

Transfer Learning Introduction to Deep learning

Agenda

- 1. What is Transfer learning (TL)?
- 2. Comparison between normal training and TL
- 3. AlexNet
- 4. VGGNet
- 5. GoogleNet
- 6. ResNet

Introduction to Transfer Learning

- Conventional machine learning and deep learning algorithms, so far, have been traditionally designed to work in isolation. These algorithms are trained to solve specific tasks.
- The models have to be rebuilt from scratch once the feature-space distribution changes.
- Transfer learning is the idea of overcoming the isolated learning paradigm and utilizing knowledge acquired for one task to solve related ones.
- After supervised learning Transfer Learning will be the next driver of ML commercial success - Andrew NG
- Considering the context of deep learning is the fact that most models which solve complex problems need
 - o a whole lot of data
 - vast amounts of labeled data

Introduction to Transfer Learning

For supervised models getting labelled data can be really difficult, considering the time and effort it takes to label data points. A simple example would be the ImageNet dataset, which has millions of images pertaining to different categories, thanks to years of hard work starting at Stanford!

ImageNet Challenge

- 1,000 object classes (categories).
- Images:
 - 1.2 M train
 - 100k test.

Introduction to Transfer Learning

Traditional ML

VS

Transfer Learning

- Isolated, single task learning:
 - Knowledge is not retained or accumulated. Learning is performed w.o. considering past learned knowledge in other tasks

- Learning of a new tasks relies on the previous learned tasks:
 - Learning process can be faster, more accurate and/or need less training data

Problissaring outens under his pathing. All Rights Respond. In but his zital use for istal gate action.

Transfer Learning: Base Model and the New Model

A Few CNN Case Studies

1. Hand Written Digit Classification (LeNet - 1998)

input: a small single channel image

output: 10 outputs corresponding to the 10 digits 0-9.

60,000 training images, 10,000 test images

2. Image Net Classification – Annual world cup for CV

input: colored image

output: 1000 outputs corresponding to the 1000 object classes

in the dataset

1.2 M training images and 100,000 test images

- 1,000 object classes (categories).
- Images:
 - 1.2 M train
 - 100k test.

CNNs on MNIST

- 1. LeNet (1998)
 - 10 way neural network classifier
 - Handwritten digits as an input
 - Tolerant of various transformations like rotation and scale
 - Was used by banks to recognize handwritten numbers on digitized checks
 - 4 weight layers

CNNs on ImageNet

- 1. AlexNet (2012)
 - First CNN to successfully be able classify ImageNet images
 - Improved benchmark performance (top-5) on this image dataset from 26% to 15%
 - 7 layers deep
- 2. ZF Net (2013)
 - Reduced the top-5 error rate to 11.2%
 - No major contributions
 - Also 7 layers deep
- 3. VGGNet (2014)
 - Simple and elegant
 - Reduced the top-5 error rate 7.2%
 - Did not win the competition, GoogleNet did!
 - 6 layers deep

CNNs on ImageNet

- 4. GoogleNet (2014)
 - 2014 imagenet winner with top-5 error rate of 6.7%
 - Used inception modules
 - 22 layers deep and used side cost functions
- 5. ResNet (2015)
 - 2015 imagenet winner with top-5 error rate of 3.57
 - First truly deep network with 152 weight layers
- 6. CUImage (2016)
 - 2016 imagenet winner with top-5 error rate of 2.99
 - Ensemble approach, not very interesting
- 7. SENet (2017)
 - 2016 ImageNet winner with top-5 error rate of 2.251
 - Work by Momenta
 - The last ImageNet challenge!t for personal use by rg.ravigupta91@gmail.com only.

Case Study: LeNet-5

[LeCun et al., 1998]

- Conv filters were 5x5, applied at stride 1
- Subsampling (Pooling) layers were 2x2 applied at stride 2
- Architecture is [CONV-POOL-CONV-POOL-CONV-FC]

[Krizhevsky et al. 2012]

[Krizhevsky et al. 2012]

- Input: 227x227x3 images
- First layer (CONV1): 96 11x11 filters applied at stride
- Output volume size? (Hint: (227-11)/4+1)

[Krizhevsky et al. 2012]

- Input: 227x227x3 images
- First layer (CONV1): 96 11x11 filters applied at stride 4
- Output volume size: (227-11)/4+1 = 55 for each H and W, so 55x55x96

[Krizhevsky et al. 2012]

- Input: 227x227x3 images
- First layer (CONV1): 96 11x11 filters applied at stride 4
- Output volume size: 55x55x96
- Total number of parameters?

[Krizhevsky et al. 2012]

- Input: 227x227x3 images
- First layer (CONV1): 96 11x11 filters applied at stride 4
- Output volume size: 55x55x96
- Total number of parameters: (11*11*3)*96 = **35K**

[Krizhevsky et al. 2012]

• **Input**: 227x227x3 images

After CONV1: 55x55x96

- Second layer (POOL1): 3x3 filters applied
- What is the output volume size? (Hint: (55-3)/2+1 = 27)

[Krizhevsky et al. 2012]

Input: 227x227x3 images

After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied applied at stride 2

Output volume: 27x27x96

What is the number of parameters?

[Krizhevsky et al. 2012]

• **Input**: 227x227x3 images

After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied applied at stride 2

Output volume: 27x27x96

What is the number of parameters: 0!

[Krizhevsky et al. 2012]

Input: 227x227x3 images

After CONV1: 55x55x96

After POOL1: 27x27x96

[Krizhevsky et al. 2012]

Architecture:

[227x227x3] **INPUT**

[55x55x96] **CONV1:** 96 11x11 filters at stride 4

0 [27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] **NORM1**: Normalization layer

[27x27x256] **CONV2**: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] **NORM2:** Normalization layer

[13x13x384] **CONV3**: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] **CONV5**: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

Finishing with:

[4096] **FC6**: 4096 neurons [4096] **FC7**: 4096 neurons

[1000] **FC8**: 1000 neurons (class scores)

[Krizhevsky et al. 2012]

224 Stride of 4 96 Max pooling 128 Max pooling 2048 2048 2048 dense

Architecture:

[227x227x3] **INPUT**

[55x55x96] **CONV1:** 96 11x11 filters at stride 4, pad

0 [27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] **NORM1**: Normalization layer

[27x27x256] **CONV2:** 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] **NORM2:** Normalization layer

[13x13x384] **CONV3**: 384 3x3 filters at stride 1, pad 1

[13x13x384] **CONV4:** 384 3x3 filters at stride 1, pad 1

[13x13x256] **CONV5:** 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] **FC6**: 4096 neurons

[4096] **FC7**: 4096 neurons

[1000] **FC8**: 1000 neurons (class scores)

Salient points:

- Popularized use of ReLU in Vision
- Used Norm layers (not common anymore)
- Heavy data augmentation
- Dropout 0.5 in only last few fully-connected
- Batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10
- Manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% improved to 15.4%

[Krizhevsky et al. 2012]

Architecture:

55x55x96 **CONV1:** 96 11x11 filters at stride 4, pad 0 **[55x55x48] x 2**

[27x27x96] MAX POOL1: 3x3 filters at stride 2 [27x27x96]

NORM1: Normalization layer

[27x27x256] **CONV2**: 256 5x5 filters at stride 1, pad 2 [13x13x256]

MAX POOL2: 3x3 filters at stride 2 [13x13x256] NORM2:

Normalization layer [13x13x384] **CONV3**: 384 3x3 filters at stride 1,

pad 1 [13x13x384] **CONV4:** 384 3x3 filters at stride 1, pad 1 [13x13x256] **CONV5**: 256 3x3 filters at stride 1, pad 1 [6x6x256]

MAX POOL3: 3x3 filters at stride 2

[4096] **FC6**: 4096 neurons [4096] **FC7**: 4096 neurons

Historical Note:

Trained on GTX580 GPU with only 3 GB of memory. Network spread across 2 GPUs, half the feature maps on each GPU.

[1000] **FC8**: 1000 neurons (class scores)

Sourced with permission from: ImageNet Classification with Deep Convolutional Neural Networks, Krizhevsky et al. (2012) This file is meant for personal use by rg.ravigupta91@gmail.com only.

A tool to analyze deep networks

http://dgschwend.github.io/netscope/#/editor

```
1 name: "AlexNet"
 2 layer {
    name: "data"
                                                                                           AlexNet (edit)
    type: "Data"
    top: "data"
    input_param -
         shape:
             dim: 128
             dim: 3
                                                                                       data
             dim: 227
11
             dim: 227
                                                                                         3ch · 227×227 (×128)
12
13
14
                                                                                      conv1
15 layer
                                                                                      relu1
    name: "conv1"
    type: "Convolution"
    bottom: "data"
                                                                                         96ch · 55×55 (×128)
    top: "conv1"
     param {
                                                                                      norm1
21
       lr mult: 1
       decay mult: 1
                                                                                         96ch · 55×55 (×128)
23
24
     param {
       lr mult: 2
                                                                                      pool1
       decay mult: 0
                                                                                         96ch · 27×27 (×128)
     convolution_param {
       num output: 96
30
       kernel size: 11
                                                                                      conv2
       stride: 4
                                                                                      relu2
       weight_filler
         type: "gaussian"
34
         std: 0.01
                                                                                        256ch · 27×27 (×128)
       bias_filler {
                                                                                     norm2
         type: "constant"
                                            This file is meant for personal use by rg.ravigupta91@gmail.com only.
```


Case Study - ZFNet

[Zeiler and Fergus, 2013]

Similar to AlexNet with the following differences:

CONV1: (7x7 stride 2) instead of (11x11 stride 4)

CONV3,4,5: 512, 1024, 512 filters instead of 384, 384, 256 respectively

Reduced top 5 error on ImageNet From **15.4%** To **14.8%** Later brought down to 11.2%

Case Study: VGGNet

[Simonyan and Zisserman,

2014]

Softmax

FC 1000

FC 4096

FC 4096

Pool

3*3 CONV 256

3*3 CONV 384

Pool

3*3 CONV 384

Pool

3*3 CONV 256

3*3 CONV 96

Input

Softmax FC 1000

FC 4096

FC 4096

Pool

3*3 CONV 512

3*3 CONV 512

3*3 CONV 512

3*3 CONV 512

Pool

3*3 CONV 512

3*3 CONV 512

3*3 CONV 512

3*3 CONV 512

Pool

3*3 CONV 256

3*3 CONV 256

Pool

3*3 CONV 128

3*3 CONV 128

Pool

3*3 CONV 64

3*3 CONV 64

Input

This model used:

- Smaller filters
 But
- Deeper networks

3x3 CONV stride 1, pad 1 2x2 MAX POOL stride 2

Why use smaller filters? (3x3 conv)

Answer: Stack of three 3x3 conv (stride 1) layers has same effective receptive field as one 7x7 but deeper, more non-linearities and fewer parameters.

AlexNet VGG 16

greatlearning

Best

model

performing

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

This model used:

- Smaller filters
 But
- Deeper networks

3x3 CONV stride 1, pad 1 2x2 MAX POOL stride 2

Improved from 11.2% top 5 error in ILSVRC 2013
To **7.3% top 5 error**

And yet, this model did not win!

ConvNet Configuration									
A	A-LRN	В	C	D	Е				
11 weight layers	11 weight layers	13 weight layers	16 weight layers	16 weight layers	19 weight layers				
	i	nput (224 × 2	24 RGB image						
conv3-64	conv3-64 con								
		max	pool		conv3-64				
conv3-128									
		max	pool						
conv3-256 conv3-256									
		max	pool		A CONTROL SAN ENGLISHE HET ALL CONTROL OF SANSTERS S				
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512				
	is .	max	pool						
conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-5								
	· · · · · · · · · · · · · · · · · · ·		pool						
			4096						
		11100000	4096						
			1000						
		SOIL	-max						

Table 2: Number of parameters (in millions).

Sourced with permission from: 'Very deep large-scale image recognition, Simonyan & Zisserman (2015)

Table 2: Numb
This file is meant for personal use by the work of the second second

Proprietary content. ©Great Learning. All Rights Reserved. Ur@httpripregt @sepontalist hintign the contents in parameters legal agipn. 133 134 138 144

В	C	D	
13 weight	16 weight	16 weight	19
layers	layers	layers	
out (224 × 2	24 RGB image	e)	
conv3-64	conv3-64	conv3-64	C
conv3-64	conv3-64	conv3-64	C
max	pool	0000000000	
conv3-128	conv3-128	conv3-128	co
conv3-128	conv3-128	conv3-128	co
max	pool		
conv3-256	conv3-256	conv3-256	co
conv3-256	conv3-256	conv3-256	co
	conv1-256	conv3-256	co
		C. (97.00-01) (mg, 11) (0-000)	co
	pool		
conv3-512	conv3-512	conv3-512	co
conv3-512	conv3-512	conv3-512	co
	conv1-512	conv3-512	co
			co
	pool	0.0000000000000000000000000000000000000	
conv3-512	conv3-512	conv3-512	co
conv3-512	conv3-512	conv3-512	co
	conv1-512	conv3-512	co
			co
141.000 E 101	pool		
	4096		
10,350,20	4096		
FC-	1000		
coft	-max		

CONV3-64: [224x224x64] CONV3-64: [224x224x64] POOL2: [112x112x64]

CONV3-128:

[112x112x128] CONV3-

128: [112x112x128] POOL2: [56x56x128]

CONV3-256: [56x56x256]

CONV3-256: [56x56x256]

CONV3-256: [56x56x256]

POOL2: [28x28x256]

CONV3-512: [28x28x512]

CONV3-512: [28x28x512]

CONV3-512: [28x28x512]

POOL2: [14x14x512]

CONV3-512: [14x14x512]

CONV3-512: [14x14x512]

CONV3-512: [14x14x512]

POOL2: [7x7x512]

FC: [1x1x4096]

FC: [1x1x4096]

FC: [1x1x1000]

This file is meant for personal use by rg.ravigupta91@gmail.com only.

MEMORY

Section Control of the Control of th	onfiguration	Б.	_
В	С	D	
13 weight	16 weight	16 weight	19
layers	layers	layers	
out (224×2)	24 RGB image	e)	
conv3-64	conv3-64	conv3-64	CC
conv3-64	conv3-64	conv3-64	co
	pool	0000000000	,
conv3-128	conv3-128	conv3-128	co
conv3-128	conv3-128	conv3-128	co
max	pool		
conv3-256	conv3-256	conv3-256	co
conv3-256	conv3-256	conv3-256	co
	conv1-256	conv3-256	co
		C. (0.00.000370-0.000100-0.000	co
max	pool		
conv3-512	conv3-512	conv3-512	co
conv3-512	conv3-512	conv3-512	co
	conv1-512	conv3-512	co
			co
	pool	0.0000000000000000000000000000000000000	
conv3-512	conv3-512	conv3-512	co
conv3-512	conv3-512	conv3-512	co
	conv1-512	conv3-512	co
			co
	pool		
21000	4096		
15,355,45	4096		
FC-	1000		
soft	-max		

INPUT: [224x224x3]
CONV3-64: [224x224x64]
CONV3-64: [224x224x64]
POOL2: [112x112x64]
CONV3-128:
[112x112x128] CONV3-
128: [112x112x128]
POOL2: [56x56x128]
CONV3-256: [56x56x256]
CONV3-256: [56x56x256]
CONV3-256: [56x56x256]
POOL2: [28x28x256]
CONV3-512: [28x28x512]
CONV3-512: [28x28x512]
CONV3-512: [28x28x512]
POOL2: [14x14x512]
CONV3-512: [14x14x512]
CONV3-512: [14x14x512]
CONV3-512: [14x14x512]
POOL2: [7x7x512]
FC: [1x1x4096]
FC: [1x1x4096]
EC: [1\1\1\1\000]

224*224*3=150K 224*224*64=3.2M 224*224*64=3.2M 112*112*64=800K 112*112*128=1.6 M 112*112*128=1.6 M 56*56*128=400K 56*56*256=800K 56*56*256=800K 56*56*256=800K 28*28*256=200K 28*28*512=400K 28*28*512=400K 28*28*512=400K 14*14*512=100K 14*14*512=100K 14*14*512=100K 14*14*512=100K 7*7*512=25K 4096 4096

Total memory: 24M * 4 bytes ~= 93MB/image

Only for forward. What if we include backward?

FC: [1x1x1000] 4096
This file is meant for personal use by rg:ravigupta91@gmail.com only.
Sharistayyooperbli@Giray thereiogn Ne Rights Reserved: fullaids disable before gain and only.
prohibited

В	C	D	
13 weight	16 weight	16 weight	19
layers	layers	layers	
out (224×2	24 RGB image	2)	
conv3-64	conv3-64	conv3-64	cc
conv3-64	conv3-64	conv3-64	cc
max	pool	***************************************	
conv3-128	conv3-128	conv3-128	co
conv3-128	conv3-128	conv3-128	co
max	pool		
conv3-256	conv3-256	conv3-256	co
conv3-256	conv3-256	conv3-256	co
	conv1-256	conv3-256	co
		43 (000000000000000000000000000000000000	co
max	pool		
conv3-512	conv3-512	conv3-512	co
conv3-512	conv3-512	conv3-512	co
	conv1-512	conv3-512	co
			co
	pool	0.0000000000000000000000000000000000000	,
conv3-512	conv3-512	conv3-512	co
conv3-512	conv3-512	conv3-512	co
	conv1-512	conv3-512	co
			co
	pool		
	4096		
	4096		
3.45745	1000		
soft-	-max		

INPUT: [224x224x3] CONV3-64: [224x224x64] CONV3-64: [224x224x64] POOL2: [112x112x64] CONV3-128: [112x112x128] CONV3-128: [112x112x128] POOL2: [56x56x128] CONV3-256: [56x56x256] CONV3-256: [56x56x256] CONV3-256: [56x56x256] POOL2: [28x28x256] CONV3-512: [28x28x512] CONV3-512: [28x28x512] CONV3-512: [28x28x512] POOL2: [14x14x512] CONV3-512: [14x14x512] CONV3-512: [14x14x512] CONV3-512: [14x14x512] POOL2: [7x7x512] FC: [1x1x4096]

224*224*3=150K 224*224*64=3.2M 224*224*64=3.2M 112*112*64=800K 112*112*128=1.6M 112*112*128=1.6M 56*56*128=400K 56*56*256=800K 56*56*256=800K 56*56*256=800K 28*28*256=200K 28*28*512=400K 28*28*512=400K 28*28*512=400K 14*14*512=100K 14*14*512=100K 14*14*512=100K 14*14*512=100K 7*7*512=25K 4096

(3*3*64)*64 = 36,8640 (3*3*64)*128 = 73,728(3*3*128)*128 = 147,456(3*3*128)*256 = 294,912(3*3*256)*256 = 589,824(3*3*256)*256 = 589,824(3*3*256)*512 = 1,179,648(3*3*512)*512 = 2,359,296(3*3*512)*512 = 2,359,296(3*3*512)*512 = 2,359,296(3*3*512)*512 = 2,359,296(3*3*512)*512 = 2,359,2967*7*512*4096 = 102,760,4484096*4096 = 16,777,216 4096*1000 = 4.096.000

greatlearning Learning for Life **PARAMETER**

(3*3*3)*64 = 1,728

0 S

This file is meant for personal use by rg.ravigupta91@gmail.com only. Sharing or publishing the contents in part or full is liable for legal action.

MEMORY

В	C	D			
13 weight layers	16 weight layers	16 weight layers	19		
out (224 × 2	24 RGB image	e)	F		
conv3-64	conv3-64	conv3-64	CC		
conv3-64	conv3-64	conv3-64	C		
max	pool	0000000000			
conv3-128	conv3-128	conv3-128	co		
conv3-128	conv3-128	conv3-128	co		
max	pool				
conv3-256	conv3-256	conv3-256 conv3-256			
conv3-256	conv3-256	conv3-256	co		
	conv1-256	conv3-256	co		
		AS MANUSCHEFF CONTROL OF A ASSOCIATION OF THE ASSO	co		
max	pool				
conv3-512	conv3-512	conv3-512	co		
conv3-512	conv3-512	conv3-512	co		
	conv1-512	conv3-512	co		
			co		
max	pool				
conv3-512	conv3-512	conv3-512	co		
conv3-512	conv3-512	conv3-512	co		
	conv1-512	conv3-512	co		
			co		
170,000,000	pool	7			
	4096				
FC-	4096				
FC-	1000				
soft-	-max				

INPUT: [224x224x3]	224*224*3=150K
CONV3-64: [224x224x64]	224*224*64=3.2M
CONV3-64: [224x224x64]	224*224*64=3.2M
POOL2: [112x112x64]	112*112*64=800K
CONV3-128:	112*112*128=1.6
[112x112x128] CONV3-	M
128: [112x112x128]	112*112*128=1.6
POOL2: [56x56x128]	M
CONV3-256: [56x56x256]	56*56*128=400K
CONV3-256: [56x56x256]	56*56*256=800K
CONV3-256: [56x56x256]	56*56*256=800K
POOL2: [28x28x256]	56*56*256=800K
CONV3-512: [28x28x512]	28*28*256=200K
CONV3-512: [28x28x512]	28*28*512=400K
CONV3-512: [28x28x512]	28*28*512=400K
POOL2: [14x14x512]	28*28*512=400K
	14*14*512=100K
CONV3-512: [14x14x512]	
CONV3-512: [14x14x512]	14*14*512=100K
CONV3-512: [14x14x512]	14*14*512=100K
POOL2: [7x7x512]	14*14*512=100K
FC: [1x1x4096]	7*7*512=25K
FC: [1x1x4096]	4096
FC: 11×1×10001	100G

Most memory in early CONV layers

gı	eatle	eai	min	g
	Learning	g for	Life	

7*7*512*4096 = 102,760,448

В	C	D	
13 weight	16 weight	16 weight	19
layers	layers	layers	
put (224×2)	24 RGB image	e)	
conv3-64	conv3-64	conv3-64	cc
conv3-64	conv3-64	conv3-64	cc
max	pool		,
conv3-128	conv3-128	conv3-128	co
conv3-128	conv3-128	conv3-128	co
max	pool		
conv3-256	conv3-256	conv3-256	co
conv3-256	conv3-256	conv3-256	co
	conv1-256	conv3-256	co
		C. (0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	col
max	pool		
conv3-512	conv3-512	conv3-512	co
conv3-512	conv3-512	conv3-512	co
	conv1-512	conv3-512	co
			co
	pool	20000000000	
conv3-512	conv3-512	conv3-512	co
conv3-512	conv3-512	conv3-512	co
	conv1-512	conv3-512	co
			co
	pool		
	4096		
13,37,27	4096		
5.4856	1000	·	
soft-	-max		

		MEMORY
	INPUT: [224x224x3]	224*224*3=150K
	CONV3-64: [224x224x64]	224*224*64=3.2M
	CONV3-64: [224x224x64]	224*224*64=3.2M
	POOL2: [112x112x64]	112*112*64=800K
	CONV3-128:	112*112*128=1.6M
	[112x112x128]	
	CONV3-128:	112*112*128=1.6M
	[112x112x128]	
/	POOL2: [56x56x128]	56*56*128=400K
	CONV3-256: [56x56x256]	56*56*256=800K
	CONV3-256: [56x56x256]	56*56*256=800K
	CONV3-256: [56x56x256]	56*56*256=800K
	POOL2: [28x28x256]	28*28*256=200K
	CONV3-512: [28x28x512]	28*28*512=400K
	CONV3-512: [28x28x512]	28*28*512=400K
	CONV3-512: [28x28x512]	28*28*512=400K
	POOL2: [14x14x512]	14*14*512=1 00K
	CONV3-512: [14x14x512]	14*14*512=100K
	CONV3-512: [14x14x512]	14*14*512=100K
	CONV3-512: [14x14x512]	14*14*512=100K

This file is meant for personal use by rg.ravigupta91@gmail.com only. Sharing or publishing the contents in part or full is liable for legal action.

PARAMETERS (3*3*3)*64 = 1,728(3*3*64)*64 = 36,864(3*3*64)*128 = 73,728(3*3*128)*128 = 147,456(3*3*128)*256 = 294,912(3*3*256)*256 = 589,824(3*3*256)*256 = 589,824(3*3*256)*512 = 1,179,648(3*3*512)*512 = 2,359,296(3*3*512)*512 = 2,359,296(3*3*512)*512 = 2,359,296(3*3*512)*512 = 2,359,296(3*3*512)*512 = 2,359,29614^14^512=100K

Case Study: GoogLeNet

[Szegedy et al., 2014]

Inception module – with dimension reductions

Winner of ILSVRC 2014 with 6.7% top 5 error

greatlearning
Learning for Life The full **GoogLeNet**

Sourced with permission from: 'Going Deeper with Convolutions', Szegedy et al. (2014)

Prophibisyfilmismosetaticamags analytise steriograminate of full is liable for legal action.

Case Study: GoogLeNet

[Szegedy et al., 2014]

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	56×56×192	2		64	192				112K	360M
max pool	3×3/2	28×28×192	0								
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0								
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	1×1×1024	0								
dropout (40%)		1×1×1024	0								
linear		1×1×1000	1							1000K	1M
softmax		1×1×1000	0								

This model has only 5 million parameters! (Removes FC layers completely)

Compared to AlexNet, this model has: 12X less params | 2x more compute | 6.67% top-5 error rate vs. 16.4%

[He et al., 2015]

Winner of ILSVRC 2015
3.6% top-5 error!

Research

MSRA @ ILSVRC & COCO 2015 Competitions

- 1st places in all five main tracks
 - ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
 - ImageNet Detection: 16% better than 2nd
 - ImageNet Localization: 27% better than 2nd
 - COCO Detection: 11% better than 2nd
 - COCO Segmentation: 12% better than 2nd

*improvements are relative numbers

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

greatlearning

Learning for Life

[He et al., 2015]

Plain Network

ResNet

- Batch Normalization after every CONV layer
- Xavier/2 initialization from He et al.
- SGD + Momentum (0.9)
- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout used

ILVRC 2016

- CUImage was the winner with the ensemble approach.
- Classification error is down to 3.0% from 3.6% last year.
- Pretty boring, best model is just an ensemble
- https://www.reddit.com/r/MachineLearning/comments/54jiyy/large_scale_visual_recognition_challenge_2016/
- http://image-net.org/challenges/LSVRC/2016/results#loc

ILVRC 2017, Squeeze & Excitation Network

- Squeeze and Excitation block that can be added to a Conv Layer
- Add parameters to each channel of a convolutional block so that the network can adaptively adjust the weighting of each feature

ILVRC 2017, Squeeze & Excitation Network

- Winning entry comprised a small ensemble of SENets that employed a standard multi-scale and multi-crop fusion strategy
- 2.251% top-5 error on the test set
- Nearly 25% improvement on the winning entry of 2016 (2.99% top-5 error)
- One of the high-performing networks is constructed by integrating SE blocks with a modified ResNeXt

Why ConvNets?

Case Study: DeepMind's AlphaGo

Images Source: 'Mastering the game of Go without human knowledge', Nature, David Silver et al. (2017)

Case Study: DeepMind's AlphaGo

The input to the policy network is a 19 × 19 × 48 image stack consisting of 48 feature planes. The first hidden layer zero pads the input into a 23 \times 23 image, then convolves k filters of kernel size 5 × 5 with stride 1 with the input image and applies a rectifier nonlinearity. Each of the subsequent hidden layers 2 to 12 zero pads the respective previous hidden layer into a 21 × 21 image, then convolves k filters of kernel size 3×3 with stride 1, again followed by a rectifier nonlinearity. The final layer convolves 1 filter of kernel size 1 × 1 with stride 1, with a different bias for each position, and applies a softmax function. The match version of AlphaGo used k = 192 filters; Fig. 2b and Extended Data Table 3 additionally show the results of training with k = 128, 256 and 384 filters.

Policy network:

INPUT: [19x19x48] CONV1: 192 5x5 filters, stride 1, pad 2 [19x19x192]

CONV2..12: 192 3x3 filters, stride 1, pad 1 [19x19x192]

CONV: 1 1x1 filter, stride 1, pad 0 [19x19] (probability map of promising moves)

Summary

- ConvNets stack CONV, POOL, FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Typical architectures look like:

[(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K-SOFTMAX

where N is usually up to \sim 5, M is large, 0 <= K <= 2.

But recent advances such as ResNet/GoogLeNet challenge this paradigm

Data needs for ConvNets

"ConvNets need a lot of data to train"?

Finetuning

ConvNets usually not trained from scratch

Data needs for ConvNets

Transfer Learning with CNNs

image conv-64 Train on conv-64 **ImageNet** maxpool conv-128 conv-128 maxpool conv-256 conv-256 maxpool conv-512 conv-512 maxpool conv-512 conv-512 maxpool FC-4096 FC-4096 FC-1000 softmax

conv-64
conv-64
maxpool
conv-128
conv-128

maxpool

conv-256

conv-256

maxpool

conv-512

conv-512

maxpool

conv-512

conv-512

maxpool

FC-4096

FC-4096

FC-1000

softmax

2.
If you have small dataset: fix all weights (treat CNN as fixed feature extractor), retrain only the classifier

conv-64
conv-64
maxpool
conv-128
maxpool
conv-256
conv-256
maxpool

conv-512

maxpool

conv-512

conv-512

maxpool

FC-4096

FC-4096

FC-1000

If dataset is medium sized, "finetune".
Use the old weights as initialization, train the full network or only some of the higher layers

Swap softmax layer at end

This file is meant for personal use by rg.ravigupta91@gmail.com on pftmax

Retrain bigger portion of network

Probling goder put the puthing of the problem of th

greatlearning Learning for Life

Transfer Learning with CNNs

Transfer Learning with CNNs

Rule of thumb:

- Use only ~1/10th of the original learning rate in finetuning top layer
- And ~1/100th in intermediate layers

CNN Features off-the-shelf

[Razavian et al, 2014]

"Recent results indicate that the generic descriptors extracted from the convolutional neural networks are very powerful."

Deep Convolutional Activation for Generic Visual Recognition

[Donahue, Jia et al., 2013]

	DeCAF ₆	DeCAF ₇
LogReg	$\textbf{40.94} \pm \textbf{0.3}$	40.84 ± 0.3
SVM	39.36 ± 0.3	40.66 ± 0.3
Xiao et al. (2010)	38.0	

Source: 'DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition, Donahue, Jia, et al., (2013)

Prophibisyfilmism. Prophibism. P

Prophibisyfilmism. More thanks an algue the road away with the contents in part or full is liable for legal action.

Prophibility the lense moderate the appropriate the contents in part or full is liable for legal action.

Transfer learning with CNNs is common

Object Detection Faster R-CNN

The Image Captioning problem CNN + RNN

Sources: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, Ren, He et al. (2016)

E.g. Caffe Model Zoo: Lots of pretrained ConvNets

https://github.com/BVLC/caffe/wiki/Model-Zoo

https://github.com/szagoruyko/loadcaffe

This file is meant for personal use by rg.ravigupta91@gmail.com only. Proprietary content. ©Great Learning. All Rights Reserved. Unauthorized use or distribution profibering or publishing the contents in part or full is liable for legal action.

Thank you!