1. Etudier l'existence des intégrales suivantes :

a)
$$\int_0^1 \frac{dt}{(1-t)\sqrt{t}}$$
 b) $\int_0^{+\infty} \frac{\ln t}{t^2+1} dt$ c) $\int_0^{+\infty} \ln(t) e^{-t} dt$ d) $\int_{-\infty}^{+\infty} \frac{\ln(1+t^2)}{1+t^2} dt$

2. Nature de

a)
$$\int_0^{+\infty} \frac{e^{-x}}{\sqrt{x}} dx$$
 b) $\int_1^{+\infty} x^{-x} dx$ c) $\int_0^{+\infty} \frac{\sqrt{x} \sin(\frac{1}{x})}{\ln(1+x)} dx$ d) $\int_0^{+\infty} \frac{x^5}{x^{12}+1} dx$

3. Déterminer une condition nécessaire et suffisante sur les paramétres réels a et b pour que les intégrales suivantes existent :

a)
$$\int_{1}^{+\infty} \frac{dt}{t^a(t-1)^b}$$
 b) $\int_{0}^{+\infty} \frac{t^a}{1+t^b} dt$ c) $\int_{0}^{+\infty} \frac{t^a e^{-t}}{1+t^b} dt$

4. Existence et calcul de

a)
$$\int_0^1 -\frac{\ln t}{\sqrt{1-t}} dt$$
 b) $\int_{-1}^1 \sqrt{\frac{1-t}{1+t}} dt$ c) $\int_0^{+\infty} \ln\left(1+\frac{1}{t^2}\right) dt$

indication : pour c), utiliser une intégration par parties sur un segment.

5. Nature et calcul de

a)
$$\int_{1}^{2} \frac{1}{\sqrt{x^{2}-1}} dx$$
 b) $\int_{0}^{+\infty} e^{-\sqrt{x}} dx$ c) $\int_{1}^{+\infty} \frac{1}{\sinh x} dx$ d) $\int_{-\pi}^{+\pi} \frac{1-2\cos(x)}{5-4\cos(x)} dx$

indication: pour d), c'est une fraction rationnelle en $\cos x$.

6. Soient $(a,b) \in \mathbb{R}^2$ avec a < b et $f \in \mathcal{C}^0(\mathbb{R},\mathbb{R})$ admettant une limite finie ℓ en $-\infty$ et telle que $\int_0^{+\infty} f$ existe. Justifier l'existence, puis calculer :

$$\int_{-\infty}^{+\infty} \left(f(a+x) - f(b+x) \right) \, \mathrm{d}x$$

(on pourra s'intéresser à $[0,+\infty[$ "simple" puis à $]-\infty,0]$ "à détailler")

7. Existence et valeur de

$$\int_0^{+\infty} \frac{\arctan(2x) - \arctan x}{x} \, \mathrm{d}x$$

8. a) Justifier l'existence puis établir $I = \int_0^{+\infty} \frac{\mathrm{d}x}{x^3 + 1} = \int_0^{+\infty} \frac{x}{x^3 + 1} \mathrm{d}x$ b) En déduire la valeur de I.

9. a) Calculer $J = \int_0^{+\infty} \frac{t \, dt}{1 + t^4}$ b) Établir $I = \int_0^{+\infty} \frac{dt}{1 + t^4} = \int_0^{+\infty} \frac{t^2 \, dt}{1 + t^4}$

c) En factorisant $1 + t^4$ déterminer la valeur de I.

10. Existence et calcul pour $n \in \mathbb{N}$ de $I_n = \int_0^{+\infty} \frac{\mathrm{d}x}{(1+x^2)^{n+1}}$

11. Changements de variables

(a) Montrer que $\int_0^{+\infty} \frac{\ln t}{1+t^2} dt$ converge, puis, avec le changement de variables u=1/t, que $\int_0^{+\infty} \frac{\ln t}{1+t^2} dt = 0$.

(b) Soit
$$a > 0$$
. Calculer $\int_0^{+\infty} \frac{\ln t}{a^2 + t^2} dt$.

12. Intégrales de Bertrand

Pour $\alpha, \beta \in \mathbb{R}$, on souhaite déterminer la nature de

$$\int_{e}^{+\infty} \frac{dx}{x^{\alpha}(\ln x)^{\beta}}.$$

- (a) On suppose $\alpha > 1$. En comparant avec une intégrale de Riemann, démontrer que l'intégrale étudiée est convergente.
- (b) On suppose $\alpha=1$. Calculer, pour X>e, $\int_e^X \frac{dx}{x(\ln x)^\beta}$. En déduire les valeurs de β pour lesquelles l'intégrale converge.
- (c) On suppose $\alpha < 1$. En comparant à 1/t, démontrer que l'intégrale étudiée diverge.
- 13. Logarithme à la puissance n

Après en avoir justifié l'existence, calculer par récurrence la valeur de $I_n = \int_0^1 (\ln x)^n dx$.

- **14.** Calculer pour $n \in \mathbb{N}$, $I_n = \int_0^1 (x \ln x)^n dx$
- 15. Une intégrale comme somme d'une série

Le but de l'exercice est de prouver la relation suivante :

$$\int_0^1 \frac{\ln t}{t^2 - 1} dt = \lim_{n \to +\infty} \sum_{k=0}^n \frac{1}{(2k+1)^2}.$$

- (a) Prouver la convergence de l'intégrale.
- (b) Montrer que, pour tout entier $k \geq 0$, l'intégrale $I_k = \int_0^1 t^k \ln t dt$ converge, puis calculer I_k .
- (c) Montrer que, pour tout entier $n \ge 1$, $\sum_{k=0}^{n} \frac{1}{(2k+1)^2} = \int_0^1 \frac{\ln t}{t^2 1} dt \int_0^1 \frac{t^{2n+2} \ln t}{t^2 1} dt$.
- (d) Démontrer que la fonction $t \mapsto \frac{t^2 \ln t}{t^2 1}$ se prolonge par continuité en 0 et en 1. En déduire qu'il existe une constante M > 0, qu'on ne cherchera pas à calculer, telle que, pour tout $t \in]0,1[,\left|\frac{t^2 \ln t}{t^2 1}\right| \leq M$.
- (e) En déduire que $\lim_{n\to+\infty} \int_0^1 \frac{t^{2n+2} \ln t}{t^2-1} dt = 0$, puis la relation demandée.
- **16.** Etude de $\left(\frac{1}{x}\int_0^x tf(t)\,\mathrm{d}t\right)$

Soit $f:[0,+\infty[\longmapsto\mathbb{R} \text{ continue telle que }\int_0^{+\infty}f(t)\,\mathrm{d}t\text{ converge. Montrer que }\frac{1}{x}\int_0^xtf(t)\,\mathrm{d}t\underset{x\to+\infty}{\longrightarrow}0.$

- 17. Soit $f:[1,+\infty[\to\mathbb{R} \text{ continue. Montrer } \int_1^{+\infty}f(t)\,\mathrm{d}t \text{ converge } \Rightarrow \int_1^{+\infty}\frac{f(t)}{t}\,\mathrm{d}t \text{ converge}$
- **18.** [X MP]

Soit $f \in \mathcal{C}^2(\mathbb{R}, \mathbb{R})$ telle que f et f'' sont de carrés intégrables.

- a) Montrer que f' est de carré intégrable.
- b) Montrer:

$$\left(\int_{\mathbb{R}} f'^2\right)^2 \le \left(\int_{\mathbb{R}} f^2\right) \left(\int_{\mathbb{R}} f''^2\right)$$

19. Soit f une fonction C^2 sur $[0, +\infty[$ à valeurs dans \mathbb{R} . On suppose que $ff'' \geq 0$ et que f^2 et f''^2 sont intégrables sur $[0, +\infty[$.

(indication : On pourra utiliser l'inégalité de Cauchy-Schwarz)

20. [Mines-Ponts MP]

Donner un exemple de $f \in \mathcal{C}^0(\mathbb{R}^+, \mathbb{R}^+)$ intégrable et non bornée.