Билеты к экзамену «Кратные интегралы и теория поля»

Авторы: Примак Евгений

Хоружий Кирилл

От: 11 января 2021 г.

Содержание

Риман	Римановы и полуримановы многообразия	
48	Риманова структура на многообразии	2
49	Риманов объём, объём на поризведении	2
50	Частыне случаи	2
51	Twinkle twinkle little star	3

 $\mathsf{W}_{\mathtt{U}}\mathsf{K}$

Римановы и полуримановы многообразия

48 Риманова структура на многообразии

Def 48.1. Римановой структурой на гладком M называется задание квадратичной формы $g_p > 0$ на касательном пространстве $T_p M$, гладко зависящее от точки p. Полуриманова структура — это задание невырожденной, но не обязательно положительно определённой квадратичной формы.

Будем отождествлять квадратичную форму с симметричным скалярным произведением:

$$g_{i,j} = g\left(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j}\right), \qquad g = g_{ij} dx^i \otimes dx^j.$$

На $\forall M$ (гладком) $\exists g$. Достаточно взять локальное конечное разбиение единицы $\{p_i\}$, подчинённое картам $\{U_i\}$, в каждой карте построить g_i (например: стандартная риманова структура $\delta_{ij} dx^i \otimes dx^j$) и положить $g = \sum_i p_i g_i$. Эта сумма будет локально конечна и в любой точке будет давать g > 0, так как сумма неотрицательно определённых форм, хотя бы одна из которых положительно определена, будет положительно определена.

На вложенном $M \subset \mathbb{R}^N$ можно просто ограничить стандартную риманову структуру с евклидова пространства на его подмногообразие M:

$$i: M \to \mathbb{R}^n, \qquad g = i^* g_0.$$

В таком случае, если локальные координаты M — это u_1, \ldots, u_n , то риманова структура задаётся в координатах как

$$g_{ij} = g_0 \left(\frac{\partial r}{\partial u_i} \cdot \frac{\partial r}{\partial u_j} \right) = \left(\frac{\partial r}{\partial u_i} \cdot \frac{\partial r}{\partial u_j} \right), \tag{10.1}$$

где g_0 , (·) — евклидово скалярное произведение.

борелевское

гомотопичные

49 Риманов объём, объём на поризведении

Def 49.1. Плотность меры — это функция в каждых локальных координатах, которая при заменах координат преобразуется почти как диф-форма высшего ранга, но умножается при замене координат на модуль якобиана обратной замены, а не на якобиан без модуля. Её интеграл уже не зависит от ориентации.

Lem 49.2 (Формула риманова объёма). Для (полу)римановой структуры д формула

$$vol_q = \sqrt{|\det g|} \, dx^1 \wedge \ldots \wedge \, dx^n,$$

где $\det g$ подразумевает $\det(g_{ij})$, кореектно определяет плотность меры.

В случае ориентированного многообразия vol_g можно считать формой высшей степени, положительной относительно выбранной ориентации.

Для двух римановых многообразий M и N их произведение $M \times N$ можно тоже считать римановым многообразием по формуле

$$g_{M\times N}(X,Y) = g_M(p_*X, p_*Y) + g_N(q_*X, q_*Y),$$

где $p: M \times N \to M$ и $q: M \times N \to N$ — естественные проекции.

В матричном виде на произведении координат $g_{M\times N}$ будет \oplus матриц g_M и g_N . Так как детерминант прямой суммы матриц равен произведению детерминантов исходных, для риманова произведения (напр. борелевских)подмножеств:

$$X \subseteq M, Y \subseteq N$$
: $\operatorname{vol}_{M \times N}(X \times Y) = \operatorname{vol}_{M} X \cdot \operatorname{vol}_{N} Y$.

Свойство произведения в некотором смысле обосновывает естественность выбора риманова объёма.

Task 49.3. Евклидова структура на \mathbb{R}^n является произведением n римановых структур прямой \mathbb{R}^1 .

50 Частыне случаи

Рассмотрим частный случай риманова объёма — площадь двумерной поверхности в евклидовом пространстве, то есть интеграл от vol_g по этой поверхности. Заметим, что если поверхность задана параметрически и положительно ориентированные параметры на поверхности — (u,v), то для индуцированной с \mathbb{R}^n римановой структуры

$$\text{vol}_g = \sqrt{|r'_u|^2 |r'_v|^2 - (r'_u \cdot r'_v)^2} \, du \wedge dv.$$

 Φ_{N} З \mathbf{T}_{E} Х

В трёхмерном случае эту формулу можно продолжить как

$$vol_{q} = \sqrt{|r'_{u}|^{2}|r'_{v}|^{2} - (r'_{u} \cdot r'_{v})^{2}} du \wedge dv = |[r'_{u} \times r'_{v}]| du \wedge dv.$$

51 Twinkle twinkle little star

Def 51.1. Риманова метрика на гладком M — симметричное положительно определённое невырождение тензорное поле $(g_{ij}) \in \mathbb{T}_2^0(M^n)$.

Def 51.2. $\sharp: \mathbb{T}^0_1(M^n) \to \mathbb{T}^1_0(M^n)$ (диез) — операция поднятия индекса: $\alpha_i \to g^{ij}\alpha_j$.

Def 51.3.
$$\flat : \mathbb{T}_0^1(M^n) \to \mathbb{T}_0^0(M^n)$$
 (бемоль) — операция опускания индекса: $v^i \to g_{ij}v^j$.

Таким образом форма (полу)
римановой структуры может рассматриваться как отображение $g: T_pM \otimes T_pM \to \mathbb{R}$. Композиция g и двух поднятий индексов на её аргументов даёт билинейное отображение $\tilde{g}: T_p^*M \otimes T_p^*M \to \mathbb{R}$.

Task 51.4 (Коши-Буняковский). $\alpha(X)^2 \leq g(X,X) \cdot \tilde{g}(\alpha,\alpha)$.

Def 51.5. В присутствии (полу)
римановой структуры g на ориентированном многообразии
 M^n (чтобы vol_g) можно было считать элементом $\Omega^n(M)$) формула

$$\alpha \wedge *\beta = \tilde{g}(\alpha, \beta) \text{vol}_q, \ \forall \alpha \in \Omega^k(M),$$

корректно определяет линейный оператор $*\colon \Omega^k(M) \to \Omega^{n-k}(M)$ — звёздочку Ходжа.