18.06SC Unit 2 Exam

1 (24 pts.) Suppose q_1, q_2, q_3 are orthonormal vectors in \mathbb{R}^3 . Find all possible values for these 3 by 3 determinants and explain your thinking in 1 sentence each.

(a)
$$\det \begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix} =$$

(b)
$$\det \left[q_1 + q_2 \quad q_2 + q_3 \quad q_3 + q_1 \right] =$$

(c)
$$\det \begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix}$$
 times $\det \begin{bmatrix} q_2 & q_3 & q_1 \end{bmatrix} =$

- 2 (24 pts.) Suppose we take measurements at the 21 equally spaced times $t = -10, -9, \dots, 9, 10$. All measurements are $b_i = 0$ except that $b_{11} = 1$ at the middle time t = 0.
 - (a) Using least squares, what are the best \widehat{C} and \widehat{D} to fit those 21 points by a straight line C+Dt?
 - (b) You are projecting the vector b onto what subspace? (Give a basis.) Find a nonzero vector perpendicular to that subspace.

- 3 (9+12+9 pts.) The Gram-Schmidt method produces orthonormal vectors q_1, q_2, q_3 from independent vectors a_1, a_2, a_3 in \mathbb{R}^5 . Put those vectors into the columns of 5 by 3 matrices Q and A.
 - (a) Give formulas using Q and A for the projection matrices P_Q and P_A onto the column spaces of Q and A.
 - (b) Is $P_Q=P_A$ and why? What is P_Q times Q? What is $\det P_Q$?
 - (c) Suppose a_4 is a new vector and a_1, a_2, a_3, a_4 are independent. Which of these (if any) is the new Gram-Schmidt vector q_4 ? (P_A and P_Q from above)
 - 1. $\frac{P_Q a_4}{\|P_Q a_4\|}$ 2. $\frac{a_4 \frac{a_4^T a_1}{a_1^T a_1} a_1 \frac{a_4^T a_2}{a_2^T a_2} a_2 \frac{a_4^T a_3}{a_3^T a_3} a_3}{\|\text{ norm of that vector }\|}$ 3. $\frac{a_4 P_A a_4}{\|a_4 P_A a_4\|}$

4 (22 pts.) Suppose a 4 by 4 matrix has the same entry \times throughout its first row and column. The other 9 numbers could be anything like $1, 5, 7, 2, 3, 99, \pi, e, 4$.

$$A = \begin{bmatrix} \times & \times & \times & \times \\ \times & \text{any numbers} \\ \times & \text{any numbers} \\ \times & \text{any numbers} \end{bmatrix}$$

- (a) The determinant of A is a polynomial in \times . What is the largest possible degree of that polynomial? **Explain your answer**.
- (b) If those 9 numbers give the identity matrix I, what is det A? Which values of \times give det A = 0?

$$A = \begin{bmatrix} \times & \times & \times & \times \\ \times & 1 & 0 & 0 \\ \times & 0 & 1 & 0 \\ \times & 0 & 0 & 1 \end{bmatrix}$$

18.06SC Unit 2 Exam Solutions

1 (24 pts.) Suppose q_1, q_2, q_3 are orthonormal vectors in \mathbb{R}^3 . Find all possible values for these 3 by 3 determinants and explain your thinking in 1 sentence each.

(a)
$$\det \begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix} =$$

(b) $\det \begin{bmatrix} q_1 + q_2 & q_2 + q_3 & q_3 + q_1 \end{bmatrix} =$
(c) $\det \begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix}$ times $\det \begin{bmatrix} q_2 & q_3 & q_1 \end{bmatrix} =$

Solution.

- (a) The determinant of any square matrix with orthonormal columns ("orthogonal matrix") is ± 1 .
- (b) Here are two ways you could do this:
 - (1) The determinant is linear in each column:

$$\det \begin{bmatrix} q_1 + q_2 & q_2 + q_3 & q_3 + q_1 \end{bmatrix} = \det \begin{bmatrix} q_1 & q_2 + q_3 & q_3 + q_1 \end{bmatrix} + \det \begin{bmatrix} q_2 & q_2 + q_3 & q_3 + q_1 \end{bmatrix}
= \det \begin{bmatrix} q_1 & q_2 + q_3 & q_3 \end{bmatrix} + \det \begin{bmatrix} q_2 & q_3 & q_3 + q_1 \end{bmatrix}
= \det \begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix} + \det \begin{bmatrix} q_2 & q_3 & q_1 \end{bmatrix}$$

Both of these determinants are equal (see (c)), so the total determinant is ± 2 .

(2) You could also use row reduction. Here's what happens:

$$\det \begin{bmatrix} q_1 + q_2 & q_2 + q_3 & q_3 + q_1 \end{bmatrix} = \det \begin{bmatrix} q_1 + q_2 & -q_1 + q_3 & q_3 + q_1 \end{bmatrix}$$

$$= \det \begin{bmatrix} q_1 + q_2 & -q_1 + q_3 & 2q_3 \end{bmatrix}$$

$$= 2 \det \begin{bmatrix} q_1 + q_2 & -q_1 + q_3 & q_3 \end{bmatrix}$$

$$= 2 \det \begin{bmatrix} q_1 + q_2 & -q_1 & q_3 \end{bmatrix}$$

$$= 2 \det \begin{bmatrix} q_2 & -q_1 & q_3 \end{bmatrix}$$

$$= 2 \det \begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix}$$

Again, whatever $\det \begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix}$ is, this determinant will be twice that, or ± 2 .

(c) The second matrix is an *even* permutation of the columns of the first matrix (swap q_1/q_2 then swap q_2/q_3), so it has the *same* determinant as the first matrix. Whether the first matrix has determinant +1 or -1, the product will be +1.

- 2 (24 pts.) Suppose we take measurements at the 21 equally spaced times $t = -10, -9, \dots, 9, 10$. All measurements are $b_i = 0$ except that $b_{11} = 1$ at the middle time t = 0.
 - (a) Using least squares, what are the best \widehat{C} and \widehat{D} to fit those 21 points by a straight line C+Dt?
 - (b) You are projecting the vector b onto what subspace? (Give a basis.) Find a nonzero vector perpendicular to that subspace.

Solution.

(a) If the line went exactly through the 21 points, then the 21 equations

$$\begin{bmatrix} 1 & -10 \\ 1 & -9 \\ \vdots & \vdots \\ 1 & 0 \\ \vdots & \vdots \\ 1 & 10 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$$

would be exactly solvable. Since we can't solve this equation Ax = b exactly, we look for a least-squares solution $A^{T}A\hat{x} = A^{T}b$.

$$\begin{bmatrix} 21 & 0 \\ 0 & 770 \end{bmatrix} \begin{bmatrix} \widehat{C} \\ \widehat{D} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

So the line of best fit is the horizontal line $\widehat{C} = \frac{1}{21}$, $\widehat{D} = 0$.

(b) We are projecting b onto the column space of A above (basis: $\begin{bmatrix} 1 & \dots & 1 \end{bmatrix}^T$, $\begin{bmatrix} -10 & \dots & 10 \end{bmatrix}^T$). There are lots of vectors perpendicular to this subspace; one is the error vector $e = b - P_A b = \frac{1}{21} \begin{bmatrix} (\tan -1\text{'s}) & 20 & (\tan -1\text{'s}) \end{bmatrix}^T$.

- 3 (9+12+9 pts.) The Gram-Schmidt method produces orthonormal vectors q_1, q_2, q_3 from independent vectors a_1, a_2, a_3 in \mathbb{R}^5 . Put those vectors into the columns of 5 by 3 matrices Q and A.
 - (a) Give formulas using Q and A for the projection matrices P_Q and P_A onto the column spaces of Q and A.
 - (b) Is $P_Q = P_A$ and why? What is P_Q times Q? What is $\det P_Q$?
 - (c) Suppose a_4 is a new vector and a_1, a_2, a_3, a_4 are independent. Which of these (if any) is the new Gram-Schmidt vector q_4 ? (P_A and P_Q from above)

1.
$$\frac{P_Q a_4}{\|P_Q a_4\|}$$
 2. $\frac{a_4 - \frac{a_4^T a_1}{a_1^T a_1} a_1 - \frac{a_4^T a_2}{a_2^T a_2} a_2 - \frac{a_4^T a_3}{a_3^T a_3} a_3}{\|\text{ norm of that vector }\|}$ 3. $\frac{a_4 - P_A a_4}{\|a_4 - P_A a_4\|}$

Solution.

(a)
$$P_A = A(A^TA)^{-1}A^T$$
 and $P_Q = Q(Q^TQ)^{-1}Q^T = QQ^T$.

- (b) $P_A = P_Q$ because both projections project onto the same subspace. (Some people did this the hard way, by substituting A = QR into the projection formula and simplifying. That also works.) The determinant is zero, because P_Q is singular (like all non-identity projections): all vectors orthogonal to the column space of Q are projected to 0.
- (c) Answer: choice 3. (Choice 2 is tempting, and would be correct if the a_i were replaced by the q_i . But the a_i are not orthogonal!)

4 (22 pts.) Suppose a 4 by 4 matrix has the same entry \times throughout its first row and column. The other 9 numbers could be anything like $1, 5, 7, 2, 3, 99, \pi, e, 4$.

$$A = \begin{bmatrix} \times & \times & \times & \times \\ \times & \text{any numbers} \\ \times & \text{any numbers} \\ \times & \text{any numbers} \end{bmatrix}$$

- (a) The determinant of A is a polynomial in \times . What is the largest possible degree of that polynomial? **Explain your answer**.
- (b) If those 9 numbers give the identity matrix I, what is det A? Which values of \times give det A = 0?

$$A = \begin{bmatrix} \times & \times & \times & \times \\ \times & 1 & 0 & 0 \\ \times & 0 & 1 & 0 \\ \times & 0 & 0 & 1 \end{bmatrix}$$

Solution.

- (a) Every term in the big formula for det(A) takes one entry from each row and column, so we can choose at most two \times 's and the determinant has degree 2.
- (b) You can find this by cofactor expansion; here's another way:

$$\det(A) = \times \det \begin{bmatrix} 1 & \times & \times & \times \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} = \times \det \begin{bmatrix} 1 - 3 \times & \times & \times & \times \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \times (1 - 3 \times) \det \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

This is zero when $\times = 0$ or $\times = \frac{1}{3}$.