Principle

Limitation & Motivation

Methodology

Line coding

MCU selection

Hardwar

Design

resuits

Future Work

Daisy Chain Protocol Communication for Shape-Shifting Displays

Developmet Board Implementation

Raoul Rubien rubienr@sbox.tugraz.at

Institute for Technical Informatics
Graz University of Technology

5th August 2016

Principle

Limitation & Motivation

Methodolog

Line coding MCU

Hardwai

Design

110001100

Future vvork

Outline

- Introduction
 - Principle
 - Limitation & Motivation
- 2 Methodology
 - Line coding
 - MCU selection
 - Hardware Design
- Results
- 4 Future Work

Principle Limitation &

Motivation

iviethodolog

Line coding MCU

Hardwa Design

Results

resuits

Future Work

Shape Shifting Display principle

- display consists of multiple fold-able chains
- chains can be programmed to make curvatures
- with multiple chains 3D shapes can be approximated

Goal: Scalable system with tiny chain links.

Figure 1: display principle 1

¹DOI 10.1145/2695664.2695932

Principle
Limitation &

Methodolog

Line coding

Hardwai Design

Results

Future Work

Alignment

- nodes are aligned to a square lattice
- columns/chains are connected at the top
- each node has its own MCU
- communication is routed from node to node
- the layout requires nodes with three connections

Figure 2: node lattice

Principle Limitation &

iviotivation

. . . .

Line coding

selection Hardware

Design

Result

Future Work

Current implementation

- communication via power supply wires
- 1-Wire protocol
- due to lattice arrangement folding must be synchronized

Figure 3: particle chains²

 $^{^{2}}$ http://arxiv.org/abs/1402.2507

Limitation & Motivation

Line coding

selection

Limitation & motivation

- power must be switched among levels of 0/+5/+12V
- particle localization is costly (non scalable, brute force)
- 1-Wire communication is limited by power consumption
- communication is limited to one particle at once
- remote programming of MCUs not possible (i.e. firmware upgrade)

Idea

- decouple communication from power supply
- without extra wires (less error prone)

Conclusion

We need a daisy chain protocol that can execute synchronous folding commands using actuator wires.

milioducti

Principle

Limitation & Motivation

Methodology

Line coding

selection

Hardwar Design

Results

Future Work

Outline

- 1
 - Introduction
 - Principle
 - Limitation & Motivation
- 2 Methodology
 - Line coding
 - MCU selection
 - Hardware Design
- 3
 - Results
- 4

Future Work

IIILIOGUCLIOII

Principle Limitation &

Methodology

Line coding MCU

Hardwar Design

Results

Future Wor

Methodology

- choose suitable line coding
- select reasonable MCU
- particle board design
 - o easy accessible test points and transmission wires
 - flexible and fast network assembly

Project constraints

- cheap and small MCU
- tiny particle
- communication:
 - o exploit same actuator wires between consecutive particles
 - o enable simultaneous communication and actuation
- single communication entry point to the network
- obtain a lightweight structure

Principle
Limitation &

Methodolog

Line coding

selection

Design

Results

Future Worl

Line coding

- opted for Manchester coding
 - Advantages
 - + easy to implement
 - + no extra clock wire for communication synchronization
 + time synchronization from communication clock

Disadvantages

 needs large decoding buffer

Figure 4: Manchester coding: buffering events

Principle
Limitation &

Methodolog

Line coding

MCU

Hardware Danier

Results

Future Worl

MCU memory requirements - upper bound estimation

Flash

o expected max. firmware size:

 $\sim 4k$ SLOC

• estimated object code bytes per SLOC³

 $\sim 4.0B$

• flash usage estimation:

4k * 4B =

<u>~16kB</u>

SRAM

o tx/rx buffers: 3 ports, 8byte

3 * 8B * 2 =

16*B*

Manchester code decoding buffer

with 2 flank time stamps per bit

 $3 * 8 * 2 * sizeof(uint16_t)B * 0.75 =$

576*B*

o other global variables

200*B*

o stack: max. 50 nested void function calls with $\sim (1*uint8_t)$ argument 50*(1+2)B =

150*B*

SRAM estimation:

 \sim 950B

3ISBN 0750686251

Principle
Limitation &

Methodology Line coding

MCU selection

Hardwai Design

Results

Future Work

MCU requirements - capabilities

- three separate external interrupts
- self programmable EEPROMremote programming (firmware replication)
- small MCU package

Figure 5: external interrupt inputs

Principle
Limitation &

Methodolog

Line coding

Hardware Docing

Reculte

Results

Future Worl

Candidates

- candidates are ATTiny family MCUs having
 - $\circ \geq 16kB$ flash and
 - $\circ \ge 1 \textit{kB} \text{ SRAM}$

Comparison of used MCUs

ATTiny20	ATTiny1634
· ·	(C: -: +
Sufficient	sufficient
no	yes
2kB	16 <i>kB</i>
128 <i>B</i>	1kB
$3mm \times 3mm$	$4mm \times 4mm$
no	yes, SOIC
	(proof of concept) sufficient no 2kB 128B 3mm × 3mm

Principle Limitation &

Methodology Line coding

Line coding
MCU
selection

Hardware Design

Results

Future Work

Network approach - I

using actuator wires for communication

Figure 6: transmission and reception wiring

Limitation &

Line coding

Hardware Design

Network approach - II

- linear network
- daisy chained participants

Advantages

- + simple to implement
- + no media access control
- + no loops
- + no dynamic routes

Disadvantages

- error detaches segment
- no recovery for segment

Principle

Limitation & Motivation

Line coding
MCU

Hardware Design

Results

Future Worl

Particle version 1.0

- chain of development particles
- light bulbs replaced actuators

Advantages

- + not mounted in chain mechanics
- + adjustable length via jumpers

Disadvantages

- time consuming assembly
- ATiny20: too less SRAM and FLASH

Figure 8: Version 1.0

Principle Limitation &

Line coding

Hardware

Design

Particle version 1.21

Advantages

- + simple to extend network
- + configurable network dimension
- + faulty particles can be replaced
- + higher particle density

Disadvantages

- bound to grid board size

Figure 9: pluggable particle

Figure 10: grid board

miroductio

Principle

Limitation & Motivation

Methodolog

Line coding

MCU selection

Hardwa

Design

Results

Future Work

Outline

- 1
 - Introduction
 - Principle
 - Limitation & Motivation
 - Methodolo
 - Line coding
 - MCU selection
 - Hardware Design
- 3

Results

Future Work

Principle

IVIOLIVALIOII

Methodolog

Line coding MCU

Hardwai Design

Results

Future Work

Results

We have designed

- a particle hardware that applies actuators also for communication and
- a network structure for daisy chain communication in a square lattice.

Figure 11: network topology

Figure 12: development hardware

introductio

Principle

Limitation &

Methodology

Line coding

MCU

Hardwai Design

Results

Future Work

Outline

- 1 Introduction
 - Principle
 - Limitation & Motivation
 - 2 Methodology
 - Line coding
 - MCU selection
 - Hardware Design
- Results
- 4 Future Work

IIILIOGUCLIOII

Principle Limitation &

Methodology Line coding MCU

Selection Hardware Design

Doculto

Future Work

Future Worl

Future work

- communication protocol
 - o Physical Layer: implement Manchester coding
 - o Data Link Layer: fault detection
 - Network Layer: network initialization time synchronization and compensation actuator task scheduling
- runtime compensation of RC-oscillator drift
- customize boot loader for remote programming
- hardware
 - simplify development board
 - o enhance grid board

Principle

Limitation & Motivation

Methodolog

Line coding

MCU selection

Hardware

Design

Results

Future Work

