Identificação de sistemas lineares - Trabalho 5

Tassiano Neuhaus

Universidade Federal do Rio Grande do Sul - Departamento de Engenharia Elétrica Av. Osvaldo Aranha, 103 - Bairro Bom Fim CEP: 90035-190 - Porto Alegre - RS - Brasil

Resumo—Trabalho 5, identificar um modelo ARX e também um modelo para $S \in M$.

Palavras-chave—Identificação de sistemas lineares, métodos paramétricos.

I. INTRODUÇÃO

Neste trabalho será apresentado um modelo ARX para um sistema que não pode ser completamente representado por este modelo (1). Em seguida será utilizado um modelo mais completo e será feito um comparativo qualitativo das estimativas obtidas para o modelo utilizando cada um dos métodos.

$$G_0(q) = \frac{2}{q - 0.8}$$
 $H_0(q) = \frac{q - 0.9}{q - 0.5}$ (1)

II. MODELO ARX

O sistema real apresentado em (1) será identificado pelo modelo ARX onde genericamente o modelo utilizado é como apresentado em (2) e para o modelo ARX tem-se que apenas os polinomios A e B são diferentes de 1. [?]

$$A(q,\theta)Y(t) = \frac{B(q,\theta)}{F(q,\theta)}U(t) + \frac{C(q,\theta)}{D(q,\theta)}e(t) \tag{2}$$

Onde:

$$A(q,\theta) = 1 + a_1 q^{-1} + a_2 q^{-2} + \dots + a_{na} q^{-na}$$

$$B(q,\theta) = b_1 q^{-1} + b_2 q^{-2} + \dots + b_{nb} q^{-nb}$$

$$C(q,\theta) = 1 + c_1 q^{-1} + c_2 q^{-2} + \dots + c_{nc} q^{-nc}$$

$$D(q,\theta) = 1 + d_1 q^{-1} + d_2 q^{-2} + \dots + d_{na} q^{-nd}$$

$$F(q,\theta) = 1 + f_1 q^{-1} + f_2 q^{-2} + \dots + f_{nf} q^{-nf}$$

Desta forma o modelo ARX pode ser representado como em (??). Para o sistema apresentado em (1), o modelo ARX fica como em (4).

$$A(q,\theta)Y(t) = B(q,\theta)U(t) + e(t)$$
(3)

$$G(q,\theta) = \frac{a}{q-b}$$
 $H(q,\theta) = \frac{q}{q-b}$ (4)

Este modelo não consegue representar o sistema descrito em (1). Foi utilizado o script do matlab apresentado no Anexo (A) para simular as estimativas obridas para os parametros a e b deste modelo, o script utiliza o método dos minimos quadrados para estimar os parametros.

O resultado da simulação é apresentado na Figura (1).

A média das estimativas obtidas para o sistema foi de a = 2.003 e b = 0.7999.

Figura 1. Simulação do sistema para uma entrada aleatória e utilizando o modelo ARX.

Aplicando na entrada do processo uma senoide de frequencia $\pi/4$ obtem-se a estimativa como apresentado na Figura (3).

Figura 2. Simulação do sistema para uma entrada $sin(\pi/4)$ e utilizando o modelo ARX.

A média das estimativas obtidas para o sistema foi de $a=2.1627\ {\rm e}\ b=0.7837.$

Aplicando na entrada do processo uma senoide de frequencia $\pi/20$ obtem-se a estimativa como apresentado na Figura $(\ref{eq:condition})$.

A média das estimativas obtidas para o sistema foi de $a=2.1687\ {\rm e}\ b=0.7831.$

Figura 3. Simulação do sistema para uma entrada $sin(\pi/4)$ e utilizando o modelo ARX.

Observa-se claramente que a estimativa está polarizada, ou seja, a média das estimativas não está centrada nos valores reais dos parametros. Isso de deve ao fato que o modelo utilizado para a estimativa não consegue representar na totalidade o sistema original.

III. MODELO COMPLETO

Como apresentado na secão (II) o modelo ARX não consegue representar o sistema (1) completamente, e a estimativa dos parametros da Funcão de transferencia são polarizados. Para contornar este problema utilizaremos um modelo para descrever o sistema (1) de forma completa.

O modelo escolhido para representar o sistema real é apresentado em (5).

$$G(q,\theta) = \frac{a}{q-b}$$
 $H(q,\theta) = \frac{q-c}{q-d}$ (5)

utilizando o estimador ótimo (6) obtem-se a equação de diferencas apresentada em (??). Utilizando o script A obtem-se o resultado para os parametros a, b, c e d para a função $G(q,\theta)$ e $H(q,\theta)$.

$$\hat{y}(t/t-1,\theta) = a\ u(t-1) - ad\ u(t-2) + (d-c)y(t-1) - b(d-c)y(t) \% \ Identific a cao \ de \ sistemas \ (6) \% \ Tassiano \ Neuhaus$$

resultando em uma média para as variaveis de

ma =

2.0000

mb =

0.7748

mc =

-0.9006

md =

0.4875

colocar isso em uma tabela.

IV. CONCLUSÕES

heheheh jlhadkjhk; j hrlkjhe l; ohkwe rphfsl; khdf gl; isuhgfliusdfnh lgsdfkjhg;

Figura 4. Simulação do sistema para uma entrada aleatória e utilizando o modelo completo - variaveis do processo G(q) a e b.

Figura 5. Simulação do sistema para uma entrada aleatória e utilizando o modelo completo - variaveis do ruido H(q) c e d.

APÊNDICE

1 - Script para Simulação do modelo ARX

```
G=tf([2],[1 -0.8], Ts);
% item 1 e 2
%H = tf([1 \ 0],[1 \ -0.8], Ts);

H = tf([1 \ 0.9],[1 \ -0.5], Ts);
% Replace the default stream with a stream whose
     seed is based on CLOCK, so
% RAND will return different values in different
     MATLAB sessions
RandStream . setDefaultStream (
    RandStream ('mt19937ar', 'seed',
    sum(100*clock)));
% identification using MMQ
% model y(t) = 2*u(t-1) + 0.8*y(t-1) + u(t) + 0.8*y(t-1)
teta = [2; 0.8];
n=size(teta, 1);
% e entrada u saida do controlador
%phy = [u(t-1); y(t-1)]
% numero de vezes que sera aplicado o metodo.
a = zeros(M, 1);
b=zeros(M,1):
for j=1:M
    \% make a randon noise with std = 0.1
    ran = rand(N, 1);
     s = std(ran);
    % now ran_s has std=1;
     ran_s=ran/s;
    m=mean(ran_s);
    % make noise be zero mean
     rh = (ran_s - m) *STD;
%
       % make a randon noise with std = 1
%
       ran=rand(N, 1);
%
       s = std(ran);
%
       m=mean(ran);
0/0
       % now rr has std=Inusoidal input signal
%
       rr = (ran - m) / s;
    %s i m
     rr=sin (freq*tempo);
    mean(rr)
     yr=lsim(G, rr, tempo);
     ynoise=lsim(H, rh, tempo);
     y=yr+ynoise;
    u=rr:
     phy=zeros(N, n);
     for t=2:N
         phy(t, 1)=u(t-1);
phy(t, 2)=y(t-1);
    end
    % make sure, rank(phy) = n :)
     teta_r = inv(phy'*phy)*phy'*y;
    % to be used in grafic plot
     a(j) = teta_r(1);
     b(j) = teta_r(2);
end \\
PN=[a, b];
ma=mean(a)
sa=std(a):
mb=mean(b)
sb=std(b);
plot(a, b, 'bo');
hold:
plot(ma, mb, 'rx');
hold:
title ('Simulacao do sistema para um modelo ARX')
xlabel('Valor da estimativa para a variavel b')
ylabel('Valor da estimativa para a variavel a')
legend ('Estimativas', 'Media')
%valor da tabela chi-quadrado para 95% de confianca
chi = 5.991;
ang = linspace(0,2*pi,360);
```

```
[avetor,SCR,avl] = princomp(PN);
Diagonal= diag(sqrt(chi*avl));
elipse=[cos(ang) sin(ang)] * Diagonal * avetor' +
    repmat(mean(PN), 360, 1);
line(elipse(:,1), elipse(:,2), 'linestyle', '-',
    'color', 'k');
```

Listing 1. Descriptive Caption Text

2 - Script para Simulação do modelo completo

```
% Identificação de sistemas
% Tassiano Neuhaus
% tassianors@gmail.com
close all; clear all;
% Definitions
Ts=1e-3:
% frequency used when u(t) is a sinusoidal signal.
freq = \mathbf{pi}/20;
Tf=1*2*pi/freq;
STD = 0.1:
tempo = 0: Ts: Tf;
N=size (tempo, 2);
M = 100:
% TFs
G=tf([2],[1 -0.8], Ts);
% item 1 e 2
%H = tf([1 \ 0], [1 \ -0.8], Ts);
H=tf([1 \ 0.9],[1 \ -0.5], Ts);
% Replace the default stream with a stream whose
     seed is based on CLOCK, so
% RAND will return different values in different
    MATLAB sessions
sum(100* clock)));
% identification using MMQ
% model y(t) = 2*u(t-1) + 0.8*y(t-1) + u(t) + 0.8*y(t-1)
teta = [2; 0.8; 0.5; 0.9; 1; 1];
n = size (teta, 1);
% e entrada u saida do controlador
\%phy = [u(t-1); y(t-1)]
% numero de vezes que sera aplicado o metodo.
t1 = zeros(M, 1);
t2 = zeros(M, 1);
t3 = zeros(M, 1);
t4 = zeros(M, 1);
t5 = zeros(M, 1);
t6 = zeros(M, 1):
ychap=zeros(M,1);
a = zeros(M, 1);
b = zeros(M, 1);
c = zeros(M, 1);
d = zeros(M, 1);
\textbf{for} \quad j=1\,\text{:}M
    % make a randon noise with std = 0.1
    ran = rand(N, 1);
    s = std(ran):
    % now ran_s has std=1;
    ran_s=ran/s;
    m=mean(ran_s);
    % make noise be zero mean
    rh = (ran_s - m) *STD;
    \% make a randon noise with std = 1
    ran = rand(N, 1);
    s = std(ran);
```

```
m=mean(ran):
    % now rr has std=Inusoidal input signal
     rr = (ran - m) / s;
    %sim
       rr = sin(freq * tempo);
     yr=1sim(G, rr, tempo);
     ynoise=lsim(H, rh, tempo);
     y=yr+ynoise;
     u=rr;
    phy=zeros(N, n-2); else
     if j == 1
    \begin{array}{ll} phy\!=\!\boldsymbol{zeros}\left(N, & n\right);\\ \boldsymbol{end} \end{array}
 j
     for t=3:N
         phy(t, 1)=u(t-1);
         phy (t, 2)=-u(t-2);
         phy(t, 3)=y(t-1);
phy(t, 4)=-y(t-2);
          if j~=1
               ychap(t)=t1(j-1)*u(t-1)-t2(j-1)*u(t-2)
                    +t3(j-1)*y(t-1) -t4(j-1)*y(t-2)
                   +t5(j-1)*ychap(t-1)
-t6(j-1)*ychap(t-2);
              phy(t, 5)=ychap(t-1);
phy(t, 6)=-ychap(t-2);
         end
     end
    % make sure, rank(phy) = n :)
     teta_r=inv(phy'*phy)*phy'*y;
     % to be used in grafic plot
     t1(j)=teta_r(1);
     t2(j)=teta_r(2);
     t3(j)=teta_r(3);
     t4(j)=teta_r(4);
     \mathbf{if} \quad \mathbf{j} = 1
         t5(j)=teta_r(5);
          t6(j)=teta_r(6);
    end
     a(j)=t1(j);
     d(j)=t2(j)/t1(j);
     c(j)=-t3(j)+d(j);
     b(j)=t4(j)/t3(j);
end
PN=[a, b];
ma=mean(a)
mb=mean(b)
mc=mean(c)
md=mean(d)
me=mean(t5)
mf=mean(t6)
plot(a, b, 'bo');
hold:
plot(ma, mb, 'rx');
hold;
title ('Simulacao do sistema - estimativa dos
     parametros a e b')
xlabel('Valor da estimativa para a variavel b')
ylabel('Valor da estimativa para a variavel a')
legend ('Estimativas', 'Media')
%valor da tabela chi-quadrado para 95% de confianca
chi = 5.991;
ang = linspace(0,2*pi,360)';
[avetor, SCR, avl] = princomp(PN);
Diagonal = diag(sqrt(chi*avl));
elipse=[cos(ang) sin(ang)] * Diagonal * avetor' + repmat(mean(PN), 360, 1);
line(elipse(:,1), elipse(:,2), 'linestyle', '-',
      color', 'k');
figure (2);
```

Listing 2. Descriptive Caption Text