Deep_Learning_Assignment

November 13, 2023

1 Sentiment Analysis With Transformers

Name: Tarun Kumar Reddy [23]: !!!pip install -q rouge-score pip install -q git+https://github.com/keras-team/keras-nlp.git --upgrade [23]: [' Installing build dependencies ... \x1b[?251\x1b[?25hdone', ' Getting requirements to build wheel ... \x1b[?251\x1b[?25hdone', ' Preparing metadata (pyproject.toml) ... \x1b[?251\x1b[?25hdone', '\x1b[?251 \x1b[90m $\x1b[0m]$ $\x1b[32m0.0/950.8 kB\x1b[0m \x1b[31m?\x1b[0m eta \x1b[36m-:--:-\x1b[0m',$ $x1b[0m\\x1b[91m\\x1b[0m\\x1b[90m]$ '\x1b[2K \x1b[91m $\x1b[0m \x1b[32m307.2/950.8 kB\x1b[0m \x1b[31m9.1 MB/s\x1b[0m eta]]]$ $\x1b[36m0:00:01\x1b[0m',$ '\x1b[2K \x1b[90m \x1b[0m $\x1b[32m950.8/950.8 kB\x1b[0m \x1b[31m17.2 MB/s\x1b[0m eta]]$ $x1b[36m0:00:00\\x1b[0m']$ $\x1b[?25h\x1b[?251]$ \x1b[90m \x1b[Om $x1b[32m0.0/6.5 MB\x1b[0m \x1b[31m?\x1b[0m eta \x1b[36m-:--:--\x1b[0m',$ '\x1b[2K \x1b[91m $\x1b[0m\x1b[91m\x1b[0m]$ $x1b[32m6.5/6.5 MB\\x1b[0m \\x1b[31m207.9 MB/s\\x1b[0m eta \\x1b[36m0:00:01\\x1b[0m',$ '\x1b[2K \x1b[90m \x1b[0m $x1b[32m6.5/6.5 MB\\x1b[0m \\x1b[31m107.1 MB/s\\x1b[0m eta \\x1b[36m0:00:00\\x1b[0m',$ '\x1b[?25h Building wheel for keras-nlp (pyproject.toml) ... \x1b[?251\x1b[?25hdone']

1.1 Import Required Libraries

```
[26]: import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import keras_nlp
```

Using TensorFlow backend

1.2 Loading Data

25000 Training sequences 25000 Validation sequences

1.3 Building Architecture

```
[29]: embed_dim = 256
num_heads = 8
ff_dim = 32
intermediate_dim =512
num_layers = 3
```

[32]: model.summary()

Model: "model_2"

Layer (type)	Output Shape	Param #
input_4 (InputLayer)		0
<pre>token_and_position_embeddi ng_2 (TokenAndPositionEmbe dding)</pre>	(None, None, 256)	5158400
<pre>transformer_encoder (Trans formerEncoder)</pre>	(None, None, 256)	527104
<pre>transformer_encoder_1 (Tra nsformerEncoder)</pre>	(None, None, 256)	527104
<pre>transformer_encoder_2 (Tra nsformerEncoder)</pre>	(None, None, 256)	527104
<pre>global_average_pooling1d_2 (GlobalAveragePooling1D)</pre>	(None, 256)	0
dropout_14 (Dropout)	(None, 256)	0
dense_18 (Dense)	(None, 30)	7710
dense_19 (Dense)	(None, 20)	620
dense_20 (Dense)	(None, 2)	42

Total params: 6748084 (25.74 MB)
Trainable params: 6748084 (25.74 MB)
Non-trainable params: 0 (0.00 Byte)

1.4 Training the model

```
accuracy: 0.5049 - val_loss: 0.6934 - val_accuracy: 0.5000
    Epoch 2/5
    782/782 [============== ] - 57s 73ms/step - loss: 0.6934 -
    accuracy: 0.4992 - val_loss: 0.6932 - val_accuracy: 0.5000
    Epoch 3/5
    accuracy: 0.5007 - val_loss: 0.6932 - val_accuracy: 0.5000
    Epoch 4/5
    782/782 [============ ] - 46s 59ms/step - loss: 0.6932 -
    accuracy: 0.4999 - val_loss: 0.6933 - val_accuracy: 0.5000
    Epoch 5/5
    accuracy: 0.5003 - val_loss: 0.6932 - val_accuracy: 0.5000
[34]: keys = ['accuracy', 'val_accuracy']
    progress = {k:v for k,v in history.history.items() if k in keys}
    import pandas as pd
    pd.DataFrame(progress).plot()
    plt.xlabel("epochs")
    plt.ylabel("accuracy")
    plt.grid(True)
    plt.show()
```


1.5 Evaluating the model using "Precision", "Recall" and "F1-score"

```
[35]: import numpy as np
  from sklearn import metrics
  from sklearn.metrics import confusion_matrix
  from sklearn.metrics import ConfusionMatrixDisplay
  import matplotlib.pyplot as plt
  y_pred = np.argmax(model.predict(x_val), axis=1)

print("Classification report for classifier %s:\n%s\n"
  % (model, metrics.classification_report(y_val, y_pred)))

confMatrix = confusion_matrix(y_true = y_val, y_pred = y_pred)
  disp = ConfusionMatrixDisplay(confusion_matrix = confMatrix)
  disp.plot()
  plt.show()
```

782/782 [==========] - 16s 18ms/step

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344:

UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344:
UndefinedMetricWarning: Precision and F-score are ill-defined and being set to
0.0 in labels with no predicted samples. Use `zero_division` parameter to
control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

Classification report for classifier <keras.src.engine.functional.Functional object at 0x7d1afd441720>:

	precision	recall	f1-score	support
	_			
0	0.00	0.00	0.00	12500
1	0.50	1.00	0.67	12500
accuracy			0.50	25000
macro avg	0.25	0.50	0.33	25000
weighted avg	0.25	0.50	0.33	25000

