BAYESIAN LINEAR REGRESSION

GUEST LECTURE AT KTH

MATTIAS VILLANI

DEPARTMENT OF STATISTICS
STOCKHOLM UNIVERSITY
AND
DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
LINKÖPING UNIVERSITY

LECTURE OVERVIEW

- **■** Bayesian inference
- The Normal model with known variance
- Normal model with conjugate prior
- The linear regression model
- Regularization priors

ľ

THE LIKELIHOOD FUNCTION - NORMAL DATA

■ Normal data with known variance:

$$X_1, ..., X_n | \theta \stackrel{\text{iid}}{\sim} N(\theta, \sigma^2).$$

Likelihood from independent observations: $x_1, ..., x_n$

$$p(x_1, ..., x_n | \theta) = \prod_{i=1}^{n} p(x_i | \theta) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \theta)^2\right)$$
$$\propto \exp\left(-\frac{1}{2(\sigma^2/n)} (\theta - \bar{x})^2\right)$$

- Maximum likelihood: $\hat{\theta} = \bar{x}$ maximizes $p(x_1, ..., x_n | \theta)$.
- Given the data $x_1, ..., x_n$, plot $p(x_1, ..., x_n | \theta)$ as a function of θ .

EXAMPLE: AM | REALLY GETTING MY 50MBIT/SEC?

- My broadband provider promises me at least 50Mbit/sec.
- **Data**: x = (22.42, 34.01, 35.04, 38.74, 25.15) Mbit/sec.
- Measurement errors: $\sigma = 5$ (±10Mbit with 95% probability)
- The likelihood function is proportional to $N(\bar{x}, \sigma^2/n)$ density.

THE LIKELIHOOD FUNCTION

■ Say it out loud:

The likelihood function is the probability of the observed data considered as a function of the parameter.

- Likelihood function is **NOT** a probability distribution for θ .
- Statements like $Pr(\theta > c)$ makes no sense.
- Unless ...

UNCERTAINTY AND SUBJECTIVE PROBABILITY

- $Pr(\theta < 0.6|data)$ only makes sense if θ is random.
- But θ may be a fixed natural constant?
- **Bayesian:** doesn't matter if θ is fixed or random.
- Do **You** know the value of θ or not?
- \blacksquare $p(\theta)$ reflects Your knowledge/uncertainty about θ .
- **Subjective probability**.
- The statement $\Pr(\text{10th decimal of } \pi = \text{9}) = \text{0.1 makes sense.}$

BAYESIAN LEARNING

- **Bayesian learning** about a model parameter θ :
 - state your **prior** knowledge as a probability distribution $p(\theta)$.
 - collect data x and form the likelihood function $p(x|\theta)$.
 - **combine** prior knowledge $p(\theta)$ with data information $p(\mathbf{x}|\theta)$.
- **How to combine** the two sources of information?

Bayes' theorem

LEARNING FROM DATA - BAYES' THEOREM

- How to **update** from **prior** $p(\theta)$ to **posterior** $p(\theta|Data)$?
- Bayes' theorem for events A and B

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}.$$

lacksquare Bayes' Theorem for a model parameter heta

$$p(\theta|Data) = \frac{p(Data|\theta)p(\theta)}{p(Data)}.$$

- It is the prior $p(\theta)$ that takes us from $p(Data|\theta)$ to $p(\theta|Data)$.
- A probability distribution for θ is extremely useful. **Predictions. Decision making.**

GREAT THEOREMS MAKE GREAT TATTOOS

■ Bayes theorem

$$p(\theta|Data) = \frac{p(Data|\theta)p(\theta)}{p(Data)}$$

■ All you need to know:

$$p(\theta|Data) \propto p(Data|\theta)p(\theta)$$

or

Posterior ∝ Likelihood · Prior

NORMAL DATA, KNOWN VARIANCE - UNIFORM PRIOR

Model

$$x_1, ..., x_n | \theta, \sigma^2 \stackrel{iid}{\sim} N(\theta, \sigma^2).$$

Prior

$$p(\theta) \propto c$$
 (a constant)

Likelihood

$$p(x_1, ..., x_n | \theta, \sigma^2) = \exp \left[-\frac{1}{2(\sigma^2/n)} (\theta - \bar{x})^2 \right]$$

Posterior

$$\theta | x_1, ..., x_n \sim N(\bar{x}, \sigma^2/n)$$

NORMAL DATA, KNOWN VARIANCE - NORMAL PRIOR

■ Prior

$$\theta \sim N(\mu_0, \tau_0^2)$$

Posterior

$$p(\theta|x_1,...,x_n) \propto p(x_1,...,x_n|\theta,\sigma^2)p(\theta)$$

$$\propto N(\theta|\mu_n,\tau_n^2),$$

where

$$\frac{1}{\tau_n^2} = \frac{n}{\sigma^2} + \frac{1}{\tau_0^2},$$

$$u_n = w\bar{x} + (1 - w)u_0,$$

and

$$W = \frac{\frac{n}{\sigma^2}}{\frac{n}{\sigma^2} + \frac{1}{\tau_0^2}}.$$

Proof: complete the squares in the exponential.

NORMAL DATA, KNOWN VARIANCE - NORMAL PRIOR

$$\theta \sim N(\mu_0, \tau_0^2) \stackrel{x_1, \dots, x_n}{\Longrightarrow} \theta | x \sim N(\mu_n, \tau_n^2).$$

Posterior precision = Data precision + Prior precision

Posterior mean =

<u>Data precision</u> (<u>Data mean</u>) + <u>Prior precision</u> (<u>Prior mean</u>)

- Data: x = (22.42, 34.01, 35.04, 38.74, 25.15) Mbit/sec.
- Model: $X_1, ..., X_5 \sim N(\theta, \sigma^2)$.
- Assume $\sigma = 5$ (measurements can vary \pm 10MBit with 95% probability)
- My **prior**: $\theta \sim N(50, 5^2)$.

Download speed data: x=(22.42, 34.01, 35.04)

NORMAL MODEL - NORMAL PRIOR

■ Model

$$y_1, ..., y_n | \theta, \sigma^2 \stackrel{iid}{\sim} N(\theta, \sigma^2)$$

■ Conjugate prior

$$\theta | \sigma^2 \sim N \left(\mu_0, \frac{\sigma^2}{\kappa_0} \right)$$
 $\sigma^2 \sim Inv - \chi^2(\nu_0, \sigma_0^2)$

Scaled inverse χ^2 distribution

NORMAL MODEL WITH NORMAL PRIOR

Posterior

$$\theta | \mathbf{y}, \sigma^2 \sim N\left(\mu_n, \frac{\sigma^2}{\kappa_n}\right)$$

 $\sigma^2 | \mathbf{y} \sim Inv - \chi^2(\nu_n, \sigma_n^2).$

where

$$\begin{array}{rcl} \mu_{n} & = & \frac{\kappa_{0}}{\kappa_{0}+n}\mu_{0}+\frac{n}{\kappa_{0}+n}\bar{y} \\ \kappa_{n} & = & \kappa_{0}+n \\ \nu_{n} & = & \nu_{0}+n \\ \nu_{n}\sigma_{n}^{2} & = & \nu_{0}\sigma_{0}^{2}+(n-1)s^{2}+\frac{\kappa_{0}n}{\kappa_{0}+n}(\bar{y}-\mu_{0})^{2}. \end{array}$$

■ Marginal posterior

$$\theta | \mathbf{y} \sim t_{\nu_n} \left(\mu_n, \sigma_n^2 / \kappa_n \right)$$

THE LINEAR REGRESSION MODEL

■ The ordinary **linear regression** model:

$$y_i = \beta_1 x_{i1} + \beta_2 x_{i2} + ... + \beta_k x_{ik} + \varepsilon_i$$
$$\varepsilon_i \stackrel{iid}{\sim} N(0, \sigma^2).$$

■ Parameters $\theta = (\beta_1, \beta_2, ..., \beta_k, \sigma^2)$.

■ Assumptions:

- $E(y_i) = \beta_1 x_{i1} + \beta_2 x_{i2} + ... + \beta_k x_{ik}$ (linear function)
- $Var(y_i) = \sigma^2$ (homoscedasticity)
- $Corr(y_i, y_i | X, \beta, \sigma^2) = 0, i \neq j.$
- Normality of ε_i .
- · The x's are assumed known (non-random).

LINEAR REGRESSION IN MATRIX FORM

■ The linear regression model in matrix form

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}_{(n\times 1)} + (\boldsymbol{n}\times 1)$$

$$\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \ \beta = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_k \end{pmatrix}, \ \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}'_1 \\ \vdots \\ \mathbf{x}'_n \end{pmatrix} = \begin{pmatrix} x_{11} & \cdots & x_{1k} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nk} \end{pmatrix}$$

- Usually $x_{i_1} = 1$, for all i. β_1 is the intercept.
- **Likelihood**

$$\mathbf{y}|\beta,\sigma^2,\mathbf{X}\sim N(\mathbf{X}\beta,\sigma^2I_n)$$

LINEAR REGRESSION - UNIFORM PRIOR

■ Standard non-informative prior: uniform on $(\beta, \log \sigma^2)$

$$p(\beta, \sigma^2) \propto \sigma^{-2}$$

■ **Joint posterior** of β and σ^2 :

$$eta | \sigma^2, \mathbf{y} \sim N \left[\hat{\beta}, \sigma^2 (\mathbf{X}'\mathbf{X})^{-1} \right]$$

 $\sigma^2 | \mathbf{y} \sim Inv - \chi^2 (n - k, s^2)$

where
$$\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$
 and $s^2 = \frac{1}{n-k}(\mathbf{y} - \mathbf{X}\hat{\beta})'(\mathbf{y} - \mathbf{X}\hat{\beta})$.

- Simulate from the joint posterior by simulating from
 - $p(\sigma^2|\mathbf{v})$
 - $p(\beta|\sigma^2,\mathbf{v})$
- Marginal posterior of β :

$$eta | \mathbf{y} \sim t_{n-k} \left[\hat{eta}, s^2 (X'X)^{-1}
ight]$$

LINEAR REGRESSION - CONJUGATE PRIOR

Joint prior for β and σ^2

$$\begin{split} \beta | \sigma^2 &\sim \text{N} \left(\mu_\text{O}, \sigma^2 \Omega_\text{O}^{-1} \right) \\ \sigma^2 &\sim \text{Inv} - \chi^2 \left(\nu_\text{O}, \sigma_\text{O}^2 \right) \end{split}$$

Posterior

$$\begin{split} \boldsymbol{\beta} | \sigma^2, \mathbf{y} &\sim N\left[\mu_n, \sigma^2 \Omega_n^{-1}\right] \\ \sigma^2 | \mathbf{y} &\sim \mathit{Inv} - \chi^2\left(\nu_n, \sigma_n^2\right) \end{split}$$

$$\begin{split} \mu_n &= \left(\mathbf{X}'\mathbf{X} + \Omega_{\mathrm{O}}\right)^{-1} \left(\mathbf{X}'\mathbf{X}\hat{\boldsymbol{\beta}} + \Omega_{\mathrm{O}}\mu_{\mathrm{O}}\right) \\ \Omega_n &= \mathbf{X}'\mathbf{X} + \Omega_{\mathrm{O}} \\ \nu_n &= \nu_{\mathrm{O}} + n \\ \nu_n\sigma_n^2 &= \nu_{\mathrm{O}}\sigma_{\mathrm{O}}^2 + \left(\mathbf{y}'\mathbf{y} + \mu_{\mathrm{O}}'\Omega_{\mathrm{O}}\mu_{\mathrm{O}} - \mu_n'\Omega_n\mu_n\right) \end{split}$$

POLYNOMIAL REGRESSION

■ Polynomial regression

$$f(x_i) = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_k x_i^k.$$
$$\mathbf{y} = \mathbf{X}\beta + \varepsilon,$$

where

$$\mathbf{X} = (1, X, X^2, ..., X^k).$$

RIDGE REGRESSION = NORMAL PRIOR

- Problem: too many covariates leads to over-fitting.
- **Smoothness/shrinkage/regularization prior**

$$\beta_i | \sigma^2 \stackrel{iid}{\sim} N\left(\mathbf{0}, \frac{\sigma^2}{\lambda}\right)$$

- Larger λ gives smoother fit. Note: $\Omega_0 = \lambda I$.
- Equivalent to **penalized likelihood**:

$$-2 \cdot \log p(\beta | \sigma^2, \mathbf{y}, \mathbf{X}) \propto (y - X\beta)^T (y - X\beta) + \lambda \beta' \beta$$

■ Posterior mean gives ridge regression estimator

$$\tilde{\beta} = (\mathbf{X}'\mathbf{X} + \lambda I)^{-1}\mathbf{X}'\mathbf{y}$$

■ Shrinkage toward zero

As
$$\lambda o \infty$$
, $\tilde{\beta} o 0$

■ When $\mathbf{X}'\mathbf{X} = I$

$$\tilde{\beta} = \frac{1}{1+\lambda}\hat{\beta}_{OLS}$$

LASSO REGRESSION = LAPLACE PRIOR

■ Lasso is equivalent to posterior mode under Laplace prior

$$\beta_i | \sigma^2 \stackrel{iid}{\sim} \text{Laplace} \left(0, \frac{\sigma^2}{\lambda} \right)$$

- The Bayesian shrinkage prior is interpretable. Not ad hoc.
- Laplace distribution have heavy tails.
- Laplace prior: many β_i close to zero, but some β_i very large.
- Normal distribution have light tails.
- Normal prior: all β_i 's are similar in magnitude.

ESTIMATING THE SHRINKAGE

- Cross-validation is often used to determine the degree of smoothness, λ .
- Bayesian: λ is **unknown** \Rightarrow **use a prior** for λ .
- $\lambda \sim Inv \chi^2(\eta_0, \lambda_0)$. The user specifies η_0 and λ_0 .
- Hierarchical setup:

$$\begin{aligned} \mathbf{y} | \beta, \mathbf{X} &\sim N(\mathbf{X}\beta, \sigma^2 I_n) \\ \beta | \sigma^2, \lambda &\sim N\left(\mathbf{0}, \sigma^2 \lambda^{-1} I_m\right) \\ \sigma^2 &\sim Inv - \chi^2(\nu_0, \sigma_0^2) \\ \lambda &\sim Inv - \chi^2(\eta_0, \lambda_0) \end{aligned}$$

so $\Omega_0 = \lambda I_m$.

REGRESSION WITH ESTIMATED SHRINKAGE

■ The **joint posterior** of β , σ^2 and λ is

$$\begin{split} \beta|\sigma^2, \lambda, \mathbf{y} &\sim \text{N}\left(\mu_n, \Omega_n^{-1}\right) \\ \sigma^2|\lambda, \mathbf{y} &\sim \text{Inv} - \chi^2\left(\nu_n, \sigma_n^2\right) \\ p(\lambda|\mathbf{y}) &\propto \sqrt{\frac{|\Omega_0|}{|\mathbf{X}^T\mathbf{X} + \Omega_0|}} \left(\frac{\nu_n \sigma_n^2}{2}\right)^{-\nu_n/2} \cdot p(\lambda) \end{split}$$

where $\Omega_0 = \lambda I_m$, and $p(\lambda)$ is the prior for λ , and

$$\mu_n = \left(\mathbf{X}^\mathsf{T}\mathbf{X} + \Omega_\mathsf{O}\right)^{-1}\mathbf{X}^\mathsf{T}\mathbf{y}$$

$$\Omega_n = \mathbf{X}^\mathsf{T}\mathbf{X} + \Omega_\mathsf{O}$$

$$\nu_n = \nu_\mathsf{O} + n$$

$$\nu_n \sigma_n^2 = \nu_\mathsf{O} \sigma_\mathsf{O}^2 + \mathbf{y}^\mathsf{T}\mathbf{y} - \mu_n^\mathsf{T}\Omega_n\mu_n$$

POLYNOMIAL REGRESSION

Polynomial regression

$$f(x_i) = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_k x_i^k.$$

$$\mathbf{y} = \mathbf{X}\beta + \varepsilon,$$

where

$$\mathbf{X} = (1, X, X^2, ..., X^k).$$

- Problem: higher order polynomials can overfit the data.
- Solution: shrink higher order coefficients harder:

$$\beta | \sigma^2 \sim N \begin{bmatrix} 0, & 100 & 0 & 0 & \cdots & 0 \\ 0 & \frac{1}{\lambda} & 0 & \cdots & 0 \\ 0 & 0 & \frac{1}{2\lambda} & & & \\ \vdots & \vdots & & \ddots & \\ 0 & 0 & 0 & \cdots & \frac{1}{k\lambda} \end{bmatrix}$$

FINDING THE TIME FOR MAXIMUM

Quadratic relationship between pain relief (y) and time (x)

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \varepsilon.$$

■ At what time x_{max} is there maximal pain relief?

$$X_{max} = -\beta_1/2\beta_2$$

.

- Posterior distribution of x_{max} can be obtained by change of variable. Cauchy-like.
- **Easy** to obtain marginal posterior $p(x_{max}|\mathbf{y},\mathbf{X})$ by **simulation**:
 - Simulate N coefficient vectors from the posterior β , $\sigma^2 | \mathbf{y}$, \mathbf{X}
 - For each simulated β , compute $x_{max} = -\beta_1/2\beta_2$.
 - Plot a histogram. Converges to $p(x_{max}|\mathbf{y},\mathbf{X})$ as $N\to\infty$.

FINDING THE TIME FOR MAXIMUM

