Network Calculus Tests – Single Server (S) Networks

Version 2.0 beta 2 (2017-Jun-25)

© Steffen Bondorf 2013 - 2017, Some Rights Reserved.

Except where otherwise noted, this work is licensed under Creative Commons Attribution-ShareAlike 4.0. See http://creativecommons.org/licenses/by-sa/4.0/

General Information

- The network calculus analyses presented in this document were created for the purpose of testing the Disco Deterministic Network Calculator (DiscoDNC)¹ an open-source deterministic network calculus tool developed by the *Distributed Computer Systems* (DISCO) Lab at the University of Kaiserslautern.
- Naming of the individual network configurations depicts the name of the according functional test for the DiscoDNC.
- The naming scheme used in this document is detailed in NetworkCalculus NamingScheme.pdf.
- Arrival bound computations are equivalent to the PbooArrivalBound_Output_PerHop.java class of the DiscoDNC.
- The end-to-end left-over service curve for PBOO arrival bounds can be computed by simply convolving the server-local ones.
- Arrival bounds for PmooArrivalBound. java and analyses using them are listed only if results are different to PBOO.

Changelog:

Version 1.1 (2014-Dec-30):

• Adapted to naming scheme version 1.1.

Version 2.0 beta2 (2017-Jun-25):

- \bullet Rework of the documentation according to code changes
 - New, more complete naming.
 - Separation of network and test.

Acknowledgements:

Version 1.1: Thanks to Yokanand Thirupathi and Paresh Chotala for pointing out some errors.

 $^{^{1}} http://disco.cs.uni-kl.de/index.php/projects/disco-dnc$

$S_1SC_1F_1AC_Network$

- $\bullet \ \beta_{s_0} = \beta_{R_{s_0}, T_{s_0}} = \beta_{10, 10}$
- $\mathcal{F} = \{f_0\}$
- $\alpha^{f_0} = \gamma_{r^{f_0}, b^{f_0}} = \gamma_{5,25}$

$S_1SC_1F_1AC_Test$

	TFA	FIFO_MUX	ARB_MUX
	$\alpha_{s_0} = \alpha^{f_0}$		$=\gamma_{5,25}$
s_0		$\beta_{s_0} = b_{s_0}$	FIFO per micro flow
	D^{f_0}	$\beta_{s_0} = b_{s_o}$ $10 \cdot [t - 10]^+ = 25$	$\beta_{s_0} = b_{s_o}$ $10 \cdot [t - 10]^+ = 25$
		$t = 12\frac{1}{2}$	1
		2	$t = 12\frac{1}{2}$
	B^{f_0}	$\alpha_{s_0}(T_{s_0})$	$) = 5 \cdot 10 + 25$
			= 75

	SFA	FIFO_MUX	ARB_MUX
	$lpha_{s_0}^{x(f_0)}$	$= \gamma$	/0,0
s_0	$\beta_{\text{e2e}}^{\text{l.o.}f_0} = [\beta_{s_0} - \alpha_{s_0}^{x(f_0)}]^+ = \beta_{R_{\text{e2e}}^{\text{l.o.}f_0}, T_{\text{e2e}}^{\text{l.o.}f_0}} = \beta_{s_0}$	$=\beta_1$	10,10
		$\beta_{\mathrm{e2e}}^{\mathrm{l.o.}}$	$f_0 = b^{f_0}$
	D^{f_0}	$10 \cdot [t - 10]$	$^{+} = 25$
			$t = 12\frac{1}{2}$
	B^{f_0}	$\alpha^{f_0}(T_{\text{e2e}}^{\text{l.o.}f_0}) =$	$5 \cdot 10 + 25$
	B	=	75

	ARB_MUX	
80	$lpha_{s_0}^{ar{x}(f_0)}$	$=\gamma_{0,0}$
s_0	$\alpha_{s_0}^{x(f_0)}$	$=\gamma_{0,0}$
	$R_{\text{e2e}}^{\text{l.o.}f_0} = R_{s_0} - r_{s_0}^{x(f_0)}$	= 10 - 0
$\beta_{\text{e2e}}^{\text{l.o.}f_0} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_0}, T_{\text{e2e}}^{\text{l.o.}f_0}}$	$r_{ m e2e} = r_{ m e3o} / s_0$	= 10
$R_{\rm e2e}$, $R_{\rm e2e}$	$T_{\text{e2e}}^{\text{l.o.}f_0} = T_{s_0} + \frac{b_{s_0}^{\bar{x}(f_0)} + r_{s_0}^{x(f_0)} \cdot T_{s_0}}{R_{s_0s_0}^{\text{l.o.}f_0}}$	$= 10 + \frac{0 + 0 \cdot 10}{10}$
	$R_{\rm e2e}^{1.0.10}$	= 10
	=	$= \beta_{10,10}$
		$\beta_{\text{e2e}}^{\text{l.o.}f_0} = b^{f_0}$
	D^{f_0}	$10 \cdot [t - 10]^+ = 25$
		$t = 12\frac{1}{2}$
	$\alpha^{f_0}(T_{\text{e2e}}^{\text{l.o.}f_0}) = 5 \cdot 10 + 25$	
	B^{f_0}	= 75

$S_1SC_2F_1AC_Network$

- $\bullet \ \beta_{s_0} = \beta_{R_{s_0}, T_{s_0}} = \beta_{10, 10}$
- $\mathcal{F} = \{f_0, f_1\}$
- $\alpha^{f_0} = \alpha^{f_1} = \gamma_{rf_n, bf_n} = \gamma_{5,25}, n \in \{0, 1\}$

$S_1SC_2F_1AC_Test$

Flows $f_n, n \in \{0, 1\}$

TFA results will be equal for all flows as they share the same path of servers.

	TFA	FIFO_MUX	ARB_MUX
	$\alpha_{s_0} = \alpha^{f_0} + \alpha^{f_1}$		$=\gamma_{10,50}$
s_0		$\beta = h$	$\beta_{s_0} = \alpha_{s_0}$ $10 \cdot [t - 10]^+ = 10 \cdot t + 50$ $0 \cdot t = 150$
	D^{f_n}	$\rho_{s_0} = \sigma_{s_0}$	$10 \cdot [t - 10]^+ = 10 \cdot t + 50$
	D^{sn}	t = 15	$0 \cdot t = 150$
		t = 15	$\Rightarrow D^{f_n} = \infty$
	R^{f_n}	$\alpha_{s_0}(T_{s_0})$	$= 10 \cdot 10 + 50$
	<i>D</i> ***		= 150

SFA		FIFO_MUX	ARB_MUX	
	$\alpha_{s_0}^{x(f_n)} = \alpha^{f_n}$		$=\gamma_{5}$	5,25
	r(f)	$R_{s_0}^{\mathrm{l.o.}f_n}$	$[R_{s_0} - r_{s_0}^{x(f)}]$	$[n]^{+} = 5$
0.	$\beta_{s_0}^{\text{l.o.}f_n} = \beta_{s_0} \ominus \alpha_{s_0}^{x(f_n)} = \beta_{R_{s_0}^{\text{l.o.}f_n}, T_{s_0}^{\text{l.o.}f_n}}$		$\beta_{s_0} = b_{s_0}^{x(f_n)}$	$\beta_{s_0} = \alpha_{s_0}^{x(f_n)}$
s_0		$T_{s_0}^{\mathrm{l.o.}f_n}$	$= \gamma_t$ $[R_{s_0} - r_{s_0}^{x(f)}]$ $\beta_{s_0} = b_{s_0}^{x(f_n)}$ $10 \cdot [t - 10]^+ = 25$	$10 \cdot [t - 10]^+ = 5 \cdot t + 25$
			$t = 12\frac{1}{2}$	t = 25
		=	$=\beta_{5,12\frac{1}{2}}$	$=\beta_{5,25}$
	$\beta_{\text{e2e}}^{\text{l.o.}f_n} = \beta_{s_0}^{\text{l.o.}f_n}$		$= \beta_{5,12\frac{1}{2}}$	$=\beta_{5,25}$
			$= \beta_{5,12\frac{1}{2}}$ $\beta_{\text{e2e}}^{\text{l.o.}f_n} = b^{f_n}$ 1	$\beta_{\mathrm{e}2\mathrm{e}}^{\mathrm{l.o.}f_n} = b^{f_n}$
	D^{f_n}		$5 \cdot [t - 12\frac{1}{2}]^+ = 25$	$5 \cdot [t - 25]^+ = 25$
			$t = 17\frac{1}{2}$	t = 30
	B^{f_n}		$\alpha^{f_n}(T_{\text{e2e}}^{\text{l.o.}f_n}) = 5 \cdot 12\frac{1}{2} + 25$ $= 87\frac{1}{2}$	$\alpha^{f_n}(T_{\text{e2e}}^{\text{l.o.}f_n}) = 5 \cdot 25 + 25$
	D		$=$ $87\frac{1}{2}$	= 150

	PMOO	ARB_MUX
80	$\alpha_{s_0}^{\bar{x}(f_n)} = \alpha^{f_n}$	$=\gamma_{5,25}$
s_0	$\alpha_{s_0}^{x(f_n)} = \alpha^{f_n}$	$=\gamma_{5,25}$
	$R_{e2e}^{\text{l.o.}f_n} = R_{s_0} - r_{s_0}^{x(f_n)}$	= 10-5
$\beta_{\text{e2e}}^{\text{l.o.}f_n} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_n}, T_{\text{e2e}}^{\text{l.o.}f_n}}$	$R_{\mathrm{e2e}} = R_{s_0} + R_{s_0}$	= 5
$R_{\rm e2e}$, $R_{\rm e2e}$	$T_{\text{e2e}}^{\text{l.o.}f_n} = T_{s_0} + \frac{b_{s_0}^{\bar{x}(f_n)} + r_{s_0}^{x(f_n)} \cdot T_{s_0}}{R_{s_0 s_0}^{\text{l.o.}f_0}}$	$= 10 + \frac{25 + 5 \cdot 10}{5}$
	$R_{\rm e2e}^{\rm 1.0.70}$	= 25
	=	$=\beta_{5,25}$
		$\beta_{\text{e2e}}^{\text{l.o.}f_n} = b^{f_n}$
	D^{f_n}	$5 \cdot [t - 25]^+ = 25$
		t = 30
	$\alpha^{f_n}(T_{e2e}^{\text{l.o.}f_n}) = 5 \cdot 25 + 25$	
	B^{f_n}	= 150

$S_1SC_2F_2AC_Network$

- $\bullet \ \beta_{s_0} = \beta_{R_{s_0}, T_{s_0}} = \beta_{10, 10}$
- $\mathcal{F} = \{f_0, f_1\}$
- $\alpha^{f_0} = \gamma_{r^{f_0}, b^{f_0}} = \gamma_{4,10}$
- $\bullet \ \alpha^{f_1} = \gamma_{r^{f_1}, b^{f_1}} = \gamma_{5, 25}$

$S_1SC_2F_2AC_Test$

Flows $f_n, n \in \{0, 1\}$

TFA results will be equal for all flows as they share the same path of servers.

	TFA	FIFO_MUX	ARB_MUX		
	$\alpha_{s_0} = \alpha^{f_0} + \alpha^{f_1}$	$=\gamma_{9,35}$			
s_0		$\beta_{s_0} = b_{s_0}$	$\beta_{s_0} = \alpha_{s_0}$		
	D^{f_n}	$10 \cdot [t - 10]^+ = 35$	$10 \cdot [t-10]^+ = 9 \cdot t + 35$		
		$t = 13\frac{1}{2}$	t = 135		
	R^{f_n}	$\alpha_{s_0}(T_{s_0}) = 9 \cdot 10 + 35$			
	D.		= 125		

Flow f_0

SFA		FIFO_MUX	ARB_MUX	
	$\alpha_{s_0}^{x(f_0)} = \alpha^{f_1}$		$=\gamma_{!}$	5,25
	$r(f_0)$	$R_{s_0}^{\mathrm{l.o.}f_0}$	$[R_{s_0} - r_{s_0}^{x(f)}]$	
	$\beta_{s_0}^{\text{l.o.}f_0} = \beta_{s_0} \ominus \alpha_{s_0}^{x(f_0)} = \beta_{R_{s_0}^{\text{l.o.}f_0}, T_{s_0}^{\text{l.o.}f_0}}$		$\beta_{s_0} = b_{s_0}^{x(f_0)}$	$\beta_{s_0} = \alpha_{s_0}^{x(f_0)}$
s_0		$T_{s_0}^{\mathrm{l.o.}f_0}$	$10 \cdot [t - 10]^+ = 25$	$\beta_{s_0} = \alpha_{s_0}^{x(f_0)}$ $10 \cdot [t - 10]^+ = 5 \cdot t + 25$
			$t = 12\frac{1}{2}$	t = 25
		=	$=\beta_{5,12\frac{1}{2}}$	$=\beta_{5,25}$
	$eta_{ ext{e2e}}^{ ext{l.o.}f_0} = eta_{R_{ ext{e2e}}^{ ext{l.o.}f_0}, T_{ ext{e2e}}^{ ext{l.o.}f_0}} = eta_{s_0}^{ ext{l.o.}f_0}$		$=\beta_{5,12\frac{1}{2}}$	$=\beta_{5,25}$
			$eta_{\mathrm{e2e}}^{\mathrm{l.o.}f_0} = b^{f_0}$	$eta_{\mathrm{e}2\mathrm{e}}^{\mathrm{l.o.}f_0} = b^{f_0}$
	D^{f_0}		$5 \cdot [t - 12\frac{1}{2}]^+ = 10$	$5 \cdot [t - 25]^+ = 10$
			$t = 14\frac{1}{2}$	t = 27
	B^{f_0}		$\alpha^{f_0}(T_{\text{e2e}}^{\text{l.o.}f_0}) = 4 \cdot 12\frac{1}{2} + 10$	$\alpha^{f_0}(T_{\text{e2e}}^{\text{l.o.}f_0}) = 4 \cdot 25 + 10$
			= 60	= 110

	ARB_MUX	
s_0	$\alpha_{s_0}^{\bar{x}(f_0)} = \alpha^{f_1}$	$=\gamma_{5,25}$
30	$\alpha_{s_0}^{x(f_0)} = \alpha^{f_1}$	$=\gamma_{5,25}$
	$R_{e2e}^{\text{l.o.}f_0} = R_{s_0} - r_{s_0}^{x(f_0)}$	= 10-5
$\beta_{s_0}^{\text{l.o.}f_0} = \beta_{R_{s_0}^{\text{l.o.}f_0}, T_{s_0}^{\text{l.o.}f_0}}$	$n_{\mathrm{e2e}} = n_{s_0} + n_{s_0}$	= 5
n_{s_0} , n_{s_0}	$T_{\text{e2e}}^{\text{l.o.}f_0} = T_{s_0} + \frac{b_{s_0}^{\bar{x}(f_0)} + r_{s_0}^{x(f_0)} \cdot T_{s_0}}{R_{s_0s_0}^{\text{l.o.}f_0}}$	$= 10 + \frac{25 + 5 \cdot 10}{5}$
	$R_{\text{e2e}}^{\text{1.o.}f_0}$	= 25
	=	$=\beta_{5,25}$
		$\beta_{\text{e2e}}^{\text{l.o.}f_0} = b^{f_0}$
	D^{f_0}	$5 \cdot [t - 25]^+ = 10$
		t = 27
	$\alpha^{f_0}(T_{\text{e2e}}^{\text{l.o.}f_0}) = 4 \cdot 25 + 10$	
	B^{f_0}	= 110

Flow f_1

	SFA		FIFO_MUX	ARB_MUX
	$\alpha_{s_0}^{x(f_1)} = \alpha^{f_0}$		=	$\gamma_{4,10}$
	alog f , f	$R_{s_0}^{\mathrm{l.o.}f_1}$		$\binom{f(f_1)}{0}^+ = 6$
	$\beta_{s_0}^{\text{l.o.}f_1} = \beta_{s_0} \ominus \alpha_{s_0}^{x(f_1)} = \beta_{R_{s_0}^{\text{l.o.}f_1}, T_{s_0}^{\text{l.o.}f_1}}$		$\beta_{s_0} = b_{s_0}^{x(f_1)}$	$\beta_{s_0} = \alpha_{s_0}^{x(f_1)}$
s_0		$T_{s_0}^{\mathrm{l.o.}f_1}$	$\beta_{s_0} = b_{s_0}^{x(f_1)} 10 \cdot [t - 10]^+ = 10$	$\beta_{s_0} = \alpha_{s_0}^{x(J_1)}$ $10 \cdot [t - 10]^+ = 4 \cdot t + 10$
			t = 11	$t = 18\frac{1}{3}$
	, ,	=	$=\beta_{6,11}$	$=\beta_{6,18\frac{1}{3}}$
	$eta_{\mathrm{e2e}}^{\mathrm{l.o.}f_1} = eta_{R_{\mathrm{e2e}}^{\mathrm{l.o.}f_1}, T_{\mathrm{e2e}}^{\mathrm{l.o.}f_1}} = eta_{s_0}^{\mathrm{l.o.}f_1}$		$=\beta_{6,11}$	$=\beta_{6,18\frac{1}{3}}$
			$eta_{\mathrm{e2e}}^{\mathrm{l.o.}f_1} = b^{f_1}$	$\beta_{\text{e2e}}^{\text{l.o.}f_1} = b^{f_1}$
	D^{f_1}		$6 \cdot [t-11]^+ = 25$	$6 \cdot [t - 18\frac{1}{3}]^+ = 25$
			$t = 15\frac{1}{6}$	$t = 22\frac{1}{2}$
	B^{f_1}		$\alpha^{f_1}(T_{e2e}^{\text{l.o.}f_1}) = 5 \cdot 11 + 25$	$\alpha^{f_1}(T_{\text{e2e}}^{\text{l.o.}f_1}) = 5 \cdot 18\frac{1}{3} + 25$
	D		= 80	$=$ $116\frac{2}{3}$

	PMOO	ARB_MUX
s_0	$\alpha_{s_0}^{\bar{x}(f_1)} = \alpha^{f_0}$	$= \gamma_{4,10}$
30	$\alpha_{s_0}^{x(f_1)} = \alpha^{f_0}$	$=\gamma_{4,10}$
	$R_{\text{e2e}}^{\text{l.o.}f_1} = R_{s_0} - r_{s_0}^{x(f_1)}$	= 10-4
$\beta_{s_0}^{\text{l.o.}f_1} = \beta_{R_{s_0}^{\text{l.o.}f_1}, T_{s_0}^{\text{l.o.}f_1}}$	$n_{\text{e2e}} = n_{s_0} - r_{s_0}$	= 6
R_{s_0} , I_{s_0}	$T_{ m e2e}^{{ m l.o.}f_1} = T_{s_0} + rac{b_{s_0}^{ar{x}(f_1)} + r_{s_0}^{x(f_1)} \cdot T_{s_0}}{R_{s_0}^{{ m l.o.}f_0}}$	$= 10 + \frac{10 + 4 \cdot 10}{6}$
	$I_{e2e} = I_{s_0} + \frac{R_{e2e}^{1.0.f_0}}{R_{e2e}^{1.0.f_0}}$	$=$ $18\frac{1}{3}$
	=	$=\beta_{6,18\frac{1}{3}}$
		$\beta_{\text{e2e}}^{\text{l.o.}f_1} = b^{f_1}$
	D^{f_1}	$6 \cdot [t - 18\frac{1}{3}]^+ = 25$
	$t = 22\frac{1}{2}$ $\alpha^{f_1}(T_{\text{e}2\text{e}}^{\text{l.o.}f_1}) = 5 \cdot 18\frac{1}{3} + 25$	
	$\alpha^{f_1}(T_{\text{e2e}}^{\text{l.o.}f_1}) = 5 \cdot 18\frac{1}{3} + 25$	
	B^{f_1}	$=$ $116\frac{2}{3}$

$S_1SC_10F_10AC_Network$

- $\bullet \ \beta_{s_0} = \beta_{R_{s_0}, T_{s_0}} = \beta_{10, 10}$
- $\mathcal{F} = \{f_0, f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8, f_9\}$
- \bullet for n=0 to 9: $\alpha^{f_n}=\gamma_{r^{f_n},b^{f_n}}=\gamma_{\frac{1}{10}\cdot(i+1),1\cdot(i+1)}$

We restrict the presentation of the SFA and the PMOO analysis to flows f_0 and f_6 . The omitted computations follow the same scheme.

$S_1SC_10F_10AC_Test$

Flows $f_n, n \in \{0, ..., 9\}$

TFA results will be equal for all flows as they share the same path of servers.

	TFA	FIFO_MUX	ARB_MUX		
	$\alpha_{s_0} = \sum_{n=0}^{9} \alpha_i$	$=\gamma_{5\frac{1}{2},55}$			
s_0		$\beta_{s_0} = b_{s_0}$	$\beta_{s_0} = \alpha_{s_0}$		
	D^{f_n}	$10 \cdot [t - 10]^+ = 55$	$\beta_{s_0} = \alpha_{s_0}$ $10 \cdot [t - 10]^+ = 5\frac{1}{2} \cdot t + 55$		
		$t = 15\frac{1}{2}$	$t = 34\frac{4}{9}$		
	B^{f_n}	$\alpha_{s_0}(T_{s_0})$	$= 5\frac{1}{2} \cdot 10 + 55$		
			= 110		

Flow f_0

SFA			FIFO_MUX	ARB_MUX
	$\alpha_{s_0}^{x(f_0)} = \sum_{n=1}^{9} \alpha^{f_n} = \gamma_{r_{s_0}^{x(f_0)}, b_{s_0}^{x(f_0)}}$	$r_{s_0}^{x(f_0)}$	$\sum_{n=1}^{9} r^{f_n} = 5\frac{2}{5}$ $\sum_{n=1}^{9} bf_n = 54$	
		$b_{s_0}^{x(f_0)}$	$\sum_{n=1}^{9} b^{f_n} = 54$	
		=	$=\gamma_5$	$\frac{2}{5}$,54
s_0	$\beta_{s_0}^{\text{l.o.}f_0} = R_{s_0} \ominus \alpha_{s_0}^{x(f_0)} = \beta_{R_{s_0}^{\text{l.o.}f_0}, T_{s_0}^{\text{l.o.}f_0}}$	$R_{s_0}^{\mathrm{l.o.}f_0}$	$ = \gamma_{5\frac{2}{5},54} $ $ [R_{s_0} - r_{s_0}^{x(f_0)}]^+ = 4\frac{3}{5} $	
			$\beta_{s_0} = b_{s_0}^{x(f_0)}$	$\beta_{s_0} = \alpha_{s_0}^{x(f_0)}$ $10 \cdot [t - 10]^+ = 5\frac{2}{5} \cdot t + 54$
		$T_{s_0}^{\mathrm{l.o.}f_0}$	$10 \cdot [t - 10]^+ = 54$	$10 \cdot [t-10]^+ = 5\frac{2}{5} \cdot t + 54$
			$t = 15\frac{2}{5}$	$t = 33\frac{11}{23}$
		=	$=\beta_{4\frac{3}{5},15\frac{2}{5}}$	$=\beta_{4\frac{3}{5},33\frac{11}{23}}$
	$\beta_{\text{e2e}}^{\text{l.o.}f_0} = \beta_{R_{e2e}^{\text{l.o.}f_0}, T_{e2e}^{\text{l.o.}f_0}} = \beta_{s_0}^{\text{l.o.}f_0}$		$=\beta_{4\frac{3}{5},15\frac{2}{5}}$	$= \beta_{4\frac{3}{5},33\frac{11}{23}} \beta_{\text{e}2\text{e}}^{\text{I.o.}f_0} = b^{f_0}$
			$\beta_{\text{e2e}}^{\text{I.o.}f_0} = b^{f_0}$	$\beta_{\text{e2e}}^{\text{l.o.}f_0} = b^{f_0}$
	D^{f_0}		$4\frac{3}{5} \cdot [t - 15\frac{2}{5}]^{+} = 1$	$4\frac{3}{5} \cdot [t - 33\frac{11}{23}]^+ = 1$
			$t = 15\frac{71}{115}$	$t = 33\frac{16}{23}$
	B^{f_0}		$t = 15\frac{71}{115}$ $\alpha^{f_0}(T_{\text{e2e}}^{\text{l.o.}f_0}) = \frac{1}{10} \cdot 15\frac{2}{5} + 1$	$\alpha^{f_0}(T_{\text{e2e}}^{\text{l.o.}f_0}) = \frac{1}{10} \cdot 33\frac{11}{23} + 1$
			$= 2\frac{27}{50}$	$=$ $4\frac{8}{23}$

PMOO		ARB_MUX
s_0	$\alpha_{s_0}^{\bar{x}(f_0)} = \sum_{n=1}^{9} \alpha^{f_n} = \gamma_{r_{s_0}^{x(f_0)}, b_{s_0}^{x(f_0)}}$	$=\gamma_{5\frac{2}{5},54}$
	$\alpha_{s_0}^{x(f_0)} = \sum_{n=1}^{9} \alpha^{f_n} = \gamma_{r_{s_0}^{x(f_0)}, b_{s_0}^{x(f_0)}}$	$=\gamma_{5\frac{2}{5},54}$
	$p _{0}, f_{0} = x(f_{0})$	$= 10 - 5\frac{2}{5}$
$\beta_{s_0}^{\text{l.o.}f_0} = \beta_{R_{s_0}^{\text{l.o.}f_0}, T_{s_0}^{\text{l.o.}f_0}}$	$R_{\text{e2e}}^{\text{l.o.}f_0} = R_{s_0} - r_{s_0}^{x(f_0)}$	$= 4\frac{3}{5}$
		$= 10 - 5\frac{2}{5}$ $= 4\frac{3}{5}$ $= 10 + \frac{54 + 5\frac{2}{5} \cdot 10}{4\frac{3}{5}}$
	$T_{\mathrm{e2e}}^{\mathrm{l.o.}f_0} = T_{s_0} + \frac{b_{s_0}^{\bar{x}(f_0)} + r_{s_0}^{x(f_0)} \cdot T_{s_0}}{R_{\mathrm{e2e}}^{\mathrm{l.o.}f_0}}$	$= 10 + \frac{108}{4\frac{3}{5}}$ $= 33\frac{11}{23}$
		$=$ $33\frac{11}{23}$
	=	$=\beta_{4\frac{3}{5},33\frac{11}{22}}$
		$\beta_{\text{e2e}}^{\text{I.o.}f_0} = b^{f_0}$
	D^{f_0}	
		$t = 33\frac{16}{23}$ $\alpha^{f_0}(T_{\text{e2e}}^{\text{l.o.}f_0}) = \frac{1}{10} \cdot 33\frac{11}{23} + 1$
B^{f_0}		$\alpha^{f_0}(T_{\text{e2e}}^{\text{l.o.}f_0}) = \frac{1}{10} \cdot 33\frac{11}{23} + 1$
		$=$ $4\frac{8}{23}$

Flow f_6

SFA			FIFO_MUX	ARB_MUX
	$\alpha^{x(f_6)} = \sum_{n=0}^{5} \alpha^{f_n} + \sum_{n=7}^{9} \alpha^{f_n} = \gamma_{r_{s_0}^{x(f_6)}, b_{s_0}^{x(f_6)}}$	$r_{s_0}^{x(f_6)}$		
		$b_{s_0}^{x(f_6)}$	$\left(\sum_{n=0}^{9} b^{f_n}\right) - b^{f_6} = 48$	
		=	=	$=\gamma_{4\frac{4}{5},48}$
s_0	$\beta_{s_0}^{\text{l.o.}f_6} = \beta_{s_0} \ominus \alpha_{s_0}^{x(f_6)} = \beta_{R_{s_0}^{\text{l.o.}f_6}, T_{s_0}^{\text{l.o.}f_6}}$	$R_{s_0}^{\mathrm{l.o.}f_6}$		
00			$\beta_{s_0} = b_{s_0}^{x(f_6)}$	$\beta_{s_0} = \alpha_{s_0}^{x(f_6)}$ $10 \cdot [t - 10]^+ = 4\frac{4}{5} \cdot t + 48$
		$T_{s_0}^{\mathrm{l.o.}f_6}$	$10 \cdot [t - 10]^+ = 48$	$10 \cdot [t-10]^+ = 4\frac{4}{5} \cdot t + 48$
			$t = 14\frac{4}{5}$, 20 6
		=	$=\beta_{5\frac{1}{5},14\frac{4}{5}}$	$=\beta_{5\frac{1}{5},28\frac{6}{13}}$
	$eta_{\mathrm{e2e}}^{\mathrm{l.o.}f_{6}} = eta_{R_{e2e}^{\mathrm{l.o.}f_{6}}, T_{e2e}^{\mathrm{l.o.}f_{6}}}$		$=\beta_{5\frac{1}{5},14\frac{4}{5}}$	$=\beta_{5\frac{1}{5},28\frac{6}{13}}=\beta_{s_0}^{\text{l.o.}f_6}$
			$\beta_{\text{e2e}}^{\text{l.o.}f_6} = b^f$. 626
	D^{f_6}		5 5	$5\frac{1}{5} \cdot [t - 28\frac{1}{13}]^{+} = 7$
			$t = 16\frac{19}{130}$	$t = 29\frac{21}{26}$
	B^{f_6}		$t = 16 \frac{19}{130}$ $\alpha^{f_6}(T_{\text{e2e}}^{\text{l.o.}f_6}) = \frac{7}{10} \cdot 14 \frac{4}{5} + \frac{17}{10}$	$ \begin{array}{cccc} & & & & & & & & \\ & & & & & & & \\ & 7 & \alpha^{f_6}(T_{\text{e2e}}^{\text{l.o.}f_6}) = & \frac{7}{10} \cdot 28\frac{6}{13} + 7 \\ & 9 & & & & & \\ & & & & & & \\ & & & & & &$
			= 17	$\frac{9}{25}$ = $26\frac{12}{13}$

	ARB_MUX	
s_0	$\alpha^{\bar{x}(f_6)} = \sum_{n=0}^{5} \alpha^{f_n} + \sum_{n=7}^{9} \alpha^{f_n} = \gamma_{r_{s_0}^{x(f_6)}, b_{s_0}^{x(f_6)}}$	$=\gamma_{4\frac{4}{5},48}$
U	$\alpha^{x(f_6)} = \sum_{n=0}^{5} \alpha^{f_n} + \sum_{n=7}^{9} \alpha^{f_n} = \gamma_{r_{s_0}^{x(f_6)}, b_{s_0}^{x(f_6)}}^{r_{s_0}, v_{s_0}}$	$=\gamma_{4\frac{4}{5},48}$
	16	$= 10 - 4\frac{4}{5}$
$\beta_{s_0}^{\text{l.o.}f_6} = \beta_{R_{s_0}^{\text{l.o.}f_6}, T_{s_0}^{\text{l.o.}f_6}}$	$R_{\text{e2e}}^{\text{l.o.}f_6} = R_{s_0} - r_{s_0}^{x(f_6)}$	$ 5\frac{1}{2}$
		$= 10 + \frac{48 + 4\frac{4}{5} \cdot 10}{5\frac{1}{5}}$
	$T_{\text{e2e}}^{\text{l.o.}f_6} = T_{s_0} + \frac{b_{s_0}^{\bar{x}(f_6)} + r_{s_0}^{x(f_6)} \cdot T_{s_0}}{R_{\text{e2e}}^{\text{l.o.}f_0}}$	$= 10 + \frac{96}{5\frac{1}{5}}$
		$= 28\frac{6}{13}$
	=	$=eta_{5rac{1}{5},28rac{6}{13}}$ $eta_{\mathrm{e2e}}^{\mathrm{1.o.}f_{6}}=$ $b^{f_{6}}$
		$\beta_{\text{e2e}}^{\text{l.o.}f_6} = b^{f_6}$
D^{f_6}		$5\frac{1}{5} \cdot [t - 28\frac{6}{13}]^{+} = 7$
		$t = 29\frac{21}{26}$
	B^{f_6}	$t = 29\frac{21}{26}$ $\alpha^{f_6}(T_{\text{e2e}}^{\text{l.o.}f_6}) = \frac{7}{10} \cdot 28\frac{6}{13} + 7$
		$=$ $26\frac{12}{13}$