

Université Hassan II- Mohammedia
Faculté des Sciences et Techniques

Département de Mathématiques
Option :MIP

AU :2013/2014
Module :M311

Deuxième partiel Janvier 2104 (S3)
Durée 1H 30

Exercice 0.0.1 (5 points).

1. Montrer que la forme différentielle $\omega(x, y) = 2.x.e^y dx + (x^2.e^y + \cos(y))dy$, est exacte et déterminer une primitive. (1+2 pts)
2. Endéduire la solution générale de l'équation différentielle :
 $(x^2.e^y + \cos(y))y' = -2.x.e^y.$ (2 pts)

Exercice 0.0.2 (6 points)

1. Représenter les domaines et calculer les intégrales suivantes :
 - (a) $I = \int_0^2 \int_x^2 2y^2 \sin(xy) dx dy.$ (2 pts)
 - (b) Calculer directement et utilisant la formule de Green-Riemann :
 $J = \iint_D (x - y^2) dx dy, D : x^2 + y^2 \leq 1; y \geq 0.$ (2+2 pts)
2. Soient les surfaces (parabolides) S_1 et S_2 d'équations respectives $z = x^2 + y^2$ et $z = 8 - (x^2 + y^2)$, et Ω le domaine limité par les surfaces S_1 et S_2 .
 - (a) Montrer que la projection de Ω est $D : x^2 + y^2 \leq 4.$ (1 pts)
 - (b) Calculer $I = \iint_{\Omega} dx dy dz.$ (On pourra fixer x et $y).$ (2 pts)

Exercice 0.0.3 (6 points)

Soit S^+ la surface d'équation $x^2 + y^2 = z^2$, $1 \leq z \leq 2$ orientée par $\vec{n}(x, y, -z).$

1. Donner une paramétrisation de $S^+.$ (1 pts)
2. Calculer $I = \iint_{\Omega} z^2 dx dy dz..$ (2 pts)
3. Calculer l'intégrale de surface $I(a, R) = \iint_{D^+} x dy \wedge dz - 3y dz \wedge dx + \frac{1}{3} z^3 dx \wedge dy,$
où : $D : x^2 + y^2 \leq R^2$, $z = a$ orientée par $\vec{k}.$ (1 pts)
4. En utilisant la formule d'Orstogradsky, calculer

$$J = \iint_{S^+} x dy \wedge dz - 3y dz \wedge dx + \frac{1}{3} z^3 dx \wedge dy. (2 pts)$$

Professeurs : M.HARFAOUI- S. SAJID
