Logistic Regression

Quiz, 5 questions

1 point

- Suppose that you have trained a logistic regression classifier, and it outputs on a new example x a prediction $h_{\theta}(x)$ = 0.4. This means (check all that apply):
 - Our estimate for $P(y=1|x;\theta)$ is 0.6.
 - lacksquare Our estimate for P(y=0|x; heta) is 0.6.
 - lacksquare Our estimate for P(y=1|x; heta) is 0.4.
 - Our estimate for $P(y=0|x;\theta)$ is 0.4.

1 point 2. Suppose you have the following training set, and fit a logistic regression classifier $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$.

x_1	x_2	y
1	0.5	0
1	1.5	0
2	1	1
3	1	0

Which of the following are true? Check all that apply.

 $J(\theta)$ will be a convex function, so gradient descent should converge to the global minimum.

		Adding polynomial features (e.g., instead using $h_{ heta}(x)=g(heta_0+ heta_1x_1+ heta_2x_2+ heta_3x_1^2+ heta_4x_1x_2+ heta_5x_2^2)$) could increase how well we can fit the training data.	
		The positive and negative examples cannot be separated using a straight line. So, gradient descent will fail to converge.	
		Because the positive and negative examples cannot be separated using a straight line, linear regression will perform as well as logistic regression on this data.	
1 point	3.	For logistic regression, the gradient is given by $\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m \frac{(h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}}{h^{(i)}}.$ Which of these is a correct	
		gradient descent update for logistic regression with a learning rate of $lpha$? Check all that apply.	
		$ heta_j:= heta_j-lpharac{1}{m}\sum_{i=1}^m\left(heta^Tx-y^{(i)} ight)x_j^{(i)}$ (simultaneously update for all j).	_
		$egin{aligned} egin{aligned} heta := heta - lpha rac{1}{m} \sum_{i=1}^m ig(h_ heta(x^{(i)}) - y^{(i)} ig) x^{(i)}. \end{aligned}$	_
		$egin{aligned} egin{aligned} heta := heta - lpha rac{1}{m} \sum_{i=1}^m ig(heta^T x - y^{(i)} ig) x^{(i)}. \end{aligned}$	
		$egin{aligned} egin{aligned} heta := heta - lpha rac{1}{m} \sum_{i=1}^m \left(rac{1}{1+e^{- heta^T x^{(i)}}} - y^{(i)} ight) x^{(i)}. \end{aligned}$	
1 point	4.	Which of the following statements are true? Check all that apply.	
pome		Linear regression always works well for classification if you classify by using a threshold on the prediction made by linear regression.	
		For logistic regression, sometimes gradient descent will converge to a local minimum (and fail to find the global minimum). This is the reason we prefer more advanced optimization algorithms such as fminunc (conjugate gradient/BFGS/L-BFGS/etc).	
		The sigmoid function $g(z)=rac{1}{1+e^{-z}}$ is never greater than one (>1).	
		The cost function $J(heta)$ for logistic regression trained with $m\geq 1$ examples is always greater than or equal to zero.	

1 point 5. Suppose you train a logistic classifier $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$. Suppose $\theta_0 = 6, \theta_1 = -1, \theta_2 = 0$. Which of the following figures represents the decision boundary found by your classifier?

Figure:

Figure:

Figure:

Figure:

I, Zhaiyu Chen, understand that submitting work that isn't my own n failure of this course or deactivation of my Coursera account.	nay result in permanent
Learn more about Coursera's Honor Code	
	Submit Quiz

3 P P