

Algebriac Topology III (MAT484)

Lecture Notes

Contents

1	Singular Homology Theory	3
	1.1 Singular Homology Groups	
	1.2 Bracket Operation	į

$\frac{1}{1}$ Singular Homology Theory

§1.1 Singular Homology Groups

Let \mathbb{R}^{∞} denote the generalized Euclidean space \mathbb{E}^{J} , with J being the set of positive integers. An element of the vector space \mathbb{R}^{∞} is an infinite sequence of real numbers (functions from \mathbb{N} to \mathbb{R}) with finitely many nonzero entries. Let Δ_{p} denote the p-simplex in \mathbb{R}^{∞} having vertices

$$\varepsilon_0 = (1, 0, 0, \dots, 0, \dots) ,$$

$$\varepsilon_1 = (0, 1, 0, \dots, 0, \dots) ,$$

$$\dots$$

$$\varepsilon_p = (0, 0, 0, \dots, \underbrace{1}_{(p+1)\text{-th entry}}, \dots) .$$

We call Δ_p the **standard** *p*-simplex. In this notation, Δ_{p-1} is a face of Δ_p .

Definition 1.1 (Singular p-simplex). Let X be a topological space. We define a **singular** p-simplex of X to be a continuous map $T: \Delta_p \to X$. The free abelian group generated by singular p-simplices of X is denoted by $S_p(X)$, and is called the **singular chain group** of X in dimension p. We shall denote an element of $S_p(X)$ by a \mathbb{Z} -linear combination of singular p-simplices of X.

Singular means that T could be a "bad" map, i.e. it may not be an imbedding. All we want that T is just continuous. Now, recall that

$$\Delta_p = \left\{ (x_0, x_1, \dots, x_p, 0, \dots) \in \mathbb{R}^{\infty} | 0 \le x_i \le 1 \text{ and } \sum_{i=0}^p x_i = 1 \right\}.$$
 (1.1)

Given $a_0, a_1, \ldots, a_p \in \mathbb{R}^{\infty}$, there is a unique affine map $l_{(a_0, \ldots, a_p)} : \Delta_p \to \mathbb{R}^{\infty}$ that maps ε_i to a_i . It is defined by

$$l_{(a_0,\dots,a_p)}(x_0,x_1,\dots,x_p,0,\dots) = \sum_{i=0}^p x_i a_i = \sum_{i=0}^p x_i a_i + a_0 - \sum_{i=0}^p x_i a_0$$
$$= a_0 + \sum_{i=0}^p x_i (a_i - a_0). \tag{1.2}$$

We call this map the **linear singular simplex** determined by $a_0, a_1, \ldots, a_p \in \mathbb{R}^{\infty}$. Now, what is $l_{(\varepsilon_0, \ldots, \varepsilon_p)}$? Observe that

$$l_{(\varepsilon_0,\dots,\varepsilon_p)}\varepsilon_i = l_{(\varepsilon_0,\dots,\varepsilon_p)}(0,\dots,0,\underbrace{1}_{(i+1)\text{-th entry}},0,\dots) = \varepsilon_i. \tag{1.3}$$

Therefore, $l_{(\varepsilon_0,\ldots,\varepsilon_p)}$ maps ε_i to itself, for every $i=0,1,\ldots,p$. Also,

$$l_{(\varepsilon_0,\dots,\varepsilon_p)}(x_0,x_1,\dots,x_p,0,\dots) = \sum_{i=0}^p x_i \varepsilon_i = (x_0,x_1,\dots,x_p,0,\dots).$$
 (1.4)

Therefore, $l_{(\varepsilon_0,\dots,\varepsilon_p)}$ is just the inclusion map of Δ_p into \mathbb{R}^{∞} . Now, suppose $(x_0,x_1,\dots,x_{p-1},0,\dots) \in \Delta_{p-1}$, so that $\sum_{i=0}^{p-1} x_i = 1$. Then

$$l_{(\varepsilon_0,\dots,\widehat{\varepsilon_i},\dots,\varepsilon_p)}(x_0,x_1,\dots,x_{p-1},0,\dots) = x_0\varepsilon_0 + \dots + x_{i-1}\varepsilon_{i-1} + 0 \cdot \varepsilon_i + x_{i+1}\varepsilon_{i+1} + \dots + x_{p-1}\varepsilon_p$$

$$= (x_0,\dots,x_{i-1},0,x_{i+1},\dots,x_{p-1},0,\dots), \qquad (1.5)$$

which is a point on the face of Δ_p opposite to the vertex ε_i . In fact, $l_{(\varepsilon_0,...,\widehat{\varepsilon_i},...,\varepsilon_p)}$ is a linear homomorphism of Δ_{p-1} into the face of Δ_p that is opposite to the vertex ε_i . In other words,

$$l_{(\varepsilon_0,\dots,\widehat{\varepsilon_i},\dots,\varepsilon_p)}:\Delta_{p-1}\to\Delta_p$$

maps Δ_{p-1} to the face of Δ_p opposite to the vertex ε_i . Therefore, given a singular p-simplex $T:\Delta_p\to X$, one can form the composite

$$T \circ l_{(\varepsilon_0, \dots, \widehat{\varepsilon_i}, \dots, \varepsilon_p)} : \Delta_{p-1} \to X,$$

which is a singular (p-1)-simplex. We think of it as the *i*-th face of the singular *p*-simplex T.

Definition 1.2 (Boundary homomorphism). We define $\partial: S_p(X) \to S_{p-1}(X)$ as follows. If $T: \Delta_p \to X$ is a singular p-simplex, we define ∂T to be

$$\partial T = \sum_{i=0}^{p} (-1)^{i} T \circ l_{(\varepsilon_{0}, \dots, \widehat{\varepsilon_{i}}, \dots, \varepsilon_{p})}. \tag{1.6}$$

In other words, ∂T is a formal sum of singular simplices of dimension p-1, which are the faces of T.

Remark 1.1. Note that only the singular p-simplices are maps, not the singular p-chains. The p-chains are just formal sum of continuous maps from Δ_p to X. If T_1 and T_2 are two singular p-simplices, i.e. continuous maps $\Delta_p \to X$, then $T_1 + T_2$ is **NOT** a map. The sum present here is nothing but a formal notation. For the same reason, ∂T_1 is not a map. It is merely a formal linear combination of the continuous maps $T \circ l_{(\varepsilon_0, \dots, \widehat{\varepsilon_i}, \dots, \varepsilon_p)}$.

If $f: X \to Y$ is a continuous map, we define a group homomorphism $f_{\#}: S_p(X) \to S_p(Y)$ by defining it on singular p-simplices by the equation

$$f_{\#}\left(T\right) = f \circ T \tag{1.7}$$

for a singular p-simplex T.

$$\Delta_p \xrightarrow{T} X \xrightarrow{f} Y$$

Theorem 1.1

The homomorphism $f_{\#}$ commutes with ∂ . Furthermore, $\partial^2 = 0$.

Proof. Given a singular p-simplex T,

$$\partial f_{\#}(T) = \partial (f \circ T) = \sum_{i=0}^{p} (-1)^{i} (f \circ T) \circ l_{(\varepsilon_{0}, \dots, \widehat{\varepsilon_{i}}, \dots, \varepsilon_{p})}. \tag{1.8}$$

$$f_{\#}(\partial T) = f_{\#}\left(\sum_{i=0}^{p} (-1)^{i} T \circ l_{(\varepsilon_{0},\dots,\widehat{\varepsilon_{i}},\dots,\varepsilon_{p})}\right) = \sum_{i=0}^{p} (-1)^{i} f \circ T \circ l_{(\varepsilon_{0},\dots,\widehat{\varepsilon_{i}},\dots,\varepsilon_{p})}.$$
 (1.9)

Therefore, $\partial f_{\#}(T) = f_{\#}(\partial T)$. Now, to prove $\partial^2 = 0$, we first compute ∂ for linear singular simplices $l_{(a_0,...,a_p)}$.

$$\partial l_{(a_0,\dots,a_p)} = \sum_{i=0}^p (-1)^i l_{(a_0,\dots,a_p)} \circ l_{(\varepsilon_0,\dots,\widehat{\varepsilon_i},\dots,\varepsilon_p)}. \tag{1.10}$$

Observe that

$$l_{(a_0,\dots,a_p)} \circ l_{(\varepsilon_0,\dots,\widehat{\varepsilon_i},\dots,\varepsilon_p)} (x_0,\dots,x_{p-1},0,\dots) = l_{(a_0,\dots,a_p)} (x_0,\dots,x_{i-1},0,x_ix_{p-1},0,)$$

$$= x_0 a_0 + \dots + x_{i-1} a_{i-1} + 0 \cdot a_i + x_i a_{i+1} + \dots + x_{p-1} a_p$$

$$= l_{(a_0,\dots,\widehat{a_i},\dots a_p)} (x_0,\dots,x_{p-1},0,\dots). \tag{1.11}$$

Hence,

$$l_{(a_0,\dots,a_p)} \circ l_{(\varepsilon_0,\dots,\widehat{\varepsilon_i},\dots,\varepsilon_p)} = l_{(a_0,\dots,\widehat{a_i},\dots a_p)}. \tag{1.12}$$

Therefore, from 1.10, it follows that

$$\partial l_{(a_0,\dots,a_p)} = \sum_{i=0}^p (-1)^i l_{(a_0,\dots,\widehat{a_i},\dots a_p)}.$$
(1.13)

Let's now evaluate $\partial \partial l_{(a_0,\dots,a_p)}$.

$$\partial \partial l_{(a_0,\dots,a_p)} = \sum_{i=0}^{p} (-1)^i \partial l_{(a_0,\dots,\widehat{a_i},\dots a_p)}$$

$$= \sum_{i=0}^{p} (-1)^i \sum_{j< i} (-1)^j l_{(a_0,\dots,\widehat{a_j},\dots \widehat{a_i},\dots a_p)} + \sum_{i=0}^{p} (-1)^i \sum_{j>i} (-1)^{j-1} l_{(a_0,\dots,\widehat{a_i},\dots \widehat{a_j},\dots a_p)}$$

$$= \sum_{i=0}^{p} \sum_{j< i} (-1)^{i+j} l_{(a_0,\dots,\widehat{a_j},\dots \widehat{a_i},\dots a_p)} - \sum_{i=0}^{p} \sum_{j>i} (-1)^{i+j} l_{(a_0,\dots,\widehat{a_i},\dots \widehat{a_j},\dots a_p)}.$$

$$(1.14)$$

Now fix $0 \le j_0 < i_0 \le p$. In the first summand of 1.14, the contribution of $i = i_0, j = j_0$ is

$$(-1)^{i_0+j_0} l_{(a_0,\dots,\widehat{a_{j_0}},\dots\widehat{a_{i_0}},\dots a_p)}. \tag{1.15}$$

On the other hand, in the second summand of 1.14, the contribution of $i=j_0, j=i_0$ is also

$$(-1)^{i_0+j_0} l_{\left(a_0,\dots,\widehat{a_{j_0}},\dots\widehat{a_{i_0}},\dots a_p\right)}. \tag{1.16}$$

These two contributions cancel each other. This way, one finds that the RHS of 1.14 vanishes. Hence,

$$\partial \partial l_{(a_0,\dots,a_p)} = 0. \tag{1.17}$$

In particular,

$$\partial \partial l_{(\varepsilon_0, \dots, \varepsilon_p)} = 0. \tag{1.18}$$

Now, $l_{(\varepsilon_0,\dots,\varepsilon_p)}:\Delta_p\to\Delta_p$ is continuous, so $l_{(\varepsilon_0,\dots,\varepsilon_p)}\in S_p\left(\Delta_p\right)$. Furthermore, it is the identity map as we have seen in 1.4. Since $T:\Delta_p\to X$ is continuous, we can form $T_\#:S_p\left(\Delta_p\right)\to S_p\left(X\right)$.

$$T_{\#}\left(l_{(\varepsilon_{0},\ldots,\varepsilon_{p})}\right) = T \circ l_{(\varepsilon_{0},\ldots,\varepsilon_{p})} = T \circ \mathrm{id}_{\Delta_{p}} = T. \tag{1.19}$$

Therefore, using the fact that $T_{\#}$ commutes with ∂ , we obtain

$$\partial \partial T = \partial \partial T_{\#} \left(l_{(\varepsilon_0, \dots, \varepsilon_p)} \right) = T_{\#} \left(\partial \partial l_{(\varepsilon_0, \dots, \varepsilon_p)} \right) = 0. \tag{1.20}$$

Hence,
$$\partial^2 T = 0$$
.

Definition 1.3 (Singular homology groups). Th family of groups $S_p(X)$ and homomorphisms $\partial_p: S_p(X) \to S_{p-1}(X)$ is called **singular chain complex** of X, and is denoted by S(X). We will be attaching the index p with the homomorphism while dealing with singular chain complex:

$$\cdots \longrightarrow S_{p+1}(X) \xrightarrow{\partial_{p+1}} S_p(X) \xrightarrow{\partial_p} S_{p-1}(X) \longrightarrow \cdots$$

The homology groups of this chain complex are called the **singular homology groups** of X, and are denoted by $H_p(X)$.

Definition 1.4 (Augmentation map). The chain complex $\mathcal{S}(X)$ is augmented by the homomorphism $\epsilon: S_0(X) \to \mathbb{Z}$ defined by setting $\epsilon(T) = 1$ for each singular 0-simplex $T: \Delta_0 \to X$. (A generic singular 0-chain is a \mathbb{Z} -linear combination of singular 0-simplices.)

It's immediate that if T is a singular 1-simplex, then $\epsilon(\partial T) = 0$. Indeed,

$$\epsilon\left(\partial T\right) = \epsilon\left(T \circ l_{(\widehat{\varepsilon_0},\varepsilon_1)}\right) - \epsilon\left(T \circ l_{(\varepsilon_0,\widehat{\varepsilon_1})}\right) = 0. \tag{1.21}$$

Definition 1.5 (Reduced homology groups). The homology groups of $\{S(X), \epsilon\}$ are called the **reduced singular homology groups** of X, and are denoted by $\widetilde{H}_p(X)$.

Now, given continuous map $f: X \to Y$ and $T: \Delta_0 \to X$ a singular 0-simplex on X, then $f_{\#}(T) = f \circ T: \Delta_0 \to Y$.

$$\Delta_0 \xrightarrow{T} X \xrightarrow{f} Y$$

Now, consider the augmented singular chain complexes $\{S(X), \epsilon^X\}$ and $\{S(Y), \epsilon^Y\}$. Noting continuous $T: \Delta_0 \to X$ and $f_{\#}(T): \Delta_0 \to Y$, one obtains $\epsilon^X(T) = 1$ and $\epsilon^Y(f_{\#}(T)) = 1$. In other words, the following diagram commutes

$$S_0(X) \xrightarrow{\epsilon^X} \mathbb{Z}$$

$$(f_{\#})_0 \downarrow \qquad \qquad \downarrow \text{id}$$

$$S_0(Y) \xrightarrow{\epsilon^Y} \mathbb{Z}$$

Therefore, $f_{\#}: S_p(X) \to S_p(Y)$ is an **augmentation preserving chain map** between $\{S(X), \epsilon^X\}$ and $\{S(Y), \epsilon^Y\}$. Thus, $f_{\#}$ induces a homomorphism f_* in both ordinary and reduced singular homology.

In Theorem 1.1, we saw that the chain map $f_{\#}$ commutes with the boundary operator ∂ . In other words, $(f_{\#})_p : S_p(X) \to S_p(Y)$ takes cycles to cycles and boundaries to boundaries. Suppose $c_p \in Z_p(X) = \operatorname{Ker} \partial_p^X$, so that $\partial_p^X c_p = 0$. Now,

$$\partial_p^Y \left((f_\#)_p c_p \right) = (f_\#)_{p-1} \left(\partial_p^X c_p \right) = 0.$$
 (1.22)

Hence, $(f_{\#})_p c_p \in Z_p(Y)$. On the other hand, let $b_p \in B_p(X) = \operatorname{Im} \partial_{p+1}^X$. Then $b_p = \partial_{p+1}^X d_{p+1}$ for some $d_{p+1} \in S_{p+1}(X)$. Then

$$(f_{\#})_{p} b_{p} = (f_{\#})_{p} \left(\partial_{p+1}^{X} d_{p+1}\right) = \partial_{p+1}^{Y} \left((f_{\#})_{p+1} d_{p+1}\right). \tag{1.23}$$

In other words, $(f_{\#})_p b_p \in B_p(Y)$. This reflects the fact that $(f_{\#})_p : S_p(X) \to S_p(Y)$ induces a homomorphism between the singular homology groups $(f_*)_p : H_p(X) \to H_p(Y)$. $(f_*)_p$ is given by

$$(f_*)_p (c_p + B_p(X)) = (f_\#)_p c_p + B_p(Y).$$
 (1.24)

If the reduced homology groups of X vanishes in all dimensions, we say that X is **acyclic** (in singular homology).

Theorem 1.2

If $i: X \to X$ is the identity, then so is $(i_*)_p: H_p\left(X\right) \to H_p\left(X\right)$. If $f: X \to Y$ and $g: Y \to Z$ are continuous, then $((g \circ f)_*)_p = (g_*)_p \circ (f_*)_p$.

Proof. It is sufficient to show that the equations hold at the chain level. We know from the definition of $(f_{\#})_p: S_p(X) \to S_p(Y)$ that it maps $T \in S_p(X)$ to $f \circ T \in S_p(Y)$. Since $i: X \to X$ is the identity map,

$$(i_{\#})_{p}(T) = i \circ T = T.$$
 (1.25)

So $(i_{\#})_{p}: S_{p}(X) \to S_{p}(X)$ is the identity homomorphism. As a result,

$$(i_*)_p (c_p + B_p(X)) = (i_\#)_p c_p + B_p(X) = c_p + B_p(X).$$
 (1.26)

Therefore, $(i_*)_p = \mathrm{id}_{H_p(X)}$.

Given continuous $f: X \to Y$ and $g: Y \to Z$, $\left((g \circ f)_{\#} \right)_p : S_p(X) \to S_p(Z)$ is defined by

$$\left((g \circ f)_{\#} \right)_{p} T = (g \circ f) \circ T = g \circ (f \circ T) = (g_{\#})_{p} \left((f_{\#})_{p} T \right). \tag{1.27}$$

Therefore, $\left((g \circ f)_{\#}\right)_p = \left(g_{\#}\right)_p \circ \left(f_{\#}\right)_p$. Now, at the homology level, for $c_p + B_p(X) \in H_p(X) = Z_p(X)/B_p(X)$

$$((g \circ f)_*)_p (c_p + B_p(X)) = \left((g \circ f)_\# \right)_p c_p + B_p(Z) = (g_\#)_p \left((f_\#)_p c_p \right) + B_p(Z). \tag{1.28}$$

Also,

$$(g_*)_p \circ (f_*)_p (c_p + B_p(X)) = (g_*)_p \left((f_\#)_p c_p + B_p(Y) \right) = (g_\#)_p \left((f_\#)_p c_p \right) + B_p(Z). \tag{1.29}$$

From 1.28 and 1.29, we can deduce that $((g \circ f)_*)_p = (g_*)_p \circ (f_*)_p$.

Corollary 1.3

If $h: X \to Y$ is a homeomorphims, then $(h_*)_p: H_p\left(X\right) \to H_p\left(Y\right)$ is an isomorphism.

Proof. Both $h: X \to Y$ and $h^{-1}: Y \to X$ are continuous, and $h \circ h^{-1} = \mathrm{id}_Y$. Therefore,

$$(h_*)_p \circ ((h^{-1})_*)_p = ((h \circ h^{-1})_*)_p = ((\mathrm{id}_Y)_*)_p = \mathrm{id}_{H_p(Y)}.$$
 (1.30)

Similarly, starting with $h^{-1} \circ h = \mathrm{id}_X$, we will get $((h^{-1})_*)_p \circ (h_*)_p = \mathrm{id}_{H_p(X)}$. Therefore, $((h^{-1})_*)_p$ is the inverse of $(h_*)_p$. In other words, $(h_*)_p$ is an invertible homomorphism, i.e. an isomorphism.

Theorem 1.4

Let X be a topological space. Then $H_0(X)$ is free abelian. If $\{X_{\alpha}\}$ is the collection of path components of X, and if T_{α} is a singular 0-simplex with image in X_{α} for each α , then the homology classes of the chains T_{α} form a basis for $H_0(X)$. The group $\widetilde{H}_0(X)$ is also free abelian; it vanishes if X is path connected. Otherwise, let α_0 be a fixed index, then the homology classes of the chains $T_{\alpha} - T_{\alpha_0}$ for $\alpha \neq \alpha_0$ form a basis for $\widetilde{H}_0(X)$.

Proof. Let $x_{\alpha} = T_{\alpha}(\Delta_0) \in X_{\alpha}$, with $T_{\alpha} : \Delta_0 \to X$ being a singular 0-simplex. Here, Δ_0 consists of the point $\varepsilon_0 = (1, 0, 0, \ldots) \in \mathbb{R}^{\infty}$. Also, let $T : \Delta_0 \to X$ be any singular 0-simplex such that $T(\Delta_0) \in X_{\alpha}$. Since X_{α} is path connected, there is a path connecting $T(\Delta_0)$ and $T_{\alpha}(\Delta_0)$. In other words, there is a singular 1-simplex $f : \Delta_1 \to X$ such that

$$f(1,0,0...) = T(\Delta_0) \text{ and } f(0,1,0...) = T_{\alpha}(\Delta_0).$$
 (1.31)

Then we have

$$\partial_1 f = f \circ l_{(\widehat{\varepsilon_0}, \varepsilon_1)} - f \circ l_{(\varepsilon_0, \widehat{\varepsilon_1})}. \tag{1.32}$$

Now,

$$f \circ l_{(\varepsilon_0,\widehat{\varepsilon_1})}(1,0,0,\ldots) = f(1,0,0,\ldots) = T(\Delta_0) = T(1,0,0,\ldots),$$
 (1.33)

$$f \circ l_{(\widehat{\epsilon_0}, \epsilon_1)}(1, 0, 0, \ldots) = f(0, 1, 0, \ldots) = T_{\alpha}(\Delta_0) = T_{\alpha}(1, 0, 0, \ldots).$$
 (1.34)

Therefore, $\partial_1 f = T_{\alpha} - T$.

An arbitrary singular 0-chain is a \mathbb{Z} -linear combination of singular 0-simplices. Let's take $c \in S_0(X)$. Then $c = \sum_{\beta} m_{\beta} T'_{\beta}$, with $m_{\beta} \in \mathbb{Z}$ and T'_{β} being singular 0-simplices. Each $T'_{\beta}(\Delta_0)$ belongs to some X_{α} , and hence homologous to T_{α} . Therefore, c is homologous to some \mathbb{Z} -linear combination $\sum_{\alpha} n_{\alpha} T_{\alpha}$ of the T_{α} 's. We will now show that no such nontrivial 0-chain $\sum_{\alpha} n_{\alpha} T_{\alpha}$ bounds.

Assume the contrary that $\sum_{\alpha} n_{\alpha} T_{\alpha} = \partial_1 d$ for some $d \in S_1(X)$. Now, the singular 1-chain d is a formal linear combination of singular 1-simplices with path connected image, i.e. the image lies in one of the path components X_{α} . Thus we can write $d = \sum_{\alpha} d_{\alpha}$, where d_{α} consists of the terms whose images are in X_{α} . Therefore,

$$\sum_{\alpha} n_{\alpha} T_{\alpha} = \partial_1 d = \sum_{\alpha} \partial_1 d_{\alpha}. \tag{1.35}$$

Hence, we get

$$n_{\alpha}T_{\alpha} = \partial_1 d_{\alpha} \tag{1.36}$$

for each α . Applying ϵ to both sides of 1.36, we get

$$\epsilon (n_{\alpha} T_{\alpha}) = \epsilon (\partial_1 d_{\alpha}) \implies n_{\alpha} = 0.$$
 (1.37)

Therefore, no non-trivial 0-chain $\sum_{\alpha} n_{\alpha} T_{\alpha}$ bounds. Since every 0-chain is automatically a 0-cycle, an element of $H_0(X)$ is homologous to a 0-chain of the form $\sum_{\alpha} n_{\alpha} T_{\alpha}$. Hence, the homology classes of the singular 0-simplices $\{T_{\alpha}\}$ form a basis for the free abelian group $H_0(X)$.

$$S_1(X) \xrightarrow{\partial_1} S_0(X) \xrightarrow{\epsilon} \mathbb{Z}$$

 $\widetilde{H}_0(X)$ is defined as $\widetilde{H}_0(X) = \operatorname{Ker} \epsilon / \operatorname{Im} \partial_1$. Given a singular 0-chain $T \in S_0(X)$, we've seen that T is homologous to a 0-chain of the form $T' = \sum_{\alpha} n_{\alpha} T_{\alpha}$; and T' bounds iff T' = 0, i.e. $n_{\alpha} = 0$ for every α . If further $T \in \operatorname{Ker} \epsilon$, then $\epsilon(T) = 0$. Since T and T' are homologous, $T = T' + \partial_1 d$ for some $d \in S_1(X)$. Therefore,

$$0 = \epsilon(T) = \epsilon(T') + \epsilon(\partial_1 d) = \epsilon\left(\sum_{\alpha} n_{\alpha} T_{\alpha}\right) = \sum_{\alpha} n_{\alpha}. \tag{1.38}$$

If X is path connected, there is only one component, and hence there is only one n_{α} involved. Thus $n_{\alpha}=0$ from 1.38. This gives us T'=0, leading to the fact that every $T\in \operatorname{Ker}\epsilon$ is homologous to 0, i.e. $T=0+\partial_1 d$ for some $d\in S_1(X)$. So $\operatorname{Ker}\epsilon=\operatorname{Im}\partial_1$. Therefore, $\widetilde{H}_0(X)=0$, when X is path connected.

Now, suppose X has more than one path components. Fix α_0 . Then from 1.38, we get

$$0 = \sum_{\alpha} n_{\alpha} = n_{\alpha_0} + \sum_{\alpha \neq \alpha_0} n_{\alpha} \implies n_{\alpha_0} = -\sum_{\alpha \neq \alpha_0} n_{\alpha}. \tag{1.39}$$

Then T' is

$$T' = \sum_{\alpha} n_{\alpha} T_{\alpha} = \sum_{\alpha \neq \alpha_{0}} n_{\alpha} T_{\alpha} + n_{\alpha_{0}} T_{\alpha_{0}} = \sum_{\alpha \neq \alpha_{0}} n_{\alpha} T_{\alpha} - \sum_{\alpha \neq \alpha_{0}} n_{\alpha} T_{\alpha_{0}} = \sum_{\alpha \neq \alpha_{0}} n_{\alpha} (T_{\alpha} - T_{\alpha_{0}}).$$
 (1.40)

1.40 suggests that T' is a linear combination of the singular 0-chains $\{T_{\alpha} - T_{\alpha_0}\}_{\alpha \neq \alpha_0}$. And T' bounds iff it is trivial, as shown earlier. Therefore, the homology classes of 0-chains $\{T_{\alpha} - T_{\alpha_0}\}_{\alpha \neq \alpha_0}$ form a basis for $\widetilde{H}_0(X)$.

Theorem 1.4 illustrates the following result:

$$H_{p}(X) = \begin{cases} \widetilde{H}_{p}(X) & \text{if } p > 0\\ \widetilde{H}_{0}(X) \oplus \mathbb{Z} & \text{if } p = 0 \end{cases}$$
 (1.41)

§1.2 Bracket Operation

Definition 1.6 (Star convex set). A set $X \subseteq \mathbb{E}^J$ is said to be star convex relative to the point $w \in X$, if for each $x \in X$, the line segment from x to w lies in X.

Definition 1.7 (Bracket operation). Suppose $X \in \mathbb{E}^J$ is star convex relative to w. We define bracket operation on singular chains of X. Let us first define it for singular p-simplices. Let $T: \Delta_p \to X$ be a singular p-simplex of X. Define a singular (p+1)-simplex

$$[T,w]:\Delta_{p+1}\to X$$

by letting [T, w] carry the line segment from x to ε_{p+1} , for $x \in \Delta_p$ (the collection of all such line segments as x varies in Δ_p constitutes Δ_{p+1}), linearly onto the line segment T(x) to w in X. In other words,

$$[T, w] (t\varepsilon_{p+1} + (1-t)x) = tw + (1-t)T(x),$$
 (1.42)

for $t \in [0,1]$. Now, extend the definition of bracket operation to arbitrary p-chains as follows: if $c = \sum n_i T_i$ is a singular p-chain of X with each T_i being a singular p-simplex, then we define

$$[c, w] = \sum n_i [T_i, w].$$
 (1.43)

 $[c,w]=\sum n_i\left[T_i,w\right].$ In other words, $[\cdot\,,w]:S_p\left(X\right)\to S_{p+1}\left(X\right),\,c\mapsto [c,w]$ is a homomorphism.

From the diagram above, it's immediate that the restriction of [T, w] to the face Δ_p of Δ_{p+1} is just the map T. Now, consider the case when T is the linear singular simplex $l_{(a_0,\ldots,a_p)}$ for $a_0,\ldots,a_p\in\mathbb{R}^\infty$. We want to calculate what $[l_{(a_0,...,a_p)}, w]$ is. Recall that $l_{(a_0,...,a_p)}: \Delta_p \to \mathbb{R}^{\infty}$ is defined as

$$l_{(a_0,\dots,a_p)}(x_0,\dots,x_p) = \sum_{i=0}^p x_i a_i.$$
(1.44)

Consider a point $(x_0, \ldots, x_p, x_{p+1}, 0, \ldots) \in \Delta_{p+1}$. We want to see where $[l_{(a_0, \ldots, a_p)}, w]$ takes this point

to. Since $(x_0,\ldots,x_p,x_{p+1},0,\ldots)\in\Delta_{p+1}$, each x_i is nonnegative with $\sum_{i=0}^{p+1}x_i=1$. Now,

$$\sum_{i=0}^{p} \frac{x_i}{1 - x_{p+1}} = 1, \tag{1.45}$$

so $\left(\frac{x_0}{1-x_{p+1}}, \frac{x_1}{1-x_{p+1}}, \dots, \frac{x_p}{1-x_{p+1}}, 0, \dots\right) \in \Delta_p$. Therefore,

$$(x_0, \dots, x_p, x_{p+1}, 0, \dots) = (1 - x_{p+1}) \left(\frac{x_0}{1 - x_{p+1}}, \frac{x_1}{1 - x_{p+1}}, \dots, \frac{x_p}{1 - x_{p+1}}, 0, \dots \right) + x_{p+1} \varepsilon_{p+1}. \quad (1.46)$$

By the definition of bracket operation,

$$\begin{bmatrix} l_{(a_0,\dots,a_p)}, w \end{bmatrix} (x_0,\dots,x_p, x_{p+1}, 0, \dots)
= (1-x_{p+1}) l_{(a_0,\dots,a_p)} \left(\frac{x_0}{1-x_{p+1}}, \frac{x_1}{1-x_{p+1}}, \dots, \frac{x_p}{1-x_{p+1}}, 0, \dots \right) + x_{p+1} w
= (1-x_{p+1}) \sum_{i=0}^{p} \frac{x_i}{1-x_{p+1}} a_i + x_{p+1} w
= \sum_{i=0}^{p} x_i a_i + x_{p+1} w.$$
(1.47)

Furthermore,

$$l_{(a_0,\dots,a_p,w)}(x_0,\dots,x_p,x_{p+1},0,\dots) = x_0a_0 + \dots + x_pa_p + x_{p+1}w = \sum_{i=0}^p x_ia_i + x_{p+1}w.$$
 (1.48)

Equating 1.47 and 1.48, we get

$$[l_{(a_0,\dots,a_p)}, w] = l_{(a_0,\dots,a_p,w)}. \tag{1.49}$$

Now we will show that $[T, w]: \Delta_{p+1} \to X$ is continuous. We have seen earlier that given $x \in \Delta_p$, a point in Δ_{p+1} is expressed as $t\varepsilon_{p+1} + (1-t)x$, with $0 \le t \le 1$. Hence, we are concerened with the following quotient map $\pi: \Delta_p \times [0,1] \to \Delta_{p+1}$ defined by

$$\pi(x,t) = t\varepsilon_{p+1} + (1-t)x. \tag{1.50}$$

If $x = (x_0, \ldots, x_p, 0, \ldots) \in \Delta_p$, then 1.50 takes the familiar form

$$\pi((x_0, \dots, x_p, 0, \dots), t) = ((1 - t) x_0, \dots, (1 - t) x_p, t, 0, \dots).$$
(1.51)

Observe that $\pi|_{\Delta_p \times [0,1)} : \Delta_p \times [0,1) \to \Delta_{p+1}$ is 1-1, and $\pi(\Delta_p \times \{1\}) = \{\varepsilon_{p+1}\}$, showing that π collapses $\Delta_p \times \{1\}$ to the (p+1)-th vertex ε_{p+1} of Δ_{p+1} . Now, the continuous map $f : \Delta_p \times [0,1] \to X$ defined by

$$f(x,t) = tw + (1-t)T(x)$$
 (1.52)

is constant on $\Delta_p \times \{1\}$. In fact, $f(\Delta_p \times \{1\}) = \{w\}$. Since π is 1-1 for other points, f is seen to be constant for $\pi^{-1}(y)$ with $y \in \Delta_{p+1} \setminus \{\varepsilon_{p+1}\}$. In other words, $f: \Delta_p \times [0,1] \to X$ is constant for each $\pi^{-1}(y)$ with $y \in \Delta_{p+1}$. Therefore, f induces a unique continuous map $\widetilde{f}: \Delta_{p+1} \to X$ such that the following diagram commutes

$$\Delta_p \times [0,1]$$

$$\downarrow \qquad \qquad f$$

$$\Delta_{p+1} \xrightarrow{\widehat{f}} X$$

This unique map \hat{f} is precisely [T, w], since

$$([T, w] \circ \pi)(x, t) = [T, w](t\varepsilon_{p+1} + (1 - t)x) = tw + (1 - t)T(x) = f(x, t).$$
(1.53)

Therefore, $\hat{f} = [T, w]$, and hence it is continuous. So [T, w] is indeed a singular (p+1)-simplex.

Lemma 1.5

Let X be a star convex set with respect to w; let c be a singular p-chain of X. Then

$$\partial \left[c, w\right] = \begin{cases} \left[\partial c, w\right] + (-1)^{p+1} c & \text{if } p > 0\\ \epsilon \left(c\right) T_w - c & \text{if } p = 0 \end{cases}, \tag{1.54}$$

where T_w is the singular 0-simplex mapping Δ_0 to w.

Proof. If T is a singular 0-simplex, [T, w] is a singular 1-simplex. Then

$$\partial [T, w] = [T, w] \circ l_{(\widehat{\varepsilon}_0, \varepsilon_1)} - [T, w] \circ l_{(\varepsilon_0, \widehat{\varepsilon}_1)}. \tag{1.55}$$

Now, recall $[T, w]: \Delta_1 \to X$ maps the line joining ε_1 to ε_0 to the line joining w to $T(\varepsilon_0)$. So

$$[T, w] (1 - t, t, 0, ...) = tw + (1 - t) T (\varepsilon_0).$$
 (1.56)

Now,

$$([T, w] \circ l_{(\widehat{\varepsilon}_0, \varepsilon_1)}) (1, 0, \dots) = [T, w] (0, 1, 0, \dots) = w = T_w (1, 0, \dots).$$
(1.57)

Therefore, $([T, w] \circ l_{(\widehat{\varepsilon}_0, \varepsilon_1)}) = T_w$.

$$([T, w] \circ l_{(\varepsilon_0, \widehat{\varepsilon}_1)}) (1, 0, \ldots) = [T, w] (1, 0, \ldots) = T (\varepsilon_0) = T (1, 0, \ldots),$$
(1.58)

so $[T, w] \circ l_{(\varepsilon_0, \widehat{\varepsilon}_1)} = T$. By 1.55, we get

$$\partial \left[T, w \right] = T_w - T. \tag{1.59}$$

Now, let $c = \sum_{i} n_i T_i$ be a singular 0-chain with T_i being singular 0-simplices. Then

$$\partial \left[\sum_{i} n_i T_i, w \right] = \sum_{i} n_i \partial \left[T_i, w \right] = \sum_{i} n_i \left(T_w - T_i \right) = \left(\sum_{i} n_i \right) T_w - \sum_{i} n_i T_i. \tag{1.60}$$

Now, applying the augmentation map to c, we get

$$\epsilon(c) = \epsilon \left(\sum_{i} n_i T_i\right) = \sum_{i} n_i \epsilon(T_i) = \sum_{i} n_i.$$
 (1.61)

Therefore, 1.60 gives us

$$\partial \left[c, w\right] = \epsilon \left(c\right) T_w - c. \tag{1.62}$$

Now we shall consider the case when T is a singular p-simplex, and we shall prove that $\partial [T, w] = [\partial T, w] + (-1)^{p+1} T$.

$$\partial [T, w] = \sum_{i=0}^{p+1} (-1)^{i} [T, w] \circ l_{(\varepsilon_{0}, \dots \widehat{\varepsilon}_{i}, \dots, \varepsilon_{p+1})}$$

$$= \sum_{i=0}^{p} (-1)^{i} [T, w] \circ l_{(\varepsilon_{0}, \dots \widehat{\varepsilon}_{i}, \dots, \varepsilon_{p+1})} + (-1)^{p+1} [T, w] \circ l_{(\varepsilon_{0}, \dots, \varepsilon_{p}, \widehat{\varepsilon}_{p+1})}.$$

$$(1.63)$$

 $l_{(\varepsilon_0,\dots,\varepsilon_p,\widehat{\varepsilon}_{p+1})}$ is the inclusion map of Δ_p into Δ_{p+1} . So $[T,w] \circ l_{(\varepsilon_0,\dots,\varepsilon_p,\widehat{\varepsilon}_{p+1})}$ is nothing but the restriction of [T,w] to Δ_p , which is the same as T. Now we want to show that

$$[T, w] \circ l_{(\varepsilon_0, \dots \widehat{\varepsilon}_i, \dots, \varepsilon_{p+1})} = [T \circ l_{(\varepsilon_0, \dots \widehat{\varepsilon}_i, \dots, \varepsilon_p)}, w].$$

$$(1.64)$$

Both sides of 1.64 are maps from Δ_p to X. Let $(x_0,\ldots,x_p,0,\ldots)\in\Delta_p$. Then

$$([T, w] \circ l_{(\varepsilon_0, \dots, \widehat{\varepsilon_i}, \dots, \varepsilon_{p+1})}) (x_0, \dots, x_p, 0, \dots) = [T, w] (x_0, \dots, x_{i-1}, 0, x_i, \dots, x_{p-1}, x_p, 0, \dots).$$
(1.65)

Now, $(x_0, \ldots, x_{i-1}, 0, x_i, \ldots, x_{p-1}, x_p, 0, \ldots)$ is a point in Δ_{p+1} . We can write it as

$$(x_0, \dots, x_{i-1}, 0, x_i, \dots, x_{p-1}, x_p, 0, \dots) = (1 - x_p) \left(\frac{x_0}{1 - x_p}, \dots, \frac{x_{i-1}}{1 - x_p}, 0, \frac{x_i}{1 - x_p}, \dots, \frac{x_{p-1}}{1 - x_p}, 0, \dots \right) + x_p \varepsilon_{p+1}.$$

$$(1.66)$$

Now, $\left(\frac{x_0}{1-x_p}, \dots, \frac{x_{i-1}}{1-x_p}, 0, \frac{x_i}{1-x_p}, \dots, \frac{x_{p-1}}{1-x_p}, 0, \dots\right)$ is a point in Δ_p since its nonzero components are all non-negative and they add to 1. Therefore,

$$[T, w] (x_0, \dots, x_{i-1}, 0, x_i, \dots, x_{p-1}, x_p, 0, \dots)$$

$$= (1 - x_p) T \left(\frac{x_0}{1 - x_p}, \dots, \frac{x_{i-1}}{1 - x_p}, 0, \frac{x_i}{1 - x_p}, \dots, \frac{x_{p-1}}{1 - x_p}, 0, \dots \right) + x_p w.$$
(1.67)

On the other hand, we can write $(x_0, \ldots, x_p, 0, \ldots)$ as

$$(x_0, \dots, x_p, 0, \dots) = (1 - x_p) \left(\frac{x_0}{1 - x_p}, \dots, \frac{x_{p-1}}{1 - x_p}, 0, \dots \right) + x_p \varepsilon_p,$$
 (1.68)

where $\left(\frac{x_0}{1-x_p}, \dots, \frac{x_{p-1}}{1-x_p}, 0, \dots\right) \in \Delta_{p-1}$. So

$$\left[T \circ l_{(\varepsilon_{0},\dots,\varepsilon_{i},\dots,\varepsilon_{p})}, w\right](x_{0},\dots,x_{p},0,\dots)
= x_{p}w + (1-x_{p})\left(T \circ l_{(\varepsilon_{0},\dots,\varepsilon_{i},\dots,\varepsilon_{p})}\right)\left(\frac{x_{0}}{1-x_{p}},\dots,\frac{x_{p-1}}{1-x_{p}},0,\dots\right)
= x_{p}w + (1-x_{p})T\left(\frac{x_{0}}{1-x_{p}},\dots,\frac{x_{i-1}}{1-x_{p}},0,\frac{x_{i}}{1-x_{p}},\dots,\frac{x_{p-1}}{1-x_{p}},0,\dots\right).$$
(1.69)

Combining 1.65, 1.67 and 1.69, we get that 1.64 indeed holds, i.e.

$$[T,w] \circ l_{(\varepsilon_0,\dots\widehat{\varepsilon}_i,\dots,\varepsilon_{p+1})} = \left[T \circ l_{(\varepsilon_0,\dots\widehat{\varepsilon}_i,\dots,\varepsilon_p)},w\right].$$

Now, from 1.63, we then get

$$\partial [T, w] = \sum_{i=0}^{p} (-1)^{i} \left[T \circ l_{(\varepsilon_{0}, \dots \widehat{\varepsilon}_{i}, \dots, \varepsilon_{p})}, w \right] + (-1)^{p+1} T$$

$$= \left[\sum_{i=0}^{p} (-1)^{i} T \circ l_{(\varepsilon_{0}, \dots \widehat{\varepsilon}_{i}, \dots, \varepsilon_{p})}, w \right] + (-1)^{p+1} T$$

$$= \left[\partial T, w \right] + (-1)^{p+1} T. \tag{1.70}$$

Now, if $c = \sum_{i} n_i T_i$ is a singular p-chain with T_i being singular 0-simplices, then

$$\partial [c, w] = \sum_{i} n_{i} \partial [T_{i}, w] = \sum_{i} n_{i} [\partial T_{i}, w] + (-1)^{p+1} \sum_{i} n_{i} T_{i} = [\partial c, w] + (-1)^{p+1} c.$$
 (1.71)

Theorem 1 6

Let $X \subseteq \mathbb{E}^J$ be star convex with respect to w. Then X is acyclic in singular homology.

Proof. To show that $\widetilde{H}_0(X) = 0$, let $c \in \operatorname{Ker} \epsilon$.

$$S_1(X) \xrightarrow{\partial_1} S_0(X) \xrightarrow{\epsilon} \mathbb{Z}$$

12

So $\epsilon(c) = 0$. Now, by Lemma 1.5,

$$\partial_1 \left[c, w \right] = \epsilon \left(c \right) T_w - c = -c. \tag{1.72}$$

Hence, $c \in \operatorname{Im} \partial_1$ leading to $\operatorname{Ker} \epsilon \subseteq \operatorname{Im} \partial_1$. We already know Hence, $\operatorname{Im} \partial_1 \subseteq \operatorname{Ker} \epsilon$. Therefore, $\widetilde{H}_0(X) = 0$.

Now we shall show that $H_p(X) = 0$ for p > 0. Let $z \in \text{Ker } \partial_p$. Then $\partial_p z = 0$. By Lemma 1.5 again,

$$\partial_{p+1}[z,w] = [\partial_p z, w] + (-1)^{p+1} z = (-1)^{p+1} z.$$
(1.73)

Hence, $z \in \text{Im } \partial_{p+1}$. Therefore, $H_p\left(X\right) = 0$. In other words, $\widetilde{H}_p\left(X\right) = 0$ for all p, i.e. X is acyclic.

Corollary 1.7

Any simplex is acyclic in singular homology.