Markov Chains: Foundations

Part 1 - C_Markov Course

Notas de Ana Isabel C. – Math Dynamics ®

Instituto Nacional de Matemática Pura e Aplicada

July 2025

Introduction to Markov Chains

- Markov Chains model systems with probabilistic transitions.
- Key property: Future states depend only on the current state (Markov property).
- Applications: Stochastic processes, finance, and network analysis.

Objective

Explore foundational concepts over 1 month, based on *Markov Chains and Mixing Times* (Levin et al., 2009).

Transition Matrices

 \bullet Represent transitions between states in a matrix P.

Rows sum to 1 (stochastic matrix).

Classification of States

- Transient: Can leave and never return.
- Recurrent: Eventually returns with probability 1.
- Absorbing: Once entered, cannot leave.

Example

In a random walk, states with no return path are transient.

Steady-State Behavior

- Long-term distribution: $\pi P = \pi$, where π is the stationary vector.
- Convergence depends on the chain's structure.

• Example: For
$$P = \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix}$$
, solve $\pi_1 = 0.571, \pi_2 = 0.429$.

Example: Transition Matrix

• Matrix
$$P = \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix}$$
 models transitions.

• After 2 steps:
$$P^2 = \begin{bmatrix} 0.61 & 0.39 \\ 0.46 & 0.54 \end{bmatrix}$$
.

Figure: Visualization of Transition Matrix

Example: Classification of States

- State 0: Transient (can leave).
- State 2: Absorbing (stays forever).

Example: Steady-State Behavior

• Stationary distribution: $\pi = [0.571, 0.429]$ for $P = \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix}.$

$$r = \begin{bmatrix} 0.4 & 0.6 \end{bmatrix}$$

Solved using eigenvalue method.

Figure: Steady-State Distribution

References

- LEVIN, D. A., PERES, Y., WILMER, E. L. *Markov Chains and Mixing Times*, American Mathematical Society, 2009.
- Additional resources to be added as the course progresses.