Electrical Fault Prediction using Decision Tree

https://bit.ly/3Af57BG

Ela Kapoor

_

The electrical power system consists of many complex, dynamic and interacting elements that are always prone to disturbance or an electrical fault such as short circuit condition.

- Required fault detection system
- Operation of protection equipment in minimum possible time to remain stable.
- Initiate other relays to protect the power system from outages

PROBLEM STATEMENT

EDA

MODEL DESIGN

Output (label) is binary classified

Fault ---> 1

No Fault ---> 0

Features are current and voltages in line a, b and c

2	Output (S)	la	lb	lc	Va	Vb	Vc	Unnamed: 7	Unnamed: 8
6487	0	10.009379	-43.194571	35.379810	0.597965	-0.275271	-0.322694	NaN	NaN
7445	1	73.138358	-798.340255	727.203438	-0.035802	-0.001706	0.037508	NaN	NaN
1705	0	43.220846	-65.293233	29.318940	0.580671	-0.123633	-0.457038	NaN	NaN
440	0	-29.728845	-33.659446	63.388292	0.462295	-0.570358	0.108063	NaN	NaN
6706	1	765.982618	-772.398070	8.564309	-0.001782	-0.035833	0.037614	NaN	NaN

PROBLEM STATEMENT

EDA

MODEL DESIGN

Current and Voltage in line b

PROBLEM STATEMENT

EDA

MODEL DESIGN

Current and Voltage in line a, b, c under no fault condition

PROBLEM STATEMENT

EDA

MODEL DESIGN

Correlation Heatmap

PROBLEM STATEMENT

EDA

MODEL DESIGN

PROBLEM STATEMENT

EDA

MODEL DESIGN

MODEL ACCURACY

Without Tuning

Test Accuracy → 99.44%
Train Accuracy → 100%

No hyper parameter tuning

Pre-Pruning

Test Accuracy → 99.30% Train Accuracy → 99.92%

- max_depth
- min_samples_leaf

Post-Pruning

Test Accuracy → 98.83% Train Accuracy → 98.98%

Changing the value of alpha

PROBLEM STATEMENT

EDA

MODEL DESIGN

PROBLEM STATEMENT

EDA

Feature

0.1

MODEL DESIGN

Without Tuning

Train Data Test Data

PROBLEM STATEMENT

EDA

MODEL DESIGN

Pre Pruning Techniques

Train Data

Test Data

PROBLEM STATEMENT

EDA

MODEL DESIGN

Post Pruning Techniques

Test Data

PROBLEM STATEMENT

EDA

MODEL DESIGN

la <= -65.428gini = 0.496samples = 8400value = [4553, 3847]class = Not Fault la <= 102.4gini = 0.005gini = 0.433samples = 1735samples = 6665value = [4, 1731]value = [4549, 2116]class = Fault class = Not Fault Output (S) <= 69.117 gini = 0.0gini = 0.288samples = 1155samples = 5510value = [0, 1155]value = [4549, 961]class = Fault class = Not Fault Output (S) <= -90.287 gini = 0.011gini = 0.16samples = 526samples = 4984value = [3, 523]value = [4546, 438] class = Fault class = Not Fault gini = 0.006gini = 0.033samples = 362samples = 4622value = [4545, 77]value = [1, 361]class = Not Fault class = Fault

PROBLEM STATEMENT

EDA

MODEL DESIGN

- We can see that the difference between the accuracy on the train set and test set decreased. This is because hyperparameter tuning smoothens the decision boundary and thus prevents it from overfitting.
- The model accuracy is good and can be implemented for production environment.
- > Following benefits because of model:
 - Reduce the frequency of maintenance
 - Minimizes cost of maintenance
 - Save life
 - Avoid and minimize downtime
 - Increase availability of the system

PROBLEM STATEMENT

EDA

MODEL DESIGN

Thank You!

Wishing you Happy Autumn