Formulario

Tipo de problema	Intervalo		
IC para la media μ	_		
con σ conocida	$\left \overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}; \overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right $		
IC para la media μ	_		
con σ desconocida	$\left[\overline{X} - t_{n-1,\alpha/2} \frac{S'}{\sqrt{n}}; \overline{X} + t_{n-1,\alpha/2} \frac{S'}{\sqrt{n}}\right]$		
IC para la diferencia de medias	_		
$\mu_1 - \mu_2 \text{ con } \sigma_1, \sigma_2 \text{ conocidas}$	$\left[\overline{X}_1 - \overline{X}_2 \mp z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}\right]$		
IC para $\mu_1 - \mu_2$ en poblaciones normales con	_		
varianzas desconocidas pero iguales $\sigma_1^2 = \sigma_2^2$	$\overline{X}_1 - \overline{X}_2 \mp t_{n+m-2,\alpha/2} \cdot S_c \sqrt{\frac{1}{n} + \frac{1}{m}}$		
IC para $\mu_1 - \mu_2$ en poblaciones normales con			
varianzas desconocidas y distintas $\sigma_1^2 \neq \sigma_2^2$	$\overline{X}_1 - \overline{X}_2 \mp t_{k,\alpha/2} \cdot \sqrt{\frac{S_1'^2}{n} + \frac{S_2'^2}{m}}$		
IC para la varianza de una			
población normal	$\left rac{nS^2}{k_2},rac{nS^2}{k_1} ight $		
IC para el cociente de varianzas			
en poblaciones normales	$\left[\frac{S_1^{'2}/S_2^{'2}}{F_{n-1,m-1,\alpha/2}}; \frac{S_1^{'2}/S_2^{'2}}{F_{n-1,m-1,1-\alpha/2}}\right]$		
IC para la media con datos			
pareados en poblaciones normales	$\left[\overline{D} - t_{n-1,\alpha/2} \frac{S_d'}{\sqrt{n}}; \overline{D} + t_{n-1,\alpha/2} \frac{S_d'}{\sqrt{n}}\right]$		
IC para la proporción	$\left[\hat{p} - z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}; \hat{p} + z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right]$		
IC para la diferencia de proporciones	$\left[(\hat{p}_1 - \hat{p}_2) \mp z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}} \right]$		

donde:

$$S_{c} = \sqrt{\frac{(n-1) \cdot S_{1}^{\prime 2} + (m-1) \cdot S_{2}^{\prime 2}}{n+m-2}}$$

$$k = \frac{\left(S_{1}^{\prime 2}/n + S_{2}^{\prime 2}/m\right)^{2}}{\left[\frac{\left(S_{1}^{\prime 2}/n\right)^{2}}{n-1}\right] + \left[\frac{\left(S_{2}^{\prime 2}/m\right)^{2}}{m-1}\right]}$$

$$P\left[\chi^{2}(n-1) > k_{1}\right] = 1 - \frac{\alpha}{2}$$

$$P\left[\chi^{2}(n-1) > k_{2}\right] = \frac{\alpha}{2}$$

Tipo de problema	Contraste	Estadístico	Región crítica
Media en poblaciones	$H_0: \mu = \mu_0$		
normales con	$H_1: \mu \neq \mu_0$	$T = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$	$\{ T >z_{\alpha/2}\}$
varianza conocida		0,7,1	
Media en poblaciones	$H_0: \mu = \mu_0$		
normales con	$H_1: \mu \neq \mu_0$	$T = \frac{\bar{X} - \mu_0}{S' / \sqrt{n}} \sim t(n-1)$	$\left\{ T > t_{n-1,\alpha/2} \right\}$
varianza desconocida		5 / V 10	
Varianza en	$H_0: \sigma^2 = \sigma_0^2$		
poblaciones normales	$H_1: \sigma^2 \neq \sigma_0^2$	$T = \frac{(n-1)S'^2}{\sigma_0^2} \sim \chi^2(n-1)$	$\left \left\{ T < \chi^2_{n-1,1-\alpha/2} \text{ \'o } T > \chi^2_{n-1,\alpha/2} \right\} \right $
Igualdad de medias en			
poblaciones normales	$H_0: \mu_1 = \mu_2$	$T = \frac{X_1 - X_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{m}}} \sim N(0, 1)$	$\big\{ Z >Z_{\alpha/2}\big\}$
con varianzas conocidas	$H_1: \mu_1 \neq \mu_2$	γ <i>n</i> 1	
Igualdad de medias en			
poblaciones normales	$H_0: \mu_1 = \mu_2$	$T = \frac{\bar{X}_1 - \bar{X}_2}{S_c \sqrt{\frac{1}{2} + \frac{1}{2}}} \sim t(n + m - 2)$	$\left\{ T > t_{n+m-2,\alpha/2} \right\}$
con varianzas	$H_1: \mu_1 \neq \mu_2$	$S_c\sqrt{n+m}$	
desconocidas e iguales	1 /1 / / 2		
Igualdad de medias en			
poblaciones normales	$H_0: \mu_1 = \mu_2$		
con varianzas	$H_1: \mu_1 \neq \mu_2$	$T = \frac{X_1 - X_2}{\sqrt{\frac{S_1'}{n} + \frac{S_2'}{m}}} \sim t(k)$	$RC = \left\{ T > t_{k,\alpha/2} \right\}$
desconocidas y distintas		γ n m	
Igualdad de medias en	$H_0: \mu_1 = \mu_2$		
poblaciones normales	$H_1:\mu_1\neq\mu_2$	$T = \frac{\bar{D}}{S'_{D}/\sqrt{n}} \sim t(n-1)$	$\left\{ T > t_{n-1,\alpha/2} \right\}$
con datos pareados		~ B/ V //	
Igualdad de	$H_0: \sigma_1^2 = \sigma_2^2$		$\{T < F_{n-1,m-1,1-\alpha/2}\}$
varianzas en	$H_1:\sigma_1^2\neq\sigma_2^2$	$T = \frac{S_1'^2}{S_2'^2} \sim F(n-1, m-1)$	$\{T < F_{n-1,m-1,1-\alpha/2}\}$ $ó\{T > F_{n-1,m-1,\alpha/2}\}$
poblaciones normales	- · · -		, , ,
	$H_0: p = p_0$		
Proporción	$H_1: p \neq p_0$	$T = \frac{p - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \sim N(0, 1)$	$\{ T >z_{\alpha/2}\}$
Igualdad de	$H_0: p_1 = p_2$		
proporciones	$H_1: p_1 \neq p_2$	$T = \frac{\hat{p_1} - \hat{p_2}}{\sqrt{\frac{\hat{p_1}(1-\hat{p_1})}{n} + \frac{\hat{p_2}(1-\hat{p_2})}{n}}} \sim N(0,1)$	$\{ T >z_{\alpha/2}\}$