Grammars

1

Grammars

Grammars express languages

Example: the English language

$$\langle sentence \rangle \rightarrow \langle noun_phrase \rangle \langle predicate \rangle$$

$$\langle noun_phrase \rangle \rightarrow \langle article \rangle \langle noun \rangle$$

 $\langle predicate \rangle \rightarrow \langle verb \rangle$

$$\langle article \rangle \rightarrow a$$
 $\langle article \rangle \rightarrow the$

$$\langle noun \rangle \rightarrow cat$$
 $\langle noun \rangle \rightarrow dog$

$$\langle verb \rangle \rightarrow runs$$
 $\langle verb \rangle \rightarrow walks$

A derivation of "the dog walks":

```
\langle sentence \rangle \Rightarrow \langle noun\_phrase \rangle \langle predicate \rangle
\Rightarrow \langle noun\_phrase \rangle \langle verb \rangle
\Rightarrow \langle article \rangle \langle noun \rangle \langle verb \rangle
\Rightarrow the \langle noun \rangle \langle verb \rangle
\Rightarrow the dog \langle verb \rangle
\Rightarrow the dog walks
```

A derivation of "a cat runs":

```
\langle sentence \rangle \Rightarrow \langle noun\_phrase \rangle \langle predicate \rangle
\Rightarrow \langle noun\_phrase \rangle \langle verb \rangle
\Rightarrow \langle article \rangle \langle noun \rangle \langle verb \rangle
\Rightarrow a \langle noun \rangle \langle verb \rangle
\Rightarrow a cat \langle verb \rangle
\Rightarrow a cat runs
```

5

Language of the grammar:

Another Example

Grammar: $S \rightarrow aSb$

 $S \rightarrow \lambda$

Derivation of sentence ab:

$$S \Rightarrow aSb \Rightarrow ab$$

$$S \to aSb$$
 $S \to \lambda$

Grammar: $S \rightarrow aSb$

$$S \rightarrow \lambda$$

Derivation of sentence aabb:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$

$$S \rightarrow aSb \qquad S \rightarrow \lambda$$

Other derivations:

 $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$

 $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb$ $\Rightarrow aaaaSbbbb \Rightarrow aaaabbbb$

Language of the grammar

$$S \rightarrow aSb$$

$$S \to \lambda$$

$$L = \{a^n b^n : n \ge 0\}$$

11

More Notation

Grammar G = (V, T, S, P)

V: Set of variables

T: Set of terminal symbols

S: Start variable

P: Set of Production rules

Example

Grammar
$$G: S \to aSb$$

 $S \to \lambda$

$$G = (V, T, S, P)$$

$$V = \{S\} \qquad T = \{a, b\}$$

$$P = \{S \rightarrow aSb, S \rightarrow \lambda\}$$

13

More Notation

Sentential Form:

A sentence that contains variables and terminals

Example:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$$

Sentential Forms sentence

We write: $S \Rightarrow aaabbb$

Instead of:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$$

In general we write: $w_1 \stackrel{*}{\Rightarrow} w_n$

If: $w_1 \Rightarrow w_2 \Rightarrow w_3 \Rightarrow \cdots \Rightarrow w_n$

By default: $w \Rightarrow w$

17

Example

Grammar

 $S \rightarrow aSb$

 $S \to \lambda$

Derivations

*

 $S \Rightarrow \lambda$

*

 $S \Rightarrow ab$

*

 $S \Rightarrow aabb$

*

 $S \Rightarrow aaabbb$

Example

Grammar

mar Derivations

$$S \rightarrow aSb$$

$$S \Rightarrow aaSbb$$

$$S \to \lambda$$

10

Another Grammar Example

Grammar
$$G: S \rightarrow Ab$$

$$A \rightarrow aAb$$

$$A \rightarrow \lambda$$

Derivations:

$$S \to Ab \to b$$

$$S \rightarrow Ab \rightarrow aAbb \rightarrow abb$$

$$S \rightarrow Ab \rightarrow aAbb \rightarrow aaAbbb \rightarrow aabbb$$

More Derivations

$$S \Rightarrow Ab \Rightarrow aAbb \Rightarrow aaAbbbb \Rightarrow aaaAbbbbb$$

 $\Rightarrow aaaaAbbbbbb \Rightarrow aaaabbbbbb$

$$S \Rightarrow aaaabbbbb$$

 $S \stackrel{*}{\Rightarrow} aaaaaabbbbbbb$

$$S \stackrel{*}{\Rightarrow} a^n b^n b$$

21

Language of a Grammar

For a grammar G with start variable S:

$$L(G) = \{w: S \Longrightarrow w\}$$

$$\uparrow$$
String of terminals

Example

For grammar
$$G: S \to Ab$$

$$A \rightarrow aAb$$

$$A \rightarrow \lambda$$

$$L(G) = \{a^n b^n b: n \ge 0\}$$

Since:
$$S \stackrel{*}{\Rightarrow} a^n b^n b$$

22

A Convenient Notation

$$\begin{array}{ccc}
A \to aAb \\
A \to \lambda
\end{array}
\qquad A \to aAb \mid \lambda$$

$$\langle article \rangle \rightarrow a$$
 $\langle article \rangle \rightarrow a \mid the$

Linear Grammars

25

Linear Grammars

Grammars with at most one variable at the right side of a production

Examples:
$$S \rightarrow aSb$$
 $S \rightarrow Ab$

$$S \to \lambda$$
 $A \to aAb$

$$A \rightarrow \lambda$$

A Non-Linear Grammar

Grammar
$$G: S \rightarrow SS$$

$$S \rightarrow \lambda$$

$$S \rightarrow aSb$$

$$S \rightarrow bSa$$

$$L(G) = \{w : n_a(w) = n_b(w)\}$$

Number of a in string w

27

Another Linear Grammar

Grammar $G: S \rightarrow A$

$$A \rightarrow aB \mid \lambda$$

$$B \rightarrow Ab$$

$$L(G) = \{a^n b^n : n \ge 0\}$$

Right-Linear Grammars

All productions have form: $A \rightarrow xB$

Linear Grammars has 2 type

or

Left and Right

 $A \rightarrow x$

string of terminals

 $S \rightarrow a$

Example: $S \rightarrow abS$

Left-Linear Grammars

All productions have form: $A \rightarrow Bx$

or

 $A \rightarrow x$

Example: $S \rightarrow Aab$

 $A \rightarrow Aab \mid B$

 $B \rightarrow a$

string of terminals

Regular Grammars

31

Regular Grammars

A regular grammar is any right-linear or left-linear grammar

Examples:

$$G_1$$

 G_2

$$S \rightarrow abS$$

 $S \rightarrow Aab$

$$S \rightarrow a$$

 $A \rightarrow Aab \mid B$

$$B \rightarrow a$$

Observation

Regular grammars generate regular languages

Examples:

$$G_2$$

$$G_1$$

$$S \rightarrow Aab$$

$$S \rightarrow abS$$

$$A \rightarrow Aab \mid B$$

$$S \rightarrow c$$

$$B \rightarrow a$$

$$L(G_1) = (ab) * a$$

$$L(G_2) = aab(ab) *$$

33

Regular Grammars Generate Regular Languages

Theorem - Part 2

 Languages

 Generated by

 Regular Grammars

 Regular Languages

Any regular language is generated by a regular grammar

Proof - Part 1

The language L(G) generated by any regular grammar G is regular

The case of Right-Linear Grammars

Let G be a right-linear grammar

We will prove: L(G) is regular

Proof idea: We will construct NFA M

with L(M) = L(G)

39

Grammar G is right-linear

Example: $S \rightarrow aA \mid B$

 $A \rightarrow aa B$

 $B \rightarrow b B \mid a$

Construct NFA $\,M\,$ such that every state is a grammar variable:

$$S \rightarrow aA \mid B$$

$$A \rightarrow aa B$$

$$B \rightarrow b B \mid a$$

41

Add edges for each production:

 $S \rightarrow aA$

In General

A right-linear grammar $\,G\,$

has variables: V_0, V_1, V_2, \dots

and productions: $V_i \rightarrow a_1 a_2 \cdots a_m V_j$

or

 $V_i \rightarrow a_1 a_2 \cdots a_m$

49

We construct the NFA $\,M\,$ such that:

each variable V_i corresponds to a node:

 (V_1)

 (V_2)

special final state

For each production: $V_i \rightarrow a_1 a_2 \cdots a_m V_j$

we add transitions and intermediate nodes

51

For each production: $V_i \rightarrow a_1 a_2 \cdots a_m$

we add transitions and intermediate nodes

Resulting NFA $\,M$ looks like this:

It holds that: L(G) = L(M)

52

The case of Left-Linear Grammars

Let G be a left-linear grammar

We will prove: L(G) is regular

Proof idea:

We will construct a right-linear grammar G' with $L(G) = L(G')^R$

Since G is left-linear grammar the productions look like:

$$A \rightarrow Ba_1a_2\cdots a_k$$

$$A \rightarrow a_1 a_2 \cdots a_k$$

55

Construct right-linear grammar G'

$$A \rightarrow Ba_1a_2\cdots a_k$$

$$A \rightarrow Bv$$

Right G'

$$A \rightarrow a_k \cdots a_2 a_1 B$$

$$A \rightarrow v^R B$$

Construct right-linear grammar G'

Left Innear
$$A \rightarrow a_1 a_2 \cdots a_k$$
 $A \rightarrow v$

Right linear G'

$$A \rightarrow a_k \cdots a_2 a_1$$

$$A \rightarrow v^R$$

57

It is easy to see that: $L(G) = L(G')^R$

Since G' is right-linear, we have:

 $L(G') \longrightarrow L(G')^R \longrightarrow L(G)$

Regular Language

Regular Language Regular Language

Proof - Part 2

Any regular language $\,L\,$ is generated by some regular grammar $\,G\,$

59

Any regular language $\,L\,$ is generated by some regular grammar $\,G\,$

Proof idea:

Let M be the NFA with L = L(M).

Construct from M a regular grammar G such that L(M) = L(G)

Since L is regular there is an NFA M such that L = L(M)

Example:

$$L = ab * ab(b * ab) *$$

L = L(M)

61

Convert M to a right-linear grammar

For any final state:

Add production: $q_f \to \lambda$

67

Since G is right-linear grammar

G is also a regular grammar

with
$$L(G) = L(M) = L$$