Mini-Projet 1 : Prédiction du risque d'abandon scolaire

Contexte

Vous travaillez dans une structure éducative qui souhaite identifier les étudiants à risque d'abandon afin de mettre en place des actions de soutien. Un jeu de données a été constitué à partir des informations académiques et sociales des étudiants.

Objectif

Construire un modèle de classification permettant de prédire si un étudiant risque ou non d'abandonner ses études.

Jeu de données fourni

Chaque ligne correspond à un étudiant, avec les colonnes suivantes :

- Age
- Sexe
- Taux_presence (en %)
- Nombre_retards
- Note_moyenne (sur 20)
- Situation_familiale (Célibataire, Marié, Enfants à charge, Divorcé)
- Abandon (1 = a abandonné, 0 = n'a pas abandonné)

Mini-Projet 2 : Prédiction de réponse à une campagne marketing

Contexte

Une entreprise de e-commerce cherche à optimiser ses campagnes marketing en ciblant les clients les plus susceptibles d'y répondre.

Objectif

Développer un modèle permettant de prédire si un client répondra positivement à une campagne marketing à partir de ses comportements d'achat et ses données socio-démographiques.

Jeu de données fourni

Chaque ligne représente un client avec :

- Age
- Sexe
- Revenu_annuel (en euros)
- Temps_passe_sur_site (en minutes)
- Achats en ligne (au cours des 6 derniers mois)
- Reponse_campagne (1 = a répondu, 0 = n'a pas répondu)

Objectifs pédagogiques

- Maîtriser les étapes d'un projet de classification supervisée.
- Comprendre et appliquer les métriques de performance (accuracy, precision, recall, f1-score).
- Utiliser la validation croisée et le GridSearch pour ajuster les hyperparamètres.
- Expérimenter plusieurs algorithmes vus en cours (KNN, arbre de décision, régression logistique).
- Interpréter les résultats obtenus de façon critique.

Consignes

- 1. **Prétraitement des données** : gérer les variables catégorielles, vérifier les valeurs manquantes, explorer la distribution des variables.
- 2. Exploration des corrélations et visualisation des données (PCA?).
- 3. **Choix d'un ou plusieurs modèles de classification** parmi ceux étudiés (KNN, arbre de décision, régression logistique, KMeans).
- 4. **Évaluation des performances** : utilisez accuracy, recall, precision, f1-score et matrice de confusion.
- 5. Recherche des meilleurs hyperparamètres avec GridSearch et validation croisée.
- 6. Analyse critique des résultats :
 - O Quels modèles fonctionnent le mieux ? Pourquoi ?
 - O Quelles sont les limites du modèle ? Des données ?
 - O Quelle interprétation peut-on faire des métriques obtenues ?
 - O Que signifie une bonne ou mauvaise précision dans ce contexte ?

Attention : la partie interprétation comptera pour 50% de la note finale. Il ne s'agit pas uniquement d'écrire du code mais de démontrer votre compréhension du problème.

Livrable attendu

Un **notebook Jupyter unique** contenant :

- Le code complet, propre et commenté.
- Des visualisations claires et lisibles.
- Les résultats des modèles testés.

Vos interprétations argumentées.