Building a Text Classification Model

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Recurrent Neural Networks (RNNs) are another common NN architecture

Great for working with sequences

Classification using RNNs

PyTorch has built-in support for RNNs

Recurrent Neural Networks (RNNs)

$$y = f(x)$$

Machine Learning

Machine learning algorithms seek to "learn" the function f that links the features and the labels

$$y_t = f(x_t, y_{t-1})$$

Learning the Past

Relationships where past values of the effect variable drive current values are called auto-regressive

$$y_t = f(x_t, y_{t-1})$$

Learning the Past

Relationships where past values of the effect variable drive current values are called auto-regressive

Feed-forward networks cannot learn from the **past**

Recurrent neural networks can

Simplest Feed-forward Neuron

Simplest Recurrent Neuron

Уt **y**t-1

Recurrent Neuron

 y_t = Output at time t Depends upon

- y_{t-1} = Output at time t 1
- x_t = New inputs available only at time t

yt **y**t-1 **y**t X_t

Recurrent Neuron

Regular neuron: input is feature vector, output is scalar

$$Y = activation(Wx + b)$$

Recurrent neuron: output is vector too

Input: $[X_0, X_1, ...X_t]$

Output: $[Y_0, Y_1, ...Y_t]$

Уt **y**t-1 X_t

Memory and State

Recurrent neurons remember the past

They possess 'memory'

The stored state could be more complex than simply y_{t-1}

The internal state is represented by ht

Уt **y**t-1 X_{t}

Recurrent Neuron

Now, each neuron has two weight vectors \mathbf{W}_{x} , \mathbf{W}_{y}

Уt **y**t-1

Recurrent Neuron

Now, each neuron has two weight vectors

$$W_x$$
, W_y

Уt **y**t-1

Recurrent Neuron

Now, each neuron has two weight vectors

$$W_x$$
, W_y

yt **y**t-1 X_t

Recurrent Neuron

Output of neuron as a whole is given as

$$y_t = \Phi(X_t W_x + y_{t-1}W_y + b)$$

(Φ is the activation function)

Training a Recurrent Neural Network

Layer of Recurrent Neurons

A layer of neurons forms an RNN cell - basic cell, LSTM cell, GRU cell (more on these later)

Layer of Recurrent Neurons

The cells unrolled through time form the layers of the neural network

The actual training of a neural network happens via Gradient Descent Optimization

Gradient Descent

Back Propagation Through Time

$$y_t = f(x_t, y_{t-1}, y_{t-2}, y_{t-1000})$$

Learning the Distant Past

The unrolled RNN will be very, very deep - many layers to train, the gradient has to be propagated a long way

Recurrent neural networks may be unrolled very far back in time

They're prone to the vanishing and exploding gradients issue

Deep neural networks are prone to overfitting

Overfitting

Low Training Error

Model does very well in training...

High Test Error

...but poorly with real data

Preventing Overfitting

Regularization - Penalize complex models

Cross-validation - Distinct training and validation phases

Dropout - Intentionally turn off some neurons during training

Long Memory RNN Cells

Simplest Recurrent Neuron

Simplest Recurrent Neuron

Long Memory Recurrent Neuron

Уt h_{t-1} Ct-1 X_t

Long Memory RNNs

Increase the amount of state in neuron

Effect is to increase memory of neuron

Could explicitly add:

- long-term state (c)
- short-term state (h)

Long Memory RNNs

Advantages in Training
Faster training, nicer gradients

Advantages in Prediction

Works well with even very deep NNs

Long/Short-Term Memory Cell (LSTM)

Уt h_{t-1} Ct-1 X_{t}

LSTM Cells

Functionally like basic RNN cell

Performance far better

Amazing success at long-term patterns

Long text sequences, time series...

In PyTorch, because of dynamic computation graphs we do not need to pad names to be of the same length

This is a significant improvement over TensorFlow

Letter	a		j		i		m	
J	0	0	1	O	0	0	0	O
i	0	0	0	0	1	0	0	O
m	0	0	0	0	0	0	1	Ο

Letter	a		j					•••
J	0	0	1	0	0	0	0	0
i	0	0	0	0	1	0	0	0
m	0	0	0	0	0	0	1	0

Gender Prediction Using RNNs

Prepare Data

Download and extract

File manipulation - simple

Create Neural Network

Two linear layers

LogSoftMax output layer

Evaluate Model

Confusion Matrix

Similar to training, but no backprop

Encode Names as Tensors

No padding needed in PyTorch!

Sequence of one-hot encoded characters

Train Model

Backprop with loss.backward()

NLL loss to go with LogSoftMax

Use in Prediction

Ready to go!

Could add REST API server

```
class RNN(nn.Module):
 In constructor
  self.i2h = nn.Linear()
  self.i2o = nn.Linear()
  self.softmax = nn.LogSoftmax()
# Forward method
  def forward(self, input, hidden):
        combined = torch.cat((input, hidden), 1)
        hidden = self.i2h(combined)
        output = self.i2o(combined)
        output = self.softmax(output)
        return output, hidden
```


Demo

Gender prediction/classification from names using RNNs

Confusion Matrix in Evaluating Classifiers

Confusion Matrix

		Carcted Labers	
Actual Label		Cancer	No Cancer
Actual	Label		
Cancer	10 instances	4 instances	
	No Cancer	5 instances	1000 instances

Confusion Matrix

		Carctea Labers	_	
Actual Label		Cancer	No Cancer	
ACLUAI	Label			
	Cancer	10 instances	4 instances	
	No Cancer	5 instances	1000 instances	

Confusion Matrix

Predicted Labels

Actual Label

Cancer

No Cancer

Cancer	No Cancer		
10	4		
5	1000		

True Positive

False Positive

True Negative

False Negative

Accuracy

Precision

Predicted Labels

Precision = Accuracy when classifier flags cancer

Recall

Predicted Labels

Recall = Accuracy when cancer actually present

Summary

Recurrent Neural Networks (RNNs) are another common NN architecture

Great for working with sequences

Classification using RNNs

PyTorch has built-in support for RNNs

Related Courses

Building Classification Models with TensorFlow

Building Unsupervised Learning Modelswith TensorFlow

Deep Learning Using TensorFlow and Apache MXNet on AWS SageMaker

Building and Deploying Keras in a Multicloud Environment