

Seminar Algorithms for Big Data

Fast Random Integer Generation in an Interval Based on a paper of the same title by Daniel Lemire

Lukas Geis Supervised by Dr. Manuel Penschuck

29th February 2024 · Algorithm Engineering (Prof. Dr. Ulrich Meyer)

We want to *efficiently* draw a *uniform* random integer in an interval.

We want to efficiently draw a uniform random integer in an interval.

Where do we need this?

Motivation

What is our goal?

We want to efficiently draw a uniform random integer in an interval.

Where do we need this?

Shuffling

We want to efficiently draw a uniform random integer in an interval.

Where do we need this?

- Shuffling
- Complex Graph Generators

TBD

TBD

Motivation

What is our goal?

We want to efficiently draw a uniform random integer in an interval.

Where do we need this?

- Shuffling
- Complex Graph Generators
- Sampling

- 1 Preliminaries
 - Formal Definition
 - Operations
 - The Naive Approach
- 2 Unbiased Algorithms
 - The OpenBSD Algorithm
 - The Java Algorithm
 - The Fast-Dice-Roller Algorithm
 - The Bitmask Algorithm
- 3 Lemire's Algorithm
 - Multiply-And-Shift
 - The Algorithm
- **4** Conclusion

Formal Definition

GOETHE UNIVERSITÄT

Setting:

Formal Definition

Setting:

■ Input: upper bound of interval $n \in \mathbb{N}$

Formal Definition

Setting:

- Input: upper bound of interval $n \in \mathbb{N}$
- **Output:** uniform random integer in interval [0, n)

Setting:

- Input: upper bound of interval $n \in \mathbb{N}$
- **Output:** uniform random integer in interval [0, n)

But what if we want a random integer in [a, b) for $a, b \in \mathbb{N}$, 0 < a < b instead?

Setting:

- Input: upper bound of interval $n \in \mathbb{N}$
- **Output:** uniform random integer in interval [0, n)

But what if we want a random integer in [a, b) for $a, b \in \mathbb{N}$, 0 < a < b instead?

We can map this to our setting by subtracting a!

Setting:

- Input: upper bound of interval $n \in \mathbb{N}$
- **Output:** uniform random integer in interval [0, n)

But what if we want a random integer in [a, b) for $a, b \in \mathbb{N}$, 0 < a < b instead?

We can map this to our setting by subtracting a!

■ Set n = b - a and draw a uniform random integer $x \in [0, n)$

Setting:

- **Input:** upper bound of interval $n \in \mathbb{N}$
- **Output:** uniform random integer in interval [0, n)

But what if we want a random integer in [a, b] for $a, b \in \mathbb{N}$, 0 < a < b instead?

We can map this to our setting by subtracting a!

- Set n = b a and draw a uniform random integer $x \in [0, n)$
- Return x + a

Operations

Definition (Common Operations)

■ Integer-Division: $x \div y := \lfloor x/y \rfloor$

- Integer-Division: $x \div y := \lfloor x/y \rfloor$
- Remainder-Operation: $x \mod y := x (x \div y)y$

- Integer-Division: $x \div y := |x/y|$
- Remainder-Operation: $x \mod y := x (x \div y)y$
- $x \gg W := x \div 2^W$ Bit-RightShift:

- Integer-Division: $x \div y := \lfloor x/y \rfloor$
- Remainder-Operation: $x \mod y := x (x \div y)y$
- Bit-RightShift: $x \gg W := x \div 2^W$
- Bit-LeftShift: $x \ll W := x \cdot 2^W$

■ Integer-Division:
$$x \div y := \lfloor x/y \rfloor$$

■ Remainder-Operation:
$$x \mod y := x - (x \div y)y$$

■ Bit-RightShift:
$$x \gg W := x \div 2^W$$

■ Bit-LeftShift:
$$x \ll W := x \cdot 2^W$$

■ Bitwise-And:
$$x \& y$$

- $x \div y := |x/y|$ ■ Integer-Division:
- $x \mod y := x (x \div y)y$ ■ Remainder-Operation:
- $x \gg W := x \div 2^W$ Bit-RightShift:
- $x \ll W := x \cdot 2^W$ Bit-LeftShift:
- $x \& y \rightarrow x \mod 2^W \coloneqq x \& (2^W 1)$ ■ Bitwise-AND:

Definition (Common Operations)

■ Integer-Division:
$$x \div y := \lfloor x/y \rfloor$$

■ Remainder-Operation:
$$x \mod y := x - (x \div y)y$$

■ Bit-RightShift:
$$x \gg W := x \div 2^W$$

■ Bit-LeftShift:
$$x \ll W := x \cdot 2^W$$

■ Bitwise-And:
$$x \& y \to x \mod 2^W \coloneqq x \& (2^W - 1)$$

Definition (Power Remainder)

For $W, n \in \mathbb{N}$, we write \mathcal{R}_n^W for $2^W \mod n$.

How do we get random numbers?

How do we get random numbers?

■ Generated by Pseudo-Random-Number-Generators (PRNGs)

How do we get random numbers?

- Generated by Pseudo-Random-Number-Generators (PRNGs)
- Generated as W-bit words, i.e. unsigned integers in $[0, 2^W)$ (typically $W \in \{32, 64\}$)

How do we get random numbers?

- Generated by Pseudo-Random-Number-Generators (PRNGs)
- Generated as W-bit words, i.e. unsigned integers in $[0, 2^W)$ (typically $W \in \{32, 64\}$)

 $rand() \mod n$

How do we get random numbers?

- Generated by Pseudo-Random-Number-Generators (PRNGs)
- Generated as W-bit words, i.e. unsigned integers in $[0, 2^W)$ (typically $W \in \{32, 64\}$)

 $rand() \mod n$

Does this work?

How do we get random numbers?

- Generated by Pseudo-Random-Number-Generators (PRNGs)
- Generated as W-bit words, i.e. unsigned integers in $[0, 2^W)$ (typically $W \in \{32, 64\}$)

 $rand() \mod n$

Does this work?

 \blacksquare Yes, the generated number is in [0, n).

How do we get random numbers?

- Generated by Pseudo-Random-Number-Generators (PRNGs)
- Generated as W-bit words, i.e. unsigned integers in $[0, 2^W)$ (typically $W \in \{32, 64\}$)

 $rand() \mod n$

Does this work?

 \blacksquare Yes, the generated number is in [0, n).

Is this efficient?

How do we get random numbers?

- Generated by Pseudo-Random-Number-Generators (PRNGs)
- Generated as W-bit words, i.e. unsigned integers in $[0, 2^W)$ (typically $W \in \{32, 64\}$)

$rand() \mod n$

Does this work?

 \blacksquare Yes, the generated number is in [0, n).

Is this efficient?

■ No, we require one expensive integer division operation.

How do we get random numbers?

- Generated by Pseudo-Random-Number-Generators (PRNGs)
- Generated as W-bit words, i.e. unsigned integers in $[0, 2^W)$ (typically $W \in \{32, 64\}$)

$rand() \mod n$

Does this work?

 \blacksquare Yes, the generated number is in [0, n).

Is this efficient?

■ No, we require one expensive integer division operation.

Is the generated number uniform in [0, n)?

Preliminaries

The Naive Approach

GOETHE UNIVERSITÄT

In general, applying $x \mod n$ to $[0, 2^W)$ yields

In general, applying $x \mod n$ to $[0, 2^W)$ yields

In general, applying $x \mod n$ to $[0, 2^W)$ yields

We have a leftover interval that introduces bias.

In general, applying $x \mod n$ to $[0, 2^W)$ yields

We have a leftover interval that introduces bias.

Every approach that maps every integer in $[0, 2^W)$ to a single number in [0, n)

In general, applying $x \mod n$ to $[0, 2^W)$ yields

We have a leftover interval that introduces bias.

Every approach that maps every integer in $[0, 2^W)$ to a single number in [0, n) does not generate uniform random integers in one step

In general, applying $x \mod n$ to $[0, 2^W)$ yields

$$\underbrace{ \begin{array}{c|c} 2^W \text{ values} \\ \hline n \text{ values} & n \text{ values} \\ \hline 0, 1, \dots, n-1, \hline 0, 1, \dots, n-1, \dots, \hline 0, 1, \dots, n-1, \\ (2^W \div n) \cdot n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ 0, 1, \dots, n-1, \\ \hline 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ 0, 1, \dots, n-1, \\$$

We have a leftover interval that introduces bias.

Every approach that maps every integer in $[0, 2^W)$ to a single number in [0, n) does not generate uniform random integers in one step whenever n does not divide 2^W .

In general, applying $x \mod n$ to $[0, 2^W)$ yields

We have a leftover interval that introduces bias.

Every approach that maps every integer in $[0, 2^W)$ to a single number in [0, n) does not generate uniform random integers in one step whenever n does not divide 2^W .

Idea: Use rejection sampling to achieve uniformity!

Unbiased Algorithms

The OpenBSD Algorithm

GOETHE UNIVERSITÄT

■ We shift the rejection interval to the left:

■ We shift the rejection interval to the left:

■ We shift the rejection interval to the left:

$$\underbrace{0,1,\dots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{R}_{n}^{W}\text{ values}}},\underbrace{\mathcal{R}_{n}^{W},\dots,n-1,0,\dots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{L}_{n}^{W}\times\mathbb{N}\text{ values}}},\underbrace{\mathcal{R}_{n}^{W},\dots,n-1,0,\dots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{L}_{n}^{W}\times\mathbb{N}\text{ values}}}$$

■ Generate a uniform random number $x \in [0, 2^W)$ until $x \geq \mathcal{R}_n^W$

■ We shift the rejection interval to the left:

$$\underbrace{0,1,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{R}_{n}^{W}\text{ values}}},\underbrace{\mathcal{R}_{n}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{L}_{n}^{W}\text{ values}}},\underbrace{\mathcal{R}_{n}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{L}_{n}^{W}\text{ values}}}$$

- Generate a uniform random number $x \in [0, 2^W)$ until $x \geq \mathcal{R}_n^W$
- \blacksquare Return $x \mod n$

• We shift the rejection interval to the left:

$$\underbrace{0,1,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{R}_{n}^{W}\text{ values}}},\underbrace{\mathcal{R}_{n}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{L}_{n}^{W}\text{ values}}},\underbrace{\mathcal{R}_{n}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{L}_{n}^{W}\text{ values}}}$$

- Generate a uniform random number $x \in [0, 2^W)$ until $x \geq \mathcal{R}_n^W$
- \blacksquare Return $x \mod n$

Efficiency

■ We shift the rejection interval to the left:

$$\underbrace{0,1,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{N \text{ values}}},\underbrace{\mathcal{R}_{n}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{N \text{ values}}},\underbrace{\mathcal{R}_{n}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{N \text{ values}}}$$

- Generate a uniform random number $x \in [0, 2^W)$ until $x \geq \mathcal{R}_n^W$
- \blacksquare Return $x \mod n$

Efficiency

We require 2 integer division operations:

■ We shift the rejection interval to the left:

$$\underbrace{0,1,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{N \text{ values}}},\underbrace{\mathcal{R}_{n}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{N \text{ values}}},\underbrace{\mathcal{R}_{n}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{N \text{ values}}}$$

- Generate a uniform random number $x \in [0, 2^W)$ until $x \geq \mathcal{R}_n^W$
- \blacksquare Return $x \mod n$

Efficiency

We require 2 integer division operations: one for computing \mathcal{R}_n^W and

• We shift the rejection interval to the left:

$$\underbrace{0,1,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{N \text{ values}}},\underbrace{\mathcal{R}_{n}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{N \text{ values}}},\underbrace{\mathcal{R}_{n}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{N \text{ values}}}$$

- Generate a uniform random number $x \in [0, 2^W)$ until $x \geq \mathcal{R}_n^W$
- \blacksquare Return $x \mod n$

Efficiency

We require 2 integer division operations: one for computing \mathcal{R}_n^W and one for computing $x \mod n$.

The Java Algorithm

The Java Algorithm

The Fast-Dice-Roller Algorithm

The Fast-Dice-Roller Algorithm

The Bitmask Algorithm

The Bitmask Algorithm

Multiply-And-Shift

Multiply-And-Shift

The Algorithm

The Algorithm

Summary

Summary

End of Talk