

Polyfunctional Robots

นายคมชาญ วิเศษนคร 663040419-1

รายงานฉบับนี้เป็นส่วนหนึ่งของรายวิชา EN813761 การสัมมนาทางวิศวกรรมคอมพิวเตอร์ สาขาวิชาวิศวกรรมคอมพิวเตอร์ มหาวิทยาลัยขอนแก่น ภาคเรียนที่ 1 ปีการศึกษา 2568

บทคัดย่อ

Abstract

คำสำคัญ: หุ่นยนต์อเนกประสงค์, หุ่นยนต์โมดูลาร์, การควบคุมแบบลำดับชั้น, เซ็นเซอร์หลายโหมด, แอคชูเอ เตอร์ปรับความแข็งได้

Keywords: Polyfunctional Robots, Modular Robotics, Hierarchical Control, Multimodal Sensors, Variable Stiffness Actuators

สารบัญ

1	องค์ประกอบของรายงาน		1
2	บทคัดย่อ		
3	สารบัญ		1
4	บทนำ		1
	4.1	วัตถุประสงค์ของการศึกษา	2
	4.2	ขอบเขตการศึกษา	2
	4.3	คำจำกัดความสำคัญ	2
	4.4	ระเบียบวิธีการศึกษา	3
	4.5	ประโยชน์ที่คาดว่าจะได้รับ	3
5	เนื้อหา		4
6	การวิเค	กราะห์และอภิปราย	4
7	เอกสาร	ระมิณขายงานฉบับสมบูรณ์ 4	
8	ความคิ	ดสร้างสรรค์และความเยียบร้อย	4
9	สรุป		4
Α	ภาคผนวก ก: คำศัพท์เทคนิค		
В	ภาคผน	ภาคผนวก ข: ตารางเปรียบเทียบเทคโนโลยี	

คำนำ

- 1 องค์ประกอบของรายงาน
- 2 บทคัดย่อ
- 3 สารบัญ
- 4 บทน้ำ

หุ่นยนต์อเนกประสงค์ (Polyfunctional Robots) หรือหุ่นยนต์อเนกฟังก์ชัน เป็นระบบหุ่นยนต์ขั้นสูงที่ออกแบบ ให้สามารถปฏิบัติภารกิจที่หลากหลายและซับซ้อนภายในระบบเดียว โดยไม่จำเป็นต้องมีการปรับเปลี่ยนฮาร์ดแวร์ หลักอย่างมีนัยสำคัญ (Liang et al., 2025) ซึ่งแตกต่างจากหุ่นยนต์แบบดั้งเดิมที่มักออกแบบมาเพื่อปฏิบัติงาน เฉพาะทางเพียงอย่างเดียว หุ่นยนต์อเนกประสงค์สามารถปรับเปลี่ยนฟังก์ชันการทำงานผ่านการปรับโครงสร้าง ทางกายภาพ (Physical Reconfiguration) การเขียนโปรแกรมควบคุมใหม่ (Software Reconfiguration) หรือ การผสมผสานโมดูลต่างๆ เข้าด้วยกัน (Post et al., 2023)

ในยุคของการปฏิวัติอุตสาหกรรม 4.0 และการพัฒนาปัญญาประดิษฐ์ ความต้องการหุ่นยนต์ที่มีความยืดหยุ่น และสามารถปรับตัวได้กับสภาพแวดล้อมที่เปลี่ยนแปลงเพิ่มขึ้นอย่างรวดเร็ว (Mohammadi Zeidi et al., 2023) หุ่นยนต์อเนกประสงค์จึงกลายเป็นทางเลือกที่มีความสำคัญสำหรับอุตสาหกรรมต่างๆ ตั้งแต่การผลิต และการประกอบชิ้นส่วน ไปจนถึงการแพทย์และการสำรวจอวกาศ เนื่องจากสามารถลดต้นทุนการลงทุนและ เพิ่มประสิทธิภาพการใช้งานผ่านการใช้ระบบเดียวสำหรับหลายงาน

แนวคิดของหุ่นยนต์อเนกประสงค์มีความเชื่อมโยงอย่างใกล้ชิดกับหุ่นยนต์โมดูลาร์ (Modular Robots) และ หุ่นยนต์ที่ปรับโครงสร้างได้ด้วยตนเอง (Self-Reconfiguring Robots) (Seo & Paik, 2019) อย่างไรก็ตาม หุ่น ยนต์อเนกประสงค์มีจุดเน้นที่แตกต่างออกไป คือ การเน้นที่ความสามารถในการปฏิบัติงานหลากหลายประเภท มากกว่าการเปลี่ยนรูปร่างหรือโครงสร้าง ทำให้เหมาะสำหรับการประยุกต์ใช้ในสภาพแวดล้อมที่ต้องการความ เชี่ยวชาญในหลายด้านพร้อมกัน

4.1 วัตถุประสงค์ของการศึกษา

การศึกษานี้มีวัตถุประสงค์หลักเพื่อวิเคราะห์และสังเคราะห์องค์ความรู้เกี่ยวกับหุ่นยนต์อเนกประสงค์ในมุมมอง ทางวิศวกรรม โดยมีจุดมุ่งหมายเฉพาะ ดังนี้

- 1. วิเคราะห์สถาปัตยกรรมและการออกแบบ เพื่อศึกษาหลักการออกแบบสถาปัตยกรรมแบบโมดูลาร์ที่ ปรับโครงสร้างได้ (Modular Reconfigurable Architecture) และระบบควบคุมแบบลำดับชั้น (Hierarchical Control Systems) ที่เป็นพื้นฐานสำคัญของหุ่นยนต์อเนกประสงค์ (Tassi & Ajoudani, 2024)
- 2. ศึกษาเทคโนโลยีหลัก โดยเฉพาะการบูรณาการเซ็นเซอร์แบบหลายโหมด (Multimodal Sensor Integration) (Yang et al., 2024) แอคชูเอเตอร์ปรับความแข็งได้ (Variable Stiffness Actuators) และ การประยุกต์ใช้ปัญญาประดิษฐ์แบบโมเดลพื้นฐาน (Foundation Models) ในการควบคุม
- 3. วิเคราะห์การประยุกต์ใช้ ในภาคอุตสาหกรรมสำคัญ รวมถึงการผลิตอัตโนมัติ การแพทย์ การสำรวจ อวกาศ และการกู้ภัยพิบัติ พร้อมทั้งประเมินประสิทธิภาพและความคุ้มค่าทางเศรษฐศาสตร์
- 4. ระบุความท้าทายและข้อจำกัด ทั้งในด้านเทคนิคและการนำไปใช้งานจริง รวมถึงประเด็นด้านความ ปลอดภัยและมาตรฐานสากล เช่น ISO 10218-1:2025 (International Organization for Standardization, 2025)

4.2 ขอบเขตการศึกษา

การศึกษานี้มุ่งเน้นหุ่นยนต์อเนกประสงค์ในบริบททางวิศวกรรม โดยครอบคลุมระบบที่มีความสามารถในการ ปฏิบัติงานหลากหลายผ่านกลไกต่างๆ ดังนี้

ขอบเขตด้านเทคนิค การศึกษาครอบคลุมหุ่นยนต์ที่สามารถปรับเปลี่ยนฟังก์ชันผ่าน (1) การปรับโครงสร้าง ทางกายภาพแบบโมดูลาร์ (2) การเปลี่ยนแปลงอัลกอริทึมควบคุมและซอฟต์แวร์ และ (3) การผสมผสานโมดูล ฮาร์ดแวร์ที่แตกต่างกัน

ขอบเขตด้านการประยุกต์ใช้ เน้นการใช้งานในสภาพแวดล้อมอุตสาหกรรมและการค้า รวมถึงการแพทย์ การ สำรวจ และการบริการ โดยไม่รวมถึงหุ่นยนต์เฉพาะทางที่ไม่สามารถปรับเปลี่ยนฟังก์ชันได้

ขอบเขตด้านเวลา การศึกษาเน้นงานวิจัยและพัฒนาตั้งแต่ปี ค.ศ. 2015 ถึงปัจจุบัน โดยเฉพาะอย่างยิ่งความ ก้าวหน้าในช่วง 5 ปีล่าสุดที่มีการประยุกต์ใช้ปัญญาประดิษฐ์และเทคโนโลยีการเรียนรู้ของเครื่อง

4.3 คำจำกัดความสำคัญ

เพื่อความชัดเจนในการศึกษา จึงกำหนดคำจำกัดความของแนวคิดสำคัญ ดังนี้

หุ่นยนต์อเนกประสงค์ (Polyfunctional Robots) หมายถึง ระบบหุ่นยนต์ที่สามารถปฏิบัติงานที่หลาก หลายและแตกต่างกันได้ภายในระบบเดียว โดยมีความสามารถในการปรับเปลี่ยนฟังก์ชันการทำงานตามความ ต้องการของงานแต่ละประเภท

หุ่นยนต์โมดูลาร์ (Modular Robots) หมายถึง หุ่นยนต์ที่ประกอบด้วยโมดูลแยกส่วนที่สามารถเชื่อมต่อ และแยกออกจากกันได้ เพื่อสร้างโครงสร้างและฟังก์ชันใหม่ตามต้องการ (Bi & Wang, 2016)

หุ่นยนต์ปรับโครงสร้างได้ (Self-Reconfiguring Robots) หมายถึง หุ่นยนต์ที่สามารถเปลี่ยนแปลงรูปร่าง และโครงสร้างของตนเองได้โดยอัตโนมัติ เพื่อให้เหมาะสมกับงานหรือสภาพแวดล้อมที่แตกต่างกัน (Hameed et al., 2017)

การควบคุมแบบลำดับชั้น (Hierarchical Control) หมายถึง ระบบควบคุมที่จัดระดับการควบคุมเป็นชั้นๆ โดยชั้นบนมีหน้าที่วางแผนและตัดสินใจระดับสูง ส่วนชั้นล่างดำเนินการควบคุมรายละเอียดเฉพาะทาง

4.4 ระเบียบวิธีการศึกษา

การศึกษานี้ใช้วิธีการทบทวนวรรณกรรมเชิงพรรณนา (Descriptive Literature Review) ร่วมกับการวิเคราะห์ เชิงเปรียบเทียบ โดยรวบรวมข้อมูลจากแหล่งข้อมูลทางวิชาการที่เชื่อถือได้ ประกอบด้วย

แหล่งข้อมูลหลัก วารสารวิชาการระดับนานาชาติที่ผ่านการประเมินโดยผู้ทรงคุณวุฒิ (Peer-reviewed Journals) เช่น IEEE Transactions on Robotics, International Journal of Robotics Research, และ Journal of Intelligent & Robotic Systems

แหล่งข้อมูลทุติยภูมิ รายงานการประชุมวิชาการนานาชาติ (Conference Proceedings) มาตรฐานสากล และรายงานวิจัยจากสถาบันชั้นนำ เช่น NIST และ ISO

เกณฑ์การคัดเลือกข้อมูล เน้นงานวิจัยที่ตีพิมพ์ในช่วงปี ค.ศ. 2015-2025 มีการอ้างอิงและความน่าเชื่อถือ สูง และเกี่ยวข้องโดยตรงกับหุ่นยนต์อเนกประสงค์หรือแนวคิดที่เกี่ยวข้อง

การวิเคราะห์ข้อมูลใช้การสังเคราะห์เชิงพรรณนา (Narrative Synthesis) โดยจัดกลุ่มข้อมูลตามประเด็นหลัก วิเคราะห์แนวโน้มและความสัมพันธ์ และสรุปเป็นองค์ความรู้ที่เป็นระบบ

4.5 ประโยชน์ที่คาดว่าจะได้รับ

การศึกษานี้คาดว่าจะให้ประโยชน์แก่ผู้เกี่ยวข้องหลายกลุ่ม ดังนี้

สำหรับนักวิจัยและนักวิชาการ เป็นการสังเคราะห์องค์ความรู้ที่เป็นปัจจุบันและครอบคลุม สามารถใช้เป็น ฐานข้อมูลสำหรับการวิจัยต่อยอดในอนาคต

สำหรับผู้ประกอบการและวิศวกร ให้ข้อมูลสำคัญสำหรับการตัดสินใจลงทุนและการประยุกต์ใช้เทคโนโลยี หุ่นยนต์อเนกประสงค์ในภาคอุตสาหกรรม

สำหรับนักศึกษาและผู้ที่สนใจ เป็นแหล่งข้อมูลการเรียนรู้ที่เป็นระบบเกี่ยวกับเทคโนโลยีหุ่นยนต์ขั้นสูงและ แนวโน้มการพัฒนาในอนาคต

สำหรับหน่วยงานกำกับดูแล ให้ข้อมูลประกอบการพิจารณาจัดทำนโยบายและมาตรฐานที่เกี่ยวข้องกับการ ใช้งานหุ่นยนต์อเนกประสงค์อย่างปลอดภัยและมีประสิทธิภาพ

5	เนื้อหา
6	การวิเคราะห์และอภิปราย
7	เอกสารประมิณขายงานฉบับสมบูรณ์
8	ความคิดสร้างสรรค์และความเยียบร้อย
9	สรุป
เอก	สารอ้างอิง
Bi,	Z., & Wang, X. (2016). Survey on research and development of reconfigurable modular
	robots. Advances in Mechanical Engineering, 8(8), 1687814016659597. https://doi.org/
	10.1177/1687814016659597
Har	meed, A., Ordys, A., Mo🗆 aryn, J., & Sibilska-Mroziewicz, A. (2017). Modular
	self-reconfigurable robotic systems: A survey on hardware architectures.
	Journal of Robotics, 2017, 5013532. https://doi.org/10.1155/2017/5013532
Inte	ernational Organization for Standardization. (2025). <i>Robotics — Safety requirements —</i>
	Part 1: Industrial robots. Geneva, Switzerland. https://www.iso.org/standard/73933.
	html

- Liang, G., Wu, D., Tu, Y., & Lam, T. L. (2025). Decoding modular reconfigurable robots: A survey on mechanisms and design. *The International Journal of Robotics Research*, 44(5). https://doi.org/10.1177/02783649241283847
- Mohammadi Zeidi, G., Ahmadi Bahram, T., Zoppi, M., & Molfino, R. (2023). Mobile manipulators in Industry 4.0: A review of developments for industrial applications. Sensors, 23(19), 8026. https://doi.org/10.3390/s23198026
- Post, M. A., Yan, X.-T., Letier, P., et al. (2023). Modular self-configurable robots—The state of the art. *Actuators*, *12*(9), 361. https://doi.org/10.3390/act12090361
- Seo, J., & Paik, M. (2019). Modular reconfigurable robotics. *Annual Review of Control, Robotics, and Autonomous Systems*, 2, 63–88. https://doi.org/10.1146/annurev-control-053018-023834
- Tassi, F., & Ajoudani, A. (2024). Multi-modal and adaptive robot control through hierarchical quadratic programming. *Journal of Intelligent & Robotic Systems*, *110*, 164. https://doi.org/10.1007/s10846-024-02193-1
- Yang, M. J., Cho, J., Chung, H., Park, K., & Kim, J. (2024). A body-scale robotic skin using distributed multimodal sensing modules: Design, evaluation, and application. *IEEE Transactions on Robotics*, 40, 2709–2719. https://doi.org/10.1109/TRO.2024.3502204
- A ภาคผนวก ก: คำศัพท์เทคนิค
- B ภาคผนวก ข: ตารางเปรียบเทียบเทคโนโลยี