Aggregating Expert Ratings with IRT Models: The V-Dem Methodology

Juraj Medzihorsky

V-Dem Institute & Durham University

10 February 2022

Credits

Based on work by V-Dem's measurement and data teams

- Dan Pemstein,
- Kyle L. Marquardt
- Eitan Tzelgov
- Yi-ting Wang
- Joshua Krusell
- Farhad Miri
- Johannes von Röemer

The Data

Undo

Elections (Austria)

 Read Question. 2. Click & drag to select years. 3. Apply or Edit specific dates, if desired. 4. Apply or type response. 5. Rate Confidence. 6. Submit. 7. Repeat for remaining years. 8. Click "Next".

(Regional government elected):

At the regional level, are government offices elected in practice?

"Government offices" here refers to a regional securities and a regional assembly, not a judicidary and not micro bursacrusts. An executive is a single individual for a very small group) (e.g., a governor). An assembly is a larger body of officials, who may be divided into two chambers. "Elector first so foliciss that are directly elected by circurs or indirectly elected by a regional elected assembly. Mo other methods of obtaining office – including appointment by higher or lower levels of government—a considered but non-electists. In classifying a player of sizely elected of government—are considered but non-electists. In classifying the reference of the electric of government are considered by non-electists. In classifying the reference of the electric of government are considered to be non-electric in classifying the reference of the electric of power conducted generally lakes office.

	Min: 0 Max: 5	
	(0) Generally, offices at the regional level are not elected.	
	(1) Generally, the regional executive is elected but not the assembly.	
	(2) Generally, the regional assembly is elected but not the executive.	
	(3) Generally, the regional executive is elected and there is no assemb	ly.
	(4) Generally, the regional assembly is elected and there is no executing	re.
	(5) Generally, the regional executive and assembly are elected.	
	Confidence: 0%	
	I have no idea at all. [Any scores accompanied by a confidence level of zero will be treated as missing data.]	
	Submit	
	Jump To Question: :	
Regiona	government elected	\$
Previou	Ne Ne	xt

Exit

00 01 02 03 04 05 06 07 08 09 2005 2005 2006 2007 2008 2009 2010 2010 2011 2012 2013 2014 2015 2016 2017 2014

Click and drag to select range of years.

Specific Dates:

Add Del Edit

Legend

'

': At least one date in this cell does not have an answer.

'All dates in this cell have an answer, but at least one does not have a confidence rating.

' ' : All dates in this cell have both an answer and a confidence rating.

Executive Embezzlement in Džundža

Never						 				
Occasionaly						 				
Half the time										
Often										
Constantly	1991	1	1	1	- 1	1	1	T	02 200:	

Executive Embezzlement in Džundža

Occasionaly - + Half the time Often - + + + Constantly --+--+---1992 1993 1994 1995 1996 1997 2001

Executive Embezzlement in Džundža

Occasionaly -Half the time Often Constantly — • • • • • • • • 2001

Executive Embezzlement in Molvamark

es, with xclusive omains

shared

No

This is not all ...

Survey Design

Expert

Expert

Modeling The Data Generating Process


```
y_{ie} \sim Categorical(\mathbf{p}_{ie})
 \mathbf{p}_{ie} = \{p_{ie1}, \ldots, p_{ieK}\}
p_{iek} = \phi \left( \tau_{ek+1} - \beta_e \zeta_i \right) - \phi \left( \tau_{ek} - \beta_e \zeta_i \right)
 \tau_e = \{ \tau_{e1} = -\infty, \dots, \tau_{eK-1}, \tau_{eK+1} = \infty \}
 \tau_{ek} \sim Normal\left(\tau_{c[e]k}^C, 0.25\right), k \in \{2, \dots, K-1\}
 \tau_{ck}^C \sim Normal(\tau_k^W, 0.25)
\tau_{k}^{W} \sim Uniform(-6, 6)
  \beta_e \sim Normal^+(1, 1)
  \zeta_i \sim Normal(z_i, 1)
```

"item response theory"

Articles About 178,000 results (0.13 sec)

[воок] Item response theory

SE Embretson, SP Reise - 2013 - taylorfrancis.com

This book develops an intuitive understanding of IRT principles through the use of graphical displays and analogies to familiar psychological principles. It surveys contemporary IRT

☆ Save 兒 Cited by 6890 Related articles All 8 versions >>>

Sort by relevance Sort by date

Custom range...

Any type

Any time

Since 2022

Since 2021

Since 2018

Review articles

include patents✓ include citations

Create alert

[воок] The basics of item response theory

FB Baker - 2001 - ERIC

... of **item response theory** would not be where it is today. ... on **item response theory**, which resulted in the first edition of this book in 1985. This suggestion allowed me to fulfill a long-standing desire to develop an instructional software package dealing with **item response theory** for ...

review a variety of IRT [item response theory] models that can be used with items scored dichotomously or polychotomously/methods of estimation and appropriate computer programs

models, estimation methods, and computer programs. Polytomous IRT models are given central ...

Item response theory.

F Drasgow, CL Hulin - 1990 - psycnet.apa.org

are also described/emphasis... is placed on applications of IRT to important measurement ...
☆ Save 夘 Cite Cited by 234 Related articles

☆ Save 59 Cite Cited by 2490 Related articles All 2 versions >>>

[воок] Item response theory: Principles and applications

RK Hambleton, H Swaminathan - 2013 - books google.com
... Despite these early research efforts, interest in **item response theory** lay dormant until the

... Despite these early research efforts, interest in **item response theory** lay dormant until the late 1960s and took a backseat to the emerging ...," gave rise to a resurgence of interest in **item response theory**. Impetus for the development of **item response theory** as we now know it was ... ☆ Save 切 Cite Cited by 4131 Related articles All 3 versions ≫

- Bayesian hierarchical IRT model
 - ▶ IRT: each expert gets their own thresholds au and reliability eta
 - ▶ Bayesian: full generative model with parameter distributions
 - Hierarchical: experts' thresholds are regularized towards their countries' thresholds which are in turn regularized towards the global thresholds
- Related to the Graded Response Model (Samejima)
- Alternative to Aldrich-McKelvey Scaling

```
y_{ie} \sim Categorical(\mathbf{p}_{ie})
 \mathbf{p}_{ie} = \{p_{ie1}, \ldots, p_{ieK}\}
p_{iek} = \phi \left( \tau_{ek+1} - \beta_e \zeta_i \right) - \phi \left( \tau_{ek} - \beta_e \zeta_i \right)
 \tau_e = \{ \tau_{e1} = -\infty, \dots, \tau_{eK-1}, \tau_{eK+1} = \infty \}
 \tau_{ek} \sim Normal\left(\tau_{c[e]k}^C, 0.25\right), k \in \{2, \dots, K-1\}
 \tau_{ck}^C \sim Normal(\tau_k^W, 0.25)
\tau_{k}^{W} \sim Uniform(-6, 6)
  \beta_e \sim Normal^+(1, 1)
  \zeta_i \sim Normal(z_i, 1)
```

$$\begin{aligned} y_{ie} &\sim Categorical\left(\boldsymbol{p}_{ie}\right) \\ \boldsymbol{p}_{ie} &= \left\{p_{ie1}, \ldots, p_{ieK}\right\} \\ p_{iek} &= \phi\left(\tau_{e,k+1} - \beta_e \zeta_i\right) - \phi\left(\tau_{ek} - \beta_e \zeta_i\right) \\ \tau_e &= \left\{\tau_{e1} = -\infty, \ldots, \tau_{eK-1}, \tau_{eK+1} = \infty\right\} \\ \tau_{ek} &\sim Normal\left(\tau_{c[e]k}^C, 0.25\right), \ k \in \left\{2, \ldots, K-1\right\} \\ \tau_{ck}^C &\sim Normal\left(\tau_k^W, 0.25\right) \\ \tau_k^W &\sim Uniform\left(-6, 6\right) \\ \beta_e &\sim Normal^+\left(1, 1\right) \\ \zeta_i &\sim Normal\left(z_i, 1\right) \end{aligned}$$

$$y_{ie} \sim Categorical(\mathbf{p}_{ie})$$

 $\mathbf{p}_{ie} = \{p_{ie1}, \dots, p_{ieK}\}$

Observed ratings

Fitted ratings

$$y_{ie} \sim Categorical(p_{ie})$$

$$p_{ie} = \{p_{ie1}, \dots, p_{ieK}\}$$

$$p_{iek} = \phi(\tau_{e,k+1} - \beta_e \zeta_i) - \phi(\tau_{ek} - \beta_e \zeta_i)$$

$$\tau_e = \{\tau_{e1} = -\infty, \dots, \tau_{eK-1}, \tau_{eK+1} = \infty\}$$

$$\tau_{ek} \sim Normal(\tau_{c[e]k}^C, 0.25), k \in \{2, \dots, K-1\}$$

$$\tau_{ck}^C \sim Normal(\tau_k^W, 0.25)$$

$$\tau_k^W \sim Uniform(-6, 6)$$

$$\beta_e \sim Normal^+(1, 1)$$

$$\zeta_i \sim Normal(z_i, 1)$$

$$p_{iek} = \phi \left(\tau_{e,k+1} - \beta_e \zeta_i \right) - \phi \left(\tau_{ek} - \beta_e \zeta_i \right)$$

$$p_{iek} = \phi \left(\tau_{e,k+1} - \beta_e \zeta_i \right) - \phi \left(\tau_{ek} - \beta_e \zeta_i \right)$$

$$p_{iek} = \phi \left(\tau_{e,k+1} - \beta_e \zeta_i \right) - \phi \left(\tau_{ek} - \beta_e \zeta_i \right)$$

$$p_{iek} = \phi \left(\tau_{e,k+1} - \beta_e \zeta_i \right) - \phi \left(\tau_{ek} - \beta_e \zeta_i \right)$$

 $p_{iek} = \phi \left(\tau_{e,k+1} - \beta_e \zeta_i \right) - \phi \left(\tau_{ek} - \beta_e \zeta_i \right)$

$p_{iek} = \phi \left(\tau_{e,k+1} - \beta_e \zeta_i \right) - \phi \left(\tau_{ek} - \beta_e \zeta_i \right)$

The V-Dem Measurement Model

```
\tau_e = \{ \tau_{e1} = -\infty, \dots, \tau_{eK-1}, \tau_{eK+1} = \infty \}
\tau_{ek} \sim Normal\left(\tau_{c[e]k}^C, 0.25\right), k \in \{2, \dots, K-1\}
\tau_{ck}^C \sim Normal(\tau_k^W, 0.25)
\tau_{k}^{W} \sim Uniform(-6, 6)
```

$$\tau_{ek} \sim Normal\left(\tau_{c[e]k}^{C}, 0.25\right), k \in \{2, \dots, K-1\}$$

$$\tau_{ck}^{C} \sim Normal\left(\tau_{k}^{W}, 0.25\right)$$

$$\tau_{k}^{W} \sim Uniform\left(-6, 6\right)$$

The V-Dem Measurement Model

$$y_{ie} \sim Categorical(p_{ie})$$

$$p_{ie} = \{p_{ie1}, \dots, p_{ieK}\}$$

$$p_{iek} = \phi(\tau_{e,k+1} - \beta_e \zeta_i) - \phi(\tau_{ek} - \beta_e \zeta_i)$$

$$\tau_{ek} \sim Normal(\tau_{c[e]k}^C, 0.25), k \in \{2, \dots, K-1\}$$

$$\tau_{ck}^C \sim Normal(\tau_k^W, 0.25)$$

$$\tau_k^W \sim Uniform(-6, 6)$$

$$\beta_e \sim Normal^+(1, 1)$$

$$\beta_e \sim Normal^+(1, 1)$$

$$\zeta_i \sim Normal(z_i, 1)$$

The V-Dem Measurement Model

$$y_{ie} \sim Categorical(p_{ie})$$

$$p_{ie} = \{p_{ie1}, \dots, p_{ieK}\}$$

$$p_{iek} = \phi(\tau_{e,k+1} - \beta_e \zeta_i) - \phi(\tau_{ek} - \beta_e \zeta_i)$$

$$\tau_{ek} \sim Normal(\tau_{c[e]k}^C, 0.25), k \in \{2, \dots, K-1\}$$

$$\tau_{ck}^C \sim Normal(\tau_k^W, 0.25)$$

$$\tau_k^W \sim Uniform(-6, 6)$$

$$\beta_e \sim Normal^+(1, 1)$$

$$\beta_e \sim Normal^+(1, 1)$$

$$\zeta_i \sim Normal(z_i, 1)$$

- Probabilistic programming language
- Bayesian and penalized likelihood estimation
- No-U-turns sampler (NUTS), Hamiltonian Monte Carlo
- Many interfaces: R, python, Stata etc.


```
y_{ie} \sim Categorical(\mathbf{p}_{ie})
 p_{ie} = \{p_{ie1}, \dots, p_{ieK}\}
p_{iek} = \phi \left( \tau_{ek+1} - \beta_e \zeta_i \right) - \phi \left( \tau_{ek} - \beta_e \zeta_i \right)
 \tau_e = \{ \tau_{e1} = -\infty, \dots, \tau_{eK-1}, \tau_{eK+1} = \infty \}
 \tau_{ek} \sim Normal\left(\tau_{c[e]k}^C, 0.25\right), k \in \{2, \dots, K-1\}
 \tau_{ck}^C \sim Normal(\tau_k^W, 0.25)
\tau_{k}^{W} \sim Uniform(-6, 6)
  \beta_e \sim Normal^+(1, 1)
  \zeta_i \sim Normal(z_i, 1)
```

```
z_star ~ normal(0, 1);
for (j in 1:J)
 beta[j] ~ normal(1, 1)T[0,];
for (c in 1:C)
 tau_raw_country[c] ~ normal(tau_raw_world, 0.25);
for (j in 1:J)
 tau_raw_expert[j] ~ normal(tau_raw_country[expert_country[j]], 0.25);
for (r in 1:R) {
 p = Phi_approx(tau[j_id[r], y[r]+1] - z[cy_id[r]]*beta[j_id[r]])-
      Phi_approx(tau[j_id[r], y[r]] - z[cy_id[r]]*beta[j_id[r]]);
 target += log(p);
```

Demonstration

Demonstration

- https://github.com/jmedzihorsky/ELTE_29_01_2014/vdem_mm
- R and Stan code
- Data: a small slice of old V-Dem data

Thank you!