MODEL-BASED REINFORCEMENT LEARNING

Scott O'Hara

Metrowest Developers Machine Learning Group 09/12/2018

REFERENCES

The material for this talk is drawn from the slides, notes and lectures from several offerings of the CS181 course at Harvard University:

- CS181 Intelligent Machines: Perception, Learning and Uncertainty, Sarah Finney, Spring 2009
- CS181 Intelligent Machines: Perception, Learning and Uncertainty, Prof. David C Brooks, Spring 2011
- CS181 Machine Learning, Prof. Ryan P. Adams, Spring 2014. https://github.com/wihl/cs181-spring2014
- CS181 Machine Learning, Prof. David Parkes, Spring 2017. https://harvard-ml-courses.github.io/cs181-web-2017/

As well as notes and lectures from Stanford course CS229:

CS229 – Machine Learning, Andrew Ng.
 https://see.stanford.edu/Course/CS229

OVERVIEW

1. Overview

- Types of Machine Learning
- Markov Decision Processes
- Reinforcement Learning
- Applications

2. Review of MDP Algorithms

- The Bellman equations

- Expectimax (finite horizon)
 Value Iteration (finite horizon)
 Value Iteration (infinite horizon)
 Policy Iteration (infinite horizon)

3. Reinforcement Learning

- o The basic idea
- Model-Based RL
- Learning the reward and transition probabilities
- Credit assignment
- Exploration vs. exploitation

4. Next Time

Q-learning

TYPES OF MACHINE LEARNING

There are (at least) 3 broad categories of machine learning problems:

Supervised Learning

$$Data = \{(x_1, y_1), ..., (x_n, y_n)\}$$

e.g., linear regression, decision trees, SVMs

Unsupervised Learning

$$Data = \{x_1, \dots, x_n\}$$

e.g., K-means, HAC, Gaussian mixture models

Reinforcement Learning

 $Data = \{s_1, a_1, r_1, s_2, a_2, r_2 ...\}$ an agent learns to act in an uncertain environment by training on data that are sequences of **state**, **action**, **reward**.

MARKOV DECISION PROCESSES

- Markov Decision Processes provide a mathematical framework for modeling decision making in situations where outcomes are partly random and partly under the control of a decision maker.
- The initial analysis of MDPs assume complete knowledge of states, actions, rewards, transitions, and discounts.

MARKOV DECISION PROCESSES

- States: s_1, \ldots, s_n
- Actions: a_1, \dots, a_m
- Reward Function: $r(s, a) \in R$
- Transition model: p(s'|s,a)
- Discount factor: $\gamma \in [0, 1]$

MDP GOAL: FIND AN OPTIMAL POLICY π

GOAL: find a **policy** π that tells you what action to take in each state. We want to find 'rewarding' policies.

n state policy:

$$\pi(s_1) = a_1$$

$$\pi(s_2) = a_2$$

$$\pi(s_3) = a_3$$

$$\dots$$

$$\pi(s_n) = a_n$$

REINFORCEMENT LEARNING

- Agent knows the current state s, takes action a, and gets reward r.
- There is no access to reward model r(s,a) or transition model p(s' | s,a)
- Agent only sees the outcome reward r and the next state s'.
- Under these conditions, it is a very challenging problem to learn π.

REVIEW OF MDP ALGORITHMS

REVIEW OF MDP ALGORITHMS

There are 4 standard MDP algorithms that assume complete knowledge:

- **Expectimax** (finite horizon, $\gamma = 1$)
- Value Iteration (finite horizon, $\gamma = 1$)
- Value Iteration (infinite horizon, $\gamma \in [0,1)$)
- Policy Iteration (infinite horizon , $\gamma \in [0,1)$)

BELLMAN EQUATIONS

The planning problem for an MDP is:

$$\pi^* \in \underset{\pi}{\operatorname{arg max}} V^{\pi}(s)$$

Bellman equations:

$$V^*(s) = \max_{a \in A} [R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a)V^*(s')], \forall s$$

 All MDP algorithms use some variant of the Bellman equations.

EXPECTIMAX: TOP-DOWN, RECURSIVE

- Build out a look-ahead tree to the decision horizon; take the max over actions, expectations over next states.
- Solve from the leaves, backing-up the expectimax values.
- Problems: (1) computation is exponential in the horizon; (2) may expand the same subtree multiple times.

EXPECTIMAX: A GAME AGAINST NATURE

- Expectimax is like a game-playing algorithm except the opponent is nature.
- Expectimax is strongly related to the minmax algorithm used in game theory, but the response is probabilistic.
- Nodes where you move: $S(\triangle)$
- Nodes where nature moves: <S,A> ()

EXPECTIMAX (Finite Horizon T)

function EXPECTIMAX(s)

if s is a terminal then

return 0

else return $\max_{a \in A} [R(s, a) + \sum_{s'} P(s'|s, a) EXPECTIMAX(s')]$

$$\pi^{T}(s) = EXPECTIMAX(s)$$

VALUE ITERATION (Finite Horizon T)

- Value iteration with a finite horizon works from the bottom-up using dynamic programming.
- The idea is to break up the problem by number of the number of steps to go.
- Start with the base case values with no timesteps to go.
- Given optimal policy for k-1 steps to go, compute values for k steps to go

VALUE ITERATION (Finite Horizon T)

- 1. For each state s, initialize $V_0(s) = 0$
- 2. For $k \leftarrow 1 \dots T$ {

For every state s:
$$V_k(s) = \max_{a \in A} [R(s,a) + \sum_{s'} P(s'|s,a)V_{k-1}(s')]$$

3. $\pi^{T}(s) = \underset{a \in A}{\operatorname{argmax}} [R(s, a) + \sum_{s' \in S} P(s'|s, a)V_{T}(s')]$

VALUE ITERATION (∞ HORIZON, $\gamma \in [0,1)$)

- Value iteration with an infinite horizon is a generalization of value iteration with a finite horizon.
- The main change is that the discount factor γ is set to less than one discounting the value of states farther in the future.
- It can be shown that V will converge over time to V*/
- Iterate the update equation until the changes in V fall below some ϵ .

VALUE ITERATION (∞ HORIZON, $\gamma \in [0,1)$)

- 1. For each state s, initialize V(s) = 0
- 2. Repeat until convergence {

For every state s:
$$V'(s) = \max_{a \in A} [R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a)V(s')]$$

 $V \leftarrow V'$

3.
$$\pi^*(s) = \underset{a \in A}{\operatorname{argmax}} [R(s, a) + \sum_{s' \in S} P(s'|s, a) V_T(s')]$$

POLICY ITERATION (∞ HORIZON, $\gamma \in [0,1)$)

- For value iteration, the policy often stops changing long before the values converge.
- Policy iteration, iterates on the policy rather than V.
- Policy iteration can converge in many fewer iterations than value iteration.
- However, the loop body in policy iteration takes much longer than value iteration.
- Harvard CS181 notes say policy iteration is faster.
 Andrew Ng says that value iteration is faster.

POLICY ITERATION (∞ HORIZON, $\gamma \in [0,1)$)

- 1. Initialize policy π randomly
- 2. Repeat until policy π does not change {
 - a) Solve $V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s' \in S} P(s'|s, \pi(s))V(s')$
 - b) For every state s: let $\pi'(s) = \underset{a \in A}{argmax} R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V^{\pi}(s')$
 - (c) $\pi \leftarrow \pi'$

REINFORCEMENT LEARNING

REINFORCEMENT LEARNING: THE BASIC IDEA

- Select an action
- If action leads to reward, reinforce that action
- If action leads to punishment, avoid that action
- Basically, a computational form of Behaviorism (Pavlov, B. F. Skinner)

THE LEARNING FRAMEWORK

- Learning is performed online, learn as we interact with the world
- In contrast with supervised learning, there are no training or test sets. The reward is accumulated over interactions with the environment.

- Data is not fixed, more information is acquired as you go.
- The training distribution can be influenced by a

 étion decisions.

CHALLENGES

- credit assignment problem: how do you know which actions were responsible for success or failure?
- exploration vs exploitation: should you use your current model to collect rewards or should risk lower rewards now for a better model and higher rewards later?

MODEL-BASED REINFORCEMENT LEARNING

- Mechanism is Markov Decision Process
 - assume states and actions are known
 - assume states are fully observable
- Approach:
 - learn the MDP reward and transition parameters/
 - solve the MDP to determine an optimal policy
- Appropriate when the model is unknown, but small enough to store and solve.

LEARN THE REWARD AND TRANSITION DISTRIBUTIONS

- Try every action in each state a number of times
- RTotal(a,s) = total reward for action a in state s
- N(a,s) = number of times action a taken in state s
- N(a,s,s') = number of transitions from s to s' on action a
- R(s,a) = RTotal(a,s) / N(a,s)
- T(a,s,s') = N(a,s) / N(a,s,s')

REWARD PARAMETER TABLE

Actions

States

R(s0,a0)	R(s0,a1)	R(s0,a2)
R(s1,a0)	R(s1,a1)	R(s1,a2)
R(s2,a0)	R(s2,a1)	R(s2,a2)
R(s3,a0)	R(s3,a1)	R(s3,a2)

TRANSITION PARAMETER TABLE

Action a

Next State

Current State

T(a,s0,s0)	T(a,s0,s1)	T(a,s0,s2)	T(a,s0,s3)
T(a,s1,s0)	T(a,s1,s1)	T(a,s1,s2)	T(a,s1,s3)
T(a,s2,s0)	T(a,s2,s1)	T(a,s2,s2)	T(a,s2,s3)
T(a,s3,s0)	T(a,s3,s1)	T(a,s3,s2)	T(a,s3,s3)

ITERATIVE IMPROVEMENT

- Swap between learning the model and solving the model to determine the optimal policy
- O Mhy?
 - A poor policy may be expensive
 - might want to avoid learning a perfect model everywhere
- o How often should one solve the MDP?
 - it depends on the relative costs

MODEL-BASED RL

```
Let \pi^0 be arbitrary
k \leftarrow 0
Experience \leftarrow \emptyset
Repeat
  k \leftarrow k + 1
   Begin in state i
   For a while:
      Choose action a based on \pi^{k-1}
      Receive reward r and transition to j
      Experience \leftarrow Experience \cup < i, a, r, j >
      i \leftarrow j
   Learn MDP M from Experience
   Solve M to obtain \pi^k
```

CREDIT ASSIGNMENT

- How does model-based RL deal with the credit assignment problem?
- Learned MDP tells us reward values and transition probabilities
- Solving the MDP deals with long-term planning
- So, the problem of credit assignment is solved optimally.

CHOOSING AN ACTION

```
Let \pi^0 be arbitrary
k \leftarrow 0
Experience \leftarrow \emptyset
Repeat
  k \leftarrow k + 1
   Begin in state i
   For a while:
      Choose action a based on \pi^{k-1}
      Receive reward r and transition to j
      Experience \leftarrow Experience \cup < i, a, r, j >
      i \leftarrow j
   Learn MDP M from Experience
   Solve M to obtain \pi^k
```

CHOOSING AN ACTION: EXPLORATION VS EXPLOITATION

- How should an agent choose an action? An obvious answer is simply follow the current policy. However, this is often the best way to improve your model.
- Exploit: use your current model to maximize the expected utility now.
- Explore: choose an action that will help you improve your model.

HOW/WHEN SHOULD WE EXPLORE / EXPLOIT ?

- How to Exploit? use the current policy.
- O How to Explore?
 - choose an action randomly
 - choose an action you haven't chosen yet
 - choose an action that will take you to an unexplored state.
- When to exploit? When to explore? How much time in exploration vs time in exploitation?

CONVERGENCE TO THE OPTIMAL POLICY

o If:

- every action is taken in every state infinitely often
- the probability of exploration tends to zero

o Then:

model-based RL will converge to the optimal policy

 Choose exploration strategy that approximates these conditions.

EXPLORATION STRATEGY 1: TWO STAGES

Explore until time T, then exploit

Weaknesses:

- we may not explore log enough to get an accurate model
- we may get stuck with a sub-optimal policy.
- we may have to behave stupidly for a long time

o Uses:

- appropriate if we only need to learn/solve MDP once
- learn/solve in a simulation then act in the real world.

EXPLORATION STRATEGY 2: ϵ -GREEDY

- Explore with probability ϵ . Exploit with probability 1ϵ .
- Weaknesses:
 - Does not exploit when learning has converged.
- o Uses:
 - appropriate if the world is changing.

EXPLORATION STRATEGY 3: BOLTZMANN

In state s, choose action a with probability p:

$$p = \frac{e^{\frac{Q(s,a)}{t}}}{\sum_{a'} e^{\frac{Q(s,a')}{t}}}$$

- Simulated annealing: t is a "temperature"
- o High temperature means more exploration
- o Over time, t cools, reducing exploration
- Sensitive to cooling schedule.

EXPLORATION STRATEGY 4: R-MAX

- o Initialize reward for each state to R_{max} , the largest reward possible
- Keep track of the number of times each state has been visited
- After c visits, mark the state as known and update and update reward and transition probabilities.
- \circ Need to know R_{max}

MODEL-BASED RL: PROS AND CONS

o Pros:

- Makes maximal use of experience
- Solves model optimally, given enough experience,

o Cons:

- Assumes model is small enough to solve
- Requires expensive solution procedure

NEXT TIME: Q-LEARNING

 Q-learning uses the Q-function version of the Bellman equations:

$$Q^{*}(s,a) = R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) \max_{a \in A} [Q^{*}(s',a')], \forall s, a$$

- Q-learning dispenses with learning a model, but tries to learn the Q function directly from which you can read off the policy.
- o It is appropriate to use when the model is too large to solve or learn.

BELLMAN EQUATIONS

The planning problem for an MDP is:

$$\pi^* \in \underset{\pi}{\operatorname{arg max}} V^{\pi}(s)$$

Bellman equations:

$$V^*(s) = \max_{a \in A} [R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a)V^*(s')], \forall s$$

 All MDP algorithms use some variant of the Bellman equations.

BELLMAN EQUATIONS USING Q-FUNCTION

The planning problem for an MDP is:

$$\pi^* \in \underset{\pi}{\operatorname{arg max}} Q^{\pi}(s, a)$$

Q-Function version of Bellman equations:

$$Q^*(s,a) = R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) \max_{a \in A} [Q^*(s',a')], \forall s, a$$