LeaRning R

Cyril Statzer

All information is my personal opinion

Getting started

1. Download R

for either Mac or Windows: https://cran.rstudio.com/

2. Install Rstudio

 scroll down to installers and download either the Windows or Mac version: https://www.rstudio.com/products/rstudio/download/#download

3. Open Rstudio

- a) type install.packages('tidyverse') in the bottom left panel (the console)
- b) let R install all required packages for you (can take 10 min)
- c) after the command finished type library(tidyverse).
- d) If you encounter problems / errors along the way let me know and I can help you. You're all set!

Overview

1. Why R?

2. Interacting with R

- Rstudio
- R basics
- Data workflow

3. Visualizing data in R

- The ggplot approach
- Data exploration (can we beat The Economist?)
- 4. How to use R in the lab (from easy to advanced)
- 5. Outlook

What you need to know to get started

Learning to speak the grammar of graphics

→ Potential use cases

Why R?

(my personal opinion)

Why I think learning R is a good idea?

 Are you using the best available tools?

 How would you know if you were not?

most of us

Strengths of R and Excel

Data visualization

Statistical tests

Convenient to enter data manually

Data and analysis are separated

View a dataset

Traceable workflow & Reproducible research

faster

A handy calculator e.g. for a PCR mix

Automation of repetitive tasks

Direct access to research progress

Getting started is hard

 Initial work required but it pays off greatly

You can get help everywhere

The best book is for free: https://r4ds.had.co.nz

Disclaimer

 This presentation will become overwhelming towards the end

 We'll go from learning a new language to writing a short story in one lesson

 Try to hang on and understand the overall concepts

How can we use R & RStudio?

Rstudio (1/3)

1.) new script, 2.) save script to folder, 3.) Set working directory to script location

Rstudio (2/3)

- 1. Make a **folder for your R project**
- 2. Put your data into this folder
- Open Rstudio, open and thensave the R script to this folder
- When you start Rstudio set the Working
 directory to the location of your script

Rstudio (3/3)

1. Now R can "see" the files you want to work with:

The dir() functions shows all the files in your folder.

You can directly import themby name since R knows nowwhere to look for them

R basics (1/2)

Assignment is giving names to things. It is like labelling a box and then put anything you want into it. We call this "an object" in R.

"273.15 is saved in Kelvin"

tempsC <- c(5,20,30)

"tempsC has 3 numerical entries:

5, 20 and 30"

feeling <- c("cold", "medium", "hot")</pre>

"feeling has 3 character entries: "cold", "medium" and "hot)

Data types

The data type determines what you can do with it: 10/2 works but "hello" / "world" not.

• Numeric:

Kelvin and tempsC are numeric

Test with: class (Kelvin)

Character

feeling is character

Test with: class (feeling)

R basics (2/2)

```
    Functions

                                                             18.33333
                 mean (tempsC)
                                                             30
                 max(tempsC)
                                                             3
                 length(feeling)

    Multiple

                 temp <- mean(tempsC)</pre>
                                                             18
                 round(temp)
 functions
                                                             18
                 tempsC %>% mean() %>% round()
```


Data workflows (1/3)

world <- read_csv("gapminder.csv")
world</pre>

	country	continent	year	lifeExp	рор	gdpPercap
	<chr></chr>	<chr></chr>	<int></int>	<dbl></dbl>	<int></int>	<db1></db1>
1	Afghanistan	Asia	1952	28.8	8425333	779.
2	Afghanistan	Asia	1957	30.3	9240934	821.
3	Afghanistan	Asia	1962	32.0	10267083	853.
4	Afghanistan	Asia	1967	34.0	11537966	836.
.5	Afghanistan	Asia	1972	36.1	13079460	740.
6	Afghanistan	Asia	1977	38.4	14880372	786.
7	Afghanistan	Asia	1982	39.9	12881816	978.
8	Afghanistan	Asia	1987	40.8	13867957	852.

View (world)

Import the dataset into the object world

Display the contents of the object

This is well-structured (tidy) data!

- Each **variable** is saved in its own **column**.
- Each **observation** is saved in its own **row**.

Browse the table like in Excel

%>% is called a pipe, passing the date to the next function

== is equal ("=" in mathematics)

Data workflows (2/3)

```
Take the world dataset and filter it for the Americas

americas <- world %>%

filter(continent == "Americas")
```


Take the **world** dataset **and** <u>filter it for Asia</u> <u>and</u> <u>select the specified columns</u> <u>and</u> <u>arrange them by descending life expectancy</u>.

```
Asia_lifexp <- world %>%
  filter(continent == "Asia") %>%
  select(country, year, lifeExp) %>%
  arrange(desc(lifeExp))
```


Data workflows (3/3)

Take the **world** dataset **and** <u>group it by continent and year and for every</u>

<u>group</u> **then** <u>summarize the life expectancy by taking the mean</u> **and then**arrange the output by year and continent

```
lifeexp_by_continent <- world %>%
  group_by(continent, year) %>%
  summarize(mean_life_exp = mean(lifeExp)) %>%
  arrange(year, continent)
```

	continent	year	mean_life_exp
	<chr></chr>	<int></int>	<db1:< th=""></db1:<>
1	Africa	1952	39.1
2	Americas	1952	53.3
3	Asia	1952	46.3
4	Europe	1952	64.4
5	Oceania	1952	69.3
6	Africa	1957	41.3
7	Americas	1957	56.0
8	Asia	1957	49.3

If you "speak" R you can directly "talk" to your data and tell it what you want to do.

How can we visualize data in R?

Data visualization with ggplot

world <- read_csv("gapminder.csv")</pre>

ggplot(data = world, mapping = aes(x = lifeExp)) +

geom_histogram()

Data visualization with ggplot

world <- read_csv("gapminder.csv")</pre>

What

ggplot (data = world,

Where

"I want to plot the world dataset with the life expectancy mapped to the x-axis using a histogram"

What

Where

"I want to plot the world dataset with the continents mapped to the x-axis and the life expectancy to the y-axis using points, boxplots or more"

What Where

How

80-S 60-S 40-S 60-S 60-S

Asia

continent

Europe

Oceania

Americas

All geoms are combinable!

"I want to plot the world dataset with the continents mapped to the x-axis and the life expectancy to the y-axis using points, boxplots or more"

Cyril Statzer

Africa

ggplot syntax


```
ggplot (what dataset) map parameters to plot dimensions ) + what to draw
```

- Let's start asking questions!
 - How did the world change? How the continents and individual countries?
 - How are GDP and lifespan linked? Is this the same across continents?

Data exploration

Do rich countries have a higher life expectancy?

```
ggplot(data = world, mapping = aes(x = gdpPercap, y = lifeExp)) +
  geom_point() +
  geom_smooth() +
  ggtitle("Do rich countries have a higher life expectancy?")
```


Up to 50000 gdpPercap yes, above life expectancy decreases again

Reviewer: is this continent-specific?

Data exploration

Do rich countries have a higher life expectancy?

```
ggplot(data = world, mapping = aes(x = gdpPercap, y = lifeExp)) +
   geom_point() +
   geom_smooth() +
   ggtitle("Do rich countries have a higher life expectancy?")
```


How would you change the code?

Reviewer: is this continent-specific?

Data exploration

Do rich countries have a higher life expectancy?

```
ggplot(data = world, mapping = aes(x = gdpPercap, y = lifeExp, color = continent)) +
   geom_point() +
   geom_smooth() +
   ggtitle("Do rich countries have a higher life expectancy?")
```

Do rich countries have a higher life expectancy?

life expectancy increases monotonously with gdpPercap in Oceania, Europe and the Americas

Up to 10000 gdpPercap yes, above life expectancy decreases again in Africa

Up to 50000 gdpPercap yes, above life expectancy decreases again in Asia

Can we do better than The Economist?

The Economist

They looked at: GDP vs. life satisfaction in 2003

We will compare GDP vs. life expectancy in 2002

Life expectancy vs. GDP in 2002

```
world 2002 <- world %>%
  filter(year == 2002) %>%
  mutate(pop=pop/1000000)
plot <- ggplot(data = world 2002,</pre>
                aes(x= gdpPercap,
                    y= lifeExp,
                    size = pop,
                    color = continent)) +
  geom point(alpha=0.8)
plot
```


Life expectancy vs. GDP in 2002

Life expectancy vs. GDP in 2002

"styling the plot"

Next level: what is the life expectancy in the wealthiest African countries?

...better

World demographics in 2002

8 lines of code

Outlook

Life expectancy vs. GDP in 2002

```
library(viridis)
library(ggforce)
library(ggrepel)
world_2002 <- world %>%
  filter(year == 2002) %>%
  mutate(pop=pop/1000000)
                                               abelling Africa
africa leading <- world 2002 %>%
  filter(continent == "Africa",
                                                                                   Logic of the plot
          gdpPercap > 3000)
plot <- ggplot(data = world 2002, aes(x=gdpPercap, y=lifeExp, size = pop, color = continent, label = country)) +
  geom point(alpha=0.8) +
  scale size(range = c(1, 20), name="Population (mio)") +
  scale color viridis(discrete=TRUE, guide=FALSE) +
                                                                                        Styling
  facet zoom(x = continent == "Africa") +
  geom label repel(data = africa leading, size = 3) +
  theme bw() +
  labs(title = "World demographics in 2002",x = "GDP per capita [US dollars per inhabitant]", y = "Life expectancy
  [years]")
                                                                                        Labels
plot
```

ETH zürich life science zurich

R in the lab

Example 1: plotting lifespans

lifespan.csv

Example 2: plotting microscopy scoring

microscopy.csv

4	A	В
1	category	Frequency
2	None	51
3	Low	170
4	Medium	15
5	High	5
6	Very high	1

Relative fractions

Example 3: Merging CHIP & RNA-seq data

gene	CHIP_count
daf-2	0.96
emb-9	1.80
hlh-30	1.60 X

gene	CHIP_count	RNA_FC	RNA_pval
daf-2	0.96	0.87	0.002
emb-9	1.8	NA	NA
- II- 20	1 C	1 12	0.04

2.04

gene	CHIP_count	RNA_FC	RNA_pval
daf-2	0.96	0.87	0.002
emb-9	1.8	NA	NA
hlh-30	1.6	1.43	0.04
cdc-40	NA	1.01	0.2
pmp-30	NA	0.89	0.07
Y11D7A.11	NA	1.13	0.6

NA

gene	RNA_FC	RNA_pval	
cdc-40	1.01	0.20	
pmp-30	0.89	0.07	
Y11D7A.11	1.13	0.60	
hlh-30	1.43	0.04	
gst-4	2.04	0.0001	
daf-2	0.87	0.002 X	

15000 – 60000 rows in each dataset

gst-4

1.00E-04

Example 3: Merging CHIP & RNA-seq data

```
chip <- read_csv("chip.csv")
rnaseq <- read_csv("rna_seq.csv")
full join(chip,rnaseq, by = "gene")</pre>
```

	gene	CHIP_count	RNA_FC	RNA_pval
	<chr></chr>	<db1></db1>	<db1></db1>	<dbl></dbl>
1	daf-2	0.96	0.87	0.002
2	emb-9	1.8	NA.	NA
3	hlh-30	1.6	1.43	0.04
4	cdc-40	NA	1.01	0.2
5	pmp-30	NA	0.89	0.07
6	Y11D7A.11	NA	1.13	0.6
7	gst-4	NA	2.04	0.0001

	gene	RNA_FC	RNA_pval	
	cdc-40	1.01	0.20	
_	pmp-30	0.89	0.07	
	Y11D7A.11	1.13	0.60	
	hlh-30	1.43	0.04	
	gst-4	2.04	0.0001	
	daf-2	0.87	0.002 X	
5		\sim		i

gene	CHIP_count	RNA_FC	RNA_pval
daf-2	0.96	0.87	0.002
emb-9	1.8	NA	NA
hlh-30	1.6	1.43	0.04
cdc-40	NA	1.01	0.2
pmp-30	NA	0.89	0.07
Y11D7A.11	NA	1.13	0.6
gst-4	NA	2.04	1.00E-04

Packages («literature you use»)

library(tidyverse)

general packages

library(survminer)
library(waffle)
library(survival)
specialized packages

• Import your data

read_csv()

waffle() full_join()

Perform computation / plotting

Most of your problems have already been solved by somebody! There is no need to drag squares around in powerpoint to make a waffle chart or to manually merge datasets in excel, let R do it for you

Advanced functions

```
as.numeric() interpret as a number
unlist() remove indexing
paste() combine characters
str_replace_all() similar to Cmd Find Replace
is.na() Is data missing? YES or NO
! Invert logic
separate
Split characters on pattern
```


More advanced

Advanced 1: Parsing strings

library(tidyverse)

input <- read csv("aa sequence.csv")</pre>


```
str <- input %>% unlist() %>% paste(., collapse=" ")
str proc <- str replace all(string = str,pattern = "[[:digit:],[:space:]]",replacement = "")</pre>
```

write lines(x = str proc,path = "./output.txt")

aa sequence.csv

D 1 msqnnkrqvq hnhemsndvc pipipprgap pptayhasrm a 61 rklhyvivid gkygkniryr emalkdygky adtinynitr idi 121 dvalvdvtvt hoopslcyhi gyresmoosy nmiltywspo 181 yihhadshal qsydknnndd dskppfartn vpaktitfgh 241 fmsdlrkare itdgdgkndy ldkmrtrldn pdvlhpdtvs 301 dlkripdclk vydtoviryg yafalnrrnk dgdrdlalai 361 dvvclagriy kdkfiasnye dresinsale wyrr

output.txt

library(tidyverse)

data <- read csv(file = "RNAseq.csv")</pre>

RNAsea.csv

```
data <- data %>% mutate(logFC = as.numeric(logFC)) %>% filter(!is.na(logFC))
readable <- data %>% separate(col = Gene id,into = c("Junk","ID"),sep = " ")
readable <- readable %>% filter(!is.na(ID))
```

```
ggplot(data = data, aes(x = logFC, y = -log10(padj))) +
 geom\ point(alpha = 0.5)
```


Parent=Transcript R02E12.2b.1 R02E12.2b.1 Parent=Pseudogene Y105C5B.30 Y105C5B.30 Parent=CDS R06A4.3 R06A4.3

Volcano plot

Cyril Statzer

96-well assay

```
library(tidyverse)
library(ggplot2)
library(magrittr)
library(scatterpie)
lets<- c("H", "G", "F", "E", "D", "C", "B", "A")</pre>
df <- read csv("96well.csv")</pre>
df <- df %>% mutate(region = paste0(Row, Column), Row = match(Row, lets))
df[,4:9] \leftarrow df[,4:9] / 80
p <- gaplot() +
  geom point(data=expand.grid(seq(1, 12), seq(1,8)), aes(x=Var1, y=Var2),
                             color="grey80", fill="white", shape=21, size=6) +
  geom scatterpie(aes(x= Column, y= Row, r = Total, group = region), data=df,
                   cols=c("Extremely high", "High", "Intermediate", "Low", "None" ))
p + scale x discrete(name = "Columns", limits=c(1:12)) +
  scale y discrete(name ="Rows", limits=lets) +
  scale fill manual(values = c("red", "darkgreen", "darkolivegreen3", "darkseagreen1", "grey")) +
  coord fixed(ratio=12/12) + facet grid(Day ~ .) +
  ggtitle("Promotor activity (day 1 and 8")
```


Intensity

Intermediate Low

None

Extremely high High

Age

Day

Position

Column

aes(x= Column, y= Row, r = Total, group = region)

Extremely high

Intermediate

High

Low None

aes(x= Column, y= Row,

group = region)

Summary: R for data science

R is a fantastic tool and a huge time saver

 While intimidating at first all scripts have common patterns that are very repetitive (think of Lego blocks)

• R makes your analysis reusable & reproducible

You can get help everywhere!

Real world example

proteomics analysis

- Real dataset (uncleaned)
- Other people's code snippets (base R, different styles)
- Analysis as Rmarkdown
- Time investment: ca. 10 15 h (95% googling stuff)

RMarkdown

- Code is in the chunks (light grey background)
- Text in between chunks (black background).
- Hierarchy matters like in a regular R script

RMarkdown

- A: Produces a html or pdf
- **B:** Evaluate one block by pressing play.
- **C:** evaluate all above by pressing the middle button.
- **D:** You can include LaTeX functions (for pdf)

Markdown structure

- Break up the code into meaningful chunks.
- I would recommend one chunk for one logical step or one plot
- Add explanatory text so you (also in 6 months) and the reader of the document knows what you did.
- Use Hashtags to generate section headers (and other markup commands)
- You can also evaluate R code in the text.


```
# Data import pre-processing

(r)

df<-read.delim(input_file_name)

df_lfq<-filter_conrev(subset_grep(df, 'LFQ'))

rownames(df_lfq)<-df_lfq$id

df_lfq$id=NULL

In this analysis we are using the `r input_file_name` file as input for our workflow. The original file has `r nrow(df)` rows and `r ncol(df)` columns.
```

Data import pre-processing

In this analysis we are using the proteinGroups.txt file as input for our workflow. The original file has 507 rows and 145 columns.

- This chunk imports the file and performs pre-processing
- The reader is informed about the dimensions of the file in the text

W. FF	WANTERGRAND	, DIA	100.00	-00%	-0.0	NW.	DOM	DOM:
*#	A4UGR9	AII	MA	MA	NA	NA	NA.	NA
411	ASHDX5	NA	MA	UA	NA	NA	NA	NA.
*#	A6NKD9	MA	MA	MA	NA	NA	NA	NA.
##	EGUNSA.	NA.	MA	MA	NA	NA	NA	NA.
##		Vanadate5_2	Van	adate5_3	Vanadat	030_1	Vanadate30_3	Vanadate30_3
**	A0A096LP49	NA.		NA		NA	30	NA NA
##	AOA1BOGWKO	NA		18.64669		NA	N/	II
##	A4UGR9	NA		AK		NA	N/	NA NA
##	AGNDXS	NA		NA		NA	19.38634	V. WA
##	A6WKD9	19.19695		18,49152		NA	19.84689	MA
411	ASMU93	16.64703		MA		NA	N	MA

Apart from the median normalization used here by substracting the median of every individual group and adding the median of all groups there is large palette of other normalization strategies to use (you can also check out the slides from our session on Friday). For example you could use min/max, quantile, mean and others. The med_norm object that is generated here is used as the basis for the remaining part of the script.

Concept of missing values (NA)

R represents missing values by the symbol NA (Not Available)

```
y <- c(1,NA,3)

y %>% is.na()
FALSE, TRUE, FALSE

y %>% mean()
NA

y %>% mean(na.rm = TRUE)
2
```


Visualizing data

- Heatmaps
- KEGG pathways
- MDS, Hierarchical clustering
- PCA
- ... see last section of the markdown «Example of potential addition»

Outlook

Online resources for specific questions

https://stackoverflow.com

plot cool stuff with ggplot r

Google Search

I'm Feeling Lucky

http://www.sthda.com/english/

Online resources for learning

https://www.datacamp.com

The best book is for free: https://r4ds.had.co.nz

https://www.rstudio.com/resources/cheatsheets/

