

TMA4240 Statistikk Høst 2017

Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

Skriftlig innlevering 4 (blokk 2)

Dette er den første skriftlige innleveringen i Blokk 2. Den er basert på det som er diskutert i forelesningene frem til og med uke 42. Spesielt er det i denne innleveringen fokus på funksjoner av stokastiske variabler og parameterestimering. Alle deloppgaver teller like mye.

Oppgave 1

Et apparat inneholder k like komponenter og fungerer bare dersom alle disse er i orden. Komponentenes levetider $T_1, T_2, \dots T_k$ er uavhengige og eksponensielt fordelte med parameter β (> 0), dvs. sannsynlighetstettheten er

$$f(t) = \begin{cases} \frac{1}{\beta} e^{-t/\beta} & \text{for } t \ge 0, \\ 0 & \text{for } t < 0. \end{cases}$$

- a) Finn den kumulative fordelingsfunksjonen for levetiden til en komponent. Hva blir $P(T_1 < 3)$ og $P(2 < T_1 < 4)$ når $\beta = 5$?
- b) La X betegne apparatets levetid. Vis at X er eksponensielt fordelt med parameter β/k . Hva blir apparatets forventede levetid når k=4 og $\beta=5$?

Bedriften har laget flere utgaver av apparatet med forskjellig antall komponenter. Apparatet fungerer bedre med mange komponenter, men har samtidig kortere forventet levetid. La X_1, X_2, \ldots, X_n være levetidene for n apparater med hhv. k_1, k_2, \ldots, k_n komponenter. To estimatorer for β basert på apparatenes levetider er foreslått,

$$\hat{\beta} = \frac{1}{n} \sum_{i=1}^{n} X_i k_i$$
 og $\tilde{\beta} = \frac{\sum_{i=1}^{n} X_i}{\sum_{i=1}^{n} k_i^{-1}}$.

- c) Finn forventningsverdi og varians til begge estimatorene.
- d) Vis at en av estimatorene i pkt. (b) er sannsynlighetsmaksimeringsestimatoren (SME) og vis at denne har varians som alltid er mindre enn eller lik variansen til den andre estimatoren.

Hint: Sett $r_i = 1/k_i$ og bruk resultatet $\frac{1}{n} \sum r_i^2 - (\frac{1}{n} \sum r_i)^2 \ge 0$.

Oppgave 2

En havneby observerer ankommende skip ved å bruke radar. Vi antar for enkelhets skyld at skipene alltid ankommer fra nord. Radaren er plassert 1 kilometer vest for havna. Det er ønskelig å oppdage ankommende skip så tidlig som mulig av praktiske og sikkerhetsmessige årsaker. Når skipet første gang fanges inn på radaren, observerer radaren vinkelen $Y \in [0, \pi/2)$,

Figur 1: Illustrasjon til oppgave 2.

som vist i Figur 1. Radaren observerer kun vinkelen Y, og ikke avstanden til skipet. Vinkelen Y varierer fra skip til skip av mange årsaker.

La den kumulative fordelingsfunksjonen til Y være

$$F(y; \beta) = P(Y \le y) = \frac{1 - \exp\{-y/\beta\}}{1 - \exp\{-\pi/(2\beta)\}}, \quad y \in [0, \pi/2),$$

der $\beta > 0$ er en parameter.

- a) Anta bare i dette punktet at $\beta = \pi/8$. Regn ut $P(Y > \frac{\pi}{4})$, $P(\frac{\pi}{4} < Y < \frac{\pi}{3})$ og $P(Y > \frac{\pi}{4} \mid Y < \frac{\pi}{3})$.
- **b**) Vis at sannsynlighetstettheten $f(y;\beta)$ til Y er

$$f(y; \beta) = \frac{1}{\beta - \beta \exp\{-\pi/(2\beta)\}} \exp\{-y/\beta\}, \quad y \in [0, \pi/2).$$

Havnebyen er mer interessert i avstanden til havna når skipet først oppdages enn vinkelen Y som radaren observerer. La X betegne denne avstanden, som vist i Figur 1.

Utled et uttrykk for sannsynlighetstettheten til X.

Det oppgis at
$$\frac{d}{dx}(\tan(x)) = \frac{1}{\cos^2(x)}$$
 og $\frac{d}{dx}(\arctan(x)) = \frac{d}{dx}(\tan^{-1}(x)) = \frac{1}{1+x^2}$.

Oppgave 3

I en Poissonprosess med parameter λ , la X_1 være tiden til første hendelse, og la X_2 være tiden mellom første og andre hendelse. Da er X_1 og X_2 uavhengige og eksponentialfordelte med forventningsverdi $1/\lambda$ (du behøver ikke vise dette). La Y betegne tiden til andre hendelse, det vil si

$$Y = X_1 + X_2.$$

Vis at Y er gammafordelt med parametre $\alpha=2$ og $\beta=1/\lambda,$ altså at sannsynlighetstettheten til Y er

$$f(y) = \begin{cases} \lambda^2 y e^{-\lambda y} & \text{for } y > 0, \\ 0 & \text{ellers.} \end{cases}$$

Fasit

- **1**. **a**) 0.4512, 0.2210 **b**) 1.25
- **2**. **a**) 0.1192, 0.0671, 0.0708