Objetivo de la guía: Determinación de la aceleración de la gravedad utilizando un plano inclinado.

Esta práctica se realizará en los laboratorios del Edificio Tecnológico. Esté atento a las normas de seguridad y a las indicaciones. Ante cualquier indicio de riesgo o accidente se solicita informar inmediatamente al docente a cargo o llamar a los internos: Enfermería:**5; Seguridad **1; Técnicos de Laboratorio **4

TRABAJO PRÁCTICO DE LABORATORIO 4 MEDICION DE LA ACELERACIÓN DE LA GRAVEDAD UTILIZANDO UN PLANO INCLINADO

Resumen:

El valor del módulo de la aceleración de la gravedad puede determinarse experimentalmente de diferentes maneras. En este trabajo se trata de medir el valor de la aceleración de la gravedad a partir de la medición del tiempo que le toma a un cuerpo vinculado caer por un plano inclinado al recorrer una distancia dada sobre el plano.

1-INTRODUCCIÓN

Se coloca un carrito (**masa 1**) sobre un plano inclinado de ángulo de inclinación α . El carrito está unido a un segundo cuerpo (**masa 2**) el cual cuelga como se muestra en la figura 1. Si se supone que la rampa se halla libre de rozamiento y que masa 1 > masa 2, el sistema comenzará a moverse en se sentido horario por acción de la gravedad.

De las ecuaciones que describen la cinemática de un movimiento rectilíneo con aceleración constante, y suponiendo que el sistema estaba inicialmente en reposo, el desplazamiento del cuerpo 1 sobre el plano, puede expresarse como:

$$x(t) = \frac{1}{2}at^2$$
 (1)

Fig. 1: Diagrama del esquema experimental.

Siendo "a" la aceleración constante des sistema. (Realizar el diagrama de cuerpo libre de ambos cuerpos).

La ecuación (1) establece una relación lineal entre t^2 y x(t), a partir de la cual, en forma gráfica, se puede hallar el valor de "a" a partir de la pendiente.

Para este sistema la aceleración es (deducirlo):

$$a = \frac{g(m_1 sen\alpha - m_2)}{m_1 + m_2}$$
 (2)

Observar que si m2 es cero (desliza sólo m1 sobre el plano), el valor de g es:

$$a = g \operatorname{sen} \alpha (3)$$

como era de esperar.

Para el sistema dado, el valor de la gravedad se puede determinar, entonces, como:

$$g = \frac{a(m_1 + m_2)}{(m_1 sen\alpha - m_2)} (4)$$

Y se deberá propagar el error para poder expresar su valor como:

$$g = g_0 \pm \epsilon_g$$
.

2. PARTE EXPERIMENTAL

Se trata de reproducir experimentalmente el esquema de la figura 1: Para ello:

- 1. Medir el ángulo del plano inclinado y pesar las masas.
- 2. Colocar los fotogates sobre el plano inclinado y separadas una distancia D conocida ($\mathbf{D_1}$). Medir $\mathbf{D_1} = \mathbf{D_{10}} \pm \epsilon_{\mathbf{D_1}}$.
- 3. Colocar al carrito (masa 1) tan cerca del primer fotogate como sea posible.
- 4. Medir el tiempo que demora la masa 1 en recorrer la distancia D conocida y expresarlo en la forma $\mathbf{t_1} = \mathbf{t_{10}} \pm \boldsymbol{\epsilon}_{\mathbf{t}}$.
- 5. Calcular el valor del tiempo al cuadrado con su error (propagar).
- 6. Repetir 5 veces la medición de D₁ y completar la tabla 1.
- 7. Hallar los valores promedios de $D_1 y (t_1)^2$.
- 8. Repetir los puntos 1-8 para 9 distancias diferentes a la utilizada en el punto 2.
- 9. A partir de los valores promedios obtenidos, graficar los puntos de la forma (D_i , t^2_i , con i = 1 a 10) y obtener la <u>mejor</u> recta que aproxime los mismos (cuadrados mínimos).
- 10. A partir del valor de la pendiente de la mejor recta, determine el valor de g a partir de la ecuación (4).

.

3-. RESULTADOS

Completar las tablas 1 a 10 con los resultados obtenidos.

No. Medición	D ₁ (m)	&D1 (m)	<i>t</i> ₁ (s)	$(t^2)_1$ (s2)	$\varepsilon(t^2)$
1					
2					
3					
4					
5					
promedios					

Tabla 1: mediciones realizadas para la distancia D₁.

$$< D_1> = < D_{10}> \pm \epsilon_{D1}$$
.

No. Medición	D ₂ (m)	€D2 (m)	$t_2(s)$	$(t^2)_2$ (s2)	$\varepsilon(t^2)_2$
1					
2					
3					
4					
5					
promedios					

Tabla 2: mediciones realizadas para la distancia D₂.

$$<$$
D₂ $> = <$ **D**₂₀ $> \pm \epsilon$ _{D2}.

No. Medición	D ₃ (m)	€D3 (m)	t ₃ (s)	$(t^2)_3$ (s2)	$\varepsilon(t^2)_3$
1					
2					
3					
4					
5					
promedios					

Tabla 3: mediciones realizadas para la distancia D₃.

$$<$$
D₃ $> = <$ **D**₃₀ $> \pm \epsilon$ _D₃.

No. Medición	D ₄ (m)	€D4 (m)	t ₄ (s)	$(t^2)_4$ (s2)	$\varepsilon(t^2)_4$
1					
2					
3					
4					
5					
promedios					

Tabla 4: mediciones realizadas para la distancia D₄.

$$< D_4> = < D_{40}> \pm \epsilon_{D4}$$
.

No. Medición	D ₅ (m)	€D5 (m)	t (s)	t ² (s2)	$\varepsilon(t^2)$
1					
2					
3					
4					
5					
promedios					

Tabla 5: mediciones realizadas para la distancia D₅.

$$<$$
D₅ $> = <$ **D**₅₀ $> \pm \epsilon$ _D5.

No. Medición	D ₆ (m)	€D6 (m)	t (s)	t ² (s2)	$\varepsilon(t^2)$
1					
2					
3					
4					
5					
promedios					

Tabla 6: mediciones realizadas para la distancia D₆.

$$< D_6 > = < D_{60} > \pm \epsilon_{D6}$$
.

No. Medición	D ₇ (m)	€D7 (m)	t (s)	t ² (s2)	$\varepsilon(t^2)$
1					
2					
3					
4					
5					
promedios					

Tabla 7: mediciones realizadas para la distancia D₇.

$$<$$
D₇ $> = <$ **D**₇₀ $> \pm \epsilon$ _D7.

No. Medición	D ₈ (m)	€D8 (m)	t (s)	t ² (s2)	$\varepsilon(t^2)$
1					
2					
3					
4					
5					
promedios					

Tabla 8: mediciones realizadas para la distancia D₈.

$$< D_8 > = < D_{80} > \pm \epsilon_{D8}$$
.

No. Medición	D ₉ (m)	€ <i>D9</i> (<i>m</i>)	t (s)	t ² (s2)	$\varepsilon(t^2)$
1					
2					
3					
4					
5					
promedios					

Tabla 9: mediciones realizadas para la distancia D₉.

$$<$$
D9> = $<$ **D**90> $\pm \epsilon$ D9.

No. Medición	D ₁₀ (m)	E D10 (m)	t (s)	t ² (s2)	$\varepsilon(t^2)$
1					
2					
3					
4					
5					
promedios					

Tabla 10: mediciones realizadas para la distancia D_{10} .

$$< D_{10}> = < D_{10 0}> \pm \epsilon_{D10}$$
.

Fig. 2 Gráfico de $\langle D \rangle$ vs. (t^2) de las diez mediciones

Luego el valor del módulo de g, con su error, se puede determinar a partir de la ecuación (4):

$$g = g_0 \pm \epsilon g$$
.

4. DISCUSION Y CONCLUSIONES

- 1) El valor de g ¿depende de las masas que utilicemos en el experimento? Justificar.
- 2) Al carrito se lo ubicó muy próximo al primer fotogate ¿Por qué?

- 3) Detalle todas las aproximaciones que haya realizado en su modelo teórico. ¿Qué ocurre si el plano tiene rozamiento?
- 4) ¿Por qué se elige $v_0 = 0$?
- 5) Calcular la tensión en la cuerda según el modelo usado.

5. BIBLIOGRAFÍA

Redactar un informe con lo realizado.