オペレーティングシステム 第4章 スケジューリング

https://github.com/tctsigemura/OSTextBook

スケジューリング

評価基準

- スループット (Throughput)
- ターンアラウンド時間(Turnaround time)
- レスポンス時間(Response time)
- 締め切り (Deadline)
- その他(公平性,省エネ,予測性など)

システムごとの目標

コンピュータの種類	重視する性能
メインフレーム(バッチ処理)	スループット,ターンアラウンド時間
ネットワークサーバ	レスポンス時間,スループット
デスクトップパソコン	レスポンス時間
モバイルデバイス	レスポンス時間,省エネルギー
組込み制御	締め切り

CPUバウンドプロセス

動画圧縮の例

1/0 バウンドプロセス

スプレッドシートの例

FCFS スケジューリング(1)

FCFS (First-Come, First-Served)

• プリエンプションしないスケジューリング方式

プロセス 到	着時刻	CPU バースト時間 (ms)
P_1	0	100
P_2	0	20
P_3	0	10

	P_1	P_2		P_3	
0	1	00	12	CU I	30

- P₁, P₂, P₃の順に実行
- 平均ターンアラウンド時間((100 + 120 + 130)/3 = 117 ms)
- 最悪の平均ターンアラウンド時間を選択することもある.

FCFS スケジューリング(2)

• 平均ターンアラウンド時間は 到着順により大きく変化する.

プロセス	到着時刻	CPU バースト時間 (ms)
P_1	0	100
P_2	0	20
P_3	0	10

	P_2	P_3	P_1	
0	2	0 3	0	130

- *P*₂, *P*₃, *P*₁ の順に実行
- 平均ターンアラウンド時間 ((20+30+130)/3=60 ms)

スケジューリング

SJF スケジューリング

SJF (Shortest-Job-First)

• プリエンプションしないスケジューリング方式

プロセス	到着時刻	CPU バースト時間 (ms)
P_1	0	100
P_2	0	20
P_3	0	10

	P_3	P_2	P_1	
0	1	0	30	130

• 平均ターンアラウンド時間 ((10+30+130)/3=57 ms)

SRTF スケジューリング(1)

SRTF (Shortest-Remaining-Time-First)

比較のための SJF スケジューリングの例

プロセス	到着時刻	CPU バースト時間 (ms)
P_1	0	60
P_2	10	40
P_3	60	30

	P_1	P_3		P_2	
Ċ		60	90	13	30

- SJF はプリエンプションなし
- 平均ターンアラウンド時間 (((60-0)+(90-10)+(130-60))/3=70 ms)

◆ロト ◆団 ト ◆ 恵 ト ◆ 恵 ・ 釣り(で)

SRTF スケジューリング(2)

SRTF (Shortest-Remaining-Time-First)

前の SJF と同じプロセスのを SRTF でスケジューリング

プロセス	到着時刻	CPU バースト時間 (ms)
P_1	0	60
P_2	10	40
P_3	60	30

	P_1	I	\mathcal{P}_2	P_1	P_3		P_1	
C) 1	.0	5	0 6	50	90	1	.30

- SRTF はプリエンプションあり
- 平均ターンアラウンド時間 (((130-0)+(50-10)+(90-60))/3=67 ms)

◆ロト ◆個ト ◆重ト ◆重ト ■ りへ○

RRスケジューリング(1)

RR (Round-Robin)

クォンタムタイムまでプリエンプションしない.

プロセス	到着時刻	CPU バースト時間 (ms)
P_1	0	60
P_2	10	40
P_3	60	30

	P_1	P_2	P_1	P_2	P_1	P_2	P_1	P_3	P_2	P_1	P_3	P_1	P_3	
0	1	0 2	0 3	0 4	0 5	0 6	0 7	0 8	0 9	0 10	00 1:	10 12	20 1	30

- クォンタムタイム= 10ms
- 平均ターンアラウンド時間 (((120-0)+(90-10)+(130-60))/3=90)

◆ロト ◆団ト ◆豆ト ◆豆ト ・豆 ・ かへぐ・

RRスケジューリング(2)

プロセス	到着時刻	CPU バースト時間 (ms)
P_1	0	60
P_2	10	40
P_3	60	30

	P_1	P_2	F	2	P_3	
0	5	0	90	100	1	30

- クォンタムタイム= 50ms
- 平均ターンアラウンド時間 (((100-0)+(90-10)+(130-60))/3=83 ms)

スケジューリング

優先度順スケジューリング

Priority

• 実行可能列を優先度順でソートしておく.

- 静的優先度/動的優先度
- スタベーション (starvation):飢餓
- エージング (aging): 老化,熟成

FB スケジューリング

FB (Multilevel Feedback Queue)

・エージング

TacOS のスケジューラ

```
public void schProc(PCB proc) {
    int r = setPri(DI|KERN);
                                                // 割り込み禁止、カーネル
    int enice = proc.enice;
                                                // 実行可能列から
4
    PCB head = readyQueue.next;
5
    while (head.enice <= enice)
                                                     優先度がより低い
6
                                                // プロセスを探す
      head = head.next:
7
                                                // 見つけたプロセスの
    insProc(head,proc);
8
                                                     直前に挿入する
    setPri(r);
9
                                                // 割り込み状態を復元する
```

TacOS の実行可能列(参考)

- yield()
- dispatch()

• 実行可能列

練習問題(1)

- 次の言葉の意味を説明しなさい.
 - スループット
 - ターンアラウンド時間・レスポンス時間
 - ハードリアルタイム・ソフトリアルタイム
 - CPU バウンドプロセス・I/O バウンドプロセス
 - FCFS スケジューリング・SJF スケジューリング
 - SRTF スケジューリング・RR スケジューリング
 - 優先度順スケジューリング・FB ケジューリング
 - クォンタム時間
 - スタベーション
 - エージング

練習問題(2)

次の三つのプロセスの実行順をガントチャートで示しなさい。また、 平均ターンアラウンド時間を計算しなさい。

プロセス名	到着時刻 (ms)	<i>CPUバースト時間 (ms)</i>
P_1	0	70
P_2	10	50
P_3	20	30

- FCFS でスケジューリングした場合
- SJF でスケジューリングした場合
- SRTF でスケジューリングした場合
- RR(但しクォンタム時間は 20ms) でスケジューリングした場合
- RR(但しクォンタム時間は 40ms)でスケジューリングした場合
- RR(但しクォンタム時間は 60ms) でスケジューリングした場合