Online Course on Foundations of Machine Learning and Deep Learning

Conducted by

Mr. Anupam Borthakur & Mr. Sista Raviteja

Prime Minister's Research Fellows (PMRF)

Centre of Excellence in Artificial Intelligence Indian Institute Of Technology, Kharagpur

Bapatla Engineering College, India

Contents

- 1. Instructor Overview
- 2. Course Overview
- 3. Course Contents
- 4. General Guidelines
- 5. Platforms
- 6. Introduction to Machine Learning

Instructor's Overview

Anupam Borthakur
Ph.D. Candidate, IIT Kharagpur
Area of Research: Privacy, Deep Learning, Machine
Learning
Know more at:
https://sites.google.com/view/anupamborthakur

Sista Raviteja
Ph.D. Candidate, IIT Kharagpur
Area of Research: Surgical Video Analytics,
Knowledge Graphs, Deep Learning
Know more at:
https://sites.google.com/view/sistaraviteja

Course Overview

Weeks	Broad Topic	Delivery	Mode
Module 1	Introduction to Machine Learning		
Module 2	Introduction to Deep learning		
Module 3	Introduction to Convolution Neural Networks	Theory + Hands on	Online
Module 4	Complexity Analysis of Deep Neural Networks		
Module 5	Selecting a Deep Neural Network		

Course Contents

Broad Topic	Topic	Description
		0. Course overview
		1. Learning
	Intution to Learning	2. Human Vs Machine perspectives
		3. Formulation
		4. Relation to AI/ML
		1. Inputs, W/B Box, Outputs
		2. Types of inputs
Introduction to Machine Learning	Basics of L -1 (pipeline overview)	3. Types of W/B Boxes
Introduction to Machine Learning		4. Type of Outputs
		5. Relation to Learning
	Basics of L -2 (types of learning)	1. Supervised
		2. Unsupervised
		3. Semi-supervised
		4. Self Supervised
	Hands on basics 1	Hands on implentation of Basics of L1
	Hands on basics 2	Hands on implentation of Basics of L2

Course Contents

	Perceptron Theory and Working	1. Perceptron - neurons	
		2. Perceptron I/o Relations	
		3. Perceptron working (with backpropagation)	
		4. Non-linearity (touch up)	
	Non-linearity	1. Need for nonlinearity	
		2. Types of nonlinearities	
Introduction to Deep learning		3. NN as a non linear system proof	
	MLP	1. Introduction to MLP	
		2. Flow on information in MLP	
		4. Weight update eqns	
		3. Applications of MLP	
	Hands on	Introduction to Pytorch Framework	
	Hands on	MLP tutorial	

Introduction to Convolution Neural Networks	Drawbacks of MLP	0. Types of variations in input data (in var, eq,)
		1. Translation variant
		2. not robust to rotational variations
	Working of CNN	1. Convolution
		2. 2D Convolution
	Advantages of CNN	1. Proof of invariance and equivaraiance of conv kernels
		2. parameter sharing
	Hands on	1D conv Hands on
	Hands on	2D conv Hands on

Course Contents

- Complexity Analysis of Deep Neural Networks	Linear Layers	1. Space and Compute Complexity derivations
	Convolution Layers	1. Space and Compute Complexity derivations
	Activation and Pooling Functions	1. Space and Compute Complexity derivations
	Hands on	Hands on example for proving space and compute complexity (FC)
	Hands on	Hands on example for proving space and compute complexity (CNN)

Module 4

	Network Complexity	1. space and compute complexity b/w 2 sample networks
	Performance	1. performance metrics
		2. train-validation curves
		3. bias-variance trade off
Selecting a Deep Neural Network		1. Hyperparameters
	Hyperparameters	Choosing the right hyperparameters
		3. Impact of hyperparameters
	Hands on	popular networks space and compute complexity
	Hands on	performance metrics and hyperparameters

General Instructions

Class Streaming:

Google Meet (Primary)

Slides and Tutorials:

GitHub: Link will be updated

Attendance*

Google form attendance Link

- ✓ Students can communication via email
 - anupamborthakur@kgpian.iitkgp.ac.in
 - <u>sista.raviteja@kgpian.iitkgp.ac.in</u>

✓ Students can communication via WhatsApp /group*

Coding Instructions

Software and platforms

- PyTorch
- Anaconda
- Collaboratory
- Always use comment at appropriate places

Thank You

For your Attention!

Any Questions?

