Conditionals

A **conditional** statement is a compound statement that uses the connective *if...then*.

The conditional is written with an arrow, so "if p then q" is symbolized: $p \rightarrow q$

We read the above as "p implies q" or "if p then q." The statement p is the **antecedent**, while q is the **consequent**.

Truth Table for The Conditional:

If p , the second sec	hen q
--	-------

$ \begin{array}{c cccc} p & q & p \rightarrow q \\ \hline T & T & T \\ \hline T & F & F \end{array} $			
	p	q	$p \rightarrow q$
T F F	T	Т	T
	T	F	F
F T T	F	T	T
F F T	F	F	T

Example: If I am elected president, US will get peace and prosperity

p: if I am elected president q: US will get peace and prosperity

Special Characteristics of Conditional Statements

- 1. $p \rightarrow q$ is false only when the antecedent is *true* and the consequent is *false*.
- 2. If the antecedent is *false*, then $p \rightarrow q$ is automatically *true*.
- 3. If the consequent is *true*, then $p \rightarrow q$ is automatically *true*.

Example: Determining Whether Conditionals Are True or False

Decide whether each statement is True or False (T represents a true statement, F a false statement).

a)
$$T \to (4 < 2)$$
 b) $(8 = 1) \to F$

b)
$$(8=1) \rightarrow F$$

Solution

- a) False
- b) True

Tautology

A statement that is always true, no matter what the truth values of the components, is called a **tautology**. They may be checked by forming truth tables.

Writing a Conditional as a Disjunction: "Or" Statement

 $p \rightarrow q$ is equivalent to $\Box p \lor q$.

Q: How to prove it?

Example: Determining Statements Equivalent to Conditionals

Write the conditional as an equivalent statement without using *if* . . . *then*.

If the Indians win the pennant, then Johnny will go to the World Series.

Solution

Let *p* represent "The Indians win the pennant" and *q* represent "Johnny will go to the World Series.

Restate: The Indians do not win the pennant or Johnny will go to the World Series.

Negation of a Conditional $p \rightarrow q$

The negation of $p \rightarrow q$ is $p \land \exists q$.

Q: How to prove it?

Example: Determining Negations

Determine the negation of each statement. If I'm hungry, I will eat.

Solution

I'm hungry and I will not eat.

Converse, Inverse, and Contrapositive

Conditional Statement	$p \rightarrow q$	If p, then q
Converse	$q \rightarrow p$	If q , then p
Inverse	$\Box p \to \Box q$	If not p , then not q
Contrapositive	$\exists \ q \rightarrow \exists \ p$	If not q , then not p

Equivalences

- A conditional statement and its contrapositive are equivalent.
- Also, the converse and the inverse are equivalent.

Example: Determining Related Conditional Statements

Given the conditional statement:

"If I am running, then I am moving"

- a) the equivalent (contrapositive)
- b) the converse

Solution

- a) If I am not moving, then I am not running.
- b) If I am moving, then I am running.

Alternative Forms of "If p, then q"

The conditional $p \rightarrow q$ can be translated in any of the following ways.

If p, then q. p is sufficient for q.

q is necessary for p.

If p, q.

All p are q.

p only if q.

p implies q.

q if p.