

An Agent-Based Predator-Prey Model with Reinforcement Learning

Rachel Fraczkowski, Megan Olsen

Department of Computer Science

Swarmfest 2014

Studying Predator-Prey Systems

- Impact of Environmental Scenarios
 - Invasive Species
 - Human Impact Decisions
 - Extinction
- Simulation Observations
 - Emergent behavior without cost of actual observation
 - Population Dynamics
 - Chasing Patterns
 - Homeostasis or Balance

Previous Work

- Lotka Volterra (1925)
- Cellular Automata & Biological Modeling (Ermentrout, 1993)
- Cellular Automata with Emotions (Olsen, 2010)
- Netlogo Agent-Based Model (Wilensky, 1999)
- Goal: Agents learn biased random movement using Reinforcement Learning

Reinforcement Learning in Psychology

- Reinforcement Learning is a method of learning which uses rewards and punishments and scheduling in order to elicit a specific behavior or action.
- B. F. Skinner's Box (1938)
- Goal of RL: To increase or decrease the probability of action occurring in the future.

Four Types of Reinforcement

Positive Reinforcement :	Negative Reinforcement:				
Positive stimuli given in order to increase behavior	Aversive stimuli added in order to increase behavior				
Punishment:	Extinction:				
Aversive stimuli added to decrease behavior	Behavior fades when it is no longer enforced				

Reinforcement Learning in Computer Science

- Reinforcement learning is an area of machine learning
- Software agents take actions in environment
- Maximize notion of cumulative reward
- Examples
 - Game theory
 - Simulation-based optimization
 - Control theory
 - Operations research
 - Information theory
 - Statistics
 - Genetic algorithms

Image from technetcrew.com

Reinforcement Learning in Our Model

- Predator learns to chase prey
 - Reward movement towards prey
 - Punish movement away from prey
- Prey learns to escape predator
 - Reward movement away from predator
 - Punish movement towards predator

Image from stephsnature.com

Our Model

- MASON Framework
- 2D Grid
 - Torus
- Agents
 - Food
 - Predator
 - Prey

Predator Prey

Agents Learn Movement Probabilities

Movement Array

{ 11.11, 11.11, 11.11,

11.11, 11.11, 11.11,

11.11, **11.11**, 11.11 }

Learned Array

{ 6.235, ***1.235***, .235,

6.235, 6.235, .235,

6.235, ***67.11***, 6.235}

Simulation Sample

World

Predator

Prey

Food

No Learning

Learning (Prey)

Analyzing the System

- Goal: Have agents learn to move in biased manner from their environment and experience
- Hypotheses:
 - The species learning will have an advantage in the system
 - With co-learning, agents will learn from one another
- Phases:
 - No Learning
 - Predator Learning Only
 - Prey Learning Only
 - Predator and Prey Learning

Simulation

15 replications for each set of parameters
Prey > Predator (population and reproduction)
Reproduction rate > death rate

Parameters	Predator	Prey		
Population	25-100	200-800		
Reproduction Rate	5%-20%	10%-20%		
Initial Death Rate	.1%-10%	.1%-1%		
Hunger Minimum / Reproduction Age	15 timesteps	12 timesteps		
Hunger Death Mod	1x-1.5x	1x-1.5x		

Preliminary Results

Preliminary Results

- Prey learning shows improvement
- Predator and Prey Learning to stay more often
- Both Learning shows improvement from Predator learning

	outran	caught	prey Stay	pred Stay	ending	prey Count	pred Count	prey Eat	prey Hunger	pred Hunger
prey learn	76%	60%	80%	60%	60%	72%	56%	56%	68%	64%
pred learn	20%	24%	20%	72%	4%	12%	12%	20%	12%	4%
both learn	28%	32%	52%	72%	4%	16%	20%	32%	12%	0%

Learning Has an Impact

- Predator and Prey experience improved behavior (eating)
- Prey system has expected outcomes
- Predator system has unexpected outcomes
- Both learning shows an average of other two systems

Conclusions

- Agent-Based Model with reinforcement learning agents
- Observed expected population fluctuations
- Prey learning and Both learning show improvements to system
- Predator & prey learning to stay

Future Work

- More parameter testing and results
- Changes in learning algorithm
- Agents could learn more complex cognitive functions
 - Memory
 - Emotional Experience

