

Ch.2 Boolean Algebra and Logic gates

Basic Definitions

- mathematical system 만족한다고 가정.
 - (b) Closure: 자연수의 집합 내에서 닫혀 있음을 의미
 - Associative law(결합법칙)
 - ③ Commutative law(교환법칙)
 - (항등원) : <u>e는 *연산자의</u> 항등원, **○은** +연산자의 항등원
 - **⑤** Inverse(역원)
 - **⑥** Distributive law(분배법칙)

Asiomatic Definition of Boolean Algebra

: Boolean 대수학적으로 정의 해보자면

Huntington의 가정

2-(a) An identity element with respect to the operator +, designed by 0:
$$0 + x = x + 0 = x$$

.2-(b) An identity element with respect to the operator ·, designed by 1:

$$1 \cdot x = x \cdot 1 = x$$

3-(a) commutative with respect to the operator +:

$$x + y = y + x$$

-3-(b) commutative with respect to the operator $\cdot : x \cdot y = y \cdot x$

Here
$$(x \cdot y) = (x \cdot y) + (x \cdot z)$$

4-(a) · is distributive over ·: $(x \cdot y) = (x \cdot y) + (x \cdot z)$
4-(b) + is distributive over ·: $(x \cdot y) = (x \cdot y) \cdot (x \cdot z)$

- § 5. For every element $x \in B$, there exists an element $x' \in B$ $\chi = \mathcal{T}$ (the complement of x) s.t. (a) x + x' = 1 and (b) $x \cdot x' = 0$
- 6. There exists at least two elements $x, y \in B$ s.t. $x \neq y$

⇒ do not include the associative law → this law holds for Boolean Algebra

- 4-(b) is valid for Boolean algebra, not for ordinary algebra
- Boolean algebra does not have additive or multiplicative inverse.

Boolean vs. Ordinary algebra

- Ordinary algebra : real number → infinite
 - o Complement(보수) is not available in ordinary algebra.
- Two-valued Boolean algebra: only two value {0,1}
 - Exatcly same as the AND, OR(Binary), and NOT(Unary)
 - Huntington postulates are valid for {0,1}
 - 1. closure 0.0+0=0 0.0+0=1 0.0=0.1=02. 진리표에 의해서 증명 가능
 - 3. The commutative law is obvious
 - 4. The distributive law holds true for two operator: from the truth tables

- 5. Form the complement table
- 6. is satisfied cuz only two values exist. $\rightarrow o_1$

Basic Theorems and Properties of Boolean Algebra

Duality(쌍대성): the dual of any equation which is true is always true

Postulates and Theorems of Boolean Alaebra

Postulate 2	(a)	x + 0 = x	(b)	$x \cdot 1 = x$
Postulate 5	(a)	x + x' = 1	(b)	$x \cdot x' = 0$
Theorem 1	(a)	x + x = x	(b)	$x \cdot x = x$
Theorem 2	(a)	x + 1 = 1 Duality	(b)	$x \cdot 0 = 0$
Theorem 3, involution		(x')' = x		
Postulate 3, commutative	(a)	x + y = y + x	(b)	xy = yx
Theorem 4 associative	(a)	x + (y + z) = (x + y) + z	(b)	x(yz) = (xy)z
Postulate 4, distributive	(a)	x(y+z) = xy + xz	(b)	x + yz = (x + y)(x + z)
Theorem 5, DeMorgan	(a)	(x + y)' = x'y'	(b)	(xy)' = x' + y'
Theorem 6, absorption	(a)	x + xy = x	(b)	x(x+y)=x

⇒ 진리표를 통해 증명도 가능

Some more laws

1.
$$x + xy = x \Rightarrow x((+4) = x$$

2.
$$xy + xy' = x \rightarrow \chi (y+y') = \chi$$
 8. $(x+y)(z+x'y)$

3.
$$x + x'y = x + y \rightarrow (\chi + \chi')(\chi + \chi') = \chi + \chi$$

4.
$$x(x+y) = x$$
 $\rightarrow xx + xy = x + xy = x$

3.
$$x + x'y = x + y \rightarrow (x + x')(x + y') = x + y$$

4. $x(x+y) = x \rightarrow xx + xy = x + xy = x$
5. $(x+y)(x+y') = x \rightarrow x + (y + y') = x$
6. $x(x'+y) = xy \rightarrow xx' + xy = xy$

$$= (x+y)(x+y') + x'$$

$$= (x+y)(x+y') + x'$$

$$= (x+y)(x+y') + x'$$

6.
$$x(x'+y) = xy \rightarrow \chi \chi' + \chi \gamma = \chi \gamma$$

7.
$$xy + x'z + yz = xy + x'z$$

8.
$$(x+y)(x'+z)(y+z) = (x+y)(x'+z)$$

$$\begin{array}{ll}
\overrightarrow{A} \cdot \overrightarrow{A} \cdot \overrightarrow{A} \cdot \overrightarrow{A} + \overrightarrow{A} \cdot \overrightarrow{A} \cdot \overrightarrow{A} \cdot \overrightarrow{A} + \overrightarrow{A} \cdot \overrightarrow{A} \cdot \overrightarrow{A} \cdot \overrightarrow{A} \cdot \overrightarrow{A} + \overrightarrow{A} \cdot \overrightarrow{A} \cdot$$

Simplication of Boolean Function

$$F_2 = x'y'z + x'yz + xy'$$

$$= x'z(y'+y) + xy'$$

$$= x'z + xy'$$

등가

- ⇒ two diffrent but equivalent circuits
- ⇒ Fewer gates is "better"
 - cost less
 - less power
- ⇒ fewer gate 찾기 위해 work 필요

Algebraic Manipulation

- x(x' + y) = xx' + xy = 0 + xy = xy
- x + x'y = (x + x')(x + y) = 1(x + y) = x + y
- (x + y)(x + y') = x + xy + xy' + yy' = x(1 + y + y') = x
- - = xy(1+z) + x'z(1+y)
 - = xy + x'z
- (x+y)(x'+z)(y+z) = (x+y)(x'+z), by duality from function 4

Complement of a Function

- f(x, y, z) = x(y'z + yz)
- De Morgan's low

$$f'(x,y,z) = (x(y'z' + yz))'$$
 [complement both sides]
 $= x' + (y'z' + yz)'$ [because $(xy)' = x' + y'$]
 $= x' + (y'z')'(yz)'$ [because $(x + y)' = x'y'$]
 $= x' + (y + z)(y' + z')$ [because $(xy)' = x' + y'$, twice]

$$\Rightarrow$$
 (x+y)' = x'y' (cuz the truth table)

			0
x	y	x + y	(x + y)
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

x	у	x'	y'	(x'y')
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
1	1	0	0	0

6

· dual of the func

 $\mathsf{lf}\, f(x,y,z) \,=\, x(y'z'\,+\,yz)$

- Holet 建度的小化产品 0, 02 光分号 (by De Morgan's Law)
- The dual of f is x + (y' + z')(y + z)
- Then complementing each literal gives x' + (y + z)(y' + z')
- So, f'(x, y, z) = x' + (y + z)(y' + z') $f(x, y, z) = \chi \left(y'_{z+y}z \right)$
- In general,

Minterms 2位か

- a special product(AND) of literals (논리곱)
- n개의 variable → 2의 n승 개의 minterms

Shorthand Is true when... Minterm m_0 x = 0, y = 0, z = 0x'y'z x = 0, y = 0, z = 1 \overline{m}_1 x = 0, y = 1, z = 0x'yz' m_2 x'yz m_3 xy'z' m_4 x = 1 y = 0 z = 1xy'z m_5 x = 1, y = 1, z = 0 m_6 SH HAIZIX

Sum of Minterms Form

- Every function can be written as a sum of minterms
- function output is 1 되는 minterm들의 합으로 function을 표현 가능

- o dual idea(P → S, two (evel circuits)
 - POS expression contains : only AND operations at the "outermost" ly

ex).
$$f(x, y, z) = \gamma'(x+y+z')(x+z)$$

POS expression can be implemented with two-level circuits.

Maxterms (↔ Minterms)

- a sum of literals
- n개의 variable → 2의 n승 개의 maxterms

Product of maxterms form

- Every function can be written as a unique product of maxterms.
- ∘ function output is 0 되는 maxterm들의 합으로 function을 표현 가능 wintermal 반대 !!

	x	y	Z	f(x, y, z)	f'(x, y, z)
	0	0	0	1	0
	0	0	1	1	0
	0	1	0	1	0
	0	1	1	1	0
	1	0	0	0	1
,	1	0	1	0	1
	1	1	0	1	0
	1	1	1_	0	1

$$f = (x' + y + z)(x' + y + z')(x' + y' + z')$$

$$= M_4 M_5 M_7$$

$$= \prod (4,5,7)$$

$$f' = (x + y + z)(x + y + z')(x + y' + z)$$

$$(x + y' + z')(x' + y' + z)$$

$$= M_0 M_1 M_2 M_3 M_6$$

$$= \prod (0,1,2,3,6)$$

$$f' \text{ contains all the maxterms not in } f$$

· Minterms and maxterms are related

∘ Any minterm m_i 은 maxterm M_i의 complement

Minterms and Maxterms for Three Binary Variables

			M	interms	Maxte	erms
x	x y	z	Term	Designation	Term	Designation
0	0	0	x'y'z'	m_0	x + y + z	M_0
0	0	1	x'y'z	m_1	x + y + z'	M_1
0	1	0	x'yz'	m_2	x + y' + z	M_2
0	1	1	x'yz	m_3	x + y' + z'	M_3
1	0	0	xy'z'	m_4 0	x' + y + z	(M_4) 0
1	0	1	xy'z	m_5	x' + y + z'	M_5
1	1	0	xyz'	m_6	x' + y' + z	M_6 (
1	1	1	xyz	m_7	x' + y' + z'	M_7 \bigcirc
			, l		<u> </u>	
			True		False	
$' = M_{\perp}$	_4		(104)		101110	

Coverting between standard forms(POS, SOP)

$$f = \Sigma(0, 1, 2, 3, 6)$$

= $\prod (4, 5, 7)$

→ minterm에서 안 나온 number을 maxterm으로 converting

proof:

$$f = \Sigma(0,1,2,3,6)$$

$$= \Sigma(4,5,7)$$

$$= m_4 + m_5 + m_7$$

$$f = (m_4 + m_5 + m_7)'$$

$$= m_4' m_5' m_7'$$

$$= M_4 M_5 M_7$$

$$= \prod (4,5,7)$$

[DeMorgan's law] [By the previous page]

Standard forms of expressions

- 비용 적게 효율적으로 회로 제작 가능(lv 단계의 수가 시간을 결정)
- 항상 Delay through gates.
- SOP expression contains
 - only OR operations at the "outermost" level.
 - o using a two-level circuit 사용 (lv1. and + lv2. or)
 - NOT gates are implicit
 - literals are reused
- POS expression contains → duality

Standard Forms $\Rightarrow \text{ U.G.} \Rightarrow \text{$

Other Logic Operations

Boolean Expressions for the 16 Functions of Two Variables

Boolean Functions	Operator Symbol	Name	Comments
$F_0 = 0$		Null	Binary constant 0
$F_1 = xy$	$x \cdot y$	AND	x and y
$F_2 = xy'$	x/y	Inhibition	x, but not y
$F_3 = x$		Transfer	X
$F_4 = x'y$	y/x	Inhibition	y, but not x
$F_5 = y$		Transfer	y
$F_6 = xy' + x'y$	$x \oplus y$	Exclusive-OR	x or y, but not both
$F_7 = x + y$	x + y	OR	x or y
$F_8 = (x + y)'$	$x \downarrow y$	NOR	Not-OR
$F_9 = xy + x'y'$	$(x \oplus y)'$	Equivalence	x equals y
$F_{10} = y'$	y'	Complement	Not y
$F_{11} = x + y'$	$x \subset y$	Implication	If y , then x
$F_{12} = x'$	x'	Complement	Not <i>x</i>
$F_{13} = x' + y$	$x\supset y$	Implication	If x , then y
$F_{14} = (xy)'$	$x \uparrow y$	NAND	Not-AND
$F_{15} = 1$		Identity	Binary constant 1

Truth Tables for the 16 Functions of Two Binary Variables

X	y	Fo	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇	F ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
0 0 1 1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Digital Logic Gate

Digital Logic Gate

Name	Graphic symbol	Algebraic function	Truth table	
AND	<i>x</i>	$F = x \cdot y$	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$	
OR	$x \longrightarrow F$	F = x + y	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$	
Inverter	x— F	F = x'	$ \begin{array}{c cc} x & F \\ \hline 0 & 1 \\ 1 & 0 \end{array} $	
Buffer	x— F	F = x	$ \begin{array}{c cc} x & F \\ \hline 0 & 0 \\ 1 & 1 \end{array} $	
NAND	x y F	F = (xy)'	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
NOR	x y F	F = (x + y)'	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \end{array}$	
Exclusive-OR (XOR)	x y F	$F = xy' + x'y$ $= x \oplus y$	x y F 0 0 0 0 1 1 1 0 1 1 1 0	
Exclusive-NOR or equivalence	x y F	$F = xy + x'y'$ $= (x \oplus y)'$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-

XOR gates ⇒ using 2 input gates

positive and negative logic

· positive logic

=> positive logic=2 to.

Integrated Circuits(IC)

: 집적회로 → 어떻게 분류?

Integrated Circuits (IC) 정보

- · Levels → the busing som sit character (gate) el +
 - · SSI CONTURE CHIEF
 - MSI: 10~1,000 gates 1000H UR
 - LSI: thousands of gates 🖼 প্র
 - VLSI: hundreds thousands of gates ***
- Digital Logic Families → প্রা (মা) লা অধ্বর্ধা ধর্মান
 - TTL: transistor-transistor logic
 - ECL: emitter-coupled logic
 - MOS: Metal-oxide semiconductor
 - CMOS: Complementary metal-oxide semiconductor
- References
 Fan-out → ছাল চাই ক্ষাইন মুন (০০০)
 Fan-in
 Power dissipation
 Propagation delay
 Noise margin

 IMA তেন্দের মহন্ত কৈ

 IMA তেন্দের মহন্ত কি

 IM