

SUPPLEMENTARY INFORMATION

ARTICLE NUMBER: 16116 | DOI: 10.1038/NMICROBIOL.2016.116

1

The physiology and habitat of the last universal common ancestor

Madeline C. Weiss*, Filipa L. Sousa*, Natalia Mrnjavac, Sinje Neukirchen, Mayo Roettger, Shijulal Nelson-Sathi, William F. Martin[‡]

Institute of Molecular Evolution

Heinrich Heine University Düsseldorf

Universitätsstraße 1

40225 Düsseldorf, Germany

* equal contribution

‡ bill@hhu.de

Supplementary Information

Supplementary Figures

Supplementary Fig. 1 – Archaeal and bacterial lineage distributions within LUCA's 355 gene families. a) Normalized lineage distribution for bacterial (blue) and archaeal (red) organisms present in each of the 355 LUCA's gene families (x-axis). Families (clusters) where one of the domains is overrepresented ≥20:1 (308 to 355) are sorted on the right side of panel a). The preponderance of archaeal versus bacterial sequences for these 48 proteins is likely due to the small archaeal sample (fewer detectable interdomain LGTs), though, none of these 48 are shown in Fig. 3. b) Taxonomic group representation (y-axis) of the organisms represented within LUCA's 355 gene families (x-axis) sorted by the number of bacterial and archaeal groups represented (top). Black ticks indicate gene presence in a given taxonomic group. The two identified groups of clusters were first sorted according to the number of bacterial and archaeal groups present (top) and then sorted by the total number of taxonomic groups present.

Supplementary Fig. 2 – Structures of the cofactors found in LUCA's protein set. SAM is shown both in free form and bound to an FeS cluster, which is the form encountered in radical SAM enzymes. Cobalamin was chosen as representative of corrin-based cofactors, menaquinone as representative of quinone cofactors, FMN as representative of flavins, MoCo as representative of molybdopterin-based cofactors, and heme b as representative of heme cofactors. NADPH is not shown as it differs from NADH in one phosphate group attached to the 2'-O of the ribose ring. Mononuclear metal centers (Fe and Cu) and the non-standard amino acid selenocysteine are not shown, nor are small protein electron carriers such as ferredoxin or rubredoxin. NTP is also listed as a cofactor, but not shown here as it stands for any of the nucleoside triphosphates in those cases when it's not known which one is bound by the enzyme, or when more than one nucleoside triphosphate can be used. Abbreviations: FeNiS – nickel-iron-sulfur cluster; FeS – iron-sulfur cluster; MoCo – molybdenum cofactor; SAM – S-adenosylmethionine; CoA – coenzyme A; MFR – methanofuran; H₄MPT – tetrahydromethanopterin; TPP - thiamine pyrophosphate; PLP - pyridoxal phosphate; NTP – nucleoside triphosphate.

Supplementary Fig. 3 – Modified nucleosides and the genetic code. a) Structure of the *E. coli* ribosome¹ (PDB ID: 4YBB), with the large and small subunits shown in green and silver, respectively. The peptidyl-transferase site is shaded pink^{2,3}. The modified nucleosides of 23S rRNA are depicted in icy blue, while in 16S rRNA they are ochre. Modification of C2501 to 5-hydroxycytidine is not present in the structure. Methyl group carbons are shown as red balls. b) Cloverleaf secondary structure representation of tRNA showing only those posttranscriptional nucleoside modifications that are conserved among bacteria and archaea in both identity and position (see Methods). The presence of 5-methoxyuridine at position 34 in archaea has been disputed and is hence not shown⁴. Abbreviations as in Fig. 4.

Supplementary Tables

Supplementary Table 1. Cofactors in LUCA's proteins

Transition metal-based cofactors and redox electron carriers in LUCA's proteome

	Proteins	Cofactors*								
Functional category	tracing to LUCA	FeS	NAD(P)	Flavin [†]	MoCo [‡]	Fd^{\S}	Corrin	F_{420}	FeNiS	Heme
Information										
Ribosome biogenesis	19	-	-	-	-	-	-	-	-	-
Translation	12	-	-	-	-	-	-	-	-	-
RNA modification	8	1	1	-	-	-	-	-	-	-
DNA binding	15	1	-	-	-	-	-	-	-	-
Nucleic acid handling	17	-	-	-	-	-	-	-	-	-
Physiology										
Energy metabolism	2	-	-	-	-	-	-	-	-	-
Carbon assimilation	13	7	-	2	2	2	4	3	2	-
Nitrogen assimilation	7	4	1	1	3	4	-	-	-	-
Cofactor biosynthesis	19	4	3	1	1	-	-	-	-	-
Nucleotide metabolism	11	1	-	1	-	-	-	-	-	-
Amino acid metabolism	10	-	1	-	-	-	-	-	-	-
Redox chemistry	26	11	9	8	4	2	-	1	1	1
Protein modification	2	-	-	-	-	-	-	-	-	-
Lipid metabolism	10	-	2	1	-	-	-	-	-	-
Sugar-related	18	-	1	-	-	-	-	-	-	-
Cellular	31	1	-	-	-	-	-	-	-	-
Cell wall related	7	-	-	-	-	-	-	-	-	-
Transport	52	-	1	-	-	-	-	-	-	-
Others	7	-	-	-	-	-	-	-	-	-
Unknown & uncharacterized	61	2	1	1	-	-	1	-	-	-
Oxygen	8	1	2	1	-	-	-	-	-	2
Total	355	33	22	16	10	8	5	4	3	3

Other (mostly group transfer) cofactors in LUCA's proteome

	Proteins								
Functional category	tracing to LUCA	ATP	SAM^{\parallel}	CoA	GTP	H ₄ MPT	NTP	Sec [¶]	MFR
Information									
Ribosome biogenesis	19	1	-	3	4	-	1	-	-
Translation	12	9	-	-	2	-	-	-	-
RNA modification	8	1	4	-	-	-	-	-	-
DNA binding	15	-	1	-	-	-	-	-	-
Nucleic acid handling	17	7	-	-	1	-	-	1	-
Physiology									
Energy metabolism	2	-	-	-	-	-	-	-	-
Carbon assimilation	13	2	-	2	-	4	-	-	2
Nitrogen assimilation	7	6	-	-	-	-	-	-	-
Cofactor biosynthesis	19	3	4	-	-	-	-	-	-
Nucleotide metabolism	11	2	1	-	-	-	-	-	-
Amino acid metabolism	10	2	-	2	-	-	-	-	-
Redox chemistry	26	-	-	-	-	-	-	1	-
Protein modification	2	1	-	-	1	-	-	-	-
Lipid metabolism	10	-	-	5	-	-	-	-	-
Sugar-related	18	1	-	-	-	-	-	-	-
Cellular	31	7	1	1	3	-	-	-	-
Cell wall related	7	-	-	-	-	-	-	-	-
Transport	52	24	-	-	_	-	-	-	-
Others	7	2	1	-	-	-	-	1	-
Unknown & uncharacterized	61	1	3	1	2	-	2	-	-
Oxygen	8	-	-	-	-	-	-	-	-
Total	355	69	15	14	13	4	3	3	2

^{*} Cofactors occurring only in one protein family or present exclusively in oxygen-related protein families are not shown (see Methods). Abbreviations: FeS – iron-sulfur cluster, SAM – S-adenosylmethionine, CoA – coenzyme A, MoCo – molybdenum cofactor, FeMoCo – iron-molybdenum cofactor, Fd – ferredoxin, H_4MPT – tetrahydromethanopterin, FeNiS – nickel-iron-sulfur cluster, Sec – selenocysteine, NTP – nucleoside triphosphate, MFR – methanofuran.

[†] FMN and FAD were counted as flavin. [‡] FeMoCo and tungsten-based pterins were counted as MoCo.

 $[\]S$ Ferredoxin, flavodoxin or methan ophenazine were counted as Fd.

Out of the 15 SAM dependent enzymes, 7 are radical SAM enzymes, 6 are non-radical, 1 uses decarboxylated SAM (dcSAM) as aminopropyl group donor, and 1 is uncharacterized.

[¶] Selenium was listed in the table due to its potential catalytic role in selenoenzymes (see Methods).

Supplementary Table 2. Functional and taxonomic characterization of the 355 protein families potentially present in LUCA using a threshold of 25% global identity. (*provided as separate Excel file)

Supplementary Table 3. χ^2 test of independence

Lineage distribution	LUCA's 355 gene families (%)	11,093 protein families (%)	
Archaeoglobales	0.39	0.25	
Desulfurococcales	0.77	0.47	
Halobacteria	2.17	1.74	
Methanobacteriales	0.67	0.44	
Methanocellales	0.35	0.23	
Methanococcales	0.94	0.73	
Methanomicrobiales	0.68	0.45	
Methanosarcinales	1.15	0.77	
Sulfolobales	0.73	0.95	
Thermo-Pyrococcales	1.18	0.75	
Thermoplasmatales	0.29	0.18	
Thermoproteales	0.99	0.61	
Other archaea	0.21	0.14	
Acidobacteria	0.73	0.52	
Actinobacteria	11.91	11.51	
Alphaproteobacteria	10.38	9.86	
Aquificae	0.58	0.40	
Bacilli	9.53	13.99	
Bacteroidetes	4.34	3.38	
Betaproteobacteria	8.35	7.87	
Chlamydiae	0.35	0.58	
Chlorobi	0.84	0.55	
Chloroflexi	1.31	0.98	
Clostridia	7.62	6.30	
Cyanobacteria	2.61	2.09	
Deinococcus-Thermus	1.18	0.92	
Deltaproteobacteria	4.45	3.23	
Epsilonproteobacteria	1.56	2.12	
Fusobacteria	0.31	0.21	
Gammaproteobacteria	17.21	23.20	
Negativicutes	0.43	0.28	
Planctomycetes	0.47	0.33	
Spirochaetes	1.63	1.42	
Tenericutes	0.50	0.45	
Thermotogae	1.14	0.73	
Other bacteria	2.04	1.37	
P-value	0.87		

Functional classification

COG distribution	LUCA's 355 gene families	11,093 clusters
Information	62	865
Metabolism	133	3127
Cellular	52	3793
Poorly characterised	58	1779
Not declared	50	1529
P-value	<< 10 ⁻¹⁶	

 $[\]chi^2$ test of independence between the LUCA's 355 candidate gene families and the 11,093 protein families containing archaeal and bacterial homologues with regard to their lineage and to their functional (COG) distribution. For the χ^2 test, the absolute numbers of families, not their proportions were used.

Supplementary Table 4. Subset of LUCA's proteins (RNA modification, energy metabolism, C and N assimilation) and respective cofactors

Proteins	Cofactors
RNA modification	
tRNA U55 pseudouridine synthase TruB	-
tRNA C32,U32 (ribose-2'-O)-methylase TrmJ or a related methyltransferase	SAM
tRNA U38,U39,U40 pseudouridine synthase TruA	-
tRNA A37 threonylcarbamoyltransferase TsaD	ATP
RNA:NAD 2'-phosphotransferase, TPT1/KptA family	NAD
23S rRNA G2069 N7-methylase RlmK or C1962 C5-methylase RlmI	SAM
16S rRNA C967 or C1407 C5-methylase, RsmB/RsmF family	SAM
tRNA/tmRNA/rRNA uracil-C5-methylase, TrmA/RlmC/RlmD family	SAM, FeS
Energy metabolism	
Archaeal/vacuolar-type H ⁺ -ATPase subunit I/STV1	-
BioD-like N-terminal domain of phosphotransacetylase	-
Carbon assimilation	
CO dehydrogenase/acetyl-CoA synthase delta subunit (corrinoid Fe-S protein)*	FeS [2x], corrinoid cofactor [2x], FeNiS
CO dehydrogenase/acetyl-CoA synthase gamma subunit (corrinoid Fe-S protein) [2x]*,†	FeS [2x], corrinoid cofactor [2x], FeNiS
CO or xanthine dehydrogenase, Mo-binding subunit	MoCo
Formylmethanofuran dehydrogenase subunit A*	MFR, H ₄ MPT, FeS, MoCo
Formylmethanofuran dehydrogenase subunit C*	MFR, H ₄ MPT, FeS, MoCo
Formylmethanofuran:tetrahydromethanopterin formyltransferase	MFR, H_4MPT
Coenzyme F_{420} -reducing hydrogenase, beta subunit $[2x]^{\dagger}$	FeS, F ₄₂₀ , flavin, Fd/methanophenazine
Methenyltetrahydromethanopterin cyclohydrolase	H_4MPT
Flavin-dependent oxidoreductase, luciferase family	F_{420} , H_4MPT
Acetyl-coenzyme A synthetase	(ATP, CoA)
Acyl-coenzyme A synthetase/AMP-(fatty) acid ligase	(ATP, CoA)
Nitrogen assimilation	
Nitrogenase molybdenum-iron protein, alpha and beta chains [2x] [†]	FeS, FeMoCo, ATP, Fd
Nitrogenase subunit NifH, an ATPase (fusion)	FeS, FeMoCo, Fd/flavodoxin, ATP
Nitrogenase subunit NifH, an ATPase	FeS, Fd/flavodoxin, ATP
Glutamine synthetase	ATP
Nitroreductase	flavin, NAD(P)
ADP-ribosylglycohydrolase	ATP

^{*} In case of protein complexes, the cofactors of the entire complex are shown next to each of the subunits of the complex. Exceptionally, when the subunit couldn't be pinpointed to a specific protein complex with certainty, only the cofactors of that subunit are shown.

† When a subunit of a protein complex appears twice, it is scored as presence of an additional copy of that complex, with the associated cofactors.

Abbreviations used as in Supplementary Table 1.

Supplementary Table 5. Subset of LUCA's proteins (cofactor biosynthesis and redox chemistry) and respective cofactors

Proteins	Cofactors
Cofactor biosynthesis	
F ₄₂₀ -0:Gamma-glutamyl ligase (F ₄₂₀ biosynthesis)	-
Molybdenum cofactor biosynthesis enzyme	-
Molybdenum cofactor biosynthesis enzyme MoaA	SAM, FeS [2x]
Molybdopterin biosynthesis enzyme	MoCo
Dihydropteroate synthase	-
Glutamyl-tRNA reductase	NAD(P)
Mg-chelatase subunit ChlD ^a	ATP
Siroheme synthase (precorrin-2 oxidase/ferrochelatase domain) ^a	SAM, NAD(P)
Sirohydrochlorin ferrochelatase	FeS
Precorrin-6B methylase 1	SAM
Protoporphyrinogen oxidase (anaerobic)	flavin, menaquinone
2-iminoacetate synthase ThiH (thiamine biosynthesis)	SAM, FeS, NAD(P)
Sulfopyruvate decarboxylase, TPP-binding subunit (coenzyme M biosynthesis)*	TPP
Archaeal 2-phospho-L-lactate transferase CofD/UPF0052 family	-
Gamma-glutamyl:cysteine ligase YbdK, ATP-grasp superfamily	ATP
Glutathione synthase/RimK-type ligase, ATP-grasp superfamily	ATP
Predicted Fe-Mo cluster-binding protein, NifX family	-
4-hydroxybenzoate polyprenyltransferase	-
hypothetical protein (Uro-D domain)	-
Redox chemistry	
Sulfur relay (sulfurtransferase) protein, DsrC/TusE family	-
Rieske Fe-S protein	FeS
Archaeal flavoprotein	flavin
Aldehyde:ferredoxin oxidoreductase [2x]	FeS, MoCo, Fd
Fe-S oxidoreductase	FeS
Fe-S-cluster-containing dehydrogenase component	FeS
FMN-dependent dehydrogenase	flavin, NAD(P)
Formate hydrogenlyase subunit 6/NADH:UQ oxidoreductase 23 kD subunit (chain I)*	FeS
Electron transfer flavoprotein, alpha subunit *	flavin
Glycerol dehydrogenase or related enzyme, iron-containing ADH family	-
Predicted oxidoreductase (related to aryl-alcohol dehydrogenase)	NAD(P)
Predicted oxidoreductase of the aldo/keto reductase family	FeS, NAD(P)
NADH dehydrogenase, FAD-containing subunit [*]	flavin
Ni,Fe-hydrogenase I small subunit*	FeS, FeNiS, flavin, NAD(P)
Choline dehydrogenase or related flavoprotein	flavin, NAD(P)
Anaerobic SeCys-containing dehydrogenase	MoCo
Protein distantly related to bacterial ferritins	heme
Thioredoxin reductase	flavin, NAD(P)
MinD superfamily P-loop ATPase, contains an inserted ferredoxin domain	FeS
Cytochrome c biogenesis protein CcdA (sulfhydryl redox chemistry)	-
Nitroimidazol reductase NimA, FMN-containing flavoprotein, pyridoxamine 5'-P oxidase superfamily	flavin
Predicted dinucleotide-binding enzyme	F_{420} , NAD(P)
Tetrathionate reductase subunit A*	FeS, MoCo, Sec
Oxidoreductase domain-containing protein	NAD(P)
4Fe-4S ferredoxin	FeS

^{*} In case of protein complexes, the cofactors of the entire complex are shown next to each of the subunits of the complex. Exceptionally, when the subunit couldn't be pinpointed to a specific protein complex with certainty, only the cofactors of that subunit are shown.

Abbreviations used as in Supplementary Table 1.

Supplementary Table 6. Archaea and bacteria basal branching lineages within the 355 phylogenetic trees of LUCA's gene families.

proxy	Archaea	no.	Bacteria	no.
Tree _{Pure} *		_		
	Other archaea	18	Clostridia	30
	Methanomicrobiales	13	Deltaproteobacteria/Other bacteria§	18
	Methanosarcinales/Thermoplasmatales/		•	
	Thermoproteales/Thermo-Pyrococcales§	12	Actinobacteria	12
	Archaeoglbales	10	Chlorofelxi	8
	Methanococcales	9	Cyanobacteria/Gammaproteobacteria§	7
Tree _{Mixed} [†]	•		1	
	Methanosarcinales/Archaeoglobales [§]	54	Clostridia	82
	Methanomicrobiales/Thermoplasmatales§	47	Other bacteria	72
	Methanobacteriales/Methanocellales§	46	Deltaproteobacteria	57
	Halobacteria	45	Actinobacteria	48
	Methanococcales	43	Bacilli	38
Dist _{Root} ‡				
	Methanosarcinales	48	Clostridia	87
	Thermo-Pyrococcales	47	Other bacteria	42
	Methanococcales	40	Deltaproteobacteria	32
	Thermoproteales	34	Chloroflexi	22
	Archaeoglobales	33	Gammaproteobacteria	21

^{*} representatives from only one phylum/group in the basal branch.

With respect to the phylogenetic position of the deepest branching lineages, the available taxon sample introduces a potential bias in the case of methanogens, which are overrepresented in the archaeal taxon sample (31.34% of archaeal genomes) but certainly not in the case of acetogens, which are not overrepresented in the sample (3.68% of bacterial genomes). In addition, Thaumarchaeota and other new archaeal phyla not belonging to the Eury- or Crenarchaeota are underrepresented in the present genome sample. This sampling bias reduces the number of archaea fulfilling both the monophyly and two phylum criteria.

Supplementary Table 7. SAM-dependent enzymes. (*provided as separate Excel file)

Supplementary Table 8. Functional and taxonomic characterization of one taxa misplaced protein families. (*provided as separate Excel file)

Supplementary Table 9. Functional and taxonomic characterization of one phyla misplaced protein families. (*provided as separate Excel file)

 $^{^{\}dagger}$ representatives from more than one phylum/group in the basal branch.

[‡] the number of trees in which a representative from the group indicated had the shortest distance to the root.

[§] groups represented equal number of times in the basal branch.

Supplementary Information References

- 1. Noeske, J. *et al.* High-resolution structure of the *Escherichia coli* ribosome. *Nat. Struct. Mol. Biol.* **22**, 336–341 (2015).
- 2. Ramakrishnan, V. Ribosome structure and the mechanism of translation. *Cell* **108**, 557–572 (2002).
- 3. Sato, N. S., Hirabayashi, N., Agmon, I., Yonath, A. & Suzuki T. Comprehensive genetic selection revealed essential bases in the peptidyl-transferase center. *Proc. Natl. Acad. Sci. USA* **103**, 15386–15391 (2006).
- 4. Grosjean, H., Gaspin, C., Marck, C., Decatur, W. A. & de Crécy-Lagard, V. RNomics and modomics in the halophilic archaea *Haloferax volcanii*: identification of RNA modification genes. *BMC Genomics* **9,** 470 (2008).
- 5. Arragain, S. *et al.* Identification of eukaryotic and prokaryotic methylthiotransferase for biosynthesis of 2-methylthio-N6-threonylcarbamoyladenosine in tRNA. *J. Biol. Chem.* **285**, 28425–28433 (2010).
- 6. Pierrel, F., Hernandez, H. L., Johnson, M.K., Fontecave, M. & Atta, M. MiaB Protein from Thermotoga maritime. Characterization of an extremely thermophilic tRNA-methylthiotransferase. *J. Biol. Chem.* **278**, 29515–29524 (2003).
- 7. Dowling, D. P. *et al.* Radical SAM enzyme QueE defines a new minimal core fold and metal-dependent mechanism. *Nat. Chem. Biol.* **10**, 106–112 (2013).
- 8. Ahn, H. J. *et al.* Crystal structure of tRNA (m1G37) methyltransferase: Insights into tRNA recognition. *EMBO J.* **22**, 2593–2603 (2003).
- 9. Anton, B. P. *et al.* Functional characterization of the YmcB and YqeV tRNA methylthiotransferases of Bacillus subtilis. *Nucleic Acids Res.* **38**, 6195–6205 (2010).
- 10. Noma, A., Kirino, Y., Ikeuchi, Y. & Suzuki, T. Biosynthesis of wybutosine, a hyper-modified nucleoside in eukaryotic phenylalanine tRNA. *EMBO J.* **25,** 2142–2154 (2006).
- 11. Constantinesco, F., Benachenhou, N., Motorin, Y. & Grosjean, H. The tRNA(guanine-26,N²-N²) methyltransferase (Trm1) from the hyperthermophilic archaeon Pyrococcus furiosus: Cloning, sequencing of the gene and its expression in Escherichia coli. *Nucleic Acids Res.* **26**, 3753–3761 (1998).
- 12. Golovina, A. Y. *et al.* The yfiC gene of E. coli encodes an adenine-N6 methyltransferase that specifically modifies A37 of tRNA₁^{Val}(cmo⁵UAC). *RNA* **15,** 1134–1141 (2009).

- 13. Walbott, H., Leulliot, N., Grosjean, H. & Golinelli-Pimpaneau, B. The crystal structure of Pyrococcus abyssi tRNA (uracil-54, C5)-methyltransferase provides insights into its tRNA specificity. *Nucleic Acids Res.* **36**, 4929–4940 (2008).
- 14. Byszewska, M., Śmietański, M., Purta, E. & Bujnicki, J. M. RNA methyltransferases involved in 5' cap biosynthesis. *RNA Biol.* **11,** 1597–1607 (2015).
- 15. Zamudio, J. R. *et al.* Complete cap 4 formation is not required for viability in Trypanosoma brucei. Eukaryot. *Cell* **5**, 905–915 (2006).
- 16. Caldas, T. *et al.* The FtsJ/RrmJ heat shock protein of Escherichia coli is a 23S ribosomal RNA methyltransferase. *J. Biol. Chem.* **275**, 16414–16419 (2000).
- 17. Romanowski, M. J., Bonanno, J. B. & Burley, S. K. Crystal structure of the Escherichia coli glucose-inhibited division protein B (GidB) reveals a methyltransferase fold. *Proteins* **47**, 563–567 (2002).
- 18. Tscherne, J. S., Nurse, K., Popienick, P. & Ofengand, J. Purification, cloning & characterization of the 16 sRNA m²G1207 methyltransferase from Escherichia coli. *J. Biol. Chem.* **274,** 924–929 (1999).
- 19. Lesnyak, D. V., Sergiev, P. V., Bogdanov, A. A. & Dontsova, O. A. Identification of Escherichia coli m²G methyltransferases: I. the ycbY gene encodes a methyltransferase specific for G2445 of the 23 S rRNA. *J. Mol. Biol.* **364**, 20–25 (2006).
- 20. Zhang, H. *et al.* Structural insights into the function of 23S rRNA methyltransferase RlmG (m²G1835) from Escherichia coli. *RNA* **18,** 1500–1509 (2012).
- 21. Foster, P. G., Nunes, C. R., Greene, P., Moustakas, D. & Stroud, R. M. The first structure of an RNA m⁵C methyltransferase, Fmu, provides insight into catalytic mechanism and specific binding of RNA substrate. *Structure* **11**, 1609–1620 (2003).
- 22. Hallberg, B. M. *et al.* The structure of the RNA m⁵C methyltransferase YebU from Escherichia coli reveals a C-terminal RNA-recruiting PUA domain. *J. Mol. Biol.* **360,** 774–787 (2006).
- 23. O'Farrell, H. C., Scarsdale, J. N. & Rife, J. P. Crystal structure of KsgA, a universally conserved rRNA adenine dimethyltransferase in Escherichia coli. *J. Mol. Biol.* **339**, 337–353 (2004).
- 24. Sergiev, P. V., Serebryakova, M. V., Bogdanov, A. A. & Dontsova, O. A. The ybiN gene of Escherichia coli encodes adenine-N⁶ methyltransferase specific for modification of A1618 of 23 S ribosomal RNA, a methylated residue located close to the ribosomal exit tunnel. *J. Mol. Biol.* **375**, 291–300 (2008).
- 25. Purta, E., O'Connor, M., Bujnicki, J. M. & Douthwaite, S. YgdE is the 2'-O-ribose

- methyltransferase RlmM specific for nucleotide C²⁴⁹⁸ in bacterial 23S rRNA. *Mol. Microbiol.* **72,** 1147–1158 (2009).
- 26. Das, K. *et al.* Crystal structure of RlmA^I: Implications for understanding the 23S rRNA G⁷⁴⁵/G⁷⁴⁸-methylation at the macrolide antibiotic-binding site. *Proc. Natl. Acad. Sci. USA*. **101,** 4041–4046 (2004).
- 27. Madsen, C. T., Mengel-Jorgensen, J., Kirpekar, F. & Douthwaite, S. Identifying the methyltransferases for m⁵U⁷⁴⁷ and m⁵U¹⁹³⁹ in 23S rRNA using MALDI mass spectrometry. *Nucleic Acids Res.* **31,** 4738–4746 (2003).
- 28. Lee, T. T., Agarwalla, S. & Stroud, R. M. Crystal structure of RumA, an iron-sulfur cluster containing E. coli ribosomal RNA 5-methyluridine methyltransferase. *Structure* **12**, 397–407 (2004).
- 29. Sunita, S. *et al.* Crystal structure of the Escherichia coli 23S rRNA:m⁵C methyltransferase RlmI (YccW) reveals evolutionary links between RNA modification enzymes. *J. Mol. Biol.* **383**, 652–666 (2008).
- 30. Boal, A. K. *et al.* Structural basis for methyl transfer by a radical SAM enzyme. *Science* **332**, 544–545 (2011).
- 31. Kimura, S. & Suzuki, T. Fine-tuning of the ribosomal decoding center by conserved methylmodifications in the Escherichia coli 16S rRNA. *Nucleic Acids Res.* **38,** 1341–1352 (2010).
- 32. Giessing, A. M. *et al.* Identification of 8-methyladenosine as the modification catalyzed by the radical SAM methyltransferase Cfr that confers antibiotic resistance in bacteria. *RNA* **15**, 327–336 (2009).
- 33. Basturea, G. N., Dague, D. R., Deutscher, M. P. & Rudd, K. E. YhiQ is RsmJ, the methyltransferase responsible for methylation of G¹⁵¹⁶ in 16S rRNA of E. coli. *J. Mol. Biol.* **415,** 16–21 (2012).
- 34. Kimura, S. *et al.* Base methylations in the double-stranded RNA by a fused methyltransferase bearing unwinding activity. *Nucleic Acids Res.* **40**, 4071–4085 (2012).
- 35. Timinskas, A., Butkus, V. & Janulaitis, A. Sequence motifs characteristic for DNA [cytosine-N4] and DNA [adenine-N6] methyltransferases. Classification of all DNA methyltransferases. *Gene* **157**, 3–11 (1995).
- 36. Labahn, J. *et al.* Three-dimensional structure of the adenine-specific DNA methyltransferase M.Taq I in complex with the cofactor S-adenosylmethionine. *Proc. Natl. Acad. Sci. USA* **91**, 10957–61 (1994).

- 37. Anton, B. P. *et al.* RimO, a MiaB-like enzyme, methylthiolates the universally conserved Asp88 residue of ribosomal protein S12 in Escherichia coli. *Proc. Natl. Acad. Sci. USA* **105**, 1826–1831 (2008).
- 38. Demirci, H., Gregory, S. T., Dahlberg, A. E. & Jogl, G. Multiple-site trimethylation of ribosomal protein L11 by the PrmA methyltransferase. *Structure* **16**, 1059–1066 (2008).
- 39. Prabhakaran, P. C., Woo, N. T., Yorgey, P. S. & Gould, S. J. Biosynthesis of blasticidin S from L-alpha-arginine. Stereochemistry in the arginine 2,3-aminomutase reaction, *J. Am. Chem. Soc.* **110**, 5785–5791 (1988).
- 40. Ruzicka, F. J. & Frey, P. A. Glutamate 2,3-aminomutase: A new member of the radical SAM superfamily of enzymes. *BBA Proteins and Proteomics* **1774**, 286–296 (2007).
- 41. Fu, Z. *et al.* Crystal Structure of glycine N-methyltransferase from Rat Liver. *Biochemstriy* **35**, 11985–93 (1996).
- 42. Zhang, Q. *et al.* Characterization of NocL involved in thiopeptide nocathiacin I biosynthesis: A [4Fe–4S] cluster and the catalysis of a radical S-adenosylmethionine enzyme. *J. Biol. Chem.* **286**, 21287–21294 (2011).
- 43. Nicolet, Y., Zeppieri, L., Amara, P. & Fontecilla-Camps, J. C. Crystal structure of tryptophan lyase (NosL): Evidence for radical formation at the amino group of tryptophan. *Angew. Chem.* **126**, 12034–12038 (2014).
- 44. Ryttersgaard, C. *et al.* Crystal structure of human L-isoaspartyl methyltransferase. *J. Biol. Chem.* **277**, 10642–6 (2002).
- 45. Gaston, M. A., Zhang, L., Green-Church, K. B. & Krzycki, J. A. The complete biosynthesis of the genetically encoded amino acid pyrrolysine from lysine. *Nature* **471**, 647–650 (2011).
- 46. Haft, D. H. & Basu, M. K. Biological systems discovery in silico: Radical Sadenosylmethionine protein families and their target peptides for posttranslational modification. *J. Bacteriol.* **193**, 2745–2755 (2011).
- 47. Flühe, L. *et al.* Two [4Fe-4S] clusters containing radical SAM enzyme SkfB catalyze thioether bond formation during the maturation of the sporulation killing factor. *J. Am. Chem. Soc.* **35,** 959–962 (2013).
- 48. Frenzel, T., Zhou, P. & Floss, H. G. Formation of 2-methyltryptophan in the biosynthesis of thiostrepton: Isolation of S-adenosylmethionine: tryptophan 2-methyltransferase. *Arch. Biochem. Biophys.* **278**, 35–40 (1990).
- 49. Djordjevic, S. & Stock, A. M. Crystal structure of the chemotaxis receptor methyltransferase CheR suggests a conserved structural motif for binding S-adenosylmethionine. *Structure* **5**, 545–58 (1997).

- 50. Zhu, X. *et al.* Mechanistic understanding of Pyrococcus horikoshii Dph2, a [4Fe–4S] enzyme required for diphthamide biosynthesis. *Mol. BioSyst.* **7,** 74–81 (2011).
- 51. Yanagisawa, T., Sumida, T., Ishii, R., Takemoto, C. & Yokoyama, S. A paralog of lysyltRNA synthetase aminoacylates a conserved lysine residue in translation elongation factor P. *Nat. Struct. Mol. Biol.* **17**, 1136–1143 (2010).
- 52. Feng, Q. *et al.* Methylation of H3-Lysine 79 is mediated by a new family of HMTases without a SET domain. *Curr. Biol.* **12**, 1052–1058 (2002).
- 53. Bachand, F. Protein arginine methyltransferases: From unicellular eukaryotes to humans. Eukaryot. *Cell* **6**, 889–898 (2007).
- 54. Lepore, B. W., Ruzicka, F. J., Frey, P. A. & Ringe, D. The X-ray crystal structure of lysine-2,3-aminomutase from Clostridium subterminale. *Proc. Natl. Acad. Sci. USA* **102**, 13819–13824 (2005).
- 55. Nicolet, Y. *et al.* X-ray structure of the [FeFe]-hydrogenase maturase HydE from Thermotoga maritima. *J. Biol. Chem.* **283**, 18861–18872 (2008).
- 56. Dinis, P. *et al.* X-ray crystallographic and EPR spectroscopic analysis of HydG, a maturase in [FeFe]-hydrogenase H-cluster assembly. *Proc. Natl. Acad. Sci. USA* **112**, 1362–1367 (2015).
- 57. Wiig, J. A., Hu, Y., Lee, C. C. & Ribbe, M. W. Radical SAM-dependent carbon insertion into the nitrogenase M-cluster. *Science* **337**, 1672–1675 (2012).
- 58. Vevodova, J. *et al.* Structure/function studies on a S-adenosyl-L-methionine-dependent uroporphyrinogen III C methyltransferase (SUMT), a key regulatory enzyme of tetrapyrrole biosynthesis. *J. Mol. Biol.* **344**, 419–433 (2004).
- 59. Stroupe, M. E., Leech, H. K., Daniels, D. S., Warren, M. J. & Getzoff, E. D. CysG structure reveals tetrapyrrole-binding features and novel regulation of siroheme biosynthesis. *Nat. Struct. Biol.* **10**, 1064–1073 (2003).
- 60. Deery, E. *et al.* An enzyme-trap approach allows isolation of intermediates in cobalamin biosynthesis. *Nat. Chem. Biol.* **8,** 933–940 (2012).
- 61. Layer, G., Moser, J., Heinz, D. W., Jahn, D. & Schubert, W. D. Crystal structure of coproporphyrinogen III oxidase reveals cofactor geometry of radical SAM enzymes. *EMBO J.* **22**, 6214–24 (2003).
- 62. Bali, S. *et al.* Molecular hijacking of siroheme for the synthesis of heme and d1 heme. *Proc. Natl. Acad. Sci. USA* **108,** 18260–18265 (2011).
- 63. Lobo, S. A. *et al.* Characterisation of Desulfovibrio vulgaris haem b synthase, a radical SAM family member. *Biochim. Biophys. Acta.* **1844**, 1238–47 (2014).

- 64. Ouchane, S., Steunou, A. S., Picaud, M. & Astier, C. Aerobic and anaerobic Mg-protoporphyrin monomethyl ester cyclases in purple bacteria a strategy adopted by bypass the repressive oxygen control system. *J. Biol. Chem.* **279**, 6385–6394 (2004).
- 65. Chew, A. G. M., Frigaard, N. U. & Bryant, D. A. Bacteriochlorophyllide c C-8² and C-12¹ methyltransferases are essential for adaptation to low light in Chlorobaculum tepidum. *J. Bacteriol.* **189**, 6176–84 (2007).
- 66. Poon, W. W. *et al.* Yeast and rat Coq3 and Escherichia coli UbiG polypeptides catalyze both O-methyltransferase steps in coenzyme Q biosynthesis. *J. Biol. Chem.* **274**, 21665–72 (1999).
- 67. Lee, P. T., Hsu, A. Y., Ha, H. T. & Clarke, C. F. A C-methyltransferase involved in both ubiquinone and menaquinone biosynthesis: isolation and identification of the Escherichia coli ubiE gene. *J. Bacteriol.* **179**, 1748–54 (1997).
- 68. Mahanta, N., Fedoseyenko, D., Dairi, T. & Begley, T. P. Menaquinone biosynthesis: Formation of aminofutalosine requires a unique radical SAM enzyme. *J. Am. Chem. Soc.* **135,** 15318–15321 (2013).
- 69. Hiratsuka, T. *et al.* An alternative menaquinone biosynthetic pathway operating in microorganisms. *Science* **321,** 1670–1673 (2008).
- 70. Meulenberg, J. J., Sellink, E., Riegman, N. H. & Postma, P. W. Nucleotide sequence and structure of the Klebsiella pneumoniae pqq operon. *Mol. Gen. Genet.* **232**, 284–94 (1992).
- 71. Decamps, L. *et al.* Biosynthesis of F₀, precursor of the F₄₂₀ cofactor, requires a unique two radical-SAM domain enzyme and tyrosine as substrate. *J. Am. Chem. Soc.* **134**, 18173–18176 (2012).
- 72. Allen, K. D., Xu, H. & White, R. H. Identification of a unique radical S-adenosylmethionine methylase likely involved in methanopterin biosynthesis in Methanocaldococcus jannaschii. *J. Bacteriol.* **196,** 3315–3323 (2014).
- 73. Hänzelmann, P. & Schindelin, H. Crystal structure of the S-adenosylmethionine-dependent enzyme MoaA and its implications for molybdenum cofactor deficiency in humans. *Proc. Natl. Acad. Sci. USA* **101**, 12870–12875 (2004).
- 74. Sofia, H. J., Chen, G., Hetzler, B. G., Reyes-Spindola, J. F. & Miller, N. E. Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: Functional characterization using new analysis and information visualization methods. *Nucleic Acids Res.* **29**, 1097–1106 (2001).
- 75. Martinez-Gomez, N. C., Robers, M. & Downs, D. M. Mutational analysis of ThiH, a member of the radical S-adenosylmethionine (AdoMet) protein Superfamily. *J. Biol. Chem.* **279**, 40505-40510 (2004).

- 76. Chatterjee, A. *et al.* Reconstitution of ThiC in thiamin pyrimidine biosynthesis expands the radical SAM superfamily. *Nat. Chem. Biol.* **4,** 758–765 (2008).
- 77. Miller, J. R. *et al.* Escherichia coli LipA is a lipoyl synthase: In vitro biosynthesis of lipoylated pyruvate dehydrogenase complex from octanoyl-acyl carrier protein. *Biochemistry* **39**, 15166–15178 (2000).
- 78. Berkovitch, F., Nicolet, Y., Wan, J. T., Jarrett, J. T. & Drennan, C. L. Crystal structure of biotin synthase, an S-adenosylmethionine-dependent radical enzyme. *Science* **303**, 76–79 (2004).
- 79. Welander, P. V., Coleman, M. L., Sessions, A. L., Summons, R. E. & Newman, D.K. Identification of a methylase required for 2-methylhopanoid production and implications for the interpretation of sedimentary hopanes. *Proc. Nat. Acad. Sci. USA* **107**, 8537–8542 (2010).
- 80. Nakai, T. *et al.* The radical S-adenosyl-L-methionine enzyme QhpD catalyzes sequential formation of intra-protein sulfur-to-methylene carbon thioether bonds. *J. Biol. Chem.* **290**, 11144–66 (2015).
- 81. Vey, J. L. *et al.* Structural basis for glycyl radical formation by pyruvate formate-lyase activating enzyme. *Proc. Nat. Acad. Sci. USA* **105,** 16137–16141 (2008).
- 82. Selvaraj, B., Pierik, A. J., Bill, E. & Martins, B. M. 4-Hydroxyphenylacetate decarboxylase activating enzyme catalyses a classical S-adenosylmethionine reductive cleavage reaction. *J. Biol. Inorg. Chem.* **18**, 633–43 (2013).
- 83. Mulliez, E., Fontecave, M., Gaillard, J. & Reichard, P. An iron-sulfur center and a free radical in the active anaerobic ribonucleotide reductase of Escherichia coli. *J. Biol. Chem.* **268**, 2296–9 (1993).
- 84. Craciun, S., Marks, J. A. & Balskus, E. P. Characterization of choline trimethylamine-lyase expands the chemistry of glycyl radical enzymes. *ACS Chem. Biol.* **9**, 1408–1413 (2014).
- 85. Shisler, K. A. & Broderick, J. B. Glycyl radical activating enzymes: Structure, mechanism & substrate interactions. *Arch. Biochem. Biophys.* **546**, 64–71 (2014).
- 86. Demick, J. M. & Lanzilotta, W. N. Radical SAM activation of the B₁₂-independent glycerol dehydratase results in formation of 5'-deoxy-5'-(methylthio)adenosine and not 5'-deoxyadenosine. *Biochemistry* **50**, 440–442 (2011).
- 87. Fang, Q., Peng, J. & Dierks, T. Post-translational formylglycine modification of bacterial sulfatases by the radical S-adenosylmethionine protein AtsB. *J. Biol. Chem.* **279**, 14570–14578 (2004).
- 88. Boll, R. *et al.* The active conformation of avilamycin A is conferred by AviX12, a radical AdoMet enzyme. *J. Biol. Chem.* **281**, 14756–14763 (2006).

- 89. Feng, J. *et al.* Discovery and characterization of BlsE, a radical S-adenosyl-L-methionine decarboxylase involved in the blasticidin S biosynthetic pathway. *PLoS One* **8**, e68545 (2013).
- 90. Goldman, P. J., Grove, T. L., Booker, S. J. & Drennan, C. L. X-ray analysis of butirosin biosynthetic enzyme BtrN redefines structural motifs for AdoMet radical chemistry. *Proc. Natl. Acad. Sci. USA* **110**, 15949–15954 (2013).
- 91. Ruszczycky, M. W., Choi, S. H., Mansoorabadi, S. O. & Liu, H. W. Mechanistic studies of the radical S-adenosyl-L-methionine enzyme DesII: EPR characterization of a radical intermediate generated during its catalyzed dehydrogenation of TDP-D-quinovose. *J. Am. Chem. Soc.* **133**, 7292–7295 (2011).
- 92. Kim, H. J. *et al.* GenK-Catalyzed C-6' Methylation in the biosynthesis of gentamicin: Isolation and characterization of a cobalamin-dependent radical SAM enzyme. *J. Am. Chem. Soc.* **135,** 8093–6 (2013).
- 93. Kim, J. Y. *et al.* Gene inactivation study of gntE reveals its role in the first step of pseudotrisaccharide modifications in gentamicin biosynthesis. *Biochem. Biophys. Res. Commun.* **372,** 730–734 (2008).
- 94. Ruszczycky, M. W., Ogasawara, Y. & Liu, H. W. Radical SAM enzymes in the biosynthesis of sugar-containing natural products. *Biochim. Biophys. Acta.* **1824**, 1231–1244 (2012).
- 95. Werner, W. J. *et al.* In vitro phosphinate methylation by PhpK from Kitasatospora phosalacinea. *Biochemistry* **50**, 8986–8988 (2011).
- 96. Cai, H. & Clarke, S. A novel methyltransferase catalyzes the methyl esterification of transaconitate in Escherichia coli. *J. Biol. Chem.* **274**, 13470–9 (1999).
- 97. Marous, D. R., Lloyd, E. P. & Buller, A. R. Consecutive radical S-adenosylmethionine methylations form the ethyl side chain in thienamycin biosynthesis. *Proc. Natl. Acad. Sci. USA* **112**, 10354–10358 (2015).
- 98. Westrich, L., Heide, L. & Li, S. M. CloN6, a novel methyltransferase catalysing the methylation of the pyrrole-2-carboxyl moiety of clorobiocin. *ChemBioChem* **4,** 768–773 (2003).
- 99. Morris, R. P. *et al.* Ribosomally synthesized thiopeptide antibiotics targeting elongation factor Tu. *J. Am. Chem. Soc.* **131,** 5946–5955 (2009).
- 100. Galm, U. *et al.* The biosynthetic gene cluster of zorbamycin, a member of the bleomycin family of antitumor antibiotics, from Streptomyces flavoviridis ATCC 21892. *Mol. BioSyst.* **5,** 77–90 (2009).

- 101. Yu, Y. *et al.* Nosiheptide biosynthesis featuring a unique indole side ring formation on the characteristic thiopeptide framework. *ACS Chem. Biol.* **4,** 855–864 (2009).
- 102. Ding, Y. *et al.* Moving posttranslational modifications forward to biosynthesize the glycosylated thiopeptide nocathiacin I in Nocardia sp. ATCC202099. *Mol. BioSyst* **6,** 1180–1185 (2010).
- 103. Huang, W. *et al.* Characterization of yatakemycin gene cluster revealing a radical S-adenosylmethionine dependent methyltransferase and highlighting spirocyclopropane biosynthesis. *J. Am. Chem. Soc.* **134**, 8831–8840 (2012).
- 104. Flühe, L. *et al.* The radical SAM enzyme AlbA catalyzes thioether bond formation in subtilosin A. *Nat. Chem. Biol.* **8,** 350–357 (2012).
- 105. Rea, M. C. *et al.* Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. *Proc. Natl. Acad. Sci. USA* **107**, 9352–9357 (2010).
- 106. Lee, H., Churey, J. J. & Worobo, R. W. Biosynthesis and transcriptional analysis of thurincin H, a tandem repeated bacteriocin genetic locus, produced by Bacillus thuringiensis SF361. FEMS Microbiol. Lett. 299, 205–213 (2009).
- 107. Kneuttinger, A. C., Heil, K., Kashiwazaki, G. & Carell, T. The radical SAM enzyme spore photoproduct lyase employs a tyrosyl radical for DNA repair. *Chem. Comm.* **49**, 722–724 (2013).
- 108. Paraskevopoulou, C., Fairhurst, S. A., Lowe, D. J., Brick, P. & Onesti, S. The elongator subunit Elp3 contains a Fe₄S₄ cluster and binds S-adenosylmethionine. *Mol. Microbiol.* **59**, 795–806 (2006).