Appendices

12.11-2020

1 Appendices

```
#pmst peaks tegema mitmetasandilise, hetkel on ainult siis nö nende erinevate H12,H18
mudelid <- c("YIV", "dum", "DGS1", "DGS10", "DGS5", "DGS3MO", "TRM0503", "TRM0506", "TRM1003
x <- 1
df_total <- data.frame()</pre>
for (element in mudelid)
  unnestedx <- df %>%
  select(H12, H18, H24, H30, H36, mudelid[1:x]) %>%
  gather(Var, Value, -mudelid[1:x]) %>%
  nest(data=c(Value, mudelid[1:x])) %>%
  mutate(model = map(data, ~lm(Value ~ ., data = .)),
         tidied = map(model, tidy),
         glanced = map(model, glance),
         augmented = map(model, augment),
         neweywest = map(model, ~tidy(coeftest(., vcov.=NeweyWest(., prewhite=FALSE))))
  select(-model, -data)
  df total <- rbind(df total, data.frame(unnestedx))</pre>
  x < -x+1
  remove(unnestedx)
}
regr_results <- function(a){</pre>
  results1 <- df_total[c(a:(a+4)),] %>%
    select(-augmented,-tidied, -glanced) %>%
    unnest(cols = c(neweywest)) %>%
    select(-statistic) %>%
    pivot_longer(cols=-c(1:2), names to = "mdeea", values to = "Delay") %>%
    mutate(x = paste(term, mdeea, sep = "_"))%>%
    select(-c(2:3)) %>%
```

```
pivot_wider(names_from = Var, values_from = Delay) %>%
    column_to_rownames(var = "x")

results2 <- df_total[c(a:(a+4)),] %>%
    select(-augmented,-neweywest, -tidied) %>%
    unnest(cols = c(glanced)) %>%
    select(-df, -AIC, -BIC, -deviance, -nobs, -df.residual, -logLik, -statistic, -p.valucolumn_to_rownames(var = "Var")
    results2 <- as.data.frame(t(results2))

results <- rbind(results1, results2)
    remove(results1, results2)
    rownames(results)[rownames(results) == "sigma"] <- "RMSE"

return(results)
}</pre>
```

1.1 Appendix A

4

1.2 Appendix B

Figure 1.1: GDP Growth(%) vs 5-year Treasury Implied Volatility

1.3 Appendix C

Notes: This table includes summary statistics for main variables used in our research. Statistics include mean, standard deviation,, min, 1st quartile, median, 3rd quartile, max & number of valid data points. In Panel A, different YIV data is summarized. In Panel B, we have listed the main dependent variables which are used for predictions. GDP denotes the year-on-year growth rate(quarterly data), CON denotes YOY consumption growth(monthly data), EMP describes YOY growth rate for non-farm payroll and lastly IND stands for Industrial production YOY growth (monthly data). In Panel C, different control variables are listed: SVEN1F01 - 1 year treasury bond par yield.

Table 1.1: Summary Statistics

Variable	Mean	Std.Dev	Min	Q1	Median	Q3	Max	N.Valid				
Panel A: YIV												
AAA	6.22	1.52	3.46	5.20	6.00	7.43	9.40	103				
		Panel	B: Depe	endent	Variables	3						
CON	14.57	5.73	-8.73	11.42	15.51	18.49	25.12	103				
DBAA	7.18	1.47	4.50	6.18	7.25	8.22	10.61	103				
DGS1	3.22	2.35	0.10	0.47	3.43	5.32	8.27	103				
DGS10	4.81	1.81	1.64	3.46	4.74	6.18	8.70	103				
		Pane	el C: Co	ntrol Va	ariables							
DGS3MO	2.95	2.32	0.01	0.16	3.14	5.11	8.01	103				
DGS5	4.23	2.11	0.67	2.25	4.51	5.90	8.64	103				
DGS6MO	3.09	2.36	0.05	0.32	3.26	5.17	8.17	103				
EMP	3.18	5.03	-14.70	0.80	4.80	6.50	10.20	103				
F12	2.51	1.74	-4.00	1.71	2.64	3.92	5.16	99				
F15	2.54	1.72	-4.00	1.76	2.64	3.92	5.16	98				
F18	2.57	1.71	-4.00	1.81	2.64	3.92	5.16	97				
F21	2.59	1.71	-4.00	1.85	2.70	3.95	5.16	96				
F24	2.58	1.72	-4.00	1.81	2.64	3.97	5.16	95				
F27	2.58	1.73	-4.00	1.81	2.64	3.97	5.16	94				
F3	2.45	1.76	-4.00	1.70	2.60	3.90	5.16	102				
F30	2.57	1.74	-4.00	1.81	2.64	3.97	5.16	93				
F33	2.55	1.74	-4.00	1.78	2.63	3.95	5.16	92				
F36	2.54	1.75	-4.00	1.76	2.62	3.97	5.16	91				
F6	2.46	1.77	-4.00	1.70	2.62	3.90	5.16	101				
F9	2.48	1.77	-4.00	1.70	2.63	3.91	5.16	100				
GDP	2.50	1.78	-3.92	1.71	2.61	3.98	5.30	103				
housng	3.18	51.49	-151.80	-16.80	14.10	36.10	117.70	103				
IND	6.06	12.06	-45.35	4.56	8.20	12.66	25.17	103				
SRT03M	-0.08	0.42	-1.39	-0.16	-0.01	0.08	0.83	102				
TRM0503	1.28	0.83	-0.64	0.61	1.38	1.96	2.88	103				
TRM0506	1.14	0.81	-0.64	0.53	1.25	1.75	2.72	103				

Table 1.1: Summary Statistics (continued)

Variable	Mean	Std.Dev	Min	Q1	Median	Q3	Max	N.Valid
TRM1003	1.86	1.13	-0.63	0.84	2.03	2.74	3.61	103
TRM1006	1.73	1.14	-0.63	0.73	1.88	2.61	3.53	103
TRM1012	1.59	1.06	-0.36	0.66	1.74	2.52	3.35	103
VIX	19.81	7.35	11.03	14.17	17.56	24.01	58.74	103
YIV	3.34	1.31	1.39	2.60	3.00	3.62	9.21	103

Note:

Additional control variables will be added upon construction. Furthermore, currently the frequency of the datasets differs for different variables but this will be addressed in the research process.

1.4 Appendix D.

Notes: This table includes regression using GDP & YIV. Controls will be added during research process. The equation for the regression is the following:

$$\sum_{j=1}^{j=H} log(1 + GDP_{i,t+j})/H = \alpha_H + \beta_H \sigma_{IV,t}^{INT} + Controls + \varepsilon_{t+H}$$
 (1)

Table 1.2: Regression output

	H12	H18	H24	H30	H36	
		Par	nel A: YIV			
(Inter-	5.02	4.71	4.33	4.08	3.92	
cept)_estimate						
(Intercept)_std.e	errof0.68	0.62	0.55	0.52	0.53	
(Intercept)_p.va	lue 0.00	0.00	0.00	0.00	0.00	
YIV_estimate	-0.76	-0.66	-0.54	-0.47	-0.41	
$YIV_std.error$	0.19	0.17	0.14	0.11	0.10	
YIV_p.value	0.00	0.00	0.00	0.00	0.00	
r.squared	0.39	0.35	0.28	0.23	0.20	
adj.r.squared	0.39	0.34	0.27	0.22	0.19	
RMSE	1.27	1.22	1.20	1.16	1.13	

Note:

^{*** -} p<0.01, ** - p<0.05, * - p<0.1. Reported standard error is adjusted for heteroskedasticity

1.5 Appendix E.

Notes: This table includes regression using GDP & YIV. Controls will be added during research process. The equation for the regression is the following:

$$\sum_{j=1}^{j=H} \log(1 + GDP_{i,t+j})/H = \alpha_H + \beta_H \sigma_{IV,t}^{INT} + Dummy + \varepsilon_{t+H}$$
 (2)

Table 1.3: Regression with state-dependency

	H12	H18	H24	H30	H36	
		1	Panel A			
(Inter-	4.17	3.99	3.78	3.71	3.64	
cept)_estimate						
(Intercept)_std.e	erro f).44	0.45	0.45	0.46	0.47	
(Intercept)_p.val	lue 0.00	0.00	0.00	0.00	0.00	
YIV_estimate	-0.41	-0.36	-0.32	-0.31	-0.29	
YIV_std.error	0.11	0.10	0.09	0.08	0.07	
YIV_p.value	0.00	0.00	0.00	0.00	0.00	
dum_estimate	-2.72	-2.31	-1.75	-1.22	-0.93	
$dum_std.error$	0.40	0.38	0.30	0.27	0.28	
dum_p.value	0.00	0.00	0.00	0.00	0.00	
r.squared	0.61	0.54	0.40	0.30	0.25	
adj.r.squared	0.60	0.53	0.39	0.29	0.23	
RMSE	1.02	1.03	1.09	1.12	1.11	

Note:

^{*** -} p<0.01, ** - p<0.05, * - p<0.1. Reported standard error is adjusted for heteroskedasticity

1.6 Appendix F.

Notes: This table includes regression using GDP & YIV and controls.

$$\sum_{j=1}^{j=H} \log(1 + GDP_{i,t+j})/H = \alpha_H + \beta_H \sigma_{IV,t}^{INT} + Dummy + \varepsilon_{t+H}$$
(3)

Table 1.4: Regression with state-dependency

	H12	H18	H24	H30	H36	
			Panel A			
(Inter-	5.19	3.82	2.18	1.04	0.34	
cept)_estimate						
(Intercept)_std.err	00.fro	1.33	1.53	1.68	1.68	
(Intercept)_p.valu	e 0.00	0.01	0.16	0.54	0.84	
YIV_estimate	-0.14	-0.16	-0.15	-0.16	-0.14	
$YIV_std.error$	0.08	0.09	0.07	0.06	0.05	
$YIV_p.value$	0.09	0.08	0.04	0.01	0.01	
$dum_estimate$	-2.08	-1.95	-1.65	-1.32	-1.18	
$dum_std.error$	0.40	0.46	0.41	0.34	0.26	
dum_p.value	0.00	0.00	0.00	0.00	0.00	
DGS1_estimate	3.32	4.57	6.10	7.10	7.90	
$DGS1_std.error$	1.38	1.49	1.55	1.50	1.45	
DGS1_p.value	0.02	0.00	0.00	0.00	0.00	
DGS10_estimate	-1.40	-1.14	-0.61	-0.28	0.02	
$DGS10_std.error$	0.79	0.94	0.86	0.78	0.71	
DGS10_p.value	0.08	0.22	0.48	0.73	0.98	
DGS5_estimate	-4.56	-8.28	-10.91	-11.92	-13.06	
$DGS5_std.error$	2.23	2.42	2.72	2.60	2.51	
DGS5_p.value	0.04	0.00	0.00	0.00	0.00	
DGS3MO_estimat	te2.33	4.56	4.98	4.50	4.46	
DGS3MO_std.erre	or 1.36	1.47	1.46	1.35	1.27	
DGS3MO_p.value	0.09	0.00	0.00	0.00	0.00	
TRM0506_estima	te5.70	9.07	10.63	10.89	11.47	
$TRM0506_std.err$	or 2.37	2.60	2.66	2.48	2.34	
TRM0506_p.value	0.02	0.00	0.00	0.00	0.00	
SRT03M_estimate	e 0.21	0.45	0.47	0.22	0.01	
SRT03M_std.error	r 0.22	0.35	0.43	0.37	0.29	
SRT03M_p.value	0.35	0.20	0.28	0.55	0.96	
AAA_estimate	1.82	1.24	1.35	1.69	1.91	
AAA_std.error	0.62	0.67	0.73	0.79	0.77	
AAA_p.value	0.00	0.07	0.07	0.04	0.02	
DBAA_estimate	-1.58	-0.86	-0.64	-0.73	-0.79	
DBAA_std.error	0.38	0.50	0.46	0.42	0.39	

DBAA_p.value	0.00	0.09	0.17	0.08	0.05	
VIX_estimate	0.00	0.00	-0.01	0.00	0.00	
$VIX_std.error$	0.01	0.01	0.01	0.01	0.01	
$VIX_p.value$	0.91	0.94	0.57	0.92	0.96	
housng_estimate	0.00	0.00	0.00	0.01	0.00	
housng_std.error	0.00	0.00	0.00	0.00	0.00	
housng_p.value	0.33	0.36	0.14	0.05	0.10	
r.squared	0.79	0.75	0.70	0.69	0.70	
adj.r.squared	0.76	0.71	0.65	0.64	0.66	
RMSE	0.79	0.81	0.82	0.79	0.74	

Note:

^{*** -} p<0.01, ** - p<0.05, * - p<0.1. Reported standard error is adjusted for heteroskedasticity

1.7 Appendix G.

	НЗ	Н6	Н9	H12	H15	H18	H21	H24	H27	H30	H33	H36
Out-of-sample RMSFE	1.68	1.74	1.85	1.98	2.09	2.12	2.07	2.01	1.98	1.99	1.94	1.93
Recessionary	3.29	3.42	3.74	3.79	3.73	3.17	2.30	1.84	2.15	2.31	1.63	1.44
Expansionary	1.28	1.33	1.37	1.55	1.73	1.92	2.04	2.03	1.96	1.94	1.98	1.99
Naive	0.93	1.50	1.95	2.21	2.28	2.29	2.28	2.20	2.11	1.96	1.81	1.74
TRM	1.79	1.69	1.64	1.76	1.73	1.60	1.56	1.48	1.56	1.62	1.77	1.95
CRS	1.47	1.92	2.49	2.82	2.61	2.27	1.93	1.81	1.79	1.77	1.74	1.69

