Principles of Data Mining

Max Bramer

Introduction

- Supervised learning :
 - Clasification, numerical prediction
- Unsupervised learning:
 - Association rules, clustering

Data for dataming

 Datasets, ensamble of variables of a universe of objects that are of interest

SoftEng	ARIN	HCI	CSA	Project	Class
A	В	A	В	В	Second
A	В	В	В	В	Second
В	A	A	В	A	Second
A	A	A	A	В	First
A	A	В	В	A	First
В	A	A	В	В	Second
A	A	В	A	В	First

Types of variables

- Nominals
- Binary
- Ordinal
- Integer
- Interval-scaled
- Ratio-scaled

categorical corresponding to nominal, binary and ordinal variables
continuous corresponding to integer, interval-scaled and ratio-scaled variables.

Data preparation

Data cleaning:

Missig values

Descartar instancias

Replace for the most frequent/average value

Usar reglas de asociación

Reducing the Number of Attributes

Data cleaning

Reducing the Number of Attributes

Feature reduction- Dimension reduction

Introduction to clasification

Clasification

Assign objects to one of a number of mutually exhaustive and exclusive categories known as classes.

- People who are at high, medium or low risk of a car accident in the next 12months
- People who are likely to vote for each of a number of political parties (or none)
- The likelihood of rain the next day for a weather forecast (very likely, likely, unlikely, very unlikely).

Naive Bayes Classifiers

Atributes are nominal

Usually we are interested in a set of alternative possible events, which are mutually exclusive and exhaustive, meaning that one and only one must always occur.

In a train example, we might define four mutually exclusive and exhaustive events

- E1 train cancelled
- E2 train ten minutes or more late
- E3 train less than ten minutes late
- E4 train on time or early.
- The probability of an event is usually indicated by a capital letter P, so we might have
- P(E1) = 0.05
- P(E2) = 0.1
- P(E3) = 0.15
- P(E4) = 0.7: P(E1) + P(E2) + P(E3) + P(E4) = 1

Naive Bayes Classifiers

day	season	wind	rain	class
weekday	spring	none	none	on time
weekday	winter	none	slight	on time
weekday	winter	none	slight	on time
weekday	winter	high	heavy	late
saturday	summer	normal	none	on time
weekday	autumn	normal	none	very late
holiday	summer	high	slight	on time
sunday	\mathbf{summer}	normal	none	on time
weekday	winter	high	heavy	very late
weekday	summer	none	slight	on time
saturday	spring	high	heavy	cancelled
weekday	summer	high	slight	on time
saturday	winter	normal	none	late
weekday	summer	high	none	on time
weekday	winter	normal	heavy	very late
saturday	autumn	high	slight	on time
weekday	autumn	none	heavy	on time
holiday	spring	normal	slight	on time
weekday	spring	normal	none	on time
weekday	spring	normal	slight	on time

Figure 3.1 The train Dataset

Naive Bayes Classifiers

Problem

day	season	wind	rain	class
			,	

weekday	winter	high	heavy	????
---------	--------	------	-------	------

$$P(c_i) \times \prod_{j=1}^n P(a_j = v_j \mid class = c_i).$$

Conditional and Prior Probabilities: train Dataset

	class = on	class = late	class = very	class = can-
	time		late	celled
day =	9/14 = 0.64	1/2 = 0.5	3/3 = 1	0/1 = 0
weekday				
day =	2/14 = 0.14	1/2 = 0.5	0/3 = 0	1/1 = 1
saturday				
day = sunday	1/14 = 0.07	0/2 = 0	0/3 = 0	0/1 = 0
day = holiday	2/14 = 0.14	0/2 = 0	0/3 = 0	0/1 = 0
season =	4/14 = 0.29	0/2 = 0	0/3 = 0	1/1 = 1
spring				
season =	6/14 = 0.43	0/2 = 0	0/3 = 0	0/1 = 0
summer				
season =	2/14 = 0.14	0/2 = 0	1/3 = 0.33	0/1 = 0
autumn				
season =	2/14 = 0.14	2/2 = 1	2/3 = 0.67	0/1 = 0
winter				
wind = none	5/14 = 0.36	0/2 = 0	0/3 = 0	0/1 = 0
wind = high	4/14 = 0.29	1/2 = 0.5	1/3 = 0.33	1/1 = 1
wind =	5/14 = 0.36	1/2 = 0.5	2/3 = 0.67	0/1 = 0
normal				
rain = none	5/14 = 0.36	1/2 = 0.5	1/3 = 0.33	0/1 = 0
rain = slight	8/14 = 0.57	0/2 = 0	0/3 = 0	0/1 = 0
rain =	1/14 = 0.07	1/2 = 0.5	2/3 = 0.67	1/1 = 1
heavy				
Prior	14/20 =	2/20 =	3/20 =	1/20 = 0.05
Probability	0.70	0.10	0.15	

Naive Bayes Algorithm

```
class = on time
0.70 \times 0.64 \times 0.14 \times 0.29 \times 0.07 = 0.0013
class = late
0.10 \times 0.50 \times 1.00 \times 0.50 \times 0.50 = 0.0125
class = very late
0.15 \times 1.00 \times 0.67 \times 0.33 \times 0.67 = 0.0222
class = cancelled
0.05 \times 0.00 \times 0.00 \times 1.00 \times 1.00 = 0.0000
```

Solution

class = very late

 $0.15 \times 1.00 \times 0.67 \times 0.33 \times 0.67 = 0.0222$

Nearest Neighbour Classification

Basic k-Nearest Neighbour Classification Algorithm

- Find the k training instances that are closest to the unseen instance.
- Take the most commonly occurring classification for these k instances.

Useful with numerical attributs

Distance Measures

Euclidean Distance

Normalisation

In general if the lowest value of attribute A is min and the highest value is max, we convert each value of A, say a, to (a - min)/(max - min).

Adjustement of the Euclidean distance

$$\sqrt{w_1(a_1-b_1)^2+w_2(a_2-b_2)^2+\ldots+w_n(a_n-b_n)^2}$$