MA2001 LINEAR ALGEBRA

ORTHOGONALITY

National University of Singapore Department of Mathematics

The Dot Product	2
Pythagoras' Theorem	
Angle between Vectors	6
Definitions	
Dot Product and Matrix Multiplication	11
Properties	13
Orthogonal and Orthonormal Bases	16
Definitions	17
Examples	
Properties	24
Examples	28
Orthogonality	31
Projection	34
Gram-Schmidt Process	39
Best Approximations	52
Projection	53
Best Approximation	54
Least Squares Solution	58
Methodology	65
Projection	72
Orthogonal Matrices	76
Orthonormal Sets	77
Definition	79
Properties	84
Examples	
Classification	96

Pythagoras' Theorem

- Pythagoras' Theorem: In a right-angled triangle:
 - \circ Let c be the length of the **hypotenuse**, and let a and b be the lengths of the other two sides.

Then $a^2 + b^2 = c^2$.

• **Proof**. Consider the square of side a + b.

3 / 105

Pythagoras' Theorem

• Cosine rule: $c^2 = a^2 + b^2 - 2ab \cos \theta$.

 $\circ \quad a^2 = h^2 + d^2 \text{ and } c^2 = h^2 + (b-d)^2.$

$$c^{2} = h^{2} + (b - d)^{2}$$

$$= (a^{2} - d^{2}) + (b - d)^{2}$$

$$= a^{2} - d^{2} + (b^{2} - 2bd + d^{2})$$

$$= a^{2} + b^{2} - 2bd$$

$$= a^{2} + b^{2} - 2b(a\cos\theta).$$

Pythagoras' Theorem

• **Definition.** Let $v = (v_1, v_2) \in \mathbb{R}^2$.

 \circ The **length** (or the **norm**) of $m{v}$ is $\|m{v}\| = \sqrt{v_1^2 + v_2^2}$.

Let ${\boldsymbol u}=(u_1,u_2)$ and ${\boldsymbol v}=(v_1,v_2)$ be vectors in $\mathbb{R}^2.$

- \circ The **distance** between u and v is
 - $d(\boldsymbol{u}, \boldsymbol{v}) = \|\boldsymbol{u} \boldsymbol{v}\| = \sqrt{(u_1 v_1)^2 + (u_2 v_2)^2}$.

5 / 105

Angle between Vectors

• When $\boldsymbol{u}=(u_1,u_2)$ and $\boldsymbol{v}=(v_1,v_2)$ are perpendicular?

 ${m u}=(u_1,u_2)$ and ${m v}=(v_1,v_2)$ are perpendicular

$$\Leftrightarrow \|\boldsymbol{u}\|^2 + \|\boldsymbol{v}\|^2 = \|\boldsymbol{u} - \boldsymbol{v}\|^2$$

$$\Leftrightarrow (u_1^2 + u_2^2) + (v_1^2 + v_2^2) = (u_1 - v_1)^2 + (u_2 - v_2)^2$$

$$\Leftrightarrow u_1^2 + u_2^2 + v_1^2 + v_2^2 = u_1^2 + v_1^2 - 2u_1v_1 + u_2^2 + v_2^2 - 2u_2v_2$$

$$\Leftrightarrow 2u_1v_1 + 2u_2v_2 = 0$$

$$\Leftrightarrow u_1v_1 + u_2v_2 = 0.$$

Angle between Vectors

• Let θ be the angle between $\boldsymbol{u}=(u_1,u_2)$ and $\boldsymbol{v}=(v_1,v_2)$.

Recall the cosine rule: $c^2 = a^2 + b^2 - 2ab\cos\theta$.

 $\circ \| \boldsymbol{u} - \boldsymbol{v} \|^2 = \| \boldsymbol{u} \|^2 + \| \boldsymbol{v} \|^2 - 2 \| \boldsymbol{u} \| \| \boldsymbol{v} \| \cos \theta.$

$$\cos \theta = \frac{\|\boldsymbol{u}\|^2 + \|\boldsymbol{v}\|^2 - \|\boldsymbol{u} - \boldsymbol{v}\|^2}{2\|\boldsymbol{u}\|\|\boldsymbol{v}\|}$$
$$= \frac{2(u_1v_1 + u_2v_2)}{2\|\boldsymbol{u}\|\|\boldsymbol{v}\|} = \frac{\boldsymbol{u}_1\boldsymbol{v}_1 + \boldsymbol{u}_2\boldsymbol{v}_2}{\|\boldsymbol{u}\|\|\boldsymbol{v}\|}.$$

7 / 105

Definitions

- Definition. Let $u=(u_1,u_2), v=(v_1,v_2)\in\mathbb{R}^2$.
 - \circ Define the **dot product** (**inner product**) of u and v:
 - $u \cdot v = u_1 v_1 + u_2 v_2$ $(u \cdot v \in \mathbb{R})$ runder, not a vector.

Then the angle θ between $m{u}$ and $m{v}$ is given by

$$heta = \cos^{-1}\left(rac{oldsymbol{u}\cdotoldsymbol{v}}{\|oldsymbol{u}\|\|oldsymbol{v}\|}
ight), \ \ oldsymbol{u}
eq 0, v
eq 0.$$

• Properties:

$$\circ \| \boldsymbol{u} \| = \sqrt{u_1^2 + u_2^2} = \sqrt{u_1 u_1 + u_2 u_2} = \sqrt{\boldsymbol{u} \cdot \boldsymbol{u}}$$
 . \boldsymbol{z} (In)

 $\circ \ \ m{u} \cdot m{v} = 0 \Leftrightarrow m{u} \perp m{v}$ ($m{u}$ and $m{v}$ are perpendicular).

$$\circ \quad -1 \leq \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|} \leq 1 \Rightarrow |\boldsymbol{u} \cdot \boldsymbol{v}| \leq \|\boldsymbol{u}\| \|\boldsymbol{v}\|.$$

$$\circ \quad \boldsymbol{u} \cdot \boldsymbol{v} = \underbrace{u_1 v_1 + u_2 v_2 = \begin{pmatrix} u_1 & u_2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \boldsymbol{u} \boldsymbol{v}^{\mathrm{T}}.$$

8 / 105

matrix multiplication.

Definitions

- Let $\boldsymbol{u}=(u_1,\ldots,u_n), \boldsymbol{v}=(v_1,\ldots,v_n)\in\mathbb{R}^n$.
 - \circ The **dot product** (**inner product**) of u and v is
 - $\boldsymbol{u} \cdot \boldsymbol{v} = u_1 v_1 + \cdots + u_n v_n$
 - \circ The norm (length) of $oldsymbol{v}$ is
 - $\|v\| = \sqrt{v_1^2 + \cdots + v_n^2}$.
 - o v is called a unit vector if ||v|| = 1.
 - \circ The **distance** between u and v is

•
$$d(u, v) = ||u - v|| = \sqrt{\sum_{i=1}^{n} (u_i - v_i)^2}$$
.

- \circ The **angle** between u and v (u
 eq 0 and v
 eq 0) is
 - $\theta = \cos^{-1}\left(\frac{\boldsymbol{u}\cdot\boldsymbol{v}}{\|\boldsymbol{u}\|\|\boldsymbol{v}\|}\right), \quad 0 \le \theta \le \pi.$

9/105

1 n-v1 = 1\u11 1\V1

Examples

• Let (1, -2, 2, -1) and (0, 2, 0).

$$\mathbf{u} \cdot \mathbf{v} = 1 \cdot 1 + (-2) \cdot 0 + 2 \cdot 2 + (-1) \cdot 0 = 5.$$

$$\|v\| = \sqrt{1^2 + 0^2 + 2^2 + 0^2} = \sqrt{5}.$$

$$o \ d(\boldsymbol{u}, \boldsymbol{v}) = \|\boldsymbol{u} - \boldsymbol{v}\| = \|(0, -2, 0, -1)\|.$$

•
$$d(\mathbf{u}, \mathbf{v}) = \sqrt{0^2 + (-2)^2 + 0^2 + (-1)^2} = \sqrt{5}.$$

 \circ Let θ be the angle between u and v.

•
$$\cos \theta = \frac{u \cdot v}{\|u\| \|v\|} = \frac{5}{\sqrt{10}\sqrt{5}} = \frac{1}{\sqrt{2}}.$$

•
$$\cos \theta = \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|} = \frac{5}{\sqrt{10}\sqrt{5}} = \frac{1}{\sqrt{2}}.$$

• $\theta = \cos^{-1}\left(\frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|}\right) = \cos^{-1}\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}.$

10 / 105

- translate to 12.

Dot Product and Matrix Multiplication

- Let u and v be vectors in \mathbb{R}^n .
 - Suppose they are viewed as row vectors:

•
$$u = (u_1, \ldots, u_n), v = (v_1, \ldots, v_n).$$

$$\circ \quad \boldsymbol{u} \cdot \boldsymbol{v} = (u_1, \dots, u_n) \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = \boldsymbol{u} \boldsymbol{v}^{\mathrm{T}} \cdot \boldsymbol{\varepsilon} \, \mathbb{R}.$$

Suppose they are viewed as column vectors:

•
$$\boldsymbol{u} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}, \boldsymbol{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}.$$

11 / 105

Dot Product and Matrix Multiplication

• Let \boldsymbol{A} be an $m \times n$ matrix and \boldsymbol{B} an $n \times p$ matrix.

$$\circ$$
 Write $m{A} = egin{pmatrix} m{a}_1^{
m T} \ dots \ m{a}_m^{
m T} \end{pmatrix}$ and $m{B} = m{b}_1 & \cdots & m{b}_p \end{pmatrix}$,

 $oldsymbol{a}_1,\ldots,oldsymbol{a}_m,oldsymbol{b}_1,\ldots,oldsymbol{b}_p$ are column vectors in $\mathbb{R}^n.$

- \circ Recall that the (i,j)-entry of $m{A}m{B}$ is $m{a}_i^{\mathrm{T}}m{b}_j$.
 - It is also given by $a_i \cdot b_j$.

Properties

- Theorem. Let $u, v, w \in \mathbb{R}^n$ and $c \in \mathbb{R}$.
 - 1. $\boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{v} \cdot \boldsymbol{u}$.
 - 2. $(u+v)\cdot w=u\cdot w+v\cdot w$. Communities,

$$w \cdot (u + v) = w \cdot u + w \cdot v.$$

- 3. $(c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v})$.
- 4. ||cv|| = |c|||v||.
- 5. $\mathbf{v} \cdot \mathbf{v} \ge 0$ and $\mathbf{v} \cdot \mathbf{v} = 0 \Leftrightarrow \mathbf{v} = \mathbf{0}$.
- Theorem. Let $u, v, w \in \mathbb{R}^n$.
 - 1. $|u \cdot v| \le ||u|| \, ||v||$. (Cauchy-Schwarz inequality)
 - 2. $\|u+v\| \leq \|u\| + \|v\|$. (Triangle inequality)
 - 3. $d(u, w) \le d(u, v) + d(v, w)$. (Triangle inequality)

13 / 105

Properties

- **Proof.** We prove that $\mathbf{v} \cdot \mathbf{v} \ge 0$ & $\mathbf{v} \cdot \mathbf{v} = 0 \Leftrightarrow \mathbf{v} = \mathbf{0}$.
 - \circ Let $\boldsymbol{v}=(v_1,v_2,\ldots,v_n)$, where $v_i\in\mathbb{R}$.
 - $\mathbf{v} \cdot \mathbf{v} = v_1^2 + v_2^2 + \dots + v_n^2 \ge 0.$
 - o For the second assertion:

$$\mathbf{v} \cdot \mathbf{v} = 0 \Leftrightarrow v_1^2 + v_2^2 + \dots + v_n^2 = 0$$
$$\Leftrightarrow v_1 = v_2 = \dots = v_n = 0$$
$$\Leftrightarrow \mathbf{v} = (0, 0, \dots, 0) = \mathbf{0}.$$

- Remark. Note that $\|v\| = \sqrt{v_1^2 + \dots + v_n^2} = \sqrt{v \cdot v}$.
 - $\circ \quad \|\boldsymbol{v}\| \ge 0 \text{ and } \|\boldsymbol{v}\| = 0 \Leftrightarrow \boldsymbol{v} = \boldsymbol{0}.$
- The proofs of other parts are left as exercises (Exercises 5.3 and 5.4).

Properties

ullet Example (Ex. 2.24g). If $AA^{
m T}=0$, then A=0.

Proof. Let
$$m{A} = egin{pmatrix} m{a}_1 \ dots \ m{a}_m \end{pmatrix}$$
 , $m{a}_i$ is the i th row of $m{A}$.

 $\circ ~~m{A}^{
m T} = ig(m{a}_1^{
m T} ~~ \cdots ~~m{a}_m^{
m T}ig).$ Then $m{A}m{A}^{
m T}$ has the form

$$oldsymbol{A}^{\mathrm{T}} = oldsymbol{\left(a_1^{\mathrm{T}} \quad \cdots \quad a_1 a_m^{\mathrm{T}} \right)}{a_1 a_1^{\mathrm{T}} \quad \cdots \quad a_1 a_m^{\mathrm{T}}} = egin{pmatrix} a_1 \cdot a_1 & \cdots & a_1 \cdot a_m \ dots & \ddots & dots \ a_m a_1^{\mathrm{T}} & \cdots & a_m a_m^{\mathrm{T}} \end{pmatrix} = egin{pmatrix} a_1 \cdot a_1 & \cdots & a_1 \cdot a_m \ dots & \ddots & dots \ a_m \cdot a_1 & \cdots & a_m \cdot a_m \end{pmatrix} \ egin{pmatrix} AA^{\mathrm{T}} = \mathbf{0} \Rightarrow a_1 \cdot a_1 = \cdots = a_m \cdot a_m = 0 \ \Leftrightarrow a_1 = \cdots = a_m = \mathbf{0} \ \Leftrightarrow A = \mathbf{0}. \end{pmatrix}$$

Exercise. $tr(\mathbf{A}\mathbf{A}^T) = 0 \Leftrightarrow \mathbf{A} = \mathbf{0}$.

15 / 105

Orthogonal and Orthonormal Bases

16 / 105

Definitions

- Let u and v be vectors in \mathbb{R}^n , and let θ (in radian) be the angle between u and v.
 - Suppose $u \neq 0, v \neq 0$. Then $||u|| \neq 0, ||v|| \neq 0$.

$$\theta = \frac{\pi}{2} \Leftrightarrow \cos \theta = 0$$

$$\Leftrightarrow \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} = 0$$

$$\Leftrightarrow \mathbf{u} \cdot \mathbf{v} = 0.$$

- **Definition**. Let $u,v\in\mathbb{R}^n$. They are said to be orthogonal if
 - $\circ \quad \boxed{\boldsymbol{u} \cdot \boldsymbol{v} = 0} \text{ denoted by } \boldsymbol{u} \perp \boldsymbol{v}.$
- Example. Let $\mathbf{0} \in \mathbb{R}^n$ and $\mathbf{v} \in \mathbb{R}^n$. Then $\mathbf{0} \cdot \mathbf{v} = 0$.
 - \circ $\mathbf{0} \in \mathbb{R}^n$ is orthogonal to every vector $v \in \mathbb{R}^n$.

Definitions

ONE rectar tex is organizate

- **Definitions**. Let $S = \{v_1, \dots, v_k\}$ be a subset of \mathbb{R}^n .
 - \circ S is called **orthogonal** if every pair of distinct vectors in S are orthogonal:
 - $v_i \cdot v_j = 0$ for all $i \neq j$. (ic) out me the $\binom{\mathcal{U}}{2}$ times for \mathcal{U} vectors.
 - \circ S is called **orthonormal** if S is **orthogonal** and every vector in S is a <u>unit vector</u>.
 - $\mathbf{v}_i \cdot \mathbf{v}_j = \begin{cases} 0 & \text{if } i \neq j, \\ 1 & \text{if } i = j. \end{cases}$

- Remarks: $\sqrt{1 + \sqrt{1 + 1}} \sqrt{1 + 1} \sqrt{1 + 1 + 1} \sqrt{1 +$
 - \circ If S is orthonormal, then S is orthogonal.
 - \circ If S is orthogonal, then a subset of S is orthogonal.
 - \circ If S is orthonormal, then a subset of S is orthonormal.
 - o If S is orthogonal, then $S \cup \{0\}$ is also orthogonal.
 - If S is orthonormal, then $0 \notin S$

- Ochradiner to anal opper result.

Way raker in set must be mit rectors

18 / 105

Normalizing

- Let $S = \{u_1, u_2, \dots, u_k\}$ be an orthogonal set of nonzero vectors in \mathbb{R}^n ($u_i \cdot u_j = 0$ for all $i \neq j$).
 - \circ Set $oldsymbol{v}_1=rac{oldsymbol{u}_1}{\|oldsymbol{u}_1\|},oldsymbol{v}_2=rac{oldsymbol{u}_2}{\|oldsymbol{u}_2\|},\ldots,oldsymbol{v}_k=rac{oldsymbol{u}_k}{\|oldsymbol{u}_k\|}.$
 - $egin{aligned} \circ & oldsymbol{v}_i \cdot oldsymbol{v}_j = \left(rac{oldsymbol{u}_i}{\|oldsymbol{u}_i\|}
 ight) \cdot \left(rac{oldsymbol{u}_j}{\|oldsymbol{u}_j\|}
 ight) = rac{oldsymbol{u}_i \cdot oldsymbol{u}_j}{\|oldsymbol{u}_i\| \|oldsymbol{u}_j\|}. \end{aligned}$
 - If $i \neq j$, $\mathbf{v}_i \cdot \mathbf{v}_j = \frac{\mathbf{u}_i \cdot \mathbf{u}_j}{\|\mathbf{u}_i\| \|\mathbf{u}_j\|} = 0$.
 - If i=j, $v_i\cdot v_j=rac{oldsymbol{u}_i\cdot oldsymbol{u}_i}{\|oldsymbol{u}_i\|\,\|oldsymbol{u}_i\|}=rac{\|oldsymbol{u}_i\|^2}{\|oldsymbol{u}_i\|^2}=1.$
 - $\circ \quad \mathsf{Then} \ \{ {\boldsymbol v}_1, {\boldsymbol v}_2, \dots, {\boldsymbol v}_k \} \ \mathsf{is \ an} \ \mathsf{\underline{orthonormal}} \ \mathsf{set}.$
- The process of converting an **orthogonal** set of **nonzero** vectors to an **orthonormal** set of vectors, $u_i \mapsto v_i = \frac{u_i}{\|u_i\|}$, is called **normalizing**.

• Let $u_1 = (1, 2, 2, -1)$ and $u_2 = (1, 1, -1, 1)$.

$$u_1 \cdot u_2 = 1 \cdot 3 + 2 \cdot 1 + 2 \cdot (-1) + (-1) \cdot 1 = 0.$$

Then $\{ oldsymbol{u}_1, oldsymbol{u}_2 \}$ is an orthogonal set in $\mathbb{R}^4.$

•
$$v_1 = \frac{u_1}{\|u_1\|} = \frac{u_1}{\sqrt{10}} = \left(\frac{1}{\sqrt{10}}, \frac{2}{\sqrt{10}}, \frac{2}{\sqrt{10}}, -\frac{1}{\sqrt{10}}\right).$$

•
$$v_2 = \frac{u_2}{\|u_2\|} = \frac{u_2}{\sqrt{4}} = (\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, \frac{1}{2}).$$

Then $\{v_1, v_2\}$ is an orthonormal set in \mathbb{R}^4 .

20 / 105

Examples

• Let $\mathbf{u}_1 = (2, 0, 0)$, $\mathbf{u}_2 = (0, 1, 1)$, $\mathbf{u}_3 = (0, 1, -1)$.

$$u_1 \cdot u_2 = 2 \cdot 0 + 0 \cdot 1 + 0 \cdot 1 = 0.$$

$$\bullet \ \mathbf{u}_1 \cdot \mathbf{u}_3 = 2 \cdot 0 + 0 \cdot 1 + 0 \cdot (-1) = 0.$$

$$\bullet \ \ \boldsymbol{u}_2 \cdot \boldsymbol{u}_3 = 0 \cdot 0 + 1 \cdot 1 + 1 \cdot (-1) = 0.$$

• Then $\{u_1, u_2, u_3\}$ is an orthogonal set in \mathbb{R}^3 .

•
$$v_1 = \frac{u_1}{\|u_1\|} = \frac{u_1}{2} = (1, 0, 0).$$

•
$$v_2 = \frac{u_2}{\|u_2\|} = \frac{u_2}{\sqrt{2}} = \left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right).$$

•
$$v_2 = \frac{u_2}{\|u_2\|} = \frac{u_2}{\sqrt{2}} = \left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right).$$

• $v_3 = \frac{u_3}{\|u_3\|} = \frac{u_3}{\sqrt{2}} = \left(0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right).$

Then $\{oldsymbol{v}_1,oldsymbol{v}_2,oldsymbol{v}_3\}$ is an orthonormal set in $\mathbb{R}^3.$

• Let $\{oldsymbol{v}_1,\dots,oldsymbol{v}_k\}$ (column vectors) be a subset of \mathbb{R}^n .

$$\circ$$
 Let $m{A} = egin{pmatrix} m{v}_1 & \cdots & m{v}_k \end{pmatrix}$. Then $m{A}^{
m T} = egin{pmatrix} m{v}_1^{
m T} \ dots \ m{v}_k^{
m T} \end{pmatrix}$.

$$\bullet \quad \boldsymbol{A}^{\mathrm{T}}\boldsymbol{A} = \begin{pmatrix} \boldsymbol{v}_1 \cdot \boldsymbol{v}_1 & \cdots & \boldsymbol{v}_1 \cdot \boldsymbol{v}_k \\ \vdots & \ddots & \vdots \\ \boldsymbol{v}_k \cdot \boldsymbol{v}_1 & \cdots & \boldsymbol{v}_k \cdot \boldsymbol{v}_k \end{pmatrix} = (\boldsymbol{v}_i \cdot \boldsymbol{v}_j)_{k \times k}.$$

 $\{oldsymbol{v}_1,\dots,oldsymbol{v}_k\}$ is orthogonal $\Leftrightarrow oldsymbol{v}_i\cdotoldsymbol{v}_j=0$ for all i
eq j $\Leftrightarrow oldsymbol{A}^{\mathrm{T}}oldsymbol{A}$ is diagonal.

$$\{m{v}_1,\dots,m{v}_k\}$$
 is orthonormal $\Leftrightarrow m{v}_i\cdotm{v}_j=\left\{egin{array}{ll} 0 & ext{if } i
eq j, \ 1 & ext{if } i=j, \ \ & m{A}^{\mathrm{T}}m{A}=m{I}_k. \end{array}
ight.$

22 / 105

Examples

- Consider the standard basis $E = \{e_1, e_2, \dots, e_n\}$ for \mathbb{R}^n , where e_i is the (column) vector of length n whose ith coordinate is 1 and 0 elsewhere.
 - \circ Let $oldsymbol{A} = egin{pmatrix} oldsymbol{e}_1 & oldsymbol{e}_2 & \cdots & oldsymbol{e}_n \end{pmatrix}$. Then $oldsymbol{A} = oldsymbol{I}_n$.
 - $oldsymbol{A}^{\mathrm{T}}oldsymbol{A} = oldsymbol{I}_n^{\mathrm{T}}oldsymbol{I}_n = oldsymbol{I}_noldsymbol{I}_n = oldsymbol{I}_n.$

Hence, $E = \{e_1, e_2, \dots, e_n\}$ is an orthonormal set.

- ullet Let $\{oldsymbol{u}_1,oldsymbol{u}_2,\ldots,oldsymbol{u}_n\}$ be an orthonormal subset of \mathbb{R}^n .
 - \circ Let $oldsymbol{A} = egin{pmatrix} oldsymbol{u}_1 & oldsymbol{u}_2 & \cdots & oldsymbol{u}_n \end{pmatrix}$. Then
 - $m{A}^{ ext{T}}m{A}=m{I}_n\Rightarrow m{A}$ is invertible.
 - $\therefore \{ oldsymbol{u}_1, oldsymbol{u}_2, \dots, oldsymbol{u}_n \}$ is a basis for \mathbb{R}^n .

Linear Independency

- Theorem. Let $S = \{v_1, v_2, \dots, v_k\}$ be an orthogonal set of nonzero vectors in \mathbb{R}^n .
 - \circ Then S is linearly independent.
- Proof. Suppose $c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2 + \cdots + c_k \boldsymbol{v}_k = \boldsymbol{0}$. For any i,

$$\mathbf{v}_{i} \cdot (c_{1}\mathbf{v}_{1} + c_{2}\mathbf{v}_{2} + \cdots + c_{k}\mathbf{v}_{k}) = \mathbf{v}_{i} \cdot \mathbf{0} = 0.$$

$$0 = \mathbf{v}_{i} \cdot (c_{1}\mathbf{v}_{1} + \mathbf{c}_{2}\mathbf{v}_{2} + \cdots + c_{k}\mathbf{v}_{k})$$

$$= \mathbf{v}_{i} \cdot (c_{1}\mathbf{v}_{1}) + \mathbf{v}_{i} \cdot (c_{2}\mathbf{v}_{2}) + \cdots + \mathbf{v}_{i} \cdot (c_{k}\mathbf{v}_{k})$$

$$= c_{1}(\mathbf{v}_{i} \cdot \mathbf{v}_{1}) + c_{2}(\mathbf{v}_{i} \cdot \mathbf{v}_{2}) + \cdots + c_{k}(\mathbf{v}_{i} \cdot \mathbf{v}_{k}).$$

- o Recall that $v_i \cdot v_j = 0$ if $i \neq j$. Then
 - the above equation is reduced to $c_i(\boldsymbol{v}_i \cdot \boldsymbol{v}_i) = 0$.
 - $\bullet \quad \boldsymbol{v}_i \neq \boldsymbol{0} \Rightarrow \boldsymbol{v}_i \cdot \boldsymbol{v}_i > 0 \Rightarrow c_i = 0.$
- \circ Therefore, S is linearly independent.

24 / 105

Definition

- Corollary. An orthonormal set is linearly independent.
- ullet **Definition**. Let S be a **basis** for a vector space.
 - \circ S is an **orthogonal basis** if it is **orthogonal**.
 - \circ S is an orthonormal basis if it is orthonormal.
- Remarks.
 - \circ Suppose S is a subset of a vector space V. To check if S is a basis for V, it suffices to check any two of the following three properties:
 - $|S| = \dim(V)$;
 - $\operatorname{span}(S) = V$;
 - ullet S is linearly independent.
 - \circ $\mathbf{0} \notin S \subseteq V$ is an orthogonal (orthonormal) basis:
 - $|S| = \dim V \text{ or } \operatorname{span}(S) = V$; and
 - \bullet S orthogonal (respectively, orthonormal).

Properties

- What are the advantages of orthogonal (orthonormal) basis?
- Let $S = \{u_1, \dots, u_k\}$ be a basis for a vector space V.
 - \circ For any $oldsymbol{w} \in V$, there exist unique c_1, \dots, c_k such that
 - $m{w} = c_1 m{u}_1 + \dots + c_k m{u}_k.$ $(m{w})_S = (c_1, \dots, c_k)$, coordinate vector relative to S.
 - \circ Solve the linear system $(oldsymbol{u}_1 \ \cdots \ oldsymbol{u}_k) \ [oldsymbol{w}]_S = oldsymbol{w}.$
 - \circ Suppose that S is an orthogonal basis. For any i,

$$\mathbf{w} \cdot \mathbf{u}_{i} = (c_{1}\mathbf{u}_{1} + \dots + c_{k}\mathbf{u}_{k}) \cdot \mathbf{u}_{i}$$

$$= c_{1}(\mathbf{u}_{1} \cdot \mathbf{u}_{i}) + \dots + c_{k}(\mathbf{u}_{k} \cdot \mathbf{u}_{i})$$

$$= c_{i}(\mathbf{u}_{i} \cdot \mathbf{u}_{i})$$

$$c_{i} = \frac{\mathbf{w} \cdot \mathbf{u}_{i}}{\mathbf{u}_{i} \cdot \mathbf{u}_{i}} = \frac{\mathbf{w} \cdot \mathbf{u}_{i}}{\|\mathbf{u}_{i}\|^{2}}.$$

26 / 105

Properties

ullet Theorem. Let $S=\{m{u}_1,\ldots,m{u}_k\}$ be an orthogonal basis for a vector space V. For any $m{w}\in V$,

$$\circ \quad (\boldsymbol{w})_S = \left(\frac{\boldsymbol{w} \cdot \boldsymbol{u}_1}{\boldsymbol{u}_1 \cdot \boldsymbol{u}_1}, \dots, \frac{\boldsymbol{w} \cdot \boldsymbol{u}_k}{\boldsymbol{u}_k \cdot \boldsymbol{u}_k}\right).$$

$$\circ \quad \boldsymbol{w} = \left(\frac{\boldsymbol{w} \cdot \boldsymbol{u}_1}{\boldsymbol{u}_1 \cdot \boldsymbol{u}_1}\right) \boldsymbol{u}_1 + \dots + \left(\frac{\boldsymbol{w} \cdot \boldsymbol{u}_k}{\boldsymbol{u}_k \cdot \boldsymbol{u}_k}\right) \boldsymbol{u}_k.$$

- ullet If $S=\{oldsymbol{v}_1,\ldots,oldsymbol{v}_n\}$ is an orthonormal basis, then
 - $\circ \quad \boldsymbol{v}_i \cdot \boldsymbol{v}_i = \|\boldsymbol{v}_i\|^2 = 1 \text{ for all } i = 1, \dots, n.$
- ullet Theorem. Let $S=\{m{v}_1,\ldots,m{v}_k\}$ be an orthonormal basis for a vector space V. For any $m{w}\in V$,
 - $\circ (\boldsymbol{w})_S = (\boldsymbol{w} \cdot \boldsymbol{v}_1, \dots, \boldsymbol{w} \cdot \boldsymbol{v}_k),$
 - $\circ \quad \boldsymbol{w} = (\boldsymbol{w} \cdot \boldsymbol{v}_1)\boldsymbol{v}_1 + \cdots + (\boldsymbol{w} \cdot \boldsymbol{v}_k)\boldsymbol{v}_k.$

- Let $S = \{v_1, v_2\}, v_1 = (\frac{3}{5}, \frac{4}{5}), v_2 = (\frac{4}{5}, -\frac{3}{5}).$
 - - $\mathbf{v}_1 \cdot \mathbf{v}_1 = (\frac{3}{5})^2 + (\frac{4}{5})^2 = 1.$
 - $\mathbf{v}_2 \cdot \mathbf{v}_2 = (\frac{4}{5})^2 + (-\frac{3}{5})^2 = 1.$
 - S is an orthonormal basis for \mathbb{R}^2 .
 - \circ For every $\boldsymbol{w}=(x,y)\in\mathbb{R}^2$.
 - $\mathbf{w} \cdot \mathbf{v}_1 = \frac{3x + 4y}{5}$; $\mathbf{w} \cdot \mathbf{v}_2 = \frac{4x 3y}{5}$.
 - $(\mathbf{w})_S = \left(\frac{3x+4y}{5}, \frac{4x-3y}{5}\right).$ $\mathbf{w} = \frac{3x+4y}{5}\mathbf{v}_1 + \frac{4x-3y}{5}\mathbf{v}_2.$

28 / 105

Examples

- Let $S = \{u_1, u_2, u_3\}$, where $u_1 = (1, 1, 1), u_2 = (1, 0, -1), u_3 = (1, -2, 1).$
 - \bullet $u_1 \cdot u_2 = 1 \cdot 1 + 1 \cdot 0 + 1 \cdot (-1) = 0.$
 - $u_1 \cdot u_3 = 1 \cdot 1 + 1 \cdot (-2) + 1 \cdot 1 = 0.$
 - $u_2 \cdot u_3 = 1 \cdot 1 + 0 \cdot (-2) + (-1) \cdot 1 = 0.$
 - S is an orthogonal basis for \mathbb{R}^3 .
 - \circ Let $\boldsymbol{w}=(1,-1,0)\in\mathbb{R}^3$. Then
 - $\frac{\boldsymbol{w} \cdot \boldsymbol{u}_1}{\boldsymbol{u}_1 \cdot \boldsymbol{u}_1} = \frac{1 \cdot 1 + (-1) \cdot 1 + 0 \cdot 1}{1^2 + 1^2 + 1^2} = 0.$
 - $\frac{\boldsymbol{w} \cdot \boldsymbol{u}_2}{\boldsymbol{u}_2 \cdot \boldsymbol{u}_2} = \frac{1 \cdot 1 + (-1) \cdot 0 + 0 \cdot (-1)}{1^2 + 0^2 + (-1)^2} = \frac{1}{2}.$
 - $\frac{\boldsymbol{w} \cdot \boldsymbol{u}_3}{\boldsymbol{u}_3 \cdot \boldsymbol{u}_3} = \frac{1 \cdot 1 + (-1) \cdot (-2) + 0 \cdot 1}{1^2 + (-2)^2 + 1} = \frac{1}{2}.$

• Let $S = \{u_1, u_2, u_3\}$, where

$$u_1 = (1, 1, 1), u_2 = (1, 0, -1), u_3 = (1, -2, 1).$$

 $\bullet \ \mathbf{u}_1 \cdot \mathbf{u}_2 = 1 \cdot 1 + 1 \cdot 0 + 1 \cdot (-1) = 0.$

$$\mathbf{u}_1 \cdot \mathbf{u}_3 = 1 \cdot 1 + 1 \cdot (-2) + 1 \cdot 1 = 0.$$

$$\mathbf{u}_1 \cdot \mathbf{u}_3 = 1 \cdot 1 + 1 \cdot (-2) + 1 \cdot 1 = 0.$$

 $\mathbf{u}_2 \cdot \mathbf{u}_3 = 1 \cdot 1 + 0 \cdot (-2) + (-1) \cdot 1 = 0.$

- S is an orthogonal basis for \mathbb{R}^3 .
- \circ Let $\boldsymbol{w}=(1,-1,0)\in\mathbb{R}^3$. Then

$$(\boldsymbol{w})_S = \left(\frac{\boldsymbol{w} \cdot \boldsymbol{u}_1}{\boldsymbol{u}_1 \cdot \boldsymbol{u}_1}, \frac{\boldsymbol{w} \cdot \boldsymbol{u}_2}{\boldsymbol{u}_2 \cdot \boldsymbol{u}_2}, \frac{\boldsymbol{w} \cdot \boldsymbol{u}_3}{\boldsymbol{u}_3 \cdot \boldsymbol{u}_3}\right)$$

= $\left(0, \frac{1}{2}, \frac{1}{2}\right)$.

• $\mathbf{w} = 0\mathbf{u}_1 + \frac{1}{2}\mathbf{u}_2 + \frac{1}{2}\mathbf{u}_3$.

30 / 105

Orthogonality

- **Definition**. Let V be a subspace of \mathbb{R}^n .
 - \circ $u \in \mathbb{R}^n$ is orthogonal (perpendicular) to V if u is orthogonal to every vector in V.
 - that is, $\boldsymbol{u} \cdot \boldsymbol{v} = 0$ for all $\boldsymbol{v} \in V$.
- **Example**. Let $V = \{(x, y, z) \mid ax + by + cz = 0\}$,

where a, b, c are not all zero.

- Let $\boldsymbol{n}=(a,b,c)$. Then for any $\boldsymbol{v}=(x,y,z)\in V$,
 - $n \cdot v = (a, b, c) \cdot (x, y, z) = ax + by + cz = 0$
- \circ n = (a, b, c) is a normal vector of the plane V.
- $\circ V = \{(x, y, z) \mid (a, b, c) \cdot (x, y, z) = 0\}.$
 - $V = \{ u \in \mathbb{R}^3 \mid n \cdot u = 0 \}.$

V is the set of all vectors orthogonal to $\mathbf{n} = (a, b, c)$.

Orthogonality

- Theorem. Let $V = \operatorname{span}\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_k\}$ be a vector space.
 - w is orthogonal to $V \Leftrightarrow w \cdot v_i = 0$ for all i = 1, ..., k.
 - (\Rightarrow) is trivial because $v_1, \ldots, v_k \in V$.
 - (\Leftarrow) Suppose $\boldsymbol{w} \cdot \boldsymbol{v}_i = 0$ for all $i = 1, \dots, k$.
 - For any $v \in V$, there exist $c_1, \ldots, c_k \in \mathbb{R}$ such that
 - $\mathbf{v} = c_1 \mathbf{v}_1 + \cdots + c_k \mathbf{v}_k$.

$$\mathbf{w} \cdot \mathbf{v} = \mathbf{w} \cdot (c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k)$$

= $c_1(\mathbf{w} \cdot \mathbf{v}_1) + \dots + c_k(\mathbf{w} \cdot \mathbf{v}_k)$
= $c_1 0 + \dots + c_k 0 = 0$.

- \circ **w** is orthogonal to all $v \in V$; so **w** is orthogonal to V.
- Exercise. Let W be a subspace of \mathbb{R}^n .
 - \circ Prove that $W^{\perp} = \{ v \in \mathbb{R}^n \mid v \text{ is orthogonal to } W \}$ is a subspace of \mathbb{R}^n .

32 / 105

Examples

• Example. Let $V = \operatorname{span}\{\boldsymbol{v}_1, \boldsymbol{v}_2\}$.

$$v_1 = (1, 1, 1, 0)$$
 and $v_2 = (0, -1, -1, 1)$.

Let
$$\boldsymbol{w} = (w, x, y, z) \in \mathbb{R}^4$$
. Then

 \boldsymbol{w} is orthogonal to V

 $\Leftrightarrow \boldsymbol{w}$ is orthogonal to \boldsymbol{v}_1 and \boldsymbol{v}_2

$$\Leftrightarrow \boldsymbol{w} \cdot \boldsymbol{v}_1 = \boldsymbol{w} \cdot \boldsymbol{v}_2 = 0$$

$$\Leftrightarrow \left\{ \begin{array}{ll} w+x+y&=0,\\ -x-y+z=0. \end{array} \right.$$

$$\Leftrightarrow (w, x, y, z) = (-t, -s + t, s, t).$$

 \circ **w** is orthogonal to V

$$\Leftrightarrow \boldsymbol{w} = (-t, -s + t, s, t) \text{ for some } s, t \in \mathbb{R}$$

$$\Leftrightarrow \mathbf{w} \in \text{span}\{(0, -1, 1, 0), (-1, 1, 0, 1)\}.$$

• Let $oldsymbol{u}$ and $oldsymbol{v}$ be vectors in \mathbb{R}^n , $oldsymbol{v}
eq oldsymbol{0}$.

- \circ Let p be the projection of u onto v. Then
 - $p = \|p\| \frac{v}{\|v\|}$ and $\|p\| = \|u\| \cos \theta$.

Then
$$oldsymbol{p} = \|oldsymbol{u}\| rac{oldsymbol{u} \cdot oldsymbol{v}}{\|oldsymbol{u}\| \|oldsymbol{v}\|} rac{oldsymbol{v}}{\|oldsymbol{v}\|} = \left(rac{oldsymbol{u} \cdot oldsymbol{v}}{oldsymbol{v} \cdot oldsymbol{v}}\right) oldsymbol{v}.$$

• If $m{v}$ is a unit vector, then $m{p} = (m{u} \cdot m{v}) m{v}$.

34 / 105

Projection

• Let V be a vector subspace of \mathbb{R}^n and $\boldsymbol{w} \in \mathbb{R}^n$.

- \circ Can we find a vector $p \in V$ such that n = w p is orthogonal to V?
 - Exercise 5.18 states that such p exists and unique.
 - p is called the **projection** of w onto V.

- Let V be a vector subspace of \mathbb{R}^n and $\boldsymbol{w} \in \mathbb{R}^n$.
 - \circ Assume that $oldsymbol{w} = oldsymbol{p} + oldsymbol{n}$, where
 - $p \in V$ and n is orthogonal to V.
 - Let $\{v_1, \ldots, v_k\}$ be an orthonormal basis for V.
 - n = w p is orthogonal to v_1, \ldots, v_k .
 - $(\boldsymbol{w} \boldsymbol{p}) \cdot \boldsymbol{v}_i = 0 \Leftrightarrow \boldsymbol{w} \cdot \boldsymbol{v}_i = \boldsymbol{p} \cdot \boldsymbol{v}_i$ for all i.
 - \circ Recall that $oldsymbol{p} \in V$ can be written as
 - $\boldsymbol{p} = (\boldsymbol{p} \cdot \boldsymbol{v}_1)\boldsymbol{v}_1 + \cdots + (\boldsymbol{p} \cdot \boldsymbol{v}_k)\boldsymbol{v}_k$.
 - $\therefore \quad \boldsymbol{p} = (\boldsymbol{w} \cdot \boldsymbol{v}_1) \boldsymbol{v}_1 + \dots + (\boldsymbol{w} \cdot \boldsymbol{v}_k) \boldsymbol{v}_k.$
 - \circ Conversely, if $m{p}=(m{w}\cdotm{v}_1)m{v}_1+\cdots+(m{w}\cdotm{v}_k)m{v}_k$,

$$(\boldsymbol{w} - \boldsymbol{p}) \cdot \boldsymbol{v}_i = \boldsymbol{w} \cdot \boldsymbol{v}_i - \boldsymbol{p} \cdot \boldsymbol{v}_i = \boldsymbol{w} \cdot \boldsymbol{v}_i - \boldsymbol{w} \cdot \boldsymbol{v}_i = 0.$$

 \therefore n = w - p is orthogonal to V.

36 / 105

Projection

- Theorem. Let $\{v_1, v_2, \dots, v_k\}$ be an orthonormal basis for a vector space V. The projection of w onto V is
 - $\circ (\boldsymbol{w} \cdot \boldsymbol{v}_1) \boldsymbol{v}_1 + (\boldsymbol{w} \cdot \boldsymbol{v}_2) \boldsymbol{v}_2 + \cdots + (\boldsymbol{w} \cdot \boldsymbol{v}_k) \boldsymbol{v}_k.$
- Suppose $\{u_1, u_2, \dots, u_k\}$ is an orthogonal basis for V.
 - \circ Then $\{v_1, v_2, \dots, v_k\}$ is an orthonormal basis for V,
 - $\bullet \quad \text{where } \boldsymbol{v}_i = \frac{\boldsymbol{u}_i}{\|\boldsymbol{u}_i\|}, i = 1, 2, \dots, k.$
 - \circ The projection of \boldsymbol{w} onto V is

$$egin{aligned} & (oldsymbol{w}\cdotoldsymbol{v}_1)oldsymbol{v}_1+\cdots+(oldsymbol{w}\cdotoldsymbol{v}_k)oldsymbol{v}_k \ &=\left(oldsymbol{w}\cdotrac{oldsymbol{u}_1}{\|oldsymbol{u}_1\|}
ight)rac{oldsymbol{u}_1}{\|oldsymbol{u}_1\|}+\cdots+\left(oldsymbol{w}\cdotrac{oldsymbol{u}_k}{\|oldsymbol{u}_k\|}
ight)rac{oldsymbol{u}_k}{\|oldsymbol{u}_k\|} \ &=\left(rac{oldsymbol{w}\cdotoldsymbol{u}_1}{oldsymbol{u}_1\cdotoldsymbol{u}_1}
ight)oldsymbol{u}_1+\cdots+\left(rac{oldsymbol{w}\cdotoldsymbol{u}_k}{oldsymbol{u}_k\cdotoldsymbol{u}_k}
ight)oldsymbol{u}_k. \end{aligned}$$

• Theorem. Let $\{u_1, u_2, \dots, u_k\}$ be an orthogonal basis for a vector space V. The projection of w onto V is

$$\circ \quad \left(\frac{\boldsymbol{w}\cdot\boldsymbol{u}_1}{\boldsymbol{u}_1\cdot\boldsymbol{u}_1}\right)\boldsymbol{u}_1 + \left(\frac{\boldsymbol{w}\cdot\boldsymbol{u}_2}{\boldsymbol{u}_2\cdot\boldsymbol{u}_2}\right)\boldsymbol{u}_2 + \dots + \left(\frac{\boldsymbol{w}\cdot\boldsymbol{u}_k}{\boldsymbol{u}_k\cdot\boldsymbol{u}_k}\right)\boldsymbol{u}_k.$$

It is the sum of projections of w onto u_1, u_2, \ldots, u_k .

• Example. Let $V = \operatorname{span}\{u_1, u_2\}$, where

$$u_1 = (1, 0, 1)$$
 and $u_2 = (1, 0, -1)$.

•
$$u_1 \cdot u_2 = 1 \cdot 1 + 0 \cdot 0 + 1 \cdot (-1) = 0.$$

The projection of $\boldsymbol{w}=(1,1,0)$ onto V is

$$\begin{aligned} & \frac{\boldsymbol{w} \cdot \boldsymbol{u}_1}{\boldsymbol{u}_1 \cdot \boldsymbol{u}_2} \, \boldsymbol{u}_1 + \frac{\boldsymbol{w} \cdot \boldsymbol{u}_2}{\boldsymbol{u}_2 \cdot \boldsymbol{u}_2} \, \boldsymbol{u}_2 \\ &= \frac{1}{2} (1, 0, 1) + \frac{1}{2} (1, 0, -1) = (1, 0, 0). \end{aligned}$$

38 / 105

Gram-Schmidt Process

- How to find an orthogonal basis for a given vector space?
- $\dim V = 1$: Any basis is orthogonal.
- Suppose $\dim V = 2$. Let $\{u_1, u_2\}$ be a basis for V.

- \circ The projection of $m{u}_2$ onto $m{u}_1$: $m{p} = rac{m{u}_2 \cdot m{u}_1}{m{u}_1 \cdot m{u}_1} m{u}_1.$
 - $u_2 p \neq 0$ and it is orthogonal to u_1 .
- $\circ \quad \{ \boldsymbol{u}_1, \boldsymbol{u}_2 \boldsymbol{p} \} \text{ is an orthogonal basis for } V.$

Gram-Schmidt Process

- Let $\{u_1, u_2\}$ be a basis for a vector space V.
 - $\circ \quad \text{We obtain an orthogonal basis } \{ \boldsymbol{v}_1, \boldsymbol{v}_2 \} \text{ for } V \text{:}$

$$egin{aligned} oldsymbol{v}_1 &= oldsymbol{u}_1 \ oldsymbol{v}_2 &= oldsymbol{u}_2 - rac{oldsymbol{u}_2 \cdot oldsymbol{v}_1}{oldsymbol{v}_1 \cdot oldsymbol{v}_1} oldsymbol{v}_1. \end{aligned}$$

• Example. Let $V = \operatorname{span}\{\boldsymbol{u}_1, \boldsymbol{u}_2\}$.

$$\circ$$
 $u_1 = (1, -1, 2)$ and $u_2 = (2, 1, 0)$.

$$\begin{aligned} \mathbf{v}_1 &= \mathbf{u}_1 = (1, -1, 2) \\ \mathbf{v}_2 &= \mathbf{u}_2 - \frac{\mathbf{u}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 \\ &= (2, 1, 0) - \frac{1}{6} (1, -1, 2) = \left(\frac{11}{6}, \frac{7}{6}, -\frac{1}{3} \right). \end{aligned}$$

40 / 105

Gram-Schmidt Process

- $\bullet \quad \text{Let } \{ \boldsymbol{u}_1, \boldsymbol{u}_2, \boldsymbol{u}_3 \} \text{ be basis for a vector space } V.$
 - \circ Let $U = \operatorname{span}\{ oldsymbol{u}_1, oldsymbol{u}_2 \}.$ Then $\dim(U) = 2$ and
 - U has an orthogonal basis $\{v_1, v_2\}$.

$$egin{aligned} \circ & oldsymbol{v}_3 = oldsymbol{u}_3 - \left(rac{oldsymbol{u}_3 \cdot oldsymbol{v}_1}{oldsymbol{v}_1 \cdot oldsymbol{v}_1} oldsymbol{v}_1 + rac{oldsymbol{u}_3 \cdot oldsymbol{v}_2}{oldsymbol{v}_2 \cdot oldsymbol{v}_2} oldsymbol{v}_2
ight) \end{aligned}$$

Gram-Schmidt Process

 $\bullet \quad \text{Let } \{ {\boldsymbol u}_1, {\boldsymbol u}_2, {\boldsymbol u}_3 \} \text{ be basis for a vector space } V \text{, where }$

$$\circ \quad \boldsymbol{u}_1 = (1,-1,2), \, \boldsymbol{u}_2 = (2,1,0) \text{ and } \boldsymbol{u}_3 = (0,0,1).$$

 $U=\mathrm{span}\{oldsymbol{u}_1,oldsymbol{u}_2\}$ has an orthogonal basis:

$$v_1 = u_1 = (1, -1, 2)$$

$$v_2 = u_2 - \frac{u_2 \cdot v_1}{v_1 \cdot v_1} v_1 = \left(\frac{11}{6}, \frac{7}{6}, -\frac{1}{3}\right).$$

Use $\boldsymbol{v}_3 = \boldsymbol{u}_3 - \boldsymbol{p}$, where \boldsymbol{p} is the projection of \boldsymbol{u}_3 onto U

$$\begin{aligned} \mathbf{v}_3 &= \mathbf{u}_3 - \frac{\mathbf{u}_3 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{u}_3 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 \\ &= (0, 0, 1) - \frac{2}{6} (1, -1, 2) - \frac{-1/3}{29/6} \left(\frac{11}{6}, \frac{7}{6}, -\frac{1}{3} \right) \\ &= \left(-\frac{6}{29}, \frac{12}{29}, \frac{9}{29} \right). \end{aligned}$$

42 / 105

Gram-Schmidt Process

ullet (Gram-Schmidt Process). Let $\{m{u}_1, m{u}_2, \dots, m{u}_k\}$ be a basis for a vector space V. Define

$$egin{aligned} oldsymbol{v}_1 &= oldsymbol{u}_1 \ oldsymbol{v}_2 &= oldsymbol{u}_2 - rac{oldsymbol{u}_2 \cdot oldsymbol{v}_1}{oldsymbol{v}_1 \cdot oldsymbol{v}_1} oldsymbol{v}_1 \ oldsymbol{v}_3 &= oldsymbol{u}_3 - rac{oldsymbol{u}_3 \cdot oldsymbol{v}_1}{oldsymbol{v}_1 \cdot oldsymbol{v}_1} oldsymbol{v}_1 - rac{oldsymbol{u}_3 \cdot oldsymbol{v}_2}{oldsymbol{v}_2 \cdot oldsymbol{v}_2} oldsymbol{v}_2 \ &\vdots & \vdots \ oldsymbol{v}_k &= oldsymbol{u}_k - rac{oldsymbol{u}_k \cdot oldsymbol{v}_1}{oldsymbol{v}_1 \cdot oldsymbol{v}_1} oldsymbol{v}_1 - rac{oldsymbol{u}_k \cdot oldsymbol{v}_2}{oldsymbol{v}_2 \cdot oldsymbol{v}_2} oldsymbol{v}_2 - \cdots - rac{oldsymbol{u}_k \cdot oldsymbol{v}_{k-1}}{oldsymbol{v}_{k-1} \cdot oldsymbol{v}_{k-1}} oldsymbol{v}_{k-1} \end{aligned}$$

• Then $\{v_1, v_2, \dots, v_k\}$ is an orthogonal basis for V.

Define
$$oldsymbol{w}_1 = rac{oldsymbol{v}_1}{\|oldsymbol{v}_1\|}, oldsymbol{w}_2 = rac{oldsymbol{v}_2}{\|oldsymbol{v}_2\|}, \ldots, oldsymbol{w}_k = rac{oldsymbol{v}_k}{\|oldsymbol{v}_k\|}.$$

• Then $\{w_1, w_2, \dots, w_k\}$ is an orthonormal basis for V.

• Let $V = \text{span}\{u_1, u_2, u_3\}$, where

$$\bullet$$
 $u_1 = (1, 1, 1, 1), u_2 = (1, 2, 2, 1), u_3 = (2, 3, 1, 6).$

$$v_{1} = u_{1} = (1, 1, 1, 1)$$

$$v_{2} = u_{2} - \frac{u_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}$$

$$= (1, 2, 2, 1) - \frac{6}{4} (1, 1, 1, 1) = \left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2} \right)$$

$$v_{3} = u_{3} - \frac{u_{3} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1} - \frac{u_{3} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2}$$

$$= (2, 3, 1, 6) - \frac{12}{4} (1, 2, 2, 1) - \frac{-2}{1} \left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2} \right)$$

$$= (-2, 1, -1, 2).$$

44 / 105

Example

- Let $V = \text{span}\{u_1, u_2, u_3\}$, where
 - \bullet $u_1 = (1, 1, 1, 1), u_2 = (1, 2, 2, 1), u_3 = (2, 3, 1, 6).$
 - Orthogonal basis $\{v_1, v_2, v_3\}$.

$$v_1 = (1, 1, 1, 1),$$

$$v_1 = (1, 1, 1, 1),$$

$$v_2 = \left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2}\right).$$

$$v_3 = (-2, 1, -1, 2).$$

$$v_3 = (-2, 1, -1, 2).$$

• Orthonormal basis $\{ oldsymbol{w}_1, oldsymbol{w}_2, oldsymbol{w}_3 \}.$

$$\mathbf{w}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|} = \frac{1}{2}(1, 1, 1, 1).$$

$$\mathbf{w}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|} = \frac{1}{2}(-1, 1, 1, -1).$$

$$\mathbf{w}_3 = \frac{\mathbf{v}_3}{\|\mathbf{v}_3\|} = \frac{1}{\sqrt{10}}(-2, 1, -1, 2).$$

Decomposition

- Let $\{u_1, u_2, \dots, u_k\}$ be a basis for V.
 - \circ Orthonormal basis: $\{oldsymbol{w}_1, oldsymbol{w}_2, \dots, oldsymbol{w}_k\}$ such that
 - $\operatorname{span}\{\boldsymbol{w}_1\} = \operatorname{span}\{\boldsymbol{u}_1\};$
 - $\operatorname{span}\{\boldsymbol{w}_1, \boldsymbol{w}_2\} = \operatorname{span}\{\boldsymbol{u}_1, \boldsymbol{u}_2\};$
 - $\operatorname{span}\{\boldsymbol{w}_1, \boldsymbol{w}_2, \boldsymbol{w}_3\} = \operatorname{span}\{\boldsymbol{u}_1, \boldsymbol{u}_2, \boldsymbol{u}_3\}.$
 -
 - $\operatorname{span}\{\boldsymbol{w}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_k\} = \operatorname{span}\{\boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_k\}.$

Therefore,

- $u_1 = b_{11}w_1$;
- $u_2 = b_{12}w_1 + b_{22}w_2$;
- $u_3 = b_{13}w_1 + b_{23}w_2 + b_{33}w_3$;
- •
- $u_k = b_{1k}w_1 + b_{2k}w_2 + b_{23}w_3 + \cdots + c_{kk}w_k$.

46 / 105

Decomposition

- Let $\{u_1, u_2, \dots, u_k\}$ be a basis for V.
 - \circ Orthonormal basis: $\{ oldsymbol{w}_1, oldsymbol{w}_2, \dots, oldsymbol{w}_k \}$ such that
 - $\operatorname{span}\{\boldsymbol{w}_1\} = \operatorname{span}\{\boldsymbol{u}_1\};$
 - $\operatorname{span}\{w_1, w_2\} = \operatorname{span}\{u_1, u_2\};$
 - $\operatorname{span}\{\boldsymbol{w}_1, \boldsymbol{w}_2, \boldsymbol{w}_3\} = \operatorname{span}\{\boldsymbol{u}_1, \boldsymbol{u}_2, \boldsymbol{u}_3\}.$
 -
 - $\operatorname{span}\{\boldsymbol{w}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_k\} = \operatorname{span}\{\boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_k\}.$

Therefore,

$$oldsymbol{u}_1 = egin{pmatrix} oldsymbol{w}_1 & oldsymbol{w}_2 & \cdots & oldsymbol{w}_k \end{pmatrix} egin{pmatrix} b_{11} \ 0 \ dots \ 0 \end{pmatrix}$$

Decomposition

- Let $\{u_1, u_2, \dots, u_k\}$ be a basis for V.
 - \circ Orthonormal basis: $\{oldsymbol{w}_1, oldsymbol{w}_2, \dots, oldsymbol{w}_k\}$ such that
 - $\operatorname{span}\{\boldsymbol{w}_1\} = \operatorname{span}\{\boldsymbol{u}_1\};$
 - $\operatorname{span}\{\boldsymbol{w}_1, \boldsymbol{w}_2\} = \operatorname{span}\{\boldsymbol{u}_1, \boldsymbol{u}_2\};$
 - $\operatorname{span}\{\boldsymbol{w}_1, \boldsymbol{w}_2, \boldsymbol{w}_3\} = \operatorname{span}\{\boldsymbol{u}_1, \boldsymbol{u}_2, \boldsymbol{u}_3\}.$
 -
 - $\operatorname{span}\{\boldsymbol{w}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_k\} = \operatorname{span}\{\boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_k\}.$

Therefore,

$$oldsymbol{u}_2 = egin{pmatrix} oldsymbol{w}_1 & oldsymbol{w}_2 & \cdots & oldsymbol{w}_k \end{pmatrix} egin{pmatrix} b_{12} \ b_{22} \ dots \ 0 \end{pmatrix}$$

48 / 105

Decomposition

- Let $\{u_1, u_2, \dots, u_k\}$ be a basis for V.
 - \circ Orthonormal basis: $\{oldsymbol{w}_1, oldsymbol{w}_2, \dots, oldsymbol{w}_k\}$ such that
 - $\operatorname{span}\{w_1\} = \operatorname{span}\{u_1\};$
 - $\operatorname{span}\{\boldsymbol{w}_1, \boldsymbol{w}_2\} = \operatorname{span}\{\boldsymbol{u}_1, \boldsymbol{u}_2\};$
 - $\operatorname{span}\{\boldsymbol{w}_1, \boldsymbol{w}_2, \boldsymbol{w}_3\} = \operatorname{span}\{\boldsymbol{u}_1, \boldsymbol{u}_2, \boldsymbol{u}_3\}.$
 -
 - $\operatorname{span}\{w_1, w_2, \dots, w_k\} = \operatorname{span}\{u_1, u_2, \dots, u_k\}.$

Therefore,

$$oldsymbol{u}_k = egin{pmatrix} oldsymbol{w}_1 & oldsymbol{w}_2 & \cdots & oldsymbol{w}_k \end{pmatrix} egin{pmatrix} b_{1k} \ b_{2k} \ dots \ b_{kk} \end{pmatrix}$$

Decomposition

- Let $\{u_1, u_2, \dots, u_k\}$ be a basis for V.
 - \circ Orthonormal basis: $\{oldsymbol{w}_1, oldsymbol{w}_2, \dots, oldsymbol{w}_k\}$ such that
 - $\operatorname{span}\{\boldsymbol{w}_1\} = \operatorname{span}\{\boldsymbol{u}_1\};$
 - $\operatorname{span}\{\boldsymbol{w}_1, \boldsymbol{w}_2\} = \operatorname{span}\{\boldsymbol{u}_1, \boldsymbol{u}_2\};$
 - $\operatorname{span}\{\boldsymbol{w}_1, \boldsymbol{w}_2, \boldsymbol{w}_3\} = \operatorname{span}\{\boldsymbol{u}_1, \boldsymbol{u}_2, \boldsymbol{u}_3\}.$
 -
 - $\operatorname{span}\{\boldsymbol{w}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_k\} = \operatorname{span}\{\boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_k\}.$

Therefore, we can write $(oldsymbol{u}_1 \ oldsymbol{u}_2 \ \cdots \ oldsymbol{u}_k)$ as

$$\bullet \quad (\boldsymbol{w}_1 \quad \cdots \quad \boldsymbol{w}_k) \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1k} \\ 0 & b_{22} & \cdots & b_{2k} \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & b_{kk} \end{pmatrix}$$

= orthonormal columns \times upper triangular.

50 / 105

Decomposition

- Theorem. Let A be an $m \times n$ matrix whose columns are linearly independent. Then there exist
 - \circ An $m \times n$ matrix $oldsymbol{Q}$ whose columns form an orthonormal set, and
 - $\circ\quad$ An invertible $n\times n$ upper triangular matrix \boldsymbol{R}

such that A = QR.

- **Application**: Solve linear system Ax = b.
 - 1. (QR)x = b.
 - 2. $Q^{\mathrm{T}}QRx = Q^{\mathrm{T}}b \Rightarrow Rx = Q^{\mathrm{T}}b.$
 - 3. Solve x by back-substitution.
- ullet Remark. One may choose R so that the diagonal entries are all positive. Can you prove it?

• Recall the projection of \boldsymbol{u} onto a vector space V:

- o Among all the vectors $v \in V$, the one with the **shortest** distance to u is p, the **projection** of u onto V.
 - $d(\boldsymbol{u}, \boldsymbol{p}) \leq d(\boldsymbol{u}, \boldsymbol{v})$ for all $\boldsymbol{v} \in V$.

 \boldsymbol{p} is the **best approximation** of \boldsymbol{u} in V.

53 / 105

Best Approximation

- Take $\boldsymbol{v} \in V$. Set $\boldsymbol{x} = \boldsymbol{u} \boldsymbol{v}$.
 - Need to show that $\|\boldsymbol{n}\| \leq \|\boldsymbol{x}\|$.

 \circ Let $oldsymbol{w} = oldsymbol{p} - oldsymbol{v}$. Note that $oldsymbol{n}$ is orthogonal to $oldsymbol{w}$.

$$||x||^2 = x \cdot x = (n + w) \cdot (n + w)$$

$$= n \cdot n + 2(n \cdot w) + w \cdot w$$

$$= ||n||^2 + ||w||^2 \ge ||n||^2.$$

Best Approximation

- Theorem. Let V be a subspace of \mathbb{R}^n .
 - \circ For ${m u} \in \mathbb{R}^n$, let ${m p}$ be the projection of ${m u}$ onto V.
 - Then p is the **best approximation** of u in V.
 - $oldsymbol{d}(\boldsymbol{u}, \boldsymbol{p}) \leq d(\boldsymbol{u}, \boldsymbol{v})$ for all $\boldsymbol{v} \in V$.

Moreover, $d(\boldsymbol{u}, \boldsymbol{p}) = d(\boldsymbol{u}, \boldsymbol{v}) \Leftrightarrow \boldsymbol{v} = \boldsymbol{p}$.

- **Example**. Best approximation of (a, b) in span $\{(1, 1)\}$.
 - $\circ \quad \boldsymbol{p} = \frac{(a,b) \cdot (1,1)}{(1,1) \cdot (1,1)} (1,1) = \frac{a+b}{2} (1,1).$

55 / 105

Examples

- $\bullet \quad \text{Consider the plane } V = \{(x,y,z) \mid ax+by+cz=0\}.$
 - \circ Normal vector (a, b, c) is orthogonal to V.
 - Let $u = (x_0, y_0, z_0) \in \mathbb{R}^3$.

• n = u - p is the projection of u onto (a, b, c):

$$\frac{(x_0,y_0,z_0)\cdot(a,b,c)}{\|(a,b,c)\|^2}\,(a,b,c) = \frac{ax_0+by_0+cz_0}{\|(a,b,c)\|}\,\frac{(a,b,c)}{\||(a,b,c)\|}.$$

$$\|\mathbf{n}\| = \frac{|ax_0 + by_0 + cz_0|}{\sqrt{a^2 + b^2 + c^2}}$$

- Let $V = \text{span}\{(1,0,1),(1,1,1)\}.$
 - \circ Find the shortest distance from u = (1, 2, 3) to V.
 - 1. Find an orthogonal basis:
 - \circ (1, 0, 1) and

$$\circ (1,1,1) - \frac{(1,1,1) \cdot (1,0,1)}{(1,0,1) \cdot (1,0,1)} (1,1,1) = (0,1,0).$$

- 2. Find the projection of (1, 2, 3) onto V:

 - $\begin{array}{l} \circ & \frac{(1,2,3)\cdot(1,0,1)}{(1,0,1)\cdot(1,0,1)} = 2 \\ \circ & \frac{(1,2,3)\cdot(0,1,0)}{(0,1,0)\cdot(0,1,0)} = 2. \end{array}$
 - p = 2(1,0,1) + 2(0,1,0) = (2,2,2).
- 3. Find the distance:
 - $o \ d(\mathbf{u}, \mathbf{p}) = \|\mathbf{u} \mathbf{p}\| = \|(-1, 0, 1)\| = \sqrt{2}.$

57 / 105

Least Squares Solution

Determine the speed of an object:

time	t_1	t_2	 t_n
distance	s_1	s_2	 s_n

- \circ Due to the experimental error, there is no v so that
 - $s_1 = vt_1, s_2 = vt_2, \dots, s_n = vt_n.$
 - $(s_1, s_2, \ldots, s_n) = v(t_1, t_2, \ldots, t_n).$

What is the **best** choice of v?

- Find v s.t. vt is the projection of s onto span $\{t\}$.
 - $v = \frac{\boldsymbol{s} \cdot \boldsymbol{t}}{\boldsymbol{t} \cdot \boldsymbol{t}} = \frac{s_1 t_1 + \dots + s_n t_n}{t_1^2 + \dots + t_n^2}.$

Least Squares Solution

• Determine the speed of an object:

time	t_1	t_2		t_n
distance	s_1	s_2	• • •	s_n

- \circ Due to the experimental error, there is no v so that
 - $s_1 = vt_1, s_2 = vt_2, \dots, s_n = vt_n.$
 - $(s_1, s_2, \ldots, s_n) = v(t_1, t_2, \ldots, t_n).$

What is the **best** choice of v?

- Find v so that $v \boldsymbol{t}$ is closest to \boldsymbol{s} , i.e., minimize
 - $||s vt|| = \sqrt{(s_1 vt_1)^2 + \dots + (s_n vt_n)^2}.$

59 / 105

Least Squares Solution

- Let $V = \{ Ax \mid x \in \mathbb{R}^n \}$ be the column space of A.
 - \circ Ax = b is consistent $\Leftrightarrow b \in V$.

Suppose $b \notin V$. Then for all x, $Ax \neq b$.

- \circ Although Ax = b is not solvable, we may seek for x so that Ax is closest to b.
 - Find x so that Ax is the projection of b onto V, i.e.,
 - $\circ \| oldsymbol{b} oldsymbol{A} oldsymbol{x} \|$ is minimized.
- **Definition**. Let \boldsymbol{A} be an $m \times n$ matrix, $\boldsymbol{b} \in \mathbb{R}^m$.
 - $\circ \quad u \in \mathbb{R}^n$ is a **least squares solution** to the linear system Ax = b if
 - $\|oldsymbol{b} oldsymbol{A} oldsymbol{u}\| \leq \|oldsymbol{b} oldsymbol{A} oldsymbol{v}\|$ for all $oldsymbol{v} \in \mathbb{R}^n$.

Least Squares Solution

- **Theorem**. Let \boldsymbol{A} be an $m \times n$ matrix, $\boldsymbol{b} \in \mathbb{R}^m$.
 - \circ Let p be the projection of b onto the column space of A.
 - Then $\| \boldsymbol{b} \boldsymbol{p} \| \leq \| \boldsymbol{b} \boldsymbol{A} \boldsymbol{v} \|$ for all $\boldsymbol{v} \in \mathbb{R}^n$,

i.e., u is a least squares solution to Ax = b

- $\Leftrightarrow u$ is a solution to Ax = p.
- **Proof**. Recall that among all the vectors in V, p, the projection of b onto V, has the shortest distance to b:
 - o $d(\boldsymbol{b}, \boldsymbol{p}) \leq d(\boldsymbol{b}, \boldsymbol{w})$ for all $w \in V$.

On the other hand, $V = \{ Av \mid v \in \mathbb{R}^n \}$. So

 $\circ \quad d(oldsymbol{b}, oldsymbol{p}) \leq d(oldsymbol{b}, oldsymbol{A}oldsymbol{v}) ext{ for all } oldsymbol{v} \in \mathbb{R}^n,$

i.e., $\| oldsymbol{b} - oldsymbol{p} \| \leq \| oldsymbol{b} - oldsymbol{A} oldsymbol{v} \|$ for all $oldsymbol{v} \in \mathbb{R}^n$.

$$\|\boldsymbol{b} - \boldsymbol{p}\| = \|\boldsymbol{b} - \boldsymbol{A}\boldsymbol{v}\| \Leftrightarrow \boldsymbol{p} = \boldsymbol{A}\boldsymbol{v}.$$

61 / 105

Examples

- Let $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$.
 - 1. Find the projection of \boldsymbol{b} onto V:
 - $\circ \quad V = \text{coln space of } \boldsymbol{A} = \text{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}.$
 - The projection is (by (5.3.3)) $p = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$
 - 2. Solve the system Ax = p.

$$\circ \quad \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} \Leftrightarrow \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}.$$

• Consider the following data:

\overline{x}	1	0	1
y	1	2	3

Assume that the data satisfies y = ax + b.

 \circ What are the best choices of a and b?

•
$$y = ax + b = \begin{pmatrix} x & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$$
.

o The least squares solution to the system:

•
$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
: $\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$.

o The best linear function which fits the data is

•
$$y = 0x + 2$$
.

63 / 105

Methodology

• Find a least squares solution to Ax = b:

1. Find an orthogonal (orthonormal) basis for V, the column space of A.

2. Find the projection p of b onto V.

3. Solve the linear system Ax = p.

Then a solution to Ax = p is a least squares solution to Ax = b.

• Questions.

 \circ Is the system Ax=p solvable?

• Yes! Because *p* lies in the column space of *A*.

 \circ If Ax=b is already consistent, what is the least squares solution?

• $b = p \in V$. Solution = Least squares solution.

Methodology

- Find a least squares solution to Ax = b.
 - \circ Write $\mathbf{A} = (\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n)$.
 - $\circ V = \operatorname{span}\{a_1, a_2, \dots, a_n\} = \operatorname{column} \operatorname{space} \operatorname{of} A.$

 $oldsymbol{u}$ is a least squares solution to $oldsymbol{A} oldsymbol{x} = oldsymbol{b}$

- $\Leftrightarrow {m A}{m u} = {\sf projection} \; {\sf of} \; {m b} \; {\sf onto} \; V$
- $\Leftrightarrow {m A}{m u} {m b}$ is orthogonal to V
- $\Leftrightarrow oldsymbol{A}oldsymbol{u} oldsymbol{b}$ is orthogonal to $oldsymbol{a}_1, \dots, oldsymbol{a}_n$
- $\Leftrightarrow \boldsymbol{a}_i \cdot (\boldsymbol{A}\boldsymbol{u} \boldsymbol{b}) = 0 \text{ for all } i = 1, \dots, n$

$$\Leftrightarrow \boldsymbol{a}_i^{\mathrm{T}}(\boldsymbol{A}\boldsymbol{u}-\boldsymbol{b})=0 \text{ for all } i=1,\ldots,n$$

$$\Leftrightarrow \begin{pmatrix} \boldsymbol{a}_1^{\mathrm{T}} \\ \vdots \\ \boldsymbol{a}_n^{\mathrm{T}} \end{pmatrix} (\boldsymbol{A}\boldsymbol{u} - \boldsymbol{b}) = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

 $\Leftrightarrow \boldsymbol{A}^{\mathrm{T}}(\boldsymbol{A}\boldsymbol{u}-\boldsymbol{b}) = \boldsymbol{0} \Leftrightarrow \boldsymbol{A}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{u} = \boldsymbol{A}^{\mathrm{T}}\boldsymbol{b}$

65 / 105

Methodology

- **Theorem**. (Find the least squares solutions)
 - \circ u is a least squares solution to Ax = b
 - $\Leftrightarrow u$ is a solution to $A^{\mathrm{T}}Ax = A^{\mathrm{T}}b$.
- Example. Recall the system

$$\circ \quad \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

Its least square solutions are precisely the solutions to

$$\circ \quad \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

•
$$\begin{pmatrix} 2 & 2 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 4 \\ 6 \end{pmatrix} \Rightarrow \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$
.

• Suppose r, s and t are parameters satisfying

$$\circ \quad t = cr^2 + ds + e.$$

ith experiment	1	2	3	4	5	6
r_i	0	0	1	1	2	2
s_i	0	1	2	0	1	2
t_i	0.5	1.6	2.8	0.8	5.1	5.9

$$\circ \begin{cases}
cr_1^2 + ds_1 + e = t_1 \\
cr_2^2 + ds_2 + e = t_2 \\
\vdots \\
cr_6^2 + ds_6 + e = t_6
\end{cases} \Rightarrow (r_i^2 \quad s_i \quad 1) \begin{pmatrix} c \\ d \\ e \end{pmatrix} = t_i$$

67 / 105

Examples

• Suppose r, s and t are parameters satisfying

$$\circ \quad t = cr^2 + ds + e.$$

ith experiment	1	2	3	4	5	6
r_i	0	0	1	1	2	2
s_i	0	1	2	0	1	2
$\overline{t_i}$	0.5	1.6	2.8	0.8	5.1	5.9

$$\circ \begin{cases}
cr_1^2 + ds_1 + e = t_1 \\
cr_2^2 + ds_2 + e = t_2 \\
\vdots \\
cr_6^2 + ds_6 + e = t_6
\end{cases} \Rightarrow \begin{pmatrix} r_1^2 & s_1 & 1 \\
r_2^2 & s_2 & 1 \\
\vdots & \vdots & \vdots \\
r_6^2 & s_6 & 1 \end{pmatrix} \begin{pmatrix} c \\ d \\ e \end{pmatrix} = \begin{pmatrix} t_1 \\ t_2 \\ \vdots \\ t_6 \end{pmatrix}$$

- Suppose r, s and t are parameters satisfying
 - $\circ \quad t = cr^2 + ds + e.$

$$\circ \quad \text{Solve} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 0 & 1 \\ 4 & 1 & 1 \\ 4 & 2 & 1 \end{pmatrix} \begin{pmatrix} c \\ d \\ e \end{pmatrix} = \begin{pmatrix} 0.5 \\ 1.6 \\ 2.8 \\ 0.8 \\ 5.1 \\ 5.9 \end{pmatrix}$$

- The system Ax = b is inconsistent.
- ullet Solve $oldsymbol{A}^{\mathrm{T}}oldsymbol{A}x=oldsymbol{A}^{\mathrm{T}}oldsymbol{b}$ to get the least squares solutions.

69 / 105

Examples

- Suppose r, s and t are parameters satisfying
 - $\circ \quad t = cr^2 + ds + e.$

$$\begin{pmatrix}
0 & 0 & 1 & 1 & 4 & 4 \\
0 & 1 & 2 & 0 & 1 & 2 \\
1 & 1 & 1 & 1 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 1 & 1 \\
1 & 2 & 1 \\
1 & 0 & 1 \\
4 & 1 & 1 \\
4 & 2 & 1
\end{pmatrix}
\begin{pmatrix}
c \\
d \\
e
\end{pmatrix}$$

$$= \begin{pmatrix}
0 & 0 & 1 & 1 & 4 & 4 \\
0 & 1 & 2 & 0 & 1 & 2 \\
1 & 1 & 1 & 1 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
0.5 \\
1.6 \\
2.8 \\
0.8 \\
5.1
\end{pmatrix}.$$

- Suppose r, s and t are parameters satisfying
 - $\circ \quad t = cr^2 + ds + e.$

$$\begin{pmatrix}
34 & 14 & 10 \\
14 & 10 & 6 \\
10 & 6 & 6
\end{pmatrix}
\begin{pmatrix}
c \\
d \\
e
\end{pmatrix} = \begin{pmatrix}
47.6 \\
24.1 \\
16.7
\end{pmatrix}$$

$$\Rightarrow \begin{pmatrix}
c \\
d \\
e
\end{pmatrix} = \begin{pmatrix}
0.9275 \\
0.9225 \\
0.3150
\end{pmatrix}$$

- The data can be modeled by
 - $t = 0.9275r^2 + 0.9225s + 0.3150$.
- o Although no data satisfies the above equation, it is the best to fit the whole set of data.

71 / 105

Projection

- Consider the linear system Ax = b.
 - \circ A least squares solution u gives the distance from b to V, the column space of A:
 - $\|\boldsymbol{b} \boldsymbol{A}\boldsymbol{u}\| \le \|\boldsymbol{b} \boldsymbol{v}\|$ for all $\boldsymbol{v} \in V$.

So $\boldsymbol{A}\boldsymbol{u}$ is the projection of \boldsymbol{b} onto V.

We obtain another method to find the **projection** of a vector b onto a vector space V:

- 1. Suppose $V = \text{span}\{a_1, ..., a_n\}$.
- 2. Write $oldsymbol{A} = ig(oldsymbol{a}_1 \ \cdots \ oldsymbol{a}_nig)$, each $oldsymbol{a}_j$ is a column vector.
- 3. Find a least squares solution u to Ax = b;
 - \circ i.e., a solution $oldsymbol{u}$ to $oldsymbol{A}^{\mathrm{T}}oldsymbol{A}oldsymbol{x}=oldsymbol{A}^{\mathrm{T}}oldsymbol{b}.$
- 4. The projection of \boldsymbol{b} onto V is $\boldsymbol{p} = \boldsymbol{A}\boldsymbol{u}$.

- Find the projection of (1, 1, 1, 1) onto
 - $\circ V = \operatorname{span}\{(1, -1, 1, -1), (1, 2, 0, 1), (2, 1, 1, 0)\}.$
- Let $m{A} = egin{pmatrix} 1 & 1 & 2 \\ -1 & 2 & 1 \\ 1 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix}$ and $m{b} = egin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$
 - \circ Find a least squares solution to Ax = b; i.e., a solution to $A^{\mathrm{T}}Ax = A^{\mathrm{T}}b$.

$$\begin{pmatrix}
1 & -1 & 1 & -1 \\
1 & 2 & 0 & 1 \\
2 & 1 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 2 \\
-1 & 2 & 1 \\
1 & 0 & 1 \\
-1 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & -1 & 1 & -1 \\
1 & 2 & 0 & 1 \\
2 & 1 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
1 \\
1 \\
1 \\
1
\end{pmatrix}$$

73 / 105

Example

- Find the projection of (1, 1, 1, 1) onto
 - $\circ V = \operatorname{span}\{(1, -1, 1, -1), (1, 2, 0, 1), (2, 1, 1, 0)\}.$

$$\bullet \quad \mathsf{Let}\, \boldsymbol{A} = \begin{pmatrix} 1 & 1 & 2 \\ -1 & 2 & 1 \\ 1 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix} \text{ and } \boldsymbol{b} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

 \circ Find a least squares solution to Ax = b; i.e., a solution to $A^{\mathrm{T}}Ax = A^{\mathrm{T}}b$.

$$\begin{array}{ccc}
\bullet & \begin{pmatrix} 4 & -2 & 2 \\ -2 & 6 & 4 \\ 2 & 4 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 10 \\ 4 \\ 4 \end{pmatrix} \\
\Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -t + 2/5 \\ -t + 4/5 \\ t \end{pmatrix}$$

Example

- Find the projection of (1, 1, 1, 1) onto
 - $\circ V = \operatorname{span}\{(1, -1, 1, -1), (1, 2, 0, 1), (2, 1, 1, 0)\}.$
- $\bullet \quad \text{Let } \pmb{A} = \begin{pmatrix} 1 & 1 & 2 \\ -1 & 2 & 1 \\ 1 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix} \text{ and } \pmb{b} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}.$
 - \circ The projection of \boldsymbol{b} onto V is

•
$$\mathbf{A}\mathbf{x} = \begin{pmatrix} 1 & 1 & 2 \\ -1 & 2 & 1 \\ 1 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} -t + 2/5 \\ -t + 4/5 \\ t \end{pmatrix} = \begin{pmatrix} 6/5 \\ 6/5 \\ 2/5 \end{pmatrix}$$

 \circ Since the projection is unique, we may choose any parameter t.

75 / 105

Orthogonal Matrices

76 / 105

Orthonormal Sets

- Recall the advantages of an orthonormal set:
 - Suppose $S = \{v_1, v_2, \dots, v_k\}$ is an orthonormal subset of \mathbb{R}^n $(k \le n)$.
 - Let $V = \text{span}\{v_1, v_2, \dots, v_k\}.$
 - 1. S is a basis for V.
 - 2. For any vector $v \in V$,
 - $(\boldsymbol{v})_S = (\boldsymbol{v} \cdot \boldsymbol{v}_1, \boldsymbol{v} \cdot \boldsymbol{v}_2, \dots, \boldsymbol{v} \cdot \boldsymbol{v}_k).$
 - $\mathbf{v} = (\mathbf{v} \cdot \mathbf{v}_1)\mathbf{v}_1 + (\mathbf{v} \cdot \mathbf{v}_2)\mathbf{v}_2 + \cdots + (\mathbf{v} \cdot \mathbf{v}_k)\mathbf{v}_k$
 - 3. The projection of $\boldsymbol{w} \in \mathbb{R}^n$ onto V:
 - $\bullet \quad \boldsymbol{p} = (\boldsymbol{w} \cdot \boldsymbol{v}_1) \boldsymbol{v}_1 + (\boldsymbol{w} \cdot \boldsymbol{v}_2) \boldsymbol{v}_2 + \dots + (\boldsymbol{w} \cdot \boldsymbol{v}_k) \boldsymbol{v}_k.$

Orthonormal Sets

- Recall the advantages of an orthonormal set:
 - Suppose $S = \{ \boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k \}$ is an orthonormal subset of $\mathbb{R}^n \ (k \leq n)$.
 - Let $oldsymbol{A} = egin{pmatrix} oldsymbol{v}_1 & oldsymbol{v}_2 & \cdots & oldsymbol{v}_k \end{pmatrix}$.
 - 1. The columns of A are linearly independent.
 - $\operatorname{rank}(\boldsymbol{A}) = k$.
 - 2. $A^{\mathrm{T}}A = (\boldsymbol{v}_i^{\mathrm{T}}\boldsymbol{v}_j)_{k\times k} = (\boldsymbol{v}_i\cdot\boldsymbol{v}_j)_{k\times k} = \boldsymbol{I}_k$.
 - 3. Least squares solution of Ax = b:
 - $A^{\mathrm{T}}Ax = A^{\mathrm{T}}b \Rightarrow x = A^{\mathrm{T}}b$.

78 / 105

Definition

- **Definition.** Let A be a square matrix.
 - \circ **A** is called an **orthogonal matrix** if $A^{T}A = I$.
 - Equivalently, $\boldsymbol{A}^{-1} = \boldsymbol{A}^{\mathrm{T}}$, or $\boldsymbol{A}\boldsymbol{A}^{\mathrm{T}} = \boldsymbol{I}$.
- Theorem. Let A be a square matrix of order n.
 - \circ A is an orthogonal matrix
 - \Leftrightarrow columns of A form an <u>orthonormal</u> basis for \mathbb{R}^n .
 - \Leftrightarrow rows of A form an <u>orthonormal</u> basis for \mathbb{R}^n .
- Examples.
 - \circ The identity matrix I_n is an orthogonal matrix.
 - $(\boldsymbol{I}_n)^{\mathrm{T}}\boldsymbol{I}_n = \boldsymbol{I}_n\boldsymbol{I}_n = \boldsymbol{I}_n.$

Definition

- **Definition.** Let A be a square matrix.
 - \circ **A** is called an **orthogonal matrix** if $A^{T}A = I$.
 - Equivalently, $A^{-1} = A^{T}$, or $AA^{T} = I$.
- **Theorem**. Let A be a square matrix of order n.
 - \circ A is an orthogonal matrix
 - \Leftrightarrow columns of A form an orthonormal basis for \mathbb{R}^n .
 - \Leftrightarrow rows of A form an <u>orthonormal</u> basis for \mathbb{R}^n .
- Examples.

 - $\circ \quad \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \text{ is an orthogonal matrix.}$ $\bullet \quad \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$

80 / 105

Definition

- **Definition.** Let A be a square matrix.
 - \circ A is called an orthogonal matrix if $A^{\mathrm{T}}A = I$.
 - Equivalently, $A^{-1} = A^{T}$, or $AA^{T} = I$.
- **Theorem**. Let A be a square matrix of order n.
 - \circ A is an orthogonal matrix
 - \Leftrightarrow columns of ${m A}$ form an <u>orthonormal</u> basis for ${\mathbb R}^n$.
 - \Leftrightarrow rows of A form an <u>orthonormal</u> basis for \mathbb{R}^n .
- Examples.
 - $\begin{array}{ccc} -\frac{2}{\sqrt{6}} & 0 \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{array} \right) \text{ is an orthogonal matrix.}$
 - Verification is left as an exercise.

Definition

- **Definition.** Let A be a square matrix.
 - \circ A is called an orthogonal matrix if $A^{T}A = I$.
 - Equivalently, $A^{-1} = A^{T}$, or $AA^{T} = I$.
- **Theorem**. Let A be a square matrix of order n.
 - \circ A is an orthogonal matrix
 - \Leftrightarrow columns of A form an orthonormal basis for \mathbb{R}^n .
 - \Leftrightarrow rows of A form an orthonormal basis for \mathbb{R}^n .
- Properties.
 - \circ If A is an orthogonal matrix, then
 - $I = A^{\mathrm{T}}A = A^{\mathrm{T}}(A^{\mathrm{T}})^{\mathrm{T}}$.

So $m{A}^{\mathrm{T}}$ (= $m{A}^{-1}$) is also an orthogonal matrix.

82 / 105

Definition

- **Definition.** Let A be a square matrix.
 - A is called an orthogonal matrix if $A^{T}A = I$.
 - Equivalently, $A^{-1} = A^{T}$, or $AA^{T} = I$.
- **Theorem**. Let A be a square matrix of order n.
 - \circ A is an orthogonal matrix
 - \Leftrightarrow columns of A form an <u>orthonormal</u> basis for \mathbb{R}^n .
 - \Leftrightarrow rows of A form an <u>orthonormal</u> basis for \mathbb{R}^n .
- Properties.
 - \circ If A and B are orthogonal matrices of the same size,
 - $(AB)^{\mathrm{T}}(AB) = B^{\mathrm{T}}A^{\mathrm{T}}AB = B^{\mathrm{T}}B = I.$

So ${m AB}$ is also an orthogonal matrix.

Proof of Theorem.

$$\circ$$
 Write $m{A}=egin{pmatrix} m{a}_1 & m{a}_2 & \cdots & m{a}_n \end{pmatrix}$. Then $m{A}^{
m T}=egin{pmatrix} m{a}_1^{
m T} \ m{a}_2^{
m T} \ dots \ m{a}_n^{
m T} \end{pmatrix}$

$$oldsymbol{eta} oldsymbol{A}^{\mathrm{T}} oldsymbol{A} = egin{pmatrix} oldsymbol{a}_1^{\mathrm{T}} \ oldsymbol{a}_2^{\mathrm{T}} \ dots \ oldsymbol{a}_n^{\mathrm{T}} \end{pmatrix} egin{pmatrix} oldsymbol{a}_1 & oldsymbol{a}_2 & \cdots & oldsymbol{a}_n \end{pmatrix}$$

$$egin{aligned} oldsymbol{\cdot} & oldsymbol{A}^{\mathrm{T}}oldsymbol{A} = egin{pmatrix} oldsymbol{a}_{1}^{\mathrm{T}} \ oldsymbol{a}_{2}^{\mathrm{T}} \ oldsymbol{a}_{n}^{\mathrm{T}} \end{pmatrix} egin{pmatrix} oldsymbol{a}_{1} & oldsymbol{a}_{2} & \cdots & oldsymbol{a}_{n} \end{pmatrix} \ oldsymbol{\cdot} & oldsymbol{A}^{\mathrm{T}}oldsymbol{A} = egin{pmatrix} oldsymbol{a}_{1}^{\mathrm{T}}oldsymbol{a}_{1} & oldsymbol{a}_{1}^{\mathrm{T}}oldsymbol{a}_{2} & \cdots & oldsymbol{a}_{1}^{\mathrm{T}}oldsymbol{a}_{n} \ oldsymbol{a}_{2}^{\mathrm{T}}oldsymbol{a}_{1} & oldsymbol{a}_{1}^{\mathrm{T}}oldsymbol{a}_{2} & \cdots & oldsymbol{a}_{1}^{\mathrm{T}}oldsymbol{a}_{n} \ oldsymbol{a}_{1} & oldsymbol{a}_{1}^{\mathrm{T}}oldsymbol{a}_{2} & \cdots & oldsymbol{a}_{1}^{\mathrm{T}}oldsymbol{a}_{n} \ oldsymbol{a}_{1} & oldsymbol{a}_{1}^{\mathrm{T}}oldsymbol{a}_{2} & \cdots & oldsymbol{a}_{1}^{\mathrm{T}}oldsymbol{a}_{n} \ oldsymbol{a}_{1} & oldsymbol{a}_{1}^{\mathrm{T}}oldsymbol{a}_{2} & \cdots & oldsymbol{a}_{1}^{\mathrm{T}}oldsymbol{a}_{1} \ oldsymbol{a}_{1} & oldsymbol{a}_{1}^{\mathrm{T}}oldsymbol{a}_{1} & oldsymbol{a}_{1}^{\mathrm{T}}oldsymbol{a}_{1}^{\mathrm{T}}oldsymbol{a}_{1} & oldsymbol{a}_{1}^{\mathrm{T}}oldsymbol{a}_{1}^{\mathrm{T}}oldsymbol{a}_{1}^{\mathrm{T}}oldsymbol{a}_{1} & oldsymbol{a}_{1}^{\mathrm{T}}oldsymbol{a}_{1}^{\mathrm{T}}oldsymbol{a}_{1}$$

84 / 105

Properties

Proof of Theorem.

$$\circ$$
 Write $m{A}=egin{pmatrix}m{a}_1 & m{a}_2 & \cdots & m{a}_n\end{pmatrix}$. Then $m{A}^{
m T}=egin{pmatrix}m{a}_2^{
m T} \ m{a}_n^{
m T} \end{pmatrix}$

$$oldsymbol{eta} oldsymbol{A}^{\mathrm{T}}oldsymbol{A} = egin{pmatrix} oldsymbol{a}_1^{\mathrm{T}} \ oldsymbol{a}_2^{\mathrm{T}} \ dots \ oldsymbol{a}_n^{\mathrm{T}} \end{pmatrix} egin{pmatrix} oldsymbol{a}_1 & oldsymbol{a}_2 & \cdots & oldsymbol{a}_n \end{pmatrix}$$

$$egin{aligned} oldsymbol{\cdot} & oldsymbol{A}^{\mathrm{T}}oldsymbol{A} = egin{pmatrix} oldsymbol{a}_{1}^{\mathrm{T}} \ oldsymbol{a}_{2}^{\mathrm{T}} \ oldsymbol{\cdot} \ oldsymbol{a}_{n}^{\mathrm{T}}oldsymbol{A} = egin{pmatrix} oldsymbol{a}_{1} \cdot oldsymbol{a}_{1} & oldsymbol{a}_{2} \cdot oldsymbol{a}_{1} & oldsymbol{a}_{1} \cdot oldsymbol{a}_{2} & \cdots & oldsymbol{a}_{1} \cdot oldsymbol{a}_{n} \\ oldsymbol{a}_{1} \cdot oldsymbol{a}_{1} & oldsymbol{a}_{1} \cdot oldsymbol{a}_{2} & \cdots & oldsymbol{a}_{n} \cdot oldsymbol{a}_{n} \\ oldsymbol{a}_{1} \cdot oldsymbol{a}_{1} & oldsymbol{a}_{2} \cdot oldsymbol{a}_{2} & \cdots & oldsymbol{a}_{n} \cdot oldsymbol{a}_{n} \\ oldsymbol{a}_{1} \cdot oldsymbol{a}_{1} & oldsymbol{a}_{2} \cdot oldsymbol{a}_{2} & \cdots & oldsymbol{a}_{n} \cdot oldsymbol{a}_{n} \\ oldsymbol{a}_{1} \cdot oldsymbol{a}_{1} & oldsymbol{a}_{2} \cdot oldsymbol{a}_{2} & \cdots & oldsymbol{a}_{n} \cdot oldsymbol{a}_{n} \\ oldsymbol{a}_{1} \cdot oldsymbol{a}_{1} & oldsymbol{a}_{2} \cdot oldsymbol{a}_{2} & \cdots & oldsymbol{a}_{n} \cdot oldsymbol{a}_{n} \\ oldsymbol{a}_{1} \cdot oldsymbol{a}_{1} & oldsymbol{a}_{2} \cdot oldsymbol{a}_{2} & \cdots & oldsymbol{a}_{n} \cdot oldsymbol{a}_{n} \\ oldsymbol{a}_{1} \cdot oldsymbol{a}_{1} & oldsymbol{a}_{1} \cdot oldsymbol{a}_{2} & \cdots & oldsymbol{a}_{n} \cdot oldsymbol{a}_{n} \\ oldsymbol{a}_{1} \cdot oldsymbol{a}_{1} \cdot oldsymbol{a}_{1} \cdot oldsymbol{a}_{2} & \cdots & oldsymbol{a}_{n} \cdot oldsymbol{a}_{n} \cdot oldsymbol{a}_{n} \\ oldsymbol{a}_{1} \cdot oldsymbol{a}_{1} \cdot oldsymbol{a}_{2} & \cdots & oldsymbol{a}_{n} \cdot oldsymbol{a}_{n}$$

• Proof of Theorem.

$$\circ$$
 Write $m{A}=egin{pmatrix}m{a}_1 & m{a}_2 & \cdots & m{a}_n\end{pmatrix}$. Then $m{A}^{
m T}=egin{pmatrix}m{a}_1^{
m T} \ m{a}_2^{
m T} \ dots \ m{a}_n^{
m T}\end{pmatrix}$

•
$$oldsymbol{A}^{\mathrm{T}}oldsymbol{A}=(oldsymbol{a}_{i}^{\mathrm{T}}oldsymbol{a}_{j})_{n imes n}=(oldsymbol{a}_{i}\cdotoldsymbol{a}_{j})_{n imes n}.$$

$$m{A}$$
 is orthogonal $\Leftrightarrow m{A}^{\mathrm{T}} m{A} = m{I}_n$ $\Leftrightarrow m{a}_i \cdot m{a}_j = \left\{egin{array}{ll} 1 & ext{if } i = j \\ 0 & ext{if } i
eq j \end{array}
ight. \ \Leftrightarrow m{a}_1, m{a}_2, \ldots, m{a}_n ext{ are orthonormal.}$

86 / 105

Properties

• Proof of Theorem.

$$\circ$$
 Write $m{A}=egin{pmatrix} m{b}_1 \ m{b}_2 \ dots \ m{b}_n \end{pmatrix}$. Then $m{A}^{
m T}=m{ig(m{b}_1^{
m T} \ m{b}_2^{
m T} \ \cdots \ m{b}_n^{
m T}ig)}$

•
$$AA^{\mathrm{T}} = (b_ib_j^{\mathrm{T}})_{n \times n} = (b_i \cdot b_j)_{n \times n}.$$

$$m{A}$$
 is orthogonal $\Leftrightarrow m{A}m{A}^{\mathrm{T}} = m{I}_n$ $\Leftrightarrow m{b}_i \cdot m{b}_j = \left\{egin{array}{ll} 1 & ext{if } i = j \ 0 & ext{if } i
eq j \end{array}
ight. \ \Leftrightarrow m{b}_1, m{b}_2, \ldots, m{b}_n ext{ are orthonormal.}$

- More generally, for any $m \times n$ matrix A:
 - $\circ \quad \boldsymbol{A}^{\mathrm{T}}\boldsymbol{A} = \boldsymbol{I}_n$
 - \Leftrightarrow the **columns** of A form an **orthonormal** set.
 - \circ $\boldsymbol{A}\boldsymbol{A}^{\mathrm{T}}=\boldsymbol{I}_{m}$
 - \Leftrightarrow the rows of A form an orthonormal set.
- Let $S = \{ \mathbf{u}_1, \dots, \mathbf{u}_k \}$ be an orthonormal subset of \mathbb{R}^n .
 - \circ Let $m{A} = m{(u_1 \ \cdots \ u_k)}$. Then $m{A}^{\mathrm{T}} m{A} = m{I_k}$.
 - Let \boldsymbol{P} be an $n \times n$ orthogonal matrix.

$$(\boldsymbol{P}\boldsymbol{A})^{\mathrm{T}}(\boldsymbol{P}\boldsymbol{A}) = \boldsymbol{A}^{\mathrm{T}}\boldsymbol{P}^{\mathrm{T}}\boldsymbol{P}\boldsymbol{A} = \boldsymbol{A}^{\mathrm{T}}\boldsymbol{A} = \boldsymbol{I}_{k}.$$

- $PA = (Pu_1 \cdots Pu_k)$.
- $\circ \{Pu_1, \dots, Pu_k\}$ is also an orthonormal set.

88 / 105

Properties

- Let $S = \{u_1, \dots, u_k\}$ and $T = \{v_1, \dots, v_k\}$ be orthonormal bases for a vector space V.
 - \circ Let $oldsymbol{A} = egin{pmatrix} oldsymbol{u}_1 & \cdots & oldsymbol{u}_k \end{pmatrix}$ and $oldsymbol{B} = egin{pmatrix} oldsymbol{v}_1 & \cdots & oldsymbol{v}_k \end{pmatrix}$.
 - $\bullet \quad \text{Then } \boldsymbol{A}^{\mathrm{T}}\boldsymbol{A} = \boldsymbol{B}^{\mathrm{T}}\boldsymbol{B} = \boldsymbol{I}_{k}.$
 - $\circ \quad \text{For any } \boldsymbol{w} \in V \text{, } \boldsymbol{w} = \boldsymbol{A}[\boldsymbol{w}]_S = \boldsymbol{B}[\boldsymbol{w}]_T.$
 - $B^{T}A[w]_{S} = B^{T}B[w]_{T} = [w]_{T}$.
 - \circ Let ${\bf P}$ be the transition matrix from S to T.
 - Then $oldsymbol{P}[oldsymbol{w}]_S = [oldsymbol{w}]_T.$
 - $P = \mathbf{B}^{\mathrm{T}} \mathbf{A}$ is the transition matrix from S to T.

- Let $S = \{u_1, \dots, u_k\}$ and $T = \{v_1, \dots, v_k\}$ be orthonormal bases for a vector space V.
 - \circ Let $oldsymbol{A} = egin{pmatrix} oldsymbol{u}_1 & \cdots & oldsymbol{u}_k \end{pmatrix}$ and $oldsymbol{B} = egin{pmatrix} oldsymbol{v}_1 & \cdots & oldsymbol{v}_k \end{pmatrix}$.
 - ullet Then $oldsymbol{A}^{\mathrm{T}}oldsymbol{A} = oldsymbol{B}^{\mathrm{T}}oldsymbol{B} = oldsymbol{I}_k.$
 - $\circ \quad \text{For any } \boldsymbol{w} \in V \text{, } \boldsymbol{w} = \boldsymbol{A}[\boldsymbol{w}]_S = \boldsymbol{B}[\boldsymbol{w}]_T.$
 - $A^{\mathrm{T}}B[w]_T = A^{\mathrm{T}}A[w]_S = [w]_S$.
 - \circ Let Q be the transition matrix from T to S.
 - Then $oldsymbol{Q}[oldsymbol{w}]_T = [oldsymbol{w}]_S.$
 - \therefore $Q = A^T B$ is the transition matrix from T to S.

90 / 105

Properties

- Let $S = \{u_1, \dots, u_k\}$ and $T = \{v_1, \dots, v_k\}$ be orthonormal bases for a vector space V.
 - \circ Let $m{A} = egin{pmatrix} m{u}_1 & \cdots & m{u}_k \end{pmatrix}$ and $m{B} = egin{pmatrix} m{v}_1 & \cdots & m{v}_k \end{pmatrix}$.
 - ullet Then $oldsymbol{A}^{\mathrm{T}}oldsymbol{A} = oldsymbol{B}^{\mathrm{T}}oldsymbol{B} = oldsymbol{I}_k.$
 - \circ $P = B^T A$ is the transition matrix from S to T;
 - $\boldsymbol{Q} = \boldsymbol{A}^{\mathrm{T}}\boldsymbol{B}$ is the transition matrix from T to S.
 - $P^{T} = (B^{T}A)^{T} = A^{T}(B^{T})^{T} = A^{T}B = Q.$
 - It is also known that $m{P}^{-1} = m{Q}$; so $m{P}^{\mathrm{T}} = m{P}^{-1}$
 - \therefore P (and hence Q) is an **orthogonal** matrix.
- $\bullet \quad \textbf{Theorem}. \quad \text{Let } S \text{ and } T \text{ be two } \textbf{orthonormal } \text{bases for a vector space } V.$
 - \circ Let \boldsymbol{P} be the transition matrix from S to T.
 - Then P is an orthogonal matrix.

Examples

• Let $E = \{e_1, e_2, e_3\}$ be the standard basis for \mathbb{R}^3 .

$$e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1).$$

Let $S=\{oldsymbol{u}_1,oldsymbol{u}_2,oldsymbol{u}_3\}$, where $oldsymbol{u}_1=rac{1}{\sqrt{3}}(1,1,1)$,

$$u_2 = \frac{1}{\sqrt{2}}(1,0,-1), u_3 = \frac{1}{\sqrt{6}}(1,-2,1).$$

 \circ Let \boldsymbol{P} be the transition matrix from S to E:

$$\begin{array}{l} \bullet \quad \left\{ \begin{array}{l} \boldsymbol{u}_1 = \frac{1}{\sqrt{3}}\boldsymbol{e}_1 + \frac{1}{\sqrt{3}}\boldsymbol{e}_2 + \frac{1}{\sqrt{3}}\boldsymbol{e}_3 \\ \boldsymbol{u}_2 = \frac{1}{\sqrt{2}}\boldsymbol{e}_1 + \ 0\boldsymbol{e}_2 - \frac{1}{\sqrt{2}}\boldsymbol{e}_3 \\ \boldsymbol{u}_3 = \frac{1}{\sqrt{6}}\boldsymbol{e}_1 - \frac{2}{\sqrt{6}}\boldsymbol{e}_2 + \frac{1}{\sqrt{6}}\boldsymbol{e}_3 \end{array} \right. \end{array}$$

$$\bullet \quad \boldsymbol{P} = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{pmatrix} \text{ is an orthogonal matrix.}$$

92 / 105

Examples

• Let $E = \{e_1, e_2, e_3\}$ be the standard basis for \mathbb{R}^3 .

$$e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1).$$

Let $S = \{ \boldsymbol{u}_1, \boldsymbol{u}_2, \boldsymbol{u}_3 \}$, where $\boldsymbol{u}_1 = \frac{1}{\sqrt{3}} (1, 1, 1)$,

$$\boldsymbol{u}_2 = \frac{1}{\sqrt{2}}(1,0,-1), \, \boldsymbol{u}_3 = \frac{1}{\sqrt{6}}(1,-2,1).$$

 $\circ \quad \boldsymbol{P}^{-1} = \boldsymbol{P}^{\mathrm{T}} \text{ is the transition matrix from } E \text{ to } S\text{:}$

•
$$P^{-1} = P^{\mathrm{T}} = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \end{pmatrix}$$

$$\begin{array}{l}
\bullet \quad \left\{ \begin{array}{l}
e_1 = \frac{1}{\sqrt{3}} \boldsymbol{u}_1 + \frac{1}{\sqrt{2}} \boldsymbol{u}_2 + \frac{1}{\sqrt{6}} \boldsymbol{u}_3 \\
e_2 = \frac{1}{\sqrt{3}} \boldsymbol{u}_1 + 0 \boldsymbol{u}_2 - \frac{2}{\sqrt{6}} \boldsymbol{u}_3 \\
e_3 = \frac{1}{\sqrt{3}} \boldsymbol{u}_1 - \frac{1}{\sqrt{2}} \boldsymbol{u}_2 + \frac{1}{\sqrt{6}} \boldsymbol{u}_3
\end{array} \right.$$

Examples

• Let $S = \{u_1, u_2, u_3\}$ and $T = \{v_1, v_2, v_3\}$,

$$u_1 = \frac{1}{\sqrt{2}}(1,1,1), u_2 = \frac{1}{\sqrt{2}}(1,0,-1), u_3 = \frac{1}{6}(1,-2,1).$$

$$\begin{array}{ll} \circ & \boldsymbol{u}_1 = \frac{1}{\sqrt{3}}(1,1,1), \, \boldsymbol{u}_2 = \frac{1}{\sqrt{2}}(1,0,-1), \, \boldsymbol{u}_3 = \frac{1}{6}(1,-2,1). \\ \circ & \boldsymbol{v}_1 = (0,0,1), \, \boldsymbol{v}_2 = \frac{1}{\sqrt{2}}(1,-1,0), \, \boldsymbol{v}_3 = \frac{1}{\sqrt{2}}(1,1,0). \end{array}$$

Both S and T are orthonormal bases for \mathbb{R}^3 . (Verify!)

$$\circ \ \ \boldsymbol{u}_1 = (\boldsymbol{u}_1 \cdot \boldsymbol{v}_1) \boldsymbol{v}_1 + (\boldsymbol{u}_1 \cdot \boldsymbol{v}_2) \boldsymbol{v}_2 + (\boldsymbol{u}_1 \cdot \boldsymbol{v}_3) \boldsymbol{v}_3.$$

•
$$u_1 = \frac{1}{\sqrt{3}}v_1 + 0v_2 + \frac{2}{\sqrt{6}}v_3$$
.

$$\circ \ \ u_2 = (u_2 \cdot v_1)v_1 + (u_2 \cdot v_2)v_2 + (u_2 \cdot v_3)v_3.$$

•
$$u_2 = -\frac{1}{\sqrt{2}}v_1 + \frac{1}{2}v_2 + \frac{1}{2}v_3$$
.

$$\circ \ \ \boldsymbol{u}_3 = (\boldsymbol{u}_3 \cdot \boldsymbol{v}_1) \boldsymbol{v}_1 + (\boldsymbol{u}_3 \cdot \boldsymbol{v}_2) \boldsymbol{v}_2 + (\boldsymbol{u}_3 \cdot \boldsymbol{v}_3) \boldsymbol{v}_3.$$

•
$$u_3 = \frac{1}{\sqrt{6}}v_1 + \frac{3}{\sqrt{12}}v_2 - \frac{1}{\sqrt{12}}v_3$$
.

94 / 105

Examples

• Let $S = \{ u_1, u_2, u_3 \}$ and $T = \{ v_1, v_2, v_3 \}$,

$$\begin{array}{ll} \circ & \boldsymbol{u}_1 = \frac{1}{\sqrt{3}}(1,1,1), \, \boldsymbol{u}_2 = \frac{1}{\sqrt{2}}(1,0,-1), \, \boldsymbol{u}_3 = \frac{1}{6}(1,-2,1). \\ \circ & \boldsymbol{v}_1 = (0,0,1), \, \boldsymbol{v}_2 = \frac{1}{\sqrt{2}}(1,-1,0), \, \boldsymbol{v}_3 = \frac{1}{\sqrt{2}}(1,1,0). \end{array}$$

$$v_1 = (0,0,1), v_2 = \frac{1}{\sqrt{2}}(1,-1,0), v_3 = \frac{1}{\sqrt{2}}(1,1,0).$$

Both S and T are orthonormal bases for \mathbb{R}^3 . (Verify!)

 \circ The transition matrix from S to T:

•
$$P = \begin{pmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{1}{2} & \frac{3}{\sqrt{12}} \\ \frac{2}{\sqrt{6}} & \frac{1}{2} & -\frac{1}{\sqrt{12}} \end{pmatrix}$$

The transition matrix from T to S:

•
$$P^{-1} = P^{T} = \begin{pmatrix} \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{\sqrt{6}} & \frac{3}{\sqrt{12}} & -\frac{1}{\sqrt{12}} \end{pmatrix}$$

Classification

- What are the orthogonal matrices (numbers) of order 1?
 - \circ (a) with |a| = 1: (1) and (-1).
- What are the orthogonal matrices of order 2?
 - \circ (Exercise 2.57): $\det(\mathbf{A}) = \pm 1$.
 - $\bullet \quad \text{If } \det(\boldsymbol{A}) = 1 \text{, then } \boldsymbol{A} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$ $\bullet \quad \text{If } \det(\boldsymbol{A}) = -1 \text{, then } \boldsymbol{A} = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}.$
- Exercise.
 - o Can you classify the orthogonal matrices of order 3?

96 / 105

Geometric Representation

• Let $\{ oldsymbol{u}_1, oldsymbol{u}_2 \}$ be an orthonormal basis for \mathbb{R}^2 .

- $\circ \quad \boldsymbol{u}_1 = \cos\theta \, \boldsymbol{e}_1 + \sin\theta \, \boldsymbol{e}_2;$
- $\circ \quad \boldsymbol{u}_2 = -\sin\theta \, \boldsymbol{e}_1 + \cos\theta \, \boldsymbol{e}_2.$

• Let $\{ {m u}_1, {m u}_2 \}$ be an orthonormal basis for $\mathbb{R}^2.$

- \circ $m{P} = egin{pmatrix} m{u}_1 & m{u}_2 \end{pmatrix} = egin{pmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{pmatrix}$ is orthogonal.
 - The transition matrix from $\{m{u}_1, m{u}_2\}$ to $\{m{e}_1, m{e}_2\}$.

98 / 105

Geometric Representation

ullet Let $\{oldsymbol{u}_1,oldsymbol{u}_2\}$ be an orthonormal basis for $\mathbb{R}^2.$

- $\circ \quad m{P}^{-1} = m{P}^{
 m T} = egin{pmatrix} \cos heta & \sin heta \ -\sin heta & \cos heta \end{pmatrix}$ is also orthogonal.
 - The transition matrix from $\{m{e}_1,m{e}_2\}$ to $\{m{u}_1,m{u}_2\}.$

• Let $\{u_1, u_2\}$ be an orthonormal basis for \mathbb{R}^2 .

- \circ Let v = (x, y) and $(v)_S = (x', y'), S = \{u_1, u_2\}.$
 - $v = P[v]_S \Rightarrow [v]_S = P^{-1}v = P^{\mathrm{T}}v$.

100 / 105

Geometric Representation

• Let $\{oldsymbol{u}_1,oldsymbol{u}_2\}$ be an orthonormal basis for $\mathbb{R}^2.$

- $\circ \quad \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$
 - The coordinates of \boldsymbol{v} using $x^{\prime}y^{\prime}\text{-coordinate}$ system.

• Let $\{u_1, u_2\}$ be an orthonormal basis for \mathbb{R}^2 .

- $\circ ~~$ Let $m{u} \in \mathbb{R}^2$, and $m{v} = m{P}m{u} = egin{pmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{pmatrix} m{u}.$
 - ${m v}$ is the **rotation** of ${m u}$ about O by θ anticlockwise.

102 / 105

Geometric Representation

• Let $m{P}_{\! heta} = egin{pmatrix} \cos heta & -\sin heta \\ \sin heta & \cos heta \end{pmatrix}$. Then for any $m{u} \in \mathbb{R}^2$,

• $P_{\theta}u$ = rotation of u about O by θ anticlockwise.

Fix angles α and β . Then for any $\boldsymbol{u} \in \mathbb{R}^2$,

$$m{P}_{\!lpha}m{u}=$$
 rotation of $m{u}$ about O by $lpha$ anticlockwise $m{P}_{\!eta}(m{P}_{\!lpha}m{u})=$ rotation of $m{P}_{\!lpha}m{u}$ about O by eta anticlockwise $=$ rotation of $m{u}$ about O by $lpha+eta$ $=m{P}_{\!lpha+eta}m{u}.$

 \circ Therefore, $P_{\beta}P_{\alpha}=P_{\alpha+\beta}$.

$$\begin{pmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$
$$= \begin{pmatrix} \cos(\alpha + \beta) & -\sin(\alpha + \beta) \\ \sin(\alpha + \beta) & \cos(\alpha + \beta) \end{pmatrix}.$$

- Let $m{P}_{\! heta} = egin{pmatrix} \cos heta & -\sin heta \\ \sin heta & \cos heta \end{pmatrix}$. Then for any $m{u} \in \mathbb{R}^2$.
 - \circ $P_{\theta}u =$ rotation of u about O by θ anticlockwise.

Fix angles α and β . Then for any $\boldsymbol{u} \in \mathbb{R}^2$,

$$m{P}_{\!lpha}m{u}=$$
 rotation of $m{u}$ about O by $lpha$ anticlockwise $m{P}_{\!eta}(m{P}_{\!lpha}m{u})=$ rotation of $m{P}_{\!lpha}m{u}$ about O by eta anticlockwise $=$ rotation of $m{u}$ about O by $lpha+eta$ $=m{P}_{\!lpha+eta}m{u}.$

 \circ Therefore, $P_{\beta}P_{\alpha}=P_{\alpha+\beta}$.

$$\begin{pmatrix}
\cos \beta \cos \alpha - \sin \beta \sin \alpha & -\cos \beta \sin \alpha - \sin \beta \cos \alpha \\
\sin \beta \cos \alpha + \cos \beta \sin \alpha & -\sin \beta \sin \alpha + \cos \beta \cos \alpha
\end{pmatrix}$$

$$= \begin{pmatrix}
\cos(\alpha + \beta) & -\sin(\alpha + \beta) \\
\sin(\alpha + \beta) & \cos(\alpha + \beta)
\end{pmatrix}.$$

104 / 105

Geometric Representation

- Let $m{P}_{ heta} = egin{pmatrix} \cos heta & -\sin heta \\ \sin heta & \cos heta \end{pmatrix}$. Then for any $m{u} \in \mathbb{R}^2$.
 - \circ $P_{\theta}u =$ rotation of u about O by θ anticlockwise.

Fix angles α and β . Then for any $\boldsymbol{u} \in \mathbb{R}^2$,

$$egin{aligned} &m{P}_{\!lpha}m{u}= ext{rotation of } m{u} ext{ about } O ext{ by } lpha ext{ anticlockwise} \ &m{P}_{\!eta}(m{P}_{\!lpha}m{u})= ext{rotation of } m{P}_{\!lpha}m{u} ext{ about } O ext{ by } eta ext{ anticlockwise} \ &= ext{rotation of } m{u} ext{ about } O ext{ by } lpha + eta \ &= m{P}_{\!lpha+eta}m{u}. \end{aligned}$$

- \circ Therefore, $P_{\beta}P_{lpha}=P_{lpha+eta}.$
- Sum Laws for Sine and Cosine:
 - $\cos(\alpha + \beta) = \cos \alpha \cos \beta \sin \alpha \sin \beta$;
 - $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$.