Mathematics Cheat Sheet				
Definitions Series				
f(n) = O(g(n))	iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$.	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$		
$f(n) = \Omega(g(n))$	iff \exists positive c , n_0 such that $f(n) \ge cg(n) \ge 0 \ \forall n \ge n_0$.	In general:		
$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{i=1}^{n} i^{m} = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^{m} \right) \right]$		
f(n) = o(g(n))	$iff \lim_{n \to \infty} f(n)/g(n) = 0.$	$\int_{-\infty}^{\infty} i^m = \frac{1}{m+1} \sum_{k=0}^{\infty} {m+1 \choose k} B_k n^{m+1-k}.$		
$\lim_{n\to\infty} a_n = a$	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \ge n_0$.	Geometric series:		
sup S	least $b \in \mathbb{R}$ such that $b \ge s$, $\forall s \in S$.	$\sum_{i=0}^{n} c^{i} = \frac{c^{n+1} - 1}{c - 1}, c \neq 1, \sum_{i=0}^{\infty} c^{i} = \frac{1}{1 - c}, \sum_{i=1}^{\infty} c^{i} = \frac{c}{1 - c}, c < 1,$		
inf S	greatest $b \in \mathbb{R}$ such that $b \leq s$, $\forall s \in S$.	$\int_{i=0}^{n} ic^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}}, c \neq 1, \sum_{i=0}^{\infty} ic^{i} = \frac{c}{(1-c)^{2}}, c < 1.$		
$ \lim_{n\to\infty}\inf a_n $	$\lim_{n\to\infty}\inf\{a_i\mid i\geq n, i\in\mathbb{N}\}.$	Harmonic series:		
$\limsup_{n\to\infty} a_n$	$\lim_{n\to\infty}\sup\{a_i\mid i\geq n, i\in\mathbb{N}\}.$	$H_n = \sum_{i=1}^n \frac{1}{i}, \qquad \sum_{i=1}^n iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.$		
$\binom{n}{k}$	Combinations: Size k subsets of a size n set.	$\sum_{i=1}^{n} H_i = (n+1)H_n - n, \sum_{i=1}^{n} \binom{i}{m} H_i = \binom{n+1}{m+1} \left(H_{n+1} - \frac{1}{m+1} \right).$		
$\begin{bmatrix} n \\ k \end{bmatrix}$	Stirling numbers (I^{st} kind): Arrangements of an n element set into k cycles.	$1. \binom{n}{k} = \frac{n!}{(n-k)!k!}, \qquad 2. \sum_{k=0}^{n} \binom{n}{k} = 2^{n}, \qquad 3. \binom{n}{k} = \binom{n}{n-k},$		
$\begin{bmatrix} n \\ k \end{bmatrix}$	Stirling numbers (2^{nd} kind): Partitions of an n element set into k non-empty sets.	$4. \binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}, \qquad \qquad 5. \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}, $ $6. \binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k}, \qquad \qquad 7. \sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n}, $		
$\binom{n}{k}$	1^{st} order Eulerian numbers: Permutations $\pi_1\pi_2\dots\pi_n$ on $\{1,2,\dots,n\}$ with k ascents.	$8. \sum_{k=0}^{n} \binom{k}{m} = \binom{n+1}{m+1}, \qquad 9. \sum_{k=0}^{n} \binom{r}{k} \binom{s}{n-k} = \binom{r+s}{n},$		
$\binom{n}{k}$	2 nd order Eulerian numbers.	$10. \binom{n}{k} = (-1)^k \binom{k-n-1}{k}, \qquad \qquad 11. \begin{bmatrix} n \\ 1 \end{bmatrix} = \begin{bmatrix} n \\ n \end{bmatrix} = 1,$ $12. \begin{bmatrix} n \\ 2 \end{bmatrix} = 2^{n-1} - 1, \qquad \qquad 13. \begin{bmatrix} n \\ k \end{bmatrix} = k \begin{bmatrix} n-1 \\ k \end{bmatrix} + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix},$		
C_n	Catalan Numbers: Binary trees with $n+1$ vertices.			
$14. \begin{bmatrix} n \\ 1 \end{bmatrix} = (n-1)!, \qquad 15. \begin{bmatrix} n \\ 2 \end{bmatrix} = (n-1)!H_{n-1}, \qquad 16. \begin{bmatrix} n \\ n \end{bmatrix} = 1, \qquad 17. \begin{bmatrix} n \\ k \end{bmatrix} \ge \begin{bmatrix} n \\ k \end{bmatrix}, \qquad 18. \begin{bmatrix} n \\ k \end{bmatrix} = (n-1)\begin{bmatrix} n-1 \\ k \end{bmatrix} + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix},$				
$19. \begin{bmatrix} n \\ n-1 \end{bmatrix} = \begin{bmatrix} n \\ 2 \end{bmatrix}, \qquad 20. \sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} = n!, \qquad 21. \ C_n = \frac{1}{n+1} \begin{pmatrix} 2n \\ n \end{pmatrix}, \qquad 22. \ \binom{n}{0} = \binom{n}{n-1} = 1,$				
$23. \left\langle {n \atop k} \right\rangle = \left\langle {n \atop n-1-k} \right\rangle, \qquad 24. \left\langle {n \atop k} \right\rangle = (k+1) \left\langle {n-1 \atop k} \right\rangle + (n-k) \left\langle {n-1 \atop k-1} \right\rangle, \qquad 25. \left\langle {0 \atop k} \right\rangle = \left\{ \begin{array}{c} 1 & \text{if } k=0, \\ 0 & \text{otherwise} \end{array} \right\},$				
26. $\binom{n}{1} = 2^n - n - 1$, 27. $\binom{n}{2} = 3^n - (n+1)2^n + \binom{n+1}{2}$, 28. $x^n = \sum_{k=0}^n \binom{n}{k} \binom{x+k}{n}$,				
$29. \left\langle {n \atop m} \right\rangle = \sum_{k=0}^m \binom{n+1}{k} (m+1-k)^n (-1)^k, 30. \ m! \left[{n \atop m} \right] = \sum_{k=0}^n \left\langle {n \atop k} \right\rangle \binom{k}{n-m}, 31. \left\langle {n \atop m} \right\rangle = \sum_{k=0}^n \left[{n \atop k} \right] \binom{n-k}{m} (-1)^{n-k-m} k!,$				
32. $\left\langle {n \atop 0} \right\rangle = 1$, 33. $\left\langle {n \atop n} \right\rangle = 0$ for $n \neq 0$, 34. $\left\langle {n \atop k} \right\rangle = (k+1) \left\langle {n-1 \atop k} \right\rangle + (2n-1-k) \left\langle {n-1 \atop k-1} \right\rangle$, 35. $\sum_{k=0}^{n} \left\langle {n \atop k} \right\rangle = \frac{(2n)^{n}}{2^{n}}$,				
$36. \begin{bmatrix} x \\ x-n \end{bmatrix} =$	$\sum_{k=0}^{n} \left\langle \!\! \left\langle \!\! \left\langle \!\! \right\rangle \!\! \right\rangle \right\rangle \left(x+n-1-k \right),$ $2n$	37.		

Identities Cont

38. $\begin{bmatrix} n+1 \\ m+1 \end{bmatrix} = \sum_{k=0}^{n} \begin{bmatrix} k \\ m \end{bmatrix} \begin{pmatrix} k \\ m \end{pmatrix} = \sum_{k=0}^{n} \begin{bmatrix} k \\ m \end{bmatrix} n^{\frac{n-k}{2}} = n! \sum_{k=0}^{n} \frac{1}{k!} \begin{bmatrix} k \\ m \end{bmatrix}, \quad \textbf{39.} \begin{bmatrix} x \\ x-n \end{bmatrix} = \sum_{k=0}^{n} \left\langle \binom{n}{k} \right\rangle \begin{pmatrix} x+k \\ 2n \end{pmatrix},$

Every tree with n vertices has n-1 edges.

40. $\begin{bmatrix} n \\ m \end{bmatrix} = \sum_{i} {n \choose k} \begin{bmatrix} k+1 \\ m+1 \end{bmatrix} (-1)^{n-k},$

41. $\begin{bmatrix} n \\ m \end{bmatrix} = \sum_{k=1}^{n} \begin{bmatrix} n+1 \\ k+1 \end{bmatrix} {k \choose m} (-1)^{m-k},$

44. $\binom{n}{m} = \sum_{k=1}^{n+1} \binom{k}{m} (-1)^{m-k},$ **45.** $(n-m)! \binom{n}{m} = \sum_{k=1}^{n+1} \binom{k}{m} (-1)^{m-k},$ for $n \ge m$,

46. $\begin{bmatrix} n \\ n-m \end{bmatrix} = \sum_{k} {m-n \choose m+k} {m+k \choose n+k} {m+k \choose n+k},$ **47.** $\begin{bmatrix} n \\ n-m \end{bmatrix} = \sum_{k} {m-n \choose m+k} {m+k \choose n+k} {m+k \choose k},$

48. $\begin{bmatrix} n \\ \ell+m \end{bmatrix} \begin{pmatrix} \ell+m \\ \ell \end{pmatrix} = \sum \begin{bmatrix} k \\ \ell \end{bmatrix} \begin{bmatrix} n-k \\ m \end{bmatrix} \begin{pmatrix} n \\ k \end{pmatrix}$, **49.** $\begin{bmatrix} n \\ \ell+m \end{bmatrix} \begin{pmatrix} \ell+m \\ \ell \end{pmatrix} = \sum \begin{bmatrix} k \\ \ell \end{bmatrix} \begin{bmatrix} n-k \\ m \end{bmatrix} \begin{pmatrix} n \\ k \end{pmatrix}$.

Kraft inequality: If the depths of the leaves of a binary tree are d_1, \ldots, d_n :

$$\sum_{i=1}^{n} 2^{-d_i} \le 1,$$

and equality holds only if every internal node has 2 sons.

Recurrences

Master method:

 $T(n) = aT(n/b) + f(n), \quad a \ge 1, b > 1$ If $\exists \epsilon > 0$ such that $f(n) = O(n^{\log_b a - \epsilon})$ then

$$T(n) = \Theta(n^{\log_b a}).$$

If $f(n) = \Theta(n^{\log_b a})$ then

$$T(n) = \Theta(n^{\log_b a} \log_2 n)$$

If $\exists \epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$, and $\exists c < 1$ such that $af(n/b) \le cf(n)$ for large n, then

$$T(n) = \Theta(f(n)).$$

Substitution (example): Consider the following recurrence

$$T_{i+1} = 2^{2^i} \cdot T_i^2, \quad T_1 = 2.$$

Note that T_i is always a power of two. Let $t_i = \log_2 T_i$. Then we have

$$t_{i+1} = 2^i + 2t_i, \quad t_1 = 1.$$

Let $u_i = t_i/2^i$. Dividing both sides of the previous equation by 2^{i+1} we get

$$\frac{t_{i+1}}{2^{i+1}} = \frac{2^i}{2^{i+1}} + \frac{t_i}{2^i}.$$

Substituting we find

$$u_{i+1} = \frac{1}{2} + u_i, \qquad u_1 = \frac{1}{2},$$

which is simply $u_i = i/2$. So we find that T_i has the closed form $T_i = 2^{i2^{i-1}}$

Summing factors (example): Consider the following recurrence

$$T(n) = 3T(n/2) + n$$
, $T(1) = 1$.

Rewrite so that all terms involving T are on the left side

$$T(n) - 3T(n/2) = n.$$

Now expand the recurrence, and choose a factor which makes the left side "telescope"

1(T(n) - 3T(n/2) = n)3(T(n/2) - 3T(n/4) = n/2)

$$3^{\log_2 n - 1} (T(2) - 3T(1) = 2)$$

Let $m = \log_2 n$. Summing the left side we get $T(n) - 3^m T(1) = T(n) - 3^m = T(n) - n^k$ where $k = \log_2 3 \approx 1.58496$. Summing the right side

$$\sum_{i=0}^{m-1} \frac{n}{2^i} 3^i = n \sum_{i=0}^{m-1} \left(\frac{3}{2}\right)^i.$$

Let $c = \frac{3}{2}$. Then we have

$$n \sum_{i=0}^{m-1} c^i = n \left(\frac{c^m - 1}{c - 1} \right)$$
$$= 2n(c^{\log_2 n} - 1)$$
$$= 2n(c^{(k-1)\log_c n} - 1)$$
$$= 2n^k - 2n$$

and so $T(n) = 3n^k - 2n$. Full history recurrences can often be changed to limited history ones (example): Consider

$$T_i = 1 + \sum_{j=0}^{i-1} T_j, \quad T_0 = 1.$$

Note that

$$T_{i+1} = 1 + \sum_{j=0}^{i} T_j.$$

Subtracting we find

$$T_{i+1} - T_i = 1 + \sum_{j=0}^{i} T_j - 1 - \sum_{j=0}^{i-1} T_j$$

= T_i

And so $T_{i+1} = 2T_i = 2^{i+1}$

Generating functions:

- 1. Multiply both sides of the equation by
- 2. Sum both sides over all i for which the equation is valid.
- 3. Choose a generating function G(x). Usually $G(x) = \sum_{i=0}^{\infty} x^i g_i$.
- 4. Rewrite the equation in terms of the generating function G(x).
- 5. Solve for G(x).
- 6. The coefficient of x^i in G(x) is g_i .

Example:

$$g_{i+1} = 2g_i + 1, \quad g_0 = 0.$$

Multiply and sum:

$$\sum_{i>0} g_{i+1} x^i = \sum_{i>0} 2g_i x^i + \sum_{i>0} x^i.$$

We choose $G(x) = \sum_{i>0} x^i g_i$. Rewrite in terms of G(x):

$$\frac{G(x) - g_0}{x} = 2G(x) + \sum_{i \ge 0} x^i.$$

Simplify

$$\frac{G(x)}{x} = 2G(x) + \frac{1}{1-x}.$$

Solve for G(x):

$$G(x) = \frac{x}{(1-x)(1-2x)}.$$

Expand this using partial fractions

$$G(x) = x \left(\frac{2}{1 - 2x} - \frac{1}{1 - x} \right)$$

$$= x \left(2 \sum_{i \ge 0} 2^i x^i - \sum_{i \ge 0} x^i \right)$$

$$= \sum_{i \ge 0} (2^{i+1} - 1) x^{i+1}.$$

So
$$q_i = 2^i - 1$$
.

Mathematics Cheat Sheet				
$\pi \approx 3,14159, e \approx 2,718$			71828, $\gamma \approx 0.57721$, $\phi = \frac{1+\sqrt{5}}{2} \approx$	$\hat{\phi} = \frac{1 - \sqrt{5}}{2} \approx -0.61803$
i	2 ⁱ	p_i	General	Probability
1	2	2	Bernoulli Numbers ($B_i = 0$, odd $i \neq 1$):	Continuous distributions:
2	4	3	$B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_4 = -\frac{1}{30},$	If Γ^b
3	8	5	$B_6 = \frac{1}{42}, B_8 = -\frac{1}{30}, B_{10} = \frac{5}{66}.$	$\mathbb{P}[a < X < b] = \int_a^b p(x) dx,$
4	16	7	Change of base, quadratic formula:	then p is the probability density function of X . If
5	32	11		$\mathbb{P}[X < a] = P(a),$ then P is the distribution function of X. If P and p
6	64	13	$\log_b x = \frac{\log_a x}{\log_a b}, \qquad \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$	both exist then
7	128	17	Euler's number e:	$P(a) = \int_{-\infty}^{a} p(x) dx.$
8	256	19	$e = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \cdots$	$-\infty$ Expectation:
9	512	23		If X is discrete
10	1024	29	$\lim_{n\to\infty} \left(1 + \frac{x}{n}\right)^n = e^x.$	$\mathbb{E}[g(X)] = \sum_{x} g(x)\mathbb{P}[X = x].$
11	2 0 4 8	31	$\left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)^{n+1}.$	If X continuous then $\int_{-\infty}^{\infty}$
12	4 096	37	$\left(1 + \frac{1}{n}\right)^n = e - \frac{e}{2n} + \frac{11e}{24n^2} - O\left(\frac{1}{n^3}\right).$	$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x)p(x) dx = \int_{-\infty}^{\infty} g(x) dP(x).$
13	8 192	41		Variance, standard deviation:
14	16 384 32 768	43 47	Harmonic numbers: 3 11 25 137 49 363 761 7129	$Var[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2,$
16	65 536	53	$1, \frac{3}{2}, \frac{11}{6}, \frac{25}{12}, \frac{137}{60}, \frac{49}{20}, \frac{363}{140}, \frac{761}{280}, \frac{7129}{2520}, \dots$	$\sigma = \sqrt{\text{Var}[X]}.$
17	131 072	59	$\ln n < H_n < \ln n + 1,$	For events A and B:
18	262 144	61	$H_n = \ln n + \gamma + O\left(\frac{1}{n}\right).$	$\mathbb{P}[A \vee B] = \mathbb{P}[A] + \mathbb{P}[B] - \mathbb{P}[A \& B]$
19	524 288	67		$\mathbb{P}[A \& B] = \mathbb{P}[A] \cdot \mathbb{P}[B],$
20	1048 576	71	Factorial, Stirling's approximation: 1, 2, 6, 24, 120, 720, 5040, 40320, 362880,	iff A and B are independent.
21	2 097 152	73	$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right).$	$\mathbb{P}[A B] = \frac{\mathbb{P}[A \& B]}{\mathbb{P}[B]}$
22	4 194 304	79	("//	For random variables X and Y:
23	8 388 608	83	Ackermann's function and inverse:	$\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y],$
24	16 777 216	89	$a(i, i) = \begin{cases} 2^{j} & i = 1 \\ a(i - 1, 2) & i = 1 \end{cases}$	if X and Y are independent.
25	33 554 432	97	$a(i, j) = \begin{cases} 2^{j} & i = 1 \\ a(i-1, 2) & j=1 \\ a(i-1, a(i, j-1)) & i,j \ge 2 \end{cases}$	$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y],$
26	67 108 864	101	$\alpha(i) = \min\{j \mid a(j,j) \ge i\}.$	$\mathbb{E}[cX] = c\mathbb{E}[X].$
27	134 217 728	103		Bayes' theorem:
28	268 435 456	107	Binomial distribution:	$\mathbb{P}[A_i B] = \frac{\mathbb{P}[B A_i]\mathbb{P}[A_i]}{\sum_{i=1}^n \mathbb{P}[A_i]\mathbb{P}[B A_i]}.$
29	536 870 912	109	$\mathbb{P}[X=k] = \binom{n}{k} p^k q^{n-k}, \qquad q=1-p$] , ,
30	1073 741 824	113	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Inclusion-exclusion:
31	2 147 483 648	127	$\mathbb{E}[X] = \sum_{k=1}^{n} k \binom{n}{k} p^{k} q^{n-k} = np.$	$\mathbb{P}\Big[\bigvee_{i=1}^{n}X_{i}\Big] = \sum_{i=1}^{n}\mathbb{P}[X_{i}] +$
32	4 294 967 296	131	Poisson distribution:	i=1
Pascal's Triangle		ngle	$\mathbb{P}[X=k] = \frac{e^{-\lambda}\lambda^k}{k!}, \mathbb{E}[X] = \lambda.$	$\sum_{k=2}^{n} (-1)^{k+1} \sum_{i_1 < \dots < i_k} \mathbb{P} \Big[\bigwedge_{i=1}^{k} X_{i_j} \Big].$
11			Normal (Gaussian) distribution:	Moment inequalities:
	121		$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}, \mathbb{E}[X] = \mu.$	$\mathbb{P}[X \ge \lambda \mathbb{E}[X]] \le \frac{1}{3},$
1 3 3 1			$\sqrt{2\pi\sigma}$ The "coupon collector": We are given a random	$\mathbb{P}\Big[X - \mathbb{E}[X] \ge \lambda \cdot \sigma\Big] \le \frac{1}{\lambda^2}.$
14641		1	coupon each day, and there are <i>n</i> different types of	
1 5 10 10 5 1			coupons. The distribution of coupons is uniform. The expected number of days to pass before we to	Geometric distribution:
1 6 15 20 15 6 1			collect all n types is	$\mathbb{P}[X=k] = pq^{k-1}, \qquad q = 1 - p,$
1 7 21 35 35 21 7 1			nH _n .	$\mathbb{E}[X] = \sum_{k=0}^{\infty} kpq^{k-1} = \frac{1}{p}.$
1 8 28 56 70 56 28 8 1				k=1 F
1 9 36 84 126 126 84 36 9 1		84 36 9 1		

1 10 45 120 210 252 210 120 45 10 1

Trigonometry

Pythagorean theorem:

$$C^2 = A^2 + B^2$$
.

Definitions:

$$\sin a = A/C$$
, $\cos a = B/C$,
 $\csc a = C/A$, $\sec a = C/B$,

Area, radius of inscribed circle:

$$\frac{1}{2}AB$$
, $\frac{AB}{A+B+C}$.

Identities:

$$\sin x = \frac{1}{\csc x}, \qquad \cos x = \frac{1}{\sec x},$$

$$\tan x = \frac{1}{\cot x}, \qquad \sin^2 x + \cos^2 x = 1,$$

$$1 + \tan^2 x = \sec^2 x, \qquad 1 + \cot^2 x = \csc^2 x,$$

$$\sin x = \cos\left(\frac{\pi}{2} - x\right), \qquad \sin x = \sin(\pi - x),$$

$$\cos x = -\cos(\pi - x), \qquad \tan x = \cot\left(\frac{\pi}{2} - x\right),$$

$$\cot x = -\cot(\pi - x), \qquad \csc x = \cot\frac{x}{2} - \cot x,$$

 $\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y,$

$$cos(x \pm y) = cos x cos y \mp sin x sin y,$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y},$$
$$\cot(x \pm y) = \frac{\cot x \cot y \mp 1}{\cot x \pm \cot y},$$

$$\sin 2x = 2\sin x \cos x, \qquad \qquad \sin 2x = \frac{2\tan x}{1 + \tan^2 x}$$

$$1 + \tan^2 x$$

$$\cos 2x = \cos^2 x - \sin^2 x, \qquad \cos 2x = 2\cos^2 x - 1,$$

$$\cos 2x = 1 - 2\sin^2 x,, \qquad \cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x},$$

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}, \qquad \cot 2x = \frac{\cot^2 x - 1}{2\cot x},$$

$$\sin(x+y)\sin(x-y) = \sin^2 x - \sin^2 y,$$

$$\cos(x + y)\cos(x - y) = \cos^2 x - \sin^2 y.$$

Euler's equation:

$$e^{ix} = \cos x + i \sin x, \qquad e^{i\pi} + 1 = 0.$$

v2.02 ©1994–2002 by Steve Seiden sseiden@acm.org v3.0 ©2018, port to L^ATEX by Alain Aubord tex.support@sourire.ch Matrices

$$C = A \cdot B$$
, $c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$.

Determinants:

Multiplication:

 $\det A \neq 0$ iff A is non-singular.

$$\det A \cdot B = \det A \cdot \det B,$$

$$\det A = \sum_{\pi} \prod_{i=1}^{n} \operatorname{sign}(\pi) a_{i,\pi(i)}.$$
 2 × 2 and 3 × 3 determinant:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc,$$

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = g \begin{bmatrix} b & c \\ e & f \end{bmatrix} - h \begin{bmatrix} a & c \\ d & f \end{bmatrix} + i \begin{bmatrix} a & b \\ d & e \end{bmatrix}$$
$$= aei + bfg + cdh - ceg - fha - ibd.$$

Permanents:

$$\operatorname{perm} A = \sum_{\pi} \prod_{i=1}^{n} a_{i,\pi(i)}.$$

Hyperbolic Functions

Definitions:

$$\sinh x = \frac{e^{x} - e^{-x}}{2}, \quad \cosh x = \frac{e^{x} + e^{-x}}{2},$$

$$\tanh x = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}, \quad \operatorname{csch} x = \frac{1}{\sinh x},$$

$$\operatorname{sech} x = \frac{1}{\cosh x}, \quad \coth x = \frac{1}{\tanh x}.$$

Identities:

$$\cosh^2 x - \sinh^2 x = 1, \qquad \tanh^2 x + \operatorname{sech}^2 x = 1,$$

$$coth^2 x - csch^2 x = 1, \qquad sinh(-x) = - sinh x,$$

$$\cosh(-x) = \cosh x, \qquad \tanh(-x) = -\tanh x,$$

 $\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y,$

$$\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y,$$

sinh 2x = 2 sinh x cosh x,

$$\cosh 2x = \cosh^2 x + \sinh^2 x$$
, $\cosh x + \sinh x = e^x$,

 $\cosh x - \sinh x = e^{-x},$

$$(\cosh x + \sinh x)^n = \cosh nx + \sinh nx, \quad n \in \mathbb{Z},$$

$$2 \sinh^2 \frac{x}{2} = \cosh x - 1,$$
 $2 \cosh^2 \frac{x}{2} = \cosh x + 1$

θ	sin $ heta$	$\cos \theta$	tan 0	
0	0	1	0	in mathematics
π	1	$\sqrt{3}$	$\sqrt{3}$	you don't understand
6	2	2	3	things, you just get
π	$\sqrt{2}$	$\sqrt{2}$	1	things, you just get used to them.
4	2	2	•	J. von Neumann
π	$\sqrt{3}$	1_	$\sqrt{3}$	
3	2	2	VJ	
$\frac{\pi}{2}$	1	0	∞	

More Trig.

Law of cosines:

$$c^2 = a^2 + b^2 - 2ab\cos C.$$

Area

$$A = \frac{1}{2}hc,$$

$$= \frac{1}{2}ab \sin C,$$

$$= \frac{c^2 \sin A \sin B}{2 \sin C}.$$

Heron's formula:

$$A = \sqrt{s \cdot s_a \cdot s_b \cdot s_c},$$

$$s = \frac{1}{2}(a+b+c),$$

$$s_a = s - a,$$

$$s_b = s - b,$$

$$s_a = s - c.$$

 $\sin\frac{x}{2} = \sqrt{\frac{1-\cos x}{2}}$

More identities:

$$\cos \frac{x}{2} = \sqrt{\frac{1 + \cos x}{2}},$$

$$\tan \frac{x}{2} = \sqrt{\frac{1 - \cos x}{1 + \cos x}},$$

$$= \frac{1 - \cos x}{\sin x},$$

$$= \frac{\sin x}{1 + \cos x},$$

$$\cot \frac{x}{2} = \sqrt{\frac{1 + \cos x}{1 - \cos x}},$$

$$= \frac{1 + \cos x}{\sin x},$$

$$= \frac{1 + \cos x}{1 - \cos x},$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i},$$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2},$$

$$\tan x = -i\frac{e^{ix} - e^{-ix}}{e^{ix} + e^{-ix}}$$

$$= -i\frac{e^{2ix} - 1}{e^{2ix} + 1},$$

$$\sin x = \frac{\sinh ix}{i},$$

$$\cos x = \cosh ix,$$

$$\tan x = \frac{\tanh ix}{i}.$$

Number Theory The Chinese remainder theorem: There exists a number C such that:

 $C \equiv r_1 \mod m_1$

: : :

 $C \equiv r_n \mod m_n$

if m_i and m_j are relatively prime for $i \neq j$.

Euler's function: $\phi(x)$ is the number of positive integers less than x relatively prime to x. If $\prod_{i=1}^n p_i^{e_i}$ is the prime factorization of x then

$$\phi(x) = \prod_{i=1}^{n} p_i^{e_i-1} (p_i - 1).$$

Euler's theorem: If a and b are relatively prime then $1 \equiv a^{\phi(b)} \mod b$

Fermat's theorem:

$$1 \equiv a^{p-1} \mod p$$
.

The Euclidean algorithm: if a > b are integers then $gcd(a, b) = gcd(a \mod b, b).$

If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x then

$$S(x) = \sum_{d|x} d = \prod_{i=1}^{n} \frac{p_i^{e_i+1} - 1}{p_i - 1}.$$

Perfect Numbers: x is an even perfect number iff $x = 2^{n-1}(2^n - 1)$ and $2^n - 1$ is prime.

Wilson's theorem: n is a prime iff

$$(n-1)! \equiv -1 \mod n$$
.

$$\mu(i) = \begin{cases} 1 & \text{if } i = 1. \\ 0 & \text{if } i \text{ is not square-free.} \\ (-1)^r & \text{if } i \text{ is the product of} \\ ir \text{ distinct primes.} \end{cases}$$

$$G(a) = \sum_{d|a} F(d),$$

$$F(a) = \sum_{d|a} \mu(d)G\left(\frac{a}{d}\right).$$

Prime numbers:

$$p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n}$$

$$+ O\left(\frac{n}{\ln n}\right),$$

$$\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2! n}{(\ln n)^3}$$

$$+ O\left(\frac{n}{(\ln n)^4}\right).$$

Definitions:

Loop An edge connecting a vertex to itself.

Directed Each edge has a direction.

Simple Graph with no loops or multi-edges.

Walk A sequence $v_0 e_1 v_1 \dots e_\ell v_\ell$.

Trail A walk with distinct edges.

Path A trail with distinct vertices.

Connected A graph where there exists a path between any two vertices.

Component A maximal connected subgraph.

Tree A connected acyclic graph.

Free tree A tree with no root.

DAG Directed acyclic graph.

Eulerian Graph with a trail visiting each edge exactly once.

Hamiltonian Graph with a cycle visiting each vertex exactly once.

Cut A set of edges whose removal increases the number of components.

Cut-set A minimal cut.

Cut edge A size 1 cut.

k-Connected A graph connected with the removal of any k-1 vertices.

k-Tough $\forall S \subseteq V, S$ $k \cdot c(G - S) \leq |S|$.

k-Regular A graph where all vertices have degree

k-Factor A k-regular spanning subgraph.

Matching A set of edges, no two of which are adjacent.

Clique A set of vertices, all of which are adjacent. Ind. set A set of vertices, none of which are adja-

Vertex cover A set of vertices which cover all

Planar graph A graph which can be embeded in the plane.

Plane graph An embedding of a planar graph.

$$\sum_{v \in V} \deg(v) = 2m.$$

If G is planar then n - m + f = 2, so

$$f \le 2n - 4, \quad m \le 3n - 6.$$

Any planar graph has a vertex with degree ≤ 5 .

Notation:

 K_{n_1,n_2}

 $r(k, \ell)$

Graph Theory

<i>E</i> (<i>G</i>)	Edge set
V(G)	Vertex set
c(G)	Number of components
G[S]	Induced subgraph
deg(v)	Degree of v
$\Delta(G)$	Maximum degree
$\delta(G)$	Minimum degree
$\chi(G)$	Chromatic number
$\chi_E(G)$	Edge chromatic number
G^c	Complement graph
K_n	Complete graph

Geometry

Ramsey number

Complete bipartite graph

Projective coordinates: triples (x, y, z), not all x, y and z zero.

(x, y, z) \rightarrow (x, y, z)

(x,y,z)=((cx, cy, cz)	$\forall c \neq 0$
Cartesian	Projective	
(x, y)	(x, y, 1)	_
y = mx + b	(m, -1, b)	
x = c	(1, 0, -c)	

Distance formula, L_p and L_{∞} metric:

$$\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2},$$

$$\left[|x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p},$$

$$\lim_{p \to \infty} \left[|x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p}.$$

Area of triangle (x_0, y_0) , (x_1, y_1) and (x_2, y_2) :

$$\frac{1}{2} \text{ abs} \begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ x_2 - x_0 & y_2 - y_0 \end{vmatrix}.$$

Angle formed by three points:

$$\cos \theta = \frac{(x_1, y_1) \cdot (x_2, y_2)}{\ell_1 \ell_2}$$

Line through two points (x_0, y_0) and (x_1, y_1)

$$\begin{vmatrix} x & y & 1 \\ x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \end{vmatrix} = 0.$$

Area of circle, volume of sphere:
$$A = \pi r^2, \qquad V = \frac{4}{2}\pi r^3.$$

If I have seen farther than others, it is because I have stood on the shoulders of giants.

- Issac Newton

Wallis' identity:

$$\pi = 2 \cdot \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdots}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdots}$$

Brouncker's continued fraction expansion:

ncker's continued fraction ex

$$\frac{\pi}{4} = 1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \cdots}}}$$

Gregory's series:

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots$$
Newton's series:

on's series:
$$\frac{\pi}{6} = \frac{1}{2} + \frac{1}{2 \cdot 3 \cdot 2^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5 \cdot 2^5} + \cdots$$

$$\frac{\pi}{6} = \frac{1}{\sqrt{3}} \left(1 - \frac{1}{3^1 \cdot 3} + \frac{1}{3^2 \cdot 5} - \frac{1}{3^3 \cdot 7} + \cdots \right)$$

$$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots$$

$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \cdots$$

$$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \cdots$$

Partial Fractions

Let N(x) and D(x) be polynomial functions of x. We can break down N(x)/D(x) using partial fraction expansion. First, if the degree of N is greater than or equal to the degree of D, divide N by D, obtaining

$$\frac{N(x)}{D(x)} = Q(x) + \frac{N'(x)}{D(x)},$$

where the degree of N' is less than that of D. Second, factor D(x). Use the following rules: For a nonrepeated factor:

repeated factor:
$$\frac{N(x)}{(x-a)D(x)} = \frac{A}{x-a} + \frac{N'(x)}{D(x)},$$
 where

$$A = \left[\frac{N(x)}{D(x)}\right]_{x=a}.$$

$$\frac{N(x)}{(x-a)^m D(x)} = \sum_{k=0}^{m-1} \frac{A_k}{(x-a)^{m-k}} + \frac{N'(x)}{D(x)},$$

$$A_k = \frac{1}{k!} \left[\frac{d^k}{dx^k} \left(\frac{N(x)}{D(x)} \right) \right]_{x=a}.$$

The reasonable man adapts himself to the world; the unreasonable persists in trying to adapt the world to himself. Therefore all progress depends on the unreasonable.

- George Bernard Shaw

Calculus

Derivatives:

1.
$$\frac{d(cu)}{dx} = c\frac{du}{dx}$$

$$2. \frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx},$$

1.
$$\frac{d(cu)}{dx} = c\frac{du}{dx}$$
, 2. $\frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx}$, 3. $\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

4.
$$\frac{d(u^n)}{dx} = nu^{n-1} \frac{du}{dx}$$

4.
$$\frac{d(u^n)}{dx} = nu^{n-1}\frac{du}{dx}, \qquad \textbf{5.} \quad \frac{d(u/v)}{dx} = \frac{v(\frac{du}{dx}) - u(\frac{dv}{dx})}{v^2}, \qquad \textbf{6.} \quad \frac{d(e^{cu})}{dx} = ce^{cu}\frac{du}{dx}$$

6.
$$\frac{d(e^{cu})}{dx} = ce^{cu}\frac{du}{dx},$$

7.
$$\frac{d(c^u)}{dx} = (\ln c)c^u \frac{du}{dx}$$
, 8. $\frac{d(\ln u)}{dx} = \frac{1}{u} \frac{du}{dx}$, 9. $\frac{d(\sin u)}{dx} = \cos u \frac{du}{dx}$

8.
$$\frac{d(\ln u)}{dx} = \frac{1}{u} \frac{du}{dx}$$

9.
$$\frac{d(\sin u)}{dx} = \cos u \frac{du}{dx}$$

10.
$$\frac{d(\cos u)}{dx} = -\sin u \frac{du}{dx}$$

11.
$$\frac{d(\tan u)}{dx} = \sec^2 u \frac{du}{dx}$$

10.
$$\frac{d(\cos u)}{dx} = -\sin u \frac{du}{dx}$$
, 11. $\frac{d(\tan u)}{dx} = \sec^2 u \frac{du}{dx}$, 12. $\frac{d(\cot u)}{dx} = \csc^2 u \frac{du}{dx}$

13.
$$\frac{d(\sec u)}{dx} = \tan u \sec u \frac{du}{dx}$$

$$14. \frac{d(\csc u)}{dx} = -\cot u \csc u \frac{du}{dx},$$

15.
$$\frac{d(\arcsin u)}{dx} = \frac{1}{\sqrt{1 - u^2}} \frac{du}{dx},$$

$$16. \ \frac{d(\arccos u)}{dx} = \frac{-1}{\sqrt{1 - u^2}} \frac{du}{dx},$$

17.
$$\frac{d(\arctan u)}{dx} = \frac{1}{1 + u^2} \frac{du}{dx}$$

18.
$$\frac{d(\operatorname{arccot} u)}{dx} = \frac{-1}{1 + u^2} \frac{du}{dx}$$

19.
$$\frac{d(\operatorname{arcsec} u)}{dx} = \frac{1}{u\sqrt{1-u^2}} \frac{du}{dx}$$

$$20. \frac{d(\arccos u)}{dx} = \frac{-1}{u\sqrt{1-u^2}} \frac{du}{dx},$$

21.
$$\frac{d(\sinh u)}{dx} = \cosh u \frac{du}{dx}$$

$$u\sqrt{1-u^2} \frac{dx}{dx}$$
22.
$$\frac{d(\cosh u)}{dx} = \sinh u \frac{du}{dx}$$

23.
$$\frac{d(\tanh u)}{dt} = \operatorname{sech}^2 u \frac{du}{dt}$$

24.
$$\frac{d(\coth u)}{dx} = -\operatorname{csch}^2 u \frac{du}{dx}$$

25.
$$\frac{d(\operatorname{sech} u)}{dx} = -\operatorname{sech} u \tanh u \frac{du}{dx}$$

26.
$$\frac{d(\operatorname{csch} u)}{dx} = -\operatorname{csch} u \operatorname{coth} u \frac{du}{dx}$$

27.
$$\frac{d(\arcsin u)}{dx} = \frac{1}{\sqrt{1+u^2}} \frac{du}{dx}$$

28.
$$\frac{d(\operatorname{arccosh} u)}{dx} = \frac{1}{\sqrt{u^2 - 1}} \frac{du}{dx}$$

$$29. \frac{d(\operatorname{arctanh} u)}{dx} = \frac{1}{1 - u^2} \frac{du}{dx},$$

30.
$$\frac{d(\operatorname{arccoth} u)}{dx} = \frac{1}{u^2 - 1} \frac{du}{dx}$$

31.
$$\frac{d(\operatorname{arcsech} u)}{dx} = \frac{-1}{u\sqrt{1-u^2}} \frac{du}{dx},$$

32.
$$\frac{d(\operatorname{arccsch} u)}{dx} = \frac{-1}{|u|\sqrt{1+u^2}} \frac{du}{dx}$$

Integrals:

$$1. \int cu \, dx = c \int u \, dx,$$

$$2. \int (u+v) dx = \int u dx + \int v dx,$$

3.
$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1,$$
 4. $\int \frac{1}{x} dx = \ln x,$ **5.** $\int e^x dx = e^x,$

$$\mathbf{4.} \int \frac{1}{x} dx = \ln x,$$

$$\mathbf{5.} \int e^{x} dx = e^{x},$$

6.
$$\int \frac{dx}{1+x^2} = \arctan x, \quad \textbf{7.} \int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx, \quad \textbf{8.} \int \sin x \, dx = -\cos x,$$

7.
$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$$

9.
$$\int \cos x \, dx = \sin x$$
, 10. $\int \tan x \, dx = -\ln|\cos x|$, 11. $\int \cot x \, dx = \ln|\cos x|$,

12.
$$\int \sec x \, dx = \ln|\sec x + \tan x|,$$

12.
$$\int \sec x \, dx = \ln|\sec x + \tan x|,$$
 13.
$$\int \csc x \, dx = \ln|\csc x + \cot x|,$$

14.
$$\int \arcsin \frac{x}{a} dx = \arcsin \frac{x}{a} + \sqrt{a^2 - x^2}, \quad a > 0,$$

Calculus Cont.

15.
$$\int \arccos \frac{x}{a} dx = \arccos \frac{x}{a} - \sqrt{a^2 - x^2}, \quad a > 0,$$

16.
$$\int \arctan \frac{x}{a} dx = x \arctan \frac{x}{a} - \frac{a}{2} \ln(a^2 + x^2), \quad a > 0,$$

17.
$$\int \sin^2(ax) dx = \frac{1}{2a} (ax - \sin(ax) \cos(ax)),$$

17.
$$\int \sin^2(ax) dx = \frac{1}{2a} (ax - \sin(ax)\cos(ax)),$$
 18. $\int \cos^2(ax) dx = \frac{1}{2a} (ax + \sin(ax)\cos(ax)),$ 19. $\int \sec^2 x \, dx = \tan x,$

$$19. \int \sec^2 x \, dx = \tan x$$

$$20. \int \csc^2 x \, dx = -\cot x,$$

21.
$$\int \sin^n x \, dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, dx,$$

22.
$$\int \cos^{n} x \, dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x \, dx,$$

23.
$$\int \tan^n x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx, \quad n \neq 1,$$

24.
$$\int \cot^n x \, dx = -\frac{\cot^{n-1} x}{n-1} - \int \cot^{n-2} x \, dx, \quad n \neq 1,$$

25.
$$\int \sec^n x \, dx = \frac{\tan x \sec^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx, \quad n \neq 1,$$

26.
$$\int \csc^n x \, dx = -\frac{\cot x \csc^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \csc^{n-2} x \, dx, \quad n \neq 1,$$
 27. $\int \sinh x \, dx = \cosh x,$ **28.** $\int \cosh x \, dx = \sinh x,$

$$27. \int \sinh x \, dx = \cosh x,$$

$$28. \int \cosh x \, dx = \sinh x$$

$$29. \int \tanh x \, dx = \ln |\cosh x|,$$

$$30. \int \coth x \, dx = \ln|\sinh x|,$$

31.
$$\int \operatorname{sech} x \, dx = \arctan \sinh x$$

29.
$$\int \tanh x \, dx = \ln |\cosh x|$$
, **30.** $\int \coth x \, dx = \ln |\sinh x|$, **31.** $\int \operatorname{sech} x \, dx = \arctan \sinh x$, **32.** $\int \operatorname{csch} x \, dx = \ln \left|\tanh \frac{x}{2}\right|$,

33.
$$\int \sinh^2 x \, dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x$$
, **34.** $\int \cosh^2 x \, dx = \frac{1}{4} \sinh(2x) + \frac{1}{2}x$, **35.** $\int \operatorname{sech}^2 x \, dx = \tanh x$,

34.
$$\int \cosh^2 x \, dx = \frac{1}{4} \sinh(2x) + \frac{1}{2}x,$$

$$\mathbf{35.} \int \operatorname{sech}^2 x \, dx = \tanh x$$

36.
$$\int \operatorname{arcsinh} \frac{x}{a} dx = x \operatorname{arcsinh} \frac{x}{a} - \sqrt{x^2 + a^2}, \quad a > 0,$$

37.
$$\int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 - x^2|,$$

38.
$$\int \operatorname{arccosh} \frac{x}{a} dx = \begin{cases} x \operatorname{arccosh} \frac{x}{a} - \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} > 0 \text{ and } a > 0, \\ x \operatorname{arccosh} \frac{x}{a} + \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} < 0 \text{ and } a > 0, \end{cases}$$

$$39. \int \frac{dx}{\sqrt{a^2 + x^2}} = \ln\left(x + \sqrt{a^2 + x^2}\right), \quad a > 0,$$

39.
$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \ln\left(x + \sqrt{a^2 + x^2}\right), \quad a > 0,$$

40.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a}, \quad a > 0,$$

41.
$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

42.
$$\int (a^2 - x^2)^{3/2} dx = \frac{x}{8} (5a^2 - 2x^2) \sqrt{a^2 - x^2} + \frac{3a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$

$$43. \int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a}, \quad a > 0,$$

44.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|,$$
 45. $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|,$

45.
$$\int \frac{ax}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}},$$

44.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|, \quad \textbf{45.} \int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}}, \quad \textbf{46.} \int \sqrt{a^2 \pm x^2} \, dx = \frac{x}{2} \sqrt{a^2 \pm x^2} \pm \frac{a^2}{2} \ln \left| x + \sqrt{a^2 \pm x^2} \right|,$$

$$\int \sqrt{x^2 - a^2}$$

$$48. \int \frac{dx}{ax^2 + bx} = \frac{1}{a} \ln \left| \frac{x}{a + bx} \right|,$$

47.
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln\left|x + \sqrt{x^2 - a^2}\right|, \quad a > 0, \quad \textbf{48.} \int \frac{dx}{ax^2 + bx} = \frac{1}{a} \ln\left|\frac{x}{a + bx}\right|, \quad \textbf{49.} \int x\sqrt{a + bx} \, dx = \frac{2(3bx - 2a)(a + bx)^{3/2}}{15b^2},$$

50.
$$\int \frac{\sqrt{a+bx}}{x} dx = 2\sqrt{a+bx} + a \int \frac{1}{x\sqrt{a+bx}} dx,$$

51.
$$\int \frac{x}{\sqrt{a+bx}} dx = \frac{1}{\sqrt{2}} \ln \left| \frac{\sqrt{a+bx} - \sqrt{a}}{\sqrt{a+bx} + \sqrt{a}} \right|, \quad a > 0,$$

52.
$$\int \frac{\sqrt{a^2 - x^2}}{x} dx = \sqrt{a^2 - x^2} - a \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|,$$

53.
$$\int x\sqrt{a^2-x^2}\,dx = -\frac{1}{3}(a^2-x^2)^{3/2},$$

54.
$$\int x^2 \sqrt{a^2 - x^2} \, dx = \frac{x}{8} (2x^2 - a^2) \sqrt{a^2 - x^2} + \frac{a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$

55.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|,$$

56.
$$\int \frac{x \, dx}{\sqrt{a^2 - x^2}} = -\sqrt{a^2 - x^2},$$

57.
$$\int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = -\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

58.
$$\int \frac{\sqrt{a^2 + x^2}}{x} dx = \sqrt{a^2 + x^2} - a \ln \left| \frac{a + \sqrt{a^2 + x^2}}{x} \right|,$$

59.
$$\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \arccos \frac{a}{|x|}, \quad a > 0,$$

60.
$$\int x\sqrt{x^2 \pm a^2} \, dx = \frac{1}{3}(x^2 \pm a^2)^{3/2},$$

61.
$$\int \frac{dx}{x\sqrt{x^2 + a^2}} = \frac{1}{a} \ln \left| \frac{x}{a + \sqrt{a^2 + x^2}} \right|,$$

Finite Calculus

62.
$$\int \frac{dx}{x} \sqrt{x^2 - a^2} = \frac{1}{a} \arccos \frac{a}{|x|}, \quad a > 0, \qquad \textbf{63.} \int \frac{dx}{\sqrt{x^2 + a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x}$$

63.
$$\int \frac{dx}{x^2 \sqrt{x^2 \pm a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x}$$

64.
$$\int \frac{x \, dx}{\sqrt{x^2 + a^2}} = \sqrt{x^2 \pm a^2},$$

64.
$$\int \frac{x \, dx}{\sqrt{x^2 \pm a^2}} = \sqrt{x^2 \pm a^2}, \qquad \qquad \textbf{65.} \int \frac{\sqrt{x^2 \pm a^2}}{x^4} \, dx = \mp \frac{(x^2 + a^2)^{3/2}}{3a^2 x^3},$$

66.
$$\int \frac{dx}{ax^2 + bx + c} = \begin{cases} \frac{1}{\sqrt{b^2 - 4ac}} \ln \left| \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right|, & \text{if } b^2 > 4ac, \\ \frac{2}{\sqrt{4ac - b^2}} \arctan \frac{2ax + b}{\sqrt{4ac - b^2}}, & \text{if } b^2 < 4ac, \end{cases}$$

67.
$$\int \frac{dx}{\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{1}{\sqrt{a}} \ln \left| 2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right|, & \text{if } a > 0, \\ \frac{1}{\sqrt{-a}} \arcsin \frac{-2ax - b}{\sqrt{b^2 - 4ac}}, & \text{if } a < 0, \end{cases}$$

68.
$$\int \sqrt{ax^2 + bx + c} \, dx = \frac{2ax + b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ax - b^2}{8a} \int \frac{dx}{\sqrt{ax^2 + bx + c}},$$

69.
$$\int \frac{x \, dx}{\sqrt{ax^2 + bx + c}} = \frac{\sqrt{ax^2 + bx + c}}{a} - \frac{b}{2a} \int \frac{dx}{\sqrt{ax^2 + bx + c}}$$

70.
$$\int \frac{dx}{x\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{-1}{\sqrt{c}} \ln \left| \frac{2\sqrt{c}\sqrt{ax^2 + bx + c} + bx + 2c}{x} \right|, & \text{if } c > 0, \\ \frac{1}{\sqrt{-c}} \arcsin \frac{bx + 2c}{|x|\sqrt{b^2 - 4ac}}, & \text{if } c < 0, \end{cases}$$

71.
$$\int x^3 \sqrt{x^2 + a^2} \, dx = \left(\frac{1}{3}x^2 - \frac{2}{15}a^2\right) (x^2 + a^2)^{3/2}$$

72.
$$\int x^n \sin(ax) \, dx = -\frac{1}{a} x^n \cos(ax) + \frac{n}{a} \int x^{n-1} \cos(ax) \, dx,$$

73.
$$\int x^n \cos(ax) \, dx = \frac{1}{a} x^n \sin(ax) - \frac{n}{a} \int x^{n-1} \sin(ax) \, dx,$$

74.
$$\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx$$
,

75.
$$\int x^n \ln(ax) dx = x^{n+1} \left(\frac{\ln(ax)}{n+1} - \frac{1}{(n+1)^2} \right),$$

76.
$$\int x^n (\ln ax)^m dx = \frac{x^{n+1}}{n+1} (\ln ax)^m - \frac{m}{n+1} \int x^n (\ln ax)^{m-1} dx.$$

$$x^{1} = x^{1}$$

$$x^{2} = x^{2} + x^{1}$$

$$x^{3} = x^{3} + 3x^{2} + x^{1}$$

$$x^{4} = x^{4} + 6x^{3} + 7x^{2} + x^{1}$$

$$x^{5} = x^{5} + 15x^{4} + 25x^{3} + 10x^{2} + x^{1}$$

$$x^{7} = x^{2} + x^{2} + x^{1}$$

$$x^{7} = x^{2} + x^{2} + x^{2}$$

$$x^{7} = x^{2} + x^{2} + x^{2}$$

$$x^{7} = x^{2} + x^{$$

Difference, shift operators:

$$\Delta f(x) = f(x+1) - f(x),$$

$$\mathbb{E}f(x) = f(x+1).$$

Fundamental Theorem:

$$f(x) = \Delta F(x) \Leftrightarrow \sum_{i=1}^{b} f(x)\delta x = F(x) + C.$$

$$\sum_{i=1}^{b} f(x)\delta x = \sum_{i=1}^{b-1} f(i).$$

$$\Delta(cu) = c\Delta u, \qquad \Delta(u+v) = \Delta u + \Delta v,$$

$$\Delta(uv) = u\Delta v + \mathbb{E}v\Delta u, \qquad \Delta(x^{\underline{n}}) = nx^{\underline{n-1}},$$

$$\Delta(H_x) = x^{\underline{-1}}, \qquad \Delta(2^x) = 2^x,$$

$$\Delta(c^x) = (c-1)c^x, \qquad \Delta\left(\frac{x}{m}\right) = \left(\frac{x}{m-1}\right).$$

$$\sum (u+v) \, \delta x = \sum u \, \delta x + \sum v \, \delta x,$$

$$\sum u \Delta v \, \delta x = uv - \sum \mathbb{E} v \Delta u \, \delta x,$$

$$\sum x^{\underline{n}} \, \delta x = \frac{x^{\underline{n}+1}}{m+1}, \qquad \sum x^{-\underline{1}} \, \delta x = H_x,$$

$$\sum c^x \, \delta x = \frac{c^x}{c-1}, \qquad \sum \binom{x}{m} \, \delta x = \binom{x}{m+1}.$$

Falling Factorial Powers:

 $\sum cu \, \delta x = c \sum u \, \delta x,$

$$x^{\underline{n}} = x(x-1)\cdots(x-n+1), \quad n > 0,$$

$$x^{\underline{0}} = 1,$$

$$x^{\underline{n}} = \frac{1}{(x+1)\cdots(x+|n|)}, \quad n < 0,$$

$$\frac{n+m}{n+m} = x^{\underline{m}}(x-m)^{\underline{n}}$$

Rising Factorial Powers:

$$x^{\overline{n}} = x(x+1)\cdots(x+n-1), \quad n > 0,$$

$$x^{\overline{0}} = 1,$$

$$x^{\overline{n}} = \frac{1}{(x-1)\cdots(x-|n|)}, \quad n < 0,$$

$$\overline{n+m} = x^{\overline{m}}(x+m)^{\overline{n}}$$

Conversion:

$$x^{\underline{n}} = (-1)^{n}(-x)^{\overline{n}} = (x - n + 1)^{\overline{n}} = 1/(x + 1)^{\overline{-n}},$$

$$x^{\overline{n}} = (-1)^{n}(-x)^{\underline{n}} = (x + n - 1)^{\underline{n}} = 1/(x - 1)^{\underline{-n}},$$

$$x^{\underline{n}} = \sum_{k=1}^{n} {n \brack k} x^{\underline{k}} = \sum_{k=1}^{n} {n \brack k} (-1)^{n-k} x^{\overline{k}},$$

$$x^{\underline{n}} = \sum_{k=1}^{n} {n \brack k} (-1)^{n-k} x^{k},$$

$$x^{\overline{n}} = \sum_{k=1}^{n} {n \brack k} x^{k}.$$

Series

Taylor's series:

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2}f''(a) + \dots = \sum_{i=0}^{\infty} \frac{(x - a)^i}{i!}f^{(i)}(a).$$

 $= F_n x + F_{2n} x^2 + F_{3n} x^3 + \cdots$

Ordinary power series:

$$A(x) = \sum_{i=0}^{\infty} a_i x^i$$

Exponential power series:

$$A(x) = \sum_{i=0}^{\infty} a_i \frac{x^i}{i!}.$$

Dirichlet power series:

$$A(x) = \sum_{i=1}^{\infty} \frac{a_i}{i^x}$$

Binomial theorem

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

Difference of like powers

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{n-1-k} y^{k}.$$

For ordinary power series:

$$\alpha A(x) + \beta B(x) = \sum_{i=0}^{\infty} (\alpha a_i + \beta b_i) x^i$$

$$x^k A(x) = \sum_{i=k}^{\infty} a_{i-k} x^i,$$

$$\frac{A(x) - \sum_{i=0}^{k-1} a_i x^i}{x^k} = \sum_{i=0}^{\infty} a_{i+k} x^i,$$

$$A(cx) = \sum_{i=0}^{\infty} c^i a_i x^i,$$

$$A'(x) = \sum_{i=0}^{\infty} (i+1)a_{i+1}x^{i}$$

$$xA'(x) = \sum_{i=1}^{\infty} i a_i x^i,$$

$$\int A(x) dx = \sum_{i=1}^{\infty} \frac{a_{i-1}}{i} x^{i},$$

$$\frac{A(x)+A(-x)}{2}$$
 = $\sum_{i=0}^{\infty} a_{2i} x^{2i}$,

$$\frac{A(x) - A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i+1} x^{2i+1}.$$

Summation: If $b_i = \sum_{j=0}^{i} a_i$ then

$$B(x) = \frac{1}{1 - x} A(x).$$

Convolution:

$$A(x)B(x) = \sum_{i=0}^{\infty} \left(\sum_{j=0}^{i} a_j b_{i-j} \right) x^i.$$

God made the natural numbers; all the rest is the work of man

Leopold Kronecker

 $=\sum_{i=0}^{\infty}F_{ni}x^{i}$.

Series

Expansions:

 $\overline{\zeta(x)}$

 $\zeta(x)$

$$\frac{1}{(1-x)^{n+1}} \ln \frac{1}{1-x} = \sum_{i=0}^{\infty} (H_{n+i} - H_n) \binom{n+i}{i} x^i, \qquad \left(\frac{1}{x}\right)^{-n} = \sum_{i=0}^{\infty} \binom{i}{n} x^i,
x^{\overline{n}} = \sum_{i=0}^{\infty} \binom{n}{i} x^i, \qquad (e^x - 1)^n = \sum_{i=0}^{\infty} \binom{i}{n} \frac{n! x^i}{i!},
\left(\ln \frac{1}{1-x}\right)^n = \sum_{i=0}^{\infty} \binom{i}{n} \frac{n! x^i}{i!}, \qquad x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^i B_{2i} x^{2i}}{(2i)!},
\tan x = \sum_{i=1}^{\infty} (-1)^{i-1} \frac{2^{2i} (2^{2i} - 1) B_{2i} x^{2i-1}}{(2i)!}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x},
\frac{1}{\ell(x)} = \sum_{i=1}^{\infty} \frac{\mu(i)}{i^x}, \qquad \frac{\zeta(x-1)}{\ell(x)} = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x},$$

Stieltjes Integration

 $= \prod_{p} \frac{1}{1-p^{-x}},$ $= \sum_{i=1}^{\infty} \frac{d(i)}{x^i} \quad \text{where } d(n) = \sum_{d|n} 1,$ If G is continuous in the interval [a, b] and F is nondecreasing then

$$\zeta(x)\zeta(x-1) = \sum_{i=1}^{\infty} \frac{S(i)}{x^i}$$
 where $S(n) = \sum_{d|n} d$,

$$\zeta(2n)$$
 = $\frac{2^{2n-1}|B_{2n}|}{(2n)!}\pi^{2n}$, $n \in \mathbb{N}$,

$$\frac{x}{\sin x} = \sum_{i=0}^{\infty} (-1)^{i-1} \frac{(4^{i}-2)B_{2i}x^{2i}}{(2i)!},$$

$$\left(\frac{1-\sqrt{1-4x}}{2x}\right)^n = \sum_{i=0}^{\infty} \frac{n(2i+n-1)!}{i!(n+i)!} x^i,$$

$$e^{x} \sin x \qquad = \sum_{i=1}^{\infty} \frac{2^{i/2} \sin \frac{i\pi}{4}}{i!} x^{i},$$

$$\frac{\sqrt{1-\sqrt{1-x}}}{x} = \sum_{i=0}^{\infty} \frac{(4i)!}{16^i \sqrt{2}(2i)!(2i+1)!} x^i,$$

$$\left(\frac{\arcsin x}{x}\right)^2 = \sum_{i=0}^{\infty} \frac{4^i i!^2}{(i+1)(2i+1)!} x^{2i}.$$

$$\int_{a}^{b} G(x) dF(x)$$

$$\int_{a}^{c} G(x) dF(x) = \int_{a}^{b} G(x) dF(x) + \int_{b}^{c} G(x) dF(x).$$

$$\int_{a}^{b} (G(x) + H(x)) dF(x) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} H(x) dF(x),$$

$$\int_{a}^{b} G(x) d(F(x) + H(x)) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} G(x) dH(x),$$

$$\int_{a}^{b} c \cdot G(x) dF(x) = \int_{a}^{b} G(x) d(c \cdot F(x)) = c \int_{a}^{b} G(x) dF(x),$$
$$\int_{a}^{b} G(x) dF(x) = G(b)F(b) - G(a)F(a) - \int_{a}^{b} F(x) dG(x).$$

If the integrals involved exist, and F possesses a derivative F^{\prime} at every point in [a,b] then $\int_{a}^{b} G(x) dF(x) = \int_{a}^{b} G(x)F'(x) dx.$ Fibonacci numbers

Cramer's rule

If we have equations:

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2$$

$$\vdots \qquad \vdots$$

$$a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,n}x_n = b_n$$

Let $A = (a_{i,j})$ and B be the column matrix (b_i) . Then there is a unique solution iff det $A \neq 0$. Let A_i be A with column i replaced by B. Then

$$x_i = \frac{\det A_i}{\det A}.$$

Improvement makes strait roads, but the crooked roads without Improvement, are roads of Genius.

William Blake (The Marriage of Heaven and Hell)

The Fibonacci number system: Every integer n has a unique

$$\begin{split} n &= F_{k_1} + F_{k_2} + \dots + F_{k_m},\\ \text{where } k_i &\geq k_{i+1} + 2 \text{ for all } i, 1 \leq i < m \text{ and } k_m \geq 2. \end{split}$$

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

Definitions:

$$F_i = F_{i-1} + F_{i-2}, \quad F_0 = F_1 = 1,$$

 $F_{-i} = (-1)^{i-1}F_i,$
 $F_i = \frac{1}{\sqrt{5}} (\phi^i - \hat{\phi}^i),$

Cassini's identity: for i > 0:

$$F_{i+1}F_{i-1} - F_i^2 = (-1)^i$$
.

Additive rule:

$$F_{n+k} = F_k F_{n+1} + F_{k-1} F_n,$$

$$F_{2n} = F_n F_{n+1} + F_{n-1} F_n.$$

$$\begin{pmatrix} F_{n-2} & F_{n-1} \\ F_{n-1} & F_n \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n.$$