Fahrzeugmechatronik I Signalverarbeitung

Prof. Dr.-Ing. Steffen Müller M. Sc. Osama Al-Saidi

Fachgebiet Kraftfahrzeuge • Technische Universität Berlin

Übersicht Mechatronisches System

Übersicht Definition Signal und Signalverarbeitung

Der Begriff "Signal" kennzeichnet eine zeitveränderliche, informationstragende Messgröße. Signale werden in unterschiedliche Klassen eingeteilt und kontextabhängig durch Kennwerte sowie Kennfunktionen beschrieben.

Unter dem Begriff **Signalverarbeitung** sind alle Bearbeitungsschritte zusammengefasst, die das Ziel haben, **Informationen aus einem Signal zu extrahieren** oder **für die Übertragung vorzubereiten**.

Seite 4

Übersicht Klassifizierung von Signalen

Übersicht Inhalte

- > Statistische Kenngrößen und -funktionen
- > Ausgleichsrechnung
- > Numerisches Glätten
- > Digitale Filterung

Seite 6

Statische Kennwerte und -funktionen Kennwerte

Seite 7

Statische Kennwerte und -funktionen Kennwerte

Seite 8

Statische Kennwerte und -funktionen Kennfunktionen

Statische Kennwerte und -funktionen Kennfunktionen

Beispiele für Dichtefunktionen

Übersicht Inhalte

- > Statistische Kenngrößen und -funktionen
- > Ausgleichsrechnung
- > Numerisches Glätten
- Digitale Filterung

Ausgleichsrechnung Einführung

Gegeben seien Wertepaare (xn, yn), wobei der Zählparameter n von 1 bis N läuft. **Durch die insgesamt N Wertepaare** ist eine Funktion f(x) zu legen, so dass der Zusammenhang zwischen xn und yn, d.h. die **Kennlinie**, **analytisch** angegeben werden kann.

Seite 12

Ausgleichsrechnung Einführung

Seite 13

Ausgleichsrechnung Ausgleichspolynom

Seite 14

Ausgleichsrechnung Ausgleichspolynom

Ausgleichsrechnung Ausgleichspolynom

a, b, c und d folgen dann aus

$$\begin{bmatrix} N & \sum x_n & \sum x_n^2 & \sum x_n^3 \\ \sum x_n & \sum x_n^2 & \sum x_n^3 & \sum x_n^4 \\ \sum x_n^2 & \sum x_n^3 & \sum x_n^4 & \sum x_n^5 \\ \sum x_n^3 & \sum x_n^4 & \sum x_n^5 & \sum x_n^6 \end{bmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{cases} \sum y_n \\ \sum x_n y_n \\ \sum x_n^2 y_n \\ \sum x_n^3 y_n \end{cases}$$

Falls Ausgleich durch Polynome 3. Ordnung unzureichend:

Ausgleichspolynome höherer Ordnung neigen zu Welligkeiten und großen Abweichungen zwischen den Stützstellen -> Ausgleich durch Splines

Seite 16

Ausgleichsrechnung Splines

Seite 17

Ausgleichsrechnung Splines

Seite 18

Ausgleichsrechnung Splines

an, bn, cn und dn lassen sich durch die gegebenen Stützwerte und die noch unbekannten 2. Ableitungen ausdrücken

$$a_{n} = y_{n}$$

$$b_{n} = \frac{1}{h_{n}} (y_{n+1} - y_{n}) - \frac{1}{6} h_{n} (y_{n+1}'' + 2y_{n}'')$$

$$c_{n} = \frac{1}{2} y_{n}''$$

$$d_{n} = \frac{1}{6h_{n}} (y_{n+1}'' - y_{n}'')$$

Ausgleichsrechnung Splines

Einsetzen liefert

$$P'_{n}(x_{n+1}) = \frac{1}{h_{n}}(y_{n+1} - y_{n}) + \frac{1}{6}h_{n}(2y''_{n+1} + y''_{n}) \qquad y_{n}$$

$$P'_{n-1}(x_n) = \frac{1}{h_{n-1}}(y_n - y_{n-1}) + \frac{1}{6}h_{n-1}(2y''_n + y''_{n-1})$$

Außerdem

$$P'_n(x_n) = b_n = \frac{1}{h_n} (y_{n+1} - y_n) - \frac{1}{6} h_n (y''_{n+1} + 2y''_n)$$

Forderung:

$$P'_{n-1}(x_n) = P'_n(x_n)$$

Numerisches Glätten Ausgleichspolynom

Sollen verstreute Messwerte yn weiterverarbeitet werden ist es sinnvoll, diese vor einer Weiterverarbeitung zu glätten, d.h. auszumitteln.

Seite 21

Numerisches Glätten Ausgleichspolynom

Im Sinne der Methode der kleinsten Fehlerquadrate

$$S_n = \sum_{k} (P(x_{n+k}) - y_{n+k})^2$$

und mit

$$\frac{\partial S_n}{\partial a} = 0, \dots \quad \text{und} \quad x_k = x_{n+k} - x_n$$

$$\begin{bmatrix}
\sum_{k} 1 & \sum_{k} x_{k} & \sum_{k} x_{k}^{2} & \sum_{k} x_{k}^{3} & \sum_{k} x_{k}^{4} \\
\sum_{k} x_{k} & \sum_{k} x_{k}^{2} & \sum_{k} x_{k}^{3} & \sum_{k} x_{k}^{4} & \sum_{k} x_{k}^{5} \\
\sum_{k} x_{k}^{3} & \sum_{k} x_{k}^{4} & \sum_{k} x_{k}^{5} & \sum_{k} x_{k}^{6} \\
\sum_{k} x_{k}^{3} & \sum_{k} x_{k}^{4} & \sum_{k} x_{k}^{5} & \sum_{k} x_{k}^{6} \\
\sum_{k} x_{k}^{3} & \sum_{k} x_{k}^{4} & \sum_{k} x_{k}^{5} & \sum_{k} x_{k}^{6}
\end{bmatrix} = \begin{cases}
\sum_{k} y_{n+k} \\
\sum_{k} x_{k} y_{n+k} \\
\sum_{k} x_{k}^{2} y_{n+k} \\
\sum_{k} x_{k}^{3} y_{n+k}
\end{cases}$$

Seite 22

Numerisches Glätten Ausgleichspolynom

Digitales Filter Nichtrekursive Filter

Bei nichtrekursiven Filtern hängt das Ausgangssignal der Filters nur von den Eingangssignalen ab, nicht von den zurückliegenden Werten des Ausgangssignals (rekursive Filter).

Wegen dieser fehlenden Rückkopplung kann das nichtrekursive Filter nicht schwingen, es ist **immer stabil** und hat hierdurch eine **endliche Impulsantwort**. Es wird daher auch als **F**inite **I**mpulse **R**esponse (FIR) Filter bezeichnet.

Seite 24

Digitales Filter Nichtrekursive Filter

Seite 25

Digitales Filter Nichtrekursive Filter

Seite 26

Digitales Filter Nichtrekursive Filter

Seite 27

Digitales Filter Nichtrekursive Filter

Wiederholung: Fourier-Reihenentwicklung im Zeitbereich

$$f(t) \approx \sum_{k=-K}^{K} c_k e^{jk\omega_0 t}$$

$$c_k = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} f(t) e^{-jk\omega_0 t} dt$$

$$G_d(j\omega) = \sum_{k=-N}^{N} a_k e^{-jkT_a\omega}$$

Digitales Filter Nichtrekursive Filter

Beispiel: Tiefpassfilter mit Eckfrequenz ω_{g}

Seite 29

Vielen Dank für Ihre Aufmerksamkeit!