Module 11 Arithmetic Operations

S. Lakshmivarahan
School of Computer Science
University of Oklahoma
USA-73019
Varahan@ou.edu

Arithmetic Operations

- Our goal is to examine faster algorithms to add and multiply two
 n-bit integers
- To this end, we start by examining the grade school method for add and multiply

Recall the basic binary addition table

X	Υ	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	1	1

Let n=2^k and let a and b be two n-bit integers given by

$$a = a_{n-1}a_{n-2} \dots a_1 a_0$$
$$b = b_{n-1}b_{n-2} \dots b_1 b_0$$

• Let $s=s_ns_{n-1}\dots s_1s_0$ be the (n+1) bit integer that represents the sum s=a+b

Then,

	\mathbf{c}_{n}	C_{n-1}	C_{n-2}		C_2	c_{1}	c_0	
a=		a _{n-1}	a _{n-2}		a_2	a_1	a_0	
b=		b_{n-1}	b_{n-2}	•••	b ₂	b_1	b_0	
s=	s _n	S _{n-1}	S _{n-2}	•••	S_2	S_1	s_0	

• Where $c_0=0$ and $s_n=c_n$. The rest of the s_i , $0 \le i \le n-1$, are computed using the binary addition table.

- The total number of bit additions needed to compute s is 2n =
 O(n) and is known as the Boolean complexity.
- Note: In the unit cost model, the unit was taken as the time required to perform one basic operation- +,-,*,%, and ≥.
- However, in here our basic unit is the time taken to perform a one bit binary- AND, OR, NOT operation. Thus, the unit in this case (boolean complexity) is much smaller

• <u>Example</u>: Let n=4, a=11, b=15. Then s=26

	1	1	1	1	0	
a=		1	0	1	1	
b=		1	1	1	1	
s=	1	1	0	1	0	

Binary Multiply Grade School Method

• The basic binary multiplication table

X	Y	Product
0	0	0
0	1	0
1	0	0
1	1	1

Binary Multiply Grade School Method

Let n=2^k and let a and b be two n bit integers

• Example: n=4, a=11, b=15, ab=165

			a=		1	0	1	1
			b=		1	1	1	1
					1	0	1	1
				1	0	1	1	
			1	0	1	1		
		1	0	1	1			
ab=	1	0	1	0	0	1	0	1

← n-bit multiply

← n-bit multiply

← n-bit multiply

← n-bit multiply

← (n-1) addition of the above n n-bit integers

Binary Multiply Grade School Method

- Thus, it takes n² bit multiplications and (n-1) bit additions, each
 of which takes O(n) bit additions
- Thus, it takes O(n²) bit operations to multiply two n-bit integers

- Let $n=2^k$ and let $a=a_{n-1}a_{n-2}...a_2a_1a_0$ and $b=b_{n-1}b_{n-2}...b_1b_0$ be the n bit integers to be multiplied.
- Consider the polynomials A(x) and B(x) in x of degree n-1, given
 by

$$A(x) = \sum_{i=0}^{n-1} a_i x^i, \quad a_i \in \{0,1\} \rightarrow a = A(2)$$

$$B(x) = \sum_{i=0}^{n-1} b_i x^i, \quad b_i \in \{0,1\} \rightarrow b = B(2)$$

- Thus, there is a close correspondence between the integer arithmetic and polynomial arithmetic
- We now describe a divide and conquer based algorithm to multiply two polynomials
- This algorithm is due to Karatsuba and Ofman

First, divide the polynomials A(x) into two equal parts:

$$A(x) = A_L(x) + x^{n/2}A_H(x)$$

where

$$A_L(x) = \sum_{i=0}^{n/2-1} a_i x^i$$

$$A_H(x) = \sum_{i=0}^{n/2-1} a_i x^i$$

each of which is a polynomial of degree $(\frac{n}{2}-1)$

Similarly,

$$B(x) = B_L(x) + x^{n/2}B_H(x)$$

As an example, let n = 4. Then

$$A(x) = a_0 + a_2 x + a_2 x^2 + a_3 x^3$$

$$= (a_0 + a_2 x) + x^2 (a_2 + a_3 x)$$

$$= A_L(x) + x^2 A_H(x)$$

where

$$A_L(x) = a_0 + a_1 x$$

$$A_H(x) = a_2 + a_3 x$$

- Let c = ab and let C(x) be the polynomial corresponding to the product c
- Thus, C(x) = A(x) * B(x)
- Then, substituting for A(x) and B(x):

$$C(x) = \left(A_L(x) + x^{n/2}A_H(x)\right) * \left(B_L(x) + x^{n/2}B_H(x)\right) \rightarrow 1$$

where $A_L = A_L(x)$ and so on

If we multiply the right hand side, then we get

$$C(x) = A_L B_L + x^{\frac{n}{2}} (A_L B_H + A_H B_H) + x^n A_H B_H$$

• Since x=2, multiplying by $2^{\frac{n}{2}}$ and 2^n is equivalent to shifting the binary point to the right by $\frac{n}{2}$ and n locations respectively. Hence, these multiplications do not take much time.

• So, when we compute the r.h.s. of \bigcirc 1, we are left with 4 multiplications of polynomials of degree $\frac{n}{2}-1$.

$$A_LB_L$$
, A_LB_H , A_HB_L , and A_HB_H ,

and three polynomial additions of polynomials of degree at most 2n-2.

- Recall, each polynomial addition takes linear time in the degree of the polynomial.
- Hence, the three additions together takes no more than 3x(2n-2) ≤ 6n operations

 If T(n) is the time to multiply two polynomials of degree (n-1) each, then we get the following recursive tree that describes the above algorithm.

• Solving (2), it follows that

$$T(n) = O(n^{\log_2 4}) = O(n^2) \to 3$$

- That is, we divided but did not conquer it since ③ is also the time for the grade school method
- The conquering part is one that was introduced by Karatsuba and Ofman

- To compute the product C(x), first compute three intermediate polynomials
- Let

$$C_{L} = A_{L}B_{L}$$

$$C_{H} = A_{H}B_{H}$$

$$C_{M} = (A_{L} + A_{H})(B_{L} + B_{H})$$

$$(4)$$

involving a total of 3 multiplications of polynomials of degree $(\frac{n}{2}-1)$, (instead of the 4 such multiplications previously) and two additions.

- This is similar in idea to the Strassen's method, which trades the expensive multiplication for the cheap additions.
- Then, assemble the product as

$$C(x) = C_L + [C_M - C_L - C_H]x^{\frac{n}{2}} + C_H x^n \rightarrow \boxed{5}$$

• In \bigcirc 5, there are only 4 additions and there are no multiplications except those by x^n and $x^{\frac{n}{2}}$ which are very inexpensive.

· Combining,

$$T(n) = 3T\left(\frac{n}{2}\right) + \alpha n \to 6$$

where αn is the time to perform 6 additions of polynomials of degree less than or equal to 2n-2. Hence, the constant in 6 is $\alpha \leq 12$.

• Solving (6), it follows that

$$T(n) = O(n^{\log_2 3})$$

= $O(n^{1.58})$

which is much faster than the grade school method

Homework

- 1. Multiplying the r.h.s. of (5), verify that you get the same answer as in (1).
- 2. Solve the recurrences in ② and in ⑤ exactly and verify the answers

Faster Multiplication

- The question now comes: can we multiply integers ever faster than O(n^{1.58}).
- The answer is indeed Yes! The fastest known algorithm takes only $O(\log n)$ time and is due to Schonhage and Strassen (1971)

Faster Multiplication

- A detailed analysis of this parallel algorithm is given in Chapter 3 of the following book:
- S. Lakshmivarahan and S.H. Dhall (1990). <u>Analysis and Design of</u>
 <u>Parallel Algorithms: Arithmetic and Matrix Problems</u>, McGraw
 Hill, New York

• Let s = a + b where

$$a = a_{n-1} a_{n-2} ... a_2 a_1 a_0$$

$$b = b_{n-1} b_{n-2} \dots b_2 b_1 b_0$$

And

$$s = s_n s_{n-1} ... s_2 s_1 s_0$$

Recall that

$$s_i = a_i \oplus b_i \oplus c_i, 0 \le i \le n-1$$

$$s_n = c_n, c_0 = 0 \text{ and for } 1 \le i \le n$$

$$c_i = (a_i \land b_i) \lor (a_i \land c_{i-1}) \lor (b_i \land c_{i-1})$$

where

Λ is the Boolean AND
v is the Boolean OR
\oplus is the exclusive OR

Λ	0	1
0	0	0
1	0	1

V	0	1
0	0	1
1	1	1

\oplus	0	1
0	0	1
1	1	0

• The expression for c_i can be rewritten as

$$c_i = g_i \wedge (p_i \wedge c_{i-1}) \rightarrow \bigcirc$$

where

 $g_i = a_i \wedge b_i$, the generate bit

 $p_i = a_i \vee b_i$, the propogate bit

• That is, c_i in (2) is given by the first order linear Boolean recurrence

• We can write (2) as

$$c_i = f_i(c_{i-1}) \rightarrow 3$$

where the Boolean function depends on two Boolean parameters g_i and p_i , $1 \le i \le n$

• Iterating ③, we readily obtain

$$c_1 = f_1(c_0)$$

$$c_2 = f_2(c_1) = f_2(f_1(c_0)) = f_1 \circ f_2(c_0)$$

$$c_3 = f_3(c_2) = f_1 \circ f_2 \circ f_3(c_0)$$
...
$$c_n = f_1 \circ f_2 \circ f_3 \circ \dots \circ f_n(c_0)$$
where $f_1 \circ f_2(c_0) = f_2(f_1(c_0))$

Property of the Composition

- f_1 o f_2 (c_0) is the binary operation of the composition of f_1 and f_2 (from left to write)
- What is f_1 o f_2 (c_0)?
- Recall, f_i o f_j $(x) = f_j(f_i(x))$ $= f_j(g_i \lor (p_i \land x))$ $= g_j \lor (p_j \land [g_i \lor (p_i \land x)])$ $= [g_i \lor (p_i \land g_i)] \lor [(p_i \land p_i) \land x]$

- Thus, $f_i \circ f_j(x) = G \lor (P \land x) \rightarrow \bigcirc$
- Where $G=g_i \lor (p_i \land g_j)$ is the new generate bit and $P=(p_i \land p_j)$ is the new propagate bit
- Thus, the functions f_i and f_j are composed, and the resulting function is of the same type as f_i and f_j
- This is called the <u>reproducibility property</u> under composition.

Homework

3. Verify that

$$f_1 \circ f_2 \circ f_3(x) = (f_1 \circ f_2) \circ f_3(x)$$

= $f_1 \circ (f_2 \circ f_3)(x)$

4. Thus, the composition of functions is an associative, binary operation

 Our goal is to compute the parameters of the series of n functions in 4 repeated here for convenience:

```
f_1
f_1 \circ f_2
f_1 \circ f_2 \circ f_3
f_1 \circ f_2 \circ f_3 \circ \dots \circ f_n
f_1 \circ f_2 \circ f_3 \circ \dots \circ f_n
```

Parallel Algorithm for Integer Addition

- Since each function in 6 is of the type 5, we can evaluate them all at c_0 to get all the carry bits c_1 to c_n .
- Computing these composite functions where the composition of functions is an associative binary operation is known as the <u>prefix problem</u>.

Parallel Algorithm for Integer Addition

- There are circuit based efficient parallel algorithms to compute these composite functions in $O(\log n)$ time.
- To enable this, we now digress to describe the prefix problem and some of the ideas to compute them in parallel.

- Let $\{x_i, x_2, ..., x_n\}$ be a set of n numbers, and let + denote an associative binary operation- such as addition or multiplication of numbers.
- Our goal is to compute 6.
- This is called the prefix problem, all partial sum problem, etc.

To compute these serially, let (y₁, y₂, ..., y_n) be an array. Then,

$$y_1 = x_1$$

$$DOi = 2 to n$$

$$y_i = y_{i-1} + x$$

END DO

is the serial algorithm to compute the n prefixes in (6)

- Clearly, the serial time $T_s(n) = n-1$.
- The question now is: can we compute 6 in parallel in a time faster than O(n)?
- To answer this, we first represent the serial algorithm as an ninput, n-output layered circuit as shown below.

1. Serial Circuit

• Let n=6:

 denotes the operation of addition of two inputs into it

$$i:j = x_i + x_{i+1} + ... + x_j$$
 for $i \le j$

The Prefix Problem: Serial Circuit

- There are two parameters that describe the performance of this circuit- size and depth
- The size (n) = total number of operation nodes.
- For the serial circuit with n=6, size(6) = 5. In general, the size of the serial circuit denotes the total number of operations, and s(n) = n-1

The Prefix Problem: Serial Circuit

- The depth, d(n) of the serial circuit is the length of the longest path- it denotes the time.
- For the illustration with n=6, d(6) = 5. In general, d(n) = n-1

The Prefix Problem: Serial Circuit

- Another quantity of interest is called the size+depth
- In general for the serial circuits,

$$s(n) + d(n) = 2n-2$$

• We move to describing parallel circuits to compute the prefixes with depth of order of log n.

- 1. <u>Divide and Conquer Circuit</u>: (DC-Circuit)
- Let n=2^k. For n=2, the DC circuit DC(2) is given by

with s(n)=1, d(n)=1

• The structure is quite explanatory. The last output of the first $DC(\frac{n}{2})$ box is combined with each out of the second $DC(\frac{n}{2})$ box to get the overall correct results.

Clearly,

$$s(n) = 2s\left(\frac{n}{2}\right) + \frac{n}{2}, \ s(2) = 1$$

$$d(n) = d\left(\frac{n}{2}\right) + 1, \ d(2) = 1$$

Solving, we get

$$s(n) = \frac{n}{2} \log n$$

$$d(n) = \log n$$

$$9$$

- Homework: Solve (8) and verify the answers in (9).
- While we have achieved our goal of log n, it is achieved at the cost of performing a whole lot of operations of the order n log n.

50

DC Circuit Examples

$$s(4) = 4$$

 $d(n) = 2$

DC Circuit Examples

$$s(8) = 12$$

 $d(8) = 3$

- Homework: Draw DC(16). Compute s(16), d(16).
- We now provide a third class of circuits that, while it keeps the depth to be O(log n), it reduced the size to O(n) instead of O(n log n).

- Brent-kung prefix circuit: BK(N)
- Let n=2^k
- BK(2):

Now

$$s(n) = s\left(\frac{n}{2}\right) + (n-1)$$

$$d(n) = d\left(\frac{n}{2}\right) + 2$$

Hence

$$s(n) = 2n - \log n - 2$$

$$d(n) = 2\log n - 2$$

- Homework: Solve 10
- Notice that while the depth is still O(log n), the size has reduced considerably to linear in n.

Example of BK(8)

Back to Parallel Adder Circuit

- We can now use BK(n) to compute the prefixes in in O(log n) time.
- We now provide a layout of the parallel adder.

Parallel Adder Circuit

Parallel Adder Circuit

- Hence, overall depth is of the form $\propto + \beta \log n$ for some constants \propto and β .
- This is the fastest known algorithm to add two n-bit integers.
- <u>Reference</u>: S. Lakshmivarahan and S. K. Dhall (1994). <u>Parallel</u>
 <u>Computation using the Prefix Problem</u>, Oxford University Press.