

Universidade de Brasília

Faculdade de Tecnologia Laboratório de Sistemas Digitais

Relatório 01

Carla de Araujo Clementino Ribeiro Mat:180030736

<u>Professor:</u> Guilherme de Sousa Torres

1 Objetivos

Realizar operações lógicas elementares para se familiarização e simular circuitos digitais para verificação das operações e análise de comportamento.

2 Questões Propostas

- Desenhe à mão os esquemáticos dos seguintes circuitos. Utilizando o teorema de De Morgan justifique sua resposta:
 - a. Uma porta E usando somente portas OU e INVERSORAS;

Considerando a Lei de De Morgan:

$$\overline{(P.Q)} = \overline{P} + \overline{Q} \tag{1}$$

$$\overline{P+Q} = \overline{P}.\overline{Q} \tag{2}$$

É possível chegar a uma porta E usando somente portas OU e INVERSORAS negando os dois lados da equação (1). Dessa forma obtemos:

$$(P.Q) = \overline{(\overline{P} + \overline{Q})} \tag{3}$$

Logo, analisando a tabela verdade e realizando o desenho do circuito temos:

(b)
$$\overline{A+3} = \overline{A} \cdot \overline{B}$$

 $A+8 = \overline{A} \cdot \overline{B}$
 $A \mid B \mid \overline{A} \mid \overline{B} \mid \overline{A \cdot B} \mid \overline{A \cdot B}$
 $O \mid O \mid 1 \mid 1 \mid O \mid O \mid 1$
 $O \mid A \mid 1 \mid O \mid O \mid 1$
 $O \mid A \mid 1 \mid O \mid O \mid 1$
 $O \mid A \mid 1 \mid O \mid O \mid 1$
 $O \mid A \mid 1 \mid O \mid O \mid 1$
 $O \mid A \mid 1 \mid O \mid O \mid 1$
 $O \mid A \mid 1 \mid O \mid O \mid 1$
 $O \mid A \mid 1 \mid O \mid O \mid 1$
 $O \mid A \mid 1 \mid O \mid O \mid 1$
 $O \mid A \mid 1 \mid O \mid O \mid 1$

Figura 1: Questão 1 - a. Fonte: Autor.

b. Uma porta OU usando somente portas E e INVERSORAS.

Da mesma forma, é possível chegar a uma porta OU utilizando apenas portas E e INVER-SORAS negando os dois lados da equação (2):

$$(P+Q) = \overline{(\overline{P}.\overline{Q})} \tag{4}$$

Analisando a tabela verdade e realizando o desenho do circuito:

Figura 2: Questão 1 - b. Fonte: Autor.

2. Desenhe a mão os equemáticos dos seguintes circuitos. Analisando as equações lógicas preencha a tabela verdade abaixo. Explique seu raciocínio.

a. T = (A.B) + (A.C) + (B.C)

Desmembrando a equação podemos montar a seguinte tabela verdade representada pelo circuito ao lado:

Figura 3: Questão 2 - a. Fonte: Autor.

Utilizando somente portas E e OU.

b. $T = (\overline{A}.\overline{B}.C) + (\overline{A}.B.\overline{C}) + (A.\overline{B}.\overline{C}) + (AB.C)$

Utilizando portas E, OU e INVERSORA.

Desmembrando a equação podemos montar a seguinte tabela verdade representada pelo circuito abaixo:

Figura 4: Questão 2 - b. Fonte: Autor.

3. Desenhe a mão os esquemáticos dos circuitos do item 2 utilizando apenas portas NÃO- $\rm E(NAND)$. Explique sua abordagem.

Considerando que a porta NAND é uma porta lógica universal e, consequentemente, é possível implementar qualquer porta lógica utilizando apenas ela. Analisando como formar as portas lógicas básicas OU, AND e INVERSORA utilizando apenas portas NAND temos:

Figura 5: Universalidade da porta NAND. Fonte: Tecdicas.

Dessa forma, é possível reproduzir o circuito do primeiro tópico do item 2 como sendo:

Figura 6: Questão 3 - a. Fonte: Autor.

Analisando a tabela lógica abaixo é possível reduzir esse circuito para:

Figura 7: Questão 3 - a (redução). Fonte: Autor.

Utilizando a mesma estratégia para reproduzir o circuito do segundo tópico do item 2 temos:

Figura 8: Questão 3 - b. Fonte: Autor.

4. Desenhe a mão o esquemático do cicuito abaixo:

$$Y = D_0 \cdot \overline{S_1} \cdot \overline{S_0} + D_1 \cdot \overline{S_1} \cdot S_0 + D_2 \cdot S_1 \cdot \overline{S_0} + D_3 \cdot S_1 \cdot S_0$$
 (5)

Considerando que o circuito acima é um multiplexador de 4 canais temos:

S0 1	5,	1 50	Sil	50.51	5.51	So.S1 0 1	5051	Y
0	0	1	1	1	0	-0	0	00
0	1	1	0	0	(0	0	D ₁
1	0	0	1	0	0	1	0	Dz
1	Ø1	0	0	0	0 /	0	1	D3
	1 ,			1 ,				

Figura 9: Questão 4. Fonte: Autor.

Dessa forma, temos 4 saídas possíveis: D_0, D_1, D_2 e D_3 , as quais são controladas pelos sinais S_0 e S_1 .

3 Referências

[1] A Universalidade da Porta NAND. Disponível em
: https://encr.pw/80Qs7. Acesso em: 25 de março de 2024.