上海 数学试卷(理工农医类)

考生注意:

- 1. 答卷前, 考生务必将姓名、高考准考证号、校验码等填写清楚.
- 2. 本试卷共有22道试题, 满分150分. 考试时间120分钟, 请考生用钢笔或圆珠笔将答 案直接写在试卷上. S = x - (x - x) + (x) +

得	分	评卷人	一. 填空题(本大题满分48分)本大题共有12题,只要求直填写结果,每个空格填对得4分,否则一律得零分.
et al		S 11 D1 1	(3) { g(x)=f(x+α), 其中α 是常数,且α∈[0,π], i

一. 填空题(本大题满分48分)本大题共有12题,只要求直接 填写结果,每个空格填对得4分,否则一律得零分.

- 1. 函数 $f(x) = \log_4(x+1)$ 的反函数 $f^{-1}(x) =$ _____
- 2. 方程 $4^{x} + 2^{x} 2 = 0$ 的解是
- 3. 直角坐标平面 xOy 中,若定点 A(1,2) 与动点 P(x,y) 满足 $\overline{OP} \cdot \overline{OA} = 4$,则点 P 的轨 迹方程是
- 4. 在 $(x-a)^{10}$ 的展开式中, x^7 的系数是15, 则实数a=_
- 5. 若双曲线的渐近线方程为 $y=\pm 3x$, 它的一个焦点是 ($\sqrt{10}$, 0), 则双曲线的方程是
- 6. 将参数方程 $\begin{cases} x = 1 + 2\cos\theta \\ y = 2\sin\theta \end{cases}$ (θ 为参数) 化为普通方程, 所得方程是_
- 8. 某班有50名学生, 其中15人选修A课程, 另外35人选修B课程. 从班级中任选两名学生 他们是选修不同课程的学生的概率是 . (结果用分数表示)
- 9. 在△ ABC 中, 若∠A=120°, AB=5, BC=7, 则△ ABC 的面积 S=_

等于5,则这样的直线 [答]((A)有且仅有一条. (B)有且仅有两条. (C)有无穷多条. (D)不存在.

16. 设定义域为 R 的函数
$$f(x) = \begin{cases} |\lg|x-1||, & x \neq 1 \\ 0, & x = 1 \end{cases}$$
 ,则关于 x 的方程

 $f^{2}(x)+bf(x)+c=0$ 有7个不同实数解的充要条件是

[答](

(A) b < 0且c > 0.

(B) b > 0且c < 0.

(C) b < 0且c = 0.

- (D) $b \ge 0$ $\exists c = 0$.
- 三. 解答题(本大题满分86分)本大题共有6题,解答下列各题必须写出必要的步骤.

得 分	评卷人
2 年底的 對年或自10	和 。 和 別 身 基 。 。 。 。 。 。 。 。 。 。 。 。 。

17. (本题满分12分)

已知直四棱柱 $ABCD - A_1B_1C_1D_1$ 中, $AA_1 = 2$,底面 ABCD 是直角梯形, $\angle A$ 为直角, AB/CD, AB = 4, AD = 2, DC = 1, 求异面直线 BC_1 与 DC 所成角的大小. (结果用反三角函数值表示)

[解]

D ₁	11 25 18	C1	利田市 日	
A1	例如。此	l'a p	(之和都	<u></u>
i i sta iii	2.4	11. 2.	2,2	Œ.
/1) c			

得 分	评卷人
28 - 28 - 28 - 28 - 28 - 28 - 28 - 28 -	. 的大组

18. (本题满分12分)

证明: 在复数范围内,方程 $|z|^2 + (1-i)\overline{z} - (1+i)z = \frac{5-5i}{2+i}$ (i 为虚数单位) 无解. [证明]

于5. 则这样细直解) (A) (B) (C) 有无穷必条。 (D) 不存在。 (C) 有无穷必条。 (D) 不存在。

THE PROPERTY OF THE PROPERTY OF THE PARTY OF

19. (本题满分14分) 本题共有2个小题,第1小题满分6分, 第2小题满分8分.

如图,点 $A \times B$ 分别是椭圆 $\frac{x^2}{36} + \frac{y^2}{20} = 1$ 长轴的左、右端点,点F是椭圆的右焦点.

点 P 在椭圆上,且位于x 轴上方, $PA \perp PF$.

- (1) 求点 P 的坐标;
- (2) 设M 是椭圆长轴AB上的一点,M 到直。 线 AP 的距离等于|MB|, 求椭圆上的点到点 M 的 距离d 的最小值.

[解] (1)

得分	评卷人	
	ing Comp Short Cons	

20. (本题满分14分) 本题共有2个小题, 第1小题满分6分, 第2小题满分8分.

假设某市2004年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后 的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低 价房的面积均比上一年增加50万平方米. 那么, 到哪一年底,

- (1) 该市历年所建中低价房的累计面积(以 2004 年为累计的第一年)将首次不少于 4750 万平方米?
 - (2) 当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?

是以3为周期的周期函数、月当 $x \in (0,3184, f(x) = \log x$,求以曲线 $C \neq (1)$ 案 $[\mathbf{4}]$ 数在

(L.4]上的解析式:

(3) 对任意偶数n,用n表示向量 A,A。的坐标。

(2)

得	分	评卷人
		201 / 49 31200

21. (本题满分16分) 本题共有3个小题,第1小题满分4分,第2 小题满分6分,第3小题满分6分.

对定义域分别是 D_f 、 D_g 的函数y = f(x)、y = g(x),

规定: 函数
$$h(x) = \begin{cases} f(x) \cdot g(x) & \exists x \in D_f \coprod x \in D_g \\ f(x) & \exists x \in D_f \coprod x \notin D_g \end{cases}$$
.

- (1) 若函数 $f(x) = \frac{1}{x-1}$, $g(x) = x^2$, 写出函数 h(x) 的解析式;
- (2) 求问题 (1) 中函数 h(x) 的值域;
- (3) 若 $g(x) = f(x+\alpha)$, 其中 α 是常数,且 $\alpha \in [0,\pi]$,请设计一个定义域为 R 的函数 y = f(x),及一个 α 的值,使得 $h(x) = \cos 4x$,并予以证明.

得分	评卷人

22. (本题满分18分) 本题共有3个小题,第1小题满分4分, 第2小题满分8分,第3小题满分6分.

在直角坐标平面中,已知点 $P_1(1,2)$, $P_2(2,2^2)$, $P_3(3,2^3)$, …, $P_n(n,2^n)$,其中 n 是正整数. 对平面上任一点 A_0 ,记 A_1 为 A_0 关于点 P_1 的对称点, A_2 为 A_1 关于点 P_2 的对称点, …, A_n 为 A_{n-1} 关于点 P_n 的对称点.

- (1) 求向量 A₀A₂ 的坐标;
- (2) 当点 A_0 在曲线 C 上移动时,点 A_2 的轨迹是函数 y = f(x) 的图象,其中 f(x) 是以3为周期的周期函数,且当 $x \in (0,3]$ 时, $f(x) = \lg x$. 求以曲线 C 为图象的函数在 (1,4] 上的解析式;
 - (3) 对任意偶数n, 用n表示向量 $\overline{A_0A_n}$ 的坐标.

[解] (1)

(2)

(3)

__ 16 __

上海 数学(理工农医类)参考答案

说明

- 1.本解答列出试题的一种或几种解法,如果考生的解法与所列解法不同,可参照解答 中评分标准的精神进行评分.
- 2.评阅试卷, 应坚持每题评阅到底, 不要因为考生的解答中出现错误而中断对该题的 评阅, 当考生的解答在某一步出现错误, 影响了后继部分, 但该步以后的解答未改变这一 题的内容和难度时,可视影响程度决定后面部分的给分,这时原则上不应超过后面部分应 给分数之半,如果有较严重的概念性错误,就不给分.

解答

一、(第1题至第12题)

$$2. x = 0.$$

当加二日时,直线从水与圆屋新期;

$$4. -\frac{1}{2}$$

$$5. x^2 - \frac{y^2}{9} = 1.$$

$$5.(x-1)^2 + y^2 = 4. 7.$$

8.
$$\frac{3}{7}$$

9.
$$\frac{15}{4}\sqrt{3}$$
.

$$10.1 < k < 3$$
.

5.
$$x^2 - \frac{y^2}{9} = 1$$
. 6. $(x-1)^2 + y^2 = 4$. 7. 3. 8. $\frac{3}{7}$. 9. $\frac{15}{4}\sqrt{3}$. 10.1 < $k < 3$. 11. $0 < a < \frac{\sqrt{15}}{3}$. 12. —1080. \Box . (第13题至第16题)

题 号	13	14	15	16
代 号	A	В	В	C

(第17题至第22题)

17. [解法一] 由题意 AB // DC, $\therefore \angle C_1 BA$ 是异面直线 BC_1 与 DC 所成的角.

连结 AC_1 与AC,在Rt $\triangle ADC$ 中,可得 $AC = \sqrt{5}$.

又在Rt $\triangle ACC_1$ 中,可得 $AC_1 = 3$.

在梯形 ABCD 中, 过 C 作 CH // AD 交 AB 于 H,

得
$$\angle CHB = 90^{\circ}$$
, $CH = 2$, $HB = 3$,

∴
$$CB = \sqrt{13}$$
. 又在Rt $\triangle CBC_1$ 中,可得 $BC_1 = \sqrt{17}$,

在
$$\triangle ABC_1$$
中, $\cos \angle ABC_1 = \frac{AB^2 + BC_1^2 - AC_1^2}{2AB \cdot BC_1} = \frac{3\sqrt{17}}{17}$

$$\therefore \angle ABC_1 = \arccos \frac{3\sqrt{17}}{17}.$$

[解法二]如图,以D为坐标原点,分别以DA、DC、DD1所在直线为x、y、z 轴建立直角坐标系.

则
$$C_1(0,1,2)$$
, $B(2,4,0)$,

$$\therefore \overrightarrow{BC_1} = (-2, -3, 2) ,$$

$$\overrightarrow{CD} = (0, -1, 0),$$

设 $\overrightarrow{BC_1}$ 与 \overrightarrow{CD} 所成的角为 θ ,

则
$$\cos \theta = \frac{\overrightarrow{BC_1} \cdot \overrightarrow{CD}}{\left| \overrightarrow{BC_1} \right| \left| \overrightarrow{CD} \right|} = \frac{3\sqrt{17}}{17}$$
,

$$\theta = \arccos \frac{3\sqrt{17}}{17} \,,$$

18. [证明]原方程化简为
$$|z|^2 + (1-i)\overline{z} - (1+i)z = 1-3i$$
.

设
$$z=x+yi$$
 $(x, y \in \mathbb{R})$, 代人上述方程得

$$x^2 + y^2 - 2xi - 2yi = 1 - 3i$$
,

$$\therefore \begin{cases} x^2 + y^2 = 1 & \text{(1)} \\ 2x + 2y = 3 & \text{(2)} \end{cases}$$

将 (2) 代入 (1), 整理得 $8x^2-12x+5=0$, (*) 中 $30A\triangle 19$ 至文

- 19. [解] (1) 由已知可得点 A(-6,0), F(4,0),

设点 P 的坐标是(x, y) ,则 $\overrightarrow{AP} = \{x+6, y\}$, $\overrightarrow{FP} = \{x-4, y\}$,由已知得

$$\begin{cases} \frac{x^2}{36} + \frac{y^2}{20} = 1\\ (x+6)(x-4) + y^2 = 0 \end{cases}$$

则 $2x^2 + 9x - 18 = 0$, $x = \frac{3}{2}$ 或 x = -6 .

由于 y > 0 , 只能 $x = \frac{3}{2}$, 于是 $y = \frac{5}{2}\sqrt{3}$.

- ∴ 点 P 的坐标是 $\left(\frac{3}{2}, \frac{5}{2}\sqrt{3}\right)$.
- (2) 直线 AP 的方程是 $x \sqrt{3}y + 6 = 0$,

设点 M 的坐标是 (m, 0),则 M 到直线 AP 的距离是 $\frac{|m+6|}{2}$,

于是
$$\frac{|m+6|}{2}$$
= $|m-6|$,又 $-6 \le m \le 6$,解得 $m=2$,

椭圆上的点(x, y)到点M的距离d有

$$d^{2} = (x-2)^{2} + y^{2}$$

$$= x^{2} - 4x + 4 + 20 - \frac{5}{9}x^{2}$$

$$=\frac{4}{9}\left(x-\frac{9}{2}\right)^2+15, \qquad 10<\alpha<\frac{12.1080}{12.1080}$$

由于 $-6 \le x \le 6$,

 $\therefore \quad \exists x = \frac{9}{2} \text{ 时, } d \text{ 取得最小值} \sqrt{15} .$

20. [解] (1) 设中低价房面积形成数列 $\{a_n\}$, 由题意可知 $\{a_n\}$ 是等差数列,

其中
$$a_1 = 250$$
, $d = 50$,

则
$$S_n = 250n + \frac{n(n-1)}{2} \times 50 = 25n^2 + 225n$$
,

 $25n^2 + 225n \ge 4750 \,,$

即 $n^2 + 9n - 190 \ge 0$,而n是正整数, $n \ge 10$,

- :. 到2013年底,该市历年所建中低价房的累计面积将首次不少于4750万平方米,
- (2) 设新建住房面积形成数列 {b, }, 由题意可知 {b, }是等比数列,

其中
$$b_1 = 400$$
, $q = 1.08$,

则
$$b_n = 400 \cdot (1.08)^{n-1}$$
. $((-4, x-2), A 秋 新 雅 和 A 热 雅 和 A 表 于 美 A ...$

由题意可知 $a_n > 0.85b_n$,

由计算器解得满足上述不等式的最小正整数n=6.

: 到2009年底, 当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%.

21. [解] (1)
$$h(x) = \begin{cases} \frac{x^2}{x-1}, & x \in (-\infty, 1) \cup (1, +\infty) \\ 1, & x = 1 \end{cases}$$

(2) 当
$$x \neq 1$$
时, $h(x) = \frac{x^2}{x-1} = x-1 + \frac{1}{x-1} + 2$,
若 $x > 1$,则 $h(x) \geq 4$,其中等号当 $x = 2$ 时成立.
若 $x < 1$,则 $h(x) \leq 0$,其中等号当 $x = 0$ 时成立.

∴ 函数 h(x) 的值域是 $(-\infty, 0] \cup \{1\} \cup [4, +\infty)$.

则
$$g(x) = f(x+\alpha) = \sin 2(x+\frac{\pi}{4}) + \cos 2(x+\frac{\pi}{4})$$

$$=\cos 2x - \sin 2x$$
,

于是
$$h(x) = f(x) \cdot f(x+\alpha)$$

= $(\sin 2x + \cos 2x)(\cos 2x - \sin 2x)$
= $\cos 4x$.

[解法二] 令
$$f(x) = 1 + \sqrt{2} \sin 2x$$
, $\alpha = \frac{\pi}{2}$,

则 $g(x) = f(x + \alpha) = 1 + \sqrt{2} \sin 2(x + \frac{\pi}{2})$

$$= 1 - \sqrt{2} \sin 2x$$
,
于是 $h(x) = f(x) \cdot f(x + \alpha)$

$$= (1 + \sqrt{2} \sin 2x) (1 - \sqrt{2} \sin 2x)$$

$$= 1 - 2\sin^2 2x$$

22. [解] (1) 设点 A₀(x, y),

 $=\cos 4x$.

 A_0 关于点 P_1 的对称点 A_1 的坐标为 $A_1(2-x, 4-y)$,

 A_1 关于点 P_2 的对称点 A_2 的坐标为 $A_2(2+x,4+y)$,

所以,
$$\overrightarrow{A_0A_2} = \{2,4\}$$
.

- (2) [解法一]: $\overrightarrow{A_0A_2} = \{2,4\}$,
- : f(x)的图象由曲线 C 向右平移2个单位,再向上平移4个单位得到。

因此,曲线 C 是函数 y=g(x) 的图象,其中 g(x) 是以3为周期的周期函数,且当 $x \in (-2,1]$ 时, g(x)=lg(x+2)-4 . 于是,当 $x \in (1,4]$ 时, g(x)=lg(x-1)-4 .

[解法二] 设 $A_0(x, y)$, $A_2(x_2, y_2)$, 于是 第一章 $A \leq (x)$ (x)

$$\begin{cases} x_2 - x = 2 \\ y_2 - y = 4 \end{cases}$$

若3< $x_2 \le 6$,则0< $x_2 - 3 \le 3$,于是 $f(x_2) = f(x_2 - 3) = \lg(x_2 - 3)$.

当 $1 < x \le 4$ 时,则 $3 < x_2 \le 6$, $y + 4 = \lg(x - 1)$,

∴ $\exists x \in (1,4]$ by, $g(x) = \lg(x-1) - 4 + 3 + 3 + 3 = (30+3) + (31+3)$

于是 $h(x) = f(x) f(x + \alpha)$

 $= (\sin 2x + \cos 2x)(\cos 2x - \sin 2x).$