RELACJE

- 1. Wyznacz wszystkie elementy relacji $r \subseteq X \times Y$, gdy:
 - (a) $X = \{\text{pyton, sep, stru\'s}\}, Y = \{\text{zebra, gepard}\}$ oraz x r y wttw, gdy słowo x nie ma ani jednej wspólnej litery ze słowem y,
 - (b) $X = Y = \{0, \frac{1}{5}, \frac{1}{7}, 1\}$ oraz x r y wttw, gdy $\frac{x}{y} \ge 1$.
- 2. Zapisz relację $r \subseteq U \times U$ jako (a) zbiór par uporządkowanych, (b) w postaci tabelki (macierzy) i (c) w postaci grafu. Określ jej własności.
 - (a) $U = \{-3, -2, 0, 1, 4, 5, 6\}, (n, m) \in r \text{ wttw } m^2 n^2 \equiv 0 \pmod{3},$
 - (b) $U = \{-12, -8, -2, -1, 0, 2, 4, 5, 6\}, (n, m) \in r \text{ wttw } n \mid m \text{ (n jest dzielnikiem m)},$
 - (c) $U = \{-10, -5, -4, -3, 1, 2, 4, 5\}, (n, m) \in r \text{ wttw } |n + m| < |m|.$
- 3. Jakie własności ma graf relacji określonej w zbiorze o skończonej liczbie elementów, jeśli relacja ta jest: (a) zwrotna, (b) symetryczna, (c) antysymetryczna, (d) spójna, (e) przechodnia, (f) relacją równoważności. Podaj odpowiednie przykłady.
- 4. Jakie własności ma tabelka relacji określonej w zbiorze o skończonej liczbie elementów, jeśli relacja ta jest: (a) zwrotna i symetryczna, (b) przeciwzwrotna i antysymetryczna. Podaj odpowiednie przykłady.
- 5. Sprawdź, które z własności: zwrotność, przeciwzwrotność, symetryczność, antysymetryczność, przeciwsymetryczność (asymetryczność), przechodniość, spójność posiada relacja $r \subseteq A \times A$ gdy:
 - (a) A- zbiór miast leżących w Azji, $r = \{(a, b) : a \text{ jest miastem położonym nie niżej nad poziomem morza niż miasto } b\},$
 - (b) $A = \{x, y, z\}, r = \{(x, x), (y, x), (y, z), (z, z), (z, y)\},\$
 - (c) $A = 2^{\mathbb{N}}, r = \{(X, Y) : X \subseteq Y\},$
 - (d) $A = \mathbb{N}, r = \{(a, b) : \text{NWD}(a, b) = 1\},$ gdzie NWD oznacza największy wspólny dzielnik.
- 6. Zbadaj własności podanej relacji (zwrotność, przeciwzwrotność, symetria, przeciwsymetria, przechodniość, antysymetria):
 - (a) r jest relacją binarną w zbiorze liczb naturalnych taką, że x r y wttw istnieje różna od 1 liczba naturalna, która jest dzielnikiem zarówno x, jak i y,
 - (b) r jest relacją binarną w zbiorze liczb $\{1,2,3,...,9\}$ taką, że x r y jest liczbą parzystą,
 - (c) r jest relacją binarną w zbiorze liczb naturalnych taką, że x r y wttw liczba jedynek w binarnej reprezentacji liczby x jest mniejsza niż liczba jedynek w binarnej reprezentacji liczby y.
- 7. Niech P(n) będzie programem z jednym argumentem wywołania będącym liczbą naturalną i zwracającym również liczbę naturalną. W zbiorze liczb naturalnych $\mathbb N$ określamy relację r taką, że a r b wttw $b \in Res(P(a))$, gdzie Res(P(a)) jest zbiorem wszystkich wartości, które może zwrócić program P dla danej początkowej a. Określ własności relacji r oraz wyznacz Res(P(4)), gdy
 - (a) $P(n) = \{x := n; return x\},\$
 - (b) $P(n) = \{x := n+1; return x\},\$
 - (c) $P(n) = \{x := random(\mathbb{N}); return x\}$, gdzie random(X) jest akcją losującą dowolną liczbę ze zbioru X,
 - (d) $P(n) = \{x := random(\{0, 1, 2, \dots, n\}); return x\},\$
 - (e) $P(n) = \{if \ 3 | n \ then \ x := 0 \ else \ if \ 3 | (n+1) \ then \ x := 2 \ else \ x := 1; \ fi \ fi; \ return \ x \}.$
- 8. Niech U będzie zbiorem wszystkich możliwych stanów gry "Kółko i krzyżyk". Powiemy, że stan gry S_i jest w relacji r ze stanem gry S_j wtedy i tylko wtedy, gdy planszę stanu S_j można otrzymać z planszy stanu S_i przez jednokrotne lustrzane odbicie planszy stanu S_i względem jednej z jej krawędzi. Określ własności relacji $r \subseteq U \times U$.

Matematyka dyskretna Studia PJWSTK

9. Rozważmy algorytm

$$Alg(n) = \{if \ n > 0 \ then \ if \ n \ mod \ 2 = 0 \ then \ Alg(n/2); \ else \ Alg(n-1); \ fi \ fi \}.$$

Niech U będzie zbiorem wszystkich wykonań algorytmu Alg, dla $n \in \mathbb{N}$. Powiemy, że wykonanie algorytmu Alg(i) jest w relacji r z wykonaniem algorytmu Alg(j) wtedy i tylko wtedy, gdy wykonanie Alg(i) jest rekurencyjnie osiągalne z wykonania Alg(j). Określ własności relacji $r \subseteq U \times U$.

- 10. Relacja r określona w zbiorze X jest euklidesowska, gdy dla dowolnych $x, y, z \in X$, jeśli x r y i x r z, to również y r z. Sprawdź, która z relacji spełnia ten warunek.
 - (a) $r \subset 2^{\mathbb{N}} \times 2^{\mathbb{N}}$, A r B wttw, gdy $A \cap B = \emptyset$,
 - (b) $r \subset \mathbb{Z}^3 \times \mathbb{Z}^3$, (x_1, x_2, x_3) $r(y_1, y_2, y_3)$ wttw, gdy $x_2 = y_2$.
- 11. Sprawdź, czy relacja r określona w zbiorze X jest relacją równoważności. Jeśli tak, to wyznacz jej klasy abstrakcji.
 - (a) X- zbiór miast leżących w Europie, $r = \{(x, y) : x \text{ jest miastem położonym w tym samym państwie, co miasto } y\},$
 - (b) X- zbiór studentów wszystkich warszawskich uczelni, $r = \{(x, y) : x \text{ studiuje na tej samej uczelni, co } y\},$
 - (c) $X = \{x, y, z\}, r = \{(x, x), (y, y), (y, z), (z, y), (z, z)\},\$
 - (d) $X = \mathbb{Z}, r = \{(x, y) : (x y)(x + y) = 0\},\$
 - (e) $X = \mathbb{Z}$, $r = \{(x, y) : x y \text{ jest podzielne przez } 3\}$,
 - (f) $X = \mathbb{N}, r = \{(x, y) : xy = 2k \text{ dla } k \in \mathbb{Z}\},\$
 - (g) $X = \mathbb{N}, r = \{(x, y) : \max(\{x, y\}) = x\}.$
- 12. Sprawdź, czy relacja r określona w zbiorze X jest relacją równoważności. Jeśli tak, to wyznacz jej klasy abstrakcji.
 - (a) $X = \mathbb{N} \times \mathbb{N}$, $(x_1, y_1) r(x_2, y_2)$ wttw, gdy $x_1 + y_2 = y_1 + x_2$,
 - (b) $X = \mathbb{Z} \setminus \{0\} \times \mathbb{Z} \setminus \{0\}$, $(x_1, y_1) r (x_2, y_2)$ with $(x_1, y_2) r (x_2, y_2) r (x_2, y_2) r (x_2, y_2)$.
- 13. Niech U będzie zbiorem programów deterministycznych z jednym argumentem wywołania będącym liczbą całkowitą i zwracającym również liczbę całkowitą. W zbiorze U określamy relację r taką, że P_1 r P_2 wttw $P_1(z) = P_2(z)$ dla każdego $z \in \mathbb{Z}$ (programy P_1 i P_2 zwracają tę samą wartość dla tych samych danych początkowych). Czy r jest relacją równoważności? Odpowiedź uzasadnij.
- 14. Niech P będzie programem deterministycznym z jednym argumentem wywołania będącym liczbą całkowitą i zwracającym również liczbę całkowitą. W zbiorze liczb całkowitych $\mathbb Z$ określamy relację r taką, że z_1 r z_2 wttw $P(z_1) = P(z_2)$ (wartości zwrócone przez program P dla liczb z_1 i z_2 są identyczne). Czy jest to relacja równoważności? Jeśli tak, to opisz klasę abstrakcji, której reprezentantem jest liczba 5, jeśli
 - (a) $P(z) = \{x := z \mod 3; return x\},\$
 - (b) $P(z) = \{x := |z|; return x\},\$
 - (c) $P(z) = \{x := \min(\{0, z\}); return x\},\$
 - (d) $P(z) = \{ if \ z \neq 0 \ And \ z | 10 \ then \ x := 1 \ else \ x := 0; \ return \ x \}.$
- 15. Niech $U = \{Alg_1, Alg_2, Alg_3, Alg_4, \ldots\}$ będzie zbiorem wszystkich skończonych jednoargumentowych algorytmów rekurencyjnych, gdzie argumentem wywołania dowolnego algorytmu $Alg \in U$ jest pewna liczba $n \in \mathbb{N}$. Powiemy, że algorytm Alg_i jest w relacji r z algorytmem Alg_j wtedy i tylko wtedy, gdy istnieją liczby $n_i, n_j \in \mathbb{N}$ takie, że drzewo wywołań rekurencyjnych algorytmu $Alg_i(n_i)$ ma taki sam kształt jak drzewo wywołań rekurencyjnych algorytmu $Alg_j(n_j)$. Określ własności relacji $r \subset U \times U$. Sprawdź, czy relacja ta jest relacja równoważności w zbiorze U.

Matematyka dyskretna Studia PJWSTK

16. Rozważmy algorytm

$$Alg(n) = \{i := 1; while i < n do i := 3 \cdot i; od\}.$$

Niech U będzie zbiorem wszystkich wykonań algorytmu Alg, dla $n \in \mathbb{N}_+$. Powiemy, że wykonanie algorytmu Alg(i) jest w relacji r z wykonaniem algorytmu Alg(j) wtedy i tylko wtedy, gdy liczba iteracji pętli while wykonania Alg(i) jest równa liczbie iteracji pętli while wykonania Alg(j). Określ własności relacji $r \subseteq U \times U$. Dodatkowo, jeżeli r jest relacją równoważności w uniwersum U, to podaj klasę abstrakcji elementu:

- (a) Alg(2),
- (b) Alg(34),
- (c) Alg(k), gdzie $k \in \mathbb{N}_+$.
- 17. Niech $A = \{0, 1, 2, 3, 4, 5\}$ oraz niech r_1 i r_2 będą dwiema relacjami binarnymi w $A : r_1 = \{(x, y) \in A \times A : y \equiv (x+4) \pmod{6}\}$, $r_2 = \{(x, y) \in A \times A : x$ jest najmniejszą liczbą nieparzystą większą niż $y\}$. Wyznacz r_1^{-1} . Narysuj graf relacji złożonej $r_1 \circ r_2$. Czy relacja $r_2 \circ r_1$ jest identyczna z relacją $r_1 \circ r_2$?
- 18. Rozważmy trzy niedeterministyczne programy:

$$P_1(z) = \{x := random(\{0, 1, 2, 3\}); \ y := x + z; \ return \ y\},$$

$$P_2(z) = \{ if \ z \ mod \ 2 = 0 \ then \ y := \frac{z}{2} \ else \ y := random(\{0, 1\}); \ return \ y\},$$

$$P_3(z) = \{x := P_1(z); \ y := P_2(x); \ return \ y\}.$$

W zbiorze $\{-3,0,1,2\}$ definiujemy trzy relacje r_i , dla $i \in \{1,2,3\}$ takie, że a r_i b wttw $b \in Res(P_i(a))$, gdzie $Res(P_i(a))$ jest zbiorem wszystkich możliwych wyników programu P_i uzyskanych dla wartości początkowej a.

- (a) Wyznacz dziedzinę i przeciwdziedzinę relacji r_1 i r_2 .
- (b) Wskaż zależność pomiędzy relacją r_3 i relacjami r_1 i r_2 .
- (c) Wyznacz r_1^{-1} , r_2^{-1} , r_3^{-1} .
- (d) Wyznacz $(r_1 \circ r_2) \circ r_3^{-1}$.
- 19. Niech r będzie relacją binarną określoną w zbiorze U. Udowodnij, że:
 - (a) jeśli relacja r jest symetryczna, to relacja r^{-1} też jest symetryczna,
 - (b) jeśli relacje r_1 i r_2 są antysymetryczne, to relacja $r_1 \cap r_2$ też jest antysymetryczna,
 - (c) jeśli relacje r_1 i r_2 są zwrotne, to relacja $r_1 \circ r_2$ też jest zwrotna.
- 20. Niech r, s i u będą relacjami binarnymi określonymi w zbiorze U. Zbadaj prawdziwość podanych zdań:
 - (a) Jeżeli r i s są relacjami przechodnimi, to ich przecięcie $r \cap s$ też jest relacją przechodnią.
 - (b) Jeżeli $r \cap s$ jest relacją przechodnią, to obie relacje r i s są przechodnie.
 - (c) Jeżeli relacje r i s są symetryczne, to ich suma $r \cup s$ jest relacją symetryczną.
 - (d) Jeżeli suma $r \cup s$ relacją jest relacją symetryczną, to każda z relacji r, s musi być symetryczna.
- 21. Niech r, s i u będą relacjami binarnymi określonymi w zbiorze U. Zbadaj prawdziwość podanych zdań:
 - (a) Jeżeli r i s są relacjami przechodnimi, to ich przecięcie $r \cap s$ też jest relacją przechodnią.
 - (b) Jeżeli $r \cap s$ jest relacją przechodnią, to obie relacje r i s są przechodnie.
 - (c) Jeżeli relacje r i s są symetryczne, to ich suma $r \cup s$ jest relacją symetryczną.
 - (d) Jeżeli suma $r \cup s$ relacji jest relacją symetryczną, to każda z relacji r, s musi być symetryczna.