Lecture 9. Splay Trees, Sweep Line Algorithms

CpSc 8400: Algorithms and Data Structures
Brian C. Dean

School of Computing
Clemson University
Spring, 2016

Recall: "Worst-Case" Balancing Mechanisms (Height Always O(log n))

- AVL trees
 - Augment nodes with subtree heights
 - Height balanced property \rightarrow height is O(log n)
 - Maintain height balance after insert or delete with a few carefully-chosen rotations.
- Red-black trees
 - Augment nodes with a color: red or black
 - "Red black" property → height is O(log n)
 - Maintain red-black property
 after insert or delete
 with rotations and
 re-colorings

A

Today: Splay Trees

- Surprisingly simple way to achieve the same performance as a balanced BST, even though strict balance may not always hold.
- Any sequence of k splay tree operations, starting with an empty tree, takes O(k log n) time, so each operation takes O(log n) <u>amortized</u> time.

3

Rotating Elements to the Root

- What if every time an element is accessed, we rotate it one step closer to the root.
- In general, this seems like it should move frequently-accessed elements closer to the root, making subsequent accesses to these elements faster.
- Is there any situation where this wouldn't help much?

Rotating Elements to the Root

 What if every time an element is accessed, we rotate it one step closer to the root.

• Bad example: access 1, 2, 1, 2, 1, 2, 1, 2, ...

5

Rotating Elements to the Root

 New idea: what if every time an element is accessed, we rotate it all the way to the root.

Rotating Elements to the Root

- New idea: what if every time an element is accessed, we rotate it all the way to the root.
- Unfortunately, there are still situations where this doesn't quite give us the performance we want.

• Example, what if we access 1, 2, 3, 4, 5, 6, 7, ...?

Rotate to Root : An Improvement?

- Idea #3: When an element is accessed, "splay" it to the root as follows:
 - If element is one step below root, rotate up to the root.
 - If element is "in-line" with parent and grandparent, rotate parent first, then element.

 Otherwise, rotate element up two steps as before, using single rotations

Splaying: Example

 Consider the path example that was bad for single rotations:

 What happens when we access element 1, and then splay it to the root?

Double Rotations : Example

 Consider the path example that was bad for single rotations:

• We essentially halve the length of the path, thereby making the tree more balanced!

Splay Trees

- **Splay(e)**: Move e to root using double rotations.
- A splay tree is a BST in which we splay an element every time it is accessed:
 - find(e): Find as e usual, then splay(e).
 - insert(e): Insert as e usual, then splay(e).
 - delete(e): Discuss in a moment...
- A splay tree is called a **self-adjusting** tree, since
 it continually modifies its structure according to
 simple local update rules that do not depend on
 any augmented information stored within the tree.

11

Splay Trees: Performance

 Remarkable property: all operations on a splay tree run in O(log n) amortized time!
 (i.e., any sequence of k operations, starting with an empty tree, takes O(k log n) time).

 So a splay tree magically stays balanced (in an amortized sense), even though it maintains no augmented information to help it do so!

Split and Join

- Splay trees easily support the extended BST operations split and join:
 - split(T, k): Split the BST T into two BSTs, one containing key ≤ k and the other keys > k.
 - join(T₁, T₂): Take two BSTs T₁ and T₂, the keys in T₁ all being less than the keys in T₂, and join them into a single BST.

Split and Join on a Splay Tree

- On a splay tree:
 - split(T, k): Find the element e of key k. Then splay e to root and remove its right subtree.
 - (if k doesn't exist, use pred(k) instead)
 - $join(T_1, T_2)$: Splay the maximum element in T_1 to the root. Then attach T_2 as its right subtree.

Insert and Delete Using Split and Join

- If we can split and join easily, then we can also insert and delete easily:
 - insert(T, e) : split T on e's key into T₁ and T₂.
 Then make e the root, with left subtree T₁ and right subtree T₂.
 - delete(e): replace e with the join of its left and right subtrees.
- On a splay tree, this is how we implement delete (insert is usually done by inserting as in a normal BST then splaying to root).

15

Split, Join, and Dynamic Sequences

- Remember how a BST can encode a dynamic sequence so that *insert*, *delete*, and rank-based access all take O(log n) time.
- Now suppose we want the ability to cut a sequence into two shorter sequences, and to link two sequences together end-to-end.
- The split and join BST operations do precisely this, so on a splay tree, we can easily perform these operations in O(log n) amortized time.
- Application: cut/paste.

Sorting as a Preprocessing Step

- Many problems get easier after sorting the input first as a preprocessing step.
- Today's lecture: "Sort and scan" or "sweep line" algorithms.
- These are particularly common in computational geometry. And they are a good way to exercise your data structure skills...

Warm-Up

 You are told N intervals on the number line, each with an associated value.

 Find a point of maximum overlap (i.e., maximizing the sum of interval values overlapping at that point).

A "Sweep Line" Approach

 You are told N intervals on the number line, each with an associated value.

 Find a point of maximum overlap (i.e., maximizing the sum of interval values overlapping at that point).

Example: The Skyline Problem

• Give N rectangular buildings sharing a common base, find the area of the "skyline" they form.

- Sweep line + binary heap (or balanced BST).
- N inserts, N deletes, 2N find-max: O(N log N)

Counting Intersection Points Among Axially-Aligned Segments

Counting Intersection Points Among Axially-Aligned Segments

- Sweep line on x + balanced BST of "active" horizontal segments, keyed on y.
- ≤ 2N inserts, ≤ 2N deletes, ≤ N range counting queries: O(N log N)

Non-Dominated Points

- Forward sweep line on x + heap or BST on y.
- N inserts, ≤ N deletes: O(N log N)

Three Interesting Problems

1. Given a set of points in 2D, compute the "domination count" for each point

2. Given N intervals on the number line, compute for each one the number of intervals contained within it.

Visualizing Problems Graphically

 $\frac{\text{sum of first n}}{\text{odd numbers}} = n^2$

$$a^2 + b^2 = c^2$$

"Parameter Space"

- Suppose a robot arm has 4 movable joints, each with one degree of freedom.
- You want to move the arm from its current state to a new "goal" state (say, with the end of the arm at a certain position).
- Certain joint configurations are not valid (i.e., the arm can't fold back and cross through itself!)
- Moving the arm becomes an easier problem, conceptually, if we view it as finding a path through a 4d "parameter space" in which obstacles correspond to invalid configurations.

Example: Longest Line of Sight

- Given the heights of N individuals standing in a line.
- **Goal:** find the length of the longest line of sight (difference in indices between two people between whom everyone else is strictly shorter).
- How might you solve this problem using sweep lines?

Example: Counting Distant Pairs of Points...

Example: Closest Pair of Points in 2D

