AN 1977:181612 HCAPLUS

DN 86:181612

TI Low resistance heating elements for electric blankets

IN Kobayashi, Yasushi; Terao, Kazuhiko

PA Tokyo Tokushu Electric Wire Mfg. Co., Ltd., Japan

SO Japan., 2 pp. CODEN: JAXXAD

DT Patent

LA Japanese

FAN.CNT 1

PATENT NO. KIND DATE APPLICATION NO. DATE

1 JP 51045528 B4 19761204 JP 1972-117559 19721122

1 JP 49076133 A2 19740723

AB Cu alloys contg. Ag 0.5-4.0, Sn 0.1-0.5, and Mn 0.05-0.5 wt. - are useful as low-resistance heating elements for elec. blankets, etc. The alloys have good workability, good mech strength, and low resistivity. Thus, a Cu alloy contg. Ag 4.0, Sn 0.5, and Mn 0.2 wt. ? was made into 0.5-mm-diam., then drawn into 0.08-mm diam. wire: frequency of broken wire was 1/unit time, vs. 8 times/unit time for a control without Mn. The sp. resistance of the alloy was 2.41 .mu..OMEGA.-cm. Heating elements for elec. blanket prepd. by using 0.08-mm-thick, 0.43-mm wide wire of the above alloy were then bending tested by using the JISC 3301-5.10(1) method: the Cu alloy wire broke after 19,010 bending operations.

(9) I nt . C12. C 22 C 9/00

H 01 C 3/00

50日本分類 10 L 15

62 A 212

19日本国特許庁

①特許出願公告

昭51-45528

特 公

@公告 昭和51年(1976)12月 4日

庁内整理番号 6554-42

発明の数 1

(全 2 頁)

1

匈低抵抗発熱材

 $(\cdot \cdot \cdot)$

 (\cdot,\cdot)

21)特 願 昭47-117559

願 昭47(1972)11月22日 223日

開 昭49-76133 公

④昭49(1974)7月23日.

70発 明 者 小林靖司

上田市大字大屋300東京特殊電

線株式会社上田工場内

同 寺尾計彦

同所

願 人 東京特殊電線株式会社 勿出

東京都新宿区西大久保2の307

の特許請求の範囲

重量%で、0.5~4.0%の銀、0.1~0.5% の錫、0.05~0.5%のマンガン、残部銅からな る低抵抗発熱材。

発明の詳細な説明

関するものである。

一般に電気毛布用ヒーター線としては、テトロ ン芯に、Cu - 1.0 wt % Cd 合金からなる発熱 材を巻回し、その上にナイロンを被覆し、次いで 検知線が巻かれ、最後にPVCを被覆したものが 25

* 知られている。

しかし、このCu-Cd 合金は、均一組成のも のが得られず機械的特性が良くないこと、及び労 働衛生上好ましくないことから、本発明者は先に、 5 この点を改良した Sn - Ag - Cu合金からなる低 抵抗発熱材を提案し(特願昭46-69132号) 一応所期の目的を達成した。

2

しかしながら、この0.1~0.5%の錫、0.5~ 4.0%の銀、残部銅からなる合金も、その後の研 10 究により線引加工性において問題があることが判 明した。

そこで本発明においては、このSnーAgーCu 合金に 0.0 5~ 0.5 %のマンガンを添加して加工 性の改良をはかつたものである。マンガンの添加 15 は、溶腸中の脱酸効果があるばかりでなく、錫の 酸化物(SnO₂)の形成を阻止し、以後の圧延線 引加工性を著しく向上させる。しかし、その含有 量が0.05%より少ないと圧延線引加工性の効果 がさほど期待できない、また 0.5%を越えると抵 本発明は、例えば電気毛布等に好適な発熱材に 20 抗値が増加し実用に供し難くかつ加工性も低下し てくるので、0.05~0.5%の範囲に限定される。

> 次に本発明の実施例を示す。各成分組成の発熱 材につき加工性、強度、発熱性の試験を行なつた 結果は次表の通りである。

		化学成分(Wt%)					加工性(断)	線回数)※1	※ 2 強 度	※ 3 発 熱 性
		Ag	Sn	Mn	Cd	Cu	仕上り線経 0.08mm	仕上り 線径 0.05mm	(屈曲値)	(固有抵抗)
実	1	4.0	0. 5	0.05	_	残	2 💷	4 回	19868回	2.4 1 µ Q cm
	2	4.0	0. 5	0. 2	_	残	1 🗇	3 🗓	19010"	2.41 "
施	3	4.0	0. 5	0. 5	_	残	1 🗇	3 回	18821"	2.42 "
例	4	4.0	0. 1	0.05	-	残	1 📵	2 回	17962"	2.4.0 "
	5	4. 0	0. 1	0. 2		残	2 🗇	3 回	18167"	2.41 "

			化学成分(Wt)					加工性(断線回数)※1		※ 2 強 度	※3 発 熱 性
			Ag	Sn	Mn	Сd	Cu	仕上り線径 0.08mm	仕上り線径 0.0 5mm	(屈曲値)	(固有抵抗)
B.		6	4. 0	0. 1	0. 5	_	残	10	2 🗇	176340	2.4 3 μΩcm
	実	7	0. 5	0. 5	0.05	_	残	1 🗇	3 回	1 2 6 5 3 "	2.32 "
	14-	8	0. 5	0. 5	0. 2		残	0回	3回:	11932"	2.34 "
	施	9	0. 5	0. 5	0. 5	-	残	1 📵	4 🗓	1 2 0 1 6 "	2.34 "
	6 71)	10	0. 5	0. 1	0.05		残	0 回	2 🗇	1 1 8 6 2 "	2.35 "
		1 1	0. 5	0. 1	0. 2	_	残	0 回	3 回	1 2 1 3 2 "	2.36 "
		1 2	0. 5	0. 1	0. 5	_	残	1 @	3回	1 1 0 2 6 "	2.39 "
	110	1	4. 0	0. 5 ⁻	_	_	残	回 8	1 10	19714"	2.47 "
	比	2	4. 0	0. 1	-	-	残	9 回	100	17579"	2.42 "
		3	0. 5	0. 5	-	_	残	7回	9 回	10059"	2.40 "
	ניפו	4	0. 5	0. 1		_	残	8 回	100	9856"	2.36 "
	従来例		_	_	_	1. 0	強	8回	10回	9822"	2.42 "

- ※1 各成分組成の母材を、線径 0.5㎜から所要線径まで線引ダイスにより引抜き加工し、 加工工程中同一条件(線引速度 6 0 0 m/min正味重量 2 kg) で、断線事故が何回発 生するかにより、線引加工性の良否を求めた。
- 発熱材(厚さ0.08㎜巾0.43㎜)をテフロン芯に巻回し、その上にナイロンを被覆 **※** 2 し、次いで検知線を巻き、最後にPVC被覆したヒーター線を試料とし、JISC 3 3 0 1 の 5.1 0(1)耐折り曲げ性の試験方法に準じて屈曲試験を行ない、発熱材が断 線するまでの回数を屈曲値とした。
- ※3 発熱性については、発熱材の抵抗値をダブルブリンヂにより測定し比抵抗に換算した。 試験結果から明らかなように、本発明の合金は、 $\operatorname{Sn}-\operatorname{Ag}-\operatorname{Cu}$ 合金に Mn が添加さ れているので、線引加工性がきわめて良く、強度、発熱性についても在来のものとく らべ何ら遜色なく、低抵抗発熱材として申分のないものである。もちろん従来の Cu -Gd 合金にくらべれば、溶湯の際の溶解性が良いので均一組成のものが得られ、ま た有害なカドミウムを用いていないので労働衛生上も問題がない。

なお、銀の添加は屈曲性の改善をはかるための もので、これを 0.5~4.0%と限定した理由は、 0.5%以下の場合は耐屈曲性の改善効果が認めら れず、また4.0%以上では硬くなりすぎ冷間加工 経済的に不利であるからである。

また、錫の添加は低抵抗値を保持するに著しい

効果があるばかりでなく、屈曲特性をも向上させ る。が、その含有量が0.1%に満たない場合は発 熱材として利用できる抵抗値が得られないので除 外される。また、0.5%を越えると抵抗値が増加 性が悪くなるばかりでなく、材料価格が高くつき 40 し、例えば電気毛布等の抵抗材料として実用に供 し難く、更に柔軟性も低減するものである。