Mathematical model for the concentration and electric potential profiles in a solution of electrolytes under a redox reaction

by Agustín Escobar Blanc Advisor: Enrique Muñoz

July 3, 2018

Pontificia Universidad Católica de Chile Instituto de Física

Outline

Diffusion Of Electrolytes In Aqueous Solution

Steady State Solution

Dynamic solution

Diffusion Of Electrolytes In Aqueous

Solution

Diffusion equation with external electric field

• The problem of diffusion

$$\frac{\partial C_s}{\partial t}(x,t) + \nabla \cdot \mathbf{N}_s(x,t) = 0.$$

 Electric potential due to charge distribution (electrolytes)

$$\nabla^2 \phi = -\frac{\rho(x,t)}{\epsilon \epsilon_0}.$$

Here ϵ is water's permittivity and ϵ_0 the permittivity of free space. $s = \pm$.

Figure 1

Mathematical model of the flux

Model for the flux of electrolyte

$$\mathbf{N}_s = -D_s \left(\nabla \cdot C_s(x)_+ + s \frac{zF}{RT} C_s(x) \nabla \phi(x) \right)$$

It is convenient to work with the dimensionless potential $\Psi=rac{zF}{RT}\phi$

$$\mathbf{N}_s = -D_s \left(\nabla \cdot C_s(x)_+ + sC_s(x) \nabla \Psi(x) \right)$$

The charge distribution is given by the concentration of each electrolyte on every point of the solution times its electrical charge.

$$\rho(x,t) = \sum_{s=\pm} szFC_s(x,t)$$

4

Mathematical model of the system

Dimensionless length parameter $\xi = \kappa x$ Infinitely large plate implies

$$\nabla_\xi^2 \to \frac{\partial^2}{\partial \xi^2}$$

. With these considerations, the equations take the form

$$\frac{\partial C_{+}}{\partial t}(\xi, t) = -D_{+}\nabla^{2}C_{s}(\xi) - \nabla(C_{+}(\xi)\nabla\Psi(\xi, t)), \tag{1}$$

$$\frac{\partial C_{-}}{\partial t}(\xi, t) = -D_{-}\nabla^{2}C_{s}(\xi) + \nabla(C_{-}(\xi)\nabla\Psi(\xi, t)), \qquad (2)$$

$$\frac{\partial^{2}\Psi(\xi, t)}{\partial \xi^{2}} = -\frac{\kappa^{2}}{C_{b}}(C_{+}(\xi, t) - C_{-}(\xi, t)_{-}). \qquad (3)$$

$$\frac{\partial^2 \Psi(\xi, t)}{\partial \xi^2} = -\frac{\kappa^2}{C_b} \left(C_+(\xi, t) - C_-(\xi, t)_- \right). \tag{3}$$

where $\kappa^2 = \frac{(zFC_b)^2}{RT_{6-60}}$ and C_b the bulk concentration.

Border conditions

The border conditions for this problem can be obtained looking at figure 2

•
$$(\partial C_+/\partial t + \nabla \cdot \mathbf{N}_+)\big|_{interface} = r$$
,

•
$$(\partial C_{-}/\partial t + \nabla \cdot \mathbf{N}_{-})\big|_{interface} = 0$$
,

•
$$C_+ = C_- = C_b$$
,

•
$$\Phi(0) = \frac{zFV_0}{RT} = \Phi_0$$
,

•
$$\Phi(\delta) = 0$$
.

Figure 2

Steady State Solution

Steady state approach

As a first approach to solving the system, we compute the steady state solution.

$$\frac{\partial C_{+}}{\partial t}(\xi, t) = 0 \Rightarrow \nabla \cdot \mathbf{N}_{+} = 0 \qquad \Rightarrow \mathbf{N}_{+}(\xi)\big|_{surface} = r, \qquad (4)$$

$$\frac{\partial C_{-}}{\partial t}(\xi, t) = 0 \Rightarrow \nabla \cdot \mathbf{N}_{-} = 0 \qquad \Rightarrow \mathbf{N}_{-}(\xi)\big|_{surface} = r, \qquad (5)$$

which yields the following system of equations for the steady state problem

$$\nabla C_{+}(\xi) - C_{+}(\xi)\nabla \Psi(\xi) = r, \tag{6}$$

$$C_{-}(\xi) + C_{-}(\xi)\nabla\Psi(\xi) = 0,$$
 (7)

$$\nabla^2 \Psi(\xi) = -\kappa^2 \left(C_+(\xi) - C_-(\xi)_- \right). \tag{8}$$

Perturbation solution of the system

By means of a perturbation analysis with r as a control parameter we obtain solve the previous system up to first order in r. The zero order solution is

$$\Phi^{(0)}(\xi) = 2\log\left(\tanh\left(\frac{\xi - \xi_0}{2}\right)\right),\tag{9}$$

Where

$$C_s^{(0)}(x) = C_{b,s}e^{s\Phi^{(0)}(x)}$$

Perturbative solution of the system

In order to solve the system to first order in r, the following approximation was made.

$$\left| \frac{\partial \phi^{(1)}}{\partial x} \right| << \frac{\kappa V_0}{r},\tag{10}$$

Which yields

$$C_+^{(1)}(\xi) = -\frac{1}{\kappa} e^{-\Phi^{(0)}(\xi)} \left(\xi - 2 \left(\tanh \left(\frac{\xi - \xi_0}{2} \right) + \tanh \left(\frac{\xi_0}{2} \right) \right) \right),$$

and

$$C_{-}^{(1)}(\xi) = 0.$$
 (11)

Analytic results for the concentration

The first order term in the potential expansion is

$$\Phi'^{(1)}(\xi) = \frac{1}{\kappa} \left(\frac{1}{2} \xi^2 - 2\gamma \xi + 2(2\gamma - \xi) \coth\left(\frac{\xi - \xi_0}{2}\right) \right) + C$$

$$C = -\frac{1}{\kappa} \left(\frac{1}{2} \xi_{\delta}^2 - 2\gamma \xi_{\delta} + 2(2\gamma - \xi_{\delta}) \coth\left(\frac{\xi_{\delta} - \xi_0}{2}\right) \right).$$

Analytic results for the potential

Numeric Results

For numeric computation the Runge-Kutta of fourth order was used. The following graph shows a comparison between the numeric an analytic system for $r = \kappa \times 10^{-5} \approx 2.28$.

Numeric Results

The following graph shows a comparison between the numeric an analytic concentrations.

Dynamic solution

Stage of the project

We are currently working on solving the complete problem, including the dynamics.

$$\frac{\partial C_{+}}{\partial t}(\xi, t) = -D_{+}\nabla^{2}C_{s}(\xi) - \nabla(C_{+}(\xi)\nabla\Psi(\xi, t)), \qquad (12)$$

$$\frac{\partial C_{-}}{\partial t}(\xi, t) = -D_{-}\nabla^{2}C_{s}(\xi) + \nabla(C_{-}(\xi)\nabla\Psi(\xi, t)), \qquad (13)$$

$$\frac{\partial C_{+}}{\partial t}(\xi, t) = -D_{+}\nabla^{2}C_{s}(\xi) - \nabla(C_{+}(\xi)\nabla\Psi(\xi, t)), \qquad (12)$$

$$\frac{\partial C_{-}}{\partial t}(\xi, t) = -D_{-}\nabla^{2}C_{s}(\xi) + \nabla(C_{-}(\xi)\nabla\Psi(\xi, t)), \qquad (13)$$

$$\frac{\partial^{2}\Psi(\xi, t)}{\partial \xi^{2}} = -\frac{\kappa^{2}}{C_{b}}(C_{+}(\xi, t) - C_{-}(\xi, t)_{-}). \qquad (14)$$

To-do list

- 1. Finish numerical computation of the dynamical system
- 2. Include stochastic reaction rate to measure noise
- 3. Couple to NV-center.