Metodi Matematici per l'Informatica (secondo canale) - 22 Gennaio 2019 \Box prima parte: esercizi 1 – 4, \Box induzione: esercizio 5; \Box seconda parte: esercizi 6 – 9 Indicare qui sopra le parti del compito che sono state svolte
Nome e Cognome:
Es 1. Sia $A = \{0, (a, 0), (0, b), \{0, 1\}, a, b, \{0\}\}$. Allora
$\Box_V \Box_F$ A. A non è un insieme; $\Box_V \Box_F$ B. Esistono $x, y, z, t \in A$ (con $x \neq y$) tali che $x \in z$ e $y \in t$; $\Box_V \Box_F$ C. A ha quattro elementi; $\Box_V \Box_F$ D. Esistono $x, y, z \in A$ tali che $x \in y$ e $y \subseteq z$.
Es 2. Dato un insieme X indichiamo con 2^X l'insieme delle parti di X . Indichiamo con T l'insieme dei multipli di 3 e con Q l'insieme dei multipli di 4 . Allora
$\Box_{V}\Box_{F} \mathbf{A.} \ 2^{T} \subseteq 2^{Q};$ $\Box_{V}\Box_{F} \mathbf{B.} \ 2^{T} \cap 2^{Q} \neq \emptyset;$ $\Box_{V}\Box_{F} \mathbf{C.} \ Q \text{ è numerabile};$ $\Box_{V}\Box_{F} \mathbf{D.} \ 2^{Q} \text{ è numerabile}.$
Es 3. Quali fra le seguenti affermazioni sono corrette?
 □_V□_F A. Per ogni insieme A ≠ ∅, la relazione A × A non è antisimmetrica; □_V□_F B. Per ogni insieme A ≠ ∅, la relazione A × A è una relazione di equivalenza; □_V□_F C. Ogni relazione di equivalenza che contenga una coppia (u, v) con u ≠ v è esclusivamente riflessiva simmetrica e transitiva; □_V□_F D. Per ogni relazione R su A esiste una relazione di equivalenza su A che contiene R.
Es 4. Scrivere una relazione di equivalenza $R \subseteq \{a, b, c, d\} \times \{a, b, c, d\}$ che abbia due classi di equivalenza indicandone l'insieme quoziente.
Rispondere qui
Es 5. Dimostrare che, per ogni $n \ge 1$: $\sum_{i=1}^n \frac{1}{i(i+1)} = 1 - \frac{1}{n+1}.$
Rispondere qui

$\mathbf{E}\mathbf{s}$	6.	Definire il concetto di soddisfacibilità nella logica proposizionale.
		Rispondere qui
$\mathbf{E}\mathbf{s}$	7.	Le seguenti formule sono tautologie (T), soddisfacibili (S), falsificabili (F) o insoddisfacibili (I)?
		T S F I $\square \square \square \square \square \neg \neg A \wedge A;$ $\square \square \square \square \square \neg A \vee \neg \neg A;$ $\square \square \square \square \square \square \neg (A \vee B) \leftrightarrow (A \wedge \neg B);$ $\square \square \square \square \square \square (A \rightarrow B) \leftrightarrow (\neg B \rightarrow \neg A);$ $\square \square \square \square \square \square (A \wedge \neg A) \rightarrow B.$
$\mathbf{E}\mathbf{s}$	8.	Definire (se possibile) un'interpretazione che verifichi ed una che falsifichi la formula
		$(\exists y P(y) \land \exists z Q(z)) \to \exists x (P(x) \land Q(x)).$
		Rispondere qui
Es	9.	Formalizzare le proposizioni A, B, C seguenti con enunciati nel linguaggio predicativo \mathcal{L} composto da un simbolo R di relazione a due argomenti e dal simbolo = di identità.
		$\mathbf{A.}\ R$ è una relazione di ordine totale.
		Rispondere qui
		\mathbf{B} . R non è una relazione simmetrica.
		Rispondere qui
		C. R non ammette minimo.
		Rispondere qui