

DIGITAL SIGNAL PROCESSING LAB Lab sheet. No: 05

NAME: NIKHIL KILARI Roll. No: EE16B017

Prelab:

Question 1

Aim:

To use MATLAB to plot pole-zero map of the given signal and list the possible ROC's for left sided, right sided and two sided signal

Short Theory;

We use zplane function to plot the pole-zero plot of the given signal.

Key Commands:

• zplane()

Results:

For first X(z)

For second X(z)

Comments/Inferences:

For first X(z) the ROC's re as follows:

• Left sided function : |z| < 0.5

• Two sided function : 0.5 <= |z| <= 2

• Right sided function: |z|>2

For second X(z) the ROC's are as follows:

• Left side function: |z|<1

• Right sided function: |z|>1

• Two sided function: Does not exist

Question 2

Aim:

- To find H(z) and find the region of convergence.
- To write the difference equation satisfied by the given input and output and to find whether the system is stable or casual or both.

Short Theory:

The z transform of $a^nu[n]$ is 1/(z-a)

Key Commands:

• zplane()

Results:

Comments/Inference:

- The difference equation is y[n]-0.66y[n-1] = x[n]-2x[n-1].
- The ROC is |z| > 0.666
- The system is both stable and causal

Lab Exercises:

Question 1

Aim:

- To find the impulse response of the difference equation using impz function.
- To modify the program to generate the first 40 samples of the impulse response of the given difference equation.
- To generate the impulse response of the system using filter function for the first 40 samples and compare the response with previous response
- To write matlab program to generate the step response for the first 40 samples

Short Theory:

- a) By giving the numerator and denominator coefficients to the impz function we get the impulse response of the transfer function.
- b) By mention the number of samples in the impz function we get impulse response based on the number of samples specified
- c) In filter command by mentioning the transfer coefficients and the function to which the function is to be applied we get the output
- d) By using conv function we find the output of unit step signal and impulse response.

Key Commands:

- impz(b,a,50)
- filter(b,a,x)
- conv(u,v)

Result:

Inferences/comments:

 We therefore find that the response of 1b matches exactly as that of 1c.

Question 2

Aim:

To use ztrans to find z transform of aⁿu[n], and to find inverse z-transform using iztrans to verify the results.

Short Theory:

We syms to declare n a and z as variables by doing so we define the function in terms of a and n. Then we apply ztrans and iztrans to verify the results

Key Commands:

- y = ztrans(f,z)
- f1 = iztrans(y)

Results:

We get

•
$$y = -z/(a - z)$$

piecewise(a == 0, kroneckerDelta(n, 0), a ~= 0, a*(a^n/a - kroneckerDelta(n, 0)/a) +kroneckerDelta(n, 0))

Comments/Inference:

We find both f and f1 are the same function

Question 3

Aim:

To determine $X_3=X_1*X_2$ For given X_1 and X_2 and find theoretically find y[n] and verify the results

Short Theory:

For given X_1 and X_2 we find $x_1[n]$ and $x_2[n]$ and then use conv function to find y[n]. Theoretically we find X_3 and then find the inverse z transform to verify the results.

Key Commands:

- conv(x1,x2)
- iztrans(f3)

Results:

Comments/Inferences:

• We find both y[n] and the inverse z transform of X3 are same.

Question 4

Aim:

- To find the pole zero maps of H(z), X(z) and Y(z)
- Plot impulse response h[n]
- Plot the output signal y[n]

Short Theory:

We use zplane(b,a) to plot zero maps of the transfer function. And then we use impz() to find the inverse z transform of the transfer functions

Key Commands:

- impz(b,a)
- zplane(b,a)

Zplane of H

Impulse Response h[n]

Output y[n]

Comments/Inferences:

• We find that the Y(z) has the all the poles and zeros of X(z) and Y(z).

Question 5

Aim:

To plot the pole zero map of the transfer function H(z) discussed in prelab(2). We also need to plot h[n], x[n] and the output signal.

Short Theory:

We use impz function to find the signals from transfer function. And use zplane() to plot the pole zero plot of the transfer function.

Key Commands:

• impz(b,a)

Results:

Zplane of H(z)

Comments/Inferences:

We therefore plot the pole zero plots and the functions successfully.