Kapitola 1

Grafy, stromy

V této kapitole definujeme graf jakožto matematickou strukturu, popíšeme základní pojmy týkající se grafů a nastíníme možné vztahy mezi grafem a maticí. Dále definujeme strom, jakožto speciální případ grafu.

1.1 Základní grafová terminologie

Definice 1. Mějme množinu V a množinu $E = \{\{u,v\} | u,v \in V\}$. Uspořádanou dvojici G = (V, E), nazveme neorientovaný graf. Množinu V nazýváme množinou vrcholů grafu G, jejím prvkům říkáme vrcholy, množinu E nazýváme množinou hran grafu G, jejím prvkům říkáme hrany. Prvky hrany e označujeme jako vrcholy incidentní hraně e nebo koncové body hrany e. Říkáme, že hrana $e = \{v, w\}$ spojuje vrcholy v a w.

Poznámka 1. Pokud uvažujeme hrany jako uspořádané dvojice, nazýváme odpovídající graf orientovaný.

V neorientovaném grafu G=(V,E) platí, že jeho množina hran E je podmnožinou $\binom{V}{2}$, kde $\binom{V}{2}$ značí množinu všech dvouprvkových podmnožin množiny V. V orientovaném grafu H=(W,F) je F podmnožinou množiny $W\times W$, tj. všech uspořádaných dvojic vrcholů z W.

Obvykle uvažujeme orientované a neorientované grafy zvlášť, ale je možné uvažovat i jejich kombinaci. Graf, v němž se vyskytují jak orientované tak neorientované hrany, nazýváme smíšený. Řekneme, že graf G je úplný, pokud $\forall u, v \in V$ ($\{u, v\} \in E$).

Definice 2. Stupněm vrcholu $v \in V$ rozumíme počet vrcholů spojených s vrcholem v, značíme d(v). Množinu všech vrcholů, které jsou v grafu G spojeny s vrcholem v značíme $\mathrm{adj}_G(v)$.

Definice 3. Podgrafem grafu G nazveme libovolný graf H=(W,F) který splňuje: $W\subseteq V,\,F\subseteq E$ a všechny vrcholy incidentní hranám z F náleží do W.

Úplný podgraf grafu G nazýváme klikou v grafu G. Podgrafem G indukovaným množinou vrcholů W nazveme takový podgraf G, který obsahuje všechny hrany G, jejichž oba koncové body náleží do W, značíme G(W).

Mějme graf G=(V,E) a zobrazení $\omega:V\to\mathbb{R}$, resp. $c:E\to\mathbb{R}$. Přidáním zobrazení ω , resp. c ke grafu G dostaneme graf, který nazýváme ohodnocený, resp. vážený reálným ohodnocením.

souvislý cesta (bez cyklů!), cyklus, vzdálenost dvou vrcholů, vzdálenost od množiny podgraf

1.2 Strom

Nyní zaveď me základní pojmy týkající speciální třídy grafů nazývané stromy ??[???]

Definice 4. Stromem T nazveme konečný souvislý neorientovaný graf bez cyklů s vyznačeným bodem, který budeme nazývat kořenem stromu.

Z definice stromu je patrné, že každý vrchol v stromu T spojuje s kořenem tohoto stromu právě jedna cesta.

Definice 5. Vrcholy ležící na cestě spojující vrchol v s kořenem nazveme předchůdci vrcholu v. Vrcholy ležící na této cestě, které jeou různé od v nazýváme vlastními předchůdci vrcholu v. (Pokud v není kořen, nazýváme předchůdce vrcholu v, který je s vrcholem v spojen hranou, otcem vrcholu v, značíme otec(v).) Vrcholy, jejichž předchůdcem je vrchol v, nazýváme následníky vrcholu v. (Speciálně pokud v je otcem v, říkáme, že v je synem v.) Vrcholy bez následníků nazýváme listy stromu v, vrcholy alespoň s jedním následníkem nazýváme vnitřní vrcholy stromu.

Definice 6. Podstromem určeným vrcholem v nazveme úplný podgraf stromu tvořený vrcholem v a a všemi jeho následníky.

Kapitola 2

Různé

2.1 Číslování

2.1.1 Číslování vrcholů grafu v závislosti na vzdálenosti od separátoru

V této podkapitole popíšeme nejjednodušší metodu číslování vrcholů podgrafu, který vznikl rozdělením původního grafu na n částí. Tuto metodu lze používat samostatně, ale vzhledem k její povaze ji lze využít i pro vylepšení ostatních metod očíslování grafu, například ji lze kombinovat s metodou minimálního stupně.

Mějme graf G = (V, E) a jeho vrcholový separátor [TODO znaceni], jehož odebráním se graf rozpadne na n podgrafů G_1, \ldots, G_n . Popišme číslování vrcholů podgrafu G_i :

- 1. Položme j := 1.
- 2. Nalezneme neočíslovaný vrchol v grafu G_i takový, že jeho vzdálenost od vrcholového separátoru v grafu G je maximální.
- 3. Tomuto vrcholu dáme číslo j, položíme j := j + 1.
- 4. Pokud jsou všechny vrcholy očíslovány, skončíme, jinak se vrátíme na krok 2

Z algoritmu je vidět, že výsledné očíslování vrcholů grafu nemusí být jednoznačné, protože pokud nalezneme dva nebo více vrcholů, jejichž vzdálenost od separátoru je shodná, můžeme je očíslovat v libovolném pořadí.

2.1.2 Číslování vrcholů pomocí metody minimálního stupně

Metoda minimálního stupně je jednoduchým algoritmem pro nalezení očíslování grafu. Algoritmus pro hledání očíslování grafu pomocí této metody je následující:

- 1. Mějme graf G = (V, E) a položme j := 1.
- 2. Nalezneme neočíslovaný vrchol v grafu G s nejmenším stupněm a přiřadíme mu číslo j.

- 3. Přidáme hrany mezi vrcholy z $\operatorname{adj}_G(v)$ tak, aby $\operatorname{adj}_G(v)$ byla klika v grafu G.
- 4. Pokud nejsou všechny vrcholy očíslované, zvětšíme j o 1 a vrátíme se na krok 2.

Očíslování vrcholů grafu G pomocí tohoto algoritmu není jednoznačné, protože vrcholů s minimálním stupněm může být více.

Pokud máme rozdělení G_1, \ldots, G_n grafu G s vrcholovým separátorem [TODO znaceni], můžeme pro očíslování části G_i použít číslování vrcholů pomocí metody minimálního stupně, kde při výběru vrcholu ve 2. kroku přidáme kritérium vzdálenosti od separátoru popsané v 2.1.1. Nejprve tedy nalezneme množinu všech vrcholů grafu G, které mají minimální stupeň a poté mezi nimi zvolíme ten, který má nejmenší stupeň.

2.1.3 Topologické číslování vrcholů stromu

Definice 7. Mějme graf G=(V,E), který je stromem. Očíslování jeho vrcholů nazveme topologickým právě tehdy, když pro každý vrchol $v\in V$ platí, že libovolný následník vrcholu v ve stromu G má nižší číslo než vrchol v.

Kapitola 3

Eliminační stromy

V této kapitole se budeme zabývat eliminačními stromy a jejich významem pro rozklady řídkých matic. Eliminační stromy při rozkladu matic hrají důležitou roli, protože nám dávají informaci o zaplnění v Choleského faktoru matice bez toho, abychom museli počítat jednotlivé numerické hodnoty. Lze tedy díky nim jednoduše porovnávat vhodnost zvoleného uspořádání řádků a sloupců matice pro Choleského rozklad.

V této kapitole bez újmy na obecnosti předpokládáme, že matice, jejíž Choleského rozklad chceme napočítávat, je ireducibilní, a tedy přidružený graf této matice je souvislý.

3.1 Definice eliminačního stromu matice

Nejprve se omezme na ireducibilní, pozitivně definitní, symetrickou matici A_T o rozměrech $n \times n$, jejíž přidružený graf $G(A_T)$ je strom. V tomto případě je A_T tzv. perfektní eliminační matice, tj. existuje permutační matice P taková, že Choleského rozklad matice PA_TP^T nebude obsahovat žádné zaplnění [1] (Matici PA_TP^T můžeme vnímat pouze jako přečíslování řádků a sloupců matice A_T). Aby při choleského rozkladu matice A_T nedošlo k žádnému zaplnění, stačí když pomocí topologického číslování očíslujeme vrcholy jí přidruženého grafu (z předpokladu se jedná o strom) a řádky a sloupce matice A_T seřadíme odpovídajícím způsobem. Pak zjevně platí, že matice A_T má, s výjimkou posledního řádku, pod diagonálou vždy právě jeden nenulový prvek. Díky tomu můžeme definovat pro matici A_T funkci PARENT : $\{1, \ldots, n\} \to 1, \ldots, n$ následovně:

$$\forall j \in \{1,\dots,n-1\} \quad \text{PARENT}[j] := p \quad \Leftrightarrow \quad a_{p,j} \neq 0 \land p > j$$
 a speciálně:
$$\text{PARENT}[n] := 0.$$

Zřejmě ve stromu přidruženém k matici A_T platí, že předchůdcem vrcholu x_j je vrchol $x_{\mathtt{PARENT}[j]}$.

Většinou však nepracujeme s maticemi, jejichž přidružený graf by byl stromem. Zavedeme tedy konstrukci pro libovolnou řídkou, ireducibilní, pozitivně definitní, symetrickou matici A o rozměrech $n \times n$. Předpokládejme, že známe Choleského rozklad této matice, tj. $A = LL^T$. Maticí se zaplněním nazveme matici F definovanou jako $F = L + L^T$. Dále

zavedeme matice L_t a F_t následovně. L_t je matice vzniklá z L tím, že v každém sloupci vynulujeme všechny prvky pod diagonálou kromě prvku s nejnižším řádkovým indexem a $F_t = L_t L_t^T$.

Z definice F_t vidíme, že se jedná o matici, jejíž přidružený graf $G(F_t)$ je strom.

Definice 8. Eliminačním stromem matice A nazveme graf $G(F_t)$ popsaný výše, značíme T(A). Podstrom T(A) s kořenem x_j značíme $T[x_j]$. Množinu vrcholů tohoto stromu značíme také $T[x_j]$.

Díky této definici můžeme definici funkce PARENT přirozeně rozšířit na matici A následovně:

$$PARENT[j] := \min\{i > j | l_{i,j} \neq 0\},\$$

kde $l_{i,j}$ označuje i,j-tý prvek matice L.

Pozorování 1. Přímo z definice plyne, že T(A) a T(F) jsou identické.

Pozorování 2. Pokud x_i je vlastním předchůdcem x_i v eliminačním stromu, pak i > j.

Tvrzení 1. Pro i > j závisí numerické hodnoty sloupce $L_{\bullet i}$ na sloupci $L_{\bullet j}$ právě tehdy, $když l_{i,j} \neq 0$.

 $D\mathring{u}kaz$. Tvrzení plyne přímo ze sloupcového algoritmu [???]

Literatura

[1] D. J. Rose. A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations. pages 183–217, 1972.