EE114 Intro to Systems & Control

Dr. Lachman Tarachand Dr. Chen Zhicong

Prepared by Dr. Séamus McLoone Dept. of Electronic Engineering

So far ...

- We've introduced the concept of control and, in particular, feedback control ...
- We've illustrated the need for mathematical modelling ...
- We've studied two simple static systems ...

So far ...

- We've introduced the concept of control and, in particular, feedback control ...
- We've illustrated the need for mathematical modelling ...
- We've studied two simple static systems ...

 Now, we are going to look at the mathematical modelling of a few simple dynamical systems.

The stages of a dynamic system investigation are as follows:

Actual system

Physical Modelling

- This involves identifying the system/sub-system to be studied and obtaining a simple physical model whose behaviour will match sufficiently closely that of the actual system.
- This typically leads to a schematic representation showing the key system components and variables and how they are physically related.
- Engineering judgement is needed in determining the appropriate level of detail we have to decide what is important and what can be neglected.
- Too complicated a model leads to long analysis while too simple a model is unrepresentative (i.e. not accurate enough).

Physical Modelling

- Experience is needed it cannot be taught! However, there are several useful guidelines (engineering approximations):
 - neglect small effects
 - this reduces the number and complexity of equations.
 - assume environment is independent of the system motions
 - this reduces the number and complexity of equations.
 - replace distributed characteristics with appropriate lumped elements*
 - this gives ordinary differential equations rather than partial ones.

^{*} For example, a wire has resistance along its entire length — however we represent this by 'lumping' this distributed resistance into a single point value.

Physical Modelling

- Experience is needed it cannot be taught! However, there are several useful guidelines (engineering approximations):
 - assume linear relationships
 - gives linear equations and superposition holds.
 - assume constant parameters
 - leads to constant coefficient in differential equations.
 - neglect uncertainty and noise
 - avoids statistical treatment.

- This involves obtaining a mathematical representation of the physical model.
- Central to this process is the writing of equations for equilibrium and/or compatibility relations.

- This involves obtaining a mathematical representation of the physical model.
- Central to this process is the writing of equations for equilibrium and/or compatibility relations.
- **Equilibrium relations** describe the balance of forces, of flow rates, of energy, of current, etc. which must exist for the system (conservation of energy).
- **Compatibility relations** describe how motions of the system are interrelated because of the way they are connected.

- Two further considerations are physical variables and physical laws.
- **Physical variables** are needed to describe the instantaneous state of the system. These can be divided into:
 - through variables (eg. current, flow) and
 - across variables (eg. voltage, pressure).
- Equilibrium relations apply to through variables while compatibility relations apply to across variables.

- Two further considerations are physical variables and physical laws.
- **Physical variables** are needed to describe the instantaneous state of the system. These can be divided into:
 - through variables (eg. current, flow) and
 - across variables (eg. voltage, pressure).
- Equilibrium relations apply to through variables while compatibility relations apply to across variables.
- **Physical laws** which individual components obey usually between through and across variables and are generally empirical in nature.

- In terms of modelling dynamical systems we are going to consider some simple electrical, mechanical and flow based ones.
- The mechanical system will be a standard simple second order mass-spring damper system while the flow-based system will be a simple first order tank system.

© Randy Glasbergen www.glasbergen.com.

You will model more complicated systems in EE211 System Dynamics.

- Analytic procedure:
 - Physical model circuit diagram.
 - Variables voltages, currents.
 - Equilibrium relation Kirchoff's Current Law (KCL).
 - Compatibility relation Kirchoff's Voltage Law (KVL).
 - Physical relations are summarised in the following table:

Component	Physical Law	Symbol
Resistance (R)	v = iR	R R
Inductance (L)	$v = L \frac{di}{dt}$	L L
Capacitance (C)	$v = \frac{1}{C} \int i dt$ or $i = C \frac{dv}{dt}$	C

Component	Physical Law	Symbol
Resistance (R)	v = iR	<i>R</i>
Inductance Note that	$v = I \frac{di}{di}$ twe are assuminated and ideal constants.	g lumped parameters nponents.
Capacitance (C)	$v = \frac{1}{C} \int i dt$ or $i = C \frac{dv}{dt}$	C C — C

• Ex 3.3 Determine a mathematical model for the resistor/capacitor filter circuit shown below:

Actual system

Solution ...

Solution ...

STEP 1 – Physical Model ...

Solution ...

STEP 1 – Physical Model ...

Solution ...

STEP 2 – Model variables as defined ...

STEP 3 – Compatibility relation – KVL ...

STEP 3 – Compatibility relation – KVL ...

$$v_i = v_R + v_C$$

STEP 3 – Compatibility relation – KVL ...

$$v_i = v_R + v_C$$

Equilibrium relation implied by choice of current variable in this example ... i.e.

STEP 3 – Compatibility relation – KVL ...

$$v_i = v_R + v_C$$

Equilibrium relation implied by choice of current variable in this example ... i.e.

$$i = i_R = i_C$$

STEP 4 – Applying physical relations to compatibility equation ...

STEP 4 – Applying physical relations to compatibility equation ...

$$v_i = v_R + v_C$$
 $\rightarrow v_i = iR + \frac{1}{C} \int idt$

Differentiate once ...

$$v_i = iR + \frac{1}{C} \int idt \rightarrow \frac{dv_i}{dt} = R \frac{di}{dt} + \frac{1}{C}i$$

Differentiate once ...

$$v_i = iR + \frac{1}{C} \int idt \rightarrow \frac{dv_i}{dt} = R \frac{di}{dt} + \frac{1}{C}i$$

Here, we want relationship between v_i and v_c ...

Differentiate once ...

$$v_i = iR + \frac{1}{C} \int idt \rightarrow \frac{dv_i}{dt} = R \frac{di}{dt} + \frac{1}{C}i$$

Here, we want relationship between v_i and v_c ...

Recall ...
$$i = C \frac{a v_C}{dt}$$

Differentiate once ...

$$v_{i} = iR + \frac{1}{C} \int idt \rightarrow \frac{dv_{i}}{dt} = R \frac{di}{dt} + \frac{1}{C}i$$

Here, we want relationship between v_i and v_c ...

Recall ...

$$i = C \frac{dv_C}{dt}$$

Differentiate once ...

$$v_i = iR + \frac{1}{C} \int idt \rightarrow \frac{dv_i}{dt} = R \frac{di}{dt} + \frac{1}{C}i$$

Here, we want relationship between v_i and v_c ...

$$i = C \frac{dv_C}{dt}$$

Hence ...
$$v_i = RC \frac{dv_C}{dt} + v_C$$

Continuing ...

 Ex 3.4 Determine a mathematical model for the capacitor/ resistor filter circuit given by the following physical model:

Solution ...

Note, this is almost identical to the previous example, but we are now interested in finding out the relationship between v_R and v_i .

Solution ...

Note, this is almost identical to the previous example, but we are now interested in finding out the relationship between v_R and v_i .

From the previous example, we know that:

$$v_i = RC\frac{dv_C}{dt} + v_C$$

Solution ...

$$v_i = RC \frac{dv_C}{dt} + v_C$$

We also know that:

$$v_i = v_R + v_C$$

Solution ...

$$v_i = RC \frac{dv_C}{dt} + v_C$$

We also know that:

$$v_i = v_R + v_C$$

Hence:

$$v_C = v_i - v_R$$

Solution ...

$$v_i = RC \frac{dv_C}{dt} + v_C$$

We also know that:

$$v_i = v_R + v_C$$

Hence:

$$v_C = v_i - v_R$$

Substituting for v_C into the first equation:

$$v_i = RC \frac{d(v_i - v_R)}{dt} + v_i - v_R$$

$$v_i = RC \frac{d(v_i - v_R)}{dt} + v_i - v_R$$

$$v_i = RC \frac{d(v_i - v_R)}{dt} + v_i - v_R$$

$$\Rightarrow 0 = RC \frac{dv_i}{dt} - RC \frac{dv_R}{dt} - v_R$$

$$v_i = RC \frac{d(v_i - v_R)}{dt} + v_i - v_R$$

$$\Rightarrow 0 = RC \frac{dv_i}{dt} - RC \frac{dv_R}{dt} - v_R$$

$$\Rightarrow 0 = \frac{dv_i}{dt} - \frac{dv_R}{dt} - \frac{v_R}{RC}$$

$$v_i = RC \frac{d(v_i - v_R)}{dt} + v_i - v_R$$

$$\Rightarrow 0 = RC \frac{dv_i}{dt} - RC \frac{dv_R}{dt} - v_R$$

$$\Rightarrow 0 = \frac{dv_i}{dt} - \frac{dv_R}{dt} - \frac{v_R}{RC}$$

$$\Rightarrow \frac{dv_i}{dt} = \frac{dv_R}{dt} + \frac{v_R}{RC}$$

 Ex 3.5 Develop the mathematical model for the LRC circuit that is described by the following physical model (step 1):

Solution ...

Step2: Variables are as defined in physical model.

Solution ...

Step2: Variables are as defined in physical model.

Step 3: Compatibility relationship implied, i.e.:

$$v = v_R = v_L = v_C$$

By KCL the equilibrium relationship for the currents is:

$$i = i_R + i_C + i_L$$

Solution ...

Step 4: Combining the physical relationships between current and voltage *R*, *C* and L with the previous equation gives:

$$i = \frac{v}{R} + \frac{1}{L} \int v dt + C \frac{dv}{dt}$$

$$i = \frac{v}{R} + \frac{1}{L} \int v dt + C \frac{dv}{dt}$$

$$i = \frac{v}{R} + \frac{1}{L} \int v dt + C \frac{dv}{dt}$$

$$\frac{di}{dt} = \frac{1}{R}\frac{dv}{dt} + \frac{1}{L}v + C\frac{d^2v}{dt^2}$$

$$i = \frac{v}{R} + \frac{1}{L} \int v dt + C \frac{dv}{dt}$$

$$\frac{di}{dt} = \frac{1}{R}\frac{dv}{dt} + \frac{1}{L}v + C\frac{d^2v}{dt^2} \longrightarrow \frac{d^2v}{dt^2} + \frac{1}{RC}\frac{dv}{dt} + \frac{1}{LC}v = \frac{1}{C}\frac{di}{dt}$$

Solution ...

$$i = \frac{v}{R} + \frac{1}{L} \int v dt + C \frac{dv}{dt}$$

$$\frac{di}{dt} = \frac{1}{R}\frac{dv}{dt} + \frac{1}{L}v + C\frac{d^2v}{dt^2} \longrightarrow \frac{d^2v}{dt^2} + \frac{1}{RC}\frac{dv}{dt} + \frac{1}{LC}v = \frac{1}{C}\frac{di}{dt}$$

• For more complex circuits this first principles approach is tedious and we generally use more efficient circuit analysis techniques (i.e. nodal, mesh) to obtain the model equations.