MCO60408 MICROCONTROLADORES

Aula 05 – Utilização do Botão e Display de 7 Seguimentos

SUMÁRIO

- Ruído ao pressionar o Botão;
- o Display de & Seguimentos;
- o Leituras Obrigatória e Recomendada.

EXEMPLO DO RUÍDO QUE PODE SER GERADO AO SE PRESSIONAR E SOLTAR UM BOTÃO

a) usando um resistor de pull-up e b) usando um resistor de pull-down.

Ruído real gerado ao se soltar um botão com *pull-up*.

Fluxograma do programa para ligar e apagar um LED com um botão

CIRCUITO PARA LIGAR E APAGAR UM LED COM UM BOTÃO

a) esquematico e b) montagem para o Arduino.

CÓDIGO

```
/*define a frequência do microcontrolador 16MHz (necessário
      #define F CPU 16000000UL
                                 para usar as rotinas de atraso) */
                               //definicões do componente especificado
9
      #include <avr/io.h>
     #include <util/delay.h> //biblioteca para as rotinas de
10
11
     //Definições de macros - para o trabalho com os bits de uma variável
12
     #define set bit(Y,bit x) (Y = (1 < bit x)) //ativa o bit x da variável Y (coloca em 1)
13
     #define clr bit(Y,bit x) (Y&=~(1<<bit x)) //limpa o bit x da variável Y (coloca em 0)
14
     #define cpl bit(Y,bit x) (Y^=(1<<bit x)) //troca o estado do bit x da variável Y
15
     #define tst bit(Y,bit x) (Y&(1<<bit x))
                                                    //testa o bit x da variável Y (retorna 0 ou 1)
16
17
     #define LED PD2 //LED é o substituto de PD2 na programação
18
     #define BOTAO PD7 //BOTAO é o substituto de PD7 na programação
19
20
21
     int main(void)
22
    \square {
         DDRD = 0b00000100; //configura o PORTD, PD2 saída, os demais pinos entradas
23
         PORTD= 0b11111111; /*habilita o pull-up para o botão e apaga o LED (todas as entradas com pull-ups habilitade
24
25
26
                                                 //laço infinito
         while (1)
             if(!tst bit(PIND,BOTAO))
                                               //se o botão for pressionado executa o if
28
29
                 while(!tst bit(PIND,BOTAO)); //fica preso até soltar o botão
                 delay ms(10);
                                               //atraso de 10 ms para eliminar o ruído do botão
31
                 if(tst bit(PORTD,LED))
                                               //se o LED estiver apagado, liga o LED
32
                     clr bit (PORTD, LED);
33
34
                                                 //se não apaga o LED
                 else
                     set bit(PORTD, LED);
35
36
37
```

FLUXOGRAMA PARA PISCAR UM LED ENQUANTO UM BOTÃO E MANTIDO PRESSIONADO

DISPLAY DE 7 SEGMENTOS ANODO COMUM

Fluxograma para apresentar um número hexadecimal de 0 ate F quando um botão é pressionado.

Valores para a decodificação de display de 7 segmentos

Dígito	Anodo comum		Catodo comum	
	gfedcba		gfedcba	
0	1000000b	0x40h	0111111b	0x3Fh
1	1111001b	0x79h	0000110b	0x06h
2	0100100b	0x24h	1011011b	0x5Bh
3	0110000b	0x30h	1001111b	0x4Fh
4	0011001b	0x19h	1100110b	0x66h
5	0010010b	0x12h	1101101b	0x6Dh
6	0000010b	0x02h	1111101b	0x7Dh
7	1111000b	0x78h	0000111b	0x07h
8	0000000b	0x00h	1111111b	0x7Fh
9	0011000b	0x18h	1100111b	0x67h
A	0001000b	0x08h	1110111b	0x77h
В	0000011b	0x03h	1111100b	0x7Ch
С	1000110b	0x46h	0111001b	0x39h
D	0100001b	0x21h	1011110b	0x5Eh
Е	0000110b	0x06h	1111001b	0x79h
F	0001110b	0x0Eh	1110001b	0x71h

CÓDIGO

```
#define F CPU 16000000UL //define a frequência do microcontrolador em 16MHz
9
     #include <avr/io.h> //definições do componente especificado
.0
     #include <util/delay.h> //biblioteca para o uso das rotinas de _delay_
     #include <avr/pgmspace.h> //biblioteca para poder gravar dados na memória flash
.2
.3
     //Definições de macros - para o trabalho com os bits de uma variável
4
     #define tst bit(Y,bit x) (Y&(1<<bit x)) //testa o bit x da variável Y (retorna 0 ou 1)
.5
.6
     #define DISPLAY PORTD //define um nome auxiliar para o display
.7
     #define BOTAO PBO //define PBO com o nome de BOTAO
.8
.9
     //variável gravada na memória flash
0.5
   [ ] const unsigned char Tabela[] PROGMEM = {0x40, 0x79, 0x24, 0x30, 0x19, 0x12, 0x02, 0x78,
21
                                           0x00, 0x18, 0x08, 0x03, 0x46, 0x21, 0x06, 0x0E};
22
23
     int main()
24
    \square {
25
         unsigned char valor = 0; //declara variável local
26
        DDRB = 0b11111110;
                                   //PBO como pino de entrada, os demais pinos como saída
27
       PORTB= 0x01;
                                   //habilita o pull-up do PBO
8.9
        DDRD = 0xFF;
                                   //PORTD como saída (display)
29
        PORTD= 0xFF;
                                   //desliga o display
30
         UCSROB = 0x00;
                                   //PDO e PD1 como I/O genérico, para uso no Arduino
```

CÓDIGO

```
31
          while (1)
                                //laço infinito
32
33
              if (!tst bit(PINB,BOTAO)) //se o botão for pressionado executa
34
35
                 if(valor==0x0F) //se o valor for igual a 0xF, zera o valor,
                 valor=0;
36
37
                 else
                                   //se não o incrementa
38
                 valor++;
39
                 //decodifica o valor e mostra no display, busca o valor na Tabela.
40
                 DISPLAY = pgm read byte(&Tabela[valor]);
41
                 _delay_ms(200); //atraso para incremento automático do nr. no display
42
43
44
45
```

CIRCUITO PARA ACIONAMENTO DE UM DISPLAY DE 7 SEGMENTOS ANODO COMUM

EXERCÍCIO

LEITURAS OBRIGATÓRIA E RECOMENDADA

LEITURAS OBRIGATÓRIA E RECOMENDADA

- Leitura obrigatória:
 - LIMA, VILLAÇA Cap 5;

MCO60408 MICROCONTROLADORES

Aula 04 – Programação C para AVRs