TD du 13 novembre 2018

Exercice 1. Pour f et g dans $F_N(\mathbb{Z}; \mathbb{C})$, on définit $f \star g \in F_N(\mathbb{Z}; \mathbb{C})$ en posant $E_m(\ell) = exp(2\pi i m \ell/N)$ pour $0 \leq m < N$ et

$$f \star g = \sum_{0 \le k < N} \widehat{f}(k)\widehat{g}(k)E_k.$$

- 1) Montrer que $\widehat{f \star g} = \widehat{f}\widehat{g}$.
- 2) Vérifier que

EISE

$$(f \star g)(m) = \frac{1}{N} \sum_{0 \le \ell \le N} f(m - \ell)g(\ell).$$

3) Montrer que $f \star E_k = \hat{f}(k) E_k$.

Exercice 2. –Soit $\delta: \mathbb{Z} \to \mathbb{C}$ la fonction définie par

$$\delta(k) = \begin{cases} 1, & \text{si } k = 0, \\ 0, & \text{si } 0 < k < N, \\ \delta(k + pN), & \forall p \in \mathbb{Z}. \end{cases}$$

On note 1 la fonction constante de valeurs 1 sur \mathbb{Z} .

- 1) Calculer $\hat{\delta}$ et $\hat{1}$ en fonction de N, δ et 1.
- 2) Calculer $\tau_m \delta(k)$ pour tout m et $k \in \mathbb{Z}$, puis $\widehat{\tau_m \delta}$.
- 3) Montrer que pour $f: \mathbb{Z} \to \mathbb{C}$ de période N, on a

$$f = \sum_{0 \le k < N} f(m) \tau_m \delta.$$

- 4) En déduire une nouvelle démonstration de la formule de synthèse de Fourier.
- 5) Calculer $(\tau_m \delta) \star f$.

Exercice 3.

- 1) Décomposer en série de Fourier la fonction paire de période 2π définie par $f(t) = \pi t$ pour $0 \le t \le \pi$. Étudier sa convergence.
- 2) Décomposer en série de Fourier la fonction définie sur \mathbb{R} par $g(t) = |\sin t|$ et étudier sa convergence.
- 2) Décomposer en série de Fourier la fonction de période de 2π définie par $h(t) = \sin t$ pour $0 \le t \le \pi$ et h(t) = 0 pour $\pi \le t \le 2\pi$ et étudier sa convergence.

Exercice 4. -

- 1) Décomposer en série de Fourier la fonction B_1 périodique de période 2π telle que $B_1(x) = \pi x$ pour $0 \le x < 2\pi$. Étudier sa convergence.
- 2) Montrer qu'il existe une unique suite de fonction $(B_m)_{m>1}$ C^1 par morceaux et continue telle que $B'_{m+1} = B_m$ pour tout $m \ge 0$. Calculer les coefficients de Fourier de B_m . Les fonctions B_m sont-elles polynomiales?

Exercice 5. – Soient f et g deux fonctions périodiques et continues. Montrer qu'il existe une unique fonction continue h telle que

$$\forall n \in \mathbb{Z}, \quad c_n(h) = c_n(f)c_n(g).$$