1 ^{re} S.T.I.2D.	Lundi 7 avril 2 014	Bilan annuel	

Exercice 1:

(10 points - Métropole - La Réunion - 11 septembre 2012)

- 1°) Il y a 32 femmes sur un total de 48 personnes donc : $p(F) = \frac{32}{48} = \frac{2}{3}$.
- **2°)** Pour calculer p(E), il faut déterminer le nombre de personnes inscrites dans chaque niveau de difficulté :
 - Débutants : 5 femmes et 2 hommes donc 7 randonneurs.
 - Moyens : 25% de 48 donne $\frac{25}{100}$ × 48 = 12 randonneurs (6 femmes et 6 hommes).
 - Experts: 48 7 12 = 29 randonneurs.

Finalement : $p(E) = \frac{29}{48}$.

- **3°)** H \cap E est l'événement « La randonneur choisi est un homme **et** il a choisi le niveau élevé ». On sait que 2 hommes ont choisi le niveau débutant et 6 hommes ont choisi le niveau moyen donc 8 hommes ont choisi le niveau élevé donc : $p(H \cap E) = \frac{8}{48} = \frac{1}{6}$.
- **4°)** « Le randonneur est une femme **ou** choisit l'itinéraire débutant » se note $F \cup D$. On utilise la formule qui est rappelée : $p(F) + p(D) = p(F \cup D) + p(F \cap D)$. On sait que $p(F) = \frac{32}{48}$ car il y a 32 femmes, $p(D) = \frac{7}{48}$ car 7 randonneurs ont choisi le niveau débutant et puisque 5 femmes ont choisi le niveau débutant $p(F \cap D) = \frac{5}{48}$. Au final :

$$p(F \cup D) = p(F) + p(D) - p(F \cap D) = \frac{32 + 7 - 5}{48} = \frac{34}{48} = \frac{17}{24}.$$

- 5°) Dans cette question, on choisit au hasard un randonneur parmi les hommes. L'effectif total est donc ici de 16 hommes. Puisque 2 hommes ont choisi le niveau débutant et que 6 hommes ont choisi le niveau moyen, alors 8 hommes ont choisi le niveau élevé. Donc, la probabilité que le randonneur ait choisi le niveau élevé **sachant que c'est un homme** est égal à $\frac{8}{16} = \frac{1}{2}$.
- 6°) 21 femmes ont choisi le niveau élevé, soit environ 65,6% des femmes (21 ÷ 32 = 0,656 25).
 D'après la question précédente, 50% des hommes ont choisi le niveau élevé.
 On en déduit que le niveau des femmes de ce groupe est plus élevé.

*

Exercice 2: (8 + 7 = 15 points – Métropole - La Réunion - 11 septembre 2012 + Antilles - Guyane - 20 juin 2012)

Partie A

- 1°) $x^2 = f(x)$ donc $(x-1)^2 = f(x-1)$. Ainsi, g(x) = f(x-1) 4. D'après le cours, \mathcal{C}_g est l'image de \mathcal{C}_f par la translation de vecteur $\overrightarrow{i} 4\overrightarrow{j}$.
- **2°)** Le sommet de \mathcal{C}_f est le point de coordonnées (0;0). Par translation, le sommet de \mathcal{C}_g a donc pour coordonnées (1;-4).
- 3°) Tableau de variations de g:

X	$-\infty$	1	$+\infty$
Variations de g		-4	

4°) Pour déterminer le signe du trinôme *g*, on peut trouver les racines de *g*.

$$g(x) = (x-1)^2 - 4 = x^2 - 2x + 1 - 4 = x^2 - 2x - 3.$$

Le discriminant est $\Delta = b^2 - 4ac$ avec a = 1, b = -2 et c = -3. On a alors:

$$\Delta = (-2)^2 - 4 \times 1 \times (-3) = 4 + 12 = 16.$$

Puisque $\Delta > 0$ alors g a deux racines :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} \quad \text{et} \quad x_2 = \frac{-b + \sqrt{\Delta}}{2a}$$

$$\Leftrightarrow \quad x_1 = \frac{-(-2) - \sqrt{16}}{2 \times 1} \quad \text{et} \quad x_2 = \frac{-(-2) + \sqrt{(16)}}{2 \times 1}$$

$$\Leftrightarrow \quad x_1 = \frac{2 - 4}{2} \quad \text{et} \quad x_2 = \frac{2 + 4}{2}$$

$$\Leftrightarrow \quad x_1 = -1 \quad \text{et} \quad x_2 = 3$$

On en déduit alors le tableau de signes de g :

5°) La calculatrice nous permet de compléter le tableau de valeurs :

х	-3	-2	-1	0	1	2	3
g(x)	12	5	0	-3	-4	-3	0

6°) On place les points du tableau de valeurs sur le repère et on les relie par une courbe.

Partie B

1°) $t(0) = a \times 0^2 + b \times 0 + c = c$ donc le cœfficient c est l'image de 0. Graphiquement, on lit c = 3.

2°) D'après l'énoncé, le point $S\left(\frac{1}{2};4\right)$ est le sommet de la parabole \mathscr{P} .

L'abscisse du sommet d'une parabole est égale à $\frac{-b}{2a}$ donc :

$$\frac{-b}{2a} = \frac{1}{2} \quad \Leftrightarrow \quad -b = \frac{1}{2} \times 2a \quad \Leftrightarrow \quad -b = a \quad \Leftrightarrow \quad a+b=0.$$

3°) $t(\frac{1}{2}) = 4 \text{ donc } a \times (\frac{1}{2})^2 + b \times \frac{1}{2} + 3 = 4.$

$$\frac{a}{4} + \frac{b}{2} = 4 - 3 \quad \Leftrightarrow \quad \frac{a + 2b}{4} = 1 \quad \Leftrightarrow \quad a + 2b = 4.$$

4°)

$$\begin{cases} a+b = 0 \\ a+2b = 4 \end{cases} \Leftrightarrow \begin{cases} a = -b \\ -b+2b = 4 \end{cases} \Leftrightarrow \begin{cases} a = -4 \\ b = 4 \end{cases}$$

Ainsi, $t(x) = -4x^2 + 4x + 3$.

5°) Le discriminant de t est $\Delta = b^2 - 4ac$ avec a = -4, b = 4 et c = 3. On a alors :

$$\Delta = 4^2 - 4 \times (-4) \times 3 = 16 + 48 = 64$$
.

Puisque $\Delta > 0$ alors t a deux racines :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$
 $\Leftrightarrow x_1 = \frac{-4 - \sqrt{64}}{2 \times (-4)}$ et $x_2 = \frac{-4 + \sqrt{(64)}}{2 \times (-4)}$
 $\Leftrightarrow x_1 = \frac{-4 - 8}{-8}$ et $x_2 = \frac{-4 + 8}{-8}$
 $\Leftrightarrow x_1 = \frac{-12}{-8} = \frac{3}{2}$ et $x_2 = \frac{4}{-8} = \frac{-1}{2}$

*

Exercice 3:

(7 + 8 = 15 points – Antilles - Guyane - 19 juin 2013)

Partie A

1°) La solution de l'équation (2 - i)z = 2 - 6i est le nombre z_1 tel que :

$$z_1 = \frac{2-6i}{2-i} = \frac{(2-6i)(2+i)}{(2-i)(2+i)} = \frac{10-10i}{5} = 2-2i.$$

2°) On calcule tout d'abord le module de z_1 :

$$|z_1| = |2 - 2i| = \sqrt{2^2 + (-2)^2} = \sqrt{4 + 4} = \sqrt{8} = 2\sqrt{2}.$$

Puis on factorise par $|z_1|$ pour obtenir :

$$z_1 = 2\sqrt{2} \left(\frac{2}{2\sqrt{2}} - \frac{2}{2\sqrt{2}} i \right) = 2\sqrt{2} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} i \right) = 2\sqrt{2} \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} i \right)$$

En notant $\theta = \arg(z_1)$, on en déduit que :

$$\begin{vmatrix}
\cos(\theta) & = & \frac{\sqrt{2}}{2} \\
\sin(\theta) & = & -\frac{\sqrt{2}}{2}
\end{vmatrix} \Rightarrow \theta = -\frac{\pi}{4}$$

Ainsi,
$$z_1 = \left[2\sqrt{2}; -\frac{\pi}{4}\right].$$

3°)
$$z_2 = -i \times z_1 = -i(2-2i) = -2i + 2i^2 = -2 - 2i$$
.

Pour la forme trigonométrique, on réalise les mêmes calculs que pour z_1 en faisant attention aux signes et on trouve $|z_2|=2\sqrt{2}$ et :

$$\begin{vmatrix}
\cos(\theta) & = & -\frac{\sqrt{2}}{2} \\
\sin(\theta) & = & -\frac{\sqrt{2}}{2}
\end{vmatrix} \Rightarrow \theta = -\frac{3\pi}{4}$$

Ainsi,
$$z_2 = \left[2\sqrt{2}; -\frac{3\pi}{4}\right].$$

Partie B

1°) On doit faire attention à l'unité définie par les vecteurs \overrightarrow{u} et \overrightarrow{v} .

2°)
$$z_3 = z_{\overrightarrow{CA}} = z_A - z_C = 2 - 2i - (-4i) = 2 + 2i.$$
 $z_4 = z_{\overrightarrow{CB}} = z_B - z_C = -2 - 2i - (-4i) = -2 + 2i.$

 $\mathbf{3}^{\mathrm{o}})$ Les affixes des vecteurs nous permettent de connaı̂tre leurs coordonnées donc :

$$\overrightarrow{CA} \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
 et $\overrightarrow{CB} \begin{pmatrix} -2 \\ 2 \end{pmatrix}$.

Donc: $\overrightarrow{CA} \cdot \overrightarrow{CB} = xx' + yy' = 2 \times (-2) + 2 \times 2 = -4 + 4 = 0$. On en déduit que les vecteurs \overrightarrow{CA} et \overrightarrow{CB} sont orthogonaux donc (CA) \perp (CB).

- **4°)** $\|\overrightarrow{CA}\| = |z_3| = 2\sqrt{2}$ et $\|\overrightarrow{CB}\| = |z_4| = 2\sqrt{2}$. On en déduit que les longueurs AC et CB sont égales.
- **5°**) D'après les deux questions précédentes, on en déduit que le triangle ABC est **rectangle et isocèle en** C.

4