Hallucination Detection in LLMs: Fast and Memory-Efficient Fine-Tuned Models

Gabriel Y. Arteaga^{1,2}, Thomas B. Schön², and Nicolas Pielawski²

¹Department of Informatics, University of Oslo

²Department of IT, Uppsala University

Motivation

- Hallucinations in LLMs pose significant risks in safetycritical fields such as healthcare.
- Existing hallucination detection methods are often taskspecific or unreliable.
- Deep ensembles are effective but computationally infeasible for large LLMs.
- Scalable, resource-efficient approaches to uncertainty estimation are needed to enable reliable hallucination detection in large-scale LLMs.

Problem Statement

- Faithful hallucinations occur when outputs deviate from instructions, while factual hallucinations produce content that contradicts verifiable facts; both pose distinct challenges for reliable LLM outputs.
- Existing hallucination detection methods are often tailored to a specific task, limiting their versatility.
- Current uncertainty-based approaches often rely on perturbations through sampling, which can be unreliable.
- Traditional deep ensembles scale linearly with the number of parameters, making them infeasible for LLMs with billions of parameters.

Method

Memory-Efficient Ensemble

BatchEnsemble

 $W_i = U \odot V_i$, where $V_i = r_i s_i^T$ and $r_i \in \mathbb{R}^{m \times 1}$, $s_i \in \mathbb{R}^{n \times 1}$

Savings in Memory Complexity

 $\mathcal{O}(Mmn) \to \mathcal{O}(mn + M(m+n))$ per layer where M is the ensemble size

Low-Rank Adaptation (LoRA)

 $U = U_0 + BA$, where $B \in \mathbb{R}^{m \times r}$, $A \in \mathbb{R}^{n \times r}$ and U_0 is a pre-trained model

Hallucination Detection

Predictive Entropy

$$\mathcal{H}[P(x_t|x_{< t}; \mathcal{D})] = -\sum_{x_t} P(x_t|x_{< t}; \mathcal{D}) log P(x_t|x_{< t}; \mathcal{D})$$

Ensemble Approximation

$$P(x_t|x_{< t}; \mathcal{D}) \approx \frac{1}{M} \sum_{m=1}^{M} P(x_t|x_{< t}; \mathcal{D})$$

Binary Classification $f(\mathcal{H}[P(x_t|x_{< t};\mathcal{D})]) = \widehat{y}$, where $\widehat{y} \in \{0,1\}$

Results

Classification Accuracy on Hallucination Detection

Method	Faithfulness ↑	Factual ↑	OOD ↑
(Ours) BatchEnsemble	97.8	68.0	62.4
(Ours) BatchEnsemble + NI	96.5	66.9	61.9
LoRA Ensemble	92.5	73.9	63.3
Sample-Based	92.1	69.6	62.2

Predictive Performance

Dataset	SQuAD		MMLU	
Metric	Exact Match 1	F1 Score ↑	Accuracy ↑	
Single Model	85.1	92.1	56.3	
(Ours) BatchEnsemble	85.9	93.4	56.7	
(Ours) BatchEnsemble+NI	85.4	92.6	53.2	
LoRA Ensemble	68.4	84.4	44.6	

Conclusions

- Hallucination Detection: Developed an uncertainty-based method capable of detecting both factual and faithful hallucinations while maintaining effective performance.
- Memory-Efficient Ensemble: Demonstrated the feasibility of using BatchEnsemble for large-scale LLMs with over 7B parameters, optimizing memory usage.
- Cost-Effective Training: Achieved significant reductions in training overhead by integrating LoRA with BatchEnsemble, enabling the training of a 4-member 7B parameter ensemble on a single A40 GPU.
- Future Directions: Investigate the relationship between aleatoric uncertainty and faithful hallucinations, and epistemic uncertainty and factual hallucinations, to improve detection strategies.

Paper

Github

