

Lineare Algebra I, Lösungshinweise zur 1. und 2. Aufgabe

Aufgabe 1 (4 Punkte). Zeigen Sie: Die Gruppe der Rotationssymmetrien des Tetraeders ist isomorph zu einer Untergruppe der symmetrischen Gruppe S_4 . (Hinweis: betrachten Sie die Ecken des Tetraeders unter einer Rotationssymmetrie).

Sei $G = \{g \mid g \text{ ist Rotationssymmetrie des Tetraeders}\}$ und P_1, \ldots, P_4 die Ecken des Tetraeders. Für $g \in G$ definiere eine Permutation $\varphi(g) = \sigma \in S_4$ durch

$$g(P_i) = P_{\sigma(i)}, \quad i = 1, \dots, 4.$$

Die Abbildung $\varphi:G\to S_4$ ist ein Gruppenhomomorphismus, da

$$P_{\varphi(q\circ\tilde{q})(i)} = g\circ\tilde{g}(P_i) = g(\tilde{g}(P_i)) = g(P_{\varphi(\tilde{q})(i)}) = P_{\varphi(q)(\varphi(\tilde{q})(i))}, \quad i = 1,\dots,4,$$

und daher

$$\varphi(g \circ \tilde{g}) = \varphi(g) \circ \varphi(\tilde{g}).$$

Für $g, \tilde{g} \in G$ impliziert $\varphi(g) = \varphi(\tilde{g})$, dass

$$g(P_i) = \tilde{g}(P_i), \quad i = 1, \dots, 4.$$

Da zwei Rotationssymmetrien gleich sind, wenn sie die Ecken auf gleiche Weise abbilden, folgt $g=\tilde{g}.$ Daher ist φ injektiv.

Sei $H = \varphi(G) \subset S_4$, dann gilt:

$$h = \varphi(q), \tilde{h} = \varphi(\tilde{q}) \in H \implies h \circ \tilde{h} = \varphi(q) \circ \varphi(\tilde{q}) = \varphi(q \circ \tilde{q}) \in \varphi(G) = H$$

und

$$h = \varphi(q) \in H \implies h^{-1} = \varphi(q^{-1}) \in \varphi(G) = H,$$

denn

$$\varphi(q) \circ \varphi(q^{-1}) = \varphi(q \circ q^{-1}) = \varphi(\mathrm{id}) = \mathrm{id}$$
.

Damit ist $\varphi:G\to H$ ein bijektiver Gruppenhomomorphismus, und G isomorph zu einer Untergruppe $H\subset S_4.$

Aufgabe 2 (4 Punkte). Sei $\sigma \in S_n$ ein Zykel der Länge k. Zeigen Sie: Die Untergruppe $H \subset S_n$, die von σ erzeugt wird, ist isomorph zur zyklischen Gruppe $\mathbb{Z}/k\mathbb{Z}$ der Ordnung k.

Mit Hausaufgabe 4, Blatt 3, reicht es zu zeigen, dass die von σ erzeugte Untergruppe $H \subset S_n$ die Ordnung k hat. Wir schreiben

$$\sigma = (i_1 \dots i_k)$$

mit $i_j \in \{1, ..., n\}, j = 1, ..., k$. Dann ist

$$\sigma^m(j) = j, \quad j \notin \{i_1, \dots, i_k\}, m \in \mathbb{Z}.$$

Ausserdem ist

$$\sigma^m(i_j) = i_{(j+m) \mod k}, \quad j = 1, \dots, k.$$

Damit ist $\sigma^k = \text{id}$ und $\sigma^m \neq \text{id}$ für m < k und also

$$|H|=k$$
.