Durée: 1h30

Interrogation de Physique n° 2

Lundi 7 décembre 2020

Exer	rcice – Autour du condensateur (11,5 pts)		11,5
I	Pas d'effet de bord. Comportement identique à un condensateur plan infini. Tous les plans perpendiculaires aux armatures sont des plans de symétrie de la distribution des charges. Alors le champ est perpendiculaire aux armatures : $\vec{E} = E \ \vec{n}$	0,25	
	Invariance par déplacement parallèle aux armatures (par exemple suivant y et z). Alors le champ ne dépend que de x : $\vec{E} = E(x)\vec{n} = E(x)\vec{u}_x$	0,25	
	Pas de charge entre les armatures ($\rho=0$). Avec le théorème de Gauss (local ou intégral) on montre que $\ \vec{E}\ =$ cste	0,5	
	Relation de passage $\vec{E} = \frac{\sigma}{\varepsilon_0} \vec{n} = \frac{Q}{\varepsilon_0 \pi a^2} \vec{n}$	0,5	2,75
	$U = \int \vec{E} \cdot \vec{d\ell} = \frac{Q}{\varepsilon_0 \pi a^2} \ell = \frac{Q}{C} \text{ soit} C = \frac{\epsilon_0 \pi a^2}{\ell}$	0,5	
	$W_C = \frac{1}{2}CU^2$	0,25	
	$\begin{aligned} W_C &= \frac{1}{2}CU^2 = \frac{1}{2}\frac{\epsilon_0 \pi a^2}{\ell}U^2 = \frac{1}{2}\frac{\epsilon_0 \pi a^2}{\ell}(E\ell)^2 = \frac{1}{2}\epsilon_0 E^2 \pi a^2 \ell \\ w_e &= \frac{W_C}{\text{volume}} = \frac{W_C}{\pi a^2 \ell} = \frac{1}{2}\epsilon_0 E^2 \end{aligned}$	0,5	
II	Schéma à tracer	0,25	
	$U = ri(t) + u_C(t) \text{soit} 0 = r \frac{di(t)}{dt} + \frac{i(t)}{C}$	0,5	
	$i(t) = Ke^{-\frac{t}{rC}}$ Condition initiale $u_C(0^-) = u_C(0^+) = 0$ et $i(0^+) = \frac{u}{r}$ alors $K = \frac{u}{r}$	0,5	
	Et finalement $i(t) = \frac{U}{r}e^{-t/\tau}$ (avec $\tau = rC$)	0,5	
	Allure du courant à tracer	0,25	4,5
	$W_J = \int_0^\infty ri(t)^2 dt = \dots = \frac{1}{2}CU^2$	1	
	$W_S = U \int dq = QU = CU^2$	0,5	
	$W_S = W_C + W_J$ Lors du chargement du condensateur, la moitié de l'énergie est perdue par effet Joule.	0,5 0,5	
III.1	$\alpha = \frac{\ \overrightarrow{J_c}\ }{\ \overrightarrow{J_d}\ } = \frac{\gamma E_m}{\omega \varepsilon_0 E_m} = \frac{\gamma}{\omega \varepsilon_0}$	1	

α Le co	Sujets n° 1, 2, 5, 6 $\gamma = 10^7$ S/m et $f = 10^6$ Hz 1,8·10 ¹¹ urant de déplacement est négligeable	Sujets n° 3, 4, 7, 8 $\gamma = 5 \cdot 10^7 \text{ S/m et } f = 10^4 \text{ Hz}$ 9:10 ¹³ e. dans le conducteur		0,5 0,25	
$E_m = \frac{E_m}{\text{(remains)}}$	$ \frac{\ \vec{j}\ }{\gamma} $ Sujets n° 1, 2, 5, 6 $ \gamma = 10^7 \text{ S/m et } j = 1\text{A/mm}^2 $ 0.1 V/m	Sujets n° 3, 4, 7, 8 $\gamma = 5 \cdot 10^7 \text{ S/m et } j = 0.1 \text{A/mm}^2$ 2 mV/m e, normal car $j = nqv = ne\mu_e E$ ave	ec ec	0,25 0,25	2,25
III.2 $\vec{l_c} = \vec{0}$	$\vec{O} car \gamma = 0$			0,25	
	ion de passage $\vec{E} = \frac{\sigma(t)}{\varepsilon_0} \vec{u} = \frac{Q(t)}{\pi a^2}$	$\frac{t}{\varepsilon_0}\vec{n}$		0,25	
$\overrightarrow{J_d} = i$	$\varepsilon_0 \frac{\partial \vec{E}}{\partial t} = \varepsilon_0 \frac{1}{\varepsilon_0} \frac{\partial \sigma(t)}{\partial t} \vec{n} = \frac{1}{\pi a^2} \frac{\partial Q(t)}{\partial t}$	$\frac{1}{n}\vec{n} = \frac{i(t)}{\pi a^2}\vec{n}$		0,75	
$E_0 =$	$\frac{\ \vec{j}\ }{\omega \varepsilon_0}$ Sujets n° 1, 2, 5, 6	Sujets n° 3, 4, 7, 8	7	0,25	2
E_0	$f = 10^6 \text{ Hz et } j = 1\text{A/mm}^2$ 1,8 10 ¹⁰ V/m	$f = 10^4 \text{ Hz et } j = 0.1 \text{A/mm}^2$ 1,8 10 ¹¹ V/m		0,25	
Cham métal	np électrique beaucoup plus fort par lique	rapport au champ dans l'armature		0,25	

Exercice – Autour des solénoïdes (10 pts)			10
I.1	Le champ magnétique est suivant $\overrightarrow{u_z}$	0,25	0,25
I.2	Faire le dessin au point M	0,25	
	Les plans $(M, \overrightarrow{u_r}, \overrightarrow{u_z})$ sont des plans d'antisymétrie pour la distribution de courants qui crée le champ (ou tout plan contenant l'axe Oz est un plan d'antisymétrie pour la distribution de courant qui crée le champ) donc $\overrightarrow{B}(M) = B_r(r, \theta, z)\overrightarrow{u_r} + B_z(r, \theta, z)\overrightarrow{u_z}$	0,5	1
	Invariance de la distribution de courant créant le champ par rotation d'axe 0z et d'angle θ quelconque donc $\vec{B}(M) = B_r(r,z)\vec{u_r} + B_z(r,z)\vec{u_z}$	0,25	
I.3	Le plan xOy est un plan de symétrie pour la distribution de courant qui crée le champ donc un plan d'antisymétrie pour le champ magnétique	0,5	1
	et en tout point P appartenant à ce plan, $\vec{B}(P)$ est perpendiculaire à xOy donc il est suivant $\vec{u_z}$	0,5	
T 4	En coordonnées cylindriques, $z = 0$ pour ces points P, donc $B_r(r, 0) = 0$.	0.5	0.5
I.4	En regardant la cartographie des lignes de champ dans les solénoïdes, on voit clairement que le champ est suivant l'axe (Oz) donc $B_r(r,z)=0$.	0,5	0,5
1.5	a) $\overrightarrow{rotB} = \overrightarrow{0}$ et $\overrightarrow{divB} = \overrightarrow{0}$	0,25+0,25	
	b) $\frac{\partial B_{Z}(r,z)}{\partial r} = 0$ et $\frac{\partial B_{Z}(r,z)}{\partial z} = 0$	0,25+0,25	1.5
	$B_{z(r,z)}$ est constant donc \vec{B} est uniforme à l'intérieur des solénoïdes et $B_{z(r,z)} = B_0$. Mettre 0 aux élèves qui écrivent que $B_{z(r,z)}$ est constant en n'écrivant qu'une seule dérivée.	0,5 ou 0	

TT 1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.5	1
II.1	a) On lit 0 car le flux de \vec{B} à travers la spire ne varie pas.	0,5	1
11.2	b) Il faut déplacer la spire dans le champ \vec{B} pour faire varier le flux		0.7
II.2	Variant lentement dans le temps : on peut donc se placer dans le cadre de l'ARQP	0,5	0,5
II.3	 a) Même si on ne déplace pas la spire, le champ B dépend du temps donc son flux varie à travers la surface de la spire entraînant l'apparition d'une f.e.m. b) On choisit le sens conventionnellement positif du courant induit, par exemple celui qui oriente la normale à la surface du circuit vers uz. On calcule le flux φ de B à travers la surface de la spire. 	0,25	
	$\Phi = \iint_{spire} \vec{B}(M) . dS \vec{u_z}$ $= \iint_{spire} B_0(t) \exp\left(-\frac{x^2 + y^2}{\alpha^2}\right) \vec{u_z} . dS \vec{u_z}$ $\Phi = \iint_{spire} B_0(t) \exp\left(-\frac{x^2 + y^2}{\alpha^2}\right) dS$ $= B_0(t) \iint_{spire} \exp\left(-\frac{x^2 + y^2}{\alpha^2}\right) dS$ (II n'est pas nécessaire d'exprimer dS , accepter l'expression en cartésienne $dxdy$ et celle en cylindrique $rdrd\theta$ même si x et y ne sont pas exprimés en fonction de r et θ) (iii) On utilise la loi de Lenz	0,5	1,75
	$e = -\frac{d\phi}{dt} = -\left(\iint_{spire} \exp\left(-\frac{x^2 + y^2}{\alpha^2}\right) dS\right) \frac{dB_0(t)}{dt}$	0,25	
	c) Il faut alors supposer que $\vec{B}(M)$ est uniforme sur toute la surface de la spire, donc que les dimensions de la spire sont petites devant la variation spatiale du champ.	0,25	
	Dans ce cas $e = -4a^2 \frac{dB_0(t)}{dt}$	0,25	
	d) Bonus : La mesure de la f.e.m n'est pas directement proportionnelle à l'amplitude de \vec{B} sauf si \vec{B} est sinusoïdal mais à la dérivée temporelle de l'amplitude. Il faudra donc intégrer.	bonus: 0,5	
III.1	Les frottements sont négligeables car pour le pendule en cuivre comme pour le pendule en PVC, à courant nul, l'amplitude de θ reste constante au cours du temps.	0,5	0,5
III.2	On constate que le mouvement du pendule en cuivre <u>s'amortit très vite</u> contrairement à celui du pendule en PVC. <u>Il existe donc une force qui freine le pendule en cuivre.</u> Cette force est la <u>force de Laplace</u> causée par les <u>courants induits</u> dits courants de Foucault qui circulent dans le pendule en cuivre et par le <u>champ magnétique des solénoïdes.</u> Les courants de Foucault n'existent pas dans le <u>PVC qui est isolant</u> .	0,25 0,25 0,25+0.25 0,25	1,5
	Le pendule en cuivre se déplaçant dans le champ magnétique crée par les solénoïdes, l'induction est motionnelle. C'est le mouvement du pendule qui donne naissance à l'induction qui pour s'opposer à la cause qui lui donne naissance cherche à le freiner par la force de Laplace.	bonus : 0,5 bonus : 0,5	
III.3	Cette expérience illustre le <u>freinage</u> par courants de Foucault dans un corps conducteur.	0,5	0,5
		1	