Как жить без batch-norm?

Иванов Семен

Что такое batch-norm?

Слой batch-norm

- 1. В слой вводятся обучаемые параметры μ и σ^2
- 2. Получаем на вход батч $B = \{x_1, \dots, x_n\}$
- 3. Стандартизуем батч. Получаем $\hat{B} = \{\hat{x}_1, \cdots, \hat{x}_n\}$
- 4. Перешкалируем и возвращаем $y_i = \sigma \hat{x}_i + \mu$
- Заметим, что качество ухудшиться не должно, так как слой допускает тождественное преобразование

Плюсы

- Можно повышать Ir без риска разойтись ускорение сходимости
- Решается проблема с нестабильными градиентами
- Качество лучше, скорость выше
- Сеть меньше зависит от удачной инициализации
- Может заменить dropout

сдвиг и смещение на случайные для сэмпла значения выступают в роли регуляризации

Internal covariate shift

Коварный Ковариантный сдвиг?

- Утверждалось, что BN помогает избавиться от сдвига в распределении входов для внутренних слоев
- Однако оказалось, что это не совсем так
- Иногда он может быть даже больше, чем без BN
- Эмпирически выяснилось, что BN делает функцию потерь и ее градиент "более" Липшицевой

Минусы

- Маленькие батчи слишком шумно, а большие иногда ограничивает сложность других компонент
- Проблемнее обучать объемные модели
- Зависимость внутри батча
- На больших батчах будут проблемы с распределенными вычислениями

- Нормализуем, группируя по нескольким каналам для одного примера
- Теперь не зависим от размера батча
- Если брать маленькие батчи, то GN обходит BN
- Просто перейти от BN к GN не получится. Настроенный BN с правильным размером батча все равно лучше

Weight Standardization + GN

- Weight Standardization: стандартизуем веса слоя по каждому
 - выходному каналу (то есть по сверткам)
- Комбинация WS+GN может обходить BN
- WS уменьшает Липшицеву константу
- $W \in \mathbb{R}^{C_{out}*C_{in}K^2}$, чтобы y = Wx давал вектор значений в точке по каждому выходному каналу

$$\widehat{\widehat{W}}_{ij} = \gamma \frac{W_{ij} - \mu_{W_i}}{\sigma_{W_i}}$$

Normalizer-Free ResNet networks новая SOTA на ImageNet

- Контролируемая остаточная сеть
- Scaled Weight Standartizarion
- Adaptive gradient clipping

Контролируемая остаточная сеть

• Вместо $x_{n+1} = x_n + f_n(x_n)$ возвращаем $x_n + \alpha \cdot f_n(x_n/\beta_n)$

•
$$\beta_n = \sqrt{\operatorname{Var}(x_n)}$$
, $\operatorname{Var}(x_0) = 1$

- Хотим $Var\left(f_n(x)\right) = Var\left(x\right)$
- Тогда Var $(x_{n+1}) = 1 + \alpha^2$
- Полезно иногда сбрасывать разброс и шкалировать для всех на выходе из блока
- Контролируем рост разброса в блоке
- Как получить блок с таким свойством?

ResNet Bottleneck Block

Modified Bottleneck Block with α and β scalars

Residual branch
Skip branch

Scaled Weight Standartizarion

- Перешкалируем веса слоев по сверткам: $\widehat{W}_{ij} = \gamma \frac{W_{ij} \mu_{W_i}}{\sigma_{W_i} \sqrt{N}}$
- Между слоями применяем активацию g(x) с дисперсией σ_g^2 и средним μ_g для N(0,1)
- Теперь после свертки (и между ними):

$$y = f(g(x)) = Wg(x)$$

$$y_i = \sum_{j=1}^{N} W_{ij}g(x_j)$$

$$\mathbb{E}y_i = N\mu_g\mu_{W_i} \quad \text{Var}(y_i) = N\sigma_g^2(\sigma_{W_i}^2 + \mu_{W_i}^2)$$

- Подставив перешкалированные веса, получим, что наша хотелка выполнилась
- γ параметр, который борется с распределением активации. $\gamma = \frac{1}{\sigma_{\varrho}}$

Adaptive gradient clipping

- Следующим образом изменяем градиент для i-той компоненты в ℓ -том блоке
- Ограничиваем шаг, если свертка меняется слишком сильно

$$G_i^{\ell} \to \begin{cases} \lambda \frac{\|W_i^{\ell}\|_F^{\star}}{\|G_i^{\ell}\|_F} G_i^{\ell} & \text{if } \frac{\|G_i^{\ell}\|_F}{\|W_i^{\ell}\|_F^{\star}} > \lambda, \\ G_i^{\ell} & \text{otherwise.} \end{cases}$$

- Также модель сравнима по скорости с BN
- Ha ImageNet удалось достичь 86.5% точности, что является SOTA для моделей без дополнительных данных

	224px	320px	384px
BN-ResNet-50	78.1	79.6	79.9
NF-ResNet-50	79.5	80.9	81.1
BN-ResNet-101	80.8	82.2	82.5
NF-ResNet-101	81.4	82.7	83.2
BN-ResNet-152	81.8	83.1	83.4
NF-ResNet-152	82.7	83.6	84.0
BN-ResNet-200	81.8	83.1	83.5
NF-ResNet-200	82.9	84.1	84.3

Ссылки

- 1. https://arxiv.org/pdf/2102.06171.pdf
- 2. https://paperswithcode.com/method/weight-standardization
- 3. https://github.com/joe-siyuan-qiao/WeightStandardization
- 4. https://www.kaggle.com/residentmario/batch-normalization-and-its-successors
- 5. https://arxiv.org/pdf/1803.08494.pdf
- 6. https://towardsdatascience.com/nfnets-explained-deepminds-new-state-of-the-art-image-classifier-10430c8599ee
- 7. https://arxiv.org/pdf/2101.08692.pdf