Week 2 Questions and Answer Key

- Day 1, MLK
- Day 2, questions 1-4
- Day 3, questions 5-8
- Day 4, questions 9-12
- Day 5, questions 13-18

1.
$$y = x^2(2x+1)$$
 $\frac{dy}{dx} = 6x^2 + 2x$

2.
$$y = (2x+3)(5x-4)$$
 $\frac{dy}{dx} = 20x+7$

3.
$$y = (x^2 + 3x + 4)(x^3 - 4x)$$
 $\frac{dy}{dx} = 5x^4 + 12x^3 - 24x - 16$

4. Find
$$f'_2$$
 when $f_x = (x^2 - 4x + 3)(x^3 - 5x)$ $f'_2 = -7$

5.
$$y = \frac{(x-1)}{(x^2+x+1)}$$
 $\frac{dy}{dx} = \frac{-x^2+2x+2}{(x^2+x+1)^2}$

6.
$$y = \frac{4x^2+9}{3x^3-4x^2}$$
 $\frac{dy}{dx} = \frac{-12x^4-81x^2+72x}{(3x^3-4x^2)^2}$

7.
$$y = \frac{3x-1}{2x+4}$$
 $\frac{dy}{dx} = \frac{14}{(2x+4)^2}$ OR $\frac{7}{2(x+2)^2}$

8. Find
$$f'_{-1}$$
 when $f_x = \frac{3x-4}{x+2}$ $f'_{-1} = 10$

9.
$$y = x^3(x^3 - x)^3$$
 $\frac{dy}{dx} = (12x^5 - 6x^3)(x^3 - x)^2$

10.
$$y = (3x+4)^{\frac{3}{4}}(4x^2+8)$$
 $\frac{dy}{dx} = \frac{33x^2+32x+18}{(3x+4)^{\frac{1}{4}}}$

11.
$$y = \frac{(x^3+2)^4}{4x^2-3x}$$
 $\frac{dy}{dx} = \frac{(x^3+2)^3(40x^4-33x^3-16x+6)}{(4x^2-3x)^2}$

12.
$$y = \frac{(3x+2)^5}{(2x-1)^3}$$
 $\frac{dy}{dx} = \frac{(3x+2)^4(12x-27)}{(2x-1)^4}$

13. Find the slope of the line tangent to the curve $y = \frac{x-3}{2-5x}$ at the point $(2, \frac{1}{8})$. $m_{tan} = \frac{-13}{64}$

14. Find the equation of the tangent line at the given point in the previous question. $y = \frac{-13x}{64} + \frac{17}{32}$

15.
$$4x + 3y = 7$$
 $y' = \frac{-4}{3}$

16.
$$x^2 - y^2 = 9$$
 $y' = \frac{x}{y}$

17.
$$y^4 - y^2x + x^2 = 0$$
 $y' = \frac{y^2 - 2x}{4y^3 - 2xy}$

18.
$$3x^2y^2 + 4y^5 + 8x^2y^3 + xy = 5$$
 $y' = \frac{-6xy^2 - 16xy^3 - y}{6x^2y + 20y^4 + 24x^2y^2 + x}$