Майнор "Графы и Топология". Домашнее задание 3.

Выполнил: Кузнецов Володя БПМИ 188

Задача 1. Докажите, что множество

 $X = \{(0,t) \in \mathbb{R}^2 | -1 \le t \le 1\} \cup \{(t,\sin(\frac{1}{t})) \in \mathbb{R}^2 | t > 0\} \subset \mathbb{R}^2$ (с индуцированной топологией) является связным, но не линейно связным топологическим пространством.

ho Имеем множество (0 imes [-1;1]) и график функции $y = \sin(\frac{1}{x}), x > 0.$

Изначально докажем, что X – не линейно связное пространство. Очевидно, что $(0,0)\in X$, так что видно, что $(\pi,\sin(1/\pi))\in X$, но отметим, что не существует "след", который лежит в X, который мог бы соединить эти две точки, так как $\sin(\frac{1}{x})$ имеет разрыв в нуле (это так же просто увидеть из графика).

Теперь докажем, что X вообще говоря связное, знаем, что замыкание связного множества связно. Понятно, что $\sin(\frac{1}{x})$ связно (просто непрерывная линия при x>0). Поймём, что является замыканием графика синуса. Ясно, что $-1 \leq \sin(1/x) \leq 1$, так как $\sin(1/x) = 1, x>0 \Rightarrow x = \frac{2}{\pi(4n+1)}, n \in \mathbb{Z}^+ \cup \{0\}$. Аналогично находится $\sin(1/x) = -1 \Rightarrow x = \frac{2}{\pi(4n-1)}, n \in Z^+, x = \frac{2}{\pi(4n+3)}, n \in Z^+ \cup \{0\}$. Заметим, что при $n \to \infty$ x принимает значения близкие к нулю \Rightarrow в некоторой положительной окрестности нуля $\sin(1/x)$ принимает все значения из [-1;1]. **Грубо** говоря, можем сделать следующую запись: $\lim_{x\to 0} \sin(1/x) = [-1;1]$. Отсюда следует, что замыкание синуса – множество X.

Задача 2. Рассмотрим множество X всех непрерывных функций на отрезке [0,1]. Для двух непрерывных функций $f,g:[0,1] \to \mathbb{R}$ определим $d(f,g) = \max_{0 \le t \le 1} |f(t) - g(t)|$.

- а) Докажите, что функция d наделяет множество X структурой метрического пространства.
- а) ho Изначально отметим, что $orall t\in [0,1]$ $f(t)-g(t)\in \mathbb{R}$, тогда $d\in \mathbb{R}\geq 0$. Теперь проверим все три аксиомы:
 - 1. Аксиома тождества: $d(f,g)=\max_{0\leq t\leq 1}|f(t)-g(t)|\Rightarrow$ если значения функций не различаются на [0,1], то модуль их разности будет всегда равен нулю, а значит, что $f=g\Rightarrow d=0.$

Докажем, что $d=0\Rightarrow f=g$. Предположим, что это не так, тогда $\exists t\in [0,1]: f(t)\neq g(t)\Rightarrow f(t)-g(t)\neq 0\Rightarrow |f(t)-g(t)|>0$. Противоречие, а значит, аксиома тождества доказана в обе стороны.

- 2. Аксиома симметрии: $d(f,g) = \max_{0 \le t \le 1} |f(t) g(t)| = \max_{0 \le t \le 1} |g(t) f(t)| = d(g,f).$
- 3. Аксиома треугольника: Нужно доказать: $\max_{0 < t < 1} |f(t) g(t)| \leq \max_{0 < t < 1} |f(t) k(t)| + \max_{0 < t < 1} |k(t) g(t)|$, где $f, g, k \in X$.

Легко понятно, что "меньше" и "равно" выполняется. Осталось понять, почему не выполняется "больше". Предположим, что $\max_{0 \le t \le 1} |f(t) - g(t)|$ достигается в точке m, тогда обозначим A = f(m), B = g(m). Если k проходит не через AB, то имеем знак "меньше". Если же k проходит через A, то $\max_{0 \le t \le 1} |k(t) - g(t)| \ge |AB|$, аналогичные рассуждения про точку B и d(f,k)(а значит, что имеем знак "не меньше"). Рассмотрим, когда k проходит через AB. Обозначим C = k(m), получаем, что |AB| точно содержится в правой сумме, ведь |AC| + |CB| = |AB|, а $d(f,k) \ge |AC|$ в силу того, что AC содержится между f и k, и аналогично $d(k,g) \ge |CB|$. Получаем $d(f,k) + d(k,g) \ge |AB| = d(f,g)$. \square

Задача 4. Склеим из диска $D=\{(x,y)\in\mathbb{R}^2|x^2+y^2\leq 1\}$ топологическое пространство отождествив точки $(\sqrt{1-t^2},t)$ и $(-\sqrt{1-t^2},t)$ для $-1\leq t\leq 1$. **Строго** докажите, что получающееся топологическое пространство гомеоморфно сфере $X=\{(x,y,z)\in\mathbb{R}^3|x^2+y^2+z^2=1\}.$

ightharpoonup Давайте построим отображение из всех точек диска единичного диска во все точки единичной сферы. Кажется, что нет смысла обсуждать, а действительно ли из диска при склейке таким образом получается сфера, ибо мы просто склеиваем края диска по y координате.

Теперь можем построить гомеоморфизм. Давайте я опишу, как 1/4 диска переводится в 1/4 сферы, а дальше скажу "аналогично" (там правда аналогично). Разобъём диск на 4 равные части (по четвертям координатной плоскости), рассмотрим первую четверть. В ней имеем 1/4 диска, давайте разобъём его на две равные по площади части:

$$A=\{(x,y)\in D|x^2+y^2\leq \sqrt{2}/2, x>0, y>0\}$$
 (диск радиусом $\sqrt{2}/2$) и остаток – $B=\{(x,y)\in D|x^2+y^2>\sqrt{2}/2, x>0, y>0\}.$

Дальше всё очень просто, поймём, что $\forall (x,y,z) \in X$ выполняется $z=\pm \sqrt{1-x^2-y^2}$. Давайте первую и вторую четверть диска переводить в $z\geq 0$, а третью и четвёртую в z<0. Переводить будем так (на примере A и B):

 $(x,y)\in A o (2x/\sqrt{2},2y/\sqrt{2},\sqrt{1-2x^2-2y^2})\in X.$ В переводится чуть сложнее: для каждой точки из B проведём прямую через центр диска, пусть она пересекает центр в

точке O, а диск в точке P, маленький (с радиусом $\sqrt{2}/2$) диск в точке Q. Тогда видно, что $(QP]\sim (OQ]$ для любых $(x,y)\in B$ (признаюсь честно, что явный гомеоморфизм я тут не придумал (я не очень люблю возиться с тригонометрией и углами), но ясно, что он есть, так как по факту мы переводим $(\sqrt{2}/2;1]$ в $(0;\sqrt{2}/2]$). А дальше понятно, что точки из B переводим аналогично множеству A.

Разобъём X на 8 частей: $x\geq 0, y\geq 0, z\geq 0, \ldots, x<0, y<0, z<0$. Знак сопоставим с 0 (\geq) или 1 (<). Обозначим A_k – маленький диск четверти k, B_k – внешняя часть диска четверти k. Дальше переводим: $A_I\to 000, B_I\to 010, A_{II}\to 100, B_{II}\to 110, A_{III}\to 101, B_{III}\to 111, A_{IV}\to 001, B_{IV}\to 011.$