

Árvores AVL são balanceadas

1 Conceitos

Vamos relembrar o nossos conceitos que serão necessários para o resultado a ser demonstrado:

Definição 1.1. Uma árvore binária T, com n nós, tal que $h(T) = O(\lg n)$ é dita balanceada.

Definição 1.2. O balanço de um nó binário n é definido pela função bal(n) := h(n.dir) - h(n.esq).

Definição 1.3. Uma árvore binária T é AVL quando, para todo nó $n \in T$, $|bal(n)| \le 1$.

2 Demonstração

Observação:

A argumentação abaixo não é baseada na que consta em Szwarcfiter e Markenzon (2010) pois uma das afirmações dadas como válidas não é de fácil demonstração.

Note que, se mostrarmos que a altura de uma árvore AVL <u>qualquer</u> sempre é dada no máximo por uma função logarítmica do seu tamanho, poderemos concluir que a ordem de grandeza da altura não pode ser maior que logarítmica. Isso é exatamente o que significa, considerando h sendo a altura e n sendo o tamanho, que $h = O(\lg n)$ e, com isso, que toda AVL seria balanceada.

Nesse sentido, uma das formas possíveis é se conseguirmos construir uma desigualdade da forma $h \le c \cdot k + \lg n$ para constantes c e k, com c > 0. A estratégia que seguiremos será um pouco mais restrita, porém permitirá concluirmos a mesma coisa.

Em vez de analisarmos uma árvore qualquer, vamos observar, para um dado h arbitrário, uma árvore AVL com altura h que contenha o mínimo possível de nós. Se essa árvore respeitar a desigualdade anterior, poderemos concluir que todas as AVL com essa mesma altura também a respeitarão (já que para essa tal árvore o lado direito da desigualdade é o menor possível, todas as outras apresentarão valores ainda maiores, o que mantém a desigualdade).

2.1 Estrutura da árvore

Para entendermos como construir uma árvore como desejamos, veja que sempre que, em uma árvore AVL T com altura h, encontrarmos um nó n com bal(n)=0, poderíamos substituir uma de suas sub-árvores por outra AVL com uma altura 1 unidade menor que a que foi retirada sem invalidar a propriedade AVL de T. Isso constrói uma nova árvore T' com a mesma altura que a anterior T e certamente tamanho menor. Dessa forma, podemos concluir que a árvore desejada não pode ter nenhum nó com balanço nulo.

2.2 Contagem de nós da árvore

Vamos definir a função N(h) de forma a representar o menor número de nós possível para uma árvore AVL de altura h, que chamaremos de T.

Como vimos anteriormente, as sub-árvores de T devem possuir alturas h-1 e h-2, não necessariamente nesta ordem. Além disso, podemos afirmar que ambas se tratam de árvores AVL com o mínimo de nós para a respectiva altura, caso contrário não faria sentido T possuir tamanho mínimo (já que elas poderiam ser trocadas por outras árvores de mesma altura e menos nós).

Dessa forma, podemos afirmar que o valor de $N(h)^{(i)}$ pode ser calculado como

$$N(h) = \begin{cases} N(h-1) + N(h-2) + 1, & \text{se } h \ge 2; \\ 2, & \text{se } h = 2; \\ 1, & \text{se } h = 1. \end{cases}$$

Observe que a função N(h) é monotonicamente crescente⁽ⁱⁱ⁾. Com isso, e observando os casosbase, podemos afirmar que $N(h) \ge 2N(h-2)^{(iii)}$ para todo $h \ge 3$.

3 Conclusão

Resolvendo^(iv) a nova equação de recorrência obtida, obtemos que $N(h) \ge 2^{\frac{h-1}{2}}$. Lembrando que N(h) é o número de nós de T, que passaremos a denominar por n, concluímos que, para todo $h \ge 3$,

$$n = N(h) \ge 2^{\frac{h-1}{2}} \qquad \Longrightarrow \qquad \qquad \log n \ge \frac{h-1}{2} \qquad \Longrightarrow \qquad \qquad h \le 1 + 2 \lg n$$

Dessa forma, temos todas as informações necessárias para concluirmos que $h = O(\lg n)$.

Apêndice

4 Resolução da Recorrência

Na Seção 2.2 na página anterior determinamos que $N(h) \ge 2N(h-2)$ para todo $h \ge 3$. Vamos agora mostrar que isso implica em $N(h) \ge 2^{\frac{h-1}{2}}$ para todo $h \ge 3$.

Observe a seguinte sequência de desigualdades, obtida por sucessivas aplicações da desigualdade mencionada acima.

$$\begin{split} N(h) & \geq 2N(h-2) & = 2^1 N(h-2) \\ & \geq 2(2N(h-4)) & = 2^2 N(h-4) \\ & \geq 2^2 (2N(h-6)) & = 2^3 N(h-6) \\ & \geq 2^3 (2N(h-8)) & = 2^4 N(h-8) \\ & \cdots & \cdots \\ & \geq 2^{k-1} (2N(h-2k)) = 2^k N(h-2k) \end{split}$$

Considerando que a última substituição nos tenha trazido a um caso base, temos as seguintes possibilidades:

 $^{^{(}i)}$ O caso h=0 não é considerado, mas é trivial, dado que a única árvore com altura 0 é a árvore vazia, com 0 nós.

⁽ii) Isso porque todos os valores envolvidos são não-negativos e as operações realizadas são apenas adições.

⁽iii)Considere que substituímos o termo N(h-1) por um termo N(h-2) e o termo 1 por um termo 0. Em ambas as substituições, os novos valores são menores.

^(iv)Veja argumentação no Apêndice.

CASO h - 2k = 2: podemos concluir que $k = \frac{h-2}{2}$ e que

$$N(h) \ge 2^{\frac{h-2}{2}}N(2) = 2^{\frac{h-2}{2}} \cdot 2 = 2^{\frac{h}{2}} \ge 2^{\frac{h-1}{2}}.$$

CASO h - 2k = 1: podemos concluir que $k = \frac{h-1}{2}$ e que

$$N(h) \ge 2^{\frac{h-1}{2}} N(1) = 2^{\frac{h-1}{2}} \cdot 1 = 2^{\frac{h-1}{2}}.$$

Referências

SZWARCFITER, J.L.; MARKENZON, L. Estruturas de dados e seus algoritmos (3a. ed.). [S.l.]: Grupo Gen - LTC, 2010. ISBN 9788521629948.