex+), ex f dx = x-1+ex-e+(1ex dx+), ex f dx		υ (l. ()	ļ		٠,			v	1.1		4	/ V ()
= X-1+ex-e+(1ex d)+(1) yde y = X-1+ex-e+(1ex d)+(1) x = X-1		⇒ ×-17	-ex-e 7	$t = \left(\frac{1}{2} \right)^{\frac{1}{2}}$	e 5 04	¢ –	5,0	2 4 7	- 21	1		
= X-1+px-e+ (5e+ay+4,5=1-(5e+a4 = X-1		= X-1	te-e	+ (5	0, d	·	(4	100	X			
		= X-1.	tox-o	71	e hal	V 1 + 1		17 (ر -50	× 4 d4	: =	X-1

4

武汉大学 2011-2012 学年第二学期

《高等数学 B2》(A 卷)标准答案

一、 $(8 \, f)$ (每个划线部分 $2 \, f$)解:设 $\vec{m} = (x, y, z)$,则 $\vec{m} \perp \vec{c}$ 意味着 $\frac{2x - 2y + z = 0}{m}$, \vec{m} 与 \vec{a} , \vec{b} 共面意味着

$$\begin{vmatrix} x & y & z \\ 1 & 0 & 0 \\ 0 & 1 & -2 \end{vmatrix}$$
 = 0 得 $z = -2y$, 单位向量 \vec{m} 意味着 $x^2 + y^2 + z^2 = 1$, 解上述三个方程得 $\vec{m} = \pm (\frac{2}{3}, \frac{1}{3}, -\frac{2}{3})$.

二、(11 分)解: $\lim_{x\to 0} f(x,y) = f(0,0) = 0$, 所以 f(x,y) 在 (0,0) 点连续,……4 分

$$f_x(0,0) = \lim_{x\to 0} \frac{f(x,0) - f(0,0)}{x} = 0 = f_y(0,0)$$
, 所以偏导数存在,4 分

$$\lim_{\rho\to 0}\frac{\Delta z-f_x(0,0)\Delta x-f_y(0,0)\Delta y}{\sqrt{\Delta x^2+\Delta y^2}}=\lim_{\rho\to 0}\frac{(\Delta x)^{\frac{2}{3}}(\Delta y)^{\frac{1}{3}}}{\sqrt{\Delta x^2+\Delta y^2}}, \ \ \mathbb{R}\,\Delta y=k\Delta x\,\, \text{\vec{x} is k}\,\mathbb{R}, \ \ \mathbb{R}\,\, \mathbb{R}\,\,$$

所以不可微。.....3分

三、(8分) 解:
$$\frac{\partial z}{\partial x} = \frac{\partial u}{\partial x}e^{ax+by} + aue^{ax+by}, \frac{\partial z}{\partial y} = \frac{\partial u}{\partial y}e^{ax+by} + bue^{ax+by}, \dots 4$$
分

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 u}{\partial x \partial y} e^{ax+by} + b \frac{\partial u}{\partial x} e^{ax+by} + a \frac{\partial u}{\partial y} e^{ax+by} + abu e^{ax+by} = b \frac{\partial u}{\partial x} e^{ax+by} + a \frac{\partial u}{\partial y} e^{ax+by} + abu e^{ax+by}, \dots 2$$

$$\overline{m} \frac{\partial^2 z}{\partial x \partial y} - \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} + z = (b-1)\frac{\partial u}{\partial x} + (a-1)\frac{\partial u}{\partial y} + (ab-a-b+1)u = 0, \quad \pm 1$$

$$u = F(x) + G(y)(F, G$$
 任意) 可知只有系数 $a = 1, b = 1$2 分

四、(8分) 在
$$y = f(x, F(x, y(x))$$
 两边同时关于 x 求导,可得 $\frac{dy}{dx} = f_x + f_t(\frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} \frac{dy}{dx})$,……5 分

整理得
$$\frac{dy}{dx} = \frac{f_x + f_t F_x}{1 - f_t F_y}$$
......3 分

五、(10分)解:做 Lagrange 函数 $F(x,y,z,\lambda) = x^2 + y^2 + z^2 - \lambda(a_1x + a_2y + a_3z - 1)$,求导得

$$\begin{cases} F_x(x, y, z, \lambda) = 2x - a_1 \lambda = 0 \\ F_y(x, y, z, \lambda) = 2y - a_2 \lambda = 0 \\ F_z(x, y, z, \lambda) = 2z - a_3 \lambda = 0 \\ a_1 x + a_2 y + a_3 z = 1 \end{cases}$$
......5

$$\lambda = \frac{2}{a_1^2 + a_2^2 + a_3^2}, \ x = \frac{a_1}{a_1^2 + a_2^2 + a_3^2}, \ y = \frac{a_2}{a_1^2 + a_2^2 + a_3^2}, \ z = \frac{a_3}{a_1^2 + a_2^2 + a_3^2}, \dots 4$$

$$F_{\min} = \frac{1}{a_1^2 + a_2^2 + a_3^2}$$
 1分

六、(8分) 解: 原式=
$$\int_0^1 dx \int_0^x dy \int_0^{xy} x^3 y^2 z dz$$
.......4分 = $\frac{1}{110}$4分

七、(8 分)解:
$$\sum_{n=1}^{\infty} \frac{1}{2^n} (x+1)^n$$
的收敛半径为 $R_1 = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = 2$, $\sum_{n=1}^{\infty} (-2)^n (x+1)^n$ 的收敛半径为

$$R_2 = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \frac{1}{2} \cdot \dots 4^r$$

故原级数的的收敛半径为
$$R = \min\{R_1, R_2\} = \frac{1}{2}$$
,收敛区间则为 $\left(-\frac{3}{2}, -\frac{1}{2}\right)$,……2′

当
$$x = -\frac{3}{2}$$
时,级数发散,当 $x = -\frac{1}{2}$ 时,级数发散,所以收敛域为 $\left(-\frac{3}{2}, -\frac{1}{2}\right)$ 。.....2'

八、(8分) 解:
$$I = \iint_D |x^2 + y^2 - 4| dxdy = \int_0^{2\pi} d\theta \int_0^2 (4 - r^2) r dr + \int_0^{2\pi} d\theta \int_2^4 (4 - r^2) r dr \dots 6分 = 80\pi.....2分$$

九、(10 分)解一:补充平面 $S_1:z=1$,法向量向下,形成封闭区域 Ω ,由 Gauss 公式得

$$\iint_{\Omega} (2x+z) dy dz + z dx dy = -3 \iiint_{\Omega} dx dy dz = -3 \int_{0}^{2\pi} d\theta \int_{0}^{1} r dr \int_{r^{2}}^{1} dz = -\frac{3}{2} \dot{\pi}, \dots 5'$$

再计算平面
$$z = 1$$
 上的曲面积分 $\iint_{S_1} (2x + z) dy dz + z dx dy = \iint_{\{x^2 + y^2 \le 1\}} dx dy = \pi$,4'

综合得
$$I = -\frac{\pi}{2}$$
 。.....1′

解二:用投影法求解,这里 $z_x'=2x, z_y'=2y$ 。.....2'

原式 =
$$\iint_{S} [(2x+z)(-2x)+z] dxdy = -\iint_{S} (z-2xz-4x^2) dxdy = \iint_{D} (x^2+y^2-2x(x^2+y^2)-4x^2) dxdy \dots 3'$$

$$= \int_0^{2\pi} d\theta \int_0^1 (r^2 - 2r^3 \cos \theta - 4r^2 \cos^2 \theta) r dr = -\frac{\pi}{2} \dots 5'$$

+. (11')
$$M$$
: ① $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = (3x^2 + 1 - 3x^2) = 1$,2'

②曲线L不封闭,添加辅助线 $L_{\rm l}$:沿y轴由点B(0,2)到点O(0,0),

$$\int_{L_1} 3x^2 y dx + (x^3 + x - 2y) dy = \int_{L_1} Q(0, y) dy = \int_2^0 -2y dy = 4, \dots 3'$$

③在封闭区域上运用 Green 公式,可得

$$\int_{L \cup L_1} 3x^2 y dx + (x^3 + x - 2y) dy = \iint_D 1 dx dy = \frac{1}{4} \pi \cdot 2^2 - \frac{1}{2} \pi \cdot 1^2 = \frac{\pi}{2}, \dots 4^3$$

因此
$$I = \int_{L} 3x^{2}ydx + (x^{3} + x - 2y)dy = \frac{\pi}{2} - 4 \dots 2'$$

$$+-\cdot (10') \quad a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \left(\int_0^{\pi} \cos nx dx - \int_0^{\pi} x^2 \cos nx dx \right) = \frac{2}{\pi} \left(-\int_0^{\pi} x^2 \cos nx dx \right)$$

$$= \frac{2}{\pi} \cdot \frac{2\pi (-1)^{n-1}}{n^2} = \frac{4(-1)^{n-1}}{n^2}, \quad \dots \dots A' \qquad a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx = 2(1 - \frac{\pi^2}{3}), \quad \dots \dots 2'$$

所以
$$1-x^2 = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx = 1 - \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^{n-1}}{n^2} \cos nx, \dots 2'$$

取
$$x = 0$$
, 得 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = \frac{\pi^2}{12} \dots 2'$

武汉大学数学与统计学院

2012-2013 学年二学期《高等数学 B2》期末试卷(A卷)参考解答

一、(9分) 解: 首先 $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin(\bar{a}, b) = \sqrt{3}$,而 $\vec{a} \perp \vec{c}$, $\vec{b} \perp \vec{c}$ 可知 $\vec{c} \parallel \vec{a} \times \vec{b}$,所以 $\vec{c} = \vec{a} \times \vec{b}$ 的夹角为 0 或 π ,所以 $(\vec{a} \times \vec{b}) \cdot \vec{c} = |\vec{a} \times \vec{b}| |\vec{c}| \cos(\bar{a} \times \bar{b}, \vec{c}) = \sqrt{3} \times 3 \times (\pm 1) = \pm 3\sqrt{3}$

二、(9分)解 π 法向量为 $\vec{n} = \{A, B, 6\}$,l 方向向量为 $\vec{S} = \{2, -4, 3\}$,l 与 π 垂直, $\vec{n} / | \vec{S}$,故 $\frac{A}{2} = \frac{B}{-4} = \frac{6}{3}$,解得: A = 4, B = -8

三、(9分)解(1) $xdx-ydy=dz-\varphi'(x+y-z)\cdot(dx+dy-dz)$, $dz=\frac{(x+\varphi')dx+(\varphi'-y)dy}{\varphi'+1}$,

$$(2) \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} = \frac{x+y}{1+\varphi'(x+y-z)}, \quad u(x,y) = \frac{1}{x+y} \left(\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right) = \frac{1}{1+\varphi'(x+y-z)}$$

$$\frac{\partial u}{\partial x} = \frac{-\varphi''(1-\varphi')^2}{(1+\varphi')^2} = \frac{-\varphi''(1-\varphi')^2}{(1+\varphi')^2} = \frac{-\varphi''(1-\varphi')^2}{(1+\varphi')^2}$$

四、(9分)解:因为 $\max\{x^2,y^2\} = \begin{cases} x^2, x \ge y \\ y^2, x \le y \end{cases}$, $(x,y) \in D$,于是用 y = x 将区域分成两块:

$$I = \iint_{D_1} e^{x^2} dx dy + \iint_{D_2} e^{y^2} dx dy = 2 \iint_{D_1} e^{x^2} dx dy = 2 \int_0^1 dx \int_0^x e^{x^2} dy = 2 \int_0^1 x e^{x^2} dx = e - 1$$

$$\overline{\pm}$$
. (9 π)
$$\iiint_{\Omega} z dv = \int_{0}^{2} dx \int_{0}^{2-x} dy \int_{0}^{2-x-y} z dz = \frac{2}{3}$$

六、(9分) 解由
$$\frac{\partial p}{\partial y} = \frac{\partial Q}{\partial x}$$
, 得 $\varphi'(x)y = 2xy[\varphi(x)+1]$, $\ln[\varphi(x)+1] = x^2 + C_1$,

即
$$\varphi(x) = e^{x^2 + C_1} - 1 = Ce^{x^2} - 1$$
 , 所以有 $\int_{(0,0)}^{(1,1)} (Ce^{x^2} - 1)y dy + Cxy^2 e^{x^2} dx = \frac{1}{2}$

$$\int_{(0,0)}^{(1,1)} (Ce^{x^2} - 1) y dy + Cxy^2 e^{x^2} dx = \int_0^1 (Ce - 1) y dy = \frac{1}{2} (Ce - 1). \quad \text{idf} (Ce - 1) = 1, \quad \text{iff} (Ce - 1) = 1$$

所以有 $\varphi(x) = 2e^{x^2-1}-1$

七、(9 分) 解: $dS = \sqrt{1 + \frac{x^2}{x^2 + y^2}} + \frac{y^2}{x^2 + y^2} dx dy = \sqrt{2} dx dy$,因为积分区域关于 xoz 平面对称, xy 关于 y 是奇函数,所以

$$I = \iint_{\Sigma} (xy + z) dS = \iint_{\Sigma} z dS = \iint_{D_{xy}} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{2\cos\theta} r^2 dr$$
$$= 2\sqrt{2} \int_{0}^{\frac{\pi}{2}} \frac{8}{3} \cos^3\theta d\theta = \frac{32\sqrt{2}}{9}$$

八、(7分) 解
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \frac{n\cdot 4^n}{(n+1)\cdot 4^{n+1}} = \frac{1}{4}$$
. : 收敛半径为 $R=4$, 当 $x=-4$ 时, $\sum_{n=1}^{\infty} \frac{4}{n}$ 发散;

当
$$x = 4$$
 时, $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \cdot 4}{n}$ 收敛,收敛域为 $(-4, 4]$,设 $S(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n \cdot 4^n} x^{n+1} = x \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n \cdot 4^n}$

数收敛。

武汉大学 2013-2014 学年第二学期期末考试 高等数学 B2 试题解答

一、(8分) 利用二重积分的性质,比较积分 $I_1 = \iint_D \ln(x^2 + y^2) d\sigma = I_2 = \iint_D \left[\ln(x^2 + y^2)\right]^2 d\sigma$ 的大小,

其中
$$D: e \le x^2 + y^2 \le 2e$$
.

二、(8分) 设
$$z = f(xy, \frac{x}{y}) + \sin y$$
, 其中 f 具有二阶连续偏导数,求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$.

解
$$\frac{\partial z}{\partial x} = (f_1' \cdot y + f_2' \cdot \frac{1}{y}) + 0 = yf_1' + \frac{1}{y}f_2'$$
,4 分

三、(8 分) 求过点 M(1,-2,3) 的平面,使它与平面 $\pi: x+y-z-3=0$ 垂直,且与直线 L: x=y=z 平 行.

解 因为已知直线与已知平面不平行,故所求平面得法向量为

$$\vec{n} = (1,1,-1) \times (1,1,1) = (2,-2,0)$$
.4 \hat{D}

四、 (8 分)设函数 z = z(x,y) 是由方程 $xyz = \arctan(x+y+z)$ 所确定的隐函数,求全微分 dz 在点 (0,1,-1) 处的值..

解
$$yzdx + xzdy + xydz = \frac{dx + dy + dz}{1 + (x + y + z)^2}$$
,4 分

$$dz = \frac{yz[1 + (x + y + z)^2] - 1}{1 - xy[1 + (x + y + z)^2]} dx + \frac{xz[1 + (x + y + z)^2] - 1}{1 - xy[1 + (x + y + z)^2]} dy, \text{ if } dz\Big|_{(0,1,-1)} = -2dx - dy \cdot \cdots \cdot 4 \text{ f}$$

五、(10 分) 计算曲线积分 $\int_L (2a-y) dx + x dy$,式中 L 是从原点 O(0,0) 沿曲线 $\begin{cases} x = a(t-\sin t) \\ y = a(1-\cos t) \end{cases}$ (a>0) 到点 $A(2\pi a,0)$ 的弧段.

解 O(0,0) 对应 t=0, $A(2\pi a,0)$ 对应 $t=2\pi$ 。

原式 =
$$\int_0^{2\pi} a (1 + \cos t) \cdot a(1 - \cos t) dt + a(t - \sin t)a \sin t dt$$
 ·······6 分

$$= \int_0^{2\pi} a^2 (1 - \cos^2 t - \sin^2 t + t \sin t) dt = a^2 \int_0^{2\pi} t \sin t dt = -2\pi a^2 \qquad \cdots 4$$
 分设 Ω 是由曲面 $z^2 = x^2 + y^2, z = 2$ 所围的闭区域,试计算 $\iint z^2 dV$.

六、(10 分)设 Ω 是由曲面 $z^2 = x^2 + y^2, z = 2$ 所围的闭区域,试计算 $\iint z^2 dV$.

解
$$\iiint_{\Omega} z^2 dV = \int_0^2 z^2 dz \iint_{x^2 + y^2 \le z^2} dx dy \qquad \cdots 6 分$$

$$= \int_0^2 \pi z^4 dz = \frac{32}{5} \pi$$
4 \Re

七、(10分) 计算曲面积分 $\iint_{S} (x^3 + z^2) dy dz + (y^3 + x^2) dz dx + (z^3 + y^2) dx dy$, 其中 S 是上半球面 $z = \sqrt{1 - x^2 - y^2}$ 的上侧.

解 添加平面 $S_1: x^2+y^2 \le 1(z=0)$ 的下侧,记 $S+S_1$ 所围的区域为 V ,则利用高斯公式得,

原式 =
$$3 \iiint_{V} (x^2 + y^2 + z^2) dV - \iint_{S_1} y^2 dx dy - 0 \cdots 6$$
 分

$$=3\int_0^{2\pi} d\theta \int_0^{\frac{\pi}{2}} d\varphi \int_0^1 r^4 \sin\varphi dr + \int_0^{2\pi} d\theta \int_0^1 \rho^3 \sin^2\theta d\rho = \frac{29}{20}\pi \quad \cdots \quad 4 \text{ f}$$

八、(8分) 求曲线 $x = \sin^2 t$, $y = \sin t \cos t$, $z = \cos^2 t$ 在对应于 $t = \frac{\pi}{4}$ 的点处的切线和法平面方程.

解 点
$$\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$$
, 当 $t = \frac{\pi}{4}$ 时, $\vec{\tau} = (x', y', z')|_{t=\frac{\pi}{4}} = (1, 0, -1)$ 。 ……4 分

切线
$$\frac{x-\frac{1}{2}}{1} = \frac{y-\frac{1}{2}}{0} = \frac{z-\frac{1}{2}}{-1}$$
, 法平面, $x-z=0$ ······4 分

九、(8分) 设 f(x) 是周期为 2π 的周期函数,它在 $[-\pi,\pi)$ 上的表达式为 $f(x) = \begin{cases} -1, & -\pi \le x < 0, \\ 1, & 0 < x < \pi. \end{cases}$

将它展开成 Fourier 级数,并求数项级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1}$ 的和。

所给函数在点 $x = k\pi(k = 0, \pm 1, \pm 2,...)$ 处不连续,在其他点处连续,所以由收敛定理可知 f(x) 的 Fourier 级数收敛, 在 $x = k\pi(k = 0, \pm 1, \pm 2,...)$ 处级数收敛于 $\frac{-1+1}{2} = 0$, 当 $x \neq k\pi(k = 0, \pm 1, \pm 2,...)$ 时 收敛于 f(x).

计算 Fourier 系数如下:

十、(9 分) 设 $f(x) = \begin{cases} \frac{\ln(1-x)}{x} & x \neq 0 \\ -1 & x = 0 \end{cases}$,试将 f(x) 展开成 x 的幂级数并利用其求 $\int_0^x f(t) dt$ 。

解由 $\ln(1-x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{(-x)^n}{n} = -\sum_{n=1}^{\infty} \frac{x^n}{n}, x \in [-1,1)$ 因此当 $x \neq 0$ 时,有

 $\frac{\ln\left(1-x\right)}{x} = -\sum_{n=1}^{\infty} \frac{x^{n-1}}{n}, \qquad \cdots 5 \text{ }$

当 x = 0 时, $-\sum_{n=1}^{\infty} \frac{x^{n-1}}{n} = -1 = f(0)$,所以 $f(x) = -\sum_{n=1}^{\infty} \frac{x^{n-1}}{n}$, $x \in [-1,1]$

 $\int_0^x f(t)dt = -\sum_{n=1}^\infty \frac{x^n}{n^2} \quad x \in [-1,1]$ 4 \(\frac{1}{2}\)

十一、(6分) 设 $a_n \ge 0$ (n = 1, 2, ...),且数列 $\{na_n\}$ 有界,证明: $\sum_{n=1}^{\infty} a_n^2$ 收敛。

证明:因为数列 $\{na_n\}$ 有界,则 $\exists M>0$,使得 $0\leq na_n\leq M$,因此 $0\leq a_n\leq \frac{M}{n}$, ……3分

于是 $0 \le a_n^2 \le \frac{M^2}{n^2}$,由比较判别法可知 $\sum_{n=1}^{\infty} a_n^2$ 收敛。3分

十二、(7分) 求二元函数 $f(x,y) = \cos^2 x + \cos^2 y$ 在限制条件 $x - y = \frac{\pi}{4}$ 下的极值.

解 设 $F(x,y,\lambda) = \cos^2 x + \cos^2 y + \lambda(x-y-\frac{\pi}{4})$, 求驻点。由 $F_x = -2\sin x \cos x + \lambda = 0$,

 $F_y = -2\sin y\cos y - \lambda = 0, \ x - y = \frac{\pi}{4}$ 可得驻点为 $(\frac{\pi}{8} + \frac{k\pi}{2}, -\frac{\pi}{8} + \frac{k\pi}{2})$ 。4 分

武汉大学 2014-2015 学年第二学期期末考试高等数学 B2 答案

一、(8分) 设
$$\bar{p}=2\bar{a}+\bar{b}$$
, $\bar{q}=k\bar{a}+\bar{b}$, 其中 $|\bar{a}|=1$, $|\bar{b}|=2$, 且 $\bar{a}\perp\bar{b}$, 问:

(1) k 为何值时, $\bar{p}\perp\bar{q}$? (2) k 为何值时,以 \bar{p},\bar{q} 为边的平行四边形面积为 6?

解 (1) 因
$$\bar{p}\perp\bar{q}$$
,故 $\bar{p}\cdot\bar{q}=0$, 即 $(2\bar{a}+\bar{b})\cdot(k\bar{a}+\bar{b})=0$

$$2k|\bar{a}|^2 + (2+k)\bar{a}\cdot\bar{b} + |\bar{b}|^2 = 0$$

按
$$|\bar{a}|^2 = 1$$
, $\bar{a} \cdot \bar{b} = 0$, $|\bar{b}|^2 = 4$, 有 $2k + 4 = 0$, 得 $k = -2$ 4 分

(2)
$$|\bar{p} \times \bar{q}| = 6$$
, 而 $|\bar{p} \times \bar{q}| = |(2\bar{a} + \bar{b}) \times (k\bar{a} + \bar{b})| = |(2 - k)\bar{a} \times \bar{b}| = 2|2 - k|$ 故 $|2 - k| = 3$, 得 $k = 5$ 或 $k = -1$.

二.(8 分) 求函数
$$u = \frac{x}{\sqrt{x^2 + y^2 + z^2}}$$
 沿曲线 $x = t, y = 2t^2, z = -2t^4$ 在点 $M(1, 2, -2)$ 的切

线方向上的方向导数

解: 曲线在点M处对应t=1, 在M点的切线方向为(1,4t,-8t)=(1,4,-8),方向余弦为

$$\vec{l} = (\frac{1}{9}, \frac{4}{9}, -\frac{8}{9})$$
 , $4 \,$

$$gradu\Big|_{M} = \left(\frac{y^{2} + z^{2}}{(x^{2} + y^{2} + z^{2})^{\frac{3}{2}}}, -\frac{xy}{(x^{2} + y^{2} + z^{2})^{\frac{3}{2}}}, -\frac{xz}{(x^{2} + y^{2} + z^{2})^{\frac{3}{2}}}\right)\Big|_{M} = \left(\frac{8}{27}, -\frac{2}{27}, \frac{2}{27}\right)$$

故方向导数为
$$\frac{\partial u}{\partial \overline{l}} = -\frac{16}{243}$$
, 4分

三、(6 分)函数 z = z(x, y) 由方程 z = f(x + y + z) 所确定,其中 f 二阶可导,且 $f'(u) \neq 1$,

求
$$\frac{\partial^2 z}{\partial x^2}$$
.

$$R$$
 $z_x = (1+z_x)f'$, $z_x = \frac{f'}{1-f'} = -1 + \frac{1}{1-f'}$ (4 β)

$$\frac{\partial^2 z}{\partial x^2} = \frac{(1+z_x)f''}{(1-f')^2} = \frac{f''}{(1-f')^3}$$
 (2 \(\frac{\psi}{2}\))

四、(8分)设u = f(x + y + z, xyz)具有一阶连续偏导数,其中z = z(x, y)由方程 $x^2 + 2ze^{y^2} = \sin z$ 所确定,求 du.

解: $du = (dx + dy + dz) f_1 + (yz dx + xz dy + xy dz) f_2$

$$2x dx + 2e^{y^2} dz + 4yze^{y^2} dy = \cos z dz$$
 4 $\%$

消去 d z 得: d u =
$$\left[f_1 + yzf_2 + (f_1 + xyf_2) \frac{2x}{\cos z - 2e^{y^2}} \right]$$
d x + $\left[f_1 + xzf_2 + (f_1 + xyf_2) \frac{4yze^{y^2}}{\cos z - 2e^{y^2}} \right]$ d y 4 分

五、(8分) 求曲面 $z-e^z+2xy=3$ 在点 M(1,2,0) 处的切平面和法线方程。

解: 设
$$F(x, y, z) = z - e^z + 2xy - 3$$
,则 $F_x = 2y$, $F_y = 2x$, $F_z = 1 - e^z$, 4分

故法向量 $\bar{n}|_{M} = \{F_{v}, F_{v}, F_{v}\}|_{M} = \{4, 2, 0\}$, 所以切平面方程为

$$4(x-1)+2(y-2)+0\cdot(z-0)=0$$
 即 $2x+y=4$,

法线方程为
$$\frac{x-1}{4} = \frac{y-2}{2} = \frac{z}{0}$$
 或者
$$\begin{cases} \frac{x-1}{4} = \frac{y-2}{2} \\ z = 0 \end{cases}$$
 4分

六、(10 分)设 $z=x^3+\alpha x^2+2\gamma xy+\beta y^2+\alpha\beta^{-1}(\gamma x+\beta y)$,试证: 当 $\alpha\beta\neq\gamma^2$ 时,函数z有一个且仅有一个极值,又若 $\beta<0$,则该极值必为极大值。

证明 由
$$\begin{cases} z_x = 3x^2 + 2\alpha x + 2\gamma y + \alpha \gamma \beta^{-1} = 0 \\ z_y = 2\gamma x + 2\beta y + \alpha = 0 \end{cases}, \quad \text{解得 } x = 0 \text{ 或 } x = \frac{-2}{3\beta}(\alpha\beta - \gamma^2) = \mu \text{ 5 } \beta$$

$$D = \begin{pmatrix} z_{xx} & z_{xy} \\ z_{yx} & z_{yy} \end{pmatrix} = \begin{pmatrix} 6x + 2\alpha & 2\gamma \\ 2\gamma & 2\beta \end{pmatrix}, D|_{x=0} = 4(\alpha\beta - \gamma^2), D|_{x=\mu} = 4(\gamma^2 - \alpha\beta)$$

在 $\alpha\beta\neq\gamma^2$ 的条件下,以上二式中必有且仅有一式大于零,这说明函数 z 有且仅有一个极值。 因为 $z_{yy}=2\beta$,所以当 $\beta<0$ 时,必为极大值。 5 分

七、(8 分)设 f(x,y) 连续,且满足 $f(x,y) = x\sqrt{y} + \iint\limits_D f(u,v) du dv$,其中 D 为曲线

 $y = x^2, x = y^2$ 所围成的区域,求 f(x, y).

解: 设
$$A = \iint_D f(u,v) du dv$$
, 则 $A = \iint_D (x\sqrt{y} + A) dx dy$, 而

$$\iint_{D} x \sqrt{y} dx dy = \int_{0}^{1} dx \int_{x^{2}}^{\sqrt{x}} x \sqrt{y} dy = \frac{6}{55}$$

$$4 \text{ }$$

而
$$\iint_D A dx dy = A \int_0^1 dx \int_{x^2}^{\sqrt{x}} dy = \frac{1}{3}A$$
,所以 $A = \frac{6}{55} + \frac{A}{3} \Rightarrow A = \frac{9}{55}$,

故
$$f(x,y) = x\sqrt{y} + \frac{9}{55}$$

八、(8 分) 设 Ω 是由锥面 $z=\sqrt{x^2+y^2}$ 与半球面 $z=\sqrt{R^2-x^2-y^2}$ 围成的空间区域, S 是 Ω 的整个边界的外侧, 求曲面积分 $\iint_{\Sigma} x dy dz + y dz dx + z dx dy$.

解:由 Gauss 公式可知

$$\iiint\limits_{S} x dy dz + y dz dx + z dx dy = \iiint\limits_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz = 3 \iiint\limits_{\Omega} dx dy dz$$
 4 \(\frac{\partial}{2}\)

用球坐标 $x = r\cos\theta\sin\varphi, y = r\sin\theta\sin\varphi, z = r\cos\varphi$,可得

$$\iiint_{\Omega} dx dy dz = \int_0^{2\pi} d\theta \int_0^{\frac{\pi}{4}} d\varphi \int_0^R r^2 \sin\varphi dr = \frac{2 - \sqrt{2}}{3} \pi R^3,$$

所以
$$\iint_{S} x dy dz + y dz dx + z dx dy = 3 \cdot \frac{2 - \sqrt{2}}{3} \pi R^3 = (2 - \sqrt{2})\pi R^3$$
 4 分

九、(10分) 求幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} x^{2n}$ 的收敛域与和函数.

解:令
$$t = x^2$$
,级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} t^n$ 的收敛半径为 $R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = 1$,当 $t = \pm 1$ $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1}$ 收敛,所以原级数的收敛域为[-1,1]。

与路径无关,并在上述条件下,求积分 $\int_{(1,0)}^{(3,3)} P dx + Q dy$ 之值。

解 记
$$t = x^4 + y^2$$
, $P = 2xyt^{\lambda}$, $Q = -x^2t^{\lambda}$,

$$\frac{\partial P}{\partial y} = 2xt^{\lambda} + 2xy\lambda t^{\lambda-1} \cdot 2y, \quad \frac{\partial Q}{\partial x} = -2xt^{\lambda} - x^2\lambda t^{\lambda-1} \cdot 4x^3,$$

由
$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
 , 得 $2xt^{\lambda} + 2xy\lambda t^{\lambda-1} \cdot 2y = -2xt^{\lambda} - x^2\lambda t^{\lambda-1} \cdot 4x^3$, 即 $\lambda = -1$,

故当
$$\lambda = -1$$
 时,积分 $\int_{L} \frac{2xy dx - x^2 dy}{x^4 + y^2}$ 与路径无关。 6 分

取 L_1 : y = 0, x 从 1 到 3, L_2 : x = 3, y 从 0 到 3, 则

十一、(10 分) 计算三重积分 $\iint_{\Omega} (x^2+y^2+z) dV$, 其中 Ω 是由曲线 $\begin{cases} y^2=4z \\ x=0 \end{cases}$ 绕 z 轴旋转

一周而成的曲面与平面 z = 4 围成的立体.

解一: 旋转曲面方程为 $z = \frac{x^2 + y^2}{4}$,用柱坐标 $x = r\cos\theta$, $y = r\sin\theta$,z = z 将三重积分化为

$$\iiint_{\Omega} (x^2 + y^2 + z) dV = \int_0^4 dz \int_0^{2\pi} d\theta \int_0^{2\sqrt{z}} (r^2 + z) r dr$$

$$= 2\pi \int_0^4 \left(\frac{r^4}{4} + \frac{r^2}{2} z \right)_0^{2\sqrt{z}} dz = 2\pi \int_0^4 6z^2 dz = 256\pi$$
5 %

或者解二: 旋转曲面方程为 $z=\frac{x^2+y^2}{4}$,用柱坐标 $x=r\cos\theta, y=r\sin\theta, z=z$ 将三重积 分化为

$$\iiint_{\Omega} (x^2 + y^2 + z) dV = \int_0^{2\pi} d\theta \int_0^4 r dr \int_{\frac{r^2}{4}}^4 (r^2 + z) dz$$

$$= 2\pi \int_0^4 (4r^3 + 8r - \frac{9}{32}r^5) dr = 256\pi$$
5 \(\frac{\partial}{2}{2}\)

十二、(6分)设级数 $f(x) = \sum_{n=0}^{\infty} a_n x^n$ 在[0,1]上收敛,证明: 当 $a_0 = a_1 = 0$ 时,级数 $\sum_{n=1}^{\infty} f\left(\frac{1}{n}\right)$ 收敛。

证明 因为
$$\sum_{n=0}^{\infty} a_n x^n$$
 在 $x=1$ 点收敛,所以 $\sum_{n=0}^{\infty} a_n$ 收敛。 那么,存在 $M>0$,使得 $\left|a_n\right| \leq M$ 3分 而 $f\left(\frac{1}{n}\right) = a_0 + \frac{a_1}{n} + \frac{a_2}{n^2} + \dots + \frac{a_k}{n^k} + \dots \leq a_0 = a_1 = 0$ 时,有
$$f\left(\frac{1}{n}\right) = \frac{a_2}{n^2} + \dots + \frac{a_k}{n^k} + \dots , \quad \exists n \geq 2$$
 以后, $f\left(\frac{1}{n}\right)$ 是绝对收敛的,所以
$$\left|f\left(\frac{1}{n}\right)\right| \leq \frac{\left|a_2\right|}{n^2} + \frac{\left|a_3\right|}{n^3} + \dots + \frac{\left|a_k\right|}{n^k} + \dots \leq M\left(\frac{1}{n^2} + \frac{1}{n^3} + \dots\right) \sim \frac{M}{n^2}$$
 故级数 $\sum_{n=1}^{\infty} f\left(\frac{1}{n}\right)$ 收敛 3分