## **Algoritmos Genéticos**

- Introdução
- Histórico
- Algoritmo Genético Básico:
  - Representação de um indivíduo
  - Função de aptidão
  - Operadores genéticos
  - Critério de parada
  - Parâmetros Genéticos

#### Computação Evolutiva

- Os sistemas baseados em computação evolutiva mantêm uma população de soluções potenciais, aplicam processos de seleção baseados na adaptação de um indivíduo e também empregam outros operadores "genéticos".
- Diversas abordagens para sistemas baseados em evolução foram propostas, sendo que as principais diferenças entre elas dizem respeito aos operadores genéticos empregados.
- As principais abordagens propostas na literatura são:
  - Algoritmos Genéticos.
  - □ Programação Genética.
  - Estratégias Evolutivas.
  - □ Programação Evolutiva.

#### Computação Evolutiva

- Estratégias evolutivas foram inicialmente propostas com o objetivo de solucionar problemas de otimização de parâmetros. Utilizam apenas operadores de mutação.
- □ A programação evolutiva foi originalmente proposta como uma técnica para criar IA através da evolução de máquinas de estado finito. Ela também emprega apenas mutação. Recentemente, a programação evolutiva tem sido aplicada a problemas de otimização e é, neste caso, virtualmente equivalente às estratégias evolutivas; apenas pequenas diferenças no que diz respeito aos procedimentos de seleção

#### Computação Evolutiva

Os algoritmos genéticos visam formalizar matematicamente e explicar rigorosamente processos de adaptação em sistemas naturais e desenvolver sistemas artificiais (simulados em computador) que retenham os mecanismos originais encontrados em sistemas naturais.

Programação Genética: uma extensão dos algoritmos genéticos, denominada programação genética tem por objetivo básico evoluir programas de computador usando os princípios da evolução natural.

# Introdução

| Idealizado e formalizado por Jonh Holland - técnica de busca baseada n<br>Teoria da Darwin.                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Motivação:</li> <li>Como explicar a diversidade de animais? Como explicar sua evolução?</li> <li>Qual é a influência dos antepassados? Qual é a influência do meio ambiente?</li> </ul>                                                                                                                                                                                                                                                                                                              |
| <ul> <li>Algoritmos Genéticos (AG): são métodos de busca e otimização:</li> <li>Inspirados nos mecanismos de evolução dos seres vivos.</li> <li>Seguem o princípio da seleção natural e sobrevivência dos mais aptos.</li> <li>Utiliza uma população de soluções candidatas (indivíduos).</li> <li>Operadores de reprodução geram novos indivíduos.</li> <li>Depois de várias gerações, populações naturais evoluem de acordo com os princípios de seleção natural e sobrevivência dos mais aptos.</li> </ul> |

#### **Histórico**

- □ 1859: Charles Darwin DARWIN (1859) apresentou as seguintes hipóteses para explicar o processo de seleção natural:
  - Os filhos tendem a ser em maior número que os pais;
  - O número de indivíduos de uma espécie permanece aproximadamente constante;
  - De (1) e (2), conclui-se que vai haver uma luta pela sobrevivência;
  - Dentro de uma mesma espécie, os indivíduos apresentam pequenas diferenças, sendo que a maioria delas também está presente nos respectivos pais;
  - Algum processo de variação continuada deve ser responsável pela introdução de novas informações junto à carga genética dos organismos;
  - Não há limite para a sucessão de variações que podem ocorrer;
  - A seleção natural é o mecanismo para preservação das novas informações que correspondam a uma maior adaptação.

#### **Histórico**

- □ 1859: Charles Darwin
  - Pela lei da Seleção Natural que os seres mais adaptados aos seus ambientes sobrevivem.
- □ 1865: Gregor Mendel
  - Formalizou a "herança de características", com a teoria do DNA (ervilhas).
- □ 1901: Hugo De Vries
  - Formalizou o processo de geração de diversidade: Teoria da Mutação

## Algoritmo Genético Básico



#### Algoritmo Genético Básico

```
    t=0
    Gera população inicial G(t)
    Aptidão G(t)
    Enquanto (t<=NG) e (sol. Ótima - sol. Atual > erro) faça
        t=t+1
        Gera descendentes aplicando operador de cruzamento
        Gera descendentes aplicando operador de mutação
        Gera G(t) a partir dos descendentes e G(t-1)
        Aptidão G(t)
```

# Questões: Como representar os indivíduos? Quem é a população inicial? Como definir a função de avaliação (aptidão)? Quais são os critérios de seleção? Como aplicar/definir o operador de cruzamento? Como aplicar/definir o operador de mutação? Como garantir a convergência e ao mesmo tempo a solução ótima?

## AG: Representação do Cromossomo

- Solução potencial para um problema é definida por um conjunto de parâmetros (genes).
  - ☐ Parâmetros são combinados para formar os cromossomos.
- Tipos de representação: vetores, matrizes, árvores, listas.
- □ Cromossomos podem ser estruturas dos seguintes tipos:
  - Binários
     1
     0
     1
     0
     0

     Inteiros
     1
     7
     -4
     0
     -12

     Reais
     3.2
     -1.1
     0.7
     9.2
     -2.6
- ☐ Tradicionalmente, os indivíduos são representados por vetores binários: 1 (presença) e 0 (ausência).

#### AG: Representação do Cromossomo

PROBLEMA 1: EQUAÇÃO DO SEGUNDO GRAU(X<sup>2</sup>+3X-4)  $\square$  Cromossomo: vetor  $\rightarrow$  IND[8] □ Alfabeto: {0,1} PROBLEMA 2: CAIXEIRO VIAJANTE (N cidades)  $\square$  Cromossomo: vetor  $\rightarrow$  IND[N] ☐ Alfabeto: {1,...,N} □ PROBLEMA 3: N RAINHAS (N cidades)  $\square$  Cromossomo: Matriz  $\rightarrow$  IND[N][2] □ Alfabeto: {1,...,N}

#### População Inicial

- A iniciação de um AG clássico se caracteriza pela síntese de um conjunto de soluções factíveis geradas aleatoriamente. As iniciações mais tradicionais são: Randômica uniforme: cada gene do indivíduo receberá como valor um elemento do conjunto de alelos sorteado de forma aleatoriamente uniforme. Randômica não-uniforme: determinados valores a serem armazenados no gene tendem a ser escolhidos com frequência maior que o restante. Randômica com dope: indivíduos otimizados são inseridos em meio à população aleatoriamente gerada.
  - Parcialmente enumerativa: são inseridos na população indivíduos de forma a fazer com que essa comece o processo de evolução possuindo todos os esquemas possíveis de uma determinada ordem.

#### População Inicial

- ☐ PROBLEMA 1: EQUAÇÃO DO SEGUNDO GRAU(X²+3X-4)
  - $\square$  TP = 6 $\rightarrow$  POP[TP][8]
  - □ Exemplo:

| 1 | 0001010 |
|---|---------|
| 1 | 0100000 |
| 1 | 0100000 |
| 1 | 0100000 |
| 1 | 0100000 |
| 1 | 0100000 |

- □ PROBLEMA 2: CAIXEIRO VIAJANTE (N cidades)
  - $\square$  Cromossomo: vetor  $\rightarrow$  IND[N]
  - ☐ Alfabeto: {1,...,N}

- □ PROBLEMA 3: N RAINHAS (N cidades)
  - $\square$  Cromossomo: Matriz  $\rightarrow$  IND[N][2]
  - ☐ Alfabeto: {1,...,N}

- Mede o grau de aptidão de um indivíduo (o quão bom ele é para a solução do problema proposto):
  - ☐ É uma função que recebe como parâmetro de entrada um indivíduo e retorna um valor numérico que representa o quanto o indivíduo está próximo da solução desejada.
- Aptidão é a probabilidade do indivíduo sobreviver para a próxima geração.
- O grande problema é conseguir definir uma função que seja capaz de medir corretamente todas as possíveis soluções representadas pelos indivíduos de uma população, garantindo a convergência para a solução ótima.

- ☐ PROBLEMA 1: EQUAÇÃO DO SEGUNDO GRAU(X²+3X-4)
  - $\square$  X = BIN\_TO\_DEC(POP[i])
  - $\Box$  F[i] = 1/abs(X<sup>2</sup>+3X-4) se (X<sup>2</sup>+3X-4) for differente de zero
    - = 9999

- se  $(X^2+3X-4)$  for igual a zero
- $\Box$  SOMA = F[0] + F[1] + ... + F[TP]
- $\Box$  FIT[i] = F[i]/SOMA

- □ PROBLEMA 2: CAIXEIRO VIAJANTE
  - ☐ F[i] = 1/(soma dos custos usando a Matriz de Adjacências)
  - $\square$  SOMA = F[0] + F[1] + ... + F[TP]
  - $\Box$  FIT[i] = F[i]/SOMA

- □ PROBLEMA 3: N-RAINHAS
  - $\Box$  F[i] = 1/(total de ataques) se(total de ataques for diferente de zero)
    - = 9999 se(total de ataques for igual a zero)
  - $\square$  SOMA = F[0] + F[1] + ... + F[TP]
  - ☐ FIT[i] = F[i]/SOMA

- □ PROBLEMA 1: EQUAÇÃO DO SEGUNDO GRAU(X²+3X-4)
   □ X = BIN\_TO\_DEC(POP[i])
   □ F[i] = 1/abs(X²+3X-4) se (X²+3X-4) for diferente de zero
   = 9999 se (X²+3X-4) for igual a zero
   □ Soma = F[0] + F[1] + ... + F[TP]
   □ FIT[i] = F[i]/soma
- □ PROBLEMA 2: CAIXEIRO VIAJANTE (N cidades)
  - □ Cromossomo: vetor  $\rightarrow$  IND[N]
  - ☐ Alfabeto: {1,...,N}

- □ PROBLEMA 3: N RAINHAS (N cidades)
  - $\square$  Cromossomo: Matriz  $\rightarrow$  IND[N][2]

# Seleção e Reprodução

| Objetivo: propagar material genético dos indivíduos mais adaptados.                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Problemática da convergência prematura (Rapidez x Diversidade):  Um indivíduo super adaptado no começo não deve ser valorizado demais.  indivíduos ruins no começo não podem ser desprezados.               |
| <ul> <li>Tipos:</li> <li>□ Roleta: os indivíduos da população são ordenados de acordo com seu valor de adequação e então sua probabilidade de escolha é atribuída conforme a posição que ocupam.</li> </ul> |
| ☐ <u>Torneio</u> : consiste em criar grupos de soluções e selecionar as mais adaptadas de cada grupo.                                                                                                       |
| <ul> <li>Determinismo: consiste em associar para cada indivíduo um determinado<br/>número de vezes que ele irá participar do processo de reprodução.</li> </ul>                                             |
| ☐ Elitismo: indivíduo de maior desempenho é automaticamente selecionado.                                                                                                                                    |

## Seleção e Reprodução

#### Exemplo de Método da Roleta

| Indivíduo<br>S <sub>I</sub> | Aptidão<br>f(S <sub>I</sub> ) | Aptidão<br>Relativa | S <sub>E</sub> S <sub>1</sub> |
|-----------------------------|-------------------------------|---------------------|-------------------------------|
| S <sub>1</sub> 10110        | 2.23                          | 0.14                |                               |
| S <sub>2</sub> 11000        | 7.27                          | 0.47                | S <sub>4</sub>                |
| S <sub>3</sub> 11110        | 1.05                          | 0.07                |                               |
| S <sub>4</sub> 01001        | 3.35                          | 0.21                |                               |
| S <sub>s</sub> 00110        | 1.69                          | 0.11                |                               |

#### **Operador de Cruzamento**

- ☐ Recombina características dos pais:
  - Permite que as próximas gerações herdem características desejáveis.
  - ☐ Operador genético predominante.
- ☐ Tipos:

☐ Cruzamento de um ponto: dados dois cromossomos pais sorteia-se um

ponto de corte.

|   | Pai 1         | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 |  |  |  |
|---|---------------|---|---|---|---|---|---|---|---|--|--|--|
|   | Pai 2         | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |  |  |  |
| E | •             |   |   |   |   |   |   |   |   |  |  |  |
| 2 | Descendente 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |  |  |  |
|   | Descendente 2 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |  |  |  |

PONTO
DE CORTE
IGUAL A 2

#### **Operador de Cruzamento**

☐ **Cruzamento de dois pontos**: são escolhidos dois pontos de corte para troca de material genético entre os indivíduos.

| Individuo 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
|-------------|---|---|---|---|---|---|---|---|
| Individuo 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |

| Descendente 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
|---------------|---|---|---|---|---|---|---|---|
| Descendente 2 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |

#### **Operador de Cruzamento**

☐ Cruzamento Uniforme: para cada gene a ser preenchido nos cromossomos filhos, o operador de cruzamento uniforme sorteia de qual dos pais este deve ser gerado. É comum o uso de uma máscara de bits aleatórios que indica como será o sorteio.

| máscara       | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
|---------------|---|---|---|---|---|---|---|---|
|               |   |   |   |   | - |   |   |   |
| Individuo 1   | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| Individuo 2   | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|               |   |   |   |   |   |   |   |   |
| Descendente 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
| Descendente 2 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |

# Operador de Mutação

|     | jetivo:<br>gerar diversidade (fuga de ótimos locais).<br>Permite explorar globalmente o espaço de busca, possibilitando até recupera<br>algum bom material genético que possa ter sido perdido após sucessivas<br>recombinações. |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tip | oos:<br><u>Generativa</u> : inclusão de novo(s) gene(s) no cromossomo.                                                                                                                                                           |
|     | Destrutiva: exclusão de gene(s) do cromossomo.                                                                                                                                                                                   |
|     | Troca Simples: um gene é sorteado e tem seu valor trocado por outro sorteado do alfabeto válido.                                                                                                                                 |
|     | <u>Translocação</u> : são sorteados pares de genes e os elementos do par trocam de valor entre si.                                                                                                                               |
|     | Mutação Creep: um valor aleatório é somado ou subtraído do valor do gene.                                                                                                                                                        |

# Substituição de uma população

| Objetivo:  ☐ garantir uma convergência adequada.                                                          |
|-----------------------------------------------------------------------------------------------------------|
| Tipos: ☐ Simples : a nova geração SUBSTITUI a antiga☐ Elitista: a nova geração se MISTURA com a antiga.   |
| Critérios de substituição no caso elitista:  os piores. os mais semelhantes. os melhores. aleatoriamente. |

## Substituição de uma população

- ☐ Seleção por diversidade: são selecionados os indivíduos mais diversos da população.
- Seleção bi-classista: são selecionados os P% melhores indivíduos e os (100 - P)% piores indivíduos.
- Seleção aleatória: são selecionados aleatoriamente N indivíduos da população. Podemos subdividir este mecanismo de seleção em:
  - ☐ Salvacionista: seleciona-se o melhor indivíduo e os outros aleatoriamente.
  - Não-salvacionista: seleciona-se aleatoriamente todos os indivíduos.

#### Critérios de parada

 Ótimo global é onde se deseja chegar tratando-se de problemas de otimização – para muitos problemas isso muito difícil de se alcançar.

A finalização de um AG por sua vez não envolve nenhum operador genético, sendo simplesmente composta de um teste que valida um determinado critério.

- Alguns critérios de parada:
  - ☐ Evolução torna-se lenta de acordo com um valor pré-definido:
    - Aptidão média, aptidão do melhor indivíduo.
  - ☐ Igualdade entre indivíduos de uma mesma geração
  - □ Número máximo pré-determinado de execução do AG.

#### **Parâmetros Genéticos**

Tamanho da população (TP): define a quantidade de indivíduos da população a ser explorada (quantidade de soluções candidatas). Taxa de cruzamento (TC): está relacionado com a frequência com que o operador de cruzamento é aplicado. Taxa de mutação (TM): especifica a taxa com que o operador de mutação será aplicado. Intervalo de geração (IG): controla a porcentagem de indivíduos de uma população que serão substituídos de uma geração no tempo t-1 para a geração seguinte no tempo t. Número de gerações (NG): determina o número máximo de vezes que

um AG será aplicado a partir de uma população inicial.