Deep Learning Towards Robustness in Medical Images

Varsha S 193079005

Outline

- I. Robust Deep Learning Framework to address General Label Noise in Medical Imaging
 - a) Motivation
 - b) Contrastive Learning
 - c) Algorithm
 - d) Experiments and Results
 - e) Future Work
- II. Despeckling Ultrasound Images
 - a) Motivation
 - b) Experiments and Results
 - c) Future Work

Robust Deep Learning Framework to address

General Label Noise in Medical Imaging

Motivation

- Medical images are often subjectively labeled or weakly supervised, which introduces both closed-set and open-set label noise
- The low image quality due to tissue preparation or preservation artifacts also degrade the supervisory signal to a Deep Learning algorithm
- Deep learning (DL) models underperform when the quality of supervisory labels degrades as DL algorithm's performance is largely determined by availability of labelled data
- Only few works have addressed open-set label noise and have given a unified treatment to both types of label noise

Motivation

- Medical images are often subjectively labeled or weakly supervised, which introduces both closed-set and open-set label noise
- The low image quality in such modalities due to tissue preparation or preservation artifacts can also degrade the supervisory signal to a DL algorithm
- Deep learning (DL) models underperform when the quality of supervisory labels degrades as D
 algorithm performance is largely determined by availability of labelled data
- Only few works have addressed open-set label noise and have given a unified treatment to both types of label noise
- Goal: Learn a scheme tolerant to both mislabeling and outliers

Problem Addressed

Classification of Histopathology images in presence of both closed-set and open-set noise

Problem Addressed

Classification of Histopathology images in presence of both closed-set and open-set noise

- Closed set noise : mislabelled samples
- o Open Set noise : out-of-distribution (OOD) samples

Problem Addressed

Classification of Histopathology images in presence of both closed-set and open-set noise

Closed set noise : mislabelled samples

o Open Set noise : out-of-distribution (OOD) samples

Figure: Ground truth visualisation for 3 clean classes, consisting open-set (label) noise and closed-set (OOD) noise

Proposed Method

- SimCLR based learning with three Stages
 - 1) Warm Up Phase
 - 2) Weight Calculation
 - 3) Classification Phase

Proposed Method

- SimCLR based learning with three Stages
 - 1) Warm Up Phase
 - 2) Weight Calculation
 - 3) Classification Phase

Figure : Overview of the proposed method

SimCLR: Simple Framework for Contrastive Learning

Contrastive Learning:
 The main idea is to learn representations such that similar samples stay close to each other, while dissimilar ones are far apart.

Figure : A simple framework for contrastive learning of visual representations

SimCLR: Simple Framework for Contrastive Learning

Task: maximize the similarity between the two representations z_i and z_j for the same image

Figure : A simple framework for contrastive learning of visual representations

Contrastive loss Function

$$\mathcal{L}_{Con} = [d_p - m_{pos}]_{+} + [m_{neg} - d_n]_{+}$$

 \mathcal{L}_{Con} attempts to make the distance between positive pairs d_p smaller than some margin m_{pos} and the distance between negative pairs d_n larger than some threshold m_{neg}

 $[x]_+$ is max(0,x). d_p - distance between positive pairs

 d_n - distance between negative pairs

 m_{neg} - threshold margin for negative pairs

 m_{pos} - threshold margin for positive pairs

values of m_{pos} and m_{neg} are set to 1 and 0 respectively

Method: Warm Up Phase

- Histology-specific ResNet-18 SimCLR model as a backbone network
- Training with interleaved cross-entropy (to learn discriminate features) and contrastive loss training(to distinguish between clean and noisy samples)

Figure : Warm Up Phase with weight calculation

Method: How is the memory bank formed

Method: How is the memory bank formed

- Miner function : used to mine hard pairs
- Creates subsets of features of size "s", finds hard pairs (subset with highest contrastive loss)
- Apart from these hard pairs, everything is added to memory bank

Method: Warm Up Phase (Memory Bank for Prototypes)

• FIFO Memory bank of fixed size per class is created by storing features of instances with least contrastive loss in a minibatch

Method: Warm Up Phase (Memory Bank for Prototypes)

- FIFO Memory bank of fixed size per class is created by storing features of instances with least contrastive loss in a minibatch
- K-medoids clustering for obtaining k prototypes per class.

Figure : (a) shows mean in K-Means clustering, which is influenced by the outlier. (b) shows the medoid in K-medoids clustering which remains unaffected by the outliers.

Method: Weight Calculation Phase

- Weights are calculated by
 - averaging similarity scores of feature vector with all prototypes in memory bank
 - K-medoids similarity scores of feature vector with a class prototypes of memory bank

$$S_{u,v} = \frac{u^T v}{||u||.||v||}$$

$$W_{u,v} = \frac{S_{u,v} - (S_{u,v})_{min}}{(S_{u,v})_{max} - (S_{u,v})_{min}}$$

u - feature vector of input

v - feature prototype of class corresponding to input

 $S_{u,v}$ - cosine similarity between l_2 normalized u and v

 $W_{u,v}$ - weights for the cross entropy loss in the range [0,1]

Method: Final Classification Phase

- Training proceeds with weight cross entropy as loss function
- Weights from previous step are used for weight cross entropy

Figure : Classification with weighted cross entropy loss

Algorithm Proposed

```
Algorithm 1: Warm-up & Weight Calculation
```

```
Input: \mathcal{B} = \{(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)\}: minibatch of size n in dataset \mathcal{S};
f(.): The deep learning framework;
Parameter: \mathcal{M}: Fixed size memory bank;
Warm-up Phase
foreach \mathcal{B} \in \mathcal{S} do
    \phi(x_i), \theta(x_i) \leftarrow f((x_i, y_i));
    hardpairs \leftarrow miner(\phi_{\mathcal{B}}, L_{con});
    if \phi(x_i) \notin hardpairs then
         \mathcal{M}_{Y_i} \leftarrow \phi(x_i);
     end
     Calculate L_{CE}(\theta(x_i), y_i) and update f(.);
    Calculate L_{con}(\phi(x_i)) and update f(.);
end
Calculate Weights
foreach (x_i, y_i) \in \mathcal{S} do
    \phi(x_i) \leftarrow f((x_i, y_i));
    w_i \leftarrow cosinesimilarity(\mathcal{M}_{Y_i}, \phi(x_i))
end
```

Datasets

Work Flow of Patch based Classification

Figure : Unannotated Whole Slide image of breast cancer

Work Flow of Patch based Classification

Figure : Annotated Whole Slide image of breast cancer

Dataset: BACH (breast cancer)

Figure: Microscopy images are labelled as normal, benign, in situ carcinoma or invasive carcinoma according to the predominant cancer type in each image

Dataset: Kather (colorectal cancer)

Figure: Image patches from hematoxylin & eosin (H&E) stained histological images of human colorectal cancer (CRC) and normal tissue.

Dataset: TCGA

Figure : Unannotated Whole Slide image of breast cancer

Previous Approaches

- Wang et al [1] used an iterative technique to detect noisy labels using a probabilistic and cumulative local outlier factor (pcLOF) while learning deep discriminative features
- SSGCE [2] An alternative to conventional cross entropy, that mitigates degradation due to closed-set label noise in medical images but not issues of open set.
- Chang Liu et al [3] (a metric learning framework) proposed learning robust class prototypes by using (FIFO) memory bank to aggregate clean samples based on their similarity scores

Experiments and Observations

Experiments

- Histopathology datasets used
 - BACH (breast cancer dataset)
 - Kather (colorectal cancer dataset)
 - TCGA (Basal vs Luminal A)
- Backbone architecture: ResNet-18 pre-trained (self-supervised) on a large histology dataset (self-supervised contrastive learning frameworks are widely adopted as robust initialization that can significantly improve state of art results using fewer labels)
- Learning Rate: 0.01
- Optimizer : Adam
- Data Augmentations : Color jitter, random vertical and horizontal flips

Experiment I: BACH

- Outlier class InSitu (3-class classification)
- *Patch size* : 224×224
- K-Medoids: K is set to 3
- Train: 75, Validation: 25 images
- Warm up phase : 10 epochs
- Batch size: 8, miner size: 7
- Memory bank size: 300/class

Experiment I: BACH

• Outlier class - InSitu (3-class classification)

• Patch size : 224×224

• K-Medoids: K is set to 3

• Train: 75, Validation: 25 images

• Warm up phase : 10 epochs

• Batch size: 8, miner size: 7

Memory bank size: 300/class

OOD Noise	15			20		
Label Noise	10	14	18	10	14	18
CE-Imagenet Pretrained CE-SimCLR Pretrained SSGCE	82.33±1.12 84.00±2.11 86.00±0.47		82.33 ± 0.84	80.66 ± 1.99 85.66 ± 1.99 85.35 ± 0.94	81.66±0.90 83.32±2.47 81.33±1.88	
Mem-Bank (ours) Mem-Bank+K-Medoids (ours)	91.67±1.14 92.33 ±0.33	90.33 ±1.00 90.00±0.86	89.03 ±0.35 88.08±2.05	90.33±0.84 91.00 ±1.26	89.33±0.54 90.66 ±0.94	88.66 ±1.38 88.00±0.54

Table 1: 4-fold cross-validation classification accuracies on BACH dataset with different levels of label noise and OOD noise

Experiment I: BACH

Weights obtained in weight calculation phase clearly discriminate between clean and noisy samples

Distribution of similarity scores of samples with the memory bank obtained after warm-up phase, corresponding to clean data and noisy data

Experiment II: Kather

- Outlier Classes Debris, Mucosa (6-class classification Problem)
- Patch size : 224×224
- K-Medoids: K is set to 3
- Train: 475, Validation: 75 images
- Batch size : 8, Miner size : 7
- Warm up phase : 10
- Memory bank size : 300/class

Experiment II: Kather

• Outlier Classes - Debris, Mucosa (6-class classification Problem)

Patch size: 224×224K-Medoids: K is set to 3

• Train: 475, Validation: 75 images

• Batch size: 8, Miner size: 7

• Warm up phase : 10

• Memory bank size: 300/class

OOD Noise	30%			35%		
Label Noise	30%	40%	50%	30%	40%	50%
CE-Imagenet pretrained CE-SimCLR pretrained	89.12±1.07 92.6±0.2	88.91 ± 0.64 92.25 ± 0.45	87.05±0.05 91.05±0.45	89.28 ± 0.69 92.75 ± 0.85	89.19 ± 0.50 91.93 ± 1.14	85.53±0.93 91.09±0.59
Mem-Bank (ours)	$94.08{\pm}0.26$	$92.91{\pm}0.59$	$91.68{\pm}0.32$	$92.57 {\pm} 0.81$	$93.71 {\pm} 0.32$	$92.33{\pm}0.11$
${\it Mem-Bank+K-Medoids\ (ours)}$	$92.33{\pm}0.33$	90.00 ± 0.86	88.08 ± 2.05	91.00 ± 1.26	$90.66 {\pm} 0.94$	88.00 ± 0.54

Table 2: 2-fold cross-validation classification accuracies on Kather dataset with different levels of label noise and OOD noise

Experiment III : TCGA

- Outlier Classes: Lobular, HER2, Luminal-B (2-class classification problem)
- *Patch size* : 512×512
- K-Medoids: K is set to 6
- Train: 90, Validation: 10, Test: 30 images
- Batch size: 128, Miner size: 32
- Warm up phase : 3 epochs
- Memory bank size: 10,000/class

Experiment III : TCGA

- Outlier Classes: Lobular, HER2, Luminal-B (2-class classification problem)
- *Patch size* : 512×512
- K-Medoids: K is set to 6
- Train: 90, Validation: 10, Test: 30 images
- Batch size: 128, Miner size: 32
- Warm up phase : 3 epochs
- Memory bank size: 10,000/class

	Slide-level Accuracy	
CE-Imagenet	73.33	
CE-SimCLR	80.00	
SSGCE-Loss	83.33	
Mem-Bank (ours)	80.00	
${\it Mem-Bank+K-Medoids (ours)}$	86.67	

Table 3 : Basal vs Luminal A Classification accuracy percentages on 30 held out WSI

Conclusion and Future Work

Conclusion

- Demonstrated the inherent existence of open-set and closed-set noise in histology datasets
- We proposed a simple and effective method that addresses the general label noise problem in an integrated framework based on a sample weighting scheme
- Evident from mean similarity scores, our approach discriminates between clean and noisy data points after just a few training (warm up) epochs

Future Work

- Method of aggregating features in the memory bank Use of contrastive loss instead of just adding in FIFO manner
- Re-weighting strategy Use of non-linear functions on the similarity scores before using them with the weighted cross entropy loss can be experimented with
- Techniques including momentum based contrastive learning can be used to improve the embeddings further

DESPECKLING ULTRASOUND IMAGES

Motivation

- Ultrasound imaging is non-invasive, low cost used in medical diagnosis
- Ultrasound pulses randomly interfere with objects of comparable size to the sound wavelength and the superposition of acoustical echoes produces an intricate interference pattern
- Speckle noise is an inherent property of medical ultrasound imaging
- Image resolution and contrast become reduced, affects the diagnostic value of US imaging

Method: Model Architecture

Modified U-Net Model for denoising

Experiments

- Backbone UNet
- Dataset Public satellite images
- Loss functions
 - i) MSE loss
 - ii) L1 loss
 - iii) SSIM loss

Experiments and Results

UNet model with MSE loss

UNet model with SSIM loss

191.65 | 0.69 | 25.3

280.2 | 0.78 | 23.65

Loss function	MSE Loss	SSIM Value	PSNR (dB)
L1	158.7	0.77	26.13
SSIM	280.2	0.78	23.65
MSE	191.65	0.69	25.3

UNet model trained with different loss function

Future Work

- Use of wavelet transforms instead of pooling layers to perform apply multiresolution analysis
- Use of different loss function for training
- Experiment with ultrasound images

References

- 1. Yisen Wang, Weiyang Liu, Xingjun Ma, James Bailey, Hongyuan Zha, Le Song, and Shu-Tao Xia, "Iterative learning with open-set noisy labels". In CVPR, 2018
- 2. Nikhil Cherian Kurian, Pragati Shuddhodhan Meshram, Abhijeet Patil, Sunil Patel, and Amit Sethi, "Sample specific generalized cross entropy for robust histology image classification". In 2021
- 3. Chang Liu, Han Yu, Boyang Li, Zhiqi Shen, Zhan-ning Gao et al, "Noise-resistant deep metric learning with ranking-based instance selection". In CVPR, 2021
- 4. Ting Chen, Simon Kornblith, Mohammad Norouzi, Geoffrey Hinton. "A Simple Framework for Contrastive Learning of Visual Representations". In ICML, 2020
- 5. Olaf Ronneberger, Philipp Fischer, and Thomas Brox, "*U-net: Convolutional networks for biomedical image segmentation*," CoRR, vol. abs/1505.04597, 2015.