13.1 From the definition of conditional probability, we have
$$P(x|Y) = \frac{P(X \wedge Y)}{P(Y)}$$

In this question,
$$P(a|b \land a) = \frac{P(a \land (b \land a))}{P(b \land a)} = \frac{P(b \land a)}{P(b \land a)}$$

$$P(a|b,c) = \frac{P(anbnc)}{P(bnc)}$$

$$P(b|a,c) = \frac{P(bnanc)}{P(anc)}$$

$$P(a|b,c) = P(b|a,c)$$

$$P(anbnc) = P(bnanc)$$

$$=) \frac{P(bnc)}{P(c)} = \frac{P(anc)}{P(c)} =) P(alc) = P(blc)$$

b. Folse. Because P(a|b,c) = P(a) only means a is independent from b,c, Still we know nothing obout relation between b,ε .

Counter example: if a.b record tesults of 2 independent wins, c=b, then p(a|b,c)=p(a). A and b.c are irrelevant p(b|c)=1. $p(b)=\frac{1}{2}$ $p(b|c) \neq p(b)$

c. Folse. Because a is independent of b cannot imply a is independent of b and c.

Conner example : if a and b vector 2 independent coins $c = a \times a \times b$, then p(a,b) = p(a)

But P(a|b,c) = 0. $P(a|c) = P(7b) = \frac{1}{2}$ $P(a|b,c) \neq P(a|c)$ 13.4 P(A) = 0.4 P(B) = 0.3 $P(A \lor B) = 0.5$ $P(A \land B) = P(A) + p(B) - p(A \lor B) = 0.2$ $P(A \land B) = P(A) - P(A \land B) = 0.2$ $P(B \land A) = P(B) - P(B \land A) = 0.1$ $P(B \land A) = 1 - P(A \land B) - P(A \land B) - P(B \land A) = 0.5$

	IA	7A
B	0.2	0.1
13.	0.2	0.5

It is rational. Agent I can lose or win.

	AIP	18 A 2	7. 4	outon	ies and	d paryoff;	to Al
a	0.4	ol	4 to 6	MAS	פינים	ranb.	7017b
b	0.3	6	3 to 7	-6 -7	-6	6	4
avb	0.5	7 (avb)	5 65	5	5	5	3
				-8	2	4	3

			outomes	and paralls to Al		
Al	AZ		anb		Tanb	アロハン
				-6	4	
	9	4 to 6		3	-7	3
b 0.3				3	3	-7
aub u.7	(000)	-10	0	0	0	

P(AAB) = P(A) + P(B) - P(AVB) = 03+04-07=0.

So it is rational because there is no possibility
that agone I is always loss. Because a and b both
true will never happen.

b.
$$P(\text{lowity}) = 0.108 + 0.012 + 0.072 + 0.008 = 0.2$$

 $P(\text{Torrity}) = 1 - 0.2 = 0.8$
 $P(\text{lowity}) = < 0.2, 0.8$

c.
$$P(\text{foothoche}/\text{conity}) = \frac{0.108 + 0.012}{0.2} = 0.6$$

$$P(\text{foothoche}/\text{conity}) = \frac{0.072 + 0.008}{0.2} = 0.4$$

$$P(\text{Touthoche}/\text{conity}) = < 0.6, 0.4 >$$

d. P (Cavity | twithoute V corteh)

$$P(\text{twothouse V (Ortch)} = 1 - (0.008 + 0.576) = 0.416$$

$$P(\text{conity}) \mid \text{twothoush V (Ortch)} = \frac{0.108 + 0.012 + 0.072}{0.416} = 0.4615$$

$$P(\text{Tonity} \mid \text{twothoushe V (Ortch)}) = \frac{0.016 + 0.064 + 0.144}{0.416} = 0.5384$$

$$P(\text{Conity} \mid \text{twothoushe V (Ortch)}) = < 0.4615, 0.5384 >$$