

$\begin{array}{c} {\rm Type 977~fitting~for~heat~pump} \\ {\rm HPP 14L\text{-}K\text{-}BC} \end{array}$

Parametric Heat Pump calculation

Dani Carbonell

dani.carbonell@spf.ch

2019/02/26 at: 11:02:56 h

Table 1: Fitted coefficients for the heat pump.

Coefficient	Description	
		[kW]
P_{Q_1}	1 st condenser polynomial coefficient	1.5433e+01
P_{Q_2}	2^{st} condenser polynomial coefficient	1.4721e + 02
P_{Q_3}	3^{st} condenser polynomial coefficient	3.8866e + 01
P_{Q_4}	4^{st} condenser polynomial coefficient	-5.6908e+01
P_{Q_5}	5^{st} condenser polynomial coefficient	2.2140e+02
P_{Q_6}	6 st condenser polynomial coefficient	-2.7359e+02
P_{COP_1}	1 st COP polynomial coefficient	8.0164e+00
P_{COP_2}	2 st COP polynomial coefficient	6.0069e+01
P_{COP_3}	3 st COP polynomial coefficient	-3.2973e+01
P_{COP_4}	4 st COP polynomial coefficient	-2.0689e+02
P_{COP_5}	5 st COP polynomial coefficient	5.8343e+01
P_{COP_6}	6 st COP polynomial coefficient	1.6442e+01
\dot{m}_{cond}	$3200.00 \ [kg/h]$	
\dot{m}_{evap}	8000.00 [kg/h]	
$\overline{COP_{nom} \text{ (A0W35)}}$	4.01	
$Q_{cond,nom}$ (A0W35)	14.92 [kW]	
$Q_{evap,nom}$ (A0W35)	11.19 [kW]	
$W_{comp,nom}$ (A0W35)	$3.72 \ [kW]$	
RMS_{COP}	9.43e - 02	
$RMS_{Q_{cond}}$	3.65e - 01	
$RMS_{W_{comp}}$	9.11e - 02	
Fit model	Average Temperature	

Table 2: Differences between experiments and fitted data for the heat pump. $error = 100 \cdot |\frac{Q_{exp} - Q_{num}}{Q_{exp}}|$ and $RMS = \sqrt{\sum \frac{(Q_{exp} - Q_{num})^2}{n_p}}$ where n_p is the number of data points.

T	$T_{evap,in}$	COP	COP_{exp}	error	Q_{cond}	0 .	error	W_{comp}	W	error
$T_{cond,out}$ ${}^{o}C$	${}^{1}_{evap,in}$ ${}^{o}C$	[-]	[_]	[%]	[kW]	$Q_{cond,exp}$ $[kW]$	[%]	[kW]	$W_{comp,exp}$ $[kW]$	[%]
35.00	20.00	6.73	6.81	1.2	25.25	. ,	0.2	3.75	3.70	1.37
						25.20				
35.00	10.00	5.30	5.26	0.7	19.94	20.16	1.1	3.76	3.83	1.76
35.00	7.00	4.90	4.95	1.0	18.43	18.82	2.0	3.76	3.80	1.03
35.00	2.00	4.23	4.06	4.3	15.99	15.34	4.2	3.78	3.78	0.10
35.00	-7.00	3.20	3.20	0.1	11.93	11.81	1.0	3.73	3.69	1.05
35.00	-15.00	2.38	2.48	4.2	8.63	8.86	2.6	3.63	3.57	1.71
45.00	7.00	3.76	3.74	0.4	17.24	17.41	1.0	4.59	4.65	1.32
45.00	2.00	3.23	3.11	3.7	14.79	14.29	3.5	4.58	4.59	0.14
45.00	-7.00	2.41	2.37	1.9	10.73	10.54	1.8	4.44	4.45	0.13
45.00	-15.00	1.80	1.79	0.3	7.44	7.74	3.9	4.14	4.32	4.23
50.00	20.00	4.54	4.44	2.2	23.21	22.87	1.5	5.11	5.15	0.71
50.00	15.00	4.02	4.15	3.2	20.54	21.17	3.0	5.11	5.10	0.16
50.00	7.00	3.21	3.39	5.3	16.41	16.92	3.0	5.11	4.99	2.42
50.00	2.00	2.74	2.76	0.9	13.94	13.59	2.6	5.09	4.92	3.51
50.00	-7.00	2.03	2.04	0.3	9.87	9.71	1.6	4.85	4.76	1.88
55.00	20.00	3.82	3.71	3.1	22.19	21.81	1.8	5.80	5.88	1.30
55.00	7.00	2.66	2.77	4.1	15.40	15.86	2.9	5.79	5.72	1.20
55.00	-7.00	1.66	1.57	5.5	8.82	8.65	2.0	5.32	5.50	3.35
Sum				42.2			39.6			27.37
RMS_{COP}	9.43e - 02									
RMS_{O}	3.65e - 01									
$RMS_{W_{comp}}$	9.11e - 02									

Figure 1: Q_{cond} differences between experiments and fitted data

Figure 2: W_{comp} differences between experiments and fitted data

Figure 3: COP differences between experiments and fitted data