2.1.2 If V is a vector space over the field F, verify that

$$(\alpha_1 + \alpha_2) + (\alpha_3 + \alpha_4) = [\alpha_2 + (\alpha_3 + \alpha_1)] + \alpha_4$$

for all vectors α_1 , α_2 , α_3 , and α_4 in V.

Solution

$$(\alpha_1 + \alpha_2) + (\alpha_3 + \alpha_4) = \alpha_1 + (\alpha_2 + \alpha_3) + \alpha_4$$

= $[\alpha_1 + (\alpha_2 + \alpha_3)] + \alpha_4$

2.1.4 Let V be the set of all pairs (x,y) of real numbers, and let F be the field of real numbers. Define

$$(x,y) + (x_1, y_1) = (x + x_1, y + y_1)$$

 $c(x,y) = (cx, y).$

Is V, with these operations, a vector space over the field of real numbers?

Solution Yes, V satisfies the axioms of a vector space over F with the given operations.

Addition:

(a)
$$(x,y) + (x_1 + y_1) = (x + x_1, y + y_1) = (x_1 + x, y_1 + y) = (x_1, y_1) + (x, y)$$

(b)
$$(x,y) + ((x_1,y_1) + (x_2,y_2)) = (x + (x_1 + x_2), y + (y_1, y_2))$$

 $= ((x + x_1) + x_2, (y + y_1) + y_2)$
 $= ((x,y) + (x_1,y_1)) + (x_2,y_2)$

- (c) $\mathbf{0} = (0,0)$ is the identity.
- (d) For a given tuple (x, y), -(x, y) = (-x, -y) is its inverse.

Multiplication

(a)
$$1(x,y) = (1x,y) = (x,y)$$

(b)
$$(c_1c_2)(x,y) = (c_1c_2x,y) = (c_1(c_2x),y) = c_1(c_2(x,y))$$

(c)
$$c((x,y) + (x_1,y_1)) = c(x + x_1, y + y_1)$$

 $= (c(x + x_1), y + y_1)$
 $= (cx + cx_1, y + y_1)$
 $= (cx, y) + (cx_1, y_1)$
 $= c(x, y) + c(x_1, y_1)$

(d)
$$(c+d)(x,y) = ((c+d)x,y) = (cx+dx,y) = (cx,y) + (dx,y) = c(x,y) + d(x,y)$$

2.1.5 On \mathbb{R}^n , define two operations

$$\alpha \oplus \beta = \alpha - \beta$$
$$c \cdot \alpha = -c\alpha.$$

The operations on the right are the usual ones. Which of the axioms for a vector space are satisfied by $(\mathbb{R}^n, \oplus, \cdot)$?

Solution The vector space satisfies (3c), (3d), (4c), and (4d).

2.1.6 Let V be the set of all complex-valued functions f on the real line such that (for all t in \mathbb{R})

$$f(-t) = \overline{f(t)}.$$

The bar denotes complex conjugation. Show that V, with the operations

$$(f+g)(t) = f(t) + g(t)$$
$$(cf)(t) = cf(t)$$

is a vector space over the field of real numbers. Give an example of a function in V which is not real-valued.

Solution We have the typical vector addition and scalar multiplication, so they will satisfy the axioms (3a) through (4d). We only need to show that V with the given operations over \mathbb{R} are closed under addition and scalar multiplication.

$$(f+g)(-t) = f(-t) + g(-t) = \overline{f(t)} + \overline{g(t)} = \overline{f(t)} + \overline{g(t)} = \overline{(f+g)(t)}$$
$$(cf)(-t) = cf(-t) = \overline{cf(t)} = \overline{cf(t)} = \overline{(cf)(t)}$$

Thus, over F, V is closed under vector addition and scalar multiplication.

2.1.7 Let V be the set of pairs (x,y) of real numbers and let F be the field of real numbers. Define

$$(x,y) + (x_1, y_1) = (x + x_1, 0)$$

 $c(x,y) = (cx, 0)$

Is V, with these operations, a vector space?

Solution No, there is no additive identity. We will prove by contradiction: Suppose we have $(x, y) \in V$ such that $y_1 \neq 0$, and that the identity is $\mathbf{0} = (x_1, y_1)$. Then

$$(x,y) + \mathbf{0} = (x,y) + (x_1, y_1)$$

= $(x + x_1, 0)$

We have a contradiction since y is non-zero, so there is no identity vector in V. Thus V over the real numbers with the given operations do not form a vector space.

- **2.2.2** Let V be the (real) vector space of all functions f from \mathbb{R} onto \mathbb{R} . Which of the following sets of functions are subspaces of V?
 - a. all f such that $f(x^2) = f(x)^2$;
 - b. all f such that f(0) = f(1);
 - c. all f such that f(3) = 1 + f(-5);
 - d. all f such that f(-1) = 0;
 - e. all f which are continuous.
- **Solution** a. This set is not closed under addition. Let f and g be in the set described. Then

$$(f+g)(x^2) = f(x^2) + g(x^2) \neq (f+g)(x)^2 = f(x)^2 + 2f(x)g(x) + g(x)^2$$

Thus the set is not a subspace of V.

b. This set is a subspace. f(x) = 0 is in the set, so it is non-empty. Let f and g be in the set. Then

$$(f+g)(0)=f(0)+g(0)=f(1)+g(1)=(f+g)1 \implies \text{the set is closed under addition}$$

$$(cf)(0) = cf(0) = cf(1) = (cf)(1) \implies$$
 the set is closed under scalar multiplication

c. The set is not closed under scalar multiplication. Let f be in the set described. Then

$$(cf)(3) = cf(3) = c(1 + f(-5)) = c + cf(-5) \neq 1 + cf(-5) = 1 + (cf)(-5)$$

Thus the set is not a subspace of V.

d. This set is a subspace. f(x) = 0 satisfies f(-1) = 0. Let f and g be in the set as described. Then

$$(f+g)(-1)=f(-1)+g(-1)=0+0=0 \implies$$
 the set is closed under addition

$$(cf)(-1) = cf(-1) = c \cdot 0 = 0 \implies$$
 the set is closed under scalar multiplication

Thus the set is a subspace of V.

e. This set is a subspace. f(x) = 0 is continuous, so the set is non-empty. Let f and g be continuous functions. Then

$$\lim_{x \to a} (f+g)(x) = \lim_{x \to a} [f(x)+g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = f(a) + g(a) = (f+g)(a) \implies f+g \text{ is continuous}$$

$$\lim_{x \to a} (cf)(x) = \lim_{x \to a} cf(x) = c \lim_{x \to a} f(x) = cf(a) = (cf)(a) \implies cf \text{ is continuous}$$

Hence, the set is also closed under both addition and scalar multiplication, so the set is a subspace of V.

2.2.4 Let W be the set of all $(x_1, x_2, x_3, x_4, x_5)$ in \mathbb{R}^5 which satisfy

$$2x_1 - x_2 + \frac{4}{3}x_3 - x_4 = 0$$

$$x_1 + \frac{2}{3}x_3 - x_5 = 0$$

$$9x_1 - 3x_2 + 6x_3 - 3x_4 - 3x_5 = 0.$$

Find a finite set of vectors which spans W.

Solution

$$\begin{pmatrix} 2 & -1 & \frac{4}{3} & -1 & 0 \\ 1 & 0 & \frac{2}{3} & 0 & -1 \\ 9 & -3 & 6 & -3 & -3 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & \frac{2}{3} & 0 & -1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -2 \end{pmatrix}$$

This gives the equations

$$x_1 = -\frac{2}{3}x_3 + x_5$$
$$x_2 = 0$$
$$x_4 = 2x_5$$

Thus a tuple that satisfies the equation will be in the form of

$$\left(-\frac{2}{3}x_3 + x_5, 0, x_3, 2x_5, x_5\right) = \left(-\frac{2}{3}x_3, 0, x_3, 0, 0\right) + \left(x_5, 0, 0, 2x_5, x_5\right)$$
$$= x_3\left(-\frac{2}{3}, 0, 1, 0, 0\right) + x_5\left(1, 0, 0, 2, 1\right)$$

If we let x_3 and x_5 be free variables, then every solution of the system is a linear combination of the set

$$\left\{ \left(-\frac{2}{3}, 0, 1, 0, 0 \right), \left(1, 0, 0, 2, 1 \right) \right\}.$$

- **2.2.5** Let F be a field and let n be a positive integer $(n \ge 2)$. Let V be the vector space of all $n \times n$ matrices over F. Which of the following sets of matrices A in V are subspaces of V?
 - a. all invertible A;
 - b. all non-invertible A;
 - c. all A such that AB = BA, where B is some fixed matrix in V;
 - d. all A such that $A^2 = A$.
- **Solution** a. This is not a subspace because it is not closed under scalar multiplication. $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is invertible, but $0 \cdot A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ is not.
 - b. This is not a subspace because it is not closed under addition. For example, $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ are both singular, but $A + B = I_2$ is invertible.
 - c. This is a subspace. The 0 matrix is contained in the set, so it is non-empty. Let C and D be matrices from the set. Then

$$(C+D)B = CB + DB = BC + BD = B(C+D) \implies$$
 the set is closed under addition $(cC)B = cCB = cBC = B(cC) \implies$ the set is closed under scalar multiplication

Thus the set forms a subspace of V.

d. The set is not closed under scalar multiplication. Let A be from the set and $c \in F$. Then

$$(cA)^2 = c^2 A^2 = c^2 A \neq cA$$

Hence the set does not form a subspace of V.

- **2.2.6** a. Prove that the only subspaces of \mathbb{R}^1 are \mathbb{R}^1 and the zero subspace.
 - b. Prove that a subspace of \mathbb{R}^2 is \mathbb{R}^2 or the zero subspace, or consists of all scalar multiples of some fixed vector in \mathbb{R}^2 . (The last type of subspace is, intuitively, a straight line through the origin.)
 - c. Can you describe the subspaces of \mathbb{R}^3 ?
- **Solution** a. \mathbb{R}^1 and $\{0\}$ are both obviously subspaces of \mathbb{R}^1 , so we only need to prove that any other subset of R are not subspaces.

Suppose V is a subset of \mathbb{R}^1 . Then we can express V as an interval (a,b), (a,b], [a,b), or [a,b], where b>a. In any case, the number a+(b-a)/2 is contained in V, but a+3(b-a)/2 will not be contained in the set. Thus, any set other than \mathbb{R}^1 and $\{0\}$ is not closed under scalar multiplication, and cannot be a subspace of \mathbb{R}^1 .

b. \mathbb{R}^2 and $\{0\}$ are both obviously subspaces of \mathbb{R}^2 , so we need to show that any subset of \mathbb{R}^2 other than the scalar multiples of a fixed vector in \mathbb{R}^2 is not a subspace.

Let V be a subset of \mathbb{R}^2 that is not \mathbb{R}^2 , $\{0\}$, or the set of scalar multiples of a fixed vector in \mathbb{R}^2 . Suppose $V \subseteq \mathbb{R}^2$ is a subspace. Since V the set of scalar multiples of a vector, then there must exist two vectors $\alpha = (a_1, a_2)$ and $\beta = (b_1, b_2)$ such that α is not a scalar multiple of β and vice versa. We will show that there exists $c, d \in \mathbb{R}$ such that $c\alpha + d\beta = \gamma \ \forall \gamma$, which means $\gamma \in V \implies V = \mathbb{R}^2$.

$$ca_1 + db_1 = x \implies d = -\frac{a_1}{b_1}c + \frac{1}{b_1}x$$

 $ca_2 + db_2 = y \implies d = -\frac{a_2}{b_2}c + \frac{1}{b_2}y$

Since α and β are not scalar multiples of each other, $a_1/b_1 \neq a_2/b_2$, which means the two lines described above in the cd-plane are not parallel and thus must intersect. Thus, there exists c and d as described above, which implies that $V = \mathbb{R}^2$, which is a contradiction. Hence, if V is a subspace of \mathbb{R}^2 , then it can only be as described in the problem.

c. Geometrically, the subspaces of \mathbb{R}^3 will be planes, lines, or the zero subspace.

Problem Let $F \subseteq \mathbb{C}$ be a field and let S be a non-empty set. Let V be an F vector space. Let W be the space of all functions from S to V. We can add two elements f and g of W:

$$(f+g)(s) = f(s) + g(s).$$

Scalar multiplication by an element $c \in F$ is defined:

$$cf(s) = c(f(s)).$$

Show W is an F vector space with these operations. You should check the axioms on page 28 until you get bored.

Solution Addition axioms:

Closure $(f+g)(s) = f(s) + g(s) \in V$, since f(s) and g(s) are in V.

(a)
$$(f+g)(s) = f(s) + g(s) \stackrel{\text{(3a)}}{=} g(s) + f(s) = (g+f)(s)$$

(b)
$$(f + (g+h))(s) = f(s) + (g+h)(s) = f(s) + g(s) + h(s) \stackrel{\text{(3b)}}{=} (f(s) + g(s)) + h(s) = ((f+g) + h)(s)$$

(c)
$$(f+0)(s) = f(s) + 0(s) = f(s) + 0 \stackrel{\text{(3c)}}{=} f(s)$$

(d)
$$(f + (-f))(s) = f(s) + (-f(s)) \stackrel{\text{(3d)}}{=} 0$$

The verification for the scalar multiplication axioms are similar to the above.

**2 2.2.7 Let W_1 and W_2 be subspaces of a vector space V such that the set-theoretic union of W_1 and W_2 is is also a subspace. Prove that one of the subspaces W_i is contained in the other.

Solution Let $\alpha \in W_1$ and $\beta \in W_2$. Then both α and β are in $W_1 \cup W_2$, which means $\alpha + \beta \in W_1 \cup W_2$. Then there are two cases:

 $\alpha + \beta \in W_1$:

Then since W_1 is a subspace, $\alpha + \beta - \alpha = \beta \in W_1$. Thus, if $\beta \in W_2$, then $\beta \in W_1$ also, which implies that $W_2 \subseteq W_1$.

 $\alpha + \beta \in W_2$:

Then since W_2 is a subspace, $\alpha + \beta - \beta = \alpha \in W_2$. Thus, if $\alpha \in W_1$, then $\alpha \in W_2$ also, which implies that $W_1 \subset W_2$.

Thus, if $W_1 \cup W_2$ is a subspace, then $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

- **3 2.2.8 Let V be the vector space of all functions from \mathbb{R} into \mathbb{R} ; let V_e be the subset of even functions, f(-x) = f(x); let V_o be the subset of odd functions, f(-x) = -f(x).
 - a. Prove that V_e and V_o are subspaces of V.
 - b. Prove that $V_e + V_o = V$.
 - c. Prove that $V_e \cap V_o = \{0\}.$

Solution a. Suppose $f, q \in V_e$. Then it suffices to show that for all $a \in \mathbb{R}$, $af + q \in V_e$.

$$(af + g)(-x) = (af)(-x) + g(-x) = af(-x) + g(-x) = af(x) + g(x) = (af + g)(x) \implies af + g \in V_e.$$

Similarly, suppose $f, g \in V_o$ and $a \in \mathbb{R}$. Then

$$(af + q)(-x) = af(-x) + q(-x) = -af(x) - q(x) = -(af + q)(x) \implies af + q \in V_0.$$

b. Let $f \in V_e$, $g \in V_o$, and $h \in V$. Since V is a vector space, $f + g \in V \implies V_e + V_o \subseteq V$. Now we need to show that $V \subseteq V_e + V_o$; that is, we can write h = f + g. Notice that

$$\frac{h(x)+h(-x)}{2} \in V_e \text{ and } \frac{h(x)-h(-x)}{2} \in V_o.$$

Then

$$\frac{h(x) + h(-x)}{2} + \frac{h(x) - h(-x)}{2} = \frac{2h(x)}{2} = h(x).$$

Thus, we can indeed write any function in V as the sum of a function in V_e and a function in V_o , so $V \subseteq V_e + V_o$. Hence, $V = V_e + V_o$.

c. Let $f \in V_e \cap V_o$. Then we have

$$f(-x) = f(x) = -f(x) \implies 2f(x) = 0 \implies f(x) = 0$$

Thus, $V_e \cap V_o = \{0\}.$

**4 2.2.9 Let W_1 and W_2 be subspaces of a vector space V such that $W_1 + W_2 = V$ and $W_1 \cap W_2 = \{0\}$. Prove that for each vector α in V there are unique vectors α_1 in W_1 and α_2 in W_2 such that $\alpha = \alpha_1 + \alpha_2$.

Solution Let $\alpha \in V$. Then since $V = W_1 + W_2$, we can find $\alpha_1 \in W_1$ and $\alpha_2 \in W_2$ such that $\alpha = \alpha_1 + \alpha_2$. Suppose α_1 and α_2 are not unique; that is, there exists $\tilde{\alpha_1} \in W_1 \setminus \{\alpha_1\}$ and $\tilde{\alpha_2} \in W_2 \setminus \{\alpha_2\}$ such that $\alpha = \tilde{\alpha_1} + \tilde{\alpha_2}$. Then

$$\alpha_1 + \alpha_2 = \tilde{\alpha_1} + \tilde{\alpha_2}$$
$$\beta := \alpha_1 - \tilde{\alpha_1} = \tilde{\alpha_2} - \alpha_2$$

Since W_1 is a subspace, $\beta = \alpha_1 - \tilde{\alpha_1} \in W_1$. Similarly, $\beta = \alpha_2 - \tilde{\alpha_2} \in W_2$ also. Thus,

$$\beta = \alpha_1 - \tilde{\alpha_1} = \alpha_2 - \tilde{\alpha_2} = 0 \implies \tilde{\alpha_1} = \alpha_1$$
$$\implies \tilde{\alpha_2} = \alpha_2$$

Thus, α_1 and α_2 are unique.