

Basic Definitions and Exact Pattern Search

Algorithms for Sequence Analysis

Sven Rahmann

Summer 2024

Introduction

The Exact Pattern Search Problem (Exact Matching)

alicewasbeginningtogetverytiredofsittingbyhersisteron
thebankandofhavingnothingtodoonceortwiceshehadpeepedi
ntothebookhersisterwasreadingbutithadnopicturesorconv
ersationsinitandwhatistheuseofabookthoughtalicewithou
tpicturesorconversation

The Exact Pattern Search Problem (Exact Matching)

alicewasbeginningtogetverytiredofsittingbyhersisteron
thebankandofhavingnothingtodoonceortwiceshehadpeepedi
ntothebookhersisterwasreadingbutithadnopicturesorconv
ersationsinitandwhatistheuseofabookthoughtalicewithou
tpicturesorconversation

Task

Find all occurrences of a given string in another (longer) string.

Goals

- as fast as possible (running time)
- as easily as possible (algorithm/implementation)

Relevance and Applications

General Applications

- Web search
- Full-text searches in scientific articles
- Find + replace in source code, etc.

Relevance and Applications

General Applications

- Web search
- Full-text searches in scientific articles
- Find + replace in source code, etc.

Applications in Computational Biology

- Searching for DNA/protein sequence features like binding sites
- Searching sequence data bases ("blasting")
- Building overlap graphs for de novo assembly
- Mapping sequenced DNA reads to a reference genome

Basic Definitions

Basic Notation

```
 \begin{array}{lll} \Sigma & \text{alphabet} = \text{finite set of characters (letters)} \\ w \in \Sigma^k & \text{string (word, $k$-gram, $k$-mer, text) of length $k$} \\ w \in \Sigma^* = \bigcup_{k=0}^\infty \Sigma^k & \text{word of arbitrary finite length} \\ w[i] \text{ or } w_i & \text{character at index $i$ in word $w$ (indexing starts at zero!)} \\ w[i\ldots j] & \text{substring from $i$ to $j$ (inclusively)} \\ w[i:j] & \text{substring from $i$ to $j$-1 (excluding $j$), Python notation} \\ \end{array}
```

Basic Notation

```
\begin{array}{lll} \Sigma & \text{alphabet} = \text{finite set of characters (letters)} \\ w \in \Sigma^k & \text{string (word, $k$-gram, $k$-mer, text) of length $k$} \\ w \in \Sigma^* = \bigcup_{k=0}^\infty \Sigma^k & \text{word of arbitrary finite length} \\ w[i] \text{ or } w_i & \text{character at index $i$ in word $w$ (indexing starts at zero!)} \\ w[i\ldots j] & \text{substring from $i$ to $j$ (inclusively)} \\ w[i:j] & \text{substring from $i$ to $j-1$ (excluding $j$), Python notation} \end{array}
```

Examples

```
\Sigma = \{A, B, C\} w[1] = w_1 = B w = ABCCBAAB w[5] = w_5 = A Indices: 0 1 2 3 4 5 6 7 w[1 \dots 4] = w[1 : 5] = BCCB
```


Definitions

Special substrings

```
Let w be a string of length n (written |w|=n). 
prefix any w[0:i]=w[:i], any substring that starts at index 0 suffix any w[i:n]=w[i:], any substring that ends at the last character w_{n-1} empty string \varepsilon, the(!) string of length zero (over any alphabet) proper any prefix, suffix that is not empty and not equal to w substring any w[i:j] with 0 \le i \le j \le n; w_j not inlcuded; length is j-i subsequence (w_i)_{i \in I}, where I is a subset of \{0,1,\ldots,n-1\} k-mer any substring of the given length k
```


Definitions

Special substrings

```
Let w be a string of length n (written |w|=n). 
 prefix any w[0:i]=w[:i], any substring that starts at index 0 suffix any w[i:n]=w[i:j], any substring that ends at the last character w_{n-1} empty string \varepsilon, the(!) string of length zero (over any alphabet) proper any prefix, suffix that is not empty and not equal to w substring any w[i:j] with 0 \le i \le j \le n; w_j not inlouded; length is j-i subsequence w_i \ge j, where j is a subset of w_j \ge j, where y_j \ge j and y_j \ge j substring of the given length k
```

Example

```
Let w = GATTACA.
```

ATTAC is a substring (w[1:6], a 5-mer), but not a prefix or suffix. AAA is not a substring, but a subsequence (index set $I = \{1, 4, 6\}$).

Translation of characters to small integers

Let Σ be an alphabet with $|\Sigma| = s$.

Then we can find a bijection ("translation") $t: \Sigma \to \{0, 1, \dots, s-1\}$.

Example for DNA with $\Sigma = \{A, C, G, T\}$: $A \mapsto 0$, $C \mapsto 1$, $G \mapsto 2$, $T \mapsto 3$.

Different bijections (s! in fact) are possible; usually there is a "natural" one.

Translation of characters to small integers

Let Σ be an alphabet with $|\Sigma| = s$.

Then we can find a bijection ("translation") $t: \Sigma \to \{0, 1, \dots, s-1\}$.

Example for DNA with $\Sigma = \{A, C, G, T\}$: $A \mapsto 0$, $C \mapsto 1$, $G \mapsto 2$, $T \mapsto 3$.

Different bijections (s! in fact) are possible; usually there is a "natural" one.

Encoding *k*-mers

For fixed (small) k, we may encode k-mers as (small) integers in $\{0, \ldots, s^k - 1\}$, by reading the translated k-mer as a base-s number with k digits.

Translation of characters to small integers

Let Σ be an alphabet with $|\Sigma| = s$.

Then we can find a bijection ("translation") $t: \Sigma \to \{0, 1, \dots, s-1\}$.

Example for DNA with $\Sigma = \{A, C, G, T\}$: $A \mapsto 0$, $C \mapsto 1$, $G \mapsto 2$, $T \mapsto 3$.

Different bijections (s! in fact) are possible; usually there is a "natural" one.

Encoding *k*-mers

For fixed (small) k, we may encode k-mers as (small) integers in $\{0, \ldots, s^k - 1\}$, by reading the translated k-mer as a base-s number with k digits.

Example for DNA with k = 3: CTG \mapsto $(132)_4 = 1 \cdot 16 + 3 \cdot 4 + 2 \cdot 1 = 30$.

Translation of characters to small integers

Let Σ be an alphabet with $|\Sigma| = s$.

Then we can find a bijection ("translation") $t: \Sigma \to \{0, 1, \dots, s-1\}$.

Example for DNA with $\Sigma = \{A, C, G, T\}$: $A \mapsto 0$, $C \mapsto 1$, $G \mapsto 2$, $T \mapsto 3$.

Different bijections (s! in fact) are possible; usually there is a "natural" one.

Encoding *k*-mers

For fixed (small) k, we may encode k-mers as (small) integers in $\{0, \ldots, s^k - 1\}$, by reading the translated k-mer as a base-s number with k digits.

Example for DNA with k = 3: CTG \mapsto $(132)_4 = 1 \cdot 16 + 3 \cdot 4 + 2 \cdot 1 = 30$.

Example for DNA with k = 5: AACTG \mapsto 30 as well; so k needs to be fixed.

Canonical codes for DNA k-mers

What is special about DNA strings?

DNA is double stranded.

A DNA word w is **equivalent** to its reverse complement (A \leftrightarrow T, C \leftrightarrow G) revcomp(w). Therefore, w and revcomp(w) should get the same encoding (canonical code): achieved by using the smaller encoding of w and revcomp(w) for both of them.

Canonical codes for DNA k-mers

What is special about DNA strings?

DNA is double stranded.

A DNA word w is **equivalent** to its reverse complement ($A \leftrightarrow T$, $C \leftrightarrow G$) revcomp(w). Therefore, w and revcomp(w) should get the same encoding (**canonical code**): achieved by using the **smaller** encoding of w and revcomp(w) for both of them.

Example for k = 3

The reverse complement of CTG is CAG.

CTG
$$\mapsto$$
 (132)₄ = 1 · 16 + 3 · 4 + 2 · 1 = 30.

$$CAG \mapsto (102)_4 = 1 \cdot 16 + 0 \cdot 4 + 2 \cdot 1 = 18.$$

The smaller value is 18, so the canonical code for both CTG and CAG is 18.

Canonical codes for DNA k-mers

What is special about DNA strings?

DNA is double stranded.

A DNA word w is **equivalent** to its reverse complement ($A \leftrightarrow T$, $C \leftrightarrow G$) revcomp(w). Therefore, w and revcomp(w) should get the same encoding (**canonical code**): achieved by using the **smaller** encoding of w and revcomp(w) for both of them.

Example for k = 3

The reverse complement of CTG is CAG.

CTG
$$\mapsto$$
 (132)₄ = 1 · 16 + 3 · 4 + 2 · 1 = 30.

CAG
$$\mapsto$$
 $(102)_4 = 1 \cdot 16 + 0 \cdot 4 + 2 \cdot 1 = 18$.

The smaller value is 18, so the canonical code for both CTG and CAG is 18.

Canonical codes are important in practice; make sure you understand them.

Exact Pattern Search

Exact Pattern Search (Matching) Problem

Given

finite alphabet Σ , text $T \in \Sigma^n$, pattern $P \in \Sigma^m$; usually $m \ll n$. (The pattern is a simple string for now.)

Exact Pattern Search (Matching) Problem

Given

finite alphabet Σ , text $T \in \Sigma^n$, pattern $P \in \Sigma^m$; usually $m \ll n$. (The pattern is a simple string for now.)

Sought (three variants)

- **1** Decision: Is P a substring of T?
 - \rightsquigarrow Is there an $i \in \mathbb{N}$ such that $P = T[i \dots i + m 1]$?
- **2** Counting: How often does *P* occur in *T*?
 - \leadsto Let $M := \{i \in \mathbb{N} \mid P = T[i \dots i + m 1]\}$. Report |M|.
- **3 Enumeration:** At what positions does P occur in T?
 - \rightsquigarrow Report the full set M of match positions.

Problem Variants I

Exact Pattern Search (what we do next)

Given a pattern $P \in \Sigma^m$ and a text $T \in \Sigma^n$, find indices i such that $P = T[i \dots i + m - 1]$.

Problem Variants I

Exact Pattern Search (what we do next)

Given a pattern $P \in \Sigma^m$ and a text $T \in \Sigma^n$, find indices i such that $P = T[i \dots i + m - 1]$.

Approximate Pattern Search (later)

Find all **approximate** occurrences of P in T, i.e. for a distance measure d, find indices i, j such that $d(P, T[i...j]) \le k$.

Example: Hamming distance

Hamming distance: number of different positions (for strings of the same length) $P = \texttt{ABCDE}, \ T = \texttt{XXXABDDEYYY}$ d(P, T[3...7]) = 1

Problem Variants II

Pattern $P \in \Sigma^m$ and text $T \in \Sigma^n$

Searching without index (what we do next)

- Preprocess pattern in O(m)
- Search text for pattern in O(n)
- Search for k different patterns in the same text: O(k(m+n)) or O(km+n)

Searching with index (what we do after that)

- Preprocess text and build index data structure in O(n)
- Search for pattern using index in O(m)
- Search for k different patterns in the same text: O(n + km)
- Index structures are useful for many tasks beyond searching

Approach: sliding windows

- Compare pattern P with window (i.e. substring) of text T
- Slide window across text from left to right

Naive Algorithm

- Shift window by one position in each iteration
- Compare pattern to window content from left to right

Example

Text: AACBACCABBABCA...

Pattern: BACCAB Window

Approach: sliding windows

- \blacksquare Compare pattern P with window (i.e. substring) of text T
- Slide window across text from left to right

Naive Algorithm

- Shift window by one position in each iteration
- Compare pattern to window content from left to right

Example

Text: AACBACCABBABCA...

Pattern: BACCAB

Approach: sliding windows

- \blacksquare Compare pattern P with window (i.e. substring) of text T
- Slide window across text from left to right

Naive Algorithm

- Shift window by one position in each iteration
- Compare pattern to window content from left to right

Example

Text: AACBACCABBABCA...

Pattern: BACCAB

Approach: sliding windows

- Compare pattern P with window (i.e. substring) of text T
- Slide window across text from left to right

Naive Algorithm

- Shift window by one position in each iteration
- Compare pattern to window content from left to right

Example

Text: AACBACCABBABCA...

Pattern: BACCAB

Code: The (few) things you need to know about Python

Pseudocode vs. Python

- (Good) Python code is as readable as pseudo code, even if you don't know Python
- Allows you (and us) to try/test algorithms immediately

Code: The (few) things you need to know about Python

Pseudocode vs. Python

- (Good) Python code is as readable as pseudo code, even if you don't know Python
- Allows you (and us) to try/test algorithms immediately
- for i in range(5,n): iterate over $i \in \{5, \ldots, n-1\}$
- for i in range(n): iterate over $i \in \{0, \dots, n-1\}$
- len(x) length/size of x, when x is a string, list, set, any container
- T[i:j] substring T[i...j-1], also applies to lists
- def foo(x,y): define a function named foo
- return x returns a value x from a function call
- yield x like return, but execution is continued later during iteration
- dict() dictionary (hash table) storing key-value pairs
- // vs. / integer vs. floating point division

Naive Pattern Search Algorithm

```
def naive pattern search(P, T):
   m, n = len(P), len(T)
    for i in range(n - m + 1):
        if T[i:i+m] == P: # implicit loop of size m
           vield i
             0 1 • • •
                                       ••• n-1
                                               Text T
                                               Pattern P
        i=0
        i=1
                                       Comparisons: ---
        i=2
```


Running Time and Possible Improvements

Running time

- O(mn) worst case
- $O(E_m \cdot n)$ on average; E_m : average number of comparisons per window

Running Time and Possible Improvements

```
i=0 Pattern P
i=1 Comparisons:
```

Running time

- O(mn) worst case
- $O(E_m \cdot n)$ on average; E_m : average number of comparisons per window

Thoughts

- **1** Perhaps O(mn) is pessimistic, and $O(E_m \cdot n)$ has a small constant E_m ?
- 2 We "touch" the same characters in T multiple times.
 - Can we "re-use" information from preceding comparisons?
 - \rightarrow Automata-based algorithms
- 3 Can we shift window by more than one character? \rightarrow Horspool algorithm

Average-Case Analysis of the Naïve Algorithm

Theorem: Expected Running Time

Let Σ be an alphabet with $|\Sigma| \geq 2$.

Randomly (i.i.d.) choose a pattern of length m and a text of length n over Σ .

Then the worst-case running time of the naïve algorithmm is O(mn),

but the expected running time is $O(E_m \cdot n) = O(n)$ with a small constant $E_m < 2$.

Average-Case Analysis of the Naïve Algorithm

Theorem: Expected Running Time

Let Σ be an alphabet with $|\Sigma| \geq 2$.

Randomly (i.i.d.) choose a pattern of length m and a text of length n over Σ .

Then the worst-case running time of the naïve algorithmm is O(mn),

but the expected running time is $O(E_m \cdot n) = O(n)$ with a small constant $E_m < 2$.

We compute E_m : The probability p that two random characters agree is

$$p:=\frac{|\Sigma|}{|\Sigma|^2}=\frac{1}{|\Sigma|}.$$

(If different characters a have different probabilities p_a each, the expression for p changes to $p = \sum_{a \in \Sigma} p_a^2$, but the rest of the proof remains unchanged.)

The probability that all m pattern characters match with the text window is p^m . This needs m comparisons (and results in a match, but this is irrelevant).

- The probability that all m pattern characters match with the text window is p^m . This needs m comparisons (and results in a match, but this is irrelevant).
- The probability to first fail at the *j*-th comparison j = 1, ..., m, is $p^{j-1}(1-p)$. This needs *j* comparisons of course (and results in a mismatch).

- The probability that all m pattern characters match with the text window is p^m . This needs m comparisons (and results in a match, but this is irrelevant).
- The probability to first fail at the *j*-th comparison j = 1, ..., m, is $p^{j-1}(1-p)$. This needs *j* comparisons of course (and results in a mismatch).
- Therefore, we can compute E_m as the weighted average

$$E_m := m p^m + \sum_{j=1}^m j p^{j-1} (1-p)$$

- The probability that all m pattern characters match with the text window is p^m . This needs m comparisons (and results in a match, but this is irrelevant).
- The probability to first fail at the *j*-th comparison $j=1,\ldots,m$, is $p^{j-1}(1-p)$. This needs *j* comparisons of course (and results in a mismatch).
- Therefore, we can compute E_m as the weighted average

$$E_m := m p^m + \sum_{j=1}^m j p^{j-1} (1-p)$$

■ For any m, the value of E_m is bounded by $E_{\infty} := \lim_{m \to \infty} E_m$:

$$E_m < E_{\infty} = (1-p)\sum_{i=1}^{\infty} j \, p^{j-1}$$
.

- The probability that all m pattern characters match with the text window is p^m . This needs m comparisons (and results in a match, but this is irrelevant).
- The probability to first fail at the *j*-th comparison j = 1, ..., m, is $p^{j-1}(1-p)$. This needs *j* comparisons of course (and results in a mismatch).
- Therefore, we can compute E_m as the weighted average

$$E_m := m p^m + \sum_{j=1}^m j p^{j-1} (1-p)$$

■ For any m, the value of E_m is bounded by $E_{\infty} := \lim_{m \to \infty} E_m$:

$$E_m < E_{\infty} = (1-p)\sum_{i=1}^{\infty} j \, p^{j-1}$$
.

It remains to evaluate the series E_{∞} .

■ So far: For any alphabet Σ and any $m \ge 1$, we have

$$E_m < E_{\infty} = (1-p)\sum_{j=1}^{\infty} j \, p^{j-1} = (1-p)\sum_{j=0}^{\infty} j \, p^{j-1}.$$

You can use a computer algebra system to evaluate this, or. . .

■ So far: For any alphabet Σ and any $m \ge 1$, we have

$$E_m < E_{\infty} = (1-p)\sum_{j=1}^{\infty} j \, p^{j-1} = (1-p)\sum_{j=0}^{\infty} j \, p^{j-1}.$$

- You can use a computer algebra system to evaluate this, or...
- Consider $E_{\infty} = E_{\infty}(p)$ as a function of p (recall $p = 1/|\Sigma| < 1$ for $|\Sigma| \ge 2$).
- The term $j p^{j-1}$ is the derivative of p^j . We may swap derivative and sum.

■ So far: For any alphabet Σ and any $m \ge 1$, we have

$$E_m < E_{\infty} = (1-p)\sum_{j=1}^{\infty} j \, p^{j-1} = (1-p)\sum_{j=0}^{\infty} j \, p^{j-1}.$$

- You can use a computer algebra system to evaluate this, or. . .
- Consider $E_{\infty} = E_{\infty}(p)$ as a function of p (recall $p = 1/|\Sigma| < 1$ for $|\Sigma| \ge 2$).
- The term $j p^{j-1}$ is the derivative of p^j . We may swap derivative and sum.
- Because $\sum_{i=0}^{\infty} p^{i} = 1/(1-p)$ (geometric series), we have

$$\sum_{i=0}^{\infty} j \, p^{j-1} = \sum_{i=0}^{\infty} \frac{\mathsf{d}}{\mathsf{d} p} \left[p^{j} \right] = \frac{\mathsf{d}}{\mathsf{d} p} \left[\sum_{i=0}^{\infty} p^{j} \right] = \frac{\mathsf{d}}{\mathsf{d} p} \left[\frac{1}{1-p} \right] = \frac{1}{(1-p)^{2}} \,,$$

$$E_{\infty} = rac{1-p}{(1-p)^2} = rac{1}{1-p} = rac{|\Sigma|}{|\Sigma|-1} \leq 2.$$

■ In summary, for all $m \ge 1$ and all $|\Sigma| \ge 2$,

$$E_m < E_{\infty} = \frac{1}{1-p} = \frac{|\Sigma|}{|\Sigma|-1} \le 2$$
.

- For $|\Sigma| \to \infty$ we have $E_m \setminus 1$.
- The expected running time on i.i.d. random texts is thus $O(n \cdot E_m) = O(n)$ with a small constant $E_m < 2$.

Summary

- Basic definitions
- k-mers and integer encodings of k-mers
- Special considerations about DNA sequences (double-stranded):
 canonical codes for DNA k-mers
- Exact Pattern Search (for single patterns without index)
- Naïve algorithm
- Worst-case analysis: O(mn) with |P| = m and |T| = n
- Average-case analysis on random texts and patterns: $O(E_m n)$ with $E_m \leq 2$

Possible exam questions

- What is the difference between string, sequence, word, k-mer, q-gram?
- What is the difference between substring and subsequence?
- What is a k-mer ?
- How can we encode a k-mer as an integer ?
- What is special about *k*-mers of DNA sequences ?
- How can canonical codes of DNA k-mers be defined?
- State the exact pattern search problem and known variants of it.
- What is the worst-case and average-case running time of the naïve algorithm?
- The naïve algorithm is fast on average; why bother with more complex algorithms?

