B. SUBIECTUL II – (15 puncte)

Rezolvaţi următoarea problemă:

Un vas cilindric orizontal, închis la ambele capete și izolat termic de exterior, este împărțit în două compartimente de către un piston termoizolant, mobil, aflat inițial în echilibru. Într-un compartiment se află $m_1=14\cdot 10^{-3}\,\mathrm{kg}$ de azot molecular ($\mu_{N_2}=28\,\mathrm{kg/kmol}$) la temperatura $T_1=350\,\mathrm{K}$, iar în celălalt $m_2=4\cdot 10^{-3}\,\mathrm{kg}$ de oxigen molecular ($\mu_{O_2}=32\,\mathrm{kg/kmol}$), la temperatura $T_2=400\,\mathrm{K}$. Ambele gaze sunt considerate gaze ideale.

- a. Determinați raportul dintre cantitatea de azot și cantitatea de oxigen.
- **b**. Calculati masa unei molecule de azot.
- c. Calculați raportul densităților celor două gaze.
- **d.** Azotul din primul compartiment se încălzeşte, cu pistonul blocat, până la temperatura $T_2 = 400\,\mathrm{K}$. Calculați masa de azot care trebuie scoasă din primul compartiment pentru ca, după eliberarea pistonului, poziția acestuia să rămână nemodificată.