Package 'R2ROC'

July 5, 2023

Title AUC Statistics	
Version 1.0.0	
Description AUC statistic for significance test. Variance and covariance of AUC values used to assess the 95% CI and p-value of the AUC difference for both nested and non-nested model.	
License GPL (>=3)	
URL https://github.com/mommy003/R2ROC	
Encoding UTF-8	
Roxygen list(markdown = TRUE)	
RoxygenNote 7.1.2	
Depends R (>= 2.10)	
LazyData true	
R topics documented:	
auc_diff	2
auc_var	4
dat1	5
dat2	5
olkin_auc1	6
olkin_auc12	6
olkin_auc12_1	7
olkin_auc12_13	7
olkin_auc12_3	8
olkin_auc12_34	8
olkin_auc1_2	9
Index 1	0

2 auc_diff

auc_diff	auc_diff function		
----------	-------------------	--	--

Description

This function estimates $var(AUC(y\sim x[,v1]) - AUC(y\sim x[,v2]))$ where AUC is the Area Under ROC curve of the model, y is N by 1 matrix having the dependent variable, and x is N by M matrix having M explanatory variables. v1 or v2 indicates the ith column in the x matrix (v1 or v2 can be multiple values between 1 - M, see Arguments below)

Usage

```
auc_diff(dat, v1, v2, nv, kv)
```

Arguments

dat	N by $(M+1)$ matrix having variables in the order of cbind (y,x)
v1	This can be set as $v1=c(1)$ or $v1=c(1,2)$
v2	This can be set as $v2=c(2)$, $v2=c(3)$, $v2=c(1,3)$ or $v2=c(3,4)$
nv	Sample size
kv	Population prevalence

Value

This function will estimate significant difference between two PRS (either dependent or independent and joint or single). To get the test statistics for the difference between $AUC(y\sim x[,v1])$ and $AUC(y\sim x[,v2])$ (here we define $AUC1=AUC(y\sim x[,v1])$) and $AUC2=AUC(y\sim x[,v2])$)). The outputs are listed as follows.

```
AUC differences between AUC1 and AUC2
mean_diff
                 Variances of AUC differences
                 Upper value of the differences
upper_diff
lower_diff
                 Upper value of the differences
                 Two tailed P-value for significant difference between AUC1 and AUC2
р
                 One tailed P-value for significant difference
p_one_tail
                 P-value based on Heller's test for significant difference
heller_p
heller_upper_diff
                 Upper limit of 95% CI for the difference basedon Heller's test
heller_lower_diff
                 Lower limit of 95% CI for the difference basedon Heller's test
```

Examples

```
#To get the test statistics for the difference between AUC(y=x[,v1]) #and AUC(y=x[,v2]) dat=dat1 #(this example embedded within the package) nv=length(dat$V1) kv=0.2 #proportion of cases (prevalence) v1=c(1)
```

v2=c(2)output=auc_diff(dat,v1,v2,nv,kv) #R2ROC output #output\$mean_diff (mean difference of AUC1 and AUC2) #0.1344427 #output\$var (variance of AUC difference) #5.467435e-05 #output\$upper_diff (upper limit of 95% CI for difference) #0.1489353 #output\$lower_diff (lower limit of 95% CI for difference) #0.11995 #output\$p (two-tailed P-value for the differences is #significantly different from zero) #7.14694e-74 #output\$p_one_tail (one-tailed P-value for the differences #is significantly different from zero) #3.57347e-74 #To get the test statistics for the difference between #AUC(y=x[,v1]+x[,v2]) and AUC(y=x[,v2])dat=dat1 #(this example embedded within the package) nv=length(dat\$V1) kv=0.2 #proportion of cases (prevalence) v1=c(1,2)v2=c(2)output=auc_diff(dat,v1,v2,nv,kv) #R2ROC output #output\$mean_diff (mean difference of AUC1 and AUC2) #0.1374099 #output\$var (variance of AUC difference) #7.037293e-05 #output\$upper_diff (upper limit of 95% CI for difference) #0.1538521 #output\$lower_diff (lower limit of 95% CI for difference) #0.1209678 #output\$p (two-tailed P-value for the differences is #significantly different from zero) #2.655147e-60 #output\$p_one_tail (one-tailed P-value for the differences #is significantly different from zero) #1.327574e-60 #output\$heller_p (two-tailed P-value based on Hellers test #for the differences is significantly different from zero)

4 auc_var

```
#2.180027e-235

#output$heller_upper_diff (upper limit of 95% CI for
#difference based on Hellers test)
#0.1543439

#output$heller_lower_diff (lower limit of 95% CI for
#difference based on Hellers test)
#0.1214596
```

auc_var

auc_var function

Description

This function estimates $var(AUC(y\sim x[,v1]))$ where AUC is the Area Under ROC curve of the model, y is N by 1 matrix having the dependent variable, and x is N by M matrix having M explanatory variables. v1 indicates the ith column in the x matrix (v1 can be multiple values between 1 - M, see Arguments below)

Usage

```
auc_var(dat, v1, nv, kv)
```

Arguments

dat	N by (M+1) matrix having variables in the order of cbind(y,x)
v1	This can be set as $v1=c(1)$, $v1=c(1,2)$ or possibly with more values
nv	Sample size
kv	Population prevalence

Value

This function will test the null hypothesis for AUC. To get the test statistics for AUC($y\sim x[,v1]$). The outputs are listed as follows.

auc AUC

var Variance of AUC

upper_auc Upper limit of 95% CI for AUC lower_auc Lower limit of 95% CI for AUC

Examples

```
#To get the test statistics for the difference between AUC(y=x[,v1]) and AUC(y=x[,v2]) dat=dat1 #(this example embedded within the package) nv=length(dat$V1) kv=0.2 #proportion of cases (prevalence) v1=c(1) output=auc_var(dat,v1,nv,kv)
```

dat1 5

```
#R2ROC output
#output$auc (AUC)
#0.6821015

#output$var (variance of AUC)
#4.462817e-05

#output$upper_auc (upper limit of 95% CI for AUC)
#0.6951951

#output$lower_auc (lower limit of 95% CI for AUC)
#0.6690079
```

dat1

Raw phenotypes and 2 sets of discovery PGSs

Description

A dataset containing raw phenotypes and multiple PGSs estimated two independent discovery population

Usage

dat1

Format

A data frame with 10000 rows and 3 variables:

- V1 Phenotype, raw case-caontrol data
- V2 PGS1, for discovery population 1
- V3 PGS2, for discovery population 2

dat2

Pre-adjusted phenotypes and 2 sets of discovery PGSs

Description

A dataset containing preadjusted phenotypes and multiple PGSs estimated two independent discovery population

Usage

dat2

Format

A data frame with 10000 rows and 3 variables:

- V1 Phenotype, preadjustde case-caontrol data
- V2 PGS1, for discovery population 1
- V3 PGS2, for discovery population 2

6 olkin_auc12

olkin	auc1
OTKIII	aucı

olkin_auc1 function

Description

olkin_auc1 function

Usage

```
olkin_auc1(omat, nv, kv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

kv Population prevalance

Value

This function will be used as source code

olkin_auc12 olk

olkin_auc12 function

Description

olkin_auc12 function

Usage

```
olkin_auc12(omat, nv, kv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

kv Population prevalance

Value

olkin_auc12_1

olkin	auc12	1
-------	-------	---

olkin_auc12_1 function

Description

```
olkin_auc12_1 function
```

Usage

```
olkin_auc12_1(omat, nv, kv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

kv Population prevalance

Value

This function will be used as source code

```
olkin_auc12_13 olkin_auc12_13 function
```

Description

```
olkin_auc12_13 function
```

Usage

```
olkin_auc12_13(omat, nv, kv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

kv Population prevalance

Value

8 olkin_auc12_34

olkin_auc12_3

olkin_auc12_3 function

Description

```
olkin_auc12_3 function
```

Usage

```
olkin_auc12_3(omat, nv, kv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

kv Population prevalance

Value

This function will be used as source code

olkin_auc12_34 olkin_auc12_34 function

Description

```
olkin_auc12_34 function
```

Usage

```
olkin_auc12_34(omat, nv, kv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

kv Population prevalance

Value

olkin_auc1_2

olkin_auc1_2	olkin_auc1_2 function
--------------	-----------------------

Description

```
olkin_auc1_2 function
```

Usage

```
olkin_auc1_2(omat, nv, kv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

kv Population prevalance

Value

Index

```
*Topic R2
   auc\_diff, 2
   auc_var,4
*Topic datasets
   dat1, 5
   dat2,5
*Topic information
   \mathtt{auc\_diff}, 2
   auc_var,4
*Topic matrix
   auc\_diff, 2
   auc_var,4
*Topic source
   olkin_auc1,6
   olkin_auc12,6
   olkin_auc12_1,7
   olkin_auc12_13,7
   olkin_auc12_3,8
   olkin_auc12_34,8
   olkin_auc1_2,9
*Topic variance
   auc\_diff, 2
   auc_var,4
auc\_diff, 2
auc_var,4
dat1, 5
dat2,5
olkin_auc1,6
olkin_auc12,6
olkin_auc12_1,7
olkin_auc12_13,7
olkin_auc12_3,8
olkin_auc12_34,8
olkin_auc1_2, 9
```