

Indice 1 Vettori, coordinate e geometria Prefazione Questo documento è soggetto alla proprietà di Nicola Ferru Aka NFVblog, il materiale è stato preso dalle lezioni di Geometria e algebra, le modalità di utilizzo e distribuzione sono scritte nel file LICENSE.

Capitolo 1

Vettori, coordinate e geometria

Uno degli argomenti su cui il corso si basa sono proprio i *vettori*. All'interno di questo capitolo saranno presenti nozioni e definizioni legate alla natura stessa di queste entità matematiche dai rudimenti ad alcuni spetti più avanzati.

1.1 Vettori Geometrici

Definizione 1.1.1. Un vettore geometrico applicato nel piano è un segmento orientato che va da un punto fisso O "Origine" verso un secondo punto P del piano, come mostrato nella figira 1.1:

Figura 1.1: Esempio vettori geometrici

Analogamente, se il punto P (e quindi il segmento) è libero di variare in tutto lo spazio tridimensionale. In ambo i casi il vettore sarà denotato \overrightarrow{OP} (si denota che il punto finale P può anche uguale a O, ovvero il vettore può essere molto ravvicinato al punto O).

Nota 1.1.1. La direzione è indicata dalla simbolo freccia, graficamente la lunghezza e direzione del vettore implicano il modo in cui agisce nello spazio, ad esempio, se due vettori hanno direzioni opposte uno si sottrarrà potenzialmente al altro.

Denotare che con V_O^2 l'unsieme dei vettori geometrici applicati in O nel piano, e con V_O^3 l'insieme dei vettori geometrici applicati in O liberi di variare in tutto lo spazio tridimensionale. I vettori orientati sono utilizzati infisica, dove vengono usati per rappresentare le forze applicate sul punto O.

Esempio 1.1.1. Si può immaginare che in O si trovi un oggetto sul quale viene esercitata una forza che lo "trascina" nella direzione e nel verso dati dalla freccia come evidenziato nella nota (1.1.1), mentre l'intensità della forza esercitata è rappresentata dlla lunghezza del segmento. Dal

Figura 1.2: Somma vettoriale

momento che \overrightarrow{OP}_3 rappresenta la forza totale esercitata la forza totale esercitata su O quando si

applicano contemporaneamente $\overrightarrow{OP_1}$ e $\overrightarrow{OP_2}$, il meccanismo più immediato è associare l'operazione ad una addizione, infatti, essa viene scritta come:

$$\vec{OP}_3 = \vec{OP}_1 + \vec{OP}_2 \tag{1.1}$$

La rappresentazione grafica è presente in figura 1.2 definisce in modo in cui un'operazione di somma sull'insieme di vettori geometrici (del piono o dello spazio) viene rappresentata.

Per i vettori che non hanno la stessa direzione, si denota che OP_3 è la direzionale del parallelogramma che ha OP_1 e OP_2 come lati (infatti, viene definita anche come regola del parallelogramma). Il motodo descrittivo funziona comunque anche per sommare due o più vettori che hanno la stessa direzione:

Figura 1.3: Regola del parallelogramma

Anche in questo caso vale la formula 1.1, infatti, graficamente la OP_3 è chiaramente frutto di una somma tra il segmento OP_1 e OP_2 . Un'altra operazione è il prodotto del vettore per un numero reale: nel contesto delle forze, il concetto è quella di rappresentare una variazione dell'intensità e eventualmente del verso della forza rappresentata dal vettore.

Più precisamente, dati un vettore geometrico \vec{OP} e un numero releale $c \in \mathbb{R}$, si può definire \vec{cOP} come il vettore che sta sulla stessa retta a cui appartiene \vec{OP} , ma avente:

- 1. Stesso verso e lunghezza c volte la lunghezza di \overrightarrow{OP} , se c è positivo;
- 2. Verso opposto e lunghezza -c volte quella di \overrightarrow{OP} , se c è negativo;
- 3. Lunghezza ulla se c=0, cioè $0\vec{OP} = \vec{OO}$.

Figura 1.4: Prodotto vettoriale

Nel contesto dei vettori, i numeri reali si chiamano anche scalari.

Come si vedra nel ultima parte del capitolo, la nozione di vettore geometrico e le operazioni di somma tra vettori e prodotto di un vettore per un numero che appena definito saranno fornamentali per impostare e risolvere problemi geometrici nel piano e nello spazio. Per questo motivo, è necessario conoscere e mettere in evidenza le proprietà di cui godono tali operazionim che permettono di manipolare le espressioni e formule che coinvolgono i vettori. Si può verificare che valgono le seguenti:

1. La somma è associativa

$$(\vec{OP}_1 + \vec{OP}_2) + \vec{OP}_3 = \vec{OP}_1 + (\vec{OP}_2 + \vec{OP}_3)$$
(1.2)

1.2. COORDINATE 7

2. La somma è commutativa

$$\vec{OP}_1 + \vec{OP}_2 = \vec{OP}_2 + \vec{OP}_1 \tag{1.3}$$

3. Il vettore \vec{OO} funge da elemento neutro per la somma:

$$\vec{OP} + \vec{OO} = \vec{OO} + \vec{OP} = \vec{OP} \tag{1.4}$$

4. Per ogni vettore \vec{OP} , il vettore $(-1)\vec{OP}$ (ovvero il vettore che si ottiene da \vec{OP} basterà invertire il verso, senza modificare direzione e lunghezza) è il suo inverso additivo o opposto rispetto alla somma:

$$\vec{OP} + (-1)\vec{OP} = (-1)\vec{OP} + \vec{OP} = \vec{OO}$$
 (1.5)

5. Dati due numeri reali c_1 , c_2 e un vettore \vec{OP} , si ha

$$c_1(c_2\vec{OP}) = (c_1c_2)\vec{OP} \tag{1.6}$$

(Una situazione molto similare alla proprietà associativa del prodotto).

6. Per ogni vettore \vec{OP} , si ha

$$1\vec{OP} = \vec{OP} \tag{1.7}$$

(ovvero il numero 1 funge da elemento neutro rispetto al prodotto per scalari).

7. Dati due numeri reali c_1, c_2 ed un vettore \vec{OP} , si ha

$$(c_1 + c_2)\vec{OP} = c_1\vec{OP} + c_2\vec{OP} \tag{1.8}$$

8. Dati un numero reale c e due vettori \vec{OP} , \vec{OP} si ha

$$c(\vec{OP}_1 + \vec{OP}_2) = c\vec{OP}_1 + c\vec{OP}_2 \tag{1.9}$$

Lo sviluppo suggerisce che valga la proprietà distributiva rispetto alla somma di numeri reale o rispetto alla somma di vettori.

Osservazione 1.1.1. Come esempio di applicazione delle proprietà appena elencate, è il caso di motrare che in un'uguaglianza tra vettori, esattamente come si fa in un'uguagliana tra numeri, si possono "spostare i vettori" da un membro all'altro cambiandoli di segno:

$$\vec{OP}_1 + \vec{OP}_2 = \vec{OP}_3 \rightarrow \vec{OP}_1 = \vec{OP}_3 - \vec{OP}_2$$

Dove, come nel caso dei numeri lo spostamento dall'altra parte dell'uguaglianza comporta il cambiamento di segno scritto come $\vec{OP}_3 - \vec{OP}_2$ che risulta essere la forma semplificata di $\vec{OP}_3 + (-1)\vec{OP}_2$. Per vederlo, basterà sommare ad antrambi i membri di $\vec{OP}_1 + \vec{OP}_2 = \vec{OP}_3$ il vettore $(-1)\vec{OP}_2$:

$$(\vec{OP}_1 + \vec{OP}_2) + (-1)\vec{OP}_2 = \vec{OP}_3 + (-1)\vec{OP}_2$$

Applicando la propriatà associativa (1.2) a primo membro:

$$\vec{OP}_1 + \left[\vec{OP}_2 + (-1)\vec{OP}_2 \right] = \vec{OP}_3 + (-1)\vec{OP}_2$$

Dopo aver fatto questo passaggio, sarà necessario applicare la proprietà (1.5) che afferma che $(-1)\vec{OP}_2$ è l'opposto di \vec{OP}_2 :

$$\vec{OP}_2 + \vec{OO} = \vec{OP}_3 + (-1)\vec{OP}_2$$

e infine va applicato la proprietà (1.4) che afferma che il vettore nullo funge da elemento neutro:

$$\vec{OP}_1 = \vec{OP}_3 + (-1)\vec{OP}_2$$

e con questo è stata confermata l'affermazione iniziale.

1.2 Coordinate

Considerando due vettori geometrici \vec{OP}_1 e \vec{OP}_2 nel piano, e si può supporre che \vec{OP}_1 e \vec{OP}_2 non abbiano la stessa dimensione.

Affermando che ogni vettore $\vec{OP} \in V_O^2$ può essere ottenuto sommando multipli opportuni di \vec{OP}_1 e \vec{OP}_2 , ovvero:

$$\vec{OP} = c_1 \vec{OP}_1 + c_2 \vec{OP}_2$$

dove c_1, c_2 sono opportuni numeri reali.

Infatti, questo può essere facilmente visto graficamente: come nel disegno seguente, prolungando i vettori \overrightarrow{OP}_1 e \overrightarrow{OP}_2 disegnando le due rette r_1 e r_2 ; proiettando quindi i punti P su r_1 seguendo la direzione parallela a \overrightarrow{OP}_2 , e chiamando il punto proiettato Q_1 : e chiamandolo punto proiettato Q_2 .

Figura 1.5: Costruzione grafica $\vec{OP} = c_1 \vec{OP}_1 + c_2 \vec{OP}_2$

Avendo costruito le due proiezioni parallelamente a \vec{OP}_1 e \vec{OP}_2 come lati e \vec{OP} come diagonale, quindi per definizione di somma tra vettori geometrici si ha $\vec{OP} = \vec{OQ}_1 + \vec{OQ}_2$.

Ma dal momento che \vec{OQ}_1 si trova sulla stessa retta di \vec{OP}_1 per come è definito il prodotto dei vettori per i numeri realim esisterà un numero reale c_1 tale che $\vec{OQ}_1 = c_1 \vec{OP}_1$ (dove c_1 dipende semplicemente dal rappotro tra la lunghezza di \vec{OQ}_1 e quella di \vec{OP}_1).

Si conclude che $\overrightarrow{OP} = c_1 \overrightarrow{OP}_1 + c_2 \overrightarrow{OP}_2$. Si noti che nella situazione considerata nel disegno, $c_1, c_2 > 0$ in quanto \overrightarrow{OQ}_1 e \overrightarrow{OQ}_2 hanno lo stesso verso di \overrightarrow{OP}_1 e \overrightarrow{OP}_2 rispettivamente. In generale, la stessa costruzione può essere effettuata per qualunque vettore \overrightarrow{OP} del piano e i coefficienti c_1 e c_2 potranno anche essere negativi¹ a seconda del quadrante nel quale si trova \overrightarrow{OP} , ovvero a seconda che la proiezione di P sulle rette r_1 , r_2 cada dalla stessa parte o dalla parte opposta dei punti P_1 e P_2 .

Figura 1.6: Condizione della formula $\vec{OP} = c_1 \vec{OP}_1 + c_2 \vec{OP}_2$ in base ai reali c_1, c_2

Definizione 1.2.1. La coppia (c_1, c_2) di numeri reali tale che $\vec{OP} = c_1 \vec{OP}_1 + c_2 \vec{OP}_2$ si dice la coppia delle coordinate del vettore \vec{OP} rispetto ai vettori base \vec{OP}_1, \vec{OP}_2 .

Le coordinate c_1 e c_2 di un vettore dipendono chiaramente dalla scelta dei vettori base \vec{OP}_1 , \vec{OP}_2 , ma una volta che essi sono stati fissati seriveremo $\vec{OP} \equiv (c_1, c_2)$, identificando di fatto il vettore con la coppia delle sua coordinate, e quindi l'insieme \vec{V}_O^2 con l'insieme \mathbb{R}^2 delle coppie di numeri reali.

Osservazione 1.2.1. Bisognerebbe porsi il problema dell'*unicità* di c_1 e c_2 : se esistessero due modi diversi, diciamo $\vec{OP} = c_1 \vec{OP}_1 + c_2 \vec{OP}_2$ e $\vec{OP} = c_1' \vec{OP}_1 + c_2' \vec{OP}_2$, di decomporre \vec{OP} , non

 $^{^{1}}$ Può essrere anche $c_{1}=0$ o $c_{2}=0$: nel primo caso, si ha $\vec{OP}=c_{2}\vec{OP}_{2}$, nel secondo $\vec{OP}=c_{1}\vec{OP}_{1}$, cioè \vec{OP} non sta all'interno di uno dei quadranti in cui le rette r_{1}, r_{2} dividono il piano, ma sta sulla retta r_{2} (se $\vec{OP}=c_{2}\vec{OP}_{2}$) o sulla retta r_{1} (se $\vec{OP}=c_{1}\vec{OP}_{1}$).

afica

1.2. COORDINATE