Regularization + Assignments 5, 6

(Neural Networks Implementation and Application Tutorial)

Vilém Zouhar, Noon Pokaratsiri Goldstein

15th, 16th December 2021

Overview

- Assignment 5
- Regularization
- Data Augmentation
- Ensembling
- Dropout
- Assignment 6

Assignment 5

Tips

- Start early
- Ask questions on Piazza
 - ▶ We try to be very active there and lead you to solutions
- What went wrong?
- What was the hardest part?

Assignment 5

Tips

- Start early
- Ask questions on Piazza
 - ▶ We try to be very active there and lead you to solutions
- What went wrong?
- What was the hardest part?
- Who wants to present their solution?
- Any questions?

Regulariza7tion

General

- What is regularization, why do we need it?
- What is the training & generalization error?

Regulariza7tion

General

- What is regularization, why do we need it?
- What is the training & generalization error?

Norm Penalty

- What is a norm penalty?
- Where do we add this penalty?
- What's the practical effect of L_1 and L_2 (sparsity)?

Data Augmentation

- What is it?
- Why & how does it work?
- Examples in computer vision domain?
- Examples in coputational linguistics domain?

Data Augmentation

- What is it?
- Why & how does it work?
- Examples in computer vision domain?
- Examples in coputational linguistics domain?

Does data augmentation of the outputs also make sense?

Data Augmentation

- What is it?
- Why & how does it work?
- Examples in computer vision domain?
- Examples in coputational linguistics domain?

Does data augmentation of the outputs also make sense?

Yes! - Label smoothing

- $(0,0,1,0) \rightarrow (0.1,0.1,0.7,0.1)$
- Still same argmax (predictions)
- ullet Does not punish softmax and σ for not predicting 1 which they can't
- Reduces dependency on individual samples

When to stop training?

- Why not when the training loss reaches 0?
 - ► Can sometimes not do that
 - We're interested in generalization error

When to stop training?

- Why not when the training loss reaches 0?
 - Can sometimes not do that
 - We're interested in generalization error

Patience k

- Stop if your metric does not improve for at least *k* epochs
- Can use validation loss but also extrinsic metric

Ensembling

- Simple trick: train multiple networks with different seed
- Why does this work?
 - ► Some of their errors are not systematic and is caused by noise
 - Noise cancels out

Implementation

- Classification:
 - Hard classification: make prediction by every model and pick most common class
 - Soft classification: sum probabilities and pick argmax class
 - Are they always the same?
- Regression:
 - Mean
- Provides systematic improvement of a few points
- Not that interesting, costs a lot of power
- SotA papers publish results without ensembling because everyone knows it would help slightly

Dropout

- Poor man's bagging
- How does it work?
- Part of assignment 6

What went wrong?

- A model had training loss of 10.1 and development loss of 2.0.
- How could this be?

Assignment 6

Any questions?