FCC TEST REPORT

Foi

Voice-Controlled Intelligent Shopper

Model Number: 999.11000610

FCC ID: 2AHU499911000610

Report Number : WT168002091

Test Laboratory : Shenzhen Academy of Metrology and Quality Inspection

National Digital Electronic Product Testing Center

Site Location : No.4 TongFa Road, Xili Town, Nanshan District,

Shenzhen, China

Tel : 0086-755-86009898

Fax : 0086-755-86009898-31396

Web: www.smq.com.cn

Test report declaration

Applicant : SEARS Brands Management Corporation

Address : 3333 Beverly Road, DC-159B, Hoffman Estates, IL 60179

EUT : Voice-Controlled Intelligent Shopper

Description

Model No : 999.11000610

FCC ID : 2AHU499911000610

Test Standards:

FCC Part 15 (October 1, 2015 Edition)

ANSI C63.10: 2013

The EUT described above is tested by Shenzhen Academy of Metrology and Quality Inspection EMC Laboratory to determine the maximum emissions from the EUT. Shenzhen Academy of Metrology and Quality Inspection EMC Laboratory is assumed full responsibility for the accuracy of the test results. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 and the energy emitted by the sample EUT tested as described in this report is in compliance with FCC Rules Part 15.207, 15.209 and 15.247.

The test report is valid for above tested sample only and shall not be reproduced in part without written approval of the laboratory.

Project Engineer:	(930)Z	Date:	Apr.22,2016
	(Chen Qichun)		
Checked by:	起李平	Date:	Apr.22,2016
	(Yang Dongping)		
Approved by:	种人	Date:	Apr.22,2016
_	(Lin Bin)		

Report No.:WT168002091 Page 2 of 71

TABLE OF CONTENTS

TES	T REP	ORT DECLARATION	2
1.	TES ⁻	T RESULTS SUMMARY	5
2.	GEN	ERAL INFORMATION	6
	2.1.	Report information	6
	2.2.	Laboratory Accreditation and Relationship to Customer	6
	2.3.	Measurement Uncertainty	7
3.	PRO	DUCT DESCRIPTION	8
	3.1.	EUT Description	8
	3.2.	Related Submittal(s) / Grant (s)	8
	3.3.	Block Diagram of EUT Configuration	9
	3.4.	Operating Condition of EUT	9
	3.5.	Support Equipment List	10
	3.6.	Test Conditions	10
	3.7.	Special Accessories	10
	3.8.	Equipment Modifications	10
4.	TES	Γ EQUIPMENT USED	11
5.	ON T	TIME, DUTY CYCLE AND MEASUREMENT METHODS	12
	5.1.	LIMITS	12
	5.2.	Test Procedure	12
	5.3.	Test Data	12
6.	6DB	BANDWIDTH MEASUREMENT	14
	6.1.	Limits of 6dB Bandwidth Measurement	14
	6.2.	Test Procedure	14
	6.3.	Test Setup	14
	6.4.	Test Data	15
7.	MAX	IMUM CONDUCTED (AVERAGE) OUTPUT POWER	18
	7.1.	Limits of Maximum conducted (average) output power Measurement	18
	7.2.	Test Procedure	18
	7.3.	Test Data	18
8.	MAX	IMUM POWER SPECTRAL DENSITY LEVEL MEASUREMENT	20

Shenzhen Academy of Metrology & Quality Inspection

NETC National Digital Electronic Product Testing Center

	8.1.	Limits of Maximum Power Spectral Density Level Measurement	20
	8.2.	Test Procedure	20
	8.3.	Test Data	20
9.	CON	DUCTED BANDEDGE AND SPURIOUS MEASURMENT	23
	9.1.	Limits of Conducted Band Edge and Spurious Measurement	23
	9.2.	Test Procedure	23
	9.3.	Test Data	24
10.	RADI	ATED BAND EDGE AND SPURIOUS MEASUREMENT	33
	10.1.	Limits of Radiated Band Edge And Spurious Measurement	33
	10.2.	TEST PROCEDURE	33
	10.3.	Test Data	33
11.	CON	DUCTED EMISSION TEST FOR AC POWER PORT MEASUREMENT	68
	11.1.	Test Standard and Limit	68
	11.2.	Test Procedure	68
	11.3.	Test Arrangement	68
	11.4.	Test Data	69
12.	ANTE	ENNA REQUIREMENTS	71
	12.1.	Applicable requirements	71
	12.2.	Antenna Connector	71
	12.3.	Antenna Gain	71

1. TEST RESULTS SUMMARY

Table 1 Test Results Summary

Test Items	FCC Rules	Test Results
6dB DTS bandwidth measurement	15.247 (a) (2)	Pass
Maximum conducted (average) output power	15.247 (b)	Pass
Maximum Power Spectral Density Level	15.247 (e)	Pass
Conducted Band Edges and Spurious	15.247 (d)	Pass
	15.247 (d)	
Radiated Band Edges and Spurious	15.209	Pass
	15.205	
Conducted emission test for AC power port	15.207	Pass
Antonna Daguiroment	15.203	Daga
Antenna Requirement	15.247 (b)	Pass

Remark: " N/A" means " Not applicable."

Report No.:WT168002091 Page 5 of 71

2. GENERAL INFORMATION

2.1. Report information

- 2.1.1.This report is not a certificate of quality; it only applies to the sample of the specific product/equipment given at the time of its testing. The results are not used to indicate or imply that they are application to the similar items. In addition, such results must not be used to indicate or imply that SMQ approves recommends or endorses the manufacture, supplier or use of such product/equipment, or that SMQ in any way guarantees the later performance of the product/equipment.
- 2.1.2. The sample/s mentioned in this report is/are supplied by Applicant, SMQ therefore assumes no responsibility for the accuracy of information on the brand name, model number, origin of manufacture or any information supplied.
- 2.1.3. Additional copies of the report are available to the Applicant at an additional fee. No third part can obtain a copy of this report through SMQ, unless the applicant has authorized SMQ in writing to do so.

2.2. Laboratory Accreditation and Relationship to Customer

The testing report were performed by the Shenzhen Academy of Metrology and quality Inspection EMC Laboratory (Guangdong EMC compliance testing center), in their facilities located at No.4 TongFa Road, Xili Town, Nanshan District, Shenzhen, China. At the time of testing, Laboratory is accredited by the following organizations:

China National Accreditation Service for Conformity Assessment (CNAS) accredits the Laboratory for conformance to FCC standards, EMC international standards and EN standards. The Registration Number is CNAS L0579.

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number are 806614 (3m anechoic chamber), 446246 (10m anechoic chamber) and 994606 (10m anechoic chamber).

The Laboratory is registered to perform emission tests with Industry Canada (IC), and the registration number is 11177A-1.

TUV Rhineland accredits the Laboratory for conformance to IEC and EN standards, the registration number is UA 50303686-0003.

Report No.:WT168002091 Page 6 of 71

2.3. Measurement Uncertainty

Conducted Emission
9kHz~30MHz 3.5dB

Radiated Emission
30MHz~1000MHz 4.5dB
1GHz~25GHz 4.6dB

Report No.:WT168002091 Page 7 of 71

3. PRODUCT DESCRIPTION

3.1.EUT Description

Description : Voice-Controlled Intelligent Shopper

Model Number : 999.11000610

Rated Input : DC 5V

Power supply : AC adaptor (built-in a 3.7V lithium battery)

Operate Frequency : 2.412GHz~2.462GHz

Antenna Designation : Chips antenna (Integrated)

Antenna Gain : 1.0dBi

AC adaptor : M/N: GQ07-050100-AU

Input: AC 100-240V, 50/60Hz, 0.3A Max

Output: DC 5V, 1.0A

Table 2 Working Frequency List

Channel	Center	Channel	Center
	Frequency(MHz)		Frequency(MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437		

3.2. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: 2AHU499911000610, filing to comply with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C Rules.

Report No.:WT168002091 Page 8 of 71

3.3. Block Diagram of EUT Configuration

Figure 1 EUT setup

3.4. Operating Condition of EUT

Worst-case mode and channel used for power line conducted emissions was the mode and channel with the highest output power.

The fundamental of the EUT was investigated in three orthogonal orientations X, Y, Z, it was determined that X orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Date Rate	Channel
Maximum Peak Conducted Power	802.11b 1 Mbps 802.11g 6 Mbps 802.11n HT20 MCS0	Channel 1, 6, 11
6dB DTS bandwidth Power Spectral Density	802.11b 1 Mbps 802.11g 6 Mbps 802.11n HT20 MCS0	Channel 1, 6, 11
Spurious Emission	802.11b 1 Mbps 802.11g 6 Mbps 802.11n HT20 MCS0	Channel 1, 6, 11
Band Edge	802.11b 1 Mbps 802.11g 6 Mbps 802.11n HT20 MCS0	Channel 1, 11
Conducted emission test for AC power port	Worst-case mode	

Report No.:WT168002091 Page 9 of 71

3.5. Support Equipment List

Table 3 Support Equipment List

Name	Model No	S/N	Manufacturer	FCC Approval

3.6. Test Conditions

Date of test: Apr.13, 2016-Apr.21, 2016

Date of EUT Receive: Apr.10, 2016

Temperature: 24-21°C

Relative Humidity: 44-52%

3.7. Special Accessories

Not available for this EUT intended for grant.

3.8. Equipment Modifications

Not available for this EUT intended for grant.

Report No.:WT168002091 Page 10 of 71

4. TEST EQUIPMENT USED

Table 4 Test Equipment

No.	Equipment	Manufacturer	Model No.	Last Cal.	Cal. Interval
SB3319	EMI Test Receiver	Rohde & Schwarz	ESCS30	Dec.10,2015	1 Year
SB4357	AMN	Rohde & Schwarz	ENV216	Sep.25,2015	1 Year
SB8501/09	EMI Test Receiver	Rohde & Schwarz	ESU40	Mar.23, 2016	1 Year
SB3345	Loop Antenna	SCHWARZBECK	FMZB1516	Jan.07, 2016	1 Year
SB9060	Spectrum analyzer	Rohde & Schwarz	FSQ40	May.13, 2015	1 Year
SB3955	Broadband antenna	SCHWARZBECK	VULB9163	Jan.07, 2016	1 Year
SB8501/01	Horn Antenna	Rohde & Schwarz	HF907	Mar.21, 2016	1 Year
SB8501/10	Horn Antenna	Rohde & Schwarz	3160-09	Mar.28, 2014	3 Years
SB8501/17	Preamplifier	Rohde & Schwarz	SCU-18	Mar.21, 2016	1 Year
SB8501/16	Preamplifier	Rohde & Schwarz	SCU-26	Mar.21, 2016	1 Year

Report No.:WT168002091 Page 11 of 71

5. ON TIME, DUTY CYCLE AND MEASUREMENT METHODS

5.1.LIMITS

None; for reporting purposes only.

5.2. Test Procedure

Reference to KDB558074 D01 DTS Meas Guidance v03r05, Zero-Span Spectrum Analyzer Method.

5.3. Test Data

Mode	ON Time	Period	Duty Cycle	Duty Cycle	1/T
	(ms)	(ms)	%	Correction	Minimum VBW
	Т			Factor	(kHz)
				(dB)	
802.11b	11.427	11.780	97.0	0.3	0.1
802.11g	1.891	2.099	90.1	0.9	1
802.11n HT20	1.763	1.995	88.4	1.1	1

Date: 14.APR.2016 14:44:22 Date: 14.APR.2016 14:45:35

Report No.:WT168002091 Page 12 of 71

Date: 14.APR.2016 15:01:59

Report No.:WT168002091 Page 13 of 71

6. 6DB BANDWIDTH MEASUREMENT

6.1. Limits of 6dB Bandwidth Measurement

CFR 47 (FCC) part 15.247 (a) (2)

6.2. Test Procedure

Reference to KDB558074 D01 DTS Meas Guidance v03r05,

The transmitter output was connected to the spectrum analyzer.

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) $\geq 3 \times RBW$.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.3. Test Setup

Report No.:WT168002091 Page 14 of 71

6.4. Test Data

Table 5 6dB Bandwidth Test Data (802.11b)

		• •
CHANNEL	6dB	
FREQUENCY	BANDWIDTH	results
(MHz)	(MHz)	
Channel 1	9.131	Pass
Channel 6	9.314	Pass
Channel 11	9.131	Pass

Date: 14.APR.2016 15:17:00

Date: 14.APR.2016 15:18:28

Date: 14.APR.2016 15:20:03

Report No.:WT168002091 Page 15 of 71

Table 6 6dB Bandwidth Test Data (802.11g)

CHANNEL	6dB	
FREQUENCY	BANDWIDTH	results
(MHz)	(MHz)	
Channel 1	15.160	Pass
Channel 6	15.160	Pass
Channel 11	15.125	Pass

Date: 14.APR.2016 15:15:40

Date: 14.APR.2016 15:13:41

Date: 14.APR.2016 15:12:14

Report No.:WT168002091 Page 16 of 71

Table 7 6dB Bandwidth Test Data (802.11n HT20)

CHANNEL	6dB	
FREQUENCY	BANDWIDTH	results
(MHz)	(MHz)	
Channel 1	15.160	Pass
Channel 6	15.160	Pass
Channel 11	15.160	Pass

Date: 14.APR.2016 15:08:45

Date: 14.APR.2016 15:06:49

Date: 14.APR.2016 15:10:34

Report No.:WT168002091 Page 17 of 71

7. MAXIMUM CONDUCTED (AVERAGE) OUTPUT POWER

7.1. Limits of Maximum conducted (average) output power Measurement

CFR 47 (FCC) part 15.247 (b)

7.2. Test Procedure

Reference to KDB558074 D01 DTS Meas Guidance v03r05,

The transmitter output was connected to the RF power meter.

- a) Using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied.
- 1) The EUT is configured to transmit continuously, or to transmit with a constant duty factor.
- 2) At all times when the EUT is transmitting, it shall be transmitting at its maximum power control level.
- 3) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
- b) If the transmitter does not transmit continuously, measure the duty cycle (x) of the transmitter output signal as described in Section 6.0.
- c) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
- d) Adjust the measurement in dBm by adding $10\log (1/x)$, where x is the duty cycle to the measurement result.

7.3. Test Data

Report No.:WT168002091 Page 18 of 71

Table 8 Maximum Conducted (average) Output Power Test Data

		•	1	ı	
Model			Maximum Conducted		Result
	Channel	Duty Factor (dB)	(average) Output	Limit (dBm)	
			Power	,	
			(dBm)		
802.11b	Channel 1	0.3	3.7	30	Pass
802.11b	Channel 6	0.3	5.0	30	Pass
802.11b	Channel 11	0.3	4.2	30	Pass
802.11g	Channel 1	0.9	2.1	30	Pass
802.11g	Channel 6	0.9	5.3	30	Pass
802.11g	Channel 11	0.9	2.9	30	Pass
802.11n	Channel 1	1.1	1.1	30	Pass
802.11n	Channel 6	1.1	4.9	30	Pass
802.11n	Channel 11	1.1	2.6	30	Pass

Report No.:WT168002091 Page 19 of 71

8. MAXIMUM POWER SPECTRAL DENSITY LEVEL MEASUREMENT

8.1. Limits of Maximum Power Spectral Density Level Measurement

CFR 47 (FCC) part 15.247 (e)

8.2. Test Procedure

Reference to KDB558074 D01 DTS Meas Guidance v03r05,

The transmitter output was connected to the spectrum analyzer.

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to: RBW = 3 kHz.
- d) Set the VBW = 10 kHz.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

8.3. Test Data

Table 9 Maximum Power Spectral Density Level Test Data

Model	Channel	PSD (dBm)	Limit (dBm)	Result
802.11b	Channel 1	-22.6	8	Pass
802.11b	Channel 6	-21.4	8	Pass
802.11b	Channel 11	-20.7	8	Pass
802.11g	Channel 1	-26.8	8	Pass
802.11g	Channel 6	-22.8	8	Pass
802.11g	Channel 11	-25.6	8	Pass
802.11n	Channel 1	-26.4	8	Pass
802.11n	Channel 6	-22.3	8	Pass
802.11n	Channel 11	-25.7	8	Pass

Report No.:WT168002091 Page 20 of 71

NETC National Digital Electronic Product Testing Center

802.11b

Date: 14.APR.2016 15:38:55

Date: 14.APR.2016 15:37:29

Date: 14.APR.2016 15:35:50

Date: 14.APR.2016 15:40:03

802.11g

Date: 14.APR.2016 15:42:36

Report No.:WT168002091 Page 21 of 71

NETE National Digital Electronic Product Testing Center

Date: 14.APR.2016 15:44:32

802.11n HT20

Date: 14.APR.2016 15:47:43

Date: 14.APR.2016 15:46:40

Date: 14.APR.2016 15:45:32

Report No.:WT168002091 Page 22 of 71

9. CONDUCTED BANDEDGE AND SPURIOUS MEASURMENT

9.1. Limits of Conducted Band Edge and Spurious Measurement

CFR 47 (FCC) part 15.247 (d)

9.2. Test Procedure

Reference to KDB558074 D01 DTS Meas Guidance v03r05,

The transmitter output was connected to the spectrum analyzer.

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to ≥ 1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW \geq 3 x RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Emission level measurement

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq 3 x RBW.
- d) Detector = peak.
- e) Ensure that the number of measurement points ≥ span/RBW
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level.

Report No.:WT168002091 Page 23 of 71

9.3. Test Data

802.11b Low Channel

Report No.:WT168002091 Page 24 of 71

802.11b Mid Channel

Report No.:WT168002091 Page 25 of 71

802.11b High Channel

Report No.:WT168002091 Page 26 of 71

802.11g Low Channel

Report No.:WT168002091 Page 27 of 71

802.11g Mid Channel

Report No.:WT168002091 Page 28 of 71

802.11g High Channel

Report No.:WT168002091 Page 29 of 71

802.11n HT20 Low Channel

Report No.:WT168002091 Page 30 of 71

802.11n HT20 Mid Channel

Report No.:WT168002091 Page 31 of 71

802.11n HT20 High Channel

Report No.:WT168002091 Page 32 of 71

10. RADIATED BAND EDGE AND SPURIOUS MEASUREMENT

10.1.Limits of Radiated Band Edge And Spurious Measurement

CFR 47 (FCC) part 15.247 (d) and 558074 D01 DTS Meas Guidance v03r05

10.2.TEST PROCEDURE

- 1. The testing follows the guidelines in ANSI C63.10: 2013 and Reference to KDB558074 D01 DTS Meas Guidance v03r05.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. For measurement below 1GHz, the EUT was placed on a turntable with 0.8 meter above ground. For measurement above 1 GHz, test at FAR, the EUT is placed on a non-conductive table, which is 1.5 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 6. Use the following spectrum analyzer settings:
- (1) Span shall wide enough to fully capture the emission being measured;
- (2) Set RBW=100 kHz for f < 1 GHz; VBW >= RBW; Sweep = auto; Detector function = peak; Trace = max hold;
- (3) Set RBW = 1 MHz, VBW= 3MHz for f > 1 GHz for peak measurement. Set RBW = 1 MHz, and 1/T (on time) for average measurement.

10.3.Test Data

Report No.:WT168002091 Page 33 of 71

Table 10 Radiated Emission Test Data (9kHz-30MHz)

Model No.: 999.11000610 Test mode: TX, Worst-case Polarization Correction **Emission Level** Limits dB EUT Frequency Antenna Reading Note (MHz) dB ($\mu V/m$) Factor Factor Value (µ V/m) axes (dB) (dB/m) (dB µ V) For radiated emission from 9kHz to 30MHz, the pre-scan result was lower than limit greater than 20dB, no emission reported.

Table 11 Radiated Emission Test Data (30MHz-1GHz)

Model No.: 999.11000610 Test mode: TX, Worst-case Frequency Polarization Correction Antenna Reading **Emission Level** Limits dB **EUT** Note dB (μ V/m) (MHz) Factor Factor Value (µ V/m) axes (dB) (dB/m) (dB μ V) QP 55.650 Horizontal 0.9 13.0 16.0 29.9 40.0 Χ 71.209 Horizontal 0.9 8.7 10.0 40.0 Χ QP 19.6 87.879 Horizontal 1.1 10.3 9.8 21.2 40.0 Χ QP 94.757 Horizontal 1.1 11.9 10.7 23.7 43.5 Χ QP Χ ΩP 312.735 Horizontal 2.1 13.1 13.9 29.1 46.0 ΩP 360.012 Horizontal 2.3 14.3 10.2 26.8 46.0 Х 38.635 Vertical 0.7 12.3 12.6 25.6 40.0 Χ QΡ 43.602 0.7 13.6 13.8 28.1 40.0 Χ QP Vertical 56.365 0.9 13.0 23.4 40.0 Χ QP Vertical 37.3 68.905 Vertical 0.9 10.7 20.9 32.5 40.0 Χ QΡ 91.771 Vertical 1.2 11.9 21.1 34.2 43.5 Χ QΡ 193.286 Vertical 1.7 10.6 11.6 23.9 43.5 Х QP

Report No.:WT168002091 Page 34 of 71

Table 12 Radiated Emission Test Data (1GHz-18GHz)

Model No.: 999.11000610

Frequency (MHz)	Polarization	Correction Factor (dB)	Antenna Factor	Reading Value	Emission Level dB (μ V/m)	Limits dB (µ V/m)	EUT axes	Note
4823.976	Horizontal	-39.4	(dB/m) 34.0	(dB μ V) 57.4	52.0	74	Х	Harmonics PK
4823.976	Horizontal	-39.4	34.0	54.4	49.0	54	Х	Harmonics AV
4018.485	Horizontal	-39.3	32.9	54.2	47.8	74	Х	PK
4018.485	Horizontal	-39.3	32.9	46.9	40.5	54	Х	AV
6432.974	Horizontal	-34.5	34.8	49.4	49.7	74	Х	PK
6432.974	Horizontal	-34.5	34.8	42.7	43.0	54	Х	AV
4823.980	Vertical	-39.4	34.0	57.2	51.8	74	Х	Harmonics PK
4823.980	Vertical	-39.4	34.0	54.2	48.8	54	Х	Harmonics AV
4018.490	Vertical	-39.3	32.9	57.7	51.3	74	Х	Harmonics PK
4018.490	Vertical	-39.3	32.9	48.7	42.3	54	Х	Harmonics AV
6431.975	Vertical	-34.5	34.8	53.3	53.6	74	х	Harmonics PK
6431.975	Vertical	-34.5	34.8	49.3	49.6	54	х	Harmonics AV

Report No.:WT168002091 Page 35 of 71

Table 13 Radiated Emission Test Data (1GHz-18GHz)

Model No.: 999.11000610

Frequency (MHz)	Polarization	Correction Factor (dB)	Antenna Factor (dB/m)	Reading Value (dB µ V)	Emission Level dB (μ V/m)	Limits dB (μ V/m)	EUT axes	Note
6498.634	Vertical	-34.6	34.8	54.2	54.4	74	Х	PK
6498.634	Vertical	-34.6	34.8	46.8	47.0	54	х	AV
4873.980	Vertical	-39.4	34.0	58.7	53.3	74	Х	Harmonics PK
4873.980	Vertical	-39.4	34.0	55.0	49.6	54	Х	Harmonics AV
4060.654	Vertical	-39.3	32.9	57.6	51.2	74	Х	PK
4060.654	Vertical	-39.3	32.9	51.9	45.5	54	х	AV
7814.704	Vertical	-37.7	36.2	46.2	44.7	74	Х	PK
7814.704	Vertical	-37.7	36.2	36.1	34.6	54	Х	AV
6498.633	Horizontal	-34.6	34.8	52.9	53.1	74	Х	PK
6498.633	Horizontal	-34.6	34.8	45.0	45.2	54	Х	AV
4873.972	Horizontal	-39.4	34.0	60.6	55.2	74	х	Harmonics PK
4873.972	Horizontal	-39.4	34.0	57.6	52.2	54	х	Harmonics AV
4060.647	Horizontal	-39.3	32.9	54.4	48.0	74	х	PK
4060.647	Horizontal	-39.3	32.9	47.2	40.8	54	х	AV
7814.699	Horizontal	-37.7	36.2	45.8	44.3	74	х	PK
7814.699	Horizontal	-37.7	36.2	36.1	34.6	54	Х	AV

Report No.:WT168002091 Page 36 of 71

Table 14 Radiated Emission Test Data (1GHz-18GHz)

Model No.: 999.11000610

Test mode: T	X, 802.11b, High	Channel	1	1	_		r	1
Frequency (MHz)	Polarization	Correction Factor (dB)	Antenna Factor (dB/m)	Reading Value (dB µ V)	Emission Level dB (μ V/m)	Limits dB (μ V/m)	EUT axes	Note
4923.987	Horizontal	-39.6	34.0	59.5	53.9	74	Х	Harmonics PK
4923.987	Horizontal	-39.6	34.0	55.5	49.9	54	Х	Harmonics AV
4104.832	Horizontal	-39.3	32.9	54.6	48.2	74	Х	PK
4104.832	Horizontal	-39.3	32.9	46.6	40.2	54	Х	AV
6565.307	Horizontal	-35.1	34.8	52.3	52.0	74	Х	PK
6565.307	Horizontal	-35.1	34.8	44.1	43.8	54	Х	AV
4923.980	Vertical	-39.6	34.0	57.2	51.6	74	Х	Harmonics PK
4923.980	Vertical	-39.6	34.0	52.1	46.5	54	Х	Harmonics AV
4104.835	Vertical	-39.3	32.9	57.7	51.3	74	Х	PK
4104.835	Vertical	-39.3	32.9	51.6	45.2	54	Х	AV
6565.310	Vertical	-35.1	34.8	54.0	53.7	74	Х	PK
6565.310	Vertical	-35.1	34.8	47.1	46.8	54	Х	AV

Report No.:WT168002091 Page 37 of 71

Table 15 Radiated Emission Test Data (1GHz-18GHz)

Model No.: 999.11000610

Frequency	Polarization	Correction	Antenna	Reading	Emission Level	Limits dB	EUT	Note
(MHz)		Factor	Factor	Value	dB (μ V/m)	(µ V/m)	axes	
		(dB)	(dB/m)	(dB µ V)				
4018.471	Horizontal	-39.3	32.9	54.6	48.2	74	х	PK
4018.471	Horizontal	-39.3	32.9	43.0	36.6	54	Х	AV
4823.977	Horizontal	-39.4	34.0	55.3	49.9	74	Х	Harmonics PK
4823.977	Horizontal	-39.4	34.0	42.5	37.1	54	Х	Harmonics AV
6432.863	Horizontal	-34.5	34.8	49.6	49.9	74	х	PK
6432.863	Horizontal	-34.5	34.8	35.8	36.1	54	Х	AV
4018.507	Vertical	-39.3	32.9	58.2	51.8	74	Х	PK
4018.507	Vertical	-39.3	32.9	48.1	41.7	54	Х	AV
6432.870	Vertical	-34.5	34.8	49.9	50.2	74	х	PK
6432.870	Vertical	-34.5	34.8	36.4	36.7	54	Х	AV
4823.722	Vertical	-39.4	34.0	54.7	49.3	74	Х	Harmonics Pk
4823.722	Vertical	-39.4	34.0	41.8	36.4	54	Х	Harmonics AV

Report No.:WT168002091 Page 38 of 71

Table 16 Radiated Emission Test Data (1GHz-18GHz)

Model No.: 999.11000610

Frequency (MHz)	Polarization	Correction Factor (dB)	Antenna Factor (dB/m)	Reading Value (dB µ V)	Emission Level dB (μ V/m)	Limits dB (μ V/m)	EUT axes	Note
4060.960	Horizontal	-39.3	32.9	54.9	48.5	74	Х	PK
4060.960	Horizontal	-39.3	32.9	44.0	37.6	54	Х	AV
4874.000	Horizontal	-39.4	34.0	57.5	52.1	74	Х	Harmonics PI
4874.000	Horizontal	-39.4	34.0	45.8	40.4	54	Х	Harmonics A
6498.631	Horizontal	-34.6	34.8	52.4	52.6	74	Х	PK
6498.631	Horizontal	-34.6	34.8	43.9	44.1	54	х	AV
4874.231	Horizontal	-39.4	34.0	58.6	53.2	74	Х	PK
4874.231	Horizontal	-39.4	34.0	45.5	40.1	54	Х	AV
7311.000	Horizontal	-38.1	35.6	53.0	50.5	74	74 X	
7311.000	Horizontal	-38.1	35.6	39.1	36.6	54	Х	Harmonics A
4060.950	Vertical	-39.3	32.9	59.0	52.6	74	Х	PK
4060.950	Vertical	-39.3	32.9	48.4	42.0	54	Х	AV
6498.579	Vertical	-34.6	34.8	53.7	53.9	74	Х	PK
6498.579	Vertical	-34.6	34.8	46.3	46.5	54	Х	AV
4873.725	Vertical	-39.4	34.0	57.5	52.1	74	Х	Harmonics P
4873.725	Vertical	-39.4	34.0	45.6	40.2	54	Х	Harmonics A
7311.000	Vertical	-38.1	35.6	53.9	51.4	74	Х	Harmonics P
7311.000	Vertical	-38.1	35.6	40.1	37.6	54	Х	Harmonics A

Report No.:WT168002091 Page 39 of 71

Table 17 Radiated Emission Test Data (1GHz-18GHz)

Model No.: 999.11000610

Frequency	Polarization	Correction	Antenna	Reading	Emission Level	Limits dB	EUT	Note
(MHz)		Factor (dB)	Factor (dB/m)	Value (dB μ V)	dB (μ V/m)	(µ V/m)	axes	
1000.070	V 6 1	` ′	, ,	,	40.0	7.4		
4923.979	Vertical	-39.6	34.0	55.4	49.8	74	Х	Harmonics PK
4923.979	Vertical	-39.6	34.0	42.7	37.1	54	Х	Harmonics AV
4103.829	Vertical	-39.3	32.9	58.2	51.8	74	Х	PK
4103.829	Vertical	-39.3	32.9	47.6	41.2	54	Х	AV
6565.305	Vertical	-35.1	34.8	50.1	49.8	74	Х	PK
6565.305	Vertical	-35.1	34.8	36.6	36.3	54	Х	AV
4923.983	Horizontal	-39.6	34.0	55.5	49.9	74	Х	Harmonics PK
4923.983	Horizontal	-39.6	34.0	42.8	37.2	54	Х	Harmonics AV
4103.990	Horizontal	-39.3	32.9	54.5	48.1	74	Х	PK
4103.990	Horizontal	-39.3	32.9	42.3	35.9	54	Х	AV
6565.304	Horizontal	-35.1	34.8	50.2	49.9	74	Х	PK
6565.304	Horizontal	-35.1	34.8	36.3	36.0	54	Х	AV

Report No.:WT168002091 Page 40 of 71

Table 18 Radiated Emission Test Data (1GHz-18GHz)

Model No.: 999.11000610

Frequency (MHz)	Polarization	Correction Factor (dB)	Antenna Factor (dB/m)	Reading Value (dB µ V)	Emission Level dB (μ V/m)	Limits dB (µ V/m)	EUT axes	Note
6431.970	Vertical	-34.5	34.8	53.4	53.7	74	х	PK
6431.970	Vertical	-34.5	34.8	45.2	45.5	54	X	AV
4018.711	Vertical	-39.3	32.9	58.3	51.9	74	X	PK
4018.711	Vertical	-39.3	32.9	47.4	41.0	54	Х	AV
4823.982	Vertical	-39.4	34.0	53.7	48.3	74	Х	Harmonics PK
4823.982	Vertical	-39.4	34.0	39.8	34.4	54	Х	Harmonics AV
9766.500	Vertical	-35.6	37.1	55.7	57.2	74	Х	PK
9766.500	Vertical	-35.6	37.1	43.6	45.1	54	Х	AV
14664.000	Vertical	-34.0	40.4	52.9	59.3	74	Х	PK
14664.000	Vertical	-34.0	40.4	38.8	45.2	54	Х	AV
6431.980	Horizontal	-34.5	34.8	50.6	50.9	74	Х	PK
6431.980	Horizontal	-34.5	34.8	40.3	40.6	54	Х	AV
4018.701	Horizontal	-39.3	32.9	56.1	49.7	74	Х	PK
4018.701	Horizontal	-39.3	32.9	44.6	38.2	54	Х	AV
4823.988	Horizontal	-39.4	34.0	55.5	50.1	74	Х	Harmonics PK
4823.988	Horizontal	-39.4	34.0	41.5	36.1	54	Х	Harmonics AV
9766.500	Horizontal	-35.6	37.1	52.0	53.5	74	Х	PK
9766.500	Horizontal	-35.6	37.1	37.8	39.3	54	Х	AV
14664.000	Horizontal	-34.0	40.4	51.0	57.4	74	Х	PK
14664.000	Horizontal	-34.0	40.4	38.8	45.2	54	Х	AV

Report No.:WT168002091 Page 41 of 71

Table 19 Radiated Emission Test Data (1GHz-18GHz)

Model No.: 999.11000610

Frequency (MHz)	Polarization	Correction Factor (dB)	Antenna Factor (dB/m)	Reading Value (dB µ V)	Emission Level dB (µ V/m)	Limits dB (µ V/m)	EUT axes	Note
4873.981	Horizontal	-39.4	34.0	56.8	51.4	74	Х	Harmonics PK
4873.981	Horizontal	-39.4	34.0	41.9	36.5	54	Х	Harmonics AV
4060.647	Horizontal	-39.3	32.9	54.2	47.8	74	Х	PK
4060.647	Horizontal	-39.3	32.9	42.6	36.2	54	Х	AV
6498.634	Horizontal	-34.6	34.8	53.4	53.6	74	х	PK
6498.634	Horizontal	-34.6	34.8	40.4	40.6	54	Х	AV
5436.411	Horizontal	-38.4	34.3	54.3	50.2	74	Х	PK
5436.411	Horizontal	-38.4	34.3	43.6	39.5	54	Х	AV
7314.508	Horizontal	-38.1	35.6	53.3	50.8	74	х	Harmonics PK
7314.508	Horizontal	-38.1	35.6	40.8	38.3	54	х	Harmonics AV
11605.551	Horizontal	-35.7	37.4	52.5	54.2	74	х	PK
11605.551	Horizontal	-35.7	37.4	39.1	40.8	54	х	AV
4060.701	Vertical	-39.3	32.9	58.9	52.5	74	х	PK
4060.701	Vertical	-39.3	32.9	47.7	41.3	54	х	AV
4873.981	Vertical	-39.4	34.0	55.9	50.5	74	х	Harmonics Pk
4873.981	Vertical	-39.4	34.0	41.7	36.3	54	х	Harmonics AV
6498.641	Vertical	-34.6	34.8	54.0	54.2	74	х	PK
6498.641	Vertical	-34.6	34.8	45.7	45.9	54	х	AV
5697.173	Vertical	-38.4	34.4	51.3	47.3	74	Х	PK
5697.173	Vertical	-38.4	34.4	38.9	34.9	54	х	AV
7314.655	Vertical	-38.1	35.6	54.6	52.1	74	х	Harmonics Pk
7314.655	Vertical	-38.1	35.6	42.1	39.6	54	х	Harmonics AV
11958.701	Vertical	-35.3	37.5	50.2	52.4	74	х	PK
11958.701	Vertical	-35.3	37.5	41.4	43.6	54	Х	AV

Report No.:WT168002091 Page 42 of 71

Table 20 Radiated Emission Test Data (1GHz-18GHz)

Model No.: 999.11000610

Frequency	Polarization	Correction	Antenna	Reading	Emission Level	Limits dB	EUT	Note
(MHz)		Factor	Factor	Value	dB (μ V/m)	(µ V/m)	axes	
		(dB)	(dB/m)	(dB μ V)				
6565.305	Horizontal	-35.1	34.8	52.3	52.0	74	Х	PK
6565.305	Horizontal	-35.1	34.8	43.1	42.8	54	х	AV
4103.830	Horizontal	-39.3	32.9	54.3	47.9	74	Х	PK
4103.830	Horizontal	-39.3	32.9	42.7	36.3	54	Х	AV
4923.698	Horizontal	-39.6	34.0	53.9	48.3	74	Х	Harmonics Pk
4923.980	Horizontal	-39.6	34.0	40.4	34.8	54	Х	Harmonics A
13720.000	Horizontal	-34.5	39.0	53.5	58.0	74	Х	PK
13720.000	Horizontal	-34.5	39.0	39.7	44.2	54	Х	AV
9757.000	Horizontal	-35.5	37.1	54.7	56.3	74	Х	PK
9757.000	Horizontal	-35.5	37.1	42.6	44.2	54	Х	AV
6565.304	Vertical	-35.1	34.8	56.2	55.9	74	Х	PK
6565.304	Vertical	-35.1	34.8	46.6	46.3	54	Х	AV
4103.873	Vertical	-39.3	32.9	57.3	50.9	74	Х	PK
4103.873	Vertical	-39.3	32.9	46.6	40.2	54	Х	AV
4923.988	Vertical	-39.6	34.0	52.6	47.0	74	Х	Harmonics PI
4923.988	Vertical	-39.6	34.0	39.2	33.6	54	Х	Harmonics A'
13720.000	Vertical	-34.5	39.0	53.1	57.6	74	Х	PK
13720.000	Vertical	-34.5	39.0	39.7	44.2	54	Х	AV
9757.000	Vertical	-35.5	37.1	52.6	54.2	74	Х	PK
9757.000	Vertical	-35.5	37.1	37.6	39.2	54	X	AV

Note: 1. Emission level(dBuV/m)=Reading Value(dBuV) + Correction Factor(dB)+Antenna Factor (dB/m)

Report No.:WT168002091 Page 43 of 71

^{2.} Correction Factor(dB) = Cable Factor (dB)+Amplifier Factor(dB)

^{3.} No other spurious and harmonic emissions were reported greater than listed emissions above table.

Table 21 Radiated Emission Test Data (18GHz-25GHz)

30.1.10000.10							
X, Worst-case							
Polarization	Correction	Antenna	Reading	Emission Level	Limits dB	EUT	Note
	Factor	Factor	Value	dB (μ V/m)	(μ V/m)	axes	
	(dB)	(dB/m)	(dB μ V)				
		Polarization Correction Factor (dB)	Polarization Correction Antenna Factor Factor (dB) (dB/m)	TX, Worst-case Polarization	TX, Worst-case Polarization	TX, Worst-case Polarization Correction Factor (dB) Correction Factor Value (dB μ V) Factor (dB/m) Factor (dB μ V) Factor Facto	TX, Worst-case Polarization Correction Factor Factor (dB) (dB/m) Factor (dB/m) Factor Facto

9kHz-30Hz

Report No.:WT168002091 Page 44 of 71

Below 1GHz, Vertical

Below 1GHz, Horizontal

Report No.:WT168002091 Page 45 of 71

1G-18GHz, Vertical, 802.11b, Low channel

FCC Electric Field Strength 1-18GHz operate on 2.4GHz

1G-18GHz, Horizontal, 802.11b, Low channel

FCC Electric Field Strength 1-18GHz operate on 2.4GHz

Report No.:WT168002091 Page 46 of 71

1G-18GHz, Vertical, 802.11b, Mid channel

FCC Electric Field Strength 1-18GHz operate on 2.4GHz

1G-18GHz, Horizontal, 802.11b, Mid channel

FCC Electric Field Strength 1-18GHz operate on 2.4GHz

Report No.:WT168002091 Page 47 of 71

1G-18GHz, Vertical, 802.11b, High channel

FCC Electric Field Strength 1-18GHz operate on 2.4GHz

1G-18GHz, Horizontal, 802.11b, High channel

FCC Electric Field Strength 1-18GHz operate on 2.4GHz

Report No.:WT168002091 Page 48 of 71

1G-18GHz, Vertical, 802.11g, Low channel

FCC Electric Field Strength 1-18GHz operate on 2.4GHz

1G-18GHz, Horizontal, 802.11g, Low channel

FCC Electric Field Strength 1-18GHz operate on 2.4GHz

Report No.:WT168002091 Page 49 of 71

1G-18GHz, Vertical, 802.11g, Mid channel

FCC Electric Field Strength 1-18GHz operate on 2.4GHz

1G-18GHz, Horizontal, 802.11g, Mid channel

FCC Electric Field Strength 1-18GHz operate on 2.4GHz

Report No.:WT168002091 Page 50 of 71

1G-18GHz, Vertical, 802.11g, High channel

FCC Electric Field Strength 1-18GHz operate on 2.4GHz

1G-18GHz, Horizontal, 802.11g, High channel

FCC Electric Field Strength 1-18GHz operate on 2.4GHz

Report No.:WT168002091 Page 51 of 71

1G-18GHz, Vertical, 802.11n HT20, Low channel

FCC Electric Field Strength 1-18GHz operate on 2.4GHz

1G-18GHz, Horizontal, 802.11n HT20, Low channel

FCC Electric Field Strength 1-18GHz operate on 2.4GHz

Report No.:WT168002091 Page 52 of 71

1G-18GHz, Vertical, 802.11n HT20, Mid channel

FCC Electric Field Strength 1-18GHz operate on 2.4GHz

1G-18GHz, Horizontal, 802.11n HT20, Mid channel

FCC Electric Field Strength 1-18GHz operate on 2.4GHz

Report No.:WT168002091 Page 53 of 71

1G-18GHz, Vertical, 802.11n HT20, High channel

FCC Electric Field Strength 1-18GHz operate on 2.4GHz

1G-18GHz, Horizontal, 802.11n HT20, High channel

FCC Electric Field Strength 1-18GHz operate on 2.4GHz

Report No.:WT168002091 Page 54 of 71

18G-25GHz, Vertical

FCC Electric Field Strength 18-26.5GHz

18G-25GHz, Horizontal

FCC Electric Field Strength 18-26.5GHz

Report No.:WT168002091 Page 55 of 71

Band Edge

Vertical, 802.11b, Low channel, PK

FCC Electric Field Strength 2.4GHz Bandedge-PK

Vertical, 802.11b, Low channel, AV

FCC Electric Field Strength 2.4GHz Bandedge-AV

Report No.:WT168002091 Page 56 of 71

Horizontal, 802.11b, Low channel, PK

FCC Electric Field Strength 2.4GHz Bandedge-PK

Horizontal, 802.11b, Low channel, AV

FCC Electric Field Strength 2.4GHz Bandedge-AV

Report No.:WT168002091 Page 57 of 71

Vertical, 802.11b, High channel, PK

FCC Electric Field Strength 2.4GHz Bandedge-PK

Vertical, 802.11b, High channel, AV

FCC Electric Field Strength 2.4GHz Bandedge-AV

Report No.:WT168002091 Page 58 of 71

Horizontal, 802.11b, High channel, PK

FCC Electric Field Strength 2.4GHz Bandedge-PK

Horizontal, 802.11b, High channel, AV

FCC Electric Field Strength 2.4GHz Bandedge-AV

Report No.:WT168002091 Page 59 of 71

Vertical, 802.11g, Low channel, PK

FCC Electric Field Strength 2.4GHz Bandedge-PK

Vertical, 802.11g, Low channel, AV

FCC Electric Field Strength 2.4GHz Bandedge-AV

Report No.:WT168002091 Page 60 of 71

Horizontal, 802.11g, Low channel, PK

FCC Electric Field Strength 2.4GHz Bandedge-PK

Horizontal, 802.11g, Low channel, AV

FCC Electric Field Strength 2.4GHz Bandedge-AV

Report No.:WT168002091 Page 61 of 71

Vertical, 802.11g, High channel, PK

FCC Electric Field Strength 2.4GHz Bandedge-PK

Vertical, 802.11g, High channel, AV

FCC Electric Field Strength 2.4GHz Bandedge-AV

Report No.:WT168002091 Page 62 of 71

Horizontal, 802.11g, High channel, PK

FCC Electric Field Strength 2.4GHz Bandedge-PK

Horizontal, 802.11g, High channel, AV

FCC Electric Field Strength 2.4GHz Bandedge-AV

Report No.:WT168002091 Page 63 of 71

Vertical, 802.11n HT20, Low channel, PK

FCC Electric Field Strength 2.4GHz Bandedge-PK

Vertical, 802.11n HT20, Low channel, AV

FCC Electric Field Strength 2.4GHz Bandedge-AV

Report No.:WT168002091 Page 64 of 71

Horizontal, 802.11n HT20, Low channel, PK

FCC Electric Field Strength 2.4GHz Bandedge-PK

Horizontal, 802.11n HT20, Low channel, AV

FCC Electric Field Strength 2.4GHz Bandedge-AV

Report No.:WT168002091 Page 65 of 71

Vertical, 802.11n HT20, High channel, PK

FCC Electric Field Strength 2.4GHz Bandedge-PK

Vertical, 802.11n HT20, High channel, AV

FCC Electric Field Strength 2.4GHz Bandedge-AV

Report No.:WT168002091 Page 66 of 71

Horizontal, 802.11n HT20, High channel, PK

FCC Electric Field Strength 2.4GHz Bandedge-PK

Horizontal, 802.11n HT20, High channel, AV

FCC Electric Field Strength 2.4GHz Bandedge-AV

Report No.:WT168002091 Page 67 of 71

11. CONDUCTED EMISSION TEST FOR AC POWER PORT MEASUREMENT

11.1.Test Standard and Limit

11.1.1.Test Standard FCC Part 15 15.207

11.1.2.Test Limit

Table 22 Conducted Disturbance Test Limit

Fraguency	Maximum RF Line Voltage (dBμV)					
Frequency	Quasi-peak Level	Average Level				
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *				
500kHz~5MHz	56	46				
5MHz~30MHz	60	50				

^{*} Decreasing linearly with logarithm of the frequency

11.2.Test Procedure

The EUT is put on a table of non-conducting material that is 80cm high. The vertical conducting wall of shielding is located 40cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through an Artificial Mains Network (A.M.N.). An EMI test receiver (R&S Test Receiver ESCS30) is used to test the emissions from both sides of AC line. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode.

The bandwidth of EMI test receiver is set at 9kHz.

11.3.Test Arrangement

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application. The detailed information refers to test picture.

Report No.:WT168002091 Page 68 of 71

^{*} The lower limit shall apply at the transition frequency.

11.4.Test Data

The emissions don't show in below are too low against the limits. Refer to the test curves.

Table 23 Conducted Disturbance Test Data

Model No.:							
Test mode: T	X, Worst-ca	se					
			Line				
F	Q	Р	A۱	/	QP	AV	Casta:
Frequency	Level	Limit	Level	Limit	Reading	Reading	Factor
MHz	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)
0.158	50.5	65.6	37.3	55.6	40.8	27.6	9.7
0.190	45.0	64.0	31.5	54.0	35.3	21.8	9.7
0.522	47.2	56	40.6	46	37.4	30.8	9.8
0.566	43.9	56	37.1	46	34.1	27.3	9.8
1.070	38.1	56	30.0	46	28.3	20.2	9.8
1.654	36.8	56	30.8	46	27.0	21.0	9.8
			Neutra	al			
F	Q	P	A۱	/	QP	AV	F t
Frequency	Level	Limit	Level	Limit	Reading	Reading	Factor
MHz	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)
0.158	48.3	65.6	34.2	55.6	38.6	24.5	9.7
0.514	44.9	56	34.9	46	35.1	25.1	9.8
0.562	40.7	56	30.6	46	30.9	20.8	9.8
1.070	39.1	56	26.4	46	29.3	16.6	9.8
1.554	38.3	56	25.5	46	28.5	15.7	9.8
1.758	38.1	56	25.7	46	28.3	15.9	9.8

REMARKS: 1. Emission level(dBuV)=Read Value(dBuV) + Correction Factor(dB)

- 2. Correction Factor(dB) =LISN Factor (dB) + Cable Factor (dB)+Limiter Factor(dB)
- 3. The other emission levels were very low against the limit.

Report No.:WT168002091 Page 69 of 71

Line

Neutral

Report No.:WT168002091 Page 70 of 71

12. ANTENNA REQUIREMENTS

12.1.Applicable requirements

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. For the fixed point-to-point operation, the power shall be reduced by one dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

12.2.Antenna Connector

The EUT has not external antenna connector and built in monopole antenna which is integrated inside the enclosure.

12.3.Antenna Gain

The antenna gain of EUT is less than 6 dBi.

Report No.:WT168002091 Page 71 of 71