МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

КАФЕДРА №3

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ СИСЬ

ПРЕПОДАВАТЕЛЬ

Доцент, к.ф.-м.н., доцент Г.В. Терещенко инициалы, фамилия

ОТЧЕТО ЛАБОРАТОРНОЙ РАБОТЕ №1

ОПРЕДЕЛЕНИЕ ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ

по курсу: ОБЩАЯ ФИЗИКА

СТУДЕНТ ГР. №_

4514

номер группы

27.09.2025

В. Д. Мухина инициалы, фамилия

Sauful

Санкт-Петербург 2025

ПРОТОКОЛ ИЗМЕРЕНИЙ

Лабораторная работа №1

Определение электрического сопротивления

Механика. Колебания и волны. Молекулярная физика: лабораторный практикум / под ред. И. И. Коваленко. – СПб.: ГУАП, 2014 – 132 с. (https://fizikaguap.ru/lp/metodlr/)

Студент группы № <u>4544</u> <u>Мухина</u> В.Д. Фамилия, инициалы

Преподаватель

Терещенко Г.В. Фамилия, инициалы

Параметры приборов

Прибор	Тип	Предел измерений	Цена деления	Класс точности	Систематическая погрешность Ө
Вольтметр	MK-2	1,5 B	0,05 B	1,5	0,02 B
Миллиамперметр	MK-2	250 mA	5 MA	1,5	0, 00 4 A
Линейка	-	50 cm	1 MM		1 MM

Систематическая погрешность измерения диаметра проводника θ_D = 0,005 мм.

Электрические сопротивления вольтметра и миллиамперметра: $R_V = 2500$ Ом, $R_A = 0.2$ Ом.

Результаты измерений

Схема А Схема В	U, B	0, 35	0,4	0,5	0,55	0,65	0,75	0,9	1,05	1,2	1,3
	I, mA	65	75	90	100	120	150	170	200	230	250
	U,B	0,3	0,35	0,45	0,5	0,6	0,7	0,85	1	1,15	1,25
Схема В	I, mA	60	75	90	100	120	150	170	200	230	250

l = 0.4 м., d = 0.33 мм. Дата «13 » сентября 2025 г.

Fizikaguap.ru

1. Цень работы:

« ознаконщение с методичкой обработки результатов измерений

• определение электрического сопротивиения провода

* эксперишентальнай проверка закона вша

. определение удельного сопротивления нижрома

. сравнение двух энектрических схеш

г. Іписание набораторной установки

Параметры установки

Thabunya 1

		•				
Прибор Тип		Иена Класс Преден дагения тогности измерений		вистешатич. погрешность	Внутреннее сопромивиен.	
Воиьтиетр	MK-2	0,05 B	1,5	1,58	0,02B	2500 PM
Милиашперметр	MK-2	5mA	1,5	250mA	4mA	0,2 OM
Линейка	_	1	-	50 гм	2 MM	_

з. Рабочие формулы

Вычисиение энектрического сопромивиения:

$$R = \frac{U}{T}$$

$$R = \frac{V}{T} - R_A$$

$$R = \left(\frac{\Gamma}{U} - \frac{1}{R_V}\right)^{-1}$$

В этих формунах R-энектрическое сопротивнение проводника, V-падение напрежения на проводнике, I-еша тока в проводнике, RA-сопротивнение амперметра, RV-сопротивнение вольтметра.

$$R cp = \frac{\sum_{i=1}^{n} R_i}{n}, \qquad (4)$$

пре Вср-среднее значение сопротивиения, п-число измерений

$$S = \frac{\text{Rep. } \sqrt{1.\Omega^2}}{4\ell}, \qquad (5)$$

где р-уденьное сопротивнение метанна, l-дишна провода, D-диашетр провора

4. Результаты измерений и вычислений.

Cocema A

Madunya 2

U,	В	0,35	0,40	0,50	0,55	0,65	0,75	0,90	1,05	1,20	1,30
I,	A	0,065	0,075	0,090	0,100	0,120	0,150	0,170	0,200	0,230	0,250
V _I ,	0M	5,4	5,3	5,5	5,5	5,4	5,0	5,3	5,3	5,2	5,2
R,	0м	5,2	5,1	5,3	5,3	5,2	4,8	5,1	5,1	5,0	5,0
OR,	0 _M	0,7	0,5	0,4	0,4	0, 3	0, 3	0,2	0, 3	0,2	0,2

Cocema B

Madmya 3

V, B	0,30	0,35	0,45	0,50	0,60	0,90	0,85	1	1,15	1,25
I, A	0,060	0,095	0,090	0,100	0,120	0,150	0,170	0,200	0,250	0,250
U, PM	5,0	4,7	5,0	5,0	5,0	4,7	5,0	5,0	5,0	5,0
R, Om	5,0	4,8	5,0	5,0	5,0	4,8	5,0	5,0	5,0	6,0
OR, OM	0,7	0,5	0,4	0,4	0,3	0,2	0,2	0,2	0,2	0,2

To gooping (1):
$$R = \frac{U}{I} = \frac{0.35}{0.065} = 5.38... \approx 5.4 (0m)$$

To goopingue (2):
$$R = \frac{U}{I} - R_A = \frac{0.4}{0.075} - 0.2 = 5.13... \approx 5.1 (0m)$$

To goopingue (3):
$$R = \left(\frac{1}{V} - \frac{1}{R_{V}}\right)^{-1} = \left(\frac{0.06}{0.3} - \frac{1}{2500}\right)^{-1} = \left(0.2 - 0.0004\right)^{-1} = \frac{1}{0.1996} = 5.01... \approx 5(0m)$$

To propulying (4): Rep =
$$\frac{\frac{9}{64}Ri}{n} = \frac{5.2+5.1+5.3+5.3+5.2+4.8+5.1+5.1+5+5}{20} + \frac{5+4.8+5+5+5+5+5+5+5}{20} = \frac{100.7}{20} = 5,035 \approx 5,0$$
 (0m)

To gropmy se (5):
$$\beta = \frac{RcP \cdot \overline{I} \cdot \overline{D}^2}{4\ell} = \frac{5 \cdot 3.14 \cdot (0.33 \cdot 10^{-3})^2}{4 \cdot 0.4} = \frac{1.7093 \cdot 10^{-6}}{1.6} = 1.068 \dots \cdot 10^{-6} = 1.07 \cdot 10^{-6} \cdot (0n \cdot n)$$

6. Вычисление погрешностей

$$\theta_T = \underbrace{\overline{Im \cdot k_I}}_{100} = \underbrace{0.25.1.5}_{100} = \underbrace{0.875}_{100} = 0.00395 \approx 0.004 (A) \tag{6}$$

$$\theta_{V} = \frac{V_{m} \cdot K_{V}}{100} = \frac{1.5 \cdot 1.5}{100} = \frac{2.25}{100} = 0,0225 \approx 0,02 \ (B)$$
 (9)

Вывод формулы дих системамической погрешности

косвенного измерение электрического еопротивление
$$R = R(\nu, I) = \frac{U}{I}$$
 => $\theta_R = R \cdot \left(\frac{\theta_V}{U} + \frac{\theta_I}{I}\right)$ (8) Вычисиение по выведенной формуле (8):

$$\theta_{RA} = R_A \cdot \left(\frac{\theta_V}{V_A} + \frac{\theta_{\rm I}}{I_A} \right) = 5.2 \cdot \frac{0.004}{0.055} + \frac{0.004}{0.02275} = 5.2 \cdot \frac{0.01404}{0.02275} = 0.01404 = 0.671... 0.77 (0m)$$

$$\theta_{R_{20}} = R_{20} \left(\frac{\theta_{V}}{U_{20}} + \frac{\theta_{T}}{T_{20}} \right) = 5 \cdot \left(\frac{0.02}{4,25} + \frac{0.004}{0.25} \right) = 5 \cdot \frac{0.04}{0.3125} = \frac{0.05}{0.3425} = 9.16 = 9.26 \cdot 0.004$$

В качестве систематической погрешности итогового результата верёш значение, полученное при camon bousmon more Drep = 9,2 Pm.

Вывод формулы дих систематической погрешности ygenbroio conpomubierne memaina.

$$\beta = \frac{\text{Rep} \cdot \overline{J} \cdot D^2}{4\ell} ; \quad \beta = \beta (\text{Rep}, \ell, D) ; \qquad \theta_{\beta} = \beta \left(\frac{\theta_{\overline{R}}}{\overline{R}} + \frac{\theta \ell}{\ell} + 2 \frac{\theta_{D}}{D} \right)$$
 (9)

Britisher no bribegerhoù goopuyse (9): $\theta_{\mathcal{F}} = \mathcal{F} \cdot \left(\frac{\theta_{\mathcal{R}}}{R} + \frac{\theta l}{l} + 2\frac{\theta_{\mathcal{P}}}{R}\right) = 1,07 \cdot 10^{-6} \cdot \left(\frac{0.2}{5} + \frac{0.002}{0.44} + \frac{2 \cdot 0.5 \cdot 10^{-5}}{0.33 \cdot 10^{-3}}\right) = 1,07 \cdot 10^{-6} \cdot \left(\frac{0.09}{2} + \frac{0.01 \cdot 10^{-3}}{0.33 \cdot 10^{-3}}\right) = 1,07 \cdot 10^{-6} \cdot \left(\frac{0.09}{2} + \frac{0.01 \cdot 10^{-3}}{0.33 \cdot 10^{-3}}\right) = 1,07 \cdot 10^{-6} \cdot \frac{0.0497}{0.66} = 0,8025 \dots \cdot 10^{-6} \approx 0,8 \cdot 10^{-6} \text{ (M·M)}$

6.2. Сиучайные погрешности Средняя квадратичная погрешность одного измерения $S_R = \sqrt{\frac{(R_1 - Reo)^2 + (R_2 - Reo)^2 + ... + (R_N - Reo)^2}{N-1}}$ (10)

Burnchetue no populyre (10): $S_R = \sqrt{(R_4 - R_{CP})^2 + (R_2 - R_{CP})^2 + ... + (R_{20} - R_{CP})^2} = \sqrt{(5.2 - 5.1)^2 + (5.1 - 5.1)^2 + ... + (5.0 - 5.1)^2} = \sqrt{(5.2 - 5.1)^2 + (5.1 - 5.1)^2 + ... + (5.0 - 5.1)^2}$

= \(\frac{0.01 + 0 + 0.04 + 0.04 + 0.04 + 0.09 + 0 + 0 + 0.04 + 0.04 + 0.04 + 0.09 + 0.04 + 0.04 + 0.04 \display \text{...}}{19}

 $\frac{1}{19} = \sqrt{\frac{0.01 + 0.09 + 0.01 + 0.01 + 0.01 + 0.01}{19}} = \sqrt{\frac{0.47}{19}} = 0.159... \approx 0.16 (0m)$

Cheghee kbagpamuzhoe omkhoherue $S_{Rcp} = \frac{\left(R_1 - R_{cp}\right)^2 + \left(R_2 - R_{cp}\right)^2 + \dots + \left(R_N - R_{cp}\right)^2}{\left(N-1\right) \cdot N} = \frac{S_R}{JN}$ (41)

Вычисление по доорищие (11): $S_{Rep} = \frac{0.16}{\sqrt{20}} = 0.035... \approx 0.04 (Ом)$

В данной работе проводится измерение несмугайных по своей природе физических вешчин: электрического сопротивиения провода— R и удельного сопротивиения нихрома—р, поэтому проверхем неравенства

 $S_{R} \leq \theta_{R}; \qquad S_{Rcp} < \theta_{R}$

916 Pm < 9,2 Pm; m.e. SR < BR

0,040m < 0,20m; m.e. SRCp < OR

Пошучившиеся неравенства говориет о там, что в измерениях, скорее всего, нет грубых ошибок и прошахов.

luyraunoie norpemnoemme ygenthoro conpomuluermes: $J = \frac{Rep \cdot \overline{J} \cdot D^2}{4\ell} = S \overline{p} = S Rep \cdot \frac{\overline{J} \cdot D^2}{4\ell} = \frac{Rep \cdot \overline{J} \cdot D^2}{4\ell} \cdot \frac{S_{Rep}}{Rep} \Rightarrow S \overline{p} = \frac{P \cdot S_{Rep}}{Rep}$

Sp = P. Srcp = 1,04.10-6.0,04 = 0,00856... · 10-6 = 0,009 · 10-6 (OM.M)

6.3. Поиная погрешность

В спучае, когда измеряются неспучайные по своей природе физические величины, спучайные погрешности уже учтены в систематических. Объединять их в полную погрешность не надо. Полная погрешность равна систематической погрешности.

 $\Delta R = \theta R = 0, 2 \, \text{Om}.$ $\Delta p = \theta p = 0,08 \cdot 10^{-6} \, \text{Om} \cdot \text{M}.$

7. Bubogn

· взнакомилась с методикой обработки результатов косвенных измерений

• Fuermpureckoe conpomuluenue npologa $R = 5 \pm 9.2$ PM.

с верохтностью Р = 95%.

· Удейьное сопромивиение нихроша p = (1,07 ± 0,08°)·10⁻⁶ Dм.м с верохтностью P = 95%.

· Экспериментально определённое значение р в преденах поглешности совпадает с табшеным значением

нижрона pmad = 1,05. 10-6 Ом.м.

• Из проведённых опытов видно, гто канндое сопротивление в табицуах 2,3 отипланотья от Rep меньше, чем на систематическую погрешность вк. Это обозначает, что эмектрическое сопротивление не зависит от протекающего тока и от падених напренения на нём, т.е. справедиив закон вма.

Учёт сопротивления ашпершетра приводит к поправке 0,2 вм, учёт сопротивления вольтиетра приводит к поправке 0,02 вм. Поскольку результат прижодителя округиять до десетнях долей ома, поправку на еопротивление вольтиетра по формуле (3) монно не денать. Значит, для ежемы В электрическое сопротивление монно внямсиять по закону вма без поправок.