Information Visualization

James EAGAN

james.eagan@telecom-paristech.fr

Includes slides adapted from John Stasko (Georgia Tech), Petra Isenberg & Jean-Daniel Fekete (INRIA), Chris North (Virginia Tech), Tamara Munzner (UBC)

Dernière mise à jour : avril 2018.

Who am !?

James EAGAN

Maître de Conférences en Interaction Homme-Machine

Associate Prof. at Télécom ParisTech Adjunct Researcher at LTCI

Ph.D. 2008 — Georgia Tech Computer Science, Human-Computer Interaction

B.A. 2000 — Lawrence University Mathematics/Computer Science

james.eagan@telecom-paristech.fr

Research

Human-Computer Interaction

Information Visualization

Multi-surface Interaction

Class overview

[www.telecom-paristech.fr/~eagan/class/igr204]

Data Exploration

- Society is more complex
 - There is simply more "stuff"

- Computers, internet, and web give people access to an incredible amount of data
 - news, sports, financial, sales, demographics, etc.
 - pollution, computer logs, weather, photos, videos, etc.

How much data?

- Between 1 and 2 exabytes of unique info produced per year
 - 100000000000000000 (10¹⁸) bytes
 - 250 meg for every man, woman and child
 - Printed documents only .003% of total

Peter Lyman and Hal Varian, 2000 Cal-Berkeley, Info Mgmt & Systems www.sims.berkeley.edu/how-much-info

800 exabytes per year

[The Diverse and Exploding Digital Universe, IDC, 2008]

Data Overload

- How can we make use of the data?
 - How do we make sense of the data?
 - How do we harness this data in decision-making processes?
 - How do we avoid being overwhelmed?

The need is there

"The ability to take data—to be able to understand it, to process it, to extract value from it, to visualize it, to communicate it's going to be a hugely important skill in the next decades."

— Hal Varian, chief economist, Google

[The McKinsey Quarterly, January 2009]

The Challenge

 Transform the data into information (understanding, insight) thus making it useful to people Web,
Books,
Papers,
Game scores,
Scientific data,
Biotech,
Shopping
People
Stock/finance
News

Vision: 100 MB/s Ears: <100 b/s Telepathy Haptic/tactile Smell Taste

[Courtesy of Chris North, Virginia Tech]

Human Vision

- Highest bandwidth sense
- Fast, parallel
- Pattern recognition
- Pre-attentive
- Extends memory and cognitive capacity

(Multiplication test)

People think visually

Impressive. Lets use it!

[Courtesy of Chris North, Virginia Tech]

Example

Which state has the highest income?

Questions: Is there a relationship between income and education?

Are there any outliers?

r	Table - StateData ()				Manager				1,4200
•			1500		Minnesot		30.4% 19.9%	_	14389 9648
2		-	Load	Snop	Mississip	и	22.3%	_	12989
H	State	College Degree %	Per Capita		Montana		25.4%		11213
L	Alabama	20.6%	12.500.00	11486	Nebraska		26.0%		12452
ш	Alaska	30.3%		17610	Nevada		21.5%		15214
E	Arizona	27.1%		13461	New Harr	melhion	32.4%		15959
	Arkenses	17.0%		10520	New Jers		30.1%		18714
П	California	31.3%		16409	New Mex		25.5%		11246
Ε	Colorado	33.9%		14821	New York		29.6%		16501
П	Connecticut	33.8%		20189	North Can		24.2%		12885
П	Delaware	27.9%		15854	North Dal		28.1%		11051
П	District of Columbia	36.4%		18881	Ohio	1010	22.3%		13461
П	Florida	24.9%		14698	Oklahomo	9	22.8%		11893
П	Georgia	243%		13631	Oregon		27.5%		13418
П	Howaii	31.2%		15770	Pennsylva	ania	23.2%		14068
п	Idaho	25.2%		11457	Phode Isl	and.	27.5%		14981
Е	llinois	26.8%		15201	South Car		23.0%		11897
П	Indiana	20.9%		13149	South Del	kota	24.6%		10661
н	lows	24.5%		12422	Tennesse		20.1%		12255
н		26.5%		13300	Texas		25.5%		12904
н	Kentucky	17.7%			Uteh		30.0%		11029
н				11153	Vermont		31.5%		13527
Н	Louisiana	19.4%		10635	▶ Virginia		30.0%		15713
H	Maine	25.7%		12957	Washingt		30.9%		14923
H	Maryland	31.7%		17730	- West Virg	inia	16.1%		10520
H	Massachusets	34.5%		17224	Wisconsin		24.9%		13276
Ш	Michigan	24.1%		14154	Wyoming		25.7%		12311
	Minnesota	30.4%		14389	3 10				×

[Courtesy of Chris North, Virginia Tech]

Visualize the Data

Per Capita Income

[Courtesy of Chris North, Virginia Tech]

Even Tougher?

- What if you could only see one state's data at a time? (e.g. U.S. Census Bureau's website)
- What if I read the data to you?

ı		II		ı	II	IV	
х	У	x	у	Х	У	X	У
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

Anscombe's Quartet

		II		III		IV	
х	У	x	у	x	У	x	У
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

Mean of x	9.0
Variance of x	11.0
Mean of y	7.5
Variance of y	4.12
Correlation between <i>x</i> and <i>y</i>	0.816
Linear regression line	y = 3 + 0.5x

Anscombe's Quartet

ı		II		Ш		IV	
х	у	х	У	х	У	x	У
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

Illustrates Our Approach

- Provide tools that present data in a way to help people understand and gain insight from it
- Clichés
 - "Seeing is believing"
 - "A picture is worth a thousand words"

Visualization

- Often thought of as process of making a graphic or an image
- Really is a cognitive process
 - Form a mental image of something
 - Internalize an understanding
- "The purpose of visualization is insight, not pictures"
- Insight: discovery, decision making, explanation

Main Idea

- Visuals help us think
 - Provide a frame of reference, a temporary storage area

- External cognition
 - Role of external world in thinking and reason

Information Visualization

- What is "visualization"?
 - The use of computer-supported, interactive visual representations of data to amplify cognition.
 - From [Card, Mackinlay, Shneiderman '98]

Information Visualization

- What is "visualization"?
 - The use of computer-supported, interactive visual representations of data to amplify cognition.
 - From [Card, Mackinlay, Shneiderman '98]

Three Subfields

- Scientific Visualization
- Information Visualization
- Visual Analytics

Scientific Visualization

- Primarily relates to and represents something physical or geometric
- Examples
 - Air flow over a wing
 - Stresses on a girder
 - Movement of clouds

Information Visualization

- Components:
 - Taking items without a direct physical correspondence and mapping them to a 2-D or 3-D physical space.
 - Giving information a visual representation that is useful for analysis and decision-making

Visual Analytics

- Marry InfoVis with Data Mining
- Human in control

Two Key Attributes

- Scale
 - Challenge often arises when data sets become very large

- Interactivity
 - Want to show multiple different perspectives on the data

Data → **Visualisation**

InfoVis Pipeline

InfoVis Pipeline

Data Sets

- Data comes in many different forms
- Typically, not in the way you want it

• How is stored (in the raw)?

Example

- Cars
 - make
 - model
 - year
 - miles per gallon
 - cost
 - number of cylinders
 - weights
 - •

Data Tables

- Often, we take raw data and transform it into a form that is more workable
- Main idea:
 - Individual items are called cases
 - Cases have variables (attributes)

Data Table Format

```
Dimensions
             Variable<sub>1</sub> Variable<sub>2</sub> Variable<sub>3</sub> Variable<sub>4</sub>
Case<sub>1</sub> Value<sub>1,1</sub>
                                     Value<sub>1,2</sub>
                                                         Value<sub>1,3</sub>
                                                                                  Value<sub>1,4</sub>
                Value<sub>2,1</sub>
                                     Value<sub>2,2</sub> Value<sub>2,3</sub>
                                                                                  Value<sub>2,4</sub>
Case<sub>2</sub>
                Value<sub>3,1</sub>
                                    Value<sub>3,2</sub> Value<sub>3,3</sub>
                                                                                  Value<sub>3,4</sub>
Case<sub>3</sub>
                                    Value<sub>4,2</sub> Value<sub>4,3</sub>
Case<sub>4</sub>
                 Value<sub>4,1</sub>
                                                                                   Value<sub>4,4</sub>
```

Think of as a function: f(case_i) = <value_{i,1}, value_{i,2},...,value_{i,n}>

Data Table Example

People in Class

	Hair	Age	GPA	ID
Marie	brown	23	12,3 901-12	-3456
Jean	black	17	14,6 901-12	2-4567
Henri	blond	47	10,2 901-12	2-5678
Bob	red	29	11,8 901-12	2-6789

43

How do we show the data?

À suivre...

Teasers

