Week 1 • Problem Set 5 • Homotopy Lie algebra and cotangent complex

Quick Problem:

Consider the running example $R = k[[x, y]]/(x^3 + y^3)$.

Compute $\pi(R)$ and the cotangent complex $\mathcal{L}_{R|k} = \mathbb{L}_{R|k} = L_{R|k}$.

Problems:

1. Let k be a field of characteristic zero. Consider again the running example from the lectures:

Let
$$R = k[[x, y]]/(f)$$
 with $f = x^3 + y^3$, and set $S = k = R/(x, y)$.

Recall that in the quick problem at the end of class today, we showed that all the brackets of $\pi(R)$ are zero. What does this imply about $\operatorname{Ext}_R(k,k) = U(\pi(R))$?

2. Let $R = k[x,y]/(x^2,xy)$ with k of characteristic 0. Then from Macaulay2 we see that a minimal model for R over k has the form $k[T] = k[x,y,T_1,T_2,\dots]$ with

$$\partial(T_1) = x^2$$
, $\partial(T_2) = xy$, $\partial(T_3) = xT_2 - yT_1$,
 $\partial(T_4) = -T_1T_2 + xT_3$, $\partial(T_5) = -T_2T_3 + yT_4$, $\partial(T_6) = -T_1T_3 + xT_4$,

$$\partial(T_7) = -T_2T_4 + xT_5, \ \partial(T_8) = -T_3^2 - 2T_2T_4 + 2yT_6, \ \partial(T_9) = -T_1T_4 + xT_6, \dots$$

- (a) Write ordered bases for the sets T_0, T_1, T_2, T_3, T_4 , and T_5 .
- (b) Using lexicographic ordering, order the sets T_0^2 , $T_1 * T_0$, $T_1^2 \oplus T_2 T_0$, $T_2 T_1 \oplus T_3 T_0$, and $T_2 T_2 \oplus T_3 T_1 \oplus T_4 T_0$. Use the resulting bases to write matrices for the quadratic part $\partial^{[2]}: kT \to kT^2$. hint: Based on the formulas for the differentials, how do ∂ and $\partial^{[2]}$ compare in this example?
- (c) Transposing these matrices, one gets matrices describing brackets of $\pi(R)$. Use this to determine some of the relations of $\pi(R)$.
- (d) Based on your work above, it $\operatorname{Ext}_R(k,k)$ graded-commutative?
- **3.** Let $R \to R[Y]$ be a semi-free extension with no variables of degree 0. Define its module of indecomposables as

$$\operatorname{Ind}_{R} R[Y] = R[Y]/(R + IY + Y^{2}).$$

Assume that R[Y] resolves S.

- (a) Prove that R[Y] is a minimal model for $R \to S$ if and only if the differential is decomposable: setting Y_0 equal to a minimal set of generators for \mathfrak{m} , one has $\partial(Y_{n+1}) \subseteq \sum_{i+j=n} RY_iY_j$ for all $n \ge 0$.
- (b) Deduce that R[Y] is a minimal model for $R \to S$ if and only if the complex $\operatorname{Ind}_R R[Y]$ is minimal.
- (c) Use part (a) and lifting lemmas to show that minimal models are unique up to isomorphism of dg algebras.

Note 1: One can also define $\operatorname{Ind}_R R[Y]$ when $Y_0 \neq \emptyset$, by also modding out by the entire degree 0 piece of R[Y], but that complicates the notation introduced in part (a) above.

Note 2: Some people define both $\operatorname{Ind}_R^{\gamma} R\langle X \rangle$ and $\operatorname{Ind}_R R[Y]$ by going modulo the maximal ideal \mathfrak{m} of R (or \mathfrak{n} of S, that is, applying $-\otimes_S k$), so then the differentials in these complexes would vanish for an acyclic closure $R\langle X \rangle$, respectively a minimal model R[Y].