Assignment 1

CSE 16

April 7, 2020

1 Part I

- 1. Use set builder notation to give a description of each of these sets.
 - a. $\{0, 3, 6, 9, 12\}$
 - b. $\{-3, -2, -1, 0, 1, 2, 3\}$
 - c. $\{m, n, o, p\}$
- 2. Determine whether each of these pairs of sets are equal.
 - a. $\{1, 3, 3, 3, 5, 5, 5, 5, 5\}, \{5, 3, 1\}$
 - b. $\{\{1\}\}, \{1, \{1\}\}$
 - c. \emptyset , $\{\emptyset\}$
- 3. Determine whether these statements are true or false:
 - a. $\emptyset \in \{\emptyset\}$
 - b. $\emptyset \in {\emptyset, {\emptyset}}$
 - c. $\{\emptyset\} \in \{\emptyset\}$
 - $\mathrm{d.}\ \{\varnothing\}\in\{\{\varnothing\}\}$
 - e. $\{\emptyset\} \subset \{\emptyset, \{\emptyset\}\}$
 - f. $\{\{\emptyset\}\}\subset\{\emptyset,\{\emptyset\}\}$
 - g. $\{\{\emptyset\}\}\subset\{\{\emptyset\},\{\emptyset\}\}$
- 4. Determine whether these statements are true or false:
 - a. $x \in \{x\}$
 - b. $\{x\} \subseteq \{x\}$
 - c. $\{x\} \in \{x\}$
 - d. $\{x\} \in \{\{x\}\}\$
 - e. $\varnothing \subseteq \{x\}$
 - f. $\varnothing \in \{x\}$
- 5. Find two sets A and B such that $A \in B$ and $A \subseteq B$. $A=\emptyset, B=\{\emptyset\}$
- 6. What is the cardinality of each of these sets?
 - a. \emptyset

```
b. {∅}c. {∅, {∅}}d. {∅, {∅}, {∅, {∅}}}
```

- 7. Find the power set of each of these sets, where a and b are distinct elements.
 - a. $\{a\}$
 - b. $\{a, b\}$
 - c. $\{\emptyset, \{\emptyset\}\}$

2 Part II

- 1. Suppose that A, B, and C are sets such that $A \subseteq B$ and $B \subseteq C$, show that $A \subseteq C$
- 2. Prove that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ if and only if $A \subseteq B$
- 3. Show that if $A \subseteq C$ and $B \subseteq D$, then $A \times B \subseteq C \times D$
- 4. Let A be a set. Show that $\emptyset \times A = A \times \emptyset = \emptyset$.
- 5. This exercise presents Russell's paradox. Let S be the set that contains a set x if the set x does not belong to itself, so that $S = \{x \mid x \notin x\}$.
 - a) Show the assumption that S is a member of S leads to a contradiction.
 - b) Show the assumption that S is not a member of S leads to a contradiction.

By parts (a) and (b) it follows that the set S cannot be defined as it was. This paradox can be avoided by restricting the types of elements that sets can have.

3 Part III

- 1. Let A and B be sets. Show that
 - a. $(A \cap B) \subseteq A$
 - b. $A \subseteq (A \cup B)$
 - c. $A B \subseteq A$
 - $d. A \cap (B A) = \emptyset$
 - e. $A \cup (B A) = A \cup B$
- 2. Show that if A and B are sets with $A \subseteq B$, then
 - a. $A \cup B = B$
 - b. $A \cap B = A$
- 3. Can you conclude that A = B if A, B, and C are sets such that (prove it or find a counterexample)
 - a. $A \cup C = B \cup C$?
 - b. $A \cap C = B \cap C$?
 - c. $A \cup C = B \cup C$ and $A \cap C = B \cap C$?

- 4. Show that if A and B are sets, then
 - a. $A \oplus B = B \oplus A$
 - b. $(A \oplus B) \oplus B = A$