Task 1 - A PCA example

Consider a data set with two data points: $\begin{bmatrix} -1\\0\\0 \end{bmatrix}$ and $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$, $X = \begin{bmatrix} -1&1\\0&0\\0&0 \end{bmatrix}$.

1. Recall an eigenvector of a square matrix $A \in \mathbb{R}^{n \times n}$ is defined as a non-zero vector $\mathbf{v} \in \mathbb{R}^n$ such that $A\mathbf{v} = \lambda \mathbf{v}$ where $\lambda \in \mathbb{C}$ is called the eigenvalue of A corresponding to \mathbf{v} .

If A is a diagonal matrix, what are the eigenvectors and corresponding eigenvalues of A?

Solution: Remember that if A is a real, symmetric matrix, you can decompose it into its eigenvalue decomposition $A = VDV^{\top}$ where D is a diagonal matrix with the eigenvalues of A and V is an orthogonal matrix containing the corresponding eigenvectors. Then it is easy to see that the eigenvalues of A are just its elements and the unit vectors are the corresponding eigenvectors.

2. Use standard PCA to project the data onto a 1-dimensional subspace. Recall you have to do the following steps: (1) Compute the covariance matrix $S \in \mathbb{R}^{3 \times 3}$ of the data. (2) The first principal direction $\mathbf{w} \in \mathbb{R}^3$, $\|\mathbf{w}\| = 1$ is given by the eigenvector of S corresponding to the largest eigenvalue. (3) Compute the projected data $H = \mathbf{w}^T X$.

Solution:

(a)
$$S = \frac{1}{N}XX^{\top} = \frac{1}{2} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

(b)
$$det(S - \lambda I) = (1 - \lambda_1) \cdot \lambda_2 \cdot \lambda_3$$
, eigenvalues are $\lambda_1 = 1, \lambda_{2,3} = 0$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}, \text{ eigenvector to } \lambda_1 \text{ is } w = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

(c)
$$H = w^{\top} X = (-1 \ 1)$$

3. Use linear Kernel PCA to obtain exactly the same result. Recall you have to do the following steps: (1) Compute the kernel matrix $\mathbb{R}^{2\times 2}\ni K=X^TX$ of the data. (2) Compute a linear combination of the data points $\alpha\in\mathbb{R}^2$ as the eigenvector of K corresponding to the largest eigenvalue. (Try to find the eigenvectors of K by educated guessing, use a compute programm, or ask the lecturer) (3) Compute $\mathbf{w}=X\alpha$. You should obtain a scaled version of the standard PCA result. **Solution:**

(a)
$$K = X^{\top} X = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

(b)
$$det(K - \lambda I) = (1 - \lambda_1) \cdot (1 - \lambda_2) + 1$$
, eigenvalues are $\lambda_1 = 2, \lambda_2 = 0$

(c)
$$w = X \cdot \alpha = \begin{pmatrix} -1 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$$

Task 2 - Covariance matrix and eigenvalues

For each of the three scenarios below, sketch a 2-dimensional Gaussian data set whose covariance matrix has the following two eigenvalues:

1.
$$\lambda_1 = 1, \lambda_2 = 1$$

2.
$$\lambda_1 = 1, \lambda_2 = 5$$

3.
$$\lambda_1 = 1, \lambda_2 = 0$$

Hint: Remember the following fact from the lecture. The variance of a data set projected onto a direction $\mathbf{w} \in \mathbb{R}^D$, $||\mathbf{w}|| = 1$ can be computed as $\mathbf{w}^T S \mathbf{w}$, where S denotes the data covariance matrix. If \mathbf{w} is an eigenvector of S with corresponding eigenvalue λ , then $\mathbf{w}^T S \mathbf{w} = \mathbf{w}^T \lambda \mathbf{w} = \lambda \mathbf{w}^T \mathbf{w} = \lambda$.

1

Task 3 - Covariance matrix and eigenvalues II

1. Consider a square matrix $S \in \mathbb{R}^{D \times D}$, and an eigenvector \mathbf{v} of S with corresponding eigenvalue λ , i.e. $S\mathbf{v} = \lambda \mathbf{v}$.

Show: **v** is also an eigenvector of the scaled matrix $S_c := cS$ for any $c \in \mathbb{R}$.

Solution:

$$S\mathbf{v} = \lambda \mathbf{v} \Leftrightarrow \underbrace{cS}_{=S_c} \mathbf{v} = c\lambda \mathbf{v}$$

Thus, **v** is eigenvector of S_c with corresponding eigenvalue $c\lambda$.

2. Consider a centered data set $X \in \mathbb{R}^{D \times N}$ with corresponding covariance matrix $S = \frac{1}{N}XX^T$, and an eigenvector \mathbf{v} of S with corresponding eigenvalue λ , i.e. $S\mathbf{v} = \lambda \mathbf{v}$. Suppose we rotate the data, $X \mapsto UX$ where $U \in \mathbb{R}^{D \times D}$ is a rotation matrix $(UU^T = U^TU = I)$.

Show: λ is an eigenvalue of the covariance matrix of the rotated data set, $S_U = \frac{1}{N}UX(UX)^T$.

Solution: We have

$$S_U = \frac{1}{N} U X (U X)^\top = U \frac{1}{N} X X^\top U^\top = U S U^\top$$

Thus (remember $U^{\top}U = I$)

$$S\mathbf{v} = \lambda \mathbf{v} \Leftrightarrow US\mathbf{v} = \lambda U\mathbf{v} \Leftrightarrow \underbrace{USU^{\top}}_{S_U} \underbrace{U\mathbf{v}}_{:=\mathbf{z}} = \lambda \underbrace{U\mathbf{v}}_{:=\mathbf{z}}$$

Thus, $U\mathbf{v}$ is eigenvector of S_U with corresponding eigenvalue λ .