PY2010 Intermediate Logic UNIVERSITY OF ST. ANDREWS Exercises wk. 01

ID: 200007413

September 17, 2021

I hereby declare that the attached piece of written work is my own work and that I have not reproduced, without acknowledgement, the work of another.

1 Well Formed Formulae

1. $\neg(p \land \neg q) \supset (p \supset \neg q)$

This is a wff (well formed formula). This is because p, and q are atomic formulas and thus are wffs. Which means the negation of q $(\neg q)$ is still a wff. Connecting the wff to $(p \land \neg q)$ and $(p \supset \neg q)$ then are also wffs, which means the negation $\neg (p \land \neg q)$ is also a wff and so is the final connective of two wffs to form $\neg (p \land \neg q) \supset (p \supset \neg q)$.

2. $p \land \neg p \supset p$

This is not a wff because, despite p, and therefore $\neg q$ being wffs, the rule for connecting wffs require there to be a single connective joining two wffs per set of brackets. As nothing else is a wff, this use of connectives cannot form a wff.

3. $A \supset (B \supset A)$

We do not know whether this is a wff, as we don't know if A and B are wffs. Assuming they are, then it would be a wff, as joining two wffs with \supset forms another wff. However, if either A or B is not a wff, then the entire thing cannot be a wff.

2 Semantic Validity

1. $p \land \neg p \vDash_c q$

Show: For all interpretations of v, if $v(p \land \neg p) = 1$, then v(q) = 1.

Assuming $v(p \land \neg p) = 1$, v(p) = 1) and $v(\neg p) = 1$.

 $v(\neg p) = 1$ means that v(p) = 0 from the negation rule.

As we already have v(p) = 1), the value of v(p) cannot be both, since v is a function.

So, there's no v which satisfies $v(p \land \neg p) = 1$, without satisfying $v(p \land \neg p) = 1$ ". QED.

ID: 200007413

2. $p \lor q \vDash_c (p \supset q) \lor (\neg p \supset \neg q)$

Show: For all interpretations of v, if $v(p \lor q) = 1$, then $v((p \supset q) \lor (\neg p \supset \neg q)) = 1$

Assuming the premise $v(p \lor q) = 1$, by the rule $v(A \lor B) = 1$ iff v(A) = 1 or v(B) = 1, either v(p) = 1 or v(q) = 1.

For $v((p \supset q) \lor (\neg p \supset \neg q)) = 1$, either $v(p \supset q) = 1$, or $v(\neg p \supset \neg q) = 1$.

For $v(\neg p \supset \neg q) = 1$, then either $v(\neg p) = 0$ or $v(\neg q) = 1$, and v(p) = 1, then necessarily $v(\neg p) = 0$ and so $v(\neg p \supset \neg q) = 1$, and so the conclusion $v((p \supset q) \lor (\neg p \supset \neg q)) = 1$.

For $v(p \supset q) = 1$, then either v(p) = 0 or v(q) = 1, which is satisfied by the other premise case and so $v(p \supset q) = 1$, and so the conclusion $v((p \supset q) \lor (\neg p \supset \neg q)) = 1$.

OED

3 Tableau

1. $p \supset q, r \supset q \vdash_{tc} (p \lor r) \supset q$

This is invalid. As there are no premises, the antecedent is always satisfied. However, the conclusion can never be satisfied. Starting with the atomic values of v(p)=1 and v(q)=0, which can be derived from $v(\neg q)=1$ using the \neg rule. $v(p\supset q)=1$ iff v(p)=0 or v(q)=1, which is false, and so $v(p\supset q)=0$, which means that $v((p\supset q)\supset q)=1$ because of the same \supset rule as the antecedent is false. That means that $v((p\supset q)\supset q)=0$ for the same rule again, as the antecedent is true, as well as already establishing that v(q)=0."

ID: 200007413

This is an invalid argument. Starting with the values v(p)=1, v(q)=1, and v(r)=1, we can use the rule that $v(p\supset q)=1$ iff v(p)=0 or v(q)=1 to determine that $v(p\supset q)=0$. We can do the same with $v(p\supset r)=1$ iff v(p)=0 or v(r)=1 to get $v(p\supset r)=0$. Then, using the rule $v(\neg A)=1$ iff v(A)=0, we can get $v(\neg(p\supset q))=1$ and $v(\neg(p\supset r))=1$ and finally, as $v(A\wedge B=1)$ iff v(A)=1 and v(B)=1, we can determine $v(\neg(p\supset q)\wedge\neg(p\supset r))=1$ from the previous values thus satisfying the premises.

We can see that because v(q) = 1, and v(r) = 1, the negation rule must mean that $v(\neg q) = 0$, and $v(\neg r) = 0$. This means that $v(\neg q \lor \neg r) = 0$ also because $v(A \lor B) = 1$ iff v(A) = 1 or v(B) = 1.

Therefore, there is an counter-model for how the premises are satisfied, whilst the conclusion is not and so it is invalid.