

GENBA SOPANRAO MOZE COLLEGE OF ENGINEERING

Balewadi, Pune- 411 045.

Department of Electronics and Telecommunications

Experiment No)
Subject: - Mobile C	Computing		
Name of the Studen	nt:	Roll No	
Date:	Marks & Signature:		
		Subject Teacher	
Aim: To understand the handown Objectives:	ver mechanism.		
To study the effect of handove probability	er threshold and margin on SINF	R and call drop probability a	and handover
Prerequisite:			
Operating System: Windows 7	7		
Java Version: 6 only			

to download software:

Mozilla Firefox: version: 47.0.1 Link

https://drive.google.com/uc?id=0B9mNeu43jUidckFYVTlnenpJRGs&export=download

Theory: Handoff

Consider the figure below Initially say the mobile M is quite close to the base station A and hence receives signal strength from A PArx>PBrx . As the mobile moves away from the base station. A and goes towards B then the signal strength from A keeps falling (pathloss increases).Let there be a minimum sensibility level P0rx0 for the mobile, i.e. if the signal from the B.S.to which the mobile is connected falls below P0rx0 then the call drops. In order to prevent call drop the mobile monitors receive signal strength from the neighboring 3-6 B.S.. These neighboring 3-6 B.S. also monitor Rx signal strength from the M.S.

The mobile should get connected to B.S. which has the highest signal strength. However, if the M.S. continuously attaches itself to the B.S. with instantaneous height signal strength then the h/o rate may very high in server condition.

Thus, some hysten's condition is used for h. If PTrx (T= target B.S.) > Phrxh higher h/o threshold and ----Pcrx (c=current B.S.) < Phrxh minimum h/o threshold the execute h/o to B.ST from B.Sc.

Thus, it is threshold impeditive to study in part of the handoff process.

$$\Delta \gamma = Phrx - Plrx\Delta = h$$

A successful handoff is one where the call gets from and continuous without call or in other words the hoccurs before h/o Pcrx becomes <P0rx<0. If Pcrx<P0rx0 then call drop event occurs.

One would like to minimize the no of handoff events as well as minimize call drop probability. The experiment provides opportunity to study the inherent of these three parameters on h/o.

Further the averaging window for calculating PTrx and Pcrx also plays a role in the process. In the experiment small scale fading is not considered and hence the averaging considered only shadowing.

Students conducting the experiment is expected to study the impact of these on h/0. He/She is encouraged to respect the experiment for several sets of values of these parameters these draw conclusion.

Instruction Follow the instructions given below to perform the experiments.

1.1 Starting the Experiments: -

□ . Step1: Click on START button to start experiment.□

□ Step2: Enter your name then click OK button.□

• Step3: Select the parameters (e.g.: Reuse, Environment, Beamwidth, Carrier frequency etc.)

• Step4: Click on START button and observe No. of Call Drops and No. of Handoffs.

- Step5: Enter your observation in the OBSERVATION box and Click on SUBMIT button.

 □
- □ Step6: Finally, click on REPORT to generate PDF report of the experiment.□

□ Step7: After PDF report generation you will get following message.□

☐ Step8: PDF report will appear like this.☐

					Ptid8mi:	O-8			
fol/	5Hz): 5.8		-	Beam Width(deg): 70					
1977-1971-1971-1971-1971-1971-1971-1971					Cell Radiusim): 50				
h7	fem): 10				hM(m):	,			
Sigma(dB): 4					Vertical Titode	eg): 12			
SNR(48): 10					Band Width(MHz): 5				
Noise Figure(dB): 7					Noise Power(dBm): -100.01				
Pr0(dBm): -90.01				Time Slot(x): 200					
No Callete	No Hand				Outane	-	Alph		
ops	offs	Deline.	O'CHINE.	Time(ms)	Time(ms)	Outage	1,000		
6.0	6.0	3.0	3.0	20016.0	11232.0	56.12	0.1		
6.0	5.0	3.0	3.0	20016.0	10544.0	54.68	0.1		
2.0	2.0	2.0	1.0	20016.0	16704.0	83.45	0.1		
29.0	27.0	1.0	1.0	200016.0	156816.0	78.4	0.1		
	Rotal A17 Sign SNO SNO SNO Noise I Projet Projet E0 E0 20	Ristate(deg): 30	Ristate(deg): 30 hTon): 10 Sigma(dB): 4 SNR(dB): 10 Noise Figure(dB): 7 Pr0(dBm): -90.01 EX No. Culldr No. Hand Oettat opt dBs Co Co 3.0 Co 2.0 2.0 2.0 2.0 2.0 Co Co Co Co Co Co Co C	Ristate(deg): 30 hT0m): 10 Sigma(dB): 4 SNR(dB): 10 Noise Figure(dB): 7 Pr0(dBm): -90.01 Exp. Resiliant options offs offs offs offs offs offs offs o	Rotate(deg): 30 hT(m): 10 Sigma(dB): 4 1 SNR(dB): 10 None Figure(dB): 7 Non PrO(dBm): -90.01 Exp. Results No.Calidr No.Stand Oelta1 Celta2 Reading open dBs Celta1 Celta2 Reading fime(ms) Celta3 Celta4 Celta5 Celta5	Ristane(deg): 30 Cell Radius) hT(m): 10 hM(m): Sigma(dB): 4 Vertical Titled ShR(dB): 10 Band Width(Note Foure)(dB): 7 Note Power(dB): Pr0(dBm): -90.01 Time Slot(s) Exp. Results	Ristane(deg): 30 Cell Radiusim): 50		

Observation Table:

Reuse	No of Hand Off	Mobile Speed	Outage	Outage Percentage
1				
3				

Keep reuse ratio 3 and set mobile speed to 50 mps and 100 mps and record the below data. What do we observe after increasing the speed of the mobile station?

Reuse	Mobile Speed	No of Hand off	Outage	Outage Percentage
3	50			
3	100			

FAQ:

- 1. What is handoff?
- 2. What is the condition for handoff?
- 3. Explain Handoff and its types.

Exp :: Handoff Name: EXP 6

Input Parameters				
Reuse: 3 ,Model: Urban Micro	Pt(dBm): 41			
fc(GHz): 2.5	Beam Width(deg): 70			
Rotate(deg): 30	Cell Radius(m): 116			
hT(m): 10	hM(m): 1.5			
Sigma(dB): 4	Vertical Tilt(deg): 12			
SNR(dB): 30	Band Width(MHz): 5			
Noise Figure(dB): 7	Noise Power(dBm): -100.01			
Pr0(dBm): -70.01	Time Slot(s): 20			

Exp. Results								
SNR	No.Calldr ops	No.Hand offs	Delta1	Delta2	Reading Time(ms)	Outage Time(ms)	% Outage	Alpha
5.0	0.0	3.0	3.0	3.0	20384.0	2352.0	11.54	0.1
10.0	0.0	1.0	3.0	3.0	20384.0	0.0	0.0	0.1
15.0	4.0	5.0	3.0	3.0	20088.0	2916.0	14.52	0.1
15.0	1.0	3.0	3.0	3.0	20400.0	1200.0	5.88	0.1
20.0	1.0	1.0	3.0	3.0	20088.0	11988.0	59.68	0.1
25.0	2.0	2.0	3.0	3.0	20088.0	18144.0	90.32	0.1
30.0	0.0	0.0	3.0	3.0	20088.0	20088.0	100.0	0.1
30.0	0.0	0.0	3.0	3.0	19600.0	19600.0	100.0	0.1
30.0	0.0	0.0	3.0	3.0	11956.0	11956.0	100.0	0.1
30.0	0.0	1.0	3.0	3.0	22743.0	12996.0	57.14	0.1

Observation	
Enter observation	

(Signature of EXP 6)

(Signature of Faculty)