Tutorial 6

COMP 355: Introduction to Theoretical Computer Science

Mohammad Reza Davari

Concordia University

Outline

Theorem

2 Application

Contents of the section

Theorem

2 Application

Definition

If L is a regular language, then there is a number p (the pumping length) where, if s is any string in L of length at least p, then s maybe divided into 3 pieces, s = xyz, satisfying the following conditions:

- for each $i \ge 0$, $xy^iz \in L$
- **4** |y| > 0

Mohammad Reza Davari

Contents of the section

Theorem

2 Application

Question 1

Prove $L = \{ww | w \in \Sigma^*\}$ is not regular.

6 / 10

Question 2

Is the language $L = \{w_1w_2|w_1, w_2 \in \{a, b\}^*, |w_1| = |w_2|\}$ regular?

Question 3

Prove $L = \{0^i 1^j | i > j \ge 0\}$ is not regular.

Question 4

Consider the language $L = \left\{ a^i b^j c^k | i, j, k \geq 0 \text{ and if } i = 1 \text{ then } j = k \right\}$

- Show that L is not regular.
- ② Show that L acts like a regular language in the pumping lemmma. In other words, give a pumping length p, and demonstrated that L satisfies the 3 conditions of the pumping lemma for this value of p.
- 3 Explain why part (1) and (2) do not contradict the pumping lemma.

Mohammad Reza Davari 9 / 10

Question 5

Prove $L = \left\{ 1^{n^2} | n \ge 0 \right\}$ is not regular.

