Emergent Communication - First steps

Maxime Toquebiau

December 2nd, 2021

Cooperative Push Environment

Fixing the environment:

- Bigger agents and object
- More steps (100 steps maximum)
- Reward:
 - obj: -1 x squared distance between object and landmark
 - dist: -1 x average distance between agents and object
 - + penalty for collision between agents

Closing the environment:

- Walls on each side of the frame
- Agents can't go beyond [-1, 1]²
 - \Rightarrow Should be easier to solve

Model training

- MADDPG
- CMA-ES
- QMIX

Opened environment:

Fully observable

MADDPG

Best run: 2 agents, lr=0.005, discrete actions Near optimal mean episode reward = -60

Opened environment:

Fully observable, 2 agents

• CMA-ES (160 parameters, population = 19)

Opened environment:

Fully observable, 2 agents

QMIX

Closed environment:

Fully observable, 2 agents, no collision penalty

MADDPG

Best run so far: lr=0.005, continuous actions, train every 2500 steps

Closed environment:

Fully observable, 2 agents

CMA-ES

Closed environment:

Fully observable, 2 agents

QMIX

Future works

Fixing issues:

- Fix CMA-ES
- Fix QMIX
- Find better reward function

Testing harder versions of the environment:

- Partial observability
- Heavier object
- More agents

Future works

ÉCOLE D'INGÉNIEURS ENGINEERING SCHOOL

Integrating communication

- How to learn emergent communication well ?
 - Sukhbaatar et al., Learning Multiagent Communication with Backpropagation, 2016
 - Das et al., TarMAC: Targeted Multi-Agent Communication, 2019
 - Learning to Ground Multi-Agent Communication with Autoencoders, 2021
- Use transformers ?
 - Parisotto et al., Stabilizing Transformers for Reinforcement Learning, 2020
 - Karch et al., Grounding Spatio-Temporal Language with Transformers, 2021
- Path to discrete communication
 - Language modeling
 - Language-Augmented Reinforcement Learning

Thank you!