

Deep Learning

Mohammad Reza Mohammadi 2021

Off-policy vs On-policy

- Off-policy: using a different policy for acting and updating
- On-policy: using the same policy for acting and updating

```
Algorithm 14: Sarsamax (Q-Learning)
Input: policy \pi, positive integer num_episodes, small positive fraction \alpha, GLIE \{\epsilon_i\}
Output: value function Q (\approx q_{\pi} \text{ if } num\_episodes \text{ is large enough})
Initialize Q arbitrarily (e.g., Q(s, a) = 0 for all s \in \mathcal{S} and a \in \mathcal{A}(s), and Q(terminal-state, \cdot) = 0)
 for i \leftarrow 1 to num\_episodes do
     \epsilon \leftarrow \epsilon_i
     Observe S_0
     t \leftarrow 0
     repeat
         Choose action A_t using policy derived from Q (e.g., \epsilon-greedy)
         Take action A_t and observe R_{t+1}, S_{t+1}
         Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t))
         t \leftarrow t + 1
     until S_t is terminal;
end
return Q
```

```
Algorithm 13: Sarsa
Input: policy \pi, positive integer num\_episodes, small positive fraction \alpha, GLIE \{\epsilon_i\}
Output: value function Q (\approx q_{\pi} \text{ if } num\_episodes \text{ is large enough})
Initialize Q arbitrarily (e.g., Q(s, a) = 0 for all s \in \mathcal{S} and a \in \mathcal{A}(s), and Q(terminal-state, \cdot) = 0)
for i \leftarrow 1 to num\_episodes do
     \epsilon \leftarrow \epsilon_i
     Observe S_0
     Choose action A_0 using policy derived from Q (e.g., \epsilon-greedy)
     t \leftarrow 0
     repeat
         Take action A_t and observe R_{t+1}, S_{t+1}
         Choose action A_{t+1} using policy derived from Q (e.g., \epsilon-greedy)
         Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))
         t \leftarrow t + 1
     until S_t is terminal:
 return Q
```

- Always start at the same starting point
- The goal is to eat the big pile of cheese at the bottom right-hand corner, and avoid the poison
- The episode ends if we eat the poison, eat the big pile of cheese or if we spent more than 5 steps
- The learning rate is 0.1
- The gamma (discount rate) is 0.99

- The reward function goes like this:
 - 0: Going to a state with no cheese in it
 - +1: Going to a state with a small cheese in it
 - +10: Going to the state with the big pile of cheese
 - -10: Going to the state with the poison and thus die

• Initialize the Q-Table

```
Algorithm 14: Sarsamax (Q-Learning)
Input: policy \pi, positive integer num\_episodes, small positive fraction \alpha, GLIE \{\epsilon_i\}
Output: value function Q (\approx q_{\pi} \text{ if } num\_episodes \text{ is large enough})
Initialize Q arbitrarily (e.g., Q(s, a) = 0 for all s \in \mathcal{S} and a \in \mathcal{A}(s), and Q(terminal-state, \cdot) = 0)
for i \leftarrow 1 to num\_episodes do
    \epsilon \leftarrow \epsilon_i
     Observe S_0
    t \leftarrow 0
     repeat
         Choose action A_t using policy derived from Q (e.g., \epsilon-greedy)
         Take action A_t and observe R_{t+1}, S_{t+1}
         Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t))
         t \leftarrow t + 1
     until S_t is terminal;
 end
return Q
```

	←	→	1	1
9.8	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0

- Choose action
 - Because epsilon is big = 1.0, I take a random action,
 in this case I go right

```
Algorithm 14: Sarsamax (Q-Learning)
Input: policy \pi, positive integer num_episodes, small positive fraction \alpha, GLIE \{\epsilon_i\}
Output: value function Q (\approx q_{\pi} \text{ if } num\_episodes \text{ is large enough})
Initialize Q arbitrarily (e.g., Q(s, a) = 0 for all s \in \mathcal{S} and a \in \mathcal{A}(s), and Q(terminal-state, \cdot) = 0)
for i \leftarrow 1 to num\_episodes do
    \epsilon \leftarrow \epsilon_i
     Observe S_0
     t \leftarrow 0
     repeat
         Choose action A_t using policy derived from Q (e.g., \epsilon-greedy)
         Take action A_t and observe R_{t+1}, S_{t+1}
         Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t))
         t \leftarrow t + 1
     until S_t is terminal;
 end
return Q
```


Perform action

```
Algorithm 14: Sarsamax (Q-Learning)
Input: policy \pi, positive integer num_episodes, small positive fraction \alpha, GLIE \{\epsilon_i\}
Output: value function Q (\approx q_{\pi} \text{ if } num\_episodes \text{ is large enough})
Initialize Q arbitrarily (e.g., Q(s, a) = 0 for all s \in \mathcal{S} and a \in \mathcal{A}(s), and Q(terminal-state, \cdot) = 0)
for i \leftarrow 1 to num\_episodes do
    \epsilon \leftarrow \epsilon_i
     Observe S_0
    t \leftarrow 0
     repeat
         Choose action A_t using policy derived from Q (e.g., \epsilon-greedy)
         Take action A_t and observe R_{t+1}, S_{t+1}
         Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t))
         t \leftarrow t + 1
    until S_t is terminal;
 end
return Q
```


- Update $Q(S_t, A_t)$
 - $Q(State1, Right) = 0 + 0.1 \times [1 + 0.99 \times 0 0] = 0.1$

Algorithm 14: Sarsamax (Q-Learning)				
Input: policy π , positive integer $num_episodes$, small positive fraction α , GLIE $\{\epsilon_i\}$				
Output: value function $Q \ (\approx q_{\pi} \text{ if } num_episodes \text{ is large enough})$				
Initialize Q arbitrarily (e.g., $Q(s, a) = 0$ for all $s \in \mathcal{S}$ and $a \in \mathcal{A}(s)$, and $Q(terminal-state, \cdot) = 0$)				
for $i \leftarrow 1$ to $num_episodes$ do				
$\epsilon \leftarrow \epsilon_i$				
Observe S_0				
$t \leftarrow 0$				
repeat				
Choose action A_t using policy derived from Q (e.g., ϵ -greedy)				
Take action A_t and observe R_{t+1}, S_{t+1}				
$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t))$				
$t \leftarrow t + 1$				
until S_t is terminal;				
end				
$\operatorname{return} Q$				

	←	→	1	1
5-8	0	0.1	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0

- Choose action
 - I take again a random action, since epsilon is really big 0.99

Perform action

```
Algorithm 14: Sarsamax (Q-Learning)
Input: policy \pi, positive integer num_episodes, small positive fraction \alpha, GLIE \{\epsilon_i\}
Output: value function Q (\approx q_{\pi} \text{ if } num\_episodes \text{ is large enough})
Initialize Q arbitrarily (e.g., Q(s, a) = 0 for all s \in \mathcal{S} and a \in \mathcal{A}(s), and Q(terminal-state, \cdot) = 0)
for i \leftarrow 1 to num\_episodes do
    \epsilon \leftarrow \epsilon_i
     Observe S_0
    t \leftarrow 0
     repeat
         Choose action A_t using policy derived from Q (e.g., \epsilon-greedy)
         Take action A_t and observe R_{t+1}, S_{t+1}
         Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t))
         t \leftarrow t + 1
    until S_t is terminal;
 end
return Q
```


• Update $Q(S_t, A_t)$

-
$$Q(\text{State2, Down}) = 0 + 0.1 \times [-10 + 0.99 \times 0 - 0]$$

= -1

```
Algorithm 14: Sarsamax (Q-Learning)
Input: policy \pi, positive integer num\_episodes, small positive fraction \alpha, GLIE \{\epsilon_i\}
Output: value function Q (\approx q_{\pi} \text{ if } num\_episodes \text{ is large enough})
Initialize Q arbitrarily (e.g., Q(s, a) = 0 for all s \in \mathcal{S} and a \in \mathcal{A}(s), and Q(terminal-state, \cdot) = 0)
for i \leftarrow 1 to num\_episodes do
     \epsilon \leftarrow \epsilon_i
     Observe S_0
     t \leftarrow 0
     repeat
         Choose action A_t using policy derived from Q (e.g., \epsilon-greedy)
         Take action A_t and observe R_{t+1}, S_{t+1}
         Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t))
         t \leftarrow t + 1
     until S_t is terminal;
 end
return Q
```

	←	→	1	1
9.2	0	0.1	0	0
	0	0	0	
	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0

Q-Learning - Taxi agent

• The goal here is to train a taxi agent to navigate in this city to transport its passengers from point 1 to point 2

- Discrete state space (500):
 - 25 squares (5×5 grid world)
 - 5 different locations for the passenger
 - R, G, B, Y, or in the taxi
 - 4 destinations
 - R, G, B, Y

Q-Learning - Taxi agent

- Your task is to pick up the passenger at one location and drop him off in its desired location (selected randomly)
 - Get the passenger
 - Deliver him to the destination
- Discrete action space:
 - 4 directions (N, S, W, E)
 - Pickup
 - Put down

Q-Learning - Taxi agent

- The reward system:
 - -1 for each time step
 - +20 for successfully deliver the passenger
 - -10 if put down or pickup outside of the passenger or destination location

Deep Q-Learning

- Producing and updating a Q-table can become ineffective in big state space environments
- Instead of using a Q-table, we'll implement a Neural Network that takes a state and approximates Q-values for each action based on that state

Deep Q-Learning

- We'll create an agent that learns to play Space Invaders
 - is a big environment with a gigantic state space
- Creating and updating a Q-table for that environment would not be efficient at all
- Create a neural network that will approximate, given a state, the different Q-values for each action

Deep Q-Learning

- This will be the architecture of our Deep Q Learning
- Our Deep Q Neural Network takes a stack of four frames as an input
- These pass through its network, and output a vector of Q-values for each action possible in the given state
- We need to take the biggest Q-value of this vector

Preprocessing part

- We want to reduce the complexity of our states to reduce the computation time needed for training
 - First, we can grayscale each of our states
 - Then, we crop the frame
 - Then, we reduce the size of the frame
 - And stack four sub-frames together

frames