Review

Terms that we used when dealing with Trig:

- Angles in standard position
- \bullet Terminal arm
- Special triangles
- Co-terminal angles
- Period
- Amplitude

We also look at transformations:

for example: $y = a \cdot sin(k(x - d)) + c$

Unit Circle

Radius = 1

Special Triangles

Period::One Cycle Amplitude::Distance from axis to max

$$\theta = \frac{a}{r} = \frac{r}{r} = 1$$

How many degrees are in 1 radian?

We are often expressing angles as real numbers, without units, in terms of π $\pi \text{ radians} = 180^{\circ}$

Convert each of the following to radians.

- a) $30^{\circ} \left(\frac{\pi}{180^{\circ}}\right)$ = $\frac{30\pi}{180}$ = $\frac{\pi}{6}$

- b) $40^{\circ} (\frac{\pi}{180^{\circ}})$

Convert each radian measure to degrees

- a) $\frac{3\pi}{4}(\frac{180}{\pi})$ = 135°
- b) 1.5 radians $\left(\frac{180}{\pi}\right)$
- $= 85.9^{\circ}$

Transformations of Trigonometric Functions

Remember our rules for transforming ANY function: $(x,y) \rightarrow (\frac{x}{k}+d,ay+c)$

Need to Know

The parameters in the equations $f(x) = a \cdot sin(k(x-d)) + c$ and $f(x) = a \cdot cos(k(x-d)) + c$ give useful information about transformations and characteristics of the function.