

Aula 05: Arquitetura de Computadores – Memória interna

Prof. Hugo Puertas de Araújo hugo.puertas@ufabc.edu.br Sala: Prof. visitantes (5º andar / Torre 2)

Objetivos de aprendizagem

- Apresentar uma visão geral dos tipos fundamentais de memória principal semicondutora.
- Entender a operação de um código básico que pode detectar e corrigir erros de bit único em palavras de 8 bits.
- Resumir propriedades das organizações modernas DDR-DRAM.
- Entender a diferença entre memória flash NOR e NAND.
- Apresentar uma visão geral das novas tecnologias de memórias de estado sólido não volátil.

Memória principal semicondutora

- O elemento básico de uma memória semicondutora é a célula de memória.
- Todas as células de memória semicondutora compartilham certas propriedades:
 - i. Apresentam dois estados estáveis (ou semiestáveis), que podem ser usados para representar os binários 1 e 0.
 - ii. São capazes de serem gravadas (pelo menos uma vez), para definir o estado.
 - iii. São capazes de serem lidas, para verificar o estado.

Memória principal semicondutora

Operação de uma célula de memória:

■ Tipos de memória semicondutora:

Tipo de memória	Categoria	Apagamento	Mecanismo de gravação	Volatilidade		
Memória de acesso aleatório (RAM)	Memória de leitura-gravação	Eletricamente, em nível de byte	Eletricamente	Volátil		
Memória somente de leitura (ROM)	Memória	Não á possíval	Máscaras			
ROM programável (PROM — do inglês, <i>Programmable ROM</i>)	somente de leitura	Não é possível				
PROM apagável (EPROM — do inglês, <i>Erasable PROM</i>) PROM eletricamente apagável (EEPROM — do inglês, <i>Electrically Erasable PROM</i>) Memória flash		Luz UV, Em nível de chip		Não volátil		
	Memória principalmente de leitura	Eletricamente, em nível de byte	Eletricamente			
		Eletricamente, em nível de bloco				

- A mais comum é conhecida como memória de acesso aleatório (RAM — do inglês, Random Access Memory).
- Uma característica distinta da memória que é designada como RAM é a possibilidade tanto de ler dados como escrever novos dados na memória de um modo fácil e rápido.
- Outra característica distinta da RAM é que ela é volátil.
- A tecnologia RAM é dividida em duas tecnologias:
 - i. dinâmica e
 - ii. estática.

■ Uma RAM dinâmica (DRAM — do inglês, Dynamic RAM) é feita com células que armazenam dados como carga em capacitores.

■ Uma RAM dinâmica (DRAM — do inglês, Dynamic RAM) é feita com células que armazenam dados como carga em capacitores.

■ Uma RAM estática (SRAM) é um dispositivo que usa os mesmos elementos lógicos usados no processador.

Tipos de ROM

- Uma memória somente de leitura (ROM do inglês, Read-Only Memory) contém um padrão permanente de dados, que não pode ser mudado.
- Uma ROM é não volátil, ou seja, nenhuma fonte de energia é necessária para manter os valores dos bits na memória.
- A ROM programável (PROM) é não volátil e pode ser gravada apenas uma vez.
- A memória somente de leitura programável e apagável (EPROM) opticamente é lida e gravada eletricamente, assim como a PROM.

Tipos de ROM

- Uma forma mais atraente de memória principalmente de leitura é a memória somente de leitura programável e apagável eletricamente (EEPROM).
- Essa é uma memória principalmente de leitura que pode ser gravada a qualquer momento sem apagar o conteúdo anterior; somente o byte ou os bytes endereçados são atualizados.
- Outra forma de memória de semicondutor é a memória flash.
- É intermediária entre a EPROM e a EEPROM tanto no custo quanto na funcionalidade.

Lógica do chip

- Assim como outros produtos de circuito integrado, a memória semicondutora vem em chips encapsulados.
- Cada chip contém um array de células de memória.
- Por exemplo, um chip de 16 Mbits poderia ser organizado como 1 M palavras de 16 bits.
- No outro extremo está a chamada organização de 1 bit por chip, em que os dados são lidos/escritos 1 bit de cada vez.

Lógica do chip

A figura mostra uma organização típica de uma DRAM de 16 Mbits.

- ← Row Address Select
- ← Column Address Select
- ← Write Enable
- ← Output Enable

Encapsulamento do chip

Um circuito integrado é montado em uma cápsula que contém pinos para conexão com o mundo exterior:

Quantidade de pinos importa. Então usa-se multiplexação.

Organização do módulo

Organização de memória de 256 kB:

1 bit / chip → 8 chips em paralelo (pente)

Organização do módulo

Organização de memória de 1 MB:

1 bit / chip → 8 chips em paralelo organizados em 4 grupos (pente)

- Por corrigir / detectar erros? De onde vêm tais erros?
- Os códigos que operam nesse padrão são conhecidos como códigos de correção de erros.
- Um código é caracterizado pelo número de erros de bit em uma palavra que pode ser corrigido e detectado.
- O mais simples dos códigos de correção de erro é o código de Hamming, idealizado por Richard Hamming, no Bell Laboratories.

A figura a seguir usa diagramas de Venn para ilustrar o uso desse código em palavras de 4 bits (M = 4).

Bits de dados
ara
código
(M = 4).

Bits de paridade par

p/ M: nº de bits da palavra

K: nº de bits de verificação

Paridade errada

Aumento no tamanho da palavra com correção de erro:

	Correção de	e erro único	Correção de erro único/ detecção de erro duplo				
Bits de dados	Bits de verificação	% de aumento	Bits de verificação	% de aumento			
8	4	50,0	5	62,5			
16	5	31,25	6	37,5			
32	6	18,75	7	21,875			
64	7	10,94	8	12,5			
128	8	6,25	9	7,03			
256	9	3,52	10	3,91			

Cálculo do bit de verificação:

Posição de bit	12	11	10	9	8	7	6	5	4	3	2	1
Número de posição	1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001
Bit de dados	D8	D7	D6	D5		D4	D3	D2		D1		
Bits de verificação					C8				C4		C2	C1
Palavra armazenada como	0	0	1	1	0	1	0	0	1	1	1	1
Palavra buscada como	0	0	1	1	0	1	1	0	1	1	1	1
Número de posição	1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001
Bits de verificação					0				0		0	1

Cálculo do bit de verificação:

Posição de bit	12	11	10	9	8	7	6	5	4	3	2	1
Número de posição	1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001
Bit de dados	D8	D7	D6	D5		D4	D3	D2		D1		
Bits de verificação					C8				C4		C2	C1
Palavra armazenada como	0	0	1	1	0	1	0	0	1	1	1	1
Palavra buscada como	0	0	1	1	0	1	1	0	1	1	1	1
Número de posição	1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001
Bits de verificação					0				0		0	1

$$C1 = D1 \oplus D2 \oplus D4 \oplus D5 \oplus$$

D7

$$C2 = D1 \oplus$$

 $C2 = D1 \oplus D3 \oplus D4 \oplus D6 \oplus D7$

$$C4 =$$

 $D2 \oplus D3 \oplus D4 \oplus$

D8

$$C8 =$$

 $D5 \oplus D6 \oplus D7 \oplus D8$

Cálculo do bit de verificação:

D8 D1

00111001

$$C1 = D1 \oplus D2 \oplus$$

$$D4 \oplus D5 \oplus$$

$$C2 = D1 \oplus$$

$$D3 \oplus D4 \oplus$$

$$C4 =$$

$$D2 \oplus D3 \oplus D4 \oplus$$

$$\oplus$$
 D5 \oplus D6 \oplus D7 \oplus D8

$$C1 = 1 \oplus 0 \oplus 1 \oplus 1 \oplus 0 = 1$$

$$C2 = 1 \oplus 0 \oplus 1 \oplus 1 \oplus 0 = 1$$

$$C4 = 0 \oplus 0 \oplus 1 \oplus 0 = 1$$

$$C8 = 1 \oplus 1 \oplus 0 \oplus 0 = 0$$

00111**1**01

$$C1 = 1 \oplus 0 \oplus 1 \oplus 1 \oplus 0 = 1$$

$$C2 = 1 \oplus 1 \oplus 1 \oplus 1 \oplus 0 = 0$$

$$C4 = 0 \oplus 1 \oplus 1 \oplus 0 = 0$$

$$C8 = 1 \oplus 1 \oplus 0 \oplus 0 = 0$$

Código SEC-DEC de Hamming:

Dois erros fazem o sistema se perder e acaba gerando um 3º erro

Bit de paridade total

- Uma das formas mais utilizadas de DRAM é a DRAM síncrona (SDRAM — do inglês, Synchronous DRAM).
- A SDRAM troca dados com o processador sincronizado com um sinal de clock externo e executando na velocidade plena do barramento do processador/memória, sem imposição de estados de espera.
- Com o acesso síncrono, a DRAM move dados para dentro e para fora sob o controle do clock do sistema.

SDRAM

A figura mostra a lógica interna da SDRAM de 256 Mb.

SDRAM

- A figura abaixo mostra um exemplo de operação da SDRAM.
- Nesse caso, o tamanho de rajada é 4 e a latência é 2.
- O comando de leitura de rajada é iniciado com CS e CAS baixos, enquanto se mantêm RAS e WE altos na transição de subida do clock.

- Uma nova versão da SDRAM, referida como Double-Data-Rate DRAM (DDR-DRAM), proporciona características que aumentam a taxa de dados.
- A DDR alcança taxas mais altas de dados de três maneiras:
 - i. a transferência de dados é sincronizada tanto na borda de subida como na de descida do clock;
 - ii. a DDR usa frequência de clock mais alta no barramento para aumentar a taxa de transferência e
 - iii. um esquema de buffering é usado.

Assim, a JEDEC definiu quatro gerações da tecnologia da DDR:

	DDR1	DDR2	DDR3	DDR4
Buffer de pré-busca (bits)	2	4	8	8
Nível de voltagem (V)	2,5	1,8	1,5	1,2
Taxas de dados do barramento frontal (Mbps)	200–400	400-1.066	800-2.133	2.133-4.266

Embora cada nova geração da SDRAM resulte em muito mais capacidade, a velocidade do core da SDRAM não mudou de modo significativo de uma geração para a outra.

A figura a seguir mostra uma configuração com dois grupos de banco.

Memória flash

- Outra forma de memória semicondutora é a memória flash.
- Ela é usada nas aplicações tanto como memória interna como externa.
- A figura a seguir ilustra a operação básica de uma memória flash.
- Uma característica importante da memória flash é que ela é uma memória permanente, o que significa que ela retém dados quando não há energia aplicada à memória.

Memória flash

Estrutura do transistor

Célula de memória flash no estado 0

■ Na memória flash NOR, a unidade básica de acesso é um bit, referido como uma célula de memória.

■ A memória flash **NAND** é organizada em arrays de transistor com 16 ou 32 transistores em séries.

Gráficos de Kiviat para a memória flash:

NAND

■ Gráficos de Kiviat para a memória flash:

NAND

E.: Qual versão é melhor pra armazenar programas? E dados? Por quê?

Flash tipo NOR: mais adequada como memória interna para armazenamento de programas e dados que não variem muito. Ex.: memória principal de sistemas embarcados. Acesso em nível de bytes.

Flash tipo NAND: apresenta características intermediárias entre a memória DRAM e discos rígidos se prestando mais para armazenamento secundário (externo). Ex.: SSDs. Acesso em nível de páginas.

Novas tecnologias de memória de estado sólido não voláteis

RAM não volátil dentro da hierarquia da memória:

Custo decrescente por bit, capacidade ou densidade crescentes

Novas tecnologias de memória de estado sólido não voláteis

- Nessa miscelânea, como temos visto, a memória flash tem sido adicionada.
- Ela tem a vantagem sobre a memória tradicional, que é não volátil.
- A flash NOR é mais adequada ao armazenamento de programas e dados estáticos de aplicações em sistemas embarcados.
- Ao passo que a flash NAND tem características intermediárias entre a DRAM e os discos rígidos.

STT-RAM

- A STT-RAM é um novo tipo de RAM magnética (MRAM), que caracteriza não volatilidade, velocidade rápida de leitura/escrita (< 10 ns), bem como programação de alta durabilidade (> 1015 ciclos) e energia em standby em 0 (KULTURSAY, 2013).
- Na STT-RAM, um novo mecanismo de gravação, chamado de comutação da magnetização induzida pela polarização da corrente, é introduzido.
- A figura a seguir ilustra a configuração geral.
- A STT-RAM é uma boa candidata tanto para a cache como para a memória principal.

STT-RAM

PCRAM

- A tecnologia PCRAM é baseada em um material de liga de calcogeneto, que é similar aos usados em geral nos meios de armazenamento óptico.
- A capacidade de armazenamento de dados é alcançada a partir das diferenças de resistência entre uma fase amorfa (alta resistência) e uma fase cristalina (baixa resistência) do material baseado em calcogeneto.
- A figura a seguir ilustra a configuração geral.
- A PCRAM é uma boa candidata para substituir ou suplementar a DRAM para a memória principal.

PCRAM

ReRAM

- A ReRAM (também conhecida como RRAM) trabalha criando resistência em vez de carga direta de armazenamento.
- Uma corrente elétrica é aplicada a um material, mudando a resistência desse material.
- O estado de resistência pode então ser mensurado, e 1 ou 0 é lido como resultado.
- A figura a seguir mostra uma configuração ReRam.
- A ReRAM é uma boa candidata para substituir ou suplementar tanto o armazenamento secundário como a memória principal.

ReRAM

