Review Problem 15

Orange runs at 1GHz, and provides a unit making machine is better? runs at 1.2 GHz by deleting the unit, meaning floating point operations take 20 cycles. Which all floating point operations take 1 cycle. Grape

It depends. Har much floating point

Processor Performance Summary

Machine performance:

CPU execution time for a program

for a program Instructions

Complex Inst Set Computers
Reduced Inst. Set Computers

Better performance:

number of instructions to implement computations

Clock rate

<u>CP</u>

Improving performance must balance each constraint

Example: 1980's RISC vs. CISC

Datapath & Control

Readings: 4.1-4.4

Datapath: System for performing operations on data, plus memory access.

Control: Control the datapath in response to instructions.

Sinple CPU

Develop complete CPU for subset of instruction set

Memory: LDUR, STUR

Branch: B

Conditional Branch: CBZ

Arithmetic: ADD, SUB

Most other instructions similar

Obtain instruction from program storage Read ハモルこれこう

Determine required actions and instruction size Spit 46 and instruction size

Locate and obtain operand data

Compute result value or status

\(\lambda \times \frac{\partial \pi \partial \pi}{\pi \partial \pi} \)

Deposit results in storage for later use したも たまだを

Determine successor instruction

Processor Overview

Overall Dataflow

PC fetches instructions

Instructions select operand registers, ALU immediate values

ALU computes values

Load/Store addresses computed in ALU

Result goes to register file or Data memory

RTL & Processor Design

Convert instructions to Register Transfer Level (RTL) specification RegA = RegB + RegC;

RTL specifies required interconnection of units, control

Math unit example:

(add):
$$A = A + B$$
; $I++$;

(mult):
$$A = A * B$$
: $I++$;

(hold):
$$A = A$$
; $1++$;

(init):
$$A = Din; l++;$$

gestion

Instruction Retch

TUST = NEMERS

PC = REH

D

4 - St

Address
Instruction
Memory

L

Tight

Add/Subtract RTL

Add instruction: ADD Rd, Rn, Rm

Subtract instruction: SUB Rd, Rn, Rm

Rd	8	SHAMT	Rm	Opcode
04 03 02 01 00	09 08 07 06 05	15 14 13 12 11 10	20 19 18 17 16	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 0

Z

Add/Subtract Datapath

Load Instruction: LDUR Rd, [Rn, DAddr9]

Instr = Men [Pc]; Addr = Reg[Rw] + Sign Extral(DAddr9) Reg[Rd] = Men [Addr]; PC=PC+4;

Opcode	31 30 29 28 27 26 25 24 23 22 21
DAddr9	7 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05
00	11 10
R	09 08 07 06 05 0
RG .	04 03 02 01 00

Store Instruction: STUR Rd, [Rn, DAddr9]

Inst = MENCR);

Add = Rg(RNJ+5E (DAddr9);

REPR;

Men[Add) = Reg[Rd])

PC=PC+4;

Opcode	51 50 29 28 27 26 25 24 23 22 21
DAddr9	21 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04
00	11 10
Rn	09 08 07 06 05
자.	04 03 02 01 00