Proseminar zu "Analysis auf Mannigfaltigkeiten" Roland Steinbauer

SS 2016

- 1. (a) Seien E, F endlichdimensionale Vektorräume und $f: E \to F$ eine Abbildung. Wann heißt f differenzierbar in einem Punkt $x \in E$? Was versteht man unter der Ableitung Df(x) von f in x?
 - (b) Wie lautet die Kettenregel für differenzierbare Abbildungen?
 - (c) Sei $f: E \to F$ linear. Zeige, dass Df(x) = f für alle $x \in E$.
 - (d) Sei $f: E_1 \times E_2 \to F$ bilinear. Zeige, dass für $(x_1, x_2) \in E_1 \times E_2$ und $(v_1, v_2) \in E_1 \times E_2$ gilt:

$$Df(x_1, x_2)(v_1, v_2) = f(x_1, v_2) + f(v_1, x_2).$$

(Hinweis:
$$Df(x_1, x_2)(v_1, v_2) = \frac{d}{dt}\Big|_{t=0} f((x_1, x_2) + t(v_1, v_2))$$
).

2. Zeige, dass

$$c: (-2\pi, 2\pi) \to \mathbb{R}^3, \ c(t) = (1 + \cos t, \sin t, 2\sin(t/2))$$

eine reguläre Kurve ist, die auf dem Schnitt der Sphäre um 0 mit Radius 2 mit dem Zylinder $(x-1)^2 + y^2 = 1$ liegt.

- 3. Eine Kurve c ist in Polarkoordinaten gegeben durch die Gleichung $r=2\cos\theta-1$ $(0 \le \theta \le 2\pi)$. Bestimme die Gleichung von c in kartesischen Koordinaten und zeige, dass c eine reguläre Kurve ist. Zeige, dass c einen Doppelpunkt besitzt (Skizze!). Ist das ein Widerspruch zur Regularität von c?
- 4. Bestimme eine Parametrisierung nach der Bogenlänge für die Kurve

$$c: \mathbb{R} \to \mathbb{R}^3$$
, $c(t) = (e^t \cos t, e^t \sin t, e^t)$.

5. Bestimme für die Kettenlinie

$$c(t) = (t, \cosh(t))$$

die Bogenlängenfunktion s(t), eine Parametrisierung nach der Bogenlänge und das Frenetsche Begleitbein. Berechne die Krümmung κ und gib eine Parametrisierung für die Evolute von c an.

6. (Haupsatz der ebenen Kurventheorie) Beweise Bem 1.2.3 aus der Vorlesung, d.h. zeige die folgenden Aussage: Sei $\kappa: I \to \mathbb{R}$ eine glatte Funktion auf dem Intervall I. Dann existiert eine Frenet-Kurve $c: I \to \mathbb{R}$ mit Krümmung κ . Die Kurve c ist eindeutig bis auf Euklidische Bewegungen.

Tipp: Verwende den Ansatz $e_1(s) = (\cos(\alpha(t)), \sin(\alpha(t)))$ und die Frenet-Gleichungen.

7. Sei $r = r(\varphi)$ die Darstellung einer Kurve c in Polarkoordinaten und sei $r' = \frac{dr}{d\varphi}$. Zeige, dass für die Bogenlänge von c gilt:

$$L_{\varphi_0}^{\varphi_1}(c) = \int_{\varphi_0}^{\varphi_1} \sqrt{r^2(\varphi) + (r'(\varphi))^2} \, d\varphi.$$

8. Bestimme für die Schraubenlinie

$$c(t) = (a\cos t, a\sin t, bt)$$

das Frenetsche Begleitbein sowie Krümmung und Torsion.

9. (Hauptsatz der lokalen Kurventheorie) Studiere den Beweis von Theorem 1.3.3 im Skriptum zur Vorlesung.

10. (a) Zeige, dass man nahe $(x_0, y_0) = (\pi, \pi/2)$ im Gleichungssystem

$$\frac{x^4 + y^4}{x} = u, \quad \sin x + \cos y = v$$

x und y als glatte Funktionen von (u, v) schreiben kann. (Präzisiere zunächst diese Aufgabenstellung!)

(b) Zeige, dass nahe dem Punkt (x, y, u, v) = (1, 1, 1, 1) durch das Gleichungssystem

$$xu + yvu^2 = 2$$
$$xu^3 + y^2v^4 = 2$$

u und v eindeutig als glatte Funktionen von x und y festgelegt sind. Berechne $\frac{\partial u}{\partial x}$ an der Stelle (1,1).

- 11. (a) Zeige, dass die Abbildung $\Phi: \mathbb{R}^2 \to \mathbb{R}^2$, $\Phi(x,y) = (e^x \cos(y), e^x \sin(y))$ ein lokaler, aber kein globaler Diffeomorphismus ist.
 - (b) Gib ein Beispiel für zwei Funktionen $f, g : \mathbb{R} \to \mathbb{R}$ an, sodass $f \circ g$ C^{∞} ist, aber g nicht C^{∞} ist.
- 12. Zeige, dass der Zylinder M im \mathbb{R}^3 , der die Gleichung $x^2 + y^2 = R^2$ hat, eine Teilmannigfaltigkeit der Dimension 2 im \mathbb{R}^3 ist. Gib außerdem eine lokale Parametrisierung, eine Darstellung als lokaler Graph und eine lokale Trivialisierung von M an.
- 13. Sei $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) := y^4 y^2 + \frac{1}{4}x^2$. Bestimme die Nullstellenmenge $M := f^{-1}(0)$ von f (Verwende z.B. Mathematica). Definiert f die Struktur einer Teilmannigfaltigkeit des \mathbb{R}^2 auf M? Wie hängt dies mit Beispiel 2.1.7 (iii) aus der Vorlesung zusammen?
- 14. Zeige, dass durch das Gleichungssystem

$$x^{2} + xy - y - z = 0$$
$$2x^{2} + 3xy - 2y - 3z = 0$$

eine Teilmannigfaltigkeit M des \mathbb{R}^3 festgelegt wird. Bestimme die Dimension von M.

- 15. Seien M, N Teilmannigfaltigkeiten von \mathbb{R}^m bzw. \mathbb{R}^n .
 - (a) Sei (ψ, V) eine Karte von M und W offen in M. Dann ist auch $(\psi \mid_{V \cap W}, V \cap W)$ eine Karte von M.
 - (b) Sei $f: M \to N$ C^{∞} und U offen in M. Dann ist $f|_{U}: U \to N$ C^{∞} .
 - (c) Sei $f:M\to N$ stetig. Zeige: f ist genau dann C^∞ , wenn für jede glatte Abbildung $g:V\to\mathbb{R}$ mit V offen in N gilt: $g\circ f$ ist glatt.

- 16. (a) Sei $F: \mathbb{R}^n \to \mathbb{R}$ ein homogenes Polynom vom Grad ≥ 1 , das an mindestens einer Stelle einen positiven Wert annimmt. Zeige: dann ist die Menge $M := \{x \in \mathbb{R}^n \mid F(x) = 1\}$ eine (n-1)-dimensionale Teilmannigfaltigkeit des \mathbb{R}^n .
 - (b) Zeige, dass das ein- bzw. zweischalige Hyperboloid $\{x \in \mathbb{R}^3 \mid x_1^2 + x_2^2 x_3^2 = 1\}$ bzw. $\{x \in \mathbb{R}^3 \mid x_1^2 + x_2^2 x_2^3 = -1\}$ eine zweidimensionale Teilmannigfaltigkeit des \mathbb{R}^3 ist.
- 17. (a) Show that the chart (ψ, \mathbb{R}) , $\psi : x \mapsto x^3$ defines a \mathcal{C}^{∞} -structure on \mathbb{R} which is different from the standard \mathcal{C}^{∞} -structure on \mathbb{R} .
 - (b) Find a diffeomorphism between the manifolds considered in (a).
- 18. For any real number r > 0, consider the map $\varphi_r : \mathbb{R} \to \mathbb{R}$ given by

$$\varphi_r(x) := \left\{ \begin{array}{cc} x & x \le 0 \\ rx & x > 0 \end{array} \right.$$

Show that for each r, the atlas $\{(\varphi_r, \mathbb{R})\}$ defines a differentiable structure on \mathbb{R} . Show that these structures are all different. Are the corresponding (uncountably many) manifolds pairwise diffeomorphic?

19. Let $M := U \cup V$, where U, V are given by

$$\begin{array}{lll} U &:= & \{(s,0) \mid s \in \mathbb{R}\} & \text{and} \\ V &:= & \{(s,0) \mid s < 0\} \cup \{(s,1) \mid s > 0\}. \end{array}$$

Let $\varphi: U \to \mathbb{R}$, $\varphi(s,0) := s$, $\psi: V \to \mathbb{R}$, $\psi(s,0) := s$, $\psi(s,1) := s$, and $\gamma: V \to \mathbb{R}$, $\gamma(s,0) := s^3$, $\gamma(s,1) := s^3$.

- (i) Show that $\{(\varphi, U), (\psi, V)\}$ defines a \mathcal{C}^{∞} -structure on M.
- (ii) Is (γ, V) a chart in this differentiable structure?
- 20. (a) Let $f: M_1 \to M_2$ and $g: M_2 \to M_3$ be smooth maps between differentiable manifolds. Show that $g \circ f: M_1 \to M_3$ is smooth as well.
 - (b) Show that the dimension of a connected manifold M is a well-defined number n. Hint: if $\varphi: V \to \varphi(V) \subseteq \mathbb{R}^n$ and $\psi: W \to \psi(W) \subseteq \mathbb{R}^m$ are compatible charts around $p \in V \cap W$, then m = n. Let $\dim_p M := n$. Then $p \mapsto \dim_p M$ is locally constant, hence constant on M.

21. Let $(A_i)_{i\in I}$ be a locally finite family of subsets of a topological space X. Show that $(\overline{A}_i)_{i\in I}$ is locally finite as well and that

$$\overline{\bigcup_{i\in I} A_i} = \bigcup_{i\in I} \overline{A}_i$$

- 22. Let M be a C^{∞} -manifold (Hausdorff and second countable). Let U be open in M and let a $A \subseteq U$ be closed. Then there exists a smooth function $f: M \to \mathbb{R}$ with $f|_A = 1$ and $f|_{M \setminus U} = 0$.
- 23. Let M be a C^{∞} -manifold (Hausdorff and second countable). Let $p \in U$, U open in M and $f: U \to \mathbb{R}$ smooth. Show that there exists a smooth function $\tilde{f}: M \to \mathbb{R}$ that conicides with f in a neighborhood of p.
- 24. (a) Let (ψ, V) denote the following chart of S^1 : $V = \{(\cos \theta, \sin \theta) \mid 0 < \theta < 2\pi\},\$ $\psi(\cos \theta, \sin \theta) = \theta$. Let $f: S^1 \to \mathbb{R}$ be such that $f(\cos \theta, \sin \theta) = e^{2\theta}$ on V. Calculate $\frac{\partial}{\partial \theta}|_{p_0} f$, where $p_0 = (\cos \theta_0, \sin \theta_0)$.
 - (b) Let M be a manifold, (ψ, V) a chart and $\psi(p) = (x^1(p), \dots, x^n(p))$. Let $f: p \mapsto g(x^1(p), \dots, x^n(p))$. Express $\frac{\partial}{\partial x^i} \Big|_p f$ by g.
- 25. Let (ψ, V) be as in the previous problem and let (φ, U) be the following chart of S^1 : $U = \{(x, -\sqrt{1-x^2}) \mid x \in (-1,1)\}, \ \varphi : (x, -\sqrt{1-x^2}) \mapsto x$. Express $\frac{\partial}{\partial \theta}$ by $\frac{\partial}{\partial x}$, and conversely.
- 26. (a) Find a basis of the tangent space of S^2 in a general point (use spherical coordinates).
 - (b) Let $f: S^2 \to \mathbb{R}$ be the restriction of $(x^1, x^2, x^3) \mapsto x^2$ to S^2 . Find the matrix of the tangent map of f in $p \in S^2$ with respect to the basis given in (a) and the natural basis of $T_{f(p)}\mathbb{R} \cong \mathbb{R}$.
- 27. Let M be a manifold and let $p \in M$. Denote by $\mathcal{F}_p(M)$ the space of smooth functions defined locally around p which are of the form

$$f = c + \sum_{i \in I} f_i g_i$$

where c is constant and I is a finite set (c and I depend on f), and $f_i(p) = g_i(p) = 0$ for all $i \in I$. Prove: A linear map ∂ defined on the set of smooth functions locally defined around p is a derivation if and only if it vanishes on $\mathcal{F}_p(M)$. (This provides an alternative but equivalent way of defining the tangent space of a manifold).

28. Beweise Lemma 2.5.2 aus der Vorlesung. Genauer seien $f:M\to N,\ g:N\to P$ glatt, dann gilt

$$T(g \circ f) = T(f) \circ T(g)$$

und $T(id_M) = id_{TM}$ und daher für jeden Diffeomorphismus $f: M \to N$, $(Tf)^{-1} = T(f^{-1})$.

29. Beweise, dass die Vektorraumstruktur in den Fasern eines Vektorbündels kartenunabhängig ist, vgl. Skriptum p. 42. Genauer sei (E, B, π) ein Vektorbündel, $b \in B$ und $E_b := \pi^{-1}(b)$ die Faser über b. Mittels einer Vektorbündelkarte (Ψ, W) bei b und für $e_1, e_2 \in E_b, \lambda \in \mathbb{R}$ mit $\Psi(e_i) = (w', f_i')$ (i = 1, 2) definieren wir

$$e_1 + \lambda e_e := \Psi^{-1}(w', f_1' + \lambda f_2').$$

Zeige, dass diese Definition nicht von der Wahl von Ψ abhängt.

- 30. Sei (E, B, π) ein Vektorbündel und $\Psi : W \to W' \times F'$ eine Vektorbündelkarte von E. Zeige, dass $W = \pi^{-1}(W \cap B)$.
- 31. Sei (E, B, π) ein Vektorbündel, $b \in B$ und $\Psi : W \to W' \times F'$ eine Vektorbündelkarte von E mit $\Psi(b) = (w', 0)$. Zeige, dass dann für die Faser von E über b gilt:

$$\pi^{-1}(b) = \Psi^{-1}(\{w'\} \times F').$$

- 32. Zeige, dass jedes (E, B, π) wie in 2.5.6 (ii) ein Vektorbündel im Sinn von 2.5.5 ist. Anleitung: Wähle eine Überdeckung von B durch Karten $(\varphi_{\alpha}, V_{\alpha})$ so, dass für jedes V_{α} ein $\tilde{\Psi}_{\alpha} : \pi^{-1}(V_{\alpha}) \to V_{\alpha} \times F'$ wie in 2.5.6 (ii) existiert. Setze dann $\Psi_{\alpha} := (\varphi_{\alpha} \times \mathrm{id}) \circ \tilde{\Psi}_{\alpha}$, $W_{\alpha} := \pi^{-1}(V_{\alpha})$ und zeige, dass $\{(\Psi_{\alpha}, W_{\alpha}) \mid \alpha \in A\}$ ein Vektorbündel-Atlas von E im Sinn von 2.5.5 ist.
- 33. Beweise, dass die Lieklammer für Vektorfelder $X, Y \in \mathfrak{X}(M)$,

$$[X,Y](f):=X(Y(f))-Y(X(f)) \qquad (f\in \mathcal{C}^\infty(M))$$

eine Derivation ist und daher wieder ein Vektorfeld definiert.

- 34. Zeige Proposition 2.5.15 aus der Vorlesung, also, dass für Vektorfelder $X, Y, Z \in \mathfrak{X}(M)$ und glatte Funktionen $f, g \in \mathcal{C}^{\infty}(M, \mathbb{R})$ folgende Aussagen gelten:
 - (i) $(X,Y) \mapsto [X,Y]$ ist \mathbb{R} -bilinear.
 - (ii) [X, Y] = -[Y, X] ([,] ist antisymmetrisch).
 - (iii) [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0 (Jacobiidentität).
 - (iv) [fX, gY] = fg[X, Y] + fX(g)Y gY(f)X.
 - (v) [,] ist lokal: Für $V\subseteq M$ offen gilt $[X,Y]|_V=[X|_V\,,\,Y|_V].$
 - (vi) Lokale Darstellung: Für eine Karte (ψ, V) mit $\psi = (x^1, \dots, x^n)$, $X|_V = \sum_{i=1}^n X^i \frac{\partial}{\partial x^i}$, $Y|_V = \sum_{i=1}^n Y^i \frac{\partial}{\partial x^i}$, gilt

$$[X,Y]|_{V} = \sum_{i=1}^{n} \left(\sum_{k=1}^{n} \left(X^{k} \frac{\partial Y^{i}}{\partial x^{k}} - Y^{k} \frac{\partial X^{i}}{\partial x^{k}}\right)\right) \frac{\partial}{\partial x^{i}}$$

- 35. Seien M, N Mannigfaltigkeiten und $f: M \to N$ ein Diffeomorphismus. Für X ein glattes Vektorfeld auf M ($X \in \mathfrak{X}(M)$) sei $f_*X := Tf \circ X \circ f^{-1}$ der Push-Forward von X unter f. Zeige:
 - (a) f_*X ist ein glattes Vektorfeld auf N.
 - (b) Für $g \in C^{\infty}(N)$ und $p \in N$ gilt: $(f_*X)(g)(p) = X_{f^{-1}(p)}(g \circ f)$ (verwende (2.4.4) aus der Vorlesung).
 - (c) Zeige mittels (b), dass für $X, Y \in \mathfrak{X}(M)$ gilt: $[f_*X, f_*Y] = f_*([X, Y])$.
- 36. Sei $f: M \to N$ ein Diffeomorphismus, $X \in \mathfrak{X}(M)$ und $Y:=f_*X \in \mathfrak{X}(N)$ der Push-Forward von X unter f. Zeige:
 - (a) Ist c eine Integralkurve von X, dann ist $f \circ c$ eine Integralkurve von Y.
 - (b) Für den Fluss von Y gilt: $\operatorname{Fl}_t^Y = f \circ \operatorname{Fl}_t^X \circ f^{-1}$.
- 37. Seien X, Y, Z die folgenden Vektorfelder auf \mathbb{R}^3 :

$$X = z \frac{\partial}{\partial y} - y \frac{\partial}{\partial z}$$

$$Y = x \frac{\partial}{\partial z} - z \frac{\partial}{\partial x}$$

$$Z = y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y}$$

Zeige, dass die Abbildung $\alpha : \mathcal{M} := \{aX + bY + cZ \mid a, b, c \in \mathbb{R}\} \to \mathbb{R}^3, \ \alpha(aX + bY + cZ) = (a, b, c)$ wohldefiniert ist und dass für $U, V \in \mathcal{M}$ gilt: $\alpha([U, V]) = \alpha(U) \times \alpha(V)$ (Kreuzprodukt in \mathbb{R}^3).

38. Berechne die Flüsse der Vektorfelder X, Y, Z aus Aufgabe 37. Interpretiere die Abbildungen geometrisch. Sind X, Y und Z vollständig?

- 39. Seien E, F n-dimensionale Vekorräume, $\mathcal{B}_E = \{e_1, \ldots, e_n\}, \mathcal{B}_F = \{f_1, \ldots, f_n\}$ Basen von E bzw. F und $\mathcal{B}_{E^*} = \{\alpha^1, \ldots, \alpha^n\}, \mathcal{B}_{F^*} = \{\beta^1, \ldots, \beta^n\}$ die zugehörigen dualen Basen. Sei $\varphi : E \to F$ ein linearer Isomorphismus, der bezüglich $\mathcal{B}_E, \mathcal{B}_F$ die Matrix $[\varphi]_{\mathcal{B}_E,\mathcal{B}_F} = A = (A^i_{\ j})_{i,j}$ besitzt. Schließlich sei $[\varphi^{-1}]_{\mathcal{B}_F,\mathcal{B}_E} = B = (B^i_{\ j})_{i,j}$. Zeige:
 - (a) $[\varphi^*]_{\mathcal{B}_{F^*},\mathcal{B}_{E^*}} = A^t$.
 - (b) Sei $t \in T_s^r E$, $t = t_{j_1...j_s}^{i_1...i_r} e_{i_1} \otimes ... \otimes e_{i_r} \otimes \alpha^{j_1} \otimes ... \otimes \alpha^{j_s}$. Dann ist

$$\varphi_s^r t = (t')_{j'_1 \dots j'_s}^{i'_1 \dots i'_r} f_{i'_1} \otimes \dots \otimes f_{i'_r} \otimes \beta^{j'_1} \otimes \dots \otimes \beta^{j'_s}$$

$$\text{mit } (t')_{j'_1 \dots j'_s}^{i'_1 \dots i'_r} = t_{j_1 \dots j_s}^{i_1 \dots i_r} \cdot A_{i_1}^{i'_1} \cdot \dots \cdot A_{i_r}^{i'_r} \cdot B_{j'_1}^{j_1} \cdot \dots \cdot B_{j'_s}^{j_s}.$$

- 40. Seien $(\varphi = (x^1, \dots, x^n), U), (\psi = (y^1, \dots, y^n), V)$ Karten von M um $p \in M$. Zeige:
 - (a) $dx^i \Big|_p = \sum_{k=1}^n D_k(\varphi^i \circ \psi^{-1})(\psi(p)) dy^k \Big|_p = \sum_{k=1}^n \frac{\partial x^i}{\partial y^k} \Big|_p dy^k \Big|_p$

(Hinweis: es genügt z.z., dass die rechte Seite der obigen Gleichung gerade die zu $\{\frac{\partial}{\partial x^1}|_p,\ldots,\frac{\partial}{\partial x^n}|_p\}$ duale Basis von T_pM^* bildet.)

(b) Sei $t \in \mathcal{T}_s^r(M)$ mit Komponenten $\varphi t_{j_1...j_s}^{i_1...i_r}$ bezüglich φ . Dann sind die Komponenten von t bezüglich ψ gegeben durch

$${}^{\psi}t^{a_1...a_r}_{b_1...b_s}(p) = {}^{\varphi}t^{i_1...i_r}_{j_1...j_s}(p) \left. \frac{\partial y^{a_1}}{\partial x^{i_1}} \right|_p \cdot \ldots \cdot \left. \frac{\partial y^{a_r}}{\partial x^{i_r}} \right|_p \cdot \left. \frac{\partial x^{j_1}}{\partial y^{b_1}} \right|_p \cdot \ldots \cdot \left. \frac{\partial x^{j_s}}{\partial y^{b_s}} \right|_p$$

41. Sei E ein endlichdimensionaler Vektorraum, $\alpha \in \Lambda^2 E^*$ und $\beta \in \Lambda^1 E^*$. Dann gilt für $e_1, e_2, e_3 \in E$:

$$(\alpha \wedge \beta)(e_1, e_2, e_3) = \alpha(e_1, e_2)\beta(e_3) - \alpha(e_1, e_3)\beta(e_2) + \alpha(e_2, e_3)\beta(e_1).$$

42. Sei E ein endlichdimensionaler Vektorraum und $\alpha \in \Lambda^k E^*$. Seien $f_1, \ldots, f_k, g_1, \ldots, g_k \in E$, mit $g_i = a_i^j f_j$. Sei $A = (a_i^j)_{i,j=1}^k$. Dann gilt:

$$\alpha(g_1,\ldots,g_k) = \det(A)\alpha(f_1,\ldots,f_k).$$

43. Sei E ein endlichdimensionaler Vektorraum und $\alpha \in \Lambda^k E^*$. Zeige: ist k ungerade, dann ist $\alpha \wedge \alpha = 0$. Stimmt dies auch für k gerade? (Beweis oder Gegenbeispiel).

44. Für ein Vektorfeld $X = \sum_{i=1}^{n} a^{i} \frac{\partial}{\partial x^{i}}$ auf \mathbb{R}^{n} sei die Divergenz von X definiert als $\operatorname{div} X := \sum_{i=1}^{n} \frac{\partial a^{i}}{\partial x^{i}}$. Sei nun n = 3 und

$$\operatorname{rot} X = \left(\frac{\partial a^3}{\partial x^2} - \frac{\partial a^2}{\partial x^3}\right) \frac{\partial}{\partial x^1} + \left(\frac{\partial a^1}{\partial x^3} - \frac{\partial a^3}{\partial x^1}\right) \frac{\partial}{\partial x^2} + \left(\frac{\partial a^2}{\partial x^1} - \frac{\partial a^1}{\partial x^2}\right) \frac{\partial}{\partial x^3}.$$

Definiere weiters die Differentialformen

$$\omega_X := a^1 dx + a^2 dy + a^3 dz$$

$$\eta_X := a^1 dy \wedge dz + a^2 dz \wedge dx + a^3 dx \wedge dy.$$

Zeige

- (a) $df = \omega_{\text{grad}f}, d\omega_X = \eta_{\text{rot}X}, d(\eta_X) = (\text{div}X)dx \wedge dy \wedge dz.$
- (b) $\operatorname{rot} \operatorname{grad} f = 0$, $\operatorname{div} \operatorname{rot} X = 0$.
- 45. Sei M ein beschränktes Gebiet im \mathbb{R}^n mit glattem Rand ∂M (sodass also M eine n-dimensionale kompakte Mannigfaltigkeit ist). Sei $i:\partial M\hookrightarrow M$.
 - (a) Für n=2 sei $\omega=xdy-ydx$. Zeige, dass die Fläche von M gegeben ist durch $\frac{1}{2}\int_{\partial M}i^*\omega$.
 - (b) Für n=3 sei $\omega=xdy\wedge dz-ydx\wedge dz+zdx\wedge dy$. Zeige, dass das Volumen von M gegeben ist durch $\frac{1}{3}\int_{\partial M}i^*\omega$.
 - (c) Wie sieht die entsprechende Formel für allgemeines n aus?
- 46. Sei E ein n-dimensionaler Vektorraum und $k \leq n$. Zeige: $\alpha_1, \ldots, \alpha_k \in E^*$ sind linear abhängig genau dann, wenn $\alpha_1 \wedge \ldots \wedge \alpha_k = 0$.
- 47. Seien φ , $\psi \in L(E, E)$. Leite die folgenden Eigenschaften der Determinante direkt aus der Definition 2.7.12 her:
 - (a) $\det(\varphi \circ \psi) = \det(\varphi) \det(\psi)$.
 - (b) $\det(\mathrm{id}_E) = 1$.
 - (c) φ ist ein linearer Isomorphismus genau dann, wenn $\det(\varphi) \neq 0$. mit $\varphi(e_1) = 0$. $\varphi^*\omega(e_1,\ldots,e_n)$.

48. Für ein Vektorfeld $X = \sum_{i=1}^n a^i \frac{\partial}{\partial x^i}$ auf \mathbb{R}^n sei die Divergenz von X definiert als $\operatorname{div} X := \sum_{i=1}^n \frac{\partial a^i}{\partial x^i}$. Sei nun n=3 und

$$\operatorname{rot} X = \left(\frac{\partial a^3}{\partial x^2} - \frac{\partial a^2}{\partial x^3}\right) \frac{\partial}{\partial x^1} + \left(\frac{\partial a^1}{\partial x^3} - \frac{\partial a^3}{\partial x^1}\right) \frac{\partial}{\partial x^2} + \left(\frac{\partial a^2}{\partial x^1} - \frac{\partial a^1}{\partial x^2}\right) \frac{\partial}{\partial x^3}.$$

Definiere weiters die Differentialformen

$$\omega_X := a^1 dx + a^2 dy + a^3 dz$$

$$\eta_X := a^1 dy \wedge dz + a^2 dz \wedge dx + a^3 dx \wedge dy.$$

Zeige

- (a) $df = \omega_{\text{grad}f}, d\omega_X = \eta_{\text{rot}X}, d(\eta_X) = (\text{div}X)dx \wedge dy \wedge dz.$
- (b) $\operatorname{rot} \operatorname{grad} f = 0$, $\operatorname{div} \operatorname{rot} X = 0$.
- 49. Zeige: für glatte Funktionen a_{ij} sind folgende Eigenschaften äquivalent:
 - (a) $d(\sum_{i < j} a_{ij} dx^i \wedge dx^j) = 0$.
 - (b) $\frac{\partial a_{ij}}{\partial x^k} \frac{\partial a_{ik}}{\partial x^j} + \frac{\partial a_{jk}}{\partial x^i} = 0$ für alle i < j < k.

- 50. Berechne die 1. Fundamentalform für
 - (a) die Sphäre S^2 bzüglich der Parametrisierung

$$F: \left(\frac{-\pi}{2}, \frac{\pi}{2}\right) \times (0, 2\pi) \rightarrow \mathbb{R}^{3}$$
$$F(\theta, \varphi) = (\cos \theta \cos \varphi, \cos \theta \sin \varphi, \sin \theta)$$

(b) den Zylinder $Z=\{(x,y,z)\in\mathbb{R}^3: x^2+y^2=z^2,\ z>0\}$ bezüglich der Parametrisierung

$$F: (0, 2\pi) \times (0, \infty) \rightarrow \mathbb{R}^3$$

 $F(\varphi, r) = r(\cos \varphi, \sin \varphi, 1)$

51. Für das hyperbolische Paraboloid

$$S = \{(x, y, z) \in \mathbb{R}^3 : z = y^2 - x^2\}$$

berechne die Weingartenabbildung, sowie Haup- mittlere und Gaußkrümung im Punkt p = (0, 0, 0). Hinweis: Stelle S als Nullstellenmenge dar.

52. Für den Torus, gegeben durch die Gleichung

$$\left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = r^2 \quad \text{mit } r < R$$

bestimme eine Parametrisierung, sowie 1. und 2. Fundamentalform, Weingartenabbildung und Haup- mittlere und Gaußkrümung.