

Facultad de Ingeniería

Departamento de Ingeniería en Sistemas

DataWarehouse para un Taller de Mecánica

Catedrático: Emilson Omar Acosta Giron

Estudiantes:

Oscar Josue Ordoñez Amador -20201002703

Keneen Jair Argueta Flores -20221002856

Jennifer Gabriela Benítez Núñez -20221002452

Kevin Dagoberto García Maldonado -20221002036

Cristian Enrique Valdés Campos -20141003610

Fecha: 1 de abril del 2025

Índice

Creación de un DataWarehouse para un Taller de Mecánica	3
Objetivo general	4
Objetivos específicos	4
Marco Teórico	5
Bases de Datos OLTP y Data Warehouse	5
Modelo de Copo de Nieve	5
¿Por qué se escogió una base de datos orientada a un taller de mecánica?	5
Inteligencia de Negocios en un Taller Mecánico	6
Métricas en Data Warehousing	7
Explicación de la Base de Datos	7
Preguntas de Negocio Utilizadas en la Creación de las Tablas	8
Métricas para Medir la Tabla de Hechos	9
Anexos	10
Conclusiones	15

Creación de un DataWarehouse para un Taller de Mecánica

En la actualidad, los talleres mecánicos requieren sistemas eficientes para la gestión de sus operaciones y la toma de decisiones estratégicas. Este proyecto tiene como finalidad el desarrollo de un sistema de almacenamiento y análisis de datos basado en un Data Warehouse con un modelo de copo de nieve. A través de este enfoque, se busca optimizar el registro de clientes, servicios, facturación y desempeño del negocio.

El diseño del Data Warehouse permite centralizar información clave, facilitando la generación de reportes y análisis detallados sobre la demanda de servicios, el comportamiento de los clientes y la rentabilidad del taller. Este informe presenta la estructura del sistema, las preguntas de negocio abordadas, las métricas utilizadas y los beneficios obtenidos mediante la implementación de la solución.

Objetivo general

Desarrollar un Data Warehouse para un taller mecánico que permita almacenar, organizar y analizar información clave con el fin de mejorar la toma de decisiones y optimizar la gestión del negocio.

Objetivos específicos

Diseñar un modelo de datos basado en un esquema de copo de nieve que permita estructurar la información de clientes, vehículos, servicios y facturación.

Implementar métricas clave para evaluar la rentabilidad del taller, la frecuencia de visitas de clientes y la eficiencia de los servicios prestados.

Facilitar la generación de reportes analíticos que permitan visualizar tendencias, identificar oportunidades de mejora y optimizar la estrategia de negocio.

Marco Teórico

Bases de Datos OLTP y Data Warehouse

Las bases de datos OLTP (Online Transaction Processing) están diseñadas para manejar transacciones en tiempo real, permitiendo la inserción, actualización y eliminación rápida de datos. En el contexto del taller mecánico, una base OLTP es crucial para gestionar clientes, vehículos, servicios y facturación.

Por otro lado, los Data Warehouses (DW) permiten el almacenamiento y análisis histórico de grandes volúmenes de datos. En este caso, el modelo de copo de nieve facilita la normalización de los datos y optimiza su organización para consultas analíticas.

Modelo de Copo de Nieve

El modelo de copo de nieve es una técnica de diseño en bases de datos que normaliza las tablas dimensionales. Esto reduce la redundancia y mejora la eficiencia del almacenamiento. En el Data Warehouse del taller, esta estructura permite realizar análisis detallados sobre los servicios más solicitados, la frecuencia de visitas de los clientes y el rendimiento financiero del negocio.

¿Por qué se escogió una base de datos orientada a un taller de mecánica?

En nuestro taller mecánico, gestionamos diariamente una gran cantidad de información: datos de clientes, tipos de vehículos, servicios prestados, facturación y tiempos de ejecución. A medida que el negocio creció, nos dimos cuenta de que necesitábamos una solución eficiente para organizar esta información y tomar mejores decisiones.

Elegimos implementar un Data Warehouse porque nos permite analizar tendencias y optimizar la administración del taller. Con este sistema, podemos responder preguntas clave, como:

- ¿Cuáles son los servicios más solicitados y en qué temporadas hay mayor demanda?
- ¿Qué clientes regresan con más frecuencia y cuánto gastan en promedio?
- ¿Qué tipo de vehículos requieren más reparaciones y qué marcas generan mayor rentabilidad?

Además, al estructurar la base de datos con un modelo de copo de nieve, reducimos redundancias y mejoramos el rendimiento de las consultas. Esto nos ayuda a visualizar mejor la información y tomar decisiones estratégicas para mejorar el servicio al cliente, gestionar inventarios de repuestos y aumentar la rentabilidad del taller.

Inteligencia de Negocios en un Taller Mecánico

La inteligencia de negocios (BI) aplicada a un taller mecánico permite analizar tendencias, prever la demanda de servicios y optimizar la logística de recursos. Gracias a la centralización de datos en el Data Warehouse, es posible generar reportes que faciliten la toma de decisiones estratégicas.

Métricas en Data Warehousing

Las métricas son indicadores clave de rendimiento (KPIs) que permiten medir el éxito del negocio. En este proyecto, se utilizan KPIs como:

- Frecuencia de visitas por cliente.
- Servicios más demandados.
- Tiempo promedio de atención por servicio.
- Ingresos generados por tipo de servicio.

Explicación de la Base de Datos

El diseño de la base de datos OLTP incluye las siguientes entidades principales:

- Clientes (ID_Cliente, Nombre, Teléfono, Correo Electrónico).
- Vehículos (ID_Vehículo, Placa, Modelo, Marca, ID_Cliente).
- Servicios (ID_Servicio, Descripción, Costo, Duración Estimada).
- Facturas (ID_Factura, Fecha, Total, ID_Cliente).

El Data Warehouse se diseñó con un esquema de copo de nieve que contiene:

- Hechos: Facturación de servicios.
- Dimensiones: Cliente, Tiempo, Vehículo, Servicio.

Preguntas de Negocio Utilizadas en la Creación de las Tablas

Cada dimensión y tabla de hechos en un Data Warehouse responde a preguntas de negocio clave

• DIMTIEMPO:

- o ¿Cómo varían las ventas del taller a lo largo del tiempo (día, mes, trimestre, año)?
- o ¿Cuál es la temporada en la que se realizan más servicios?
- o ¿Cómo afecta el tiempo a la demanda de servicios?

• SUBDIMTIPOCLIENTE y SUBDIMGENERO:

- ¿Cuál es la distribución de clientes según su tipo (por ejemplo, cliente personal vs empresa)?
- o ¿Hay diferencias en el tipo de servicio solicitado según el género del cliente?
- o ¿Cuál es el porcentaje de clientes nuevos que regresan en un periodo determinado?

• DIMCLIENTES:

- o ¿Quiénes son los clientes más recurrentes del taller?
- o ¿Cuáles son las características demográficas de los clientes más rentables?
- o ¿Existe una relación entre el tipo de cliente y el tipo de servicio que solicita?

• DIMVEHICULOS:

- o ¿Qué marcas y modelos de vehículos requieren más mantenimiento o reparaciones?
- o ¿Qué tipo de vehículos generan más ingresos al taller?
- o ¿Cuál es la edad promedio de los vehículos que requieren servicio en el taller?

• DIMSERVICIOS:

- o ¿Cuáles son los servicios más demandados?
- O ¿Qué servicios tienen el mayor tiempo de ejecución?
- o ¿Existen servicios que generen más ingresos que otros?

• TABLA DE HECHOS:

- o ¿Cuánto ingreso genera el taller por mes, trimestre y año?
- o ¿Qué combinación de cliente, vehículo y servicio es más rentable?
- o ¿Cómo han evolucionado las ventas y los servicios a lo largo del tiempo?

Métricas para Medir la Tabla de Hechos

La tabla de hechos almacena valores cuantificables que permiten responder las preguntas anteriores. Algunas métricas clave que puedes usar incluyen:

- Ingresos Totales por Servicio:
 - o Mide cuánto dinero genera cada tipo de servicio.
- Número de Servicios Realizados:
 - o Cuenta cuántos servicios se realizaron en un período determinado.
- Ticket Promedio por Cliente:
 - o Calcula cuánto gasta en promedio cada cliente en el taller.
- Frecuencia de Visitas por Cliente:
 - o Mide cuántas veces un cliente regresa al taller en un periodo.

Anexos

Grupo #1: Taller Mecánica (2025). Ingresos Totales Anuales

Grupo #1: Taller Mecánica (2025). Ingresos Totales Mensuales

Grupo #1: Taller Mecánica (2025). Ordenes de Servicios Mensuales

Grupo #1: Taller Mecánica (2025). Clientes por Tipo

Grupo #1: Taller Mecánica (2025). Ordenes de Servicio por Genero

Grupo #1: Taller Mecánica (2025). Ingresos Mensuales por Clientes

Grupo #1: Taller Mecánica (2025). Vehículos con Mantenimientos mas Frecuentes

Grupo #1: Taller Mecánica (2025). Servicios más Demandados

Grupo #1: Taller Mecánica (2025). Servicios más Rentables

Grupo #1: Taller Mecánica (2025). Costo Total por tipo de Cliente Mensual

Grupo #1: Taller Mecánica (2025). DashBoard

Conclusiones

- La implementación del Data Warehouse ha permitido organizar y centralizar la información del taller, mejorando la eficiencia en el acceso y análisis de datos.
- La estructura basada en un modelo de copo de nieve facilita consultas optimizadas y reduce la redundancia de datos, contribuyendo a un mejor desempeño del sistema.
- Las métricas utilizadas han permitido identificar los servicios más rentables, la frecuencia de visitas de los clientes y el tiempo promedio de atención, lo que aporta valor a la toma de decisiones.
- La segmentación de clientes según tipo y género ha brindado información valiosa sobre el perfil de los usuarios más frecuentes y sus preferencias de servicio.

• El análisis de tendencias en facturación y demanda de servicios ha permitido establecer estrategias para optimizar la rentabilidad y mejorar la planificación operativa del taller.