Online Convex Optimization (OCO)

¹ECE Technical University of Crete

March 31, 2023

In this setup, the algorithm attempts to minimize/maximize a function $f^t(w^t)$ that changes at each round.

In this setup, the algorithm attempts to minimize/maximize a function $f^t(w^t)$ that changes at each round.

Basic Setup

In this setup, the algorithm attempts to minimize/maximize a function $f^t(w^t)$ that changes at each round.

Basic Setup

At time t:

• algorithm must pick a $w^t \in S(\subset \mathcal{R}^k \ (w \ \text{has dimension} \ k)$

In this setup, the algorithm attempts to minimize/maximize a function $f^t(w^t)$ that changes at each round.

Basic Setup

- algorithm must pick a $w^t \in S(\subset \mathcal{R}^k \text{ (}w \text{ has dimension }k)$
- S is a convex set

In this setup, the algorithm attempts to minimize/maximize a function $f^t(w^t)$ that changes at each round.

Basic Setup

- algorithm must pick a $w^t \in S(\subset \mathcal{R}^k \text{ (}w \text{ has dimension }k\text{)}$
- S is a **convex** set (we will see shortly what this means)

In this setup, the algorithm attempts to minimize/maximize a function $f^t(w^t)$ that changes at each round.

Basic Setup

- algorithm must pick a $w^t \in S(\subset \mathcal{R}^k \text{ (}w \text{ has dimension }k\text{)}$
- S is a **convex** set (we will see shortly what this means)
- w^t can be a (any) function of past choices w^0, w^1, \dots, w^{t-1}

In this setup, the algorithm attempts to minimize/maximize a function $f^t(w^t)$ that changes at each round.

Basic Setup

- algorithm must pick a $w^t \in S(\subset \mathcal{R}^k \text{ (}w \text{ has dimension }k\text{)}$
- S is a **convex** set (we will see shortly what this means)
- w^t can be a (any) function of past choices w^0, w^1, \dots, w^{t-1} and past functions f^0, f^1, \dots, f^{t-1}

In this setup, the algorithm attempts to minimize/maximize a function $f^t(w^t)$ that changes at each round.

Basic Setup

- algorithm must pick a $w^t \in S(\subset \mathbb{R}^k \text{ (}w \text{ has dimension }k\text{)}$
- S is a **convex** set (we will see shortly what this means)
- w^t can be a (any) function of past choices w^0, w^1, \dots, w^{t-1} and past functions f^0, f^1, \dots, f^{t-1}
- f^t() is revealed

In this setup, the algorithm attempts to minimize/maximize a function $f^t(w^t)$ that changes at each round.

Basic Setup

- algorithm must pick a $w^t \in S(\subset \mathbb{R}^k \text{ (}w \text{ has dimension }k\text{)}$
- S is a **convex** set (we will see shortly what this means)
- w^t can be a (any) function of past choices w^0, w^1, \dots, w^{t-1} and past functions f^0, f^1, \dots, f^{t-1}
- $f^{t}()$ is revealed and algorithm incurs cost $f^{t}(w^{t})$

In this setup, the algorithm attempts to minimize/maximize a function $f^t(w^t)$ that changes at each round.

Basic Setup

- algorithm must pick a $w^t \in S(\subset \mathbb{R}^k \text{ (}w \text{ has dimension }k\text{)}$
- *S* is a **convex** set (we will see shortly what this means)
- w^t can be a (any) function of past choices w^0, w^1, \dots, w^{t-1} and past functions f^0, f^1, \dots, f^{t-1}
- $f^{t}()$ is revealed and algorithm incurs cost $f^{t}(w^{t})$
- Functions $f^t()$ are **convex** for all t

In this setup, the algorithm attempts to minimize/maximize a function $f^t(w^t)$ that changes at each round.

Basic Setup

- algorithm must pick a $w^t \in S(\subset \mathcal{R}^k \text{ (}w \text{ has dimension }k\text{)}$
- *S* is a **convex** set (we will see shortly what this means)
- w^t can be a (any) function of past choices w^0, w^1, \dots, w^{t-1} and past functions f^0, f^1, \dots, f^{t-1}
- $f^{t}()$ is revealed and algorithm incurs cost $f^{t}(w^{t})$
- Functions $f^{t}()$ are **convex** for all t (again, we'll define shortly)

In this setup, the algorithm attempts to minimize/maximize a function $f^t(w^t)$ that changes at each round.

Basic Setup

- algorithm must pick a $w^t \in S(\subset \mathcal{R}^k \text{ (}w \text{ has dimension }k\text{)}$
- S is a **convex** set (we will see shortly what this means)
- w^t can be a (any) function of past choices w^0, w^1, \dots, w^{t-1} and past functions f^0, f^1, \dots, f^{t-1}
- $f^{t}()$ is revealed and algorithm incurs cost $f^{t}(w^{t})$
- Functions $f^t()$ are **convex** for all t (again, we'll define shortly)
- Our goal is to minimize the regret $Regret^T = \sum_{t=1}^T f^t(w^t) \min_w \sum_{t=1}^T f^t(w)$

In this setup, the algorithm attempts to minimize/maximize a function $f^t(w^t)$ that changes at each round.

Basic Setup

- algorithm must pick a $w^t \in S(\subset \mathcal{R}^k \text{ (}w \text{ has dimension }k\text{)}$
- S is a **convex** set (we will see shortly what this means)
- w^t can be a (any) function of past choices w^0, w^1, \dots, w^{t-1} and past functions f^0, f^1, \dots, f^{t-1}
- $f^{t}()$ is revealed and algorithm incurs cost $f^{t}(w^{t})$
- Functions $f^t()$ are **convex** for all t (again, we'll define shortly)
- Our goal is to minimize the regret $Regret^T = \sum_{t=1}^T f^t(w^t) \min_w \sum_{t=1}^T f^t(w)$ (Note: w is fixed in the "oracle" case.

In this setup, the algorithm attempts to minimize/maximize a function $f^t(w^t)$ that changes at each round.

Basic Setup

- algorithm must pick a $w^t \in S(\subset \mathcal{R}^k \text{ (}w \text{ has dimension }k\text{)}$
- *S* is a **convex** set (we will see shortly what this means)
- w^t can be a (any) function of past choices w^0, w^1, \dots, w^{t-1} and past functions f^0, f^1, \dots, f^{t-1}
- $f^{t}()$ is revealed and algorithm incurs cost $f^{t}(w^{t})$
- Functions $f^t()$ are **convex** for all t (again, we'll define shortly)
- Our goal is to minimize the regret $Regret^T = \sum_{t=1}^T f^t(w^t) \min_w \sum_{t=1}^T f^t(w)$ (Note: w is fixed in the "oracle" case. BUT we are allowed to pick the best w after we've seen all f^t)

• Samples x^t, y^t are revealed sequentially

• Samples x^t, y^t are revealed sequentially $(x^t : \text{vector of "features"}, y^t : \text{true label})$

- Samples x^t, y^t are revealed sequentially (x^t : vector of "features", y^t : true label)
- Objective: Given x^t we need to find a function $\hat{y}^t = g(x^t)$ to minimize a loss function $I(y^t, \hat{y}^t)$

- Samples x^t, y^t are revealed sequentially (x^t : vector of "features", y^t : true label)
- Objective: Given x^t we need to find a function $\hat{y}^t = g(x^t)$ to minimize a loss function $I(y^t, \hat{y}^t)$ (e.g. $I(y, \hat{y}) = (y \hat{y})^2$)

- Samples x^t, y^t are revealed sequentially (x^t : vector of "features", y^t : true label)
- Objective: Given x^t we need to find a function $\hat{y}^t = g(x^t)$ to minimize a loss function $I(y^t, \hat{y}^t)$ (e.g. $I(y, \hat{y}) = (y \hat{y})^2$)
- E.g. for linear (2D) regression, $f^t(w_1^t, w_2^t) = (w_1^t \cdot x^t + w_2^t y^t)^2$

- Samples x^t, y^t are revealed sequentially (x^t : vector of "features", y^t : true label)
- Objective: Given x^t we need to find a function $\hat{y}^t = g(x^t)$ to minimize a loss function $I(y^t, \hat{y}^t)$ (e.g. $I(y, \hat{y}) = (y \hat{y})^2$)
- E.g. for linear (2D) regression, $f^t(w_1^t, w_2^t) = (w_1^t \cdot x^t + w_2^t y^t)^2$ (in this example $g(x^t) = w_1^t \cdot x^t + w_2^t$ is linear)

- Samples x^t, y^t are revealed sequentially (x^t : vector of "features", y^t : true label)
- Objective: Given x^t we need to find a function $\hat{y}^t = g(x^t)$ to minimize a loss function $I(y^t, \hat{y}^t)$ (e.g. $I(y, \hat{y}) = (y \hat{y})^2$)
- E.g. for linear (2D) regression, $f^t(w_1^t, w_2^t) = (w_1^t \cdot x^t + w_2^t y^t)^2$ (in this example $g(x^t) = w_1^t \cdot x^t + w_2^t$ is linear)
 - The convex set $S = \mathbb{R}^k$ is just the real numbers (no constraints).

- Samples x^t, y^t are revealed sequentially (x^t : vector of "features", y^t : true label)
- Objective: Given x^t we need to find a function $\hat{y}^t = g(x^t)$ to minimize a loss function $I(y^t, \hat{y}^t)$ (e.g. $I(y, \hat{y}) = (y \hat{y})^2$)
- E.g. for linear (2D) regression, $f^t(w_1^t, w_2^t) = (w_1^t \cdot x^t + w_2^t y^t)^2$ (in this example $g(x^t) = w_1^t \cdot x^t + w_2^t$ is linear)
 - The convex set $S = \mathbb{R}^k$ is just the real numbers (no constraints).
- Observe that the "oracle/optimal" performance here is just the performance of offline regression (what we'd pick if we had all samples available immediately).

Experts

• Function to be minimized: $f^t(w^t) = \sum_{i=1}^k w_i^t \cdot l_i^t$

- Function to be minimized: $f^t(w^t) = \sum_{i=1}^k w_i^t \cdot l_i^t$
- Algorithm chooses w_i^t , at every round t

- Function to be minimized: $f^t(w^t) = \sum_{i=1}^k w_i^t \cdot l_i^t$
- Algorithm chooses w_i^t , at every round t
- This is just the previous experts setup!

- Function to be minimized: $f^t(w^t) = \sum_{i=1}^k w_i^t \cdot l_i^t$
- ullet Algorithm chooses w_i^t , at every round t
- This is just the previous experts setup!
 - Each expert incurs a loss I_i^t

- Function to be minimized: $f^t(w^t) = \sum_{i=1}^k w_i^t \cdot l_i^t$
- Algorithm chooses w_i^t , at every round t
- This is just the previous experts setup!
 - Each expert incurs a loss I_i^t
 - Multiplicative Weights (or Hedge) gives probabilities of picking each expert:

- Function to be minimized: $f^t(w^t) = \sum_{i=1}^k w_i^t \cdot l_i^t$
- Algorithm chooses w_i^t , at every round t
- This is just the previous experts setup!
 - Each expert incurs a loss I^t_i
 - Multiplicative Weights (or Hedge) gives probabilities of picking each expert: $\Rightarrow w_i^t = p_i^t$ (from experts lecture)

- Function to be minimized: $f^t(w^t) = \sum_{i=1}^k w_i^t \cdot l_i^t$
- Algorithm chooses w_i^t , at every round t
- This is just the previous experts setup!
 - Each expert incurs a loss l_i^t
 - Multiplicative Weights (or Hedge) gives probabilities of picking each expert: $\Rightarrow w_i^t = p_i^t$ (from experts lecture)
- ullet The convex set now is $S=\{w_i^t\in[0,1],\sum_iw_i=1\}$ (aka. "simplex")

Experts

- Function to be minimized: $f^t(w^t) = \sum_{i=1}^k w_i^t \cdot l_i^t$
- Algorithm chooses w_i^t , at every round t
- This is just the previous experts setup!
 - Each expert incurs a loss I^t_i
 - Multiplicative Weights (or Hedge) gives probabilities of picking each expert: $\Rightarrow w_i^t = p_i^t$ (from experts lecture)
- ullet The convex set now is $S=\{w_i^t\in[0,1],\sum_iw_i=1\}$ (aka. "simplex")

Other Applications: Online Caching Problem (see 1st lecture for more)

• On day/round t: cache video i with probability w_i^t

Experts

- Function to be minimized: $f^t(w^t) = \sum_{i=1}^k w_i^t \cdot l_i^t$
- Algorithm chooses w_i^t , at every round t
- This is just the previous experts setup!
 - Each expert incurs a loss I_i^t
 - Multiplicative Weights (or Hedge) gives probabilities of picking each expert: $\Rightarrow w_i^t = p_i^t$ (from experts lecture)
- ullet The convex set now is $S=\{w_i^t\in[0,1],\sum_iw_i=1\}$ (aka. "simplex")

- On day/round t: cache video i with probability w_i^t
- The popularity x_i^t of video i that day affects the average cache hit ratio that day

Experts

- Function to be minimized: $f^t(w^t) = \sum_{i=1}^k w_i^t \cdot l_i^t$
- Algorithm chooses w_i^t , at every round t
- This is just the previous experts setup!
 - Each expert incurs a loss I_i^t
 - Multiplicative Weights (or Hedge) gives probabilities of picking each expert: $\Rightarrow w_i^t = p_i^t$ (from experts lecture)
- ullet The convex set now is $S=\{w_i^t\in[0,1],\sum_iw_i=1\}$ (aka. "simplex")

- On day/round t: cache video i with probability w_i^t
- The popularity x_i^t of video i that day affects the average cache hit ratio that day $r_i^t = \sum_i x_i^t \cdot w_i^t$

Experts

- Function to be minimized: $f^t(w^t) = \sum_{i=1}^k w_i^t \cdot l_i^t$
- Algorithm chooses w_i^t , at every round t
- This is just the previous experts setup!
 - Each expert incurs a loss I_i^t
 - Multiplicative Weights (or Hedge) gives probabilities of picking each expert: $\Rightarrow w_i^t = p_i^t$ (from experts lecture)
- ullet The convex set now is $S=\{w_i^t\in[0,1],\sum_iw_i=1\}$ (aka. "simplex")

- On day/round t: cache video i with probability w_i^t
- The popularity x_i^t of video i that day affects the average *cache hit ratio* that day $r_i^t = \sum_i x_i^t \cdot w_i^t$
- Video i has size s_i Bytes and cache fits a total of C Bytes

Experts

- Function to be minimized: $f^t(w^t) = \sum_{i=1}^k w_i^t \cdot l_i^t$
- Algorithm chooses w_i^t , at every round t
- This is just the previous experts setup!
 - Each expert incurs a loss I_i^t
 - Multiplicative Weights (or Hedge) gives probabilities of picking each expert: $\Rightarrow w_i^t = p_i^t$ (from experts lecture)
- ullet The convex set now is $S=\{w_i^t\in[0,1],\sum_iw_i=1\}$ (aka. "simplex")

- On day/round t: cache video i with probability w_i^t
- The popularity x_i^t of video i that day affects the average *cache hit* ratio that day $r_i^t = \sum_i x_i^t \cdot w_i^t$
- Video *i* has size s_i Bytes and cache fits a total of *C* Bytes $\Rightarrow \sum_i w_i^t \cdot s_i \leq C$.

Experts

- Function to be minimized: $f^t(w^t) = \sum_{i=1}^k w_i^t \cdot l_i^t$
- Algorithm chooses w_i^t , at every round t
- This is just the previous experts setup!
 - Each expert incurs a loss I^t_i
 - Multiplicative Weights (or Hedge) gives probabilities of picking each expert: $\Rightarrow w_i^t = p_i^t$ (from experts lecture)
- ullet The convex set now is $S=\{w_i^t\in[0,1],\sum_iw_i=1\}$ (aka. "simplex")

- On day/round t: cache video i with probability w_i^t
- The popularity x_i^t of video i that day affects the average cache hit ratio that day $r_i^t = \sum_i x_i^t \cdot w_i^t$
- Video *i* has size s_i Bytes and cache fits a total of *C* Bytes $\Rightarrow \sum_i w_i^t \cdot s_i \leq C$.
- The above defines our (convex) set S (together with $w_i \in [0,1]$)

Reminder: Convex Optimization Setup

Reminder: Convex Optimization Setup

• minimize f(x)

Reminder: Convex Optimization Setup

- minimize f(x)
- x: control variables, f(x): our (convex) objective, S: a set of (convex) constraints for x

Reminder: Convex Optimization Setup

- minimize f(x)
- x: control variables, f(x): our (convex) objective, S: a set of (convex) constraints for x

Reminder: Convex Optimization Setup

- minimize f(x)
- x: control variables, f(x): our (convex) objective, S: a set of (convex) constraints for x

Convex Sets: What is it?

• Def.: S is convex iff, $\forall x, y \in S, t \in [0,1] : tx + (1-t)y \in S$

Reminder: Convex Optimization Setup

- minimize f(x)
- x: control variables, f(x): our (convex) objective, S: a set of (convex) constraints for x

- Def.: S is convex iff, $\forall x, y \in S, t \in [0,1] : tx + (1-t)y \in S$
- Examples with two variables:

Reminder: Convex Optimization Setup

- minimize f(x)
- x: control variables, f(x): our (convex) objective, S: a set of (convex) constraints for x

- Def.: S is convex iff, $\forall x, y \in S, t \in [0,1] : tx + (1-t)y \in S$
- Examples with two variables: $\{x_1, x_2 \ge 0\},\$

Reminder: Convex Optimization Setup

- minimize f(x)
- x: control variables, f(x): our (convex) objective, S: a set of (convex) constraints for x

- Def.: S is convex iff, $\forall x, y \in S, t \in [0,1] : tx + (1-t)y \in S$
- Examples with two variables:

$$\{x_1, x_2 \ge 0\}, \{x_1 + x_2 \le 1\},$$

Reminder: Convex Optimization Setup

- minimize f(x)
- x: control variables, f(x): our (convex) objective, S: a set of (convex) constraints for x

- Def.: S is convex iff, $\forall x, y \in S, t \in [0,1]$: $tx + (1-t)y \in S$
- Examples with two variables:

$${x_1, x_2 \ge 0}, {x_1 + x_2 \le 1}, {x_1^2 + x_2^2 \le 3}$$

Reminder: Convex Optimization Setup

- minimize f(x)
- x: control variables, f(x): our (convex) objective, S: a set of (convex) constraints for x

Convex Sets: What is it?

- Def.: S is convex iff, $\forall x, y \in S, t \in [0,1]$: $tx + (1-t)y \in S$
- Examples with two variables:

$$\{x_1, x_2 \ge 0\}, \{x_1 + x_2 \le 1\}, \{x_1^2 + x_2^2 \le 3\}$$

Convex Function: What is it?

Reminder: Convex Optimization Setup

- minimize f(x)
- x: control variables, f(x): our (convex) objective, S: a set of (convex) constraints for x

Convex Sets: What is it?

- Def.: S is convex iff, $\forall x, y \in S, t \in [0,1]$: $tx + (1-t)y \in S$
- Examples with two variables:

$$\{x_1, x_2 \ge 0\}, \{x_1 + x_2 \le 1\}, \{x_1^2 + x_2^2 \le 3\}$$

Convex Function: What is it?

• Def.: f is convex in S iff, $\forall x, y \in S : f(y) \ge f(x) + \nabla f(x)^T \cdot (y - x)$

Reminder: Convex Optimization Setup

- minimize f(x)
- x: control variables, f(x): our (convex) objective, S: a set of (convex) constraints for x

Convex Sets: What is it?

- Def.: S is convex iff, $\forall x, y \in S, t \in [0,1] : tx + (1-t)y \in S$
- Examples with two variables:

$$\{x_1, x_2 \ge 0\}, \{x_1 + x_2 \le 1\}, \{x_1^2 + x_2^2 \le 3\}$$

Convex Function: What is it?

• Def.: f is convex in S iff, $\forall x, y \in S : f(y) \ge f(x) + \nabla f(x)^T \cdot (y - x)$ (note: all are vectors)

Reminder: Convex Optimization Setup

- minimize f(x)
- x: control variables, f(x): our (convex) objective, S: a set of (convex) constraints for x

Convex Sets: What is it?

- Def.: S is convex iff, $\forall x, y \in S, t \in [0,1]$: $tx + (1-t)y \in S$
- Examples with two variables:

$$\{x_1, x_2 \ge 0\}, \{x_1 + x_2 \le 1\}, \{x_1^2 + x_2^2 \le 3\}$$

Convex Function: What is it?

- Def.: f is convex in S iff, $\forall x, y \in S : f(y) \ge f(x) + \nabla f(x)^T \cdot (y x)$ (note: all are vectors)
- Examples with two variables:

Reminder: Convex Optimization Setup

- minimize f(x)
- x: control variables, f(x): our (convex) objective, S: a set of (convex) constraints for x

Convex Sets: What is it?

- Def.: *S* is convex iff, $\forall x, y \in S, t \in [0, 1] : tx + (1 t)y \in S$
- Examples with two variables:

$${x_1, x_2 \ge 0}, {x_1 + x_2 \le 1}, {x_1^2 + x_2^2 \le 3}$$

Convex Function: What is it?

- Def.: f is convex in S iff, $\forall x, y \in S : f(y) \ge f(x) + \nabla f(x)^T \cdot (y x)$ (note: all are vectors)
- Examples with two variables: $f(x) = 2x_1 + 3x_2$.

Reminder: Convex Optimization Setup

- minimize f(x)
- x: control variables, f(x): our (convex) objective, S: a set of (convex) constraints for x

Convex Sets: What is it?

- Def.: S is convex iff, $\forall x, y \in S, t \in [0,1]$: $tx + (1-t)y \in S$
- Examples with two variables:

$$\{x_1, x_2 \ge 0\}, \{x_1 + x_2 \le 1\}, \{x_1^2 + x_2^2 \le 3\}$$

Convex Function: What is it?

- Def.: f is convex in S iff, $\forall x, y \in S : f(y) \ge f(x) + \nabla f(x)^T \cdot (y x)$ (note: all are vectors)
- Examples with two variables: $f(x) = 2x_1 + 3x_2, f(x) = x_1^2 + 3x_2^2 + xy + 5,$

4 D > 4 B > 4 E > 4 E > E

Reminder: Convex Optimization Setup

- minimize f(x)
- x: control variables, f(x): our (convex) objective, S: a set of (convex) constraints for x

Convex Sets: What is it?

- Def.: S is convex iff, $\forall x, y \in S, t \in [0,1]$: $tx + (1-t)y \in S$
- Examples with two variables:

$$\{x_1, x_2 \ge 0\}, \{x_1 + x_2 \le 1\}, \{x_1^2 + x_2^2 \le 3\}$$

Convex Function: What is it?

- Def.: f is convex in S iff, $\forall x, y \in S : f(y) \ge f(x) + \nabla f(x)^T \cdot (y x)$ (note: all are vectors)
- Examples with two variables:

$$f(x) = 2x_1 + 3x_2, f(x) = x_1^2 + 3x_2^2 + xy + 5, f(x) = 3e^{x_1^2 + x_2^2} + e^{-2x_1}$$

Reminder: Convex Optimization Setup

- minimize f(x)
- x: control variables, f(x): our (convex) objective, S: a set of (convex) constraints for x

Convex Sets: What is it?

- Def.: S is convex iff, $\forall x, y \in S, t \in [0,1]$: $tx + (1-t)y \in S$
- Examples with two variables:

$$\{x_1, x_2 \ge 0\}, \{x_1 + x_2 \le 1\}, \{x_1^2 + x_2^2 \le 3\}$$

Convex Function: What is it?

- Def.: f is convex in S iff, $\forall x, y \in S : f(y) \ge f(x) + \nabla f(x)^T \cdot (y x)$ (note: all are vectors)
- Examples with two variables:

$$f(x) = 2x_1 + 3x_2, f(x) = x_1^2 + 3x_2^2 + xy + 5, f(x) = 3e^{x_1^2 + x_2^2} + e^{-2x_1}$$

• Consider the toy problem: minimize $2(x_1-3)^2+(x_2-2)^2$

• Consider the toy problem: minimize $2(x_1-3)^2+(x_2-2)^2$

Gradient Descent Algorithm

• Start with (any) initial point $x^{(0)}$, e.g. $(x_1^{(0)}, x_2^{(0)}) = (10, 10)$

• Consider the toy problem: minimize $2(x_1-3)^2+(x_2-2)^2$

- Start with (any) initial point $x^{(0)}$, e.g. $(x_1^{(0)}, x_2^{(0)}) = (10, 10)$
- repeat: $x^{(t)} = x^{(t-1)} \alpha_t \nabla f(x^{(t-1)})$

• Consider the toy problem: minimize $2(x_1-3)^2+(x_2-2)^2$

- Start with (any) initial point $x^{(0)}$, e.g. $(x_1^{(0)}, x_2^{(0)}) = (10, 10)$
- repeat: $x^{(t)} = x^{(t-1)} \alpha_t \nabla f(x^{(t-1)})$ until convergence

• Consider the toy problem: minimize $2(x_1-3)^2+(x_2-2)^2$

- Start with (any) initial point $x^{(0)}$, e.g. $(x_1^{(0)}, x_2^{(0)}) = (10, 10)$
- repeat: $x^{(t)} = x^{(t-1)} \alpha_t \nabla f(x^{(t-1)})$ until convergence
- α_t is the **learning rate** and must be chosen carefully!

• Consider the toy problem: minimize $2(x_1-3)^2+(x_2-2)^2$

- Start with (any) initial point $x^{(0)}$, e.g. $(x_1^{(0)}, x_2^{(0)}) = (10, 10)$
- repeat: $x^{(t)} = x^{(t-1)} \alpha_t \nabla f(x^{(t-1)})$ until convergence
- α_t is the **learning rate** and must be chosen carefully! (again in RL)

• Consider the toy problem: minimize $2(x_1-3)^2+(x_2-2)^2$

Gradient Descent Algorithm

- Start with (any) initial point $x^{(0)}$, e.g. $(x_1^{(0)}, x_2^{(0)}) = (10, 10)$
- repeat: $x^{(t)} = x^{(t-1)} \alpha_t \nabla f(x^{(t-1)})$ until convergence
- ullet α_t is the **learning rate** and must be chosen carefully! (again in RL)

For the above example:

• for our example (let $\alpha_t = 1$), the update is: $(x_1^{(t)}, x_2^{(t)}) = (x_1^{(t-1)}, x_2^{(t-1)}) - \alpha_t (4(x_1^{(t-1)} - 3), 2(x_2^{(t-1)} - 2))$

• Consider the toy problem: minimize $2(x_1-3)^2+(x_2-2)^2$

Gradient Descent Algorithm

- Start with (any) initial point $x^{(0)}$, e.g. $(x_1^{(0)}, x_2^{(0)}) = (10, 10)$
- repeat: $x^{(t)} = x^{(t-1)} \alpha_t \nabla f(x^{(t-1)})$ until convergence
- α_t is the **learning rate** and must be chosen carefully! (again in RL)

For the above example:

• for our example (let $\alpha_t = 1$), the update is: $(x_1^{(t)}, x_2^{(t)}) = (x_1^{(t-1)}, x_2^{(t-1)}) - \alpha_t (4(x_1^{(t-1)} - 3), 2(x_2^{(t-1)} - 2))$

$$(x_1^{(t)}, x_2^{(t)}) = (x_1^{(t-1)}, x_2^{(t-1)}) - \alpha_t(4(x_1^{(t-1)} - 3), 2(x_2^{(t-1)} - 2))$$

• $(x_1^{(1)}, x_2^{(1)}) = (10, 10) - 0.25(4(10 - 3), 2(10 - 2))$

• Consider the toy problem: minimize $2(x_1-3)^2+(x_2-2)^2$

Gradient Descent Algorithm

- Start with (any) initial point $x^{(0)}$, e.g. $(x_1^{(0)}, x_2^{(0)}) = (10, 10)$
- repeat: $x^{(t)} = x^{(t-1)} \alpha_t \nabla f(x^{(t-1)})$ until convergence
- α_t is the **learning rate** and must be chosen carefully! (again in RL)

For the above example:

• for our example (let $\alpha_t = 1$), the update is:

$$(x_1^{(t)}, x_2^{(t)}) = (x_1^{(t-1)}, x_2^{(t-1)}) - \alpha_t (4(x_1^{(t-1)} - 3), 2(x_2^{(t-1)} - 2))$$

• $(x_1^{(1)}, x_2^{(1)}) = (10, 10) - 0.25(4(10 - 3), 2(10 - 2)) = (3, 6)$

• Consider the toy problem: minimize $2(x_1-3)^2+(x_2-2)^2$

Gradient Descent Algorithm

- Start with (any) initial point $x^{(0)}$, e.g. $(x_1^{(0)}, x_2^{(0)}) = (10, 10)$
- repeat: $x^{(t)} = x^{(t-1)} \alpha_t \nabla f(x^{(t-1)})$ until convergence
- α_t is the **learning rate** and must be chosen carefully! (again in RL)

For the above example:

$$(x_1^{(t)}, x_2^{(t)}) = (x_1^{(t-1)}, x_2^{(t-1)}) - \alpha_t (4(x_1^{(t-1)} - 3), 2(x_2^{(t-1)} - 2))$$

•
$$(x_1^{(1)}, x_2^{(1)}) = (10, 10) - 0.25(4(10 - 3), 2(10 - 2)) = (3, 6)$$

•
$$(x_1^{(2)}, x_2^{(2)}) = (3, 4)$$

• Consider the toy problem: minimize $2(x_1-3)^2+(x_2-2)^2$

Gradient Descent Algorithm

- Start with (any) initial point $x^{(0)}$, e.g. $(x_1^{(0)}, x_2^{(0)}) = (10, 10)$
- repeat: $x^{(t)} = x^{(t-1)} \alpha_t \nabla f(x^{(t-1)})$ until convergence
- α_t is the **learning rate** and must be chosen carefully! (again in RL)

For the above example:

$$(x_1^{(t)}, x_2^{(t)}) = (x_1^{(t-1)}, x_2^{(t-1)}) - \alpha_t (4(x_1^{(t-1)} - 3), 2(x_2^{(t-1)} - 2))$$

•
$$(x_1^{(1)}, x_2^{(1)}) = (10, 10) - 0.25(4(10 - 3), 2(10 - 2)) = (3, 6)$$

•
$$(x_1^{(2)}, x_2^{(2)}) = (3, 4)$$

•
$$(x_1^{(3)}, x_2^{(3)}) = (3,3)$$

• Consider the toy problem: minimize $2(x_1-3)^2+(x_2-2)^2$

Gradient Descent Algorithm

- Start with (any) initial point $x^{(0)}$, e.g. $(x_1^{(0)}, x_2^{(0)}) = (10, 10)$
- repeat: $x^{(t)} = x^{(t-1)} \alpha_t \nabla f(x^{(t-1)})$ until convergence
- α_t is the **learning rate** and must be chosen carefully! (again in RL)

For the above example:

$$(x_1^{(t)}, x_2^{(t)}) = (x_1^{(t-1)}, x_2^{(t-1)}) - \alpha_t (4(x_1^{(t-1)} - 3), 2(x_2^{(t-1)} - 2))$$

•
$$(x_1^{(1)}, x_2^{(1)}) = (10, 10) - 0.25(4(10 - 3), 2(10 - 2)) = (3, 6)$$

•
$$(x_1^{(2)}, x_2^{(2)}) = (3, 4)$$

•
$$(x_1^{(3)}, x_2^{(3)}) = (3,3) \rightarrow (x_1^{(4)}, x_2^{(4)}) = (3,2.5) \rightarrow \dots$$

• Consider the toy problem: minimize $2(x_1-3)^2+(x_2-2)^2$

Gradient Descent Algorithm

- Start with (any) initial point $x^{(0)}$, e.g. $(x_1^{(0)}, x_2^{(0)}) = (10, 10)$
- repeat: $x^{(t)} = x^{(t-1)} \alpha_t \nabla f(x^{(t-1)})$ until convergence
- α_t is the **learning rate** and must be chosen carefully! (again in RL)

For the above example:

$$(x_1^{(t)}, x_2^{(t)}) = (x_1^{(t-1)}, x_2^{(t-1)}) - \alpha_t (4(x_1^{(t-1)} - 3), 2(x_2^{(t-1)} - 2))$$

•
$$(x_1^{(1)}, x_2^{(1)}) = (10, 10) - 0.25(4(10 - 3), 2(10 - 2)) = (3, 6)$$

- $(x_1^{(2)}, x_2^{(2)}) = (3, 4)$
- $(x_1^{(3)}, x_2^{(3)}) = (3,3) \rightarrow (x_1^{(4)}, x_2^{(4)}) = (3,2.5) \rightarrow \dots$
- What do you observe?

Theorem

If f(x) convex and differentiable, and L is its maximum eigenvalue, gradient descent with $\alpha_t = 1/L$ always converges to the global minimum of f.

Theorem

If f(x) convex and differentiable, and L is its maximum eigenvalue, gradient descent with $\alpha_t = 1/L$ always converges to the global minimum of f.

• How fast?

Theorem

If f(x) convex and differentiable, and L is its maximum eigenvalue, gradient descent with $\alpha_t = 1/L$ always converges to the global minimum of f.

• How fast? Depends on other properties of f(x)

Theorem

If f(x) convex and differentiable, and L is its maximum eigenvalue, gradient descent with $\alpha_t = 1/L$ always converges to the global minimum of f.

- How fast? Depends on other properties of f(x)
- But what if x is constrained in S?

Theorem

If f(x) convex and differentiable, and L is its maximum eigenvalue, gradient descent with $\alpha_t = 1/L$ always converges to the global minimum of f.

- How fast? Depends on other properties of f(x)
- But what if x is constrained in S?

Projected Gradient Descent

• Start with (any) initial point $x^{(0)}$, e.g. $(x_1^{(0)}, x_2^{(0)}) = (10, 10)$

Theorem

If f(x) convex and differentiable, and L is its maximum eigenvalue, gradient descent with $\alpha_t = 1/L$ always converges to the global minimum of f.

- How fast? Depends on other properties of f(x)
- But what if x is constrained in S?

Projected Gradient Descent

- Start with (any) initial point $x^{(0)}$, e.g. $(x_1^{(0)}, x_2^{(0)}) = (10, 10)$
- repeat until convergence
 - $y^{(t)} = x^{(t-1)} \alpha_t \nabla f(x^{(t-1)})$

Convex Optimization (cnt'd)

Theorem

If f(x) convex and differentiable, and L is its maximum eigenvalue, gradient descent with $\alpha_t = 1/L$ always converges to the global minimum of f.

- How fast? Depends on other properties of f(x)
- But what if x is constrained in S?

Projected Gradient Descent

- Start with (any) initial point $x^{(0)}$, e.g. $(x_1^{(0)}, x_2^{(0)}) = (10, 10)$
- repeat until convergence
 - $y^{(t)} = x^{(t-1)} \alpha_t \nabla f(x^{(t-1)})$
 - $x^{(t)} = \underset{x \in S}{\operatorname{argmin}} \|x y^{(t)}\|_2$

Convex Optimization (cnt'd)

Theorem

If f(x) convex and differentiable, and L is its maximum eigenvalue, gradient descent with $\alpha_t = 1/L$ always converges to the global minimum of f.

- How fast? Depends on other properties of f(x)
- But what if *x* is constrained in *S*?

Projected Gradient Descent

- Start with (any) initial point $x^{(0)}$, e.g. $(x_1^{(0)}, x_2^{(0)}) = (10, 10)$
- repeat until convergence
 - $y^{(t)} = x^{(t-1)} \alpha_t \nabla f(x^{(t-1)})$
 - $x^{(t)} = \underset{x \in S}{\operatorname{argmin}} \|x y^{(t)}\|_2$ (project back in S)

• Consider the problem: minimize f(x), subject to $g(x) \le 0$

- Consider the problem: minimize f(x), subject to $g(x) \le 0$
- Projection to $S = \{g(x) \le 0\}$ can be very tough!

- Consider the problem: minimize f(x), subject to $g(x) \le 0$
- Projection to $S = \{g(x) \le 0\}$ can be very tough! (remember: projection is a quadratic minimization problem)

Lagrange Dual

• Lagrangian $L(x, \lambda) = f(x) + \lambda g(x)$

- Consider the problem: minimize f(x), subject to $g(x) \le 0$
- Projection to $S = \{g(x) \le 0\}$ can be very tough! (remember: projection is a quadratic minimization problem)

Lagrange Dual

- Lagrangian $L(x, \lambda) = f(x) + \lambda g(x)$
- Note: $L(x, \lambda) \le f(x)$ for all feasible $x \in S$

- Consider the problem: minimize f(x), subject to $g(x) \le 0$
- Projection to $S = \{g(x) \le 0\}$ can be very tough! (remember: projection is a quadratic minimization problem)

Lagrange Dual

- Lagrangian $L(x, \lambda) = f(x) + \lambda g(x)$
- Note: $L(x, \lambda) \le f(x)$ for all feasible $x \in S$
- Let $G(\lambda) = min_{x}L(x,\lambda)$

- Consider the problem: minimize f(x), subject to $g(x) \le 0$
- Projection to $S = \{g(x) \le 0\}$ can be very tough! (remember: projection is a quadratic minimization problem)

Lagrange Dual

- Lagrangian $L(x, \lambda) = f(x) + \lambda g(x)$
- Note: $L(x, \lambda) \le f(x)$ for all feasible $x \in S$
- Let $G(\lambda) = min_{x}L(x,\lambda)$
- If f(x), g(x) are convex: $\max_{\lambda \ge 0} G(\lambda) = \min_{x:g(x) \le 0} f(x)$

- Consider the problem: minimize f(x), subject to $g(x) \le 0$
- Projection to $S = \{g(x) \le 0\}$ can be very tough! (remember: projection is a quadratic minimization problem)

Lagrange Dual

- Lagrangian $L(x, \lambda) = f(x) + \lambda g(x)$
- Note: $L(x, \lambda) \le f(x)$ for all feasible $x \in S$
- Let $G(\lambda) = min_{x}L(x,\lambda)$
- If f(x), g(x) are convex: $\max_{\lambda \ge 0} G(\lambda) = \min_{x:g(x) \le 0} f(x)$

We can choose to solve the dual problem $\max_{\lambda \geq 0} G(\lambda)$ instead. Why?

- Consider the problem: minimize f(x), subject to $g(x) \le 0$
- Projection to $S = \{g(x) \le 0\}$ can be very tough! (remember: projection is a quadratic minimization problem)

Lagrange Dual

- Lagrangian $L(x, \lambda) = f(x) + \lambda g(x)$
- Note: $L(x, \lambda) \le f(x)$ for all feasible $x \in S$
- Let $G(\lambda) = min_{x}L(x,\lambda)$
- If f(x), g(x) are convex: $\max_{\lambda \ge 0} G(\lambda) = \min_{x:g(x) \le 0} f(x)$

We can choose to solve the dual problem $\max_{\lambda \geq 0} G(\lambda)$ instead. Why?

• Dual might be (much) easier to optimize than original ("Primal")

- Consider the problem: minimize f(x), subject to $g(x) \le 0$
- Projection to $S = \{g(x) \le 0\}$ can be very tough! (remember: projection is a quadratic minimization problem)

Lagrange Dual

- Lagrangian $L(x, \lambda) = f(x) + \lambda g(x)$
- Note: $L(x, \lambda) \le f(x)$ for all feasible $x \in S$
- Let $G(\lambda) = min_{x}L(x,\lambda)$
- If f(x), g(x) are convex: $\max_{\lambda \ge 0} G(\lambda) = \min_{x:g(x) \le 0} f(x)$

We can choose to solve the dual problem $\max_{\lambda \geq 0} G(\lambda)$ instead. Why?

- Dual might be (much) easier to optimize than original ("Primal")
- Projection is *definitely* easier!

Most traditional ML problems (regression, SVM, etc.) are convex optimization problems

- Most traditional ML problems (regression, SVM, etc.) are convex optimization problems
- Even modern ML problems (e.g. Deep Neural Network training) can be treated with convex methods like the above

- Most traditional ML problems (regression, SVM, etc.) are convex optimization problems
- Even modern ML problems (e.g. Deep Neural Network training) can be treated with convex methods like the above → but convergence is to local optimal (at best)

- Most traditional ML problems (regression, SVM, etc.) are convex optimization problems
- Even modern ML problems (e.g. Deep Neural Network training) can be treated with convex methods like the above → but convergence is to local optimal (at best)
- BUT, the "learning" in machine learning introduces some extra complications.

ML Concern 1: Full Gradient is Expensive

Assume we fit a regression model to a large dataset:

- Most traditional ML problems (regression, SVM, etc.) are convex optimization problems
- Even modern ML problems (e.g. Deep Neural Network training) can be treated with convex methods like the above → but convergence is to local optimal (at best)
- BUT, the "learning" in machine learning introduces some extra complications.

ML Concern 1: Full Gradient is Expensive

• Assume we fit a regression model to a large dataset: $\min_{w} \sum_{i=1}^{N} f_i(x_i|w) =$

- Most traditional ML problems (regression, SVM, etc.) are convex optimization problems
- Even modern ML problems (e.g. Deep Neural Network training) can be treated with convex methods like the above → but convergence is to local optimal (at best)
- BUT, the "learning" in machine learning introduces some extra complications.

- Assume we fit a regression model to a large dataset: $\min_{w} \sum_{i=1}^{N} f_i(x_i|w) = \sum_{i=1}^{N} (h(x_i|w) y_i)^2$
- i.e. we minimize the prediction error of our model $(h(x_i|w))$ and the true value y_i ,

- Most traditional ML problems (regression, SVM, etc.) are convex optimization problems
- Even modern ML problems (e.g. Deep Neural Network training) can be treated with convex methods like the above → but convergence is to local optimal (at best)
- BUT, the "learning" in machine learning introduces some extra complications.

- Assume we fit a regression model to a large dataset: $\min_{w} \sum_{i=1}^{N} f_i(x_i|w) = \sum_{i=1}^{N} (h(x_i|w) y_i)^2$
- i.e. we minimize the prediction error of our model $(h(x_i|w))$ and the true value y_i , for all N samples

- Most traditional ML problems (regression, SVM, etc.) are convex optimization problems
- Even modern ML problems (e.g. Deep Neural Network training) can be treated with convex methods like the above → but convergence is to local optimal (at best)
- BUT, the "learning" in machine learning introduces some extra complications.

- Assume we fit a regression model to a large dataset: $\min_{w} \sum_{i=1}^{N} f_i(x_i|w) = \sum_{i=1}^{N} (h(x_i|w) y_i)^2$
- i.e. we minimize the prediction error of our model $(h(x_i|w))$ and the true value y_i , for all N samples
- $\nabla_w f(x)$: taking a gradient of our objective means

- Most traditional ML problems (regression, SVM, etc.) are convex optimization problems
- Even modern ML problems (e.g. Deep Neural Network training) can be treated with convex methods like the above → but convergence is to local optimal (at best)
- BUT, the "learning" in machine learning introduces some extra complications.

- Assume we fit a regression model to a large dataset: $\min_{w} \sum_{i=1}^{N} f_i(x_i|w) = \sum_{i=1}^{N} (h(x_i|w) y_i)^2$
- i.e. we minimize the prediction error of our model $(h(x_i|w))$ and the true value y_i , for all N samples
- $\nabla_w f(x)$: taking a gradient of our objective means $\sum_{i=1}^N \nabla_w (h(x_i|w) y_i)^2$:

- Most traditional ML problems (regression, SVM, etc.) are convex optimization problems
- ullet Even modern ML problems (e.g. Deep Neural Network training) can be treated with convex methods like the above ullet but convergence is to **local optimal** (at best)
- BUT, the "learning" in machine learning introduces some extra complications.

- Assume we fit a regression model to a large dataset: $\min_{w} \sum_{i=1}^{N} f_i(x_i|w) = \sum_{i=1}^{N} (h(x_i|w) y_i)^2$
- i.e. we minimize the prediction error of our model $(h(x_i|w))$ and the true value y_i , for all N samples
- $\nabla_w f(x)$: taking a gradient of our objective means $\sum_{i=1}^N \nabla_w (h(x_i|w) y_i)^2$: taking a gradient of the error for every sample

- Most traditional ML problems (regression, SVM, etc.) are convex optimization problems
- Even modern ML problems (e.g. Deep Neural Network training) can be treated with convex methods like the above → but convergence is to local optimal (at best)
- BUT, the "learning" in machine learning introduces some extra complications.

- Assume we fit a regression model to a large dataset: $\min_{w} \sum_{i=1}^{N} f_i(x_i|w) = \sum_{i=1}^{N} (h(x_i|w) y_i)^2$
- i.e. we minimize the prediction error of our model $(h(x_i|w))$ and the true value y_i , for all N samples
- $\nabla_w f(x)$: taking a gradient of our objective means $\sum_{i=1}^N \nabla_w (h(x_i|w) y_i)^2$: taking a gradient of the error for every sample \rightarrow possibly millions of gradients to calculate (per step)!

Assume a problem like this: $\min_{w} \sum_{i=1}^{N} f_i(x_i|w)$

Assume a problem like this: $\min_{w} \sum_{i=1}^{N} f_i(x_i|w)$ Observe that we denote our control variable as w here (not x).

Assume a problem like this: $\min_{w} \sum_{i=1}^{N} f_i(x_i|w)$ Observe that we denote our control variable as w here (not x).

Stochastic Gradient Descent (SGD)

- Start with (any) initial point $w^{(0)}$
- Repeat until convergence:

Assume a problem like this: $\min_{w} \sum_{i=1}^{N} f_i(x_i|w)$ Observe that we denote our control variable as w here (not x).

Stochastic Gradient Descent (SGD)

- Start with (any) initial point $w^{(0)}$
- Repeat until convergence:
 - pick index i_t uniformly in $\{1, N\}$

Assume a problem like this: $\min_{w} \sum_{i=1}^{N} f_i(x_i|w)$ Observe that we denote our control variable as w here (not x).

Stochastic Gradient Descent (SGD)

- Start with (any) initial point $w^{(0)}$
- Repeat until convergence:

 - pick index i_t uniformly in $\{1, N\}$ $w^{(t)} = w^{(t-1)} \alpha_t \nabla_w f_{i_t}(x_{i_t} | w^{(t-1)})$

Assume a problem like this: $\min_{w} \sum_{i=1}^{N} f_i(x_i|w)$ Observe that we denote our control variable as w here (not x).

Stochastic Gradient Descent (SGD)

- Start with (any) initial point $w^{(0)}$
- Repeat until convergence:
 - pick index i_t uniformly in $\{1, N\}$
 - $w^{(t)} = w^{(t-1)} \alpha_t \nabla_w f_{i_t}(x_{i_t} | w^{(t-1)})$

Important Remarks:

• Requires diminishing learning rate α_t to converge (e.g. $\alpha_t \sim 1/t$)

Assume a problem like this: $\min_{w} \sum_{i=1}^{N} f_i(x_i|w)$ Observe that we denote our control variable as w here (not x).

Stochastic Gradient Descent (SGD)

- Start with (any) initial point $w^{(0)}$
- Repeat until convergence:
 - pick index i_t uniformly in $\{1, N\}$
 - $w^{(t)} = w^{(t-1)} \alpha_t \nabla_w f_{i_t}(x_{i_t} | w^{(t-1)})$

Important Remarks:

- Requires diminishing learning rate α_t to converge (e.g. $\alpha_t \sim 1/t$)
- Mini-batch: is simply picking randomly B samples (indices) out of N, instead of just 1

Assume a problem like this: $\min_{w} \sum_{i=1}^{N} f_i(x_i|w)$ Observe that we denote our control variable as w here (not x).

Stochastic Gradient Descent (SGD)

- Start with (any) initial point $w^{(0)}$
- Repeat until convergence:
 - pick index i_t uniformly in $\{1, N\}$
 - $w^{(t)} = w^{(t-1)} \alpha_t \nabla_w f_{i_t}(x_{i_t} | w^{(t-1)})$

Important Remarks:

- Requires diminishing learning rate α_t to converge (e.g. $\alpha_t \sim 1/t$)
- Mini-batch: is simply picking randomly B samples (indices) out of N, instead of just 1
- $w^{(t)} = w^{(t-1)} \alpha_t \sum_{i_t \in B} \nabla_w f_{i_t}(x_{i_t} | w^{(t-1)})$

Assume a problem like this: $\min_{w} \sum_{i=1}^{N} f_i(x_i|w)$ Observe that we denote our control variable as w here (not x).

Stochastic Gradient Descent (SGD)

- Start with (any) initial point $w^{(0)}$
- Repeat until convergence:
 - pick index i_t uniformly in $\{1, N\}$
 - $w^{(t)} = w^{(t-1)} \alpha_t \nabla_w f_{i_t}(x_{i_t} | w^{(t-1)})$

Important Remarks:

- Requires diminishing learning rate α_t to converge (e.g. $\alpha_t \sim 1/t$)
- Mini-batch: is simply picking randomly B samples (indices) out of N, instead of just 1
- $w^{(t)} = w^{(t-1)} \alpha_t \sum_{i_t \in B} \nabla_w f_{i_t}(x_{i_t} | w^{(t-1)})$
- We will see SGD and mini-batch A LOT in Reinforcement Learning

• Traditional (convex) optimization: find global minimum of function f(w)

- Traditional (convex) optimization: find global minimum of function f(w)
- Optimization in ML:

- Traditional (convex) optimization: find global minimum of function f(w)
- Optimization in ML: minimizine the error over all training data

- Traditional (convex) optimization: find global minimum of function f(w)
- Optimization in ML: minimizine the error over all training data
- Hence, we are finding w_{opt} by minimizing $f_{train}(w)$.

- Traditional (convex) optimization: find global minimum of function f(w)
- Optimization in ML: minimizine the error over all training data
- Hence, we are finding w_{opt} by minimizing $f_{train}(w)$. BUT, we are evaluating w_{opt} using a **different function** $f_{test}(w_{opt})$

- Traditional (convex) optimization: find global minimum of function f(w)
- Optimization in ML: minimizine the error over all training data
- Hence, we are finding w_{opt} by minimizing $f_{train}(w)$. BUT, we are evaluating w_{opt} using a **different function** $f_{test}(w_{opt})$.
- Finding $\min_{w} f_{train}(w)$

- Traditional (convex) optimization: find global minimum of function f(w)
- Optimization in ML: minimizine the error over all training data
- Hence, we are finding w_{opt} by minimizing $f_{train}(w)$. BUT, we are evaluating w_{opt} using a **different function** $f_{test}(w_{opt})$.
- Finding $\min_{w} f_{train}(w) \rightarrow$ (can lead to) overfitting

- Traditional (convex) optimization: find global minimum of function f(w)
- Optimization in ML: minimizine the error over all training data
- Hence, we are finding w_{opt} by minimizing $f_{train}(w)$. BUT, we are evaluating w_{opt} using a **different function** $f_{test}(w_{opt})$.
- ullet Finding $\min_{w} \ f_{train}(w)
 ightarrow ext{(can lead to)}$ overfitting

Solution is Regularization

• $\min_{w} \sum_{i=1}^{N} f_i(x_i|w) + \eta R(w)$

- Traditional (convex) optimization: find global minimum of function f(w)
- Optimization in ML: minimizine the error over all training data
- Hence, we are finding w_{opt} by minimizing $f_{train}(w)$. BUT, we are evaluating w_{opt} using a **different function** $f_{test}(w_{opt})$.
- ullet Finding $\min_{w} \ f_{train}(w)
 ightarrow ext{(can lead to)}$ overfitting

Solution is Regularization

• $\min_{w} \sum_{i=1}^{N} f_i(x_i|w) + \eta R(w)$ instead of $\min_{w} \sum_{i=1}^{N} f_i(x_i|w)$

- Traditional (convex) optimization: find global minimum of function f(w)
- Optimization in ML: minimizine the error over all training data
- Hence, we are finding w_{opt} by minimizing $f_{train}(w)$. BUT, we are evaluating w_{opt} using a **different function** $f_{test}(w_{opt})$.
- ullet Finding $\min_{w} \ f_{train}(w)
 ightarrow ext{(can lead to)}$ overfitting

- $\min_{w} \sum_{i=1}^{N} f_i(x_i|w) + \eta R(w)$ instead of $\min_{w} \sum_{i=1}^{N} f_i(x_i|w)$
- R(w): is a **regularizer**

- Traditional (convex) optimization: find global minimum of function f(w)
- Optimization in ML: minimizine the error over all training data
- Hence, we are finding w_{opt} by minimizing $f_{train}(w)$. BUT, we are evaluating w_{opt} using a **different function** $f_{test}(w_{opt})$.
- ullet Finding $\min_{w} \ f_{train}(w)
 ightarrow ext{(can lead to)}$ overfitting

- $\min_{w} \sum_{i=1}^{N} f_i(x_i|w) + \eta R(w)$ instead of $\min_{w} \sum_{i=1}^{N} f_i(x_i|w)$
- R(w): is a **regularizer**
 - L_2 regularizer: $R(w) = ||w||_2^2 = \sum_{j=1}^k w_j^2$

- Traditional (convex) optimization: find global minimum of function f(w)
- Optimization in ML: minimizine the error over all training data
- Hence, we are finding w_{opt} by minimizing $f_{train}(w)$. BUT, we are evaluating w_{opt} using a **different function** $f_{test}(w_{opt})$.
- ullet Finding $\min_{w} \ f_{train}(w)
 ightarrow ext{(can lead to)}$ overfitting

- $\min_{w} \sum_{i=1}^{N} f_i(x_i|w) + \eta R(w)$ instead of $\min_{w} \sum_{i=1}^{N} f_i(x_i|w)$
- R(w): is a **regularizer**
 - L_2 regularizer: $R(w) = \|w\|_2^2 = \sum_{j=1}^k w_j^2$
 - L_1 regularizer: $R(w) = ||w||_1 = \sum_{j=1}^k |w_j|$

- Traditional (convex) optimization: find global minimum of function f(w)
- Optimization in ML: minimizine the error over all training data
- Hence, we are finding w_{opt} by minimizing $f_{train}(w)$. BUT, we are evaluating w_{opt} using a **different function** $f_{test}(w_{opt})$.
- ullet Finding $\min_{w} \ f_{train}(w)
 ightarrow ext{(can lead to)}$ overfitting

- $\min_{w} \sum_{i=1}^{N} f_i(x_i|w) + \eta R(w)$ instead of $\min_{w} \sum_{i=1}^{N} f_i(x_i|w)$
- R(w): is a **regularizer**
 - L_2 regularizer: $R(w) = ||w||_2^2 = \sum_{j=1}^k w_j^2$
 - L_1 regularizer: $R(w) = ||w||_1 = \sum_{j=1}^k |w_j|$
 - We'll see others too

- Traditional (convex) optimization: find global minimum of function f(w)
- Optimization in ML: minimizine the error over all training data
- Hence, we are finding w_{opt} by minimizing $f_{train}(w)$. BUT, we are evaluating w_{opt} using a **different function** $f_{test}(w_{opt})$.
- ullet Finding $\min_{w} \ f_{train}(w)
 ightarrow ext{(can lead to)}$ overfitting

- $\min_{w} \sum_{i=1}^{N} f_i(x_i|w) + \eta R(w)$ instead of $\min_{w} \sum_{i=1}^{N} f_i(x_i|w)$
- R(w): is a **regularizer**
 - L_2 regularizer: $R(w) = ||w||_2^2 = \sum_{j=1}^k w_j^2$
 - L_1 regularizer: $R(w) = ||w||_1 = \sum_{j=1}^k |w_j|$
 - We'll see others too
- Forces model weights to be small (or zero in L_1) \Rightarrow improves overfitting (η is a hyperparameter)

 Adagrad, Adam, RMSProp ("Optimizers" in PyTorch - e.g. "torch.optim.Adam()")

- Adagrad, Adam, RMSProp ("Optimizers" in PyTorch e.g. "torch.optim.Adam()")
 - Improving (stochastic) gradient descent (sometimes heuristic)

- Adagrad, Adam, RMSProp ("Optimizers" in PyTorch e.g. "torch.optim.Adam()")
 - Improving (stochastic) gradient descent (sometimes heuristic)
 - They (mainly) optimize the learning rates α_t seperately for each weight/variable w_i

- Adagrad, Adam, RMSProp ("Optimizers" in PyTorch e.g. "torch.optim.Adam()")
 - Improving (stochastic) gradient descent (sometimes heuristic)
 - They (mainly) optimize the learning rates α_t seperately for each weight/variable w_i
- Acceleration/Momentum:
 - Also attempt to speed up gradient descent (offer guarantees)

- Adagrad, Adam, RMSProp ("Optimizers" in PyTorch e.g. "torch.optim.Adam()")
 - Improving (stochastic) gradient descent (sometimes heuristic)
 - They (mainly) optimize the learning rates α_t seperately for each weight/variable w_i
- Acceleration/Momentum:
 - Also attempt to speed up gradient descent (offer guarantees)
 - They introduce some memory into the calculation of gradients

- Adagrad, Adam, RMSProp ("Optimizers" in PyTorch e.g. "torch.optim.Adam()")
 - Improving (stochastic) gradient descent (sometimes heuristic)
 - They (mainly) optimize the learning rates α_t seperately for each weight/variable w_i
- Acceleration/Momentum:
 - Also attempt to speed up gradient descent (offer guarantees)
 - They introduce some memory into the calculation of gradients
 - Adam implements momentum

ullet Before: minimize **once** (static/offline) ightarrow min f(w)

- ullet Before: minimize **once** (static/offline) ightarrow min f(w)
- Now: minimize at very round t (online/dynamic): $\min_{w^t} f^t(w^t)$

- $\bullet \ \, \mathsf{Before} \colon \mathsf{minimize} \ \, \mathsf{once} \ \, (\mathsf{static/offline}) \to \min_{w} \, f(w)$
- Now: minimize at very round t (online/dynamic): $\min_{w^t} f^t(w^t)$
- How to choose w^t ??

- $\bullet \ \, \mathsf{Before} \colon \mathsf{minimize} \ \, \mathsf{once} \ \, (\mathsf{static/offline}) \to \min_{w} \, f(w)$
- Now: minimize at very round t (online/dynamic): $\min_{w^t} f^t(w^t)$
- How to choose w^t ??
- Seems reasonable to try some gradient descent type of algorithm (we'll get back to this soon)

Algo 1: Follow The Leader (FTL)

•
$$w^t = \min_{w} \sum_{t'=1}^{t-1} f^{t'}(w)$$

Algo 1: Follow The Leader (FTL)

- $w^t = \min_{w} \sum_{t'=1}^{t-1} f^{t'}(w)$
- Reasonable: would have 0 regret, if $f^t(w)$ was included in the sum

Algo 1: Follow The Leader (FTL)

- $w^t = \min_{w} \sum_{t'=1}^{t-1} f^{t'}(w)$
- ullet Reasonable: would have 0 regret, if $f^t(w)$ was included in the sum

Counterexample

• Let S = [-1, 1]

Algo 1: Follow The Leader (FTL)

- $w^t = \min_{w} \sum_{t'=1}^{t-1} f^{t'}(w)$
- Reasonable: would have 0 regret, if $f^t(w)$ was included in the sum

- Let S = [-1, 1]
- Let $f^1(w) = \frac{w}{2}$, $f^{2k}(w) = -w$, $f^{2k+1}(w) = w$, $\forall k \in \mathcal{N}$

Algo 1: Follow The Leader (FTL)

- $w^t = \min_{w} \sum_{t'=1}^{t-1} f^{t'}(w)$
- Reasonable: would have 0 regret, if $f^t(w)$ was included in the sum

- Let S = [-1, 1]
- Let $f^1(w) = \frac{w}{2}$, $f^{2k}(w) = -w$, $f^{2k+1}(w) = w$, $\forall k \in \mathcal{N}$
- (t > 3) At odd steps: $\sum_{t'=1}^{t-1} f^{t'}(w) = -\frac{w}{2}$

Algo 1: Follow The Leader (FTL)

- $w^t = \min_{w} \sum_{t'=1}^{t-1} f^{t'}(w)$
- Reasonable: would have 0 regret, if $f^t(w)$ was included in the sum

- Let S = [-1, 1]
- Let $f^1(w) = \frac{w}{2}$, $f^{2k}(w) = -w$, $f^{2k+1}(w) = w$, $\forall k \in \mathcal{N}$
- (t > 3) At odd steps: $\sum_{t'=1}^{t-1} f^{t'}(w) = -\frac{w}{2}$
- (t > 3) At even steps: $\sum_{t'=1}^{t-1} f^{t'}(w) = \frac{w}{2}$

Algo 1: Follow The Leader (FTL)

- $w^t = \min_{w} \sum_{t'=1}^{t-1} f^{t'}(w)$
- Reasonable: would have 0 regret, if $f^t(w)$ was included in the sum

- Let S = [-1, 1]
- Let $f^1(w) = \frac{w}{2}$, $f^{2k}(w) = -w$, $f^{2k+1}(w) = w$, $\forall k \in \mathcal{N}$
- (t > 3) At odd steps: $\sum_{t'=1}^{t-1} f^{t'}(w) = -\frac{w}{2}$
- (t > 3) At even steps: $\sum_{t'=1}^{t-1} f^{t'}(w) = \frac{w}{2}$
- Odd steps: sum minimizes for w = 1

Algo 1: Follow The Leader (FTL)

- $w^t = \min_{w} \sum_{t'=1}^{t-1} f^{t'}(w)$
- Reasonable: would have 0 regret, if $f^t(w)$ was included in the sum

- Let S = [-1, 1]
- Let $f^1(w) = \frac{w}{2}$, $f^{2k}(w) = -w$, $f^{2k+1}(w) = w$, $\forall k \in \mathcal{N}$
- (t > 3) At odd steps: $\sum_{t'=1}^{t-1} f^{t'}(w) = -\frac{w}{2}$
- (t > 3) At even steps: $\sum_{t'=1}^{t-1} f^{t'}(w) = \frac{w}{2}$
- Odd steps: sum minimizes for $w = 1 \Rightarrow$ loss is then $f^{2k+1}(1) = 1$

Algo 1: Follow The Leader (FTL)

- $w^t = \min_{w} \sum_{t'=1}^{t-1} f^{t'}(w)$
- Reasonable: would have 0 regret, if $f^t(w)$ was included in the sum

- Let S = [-1, 1]
- Let $f^1(w) = \frac{w}{2}$, $f^{2k}(w) = -w$, $f^{2k+1}(w) = w$, $\forall k \in \mathcal{N}$
- (t > 3) At odd steps: $\sum_{t'=1}^{t-1} f^{t'}(w) = -\frac{w}{2}$
- (t > 3) At even steps: $\sum_{t'=1}^{t-1} f^{t'}(w) = \frac{w}{2}$
- Odd steps: sum minimizes for $w = 1 \Rightarrow$ loss is then $f^{2k+1}(1) = 1$
- Even steps: sum minimizes for w = -1

Algo 1: Follow The Leader (FTL)

- $w^t = \min_{w} \sum_{t'=1}^{t-1} f^{t'}(w)$
- Reasonable: would have 0 regret, if $f^t(w)$ was included in the sum

- Let S = [-1, 1]
- Let $f^1(w) = \frac{w}{2}$, $f^{2k}(w) = -w$, $f^{2k+1}(w) = w$, $\forall k \in \mathcal{N}$
- (t > 3) At odd steps: $\sum_{t'=1}^{t-1} f^{t'}(w) = -\frac{w}{2}$
- (t > 3) At even steps: $\sum_{t'=1}^{t-1} f^{t'}(w) = \frac{w}{2}$
- Odd steps: sum minimizes for $w=1\Rightarrow$ loss is then $f^{2k+1}(1)=1$
- Even steps: sum minimizes for $w = -1 \Rightarrow$ loss is then $f^{2k}(1) = 1$

Algo 1: Follow The Leader (FTL)

- $w^t = \min_{w} \sum_{t'=1}^{t-1} f^{t'}(w)$
- Reasonable: would have 0 regret, if $f^t(w)$ was included in the sum

- Let S = [-1, 1]
- Let $f^1(w) = \frac{w}{2}$, $f^{2k}(w) = -w$, $f^{2k+1}(w) = w$, $\forall k \in \mathcal{N}$
- (t > 3) At odd steps: $\sum_{t'=1}^{t-1} f^{t'}(w) = -\frac{w}{2}$
- (t > 3) At even steps: $\sum_{t'=1}^{t-1} f^{t'}(w) = \frac{w}{2}$
- Odd steps: sum minimizes for $w=1\Rightarrow$ loss is then $f^{2k+1}(1)=1$
- Even steps: sum minimizes for $w=-1\Rightarrow$ loss is then $f^{2k}(1)=1$
- Oracle can make its total loss 0 up to any round t, by picking w=0

Algo 1: Follow The Leader (FTL)

- $w^t = \min_{w} \sum_{t'=1}^{t-1} f^{t'}(w)$
- Reasonable: would have 0 regret, if $f^t(w)$ was included in the sum

- Let S = [-1, 1]
- Let $f^1(w) = \frac{w}{2}$, $f^{2k}(w) = -w$, $f^{2k+1}(w) = w$, $\forall k \in \mathcal{N}$
- (t > 3) At odd steps: $\sum_{t'=1}^{t-1} f^{t'}(w) = -\frac{w}{2}$
- (t > 3) At even steps: $\sum_{t'=1}^{t-1} f^{t'}(w) = \frac{w}{2}$
- Odd steps: sum minimizes for $w = 1 \Rightarrow$ loss is then $f^{2k+1}(1) = 1$
- Even steps: sum minimizes for $w=-1\Rightarrow$ loss is then $f^{2k}(1)=1$
- Oracle can make its total loss 0 up to any round t, by picking w = 0
- Regret of FTL is unfortunately T

• The main problem with FTL in the above example is that the control variable "swings" too violently between extreme values

- The main problem with FTL in the above example is that the control variable "swings" too violently between extreme values
- What if we introduced *regularization* to control changes of w from round to round?

- The main problem with FTL in the above example is that the control variable "swings" too violently between extreme values
- What if we introduced *regularization* to control changes of *w* from round to round?

Algo 2: Follow The Regularized Leader (FTRL)

•
$$w^t = \min_{w} \sum_{t'=1}^{t-1} f^{t'}(w) + R(w)$$

- The main problem with FTL in the above example is that the control variable "swings" too violently between extreme values
- What if we introduced regularization to control changes of w from round to round?

Algo 2: Follow The Regularized Leader (FTRL)

- $w^t = \min_{w} \sum_{t'=1}^{t-1} f^{t'}(w) + R(w)$
- Euclidean Regularizer: $R(W) = \frac{1}{2\eta} \sum_{i=1}^{k} w_i^2$

- The main problem with FTL in the above example is that the control variable "swings" too violently between extreme values
- What if we introduced regularization to control changes of w from round to round?

Algo 2: Follow The Regularized Leader (FTRL)

- $w^t = \min_{w} \sum_{t'=1}^{t-1} f^{t'}(w) + R(w)$
- Euclidean Regularizer: $R(W) = \frac{1}{2\eta} \sum_{i=1}^{k} w_i^2$
- Entropy Regularizer: $R(W) = \frac{1}{\eta} \sum_{i=1}^k w_i \log w_i$

- The main problem with FTL in the above example is that the control variable "swings" too violently between extreme values
- What if we introduced regularization to control changes of w from round to round?

- $w^t = \min_{w} \sum_{t'=1}^{t-1} f^{t'}(w) + R(w)$
- Euclidean Regularizer: $R(W) = \frac{1}{2\eta} \sum_{i=1}^{k} w_i^2$
- Entropy Regularizer: $R(W) = \frac{1}{\eta} \sum_{i=1}^{k} w_i \log w_i$ (common for w probabilities)

- The main problem with FTL in the above example is that the control variable "swings" too violently between extreme values
- What if we introduced regularization to control changes of w from round to round?

- $w^t = \min_{w} \sum_{t'=1}^{t-1} f^{t'}(w) + R(w)$
- Euclidean Regularizer: $R(W) = \frac{1}{2\eta} \sum_{i=1}^{k} w_i^2$
- Entropy Regularizer: $R(W) = \frac{1}{\eta} \sum_{i=1}^{k} w_i \log w_i$ (common for w probabilities)
- Previous (counter)example:
- Odd t: $\sum_{t'=1}^{t-1} f^{t'}(w) + R(w) = -\frac{w}{2} + \frac{1}{2\eta} w^2$

- The main problem with FTL in the above example is that the control variable "swings" too violently between extreme values
- What if we introduced regularization to control changes of w from round to round?

- $w^t = \min_{w} \sum_{t'=1}^{t-1} f^{t'}(w) + R(w)$
- Euclidean Regularizer: $R(W) = \frac{1}{2\eta} \sum_{i=1}^{k} w_i^2$
- Entropy Regularizer: $R(W) = \frac{1}{\eta} \sum_{i=1}^{k} w_i \log w_i$ (common for w probabilities)
- Previous (counter)example:
- Odd $t: \sum_{t'=1}^{t-1} f^{t'}(w) + R(w) = -\frac{w}{2} + \frac{1}{2\eta} w^2 \to \min \text{ at } w^t = \eta/2$

- The main problem with FTL in the above example is that the control variable "swings" too violently between extreme values
- What if we introduced regularization to control changes of w from round to round?

- $w^t = \min_{w} \sum_{t'=1}^{t-1} f^{t'}(w) + R(w)$
- Euclidean Regularizer: $R(W) = \frac{1}{2\eta} \sum_{i=1}^{k} w_i^2$
- Entropy Regularizer: $R(W) = \frac{1}{\eta} \sum_{i=1}^{k} w_i \log w_i$ (common for w probabilities)
- Previous (counter)example:
- Odd $t: \sum_{t'=1}^{t-1} f^{t'}(w) + R(w) = -\frac{w}{2} + \frac{1}{2n} w^2 \to \min \text{ at } w^t = \eta/2$
- Even $t: \sum_{t'=1}^{t-1} f^{t'}(w) + R(w) = \frac{w}{2} + \frac{1}{2n} w^2$

- The main problem with FTL in the above example is that the control variable "swings" too violently between extreme values
- What if we introduced *regularization* to control changes of *w* from round to round?

- $w^t = \min_{w} \sum_{t'=1}^{t-1} f^{t'}(w) + R(w)$
- Euclidean Regularizer: $R(W) = \frac{1}{2\eta} \sum_{i=1}^{k} w_i^2$
- Entropy Regularizer: $R(W) = \frac{1}{\eta} \sum_{i=1}^{k} w_i \log w_i$ (common for w probabilities)
- Previous (counter)example:
- Odd $t: \sum_{t'=1}^{t-1} f^{t'}(w) + R(w) = -\frac{w}{2} + \frac{1}{2\eta} w^2 \to \min \text{ at } w^t = \eta/2$
- Even $t: \sum_{t'=1}^{t-1} f^{t'}(w) + R(w) = \frac{w}{2} + \frac{1}{2\eta} w^2 \to \min \text{ at } w^t = -\eta/2$

- The main problem with FTL in the above example is that the control variable "swings" too violently between extreme values
- What if we introduced regularization to control changes of w from round to round?

- $w^t = \min_{w} \sum_{t'=1}^{t-1} f^{t'}(w) + R(w)$
- Euclidean Regularizer: $R(W) = \frac{1}{2\eta} \sum_{i=1}^{k} w_i^2$
- Entropy Regularizer: $R(W) = \frac{1}{\eta} \sum_{i=1}^{k} w_i \log w_i$ (common for w probabilities)
- Previous (counter)example:
- Odd t: $\sum_{t'=1}^{t-1} f^{t'}(w) + R(w) = -\frac{w}{2} + \frac{1}{2\eta} w^2 \to \min \text{ at } w^t = \eta/2$
- Even $t: \sum_{t'=1}^{t-1} f^{t'}(w) + R(w) = \frac{w}{2} + \frac{1}{2\eta} w^2 \to \min \text{ at } w^t = -\eta/2$
- If η is small enough, $w^t \to 0, \forall t$

- The main problem with FTL in the above example is that the control variable "swings" too violently between extreme values
- What if we introduced regularization to control changes of w from round to round?

- $w^t = \min_{w} \sum_{t'=1}^{t-1} f^{t'}(w) + R(w)$
- Euclidean Regularizer: $R(W) = \frac{1}{2\eta} \sum_{i=1}^{k} w_i^2$
- Entropy Regularizer: $R(W) = \frac{1}{\eta} \sum_{i=1}^{k} w_i \log w_i$ (common for w probabilities)
- Previous (counter)example:
- Odd $t: \sum_{t'=1}^{t-1} f^{t'}(w) + R(w) = -\frac{w}{2} + \frac{1}{2n} w^2 \to \min \text{ at } w^t = \eta/2$
- Even t: $\sum_{t'=1}^{t-1} f^{t'}(w) + R(w) = \frac{w}{2} + \frac{1}{2\eta} w^2 o \min$ at $w^t = -\eta/2$
- If η is small enough, $w^t \to 0, \forall t$ (which was optimal)

Algo 3: Online Gradient Descent [Zinkevich et al., 2003]

• Start with (any) initial point w^0 and function f^0

Algo 3: Online Gradient Descent [Zinkevich et al., 2003]

ullet Start with (any) initial point w^0 and function f^0

• At round t: $w^t = w^{t-1} - \alpha_t f^{t-1}(w^{t-1})$

(ロト 4回 ト 4 重 ト 4 重 ト 3 重 · 夕 Q (~)

Algo 3: Online Gradient Descent [Zinkevich et al., 2003]

- Start with (any) initial point w^0 and function f^0
- At round t: $w^t = w^{t-1} \alpha_t f^{t-1}(w^{t-1})$

Remarks:

ullet (perhaps) Surprisingly, this simple algorithm has $O(\sqrt{T})$ regret

Algo 3: Online Gradient Descent [Zinkevich et al., 2003]

- Start with (any) initial point w^0 and function f^0
- At round t: $w^t = w^{t-1} \alpha_t f^{t-1}(w^{t-1})$

- ullet (perhaps) Surprisingly, this simple algorithm has $O(\sqrt{T})$ regret
- Generalizes to constrained problems:

$$w^t = \Pi_S \left[w^{t-1} - \alpha_t f^{t-1} (w^{t-1}) \right]$$

Algo 3: Online Gradient Descent [Zinkevich et al., 2003]

- ullet Start with (any) initial point w^0 and function f^0
- At round t: $w^t = w^{t-1} \alpha_t f^{t-1}(w^{t-1})$

Remarks:

- ullet (perhaps) Surprisingly, this simple algorithm has $O(\sqrt{T})$ regret
- Generalizes to constrained problems:

$$w^t = \Pi_{\mathcal{S}} \left[w^{t-1} - \alpha_t f^{t-1} (w^{t-1}) \right]$$

• (where $\Pi_S[x]$ denotes projection of vector x onto convex set S)

Algo 3: Online Gradient Descent [Zinkevich et al., 2003]

- Start with (any) initial point w^0 and function f^0
- At round t: $w^t = w^{t-1} \alpha_t f^{t-1}(w^{t-1})$

- ullet (perhaps) Surprisingly, this simple algorithm has $O(\sqrt{T})$ regret
- Generalizes to constrained problems: $w^t = \prod_S \left[w^{t-1} \alpha_t f^{t-1}(w^{t-1}) \right]$
- (where $\Pi_S[x]$ denotes projection of vector x onto convex set S)
- Turns out that this is FTRL with Euclidean Regularizer.

Algo 3: Online Gradient Descent [Zinkevich et al., 2003]

- Start with (any) initial point w^0 and function f^0
- At round t: $w^t = w^{t-1} \alpha_t f^{t-1}(w^{t-1})$

- ullet (perhaps) Surprisingly, this simple algorithm has $O(\sqrt{T})$ regret
- Generalizes to constrained problems: $wt = \prod_{t=0}^{\infty} [wt^{-1} + t^{-1}]$
 - $w^t = \Pi_{\mathcal{S}} \left[w^{t-1} \alpha_t f^{t-1} (w^{t-1}) \right]$
- (where $\Pi_S[x]$ denotes projection of vector x onto convex set S)
- Turns out that this is FTRL with Euclidean Regularizer.
- Q: What about FTRL with Entropy Regularizer?

Algo 3: Online Gradient Descent [Zinkevich et al., 2003]

- Start with (any) initial point w^0 and function f^0
- At round t: $w^t = w^{t-1} \alpha_t f^{t-1}(w^{t-1})$

- ullet (perhaps) Surprisingly, this simple algorithm has $O(\sqrt{T})$ regret
- Generalizes to constrained problems:

$$w^t = \Pi_S \left[w^{t-1} - \alpha_t f^{t-1}(w^{t-1}) \right]$$

- (where $\Pi_S[x]$ denotes projection of vector x onto convex set S)
- Turns out that this is FTRL with Euclidean Regularizer.
- Q: What about FTRL with Entropy Regularizer?
- A: This is a very popular/fast algorithm called Online Mirror Descent

Algo 3: Online Gradient Descent [Zinkevich et al., 2003]

- Start with (any) initial point w^0 and function f^0
- At round t: $w^t = w^{t-1} \alpha_t f^{t-1}(w^{t-1})$

- (perhaps) Surprisingly, this simple algorithm has $O(\sqrt{T})$ regret
- Generalizes to constrained problems:

$$w^{t} = \Pi_{\mathcal{S}} \left[w^{t-1} - \alpha_{t} f^{t-1} (w^{t-1}) \right]$$

- (where $\Pi_S[x]$ denotes projection of vector x onto convex set S)
- Turns out that this is FTRL with Euclidean Regularizer.
- Q: What about FTRL with Entropy Regularizer?
- A: This is a very popular/fast algorithm called Online Mirror Descent
- FTRL achieves order optimal $O(\sqrt{T})$ regret.