Семинар 8

Алексеев Василий

27 октября 2020

Содержание

1	Kac	ательная к кривой второго порядка	1	
	1.1	# 8.2(3)	1	
	1.2	# 8.9(1)	2	
	1.3	# 8.24(1)	3	
	1.4	# 8.29(3)	4	
2	Приведение уравнения кривой к каноническому виду			
	2.1	# 9.4(1)	7	
3	Дополнение			
	3.1	Про конические сечения	10	
	3.2	II_{n}	1 1	

1. Касательная к кривой второго порядка

Для эллипса, заданного в канонической системе координат уравнением

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

уравнение касательной в точке (x_0, y_0) эллипса выглядит так

$$\frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1$$

Для гиперболы, заданной в канонической системе координат уравнением

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

уравнение касательной в точке (x_0, y_0) гиперболы выглядит так

$$\frac{xx_0}{a^2} - \frac{yy_0}{b^2} = 1$$

И для параболы, заданной в канонической системе координат уравнением

$$y^2 = 2px$$

уравнение касательной в точке (x_0, y_0) параболы выглядит так

$$yy_0 = p(x + x_0)$$

1.1. # 8.2(3)

Составить уравнение касательной к кривой

$$xy = k$$

Решение. Можно продифференцировать обе части уравнения кривой в некоторой точке (x_0, y_0) , принадлежащей кривой:

$$d(xy)\mid_{(x_0,y_0)} = d(k)$$

Откуда

$$x_0 dy + y_0 dx = 0 \Rightarrow \frac{dy}{dx} = -\frac{y_0}{x_0}$$

То есть тангенс угла наклона касательной к кривой в точке (x_0, y_0) равен $-\frac{y_0}{x_0}$. С другой стороны, тот же тангенс для касательной можно посчитать просто как отношение приращений $(y-y_0)$ и $(x-x_0)$ для некоторой точки (x,y) касательной:

$$\frac{y - y_0}{x - x_0} = -\frac{y_0}{x_0}$$

Проводя упрощения и учитывая, что для исходной точки выполняется $x_0y_0=k$, получаем

$$y_0x + x_0y = 2k$$

1.2. # 8.9(1)

Какие точки на кривой второго порядка

$$\frac{27}{28}x^2 + \frac{9}{7}y^2 = 1$$

удалены на наименьшее расстояние от прямой

$$l: 3x + 4y + 5 = 0$$

Найти это расстояние.

Рис. 1: Прямая l не пересекает эллипс.

Решение. Из рисунка (1) видно, что прямая l и эллипс не пересекаются, поэтому минимальное расстояние не нулевое. Также из рисунка понятно, что расстояние от точки (x_0, y_0) эллипса до прямой l будет минимальным в том случае, когда касательная к эллипсу в точке (x_0, y_0) параллельна прямой l. Но таких точек, очевидно, у эллипса две (при этом если расстояние от одной из них до прямой l будет минимальным, то от другой, наоборот, расстояние будет максимальным среди точек эллипса).

Уравнение касательной к эллипсу в точке (x_0, y_0) :

$$\frac{27}{28}x_0x + \frac{9}{7}y_0y = 1$$

Сравнивая уравнение касательной с уравнением прямой, получаем условие параллельности касательной и прямой:

$$\frac{27/28x_0}{3} = \frac{9/7y_0}{4}$$

Откуда получаем

$$x_0 = y_0$$

¹Более строгое доказательство этого положения связано с тем, что эллипс выпуклый (отрезок, соединяющий любые две точки эллипса, лежит внутри эллипса) и что угол наклона касательной от точки к точке эллипса меняется непрерывно (то есть нет "пропусков" углов).

При этом (x_0, y_0) — точка эллипса:

$$\frac{27}{28}x_0^2 + \frac{9}{7}y_0^2 = 1$$

В итоге

$$\begin{cases} x_0 = \pm \frac{2}{3} \\ y_0 = \pm \frac{2}{3} \end{cases}$$

Из рисунка (1) видно, что подходит точка $\left(-\frac{2}{3}, -\frac{2}{3}\right)$.

Расстояние от найденной точки до прямой l в канонической системе координат эллипса (которая прямоугольная) вычисляется по формуле:

$$\rho((x_0, y_0), l) = \frac{\left|3 \cdot \left(-\frac{2}{3}\right) + 4 \cdot \left(-\frac{2}{3}\right) + 5\right|}{\sqrt{3^2 + 4^2}} = \dots = \frac{1}{15}$$

1.3. # 8.24(1)

Составить уравнения касательных к эллипсу, заданному в канонической системе координат уравнением

$$\frac{x^2}{18} + \frac{y^2}{8} = 1$$

проходящих через точку (-6, 0).

Рис. 2: Касательные к эллипсу, проходящие через одну точку на оси X в канонической системе координат эллипса.

Решение. Уравнение касательной к эллипсу в точке (x_0, y_0) , которая проходит через точку (-6,0) (2):

$$\frac{-6x_0}{18} + 0 = 1 \Rightarrow x_0 = -3$$

Подставляя найденную координату x_0 в уравнение эллипса, находим координаты y_0 :

$$\frac{(-3)^2}{18} + \frac{y_0^2}{8} = 1 \Rightarrow y_0 = \pm 2$$

И уравнения касательных

$$-2x \pm 3y - 12 = 0$$

1.4. # 8.29(3)

Доказать, что пучок света, испущенный из фокуса параболы, отразившись от её стенок, пойдёт параллельно оси параболы.

Рис. 3: Луч, исходящий из фокуса параболы.

Решение. Рассмотрим параболу в её канонической системе координат. Там она задаётся уравнением

$$v^2 = 2px$$

и уравнение касательной в точке (x_0, y_0) будет

$$yy_0 = p(x + x_0)$$

или, если раскрыть скобки и перенести всё в одну часть уравнения

$$p \cdot x - y_0 \cdot y + px_0 = 0$$

Откуда получаем направляющий вектор касательной $\boldsymbol{a}=(y_0,p)$ и вектор нормали к касательной

$$n = (p, -y_0)$$

Рассмотрим один луч, исходящий из фокуса параболы (3). Отраженный, по предположению, луч (параллельный оси параболы) параллелен вектору $\boldsymbol{v}_{\parallel}=(-1,0)$. Вектор же

 $m{v}$, "по которому" идёт испущенный из фокуса луч, равен $\left(x_0-\frac{p}{2},y_0-0\right)$. Найдём углы $\angle(m{v},m{n})$ и $\angle(m{n},m{v}_\parallel)$. Если они окажутся равны, то мы докажем что требуется. Итак,

$$\cos \angle (\mathbf{n}, \mathbf{v}_{\parallel}) = -\frac{p}{\sqrt{p^2 + y_0^2}}$$

$$\cos \angle(\boldsymbol{v}, \boldsymbol{n}) = \frac{p\left(x_0 - \frac{p}{2}\right)^2 - y_0 y_0}{\sqrt{p^2 + y_0^2} \sqrt{\left(x_0 - \frac{p}{2}\right)^2 + y_0^2}} = \dots = -\frac{p}{\sqrt{p^2 + y_0^2}}$$

Небольшое замечание: благодаря удачному выбору направления v_{\parallel} косинусы углов сразу получились равными. Но если бы v_{\parallel} был выбран как (1,0), то косинусы получились бы равными с точностью до знака (то есть просто по модулю).

2. Приведение уравнения кривой к каноническому виду

Общий вид уравнения кривой второго порядка:

$$\begin{cases} Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0\\ A^2 + B^2 + C^2 > 0 \end{cases}$$
 (1)

Всего есть девять канонических уравнений кривых второго порядка²:

1. Эллипс

$$\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\\ a \ge b > 0 \end{cases}$$

2. "Мнимый эллипс"

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$$

3. "Пара мнимых пересекающихся прямых"

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$$

4. Гипербола

$$\begin{cases} \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\\ a > 0, \ b > 0 \end{cases}$$

5. Пара пересекающихся прямых

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$$

6. Парабола

$$y^2 = 2px, \quad p > 0$$

²См., например книжку Беклемишева Д. В. или задачник.

7. Пара параллельных прямых

$$v^2 = a^2, \quad a \neq 0$$

8. "Пара мнимых параллельных прямых"

$$y^2 = -a^2, \quad a \neq 0$$

9. Пара совпавших прямых

$$y^2 = 0$$

Чтобы привести кривую к каноническому виду, можно придерживаться следующего алгоритма:

- 0. Перейти к прямоугольной системе координат (если она ещё не прямоугольная)³.
- 1. Повернуть систему координат так, чтобы исчез член с произведением xy.
- 2. Далее, в зависимости от ситуации, надо *перенести начало* системы координат так, чтобы исчезли либо линейные члены, либо свободный член.
- 3. И в конце, опять же в зависимости от ситуации, может потребоваться ещё однодва небольших действия, например изменение порядка координат (чего можно достичь поворотом на $\frac{\pi}{2}$, чтобы не менялась ориентация базиса).

Центром кривой второго порядка называется точка (x_0, y_0) , такая что

$$F(x_0 + \alpha, y_0 + \beta) = F(x_0 - \alpha, y_0 - \beta)$$

где $F(\cdot,\cdot)=0$ — уравнение кривой, а α и β — любые числа. Можно показать, что центр симметрии кривой — это почти то же самое, что и её центр (только центр в некоторых случая может существовать, а центр симметрии — нет). Если подставить в уравнение (1) сдвинутые на $\pm \alpha$ и $\pm \beta$ координаты (x_0,y_0) и приравнять, как в определении центра, то получим

$$\alpha(Ax_0 + Bx_0 + D) + \beta(Bx_0 + Cy_0 + E) = 0$$

откуда система уравнений для нахождения координат центра:

$$\begin{cases} Ax_0 + Bx_0 + D = 0 \\ Bx_0 + Cy_0 + E = 0 \end{cases}$$
 (2)

Центр существует и единствен, если определитель системы отличен от нуля:

$$\delta = \begin{vmatrix} A & B \\ B & C \end{vmatrix} \neq 0$$

В этом случае кривая называется центральной.

При этом $\delta > 0$ соответствует кривым эллиптического типа: от эллипса до гиперболы в списке кривых (1), — $\delta < 0$ соответствует кривым гиперболического типа: от гиперболы до параболы в списке кривых (4), — и $\delta = 0$ соответствует кривым параболического типа: от параболы и далее (6).

 $^{^{3}}$ В задачах изначальная система координат будет считаться прямоугольной, если не сказано противное!

2.1. # 9.4(1)

Определить тип кривой второго порядка. Составить её каноническое уравнение и найти каноническую систему координат. Изначально кривая задана в *прямоугольной системе координат*.

$$F(x, y) = 2x^2 - 4xy + 5y^2 + 8x - 2y + 9 = 0$$
(3)

Решение.

Способ І ("канонический").

Тип кривой можно определить либо сразу, либо в самом конце, когда получим каноническое уравнение. Давайте отложим на конец (а в другом варианте решения сделаем это сразу).

Первый шаг — надо повернуть систему координат так, чтобы исчез член со смешанным произведением переменных xy. Поворот системы координат:

$$\begin{cases} x = x' \cos \phi - y' \sin \phi \\ y = x' \sin \phi + y' \cos \phi \end{cases}$$

Подставляем в исходное уравнение и смотрим, что получается как коэффициент при x'y':

$$F'(x', y') = 2(x'\cos\phi - y'\sin\phi)^2 - 4(x'\cos\phi - y'\sin\phi)(x'\sin\phi + y'\cos\phi) + 5(x'\sin\phi + y'\cos\phi)^2 + \dots = (6\sin\phi\cos\phi - 4\cos^2\phi + 4\sin^2\phi)x'y' + \dots = 0$$

Откуда получаем условие на угол поворота ϕ , чтобы коэффициент при x'y' обратился в ноль:

$$3\sin 2\phi - 4\cos 2\phi = 0 \Rightarrow \operatorname{tg} 2\phi = \frac{4}{3}$$

Рис. 4: К нахождению $\sin \phi$ и $\cos \phi$ по $\lg 2\phi$.

Из рисунка (4), например, можно найти синус и косинус для одинарного угла:

$$\begin{cases} \sin \phi = \frac{1}{\sqrt{5}} \\ \cos \phi = \frac{2}{\sqrt{5}} \end{cases}$$

и первая замена

$$\begin{cases} x = \frac{2}{\sqrt{5}}x' - \frac{1}{\sqrt{5}}y' \\ y = \frac{1}{\sqrt{5}}x' + \frac{2}{\sqrt{5}}y' \end{cases}$$

Снова подставляем это представление x и y через x' и y' в исходное уравнение, но на этот раз выписываем все члены, кроме x'y' (так как он обязан занулиться при замене x, y на x', y')

$$F'(x', y') = \dots = x'^2 + 6y'^2 + \frac{14x'}{\sqrt{5}} - \frac{12y'}{\sqrt{5}} + 9 = 0$$

Далее можно выделить полные квадраты, чтобы избавиться от линейных членов

$$\left(x'^2 + 2 \cdot \frac{7}{\sqrt{5}}x' + \frac{49}{5}\right) - \frac{49}{5} + \left(\left(\sqrt{6}y'\right)^2 - 2 \cdot \sqrt{6}y \cdot \frac{6}{\sqrt{30}} + \frac{36}{30}\right) - \frac{36}{30} + 9 = 0$$

$$\left(x' + \frac{7}{\sqrt{5}}\right)^2 + \left(\sqrt{6}y' - \frac{6}{\sqrt{30}}\right)^2 = 2$$

$$\left(x' + \frac{7}{\sqrt{5}}\right)^2 + 6\left(y' - \frac{1}{\sqrt{5}}\right)^2 = 2$$

Откуда видна следующая замена⁴:

$$\begin{cases} x'' = x' + \frac{7}{\sqrt{5}} \\ y'' = y' - \frac{1}{\sqrt{5}} \end{cases}$$

Уравнение при этом в переменных x'', y'' примет вид:

$$x''^2 + 6y''^2 = 2$$

или, уже каноническое:

$$\frac{x''^2}{2} + \frac{y''^2}{1/3} = 1$$

Видно, что крива второго порядка — эллипс. Осталось задать каноническую систему координат, связав её и исходной. Надо вывести замену x и y сразу на x'' и y'', тогда станет известна матрицы перехода от исходного базиса к новому и положение новой (канонической) системы координат относительно исходной.

Выражая и подставляя из одной замены в другую, получаем

$$\begin{cases} x = \dots = \frac{2}{\sqrt{5}}x'' - \frac{1}{\sqrt{5}}y'' - 3\\ y = \dots = \frac{1}{\sqrt{5}}x'' + \frac{2}{\sqrt{5}}y'' - 1 \end{cases}$$

Откуда видны компоненты новых базисных векторов в старом базисе и положение нового начала:

$$\begin{cases} e_1' = \left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right) \\ e_2' = \left(-\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right) \\ O'(-3, -1) \end{cases}$$

 $^{^{4}}$ Множитель 6 вынесен за скобку с y' намеренно!

Способ II ("через центр").

Если у кривой есть центр, то удобнее начинать замены с переноса начала координат в этот центр. Из системы уравнений (2) можно понять, есть у кривой центр или нет И, если есть, найти его координаты

$$\begin{cases} 2x_0 - 2y_0 + 4 = 0 \\ -2x_0 + 5y_0 - 1 = 0 \end{cases}$$

Определитель системы

$$\delta = \begin{vmatrix} 2 & -2 \\ -2 & 5 \end{vmatrix} = 6 > 0$$

(из того, что определитель больше нуля, сразу можно заключить, что кривая эллиптического типа). Решая далее, например, по методу Крамера, находим

$$\begin{cases} x_0 = -3 \\ y_0 = -1 \end{cases}$$

И первая замена — перенос начала координат в центр:

$$\begin{cases} x = x' - 3 \\ y = y' - 1 \end{cases}$$

Подставляя в уравнение (3), получаем

$$2x'^2 + 5y'^2 - 4x'y' = 2$$

то есть линейные члены ушли. Осталось повернуть систему координат. Поворот должен быть таким же, как в первом способе решения. И в итоге

$$x''^2 + 6y''^2 = 2$$

Получили то же самое, что и в первый раз, но вычислений пришлось проводить в разы меньше (и вероятность совершить какую-нибудь ошибку тоже меньше). И координаты нового центра стали известны уже на стадии первой замены переменных.

3. Дополнение

3.1. Про конические сечения

Кривые второго порядка можно получать, пересекая двойной круговой конус (не обязательно прямой) плоскостью, не проходящей через вершину конуса (5).

Рис. 5: Кривые второго порядка (эллипс, гипербола и парабола) — как конические сечения (wikipedia.org/wiki/Conic section).

Можно заметить, что эксцентриситет увеличивается в ряду "окружность, эллипс, парабола, гипербола" (6). Таким образом, эксцентриситет выражает некую меру кривизны кривой: от максимальной у окружности до минимальной у гиперболы.

Рис. 6: Эксцентриситет — как число, отражающее кривизну линии второго порядка (wikipedia.org/wiki/Conic_section). Кривизна уменьшается с увеличением эксцентриситета.

Мы определяли эксцентриситет для эллипса и гиперболы через отношение c к a (к слову, c ещё называют линейным эксцентриситетом или фокальным расстоянием — расстояние между центром и фокусом). У параболы же нет c (так как нет центра), но у неё эксцентриситет был равен одному как отношение расстояние от точки параболы до фокуса к расстоянию от той же точки до директрисы. Существует более общее определение эксцентриситета, которое подходит как для окружности, так и для эллипса, гиперболы и

параболы — через конические сечения (7):

$$\begin{cases} \varepsilon = \frac{\sin \beta}{\sin \alpha} \\ 0 < \alpha < \frac{\pi}{2} \\ 0 \le \beta \le \frac{\pi}{2} \end{cases}$$

где β — угол наклона секущей конус плоскости, а α — угол между образующей конуса и его основанием.

В пределе $\alpha \to +\infty$ (сплющенный конус) в сечении в пределе получается прямая, поэтому для прямой можно считать эксцентриситет $\varepsilon \to +\infty$ (6).

Рис. 7: К определению эксцентриситета через конические сечения (wikipedia.org/wiki/Eccentricity).

3.2. Про 2*p*

В каноническом уравнении параболы

$$y^2 = 2px, \quad p > 0$$

двойка на самом деле "не просто так": p — половина так называемого *latus rectum*⁵ (8). То есть p — это длина части перпендикуляра к оси параболы, проходящего через фокус, от фокуса до параболы. Точно так же p определяется и в случае эллипса и гиперболы.

Рис. 8: Число p из канонического уравнения параболы (wikipedia.org/wiki/Parabola).

⁵Latus переводится с латинского как "прямой", а rectum — "кишка"?.. Или это всё вместе переводится как "прямая сторона" (по другим источникам)?.. Автор конспекта доунт ноу.