ANALIZA III - LISTA 10

1*. Pokaż, że dla $\omega \in \Gamma^k(\mathbb{R}^d), \eta \in \Gamma^m(\mathbb{R}^d)$ mamy

$$d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta.$$

Wsk. Zrobić najpierw dla ω będącego funkcją, potem dla $\omega = dx^{i_1} \wedge ... \wedge dx^{i_k}$ i $\eta = dx^{j_1} \wedge ... \wedge dx^{j_m}$, kolejno dla $\omega = f dx^{i_1} \wedge ... \wedge dx^{i_k}$ i $\eta = dx^{j_1} \wedge ... \wedge dx^{j_m}$. Można zaczać od k=1=m i zobaczyć, co się dzieje.

Uwaga: tu wystarczą formy klasy C^1 .

2. Pokaż, że dla $\omega \in \Gamma^k(\mathbb{R}^d)$ mamy $d(d\omega) = 0$ czyli $d^2 = 0$. Wsk. Zrobić najpierw dla ω będącego funkcją, potem dla $\omega = dx^{i_1} \wedge ... \wedge dx^{i_k}$, w końcu dla potem dla $\omega = g \ dx^{i_1} \wedge ... \wedge dx^{i_k}, \ g \in C^{\infty}(\mathbb{R}^d).$

Uwaga: tu wystarczą formy klasy C^2 .

3*. Pokaż, że dla $\omega \in \Gamma^k(\mathbb{R}^d)$ i $f:\mathbb{R}^d \mapsto \mathbb{R}^m$ mamy

$$(0.1) f^*(d\omega) = d(f^*(\omega))$$

Wsk. Zacząć od 0-formy czyli funkcji, a potem indukcyjnie zwiększać rząd formy biorac $\omega = \omega_1 \wedge dx^i$, gdzie dla ω_1 juz mamy (0.1).

- 4. Pokaż, że
 - $f^*(\omega_1 + \omega_2) = f^*(\omega_1) + f^*(\omega_2)$ $f^*(g \cdot \omega) = (g \circ f) \cdot f^*(\omega)$
- 5. Pokaż, że $f^*(\omega \wedge \eta) = f^*(\omega) \wedge f^*(\eta)$
- 6. W \mathbb{R}^2 piszemy dx, dy zamiast dx^1, dx^2 , w \mathbb{R} piszemy dt zamiast dx^1 . Niech γ : $[a,b]\mapsto \mathbb{R}^2$ będzie krzywą. Policz $\gamma^*(dx), \gamma^*(dy)$. Zastosuj to do $\gamma(t)=(t,\varphi(t)), \gamma(t)=(t,\varphi(t))$ (c,t) i zobacz co wyjdzie. Policz $\gamma^*(Pdx+Qdy)$, gdzie P,Q sa funkcjami. Zauważ, że wg naszej wczesniejszej notacji

$$\int_{\gamma} Pdx + Qdy = \int_{[a,b]} \gamma^* (Pdx + Qdy).$$

- 7. Niech $f: \mathbb{R}^2 \to \mathbb{R}^2$ będzie klasy C^1 . Policz $f^*(dx \wedge dy)$.
- 8. Dla 2-formy $g dx \wedge dy$ piszemy

$$\int_D g \ dx \wedge dy := \int_1 g(x, y) \ dx dy,$$

gdzie Ijest odcinkiem, a Dobszarem na płaszczyźnie. Pokaż, że twierdzenie Greena mówi

$$\int_{\partial D} \omega = \int_{D} d\omega,$$

gdzie $\omega = Pdx + Qdy$.

9*. Odwzorowanie $T(r,\theta) = (r\cos\theta, r\sin\theta) = (x,y)$ przeprowadza $(0,\infty) \times [0,2\pi) \mapsto \mathbb{R}^2 \setminus \{(0,0)\}$ wzajemnie jednoznacznie. Wyraź wzorami r,θ za pomocą x,y tak by otrzymać funkcje klasy C^1 . To jakby bezpośredni dowód o tym, że można odwrócić T w sposób C^1 . Nie da się tego jednak zrobić jednym wzorem na całym $\mathbb{R}^2 \setminus \{(0,0)\}$, trzeba rozbić $\mathbb{R}^2 \setminus \{(0,0)\}$ na podzbiory, gdzie będą różne wzory. Na ile podzbiorów musimy rozbić $\mathbb{R}^2 \setminus \{(0,0)\}$ jeśli dodatkowo będziemy wymagali by były one otwarte? 10^* . Uzasadnić rysunkowo, ale porządnie ostatnią równość w przykładzie 2.30.