A Short and Descriptive Title

Your Name Here

Sigurðsson Research Group A 6 Month Progress Report December 2014

University of Iceland
Department of Chemistry
Science Institute

Contents

A۱	bstract	2
Al	bbreviations	3
1	Introduction	4
2	Syntheses	5
3	Conclusions and Outlook	6
4	Experiments	7
	4.1 General	7
	4.2 1,2,4,5-Tetra- <i>tert</i> butylthiobenzene (1)	8
Bi	ibliography	9
Li	ist of Figures	10
Li	ist of Schemes	11

Abstract

Write your abstract here.

Abbreviations

DCM dichloromethane

DMF N, N-dimethyformamide DNA deoxyribonucleic acid

EPR electron paramagnetic resonance

ESI-MS electron-spray ionization mass-spectrometry

J coupling constant m/z mass—charge ratio

NMR nuclear magnetic resonance

ppm parts per million RNA ribonucleic acid

rt room temperature (ambient)

TEA triethylamine
THF tetrahydrofurane
TFA trifluoroacetic acid

TLC thin layer chromatography

 δ chemical shift

s singlet
d doublet
t triplet
q quartet
m multiplet

1 Introduction

Write your introduction here.

Figure 1. Caption text.

Figure 1 shows a sample image. The DNA double helix was first reported by Watson and Crick in 1953.[1] It also possible to put the citation in superscript, like this.^[1]

2 Syntheses

Write your syntheses here.

Scheme 1. A scheme with no compound numbers.

Scheme 1 shows a sample reaction scheme.

3 Conclusions and Outlook

Write your conclusions, and yout outlook here.

4 Experiments

4.1 General

Chemicals were purchased primarily from Sigma-Aldrich Chemical Company and Acros, Belgium, and were used without further purification. Triethylamine was purchased anhydrous. TLC was carried out using glass plates pre-coated with silica gel (F254, Silicycle SiliPlate 60 Å). Visualisation was by UV light, and I_2 staining, respectively. Silica gel was purchased from Silicycle, and used for medium pressure chromatography ("flash"-chromatography).

 1 H and 13 C NMR spectra were recorded at the frequencies stated, using deuterated chloroform as internal standard (δ = 7.26 ppm for 1 H and δ = 77.0 ppm for 13 C NMR). 400 MHz spectra were recorded on a Bruker Advance 400 spectrometer. All coupling constants were measured in Hertz.

All moisture sensitive reactions were carried out in flame-dried glassware using argon from standard BOC industrial cylinders, dried through an activated silica column. Diethyl ether for moisture-sensitive reactions was used freshly distilled over Na under argon atmosphere. Concentrations of *n*Bu Li in hexane were determined by titration using diphenylacetic acid.

4.2 1,2,4,5-Tetra-*tert*.-butylthiobenzene (1)

To a solution of 2-methyl-2-propanethiol (94 mL, 0.84 mol) in DMF (150 mL) was added small pieces of sodium (19.37 g, 0.84 mol) at 0 °C. The mixture was allowed to reach ambient temperature and was stirred overnight. 1,2,4,5-Tetrachlorobenzene (30.3 g, 140.6 mmol) was added at once, and the resulting mixture was heated to 90 °C. As soon as the reaction mixture darkened and steam started to develop, the heating source was removed. As soon as the exothermic reaction had finished, the mixture was heated to 120 °Cfor 24 h. After being cooled to ambient temperature, the reaction mixture was poured over ice. The precipitate was removed by filtration, washed with water, and dried to give 30 g (49.5%) of the product as an off-white powder.

Notebook reference: MKI-107.

¹H NMR (400MHz, CDCl₃) δ = 7.94 (2 H, s),1.36 ppm (2 H, s).

¹³C NMR (101 MHz, CDCl₃) δ = 144.78, 139.36, 48.13, 31.33 ppm.

References

[1] J. D. Watson, F. H. Crick, "Molecular structure of nucleic acids", *Nature* **1953**, *171*, 737–738.

List of Figures	List	of	Fig	ures
------------------------	------	----	-----	------

T	• 4	e	α	i	
L	IST	OT	SCI	hem	es

1	A scheme with no compound numbers	5
-	Tree with the compound numbers, the tree tree tree tree tree tree tree	•