- 1. Since $y(t) = \int_{-\infty}^{t} \chi(z) \beta y(z) dz$, we conclude that $y'(t) = \chi(t) \beta y(t)$ or $y'(t) + \beta y(t) = \chi(t)$ by Fundmental Thin of Calculus
- 2 To find h(t), substitute y(t)=h(t) and x(t)=8(t), we have h'(t) + βh(t) = S(t)

 To solve this equation, let h(t)=w(t) u(t)

 Plug into the ODE, where u(t) represent

 Unit step function. Hence

 W'U+ WU'+βWU=S(t) (*)

 Recall that : U'(t) = S(t), hence

 W(t)U'(t)=W(t)S(t)=W(0)S(t) (*) becomes

 (W'+βW)U+W(0)S(t)=S(t) Compare the

 terms of both side, one derives

 SW'(t)+βW(t)=0

 W(0)=1

Solving this initial value problem, W(t) = Ce-1st and since w(v)=1, C=1

3. By properties of Fourier Transform, $\mathcal{F}\{h(t)\} = H(f) = e^{-\beta t}u(t)$ and $\int |H(f)| = \frac{1}{\sqrt{\beta^2 + 4\chi^2 f^2}}$ $\angle H(f) = -\tan^{-1}\frac{2\pi f}{\beta}$

4. Expend $\chi(t)$ in Fourier series, $\chi(t) = \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{1}{a^{k-1}} \sin(a^{k-1})t$ $= \frac{4}{\pi} \sin(a\pi \cdot \frac{1}{a^{k}}t) + \frac{4}{\pi} \cdot \frac{1}{3} \sin(a\pi \cdot \frac{3}{a^{k}}t)$ $+ \frac{4}{\pi} \cdot \frac{1}{5} \sin(a\pi \cdot \frac{1}{a^{k}}st) + \cdots$

Hence $y(t) = \frac{4}{\pi} |H(\frac{1}{\pi})| \sin(2\pi \cdot \frac{1}{2\pi} + 4H(\frac{1}{\pi}))$ $+ \frac{4}{\pi} |H(\frac{2}{\pi})| \sin(2\pi \cdot \frac{3}{\pi} t + 4H(\frac{2}{\pi}))$

We left the plot in MATLAB as follows.

5. In general, the larger the value of B is, the slower the curves declined
(這次嘗試用了契字系的风格寫作業 XD)

