

Reactive Transport in the Hydrosphere

Department of Earth Sciences, Faculty of Geosciences, Utrecht University

Lecturers: Lubos Polerecky and Karline Soetaert

Illustrations, narration and video editing: Renee Hageman Additional contributions: Dries Bonte, University Ghent Audio effects: mixkit.co

Rate laws for . . .

Chemical reactions

- Irreversible
- Reversible
- Enzyme-catalyzed (metabolic)
 - Substrate limitation
 - Substrate inhibition
 - Rate saturation

Large-scale models

Partitioning between phases

- Mineral dissolution / precipitation
- Gas exchange

Ecological interactions

Grazing, predator-prey type

Transport

• Driven by a thermodynamic **disequilibrium** (2nd law of thermodynamics).

Mineral dissolution

$$SiO_2(s) + 2H_2O(l) \xrightarrow{k_d} Si(OH)_4(aq)$$

Concentration of the dissolved mineral (mol m⁻³)

reaction occurs (m⁻²)

Mass balance equation:

$$\frac{dC}{dt} = R_d = \frac{k_d}{V}$$

Volume of water in which the dissolved mineral is diluted.

Total area across which the

Mineral dissolution

$$SiO_2(s) + 2H_2O(l) \xrightarrow{k_d} Si(OH)_4(aq)$$

Concentration of the dissolved mineral (mol m⁻³)

Mass balance equation:

$$\frac{dC}{dt} = R_d = \frac{k_d}{V} \cdot \frac{A}{V}$$

Area density of the reactive interface $(m^2/m^3 = m^{-1})$.

Rate constant, describes the rate at which the particles of the solid leave the mineral per surface area (mol m⁻² s⁻¹).

Mineral precipitation

$$SiO_2(s) + 2H_2O(l) \stackrel{k_p}{\leftarrow} Si(OH)_4(aq)$$

Concentration of the dissolved mineral (mol m⁻³)

Mass balance equation:

$$\frac{dC}{dt} = R_p = -k_p \cdot \frac{A}{V} \cdot C$$

Rate constant, describes the rate at which the dissolved particles hit and attach to the solid (m s⁻¹).

Area density of the reaction surface $(m^2/m^3 = m^{-1})$.

Mineral dissolution + precipitation

$$SiO_2(s) + 2H_2O(l) \stackrel{k_d}{\rightleftharpoons} Si(OH)_4(aq)$$

Concentration of the dissolved mineral (mol m⁻³)

Mass balance equation:

$$\frac{dC}{dt} = k_d \cdot \frac{A}{V} - k_p \cdot \frac{A}{V} \cdot C = -k_p \cdot \frac{A}{V} \left(C - \frac{k_d}{k_p} \right)$$

$$C_{eq} = \frac{\kappa_d}{k_p} \quad \text{(mol m-3)}$$

Equilibrium concentration: Net process **stops**

Mineral dissolution + precipitation

Gas dissolution + degassing

Partitioning of chemicals between phases

Mineral dissolution / precipitation

Gas exchange

$$CO_2$$
 $HCO_3 + H^{\dagger}$

$$\frac{dC}{dt} = -k_p \cdot \frac{A}{V} \cdot (C - C_{eq})$$
solubility

Extras: mineral solubility

From physical chemistry:

Process:

$$SiO_2(s) + 2H_2O(l) \rightarrow Si(OH)_4(aq)$$

Equilibrium:

$$K_{eq} = \frac{[Si(OH)_4(aq)]_{eq}}{x(SiO_2(s)) \cdot x(H_2O(l))^2} \approx [Si(OH)_4(aq)]_{eq}$$

$$\approx 1 \qquad \approx 1 \qquad C_{eq} \approx K_{eq}$$

$$K_{eq} = \exp\left(-\frac{\Delta G_r^0}{RT}\right)$$

For amorphous silica

 $\approx 1.4 \ mmol \ L^{-1}$ (seawater)

 $\approx 1.9 \ mmol \ L^{-1}$ (pure water)

$$\Delta G_r^0 = \Delta G_f^0 \left(Si(OH)_4(aq) \right) - 2\Delta G_f^0 \left(H_2O(l) \right) - \Delta G_f^0 \left(SiO_2(s) \right)$$

1bar, 20°C

Extras: gas solubility

From physical chemistry:

Process:

$$O_2(aq) \rightarrow O_2(g)$$

Equilibrium:

Henry's law constant:
$$\rightarrow K_H = \frac{pO_2}{[O_2]_{eq}}$$
 Equilibrium O_2 concentration O_2 solubility

Example:

$$O_2$$
 / water (salinity=0, T=20 °C):

$$K_H = 770 \text{ L} \cdot \text{Atm} \cdot \text{mol}^{-1}$$

Earth's atmosphere contains 21% of O₂:

$$pO_2 = 0.21 \text{ Atm}$$

O₂ **solubility** in this water:

$$[O_2]_{eq} = \frac{0.21}{770} \text{ mol L}^{-1} = 273 \text{ } \mu\text{mol L}^{-1}$$

Partial pressure of O₂

Reactive Transport in the Hydrosphere

Department of Earth Sciences, Faculty of Geosciences, Utrecht University

Lecturers: Lubos Polerecky and Karline Soetaert

Illustrations, narration and video editing: Renee Hageman Additional contributions: Dries Bonte, University Ghent Audio effects: mixkit.co

