FAKULTA INFORMAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Typografie a publikování – 2. projekt Sazba dokumentů a matematických výrazů

Úvod

V této úloze si vyzkoušíme sazbu titulní strany, matematických vzorců, prostředí a dalších textových struktur obvyklých pro technicky zaměřené texty (například rovnice (1) nebo Definice 1 na straně 1). Pro odkazovaní na vzorce a struktury zásadně používáme příkaz \label a \ref případně \pageref pokud se chceme odkázat na stranu výskytu.

Na titulní straně je využito sázení nadpisu podle optického středu s využitím zlatého řezu. Tento postup byl probírán na přednášce. Dále je použito odřádkování se zadanou relativní velikostí 0.4 em a 0.3 em.

1 Matematický text

Nejprve se podíváme na sázení matematických symbolů a výrazů v plynulém textu včetně sazby definic a vět s využitím balíku amsthm. Rovněž použijeme poznámku pod čarou s použitím příkazu \footnote. Někdy je vhodné použít konstrukci \mbox{}, která říká, že text nemá být zalomen.

Definice 1. Zásobníkový automat (ZA) *je definován jako sedmice tvaru A* = $(Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, *kde*:

- Q je konečná množina vnitřních (řídicích) stavů,
- Σ je konečná vstupní abeceda,
- Γ je konečná zásobníková abeceda,
- δ je přechodová funkce $Q \times (\Sigma \cup \varepsilon) \times \Gamma \rightarrow 2^{Q \times \Gamma^*}$,
- q₀ ∈ Q je počáteční stav, Z₀ ∈ Γ je startovací symbol zásobníku a F ⊆ Q je množina koncových stavů.

Nechť $P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ je zásobníkový automat. Konfigurací nazveme trojici $(q,w,\alpha)\in Q\times \Sigma^*\times \Gamma^*$, kde q je aktuální stav vnitřního řízení, w je dosud nezpracovaná část vstupního řetězce a $\alpha=Z_{i1}Z_{i2}\dots Z_{ik}$ je obsah zásobníku 1 .

1.1 Podsekce obsahující větu a odkaz

Definice 2. Řetězec w nad abecedou Σ je přijat ZA A $jestliže\ (q_0,w,Z_0) \overset{*}{\underset{A}{\vdash}} (q_F,\varepsilon,\gamma)$ pro nějaké $\gamma \in \Gamma^*$ a $q_F \in F$. $Množinu\ L(A) = \{w \mid w \ je\ přijat\ ZA\ A\} \subseteq \Sigma^*$ nazývame jazyk přijímaný TS M.

Nyní si vyzkoušíme sazbu vět a důkazů opět s použitím balíku amsthm.

Věta 1. *Třída jazyků, které jsou přijímány ZA, odpovídá* bezkontextovým jazykům.

Důkaz. V důkaze vyjdeme z Definice 1 a 2. □

2 Rovnice a odkazy

Složitější matematické formulace sázíme mimo plynulý text. Lze umístit několik výrazů na jeden řádek, ale pak je třeba tyto vhodně oddělit, například příkazem \quad.

$$\sqrt[i]{x_i^3}$$
 kde x_i je i -té sudé číslo splňující $x_i^{2-x_i^{j^2}} \leq x_i^{y_i^3}$

V rovnici (1) jsou využity tři typy závorek s různou explicitně definovanou velikostí.

$$x = \left[\left\{ \left[a + b \right] * c \right\}^d \ominus 1 \right]^{1/2} \tag{1}$$

$$y = \lim_{x \to \infty} \frac{\frac{1}{\log_{10} x}}{\sin^2 x + \cos^2 x}$$

V této větě vidíme, jak vypadá implicitní vysázení limity $\lim_{n\to\infty}f(n)$ v normálnom odstavci textu. Podobně je to i s dalšími symboly jako $\prod_{i=1}^n 2^i$ či $\bigcap_{A\in B}A$. V případě vzorců $\lim_{x\to\infty}f(n)$ a $\prod_{i=1}^n 2^i$ jsme si vynutili méně úspornou sazbu příkazem \limits.

$$\int_{b}^{a} g(x) dx = -\int_{a}^{b} f(x) dx$$
 (2)

$$\overline{\overline{A \wedge B}} \Leftrightarrow \overline{\overline{A} \vee \overline{B}} \tag{3}$$

3 Matice

Pro sázení matic se velmi často používá prostředí array a závorky (\left,\right).

$$\begin{bmatrix} \widehat{\beta} + \widehat{\gamma} & \widehat{\pi} \\ \overrightarrow{a} & AC \end{bmatrix} = 1 \Longleftrightarrow \mathbb{Q} = \mathbf{R}$$

$$\mathbf{A} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{vmatrix} = \begin{matrix} t & u \\ v & w \end{matrix} = tw - uv$$

Prostředí array lze úspěšně využít i jinde.

$$\binom{n}{k} = \begin{cases} 0 & \text{pro } k < 0 \text{ nebo } k > n \\ \frac{n!}{k!(n-k)!} & \text{pro } 0 \le k \le n \end{cases}$$

 $^{{}^{1}}Z_{i_{1}}$ je vrchol zásobníku