Forecast on Civilian Unemployment Rate

By Sandeep Ramesh

R Programming Code

```
> urnsa = read.csv("UNRATENSA.csv")
> unemp = ts(urnsa[,2],start=c(1948,1),frequency=12)
> plot(unemp)
```


> unemp_hold = ts(urnsa[,2],start=c(1948,1),end=c(2016,11),frequency=12) > plot(unemp_hold)


```
> library(urca)
> library(forecast)
> ur_test = ur.df(unemp_hold,type="drift",lags=20,selectlags="AIC")
> summary(ur test)
Test regression drift
Call: lm(formula = z.diff \sim z.lag.1 + 1 + z.diff.lag)
Residuals:
Min 1Q Median 3Q Max
-0.82859 -0.17677 -0.00286 0.14985 1.29507
Coefficients:
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2643 on 785 degrees of freedom
Multiple R-squared: 0.6863, Adjusted R-squared: 0.6783
F-statistic: 85.87 on 20 and 785 DF, p-value: < 2.2e-16
Value of test-statistic is: -2.965 4.4036
Critical values for test statistics:

1pct 5pct 10pct

tau2 -3.43 -2.86 -2.57

phi1 6.43 4.59 3.78
> ur test = ur.df(diff(unemp hold),type="drift",lags=20,selectlags="AIC")
> summary(ur test)
```

> plot(diff(unemp_hold))

> acf(diff(unemp_hold), 60)

Series diff(unemp_hold)

> pacf(diff(unemp_hold), 60)

Series diff(unemp_hold)

- > rho = acf(diff(unemp_hold), 36)
- > rho

Autocorrelations of series 'diff(unemp hold)', by lag

0.0000 0.0833 0.1667 0.2500 0.3333 0.4167 0.5000 0.5833 0.6667 0.7500 0.8333 0.9167 1.000 0.082 -0.118 -0.285 -0.091 0.236 -0.029 0.211 -0.115 -0.308 -0.171 0.055 1.0000 1.0833 1.1667 1.2500 1.3333 1.4167 1.5000 1.5833 1.6667 1.7500 1.8333 1.9167 0.764 0.028 -0.189 -0.335 -0.131 0.193 -0.066 0.207 -0.126 -0.314 -0.167 0.037 2.0000 2.0833 2.1667 2.2500 2.3333 2.4167 2.5000 2.5833 2.6667 2.7500 2.8333 2.9167 0.746 0.024 -0.177 -0.318 -0.110 0.199 -0.052 0.201 -0.141 -0.304 -0.157 0.027 3.0000 0.727

MODEL GUESSES

```
> Arima(unemp hold,order=c(1,1,1),seasonal=c(1,0,1))
Series: unemp hold
ARIMA(1,1,1)(1,0,1)[12]
Coefficients:
               ma1
                     sar1
                              sma1
        ar1
     0.8188 -0.6572 0.9911 -0.7608
s.e. 0.0448 0.0566 0.0034 0.0259
sigma^2 estimated as 0.05615: log likelihood=6.71
AIC=-3.41 AICc=-3.34 BIC=20.17
> Arima(unemp hold,order=c(1,1,1),seasonal=c(2,0,1))
Series: unemp hold
ARIMA(1,1,1)(2,0,1)[12]
Coefficients:
              ma1 sar1 sar2
     0.8217 -0.660 0.9576 0.0326 -0.7443
s.e. 0.0449 0.057 0.0501 0.0486 0.0370
sigma^2 estimated as 0.05618: log likelihood=6.93
AIC=-1.86 AICc=-1.76 BIC=26.44
> Arima(unemp hold, order=c(2,1,1), seasonal=c(1,0,1))
Series: unemp hold
ARIMA(2,1,1)(1,0,1)[12]
Coefficients:
        ar1
              ar2
                      ma1
                             sar1
                                      sma1
     0.5995 0.1239 -0.4889 0.9918 -0.7612
s.e. 0.1131 0.0471 0.1114 0.0032
                                    0.0264
sigma^2 estimated as 0.0557: log likelihood=10.02
AIC=-8.05 AICc=-7.94 BIC=20.25
> Arima(unemp hold,order=c(2,1,2),seasonal=c(1,0,1))
Series: unemp hold
ARIMA(2,1,2)(1,0,1)[12]
Coefficients:
               ar2
                       ma1
                               ma2
                                      sar1
        ar1
     0.4531 0.2472 -0.3411 -0.1018 0.9918 -0.7614
s.e. 0.2780 0.2306 0.2827 0.1964 0.0032 0.0264
sigma^2 estimated as 0.05576: log likelihood=10.11
AIC=-6.23 AICc=-6.09 BIC=26.79
```

```
> model=Arima(unemp hold,order=c(1,1,1),seasonal=c(1,0,1))
```

> acf(model\$residuals)

Series model\$residuals

> Box.test(model\$residuals,30,type="Ljung-Box")

Box-Ljung test

```
data: model$residuals
X-squared = 37.545, df = 30, p-value = 0.1618
```

- > unemp hold fore=forecast.Arima(model, h=6)
- > unemp hold fore

```
Point Forecast
                           Lo 80
                                    Hi 80
                                             Lo 95
Dec 2016
               4.399971 4.096307 4.703635 3.935558 4.864385
               5.021205 4.555774 5.486636 4.309390 5.733020
Jan 2017
Feb 2017
               4.857442 4.248353 5.466532 3.925920 5.788965
Mar 2017
               4.642949 3.899795 5.386104 3.506392 5.779506
               4.112765 3.242580 4.982950 2.781931 5.443598
Apr 2017
May 2017
               4.170644 3.179376 5.161912 2.654630 5.686658
```

Plot of Forecast using Hold out Data:

```
> upper=ts(unemp_hold_fore$upper[,2],start=c(2016,12),frequency=12)
> lower=ts(unemp_hold_fore$lower[,2],start=c(2016,12),frequency=12)
```

plot(cbind(window(unemp,start=c(2016,3),frequency=12),unemp_hold_fore\$mean,upper,lower),plot.ty pe="single",ylab='Forecast',lty=c("solid","solid","dashed","dashed"),col= c("blue","red","green","purple"))

Hold out Period Data:

Series	Point Forecast	Actual Data	Matching_Ratio
Dec-16	4.399971	4.5	98%
Jan-17	5.021205	5.4	93%
Feb-17	4.857442	4.9	99%
Mar-17	4.642949	4.6	101%

Actual Forecast of SARIMA(1,1,1)(1,0,1) model:

> unemp hold fore

		_					
		Point	Forecast	Lo 80	Hi 80	Lo 95	Hi 95
Dec	2016		4.399971	4.096307	4.703635	3.935558	4.864385
Jan	2017		5.021205	4.555774	5.486636	4.309390	5.733020
Feb	2017		4.857442	4.248353	5.466532	3.925920	5.788965
Mar	2017		4.642949	3.899795	5.386104	3.506392	5.779506
Apr	2017		4.112765	3.242580	4.982950	2.781931	5.443598
May	2017		4.170644	3.179376	5.161912	2.654630	5.686658

The above Bar Chart shows the forecasted value in red and Actual data values in blue which shows that our results for April and May too will be predicted approximately