João Vitor GATO ArAUJO - 2017 083030 Aturdade Prática 2 - Parte 1 -GIOVANNI Martins de Sá _ 2017001850 $\mu_{n}(v,v) = \mu_{Q}(v,v) \wedge \mu_{L}(v,v)$

(1) Q(U,V) -> "muito longe" L(U,V) -> "culturamente afins"

· M(U,V) -> "muto longe" e "rão culturamente Afins"

 $M(U,V) \Rightarrow Q(U,V) \cap \overline{L}(U,V)$

 $M(U,V) \rightarrow O(U,V) \cap \overline{L}(U,V)$

	10	0,7	
μ _Q (0, <) =	0.8	0, 38 0, 15	
	0,25	0,5	
M_ (v,v) =	0.8	0,15	
,	0,1	0,12	
$\mu_{M}(v,v) = 0$	7, 8 1, 4	0, 15	
(,	o _i z	0,12	

C	Q :							
	\ \ \	Paris	New York					
	Paris	0	0.7					
	Beijing	0,8	0,98					
	Otawa	0.6	0,15					
	London	0,25	0,5					

Ĺ	•		
) >	Paris	New York
	Paris	0	0,15
	Beijug	0,8	0,7
	Otawa	0,4	0,2
	London	0,2	0,12

;		
) />	Paris	New York
Paris	0	0, 15
Beijing	0, 8	0,7
Otawa	0.4	0, 15
London	0,2	0,12
	Otawa	Beijug 0,8 Otawa 0,9

R (V, w) -> "muito perto"

r	IN .							
	\ / ₃	Paris	Beijng	Otawa	London			
	Bruges	7	0,1	0,4	0,85			
	Stockholm	0,4	0,4	0,15	0,3			
	Moscow	0,2	017	0,05	0,1			

$$\mu_{Q}^{I}(0, \vee) = \begin{pmatrix} 0 & 0.8 & 0.6 & 0.25 \\ 0.7 & 0.38 & 0.65 & 0.5 \end{pmatrix}$$

$$\mu_{Q}^{I}(0, \vee) = \begin{pmatrix} 1 & 0.4 & 0.2 \\ 0.1 & 0.4 & 0.7 \\ 0.4 & 0.75 & 0.05 \\ 0.85 & 0.3 & 0.1 \end{pmatrix}$$

$$\mu_{Q \circ R}(v, w) = \mu_{Q}(v, v) \circ \mu_{R}(v, w)$$

$$= \left\{ (v, w), \max_{v} \left[\min_{Q} \left(\mu_{Q}(v, v), \mu_{R}(v, v) \right) \right] \right\}$$

$$\mu_{QOR}(1,1) = mAX \begin{cases} (0 \times 1), & (0.8 \times 0.1), \\ (0.6 \times 0.4), & (0.25 \times 0.85) \end{cases} = mAX \begin{cases} 0,0.08,0.24,0.213 \end{bmatrix} = 0.24$$

$$\mu_{QOR}(1,2) = mAX \begin{cases} (0 \times 0.4), & (0.8 \times 0.4), \\ (0.6 \times 0.15), & (0.25 \times 0.3) \end{cases} = mAX \begin{cases} 0,0.31,0.03,0.075 \end{bmatrix} = 0.32$$

$$\mu_{QOR}(1,3) = mAX \begin{cases} (0 \times 0.2), & (0.8 \times 0.7), \\ (0.6 \times 0.05), & (0.25 \times 0.1) \end{cases} = mAX \begin{cases} 0,0.56,0.03,0.025 \end{bmatrix} = 0.56$$

$$(0.6 \times 0.05), & (0.25 \times 0.1) \end{cases}$$

$$\mu_{QOR}(2,1) = \max \left\{ \begin{array}{c} (0.6 \pm 0.05), & (0.25 \pm 0.1) \\ (0.6 \pm 0.05), & (0.25 \pm 0.1) \\ (0.15 \pm 0.4), & (0.5 \pm 0.85) \end{array} \right\} = \max \left\{ \begin{array}{c} (0.7 \pm 0.1), & (0.53 \pm 0.1) \\ (0.15 \pm 0.4), & (0.53 \pm 0.4) \\ (0.15 \pm 0.15), & (0.53 \pm 0.4) \end{array} \right\} = \max \left\{ \begin{array}{c} (0.7 \pm 0.4), & (0.53 \pm 0.4) \\ (0.15 \pm 0.15), & (0.5 \pm 0.3) \end{array} \right\} = \max \left\{ \begin{array}{c} (0.7 \pm 0.4), & (0.53 \pm 0.4) \\ (0.15 \pm 0.05), & (0.5 \pm 0.3) \end{array} \right\} = \max \left\{ \begin{array}{c} (0.7 \pm 0.2), & (0.93 \pm 0.7) \\ (0.7 \pm 0.2), & (0.93 \pm 0.7), \\ (0.15 \pm 0.05), & (0.5 \pm 0.1) \end{array} \right\} = \max \left\{ \begin{array}{c} (0.7 \pm 0.2), & (0.93 \pm 0.7), \\ (0.15 \pm 0.05), & (0.5 \pm 0.1) \end{array} \right\} = \max \left\{ \begin{array}{c} (0.7 \pm 0.2), & (0.93 \pm 0.7), \\ (0.15 \pm 0.05), & (0.5 \pm 0.1) \end{array} \right\} = \max \left\{ \begin{array}{c} (0.7 \pm 0.2), & (0.93 \pm 0.7), \\ (0.15 \pm 0.05), & (0.5 \pm 0.1) \end{array} \right\} = \max \left\{ \begin{array}{c} (0.7 \pm 0.2), & (0.93 \pm 0.7), \\ (0.15 \pm 0.05), & (0.5 \pm 0.1) \end{array} \right\} = \max \left\{ \begin{array}{c} (0.7 \pm 0.2), & (0.93 \pm 0.7), \\ (0.15 \pm 0.05), & (0.5 \pm 0.1) \end{array} \right\} = \max \left\{ \begin{array}{c} (0.7 \pm 0.4), & (0.93 \pm 0.4), \\ (0.15 \pm 0.05), & (0.93 \pm 0.7), \\ (0.15 \pm 0.05), & (0.93 \pm 0.7), \\ \end{array} \right\} = \max \left\{ \begin{array}{c} (0.7 \pm 0.4), & (0.93 \pm 0.4), \\ (0.15 \pm 0.05), & (0.93 \pm 0.7), \\ \end{array} \right\} = \max \left\{ \begin{array}{c} (0.15 \pm 0.05), & (0.93 \pm 0.7), \\ \end{array} \right\} = \max \left\{ \begin{array}{c} (0.15 \pm 0.05), & (0.93 \pm 0.7), \\ \end{array} \right\} = \max \left\{ \begin{array}{c} (0.15 \pm 0.05), & (0.93 \pm 0.7), \\ \end{array} \right\} = \max \left\{ \begin{array}{c} (0.15 \pm 0.05), & (0.93 \pm 0.7), \\ \end{array} \right\} = \max \left\{ \begin{array}{c} (0.15 \pm 0.05), & (0.93 \pm 0.7), \\ \end{array} \right\} = \max \left\{ \begin{array}{c} (0.15 \pm 0.05), & (0.93 \pm 0.7), \\ \end{array} \right\} = \max \left\{ \begin{array}{c} (0.15 \pm 0.05), & (0.93 \pm 0.7), \\ \end{array} \right\} = \max \left\{ \begin{array}{c} (0.15 \pm 0.05), & (0.93 \pm 0.7), \\ \end{array} \right\} = \max \left\{ \begin{array}{c} (0.15 \pm 0.05), & (0.93 \pm 0.15), \\ \end{array} \right\} = \min \left\{ \begin{array}{c} (0.15 \pm 0.05), & (0.93 \pm 0.15), \\ \end{array} \right\} = \min \left\{ \begin{array}{c} (0.15 \pm 0.05), & (0.93 \pm 0.15), \\ \end{array} \right\} = \min \left\{ \begin{array}{c} (0.15 \pm 0.05), & (0.93 \pm 0.15), \\ \end{array} \right\} = \min \left\{ \begin{array}{c} (0.15 \pm 0.05), & (0.93 \pm 0.15), \\ \end{array} \right\} = \min \left\{ \begin{array}{c} (0.15 \pm 0.05), & (0.93 \pm 0.15), \\ \end{array} \right\} = \min \left\{ \begin{array}{c} (0.15 \pm 0.05), & (0.93 \pm 0.15), \\ \end{array} \right\} = \min \left\{ \begin{array}{c} (0.15 \pm 0.05), & (0.93 \pm 0.15), \\ \end{array} \right\} = \min \left\{ \begin{array}{c} (0.15 \pm 0.05), & (0.93 \pm 0.15), \\ \end{array} \right\} = \min \left\{ \begin{array}{c} (0.15 \pm 0.05), & (0.93 \pm 0.15), \\ \end{array} \right\} = \min \left\{ \begin{array}{c} (0.15 \pm 0.05), & (0.93 \pm 0.15), \\ \end{array} \right\} = \min \left\{ \begin{array}{c} (0.$$

$$\mu_{Q \circ R}(0, w) = \begin{pmatrix} 0.24 & 0.32 & 0.56 \\ 0.7 & 0.332 & 0.686 \end{pmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 0.5 & 0.4 & 0.2 \end{bmatrix} \qquad R = \begin{bmatrix} 1 & 0.8 & 0 & 0 \\ 0.8 & 1 & 0.8 & 0 \\ 0 & 0.8 & 1 & 0.8 \end{bmatrix}$$

2

$$B = A \circ R$$

$$A \circ R(X,Y) = \max \left[\min_{M \in A} (A(X,Z), R(Z,Y)) \right]$$

$$(1,1) = \max \left[1, 0.8, 0, 0 \right] = 1$$

$$(1,2) = \max_{M \in A} \left[0.8, 1, 0.8, 0 \right] = 1$$

$$(1,3) = \max_{M \in A} \left[0, 0.8, 1, 0.8 \right] = 1$$

$$(1,3) = \max_{M \in A} \left[0, 0, 0.8, 1 \right] = 1$$

$$(2,1) = \max_{M \in A} \left[0, 0, 0.8, 1 \right] = 1$$

$$(2,2) = \max_{M \in A} \left[0.8, 0.5, 0.4, 0.3 \right] = 0.8$$

$$(2,3) = \max_{M \in A} \left[0, 0.5, 0.4, 0.2 \right] = 0.6$$

$$(2,4) = \max_{M \in A} \left[0, 0, 0.4, 0.2 \right] = 0.6$$


```
Funções de Pertinência para Categorias Não-Primárias

Not Very Young and Not Very Old Very Young and V
```

```
# Função de pertinência para "not very young and not very old"
not_very_young = 1 - uyoung(x)
not_very_old = 1 - uold(x)
not_very_oung_and_not_very_old = np.minimum(not_very_young, not_very_old)

# Função de pertinência para "very young and very old"
very_young_and_very_old = np.minimum(uyoung(x), uold(x))

# Plote as funções de pertinência
plt.figure(figsize=(8, 6))
plt.plot(x, not_very_young_and_not_very_old, label='Not Very Young and Not Very old')
plt.plot(x, very_young_and_very_old, label='Very Young and Very old')
plt.xlabel('Idade')
plt.ylabel('Pertinência')
plt.title('Funções de Pertinência para Categorias Não-Primárias')
plt.legend()
plt.grid(True)
plt.show()
```


Ri - se x é Ai então y é Bi Rz - se x é Az então y é Bz

omia					min			
MRL (X.Y) =	JA.	(x) 1	MBL	(y) MR2 (X.Y) =	پا _ھ ي	(x) 1	Mв. С	(۲
		Υ,	74	_		Υ,	74	
	×ı	0.1	0.2		×ı	0.6	0.2	
	×2	0.1	0.3		×2	0.6	0.2	
	×3	0.1	Ø.3		×3	0.3	0.2	

 $A' = \begin{bmatrix} 0, & 1, & 0 \end{bmatrix}$ $\mu_{A'}(X) \circ \mu_{RL}(X,Y) \circ (0,0) \circ (0,0) \circ (0,0) \circ (0,0) \circ (0,0) = 0.1$ $(1,1) = \max_{A \in A} \left[\min_{A \in A} (0,0,1), \min_{A \in A} (0,0,1) \right] = \max_{A \in A} \left[0,0,1,0 \right] = 0.1$ $(1,2) = \max_{A \in A} \left[\min_{A \in A} (0,0,2), \min_{A \in A} (1,0,3), \min_{A \in A} (0,0,3) \right] = \max_{A \in A} \left[0,0,3,0 \right] = 0.3$ $\mu_{A'}(X) \circ \mu_{RL}(X,Y) = \left[0.1, 0.3 \right]$

plai(x) = plax (x,y):

(1.1) = max [min (0,06), min (1,06), min (0,03)] = max [0,06,0] = 0.6

(1.2) = max [min (0,02), min (1,02), min (0,02)] = max [0,02,0] = 0.2

plai(x) = plax [x,y] = [0.6,0.2]

$$\mu_{B'}(Y) = (\mu_{A'}(X) \circ \mu_{RL}(X,Y)) \vee (\mu_{A'}(X) \circ \mu_{RL}(X,Y))$$

$$\mu_{B'}(Y) = \{0.1, 0.2\} / (100)$$

