

AD-A069 376

ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG MISS F/G 13/13
VERIFICATION OF TEMPERATURE AND THERMAL STRESS ANALYSIS COMPUTE--ETC(U)
MAR 79 T C LIU, R L CAMPBELL, A A BOMBICH

UNCLASSIFIED

WES-MP-SL-79-7

NL

1 OF 2
AD
AO 69376

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-1

ADA069376

LEVEL II

B.S.
S

MISCELLANEOUS PAPER SL-79-7

VERIFICATION OF TEMPERATURE AND THERMAL STRESS ANALYSIS COMPUTER PROGRAMS FOR MASS CONCRETE STRUCTURES

by

Tony C. Liu, Roy L. Campbell, Anthony A. Bombich

Structures Laboratory
U. S. Army Engineer Waterways Experiment Station
P. O. Box 631, Vicksburg, Miss. 39180

March 1979

Final Report

Approved For Public Release; Distribution Unlimited

DDC FILE COPY

Prepared for U. S. Army Engineer District, Walla Walla
Walla Walla, Wash. 99362

THIS DOCUMENT IS FIRST QUALITY FRACTURED.
THIS COPY FURNISHED TO DDC CONTAINED A
SIGNIFICANT NUMBER OF PAGES WHICH DO NOT
PRODUCE LEGIBLY.

79 06 04 114

Destroy this report when no longer needed. Do not return
it to the originator.

The findings in this report are not to be construed as an official
Department of the Army position unless so designated
by other authorized documents.

This program is furnished by the Government and is accepted and used
by the recipient with the express understanding that the United States
Government makes no warranties, expressed or implied, concerning the
accuracy, completeness, reliability, usability, or suitability for any
particular purpose of the information and data contained in this pro-
gram or furnished in connection therewith, and the United States shall
be under no liability whatsoever to any person by reason of any use
made thereof. The program belongs to the Government. Therefore, the
recipient further agrees not to assert any proprietary rights therein or to
represent this program to anyone as other than a Government program.

The contents of this report are not to be used for
advertising, publication, or promotional purposes.
Citation of trade names does not constitute an
official endorsement or approval of the use of
such commercial products.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

DD FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

φ38100 79 06 04 114

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT (Continued).

CONT

Based on the results of this investigation, it can be concluded that the temperature and thermal stress calculation programs currently being used by the Corps are acceptable. Recommendations for further improvement of these computer programs are presented.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

PREFACE

The work reported herein was conducted for the U. S. Army Engineer District, Walla Walla (NPW), by the Structures Laboratory (SL) of the U. S. Army Engineer Waterways Experiment Station (WES). Authorization for this investigation was given in DA Form 2544, dated 15 March 1978.

The material property information, construction history, instrumentation data, and the Walla Walla version of the temperature-calculation program used in this investigation were provided to WES by NPW and North Pacific Division Laboratory.

This investigation was performed under the direction of Messrs. B. Mather, J. M. Scanlon, and J. E. McDonald, SL. Dr. Tony C. Liu, Messrs. R. L. Campbell, and A. A. Bombich prepared this report.

The Commander and Director of WES during the conduct of this investigation and the preparation and publication of this report was COL J. L. Cannon, CE. Mr. F. R. Brown was Technical Director.

Accession For	
NTIS	GR&I
DDC TAB	<input checked="" type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution/	
Availability Codes	
Dist	Avail and/or special
A	2344

CONTENTS

	<u>Page</u>
PREFACE	1
CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT	3
PART I: INTRODUCTION	4
Background	4
Purpose and Scope	5
PART II: FINITE ELEMENT COMPUTER PROGRAMS	6
Temperature-Calculation Program	6
Thermal Stress/Strain Calculation Program	6
PART III: DETERMINATION OF CONCRETE TEMPERATURES	8
Finite Element Model	8
Material Types	8
Thermal Properties of Concrete and Foundation	19
Construction Parameters	19
Results and Discussion	24
PART IV: DETERMINATION OF THERMAL STRESSES	29
Finite Element Model	29
Properties of Concrete and Foundation	29
Analysis Time Interval	30
Results and Discussion	30
PART V: CONCLUSIONS AND RECOMMENDATIONS	45
REFERENCES	47
TABLES 1-13	
APPENDIX A: TWO-DIMENSIONAL TEMPERATURE CALCULATION PROGRAM (WES VERSION)	A1
APPENDIX B: TWO-DIMENSIONAL THERMAL STRESS/STRAIN CALCULATION PROGRAM (WES VERSION)	B1

CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI)
UNITS OF MEASUREMENT

U.S. customary units of measurement used in this report can be converted to metric (SI) units as follows:

Multiple	By	To Obtain
Btu • inch per hour • square inch • degree F	20.7688176	watts per metre • Kelvin
Btu per hour • square foot • degree Fahrenheit	5.678263	watts per square metre • Kelvin
Btu per pound (mass) • degree Fahrenheit	4186.8	joules per kilogram • Kelvin
calories per gram	4.184	kilojoules per kilogram
cubic yards	0.7645549	cubic metres
Fahrenheit degrees	5/9	Celsius degrees*
feet	0.3048	metres
inches	0.0254	metres
inches per degree Fahrenheit	0.014111111	metres per Kelvin
pounds (force) per square inch per minute	114.91267	pascals per second
pounds (force) per square inch (psi)	6894.757	pascals
pounds (mass) per cubic foot	16.01846	kilograms per cubic metre
pounds per cubic yard	0.5932764	kilograms per cubic metre
square feet per hour	0.0000258064	square metres per second

* To obtain Celsius (C) temperature readings from Fahrenheit (F) readings, use the following formula: $C = (5/9)(F - 32)$. To obtain Kelvin (K) readings, use: $K = C + 273.15$.

VERIFICATION OF TEMPERATURE AND THERMAL
STRESS ANALYSIS COMPUTER PROGRAMS FOR MASS CONCRETE STRUCTURES

PART I: INTRODUCTION

Background

1. Currently, two finite element computer programs are being used by the Corps to predict temperature distribution and resulting thermal stresses and strains in mass concrete structures. The first program,¹ developed by Dr. E. L. Wilson of the University of California (UC) at Berkeley, calculates temperatures within a mass concrete structure. The second program,² written by Dr. R. S. Sandhu, et al., also at UC Berkeley, calculates the thermal stresses and strains within the structure involving incremental construction and creep. These two computer programs are considered to be the most effective numerical methods for calculating temperature and thermal stresses/strains in the mass concrete structures. Because they are not only completely general with respect to geometry, material properties, and boundary conditions, but also provide the capability of simulating incremental construction and creep of mass concrete structures, these programs have been used for concrete temperature control studies for several Corps mass concrete structures, including Dworshak Dam. However, these programs have never been verified with actual field measured data.

2. As in many other dams, stress and strain meters, thermocouples, and other instruments were embedded in Dworshak Dam during construction to give information on structural behavior. Measurements have been obtained from these instruments since the beginning of construction in 1968. These measured data, together with the available laboratory information on concrete thermal and mechanical properties, provide a unique opportunity for verifying the computer programs.

Purpose and Scope

3. The purpose of this investigation was to verify the temperature and thermal stress/strain computer programs by comparing the analytical results with the measured data obtained from the embedded gages in the Dworshak Dam.

4. Because of the funding and time limitations, the analysis of the complete dam, taking full account of the time-varying thermal, elastic, and creep properties of concrete, was not considered possible. It was decided that the objective of this investigation could be achieved by analysis of the lower region of the Monolith 23, including foundation and 14 concrete lifts, during the period between 26 August 1968 and 15 February 1969.

5. History of construction, weather data, and available material properties of Dworshak Dam were used for computer program input. Calculated temperatures and stress/strain history were compared with the measured data. The validity and reliability of the computer programs are discussed, and recommendations for further development of temperature and thermal stress calculation programs are presented.

PART II: FINITE ELEMENT COMPUTER PROGRAMS

Temperature-Calculation Program

6. This program, developed by Dr. Wilson, calculates the temperature distribution as a function of time within a concrete structure as it is being constructed. Each lift of the structure may be placed at an arbitrary time and temperature. Insulating forms may be placed or removed from the surfaces. The external air temperature and temperature of the cooling water may also vary with time. The finite element technique coupled with a step-by-step time integration procedure is used as the method of analysis. Detailed discussion of this computer program is given in Reference 1.

7. Some input and output formats of Dr. Wilson's program were modified at WES for the convenience of the users. Both the WES and Walla Walla versions of the temperature-calculation program were used in this investigation and, as expected, the results were found to be identical. The WES version of temperature program is given in Appendix A.

Thermal Stress/Strain Calculation Program

8. This program, developed by Dr. Sandhu, calculates the displacements at each node and the strains and stresses developed in each element in the finite element model due to thermal, gravity, and other external loads. In allowing for creep, this program assumes that relaxation of stress takes place without nodal displacements over a small time increment during which the material properties do not change. This change in stress is then neutralized by releasing the constraints and treating the stress changes as residual stresses. Detailed discussion of this program is given in Reference 2.

9. In Dr. Sandhu's original program,² only one arbitrary reference temperature (stress-free temperature) was specified for all elements. The stress-free temperature input was modified in the WES version of the thermal stress program in which the stress-free temperature for an element is defined as the temperature at 8 hr after placement.

The stress-free temperatures for all elements are calculated in the WES version of the temperature calculation program and stored on disc file for subsequent input to the thermal stress analysis.

10. The WES version of the thermal stress analysis program was used in this investigation (Appendix B).

PART III: DETERMINATION OF CONCRETE TEMPERATURES

Finite Element Model

11. The finite element model selected for this investigation is representative of a small interior portion of Monolith 23. Figure 1 shows the typical cross section of Monolith 23 and Figure 2, the typical cooling pipe arrangement. Due to considerations of symmetry, only a 30-in.* wide slice was analyzed as shown in Figure 2.

12. The height of the finite element model was 80 ft (from El 930 to El 1010), representing 10 ft of foundation and 14 lifts of concrete at 5 ft per each lift. The plan of the model was located at 330 ft from the construction base line and center of the monolith. The finite element model, consisting of 576 nodes and 475 elements, is shown in Figure 3.

13. Except for the top concrete surfaces, all boundary conditions were assumed to be adiabatic because negligible boundary heat flow was expected in the interior portion of a mass concrete structure.

Material Types

14. Four adjustments in fly ash and cement contents in the concrete mixtures were made between August and December of 1968. Variations in concrete mixtures would affect the thermal and mechanical properties of concrete. Therefore, five material types (one foundation material and four concrete materials) were used in the analysis. A summary of material types used is given in Table 1.

* A table of factors for converting U.S. customary units of measurement to metric (SI) units is given on page 3.

Figure 1. Cross Section of Monolith 23

Figure 2. Typical Arrangement of Cooling Pipes

Figure 3. Finite Element Model

Figure 3 (Continued)

x_L	-0.3690E 01	x_R	-0.3690E 02
y_L	-0.3370E 03	y_R	-0.3370E 03
v_L	-0.3630E 03	v_R	-0.3630E 03
175	176	177	178
B 141	B 142	B 143	B 144
169	170	171	172
			173
B 136	B 137	B 138	B 139
163	164	165	166
			167
B 131	B 132	B 133	B 134
157	158	159	160
			161
B 126	B 127	B 128	B 129
151	152	153	154
			155
B 121	B 122	B 123	B 124
145	146	147	148
B 116	B 117	B 118	B 119
139	140	141	142
			143
			144
211	212	213	214
C 171	C 172	C 173	C 174
205	206	207	208
			209
C 166	C 167	C 168	C 169
193	194	195	196
C 161	C 162	C 163	C 164
187	188	189	190
C 156	C 157	C 158	C 159
181	182	183	184
C 151	C 152	C 153	C 154
175	176	177	178
			179
			180

Figure 3 (Continued)

Figure 3 (Continued)

Figure 3 (Continued)

Figure 3 (Continued)

Figure 3 (Continued)

Figure 3 (Concluded)

Thermal Properties of Concrete and Foundation

15. The thermal properties of concrete and foundation required by the temperature calculation program are (a) specific heat, (b) density, (c) thermal conductivity, and (d) adiabatic temperature rise versus age. The values of thermal properties used in the analysis are given in Tables 2 and 3.

16. The specific heat, density, and thermal conductivity of material Type 2 were obtained from the test results of mixture No. A-2 reported in Appendix C of Reference 4. The thermal properties of other concrete material types used in the analysis were interpolated from the available test data given in Reference 4. The thermal properties of foundation material (material Type 1) were assumed to be identical to material Type 2.

17. The adiabatic temperature rise data presented in Table 3 were derived from the test results given in page 2.3-9 of Reference 4. The adiabatic temperature rise data beyond 28 days were obtained by extrapolation of the available data on a semi-logarithmic plot.

Construction Parameters

Ambient temperatures

18. The mean daily ambient temperature at Dworshak Dam from 26 August 1968 to 15 February 1969, during which the construction is being simulated, is plotted in Figure 4. This information was provided by the Walla Walla District. The simplified ambient exposure temperatures used in the analysis are shown in Figure 5.

Foundation temperature

19. In order to simulate the foundation temperatures in the model, the temperature of the entire foundation was first set equal to 65° F. It was assumed that the temperature at the bottom of the foundation would remain constant throughout the analysis period. Prior to the beginning of construction simulation, the surface of the foundation was exposed to

Figure 4. Mean Daily Ambient Temperatures, Dworshak Dam

Figure 5 Ambient Temperatures Used in the Analysis

ambient temperature and calculation was made to equilibrate foundation temperatures between ambient at the surface and the constant temperature at the bottom.

Concrete placement schedule

20. The concrete placement schedule used in the analysis is shown in Table 1, which was obtained from Reference 3. As can be seen, the placement rate varied between 4 and 13 days per lift with all lifts being 5-ft height. The first lift (El 940) was placed on 27 August 1968, and the last lift simulated in the analysis (El 1010) on 17 December 1968.

Concrete placement temperature

21. At Dworshak Dam, concrete placing temperature was specified between 40 and 45° F, measured 20 minutes after mixing.³ Average concrete placement temperature of 42.5° F was assumed in the analysis.

Concrete post-cooling

22. Post-cooling of all concrete was required in Monolith 23 from the base of the dam to El 1175.

23. In the finite element model, the cooling pipes were located at nodes 67, 103, 139, 175, 211, 247, 283, 319, 355, 391, 427, 463, 499, 535, and 571.

24. The inlet and average outlet cooling water temperatures were 41 and 53° F, respectively. Since the direction of flow was automatically reversed every 12 hr, the average value of inlet and outlet temperatures was used in the analysis (i.e., 47° F).

25. The water was flowing in the pipe at the start of placement in a lift and generally flowed continually for 21 days. The cooling water removal schedule used in the analysis is given in Table 4.

26. The heat transfer coefficient was calculated for pipe cooling based on the following equation:¹

$$H = \frac{2\pi K}{\log_e \frac{R}{r} - 2}$$

where H = Heat transfer coefficient

K = Conductivity of concrete
= 0.113 Btu/hr-in.-⁰F

R = Mesh size in the vicinity of the pipe
= 6 in.

r = Radius of cooling pipe
= 0.5 in.

Because of symmetry at the cooling pipes, the mathematical model (Figure 2) included only concrete elements from the pipe location to a distance half-way to the next cooling pipe. Therefore, half of the calculated H value was used in the program calculations.

Surface insulation

27. During construction, the top lift surface was generally covered with insulating mats immediately after placing. The insulation remained in place until the lift surface was to be covered with concrete, except for the time during which the joint was cleaned with high-pressure water jet.

28. The thermal conductivities of insulation materials used in the analysis are shown in Table 5.³

Wind velocities

29. In order to compute the convection transfer coefficient, wind velocity data are required. The wind data used in the analysis were obtained from Dworshak Station and are summarized in Table 6.

Heat transfer coefficients

30. The surface heat transfer coefficients used in the analysis were calculated according to the following equation;¹

$$H = \frac{1}{\frac{1}{c} + \frac{1}{h'}}$$

where H = Heat tranfer coefficient

c = Conductance of insulation

h' = Convection transfer coefficient
= 0.99 + 0.21V for V < 16 fps*

V = wind velocity

* From ASHRAE Handbook, 1977 Fundamentals.

31. Based on the data given in Tables 5 and 6, the surface heat transfer coefficients used in the analysis are summarized in Table 7.

Results and Discussion

32. The analysis was performed for 174 days, from 26 August 1968 to 15 February 1969. Calculated temperatures were output at one-day intervals for all nodes in the model at the particular stage of construction.

33. In general, peak temperatures of approximately 66°F were attained after about five days. Placing of precooled overlying lifts resulted in lower temperatures subsequent to their placement. After attainment of peak temperature, the temperature of a lift dropped as long as cooling was continued. When cooling of a lift was stopped at 21 days but continued on the overlying lifts, the temperature rose gradually to approximately the primary peak at about 40 days, and this temperature remained essentially constant throughout the remaining analytical period. The comparisons between calculated and measured temperatures are made at nodes 198, 342, and 486, where thermocouples 2309B, 2319B, and 2329B, respectively, are located. As can be seen from Figures 6, 7, and 8, excellent agreements between calculated and measured temperatures are obtained. The average differences between calculated and measured temperatures were 0.80°F , 1.56°F , and 1.57°F for nodes 198, 342, and 486, respectively. These small discrepancies were due probably to the following reasons.

- a. The adiabatic temperature rise data used in the analysis were based on the 28-day test results. It is obvious that heat is still being generated for an extended period of time after the 28-day adiabatic temperature rise test period. The adiabatic temperature rise data beyond 28 days were assumed in the analysis because this information was not available.
- b. Average concrete placement temperature of 42.5°F was assumed in the analysis. No record of actual concrete temperatures at placement was available.
- c. The average cooling water temperature was used in the analysis because the actual inlet and outlet cooling water temperatures were not available.

Figure 6. Comparison Between Calculated and Measured Temperatures at Node 198

Figure 7. Comparison Between Calculated and Measured Temperatures at Node 342

Figure 8. Comparison Between Calculated and Measured Temperatures at Node 486

- d. The thermocouple 2319B clearly indicated that the concrete cooling rate was too rapid at node 342 , and the water flow was interrupted between Day 70 and Day 75 (Figure 7). In the analysis, however, only the specified cooling flow was used. Discrepancies between measured and calculated temperatures between Day 70 and 75 were to be expected.
- e. Simplified ambient temperatures and wind velocities were used in the analysis.
- f. No solar radiation was considered.

PART IV: DETERMINATION OF THERMAL STRESSES

Finite Element Model

34. The same finite element model used in the temperature calculation program was used. Because of symmetry, no horizontal displacement at the vertical boundary was permitted and shear force was assumed to be zero. The nodal points at the bottom of the foundation were assumed fixed in all directions.

Properties of Concrete and Foundation

35. The properties of concrete and foundation required for the thermal stress analysis are (a) modulus of elasticity versus age, (b) Poisson's ratio versus age, (c) coefficient of thermal expansion, (d) shear foundation factor, and (e) creep versus age.

36. The values of modulus of elasticity, Poisson's ratio, and coefficient of thermal expansion are given in Tables 8 through 12. These values were derived from limited test data reported in Reference 4. All shear foundation factors are assumed to be zero.

37. The mathematical formulation of the creep mechanism used in the computer program was proposed originally by McHenry.⁵ It may be expressed as follows:

$$\epsilon_c(t) = \sigma \sum_{i=1}^n a_i(T) [1 - e^{-m_i(t-T)}]$$

where $\epsilon_c(t)$ = Creep strain

σ = Applied stress

t = Time after placement

T = Age at loading

$m_i, a_i(t)$ = Creep constants

38. McHenry suggested that a sufficient number of terms be included in this series to give satisfactory agreement with available experiment data. In the present study, it was assumed that two terms would

suffice. The function of $a_1(T)$ and $a_2(T)$ used in the analysis are given in Table 13. The values of m_1 and m_2 were 0.034 and 0.52, respectively. These creep constants were derived based on the results of the creep tests performed at UC Berkeley⁶ as reported in Reference 4.

Analysis Time Interval

39. In the analysis, the stress relaxation of the concrete within the finite elements was carried out by a time-increment sequence. Thus, it was necessary to establish time intervals short enough to give the desired accuracy but long enough to retain computational efficiency.

40. A total of 90 analysis times covering 26 August 1968 through 15 February 1969 was selected for the analysis.

Results and Discussion

41. A typical stress distribution is depicted in Figure 9, which shows the variation of horizontal stresses developed in three lifts. The figure indicates that between days 2 and 5, the horizontal compressive stresses in Lift 1 were gradually increased because of the increase in concrete temperatures. The maximum compressive stress was found near the center of the lift. When a cold new concrete lift was placed upon the relatively warm old lift, a sudden development of tensile stresses resulted at the lift interface. These stresses were gradually reduced because of creep and temperature rise due to hydration of cement. At Day 22, the tensile stress developed at the surface of Lift 3 was due to sudden ambient temperature drop at 16 September 1968 (see Figures 4 and 5).

42. The comparisons between calculated and measured strains are made at Element 235, where strain meters S052 and S053 are located. Figures 10 and 11 show the comparison between calculated and measured X-strains and Y-strains, respectively. The calculated stresses at Element 240 were compared with the stress meter Group AG G05 readings (Figures 12 and 13). Since the zero dates for stress and strain meters

Figure 9. Distribution of Horizontal Stress on Vertical Section

Figure 9 (Continued)

Figure 9 (Concluded)

Figure 10. Comparison Between Calculated and Measured X-Strains

Figure 11. Comparison Between Calculated and Measured Y-Strains

Figure 12. Comparison Between Calculated and Measured X-Stresses

Figure 13. Comparison Between Calculated and Measured Y-Stresses

were several days after lift placement, these data were adjusted to match the calculated data at zero dates in order to obtain a more meaningful comparison.

43. As can be seen from these figures, the general trends of the stress/strain history were successfully predicted although some discrepancies between calculated and measured values were indicated. These discrepancies are, however, to be expected because:

- a. The material data provided to WES by NPW were those obtained prior to construction of Dworshak Dam. The actual concrete mixtures used in the construction (four different mixtures were used between August and December of 1968) differed from those for which material data were generated. Therefore, most of the input data for thermal stress analysis had to be assumed.
- b. In addition to the inadequate material input data, the problem of thermal stress analysis was further compounded with slight inaccuracy in nodal temperature input obtained from the temperature-calculation program as discussed in paragraph 33.
- c. Since Carlson stress and strain meters were installed in groups and only the locations of the centroid of the group were given, the exact location of each stress or strain meter was not known. In a post-cooled concrete, a large thermal gradient could have a significant effect on the stress/strain gradient; and therefore, the comparison of calculated and measured values at exact locations is important.
- d. The assumptions and simplifications inherent in the two-dimensional analysis may result in calculated stresses and strains different from those measured in the three-dimensional structures.
- e. The analysis time intervals may not be short enough to give the desired accuracy.

PART V: CONCLUSIONS AND RECOMMENDATIONS

44. Based on the results of this investigation, it can be concluded that the temperature and thermal stress calculation programs currently being used by the Corps are acceptable provided that complete thermal and material properties and environment data are available. This conclusion was drawn based upon the fact that the temperature and thermal stress analysis computer programs did successfully predict the trends of temperature and stress/strain history, respectively, although some discrepancies between calculated and measured values were noted.

45. Recommendations for further improvement of temperature and thermal stress/strain calculation programs are as follows.

- a. Further progress in temperature and thermal stress calculations for mass concrete structures is closely linked to the development of quantitative information on thermal, creep, and mechanical properties of concrete. The existing material data in the literature need to be analyzed and data storage and retrieval systems should be developed. The information on early age (e.g., zero through three days) thermal and mechanical properties is lacking at the current state of the art. Systematic tests to develop this information are recommended.
- b. Many advances have been made in the finite element techniques since the original development of the temperature and thermal stress calculation programs. It is recommended that these programs be updated to incorporate more efficient and accurate methodology, e.g., isoparametric elements, on-board band width minimizer, non-linear material properties, etc.
- c. The existing two-dimensional programs should be expanded to include thin-shell elements for simulating rigid steel forms. Axisymmetric analysis capability should also be added. Ultimately, three-dimensional finite element programs should be developed.
- d. The mathematical formulation of the creep mechanism used in the thermal stress analysis program was based on the McHenry equation.⁵ Unfortunately, the derivation of the creep constants for the McHenry equation involves very time-consuming numerical analysis procedures. A simplified mathematical expression suitable for use with the finite element technique needs to be developed.

- e. In the WES version of the thermal stress program, the stress-free temperature for an element is defined as the temperature at 8 hr after placement. A rational approach for determining stress-free temperatures needs to be developed.
- f. In the existing programs, all thermal, creep, and mechanical properties are assumed to be temperature-independent. In the case of high cement-content concrete placed in a large mass, concrete temperatures as high as 120°F can be expected, and in areas of cooling pipes, temperatures may be as low as 45°F . These extreme temperatures have significant effects on the rate of heat generation and other mechanical properties; therefore, temperature-dependent properties need to be considered in the programs.
- g. In the current temperature program, any changes in insulating properties and cooling pipes are to be handled in a new lift. Therefore, a dummy lift must be introduced whenever the insulating properties or cooling water temperature varied. Simplified methods of modeling these changes within a lift should be developed.
- h. In the creep analysis, the stress relaxation and creep determinations are carried out by a time increment sequence. It is necessary to establish a guidance for selecting optimum time intervals which are short enough to give desired accuracy but long enough to retain computational efficiency.
- i. Solar radiation may have a significant effect on concrete temperatures in certain locations and times. This effect needs to be incorporated in the temperature calculation program.

REFERENCES

1. Wilson, E. L., "The Determination of Temperatures Within Mass Concrete Structures," Report No. 68-17, Dec 1968, Structural Engineering Laboratory, University of California, Berkeley, CA.
2. Sandhu, R. S., Wilson, E. L., and Raphael, J. M., "Two-Dimensional Stress Analysis With Incremental Construction and Creep," Report No. 67-34, Dec 1967, Structural Engineering Laboratory, University of California, Berkeley, CA.
3. "Concrete Report - Dworshak Dam and Reservoir, North Fork Clearwater River, Idaho," U.S. Army Engineer District, Walla Walla, Wash. Apr 1972.
4. "Concrete Aggregate and Concrete Properties Investigations - Dworshak Dam and Reservoir, North Fork Clearwater River, Idaho," Design Memorandum No. 16, U.S. Army Engineer District, Walla Walla, 15 July 1965.
5. McHenry, D., "A New Aspect of Creep in Concrete and Its Application to Design," Proceedings, American Society for Testing and Materials, Vol 43, 1943.
6. Pirtz, D., "Creep Characteristics of Mass Concrete for Dworshak Dam," Structural Engineering Laboratory Report No. 652, University of California, 1965.

Table 1
Summary of Material Types

<u>Lift</u>	<u>Date of Placement</u>	<u>Cement Content (skgs/cu yd)</u>	<u>Fly Ash Content (% of cement wt)</u>	<u>Designated Material Type</u>
Foundation	26 Aug 68	--	--	1
1	27 Aug	3.25	30	2
2	31 Aug	3.25	30	2
3	4 Sep	3.25	30	2
4	17 Sep	3.25	35	3
5	23 Sep	3.25	35	3
6	3 Oct	3.25	35	3
7	15 Oct	3.25	35	3
8	25 Oct	3.50	30	4
9	1 Nov	3.50	30	4
10	10 Nov	3.50	30	4
11	16 Nov	3.50	30	4
12	23 Nov	3.25	30	2
13	5 Dec	3.00	30	5
14	17 Dec	3.00	30	5

Table 2
Thermal Properties

<u>Material Type</u>	<u>Specific Heat (Btu/lb-°F)</u>	<u>Thermal Conductivity (Btu/hr-in.-°F)</u>	<u>Density (lb/in.³)</u>
1	0.220	0.113	0.089
2	0.220	0.113	0.089
3	0.220	0.113	0.089
4	0.220	0.118	0.089
5	0.220	0.107	0.089

Table 3
Adiabatic Temperature Rise Input

Time (Day)	Temperature (°F)				
	Material Type 1	Material Type 2	Material Type 3	Material Type 4	Material Type 5
0.	0.	0.	0.	0.	0.
1.00	0.	9.4	8.8	10.4	8.4
2.00	0.	17.0	16.3	19.7	14.3
3.00	0.	20.7	19.9	22.4	19.0
4.00	0.	23.4	22.3	25.0	21.8
6.00	0.	26.4	25.2	27.8	25.0
7.00	0.	28.0	26.7	29.3	26.7
10.00	0.	31.4	29.7	32.9	29.9
14.00	0.	35.0	33.0	36.9	33.1
17.00	0.	37.0	34.9	39.1	34.9
21.00	0.	39.0	36.9	41.4	36.6
25.00	0.	40.8	38.7	43.5	38.1
28.00	0.	41.4	39.5	44.0	38.8
60.00	0.	49.0	46.6	51.4	45.7
90.00	0.	52.8	50.3	55.4	49.5
180.00	0.	59.5	56.8	62.2	55.8

Table 4
Cooling Water Removal Schedule

<u>Day</u>	<u>Lift</u>
22	1
26	2
30	3
43	4
49	5
59	6
71	7
81	8
88	9
97	10
103	11
110	12
122	13
123	14

Table 5
Thermal Conductivity of Insulation Material

<u>Lift</u>	<u>Top Eleva- tion (ft)</u>	<u>Conductivity (Btu/hr-in.-°F)</u>
Foundation	940	--
1	945	--
2	950	--
3	955	--
4	960	0.003
5	965	0.003
6	970	0.003
7	975	0.003
8	980	0.002
9	985	0.002
10	990	0.002
11	995	0.002
12	1000	0.002
13	1005	0.002
14	1010	0.002

Table 6
Average Wind Velocity and Its Corresponding
Convection Transfer Coefficient

<u>Lift</u>	<u>Average Wind Velocity (fps)</u>	<u>Convection Transfer Coefficient (Btu/hr-in.²-°F)</u>
Foundation	4.4	0.013
1	4.4	0.013
2	4.4	0.013
3	2.9	0.011
4	1.5	0.009
5	1.5	0.009
6	2.9	0.011
7	4.4	0.013
8	2.9	0.011
9	5.9	0.015
10	4.4	0.013
11	5.9	0.015
12	5.9	0.015
13	2.9	0.011
14	4.4	0.013

Table 7
Heat Transfer Coefficient

<u>Lift</u>	<u>Heat Transfer Coefficient</u> (Btu/hr-in. ² -°F)
Foundation	0.0133
1	0.0133
2	0.0133
3	0.0111
4	0.0023
5	0.0023
6	0.0024
7	0.0024
8	0.0017
9	0.0018
10	0.0017
11	0.0018
12	0.0018
13	0.0017
14	0.0017

Table 8
Mechanical Input Properties - Material Type 1

<u>Time (day)</u>	<u>Modulus of Elasticity (psi)</u>	<u>Poisson's Ratio</u>	<u>Coefficient of Thermal Expansion (in./°F)</u>
0	2.8×10^6	0.20	5.5×10^{-6}
200	2.8×10^6	0.20	5.5×10^{-6}

Table 9
Mechanical Input Properties - Material Type 2

Time (day)	Modulus of Elasticity $(10^6 \times \text{psi})$	Poisson's Ratio	Coefficient of Thermal Expansion $(10^{-6} \times \text{in./}^{\circ}\text{F})$
0	0	0	5.48
0.5	0.3	0.17	5.48
1.0	0.6	0.17	5.48
1.5	0.9	0.17	5.48
2.0	1.10	0.17	5.48
2.5	1.22	0.17	5.48
3.0	1.35	0.17	5.48
4.0	1.53	0.17	5.48
5.0	1.70	0.17	5.48
6.0	1.82	0.17	5.48
7.0	1.90	0.17	5.48
8.0	2.00	0.17	5.48
12.0	2.30	0.17	5.48
16.0	2.49	0.17	5.48
20.0	2.62	0.17	5.48
28.0	2.85	0.17	5.48
36.0	3.02	0.18	5.48
44.0	3.15	0.19	5.48
52.0	3.26	0.20	5.48
60.0	3.35	0.20	5.48
70.0	3.45	0.21	5.48
80.0	3.53	0.21	5.48
90.0	3.62	0.22	5.48
100.0	3.70	0.22	5.48
120.0	3.80	0.22	5.48
140.0	3.90	0.22	5.48
160.0	4.00	0.22	5.48
180.0	4.09	0.22	5.48
200.0	4.15	0.22	5.48

Table 10
Mechanical Properties Input - Material Type 3

<u>Time (day)</u>	<u>Modulus of Elasticity ($10^6 \times \text{psi}$)</u>	<u>Poisson's Ratio</u>	<u>Coefficient of Thermal Expansion ($10^6 \times \text{in./}^\circ\text{F}$)</u>
0	0	0	5.48
0.5	0.25	0.17	5.48
1.0	0.55	0.17	5.48
1.5	0.85	0.17	5.48
2.0	1.05	0.17	5.48
2.5	1.17	0.17	5.48
3.0	1.30	0.17	5.48
4.0	1.48	0.17	5.48
5.0	1.65	0.17	5.48
6.0	1.77	0.17	5.48
7.0	1.85	0.17	5.48
8.0	1.95	0.17	5.48
12.0	2.25	0.17	5.48
16.0	2.44	0.17	5.48
20.0	2.57	0.17	5.48
28.0	2.80	0.17	5.48
36.0	2.97	0.18	5.48
44.0	3.10	0.19	5.48
52.0	3.21	0.20	5.48
60.0	3.30	0.20	5.48
70.0	3.40	0.21	5.48
80.0	3.48	0.21	5.48
90.0	3.57	0.22	5.48
100.0	3.65	0.22	5.48
120.0	3.75	0.22	5.48
140.0	3.85	0.22	5.48
160.0	3.95	0.22	5.48
180.0	4.40	0.22	5.48
200.0	4.10	0.22	5.48

Table 11
Mechanical Properties Input - Material Type 4

<u>Time (day)</u>	<u>Modulus of Elasticity (10^6 x psi)</u>	<u>Poisson's Ratio</u>	<u>Coefficient of Thermal Expansion (10^6 x in./°F)</u>
0	0	0	5.50
0.5	0.4	0.17	5.50
1.0	0.8	0.17	5.50
1.5	1.1	0.17	5.50
2.0	1.3	0.17	5.50
2.5	1.45	0.17	5.50
3.0	1.58	0.17	5.50
4.0	1.75	0.17	5.50
5.0	1.90	0.17	5.50
6.0	2.03	0.17	5.50
7.0	2.14	0.17	5.50
8.0	2.22	0.17	5.50
12.0	2.50	0.17	5.50
16.0	2.70	0.17	5.50
20.0	2.83	0.17	5.50
28.0	3.06	0.17	5.50
36.0	3.22	0.18	5.50
44.0	3.35	0.19	5.50
52.0	3.48	0.20	5.50
60.0	3.58	0.20	5.50
70.0	3.66	0.21	5.50
80.0	3.75	0.21	5.50
90.0	3.82	0.22	5.50
100.0	3.90	0.22	5.50
120.0	4.00	0.22	5.50
140.0	4.10	0.22	5.50
160.0	4.20	0.22	5.50
180.0	4.30	0.22	5.50
200.0	4.35	0.22	5.50

Table 12
Mechanical Properties Input - Material Type 5

<u>Time (day)</u>	<u>Modulus of Elasticity ($10^6 \times \text{psi}$)</u>	<u>Poisson's Ratio</u>	<u>Coefficient of Thermal Expansion ($10^{-6} \times \text{in.}/{}^\circ\text{F}$)</u>
0	0	0	5.40
0.5	0.2	0.17	5.40
1.0	0.4	0.17	5.40
1.5	0.7	0.17	5.40
2.0	0.9	0.17	5.40
2.5	1.03	0.17	5.40
3.0	1.16	0.17	5.40
4.0	1.35	0.17	5.40
5.0	1.50	0.17	5.40
6.0	1.62	0.17	5.40
7.0	1.72	0.17	5.40
8.0	1.80	0.17	5.40
12.0	2.10	0.17	5.40
16.0	2.30	0.17	5.40
20.0	2.42	0.17	5.40
28.0	2.68	0.17	5.40
36.0	2.81	0.18	5.40
44.0	2.95	0.19	5.40
52.0	3.07	0.20	5.40
60.0	3.16	0.20	5.40
70.0	3.27	0.21	5.40
80.0	3.33	0.21	5.40
90.0	3.42	0.22	5.40
100.0	3.50	0.22	5.40
120.0	3.60	0.22	5.40
140.0	3.70	0.22	5.40
160.0	3.80	0.22	5.40
180.0	3.90	0.22	5.40
200.0	3.95	0.22	5.40

Table 13
Constants for Creep Equation

<u>Time</u>	<u>a₁</u>	<u>a₂</u>
0	0.960×10^{-6}	0.463×10^{-6}
1	$.920 \times 10^{-6}$	$.475 \times 10^{-6}$
4	$.545 \times 10^{-6}$	$.565 \times 10^{-6}$
6	$.405 \times 10^{-6}$	$.500 \times 10^{-6}$
8	$.353 \times 10^{-6}$	$.442 \times 10^{-6}$
10	$.318 \times 10^{-6}$	$.395 \times 10^{-6}$
16	$.250 \times 10^{-6}$	$.289 \times 10^{-6}$
20	$.219 \times 10^{-6}$	$.248 \times 10^{-6}$
24	$.191 \times 10^{-6}$	$.225 \times 10^{-6}$
28	$.170 \times 10^{-6}$	$.215 \times 10^{-6}$
32	$.147 \times 10^{-6}$	$.208 \times 10^{-6}$
44	$.105 \times 10^{-6}$	$.191 \times 10^{-6}$
60	$.690 \times 10^{-7}$	$.170 \times 10^{-6}$
76	$.440 \times 10^{-7}$	$.150 \times 10^{-6}$
100	$.220 \times 10^{-7}$	$.122 \times 10^{-6}$
200	0.200×10^{-7}	0.100×10^{-6}

APPENDIX A: TWO-DIMENSIONAL TEMPERATURE CALCULATION PROGRAM (WES VERSION)

3279T 01 08-11-78 16,456

3279T 01 08-11-78 16.456

```

C
PARAMETER MAXN=500,MAXBH=9,PXE=480          00000580
COMMON NODAY,NUMEL,NCBH,NCPH,NUMMAT,INDT,INTER,CT,TIME,NUMNP,NUMET, 00000580
 1 NUMQC,PLTIME,B(MAXN),X(MAXN),Y(MAXN),T(MAXN),D(MAXN),TT(MAXN), 00000580
 2 IX(MXE,5),PLTM(MXE),VOL(MXE),HED(16),LM(5),E(3,3),KX(4),S(2,5), 00000580
 3 SECND(10),SPHT(10),DENST(10),QX(35,2,10),NSTOB(10),ET(100,2,3), 00000590
 4 IC(210),JC(210),HC(210),TC(210),CL(210);ISRN;PLACET,NELPx 00000600
 5 TP(210),HP(210),TP(210),TP(210),ETC(210),NE,TEMPMAX,PDAYx 00000610
 6 PEAKDAY,MODEPEAK,PEAKTEMP,PEAKNCE,TDF(MXE) 00000620
COMMON /OUTPUT/ NNODE,MCOUNT,NOCE(38),LIFT(38),TITLE(16),IPUNCH, 00000630
 1 SOLC(3),NPLOT,NDATE(2) 00000640
COMMON /SYMBR/ NUMN,HBAND,A(MAXN,MAXBH),B(MAXN) 00000650
COMMON /CHAN/ NSHANN 00000660
COMMON/NPB/IN/NTAPE11 00000670
DIMENSION IR(5),TR(5),XUN(35),YUN(35) 00000680
REEND 11 00000690
C
NF=28 00000700
TDPHAX=0, 00000710
C***** READ AND PRINT OF CONTROL INFORMATION 00000720
C***** READ(NF,1900)NUMNP,NUMEL,NUMMAT,NUMQC,NUMET1,NUMET2, 00000730
 50 READ(NF,999)HED 00000740
  READ(NF,1900)NUMNP,NUMEL,NUMMAT,NUMQC,NUMET1,NUMET2, 00000750
 1 NUMET3,NNODE,TIME,ISPAH,ICARDS,IPUNCH,SOLE(3),SOLC(2), 00000760
 2 SOLC(3),NPLOT,NSHANN 00000770
  WRITE(7,999)HED 00000780
  WRITE(08,999)HED 00000790
  WRITE(09,999)HED 00000793
  WRITE(7,1900)NUMNP,NUMEL,NUMMAT,NUMQC,NUMET1,NUMET2, 00000800
 1 NUMET3,NNODE,TIME,ISPAH,ICARDS,IPUNCH,SOLE(3), 00000810
 2 SOLC(2),SOLC(3),NPLOT,NSHANN 00000820
  WRITE(6,201) 00000830
 50 WRITE(6,2000) HED,NUMNP,NUMEL,NUMMAT,NUMQC,NUMET1,NUMET2, 00000840
 1 NUMET3 00000850
NODAY=0 00000860
C*****READ OUTPUT CONTROL=NOCARD,NELCARD,NTAPE11 - IF EACH OR ANY 00000870
C      ARE = 1, THEN CARDS ARE PUNCHED FOR NODES AND ELEMENTS, AND 00000880
C      OUTPUT TAPE CREATED RESPECTIVELY, =0 NO ACTION TAKEN, 00000890
  READ(NF,2400)NOCARD,NELCARD,NTAPE11,SCALE 00000900
 2400 FORMAT(4I5) 00000910
  WRITE(7,2400)NOCARD,NELCARD,NTAPE11,SCALE 00000920
C***** READ OR GENERATE NODAL POINT INFORMATION 00000930
C***** WRITE (6,2001) 00000940
  L=1 00000950
 60 READ(NF,1901)N=NROWN,X(N),Y(N),TT(N),NUMEV,NUMEV,MOD, 00000960
 1 NLIN 00000970
  WRITE(7,1901)N,NROWN,X(N),Y(N),TT(N),NUMEV,NUMEV,MOD, 00001000
 1 NLIN 00001010
 15$SCALE,EQ.0)GO TO 5000 00001012

```

3279T 01 08-11-78 16,456

X(N)*X(N)+12,	00001063
Y(N)*Y(N)+12,	00001064
5000 FAXX6870	00001020
FACY60,0	00001040
DIFF+N=1-L	00001040
IF \$NOMEV, EQ, 0) GO TO 81	00001070
IF \$NUMEV>0&NROWN, AND, NOMEV, EQ, 1) GO TO 82	00001060
GO TO 81	00001020
82 XUN(NROWN)*X(N)	00001090
YUN(NROWN)*Y(N)	00001090
81 IF \$N=L) 65,80,70	00001100
65 WRITE(6,2029) N	00001160
GO TO 80	00001120
70 IF \$NOMEV, EQ, 2) GO TO 83	00001130
DX=(X(N)-X(L-1))/DIFF	00001160
DY=(Y(N)-Y(L-1))/DIFF	00001160
DP=(TT(N)-TT(L-1))/DIFF	00001160
73 IF \$NUMEV, EQ, 2) GO TO 84	00001160
X(N)*X(L-2)*DX	00001160
Y(N)*Y(L-2)*DY	00001160
TT(L)=TT(L-1)+DP	00001280
GO TO 80	00001210
83 LL=2	00001220
84 X(LL)*X(LL-1)*(XUN(LL)-XUN(LL-1))	00001240
Y(LL)*Y(LL-1)*(YUN(LL)-YUN(LL-1))	00001240
77 LL=LL+1	00001250
LL=L	00001260
GO TO 80	00001270
390 L1=N\$3	00001280
IF \$FAXX, LE, 0) FAXX=1,0	00001290
IF \$FACY, LE, 0) FACY=1,0	00001300
WRITE(6,2090) MOD,NLIM,FAXX,FACY	00001310
400 N=N+1	00001320
N1=N,MOD	00001340
N2=N1,MOD	00001340
IF \$N2,GT,0),AND,(N2,GT,0)) OC TO 485	00001350
WRITE(6,2330)	00001360
CALL EXIT	00001370
405 X(N)*X(N1)*FAXX*(X(N1)-X(N2))	00001380
Y(N)*Y(N1)*FACY*(Y(N1)-Y(N2))	00001390
TT(N)=0,0	00001400
IF \$N,LT,NLIM) GO TO 400	00001410
L=N	00001420
MOD=0	00001430
80 WRITE(6,2002) (K=X(K),Y(K),TT(K),K=L1,L)	00001440
L=L+1	00001450
L=L	00001460
IF \$MOD,GT,0) GO TO 390	00001470
IF (N-L) LT,0,75	00001480
90 IF (NUMNP+1-L) 100,100,60	00001490
100 CONTINUE	00001500
IF \$NTSPE1%,EQ,0) GO TO 3900	00001510

3279T 01 08-11-78 16,456

3000	IF(NOGARD.EQ.0) GO TO 2410	00001520
2500	PUNCH 2500,(N,X(N),Y(N),TV(N),N=1,NL,MNP)	00001530
2500	FORMAT(15.5X13F10.3)	00001540
C	READ AND PRINT OF ELEMENT PROPERTIES	00001550
2410	WRITE(6,2003)	00001560
N=9		00001570
103	READ(NF,1002) M,(IX(M,I),I=1,5),PLTH(M),MOD,NLIMIT,MPLTH,PLTINC	00001610
	WRITE(7,1002) M,(IX(M,I),I=1,5),PLTH(M),MOD,NLIMIT,MPLTH,	00001620
104	1 PLTINC IF (MOD .NE. 0) WRITE(6,2095) MOD,NLIMIT,MELTH,PLTINC	00001630
105	N=N+1 IF (M-N) 107,107,105	00001640
	IX(N,1)=IX(N-1,1)+1	00001650
	IX(N,2)=IX(N-1,2)+1	00001660
	IX(N,3)=IX(N-1,3)+1	00001670
	IX(N,4)=IX(N-1,4)+1	00001680
	IX(N,5)=IX(N-1,5)	00001690
	PLTH(N)=PLTH(N-1)	00001700
	GO TO 107	00001710
106	IF(N.EQ.NLIMIT) GO TO 108	00001720
	N=N+1	00001730
	N1=N-MOD	00001740
	N2=N2-MOD	00001750
	IF((N1.GT.0).AND.(N2.GT.0)) GO TO 1102	00001760
	WRITE(6,2130)	00001770
	CALL EXIT	00001780
1102	DO 2687 I=1,4	00001790
2102	IX(N,1)=2*(IX(N-1,1)-IX(N-1,2))	00001800
	IX(N,2)=IX(N-1,3)	00001810
107	WRITE(6,2004) N,(IX(N,I),I=1,5),PLTH(N)	00001820
	IF(MOD.EQ.0) GO TO 6107	00001830
	IF(M,NE,N) GO TO 106	00001840
	I=N+3	00001850
	KRNBNR3MIT=MPLTH	00001860
	DO 5107 I=1,1,KRNBNR3MIT	00001870
	L=L+1	00001880
	DO 4107 J=1,MPLTH	00001890
	L=L+1	00001900
4107	PLTH(L+1)=PLTH(L)	00001910
5107	PLTH(L+1)=PLTH(L+1)+PLTINC	00001920
	GO TO 106	00001930
6107	IF(M-N) 108,108,104	00001940
108	IF (NUMEL-N) 109,109,103	00001950
109	CONTINUE	00001960
	DO 140 I=1,NUMEL	00001970
110	PLTH(S)=PLTH(I)*24,	00002000
C		00002010
	DO 139 N=1,190	00002020
	TMC(N)=0.0	00002030

32797 01 08-11-78 16,456

118	TIME(N)=0.0	00002040
	S101682	00002050
	S10240,	00002060
	S10368,	00002070
	IF(NT)=12, EQ, 0) GO TO 3010	00002080
	WRITE(11)IN,(IX(M,1),I=1,5),S101,S102,S103,M08,NUMEL)	00002090
3010	IF(SINGLEARD,EQ,0) GO TO 2050	00002100
	PRNGH 2050,(M,IX(M,1),I=1,5),M01,NUMEL)	00002110
2510	FGBHAT(619)	00002120
3030	RETURN	00002130
C READ AND PRINT MATERIAL PROPERTIES AND ENVIRONMENT TEMP		00002140
C		00002150
2450	IF(SNOGARD,EQ,1) GO TO 3030	00002160
	DO 128 N=1,NUMMAT	00002170
	READ(NF,1050)MT,XCOND(MT),SFHT(MT),BENS(MT),HSTOP(MT)	00002180
	WRITE(7,1050)MT,XCOND(MT),SFHT(MT),BENS(MT),HSTOP(MT)	00002190
	WRITE(6,2918) MT	00002200
	WRITE(6,2086) MT,XCOND(MT),SFHT(MT),BENS(MT),HSTOP(MT)	00002210
	HSTOP(MT),RHSTOP(MT)=24,	00002220
	WRITE(6,2007)	00002230
	READ(NF,1008) ((QX(I,J,MT),J=1,2),I=1,NUMQ8)	00002240
	WRITE(6,2008) ((QX(I,J,MT),J=1,2),I=1,NUMQ8)	00002250
	WRITE(6,2008) ((QX(I,J,MT),J=1,2),I=2,NUMQ8)	00002260
	DO 128 I=2,NUMQC	00002270
118	QX(I,1,MT)=QX(I,2,MT)*20,	00002280
120	CONTINUE	00002300
	IF(SNUMET1, EQ, 0) GO TO 121	00002310
	IET=1	00002320
	READ(NF,1008) ((ET(I,J,1)*J=1,2),I=1,NUMET1)	00002330
	WRITE(7,1008)((ET(I,J,1),J=1,2),I=1,NUMET1)	00002340
	WRITE(6,2012) IET,((ET(I,J,1),J=1,2)*I=1,NUMET1)	00002350
	DO 1120 I=1,NUMET1	00002360
1120	ET(I,1,1)=ET(I,1,1)*24,	00002370
121	IF(SNUMET2, EQ, 0) GO TO 122	00002380
	IET=2	00002390
	READ(NF,1008) ((ET(I,J,2)*J=1,2),I=1,NUMET2)	00002400
	WRITE(7,1008)((ET(I,J,2),J=1,2),I=1,NUMET2)	00002410
	WRITE(6,2012) IET,((ET(I,J,2),J=1,2)*I=1,NUMET2)	00002420
	DO 1121 I=1,NUMET2	00002430
1121	ET(I,1,2)=ET(I,1,2)*24,	00002440
122	IF(SNUMET3, EQ, 0) GO TO 123	00002450
	IET=3	00002460
	READ(NF,1008) ((ET(I,J,3)*J=1,2),I=1,NUMET3)	00002470
	WRITE(7,1008)((ET(I,J,3),J=1,2),I=1,NUMET3)	00002480
	WRITE(6,2012) IET,((ET(I,J,3),J=1,2),I=1,NUMET3)	00002490
	DO 123 I=1,NUMET3	00002500
123	ET(I,1,3)=ET(I,1,3)*24,	00002510
	C FOR EACH INTERVAL OF TIME=SEVERAL TIME STEPS	00002520
C		00002530
125	CONTINUE	00002540
	NCBH#0	00002550

3279T 01 08:11-78 16,456

NECH98	00002560
7816571M624.	00002570
MCOUNT=0	00002580
DO 130 NG\$,NUMNP	00002590
130 T(N)=0+0	00002600
IF (IC88DB,NE,0) GO TO 138	00002610
KCARD=KCARDB/S	00002620
KZ = KCARD0- KCARD=0	00002630
IF (SKZ .NE. 0) KCARD=KCARD#1	00002640
KC = 3	00002650
DO 135 I=3-KCARD	00002660
IF (I .EQ. KCARD) , AND, (KZ ,NE, 0)) KC=KZ	00002670
READ(NF,1939) (IR(N),TR(N),NB\$,KC)	00002680
WRITE(7,1935) (IR(N),TR(N),NB\$,KC)	00002690
DO 138 J=1,5	00002700
K = IR(J)	00002710
133 T(M) = TR(J)	00002720
135 CONTINUE	00002730
135 FORMAT (B(15,F10,5))	00002740
136 IF (NNODE .EQ.0) GO TO 149	00002750
READ(NF,1910) (NODE()),I=1,NODE)	00002760
WRITE(7,1910) (NODE()),I=1,NODE)	00002770
READ(NF,1920) (LIFT()),I=1,NODE)	00002780
WRITE(7,1920) (LIFT()),I=1,NODE)	00002790
WRITE(6,1930) (NODE()),I=3,NODE)	00002800
WRITE(6,1931) (LIFT()),I=3,NODE)	00002810
IF (IPUNCH ,NE, 0) WRITE Y6,2035) IPUNCH	00002820
IPUNCH = IPUNCH + 24	00002830
C	00002840
C READ AND PRINT OF LAYER PROPERTIES	00002850
C	00002860
149 ISPAN = ISPAN+1	00002870
150 READ(NF,999,END=997)TITLE	00002880
WRITE(7,999)TITLE	00002890
READ(NF,1904) NUMN,NUME,NUMCB,NUMCPINDT,INTER,DT,PLTIME,PLACET	00002900
WRITE(7,1904)NUMN,NUME,NUMCB,NUMCP,BDT,INTER,DT,PLTIME,PLACET	00002910
C	00002920
IF (NUMN,GT,0) GO TO 151	00002930
IF (NRLOT,NE,0) STOP	00002940
RETURN	00002950
151 CONTINUE	00002960
WRITE(6,2032) ISPAN,TITLE	00002970
WRITE(6,2905) NUMN,NUME,NUMCB,NUMCPINDT,INTER,DT,PLTIME,PLACET	00002980
PLTIME=PLTIME+24,	00002990
IF (ISRAN,EG,1)NHELP=1	00002995
C	00003000
C ELIMINATE ALL INSULATING ELEMENTS AND COOLING PIPES WITH REMOVAL	00003010
C TIME LESS THAN PLACEMENT TIME AND READ ADDITIONAL ONES	00003020
C	00003030
KNSD	00003040
DO 155 N=1,NCBH	00003050
IF (THG(N),LE,PLTIME) GO TO 159	00003060

3279T 01 08-11-78 16,456

KRRKK43 IP(KK)+IC(N)	00003070
JG\$KK?JC(N)	00003090
HC(KK)?HC(N)	00003090
TMC(KK)=TMC(N)	00003100
CL\$KK?CL(N)	00003120
IETC(NM)=IETC(N)	00003130
155 CONTINUE	00003140
NCBL\$KK+1	00003150
NCBH\$KK+NUMCB	00003160
IF(NUMCB,EQ,0) GO TO 160	00003170
N=NCBL	00003180
156 READ(MF,1005) IC(N),JC(N),HC(N),TMC(N),IETC(N),IBEN	00003190
WRITESZ(1005) IC(N),JC(N),HC(N),TMC(N),IETC(N),IBEN	00003190
IFSIGEN,EQ,0) GO TO 158	00003210
JJ=(JC(N)-IC(N))+1	00003220
JC(N)+IC(N)+1	00003230
DO 157 I=1,JJ	00003240
IC(N+3)=IC(N)+1	00003250
JC(N+3)=JC(N)+1	00003260
HC(N+3)=HC(N)	00003270
TMC(N+3)=TMC(N)	00003280
IETC(N+3)=IETC(N)	00003290
157 N=N+3	00003300
158 N=N+6	00003310
IF(N>LE, NCBH) GO TO 156	00003320
WRITESZ(2013) (IC(N),JC(N),HC(N),TMC(N),IETC(N),N,NN1,NCBH)	00003330
DO 159 N=NCBL,NCBH	00003340
159 TMC(N)?THRS(N)*24,	00003350
160 KRE0	00003360
DO 163 N=1,NCPH	00003370
IF(THRS(N)>LE,PLTIME) GO TO 165	00003380
KK=KK43	00003390
IP(KK)+IP(N)	00003400
HP\$KK?HP(N)	00003410
TP\$KK?TP(N)	00003420
THRS(KK)=THRS(N)	00003430
165 CONTINUE	00003440
NCPL\$KK+1	00003450
NCPH\$KK+NUMCP	00003460
IF(NUMCP,EQ,0) GO TO 170	00003470
N=NCRL	00003480
166 READ(MF,1006) IP(N),HP(N),TP(N),THRS(N),J,IBC	00003490
WRITESZ(1006) IP(N),HP(N),TP(N),THRS(N),J,IBC	00003500
N=N+1	00003510
IF(N>LE, NCPH) GO TO 168	00003520
IF(SINC.EQ.0) GO TO 166	00003530
167 IP(N)+IP(N-1)+INC	00003540
HP\$N?HP(N-1)	00003550
TP\$N?TP(N-1)	00003560
THRS(N)?THRS(N-1)	00003570
N=N+1	00003580

3279T 01 08711-78 16,456

IF \$IP(N-1) .LT. J) GO TO 167
IF \$N 6LE, NCRH) GO TO 166
166 WRITE(6,9914) (IP(N),HP(N),TP(N),TMP(N),N,B=NCBL,NCPH)
DO 169 N=NCPL,NCPH
169 TMP(N)=THR(N)*24,
C
C CHECK INCONSISTENCY OF LIFT INFORMATION AND REMOVAL OF INSULATING
C ELEMENTS AND/OR COOLING PIPES
C
170 KNE=0
YY=DTHFLOAT(MDT)
IF \$NCBH.EQ.0) GO TO 201
DO 200 N=2,NCBH
XH=THR(N),PLTIME
IP\$XX,LT,YY) KKB=1
200 CONTINUE
201 IF \$NCRH.EQ.0) GO TO 208
DO 205 N=1,NCPH
XH=THR(N),PLTIME
IP\$XX,LT,YY) KKB=1
205 CONTINUE
208 IF \$KK.NE.0) WRITE(6,2019)
C
C SET ALL NEW MODES TO PLACEMENT TEMPERATURE AND CONTACT SURFACE AT
C AVERAGE TEMPERATURES
C
DO 210 I=1,NUMN
B(I)=0.0
210 Q(I)=0.0
DO 220 N=1,NUME
IF \$PLTM(N).GT.PLTIME) GO TO 220
DO 265 I=1+4
II=IXEN,I)
IF \$PLTM(N).EQ.PLTIME) B(II)=B(II)+PLACEI
IF \$PLTM(N).LT.PLTIME) B(II)=B(II)+T(II)
215 Q(I)=Q(I)+1.0
220 CONTINUE
DO 230 N=1,NUMN
IF \$D(N).EQ.0.0) GO TO 230
T(N)=B(N)/Q(N)
230 CONTINUE
C
CALL LAYER
IF \$ATEMRMAX.GT.PEAKTEMP)GO TO 2700
TEMPMAX=PEAKTEMP
PDAY\$PEAKDAY
NPBANKDE=NODEPEAK
2700 GO TO 149
C
C FORMAT STATEMENTS
C
997 WRITE(6,998) "

3279T 01 08-11-78 10,456

998 FORMAT('END OF FILE")	00004096
STOP	00004096
999 FORMAT(16A4)	00004100
1000 FORMAT (015,F5.0,3I5,3F5.0,12,13)	00004100
1001 FORMAT(15,15,3F10.0,415)	00004120
1002 FORMAT(10,5X,4F10.0)	00004130
1003 FORMAT (6I5,F10.0)	00004160
1004 FORMAT(6I5,3F10.0)	00004160
1005 FORMAT(2I5,2F10.0,215)	00004170
1006 FORMAT(15,5X,3F10.0,215)	00004180
1008 FORMAT(2F10.0)	00004190
1010 FORMAT(16I5)	00004200
1030 FORMAT('NODES FOR EXTRA OUTPUT/(24I5)')	00004280
1031 FORMAT(' COLUMN HEADINGS FOR EXTRA OUTPUT/(24I5)')	00004280
2000 FORMAT ('0', 5X,16A4//25+0NUMBER OF NODAL POINTS--,14/	00004280
1 25H NUMBER OF ELEMENTS----- 14 / 25H NUMBER OF MATERIALS--- 19/00004280	00004280
2 25H NUMBER OF 00 CARDS----- 14 /	00004280
3 125H 00 OF EXT TEMP CARD----- 14)	00004280
2001 FORMAT (10H0 N,P, NO, 14X1HX,14X,1HY+13X+HTEMP)	00004220
2002 FORMAT (11I0,3E15.6)	00004280
2003 FORMAT (5I0 N I J K L MATERIAL PLACEMENT TIME)	00004280
2004 FORMAT (5I5,110,F16.4)	00004380
2005 FORMAT (10D / 25HNUMBER OF NODAL POINTS-- 14/	00004380
1 25H NUMBER OF ELEMENTS----- 14 / 25H NUMBER OF CONVECTION BC-- 14/00004380	00004380
2 25H NUMBER OF COOLING PIPE-- 14 / 25H NUMBER OF INCREMENTS-- 14/00004380	00004380
3 25H OUTPUT INTERVAL----- 14 / 20M TIME INTERVAL---- F10.3/ 00004380	00004380
4 25H BEGINNING TIME----- F8,2/25H PLACEMENT TEMPERATURE-- 00004380	00004380
5 F8,2)	00004380
2006 FORMAT(6H0 M,11X,4HCOND,11X,4HSPT+13X+HDDENS ,4X,26HTIME HEAT	00004380
1GENERATION STOPS/(16,3F15.6,F30.5)	00004380
2007 FORMAT(43HADIABATIC TEMPERATURE RISE OF THE MATERIAL/ 9H0 TIME 00004390	00004390
1 4X,31HTEMPERATURE)	00004480
2008 FORMAT(F9.2,E15.6)	00004480
2009 FORMAT (4H0 M 14X 1HK 14X 1HC 14X 1HD 14X 1HO (14,4E15.6))	00004480
2011 FORMAT (27H1THO DIMENSIONAL PLANE BODY)	00004480
2012 FORMAT(27H0TEMPERATURE OF ENVIRONMENT,12 / TH0 TIME,4X,	00004480
1 21HTEMPERATURE/(F9.2,E15.6))	00004480
2013 FORMAT(20H0INTSLATING ELEMENTS//4I 1,5H J,14X,1HH,41H TIME R00004480	00004480
1MOVED ENVIRON. ARRAY POSITION /(212,2F15.6,15,10))	00004470
2014 FORMAT(25H0DETAILS OF COOLING PIPES//RH 1,148,1HH,16H TEMPERA00004480	00004480
1TUBE -30H TIME REMOVED ARRAY POSITION/(112,3F15.6,10))	00004490
2018 FORMAT(1H0,4X,15HMATERIAL TYPE -,13)	00004580
2019 FORMAT(3H0**** ERROR MESSAGE WARNING ONLY/1X17HNEW LIFT DATA 00004580	00004580
1IS NOT SUPPLIED EVEN THOUGH A CHANGE WAS OCURED IN INSULATING/ 00004580	00004580
2 /X,52HELEMENTS AND/OR COOLING PIPES, CALCULATION PROCEEDS)	00004580
2020 FORMAT (19H0CARD NO, 14, 13L CUT CF ORDER)	00004540
2021 FORMAT (13H0BAD CARD NO, 14)	00004550
2032 FORMAT(1SPAN = 1,15/16A4)	00004560
2035 FORMAT(1TEMPERATURES PUNCHED AT DAY 8,19,1 FOR RESTART RUN)	00004570
2090 FORMAT(1H+,60X,5H MOD=,13,3X,6H NLIM=19,38,6H FACY=F10.5,	00004580
16H FACY=F10.5)	00004580

32797 01 08-11-78 16,456

```

2995 FORMAT(100,6BX,1 MOD1,15,1 NLIMIT=1,15,1 MPLTH=1,15,1 PLTINC=1,
1F721)
2130 FORMAT(42W!INSUFFICIENT INFORMATION TO GENERATE MESH)
END
SUBROUTINE LAYER
PARAMETER MAXN=500,MAXBW=9,PXEB=480
COMMON/NODE/NUMEL,NCBH,NCPL,NUMMAT,NDT,INTER,DT,TIME,NUMNP,NUME,
1 NUMOC,PLTIME,B(MAXN),X(MAXN),Y(MAXN),T(MAXN),D(MAXN),TT(MAXN),
2 TXINXE,S,PLTR(MAXE),VOLMAXE),LIC(16),LM(5),E(3,3),KX(4),S(2,5),
3 SCOND(10),SPHT(10),DENS(10),QX(35)2,10),USTOP(10),ET(100,2*3),
4 IC(210),JC(210),HC(210),TPC(210),CL(210),ISPAK,PLACET,NELP,
5 SP(220),WP(210),TP(210),TMP(210),IEYC(210),NE,TEMPMAX,PDAY
6 REAKDAY,NODPEAK,PEAKTEMP,PEAKNDE,TBF(MXB)
COMMON//OUTPUT// MNODE,MCOUNT,NOCE(30),LIFT(30),TITLE(16),IPUNCH,
1 SOLC(3),NPLOT,NDATE(2)
COMMON//SYMARG//NUMN,MBAND,A(MAXN,MAXBW),Q(MAXN)
COMMON//NPBIN//NTAPE11
DIMENSION TNODE(30)

C
C***** FORM CONDUCTIVITY MATRIX FOR COMPLETE BODY *****
C***** DO 130 I=1,NUMN
DO 130 I=1,NUMN
130 A(I,J)=0.0
MBAND=0
TBVOM=0

C
DO 200 N=2,NUME
IF(PLTM(N).GT.PLTIME) GO TO 200
MTYPE=IX(N,5)
COND=ZCOND(MTYPE)
C
        2, ELEMENT CONDUCTIVITY MATRIX
C
DO 130 I=1,5
LM1=IX(N,I)
DO 130 J=1,5
130 S(I,J)=0.0

C
I=LM(3)
J=LM(2)
K=LM(1)
L=LM(4)
LM=LM+1

C
X0=(X(I)+X(J)+X(K)+X(L))/4.
Y0=(Y(I)+Y(J)+Y(K)+Y(L))/4.
V0L(N)=0.0

```

3279T 02 08-11-78 16,456

C	DB 152 K=1,4	00005110
C	I=L,M(K)	00005120
	J=L,M(K+1)	00005130
	IF (I+J) 135=152=135	00005140
135	A=X(U)-X(I)	00005150
	ANXXX-X(I)	00005160
	B=Y(V)-Y(I)	00005170
	BK=Y(Y-V(I))	00005180
	C=B-J-BK	00005190
	D=BK+A(J)	00005200
C	XLAH=BJ=AK=BK	00005210
	IF(XLAH,BJ=0) GO TO 336	00005220
	ISTOP#1	00005230
	WRATE(4,2003) N	00005240
136	VOL(N)=VOL(N)+XLAH*0.5	00005250
	CBMM5=J=0.0ND/XLAH	00005260
C	E(1,1)=C+0.2+DX+0.2	00005270
	E(1,2)=BK+C-AK+DX	00005280
	E(1,3)=BJ+C+AJ+DX	00005290
	E(2,1)=E(1,2)	00005300
	E(2,2)=BK+0.2+AK+0.2	00005310
	E(2,3)=BJ+BK-AJ+AK	00005320
	E(3,1)=E(1,3)	00005330
	E(4,2)=E(2,3)	00005340
	E(3,3)=BJ+0.2+AJ+0.2	00005350
C	KR\$17=K	00005360
	KR\$27=M+1	00005370
	IP (K-4) 245=140=145	00005380
140	KR\$27=1	00005390
145	KR\$37=9	00005400
C	DB 153 J=1,3	00005410
	I=KX(J)	00005420
	DB 153 J=1,3	00005430
	J=KX(J)	00005440
151	S(I,I;UJ)=S(I,J)+E(I,J)*COPM	00005450
C	152 CONTINUE	00005460
C	DB 153 J=1,4	00005470
	DB 155 J=1,4	00005480
155	S(I,J)+S(I,J)-S(I,5)*S(J,5)/S(5,5)	00005490
C	3, ADD ELEMENT CONDUCTIVITY TO COMPLETE CONDUCTIVITY MATRIX	00005500
C	VOL(N)=VOL(N)+SPHT(MTYPE)*DENS(MTYPE)*0.25	00005510
	DB 129 L=1,4	00005520
	I=L,M(L)	00005530

3279T 01 08-11-78 16,496

DELT6D(I)+VOL(N)	00005630
DB 175 N=1,4	00005640
J=L,M(M)-1+1	00005650
IF (MAXBW-J) 157,158,159	00005660
157 WRITE (6,2002) N	00005670
GO TO 200	00005680
358 IF(MBAND=J) 169,165,169	00005690
169 MBAND=J	00005700
165 IF(J=175,175,170	00005710
170 A(I,J)=A(I,J)+S(L,M)	00005720
175 CONTINUE	00005730
C	00005740
200 CONTINUE	00005750
IF(I>VGP,B0,1) STOP	00005760
C BOUNDARY CONDITIONS	00005780
C	00005790
IF(NCRW,0,0) GO TO 220	00005800
DB 245 N=1,NCPH	00005810
I=1C(N)	00005820
J=JC(N)	00005830
XL=SORT((X(J)-X(I))**2+(Y(J)-Y(I))**2)	00005840
H=HC(N)*XL**0.25	00005850
A(I,J)=A(I,1)*H	00005860
A(J,J)=A(J,1)*H	00005870
K=J-1+1	00005880
IF (K) 212,212,210	00005890
210 A(I,K)=A(I,K)*H	00005900
GO TO 215	00005910
212 K=I-J+1	00005920
A(I,J)=A(J,K)*H	00005930
215 CLANT=XL	00005940
220 CONTINUE	00005950
C	00005960
C COOLING PIPES	00005970
C	00005980
IF(NCRW,0,0) GO TO 225	00005990
DB 224 N=1,NCPH	00006000
I=1P(N)	00006010
A(I,J)=A(I,1)+HP(N)	00006020
224 B(I,J)=B(I,1)+HP(N)+TP(N)	00006030
225 CONTINUE	00006040
C	00006050
C 2+ TEMPERATURE BOUNDARY CONDITIONS	00006060
C	00006070
DB 300 N=1,NUMN	00006080
C	00006090
IF(STT(N),0,0,0) GO TO 308	00006100
DB 250 H=2,MBAND	00006110
K=M-1+1	00006120
IF(K) 235,235,230	00006130
230 B(K)=B(K)-A(K,M)*TT(N)	00006140

3279T 01 08-11-78 16,456

A(N,M)=0.0	00006150
329 LN+M=3	00006150
IF S(N,M-L) = 245,240,240	00006170
240 B(L)+B(L)-A(N,M)+TT(N)	00006170
245 A(N,M)=0.0	00006170
250 CONINUE	00006200
ASN.6191.0	00006250
T(N)=TT(N)	00006220
300 CONTINUE	00006230
C	00006240
C SOLVE FOR NODAL MPOINT TEMPERATURES	00006250
C	00006260
C FORM EFFECTIVE CONDUCTIVITY MATRIX FOR TIME INCREMENT	00006270
C	00006280
DT=S20/DT	00006310
DN 320 N=3,NUMN	00006310
IF S(A(MP1))EQ=0.0) A(N,1)=S.0	00006320
IF S(TT(N),NE.,0) GO TO 320	00006330
DN=S(DT2*DIN)	00006340
A(N,1)=A(N+1)+D(N)	00006350
320 CONTINUE	00006360
CALL SYMSOL(1)	00006370
C SET OR FLAGS FOR STRESS FREE TEMP OUTRUT	00006380
C	00006390
LL=0	00006400
NCFLG#1	00006410
NCYL#0	00006420
C	00006422
C IS THIS A FAKE LIFT,IE,FOR PIPE REMOVAL IN MBDLRTT	00006424
C	00006426
IF S(NELP,GT,NUME)GO TO 710	00006428
SFT=8?	00006430
KDT=SFT/DT	00006440
IF S(DT)GT,SFT GO TO 702	00006450
IF S(DT)>0,SFT GO TO 701	00006460
DDT=KDT	00006470
DDT1=SFT/DT	00006480
DEL=DDT1-DDT	00006490
IF (DEL,GE.,0.5)GO TO 702	00006500
IF (DEL+EG,0.1)GO TO 701	00006510
700 NCYL#KDT	00006520
NCFLG#2	00006530
GO TO 705	00006540
701 NCYL#KDT	00006550
NCFLG#1	00006560
GO TO 705	00006570
702 NCYL#KDT+1	00006580
NCFLG#2	00006590
705 CONTINUE	00006600
C	00006610

3279T 01 08-11-78 16,456

C CALC TEMP AT END OF EACH TIME INCREMENT 00006682
C 00006684
710 DB 600 KK=1,NDY 00006620
C 00006620
C DETERMINATION OF HEAT GENERATION 00006640
C 00006640
DB 393 N=1,NUME 00006660
IF(PHTM(N),GT,TIME) GO TO 395 00006670
MTYPE=IX(N,5)
TX=TIME-PLTM(N)
IF(ATX.GE.HSTOP(MTYPE)) GO TO 395 00006680
DO 389 L=NUMAC 00006700
XZ=0XL(1,MTYPE)-TX 00006710
IP(XZ+GT,0) GO TO 386 00006720
385 CONTINUE 00006730
386 DIFF=QX(L,1,MTYPE)-QX(L-1,1,MTYPE) 00006740
GRAD=(QX(L,2,MTYPE)-QX(L-1,2,MTYPE))/DIFF 00006750
Q=GRAD*VOL(N) 00006760
DB 398 I=1,4 00006780
IP(IX(N,1)) 00006790
390 Q(I,I)+Q(I,I)+00 00006800
395 CONTINUE 00006810
C 00006820
C CONVECTION BOUNDARY CONDITION 00006830
C 00006840
IF(NCBH.EQ.0) GO TO 410 00006850
DO 409 M=1,NCBH 00006860
I=JC(M) 00006870
J=JC(M) 00006880
IEVG(M) 00006890
DO 400 N=1,100 00006900
I=N 00006910
XZ=ET(N,1,II)-TIME 00006920
IF(XZ) 400,400,401 00006930
400 CONTINUE 00006940
401 DIFF=BT(I,J,1,II)+ET(I,J-1,II) 00006950
XZ=XZ/DIFF 00006960
XZ=GT(I,J,2,II)+ET(I,J-1,2,II) 00006970
TEMP=ET(I,J,2,II)-XXX*XZ 00006980
TEMP=TEMP+SOLC(II) 00006990
XZ=HC(M)*CL(M)*TEMP*0.5 00007000
Q(I,I)+Q(J,I)+XZ 00007010
405 Q(I,J)+Q(J,I)+XZ 00007020
410 CONTINUE 00007030
C 00007040
C 14 CALCULATE EFFECTIVE LOAD MATRIX 00007050
C 00007060
DB 458 I=1,NUMN 00007070
Q(I,I)+Q(I,I)+B(I)*D(I)*T(I) 00007080
IF(TT(I),NE,0,0) Q(I)=TT(I) 00007090
450 CONTINUE 00007100
C 00007110

3279T 01 08-11-78 16,456

C	29 SOLVE FOR TEMPERATURES	00007120
G	CALL SVM80L(2)	00007130
C	DO 500 I=1,NUMN	00007140
	T11)0G(I)	00007150
	500 001)6840	00007160
C	TIME = TIME+DT	00007170
	DAY = TIME/24.	00007210
	JDU = TIME	00007220
C	PUNCH CARDS FOR RESTART RUN	00007230
C	IF \$JJJ,NE,IPUNCH) GO TO 580	00007240
	WRITE(07,2006) (I,T(I),I=1,NUMN)	00007250
	IF \$NCBH .EQ. 0) GO TO 502	00007260
	DO 502 N=1,NCBH	00007290
	XTHC + THC(N)/24.0	00007300
	502 WRITE(07,2007) IC(N),JC(N)+HC(N),XTHC+THC(N)	00007310
	502 IF \$NCPH .EQ. 0) GO TO 510	00007320
	DO 503 N=1,NCPH	00007330
	XTHP + THP(N)/24.0	00007340
	503 WRITE(07,2008) IP(N),HP(N)+TP(N),XTHP	00007350
	2006 FORMAT (5(15,F10.5))	00007360
	2007 FORMAT (215,F10.5,F10.2,15)	00007370
	2008 FORMAT (15-5X,F10.5/F10.2/F10.2)	00007380
	510 IF \$NNODE .EQ. 0) GO TO 554	00007390
	IF \$AMOD(DAY,1,0) .NE. 0,0) GO TO 554	00007400
	IF \$NODE(1) .GT. NUMN) GO TO 554	00007410
	KOUT#3	00007420
	551 DO 552 I=1,NNODE	00007430
	TNODE(I) = 0.0	00007440
	I1=NODE(1)	00007450
	IF (I1 ,GT, NUMN) GO TO 800	00007460
	KOUT#3	00007470
	552 TNODE(I) = T(I1)	00007480
	800 MCOUNT = MCOUNT+1	00007490
	IF \$MCOUNT .GT. 0) GO TO 553	00007500
	MCOUNT = 40	00007510
	WRITE(16,3000) NDATE,HED,(LIFT(I),I=1,NNODE)	00007520
	3000 FORMAT (15-2A4,5X,16A4/'0 DAY' IDECT NUMBER1/7X,24I5X1)	00007530
	553 WRITE(0,2030) DAX,(TNODE(I),I=1,KOUT)	00007540
	IF \$NPLOT .NE. 0) GO TO 554	00007550
	NODAY=NODAY+1	00007560
	2030 FORMAT(F7.2,(24F5.1))	00007570
	554 CONTINUE	00007580
	LL#LL#3	00007590
	IF \$ISPRAN .GT. 1) GO TO 770	00007590
	IF \$KK .NE. NODAY) GO TO 755	00007591
	WRITE(08,780)	00007600
	780 FORMAT(" SPAN 1 VALUES-POSSIBLY FOUNDATION")	00007610

3279T 01 08-11-78 16,456

778 IF \$KMHNE, NCYC) GO TO 755
DO 752 I=NELP, NUME
J2=IX(1,1)
J2=IX(1,2)
J3=IX(1,3)
J4=IX(1,4)
IF \$J3EQ0, J4) GO TO 750
TSF(I)+(T(J1)+T(J2)+T(J3))/3,
751 IF \$NCFLG, BO, 1) GO TO 752
TSF(I)+(SFT*(TSF(I)*PLAGEV)*DT*NCYL*PLAGEV)/(DT*NOV6)
752 CONTINUE
WRITE(68,760) SPAN, SPT, DT, DCT1, PLAGEV, DAY, BCYL, KDT
760 FORMAT(//," SPAN----",I4,"/",SPT-DT-HOURS--,"/",F10.3,/,
1" DT-HOURS---",F10.3,/,SPT/DT----,"/",F10.3,/,
2" PLAGEV",F10.3,/, DAYS----,"/",F10.3,/,
3" BCYL----",F10.3,/, KDT-COUNT--,"/",F10.3,/,
4" WRITE(68,761)(I,TSF(I),I=NELP,NUME)
761 WRITE(68,767)(I,TSF(I),I=NELP,NUME)
762 FORMAT(2X,F10.3)
755 CONTINUE
IF LL=INTER) 600,550,550
550 WRITE(6,2003) DAY,(N,T(N),N=1,NUMN)
IF N=1,PE1,ER,0,GO TO 3820
WRITE(61,2004) DAY,(N,T(N),N=1,NUMN)
3820 LL=0
PEAKTEMP=0,
DO 823 N=1,NUMN
IF \$T(N).GT,PEAKTEMP)GO TO 826
GO TO 825
826 PEAKTEMP=T(N)
NODEPAK=N
PEAKDAY=DAY
825 CONTINUE
WRITE(6,2600)DAY,PEAKTEMP,NCDEPEAK
C
600 CONTINUE
NELP+NUME=1
RETURN

C
2003 FORMAT(//BH TIME = ,F8,2,6H DAYS/(10(15,F8,2)))
2002 FORMAT(25H BAND TOO LARGE=EL,NO, 18)
2003 FORMAT(34HZERO OR NEGATIVE AREA ELEMENT NO,15)
2004 FORMAT(BH TIME = ,F8,2,6H DAYS,100X,1H1/(7(16,F7.1),35X,1H1))
2600 FORMAT(//***PEAK TEMPERATURE THIS CALCULATION,
1"PEAKTEMP",//3 THE PEAK TEMPERATURE FOR THE",E5;1;" DAY ",
2"PEAKTEMP",//3 DEGREES AT NODE= ",I4)
C
END

3279T 01 08:11-78 16,456

SUBROUTINE SYMBOL (KKK)		00008190
PARAMETER MAXN=580,MAXM=9,MAXBL=400		00008190
C	COMMON /SYMARG/ NN,MM,A(MAXN,MAXBL),B(MAXN)	00008190
C	GO TO 1000,2000,KKK	00008190
C	REDUCE MATRIX	00008190
C	1000 DO 280 N=1,NN	00008220
	DO 260 L=2,MM	00008230
	C=A(N,L)/A(N,N)	00008240
	I=N=L-1	00008250
	IF(NN>I) 260,240,240	00008260
240	J=J+1	00008270
	DO 250 K=L,MM	00008280
	J=J+1	00008290
250	A(I,J)=A(I,J)-C*A(N,K)	00008300
260	A(N,L)=C	00008310
280	CONTINUE	00008320
	GO TO 500	00008330
C	REDUCE VECTOR	00008340
C	2000 DO 290 N=1,NN	00008350
	DO 285 L=2,MM	00008360
	I=N=L+1	00008370
	IF(NN>I) 290,285,285	00008380
285	B(I,I)=B(I,I)-A(N,L)*B(N)	00008400
290	B(N)=B(N)+A(N,L)*B(L)	00008420
C	BACK SUBSTITUTION	00008430
C	N=NN	00008440
300	N = N+1	00008450
	IF(N>J) 350,500,350	00008460
350	DO 400 K=2,MM	00008470
	L = N=L-1	00008480
	IF(NN>L) 400,370,370	00008490
370	B(N) = B(N) - A(N,K) * B(L)	00008500
400	CONTINUE	00008520
	GO TO 300	00008530
C	500 RETURN	00008540
C	END	00008570
	SUBROUTINE TPLOT	00008580
	RETURN	00008590
	END	00008600
S	EXECUTE DUMP	00008610
S	LMEMTB 90,33K,25000	00008620
S	FILE 07,D19,8L	00008630
S	FILE 08,D29,6L	00008640

3279T 01 08#11-78 16.456

S	ERHFL	09.R/H,L,ROCC46/SFCUTDH1	00008630
S	TRP#9	21.A1D...DWORSH-WES#1	00008632
	MSG2	SAVE 11,BOMBICH,ROCC46,DWORSH-WES#1	00008634
S	DATA	20	00008680
S	BREAK		00008700
S	CONVER		00008710
S	LIMITS	.v.,2000	00008720
S	SYSCUT	DT	00008730
S	FILE	IN,DIR	00008740
S	BREAK		00008741
S	CONVER		00008742
S	LIMITS	.v.,2000	00008743
S	SYSCUT	DT	00008744
S	FILE	IN,D2R	00008750
S	ENDJOB		00008760

APPENDIX B: TWO-DIMENSIONAL THERMAL STRESS/STRAIN CALCULATION PROGRAM
(WES VERSION)

3118T 01 08:11-78 15.617

S IDENT ROCC46,CAMPBELL	00000020
S MSGJ 062878/1700	00000025
S OPTION FORTRAN	00000030
S FORTY XREF,MAP,DECK	00000040
S LIMITS ,33K,,6000	00000050
S FILE C*XS,1L,NEW,BSTBESDH	00000060
C STRESSV-WITH VARIABLE TIME AND STRAIN CAP INPUT	00000070
C***COPY AS OF 27 MARCH 79, INCL STRAIN CAP., SPECIFIC ANALYSIS TIMES	00000080
C ARBITRARY TWO-DIMENSIONAL STRESS STRUCTURE INCLUDING INCREMENTAL	00000090
C CONSTRUCTION, MCHENRY CREEP, RESIDUAL STRESSES, THERMAL STRESSBS,	00000100
C VARYING PRESSURE BOUNDARY CONDITIONS, AND BI MODULAR MATERIAL	00000110
C PROPERTIES.	00000120
C MXN=MAXIMUM NO. OF NODES	00000130
C MXE=MAXIMUM NO. OF ELEMENTS	00000140
C MN2=MAX NODES * 2	00000150
C	00000160
PARAMETER MXN=576,MXE=475,MN2=MXN*2	00000170
CHARACTER NX7=6(7),NY7=6(7)	00000180
COMMON NUMNP,NUMEL,NUMPC,N,VOL,TEMP,MTYPE,LAY,NUMN,NANAL,NP,OVER	00000190
1,NDT,NCOUNT,TI,DT,DTT,T1,TL,XC,YC,ST{3,10},TIMLA(27),NUME(27),TLW,	00000190
2TT(15),NUMOL,TIME,NNAL,NLAY,ISC,EX,EY,DASH,ANAL(200),NANALT,TLAST	00000170
3,RRR(5),ZZZ(5),NFLAG,L1	00000180
COMMON /MATARG/ E(3D,6,8),RD(8),EB(8),HED(15),CIC(20,4,8),	00000190
1CC(4,8),NCREEP(8),SC(30,2,8),NSC	00000200
COMMON /FLEARG/ IX(MXE,5),MTAG(MXE),SIG(MXE),TOLD(MXE),	00000210
1DE11(MXE),DE12(MXE),DE22(MXE),DSIG(6),CCD(4),CCC(4)	00000220
2,EES(MXE,2),EPS(6),SCAP(MXE),NE7(7),NX7,NY7,YEMPE(MXE)	00000230
COMMON /PRSARG/ IBC(100),JBC(100),PR(100)	00000240
COMMON /ORDARG/ R(MXN),Z(MXN),UR(MXN),UZ(MXN),CODE(MXN),T(MXN)	00000250
COMMON /BANARG/ MBAND,NUMBLK,B(120),A(120,60)	00000260
COMMON /LS4ARG/ I,J,K,S(10,10),C(3,3),D(3,3),H(3,3),P(10),LM(4),	00000270
1 F(3,3)	00000280
CHARACTER READMODE=6,DASH=6,OVER=6	00000290
DIMENSION FF(MN2),IBUF(300),TSAVE(MXE)	00000300
SFTIM=8,	00000310
DASH=6H COMP	00000320
OVER=6H >1K	00000330
NF=20	00000340
WRITE(7,4100)	00000350
READMODE=6H	00000360
C***READ AND PRINT OF CONTROL INFORMATION AND MATERIAL PROP:	00000370
C*****	00000380
50 READ(NF,1000,END=5000)HED	00000390
C**READ MODE OF INPUT- "TAPE" OR "CARD" FOR NODES,ELEMENTS, & TEMPS.	00000400
READ(NF,998)READMODE=NEXTRA	00000410
READ(NF,999)NUMNP,NUMEL,NUMMAT,NLAY,ISC,NANALT,TL,TI	00000420
WRITE(6,1009)	00000430
WRITE(6,2000) HED,NUMNP,NUMEL,NUMMAT,NLAY,ISC,TL,NANALT	00000440
WRITE(7,2000)HED,NUMNP,NUMEL,NUMMAT,NLAY,ISC,TL,NANALT	00000450
56 DO 59 M=1,NUMMAT	00000460
READ(NF,1001) MTYPE,NUMTC,NSC,NCREEP(MTYPE),RD(MTYPE)	00000470

31187 01 08-11-78 15.617

```
      WRITE(6,2011) MTYPE,NUMTC,NCREEP(MTYPE),R0(MTYPE)          00000450
      WRITE(6,2051)NSC                                         00000480
      READ(NF,1005) ((E(I,J,MTYPE),J=1,6),I=1,NUMTC)          00000470
      WRITE(6,2010) ((E(I+J,MTYPE),J=1,6),I=1,NUMTC)          00000480
      DO 58 I=NUMTC,30                                         00000490
      DO 58 J=1,6                                             00000500
  58 E(I,J,MTYPE)=E(NUMTC+J,MTYPE)                         00000520
      IF(SC>EQ.01GO TO 910                                    00000520
      READ(NF,1008)((SC(I,J,MTYPE),J=1,2),I=1,NSC)          00000540
      WRITE(6,2052)((SC(I,J,MTYPE),J=1,2),I=1,NSC)          00000540
      DO 75 I=NSC,30                                         00000550
      DO 75 J=1,2                                             00000560
  75 SC(I,J,MTYPE)=SC(NSC+J,MTYPE)                         00000570
  910 CONTINUE                                              00000580
      IF (NCREEP(MTYPE)) 58,59,54                           00000590
  54 NCR=NCREEP(MTYPE)                                     00000600
      READ(NF,1003) (TTT(I),(CIC(I,J,MTYPE),J=1,4),I=1,NCR) 00000610
      WRITE(6,2013) MTYPE,(TTT(I),(CIC(I,J,MTYPE),J=1,4),I=1,NCR) 00000620
      READ(NF,1005) (CC(I,J,MTYPE),I=1,4)                   00000630
      WRITE(6,2014) (CC(I,J,MTYPE),I=1,4)                   00000640
  59 CONTINUE                                              00000650
C****READ AND PRINT NODAL LOAD/DISPLACEMENT BOUNDARY COND**** 00000652
      WRITE(6,2004)
      L=1
  3006 READ(NF,3000)N,CODE(N),UR(N),UZ(N)                 00000660
      IF(N,EQ.11GO TO 3006                                  00000670
  3005 L=L+1                                              00000680
      IF(N-L)>3002,3001,3004                            00000710
  3004 CODE(L)=CODE(L-1)                                 00000720
      UR(L)=0,                                              00000730
      UZ(L)=0,                                              00000740
      GO TO 3005                                         00000750
  3002 WRITE(6,2017)N
      CALL EXIT                                           00000770
  3001 IF(L,EQ.,NUHNP)GO TO 3006                         00000780
      GO TO 3006                                         00000790
C****READ NODAL POINT DATA FROM TAPE/DISK AND PRINT***** 00000791
  3008 L=0
      IF(READMODE,EQ.6HTAPE )GO TO 905                  00000810
      READ(NF,4000)(M,R(N)+Z(N),N=1,NUMNP)             00000820
      GO TO 906                                         00000830
  905 READ(4)(M,R(N),Z(N),N=1,NUMNP)                  00000840
  906 CONTINUE                                            00000850
      WRITE(6,2002)(K,CODE(K),R(K)+Z(K),UR(K),UZ(K),K=1,NUMNP) 00000860
      WRITE(3)(K,CODE(K)+R(K),Z(K),UR(K)+UZ(K),K=1,NUMNP) 00000870
      WRITE(6,2001)                                         00000880
C****READ ELEMENT DATA FROM TAPE OR CARDS AND PRINT***** 00000881
      N=0
      IF(READMODE,EQ.6HTAPE )GO TO 908                  00000890
      READ(NF,4001)(M,(IX(N,I),I=1,95),(SIG(N,I),I=1,3),N=1,NUMEL) 00000900
      GO TO 909                                         00000920
  908 READ(4)(N,(IX(M,I),I=1,5),(SIG(M,I),I=1,3),M=1,NUMEL) 00000980
```

3118T 01 08-11-78 15.617

```
909 CONTINUE          00000990
    WRITE(6,2003)(N,(IX(N,I):I=1,5),(SIG(N,I),I=1,3),N=1,NUMEL) 00000990
    WRITE(3)(N,(IX(N,I),I=1,5),(SIG(N,I):I=1,3),N=1,NUMEL)      00000980
    J=0                00000970
    DO 340 N=1,NUMEL   00000980
    DO 340 I=1,4       00000970
    DO 325 L=1,4       00001050
    KK=IABS(IX(N,I)-IX(N,L)) 00001050
    IF (KK-J) 325,320 00001020
320 J=KK            00001050
325 CONTINUE         00001050
340 CONTINUE         00001050
    MBAND=2*j+2       00001050
    NUMOL=0            00001050
    NANAL=0            00001050
    TIME=TI             00001050
    TIME=TI             00001150
    TLAST=TI            00001150
    C*****READ ELEMENT STRESS FREE TEMPERATURES***** 00001150
    L=1                00001150
3026 READ(NF,3020)M,TOLD(M) 00001150
    IF(M,EQ.1)GO TO 3026 00001150
3025 L=L+1           00001150
    IF(M-L)3022,3021,3024 00001150
3024 TOLD(L)=TOLD(L-1) 00001150
    GO TO 3025         00001150
3022 WRITE(6,3027)M 00001150
    CALL EXIT           00001200
3021 IF(L,EQ,NUMEL)GO TO 3031 00001200
    GO TO 3026         00001200
3031 L=0              00001200
    WRITE(6,3028)(M,TOLD(M),M=1,NUMEL) 00001200
    DO 450 N=1,NUMEL   00001250
    DE11(N)=0.          00001260
    DE12(N)=0.          00001270
    DE21(N)=0.          00001280
    DE22(N)=0.          00001290
    SIG(N,4)=0.          00001300
    SIG(N,5)=0.          00001310
    MTAG(N)=1            00001320
    IF (SIG(N,1)) 445,445,440 00001330
440 IF (SIG(N,1)+SIG(N+2)) 441,441,442 00001330
441 MTAG(N)=2            00001350
    GO TO 450            00001350
442 MTAG(N)=3            00001370
445 IF (SIG(N,2)) 450,450,448 00001380
448 MTAG(N)=4            00001390
450 CONTINUE           00001400
    DO 460 N=1,NUMNP   00001410
    FF(2*N-1)=0.        00001420
460 FF(2*N)=0.          00001430
    C*****READ ANALYSIS TIMES(DAYS) FOR RLN 00001430
                                         00001450
```

31187 01 08-11-78 15.617

J118T 01 08-11-78 15.617

```
GO TO 960,985,964,901,963;NFLAG          00001682
961 DO 884 KK=1,NUMNL                      00001684
884 TEMPE(KK)=TSAVE(KK)                     00001686
896 IF(DDT1.GE.1.0.AND.DDT1.LT.2)DTT=0+5    00001688
IF(DDT1.GE.2.)DTT=1,0                         00001690
GO TO 962                                     00001692
985 NEW=NUME(LAY-1)                          00001694
DO 880 KK=1,NEW                             00001696
880 TEMPE(KK)=(TSAVE(KK)+TOLD(KK))/SFTIM/24.+TOLD(KK) 00001698
DO 881 KK=NEW+1,NUMNL                      00001700
881 TEMPE(KK)=TOLD(KK)                     00001702
GO TO 960                                     00001703
964 DO 883 KK=1,NUMNL                      00001704
883 TEMPE(KK)=(TSAVE(KK)+TOLD(KK))-SFTIM/24.+TOLD(KK) 00001706
960 DTT=SFTIM+.5/24.                         00001707
962 CONTINUE                                  00001708
IF(NFLAG.GE.3)GO TO 810                      00001709
IF(NFLAG.EQ.0.AND.JFLAG.EQ?1)GO TO 360      00001710
955 WRITE(6,2009)NANAL,L6Y,TIRETAPE,(KM,V(KK),KK61,NUMN) 00001712
IF(NUHPC) 290,J10,290                         00001713
C*****READ PRESSURE B, C, FROM CARD OR TAPE
290 WRITE(6,2005)                           00001714
DO 300 L#1,NUHPC                            00001715
READ(NE,1004) IBC(L),JBC(L),PR(L)           00001716
300 WRITE(6,2007) IBC(L),JBC(L),PR(L)         00001717
310 CONTINUE                                  00001718
JFLAG=0                                      00001719
WRITE(6,4009)NFLAG,DTT                      00001719
4009 FORMAT(//,NFLAG=",14.",DTT="F10.4")     00001720
IF(NFLAG.GT.1)GO TO 55                      00001721
WRITE(6,2025)                                00001722
2025 FORMAT(//,*NODAL DISPLACEMENTS*%)      00001723
55 CONTINUE                                  00001724
IF(NP-1) 435,435,508                        00001820
435 DO 350 N=1,NUMNL                      00001820
350 MTAG(N)=1                               00001820
500 CONTINUE                                  00001820
NCOUNT=0                                     00001820
DO 570 NNN=1,NP                            00001820
425 NCOUNT=NCOUNT+1                         00001820
C*****FORM STIFFNESS MATRIX
CALL STIFF                                    00001820
C*****CALCULATE NODAL DISPLACEMENTS
CALL BANSOL                                   00001820
IF(NCOUNT-NP) 525,510,510                  00001920
510 DO 520 N=1,NUMN                      00001920
C*****INITIALIZE DISPLACEMENTS
FF(2*N-1)=FF(2*N-1)+B(2*N-1)                00001920
520 FF(2*N)=FF(2*N)+B(2*N)                 00001920
IF(NFLAG.GT.1)GO TO 525                    00001925
WRITE(6,2006) (N,FF(2*N-1),FF(2*N),N=1,NUMN) 00001920
WRITE(3)(N,FF(2*N-1),FF(2*N),N=1,NUMN)      00001920
```

31187 01 08-11-78 15.612

C*****CALCULATE STRESSES AND STRAINS*****	00001981
525 CALL CREEP	00001980
570 CONTINUE	00001980
C*****DETERMINE TIMES FOR NEXT CYCLE*****	00001981
NUMOL=NUMNL(LAY)	00001982
IF((NAL+1).GT.NANAL)GO TO 5000	00001982
IF(INFLAG.GT.0)INFLAG=INFLAG+2	00001984
IF(INFLAG.EQ.4)INFLAG=1	00001985
IF(INFLAG.EQ.0)GO TO 965	00001986
GO TO(967,967,967,969,970),NFLAG	00001987
969 NFLAG=0	00001987
DT=TLAST+1.-TIME	00001987
TIME=TIME+DT/2.	00001984
TIME=TLAST+1.	00001984
TLAST=TIME	00001988
DO 971 KK=1,NUMNL	00002080
971 TEMPE(KK)=TSAVE(KK)	00002085
GO TO 500	00002080
967 DT=SPTM/24.	00002085
TIME=TIME+DT/2.	00002080
TIME=TIME+ANAL(NAL+1)-ANAL(NAL)	00002082
TIME=TIME+DT	00002085
IF(INFLAG.EQ.2)GO TO 998	00002087
GO TO 973	00002080
965 DT=ANAL(NAL+1)-ANAL(NAL)	00002085
TIME=TIME+DT/2.	00002085
TIME=TIME+DT	00002090
TLAST=TIME	00002083
898 NAL=NAL+1	00002085
NNAL=NNAL+1	00002080
NNAL=NNAL+1	00002081
400 IF(NNAL.GT.NDT)GO TO 600	00002082
IF(NNAL.EQ.1)GO TO 895	00002086
GO TO 897	00002088
600 CONTINUE	00002070
GO TO 50	00002080
941 WRITE(6,4002)TIME,TIMETAPE	00002080
4002 FORMAT(" ABORT--FIRST ANALYSIS TIME AND TAPE TIME DO NOT ",	00002180
1"AGREE: /* TIME--- = ",F7.2/" TIMETAPE = ",F7.2)"	00002180
943 WRITE(6,4003)TIME,ANAL(NAL)	00002120
4003 FORMAT(" ABORT--TIMES OF FIRST ANALYSIS GIVEN BY TI AND ",	00002180
1"ANAL(1) DO NOT AGREE:"/S TI---- = ",F7.2," DAYS"/	00002180
2"ANAL(1) = ",F7.2," D AXS")	00002180
GO TO 5000	00002180
953 WRITE(6,4004)TIME,TIMETAPE	00002170
4004 FORMAT(" ABORT--NEXT ANALYSIS TIME CANNOT BE FOUND ON TAPE",	00002180
1"/" TIME--- = ",F7.2," DAYS"/" TIMETAPE = ",F7.2," DAYS")	00002180
GO TO 5000	00002280
963 WRITE(6,4006)	00002281
4006 FORMAT(" NFLAG CANNOT = 5 AT STATEMENT 925+")	00002282
GO TO 5000	00002283
970 WRITE(6,4007)	00002284

3118T 01 08-11-78 15.617

4007 FORMAT(" NFLAG CANNOT = 5 AT STATEMENT 969-")	0000225
GO TO 5000	0000226
998 FORMAT(1X,A4,15)	0000227
999 FORMAT(6I5,2F10.0)	0000228
1000 FORMAT(15A4)	0000229
1001 FORMAT(4I5,F10.0)	0000229
1002 FORMAT (15,F5.0,4F10.0)	0000229
1003 FORMAT(F10.0,4E10.3)	0000229
1004 FORMAT(2I5,F10.0)	0000229
1005 FORMAT(6F10.0)	0000229
1006 FORMAT(6I5,2F10.0)	0000229
1008 FORMAT(2F10.0)	0000230
1009 FORMAT(1H1)	0000231
2000 FORMAT (15A4/	0000232
1 40H0 NUMBER OF NODAL POINTS----- 13/	00002380
2 40H0 NUMBER OF ELEMENTS----- 13/	00002380
3 40H0 NUMBER OF DIFFERENT MATERIALS----- 13/	00002350
4 40H0 NUMBER OF LAYERS IN THE STRUCTURE---- 13/	00002360
5 40H0 STRAIN CAPACITY INPUT? 1-YES. 0-NO --- 15/	00002370
6 40H0 TIME OF FIRST ANALYSIS----- F10:4/	00002380
7 40H0 TOTAL NO. OF ANALYSES REQUESTED---- 14)	00002390
2001 FORMAT (92H1ELEMENT NO. I J K L MATERIAL S100002460	
1G1-RESIDUAL SIG2-RESIDUAL ANGLE)	00002480
2002 FORMAT (I12,F12.2,2F12.3,2E24.7)	00002490
2003 FORMAT (I13,4I6,1I12,2F17.3,F9.3)	00002480
2004 FORMAT (97H1NODAL POINT TYPE X-ORDINATE Y-ORDINATE X:LOAD) 00002490	
1AD OR DISPLACEMENT Y LOAD OR DISPLACEMENT)	00002450
2005 FORMAT (29H0PRESSURE BOUNDARY CONDITIONS/ 24H I J PRSS00002480	
1URE)	00002470
2006 FORMAT\$5(26H N.P. DISPL-UX DISPL-UY)/5(15,2F10.5,1X))	00002480
2007 FORMAT (2I6,F12.3)	00002490
2008 FORMAT (50H1 NUMBER OF LAYERS IN THE ANALYSIS---#-----# 15/	00002500
1 50H0 NUMBER OF NODAL POINTS IN THE ANALYSIS---#-----# 15/	00002510
2 50H0 NUMBER OF ELEMENTS IN THE ANALYSIS---#-----# 15/	00002520
3 50H0 NUMBER OF PRESSURE CARDS FOR THE ANALYSIS---#-----# 15/	00002530
4 50H0 NUMBER OF APPROXIMATIONS FOR STRESS CALCULATION# 15/	00002540
6 50H0 NUMBER OF ANALYSES AT THIS STAGE OF CONSTR?---#-----# 15/	00002550
7 50H0 TIME OF LAYING THE TOP LIFT---#-----# E10.3/	00002560
8 50H0 TIME OF LAYING THE NEXT LIFT---#-----# E10.3/	00002570
2009 FORMAT (42H1 NODAL TEMPERATURES FOR ANALYSIS NUMBER 15,	00002580
1 " STRUCTURE UP TO LIFT ",15," TIME FROM TAPE #",F8.2,	00002590
2 " DAYS//" NP. TEMP",9(13H NP. TEMP)/2	00002600
3 10(I5,F8.2)	00002610
2010 FORMAT (15H0 TEMP,(TIME 10X 5HE(C) 9X 6HNN 11X 4HE(T)	00002620
1 10X 5HG/H2 10X 5HALPHA/	00002630
2 (F15.3,4F15.5,E15.5))	00002640
2011 FORMAT (17H0MATERIAL NUMBER= 13, 30H NUMBER OF TEMP//TIME CARDS = 00002650	
113,24H NUMBER OF CREEP CARDS=13, 15H, MASS DENSITY= E12.4)	00002660
2012 FORMAT (26H0NODAL POINT CARD ERROR N# 15)	00002670
2013 FORMAT (17H0 MATERIAL NUMBER 15//	00002680
1111H COEFFICIENT FUNCTIONS A(T) IN MCHENRYS EQUATION STRAIN\$1) = 00002690	
2STRAIN\$0)+A1(T)(1-EXP(-M1*T))+A2(T)(1-EXP(-M2*T))/	00002700

3118T 01 08-11-78 15.617

310X, 10HTEMP./TIME 11X, 24HA1,A2 FOR COMPRESS.CREEP.12X, 23H03,A4 00002780
4FOR TENSILE CREEP// 38X, 2HA1,1JX,2HA2,10X,2HA3,1JX,2HA4// 00002780
5(10X,F10.3,10X,E10.3-5X,E10.3,10X,E10.3,5X,E10.3)) 00002780
2014 FORMAT (30HO INDEXES IN MCHENRYS EQUATION// 00002780
130W FOR COMPRESSIVE CREEP M1 =E10.3,6X,4HM2 = E10.3/ 00002780
230W FOR TENSILE CREEP M3 = E10.3,6X,4HM4 = E10.3) 00002780
2017 FORMAT(M ERROR IN DISP/OR FORCE SPBC, AT NODE-#15) 00002780
2051 FORMAT(W NO. OF STRAIN CAPACITY PTS. #14) 00002780
2052 FORMAT(W TIME-DAYS STRAIN CAP,--WIN./IN."/2(2X,F10.2)) 00002780
3000 FORMAT\$15.5F.0,2F10.0) 00002880
3007 FORMAT\$12F5.0) 00002880
3017 FORMAT\$12F5.0) 00002880
3009 FORMAT\$F10.0) 00002880
3011 FORMAT\$215.3F10.2) 00002880
3020 FORMAT\$2X,18,F10.0) 00002880
3027 FORMAT(//) ERROR ON STRESS FREE TEMP; INPUT AT ELE,-M= #15) 00002880
3028 FORMAT\$/ELEMENT STRESS FREE TEMPERATURES-// 00002880
110(15,F8.2) 00002880
3040 FORMAT\$8X,F8.2) 00002880
3041 FORMAT\$7(6X,F7.1) 00002980
3029 FORMAT\$1X,A8) 00002980
3030 FORMAT\$A8,A8,A1) 00002980
4000 FORMAT\$110,F10.0,F10.0) 00002980
4001 FORMAT\$15,515,3F10.0) 00002980
4100 FORMAT\$20X,"PERCENT MAXIMUM TENSILE STRAIN WITH RESPECT TO "
1"STRAIN CAPACITY",/20X,71(1H+)//25X,%" - STRAIN OF STRAIN" 00002980
2" CAPACITY > OR = 75%",/24X,%" - STRAIN OF STRAIN CAPACITY" 00002980
3" > OR = 90%"// 00002980
5000 STOP 00002980
END 00003080
SUBROUTINE QUAD 00003080
PARAMETER MXN=576,MXE=475 00003080
CHARACTER NX7*6(7),NY7*6(7) 00003080
COMMON NUMNP,NUMEL,NUMPC,N,VOL,TEMP,MTYPE,LAY,NUMN,NANAL,NP,OVER
1,NDT,NCOUNT,T1,DT,DTT,T1+TL,XC,YC,ST(3,10),TMLA(27),NUME(27),TM, 00003080
2TTT(15),NUHOL,TIME,NNAL,NLBY,ISG,EX,EY,DASH,ANAL(200),NANALT,TLAST 00003080
3,RRR(5),ZZZ(5),NFLAG,TL1 00003080
COMMON /MATARG/ E(30,6,8),R0(8),EE(5),HED(15),CIC(20,4,8),
1CC(4,8),NCREEP(8),SC(30,2,8),NSC 00003080
COMMON /ELEARG/ IX(MXE,5),MTAG(MXE),SIG(MXE),TOLD(MXE), 00003080
1DE11(MXE),DE12(MXE),DE21(MXE),DE22(MXE),DSIG(6),CC0(4),CC1(4) 00003090
2,EES(MXE,2),EPS(6),SCAP(MXE),NE7(7),NX7,NY7,YEMPE(MXE) 00003180
COMMON /PRSARG/ IBC(100),JBC(100),PR(100) 00003180
COMMON /ORDARG/ R(MXN),Z(MXN),LR(MXN),UZ(MXN),CODE(MXN),T(MXN) 00003180
COMMON /BANARG/ MBAND,NUMBLK,B(120),A(120,60) 00003180
COMMON /LS4ARG/ I,J,K,S(10,10),C(3,3),D(3,3),H(3,3),P(10),LM(4), 00003180
1 F(3,3) 00003180
I=IX(N,1) 00003180
J=IX(N,2) 00003180
K=IX(N,3) 00003180
L=IX(N,4) 00003180
IX(N,5)=IABS(IX(N,5)) 00003280

J1187 01 08-11-78 15.617

MTYPE=1X(N,5) 00003280
C*****FORM STRESS-STRAIN RELATIONSHIP INCLUDING TIME OR 00003281
C*****TEMPERATURE DEPENDENCE OF ELASTIC CONSTANTS 00003282
DO 15 M=1,4 00003283
MM=X(N,M) 00003284
RRR(M)=R(MH) 00003285
15 ZZZ(M)=Z(MH) 00003286
TEM=(TEMPE(N)+TOLD(N))/2 00003287
IF (71) 50,40,50 00003288
40 DO 103 M=2,30 00003289
IF (E(M,1,MTYPE)-TEM) 103,104,104 00003290
103 CONTINUE 00003291
104 RATIO=0.0 00003292
DEN=E(M,1,MTYPE)-E(M+1,1,MTYPE) 00003293
IF (DEN) 70,71,70 00003294
70 RATIO=(TEH-E(M-1,1,MTYPE))/DEN 00003295
GO TO 71 00003296
50 DO 55 M=2,30 00003297
IF (E(M,1,MTYPE)-TL) 55,60,60 00003298
55 CONTINUE 00003299
60 RATIO=0. 00003299
DEN=E(M,1,MTYPE)-E(M+1,1,MTYPE) 00003300
IF (DEN) 64,71,64 00003301
64 RATIO=(TL-E(M-1,1,MTYPE))/DEN 00003302
71 DO 105 KK=1,5 00003303
105 EE(KK)=E(M-1,KK+1,MTYPE)+RATIO*(E(M,KK+1,MTYPE)-E(M-1,KK+1,MTYPE)) 00003304
DO 300 KK=1,2 00003305
300 EES(N,KK)=EE(KK) 00003306
IF (ISC.EQ.0) GO TO 76 00003307
DO 455 MM=2,30 00003308
IF (SC(MM,1,MTYPE)-TL) 455,460,460 00003309
455 CONTINUE 00003310
460 RRAT=0. 00003310
DDEN=SC(MM,1,MTYPE)-SC(MM-1,1,MTYPE) 00003311
IF (DDEN) 464,471,464 00003312
464 RRAT=(TL-SC(MM-1,1,MTYPE))/DDEN 00003313
471 SCAP(N)=SC(MM-1,2,MTYPE)+RBAT*(SC(MM,2,MTYPE)-SC(MM-1, 00003314
12,MTYPE)), 00003315
76 IF (MTAG(N)-2) 80,80,81 00003316
80 RATIO=EE(2) 00003317
GO TO 82 00003318
81 RATIO=EE(2)*EE(3)/EE(1) 00003319
82 XX=EE(1)/EE(3) 00003320
YY=1. 00003321
IF (MTAG(N)-1) 83,83,84 00003322
83 XX=YY 00003323
84 IF (MTAG(N)-3) 86,86,85 00003324
85 YY=XX 00003325
86 CONTINUE 00003326
UU=YY-EE(2)*RATIO 00003327
VV=XX-EE(2)*RATIO 00003328
UV=EE(2)*(1.+RATIO) 00003329

3118T 01 08-11-78 15.61Z

COMM=EE(1)/(VV*UU-UU*VV*2)	00003750
C(1,1)=UU*COMM	00003750
C(1,2)=UV*COMM	00003770
C(1,3)=0.	00003780
C(2,1)=C(1,2)	00003790
C(2,2)=VV*COMM	00003800
C(2,3)=0;	00003810
C(3,1)=0.	00003820
C(3,2)=0.	00003830
C(3,3)=EE(1)/(EE(1)/EE(3)+1.+2.*EE(2))	00003840
THETA=SIG(N,3)/57.296	00003850
SS=SIN(STHETA)	00003860
CO=COS(STHETA)	00003870
S2=SS*SS	00003880
C2=CO*CO	00003890
SCO=SS*CO	00003900
DO 87 II=1,3	00003910
DO 87 JJ=1,3	00003920
87 F(IJ,JJ)=C(IJ,JJ)	00003930
D(1,1)=C2	00003940
D(1,2)=S2	00003950
D(1,3)=SCO	00003960
D(2,1)=S2	00003970
D(2,2)=C2	00003980
D(2,3)=-SCO	00003990
D(3,1)=-2.*SCO	00004000
D(3,2)=-D(3,1)	00004010
D(3,3)=C2-S2	00004020
DO 88 II=1,3	00004030
DO 88 JJ=1,3	00004040
H(IJ,JJ)=0.0	00004050
DO 88 KK=1,3	00004060
88 H(IJ,JJ)=H(IJ,JJ) + C(IJ,KK)*D(KK,JJ)	00004070
DO 89 II=1,3	00004080
DO 89 JJ=1,3	00004090
C(IJ,JJ)=0.0	00004100
DO 89 KK=1,3	00004110
89 C(IJ,JJ)=C(IJ,JJ)+D(KK,II)*H(KK,JJ)	00004120
DO 100 II=1,10	00004130
P(IJ)=0.0	00004140
DO 100 JJ=1,10	00004150
100 S(IJ,JJ)=0.0	00004160
DO 150 II=1,3	00004170
DO 150 JJ=1,10	00004180
150 ST(IJ,JJ)=0.0	00004190
VOL=0.0	00004195
C*****FORM STIFFNESS FOR A CST TRIANGULAR ELEMENT*****	00004196
VOL=0.0	00004200
IF(IX(N,3).NE.IX(N,4))GO TO 700	00004201
CALL STFTR1(I,2,3)	00004202
XC=(R(I)+R(J)+R(K))/3.	00004204
YC=(Z(I)+Z(J)+Z(K))/3.	00004205

31187 01 08-11-78 15.617

C*****FORM STIFFNESS FOR A CST QUADRILATERAL ELEMENT*****
GO TO 701
700 XC=(R(I)+R(J)+R(K)+R(L))/4.
YC=(Z(I)+Z(J)+Z(K)+Z(L))/4.
RRR(5)=XC
ZZZ(5)=YC
CALL STFTRI(4,1,5)
CALL STFTRI(1,2,5)
CALL STFTRI(2,3,5)
CALL STFTRI(3,4,5)
C*****CALCULATE UNBALANCED LOADS DUE TO TEMPERATURE CHANGE*****
C*****AND STRESS RELAXATION*****
701 TEMP=(TEMPE(N)-TOLD(N))*EE(5)
IF(TIML) 170+160+170
160 TEMP=0.
170 CONTINUE
DSIG(1)=SIG(N,1)*C2+SIG(N,2)*S2
DSIG(2)=SIG(N,1)*S2+SIG(N,2)*C2
DSIG(3)=(SIG(N,1)-SIG(N,2))*SC0
DO 190 JJ=1,3
190 DSIG(JJ)=-DSIG(JJ)*(C(JJ+1)+C(JJ,2))*TEMP
DO 200 II=1,10
DO 200 JJ=1,3
200 P(II)=P(II)+DSIG(JJ)*ST(JJ,II)*VOL
C*****ADD SHEAR STIFFNESS OF FOUNDATION*****
IF(IX(N,3).EQ.IX(N,4))GO TO 510
COMM=VOL*EE(4)
S(9,9)=S(9,9)+COMM
S(10,10)=S(10,10)+COMM
C*****ELIMINATE CENTER POINT*****
DO 500 K=1,2
1H=10-K
ID=IH+1
DO 500 I=1,IH
S(ID,I)=S(ID,I)/S(ID+ID)
P(I)=P(I)-P(ID)*S(I,ID)/S(ID+ID)
DO 500 J=1,IH
S(J,I)=S(J,I)-S(J,ID)*S(ID+I)
C*****CALCULATE LOADS DUE TO GRAVITY*****
510 CONTINUE
IF(N-NUMOL) 580,580,540
540 IF(NNAL.GT.1)GO TO 580
IF(NNAL.EQ.1.AND.NFL&G.GT.2)GO TO 580
550 IMUL=4
IF(IX(N,3).EQ.IX(N,4))IMUL=3
AMUL=IMUL
DO 560 I=1,IMUL
560 P(2*I)=P(2*I)-R0(MTYPE)*VOL/AMUL
580 CONTINUE
130 RETURN
END
SUBROUTINE ONED

3118T 01 08-11-78 15.617

```

PARAMETER MXN=576, MXB=475          00004692
CHARACTER NX7*6(7), NX7*6(7)        00004615
COMMON NUMNP, NUMEL, NUMHPC, N, VOL, TEMP, MTYPE, LAY, NUMN, NANAL, NP, OVER 00004620
1, NDT, NCOUNT, TI, DT, DT1, T1, TL, XC, YC, ST(3,10), TIMLA(27), NUME(27), TDF, 00004680
2TTT(15), NUMOL, TIME, NNAL, NLAY, ISC, EX, EY, DASH, ANAL(200), NANALT, TLAST 00004680
3, RRR(5), ZZ(5), NFLAG, TL1      00004695
COMMON /MATARG/ E(30,6,8), RO(8), EE(5), HED(15), CIC(20,4,8), 00004680
1CC(4,8), NCREEP(8), SC(30,2,8), NSC 00004680
COMMON /ELEARGL/ IX(MXE,5), MTAG(MXE), SIG(MXE,5), TOLD(MXE), 00004670
1DE11(MXE), DE12(MXE), DE21(MXE), DE22(MXE), DSIG(6), CCO(4), CCC(4) 00004680
2, EES(MXE,2), EPS(6), SCAP(MXE), NE7(7), NX7, NY7, YEMPE(MXE) 00004690
COMMON /PRSARG/ JBC(100), JBC(100)+PR(100) 00004780
COMMON /ORDARG/ R(MXN), Z(MXN), UR(MXN), UZ(MXN), CODE(MXN), T(MXN) 00004720
COMMON /BANARG/ MBAND, NUMBLK, B(120), A(120,60) 00004720
COMMON /LS4ARG/ I, J=K, S(10,10), C(3,3), D(3,3), H(3,3), P(10), LM(5), 00004730
1 F(3,3)
DO 100 I=1,8                      00004750
P(i)=0.0                            00004780
DO 100 J=1,8                      00004770
100 S(i,J)=0.0                     00004780
MTYPE=IX(N,5)                      00004780
I=IX(N,1)                          00004860
J=IX(N,2)                          00004870
DX=R(J)-R(I)                      00004880
DY=Z(J)-Z(I)                      00004880
XL=SQRT(DX**2+DY**2)              00004880
COSA=DX/XL                         00004850
SINA=DY/XL                         00004860
COMM=E(1,2,MTYPE)*E(1,5,MTYPE)/XL 00004870
S(1,1)=COSA*COSA*COMM             00004880
S(1,2)=COSA*SINA*COMM              00004890
S(1,3)=S(1,1)                      00004980
S(1,4)=-S(1,2)                     00004910
S(2,1)=S(1,2)                      00004920
S(2,2)=SINA*SINA*COMM              00004920
S(2,3)=-S(1,2)                     00004930
S(2,4)=-S(2,2)                     00004950
S(3,1)=S(1,3)                      00004960
S(3,2)=S(2,3)                      00004970
S(3,3)=S(1,1)                      00004980
S(3,4)=S(1,2)                      00004980
S(4,1)=S(1,4)                      00005080
S(4,2)=S(2,4)                      00005080
S(4,3)=S(3,4)                      00005080
S(4,4)=S(2,2)                      00005080
EP=SIGN(N,1)/E(1,2,MTYPE)         00005080
DX=DX*EP                           00005080
DY=DX*EP                           00005080
P(i)=S(1,1)*DX+S(1,2)*DY          00005070
P(2)=S(2,1)*DX+S(2,2)*DY          00005080
P(3)=-P(1)                         00005070
P(4)=-P(2)                         00005100

```

AD-A069 376

ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG MISS F/G 13/13
VERIFICATION OF TEMPERATURE AND THERMAL STRESS ANALYSIS COMPUTE--ETC(U)
MAR 79 T C LIU, R L CAMPBELL, A A BOMBICH

UNCLASSIFIED

WES-MP-SL-79-7

NL

2 OF 2
AD
AD 69376

END
DATE
FILED
7-79
DDC

3118T 01 08-11-78 15.617

```
RETURN 000051E0
END 000051E0
SUBROUTINE STFTRI(I,JJ,KK) 000059E0
PARAMETER MXN=576,MXE=475 000059E0
CHARACTER NX7*6(7),NY7*6(7) 000059E0
C STIFFNESS MATRIX (S) AND TRANSFORMATION MATRIX (B) FOR CST ELEMENT 000059E0
C ARGUMENTS (1,2,3) FOR TRIANGLE 000059E0
C (4,1,5),(1,2,5),(2,3,5) AND (3,4,5) FOR QUADRILATERAL 000059E0
C
COMMON NUMNP,NUMEL,NUMPCANN,VOL,TEMP,TYPE,LAY,NUMN,NANAL,NP,OVER 000060E0
1,NDT,NCOUNT,T1,DT,DTT,T1,TL,XC,YC,ST(3,10),TMLA(27),NUME(27),T1P,000060E0
2,TTT(15),NUMOL,TIME,NNAL,NLAY,ISC,EX,EY,DASH,ANAL(200),NANALT,TLAET 000060E0
3,RRR(5),ZZZ(5),NFLAG,TL1 000060E0
COMMON /ELEARG/ IX(MXE,5),MTAG(MXE),SIG(MXE+5),TOLD(MXE), 000060E0
1,DE11(MXE),DE12(MXE),DE21(MXE),DE22(MXE),DSIG(6),CCO(4),CCC(4) 000060E0
2,EFS(MXE,2),EPS(6),SCAP(MXE),NE7(7),NX7,NY7,TEMPE(MXE) 000060E0
COMMON /ORDARG/ R(MXN),Z(MXN),UR(MXN),UZ(MXN),CODE(MXN),T(MXN) 000060E0
COMMON /LS4ARG/ IN,JN,KN,S(10,10),C(3,3),DUM(18),P(10),LM(4), 000060E0
1F1(3,3)
DIMENSION RR(4),ZZ(4),D(3,6),B(3,10),ANGLE(4),F(3,10) 000060E0
000060E0
C
C 1. INITIALIZATION
C
LM(1)=II 000061E0
LM(2)=JJ 000061E0
LM(3)=KK 000061E0
C
RR(1)=RRR(II) 000061E0
RR(2)=RRR(JJ) 000061E0
RR(3)=RRR(KK) 000061E0
ZZ(1)=ZZZ(II) 000062E0
ZZ(2)=ZZZ(JJ) 000062E0
ZZ(3)=ZZZ(KK) 000062E0
C
DO 30 I=1,3 000062E0
DO 20 J=1,10 000062E0
F(I,J) = 0.0 000062E0
20 B(I,J) = 0.0 000062E0
DO 30 J=1,6 000062E0
30 D(I,J) = 0.0 000062E0
C
C 2. AREA OF TRIANGLE
C
COMM=RR(2)*(ZZ(3)-ZZ(1))+RB(1)*(ZZ(2)-ZZ(3))+RR(3)*(ZZ(1)-ZZ(2)) 000063E0
XI = COMM/2.0 000063E0
VOL=VOL*XI 000063E0
C
C 3. FORM COEFFICIENT-DISPLACEMENT MATRIX (B)
C
D(I,1)=(ZZ(2)-ZZ(3))/COMM 000063E0
D(I,3)=(ZZ(3)-ZZ(1))/COMM 000064E0
D(I,5)=(ZZ(1)-ZZ(2))/COMM 000064E0
```

3118T 01 08-11-78 15.817

D(3,2)*RR(3)-RR(2))/COMM	00006480
D(2,4)*RR(1)-RR(3))/COMM	00006480
D(2,6)*RR(2)-RR(1))/COMM	00006480
D(3,1)*D(2,2)	00006480
D(3,2)*D(1,1)	00006480
D(3,3)*D(2,4)	00006470
D(3,4)*D(1,3)	00006480
D(3,5)*D(2,6)	00006470
D(3,6)*D(1,5)	00006580
C FORM (B)	00006520
C	00006580
DO 50 I=1,3	00006580
DO 50 J=1,3	00006580
K = 2*LM(J)	00006580
L = 2*J	00006570
B(I,K-1)=D(I,L-1)	00006580
50 B(I,K)= D(I,L)	00006580
C ROTATE UNKNOWN IF REQUIRED	00006680
C	00006620
DO 118 M=1,4	00006680
MM=IX(NN,M)	00006680
118 ANGLE(M)=CODE(MM)/97.2959	00006680
LL=2	00006680
IF(IX(NN,3).EQ.1X(NN+4)) LL=3	00006680
DO 125 J=1,LL	00006680
I=LM(J)	00006680
IF(ANGLE(I) .GE. 0.0) GO TO 125	00006780
SINA=SIN(ANGLE(I))	00006780
COSA=COS(ANGLE(I))	00006780
IJ = 2*I	00006780
DO 124 K=1,3	00006780
TEM = B(K,IJ-1)	00006780
B(K,IJ-1)=TEM*COSA+B(K,IJ)*SINA	00006780
124 B(K,IJ) =-TEM*SINA+B(K,IJ)*COSA	00006780
125 CONTINUE	00006780
C 4. FORM ELEMENT STIFFNESS MATRIX (B)T*(D)*(B)	00006880
C	00006820
DO 130 J=1,10	00006820
DO 130 K=1,3	00006880
IF(B(K,J).EQ. 0.0) GO TO 130	00006880
DO 129 I=1,3	00006850
129 F(I,J)=F(I,J)+C(I,K)*B(K&J)*XI	00006880
130 CONTINUE	00006870
C	00006880
DO 140 I=1,10	00006870
DO 140 K=1,3	00006980
IF(B(K,I).EQ.0.0) GO TO 140	00006980
DO 139 J=1,10	00006920
139 S(I,J)=S(I,J)+B(K,I)*F(K&J)	00006980

31187 01 08-11-70 15.617

31187 01 08-11-78 15.617

```
KSHIFT#2=NL-2          00007480
N1=1                  00007480
DO 220 M=1,LAY        00007480
TLi=TIME-TIMLA(M)    00007480
TLi=TIME-TIMLA(M)    00007481
N2=NUME(M)            00007480
DO 210 N=N1,N2        00007480
IF (IX(N,5)) 210,210,65 00007480
65 DO 80 I=1,4        00007480
IF (IX(N,I)-NL) 80,70,70 00007480
70 IF (IX(N,I)-NM) 90,90,90 00007580
80 CONTINUE            00007580
GO TO 210             00007580
90 IF (IX(N,3)-IX(N,2)) 92,91,92 00007580
91 CALL ONED           00007580
GO TO 165             00007580
92 CALL QUAD           00007580
IF (VOL) 164,164,165  00007580
164 WRITE 6,20035 N   00007580
C****ADD ELEMENT STIFFNESS TO TOTAL STIFFNESS*****00007581
165 IX(N,5)=IX(N,5)   00007580
DO 166 I=1,4          00007680
166 LM(I)=2*IX(N,1)-2 00007680
DO 200 I=1,4          00007680
DO 200 K=1,2          00007680
II=LM(I)+K-KSHIFT    00007680
KK=2*I-2+K            00007680
B(II)=B(II)+P(KK)    00007680
DO 200 J=1,4          00007680
DO 200 L=1,2          00007680
JJ=LM(J)+L-II+1-KSHIFT 00007680
LL=2*J-2+L            00007780
IF (JJ) 200,200,175   00007780
175 IF (ND-JJ) 180,195,195 00007780
180 WRITE (6,2004) N   00007780
STOP#1:0               00007780
GO TO 210             00007780
195 A(I,J)=A(II,JJ)+S(MK,LL) 00007780
200 CONTINUE            00007780
210 CONTINUE            00007780
N1=N2+1               00007780
IF (N1-NUMEL) 220,220,225 00007880
220 CONTINUE            00007880
C****ADD CONCENTRATED FORCES WITHIN BLOCK*****00007881
225 DO 255 N=NL,NM    00007880
K=2*N-KSHIFT          00007880
B(K)=B(K)+UZ(N)       00007880
B(K-1)=B(K-1)+UR(N)  00007880
IF (NCOUNT-NP) 255,250,250 00007880
250 IF (N-NUMN) 252,252,255 00007880
252 UZ(N)=0,           00007880
UR(N)=0,              00007880
```

3118T 01 08-11-78 15.612

255 CONTINUE	00007900
***** BOUNDARY CONDITIONS *****	00007901
*****.PRESSURE B, C.	00007903
IF (NUMPC) 260,310,260	00007904
260 DO 300 L=1,NUMPC	00007905
I=IBC(L)	00007906
J=JBC(L)	00007907
PP=PR(L)/2,	00007908
DZ=(Z(I)-Z(J))*PP	00007909
DR=(R(J)-R(I))*PP	0000790A
264 II=2*I-KSHIFT	0000790B
JJ=2*J-KSHIFT	0000790C
IF (II) 280,280,263	0000790D
265 IF (II>ND) 270,270,260	0000790E
270 SINAB=0.0	00008000
COSAB=1.0	00008001
IF (CODE(I)) 271,272,272	00008002
271 SINASIN(CODE(I)/57,3)	00008003
COSACOS(CODE(I)/57,3)	00008004
272 B(II-1)=B(II-1)+(COSAB*DZ+SINA*DR)	00008005
B(II)=B(II)-(SINA*DZ+COSAB*DR)	00008006
280 IF (JJ) 300,300,285	00008007
285 IF (JJ>ND) 290,290,300	00008100
290 SINAB=0.0	00008101
COSAB=1.0	00008102
IF (CODE(J)) 291,292,292	00008103
291 SINAB=SIN(CODE(J)/57,3)	00008104
COSACOS(CODE(J)/57,3)	00008105
292 B(JJ-1)=B(JJ-1)+(COSAB*DZ+SINA*DR)	00008106
B(JJ)=B(JJ)-(SINA*DZ+COSAB*DR)	00008107
300 CONTINUE	00008108
*****2.DISPLACEMENT B, C.	00008109
310 DO 400 M=NL,NH	0000810A
IF (M-NUMN) 315,315,400	00008200
315 U=UR(M)	00008201
N=2*M-1-KSHIFT	00008202
IF (CODE(M)) 390,400,316	00008203
316 IF (CODE(M)-1,) 317,370,317	00008204
317 IF (CODE(M)-2,) 318,390,318	00008205
318 IF (CODE(M)-3,) 390,380,390	00008206
370 CALL MODIFY(A,B,ND2,MBAND,N,U)	00008207
GO TO 400	00008208
380 CALL MODIFY(A,B,ND2,MBAND,N,U)	00008209
390 U=U2(M)	00008300
N=N+1	00008301
CALL MODIFY(A,B,ND2,MBAND,N,U)	00008302
400 CONTINUE	00008303
*****WRITE BLOCK OF EQUATIONS ON DISK, SHIFT UP LOWER BLOCK**	00008304
WRITE (2) (B(N),(A(N+M),M=1,MBAND),N=1,ND)	00008305
DO 420 N=1,ND	00008306
K=N+ND	00008307
B(N)=B(K)	00008308

3118T 01 08-11-78 15.617

B(K)=0.0	00008300
DO 420 M=1,ND	00008300
A(N,M)=A(K,M)	00008400
420 A(K,M)=0.0	00008400
C****CHECK FOR LOWER BLOCK*****	00008420
IF (NM=NUMN) 60,480+480	00008420
480 CONTINUE	00008420
IF(STOP) 480,500,490	00008420
490 CALL EXIT	00008450
500 RETURN	00008450
2003 FORMAT (26HNEGATIVE AREA ELEMENT NO. 14)	00008470
2004 FORMAT (29HBAND WIDTH EXCEEDS ALLOWABLE 14)	00008480
END	00008490
SUBROUTINE MODIFY(A,B,NEQ,MBAND,N,U)	00008500
DIMENSION A(120,60),B(120)	00008510
DO 250 M=2,MBAND	00008520
K=N-M+1	00008530
IF(K) 235,235,230	00008530
230 B(K)=B(K)-A(K,M)*U	00008530
A(K,M)=0.0	00008530
235 K=N-M+1	00008570
IF(NEQ-K) 250,240,240	00008580
240 B(K)=B(K)-A(N,M)*U	00008590
A(N,M)=0.0	00008600
250 CONTINUE	00008610
A(N,1)=1.0	00008620
B(N)=U	00008630
RETURN	00008640
END	00008650
SUBROUTINE BANSOL	00008660
COMMON /BANARG/ MM,NUMBLK,B(120),A(120,60)	00008670
NN=60	00008680
NL=NN+1	00008690
NH=NN+NN	00008700
REWIND 1	00008720
REWIND 2	00008720
NB=0	00008730
GO TO 150	00008730
C****REDUCE EQUATIONS BY BLOCKS*****	00008740
C*****1. SHIFT BLOCK OF EQUATIONS	00008742
100 NB=NB+1	00008750
DO 125 N=1,NN	00008750
NM=NN+N	00008770
B(N)=B(NM)	00008780
B(NM)=0.0	00008790
DO 125 M=1,MM	00008800
A(N,M)=A(NM,M)	00008810
125 A(NM,M)=0.0	00008820
C*****2. READ NEXT BLOCK OF EQUATIONS INTO CORE	00008821
IF (NUMBLK-NB) 150,200,180	00008830
150 READ (2) (B(N),(A(N,M),M=1,MM),N=NL,NH)	00008840
IF (NB) 200,100,200	00008850

3118T 01 08=11-78 15.617

C*****3. REDUCE BLOCK OF EQUATIONS 00008851
200 DO 300 N=1,NN 00008860
IF (A(N,1)) 225,300,225 00008870
225 B(N)=B(N)/A(N,1) 00008880
DO 275 L=2,MM 00008890
IF (A(N,L)) 230,275,230 00008900
230 C=A(N,L)/A(N,1) 00008910
I=N+L-1 00008920
J=0 00008930
DO 250 K=L,MM 00008940
J=J+1 00008950
250 A(I,J)=A(I,J)-C*A(N,K) 00008960
B(I)=B(I)-A(N,L)*B(N) 00008970
A(N,L)=C 00008980
275 CONTINUE 00008990
300 CONTINUE 00008999
C*****4. WRITE BLOCK OF EQUATIONS ON DISK 2***** 00009000
IF (NUMBLK-NB) 375,400,375 00009010
375 WRITE (1) (B(N),(A(N,M),M=2,MM),N=1,NN) 00009020
GO TO 100 00009030
C****BACK SUBSTITUTION***** 00009040
400 DO 450 M=1,NN 00009050
N=NN+1-M 00009060
DO 425 K=2,MM 00009070
L=N+K-1 00009080
425 B(N)=B(N)-A(N,K)*B(L) 00009090
NM=N+NN 00009100
B(NM)=B(N) 00009110
450 A(NM,NB)=B(N) 00009120
NB=NB-1 00009130
IF (NB) 475,500,472 00009140
475 BACKSPACE 1 00009150
READ (1) (B(N),(A(N,M),M=2,MM),N=1,NN) 00009160
BACKSPACE 1 00009170
GO TO 400 00009180
C****ORDER UNKNOWNNS IN B ARRAY***** 00009190
500 K=0 00009200
DO 600 NB=1,NUMBLK 00009210
DO 600 N=1,NN 00009220
NM=N+NN 00009230
K=K+1 00009240
600 B(K)=A(NM,NB) 00009250
RETURN 00009260
END 00009270
SUBROUTINE CREEP 00009280
PARAMETER MXN=576, MXE=475 00009285
CHARACTER NX7*6(7),NX7E6(7) 00009290
COMMON NUMNP,NUMEL,NUMPCAN,VOL,TEMP,TYPE,LAY,NUMN,NANAL,NP,OVER 00009290
1,NOT,NCOUNT,TI,DT,T1,T2,XC,YC,ST(3,10),TIME(27),TDP,00009290
2TTT(15),NUMOL,TIME,NNAL,ULBY,ISG,EX,EY,DASH,ANAL(200),NANALT,TLAST00009300
3,RRR(5),ZZZ(5),NFLAG,TL1 00009305
COMMON /MATARG/ E(30,6,8),RO(8),EE(8),HED(15),CIC(20,4,8), 00009320

J1187 01 08-11-78 15.612

```
1CC(4,8),NCREEP(8),SC(30,2,8)-NSC          00009320
COMMON /ELEARG/ IX(MXE,9),MTAG(MXE),SIG(MXE,9),TOLD(MXE),      00009320
1DE11(MXE),DE12(MXE),DE21(MXE),DE22(MXE),DSIG(6),CC0(4),CCC(4) 00009340
2,EES(MXE,2),EPS(6),SGAP(MXE),NE7(7),NX7,NY7,TEMPE(MXE)        00009350
COMMON /PRSARG/ IBC(100),JBC(100),PR(100)                      00009360
COMMON /ORDARG/ R(MXN),Z(MXN),UR(MXN),UZ(MXN),CODE(MXN),T(MXN) 00009370
COMMON /BANARG/ MBAND,NUMBLK,B(120),A(120,60)                  00009380
COMMON /LS4ARG/ I,J,K,S(10,10),C(5,5),D(3,3),H(3,3),P(10),LW(4), 00009390
1F(3,3)
CHARACTER DASH=6,OVER=6,HTB=1(2)              00009400
MPRINT=0                                         00009420
N1=1                                           00009420
IC=1                                           00009430
DO 600 M=1,LAY                                00009430
N2=NUME(M)                                     00009450
DO 550 MM=N1,N2                               00009470
N=MM                                           00009480
TL=TIM-TIMLA(H)                                00009490
TLI=TIME-TIMLA(H)                                00009491
C*****EVALUATE ELEMENT STRESSES*****          00009495
CALL STRESS                                     00009500
IF (IX(N,2)-IX(N,3)) 255,104,253            00009510
255 MTAG(N)=1                                 00009520
IF (DSIG(4)) 104,104,259                      00009530
259 IF (DSIG(4)+DSIG(5)) 260,260,261        00009530
260 MTAG(N)=2                                 00009530
GO TO 104                                      00009530
261 MTAG(N)=3                                 00009570
265 IF (DSIG(5)) 104,104,266                00009580
266 MTAG(N)=4                                 00009590
104 IF (INFLAG.GT.1) GO TO 106               00009595
IF (MPRINT) 106,107,306                      00009610
105 IF (ISC.EQ.0) GO TO 750                 00009620
WRITE(6,2005)DT                                00009620
WRITE(6,2000)LAY,NANAL,TIME,NCOUNT           00009630
WRITE(7,2007)LAY,NANAL,TIME,DT                00009630
GO TO 760                                      00009630
750 WRITE(6,2005)DT                            00009630
WRITE(6,2002)LAY,NANAL,TIME,NCOUNT           00009670
760 WRITE(3)LAY,NANAL,TIME,NCOUNT             00009680
MPRINT=50                                     00009690
106 CONTINUE                                    00009700
C*****CALCULATE ELEMENT STRAINS*****          00009700
EPS(1)=(1./EES(N,1))*(1.-EES(N,2)*2)*DSIG(1)-EES(N,2) 00009710
1*(1.+EES(N,2))*DSIG(2)                         00009725
EPS(2)=(1./EES(N,1))*(1.-EES(N,2)*2)*DSIG(2)-EES(N,2) 00009720
1*(1.+EES(N,2))*DSIG(1)                         00009725
EPS(3)=(2.*(1.+EES(N,2))*DSIG(3))/EES(N,1)          00009730
EPST1=(EPS(1)+EPS(2))/2,                         00009730
EPST2=(3.*SQR((EPS(1)-EPS(2)*2+EPS(3)*2)))        00009750
EPS(4)=EPST1+EPST2                             00009750
EPS(5)=EPST1-EPST2                           00009770
```

3118T 01 08-11-78 15.617

SDIFF=EPS(1)-EPS(2)	00009780
EPS(6)=ATAN2(EPS(3),SDIFF)/2.	00009790
EPS(6)=57.296*EPS(6)	00009800
DO 700 IIE=1,5	00009810
700 EPS(IIE)=EPS(IIE)+1000000.	00009820
EABREV=EES(N,1)/1000000.	00009830
IF(NFLAG.GT.1)GO TO 751	00009841
DO 759 JL=1,2	00009850
IF(EPS(JL))755,755,756	00009860
755 ETR(JL)=1H	00009870
GO TO 759	00009880
756 ETR(JL)=1H	00009890
759 CONTINUE	00009891
C****COMPARE STRAIN TO STRAIN CAPACITY IF APPLICABLE****	
IF(ISC.EQ.0)GO TO 305	00009891
IF(EPS(4)=0.)706,706,705	00009900
705 NSX=(EPS(4)/SCAP(N))*100.+9.5	00009910
IF(NSX.GE.1000)GO TO 720	00009920
IF(NSX.LT.75)GO TO 725	00009930
IF(NSX.GE.90)GO TO 726	00009940
ENCODE(NX7(IC),729)" ",NSX," "	00009950
729 FORMAT(A1,I3,A2)	00009960
GO TO 709	00009970
726 ENCODE(NX7(IC),729)" ",NSX," "	00009980
725 ENCODE(NX7(IC),729)" ",NSX," "	00010000
GO TO 709	00010010
720 NX7(IC)=OVER	00010020
GO TO 709	00010030
706 NX7(IC)=DASH	00010040
NSX=0	00010050
NY7(IC)=" --- "	00010060
GO TO 740	00010062
709 ENCODE(NY7(IC),736)" ",EPS(6)	00010063
736 FORMAT(A1,F5.1)	00010070
740 NE7(IC)=N	00010080
IF(IC.EQ.7.OR.N.EQ.NUME(LAY))GO TO 730	00010220
IC=IC+1	00010230
GO TO 761	00010240
730 WRITE(7,742)(NE7(I),NX7(I),NY7(I),I=1,IC)	00010250
742 FORMAT(7(1X,I5,2(A6)))	00010270
IC=1	00010280
761 WRITE(6,2001)N,XC,YC,(DSIG(I),I=1,6),(EPS(1),ETR(1),EPS(2)),	00010290
1,ETR(2),(EPS(1),I=3,6),EABREV,EES(N-2),SCAP(N)	00010300
WRITE(3)N,XC,YC,(DSIG(I)+I=1+6),(EPS(I),I=1,6),	00010310
1,(EES(N,I),I=1,2),SCAP(N)	00010320
GO TO 751	00010330
305 WRITE(6,2003)N,XC,YC,(DSIG(I),I=1,6),(EPS(I)+I=1+6),EABREV	00010340
1,EES(N-2)	00010350
WRITE(3)N,XC,YC,(DSIG(I)+I=1+6),(EPS(I),I=1,6)	00010360
1,(EES(N,I),I=1,2)	00010370
C****RELAX STRESS FOR CREEP WITH CONSTANT STRAIN-FOR NCREEP>0	
	00010371

3118T 01 08-11-78 15.617

Co*****	00010372
751 IF(NCOUNT-NP1550,50,50)	00010380
50 IF(IX(N,2)-IX(N,3)>55,550,55)	00010390
Co****INTERPOLATION OF CREEP CONSTANTS*****	00010391
55 I=IX(N,1)	00010400
J=IX(N,2)	00010410
K=IX(N,3)	00010420
L=IX(N,4)	00010430
IX(N,5)=IABS(IX(N,5))	00010440
MTYPE=IX(N,5)	00010450
TQDR(N)=TEHPE(N)	00010460
IF (NCREEP(MTYPE)) 250,250,60	00010470
60 NCR=NCREEP(MTYPE)	00010480
IF(T1) 120,110,120	00010490
110 TL=TEMPE(N)	00010510
120 DO 140 NN=2,NCR	00010520
IF (TL-TTT(NN)) 125,150,140	00010530
125 TM=TTT(NN)-TTT(NN-1)	00010540
DIFF= TL-TTT(NN-1)	00010550
DO 130 KK=1,4	00010560
130 CCO(KK)=CIC(NN,KK,MTYPE)+DIFF*(CIC(NN,KK,MTYPE)-CIC(NN-1,KK,MTYPE))	00010570
1E)/TM	00010580
GO TO 160	00010590
140 CONTINUE	00010600
150 DO 155 KK=1,4	00010610
155 CCO(KK)=CIC(NN,KK,MTYPE)	00010620
160 DO 165 KK=1,4	00010630
165 CCC(KK)=CC(KK,MTYPE)	00010640
Co****SELECT APPROPRIATE CONSTANTS*****	00010651
IF (DSIG(4)) 170,170,175	00010660
170 KK=1	00010660
GO TO 180	00010670
175 KK=3	00010680
180 CCO1=CCO(KK)	00010690
CCO2=CCO(KK+1)	00010700
CCO3=CCO1	00010710
CCO4=CCO2	00010720
CCC1=CCC(KK)	00010730
CCC2=CCC(KK+1)	00010740
CCC3=CCC1	00010750
CCC4=CCC2	00010760
IF (DSIG(5)) 185,185,190	00010770
185 CCO3=CCO(1)	00010780
CCO4=CCO(2)	00010790
CCC3=CCC(1)	00010800
CCC4=CCC(2)	00010810
190 CONTINUE	00010820
Co****MODIFICATION OF STRESSES TO ALLOW FOR CREEP RELAXATION**	00010821
Co****OF STRESS AT CONSTANT STRAIN ON THE APPLICATION OF A***	00010822
Co****TIME INCREMENT*****	00010823
THETA=(DSIG(6)-SIG(N=3))/57.296	00010830
CO=COS(STHETA)	00010840

31187 01 08-11-78 15.617

J1187 01 08-11-78 15.612

2." FOLLOWING EPI-X & EPI-Y BELOW//C"STRESS AND STRAINS",
 3" AFTER---",F7.2," DAYS,14X,"" A TENSILE STRAIN"/
 4" APPROXIMATION NO."•10(1H-)•15,20X,9BLANK = COMPR. STRAIN",
 5//"/" ELEM",
 6" CENTROID-IN. ",18(1H-),"PSI",18(1H-)," ANGLE "43(1H-),
 7"MICROSTRAINS",14(1H-)," ANGLE E(C1) PAIS S.CP"/
 8" NO. X-ORD Y-ORD SIG-X SIG-Y SIG-XY SIG1 SIG2
 9"=2 WRT-X EPI-X EPI-Y EPI-XY EPI-1 EPI-2 WRT-X",
 1" •10**6 RTIO U-IN."/")
 2002 FORMAT(" NO. OF LIFTS/OR TIME SPANS- ",15// ANALYSIS",
 1"CYCLE NO.",9(1H-),15// STRESS AND STRAIN AFTER---",F7.2,
 2" DAYS// APPROXIMATION NO."•10(1H-),15// ELEM ",
 3"CENTROID-IN. ",18(1H-),"PSI",18(1H-)," ANGLE ",13(1H-),
 4"MICROSTRAINS",14(1H-)," ANGLE E(C1) PAISS// NO.",
 5"X-ORD Y-ORD SIG-X SIG-Y SIG-XY SIG1 SIG2 ",
 6"WRT-X EPI-X EPI-Y EPI-XY EPI-1 EPI-2 WRT-X ",
 7"•10**6 RATIO//")
 2003 FORMAT(14,1X,2F7.1•5F8,1•F7.2,5F8.1,F7.2,F7.3,F9•2)
 2001 FORMAT(14,1X,2F7.1•5F8,1•F7.2,F8.1•2(A1,F7.1),2F8.1,
 1F7.2,F7.3,F5.2,F7.1)
 2007 FORMAT(///" LIFT NO. ",18// LIFT ANAL NO.,5--18/
 1" TIME(DAYS)-----,F10.2// TIME INCR(DAYS)-,F10.2
 2//7(" ELEM XE(1) ANGLE")//)
 END
 SUBROUTINE STRESS
 PARAMETER MXN=576, MXE=475
 CHARACTER NX7*6(7), NY7*6(7)
 COMMON NUMNP,NUMEL,NUMPC,N,VOL,TEMP,MTYPE,LAY,NUMN,NANAL,NP,OVER
 1,NDT,NCOUNT, TI,DT,DTT,T1+TL,XC,YC,ST(3,10),TMLA(27),NUHE(27),TLN,
 2TT(15),NUMOL,TIME,NNAL,NLAY,ISC,EX,EY,DASH,ANAL(200),NANALT,TLAST
 3,RR(5),ZZ(5),NFLAG,TL1
 COMMON /MATARG/ E(30,6,8),R0(8),EE(5),HED(15),CIC(20,4,8),
 1CC(4,8),NCREEP(8),SC(30,2,8),NSC
 COMMON /ELEARG/ IX(MXE,5),MTAG(MXE),SIG(MXE),TOLD(MXE),
 1DE11(MXE),DE12(MXE),DE21(MXE),DE22(MXE),DSIG(6),CCO(4),CCC(4)
 2,EES(MXE,2),EPS(6),SEAP(MXE),NE17, NY7,NY7,TEMPE(MXE)
 COMMON /PRSRG/ IBC(100),JBC(100),PR(100)
 COMMON /ORDARG/ R(MXN),Z(MXN),LR(MXN),UZ(MXN),CODE(MXN),T(MXN)
 COMMON /BANARG/ MBAND,NUMBLK,B(120),A(120,60)
 COMMON /LS4ARG/ I,J,K,S(10,10),C(3,3),D(3,3),H(3,3),P(10),LM(4),
 1 F(3,3)
 C*****COMPUTE ELEMENT STRESSES*****
 DO 50 I=1,6
 50 DSIG(I)=0.0
 IF (IX(N,3)-IX(N,2)) 90,80,90
 C****FOR ONE-D ELEMENT****
 80 I=IX(N+1)
 J=IX(N+2)
 Dx=R(J)-R(I)
 Dy=Z(J)-Z(I)
 XL=SORT(DX**2+DY**2)
 Du=B(2*I-1)-B(2*I-1)

3118T 01 08-11-78 15.617

DV=B(2*J)-B(2*I)	00011800
DL=DV/DY/XL +DU=DX/XL	00011800
DSIG(1)=DL+E(1,2,TYPE)/XL+SIG(N,1)+SIG(N,4)	00011800
IF (NCOUNT-NP) 85,84,84	00011800
84 SIG(N,4)=DSIG(1)	00011800
SIG(N,1)=0.	00011800
85 XC=0.0	00011800
YC=0.0	00011900
GO TO 320	00011920
C*****FOR TWO-D ELEMENT*****	000119E1
90 CALL QUAD	00011920
DO 120 I=1,4	00011920
II=2*I	00011920
JJ=2*I*(N,I)	00011920
P(II-1)=B(JJ-1)	00011920
120 P(I)=B(JJ)	00011970
DO 150 I=9,10	00011920
P(I)=0.0	00011920
KK=I-1	00012020
DO 150 K=1,KK	00012020
150 P(I)=P(I)-S(I,K)*P(K)	00012020
D(I,1)=0.	00012020
D(2,1)=0.	00012020
D(3,1)=0.0	00012050
DO 170 I=1,3	00012020
DO 170 K=1,10	00012070
170 D(I,1)=D(I,1)+ST(I,K)*P(K)	00012080
THETA= SIG(N,3)/57.296	00012080
C0=COS(THETA)	00012100
SS=SIN(THETA)	00012110
C2=C0+C0	00012120
S2=SS*SS	00012130
SC0=SS*C0	00012140
DSIG(1)= SIG(N,4)*C2+SIG(N,5)*S2-DSIG(1)	00012150
DSIG(2)= SIG(N,4)*S2+SIG(N,5)*C2-DSIG(2)	00012150
DSIG(3)=(SIG(N,4)-SIG(N,5))*SC0-DSIG(3)	00012170
DO 180 I=1,3	00012180
DO 180 K=1,3	00012190
180 DSIG(I)= DSIG(I)+ C(I,K)*D(K,1)	00012200
C*****OUTPUT STRESSES*****	00012201
C*****CALCULATE PRINCIPAL STRESSES*****	00012202
AA=(DSIG(1)+DSIG(2))/2,	00012250
BB=(DSIG(1)-DSIG(2))/2,	00012220
CR= SQRT(BB**2+DSIG(3)**2)	00012250
DSIG(4)=AA+CR	00012250
DSIG(5)=AA-CR	00012250
IF ((BB,EQ.0.0),AND,(DSIG(3),EQ.0.0)) GO TO 320	00012250
DSIG(6)=ATAN2(DSIG(3),BB)/2.	00012270
DSIG(6)=57.296*DSIG(6)	00012280
320 RETURN	00012290
END	00012300
S EXECUTE	000123E0

3118T 01 08-11-78 15.617

S	LIMITS	100,52K,,20K	00012380
S	FILE	01,X1R,10L	00012380
S	FILE	02,X2R,10L	00012380
S	FILE	07,D1S,10L	00012380
S	TAPE9	04,A2D,,8517,	00012380
S	TAPE9	03,A1D,,,DWORSHAK-STRESS	00012380
S	MSG2	SAVE 03,CAMPBELL,80CC46,DWORSHAK-STRESS	00012380
S	DATA	20	00012480
S	SELECTA	INPUT1	00012480
S	BREAK		00012480
S	CONVER		00012480
S	LIMITS	,,8K	00012480
S	SYBOUT	OT	00012480
S	FILE	IN,D1R	00012480
S	ENDJOB		00012470

In accordance with letter from DAEN-RDC, DAEN-ASI dated 22 July 1977, Subject: Facsimile Catalog Cards for Laboratory Technical Publications, a facsimile catalog card in Library of Congress MARC format is reproduced below.

Liu, Tony C

Verification of temperature and thermal stress analysis computer programs for mass concrete structures / by Tony C. Liu, Roy L. Campbell, Anthony A. Bombich. Vicksburg, Miss. : U. S. Waterways Experiment Station ; Springfield, Va. : available from National Technical Information Service, 1979. 47, [59] p. : ill. ; 27 cm. (Miscellaneous paper - U. S. Army Engineer Waterways Experiment Station ; SL-79-7) Prepared for U. S. Army Engineer District, Walla Walla, Walla Walla, Wash. References: p. 47.

1. Computer programs. 2. Concrete dams. 3. Concrete structures. 4. Dworshak Dam. 5. Mass concrete. 6. Temperature. 7. Thermal stresses. I. Bombich, Anthony A., joint author. II. Campbell, Roy L., joint author. III. United States. Army. Corps of Engineers. Walla Walla District. IV. Series: United States. Waterways Experiment Station, Vicksburg, Miss. Miscellaneous paper ; SL-79-7.
TA7.W34m no.SL-79-7