Languages and Algorithms for Artificial Intelligence (Third Module)

A Glimpse into Computational Learning Theory

Ugo Dal Lago

University of Bologna, Academic Year 2019/2020

► We have so far taken functions and languages as our notions of **computational tasks**:

► We have so far taken functions and languages as our notions of **computational tasks**:

▶ Is it that **learning problemes**, among the most crucial tasks in AI, can be seen as computational problems?

We have so far taken functions and languages as our notions of computational tasks:

- ▶ Is it that **learning problemes**, among the most crucial tasks in AI, can be seen as computational problems?
- ▶ The answer is positive: any learning algorithm \mathcal{A} actually computes a function $f_{\mathcal{A}}$ whose input is a finite sequence of labelled data and whose output can be seen as a classifier:

We have so far taken functions and languages as our notions of computational tasks:

- ▶ Is it that **learning problemes**, among the most crucial tasks in AI, can be seen as computational problems?
- ▶ The answer is positive: any learning algorithm \mathcal{A} actually computes a function $f_{\mathcal{A}}$ whose input is a finite sequence of labelled data and whose output can be seen as a classifier:

$$DATA \longrightarrow f_A \longrightarrow CLASSIFIERS$$

- ightharpoonup Could data and classifiers be encoded as strings, thus turning f_A as a function of the kind we know?
- How could we formalize the fact that \mathcal{A} correctly solves a given learning task?

Suppose that the data the algorithm \mathcal{A} takes in input are points $(x,y) \in \mathbb{R}_{[0,1]} \times \mathbb{R}_{[0,1]}$ (where $\mathbb{R}_{[0,1]}$ is the set of real numbers between 0 and 1). These are labelled as positive or negative depending on they being inside a rectangle

Suppose that the data the algorithm \mathcal{A} takes in input are points $(x,y) \in \mathbb{R}_{[0,1]} \times \mathbb{R}_{[0,1]}$ (where $\mathbb{R}_{[0,1]}$ is the set of real numbers between 0 and 1). These are labelled as positive or negative depending on they being inside a rectangle

The algorithm \mathcal{A} should be able to guess a classifier, namely a *rectangle*, based on the labelled data it received in input.

Suppose that the data the algorithm \mathcal{A} takes in input are points $(x,y) \in \mathbb{R}_{[0,1]} \times \mathbb{R}_{[0,1]}$ (where $\mathbb{R}_{[0,1]}$ is the set of real numbers between 0 and 1). These are labelled as positive or negative depending on they being inside a rectangle

- ▶ The algorithm \mathcal{A} should be able to guess a classifier, namely a *rectangle*, based on the labelled data it received in input.
- ▶ It knows that the data are labelled according to a rectangle, R but it does not know which rectangle is being used.

Suppose that the data the algorithm \mathcal{A} takes in input are points $(x,y) \in \mathbb{R}_{[0,1]} \times \mathbb{R}_{[0,1]}$ (where $\mathbb{R}_{[0,1]}$ is the set of real numbers between 0 and 1). These are labelled as positive or negative depending on they being inside a rectangle

- ▶ The algorithm \mathcal{A} should be able to guess a classifier, namely a *rectangle*, based on the labelled data it received in input.
- ► It knows that the data are labelled according to a rectangle, R but it does not know which rectangle is being used.
- The algorithm \mathcal{A} cannot guess the rectangle R with perfect accuracy if the data it receives in input are too few. As the data in D grow in number, we would expect the rectangle $f_{\mathcal{A}}(D)$ to converge to R, wouldn't we?

The Rules of the Game

- Again, A knows that the the way input data are labelled is by way of a rectangle (whose sides are parallel to the axes).
 - ▶ But it *does not know* which one!

The Rules of the Game

- Again, A knows that the the way input data are labelled is by way of a rectangle (whose sides are parallel to the axes).
 - ▶ But it *does not know* which one!
- igwedge A does not know the distribution f D from which the points (x,y) are drawn.
 - ► It is supposed to "do the job" for each possible distribution **D**.

The Rules of the Game

- Again, A knows that the the way input data are labelled is by way of a rectangle (whose sides are parallel to the axes).
 - ▶ But it *does not know* which one!
- $ightharpoonup \mathcal{A}$ does not know the distribution \mathbf{D} from which the points (x,y) are drawn.
 - ► It is supposed to "do the job" for each possible distribution **D**.
- \triangleright \mathcal{A} is an ordinary algorithm.
 - Ultimately, it can be seen as a TM.
 - We thus assume that real numbers can be appropriately approximated as binary strings.
 - ▶ In some cases, it is useful to assume \mathcal{A} to have the possibility to "flip a coin", i.e., to be a randomized algorithm.

The Algorithm $\mathcal{A}_{\mathsf{BFP}}$

- ▶ We could define an Algorithm $\mathcal{A}_{\mathsf{BFP}}$ as follows:
 - 1. Given the data $((x_1, y_1), p_1), \ldots, ((x_n, y_n), p_n);$
 - 2. Determine the smallest rectangle R including all the positive instances;
 - 3. Return R.

The Algorithm $\mathcal{A}_{\mathsf{BFP}}$

- ▶ We could define an Algorithm $\mathcal{A}_{\mathsf{BFP}}$ as follows:
 - 1. Given the data $((x_1, y_1), p_1), \ldots, ((x_n, y_n), p_n);$
 - 2. Determine the smallest rectangle R including all the positive instances;
 - 3. Return R.
- ▶ In the probelm instance from the previous slides, one would get, when running $\mathcal{A}_{\mathsf{BFP}}$, the little bold rectangle. Of course, the result is always a sub-rectangle of the target rectangle.

The Algorithm $\mathcal{A}_{\mathsf{BFP}}$

- ▶ We could define an Algorithm $\mathcal{A}_{\mathsf{BFP}}$ as follows:
 - 1. Given the data $((x_1, y_1), p_1), \dots, ((x_n, y_n), p_n);$
 - 2. Determine the smallest rectangle R including all the positive instances;
 - 3. Return R.
- ▶ In the probelm instance from the previous slides, one would get, when running $\mathcal{A}_{\mathsf{BFP}}$, the little bold rectangle. Of course, the result is always a sub-rectangle of the target rectangle.

► The output classifier is a rectangle, which can be easily represented as a pair of coordinates.

- ▶ The output of $\mathcal{A}_{\mathsf{BFP}}$ can be very different from the target rectangle.
 - ▶ Is the algorithm balantantly incorrect, then?

- ▶ The output of $\mathcal{A}_{\mathsf{BFP}}$ can be very different from the target rectangle.
 - ▶ Is the algorithm balantantly incorrect, then?
- ► The answer is **negative**.

- ▶ The output of $\mathcal{A}_{\mathsf{BFP}}$ can be very different from the target rectangle.
 - ▶ Is the algorithm balantantly incorrect, then?
- ► The answer is **negative**.
- For a given rectangle R and a target rectangle T, the probability of error in using R as a replacement of T (when the distribution is \mathbf{D}) is

$$error_{\mathbf{D},T}(R) = \Pr_{x \sim \mathbf{D}}[x \in (R-T) \cup (T-R)].$$

- ▶ The output of $\mathcal{A}_{\mathsf{BFP}}$ can be very different from the target rectangle.
 - ▶ Is the algorithm balantantly incorrect, then?
- ► The answer is **negative**.
- For a given rectangle R and a target rectangle T, the probability of error in using R as a replacement of T (when the distribution is \mathbf{D}) is
- $error_{\mathbf{D},T}(R) = \Pr_{x \sim \mathbf{D}}[x \in (R-T) \cup (T-R)].$ As the number of samples in D grows, the result $\mathcal{A}_{\mathsf{BFP}}(D)$
 - does *not* necessarily approach the target rectangle, but its probability of error approaches zero.

Theorem.

For every distribution **D**, for every $0 < \varepsilon < \frac{1}{2}$ and for every $0 < \delta < \frac{1}{2}$, if $m \ge \frac{4}{\varepsilon} \ln \left(\frac{4}{\delta}\right)$, then

$$\Pr_{D \sim \mathbf{D}^m}[error_{\mathbf{D},T}(\mathcal{A}_{\mathsf{BFP}}(T(D)) < \varepsilon] > 1 - \delta$$

The General Model — Terminology

- \blacktriangleright We assume to work within an **instance space** X.
 - ➤ X is the set of (encodings) of instances of objects the learner wants to classify.
 - ▶ Data from the instance spaces are generated through a distribution **D**, unknown to the learner.
 - In the example, $X = \mathbb{R}^2_{[0,1]}$.

The General Model — Terminology

- \blacktriangleright We assume to work within an **instance space** X.
 - ➤ X is the set of (encodings) of instances of objects the learner wants to classify.
 - ▶ Data from the instance spaces are generated through a distribution **D**, unknown to the learner.
 - In the example, $X = \mathbb{R}^2_{[0,1]}$.
- ightharpoonup Concepts are subsets of X, i.e. collections of objects. These should be thought of as properties of objects.
 - In the example, concepts are arbitrary subsets of $X = \mathbb{R}^2_{[0,1]}$, i.e. arbitrary regions within $\mathbb{R}^2_{[0,1]}$.

The General Model — Terminology

- \blacktriangleright We assume to work within an **instance space** X.
 - ➤ X is the set of (encodings) of instances of objects the learner wants to classify.
 - ▶ Data from the instance spaces are generated through a distribution **D**, unknown to the learner.
 - In the example, $X = \mathbb{R}^2_{[0,1]}$.
- ightharpoonup Concepts are subsets of X, i.e. collections of objects. These should be thought of as properties of objects.
 - In the example, concepts are arbitrary subsets of $X = \mathbb{R}^2_{[0,1]}$, i.e. arbitrary regions within $\mathbb{R}^2_{[0,1]}$.
- A concept class \mathcal{C} is a collection of concepts, namely a subset of $\mathcal{P}(X)$. These are the concepts which are sufficiently simple to describe, and that algorithms can handle.
 - \triangleright The concept class \mathcal{C} we work with in the example is the one of rectangles whose sides are parallel to the axes.
 - ▶ The target concept $c \in C$ is the concept the learner wants to build a classifier for.

The General Model — The Learning Algorithm \mathcal{A}

Every learning algorithm is designed to learn concepts from a concept class \mathcal{C} but it does not know the target concept $c \in \mathcal{C}$, nor the associated distribution \mathbf{D} .

The General Model — The Learning Algorithm \mathcal{A}

- Every learning algorithm is designed to learn concepts from a concept class \mathcal{C} but it does not know the target concept $c \in \mathcal{C}$, nor the associated distribution \mathbf{D} .
- ▶ The interface of any learning algorithm \mathcal{A} can be described as follows:

where:

- ε is error parameter, while δ is the confidence parameter;
- ▶ $EX(c, \mathbf{D})$ should be though as an *oracle*, a procedure that \mathcal{A} can call as many times she wants, and which returns an element $x \sim \mathbf{D}$ from X, labelled according to whether it is in c or not.

The General Model — The Learning Algorithm \mathcal{A}

- Every learning algorithm is designed to learn concepts from a concept class \mathcal{C} but it does not know the target concept $c \in \mathcal{C}$, nor the associated distribution \mathbf{D} .
- ▶ The interface of any learning algorithm \mathcal{A} can be described as follows:

where:

- \triangleright ε is error parameter, while δ is the confidence parameter;
- \triangleright $EX(c, \mathbf{D})$ should be though as an *oracle*, a procedure that \mathcal{A} can call as many times she wants, and which returns an element $x \sim \mathbf{D}$ from X, labelled according to whether it is in c or not.
- The **error** of any $h \in \mathcal{C}$ is defined as $error_{\mathbf{D},c} = \Pr_{x \sim \mathbf{D}}[h(x) \neq c(x)].$

The General Model — PAC Concept Classes

Let \mathcal{C} be a concept class over the instance space X. We say that \mathcal{C} is **PAC learnable** iff there is an algorithm \mathcal{A} such that for every $c \in \mathcal{C}$, for every distribution \mathbf{D} , for every $0 < \varepsilon < \frac{1}{2}$ and for every $0 < \delta < \frac{1}{2}$, then

$$\Pr[error_{\mathbf{D},c}(\mathcal{A}(EX(c,\mathbf{D}),\varepsilon,\delta))<\varepsilon]>1-\delta$$

where the probability is taken over the calls to $EX(c, \mathbf{D})$

The General Model — PAC Concept Classes

Let \mathcal{C} be a concept class over the instance space X. We say that \mathcal{C} is **PAC learnable** iff there is an algorithm \mathcal{A} such that for every $c \in \mathcal{C}$, for every distribution \mathbf{D} , for every $0 < \varepsilon < \frac{1}{2}$ and for every $0 < \delta < \frac{1}{2}$, then

$$\Pr[error_{\mathbf{D},c}(\mathcal{A}(EX(c,\mathbf{D}),\varepsilon,\delta))<\varepsilon]>1-\delta$$

where the probability is taken over the calls to $EX(c, \mathbf{D})$

- If the time complexity of \mathcal{A} is bounded by a polynomial in $\frac{1}{\varepsilon}$ and $\frac{1}{\delta}$, we say that \mathcal{C} is **efficiently PAC learnable**.
 - The complexity of \mathcal{A} is measured taking into account the number of calls to $EX(c, \mathbf{D})$.

The General Model — PAC Concept Classes

Let \mathcal{C} be a concept class over the instance space X. We say that \mathcal{C} is **PAC learnable** iff there is an algorithm \mathcal{A} such that for every $c \in \mathcal{C}$, for every distribution \mathbf{D} , for every $0 < \varepsilon < \frac{1}{2}$ and for every $0 < \delta < \frac{1}{2}$, then

$$\Pr[error_{\mathbf{D},c}(\mathcal{A}(EX(c,\mathbf{D}),\varepsilon,\delta))<\varepsilon]>1-\delta$$

where the probability is taken over the calls to $EX(c, \mathbf{D})$

- If the time complexity of \mathcal{A} is bounded by a polynomial in $\frac{1}{\epsilon}$ and $\frac{1}{\delta}$, we say that \mathcal{C} is efficiently PAC learnable.
 - The complexity of \mathcal{A} is measured taking into account the number of calls to $EX(c, \mathbf{D})$.

Corollary

The concept-class of axis-aligned rectangles over $\mathbb{R}^2_{[0,1]}$ is efficiently PAC-learnable.

Thank You!

Questions?