## АСИММЕТРИЧНЫЕ КРИПТОСИСТЕМЫ

Перестановки с секретной дверью

#### Шифрование с публичными ключами

 Боб формирует пару ключей (РК, SK) и передает публичный ключ Алисе



#### Приложения публичной криптографии

• Установка сессии



- Не интерактивные приложения (почта):
  - Боб отправляет сообщение Алисе на ее публичном ключе
  - Замечание: При этом Бобу необходимо получить публичный ключ Алисы (возникает задача управления ключей)

#### Шифрование на публичном ключе

- Определение: Шифрование с публичным ключом три алгоритма (G, E, D)
  - G(): рендомизированный алгоритм, который возвращает пару ключей (PK, SK)
  - E(PK, m): рендомизированный алгоритм, который принимает на вход  $m \in M$  и возвращает  $c \in C$
  - D(SK, c): детерминированный алгоритм, который принимает на вход  $c \in C$  и возвращает  $m \in M$  или  $\bot$
- Состоятельность:  $\forall (PK, SK)$  порожденные G:  $\forall m \in M : D(SK, E(PK, m)) = m$

#### Безопасность: подслушивание

• Для b=0,1 определим эксперименты EXP(0) и EXP(1)



• Определение: **E**=(G, E, D) является сем. стойкой для любого атакующего А:

$$Adv_{SS}[E, A] = |Pr\{EXP(0) = 1\} - Pr\{EXP(1) = 1\}| < neg$$

## Сравнение с симметричными системами

- Симметричная криптография:
  - Стойкость: одноразовая и многоразовая
  - Из одноразовой стойкости не следует многоразовая

- Асимметричная криптография:
  - Из одноразовой стойкости следует многоразовая
  - Асимметричная криптография **должна** быть рандомизированная

#### Стойкость к активным атакам

• Как можно подделать сообщение?



Атакующий получит расшифрованное сообщение, которое начинается to: attacker



# Стойкость в модели ССА: случай асимметричтого шифрования

• Определим эксперимент EXP(b) для b=0,1 и асимметричной криптосистемы **E**=(G, E, D)



#### CCA

• Определение: **E**=(G, E, D) является ССА стойкой для любого атакующего А:

$$Adv_{CCA}[E, A] = |\Pr\{EXP(0) = 1\} - \Pr\{EXP(1) = 1\}| < neg$$

Пример: to:alice -> to:david



#### Активные атаки

- Симметричные шифросистемы:
  - Аутентифицированное шифрование
  - Атакующий не может создать новый шифротекст
  - Подразумевает ССА стойкость
- Асимметричные шифросистемы:
  - Атакующий может создать новый шифротекст при помощи РК
  - Требует ССА стойкость

## Арифметика по модулю n

- $\mathbb{Z}_n^+$  это группа по сложению.
- $\mathbb{Z}_n^*$  это группа по умножению.
- Сколько элементов в  $\mathbb{Z}_n^*$ ?
- ullet Обратимые элементы в  $\mathbb{Z}_n$  это взаимно простые с n.
- ullet Их всего  $\phi(n)$  функция Эйлера. Если p и q простые, то

$$\phi(p) = p - 1, \qquad \phi(pq) = (p - 1)(q - 1).$$

#### Арифметика по модулю n

- $\mathbb{Z}_n^+$  это группа по сложению.
- $\mathbb{Z}_n^*$  это группа по умножению.
- Сколько элементов в  $\mathbb{Z}_n^*$ ?
- Если p простое, то  $\mathbb{Z}_p$  это поле: у каждого элемента, кроме нуля, есть обратный по умножению.
- Над полем верны полезные факты из алгебры: например, над полем многочлен степени d имеет не более d корней.

#### Арифметика по модулю n

- На всякий случай ещё вспомним, что бывают конечные поля с p<sup>m</sup> элементами.
- Их можно рассматривать как поля многочленов по модулю того или иного неприводимого многочлена.
- Например, поле  $\mathbb{F}_{16}$  состоит из следующих элементов:

0, 
$$x^2$$
  $x^3$   $x^2 + x^3$   
1  $x^2 + 1$   $x^3 + 1$   $x^2 + x^3 + 1$   
 $x$   $x^2 + x$   $x^3 + x$   $x^3 + x^2 + x$   
 $x + 1$   $x^2 + x + 1$   $x^3 + x + 1$   $x^3 + x^2 + x + 1$ 

• Операции производятся по модулю  $x^4 + x + 1$  (или  $x^4 + x^3 + 1$ , или  $x^4 + x^3 + x^2 + 1$  — получится одно и то же поле).



## Малая теорема Ферма

- Если p простое, то для любого a  $a^p \equiv a \pmod{p}$ , а для любого a, взаимно простого с p,  $a^{p-1} \equiv 1 \pmod{p}$ .
- Соответственно, для простого р и любых т и п

если 
$$m \equiv n \pmod{p-1}$$
, то  $\forall a \ a^m \equiv a^n \pmod{p}$ .

 Теорема Эйлера — для любого n и любого a, взаимно простого с n,

$$a^{\Phi(n)} \equiv 1 \pmod{n}$$
.

## Алгоритм Евклида

- Алгоритм Евклида: классический вычисляет gcd.
- Кроме  $d = \gcd(a, b)$ , вычисляет ещё два числа x и y, такие, что ax + by = d.
- Как применить алгоритм Евклида, чтобы найти a<sup>-1</sup> (mod n)?
- $\bullet$  Найти такие x и y, что ax + ny = d, где  $d = \gcd(a, n)$ .
- ullet Если d>1, то a необратимо в  $\mathbb{Z}_p$ ; если d=1, то  $x=a^{-1}$  (mod n).

#### Возведение в степень

 Если есть два числа а и b по модулю n, и мы хотим вычислить a<sup>b</sup> (mod n), то можно вычислить

$$a^2 \pmod{n}$$
,  $a^3 \pmod{n}$ , ...

- Здесь b − 1 умножение по модулю n.
- Можно ли лучше?

## Двоичный алгоритм возведения в степень

 Можно сделать так: запишем b как строку битов. Потом будем возводить a в квадрат, домножая на a там, где у b биты равны 1. Например:

$$b = 9_{10} = 1001_2$$
  $\Rightarrow$   $a^b = ((a^2)^2)^2 \cdot a$ , 4 умножения.

$$b = 65537_{10} = 1000000000000001_2 \Rightarrow$$
  $\Rightarrow$   $a^b = (((a^2)^2)...)^2 \cdot a, 17 умножений.$ 

17 значительно меньше, чем 65536.

#### Квадратные корни

- Теперь давайте наоборот. Как по x<sup>2</sup> (mod p) найти x (mod p)?
- Во-первых, не всякое число является квадратом по модулю р. Те, которые являются, называются квадратичными вычетами.
- ullet В  $\mathbb{Z}_p^*$  вычетов столько же, сколько невычетов, а именно  $\frac{p-1}{2}$ . Почему?

## Квадратные корни

- Рассмотрим  $1^2, 2^2, \dots, \left(\frac{p-1}{2}\right)^2$ .
- ullet Пусть их меньше. Тогда для некоторых  $1 \leq i, j \leq rac{p-1}{2}$

$$i^2 \equiv (-i)^2 \equiv j^2 \equiv (-j)^2 \pmod{p}$$
.

- Иначе говоря, у уравнения  $x^2 \equiv i^2 \pmod{p}$  четыре разных корня.
- ullet Но  $\mathbb{Z}_p$  поле, и у него не может быть больше двух корней.

#### Символ Лежандра

Символ Лежандра:

$$\left(\frac{a}{p}\right) = egin{cases} 0, & a \equiv 0 \pmod{p}, \\ 1, & a \not\equiv 0 \pmod{p}, \text{ и для некоторого } x \ x^2 \equiv 0, \\ -1, & a \not\equiv 0 \pmod{p}, \text{ и такого } x \text{ не существует.} \end{cases}$$

Для простого р

$$\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \pmod{p}.$$

#### Символ Лежандра

Кроме того,

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right),$$

$$\left(\frac{p}{q}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}} \left(\frac{q}{p}\right).$$

- Это позволяет построить алгоритм для вычисления символа Лежандра ( ):
  - разложить  $\left(\frac{a}{\rho}\right)$  в произведение  $\left(\frac{\rho_1}{\rho}\right)\ldots\left(\frac{\rho_m}{\rho}\right)$ ;
  - заменить на p; (mod p), перевернуть, повторить.

## Квадратный корень

- Теперь возвращаемся к квадратному корню. Пусть дано простое p и  $a \in \mathbb{Z}_p$ .
- $\bullet$  Если  $p \equiv 3 \pmod{4}$ , то корень ищется как

$$x \equiv a^{(p+1)/4} \pmod{n}.$$

• Действительно,

$$1 = \left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \pmod{p}.$$

Значит,

$$x^2 \equiv a^{(p+1)/2} \equiv a \cdot a^{(p-1)/2} \equiv a \pmod{p}$$
.

## Квадратный корень

- Для p ≡ 1 (mod 4) вероятностный алгоритм.
- Рассмотрим многочлен  $x^{(p-1)/2} 1$ . Он степени  $\frac{p-1}{2}$ , его корни все квадратичные вычеты по модулю p, и только они.
- Теперь рассмотрим многочлен  $f(x) \equiv x^2 a \equiv (x r)(x + r) \pmod{p}. \ \mathsf{Подставим}$   $f(x \delta) \equiv (x (\delta r))(x (\delta + r)) \pmod{p}.$
- Факт (без доказательства): для половины  $\delta$  одно из значений ( $\delta-r$ ), ( $\delta+r$ ) является вычетом, а другое — нет.
- Выберем  $\delta$  случайно и подсчитаем  $\gcd(f(x-\delta), x^{(p-1)/2}-1)$  (как многочленов).
- Тогда с вероятностью 1/2 мы получим корень из а.

#### Для составных n

- Пусть, например, n = pq. Алгоритм вычисления квадратного корня из a по модулю n.
  - **4** Найти корни (r, -r) числа a по модулю p.
  - Найти корни (s, -s) числа a по модулю q.
  - Найти алгоритмом Евклида такие с и d, что cp + dq = 1.
  - $\bigcirc$  Вычислить  $x = rdq + scp \pmod{n}$  и  $y = rdq scp \pmod{n}$ .
  - $\bigcirc$  Вернуть  $(\pm x, \pm y)$ .
- Иначе говоря, мы можем вычислять квадратные корни, если умеем раскладывать п на множители.

#### Следствие

- Вычисление квадратного корня потребовало уметь раскладывать а на множители.
- Без этого даже не проверить, является ли а вычетом.
- А можно ли наоборот? Можно ли разложить число на множители, умея вычислять квадратные корни по его модулю?

#### Разложение на множители через корни

- Можно! Предположим, что мы умеем выдавать некий квадратный корень по модулю п.
- Возьмём случайное x, вычислим  $a = x^2$  и подадим алгоритму.
- Если мы получили  $\pm x$ , повторим операцию. А если получили  $y \neq \pm x$ , то получилось, что

$$x^2 \equiv y^2 \pmod{n}$$
, Ho  $y \neq \pm x \pmod{n}$ .

- Это значит, что n делит  $x^2 y^2 = (x y)(x + y)$ , но при этом не делит либо x y, либо x + y.
- Значит, gcd(x-y,n) нетривиальный делитель n.

#### Постановка задачи

- Теперь поставим более сложную задачу найти логарифм.
- ullet Дискретный логарифм: по простому числу p, числу  $a \in \mathbb{Z}_p^*$ , порождающему  $\mathbb{Z}_p^*$ , и числу  $b \in \mathbb{Z}_p^*$  найти такое  $0 \le x \le p-2$ , что

$$a^{x} \equiv b \pmod{p}$$
.

• Обобщённый дискретный логарифм: то же в произвольной циклической группе G: по генератору  $a \in G$  и  $b \in G$  найти такой x, что  $a^x = b$ .

#### Замечания

• Сложность не зависит от генератора a; для другого генератора a'

$$a^{x} = b = a^{\prime y} = (a^{z})^{y}$$
,  $u \log_{a'} b = \log_{a} b (\log_{a} a')^{-1}$ .

- Но сложность зависит от представления группы, т.е. для изоморфных групп сложность дискретного логарифма может быть разной. Почему?
- Потому что любая циклическая группа изоморфна  $\mathbb{Z}_n^+$  для некоторого n.
- ullet Дискретный логарифм в  $\mathbb{Z}_n^+$  это значит найти такой x, что  $ax = b \pmod{n}$ . Наверное, это не так уж сложно...

#### Замечания

- Алгоритмы для задачи дискретного логарифма делятся на три группы:
  - Работающие для любых групп.
  - Работающие для любых групп, но эффективные для «гладких» (когда порядок группы имеет маленькие простые делители).
  - Эффективные только для некоторых групп.

#### Итоги

- ullet Мы теперь умеем в  $\mathbb{Z}_n$ :
  - быстро возводить в степень;
  - находить a<sup>-1</sup>;
  - использовать алгоритм Евклида;
  - применять равенство  $a^{\phi(n)} \equiv 1 \pmod{n}$ .
- Мы выяснили, что умеем раскладывать n на множители тогда и только тогда, когда умеем вычислять по модулю n квадратные корни.  $O(\sqrt[3]{n})$
- ullet И узнали о задаче дискретного логарифма.  $O(\sqrt[3]{n})$

#### Построение публичных криптосистем

- Основная цель: Построение ССА стойкую систему шифрования на публичных ключах.
- Метод: Использование однонаправленных функций с секретной дверью (Trapdoor functions (TDF))

## Функции с секретной дверью

- Определение: Функция с секретной дверью X->Y тройка алгоритмов (G, F, F<sup>-1</sup>), таких что:
  - G(): рандомизированный алгоритм генерации ключей pk, sk.
  - F(pk,·): детерминированный алгоритм , который определяет отображение X->Y
  - $F^{-1}(sk,\cdot)$ : определяет функцию Y->X, которая обращает  $F(pk,\cdot)$
- Более точно:
  - Для  $\forall (pk, sk)$  полученных от G  $\forall x \in X \ F^{-1}\big(sk, F(pk, x)\big) = x$

## Стойкие функции с секретными дверями

- Набор алгоритмов (G, F, F<sup>-1</sup>) является стойким, если *F(pk,x)* – однонаправленная функция:
  - Может быть вычислена, но не может быть найдена обратная



• Определение: (G, F, F<sup>-1</sup>) является стойкой TDF, если для всех алгоритмов A верно

$$Adv_{OW}[A, F] = \Pr\{x = x'\} < neg$$

## Публичные криптосистемы на основе TDF

- (G, F, F<sup>-1</sup>): стойкая TDF X→Y
- (E<sub>s</sub>,D<sub>s</sub>) система симметричного аутентифицированного шифрования над (K, M, C)
- Н: X→К функция хеширования.
- Будем строить публичную криптосистему (G, E, D)
  - Генерация ключей из TDF

#### Публичные криптосистемы на основе TDF

- (G, F, F<sup>-1</sup>): стойкая TDF X→Y
- (E<sub>s</sub>,D<sub>s</sub>) система симметричного аутентифицированного шифрования над (K, M, C)
- Н: X→К функция хеширования.

#### E(pk, m): $x \stackrel{\mathbb{R}}{\leftarrow} X$ , $y \leftarrow F(pk, x)$ $k \leftarrow H(x)$ , $c \leftarrow E_s(k, m)$ output (y, c)

$$\frac{D(sk, (y,c))}{x \leftarrow F^{-1}(sk, y),}$$

$$k \leftarrow H(x), \quad m \leftarrow D_s(k, c)$$
output m

• Схема шифрования:



- Доказательство безопасности:
- Если (G, F, F<sup>-1</sup>): стойкая TDF, (E<sub>s</sub>,D<sub>s</sub>) обеспечивает аут. шифрование и H: X→K «случайный оракул», тогда (G, E, D) будет ССА<sup>го</sup> стойкий

#### Некорректное использование TDF

• **Нельзя** использовать шифрование непосредственно с открытым текстом

```
\frac{E(pk, m)}{\text{output}} : c \leftarrow F(pk, m)
```

```
<u>D( sk, c )</u>: output F<sup>-1</sup>(sk, c)</u>
```

- Проблемы:
  - Детерминированный алгоритм не может быть СС
  - Существует множество атак

#### RSA перестановка с секретной дверью

- Пусть N=pq
  - $Z_N = \{0, 1, 2, ..., N-1\}; (Z_N)^*$ -- множество обратимых элементов
- Факты:  $x \in Z_N$  обратимы  $\longleftrightarrow$  gsd(x,N) = 1
  - Количество элементов в  $(Z_N)^*$  определяется

$$\varphi(N) = (p-1)(q-1) = N - p - q + 1$$

• Теорема Эйлера:

$$\forall x \in (Z_N)^* : x^{\varphi(N)} = 1$$

#### Описание схемы

- **G(**): выбрать p,q по 1024 бит. Вычислить N=pq
- Выбрать значения d и e, такие что ed=1 mod  $\varphi(N)$
- Возвращает pk=(N, e), sk = (d,N)

F(pk, x): 
$$\mathbb{Z}_N^* \to \mathbb{Z}_N^*$$
 ; RSA(x) = x<sup>e</sup> (in Z<sub>N</sub>)

$$F^{-1}(sk, y) = y^d$$
;  $y^d = RSA(x)^d = x^{ed} = x^{k\phi(N)+1} = (x^{\phi(N)})^k \cdot x = x^k$ 

## RSA допущение

For all efficient algs. A:

$$Pr[A(N,e,y) = y^{1/e}] < negligible$$

where  $p,q \stackrel{R}{\leftarrow} n$ -bit primes,  $N \leftarrow pq$ ,  $y \stackrel{R}{\leftarrow} Z_N^*$ 

#### Применение RSA

• Применение RSA в режиме кодовой книги:

- public key: (N,e) Encrypt:  $\mathbf{c} \leftarrow \mathbf{m}^{\mathbf{e}}$  (in  $Z_N$ )

– secret key: (N,d) Decrypt:  $c^d \rightarrow m$ 

- Нестойкая криптосистема!!
  - Не СС-стойкая + гомоморфные атаки.



• RSA не является системой шифрования.

## Описание простой атаки на RSA



Если k 64 бита, то с вероятностью 20% его можно разложить на множители

$$\mathbf{k} = \mathbf{k_1} \cdot \mathbf{k_2}$$
 where  $\mathbf{k_1}$ ,  $\mathbf{k_2} < 2^{34}$  (prob.  $\approx 20\%$ ) then  $\mathbf{c/k_1}^e = \mathbf{k_2}^e$  in  $Z_N$ 

Step 1: build table:  $c/1^e$ ,  $c/2^e$ ,  $c/3^e$ , ...,  $c/2^{34e}$ . time:  $2^{34}$ 

Step 2: for  $k_2 = 0,..., 2^{34}$  test if  $k_2^e$  is in table. time:  $2^{34}$