

A parallel plate capacitor with circular plates of radius R is driven by a harmonic voltage source of frequency ω . If $R\omega=c$, the ratio of the maximum values of electrical energy and magnetic energy is

Ques2.

Consider the \vec{E} and \vec{B} fields associated with a He-Ne laser with 2 mW power ($\lambda=632.8$ nm) propagating in vacuum. The beam cross-section is 0.5 mm 2 . The amplitude of the electric field is _______kV/m. Round off the answer to two decimal places.

Ques3.

An electromagnetic wave propagating in vacuum is described by the following expression $\vec{E} = E_0 \cos(\omega t - 300y + 400z)\hat{x}$. Assuming all quantities are in SI units, the unit propagation vector \hat{k} is given by $\hat{z} = \hat{z}$. The frequency in (GHz) is $\hat{z} = \hat{z}$. Provide all answers only up to first decimal place.

Ques4.(BONUS)

The electric field of a linearly polarized electromagnetic wave propagating in vacuum is given by $\vec{E}=E_0\cos(\omega t-2x+4y-4z)$, where the unit vector along \vec{E} is $\hat{n}=\frac{1}{3}(\hat{x}+\hat{y}-\hat{z})$. The unit vector along the direction of the magnetic field is $\frac{1}{\sqrt{3}}(\hat{x}+\hat{y}-\hat{z})$. Expected Solutions: 0.33 \hat{z}).