Семинар 12 (28.11.2022)

Краткое содержание

Первый сюжет — как находить (какой-то один) базис в подпространстве пространства F^n , заданном как линейная оболочка конечного набора векторов. **Первое соображение**: при элементарных преобразованиях данной системы векторов (прибавить к одному вектору другой, умноженный на скаляр; поменять местами два вектора; умножить один вектор на ненулевой скаляр) её линейная оболочка сохраняется. **Второе соображение**: набор векторов вида

$$\begin{pmatrix} \diamondsuit \\ * \\ \vdots \\ * \\ * \end{pmatrix}, \begin{pmatrix} 0 \\ \diamondsuit \\ * \\ \vdots \\ * \\ * \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ \diamondsuit \\ \vdots \\ * \\ * \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ \diamondsuit \\ * \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ \diamondsuit \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ \diamondsuit \end{pmatrix}$$

где $\phi \neq 0$ и * — произвольные элементы, всегда линейно независим (и, в частности, образует базис в F^n), а значит, всякая подсистема набора такого вида тоже линейно независима. Эти два соображения дают алгоритм нахождения искомого базиса:

- 1. записать векторы в матрицу по столбцам
- 2. элементарными преобразованиями столбцов привести её к транспонированно-ступенчатому виду
- 3. записать в базис все ненулевые столбцы полученного вида

Можно заметить, что тот же самый алгоритм можно делать и по строчкам, и ничего концептуально не поменяется — записать векторы в строки матрицы, элементарными преобразованиями строк привести её к ступенчатому виду, после чего записать в базис все ненулевые строки полученного вила.

Посмотрели, как данный алгоритм работает на наборе векторов (2, -3, 1), (3, -1, -2), (1, -4, 3) в \mathbb{R}^3 .

Второй сюжет — даны векторы $v_1, \ldots, v_m \in F^n$. Требуется выбрать среди этих векторов базис их линейной оболочки $\langle v_1, \ldots, v_m \rangle$ и выразить через этот базис все остальные векторы данной системы. Ключевое соображение: при элементарных преобразованиях строк матрицы сохраняются все линейные зависимости между её столбцами. Алгоритм:

- 1. записываем векторы в столбцы матрицы
- 2. элементарными преобразованиями строк приводим эту матрицу к ступенчатому виду
- 3. пусть i_1, \ldots, i_s номера ведущих элементов строк этой получившейся матрицы; тогда векторы v_{i_1}, \ldots, v_{i_s} (то есть векторы с теми же номерами в исходной матрице) образуют искомый базис в $\langle v_1, \ldots, v_m \rangle$.

Чтобы выразить остальные векторы через найденный базис, нужно довести матрицу до улучшенного ступенчатого вида, из него вся нужная информация извлекается сразу. Например, если

улучшенный ступенчатый вид есть
$$\begin{pmatrix} 1 & 2 & 0 & -1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
, то получаем, что базис будут образовывать

векторы v_1 и v_3 , а остальные будут выражаться через них так: $v_2 = 2v_1$, $v_4 = -v_1 + 2v_3$.

Последний сюжет — понятие фундаментальной системы решений (Φ CP) однородной системы линейных уравнений Ax=0 и метод построения одной конкретной Φ CP. Алгоритм:

1. приводим матрицу A элементарными преобразованиями строк к улучшенному ступенчатому виду

- 2. выражаем главные переменные через свободные (как делали раньше при решении ОСЛУ)
- 3. число векторов в базисе (или ФСР) равно числу свободных переменных. i-ый вектор базиса получается так: в выражениях главных через свободных в i-ую свободную переменную подставляем ненулевое значение (например, 1), а в остальные свободные – 0; считаем получившиеся значения главных переменных. записываем эти значения (и главных, и свободных) в вектор в соответстующие координаты и получаем i-ый вектор базиса.

Разобрали, как этот метод работает для ОСЛУ с матрицами $\begin{pmatrix} 1 & 2 & 0 & -1 \\ 0 & 0 & 1 & -2 \end{pmatrix}$ и $\begin{pmatrix} 3 & 1 & 0 & -2 \\ 0 & 0 & 2 & -1 \end{pmatrix}$.

При помощи ФСР нашли базис в подпространстве $\{f \mid f(1)=0, f'(1)=0\}$ пространства $\mathbb{R}[x]_{\leqslant 3}$ многочленов степени не выше 3 с действительными коэффициентами.

Домашнее задание к семинару 13. Дедлайн 5.12.2022

Номера с пометкой П даны по задачнику Проскурякова, с пометкой К – Кострикина.

- 1. П1310 (применить первый алгоритм с семинара, находящий какой-то базис)
- 2. II1311
- 3. Среди векторов a_1, \ldots, a_5 из номера П1310 выберите базис их линейной оболочки и выразите через него все остальные векторы данной системы.
- 4. В пространстве \mathbb{R}^5 даны векторы $v_1=(-2,1,-3,2,3), v_2=(-2,3,-5,7,4), v_3=(2,1,1,3,-2), v_4=(9,-2,4,-3,-8).$
 - (a) Выделите среди этих векторов базис их линейной оболочки $\langle v_1, v_2, v_3, v_4 \rangle$.
 - (б) Перечислите все подсистемы (подмножества) системы $\{v_1, v_2, v_3, v_4\}$, являющиеся базисами в $\langle v_1, v_2, v_3, v_4 \rangle$.
- 5. $\Pi 725$, $\Pi 727$
- 6. П729, П730
- 7. (1) Докажите, что для всякой матрицы $A \in M_n(\mathbb{R})$ множество векторов $x \in \mathbb{R}^n$ со свойством Ax = 2x является подпространством в \mathbb{R}^n .
 - (2) Найдите базис и размерность этого подпространства, если n=4 и

$$A = \begin{pmatrix} 2 & 1 & 0 & 2 \\ 0 & -1 & 0 & -6 \\ 0 & 3 & 2 & 6 \\ 0 & 1 & 0 & 4 \end{pmatrix}.$$

- 8. (1) Пусть $A \in M_n(\mathbb{R})$. Докажите, что множество всех матриц $X \in M_n(\mathbb{R})$, коммутирующих с A (то есть удовлетворяющих условию AX = XA), является подпространством в $M_n(\mathbb{R})$.
 - (2) Найдите базис и размерность этого подпространства, если n=2 и $A=\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.
- 9. (1) Пусть $Y \in M_n(\mathbb{R})$. Докажите, что множество всех матриц $X \in M_n(\mathbb{R})$, удовлетворяющих условию $\operatorname{tr}(YX) = 0$, является подпространством в пространстве $M_n(\mathbb{R})$.
 - (2) Найдите базис и размерность этого подпространства, если n=2 и $Y=\begin{pmatrix} 2 & 5 \\ 3 & 4 \end{pmatrix}$.