Solutions to Problem Sheet 8

1. Consider the Activities on Arrows diagram below:

- (a) Do a forward and backward pass to find the critical path.
- (b) Draw the corresponding Activities on Nodes diagram.
- (c) Give the float for each activity.

And so the critical path is A-B-D-F-J-K.

 $\begin{bmatrix} 0 & | & 0 \end{bmatrix}$ (c) Activities on the critical path, A, B, D, F, J, and K, have float of 0. Activity C has float of 2,

activities E, G and I have floats of 5, and activity H has float of 7.

2. Consider the following project:

Activity	Duration	Prerequisites	
Α	1	-	
В	1	-	
C	3	-	
D	2	A, B	
Ε	3	C	
F	4	C	
G	12	Α	
Н	1	D, E, F	
1	2	F	

- (a) Draw the Activities on Nodes diagram and find the critical path.
- (b) Draw the Activities on Arrows diagram and find the critical path.
- (c) Draw a Gantt chart for the project.

That so the entirear path is The

Solution 2 (continuing from p. 3) (b) The Activities on Arrow diagram is:

And so the critical path is A-G.

(c) The Gantt chart is:

(take care to ensure that prerequisite relationships are indicated.)

3. Consider the project below:

Task	Prerequisites	Duration	Crash Time	Crash Cost
Α	-	8	5	£30
В	-	6	2	£200
C	A, B	2	1	£15
D	С	4	2	£60
Е	С	5	1	£100
F	D, E	1	-	-

By drawing activities on arrows diagrams, find the least cost method of reducing the overall project duration to 11 time units.

Solution 3 First note that the unit cost reduction for A is £10, for B is £50, for C is £15, for D is £30, and for E is £25. Activity F cannot be crashed.

Step 1: Draw the initial activity on arrows diagram and find the critical path:

which gives a critical path of A-C-E-F, and so can reduce any of these. The cheapest activity that is possible to crash out of these is A. We can reduce A by 2 before the critical path changes, at a cost of £20.

Step 2: Redraw the activity on arrows diargam:

which gives a two critical paths A-C-E-F and B-C-E-F. We have a choice between reducing both A and B together (costing a total of £60), reducing C or E. Reducing C is the cheapest. We can reduce C by a maximum of 1, at a cost of £15.

Solution 3 (continuing from p. 5) Step 3: Redraw the activity on arrows diargam:

which gives a two critical paths A-C-E-F and B-C-E-F. We have a choice between reducing both A and B together (costing a total of £60), or reducing E. Reducing E is the cheapest. We can reduce E by 1 before the critical path changes, at a cost of £25.

Step 4: Redraw the activity on arrows diargam:

which gives a four critical paths A-C-E-F, A-C-D-F, B-C-D-F and B-C-E-F. We have a choice between reducing both A and B together (costing a total of £60), or reducing D and E together (costing a total of £55). So reduce both D and E together by 1 each, to reach the target time:

Therefore the least cost reductions to achieve an overall target time of 11 is to reduce A by 2, C by 1, D by 1, and E by 2. This costs a total of £115.