

SH1106

V2.6

132 X 64 点阵 OLED/PLED 段/带 控制器的通用驱动器

特点

最大支持 132 X 64 点阵面板 嵌入式 132 X 64 位 SRAM

工作电压

- 逻辑电源电压: VDD1 = 1.65V - 3.5V - 直流-直流电压供应: VDD2 = 2.2V - 4.7V

- OLED 工作电源电压:

外部 VPP 电源 = 6.4V - 14.0V 内部 VPP 发生器 = 6.4V - 9.0V 典型分段输出电流:300μA 最大分段输出电流:500μA 典型通用灌电流:40mA

8 位 6800 系列并行接口、8 位 8080 系列并行接口、3 线制和 4 线制串行外设接口、400KHz 快速

I2C 总线接口

可编程帧频和复用比

行重新映射和列重新映射 (ADC)

垂直滚动

片上振荡器

可编程内部电荷泵电路输出

单色无源 OLED 面板上的 256 级对比度控制

低功耗

- 睡眠模式: <5µA

- VDD1=0V , VDD2=2.2V - 4.7V: $<\!5\mu\text{A}$

- VDD1,2=0V , VPP=6.4V –14.0V: <5μA

工作温度范围广: -40 至 +85℃ 以 COG 形式提供,厚度 300 微米

一般说明

SH1106 是一款带控制器的单芯片 CMOS OLED/PLED 驱动器,用于有机/聚合物发光二极管点阵图形显示系统。SH1106 由 132 个段和 64 个共用段组成,可支持 132 X 64 的最大显示分辨率。它专为共阴极型 OLED 面板而设计。

SH1106 内置对比度控制、显示 RAM 振荡器和高效的 DC-DC 转换器,从而减少了外部元件的数量,降低了功耗。SH1106 适用于各种小型便携式应用,如手机副显示屏、计算器和 MP3 播放器等。

翻译说明:由于非团队翻译,个人时间 有限,可能无法做到完全正确,或排版 有问题等细节问题,如不严重影响阅 读,无需反馈,如有不了解之处,请以 英文原文档为准。 当前翻译版本号:1.0版(首次发布) 发布时间:2024/8/20[~] 翻译反馈邮箱:yzmyly@qq.com

方框图

焊盘说明

电源

符号	I/O	说明					
VDD1	供电	皀源输入: 1.65 - 3.5∨					
VDD2	供电	2.2 - 4.7V 电源焊盘,用于为电荷泵电路供电。					
V 552	N-E	当 VPP 由外部供电时,该引脚应断开连接。					
Vss	供电	地					
VsL	供电	这是一个分段电压基准焊盘。					
VSL	供电	该焊盘应外部连接至 VSS。					
VcL	供电	这是一个共用电压基准焊盘。					
VCL	供出	该焊盘应外部连接至 VSS。					

OLED 驱动器电源

符号	I/O	说明						
lref	0	这是一个段电流基准焊盘。该焊盘与 VSS 之间应连接一个电阻器。将电流设置为 18.75µA。						
Vсомн	0	这是公共信号高电平电压输出的焊盘。 该焊盘和 VSS 之间应连接一个电容器。						
VBREF	NC	这是升压电路的内部电压基准焊盘。 保持浮动。						
VPP	Р	OLED 面板电源。由内部电荷泵产生。 连接至电容器。可由外部供电。						
C1N,	Р	连接至电荷泵电容器。						
C1P	ı	这些引脚不使用,在外部提供 Vpp 时应断开。						
C2P,	Р	连接至电荷泵电容器。						
C2N	Г	这些引脚不使用,在外部提供 Vpp 时应断开。						

系统总线连接焊盘

符号	I/O		说明									
		该焊盘为	系统时钟输入。	。启用内部时旬	中时,该焊盘	应						
CL	I/O	保持打开 号。	。内部时钟从前	该焊盘输出。橥	禁用内部振荡	器时,该焊盘从	人外部时钟源接 [[]	收显示时钟信				
		这是内部	这是内部时钟使能垫。									
CLS	I	CLS = "F	CLS = "H": 启用内部振荡电路。									
020		CLS = "L	.": 内部振荡电	2路禁用(需要	外部输入)。							
		CLS = "L	CLS = "L "时,必须在 CL 焊盘上连接外部时钟源才能正常工作。									
		这些是 N	IPU 接口模式设	选择焊盘。								
IMO			8080	I ² C	6800	4线 SPI	3线 SPI					
IM1	- 1	IM0	0	0	0	0	1					
IM2		IM1	1	1	0	0	0					
		IM2	1	0	1	0	0					
cs	ı	该焊盘是	该焊盘是芯片选择输入端。当 CS ="L "时,芯片选择变为有效,数据/命令 I/O 被启用。									
RES	I	这是复位行。	这是复位信号输入点。RES 设置为 "L "时,设置将被初始化。复位操作由 RES 信号电平执行。									
A0	ı	A0 = "H" A0 = "L"	这是数据/命令控制点,决定数据位是数据还是命令。 A0 = "H":D0 至 D7 的输入被视为显示数据。 A0 = "L":D0 至 D7 的输入被传送到命令寄存器。 在 I2C 接口中,该焊盘作为 SA0 用于区分 OLED 驱动器的不同地址。									
WR (R/W)	I	当连接到的信号在 当连接到 当 R / W	· WR 信号上升 6800 系列 MF = "H" 时: 读即	,它为低电平沿时锁存。 2U时:这是证 V。			IPU的WR信号	号。数据总线上				
RD (E)	ı	与 8080 系号为 "L "明当与 6800 入。 当 RD ="h	当 R / W = "L "时:写入。 这是一个 MPU 接口输入焊盘。 与 8080 系列 MPU 连接时,为低电平有效。该焊盘与 8080 系列 MPU 的 RD 信号相连,当该信号为 "L "时,数据总线处于输出状态。 当与 6800 系列 MPU 连接时,该信号为高电平有效。该信号用作 6800 系列 MPU 的使能时钟输入。 当 RD = "H "时: 启用。 当 RD = "L" 时: 禁用。									
D0 - D7 (SCL)	I/O I	选择串行]作串行时钟输		标准 MPU 数据), D1 用作串?	总线。 亍数据输入点(》	SI)。				
(SI/SDA)	I/O		接口时,D0 月 2 至 D7 设置为		ì入点 (SCL) ,	, D1 用作串行数	数据输入点 (SD	AI)。				

OLED 驱动点

符号	I/O	说明						
COM0,2, - 60, 62	0	这些焊盘甚至可以为 OLED 显示屏提供通用信号输出。						
COM1,3 - 61,63	0	这些焊盘是用于 OLED 显示屏的奇数共用信号输出。						
SEG0 - 131	0	这些焊盘是用于 OLED 显示屏的分段信号输出。						

测试点

符号	I/O	说明				
TEST1-3	I	测试点,内部低电平,用户无需连接。				
Dummy	-	这些点不使用。保持漂浮。				

焊盘配置

芯片外形尺寸

项目	焊盘编 号	尺寸	(微米)	
		Х	Y	
芯片边界	-	5076	814	
芯片高度	All pads	3	800	
	I/O	40	80	
凹凸大小	SEG	15	110	
口口八小	COM	15	110	
	COIVI	110	15	
焊盘间距	COM	;	30	
	SEG	30.75		
	I/O	55		
凹凸高度	All pads	9	± 2	

对齐标记位置

单位: 微米

NO	Х	Υ
ALK_L	-2470	-348
ALK_R	2470	-348

焊盘位	置(共计	: 266	个焊盘))										单位:	:微米
焊盘编号	名称	х	Y	焊盘编号	名称	х	Υ	焊盘编号	名称	х	Υ	焊盘编号	名称	х	Υ
1	COM53	-2287.62	-329	69	VCOMH	1721.81	-299.95	137	SEG30	1122.38	329	205	SEG98	-1030.12	329
2	COM55	-2257.62	-329	70	VCOMH	1776.81	-299.95	138	SEG31	1091.63	329	206	SEG99	-1060.87	329
3	COM57	-2227.62	-329	71	VPP	1831.81	-299.95	139	SEG32	1060.88	329	207	SEG100	-1091.62	329
4	COM59	-2197.62	-329	72	VPP	1886.81	-299.95	140	SEG33	1030.13	329	208	SEG101	-1122.37	329
5	COM61	-2167.62	-329	73	COM62	2137.62	-329	141	SEG34	999.38	329	209	SEG102	-1153.12	329
6 7	COM63 C21N	-2137.62 -1688.19	-329 -299.95	74 75	COM60 COM58	2167.62 2197.62	-329 -329	142	SEG35 SEG36	968.63 937.88	329 329	210 211	SEG103 SEG104	-1183.87 -1214.62	329 329
8	C21N	-1633.19	-299.95	76	COM56	2227.62	-329	144	SEG37	907.13	329	212	SEG104 SEG105	-1214.62	329
9	C21N	-1578.19	-299.95	77	COM54	2257.62	-329	145	SEG38	876.38	329	213	SEG106	-1276.12	329
10	C21N	-1523.19	-299.95	78	COM52	2287.62	-329	146	SEG39	845.63	329	214	SEG107	-1306.87	329
11	C21P	-1468.19	-299.95	79	COM50	2460	-285	147	SEG40	814.88	329	215	SEG108	-1337.62	329
12	C21P	-1413.19	-299.95	80	COM48	2460	-255	148	SEG41	784.13	329	216	SEG109	-1368.37	329
13	C21P	-1358.19	-299.95	81	COM46	2460	-225	149	SEG42	753.38	329	217	SEG110	-1399.12	329
14	C21P	-1303.19	-299.95	82	COM44	2460	-195	150	SEG43	722.63	329	218	SEG111	-1429.87	329
15	C22P C22P	-1248.19	-299.95 -299.95	83 84	COM42	2460	-165	151	SEG44	691.88	329	219 220	SEG112	-1460.62	329 329
16 17	C22P C22P	-1193.19 -1138.19	-299.95 -299.95	85	COM40 COM38	2460 2460	-135 -105	152 153	SEG45 SEG46	661.13 630.38	329 329	221	SEG113 SEG114	-1491.37 -1522.12	329
18	C22P	-1083.19	-299.95	86	COM36	2460	-75	154	SEG47	599.63	329	222	SEG115	-1552.87	329
19	C22N	-1028.19	-299.95	87	COM34	2460	-45	155	SEG48	568.88	329	223	SEG116	-1583.62	329
20	C22N	-973.19	-299.95	88	COM32	2460	-15	156	SEG49	538.13	329	224	SEG117	-1614.37	329
21	C22N	-918.19	-299.95	89	COM30	2460	15	157	SEG50	507.38	329	225	SEG118	-1645.12	329
22	C22N	-863.19	-299.95	90	COM28	2460	45	158	SEG51	476.63	329	226	SEG119	-1675.87	329
23	VDD2	-808.19	-299.95	91	COM26	2460	75	159	SEG52	445.88	329	227	SEG120	-1706.62	329
24	VDD2	-753.19	-299.95	92	COM24	2460	105	160	SEG53	415.13	329	228	SEG121	-1737.37	329
25 26	VDD2 VDD2	-698.19 -643.19	-299.95 -299.95	93 94	COM22 COM20	2460 2460	135 165	161 162	SEG54 SEG55	384.38 353.63	329 329	229	SEG122 SEG123	-1768.12 -1798.87	329 329
27	VBREF	-588.19	-299.95	95	COM18	2460	195	163	SEG56	322.88	329	231	SEG124	-1829.62	329
28	VPP	-533.19	-299.95	96	COM16	2460	225	164	SEG57	292.13	329	232	SEG125	-1860.37	329
29	VPP	-478.19	-299.95	97	COM14	2460	255	165	SEG58	261.38	329	233	SEG126	-1891.12	329
30	VCOMH	-423.19	-299.95	98	COM12	2460	285	166	SEG59	230.63	329	234	SEG127	-1921.87	329
31	VCOMH	-368.19	-299.95	99	COM10	2287.62	329	167	SEG60	199.88	329	235	SEG128	-1952.62	329
32	VSS(REF)	-313.19	-299.95	100	COM8	2257.62	329	168	SEG61	169.13	329	236	SEG129	-1983.37	329
33	VSS	-258.19	-299.95	101	COM6	2227.62	329	169	SEG62	138.38	329	237	SEG130	-2014.12	329
34 35	VSS	-203.19 -148.19	-299.95 -299.95	102	COM4 COM2	2197.62 2167.62	329 329	170 171	SEG63 SEG64	107.63 76.88	329 329	238	SEG131 DUMMY	-2044.87 -2075.62	329 329
36	VCL	-93.19	-299.95	103	COM2	2137.62	329	172	SEG65	46.13	329	240	DUMMY	-2105.62	329
37	VCL	-38.19	-299.95	105	DUMMY	2105.63	329	173	SEG66	15.38	329	241	COM1	-2137.62	329
38	VSL	16.81	-299.95	106	DUMMY	2075.63	329	174	SEG67	-15.37	329	242	COM3	-2167.62	329
39	VSL	71.81	-299.95	107	SEG0	2044.88	329	175	SEG68	-46.12	329	243	COM5	-2197.62	329
40	TEST1	126.81	-299.95	108	SEG1	2014.13	329	176	SEG69	-76.87	329	244	COM7	-2227.62	329
41	TEST2	181.81	-299.95	109	SEG2	1983.38	329	177	SEG70	-107.62	329	245	COM9	-2257.62	329
42	TEST3	236.81	-299.95	110	SEG3	1952.63	329	178	SEG71	-138.37	329	246	COM11	-2287.62	329
43 44	CL CLS	291.81	-299.95 -299.95	111	SEG4	1921.88	329	179	SEG72 SEG73	-230.62 -261.37	329	247 248	COM13 COM15	-2460	285 255
45	VDD1	346.81 401.81	-299.95	112	SEG5 SEG6	1891.13 1860.38	329 329	180 181	SEG73	-292.12	329 329	249	COM15	-2460 -2460	255
46	VDD1	456.81	-299.95	114	SEG7	1829.63	329	182	SEG75	-322.87	329	250	COM19	-2460	195
47	IM1	511.81	-299.95	115	SEG8	1798.88	329	183	SEG76	-353.62	329	251	COM21	-2460	165
48	VSS	566.81	-299.95	116	SEG9	1768.13	329	184	SEG77	-384.37	329	252	COM23	-2460	135
49	IM2	621.81	-299.95	117	SEG10	1737.38	329	185	SEG78	-415.12	329	253	COM25	-2460	105
50	VDD1	676.81	-299.95	118	SEG11	1706.63	329	186	SEG79	-445.87	329	254	COM27	-2460	75
51	IM0	731.81	-299.95	119	SEG12	1675.88	329	187	SEG80	-476.62	329	255	COM29	-2460	45
52 53	VSS CSB	786.81 841.81	-299.95 -299.95	120 121	SEG13 SEG14	1645.13 1614.38	329 329	188 189	SEG81 SEG82	-507.37 -538.12	329 329	256 257	COM31 COM33	-2460 -2460	15 -15
54	RESB	896.81	-299.95	122	SEG15	1583.63	329	190	SEG83	-568.87	329	258	COM35	-2460	-45
55	A0	951.81	-299.95	123	SEG16	1552.88	329	191	SEG84	-599.62	329	259	COM37	-2460	-75
56	VSS	1006.81	-299.95	124	SEG17	1522.13	329	192	SEG85	-630.37	329	260	COM39	-2460	-105
57	WRB	1061.81	-299.95	125	SEG18	1491.38	329	193	SEG86	-661.12	329	261	COM41	-2460	-135
58	RDB	1116.81	-299.95	126	SEG19	1460.63	329	194	SEG87	-691.87	329	262	COM43	-2460	-165
59	D0	1171.81	-299.95	127	SEG20	1429.88	329	195	SEG88	-722.62	329	263	COM45	-2460	-195
60	D1	1226.81	-299.95	128	SEG21	1399.13	329	196	SEG89	-753.37	329	264	COM47	-2460	-225
61	D2	1281.81	-299.95	129	SEG22	1368.38	329	197	SEG90	-784.12	329	265	COM49	-2460	-255
62 63	D3 D4	1336.81 1391.81	-299.95 -299.95	130 131	SEG23 SEG24	1337.63 1306.88	329 329	198 199	SEG91 SEG92	-814.87 -845.62	329 329	266	COM51	-2460	-285
64	D5	1446.81	-299.95 -299.95	132	SEG24 SEG25	1276.13	329	200	SEG92 SEG93	-845.62	329				
65	D6	1501.81	-299.95	133	SEG26	1245.38	329	201	SEG94	-907.12	329				
66	D7	1556.81	-299.95	134	SEG27	1214.63	329	202	SEG95	-937.87	329				
67	VSS	1611.81	-299.95	135	SEG28	1183.88	329	203	SEG96	-968.62	329				
68	IREF	1666.81	-299.95	136	SEG29	1153.13	329	204	SEG97	-999.37	329				

功能说明

微处理器接口选择

如表 1 所示,可以通过 IMO~2 的不同选择来选择 8080 并行接口、6800 并行接口、串行接口 (SPI) 或 I2C 接口。

表. 1

	配置			数据信号						控制信号						
接口	IMO	IM1	IM2	D7	D6	D5	D4	D3	D2	D1	D0	E/RD	WR	CS	Α0	RES
6800	0	0	1	D7	D6	D5	D4	D3	D2	D1	D0	Е	R/\overline{W}	CS	A0	RES
8080	0	1	1	D7	D6	D5	D4	D3	D2	D1	D0	RD	WR	CS	A0	RES
4-Wire SPI	0	0	0			Hz ()	<u>‡</u> 1)			SI	SCL	拉高	或低	cs	A0	RES
3-Wire SPI	1	0	0		Hz (注1)					SI	SCL	拉高	或低	cs	Pull Low	RES
I ² C	0	1	0			Hz (注	È1)			SDA	SCL	拉高:	或低	Pull Low	SA0	RES

注1: 选择串行接口 (SPI) 或 I2C 接口时, D7~D2 为 Hz。 建议 D7~ D2 连接 VDD1 或 VSS。 也允许不连接 D7~ D2。

6800 系列并行接口

并行接口由 8 个双向数据焊盘(D7-D0)、 \overline{WR} (R/W)、RD(E)、A0 和 \overline{CS} 组成。 当 \overline{WR} (R / W)="H"时,将从显示 RAM 或状态寄存器进行读取操作。当 \overline{WR} (R / W)= "L"时,进行写入操作以显示数据根据 A0 输入的状态,RAM 或内部指令寄存器会发生相应的变化。 如表 2 所示,当 \overline{CS} = "L"时,RD(E)输入为 "H",用作数据锁存信号(时钟)。

表. 2

IMO	IM1	IM2	类型	CS	Α0	RD	\overline{WR}	D0 to D7
0	0	1	6800 微处理器总线	CS	A0	Е	R/\overline{W}	D0 to D7

为了使显示 RAM 的工作频率与微处理器的工作频率相匹配,内部要进行一些流水线处理,这就需要在第一次实际读取显示数据之前插入一个虚拟读数。如下图 1 所示。

8

8080 系列并行接口

并行接口由 8 个双向数据焊盘(D7-D0)、WR(R/W)、 \overline{RD} (E)、A0 和 \overline{CS} 组成。 RD (E) 输入为 "L"时作为数据读取锁存信号(时钟),条件是 \overline{CS} = "L"。显示数据或状态寄存器的读取由 A0 信号控制。当 \overline{WR} (R/W) 输入为 "L"且 \overline{CS} = "L"时,它作为数据写入锁存信号(时钟)。显示

数据或命令寄存器的写入由 A0 控制,如表 3 所示。

表. 3

IMO	IM1	IM2	类型	CS	Α0	RD	WR	D0 to D7
0	1	1	8080 微处理器总线	CS	A0	RD	WR	D0 to D7

与 6800 系列接口类似,在第一次实际读取显示数据之前也需要进行一次虚拟读取。

数据总线信号

SH1106 根据 A0、RD (E) 和 WR (R/W) 信号识别数据总线信号。

表. 4

常见问题	6800 处理器	8080 处	理器	功能
Α0	(R/W)	RD	WR	ATHE
1	1	0	1	读取显示数据。
1	0	1	0	写入显示数据。
0	1	0	1	读取状态。
0	0	1	0	将控制数据写入内部寄存器。(指令)

4 线串行接口 (4 线 SPI)

串行接口由串行时钟 SCL、串行数据 SI、A0 和 CS 组成。SI 在 SCL 的每个上升沿按照 D7、D6……和 D0 的顺序移入一个 8 位移位寄存器。A0 在每八分之一时钟采样,移位寄存器中的数据字节在同一时钟写入显示数据 RAM(A0=1)或命令寄存器(A0=0)。参见图 2。

表. 5

IMO	IM1	IM2	类型	CS	A0	RD	WR	D0	D1	D2 to D7
0	0	0	4-wire SPI	CS	A0	ı	-	SCL	SI	(Hz)

注意:"-"引脚必须始终保持高电平或低电平。D7~ D2 建议连接 VDD1 或 VSS。也可以不连接 D7~ D2。

CS 为高电平时,串行接口初始化。在此状态下,SCL 时钟脉冲或 SDI 数据不起作用。CS 下降沿会启用串行接口,并指示数据传输开始。CS 始终保持低电平时,SPI 也能正常工作,但不建议使用。

图 2 4线 SPI 数据传输

- 当芯片处于非激活状态时,移位寄存器和计数器将复位到初始状态。
- 在串行接口模式下无法读取。
- 当涉及线路末端反射和外部噪声时,需要对 SCL 信号加以注意。我们建议在实际设备上重新检查操作。

三线串行接口(三线 SPI)

三线串行接口由串行时钟 SCL、串行数据 SI 和 \overline{CS} 组成。串行数据 SI 在 SCL 的每个上升沿按照 D/ \overline{C} 、D7、D6……和 D0 的顺序移入一个 9 位移位寄存器。D/ \overline{C} 位(9 位中的第一位)将决定传输的数据是写入显示数据 RAM(D/ \overline{C} =1)还是命令寄存器(D/ \overline{C} =0)。

表.6

ĺ	IM0	IM1	IM2	Туре	CS	A0	RD	WR	D0	D1	D2 to D7
	1	0	0	3-wire SPI	CS	Pull Low	-	-	SCL	SI	(Hz)

注意:"-"引脚必须始终保持高电平或低电平。D7~ D2 建议连接 VDD1 或 VSS。也可以不连接 D7~ D2。

CS 为高电平时,串行接口初始化。在此状态下,SCL 时钟脉冲或 SDI 数据不起作用。CS 下降沿会启用串行接口,并指示数据传输开始。CS 始终保持低电平时,SPI 也能正常工作,但不建议使用。

图 2A 3 线 SPI 数据传输

当芯片处于非激活状态时,移位寄存器和计数器将复位到初始状态。 在串行接口模式下无法读取。

当涉及线路末端反射和外部噪声时, SCL 信号需要谨慎处理。我们建议在实际设备上重新检查操作。

I2C 总线接口

SH1106 可通过标准 I2C 总线传输数据,通信时仅采用从属模式。命令或 RAM 数据可写入芯片,状态和 RAM 数据可从芯片读出。

IM0	IM1	IM2	类型	CS	A0	RD	WR	D0	D1	D2 to D7
0	1	0	I2C 接口	拉低	SA0	1	1	SCL	SDA	(Hz)

注意:"-"引脚必须始终保持高电平或低电平。D7~ D2 建议连接 VDD1 或 VSS。也可以不连接 D7~ D2。

在 I2C 总线应用中, CS 信号始终为低电平。

I2C 总线的特性

I2C 总线用于不同集成电路或模块之间的双向、双线通信。这两条线是串行数据线 (SDA) 和串行时钟线 (SCL)。这两条线都必须通过上拉电阻与正电源相连。数据传输只能在总线不忙时启动。

注:上拉电阻的正电源必须等于 VDD1 的值。

比特传输

每个时钟脉冲传输一个数据位。在时钟脉冲的高电平期间,SDA 线路上的数据必须保持稳定,因为此时数据线路上的变化会被理解为控制信号。

图 3 比特传输

启动和停止条件

总线不忙时,数据线和时钟线都保持高电平。当时钟处于高电平时,数据线从高电平到低电平的转换被定义为启动条件 (S)。当时钟处于高电平时,数据线从低电平到高电平的转换被定义为停止条件 (P)。

图 4 启动和停止条件

系统配置

发送器: 向总线发送数据的设备。 接收器: 从总线接收数据的设备。

主设备:启动传输、产生时钟信号和终止传输的设备。

从设备: 主设备寻址的设备。

多主站: 多个主站可同时尝试控制总线,而不会损坏报文

仲裁:确保在多个主站同时试图控制总线时,只有一个主站可以控制总线,且信息不会被破坏的程序。

同步:使两个或多个设备的时钟信号同步的程序。

12 V2.6

确认

每个八比特的字节后面都有一个确认位。确认位是发送器在总线上设置的一个高电平信号,在此期间,主站会产生一个额外的与确认相关的时钟脉冲。 被寻址的从接收器必须在接收到每个字节后产生一个确认位。 主站接收器在接收到从站发送器时钟输出的每个字节后,也必须产生一个确认。确认设备必须在确认时钟脉冲期间下拉 SDA 线路,以便 SDA 线路在确认相关时钟脉冲的高电平期间稳定为低电平(必须考虑设置和保持时间)。主站接收器必须向发送器发出数据结束信号,即不对从站时钟输出的最后一个字节产生确认。在这种情况下,发送器必须将数据线保持为高电平,以使主站产生停止条件。

图 6 应答(ACK)

规程

SH1106 支持读写访问。 R/W 位是从机地址的一部分。 在 I2C 总线上传输任何数据之前,应首先寻址响应的设备。 为 SH1106 预留了两个 7 位从机地址(0111100 和 0111101)。 通过将输入 SA0 连接到逻辑 0(VSS)或 1(VDD1),可设置从站地址的最小有效位。 I2C 总线协议如图 7 所示。 该序列由 I2C 总线主站的启动条件 (S) 启动,随后是从站地址。 所有具有相应地址的从机并行确认,所有其他从机将忽略 I2C 总线传输。 确认后,一个或多个命令字随之而来,这些命令字定义了寻址从站的状态。 命令字由一个控制字节(定义 Co 和 D/\overline{C} (注 1))和一个数据字节组成(见图 7)。

最后一个控制字节的最显著位(续码位 Co)被清零。 在一个带有清除Co 位的控制字节之后,后面将只有数据字节。 D/\overline{C} 位的状态决定了数据字节被解释为命令还是 RAM 数据。 总线上的所有寻址从站也会确认控制字节和数据字节。 在最后一个控制字节之后,根据 D/\overline{C} 位的设置,可能会出现一系列显示数据字节或命令数据字节。 如果 D/\overline{C} 位设置为 "1",这些显示字节将存储在显示 RAM 中数据指针指定的地址处。 数据指针会自动更新,并将数据导向预定的 SH1106 设备。如果最后一个控制字节的 D/\overline{C} 位设置为 "0",则将对这些命令字节进行解码,并根据接收到的命令更改设备设置。

每个字节后的确认仅由寻址从站进行。 传输结束时,I2C 总线主站发出停止条件 (P)。 如果从地址中的 R/ \overline{W} 位设置为 1,芯片将根据上次写入访问时发送的 $\overline{D/C}$ 位,在从地址后立即输出数据。 如果在一个字节后主站没有产生确认,则驱动程序停止向主站传输数据。

图 7 I2C 协议

注1:

.... 1. Co = " 0 ":最后一个控制字节,后面只有数据字节;

Co = " 1 " :接下来的两个字节是一个数据字节和另一个控制字节;

2. D/\overline{C} = "0":数据字节用于命令操作; D/\overline{C} = "1":数据字节用于RAM操作。

访问显示数据 RAM 和内部寄存器

该模块决定输入数据被解释为数据还是命令。当 A0 ="H "时,D7 - D0 的输入被解释为数据并写入显示 RAM。当 A0 ="L "时,D7 - D0 的输入被解释为命令,它们将被解码并写入相应的命令寄存器。

显示数据 RAM

显示数据 RAM 是一个位映射静态 RAM,保存要显示的位模式。 内存大小为 132 X 64 位。

为提高机械灵活性,可通过软件选择段输出和公共输出的重新映射。

对于显示屏的垂直滚动,可以设置一个内部寄存器来存储显示起始行,以控制 RAM 数据的部分映射到显示屏上。

页面地址电路

如图 8 所示,显示数据 RAM 的页面地址通过页面地址设置命令指定。 在更改页面以执行访问时,必须再次指定页面地址。

列地址

如图 8 所示,显示数据 RAM 列地址由列地址设置命令指定。 每次读/写显示数据命令时,指定的列地址都会递增 (+1)。 这样就可以连续访问 MPU 显示数据。 由于列地址与页地址无关,例如,当从第 0 页第 83H 列移动到第 1 页第 00H 列时,需要重新指定页地址和列地址。

此外,如表 7 所示,列重新映射(ADC)命令(段驱动器方向选择命令)可用于反转显示数据 RAM 列地址与段输出之间的关系。因此,组装 OLED 模块时对 IC 布局的限制可以降到最低。

表. 7

分段输出	SEG0		SEG131
ADC "0"	0 (H) →	栏目地址	→ 83 (H)
ADC "1"	83 (H) ←	栏目地址	← 0 (H)

线路地址电路

行地址电路如图 8 所示,用于指定显示数据 RAM 内容时与公共输出有关的行地址。使用显示起始行地址设置命令,可以指定通常为显示屏顶行的行地址(正常共用输出模式时为 COM0 输出,反转共用输出模式时为 SH1106 的 COM63 输出)。从显示起始行地址开始,SH1106 的显示区域为 64 行区域。

如果使用显示起始行地址设置命令动态更改行地址,则可以执行屏幕滚动、页面交换等显示数据 RAM 和地址之间的关系(如果初始显示行为 1DH)。

页	面地均	止		数											线路地址						输出
					00										00H	1			Г		COM0
D3	D2	D1	D0)1										01H	ll			- 1		COM1
)2										02H						COM2
0	0	0	0		03									第0页	03H				- 1		COM3
)4									光 0 以	04H						COM4
)5										05H				- 1		COM5
					06										06H				- 1		COM6
)7										07H				- 1		COM7
					00										08H				- 1		COM8
D3	D2	D1	D0	_)1										09H						COM9
)2										0AH				1		COM10
0	0	0	1		03									第 1 页	0BH				1		COM11
)4									33 1 32	0CH				1		COM12
)5										0DH				1		COM13
					96										0EH				1		COM14
)7										0FH				1		COM15
Б.	Б.	D.4	Б.		00										10H						COM16
D3	D2	D1	D0		1										11H			- 1			COM17
			_)2										12H			- 1			COM18
0	0	1	0)3									第2页	13H			- 1		_	COM19
I)4										14H			- 1		_	COM20 COM21
1)5)6										15H 16H	H		- [1	COM21 COM22
I)6)7										17H			- 1		\vdash	COM23
\vdash					00					Н					17 H			- [-	COM23
D3	D2	D1	D0		01										19H					\vdash	COM25
D3	02	Di	DU)2										1AH	H		- 1		-	COM26
0	0	1	1)3										1BH	ł I		- 1			COM27
	•	•)4									第3页	1CH	ł L	_ 4	\perp		-	COM28
)5										1DH	-	*#	J \			COM29
					06										1EH	i 'I	`	- 1			COM30
					07										1FH	i I		1			COM31
					00										20H	i I		- 1			COM32
D3	D2	D1	D0)1										21H	1					COM33
)2										22H			- 1			COM34
0	1	0	0		03									第4页	23H			1			COM35
)4									另 4以	24H						COM36
)5										25H						COM37
					06										26H						COM38
)7										27H						COM39
					00										28H						COM40
D3	D2	D1	D0		01										29H						COM41
		•)2										2AH						COM42
0	1	0	1)3									第5页	2BH				1		COM43
)4									21. 0 21	2CH				1	_	COM44
				_)5										2DH 2EH					_	COM45 COM46
)6)7										2FH	ŀ			1	\vdash	COM47
-					00			\vdash	H	Н					30H					\vdash	COM48
D3	D2	D1	D0)1										31H	ł I					COM49
	<i>-</i>	٥.	00)2										32H	ł I			1	-	COM50
0	1	1	0		03										33H	H			1		COM51
1		•	_)4			l	l					第6页	34H				1	\vdash	COM52
I)5										35H				1	\vdash	COM53
1)6			l	l						36H				١	\vdash	COM54
1)7			l	l						37H				1		COM55
					00										38H				- 1		COM56
D3	D2	D1	D0)1										39H				1		COM57
1)2			l	l						3AH				1		COM58
0	1	1	1)3									第7页	3BH				1		COM59
1)4			l	l						3CH				1		COM60
I)5										3DH				1		COM61
I)6										3EH				1		COM62
Щ.				_ [)7										3FH	l '				匸	COM63
					0.	I	I	I						= = =							
				Ö	ä	H00	01H	02H						81H 83H 83H							
	1	あず 地 社		ADC	D0="1" D0="0"	_	_	_						- - -	1						
	1	专地		1`	0=,	83H	82H	81H	l					02H 00H							
				L		Ĕ			 	\vdash	-	-	-								
				液晶型	_{##}	99	61	32	l					SEG129 SEG130 SEG131	1						
				溪	- 4	SEG0	SEG1	SEG2	l												
				Ц										0 0 0	J						

图 8

振荡器电路

这是一个 RC 型振荡器(图9),用于产生显示时钟。振荡电路仅在 CLS = "H" 时启用。

当 CLS ="L"时,振荡停止,显示时钟通过 CL 端子输入。

电荷泵调节器

该模块仅需 2 个外部电容,用于为 OLED 面板产生 6.4V 至 9.0V 的电压。 该稳压器可通过软件命令 8Bh 设置开启/关闭。

电荷泵输出电压控制

该模块用于设置充电器泵输出的电压值。驱动电压可从 6.4V 调整到 9.0V。 这可以满足面板的不同需求。

电流控制和电压控制

该模块用于将输入电源转换成不同等级的内部使用电压和电流。VPP 和 VDD2 是外部电源。

IREF 是段电流驱动器的参考电流源。

共同驱动器/分部驱动器

分段驱动器提供 132 个电流源,用于驱动 OLED 面板。驱动电流最高可调至 500μA,步长为 256 步。 共用驱动器产生电压扫描脉冲。

复位电路

当 RES 输入值降至 "L"时,这些设置将重新进入默认状态。默认设置如下所示:

- 1. 显示屏关闭。共用和分段处于高阻抗状态。
- 2. 132 X 64 显示模式。
- 3. 正常段和显示数据列地址和行地址映射(SEGO 映射到列地址 00H, COMO 映射到行地址 00H)。
- 4. 串行接口移位寄存器数据清零
- 5. 显示起始行设置在显示 RAM 行地址 00H 处。
- 6. 列地址计数器设置为 0。
- 7. 普通输出的正常扫描方向。
- 8. 对比度控制寄存器设置为 80H。
- 9. 选择内部 DC-DC。

命令

SH1106 使用 A0、 \overline{RD} (E) 和 \overline{WR} (R/W) 信号组合来识别数据总线信号。 由于芯片只使用内部定时时钟分析和执行 每条命令,而不考虑外部时钟,因此处理速度非常快,通常也不需要忙检查。 当 \overline{RD} 焊盘输入低脉冲时,8080 系列微处理器 接口进入 读状态; 当 \overline{WR} 焊盘输入低脉冲时,8080 系列微处理器接口进入写状态。 当 \overline{RW} 焊盘输入高电平脉冲时,6800 系列微处理器接口进入写状态。 当 \overline{RW} 焊盘输入高电平脉冲时,6800 系列微处理器接口进入写状态。 当 \overline{RW} 焊盘输入高电平脉冲时,1100 系列微处理器接口进入写状态。 当 \overline{RW} 以上型器接口进入写状态。 以上型器接口进入写状态。 以上型器接口进入写状态。 以上型器接口读取显示数据的状态时, \overline{RD} (E) 变为 1 (高电平)。 这是与 8080 系列微处理器接口的唯一不同点。

下面将以 8080 系列微处理器接口为例进行说明。

选择串行接口时,从 D7 开始依次输入数据。

指令集

1. 设置下栏地址: (00H - 0FH)

2. 设置较高的列地址: (10H - 1FH)指定显示 RAM 的列地址。将列地址分为 4 个高位和 4 个低位。依次设置。当微处理器重复访问显示 RAM 时,每次访问期间列地址计数器都会递增,直到访问地址 131。在此期间,页面地址不会改变。

	A0	E RD	R/\overline{W}	D7	D6	D5	D4	D3	D2	D1	D0
更高的位数	0	1	0	0	0	0	1	A7	A6	A5	A4
低位	0	1	0	0	0	0	0	А3	A2	A1	Α0

线路地址 Α7 A6 Α5 A4 A2 Α1 Α0 A3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 131 0

注意:请勿使用上述未提及的任何命令。

3. 设置电荷泵电压值: (30H~33H)指定内部电荷泵的输出电压(VPP)。

A0	E RD	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	0	0	1	1	0	0	A1	A0

A1	A0	电荷泵输出电压 (VPP)
0	0	6.4
0	1	7.4
1	0	8.0(接通电源)
1	1	9.0

4. 设置显示起始行: (40H - 7FH)

指定行地址(参见图 8),以确定初始显示行或 COM0。RAM 显示数据成为 OLED 屏幕的第一行。其后是与占空比相对应的按升序排列的较高行数。当该命令改变行地址时,将进行平滑滚动或页面切换。

A0	E RD	R/\overline{W} \overline{WR}	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	0	1	A5	A4	А3	A2	A1	A0

A5	A4	A3	A2	A1	A0	线路地址
0	0	0	0	0	0	0
0	0	0	0	0	1	1
		:				:
1	1	1	1	1	0	62
1	1	1	1	1	1	63

5. 设置对比度控制寄存器:(双字节命令)

这条命令用于设置显示屏的对比度。芯片有 256 个对比度步进,从 00 到 FF。段输出电流随对比度步进值的增加而增加。

段输出电流设置: ISEG = /256 X IREF X 比例因子

其中: 为对比度步长; IREF 为等于 18.75 μ A 的参考电流; 比例因子 = 16。

对比度控制模式设置: (81H)

输入该命令后,对比度数据寄存器设置命令将启用。一旦设置了对比度控制模式,除对比度数据寄存器命令外,就不能使用其他任何命令。一旦使用对比度数据设置命令将数据设置到寄存器中,对比度控制模式即被解除。

A0	E RD	R/\overline{W} \overline{WR}	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	0	0	0	0	0	1

对比度数据寄存器组:(00H-FFH)

使用该命令可为对比度数据寄存器设置 8 位数据; OLED 段输出将采用 256 个电流电平中的一个。输入该命令后,对比度数据寄存器被设置后,对比度控制模式将被解除。

A0	E RD	$\frac{R}{WR}$	D7	D6	D5	D4	D3	D2	D1	D0	ISEG
0	1	0	0	0	0	0	0	0	0	0	小
0	1	0	0	0	0	0	0	0	0	1	
0	1	0	0	0	0	0	0	0	1	0	
0	1	0					:				:
0	1	0	1	0	0	0	0	0	0	0	或
0	1	0					:				:
0	1	0	1	1	1	1	1	1	1	0	
0	1	0	1	1	1	1	1	1	1	1	大

不使用对比度控制功能时,将 D7 - D0 设置为 1000,0000。

6. 设置区段重映射: (A0H - A1H)

更改 RAM 列地址与段驱动器之间的关系。段驱动器输出焊盘的顺序可通过软件反转。这样就可以在 OLED 模块组装过程中灵活布局 IC。如图 8 所示,当写入或读取显示数据时,列地址将递增 1。

A0	$\frac{E}{RD}$	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	1	0	0	0	0	ADC

当 ADC ="L"时,向右旋转(正常方向)。(POR)

当 ADC ="H"时,向左旋转(反方向)。

7. 设置整个显示屏关闭/打开: (A4H - A5H)

无论显示数据 RAM 的内容如何,强制打开整个显示屏。此时,显示数据 RAM 的内容将被保留。该命令优先于正常/反向显示命令。

A0	E RD	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	1	0	0	1	0	D

当 D = "L"时,提供正常显示状态。(POR)

当 D = "H"时,整个显示屏处于打开状态。

8. 设置正常/反向显示: (A6H-A7H)

在不改写显示数据 RAM 内容的情况下逆转显示屏的开/关状态。

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	1	0	0	1	1	D

当 D = "L "时, RAM 数据为高电平, 处于 OLED 亮起电位(正常显示)。(POR)

当 D = "H "时, RAM 数据为低电平,处于 OLED 亮起电位(反向显示)。

9 设置复用比率:(双字节命令)

该命令将默认的 64 复用模式切换为 1 至 64 的任意复用比。输出焊盘 COM0-COM63 将切换为相应的公共信号。

■ 复用配给模式设置: (A8H)

A0	E RD	$R/\overline{W} \ \overline{WR}$	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	1	0	1	0	0	0

复用配给数据集: (00H-3FH)

A0	$\frac{E}{RD}$	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0	复用比率
0	1	0	*	*	0	0	0	0	0	0	1
0	1	0	*	*	0	0	0	0	0	1	2
0	1	0	*	*	0	0	0	0	1	0	3
0	1	0					:				:
0	1	0	*	*	1	1	1	1	1	0	63
0	1	0	*	*	1	1	1	1	1	1	64 (POR)

10. 设置 DC-DC 关闭/打开:(双字节命令)

该命令用于控制 DC-DC 电压转换器。发出此命令后,转换器将打开,然后显示 ON 命令。

发出该命令时,面板显示屏必须关闭。

■ DC-DC 控制模式设置: (ADH)

	(* .=)									
Α0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	1	0	1	1	0	1

DC-DC ON/OFF 模式设置: (8AH - 8BH)

A0	E RD	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	0	0	1	0	1	D

当 D = "L"时 , 禁用 DC-DC。

当 D = "H "时, DC-DC 将在显示屏打开时开启。(POR)

表. 8

DC-DC 状态	显示开/关状态	说明
0	0	睡眠模式
0	1	必须使用外部 VPP。
1	0	睡眠模式
1	1	使用内置 DC-DC,正常显示

11. 显示屏关闭/打开: (AEH - AFH)

或者打开或关闭显示屏。

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	1	0	1	1	1	D

当 D ="L"时,显示 OFF OLED。(POR)

当 D = "H "时,显示 ON OLED。

执行显示关闭命令后,将进入省电模式。

睡眠模式

如果微处理器不进行任何访问,该模式会停止 OLED 显示系统的所有操作,并可将电流消耗几乎降至静态电流值。睡眠模式的内部状态如下:

- 1) 停止振荡电路和 DC-DC 电路。
- 2) 停止 OLED 驱动,输出 Hz 作为分段/共用驱动器输出。
- 3) 保存睡眠模式开始前提供的显示数据和运行模式。
- 4) MPU 可以访问内置显示 RAM。

12. 设置页面地址: (B0H - B7H)

指定将显示 RAM 数据加载到页面地址寄存器的页面地址。如果指定了页面地址和列地址,则可以访问任何 RAM 数据位。即使更改页面地址,显示内容也保持不变。

A0	$\frac{E}{RD}$	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	1	1	Аз	A2	A1	Ao

Аз	A2	A1	Ao	页面地址
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7

注意:不要对用户使用上述命令以外的任何命令。

13. 设置通用输出扫描方向: (COH - C8H)

该命令用于设置共用输出的扫描方向,使 OLED 模块设计具有布局灵活性。此外,一旦发出该命令,显示将立即生效。也就是说,如果在正常显示时发送此命令,图形显示将垂直翻转。

A0	E RD	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	0	0	D	*	*	*

当 D ="L"时 , 从 COM0 扫描至 COM [N-1]。 (POR)

当 D = "H "时,从 COM [N -1] 扫描至 COM0。

14. 设置显示偏移:(双字节命令)

这是一条双字节命令。下一条命令指定将显示起始行映射到 COM0-63 中的一行(假定 COM0 为显示起始行,等于 0)。例如,要将 COM16 向 COM0 方向移动 16 行,第二个字节中的 6 位数据应为 010000。反向移动 16 行,6 位数据应为 (64-16),因此第二个字节应为 100000。

■ 显示偏移模式设置: (D3H)

A0	E RD	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	0	1	0	0	1	1

显示偏移数据集: (00H~3FH)

A0	E RD	$R/\overline{\overline{W}}$	D7	D6	D5	D4	D3	D2	D1	D0	COMx
0	1	0	*	*	0	0	0	0	0	0	0 (POR)
0	1	0	*	*	0	0	0	0	0	1	1
0	1	0	*	*	0	0	0	0	1	0	2
0	1	0					:				:
0	1	0	*	*	1	1	1	1	1	0	62
0	1	0	*	*	1	1	1	1	1	1	63

注:"*"代表"不关心"。

15. 设置显示时钟分频比/振荡器频率:(双字节命令)

该命令用于设置内部显示时钟(DCLK)的频率。它被定义为用于划分振荡器频率的划分率(值为 1 至 16)。帧频由分频比、每行显示时钟数、MUX 比和振荡器频率决定。

■ 分频比/振荡器频率模式设置: (D5H)

A0	E RD	R/\overline{W} \overline{WR}	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	0	1	0	1	0	1

分频比/振荡器频率数据集:(00H-FFH)

A0	E RD	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	A7	A6	A5	A4	Аз	A2	A1	Ao

A3 - A0 定义显示时钟 (DCLK) 的除法比。除法比率 = A[3:0]+1。

Аз	A ₂	A1	Ao	划分配给
0	0	0	0	1 (POR)
		:		:
1	1	1	1	16

A7 - A4 设置振荡器频率。振荡器频率随 A[7:4] 的值增加而增加,反之亦然。

Ат	A6	A5	A4	的振荡器频率 fOSC
0	0	0	0	-25%
0	0	0	1	-20%
0	0	1	0	-15%
0	0	1	1	-10%
0	1	0	0	-5%
0	1	0	1	fosc (POR)
0	1	1	0	+5%
0	1	1	1	+10%
1	0	0	0	+15%
1	0	0	1	+20%
1	0	1	0	+25%
1	0	1	1	+30%
1	1	0	0	+35%
1	1	0	1	+40%
1	1	1	0	+45%
1	1	1	1	+50%

16. 设置放电/预充电周期:(双字节命令)

该命令用于设置预充电周期的持续时间。时间间隔以 DCLK 计数。POR 为 2 DCLK。

■ 预充电周期模式设置: (D9H)

A0	E RD	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	0	1	1	0	0	1

■ 放电/预充电周期数据集: (00H - FFH)

	A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
1	0	1	0	A7	A ₆	A5	A4	Аз	A2	A1	Ao

预充电周期调整: (A3 - A0)

Аз	A2	A1	Ao	充电前
0	0	0	0	无效
0	0	0	1	1 DCLKs
0	0	1	0	2 DCLKs (POR)
		:		:
1	1	1	0	14 DCLKs
1	1	1	1	15 DCLKs

放电时段调整:(A7-A4)

A7	A6	A5	A4	放电时间
0	0	0	0	无效
0	0	0	1	1 DCLKs
0	0	1	0	2 DCLKs (POR)
		:		:
1	1	1	0	14 DCLKs
1	1	1	1	15 DCLKs

17. 设置通用焊盘硬件配置:(双字节命令)

该命令用于设置公共信号焊盘配置(顺序或交替),以匹配 OLED 面板硬件布局

■ 通用焊盘硬件配置模式设置: (DAH)

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	0	1	1	0	1	0

■ 顺序/替代模式设置: (02H - 12H)

A0	E RD	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	0	0	0	D	0	0	1	0

当 D ="L "时 , 顺序。

COM31, 30 - 1, 0	SEG0, 1 - 130, 131	COM32, 33 - 62, 63

当 D ="H "时,备用。(POR)

COM62, 60 - 2, 0	SEG0, 1 - 130, 131	COM1, 3 - 61, 63

18. 设置 VCOM 取消选择级别:(双字节命令)

这条命令用于设置取消选择级的公共焊盘输出电压电平。

■ VCOM 取消选择电平模式设置: (DBH)

A0	E RD	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	0	1	1	0	1	1

■ VCOM 取消选择电平数据集: (00H - FFH)

	A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
I	0	1	0	А7	A ₆	A5	A4	Аз	A2	A1	Ao

VCOM = β X VREF = $(0.430 + A[7:0] \times 0.006415) X <math>V$ REF

A[7:0]	β	A[7:0]	β
00H	0.430	20H	0.635
01H	0.436	21H	0.642
02H	0.442	22H	0.648
03H	0.449	23H	0.654
04H	0.456	24H	0.661
05H	0.462	25H	0.667
06H	0.468	26H	0.674
07H	0.475	27H	0.680
08H	0.481	28H	0.687
09H	0.488	29H	0.693
0AH	0.494	2AH	0.699
0BH	0.501	2BH	0.706
0CH	0.507	2CH	0.712
0DH	0.513	2DH	0.719
0EH	0.520	2EH	0.725
0FH	0.526	2FH	0.731
10H	0.533	30H	0.738
11H	0.539	31H	0.744
12H	0.525	32H	0.751
13H	0.552	33H	0.757
14H	0.558	34H	0.764
15H	0.565	35H	0.770 (POR)
16H	0.571	36H	0.776
17H	0.578	37H	0.783
18H	0.584	38H	0.789
19H	0.590	39H	0.796
1AH	0.596	3AH	0.802
1BH	0.603	3BH	0.808
1CH	0.610	3CH	0.815
1DH	0.616	3DH	0.821
1EH	0.622	3EH	0.828
1FH	0.629	3FH	0.834
40H - FFH	1		

19. 读取-修改-写入: (E0H)

必须始终使用一对读取-修改-写入和结束命令。一旦发出读取-修改-写入命令,列地址就不会通过读取显示数据命令递增,而只能通过写入显示数据命令递增。这种情况一直持续到发出 End 命令为止。发出结束命令后,列地址将返回到发出读取-修改-写入命令时的地址。当光标闪烁或其他情况下反复更改特定显示区域的数据时,这可以减少微处理器的负载。

A0	E RD	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	0	0	0	0

光标显示顺序:

20. 结束: (EEH)

取消 "读取-修改-写入"模式,并将列地址返回至原始地址(当发出"读取-修改-写入"时)。

A0	$\frac{E}{RD}$	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	1	1	1	0

图 11

21. NOP: (E3H)

无操作命令

A0	E RD	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	0	0	1	1

22. 写入显示数据

在显示 RAM 中写入 8 位数据。 由于每次写入后列地址都会自动递增 1,因此微处理器可以继续写入多个字的数据。

A0	E RD	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
1	1	0	写入 RAM 数据							

23. 读取状态

A0	E RD	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	繁忙	开/关	*	*	*	0	0	0

繁忙:

高电平时, SH1106由于内部操作或复位而处于忙状态。在忙变为低电平之前,任何命令都将被拒绝。如果

每个周期有足够的时间,则不需要进行忙检查。

开/关: 表示显示屏是打开还是关闭。低电平时,显示屏打开。高电平时,显示屏关闭。这与显示屏开/关命令相反。

24. 读取显示数据

从列地址和页面地址指定的显示 RAM 区域读取 8 位数据。 由于每次写入后列地址都会自动递增 1,因此微处理器可以继续读取多个字的数据。在设置列地址后,需要立即进行一次假读取。详情请参阅功能说明中的显示 RAM 部分。请注意,不能通过串行接口读取显示数据。

A0	E RD	$\frac{R}{W}$	D7	D6	D5	D4	D3	D2	D1	D0
1	0	1	读取 RAM 数据							

命令表

命令	代码											功能		
即立	Α0	RD	\overline{WR}	D7	D6	D5	D4	D3	D2	D1	D0	A) BE		
1. 设置列地址,低 4 位数	0	1	0	0	0	0	0	16	〔4位	数		设置寄存器中显示 RAM 列 地址的 4 个低位。 (POR = 00H)		
2. 设置列地址高 4 位数	0	1	0	0	0	0	1	꺹	高 4 位	数		设置寄存器中显示 RAM 列 地址的 4 个高位。(POR = 10H)		
3. 设置电荷泵电压值	0	1	0	0	0	1	1	0	0		苛泵 ⊾值	该命令用于控制 DC-DC 电压输出值。(POR=32H)		
4. 设置显示起始行	0	1	0	0	1			线路地	!址			指定 COM0 的 RAM 显示 行(POR = 40H)		
5. 对比度控制模式 设置对比度数据	0	1	0	1	0	0	0	0	0	0	1	该命令用于设置显示屏的对 比度。该芯片具有从 00 到		
寄存器设置	0	1	0			Ž	对比度	数据				FF 的 256 级对比度。(POR = 80H)		
6. 设置分段重映 射(ADC)	0	1	0	1	0	1	0	0	0	0	ADC	右旋 (0) 或左旋 (1)。 (POR = A0H)		
7. 设置整个显示屏 关闭/打开	0	1	0	1	0	1	0	0	1	0	D	选择正常显示 (0) 或全部显示打开 (1)。(POR = A4H)		
8. 设置正常/反向显示	0	1	0	1	0	1	0	0	1	1	D	低电平时为正常显示 (0), 高电平时为反向显示 (1)。 (POR = A6H)		
9. 多路配给模式设置	0	1	0	1	0	1	0	1	0	0	0	该命令将默认 63 多路复用 模式切换为 1 至 64 之间的		
多路配给数据设置	0	1	0	*	*		1	夏用比	月比率			任意多路复用比(POR = 3FH)。		
10. DC-DC 控制模式设置	0	1	0	1	0	1	0	1	1	0	1	该命令用于控制 DC-DC 电压,当转换器上显示 (1) 或		
DC-DC 开/关模式设置	0	1	0	1	0	0	0	1	0	1	D	DC-DC 关闭 (0) 时,DC- DC 将打开。(POR = 8BH)		

命令表(续)

				-LAV								
命令	Α0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	- 功能
11. 显示屏关闭/打开	0	1	0	1	0	1	0	1	1	1	D	打开 OLED 面板 (1) 或关闭 (0)。(POR = AEH)
12. 设置页面地址	0	1	0	1	0	1	1	j	页面地	址		指定将显示 RAM 数据加载 到页面地址寄存器的页面地址。(POR = B0H)
13. 设置通用输 出扫描方向	0	1	0	1	1	0	0	D	*	*	*	从 COM0 扫描到 COM [N - 1] (0)或从 COM [N -1] 扫描到 COM0 (1)。(POR = COH)
14. 显示偏移模式设置	0	1	0	1	1	0	1	0	0	1	1	这是一条双字节命令,用于 指定将显示起始行映射到
显示偏移数据集	0	1	0	*	*			CO	Мх			COM0-63 中的一行 (POR = 00H) 。
15. 设置显示分频比/ 振荡器频率模式设置	0	1	0	1	1	0	1	0	1	0	1	该命令用于设置内部显示时钟的频率。
分频比/振荡器频率数据集	0	1	0	振荡	器频率	<u>K</u>	I	除法比率			l	(1 011 0011)
16. 放电/预充电周期 模式设置	0	1	0	1	1	0	1	1	0	0	1	该命令用于设置正在充电 和预充电期间的持续时 间。(POR = 22H)
放电/充电前时段数据集	0	1	0	放	电时间			7 0 0 1 7 万 万 万 万 万 元 日 万 元 日 日 日 日 日 日 日 日 日 日 日				
17. 通用焊盘硬件配置 模式设置	0	1	0	1	1	0	1	1	0	1	0	该命令用于设置公共信号焊盘配置。(POR = 12H)
顺序/备用模式设置	0	1	0	0	0	0	D	0	0	1	0	
18. VCOM 取消选 择电平模式设置	0	1	0	1	1	0	1	1	0	1	1	这条命令用于设置取消选择级的 公共焊盘输出电压电平。
VCOM 取消选择 电平数据集	0	1	0			VC	COM (F	3 X VRI	EF)			(POR = 35H)
19. 读取-修改-写入	0	1	0	1	1	1	0	0	0	0	0	读取-修改-写入启动。
20. 结束	0	1	0	1	1	1	0	1	1	1	0	读取-修改-写入结束。
21. NOP	0	1	0	1	1	1	0	0	0	1	1	无操作命令
22. 写入显示数据	1	1	0			写入 RAM 数据						
23. 读取状态	0	0	1	繁忙	ON/ OFF	*	*	*	0	0	0	
24. 读取显示数据	1	0	1			ì	東取 RA	M 数据	₹			

注意:请勿使用任何其他命令,否则可能导致系统故障。

1. 开机和初始化

1.1. 接通电源后立即使用内置 DC-DC 电荷泵电源:

开机顺序:

1.2. 接通电源后立即使用外部电源:

开机顺序:

1.3. 关闭电源

电源关闭顺序:

注:如果不符合电源顺序,不会损坏显示模块。

绝对最大额定值*

 直流电源电压 (VDD1)
 -0.3V 至 +3.6V

 直流电源电压 (VDD2)
 -0.3V 至 +4.8V

 直流电源电压 (VPP)
 -0.3V 至 +14.5V

输入电压 -0.3V 至 VDD1 + 0.3V

工作环境温度 -40°C 至 +85°C

存储温度 -55°C 至 +125°C

电气特性

直流特性 (VSS = 0V , VDD1 = 1.65 - 3.5V TA =+25°C , 除非另有说明)

*注解

超过"绝对最大额定值"所列的应力可能会对本装置造成永久性损坏。 本设备在这些条件下或任何其他条件下的功能运行,均不意味着或意在超出本规格书操作部分所标明的条件。长时间暴露在绝对最大额定值条件下可能会影响设备的可靠性。

符号	参数	最小	典型	最大	单位	条件
VDD1	工作电压	1.65	-	3.5	V	
VDD2	工作电压	2.2	-	4.7	V	
VPP (外部)	OLED 工作电压	6.4		14.0	V	
Vpp (内部)		5.5	6.4	-	V	VDD2=2.2V~4.2V,6.4V 模式,最大输出负载 =6mA (IREF = -18.75μA,对比度 = 256)
	电荷泵输出电压	7.0	7.4	-	V	DD2=2.9V~4.2V,7.4V 模式,最大输出负载 =12mA (IREF = -18.75μA,对比度 = 256)
		7.6	8.0	-	V	DD2=3.5V~4.2V,8.0V 模式,最大输出负载 =18mA (IREF = -18.75μA,对比度 = 256)
		8.6	9.0	-	٧	DD2=3.7V~4.2V,9.0V 模式,最大输出负载 =18mA (IREF = -18.75μA,对比度 = 256)
IDD1	动态电流消耗 1	-	-	110	μА	VDD1 = 3V,VDD2 = 3.7V,IREF = -18.75μA,对比 度 =256,内部电荷泵关闭,显示屏打开、 显示数据 = 全部打开,未连接面板。
IDD2	动态电流消耗 2	-	-	3.5	mA	VDD1 = 3V , VDD2 = 3.7V , IREF = -18.75μA、 对比度 = 256 , 内部电荷泵接通、 显示屏打开,显示数据 = 全部打开,未连接面板。
lpp	OLED 动态电流消耗		-	1.5	mA	VDD1 = 3V , VDD2 = 3.7V , VPP = 9V (外部)、 IREF = -18.75μA , 对比度 = 256 , 显示屏打开、 显示数据 = 全部打开,未连接面板。连接 电荷泵电容器
10-	VDD1 和 VDD2 睡眠模式下的电流 消耗	-	-	5	μΑ	睡眠期间,TA = +25°C,VDD1 = 3V,VDD2 = 3.0V。
ISP	VPP 下的睡眠模式 电流消耗	-	-	5	μА	睡眠期间,TA = +25°C,VPP = 9V(外部)
ISEG	分段输出电流	-	-300	-	μА	VDD1 = 3V , VPP = 9V , IREF = -18.75 µ A , RLOAD = 20k
	力权制山电冰	-	-37.5	-	μА	VDD1 = 3V , VPP = 9V , IREF = -18.75 μ A , RLOAD = 20k 、 显示屏打开,对比度 = 32。
ΔISEG1	分段输出电流均匀性		-	±3	%	∆iseg1 = (iseg - imid)/imid x 100%imid = (imax + imin)/2 对比度 = 256 时的 ISEG [0:131]。
ΔlSEG2	EG2 相邻区段输出电流均匀性		-	±2	%	ΔISEG2 = (ISEG[N] - ISEG[N+1])/(ISEG[N] + ISEG [N+1]) X 100%ISEG [0:131] , 对比度 = 256。

直流特性(续)

符号	参数	最小	典型	最大	单位	条件		
VIHC	高电平输入电压	0.8 X VDD1	-	VDD1	V	A0、D0 - D7、 \overline{RD} (E)、 \overline{WR} (R/ \overline{W})、		
VILC	低电平输入电压	Vss	-	0.2 X VDD1	V	CS、CLS、CL、IM0~2和RES。		
Vонс	高电平输出电压	0.8 X VDD1	-	VDD1	V	IOH = -0.5mA(D0 - D7和CL)。		
Volc	低电平输出电压	Vss	-	0.2 X VDD1	V	IOL = 0.5mA (D0、D2 - D7 和 CL)		
Volcs	SDA 低电平输出电压	Vss	-	0.2 X V DD 1	>	VDD1<2V IoL=3mA (SDA)		
				0.4		VDD1>2V		
lы	输入漏电流	-1.0	-	1.0	μΑ	VIN = VDD1 或 VSS (A0、RD (E)、WR(R /W)、CS、CLS、IM0~2和RES)。		
lHz	Hz 泄露电流	-1.0	1	1.0	μΑ	当 D0 - D7 和 CL 处于高阻抗状态时。		
fosc	振荡频率	315	360	420	kHz	Ta = +25°C.		
fFRM	64 Commons 的帧频	-	104	-	Hz	当 fOSC = 360kHz 时,除法比 = 1, 共宽 = 54 DCLKs。		

交流电特性

(1) 系统总线读/写特性 1 (用于 8080 系列接口 MPU)

 $(VDD1 = 1.65 - 3.5V, TA = +25^{\circ}C)$

符号	参数	最小	典型	最大	单位	条件
tcyc8	系统周期时间	600	-	-	ns	
tAS8	地址设置时间	0	-	-	ns	
tAH8	地址保持时间	0	-	-	ns	
tDS8	数据设置时间	80	-	-	ns	
tDH8	数据保持时间	30	-	-	ns	
tCH8	输出禁用时间	20	-	140	ns	CL = 100pF
tACC8	 RD 访问时间	-	-	280	ns	CL = 100pF
tccLw	控制 L 脉冲宽度 (WR)	200	ı	ı	ns	
tcclr	控制 L 脉冲宽度 (RD)	240	-	-	ns	
tccнw	控制 H 脉冲宽度 (WR)	200	ı	ı	ns	
tcchr	控制 H 脉冲宽度 (RD)	200	-	-	ns	
tR	上升时间	-	1	30	ns	
tF	下降时间	-	-	30	ns	

 $(VDD1 = 2.4 - 3.5V, TA = +25^{\circ}C)$

符号	参数	最小	典型	最大	单位	条件
tcyc8	系统周期时间	300	-	-	ns	
tAS8	地址设置时间	0	-	-	ns	
tAH8	地址保持时间	0	-	-	ns	
tDS8	数据设置时间	40	-	-	ns	
tDH8	数据保持时间	15	-	-	ns	
tCH8	输出禁用时间	10	-	70	ns	CL = 100pF
tACC8	 RD 访问时间	-	-	140	ns	CL = 100pF
tccLw	控制 L 脉冲宽度 (WR)	100	ı	ı	ns	
tcclr	控制 L 脉冲宽度 (RD)	120	-	-	ns	
tccнw	控制 H 脉冲宽度 (WR)	100	-	-	ns	
tcchr	控制 H 脉冲宽度 (RD)	100	-	-	ns	
tR	上升时间	-	-	15	ns	
tF	下降时间	ı	ı	15	ns	

(2) 系统总线读/写特性 2 (适用于 6800 系列接口 MPU)

 $(VDD1 = 1.65 - 3.5V, TA = +25^{\circ}C)$

符号	参数	最小	典型	最大	单位	条件
tcyc6	系统周期时间	600	-	-	ns	
tAS6	地址设置时间	0	-	-	ns	
tAH6	地址保持时间	0	-	-	ns	
tDS6	数据设置时间	80	-	-	ns	
tDH6	数据保持时间	30	-	-	ns	
toH6	输出禁用时间	20	-	140	ns	CL = 100pF
tACC6	访问时间	-	-	280	ns	CL = 100pF
tewnw	启用 H 脉冲宽度 (写)	200	-	-	ns	
tewhr	启用 H 脉冲宽度(读取)	240	-	-	ns	
tEWLW	启用 L 脉冲宽度 (写)	200	-	-	ns	
tEWLR	启用 L 脉冲宽度(读取)	200	-	-	ns	
tr	上升时间	-	-	30	ns	
tF	下降时间	-	-	30	ns	

 $(VDD1 = 2.4 - 3.5V, TA = +25^{\circ}C)$

符号	参数	最小	典型	最大	单位	条件
tcyc6	系统周期时间	300	-	-	ns	
tAS6	地址设置时间	0	-	-	ns	
tAH6	地址保持时间	0	-	-	ns	
tDS6	数据设置时间	40	-	-	ns	
tDH6	数据保持时间	15	-	-	ns	
toн6	输出禁用时间	10	-	70	ns	CL = 100pF
tACC6	访问时间	-	-	140	ns	CL = 100pF
tewnw	启用 H 脉冲宽度 (写)	100	-	-	ns	
tewhr	启用 H 脉冲宽度(读取)	120	-	-	ns	
tewLw	启用 L 脉冲宽度 (写)	100	-	-	ns	
tEWLR	启用 L 脉冲宽度(读取)	100	-	-	ns	
tr	上升时间	-	-	15	ns	
tF	下降时间	-	-	15	ns	

(3) 系统总线写入特性 3 (用于 4 线 SPI)

 $(VDD1 = 1.65 - 3.5V, TA = +25^{\circ}C)$

符号	参数	最小	典型	最大	单位	条件
tscyc	串行时钟周期	500	-	-	ns	
tsas	地址设置时间	300	-	-	ns	
tsah	地址保持时间	300	-	-	ns	
tsds	数据设置时间	200	-	-	ns	
tsdh	数据保持时间	200	-	-	ns	
tcss	CS 设置时间	240	-	-	ns	
tсsн	 CS 保持时间	120	-	-	ns	
tshw	串行时钟 H 脉宽	200	-	-	ns	
tslw	串行时钟 L 脉宽	200	-	-	ns	
tr	上升时间	-	-	30	ns	
tF	下降时间	-	-	30	ns	

 $(VDD1 = 2.4 - 3.5V, TA = +25^{\circ}C)$

符号	参数	最小	典型	最大	单位	条件
tscyc	串行时钟周期	250	-	-	ns	
tsas	地址设置时间	150	-	-	ns	
tsah	地址保持时间	150	-	-	ns	
tsps	数据设置时间	100	-	-	ns	
tsdh	数据保持时间	100	-	-	ns	
tcss	CS 设置时间	120	-	-	ns	
tcsн	CS 保持时间	60	-	-	ns	
tsнw	串行时钟 H 脉宽	100	-	-	ns	
tsLw	串行时钟 L 脉宽	100	-	-	ns	
tr	上升时间	-	-	15	ns	
tF	下降时间	-	-	15	ns	

(4) 系统总线写入特性 4 (用于 3 线 SPI)

 $(VDD1 = 1.65 - 3.5V, TA = +25^{\circ}C)$

符号	参数	最小	典型	最大	单位	条件
tscyc	串行时钟周期	500	-	-	ns	
tsds	数据设置时间	200	-	-	ns	
tsdh	数据保持时间	200	-	-	ns	
tcss	 CS 设置时间	240	=	-	ns	
tcsн	 CS 保持时间	120	-	-	ns	
tshw	串行时钟 H 脉宽	200	-	-	ns	
tsLw	串行时钟 L 脉宽	200	-	-	ns	
tr	上升时间	-	-	30	ns	
tF	下降时间	-	-	30	ns	

 $(VDD1 = 2.4 - 3.5V, TA = +25^{\circ}C)$

符号	参数	最小	典型	最大	单位	条件
tscyc	串行时钟周期	250	-	-	ns	
tsds	数据设置时间	100	-	-	ns	
tsdh	数据保持时间	100	-	-	ns	
tcss	CS 设置时间	120	1	-	ns	
tcsH	CS 保持时间	60	1	-	ns	
tshw	串行时钟 H 脉宽	100	1	-	ns	
tsLw	串行时钟 L 脉宽	100	ı	-	ns	
tr	上升时间	ı	1	15	ns	
tF	下降时间	-	-	15	ns	

(5) I2C 接口特性

 $(VDD1 = 1.65 - 3.5V, TA = +25^{\circ}C)$

符号	参数	最小	典型	最大	单位	条件
fscL	SCL 时钟频率	DC	-	400	kHz	
TLOW	SCL 时钟低脉冲宽度	1.3	-	-	uS	
Тнісн	SCL 时钟 H 脉宽	0.6	-	-	uS	
TSU:DATA	数据设置时间	100	=	-	nS	
THD:DATA	数据保持时间	0	=	0.9	uS	
Tr	SCL , SDA 上升时间	20+0.1Cb	-	300	nS	
TF	SCL , SDA 下降时间	20+0.1Cb	-	300	nS	
Cb	在每条总线上的最大电容负载	-	-	400	pF	
Tsu:start	重新启动的设置时间	0.6	1	-	uS	
THD:START	启动保持时间	0.6	=	-	uS	
Tsu:stop	停止的设置时间	0.6	-	-	uS	
TBUF	停止和启动条件之间的总线空 闲时间	1.3	-	-	uS	

(6) 重置时间

 $(VDD1 = 1.65 - 3.5V, TA = +25^{\circ}C)$

符号	参数	最小	典型	最大	单位	条件
tr	重置时间	-	-	2.0	μS	
trw	复位低脉冲宽度	10.0	-	-	μS	

 $(VDD1 = 2.4 - 3.5V, TA = +25^{\circ}C)$

符号	参数	最小	典型	最大	单位	条件
tr	重置时间	-	-	1.0	μS	
trw	复位低脉冲宽度	5.0	-	-	μS	

应用电路(仅供参考)

与 MPU 的参考连接:

1.8080 系列接口: (内部振荡器、内置 DC-DC)

R1:约310k (ISEG=300u	C3 - C5 , C7 : 4.7µF。C1、C2 : 0.22µF。 R1:约 310k (ISEG=300uA),R1 = (IREF 处电压 - VSS) /IREF R1&Iref 表(仅供参考):								
Iref电阻(K)	Iref电流(uA)	ISEG电流(uA)							
510	12.50	200							
310	18.75	300							
220 25.00 400									
160 32.50 520									

2. 6800 系列接口: (内部振荡器,内置 DC-DC)

Figure. 13

请注意 C3 - C5、C7:4.7μF。C1、C2:0.22μF R1:约 310k (ISEG=300uA),R1 =(IREF 处电压 - VSS) /IREF R1&Iref 表(仅供参考):

3. 串行接口 (3 线制或 4 线制 SPI): (外部振荡器,外部 VPP,最大 14.0V)

备注

C3 - C5: 4.7 μ F

R1:约310k (ISEG=300uA), R1 = (IREF 处电压 - VSS)/IREF

WR 和 RD 在 SPI 模式下不使用,应固定在 VSS 或 VDD1 上。

CS 在 SPI 模式下可固定在 VSS 上。

4. I2C 接口: (内部振荡器,内置 DC-DC)

请注意

C3 - C5、 C7 : 4.7 μ F。 C1、 C2 : 0.22 μ F。

1:约310k (ISEG=300uA), R1 = (IREF 电压 - VSS)/IREF

通过将输入 SA0 连接至逻辑 0 (VSS) 或 1 (VDD1),可设置从机地址的最小有效位。

WR 和 RD 在 I2C 模式下不使用,应固定在 VSS 或 VDD1 上。

在 I2C 模式下, CS 可以固定在 VSS 上。

上拉电阻的正电源必须等于 VDD1 的值。

订购信息

部件号	包装	
SH1106G	芯片托盘上的金色凸起	

SPEC 修订历史

版本	内容	日期
1.0	原创	2012年2月
2.0	1. 修改 SPI 模式下 CS 的描述。 2. 使用外部 VPP 时,将 VDD2 改为 NC。(第 47 页)	2012年3月
2.1	1. 将最大 VPP 电压修改为 14.0V。	2012 年 4 月
2.2	1. 修改 当外部提供 VPP 时,应断开 VDD2。(第3页) 2. 修改 SPI 中 CS 的描述,并在其他相关表格中保持不变。(第 8 页) 3. E/ RD 和 WR 在 SPI 和 I2C 中的描述相同(第 8 页)。 4. D2~D7 的描述保持不变,但未使用(第 8、10、11、47、48 页)。 5. 将命令 D5H 的数据集修改为 00~FFH(第 25 页) 6. 将列地址的说明修改为 131。	2012 年 4 月
2.3	P32~P34:修改电源开关顺序	2013年6月
2.4	P1、P3、P35:将 VDD2 最大值从 4.2V 调整为 4.7V P35:将 VDD2 绝对最大值从 4.3V 修改为 4.8V	2014年1月
2.5	1. 修改 "DC-DC 电压电源: VDD2 = 2.2V - 4.7V" (第 1 页) 2. 已添加 "典型段输出电流: 300μA" (第 1 页) 3. 修改 "最大分段输出电流: 500μA" (第 1 页) 4. 修改 "典型通用灌电流: 40mA" (第 1 页) 5. 修改 "Iref 电流 18.75μA" (第 3 页) 6. 修改 "分段电流最大 500uA" (第 18 页) 7. 修改 "直流特性" (第 35 页) 8. 修改 "R1 值为 310k"。添加 "R1&Iref 表" (第 45-48 页)	2015 年 8 月
2.6	P32~P33:修改开机顺序	2015 年 11 月

与 https://www.displayfuture.com 合作