Thesis Proposal

Predictive Modeling with Imbalanced Data

Alyssa Forber

University of Colorado, Anschutz Medical Campus

December 2017

Outline

Problem

Objectives

Methods

Case Studies

Simulation

Conclusion

Imbalanced Learning Problem

- Predictive models learn poorly when datasets are imbalanced
- Over learning the majority and under learning the minority
- Results in low sensitivity and high specificity
- Need to improve predictive performance
- Many examples in medicine, diseases or adverse reactions taking place in small percent of the population

Aims

- Improve predictive performance for imbalanced dataset
- Utilizing measures of sensitivity, specificity, accuracy, and ROC analysis to evaluate performance
- Use and compare two methods to handle imbalance
 - Informed robability cutpoints for predicted probabilites
 - Sampling techniques to balance datasets
- Evaluate methods to recommend approaches in medicine

Methods

- Split data into training and test sets
- Create balanced datasets through sampling on test set
- Run predictive model on sampled data
- Get predicted probabilities on the hold-out test data
- Optimize probability cutoff for outcome

Model

 ${\it Cross-validated\ lasso\ regression\ -\ Least\ Absolute\ Shrinkage\ and\ Selection}$ ${\it Operator}$

- Lasso:
 - Shrinks estimates by penalizing size of coefficients
 - Performs variable selection by shrinking some to 0

$$\hat{eta}_{lasso} = argmin \sum_{j=1}^{N} (y_i - eta_0 - \sum_{j=1}^{p} x_{ij} eta_j)^2$$

subject to $\sum_{j=1}^{p} |\beta_j| \le t$ where t is the tuning parameter.

Cross Validation

- Cross validation:
 - ► Find the best "tuning measure" for model selection which determines amount of shrinkage of estimates
 - Split data into k parts and then train on each of those except one you validate against
 - Then pick the tuning measure that minimizes error

Advantages and Disadvantages

- Advantages:
 - Lower variance of the predicted values
 - ► More accurate predictions
 - Reduces the number of predictors
- Disadvantages:
 - ▶ Biased coefficients, inference not same as logistic regression
 - ▶ No standard errors or p-values out of the model

ROC & Cutoff Probabilities

ROC (with pROC package):

- Receiver Operating Characteristics
- ROC curve plots sensitivity vs specificity
- Each point on curve corresponds to a decision cutoff
- Youden's Index calculated the furthest upper left corner or "max" on curve
- Area under the curve (AUC) should be maximized

ROC Curve

Figure 2: ROC Curve

Confusion Matrix

Correctly identify those w/ outcome:

$$\textit{Sensitivity} = \frac{\textit{TP}}{\textit{TP} + \textit{FN}}$$

Correctly identify those w/o outcome:

$$Specificity = \frac{TN}{TN + FP}$$

Correctly identify either group:

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

Predicted class P N True False Positives Negatives (TP) (FN) Actual Class False True Positives Negatives (FP) (TN)

First Approach

No Sampling, Optimize Cut-off:

- Use original unsampled data and get predictions from the lasso model
 - Predictions return probability between 0 and 1 for each observation
- Use 0.5 standard probability cutoff to compare
- Find "best" probability cutoff
 - Youden's Index

Second Approach

Sampling:

- Create sampled data sets that are balanced
 - Down sample
 - Up sample
 - ► SMOTE
- Predict and use Youden's Index as cutoff

Down Sampling

• Under-sample majority to equal minority

Figure 3: Down sample

Up Sampling

Over-sample minority to equal majority

Figure 4: Up sample

SMOTE

• Synthetic Minority Over-sampling Technique

Figure 5: SMOTE

Models

- Model 1: No Sampling
 - ▶ 0.5 cutoff
 - Youden's Index
- Model 2: Down Sampling
 - Youden's Index
- Model 3: Up Sampling
 - Youden's Index
- Model 4: SMOTE
 - ► Youden's Index

Case Studies

We used these methods on two case studies to see how results may differ between two real world examples with rare outcomes.

- Case Study 1: Predicting chronic opioid therapy in hospitalized patients (5%)
- Case Study 2: Predicting surgical site infections in hospitalized patients (3.4%)

Case Study 1

- Design: Denver Health retrospective analysis electronic health record (EHR) data from 2008 to 2014.
- Patients: Hospitalized patients at an urban, safety-net hospital.
- Definition of Chronic Opioid Therapy (COT) one year following the index hospital discharge:

Receipt of \geq 90-day supply of opioids with < 30-day gap in supply over a 180-day period or receipt of \geq 10 opioid prescriptions over one year.

Case Study 1: Patient Population

- 27,705 patients
- Majority had incomes <185% of the Federal Poverty Level
- 70% were ethnic minorities
- 5% with COT
- Excluded Patients:
 - ► <15 or >85 years old
 - Those in prison, jail, or police custody
 - Those who died within one year following their index hospitalization
 - ▶ Patients with <2 healthcare visits to Denver Health three years preceding their index hospitalization
 - Undocumented persons receiving emergent hemodialysis
 - ▶ Obstetric patients

Case Study 1: Results

Table 1: Results

Model	Threshold	Sensitivity	Specificity	NPV	PPV	Accuracy	AUC	Covariates
Unsampled 0.5	0.5	8	99	96	35	96	86	31
Unsampled	0.043	85	73	99	12	73	86	31
Down sampled	0.401	85	73	99	12	74	86	34
Up sampled	0.399	85	74	99	12	74	87	34
SMOTE	0.472	74	84	99	17	84	86	33

Figure 6: ROC for Original Data: Younden and 0.5 cutoffs

Case Study 2

Case Study 2:

Case STudy 2: Results

Simulation

Simulation Results

Conclusions

Questions?

Questions