1 Действие группы на множестве, орбиты

Определение 1.1. $\mathcal G$ - группа, A - множество, образующее группу, тогда определяющим соотношением называют равенство вида t(a)=s(a), где t,s - термы, $a\in A$

Пример 1.1. $A = \{a, b\}, a^2 = b^2, a^3b = ba$

Определение 1.2. A - множество элементов, X - множество определяющих соотношений. Группа, порождённая A и X - \mathcal{G} такая, что

- 1. образована при помощи A
- 2. в $\mathcal G$ выполняются все определяющие соотношения из X
- 3. любая группа \mathcal{H} , удовлетворяющая условиям 1 и 2 является гомоморфным множеством \mathcal{G}

Пример 1.2.

$$\mathcal{D}_3 = \{e, r_1, r_2, s_1, s_2, s_3\}$$

$$A = \{r_1, s_1\}, \ \langle A \rangle = \mathcal{D}_3$$

$$\begin{bmatrix} r_1^3 = e \\ r_1 s_1 = s_1 r_1^2 \\ s_1^2 = e \end{bmatrix}$$

 $\overline{\mathcal{H}}$ порождена A

* - одноместная операция

 \mathcal{H} ?????? ??? слова, состоящие из $r_1, s_1, r_1^{-1}, s_1^{-1}$, пусть в \mathcal{H} выполнены определяющие соотношения X

$$r_1^3 = e$$
 $r_1^{-1} = r_1^2$ $r_1^{-1} = r_1 r_1$ $s_1^2 = e$ $s_1^{-1} = s_1$ $s_1^{-1} = s_1$

$$s_1...s_1r_1...r_1 \\ s_1^nr_1^m \\ s_1^n = s_1^{n \mod 2} \\ r_1^m = r^{m \mod 3}$$

$$\begin{vmatrix} r_1^0 & s_1 r_1^0 \\ r_1^0 & s_1 r_1^0 \\ r_1^0 & s_1 r_1^0 \end{vmatrix}$$

Теорема 1.1. Для любого множества A и множества определяющих соотношений X существует группа, образованная A и X

Доказательство. Пусть $A' = A \cup \{a-1 : a \in A^{\}}$. Нужно проверить три свойства

1. Если M - свободный моноид образованный A'(M - множество слов алфавита A' с конкатенацией), M' - моноид, порождённый A', то M' - гомоморфный образ M. $u,v\in M,$ $u\equiv v\Leftrightarrow h(u)=h(v)$ для любого гомоморфизма $h:M\to \mathcal{G}.$ \mathcal{G} - группа, порождённая A в которой ??? X.

Надо доказать что ≡ является конгруэнтностью

- (a) $a \equiv a$
- (b) $a \equiv b \Rightarrow b \equiv a$
- (c) $a \equiv b, b \equiv c \Rightarrow a \equiv c$

Пусть $a \equiv b, c \equiv d$, то есть h(a) = h(b), h(c) = h(d), тогда, так как h является гомоморфизмом

$$h(ac) = h(a)h(c) = h(b)h(d) = h(bd)$$

следовательно $ac \equiv bd$ и \equiv - конгруэнтность

Пусть группа $F = M /_{\equiv}$, $\widehat{a} \in F$, $a = u_1...u_n$, $b = u_n^{-1}...u_1^{-1}$, $a, b \in M$

$$h(a) = h(u_1)...h(u_n)$$

$$h(b) = h(u_n^{-1})...h(u_1^{-1})$$

$$h(ab) = h(u_1)...h(u_n)h(u_n^{-1})...h(u_1^{-1}) = e$$

$$\widehat{a}\widehat{b}=\widehat{e}$$

F порождается A

2. Доказать $t(\overline{a}) = s(\overline{a}) \in X$

$$h(t(a_1,...,a_n)) = t(h(a_1),...,h(a_n)) = s(h(a_1),...,h(a_n))$$

= $h(s(a_1,...,a_n))$

$$t(\overline{a}) \equiv s(\overline{a}) \Rightarrow \widehat{t(\overline{a})} = widehats(\overline{a}) \Rightarrow t(\widehat{a_1},...,\widehat{a_n}) = s(\widehat{a_1},...,\widehat{a_n})$$

3. Из чего следует?

и WTF в общем

Пример 1.3. Про пирамиду рубика. Конём.

Пример 1.4. Дана "головоломка"

1	2
3	4

 Π остроить группу \mathcal{G}

а - перестановка двух столбцов

b - $nepecmaнoвка\ cmpoк$

$$a^2 = e, b^2 = e, ab = ba$$

	e	$\mid a \mid$	b	ab
e	e	a	b	ab
\overline{a}	a	e	ab	b
\overline{b}	b	ba	e	a
ab	ab	b	a	e

$$\mathcal{G} = (\{e, a, b, ab\}, \circ)$$

Пример 1.5. *Таблица 8x8. Конём.*

Пример 1.6. Z = 1, -1

Пример 1.7.

Пример 1.8.

Пример 1.9.

Пример 1.10.

Определение 1.3. Если $X=\emptyset,$ то $M \mathrel{/}_{\textstyle \equiv}$ - свободная группа порождённая A

Следствие 1.1. Любая группа порожедённая A - гомоморфный образ свободной группы

Определение 1.4. $\mathcal G$ - группа, $S \neq \emptyset$. Действие группы $\mathcal G$ на S - это отображение $h: S \times \mathcal G \to S$ и

1.
$$h(S, e) = S$$

2.
$$h(h(S, a), b) = h(S, ab)$$

Эти два условия по другому:

1.
$$Se = S$$

$$2. (Sa)b = S(ab)$$

Пример 1.11. \mathcal{G} действует на себя правыми умножениями

Определение 1.5. Сопряжение - действие группы \mathcal{G} на себя или множество подмножеств $P(\mathcal{G}): h(S,a) = a^{-1}Sa$

Теорема 1.2. Сопряжение - действие

Доказательство. Проверим условия сопряжения

$$1. e^{-1}Se = eSe = S$$

2.
$$h(h(S, a)b) = h(a^{-1}Sa, b) = b^{-1}a^{-1}Sab = (ab)^{-1}Sab = h(S, ab)$$

 $a^{-1}Aa = A \subseteq \mathcal{G}$

Теорема 1.3. Любая подгруппа при сопряжении переходит в подгруппу

$$\mathcal{A}$$
оказательство. Пусть A - подгруппа \mathcal{G}

Теорема 1.4. Пусть A - подгруппа, то A неподвижна при всех сопряжениях тогда и только тогда когда A - нормальная подгруппа

Доказательство.
$$\bullet \Rightarrow a^{-1}Aa = a \Rightarrow aa^{-1}Aa = aA \Rightarrow Aa = aA$$

$$\bullet \Leftarrow Aa = aA \Rightarrow a^{-1}Aa = a^{-1}aA \Rightarrow a^{-1}Aa = A$$

Определение 1.6 (Стабилизатор). \mathcal{G} действует на $S, s \in S$. Стабилизатор s - stab $s = \{a \in \mathcal{G}, h(s, a) = s\}$

Теорема 1.5. stab s - nodepynna \mathcal{G}

Доказательство. пусть $b, c \in \operatorname{stab} s$, тогда

Определение 1.7 (Орбита). Пусть G действует на $S,\,s\in S.$ Орбита s - orb $s=\{sa:a\in G\}$

Теорема 1.6. Орбиты - классы эквивалентности

Теорема 1.7. Количество элементов орбиты равняется индексу стабилизатора

Теорема 1.8 (Формула орбит). G действует на множестве S, тогда $|S| = \sum_{opбumu} \frac{\operatorname{ord} G}{\operatorname{ord} q_0}$

Следствие 1.2. Если $\operatorname{ord} G = p^k, \ p$ - $npocmoe, \ mo \ Z \neq \{e\}$