Project Design Phase-II Technology Stack (Architecture & Stack)

Date	18 June 2025	
Team ID	LTVIP2025TMID40962	
Project Name	TrafficTelligence: Advanced Traffic Volume	
	Estimation with Machine Learning	
Maximum Marks	4 Marks	

Technical Architecture:

Table-1: Components & Technologies:

S.N	Component	Description	Technology
0			
1.	User Interface	Web-based input forms, result display, visualization	Streamlit (Python), HTML, CSS
2.	Application Logic-1	Traffic volume prediction using ML models	Python, scikit-learn
3.	Application Logic-2	Data preprocessing and feature engineering	Pandas, NumPy
4.	Database	Historical trip data stored and processed as CSV	CSV file (local/cloud)
5.	Cloud Database	Future scalability via cloud data storage	AWS S3 / Google Cloud Storage.
6.	File Storage	Storage of datasets and model files	Local filesystem / Cloud storage.
7.	External API-1	Geocoding and mapping for routes	Google Maps API
8.	Machine Learning Model	Predictive model for trip duration estimation	Linear Regression (scikitlearn)
9.	Infrastructure (Server / Cloud)	Hosting and application deployment	Streamlit Cloud / Local Server

Table-2: Application Characteristics:

S.N	Characteristics	Description	Technology
0			
1.	Open-Source Frameworks	Entire solution developed using	Python, scikit-learn,
		open-source libraries	Streamlit
2.	Security Implementations	API key protection, restricted model	Basic API key handling,
		access, cloud-level IAM (if	IAM (future).
		deployed in cloud)	
3.	Scalable Architecture	Modular design, scalable via	Streamlit Cloud, Cloud
		retraining models with different	Storage
		datasets, cloud deployable	
4.	Availability	High availability via cloud	Streamlit Cloud,
		deployment (Streamlit Cloud),	
		minimal local resource dependence	
5.	Performance	Fast response (0.1s prediction	Python, scikit-learn, pandas
		time), lightweight model, efficient	
		data handling	