LA FONCTION HOMOGRAPHIQUE

1. CALCULER LES ASYMPTOTES HORIZONTALES, LES ASYMPTOTES VERTICALES, LES ORDONNEES A L'ORIGINE ET LES ZEROS DE FONCTION DES FONCTIONS HOMOGRAPHIQUES SUIVANTES :

	Fonction	Asymptote horizontale	Asymptote verticale	Ordonnée à l'origine	Zéro de fonction
1	$f(x) = \frac{2x - 3}{x - 4}$	y = 2	x = 4	$x = 0 \Rightarrow y = \frac{3}{4}$	$y = 0 \Rightarrow x = \frac{3}{2}$
2	$f(x) = \frac{5x+2}{x+1}$	y = 5	$\mathbf{x} = -1$	$x = 0 \Rightarrow y = 2$	$y = 0 \Rightarrow x = -\frac{2}{5}$
3	$y = \frac{4 - x}{2x - 5}$	$y = -\frac{1}{2}$	$x = \frac{5}{2}$	$x = 0 \Rightarrow y = -\frac{4}{5}$	$y = 0 \Rightarrow x = 4$
4	$y = \frac{3x+5}{2x-1}$	$y = \frac{3}{2}$	$x = \frac{1}{2}$	$x = 0 \Rightarrow y = -5$	$y = 0 \Rightarrow x = -\frac{5}{3}$
5	$f(x) = \frac{2x}{3x + 7}$	$y = \frac{2}{3}$	$x = -\frac{7}{3}$	$x = 0 \Rightarrow y = 0$	$y = 0 \Rightarrow x = 0$
6	$f(x) = \frac{1}{x}$	y = 0	x = 0	$x = 0 \Rightarrow y = \pm \infty$	$y = 0 \Rightarrow x = \pm \infty$

2. ÉTUDIER COMPLÈTEMENT LES FONCTIONS SUIVANTES:

1.
$$y = \frac{x+1}{x-1}$$

Asymptote hor. : y = 1Asymptote ver. : x = 1

Or. à l'origine : $x = 0 \Rightarrow y = -1$

Zéro de fct : $y = 0 \Rightarrow x = -1$

 $TV: \left. \frac{x}{y} \right| \frac{-\infty}{1} \underbrace{\hspace{0.2cm} \frac{-1}{0} \underbrace{\hspace{0.2cm} \frac{0}{-1} \underbrace{\hspace{0.2cm} \frac{1}{-\infty} \|^{+\infty}}}_{-\infty} \underbrace{\hspace{0.2cm} \frac{+\infty}{1}}$

2.
$$y = \frac{2x+1}{-x+2}$$

Asymptote hor. : y = -2

Asymptote ver. : x = 2

Or. à l'origine : $x = 0 \Rightarrow y = \frac{1}{2}$

Zéro de fct : $y = 0 \Rightarrow x = -\frac{1}{2}$

 $TV: \frac{x}{y} \left| \frac{-\infty}{-2} \frac{-\frac{1}{2}}{\cancel{2}} \frac{-\frac{1}{2}}{0} \frac{0}{\cancel{2}} \frac{2}{\cancel{2}} \frac{2}{\cancel{2}} \frac{+\infty}{-2} \right| + \infty$

3.
$$f(x) = \frac{x-3}{x-2}$$

Asymptote hor. : y = 1

Asymptote ver. : x = 2

Or. à l'origine : $x = 0 \Rightarrow y = \frac{3}{2}$

Zéro de fct : $y = 0 \Rightarrow x = 3$

 $TV: \frac{x}{y} \left| \frac{-\infty}{1} \frac{0}{\cancel{3}_{2}} \frac{0}{\cancel{3}_{2}} \frac{2}{\cancel{3}_{2}} \frac{3}{\cancel{3}_{2}} \frac{3}{\cancel{3}_{2}} \frac{+\infty}{1} \right|$

4.
$$y = \frac{2x-4}{-x+4}$$

Asymptote hor. : y = -2

Asymptote ver. : x = 4

Or. à l'origine : $x = 0 \Rightarrow y = -1$

Zéro de fct : $y = 0 \Rightarrow x = 2$

 $TV: \frac{x}{y} \bigg| \frac{-\infty}{-2} \frac{0}{\nearrow} \frac{0}{-1} \frac{2}{\nearrow} \frac{4}{0} \frac{4}{\nearrow} \frac{+\infty}{\|_{-\infty}} \frac{+\infty}{\nearrow} \frac{+\infty}{-2}$

5.
$$y = \frac{4x+2}{x+1}$$

Asymptote hor. : y = 4

Asymptote ver. : x = -1

Or. à l'origine : $x = 0 \Rightarrow y = 2$

Zéro de fct : $y = 0 \Rightarrow x = -\frac{1}{2}$

Signe: $\xrightarrow{+} \stackrel{-1}{\parallel} = \stackrel{-\frac{1}{2}}{\longrightarrow} x$

 $TV: \frac{x}{y} \left| \frac{-\infty}{4} \frac{-1}{\cancel{/}} \frac{-1}{\cancel{/}} \frac{-\frac{1}{2}}{\cancel{/}} \frac{0}{\cancel{/}} \frac{0}{\cancel{/}} \frac{1}{\cancel{/}} \frac{+\infty}{4} \right|$

6.
$$y = \frac{-4x+6}{2x+1}$$

Asymptote hor. : y = -2

Asymptote ver. : $x = -\frac{1}{2}$

Or. à l'origine : $x = 0 \Rightarrow y = 6$

Zéro de fct : $y = 0 \Rightarrow x = \frac{3}{2}$

 $TV: \frac{x}{y} \left| \frac{-\infty}{-2} \frac{-\frac{1}{2}}{\searrow} \frac{-\frac{1}{2}}{-\infty} \right| \frac{0}{6} \frac{\frac{3}{2}}{\searrow} \frac{\frac{3}{2}}{0} \frac{+\infty}{\searrow} \frac{+\infty}{-2}$

7.
$$y = \frac{6x - 12}{-4x + 4}$$

Asymptote hor. : $y = -\frac{3}{2}$

Asymptote ver.: x = 1

Or. à l'origine : $x = 0 \Rightarrow y = -3$

Zéro de fct : $y = 0 \Rightarrow x = 2$

 $TV: \frac{x}{y} \bigg| \frac{-\infty}{-\frac{3}{2}} \underbrace{\hspace{0.5cm} \frac{0}{-3} \underbrace{\hspace{0.5cm} \frac{1}{-\infty} \Vert^{+\infty}}}_{-\infty} \underbrace{\hspace{0.5cm} \frac{2}{\sqrt{0}} \underbrace{\hspace{0.5cm} \frac{+\infty}{-\frac{3}{2}}}}_{-\frac{3}{2}}$

8.
$$f(x) = \frac{2x-5}{x}$$

Asymptote hor. : y = 2Asymptote ver. : x = 0

Or. à l'origine : $x = 0 \Rightarrow y = \pm \infty$

Zéro de fct : $y = 0 \Rightarrow x = \frac{5}{2}$

Signe: \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0

 $TV: \frac{x}{y} \bigg| \frac{-\infty}{2} \frac{0}{\nearrow |-\infty|} \frac{0}{\nearrow |-\infty|} \frac{5/2}{2} \frac{-5/2}{0} \frac{+\infty}{\nearrow |-\infty|}$

Asymptote hor. : y = 0

Asymptote ver. : x = 0

Or. à l'origine : $x = 0 \Rightarrow y = \pm \infty$

Zéro de fct : $y = 0 \Rightarrow x = \pm \infty$

Signe :
$$\underline{\qquad}$$

$$TV: \left. \frac{x}{y} \right| \frac{-\infty}{0} \underbrace{\hspace{0.2cm} \frac{0}{\left. \rule{0mm}{0mm} \right.} \frac{+\infty}{\left. \rule{0mm}{0mm} \right.}}}_{-\infty} \frac{+\infty}{0}$$

10.
$$y = \frac{-5}{x}$$

Asymptote hor. : y = 0

Asymptote ver. : x = 0

Or. à l'origine : $x = 0 \Rightarrow y = \pm \infty$

Zéro de fct : $y = 0 \Rightarrow x = \pm \infty$

$$Signe: \xrightarrow{\stackrel{+}{----}} \stackrel{\scriptscriptstyle 0}{\parallel} \underline{\longrightarrow} x$$

$$TV: \frac{x}{y} \bigg| \frac{-\infty}{0} \frac{0}{\nearrow |-\infty|} \frac{1}{\nearrow 0} \frac{+\infty}{0}$$

