Import Libraries

```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        import csv
        from sklearn.model_selection import train_test_split
        from sklearn.metrics import mean absolute error, mean squared error, r2 score
        from sklearn.preprocessing import MinMaxScaler
        from sklearn.neighbors import KNeighborsRegressor
        from sklearn.linear model import LinearRegression
        from sklearn.svm import SVR
        from sklearn.ensemble import RandomForestRegressor
        from sklearn.tree import DecisionTreeRegressor
        from scipy.stats import pearsonr
        from sklearn.ensemble import GradientBoostingRegressor
        from sklearn.linear_model import SGDRegressor
        from sklearn.metrics import mean squared error
        import statsmodels.api as sm
        from xgboost import XGBRegressor
        from sklearn.model selection import GridSearchCV
```

```
In [2]: import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(os.getcwd())))
if not os.path.exists("./data"):
    os.makedirs("./data")
if not os.path.exists("./data/model"):
    os.makedirs("./data/model")
if not os.path.exists("./data/preprocessing"):
    os.makedirs("./data/preprocessing")
if not os.path.exists("./data/dataset"):
    os.makedirs("./data/dataset")
```

Reusable Function

```
In [21]:
         def boxplot_los_groupby(variable, los_range=(-1, 30), size=(8,4)):
             results = df[[variable, 'los']].groupby(variable).median().reset_index()
             categories = results[variable].values.tolist()
             hist data = []
             for cat in categories:
                 hist_data.append(df['los'].loc[df[variable]==cat].values)
             fig, ax = plt.subplots(figsize=size)
             ax.boxplot(hist_data, 0, '', vert=False)
             ax.set_xlim(los_range)
             ax.set yticklabels(categories)
             ax.set_xlabel('Length of Stay (days)')
             ax.tick_params(left=False, right=False)
             ax.set_title('Comparison of {} categories'.format(variable))
             plt.tight_layout()
             plt.show()
```

Extract Patients Data from ICUstays

```
In [3]: | icu = pd.read_csv('./mimiciv/2.0/icu/icustays.csv.gz',compression='gzip')
        adm = pd.read_csv('./mimiciv/2.0/hosp/admissions.csv.gz',compression='gzip')
        patients = pd.read_csv('./mimiciv/2.0/hosp/patients.csv.gz',compression='gzip'
In [4]: | icu.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 73181 entries, 0 to 73180
        Data columns (total 8 columns):
           Column
                            Non-Null Count Dtype
                            -----
             subject_id
                            73181 non-null int64
                            73181 non-null int64
         1
           hadm_id
         2
             stay id
                            73181 non-null int64
             first_careunit 73181 non-null object
         3
             last_careunit 73181 non-null object
         5
             intime
                           73181 non-null object
         6
             outtime
                            73181 non-null object
         7
                            73181 non-null float64
        dtypes: float64(1), int64(3), object(4)
        memory usage: 4.5+ MB
```

```
In [5]: |adm.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 431231 entries, 0 to 431230
        Data columns (total 16 columns):
             Column
                                   Non-Null Count
                                                   Dtype
                                                   ____
                                   -----
                                  431231 non-null int64
         0
             subject_id
         1
             hadm_id
                                  431231 non-null int64
         2
             admittime
                                  431231 non-null object
         3
             dischtime
                                  431231 non-null object
         4
             deathtime
                                  8598 non-null
                                                   object
         5
                                  431231 non-null object
             admission_type
         6
             admit_provider_id
                                  431227 non-null object
         7
             admission_location
                                  431231 non-null object
         8
             discharge_location
                                   312076 non-null object
         9
             insurance
                                  431231 non-null object
         10 language
                                  431231 non-null object
         11 marital status
                                  421998 non-null object
         12 race
                                  431231 non-null object
         13 edregtime
                                   299282 non-null object
         14 edouttime
                                   299282 non-null object
         15 hospital expire flag 431231 non-null int64
        dtypes: int64(3), object(13)
        memory usage: 52.6+ MB
In [6]:
        #drop unneccessary columns
        drop_adm = adm.drop(columns=['admittime','dischtime','deathtime','admission_ty|
                                     'admit_provider_id','admission_location','dischar
                                     'insurance','language','marital_status','race','e
In [7]: drop_adm.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 431231 entries, 0 to 431230
        Data columns (total 3 columns):
         #
           Column
                                   Non-Null Count
                                                   Dtype
        _ _ _
                                   -----
         0
             subject_id
                                  431231 non-null
                                                   int64
         1
                                  431231 non-null
             hadm_id
                                                   int64
         2
             hospital_expire_flag 431231 non-null int64
        dtypes: int64(3)
        memory usage: 9.9 MB
In [8]: #merge icu with filtered admission
```

df = icu.merge(drop_adm[['hadm_id', 'hospital_expire_flag']], on='hadm_id', how

In [9]: df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 73181 entries, 0 to 73180
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	subject_id	73181 non-null	int64
1	hadm_id	73181 non-null	int64
2	stay_id	73181 non-null	int64
3	first_careunit	73181 non-null	object
4	last_careunit	73181 non-null	object
5	intime	73181 non-null	object
6	outtime	73181 non-null	object
7	los	73181 non-null	float64
8	<pre>hospital_expire_flag</pre>	73181 non-null	int64
d+\/n	oc. float64/1\ int64/	1) object(1)	

dtypes: float64(1), int64(4), object(4)

memory usage: 5.6+ MB

In [10]: df.head()

Out[10]:

	subject_id	hadm_id	stay_id	first_careunit	last_careunit	intime	outtime	los
0	10000032	29079034	39553978	Medical Intensive Care Unit (MICU)	Medical Intensive Care Unit (MICU)	2180- 07-23 14:00:00	2180- 07-23 23:50:47	0.410266
1	10000980	26913865	39765666	Medical Intensive Care Unit (MICU)	Medical Intensive Care Unit (MICU)	2189- 06-27 08:42:00	2189- 06-27 20:38:27	0.497535
2	10001217	24597018	37067082	Surgical Intensive Care Unit (SICU)	Surgical Intensive Care Unit (SICU)	2157- 11-20 19:18:02	2157- 11-21 22:08:00	1.118032
3	10001217	27703517	34592300	Surgical Intensive Care Unit (SICU)	Surgical Intensive Care Unit (SICU)	2157- 12-19 15:42:24	2157- 12-20 14:27:41	0.948113
4	10001725	25563031	31205490	Medical/Surgical Intensive Care Unit (MICU/SICU)	Medical/Surgical Intensive Care Unit (MICU/SICU)	2110- 04-11 15:52:22	2110- 04-12 23:59:56	1.338588

In [11]: #Filter the 'icu' DataFrame to include only patients with at least 5 hours of of
filtered_icu = icu[icu['los'] > 5/24]

```
In [13]: filtered_pats.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 72390 entries, 0 to 72389
         Data columns (total 8 columns):
              Column
                                 Non-Null Count Dtype
                                 -----
          0
              subject_id
                                72390 non-null int64
                                72390 non-null object
          1
              gender
          2
              anchor_age
                                72390 non-null int64
                                72390 non-null int64
          3
              anchor_year
          4
              anchor_year_group 72390 non-null object
          5
                                27908 non-null object
              dod
          6
              intime
                                72390 non-null object
          7
              los
                                72390 non-null float64
         dtypes: float64(1), int64(3), object(4)
         memory usage: 5.0+ MB
In [14]: # Filter out anyone whose age is less than or equal to 17 at the time of ICU ad
         filtered_pats = filtered_pats[filtered_pats['anchor_age'] > 17]
In [15]: filtered_pats.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 72390 entries, 0 to 72389
         Data columns (total 8 columns):
          #
             Column
                                Non-Null Count Dtype
                                 -----
          0
              subject_id
                                72390 non-null int64
          1
                                72390 non-null object
              gender
              anchor_age
                                72390 non-null int64
                                72390 non-null int64
          3
              anchor_year
          4
              anchor_year_group 72390 non-null object
          5
              dod
                                 27908 non-null object
          6
              intime
                                72390 non-null object
          7
              los
                                 72390 non-null float64
         dtypes: float64(1), int64(3), object(4)
         memory usage: 5.0+ MB
In [16]: df = df.merge(filtered_pats[['subject_id','gender','anchor_age']], on='subject
```

```
In [18]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 170453 entries, 0 to 170452
         Data columns (total 11 columns):
              Column
                                   Non-Null Count
                                                    Dtype
                                   -----
                                                    ----
          0
              subject_id
                                   170453 non-null int64
          1
              hadm_id
                                   170453 non-null int64
            stay_id
          2
                                   170453 non-null int64
          3
             first_careunit
                                   170453 non-null object
          4
             last_careunit
                                   170453 non-null object
          5
              intime
                                   170453 non-null object
              outtime
                                   170453 non-null object
          6
          7
              los
                                   170453 non-null float64
          8
              hospital_expire_flag 170453 non-null int64
          9
                                   170453 non-null object
              gender
                                   170453 non-null int64
          10 anchor_age
         dtypes: float64(1), int64(5), object(5)
         memory usage: 15.6+ MB
In [17]: #save icu cohort csv file
```

df.to_csv('./data/preprocessing/icu_cohort.csv.gz', index=False)

```
In [19]: #plot for patients age vs los
    plt.scatter(df['anchor_age'], df['los'], alpha=0.1)
    plt.ylabel('LOS (days)')
    plt.xlabel('Age (years)')
    plt.title('Age versus Length-of-stay')
    plt.ylim(1, 120)
```

Out[19]: (1.0, 120.0)

Scatter Plot Observation

- The average LOS for patients in their 60s is around 10 days, but there are some patients in this age group who have an LOS of less than 5 days or more than 20 days.
- The median LOS is around 10 days.
- There are a few outliers (Higher than average LOS) in the data.

Labs Stay

extracting the itemids for all the labevents that occur within the time bounds for our cohort

```
icu_cohort = pd.read_csv('./data/preprocessing/icu_cohort.csv.gz',compression=
 In [3]:
 In [4]:
          labitems = pd.read_csv('./mimiciv/2.0/hosp/d_labitems.csv.gz',compression='gzi
In [27]:
          labitems.head()
Out[27]:
              itemid
                                             label
                                                    fluid
                                                          category
              50801
                              Alveolar-arterial Gradient Blood
                                                         Blood Gas
              50802
                                                         Blood Gas
                                       Base Excess Blood
              50803 Calculated Bicarbonate, Whole Blood Blood
                                                         Blood Gas
              50804
                                 Calculated Total CO2 Blood
                                                         Blood Gas
              50805
                                  Carboxyhemoglobin Blood Blood Gas
In [28]: category_counts = labitems.groupby('category')['itemid'].count()
          print(category_counts)
          category
          Blood Gas
                           64
          Chemistry
                          777
          Hematology
                          781
```

Name: itemid, dtype: int64

```
In [29]: | file_path = './mimiciv/2.0/hosp/labevents.csv.gz'
         chunk_size = 100000
         chunks = []
         for chunk in pd.read_csv(file_path, chunksize=chunk_size):
             merge_chunk = chunk.merge(icu_cohort[['stay_id', 'hadm_id', 'intime', 'los
             # Filter only numerical data
             merge_chunk = merge_chunk[merge_chunk['valuenum'].notnull()]
             # Convert the 'charttime' and 'intime' columns to pandas DateTime objects
             merge_chunk['charttime'] = pd.to_datetime(merge_chunk['charttime'])
             merge chunk['intime'] = pd.to datetime(merge chunk['intime'])
             # Calculate the time difference between 'charttime' and 'intime' in days
             # we want to extract measurements between admission and the end of the pat
             merge_chunk['time_diff_days'] = (merge_chunk['charttime'] - merge_chunk['i
             # Filter the rows in 'merge chunk'
             merge_chunk = merge_chunk[(merge_chunk['time_diff_days'] >= -1) & (merge_clumering)
             chunks.append(merge_chunk)
         labsstay = pd.concat(chunks, ignore index=True)
         C:\Users\User\AppData\Local\Temp\ipykernel_7652\1204666657.py:6: DtypeWarni
         ng: Columns (5) have mixed types. Specify dtype option on import or set low
         _memory=False.
           for chunk in pd.read_csv(file_path, chunksize=chunk_size):
         C:\Users\User\AppData\Local\Temp\ipykernel_7652\1204666657.py:6: DtypeWarni
         ng: Columns (5) have mixed types. Specify dtype option on import or set low
         _memory=False.
           for chunk in pd.read_csv(file_path, chunksize=chunk_size):
         C:\Users\User\AppData\Local\Temp\ipykernel_7652\1204666657.py:6: DtypeWarni
         ng: Columns (5) have mixed types. Specify dtype option on import or set low
         _memory=False.
           for chunk in pd.read csv(file path, chunksize=chunk size):
         C:\Users\User\AppData\Local\Temp\ipykernel_7652\1204666657.py:6: DtypeWarni
         ng: Columns (5) have mixed types. Specify dtype option on import or set low
         _memory=False.
           for chunk in pd.read csv(file path, chunksize=chunk size):
         C:\Users\User\AppData\Local\Temp\ipykernel_7652\1204666657.py:6: DtypeWarni
         ng: Columns (5) have mixed types. Specify dtype option on import or set low
         _memory=False.
           for chunk in pd.read_csv(file_path, chunksize=chunk_size):
```

```
In [30]: labsstay.shape
Out[30]: (38372040, 20)
```

Common Labs

Average Observation Per Stay

getting the average number of times each itemid appears in an icustay

1

1

1

1

```
In [31]:
         labsstay_counts = labsstay['stay_id'].value_counts().reset_index()
          labsstay_counts.columns = ['stay_id', 'labsstay_count']
          labsstay_counts
Out[31]:
                  stay_id labsstay_count
              0 36479755
                                 63765
              1 36671290
                                 51252
              2 31469106
                                 48580
              3 38199253
                                 46222
              4 34814635
                                 46143
                                     ...
```

72098 rows × 2 columns

72093 36400520

72094 38046396

72095 32169536 **72096** 38886407

72097 39302677

```
In [32]: labsstay_counts.shape
```

Out[32]: (72098, 2)

Out[33]:

	stay_id	ICU_count
0	31073147	37
1	34456715	37
2	32346798	37
3	35383104	37
4	34115393	37
72991	39824196	1
72992	33302469	1
72993	32622345	1
72994	33199830	1
72995	36195440	1

72996 rows × 2 columns

```
In [34]: ICU_counts.shape
```

Out[34]: (72996, 2)

In [35]: #keep stayid where Labsstay count > icu count

merged_counts = ICU_counts.merge(labsstay_counts, on='stay_id', how='outer').f
filtered_stayid = merged_counts[(merged_counts['labsstay_count']) > merged_cou
filtered_stayid

Out[35]:

	stay_id	ICU_count	labsstay_count
0	31073147	37	2701.0
1	34456715	37	370.0
2	32346798	37	111.0
3	35383104	37	2183.0
4	34115393	37	3663.0
72991	39824196	1	487.0
72992	33302469	1	621.0
72993	32622345	1	55.0
72994	33199830	1	24.0
72995	36195440	1	92.0

72042 rows × 3 columns

```
In [36]: filtered_stayid.shape
Out[36]: (72042, 3)
In [37]: |#Filter labsstays to only have these stay ids
         filtered_stayid_list = filtered_stayid['stay_id'].tolist()
In [38]: | chunk_size = 100000
         num_chunks = len(labsstay) // chunk_size + 1
         chunks = []
         # Process the DataFrame in chunks
         for i in range(num_chunks):
             start_idx = i * chunk_size
             end_idx = (i + 1) * chunk_size
             # Select the current chunk based on start and end indices
             chunk = labsstay.iloc[start_idx:end_idx]
             # Filter the chunk using 'filtered_stayid_list'
             filtered_chunk = chunk[chunk['stay_id'].isin(filtered_stayid_list)]
             # Append the processed chunk to the list
             chunks.append(filtered_chunk)
         # After processing all chunks, concatenate them into a final DataFrame
         filtered_labsstay = pd.concat(chunks, ignore_index=True)
In [39]: filtered_labsstay.shape
Out[39]: (38371885, 20)
         # Group by 'itemid' and 'stay id' and calculate the observation count for each
In [40]:
         obs_per_stay = filtered_labsstay.groupby(['itemid', 'stay_id']).size().reset_i
         obs_per_stay.head()
Out[40]:
            itemid
                    stay_id count
          0 50801 30004627
          1 50801 30005362
                               1
          2 50801 30007565
             50801 30010930
          4 50801 30011071
                               7
```

```
In [41]: |min_count = obs_per_stay['count'].min()
         max_count = obs_per_stay['count'].max()
         avg_count = obs_per_stay['count'].mean()
         print(f"Minimum Count: {min_count}")
         print(f"Maximum Count: {max_count}")
         print(f"Average Count: {avg_count}")
         Minimum Count: 1
         Maximum Count: 2340
         Average Count: 11.43886010517153
In [42]: # Group by 'itemid' and calculate the average count for each 'itemid'
         avg_obs_per_itemid = obs_per_stay.groupby('itemid')['count'].mean().reset_inde
         avg_obs_per_itemid.head()
Out[42]:
             itemid
                    avg_obs
          0 50801
                    3.885140
             50802 20.290459
          2 50803
                   3.004698
          3 50804 20.291189
             50805 2.327273
         min_count = avg_obs_per_itemid['avg_obs'].min()
In [43]:
         max_count = avg_obs_per_itemid['avg_obs'].max()
         avg_count = avg_obs_per_itemid['avg_obs'].mean()
         print(f"Minimum Count: {min_count}")
         print(f"Maximum Count: {max_count}")
         print(f"Average Count: {avg_count}")
         Minimum Count: 1.0
         Maximum Count: 21.194129476701896
         Average Count: 4.071320464236379
In [44]: # Filter the results based on the condition 'ava(count) > 10'
         # we want the features to have more than 10 values entered for the average pat
         avg_obs_per_stay = avg_obs_per_itemid[avg_obs_per_itemid['avg_obs'] > 10]
         avg_obs_per_stay.head()
Out[44]:
             itemid
                     avg_obs
           1 50802 20.290459
           3 50804 20.291189
           6 50808 15.252943
           7 50809 12.308465
          10 50813 12.994940
```

```
In [45]: | avg_obs_per_stay.shape
Out[45]: (44, 2)
In [46]: # Merge 'labsstay' with 'd_labitems' on 'itemid'
         #only keep the 44 itemid
         chunk size = 100000
         num_chunks = len(filtered_labsstay) // chunk_size + 1
         chunks = []
         # Process the DataFrame in chunks
         for i in range(num chunks):
             start_idx = i * chunk_size
             end_idx = (i + 1) * chunk_size
             # Select the current chunk based on start and end indices
             chunk = filtered_labsstay.iloc[start_idx:end_idx]
             # Merge the current chunk with 'labitems' on 'itemid'
             merged_chunk = chunk.merge(labitems[['itemid', 'label']], on='itemid', how
             # Merge the result with 'avg_obs_per_stay' on 'itemid'
             merged_chunk = merged_chunk.merge(avg_obs_per_stay[['avg_obs','itemid']],
             # Append the merged chunk to the list
             chunks.append(merged_chunk)
         # After processing all chunks, concatenate them into a final DataFrame
         df = pd.concat(chunks, ignore index=True)
```

```
In [47]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 32503253 entries, 0 to 32503252
         Data columns (total 22 columns):
              Column
                                 Dtype
              labevent_id
                                 int64
          0
          1
              subject_id
                                 int64
          2
                                 float64
              hadm id
          3
              specimen id
                                 int64
          4
              itemid
                                 int64
          5
              order_provider_id object
              charttime
                                 datetime64[ns]
          6
          7
              storetime
                                 object
          8
              value
                                 object
          9
              valuenum
                                 float64
          10 valueuom
                                 object
          11 ref range lower
                                 float64
          12 ref_range_upper
                                 float64
          13 flag
                                 object
                                 object
          14 priority
          15 comments
                                 object
                                 int64
          16 stay_id
          17 intime
                                 datetime64[ns]
          18 los
                                 float64
          19 time_diff_days
                                 float64
          20 label
                                 object
          21 avg obs
                                 float64
         dtypes: datetime64[ns](2), float64(7), int64(5), object(8)
         memory usage: 5.3+ GB
         # Group by 'label' and 'avg_obs', and then calculate the count of distinct 'sta
In [48]:
         commonlabs = df.groupby(['label', 'avg_obs']).agg(count=('stay_id', 'nunique')
         commonlabs.shape
```

Out[48]: (44, 3)

In [49]: commonlabs

Out[49]:

	label	avg_obs	count
0	Amikacin	17.421053	76
1	Anion Gap	15.790314	71426
2	Base Excess	20.290459	44891
3	Bicarbonate	15.844876	71446
4	Calcium, Total	14.961132	68977
5	Calculated Total CO2	20.291189	44885
6	Chloride	16.497069	71475
7	Creatinine	15.829617	71480
8	Cyclosporin	14.471111	225
9	Free Calcium	15.252943	33213
10	Glucose	12.308465	24382
11	Glucose	15.615444	71381
12	Н	19.829110	24741
13	Hematocrit	15.779609	71373
14	Hemoglobin	14.255044	71266
15	Heparin	18.980545	257
16	1	19.828981	24740
17	INR(PT)	10.830669	63798
18	L	19.829022	24740
19	Lactate	12.994940	46636
20	MCH	13.976786	71251
21	MCHC	13.980155	71252
22	MCV	13.977545	71254
23	Magnesium	15.514601	70338
24	Oxygen Saturation	13.402124	23734
25	PT	10.832409	63798
26	PTT	11.948269	63405
27	Phenobarbital	10.683706	313
28	Phosphate	15.047005	68992
29	Platelet Count	14.266822	71276
30	Potassium	16.777214	71481
31	Potassium, Whole Blood	11.162885	26092
32	RDW	13.971461	71236
33	RDW-SD	15.542799	30702
34	Rapamycin	11.573427	143
35	Red Blood Cells	13.977349	71256

	label	avg_obs	count
36	Sodium	16.693580	71477
37	Temperature	10.859185	19863
38	Urea Nitrogen	15.791723	71472
39	White Blood Cells	14.000000	71266
40	pCO2	20.290555	44883
41	рН	21.194129	46742
42	pO2	20.298839	44887
43	tacroFK	19.620936	1261

```
In [50]: commonlabs.to_csv('./data/preprocessing/commonlabs.csv.gz', index=False)
In [51]: del commonlabs
```

Labs Patients

extract the most common lab tests and the corresponding counts of how many patients have values for those labs

```
In [6]: commonlabs = pd.read_csv('./data/preprocessing/commonlabs.csv.gz',compression=
```

```
In [7]: | file_path = './mimiciv/2.0/hosp/labevents.csv.gz'
        chunk_size = 100000
        chunks = []
        for chunk in pd.read_csv(file_path, chunksize=chunk_size):
            merged chunk = pd.merge(chunk,labitems, on = 'itemid', how='inner')
            #merged_chunk = pd.merge(merged_chunk, commonlabs, on='label', how='inner
            merged_chunk = pd.merge(merged_chunk, icu_cohort, on=['hadm_id','subject_id")
            chunks.append(merged chunk)
        df = pd.concat(chunks, ignore index=True)
        C:\Users\User\AppData\Local\Temp\ipykernel_15052\2847547336.py:6: DtypeWarn
        ing: Columns (5) have mixed types. Specify dtype option on import or set lo
        w memory=False.
          for chunk in pd.read_csv(file_path, chunksize=chunk_size):
        C:\Users\User\AppData\Local\Temp\ipykernel_15052\2847547336.py:6: DtypeWarn
        ing: Columns (5) have mixed types. Specify dtype option on import or set lo
        w memory=False.
          for chunk in pd.read_csv(file_path, chunksize=chunk_size):
        C:\Users\User\AppData\Local\Temp\ipykernel 15052\2847547336.py:6: DtypeWarn
        ing: Columns (5) have mixed types. Specify dtype option on import or set lo
        w_memory=False.
          for chunk in pd.read csv(file path, chunksize=chunk size):
        C:\Users\User\AppData\Local\Temp\ipykernel_15052\2847547336.py:6: DtypeWarn
        ing: Columns (5) have mixed types. Specify dtype option on import or set lo
        w memory=False.
          for chunk in pd.read_csv(file_path, chunksize=chunk_size):
        C:\Users\User\AppData\Local\Temp\ipykernel_15052\2847547336.py:6: DtypeWarn
        ing: Columns (5) have mixed types. Specify dtype option on import or set lo
```

for shiple in ad mood sculfile noth shiplesize-shiple size.

w memorv=False.

```
In [8]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 102039133 entries, 0 to 102039132
Data columns (total 28 columns):
    Column
                           Dtype
 0
     labevent_id
                           int64
 1
     subject_id
                           int64
 2
     hadm id
                           float64
 3
     specimen_id
                           int64
 4
     itemid
                           int64
 5
     order_provider_id
                           object
     charttime
                           object
 6
 7
     storetime
                           object
 8
     value
                           object
 9
    valuenum
                           float64
 10 valueuom
                           object
 11 ref_range_lower
                           float64
 12 ref_range_upper
                           float64
 13 flag
                           object
 14 priority
                           object
 15 comments
                           object
 16 label
                           object
 17 fluid
                           object
 18 category
                           object
 19 stay_id
                           int64
 20 first_careunit
                           object
 21 last_careunit
                           object
 22 intime
                           object
 23 outtime
                           object
 24 los
                           float64
 25 hospital_expire_flag
                           int64
 26 gender
                           object
 27 anchor age
                           int64
dtypes: float64(5), int64(7), object(16)
memory usage: 21.3+ GB
```

```
In [9]:
          df.head()
 Out[9]:
              labevent id subject id
                                     hadm_id specimen_id itemid order_provider_id charttime
                                                                                            storetir
                                                                                   2180-07-
                                                                                             2180-0
           0
                    406
                          10000032 29079034.0
                                                 43001398 51237
                                                                             NaN
                                                                                        24
                                                                                   06:35:00
                                                                                             08:10:
                                                                                   2180-07-
                                                                                             2180-0
           1
                    460
                          10000032 29079034.0
                                                 87246904 51237
                                                                             NaN
                                                                                        25
                                                                                   04:45:00
                                                                                             07:07:
                                                                                   2180-07-
                                                                                             2180-0
           2
                    407
                          10000032 29079034.0
                                                 43001398 51274
                                                                             NaN
                                                                                        24
                                                                                   06:35:00
                                                                                             08:10:
                                                                                   2180-07-
                                                                                             2180-0
           3
                    461
                          10000032 29079034.0
                                                 87246904 51274
                                                                             NaN
                                                                                        25
                                                                                   04:45:00
                                                                                             07:07:
                                                                                   2180-07-
                                                                                             2180-0
                    409
                          10000032 29079034.0
                                                 74547069
                                                           50861
                                                                             NaN
                                                                                        24
                                                                                   06:35:00
                                                                                             08:11:
          5 rows × 28 columns
In [10]:
         df.shape
Out[10]: (102039133, 28)
          #keep only the 44 common labs
In [11]:
          labels = commonlabs['label'].tolist()
          chunk_size = 100000
          num_chunks = len(df) // chunk_size + 1
          chunks = []
          # Process the DataFrame in chunks
          for i in range(num_chunks):
              start_idx = i * chunk_size
              end_idx = (i + 1) * chunk_size
              chunk = df.iloc[start_idx:end_idx]
              filtered_chunk = chunk.merge(pd.DataFrame({'label': labels}), on='label',
              chunks.append(filtered_chunk)
          filtered_df = pd.concat(chunks, ignore_index=True)
In [12]: | del df
```

```
In [13]: filtered_df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 83646249 entries, 0 to 83646248
         Data columns (total 28 columns):
              Column
                                     Dtype
          0
              labevent_id
                                     int64
          1
              subject_id
                                     int64
          2
              hadm id
                                     float64
          3
              specimen id
                                     int64
          4
              itemid
                                     int64
          5
              order_provider_id
                                     object
          6
              charttime
                                     object
          7
              storetime
                                     object
          8
              value
                                     object
          9
              valuenum
                                     float64
          10 valueuom
                                     object
          11 ref range lower
                                     float64
          12 ref_range_upper
                                     float64
          13 flag
                                     object
          14 priority
                                     object
          15 comments
                                     object
          16 label
                                     object
          17 fluid
                                     object
          18 category
                                     object
          19 stay_id
                                     int64
          20 first_careunit
                                     object
          21 last careunit
                                     object
          22 intime
                                     object
          23 outtime
                                     object
                                     float64
          24 los
          25 hospital_expire_flag
                                    int64
          26 gender
                                     object
          27 anchor age
                                     int64
         dtypes: float64(5), int64(7), object(16)
         memory usage: 17.4+ GB
In [14]: |filtered_df.shape
Out[14]: (83646249, 28)
In [15]: import math
In [16]: filtered_df['charttime'] = pd.to_datetime(filtered_df['charttime'])
In [17]: |filtered_df['intime'] = pd.to_datetime(filtered_df['intime'])
In [18]: # we want to extract measurements between admission and the end of the patients
         filtered_df['labresultoffset_min'] = ((filtered_df['charttime'] - filtered_df[
```

```
# we want to extract measurements between admission and the end of the patients
         filtered_df['labresultoffset_sec'] = (filtered_df['charttime'] - filtered_df['
In [20]: filtered_df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 83646249 entries, 0 to 83646248
         Data columns (total 30 columns):
              Column
                                    Dtype
              _____
                                    ----
          0
              labevent id
                                    int64
              subject id
          1
                                    int64
              hadm_id
          2
                                    float64
          3
              specimen_id
                                    int64
          4
              itemid
                                    int64
          5
              order_provider_id
                                    object
          6
              charttime
                                    datetime64[ns]
          7
              storetime
                                    object
          8
              value
                                    object
          9
              valuenum
                                    float64
          10 valueuom
                                    object
          11 ref_range_lower
                                    float64
          12 ref_range_upper
                                    float64
          13 flag
                                    object
                                    object
          14 priority
          15 comments
                                    object
          16 label
                                    object
          17 fluid
                                    object
          18 category
                                    object
          19 stay_id
                                    int64
          20 first_careunit
                                    object
          21 last_careunit
                                    object
          22 intime
                                    datetime64[ns]
          23 outtime
                                    object
          24 los
                                    float64
          25 hospital_expire_flag
                                    int64
          26 gender
                                    object
          27 anchor_age
                                    int64
          28 labresultoffset_min
                                    int64
          29 labresultoffset sec
                                    float64
         dtypes: datetime64[ns](2), float64(6), int64(8), object(14)
```

memory usage: 18.7+ GB

```
In [22]: lab.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 34200597 entries, 0 to 34200596
         Data columns (total 30 columns):
              Column
                                     Dtype
                                     int64
          0
              labevent_id
          1
              subject_id
                                     int64
          2
              hadm id
                                     float64
          3
              specimen id
                                     int64
          4
              itemid
                                     int64
          5
              order_provider_id
                                     object
                                     datetime64[ns]
          6
              charttime
          7
              storetime
                                     object
                                     object
          8
              value
          9
              valuenum
                                     float64
          10 valueuom
                                     object
          11 ref range lower
                                     float64
          12 ref_range_upper
                                     float64
          13 flag
                                     object
          14 priority
                                     object
          15 comments
                                     object
          16 label
                                     object
          17 fluid
                                     object
          18 category
                                     object
          19 stay_id
                                     int64
          20 first_careunit
                                     object
          21 last careunit
                                     object
          22 intime
                                     datetime64[ns]
          23 outtime
                                     object
          24 los
                                     float64
          25 hospital_expire_flag
                                    int64
          26 gender
                                     object
          27 anchor age
                                     int64
          28 labresultoffset_min
                                     int64
          29 labresultoffset_sec
                                     float64
         dtypes: datetime64[ns](2), float64(6), int64(8), object(14)
         memory usage: 7.6+ GB
In [26]: lab.to_csv('./data/preprocessing/lab.csv.gz', index=False)
```

111 [20]. 140.00_C3V(./ 44004) proprocessing/ 140.03V.g2 3 11140X-1413C/

Chart Stay

extract the most common chartevents and the corresponding counts of how many patients have values for those chartevents

```
In [5]: #extracting the itemids for all the chartevents that occur within the time boun
        chartevent_path = r"./mimiciv/2.0/icu/chartevents.csv.gz"
        icucohort_path = r"./data/preprocessing/icu_cohort.csv.gz"
        chunk size = 100000
        icucohort_df = pd.read_csv(icucohort_path)
        chartevent_iter = pd.read_csv(chartevent_path, chunksize=chunk_size)
        merged_chunks = []
        # Iterate over the chunks and merge them with 'icucohort df'
        for chartevent_chunk in chartevent_iter:
            # Filter only numerical data from chartevent chunk
            chartevent_chunk = chartevent_chunk[chartevent_chunk['valuenum'].notnull()
            chartevent_chunk.drop(columns=['caregiver_id','warning','storetime'], inpl
            # Merge chartevent chunk with icucohort df on 'stay id'
            merged_chunk = pd.merge(chartevent_chunk, icucohort_df[['stay_id', 'intime
            merged chunks.append(merged chunk)
            #convert intime and chartime to datetime
            merged_chunk['charttime'] = pd.to_datetime(merged_chunk['charttime'])
            merged_chunk['intime'] = pd.to_datetime(merged_chunk['intime'])
            #extract measurements between admission and the end of the patients' stay
            merged_chunk['time_difference_days'] = (merged_chunk['charttime'] - merged
            # Filter the data where the time difference is between -1 and 'los'
            merged chunk = merged chunk[(merged chunk['time difference days'] >= -1) &
            merged_chunk.drop(columns=['time_difference_days'], inplace=True)
        # Concatenate the merged chunks into a single DataFrame
        chartstay = pd.concat(merged_chunks)
        # Save the merged DataFrame to a CSV file
        chartstay.to_csv("./data/preprocessing/chartstay.csv.gz", index=False)
```

```
s/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://p andas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)
```

merged_chunk.drop(columns=['time_difference_days'], inplace=True)
C:\Users\User\AppData\Local\Temp\ipykernel_18476\163717513.py:32: SettingWi
thCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

merged_chunk.drop(columns=['time_difference_days'], inplace=True)
C:\Users\User\AppData\Local\Temp\ipykernel_18476\163717513.py:32: SettingWi
thCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-vi

In [6]: chartstay.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 295056465 entries, 0 to 21355
```

Data columns (total 11 columns):

#	Column	Dtype
0	subject_id	int64
1	hadm_id	int64
2	stay_id	int64

3 charttime datetime64[ns]

4 itemid int64
5 value object
6 valuenum float64
7 valueuom object

8 intime datetime64[ns]

9 los float64 10 time difference days float64

dtypes: datetime64[ns](2), float64(3), int64(4), object(2)

memory usage: 26.4+ GB

In [7]: chartstay.shape

Out[7]: (295056465, 11)

```
In [11]: #getting the average number of times each itemid appears in an icustay
    columns_needed = ['itemid', 'stay_id']
    chunksize = 100000
    data_chunks = pd.read_csv("./data/preprocessing/chartstay.csv.gz", usecols=colous_per_stay = pd.DataFrame()

for chunk in data_chunks:
    # calculate counts per stay_id for each itemid
    obs_per_stay_chunk = chunk.groupby(['itemid', 'stay_id']).size().reset_index

# Concatenate the results of each chunk to the main DataFrame
    obs_per_stay = pd.concat([obs_per_stay, obs_per_stay_chunk])

# Calculate the average number of observations per stay for each itemid
    avg_obs_per_stay = obs_per_stay.groupby('itemid')['count'].mean().reset_index()
    avg_obs_per_stay.describe()
```

Out[11]:

	itemid	avg_obs
count	939.000000	939.000000
mean	226524.889244	48.714249
std	2366.602913	104.407604
min	220045.000000	1.000000
25%	224900.500000	5.082748
50%	226998.000000	14.450213
75%	228233.500000	43.906732
max	229882.000000	976.492958

```
In [12]: avg_obs_per_stay
Out[12]:
                itemid
                        avg_obs
            0 220045 208.922726
            1 220046
                       20.095912
            2 220047
                       20.104746
            3 220050 172.164118
            4 220051 172.098523
           934 229865
                        2.037221
           935 229872
                      9.250000
           936 229880
                      39.590476
           937 229881
                       65.483871
           938 229882
                       28.722222
          939 rows × 2 columns
In [13]: avg_obs_per_stay.shape
Out[13]: (939, 2)
In [14]: # Filter the results to keep only those with an average count greater than 49
          avg_obs_per_stay = avg_obs_per_stay[avg_obs_per_stay['avg_obs'] > 49]
In [15]: avg_obs_per_stay.shape
Out[15]: (199, 2)
```

Common Charts

extract the most common chartevents and the corresponding counts of how many patients have values for those chartevents

```
In [7]: d_items = pd.read_csv('./mimiciv/2.0/icu/d_items.csv.gz',compression='gzip')
```

In [8]: d_items.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4014 entries, 0 to 4013
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	itemid	4014 non-null	int64
1	label	4014 non-null	object
2	abbreviation	4014 non-null	object
3	linksto	4014 non-null	object
4	category	4014 non-null	object
5	unitname	1592 non-null	object
6	param_type	4014 non-null	object
7	lownormalvalue	19 non-null	float64
8	highnormalvalue	22 non-null	float64

dtypes: float64(2), int64(1), object(6)

memory usage: 282.4+ KB

In [9]: d_items.head()

Out[9]:

	itemid	label	abbreviation	linksto	category	unitname	param_type	lownormalva
0	220001	Problem List	Problem List	chartevents	General	NaN	Text	N
1	220003	ICU Admission date	ICU Admission date	datetimeevents	ADT	NaN	Date and time	N
2	220045	Heart Rate	HR	chartevents	Routine Vital Signs	bpm	Numeric	N
3	220046	Heart rate Alarm - High	HR Alarm - High	chartevents	Alarms	bpm	Numeric	N
4	220047	Heart Rate Alarm - Low	HR Alarm - Low	chartevents	Alarms	bpm	Numeric	N

```
In [16]: columns_needed = ['itemid', 'stay_id']
         chunksize = 100000
         data_chunks = pd.read_csv("./data/preprocessing/chartstay.csv.gz", usecols=col
                                   chunksize=chunksize)
         result = pd.DataFrame()
         for chunk in data_chunks:
             merged_data = chunk.merge(d_items, on='itemid', how='inner')
             merged_data = merged_data.merge(avg_obs_per_stay, on='itemid', how='inner'
             result = pd.concat([result, merged_data])
In [17]: result.to_csv("./data/preprocessing/merge_ditems_chart_avgobs.csv.gz", index=F
 In [7]: result = pd.read csv('./data/preprocessing/merge ditems chart avgobs.csv.gz')
 In [8]: grouped_result = result.groupby(['label', 'avg_obs'])['stay_id'].nunique().res
 In [9]: # Calculate the threshold for the minimum number of stay_ids required
         threshold = len(icu_cohort['stay_id'].unique()) * 0.25
         threshold
Out[9]: 18249.0
In [10]: # Filter the results to keep only rows where count is greater than the thresho
         filtered_result = grouped_result[grouped_result['count'] > threshold]
In [11]: # Sort the filtered results by count in descending order
         ld_commonchart = filtered_result.sort_values(by='count', ascending=False)
```

In [12]: ld_commonchart

Out[12]:		label	avg_obs	count
	75	Heart Rate	208.922726	72978
	164	Respiratory Rate	207.225807	72907
	108	O2 saturation pulseoxymetry	204.530713	72902
	62	GCS - Eye Opening	49.738155	72572
	64	GCS - Verbal Response	49.641869	72561
	63	GCS - Motor Response	49.530978	72551
	106	Non Invasive Blood Pressure mean	139.544098	72067
	107	Non Invasive Blood Pressure systolic	139.534886	72061
	105	Non Invasive Blood Pressure diastolic	139.505182	72058
	186	Temperature Fahrenheit	50.333491	71800
	92	Inspired O2 Fraction	54.795313	36455
	7	Activity / Mobility (JH-HLM)	85.090176	31219
	16	Arterial Blood Pressure mean	171.522424	27785
	15	Arterial Blood Pressure diastolic	172.098523	27574
	17	Arterial Blood Pressure systolic	172.164118	27566
	109	Orientation	166.041201	23261

```
In [13]: | ld_commonchart.shape
Out[13]: (16, 3)
```

In [14]: ld_commonchart.to_csv("./data/preprocessing/ld_commonchart.csv.gz", index=Fals

Chartevents Processed

Keep features from the most common chart features

```
In [8]: ld_commonchart= pd.read_csv('./data/preprocessing/ld_commonchart.csv.gz')
```

```
In [11]: def calculate_chartoffset(charttime, intime):
                                   return (charttime - intime).total seconds() // 60
                        columns_needed = ['stay_id', 'charttime', 'itemid', 'valuenum']
                        chunksize = 10000
                        data_chunks = pd.read_csv("./mimiciv/2.0/icu/chartevents.csv.gz", usecols=colu
                        ld = pd.DataFrame()
                        for chunk in data_chunks:
                                   # Join chunk with d items on itemid
                                   merged data = chunk.merge(d items, on='itemid', how='inner')
                                   # Join merged_data with Ld_commonchart on Label
                                   merged_data = merged_data.merge(ld_commonchart, on='label', how='inner')
                                   # Join merged_data with ld_labels on stay_id
                                   merged_data = merged_data.merge(icu_cohort[['stay_id', 'intime','los']], o
                                   # Convert 'charttime' & 'intime' column to datetime type
                                   merged_data['charttime'] = pd.to_datetime(merged_data['charttime'])
                                   merged_data['intime'] = pd.to_datetime(merged_data['intime'])
                                   # Calculate chartoffset using the calculate_chartoffset function
                                   merged_data['chartoffset'] = merged_data.apply(lambda row: calculate_chartoffset')
                                   # Filter data based on the time interval and non-null valuenum
                                   filtered data = merged data[(merged data['chartoffset'] >= -60) & (merged data['chartoffset'] >= -60) & (mer
                                                                                                            & merged_data['valuenum'].notnull()]
                                   # Concatenate the processed chunk to the Ld DataFrame
                                   ld = pd.concat([ld, filtered_data])
```

```
In [13]: ld.to_csv("./data/preprocessing/ld.csv.gz", index=False)
#Ld = pd.read_csv('./data/preprocessing/Ld.csv.gz')
```

In [15]: ld.head()

Out[15]:

	stay_id	charttime	itemid	valuenum	label	abbreviation	linksto	category	unitnam
0	39553978	2180-07- 23 21:01:00	220179	82.0	Non Invasive Blood Pressure systolic	NBPs	chartevents	Routine Vital Signs	mmH
1	39553978	2180-07- 23 22:00:00	220179	85.0	Non Invasive Blood Pressure systolic	NBPs	chartevents	Routine Vital Signs	mmH
2	39553978	2180-07- 23 19:00:00	220179	93.0	Non Invasive Blood Pressure systolic	NBPs	chartevents	Routine Vital Signs	mmH
3	39553978	2180-07- 23 20:00:00	220179	90.0	Non Invasive Blood Pressure systolic	NBPs	chartevents	Routine Vital Signs	mmH
4	39553978	2180-07- 23 14:11:00	220179	84.0	Non Invasive Blood Pressure systolic	NBPs	chartevents	Routine Vital Signs	mmH
4									•

Combine Data

```
In [5]: def process_mimiciv(input_file, output_file, columns_to_include):
    # Read the entire CSV file
    data = pd.read_csv(input_file)

# Calculate the average valuenum for each distinct stay_id and itemid combouve_avg_valuenum = data.groupby(['stay_id', 'label'])['valuenum'].mean().reset_avg_valuenum = avg_valuenum.pivot(index='stay_id', columns='label', values='valuenum').reset_index()

# Replace NaN values with 0 in every column
pivoted_data = pivoted_data.fillna(0)

# Select the specified columns to include in the final processed data final_data = pivoted_data.merge(data[columns_to_include].drop_duplicates() how='inner')

# Save the processed data to a CSV file final_data.to_csv(output_file, index=False)
```

In [7]: processed_chart= pd.read_csv('./data/preprocessing/processed_chart.csv.gz')

In [8]: processed_chart.head()

Out[8]:

	stay_id	Activity / Mobility (JH- HLM)	Arterial Blood Pressure diastolic	Arterial Blood Pressure mean	Arterial Blood Pressure systolic	GCS - Eye Opening	GCS - Motor Response	GCS - Verbal Response	Heart F
0	30000153	0.0	66.935484	90.300000	137.387097	3.541667	5.875000	3.458333	104.804
1	30000213	3.5	0.000000	0.000000	0.000000	3.818182	5.818182	3.636364	82.736
2	30000484	0.0	0.000000	0.000000	0.000000	3.866667	4.933333	3.066667	91.881
3	30000646	0.0	0.000000	0.000000	0.000000	4.000000	6.000000	5.000000	94.046
4	30001148	0.0	58.833333	73.541667	108.291667	3.285714	5.285714	3.857143	74.592
4									•

In [9]: processed_chart.shape

Out[9]: (72980, 18)

In [10]: columns_to_include = ['stay_id', 'los','gender','anchor_age']
process_mimiciv("./data/preprocessing/lab.csv.gz", "./data/preprocessing/proce

C:\Users\User\AppData\Local\Temp\ipykernel_1424\2272975284.py:3: DtypeWarnin
g: Columns (5) have mixed types. Specify dtype option on import or set low_me
mory=False.

data = pd.read_csv(input_file)

In [11]: processed_lab= pd.read_csv('./data/preprocessing/processed_lab.csv.gz')

In [12]: processed_lab.head()

Out[12]:

	stay_id	Amikacin	Anion Gap	Base Excess	Bicarbonate	Calcium, Total	Calculated Total CO2	Chloride	Cre
0	30000153	0.0	12.000000	-3.333333	21.000000	7.700000	22.666667	115.000000	1.0
1	30000213	0.0	15.666667	0.500000	23.333333	8.333333	27.000000	100.666667	3.6
2	30000484	0.0	10.000000	1.000000	27.666667	8.133333	33.000000	105.000000	1.1
3	30000646	0.0	12.000000	-1.000000	22.125000	7.625000	21.000000	109.500000	0.7
4	30001148	0.0	10.500000	2.444444	27.666667	0.000000	28.111111	106.666667	0.7

5 rows × 47 columns

```
In [13]: processed_lab.shape
Out[13]: (72043, 47)
In [14]: processed_data = processed_lab.merge(processed_chart, on=['stay_id','los'], how
In [15]: processed_data.head()
Out[15]:
                                     Anion
                                                Base
                                                                  Calcium,
                                                                            Calculated
                                                      Bicarbonate
                stay_id Amikacin
                                                                                         Chloride Cre
                                       Gap
                                              Excess
                                                                      Total
                                                                            Total CO2
           0 30000153
                             0.0
                                 12.000000
                                            -3.333333
                                                        21.000000 7.700000
                                                                            22.666667
                                                                                      115.000000
                                                                                                   1.0
                                                        23.333333 8.333333
              30000213
                             0.0
                                  15.666667
                                             0.500000
                                                                            27.000000
                                                                                      100.666667
                                                                                                   3.6
           2 30000484
                                 10.000000
                                             1.000000
                                                        27.666667 8.133333
                                                                            33.000000
                                                                                      105.000000
                             0.0
                                                                                                   1.2
           3 30000646
                             0.0
                                 12.000000
                                            -1.000000
                                                        22.125000 7.625000
                                                                            21.000000
                                                                                      109.500000
                                                                                                   0.7
              30001148
                             0.0 10.500000
                                             2.444444
                                                        27.666667 0.000000
                                                                             28.111111
                                                                                      106.666667
                                                                                                   0.7
          5 rows × 63 columns
In [16]: processed_data.shape
```

Out[16]: (72030, 63)

In [17]: processed_data.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 72030 entries, 0 to 72029
Data columns (total 63 columns):

рата	columns (total 63 columns):		
#	Column	Non-Null Count	Dtype
0	stay_id	72030 non-null	int64
1	Amikacin	72030 non-null	float64
2	Anion Gap	72030 non-null	float64
3	Base Excess	72030 non-null	float64
4	Bicarbonate	72030 non-null	float64
5	Calcium, Total	72030 non-null	float64
6	Calculated Total CO2	72030 non-null	float64
7	Chloride	72030 non-null	float64
8	Creatinine	72030 non-null	float64
9	Cyclosporin	72030 non-null	float64
10	Free Calcium	72030 non-null	float64
11	Glucose	72030 non-null	float64
12	H	72030 non-null	float64
13	Hematocrit	72030 non-null	float64
14	Hemoglobin	72030 non-null	float64
15	Heparin	72030 non-null	float64
16	I	72030 non-null	float64
17	INR(PT)	72030 non-null	float64
18	L	72030 non-null	float64
19	Lactate	72030 non-null	float64
20	MCH	72030 non-null	float64
21	MCHC	72030 non-null	float64
22	MCV	72030 non-null	float64
23	Magnesium	72030 non-null	float64
24	Oxygen Saturation	72030 non-null	float64
25	PT	72030 non-null	float64
26	PTT	72030 non-null	float64
27	Phenobarbital	72030 non-null	float64
28	Phosphate	72030 non-null	float64
29	Platelet Count	72030 non-null	float64
30	Potassium	72030 non-null	float64
31	Potassium, Whole Blood	72030 non-null	float64
32	RDW	72030 non-null	float64
33	RDW-SD	72030 non-null	float64
34	Rapamycin	72030 non-null	float64
35	Red Blood Cells	72030 non-null	float64
36	Sodium	72030 non-null	float64
37	Temperature	72030 non-null	float64
38	Urea Nitrogen	72030 non-null	float64
39	White Blood Cells	72030 non-null	float64
40	pC02	72030 non-null	float64
41	рН	72030 non-null	float64
42	p02	72030 non-null	float64
43	tacroFK	72030 non-null	float64
44	los	72030 non-null	float64
45	gender	72030 non-null	object
46	anchor_age	72030 non-null	int64
47	Activity / Mobility (JH-HLM)	72030 non-null	float64
48	Arterial Blood Pressure diastolic	72030 non-null	float64
49	Arterial Blood Pressure mean	72030 non-null	float64
50	Arterial Blood Pressure systolic	72030 non-null	float64
51	GCS - Eye Opening	72030 non-null	float64

```
72030 non-null float64
 52 GCS - Motor Response
 53 GCS - Verbal Response
                                          72030 non-null float64
                                          72030 non-null float64
 54 Heart Rate
 55 Inspired O2 Fraction
                                          72030 non-null float64
 56 Non Invasive Blood Pressure diastolic 72030 non-null float64
 57 Non Invasive Blood Pressure mean
                                          72030 non-null float64
 58 Non Invasive Blood Pressure systolic
                                          72030 non-null float64
                                          72030 non-null float64
 59 O2 saturation pulseoxymetry
 60 Orientation
                                          72030 non-null float64
61 Respiratory Rate
                                          72030 non-null float64
62 Temperature Fahrenheit
                                          72030 non-null float64
dtypes: float64(60), int64(2), object(1)
```

In [19]: processed_data.to_csv('./data/preprocessing/processed_data.csv.gz', index=Fals

In [21]: los.tail()

Out[21]:

	Anion Gap	Bicarbonate	Calcium, Total	Calculated Total CO2	Chloride	Creatinine	Free Calcium	Glucose
7202	5 13.500000	23.500000	8.80	22.666667	108.500000	1.65	1.1200	184.000000
7202	6 16.000000	24.000000	8.60	0.000000	103.000000	2.20	1.1100	116.000000
7202	7 11.500000	26.000000	8.80	27.166667	105.666667	0.70	1.1275	114.444444
7202	8 11.333333	24.333333	8.50	0.000000	103.666667	0.90	0.0000	106.000000
7202	9 15.400000	23.400000	8.88	0.000000	104.400000	1.00	0.0000	112.000000

5 rows × 57 columns

memory usage: 35.2+ MB

In [22]: los.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 72030 entries, 0 to 72029
Data columns (total 57 columns):

νατα	columns (total 57 columns):		
#	Column	Non-Null Count	Dtype
0	Anion Gap	72030 non-null	float64
1	Bicarbonate	72030 non-null	float64
2	Calcium, Total	72030 non-null	float64
3	Calculated Total CO2	72030 non-null	float64
4	Chloride	72030 non-null	float64
5	Creatinine	72030 non-null	float64
6	Free Calcium	72030 non-null	float64
7	Glucose	72030 non-null	float64
8	Н	72030 non-null	
9	Hematocrit	72030 non-null	
10	Hemoglobin	72030 non-null	
11	Heparin	72030 non-null	
12	I	72030 non-null	
13	INR(PT)	72030 non-null	float64
14	L	72030 non-null	float64
15	Lactate	72030 non-null	float64
16	MCH	72030 non-null	float64
17	MCHC	72030 non-null	float64
18	MCV	72030 non-null	float64
19	Magnesium	72030 non-null	
20	Oxygen Saturation	72030 non-null	float64
21	PT	72030 non-null	float64
22	PTT	72030 non-null	float64
23	Phenobarbital	72030 non-null	float64
24	Phosphate	72030 non-null	float64
25	Platelet Count	72030 non-null	
26	Potassium	72030 non-null	
27	Potassium, Whole Blood	72030 non-null	
28	RDW	72030 non-null	
29	RDW-SD	72030 non-null	float64
30	Rapamycin	72030 non-null	float64
31	Red Blood Cells	72030 non-null	float64
32	Sodium	72030 non-null	float64
33	Urea Nitrogen	72030 non-null	float64
34	White Blood Cells	72030 non-null	float64
35	pCO2	72030 non-null	
36	рН	72030 non-null	float64
37	p02	72030 non-null	float64
38	tacroFK	72030 non-null	float64
39	los	72030 non-null	float64
40	gender	72030 non-null	object
41	anchor_age	72030 non-null	int64
42	Activity / Mobility (JH-HLM)	72030 non-null	float64
43	Arterial Blood Pressure diastolic	72030 non-null	float64
44	Arterial Blood Pressure mean	72030 non-null	float64
45	Arterial Blood Pressure systolic	72030 non-null	float64
46	GCS - Eye Opening	72030 non-null	float64
47	GCS - Motor Response	72030 non-null	float64
48	GCS - Verbal Response	72030 non-null	float64
49	Heart Rate	72030 non-null	
50	Inspired O2 Fraction	72030 non-null	
51	Non Invasive Blood Pressure diastolic		float64

```
52Non Invasive Blood Pressure mean72030 non-nullfloat6453Non Invasive Blood Pressure systolic72030 non-nullfloat6454O2 saturation pulseoxymetry72030 non-nullfloat6455Respiratory Rate72030 non-nullfloat6456Temperature Fahrenheit72030 non-nullfloat64
```

dtypes: float64(55), int64(1), object(1)

memory usage: 31.9+ MB

In [23]: los['gender'].replace({'M': 0, 'F':1}, inplace=True)

In [24]: los.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 72030 entries, 0 to 72029
Data columns (total 57 columns):

νατα	columns (total 57 columns):		
#	Column	Non-Null Count	Dtype
0	Anion Gap	72030 non-null	float64
1	Bicarbonate	72030 non-null	float64
2	Calcium, Total	72030 non-null	float64
3	Calculated Total CO2	72030 non-null	float64
4	Chloride	72030 non-null	
5	Creatinine	72030 non-null	
6	Free Calcium	72030 non-null	
7	Glucose	72030 non-null	
8	Н	72030 non-null	
9	Hematocrit	72030 non-null	
10		72030 non-null	
	Hemoglobin		
11	Heparin	72030 non-null	
12	I	72030 non-null	
13	INR(PT)	72030 non-null	
14	L	72030 non-null	
15	Lactate	72030 non-null	
16	MCH	72030 non-null	
17	MCHC	72030 non-null	float64
18	MCV	72030 non-null	float64
19	Magnesium	72030 non-null	float64
20	Oxygen Saturation	72030 non-null	float64
21	PT	72030 non-null	float64
22	PTT	72030 non-null	float64
23	Phenobarbital	72030 non-null	float64
24	Phosphate	72030 non-null	
25	Platelet Count	72030 non-null	
26	Potassium	72030 non-null	
27	Potassium, Whole Blood	72030 non-null	
28	RDW	72030 non-null	
29	RDW-SD	72030 non-null	
30	Rapamycin	72030 non-null	
31	Red Blood Cells	72030 non-null	float64
32		72030 non-null	
	Sodium		
33	Urea Nitrogen	72030 non-null	float64
34 25	White Blood Cells	72030 non-null	
35	pCO2	72030 non-null	
36	pH	72030 non-null	
37	p02	72030 non-null	
38	tacroFK	72030 non-null	
39	los	72030 non-null	
40	gender	72030 non-null	
41	anchor_age	72030 non-null	int64
42	Activity / Mobility (JH-HLM)	72030 non-null	float64
43	Arterial Blood Pressure diastolic	72030 non-null	float64
44	Arterial Blood Pressure mean	72030 non-null	float64
45	Arterial Blood Pressure systolic	72030 non-null	float64
46	GCS - Eye Opening	72030 non-null	float64
47	GCS - Motor Response	72030 non-null	float64
48	GCS - Verbal Response	72030 non-null	
49	Heart Rate	72030 non-null	
50	Inspired O2 Fraction	72030 non-null	
51	Non Invasive Blood Pressure diastolic		
J_	MON THANSTAC PTOOM LICESONIE MINSTOLLIC	, 2000 HOH-HULL	1 100 004

```
52 Non Invasive Blood Pressure mean 72030 non-null float64
53 Non Invasive Blood Pressure systolic 72030 non-null float64
54 O2 saturation pulseoxymetry 72030 non-null float64
55 Respiratory Rate 72030 non-null float64
56 Temperature Fahrenheit 72030 non-null float64
dtypes: float64(55), int64(2)
```

```
In [28]: los.to_csv('./data/dataset/los.csv.gz', index=False)
```

Length-of-Stay Prediction Model

memory usage: 31.9 MB

```
In [3]: df = pd.read_csv('./data/dataset/los.csv.gz')
```

In [4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 72030 entries, 0 to 72029
Data columns (total 57 columns):

νατα	columns (total 57 columns):		
#	Column	Non-Null Count	Dtype
0	Anion Gap	72030 non-null	float64
1	Bicarbonate	72030 non-null	float64
2	Calcium, Total	72030 non-null	float64
3	Calculated Total CO2	72030 non-null	float64
4	Chloride	72030 non-null	
5	Creatinine	72030 non-null	
6	Free Calcium	72030 non-null	
7	Glucose	72030 non-null	
8	Н	72030 non-null	
9	Hematocrit	72030 non-null	
10		72030 non-null	
	Hemoglobin		
11	Heparin	72030 non-null	
12	I	72030 non-null	
13	INR(PT)	72030 non-null	
14	L	72030 non-null	
15	Lactate	72030 non-null	
16	MCH	72030 non-null	
17	MCHC	72030 non-null	float64
18	MCV	72030 non-null	float64
19	Magnesium	72030 non-null	float64
20	Oxygen Saturation	72030 non-null	float64
21	PT	72030 non-null	float64
22	PTT	72030 non-null	float64
23	Phenobarbital	72030 non-null	float64
24	Phosphate	72030 non-null	
25	Platelet Count	72030 non-null	
26	Potassium	72030 non-null	
27	Potassium, Whole Blood	72030 non-null	
28	RDW	72030 non-null	
29	RDW-SD	72030 non-null	
30	Rapamycin	72030 non-null	
31	Red Blood Cells	72030 non-null	float64
32		72030 non-null	
	Sodium		
33	Urea Nitrogen	72030 non-null	float64
34 25	White Blood Cells	72030 non-null	
35	pCO2	72030 non-null	
36	pH	72030 non-null	
37	p02	72030 non-null	
38	tacroFK	72030 non-null	
39	los	72030 non-null	
40	gender	72030 non-null	
41	anchor_age	72030 non-null	int64
42	Activity / Mobility (JH-HLM)	72030 non-null	float64
43	Arterial Blood Pressure diastolic	72030 non-null	float64
44	Arterial Blood Pressure mean	72030 non-null	float64
45	Arterial Blood Pressure systolic	72030 non-null	float64
46	GCS - Eye Opening	72030 non-null	float64
47	GCS - Motor Response	72030 non-null	float64
48	GCS - Verbal Response	72030 non-null	
49	Heart Rate	72030 non-null	
50	Inspired O2 Fraction	72030 non-null	
51	Non Invasive Blood Pressure diastolic		
J_	MON THANSTAC PTOOM LICESONIE MINSTOLLIC	, 2000 HOH-HULL	1 100 004

```
52 Non Invasive Blood Pressure mean
                                                    72030 non-null float64
         53 Non Invasive Blood Pressure systolic 72030 non-null float64
         54 O2 saturation pulseoxymetry
                                                    72030 non-null float64
                                                    72030 non-null float64
         55 Respiratory Rate
         56 Temperature Fahrenheit
                                                    72030 non-null float64
        dtypes: float64(55), int64(2)
        memory usage: 31.3 MB
In [5]: # Target Variable (Length-of-Stay)
        LOS = df['los'].values
        # Prediction Features
        features = df.drop(columns=['los'])
In [6]: | actual mean los = np.mean(LOS)
        actual median los = np.median(LOS)
        print(f"actual mean LOS = {actual_mean_los}\nactual median los = {actual_median
        actual mean LOS = 3.493232738352332
        actual median los = 1.9532812499999999
In [7]: # Split into train 80% and test 20%
        X_train, X_test, y_train, y_test = train_test_split(features,
                                                            test_size = .20,
                                                            random_state = 0)
        # Show the results of the split
        print("Training set has {} samples.".format(X_train.shape[0]))
        print("Testing set has {} samples.".format(X_test.shape[0]))
```

Training set has 57624 samples. Testing set has 14406 samples.

```
In [19]: from sklearn.model_selection import cross_val_score
         # Regression models for comparison
         models = [GradientBoostingRegressor(random_state=0),
             KNeighborsRegressor(),
             RandomForestRegressor(random_state=0),
             XGBRegressor(random_state=0)]
         mae = \{\}
         mse = \{\}
         rmse = \{\}
         r2 = \{\}
         for model in models:
             # Instantiate and fit Regressor Model
             reg_model = model
             reg_model.fit(X_train, y_train)
             # Make predictions with model
             y_test_preds = reg_model.predict(X_test)
             # Grab model name and store results associated with model
             name = str(model).split("(")[0]
             # Evaluation metrics
             mae[name] = mean_absolute_error(y_test, y_test_preds)
             mse[name] = mean_squared_error(y_test, y_test_preds)
             rmse[name] = mean_squared_error(y_test, y_test_preds, squared=False)
             r2[name] = r2_score(y_test, y_test_preds)
             print('{} done.'.format(name))
```

GradientBoostingRegressor done. KNeighborsRegressor done. RandomForestRegressor done. XGBRegressor done.

Model Evaluation

Out[20]: Text(0.5, 1.0, 'Comparison of Regression Models')


```
In [21]: #R2 Values
for key, value in r2.items():
    print(f"Key: {key}, Value: {value}")

Key: GradientBoostingRegressor, Value: 0.520799935008655
Key: KNeighborsRegressor, Value: 0.2196412208098515
Key: RandomForestRegressor, Value: 0.5284204642419412
Key: XGBRegressor, Value: 0.604343214448636
```

Out[22]: Text(0.5, 1.0, 'Comparison of Regression Models')


```
In [23]: #MSE Values
for key, value in mse.items():
    print(f"Key: {key}, Value: {value}")
```

Key: GradientBoostingRegressor, Value: 10.493854867362673

Key: KNeighborsRegressor, Value: 17.08883694212695

Key: RandomForestRegressor, Value: 10.326975241025298

Key: XGBRegressor, Value: 8.664366280789716

Out[24]: Text(0.5, 1.0, 'Comparison of Regression Models')


```
In [25]: #MAE Values
for key, value in mae.items():
    print(f"Key: {key}, Value: {value}")
```

Key: GradientBoostingRegressor, Value: 1.7147232102121142

Key: KNeighborsRegressor, Value: 2.238807677870846

Key: RandomForestRegressor, Value: 1.6877608309744911

Key: XGBRegressor, Value: 1.5476066202460712

Out[26]: Text(0.5, 1.0, 'Comparison of Regression Models')


```
In [27]: #RMSE value
for key, value in rmse.items():
    print(f"Key: {key}, Value: {value}")
```

Key: GradientBoostingRegressor, Value: 3.2394219958756025

Key: KNeighborsRegressor, Value: 4.133864649710601

Key: RandomForestRegressor, Value: 3.2135611463025406

Key: XGBRegressor, Value: 2.9435295617319213

```
In [15]: # XGBRegressor will be used as the LOS prediction model
    reg_model = XGBRegressor(random_state=0)
    reg_model.fit(X_train, y_train)
    y_test_preds = reg_model.predict(X_test)
    r2_not_refined = r2_score(y_test, y_test_preds)
    mse_not_refined = mean_squared_error(y_test, y_test_preds)
    mae_not_refined = mean_absolute_error(y_test, y_test_preds)
    rmse_not_refined = mean_squared_error(y_test, y_test_preds, squared=False)
    print(f"R2 score is: {r2_not_refined}")
    print(f"MAE score is: {mse_not_refined}")
    print(f"RMSE score is: {mae_not_refined}")
    print(f"RMSE score is: {rmse_not_refined}")
```

R2 score is: 0.604343214448636 MSE score is: 8.664366280789716 MAE score is: 1.5476066202460712 RMSE score is: 2.9435295617319213

Model Refinement

```
In [10]: |# Split into train 80% and test 20%
         X_train, X_test, y_train, y_test = train_test_split(features,
                                                              LOS,
                                                              test_size = .20,
                                                              random_state = 42)
         xgb_model = XGBRegressor(objective='reg:squarederror', random_state=42)
         # Define the parameter grid for grid search
         param_grid = {
             'learning_rate': [0.01, 0.1, 0.2],
              'max_depth': [3, 5, 7],
             'n_estimators': [100, 200, 300],
              'alpha': [0, 0.1, 1],
             'lambda': [0, 0.1, 1]
         }
         # Initialize GridSearchCV
         grid_search = GridSearchCV(estimator=xgb_model, param_grid=param_grid, cv=5, n
         # Perform grid search on the training data
         grid_search.fit(X_train, y_train, early_stopping_rounds=10, eval_set=[(X_test,
         # Get the best estimator from grid search
         best_xgb_model = grid_search.best_estimator_
         # Evaluate the best model on the test set
         y_pred = best_xgb_model.predict(X_test)
         # Calculate evaluation metrics
         mse = mean_squared_error(y_test, y_pred)
         r2 = r2_score(y_test, y_pred)
         mae = mean_absolute_error(y_test, y_pred)
         rmse = mean_squared_error(y_test, y_pred, squared=False)
         # Print the best parameters found
         print("Best Parameters:", grid_search.best_params_)
         C:\Users\User\anaconda3\envs\fyp\lib\site-packages\xgboost\sklearn.py:835: Us
         erWarning: `early_stopping_rounds` in `fit` method is deprecated for better c
         ompatibility with scikit-learn, use `early_stopping_rounds` in constructor or
         `set_params` instead.
           warnings.warn(
         Best Parameters: {'alpha': 0, 'lambda': 1, 'learning_rate': 0.1, 'max_depth':
         7, 'n_estimators': 300}
```

```
In [13]: #fit the model using the best params
         refined_xgb_model = XGBRegressor(reg_alpha=0, reg_lambda=1, learning_rate=0.1,
                                          max_depth=7, n_estimators=300)
         # Fit the model to the training data
         refined_xgb_model.fit(X_train, y_train)
         y_test_preds = refined_xgb_model.predict(X_test)
         r2 optimized = r2 score(y test, y test preds)
         mse_optimized = mean_squared_error(y_test, y_test_preds)
         mae_optimized = mean_absolute_error(y_test, y_test_preds)
         rmse_optimized = mean_squared_error(y_test, y_test_preds, squared=False)
         print("Optimized R2 score is: {:2f}".format(r2_optimized))
         print("Optimized MSE score is: {:2f}".format(mse_optimized))
         print("Optimized MAE score is: {:2f}".format(mae_optimized))
         print("Optimized RMSE score is: {:2f}".format(rmse_optimized))
         Optimized R2 score is: 0.639121
         Optimized MSE score is: 7.902774
         Optimized MAE score is: 1.420043
         Optimized RMSE score is: 2.811187
In [28]: print('Model refinement improved R2 score by {:.4f}'.format(r2_optimized-r2_no
```

Model refinement improved R2 score by 0.0348

Result

```
In [29]: LOS_predict = y_test_preds[:20]
LOS_actual = y_test[:20]
```

```
In [30]: fig, ax = plt.subplots(figsize=(10, 4.5))
         ind = np.arange(0,20)
         pad = 0.15
         width = 0.35
         set_actual = ax.bar(pad+ind, LOS_actual, width, color='#4c72b0', alpha=0.8)
         set_predict = ax.bar(pad+ind+width, LOS_predict, width, color='#dd8452')
         ax.set_ylabel('Length of Stay (days)')
         ax.set_xlabel('Admission Event')
         ax.set title('Prediction Model for Hospital Length of Stay (LOS)')
         ax.text(0.5, 11, 'Average LOS', fontdict=None, color='red', alpha=0.8)
         ax.text(0.5, 7.5, 'Median LOS', fontdict=None, color='gray')
         ax.set xticks(pad + ind + width)
         ax.set_ylim(0, 20)
         ax.set_xticklabels(list(range(20)))
         ax.axhline(y=actual_median_los, xmin=0, xmax=20, ls='--', color='gray')
         ax.axhline(y=actual_mean_los, xmin=0, xmax=20, ls='--', color='red', alpha=0.8
         ax.legend( (set_actual, set_predict), ('Actual LOS', 'Predicted LOS'),
                   loc='upper left')
         ax.tick_params(bottom=False, top=False, right=False)
```



```
In [31]: #save the model
import pickle

filename = './data/model/los_model.sav'
with open(filename, 'wb') as file:
    pickle.dump(refined_xgb_model, file)
```

```
In [ ]:
```