Lezione del 18 ottobre del Prof. Frigerio

Definizione 0.1. Un insieme $Z \subseteq X$ è f-saturo se

$$Z = f^{-1}(f(Z))$$

in modo equivalente

$$Z = f^{-1}(C)$$
 $C \subseteq Y$

Osservazione 1. In generale, vale $Z \subseteq f^{-1}(f(Z))$

Definizione 0.2 (Identificazione).

 $f: X \to Y$ si dice identificazione se è continua, suriettiva e se

$$A \subseteq X$$
 aperto \Leftrightarrow $f^{-1}(A) \subseteq X$ aperto

in modo equivalente

$$A \subseteq X$$
 aperto $\Leftrightarrow \exists B \text{ aperto saturo } A = f(B)$

Osservazione 2. La freccia "vera" è ← infatti l'altra è la definizione di continuità

Osservazione 3. Sia $f: X \to Y$ continua è biettiva. Allora

f immersione $\Leftrightarrow f$ identificazione $\Leftrightarrow f$ omeomorfismo

Proposizione 0.1. Sia $f: X \to Y$ identificazione.

Definendo la relazione $x \sim x' \Leftrightarrow f(x) = f(x')$ allora \overline{f} che fa commutare il seguente diagramma

è un omeomorfismo

Dimostrazione. \overline{f} è ben definita e biettiva per motivi insiemistici, inoltre è continua per la propietà universale della topologia quoziente.

Devo vedere che f è aperta.

Sia $A \in \frac{X}{\sim}$ aperto.

$$\overline{f}(A) = f(\pi^{-1}(A))$$

Ma f è un identificazione

$$f(\pi^{-1}(A)) \subseteq Y$$
 aperto \Leftrightarrow $f^{-1}(f(\pi^{-1}(A))) \subseteq X$ aperto

Ora $\pi^{-1}(A)$ è f-saturo (per come è stata definita la relazione di equivalenza) per cui

$$f^{-1}(f(\pi^{-1}(A))) = \pi^{-1}(A)$$
 aperto perchè π continua

1

Osservazione 4. \overline{f} come sopra è un omeomorfismo $\Leftrightarrow f$ è identificazione. Basta leggere con attenzione la dimostrazione

Proposizione 0.2. Sia $f: X \to Y$ continua e suriettiva

- ullet f è aperta allora è un'identificazione
- f è chiusa allora è un'identificazione

Dimostrazione. Mostriamo solamente il caso aperto. Dato $A \subseteq Y$, devo dimostrare che

$$A \text{ aperto} \Leftrightarrow f^{-1}(A) \subseteq X \text{ aperto}$$

 \Rightarrow deriva dalla continuità di f

 \Leftarrow essendo f aperta $f^{-1}(A)$ aperto $\Rightarrow f(f^{-1}(A))$ aperto. Inoltre essendo f surgettiva allora $f(f^{-1}(A)) = A$

Notazione: se $A \subseteq X$ si pone con $\frac{X}{A} = \frac{X}{\sim}$ dove

$$x \sim y \quad \Leftrightarrow \quad x = y \text{ o } (x \in A \text{ e } y \in A$$

Tale insieme è ottenuto da X condensando A ad un punto

Esempio 0.3. $\frac{[0,1]}{\{0,1\}}$ Cerco un identificazione

$$f: [0,1] \to S' = \{x \in \mathbb{R}^2 \, | \, ||x|| = 1\}$$

tale che $f(x) = f(y) \Leftrightarrow x = y \ o \{x, y\} = \{0, 1\}.$ Pongo

$$f(t) = (\cos 2\pi t, \sin 2\pi t)$$

tale funzione è continua, suriettiva e induce la relazione di equivalenza. Mostriamo che è chiusa

- $f_{|}: [0, \frac{1}{2}] \to C_1 = S' \cap \{y \ge 0\}$ con C_1 chiuso. Tale restrizione è un omeomorfismo essendo $g = \frac{\arccos x}{2\pi}$ una sua inversa continua
- In modo analogo $f_{|}: \left[\frac{1}{2},1\right] \to C_2 = S' \cap \{y < 0\}$ è un omeomorfismo.
- $Sia\ Z \subseteq [0,1]\ chiuso\ allora$

$$f(Z) = f\left(Z \cap \left[0, \frac{1}{2}\right]\right) \cup f\left(Z \cap \left[\frac{1}{2}, 1\right]\right)$$

Ora $Z \cap \left[0, \frac{1}{2}\right]$ è un chiuso di $\left[0, \frac{1}{2}\right]$ e poichè f_{\parallel} è un omo sul chiuso C_1 allora

$$f\left(Z\cap\left[0,\frac{1}{2}\right]\right)$$
 è un chiuso di S' (chiuso di un chiuso)

Analogamente

$$f\left(Z\cap\left[\frac{1}{2},1\right]\right)$$
 è un chiuso di S'

quindi f(Z) è unione di 2 chiusi quindi è chiuso

Osservazione 5. La funzione decritta non è aperta infatti [0,1) aperto in [0,1] ma f([0,1) non è aperto (arco di circonferenza) con un solo "estremo chiuso"

Enunciamo 2 teoremi che ci servono per generalizzare il risultato precedente

Teorema 0.4. X compatto, Y è T2 con $f: X \to Y$ continua. Allora f è chiusa

Teorema 0.5. I chiusi e limitati di \mathbb{R}^n sono compatti

Definizione 0.3. Su \mathbb{R}^n definiamo i seguenti insiemi

$$D^{n} = \{x \in R^{n} \mid ||x|| \le 1\} \overline{B^{n}(0,1)}$$

$$S^{n-1} = \partial D^n = \{ x \in \mathbb{R}^n \, | \, ||x|| = 1 \}$$

Teorema 0.6.

$$\frac{D^n}{\partial D^n}$$
 omeomorfo a S^n

Dimostrazione. Cerco $f: D^n \to S^n$ tale che

$$f(x) = f(y) \Leftrightarrow x = y \circ ||x|| = ||y|| = 1$$

continua (per il teorema precedente, chiusa) e surgettiva.

Pongo

$$f(x) = (\lambda x, 2||x||^2 - 1)$$

Poichè $f(x) \in S^n$ allora

$$\lambda^{2}||x||^{2} + (2||x||^{2} - 1)^{2} = 1$$
$$\lambda = 2\sqrt{1 - ||x||^{2}}$$

Si verifichi che f è continua (dunque chiusa), biettiva e ha la propietà richiesta

Osservazione 6. Esistono identificazioni che non sono chiuse nè aperte. Sia

$$X=\{x\geq 0\}\cap \{y=0\}\subseteq \mathbb{R}^2$$

Allora $\pi: X \to \mathbb{R}$ $\pi(x,y) = x$ è un identificazione.

Sia $C \subseteq \mathbb{R}$ allora dobbiamo provare che

$$\pi^{-1}(C)$$
 chiuso \Rightarrow C chiuso

Sia $p \in \overline{C}$ allora essendo \mathbb{R} Hausdorff

$$\exists \{p_n\} \subseteq C \quad \lim p_n = p$$

Ora $(p_n,0) \in \pi^{-1}(C) \ \forall n$ quindi supponendo che la controimmagine sia chiusa

$$\lim(p_n,0) = (p,0) \in \overline{\pi^{-1}(C)} = \pi^{-1}(C)$$

Dunque $p = \pi(p, 0) \in C$ ovvero abbiamo provato che $C = \overline{C}$.

Mostriamo che non è aperta.

Sia $Y=\{x\in X\mid d(x,0)<1\}$ Y è aperta in X infatti $Y=B^2(0,1)\cap X$ mentre $\pi(Y)=[0,1)$ non è aperto in $\mathbb R$

Se prendiamo come chiuso un ramo di iperbole (primo quadrante) otteniamo che essa è chiusa in X mentre la sua immagine non è chiusa in \mathbb{R}