- Sie lernen unterschiedliche Idealisierungsund Modellierungsansätze kennen.
- Sie haben einen Überblick über die wichtigsten Elementklassen und -typen.
- Sie können Linienmodelle in Ansys realisieren und die Schnittgrössen von Balkentragwerken auswerten.

=> Stab (Linienmodell)

Idealisierung

Hochschule Luzern
Technik & Architektur

=> Balken (Linienmodell)

Idealisierung

=> Volumen- oder Schalenmodell

Idealisierung

Hochschule Luzern
Technik & Architektur

Querschnitt => Ebenes Problem (ebener Dehnungszustand)

Idealisierung

Idealisierung => 1. Schritt vom Original zum Simulationsmodell: Welche physikalischen Effekte müssen berücksichtigt werden?

	Beispiel
Lasten	
- Einzel- oder verteilte Lasten	⇒ Kraft, Moment, Druck
- Art der Lasten	⇒ Strukturlasten, Temperatur
- Abhängigkeiten	⇒ Nicht konstant, Verformung
Versagensarten	
- Werkstoffversagen	⇒ Plastische Verformung, Kriechen, Gewaltbruch, Ermüdung
- Strukturversagen	⇒ Unzulässige statische Verformung, Instabilitäten (Knicken, Beulen, Flattern, etc.)
Einfluss der Zeit	⇒ Stösse, Kriechen
Nichtlinearitäten	
- geometrisch	⇒ Grosse Verformungen, z.B. Nachbeulverhalten
- materiell	⇒ Plastizität, Hyperelastizität, Cracking, Softening
- Randbedingungen	⇒ Kontakt, Reibung

	Beispiel
Umweltbedingungen	
- Temperatur	⇒ Temperaturzyklus
- Korrosion	⇒ Reibung, aggressive Medien
- Strahlung	⇒ UV-Licht
Systemgrenzen	
- Symmetrie	⇒ Spiegelsymmetrie, Axialsymmetrie,
	Rotationssymmetrie, repetitive Symmetrie

Modellbildung => 2. Schritt vom Original zum Simulationsmodell: Wie kann die idealisierte Physik mit der FE-Methode beschrieben werden?

	Beispiel
Analysetyp	
- linear	⇒ statisch, modal, transient, stationär, instationär
- nichtlinear	⇒ statisch, transient, stationär, instationär
- gekoppelt	\Rightarrow Fluid-Struktur-Interaktion
Elementauswahl	
- Elementklassen und -ansatzfunktionen	⇒ Linien, Flächen, Volumen, linear, quadratisch
- Elementtypen	⇒ Stäbe, Balken, Scheiben, Platten
- besondere Zustände	⇒ Ebener Spannungszustand, ebener
	Verzerrungszustand
- zusätzliche Einflüsse	⇒ Schubsteifigkeit bei Balken und Schalen
- Elementgrösse	⇒ Netzverfeinerung an Stellen hoher
	Spannungskonzentration, z.B. Kerben
- Netzgenerierung	⇒ Übergänge von grobe auf feine Netze
	(ästhetisch schöne Netze liefern in der Regel
	auch gute Ergebnisse)

		Flächen		Volumen		
Ansatzfunktion	Linien	Dreieck	Viereck	Tetraede	r Hexaede	r Prisma
linear						
quadratisch						
kubisch		~			~	

Тур	Englisch	Dimension	DOF	Klasse	Name in Ansys
Balken	beam	3D	u, φ	Linie	beam188, beam189
Scheibe (ebener Spannungszustand)	plane stress	2D	u	Fläche	plane182, plane183
Scheibe (ebener Dehnungszustand)	plane strain	2D	u	Fläche	plane182, plane183
Scheibe (axialsymmetrisch)	axisymmetric	2D	u	Fläche	plane182, plane183
Schale	shell	3D	u, φ	Fläche	shell181, shell281
Volumen	solid	3D	u	Volumen	solid185, solid187

FEM I - Lektion 3 - H2016

Kontinuumselemente Strukturelemente u - Verschiebung

 $\boldsymbol{\phi}$ - Verdrehung

	Beispiel
Modellierung der Struktur	
- direkt	⇒ einfache Geometrien mit Knoten und Elementen
	aufbauen
- indirekt	⇒ Import CAD-Geometrie
- Vereinfachungen	⇒ de-featuring der Geometrie
 Netzsäuberung 	⇒ Doppelknoten und –elemente löschen
 Zuweisung von Material- und 	⇒ Verwendung mehrerer Werkstoffe in einer
Geometriekonstanten	Struktur, Flächenträgheitsmomente
- Netzkopplung	⇒ Verwendung unterschiedlicher Elementtypen
Diskontinuitäten	⇒ Material, Geometrie, Randbedingung, Belastung
Randbedingungen	
- Lasteinleitung	⇒ gemäss Idealisierung
- Lagerung	⇒ Vermeidung von Starrkörpermoden, realitätsnah,
	Punkte-Linien-Flächen
- Zwangsbedingungen	⇒ Kopplung von Freiheitsgraden
Werkstoffverhalten	⇒ Linear elastisch, nichtlinear, zeitabhängig,
	isotrop, orthotrop

6 Freiheitsgrade am Knoten: 3 Verschiebungen (ux, u, uz)

3 Verdrehungen (ϕ_x , ϕ_y , ϕ_z)

Geometrie: schlanke, langgestreckte Bauteile

Lasten: Einzelkräfte und –momente

Streckenlasten

Belastungen: Längs- und Querkräfte

2-achsige Biegung

Torsion

Ergebnisse: Verschiebungen und Verdrehungen

Schnittkraftverläufe (N, Q, M)

Normal-, Biege- und Schubspannungen

Selbststudium

Hochschule Luzern
Technik & Architektur

Lösen Sie die Aufgabe 5.

Verifizieren Sie die Lagerreaktionen und die Schnittkraftverläufe.