Representation Learning of Collider Events

Jack Collins

ML4Jets 2020

How Much Information is in a Jet?

Kaustuv Datta and Andrew Larkoski

Physics Department, Reed College, Portland, OR 97202, USA

How Much Information is in a Jet?

Kaustuv Datta and Andrew Larkoski

Physics Department, Reed College, Portland, OR 97202, USA

The Metric Space of Collider Events

Patrick T. Komiske,* Eric M. Metodiev,[†] and Jesse Thaler[‡]
Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and
Department of Physics, Harvard University, Cambridge, MA 02138, USA

Conclusions

- I have been training Variational Autoencoders to reconstruct jets or collider events using Earth Movers Distance as the reconstruction metric.
- The learnt representation:
 - 1. Is scale dependent
 - 2. Is orthogonalized
 - 3. Is hierarchically organized by scale
 - 4. Has fractal dimension which relates to that of the data manifold
- This is because:
 - 1. The VAE is trained to be parsimonious with information
 - 2. The metric space is physically meaningful and structured

The Plain Autoencoder

The Plain Autoencoder

Latent space =?= Learnt representation

The Plain Autoencoder: a toy example

The Plain Autoencoder: a toy example

The Plain Autoencoder: a toy example

- 1. The AE learns some dense packing of the data space
- 2. The latent representation is highly coupled with the expressiveness of the network architecture of the encoder and decoder

Loss =
$$|\mathbf{x}_{out} - \mathbf{x}_{in}|^2 / \beta^2 - \sum_{i=2}^{1} (1 + \log \sigma_i^2 - \mu_i^2 - \sigma_i^2)$$

Reconstruction error

 $KL(q(z|x)||p(z)) \sim "Information cost"$

Information and the loss function

Loss =
$$|\mathbf{x}_{out} - \mathbf{x}_{in}|^2 / \beta^2 - \sum_{i=1}^{1} (1 + \log \sigma_i^2 - \mu_i^2 - \sigma_i^2)$$

Loss =
$$|\mathbf{x}_{out} - \mathbf{x}_{in}|^2 - \beta^2 \sum_{i=1}^{1} (1 + \log \sigma_i^2 - \mu_i^2 - \sigma_i^2)$$

11

Information and the loss function

Loss =
$$|\mathbf{x}_{out} - \mathbf{x}_{in}|^2 / \beta^2 - \sum_{i=2}^{1} (1 + \log \sigma_i^2 - \mu_i^2 - \sigma_i^2)$$

1) β is dimensionful!

The same dimension as the distance metric, e.g. GeV.

Loss =
$$|\mathbf{x}_{out} - \mathbf{x}_{in}|^2 - \beta^2 \sum_{i=1}^{1} (1 + \log \sigma_i^2 - \mu_i^2 - \sigma_i^2)$$

12

Information and the loss function

$$\beta \rightarrow \infty$$

No info encoded in latent space

$\beta \ll$ Lengthscale

Info encoded in latent space

Loss =
$$|\mathbf{x}_{out} - \mathbf{x}_{in}|^2 - \beta^2 \sum_{i=2}^{1} (1 + \log \sigma_i^2 - \mu_i^2 - \sigma_i^2)$$

Information and the loss function

$$\beta \rightarrow \infty$$

No info encoded in latent space

$$\beta \ll$$
 Lengthscale

Info encoded in latent space

2) β is the cost for encoding information

The encoder will only encode information about the input to the extent that its usefulness for reconstruction is sufficient to justify the cost.

Loss =
$$|\mathbf{x}_{out} - \mathbf{x}_{in}|^2 - \beta^2 \sum_{i=1}^{3} (1 + \log \sigma_i^2 - \mu_i^2 - \sigma_i^2)$$

Information and the loss function

Loss =
$$|\mathbf{x}_{out} - \mathbf{x}_{in}|^2 / \beta^2 - \sum_{i=1}^{1} (1 + \log \sigma_i^2 - \mu_i^2 - \sigma_i^2)$$

3) β is the distance resolution in reconstruction space

The stochasticity of the latent sampling will smear the reconstruction at scale $\sim \beta$

Dimensionality

$$\langle |\Delta x|^2 \rangle = \sum \langle |\Delta x_i|^2 \rangle = D\rho^2 + \sum_{i>D} S_i^2$$

$$D = \frac{d\langle |\Delta x|^2 \rangle}{d\rho^2}$$

Setting $\frac{dL}{d\sigma} = 0$ implies:

1.
$$\rho = \beta$$

$$2. D = \frac{a \, KL}{d \log \beta}$$

Orthogonalization and Organization is Information-Efficient

Orthogonalization:

VS

Organization:

Distance between Jets:

Optimal Transport

EMD ≈ Sinkhorn Distance

I wish I had an extra 15 minutes to talk about this. Critical papers (for me):

arXiv:1306.0895 [stat.ML] M. Cuturi

Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances

arXiv:1706.00292 [stat.ML] A. Genevay, G. Peyré, M. Cuturi Learning Generative Models with Sinkhorn Divergences

arXiv:1805.11897 [stat.ML] G. Luise, A. Rudi, M. Pontil, C. Ciliberto Differential Properties of Sinkhorn Approximation for Learning with Wasserstein Distance

Jet VAE

Sinkhorn distance ≈ EMD

Exploring the Learnt Representation:

Exploring the Learn of the Lear

Latent Dimension

$$\beta = 40 \; GeV$$

Exploring the Learnt Representation:

Exploring the Learnt Representation:

Dimensionality

Future Directions

1. What is the point?

2. Alternative latent priors?

3. Alternative metrics?

Exploring the Learnt Representation:

ML Engineer:

"A VAE is a fancy AE with regulated stochastic latent space sampling"

Bayesian statistician:

"A VAE is a probability model trained to extremize the **E**vidence **L**ower **BO**und on the posterior distribution p(x)"

31