Raport - Zaawansowane metody klasyfikacji oraz analiza skupień – algorytmy grupujące i hierarchiczne

Filip Michewicz 282239 Wiktor Niedźwiedzki 258882

10 czerwca 2025 Anno Domini

Spis treści

1	Zaa	wansowane metody klasyfikacji
	1.1	Rodziny klasyfikatorów/uczenie zespołowe
		1.1.1 Drzewa klasyfikacyjne
	1.2	Metoda wektorów nośnych (SVM)
		1.2.1 Jądro liniowe
		1.2.2 Jądro wielomianowe
		1.2.3 Jądro radialne
		1.2.4 Jądro sigmoidalne
2	Ana	aliza skupień – algorytmy grupujące i hierarchiczne
	2.1	Zbiór danych Glass
	2.2	Wyniki grupowania
		2.2.1 k-średnie
		2.2.2 Partitioning Around Medoids (PAM)
		2.2.3 Agglomerative Nesting (AGNES)
S_{J}	pis	wykresów
	1	Wykres pudełkowy, zmienne bez standaryzacji
	2	Wykres pudełkowe, po standaryzacji
	3	Wizualizacja danych, PCA
	4	PCA, kolory - rzeczywiste, kształt - wyniki
	5	Wykres RI od Na, aby pokazać gdzie są wyznaczone centra skupień
	6	coś
	7	coś, z medoidami
	•	2 110401441111 1 1 1 1 1 1 1 1 1 1 1 1 1
$\mathbf{S}_{\mathbf{J}}$	pis	tabel
	1	Średnia poprawa dokładności klasyfikacji za pomocą drzewa klasyfikacyjnego, z podziałem na
		algorytmy uczenia zespołowego oraz liczbę replikacji
	2	Jądro liniowe - bez skalowania
	3	Jądro liniowe - ze skalowaniem
	4	Jądro wielomianowe - wielokrotny podział, bez skalowania
	5	Jądro wielomianowe - wielokrotny podział, ze skalowaniem
	6	Jądro wielomianowe - cross-validation, bez skalowania
	7	Jądro wielomianowe - cross-validation, ze skalowaniem

8	Jądro wielomianowe - bootstrap, bez skalowania
9	Jądro wielomianowe - bootstrap, ze skalowaniem
10	Badanie wpływu stopnia wielomianu na dokładność - wielokrotny podział, najbardziej dokładna
	kombinacja gammy i kary dla opcji default (stopień 3
11	Jądro radialne - wielokrotny podział, bez skalowania 6
12	Jądro radialne - wielokrotny podział, ze skalowaniem 6
13	Jądro radialne - cross-validation, bez skalowania
14	Jądro radialne - cross-validation, ze skalowaniem
15	Jądro radialne - bootstrap, bez skalowania
16	Jądro radialne - bootstrap, ze skalowaniem
17	Jądro sigmoidalne - wielokrotny podział, bez skalowania
18	Jądro sigmoidalne - wielokrotny podział, ze skalowaniem
19	Jądro sigmoidalne - cross-validation, bez skalowania
20	Jądro sigmoidalne - cross-validation, ze skalowaniem
21	Jądro sigmoidalne - bootstrap, bez skalowania
22	Jądro sigmoidalne - bootstrap, ze skalowaniem
23	Macierz błędów; metoda k-średnich
24	Macierz błędów; metoda k-średnich

1 Zaawansowane metody klasyfikacji

W pierwszej części zadania zastosujemy algorytmy ensemble learning (bagging, boosting i random forest) w celu poprawy dokładności cech klasyfikacyjnych. W drugiej natomiast poznamy i ocenimy nową metodę klasyfikacji - metodę wektorów nośnych (SVM).

Zadanie zostanie wykonane na zbiorze danych wine, którego szczegółowy opis znajduje się w poprzednim raporcie.

1.1 Rodziny klasyfikatorów/uczenie zespołowe

Wyróżniamy trzy algorytmy uczenia zespołowego (ang. ensemble learning):

- Bagging generujemy B-bootstrapowych replikacji zbioru uczącego, na podstawie których tworzymy B klasyfikatorów. Następnie łączymy je w klasyfikator zagregowany, który przydziela dane cechy do klas za pomocą reguły "głosowania większości" (w przypadku remisu wybiera losowo). Każdy klasyfikator powstaje niezależnie (w sensie takim, że wyniki poprzednich nie mają wpływu na generowanie nowych).
- boosting podobnie jak w bagging, tworzymy klasyfikator zagregowany złożony z wielu pojedynczych
 klasyfikatorów. Jednak różnica jest taka, że klasyfikatory powstają sekwencyjnie. Na początku każda
 cecha w zbiorze ma przypisaną taką samą wagę. Z każdą kolejną iteracją natomiast waga zwiększa się
 dla uprzednio źle sklasyfikowanych przypadków.
- random forest (dla drzew klasyfikacyjnych) metoda podobna do bagging z tą różnicą, że klasyfikatory powstają na podstawie różnych m-elementowych podzbiorach cech (m mniejsze bądź równe wszystkim cechom).

1.1.1 Drzewa klasyfikacyjne

MOŻE BYĆ NIEPOPRAWNIE W CHUJ

Tabela 1: Średnia poprawa dokładności klasyfikacji za pomocą drzewa klasyfikacyjnego, z podziałem na algorytmy uczenia zespołowego oraz liczbę replikacji

	1	5	10	20	30	40	50	100
Bagging	19.08	52.50	47.25	64.91	61.25	51.00	66.50	57.71
Random Forest	87.44	88.16	87.55	84.90	84.69	86.26	87.59	84.90
Boosting	73.49	70.44	73.56	74.10	79.94	75.98	75.62	67.32
Średnia	60.01	70.37	69.45	74.64	75.29	71.08	76.57	69.98

1.2 Metoda wektorów nośnych (SVM)

W tej części przeprowadzona będzie klasyfikacja na podstawie metody wektorów nośnych, z podziałem na różne funkcje jądrowe.

COŚ O TYM CO TO WOGÓLE JEST

1.2.1 Jądro liniowe

Tabela 2: Jadro liniowe - bez skalowania

	0.001	0.01	0.1	1	10	100	1000
Wielokrotny podział	37.00	97.17	97.67	96.00	97.33	96.50	97.50
Cross-validation	33.33	50.12	90.07	89.51	89.51	89.51	89.51
Bootstrap	38.32	96.95	97.17	95.68	96.50	97.24	96.49

Tabela 2: Jądro liniowe - bez skalowania (kontynuacja)

	0.001	0.01	0.1	1	10	100	1000
Średnio	36.22	81.41	94.97	93.73	94.45	94.42	94.50

Tabela 3: Jądro liniowe - ze skalowaniem

	0.001	0.01	0.1	1	10	100	1000
Wielokrotny podział	38.33	96.50	96.17	95.50	96.17	96.67	96.17
Cross-validation	44.39	49.70	92.19	92.51	92.51	92.51	92.51
Bootstrap	40.23	96.74	96.52	96.76	96.66	96.67	96.78
Średnio	40.99	80.98	94.96	94.92	95.11	95.28	95.15

1.2.2 Jądro wielomianowe

Tabela 4: Jądro wielomianowe - wielokrotny podział, bez skalowania

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	35.67	94.83	95.67	92.50	96.17	95.50	95.17	96.67	95.17	94.83
0.01	35.50	93.83	94.00	96.00	95.50	94.50	96.17	94.17	94.33	95.17
0.1	41.00	95.50	96.83	94.67	95.33	95.33	95.50	93.50	94.33	95.50
1	35.83	95.17	94.83	92.83	95.00	96.00	94.83	95.67	95.33	94.17
10	41.67	95.83	95.33	96.50	95.17	94.67	95.67	95.17	96.33	94.50
100	86.00	95.33	96.67	94.00	94.83	94.67	95.00	95.17	95.33	95.33
1000	95.67	95.33	95.67	96.17	96.50	96.17	96.17	97.00	95.33	95.50

Tabela 5: Jądro wielomianowe - wielokrotny podział, ze skalowaniem

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	38.17	96.00	94.67	96.33	95.33	96.00	95.33	95.50	94.17	93.83
0.01	39.67	95.83	95.17	96.50	94.00	96.33	95.67	94.83	96.33	96.83
0.1	35.83	95.83	96.50	96.33	94.67	95.17	94.83	95.33	95.17	95.33
1	38.17	94.00	96.83	94.83	95.67	94.67	96.67	94.67	96.00	95.33
10	40.00	93.83	96.17	95.33	96.00	95.00	95.67	96.00	96.50	95.17
100	87.67	96.17	95.33	95.83	95.83	96.17	95.50	96.00	96.17	94.50
1000	96.33	94.67	96.00	94.00	94.83	95.50	95.00	95.00	95.00	94.83

Tabela 6: Jądro wielomianowe - cross-validation, bez skalowania

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	39.80	96.11	96.11	96.11	96.11	96.11	96.11	96.11	96.11	96.11
0.01	39.80	96.11	96.11	96.11	96.11	96.11	96.11	96.11	96.11	96.11
0.1	39.80	96.11	96.11	96.11	96.11	96.11	96.11	96.11	96.11	96.11
1	39.80	96.11	96.11	96.11	96.11	96.11	96.11	96.11	96.11	96.11
10	44.28	96.11	96.11	96.11	96.11	96.11	96.11	96.11	96.11	96.11

Tabela 6: Jądro wielomianowe - cross-validation, bez skalowania (kontynuacja)

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
100	87.61	96.11	96.11	96.11	96.11	96.11	96.11	96.11	96.11	96.11
1000	95.00	96.11	96.11	96.11	96.11	96.11	96.11	96.11	96.11	96.11

Tabela 7: Jądro wielomianowe - cross-validation, ze skalowaniem

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	40.00	97.78	96.08	96.67	96.67	96.67	96.67	96.67	96.67	96.67
0.01	40.00	96.08	96.67	96.67	96.67	96.67	96.67	96.67	96.67	96.67
0.1	40.00	96.67	96.67	96.67	96.67	96.67	96.67	96.67	96.67	96.67
1	40.00	96.67	96.67	96.67	96.67	96.67	96.67	96.67	96.67	96.67
10	43.95	96.67	96.67	96.67	96.67	96.67	96.67	96.67	96.67	96.67
100	88.24 96.11	96.67 96.67								

Tabela 8: Jądro wielomianowe - bootstrap, bez skalowania

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	37.30	94.96	92.79	93.79	93.06	96.20	95.14	94.33	92.90	93.78
0.01	36.30	94.38	93.73	94.72	95.31	94.64	94.58	94.85	94.79	93.92
0.1	36.85	93.90	94.55	93.91	95.05	93.28	94.25	94.46	94.68	93.72
1	32.77	93.92	95.03	94.77	92.97	94.20	93.11	93.36	94.73	94.13
10	39.36	95.14	95.54	96.42	93.46	94.80	93.71	94.34	94.90	92.69
100	86.17	95.19	94.79	94.86	92.67	95.01	94.67	93.97	93.45	95.10
1000	94.38	94.81	93.22	93.29	94.01	94.91	93.04	94.51	94.13	94.48

Tabela 9: Jądro wielomianowe - bootstrap, ze skalowaniem

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	35.97	93.62	94.60	94.90	93.00	93.75	94.94	92.08	94.30	94.27
0.01	37.09	94.76	94.26	94.54	94.29	95.00	95.70	93.39	95.81	93.90
0.1	39.87	95.09	94.28	93.77	94.31	92.36	94.92	94.60	95.24	94.70
1	32.07	93.55	94.86	94.43	93.36	93.91	94.14	94.54	95.61	93.10
10	39.96	94.39	94.78	94.43	94.73	94.75	93.79	94.75	95.14	95.35
100	87.85	95.95	96.22	94.10	93.82	94.00	93.64	94.64	93.62	94.45
1000	93.80	94.77	96.07	94.57	95.15	94.99	92.96	95.04	94.78	92.77

Najlepsza gamma: 10, najlepsza kara: 0.01. Robimy dla danych po standaryzacji, bo tak i chuj. Badamy tylko na podstawie wielokrotnego podziału, bo tak i chuj również.

Tabela 10: Badanie wpływu stopnia wielomianu na dokładność - wielokrotny podział, najbardziej dokładna kombinacja gammy i kary dla opcji default (stopień 3

	2	3	4	5	6	7
Dokładność	88.33	95.17	88.67	89	77.83	79.17

1.2.3 Jądro radialne

Tabela 11: Jądro radialne - wielokrotny podział, bez skalowania

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	40.03	40.03	40.03	40.03	40.03	40.03	40.03	40.03	40.03	40.03
0.01	40.03	40.03	40.03	40.03	40.03	40.03	40.03	40.03	40.03	40.03
0.1	80.85	40.03	40.03	40.03	40.03	40.03	40.03	40.03	40.03	40.03
1	98.30	56.83	40.03	40.03	40.03	40.03	40.03	40.03	40.03	40.03
10	96.63	59.61	40.03	40.03	40.03	40.03	40.03	40.03	40.03	40.03
100	96.63	59.61	40.03	40.03	40.03	40.03	40.03	40.03	40.03	40.03
1000	96.63	59.61	40.03	40.03	40.03	40.03	40.03	40.03	40.03	40.03

Tabela 12: Jądro radialne - wielokrotny podział, ze skalowaniem

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	39.87	39.87	39.87	39.87	39.87	39.87	39.87	39.87	39.87	39.87
0.01	39.87	39.87	39.87	39.87	39.87	39.87	39.87	39.87	39.87	39.87
0.1	80.85	39.87	39.87	39.87	39.87	39.87	39.87	39.87	39.87	39.87
1	98.30	53.86	39.87	39.87	39.87	39.87	39.87	39.87	39.87	39.87
10	97.75	59.51	39.87	39.87	39.87	39.87	39.87	39.87	39.87	39.87
100	97.19	59.51	39.87	39.87	39.87	39.87	39.87	39.87	39.87	39.87
1000	97.19	59.51	39.87	39.87	39.87	39.87	39.87	39.87	39.87	39.87

Tabela 13: Jądro radialne - cross-validation, bez skalowania

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	39.80	39.80	39.8	39.8	39.8	39.8	39.8	39.8	39.8	39.8
0.01	39.80	39.80	39.8	39.8	39.8	39.8	39.8	39.8	39.8	39.8
0.1	79.74	39.80	39.8	39.8	39.8	39.8	39.8	39.8	39.8	39.8
1	98.89	57.84	39.8	39.8	39.8	39.8	39.8	39.8	39.8	39.8
10	97.22	61.76	39.8	39.8	39.8	39.8	39.8	39.8	39.8	39.8
100	95.56	61.76	39.8	39.8	39.8	39.8	39.8	39.8	39.8	39.8
1000	95.56	61.76	39.8	39.8	39.8	39.8	39.8	39.8	39.8	39.8

Tabela 14: Jądro radialne - cross-validation, ze skalowaniem

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	39.97	39.97	39.97	39.97	39.97	39.97	39.97	39.97	39.97	39.97
0.01	39.97	39.97	39.97	39.97	39.97	39.97	39.97	39.97	39.97	39.97
0.1	80.92	39.97	39.97	39.97	39.97	39.97	39.97	39.97	39.97	39.97
1	98.30	57.45	39.97	39.97	39.97	39.97	39.97	39.97	39.97	39.97
10	97.19	61.44	40.56	39.97	39.97	39.97	39.97	39.97	39.97	39.97
100	96.08	61.44	40.56	39.97	39.97	39.97	39.97	39.97	39.97	39.97
1000	96.08	61.44	40.56	39.97	39.97	39.97	39.97	39.97	39.97	39.97

Tabela 15: Jądro radialne - bootstrap, bez skalowania

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	39.44	35.19	38.09	37.56	38.24	36.51	37.37	33.77	37.01	38.05
0.01	37.61	38.08	34.79	37.87	35.97	37.30	39.55	36.03	38.57	33.31
0.1	52.32	36.76	33.05	37.36	35.12	36.75	38.88	32.40	40.04	38.82
1	97.13	49.89	37.44	37.13	37.20	40.12	36.40	37.28	38.82	35.95
10	96.85	53.86	38.25	37.49	38.28	36.42	36.90	37.72	38.51	39.46
100	97.51	48.61	41.25	37.40	39.36	36.69	36.11	38.37	37.57	36.84
1000	96.04	51.69	39.35	37.67	40.31	40.71	35.66	36.45	39.61	36.03

Tabela 16: Jądro radialne - bootstrap, ze skalowaniem

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	36.38	38.00	34.28	35.66	38.14	35.34	38.63	38.56	36.59	36.93
0.01	44.29	34.10	36.08	33.77	37.20	35.12	35.16	35.62	38.13	35.21
0.1	51.91	36.81	36.89	34.64	37.43	37.62	35.26	35.74	39.98	37.51
1	97.13	45.91	41.10	37.88	38.31	36.54	40.25	37.96	37.35	36.27
10	96.99	55.21	36.87	38.56	38.27	38.40	37.21	35.04	39.23	37.96
100	97.00	55.27	38.28	38.21	38.07	38.63	38.60	37.05	39.56	36.93
1000	96.72	55.64	35.79	36.66	36.84	35.85	32.43	36.38	38.67	36.04

${\bf 1.2.4}\quad {\bf Jadro~sigmoidalne}$

Tabela 17: Jądro sigmoidalne - wielokrotny podział, bez skalowania

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	38.50	38.83	38.50	40.33	41.33	46.33	38.33	39.17	38.83	43.17
0.01	38.83	63.00	57.83	61.83	67.50	68.33	60.67	59.33	62.83	61.50
0.1	40.33	89.50	89.00	87.50	86.33	90.33	88.50	87.17	86.67	86.00
1	97.00	81.17	81.83	81.33	81.50	78.83	81.17	82.00	79.00	82.83
10	98.00	84.17	83.67	78.50	79.83	80.00	81.67	79.67	80.17	80.33
100	96.50	81.50	82.67	79.83	81.83	80.17	80.00	82.33	79.83	79.17
1000	97.17	79.33	79.83	79.83	80.83	79.33	82.33	81.00	77.83	82.50

Tabela 18: Jądro sigmoidalne - wielokrotny podział, ze skalowaniem

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	40.17	39.33	42.50	36.33	45.67	37.50	36.83	37.83	40.50	37.00
0.01	39.00	64.17	63.67	63.00	65.67	64.50	70.83	55.50	70.00	57.00
0.1	38.50	89.33	86.50	86.33	86.83	88.33	85.33	87.17	88.00	87.83
1	98.50	83.00	79.50	79.50	82.33	80.00	78.17	81.83	80.50	83.83
10	98.00	83.67	78.33	82.83	79.17	78.00	81.67	81.00	84.17	82.67
100	96.17	80.67	79.83	81.50	82.17	78.00	78.50	80.33	79.83	80.33
1000	97.17	84.50	78.50	81.50	80.50	78.00	80.33	80.50	78.33	81.00

Tabela 19: Jądro sigmoidalne - cross-validation, bez skalowania

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	39.93	39.93	39.93	39.93	39.93	39.93	39.93	39.93	39.93	39.93
0.01	39.93	79.31	78.76	79.28	79.28	79.28	79.28	79.28	78.73	78.73
0.1	42.75	87.03	88.17	87.06	87.06	87.58	87.61	85.39	85.95	85.95
1	97.78	83.82	82.61	80.88	76.41	76.37	76.47	78.14	78.66	80.88
10	99.44	81.54	79.74	80.85	80.36	77.03	76.47	76.54	80.39	80.39
100	96.05	82.65	78.63	79.67	79.22	75.33	74.77	75.95	78.73	80.39
1000	96.60	83.20	80.29	80.23	76.96	74.18	73.63	75.92	79.25	78.73

Tabela 20: Jądro sigmoidalne - cross-validation, ze skalowaniem

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	39.87	39.87	39.87	39.87	39.87	39.87	39.87	39.87	39.87	39.87
0.01	39.87	75.75	74.64	75.20	75.20	75.20	75.20	75.20	75.20	75.20
0.1	42.68	88.20	87.03	87.06	87.61	86.50	86.50	87.06	86.50	85.95
1	98.30	81.41	80.88	78.63	79.25	80.36	78.14	77.06	78.73	76.47
10	98.89	77.55	80.98	74.15	76.37	75.85	77.03	74.22	75.92	75.33
100	97.16	81.41	81.47	74.15	75.23	77.48	78.10	77.03	77.61	77.58
1000	97.75	82.03	81.47	76.37	75.26	76.37	77.52	75.33	76.50	77.03

Tabela 21: Jądro sigmoidalne - bootstrap, bez skalowania

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	38.03	35.42	32.60	33.82	37.92	40.67	36.77	36.83	40.69	38.03
0.01	38.76	56.17	55.34	57.54	67.60	62.66	62.88	51.72	57.66	61.78
0.1	35.08	85.15	87.53	86.61	86.67	87.19	87.28	86.17	86.12	84.70
1	96.43	79.20	83.35	79.20	80.82	81.15	81.00	84.18	78.42	80.30
10	97.78	83.04	80.24	76.51	79.92	80.63	80.50	79.17	82.40	81.75
100	97.11	76.26	79.87	78.22	77.83	79.00	77.89	79.94	78.86	83.10
1000	95.41	76.93	80.35	80.86	79.87	77.75	78.71	77.39	79.76	78.75

Tabela 22: Jądro sigmoidalne - bootstrap, ze skalowaniem

	0.01	1.12	2.23	3.34	4.45	5.56	6.67	7.78	8.89	10
0.001	35.96	33.55	36.45	38.58	40.31	41.96	39.79	33.05	42.64	38.63
0.01	44.24	56.08	58.36	57.75	65.58	64.09	62.02	56.66	70.28	60.61
0.1	37.47	88.41	86.62	85.84	85.19	88.23	84.05	84.71	84.97	84.48
1	96.89	83.02	78.30	77.96	81.46	79.68	78.83	81.34	80.43	79.81
10	96.90	80.66	78.31	79.23	78.28	78.48	83.28	80.58	79.72	79.16
100	95.16	81.85	77.85	77.58	82.50	82.16	82.94	80.50	77.31	79.11
1000	96.86	80.48	80.60	80.61	81.92	80.41	82.63	80.72	82.08	79.93

elo

2 Analiza skupień – algorytmy grupujące i hierarchiczne

W pierwszej części zadania zastosujemy algorytmy ensemble learning (bagging, boosting i random forest) w celu poprawy dokładności cech klasyfikacyjnych. W drugiej natomiast poznamy i ocenimy nową metodę klasyfikacji - metodę wektorów nośnych (SVM).

Zadanie zostanie wykonane na zbiorze danych wine, którego szczegółowy opis znajduje się w poprzednim raporcie.

W tym zadaniu zastosujemy i porównamy ze sobą metody analizy skupień - k-średnich i PAM jako algorytmy grupujące, oraz AGNES - algorytm hierarhiczny.

2.1 Zbiór danych Glass

Chujowy

Wykres 1: Wykres pudełkowy, zmienne bez standaryzacji

KURWA STANDARYZACJA MACHEN

Wykres 2: Wykres pudełkowe, po standaryzacji

Teraz jest zajebiście

Wykres 3: Wizualizacja danych, PCA

Chuja widać, ciekawe kto wybrał ten zbiór?

2.2 Wyniki grupowania

Przeprowadzamy dla rzeczywistej liczby etykiet, która wynosi ${\bf 6}.$

2.2.1 k-średnie

Wykres 4: PCA, kolory - rzeczywiste, kształt - wyniki

Gównianie mu poszło

Wykres 5: Wykres RI od Na, aby pokazać gdzie są wyznaczone centra skupień

Centra wywalone w kosmos, ale fajnie

Tabela 23: Macierz błędów; metoda k-średnich

	1	2	3	5	6	7
1	20	4	2	0	0	3

	1	2	3	5	6	7
$\overline{2}$	38	42	12	2	5	2
3	12	20	3	1	0	0
5	0	10	0	7	1	0
6	0	0	0	2	0	0
7	0	0	0	1	3	24

Dokładność: 44.86%.

${\bf 2.2.2} \quad {\bf Partitioning \ Around \ Medoids \ (PAM)}$

Wykres 6: coś

Też słabo

Wykres 7: coś, z medoidami

Meh

Tabela 24: Macierz błędów; metoda k-średnich

	1	2	3	5	6	7
1	17	2	2	0	0	3
2	40	43	12	2	4	3
3	13	21	3	2	0	0
5	0	10	0	6	2	0
6	0	0	0	2	0	0
7	0	0	0	1	3	23

Dokładność: 42.99%.

Gorzej niż k-średnie shocked emoji.

2.2.3 Agglomerative Nesting (AGNES)