Probability and Measure - Tutorial 3

1. Let Ω be a set. Prove that the σ -algebra generated by all sets of the form $\{\omega\}$, with $\omega \in \Omega$, is equal to the collection

 $\{A \subset \Omega : \text{ either } A \text{ is countable or } A^c \text{ is countable}\}.$

- 2. Let $(\Omega, \mathcal{A}, \mu)$ be a finite measure space; assume that $\{x\} \in \mathcal{A}$ for any $x \in \Omega$. Prove that the set $\{x \in \Omega : \mu(\{x\}) > 0\}$ is countable.
- 3. Let Ω be a set and let $\mathscr{F} = \{A_1, \dots, A_k\}$ be a finite collection of subsets of Ω . Assume that the sets in \mathscr{F} form a partition of Ω , meaning that they are pairwise disjoint and that their union is equal to Ω .
 - (a) Prove that the collection

$$\left\{ \bigcup_{i \in I} A_i : I \subset \{1, \dots, k\} \right\}$$

is a σ -algebra of subsets of Ω .

- (b) Prove that the collection of item (a) is equal to $\sigma(\mathscr{F})$.
- 4. Let Ω be a set and let \mathscr{G} be a finite collection of subsets of Ω . For any $\omega, \omega' \in \Omega$, write $\omega \sim \omega'$ if

for all $A \in \mathcal{G}$, we either have $\{\omega, \omega'\} \subset A$ or $\{\omega, \omega'\} \cap A = \emptyset$.

For each $\omega \in \Omega$, let $M_{\omega} := \{ \omega' \in \Omega : \omega \sim \omega' \}$.

- (a) Prove that for any $\omega, \omega' \in \Omega$, the sets M_{ω} and $M_{\omega'}$ are either equal or disjoint.
- (b) Prove that

$$\bigcup_{\omega \in \Omega} M_{\omega} = \Omega.$$

(c) Let \mathscr{G}' denote the collection of all sets B such that either $B \in \mathscr{G}$ or $B^c \in \mathscr{G}$. Prove that, for any $\omega \in \Omega$, we have

$$M_{\omega} = \bigcap_{B \in \mathscr{G}' : \omega \in B} B.$$

(d) Define the collection $\mathscr{F} := \{M_{\omega} : \omega \in \Omega\}$. Prove that \mathscr{F} is finite. Given an arbitrary enumeration of \mathscr{F} , $\mathscr{F} = \{A_1, \ldots, A_k\}$, prove that

$$\sigma(\mathscr{G}) = \left\{ \bigcup_{i \in I} A_i : I \subset \{1, \dots, k\} \right\}.$$