

Test Report for FCC

FCC ID:X8JGATEWAREI

FCC ID -X8JGATEWAREI						
Repo	rt Number	ESTRF	C1805-004			
	Company name	DOALL	TECH CO.,LTD.	,,LTD.		
Applicant	Address	E-601, 602, 603, 604, 605 SK V1 Center, 11, Dangsan-ro 41 Yeongdeungpo-gu, Seoul, Korea 150-886			, Dangsan-ro 41-gil,	
	Telephone	+82-2-6121-5414				
	Contack person	Cheolho Choi				
	Product name	GATEWARE-i				
Product	Model No.	GA	TEWARE-i	Manufacturer	DOALLTECH CO.,LTD.	
	Serial No.		None	Country of origin	KOREA	
Test date	23-Apr-3	30 ~ 27-N	Лау-8	Date of issue	28-May-18	
Testing location	347-69, 、		aero 147beon-g onggi-do 467-8	il, Majang-myeor 11, R. O. Korea	n, Icheon-si,	
Standard	FCC PART 1	5 Subpart C	C (15.247), ANSI C 6	63.10(2013) , KDB 55	8074 D01(2017)	
Measurement	Measurement facility registration number 659627					
Tested by	sted by Senior Engineer H.G. Lee (Signature)					
Reviewed by	Engineering Manager I.K. Hong (Signature)					
Abbreviation	Abbreviation OK, Pass = Passed, Fail = Failed, N/A = not applicable					

- * Note
- This test report is not permitted to copy partly without our permission
- This test result is dependent on only equipment to be used
- This test result based on a single evaluation of one sample of the above mentioned

Contents

1.	Laboratory Information	3
2.	Description of EUT	4
	Test Standards	5
4.	Measurement condition	6
5.	DTS bandwidth	11
	5.1 Test procedure	11
	5.2 Test instruments and measurement setup	11
	5.3 Measurement results	11
	5.4 Trace data ·····	13
6.	Maximum Peak Output Power	19
	6.1 Test procedure	19
	6.2 Test instruments and measurement setup	19
	6.3 Measurement results	19
7.	Maximum conducted (average) output power	21
	7.1 Test procedure	21
	7.2 Test instruments and measurement setup	21
	7.3 Measurement results	21
	7.4 Trace data(Peak, Average)·····	23
8.	Maximum power spectral density level in the fundamental emission	32
	8.1 Test procedure	32
	8.2 Test instruments and measurement setup	32
	8.3 Measurement results	32
	8.4 Trace data	34
9.	Emissions in non-restricted frequency bands	40
	9.1 Test procedure	40
	9.2 Test instruments and measurement setup	40
	9.3 Measurement results	40
	9.4 Trace data of band-edge & out of emissioin	42
1(). Measurement of radiated emission	50
	10.1 Measurement equipment	50
	10.2 Environmental conditions	50
	10.3 Measurement Instrument setting for Radiated Emission	51
	10.4 Test Data·····	52
	10.5 Restricted Band Edges	64
1	1. Measurement of conducted emission	76
	11.1 Measurement equipment	76
	11.2 Environmental conditions	76
	11.3 Test Data·····	77
12	2. Photographs of test setup	80
	12.1 Photographs of FLIT	80

Appendix 1. Special diagram

Appendix 2. Antenna Requirement

Report Number: ESTRFC1805-004

1. Laboratory Information

1.1 General

This EUT (Equipment Under Test) has been shown to be capable of compliance with the applicable technical standards and is tested in accordance with the measurement procedures as indicated in this report.

ESTECH Lab attests to accuracy of test data. All measurement reported herein were performed by ESTECH Co., Ltd.

ESTECH Lab assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

1.2 Test Lab.

Corporation Name: ESTECH Co., Ltd.

Head Office: Suite 1015 World Meridian II, 123 Gasan Digital 2-ro, Geumcheon-gu, Seoul 153-759, R. O. Korea

EMC/Telecom/Safety Test Lab: 347-69, Jungbu-daero 147beon-gil, Majang-myeon, Icheon-si,

Gyeonggi-do 467-811, R. O. Korea

1.3 Official Qualification(s)

Report Number: ESTRFC1805-004

MSIP: Granted Accreditation from Ministry of Information & Communication for EMC, Safety and Telecommunication

KOLAS: Accredited Lab By Korea Laboratory Accreditation Schema base on CENELEC requirements

FCC: Conformity Assessment Body(CAB) with registration number 659627 under APEC TEL MRA between the RRA and the FCC

VCCI: Granted Accreditation from Voluntary Control Council for Interference from ITE

2. Description of EUT

2.1 Summary of Equipment Under Test

Modulation Type : CCK, OFDM

Transfer Rate : 11 Mbps , 54 Mbps, Mcs $0 \sim Mcs 7$

Number of Channel : 11 ch

PEAK Output Power : -0.23 dBm

Rating : INPUT : (100 - 240) Va.c., (50 - 60) Hz, 0.62 A

Receipt Date : 29-Jun-17

Testing Voltage : AC 120 V 0.62 A

X-tal list(s) or Frequencies generated : The highest operating frequency is 2 462 MHz

2.2 General descriptions of EUT

Report Number: ESTRFC1805-004

CPU	Quad Cortex A53 @1.2 GHz	GPIO	40
RAM	1 GB SDRAM	USB Ports	Quad USB 2.0 Port
SoC	BCM2837	Camera	15 pin MIPI Camera serial interface(CSI-2)
Instruction	ARMv8-A	Display Connector	HDMI/DSI
GPU	400MHz VideoCore IV	Relay	Signal Out Relay x 2
Storage	Micro-SD	AC Power	AC(100 ~ 240) V ~0.62 A, 50/60 Hz
Ethernet	10/100	LED	Color LED x 3
Wireless	802.11n/Bluetooth 4.0	Operating Temperature	−10°C ~ +50°C
Video Output	HDMI/Composite		
Audio Output	HDMI/Headphone		

3. Test Standards

Test Standard: FCC PART 15 Subpart C (15.247)

This Standard sets out the regulations under which an intentional, unintentional, or incidental radiator may be operated without an individual license. It also contains the technical specifications, administrative requirements and other conditions relating to the marketing of Part 15 devices.

Test Method: ANSI C 63.10 (2013) & KDB558074 D01(2016)

This standard sets forth uniform methods of measurement of radio-frequency (RF) signals and noise emitted from both unintentional and intentional emitters of RF energy in the frequency range 9 kHz to 40 GHz. Methods for the measurement of radiated and AC power-line conducted radio noise are covered and may be applied to any such equipment unless otherwise specified by individual equipment requirements. These methods cover measurement of certain decides that deliberately radiate energy, such as intentional emitters, but does not cover licensed transmitters. This standard is not intended for certification/approval of avionic equipment or for industrial, scientific, and medical (ISM) equipment These method apply to the measurement of individual units or systems comprised of multiple units

Summary of Test Results

Odiffinally of Test Hesuits					
Applied Satandard: 47 CFR Part 15 Subpart C					
Standard	Test Type	Result	Remark	Limit	
15.207	AC Power Conducted Emission	Pass	Meet the requirement		
15.205 & 15.209	Restricted band / Intentional Radiated Emission	Pass	Meet the requirement		
15.247(a)(2)	6 dB Bandwidth	Pass	Meet the requirement	Min. 500 kHz	
	99 % Bandwidth				
15.247(b)(3)	Maximum Peak/average ouput power	Pass	Meet the requirement	Max. 30 dBm	
15.247(c)	Transmitter Radiated Emission	Pass	Meet the requirement	Table 15.209	
15.247(e)	Power Spectral Density	Pass	Meet the requirement	Max. 8 dBm	
15.247(d)	Band Edge Measurement	Pass	Meet the requirement	20 dB less	

4. Measurement Condition

4.1 EUT Operation

a. Channel

Ch.	Frequency	Ch.	Frequency
1	2 412 MHz	7	2 442 MHz
2	2 417 MHz	8	2 447 MHz
3	2 422 MHz	9	2 452 MHz
4	2 427 MHz	10	2 457 MHz
5	2 432 MHz	11	2 462 MHz
6	2 437 MHz		

b. Measurement Channel: WLAN: Low(2 412 MHz), Middle(2 437 MHz), High(2 462 MHz)

c. Test Mode: Continuous Output, CCK, OFDM

d. Test rate: 11 Mbps, 54 Mbps, Mcs0 ~ Mcs7

4.2 EUT Operation

- The EUT was in the following operation mode during all testing
- * Wireless LAN 2.4 GHz operation check
- * Transmit mode were measured each channels(802.11.b, 802.11.g, 802.11.n20)

4.3 Configuration and Peripherals

4.4 EUT and Support equipment

Equipment Name	Model Name	S/N	Manufacturer	Remark (FCC ID)
GATEWARE-i	GATEWARE-i	NONE	DOALLTECH CO.,LTD.	EUT
шининишишишишишишишишишишишишишишишишиш	<u> </u>		шининининининин	
***************************************				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

4.5 Cable Connecting

Start Equipr	Start Equipment		End Equipment		tandard	Domork
Name	I/O port	Name	I/O port	Length Shielded	Remark	
GATEWARE-i	WIRELESS (2.4 GHz)	POWER	-	2	Unshielde d	

4.6 DUTY CYCLE OF TEST SIGNAL

Duty cycle is > 98 %, duty factor shall be considered.

duty cycle = 94.8%, duty factor = 10*log(1/0.948) = 0.230

802.11b

802.11g

duty cycle = 79.8%, duty factor = 10*log(1/0.798) = 0.979

4.6 DUTY CYCLE OF TEST SIGNAL

Duty cycle is > 98 %, duty factor shall be considered.

duty cycle = 79.0 %, duty factor = 10*log(1/0.792) = 1.022

802.11n20

5. DTS bandwidth

5.1 Test procedure

bb80/4 DUT DTS Meas Guidance V04 8.2 Option 2. The automatic pandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \geq 3 x RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB

5.2 might be > 6 dB Test instruments and measurement setup

The spectrum analyzer is set to as following.

. RBW= 100 KHz . VBW \geq 3 x RBW

. Span= 20 MHz . Sweep= suitable duration based on the EUT specification.

Limits: FCC § 15.247(a)(2)

6dB Bandwidth Test Instruments

Description	Model	Serial Number	Cal. Due Date
Spectrum Analyzer	E4440A	US42041291	27-Dec-18
RF Cable	Length: 30 cm	_	
-Spectrum Analyzer <=> EUT	Loss: 0.5dB	_	

5.3 Measurement results

EUT	GATEWARE-i	MODEL	GATEWARE-i
MODE	b, g, n20	ENVIRONMENTAL CONDITION	23.0 ℃, 47.0 % R.H.
INPUT POWER	AC 120 V		

MODE - 802.11b

Channel Frequency (MHz)	Emission bandwidth (MHz)	Bandwidth at 6dB below(MHz)	Minimum Limit (MHz)	PASS/FAIL
2 412	13.99	8.47	0.5	PASS
2 437	13.81	8.76	0.5	PASS
2 462	13.82	9.24	0.5	PASS

MODE - 802.11g

Channel Frequency (MHz)	Emission bandwidth (MHz)	Bandwidth at 6dB below(MHz)	Minimum Limit (MHz)	PASS/FAIL
2 412	16.29	16.04	0.5	PASS
2 437	16.44	15.27	0.5	PASS
2 462	16.28	15.17	0.5	PASS

5.3 Measurement results

EUT	GATEWARE-i	MODEL	GATEWARE-i
MODE	b, g, n20	ENVIRONMENTAL CONDITION	23.0 °C, 47.0 % R.H.
INPUT POWER	AC 120 V		

MODE - 802.11n20

Report Number: ESTRFC1805-004

Channel Frequency (MHz)	Emission bandwidth (MHz)	Bandwidth at 6dB below(MHz)	Minimum Limit (MHz)	PASS/FAIL
2 412	17.41	15.14	0.5	PASS
2 437	17.43	15.43	0.5	PASS
2 462	17.43	15.44	0.5	PASS

5.4 Trace data - 802.11b (ch 1)

(ch 6)

Report Number: ESTRFC1805-004

(ch_11)

5.4 Trace data - 802.11g (ch 1)

(ch_6)

(ch_11)

5.4 Trace data - 802.11n20 (ch_1)

Report Number: ESTRFC1805-004

(ch_11)

6. Maximum peak conducted output power

6.1 Test procedure

KDB 558074 D01 DTS Meas Guidance V04 9.1.1 Integrated band power method

6.2 Test instruments and measurement setup

- a) Set the RBW >DTS bandwidth
- b) Set VBW \geq 3 × RBW.
- c) Set span \geq 3 x RBW
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

Limits: FCC § 15.247

Maximum Peak Output Power Test Instruments

Description	Model	Serial Number	Cal. Due Date
Spectrum Analyzer	E4440A	US42041291	27-Dec-18
RF Cable	Length: 30 cm	_	
Spectrum Analyzer <=> EUT	Loss: 0.5 dB	_	

6.3 Measurement results

EUT	GATEWARE-i	MODEL	GATEWARE-i
MODE	b, g, n20	ENVIRONMENTAL CONDITION	23.0 ℃, 47.0 % R.H.
INPUT POWER	AC 120 V		

MODE - 802.11b

CHANNE	Channel requency	Condu	icted Powei	Output(dBm)	Limit[1W]	PASS/FAIL
CHANNEL	(MHz)	Detector	(dBm)	(W)	(dBm)	PASS/FAIL
1	2 412	PEAK	-1.86	0.0007	30.0	PASS
6	2 437	PEAK	-2.55	0.0006	30.0	PASS
11	2 462	PEAK	-3.31	0.0005	30.0	PASS

MODE - 802.11g

CHANNEL	Channel requency	Conducted Power Output(dBm)			Limit[1W]	PASS/FAIL
CHANNEL	(MHz)	Detector	(dBm)	(W)	(dBm)	PASS/FAIL
1	2 412	PEAK	-0.23	0.0009	30.0	PASS
6	2 437	PEAK	-1.15	0.0008	30.0	PASS
11	2 462	PEAK	-2.33	0.0006	30.0	PASS

Report Number: ESTRFC1805-004 EST-P25-IO2-F04 (2016.01.01) Page 19 of 80

6.3 Measurement results

EUT	GATEWARE-i	MODEL	GATEWARE-i
MODE	b, g, n20	ENVIRONMENTAL CONDITION	23.0 ℃, 47.0 % R.H.
INPUT POWER	AC 120 V		

MODE - 802.11n20

Report Number: ESTRFC1805-004

CHANNEL	Channel requency	Conducted Power Output(dBm)			Limit[1W]	PASS/FAIL
CHANNEL	(MHz)	Detector	(dBm)	(W)	(dBm)	PASS/FAIL
1	2 412	PEAK	-2.27	0.0006	30.0	PASS
6	2 437	PEAK	-2.24	0.0006	30.0	PASS
11	2 462	PEAK	-2.33	0.0006	30.0	PASS

7. Maximum conducted (average) output power

7.1 Test procedure

KDB 558074 D01 DTS Meas Guidance V04 9.2.2.4 Method AVGSA-2 (trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction)

7.2 Test instruments and measurement setup

- a) Measure the duty cycle, x, of the transmitter output signal as described in 6.0.
- b) Set span to at least 1.5 times the OBW.
- c) Set RBW = 1-5% of the OBW, not to exceed 1 MHz.
- d) Set VBW \geq 3 x RBW.
- e) Number of points in sweep ≥ 2 x span / RBW. (This gives bin-to-bin spacing \leq RBW/2, so that narrowband signals are not lost between frequency bins.)
- f) Sweep time = auto.
- g) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- h) Do not use sweep triggering. Allow the sweep to "free run".
- i) Trace average at least 100 traces in power averaging (i.e., RMS) mode; however, the number of traces to be averaged shall be increased above 100 as needed such that the average accurately represents the true average over the on and off periods of the transmitter.
- j) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.
- k) Add 10 log (1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times (because the measurement represents an average over both the on and off times of the transmission). For example, add 10 log (1/0.25) = 6 dB if the duty cycle is 25 %.

Maximum conducted (average) output power Test Instruments

Description	Model	Serial Number	Cal. Due Date
Spectrum Analyzer	E4440A	US42041291	27-Dec-18
RF Cable	Length: 30 cm	_	
Spectrum Analyzer <=> EUT	Loss: 0.5 dB	_	

7.3 Measurement results

EUT	GATEWARE-i	MODEL	GATEWARE-i
MODE	b, g, n20	ENVIRONMENTAL CONDITION	23.0 ℃, 47.0 % R.H.
INPUT POWER	AC 120 V		

MODE - 802.11b

CHANNEL	Channel requency	Condu	icted Powei	Output(dBm)	Measured + Duty	Measured + Duty
CHAINNEL	(MHz)	Detector	(dBm)	Duty Cycle	Cycle(dBm)	Cycle(W)
1	2 412	AVG	-2.06	0.23	-1.8	0.0007
6	2 437	AVG	-2.43	0.23	-2.2	0.0006
11	2 462	AVG	-2.87	0.23	-2.6	0.0005

MODE - 802.11g

CHANNEL	Channel requency	Condu	cted Powe	Output(dBm)	Measured + Duty	Measured + Duty
CHANNEL	(MHz)	Detector	(dBm)	Duty Cycle	Cycle(dBm)	Cycle(W)
1	2 412	AVG	-0.32	0.98	0.7	0.0012
6	2 437	AVG	-1.25	0.98	-0.3	0.0009
11	2 462	AVG	-2.43	0.98	-1.5	0.0007

7.3 Measurement results

EUT	GATEWARE-i	MODEL	GATEWARE-i
MODE	b, g, n20	ENVIRONMENTAL CONDITION	23.0 °C, 47.0 % R.H.
INPUT POWER	AC 120 V		

MODE - 802.11n20

CHANNEL	Channel requency	Conducted Power Output(dBm)			Measured + Dutv	Measured + Duty
CHANNEL (MHz)	Detector	(dBm)	Duty Cycle	Cycle(dBm)	Cycle(W)	
1	2 412	AVG	-2.41	1.02	-1.4	0.0007
6	2 437	AVG	-2.62	1.02	-1.6	0.0007
11	2 462	AVG	-2.88	1.02	-1.9	0.0007

7.4 Trace data (Peak, Average) - 802.11b mode (ch_1)

(Peak)

(Avg)

(ch_6)

(ch_11)

7.4 Trace data (Peak, Average) - 802.11g mode (ch_1)

(ch_6)

(Peak)

(Avg)

(ch_11)

7.4 Trace data (Peak, Average) - 802.11n20 mode (ch_1)

(ch_6)

(Peak)

(Avg)

(ch_11)

(Peak)

(Avg)

8. Maximum power spectral density level in the fundamental emission

8.1 Test procedure

KDB 558074 D01 DTS Meas Guidance V04 10.2 Method PKPSD (peak PSD)

8.2 Test instruments and measurement setup

The spectrum analyzer is set to as following.

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3 x RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Limits FCC § 15.247

The peak power density Test Instruments

Description	Model	Serial Number	Cal. Due Date
Spectrum Analyzer	E440A	US42041291	27-Dec-18
RF Cable	Length: 30 cm	-	
Spectrum Analyzer <=> EUT	Loss: 0.5 dB	_	

8.3 Measurement results

EUT	GATEWARE-i	MODEL	GATEWARE-i
MODE	b, g, n20	ENVIRONMENTAL CONDITION	22.0°C, 47.0% R.H.
INPUT POWER	AC 120 V		

MODE - 802.11b

CHANNEL	Channel Frequency (MHz)	Measured Power Spectral Density (dBm)	Maximum Permissible Power Density (dBm/3kHz)	Margin
1	2 412	-23.88	8.0	31.88
6	2 437	-24.46	8.0	32.46
11	2 462	-24.60	8.0	32.60

MODE - 802.11g

CHANNEL	Channel Frequency (MHz)	Measured Power Spectral Density (dBm)	Maximum Permissible Power Density (dBm/3kHz)	Margin
1	2 412	-24.46	8.0	32.46
6	2 437	-25.11	8.0	33.11
11	2 462	-25.79	8.0	33.79

Report Number: ESTRFC1805-004 EST-P25-IO2-F04 (2016.01.01) Page 32 of 80

8.3 Measurement results

EUT	GATEWARE-i	MODEL	GATEWARE-i
MODE	b, g, n20	ENVIRONMENTAL CONDITION	22.0°C, 47.0 % R.H.
INPUT POWER	AC 120 V		

MODE - 802.11n20

CHANNEL	Channel Frequency (MHz)	Measured Power Spectral Density (dBm)	Maximum Permissible Power Density (dBm/3kHz)	Margin
1	2 412	-23.11	8.0	31.11
6	2 437	-24.82	8.0	32.82
11	2 462	-25.43	8.0	33.43

8.4 Trace data - 802.11b mode (ch_1)

8.4 Trace data - 802.11b (ch_11)

8.4 Trace data - 802.11g mode (ch_1)

(ch_6)

8.4 Trace data - 802.11g mode (ch_11)

8.4 Trace data - 802.11n20 mode (ch_1)

Report Number: ESTRFC1805-004

8.4 Trace data - 802.11n20 mode (ch_11)

Report Number: ESTRFC1805-004

9. Emissions in non-restricted frequency bands

9.1 Test procedure

KDB 558074 D01 DTS Meas Guidance V04 11.0 Emissions in non-restricted frequency bands

9.2 Test instruments and measurement setup

The spectrum analyzer is set to as following.

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to ≥ 1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW \geq 3 x RBW.

e) Detector = peak.

- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Limits FCC § 15.247

Band Edge&Out of Emission Test Instruments

Description	Model	Serial Number	Cal. Due Date
Spectrum Analyzer	E4440A	US42041291	27-Dec-18
Spectrum Analyzer	FSV40	100939	27-Dec-18
RF Cable	Length: 30 cm		_
-Spectrum Analyzer <=> EUT	Loss: 0.5 dB		_

9.3 Measurement results of band-edge & out of emission - Adapter

EUT	GATEWARE-i	MODEL	GATEWARE-i
MODE	b, g, n20	ENVIRONMENTAL CONDITION	22.0 ℃, 47.0 % R.H.
INPUT POWER	AC 120 V		

MODE -802.11b

CHANNEL	Channel Frequency (MHz)	limit	PASS/FAIL
1	2 412	20dBc	PASS
11	2 462	20dBc	PASS

MODE -802.11g

CHANNEL	Channel Frequency (MHz)	limit	PASS/FAIL
1	2 412	20dBc	PASS
11	2 462	20dBc	PASS

Report Number: ESTRFC1805-004 EST-P25-IO2-F04 (2016.01.01) Page 40 of 80

9.3 Measurement results of band-edge & out of emission

EUT	GATEWARE-i	MODEL	GATEWARE-i
MODE	b, g, n20	ENVIRONMENTAL CONDITION	22.0 °C, 47.0 % R.H.
INPUT POWER	AC 120 V		

MODE -802.11n20

CHANNEL	Channel Frequency (MHz)	limit	PASS/FAIL
1	2 412	20dBc	PASS
11	2 462	20dBc	PASS

9.4 Trace data of band-edge & Out of Emission - 802.11b mode (ch_1)

9.4 Trace data of band-edge & Out of Emission - 802.11g mode (ch_1)

9.4 Trace data of Out of Emission - 802.11b mode

(ch_1)

11B_ch7

9.4 Trace data of Out of Emission - 802.11b mode

11B_ch11

9.4 Trace data of Out of Emission - 802.11g mode

(ch_1)

11g_ch1

9.4 Trace data of Out of Emission - 802.11g mode

(ch_11)

11g_ch11

9.4 Trace data of Out of Emission - 802.11n20 mode

11n

9.4 Trace data of Out of Emission - 802.11n20 mode

(ch_11)

11n

10. Measurement of radiated disturbance

Above 30 MHz Electric Field strength was measured in accordance with FCC PART 15.205, 15.209. The test setup was made according to ANSI C 63.10 (2013) & KDB 558074 D01 Semi-anechoic chamber, which allows a 3 m distance measurement. The EUT was placed in the center of styrofoam. turntable. The height of this table was 0.8 m. The measurement was conducted with both horizontal and vertical antenna polarization. The turntable has fully rotated. For further description of the configuration refer to the picture of the test setup.

10.1 Measurement equipments

Equipment Name	Type	Manufacturer	Serial No.	Next Calibration date
TEST Receiver	ESCI7	ROHDE & SCHWARZ	100916	31-Oct-18
Logbicon Antenna	VULB 9168	SCHWARZBECK	193	12-Oct-18
Turn Table	DT3000-2t	Innco System GmbH	N/A	-
Antenna Mast	MA4000-EP	Innco System GmbH	N/A	-
PREAMPLIFIER	8449B	AGILENT	3008A00581	31-Oct-18
Horn Antenna	BBHA9120D	SCHWARZBECK	469	25-Aug-18
Test Receiver	ESPI7	ROHDE & SCHWARZ	100185	31-Oct-18
Spectrum Analyzer	R3273	ADVANTEST	121200664	10-Oct-18
Turn Table	DT1500-S	Innco System GmbH	N/A	-
Antenna Mast	MA4000-EP	Innco System GmbH	N/A	-
Pyramidal Horn Antenna	3160-09-01	EST-LINDGREN	102642	25-Aug-18
Antenna Master & Turn table controller	C02000-P	Innco System GmbH	CO2000/642 /28051111/L	-

10.2 Environmental Condition

Below 1 GHz -Test Place : 10 m Semi-anechoic chamber

WLAN 802.11 b,g,n20,n40 Mode

Temperature (°C) : 22.5 ℃

Humidity (% R.H.) : 50.7 % R.H.

Above 1 GHz-Test Place : 3 m Semi-anechoic chamber

WLAN 802.11 b,g,n20,n40 Mode

Temperature (°C) : 24 °C

Humidity (% R.H.) : 49.6 % R.H.

10.3 Measurement Instrument setting for Radiated Emission

10.3.1 Frequency range below 1 GHz

Detector: Quasi-Peak

10.3.2 Frequency range above 1 GHz

Peak Power Measurement Procedure (KDB 558074 section 12.2.4)

a. RBW: 1 MHz , VBW: 3 MHzb. Trace mode = max hold

c. Detector : Peakd. Sweep time = auto

Average Power Measurement Procedures (KDB 558074 section 12.2.5.2)

a. Set analyzer center frequency to the frequency associated with the emission

b. RBW: 1 MHz, VBW: 3 MHz

c. Detector: RMS

d. Sweep time = auto

* Note

Band	Duty cycle(%)	Ton (ms)	Ton + Toff (ms)	DCF=10*log(1/Duty) (dB)
802.11b	94.8	0.839	0.884	0.23
802.11g	79.8	0.174	0.218	0.98
802.11n20	79.0	0.162	0.205	1.02

* This was not applied of duty cycle factor for average value because of measured with the EUT transmitting continuously more than 98 % duty cycle at its maximum power control level.

10.4.1 Test Data (802.11 b)

Test Date: 6-May-18 Measurement Distance: 3 m

Frequency	Reading	Position	Position Height		Correction Factor		Result Value)
(MHz)	(dB#V)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)
102.10	30.14	V	1.0	8.87	1.51	43.50	40.52	2.98
324.00	24.45	Н	1.4	13.97	2.78	46.00	41.20	4.80
527.80	15.96	Н	1.5	18.56	3.60	46.00	38.12	7.88
583.30	15.42	Н	1.0	19.53	3.81	46.00	38.76	7.24
805.60	11.20	Н	1.0	22.65	4.57	46.00	38.42	7.58
861.10	12.97	Н	1.0	23.22	4.76	46.00	40.95	5.05

H: Horizontal, V: Vertical

^{*}Checked in all 3 axis and the maximum measured data were reported.(Worst data is Z axis of position)

^{*}CL = Cable Loss(In case of below 1 000 MHz)

^{*}Result Value = Reading + Ant Factor + Cable loss

^{*}The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection at frequency below 1 GHz.

10.4.2 Test Data (802.11 g)

Test Date: 6-May-18 Measurement Distance: 3 m

Frequency Reading		Position	Height	Correction	n Factor	1	Result Value	÷
(MHz)	(dB₩)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)
100.30	30.18	V	1.0	8.73	1.49	43.50	40.40	3.10
324.00	24.84	V	1.2	13.97	2.78	46.00	41.59	4.41
527.80	14.67	V	1.4	18.56	3.60	46.00	36.83	9.17
538.30	16.25	V	1.3	18.75	3.64	46.00	38.64	7.36
638.90	14.51	V	1.4	19.94	4.00	46.00	38.45	7.55
861.10	10.16	V	1.6	23.22	4.76	46.00	38.14	7.86

H: Horizontal, V: Vertical

^{*}Checked in all 3 axis and the maximum measured data were reported.(Worst data is Z axis of position)

^{*}CL = Cable Loss(In case of below 1 000 MHz)

^{*}Result Value = Reading + Ant Factor + Cable loss

^{*}The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection at frequency below 1 GHz.

10.4.3 Test Data (802.11 n20)

Test Date: 6-May-18 Measurement Distance: 3 m

Frequency	Reading	Position Height		Correction Factor		Result Value			
(MHz)	(dBW)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Limit (dB#V/m)	Result (dB≠V/m)	Margin (dB)	
99.40	29.94	V	1.0	8.68	1.49	43.50	40.11	3.39	
324.00	24.36	V	1.1	13.97	2.78	46.00	41.11	4.89	
583.30	15.80	V	1.2	19.53	3.81	46.00	39.14	6.86	
638.90	14.92	V	1.4	19.94	4.00	46.00	38.86	7.14	
750.00	11.83	V	1.6	21.36	4.38	46.00	37.56	8.44	
861.10	10.46	V	1.6	23.22	4.76	46.00	38.44	7.56	

H: Horizontal, V: Vertical

^{*}Checked in all 3 axis and the maximum measured data were reported.(Worst data is Z axis of position)

^{*}CL = Cable Loss(In case of below 1 000 MHz)

^{*}Result Value = Reading + Ant Factor + Cable loss

^{*}The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection at frequency below 1 GHz.

10.4-5 Test Data

Test Date: 30-Apr-18 Measurement Distance: 3 m

Test Date:	30-Apr-18					Mea	asurement	Distance:	3 m
Frequency	Reading	Position	Hoight	Correction	n Factor	Duty Cycle	F	esult Value	
(MHz)	(dB#V)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Correction(dB)	Limit (dB₩/m)	Result (dB⊬V/m)	Margin (dB)
			PEA	K(RBW: 1	MHz VE	BW: 3 MHz)			
2390.00	24.32	Н	1.8	26.11	6.02		74.00	56.45	17.55
2390.00	24.25	V	1.5	26.11	6.02		74.00	56.38	17.62
4824.00	45.74	Н	1.8	31.21	-26.98		74.00	49.97	24.03
4824.00	44.98	V	1.5	31.21	-26.98		74.00	49.21	24.79
			AV	(RBW: 1 MI	l Hz VRW	/: 3 MHz)			
2390.00	16.92	Н	1.8	26.11	6.02	0.23	54.00	49.28	4.72
2390.00	17.53	V	1.5	26.11	6.02	0.23	54.00	49.89	4.11
4824.00	33.52	Н	1.8	31.21	-26.98	0.23	54.00	37.98	16.02
4824.00	34.65	V	1.5	31.21	-26.98	0.23	54.00	39.11	14.89
Remark	_	nal wasn't de	tected fro	T MODE : 802. m 3th harmonic imum measure	cs.	1(2 412 MHz) reported.(Worst data	a is Z axis of p	osition)	

^{*}Total = Reading Value + Antenna Factor + Cable Loss - Amp Gain + Duty Cycle Correction

10.4-6 Test Data

Test Date: 30-Apr-18 Measurement Distance: 3 m

Frequency (MHz) Reading (dB,W) Position (V/H) Height (m) Ant Factor (dB) Correction (dB) Correction (dB) Correction (dB) Limit (dB,W/m) (dB,W/m) (dB,W/m)	e · o III			
(MHz) (dBμV) (V/H) (m) Ant Factor (dB) (dB) Correction(dB) (dBμV/m) (dBμV/	Result Value			
4874.00 42.31 H 1.6 31.29 -26.84 74.00 46.76 4874.00 42.32 V 1.5 31.29 -26.84 74.00 46.77 AV(RBW: 1 MHz VBW: 3 MHz)	_			
4874.00 42.32 V 1.5 31.29 -26.84 74.00 46.77 AV(RBW: 1 MHz VBW: 3 MHz)				
AV(RBW: 1 MHz VBW: 3 MHz)	27.24			
	27.23			
	_			
4874 00 32 18 H 1 6 31 20 -26 84 0 23 54 00 36 86				
4074.00 32.10 11 1.0 31.23 20.04 0.20 34.00 30.00	17.14			
4874.00 33.03 V 1.5 31.29 -26.84 0.23 54.00 37.71	16.29			
	_			
H: Horizontal, V: Vertical TEST MODE: 802.11 b - CH 6(2 437 MHz)				
*The TX signal wasn't detected from 3th harmonics.				
Remark *Checked in all 3 axis and the maximum measured data were reported.(Worst data is Z axis of position) *Total = Reading Value + Antenna Factor + Cable Loss - Amp Gain + Duty Cycle Correction				

10.4-7 Test Data

Test Date: 30-Apr-18 Measurement Distance: 3 m

lest Date:	30-Apr-18	i				IVIE	asurement	Distance:	3 m
Frequency	Reading	Position	Hoight	Correction	n Factor	Duty Cycle	F		
(MHz)	(dB#V)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Correction(dB)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)
			PEA	K(RBW: 1	MHz VE	BW: 3 MHz)			
2483.50	23.92	Н	1.8	26.30	6.20		74.00	56.42	17.58
2483.50	23.23	V	1.5	26.30	6.20		74.00	55.73	18.27
4924.00	42.50	Н	1.8	31.37	-26.74		74.00	47.13	26.87
4924.00	43.20	V	1.5	31.37	-26.74		74.00	47.83	26.17
			A \ <i>I</i> \	(RBW: 1 M		/· 2 MI I¬			
0.400 50	10.10	1 11				·	54.00	40.00	T 1 4
2483.50	16.13	Н	1.8	26.30	6.20	0.23	54.00	48.86	5.14
2483.50	16.04	V	1.5	26.30	6.20	0.23	54.00	48.77	5.23
4924.00	32.47	H	1.8	31.37	-26.74	0.23	54.00	37.33	16.67
4924.00	32.37	V	1.5	31.37	-26.74	0.23	54.00	37.23	16.77
Remark	_	nal wasn't de	tected fro	T MODE : 802. m 3th harmonio imum measure	CS.	I 1(2 462 MHz) reported.(Worst data	a is Z axis of p	position)	

^{*}Total = Reading Value + Antenna Factor + Cable Loss - Amp Gain + Duty Cycle Correction

10.4-8 Test Data

Test Date: 2-May-18 Measurement Distance: 3 m

Test Date:	2-May-18					Mea	asurement	Distance:	3 m
Frequency	Reading	Position	Uoiaht	Correction	Duty Cycle	F	Result Value		
(MHz)	(dB#V)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Correction(dB)	Limit (dB#V/m)	Result (dB#V/m)	Margir (dB)
			PEA	K(RBW: 1	MHz VE	BW: 3 MHz)			
2390.00	22.84	Н	1.8	26.11	6.02		74.00	54.97	19.03
2390.00	23.58	V	1.6	26.11	6.02		74.00	55.71	18.29
4824.00	42.49	Н	1.7	31.21	-26.98		74.00	46.72	27.28
4824.00	42.61	V	1.5	31.21	-26.98		74.00	46.84	27.16
			AV	(RBW: 1 M	Hz VBV	√: 3 MHz)			
2390.00	12.13	Н	1.8	26.11	6.02	0.98	54.00	45.24	8.76
2390.00	11.82	V	1.6	26.11	6.02	0.98	54.00	44.93	9.07
4824.00	33.52	Н	1.7	31.21	-26.98	0.98	54.00	38.73	15.27
4824.00	32.74	V	1.5	31.21	-26.98	0.98	54.00	37.95	16.05
Remark	*The TX sigr *Checked in	nal wasn't de all 3 axis an	tected from d the max		cs. d data were	1(2 412 MHz) reported.(Worst data p Gain + Duty Cycle C		osition)	

10.4-9 Test Data

Test Date: 2-May-18 Measurement Distance: 3 m

		D = = ;t; = :=	112:24	Correction	n Factor	Duty Cyclo	Result Value			
Frequency (MHz)		(m)	Ant Factor (dB)	Cable (dB)	- Duty Cycle Correction(dB)	Limit (dB#V/m)	Result (dBW/m)	Margin (dB)		
PEAK(RBW: 1 MHz VBW: 3 MHz)										
4874.00	42.78	Н	1.5	31.29	-26.84		74.00	47.23	26.77	
4874.00	43.16	V	1.5	31.29	-26.84		74.00	47.61	26.39	
			AV((RBW: 1 MH	Hz VBW	/: 3 MHz)				
4874.00	32.54	Н	1.5	31.29	-26.84	0.98	54.00	37.97	16.03	
4874.00	32.64	V	1.5	31.29	-26.84	0.98	54.00	38.07	15.93	
	H: Horizont	al, V:Vert	ical TES	T MODE: 802.	11 g - CH 6	6(2 437 MHz)				
Remark	-			m 3th harmonic		reported.(Worst data	a is 7 axis of n	osition)		
TIGHTAIN						o Gain + Duty Cycle C				

10.4-10 Test Data

Test Date: 2-May-18 Measurement Distance: 3 m

Fraguancy	uency Reading Posit 1Hz) (dBW) (V/H	Position	∐oight	Correction Factor		Duty Cyclo	Result Value			
(MHz)		(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Duty Cycle Correction(dB)	Limit (dBW/m)	Result (dBW/m)	Margin (dB)	
			PEA	K(RBW: 1 N	ЛНz VB	W: 3 MHz)				
2483.50	23.66	Н	1.6	26.30	6.20		74.00	56.16	17.84	
2483.50	23.59	V	1.5	26.30	6.20		74.00	56.09	17.91	
4924.00	42.22	Н	1.6	31.37	-26.74		74.00	46.85	27.15	
4924.00	42.61	V	1.5	31.37	-26.74		74.00	47.24	26.76	
			AV(I (RBW: 1 MH	ı Hz VBW	/: 3 MHz)				
2483.50	11.96	Н	1.6	26.30	6.20	0.98	54.00	45.44	8.56	
2483.50	11.71	V	1.5	26.30	6.20	0.98	54.00	45.19	8.81	
4924.00	32.47	Н	1.6	31.37	-26.74	0.98	54.00	38.08	15.92	
4924.00	32.79	V	1.5	31.37	-26.74	0.98	54.00	38.40	15.60	
Remark	*The TX sig *Checked ir	nal wasn't de n all 3 axis an	tected from		s. d data were	1(2 462 MHz) reported.(Worst data o Gain + Duty Cycle C		osition)		

10.4-11 Test Data

Test Date: 3-May-18 Measurement Distance: 3 m

Test Date:	3-May-18					Mea	asurement	Distance:	3 m	
Frequency	Reading	Position	Hoight	Correction	n Factor	Duty Cycle	Result Value			
(MHz)	(dB#V)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Correction(dB)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)	
			PEA	K(RBW: 1	MHz VE	BW: 3 MHz)				
2390.00	24.83	Н	1.6	26.11	6.02		74.00	56.96	17.04	
2390.00	24.09	V	1.6	26.11	6.02		74.00	56.22	17.78	
4824.00	43.15	Н	1.5	31.21	-26.98		74.00	47.38	26.62	
4824.00	42.81	V	1.5	31.21	-26.98		74.00	47.04	26.96	
			AV	(RBW: 1 M	Hz VBV	V: 3 MHz)				
2390.00	12.87	Н	1.6	26.11	5.79	1.02	54.00	45.79	8.21	
2390.00	12.55	V	1.6	26.11	5.79	1.02	54.00	45.47	8.53	
4824.00	32.52	Н	1.5	31.21	-26.98	1.02	54.00	37.77	16.23	
4824.00	33.09	V	1.5	31.21	-26.98	1.02	54.00	38.34	15.66	
Romark	_	nal wasn't de	tected fro	m 3th harmonic	CS.	H 1(2 412 MHz)	a is 7 avis of n	osition)		

Remark *Chec

^{*}Checked in all 3 axis and the maximum measured data were reported.(Worst data is Z axis of position)

^{*}Total = Reading Value + Antenna Factor + Cable Loss - Amp Gain + Duty Cycle Correction

10.4-12 Test Data

Test Date: 3-May-18 Measurement Distance: 3 m

resi Dale .	O May 10						-	Distance.	0 111	
Frequency		Position	Heiaht	Correction Factor		Duty Cycle Correction(dB)	Result Value			
(MHz)		(m)	Ant Factor (dB)	Cable (dB)	Limit (dB#V/m)		Result (dB≠V/m)	Margin (dB)		
			PEAK	(RBW: 1 M	Hz VBV	V: 3 MHz)				
4874.00	42.75	Н	1.6	31.29	-26.84		74.00	47.20	26.80	
4874.00	42.80	V	1.5	31.29	-26.84		74.00	47.25	26.75	
			L AV(F	LI RBW: 1 MH:	z VBW:	1 3 MHz)				
4874.00	32.60	Н	1.6	31.29	-26.84	1.02	54.00	38.07	15.93	
4874.00	33.01	V	1.5	31.29	-26.84	1.02	54.00	38.48	15.52	
	H: Horizonta	ıl, V:Vertic	al TEST	MODE: 802.1	1 n20 - CH	6(2 437 MHz)				
Remark	_			3th harmonics. um measured		eported.(Worst data	ı is Z axis of p	osition)		
	*Total = Read	ding Value + ,	Antenna Fa	ictor + Cable Lo	oss – Amp	Gain + Duty Cycle C	orrection			

10.4-13 Test Data

Test Date: 3-May-18 Measurement Distance: 3 m

Test Date: 3-May-18 Measurement Distance: 3 m										
Frequency	Reading	Position	∐oiaht	Correction	n Factor	Duty Cyclo	R	Result Value		
(MHz)	(dB#V)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Duty Cycle Correction(dB)	Limit (dB#V/m)	Result (dB#V/m)	Margin (dB)	
			PEA	K(RBW: 1 I	MHz VE	BW: 3 MHz)				
2483.50	23.22	Н	1.8	26.30	6.20		74.00	55.72	18.28	
2483.50	23.81	V	1.5	26.30	6.20		74.00	56.31	17.69	
2485.30	24.80	V	1.5	26.30	6.20		74.00	57.30	16.70	
4924.00	42.56	Н	1.8	31.37	-26.74		74.00	47.19	26.81	
4924.00	42.91	V	1.5	31.37	-26.74		74.00	47.54	26.46	
			AV	(RBW: 1 MI	Hz VBV	V: 3 MHz)				
2483.50	12.19	Н	1.8	26.30	6.20	1.02	54.00	45.71	8.29	
2483.50	12.12	V	1.5	26.30	6.20	1.02	54.00	45.64	8.36	
4924.00	32.64	Н	1.8	31.37	-26.74	1.02	54.00	38.29	15.71	
4924.00	32.74	V	1.5	31.37	-26.74	1.02	54.00	38.39	15.61	
	H : Horizont	al, V:Verti	cal TES	T MODE : 802.	11 n20 - CI	H 11(2 462 MHz)				

^{*}The TX signal wasn't detected from 3th harmonics.
*Checked in all 3 axis and the maximum measured data were reported.(Worst data is Z axis of position)

^{*}Total = Reading Value + Antenna Factor + Cable Loss - Amp Gain + Duty Cycle Correction

10.5 Restricted Band Edges

*802.11b Mode

Band Edges(CH Low)

Comment: 802.11b_CH1_PEAK_HOR

Detector mode: Average

Polarity: Horizontal

Band Edges(CH Low)

Comment: 802.11b_CH1_PEAK_VER

Comment: 802.11b_CH1_AV_VER

Band Edges(CH High)

Comment: 06041_11B_PEAK_CH11_HOR

Detector mode: Average

Polarity:Horizontal

Comment: 06041_11B_AV_CH11_HOR

Band Edges(CH High)

Polarity:Vertical Detector mode:Peak **%** *RBW 1 MHs *VBW 3 MHs SWT 2.5 ms Marker 1 [T1] 46.68 dBμV 2.461080000 GHz 87 dBµV 2 [T1 23. 483500000 GHz 1 PK

Comment: 06041_11B_PEAK_CH11_VER

Detector mode: Average Polarity: Vertical *RBW 1 MHs Marker 1 [T1] *VBW 3 MHs 37.36 dBµV 87 dBµV * Att 0 dB SWT 2.5 ms 2 [T1

Comment: 06041_11B_AV_CH11_VER

*802.11g Mode

Band Edges(CH Low)

Comment: WLAN_11G_CH1_PEAK_HOR

Detector mode: Average

Polarity: Horizontal

Comment: WLAN_11G_CH11_AV_HOR

Band Edges(CH Low)

Comment: WLAN_11G_CH1_PEAK_VER

Comment: WLAN_11G_CH1_AV_VER

Band Edges(CH High)

Comment: WLAN_11G_CH11_PEAK_HOR

Detector mode: Average Polarity: Horizontal *RBW 1 MHs Marker 1 [T1] *VBW 2 MHs 46.74 dByV Ref 87 dByV *Att 0 dB *SWT 5 ms 2.460940000 GHs *RBW 1 MHs Marker 1 [T1] *VBW 2 MHs 46.74 dByV 2.460940000 GHs *RBW 1 MHs Marker 2 [T1] *VBW 2 MHs 2.460940000 GHs *RBW 1 MHs Marker 1 [T1] *VBW 2 MHs 2.460940000 GHs *RBW 1 MHs Marker 1 [T1] *VBW 2 MHs 2.460940000 GHs *RBW 1 MHs Marker 1 [T1] *VBW 2 MHs 2.460940000 GHs *RBW 1 MHs Marker 1 [T1] *VBW 2 MHs 2.460940000 GHs *RBW 1 MHs Marker 1 [T1] *VBW 2 MHs 2.460940000 GHs *RBW 1 MHs Marker 1 [T1] *VBW 2 MHs 2.460940000 GHs *RBW 1 MHs Marker 1 [T1] *VBW 2 MHs 2.460940000 GHs *RBW 1 MHs Marker 1 [T1] *VBW 2 MHs 2.460940000 GHs *RBW 1 MHs Marker 1 [T1] *VBW 2 MHs 2.460940000 GHs *RBW 1 MHs Marker 2 [T1] *VBW 2 MHs 2.460940000 GHs *RBW 1 MHs Marker 1 [T1] *VBW 2 MHs 2.460940000 GHs *RBW 1 MHs Marker 1 [T1] *VBW 2 MHs 2.460940000 GHs *RBW 1 MHs Marker 1 [T1] *VBW 2 MHs 2.460940000 GHs *RBW 1 MHs Marker 1 [T1] *VBW 2 MHs 2.460940000 GHs *RBW 1 MHs Marker 1 [T1] *VBW 2 MHs 2.460940000 GHs *RBW 1 MHs Marker 1 [T1] *VBW 2 MHs 2.460940000 GHs *RBW 1 MHs Marker 1 [T1] *VBW 2 MHs 2.460940000 GHs *RBW 1 MHs Marker 1 [T1] *VBW 2 MHs 2 MHs

Comment: WLAN_11G_CH11_AV_HOR

Start 2.43 GHs

Band Edges(CH High)

Comment: WLAN_11G_CH11_PEAK_VER

Detector mode: Average

Polarity: Vertical

Comment: WLAN_11G_CH11_AV_VER

*802.11n20 Mode

Band Edges(CH Low)

Comment: WLAN_11N_CH1_PEAK_HOR

Detector mode: Average

Polarity: Horizontal

Comment: WLAN_11N_CH1_AV_HOR

Band Edges(CH Low)

Detector mode: Peak Polarity: Vertical *RBW 1 MHz Marker 1 [T1] *VBW 3 MHz 46.71 dByV Ref 87 dByV *Abb 0 dB SWT 8 ms 2.409960000 GHz **RBW 1 MHz Marker 1 [T1] *VBW 3 MHz 46.71 dByV 2.409960000 GHz **RBW 1 MHz Marker 1 [T1] **RBW 1 MHz Marker 1 [T1] **RBW 1 MHz Marker 1 [T1]

Comment: WLAN_11N_CH1_PEAK_VER

Detector mode: Average Polarity: Vertical *RBW 1 MHz Marker 1 [T1] 33.59 dBuV · VBW 3 MHs 87 dBµV * Att SWT 5 ms 2.409960000 GHz 0 dB Marker 2 [T1 390000000 GHz Stop 2.45 GHz Start 2.31 GHz 14 MHs/

Comment: WLAN_11N_CH1_AV_VER

Band Edges(CH High)

Detector mode:Peak

Polarity: Horizontal

Comment: WLAN_11N_CH11_PEAK_HOR

Detector mode: Average

Polarity: Horizontal

Comment: WLAN_11N_CH11_AV_HOR

Band Edges(CH High)

Comment: WLAN_11N_CH11_PEAK_VER

Detector mode: Average

Polarity:Vertical

Comment: WLAN_11N_CH11_AV_VER

11. Measurement of conducted disturbance

The continuous disturbance voltage of AC Mains in the frequency from 0.15 MHz to 30 MHz was measured in accordance to FCC PART 15.207. The test setup was made according to ANSI C 63.10 (2009) in a shielded room. The EUT was placed on a non-conductive table at least 0.8 m above the ground plan. A grounded vertical reference plane was positioned in a distance of 0.4 m from the EUT. The distance from the EUT to other metal surfaces was at least 0.8 m. The EUT was only earthen by its power cord through the line impedance stabilizing network. The power cord has been bundled to a length of 1.0 m. The test receiver with Quasi Peak detector complies with CISPR 16.

11.1 Measurement equipments

Equipment Name	Туре	Manufacturer	Serial No.	Next Calibration date	
TEST RECEIVER	ESPI	Rohde & Schwarz	100005	31-Oct-18	
LISN	ESH3-Z5	Rohde & Schwarz	836679/025	31-Oct-18	
Pulse Limiter	ESH3Z2	Rohde & Schwarz	NONE	31-Oct-18	

11.2 Environmental Condition

Test Place : Shielded Room

Temperature (°C) : 21.4 °C Humidity (% R.H.) : 43.5 % R.H.

11.3-1 Test Data (802.11 b)

Test Date: 4-May-18

Frequency	Correction	Correction Factor		Quasi-peak Value		Average Value			
(MHz)	Lisn (dB)	Cable (dB)	Line (H/N)	Limit (dB#V)	Reading (dB#V)	Result (dB#V)	Limit (dB#V)	Reading (dB/W)	Result (dB)
0.20	0.09	0.20	Ν	63.61	54.12	54.41	53.61	36.86	37.15
0.26	0.09	0.20	Ν	61.40	55.94	56.23	51.40	42.82	43.11
0.33	0.16	0.20	Н	59.53	46.67	47.03	49.53	33.47	33.83
0.41	0.16	0.21	Н	57.75	44.28	44.65	47.75	29.79	30.16
0.45	0.16	0.21	Н	56.93	41.92	42.29	46.93	28.44	28.81
0.48	0.16	0.21	Н	56.39	41.71	42.08	46.39	28.57	28.94

Remark *Corre

H: Hot Line, N: Neutral Line
*Correction Factor = Lisn + Cable
*Result = Correction Factor + Reading

11.3-2 Test Data (802.11 g)

Test Date: 4-May-18

Frequency (MHz)	Correction Factor		Line	Quasi-peak Value			Average Value		
	Lisn (dB)	Cable (dB)	(H/N)	Limit (dB#V)	Reading (dBW)	Result (dB#V)	Limit (dB#V)	Reading (dB#V)	Result (dB)
0.20	0.09	0.20	N	63.45	54.59	54.88	53.45	35.10	35.39
0.26	0.16	0.20	Н	61.59	56.86	57.22	51.59	44.03	44.39
0.32	0.16	0.20	Н	59.68	46.75	47.11	49.68	34.00	34.36
0.39	0.09	0.21	N	58.13	43.27	43.57	48.13	29.97	30.27
0.45	0.16	0.21	Н	56.82	40.91	41.28	46.82	27.23	27.60
0.47	0.16	0.21	П	56.60	42.44	42.81	46.60	28.25	28.62
	H: Hot Li	ne, N:N							

Remark

H: Hot Line, N: Neutral Line

*Correction Factor = Lisn + Cable

*Result = Correction Factor + Reading

11.3-3 Test Data (802.11 n20)

Test Date: 4-May-18

Frequency (MHz)	Correction	on Factor		Quasi-peak Value			Average Value		
	Lisn (dB)	Cable (dB)	Line (H/N)	Limit (dB#V)	Reading (dB#V)	Result (dB#V)	Limit (dB#V)	Reading (dB/W)	Result (dB)
0.19	0.09	0.19	Ν	63.95	55.21	55.49	53.95	37.20	37.48
0.26	0.16	0.20	Н	61.40	56.52	56.88	51.40	43.34	43.70
0.33	0.16	0.20	Н	59.53	46.18	46.54	49.53	33.93	34.29
0.40	0.16	0.21	Н	57.81	42.91	43.28	47.81	29.80	30.17
0.47	0.16	0.21	Н	56.50	42.66	43.03	46.50	28.62	28.99
0.55	0.16	0.21	Н	56.00	38.57	38.94	46.00	30.10	30.47
			1						
Remark	H: Hot Line, N: Neutral Line Remark *Correction Factor = Lisn + Cable								

*Result = Correction Factor + Reading

12.1. Photographs of EUT

[Front]

[Rear]

Appendix 1. Special diagram (802.11 b) * HOT LINE

Comment: 06041_11b_HOT

* NEUTRAL LINE

Comment: 06041_11b_NEUTRAL

Appendix 1. Special diagram (802.11 g)

Comment: 06041_11g_HOT

* NEUTRAL LINE

Comment: 06041_11g_NEUTRAL

Appendix 1. Special diagram (802.11 n20)

Comment: 06041_11N_HOT

* NEUTRAL LINE

Comment: 06041_11N_NEUTRAL

Appendix 3. Antenna Requirement

1. Antenna Requirement

1.1 Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.204

1.2 Antenna Connected Construction

The antenna types used in this product are Intergrated SMD antenna. The maximum Gain of this antenna is 4.5 dBi.