07 重积分

2024年2月20日

目录

1	二重	重积分的概念和性质															2						
	1.1	引入																					2
	1.2	一重和	识分																				2

1 二重积分的概念和性质

1.1 引入

一**元函数的积分** 一元函数的积分的核心是分割求和,将连续函数分割成大量小的微元,从而便于求和。其公式为

$$\int_{a}^{b} f(x) = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x_i$$

一元函数积分的性质 1. 线性性质 $\int_a^b f(x) + g(x) = \int_a^b f(x) + \int_a^b g(x)$ $\int_a^b k f(x) = k \int_a^b f(x)$

- 2. 保号性: 若 $\forall x \in D \ f(x) \leq g(x)$ 或仅在有限个点上不满足该条件,都有 $\int_a^b f(x) \leq \int_a^b$
 - 3. 可加性: $\int_a^b f(x) = \int_a^c f(x) + \int_c^b f(x)$
- 4. 积分中值定理: 若 f(x) 在 [a,b] 上连续 $\exists \xi \in [a,b]$ 使得 $\int_a^b f(x) = f(\xi)*(b-a)$

1.2 二重积分

分割 我们把一个区域 D 划分为 n 个子区域,分别称作 $D_1, D_2 \dots D_n$,要求 $D_1 \cup D_2 \cup \dots D_n = D$,且都不相交

定义 设 z = f(x,y) 是定义在有界闭区域 D 上的函数,对其任意分割 $\{D_1, D_2, \dots D_n\}$,及任意选择 $(x_i, y_i) \in D_i$,称

$$\lim_{\lambda \to 0} \sum_{i=1}^{n} f(x_i, y_i) \Delta S_i$$

为 f(x,y) 在 D 上的二重积分,记作 $\iint_D f(x,y) dxdy$

二重积分的几何意义 以 z = f(x,y) 为顶面的直柱体的体积