Ordem dos conectivos:

Tabela Verdade:

р	q	p v q	рΛq	$p \rightarrow q$	p ↔ q	р <u>v</u> q
\mathbf{V}	V	V	V	V	V	F
V	F	V	F	F	F	V
F	V	V	F	V	F	V
F	F	F	F	V	V	F

Equivalências Notáveis:

 $\begin{tabular}{ll} \textbf{Idempotência:} & p \Leftrightarrow p \wedge p \end{tabular} \begin{tabular}{ll} \textbf{Dupla negação:} & p \Leftrightarrow \text{\sim} \sim p \end{tabular}$

 $p \Leftrightarrow p \vee p$

 $p \vee q \Leftrightarrow q \vee p$ $\sim (p \vee q) \Leftrightarrow \sim p \wedge \sim q$

 $\textbf{Associatividades:} \quad p \wedge (\ q \wedge r) \Leftrightarrow (p \wedge q) \wedge r \\ \qquad \qquad \textbf{Condicional:} \ p \rightarrow q \Leftrightarrow {}^{\sim} p \ v \ q$

 $p v (q v r) \Leftrightarrow (p v q) v r$

 $\textbf{\textit{Distributividade:}} \quad p \wedge (\ q \ v \ r \) \Leftrightarrow (\ p \wedge q \) \ v \ (\ p \wedge r \) \\ \qquad \qquad \textbf{\textit{Contraposição:}} \quad p \rightarrow q \Leftrightarrow \ \sim q \rightarrow \ \sim p$

 $\begin{array}{l} p \ v \ (\ q \wedge r \) \Leftrightarrow (\ p \ v \ q \) \wedge (\ p \ v \ r \) \\ \\ \sim p \wedge p \iff c \ (\text{contradição}) \end{array}$

Bicondicional: $p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$

 $p \leftrightarrow q \Leftrightarrow (p \land q) \lor (\sim p \land \sim q)$ $\sim p \lor p \Leftrightarrow t$ (tautologia)

Exportação-Importação: $p \land q \rightarrow r \Leftrightarrow p \rightarrow (q \rightarrow r)$ $p \lor t \Leftrightarrow t$ $p \lor c \Leftrightarrow p$

 $p \wedge t \Leftrightarrow p$ $p \wedge c \Leftrightarrow c$

FORMA NORMAL COJUNTIVA:

Diz-se que uma proposição está na forma normal conjuntiva (FNC) se e somente se são verificadas as seguintes condições:

1. Contém, quando muito, os conectivos ~, ∧ e ∨;

2. \sim não aparece repetido e não tem alcance sobre \wedge e \vee

3. \lor não tem alcance sobre \land

FORMA NORMAL DISJUNTIVA:

Diz-se que uma proposição está na forma normal disjuntiva (FND) se e somente se são verificadas as seguintes condições:

1. Contém, quando muito, os conectivos ~, \(\lambda \) e \(\rangle \);

2. ~ não aparece repetido e não tem alcance sobre ∧ e ∨

3. ∧ não tem alcance sobre v

Regras de Inferência:

Adição: p p p Simplificação: $p \land q$ $p \land q$ $p \land q$

Conjunção: p q Absorção: $p \to q$ $q \to (p \wedge q)$

 $\begin{array}{ccc}
\underline{q} & \underline{p} & p \rightarrow (p \wedge q) & p \rightarrow (p$

q — 4 ~ p

Silogismo Disjuntivo: $\begin{array}{ccc} p \vee q & p \vee q \\ \hline & - \sim p & \underline{- \sim q} \end{array}$

Silogismo Hipotético:

 $\begin{array}{c} p \rightarrow q \\ \underline{q} \rightarrow r \\ p \rightarrow r \end{array}$

Dilema construtivo: Dilema Destrutivo:

 $\begin{array}{lll} p \!\!\rightarrow \!\! q & p \!\!\rightarrow \!\! q \\ r \!\!\rightarrow \!\! s & r \!\!\!\rightarrow \!\! s \\ \underline{p \ v \ r} & \underline{\sim \ q \ v \!\!\!\sim \!\! s} \\ q \ v \ s & \underline{\sim p \ v \!\!\!\sim \!\! r} \end{array}$