Floating point numbers

Troels Henriksen

29-11-2021

Based on slides by Randal E. Bryant and David R. O'Hallaron. Some material by Michael Kirkedal Tomsen.

Agenda

Preliminaries: biased numbers

Floating point arithmetic
Background: Fractional binary numbers
IEEE floating point standard
Examples and properties
Rounding, addition, and multiplication
Floating point in C

Summary

For *biased numbers*, the raw bits are interpreted as unsigned, and then a constant *bias* is subtracted.

Unsigned

Two's complement

Biased

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \quad B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \quad B2I(X) = (\sum_{i=0}^{w-1} x_i \cdot 2^i) - \text{Bias}$$

Typically

$$Bias = 2^{w-1} - 1$$

For *biased numbers*, the raw bits are interpreted as unsigned, and then a constant *bias* is subtracted.

Unsigned

Two's complement

Biased

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \quad B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \quad B2I(X) = (\sum_{i=0}^{w-1} x_i \cdot 2^i) - \text{Bias}$$

Typically

$$Bias = 2^{w-1} - 1$$

For *biased numbers*, the raw bits are interpreted as unsigned, and then a constant *bias* is subtracted.

Unsigned

Two's complement

Biased

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \quad B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \quad B2I(X) = (\sum_{i=0}^{w-1} x_i \cdot 2^i) - \text{Bias}$$

Typically

$$Bias = 2^{w-1} - 1$$

$$\begin{array}{c|ccccc} & & B2U & B2I \\ \hline 000000000_2 & 0_{10} & -127_{10} \\ 01111111_2 & & & \end{array}$$

For *biased numbers*, the raw bits are interpreted as unsigned, and then a constant *bias* is subtracted.

Unsigned

Two's complement

Biased

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \quad B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \quad B2I(X) = (\sum_{i=0}^{w-1} x_i \cdot 2^i) - \text{Bias}$$

Typically

$$Bias = 2^{w-1} - 1$$

For biased numbers, the raw bits are interpreted as unsigned, and then a constant bias is subtracted.

Unsigned Two's complement Biased

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \quad B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \quad B2I(X) = (\sum_{i=0}^{w-1} x_i \cdot 2^i) - \text{Bias}$$

 $Bias = 2^{w-1} - 1$

Typically

• Examples for
$$w - 8$$
, Bias = 127

• Examples for $w - 8$, Bias $= 127$							
		B2U	B2I				
	000000002	0 ₁₀	-127_{10}				
	011111112	127 ₁₀	0 ₁₀				
	11111111 ₂						

For *biased numbers*, the raw bits are interpreted as unsigned, and then a constant *bias* is subtracted.

is subtracted.		
Unsigned	Two's complement	Biased
$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$	$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$	$B2I(X) = (\sum_{i=0}^{w-1} x_i \cdot 2^i) - Bias$

■ Typically
$$Bias = 2^{w-1} - 1$$

a	s=127		
		B2U	B2I
	000000002	0 ₁₀	-127_{10}
	011111112	127 ₁₀	010
	11111111 ₂	255 ₁₀	

For *biased numbers*, the raw bits are interpreted as unsigned, and then a constant *bias* is subtracted.

is subtracted.		
Unsigned	Two's complement	Biased
$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$	$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$	$B2I(X) = (\sum_{i=0}^{w-1} x_i \cdot 2^i) - Bias$

$$Bias = 2^{w-1} - 1$$

• Examples for
$$w - 8$$
, Bias = 127

a	s = 127		
		B2U	B2I
	000000002	0 ₁₀	-127_{10}
	011111112	127 ₁₀	010
	11111111 ₂	255 ₁₀	128 ₁₀

Preliminaries: biased numbers

Floating point arithmetic Background: Fractional binary numbers

IEEE floating point standard Examples and properties

Summary

Integral binary numbers

We have seen that

100101012

is basically interpreted like

 149_{10}

in particular "structure" is the same, just with 2 instead of 10.

Integral binary numbers

We have seen that

100101012

is basically interpreted like

 149_{10}

in particular "structure" is the same, just with 2 instead of 10.

Can we do the same thing for fractional numbers?

1011.1012

Fractional numbers

$$123.456 = 1 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0 + 4 \cdot 10^{-1} + 5 \cdot 10^{-2} + 6 \cdot 10^{-3}$$

Fractional numbers

$$123.456 = 1 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0 + 4 \cdot 10^{-1} + 5 \cdot 10^{-2} + 6 \cdot 10^{-3}$$

Generally

$$a_{m-1}\cdots a_0.a_{-1}\cdots a_{-n}=\sum_{i=-n}^{m-1}a_i\cdot 10^i$$

Fractional numbers

$$123.456 = 1 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0 + 4 \cdot 10^{-1} + 5 \cdot 10^{-2} + 6 \cdot 10^{-3}$$

Generally

$$a_{m-1}\cdots a_0.a_{-1}\cdots a_{-n}=\sum_{i=-n}^{m-1}a_i\cdot 10^i$$

Even more generally, for radix r

$$a_{m-1}\cdots a_0.a_{-1}\cdots a_{-n} = \sum_{i=-n}^{m-1} a_i \cdot r^i$$

Fractional binary numbers

Weight	2^{m-1}	2^{m-2}	 4	2	1	1/2	1/4	1/8	 2^{-n}
Digits	b_{m-1}	b_{m-2}	 b_2	b_1	b_0	b_{-1}	b_{-2}	b_{-3}	 b_{-n}

Representation

- Bits to the right of "binary point" represents fractional powers of 2.
- Represents rational number

$$b_{m-1}\cdots b_0.b_{-1}\cdots b_{-n} = \sum_{i=-n}^{m-1} b_i \cdot 2^i$$

Examples of fractional binary numbers

Value 5 $\frac{3}{4}$	Representation 101.11 ₂
$2\frac{7}{8}$	10.111 ₂
$1\frac{7}{16}$	1.0111 ₂

Observations

- Divide by 2 by logical shifting right.
- Multiply by 2 by shifting left.
- Numbers of form 0.111 . . . are just below 1.0.
 - ► $1/2 + 1/4 + 1/8 + \cdots + 1/2^n + \cdots \sim 1.0$.
 - ▶ Use notation 1.0ϵ .

Representable numbers

Limitation #1

- Can only represent fractional part of form $x/2^k$
- Other rational numbers have repeating bit representation

Value $\frac{1}{3}$	Representation $0.0101010101[01] \cdots_2$
<u>1</u> 5	0.001100110011[0011]2
$\frac{1}{10}$	0.0001100110011[0011]2

Limitation #2

- Just one setting of binary point within the w bits.
 - ► Limited range of numbers—very small values? Very large?

The fixed-point dilemma

Consider
$$w = 8$$

1 bit for fraction

- **Largest number:** $1111111.1_2 = 127.5_{10}$
- Increment: $0000000.1_2 = 0.5_{10}$

7 bits for fraction

- Largest number: 1.1111111₂ = 1.9921875₁₀
- Increment: $0.0000001_2 = 0.0078125_{10}$

4 bits for fraction

- Largest number: 1111.1111₂ = 15.9375₁₀
- Increment: $0000.0001_2 = 0.0625_{10}$

Fixed-point has same absolute precision everywhere, but this means relative precision is worse for numbers close to 0!

Preliminaries: biased numbers

Floating point arithmetic

Background: Fractional binary numbers
IEEE floating point standard
Examples and properties
Rounding, addition, and multiplication
Floating point in C

Summary

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point.
 - ► Many idiosyncratic formats before then.
- Supported by all major CPUs.

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow.
- Hard to make fast in hardware.
 - Numerical analysts predominated over hardware designers in defining standard.
 - ... but (later) Turing Award winner William Kahan secretly knew that Intel had figured out how.
 - ► Beware the wrath of Kahan!
 - ▶ http://people.eecs.berkeley.edu/~wkahan/

Floating Point Representation

Numerical form

$$(-1)^S \cdot M \cdot 2^E$$

- **Sign bit** *S* determines whether number negative or positive.
- **Significand** *M* normally a fractional value in range [1, 2).
- **Exponent** *E* weights value by power of two.

Encoding

- Most significant bit is sign bit.
- Exp field encodes *E* (but is not equal to *E*).
- Frac field encodes *M* (but is not equal to *M*).

S Exp Frac

Why such a weird format?

The point is floating

- No fixed number of bits allocated to "fraction".
- More bits close to 0, fewer bits for numbers with large magnitude.
- Symmetric around 0.

Density of floats

https://stackoverflow.com/a/24179424/6131552

Precision options

32-bit single precision: float

S	Exp	Frac
1 hit	8 hits	23 hits

64-bit double precision: double

80-bit Extended precision (Intel only, never use): long double

Normalised values when Exp $\neq 0 \cdots 0$ and Exp $\neq 1 \cdots 1$

$$v = (-1)^{S} \cdot M \cdot 2^{E}$$

S Exp

Frac

Exponent encoded as biased value

$$E = Exp - Bias$$

- ► Exp: unsigned value of Exp field.
- ▶ Bias = $2^{k-1} 1$, where k is number of Exp bits.
 - ► Single precision: 127 (Exp \in [1, 254], $E \in$ [-126, 127]).
 - ▶ Double precision: 1023 (Exp \in [1, 2046], $E \in$ [-1022, 1023]).

Significand coded with implied leading 1:

$$M = 1.xxx \cdots x_2$$

- ► xxx · · · x: bits of Frac field.
- ► Minimum when Frac = $0000 \cdots 0$ (M = 1).
- ▶ Maximum when Frac = $1111 \cdots 1$ ($M = 2 \epsilon$).
- ► Get extra leading bit for free.

Normalised encoding example

$$\boxed{v = (-1)^{S} \cdot M \cdot 2^{E}} \quad \boxed{E = \mathsf{Exp} - \mathsf{Bias}}$$
 Value: float F = 15213.0

$$15213_{10} = 11101101101101_2$$
$$= 1.1101101101101_2 \cdot 2^{13}$$

Significand

Exponent

$$E=13_{10}$$
 Bias = 127_{10} Exp = $140_{10}=10001100_2$

Denormal values

$$v = (-1)^S \cdot M \cdot 2^E$$
 $E = 1 - \text{Bias}$

Occur when $Exp = 000 \cdots 0_2$.

Exponent encoded as

$$E = 1 - \mathsf{Bias}$$

Significand coded with implied leading 0:

$$M = 0.xxx \cdots x_2$$

- Cases
 - ightharpoonup Exp = $000 \cdots 0_2$, Frac = $000 \cdots 0_2$
 - Represents zero value.
 - ▶ Note distinct values -0, +0 why do you think that is?
 - \triangleright Exp = $000 \cdots 0_2$, Frac $\neq 000 \cdots 0_2$
 - Numbers closest to 0.0.
 - ► Called Subnormal numbers.
 - ▶ Ensure that $x \neq y \Rightarrow x y \neq 0$, i.e. avoid overflow.

Special values

Occur when
$$Exp = 111 \cdots 1_2$$
.

When
$$Exp = 111 \cdots 1_2$$
, $Frac = 000 \cdots 0_2$

- Represents $\pm \infty$.
- Typically the result of overflow.
 - Overflow can be negative!
 - Underflow is when the result becomes zero due to rounding.
- Both positive and negative.
- Examples:

$$\frac{1}{0} = \frac{-1}{-0} = \infty \qquad \frac{1}{-0} = -\infty$$

When
$$Exp = 111 \cdots 1_2$$
, $Frac \neq 000 \cdots 0_2$

- Not A Number (NaN).
- Represents case when no numeric value can be determined.
- Examples:

$$\operatorname{sqrt}(-1)$$
 $\infty-\infty$ $\infty\cdot 0$

The floating point number line

NaN

Note that NaNs are unordered:

NaN

- NaN is different from everything even other NaNs!
 - ► NaN == NaN is false.
 - ► Floating-point equality is not reflexive!
- NaN > x and NaN < x is false for all x.

Preliminaries: biased numbers

Floating point arithmetic

IEEE floating point standard

Examples and properties

Rounding, addition, and multiplication

Summary

Play the game

https://topps.diku.dk/compsys/floating-point.html

Tiny 8-bit floating point example

S	Exp	Frac
1b	4b	3b

8-bit floating point representation

- Sign bit is the most significant bit (leftmost).
- The next four bits are Exp with a bias of 7.
- The last three bits are Frac.

Same general form as IEEE Format

- Normalised, denormalised.
- Representation of 0, NaN, both infinities.

Dynamic range of positive numbers

	Sign	Exp	Frac	Е	Value	
Denormalised	0 t	0000	000	-6	0	
	0	0000	001	-6	$1/8 \cdot 1/64 = 1/512$	closest to zero
	0	0000	010	-6	$2/8 \cdot 1/64 = 2/512$	
	0	0000	111	-6	$7/8 \cdot 1/64 = 7/512$	largest denorm
Normalised	0	0001	000	-6	$8/8 \cdot 1/64 = 8/512$	smallest norm
	0	0001	001	-6	$9/8 \cdot 1/64 = 9/512$	
	0	0110	110	-1	$14/8 \cdot 1/2 = 14/16$	
	0	0110	111	-1	$15/8 \cdot 1/2 = 15/16$	Closest to 1
	0	0111	000	0	$8/8 \cdot 1 = 1$	
	0	0111	001	0	$9/8 \cdot 9/8 = 1$	Closest to 1
	0	0111	010	0	$10/8 \cdot 10/8 = 1$	
	0	1110	110	7	$14/8 \cdot 128 = 224$	
	0	1110	111	7	$15/8 \cdot 128 = 240$	
	0	1111	000	N/A	∞	

Distribution of values

Distribution of values (zooming in)

- Note how the distribution gets denser towards zero.
- Note the big gap there would be around 0 if we did not have subnormals.
- Each of the spans with same distance between neighbors corresponds to numbers with same Exp.

S	Exp	Frac
1b	4b	3b

Useful properties of the IEEE encoding

S Exp Frac

- Floating-point zero same as integer zero
 - ► All bits 0.
 - ...but negative zero is different.
- Can almost compare floats with unsigned integer comparisons
 - Must first compare sign bit.
 - ► Must consider -0 = 0.
 - ► NaNs problematic:
 - Greater than any other value (because $Exp = 111 \cdots 1_2$).
 - What should comparison yield?
 - ► Otherwise OK:
 - Normalised and denormalised compare as expected.
 - ► Infinities ordered properly relative to finities.

Preliminaries: biased numbers

Floating point arithmetic

Background: Fractional binary numbers IEEE floating point standard Examples and properties Rounding, addition, and multiplication Floating point in C

Summary

Basic idea behind floating point operations

$$x +_f y = \text{Round}(x + y)$$

 $x \times_f y = \text{Round}(x \times y)$

Basic idea

- ► First *compute exact result*!
- ► Then round it to fit into desired precision.
 - Overflow if exponent too large.
 - Round to fit into Frac.

	1.40	1.60	1.50	2.50	-1.50
Towards zero					

	1.40	1.60	1.50	2.50	-1.50
Towards zero	1	1	1	2	-1
Towards $-\infty$					

	1.40	1.60	1.50	2.50	-1.50
Towards zero	1	1	1	2	-1
Towards $-\infty$	1	1	1	2	-2
Towards ∞					

	1.40	1.60	1.50	2.50	-1.50
Towards zero	1	1	1	2	-1
Towards $-\infty$	1	1	1	2	-2
Towards ∞	2	2	2	3	-1
Nearest even	'				

• There's more than one way to round a number, here to an integer.

	1.40	1.60	1.50	2.50	-1.50
Towards zero	1	1	1	2	-1
Towards $-\infty$	1	1	1	2	-2
Towards ∞	2	2	2	3	-1
Nearest even ∞	1	2	2	2	-2

• "Round to nearest, ties to even" is the default rounding mode.

Default rounding mode

- ► But can be changed dynamically.
 - ► https:
 - //www.gnu.org/software/libc/manual/html_node/Rounding.html
 - ► Never do this.
- All others are statistically biased.
 - Biased: Sum of set of positive numbers will consistently be over- or under-estimated.

- ► When exactly halfway between two possible values:
 - ► Round so that least significant digit is even.
- ► E.g. rounding to nearest hundredth:
 - **7.8949999:**

Default rounding mode

- ► But can be changed dynamically.
 - ► https:
 - //www.gnu.org/software/libc/manual/html_node/Rounding.html
 - ► Never do this.
- All others are statistically biased.
 - Biased: Sum of set of positive numbers will consistently be over- or under-estimated.

- ► When exactly halfway between two possible values:
 - ► Round so that least significant digit is even.
- ► E.g. rounding to nearest hundredth:
 - **7.8949999: 7.89**
 - **7.8990001**:

Default rounding mode

- But can be changed dynamically.
 - ► https:
 - //www.gnu.org/software/libc/manual/html_node/Rounding.html
 - ► Never do this.
- All others are statistically biased.
 - Biased: Sum of set of positive numbers will consistently be over- or under-estimated.

- ► When exactly halfway between two possible values:
 - ► Round so that least significant digit is even.
- ► E.g. rounding to nearest hundredth:
 - **7.8949999: 7.89**
 - **7.8990001: 7.90**
 - **7.8950000:**

Default rounding mode

- ► But can be changed dynamically.
 - ► https:
 - //www.gnu.org/software/libc/manual/html_node/Rounding.html
 - ► Never do this.
- All others are statistically biased.
 - Biased: Sum of set of positive numbers will consistently be over- or under-estimated.

- ► When exactly halfway between two possible values:
 - Round so that least significant digit is even.
- ► E.g. rounding to nearest hundredth:
 - **7.8949999: 7.89**
 - **▶** 7.8990001: 7.90
 - **7.8950000: 7.90**
 - **7.8850000:**

Default rounding mode

- ► But can be changed dynamically.
 - ► https:
 - //www.gnu.org/software/libc/manual/html_node/Rounding.html
 - ► Never do this.
- All others are statistically biased.
 - Biased: Sum of set of positive numbers will consistently be over- or under-estimated.

- ► When exactly halfway between two possible values:
 - Round so that least significant digit is even.
- ► E.g. rounding to nearest hundredth:
 - **7.8949999: 7.89**
 - **▶** 7.8990001: 7.90
 - **▶** 7.8950000: 7.90
 - **7.8850000: 7.88**

- Binary fractional numbers
 - ► "Even" when least significant bit is 0.
 - ightharpoonup "Half way" when bits to right of rounding position are $100\cdots_2$.

Examples

Value	Binary	Rounded	Action	Rounded value

- Binary fractional numbers
 - ► "Even" when least significant bit is 0.
 - ightharpoonup "Half way" when bits to right of rounding position are $100\cdots_2$.

Examples

Value	Binary	Rounded	Action	Rounded value
2 3/32				

- Binary fractional numbers
 - ► "Even" when least significant bit is 0.
 - ightharpoonup "Half way" when bits to right of rounding position are $100\cdots_2$.

Examples

Value	Binary	Rounded	Action	Rounded value
2 3/32	10.00 <mark>011</mark> 2			

■ Binary fractional numbers

- ► "Even" when least significant bit is 0.
- \blacktriangleright "Half way" when bits to right of rounding position are $100\cdots_2$.

Examples

Value	Binary	Rounded	Action	Rounded value
2 3/32	10.000112	10.002	(< 1/2-down)	2

Binary fractional numbers

- ► "Even" when least significant bit is 0.
- \blacktriangleright "Half way" when bits to right of rounding position are $100\cdots_2$.

Examples

Value	Binary	Rounded	Action	Rounded value
2 3/32	10.000112	10.002	(< 1/2-down)	2
2 3/16				

■ Binary fractional numbers

- ► "Even" when least significant bit is 0.
- \blacktriangleright "Half way" when bits to right of rounding position are $100\cdots_2$.

Examples

Value	Binary	Rounded	Action	Rounded value
2 3/32	10.000112	10.002	(< 1/2-down)	2
2 3/16	10.00110_2			

■ Binary fractional numbers

- ► "Even" when least significant bit is 0.
- \blacktriangleright "Half way" when bits to right of rounding position are $100\cdots_2$.

Examples

Value	Binary	Rounded	Action	Rounded value
2 3/32	10.000112	10.002	(< 1/2-down)	2
2 3/16	10.00 <mark>110</mark> 2	10.012	(>1/2-up)	2 1/4

Binary fractional numbers

- ► "Even" when least significant bit is 0.
- \blacktriangleright "Half way" when bits to right of rounding position are $100\cdots_2$.

Examples

Value	Binary	Rounded	Action	Rounded value
2 3/32	10.000112	10.002	(< 1/2 - down)	2
2 3/16	10.00 <mark>110</mark> 2	10.012	(>1/2-up)	2 1/4
2 7/8				

Binary fractional numbers

- ► "Even" when least significant bit is 0.
- \blacktriangleright "Half way" when bits to right of rounding position are $100\cdots_2$.

Examples

Value	Binary	Rounded	Action	Rounded value
2 3/32	10.000112	10.002	(< 1/2 - down)	2
2 3/16	10.00 <mark>110</mark> 2	10.012	(>1/2-up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2			

■ Binary fractional numbers

- ► "Even" when least significant bit is 0.
- \blacktriangleright "Half way" when bits to right of rounding position are $100\cdots_2$.

Examples

Value	Binary	Rounded	Action	Rounded value
2 3/32	10.000112	10.002	(< 1/2 - down)	2
2 3/16	10.00110 ₂	10.012	(>1/2-up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.00 ₂	(1/2-up)	3

Binary fractional numbers

- ► "Even" when least significant bit is 0.
- \blacktriangleright "Half way" when bits to right of rounding position are $100\cdots_2$.

Examples

Value	Binary	Rounded	Action	Rounded value
2 3/32	10.000112	10.002	(< 1/2 - down)	2
2 3/16	10.00110 ₂	10.012	(>1/2-up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.00 ₂	(1/2-up)	3
2 5/8			•	

Binary fractional numbers

- ► "Even" when least significant bit is 0.
- \blacktriangleright "Half way" when bits to right of rounding position are $100\cdots_2$.

Examples

		, ,		
Value	Binary	Rounded	Action	Rounded value
2 3/32	10.000112	10.002	(< 1/2 - down)	2
2 3/16	10.00 <mark>110</mark> 2	10.012	(>1/2-up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.00 ₂	(1/2-up)	3
2 5/8	10.10 <mark>100</mark> 2			

Binary fractional numbers

- ► "Even" when least significant bit is 0.
- \blacktriangleright "Half way" when bits to right of rounding position are $100\cdots_2$.

Examples

Value	Binary	Rounded	Action	Rounded value
2 3/32	10.000112	10.002	(< 1/2 - down)	2
2 3/16	10.00 <mark>110</mark> 2	10.012	(>1/2-up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.00 ₂	(1/2-up)	3
2 5/8	10.10 <mark>100</mark> 2	10.102	(1/2-down)	2 1/2

Floating point multiplication (assuming operands are numbers)

$$((-1)^{S_3} \cdot M_3 \cdot 2^{E_3}) = ((-1)^{S_1} \cdot M_1 \cdot 2^{E_1}) \cdot ((-1)^{S_2} \cdot M_2 \cdot 2^{E_2})$$

Exact result

$$S_3 = S_1 \oplus S_2$$

$$M_3 = M_1 \cdot M_2$$

$$E_3 = E_1 + E_2$$

where \oplus is exclusive-or.

Fixing

- ▶ If $M_3 > 2$, shift M_3 right and increment E_e .
- ▶ If E_3 out of range, overflow to ∞ .
- ightharpoonup Round M_3 to fit Frac precision.

Implementation

► Biggest chore is multiplying significands.

Floating point addition (assuming operands are numbers)

$$((-1)^{S_3} \cdot M_3 \cdot 2^{E_3}) = ((-1)^{S_1} \cdot M_1 \cdot 2^{E_1}) + ((-1)^{S_2} \cdot M_2 \cdot 2^{E_2})$$

Approach

- ▶ Assume without loss of generality that $E_1 \ge E_2$.
- ightharpoonup Rewrite smaller number such that its exponent matches E_1 :

$$((-1)^{S_3} \cdot M_3 \cdot 2^{E_3}) = ((-1)^{S_1} \cdot M_1 \cdot 2^{E_1}) + ((-1)^{S_2} \cdot M_2' \cdot 2^{E_1})$$

Exact result

- ► Sign S_3 , significant M_3 :
 - Result of signed addition.

Fixing

- ▶ If $M_3 > 2$, shift M_3 right and increment E_3 .
- ▶ If M_3 < 1, shift M left k positions and decrement E_3 by k.
- ▶ If E_3 out of range, overflow to ∞ .
- ► Round *M* to fit Frac precision.

$$-1^{S_3}\cdot M_3$$

Example of floating-point addition with a 2-bit significand

$$(-1.01 \cdot 2^2) + (1.1 \cdot 2^4)$$

= $(-1.01 \cdot 2^2) + (110.0 \cdot 2^2)$ Align exponents
= $(-1.01 + 110.0) \cdot 2^2$ Distributivity
= $100.11 \cdot 2^2$ Add significands
= $1.0011 \cdot 2^4$ Normalise
= $1.01 \cdot 2^4$ Perform rounding

- Compared to those of Abelian Group
 - ► Closed under addition?

- Compared to those of Abelian Group
 - ► Closed under addition? **Yes**
 - ► But may generate infinity or NaN.
 - ► Commutative?

- Compared to those of Abelian Group
 - ► Closed under addition? **Yes**
 - But may generate infinity or NaN.
 - ► Commutative? **Yes**
 - ► Associative?

- Compared to those of Abelian Group
 - ► Closed under addition? Yes
 - But may generate infinity or NaN.
 - ► Commutative? **Yes**
 - ► Associative? **No**
 - ► Due to overflow and inexactness of rounding.
 - \blacktriangleright (3.14 + 1e10)-1e10 = 0
 - \triangleright 3.14 + (1e10-1e10) = 3.14
 - 0 is additive identity?

Compared to those of Abelian Group

- ► Closed under addition? Yes
 - But may generate infinity or NaN.
- ► Commutative? **Yes**
- ► Associative? **No**
 - ► Due to overflow and inexactness of rounding.
 - \blacktriangleright (3.14 + 1e10)-1e10 = 0
 - \triangleright 3.14 + (1e10-1e10) = 3.14
- ► 0 is additive identity? **Yes**
- Does every element have an additive inverse?

Compared to those of Abelian Group

- ► Closed under addition? Yes
 - But may generate infinity or NaN.
- ► Commutative? **Yes**
- ► Associative? **No**
 - ► Due to overflow and inexactness of rounding.
 - \blacktriangleright (3.14 + 1e10)-1e10 = 0
 - \triangleright 3.14 + (1e10-1e10) = 3.14
- ► 0 is additive identity? **Yes**
- ► Does every element have an additive inverse? **Almost**
 - ► Infinities and NaN do not have inverses.

Monotonicity

▶
$$a \ge b \Rightarrow a + c \ge b + c$$
?

Compared to those of Abelian Group

- ► Closed under addition? **Yes**
 - But may generate infinity or NaN.
- ► Commutative? **Yes**
- ► Associative? **No**
 - ► Due to overflow and inexactness of rounding.
 - \blacktriangleright (3.14 + 1e10)-1e10 = 0
 - \triangleright 3.14 + (1e10-1e10) = 3.14
- ► 0 is additive identity? **Yes**
- ▶ Does every element have an additive inverse? Almost
 - ► Infinities and NaN do not have inverses.

Monotonicity

- ▶ $a \ge b \Rightarrow a + c \ge b + c$? Almost
 - ► Infinities and NaNs are the exception.

Algebraic properties of floating-point multiplication

- Compared to those of a commutative ring
 - ► Closed under multiplication?

- Compared to those of a commutative ring
 - ► Closed under multiplication? **Yes**
 - But may generate infinity or NaN.
 - ► Commutative?

- Compared to those of a commutative ring
 - ► Closed under multiplication? **Yes**
 - ► But may generate infinity or NaN.
 - Commutative? Yes
 - ► Associative?

Compared to those of a commutative ring

- Closed under multiplication? Yes
 - ► But may generate infinity or NaN.
- ► Commutative? **Yes**
- ► Associative? **No**
 - ▶ Due to overflow and inexactness of rounding.
 - ► (1e20*1e20)*1e-20=∞
 - ► 1e20*(1e20*1e-20)= 1e20
- ► 1 is multiplicative identity?

Compared to those of a commutative ring

- Closed under multiplication? Yes
 - ► But may generate infinity or NaN.
- ► Commutative? **Yes**
- ► Associative? **No**
 - ▶ Due to overflow and inexactness of rounding.
 - ► (1e20*1e20)*1e-20=∞
 - ► 1e20*(1e20*1e-20)= 1e20
- ► 1 is multiplicative identity? **Yes**
- Multiplication distributes over addition?

Compared to those of a commutative ring

- Closed under multiplication? Yes
 - ► But may generate infinity or NaN.
- ► Commutative? **Yes**
- ► Associative? **No**
 - ▶ Due to overflow and inexactness of rounding.
 - ► (1e20*1e20)*1e-20=∞
 - ► 1e20*(1e20*1e-20)= 1e20
- ► 1 is multiplicative identity? **Yes**
- ► Multiplication distributes over addition? **No**
 - Overflow and rounding again.
 - ► 1e20*(1e20-1e20) = 0.0
 - ► 1e20*1e20 1e20*1e20 = NaN

Preliminaries: biased numbers

Floating point arithmetic

Background: Fractional binary numbers IEEE floating point standard Examples and properties Rounding, addition, and multiplication Floating point in C

Summary

Floating point in C

C guarantees two types

- ► float: 32-bit single precision.
- double: 64-bit single precision.

Conversions/casting

- ► Casting between int, float, and double changes bit represensation.
- ▶ double/float to int
 - ► Truncates fractional part.
 - ► Like rounding toward zero.
 - ▶ Not defined when out of range or NaN: generally sets to TMin.
- ▶ int to double
 - Exact conversion as long as int fits in 53 bits.
- ▶ int to float
 - Will round according to rounding mode.

Floating point is exciting!

First "flight" of the Ariane 5 in 1996.

Floating point is exciting!

First "flight" of the Ariane 5 in 1996.

- A double storing horizontal velocity of the rocket was converted to a 16-bit signed integer.
- The number was larger than 32767 so the conversion failed, causing an exception, crashing the guidance module.

For each of the following C expressions, either

- Argue that it is true for all argument values.
- Explain why it's not.

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither d nor t is NaN.

For each of the following C expressions, either

- Argue that it is true for all argument values.
- Explain why it's not.

$$x == (int) (float) x$$

Assume neither d nor t is NaN.

For each of the following C expressions, either

- Argue that it is true for all argument values.
- Explain why it's not.

$$\mathbf{x} = (int) (float) x$$

$$x == (int) (double) x$$

Assume neither d nor t is NaN.

For each of the following C expressions, either

- Argue that it is true for all argument values.
- Explain why it's not.

```
int x = ...;
```

float f = ...; double d = ...;

Assume neither d nor t is NaN.

```
x == (int) (float) x
```

•
$$x == (int) (double) x$$

For each of the following C expressions, either

- Argue that it is true for all argument values.
- Explain why it's not.

Assume neither d nor t is NaN.

```
x == (int) (float) x
x == (int) (double) x
f == (float) (double) f
d == (double) (float) d
```

For each of the following C expressions, either

- Argue that it is true for all argument values.
- Explain why it's not.

Assume neither d nor t is NaN.

```
x == (int) (float) x
x == (int) (double) x
f == (float) (double) f
d == (double) (float) d
f == -(-f)
```

For each of the following C expressions, either

- Argue that it is true for all argument values.
- Explain why it's not.

Assume neither d nor t is NaN.

For each of the following C expressions, either

- Argue that it is true for all argument values.
- Explain why it's not.

Assume neither d nor t is NaN.

Assume int is 32 bits.

■ $d < 0.0 \Rightarrow (d*2) < 0.0$

For each of the following C expressions, either

- Argue that it is true for all argument values.
- Explain why it's not.

Assume neither d nor t is NaN.

Assume int is 32 bits.

• $d < 0.0 \Rightarrow (d*2) < 0.0$

 \blacksquare d > f \Rightarrow -f > -d

For each of the following C expressions, either

- Argue that it is true for all argument values.
- Explain why it's not.

Assume neither d nor t is NaN.

Assume int is 32 bits.

 \bullet d * d >= 0.0

For each of the following C expressions, either

- Argue that it is true for all argument values.
- Explain why it's not.

Assume neither d nor t is NaN.

•
$$d < 0.0 \Rightarrow (d*2) < 0.0$$

$$d > f \Rightarrow -f > -d$$

$$d * d >= 0.0$$

Preliminaries: biased numbers

Floating point arithmetic
Background: Fractional binary numbers
IEEE floating point standard
Examples and properties
Rounding, addition, and multiplication
Floating point in C

Summary

Summary

- IEEE floating point has clear properties.
 - But they may not match your intuition.
- **Represents numbers of the form** $M \cdot 2^E$.
- One can reason about operations independent of implementation.
 - ► Computed with perfect precision and then rounded.
 - ▶ But rounded after *every* "primitive" operation (e.g. addition, multiplication).
- Not the same as \mathbb{Q}/\mathbb{R} arithmetic.
 - Violates associativity and distributivity, mostly due to rounding.
 - Sometimes makes life difficult for heavy-duty numerical programming.
 - But carefully designed such that "naive" use mostly does what one expects.