MMS

Vanessa Closius, Jonas Tietz, Tronje Krabbe

6. November 2018

1. 1)

2) $e^{i\theta}$ stellt einen Vector in der complexen Zahlenebene da, der um einen Winkel θ um den Einheitskreis rotiert worden ist. Mit der eulerschen Formel $e^{i\theta}=\cos(\theta)+i\sin(theta)$ bekommt man die kartesischen Koordinaten des rotierten Vektors. Da π genau eine halbe Rotation um den Einheitskreis ist bekommt man $e^{i\theta}=-1$. Dies kann man dann noch umformen um Eulers Identität $e^{i\theta}+1=0$ zu erhalten.

1.