Analysis of Algorithms: the Analysis Framework

• it is logical to investigate an algorithm's efficiency as "a function of some parameter *n* indicating the algorithm's input size"

Let n be an imput size

$$t(n) = 2n$$
 $t(n) = n^2 + 2n + 1$

Suralgm

Pusululu

Waribu 802 n.

Analysis of Algorithms: the Analysis Framework Time Efficiency (2)

Example: the problem of searching for the maximum element in a list

Algorithm FindMax(A[0..n-1])

max = A[0];
For (i = 1; i < n; i++) do
if (max < A[i]) max = A[i];

$$m-1$$

 $\leq (1) = + 9$

basic operation: key comparison inside loop for

$$\frac{\mathcal{E}}{\mathcal{E}}(1) = 1 + 1 + 1 + 0 + 1$$

$$= (n-1) \times 1 = n-1$$

$$\frac{\mathcal{E}}{\mathcal{E}}(1) = \frac{n-1}{2}$$

$$\frac{\mathcal{E}}{\mathcal{E}}(1) = \frac{n-1}{2}$$

Analysis of Algorithms: the Analysis Framework Time Efficiency (3)

Example: the problem of sorting all elements in a list

Algorithm BubbleSort(A[0..n-1])

For (i = 0; i < n-1; i++)

For (j = 0; j < n -
$$i$$
 - 1; j++)

if (A[j] > A[j+1])

Swap(A[j], A[j+1]);

$$m-a$$
 $m-i-1-1$

$$\sum_{j=0}^{\infty} \sum_{j=0}^{\infty} (1) = \frac{9}{2}$$

 basic operations: key comparison inside the inner loop for swap operation inside the inner loop for

$$T(m) \approx C(m) = \underbrace{\sum_{i=0}^{n-a} \sum_{j=0}^{n-i-1-1} (1)}_{i=0,j=0}$$

$$= \underbrace{\sum_{i=0}^{n-a} (1)}_{i=0,j=0} = \underbrace{\sum_{i=0}^{n-a} (1)}_{i=0,j=0} = \underbrace{\sum_{i=0}^{n-a} (1)}_{i=0,j=0} = \underbrace{\sum_{i=0}^{n-a} (1)}_{i=0,j=0} = \underbrace{\sum_{i=0}^{n-i-1} (1)}_{i$$

(d)

navourning b 84, g 84, ao 84
Let 'Nugget' be the set of Nugget Numbers.

Basis Step. : b, 9, 20 E Nugget

Recursive step: if & E Nugget

then & + b E Nugget

& + 9 E Nugget

& + 20 E Nugget

Exhaustive Search: Traveling Salesman Problem (2)

$$G = (V, E)$$

 $V = \{a, b, c, d\}$

(บา (บา) : มีถนนเชียม เมียง

พ: distance ระบราว

$a \longrightarrow b \longrightarrow c \longrightarrow d \longrightarrow a$

$$a -> b -> d -> c -> a$$

$$a --> c --> b --> d --> a$$

$$a \longrightarrow c \longrightarrow d \longrightarrow b \longrightarrow a$$

$$a \longrightarrow d \longrightarrow b \longrightarrow c \longrightarrow a$$

$$a \longrightarrow d \longrightarrow c \longrightarrow b \longrightarrow a$$

Length

$$I = 2 + 8 + 1 + 7 = 18$$

$$I = 2 + 3 + 1 + 5 = 11$$
 optimal

$$I = 5 + 8 + 3 + 7 = 23$$

$$I = 5 + 1 + 3 + 2 = 11$$
 optimal

$$I = 7 + 3 + 8 + 5 = 23$$

$$I = 7 + 1 + 8 + 2 = 18$$

```
Perm ("abc")
3 ! = 3 x 2 x 1 = 6 permutations
```

Exhaustive Search: Assignment Problem

- There are n people who need to be assigned to execute n jobs, one person per job. (That is, each person is assigned to exactly one job and each job is assigned to exactly one person.)
- The cost that would accrue if the i^{th} person is assigned to the j^{th} job is a known quantity C[i, j] for each pair i, j = 1, 2, ..., n.
- The problem is to find an assignment with the minimum total cost.

		Job 1	100 g	10p3	Job 4	total cost (B)
_	Permutation #1	P1	PΣ	РЗ	PΨ	
	\$ 2	P1	P2	PY	p3	+
	₽3	P1	P3	P2	Þφ	
	ر '	*	0			
			0			
D)(B)(B)(Q)	(000)					

Subset	Total weight	Total value
Ø	0	\$ 0
{1}	7	\$42
{2}	3	\$12
{3}	4	\$40
{4}	5	\$25
{1, 2}	10	\$54
{1, 3}	11	not feasible
{1, 4}	12	not feasible
$\{2, 3\}$	7	\$52
$\{2, 4\}$	8	\$37
$\{3, 4\}$	9	\$65
$\{1, 2, 3\}$	14	not feasible
$\{1, 2, 4\}$	15	not feasible
$\{1, 3, 4\}$	16	not feasible
$\{2, 3, 4\}$	12	not feasible
$\{1, 2, 3, 4\}$	19	not feasible

	#4	#3	4 1	#1	Subset	Total weight	Total value
0	O	O	a	0	Ø	0	\$ 0
1	0	0	O	1	{1}	7	\$42
2	0	0	1	0	{2}	3	\$12
4	0	1	O	0	{3}	4	\$40
8	1	Ö	U	O	{4}	5	\$25
3	O	0	1	1	{1, 2}	10	\$54
5	Q	1	O	1	{1, 3}	11	not feasible
g	1	ð	a	1	{1, 4}	12	not feasible
Ь	C	1	1,	0	{2, 3}	7	\$52
10	1	O	1	Ö	{2, 4}	8	\$37
12	1	1	0	B	{3, 4}	9	\$65
ヲ	Ø	1	1	1	{1, 2, 3}	14	not feasible
11	1	0	1	1	{1, 2, 4}	15	not feasible
13	1	1	0	1	{1, 3, 4}	16	not feasible
14	1	1	1	0	{2, 3, 4}	12	not feasible
15	1	1	1	1	{1, 2, 3, 4}	19	not feasible

```
void add_bitstring_to_vector(int value) {
                                          buf
    char buf[N+1];
    char *p = buf;
                                  0000 = 0 = 901ea
    for (int i=0; i<N; i++) {</pre>
                                               0001
        if (value & (1 << i))
           *p = '1';
        else
                                               0000
            *p = '0';
                                               0000
                                                           0000
       p++;
    } //end for
                                               0100
                                                            1000
                                    0010
    *p = ' \ 0';
    result.push_back(string(buf));
                                               0000
                                    0000
                                                            0000
          Ad hitatrina to mo
```