Definitions

Integrable function. Let f be a function defined on the interval [a, b].

We say the **definite integral of** f **over** [a,b] **exists** if there is a real number J such that for any sequence of partitions P_n of [a,b] and any choice of Riemann sums S_n corresponding to the partitions P_n , if the maximum width of a subinterval in P_n approaches 0, then

$$\lim_{n \to \infty} S_n = J.$$

In plain English, the definite integral of f exists if any sequence of Riemann sums corresponding to a finer and finer partition of [a, b] approaches the same value J in the limit.

In this case we say f is integrable over [a, b] and call J the definite integral of f over [a, b], denoted

$$\int_{a}^{b} f(x) \, dx = J.$$

Area and signed area of regions defined by functions. Let f be integrable over the interval [a, b], let \mathcal{C} be the graph of f, and let \mathcal{R} be the region between \mathcal{C} and the x-axis from x = a to x = b.

• We define the **area** (or **total area**) of \mathcal{R} to be the integral of |f| over [a, b]: i.e.,

area of
$$\mathcal{R} = \int_a^b |f(x)| dx$$
.

• We define the **signed area** of \mathcal{R} to be the integral of f over [a, b]: i.e.,

signed area of
$$\mathcal{R} = \int_a^b f(x) dx$$
.

Comment. Let f be integrable over the interval [a, b], let \mathcal{C} be the graph of f, and let \mathcal{R} be the region between \mathcal{C} and the x-axis from x = a to x = b.

- 1. The area of \mathcal{R} is always nonnegative, since $|f(x)| \geq 0$ for all $x \in [a, b]$.
- 2. If $f(x) \ge 0$ for all $x \in [a, b]$, then f = |f| over [a, b], and hence

area of
$$\mathcal{R} = \int_a^b f(x) dx$$

in this case.

3. Suppose [a, b] can be partitioned into finitely many intervals over which f is either always nonnegative (≥ 0) or always nonpositive (≤ 0) . Then

signed area of $\mathcal{R} = \int_a^b f(x) dx =$ (area of regions where $f \ge 0$)-(area of regions where $f \le 0$).

Procedures

Direct computation of definite integral. Suppose f is integrable on the interval [a, b].

Since $\int_a^b f(x) dx$ can be computed using any sequence of Riemann sums, we may compute it as a limit of right Riemann sums R_n corresponding to partitions of [a,b] into n equal subintervals. For such partitions the length of each subinterval is $\Delta x = (b-a)/n$, and the right endpoint of the k-th subinterval is $x_k = a + k(b-a)/n$. We conclude:

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} R_n = \lim_{n \to \infty} \sum_{k=1}^{n} f\left(a + \frac{k(b-a)}{n}\right) \frac{(b-a)}{n}.$$

Theory

Integrable functions theorem. Let f be defined on the interval [a, b]. If f is continuous everywhere on [a, b], or if f has at most finitely many jump discontinuities on [a, b], then f is integrable over [a, b].

Properties of definite integrals. Let f and g be integrable over [a, b].

1.
$$\int_a^a f(x) dx = 0$$
. (By definition)

2.
$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx.$$
 (By definition)

3. Sum and difference.
$$\int_a^b f(x) \pm g(x) \, dx = \int_a^b f(x) \, dx \pm \int_a^b g(x) \, dx$$

4. Constant multiple.
$$\int_a^b cf(x) dx = c \int_a^b f(x) dx$$
 for any $c \in \mathbb{R}$.

5. Additive. For any $c \in \mathbb{R}$ we have

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx,$$

as long as all of the integrals involved are defined.

6. **Max-min inequality**. If f has a minumum value min f on [a, b] and a maximum value max f on [a, b], then

$$(\min f)(b-a) \le \int_a^b f(x) \, dx \le (\max f)(b-a)$$

7. **Domination**. If $f(x) \leq g(x)$ for all $x \in [a, b]$, then

$$\int_{a}^{b} f(x) \, dx \le \int_{a}^{b} g(x) \, dx.$$

Examples

- 1. Fix positive constants m and b, and define f(x) = mx + b.
 - (a) Fix a positive constant a. Compute $\int_0^a f(x) dx$ directly as a limit of right Riemann sums.
 - (b) Graph f(x) on [0, a] and explain how your answer in (a) is consistent with known area formulas.
- 2. Fix a positive constant b. Compute $\int_0^b f(x) dx$ directly as a limit of right Riemann sums.
- 3. Let $f(x) = 1 x^3$. Fix constants a and b with 0 < a < b. Use your result in Example 2 and various integral properties (including the additivite property) to derive a formula for $\int_a^b f(x) dx$ in terms of a and b.
- 4. Let $f(x) = 1 x^3$. Fix a constant b with b > 1, let $f(x) = 1 x^3$, and let \mathcal{R} be the region between the graph of f and the x-axis from x = 0 to x = b.
 - (a) Graph f(x) on [0,b]. Your graph should reflect the assumption that b>1.
 - (b) Describe precisely how the signed area of \mathcal{R} is a difference of areas of two distinct regions.
 - (c) Compute the area of \mathcal{R} .