Brooklyn College

Instructor: T. Hauner

This exam is closed book. No graphing calculators or cell phones are allowed. No bathroom breaks are permitted while taking the exam. Good luck!

1 Multiple Choice (2 points each)

 $\lim_{x \to 2} \frac{x^2 + 6x - 16}{x^2 - 2x}$ (1) Find the limit if it exists:

- (A) indeterminate form
- (B) 0 (C) 10
- (D) 5
- (2) Fill in the blanks: A derivative represents the _____ of ____ on ____.
 - (A) marginal effect, dy, dx
- (C) marginal effect, dx, dy
- (B) average effect, dy, dx
- (D) average effect, dx, dy
- (3) Suppose that the value V of a car depreciates with time t (measured in months) at the rate $V(t) = 7.5 + e^{-0.10t}$. Find $\lim_{t\to\infty} V(t)$.
 - (A) 0
- (B) 5 (C) 7.5
- (D) 10

For questions (4)–(8), assume a firm faces the total cost function $C(x) = 5\sqrt{x}$ and total profit function $P(x) = -3x^2 + 9x + 9$.

- (4) Find the average cost between x = 5 and x = 20 units of output.

- (A) $\frac{1}{4}$ (B) $\frac{\sqrt{5}}{15}$ (C) $\frac{1}{2}$ (D) $\frac{\sqrt{5}}{2}$
- (5) Find the marginal cost at x = 5 units of output.
 - (A) $\frac{5}{2\sqrt{5}}$ (B) $\frac{1}{2\sqrt{5}}$ (C) $5\sqrt{5}$
- (D) $\frac{5}{\sqrt{5}}$
- (6) At what output level is profit maximized?

 - (A) $x = \frac{3}{2}$ (B) x = 1, -1 (C) $x = \sqrt{3}$ (D) x = 1

- (7) Suppose the firm in question increases production, from x=2 to x=3. What is the marginal profit of producing the 3^{nd} unit?
 - (A) -\$9
- (B) \$0
- (C) -\$3
- (D) \$3
- (8) Given C(x) and P(x) above, choose a feasible total revenue function R(x):

- (A) $x^2 + 5\sqrt{x}$ (B) p(x)*x (C) $-3x^2 + 9x + 5\sqrt{x}$ (D) $-3x^2 + 9x + 5\sqrt{x} + 9x + 5\sqrt{x}$
- (9) Find the derivative of $g(x) = -8x^4 + \frac{3}{x^3} \frac{9}{\sqrt{x^5}} + 10x$.

 - (A) $g'(x) = -32x^3 9x^{-4} + \frac{45}{4}x^{\frac{-9}{4}}$ (B) $g'(x) = -32x^3 9x^{-4} + \frac{45}{2}x^{\frac{-7}{2}} + 10$

 - (C) $g'(x) = -32x^3 9x^{-4} + \frac{18}{5}x^{\frac{-7}{2}}$ (D) $g'(x) = -32x^3 9x^{-2} + \frac{45}{2}x^{-3} + 10$
- (10) Find the derivative of $u(x) = \frac{1}{x+1}$.

- (A) $u'(x) = \frac{-1}{x+1}$ (B) $u'(x) = \frac{-1}{x^2+1}$ (C) $u'(x) = \frac{-1}{x^2+2x+1}$ (D) $u'(x) = \frac{1}{(x+1)^2}$

Brooklyn College

Instructor: T. Hauner

2 Short Answer (3 points each)

Remember: number problems clearly, show all of your work, and circle your final answer.

- (11) Refer to the graph above.
 - (a) Write an equation describing the *linear* total cost function C(x).
 - (b) Write a quadratic equation describing the total revenue function R(x). (HINT: f(x) = mx + b and $f(x) = a(x - h)^2 + k$, where (h, k) represents a parabola's vertex.)
- (12) Find the firm's break-even points, given the cost and revenue curves above.

(HINT:
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
.)

- (13) Solve the following:
 - (a) Find the firm's marginal revenue function, R'(x).
 - (b) Show that marginal revenue is zero (R'(x) = 0) when revenue is maximized.
- (14) Find the firm's profit function, P(x), and then find what maximum profit is at the point where P'(x) = 0.