Tabelle SLR: un esempio

Maria Rita Di Berardini

Dipartimento di Matematica e Informatica Universitá di Camerino mariarita.diberardini@unicam.it

La gramatica

Esercizio: dimostrare che la seguente grammatica è una grammatica SLR

$$E \rightarrow E + T$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow F$$

$$F \rightarrow (E)$$

$$E \rightarrow id$$

Passo 1: aumentare la grammatica

Aggiungiamo un nuovo non terminale iniziale E' e una produzione $E' \to E$ ottenendo

$$E' \to E$$

- (1) $E \rightarrow E + T$
- (2) $E \rightarrow T$
- (3) $T \rightarrow T * F$
- (4) $T \rightarrow F$
- (5) $F \rightarrow (E)$
- (6) $F \rightarrow id$

Costruiamo la collezione canonica a partire dall'insieme iniziale definito dalla closure($\{E' \rightarrow \bullet E\}$) $I_0 = closure(\{E' \rightarrow \bullet E\}) = \{$ $E' \rightarrow \bullet E$. $E \rightarrow \bullet E + T$. $E \rightarrow \bullet T$. $T \rightarrow \bullet T * F$. $T \rightarrow \bullet F$. $F \rightarrow \bullet(E)$, $F \rightarrow \bullet id$

```
goto(I_0, E) =
                                                            closure(\{E' \rightarrow E \bullet, E \rightarrow E \bullet + T\}) =
I_0 = \{
                     E' \rightarrow \bullet E.
                                                            \{E' \rightarrow E \bullet, E \rightarrow E \bullet + T\} = I_1
                     E \rightarrow \bullet E + T.
                     E \rightarrow \bullet T.
                                                            goto(I_0, T) =
                     T \rightarrow \bullet T * F.
                                                            closure(\{E \rightarrow T \bullet, T \rightarrow T \bullet *F\}) =
                     T \rightarrow \bullet F.
                                                            \{E \to T \bullet, T \to T \bullet *F\} = I_2
                     F \rightarrow \bullet(E).
                     F \rightarrow \bullet id
                                                            goto(I_0, F) =
                                                            closure(\{T \rightarrow F \bullet\}) = \{T \rightarrow F \bullet\} = I_3
```

```
goto(I_0, () =
                                                             closure(\{F \rightarrow (\bullet E)\}) =
I_0 = \{
                     E' \rightarrow \bullet E.
                     E \rightarrow \bullet E + T.
                                                                  F \rightarrow (\bullet E),
                                                                 E \rightarrow \bullet E + T, E \rightarrow \bullet T,
                     E \rightarrow \bullet T.
                      T \to \bullet T * F, T \to \bullet T * F, T \to \bullet F.
                                                                 F \rightarrow \bullet(E), F \rightarrow \bullet id
                      T \rightarrow \bullet F.
                                                            = I_{\Lambda}
                     F \rightarrow \bullet(E),
                     F \rightarrow \bullet id
                                                             goto(I_0, id) =
                                                             closure(\{F \rightarrow id \bullet\}) = \{F \rightarrow id \bullet\} = I_5
```

$$I_{1} = \{E' \to E \bullet, \\ E \to E \bullet + T\}$$

$$I_{2} = \{E \to T \bullet, \\ T \to T \bullet *F\}$$

$$I_{3} = \{T \to F \bullet\}$$

$$goto(I_1, +) = closure(\{E \rightarrow E + \bullet T\}) = \{$$
 $E \rightarrow E + \bullet T,$
 $T \rightarrow \bullet T * F, T \rightarrow \bullet F,$
 $F \rightarrow \bullet(E), F \rightarrow \bullet \mathbf{id}$
 $\} = I_6$
 $goto(I_2, *) = closure(\{T \rightarrow T * \bullet F\}) = \{$
 $T \rightarrow T * \bullet F,$
 $F \rightarrow \bullet(E), F \rightarrow \bullet \mathbf{id}$
 $\} = I_7$

```
goto(I_{\Delta}, E) =
                                                            closure(\{F \rightarrow (E \bullet), E \rightarrow E \bullet + T\}) =
                                                            \{F \rightarrow (E \bullet), E \rightarrow E \bullet + T\} = I_8
I_4 = closure(\{F \rightarrow (\bullet E)\}) =
                                                            goto(I_4, T) =
                                                            closure(\{E \rightarrow T \bullet, T \rightarrow T \bullet *F\}) = I_2
    F \rightarrow (\bullet E).
    E \rightarrow \bullet E + T, E \rightarrow \bullet T
    T \rightarrow \bullet T * F, T \rightarrow \bullet F,
                                                            goto(I_4, F) =
    F \rightarrow \bullet(E), F \rightarrow \bullet id
                                                            closure(\{T \rightarrow F \bullet\}) = I_3
                                                            goto(I_4, () =
I_5 = \{F \rightarrow \mathsf{id} \bullet\}
                                                            closure(\{F \rightarrow (\bullet E)\}) = I_4
                                                            goto(I_4, id) =
                                                            closure(\{F \rightarrow id \bullet\}) = I_5
```

$$I_{6} = \{ E \rightarrow E + \bullet T, \\ T \rightarrow \bullet T * F, T \rightarrow \bullet F, \\ F \rightarrow \bullet (E), F \rightarrow \bullet id \}$$

$$goto(I_6, T) =$$
 $closure(\{E \rightarrow E + T \bullet, T \rightarrow T \bullet *F\}) =$
 $\{E \rightarrow E + T \bullet, T \rightarrow T \bullet *F\} = I_9$
 $goto(I_6, F) =$
 $closure(\{T \rightarrow F \bullet\}) = I_3$
 $goto(I_6, () =$
 $closure(\{E \rightarrow (\bullet E)\}) = I_4$
 $goto(I_6, \mathbf{id}) =$
 $closure(\{F \rightarrow \mathbf{id} \bullet\}) = I_5$

$$I_7 = \{ \\ T \to T * \bullet F, \\ F \to \bullet(E), F \to \bullet \mathsf{id} \}$$

$$goto(I_7, F) = closure(\{T \rightarrow T * F \bullet\}) =$$
 $\{T \rightarrow T * F \bullet\} = I_{10}$
 $goto(I_7, () =$
 $closure(\{E \rightarrow (\bullet E)\}) = I_4$
 $goto(I_7, \mathbf{id}) =$
 $closure(\{F \rightarrow \mathbf{id} \bullet\}) = I_5$

$$I_{8} = \{ \\ F \rightarrow (E \bullet), E \rightarrow E \bullet + T \\ \}$$

$$goto(I_{8},)) = closure(\{F \rightarrow (E) \bullet\}) = \\ \{F \rightarrow (E) \bullet\} = I_{11} \\ goto(I_{8}, +) = \\ closure(\{E \rightarrow E + \bullet T\}) = I_{6} \\ E \rightarrow E + T \bullet, T \rightarrow T \bullet *F \\ \}$$

$$goto(I_{9}, *) = \\ closure(\{T \rightarrow T * \bullet F\}) = I_{7}$$

Passo 3: calcolo della FOLLOW di non terminali della grammatica aumentata

FOLLOW(
$$E'$$
) = {\$}
FOLLOW(E) = {+,), \$}
FOLLOW(T) = {+, *,), \$}
FOLLOW(F) = FOLLOW(T) = {+, *,), \$}

La tabella

	id	+	*	()	\$	Ε	Τ	F
<i>s</i> ₀	S5			S4			1	2	3
s_1		S6				acc			
<i>s</i> ₂		R2	S7		R2	R2			
s 3		R4	R4		R4	R4			
<i>S</i> ₄	S5			S4			8	2	3
<i>S</i> ₅		R6	R6		R6	R6			
<i>s</i> ₆	S5			S4				9	3
s ₇	S5			S4					10
s 8		S6			S11				
S 9		R1	S7		R1	R1			
s ₁₀		R3	R3		R3	R3			
s ₁₁		R5	R5		R5	R5			