P1.

a) Initially, at t=0, the capacitance $C_{in} = \epsilon_0 A/d_0 = Q/V_0$. Therefore the charge stored on the capacitor $Q = \epsilon_0 A V_0 / d_0$. Once the negative plate starts moving away from the positive plate with a constant speed, the capacitance will change (decrease) with time C(t), as the geometry of the capacitor, ie the distance between the plates d(t), changes: $C(t) = \epsilon_0 A/d(t) = \epsilon_0 A/(d_0 + v_0 t)$. The charge Q remains constant and the potential difference V(t) increases. The energy stored on the capacitor increases with time:

$$U_e(t) = \frac{Q^2}{2C(t)} = \frac{\frac{\epsilon_0^2 A^2}{d_0^2} V_0^2}{2\frac{\epsilon_0 A}{d(t)}} = \frac{\epsilon_0 A V_0^2}{2d_0^2} d(t) = \frac{\epsilon_0 A V_0^2}{2d_0^2} (d_0 + v_0 t)$$
(1)

Henceforth the rate at which the energy stored changes with time

$$\frac{dU_e(t)}{dt} = \frac{\epsilon_0 A V_0^2}{2d_0^2} v_0 \tag{2}$$

From equation 2 we can obtain the speed

$$v_0 = \frac{2d_0^2}{\epsilon_0 A V_0^2} \frac{dU_e(t)}{dt} = 5.1 \times 10^{-3} \quad [m/s]$$
 (3)

b) The electric field inside the capacitor at t=0, $E(t=0)=\frac{\sigma}{\epsilon_0}=\frac{Q}{A\epsilon_0}=\frac{C_{in}V_0}{A\epsilon_0}=\frac{V_0}{d}=7.5\times 10^5 \quad [V/m]$ Since the surface charge density σ does not change with time, the electric field at t=3 s, $E(t=3s)=\frac{\sigma}{\epsilon_0}=E(t=0)=7.5\times 10^5 \quad [V/m]$

P2.

a)Point A is outside the sphere since the magnitude of the position vector $r_A = \sqrt{x_A^2 + y_A^2 + z_A^2} = 0.6708$ [m] > R. Since the two charge distributions, sphere and shell, are concentric and have radial symmetry, in order to calculate the net electric field at point A, $\vec{E}(A)$, we will consider a spherical imaginary Gaussian surface S_A of radius r_A that passes from point A and is centred at origin. The electric field flux:

$$\Phi = \oint_{S_A} \vec{E} d\vec{s} \stackrel{*}{=} \oint_{S_A} E ds \stackrel{**}{=} E \oint_{S_A} ds = E 4\pi r_A^2$$
 (4)

where above we made use of the fact that (*) $\vec{E}//d\vec{s}$ for any point along S_A and that (**) the magnitude of the electric field is constant along the Gaussian surface. Using Gauss's law:

$$\Phi = \frac{Q_{enc}}{\epsilon_0} = \frac{Q_\rho + Q_\sigma}{\epsilon_0} = \frac{\rho_3^4 \pi R^3 + \sigma 4\pi R^2}{\epsilon_0} = \frac{4\pi R^2}{\epsilon_0} \left(\frac{\rho}{3}R + \sigma\right) \tag{5}$$

where the total charge enclosed by the Gaussian surface Q_{enc} is the sum of the charge of the sphere Q_{ρ} and the charge of the surface Q_{σ} . From equations 4 and 5, we obtain the time dependence of the magnitude of the electric field at A:

$$E(A) = \frac{R^2}{\epsilon_0} \left(\frac{\rho}{3} R + \sigma \right) \frac{1}{r_A^2} = \frac{R^2}{\epsilon_0} \left(\frac{R}{3} \rho_0 (1 + at) + \sigma \right) \frac{1}{r_A^2}$$
 (6)

From the above equation we can find the time at which E(A) = 0:

$$\frac{R}{3}\rho_0(1+at) + \sigma = 0 \Rightarrow 1 + at = -\frac{3\sigma}{\rho_0 R} \Rightarrow t = \frac{1}{a} \left(-\frac{3\sigma}{\rho_0 R} - 1 \right) = 105.14 \quad [s]$$
(7)

b) By setting the electric potential at infinity equal to zero we obtain for the electric potential at A:

$$V_{A} - V_{\infty} = V_{A} = -\int_{\infty}^{A} \vec{E} d\vec{r} \stackrel{\vec{E}//d\vec{r}}{=} -\int_{\infty}^{A} E dr = -\int_{\infty}^{A} \frac{R^{2}}{\epsilon_{0}} \left(\frac{R}{3} \rho_{0} (1 + at) + \sigma \right) \frac{1}{r^{2}} dr =$$

$$= -\frac{R^{2}}{\epsilon_{0}} \left(\frac{R}{3} \rho_{0} (1 + at) + \sigma \right) \int_{\infty}^{A} \frac{1}{r^{2}} dr = \frac{R^{2}}{\epsilon_{0} r_{A}} \left[\frac{R}{3} \rho_{0} (1 + at) + \sigma \right]$$
(8)

c) The electric force acting on the nucleus at time t_2 :

$$\vec{F} = q\vec{E}(t_2) = m\vec{\gamma} \Rightarrow \vec{\gamma} = \frac{q}{m}\vec{E}_A(t_2) = \frac{2|e|}{4m_p}\vec{E}_A(t_2) = \frac{|e|}{2m_p}\vec{E}_A(t_2)$$
 (9)

where we made use of the fact that the charge of the nucleus q=2|e| since it contains 2 protons and the mass $m=2m_p+2m_n=4m_p$. The magnitude of the electric field at point A was calculated above, see equation 6 and the electric field vector:

$$\vec{E}_A(t_2) = \frac{R^2}{\epsilon_0} \left(\frac{R}{3} \rho_0 (1 + at_2) + \sigma \right) \frac{1}{r_A^2} \vec{u}_{r_A} = \frac{R^2}{\epsilon_0} \left(\frac{R}{3} \rho_0 (1 + at_2) + \sigma \right) \frac{1}{r_A^2} \left(\frac{y_A}{r_A} \vec{j} + \frac{z_A}{r_A} \vec{k} \right)$$
(10)

with $\vec{u}_{r_A} = \vec{r}_A/r_A$ the unit vector of \vec{r}_A . From equations 9 and 10:

$$\vec{\gamma} = -4.78 \times 10^{12} \vec{j} + 2.39 \times 10^{12} \vec{k} \quad [m/s^2] \tag{11}$$

a)Let us first calculate the magnetic field B_1 created by the surface current I_1 for r < R: If we consider a circular path of radius r along the xy plane that is concentric to the cylinder, then through the surface of this circle there is no current passing. Therefore the magnetic field $\vec{B}_1 = 0$ for r < R.

For $r \geq R$ we consider a circular path C_1 of radius r along the xy plane that is concentric to the cylinder. According to Ampère's law:

$$\oint_{C_1} \vec{B}_1 d\vec{l} = \mu_0 I_1 \tag{12}$$

since the current that passes through the circular surface defined by C_1 is I_1 . The line integral

$$\oint_{C_1} \vec{B}_1 d\vec{l} \stackrel{\text{a}}{=} \oint_{C_1} B_1 dl \stackrel{\text{b}}{=} B_1 \oint_{C_1} dl = B_1 2\pi r \tag{13}$$

where we made use of the fact that (a) $\vec{B}_1//d\vec{l}$ along the path C_1 and (b) the magnitude of the magnetic field is constant along the path. From equations 12 and 13 we obtain

$$B_1 = \frac{\mu_0 I_1}{2\pi r} \tag{14}$$

Considering points along the positive y-axis, the magnetic field \vec{B}_1 will be perpendicular to the vector product of the current direction (\vec{k}) and the position vector \vec{y} direction (\vec{j}) , ie $\vec{k} \times \vec{j} = -\vec{i}$

$$\vec{B}_1 = -\frac{\mu_0 I_1}{2\pi y} \vec{i} \tag{15}$$

Now we derive the expression for the magnetic field B_2 created by current I_2 . We consider a circular path C_2 of radius r_2 along the xy plane that is concentric to the line. According to Ampère's law:

$$\oint_{C_2} \vec{B}_2 d\vec{l} = \mu_0 I_2 \tag{16}$$

since the current that passes through the circular surface defined by C_2 is I_2 . The line integral

$$\oint_{C_2} \vec{B}_2 d\vec{l} \stackrel{c}{=} \oint_{C_2} B_2 dl \stackrel{d}{=} B_2 \oint_{C_2} dl = B_2 2\pi r_2$$
 (17)

where we made use of the fact that (c) $\vec{B}_2//d\vec{l}$ along the path C_2 and (d) the magnitude of the magnetic field is constant along the path. From equations 16 and 17 we obtain

$$B_2 = \frac{\mu_0 I_2}{2\pi r_2} \tag{18}$$

Note that r_2 is the distance from the line. For points along the positive y-axis, with y < D:

$$\vec{B}_2 = -\frac{\mu_0 I_2}{2\pi (D - y)} \vec{i} \tag{19}$$

since the magnetic field \vec{B}_2 will be perpendicular to the vector product of the current direction $(-\vec{k})$ and the direction of the vector \vec{r}_2 from the line to the point $(-\vec{j})$, ie $-\vec{k} \times (-\vec{j}) = -\vec{i}$.

For points along the positive y-axis, with y > D:

$$\vec{B}_2 = \frac{\mu_0 I_2}{2\pi (y - D)} \vec{i} \tag{20}$$

since the magnetic field \vec{B}_2 will be perpendicular to the vector product of the current direction $(-\vec{k})$ and the direction of the vector \vec{r}_2 from the line to the point (\vec{j}) , ie $-\vec{k} \times \vec{j} = \vec{i}$.

In order to deduce the general expression of the magnetic field for points along the y-axis: $\vec{B} = \vec{B}_1 + \vec{B}_2$ we have to divide it into the following 3 areas: (I) 0 < y < D:

$$\vec{B} = -\frac{\mu_0 I_2}{2\pi (D-y)} \vec{i} \tag{21}$$

(II) D < y < R:

$$\vec{B} = \frac{\mu_0 I_2}{2\pi (y - D)} \vec{i} \tag{22}$$

(III) $y \geq R$:

$$\vec{B} = -\frac{\mu_0 I_1}{2\pi y} \vec{i} + \frac{\mu_0 I_2}{2\pi (y - D)} \vec{i}$$
(23)

b) In areas (I) and (II) the magnetic field cannot be zero since only current I_2 contributes. For area (III), setting $\vec{B} = 0$ in equation 23:

$$\frac{\mu_0 I_1}{2\pi y} = \frac{\mu_0 I_2}{2\pi (y - D)} \Rightarrow I_1 y - I_1 D = I_2 y \Rightarrow y = \frac{I_1}{I_1 - I_2} D < 0$$
 (24)

Therefore, it is not possible to find a point with y > 0 where $\vec{B} = 0$.