EYP 1027 Métodos Probabilísticos Clase 15

Profesor: Reinaldo B. Arellano-Valle

Departamento de Estadística Pontificia Universidad Católica de Chile

Segundo Semestre 2020

Contenido I

- Distribución de funciones de vectores aleatorios
 - Caso discreto
 - Ejemplo: Convolución discreta
 - Caso continuo
 - Ejemplos
 - Ejemplo: Convolución continua

Dado un vector aleatorio (X_1, \ldots, X_n) en (Ω, \mathcal{A}, P) y n funciones real valoradas $g_i : \mathbb{R}^n \longrightarrow \mathbb{R}$, $i = 1, \ldots, n$, considere la transformación de \mathbb{R}^n para \mathbb{R}^n ,

$$(X_1,\ldots,X_n)\longrightarrow (Y_1,\ldots,Y_n),$$

donde

$$Y_1 = g_1(X_1, \dots, X_n)$$

$$\vdots$$

$$Y_n = g_n(X_1, \dots, X_n).$$

Entonces, (Y_1, \ldots, Y_n) es vector aleatorio en (Ω, \mathcal{A}, P) , ya cada una de sus coordenadas, Y_1, \ldots, Y_n , es una variable aleatoria en (Ω, \mathcal{A}, P) .

Conocida la distribución de (X_1, \ldots, X_n) , deseamos, ahora, determinar la distribución del nuevo vector aleatorio (Y_1, \ldots, Y_n) .

Note que $\pmb{Y}=\pmb{g}(\pmb{X})$, donde $\pmb{g}=(g_1,\ldots,g_n):\mathbb{R}^n\longrightarrow\mathbb{R}^n$ es tal que

$$\mathbf{x} = (x_1, \dots, x_n) \longrightarrow \mathbf{g}(\mathbf{x}) = (g_1(\mathbf{x}), \dots, g_n(\mathbf{x})).$$

Sea,

$$h(B) = g^{-1}(B) := \{x : g(x) \in B\}, \quad B \subset \mathbb{R}^n.$$

Entonces, en cualquier situación, la distribución de probabilidad de Y puede detreminrase como,

$$P_{\mathbf{Y}}(B) = P(\mathbf{Y} \in B)$$

$$= P(\mathbf{g}(\mathbf{X}) \in B)$$

$$= P(\mathbf{X} \in \{\mathbf{x} : \mathbf{g}(\mathbf{x}) \in B\})$$

$$= P_{\mathbf{X}}(\mathbf{g}^{-1}(B)), \quad B \subset \mathbb{R}^{n}.$$

Caso discreto

(I) Caso Discreto: Si (X_1,\ldots,X_n) e (Y_1,\ldots,Y_n) son discretos, entonces la fmp conjunta de Y_1,\ldots,Y_n se determinada como,

$$\begin{split} f_{Y_1,\dots,Y_n}(y_1,\dots,y_n) &= P(Y_1 = y_1,\dots,Y_n = y_n) \\ &= P(g_1(X_1,\dots,X_n) = y_1,\dots,g_n(X_1,\dots,X_n) = y_n) \\ &= P((X_1,\dots,X_n) \in \{(x_1,\dots,x_n) : g_1(x_1,\dots,x_n) = y_1,\dots,g_n(x_1,\dots,x_n) = y_n\}) \\ &= \sum_{\{(x_1,\dots,x_n) : g_1(x_1,\dots,x_n) = y_1,\dots,g_n(x_1,\dots,x_n) = y_n\}} P(X_1 = x_1,\dots,X_n = x_n) \\ &= \sum_{\{(x_1,\dots,x_n) : g_1(x_1,\dots,x_n) = y_1,\dots,g_n(x_1,\dots,x_n) = y_n\}} f_{X_1,\dots,Y_n}(x_1,\dots,x_n) \end{split}$$

Nota: Conviene determinar primero el recorrido o soporte de (Y_1,\ldots,Y_n) ,

$$\begin{split} \mathcal{Y} &= \{(y_1,\ldots,y_n): y_i = g_i(x_1,\ldots,x_n), i=1,\ldots,n, \text{ para algún } (x_1,\ldots,x_n) \in \mathcal{X}\} \\ &= \{y_1,\ldots,y_n): f_{Y_1,\ldots,Y_n}(y_1,\ldots,y_n) > 0\}, \end{split}$$

donde $\mathcal{X}=\{(x_1,\ldots,x_n):f_{X_1,\ldots,X_n}(x_1,\ldots,x_n)>0\}$ es el recorrido o soporte de $(X_1,\ldots,X_n).$

Ejemplo 1.1

Sean $Y_1 = X_1 + X_2$ e $Y_2 = X_1 - X_2$. Entonces,

$$P(Y_1 = y_1, Y_2 = y_2) = P(X_1 + X_2 = y_1, X_1 - X_2 = y_2)$$

$$= P((X_1, X_2) \in \{(x_1, x_2) : x_1 + x_2 = y_1, x_1 - x_2 = y_2\})$$

$$= \sum_{\{(x_1, x_2) : x_1 + x_2 = y_1, x_1 - x_2 = y_2\}} P(X_1 = y_1, X_2 = x_2)$$

En este caso, $\mathcal{Y} = \{(y_1, y_2) : x_1 + x_2 = y_1, x_1 - x_2 = y_2 \ \forall \ (x_1, x_2) \in \mathcal{X}\}.$

Por ejemplo, si:

x_1	x_2	$P(X_1 = x_1, X_2 = x_2)$
0	2	1/4
3	4	1/8
1	6	1/8
2	8	1/2

entonces:

$y_1 = x_1 + x_2$	$y_2 = x_1 - x_2$	$P(Y_1 = y_1, Y_2 = y_2)$
2	-2	1/4
7	-1	1/8
7	-5	1/8
10	-6	1/2

Ejemplo 1.2

Sean X_1 e X_2 variables aleatorias con fmp conjunta dada por,

	f_{X_1,X_2}	(x_1, x_2)
$x_1 \backslash x_2$	0	1
-1	1/7	1/7
0	2/7	1/7
1	1/7	1/7

Sea $g_1(x_1, x_2) = x_1 + x_2$ y $g_2(x_1, x_2) = x_1x_2$. Claramente, las variables aleatorias,

$$Y_1 = g_1(X_1, X_2) = X_1 + X_2$$
 e $Y_2 = g_2(X_1, X_2) = X_1 X_2$

toman valores en $\mathcal{Y}_1 = \{-1, 0, 1, 2\}$ y $\mathcal{Y}_2 = \{-1, 0, 1\}$, respectivamente.

Entonces, la fmp conjunta de Y_1 y Y_2 queda determinada por,

	f_{Y_1,Y_2}	(y_1, y_2)	
$y_1 \backslash y_2$	-1	0	1
-1	0	1/7	0
0	1/7	2/7	0
1	0	2/7	0
2	0	0	1/7

Por ejemplo,

i)
$$P(Y_1 = -1, Y_2 = -1) = P(\{\emptyset\}) = 0 \Longrightarrow$$
 no existe un par (x_1, x_2) tal que $x_1 + x_2 = -1$ y, simultáneamente, $x_1x_2 = -1$.

ii)
$$P(Y_1 = -1, Y_2 = 0) = P(X_1 = -1, X_2 = 0) = 1/7.$$

iii)
$$P(Y_1 = 0, Y_2 = 0) = P(X_1 = 0, X_2 = 0) = 2/7.$$

Fmalización para n=2: Como ya sabemos, si (X_1,X_2) es un vector aleatorio discreto, entonces su soporte

$$\mathcal{X} = \{(x_1, x_2) : f_{X_1, X_2}(x_1, x_2) > 0\}$$

es un subconjunto contable de valores en \mathbb{R}^2 .

Luego, el recorrido de $(Y_1,Y_2)=(g_1(X_1,X_2),g_2(X_1,X_2))$, digamos,

$$\mathcal{Y} = \left\{ (y_1, y_2) : y_1 = g_1(x_1, x_2), \ y_2 = g_2(x_1, x_2), \ \text{algún} \ (x_1, x_2) \in \mathcal{X} \right\},$$

también es un subconjunto contable de valores en \mathbb{R}^2 ; es decir, si (X_1,X_2) es discreto, entonces (Y_1,Y_2) también es discreto, y su fmp se determina como,

$$f_{Y_1,Y_2}(y_1,y_2) = \sum_{\{(x_1,x_2) \in \mathcal{X}: g_1(x_1,x_2) = y_1, g_1(x_1,x_2) = y_2\}} f_{X_1,X_2}(x_1,x_2).$$

Ejemplo: Convolucón discreta

Ejemplo 1.3

Sean X_1 y X_2 variables aleatorias discretas independientes. Se desea encontrar la fpm de $X_1 + X_2$.

Paso 1: Transformar $(X_1,X_2) \longrightarrow (Y_1,Y_2)$, donde $Y_1 = X_1 + X_2$ (variable de interés) e $Y_2 = X_2$ (variable auxiliar arbitraria); entonces,

$$P(Y_1 = y_1, Y_2 = y_2) = P(X_1 + X_2 = y_1, X_2 = y_2)$$

$$= P(X_1 = y_1 - y_2, X_2 = y_2)$$

$$= P(X_1 = y_1 - y_2)P(X_2 = y_2) \text{ (por independencia)}$$

 $\it Paso 2:$ Marginalizar con respecto a la variable auxiliar $\it Y_{\rm 2},$

$$P(Y_1 = y_1) = \sum_{\{y_2: (y_1 - y_2, y_2) \in \mathcal{X}\}} P(X_1 = y_1 - y_2) P(X_2 = y_2). \quad (*)$$

Aplicación: Si $X_1 \sim P(\lambda_1)$ y $X_2 \sim P(\lambda_2)$ son va's independientes, entonces $Y = X_1 + X_2 \sim P(\lambda_1 + \lambda_2)$. En efecto, de (*) se tiene que,

$$P(Y = y) = \sum_{\{k: k \ge 0, \ y - k \ge 0\}} P(X_1 = y - k) P(X_2 = k)$$

$$= \sum_{k=0}^{y} \frac{\lambda_1^{y-k} e^{-\lambda_1}}{(y-k)!} \frac{\lambda_2^k e^{-\lambda_2}}{k!} \quad (x_1, x_2 \ge 0 \Rightarrow 0 \le k \le y, \ y \ge 0)$$

$$= \frac{e^{-(\lambda_1 + \lambda_2)}}{y!} \sum_{k=0}^{y} {y \choose k} \lambda_1^{y-k} \lambda_2^k \quad y = 0, 1, 2, \dots$$

$$= \frac{e^{-(\lambda_1 + \lambda_2)} (\lambda_1 + \lambda_2)^y}{y!} \quad y = 0, 1, 2, \dots,$$

la cual es la fmp de $Y = X_1 + X_2 \sim P(\lambda_1 + \lambda_2)$.

Extensión: Si $X_i \sim P(\lambda_i)$, $i=1,\ldots,n$, son va's independientes, entonces $Y = \sum_{i=1}^n X_i \sim P\left(\sum_{i=1}^n \lambda_i\right)$.

Tarea: Pruebe y extienda los siguientes resultados:

- (a) Si $X_1 \sim Bin(n_1, p)$ y $X_2 \sim Bin(n_2, p)$ son va's indendientes $\implies Y = X_1 + X_2 \sim Bin(n_1 + n_2, p)$.
- (b) Si $X_1 \sim Bin(n_1,p)$ y $X_2 \sim Bin(n_2,p)$ son va's indendientes
- $\Longrightarrow Y = X_1 + X_2 \sim BN(r_1 + r_2, p).$
- (c) Pruebe que $Y = \sum_{i=1}^{n} X_i \sim Bin(n, p)$, donde $X_1, \dots, X_n \stackrel{\text{iid}}{\sim} Ber(p)$.
- (c) Pruebe que $Y = \sum_{i=1}^{n} X_i \sim Bin(n, p)$, donde $X_1, \ldots, X_n \stackrel{\mathsf{iid}}{\sim} Geo(p)$.

Caso continuo

Caso continuo: Suponga que X e Y = g(X) son vectores aleatorios continuos. Tal como en el caso univariado, se distinguen dos casos dependiendo si la transformación,

$$g: \mathcal{X} \subseteq \mathbb{R}^n \longrightarrow \mathcal{Y} \subseteq \mathbb{R}^n$$

sea uno-a-uno (biunívoca) o no sea uno-a-uno (no biunívoca), donde, igual que antes, $\mathcal{X}=\{\boldsymbol{x}\in\mathbb{R}^n:f_{\boldsymbol{X}}(\boldsymbol{x})>0\}$ e $\mathcal{Y}=\{\boldsymbol{y}\in\mathbb{R}^n:\boldsymbol{y}=g(\boldsymbol{x})\text{ para algún }\boldsymbol{x}\in\mathcal{X}\}.$

Caso biunívoco: Sea $y_i=g_i(x_1,\ldots,x_n)$ para $i=1,\ldots,n$. Suponga que para cada $(x_1,\ldots,x_n)\in\mathcal{X}$ existe un único $(y_1,\ldots,y_n)\in\mathcal{Y}$ tal que,

$$x_i = h_i(y_1, \ldots, y_n)$$
 $i = 1, \ldots, n$

donde (h_1, \ldots, h_n) es la transformación inversa de (g_1, \ldots, g_n) .

Defina el Jacobiano de la transformación como,

$$J = \det \begin{pmatrix} \frac{\partial x_1}{\partial y_1} & \cdots & \frac{\partial x_1}{\partial y_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial x_n}{\partial y_1} & \cdots & \frac{\partial x_n}{\partial y_n} \end{pmatrix},$$

el cual es una función de (y_1, \ldots, y_n) , ya que

$$\frac{\partial x_i}{\partial y_j} = \frac{\partial h_i(y_1, \dots, y_n)}{\partial y_j}, \quad i, j = 1, \dots, n.$$

Si dichas derivadas existen y son todas continuas y $J \neq 0$ para todo $(y_1, \ldots, y_n) \in \mathcal{Y}$, entonces Y_1, \ldots, Y_n tienen fdp conjunta de dada por,

$$f_{Y_1,...,Y_n}(y_1,...,y_n) = \begin{cases} |J| f_{Y_1,...,Y_n}(h_1(y_1,...,y_n),...,h_n(y_1,...,y_n)), \\ & \text{si } (y_1,...,y_n) \in \mathcal{Y}, \\ 0, & \end{cases}$$

eoc.

Idea de la demostración: Sea $h(B)=g^{-1}(B)=\{x:g(x)\in B\},\ B\subset\mathbb{R}^n.$ Entonces,

$$\begin{split} P_{\boldsymbol{Y}}(B) &= P(\boldsymbol{Y} \in B) \\ &= P(\boldsymbol{g}(\boldsymbol{X}) \in B) \\ &= P(\boldsymbol{X} \in \boldsymbol{g}^{-1}(B)) \\ &= P(\boldsymbol{X} \in \boldsymbol{h}(B)) \\ &= \int_{\boldsymbol{h}(B)} f_{\boldsymbol{X}}(\boldsymbol{x}) d\boldsymbol{x} \quad (\boldsymbol{y} = \boldsymbol{g}(\boldsymbol{x}) \Longrightarrow \boldsymbol{x} = \boldsymbol{g}^{-1}(\boldsymbol{y}) = \boldsymbol{h}(\boldsymbol{y})) \\ &= \int_{B} f_{\boldsymbol{X}}(\boldsymbol{h}(\boldsymbol{y})) |J| d\boldsymbol{y} \quad (\boldsymbol{x} \in \boldsymbol{h}(B) \Longrightarrow \boldsymbol{y} = \boldsymbol{g}(\boldsymbol{x}) \in B), \end{split}$$

de acuerdo con la formula para cambio de variables en integrales múltiples.

El resultado se obtiene al aplicar el siguiente lema:

Lema: Sea \boldsymbol{Y} un vector aleatoria continuo de dimensión n. Si para cada $B\subset\mathbb{R}^n$,

$$P_{\mathbf{Y}}(B) = P(\mathbf{Y} \in B) = \int_{B} f(\mathbf{y}) d\mathbf{y},$$

entonces $f(y) = f_{\mathbf{Y}}(y)$, es decir, la fdp de \mathbf{Y} .

Formalización para n=2:

Teorema 1.1

Sea (X_1, X_1) un vector aleatorio continuo con fdp conjunta $f_{(X_1, X_2)}$. Sean,

$$\mathcal{X} = \{(x_1, x_2) : f_{(X_1, X_2)}(x_1, x_2) > 0\} \subseteq \mathbb{R}^2$$
. Suponga que,

- i) $y_1 = g_1(x_1, x_2)$ e $y_2 = g_2(x_1, x_2)$ definen una transformación uno a uno de \mathcal{X} en $\mathcal{Y} = \{(y_1, y_2) : y_1 = g_1(x_1, x_2), y_2 = g_2(x_1, x_2) \text{ para algún } (x_1, x_2) \in \mathcal{Y}\} \subseteq \mathbb{R}^2$.
- ii) Las derivadas parciales de la trasnformación inversa $x_1 = h_1(y_1, y_2)$ y $x_2 = h_2(y_1, y_2)$ son continuas sobre \mathcal{Y} .
- iii) El jacobiano de la transformación

$$J = \det \begin{pmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} \end{pmatrix} \text{ es } \neq 0 \text{ para } (y_1, y_2) \in \mathcal{Y}.$$

Entonces la fdp conjunta de $Y_1 = g_1(X_1, X_2)$ y $Y_2 = g_2(X_1, X_2)$, está dada por,

$$f_{Y_1,Y_2}(y_1,y_2) = \begin{cases} |J| f_{(X,Y)}(h_1(y_1,y_2),h_2(y_1,y_2), & \text{si } (y_1,y_2) \in \mathcal{Y}, \\ 0, & \text{eoc.} \end{cases}$$

Ejemplos

Por ejemplo, para n=2, la transformación,

$$y_1 = x_1 + x_2 \longrightarrow g_1(x_1, x_2) = x_1 + x_2$$

 $y_2 = x_1 - x_2 \longrightarrow g_2(x_1, x_2) = x_1 - x_2$

es uno-a-uno sobre todo $\mathbb{R}^2.$ La transformación inversa es,

$$x_1 = (y_1 + y_2)/2 \longrightarrow h_1(x_1, x_2) = (y_1 + y_2)/2$$

 $x_2 = (y_1 - y_2)/2 \longrightarrow h_2(x_1, x_2) = (y_1 - y_2)/2,$

y el Jacobiano de la transformación es,

$$J = \det \left(\begin{array}{cc} \partial x_1/\partial y_1 & \partial x_1/\partial y_2 \\ \partial x_2/\partial y_1 & \partial x_2/\partial y_2 \end{array} \right) = \det \left(\begin{array}{cc} 1/2 & 1/2 \\ 1/2 & -1/2 \end{array} \right) = -1/2$$

$$\Longrightarrow |J| = +1/2$$
. Asi,

$$f_{Y_1,Y_2}(y_1,y_2) = \begin{cases} \frac{1}{2} f_{(X_1,X_2)}((y_1+y_2)/2,(y_1-y_2)/2), & \text{si } (y_1,y_2) \in \mathcal{Y}, \\ 0, & \text{eoc.} \end{cases}$$

Aplicaciones:

1) Sean $X_1, X_2 \stackrel{\mathsf{iid}}{\sim} \exp(1)$, es decir,

$$f_{X_1,X_2}(x_1,x_2) = f_{X_1}(x_1) f_{X_2}(x_2) = \begin{cases} e^{-x_1-x_2}, & \text{si } x_1 > 0, \, x_2 > 0, \\ 0, & \text{eoc.} \end{cases}$$

Queremos la fdp de $(Y_1,Y_2)=(X_1+X_2,X_1-X_2)$. Note que $x_1,x_2>0\Longrightarrow y_1=x_1+x_2>0$. Luego,

$$\begin{split} f_{Y_1,Y_2}(y_1,y_2) &= \begin{cases} \frac{1}{2}e^{-\frac{y_1+y_2}{2}-\frac{y_1-y_2}{2}}, & \text{si } \frac{y_1+y_2}{2} > 0, \, \frac{y_1-y_2}{2} > 0, \\ 0, & \text{eoc,} \end{cases} \\ &= \begin{cases} \frac{1}{2}e^{-y_1}, & \text{si } y_2 > y_1, \, y_2 < -y_1, \, y_1 > 0, \\ 0, & \text{eoc,} \end{cases} \\ &= \begin{cases} \frac{1}{2}e^{-y_1}, & \text{si } |y_2| < y_1, \, y_1 > 0, \\ 0, & \text{eoc.} \end{cases} \end{split}$$

2) Sean $X_1, X_2 \stackrel{\text{iid}}{\sim} U(0,1)$, es decir,

$$f_{X_1,X_2}(x_1,x_2) = f_{X_1}(x_1) f_{X_2}(x_2) = \begin{cases} 1, & \text{si } 0 < x_1 < 1, \, 0 < x_2 < 1, \\ 0, & \text{eoc.} \end{cases}$$

Entonces, la fdp de $(Y_1,Y_2)=(X_1+X_2,X_1-X_2)$ es,

$$\begin{split} f_{Y_1,Y_2}(y_1,y_2) &= \begin{cases} \frac{1}{2}, & \text{si } 0 < \frac{y_1+y_2}{2} < 1, \, 0 < \frac{y_1-y_2}{2} < 1, \\ 0, & \text{eoc}, \end{cases} \\ &= \begin{cases} \frac{1}{2}, & \text{si } -y_1 < y_2 < 2 - y_1, \, 0 < y_1 < 1, \\ & -(2-y_1) < y_2 < y_1, \, 1 < y_1 < 2, \\ 0, & \text{eoc}. \end{cases} \end{split}$$

Tarea: En 1) y 2), bosqueje los recorridos \mathcal{X} e \mathcal{Y} , y determine las distribuciones marginales de Y_1 e Y_2 .

3) Sean $X_1, X_2 \stackrel{\text{iid}}{\sim} N(0,1)$, es decir,

$$f_{X_1,X_2}(x_1,x_2) = f_{X_1}(x_1)f_{X_2}(x_2) = (2\pi)^{-1}e^{-x_1^2/2}e^{-x_2^2/2}, \quad (x_1,x_2) \in \mathbb{R}^2.$$

Entonces.

$$Y_1 = X_1 + X_2 \sim N(0, 2)$$

 $Y_2 = X_1 - X_2 \sim N(0, 2).$

Bosqueje los recorridos en este caso. Obtenga la fdp conjunta de Y_1 e Y_2 . Son Y_1 e Y_2 variables aleatorias independientes? Justifique.

Ejemplo: Convolución continua

Ejemplo 1.4

Sean X_1 e X_2 variables aleatorias continuas independientes. Se desea la fdp de $X_1 + X_2$.

Paso 1: Sean $Y_1=X_1+X_2$ (variable de interés) e $Y_2=X_2$ (variable auxiliar arbitraria). Entonces, $y_1=g_1(x_1,x_2)=x_1+x_2$ e $y_2=g_1(x_1,x_2)=x_2$, con inversos $x_1=h_1(y_1,y_2)=y_1-y_2$ y $x_2=h_2(y_1,y_2)=y_2$. Luego,

$$J = \begin{pmatrix} \partial x_1/\partial y_1 & \partial x_1/\partial y_2 \\ \partial x_2/\partial y_1 & \partial x_2/\partial y_2 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = 1,$$

У

$$f_{Y_1,Y_2}(y_1,y_2) = f_{X_1,X_2}(y_1 - y_2, y_2) = f_{X_1}(y_1 - y_2)f_{X_2}(y_2).$$

Paso 2:
$$f_{Y_1}(y_1) = \int_{\{y_2:(y_1-y_2,y_2)\in\mathcal{X}\}} f_{X_1}(y_1-y_2)f_{X_2}(y_2)dy_2$$
.

Por ejemplo, si $Y=X_1+X_2$, donde $X_1,X_2\stackrel{\mathsf{iid}}{\sim} \exp(\lambda)$, entonces

$$\begin{split} f_Y(y) &= \begin{cases} \int_0^y \lambda^2 e^{-\lambda(y-z+z)} dz & \text{si } y > 0, \\ 0, & \text{eoc,} \end{cases} \\ &= \begin{cases} \lambda^2 y e^{-\lambda y} & \text{si } y > 0, \\ 0, & \text{eoc,} \end{cases} \end{split}$$

es decir, $Y = X_1 + X_2 \sim Gama(2, \lambda)$

Extensión: Si $X_i \sim Gama(\alpha_i, \lambda)$, i = 1, ..., n son va's independientes, entonces $Y = \sum_{i=1}^n X_i \sim Gama(\sum_{i=1}^n \alpha_i, \lambda)$.