Praca Domowa Termodynamika i Fizyka Statystyczna R 2021/2022

Kacper Cybiński

12 maja 2022

1 Zadanie 1

Cykl Joule'a składa się z dwóch przemian izobarycznych przy ciśnieniu p_1 oraz p_2 , gdzie $(p_2 > p_1)$ oraz dwóch przemian adiabatycznych. Substancją roboczą jest gaz doskonały o znanych wartościach C_v, C_p oraz $\gamma = C_p/C_v$. Oblicz sprawność silnika działającego w takim cyklu.

2 Rozwiązanie

Zauważmy najpierw, że zgodnie z definicją przemiany adiabatycznej nie jest w niej wymieniane cieplo z otoczeniem, stąd też jakakolwiek wymiana ciepla nastąpi tylko w przemianach izobarycznych. Dodatkowo bez straty ogólnosci zalożyć można, że ciepło pobrane przy rozprężaniu izobarycznym dla temperatury p_2 jest równe:

$$Q_{1} = \int_{T_{1}}^{T_{2}} c_{V} dT + \int_{V_{1}}^{V_{2}} p_{2} dV = c_{V} (T_{2} - T_{1}) + p_{2} (V_{2} - V_{1}) = c_{p} (T_{2} - T_{1})$$

gdzie $c_v = C_V n$ i $c_p = C_p n$, a T_1 i T_2 to temperatury w odpowiednich punktach cyklu. Analogicznie dla sprężania mamy:

$$Q_2 = c_p \left(T_4 - T_3 \right)$$

Praca wykonana w tym cyklu jest równa różnicy ciepła pobranego i oddanego, czyli:

$$W = Q_1 - Q_2 = c_p \left(T_2 - T_1 - T_4 + T_3 \right)$$

Stad sprawność cyklu jest rowna:

$$\eta = \frac{W}{Q_1} = 1 - \frac{T_4 - T_3}{T_2 - T_1}$$

Zauważmy że przejścia z temperatury T_2 do T_3 i T_4 do T_1 nastepowały w trakcie przemiany adiabatycznej. Na podstawie zależności dla przemiany adiabatycznej postaci $p^{\frac{7-1}{y}}V=$ const wyznaczyć można temperatury w zależności od znanych wartości ciśnienia. Mamy stąd:

$$T_4 = \left(\frac{p_2}{p_1}\right)^{\frac{7-1}{\gamma}} T_1$$

$$T_3 = \left(\frac{p_2}{p_1}\right)^{\frac{p-1}{\gamma}} T_2$$

Podstawiając do wzoru na sprawność dostajemy:

$$\eta = 1 - \left(\frac{p_2}{p_1}\right)^{\frac{\gamma - 1}{\gamma}}$$