

Este manual ha sido realizado por el equipo de la asociación FABlab Mérida para el proyecto CITLab de la Diputación de Badajoz.

Equipo técnico: Alberto Cañaveras Solís, Carlos Gómez-Landero Hernández, Javier García González, Javier García Arias, Javier Conejero Rodríguez, Juan Luis Arenas Sánchez, Pablo Augusto Gordillo Caro, Víctor Gallardo Sánchez y Lara Jiménez Iglesias.

Redacción de contenidos: Javier García González.

Diseñador gráfico: Javier García González y Lara Jiménez Iglesias.

Maquetación: Javier García González y Lara Jiménez Iglesias.

Revisión: Javier García Arias, Juan Luis Arenas Sánchez, Julián Ortega Durán, Mercedes García Burrel, Víctor Gallardo Sánchez y Lara Jiménez Iglesias.

Todos los nombres propios de programas, sistemas operativos, equipos hardware, etc. que aparecen en este libro son marcas registradas de sus respectivas compañías u organizaciones.

Manual de usuario del Proyecto Sensor Aparcacoches © 2024 by FABlab Mérida is licensed under CC BY-NC-SA 4 0

UQS	VAMOS A HACER?	 05
COM	NENTES	
	Arduino UNO	 06
	Protoboard	
	LED	 80
	Programa Arduino IDE	 80
	Sensor de Humedad de suelo	
	Relé	 13
	Bomba de agua	 13
CON	IONES	 14
EL	DDIGO	 15
EXP	CACIÓN	 15
	Eldiagramadeflujo	
	El código	
MON	/JE	16
	Impresión 3D	
	Corte láser	
	Ensamblaje	

¿QUÉ VAMOS A HACER?

En este proyecto aprenderás cómo realizar una maceta automatizada que se riega a sí misma cuando lo necesita. Para ello, se utilizarán distintos recursos de electrónica, impresión 3d, corte láser e informática.

Esta maceta no deja de ser una puerta de entrada a la domótica.

También es una oportunidad para aprender so-

bre Agricultura 4.0, donde el agricultor trabaja mano a mano con la tecnología para facilitar su trabajo. En concreto, el mismo sistema que se realiza en este proyecto se puede aplicar a un huerto urbano o incluso a una huerta para automatizar el sistema de riego completo. Incluso puede llegar a ampliarse para que se tengan en cuenta más variables y llegar a tener un control óptimo de las condiciones de humedad y temperatura del huerto o invernadero.

Temática	Materiales	Electrónica
Impresión 3d	Filamento PLA de dos tipos	Arduino UNO x1
Corte láser	Metacrilato 5mm 30x20cm	Sensor de humedad de tierra capacitivox1
Programación básica	Imanes de neodimio 8mm x6	Bomba de agua 5V x1
Electrónica básica	Tubo de goma aprox 30cm	Relé x1
basica		Cable dupont x1
		Protoboard x1
		Portapilas x2AA x1
		Portapilas x4AA x1

Este proyecto consta de los siguientes elementos:

- Piezas impresas en 3D que supondrán un reto en la impresión 3d y el dominio de las máquinas.
- Piezas cortadas en metacrilato y madera que requerirán de conocimientos en corte láser en diversos materiales, potencias y velocidades.
- Electrónica básica
- Programación básica basada en bloques o Arduino, a través de diversas herramientas de programación.

Arduino UNO

Arduino Uno: Es una placa de desarrollo basada en el microcontrolador ATmega328P. Proporciona un entorno de programación y conexión para otros componentes.

Arduino Uno se encarga de ejecutar el código que se programe y controlar los demás elementos del proyecto.

Puede interactuar con sensores, actuadores y otros dispositivos a través de sus pines de entrada y salida.

Entradas del arduino: entradas digitales y analógicas:

Arduino tiene una serie de entradas y salidas de corriente que podemos utilizar para conectar diversos sensores y elementos. Existen dos tipos:

Digital Pin

Analog Pin

Default

Microcontroller's Port

Entrada digital (Digital Pin): Toma dos valores: 0 o 1. Si la placa nota corriente tomará le valor 1 y si no la nota tomará el valor 0.

Eiemplo:

Un botón que esté conectado a la placa.

Entrada analógica (Analog Pin): Toma distintos valores entre 0 y 1023. Dependiendo de la tensión

de corriente que le llegue indicará

uno u otro.

Ejemplo:

El volumen del sistema de sonido.

Ground

Power

Internal Pin

SWD Pin

Other Pin

Protoboard

Una protoboard o placa de prototipado es una herramienta utilizada en electrónica para realizar prototipos y pruebas de circuitos sin necesidad de soldar los componentes. Esta placa facilita la construcción rápida de circuitos y la experimentación con diferentes configuraciones.

Funcionamiento Protoboard:

La protoboard tiene una serie de ranuras o agujeros organizados en filas y columnas, donde se insertan los componentes electrónicos.

Columnas (Pistas): Agrupadas en bloques de 5 agujeros conectados internamente.

Filas (Buses): Diseñadas para distribuir las tensiones de +V y GND (tierra) a lo largo de la placa.

Canal Central: Hendidura que divide en dos mitades las filas de agujeros y facilita la conexión de los componentes electrónicos en el circuito.

Tipos de Protoboard:

Full

LED

La luz LED (siglas de Light Emitting Diode o Diodo Emisor de Luz) es un dispositivo electrónico que emite luz cuando una corriente eléctrica pasa a través de él.

Funcionamiento de la luz LED

Este componente cuenta con dos pines:

Positivo (+): pin más largo, indica la conexión del voltaje.

Negativo (-): pin más corto, conexión a tierra (GND).

Programa Arduino IDE

El Arduino IDE (Entorno de Desarrollo Integrado de Arduino) es una aplicación multiplataforma usada para escribir, compilar y cargar código en placas de microcontroladores compatibles con Arduino.

Para aprender a programar nuestro sensor aparcacoches, primero debemos practicar con algo más simple, conectar una luz LED a la placa Arduino UNO y programarla para que se encienda y apague de forma intermitente con un segundo de espera. Para ello seguimemos los siguientes pasos:

- Descargar el programa Arduino IDE desde el QR o en https://www.arduino.cc/en/software.
- Iniciar el programa y seguir las instrucciones de instalación, aceptando todo.
- Una vez instalado y mostrada la interfaz, abrimos el archivo de ejemplo "Blink":

File > Examples > 01.Basics > Blink

Interfaz Arduino IDE

File: Acceso a las funciones básicas de gestión de archivos, como crear, abrir, guardar y exportar proyectos en el IDE.

- Carpeta donde se almacenan todos los proyectos o "sketches" creados por el usuario.
- Herramienta que permite gestionar y añadir soporte para distintas placas de microcontroladores compatibles con Arduino.
- Herramienta que facilita la búsqueda, instalación y gestión de las bibliotecas necesarias para desarrollar proyectos con Arduino.
- Función que permite identificar, monitorear y corregir errores en el código de los proyectos.
- Facilita la localización de elementos específicos dentro del código, como variables, funciones o palabras clave.

- Verificar: Compila el código para verificar si tiene errores.
- Orrer: Envía el código a la placa Arduino conectada.
- Plotter Monitor: Comunicación en serie entre el Arduino y la computadora.
- Serial Monitor: Visualizador de datos.

- Se mostrará el código de la página siguiente, el cual mandará la información de encender (HIGH) y apagar (LOW) con una espera de 1 segundo (delay(1000)).
- Conectamos el LED a Arduino UNO y éste último al ordenador siguiendo el diagrama.
- Seleccionamos la placa conectada y cargamos el código del programa.

Código Blink

C++


```
1 // La función de configuración se ejecuta una vez cuando pre-
2 siona restablecer o enciende la placa.
3
4 void setup() {
6 // El pin 5 enviará señales, será una salida.
   pinMode(5, OUTPUT);
8 }
10 // La función de bucle se ejecuta una y otra vez para siempre.
11 void loop() {
12 digitalWrite(5, HIGH);
                               //Se encenderá la luz LED.
13 delay(1000);
                                //Espera de un segundo.
14 digitalWrite(5, LOW);
                                //Se apagará la luz LED.
   delay(1000);
15
                                 //Espera de un segundo.
16
17 }
```

Conexión Arduino UNO - LED

Sensor de Humedad del suelo

Este sensor mide la humedad del suelo a través de una propiedad del agua: es conductora de la electricidad. Cuanta más agua tiene un suelo, más conductor es.

Este sensor mide la corriente que pasa por él y nos da un valor en función de esa corriente.

Este sensor es un elemento de entrada analógica.

Para más información de este sensor, escanea el QR.

Funcionamiento Sensor Humedad

La lectura del sensor es realmente sencilla. Únicamente tenemos que realizar su lectura empleando una entrada analógica.

En este ejemplo, realizamos la lectura del sensor y mostramos el valor por pantalla. Las conexiones necesarias están indicadas en la imagen.

Código Sensor de Humedad

```
1 const int sensorPin = A0; //Conectamos el sensor al A0
2    3void setup(){
    4Serial.begin(9600);
    5}
6     7void loop(){
    8//Leemos el valor del sensor y lo imprimimos por pantalla
    9int humedad = analogRead(sensorPin);
10Serial.print(humedad);
11delay(1000);
12}
```

Conexión Arduino UNO - LED

Relé

Un relé es un interruptor electrico que podemos controlar desde el ESP32 o cualquier otro microcontrolador.

Funcionamiento relé

Pines que se conectan al ESP32:

Señal (S): pin por donde entra la señal de activación del relé.

Positivo (+): salida de 5V del ESP32.

Negativo (-): salida a GND del ESP32.

Pines que se conectan al circuito:

Normalmente abierto (NA o NO): un circuito conectado a estos dos pines no se encenderá cuando se conecte hasta que el reé se active.

Normalmente cerrado (NC): un circuito conectad a este pin, se encenderá normalmente, a no ser que el relé se active.

Bomba de Agua

Motor en corriente continua que impulsa el agua.

Existen varios modelos, por lo que es impotante saber cuál es el voltaje correcto para su buen funcionamiento.

CONEXIONES

	UNO	Portapilas 2AA		
•	VIN	•	+	
•	GND	•	-	

	UNO		Relé	
•	7 5V GND	•	IN VCC GND	

	UNO		Sensor	
•	8	•	DIN	
•	5V	•	+5V	
•	GND	•	GND	

Elementos:

Arduino UNO	. x1
Relé	. x1
Sensor de humedad tierra capacitivo	
Portapilas 2AA	. x1
Protoboard	x1
Bomba de agua 5V	. x1

	Relé	Во	mba	Po	rtapilas 4AAA	
•	COM NC	•	-		_	
•	110	•	+	•	+	

EXPLICACIÓN

El objetivo de este proyecto es utilizar la señal que nos llega por el sensor de humedad de tierra para activar o no la bomba de agua, que regará la maceta hasta llegar a un nivel óptimo de humedad.

El diagrama de flujo

Él código que introduciremos en el arduino sigue el siguiente mapa de flujo.

El código

Él código que utilizaremos en el arduino lo hemos subido a GitHub para facilitar la descarga.

https://github.com/FabLab-Merida/Maceta-Inteligente

Los símbolos

Los mapas de flujo utilizan símbolos que significan cada uno una cosa. Es utilizado en sistemas industriales para la organización de procesos y en programación para entender los códigos de forma rápida.

MONTAJE

Impresión 3D

Se imprimen con 8 perímetros para conseguir la estanqueidad, ya que en una maera necesitamos tener en cuenta que el agua y la humedad estén lejos de la electrónica.

Altura de capa:

0.3 mm

Material:

PLA

Perímetros:

8

Relleno:

20%

Soporte:

No

Piezas a imprimir:	Unidades
Conector_Inf.stl	x5
Conector_Sup_Iman_a.stl	x2
Conector_Sup_Iman_b.stl	x1
Depósito.stl	x1
Pasante.stl	x1
Top.stl	x1
Tiltno otl	v.1

ESCANEA

Todo lo necesario para montar el proyecto se encuentra en:

https://github.com/FabLab-Merida/Sensor-Aparcacoches

Corte láser

Piezas a cortar:UnidadesBase electronica.dxfx1Pared_usb.dxfx1Pared_tubo.dxfx1Pared_Normal.dxfx4

Es importante que el grososr del material sea 5mm para que las piezas encajen unas con otras.

Ensamblaje

Después de fabricar todas las piezas necesarias, procedemos al ensamblaje de nuestra maceta automática:

