

Industrial case studie

Actual proof of power saving effect

Example works and power saving effect

Model I

Automobile parts factory (Saitama factory)

Model 2

Packing distribution warehouse (Kawasaki factory)

Latest info: Supermarket pref. 2012. Electricity usage redused after using Adgreencoat.

2010 before using AGC	7 July 161,815Kwh (Max demand 317Kwh)
	8 Aug 169,328Kwh (Max demand 329Kwh)
2011 after using AGC	7 July 133,195Kwh (Max demand 257Kwh) 19% reduced
	8 Aug 130,763Kwh (Max demand 254Kwh) 23% reduced

* II more stores will use Adgreencoat because of the good reputation of power saving effects by heat shield coating.

After coating

Before coating

45℃

Before coating/affect of radiant heat

There were no heat insulators under the roof.

The galvalume steel sheets were exposed.

As the ceiling materials were directly installed to the roof, the radiant heat of the roof was greatly affecting the indoor temperature.

Improvement after coating

'Heat pool' has been solved by reflecting about 90% of the heat-source from the sun and showing the function of heat-exhaustion /radiation .

The height to the roof

Load on air

conditioner

inside the factory was 7,2m on the ground floor, 5,6m on the 1st floor. By the effect of the outside temperature and the radiant heat, the heavy load for the air conditioner was a big problem.

Improvement after coating

Indoor temperature reduced, contributing to cost-cut of electricity charges.

Heat penetration rate =

Coefficient of overall heat transmission x area x temp. difference (temp. on roof – indoor temp.)

	No coating	With coating
Area m²	6,000	
Indoor temp.	28	
K value	3.57	3.51
Roof temp. (°C)	45	32
Heat penetration rate (no coat) 364,140 kcal/		kcal/h
Heat penetration rate (with coat) 84,240 kg		cal/h
Reduced heat = heat loss (no coat)- heat loss (with coat)		
Reduced heat 279,900 kcal		kcal/h

Electricity Calculation

Reduced heat / 860 kcal x summer days x air conditioner operating hour (daily) x rate of summer days.

I kw = 860kcal	860
Summer days	82
Airco hour/day	7h
Sunny day rate	0,75
Reduced electricity	140,113 kwh

Reduced electricity charge =

reduced electricity x electricity charge x consumption tax

Electricity charge per I kwh	13
Reduced elec. Charge	1,912,539 ¥

Reduced Co₂ emission

Reduced elec. x emission factor

Emission factor	0.418
Reduced Co2	58,567 kg

Coating area	Roof 4.200m² • Wall 1.800m² • Total 6.000m²	
Product name	Adgreencoat	
Process	Base coating x1 > Top Coating x2 > Total 3 Coatings	
Material	(base) Adplacoat / 60 cans (main) Adgreencoat / 172 cans	

Reduced rate can vary depending on the condition.

Reduced heat 279,900 kcla/h		Reduced elec.	
		4 months on effect	
Reduced elec. charge 1,900,000 yen			Reduced Co2 58.5 ton

Date	July 4 - 11:00 AM
Temp	32.5°C
Humidity	65%
Roof temp.	52°C

Before coating/affect of radiant heat

There were no heat insulators under the roof. The galvalume steel sheets were exposed. As the ceiling materials were directly installed to the roof, the radiant heat of the roof was greatly affecting the indoor temperature.

Improvement after coating

'Heat pool' has been solved by reflecting about 90% of the heat-source from the sun and showing the function of heat-exhaustion /radiation .

Date	July 21 - 13:00 AM	
Temp	39.7°C	
Humidity	54%	
Roof temp.	40.8°C	

Heat penetration rate =

Coefficient of overall heat transmission x area x temp. difference (temp. on roof – indoor temp.)

	No coating	With coating
Area m²	3,000	
Indoor temp.	28	
K value	3.57	3.51
Roof temp. (°C)	52	41
Heat penetration rate (no coat) 257,040 kcal/		kcal/h
Heat penetration rate (with coat) 136,890 kg		kcal/h
Reduced heat = heat loss (no coat)- heat loss (with coat)		
Reduced heat 120,150		kcal/h

Electricity Calculation

Reduced heat / 860 kcal x summer days x air conditioner operating hour (daily) x rate of summer days.

I kw = 860kcal	860
Summer days	82
Airco hour/day	7h
Sunny day rate	0,75
Reduced electricity	60,145 kwh

Reduced electricity charge =

reduced electricity x electricity charge x consumption tax

Electricity charge per I kwh	13
Reduced elec. Charge	820,977 ¥

Reduced Co₂ emission

Reduced elec. x emission factor

Emission factor	0.418
Reduced Co2	25,141 kg

Coating area	Roof 3.000m ² Adgreencoat	
Product name		
Process	Base coating x1 > Top Coating x2 > Total 3 Coatings	
Material	(base) Adplacoat / 30 cans (main) Adgreencoat / 86 cans	

Reduced rate can vary depending on the condition.

Reduced heat		Reduced elec.	
120,150 kcla/h		60,145 kwh	
Reduced elec. charge		4 months	Reduced Co2
820,000 yen		on effect	25 ton

