1 DINAMIČNI RAZPON

- ... je razmerje med:
 - največjo vrednostjo, ki jo lahko merimo in
 - najmanjšo vrednostjo, ki jo lahko merimo (šum)
- naprimer METERSKA PALICA
 - max = 1000mm
 - min = 1mm
 - dinamični razpon = 1000:1
- prizorišče ima veliko različnih svetlosti (količina odbite svetlobe)
 - različne vrednosti L [cd/m²]
 - svetlo/temno

1.1 DR našega očesa

• oko je logaritemsko občutljivo na količino svetlobe (na svetlost)

Slika 1: Občutljivost očesa in meritve svetlosti.

• Občutljivost očesa = Kln(I) (logaritem od svetilnosti I[cd])

Slika 2: Relativna občutljivost očesa in tipala.

- svetlost LED-ic se nam zdi bolj LINEARNA
- film je imel podobno občutljivost (če foton zadane že razvito zrno se to ne pozna)
- !fotografska tipala imajo linearno občutljivost

1.2 GAMA FAKTOR

- izhaja iz reprodukcije slike (prikaz slike na TV)
- svetilnost sorazmerna s V_S^{γ}
 - $I \propto V_s^{\gamma}$
 - $\,$ za monitor $\gamma=2.2$

Slika 3: Pretvorbne krivulje: osvetljenost -> električna napetost -> svetilonst.

1.3 GAMA in DINAMIČNI RAZPON

• kolikšen dinamični razpon pripada posamičnemu F/STOP območju

Slika 4: Odziv glede na količino vpadne osvetljenosti.

- količina svetlobe se podvoji med vsako vrstico v tabeli
- z LOG transformacijo lahko dosežemo enakomerne din. razpone (+17 ADC v tabeli)

Tabela 1: Preračun osvetljenosti v 8-bitno vrednost.

F/STOP	Rel. Osv.	Obč. očesa	Obč. tipala	OETF ($\gamma=1/2.2$)	LOG tr.
			•		
0	100%	255	255	255	255
1	50%	203	128	186	238
2	25%	161	64	136	221
3	12.5%	128	32	99	204
4	6.25%	102	16	72	187
5	3.125%	81	8	53	170
6	1.563%	65	4	39	152
7	0.781%	51	2	28	135
8	0.391%	41	1	21	118

F/STOP	Rel. Osv.	Obč. očesa	Obč. tipala	OETF ($\gamma=1/2.2$)	LOG tr.
9	0.195%	33	0	15	101
10	0.098%	26	0	11	84
11	0.049%	21	0	8	67
12	0.024%	16	0	6	49
13	0.012%	13	0	4	32
14	0.006%	10	0	3	15

• RAW so zaradi LOG transformacije nekoliko sivo zelenkasti

1.4 ISO in DINAMIČNI RAZPON

- ISO vrednost = Ojačanje el. signala, ki ga dobimo iz tipala
- ker s tem ojačamo tudi el. šum ... ravnamo smiselno

Slika 5: Vpliv ISO vrednosti na dinamični razpon.

- Pomembno vprašanje je:
 - V katerem področju želimo imeti večji dinamični razpon?

- Kadar želimo ohraniti detajle v temnih delih:
 - * ISO majhen in manjši EV (daljši čas in širša zaslonka)
- Kadar želimo ohraniti detajae v svetlih delih:
 - * ISO večji in večji EV (krajši čas in ožja zaslonka)