Solutions to Take-Home Quiz Four ECE 271B - Winter 2022

Department of Electrical and Computer Engineering University of California San Diego

Problem 1.

a) For this problem, the Lagrangian is

$$L(\mathbf{x}, \mu) = \frac{1}{2}||\mathbf{x}||^2 + \mu \left(\sum_i x_i + 3\right)$$

and has zero gradient when

$$x_i + \mu = 0, \ \forall i.$$

We have two possibilities:

- 1. The constraint is inactive, $\sum_i x_i < -3$. In this case, $\mu = 0$ and $x_i = 0, \forall i$. This is a contradiction.
- 2. The constraint is active, $\sum_i x_i = -3$. In this case, $\mu > 0$ and $x_i = -\mu, \forall i$. It follows that $\mu = 3/n$ and $x_i = -3/n, \forall i$.

The Hessian of the Lagrangian is the identity and therefore always positive definite. Hence, the minimum is at

$$x_i^{\star} = -\frac{3}{n}, \forall i.$$

b) The problem of maximizing $\mathbf{y}^T\mathbf{x}$ subject to the constraint $\mathbf{x}^T\mathbf{Q}\mathbf{x} \leq 1$ has Lagrangian

$$L(\mathbf{x}, \mu) = \mathbf{y}^T \mathbf{x} + \mu \left(\mathbf{x}^T \mathbf{Q} \mathbf{x} - 1 \right),$$

which has zero gradient when

$$\mathbf{y} + 2\mu \mathbf{Q} \mathbf{x}^* = 0.$$

Assuming that $\mathbf{y} \neq \mathbf{0}$, this rules out a solution with $\mu = 0$, from which the constraint must be active at the maximum, i.e. $(\mathbf{x}^{\star})^T \mathbf{Q} \mathbf{x}^{\star} = 1$. Multiplying the equation above by $(\mathbf{x}^{\star})^T$, we obtain

$$\mu = -\frac{1}{2} \mathbf{y}^T \mathbf{x}^*.$$

Multiplying by $\mathbf{y}^T \mathbf{Q}^{-1}$, we obtain

$$\mathbf{y}^T \mathbf{Q}^{-1} \mathbf{y} + 2\mu \mathbf{y}^T \mathbf{x}^* = 0$$

and, using the value of μ , it follows that the maximum is given by

$$\mathbf{y}^T \mathbf{x}^* = \sqrt{\mathbf{y}^T \mathbf{Q}^{-1} \mathbf{y}}.$$

This implies that, when $\mathbf{x}^T \mathbf{Q} \mathbf{x} \leq 1$

$$(\mathbf{y}^T \mathbf{x})^2 \le \mathbf{y}^T \mathbf{Q}^{-1} \mathbf{y}$$

and, exchanging the roles of \mathbf{x} and \mathbf{y} , when $\mathbf{y}^T \mathbf{Q}^{-1} \mathbf{y} \leq 1$,

$$(\mathbf{y}^T \mathbf{x})^2 \le \mathbf{x}^T \mathbf{Q} \mathbf{x}.$$

Problem 2.1. We consider the six problems.

- 1. Note that $f + g = 2x_1 1 \ge -1$ and $f g = -x_2 + 1 \le 1$. Hence, the set of feasible solutions is the set of (f, g) such that $-1 g \le f \le g + 1$.
- 2. The feasible set is the set of (f,g) such that $f=\sqrt{g}$.
- 3. The feasible set is the set of (f, g) in $\{(-1/2, 0), (1/2, -1)\}$.
- 4. The feasible set is the set of (f,g) on the line segment between (-1/2,0) and (1/2,-1).
- 5. Note that $f = 1/2[(g+1)^2 + x_2^2]$, from which the feasible set is the set of (f,g) such that $f \ge \frac{(g+1)^2}{2}$.
- 6. Note that $f = |g| + x_2$, from which the feasible set is the set of (f, g) such that $f \ge |g|$.

Problem 2.2. In the lectures, we have seen that the Lagrange multiplier μ^* defines the vector $w^* = (\mu^*, 1)$, which is normal to the hyper-plane that supports the set of feasible solutions

$$f(x) + \mu^* g(x) - L^* \ge 0, \ \forall x.$$

Furthermore, due to the constraint $\mu \geq 0$, w^* must be in the first quadrant of the (g, f) space. Finally, due to the constraint that $\mu^* \neq 0$ only when the constraint is active, we have that one of the following two conditions must hold.

- Condition 1: Supporting plane is horizontal ($\mu^* = 0$) and the point where it supports the set of feasible (f, g) has g < 0 (inactive constraint).
- Condition 2: w^* is anywhere in the first quadrant $(\mu^* > 0)$ and the support point has g = 0 (active constraint).

If you sketch the feasible regions derived above, you will see that the following holds for the six problems.

- 1. Condition 1 does not hold. Condition 2 holds when the supporting point is (g, f) = (0, -1), which makes the supporting plane be the line f = -g 1, or f + g + 1 = 0. Hence, $\mu^* = 1$ and $f^* = -1$.
- 2. The only plane supporting the set of feasible (f,g) is the vertical line through the origin. This is incompatible with the vector w^* , which always has a component along the g-axis $(w^* = (\mu^*, 1))$. Hence, there is no Lagrange multiplier.
- 3. Condition 1 does not hold (no horizontal plane supports the two points and has support point with g < 0). Condition 2 does not hold because there is no point such that g = 0. Hence, there is no Lagrange multiplier.
- 4. Condition 1 still does not hold. Condition 2 now holds when the supporting plane is the segment itself and the supporting point is the intersection with the f-axis. w^* is the normal to the segment, and μ^* can be computed from it.
- 5. Condition 2 does not hold, Condition 1 holds when the support plane is horizontal ($\mu^* = 0$) and the support point (g, f) = (-1, 0). Note that $f^* = 0$.
- 6. Condition 1 does not hold. Condition 2 holds for various values of μ^* , since there are many planes that support the feasible set at the point (f,g)=(0,0). In fact, any line between the horizontal and f=-g will be one such plane. Hence, the set of Lagrange multipliers is the interval (0,1] and $f^*=0$.

Problem 2.3. Consider the six problems

1. The dual cost is

$$\begin{array}{lcl} q(\mu) & = & \displaystyle \min_{x_1 \geq 0, x_2 \geq 0} x_1 - x_2 + \mu(x_1 + x_2 - 1) \\ \\ & = & \displaystyle \min_{x_1 \geq 0, x_2 \geq 0} x_1(1 + \mu) + x_2(\mu - 1) - \mu \\ \\ & = & \left\{ \begin{array}{ll} -\infty, & 0 \leq \mu < 1, \\ -\mu, & 1 \leq \mu \end{array} \right. \end{array}$$

and the maximum is $q^* = -1 = f^*$. Hence, there is no duality gap.

2. The dual cost is

$$\begin{array}{rcl} q(\mu) & = & \displaystyle \min_x x + \mu x^2 \\ & = & \left\{ \begin{array}{ll} -\infty, & \mu \leq 0, \\ -\frac{1}{4\mu}, & \mu > 0 \end{array} \right. \end{array}$$

and there is no maximum $(q^* \to 0 \text{ as } \mu \to \infty)$. Note that the solution of the primal problem is $f^* = 0$ and there is no duality gap. However, because there is no Lagrange multiplier, the dual problem has no solution.

3. The dual cost is

$$q(\mu) = \min_{x \in \{0,1\}} -x + \mu(x - \frac{1}{2})$$
$$= \min_{\mu \ge 0} \left(-\frac{\mu}{2}, -1 + \frac{\mu}{2} \right)$$

and the maximum is $q^* = -1/2$. Note that the minimum of the primal problem is $f^* = 0$, and we have a duality gap. Hence, while the dual problem has a perfectly well-defined solution, this solution tells us nothing about the solution of the primal problem.

- 4. It can be checked that there is no duality gap in this case.
- 5. The dual cost is

$$q(\mu) = \min_{x_1, x_2} \frac{1}{2} (x_1^2 + x_2^2) + \mu(x_1 - 1)$$
$$= -\frac{1}{2} \mu^2 - \mu$$

and $q^* = 0 = f^*$. Hence, there is no duality gap.

6. The dual cost is

$$q(\mu) = \min_{x_1, x_2 \ge 0} |x_1| + x_2 + \mu x_1$$
$$= \begin{cases} 0, & |\mu| \le 1, \\ -\infty, & |\mu| > 1 \end{cases}$$

and $q^* = 0 = f^*$. Hence, there is no duality gap. Note that the set of dual optimal solutions is $0 < \mu^* \le 1$, confirming the previous observation that all these values of μ^* are Lagrange multipliers.

Problem 3.

a) The Lagrangian is

$$L(\boldsymbol{\alpha}, \boldsymbol{\beta}, \gamma) = \frac{1}{2} ||\mathbf{w}||^2 - \nu \rho + \frac{1}{n} \sum_{i} \xi_i - \sum_{i} \alpha_i [y_i(\langle \mathbf{x}_i, \mathbf{w} \rangle + b) - \rho + \xi_i] - \sum_{i} \beta_i \xi_i - \gamma \rho.$$

Setting the derivatives w.r.t. to the primal variables \mathbf{w} , b, $\boldsymbol{\xi}$, ρ to zero, we get

$$\nabla_{\mathbf{w}} L = 0 \quad \Leftrightarrow \quad \mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$$

$$\frac{\partial L}{\partial b} = 0 \quad \Leftrightarrow \quad \sum_{i} \alpha_{i} y_{i} = 0$$

$$\frac{\partial L}{\partial \xi_{i}} = 0 \quad \Leftrightarrow \quad \alpha_{i} + \beta_{i} = \frac{1}{n}$$

$$\frac{\partial L}{\partial \rho} = 0 \quad \Leftrightarrow \quad \sum_{i} \alpha_{i} - \gamma = \nu$$

and, plugging back in the Lagrangian,

$$L(\boldsymbol{\alpha}, \boldsymbol{\beta}, \gamma) = -\frac{1}{2} ||\mathbf{w}||^2 - \nu \rho + \frac{1}{n} \sum_{i} \xi_i - \sum_{i} \alpha_i (-\rho + \xi_i) - \sum_{i} \beta_i \xi_i - \gamma \rho$$

$$= -\frac{1}{2} ||\mathbf{w}||^2 - \nu \rho + \frac{1}{n} \sum_{i} \xi_i - \sum_{i} \xi_i (\alpha_i + \beta_i) + \rho (\sum_{i} \alpha_i - \gamma)$$

$$= -\frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j < \mathbf{x}_i, \mathbf{x}_j > .$$

Noting that $\beta_i \geq 0$ implies that

$$\alpha_i \le \frac{1}{n}$$

and $\gamma \geq 0$ that

$$\sum_{i} \alpha_i \ge \nu,$$

the dual problem is

$$\max_{\alpha} \left(-\frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j < \mathbf{x}_i, \mathbf{x}_j > \right)$$

subject to

$$0 \le \alpha_i \le \frac{1}{n}$$
$$\sum_{i} \alpha_i \ge \nu$$
$$\sum_{i} \alpha_i y_i = 0.$$

The decision function is of the usual form

$$f(\mathbf{x}) = \operatorname{sgn}\left(\sum_{i} \alpha_{i} y_{i} < \mathbf{x}, \mathbf{x}_{i} > +b\right).$$

b) Consider the support vectors on the margin, i.e. with $0 < \alpha_i < 1/n$. Then, from the KKT conditions,

$$y_i(\langle \mathbf{x}_i, \mathbf{w} \rangle + b) = \rho - \xi_i$$
 and $\xi_i = 0$,

from which

$$\rho = y_i(\langle \mathbf{x}_i, \mathbf{w} \rangle + b).$$

Consider the set \mathcal{A} of such SVs with $y_i = 1$ and the set \mathcal{B} where $y_i = -1$. Then

$$\sum_{\mathbf{x}_i \in \mathcal{A}} (<\mathbf{x}_i, \mathbf{w} > +b) - \sum_{\mathbf{x}_i \in \mathcal{B}} (<\mathbf{x}_i, \mathbf{w} > +b) = (|\mathcal{A}| + |\mathcal{B}|)\rho$$

or

$$\sum_{\mathbf{x}_i \in \mathcal{A}} <\mathbf{x}_i, \mathbf{w}> -\sum_{\mathbf{x}_i \in \mathcal{B}} <\mathbf{x}_i, \mathbf{w}> +(|\mathcal{A}|-|\mathcal{B}|)b = (|\mathcal{A}|+|\mathcal{B}|)\rho.$$

Hence, if we pick two subsets $\mathcal{A}' \subset \mathcal{A}$ and $\mathcal{B}' \subset \mathcal{B}$ such that $|\mathcal{A}'| = |\mathcal{B}'|$, we can recover ρ from

$$\rho = \frac{1}{2|\mathcal{A}'|} \left[\sum_{\mathbf{x}_i \in \mathcal{A}'} \langle \mathbf{x}_i, \mathbf{w} \rangle - \sum_{\mathbf{x}_i \in \mathcal{B}'} \langle \mathbf{x}_i, \mathbf{w} \rangle \right].$$

Next, using the first equation again,

$$b = \rho - \frac{1}{|\mathcal{A}'|} \sum_{\mathbf{x}_i \in \mathcal{A}'} \langle \mathbf{x}_i, \mathbf{w} \rangle = -\frac{1}{2|\mathcal{A}'|} \sum_{\mathbf{x}_i \in \mathcal{A}' \cup \mathcal{B}'} \langle \mathbf{x}_i, \mathbf{w} \rangle.$$

c) From the KKT conditions, $\rho > 0$ implies that $\gamma = 0$, and

$$\nu = \sum_{i} \alpha_{i}.$$

Hence, if k is the number of i such that $\alpha_i = 1/n$, we must have

$$k\frac{1}{n} \le \nu \iff \frac{k}{n} \le \nu.$$

Furthermore, for all i such that $\xi_i > 0$, we must have $\alpha_i = 1/n$ since otherwise α_i could grow and decrease ξ_i . Hence,

$$\frac{1}{n} |\{i \mid \xi_i > 0\}| \le \nu.$$

Bound 1 follows from the fact that the margin errors are the cases where $\xi_i > 0$ (otherwise, by the statement of the problem, $y_i g(\mathbf{x}_i) \geq \rho$). Bound 2 follows from the fact that

$$\sum_{i} \alpha_i \ge \nu$$

and each support vector can contribute at most 1/n to the summation. Hence, if the number of SVs is m,

$$\nu \le \sum_{i} \alpha_i \le \frac{m}{n}$$

and

$$\frac{m}{n} \ge \nu$$
.

d) Consider the following procedure. We minimize the second problem. Then, we fix ρ to the optimal value and minimize over the remaining variables. Clearly, the solution will be the same. This means that values obtained for \mathbf{w} and ξ minimize the cost of the first problem, with C=1, under the constraints of the second. So, we only need to find a way to make

$$y_i(\langle \mathbf{x}_i, \mathbf{w} \rangle + b) \ge \rho - \xi_i$$

equivalent to

$$y_i(\langle \mathbf{x}_i, \mathbf{w} \rangle + b) \ge 1 - \xi_i,$$

which can be easily done by rescaling all variables so that

$$\mathbf{w}' = \frac{1}{\rho} \mathbf{w}$$

$$\xi_i' = \frac{1}{\rho} \xi_i$$

$$b' = \frac{1}{\rho} b.$$

Noting that

$$\min\left(\frac{1}{2}||\mathbf{w}||^2 + \frac{1}{n}\sum_{i}\xi_i\right) = \min\left(\frac{1}{2}||\mathbf{w}'||^2 + \frac{1}{n\rho}\sum_{i}\xi_i'\right)$$

leads to the desired equivalence.

Problem 4.a)

1) The test accuracy for each digit when C=2,4,8 is below. Note that the value of C does not make a huge difference as long as one is close to the best. The performance of the individual classifiers varies quite a bit, reflecting the fact that some digits are much easier to identify than others. "1" appears to be the easiest digit and "8" and "9" the hardest ones.

digit 0	digit 1	digit 2	digit 3	digit 4	digit 5	digit 6	digit 7	digit 8	digit 9	overall
98.73%	99.32%	97.96%	97.47%	98.14%	97.06%	98.07%	98.28%	95.71%	96.31%	90.76%

Table 1: Accuracy for each digit when C=2.

digit 0	digit 1	digit 2	digit 3	digit 4	digit 5	digit 6	digit 7	digit 8	digit 9	overall
98.68%	99.22%	97.92%	97.42%	98.02%	97.49%	98.04%	98.21%	95.59%	96.31%	90.43%

Table 2: Accuracy for each digit when C = 4.

						digit 6				
98.54%	99.13%	97.87%	97.48%	97.96%	97.36%	97.92%	98.08%	95.55%	96.36%	90.13%

Table 3: Accuracy for each digit when C = 8.

2) The number of support vectors for each digit when C=2,4,8 is below. Note that the number of support vectors is proportional to how difficult the digits are to classify. In this case, "8" and "9" require a lot more support vectors than the remaining digits.

digit 0	digit 1	digit 2	digit 3	digit 4	digit 5	digit 6	digit 7	digit 8	digit 9
464	505	1211	1422	900	1326	686	779	2093	1848

Table 4: Number of support vectors for each digit when C=2.

digit 0	digit 1	digit 2	digit 3	digit 4	digit 5	digit 6	digit 7	digit 8	digit 9
45 5	486	1201	1416	880	1292	671	770	2097	1836

Table 5: Number of support vectors for each digit when C=4.

digit 0	digit 1	digit 2	digit 3	digit 4	digit 5	digit 6	digit 7	digit 8	digit 9
436	455	1189	1400	869	1253	651	744	2077	1816

Table 6: Number of support vectors for each digit when C = 8.

3) The following plots show the 3 examples of largest Lagrange multiplier on both sides of the discriminant plane (y_i is the label for i^{th} example). These are the examples closest to the border and the hardest ones to get right.

For C=2,

Problem 4.b) The plots of the cdf of the margin for every digit from 0 to 9 when C=2 are as follows.

The plots of the cdf of the margin for every digit from 0 to 9 when C=4 are as follows.

The plots of the cdf of the margin for every digit from 0 to 9 when C=8 are as follows.

Problem 4.c)

1) After we run the script grid.py, we get the values of C=2 and $\gamma=0.0625$. The test accuracy for each digit is below. Note that the results are much better than for the linear SVM. This is a very common observation.

digit 0	digit 1	digit 2	digit 3	digit 4	digit 5	digit 6	digit 7	digit 8	digit 9	overall
99.53%	99.76%	98.88%	98.85%	99.15%	98.74%	99.30%	99.07%	98.37%	98.83%	97.42%

Table 7: Accuracy for each digit using radial basis function kernel, with C=2 and $\gamma=0.0625$.

2) The number of support vectors for each digit when C=2 and $\gamma=0.0625$ is below. This number is also much higher than for the linear SVM. This is the price you pay for the performance of the kernel SVM. It is not unheard of for a kernel-SVM to use 90% of the training set as support vectors, if the problem is really hard. This can be computationally very intensive.

digit 0	digit 1	digit 2	digit 3	digit 4	digit 5	digit 6	digit 7	digit 8	digit 9
5861	2416	6892	7131	6302	6683	5648	5742	7672	6492

Table 8: Number of support vectors for each digit using radial basis function kernel, with C=2 and $\gamma=0.0625$.

3) The support vectors with the 3 largest Lagrange multipliers for both sides of the discriminant plane are below (y_i) is the label for i^{th} example), when C=2.

4) The plots of the cdf of the margin for every digit from 0 to 9 when C=2 are as follows.

