To find the best suitable model for the given Problem Statement and to predict insurance charges Dataset

- The provided dataset comprises 6 columns and 1338 rows.
- Two rows in a dataset are of the string data type and are transformed to integers.

Multiple Regression

Model	r_score
Multiple linear regression	0.7890995064322818

Support vector machine

s.no	Hyper parameter	Linear	Rbf	Poly	Sigmoid
1	C=0.1	-0.122076683 80229886	-0.089576245 98812952	-0.086252517 10262294	-0.089743519 10465961
2	C = 1 (default value)	-0.111661287 19608448	-0.088427327 76913875	-0.064292584 02105531	-0.089941217 0256757
3	C = 10	-0.001617632 4886472138	-0.081969103 96420853	-0.093116155 32848516	-0.090783198 14614
4	C = 100	0.5432818196 692804	-0.124803677 75039669	-0.099761723 33666167	-0.118145548 28411405
5	C= 500	0.6270462757 743913	-0.124641613 1929442	-0.082028798 630986	-0.456294434 05234804
6	C = 1000	0.6340369312 63208	-0.117490924 39183229	-0.055505937 517909665	-1.665908131 5533064
7	C = 2000	0.6893263105 100382	-0.107787640 37675015	-0.002702451 2793158983	-5.616431541 7244275

The support vector machine's highest r_score value 0.68932105100382 is using a linear hyperparameter C=0.1.

Decision Tree

s.no	Criterion	Splitter	max_features	r_score
1		best	auto	0.715198014
2	- Squared_Error		sqrt	0.726308394
3			log2	0.665649362
4		random	auto	0.649502166
5			sqrt	0.678818261
6			log2	0.594698239
7			auto	0.705572742
8		best	sqrt	0.725020357
9	Friedman_Mse		log2	0.718273632
10	riieuiiiaii_ivise	random	auto	0.680074312
11			sqrt	0.667404571
12			log2	0.655036223
13			auto	0.726618812
14		best	sqrt	0.632390368
15	Absolute_Error		log2	0.691638872
16	Absolute_Effor		auto	0.705281874
17		random	<mark>sqrt</mark>	0.748569956
18			log2	0.684427514
19			auto	0.723928106
20	Poisson	best	sqrt	0.685875931
21			log2	0.423392503
22		random	auto	0.725945925
23			sqrt	0.442143058
24			log2	0.684386122

• The Decision Tree's highest r_score value is 0.748569956 using hyperparameter Criterion = Squared_Error , Splitter= random, max_features=auto

Random Forest

s.no	criterion	n_estimators	max_features	r_score
1			sqrt	0.85113292
2		10	log2	0.85113292
3			auto	0.813275595
4			sqrt	0.867046344
5	squared_error	50	log2	0.867046344
6			auto	0.833810287
7			<mark>sqrt</mark>	0.867372933
8		100	log2	0.867372933
9			auto	0.838443585
10			sqrt	0.845650549
11		10	log2	0.845650549
12			auto	0.822887257
13			sqrt	0.859194771
14	absolute_error	50	log2	0.859194771
15			auto	0.83653449
16			sqrt	0.861781537
17		100	log2	0.861781537
18			auto	0.840116123
19			sqrt	0.851453708
20		10	log2	0.851453708
21			auto	0.813696974
22			sqrt	0.867260894
23	friedman_mse	50	log2	0.867260894
24			auto	0.833417218
25			sqrt	0.867012385
26		100	log2	0.867012385
27			auto	0.838707448
28			sqrt	0.846653477
29		10	log2	0.846653477
30			auto	0.811882035
31	poisson	50	sqrt	0.860580004
32			log2	0.860580004
33			auto	0.835304119
34			sqrt	0.862760007
35		100	log2	0.862760007
36			auto	0.839250721

[•] The Random forest's highest r_score value is 0.867372933 using hyperparameter Criterion = squared_error, n_estimators=100, max_features=sqrt

Conclusion

S.No	Model	r_score
1	multiple linear regression	0.7890995064322818
2	support vector machine	0.6893263105100382
3	decision tree	0.748569956
4	random forest	0.867372933

As a result, random forest is the finalised and has the greatest r_score value.