[2-1. Error Analysis] (Carrying Out Error Analysis?

- 오규분석: dev sets 에서 강유 되된 에서를 찾고, False Positive 와 False Negotive를 찾는다. 고 부, 다양한 개테고에 대한 오큐의 충 개우를 베서 가장 바꿈을 많이 쉬거하는 겨울 교체 는 것이 가장 좋다.

Evaluate multiple ideas in parallel

Ideas for cat detection:

- Fix pictures of dogs being recognized as cats
- Fix great cats (lions, panthers, etc..) being misrecognized <-
- Improve performance on blurry images

			√			
	Image	Dog	Great Cots	Plury	Instagram	Commets
1	1	/			~	Pitbull
	2			/	V	
	3		✓	~		Rainy day
J			-: /	:	4	
	% of total	8%	43.7	61./0	120/2	
		_	~	~		

< Cleaning Up Incorrectly Labeled Data?

Image	Dog	Great Cat	Blurry	Incorrectly labeled	Comments
98				✓	Labeler missed cat in background
99		✓			
100				✓	Drawing of a cat; Not a real cat.
% of total	8%	43%	61%	6%	

• 훈련 세트:

훈련세트는 무작위 오차에 대해 다소 둔감합니다. 잘못 라벨링 된 데이터의 학습 결과 오차가 무작위 오차와크게 차이 나지 않을 경우 고치지 않아도 됩니다.

Andrew Ng

- 하지만 무작위 오차가 아닌 시스템적인 오류(같은 라벨에 대해서 계속 오분류 하는 것)는 덜 둔감하기 때문에 문제가 있습니다.
- 개발 및 시험 세트:
 - 개발 및 시험 세트는 오차 분석시 잘못 라벨링으로 인한 오차의 비율을 구하시고, 전체 오차에서 얼만큼 차지하는지 살펴보고 결정하기를 권장합니다.
 - 개발 과 시험 세트의 분포는 같아야하기 때문에 동시에 살펴 볼 것을 권장합니다.

Made with Goodnotes

[2-4. End-to-End Deep Learning] (What is End-to-End Deep Learning? 7 * End-to-End Deep Learning: 对豆树以 NOUI \$1\$ HOUSING OHU SHION USE KHUI 경을 한번에 서리, 위 데이터 필요 en breech recognition example equity: audio wfac features ML Phonemes -> words -> transcript end-to-end: audio > transcript +) end-to-end + जागाहा मुख्यका पाड़िला, समाह पहाल इस्तिमाह यूग इस्त न प्रेरोध समाद एएका समाद पर्द में जानिया युक्त युवा युक्ता ज युक्तवर NA < Whether to use End-to-End Deep Learning > *Pros and cons of end-to-end deep learning <Pros> - lets the data speak. 극, 사감의 선압면 명향을 털 발음 - Less hand-designing of components needed. 특성이나 공간 표현을 걱정 설계하는데데 또 N7일 월일 추 있음 Cons > - May need large amount of data - Excludes potentially useful hand-designed components. 이는 데이터가 적을 경우에 효 别犯 智 孙岩 外勢 午 敬다. * Applying end-to-end deep learning - key question. Do you have sufficient data to learn a function of the complexity needed to map x to y? Made with Goodnotes