Check-In 01/15. (True/False) True/False: If f(3) = 5, then $\lim_{x \to 3} f(x) = 5$.

Solution. The statement is *false*. Recall that the limit of a function (if it exists) is what the output gets 'close' to as the input gets 'close' to its limiting value. The fact that f(3) = 5 does not mean the outputs are all 'close' to 5 when x is 'close' to 3. For instance, consider the function f(x) plotted below.

Despite the fact that f(3) = 5, $\lim_{x \to 3} f(x) = 2$ because all the outputs are 'close' to 2 when the inputs are 'close' to 3.

Check-In 01/17. (*True/False*) *True/False*: Let f(x) be a function defined on all real numbers such that $\lim_{x\to\pi}f(x)=10$. Then it must be that $\lim_{x\to\pi^+}f(x)=10$.

Solution. The statement is true. Recall that the limit (if it exists) is what the output gets 'close' to as the input gets 'close' to its limiting value. Because $\lim_{x\to\pi}f(x)=10$, the outputs of f(x) are all 'close' to 10 whenever x is 'close' to π —no matter how x is 'close' to π . The right-hand limit $\lim_{x\to\pi^+}f(x)$ asks what the outputs are 'close' to if x is 'close' to π —but bigger than π . But we already know that the outputs are 'close' to 10. Therefore, it must be that $\lim_{x\to\pi^+}f(x)=10$. Recall that $\lim_{x\to a}f(x)=L$ if and only if $\lim_{x\to a^-}f(x)=L$ and $\lim_{x\to a^+}f(x)=L$.

Check-In 01/22. (True/False)
$$\lim_{x \to \infty} \left(1 + \frac{1}{3x}\right)^x = e^3$$

Solution. The statement is *false*. Recall that $\lim_{x\to\infty}\left(1+\frac{1}{x}\right)^x=e$. But then...

$$\lim_{x \to \infty} \left(1 + \frac{1}{3x} \right)^x = \lim_{x \to \infty} \left(1 + \frac{1}{3x} \right)^{x \cdot 3/3} = \lim_{x \to \infty} \left[\left(1 + \frac{1}{3x} \right)^{3x} \right]^{1/3} = e^{1/3} = \sqrt[3]{e}$$

Check-In 01/24. (True/False)
$$\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = (1+0)^{\infty} = 1^{\infty} = 1$$

Solution. The statement is *false*. One does obtain 1^{∞} after naïvely plugging in $x = \infty$. However, ∞ is not a number; moreover, although one might feel otherwise, it is simply need not be the case that $1^{\infty} = 1$. Indeed, 1^{∞} is an indeterminant form. One could correctly recall that...

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

Check-In 01/27. (*True/False*) The function $f(x) = \frac{e^x \sin(\sqrt[3]{x})}{x^2 + 6x + 9}$ is continuous on any interval which does not contain x = -3.

Solution. The statement is true. We know that e^x , $\sin x$, $\sqrt[3]{x}$, and x^2+6x+9 are everywhere continuous. But then $\sin(\sqrt[3]{x})$ is everywhere continuous, because it is a composition of continuous functions. This makes $e^x \sin(\sqrt[3]{x})$ continuous, because it is the product of continuous functions. But then $f(x) = \frac{e^x \sin(\sqrt[3]{x})}{x^2+6x+9}$ is continuous so long as $x^2+6x+9 \neq 0$, because it would be a quotient of continuous functions. Observe that $x^2+6x+9=(x+3)^2$. Therefore, if $x^2+6x+9=0$, then $(x+3)^2=0$ so that x=-3. Therefore, f(x) is continuous on any interval not containing -3.

Check-In 01/29. (True/False) The limit $\lim_{x\to 0} \frac{\sqrt{x+9}-3}{x}$ represents f'(9), where $f(x)=\sqrt{x}$. Solution. The statement is true. The definition of the derivative at x=a is $f'(a)=\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$. Taking $f(x)=\sqrt{x}$ and a=9, we would have $f'(9)=\lim_{h\to 0} \frac{f(9+h)-f(9)}{h}=\lim_{h\to 0} \frac{\sqrt{9+h}-\sqrt{9}}{h}=\lim_{h\to 0} \frac{\sqrt{h+9}-3}{h}$. This is the same as the given limit with the role of h and x interchanged.

Check-In 01/31. (True/False) $\frac{d}{dx} \sin(\ln x) = \cos\left(\frac{1}{x}\right)$

Solution. The statement is *false*. We have a derivative of a composition of functions. This requires chain rule: $\frac{d}{dx} f(g(x)) = f'(g(x)) \cdot g'(x)$. Here, we have $f(x) = \sin x$ and $g(x) = \ln x$. The correct derivative should be...

$$\frac{d}{dx}\sin(\ln x) = \cos(\ln x) \cdot \frac{1}{x}$$

Here, the 'rule' $\frac{d}{dx}f\big(g(x)\big)=f'\big(g'(x)\big)$ has been applied, which is incorrect.