教育用CPUボードの仕様

Rev 2.2 (2010年10月)

1 はじめに

教育用 CPU ボード (以下、単に「ボード」と呼ぶ) は図 1に示すように、観測や実験のためのスイッチ、表示用 LED、コネクタを備えている。

教育用 CPU のメモリアドレスは 9 ビットであるが、ボード上では 12 ビットのアドレスバスが使われている。これは、512 バイト× 8 バンク分の外部メモリをボード上に搭載できるようになっているためである(これに関しては、第 3 節の'MEM スイッチ'の項目など、(*) の付いた関連項目を参照のこと)。

2 表示機能

教育用 CPU ボードは、CPU の内部状態や外部回路の 状態を観測するために、以下のような表示用 LED(ラン プ)を備えている。各 LED のボード上での配置は図 2(a) を参照のこと。

• OP (LED)

点灯 プログラム、命令を実行中

• P0~P4 (LED×5)

点灯 実行中のフェーズ

- ADDRESS 8~0 (7-seg.LED×3 と LED×9) (*) アドレスバス:AB(8:0) の値を 16 進 (7-seg.LED) と 2 進 (LED) で表示する。
- DATA 7~0 (7-seg.LED×2 と LED×8) SEL スイッチ (3 節参照) で指定されたハードウェ アファシリティの値を 16 進 (7-seg.LED) と 2 進 (LED) で表示する。

• IBUF (LED×9)

-	- /
f	IBUF のフラグ
$7\sim0$	IBUF のデータの第 7~0 ビット

• OBUF (LED×9)

OPCI	(EEE /(U)
f	OBUF のフラグ
7~0	OBUF のデータの第 7~0 ビット

3 スイッチの機能

以下では、教育用 CPU ボード上のスイッチの機能について、必要なものについてのみ説明する。各スイッチのボード上での配置は図 2(b) を参照のこと。

• POWER (トグル SW)

ON	電源投入	OFF	電源切断

• CLKFRQ (16 接点ロータリ SW): CLocK FRe-Quency

教育用 CPU の動作クロック周波数を設定する。

374137	1, 01 0 - 2%		- / TIOC	~ ~ ~	()
0	1 MHz	1	333 kHz	2	100 kHz
3	$33~\mathrm{kHz}$	4	10 kHz	5	3 kHz
6	1 kHz	7	333 Hz	8	100 Hz
9	33 Hz	10	10 Hz	11	3.3 Hz
12	1 Hz	13	$0.33~\mathrm{Hz}$	14	0.10 Hz
15	$0.033~\mathrm{Hz}$				

• CLK (トグル SW): CLocK

EXT	コネクタ (JP3) だけにクロックを供
	給
中立	ボード上の教育用 CPU とコネクタ
	の両方にクロックを供給
BOARD	ボード上の教育用 CPU だけにクロッ
	クを供給

図 1: 教育用 CPU ボード

(a) LED の配置

(b) スイッチの配置

図 2: 教育用 CPU ボードの LED とスイッチの配置

● RESET (プッシュSW)

ON 教育用 CPU 内部のすべてのレジスタ、カウンタ、フラグ、その他のフリップフロップ の値を 0 にリセット。IBUF、OBUFのデータとフラグも 0 にリセット。

ADDRESS B~9 (3 ビット・ディップ SW) (*)
 IMC = Check の時のアドレスバスの上位 3 ビットを指定する。

B~9 アドレスバスの上位 3 ビット: 第 B,A,9 ビット

ADDRESS 8~0 (9 ビット・ディップ SW)
 IMC = Check の時のアドレスバスの下位 9 ビットを指定する。

8~0 アドレスバスの第8~0ビット

• WR (トグル SW):WRite

SET スイッチにより書き込むデータを指定する。

ROM 外部メモリの(アドレスバスで指定された番地の)値
DATA 8 ビット・トグル SW: DATA 7~0 の値

• ADRDEC (プッシュSW): ADdRess DECrement

ON メモリアドレスレジスタ: MAR の値を 1 だけ減じる

• ADRINC (プッシュSW): ADdRess INCrement

ON メモリアドレスレジスタ: MAR の値を 1 だけ増やす

SET (プッシュSW)

SEL スイッチで指定したメモリ、カウンタ、レジスタに、トグルスイッチ WR に従って値をセットする。

 ON
 WR = ROM
 外部メモリの(アドレス バスで指定された番地の) 値を書き込む

 WR = DATA
 トグル SW: DATA 7~0 の値を書き込む

● DATA 7~0 (8 ビット・トグル SW) メモリ、カウンタ、レジスタに書き込むデータの値 を設定する。

7~0 書き込むデータの第 7~0 ビット

• SEL 3~0 (4 ビット・トグル SW): SELect 観測や書き込みを行うハードウェアファシリティ(メ モリ、カウンタ、レジスタ、フラグ)の指定を行う。

<u> </u>	
0000 [<i>θ</i> H]	メモリのプログラム領域
	(アドレス 000H~0FFH)
0001 [<i>1</i> H]	メモリのデータ領域
	(アドレス <i>100</i> H~ <i>1FF</i> H)
0010 [2H]	PC
0011 [<i>3</i> H]	FLAG
	(下位4ビット: CF, VF, NF, ZF)
0100 [4H]	ACC
0101 [<i>5</i> H]	IX
1000 [8H]	MAR
1001 [<i>9</i> H]	IR

† 後ろに 'H' を付けて 16 進数であることを示す。

• SP (プッシュSW): Single Phase

ON 1 クロックフェーズだけ命令を実行して停 止する

• SI (プッシュSW): Single Instruction

ON 1命令だけプログラムを実行して停止する

• SS (プッシュSW): Start/Stop

ON	停止中	プログラムを実行し、HALT 命令
		で停止する
	実行中	現在実行中の命令を実行し終えた
		後、停止する

• IBUF (トグル SW): Input BUFfer

CONNECTOR	IBUF は、コネクタ JP2 からの
	データ により設定
DIPSW	IBUF は、ディップ SW:IBUF
	により設定

● IBUF (9 ビット・ディップ SW): Input BUFfer IBUF = DIPSW の時、IBUF のデータをセットする。

\mathbf{f}	IBUF のフラグ
$7\sim0$	IBUF のデータの第 7~0 ビット

• CHIP (トグル SW)

EXT	ボード外の(コネクタ JP4 に繋いだ)
	教育用 CPU を使用
BOARD	ボード上の教育用 CPU を使用

 IMC (トグル SW): Internal Memory Check アドレスバス (12 ビット幅) の下位 9 ビットの指定 方法を選択する。

CHECK	ディップ SW:ADDRESS 8~0 で与
	えられる
NORMAL	教育用 CPU の MAR で与えられる

● MEM (トグル SW) (*)

EXT.	ボード上の外部メモリ(512bytes × 8
	banks)を使用
INT.	教育用 CPU の内部メモリ(512bytes
	RAM)を使用

教育用CPUボードの操作例

2008年4月

1 取り扱い上の注意

教育用 CPU ボードの取り扱いに関しては特に以下の 点に注意し、慎重かつ丁寧に実験すること。

- 使用する DC5V 電源にはそれ自体の Power スイッチがついていないので、必ず以下の手順どおりに接続すること。特に、以下の 2. と 3. は絶対に逆順に行ってはならない。
 - **1.** ボード上の POWER スイッチが OFF であることを確認する。
 - **2.** DC5V 電源の赤・黒線をボード上の同色の端子に接続する。
 - **3.** DC5V 電源の灰色線を AC100V (電灯線) コンセントに接続する。
 - 4. ボード上の POWER スイッチを ON にする。

実験終了後は、上記の手順の逆を行うこと。

- ボードの上に物を置いたり、指や手を強く押しつけたりしないこと。
- 金属物などで回路をショートさせないこと。(ボード 上には多数の被覆されていない部分がある。)
- 実験開始前に、各 LED・スイッチの場所と名称を確認しておくこと。

2 サンプルプログラム

本節以降では、教育用 CPU ボードを円滑に操作できるよう、非常に小さなプログラムを例にとり、その入力から実行に至るまでの操作手順を具体的に示す。

図 3に示すプログラムは、ACC の値を IX の値の回数 だけ加えることにより、 $(ACC) \times (IX) \rightarrow ACC$ の計算

Address	Obj. Code	Source Code	
00	75 03	START: ST	ACC,(03H)
02	CO	EOR	ACC, ACC
03	B5 03	LOOP: ADD	ACC,(03H)
05	AA O1	SUB	IX,1
07	31 03	BNZ	LOOP
09	OF	HLT	
		END	

図 3: サンプルプログラム

を行う非常に簡単なプログラムである。最左列から順番に、オブジェクトコードのアドレス(16 進数)、オブジェクトコード(16 進数)、および、アセンブリ言語によるソースコードである。

3 サンプルプログラムの入力

図 3に示したサンプルプログラムを教育用 CPU のメモリに入力するためには、以下の操作を順に行えばよい。なお、以降では、16 進数の値は "xxH" のように末尾に'H'をつけて表すことにする。

1. それぞれのスイッチを下表のように設定する。

スイッチ = 位置	スイッチ = 位置
CLKFRQ = 0	CHIP = BOARD
CLK = BOARD	IMC = NORMAL
WR = DATA	MEM = INT.

- 2. SEL スイッチ 3~0 を 0010(下下上下: PC を選択) にし、RESET スイッチを押す。
 - \rightarrow DATA LED が全部消え、DATA 7-seg. が 00H を表示する(PC の値 = 00H)。

- 3. SEL スイッチ 3~0 を 1000 (上下下下: MAR を選択) にする。
 - \rightarrow DATA 7-seg. が $\theta\theta$ H を表示する(MAR の値 = $\theta\theta$ H)。
- 4. SEL スイッチ 3~0 を 0000 (メモリのプログラム領域を選択) にする。
 - \rightarrow ADDRESS 7-seg. は変化しない。DATA 7-seg. はメモリの 000H 番地の値を表示する(この値は一般には不定だが、FFH である場合が多い)。
- 5. DATA スイッチを *75*H(0111 0101)にし、SET スイッチを押す。
 - \rightarrow ADDRESS 7-seg. は変化せず、DATA 7-seg. は 75H を表示する(メモリの 000H 番地に 75H が書き込まれた)。
- ADRINC スイッチを押す。(メモリアドレスのイン クリメント)
 - \rightarrow ADDRESS 7-seg. が 001H となる(MAR の値が +1 された)。
- 7. 5. および 6. の操作を繰り返すことで、プログラムを最後まで入力する。ただし、5. での DATA スイッチの設定は、前頁のオブジェクトコードどおりに、03H、C0H、B5H、... というように順に変化させること。
- 8. すべての入力を終え、最後の ADRINC スイッチを押した後、ADDRESS 7-seg. は *00A*H (LED は 0 0000 1010) を表示しているはずである。

4 サンプルプログラムの実行

サンプルプログラムで $5 \times 4 = 20$ を計算する場合は、以下のように操作する。

- 1. SEL スイッチ 3~0 を 0100 (4H: ACC を選択) に する。
 - \rightarrow DATA 7-seg. は 00H を表示する(ACC の値 = 00H)。
- 2. DATA スイッチ 7~0 を *05*H (0000 0101) にし、SET スイッチを押す。
 - ightarrow DATA 7-seg. は 05H を表示する(ACC に 05H を書き込んだ)。
- 3. SEL スイッチ 3~0 を 0101 (*5*H:IX を選択) にする。
 - \rightarrow DATA 7-seg. は $\theta\theta$ H を表示する (IX の値 = $\theta\theta$ H)。

- 4. DATA スイッチ 7~0 を *04*H (0000 0100) にし、SET スイッチを押す。
 - \rightarrow DATA 7-seg. は 04H を表示する(IX に 04H を書き込んだ)。
- 5. SEL スイッチ 3~0 を 0010 (2H: PC を選択) にする。
 - \rightarrow DATA 7-seg. は $\theta\theta$ H を表示する(PC の値= $\theta\theta$ H)。
- 6. SP スイッチを押す。
 - \rightarrow P0 の LED が消え P1 が点灯する(命令が 1 フェーズだけ実行された)。
- 7. SP スイッチを再度押す。
 - \rightarrow P1 の LED が消え P2 が点灯する(さらに 1 フェーズ進んだ)。
- 8. SP スイッチをさらに3回押す。
 - \rightarrow LED の点灯が P3,P4,P0 と順に移動する(ST 命令は 5 フェーズで実行される¹)。また、DATA 7-seg. は 02H を表示する(PC が 2 回インクリメントされた)。
- 9. SEL スイッチ 3~0 を 0001 (*1*H:メモリのデータ領域を選択)にする。
 - → ADDRESS 7-seg. の最上位桁の表示が *I*H(奇数)になる。この時に**必ず** ADDRESS 7-seg. が表示している値を記録しておくこと。DATA 7-seg. の表示は一般に不定である(実際には *FF*H であることが多い)。
- 10. ADRINC スイッチを何回か押して、ADDRESS 7-seg. の値を 103H にする。
 - \rightarrow DATA 7-seg. は 05H を表示する(メモリのデータ領域: 103H 番地に ACC のデータ 05H が書き込まれている)。
- 11. ADRDEC スイッチを何回か押して、ADDRESS 7-seg. の表示が 9. で記録しておいた値になるようにする。
- 12. SEL スイッチ 3~0 を 0010(PC を選択)にする。
 → DATA 7-seg. は *02*H を表示する。
- 13. SI スイッチを押す (1 命令実行する)。
 - \rightarrow DATA 7-seg. は θ 3H を表示する(EOR 命令は 1 語 長なので、PC の値は 1 だけインクリメントされた)。

¹実験テキストの実行フェーズの表を参照のこと。

- 14. SEL スイッチ 3~0 を 0100(ACC を選択)にする。 \rightarrow DATA 7-seg. は $\theta\theta$ H を表示する(ACC がクリア された)。
- 15. SI スイッチを押す。
 - ightarrow DATA 7-seg. は 05H を表示する(ACC の値が 00H + 05H = 05H になった)。
- 16. SS スイッチを押す。
 - ightarrow DATA 7-seg. は 14H を表示する(ACC の値が $5 \times 4 = 20 = 14$ H になった)。
- 17. SEL スイッチ $3\sim0$ を 0010(PC を選択)にする。 \rightarrow DATA 7-seg. は 0AH を表示する(CPU は 09H 番地の HLT 命令で停止したが、PC の値は 1 つ先の 0AH に進んでいる)。
- ♣ 今度はクロック周波数を遅くして、フェーズの進行 を目で追いながら実行させてみよう(18.から22.)。
- 18. DATA スイッチ 7~0 を *00*H (0000 0000) にし、SET スイッチを押す。
- 19. 再び 1. から 4. の操作を行い、ACC に 05H、IX に 04H を書き込む。
- 20. CLKFRQ を 12 にする。
- 21. SS スイッチを OP が点灯するまで押し続ける。 \rightarrow P0 \sim P4 の LED が順に点灯する(CPU がゆっくり動いている)。
- 22. 適当なタイミングで SS スイッチを OP が消えるまで押し続ける。
 - \rightarrow P0 から P4 の方向への LED の点灯の流れが止まり、最終的に P0 が点灯する(CPU の動作が停止した)。実行を再開するには、21. に戻る。以下、21. と22. を繰り返す。
- 23. サンプルプログラムの実行を終えて次の操作に移る 時は、CLKFRQを0に戻しておくこと。