Università degli studi di Verona Dipartimento di Informatica — Settore di Matematica Prova scritta di Algebra lineare — 8 febbraio 2016

matricola		nome		cognome
corso di laur	ea		anno accademico di	i immatricolazione
Votazione:	T1 E T2 E	E1		
		E2		
		E3		

Compito A

- T1) Data la definizione di rango di una matrice \mathbf{A} , si dimostri che il rango di $\mathbf{A}^T \mathbf{A}$ coincide con il rango di \mathbf{A} .
- T2) Data la definizione di autovalore e autospazio di una matrice, si dimostri che se \mathbf{v}_1 , \mathbf{v}_2 e \mathbf{v}_3 sono autovettori relativi agli autovalori distinti λ_1 , λ_2 e λ_3 , allora l'insieme $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ è linearmente indipendente.
- E1) Si consideri, al variare di $\alpha \in \mathbb{C}$, la matrice

$$\mathbf{A}_{\alpha} = \begin{bmatrix} \alpha & -\alpha & 2\alpha & 3\alpha \\ 2 & -2 & 3 & 6-\alpha \\ -1 & 1 & \alpha-2 & 2\alpha^2-3 \\ 1 & -1 & 2 & 3 \end{bmatrix}.$$

Trovare, per ogni $\alpha \in \mathbb{C}$ la decomposizione LU oppure la P^TLU . Per $\alpha = 0$ si trovi una base ortogonale di $C(\mathbf{A}_0)$.

Interpretando \mathbf{A}_{α} come la matrice completa di un sistema lineare, per quali valori di α il sistema ha soluzione?

E2) Sia $f: \mathbb{C}^4 \to \mathbb{C}^4$ una trasformazione lineare e si supponga che la matrice associata a f rispetto alla base $\mathscr{B} = \{\mathbf{e}_2; \mathbf{e}_1; \mathbf{e}_3 + \mathbf{e}_4; \mathbf{e}_3 + \mathbf{e}_2\}$ su dominio e codominio (\mathbf{e}_i sono i vettori della base canonica di \mathbb{C}^4) sia

$$\mathbf{A} = \begin{bmatrix} 3 & 3 & 2 & 2 \\ 3 & 3 & 2 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}.$$

- (a) Si determini la matrice $\bf B$ associata a f rispetto alle basi canoniche.
- (b) Si calcoli la dimensione dell'immagine di f.
- (c) Si dica se la matrice ${\bf B}$ è diagonalizzabile.
- (d) Si calcoli una base dello spazio nullo dell'applicazione lineare f.
- E3) Si determini per quali valori del parametro $\beta \in \mathbb{C}$ la matrice

$$\mathbf{B}_{\beta} = \begin{bmatrix} -1 & -\beta + 1 & 0 \\ 1 & 0 & \beta - 1 \\ 0 & -1 & -1 \end{bmatrix}$$

è diagonalizzabile. Per $\beta = 0$ si trovi una base di \mathbb{C}^3 formata da autovettori di \mathbf{B}_0 .