SDM College of Engineering & Technology, Dharwad-02 Department of Electronics & Communication Engineering <u>V Semester</u>

Course: Digital Signal Processing Laboratory

Course Code: 18UECL505

TERM WORK-II

Exp.	Problem statement	CO	Marks
No.		Mapping	
4.	Perform linear filtering of long data sequence using DFT		
	Given $h(n)=[1 -1 1]$, find the response for the input sequence	2	5
	x(n)=[1 2 1 -1 2 -2 3 4 0 1 -1 -2 -3 0 1 -2 3 2]. Consider DFT block		
	length of N.		
	Use:		
	i. Overlap-add method		
	ii. Overlap-save method.		
5.	Demonstrate efficient computation of DFT.	2	5
a)	Computation of DFT of two N-point sequence using single N-point		
	sequence.		
	Compute DFT of $x(n) = \begin{cases} -1, & 0 \le n \le 1 \\ 1, & 2 \le n \le 4 \text{ and that of } \\ -1, & 5 \le n \le 7 \end{cases}$		
	$h(n) = \sin\left(\frac{3\pi n}{8}\right)$; $0 \le n \le 7$ using single 8-point DFT. Verify the result		
	by computing DFT individually.		
b)	Compute DFT of 2N point sequence using single N-point sequence.		
	Compute 16-point DFT of a real sequence		
	$x(n) = (-1)^n$; $0 \le n \le 15$ using single 8-point DFT.		
6.	Perform frequency analysis of signals using DFT.	3	5
a)	To understand the effect of window length on the signal spectrum:		
	Consider the signal $x(n) = \cos(0.04\pi n) + \cos(0.02\pi n)$		
	Perform the frequency analysis by taking 512-point DFT by multiplying		
	signal with rectangular window with signal length i) L=25 ii)L=50		
	iii)L=100 iv) L=200. Find the minimum value of window length so that		
	all the frequencies are clearly distinguishable. Compare the magnitude		
	spectrum in each case and comment on the effect of window length.		

Date:01.10.2022

b) To understand the effect of using different windows:

Perform the frequency analysis of the signal $x(n) = \cos(w_0 n) + \cos(w_1 n) + \cos(w_2 n)$ where $w_0 = 0.2\pi$, $w_1 = 0.22\pi$, $w_2 = 0.6\pi$ using rectangular window using minimum value of window length so that all the frequencies are clearly distinguishable. Observe the frequency spectrum by using hamming window. Comment on the results.

c) To understand the effect of zero padding on the signal spectrum:

Perform the frequency analysis of the signal $x(n) = \cos(0.04\pi n)$ by taking 64-point DFT. Modify the rectangular sequence to length 256, 512, 1024 by appending zeros and plot the frequency spectrum. Comment on zero padding effect.

Note: Last date to complete term work-II: 12.11.2022

Lab In-charges HOD (E&CE)

Mr. Kotresh Marali

Mr. Shrikanth K. Shirakol