The Mathematical Pendulum

Mechanics Lab nr. 1

UNIVERSITY OF BUCHAREST Faculty of Physics

Contents

1	Purpose of the experiment				
2	Formulae	3			
3	Experimental Data and Results	rimental Data and Results 4			ılts 4
4	Graphs 4.1 Fitting graph	5 5			
5	Error analysis	6			
6	Appendix	7			

1 Purpose of the experiment

-Estimation of the gravitational acceleration constant

2 Formulae

$$T = 2\pi \sqrt{\frac{l}{g}} \tag{1}$$

From (1) we can derive:

$$g = \frac{4\pi^2 l}{T^2} \tag{2}$$

Also for the graphical representation in section 4 we shall map the length of the pendulum l to the square of the period T^2 :

$$4\pi^2 l = g \cdot T^2 \tag{3}$$

where,

g - is the gravitational constant

l - is the length of the pendulum

T - is the period of the pendulum

 $\pi \approx 3.142$

3 Experimental Data and Results

Using equation (2) we computed different values of g from the experimental data and averaged out the result.

Table 1:	Gravitational acceleration	
$l(m) \mid T(s) \mid 4\pi$	$^{2}l(m) \mid T^{2}(s^{2}) \mid g(m/s^{2}) \mid$	\overline{g}
0.759 1.748		
0.719 1.708		
0.676 1.667		
0.643 1.624		
0.618 1.578		
0.577 1.532		
0.54 1.489	$\overline{}$	
0.504 1.442		
0.468 1.391		
0.429 1.335		

4 Graphs

4.1 Fitting graph

In this section we plotted $y=4\pi^2 l$ to $x=T^2$, the slope of the linear curve being exactly g.

Example:

$$\tan \alpha = g$$
 =?

4.2 The least square rule

Example:

5 Error analysis

$$g = g_{ev} \pm \delta g \tag{4}$$

where,

 $-g_{ev}$ is the evaluated gravitational acceleration in the experiment (from Table 1, row 2);

- δg is the absolute error of g

$$g(\pi, l, T) = \frac{4\pi^2 l}{T^2}$$

Version I

$$\delta g = \left| \frac{\partial g}{\partial \pi} \right| \delta \pi + \left| \frac{\partial g}{\partial l} \right| \delta l + \left| \frac{\partial g}{\partial T} \right| \delta T$$

Version II

Calculate $\, \mathcal{E}_{g} \,$ with elementary function rules and $\, \delta_{g} = g_{ev} \times \mathcal{E}_{g} \,$