Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

Chelsea Finn etc.

Cite: 3198

2021.03.25.목

발표자: 임진혁

On Index

- 1. Introduction
- 2. Related works & concepts
- 3. Proposed Method
- 4. Experiment & Conclusion

1 Introduction: what is Meta-learning?

Meta-learning: **learn to learn** (like human)

⇒ 적은 샘플로 어떤 task이든 높은 성능(few shot task adaptive problem)

Q: Multi-task learning과 어떻게 다른가요?

1 Introduction: what is Meta-learning?

Meta-learning: **learn to learn** (like human)

⇒ 적은 샘플로 어떤 task이든 높은 성능(few shot task adaptive problem)

Q: Multi-task learning과 어떻게 다른가요?

- → task 별로 다른 데이터셋이라는 세팅은 동일
- → Multi-task learning: 모든 task가 동일한 optimal parameter Ø을 가짐
- → Meta-learning: task 별로 고유한 optimal parameter Ø을 가지기 때문에 Ø을 찾는 것 의미 x

1 Introduction: what is Meta-learning?

Meta-learning: learn to learn (like human)

⇒ 적은 샘플로 어떤 task이든 높은 성능(few shot task adaptive problem)

Q: Multi-task learning과 어떻게 다른가요?

- → task 별로 다른 데이터셋이라는 세팅은 동일
- → Multi-task learning: 모든 task가 동일한 optimal parameter Ø을 가짐
- → Meta-learning: task data(x) : label(y)이 아닌 task data(x): ∅ 을 학습함으로써 처음보는 task가 들어와도 빠르게 학습할 수 있음

1 Introduction: what is MAML?

Meta-learning: learn to learn (like human)

MAML: Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

"Learn to learn"(메타러닝)을 통해 new task에 빠르게 적응(학습)하는 gradient based method

Figure 1. Diagram of our model-agnostic meta-learning algorithm (MAML), which optimizes for a representation θ that can quickly adapt to new tasks.

1 Introduction: what is MAML?

Meta-learning: learn to learn (like human)

MAML: Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

"method trains the model to be easy to fine-tune"

Figure 1. Diagram of our model-agnostic meta-learning algorithm (MAML), which optimizes for a representation θ that can quickly adapt to new tasks.

1 Introduction: what is MAML?

Meta-learning: **learn to learn** (like human)

MAML: Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

Goal:

"train the model's initial parameters
for model performance on a new task
after few parmeter update(finetune)
with a small amount of data from that no

with a small amount of data from that new task."

Figure 1. Diagram of our model-agnostic meta-learning algorithm (MAML), which optimizes for a representation θ that can quickly adapt to new tasks.

N-shot K-way Learning: k가 작으면 "few shot" learning

Meta learning: Support set(meta-train)과 전혀 상관없는 unseen class(new task)에 대해서도 잘하자

(1) Metric-based approach

- Meta learning phase의 훈련데이터(meta train)을 임베딩(mapping: θ)
- New task(새로운 데이터)가 들어오면 임베딩 시키고 가장 가까운 클래스로 배정

(2) Optimization-based approach

- Meta train을 통해 학습하는 법을 배움(learn to optimize parameter: θ)
- MAML

3 Proposed Method

Goal: 적은 데이터 샘플과 적은 훈련 횟수(iteration) 만으로 new task에 빠르게 학습(adapt)

→ "maximizing the sensitivity of the loss functions of new tasks with respect to the parameters"

Sensitivity?: 해당 task에 대해 매우 약간의 변화(update)만으로 큰 변화(loss 차이)

Figure 1. Diagram of our model-agnostic meta-learning algorithm (MAML), which optimizes for a representation θ that can quickly adapt to new tasks.

"method trains the model to be easy to fine-tune"

Sensitivity한(easy to fine-tune) initial parmeter θ 를 찾자

3 Proposed Method

Goal : 적은 데이터 샘플과 적은 훈련 횟수(iteration) 만으로 new task에 빠르게 학습(adapt)

Algorithm 1 Model-Agnostic Meta-Learning

Require: $p(\mathcal{T})$: distribution over tasks

Require: α , β : step size hyperparameters

1: randomly initialize θ

2: while not done do

3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$

4: for all \mathcal{T}_i do

5: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to K examples

6: Compute adapted parameters with gradient descent: $\theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$

7: end for

8: Update $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'})$

9: end while

Adaptation: $\phi_i \leftarrow \theta - \alpha \nabla_{\theta} L(\theta, D_i^{tr})$

Meta-learning: $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum L(\emptyset_i, D_i^{test})$

3 Proposed Method

Goal: 적은 데이터 샘플과 적은 훈련 횟수(iteration) 만으로 new task에 빠르게 학습(adapt)

$$\emptyset_i \leftarrow \theta - \alpha V_{\theta} L(\theta, D_i^{tr})$$
 $\theta \equiv \emptyset_i$ 의 weight initialization으로 사용 D_i^{tr} 의 양이 적기 때문에 적은 update 만으로 $\theta \rightarrow \emptyset_i$

$$\theta \leftarrow \theta - \beta \nabla_{\theta} \sum L(\emptyset_i, D_i^{test})$$
 $L(\emptyset_i, D_i^{test})$ 가 최소인 경우는 $L(\emptyset_i^*, D_i^{test})$ 즉 $\emptyset_i = \emptyset_i^*$ 가 되는 방향으로 θ 를 업데이트

즉, 적은 update 만으로 \emptyset_i^* 를 구할 수 있는 θ 를 찾는 것이 meta-learning의 목적

ex)5-way, 1-shot classification

New data : D_{train}^{new} , D_{test}^{new}

optimize
$$\emptyset_{new} \leftarrow \theta - \alpha \nabla_{\theta} L(\theta, D_{train}^{new})$$

$$\hat{y} = f_{\emptyset_{new}}(\mathbf{x_{test}})$$

4 Experiment

Figure 3. Quantitative sinusoid regression results showing the learning curve at meta test-time. Note that MAML continues to improve with additional gradient steps without overfitting to the extremely small dataset during meta-testing, achieving a loss that is substantially lower than the baseline fine-tuning approach.

	5-way Accuracy		20-way Accuracy	
Omniglot (Lake et al., 2011)	1-shot	5-shot	1-shot	5-shot
MANN, no conv (Santoro et al., 2016)	82.8%	94.9%	_	_
MAML, no conv (ours)	$89.7 \pm 1.1\%$	$97.5 \pm 0.6\%$	_	_
Siamese nets (Koch, 2015)	97.3%	98.4%	88.2%	97.0%
matching nets (Vinyals et al., 2016)	98.1%	98.9%	93.8%	98.5%
neural statistician (Edwards & Storkey, 2017)	98.1%	99.5%	93.2%	98.1%
memory mod. (Kaiser et al., 2017)	98.4%	99.6%	95.0%	98.6%
MAML (ours)	$98.7 \pm 0.4\%$	$99.9 \pm 0.1\%$	$95.8 \pm 0.3\%$	$98.9 \pm 0.2\%$

	5-way Accuracy		
MiniImagenet (Ravi & Larochelle, 2017)	1-shot	5-shot	
fine-tuning baseline	$28.86 \pm 0.54\%$	$49.79 \pm 0.79\%$	
nearest neighbor baseline	$41.08 \pm 0.70\%$	$51.04 \pm 0.65\%$	
matching nets (Vinyals et al., 2016)	$43.56 \pm 0.84\%$	$55.31 \pm 0.73\%$	
meta-learner LSTM (Ravi & Larochelle, 2017)	$43.44 \pm 0.77\%$	$60.60 \pm 0.71\%$	
MAML, first order approx. (ours)	${\bf 48.07 \pm 1.75\%}$	$63.15 \pm 0.91\%$	
MAML (ours)	$48.70 \pm 1.84\%$	${\bf 63.11 \pm 0.92\%}$	

Experiment+ application to RL

Algorithm 3 MAML for Reinforcement Learning

Require: $p(\mathcal{T})$: distribution over tasks **Require:** α , β : step size hyperparameters

1: randomly initialize θ

2: while not done do

3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$

4: for all \mathcal{T}_i do

5: Sample K trajectories $\mathcal{D} = \{(\mathbf{x}_1, \mathbf{a}_1, ... \mathbf{x}_H)\}$ using f_{θ} in \mathcal{T}_i

6: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ using \mathcal{D} and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 4

7: Compute adapted parameters with gradient descent: $\theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$

8: Sample trajectories $\mathcal{D}'_i = \{(\mathbf{x}_1, \mathbf{a}_1, ... \mathbf{x}_H)\}$ using $f_{\theta'_i}$ in \mathcal{T}_i

9: end for

10: Update $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$ using each \mathcal{D}'_i and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 4

11: end while

Sorry...