Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/003365

International filing date: 01 March 2005 (01.03.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-057442

Filing date: 02 March 2004 (02.03.2004)

Date of receipt at the International Bureau: 21 April 2005 (21.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 Ú3.03.2005 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2004年 3月 2日

出 願 番 号 Application Number:

特願2004-057442

パリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願 番号

J P 2 0 0 4 - 0 5 7 4 4 2

The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is

出 願 人

サントリー株式会社

Applicant(s):

特許庁長官 Commissioner, Japan Patent Office 2005年 4月 7日

【書類名】 特許願 【整理番号】 S07J1327 平成16年 3月 2日 【提出日】 【あて先】 特許庁長官殿 【国際特許分類】 C07D273/00 A61K 31/395 C07C229/22 C07C229/34 【発明者】 大阪府和泉市光明台2丁目9-10 【住所又は居所】 【氏名】 小田 耕平 【発明者】 【住所又は居所】 京都府宇治市五ヶ庄官有地京都大学職員宿舎1-135 【氏名】 平賀 和三 【特許出願人】 【識別番号】 000001904 【氏名又は名称】 サントリー株式会社 【代理人】 【識別番号】 100077012 【弁理士】 【氏名又は名称】 岩谷 龍 【電話番号】 06-4796-1300

【手数料の表示】

【予納台帳番号】 008187 【納付金額】 21,000円

【提出物件の目録】

【物件名】特許請求の範囲 1【物件名】明細書 1【物件名】要約書 1【物件名】図面 1

【包括委任状番号】 0012893

【請求項1】

下記式(I):

【化1】

「式中、R¹、R³及びR⁵は各々独立して、最高8つまでの炭素原子を有する直鎖状の 又は分岐状のアルキル、ヒドロキシアルキル、アルカノイルオキシアルキル、アルコキシ アルキル、アリールオキシアルキル、メルカプトアルキル、アルキルチオアルキル、アル キルスルフィニルアルキル、アルキルスルホニルアルキル、カルボキシアルキル、アルコ キシカルボニルアルキル、アリールアルコキシカルボニルアルキル、カルバモイルアルキ ル、アミノアルキル、アルキルアミノアルキル、ジアルキルアミノアルキル、グアニジノ アルキル、あるいはアルコキシカルボニルアミノアルキル、9-フルオレニルメトキシカ ルボニル (Fmoc) アミノアルキル、アルケニル、シクロアルキル、シクロアルキルア ルキル、及びハロゲン、ヒドロキシル、アルキル又はアルコキシで置換されていてもよい アリールアルキルから選択される基を、 R^2 、 R^4 、及び R^6 は各々独立して、最高 8 つ までの炭素原子を有する直鎖状又は分岐状のアルキル、ヒドロキシアルキル、アルカノイ ルオキシアルキル、アルコキシアルキル、アリールオキシアルキル、アルキルチオアルキ ル、アルキルスルフィニルアルキル、アルキルスルホニルアルキル、カルボキシアルキル 、アルコキシカルボニルアルキル、アリールアルコキシカルボニルアルキル、カルバモイ ルアルキル、アミノアルキル、アルキルアミノアルキル、ジアルキルアミノアルキル、ア ルコキシカルボニルアミノアルキル、アルケニル、シクロアルキル、シクロアルキルアル キル、あるいはハロゲン、ヒドロキシル、アルキル又はアルコキシで置換されていてもよ いアリール又はアリールアルキルから選択される基を示す。〕で表される環状デプシペプ チドあるいはそれらの光学異性体又はラセミ体を有効成分として含有することを特徴とす るABCトランスポーター阻害剤。

【請求項2】

環状デプシペプチドが、下記式(II):

【化2】

〔式中、 R^{1} 、 R^{3} 及び R^{5} は各々独立して、直鎖状の又は分岐状の低級(C_{1} \sim 4)アルキルを示す。〕である請求項1に記載のABCトランスポーター阻害剤。

【 請求項3】

 R^{1} 、 R^{3} 及び R^{5} で示される基が、直鎖状又は分岐状プロピル又はブチルである請求項 2 に記載の A B C トランスポーター阻害剤。

【請求項4】

 R^{1} 及び R^{3} がイソプロピルであり、 R^{5} がイソプロピル、sec-ブチル、イソブチルから選択されるいずれかの基である請求項3に記載のABCトランスポーター 阳害剤。

【請求項5】

ABCトランスポーターが、MDRタンパク質であることを特徴とする請求項1~4のいずれかに記載のABCトランスポーター阻害剤。

【請求項6】

ABCトランスポーターが、カンジダ属酵母のCDR1又はCDR2タンパク質であることを特徴とする請求項1~4のいずれかに記載のABCトランスポーター阻害剤。

【請求項7】

ABCトランスポーターが、サッカロミセス属酵母のPDR5タンパク質であることを特徴とする請求項1~4のいずれかに記載のABCトランスポーター阻害剤。

【請求項8】

下記式(I):

【化3】

〔式中、 R^1 、 R^3 及び R^5 は各々独立して、最高 8 つまでの炭素原子を有する直鎖状の又は分岐状のアルキル、ヒドロキシアルキル、アルカノイルオキシアルキル、アルコキシアルキル、アリールオキシアルキル、メルカプトアルキル、アルキルチオアルキル、アル

キルスルフィニルアルキル、アルキルスルホニルアルキル、カルボキシアルキル、アルコ キシカルボニルアルキル、アリールアルコキシカルボニルアルキル、カルバモイルアルキ ル、アミノアルキル、アルキルアミノアルキル、ジアルキルアミノアルキル、グアニジノ アルキル、あるいはアルコキシカルボニルアミノアルキル、9-フルオレニルメトキシカ ルボニル (Fmoc) アミノアルキル、アルケニル、シクロアルキル、シクロアルキルア ルキル、及びハロゲン、ヒドロキシル、アルキル又はアルコキシで置換されていてもよい アリールアルキルから選択される非を、 R^2 、 R^4 、及び R^6 は各々独立して、最高8つ までの炭素原子を有する直鎖状又は分岐状のアルキル、ヒドロキシアルキル、アルカノイ ルオキシアルキル、アルコキシアルキル、アリールオキシアルキル、アルキルチオアルキ ル、アルキルスルフィニルアルキル、アルキルスルホニルアルキル、カルボキシアルキル 、アルコキシカルボニルアルキル、アリールアルコキシカルボニルアルキル、カルバモイ ルアルキル、アミノアルキル、アルキルアミノアルキル、ジアルキルアミノアルキル、ア ルコキシカルボニルアミノアルキル、アルケニル、シクロアルキル、シクロアルキルアル キル、あるいはハロゲン、ヒドロキシル、アルキル又はアルコキシで置換されていてもよ いアリール又はアリールアルキルから選択される基を示す。〕で表される環状デプシペプ チドあるいはそれらの光学異性体又はラセミ体を有効成分として含有することを特徴とす る薬剤耐性獲得阻害剤。

【書類名】明細書

【発明の名称】ABCトランスポーター阻害剤

【技術分野】

[0001]

本発明は、エニアチン類を有効成分とするABC(ATP-binding cassette)トランスポーターの能動輸送機能を阻害する、ABCトランスポーター阻害剤に関する。また、エニアチン類を有効成分とする薬剤耐性獲得阻害剤に関する。

【背景技術】

[0002]

ABCトランスポーターは、ATP結合領域(NBF)を1分子内に2つ有し、ATPによって駆動もしくは制御される12から18回膜貫通領域をもつ膜タンパク質の総称である。ABCトランスポーターは細菌から酵母、植物、哺乳類に至る広い生物種に分布するファミリーの一つであり、現在までに500以上のABCトランスポーター関連遺伝子が同定されている。特にヒトにおいては、現在40以上のABCトランスポーター関連遺伝子が同定され、それぞれの遺伝子の異常が様々な疾病を引き起こすことが明らかになってきている。これに伴い、ABCトランスポーターの生体防御機構としての重要性が認識されてきた。かかるABCトランスポーターのうち、多剤耐性の獲得に関与しているABCトランスポーターが、近年注目を集めている。最初に同定された多剤耐性の獲得に関与するABCトランスポーターはヒト及びマウスのMDR1(multidrug resistance; Pー糖タンパク質とも呼ばれる)である。これは癌細胞が抗癌薬に対して耐性を獲得する一つのメカニズム、すなわちABCトンスポーターといわれる機能に基づくものであり、薬物をATPの加水分解のエネルギーによって細胞内から細胞外に輸送する。この結果、ABCトンスポーターにより、各種薬物、特に抗癌薬が癌細胞から細胞外に排泄される。

[0003]

MDR1は、抗癌剤を投与すると、癌細胞が作用機構や化学構造の異なる多数の抗癌剤に対して同時に耐性を獲得する「獲得性多剤耐性」という癌治療上の問題を研究する過程で見出された。高度に抗癌剤耐性を獲得した培養細胞で増幅している遺伝子を単離し、その遺伝子を薬剤感受性細胞で発現させると細胞は様々な抗癌剤に対して耐性になることから、その遺伝子は多剤耐性(Multi drug Resistance)の頭文字をとってMDR1と名づけられた(非特許文献1参照)。

MDR1遺伝子がコードするタンパク質(以下、MDR1タンパク質ともいう。)は、様々な脂溶性の薬剤をATP加水分解のエネルギーを利用して、細胞内から細胞外へ排泄するポンプとして機能することによって、その細胞を多剤耐性にすることが明らかとなっている。

また、MDR1は脳や精巣の毛細血管内皮、胎盤絨毛膜、小腸や毛細胆管の管腔側膜、 腎近位尿細管、造血幹細胞などで発現していることから、体内に有害な生体異物が侵入し ないように機能しているだけでなく、血流中に入った生体異物から脳などの重要な器官や 胎児を保護していると考えられている(非特許文献2参照)。

MDR1タンパク質は有害物質に対するバリアーとして働いているが、すべての脂溶性有害物を排出できるわけではない。MDR1タンパク質が排泄できなかった脂溶性有害物の多くは、細胞内でグルタチオンやグルクロン酸と抱合体化され無毒化されて、別のABCトランスポーターであるMRP1(Multidrug Resistance Protein)遺伝子がコードするタンパク質(以下、MRP1タンパク質ともいう。)によって細胞外へ排出される。

[0004]

このような異物排出に関与するMDR1類縁遺伝子はヒトだけに発現しているのではなく、例えば酵母においては基質特異性の少しずつ異なる何種類ものABCトランスポーター遺伝子が存在していることが知られている(非特許文献3参照)。おそらく異物排出という機能は単細胞生物である酵母では重要であり、進化の過程で遺伝子重複が起こったと

考えられている。

出芽酵母〔サッカロミセス(Saccharomyces)属酵母〕では、異物排出に関与するABCトランスポーター遺伝子として、MDR1と類縁性の高いPDR5及びSNQ2、酵母接合因子の分泌に関与するSTE6、カドミウム排出に関与するYCF1、及び有機アニオントランスポーター遺伝子であるYRS1/YOR1が知られている(非特許文献4参照)。

この中でも、PDR5遺伝子がコードするタンパク質(以下、PDR5タンパク質ともいう。)は、シクロヘキシミド、セルレニン、コンパクチン、スタウロスポリン、スルフォメチュロン・メチル、トリフルオロペラジン、ローダミンなどの種々の薬剤を能動輸送で細胞外に排出し、酵母をこれらの薬剤に対して耐性にすることが知られている(非特許文献5参照)。

また、PDR5のホモログであるSNQ2は、4-ニトロキノリン-N-オキサイドなどの薬剤に対する耐性に関わることが知られているが、SNQ2が細胞外に排出することができる化合物としては2、3の化合物しか知られていない(非特許文献6参照)。

最近、サッカロミセス属酵母のPDR5欠損株が示す薬剤感受性を相補する遺伝子として、カンジダ(Candida)属酵母のCDR1ないしCDR2が取得された。このため、PDR5タンパク質は、カンジダ属酵母のCDR1又はCDR2遺伝子がコードするタンパク質(以下、CDR1又はCDR2タンパク質ともいう。)と、能動輸送する物質の特異性が類似していることが示唆されている(非特許文献7参照)。

[0005]

以上のように、ABCトランスポーターは細菌から哺乳類に至る広い生物種に分布し、 生体防御機構としての重要性が認識されている。このような状況下、ABCトランスポー ターの能動輸送機能を調節する物質、すなわちABCトランスポーター阻害剤が求められ 、種々研究されてきた。

[0006]

ABCトランスポーター阻害剤、特にMDR1タンパク質であるPー糖タンパク質の阻害剤は、癌細胞でのPー糖タンパク質の発現が多剤耐性という癌化学療法における最大の課題を克服する薬剤(多剤耐性拮抗剤)として広く研究されてきた。例えば、カルシウム拮抗剤であるベラパミル(非特許文献8参照)、免疫抑制剤シクロスポリンA(非特許文献9参照)、同じく免疫抑制剤であるFK-506(非特許文献10参照)、ステロイド系プロゲステロン(非特許文献11参照)などが多剤耐性拮抗剤として検討されている。しかし、これらの化合物は何れも多剤耐性拮抗以外の他の薬効を有する医薬品として利用されるか、もしくは開発されているものである。このため、これらの化合物を多剤耐性拮抗剤として使用すると、当該薬効が副作用として発現してしまう問題があった。そこで、本来の薬効を軽減した誘導体や、低濃度でもPー糖タンパク質の機能を阻害できる新たなABCトランスポーター阻害剤が研究されたが、これらはいずれも細胞毒性が強く、多剤耐性拮抗剤としての開発にいたらなかった。

[0007]

18の環原子を有する特定の環状デプシペプチド(エンニアチン類(enniatins))は、グラム陽性細菌に作用するイオノフォア抗生物質として知られている(非特許文献13参照)。また、それらの製造法も、既に知られている(例えば、非特許文献12参照)。

また、エニアチンと基本骨格を同じとする180環原子を有する環状デプシペプチドは、内寄生性生物(endoparasite)防除剤として開示されている(例えば、特許文献 2 参照)。

しかし、エニアチン類が、ABCトランスポーター阻害活性、サッカロミセス属酵母の PDR5タンパク質阻害活性、及びカンジダ属酵母のCDR1ないしCDR2タンパク質 阻害活性を有するということについては、上記のいいずれにもその記載は認められない。

【特許文献1】国際公開番号WO2003/8644号パンフレット

【特許文献2】国際公開第WO93/25543号パンフレット

【非特許文献1】ウエダ・ケー(Ueda, K.)他、3名、プロシーディング・オブ・ザ・ナショナル・アカデミー・オブ・サイエンス・オブ・ザ・ユナイテッド・ステート・オブ・アメリカ(Proc. Natl. Acad. Sci. USA)、1987年、第84巻、p. 3004-3008

【非特許文献 2】 植田和光、蛋白質・核酸・酵素、2001年、第46巻、p.588-595

【非特許文献3】 宮川都吉、高橋英俊、バイオサイエンスとインダストリー、2000年、第58巻、p. 397-400

【非特許文献4】バウアー・ビー・イー(Bauer、B. E.)ら、バイオケミカ・エト・バイオフィジカ・アクタ(Biochim. Biophys. Acta)、1999年、第1461巻、p. 217-236

【非特許文献 5 】 ヒラタ・ディー(H i r a t a, D.)ら、カレント・ジェネティクス(C u r r. G e n e t.)、1994年、第26巻、p. 285-294

【非特許文献 6 】 デコッティニースト・エー (Decottigniest, A.) ら、ザ・ジャーナル・オブ・バイオロジカル・ケミストリー (J. iol. Chem.)、1995年、第270巻、p. 18150-18157

【非特許文献7】シュエッチャー・エム(Schuetzer, M.)ら、インターナショナル・ジャーナル・オブ・アンチミクロバイアル・エイジェンツ(J. Antimicrobial Agents)、2003年、第22巻、p. 291-300

【非特許文献8】ツルオ・ティー (Tsuruo, T.) ら、キャンサー・リサーチ (Cancer Res.), 1981年、第41巻、1967-1973

【非特許文献 9】 スレーター・エル・エム(Slater, L. M.)ら、ザ・ジャーナル・オブ・クリニカル・インベスティゲーション(J. Clin. Invest.)、1986年、第77巻、p.1405-1408

【非特許文献10】サエキ・ティー(Saeki, T.)ら、ザ・ジャーナル・オブ・バイオロジカル・ケミストリー(J. Biol. Chem.)、1993年、第268巻、p. 6077-6080

【非特許文献11】コンセイル・ジー(Conseil, G.)ら、バイオケミストリー (Biochemistry)、2000年、第39巻、p. 6910-691

【非特許文献12】トモダ・エイチ(Tomoda, H.)ら、ザ・ジャーナル・オブ・アンチバイオティクス(J. Antibiotics.)、1992年、第45巻、p. 1207-1215

【非特許文献13】ビスコンティー・エー(Visconti, A.)ら、ジャーナル・オブ・アグリカルチュアル・アンド・フード・ケミストリー(J.Agric.Food Chem.)、1992年、第40巻、p.1076-1082

【発明の開示】

【発明が解決しようとする課題】

[0008]

本発明の目的は、環状デプシペプチド(以下、エニアチン類ともいう。)を有効成分とするABCトランスポーター阻害剤の提供にある。より詳細には、エニアチン類を有効成分として含有し、癌の化学療法での最大の課題であるMDR1遺伝子の増幅・発現による抗癌薬に対する多剤耐性、あるいは真菌症における抗真菌薬の薬剤耐性を克服するABCトランスポーター阻害剤および薬剤耐性獲得阻害剤の提供にある。

なお、本明細書において「ABCトランスポーター」(単に、トランスポーターと称することもある。)とは、ATP加水分解のエネルギーよって薬剤を細胞内から細胞外へ輸送、排出する膜タンパク質をいう。「ABCトランスポーター阻害剤」とは、ABCトランスポーターが薬物等を細胞内から細胞外に輸送・排出するのを阻害、又は抑制する薬剤のことを言う。また、ABCトランスポーターに属し、1分子あたり2つのATP結合部

位をもちATPase活性を示す膜タンパク質遺伝子の、MDR1、MDR2,およびMDR3等を総称して「MDR」という。「MDR1タンパク質」とは、MDR1遺伝子がコードするタンパク質をいうが、より詳細にはMDR1遺伝子が転写、翻訳および種々の修飾等を受けて、ABCトランスポーターとして表現される膜タンパク質をいう。「MDRタンパク質」、「CDR1又はCDR2タンパク質」、「PDR5タンパク質」とは、「MDR1タンパク質」と同様にそれぞれ、MDRファミリーのいずれかの遺伝子をコードするタンパク質、CDR1又はCDR2の遺伝子をコードするタンパク質およびPDR5の遺伝子をコードするタンパク質をいう。また、「薬剤耐性」とは、薬物の反復的摂取の結果として起こる、その薬物又は同種あるいは類縁する薬物への感受性の減弱をいい、以前にはより少ない量で生じていた効果と同程度の効果を生み出すために、より多くの量の薬物を必要とする状態をいい、単に「耐性」ということもある。

【課題を解決するための手段】

[0009]

本発明者らは、国際公開番号WO03/008644 (特許文献1参照)に記載された 酵母由来のPDR5遺伝子を発現させた薬剤感受性の変異型酵母を用いて、PDR5タン パク質の能動輸送機能を阻害する物質のスクリーニングを試みた。発明者らは、種々物質 を上記スクリーニング方法によってスクリーニングした結果、ある種の物質に強いトラン スポーター阻害活性を有し、かつ細胞毒性の低い物質が存在することを見出した。さらに 発明者らは当該阻害物質を精製し、当該阻害物質の構造を決定した結果、アルカリ金属イ オノホア抗生物質として知られているエニアチンB、エニアチンB1及びエニアチンDで あることを確認して、さらに研究をすすめ本発明を完成した。

[0010]

すなわち、本発明は、

(1) 下記式(I):

【化1】

$$\begin{array}{c|c}
R^{1} & 0 \\
0 & R^{2} \\
0 & CH_{3} & 0
\end{array}$$

$$\begin{array}{c|c}
0 & R^{2} \\
0 & R^{3} & C
\end{array}$$

$$\begin{array}{c|c}
0 & R^{3} & C
\end{array}$$

$$\begin{array}{c|c}
0 & R^{3} & C
\end{array}$$

$$\begin{array}{c|c}
0 & R^{4} & C
\end{array}$$

[式中、 R^1 、 R^3 及び R^5 は各々独立して、最高8つまでの炭素原子を有する直鎖状の又は分岐状のアルキル、ヒドロキシアルキル、アルカノイルオキシアルキル、アルコキシアルキル、アリールオキシアルキル、メルカプトアルキル、アルキルチオアルキル、アルキルスルフィニルアルキル、アルキルスルホニルアルキル、カルボキシアルキル、アルコキシカルボニルアルキル、アリールアルコキシカルボニルアルキル、カルバモイルアルキル、アミノアルキル、アルキルアミノアルキル、ジアルキル、グアニジノアルキル、あるいはアルコキシカルボニルアミノアルキル、9ーフルオレニルメトキシカルボニル(Fmoc)アミノアルキル、アルケニル、シクロアルキルアルキルアリールアルキルから選択される基を、 R^2 、 R^4 、及び R^6 は各々独立して、最高8つまでの炭素原子を有する直鎖状又は分岐状のアルキル、ヒドロキシアルキル、アルカノイルオキシアルキル、アルコキシアルキル、アリールオキシアルキル、アルキルスルフィニルアルキル、アルキルスルホニルアルキル、カルボキシアルキル、アルキルスルホニルアルキル、カルボキシアルキル、アルキルスルフィニルアルキル、アルキルスルホニルアルキル、カルボキシアルキル、アルキルスルホニルアルキル、カルボキシアルキル

、アルコキシカルボニルアルキル、アリールアルコキシカルボニルアルキル、カルバモイルアルキル、アミノアルキル、アルキルアミノアルキル、ジアルキルアミノアルキル、アルコキシカルボニルアミノアルキル、アルケニル、シクロアルキル、シクロアルキルアルキル、あるいはハロゲン、ヒドロキシル、アルキル又はアルコキシで置換されていてもよいアリール又はアリールアルキルから選択される基を示す。]で表される環状デプシペプチドあるいはそれらの光学異性体又はラセミ体を有効成分として含有することを特徴とするABCトランスポーター阻害剤、

(2) 環状デプシペプチドが、下記式(II):【化2】

〔式中、 R^{1} 、 R^{3} 及び R^{5} は各々独立して、直鎖状の又は分岐状の低級(C_{1} ~ 4)アルキルを示す。〕である上記(I_{1})に記載の A_{1} B C_{1} トランスポーター阻害剤、

- (3) R^{1} 、 R^{3} 及び R^{5} で示される基が、直鎖状又は分岐状プロピル又はブチルである上記(2)に記載のABCトランスポーター阻害剤、
- (4) R^{1} 及び R^{3} がイソプロピルであり、 R^{5} がイソプロピル、sec-ブチル、イソブチルから選択されるいずれかの基である上記(3)に記載のABCトランスポーター阻害剤、
- (5) ABCトランスポーターが、MDRタンパク質であることを特徴とする上記(1) ~ (4) のいずれかに記載のABCトランスポーター阻害剤、
- (6) ABCトランスポーターが、カンジダ属酵母のCDR1又はCDR2タンパク質 であることを特徴とする上記(1)~(4)のいずれかに記載のABCトランスポーター 阻害剤、
- (7) ABCトランスポーターが、サッカロミセス属酵母のPDR5タンパク質であることを特徴とする上記(1) ~ (4) のいずれかに記載のABCトランスポーター阻害剤

(8) 下記式(I):

〔式中、R¹、R³及びR⁵は各々独立して、最高8つまでの炭素原子を有する直鎖状の 又は分岐状のアルキル、ヒドロキシアルキル、アルカノイルオキシアルキル、アルコキシ アルキル、アリールオキシアルキル、メルカプトアルキル、アルキルチオアルキル、アル キルスルフィニルアルキル、アルキルスルホニルアルキル、カルボキシアルキル、アルコ キシカルボニルアルキル、アリールアルコキシカルボニルアルキル、カルバモイルアルキ ル、アミノアルキル、アルキルアミノアルキル、ジアルキルアミノアルキル、グアニジノ アルキル、あるいはアルコキシカルボニルアミノアルキル、9-フルオレニルメトキシカ ルボニル (Fmoc) アミノアルキル、アルケニル、シクロアルキル、シクロアルキルア ルキル、及びハロゲン、ヒドロキシル、アルキル又はアルコキシで置換されていてもよい アリールアルキルから選択される基を、 R^2 、 R^4 、及び R^6 は各々独立して、最高8つ までの炭素原子を有する直鎖状又は分岐状のアルキル、ヒドロキシアルキル、アルカノイ ルオキシアルキル、アルコキシアルキル、アリールオキシアルキル、アルキルチオアルキ ル、アルキルスルフィニルアルキル、アルキルスルホニルアルキル、カルボキシアルキル 、アルコキシカルボニルアルキル、アリールアルコキシカルボニルアルキル、カルバモイ ルアルキル、アミノアルキル、アルキルアミノアルキル、ジアルキルアミノアルキル、ア ルコキシカルボニルアミノアルキル、アルケニル、シクロアルキル、シクロアルキルアル キル、あるいはハロゲン、ヒドロキシル、アルキル又はアルコキシで置換されていてもよ いアリール又はアリールアルキルから選択される基を示す。]で表される環状デプシペプ チドあるいはそれらの光学異性体又はラセミ体を有効成分として含有することを特徴とす る薬剤耐性獲得阻害剤、

に関する。

また、本発明は、環状デプシペプチドあるいはそれらの光学異性体又はラセミ体と薬学的に許容される添加剤を含有する、ABCトランスポーター阻害医薬組成物に関する。また本発明は、環状デプシペプチドあるいはそれらの光学異性体又はラセミ体を哺乳動物に投与し、ABCトランスポーターを阻害する方法、並びに、ABCトランスポーターを阻害するための医薬を製造するための環状デプシペプチドあるいはそれらの光学異性体又はラセミ体の使用に関する。

さらに本発明の別の態様によれば、環状デプシペプチドあるいはそれらの光学異性体又はラセミ体を含有するABCトランスポーター阻害剤を投与することにより、薬剤、特に抗癌薬、抗真菌薬に対する耐性獲得を予防、抑制又は防止する方法に関する。

【発明の効果】

[0011]

本発明のABCトランスポーター阻害剤は、薬物が細胞内から細胞外へ輸送・排泄されるのを阻害するから、細胞が各種薬剤に対する耐性を獲得するのを予防し、抑制又は防止することができる。

本発明のABCトランスポーター阻害剤は、MDR1、MDR2、MDR3等のMDR, MRP (multidrug-resistance-assosiated pro

tein)ファミリーのタンパク質トランスポーターを阻害することができる。これらのうちMDR1タンパク質は、各種薬物、特に抗癌薬を癌細胞から細胞外に排泄する。抗癌薬以外の薬物としては、ジコキシン、プロゲステロン及びモルヒネ等が挙げられる。また、MDR2やMDR3タンパク質はリン脂質のトランスポーターとなり得る。さらに、MRPタンパク質ファミリーは、グルタチオンやグルクロン酸等の各種抱合薬物を排泄するポンプとして働く。このような細胞内から細胞外への薬物の輸送・排泄は、細胞が薬物に対して耐性を獲得する一つのメカニズムである。このため本発明のABCトランスポーター阻害剤又は薬剤耐性獲得阻害剤は、各種薬剤に対して耐性を獲得するのを予防し、抑制又は防止できる。

本発明のABCトランスポーター阻害剤は、カンジダ属酵母の持つCDR1ないしCDR2タンパク質のトランスポーターを阻害することができる。カンジダ属酵母の持つCDR1ないしCDR2タンパク質は、カンジダ酵母に取込まれた薬物、特に抗真菌薬を酵母外に輸送し、真菌が抗真菌薬に対し耐性を獲得するメカニズムの一つとなっている。本発明のABCトランスポーター阻害剤又は薬剤耐性獲得阻害剤は、このトランスポーターを阻害するので、真菌において抗真菌薬に対する耐性の獲得を予防し、抑制又は防止することができる。

本発明のABCトランスポーター阻害剤は、また、サッカロミセス酵母のPDR5タンパク質のトランスポーターを阻害することができる。サッカロミセス属酵母のPDR5タンパク質は、シクロヘキシミド、セルレニン、コンパクチン、スタウロスポリン、スルフォメチュロン・メチル、トリフルオロペラジン、ローダミンなどの種々の薬剤を能動輸送で細胞外に排泄し、酵母はこれらの薬剤に対して耐性を獲得する。また、サッカロミセス酵母のPDR5タンパク質はカンジダ属酵母のCDR1ないしCDR2タンパク質と基質特異性が類似していることが知られているので、本発明のABCトランスポーター阻害剤又は薬剤耐性獲得阻害剤は、カンジダ属酵母CDR1ないしCDR2タンパク質阻害剤、すなわちカンジダ・アルビカンス等の酵母の薬剤耐性を克服する薬剤としても用いることができる。

また、上記した各種薬剤に対する耐性の獲得は、それぞれの薬剤の効力を減弱したり、 効力を消失したりさせる。本発明のABCトランスポーター阻害剤又は薬剤耐性獲得阻害 剤は、減弱したり、消失したりした薬剤の効力を取り戻すことができる。

また、本発明のABCトランスポーター阻害剤は、サッカロミセス属酵母がアルコール発酵中に生成する様々な細胞毒性物質を細胞外に放出するのを阻害することによって、酵母の細胞増殖を抑制する。この結果、酵母細胞内の物質代謝系が細胞増殖よりもアルコール発酵に移行し、アルコール生産性が向上する。すなわち、本発明のABCトランスポーター阻害剤はサッカロミセス属酵母のアルコール発酵促進剤として用いることができる

【発明を実施するための最良の形態】

[0012]

上記式(I)の好ましい化合物は、式中、 R^1 、 R^3 、及び R^5 が、各々独立して直鎖状又は分岐状の C_1 ~8 ーアルキル、特にメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、secーブチル、tertーブチル、ペンチル、イソペンチル、secーペンチル、ヘキシル、イソヘキシル、secーヘキシル、ヘプチル、イソヘプチル、secーヘプチル、tertーへプチル、オクチル、イソオクチル、secーオクチル、ヒドロキシー C_1 ~6 ーアルキル、特にヒドロキシメチル、1 ーヒドロキシエチル、 C_1 ~4 ーアルカノイルオキシー C_1 ~6 ーアルキル、特にアセトキシメチル、1 ーアセトキシエチル、1 ーアレートル、アリールー1 ~6 ーアルキルオキシー1 ~6 ーアルキル、特にメトキシメチル、1 ーベンジルオキシエチル、1 ーベンジルオキシエチル、1 ーベンジルオキシエチル、1 ーベンジルオキシエチル、1 ーベンジルオキシエチル、1 ーベンジルオキシエチル、1 ルカプトメチル、1 ーベンジルオキシエチル、1 ルカプトメチル、1 ルカプトメチル、1 ルカプトメチル、1 ルカフィニルー1 の ーアルキルスルフィニルー1 の ーアルキル、特にメチルスルフィニルエチル、1 ルボキシー1 の ーアルキルスルホニルエチル、1 ルボキシー1 の ーアルキルスルホニルエチル、カルボキシー1 の ーアルキル、カルボキシエチル、1 ルボキシエチル、カルボキシエチル、1 ルボキシエチル、カルボキシエチル、1 ルボキシエチル、カルボキシエチル、1 ルボキシエチル、カルボキシエチル、1

4-アルコキシカルボニルーC1~6-アルキル、特にメトキシカルボニルメチル、エト キシカルボニルエチル、C_{1~4}-アリールアルコキシカルボニル-C_{1~6}-アルキル 、特にベンジルオキシカルボニルメチル、カルバモイルーС1~6ーアルキル、特にカル バモイルメチル、カルバモイルエチル、アミノーC1~6ーアルキル、特にアミノプロピ ル、アミノブチル、C_{1~4}ーアルキルアミノーC_{1~6}ーアルキル、特にメチルアミノ プロピル、メチルアミノブチル、С1~4ージアルキルアミノーС1~6 ーアルキル、特 にジメチルアミノプロピル、ジメチルアミノブチル、グアニドーC1~6-アルキル、特 にグアニドプロピル、C1~4-アルコキシカルボニルアミノーC1~6-アルキル、特 にtert-ブトキシカルボニルアミノプロピル、tert-ブトキシカルボニルアミノ ブチル、9-フルオレニルメトキシカルボニル(Fmoc) アミノーC1~6-アルキル 、特に9-フルオレニルメトキシカルボニル(Fmoc)アミノプロピル、9-フルオレ ニルメトキシカルボニル (Fmoc) アミノブチル、C2~8-アルケニル、特にビニル 、アリル、ブテニル、С3~7ーシクロアルキル、特にシクロペンチル、シクロヘキシル 、シクロヘプチル、С3~7ーシクロアルキルーС1~4ーアルキル、特にシクロペンチ ルメチル、シクロヘキシルメチル、シクロヘプチルメチル、フェニルーC1~4ーアルキ ル、特にフェニルメチル(これは、ハロゲン、特にフッ素、塩素、臭素、もしくはヨウ素 、ヒドロキシルを含んでなる群からのラジカルにより随意に置換されることができる)、 C1~4ーアルコキシ、特にメトキシ、もしくはエトキシであり、特に好ましくはC1~ 4 - アルキルであり、とりわけ好ましいくはイソプロピル、イソブチル、sec-ブチル であり、 R^2 、 R^4 、及び R^6 は、各々独立して直鎖状又は分岐状の $C_{1}\sim 8$ ーアルキル 、特にメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、tert-ブチ ル、tertーブチル、ペンチル、イソペンチル、tertーペンチル、ヘキシル、イソ ヘキシル、tert-ヘキシル、ヘプチル、イソヘプチル、tert-ヘプチル、ter tーヘプチル、オクチル、イソオクチル、tertーオクチル、ヒドロキシーCı~6ー アルキル、特にヒドロキシメチル、1-ヒドロキシエチル、C_{1~4}-アルカノイルオキ シーC1~6-アルキル、特にアセトキシメチル、1-アセトキシエチル、C1~4-ア ルコキシーC1~6-アルキル、特にメトキシメチル、1-メトキシエチル、アリールー $C_{1\sim4}$ -アルキルオキシー $C_{1\sim6}$ -アルキル、特にベンジルオキシメチル、1-ベン ジルオキシエチル、メルカプトーC_{1~6}ーアルキル、特にメエルカプトメチル、C_{1~} 4-アルキルチオーC1~6-アルキル、特にメチルチオエチル、C1~4-アルキルスル フィニルーC1~6 ーアルキル、特にメチルスルフィニルエチル、С1~4ーアルキルス ルホニルー $C_{1 \sim 6}$ ーアルキル、特にメチルスルホニルエチル、カルボキシー $C_{1 \sim 6}$ ー アルキル、特にカルボキシメチル、カルボキシエチル、C_{1~4}-アルコキシカルボニル - C₁ ~ 6 - アルキル、特にメトキシカルボニルメチル、エトキシカルボニルエチル、C 1~4-アリールアルコキシカルボニルーС1~6-アルキル、特にベンジルオキシカル ボニルメチル、カルバモイルーC1~6-アルキル、特にカルバモイルメチル、カルバモ イルエチル、アミノーC₁~6 ーアルキル、特にアミノプロピル、アミノブチル、C₁~ 4-アルキルアミノーC1~6-アルキル、特にメチルアミノプロピル、メチルアミノブ チル、C1~4-ジアルキルアミノーC1~6-アルキル、特にジメチルアミノプロピル 、ジメチルアミノブチル、С2~8-アルケニル、特にビニル、アリル、ブテニル、С3 ~ 7 ーシクロアルキル、特にシクロペンチル、シクロヘキシル、シクロヘプチル、C3~ 7 ーシクロアルキルーC1~4ーアルキル、特にシクロペンチルメチル、シクロヘキシル メチル、シクロヘプチルメチル、フェニルーC1~4ーアルキル、特にフェニルメチル(これは、ハロゲン、特にフッ素、塩素、臭素、もしくはヨウ素、ヒドロキシルを含んでな る群からのラジカルにより随意に置換されることができる)、C_{1~4}-アルコキシ、特 にメトキシ、もしくはエトキシであり、特に好ましくはС1~4ーアルキルであり、とり わけ好ましくはイソプロピルである化合物、ならびにそれらの光学異性体及びラセミ体で ある。本発明においては、光学的に活性な立体異性体形態もしくはラセミ混合物の形態に おいて存在することができる式(I)の化合物のすべてを使用することができる。

[0013]

式(I)の特に好ましい化合物は、式中、 R^1 、 R^3 、及び R^5 が、各々独立して直鎖状又は分岐状の低級(C_{1-4})ーアルキル、特にメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、secーブチル、tertーブチルであり、 R^2 、 R^4 、及び R^6 がイソプロピルである化合物、ならびにそれらの光学異性体及びラセミ体である。式(I)の更に好ましい化合物は、式(II)で表される化合物である。式(II)で表される化合物は、表1で示されるエニアチン類の、エニアチンA、A1、B、B1、C、D、E、Fが好ましく、エニアチンA、A1、B、B1、Dがとりわけ好ましい。

【表1】

$ \begin{array}{c c} & & & & & & & \\ & & & & & & & \\ & & & &$				
化合物	R 1 '	R ^{3 '}	R ⁵ '	
エニアチンA	sec-ブチル	sec-ブチル	sec-ブチル	
エニアチンA 1	イソプロピル	sec-ブチル	sec-ブチル	
エニアチンB	イソプロピル	イソプロピル	イソプロピル	
エニアチンB1	イソプロピル	イソプロピル	sec-ブチル	
エニアチンC	イソブチル	イソブチル	イソブチル	
エニアチンD	イソプロピル	イソプロピル	イソブチル	
エニアチンE	イソプロピル	イソブチル	sec-ブチル	
	イソプロピル	sec-ブチル	イソブチル	
エニアチンF	イソブチル	sec-ブチル	sec-ブチル	

[0014]

本発明のABCトランスポーター阻害剤の有効成分であるエニアチン類は、従来公知の方法(例えば、非特許文献12、Madry, N., et al.、Eur. J. Appl. Microbiol. Biotechnol.、1983年、第17巻、p. 75-79、Matthias Herrmann, et al.、Appl. Environ. Microbiol.、1996年、p. 393-398等、参照)により精製して得ることができる。また、特許文献2に記載の方法に従い、又は記載に準じて合成することができる。

エニアチンA、A1、B及びB1の混合物はシグマ・アルドリッチ(SIGMA-ALD RICH)から入手することも可能である。

[0015]

本発明のABCトランスポーター阻害剤は、MDR1、MDR2、MDR3等のMDRタンパク質、特にMDR1タンパク質、及びMRP(multidrugーresistanceーassosiated protein)のタンパク質の薬物輸送を阻害することができる。MDR1タンパク質は、癌細胞に発現して多くの抗癌薬を細胞外へ排出することによって、癌細胞を薬剤耐性にする。癌以外にも正常の器官(肝臓、小腸、脳血管内皮細胞など)にも発現していて、物質の輸送に関与する。抗癌薬以外の薬物としては、ジコキシン、プロゲステロン、コルチゾール、アルドステロン等のステロイド及びモルヒ

ネ等が挙げられる。MDR2やMDR3はリン脂質のトランスポーターとなり得る。また、MRPタンパク質ファミリーは、グルタチオンやグルクロン酸等の各種抱合薬物を排泄するポンプとして働く。

これらトランスポーターは、例えば癌細胞が抗癌剤に対し耐性を獲得するように、種々の細胞が各種薬剤に対し耐性を獲得する主要なメカニズムとなっている。このため、本発明のABCトランスポーター阻害剤は、細胞が各種薬剤に対し耐性を獲得するのを予防し、抑制又は防止できる。

[0016]

上記抗癌薬としては、特に限定されないが、例えば、アルキル化剤、代謝拮抗剤、抗腫 瘍性抗生物質、その他抗腫瘍剤、抗腫瘍性植物成分、BRM(生物学的応答性制御物質) 、血管新生阻害剤、細胞接着阻害剤、マトリックス・メタロプロテアーゼ阻害剤等が挙げ られる。アルキル化剤として、例えば、ナイトロジェンマスタード、ナイトロジェンマス タードN-オキシド、イホスファミド、メルファラン、シクロホスファミド、クロラムブ シル等のクロロエチルアミン系アルキル化剤、;例えば、カルボコン、チオテパ等のアジ リジン系アルキル化剤;例えば、ディブロモマンニトール、ディブロモダルシトール等の エポキシド系アルキル化剤;例えば、カルムスチン、ロムスチン、セムスチン、ニムスチ ンハイドロクロライド、クロロゾトシン、ラニムスチン等のニトロソウレア系アルキル化 剤;ブスルファン、トシル酸インプロスルファン、ピポスルファン等のスルホン酸エステ ル類;ダカルバジン;プロカルバジン等が挙げられる。代謝拮抗剤としては、例えば、6 ーメルカプトプリン、アザチオプリン、6ーチオグアニン、チオイノシン等のプリン代謝 拮抗剤;フルオロウラシル、テガフール、テガフール・ウラシル、カルモフール、ドキシ フルリジン、ブロクスウリジン、シタラビン、エノシタビン等のピリミジン代謝拮抗剤; メトトレキサート、トリメトレキサート等の葉酸代謝拮抗剤等、及び、その塩もしくは複 合体が挙げられる。抗腫瘍性抗生物質としては、例えば、ダウノルビシン、アクラルビシ ン、ドキソルビシン、ピラルビシン、エピルビシン等のアントラサイクリン系;アクチノ マイシンD等のアクチノマイシン系;クロモマイシンA3等のクロモマイシン系;マイト マイシンC等のマイトマイシン系;ブレオマイシン、ペプロマイシン等のブレオマイシン 系等;及び、それらの塩もしくは複合体が挙げられる。その他の抗腫瘍剤としては、例え ば、シスプラチン、カルボプラチン、タモキシフェン、L-アスパラギナーゼ、アセブラ トン、シゾフィラン、ピシバニール、ウベニメクス、クレスチン等、及び、それらの塩も しくは複合体が挙げられる。抗腫瘍性植物成分としては、例えば、カンプトテシン、ビン デシン、ビンクリスチン、ビンブラスチン等の植物アルカロイド類;エトポシド、テニポ シド等のエピポドフィロトキシン類;及び、その塩もしくは複合体が挙げられる。また、 ピポブロマン、ネオカルチノスタチン、ヒドロキシウレア等も挙げることができる。BR Mとしては、例えば、腫瘍壊死因子、インドメタシン等、及び、その塩もしくは複合体が 挙げられる。

[0017]

また、本発明のABCトランスポーター阻害剤は、上記カンジダ属酵母の持つ遺伝子CDR1ないしCDR2の発現タンパク質の物質輸送を阻害することができる。カンジダ・アルビカンス(Candida albicans)はカンジダ症等の真菌症を引き起こす酵母として知られている。カンジダ属酵母の持つCDR1ないしCDR2タンパク質は、カンジダ酵母に取込まれた薬物、特に抗真菌薬をカンジダ酵母外に輸送、排泄する。これはカンジダ酵母が抗真菌薬に対し耐性を獲得する主要なメカニズムである。このため、本発明のABCトランスポーター阻害剤は、カンジダ酵母や種々の真菌が各種抗真菌剤に対し耐性を獲得するのを予防し、抑制又は防止できる。

抗真菌薬としては、アムホテリシンB、硝酸ブトコナゾール、ケトコナゾール、エコナソール、エトレチネート、フルコナゾール、フルシトシン、グリセオフルビン、イトラコナゾール、硝酸ミコナゾール、ナイスタチン、サルコナゾール、チオコナゾール、メトロニダゾール、チニダゾール、ビフォナゾール、クロトリマゾール、塩酸テルビナフィン等が挙げられる。

[0018]

サッカロミセス属酵母のPDR5タンパク質は、シクロヘキシミド、セルレニン、コンパクチン、スタウロスポリン、スルフォメチュロン・メチル、トリフルオロペラジン、ローダミンなどの種々の薬剤を能動輸送で細胞外に排泄し、酵母をこれらの薬剤に対して耐性にすることが知られている。このため、本発明のABCトランスポーター阻害剤は、上記シクロヘキシミドなどの各種薬剤に対し耐性を獲得するのを予防し、抑制又は防止できる。また、サッカロミセス酵母のPDR5タンパク質はカンジダ属酵母のCDR1ないしCDR2タンパク質と基質特異性が類似していることが知られているので、本発明のABCトランスポーター阻害剤は、カンジダ属酵母CDR1ないしCDR2タンパク質の物質の輸送を阻害しうる。

[0019]

また、本発明のABCトランスポーター阻害剤は、サッカロミセス属酵母がアルコール発酵中に生成する様々な細胞毒性物質を細胞外に放出するのを阻害することによって、酵母の細胞増殖を抑制する。この結果、酵母細胞内の物質代謝系が細胞増殖よりもアルコール発酵に移行し、アルコール生産性が向上しうる。また、醗酵速度を早めることができれば、生産コストの削減につながりうる。また、酵母は糖の種類やその資化速度が変わることによって、解糖系以外の代謝にも大きな変化が起こるため、酒類にとって非常に重要な香りの成分などにも様々に影響しうる。本発明のABCトランスポーター阻害剤は、これらを阻害することにより、酒類の香気の調整にも使用することができる。

[0020]

本発明のABCトランスポーター阻害剤は、上記耐性を生じる各種薬物と共に用いることが好ましい。例えば抗癌薬や抗真菌薬を投与する疾患に、抗癌薬や抗真菌薬と本発明のABCトランスポーター阻害剤を併用することが望ましい。抗癌薬を投与する疾患としては、例えば乳癌、肺癌、結腸癌、肝臓癌、腎臓癌、膵臓癌、前立腺癌、卵巣癌、頸部癌、子宮癌、膀胱癌、脳腫瘍、副腎癌、多発性骨髄腫、耳鼻咽喉癌(食道、喉頭、咽頭を含む)、白血病、リンパ腫、肉腫及びカルシノイド腫瘍が挙げられる。また、抗真菌薬を投与する疾患としては、皮膚真菌症〔白癬菌症(みずむし、いんきんたむし、しらくも等)〕、皮下真菌症(菌腫、放線菌症、スポロトリコーシス、クロモミマイコーシス等)、粘膜真菌症(カンジダ症、アスペルギルス症、ムコール菌症等)、肺真菌症(クリプトコッカス症、ヒストプラズマ症、ブラストミセス症、コクシジオイデス症、パラコクシジオイデス症等)、肺コクシジオイデス症(Coccidiodomycosis)、肺ロクシジオイデス症(Coccidiodomycosis)及びパラコクシジオイデス症等を挙げることができる。

[0021]

本発明のABCトランスポーター阻害剤は、哺乳動物(例、ヒト、マウス、ラット、ウサギ、イヌ、ネコ、ウシ、ウマ、ブタ、サルなど)に対して用いることができる。

[0022]

本発明のABCトランスポーター阻害剤の投与量は、疾患の種類、その状態の重篤度、 患者の年令、体重、性別及び使用する薬物の種類、耐性獲得の有無など、種々の因子によって左右される。熟達した臨床医ならば、患者を診断し又は処置するために必要な化合物 又は医薬組成物の有効量は容易に決定又は処方することができる。簡便には、当業者なら ば初めは比較的少用量を使用し、次いで最大応答が得られるまでその用量を増大させるこ とが好ましい。

[0023]

本発明のABCトランスポーター阻害剤は、エニアチン類をそのまま、もしくは自体公知の薬理学的に許容しうる担体などと共に医薬組成物として製造される。

上記医薬組成物は、錠剤、カプセル剤、顆粒剤、散剤などの固形製剤;又はシロップ剤、注射剤などの液状製剤など、公知の剤形をとっていてよい。また、本発明に係るABCトランスポーター阻害剤は、経口投与することもできるし、非経口的に投与することもできる。

上記薬学的に許容される担体としては、製剤素材として慣用の各種有機あるいは無機担体物質が用いられ、固形製剤における賦形剤、滑沢剤、結合剤、崩壊剤;液状製剤における溶剤、溶解補助剤、懸濁化剤、等張化剤、緩衝剤、無痛化剤などとして配合される。また必要に応じて、防腐剤、安定化剤、着色剤、甘味剤などの製剤添加物を用いることもできる。

[0024]

賦形剤の好適な例としては、例えば乳糖、白糖、D-マンニトール、デンプン、結晶セ ルロース、軽質無水ケイ酸などが挙げられる。滑沢剤の好適な例としては、例えばステア リン酸マグネシウム、ステアリン酸カルシウム、タルク、コロイドシリカ、ケイ酸マグネ シウムなどが挙げられる。結合剤の好適な例としては、例えば結晶セルロース、白糖、D -マンニトール、デキストリン、ヒドロキシプロピルセルロース、ヒドロキシプロピルメ チルセルロース、ポリビニルピロリドン、アラビアゴム、カルメロース、単シロップなど が挙げられる。崩壊剤の好適な例としては、例えばカルメロース、カルメロースカルシウ ム、デンプン、結晶セルロースなどが挙げられる。溶剤の好適な例としては、例えば注射 用水、精製水、アルコール、プロピレングリコール、マクロゴール、ゴマ油、トウモロコ シ油などが挙げられる。溶解補助剤の好適な例としては、例えばポリエチレングリコール 、プロピレングリコール、安息香酸ベンジル、コレステロール、安息香酸ナトリウム、ク エン酸などが挙げられる。懸濁化剤の好適な例としては、例えばポリビニルアルコール、 ポリビニルピロリドン、カルボキシメチルセルロースナトリウム、メチルセルロース、ヒ ドロキシプロピルメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピル セルロース、アラビアゴム、カルメロース、ゼラチンなどが挙げられる。等張化剤の好適 な例としては、例えば塩化ナトリウム、グリセリン、ブドウ糖、D-マンニトールなどが 挙げられる。緩衝剤の好適な例としては、例えばクエン酸、クエン酸ナトリウム、炭酸水 素ナトリウム、酢酸、酢酸ナトリム、リン酸水素ナトリウム、乳酸、ホウ酸、ホウ砂など が挙げられる。無痛化剤の好適な例としては、例えばベンジルアルコールなどが挙げられ る。防腐剤の好適な例としては、例えばパラオキシ安息香酸エステル類、クロロブタノー ル、ベンジルアルコール、フェネチルアルコール、デヒドロ酢酸、ソルビン酸、塩化ベン ザルコニウム、塩化ベンゼトニウムなどが挙げられる。安定化剤の好適な例としては、例 えば亜硫酸水素ナトリウム、ピロ亜硫酸ナトリウム、アスコルビン酸、トコフェロール、 エデト酸ナトリウムなどが挙げられる。着色剤の好適な例としては、酸化チタンなどが挙 げられる。甘味剤の好適な例としては、果糖、D-ソルビトール、ブドウ糖、単シロップ 、アスパルテーム、アセスルファムカリウムなどが挙げられる。

本発明の医薬組成物は、エニアチン類及び上記制癌薬等の耐性を生じる薬物に配合することもできる。配合することにより、配合した薬物に対する耐性獲得を容易に予防、抑制又は防止することができる。

また、本発明の医薬組成物においては、本発明の目的に反しない限り、その他の同種または別種の薬効成分を適宜含有させてもよい。

$[0\ 0\ 2\ 5]$

本発明のABCトランスポーター阻害活性は、例えば、国際公開番号WO03/008644 (特許文献1参照)に記載の方法により測定することができる。

[0026]

以下に本発明において好ましい実施例により本発明について述べるが、本発明は以下の 実施例に限定されるものではない。

なお、本発明において、「%」は特に断りのない限り、「%(W/V)」を示す。

【実施例1】

[0027]

ABCトランスポーター阻害活性

(1)被検薬

エニアチン混合物 (A, A1, B, B1混合物;シグマ・アルドリッチ)、エニアチン B, B1, Dを使用した。エニアチン B, B1, Dは以下のものを使用した。

$$0 \longrightarrow CH_3 \qquad CH_3 \qquad C \longrightarrow CH_3 \qquad C$$

分子最639。化学式: C33 H57 N3O9

13 C-NMR (150MHz), 1 H-NMR (600-MHz): 【表2】

Position	^{1 3} C - N M R	¹ H NMR	
	δС	δН	
Val α-CH	63.3	4. 52	
Val β-CH	27.9	2. 29	
Val γ -CH ₃	19.2,20.5	1.06,0.89	
Hiv α-CH	75.7	5. 13	
Hiv β-CH	29.9	2. 29	
$Hiv \gamma - CH_3$	18.5,18.7	0.98	
N-CH ₃	33.4	3. 13	
CO-N	169.1		
CO-O	170.2		

分子量 6 5 3。化学式: C 3 4 H 5 9 N 3 O 9 ¹ H-NMR (6 0 0 MH z): 【表 3】

Position	¹H NMR δH		
Val α-CH	4. 49		
Val β-CH	2. 28		
Val γ-CH ₃	1. 08, 0. 84		
lle α-CH	4.73		
lle β-CH	ND		
lle γ-CH ₂	1. 42, 1. 06		
IIe $\gamma - CH_3$	0.95		
lle δ−CH₃	0.83		
Hiv α-CH	5. 1 1		
Hiν β-CH	2. 28		
$Hiv \gamma - CH_3$	0.89,0.99		
$N-CH_3$	3. 11, 3. 20		

【0030】 エニアチンD: 【化6】

分子量 6 5 3。化学式: C 3 4 H 5 9 N 3 O 9 ¹ H-NMR (6 0 0 MH z):

【表4】

Position	¹H NMR		
	δН		
Val α-CH	4. 95		
Val β-CH	4.46		
Val γ -CH ₃	1.04,0.87		
Leü α-CH	4.68		
Leu β-CH ₂	1. 74, 1. 83		
Leu γ-CH	1. 51		
Leu δ-CH ₃	N D		
$Hiv \alpha - CH$	5. 11		
Hiv β-CH	2. 25		
Hiv $\gamma - CH_3$	0.92,0.98		
N-CH ₃	3. 08, 3. 13, 3. 17		

[0031]

-(2) 試験方法

図1に示すように、シクロヘキシミドを0.04%含有する最小寒天培地プレート(1.5%寒天)を用意し、コルクボーラーで直径8mmの穴をあけた。ピンセットで円内の寒天を取り除いて、被検薬の溶解液を注入した。PDR5過剰発現酵母を最小液体培地4mLに接種した。30℃、12時間振とう培養したものを、最小培地トップアガー4mLに4×10⁶ cells接種後、これをよく攪拌して最小寒天培地プレートの上に注加し、上層を調製した。その後、30℃、2日間静置培養した。この時、被検薬が酵母PDR5タンパク質を阻害する物質、もしくは酵母の生育阻害物質であれば、酵母の生育阻止円(ハロー)が形成される。PDR5過剰発現酵母は、国際公開番号WO03/008644の明細書に記載した方法に従った。すなわち、膜エルゴステロールの合成系遺伝子SYR/ERG3を欠損して薬剤感受性にし、且つ、PDR5及びSNQ2欠損を欠損させたサッカロミセス・セレビシアW303(MAT a Δ syr/erg3::HIS3 Δ pdr5::LEU2 Δ snq2::HIS3)を宿主とし、PDR5を高発現する発現ベクターで形質転換して作製した。また発現ベクターの作成方法及び形質転換の方法についても、国際公開番号WO03/008644の明細書に記載した方法に従った。

標準物質として様々な濃度のシクロヘキシミドを上記穴に注入し、形成される生育阻止円の直径をシクロヘキシミド濃度の対数に対してプロットして検量線を作成した(図2)。この条件下、直径20mmの生育阻止円を形成するときの阻害活性(IU:Inhibitory Unit)を1mLあたり20IU/mLと定義し、この検量線を用いて被検薬の阻害活性濃度を算出した。

[0032]

なお、最小培地としては、以下のものを使用した。最小寒天培地は、最小培地に寒天1.5%を添加し、最小培地トップアガーは最小培地に寒天1%を添加した。

最小培地:

最小培地として以下の組成のものを調製した。

リン酸2水素カリウム	0.15%
塩化カルシウム・2水和物	0.01%
硫酸マグネシウム・7水和物	0.05%
硫酸アンモニウム	0.2%
微量元素ストック	0.01%
グルコース	2 %

0.5%ヨウ化カリウム溶液0.02%アデニン (2 m g / m L)1%ロイシン (3 m g / m L)1%ヒスチジン (2 m g / m L)1%トリプトファン (2 m g / m L)5%ビタミン混合液5%

【実施例2】

[0033]

PDR5タンパク質の阻害作用

PDR5発現ベクターで宿主酵母(Saccharomyces cerevisiae W303(MAT a Δ syr/erg3::HIS3 Δ pdr5::LEU Δ snq2::HIS3))を形質転換したPDR5過剰発現酵母及び当該宿主酵母をそれぞれ4mLの最小培地に植菌し、30℃、12時間振とう培養した。種々の濃度のシクロヘキシミド又はセルレニンを添加したマイクロタイタープレート96ウェルに、種々の濃度の精製したエニアチンB、B1、D又はエニアチン混合物を添加し、上記の酵母を植菌した。なお、ウェル当たりの液量は、200 μ Lとなるよう最小培地で調整した。30℃、24時間静置培養後、酵母の増殖度を測定し、エニアチン混合物のPDR5過剰発現酵母及び宿主酵母に対する増殖阻害活性を評価した。酵母の増殖はマイクロタイタープレートリーダー(MTP-500;CORONA社)を用いて660nmの吸光度を測定した。また、陽性対照として、酵母PDR5タンパク質及びヒトMDR1タンパク質(P-糖タンパク質)を阻害することが知られている免疫抑制剤FK-506について、同様に、PDR5過剰発現酵母及び宿主酵母に対する増殖阻害活性を評価した。

[0034]

エニアチンB、B_I及びDは、PDR 5過剰発現酵母の増殖を濃度依存的に阻害し、いずれも 5μ g/mLの濃度でPDR 5過剰発現酵母の増殖を完全に阻害した。また宿主酵母の増殖に対する阻害は、エニアチン混合物の濃度を 5μ g/mLにまで高めても全く認められなかった。この結果から、エニアチン混合物は 5μ g/mLでPDR 5 タンパク質を完全に阻害し、かつこの濃度で宿主酵母の増殖を全く阻害しないことから、細胞毒性のない所望のABCトランスポーター阻害物質であることが確認できた。

また、エニアチン混合物とFK-506のPDR5タンパク質の阻害活性を比較したところ、シクロヘキシミド存在下での 5μ g/mLエニアチン混合物添加時と無添加時の50%増殖阻害濃度(IC $_{50}$)の比(感受性増強度)は、FK506の感受性増強度よりも高かった。また、セルレニンに対する感受性増強度もエニアチン混合物の方が、FK-506よりも高かった(表5)。以上の結果より、エニアチン混合物はFK-506よりも強いPDR5タンパク質の阻害活性を有することが確認できた。

【表5】

薬 剤	ΙC ₅₀ (μg∕mL)	感受性增強度
シクロヘキサミド	0.130	
シクロヘキサミド+5μg/mLエニアチン混 合物	0.017	7. 65
セルレニン	0.351	
セルレニン+5μg/mLエニアチン混合物	0.102	3. 44
シクロヘキサミド	0.122	
シクロヘキサミド+5.0μg/mL FK-5 06	0.031	3. 94
セルレニン	0.336	
セルレニン+5. 0μg/mL FK-506	0.169	1.99

【実施例3】

[0035]

エニアチンのPDR5タンパク質阻害機構

ローダミン(Rhodamine)6 GはPDR 5 タンパク質によって排泄されることが確認されている蛍光物質であり、上記宿主酵母はPDR 5 を欠損しているので、酵母細胞内にローダミン6 Gが蓄積し、細胞は強く蛍光を発するが、上記PDR 5 過剰発現酵母ではローダミン6 Gは細胞外に排泄されるため、弱い蛍光しか示さない。もし、エニアチンがPDR 5 タンパク質の機能を阻害するのであれば、PDR 5 過剰発現酵母においても酵母細胞内にローダミン6 Gが蓄積し、酵母細胞は蛍光を発する。上記PDR 5 タンパク質過剰発現株と上記宿主酵母を 4 mLの最小培地で 3 0 $\mathbb C$ 、1 2 時間振とう培養した。その後、それぞれ1.0×10 cells相当の酵母を 4 mLの最小培地に植菌した。この際、エニアチンB、B1、D、エニアチン混合物及びFK-506をそれぞれ最終濃度25 μ g/mLとなるように添加し、30 $\mathbb C$ 、2 時間振とう培養後、ローダミン6 G(1 mg/mL)を15 μ L加え、同条件で30分間培養した。培養後、培養液をPBS(リン酸緩衝生理食塩水)2%グルコースで2回洗浄し、蛍光顕微鏡(Nicon ECLIPSE E400、G-2Aフィルター使用)で酵母細胞中の蛍光を観察した。

[0036]

PDR5過剰発現株にエニアチンB、B1、D、エニアチン混合物又はFK-506を添加したPDR5過剰発現酵母は、いずれの場合も同様にローダミン6Gを細胞内に蓄積した。また、PDR5が欠損している宿主酵母にエニアチンB、B1、D、エニアチン混合物又はFK-506を添加した場合、これら薬剤を添加しない場合と同様に、酵母細胞内にローダミン6Gが蓄積して蛍光を発した。以上の結果からエニアチンB、B1、D、エニアチン混合物及びFK-506はすべてPDR5タンパク質の機能を阻害することが確認された。

[0037]

エニアチン類のPDR5遺伝子の発現に及ぼす影響を、 β -ガラクトシダーゼ遺伝子をレポーター遺伝子としてPDR5転写量を測定して解析した。Pdr5プロモーターの下流に β -ガラクトシダーゼ遺伝子(lacZ)をフュージョンさせた組換えプラスミドを導入した酵母を4mLのYEPD培地で30℃、8時間振盪培養し、それぞれ1.0×10 cells相当の酵母を4mLの同培地に植菌した。この際、エニアチンB、B1、D、エニアチン混合物又はFK-506をそれぞれ最終濃度25 μ g/mLを添加した。これらの酵母を30℃、8時間振盪培養後、それぞれ1.0×10 cells相当の酵

[0038]

エニアチンB、B1、D、エニアチン混合物のPDR5タンパク質の翻訳量及びPDR5タンパク質の安定性に及ぼす影響を、PDR5タンパク質をウエスタンブロット法で解析して調べた。エニアチンB、B1、D、エニアチン混合物の添加によってPDR5タンパク質の量的な変化は認められず、PDR5タンパク質の翻訳阻害、あるいはPDR5タンパク質の分解を促進して安定性を低下させることによって見かけ上、PDR5遺伝産物の機能を阻害するのではないことが確認された。以上の結果から、エニアチンB、B1、D、エニアチン混合物はPDR5タンパク質(PDR5タンパク質)に直接作用してシクロヘキシミドやセルレニン等の薬剤の細胞外への排泄を阻害することが確認された。

【産業上の利用可能性】

[0039]

本発明のABCトランスポーター阻害剤は、薬物、特に抗癌薬、抗真菌薬が細胞内から細胞外へ輸送・排泄されるのを阻害するから、各種薬剤に対する耐性獲得を予防し、抑制 又は防止することができる。本発明のABCトランスポーター阻害剤は、各種薬剤、特に抗癌薬、抗真菌薬に対する耐性の獲得の予防、抑制又は防止に有用である。

【図面の簡単な説明】

[0040]

【図1】図1はABCトランスポーター阻害活性の測定方法を示す図である。

【図2】図2は生育阻止円の直径をシクロヘキシミド濃度の対数に対してプロットして作成した検量線を示す図である。

【要約】

【課題】 本発明は、癌の化学療法での最大の課題であるMDR1遺伝子の増幅・発現による抗癌薬に対する多剤耐性、あるいは真菌症における抗真菌薬の薬剤耐性を克服するABCトランスポーター阻害剤を提供することを目的とする。

【解決手段】 エニアチン類を有効成分として含有するABCトランスポーター阻害剤。本発明のABCトランスポーター阻害剤は、薬物、特に抗癌薬、抗真菌薬が細胞内から細胞外へ輸送・排泄されるのを阻害するから、各種薬剤に対する耐性の獲得の予防、抑制又は防止に有用である。

【選択図】 なし

特願2004-057442

出願人履歴情報

識別番号

[000001904]

1. 変更年月日

1990年 8月13日

[変更理由]

新規登録

住所

大阪府大阪市北区堂島浜2丁目1番40号

氏 名 サントリー株式会社