Peragrams

Per recently learned about *palindromes*. Now he wants to tell us about it and also has more awesome scientific news to share with us.

"A palindrome is a word that is the same no matter whether you read it backward or forward", Per recently said in an interview. He continued: "For example, *add* is not a palindrome, because reading it backwards gives *dda* and it's actually not the same thing, you see. However, if we reorder the letters of the word, we can actually get a palindrome. Hence, we say that *add* is a *Peragram*, because it is an anagram of a palindrome".

Per gives us a more formal definition of *Peragrams*: "Like I said, if a word is an anagram of at least one palindrome, we call it a *Peragram*. And recall that an anagram of a word w contains exactly the same letters as w, possibly in a different order."

S	Α	T	0	R
Α	R	Е	Р	0
T	Е	Ν	Е	T
0	Р	Е	R	Α
R	0	Т	Α	S

Photo by Ross Beresford

Problem ID: peragrams **CPU Time limit:** 1 secon **Memory limit:** 1024 MB

Difficulty: 1.7

Author: Oskar Werkelin ,
Source: KTH Challenge 2
License: © EY-SA

Task

Given a string, find the minimum number of letters you have to remove from it, so that the string becomes a Peragram.

Input

Input consists of a string on a single line. The string will contain at least 1 and at most $1\,000$ characters. The string will only contain lowercase letters a-z.

Output

Output should consist of a single integer on a single line, the minimum number of characters that have to be removed from the string to make it a Peragram.

Sample Input 1	Sample Output 1	
abc	2	
Sample Input 2	Sample Output 2	
aab	0	