Exercise 1

1.1
$$\mathbb{P}(T_1 = k \mid X_0 = 1) = \mathbb{P}(X_0 = X_k = 1, X_1 = -2X_{k-1} = 2 \mid X_0 = 1)$$

$$(u=1)$$
 = $P(X_1=1|X_0=1) = \frac{1}{2}$

Note that
$$P(T_1 < -\infty \mid X_{o} = 1) = \sum_{h \geqslant 1} P(T_1 = k \mid X_{o} = 1)$$

$$= \frac{1}{2} + \frac{1}{3} \cdot \sum_{h \geqslant 2} \left(\frac{3}{4}\right)^{h-2} = \frac{1}{2} + \frac{1}{3} \left(\frac{1}{1-3a}\right)$$

$$= \frac{1}{2} + \frac{1}{8} \cdot 4 = 1 \cdot \text{ This is because 4 is a rec. state}$$

This describes the Sutribution of T1.

$$\ker\left(Q^{T}-L\right) = \ker\left(\frac{-\frac{1}{2}}{\frac{1}{2}}-\frac{\frac{1}{4}}{4}\right) = \left(\begin{pmatrix} 1\\2 \end{pmatrix} > 1 + 1 + \frac{1}{4} \end{pmatrix}$$
Thus $M = \begin{pmatrix} \frac{1}{3}, \frac{2}{3} \end{pmatrix}$.

$$E[T, J = \frac{1}{2} \times 1 + \sum_{k \neq 2} x \cdot \frac{1}{g} \left(\frac{2}{4}\right)^{k-2} = \frac{1}{2} + \frac{1}{g} \cdot \left(\frac{4}{3}\right) \cdot \sum_{k \neq 2} k \cdot \left(\frac{3}{4}\right)^{k-1}$$

$$= \frac{1}{2} + \frac{1}{6} g(\frac{3}{4}) \quad \text{where} \quad g(x) := \sum_{k \neq 2} h \cdot x^{k-1} = g'(x)$$

$$g(x) := \sum_{k \neq 2} x^k = \frac{x^2}{1-x}$$

Therefore,
$$g(x) = \frac{1}{4x}g(x) = \frac{2x(1-x)+x^2}{(1-x)^2} = \frac{2x-x^2}{(1-x)^2}$$

And
$$E[T_1] = \frac{1}{2} + \frac{1}{6} \frac{2 \cdot \frac{3}{4} - \left(\frac{3}{4}\right)^2}{\left(1 - \frac{3}{4}\right)^2} = \frac{1}{2} + \frac{1}{6} \frac{(24 - 9)/36}{1/36} = \frac{1}{2} + 4 - \frac{3}{2} = 3$$

Note that p(1) -1 = 3 = (E[T_1] D

9=1-P E(0,1).

2.1.
$$M_i = \begin{cases} (P/q)^i & \text{if } i \ge 1 \\ P & \text{if } i = 0 \end{cases}$$

Then
$$(M,Q)_0 = M_1 Q_{10} = \frac{p}{q} \cdot q = p = M_0$$

 $(M \cdot Q)_1 = M_0 Q_{0,1} + M_2 Q_{2,1} = p \cdot 1 + (\frac{p}{q})^2 \cdot q$
 $= \frac{pq + p^2}{q} = \frac{q}{q} (p+q) = M_1$

$$j \geqslant 2; \qquad \left(\begin{array}{c} M \cdot Q \right)_{j} = \chi_{j-1} Q_{j-1,j} + \chi_{j+1} Q_{j+1,j}$$

$$= \left(\frac{\rho}{4} \right)^{j-1} P + \left(\frac{\rho}{4} \right)^{j+1} q = \left(\frac{\rho}{4} \right)^{j} \left[\begin{array}{c} \frac{q}{\rho} \cdot \rho + \frac{\rho}{q} \cdot \rho \\ \frac{q}{2} \end{array} \right]$$

$$= \chi_{j}$$

Thus
$$M = MQ$$
 is a stationary measure.

$$P(Z_{>0}) = P + \sum_{i \ge 1} (P_{iq})' = P + \frac{P_{iq}}{1 - P_{iq}} < + \infty$$

$$P_{iq} < 1 \quad \text{for } P < 0.5$$

Therefore, by Theorem 16.3, because this is an irreducible MC, and has a finite measure, all states are recurrent.

Exercise 3
$$H_0 = \inf \{ X_n = 0 \}$$
, $H_1 = \inf \{ X_n = 1 \}$
 $\phi(s) := \mathbb{F} \left[\le x_0 \mid X_0 = 1 \right]$

3.1 The strong Markov property says that $(X_{n+H_1})_{n>0}$, $X_0=2$) has the same distribution as $(X_n)_{n>0}$, $X_0=1$.

Further, ({Xn+ My } noo, Xo=2) II {Xo, --, X My }.

It follows that
$$P_1(H_0=k) = P_2(H_1+\widetilde{H}_0=H_1+k)$$
 by and that $\widetilde{H}_0 \perp \!\!\! \perp H_1$.

Also $(1\times_{n}-1)_{n=0}^{H_{1}}$, $X_{0}=2$) N $(1\times_{n})_{n=0}^{H_{0}}$, $X_{0}=1$) because the Markov chains have the same transition matrix and initial dist. Under the identification $K\mapsto K-1$.

Thus
$$\mathbb{P}_{2}(H_{1}=k)=\mathbb{P}_{1}(H_{0}=k)$$
.

It follows that
$$E_2[S^{H_0}] = E_2[S^{H_0}] = E_2[S^{H_0}] = \Phi(s)^2$$

 $E_1[S^{H_0}] = P_1(x_1=2) \cdot E_1[S^{H_0}] \times P_2[S^{H_0+1}] = P \cdot S \cdot \phi(s)^2$

J.2

$$E \left[S^{K_0} | X_0 = 1 \right] = \rho E \left[S^{K_0} | X_1 = 2 \right] + \rho E \left[S^{K_0} | X_1 = 0 \right]$$

$$= \rho \cdot S \phi(s)^2 + \rho \cdot S \qquad \text{as desired}$$

$$\phi^2 \rho \cdot S - \phi + \rho \cdot S = 0 \Rightarrow \delta(S) = \frac{1 \pm \sqrt{1 - 4\rho \cdot s^2}}{2\rho \cdot S} \qquad (**)$$

From
$$\sqrt{1-x} = 1 - \frac{x}{2} + O(x^2)$$
, $\int_{\infty}^{\infty} S \to 0$ we get $\phi(s) = \frac{1 \pm (1 - 2pqs^2 + O(s^4))}{2ps}$

Now
$$\phi(0) = \mathbb{P}(H_0 = 0) \in 1$$
 So for S close to 2000
We have
$$\phi(s) = \frac{1 - \sqrt{1 - 4pq_s^2}}{2ps}$$

Let us now study when do the positive and negative roots of $\pm *$ coincide. This happens when $1-4pqs^2=0$, or for $s^2=\frac{1}{4pq}$

Nav pg
$$\leq \left(\frac{p+q}{2}\right)^2 = \frac{1}{4}$$
 so $\frac{1}{4pq} > 1$.

The positive and the negative root of (**) are distinct for 1-4pqs2 +0, so for SE[0,1) they are always distinct according to (*). They also vary continuously urt s, so $\phi(s) = \frac{1 - \sqrt{1 - 4pqs^2}}{2ps}$ 3.3 From $\sqrt{1-x} = 1 - \frac{x}{2} - \frac{x^2}{8} + O(x^3)$ we have $\varphi(s) = \frac{2pqs^2 + 2p^2q^2s^4 + O(s^6)}{2ps} = qs + pqs^3 + O(s^5)$ It Jollows Und P(Ho = 3 / X=1) = p.9 $\phi(s) = \frac{1 - \sqrt{1 - 4pqs^2}}{2.25}$ $\lim_{s \to 1^{-}} 4|s| = \frac{1 - \sqrt{1 - 4pq}}{2p} = \frac{1 - \sqrt{1 - 4p(1-p)}}{2p} = \frac{1 - \sqrt{(1-2p)^2}}{2p} = \int_{-\frac{2p+2}{3p}}^{1} |s|^{\frac{1}{2}} |p|^{\frac{1}{2}} |s|^{\frac{1}{2}}$ $= \begin{cases} 1, & \text{if } P = \frac{1}{2} \\ \frac{4}{6}, & \text{if } P = \frac{1}{2} \end{cases} = P(H_0 < +\infty \mid X_0 = 1)$ 3.5 Beaux d (1-17-494521) = 8945 = 4995 we have $\phi'(s) = \frac{2ps \cdot \frac{4pqs}{\sqrt{1-4pqs^2}} - 2p(1-\sqrt{1-4pqs^2})}{4p^2s^2} = \frac{2q}{\sqrt{1-4pqs^2}} - \frac{1-\sqrt{1-4pqs^2}}{2ps^2}$ Thus, $\lim_{s \to 1^-} \phi'(s) = \frac{24}{|1-2P|} - \frac{1-|1-2P|}{2P} = \frac{24}{1-2P} - 1$ $= \frac{27 - 1 + 2p}{1 - 2p} = \frac{1}{1 - 2p}$