Laplace Transform Table

Properties and Rules

Function

Transform

Will learn in this session.

$$F(s) = \int_{0^{-}}^{\infty} f(t)e^{-st} dt$$

(Definition)

$$a f(t) + b g(t)$$

$$a F(s) + b G(s)$$

(Linearity)

$$e^{zt}f(t)$$

$$F(s-z)$$

(s-shift)

Will learn in a future session.

$$sF(s) - f(0^{-})$$

$$s^2F(s) - sf(0^-) - f'(0^-)$$

$$f^{(n)}(t)$$

$$s^{n}F(s) - s^{n-1}f(0^{-}) - \cdots - f^{(n-1)}(0^{-})$$

$$-F'(s)$$

$$t^n f(t)$$

$$(-1)^n F^{(n)}(s)$$

(*t*-translation)

$$u(t-a)f(t-a)$$
$$u(t-a)f(t)$$

$$e^{-as}F(s)$$

 $e^{-as}\mathcal{L}(f(t+a))$

(*t*-translation)

$$(f * g)(t) = \int_{0^{-}}^{t^{+}} f(t - \tau) g(\tau) d\tau \qquad F(s) G(s)$$

$$\int_{0^-}^{t^+} f(\tau) \, d\tau$$

$$\frac{F(s)}{s}$$

(integration rule)

Interesting, but not included in this course.

$$\frac{f(t)}{t}$$

$$\int_{s}^{\infty} F(\sigma) \, d\sigma$$

Function Table

<u>Function</u>	<u>Transform</u>	Region of convergence
Will learn in this session.		
1	1/s	Re(s) > 0
e^{at}	1/(s-a)	Re(s) > a
t	$1/s^2$	Re(s) > 0
t^n	$n!/s^{n+1}$	Re(s) > 0
$\cos(\omega t)$	$s/(s^2+\omega^2)$	Re(s) > 0
$\sin(\omega t)$	$\omega/(s^2+\omega^2)$	Re(s) > 0
$e^{zt}\cos(\omega t)$	$(s-z)/((s-z)^2+\omega^2)$	Re(s) > Re(z)
$e^{zt}\sin(\omega t)$	$\omega/((s-z)^2+\omega^2)$	Re(s) > Re(z)
$\delta(t)$	1	all s
$\delta(t-a)$	e^{-as}	all s
$\cosh(kt) = \frac{e^{kt} + e^{-kt}}{2}$	$s/(s^2-k^2)$	Re(s) > k
$\sinh(kt) = \frac{e^{kt} - e^{-kt}}{2}$	$k/(s^2-k^2)$	Re(s) > k
Will learn in a future session.		
$\frac{1}{2\omega^3}(\sin(\omega t) - \omega t \cos(\omega t))$	$\frac{1}{(s^2 + \omega^2)^2}$	Re(s) > 0
$\frac{t}{2\omega}\sin(\omega t)$	$\frac{s}{(s^2+\omega^2)^2}$	Re(s) > 0
$\frac{1}{2\omega}(\sin(\omega t) + \omega t \cos(\omega t))$	$\frac{s^2}{(s^2+\omega^2)^2}$	Re(s) > 0
u(t-a)	e^{-as}/s	Re(s) > 0
$t^n e^{at}$	$n!/(s-a)^{n+1}$	Re(s) > a
Interesting, but not included in	ı this course.	
$\frac{1}{\sqrt{\pi t}}$	$\frac{1}{\sqrt{s}}$	Re(s) > 0
t ^a	$\frac{\Gamma(a+1)}{s^{a+1}}$	Re(s) > 0

MIT OpenCourseWare http://ocw.mit.edu

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.