Tony Seguin

Encadrants:
Olivier Cailloux
Meltem Öztürk
Université Paris-Dauphine - LAMSADE

12 octobre 2018

Deux systèmes sélectionnés

Sommaire

- Sujet de stage
 - Problématique
- Débat
 - Introduction
 - Scénario
- O Deux systèmes sélectionnés
 - Connaissances
 - Fonction de décision
 - Arguments
 - Comparaison
- Résultat et conclusion
 - Travail effectué
 - Statistique
 - Conclusion

- Sujet de stage
 - Problématique
- - Introduction
 - Scénario
- - Connaissances
 - Fonction de décision
 - Arguments
 - Comparaison
- - Travail effectué
 - Statistique
 - Conclusion

Problématique

Problème d'aide à la décision

Alternatives

x : Bell

Sujet de stage

y : Pomme

z: PV

Critères

c₁: écran

c2: processeur

c3: batterie

Poids

 $w_1 = 0.40$

 $w_2 = 0.35$

 $w_3 = 0.25$

Performances

x = (0.79, 0.65, 0.70)

y = (0.89, 0.60, 0.30)

z = (0.58, 0.55, 0.53)

Fournir une argumentation

Solution proposée

 Débat entre deux systèmes de recommandation [Cailloux and Meinard, 2018]

Sommaire

- - Problématique
- Débat
 - Introduction
 - Scénario
- - Connaissances
 - Fonction de décision
 - Arguments
 - Comparaison
- - Travail effectué
 - Statistique
 - Conclusion

Sujet de stage

Notations

- S : ensemble des arguments,
- T : ensemble des propositions possibles,
- P : ensemble des perspectives.

Relations

- $\bullet \leadsto \subseteq S \times T : s \leadsto t$, l'argument s soutient la proposition t,
- $\bullet \triangleright_{\exists} \subseteq S \times S : s_2 \triangleright_{\exists} s_1$, s_2 attaque s_1 , si s_2 attaque dans au moins une perspective alors s_1 devient invalide,
- $\not \triangleright_{\exists} \subseteq S \times S : s_2 \not \triangleright_{\exists} s_1, s_2$ n'attaque pas l'argument s_1, s_1 reste valide.

y est recommandée (t)

y est recommandée grâce à de sa performance sur $\{c_1\}$ (s1)

 $\uparrow \triangleright_{\exists}$

x est préférée à y car l'intensité de la préférence de x par rapport à y sur $\{c_3\}$ est significativement plus grande que l'intensité de la préférence de y par rapport à x sur $\{c1\}$, et tous les critères ont plus ou moins les mêmes poids. (s2)

Sommaire

- Sujet de stage
 - Problématique
- 2 Débat
 - Introduction
 - Scénario
- Deux systèmes sélectionnés
 - Connaissances
 - Fonction de décision
 - Arguments
 - Comparaison
- Résultat et conclusion
 - Travail effectué
 - Statistique
 - Conclusion

Sujet de stage

- Ensemble d'alternatives : X
- Ensemble de critères : $N = \{1, ..., n\}$

Préférences de l'approche de [Labreuche, 2011]

- fonction de valeurs : $u_i(x)$
- poids des critères $w=(w_0, ..., w_n)$, tel que $\sum w_i=1$

Préférences de l'approche de [Nunes and al, 2014]

- fonction d'utilité : $v(o_i[a_k]) \in [-1, 1]$
- ensemble de contraintes : C.
- utilité associée aux contraintes : $v(c) \in [-1, 1]$
- ullet poids des critères $w(x,a_i)\in [0,1]$ avec $\sum w(x,a_i)=1$

Fonction de décision

Sujet de stage

Approche [Labreuche, 2011]

• Soit $x \in X$, $d(x) \rightarrow [0,1]$: $\sum w_i \times v(x_i)$

Approche [Nunes and al, 2014]

- Soit $x, y \in X$, $d(x,y) \rightarrow [0,1]$:
 - $\sum w_i \times AttCost(x, y, a_i)$ $i \in N$
 - $CritCost(x, y, a_i) = v(y_i) v(x_i)$, si $v(y_i) > v(x_i)$, 0 sinon.

Deux systèmes sélectionnés

- ExtAversion(x,y):
 - ext(y) ext(x) si ext(x) < ext(y), 0 sinon.
- TradeoffContrast(x,y):
 - $avg_{TradeOff} TradeOff(x, y)$ si $TradeOff(x, y) \le avg_{TradeOff}$, $TradeOff(y, x) - avg_{TradeOff}$ si $TradeOff(y, x) > avg_{TradeOff}$, 0 sinon.

Arguments: Labreuche

• Expliquer : $x_L \prec x_N$

Choix d'explication

- \bullet ψ_{AII} : All
- ψ_{NOA} : Not on average
- ψ_{IVT} : Invert
- ψ_{RMG} : Remaining

Ordre d'application

eftmargin=*[] $\psi_{AII} \lhd \psi_{NOA}$ $\triangleleft \psi_{IVT} \triangleleft \psi_{RMG}$

Arguments

Deux systèmes sélectionnés

- \bullet ψ_{AII} : N
- ψ_{NOA} : $C \cap N^+(x, y)$ et $C \cap N^-(x,y)$
- ψ_{IVT} : K_{PS} , K_{PRS} , K_{NW} , KNRW
 - et K_{PN}
 - ψ_{RMG} : N, ou N^+ et N^- .

Arguments : Nunes

• Expliquer : $x_N \prec x_I$

Contenu Explication

- ϕ_{CRIT} : Critical attribute
- ϕ_{CUT} : Cut-off
- ϕ_{DOM} : Domination
- ϕ_{MIN-} : Minimum requirements -
- ϕ_{MIN+} : Minimum requirements +
- ϕ_{DECI} : Decisive criteria
- ϕ_{TRAD} : Trade-off resolution

Arguments

- ϕ_{CRIT} : critère a^*
- ϕ_{CUT} : contrainte c
- \bullet ϕ_{DOM} : N
- φ_{MIN+} : critère a_{th}
- ϕ_{MIN-} : critère a_{th}
- \bullet ϕ_{DECI} : D
- \bullet ϕ_{TRAD} : N^+ et N^-

Ordre d'application

 ϕ TRAD

```
eftmargin=*[]\phi_{CRIT} \triangleleft
\phi_{CUT}^* \triangleleft \phi_{DOM} \triangleleft
\phi_{MIN+/-}* \lhd \phi_{DECI} \lhd
```

Comparaison

Figure: Comparaison entre l'approche de Labreuche, Klein et Nunes

Sommaire

Sujet de stage

- Sujet de stage
 - Problématique
- 2 Débat
 - Introduction
 - Scénario
- 3 Deux systèmes sélectionnés
 - Connaissances
 - Fonction de décision
 - Arguments
 - Comparaison
- Résultat et conclusion
 - Travail effectué
 - Statistique
 - Conclusion

Résultat et conclusion

Travail effectué

- Revue de la littérature
 - lecture d'articles
 - choix des approches
- Implémentation :
 - Propreté du code
 - Tests unitaire explicite
- Reproduction explicite des exemples
- Erreurs relevées dans l'article [Labreuche, 2011]

Deux systèmes sélectionnés

Statistique

Figure: Taux de désaccord entre les deux modèles.

Deux systèmes sélectionnés

Conclusion

- Proposition d'un débat,
- Désaccord ⇒ débat possible.
- Le langage commun reste à être défini
- Protocole de débat à finaliser.
- Suite :
 - récolte des préférences,
 - fonctions de décision diverse,
 - étude utilisateur.

Répartition des ancrages

Figure: Répartition des ancrages en fonction du nombre d'alternative

Objectif de graphe d'argument

Références

Sujet de stage

Cailloux and Meinard, 2018

A formal framework for deliberated judgment

Labreuche, 2011

A general framework for explaining the results of a multi-attribute preference model

Deux systèmes sélectionnés

Artificial Intelligence, vol. 175, 2011, pp. 1410-1448

Nunes and al, 2014

Pattern-based EXplanation for Automated Decisions

Frontiers in Artificial Intelligence and Applications, vol. 263, ECAI 2014 pp. 669-674.

Nunes and Jannach, 2017

A Systematic Review and Taxonomy of Explanations in Decision Support and Recommender Systems