

- 1 Introdução
 - História
- 2 Circuito interno
 - Circuito interno
 - Informações técnicas
 - Características típicas das aplicações
- 3 Operação Monoastável
- 4 Aplicações
 - Torneiras automáticas
 - Portas automáticas
 - Sistema de Irrigação Automatizado
- 5 Operação Astável
 - equação do circuito interno
 - Amplificador
 - Flip-Flop SR
 - Tabela verdade
- 6 Configuração astable
 - equação de carga do capacitor
 - TH tempo em alto
 - Descarga do capacitor

- IntroduçãoHistória
- 2 Circuito interno
- 3 Operação Monoastável
- 4 Aplicações
- 5 Operação Astável
- 6 Configuração astable
- 7 Aplicação medidor de capacitância
- 8 Arduino

História

Projetado em 1970, por Hans R. Camenzind. Foi comercializado pela empresa Signetics.

A empresa Sul-Coreana Samsung Eletronics fabrica acima de 1 bilhão de unidades por ano

- 1 Introdução
- 2 Circuito interno
 - Circuito interno
 - Informações técnicas
 - Características típicas das aplicações
- 3 Operação Monoastável
- 4 Aplicações
- 5 Operação Astável
- 6 Configuração astable
- 7 Aplicação medidor de capacitância

2 Arduino

Nome 555 foi dado em alusão ao divisor de tensão existente na parte interna, com três resistores em série $5k\Omega$ cada um.

Nome Comercial

SE555 - invólucro metálico

NE555 – invólucro DIP (encapsulamento duplo em linha), invólucro plástico ou metálico e duas fileiras de pinos em lados opostos ao CI.

Tabela

Pino	Nome	Aplicação		
1	GND	Terra ou massa (<i>ground</i>).		
2	TRIG	Gatilho (<i>trig</i> ger) – um valor de tensão baixo (< 1/3 Vcc) neste terminal activa o biestável interno e a saída.		
3	OUT	Durante um intervalo de tempo, a saída (out) permanece em +V _{CC} .		
4	RESET	Um intervalo de temporização pode ser interrompido pela aplicação de um pulso de reset .		
5	CV	Tensão de controle (control voltage) – Permite acesso ao divisor interno de tensão (2/3 V _{CC}).		
6	THRES	Limiar (<i>threshold</i>) – um valor de tensão alto (> 2/3 Vcc) neste terminal desactiva o biestável interno e a saída.		
7	DISCH	Descarga (discharge) – sua função é descarregar o capacitor conectado a este terminal.		
8	V+, V _{CC}	A tensão (voltage) positiva da fonte, que deve estar entre +5 e +15V.		

Circuito interno

Parte interna do circuito 555

Tabela funcional

Pin Name	Nominal Trigger Voltage	Threshold Voltage	Output	Discharge Switch	
GND	Irrelevant	Irrelevant	Low	On	
TRIG	<1/3V _{CC}	Irrelevant	High	Off	
OUT	<1/3V _{CC}	<2/3V _{CC}	Low	On	
RESET	<1/3V _{CC}	<2/3V _{CC}	As previou	usly established	

Características típicas das aplicações

- Operação Monoastável
- Operação Astável

- 1 Introdução
- 2 Circuito interno
- 3 Operação Monoastável
- 4 Aplicações
- 5 Operação Astável
- 6 Configuração astable
- 7 Aplicação medidor de capacitância
- 8 Arduino

Operação Monoastável

Formas de ondas Monoastáveis típicas

Time - 0.1ms/div

Duração do impulso de Saída vs capacitância

- 1 Introdução
- 2 Circuito interno
- 3 Operação Monoastável
- 4 Aplicações
 - Torneiras automáticas
 - Portas automáticas
 - Sistema de Irrigação Automatizado
- 5 Operação Astáve
- 6 Configuração astable
- 7 Aplicação medidor de capacitância

2 Arduine

Temporizadores

Torneiras automáticas.

Temporizadores

Temporizadores

- 1 Introdução
- 2 Circuito interno
- 3 Operação Monoastável
- 4 Aplicações
- 5 Operação Astável
 - equação do circuito interno
 - Amplificador
 - Flip-Flop SR
 - Tabela verdade
- 6 Configuração astable
- 7 Aplicação medidor de capacitância

Circuito N555

Divisor de tensão:

$$V_1 = \frac{V_{cc}R}{R+R+R} = \frac{V_{cc}}{3} = \frac{5}{3} \approx 1.67$$
 (1)

Divisor de tensão:

$$V_1 = \frac{V_{cc}R}{R+R+R} = \frac{V_{cc}}{3} = \frac{5}{3} \approx 1.67$$
 (1)

Divisor de tensão:

$$V_2 = \frac{V_{cc}2R}{3R} = \frac{2V_{cc}}{3} = \frac{2(5)}{3} \approx 3.33$$
 (2)

Divisor de tensão:

$$V_1 = \frac{V_{cc}R}{R+R+R} = \frac{V_{cc}}{3} = \frac{5}{3} \approx 1.67$$
 (1)

Divisor de tensão:

$$V_2 = \frac{V_{cc}2R}{3R} = \frac{2V_{cc}}{3} = \frac{2(5)}{3} \approx 3.33$$
 (2)

A tensão V_1 e V_2 não varia com o tempo.

Amplificador

R	S	Relógio	Q	Q
X	Χ	0	mantém	
0	0	1	mantém	
0	1	1	1	0
1	0	1	0	1
1	1	1	erro lógico	

- 1 Introdução
- 2 Circuito interno
- 3 Operação Monoastável
- 4 Aplicações
- 5 Operação Astável
- 6 Configuração astable
 - equação de carga do capacitor
 - TH tempo em alto
 - Descarga do capacitor
 - TR tempo em baixo
 - Considerações
- 7 Aplicação medidor de capacitância

Configuração astable

Logo ao ligar o circuito

Simulador falstad

Primeiro pluso (comparador 1)

Segundo pluso (comparador 2)

Simulador falstad

Terceiro pluso (comparador 1)

Simulador falstad

Simulador falstad

Divisor de tensão

$$V_c(J\omega) = \frac{V_{cc}\frac{1}{J\omega C}}{R_1 + R_2 + \frac{1}{J\omega C}} = \frac{1}{J\omega C(R_1 + R_2) + 1}$$
(3)

Divisor de tensão

$$V_c(J\omega) = \frac{V_{cc}\frac{1}{J\omega C}}{R_1 + R_2 + \frac{1}{J\omega C}} = \frac{1}{J\omega C(R_1 + R_2) + 1}$$
(3)

Se $J\omega = S$ temos:

$$V_c(S) = \frac{V_{cc}}{SC(R_1 + R_2) + 1} = V_{cc} \frac{\frac{1}{C(R_1 + R_2)}}{S + \frac{1}{C(R_1 + R_2)}}$$
(4)

Divisor de tensão

$$V_c(J\omega) = \frac{V_{cc} \frac{1}{J\omega C}}{R_1 + R_2 + \frac{1}{I\omega C}} = \frac{1}{J\omega C(R_1 + R_2) + 1}$$
(3)

Se $J\omega = S$ temos:

$$V_c(S) = \frac{V_{cc}}{SC(R_1 + R_2) + 1} = V_{cc} \frac{\frac{1}{C(R_1 + R_2)}}{S + \frac{1}{C(R_1 + R_2)}}$$
(4)

Para entrada degrau com amplitude A:

$$V_c(S) = \frac{1}{C(R_1 + R_2)} \left[\frac{A}{S\left(S + \frac{1}{C(R_1 + R_2)}\right)} \right]$$

$$V_c(S) = \frac{1}{C(R_1 + R_2)} \left[\frac{A}{S\left(S + \frac{1}{C(R_1 + R_2)}\right)} \right]$$
 (6)

$$V_c(S) = \frac{1}{C(R_1 + R_2)} \left[\frac{A}{S\left(S + \frac{1}{C(R_1 + R_2)}\right)} \right]$$
 (6)

Tabela Laplace:

$$\mathscr{L}\left\{1 - e^{-at}\right\} = \frac{a}{s(s+a)}\tag{7}$$

$$V_c(S) = \frac{1}{C(R_1 + R_2)} \left[\frac{A}{S\left(S + \frac{1}{C(R_1 + R_2)}\right)} \right]$$
 (6)

Tabela Laplace:

$$\mathscr{L}\left\{1 - e^{-at}\right\} = \frac{a}{s(s+a)}\tag{7}$$

Resposta no tempo.

$$v_c(t) = A\left\{1 - e^{-\left(\frac{1}{C(R_1 + R_2)}\right)t}\right\}$$
 (8)

Calculando do TH

Para Calcular o tempo de carregamento basta igual a equação 8 com $\frac{2}{3}V_{cc}$

$$\frac{2}{3}V_{cc} = V_{cc}\left\{1 - e^{-\left(\frac{1}{C(R_1 + R_2)}\right)t}\right\} \tag{9}$$

Calculando do TH

Para Calcular o tempo de carregamento basta igual a equação 8 com $\frac{2}{3}V_{cc}$

$$\frac{2}{3}V_{cc} = V_{cc}\left\{1 - e^{-\left(\frac{1}{C(R_1 + R_2)}\right)t}\right\} \tag{9}$$

$$\frac{2}{3} - 1 = \left\{ -e^{-\left(\frac{1}{C(R_1 + R_2)}\right)t} \right\} \tag{10}$$

Calculando do TH

Para Calcular o tempo de carregamento basta igual a equação 8 com $\frac{2}{3}V_{cc}$

$$\frac{2}{3}V_{cc} = V_{cc}\left\{1 - e^{-\left(\frac{1}{C(R_1 + R_2)}\right)t}\right\}$$
 (9)

$$\frac{2}{3} - 1 = \left\{ -e^{-\left(\frac{1}{C(R_1 + R_2)}\right)t} \right\} \tag{10}$$

$$\frac{1}{3} = e^{-\left(\frac{1}{C(R_1 + R_2)}\right)t} \tag{11}$$

Carregando capacitor

$$ln\left(\frac{1}{3}\right) = -\left(\frac{1}{C(R_1 + R_2)}\right)t\tag{12}$$

Carregando capacitor

$$\ln\left(\frac{1}{3}\right) = -\left(\frac{1}{C(R_1 + R_2)}\right)t\tag{12}$$

tempo total para carregar o capacitor:

$$t = C(R_1 + R_2) ln(3) (13)$$

Simulador falstad 40

tempo para
$$v_c = \frac{1}{3} V_{cc}$$

$$\frac{1}{3}V_{cc} = V_{cc} \left\{ 1 - e^{-\left(\frac{1}{C(R_1 + R_2)}\right)t_0} \right\}$$
 (14)

tempo para
$$v_c = \frac{1}{3}V_{cc}$$

$$\frac{1}{3}V_{cc} = V_{cc} \left\{ 1 - e^{-\left(\frac{1}{C(R_1 + R_2)}\right)t_0} \right\}$$
 (14)

$$\frac{1}{3} - 1 = \left\{ -e^{-\left(\frac{1}{C(R_1 + R_2)}\right)t_0} \right\} \tag{15}$$

tempo para
$$v_c = \frac{1}{3}V_{cc}$$

$$\frac{1}{3}V_{cc} = V_{cc} \left\{ 1 - e^{-\left(\frac{1}{C(R_1 + R_2)}\right)t_0} \right\}$$
 (14)

$$\frac{1}{3} - 1 = \left\{ -e^{-\left(\frac{1}{C(R_1 + R_2)}\right)t_0} \right\} \tag{15}$$

$$-\frac{2}{3} = -e^{-\left(\frac{1}{C(R_1 + R_2)}\right)t_0} \tag{16}$$

$$ln\left(\frac{2}{3}\right) = -\left(\frac{1}{C(R_1 + R_2)}\right)t_0\tag{17}$$

$$\ln\left(\frac{2}{3}\right) = -\left(\frac{1}{C(R_1 + R_2)}\right)t_0 \tag{17}$$

tempo para v_c chegar a $\frac{1}{3}V_{cc}$

$$t_0 = C(R_1 + R_2) ln\left(\frac{3}{2}\right) \tag{18}$$

43

Simulador falstad

Tempo em que a saída permanece em alto:

$$TH = t - t_0 = C(R_1 + R_2)ln(3) - C(R_1 + R_2)ln\left(\frac{3}{2}\right)$$
 (19)

Tempo em que a saída permanece em alto:

$$TH = t - t_0 = C(R_1 + R_2)ln(3) - C(R_1 + R_2)ln\left(\frac{3}{2}\right)$$
 (19)

$$TH = C(R_1 + R_2)[In(3) - In(3) + In(2)]$$
 (20)

Tempo em que a saída permanece em alto:

$$TH = t - t_0 = C(R_1 + R_2)ln(3) - C(R_1 + R_2)ln\left(\frac{3}{2}\right)$$
 (19)

$$TH = C(R_1 + R_2)[In(3) - In(3) + In(2)]$$
 (20)

Equação do tempo de carga do capacitor

$$TH = C(R_1 + R_2)ln(2)$$
 (21)

45

Simulador falstad

Lei das malhas.

$$V_c = V_r = iR_2 \tag{22}$$

Lei das malhas.

$$V_c = V_r = iR_2 \tag{22}$$

A corrente que sai do capacitor é $i(t) = -\frac{dq}{dt}$

$$V_c = \frac{q}{c} = -R_2 \frac{dq}{dt} \tag{23}$$

Lei das malhas.

$$V_c = V_r = iR_2 \tag{22}$$

A corrente que sai do capacitor é $i(t) = -\frac{dq}{dt}$

$$V_c = \frac{q}{c} = -R_2 \frac{dq}{dt} \tag{23}$$

Laplace

$$\frac{Q(s)}{c} = -R_2 s Q(s) + R_2 s Q(0) \tag{24}$$

$$Q(s) = Q(0) \frac{1}{s + \frac{1}{R_2 c}}$$
 (25)

$$Q(s) = Q(0) \frac{1}{s + \frac{1}{R_0 c}}$$
 (25)

Resposta no tempo

$$v_c(t) = v_c(0) \left\{ e^{-\left(\frac{t}{CR_2}\right)} \right\}$$
 (26)

48

Simulador falstad

A tensão $v_0(0)=rac{2}{3}V_{cc}$ e o capacitor descarrega até $rac{1}{3}V_{cc}$

subistituido na equação (26);

$$\frac{1}{3}V_{cc} = \frac{2}{3}V_{cc}\left\{e^{-\left(\frac{tr}{CR_2}\right)}\right\} \tag{27}$$

A tensão $v_0(0)=\frac{2}{3}V_{cc}$ e o capacitor descarrega até $\frac{1}{3}V_{cc}$

subistituido na equação (26);

$$\frac{1}{3}V_{cc} = \frac{2}{3}V_{cc}\left\{e^{-\left(\frac{tr}{CR_2}\right)}\right\} \tag{27}$$

$$ln(1/2) = -\frac{tr}{cR_2} \tag{28}$$

A tensão $v_0(0) = \frac{2}{3}V_{cc}$ e o capacitor descarrega até $\frac{1}{3}V_{cc}$

subistituido na equação (26);

$$\frac{1}{3}V_{cc} = \frac{2}{3}V_{cc}\left\{e^{-\left(\frac{tr}{CR_2}\right)}\right\} \tag{27}$$

$$ln(1/2) = -\frac{tr}{cR_2} \tag{28}$$

tempo de Descarga:

$$tr = cR_2 ln(2) (29)$$

Conclusão

Período:

$$P = TH + TR = C(R_1 + R_2)ln(2) + CR_2ln(2)$$
 (30)

Conclusão

Período:

$$P = TH + TR = C(R_1 + R_2)ln(2) + CR_2ln(2)$$
 (30)

Período:

$$P = C(R_1 + 2R_2) \ln 2 (31)$$

Conclusão

Período:

$$P = TH + TR = C(R_1 + R_2)ln(2) + CR_2ln(2)$$
 (30)

Período:

$$P = C(R_1 + 2R_2) ln 2 (31)$$

Frequência

$$f = \frac{1}{P} = \frac{1}{C(R_1 + 2R_2)\ln 2} \tag{32}$$

CI 555

- 1 Introdução
- 2 Circuito interno
- 3 Operação Monoastável
- 4 Aplicações
- 5 Operação Astável
- 6 Configuração astable
- 7 Aplicação medidor de capacitância
- 8 Arduino

Esquema de ligação

Equação

tempo de carregamento

$$TH = C(R_1 + R_2)ln(2)$$
 (33)

tempo de carregamento

$$TH = C(R_1 + R_2)ln(2)$$
 (33)

capacitância

$$C = \frac{TH}{(R_1 + R_2)ln(2)} \tag{34}$$

tempo de carregamento

$$TH = C(R_1 + R_2)ln(2)$$
 (33)

capacitância

$$C = \frac{TH}{(R_1 + R_2)ln(2)} \tag{34}$$

para
$$R_1 = 1k$$
; $R_2 = 10k$

$$C = \frac{TH}{(11000)\ln(2)} \tag{35}$$

CI 555

- Introdução
- 2 Circuito interno
- 3 Operação Monoastável
- 4 Aplicações
- 5 Operação Astável
- 6 Configuração astable
- 7 Aplicação medidor de capacitância
- 8 Arduino

função THtime=pulseIn(8,HIGH);

CI N555

Elton Fernandes dos Santos Junior cavequia do Nascimento eltonfernando90@gmail.com jcavequia@hotmail.com

Departamento de Engenharia elétrica UNEMAT Campos de Sinop

24 de Julho de 2017