

CLINICAL DATA ENCODER: Encoding Clinical Data with Null Values Imputation

Angelo Nardone Giordano Scerra Davide Borghini Davide Marchi

Introduction

Digital Health Twin

- Clinical data often limited: it is difficult to create accurate and robust ML models.
- Collecting more data is obviously a solution, but....
- ... more interesting to find better ways to manage the little data available!
- Overcome this problem: creation of a digital health twin [3][4]. Allows us to:
 - Compare data between similar patients.
 - Speed up the diagnostic process.
 - Reduce the likelihood of errors.
 - Identify effective treatments more quickly.

Introduction

Encoding Clinical Data

- Clinical data are data with:
 - a large number of features;
 - several null values.
- Create a model that encodes clinical data in a latent space.
 - Easier to recognise the similarity of patients.
 - Able to handle null values well and ...
 - ...able to do imputation on null values
- Evaluated the model by comparing the results of a classification task applied on the original and encoded data.

Table of Contents

1 - Dataset

- Dataset
- Models
- Experiments
- Results
- Conclusion

- Worked with real clinical data provided by the Pisa Hospital.
- First time used: it is an extension of the dataset used in [2].
- A data total of about 8000 patients.
- Extracted 68 independent variables for each patient:
 - Each variable represented a clinical data.
 - 46 binary variables.
 - 22 continuous variables.

Dataset

Extract Target

Target

- Extracted the target using additional information.
- Assigned 1 to patients who died within
 8 years from first admission, 0
 otherwise.
- Good tradeoff: class balance and meaningful timeframe.

Distribution of the labels in Target

Dataset

Remove Outliers

Cleaning

- Creatinine and Vessels contained several null values as in [2].
- Other columns had outliers: global and local detection approaches.
- The dataset had 2.1% null data.

Table of Contents

2 - Models

- Dataset
- Models
- Experiments
- Results
- Conclusion

Models

Overview

MIEO (Masked Input Encoded Output)

Our Personalized Autoencoder

- How is different from classical autoencoder:
 - Handle null values.
 - Enforce imputation.
 - Handle binary columns.
- Three adaptive layers according to the size of the embedding output.

Starting Input

Masking Null Data

Masking for Imputation

Produce the Output

Target Values for Loss

Compute Loss

How to Evaluate?

Classification Task

- Classification task using the target column.
- Two models: one applied to the original data and one to the encoded data.
- Tried few different models:
 - Random Forest
 - Feedforward Classifier
- Better results with feedforward using macro F1 score.

F1 Score =
$$\frac{2*(\checkmark_{Positives}^{True})}{2*(\checkmark_{Positives}^{False}) + (\checkmark_{Positives}^{False}) + (\checkmark_{Negatives}^{False})}$$

How to Evaluate?

Feedforward Classifiers

Table of Contents

3 - Experiments

- Dataset
- Models
- Experiments
- Results
- Conclusion

Overview

- Models had a large number of hyperparameters.
- Performed grid search to choose the best model.
- Used embedding percentages greater than 1 using the idea of [5].
 - To get a better imputation.

Grid Search

CLASSIFIER PARAMETERS

Loss Weight	[(0.3, 0.7)]	
Batch Size	[75]	
Learning Rate	[5e-04, 3e-04, 1e-04]	
Weight Decay	[0.03, 0.05, 0.06]	
N. Epochs	[150, 200, 250]	
Gamma	[0, 0.001]	
Step Size	[75, 85, 100]	

FEEDFORWARD CLASSIFIER

Grid Search

MIEO PARAMETERS

_				
Embedding Percentage	[0.05 - 3] (every 0.05)			
Masked Percentage	[0 - 0.95] (every 0.05)	CLASSIFIER PARAMETERS		
Binary Loss Weight	[None, 0.5]	Loss Weight	[(0.25, 0.75), (0.3, 0.7), (0.5, 0.5)]	
Batch Size	[200]	Batch Size	[200]	
Learning Rate	[0.0015, 0,002]	Learning Rate	[0.0001, 0.0002, 0.0004]	
Weight Decay	[5e-07, 2e-06]	Weight Decay	[2e-06, 5e-06]	
N. Epochs	[250]	N. Epochs	[50]	
Patience	[10]	Patience	[5]	

MIEO +

FEEDFORWARD CLASSIFIER

3D Visualization of Grid Search

Table of Contents

4 - Results

- Dataset
- Models
- Experiments
- Results
- Conclusion

Classifier with Original Data Best Model

CLASSIFIER PARAMETERS

Binary Loss Weight	(0.3, 0.7)	
Batch Size	75	
Learning Rate	5e-04	
Weight Decay	0.05	
N. Epochs	150	
Gamma	0.001	
Step Size	75	

• F1-score on validation: 0.75

Results

Classifier with Original Data on Test Set

Results

MIEO + Classifier best model

MIEO PARAMETERS

• F1-score on validation: 0.7

Embedding Percentage	0.35			
Masked Percentage	0.35	CLASSIFIER PARAMETERS		
Binary Loss Weight	None	Loss Weight	(0.3, 0.7)	
Batch Size	200	Batch Size	200	
Learning Rate	0,002	Learning Rate	0.0001	
Weight Decay	5e-07	Weight Decay	5e-06	
N. Epochs	250	N. Epochs	50	
Patience	10	Patience	5	

Results

MIEO + Classifier on Test Set

Table of Contents

5 - Conclusion

- Dataset
- Models
- Experiments
- Results
- Conclusion

Conclusion

Obtained results

- Developed MIEO to deal with problems regarding encoding clinical data
- Delineated limits and tradeoffs to both compress and impute
- Found a model that effectively compress the informations to 35% of the original size while keeping a comparable macro f1 score

Conclusion

Future Developments

Evaluate embeddings with clustering techniques.

- Transformers with clinical tests in time.
- New dataset opportunity!

References

- [1] D. Borghini, D. Marchi, A. Nardone and G. Scerra. "Clinical-data encoding." In *GitHub repository:* https://github.com/davide-marchi/clinical-data-encoding
- [2] A. Pingitore, C. Zhang et al. "Machine Learning to identify a composite indicator to predict cardiac death in ischemic heart disease". In *International Journal of Cardiology, 404, 131981.* (2024)
- [3] A. Vallée. "Digital twin for healthcare systems." In *Frontiers in Digital Health 5: 1253050.* (2023)
- [4] T. Sun, H. Xiwang and L. Zhonghai. "Digital twin in healthcare: Recent updates and challenges." In *Digital Health 9: 20552076221149651.* (2023)
- [5] L. Gondara, and K. Wang. "Mida: Multiple imputation using denoising autoencoders." In Advances in Knowledge Discovery and Data Mining: 22nd Pacific-Asia Conference, PAKDD 2018, Melbourne, Springer International Publishing. (2018)

Thank you for your attention!

