# **Optimization in Machine Learning**

# **Bayesian Optimization: Basic BO Loop and Surrogate Modelling**



#### Learning goals

- Initial design
- Surrogate modeling
- Basic loop

#### OPTIMIZATION VIA SURROGATE MODELING

#### Starting point:

- ullet We do not know the objective function  $f:\mathcal{S} o \mathbb{R}$
- ullet But we can evaluate f for a few different inputs  ${f x} \in \mathcal{S}$
- For now we assume that those evaluations are noise-free
- Idea: Use the data  $\mathcal{D}^{[t]} = \{(\mathbf{x}^{[i]}, y^{[i]})\}_{i=1,\dots t}, y^{[i]} := f(\mathbf{x}^{[i]}),$  to derive properties about the unknown function f



#### **INITIAL DESIGN**

- Should cover / explore input space sufficiently:
  - Random design
  - Latin hypercube sampling
  - Sobol sampling
- Type of design usually has not the largest effect
- A more important choice is the size of the initial design
  - Should neither be too small (bad initial fit) nor too large (spending too much budget without doing "intelligent" optimization)
  - Rule of thumb: 4d

#### LATIN HYPERCUBE SAMPLING

- LHS partitions the search space into bins of equal probability
- Goal is to attain a more even distribution of sample points than random sampling
- Allow at most one sample per bin; exactly one sample per row and column



Marginal histograms RS vs. LHS

#### LATIN HYPERCUBE SAMPLING

Actual sampling of points, e.g., constructed via **Maximin**:

- The minimum distance between any two points in  $\mathcal{D}$  is  $2q = \min_{\mathbf{x} \in \mathcal{D}, \mathbf{x}' \in \mathcal{D}} \rho(\mathbf{x}, \mathbf{x}')$  ( $\rho$  any metric, e.g., Euclidean distance)
- q is the packing radius the radius of the largest ball that can be placed around every design point such that no two balls overlap
- Goal: Find  $\mathcal{D}$  that maximizes 2q:  $\max_{\mathcal{D}} \min_{\mathbf{x} \in \mathcal{D}, \mathbf{x}' \in \mathcal{D}} \rho(\mathbf{x}, \mathbf{x}')$
- ullet Ensures that the design points in  $\mathcal D$  are as far apart from each other as possible

Running example = minimize this "black-box":



• Fit a regression model  $\hat{f}: \mathcal{D}^{[t]} \to \mathbb{R}$  (blue) to extract maximum information from the design points (black) and learn properties of f



As we can eval f without noise, we fit an interpolator

2 Instead of the expensive f, we optimize the cheap surrogate  $\hat{f}$  (blue) to **propose** a new point (red) for evaluation



We finally evaluate the newly proposed point



 After evaluation of the new point, we adjust the model on the expanded dataset via (slower) refitting or a (cheaper) online update



 We again obtain a new candidate point (red) by optimizing the cheap surrogate model function (blue) ...



• ... and evaluate that candidate



• We repeat: (i) fit the model



• (ii) **propose** a new point



• (iii) evaluate that point



We observe that the algorithm converged

#### **BASIC LOOP**

The basic loop of our sequential optimization procedure is:

- Fit surrogate model  $\hat{t}$  on previous evaluations  $\mathcal{D}^{[t]} = \{(\mathbf{x}^{[i]}, y^{[i]})\}_{i=1,...,t}$
- Optimize the surrogate model  $\hat{f}$  to obtain a new point  $\mathbf{x}^{[t+1]} := \arg\min_{\mathbf{x} \in \mathcal{S}} \hat{f}(\mathbf{x})$
- Sevaluate  $\mathbf{x}^{[t+1]}$  and update data  $\mathcal{D}^{[t+1]} = \mathcal{D}^{[t]} \cup \{(\mathbf{x}^{[t+1]}, f(\mathbf{x}^{[t+1]}))\}$

#### **EXPLORATION VS. EXPLOITATION**

We see: We ran into a local minimum. We did not "explore" the most crucial areas and **missed** the global minimum.



- Better ways to propose points based on our model exist, so-called acquisition functions
- Optimizing SM directly corresponds to raw / mean prediction as AQF
- Results in high exploitation but low exploration