ML Week 0x02 Linear Regression

Linear regression: the problem

- 1. Problem (×6) We have a set of points $\{(x_i, y_i)\}$. Given a new x value, we'd like to predict \hat{y} .
- 2. **Linear model:** We'll assume there exists a linear relationship $y = \theta_0 + \theta_1 x$ that offers a good approximation to the data.
- 3. In the real world, there's always noise
- 4. Sometimes other effects, too
- 5. Talk about meaning of slope
- 6. Dangers of extrapolation. Example: global warming (a few data points in a few places at a few times)

Residuals (\times 6)

- 1. résidu
- 2. Goal: small residuals
- 3. Cost function: sum of squares of residuals
- 4. Residuals are what's left over after accounting for model fit.
- 5. A normal distribution of residuals is a good sign. And conversely.
- 6. Not rules: rule of thumb.
- 7. Time series (*une série temporelle*) often have important underlying structure. Correlation often doesn't model them well.

Outliers ($\times 8$)

- 1. Points that fall farther from the regression line have more effect. We call them *high leverage* points.
- 2. If the effect is noticeable on the regression, we call it an *influential point*.
- 3. If a point, omitted, would fall much further from the regression line, it is certainly influential.

- 4. If not enough data points, they might be all or mostly influential!
- 5. Anscombe's quartet summary statistics don't replace visualizing data
 - mean x = 9
 - variance = 11
 - mean y = 7.50
 - sample variance $\in (4.122, 4.127)$
 - Corr(x, y) = 0.816
 - linear regression: y = 3 + x/2
- 6. Correlation does not imply causation —but it's a good hint

Code lab: régression linéaire

Linear regression

- 1. Univariate 1 input, 1 continuous output
- 2. We think there's a linear model
- 3. Explanatory or predictor varaible
- 4. Response variable
- $5. h_{\theta}(x) = \theta_0 + \theta_1 x$
- 6. Cost function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x_i) y_i)^2$
- 7. Cost function = fonction objective?
- 8. y vs \hat{y}
- 9. Gradient descent (×3) (algorithme du gradient)
- 10. Assignment is simultaneous
- 11. Outlier = *donnée aberrante*

Linear algebra (review)

- 1. Vector, matrix, transpose
- 2. addition, multiplication

- 3. vector space, basis vectors
- 4. linear transformation, u = Av, think about basis vectors
- 5. $A, A_{i,j}$

Notation used in machine learning

- 1. $x_j^{(i)}$ value of feature j in training sample i
- 2. $x^{(i)}$ training sample i
- 3. m = number of training samples
- 4. $n = |x^{(i)}| = \text{number of features}$
- 5. $x_0 = 1$ (often called bias)

Multiple regression

- 1. Multiple explanatory variables, 1 continuous output
- 2. Fortunately, there are libraries to do this!

Codelab: We already did it! Diabetes example.

Other notes

- Overfitting
- Regularization (ridge regression, Tikhanov regularization): $-\lambda \sum$ params
- Polynomial regression
- Gradient descent variants
 - Batch gradient descent (all samples)
 - Stochastic gradient descent (single sample each iteration) (faster for very large sets)
 - Coordinate gradient descent (one component each iteration)
 - Note computational approximation if no derivative (and curse of dimensionality)
- When gradient descent doesn't work,
 - plot the cost function over iterations
 - if cost increasing or oscillating, reduce α
 - if leveled off, not much future gain