Decimal Number System [0,1,2,3,95,6,7,7,5) 345 345 3x100 + 4x10 + 5x1 $1x10^2 + 4x10^3 + 5x10^6$

12345 - 1 x 104 + 2 x 103 + 3 x 104 + 5 x 109

Henadeimal Bon - 16 10 11 12 17 15 17 15 [0,1,2--,9, ABC, DE, F]

(9 6 A F E O),

6 x 16 + 6 x 16 + 10 x 16 3 + 15x 162 + 14x 161 + 0x 160

— P (_____)₁₀

$$\frac{2!2 \rightarrow 0}{2/2 \rightarrow 1} = \frac{2!2 \rightarrow 0}{2/2 \rightarrow 1}$$

$$\frac{3!2 \rightarrow 1}{3/2 \rightarrow 1} = \frac{1!2 \rightarrow 0}{1/2 \rightarrow 0}$$

A	♪	A&B	AIB	ANB	~ A
0	0	0	0	0	1
0	1	0	1	l l	1
	0	0	1	1	0
	1			0	0

$$\frac{3^{2} | 6}{| 1 | 1 | 1} \rightarrow \frac{2^{0} + 2^{1} + 2^{2} + 2^{3}}{| 2^{0} - 1|} = \frac{2^{0} + 2^{1} + 2^{2} + 2^{3}}{| 1 | 1 | 1 | 1} \Rightarrow \frac{2^{0} + 2^{1} + 2^{2} + 2^{3}}{| 2^{0} + 2^{1} + 2^{2} + 2^{2} + 2^{3}} = 2^{6} - 1 < 2^{6}$$

$$2^{0} + 2^{1} + 2^{2} + 2^{2} + 2^{2} + 2^{2} < 2^{6} + 2^{1} + 2^{2} < 2^{6} + 2^{1} + 2^{2} < 2^{6}$$

Proper ties

$$(10100)_{2}$$

$$2^{9}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

$$2^{1}+2^{2}$$

-> If a NUN is ODD _____ 9t's of bit is 1 [se]]

____ is EVEN ____ o [UNSET]

EVEN |0100 |

$$\chi = 20 \qquad \boxed{0100}$$

$$16 \qquad \boxed{1000}$$

1 - 1

else L, ODD

1)
$$A \times O \longrightarrow O$$
1) $A \times A \longrightarrow A$

1)
$$A \times A \longrightarrow A$$

4) $A \mid 0 \longrightarrow A$

$$(6) \qquad (A \land A \rightarrow 0)$$

$$axb = bx a$$

$$ab = b a$$

$$axb = bx a$$

3 Associative Property

& Given an array, -s every clement superats frice encept one element - find that element! A: [69610542410] ->2/ 6 N 9 N / N 10 N 8 N 4 12 N 4 N 16 f(i=0) (N) it+) l f(i=

byte
$$n = 6$$
 $n = (n << 1)$
 $n << 1$
 n

2 << K -> 2 x