In the Claims

I	1. (original) A method for modeling a graphics object, comprising:
2	providing a model of the graphics object;
3	generating a first adaptively sampled distance field for the model;
4	constructing a topological hint;
5	generating a second adaptively sampled distance field for the
6	topological hint;
7	sampling first locations of the second adaptively sampled distance
8	field to determine a corresponding topological feature for each location;
9	determining second locations in the first adaptively sampled distance
10	field from the corresponding topological features of the second adaptively
11	sampled distance field; and
12	sampling the first adaptively sampled distance field at the second
13	locations to determine a distance value for each of the second locations to
14	model the graphics object according to the topological hint.
1	2. (original) The method of claim 1 wherein the topological features are
2	distance values of the second adaptively sampled distance field, further
3	comprising:
4	generating a third adaptively sampled distance field from the distance
5	values at each second location.
1	3. (original) The method of claim 2 further comprising:
2	rendering the third adaptively sampled distance field.

- 1 4. (original) The method of claim 1 wherein the topological hint is
- 2 constructed from graphics primitives.
- 1 5. (original) The method of claim 4 wherein the graphical primitive has a
- 2 corresponding implicit function, and the second adaptively sample distance
- 3 field is generated from the implicit function.
- 1 6. (original) The method of claim 1 wherein the topological hint is
- 2 constructed from a plurality of graphical primitives, and further comprising:
- 3 generating a primitive adaptively sampled distance field for each
- 4 graphics primitive;
- 5 combining the plurality of primitive adaptively sampled distance
- 6 fields to generate the second adaptively sampled distance field.
- 1 7. (currently amended) The method of claim 6 wherein the combining
- 2 includes CSG (CSG) operations.
- 1 8. (original) The method of claim 1 wherein the topological features are
- 2 distance values of the second adaptively sampled distance field, and the
- 3 distance values of the first and second adaptively sampled distance fields are
- 4 combined.
- 9. (currently amended) The method of elaims claim 1, 2, 5, and or 6 wherein
- 2 the generating comprises defining a candidate cell of the adaptively sampled
- 3 distance field, determining and storing distance values of the candidate cell
- 4 in a bounded distance tree, recursively subdividing the candidate cell into
- 5 subdivided cells of the adaptively sampled distance field while determining

CR-1311 Perry, et al. S/N: 09/810,762

- 6 and storing corresponding distance values of the subdivided cells in the
- 7 bounded distance tree until a termination condition is reached, and
- 8 appending the distance values to the corresponding cells to generate the
- 9 adaptively sampled distance field of the object.