

ISP1583

Hi-Speed Universal Serial Bus peripheral controller Rev. 03 — 12 July 2004

Product data

General description

The ISP1583 is a cost-optimized and feature-optimized Hi-Speed Universal Serial Bus (USB) peripheral controller. It fully complies with *Universal Serial Bus* Specification Rev. 2.0, supporting data transfer at high-speed (480 Mbit/s) and full-speed (12 Mbit/s).

The ISP1583 provides high-speed USB communication capacity to systems based on microcontrollers or microprocessors. It communicates with a microcontroller or microprocessor of a system through a high-speed general-purpose parallel interface.

The ISP1583 supports automatic detection of Hi-Speed USB system operation. Original USB fall-back mode allows the device to remain operational under full-speed conditions. It is designed as a generic USB peripheral controller so that it can fit into all existing device classes, such as imaging class, mass storage devices, communication devices, printing devices and human interface devices.

The ISP1583 is a low-voltage device, which supports I/O pad voltages from 1.65 V to 3.6 V.

The internal generic Direct Memory Access (DMA) block allows easy integration into data streaming applications. In addition, the various configurations of the DMA block are tailored for mass storage applications.

The modular approach to implementing a USB peripheral controller allows the designer to select the optimum system microcontroller from the wide variety available. The ability to reuse existing architecture and firmware investments shortens the development time, eliminates risk and reduces cost. The result is fast and efficient development of the most cost-effective USB peripheral solution.

The ISP1583 is ideally suited for many types of peripherals, such as: printers; scanners; magneto-optical, compact disc, digital video disc and Zip® drives; digital still cameras; USB-to-Ethernet links; cable and DSL modems. The low power consumption during suspend mode allows easy design of equipment that is compliant to the ACPI™, OnNow™ and USB power management requirements.

The ISP1583 also incorporates features such as SoftConnect™, a reduced frequency crystal oscillator, and integrated termination resistors. These features allow significant cost savings in system design and easy implementation of advanced USB functionality into PC peripherals.

Hi-Speed USB peripheral controller

2. Features

- Complies fully with:
 - Universal Serial Bus Specification Rev. 2.0
 - Most Device Class specifications
 - ◆ ACPI[™], OnNow[™] and USB power management requirements
- Supports data transfer at high-speed (480 Mbit/s) and full-speed (12 Mbit/s)
- Direct interface to ATA/ATAPI peripherals; applicable only in split bus mode
- High performance USB peripheral controller with integrated Serial Interface
 Engine (SIE), Parallel Interface Engine (PIE), FIFO memory and data transceiver
- Automatic Hi-Speed USB mode detection and Original USB fall-back mode
- Supports sharing mode
- Supports I/O voltage range of 1.65 V to 3.6 V
- Supports V_{BUS} sensing
- High-speed DMA interface
- Configurable direct access data path from the microprocessor to an ATA device
- Fully autonomous and multi configuration DMA operation
- 7 IN endpoints, 7 OUT endpoints and a fixed control IN/OUT endpoint
- Integrated physical 8 kbytes of multi configuration FIFO memory
- Endpoints with double buffering to increase throughput and ease real-time data transfer
- Bus-independent interface with most microcontrollers and microprocessors
- 12 MHz crystal oscillator with integrated PLL for low EMI
- Software-controlled connection to the USB bus (SoftConnect™)
- Low-power consumption in operation and power-down modes; suitable for use in bus-powered USB devices
- Supports Session Request Protocol (SRP) that complies with On-The-Go Supplement to the USB Specification Rev. 1.0a
- Internal power-on and low-voltage reset circuits; also supports software reset
- Operation over the extended USB bus voltage range (DP, DM and V_{BUS})
- 5 V tolerant I/O pads at 3.3 V
- Operating temperature range from –40 °C to +85 °C
- Available in HVQFN64 halogen-free and lead-free package.

3. Applications

- Personal digital assistant
- Mass storage device, for example: Zip, Magneto-Optical (MO), CD and DVD drives
- Digital video camera
- Digital still camera
- 3G mobile phone
- MP3 player
- Communication device, for example: router and modem
- Printer

9397 750 13461 Product data

Hi-Speed USB peripheral controller

Scanner.

4. Abbreviations

DMA — Direct Memory Access

EMI — ElectroMagnetic Interference

FS — Full-speed

GDMA — Generic DMA

HS - High-speed

MDMA — Multiword DMA

MMU — Memory Management Unit

MO — Magneto-Optical

NRZI — Non-Return-to-Zero Inverted

OTG - On-The-Go

PDA — Personal Digital Assistant

PID — Packet IDentifier

PIE — Parallel Interface Engine

PIO — Parallel Input/Output

PLL — Phase-Locked Loop

SE0 — Single-Ended zero

SIE — Serial Interface Engine

SRP — Session Request Protocol

USB — Universal Serial Bus.

5. Ordering information

Table 1: Ordering information

Туре	Package								
number	Name	Description	Version						
ISP1583BS	HVQFN64	plastic thermal enhanced very thin quad flat package; no leads; 64 terminals; body $9 \times 9 \times 0.85$ mm	SOT804-1						

Hi-Speed USB peripheral controller

The direction of pins DREQ, DACK, DIOR and DIOW is determined by bit MASTER (DMA Hardware register) and bit ATA_MODE (DMA Configuration register).

- (1) Pin 15 is shared by READY and IORDY.
- (2) Pin 60 is shared by MODE0 and DA1.
- (3) Pin 62 is shared by BUS_CONF and DA0.

Fig 1. Block diagram.

ts reserved.
4 of 87

Hi-Speed USB peripheral controller

7. Pinning information

7.1 Pinning

Hi-Speed USB peripheral controller

7.2 Pin description

Table 2: Pin description

Table 2:	Pin des	cription	
Symbol ^[1]	Pin	Type ^[2]	Description
AGND	1	-	analog ground
RPU	2	Α	pull-up resistor connection; this pin must be connected to 3.3 V through an external 1.5 k Ω resistor for pulling-up pin DP
DP	3	Α	USB D+ line connection (analog)
DM	4	Α	USB D- line connection (analog)
AGND	5	-	analog ground
RREF	6	Α	external bias resistor connection; this pin must be connected to ground via a 12.0 k Ω ± 1 % resistor

9397 750 13461

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

 Table 2:
 Pin description...continued

			continued
Symbol ^[1]	Pin	Type ^[2]	Description
RESET_N	7	I	reset input (500 μ s); a LOW level produces an asynchronous reset; connect to $V_{CC(3V3)}$ for power-on reset (internal POR circuit)
			TTL; 5 V tolerant ^[6]
EOT	8	I	end-of-transfer input (programmable polarity); used in DMA slave mode only; when not in use, connect this pin to $V_{CC(I/O)}$ through a 10 $k\Omega$ resistor
			input pad; TTL; 5 V tolerant ^[6]
DREQ	9	I/O	DMA request input or output (programmable polarity); the signal direction depends on bit MASTER in register DMA Hardware (see Table 57):
			Input: DMA master if bit MASTER = 1
			 Output: DMA slave if bit MASTER = 0.
			When not in use, in the default setting, this pin must be connected to ground through a 10 $k\Omega$ resistor.
			bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant ^[6]
DACK	10	I/O	DMA acknowledge input or output (programmable polarity); the signal direction depends on bit MASTER in register DMA Hardware (see Table 57):
			Input: DMA slave if bit MASTER = 0
			 Output: DMA master if bit MASTER = 1.
			When not in use, in the default setting, this pin must be connected to $V_{CC(I/O)}$ through a 10 k Ω resistor.
			bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant ^[6]
DIOR	11	I/O	DMA read strobe input or output (programmable polarity); the signal direction depends on bit MASTER in register DMA Hardware (see Table 57):
			Input: DMA slave if bit MASTER = 0
			 Output: DMA master if bit MASTER = 1.
			When not in use, in the default setting, this pin must be connected to $V_{CC(I/O)}$ through a 10 k Ω resistor.
			bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant ^[6]
DIOW	12	I/O	DMA write strobe input or output (programmable polarity); the signal direction depends on bit MASTER in register DMA Hardware (see Table 57):
			Input: DMA slave if bit MASTER = 0
			 Output: DMA master if bit MASTER = 1.
			When not in use, in the default setting, this pin must be connected to $V_{CC(I/O)}$ through a 10 k Ω resistor.
			bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant[6]
DGND	13	-	digital ground
INTRQ	14	I	interrupt request input; from the ATA/ATAPI peripheral; use a 10 $k\Omega$ resistor to pull-down
			input pad; TTL; 5 V tolerant ^[6]

 Table 2:
 Pin description...continued

Table 2:	rin des	cription.	continued
Symbol ^[1]	Pin	Type ^[2]	Description
READY/ IORDY	15	I/O	Signal ready output — Used in generic processor mode: LOW: the ISP1583 is processing a previous command or data and is not ready for the next command or data transfer. HIGH: the ISP1583 is ready for the next microprocessor read or write.
			DMA ready input — Used in split bus mode for accessing ATA/ATAPI peripherals (PIO mode only). bidirectional pad; 10 ns slew-rate control; TTL; 5 V tolerant ^[6]
INT	16	0	interrupt output; programmable polarity (active HIGH or LOW) and signaling (edge or level triggered) CMOS output; 8 mA drive
DA2 ^[5]	17	0	address output to select the Task File register of an ATA/ATAPI device; see Table 59 CMOS output; 8 mA drive
CS_N	18	I	chip selection input input pad; TTL; 5 V tolerant ^[6]
RW_N/ RD_N	19	I	Read and write input — For Motorola style, this function is determined by pin MODE0 = LOW during power-up.
			Read input — For 8051 style, this function is determined by pin MODE0 = HIGH during power-up.
			input pad; TTL; 5 V tolerant ^[6]
DS_N/ WR_N	20	I	Data selection input — For Motorola style, this function is determined by pin MODE0 = LOW at power-up.
			Write input — For 8051 style, this function is determined by pin MODE0 = HIGH at power-up.
			input pad; TTL; 5 V tolerant ^[6]
CS0_N ^[5]	21	0	chip selection output 0 for ATA/ATAPI device; see Table 59 CMOS output; 8 mA drive
CS1_N ^[5]	22	0	chip selection output 1 for ATA/ATAPI device; see Table 59 CMOS output; 8 mA drive
AD0	23	I/O	bit 0 of multiplexed address and data bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant ^[6]
AD1	24	I/O	bit 1 of multiplexed address and data bus bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant ^[6]
AD2	25	I/O	bit 2 of multiplexed address and data bus bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant ^[6]
V _{CC(I/O)} [3]	26	-	I/O pad supply voltage (1.65 V to 3.6 V); see Section 8.15
AD3	27	I/O	bit 3 of multiplexed address and data bus
AD4		1/0	bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant ^[6]
AD4	28	I/O	bit 4 of multiplexed address and data bus bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant ^[6]
AD5	29	I/O	bit 5 of multiplexed address and data bus
			bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant ^[6]

 Table 2:
 Pin description...continued

Table 2:	Pin descriptioncontinued						
Symbol ^[1]	Pin	• •	Description				
AD6	30	I/O	bit 6 of multiplexed address and data bus				
			bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant ^[6]				
AD7	31	I/O	bit 7 of multiplexed address and data bus				
			bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant ^[6]				
V _{CC(1V8)} ^[3]	32	-	voltage regulator output (1.8 V \pm 0.15 V); tapped out voltage from the internal regulator; this regulated voltage cannot drive external devices; decouple this pin using a 0.1 μ F capacitor; see Section 8.15				
n.c.	33	-	not connected				
MODE1	34	I	mode selection input 1; used in split bus mode only:				
			 LOW: ALE function (address latch enable) 				
			 HIGH: A0 function (address/data indicator). 				
			Remark: When operating in generic processor mode, set pin MODE1 HIGH.				
			input pad; TTL; 5 V tolerant ^[6]				
DGND	35	-	digital ground				
ALE/A0	36	I	Address latch enable input — When pin MODE1 = LOW during power-up, a falling edge latches the address on the multiplexed address and data bus AD[7:0].				
			Address and data selection input — When pin MODE1 = HIGH during power-up, the function is determined by the level on this pin (detected on the rising edge of the WR_N pulse):				
			 HIGH: bus AD[7:0] is a register address LOW: bus AD[7:0] is register data; used in split bus mode only. 				
			Remark: When operating in generic processor mode with pin MODE1 = HIGH, this pin must be pulled down using a 10 k Ω resistor.				
			input pad; TTL; 5 V tolerant ^[6]				
DATA0	37	I/O	bit 0 of bidirectional data bus				
			bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant ^[6]				
DATA1	38	I/O	bit 1 of bidirectional data bus				
			bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant ^[6]				
DATA2	39	I/O	bit 2 of bidirectional data bus				
			bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant ^[6]				
DATA3	40	I/O	bit 3 of bidirectional data bus				
			bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant ^[6]				
V _{CC(I/O)} [3]	41	-	I/O pad supply voltage (1.65 V to 3.6 V); see Section 8.15				
DATA4	42	I/O	bit 4 of bidirectional data bus				
			bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant ^[6]				
DATA5	43	I/O	bit 5 of bidirectional data bus bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant ^[6]				

 Table 2:
 Pin description...continued

Table 2:	rın aesa	ription	continuea
Symbol ^[1]	Pin	Type ^[2]	Description
DATA6	44	I/O	bit 6 of bidirectional data bus
			bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant ^[6]
DATA7	45	I/O	bit 7 of bidirectional data bus
			bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant[6]
DATA8	46	I/O	bit 8 of bidirectional data bus
			bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant[6]
DATA9	47	I/O	bit 9 of bidirectional data bus
			bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant ^[6]
DATA10	48	I/O	bit 10 of bidirectional data bus
			bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant[6]
DATA11	49	I/O	bit 11 of bidirectional data bus
			bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant[6]
DATA12	50	I/O	bit 12 of bidirectional data bus
			bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant[6]
DATA13	51	I/O	bit 13 of bidirectional data bus
			bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant ^[6]
DATA14	52	I/O	bit 14 of bidirectional data bus
			bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant ^[6]
DATA15	53	I/O	bit 15 of bidirectional data bus
			bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant ^[6]
$V_{CC(I/O)}^{[3]}$	54	-	I/O pad supply voltage (1.65 V to 3.6 V); see Section 8.15
V _{BUS}	55	A	$\label{eq:use_bulk} \textbf{USB bus power sensing input} \ \ \textbf{—} \ \ \textbf{Used to detect whether the} \\ \text{host is connected or not; when V_{BUS} is not detected, pin RPU} \\ \text{is internally disconnected from pin DP in approximately 4 ns} \\$
			V _{BUS} pulsing output — In OTG mode.
			Connect a 1 μ F electrolytic capacitor and a 1 M Ω pull-down resistor to ground; see Section 8.13 5 V tolerant ^[6]
V _{CC(1V8)} ^[3]	56	-	voltage regulator output (1.8 V \pm 0.15 V); tapped out voltage from the internal regulator; this regulated voltage cannot drive external devices; decouple this pin using 4.7 μ F and 0.1 μ F capacitors; see Section 8.15
XTAL2	57	0	crystal oscillator output (12 MHz); connect a fundamental parallel-resonant crystal; leave this pin open when using an external clock source on pin XTAL1; see Table 99
XTAL1	58	I	crystal oscillator input (12 MHz); connect a fundamental parallel-resonant crystal or an external clock source (leaving pin XTAL2 unconnected); see Table 99
DGND	59	-	digital ground

 Table 2:
 Pin description...continued

Symbol ^[1]	Pin	Type ^[2]	Description
MODE0/ DA1 ^[5]	60	I/O	Mode selection input 0 — Selects the read/write strobe functionality in generic processor mode during power-up: ■ LOW: for Motorola style; the function of pin 19 is RW_N and
			pin 20 is DS_N
			 HIGH: for 8051 style; the function of pin 19 is RD_N and pin 20 is WR_N.
			Address selection output — Selects the Task File register of an ATA/ATAPI device during normal operation; see Table 59
			bidirectional pad; 10 ns slew-rate control; TTL; 5 V tolerant ^[6]
V _{CC(3V3)} [3]	61	-	regulator supply voltage (3.3 V \pm 0.3 V); this pin supplies the internal regulator; see Section 8.15
BUS_CONF/ DA0 ^[5]	62	I/O	Bus configuration input — Selects bus mode during power-up at:
			 LOW: split bus mode; multiplexed 8-bit address and data bus on AD[7:0], separate DMA data bus on DATA[15:0]^[4]
			 HIGH: generic processor mode; separate 8-bit address on AD[7:0], 16-bit processor data bus on DATA[15:0]. DMA is multiplexed on the processor bus as DATA[15:0].
			Address selection output — Selects the Task File register of an ATA/ATAPI device at normal operation; see Table 59
			bidirectional pad; 10 ns slew-rate control; TTL; 5 V tolerant ^[6]
WAKEUP	63	I	wake-up input; when this pin is at the HIGH level, the chip is prevented from getting into the suspend state and the chip wakes up from the suspend state; when not in use, connect this pin to ground through a 10 k Ω resistor
			input pad; TTL; 5 V tolerant ^[6]
SUSPEND	64	0	suspend state indicator output; used as a power switch control output for powered-off application or as a resume signal to the CPU for powered-on application
			CMOS output; 8 mA drive
GND	expo pad	sed die	ground supply; down bonded to the exposed die pad (heatsink); to be connected to the DGND during PCB layout

^[1] Symbol names ending with underscore N (for example, NAME_N) represent active LOW signals.

^[2] All outputs and I/O pins can source 4 mA.

^[3] Add a decoupling capacitor (0.1 μ F) to all the supply pins. For better EMI results, add a 0.01 μ F capacitor in parallel to the 0.1 μ F.

^[4] The DMA bus is in 3-state until a DMA command (see Section 9.4.1) is executed.

^[5] The control signals are not 3-state.

^{[6] 5} V tolerant when $V_{CC(I/O)} = 3.3 \text{ V}$.

Hi-Speed USB peripheral controller

8. Functional description

The ISP1583 is a high-speed USB peripheral controller. It implements the Hi-Speed USB or the Original USB physical layer and the packet protocol layer. It maintains up to 16 USB endpoints concurrently (control IN and control OUT, 7 IN and 7 OUT configurable) along with endpoint EP0 setup, which accesses the setup buffer. The USB Chapter 9 protocol handling is executed by means of external firmware.

The ISP1583 has a fast general-purpose interface for communication with most types of microcontrollers and microprocessors. This microcontroller interface is configured by pins BUS_CONF, MODE1 and MODE0 to accommodate most interface types. Two bus configurations are available, selected via input BUS_CONF during power-up:

• Generic processor mode (pin BUS CONF = HIGH):

- AD[7:0]: 8-bit address bus (selects target register)
- DATA[15:0]: 16-bit data bus (shared by processor and DMA)
- Control signals: RW_N and DS_N or RD_N and WR_N (selected via pin MODE0), CS_N
- DMA interface (generic slave mode only): Uses lines DATA[15:0] as data bus,
 DIOR and DIOW as dedicated read and write strobes.

• Split bus mode (pin BUS_CONF = LOW):

- AD[7:0]: 8-bit local microprocessor bus (multiplexed address and data)
- DATA[15:0]: 16-bit DMA data bus
- Control signals: CS_N, ALE or A0 (selected via pin MODE1), RW_N and DS_N or RD_N and WR_N (selected via pin MODE0)
- DMA interface (master or slave mode): Uses DIOR and DIOW as dedicated read and write strobes.

For high-bandwidth data transfer, the integrated DMA handler can be invoked to transfer data to or from external memory or devices. The DMA interface can be configured by writing to the proper DMA registers (see Section 9.4).

The ISP1583 supports Hi-Speed USB and Original USB signaling. The USB signaling speed is automatically detected.

The ISP1583 has 8 kbytes of internal FIFO memory, which is shared among the enabled USB endpoints

There are 7 IN endpoints, 7 OUT endpoints and 2 control endpoints that are a fixed 64 bytes long. Any of the 7 IN and 7 OUT endpoints can be separately enabled or disabled. The endpoint type (interrupt, isochronous or bulk) and packet size of these endpoints can be individually configured depending on the requirements of the application. Optional double buffering increases the data throughput of these data endpoints.

The ISP1583 requires 3.3 V power supply. It has 5 V tolerant I/O pads when operating at $V_{CC(I/O)} = 3.3$ V and an internal 1.8 V regulator for powering the analog transceiver. The I/O voltage can range from 1.65 V to 3.6 V.

12 of 87

Hi-Speed USB peripheral controller

The ISP1583 operates on a 12 MHz crystal oscillator. An integrated $40 \times PLL$ clock multiplier generates the internal sampling clock of 480 MHz.

8.1 DMA interface, DMA handler and DMA registers

The DMA block can be subdivided into two blocks: DMA handler and DMA interface.

The firmware writes to the DMA command register to start a DMA transfer (see Table 49). The command opcode determines whether a generic DMA, Parallel I/O (PIO) or Multiword DMA (MDMA) transfer will start. The handler interfaces to the same FIFO (internal RAM) as used by the USB core. On receiving the DMA command, the DMA handler directs the data from the endpoint FIFO to the external DMA device or from the external DMA device to the endpoint FIFO.

The DMA interface configures the timing and the DMA handshake. Data can be transferred using either the DIOR and DIOW strobes or by the DACK and DREQ handshakes. The DMA configurations are set up by writing to the DMA Configuration register (see Table 54 and Table 55).

For an IDE-based storage interface, applicable DMA modes are PIO and MDMA (Multiword DMA; ATA).

For a generic DMA interface, DMA modes that can be used are Generic DMA (GDMA) slave.

Remark: The DMA endpoint buffer length must be a multiple of 4 bytes.

For details on DMA registers, see Section 9.4.

8.2 Hi-Speed USB transceiver

The analog transceiver directly interfaces to the USB cable through integrated termination resistors. The high-speed transceiver requires an external resistor (12.0 k Ω ± 1 %) between pin RREF and ground to ensure an accurate current mirror that generates the Hi-Speed USB current drive. A full-speed transceiver is integrated as well. This makes the ISP1583 compliant to Hi-Speed USB and Original USB, supporting both the high-speed and full-speed physical layers. After automatic speed detection, the Philips Serial Interface Engine (SIE) sets the transceiver to use either high-speed or full-speed signaling.

8.3 MMU and integrated RAM

The Memory Management Unit (MMU) and the integrated RAM provide the conversion between the USB speed (full-speed: 12 Mbit/s; high-speed: 480 Mbit/s) and the microcontroller handler or the DMA handler. The data from the USB bus is stored in the integrated RAM, which is cleared only when the microcontroller has read or written all data from or to the corresponding endpoint buffer or when the DMA handler has read or written all data from or to the endpoint buffer. The OUT endpoint buffer can also be cleared forcibly by setting bit CLBUF in the Control Function register. A total of 8 kbytes RAM is available for buffering.

13 of 87

Hi-Speed USB peripheral controller

8.4 Microcontroller interface and microcontroller handler

The microcontroller interface allows direct interfacing to most microcontrollers and microprocessors. The interface is configured at power-up through pins BUS_CONF, MODE1 and MODE0.

When pin BUS_CONF = HIGH, the microcontroller interface switches to **generic processor mode** in which AD[7:0] is the 8-bit address bus and DATA[15:0] is the separate 16-bit data bus. If pin BUS_CONF = LOW, the interface is in **split bus mode**, where AD[7:0] is the local microprocessor bus (multiplexed address and data) and DATA[15:0] is solely used as the DMA bus.

When pin MODE0 = HIGH, pins RD_N and WR_N are the read and write strobes (8051 style). If pin MODE0 = LOW, pins RW_N and DS_N pins represent the direction and data strobe (Motorola style).

When pin MODE1 = LOW, pin ALE is used to latch the multiplexed address on pins AD[7:0]. When pin MODE1 = HIGH, pin A0 is used to indicate address or data. Pin MODE1 is only used in split bus mode; in generic processor mode it must be tied to $V_{CC(I/O)}$.

The microcontroller handler allows the external microcontroller to access the register set in the Philips SIE as well as the DMA handler. The initialization of the DMA configuration is done through the microcontroller handler.

8.5 OTG SRP module

The OTG supplement defines a Session Request Protocol (SRP), which allows a B-device to request the A-device to turn on V_{BUS} and start a session. This protocol allows the A-device, which may be battery-powered, to conserve power by turning off V_{BUS} when there is no bus activity while still providing a means for the B-device to initiate bus activity.

Any A-device, including a PC or laptop, can respond to SRP. Any B-device, including a standard USB peripheral, can initiate SRP.

The ISP1583 is a device that can initiate SRP.

8.6 Philips high-speed transceiver

8.6.1 Philips Parallel Interface Engine (PIE)

In the high-speed (HS) transceiver, the Philips PIE interface uses a 16-bit parallel bidirectional data interface. The functions of the HS module also include bit-stuffing or destuffing and Non-Return-to-Zero Inverted (NRZI) encoding or decoding logic.

8.6.2 Peripheral circuit

To maintain a constant current driver for HS transmit circuits and to bias other analog circuits, an internal band gap reference circuit and an RREF resistor form the reference current. This circuit requires an external precision resistor (12.0 k Ω ± 1 %) connected to the analog ground.

Hi-Speed USB peripheral controller

8.6.3 HS detection

The ISP1583 handles more than one electrical state—full-speed (FS) or high-speed (HS)—under the USB specification. When the USB cable is connected from the peripheral to the host controller, the ISP1583 defaults to the FS state until it sees a bus reset from the host controller.

During the bus reset, the peripheral initiates an HS chirp to detect whether the host controller supports Hi-Speed USB or Original USB. Chirping must be done with the pull-up resistor connected and the internal termination resistors disabled. If the HS handshake shows that there is an HS host connected, then the ISP1583 switches to the HS state.

In the HS state, the ISP1583 should observe the bus for periodic activity. If the bus remains inactive for 3 ms, the peripheral switches to the FS state to check for a Single-Ended Zero (SE0) condition on the USB bus. If an SE0 condition is detected for the designated time (100 μs to 875 μs ; refer to section 7.1.7.6 of the USB specification Rev. 2.0), the ISP1583 switches to the HS chirp state to perform an HS detection handshake. Otherwise, the ISP1583 remains in the FS state adhering to the bus-suspend specification.

8.7 Philips Serial Interface Engine (SIE)

The Philips SIE implements the full USB protocol layer. It is completely hardwired for speed and needs no firmware intervention. The functions of this block include: synchronization pattern recognition, parallel or serial conversion, bit-stuffing or destuffing, CRC checking or generation, Packet IDentifier (PID) verification or generation, address recognition, handshake evaluation or generation.

8.8 SoftConnect

The connection to the USB is established by pulling pin DP (for full-speed devices) HIGH through a 1.5 k Ω pull-up resistor. In the ISP1583, an external 1.5 k Ω pull-up resistor must be connected between pin RPU and 3.3 V. The RPU pin connects the pull-up resistor to pin DP, when bit SOFTCT in the Mode register is set (see Table 21 and Table 22). After a hardware reset, the pull-up resistor is disconnected by default (bit SOFTCT = 0). The USB bus reset does not change the value of bit SOFTCT.

When the V_{BUS} is not present, the SOFTCT bit must be set to logic 0 to comply with the back-drive voltage.

8.9 System controller

The system controller implements the USB power-down capabilities of the ISP1583. Registers are protected against data corruption during wake-up following a resume (from the suspend state) by locking the write access until an unlock code has been written in the Unlock Device register (see Table 89 and Table 90).

8.10 Modes of operation

The ISP1583 has two bus configuration modes, selected via pin BUS_CONF at power-up:

Hi-Speed USB peripheral controller

- Split bus mode (BUS_CONF = LOW): 8-bit multiplexed address and data bus, and separate 8-bit and 16-bit DMA bus
- Generic processor mode (BUS_CONF = HIGH): separate 8-bit address and 16-bit data bus.

Details of the bus configurations for each mode are given in Table 3. Typical interface circuits for each mode are given in Section 14.

Table 3: Bus configuration modes

Pin	PIO width	DMA width		Description
BUS_CONF		WIDTH = 0	WIDTH = 1	
LOW	AD[7:0]	D[7:0]	D[15:0]	split bus mode:
				Multiplexed address/data on pins AD[7:0]
				 Separate 8- bit or 16-bit DMA bus on pins DATA[15:0].
HIGH	A[7:0] and	D[7:0]	D[15:0]	generic processor mode:
	D[15:0]			 Separate 8-bit address on pins AD[7:0]
				 16-bit data (PIO and DMA) on pins DATA[15:0].

8.11 Output pins status

Table 4 illustrates the behavior of output pins when $V_{CC(I/O)}$ is supplied with $V_{CC(3V3)}$ in various operating conditions.

Table 4: ISP1583 pin status^[1]

V _{CC(3V3)}	V _{CC(I/O)}	State	Pin	in							
			RESET_N	INT_N	SUSPEND	DATA[15:0]	DREQ	DA2	DA1	DA0	CS0_N
0 V	0 V	dead ^[2]	X	X	X	X	X	Χ	Χ	Χ	X
0 V	1.65 V to 3.6 V	plug-out ^[3]	X	LOW	HIGH	input	high-Z	HIGH	input	input	HIGH
0 V -> 3.3 V	1.65 V to 3.6 V	plug-in ^[4]	X	LOW	HIGH	high-Z	high-Z	HIGH	input	input	HIGH
3.3 V	1.65 V to 3.6 V	reset	LOW	HIGH	LOW	high-Z	high-Z	HIGH	HIGH	HIGH	HIGH
3.3 V	1.65 V to 3.6 V	normal	HIGH	HIGH	LOW	high-Z	high-Z	HIGH	HIGH	HIGH	HIGH

^[1] X: don't care.

8.12 Interrupt

8.12.1 Interrupt output pin

The Interrupt Configuration register of the ISP1583 controls the behavior of the INT output pin. The polarity and signaling mode of the INT pin can be programmed by setting bits INTPOL and INTLVL of the Interrupt Configuration register (R/W: 10h); see Table 25. Bit GLINTENA of the Mode register (R/W: OCh) is used to enable

9397 750 13461

^[2] Dead: the USB cable is plugged-out and $V_{\text{CC(I/O)}}$ is not available.

^[3] Plug-out: the USB cable is not present but V_{CC(I/O)} is available.

^[4] Plug-in: the USB cable is being plugged-in and $V_{\text{CC(I/O)}}$ is available.

Hi-Speed USB peripheral controller

pin INT; see Table 22. Default settings after reset are active LOW and level mode. When pulse mode is selected, a pulse of 60 ns is generated when the OR-ed combination of all interrupt bits changes from logic 0 to logic 1.

Figure 4 shows the relationship between the interrupt events and pin INT.

Each of the indicated USB and DMA events is logged in a status bit of the Interrupt register and the DMA Interrupt Reason register, respectively. Corresponding bits in the Interrupt Enable register and the DMA Interrupt Enable register determine whether or not an event will generate an interrupt.

Interrupts can be masked globally by means of bit GLINTENA of the Mode register.

Field CDBGMOD[1:0] of the Interrupt Configuration register controls the generation of the INT signals for the control pipe. Field DDBGMODIN[1:0] of the Interrupt Configuration register controls the generation of the INT signals for the IN pipe. Field DDBGMODOUT[1:0] of the Interrupt Configuration register controls the generation of the INT signals for the OUT pipe; see Table 26.

8.12.2 Interrupt control

Bit GLINTENA in the Mode register is a global enable/disable bit. The behavior of this bit is given in Figure 5.

Event A: When an interrupt event occurs (for example, SOF interrupt) with bit GLINTENA set to logic 0, an interrupt will not be generated at pin INT. It will, however, be registered in the corresponding Interrupt register bit.

Event B: When bit GLINTENA is set to logic 1, pin INT is asserted because bit SOF in the Interrupt register is already set.

Event C: If the firmware sets bit GLINTENA to logic 0, pin INT will still be asserted. The bold dashed line shows the desired behavior of pin INT.

Deassertion of pin INT can be achieved either by clearing all the Interrupt register or the DMA Interrupt Reason register, depending on the event.

Remark: When clearing an interrupt event, perform write to all the bytes of the register.

For more information on interrupt control, see Section 9.2.2, Section 9.2.5 and Section 9.5.1.

SP1583

18 of 87

Hi-Speed USB peripheral controller

8.13 V_{BUS} sensing

The V_{BUS} pin is one of the ways to wake up the clock when the ISP1583 is suspended with bit CLKAON set to logic 0 (clock off option).

To detect whether the host is connected or not, that is V_{BUS} sensing, a 1 M Ω resistor and a 1 μF electrolytic capacitor must be added to damp the overshoot upon plug-in.

Hi-Speed USB peripheral controller

8.14 Power-on reset

The ISP1583 requires a minimum pulse width of 500 µs.

The RESET_N pin can be either connected to $V_{CC(3V3)}$ (using the internal POR circuit) or externally controlled (by the microcontroller, ASIC, and so on). When $V_{CC(3V3)}$ is directly connected to the RESET_N pin, the internal pulse width t_{PORP} will be typically 200 ns.

The power-on reset function can be explained by viewing the dips at t2-t3 and t4-t5 on the $V_{CC(POR)}$ curve (Figure 9).

t0 — The internal POR starts with a HIGH level.

t1 — The detector will see the passing of the trip level and a delay element will add another t_{PORP} before it drops to LOW.

t2-t3 — The internal POR pulse will be generated whenever $V_{CC(POR)}$ drops below V_{trip} for more than 11 μs .

t4-t5 — The dip is too short (< 11 μ s) and the internal POR pulse will not react and will remain LOW.

Figure 10 shows the availability of the clock with respect to the external POR.

8.15 Power supply

The ISP1583 can be powered by 3.3 V \pm 0.3 V, and from 1.65 V to 3.6 V at the interface. For connection details, see Figure 11.

9397 750 13461 Product data

Hi-Speed USB peripheral controller

If the ISP1583 is powered by $V_{CC(3V3)} = 3.3$ V, an integrated 3.3 V-to-1.8 V voltage regulator provides a 1.8 V supply voltage for the internal logic.

In sharing mode (that is, when $V_{CC(3.3)}$ is not present and $V_{CC(I/O)}$ is present), all the I/O pins are in 3-state, the interrupt pin is connected to ground, and the suspend pin is connected to $V_{CC(I/O)}$. See Table 4.

Table 5 shows power modes in which the ISP1583 can be operated.

Table 5: Power modes

V _{CC(3V3)}	V _{CC(I/O)}	Power mode
V _{BUS} ^[1]	V _{BUS} ^[2]	bus-powered
Self-powered	self-powered	self-powered
V _{BUS} [1]	self-powered	power-sharing (hybrid)

^[1] The power supply to the IC $(V_{CC(3V3)})$ is 3.3 V. Therefore, if the application is bus-powered, a 3.3 V regulator needs to be used.

^[2] $V_{CC(I/O)}$ can range from 1.65 V to 3.6 V. If the application is bus-powered, a voltage regulator needs to be used.

Hi-Speed USB peripheral controller

8.15.1 Power-sharing mode

As can be seen in Figure 12, in power-sharing mode, $V_{CC(3V3)}$ is supplied by the output of the 5 V-to-3.3 V voltage regulator. The input to the regulator is from V_{BUS} . $V_{CC(I/O)}$ is supplied through the power source of the system. When the USB cable is plugged in, the ISP1583 goes through the power-on reset cycle. In this mode, OTG is disabled.

The processor will experience continuous interrupt because the default status of the interrupt pin when operating in sharing mode with the V_{BUS} not present is LOW. To overcome this, implement external V_{BUS} sensing circuitry. The output from the voltage regulator can be connected to pin GPIO of the processor to qualify the interrupt from the ISP1583.

Hi-Speed USB peripheral controller

Table 6: Operation truth table for SoftConnect

ISP1583 operation		Power s	Bit SOFTCT in		
	V _{CC(3V3)}	V _{CC(I/O)}	RPU (3.3 V)	V _{BUS}	Mode register
Normal bus operation	3.3 V	3.3 V	3.3 V	5 V	enabled
Core power is lost	0 V	3.3 V	0 V	0 V	not applicable

Table 7: Operation truth table for clock off during suspend

ISP1583 operation		Power supply				
	V _{CC(3V3)}	V _{CC(I/O)}	RPU (3.3 V)	V _{BUS}	during suspend	
Clock will wake up: After a resume and After a bus reset	3.3 V	3.3 V	3.3 V	5 V	enabled	
Core power is lost	0 V	3.3 V	0 V	0 V	not applicable	

Table 8: Operation truth table for back voltage compliance

ISP1583 operation		Power supply					
	V _{CC(3V3)}	V _{CC(I/O)}	RPU (3.3 V)	V _{BUS}	in Mode register		
Back voltage is not measured in this mode	3.3 V	3.3 V	3.3 V	5 V	enabled		
Back voltage is not an issue because core power is lost	0 V	3.3 V	0 V	0 V	not applicable		

Table 9: Operation truth table for OTG

ISP1583 operation		OTG			
	V _{CC(3V3)}	V _{CC(I/O)}	RPU (3.3 V)	V _{BUS}	register
SRP is not applicable	3.3 V	3.3 V	3.3 V	5 V	not applicable
OTG is not possible because $V_{\mbox{\scriptsize BUS}}$ is not present and so core power is lost	0 V	3.3 V	0 V	0 V	not applicable

Hi-Speed USB peripheral controller

8.15.2 Self-powered mode

In self-powered mode, $V_{CC(3V3)}$ and $V_{CC(I/O)}$ are supplied by the system. Bit SOFTCT in the Mode register must be always logic 1. See Figure 14.

Table 10: Operation truth table for SoftConnect

ISP1583 operation		Bit SOFTCT			
	V _{CC(3V3)}	V _{CC(I/O)}	RPU (3.3 V)	V _{BUS}	in Mode register
Normal bus operation	3.3 V	3.3 V	3.3 V	5 V	enabled
No pull-up on DP	3.3 V	3.3 V	3.3 V	0 V ^[1]	disabled

^[1] When the USB cable is removed, SoftConnect is disabled.

Table 11: Operation truth table for clock off during suspend

ISP1583 operation		Clock off			
	V _{CC(3V3)}	V _{CC(I/O)}	RPU (3.3 V)	V _{BUS}	during suspend
Clock will wake up: After a resume and After a bus reset	3.3 V	3.3 V	3.3 V	5 V	enabled
Clock will wake up: $ \label{eq:after} \mbox{After detecting the presence of V_{BUS}} $	3.3 V	3.3 V	3.3 V	0 V => 5 V	enabled

Table 12: Operation truth table for back voltage compliance

ISP1583 operation		Power s	Bit SOFTCT in			
	V _{CC(3V3)}	V _{CC(I/O)}	RPU (3.3 V)	V _{BUS}	Mode register	
Back voltage is not measured in this mode	3.3 V	3.3 V	3.3 V	5 V	enabled	
Back voltage is not an issue because pull-up on DP will not be present when V_{BUS} is not present	3.3 V	3.3 V	3.3 V	0 V	disabled	

9397 750 13461 Product data

24 of 87

Hi-Speed USB peripheral controller

Table 13: Operation truth table for OTG

ISP1583 operation		Power s	OTG register		
	V _{CC(3V3)}	V _{CC(I/O)}	RPU (3.3 V)	V _{BUS}	
SRP is not applicable	3.3 V	3.3 V	3.3 V	5 V	not applicable
SRP is possible	3.3 V	3.3 V	3.3 V	0 V	operational

8.15.3 Bus-powered mode

In bus-powered mode (see Figure 15), $V_{CC(3V3)}$ and $V_{CC(I/O)}$ are supplied by the output of the 5 V-to-3.3 V voltage regulator. The input to the regulator is from V_{BUS} . On plugging in of the USB cable, the ISP1583 goes through the power-on reset cycle. In this mode, OTG is disabled.

Table 14: Operation truth table for SoftConnect

ISP1583 operation		Power s	Bit SOFTCT in		
	V _{CC(3V3)}	V _{CC(I/O)}	RPU (3.3 V)	V _{BUS}	Mode register
Normal bus operation	3.3 V	3.3 V	3.3 V	5 V	enabled
Power is lost	0 V	0 V	0 V	0 V	not applicable

Table 15: Operation truth table for clock off during suspend

ISP1583 operation		Power s	Clock off		
	V _{CC(3V3)}	V _{CC(I/O)}	RPU (3.3 V)	V _{BUS}	during suspend
Clock will wake up: After a resume and After a bus reset	3.3 V	3.3 V	3.3 V	5 V	enabled
Power is lost	0 V	0 V	0 V	0 V	not applicable

Hi-Speed USB peripheral controller

Table 16: Operation truth table for back voltage compliance

ISP1583 operation		Power s	Bit SOFTCT in		
	V _{CC(3V3)}	V _{CC(I/O)}	RPU (3.3 V)	V _{BUS}	Mode register
Back voltage is not measured in this mode	3.3 V	3.3 V	3.3 V	5 V	enabled
Power is lost	0 V	0 V	0 V	0 V	not applicable

Table 17: Operation truth table for OTG

ISP1583 operation		Power s	OTG register		
	V _{CC(3V3)}	V _{CC(I/O)}	RPU (3.3 V)	V _{BUS}	
SRP is not applicable	3.3 V	3.3 V	3.3 V	5 V	not applicable
Power is lost	0 V	0 V	0 V	0 V	not applicable

26 of 87

Hi-Speed USB peripheral controller

9. Register description

Table 18: Register overview

Name	Destination	Address	Description	Size (bytes)	Reference
Initialization registers					
Address	device	00h	USB device address and enable	1	Section 9.2.1 on page 29
Mode	device	0Ch	power-down options, global interrupt enable, SoftConnect	1	Section 9.2.2 on page 29
Interrupt Configuration	device	10h	interrupt sources, trigger mode, output polarity	1	Section 9.2.3 on page 32
OTG	device	12h	OTG implementation	1	Section 9.2.4 on page 32
Interrupt Enable	device	14h	interrupt source enabling	4	Section 9.2.5 on page 34
Data flow registers					
Endpoint Index	endpoints	2Ch	endpoint selection, data flow direction	1	Section 9.3.1 on page 36
Control Function	endpoint	28h	endpoint buffer management	1	Section 9.3.2 on page 37
Data Port	endpoint	20h	data access to endpoint FIFO	2	Section 9.3.3 on page 38
Buffer Length	endpoint	1Ch	packet size counter	2	Section 9.3.4 on page 39
Buffer Status	endpoint	1Eh	buffer status for each endpoint	1	Section 9.3.5 on page 40
Endpoint MaxPacketSize	endpoint	04h	maximum packet size	2	Section 9.3.6 on page 41
Endpoint Type	endpoint	08h	selects endpoint type: control, isochronous, bulk or interrupt	2	Section 9.3.7 on page 42
DMA registers					
DMA Command	DMA controller	30h	controls all DMA transfers	1	Section 9.4.1 on page 44
DMA Transfer Counter	DMA controller	34h	sets byte count for DMA transfer	4	Section 9.4.2 on page 46
DMA Configuration	DMA controller	38h	byte 0: sets GDMA configuration (counter enable, burst length, data strobing, bus width)	1	Section 9.4.3 on page 47
		39h	byte 1: sets ATA configuration (IORDY enable, mode selection: ATA/MDMA/PIO)	1	
DMA Hardware	DMA controller	3Ch	endian type, master or slave selection, signal polarity for DACK, DREQ, DIOW, DIOR	1	Section 9.4.4 on page 49

Hi-Speed USB peripheral controller

Table 18: Register overview...continued

Name	Destination	Address	Description	Size	Reference	
Halle	Destination	Addiess	υσουτιμιίοτι	(bytes)	Kelelelice	
Task File 1F0	ATAPI peripheral	40h	single address word register: byte 0 (lower byte) is accessed first	2	Section 9.4.5 on page 50	
Task File 1F1	ATAPI peripheral	48h	IDE device access	1		
Task File 1F2	ATAPI peripheral	49h	IDE device access	1		
Task File 1F3	ATAPI peripheral	4Ah	IDE device access	1		
Task File 1F4	ATAPI peripheral	4Bh	IDE device access	1		
Task File 1F5	ATAPI peripheral	4Ch	IDE device access	1		
Task File 1F6	ATAPI peripheral	4Dh	IDE device access	1		
Task File 1F7	ATAPI peripheral	44h	IDE device access (write only; reading returns FFh)	1		
Task File 3F6	ATAPI peripheral	4Eh	IDE device access	1		
Task File 3F7	ATAPI peripheral	4Fh	IDE device access	1		
DMA Interrupt Reason	DMA controller	50h	shows reason (source) for DMA interrupt	2	Section 9.4.6 on page 53	
DMA Interrupt Enable	DMA controller	54h	enables DMA interrupt sources	2	Section 9.4.7 on page 55	
DMA Endpoint	DMA controller	58h	selects endpoint FIFO, data flow direction	1	Section 9.4.8 on page 56	
DMA Strobe Timing	DMA controller	60h	strobe duration in MDMA mode	1	Section 9.4.9 on page 56	
DMA Burst Counter	DMA controller	64h	DMA burst length	2	Section 9.4.10 on page 57	
General registers						
Interrupt	device	18h	shows interrupt sources	4	Section 9.5.1 on page 57	
Chip ID	device	70h	product ID code and hardware version	3	Section 9.5.2 on page 59	
Frame Number	device	74h	last successfully received Start Of Frame: lower byte (byte 0) is accessed first	2	Section 9.5.3 on page 60	
Scratch	device	78h	allows save or restore of firmware status during suspend	2	Section 9.5.4 on page 60	
Unlock Device	device	7Ch	re-enables register access after 'suspend'	2	Section 9.5.5 on page 61	
Test Mode	PHY	84h	direct setting of the DP and DM states, internal transceiver test (PHY)	1	Section 9.5.6 on page 62	

9.1 Register access

Register access depends on the bus width used:

- 8-bit bus: multi-byte registers are accessed lower byte (LSByte) first
- 16-bit bus: for single-byte registers, the upper byte (MSByte) must be ignored.

Endpoint specific registers are indexed via the Endpoint Index register. The target endpoint must be selected before accessing the following registers:

9397 750 13461

Hi-Speed USB peripheral controller

- Buffer Length
- Buffer Status
- Control Function
- Data Port
- Endpoint MaxPacketSize
- Endpoint Type.

Remark: All reserved bits are not implemented. The bus and bus reset values are not defined. Therefore, writing to these reserved bits will have no effect.

9.2 Initialization registers

9.2.1 Address register (address: 00h)

This register sets the USB assigned address and enables the USB device. Table 19 shows the Address register bit allocation.

Bits DEVADDR will be cleared whenever a bus reset, a power-on reset or a soft reset occurs. Bit DEVEN will be cleared whenever a power-on reset or a soft reset occurs, and will be set after a bus reset.

In response to the standard USB request SET_ADDRESS, the firmware must write the (enabled) device address to the Address register, followed by sending an empty packet to the host. The **new** device address is activated when the device receives acknowledgment from the host.

Table 19: Address register: bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	DEVEN				DEVADDR[6:0)]		
Reset	0	0	0	0	0	0	0	0
Bus reset	1	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 20: Address register: bit description

Bit	Symbol	Description
7	DEVEN	Logic 1 enables the device.
6 to 0	DEVADDR[6:0]	This field specifies the USB device address.

9.2.2 Mode register (address: 0Ch)

This register consists of 2 bytes (bit allocation: see Table 21).

The Mode register controls resume, suspend and wake-up behavior, interrupt activity, soft reset, clock signals and SoftConnect operation.

Table 21: Mode register: bit allocation

Bit	15	14	13	12	11	10	9	8
Symbol	TEST2	TEST1	TEST0		reserved		DMA CLKON	VBUSSTAT
Reset	-	-	-	-	-	-	0	-
Bus reset	-	-	-	-	-	-	0	-
Access	R	R	R	R	R	R	R/W	R
Bit	7	6	5	4	3	2	1	0
Symbol	CLKAON	SNDRSU	GOSUSP	SFRESET	GLINTENA	WKUPCS	PWRON	SOFTCT
Reset	0	0	0	0	0	0	0	0
Bus reset	0	0	0	0	unchanged	0	0	unchanged
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 22: Mode register: bit description

Bit	Symbol	Description
15	TEST2	This bit reflects the MODE1 pin setting. Only for test purposes.
14	TEST1	This bit reflects the MODE0 pin setting. Only for test purposes.
13	TEST0	This bit reflects the BUS_CONF pin setting. Only for test purposes.
12 to 10	-	reserved
9	DMACLKON	0 — Power save mode; the DMA circuit will stop completely to save power.
		1 — Supply clock to the DMA circuit.
8	VBUSSTAT	This bit reflects the V _{BUS} pin status.
7	CLKAON	Clock Always On: Logic 1 indicates that the internal clocks are always running when in the suspend state. Logic 0 switches off the internal oscillator and PLL when the device goes into suspend mode. The device will consume less power if this bit is set to logic 0. The clock is stopped after a delay of approximately 2 ms, following which bit GOSUSP is set.
6	SNDRSU	Send Resume: Writing logic 1, followed by logic 0 will generate an upstream resume signal of 10 ms duration, after a 5 ms delay.
5	GOSUSP	Go Suspend: Writing logic 1, followed by logic 0 will activate suspend mode.
4	SFRESET	Soft Reset: Writing logic 1, followed by logic 0 will enable a software-initiated reset to the ISP1583. A soft reset is similar to a hardware-initiated reset (via the RESET_N pin).

Hi-Speed USB peripheral controller

Table 22: Mode register: bit description...continued

10010 221	mode regional bit decomptioncommod				
Bit	Symbol	Description			
3	GLINTENA	Global Interrupt Enable: Logic 1 enables all interrupts. Individual interrupts can be masked by clearing the corresponding bits in the Interrupt Enable register.			
		When this bit is not set, an unmasked interrupt will not generate an interrupt trigger on the interrupt pin. If global interrupt, however, is enabled while there is any pending unmasked interrupt, an interrupt signal will be immediately generated on the interrupt pin. (If the interrupt is set to pulse mode, the interrupt events that were generated before the global interrupt is enabled may be dropped.)			
2	WKUPCS	Wake-up on Chip selection: Logic 1 enables wake-up from suspend mode through a valid register read on the ISP1583. (A read will invoke the chip clock to restart. If you write to the register before the clock gets stable, it may cause malfunctioning.)			
1	PWRON	The SUSPEND pin output control. O — The SUSPEND pin is HIGH when the ISP1583 is in the suspend state. Otherwise, the SUSPEND pin is LOW.			
		1 — When the device is woken up from the suspend state, there will be a 1 ms active HIGH pulse on the SUSPEND pin. The SUSPEND pin will remain LOW in all other states.			
0	SOFTCT	SoftConnect: Logic 1 enables the connection of the 1.5 k Ω pull-up resistor on pin RPU to the DP line. Bus reset value: unchanged.			

When SoftConnect and V_{BUS} are not present (except in OTG), the USB bus activities are not qualified. Therefore, the chip will follow the suspend command to enter suspend mode (the clock is controlled by bit CLKAON).

When V_{BUS} is off, the 1.5 k Ω pull-up resister is disconnected from pin DP in approximately 4 ns via bit SOFTCT in the Mode register and a suspend interrupt is set with some latency (debounce and disqualify USB traffic).

When bit SOFTCT is set to logic 0, no interrupt is generated. The firmware can issue a suspend command, followed by the resetting of bit SOFTCT to suspend the chip.

If OTG is logic 1, the pull-up resistor on pin DP depends on D+ line (V_{BUS} sensing status). Bit DP operates as normal, so the firmware must mask suspend and wake-up interrupt events. When SRP is completed, the device should clear OTG.

If OTG is logic 0, the status of the pull-up resistor on DP is referred to in Table 23.

Table 23: Status of the chip

V _{BUS}	SoftConnect = on	SoftConnect = off
On	pull-up resistor on DP	pull-up resistor on DP is removed; suspend interrupt is immediately set, regardless of the D+ and D- signals
Off	pull-up resistor on DP is removed; suspend interrupt is immediately set, regardless of the D+ and D- signals	pull-up resistor on DP is removed; suspend interrupt is immediately set, regardless of the D+ and D- signals

Product data

Hi-Speed USB peripheral controller

9.2.3 Interrupt Configuration register (address: 10h)

This 1-byte register determines the behavior and polarity of the INT output. The bit allocation is shown in Table 24. When the USB SIE receives or generates an ACK, NAK or STALL, it will generate interrupts depending on three Debug mode fields.

CDBGMOD[1:0] — interrupts for the control endpoint 0

DDBGMODIN[1:0] — interrupts for the DATA IN endpoints 1 to 7

DDBGMODOUT[1:0] — interrupts for the DATA OUT endpoints 1 to 7.

The Debug mode settings for CDBGMOD, DDBGMODIN and DDBGMODOUT allow you to individually configure when the ISP1583 sends an interrupt to the external microprocessor. Table 26 lists the available combinations.

Bit INTPOL controls the signal polarity of the INT output: active HIGH or LOW, rising or falling edge. For level-triggering, bit INTLVL must be made logic 0. By setting INTLVL to logic 1, an interrupt will generate a pulse of 60 ns (edge-triggering).

Table 24: Interrupt Configuration register: bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	CDBGM	IOD[1:0]	DDBGM	ODIN[1:0]	DDBGMO	DOUT[1:0]	INTLVL	INTPOL
Reset	1	1	1	1	1	1	0	0
Bus reset	1	1	1	1	1	1	unchanged	unchanged
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 25: Interrupt Configuration register: bit description

Bit	Symbol	Description
7 to 6	CDBGMOD[1:0]	Control 0 Debug Mode: For values, see Table 26
5 to 4	DDBGMODIN[1:0]	Data Debug Mode IN: For values, see Table 26
3 to 2	DDBGMODOUT[1:0]	Data Debug Mode OUT: For values, see Table 26
1	INTLVL	Interrupt Level: Selects signaling mode on output INT (0 = level; 1 = pulsed). In pulsed mode, an interrupt produces a 60 ns pulse. Bus reset value: unchanged.
0	INTPOL	Interrupt Polarity: Selects signal polarity on output INT (0 = active LOW, 1 = active HIGH). Bus reset value: unchanged.

Table 26: Debug mode settings

Value	CDBGMOD	DDBGMODIN	DDBGMODOUT
00h	interrupt on all ACK and NAK	interrupt on all ACK and NAK	interrupt on all ACK, NYET and NAK
01h	interrupt on all ACK.	interrupt on ACK	interrupt on ACK and NYET
1Xh	interrupt on all ACK and first NAK ^[1]	interrupt on all ACK and first NAK ^[1]	interrupt on all ACK, NYET and first NAK ^[1]

^[1] First NAK: the first NAK on an IN or OUT token after a previous ACK response.

9.2.4 OTG register (address: 12h)

The bit allocation of the OTG register is given in Table 27.

9397 750 13461

32 of 87

ISP1583 Philips Semiconductors

Table 27: OTG register: bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	rese	rved	DP	BSESSVALID	INITCOND	DISCV	VP	OTG
Reset	-	-	0	-	-	0	0	0
Bus reset	-	-	0	-	-	0	0	0
Access	-	-	R/W	R/W	R/W	R/W	R/W	R/W

Table 2	28: OTG regist	er: bit description ^[1]
Bit	Symbol	Description
7 to 6	-	reserved
5	DP	When set, data-line pulsing is started. The default value of this bit is logic 0. This bit must be cleared when data-line pulsing is completed.
4	BSESSVALID	The device can initiate another V_{BUS} discharge sequence after data-line pulsing and V_{BUS} pulsing, and before it clears this bit and detects a session valid.
		This bit is latched to logic 1 once V_{BUS} exceeds the B-device session valid threshold. Once set, it remains at logic 1. To clear this bit, write logic 1. (The ISP1583 continuously updates this bit to logic 1 when the B-session is valid. If the B-session is valid after it is cleared, it is set back to logic 1 by the ISP1583).
		0 — It implies that SRP has failed. To proceed to a normal operation, the device can restart SRP, clear bit OTG or proceed to an error handling process.
		1 — It implies that the B-session is valid. The device clears bit OTG, goes into normal operation mode, and sets bit SOFTCT (DP pull-up) in the Mode register. The OTG host has a maximum of 5 s before it responds to a session request. During this period, the ISP1583 may request to suspend. Therefore, the device firmware must wait for sometime if it wishes to know the SRP result (success—if there is minimum response from the host within 5 s; failure—if there is no response from the host within 5 s).
3	INITCOND	Write logic 1 to clear this bit. The device clears this bit, and waits for more than 2 ms to check the bit status. If it reads logic 0, it means that V_{BUS} remains lower than 0.8 V, and DP or DM at SE0 during the elapsed time is cleared. The device can then start a B-device SRP. If it reads logic 1, it means that the initial condition of an SRP is violated. So, the device should abort SRP.
		The bit is set to logic 1 by the ISP1583 when initial conditions are not met, and only writing logic 1 clears the bit. (If initial conditions are not met after this bit has been cleared, it will be set again).
		Remark: This implementation does not cover the case if an initial SRP condition is violated when this bit is read and data-line pulsing is started.

Hi-Speed USB peripheral controller

Table 28: OTG register: bit description^[1]...continued

Bit	Symbol	Description
2	DISCV	Set to logic 1 to discharge V_{BUS} . The device discharges V_{BUS} before starting a new SRP. The discharge can take as long as 30 ms for V_{BUS} to be charged less than 0.8 V. This bit must be cleared (write logic 0) before starting a session end detection.
1	VP	Set to logic 1 to start V_{BUS} pulsing. This bit must be set for more than 16 ms and must be cleared before 26 ms.
0	OTG	1 — Enables the OTG function. The V_{BUS} sensing functionality will be bypassed.
		0 — Normal operation. All OTG control bits will be masked. Status bits are undefined.

No interrupt is designed for OTG. The V_{BUS} interrupt, however, may assert as a side effect during the V_{BUS} pulsing (see note 2).

When OTG is in progress, the V_{BUS} interrupt may be set because V_{BUS} is charged over V_{BUS} sensing threshold or the OTG host has turned on the V_{BUS} supply to the device. Even if the V_{BUS} interrupt is found during SRP, the device should complete data-line pulsing and V_{BUS} pulsing before starting the B_session_valid detection.

OTG implementation applies to the device with self-power capability. If the device works in sharing mode, it should provide a switch circuit to supply power to the ISP1583 core during SRP.

Session Request Protocol (SRP):

The ISP1583 can initiate an SRP. The B-device initiates SRP by data-line pulsing followed by V_{BUS} pulsing. The A-device can detect either data-line pulsing or V_{BUS} pulsing.

The ISP1583 can initiate the B-device SRP by performing the following steps:

- 1. Detect initial conditions: read bit INITCOND of the OTG register.
- 2. Start data-line pulsing: set bit DP of the OTG register to logic 1.
- 3. Wait for 5 ms to 10 ms.
- 4. Stop data-line pulsing: set bit DP of the OTG register to logic 0.
- 5. Start V_{BUS} pulsing: set bit VP of the OTG register to logic 1.
- 6. Wait for 10 ms to 20 ms.
- 7. Stop V_{BUS} pulsing: set bit VP of the OTG register to logic 0.
- 8. Discharge V_{BUS} for about 30 ms: optional by using bit DISCV of the OTG register.
- Detect bit BSESSVALID of the OTG register for a successful SRP with bit OTG disabled.

The B-device must complete both data-line pulsing and V_{BUS} pulsing within 100 ms.

Remark: When disabling, OTG data-line pulsing bit DP and V_{BUS} pulsing bit VP must be cleared by writing logic 1.

9.2.5 Interrupt Enable register (address: 14h)

This register enables or disables individual interrupt sources. The interrupt for each endpoint can be individually controlled via the associated bits IEPnRX or IEPnTX, here n represents the endpoint number. All interrupts can be globally disabled through bit GLINTENA in the Mode register (see Table 21).

Hi-Speed USB peripheral controller

An interrupt is generated when the USB SIE receives or generates an ACK or NAK on the USB bus. The interrupt generation depends on Debug mode settings of bit fields CDBGMOD[1:0], DDBGMODIN[1:0] and DDBGMODOUT[1:0].

All data IN transactions use the Transmit buffers (TX), which are handled by bits DDBGMODIN. All data OUT transactions go via the Receive buffers (RX), which are handled by bits DDBGMODOUT. Transactions on control endpoint 0 (IN, OUT and SETUP) are handled by bits CDBGMOD.

Interrupts caused by events on the USB bus (SOF, Pseudo SOF, suspend, resume, bus reset, setup and high-speed status) can also be individually controlled. A bus reset disables all enabled interrupts except bit IEBRST (bus reset), which remains unchanged.

The Interrupt Enable register consists of 4 bytes. The bit allocation is given in Table 29.

Table 29: Interrupt Enable register: bit allocation

Bit	31	30	29	28	27	26	25	24
Symbol			rese	erved			IEP7TX	IEP7RX
Reset	-	-	-	-	-	-	0	0
Bus Reset	-	-	-	-	-	-	0	0
Access	-	-	-	-	-	-	R/W	R/W
Bit	23	22	21	20	19	18	17	16
Symbol	IEP6TX	IEP6RX	IEP5TX	IEP5RX	IEP4TX	IEP4RX	IEP3TX	IEP3RX
Reset	0	0	0	0	0	0	0	0
Bus Reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	15	14	13	12	11	10	9	8
Bit	15	14	13	12	11	10	9	8
Bit Symbol	15 IEP2TX	14 IEP2RX	13 IEP1TX	12 IEP1RX	11 IEP0TX	10 IEP0RX	9 reserved	8 IEP0SETUP
Bit Symbol Reset	15 IEP2TX 0	14 IEP2RX 0	13 IEP1TX 0	12 IEP1RX 0	11 IEPOTX 0	10 IEP0RX 0	9 reserved	8 IEP0SETUP 0
Bit Symbol Reset Bus Reset	15 IEP2TX 0 0	14 IEP2RX 0 0	13 IEP1TX 0 0	12 IEP1RX 0 0	11 IEPOTX 0 0	10 IEPORX 0 0	9 reserved	8 IEPOSETUP 0 0
Bit Symbol Reset Bus Reset Access	15 IEP2TX 0 0 R/W	14 IEP2RX 0 0 R/W	13 IEP1TX 0 0 R/W	12 IEP1RX 0 0 R/W	11 IEPOTX 0 0 R/W	10 IEPORX 0 0 R/W	g reserved - - R/W	8 IEPOSETUP 0 0 R/W
Bit Symbol Reset Bus Reset Access Bit	15 IEP2TX 0 0 R/W 7	14 IEP2RX 0 0 R/W 6	13 IEP1TX 0 0 R/W 5	12 IEP1RX 0 0 R/W	11 IEPOTX 0 0 R/W 3	10 IEPORX 0 0 R/W	reserved R/W 1	8 IEPOSETUP 0 0 0 R/W 0
Bit Symbol Reset Bus Reset Access Bit Symbol	15 IEP2TX 0 0 R/W 7 IEVBUS	14 IEP2RX 0 0 R/W 6 IEDMA	13 IEP1TX 0 0 R/W 5 IEHS_STA	12 IEP1RX 0 0 R/W 4 IERESM	11 IEPOTX 0 0 R/W 3 IESUSP	10 IEPORX 0 0 R/W 2 IEPSOF	9 reserved R/W 1 IESOF	8 IEPOSETUP 0 0 R/W 0 IEBRST

Table 30: Interrupt Enable register: bit description

Bit	Symbol	Description
31 to 26	-	reserved
25	IEP7TX	Logic 1 enables interrupt from the indicated endpoint.
24	IEP7RX	Logic 1 enables interrupt from the indicated endpoint.
23	IEP6TX	Logic 1 enables interrupt from the indicated endpoint.
22	IEP6RX	Logic 1 enables interrupt from the indicated endpoint.
21	IEP5TX	Logic 1 enables interrupt from the indicated endpoint.

9397 750 13461

Hi-Speed USB peripheral controller

Table 30: Interrupt Enable register: bit description...continued

Bit	Symbol	Description
20	IEP5RX	Logic 1 enables interrupt from the indicated endpoint.
19	IEP4TX	Logic 1 enables interrupt from the indicated endpoint.
18	IEP4RX	Logic 1 enables interrupt from the indicated endpoint.
17	IEP3TX	Logic 1 enables interrupt from the indicated endpoint.
16	IEP3RX	Logic 1 enables interrupt from the indicated endpoint.
15	IEP2TX	Logic 1 enables interrupt from the indicated endpoint.
14	IEP2RX	Logic 1 enables interrupt from the indicated endpoint.
13	IEP1TX	Logic 1 enables interrupt from the indicated endpoint.
12	IEP1RX	Logic 1 enables interrupt from the indicated endpoint.
11	IEP0TX	Logic 1 enables interrupt from the control IN endpoint 0.
10	IEP0RX	Logic 1 enables interrupt from the control OUT endpoint 0.
9	-	reserved
8	IEP0SETUP	Logic 1 enables interrupt for the setup data received on endpoint 0.
7	IEVBUS	Logic 1 enables interrupt for V _{BUS} sensing.
6	IEDMA	Logic 1 enables interrupt on DMA status change detection.
5	IEHS_STA	Logic 1 enables interrupt on detection of a high-speed status change.
4	IERESM	Logic 1 enables interrupt on detection of a resume state.
3	IESUSP	Logic 1 enables interrupt on detection of a suspend state.
2	IEPSOF	Logic 1 enables interrupt on detection of a Pseudo SOF.
1	IESOF	Logic 1 enables interrupt on detection of an SOF.
0	IEBRST	Logic 1 enables interrupt on detection of a bus reset.

9.3 Data flow registers

9.3.1 Endpoint Index register (address: 2Ch)

The Endpoint Index register selects a target endpoint for register access by the microcontroller. The register consists of 1 byte, and the bit allocation is shown in Table 31.

The following registers are indexed:

- Buffer Length
- Buffer Status
- Control Function
- Data Port
- Endpoint MaxPacketSize
- Endpoint Type.

For example, to access the OUT data buffer of endpoint 1 using the Data Port register, the Endpoint Index register has to be written first with 02h.

Remark: The Endpoint Index register and the DMA Endpoint Index register must not point to the same endpoint.

Hi-Speed USB peripheral controller

Table 31: Endpoint Index register: bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	reserved		EP0SETUP	ENDPIDX[3:0]				DIR
Reset	-	-	0	0	0	0	0	0
Bus reset	-	-	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 32: Endpoint Index register: bit description

		•
Bit	Symbol	Description
7 to 6	-	reserved
5	EP0SETUP	Selects the SETUP buffer for endpoint 0.
		0 — EP0 data buffer
		1 — SETUP buffer.
		Must be logic 0 for access to other endpoints than endpoint 0.
4 to 1	ENDPIDX[3:0]	Endpoint Index: Selects the target endpoint for register access of Buffer Length, Control Function, Data Port, Endpoint Type and MaxPacketSize.
0	DIR	Direction bit: Sets the target endpoint as IN or OUT.
		0 — target endpoint refers to OUT (RX) FIFO
		1 — target endpoint refers to IN (TX) FIFO.

Table 33: Addressing of endpoint 0 buffers

Buffer name	EP0SETUP	ENDPIDX	DIR
SETUP	1	00h	0
Data OUT	0	00h	0
Data IN	0	00h	1

9.3.2 Control Function register (address: 28h)

The Control Function register performs the buffer management on endpoints. It consists of 1 byte, and the bit configuration is given in Table 34. The register bits can stall, clear or validate any enabled data endpoint. Before accessing this register, the Endpoint Index register must be written first to specify the target endpoint.

Table 34: Control Function register: bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol		reserved		CLBUF	VENDP	DSEN	STATUS	STALL
Reset	-	-	-	0	0	0	0	0
Bus reset	-	-	-	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Hi-Speed USB peripheral controller

Table 35: Control Function register: bit description

Table .	. COII	troi Function register, bit description
Bit	Symbol	Description
7 to 5	-	reserved.
4	CLBUF	Clear Buffer: Logic 1 clears the RX buffer of the indexed endpoint; the TX buffer is not affected. The RX buffer is automatically cleared once the endpoint is completely read. This bit is set only when it is necessary to forcefully clear the buffer.
3	VENDP	Validate Endpoint: Logic 1 validates the data in the TX FIFO of an IN endpoint for sending on the next IN token. In general, the endpoint is automatically validated when its FIFO byte count has reached the endpoint MaxPacketSize. This bit is set only when it is necessary to validate the endpoint with the FIFO byte count which is below the Endpoint MaxPacketSize.
2	DSEN	Data Stage Enable : This bit controls the response of the ISP1583 to a control transfer. When this bit is set, the ISP1583 goes to the data stage; otherwise, the ISP1583 will NAK the data stage transfer until the firmware explicitly responds to the setup command.
1	STATUS	Status Acknowledge: Only applicable for control IN/OUT.
		This bit controls the generation of ACK or NAK during the status stage of a SETUP transfer. It is automatically cleared when the status stage is completed, or when a SETUP token is received. No interrupt signal will be generated.
		0 — Sends NAK
		1 — Sends an empty packet following the IN token (host-to-peripheral) or ACK following the OUT token (peripheral-to-host).
0	STALL	Stall Endpoint : Logic 1 stalls the indexed endpoint. This bit is not applicable for isochronous transfers.
		Remark: 'Stall'ing a data endpoint will confuse the Data Toggle bit about the stalled endpoint because the internal logic picks up from where it is stalled. Therefore, the Data Toggle bit must be reset by disabling and re-enabling the corresponding endpoint (by setting bit ENABLE to logic 0 or logic 1 in the Endpoint Type register) to reset the PID.

9.3.3 Data Port register (address: 20h)

This 2-byte register provides direct access for a microcontroller to the FIFO of the indexed endpoint. The bit allocation is shown in Table 36.

Peripheral-to-host (IN endpoint): After each write action, an internal counter is auto incremented (by two for a 16-bit access, by one for an 8-bit access) to the next location in the TX FIFO. When all bytes have been written (FIFO byte count = endpoint MaxPacketSize), the buffer is automatically validated. The data packet will then be sent on the next IN token. When it is necessary to validate the endpoint whose byte count is less than MaxPacketSize, it can be done using the Control Function register (bit VENDP).

Host-to-peripheral (OUT endpoint): After each read action, an internal counter is auto decremented (by two for a 16-bit access, by one for an 8-bit access) to the next location in the RX FIFO. When all bytes have been read, the buffer contents are automatically cleared. A new data packet can then be received on the next OUT token. The buffer contents can also be cleared through the Control Function register (bit CLBUF), when it is necessary to forcefully clear the contents.

9397 750 13461

Hi-Speed USB peripheral controller

Remark: The buffer can be automatically validated or cleared by using the Buffer Length register (see Table 38).

Table 36: Data Port register: bit allocation

	_										
Bit	15	14	13	12	11	10	9	8			
Symbol		DATAPORT[15:8]									
Reset	0	0	0	0	0	0	0	0			
Bus reset	0	0	0	0	0	0	0	0			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Bit	7	6	5	4	3	2	1	0			
Symbol				DATAPO	DRT[7:0]						
Reset	0	0	0	0	0	0	0	0			
Bus reset	0	0	0	0	0	0	0	0			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			

Table 37: Data Port register: bit description

Bit	Symbol	Description
15 to 8	DATAPORT[15:8]	data (upper byte)
7 to 0	DATAPORT[7:0]	data (lower byte)

9.3.4 Buffer Length register (address: 1Ch)

This register determines the current packet size (DATACOUNT) of the indexed endpoint FIFO. The bit allocation is given in Table 38.

The Buffer Length register is automatically loaded with the FIFO size, when the Endpoint MaxPacketSize register is written (see Table 42). A smaller value can be written when required. After a bus reset, the Buffer Length register is made zero.

IN endpoint: When data transfer is performed in multiples of MaxPacketSize, the Buffer Length register is not significant. This register is useful only when transferring data that is not a multiple of MaxPacketSize. The following two examples demonstrate the significance of the Buffer Length register.

Example 1: Consider that the transfer size is 512 bytes and the MaxPacketSize is programmed as 64 bytes, the Buffer Length register need not be filled. This is because the transfer size is a multiple of MaxPacketSize, and the MaxPacketSize packets will be automatically validated because the last packet is also of MaxPacketSize.

Example 2: Consider that the transfer size is 510 bytes and the MaxPacketSize is programmed as 64 bytes, the Buffer Length register should be filled with 62 bytes just before the MCU writes the last packet of 62 bytes. This ensures that the last packet, which is a short packet of 62 bytes, is automatically validated.

Use bit VENDP in the Control register if you are not using the Buffer Length register.

This is applicable only to PIO mode access.

OUT endpoint: The DATACOUNT value is automatically initialized to the number of data bytes sent by the host on each ACK.

Hi-Speed USB peripheral controller

Remark: When using a 16-bit microprocessor bus, the last byte of an odd-sized packet is output as the lower byte (LSByte).

Remark: Buffer Length is valid only after an interrupt is generated for the bulk endpoint.

Table 38: Buffer Length register: bit allocation

Bit	15	14	13	12	11	10	9	8				
Symbol		DATACOUNT[15:8]										
Reset	0	0	0	0	0	0	0	0				
Bus reset	0	0	0	0	0	0	0	0				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Bit	7	6	5	4	3	2	1	0				
Symbol				DATACO	UNT[7:0]							
Reset	0	0	0	0	0	0	0	0				
Bus reset	0	0	0	0	0	0	0	0				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				

Table 39: Buffer Length register: bit description

Bit	Symbol	Description
15 to 0	DATACOUNT[15:0]	Determines the current packet size of the indexed endpoint FIFO.

9.3.5 Buffer Status register (address: 1Eh)

This register is accessed using index. The endpoint index must first be set before accessing this register for the corresponding endpoint. It reflects the status of the double buffered endpoint FIFO. This register is valid only when the endpoint is configured to be a double buffer.

Remark: This register is not applicable to the control endpoint.

Table 40 shows the bit allocation of the Buffer Status register.

Table 40: Buffer Status register: bit allocation

		3						
Bit	7	6	5	4	3	2	1	0
Symbol			rese	erved			BUF1	BUF0
Reset	-	-	-	-	-	-	0	0
Bus reset	-	-	-	-	-	-	0	0
Access	-	-	-	-	-	-	R	R

Table 41: Buffer Status register: bit description

Bit	Symbol	Description
7 to 2	-	reserved
1 to 0	BUF[1:0]	00 — The buffers are not filled.
		01 — One of the buffers is filled.
		10 — One of the buffers is filled.
		11 — Both buffers are filled.

9397 750 13461

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

Hi-Speed USB peripheral controller

9.3.6 Endpoint MaxPacketSize register (address: 04h)

This register determines the maximum packet size for all endpoints except control 0. The register contains 2 bytes, and the bit allocation is given in Table 42.

Each time the register is written, the Buffer Length registers of all endpoints are reinitialized to the FFOSZ field value. Bits NTRANS control the number of transactions allowed in a single microframe (for high-speed isochronous and interrupt endpoints only).

Table 42: Endpoint MaxPacketSize register: bit allocation

Bit	15	14	13	12	11	10	9	8
Symbol	reserved			NTRAI	NS[1:0]	FFOSZ[10:8]		
Reset	-	-	-	0	0	0	0	0
Bus reset	-	-	-	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	7	6	5	4	3	2	1	0
Symbol				FFOS	Z[7:0]			
Reset	0	0	0	0	0	0	0	0
Bus reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 43: Endpoint MaxPacketSize register: bit description

Bit	Symbol	Description
15 to 13	-	reserved
12 to 11	NTRANS[1:0]	Number of Transactions (HS mode only).
		00 — 1 packet per microframe
		01 — 2 packets per microframe
		10 — 3 packets per microframe
		11 — reserved.
		These bits are applicable only for isochronous or interrupt transactions.
10 to 0	FFOSZ[10:0]	FIFO Size : Sets the FIFO size, in bytes, for the indexed endpoint. Applies to both high-speed and full-speed operations (see Table 44).

Table 44: Programmable FIFO size

NTRANS[1:0]	FFOSZ[10:0]	Non-isochronous	Isochronous
0h	08h	8 bytes	-
0h	10h	16 bytes	-
0h	20h	32 bytes	-
0h	40h	64 bytes	-
0h	80h	128 bytes	-
0h	100h	256 bytes	-
0h	200h	512 bytes	-
2h	400h	-	3072 bytes

9397 750 13461

Hi-Speed USB peripheral controller

Each programmable FIFO can be independently configured via its Endpoint MaxPacketSize register (R/W: 04h), but the total physical size of all enabled endpoints (IN plus OUT) must not exceed 8192 bytes.

9.3.7 Endpoint Type register (address: 08h)

This register sets the endpoint type of the indexed endpoint: isochronous, bulk or interrupt. It also serves to enable the endpoint and configure it for double buffering. Automatic generation of an empty packet for a zero-length TX buffer can be disabled using bit NOEMPKT. The register contains 2 bytes, and the bit allocation is shown in Table 45.

Table 45: Endpoint Type register: bit allocation

Bit	15	14	13	12	11	10	9	8
Symbol				rese	rved			
Reset	-	-	-	-	-	-	-	-
Bus reset	-	-	-	-	-	-	-	-
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	7	6	5	4	3	2	1	0
Symbol		reserved		NOEMPKT	ENABLE	DBLBUF	ENDP	TYP[1:0]
Reset	-	-	-	0	0	0	0	0
Bus reset	-	-	-	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 46: Endpoint Type register: bit description

Bit	Symbol	Description				
15 to 5	-	reserved				
4	NOEMPKT	No Empty Packet: Logic 0 causes the ISP1583 to return a null length packet for the IN token after the DMA IN transfer is complete. For ATA mode or the DMA IN transfer, which does not require a null length packet after DMA completion, set to logic 1 to disable the generation of the null length packet.				
3	ENABLE	Endpoint Enable: Logic 1 enables the FIFO of the indexed endpoint. The memory size is allocated as specified in the Endpoint MaxPacketSize register. Logic 0 disables the FIFO.				
		Remark: 'Stall'ing a data endpoint will confuse the Data Toggle bit on the stalled endpoint because the internal logic picks up from where it has stalled. Therefore, the Data Toggle bit must be reset by disabling and re-enabling the corresponding endpoint (by setting bit ENABLE to logic 0 or logic 1 in the Endpoint Type register) to reset the PID.				
2	DBLBUF	Double Buffering: Logic 1 enables double buffering for the indexed endpoint. Logic 0 disables double buffering.				
1 to 0	ENDPTYP[1:0]	Endpoint Type: These bits select the endpoint type.				
		00 — not used				
		01 — Isochronous				
		10 — Bulk				
		11 — Interrupt.				

Hi-Speed USB peripheral controller

9.4 DMA registers

Two types of Generic DMA transfer and three types of IDE-specified transfer can be done by writing the proper opcode in the DMA Command register.

The control bits are given in Table 47 (Generic DMA transfers) and Table 48 (IDE-specified transfers).

GDMA read/write (opcode = 00h/01h) — Generic DMA Slave mode. Depending on the MODE[1:0] bit set in the DMA configuration register, either the DACK signal or the DIOR/DIOW signals strobe the data. These signals are driven by the external DMA controller.

GDMA slave mode can operate in either counter mode or EOT-only mode.

In counter mode, bit DIS_XFER_CNT in the DMA Configuration register must be set to logic 0. The DMA Transfer Counter register must be programmed before any DMA command is issued. The DMA transfer counter is set by writing from the LSByte to the MSByte (address: 34h to 37h). The DMA transfer count is internally updated only after the MSByte has been written. Once the DMA transfer is started, the transfer counter starts decrementing and on reaching 0, bit DMA_XFER_OK is set and an interrupt is generated by the ISP1583. If the DMA master wishes to terminate the DMA transfer, it can issue an EOT signal to the ISP1583. This EOT signal overrides the transfer counter and can terminate the DMA transfer at any time.

In EOT-only mode, DIS_XFER_CNT has to be set to logic 1. Although the DMA transfer counter can still be programmed, it will not have any effect on the DMA transfer. The DMA transfer will start once the DMA command is issued. Any of the following three ways will terminate this DMA transfer:

- Detecting an external EOT
- Detecting an internal EOT (short packet on an OUT token)
- · Resetting the DMA.

There are three interrupts programmable to differentiate the method of DMA termination: bits INT_EOT, EXT_EOT and DMA_XFER_OK in the DMA Interrupt Reason register (see Table 72).

MDMA (master) read/write (opcode = 06h/07h) — Generic DMA Master mode. Depending on the MODE[1:0] bit set in the DMA Configuration register, either the DACK signal or the DIOR/DIOW signals strobe the data. These signals are driven by the ISP1583.

In Master mode, BURSTCOUNTER[12:0] in the DMA Burst Counter register, DIS_XFER_CNT in the DMA Configuration register and the external EOT signal are not applicable. The DMA transfer counter is always enabled and bit DMA_XFER_OK is set to 1 once the counter reaches 0.

MDMA read/write (opcode = 06h/07h) — Multiword DMA mode for IDE transfers. The specification of this mode can be obtained from the *ATA Specification Rev. 4*. DIOR and DIOW are used as data strobes, while DREQ and DACK serve as handshake signals.

Hi-Speed USB peripheral controller

Table 47: Control bits for Generic DMA transfers

Control bits	Description	Description				
	GDMA read/write (opcode = 00h/01h)	MDMA (master) read/write (opcode = 06h/07h)				
DMA Configuration	on register					
ATA_MODE	set to logic 0 (non-ATA transfer)	set to logic 1 (ATA transfer)	Table 54			
DMA_MODE[1:0]	-	determines MDMA timings for DIOR and DIOW strobes				
DIS_XFER_CNT	disables use of DMA transfer counter	disables use of DMA transfer counter				
MODE[1:0]	determines active read/write data strobe signals	determines active data strobe(s)				
WIDTH	selects DMA bus width: 8 or 16 bits	selects DMA bus width: 8 or 16 bits				
DMA Hardware re	gister					
ENDIAN[1:0]	determines whether data is to be byte swapped or normal; applicable only in 16-bit mode	determines whether data is to be byte swapped or normal; applicable only in 16-bit mode	Table 56			
EOT_POL selects polarity of EOT signal		input EOT is not used				
MASTER	set to logic 0 (slave)	set to logic 1 (master)				
ACK_POL, DREQ_POL, WRITE_POL, READ_POL	selects polarity of DMA handshake signals	selects polarity of DMA handshake signals	_			

Table 48: Control bits for IDE-specified DMA transfers

Control bits	Description	Reference	
MDMA read/write (opcode = 06h/07h)			
DMA Configuration	register		
ATA_MODE	set to logic 1 (ATA transfer)	Table 54	
DMA_MODE[1:0]	selects MDMA mode; timings are ATA(PI) compatible		
PIO_MODE[2:0]	selects PIO mode; timings are ATA(PI) compatible		
DMA Hardware regis	ster		
MASTER	set to logic 0	Table 56	

Remark: The DMA bus defaults to 3-state, until a DMA command is executed. All the other control signals are not 3-state.

9.4.1 DMA Command register (address: 30h)

The DMA Command register is a 1-byte register (for bit allocation, see Table 49) that initiates all DMA transfer activity on the DMA controller. The register is write-only: reading it will return FFh.

Remark: The DMA bus will be in 3-state until a DMA command is executed.

Hi-Speed USB peripheral controller

Table 49: DMA Command register: bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol				DMA_C	:MD[7:0]			
Reset	1	1	1	1	1	1	1	1
Bus reset	1	1	1	1	1	1	1	1
Access	W	W	W	W	W	W	W	W

Table 50: DMA Command register: bit description

Bit	Symbol	Description
7 to 0	DMA_CMD[7:0]	DMA command code, see Table 51.
		PIO Read or Write that started using DMA Command register only performs a 16-bit transfer.

Table 51: DMA commands

Code	Name	Description
00h	GDMA Read	Generic DMA IN token transfer (slave mode only): Data is transferred from the external DMA bus to the internal buffer. Strobe: DIOW by external DMA Controller.
01h	GDMA Write	Generic DMA OUT token transfer (slave mode only): Data is transferred from the internal buffer to the external DMA bus. Strobe: DIOR by external DMA Controller.
02h to 05h	-	reserved
06h	MDMA Read	Multiword DMA Read: Data is transferred from the external DMA bus to the internal buffer.
07h	MDMA Write	Multiword DMA Write: Data is transferred from the internal buffer to the external DMA bus.
0Ah	Read 1F0	Read at address 1F0h: Initiates a PIO Read cycle from Task File 1F0. Before issuing this command, the task file byte count should be programmed at address 1F4h (LSB) and 1F5h (MSB).
0Bh	Poll BSY	Poll BSY status bit for ATAPI device: Starts repeated PIO Read commands to poll the BSY status bit of the ATAPI device. When BSY = 0, polling is terminated and an interrupt is generated. The interrupt can be masked but the interrupt bit will still be set. Therefore, you can manually poll this interrupt bit.
0Ch	Read Task Files	Read Task Files: Reads all task files. When Task File Index is set to logic 0, this command reads all registers, except 1F0h and 1F7h. If Task File Index is not logic 0, the Task register of the address set in the Task File register will be read. When the reading is completed, an interrupt is generated. The interrupt could be masked off, however, the interrupt bit will still be set. Therefore, you can manually poll this interrupt bit.
0Dh	-	reserved
0Eh	Validate Buffer	Validate Buffer (for debugging only): Request from the microcontroller to validate the endpoint buffer following an ATA-to-USB data transfer.

Hi-Speed USB peripheral controller

Table 51: DMA commands...continued

Table 51:	DMA commands.	continued
Code	Name	Description
0Fh	Clear Buffer	Clear Buffer: Request from the microcontroller to clear the endpoint buffer after a USB-to-ATA data transfer.
10h	Restart	Restart: Request from the microcontroller to move the buffer pointers to the beginning of the endpoint FIFO.
11h	Reset DMA	Reset DMA: Initializes the DMA core to its power-on reset state.
		Remark: When the DMA core is reset during the Reset DMA command, the DREQ, DACK, DIOW and DIOR handshake pins will be temporarily asserted. This can confuse the external DMA Controller. To prevent this, start the external DMA Controller only after the DMA reset.
12h	MDMA stop	MDMA stop: This command immediately stops the MDMA data transfer. This is applicable for commands 06h and 07h only.
13h	GDMA stop	GDMA stop : This command stops the GDMA data transfer. Any data in the OUT endpoint that is not transferred by the DMA will remain in the buffer. The FIFO data for the IN endpoint will be written to the endpoint buffer. An interrupt bit will be set to indicate the completion of the DMA Stop command.
14h to 20h	-	reserved
21h	Read Task File register 1F1h	Read Task File register 1F1h: When reading has been completed, an interrupt is generated.
22h	Read Task File register 1F2h	Read Task File register 1F2h: When reading has been completed, an interrupt is generated.
23h	Read Task File register 1F3h	Read Task File register 1F3h: When reading has been completed, an interrupt is generated.
24h	Read Task File register 1F4h	Read Task File register 1F4h: When reading has been completed, an interrupt is generated.
25h	Read Task File register 1F5h	Read Task File register 1F5h: When reading has been completed, an interrupt is generated.
26h	Read Task File register 1F6h	Read Task File register 1F6h: . When reading has been completed, an interrupt is generated.
27h	Read Task File register 3F6h	Read Task File register 3F6h: When reading has been completed, an interrupt is generated.
28h	Read Task File register 3F7h	Read Task File register 3F7h: When reading has been completed, an interrupt is generated.
29h to FFh	-	reserved

9.4.2 DMA Transfer Counter register (address: 34h)

This 4-byte register sets up the total byte count for a DMA transfer (DMACR). It indicates the remaining number of bytes left for transfer. The bit allocation is given in Table 52.

For IN endpoint — As there is a FIFO in the ISP1583 DMA controller, some data may remain in the FIFO during the DMA transfer. The maximum FIFO size is 8 bytes, and the maximum delay time for the data to be shifted to endpoint buffer is 60 ns.

Hi-Speed USB peripheral controller

For OUT endpoint — Data will not be cleared for the endpoint buffer until all the data has been read from the DMA FIFO.

If the DMA counter is disabled in the DMA transfer, it will still decrement and rollover when it reaches zero.

Table 52: DMA Transfer Counter register: bit allocation

		•						
Bit	31	30	29	28	27	26	25	24
Symbol				DMACR4 = D	MACR[31:24]			
Reset	0	0	0	0	0	0	0	0
Bus reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	23	22	21	20	19	18	17	16
Symbol				DMACR3 = D	MACR[23:16]			
Reset	0	0	0	0	0	0	0	0
Bus reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	15	14	13	12	11	10	9	8
Symbol				DMACR2 = [DMACR[15:8]			
Reset	0	0	0	0	0	0	0	0
Bus reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	7	6	5	4	3	2	1	0
Symbol				DMACR1 =	DMACR[7:0]			
Reset	0	0	0	0	0	0	0	0
Bus reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 53: DMA Transfer Counter register: bit description

Bit	Symbol	Description
31 to 24	DMACR4, DMACR[31:24]	DMA transfer counter byte 4 (MSB)
23 to 16	DMACR3, DMACR[23:16]	DMA transfer counter byte 3
15 to 8	DMACR2, DMACR[15:8]	DMA transfer counter byte 2
7 to 0	DMACR1, DMACR[7:0]	DMA transfer counter byte 1 (LSB)

9.4.3 DMA Configuration register (address: 38h)

This register defines the DMA configuration for GDMA mode. The DMA Configuration register consists of 2 bytes. The bit allocation is given in Table 54.

Table 54: DMA Configuration register: bit allocation

145.00.1	t Goinigai a		bit anotation					
Bit	15	14	13	12	11	10	9	8
Symbol	rese	rved	ATA_ MODE	DMA_M	ODE[1:0]	Р	IO_MODE[2:0)]
Reset	0	0	0	0	0	0	0	0
Bus Reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

9397 750 13461

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

Hi-Speed USB peripheral controller

Bit	7	6	5	4	3	2	1	0
Symbol	DIS_ XFER_CNT		reserved		MODI	E[1:0]	reserved	WIDTH
Reset	0	0	0	0	0	0	0	1
Bus Reset	0	0	0	0	0	0	0	1
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 55: DMA Configuration register: bit description^[1]

Bit	Symbol	Description
15 to 14	-	reserved
13	ATA_MODE	Mode selection of the DMA core.
		0 — Configures the DMA core for ATA or MDMA mode. Used when issuing DMA commands 02h to 07h, 0Ah and 0Ch; also used when directly accessing Task File registers.
		1 — Configures the DMA core for non-ATA mode. Used when issuing DMA commands 00h and 01h.
13	ATA_MODE	Logic 1 configures the DMA core for ATA or MDMA mode. Used when issuing DMA commands 02h to 07h, 0Ah and 0Ch; also used when directly accessing Task File registers.
		Logic 0 configures the DMA core for non-ATA mode. Used when issuing DMA commands 00h and 01h.
12 to 11	DMA_MODE[1:0]	These bits affect the timing for MDMA mode.
		00 — MDMA mode 0: ATA(PI) compatible timings
		01 — MDMA mode 1: ATA(PI) compatible timings
		10 — MDMA mode 2: ATA(PI) compatible timings
		11 — MDMA mode 3: enables the DMA Strobe Timing register (see Table 77 and Table 78) for non-standard strobe durations; only used in MDMA mode.
10 to 8	PIO_MODE[2:0] ^[2]	These bits affect the PIO timing.
		000 to 100 — PIO mode 0 to 4: ATA(PI) compatible timings
		101 to 111 — reserved.
7	DIS_XFER_CNT	Logic 1 disables the DMA Transfer Counter (see Table 52). The transfer counter can be disabled only in GDMA slave mode; in master mode the counter is always enabled.
6 to 4	-	reserved

Hi-Speed USB peripheral controller

Table 55: DMA Configuration register: bit description[1]...continued

Bit	Symbol	Description
3 to 2	MODE[1:0]	These bits only affect the GDMA (slave) and MDMA (master) handshake signals.
		00 — DIOR (master) or DIOW (slave): strobes data from the DMA bus into the ISP1583; DIOW (master) or DIOR (slave): puts data from the ISP1583 on the DMA bus.
		01 — DIOR (master) or DACK (slave): strobes the data from the DMA bus into the ISP1583; DACK (master) or DIOR (slave): puts the data from the ISP1583 on the DMA bus.
		10 — DACK (master and slave): strobes the data from the DMA bus into the ISP1583 and also puts the data from the ISP1583 on the DMA bus (This mode is applicable only to the 16-bit DMA; this mode cannot be used for the 8-bit DMA.).
		11 — reserved.
1	-	reserved
0	WIDTH	This bit selects the DMA bus width for GDMA (slave) and MDMA (master).
		0 — 8-bit data bus.
		1 — 16-bit data bus.

^[1] The DREQ pin will be driven only after performing a write access to the DMA Configuration register (that is, after configuring the DMA Configuration register).

9.4.4 DMA Hardware register (address: 3Ch)

The DMA Hardware register consists of 1 byte. The bit allocation is shown in Table 56.

This register determines the polarity of the bus control signals (EOT, DACK, DREQ, DIOR and DIOW) and DMA mode (master or slave). It also controls whether the upper and lower parts of the data bus are swapped (bits ENDIAN[1:0]), for modes GDMA (slave) and MDMA (master) only.

Table 56: DMA Hardware register: bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	ENDIA	N[1:0]	EOT_POL	MASTER	ACK_POL	DREQ_ POL	WRITE_ POL	READ_ POL
Reset	0	0	0	0	0	1	0	0
Bus reset	0	0	0	0	0	1	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

^[2] PIO read or write that started using DMA Command register only performs 16-bit transfer.

Hi-Speed USB peripheral controller

Table 57: DMA Hardware register: bit description

Tubic Ji.	Dina Hardward	register. bit description
Bit	Symbol	Description
7 to 6	ENDIAN[1:0]	These bits determine whether the data bus is swapped between the internal RAM and the DMA bus. This only applies for modes GDMA (slave) and MDMA (master).
		00 — normal data representation; 16-bit bus: MSB on DATA[15:8] and LSB on DATA[7:0].
		01 — swapped data representation; 16-bit bus: MSB on DATA[7:0] and LSB on DATA[15:8].
		10 — reserved.
		11 — reserved.
		Remark: While operating with the 8-bit data bus, bits ENDIAN[1:0] should be always set to logic 00.
5	EOT_POL	Selects the polarity of the End-Of-Transfer input; used in GDMA slave mode only.
		0 — EOT is active LOW
		1 — EOT is active HIGH.
4	MASTER	Selects DMA master/slave mode.
		0 — GDMA slave mode
		1 — MDMA master mode.
3	ACK_POL	Selects the DMA acknowledgment polarity.
		0 — DACK is active LOW
		1 — DACK is active HIGH.
2	DREQ_POL	Selects the DMA request polarity.
		0 — DREQ is active LOW
		1 — DREQ is active HIGH.
1	WRITE_POL	Selects the DIOW strobe polarity.
		0 — DIOW is active LOW
		1 — DIOW is active HIGH.
0	READ_POL	Selects the DIOR strobe polarity.
		0 — DIOR is active LOW
		1 — DIOR is active HIGH.

9.4.5 Task File registers (addresses: 40h to 4Fh)

These registers allow direct access to the internal registers of an ATAPI peripheral using PIO mode. The supported Task File registers and their functions are shown in Table 58. The correct peripheral register is automatically addressed via pins CS1_N, CS0_N, DA2, DA1 and DA0 (see Table 59).

Hi-Speed USB peripheral controller

Table 58: Task File register functions

Task file	ATA function	ATAPI function
1F0	data (16-bits)	data (16-bits)
1F1	error/feature	error/feature
1F2	sector count	interrupt reason
1F3	sector number/LBA[7:0]	reserved
1F4	cylinder low/LBA[15:8]	cylinder low
1F5	cylinder high/LBA[23:16]	cylinder high
1F6	drive/head/LBA[27:24]	drive select
1F7	command	status/command
3F6	alternate status/command	alternate status/command
3F7	drive address	reserved

Table 59: ATAPI peripheral register addressing

Task file	CS1_N	CS0_N	DA2	DA1	DA0
1F0	Н	L	L	L	L
1F1	Н	L	L	L	Н
1F2	Н	L	L	Н	L
1F3	Н	L	L	Н	Н
1F4	Н	L	Н	L	L
1F5	Н	L	Н	L	Н
1F6	Н	L	Н	Н	L
1F7	Н	L	Н	Н	Н
3F6	L	Н	Н	Н	L
3F7	L	Н	Н	Н	Н

In 8-bit bus mode, the 16-bit Task File register 1F0 requires two consecutive write/read accesses before the proper PIO write/read is generated on the IDE interface. The first byte is always the lower byte (LSByte). Other Task File registers can be directly accessed.

Writing to Task File registers can be done in any order except for the Task File register 1F7, which must be written last.

Table 60: Task File 1F0 register (address: 40h): bit allocation

 $CS1_N = H$, $CS0_N = L$, DA2 = L, DA1 = L, DA0 = L.

Bit	7	6	5	4	3	2	1	0
Symbol				data (ATA	or ATAPI)			
Reset	0	0	0	0	0	0	0	0
Bus reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Hi-Speed USB peripheral controller

Table 61: Task File 1F1 register (address: 48h): bit allocation

 $CS1_N = H$, $CS0_N = L$, DA2 = L, DA1 = L, DA0 = H.

Bit	7	6	5	4	3	2	1	0
Symbol				error/feature (ATA or ATAPI)			
Reset	0	0	0	0	0	0	0	0
Bus reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 62: Task File 1F2 register (address: 49h): bit allocation

CS1_N = H, CS0_N = L, DA2 = L, DA1 = H, DA0 = L.

Bit	7	6	5	4	3	2	1	0
Symbol			sector co	unt (ATA) or in	terrupt reason	(ATAPI)		
Reset	0	0	0	0	0	0	0	0
Bus reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 63: Task File 1F3 register (address: 4Ah): bit allocation

 $CS1_N = H$, $CS0_N = L$, DA2 = L, DA1 = H, DA0 = H.

Bit	7	6	5	4	3	2	1	0
Symbol			sector nun	nber/LBA[7:0]	(ATA), reserve	ed (ATAPI)		
Reset	0	0	0	0	0	0	0	0
Bus reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 64: Task File 1F4 register (address: 4Bh): bit allocation

 $CS1_N = H$, $CS0_N = L$, DA2 = H, DA1 = L, DA0 = L.

			•					
Bit	7	6	5	4	3	2	1	0
Symbol			cylinder low	/LBA[15:8] (AT	A) or cylinder	low (ATAPI)		
Reset	0	0	0	0	0	0	0	0
Bus reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 65: Task File 1F5 register (address: 4Ch): bit allocation

 $CS1_N = H$, $CS0_N = L$, DA2 = H, DA1 = L, DA0 = H.

Bit	7	6	5	4	3	2	1	0
Symbol			cylinder high/	LBA[23:16] (A	TA) or cylinde	r high (ATAPI)		
Reset	0	0	0	0	0	0	0	0
Bus reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Hi-Speed USB peripheral controller

Table 66: Task File 1F6 register (address: 4Dh): bit allocation

 $CS1_N = H$, $CS0_N = L$, DA2 = H, DA1 = H, DA0 = L.

Bit	7	6	5	4	3	2	1	0
Symbol			drive/hea	ad/LBA[27:24]	(ATA) or drive	(ATAPI)		
Reset	0	0	0	0	0	0	0	0
Bus reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 67: Task File 1F7 register (address: 44h): bit allocation

 $CS1_N = H$, $CS0_N = L$, DA2 = H, DA1 = H, DA0 = H.

Bit	7	6	5	4	3	2	1	0
Symbol			comman	d (ATA) or stat	us ^[1] /comman	d (ATAPI)		
Reset	0	0	0	0	0	0	0	0
Bus reset	0	0	0	0	0	0	0	0
Access	W	W	W	W	W	W	W	W

^[1] Task File register 1F7 is a write-only register; a read will return FFh.

Table 68: Task File 3F6 register (address: 4Eh): bit allocation

 $CS1_N = L$, $CS0_N = H$, DA2 = H, DA1 = H, DA0 = L.

Bit	7	6	5	4	3	2	1	0
Symbol			alterna	te status/comi	mand (ATA or	ATAPI)		
Reset	0	0	0	0	0	0	0	0
Bus reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 69: Task File 3F7 register (address: 4Fh): bit allocation

 $CS1_N = L$, $CS0_N = H$, DA2 = H, DA1 = H, DA0 = H.

Bit	7	6	5	4	3	2	1	0
Symbol			drive a	address (ATA)	or reserved (A	ATAPI)		
Reset	0	0	0	0	0	0	0	0
Bus reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

9.4.6 DMA Interrupt Reason register (address: 50h)

This 2-byte register shows the source(s) of DMA interrupt. Each bit is refreshed after a DMA command has been executed. An interrupt source is cleared by writing logic 1 to the corresponding bit. When reading, AND the value of the bits in this register with the value of the corresponding bits in the DMA Interrupt Enable register.

The bit allocation is given in Table 70.

Hi-Speed USB peripheral controller

Table 70: DMA Interrupt Reason register: bit allocation

Bit	15	14	13	12	11	10	9	8
Symbol	TEST3	reser	ved	GDMA_ STOP	EXT_EOT	INT_EOT	INTRQ_ PENDING	DMA_ XFER_OK
Reset	-	-	-	0	0	0	0	0
Bus reset	-	-	-	0	0	0	0	0
Access	R	R	R	R/W	R/W	R/W	R/W	R/W
Bit	7	6	5	4	3	2	1	0
Symbol		reserved		READ_1F0	BSY_ DONE	TF_RD_ DONE	CMD_ INTRQ_OK	reserved
Reset	0	0	0	0	0	0	0	-
Bus reset	0	0	0	0	0	0	0	-
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 71: DMA Interrupt Reason register: bit description

Bit	Symbol	Description
15	TEST3	This bit is set when a DMA transfer for a packet (OUT transfer) terminates before the whole packet has been transferred. This bit is a status bit, and the corresponding mask bit of this register is always 0. Writing any value other than 0 has no effect.
14 to 13	-	reserved
12	GDMA_STOP	When the GDMA_STOP command is issued to the DMA Command registers, it means the DMA transfer has successfully terminated.
11	EXT_EOT	Logic 1 indicates that an external EOT is detected. This is applicable only in GDMA slave mode.
10	INT_EOT	Logic 1 indicates that an internal EOT is detected; see Table 72.
9	INTRQ_ PENDING	Logic 1 indicates that a pending interrupt was detected on pin INTRQ.
8	DMA_XFER_OK	Logic 1 indicates that the DMA transfer has been completed (DMA Transfer Counter has become zero). This bit is only used in GDMA (slave) mode and MDMA (master) mode.
7 to 5	-	reserved
4	READ_1F0	Logic 1 indicates that the 1F0 FIFO contains unread data and the microcontroller can start reading data.
3	BSY_DONE	Logic 1 indicates that the BSY status bit has become zero and polling has been stopped.
2	TF_RD_DONE	Logic 1 indicates that the Read Task Files command has been completed.
1	CMD_INTRQ_OK	Logic 1 indicates that all bytes from the FIFO have been transferred (DMA Transfer Count zero) and an interrupt on pin INTRQ was detected.
0	-	reserved

Hi-Speed USB peripheral controller

Table 72: Internal EOT-functional relation with DMA_XFER_OK bit

INT_EOT	DMA_ XFER_OK	Description
1	0	During the DMA transfer, there is a premature termination with short packet.
1	1	DMA transfer is completed with short packet and the DMA transfer counter has reached 0.
0	1	DMA transfer is completed without any short packet and the DMA transfer counter has reached 0.

Table 73 shows the status of the bits in the DMA Interrupt Reason register when the corresponding bits in the Interrupt register is set.

Table 73: Status of the bits in the DMA Interrupt Reason register^[1]

Status	EXT_EOT	INT_EOT	DMA_XFER_OK		
			Counter enabled	Counter disabled	
IN full	1	0	1	0	
IN short	1	0	1	0	
OUT full	1	0	1	0	
OUT short	1	1[2]	1	0	

^{[1] 1} indicates that the bit is set and 0 indicates that the bit is not set. A bit is set when the corresponding EOT condition is met. For example; EXT_EOT is set if external EOT conditions are met (pin EOT active), regardless of other EOT conditions. If multiple EOT conditions are met, the corresponding interrupt bits are set.

9.4.7 DMA Interrupt Enable register (address: 54h)

This 2-byte register controls the interrupt generation of the source bits in the DMA Interrupt Reason register (see Table 70). The bit allocation is given in Table 74. The bit description is given in Table 71.

Logic 1 enables interrupt generation. After a bus reset, interrupt generation is disabled, with the values turning to logic 0.

Table 74: DMA Interrupt Enable register: bit allocation

Bit	15	14	13	12	11	10	9	8
Symbol	TEST4	rese	rved	IE_GDMA_ STOP	IE_EXT_ EOT	IE_INT_ EOT	IE_INTRQ_ ENDING	IE_DMA_ XFER_OK
Reset	-	-	-	0	0	0	0	0
Bus reset	-	-	-	0	0	0	0	0
Access	R	-	-	R/W	R/W	R/W	R/W	R/W

If both EXT_EOT and DMA_XFER_OK conditions are met in DMA for an IN endpoint, the EXT_EOT interrupt is not set.

^{2]} The value of INT_EOT may not be accurate if an external or internal transfer counter is programmed with a value that is lower than the transfer that the host requests. To terminate an OUT transfer with INT_EOT, the external or internal DMA counter should be programmed as a multiple of the full-packet length of the DMA endpoint. When a short packet is successfully transferred by DMA, INT_EOT is set.

Hi-Speed USB peripheral controller

Bit	7	6	5	4	3	2	1	0
Symbol		reserved		IE_ READ_1F0	IE_BSY_ DONE	IE_TF_ RD_DONE	IE_CMD_ INTRQ_OK	reserved
Reset	0	0	0	0	0	0	0	0
Bus reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

9.4.8 DMA Endpoint register (address: 58h)

This 1-byte register selects a USB endpoint FIFO as a source or destination for DMA transfers. The bit allocation is given in Table 75.

Table 75: DMA Endpoint register: bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	reserved					EPIDX[2:0]		DMADIR
Reset	-	-	-	-	0	0	0	0
Bus reset	-	-	-	-	0	0	0	0
Access	-	-	-	-	R/W	R/W	R/W	R/W

Table 76: DMA Endpoint register: bit description

Bit	Symbol	Description
7 to 4	-	reserved
3 to 1	EPIDX[2:0]	selects the indicated endpoint for DMA access
0	DMADIR	0 — Selects the RX/OUT FIFO for DMA read transfers
		1 — Selects the TX/IN FIFO for DMA write transfers.

The DMA Endpoint register must not reference the endpoint that is indexed by the Endpoint Index register (2Ch) at any time. Doing so would result in data corruption. Therefore, if the DMA Endpoint register is unused, point it to an unused endpoint. If the DMA Endpoint register, however, is pointed to an active endpoint, the firmware must not reference the same endpoint on the Endpoint Index register.

9.4.9 DMA Strobe Timing register (address: 60h)

This 1-byte register controls the strobe timing for MDMA mode, when bits DMA_MODE in the DMA Configuration register have been set to 03h.

The bit allocation is given in Table 77.

Table 77: DMA Strobe Timing register: bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	reserved				DMA_	STROBE_CN	IT[4:0]	
Reset	-	-	-	1	1	1	1	1
Bus reset	-	-	-	1	1	1	1	1
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Hi-Speed USB peripheral controller

Table 78: DMA Strobe Timing register: bit description

Bit	Symbol	Description
7 to 5	-	reserved.
4 to 0	DMA_STROBE_ CNT[4:0]	These bits select the strobe duration for DMA_MODE = 03h (see Table 54). The strobe duration is $(N + 1)$ cycles ^[1] , with N representing the value of DMA_STROBE_CNT (see Figure 16).

[1] The cycle duration indicates the internal clock cycle (33.3 ns/cycle).

9.4.10 DMA Burst Counter register (address: 64h)

Table 79: DMA Burst Counter register: bit allocation

		uniter regions						
Bit	15	14	13	12	11	10	9	8
Symbol		reserved			BUR	STCOUNTER	[12:8]	
Reset	-	-	-	0	0	0	0	0
Bus reset	-	-	-	0	0	0	0	0
Access	-	-	-	R/W	R/W	R/W	R/W	R/W
Bit	7	6	5	4	3	2	1	0
Symbol				BURSTCO	UNTER[7:0]			
Reset	0	0	0	0	0	0	1	0
Bus reset	0	0	0	0	0	0	1	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 80: DMA Burst Counter register: bit description

Bit	Symbol	Description
15 to 13	-	reserved
12 to 0	BURSTCOUNTER[12:0]	This register defines the burst length. The counter must be programmed to be a multiple of two in 16-bit mode. The value of the burst counter should be programmed such that the buffer counter is a factor of the burst counter.
		For IN endpoint — When the burst counter equals 2, in GDMA mode, DREQ will drop at every DMA read or write cycle.

9.5 General registers

9.5.1 Interrupt register (address: 18h)

The Interrupt register consists of 4 bytes. The bit allocation is given in Table 81.

9397 750 13461

Hi-Speed USB peripheral controller

When a bit is set in the Interrupt register, it indicates that the hardware condition for an interrupt has occurred. When the Interrupt register content is nonzero, the INT output will be asserted corresponding to the Interrupt Enable register. On detecting the interrupt, the external microprocessor must read the Interrupt register and mask it with the corresponding bits in the Interrupt Enable register to determine the source of the interrupt.

Each endpoint buffer has a dedicated interrupt bit (EPnTX, EPnRX). In addition, various bus states can generate an interrupt: resume, suspend, pseudo SOF, SOF and bus reset. The DMA controller only has one interrupt bit: the source for a DMA interrupt is shown in the DMA Interrupt Reason register (see Table 70 and Table 71).

Each interrupt bit can be individually cleared by writing logic 1. The DMA Interrupt bit can be cleared by writing logic 1 to the related interrupt source bit in the DMA Interrupt Reason register and writing logic 1 to the DMA bit of the Interrupt register.

Table 81: Interrupt register: bit allocation

Bit	31	30	29	28	27	26	25	24
Symbol			rese	rved			EP7TX	EP7RX
Reset	-	-	-	-	-	0	0	0
Bus reset	-	-	-	-	-	0	0	0
Access	-	-	-	-	-	R/W	R/W	R/W
Bit	23	22	21	20	19	18	17	16
Symbol	EP6TX	EP6RX	EP5TX	EP5RX	EP4TX	EP4RX	EP3TX	EP3RX
Reset	0	0	0	0	0	0	0	0
Bus reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	15	14	13	12	11	10	9	8
Bit Symbol								
	15	14	13	12	11	10	9	8
Symbol	15 EP2TX	14 EP2RX	13 EP1TX	12 EP1RX	11 EP0TX	10 EP0RX	9	8 EP0SETUP
Symbol Reset	15 EP2TX 0	14 EP2RX 0	13 EP1TX 0	12 EP1RX 0	11 EP0TX 0	10 EP0RX 0	9	8 EP0SETUP 0
Symbol Reset Bus reset	15 EP2TX 0 0	14 EP2RX 0 0	13 EP1TX 0 0	12 EP1RX 0 0	11 EP0TX 0 0	10 EPORX 0 0	9	8 EPOSETUP 0 0
Symbol Reset Bus reset Access	15 EP2TX 0 0 R/W	14 EP2RX 0 0 R/W	13 EP1TX 0 0 R/W	12 EP1RX 0 0 R/W	11 EPOTX 0 0 R/W	10 EPORX 0 0 R/W	9 reserved	8 EPOSETUP 0 0 R/W
Symbol Reset Bus reset Access Bit	15 EP2TX 0 0 R/W 7	14 EP2RX 0 0 R/W	13 EP1TX 0 0 R/W	12 EP1RX 0 0 R/W	11 EPOTX 0 0 R/W	10 EP0RX 0 0 R/W	9 reserved - - - 1	8 EP0SETUP 0 0 R/W 0
Symbol Reset Bus reset Access Bit Symbol	15 EP2TX 0 0 R/W 7 VBUS	14 EP2RX 0 0 R/W 6 DMA	13 EP1TX 0 0 R/W 5 HS_STAT	12 EP1RX 0 0 R/W 4 RESUME	11 EPOTX 0 0 R/W 3 SUSP	10 EPORX 0 0 R/W 2 PSOF	9 reserved 1 SOF	8 EPOSETUP 0 0 R/W 0 BRESET

Table 82: Interrupt register: bit description

Bit	Symbol	Description
31 to 26	-	reserved
25	EP7TX	logic 1 indicates the endpoint 7 TX buffer as interrupt source.
24	EP7RX	logic 1 indicates the endpoint 7 RX buffer as interrupt source.
23	EP6TX	logic 1 indicates the endpoint 6 TX buffer as interrupt source.
22	EP6RX	logic 1 indicates the endpoint 6 RX buffer as interrupt source.
21	EP5TX	logic 1 indicates the endpoint 5 TX buffer as interrupt source.

Hi-Speed USB peripheral controller

 Table 82:
 Interrupt register: bit description...continued

		5
Bit	Symbol	Description
20	EP5RX	logic 1 indicates the endpoint 5 RX buffer as interrupt source.
19	EP4TX	logic 1 indicates the endpoint 4 TX buffer as interrupt source.
18	EP4RX	logic 1 indicates the endpoint 4 RX buffer as interrupt source.
17	EP3TX	logic 1 indicates the endpoint 3 TX buffer as interrupt source.
16	EP3RX	logic 1 indicates the endpoint 3 RX buffer as interrupt source.
15	EP2TX	logic 1 indicates the endpoint 2 TX buffer as interrupt source.
14	EP2RX	logic 1 indicates the endpoint 2 RX buffer as interrupt source.
13	EP1TX	logic 1 indicates the endpoint 1 TX buffer as interrupt source.
12	EP1RX	logic 1 indicates the endpoint 1 RX buffer as interrupt source.
11	EP0TX	logic 1 indicates the endpoint 0 data TX buffer as interrupt source.
10	EP0RX	logic 1 indicates the endpoint 0 data RX buffer as interrupt source.
9	-	reserved
8	EP0SETUP	logic 1 indicates that a SETUP token was received on endpoint 0.
7	VBUS	logic 1 indicates V _{BUS} is turned on.
6	DMA	DMA status: Logic 1 indicates a change in the DMA Status register.
5	HS_STAT	High speed status: Logic 1 indicates a change from full-speed to high-speed mode (HS connection). This bit is not set, when the system goes into full-speed suspend.
4	RESUME	Resume status: Logic 1 indicates that a status change from suspend to resume (active) was detected.
3	SUSP	Suspend status: Logic 1 indicates that a status change from active to suspend was detected on the bus.
2	PSOF	Pseudo SOF interrupt: Logic 1 indicates that a pseudo SOF or μ SOF was received. Pseudo SOF is an internally generated clock signal (full-speed: 1 ms period, high-speed: 125 μ s period) synchronized to the USB bus SOF or μ SOF.
1	SOF	SOF interrupt: Logic 1 indicates that a SOF or μ SOF was received.
0	BRESET	Bus reset : Logic 1 indicates that a USB bus reset was detected. When bit OTG in the OTG register is set, BRESET will not be set, instead, this interrupt bit will report SE0 on DP and DM for 2 ms.

9.5.2 Chip ID register (address: 70h)

This read-only register contains the chip identification and the hardware version numbers. The firmware should check this information to determine the functions and features supported. The register contains 3 bytes, and the bit allocation is shown in Table 83.

Table 83: Chip ID register: bit allocation

Bit	23	22	21	20	19	18	17	16
						10	• • • • • • • • • • • • • • • • • • • •	.0
Symbol				CHIPII	D[15:8]			
Reset	0	0	0	1	0	1	0	1
Bus reset	0	0	0	1	0	1	0	1
Access	R	R	R	R	R	R	R	R

Hi-Speed USB peripheral controller

Bit	15	14	13	12	11	10	9	8
Symbol				CHIP	D[7:0]			
Reset	1	0	0	0	0	0	1	0
Bus reset	1	0	0	0	0	0	1	0
Access	R	R	R	R	R	R	R	R
Bit	7	6	5	4	3	2	1	0
Symbol				VERSI	ON[7:0]			
Reset	0	0	1	1	0	0	0	0
Bus reset	0	0	1	1	0	0	0	0
Access	R	R	R	R	R	R	R	R

Table 84: Chip ID register: bit description

Bit	Symbol	Description
23 to 16	CHIPID[15:8]	chip ID: lower byte (15h)
15 to 8	CHIPID[7:0]	chip ID: upper byte (82h)
7 to 0	VERSION[7:0]	version number (30h)

9.5.3 Frame Number register (address: 74h)

This read-only register contains the frame number of the last successfully received Start-Of-Frame (SOF). The register contains 2 bytes, and the bit allocation is given in Table 85. In case of 8-bit access, the register content is returned lower byte first.

Table 85: Frame Number register: bit allocation

rabio ooi iraii		giotoi i bit a						
Bit	15	14	13	12	11	10	9	8
Symbol	rese	rved	IV	IICROSOF[2:0	0]		SOFR[10:8]	
Power Reset	-	-	0	0	0	0	0	0
Bus Reset	-	-	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
Bit	7	6	5	4	3	2	1	0
Symbol				SOFF	R[7:0]			
Power Reset	0	0	0	0	0	0	0	0
Bus Reset	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R

Table 86: Frame Number register: bit description

Bit	Symbol	Description
15 to 14	-	reserved
13 to 11	MICROSOF[2:0]	microframe number
10 to 0	SOFR[10:0]	frame number

9.5.4 Scratch register (address: 78h)

This 16-bit register can be used by the firmware to save and restore information. For example, the device status before it enters the suspend state. The bit allocation is given in Table 87.

Hi-Speed USB peripheral controller

Table 87: Scratch register: bit allocation

Bit	15	14	13	12	11	10	9	8
Symbol				SFIR	H[7:0]			
Reset	0	0	0	0	0	0	0	0
Bus reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	7	6	5	4	3	2	1	0
Symbol				SFIR	L[7:0]			
Reset	0	0	0	0	0	0	0	0
Bus reset	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 88: Scratch register: bit description

Bit	Symbol	Description
15 to 8	SFIRH[7:0]	Scratch firmware information register (higher byte)
7 to 0	SFIRL[7:0]	Scratch firmware information register (lower byte)

9.5.5 Unlock Device register (address: 7Ch)

To protect the registers from getting corrupted when the ISP1583 goes into suspend, the write operation is disabled if bit PWRON in the Mode register is set to logic 0. In this case, when the chip resumes, the Unlock Device command must be first issued to this register before attempting to write to the rest of the registers. This is done by writing unlock code (AA37h) to this register. The bit allocation of the Unlock Device register is given in Table 89.

Table 89: Unlock Device register: bit allocation

Bit	15	14	13	12	11	10	9	8			
Symbol		ULCODE[15:8] = AAh									
Reset		not applicable									
Bus reset				not app	olicable						
Access	W	W	W	W	W	W	W	W			
Bit	7	6	5	4	3	2	1	0			
Symbol				ULCODE[[7:0] = 37h						
Reset				not app	olicable						
Bus reset				not app	olicable						
Access	W	W	W	W	W	W	W	W			

Table 90: Unlock Device register: bit description

Bit	Symbol	Description
15 to 0	ULCODE[15:0]	Writing data AA37h unlocks the internal registers and FIFOs for writing, following a resume.

When bit PWRON in the Mode register is logic 1, the chip is powered. In such a case, you do not need to issue the Unlock command because the microprocessor is powered and therefore, the RD_N, WR_N and CS_N signals maintain their states.

Hi-Speed USB peripheral controller

When bit PWRON is logic 0, the RD_N, WR_N and CS_N signals are floating because the microprocessor is not powered. To protect the ISP1583 registers from being corrupted during suspend, register write is locked when the chip goes into suspend. Therefore, you need to issue the Unlock command to unlock the ISP1583 registers.

9.5.6 Test Mode register (address: 84h)

This 1-byte register allows the firmware to set the DP and DM pins to predetermined states for testing purposes. The bit allocation is given in Table 91.

Remark: Only one bit can be set at a time. Either bit FORCEHS or bit FORCEFS should be set to logic 1 at a time. Of the four bits PRBS, KSTATE, JSTATE and SE0_NAK only one bit should be set at a time. This must be implemented for the Hi-Speed USB logo compliance testing.

Table 91: Test Mode register: bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	FORCEHS	rese	rved	FORCEFS	PRBS	KSTATE	JSTATE	SE0_NAK
Reset	0	-	-	0	0	0	0	0
Bus reset	0	-	-	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Table 92: Test Mode register: bit description

Bit	Symbol	Description
7	FORCEHS	logic 1 forces the hardware to high-speed mode only and disables the chirp detection logic.
6 to 5	-	reserved.
4	FORCEFS	logic 1 forces the physical layer to full-speed mode only and disables the chirp detection logic.
3	PRBS	logic 1 sets the DP and DM pins to toggle in a predetermined random pattern.
2	KSTATE	logic 1 sets the DP and DM pins to the K state.
1	JSTATE	logic 1 sets the DP and DM pins to the J state.
0	SE0_NAK	logic 1 sets the DP and DM pins to a high-speed quiescent state. The device only responds to a valid high-speed IN token with a NAK.

Hi-Speed USB peripheral controller

10. Limiting values

Table 93: Absolute maximum ratings

In accordance with the Absolute Maximum Rating System (IEC 60134).

		<u> </u>			
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC(3V3)}	supply voltage		-0.5	+4.6	V
V _{CC(I/O)}	I/O pad supply voltage		-0.5	+4.6	V
VI	input voltage		[1] -0.5	$V_{CC(3V3)} + 0.5$	V
I _{lu}	latch-up current	$V_{I} < 0 \text{ or } V_{I} > V_{CC(3V3)}$	-	100	mΑ
V _{esd}	electrostatic discharge voltage	I _{LI} < 1 μA			
		pins DP, DM, V _{BUS} , AGND and DGND	-4000	+4000	V
		other pins	-2000	+2000	V
T _{stg}	storage temperature		-40	+125	°C

^[1] The maximum value for 5 V tolerant pins is 6 V.

11. Recommended operating conditions

Table 94: Recommended operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC(3V3)}	supply voltage		3.0	3.6	V
V _{CC(I/O)}	I/O pad supply voltage		1.65	3.6	V
V_{I}	input voltage range	$V_{CC(3V3)} = 3.3 \text{ V}$	0	5.5	V
V _{I(AI/O)}	input voltage on analog I/O pins DP and DM		0	3.6	V
$V_{O(pu)}$	open-drain output pull-up voltage		0	V _{CC(3V3)}	V
T _{amb}	ambient temperature		-40	+85	°C

12. Static characteristics

Table 95: Static characteristics: supply pins

 $V_{CC(3V3)} = 3.3 \text{ V} \pm 0.3 \text{ V}$; $V_{GND} = 0 \text{ V}$; $T_{amb} = -40 \,^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$; typical values at $T_{amb} = 25 \,^{\circ}\text{C}$; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Supply volta	age					
V _{CC(3V3)}	supply voltage		3.0	3.3	3.6	V
I _{CC(3V3)}	operating supply current	$V_{CC(3V3)} = 3.3 \text{ V}$				
		high-speed	-	47	60	mA
		full-speed	-	19	25	mA
I _{CC(3V3)(susp)}	suspend supply current	$V_{CC(3V3)} = 3.3 \text{ V}$	-	160	-	μΑ
I/O pad sup	ply voltage					
V _{CC(I/O)}	I/O pad supply voltage		1.65	3.3	3.6	V
I _{CC(I/O)}	operating supply current	$V_{CC(I/O)} = 3.3 \text{ V}$				
		high-speed	-	150	200	μΑ
		full-speed	-	80	120	μΑ
9397 750 13461				© Koninkliike Phi	ilips Electronics N.V. 20	04. All rights reserve

Hi-Speed USB peripheral controller

Table 95: Static characteristics: supply pins...continued

 $V_{CC(3V3)} = 3.3 \ V \pm 0.3 \ V$; $V_{GND} = 0 \ V$; $T_{amb} = -40 \ ^{\circ}C$ to $+85 \ ^{\circ}C$; typical values at $T_{amb} = 25 \ ^{\circ}C$; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{CC(I/O)(susp)}	suspend supply current	$V_{CC(I/O)} = 3.3 \text{ V}$	-	5	10	μΑ
Regulated s	supply voltage					
V _{CC(1V8)}	regulated supply output voltage	with voltage converter	1.65	1.8	1.95	V

Table 96: Static characteristics: digital pins

 $V_{CC(I/O)}$ = 1.65 V to 3.6 V; V_{GND} = 0 V; T_{amb} = -40 °C to +85 °C; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Input levels	S					
V _{IL}	LOW-level input voltage		-	-	$0.3V_{\rm CC(I/O)}$	V
V _{IH}	HIGH-level input voltage		0.7V _{CC(I/C}) -	-	V
Output leve	els					
V_{OL}	LOW-level output voltage	I _{OL} = rated drive	-	-	0.15V _{CC(I/O)}	V
V_{OH}	HIGH-level output voltage	I _{OH} = rated drive	0.8V _{CC(I/C}) -	-	V
Leakage cu	urrent					
I _{LI}	input leakage current		[1] ₋₅	-	+5	μΑ

^[1] This value is applicable to transistor input only. The value will be different if internal pull-up or pull-down resistors are used.

Table 97: Static characteristics: OTG detection

 $V_{CC(I/O)}$ = 1.65 V to 3.6 V; V_{GND} = 0 V; T_{amb} = -40 °C to +85 °C; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Charging a	and discharging resistor					
R _{PD}	discharging resistor		684.8	843.5	1032	Ω
R _{PU}	charging resistor		551.9	666.7	780.6	Ω
Comparato	or levels					
V_{BVALID}	V _{BUS} valid detection	$V_{CC(I/O)} = 3.3 \text{ V} \pm 0.3 \text{ V}$	2.0	-	4.0	V
V_{SESEND}	V _{BUS} B-session end detection	$V_{CC(I/O)} = 3.3 \text{ V} \pm 0.3 \text{ V}$	0.2	-	0.8	V

Table 98: Static characteristics: analog I/O pins DP and DM^[1]

 $V_{CC(3V3)}$ = 3.3 V \pm 0.3 V; V_{GND} = 0 V; T_{amb} = -40 °C to +85 °C; unless otherwise specified.

00(010)	0.12		•			
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Input level	s					
V_{DI}	differential input sensitivity	$ V_{I(DP)} - V_{I(DM)} $	0.2	-	-	V
V_{CM}	differential common mode voltage	includes V _{DI} range	0.8	-	2.5	V
V_{SE}	single-ended receiver threshold		0.8		2.0	V
V_{IL}	LOW-level input voltage		-	-	0.8	V
V_{IH}	HIGH-level input voltage		2.0	-	-	V
Schmitt-trig	ger inputs					
$V_{th(LH)}$	positive-going threshold voltage		1.4	-	1.9	V
$V_{th(HL)}$	negative-going threshold voltage		0.9	-	1.5	V
V _{hys}	hysteresis voltage		0.4	-	0.7	V

9397 750 13461

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

Hi-Speed USB peripheral controller

Table 98: Static characteristics: analog I/O pins DP and DM^[1]...continued

 $V_{CC(3V3)}$ = 3.3 V ± 0.3 V; V_{GND} = 0 V; T_{amb} = -40 °C to +85 °C; unless otherwise specified.

(/			=			
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Output lev	rels					
V_{OL}	LOW-level output voltage	$R_L = 1.5 \text{ k}\Omega$ to 3.6 V	-	-	0.4	V
V_{OH}	HIGH-level output voltage	R_L = 15 $k\Omega$ to GND	2.8	-	3.6	V
Leakage c	urrent					
I_{LZ}	OFF-state leakage current	$0 < V_1 < 3.3 V$	-10	-	+10	μΑ
Capacitan	ce					
C _{IN}	transceiver capacitance	pin to GND	-	-	10	pF
Resistanc	е					
Z_{DRV}	driver output impedance	steady-state drive	40.5	-	49.5	Ω
Z _{INP}	input impedance		10	-	-	$M\Omega$

^[1] Pin DP is the USB positive data pin and pin DM is the USB negative data pin.

13. Dynamic characteristics

Table 99: Dynamic characteristics

 $V_{CC(3V3)} = 3.3 \text{ V} \pm 0.3 \text{ V}; V_{GND} = 0 \text{ V}; T_{amb} = -40 \,^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$; unless otherwise specified.

00(010)						
Symbol	Parameter	Conditions	Min.	Тур	Max	Unit
Reset						
t _{W(RESET_N)}	pulse width on pin RESET_N	crystal oscillator running	500	-	-	μs
Crystal osc	illator					
f _{XTAL}	crystal frequency		-	12	-	MHz
R _S	series resistance		-	-	100	Ω
C_L	load capacitance		-	18	-	pF
External clo	ock input					
t _J	external clock jitter		-	-	500	ps
δ	clock duty cycle		45	50	55	%
t _r , t _f	rise time and fall time		-	-	3	ns
V _{IN}	input voltage		1.65	1.8	1.95	V

Table 100: Dynamic characteristics: analog I/O pins DP and DM

 $V_{CC(3V3)} = 3.3~V \pm 0.3~V; V_{GND} = 0~V; T_{amb} = -40~^{\circ}C$ to +85 $^{\circ}C; C_L = 50~pF; R_{PU} = 1.5~k\Omega$ on DP to V_{TERM} ; test circuit of Figure 36; unless otherwise specified.

9000	, amore emermos epermour						
Symbol	Parameter	Conditions		Min.	Тур	Max	Unit
Driver c	haracteristics						
Full-spee	ed mode						
t _{FR}	rise time	$C_L = 50 \text{ pF};$ 10 % to 90 % of $ V_{OH} - V_{OL} $		4	-	20	ns
t _{FF}	fall time	$C_L = 50 \text{ pF};$ 90 % to 10 % of $ V_{OH} - V_{OL} $		4	-	20	ns
FRFM	differential rise time and fall time matching $(t_{\text{FR}}/t_{\text{FF}})$		[1]	90	-	111.11	%
V_{CRS}	output signal crossover voltage		[1][2]	1.3	-	2.0	V
9397 750 13461				© Koninklijk	e Philips Electron	nics N.V. 2004. All ri	ghts reserved

Hi-Speed USB peripheral controller

Table 100: Dynamic characteristics: analog I/O pins DP and DM...continued

 $V_{CC(3V3)} = 3.3 \ V \pm 0.3 \ V$; $V_{GND} = 0 \ V$; $T_{amb} = -40 \ ^{\circ}C$ to $+85 \ ^{\circ}C$; $C_L = 50 \ pF$; $R_{PU} = 1.5 \ k\Omega$ on DP to V_{TERM} ; test circuit of Figure 36; unless otherwise specified.

900 00	, amoss curerwise specifica.						
Symbol	Parameter	Conditions	l	Min.	Тур	Max	Unit
High-spe	ed mode						
t _{HSR}	high-speed differential rise time	with captive cable	;	500	-	-	ps
t _{HSF}	high-speed differential fall time	with captive cable	;	500	-	-	ps
Data sou	urce timing						
Full-spee	ed mode						
t _{FEOPT}	source EOP width	see Figure 17	[2]	160	-	175	ns
t _{FDEOP}	source differential data-to-EOP transition skew	see Figure 17	[2]	-2	-	+5	ns
Receive	r timing						
Full-spee	ed mode						
t _{JR1}	receiver data jitter tolerance to next transition	see Figure 18	[2]	-18.5	-	+18.5	ns
t _{JR2}	receiver data jitter tolerance for paired transitions	see Figure 18	[2]	- 9	-	+9	ns
t _{FEOPR}	receiver SE0 width	accepted as EOP; see Figure 17	[2]	82	-	-	ns
t _{FST}	width of SE0 during differential transition	rejected as EOP; see Figure 19	[2]	-	-	14	ns

- [1] Excluding the first transition from the idle state.
- [2] Characterized only, not tested. Limits guaranteed by design.

T_{PERIOD} is the bit duration corresponding with the USB data rate.

Full-speed timing symbols have a subscript prefix 'F', low-speed timing symbols have a prefix 'L'.

Fig 17. Source differential data-to-EOP transition skew and EOP width.

Hi-Speed USB peripheral controller

13.1 Register access timing

13.1.1 Generic processor mode

BUS_CONF = H: generic processor mode:

- MODE0 = H: 8051 style; see Figure 20
- MODE0 = L: Motorola style; see Figure 21.

Table 101: ISP1583 register access timing parameters: separate address and data buses

 $V_{CC(I/O)} = 3.3 \text{ V}; V_{CC(3V3)} = 3.3 \text{ V}; V_{GND} = 0 \text{ V}; T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}.$

Symbol	Parameter	Min	Max	Unit
Reading				
t _{RLRH}	RD_N LOW pulse width	>t _{RLDV}	-	ns
t _{AVRL}	address set-up time before RD_N LOW	0	-	ns
t _{RHAX}	address hold time after RD_N HIGH	0	-	ns
t_{RLDV}	RD_N LOW to data valid delay	-	26	ns
t _{RHDZ}	RD_N HIGH to data outputs 3-state delay	0	15	ns
t _{RHSH}	RD_N HIGH to CS_N HIGH delay	0	-	ns
t _{SLRL}	CS_N LOW to RD_N LOW delay	2	-	ns

9397 750 13461 Product data

Hi-Speed USB peripheral controller

Table 101: ISP1583 register access timing parameters: separate address and data buses...continued $V_{CC(I/O)} = 3.3 \text{ V}; V_{CC(3V3)} = 3.3 \text{ V}; V_{GND} = 0 \text{ V}; T_{amb} = -40 ^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$.

Symbol	Parameter	Min	Max	Unit
Writing				
t _{WLWH}	WR_N LOW pulse width	15	-	ns
t _{AVWL}	address set-up time before WR_N LOW	0	-	ns
t_{WHAX}	address hold time after WR_N HIGH	0	-	ns
t _{DVWH}	data set-up time before WR_N HIGH	11	-	ns
t _{WHDZ}	data hold time after WR_N HIGH	5	-	ns
t _{WHSH}	WR_N HIGH to CS_N HIGH delay	0	-	ns
t _{SLWL}	CS_N LOW to WR_N LOW delay	2	-	ns
General				
T _{cy(RW)}	read/write cycle time	50	-	ns
t _{I1VI2L}	RW_N set-up time before DS_N LOW	0	-	ns
t _{I2HI1X}	RW_N hold time after DS_N HIGH	0	-	ns
t _{RDY1}	READY HIGH to RD_N/WR_N HIGH of the last access	-	91	ns

ISP1583 Philips Semiconductors

Hi-Speed USB peripheral controller

Hi-Speed USB peripheral controller

13.1.2 Split bus mode

ALE function:

• BUS_CONF = L: split bus mode

• MODE1 = L: ALE function

- MODE0 = H: 8051 style; see Figure 24

- MODE0 = L: Motorola style; see Figure 25.

Table 102: ISP1583 register access timing parameters: multiplexed address/data bus

 $V_{CC(I/O)} = 3.3 \text{ V}; V_{CC(3V3)} = 3.3 \text{ V}; V_{GND} = 0 \text{ V}; T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}.$

Symbol	Parameter	Min	Max	Unit
Reading				
t _{RLRH}	RD_N LOW pulse width	>t _{RLDV}	-	ns
t_{RLDV}	RD_N LOW to data valid delay	-	25	ns
t _{RHDZ}	RD_N HIGH to data outputs 3-state delay	0	15	ns
t _{RHSH}	RD_N HIGH to CS_N HIGH delay	0	-	ns
t _{LLRL}	ALE LOW set-up time before RD_N LOW	0	-	ns
Writing				
t_{WLWH}	WR_N/DS_N LOW pulse width	15	-	ns
t_{DVWH}	data set-up time before WR_N HIGH	5	-	ns
t_{LLWL}	ALE LOW to WR_N/DS_N LOW delay	0	-	ns
t_{WHDZ}	data hold time after WR_N/DS_N HIGH	5	-	ns
t _{WHSH}	WR_N/DS_N HIGH to CS_N HIGH delay	0	-	ns
General				
T _{cy(RW)}	read/write cycle time	80	-	ns
t _{AVLL}	address set-up time before ALE LOW	0	-	ns
t _{I1VLL}	RW_N set-up time before ALE LOW	5	-	ns
t _{LLI2L}	ALE LOW to DS_N LOW delay	5	-	ns
t _{I2HI1X}	RW_N hold time after DS_N HIGH	5	-	ns

Hi-Speed USB peripheral controller

Hi-Speed USB peripheral controller

A0 function:

• BUS_CONF = L: split bus mode

• MODE1 = H: A0 function

- MODE0 = H: 8051 style; see Figure 26

- MODE0 = L: Motorola style; see Figure 27.

Table 103: ISP1583 register access timing parameters: multiplexed address/data bus

 $V_{CC(I/O)} = 3.3 \text{ V}; V_{CC(3V3)} = 3.3 \text{ V}; V_{GND} = 0 \text{ V}; T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}.$

Symbol	Parameter	Min	Max	Unit
Reading				
t _{RLDV}	RD_N LOW to data valid delay	-	26	ns
t _{RHDZ}	RD_N HIGH to data outputs 3-state delay	0	15	ns
t _{RHSH}	RD_N HIGH to CS_N HIGH delay	0	-	ns
t _{RLRH}	RD_N LOW pulse width	>t _{RLDV}	-	ns
t _{WHRH}	WR_N/DS_N HIGH to RD_N HIGH delay	40	-	ns
Writing				
t _{AOWL}	A0 set-up time before WR_N/DS_N LOW	0	-	ns
t _{AVWH}	address set-up time before WR_N/DS_N HIGH	5	-	ns
t _{DVWH}	data set-up time before WR_N/DS_N HIGH	5	-	ns
t _{WHDZ}	data hold time after WR_N/DS_N HIGH	5	-	ns
t _{WHSH}	WR_N/DS_N HIGH to CS_N HIGH delay	0	-	ns
t _{WLWH}	WR_N/DS_N LOW pulse width	15	-	ns
t _{WHWH}	WR_N/DS_N HIGH (address) to WR_N/DS_N HIGH (data) delay	40	-	ns
General				
T _{cy(RW)}	read/write cycle time	50	-	ns
t _{I2HI1X}	RW_N hold time after DS_N HIGH	5	-	ns

Hi-Speed USB peripheral controller

Hi-Speed USB peripheral controller

Hi-Speed USB peripheral controller

13.2 DMA timing

13.2.1 PIO mode

Table 104: PIO mode timing parameters

 $V_{CC(I/O)} = 3.3 \ V; \ V_{CC(3V3)} = 3.3 \ V; \ V_{GND} = 0 \ V; \ T_{amb} = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C.$

Symbol	Parameter		Mode 0	Mode 1	Mode 2	Mode 3	Mode 4	Unit
T _{cy1(min)}	read/write cycle time	[1]	600	383	240	180	120	ns
$t_{su1(min)}$	address to DIOR/DIOW on set-up time		70	50	30	30	25	ns
$t_{w1(min)}$	DIOR/DIOW pulse width	[1]	165	125	100	80	70	ns
t _{w2(min)}	DIOR/DIOW recovery time	[1]	-	-	-	70	25	ns
t _{su2(min)}	data set-up time before DIOW off		60	45	30	30	20	ns
t _{h2(min)}	data hold time after DIOW off		30	20	15	10	10	ns
t _{su3(min)}	data set-up time before DIOR on		50	35	20	20	20	ns
t _{h3(min)}	data hold time after DIOR off		5	5	5	5	5	ns
t _{d2(max)}	data to 3-state delay after DIOR off	[2]	30	30	30	30	30	ns
t _{h1(min)}	address hold time after DIOR/DIOW off		20	15	10	10	10	ns
t _{su4(min)}	IORDY after DIOR/DIOW on set-up time	[3]	35	35	35	35	35	ns
t _{su5(min)}	read data to IORDY HIGH set-up time	[3]	0	0	0	0	0	ns
t _{w3(max)}	IORDY LOW pulse width		1250	1250	1250	1250	1250	ns

^[1] T_{cy1} is the total cycle time, consisting of command active time t_{w1} and command recovery (inactive) time t_{w2} , that is, $T_{cy1} = t_{w1} + t_{w2}$. The minimum timing requirements for T_{cy1} , t_{w1} and t_{w2} must all be met. As $T_{cy1(min)}$ is greater than the sum of $t_{w1(min)}$ and $t_{w2(min)}$, a host implementation must lengthen t_{w1} and/or t_{w2} to ensure that T_{cy1} is equal to or greater than the value reported in the IDENTIFY DEVICE data. A device implementation shall support any legal host implementation.

^[2] t_{d2} specifies the time after DIOR is negated, when the data bus is no longer driven by the device (3-state).

^[3] If IORDY is LOW at t_{su4} , the host waits until IORDY is made HIGH before the PIO cycle is completed. In that case, t_{su5} must be met for reading (t_{su3} does not apply). When IORDY is HIGH at t_{su4} , t_{su3} must be met for reading (t_{su5} does not apply).

Hi-Speed USB peripheral controller

- (1) The device address consists of signals CS1_N, CS0_N, DA2, DA1 and DA0.
- (2) The data bus width depends on the PIO access command used. Task File register access uses 8 bits (DATA[7:0]), except for the Task File register 1F0 which uses 16 bits (DATA[15:0]). DMA commands 04h and 05h also use a 16-bit data bus.
- (3) The device can negate IORDY to extend the PIO cycle with wait states. The host determines whether or not to extend the current cycle after t_{su4} following the assertion of DIOR or DIOW. The following three cases are distinguished:
 - a) Device keeps IORDY released (high-impedance): no wait state is generated.
 - b) Device negates IORDY during t_{su4}, but re-asserts IORDY before t_{su4} expires: no wait state is generated.
 - c) Device negates IORDY during t_{su4} and keeps IORDY negated for at least 5 ns after t_{su4} expires: a wait state is generated. The cycle is completed as soon as IORDY is re-asserted. For extended read cycles (DIOR asserted), the read data on lines DATAn must be valid at t_{d1} before IORDY is asserted.
- (4) DIOR and DIOW have a programmable polarity: shown here as active LOW signals.

Fig 29. PIO mode timing.

Hi-Speed USB peripheral controller

13.2.2 GDMA slave mode

- Bits MODE[1:0] = 00: data strobes DIOR (read) and DIOW (write); see Figure 30
- Bits MODE[1:0] = 01: data strobes DIOR (read) and DACK (write); see Figure 31
- Bits MODE[1:0] = 10: data strobes DACK (read and write); see Figure 32.

Table 105: GDMA slave mode timing parameters

 $V_{CC(I/O)} = 3.3 \text{ V}; V_{CC(3V3)} = 3.3 \text{ V}; V_{GND} = 0 \text{ V}; T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}.$

Symbol	Parameter	Min	Max	Unit
T _{cy1}	read/write cycle time	75	-	ns
t _{su1}	DREQ set-up time before first DACK on	10	-	ns
t _{d1}	DREQ on delay after last strobe off	33.33	-	ns
t _{h1}	DREQ hold time after last strobe on	0	53	ns
t _{w1}	DIOR/DIOW pulse width	39	600	ns
t_{w2}	DIOR/DIOW recovery time	36	-	ns
t_{d2}	read data valid delay after strobe on	-	20	ns
t _{h2}	read data hold time after strobe off	-	5	ns
t _{h3}	write data hold time after strobe off	1	-	ns
t _{su2}	write data set-up time before strobe off	10	-	ns
t _{su3}	DACK setup time before DIOR/DIOW assertion	0	-	ns
t _{a1}	DACK deassertion after DIOR/DIOW deassertion	0	30	ns

DREQ is continuously asserted until the last transfer is done or the FIFO is full.

Data strobes: DIOR (read), DIOW (write).

- (1) Programmable polarity: shown as active LOW.
- (2) Programmable polarity: shown as active HIGH.

Fig 30. GDMA slave mode timing: DIOR (master) and DIOW (slave).

Hi-Speed USB peripheral controller

DREQ is asserted for every transfer.

Data strobes: DIOR (read), DACK (write).

- (1) Programmable polarity: shown as active LOW.
- (2) Programmable polarity: shown as active HIGH.

Fig 31. GDMA slave mode timing: DIOR (master) or DACK (slave).

DREQ is continuously asserted until the last transfer is done or the FIFO is full.

Data strobe: DACK (read/write).

- (1) Programmable polarity: shown as active LOW.
- (2) Programmable polarity: shown as active HIGH.

Fig 32. GDMA slave mode timing: DACK (master and slave).

Hi-Speed USB peripheral controller

13.2.3 MDMA mode

Table 106: MDMA mode timing parameters

 $V_{CC(I/O)} = 3.3 \text{ V}; V_{CC(3V3)} = 3.3 \text{ V}; V_{GND} = 0 \text{ V}; T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}.$

("-)	, 55(57.5)					
Symbol	Parameter		Mode 0	Mode 1	Mode 2	Unit
T _{cy1(min)}	read/write cycle time	[1]	480	150	120	ns
t _{w1(min)}	DIOR/DIOW pulse width	[1]	215	80	70	ns
t _{d1(max)}	data valid delay after DIOR on		150	60	50	ns
t _{h3(min)}	data hold time after DIOR off		5	5	5	ns
t _{su2(min)}	data set-up time before DIOR/DIOW off		100	30	20	ns
t _{h2(min)}	data hold time after DIOW off		20	15	10	ns
t _{su1(min)}	DACK set-up time before DIOR/DIOW on		0	0	0	ns
t _{h1(min)}	DACK hold time after DIOR/DIOW off		20	5	5	ns
t _{w2(min)}	DIOR recovery time)	[1]	50	50	25	ns
	DIOW recovery time	[1]	215	50	25	ns
t _{d2(max)}	DIOR on to DREQ off delay		120	40	35	ns
	DIOW on to DREQ off delay		40	40	35	ns
t _{d3(max)}	DACK off to data lines 3-state delay		20	25	25	ns

[1] T_{cy1} is the total cycle time, consisting of command active time t_{w1} and command recovery (inactive) time t_{w2} , that is, $T_{cy1} = t_{w1} + t_{w2}$. The minimum timing requirements for T_{cy1} , t_{w1} and t_{w2} must all be met. As $T_{cy1(min)}$ is greater than the sum of $t_{w1(min)}$ and $t_{w2(min)}$, a host implementation must lengthen t_{w1} and/or t_{w2} to ensure that T_{cy1} is equal to or greater than the value reported in the IDENTIFY DEVICE data. A device implementation shall support any legal host implementation.

79 of 87

Hi-Speed USB peripheral controller

14. Application information

Fig 34. Typical interface connections for generic processor mode.

15. Test information

The dynamic characteristics of the analog I/O ports DP and DM were determined using the circuit shown in Figure 36.

9397 750 13461

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

Hi-Speed USB peripheral controller

16. Package outline

Fig 37. HVQFN64 package outline.

9397 750 13461

Hi-Speed USB peripheral controller

17. Soldering

17.1 Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *Data Handbook IC26; Integrated Circuit Packages* (document order number 9398 652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended. In these situations reflow soldering is recommended.

17.2 Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. Driven by legislation and environmental forces the worldwide use of lead-free solder pastes is increasing.

Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 to 270 °C depending on solder paste material. The top-surface temperature of the packages should preferably be kept:

- below 225 °C (SnPb process) or below 245 °C (Pb-free process)
 - for all BGA, HTSSON..T and SSOP..T packages
 - for packages with a thickness ≥ 2.5 mm
 - for packages with a thickness < 2.5 mm and a volume ≥ 350 mm³ so called thick/large packages.
- below 240 °C (SnPb process) or below 260 °C (Pb-free process) for packages with a thickness < 2.5 mm and a volume < 350 mm³ so called small/thin packages.

Moisture sensitivity precautions, as indicated on packing, must be respected at all times.

17.3 Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

 Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.

9397 750 13461

Hi-Speed USB peripheral controller

- For packages with leads on two sides and a pitch (e):
 - larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
 - smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

 For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time of the leads in the wave ranges from 3 to 4 seconds at 250 °C or 265 °C, depending on solder material applied, SnPb or Pb-free respectively.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

17.4 Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 $^{\circ}$ C.

17.5 Package related soldering information

Table 107: Suitability of surface mount IC packages for wave and reflow soldering methods

Package ^[1]	Soldering method			
	Wave	Reflow ^[2]		
BGA, HTSSONT ^[3] , LBGA, LFBGA, SQFP, SSOPT ^[3] , TFBGA, USON, VFBGA	not suitable	suitable		
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP, HSQFP, HSSON, HTQFP, HTSSOP, HVQFN, HVSON, SMS	not suitable ^[4]	suitable		
PLCC ^[5] , SO, SOJ	suitable	suitable		
LQFP, QFP, TQFP	not recommended[5][6]	suitable		
SSOP, TSSOP, VSO, VSSOP	not recommended[7]	suitable		
CWQCCNL ^[8] , PMFP ^[9] , WQCCNL ^[8]	not suitable	not suitable		

^[1] For more detailed information on the BGA packages refer to the (*LF*)BGA Application Note (AN01026); order a copy from your Philips Semiconductors sales office.

9397 750 13461 Product data

^[2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods.

Hi-Speed USB peripheral controller

- [3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no account be processed through more than one soldering cycle or subjected to infrared reflow soldering with peak temperature exceeding 217 °C \pm 10 °C measured in the atmosphere of the reflow oven. The package body peak temperature must be kept as low as possible.
- [4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side, the solder might be deposited on the heatsink surface.
- [5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- [6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
- [7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.
- [8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by using a hot bar soldering process. The appropriate soldering profile can be provided on request.
- [9] Hot bar soldering or manual soldering is suitable for PMFP packages.

Hi-Speed USB peripheral controller

18. Revision history

Table 108: Revision history

Rev	Date	CPCN	Description
03	20040712	-	Product data (9397 750 13461)
			 Removed Jaz[®]
			 Figure 1 "Block diagram.": added 3.3 V to the RPU line
			 Table 2 "Pin description": updated description for pins 8, 10, 11, 12 and 63
			 Section 8.8 "SoftConnect": added the second paragraph
			• Table 4 "ISP1583 pin status ^[1] ": updated DREQ
			 Table 18 "Register overview": removed loopback mode in description of Fast Mode register
			 Section 9.3.5 "Buffer Status register (address: 1Eh)": updated the first paragraph and added a remark
			 Table 55 "DMA Configuration register: bit description^[1]": added table note 1
			 Table 99 "Dynamic characteristics": added V_{IN}
			 Table 104 "PIO mode timing parameters": updated table note 1
			 Table 106 "MDMA mode timing parameters": updated table note 1.
02	20040503	-	Product data (9397 750 12978)
01	20040225	-	Preliminary data (9397 750 11497)

Hi-Speed USB peripheral controller

19. Data sheet status

Level	Data sheet status ^[1]	Product status ^{[2][3]}	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

- [1] Please consult the most recently issued data sheet before initiating or completing a design.
- [2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- [3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

20. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

21. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors

customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

22. Trademarks

ACPI — is an open industry specification for PC power management, co-developed by Intel Corp., Microsoft Corp. and Toshiba

OnNow — is a trademark of Microsoft Corp.

SoftConnect — is a trademark of Koninklijke Philips Electronics N.V.

Zip — is a registered trademark of Iomega Corp.

Contact information

For additional information, please visit http://www.semiconductors.philips.com. For sales office addresses, send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

Fax: +31 40 27 24825

86 of 87

Hi-Speed USB peripheral controller

Contents

1	General description	. 1	9.4.4	DMA Hardware register (address: 3Ch)	
2	Features	. 2	9.4.5	Task File registers (addresses: 40h to 4Fh)	
3	Applications	. 2	9.4.6	DMA Interrupt Reason register (address: 50h)	
4	Abbreviations	. 3	9.4.7 9.4.8	DMA Interrupt Enable register (address: 54h)	
5	Ordering information	. 3	9.4.8 9.4.9	DMA Endpoint register (address: 58h)	
6	Block diagram		9.4.9	DMA Strobe filling register (address: 60ff)	
7	Pinning information		9.5	General registers	
-	_		9.5.1	Interrupt register (address: 18h)	
7.1	Pinning		9.5.2	Chip ID register (address: 70h)	
7.2	Pin description		9.5.3	Frame Number register (address: 74h)	
8	Functional description		9.5.4	Scratch register (address: 78h)	
8.1	DMA interface, DMA handler and DMA registers		9.5.5	Unlock Device register (address: 7Ch)	
8.2	Hi-Speed USB transceiver		9.5.6	Test Mode register (address: 84h)	
8.3	MMU and integrated RAM		10	Limiting values	
8.4	Microcontroller interface and microcontroller handle		11	Recommended operating conditions	
8.5	OTG SRP module				
8.6	Philips high-speed transceiver		12	Static characteristics	
8.6.1	Philips Parallel Interface Engine (PIE)		13	Dynamic characteristics	
8.6.2	Peripheral circuit		13.1	Register access timing	67
8.6.3	HS detection		13.1.1	Generic processor mode	
8.7	Philips Serial Interface Engine (SIE)		13.1.2	Split bus mode	
8.8	SoftConnect		13.2	DMA timing	
8.9			13.2.1	PIO mode	
8.10 8.11	Modes of operation		13.2.2	GDMA slave mode	
8.12	Interrupt		13.2.3	MDMA mode	
8.12.1	Interrupt output pin		14	Application information	80
8.12.2	Interrupt output piri		15	Test information	80
8.13	V _{BUS} sensing		16	Package outline	81
8.14	Power-on reset		17	Soldering	
8.15	Power supply		17.1	Introduction to soldering surface mount packages	
8.15.1	Power-sharing mode		17.1	Reflow soldering	
8.15.2	Self-powered mode		17.2	Wave soldering	
8.15.3	Bus-powered mode		17.3	Manual soldering	
9	Register description		17.5	Package related soldering information	
9.1	Register access		18	Revision history	
9.2	Initialization registers		19	Data sheet status	
9.2.1	Address register (address: 00h)		-		
9.2.2	Mode register (address: 0Ch)		20	Definitions	
9.2.3	Interrupt Configuration register (address: 10h)		21	Disclaimers	86
9.2.4	OTG register (address: 12h)		22	Trademarks	86
9.2.5	Interrupt Enable register (address: 14h)				
9.3	Data flow registers				
9.3.1	Endpoint Index register (address: 2Ch)	36			
9.3.2	Control Function register (address: 28h)	37			
9.3.3	Data Port register (address: 20h)	38			
9.3.4	Buffer Length register (address: 1Ch)	39			

© Koninklijke Philips Electronics N.V. 2004. Printed in The Netherlands

9.3.5

9.3.6

9.3.7 9.4

9.4.1

9.4.2 9.4.3

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

Buffer Status register (address: 1Eh)...... 40

Endpoint MaxPacketSize register (address: 04h) . . 41

Endpoint Type register (address: 08h) 42

DMA Configuration register (address: 38h) 47

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: 12 July 2004 Document order number: 9397 750 13461

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.