# Deep Learning Week 8

## Further topics about deep learning

Hanyang Artificial Intelligence Group



## 지금까지 배웠던 내용들

딥 러닝이란 무엇인가? 딥 러닝으로 무엇을 할 수 있을까?

인공지능에서 모델이란 무엇인가? 딥 러닝 모델은 어떻게 학습되는가?

딥 러닝 모델의 성능을 어떻게 평가할 수 있을까?

어떻게 시각적인 정보(이미지, 비디오)를 딥 러닝으로 다룰 수 있을까?

어떻게 사람이 사용하는 언어를 컴퓨터가 이해하게 할 수 있을까?

## 오늘의 Topic

## Generative AI with deep learning

- 컴퓨터 비전과 자연어 처리 등 다양한 형태의 생성 모델

## Large Language Model

- ChatGPT의 개발이 가능하도록 한 초거대 언어 모델

## 딥 러닝을 활용한 서비스

- 클로바 노트로 살펴보는 딥 러닝 모델의 실제 서비스 적용 방식

## What is Generative Al?

### 새로운 데이터를 생성할 수 있는 AI

- 이미지, 텍스트 등 입력된 형태의 데이터를 이해해서 유용한 정보를 추출하는 기존 모델과 달리, 새로운 데이터를 생성할 수 있는 AI가 급격하게 발전하는 중
- 텍스트 -> 텍스트, 이미지 -> 이미지 처럼 기존 형식과 같은 데이터를 생성하거나, 이미지 -> 텍스트,
  오디오 -> 텍스트 등 입력과 다른 형태의 데이터를 생성할 수 있는 모델도 존재!
- 인간의 고유 영역이라고 여겨졌던 창의적인 활동을 인공지능이 수행할 수 있게 됨



## **Generative Al: text-to-text**

### 입력된 텍스트를 다른 형태로 변환하거나, 이어서 써주는 AI

- GPT: 입력된 텍스트에 적절하게 이어질만 한 텍스트를 생성해주어, 소설 쓰기, 대화 생성 등 다양한 task에 활용될 수 있고, 최근엔 instruction tuning으로 자연어로 된 명령을 처리할 수 있게 됨
- T5: 입력 텍스트를 특정한 의미를 가지는 vector로 인코딩하고, 이를 바탕으로 새로운 텍스트를 출력하는 구조로 되어있어, 자연어 이해와 생성 둘 다 뛰어난 성능을 보여주며 효율적임



## **Generative AI: image-to-image**

### 입력된 이미지를 바탕으로 새로운 이미지를 생성하는 AI

- 입력 이미지의 색상, 스타일 등을 원하는 형태로 변환하거나, 스케치를 기반으로 더 복잡한 이미지를 생성하는 등 다양한 이미지 생성이 가능한 모델
- Pix2Pix(StyleGAN 기반) 등 굉장히 뛰어난 성능의 모델들이 공개됨



## Generative Al: text-to-image

### 사람처럼 요구사항을 읽고 그림을 그려주는 AI

- 모델의 입력으로 텍스트 데이터를 받아, 입력된 텍스트의 특징이 반영된 이미지를 생성해주는 모델
- Dall-E, Stable Diffusion 등 최신 모델은 굉장히 좋은 품질의 이미지를 생성할 수 있어 다양한 산업 분야에 적용될 수 있음



Hanyang Artificial Intelligence 2023

## Generative Al: image-to-text

### 그림에 대한 정보를 텍스트로 변환해주는 AI

- 입력된 이미지의 특징이나 등장 요소 등을 텍스트로 설명할 수 있는 모델
- 시각 장애인들을 위한 이미지 캡션 생성이나, 이미지를 이해할 수 있는 챗봇 기술에 활용될 수 있음



"man in black shirt is playing quitar."



"construction worker in orange safety vest is working on road."



"two young girls are playing with lego toy."















## Generative Al: speech-to-text & text-to-speech

### 음성 인식 & 음성 합성 모델

- 인간의 대화 음성을 인식하여 텍스트로 전사(transcript)하거나, 입력된 텍스트를 사람이 읽은 것 처럼 합성하여 음성을 생성할 수 있는 모델
- 자연어 처리 기술과 함께 사용하여 대화하듯이 컴퓨터와 음성으로 소통할 수 있다!



## LLM(Large Language Model)

### 초거대 언어 모델이 가져온 미래

- GPT-3 등 파라미터 개수가 수십~수백 Billion 이상인 모델
- 기존 모델과 구조적으로 큰 차이는 없지만, 사이즈와 데이터를 엄청나게 많이 늘린 것 만으로도 Few-shot learning, Meta learning 등 기존 모델과 차별화된 다양한 언어 능력을 갖추게 됨
- 언어 데이터로 pretraining을 거친 후 특정 task를 수행하도록 finetuning되었던 기존 모델과 달리, 단일 모델로 모든 task를 추가 학습 없이 수행할 수 있는 능력을 가짐







## LLM의 문제점

### 초거대 모델을 위한 고성능 분산 컴퓨팅 시스템

- 지나치게 큰 모델 사이즈로 인해 모델 학습, 추론 과정을 기존 컴퓨팅 환경에서 진행하기 어려움
- 여러 GPU를 동시에 병렬로 가동하여 거대 모델을 분산 처리하는 기술이 필요함
- 엄청나게 많은 자원이 필요하기 때문에 개인 사용자는 학습 또는 추론이 매우 어려움

### 초거대 모델 학습을 위한 대규모 데이터셋

- 대규모 언어 모델을 학습시키기 위해서는 모델 사이즈에 걸맞는 대규모 데이터셋이 필요함
- 사용자가 많고 데이터가 많이 축적된 언어(영어 등)와 달리 사용자가 적은 소수 언어의 경우 데이터의 규모와 품질이

부족하여 상대적으로 모델의 성능이 부족함

대규모 자본과 시설, 데이터셋이 없는 우리는 어떻게 해야 할까?!!



## 누구나 쉽게 LLM을 사용할 수 있도록 하자!

### **Open-source LLM**

- OpenAI, Google, 네이버 등 기업에서 출시한 언어 모델은 대부분 모델 파라미터를 공개하지 않음
- Llama, Polyglot 등의 open-source 모델이 공개되어 LLM에 대한 접근성이 크게 향상됨
- 모델 사이즈는 기업용에 비해 상대적으로 작지만, 성능은 결코 뒤떨어지지 않아 매우 효율적임

### 자원을 적게 사용하도록 하는 효율적인 딥러닝 기술들

- 대규모 언어 모델을 원하는 특정 분야에 특화되도록 학습시키려면 엄청나게 많은 자원이 필요함
- LoRA 등 모델을 학습 비용을 크게 절약하면서도 성능 저하가 거의 없는 학습 방식
- 기존 모델 파라미터의 precision을 낮춰 모델의 사이즈를 줄이는 quantization 방식

## 누구나 쉽게 LLM을 사용할 수 있도록 하자!

### **Open-source LLM**



### Model quantization



### Parameter-efficient finetuning



### LoRA(Low Rank Adaptation)



## 딥 러닝을 활용한 서비스

### 클로바노트를 통해 보는 딥 러닝 기술의 서비스 적용 방식

- 일반 사용자가 쓸 수 있는 서비스 중 딥러닝 기술이 성공적으로 적용된 사례
- 네이버에서 자체 개발한 음성 인식 엔진과 초거대 언어 모델(HyperCLOVA)이 사용됨
- 음성을 녹음하는 것 만으로도 텍스트로 변환된 기록과 주요 키워드, 자동으로 요약한 결과를 얻을 수 있음





## 클로바 노트의 음성인식 과정

### 대화 음성 기록을 녹취록 텍스트로

- 음성 인식 모델을 사용하여 구간별 발화자 구분 및 발화 내용 텍스트 변환
- 텍스트 변환 과정에서 더 정확환 결과를 위해 언어 모델의 예측값을 함께 사용







## 클로바 노트의 음성인식 과정

### • 참고(DEVIEW 2023)

https://deview.kr/data/deview/session/attach/[144]%ED%81%B4%EB%A1%9C%EB%B0%94%EB%85%B8%ED%8A%B8%EC%9D%98+%EB%91%90%EB%87%8C+NAVER%EC%9D%98+End-to-End+%EC%9D%8C%EC%84%B1%EC%9D%B8%EC%8B%9D+%EC%97%94%EC%A7%84+%EC%86%8C%EA%B0%9C.pdf





## 클로바 노트의 자동 요약 과정

### 요약을 위한 의미 기반 구간 나누기

- 원문 요약을 위해 원본 입력을 적당한 길이로 나눠야 할 필요 발생
- 각 문장 사이의 유사도를 계산하여, score가 낮은 부분을 기준으로 분할



## 클로바 노트의 음성인식 과정

### • 참고(DEVIEW 2023)

https://deview.kr/data/deview/session/attach/[245]HyperCLOVA%20%EC%9A%94%EC%95%BD%20%EC%84%9C%EB%B9%84%EC%8A%A4%20Long-Form%20Open-Domain%20Dialogue%20Summarization\_0228.pdf

#### 음성 기록

( 점유율

편집



#### 이성진 02:2

잘하는 그런 모델이라고 할 수가 있습니다.

그리고 또 이거는 중요한 얘기는 아니지만 이 버트라는 이름이 바이디렉셔널 인코더, 리프레젠테이션, 프럼 트랜스포머 이거 줄인 말인데 세서미 스트레트라는 애니메이션 캐릭터 이름이에요. 그래서 이 버트가 나오기 전에 같은 애니메이션에 있는 I모라는 캐릭터가 있어요. 엘모라는 이름으로 누군가 이제 어거지로 끼어맞춰서 언어 모델 이름을 지었더니 그게 이제 되게 웃 겼는지 그다음에 버트도 나오고 심슨에 나오는 바트도 나오고 같은 세서미 스트레이트에 등장하는 롱 버드라는 캐릭터도 나오고 되게



#### 이성진 02:57

아무튼 좀 웃기게 짓는 게 그게 트렌드가 됐는데 저도 tv에서 본 적은 없어요.

저도 tv에서 본 적은 없는 옛날 캐릭터인데 아무튼 캐릭터 이름을 가지고 모델을 짓는 게 유행이 됐다. 이런 얘기를 할 수가 있습니다. 그래서 이제 아까 언어 모델이라고 얘기를 했는데 언어 모델이 구체적 으로 뭐냐 이 언어 모델은 우리가 이제 인공지능 전체에서 제 얘기를 할 때 모델은 어떤 function이라 고 얘기를 했었죠



#### • • •



#### **이성진** 37:07

교류를 하는 목적에서 뭔가 서로 우리는 어떤 거 하고 있나 그런 것들을 좀 발표하고 또 평소에 내가 공부하기 어려웠던 다른 분야의 지식들을 또 볼 수 있는 그런 기회니까 잘 참여하시는 분들은 오셔서 또 재밌게 잘 보시고 또 가면 좋을 것 같아요.

#### 00:00 요약 구간

#### 자연어 처리의 목표

- 자연어 처리의 가장 중요한 목표는 자연어 텍스트로 된 데이터를 컴퓨터가 이해할 수 있는 표현 벡터 형태로 변화하는 것임
- 자연어 처리의 가장 핵심적인 목표 중에 하나는 단어들 사이의 관계를 벡터 계산으로 표현하는 것임
- 시퀀스 2 시퀀스 모델은 인풋으로 어떤 텍스트를 받아서 컴퓨터가 이해할 수 있는 유용한 정보로 표현을 한 다음 그걸 이용해서 다시 출력을 하는 모델임
- o 버트와 apt는 트랜스포머에서 인코더 구조만 따온 게 버트고 디코더 구조만 따온 게 apt임

#### 03:21

#### 언어 모델의 개념

- o 언어 모델은 주어진 문장에 대한 확률을 계산할 수 있는 함수라고 생각을 할 수 있음
- 언어 모델이 얼마나 자연스럽고 적절한가에 따라서 확률을 계산할 수도 있음
- 언어 모델은 문장 뒤에 이어질 가장 자연스러운 텍스트에 대한 확률을 구하는 모델이라고 생각을 하면 됨

#### 07:07

#### 마스크드 랭귀지 모델링

- 마스크드 랭귀지 모델링은 주어진 입력에서 특정 부분을 마스킹을 해서 지워서 안 보이게 했을 때 그 부분에 들어갈 단어들의 확률 분포를 리턴하도록 학습된 모델임
- 마스크드 랭귀지 모델링은 이미 학습된 모델의 능력을 재사용하는 과정임
- 마스크드 랭귀지 모델링을 엄청나게 많은 텍스트에 대해서 사전 학습을 시킴
- 프리체이닝이 완료된 모델을 내가 원하는 테스크에 파인튜닝을 하는 과정도 거치게 됨

제목 생성 결과

## 클로바 노트의 소제목 생성 과정

### 각 구간별 요약문 기반 제목 생성

• 원문을 분할한 각 구간별 요약문을 한 번 더 요약하여 간단하게 핵심을 확인할 수 있도록 제목 생성

### 원본 요약문

- 언어 모델은 주어진 문장에 대한 확률을 계산할 수 있는 함수라고 생각을 할 수 있음
- 언어 모델이 얼마나 자연스럽고 적절한가에 따라서 확률을 계산할 수도 있음
- 언어 모델은 문장 뒤에 이어질 가장 자연스러운 텍스트에 대한 확률을 구하는 모델이라고 생각을 하면 됨

- o gpt 모델은 입력된 텍스트에 가장 잘 어울리는 뒤에 이어질 단어들을 찾는 조건부 확률로 표현할 수 있음
- o gpt 모델은 입력된 텍스트에 가장 어울리는 단어들을 보고 확률이 높은 단어를 골라 다음에 이어질 만한 단어들에 대한 확률을 또 구할 수 있음



## 클로바 노트의 소제목 생성 과정

### 딥러닝 스터디 7주차: BERT와 GPT

전체 노트 · 5.18 목 오후 7:14(5.26 금 수정) · 37분 35초

이성진

A ≡ :

음성 기록 + 메모 보기 🗸

#### 음성 기록

(P) 점유율 편집

그래서 이 센텐스 임베딩이라는 거는 임베딩이라는 개념 자체를 많이 접하지 않으신 분들이면 이해 가 잘 안 될 수 있어요.

그래서 여기 링크에 굉장히 좀 이제 좋은 소스가 있는데 이걸 잘 들어가 보시면 설명이 굉장히 잘 돼 있어요

이제 위클리 lp라고 하는 칼럼을 쓰시는 분이 설명을 해둔 건데 이게 이미 제가 쓴 거 아니에요

#### 이성진 36:07

그래서 이제 그래서 거리가 두 개에서 벡터 사이의 거리를 어떻게 구하고 그래서 이 벡터를 이용하면 비슷한 단어들이 얼마나 가까이 있는지에 대해서 계산할 수 있고 그런 거에 대한 얘기가 있으니까 궁 금하신 분들은 찾아보시면 좋을 것 같고 이거 말고도 되게 좋은 내용들이 많아요.

그래서 자연어 처리에 관심이 있다 하시는 분들은 그 글이 그렇게 어렵지 않게 써져 있으니까 한번 쭉 읽어보시면은 전체적으로 좀 잘 이해를 하시는데

#### 이성진 36:32

도움이 많이 될 것 같습니다. 그러면 그래서 이 코드는 조만간 제가 좀 올려드리도록 하겠고요. 오늘은 여기까지 하고 공부하시느라 고생 많으셨고 다음 주에 축제니까 또 잘 즐기시고 아마 축제 끝 나면 그다음이 아마 마지막인가 그다음 다음이 마지막인가 그럴 거예요

또 우리 기말고사 기간이 있어서 그리고 또 이번 주 토요일에 저희 고려대학교 아이쿠랑 같이 연합 컨 퍼런스를 진행을 하는데 그냥 뭐 엄청 대단한 그런 걸 하는 게 아니라 두 동아리 사이에서 서로 침묵

#### **이성진** 37:07

교류를 하는 목적에서 뭔가 서로 우리는 어떤 거 하고 있나 그런 것들을 좀 발표하고 또 평소에 내가 공부하기 어려웠던 다른 분야의 지식들을 또 볼 수 있는 그런 기회니까 잘 참여하시는 분들은 오셔서 또 재밌게 잘 보시고 또 가면 좋을 것 같아요.

고생하셨습니다. 듀프리 가시는 분들 말고는 다 이제 가셔도 돼요.

#### 메모

더 똑똑한 AI 요약으로 성장할게요 ★★★★★

#### 자연어 처리의 목표

- 자연어 처리의 가장 중요한 목표는 자연어 텍스트로 된 데이터를 컴퓨터가 이해할 수 있는 표현 벡 터 형태로 변환하는 것임
- 자연어 처리의 가장 핵심적인 목표 중에 하나는 단어들 사이의 관계를 벡터 계산으로 표현하는 것
- o 시퀀스 2 시퀀스 모델은 인풋으로 어떤 텍스트를 받아서 컴퓨터가 이해할 수 있는 유용한 정보로 표 현을 한 다음 그걸 이용해서 다시 출력을 하는 모델임
- o 버트와 gpt는 트랜스포머에서 인코더 구조만 따온 게 버트고 디코더 구조만 따온 게 gpt임

#### 03:21

#### 어어 모델의 개념

- o 언어 모델은 주어진 문장에 대한 확률을 계산할 수 있는 함수라고 생각을 할 수 있음
- 언어 모델이 얼마나 자연스럽고 적절한가에 따라서 확률을 계산할 수도 있음
- o 언어 모델은 문장 뒤에 이어질 가장 자연스러운 텍스트에 대한 확률을 구하는 모델이라고 생각을 하면 됨

#### 마스크드 랭귀지 모델링

- 마스크드 랭귀지 모델링은 주어진 입력에서 특정 부분을 마스킹을 해서 지워서 안 보이게 했을 때 그 부분에 들어갈 단어들의 확률 분포를 리턴하도록 학습된 모델임
- 마스크드 랭귀지 모델링은 이미 학습된 모델의 능력을 재사용하는 과정임
- 마스크드 랭귀지 모델링을 엄청나게 많은 텍스트에 대해서 사전 학습을 시킴
- ㅇ 프리체이닝이 완료된 모델을 내가 워하는 테스크에 파인튜닝을 하는 과정도 거치게 됨

## 1학기 활동 마무리 & 추후 계획

## 종강 기념 파티 - 6/24

• 파티룸에서 1박 2일 진행 또는 당일 저녁 식사(예정)

### 방학 프로젝트

- 1학기 활동 정리 및 2학기 프로젝트 활동 대비
- 논문 구현 스터디 및 선형대수 스터디 운영 예정 (희망자)
- · AI 앱 개발 프로젝트(필수 참여)

### 2학기 활동

- 팀별 자유 주제 프로젝트 진행
- 프로젝트 진행 사항 공유 및 발표
- 각종 세미나 및 연합 컨퍼런스



# With HAI, Fly High

Hanyang Artificial Intelligence