Topological Spaces

Arthur Ryman, arthur.ryman@gmail.com

June 25, 2022

${\bf Abstract}$

This article contains Z Notation type declarations for topological spaces and related concepts. It has been type checked by fUZZ.

Contents

1	Top	pological Spaces
	1.1	Topology
	1.2	top and tops
	1.3	discrete and indiscrete
	1.4	topGen
	1.5	topSpace
	1.6	topSpaces
2	Cor	ntinuous Mappings
	2.1	Continuous
	2.2	C^0 \CzeroTT
	2.3	The Identity Mapping
	2.4	Composition of Continuous Mapping
3	Ind	uced Topology
	3.1	$ _{\mathcal{F}} \setminus \text{inducedFam} \ldots \ldots \ldots \ldots \ldots \ldots$
	3.2	top \inducedTopSp
4	Pro	educt Topology
	4.1	$ imes_{\mathcal{F}} \setminus prodFam \ \ldots \ldots \ldots \ldots \ldots \ldots \ldots$
	4.2	× _{top} \prodTop
		× _{top} \prodTopSp

1 Topological Spaces

1.1 Topology

A topology τ on X is a family of subsets of X, referred to as the open subsets of X, that satisfy the following axioms.

- The empty set is open.
- The whole set is open.
- The intersection of a finite family of open sets is open.
- The union of any family of open sets is open.

1.2 top and tops

Let top[X] denote the set of all topologies on X.

```
top : \mathbb{P}(\mathcal{F}X)
top = \{ Topology[X] \bullet \tau \}
```

Let tops[X] denote the set of all topologies on subsets $U \subseteq X$.

```
tops : \mathbb{P}(\mathcal{F}X)
tops = \bigcup \{ U : \mathbb{P} X \bullet top[U] \}
```

1.3 discrete and indiscrete

The discrete topology on X consists of all subsets of X. The indiscrete topology on X consists of just X and \emptyset . Let discrete[X] and indiscrete[X] denote the discrete and indiscrete topologies on X.

Example. Let X be an arbitrary set. Then discrete[X] and indiscrete[X] are topologies on X.

```
\mathit{discrete}[X] \in \mathit{top}[X] \mathit{indiscrete}[X] \in \mathit{top}[X]
```

1.4 topGen

Remark. The intersection of a set of topologies on X is also a topology on X.

Given a family B of subsets of X, the topology generated by B is the intersection of all topologies that contain B. The set B is referred to as a basis for the topology it generates. Let topGen[X]B denote the topology on X generated by the basis B.

```
[X] = topGen : \mathcal{F}X \longrightarrow top[X]
\forall B : \mathcal{F}X \bullet 
topGen B = \bigcap \{\tau : top[X] \mid B \subseteq \tau \}
```

Example. Let X be an arbitrary set.

```
topGen[X]\emptyset = indiscrete[X]

topGen[X]\{\emptyset\} = indiscrete[X]

topGen[X]\{X\} = indiscrete[X]
```

1.5 topSpace

Let X be a set. A topological space is a pair (X, τ) where τ is a topology on X. Let topSpace[X] denote the set of all topological spaces (X, τ) .

$$topSpace[X] == \{ \tau : top[X] \bullet (X, \tau) \}$$

Example. Let X be an arbitrary set.

$$(X, indiscrete[X]) \in topSpace[X]$$

 $(X, discrete[X]) \in topSpace[X]$

1.6 topSpaces

Let topSpaces[t] denote the set of all topological spaces (X, τ) where X is a subset of t.

Remark.

$$\mathit{topSpace}[X] \subseteq \mathit{topSpaces}[X]$$

2 Continuous Mappings

Let (X, τ) and (Y, σ) be topological spaces.

2.1 Continuous

A mapping $f \in X \longrightarrow Y$ is said to be *continuous* if the inverse image of every open set is open.

```
 \begin{array}{c} Continuous[X, Y] \_ \\ f: X \longrightarrow Y \\ \tau: top[X] \\ \sigma: top[Y] \\ \hline \\ \forall \, U: \sigma \bullet \\ f^{\sim}(U) \in \tau \end{array}
```

$\mathbf{2.2}$ \mathbf{C}^0 \CzeroTT

Let A and B be topological spaces, and let $C^0(A, B)$ denote the set of continuous mappings from A to B.

2.3 The Identity Mapping

Remark. The identity mapping is continuous.

$$\forall \tau : top[X] \bullet$$

$$let A == (X, \tau) \bullet$$

$$id X \in C^{0}(A, A)$$

Remark. The constant mapping is continuous.

$$\forall \tau : top[X]; \sigma : top[Y]; c : Y \bullet$$

$$let A == (X, \tau); B == (Y, \sigma) \bullet$$

$$const[X, Y]c \in C^{0}(A, B)$$

2.4 Composition of Continuous Mapping

Remark. Let X, Y, and Z be arbitrary sets. The composition of continuous mappings is a continuous mapping.

```
\forall A: topSpace[X]; B: topSpace[Y]; C: topSpace[Z] \bullet \\ \forall f: C^{0}(A, B); g: C^{0}(B, C) \bullet \\ g \circ f \in C^{0}(A, C)
```

3 Induced Topology

Let $A = (X, \tau)$ be a topological space and let $U \subseteq X$ be a subset. The topology on X induces a topology on U. This topology is variously referred to as the induced, relative, or subspace topology on U.

3.1 $\mid_{\mathcal{F}} \setminus \text{inducedFam}$

Let ϕ be a family of subsets of X and let U be a subset of X. The family of subsets of U induced by ϕ is the set of intersections of the members of ϕ with U. Let $\phi \mid_{\mathcal{F}} U$ denote the family on U induced by ϕ .

Remark. If τ is a topology on X then $\tau \mid_{\mathcal{F}} U$ is a topology on U.

$$\forall \, \tau : top[\mathsf{X}]; \, U : \mathbb{P} \, \mathsf{X} \bullet \\ \tau \mid_{\mathcal{F}} U \in top[U]$$

3.2 | top \inducedTopSp

Let $(X,\tau)|_{\mathsf{top}} U$ denote the corresponding induced topological space.

4 Product Topology

Let (X, τ) and (Y, σ) be topological spaces. There is a natural topology on $X \times Y$ generated by the products of the sets in τ and σ .

$4.1 \times_{\mathcal{F}} \operatorname{prodFam}$

Let X and Y be sets and let ϕ and ψ be families on them. The product of these families is the family that consists of the products of the sets in them and is a family on $X \times Y$. Let $\phi \times_{\mathcal{F}} \psi$ denote the product of the families.

Remark. If τ and sigma are topologies then $\tau \times_{\mathcal{F}} \sigma$ is not, in general, a topology. However, we can use it to generate a topology.

$4.2 \times_{\mathsf{top}} \mathsf{prodTop}$

Let $\tau \times_{\mathsf{top}} \sigma$ denote the topology generated by $\tau \times_{\mathcal{F}} \sigma$.

$4.3 \times_{\sf top} \prodTopSp$

Let $(X, \tau) \times_{\mathsf{top}} (Y, \sigma)$ denote the product topological space.