VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING

COLLEGE (AUTONOMOUS)

DEPARTMENT OF MATHEMATICS

QUESTION BANK - VR20

Branch: IT

CODE: 20BS3101B

SUB: CANM

1. Find by Newton's method the root of the following equations correct to three decimal places

(a)
$$cos x = xe^x$$
 (b) $x^2 + 4sin x = 0$ (c) $3x = cos x + 1$

(d)
$$x \log_{10} x - 1.2 = 0$$
 (e) $\log x = \cos x$

2. Apply Lagrange's interpolation formula to find the value of y for x=10 given

X	5	6	9	11
y=f(x)	12	13	14	16

3. Apply Lagrange's formula to find the form of f(x) given

$$(0,-18), (1,0), (3,0), (5,248), (9,13104)$$

 Δ . Find the form of f(x) using Newton's divided difference formula

X	0	2	3	6
f(x)	648	704	729	792

5. The population of a certain town is shown in the following table. Estimate the population in 1991

Year	1961	1971	1981	1991	2001
Population in	19.96	39.65	58.81	77.21	94.61
thousands	-,,,,		0 0 0 0	, , ,	, 100 =

6. Find the first and second derivatives at x=1.1 from the following table

X	1.0	1.2	1.4	1.6	1.8	2.0
f(x)	0	0.128	0.544	1.296	2.432	

- 7. Find an approximate value of $log_e 5$ applying Simpson's rule $\int_0^5 \frac{dx}{4x+5}$ dividing the range into 10 equal parts.
- 8. Calculate the value of $\int_0^{\frac{\pi}{2}} sinx \, dx$ using 11 ordinates by applying (a) Trapezoidal rule (b)y simpson's 1/3 rd rule.
- 9. Find an approximate value of y (a) when x=0.2 from $\frac{dy}{dx}$ = 1 2xy y(0) = 0
 - (b) When x=1.1, 1.2 from $\frac{dy}{dx} = \log(xy)$ y(1) = 2
 - 10. Solve by Modified Euler's method $\frac{dy}{dx} = y + e^x$, y(0) = 0 at x = 0.2 in steps of 0.1
- 11. Solve by R-K Method of fourth order for y at x=1.2 from $\frac{dy}{dx} = \frac{2xy + e^x}{x^2}$