Problem Set 5: Will be posted this week

Class 11:
Universal Circuits
Deterministic Finite
Automata

University of Virginia cs3120: DMT2 Wei-Kai Lin

Recap: Size Hierarchy Theorem

Theorem 5.5 (Size Hierarchy Theorem)

For every sufficiently large n and $10n < s < 0.1 \cdot 2^n/n$,

$$SIZE_n(s) \subseteq SIZE_n(s+10n)$$
.

Is it surprising?

• Functions are often O(n), $O(n \log n)$, $O(n^2)$, ...

• Number of (n-bit input) functions? 2^{2^n}

• Number of "layers" = different sizes?

$$2^n/n$$

$$2^{2^n} \gg 2^n/n$$

Universal Circuits

Recap: Representing Circuits as Bits

last: $r_1, r_2, \dots r_m$

```
def CIRCUIT(X[0],X[1]):
    temp2 = NAND(X[0],X[1])
    temp3 = NAND(X[0],temp2)
    temp4 = NAND(X[1],temp2)
    temp5 = NAND(temp3,temp4)
    return temp5
```

```
2, 1 // 2-bit in, 1-bit out
0, 1 // 1st line. 0 and 1 are input
0, 2 // 2nd line. 2, 3, ... are temp
1, 2 // 3rd line (and so on
3, 4
5 // return, one line per bit
```

1 line:

input & output lengths

 ℓ lines:

one NAND per line

m lines:

one output bit per line

```
0: n, m
n: v_{n,1}, v_{n,2}
n+1: v_{n+1,1}, v_{n+1,2}
```

Universal Circuit/Program

program U takes a program description P and input x as its input, and "simulates" running P on x:

$$U(P,x) = P(x)$$

Theorem 5.9 (Bounded Universality of NAND-CIRC programs)

For every $s,n,m\in\mathbb{N}$ with $s\geq m$ there is a NAND-CIRC program $U_{s,n,m}$ that computes the function $EVAL_{s,n,m}$.

Parameters of $U_{s,n}$

P computes $f: \{0,1\}^n \to \{0,1\}^m$

n: P computes n-bit input function

s: Circuit size (num lines) of P

(m: P outputs m bits; m = 1 this class)

Circuit Size of $U_{s,n}$

• Input size of $U_{s,n}$?

Inlenth,
$$t = |P| + |x| = O(s lys) + n$$

Implement U via LOOKUP?
 func
 t
 t
 t
 t

$$Size(U) = 2^t$$
 (bad)

Efficient Universal Circuit?

- We want $U_{s,n}$ of smaller circuit size Ideally, polynomial in s=0 (S
- Is that possible?

• Idea: write the "algorithm" in Python

Universal Circuit, Python version

```
def U_{s,n}(P = (g_0, g_1, ..., g_s), x):
  \# len(x) is n
 |mem| = x.append([0] * s)
  for i in range(s):
    mem[n+i] = NAND(mem[g_i[0]), mem[g_i[1]]
  return mem[n + s - 1]
```

Universal Circuit, Picture version

Universal Circuit, full picture

$$P = (g_0, g_1, ..., g_s)$$
 x

X

Gate g_0 : mem[n + 0] = NAND(mem $[g_0[0]]$, mem $[g_0[1]]$)

Gate g_1 : mem[n + 1] = NAND(mem $[g_1[0]]$, mem $[g_1[1]]$

...

Universal Circuit, full picture

• • •

...

Size of Universal Circuit

- For each of s gates:
 - -2 LOOKUP, size $O(\ell)$, $\ell = s + n$
 - 1 NAND
 - -1 UPDATE, size $O(\ell \log \ell)$

• Total: $O(s\ell \log \ell) = O(s^3) \ll \sum_{s=0}^{s}$

Why (implement) Universal Circuit? The optimize binary string want search a cet comp

Similar:

- Implement Python interpreter in Python
- Write C/C++ compiler in C/C++ ...

(maybe similar: OS runs virtual machine which runs another OS)

another: have many ckt/func we want to any

What we are seeing time and again is the notion of universality or self reference of computation, which is the sense that all reasonably rich models of computation are expressive enough that they can "simulate themselves". The importance of this phenomenon to both the theory and practice of computing, as well as far beyond it, including the foundations of mathematics and basic questions in science, cannot be overstated.

Functions with Infinite Domains

So far...

We saw how to compute by Boolean circuits that use: AND, OR, NOT, NAND, etc. gates.

A Boolean circuit C_n has a **fixed** number n of input bits. Yet, it can compute **all** functions with fixed n input bits.

What if we do not know the input length at first?

We want one "algorithm" for multiplying numbers

Functions with infinite input space

We would like to compute functions like multiplication

Formally, it would be a function $f:\{0,1\}^* \to \{0,1\}^*$

 $\{0,1\}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, \dots\}$ is an **infinite set**,

Focusing on Boolean functions

 $f:\{0,1\}^* \to \{0,1\}$ with **one bit** of output is called a **Boolean** function. More than 1 bt In contrast a Boolean *circuit*, could have longer outputs, but it was called

Boolean because its internal wires were Boolean.

Functions with longer than one output can be "Booleanized" Example:

$$BMULT(x, y, i) = \begin{cases} i^{th} \text{ bit of } x \cdot y & i < |x \cdot y| \\ 0 & \text{otherwise} \end{cases}$$

Terminology: "Language"

A Boolean function $f:\{0,1\}^* \to \{0,1\}$ defines a corresponding set $L_f = \{x \mid f(x) = 1\} \subseteq \{0,1\}^*$

Any $L_f \subseteq \{0,1\}^*$ is also called a **language**.

So, $f(x) = 1 \iff "x \text{ belongs to language } L_f"$

TCS, 6.1.2: "This name ('language') is rooted in *formal language theory* as pursued by linguists such as Noam Chomsky." It is wildly used.

Deterministic Finite Automata

A new simple computing model

Fixed constant-size memory

Reading input $x = x_1 \dots x_n$ as a stream of bits (once)

Decide if f(x) = 1 or not at the end

Example: detecting a particular sub-string

Another Example: XOR

For
$$x = x_1 \dots x_n$$
 let $XOR(x) = x_1 \oplus x_2 \dots \oplus x_n$

$$XOR(XOR(x) = x_1 \oplus x_2 \dots \oplus x_n)$$

As we read through the bits, we only need one bit of memory *b* that determines the XOR so far.

This can be depicted using a graph

- Two nodes (encoding the bit b)
- We start from b=0
- We change b iff $x_i = 1$.
- We accept (output 1) if we end up at b=1

Formal Definition of FA

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*, 2. Σ is a finite set called the *alphabet*, $\{0,1\}$ 3. $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
 - **4.** $q_0 \in Q$ is the **start state**, and
 - **5.** $F \subseteq Q$ is the **set of accept states**.

diff dof in TCS

Accepts strings containing 001

2.
$$\Sigma = \{0,1\},$$

3. δ is described as

4. is the start state, and

$$\mathbf{5.} F = \mathbf{601}$$

Formal definition of FAs accepting inputs

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton and let $w = w_1 w_2 \cdots w_n$ be a string where each w_i is a member of the alphabet Σ . Then M accepts w if a sequence of states r_0, r_1, \ldots, r_n in Q exists with three conditions:

- 1. $r_0 = q_0$,
- **2.** $\delta(r_i, w_{i+1}) = r_{i+1}$, for i = 0, ..., n-1, and
- **3.** $r_n \in F$.

Charge

Universal Circuits

Efficient implementation

Deterministic Finite Automata

Compute on infinite domains

PS5: will be posted this week