Module 2 overview

lecture

- 1. Introduction to the module
- 2. Rational protein design
- 3. Fluorescence and sensors
- 4. Protein expression

SPRING BREAK

- 5. Review & gene analysis
- 6. Purification and protein analysis
- 7. Binding & affinity measurements
- 8. High throughput engineering

lab

- 1. Start-up protein eng.
- 2. Site-directed mutagenesis
- 3. DNA amplification
- 4. Prepare expression system
- 5. Gene analysis & induction
- 6. Characterize expression
- 7. Assay protein behavior
- 8. Data analysis

Lecture 4: Protein expression & purification

- I. Why express & purify proteins?
 - A. Scientific applications
 - B. Applications in industry, etc.
- II. Protein expression systems
 - A. Alternatives to protein expression
 - B. Prokaryotic and eukaryotic systems

Laboratory uses of purified proteins

Biochemistry analysis

Structural biology

Research biochemicals

Image removed due to copyright restrictions.

Photo of New England BioLabs biochemical vials.

From top, left: biochemistry lab, public domain (c. 1920), McGill University; protein crystal, public domain, NASA; NMR tubes photo, courtesy of Agilent Technologies, Inc, used with permission.

Protein therapeutics

Product (generic)/ marketing company	2001 (\$million)	2002 (\$million)	2003 (\$million)	Growth (decline) 2002 2003 (%)
Procrit (epoetin alfa)/ Johnson & Johnson	3,430	4,269	3,986	(6.6)
Epogen (epoetin alfa)/ Amgen	2,108	2,261	2,435	7.7
Neupogen (filgrastim)/ Amgen	1,346	1,380	1,268	(8.1)
Neulasta (pegfilgrastim)/ Amgen	0	464	1,255	170.5
Novolin (insulin systemic)/ Novo Nordisk	2,244	2,255	2,235	(0.9)
Avonex (interferon beta-1a)/ Biogen IDEC	971	1,034	1,170	13.2
PEG-Intron A franchise (pegylated interferon alpha)/ Schering Plough	1,447	2,736	1,851	(32.3)
Enbrel (etanercept)/ Amgen	856	521	1,300	149.5
Aranesp (darbepoetin alfa)/ Amgen	42	416	1,544	271.2
NeoRecormon (epoetin-beta)/ Roche	479	766	1,318	72.1
Top ten product sales	12,923	16,102	18,362	14.0
Others	8,547	10,833	13,703	26.5
Total market value	21,470	26,935	32,065	19.0

+ Fc antibody domain epo engineered to have additional glycoslyation sites

TNF ligand binding domain

PEGylated

PEGylated

Pavlou & Reichert (2004) Nat. Biotechnol.

Reprinted by permission from Macmillan Publishers Ltd: Nature Biotechnology.

Source: Pavlou, A. K., and J. M., Reichert. "Recombinant Protein Therapeutics—Success Rates, Market Trends and Values to 2010." *Nature Biotechnology* 22 (2004): 1513-1519. © 2004.

Product images removed due to copyright restrictions. Box of laundry detergent; packet of dry beer enzyme; book cover of "What's in your Milk?"; bottle of whey protein isolate nutritional supplement; box of cosmetic Botox.

Photos removed due to copyright restrictions. Bulgarian dissident Georgi Markov, assasinated with ricin in 1978. Replica of umbrella gun used to kill Georgi Markov:

 $see\ http://www.washingtontimes.com/news/2008/sep/04/london-umbrella-killing-likely-to-remain-unsolved/london-umbrella-killing-umbrella-killing-umbrella-killing-umbrella-killing-umbrella-killing-umbrella-killing-umbrella-killing-umbrella-killin$

Castor beans, above right, used to manufacture the toxin ricin. (Public domain image, USDA)

How can proteins be produced?

- 1. Purify from natural source advantages: no chemistry or DNA manipulation required, proteins likely to fold properly, assemble with native cofactors, etc. disadvantages: usually only practical for high abundance proteins, source-specific purification method required
- Synthesize de novo advantages: no DNA manipulation required, synthesis methods well established, proteins produced are relatively pure disadvantages: relatively expensive, becomes extremely difficult for polypeptides > 50 amino acids
- 3. Express and purify from a dedicated expression system *advantages:* cheap and frequently high-yield, versatile expression systems already established *disadvantages:* cloning required, troubleshooting often needed to obtain high expression and proper folding

Solid phase peptide synthesis is a reliable technique for generating short polypeptides

Images removed due to copyright restrictions.

See Chan, W. C., and P. D., White. *Fmoc Solid Phase Peptide Synthesis*.

New York, NY: Oxford University Press, 2000. ISBN: 9780199637249.

www.pitt.edu

E. coli are the most common host for recombinant gene expression

inserted genes may be homologous or heterologous proteins, fusion proteins, or entirely novel constructs

Diagrams removed due to copyright restrictions.

Once a foreign gene has been introduced, how does protein expression take place?

The *lac* operon is the basis for the most common bacterial protein expression systems

Two diagrams removed due to copyright restrictions.

Lactose Hydrolyzed into Galactose and Glucose; structures of 1,6 allolactose and IPTG

Fig 31.8, *Induction of the LAC Operon.* In Berg, Tymoczko, and Stryer. *Biochemistry.*5th ed. W. H., Freeman, 2002.

Other induction systems can also be used for protein expression in *E. coli:* arabinose system is considered to be more tightly controlled than the *lac* operon

Diagrams removed due to copyright restrictions.

ara system is also compatible with T7-based vectors

Differences between prokaryotic and eukaryotic proteins sometimes require eukaryotic expression systems.

These two proteins exemplify characteristics that frequently call for eukaryotic expression:

Image removed due to copyright restrictions.

Three dimensional structure of bovine rhodopsin.

www.rcsb.pdb.org www.rikenresearch.riken.jp

Eukaryotic expression vectors share features with bacterial systems

selection markers for bacterial and eukaryotic cell growth

 Tet repressor (tetR) protein is expressed from pcDNA6/TR[®] in cultured cells.

 TetR homodimers bind to Tet operator 2 (TetO₂) sequences in the inducible expression vector, repressing transcription of the gene of interest.

- Upon addition, tetracycline (tet) binds to tetR homodimers.
- 4. Binding of tet to tetR homodimers causes a conformational change in tetR, release from the Tet operator sequences, and induction of transcription from the gene of interest.

Invitrogen (2006) T-REx System

Courtesy of Life Technologies, Carlsbad CA. Used with permission.

Prokaryotic vs. eukaryotic protein expression

property	prokaryotic	higher eukaryotic
yield/(L culture)	1-100 mg	widely variable
cost/(L medium)	~\$5	~\$50
introduction of DNA	transformation of competent cells	viral or nonviral transfection
handling	sterile needles, etc.	tissue culture hood
cell incubation	shaking incubator	usu. w/CO ₂ -control
induction	usually IPTG	none, tetracycline
glycosylation, etc.	no	yes
notes	best for small, globular proteins	best for complex, eukaryotic proteins

MIT OpenCourseWare http://ocw.mit.edu

20.109 Laboratory Fundamentals in Biological Engineering Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.