数学笔记

BeBop

September 17, 2024

Contents

Ι	知识整理	5
1	代数拓扑1.1 Brouwer 不动点定理与 Sperner 引理1.2 Invariance of domain1.3 Poincaré Lemma	. 9
II	杂题集萃	11
II	I 易错知识	13

4 CONTENTS

Part I 知识整理

Chapter 1

代数拓扑

1.1 Brouwer 不动点定理与 Sperner 引理

我们首先叙述 Brouwer 不动点定理与 Sperner 引理:

定理 1.1.1 (Brouwer 不动点定理). 设 $f \in \mathbb{R}$ 作闭球 B^n 到自身的连续映射,则 f 必有不动点.

引理 1.1.2 (Sperner 引理). 设 $K = [v_0, \ldots, v_n]$ 是 n 维单纯形, 考虑其三角 剖分 T, 将 T 的顶点 (n+1) 染色, 即定义 $\lambda: V(T) \to \{0, \ldots, n\}$, 且满足对任 意指标子集 $\{i_0, \ldots, i_k\} \subseteq \{0, \ldots, n\}$, λ 在 $[v_{i_0}, \ldots, v_{i_k}]$ 上的限制的值域包含于 $\{i_0, \ldots, i_k\}$. 则一定存在 $u_0, \ldots, u_n \in V(T)$, 使得 $[u_0, \ldots, u_n]$ 是三角剖分 T 的单形, 且 $\lambda(u_i)$ 互不相同.

Figure 1.1: Sperner 引理示意图

它们一个是拓扑的定理,一个是组合的定理,看似没有联系,但实际上我们能证明它们是等价的:由于 $B^n \cong K$,我们将 Brouwer 不动点定理的叙述改为 K到自身的连续映射 f 必有不动点.

1°:Sperner 引理 ⇒ Brouwer 不动点定理

设 $K=[v_0,\ldots,v_n]$ 是 n 维单形,对 $\forall x\in K, x=\sum_i\alpha_iv_i,\ \alpha_i\geqslant 0,\ \sum_i\alpha_i=1.$ 设 $f(x)=\sum_i\beta_iv_i,$ 定义染色映射 $\lambda(x)$ 为使得 $\alpha_i\geqslant \beta_i$ 且 $\alpha_i\neq 0$ 的最小下标 i. 我们首先观察到在任意集合 $\{i_0,\ldots,i_k\}\subseteq \{0,\ldots,n\}$ 中,对 $\forall x\in [v_{i_0},\ldots,v_{i_k}],$ x 的坐标 α 满足 $\alpha_i=0,$ $i\notin \{i_0,\ldots,i_k\},$ 因此 $\lambda(x)$ 只可能在 $\{i_0,\ldots,i_k\}$ 中取值.

固定染色 λ , 取重心重分 K^0,K^1,\ldots , 则在每一个 K^j 中 λ 均满足引理条件,于是存在异色单形 $\Delta^j=[u^j_0,\ldots,u^j_n]$, 不妨设 $\lambda(u^j_i)=i$. 因为 K 是紧集,因此 $\{u^j_0\}_j$ 存在收敛子列,不妨设就为序列本身,由重心重分的性质知 Δ^j 的直径趋于零,因此对所有 i, $\{u^j_i\}_j$ 均收敛于同一点 u, 即 $u=\lim_{j\to\infty}u^j_i$, $\forall i=0,\ldots,n$. 由

染色的定义知 u_i^j 的 v_i 坐标不等于零且大于等于 $f(u_i^j)$ 的,根据极限的保号性 知 u 的所有坐标 α_i 大于等于 f(u) 对应的坐标 β_i ,但因为 $\sum_i \alpha_i = \sum_i \beta_i = 1$,所以 $\alpha_i = \beta_i$,因此 u = f(u) 是 f 的不动点.

2°:Sperner 引理 ← Brouwer 不动点定理

现在我们回到 Sperner 引理本身的证明

设 $K = [v_0, ..., v_n]$ 是 n 维单形, λ 为满足引理要求的染色, T 是 K 的一个三角剖分, 则可以定义单纯映射 $f: K \to K$ 如下: 对 $\forall x \in V(T)$, 定义 $f(x) = v_{\lambda(x)}$, 若 $x = \sum_{i=0}^k \alpha_i x_i$, 其中 $[x_0, ..., x_k]$ 为 T 的 k 维单形, 定义 $f(x) = \sum_{i=0}^k \alpha_i v_{\lambda(x_i)}$.

若 T 中没有 n 维异色单形,则 f 的像集包含于 ∂K 中,且对于每个 (n-1) 维 面 $[v_0,\ldots,\hat{v_i},\ldots,v_n]$ 均有 $f([v_0,\ldots,\hat{v_i},\ldots,v_n])\subset [v_0,\ldots,\hat{v_i},\ldots,v_n]$. 不妨设 $\sum_{i=0}^n v_i=0$,即 K 的重心是原点。定义 $g:\partial K\to\partial K, g(x)$ 为射线 xO 与 ∂K 的另一个交点,类比对径映射.则 $g([v_0,\ldots,\hat{v_i},\ldots,v_n])\cap [v_0,\ldots,\hat{v_i},\ldots,v_n]=\emptyset$ 则 $g\circ f$ 是 K 到自身的连续映射,但没有不动点,与 Brouwer 不动点定理矛盾.

证明. 对维数 n 做归纳, 我们证明对任意维数异色单形的个数均为奇数. 当 n=1 时, $K=[v_0,v_1]$ 可看做闭区间 [0,1], 设 $v_0=x_0< x_1< \cdots < x_m=v_1$ 是剖分 T 中的点, 则 #异色单形 = # $\{i \mid \lambda(x_{i-1}) \neq \lambda(x_i)\}$. 而

$$1 = \lambda(v_1) - \lambda(v_0) = \sum_{i=1}^{m} \lambda(x_i) - \lambda(x_{i-1}) = \sum_{\lambda(x_{i-1}) \neq \lambda(x_i)} \lambda(x_i) - \lambda(x_{i-1})$$

因此 #异色单形 是奇数.

假设维数为 n-1 时命题成立, 我们称 T 中的 (n-1) 维单形 $[x_0, \ldots, x_{n-1}]$ 为一个好单形, 若 $\{\lambda(x_0), \ldots, \lambda(x_{n-1})\} = \{0, \ldots, n-1\}$. 对 T 中的 n 维单形 $\Delta_n = [u_0, \ldots, u_n]$, 令 $c(\Delta_n)$ 为 Δ_n 中好单形的个数, 记 $S = \{\lambda(u_0), \ldots, \lambda(u_n)\}$, 则

$$c(\Delta_n) = \begin{cases} 0, \{0, \dots, n-1\} \nsubseteq S \\ 2, \{0, \dots, n-1\} = S \\ 1, \{0, \dots, n\} = S \end{cases}$$

于是异色单形个数的奇偶性与 $\sum_{\Delta_n\subset T}c(\Delta_n)$ 的奇偶性相同. 而当好单形在 $\overset{\circ}{K}$ 内时, 它是两个 n 单形的公共面; 当好单形在 ∂K 上时, 它仅为一个 n 单形的面. 因此异色单形个数的奇偶性与 ∂K 上好单形的个数的奇偶性相同, 根据条件好单形仅在 $[v_0,\ldots,v_{n-1}]$ 中出现, 由归纳假设知 $[v_0,\ldots,v_{n-1}]$ 中好单形有奇数个, 命题成立.

1.2 区域不变性定理 (Invariance of domain)

该定理也是拓扑中的重要定理,有人说它是欧式空间的内蕴性质,用它可以区分不同维数的欧式空间.

定理 1.2.1. 设 U 为 \mathbb{R}^n 中的开子集, $f: U \to \mathbb{R}^n$ 为连续单射, 则 f(U) 为 \mathbb{R}^n 的开子集且 f 为开映射, 即 f 为 U 到 f(U) 的同胚.

1.3 Poincaré Lemma 的另一种表述形式

引理 1.3.1 (d-Poincaré lemma). 若整体有 $d\omega = 0$, 则方程 $d\eta = \omega$ 局部有解, 即在每点处存在邻域使得方程有解.

引理 1.3.2 ($\overline{\partial}$ -Poincaré lemma). 若整体有 $\overline{\partial}\omega = 0$, 则方程 $\overline{\partial}\eta = \omega$ 局部有解, 即在每点处存在邻域使得方程有解.

注. 因此若整体有 $d\omega = 0$,但方程 $d\eta = \omega$ 在整体上没有解,这就表明空间本身限制的整体解的存在性,也就是说我们检测到一个拓扑上的障碍.

Part II

杂题集萃

Part III

易错知识