	Kinds of tests	
	Kinds of tests By number of samples: One-sample: just one sample. Example: testing whether a coin is symmetric (probability of success equals probability of failure).	
	 Two-sample: two independent samples. Example: A/B testing. Paired: two dependent samples. Example: treatment effect, when the same participants are tested more than once. By hypothesis type: 	
	 Non-parametric: either we know the distribution entirely (goodness-of-fit) or we test its parameters Parametric: we know the distribution up to a parametric family of distributions Permutation test	
	Permutation test	
	Permutation test is a non-parametric two-sample test. Suppose that we have samples $X=(X_1,\ldots,X_n)\sim p(\cdot)$ and $Y=(Y_1,\ldots,Y_m)\sim q(\cdot)$. We'd like to test whether the samples come from the same distribute $H_0:p\equiv q$	ution:
	This test works with any test statistic $T(\cdot)$. Denote the joined sample $Z=(X_1,\ldots X_n,Y_1,\ldots,Y_m)$. Intuitively, we would like to asses how likely it is to have to Z into X and Y the way it is observed. Let's shuffle Z randomly and compute a statistic of the shuffled sample $T(\tilde{Z})$. Let's do so for all possible permutations and collect $(n+m)!$ values of test statistic.	
	the p-value of the test will be simply the fraction of cases with a more extreme value of the statistic: $p{\rm -value} = \frac{1}{({\rm n+m})!} \sum_{\rm all\ permutations\ \tilde{Z}\ of\ Z} \mathbb{I}{\rm nd}\left({\rm T}(\tilde{\rm Z}) > {\rm T}({\rm Z})\right)$	
n [1]:	 Advantages: non-parametric, any test statistic Disadvantages: computationally hard import numpy as np 	
n [2]:	<pre>import itertools as it from scipy.special import factorial X = np.array([0.225, 0.262, 0.217, 0.240, 0.230, 0.229, 0.235, 0.217]) Y = np.array([0.209, 0.205, 0.196, 0.210, 0.202, 0.207, 0.224, 0.223, 0.220, 0.201]) T = np.concatonate([Y</pre>	
	<pre>Z = np.concatenate([X, Y]) n, m = len(X), len(Y) alpha = 0.05</pre>	
	<pre>def T(z): x, y = z[:, :n], z[:, n:] x_mean, y_mean = np.mean(x, axis=1), np.mean(y, axis=1) return np.abs(x_mean - y_mean) t_obs = T(np.expand_dims(Z, 0))</pre>	
n [5]:	factorial(n + m) 6402373705728000.0	
n [6]:	<pre>B = 1e6 permutations = [] for i, permutation in enumerate(it.permutations(Z)): permutations.append(permutation) if i > B: break statistics = T(np.array(permutations))</pre>	
	<pre>pvalue = np.sum(statistics > t_obs) / factorial(B) print("Rejected" if pvalue < alpha else "Not rejected") Rejected</pre> Rejected	
	Multinomial test Multinomial test	
	The multinomial test is the test of the null hypothesis that the parameters of a multinomial distribution equal specified values. It is a one-sample non-parameter Suppose that we have sample $X=(X_1,\ldots,X_n)\sim Mult(\theta)$ with k categories. We'd like to test whether our parameters θ equal specified values: $H_0:\theta=\theta_0$	ric test.
	The statistic for the test is simply the multinomial probability: $T(X)=n!\sum_{i=1}^k \frac{\theta_i^{X_i}}{X_i!}$	
	Now, the p-value of the test will be simply the probability of observing a sample (there is a finite number of possible multinomial samples of size n) less likely thone:	nat the give
	$p{\rm -value} = \sum_{Y:T(Y)\leqslant T(X)} T(Y)$ • Advantages: non-parametric, simple • Disadvantages: computationally hard	
	Likelihood ratio test	
	Likelihood ratio test Likelihood ratio test is a parametric one-sample test.	
	Suppose that we have sample $X=(X_1,\dots,X_n)\sim p(\theta)$ and $\theta\in\Theta$. We'd like to test wheter θ belongs to a subset of Θ : $H_0:\theta\in\Theta_0\subset\Theta \\ H_1:\theta\in\Theta_1=\Theta\backslash\Theta_0$	
	The test statistic is given as follows (most common example, will lead to χ^2 distribution): $\lambda(X) = 2\log\Lambda(X) = 2\log\left(\frac{\sup\limits_{\theta\in\Theta}L(X,\theta)}{\sup\limits_{\theta\in\Theta}L(X,\theta)}\right) = 2\log\left(\frac{L(X,\hat{\theta}^{MLE})}{L(X,\hat{\theta}^{MLE})}\right)$	
	We reject the null hypothesis, if $\lambda(X)\leqslant c$, where c is defined from $\int \ L(x,\theta)\leqslant \alpha$	
	$\int\limits_{y:\lambda(y)\leqslant c} L(x,v)\leqslant \alpha$ Many tests can be derived from likelihood ratio test.	
	Likelihood ratio test: example	
	$H_0: heta_1 = heta_0 \ H_1: heta_1 eq heta_0$ We'l need to compute	
	$\Lambda(X) = \frac{L(X, \hat{\boldsymbol{\theta}}^{MLE})}{L(X, \hat{\boldsymbol{\theta}}_0^{MLE})}$ Numerator:	
	$egin{align} L(X, heta_1, heta_2) &= rac{1}{(2\pi)^{n/2} heta_2^n} \expigg(-rac{1}{2 heta_2^2} \sum_{i=1}^n (X_i - heta_1)^2igg) = \ &= rac{1}{(2\pi)^{n/2} heta_2^n} \expigg(-rac{n}{2 heta_2^2} ig(s^2 + (ar{X} - heta_1)^2ig)igg) \end{array}$	
	MLE estimates are $\hat{ heta}_1=ar{X},\hat{ heta}_2^2=s^2.$ The supremum of likelihood is:	
	$\sup_{\theta \in \Theta} L(X,\theta_1,\theta_2) = \left(2\pi e s^2\right)^{-n/2}$ Likelihood ratio test: example	
	Denominator: $L(X,\theta_1,\theta_2)=\frac{1}{(2\pi)^{n/2}\theta_2^n} \exp\left(-\frac{1}{2\theta_2^2}\sum_{i=1}^n (X_i-\theta_0)^2\right)$	
	MLE estimate is $\hat{\theta}_2^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \theta_0)^2 = s_0^2$	
	The supremum of likelihood is: $\sup_{\theta\in\Theta}L(X,\theta_1,\theta_2)=\left(2\pi e s_0^2\right)^{-n/2}$	
	Likelihood ratio test: example	
	The statistic for this case will be $\lambda(X)=\Lambda(X)^{-1}$. $\lambda(X)=\frac{\left(2\pi e s_0^2\right)^{-n/2}}{\left(2\pi e s^2\right)^{-n/2}}=\left(\frac{s^2+(\bar{X}-\theta_0)^2}{s^2}\right)^{-n/2}$	
	Note that $ar{X}\sim \mathcal{N}(heta_0,rac{ heta_2^2}{n})$, therefore $rac{ar{X}- heta_0}{ heta_2}\sqrt{n}\sim \mathcal{N}(0,1).$ Therefore, $\left(ar{X}- heta_0-ar{X} ight)^2$	
	$t^2 = \left(rac{rac{ar{X}- heta_0}{ heta_2}\sqrt{n}}{\sqrt{rac{rac{s^2}{ heta_2^2}n}{n-1}}} ight)^2 \sim St(n-1)$	
	We have,	
	$\lambda(X) = \left(1 + \frac{1}{n-1}t^2\right)^{-n/2} \leqslant c \Leftrightarrow t \geqslant \tilde{c}$ Tests comparison for multinomial data	
	1. Multinomial test: exact, works best on small samples, hard 2. Likelihood ratio test: not exact, works best on large samples, produces type I errors (false positives), simplier 3. Pearson χ^2 test: not exact, works best on medium-sized samples, produces type I errors (false positives), simplier	
	Student t-test	
	Student t-test It is a parametric test. There are all kinds of t-test: one-sample, two-sample, paired test. We'll cover one-sample test for now. Suppose that we have sample $X=(X_1,\ldots,X_n)\sim \mathcal{N}(\mu,\sigma^2)$. We'd like to test wheter μ equals a specified value:	
	$H_0: \mu = \mu_0$ $H_1: \mu eq \mu_0$ The test statistic is given by	
. [7].	$T(X) = rac{ar{X} - \mu_0}{S/\sqrt{n}} \sim St(n-1)$	
n [7]: n [8]:	<pre>import pandas as pd</pre>	
[9]: it[9]:	df df	d315_of_dil
	1 13.20 1.78 2.14 11.2 100.0 2.65 2.76 0.26 1.28 4.38 1.05 2 13.16 2.36 2.67 18.6 101.0 2.80 3.24 0.30 2.81 5.68 1.03 3 14.37 1.95 2.50 16.8 113.0 3.85 3.49 0.24 2.18 7.80 0.86 4 13.24 2.59 2.87 21.0 118.0 2.80 2.69 0.39 1.82 4.32 1.04	
	4 13.24 2.59 2.87 21.0 118.0 2.80 2.69 0.39 1.82 4.32 1.04	
	175 13.27 4.28 2.26 20.0 120.0 1.59 0.69 0.43 1.35 10.20 0.59 176 13.17 2.59 2.37 20.0 120.0 1.65 0.68 0.53 1.46 9.30 0.60 177 14.13 4.10 2.74 24.5 96.0 2.05 0.76 0.56 1.35 9.20 0.61	
[10]: :[10]:	<pre>called a total about 1 The amount of the control of the con</pre>	
	Freducy 4 -	
	2 - 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0	
	<pre>import scipy.stats as sts X = df["alcohol"].values n = len(X)</pre>	
	<pre>tdistr = sts.t(n-1) alpha = 0.05 mu_0 = 13.0 X_bar = X.mean() C_n x_ntd(ddofn1)</pre>	
	<pre>X_bar = X.mean() S = X.std(ddof=1) T = np.sqrt(n) * (X_bar - mu_0) / S pvalue = 2 * tdistr.sf(T) print("Rejected" if pvalue < alpha else "Not rejected")</pre>	
	<pre>print("Rejected" if pvalue < alpha else "Not rejected") Not rejected res = sts.ttest_lsamp(X, mu_0, alternative='two-sided') print("Rejected" if res.pvalue < alpha else "Not rejected")</pre>	
. 44]:	print("Rejected" if res.pvalue < alpha else "Not rejected") Not rejected Student t-test	
	Suppose that we have samples $X=(X_1,\dots,X_n)\sim \mathcal{N}(\mu_1,\sigma_1^2)$ and $Y=(Y_1,\dots,Y_m)\sim \mathcal{N}(\mu_2,\sigma_2^2)$. We'd like to test whether the distributions of these sthe same means: $H_0:\mu_1=\mu_2$	amples sha
	$H_1: \mu_1 eq \mu_2$ The test statistic is given by	
	$T(X) = rac{ar{X} - ar{Y}}{\sqrt{rac{S_1^2}{n} + rac{S_2^2}{m}}} \sim St \left(rac{\left(rac{S_1^2}{n} + rac{S_2^2}{m} ight)^2}{\left(rac{S_1^2}{n} ight)^2 rac{1}{n-1} + \left(rac{S_2^2}{m} ight)^2 rac{1}{m-1}} ight)$	
[15]:	<pre>I: X = np.array([0.225, 0.262, 0.217, 0.240, 0.230, 0.229, 0.235, 0.217]) Y = np.array([0.209, 0.205, 0.196, 0.210, 0.202, 0.207, 0.224, 0.223, 0.220, 0.201]) alpha = 0.05</pre>	
[16]:	res = sts.ttest_ind(X, Y, equal_var=False) print("Rejected" if res.pvalue < alpha else "Not rejected") Rejected	
	Wilcoxon signed-rank test Wilcoxon signed-rank test	
	It is a non-parametric paired test. Suppose that we have samples $X=(X_1,\ldots,X_n)\sim p(\cdot)$ and $Y=(Y_1,\ldots,Y_n)\sim q(\cdot)$. We'd like to test whether the distributions of these samples share t means:	he same
	$H_0: \mu_1 = \mu_2 \ H_1: \mu_1 eq \mu_2$ The statistic is:	
	$W(X,Y) = \sum_{i=1}^{N_r} R_i \cdot \mathrm{sgn}(\mathrm{y_i} - \mathrm{x_i})$	der.
	where $\mathrm{sgn}(\cdot)$ is signum function, N_r is the corrected sample size (without samples with equal measurements), R_i is the rank of the difference in ascending ord	·
[17]:	<pre>It follows a tabulated distribution. X = np.array([176, 163, 152, 155, 156, 178, 160, 164, 169, 155, 122, 144]) Y = np.array([168, 215, 172, 200, 191, 197, 183, 174, 176, 155, 115, 163])</pre>	
[17]: [18]: t[18]:	<pre>I: X = np.array([176, 163, 152, 155, 156, 178, 160, 164, 169, 155, 122, 144]) Y = np.array([168, 215, 172, 200, 191, 197, 183, 174, 176, 155, 115, 163]) I: pd.DataFrame({"X": X, "Y": Y}).plot.hist(bins=20, alpha=0.3) I: <axessubplot:ylabel='frequency'></axessubplot:ylabel='frequency'></pre>	
[18]:	<pre>X = np.array([176, 163, 152, 155, 156, 178, 160, 164, 169, 155, 122, 144]) Y = np.array([168, 215, 172, 200, 191, 197, 183, 174, 176, 155, 115, 163]) pd.DataFrame({"X": X, "Y": Y}).plot.hist(bins=20, alpha=0.3) <pre>AxesSubplot:ylabel='Frequency'></pre></pre>	
[18]:	<pre>1: X = np.array([176, 163, 152, 155, 156, 178, 160, 164, 169, 155, 122, 144]) Y = np.array([168, 215, 172, 200, 191, 197, 183, 174, 176, 155, 115, 163]) pd.DataFrame({"X": X, "Y": Y}).plot.hist(bins=20, alpha=0.3) <pre>AxesSubplot:ylabel='Frequency'></pre> 3.0 2.5</pre>	
[18]:	: X = np.array([176, 163, 152, 155, 156, 178, 160, 164, 169, 155, 122, 144]) Y = np.array([168, 215, 172, 200, 191, 197, 183, 174, 176, 155, 115, 163]) : pd.DataFrame({"X": X, "Y": Y}).plot.hist(bins=20, alpha=0.3) : <axessubplot:ylabel='frequency'> 30</axessubplot:ylabel='frequency'>	
[18]: [18]:	x = np.array([176, 163, 152, 155, 156, 178, 160, 164, 169, 155, 122, 144]) y = np.array([188, 215, 172, 200, 191, 197, 183, 174, 176, 155, 115, 163]) pd.DataFrame(("x": x, "y": y)).plot.hist(bins=20, alpha=0.3)	