

Pentru orice mulțime de clauze S, notăm cu

$$Res(S) := \bigcup_{C_1, C_2 \in S} Res(C_1, C_2).$$

Propoziția 1.91

Pentru orice mulțime de clauze \mathcal{S} și orice evaluare e : $V \to \{0,1\}$,

$$e \vDash S \Rightarrow e \vDash Res(S)$$
.

Teorema 1.92 (Teorema de corectitudine a rezoluției)

Fie S o mulțime de clauze. Dacă \square se derivează prin rezoluție din S, atunci S este nesatisfiabilă.

Algoritmul Davis-Putnam (DP)

Intrare: ${\cal S}$ mulțime nevidă de clauze netriviale.

$$i := 1, S_1 := S.$$

Pi.1 Fie x_i o variabilă care apare în S_i . Definim

$$\mathcal{T}_i^1 := \{ C \in \mathcal{S}_i \mid x_i \in C \}, \quad \mathcal{T}_i^0 := \{ C \in \mathcal{S}_i \mid \neg x_i \in C \}.$$

Pi.2 **if** $(\mathcal{T}_i^1 \neq \emptyset \text{ și } \mathcal{T}_i^0 \neq \emptyset)$ **then**

$$\mathcal{U}_i := \{(C_1 \setminus \{x_i\}) \cup (C_0 \setminus \{\neg x_i\}) \mid C_1 \in \mathcal{T}_i^1, C_0 \in \mathcal{T}_i^0\}.$$

else $\mathcal{U}_i := \emptyset$.

Pi.3 Definim

$$\mathcal{S}'_{i+1} := \left(\mathcal{S}_i \setminus (\mathcal{T}_i^0 \cup \mathcal{T}_i^1)\right) \cup \mathcal{U}_i;$$

 $\mathcal{S}_{i+1} := \mathcal{S}'_{i+1} \setminus \{C \in \mathcal{S}'_{i+1} \mid C \text{ trivial} \check{a}\}.$

Pi.4 if $S_{i+1} = \emptyset$ then S este satisfiabilă.

else if $\square \in S_{i+1}$ then S este nesatisfiabilă. else $\{i := i + 1; \text{ go to Pi.1}\}.$

Algoritmul Davis-Putnam (DP)

$$S = \{\{v_1, \neg v_3\}, \{v_2, v_1\}, \{v_2, \neg v_1, v_3\}\}. \ i := 1, S_1 := S.$$

P1.1
$$x_1 := v_3$$
; $\mathcal{T}_1^1 := \{\{v_2, \neg v_1, v_3\}\}$; $\mathcal{T}_1^0 := \{\{v_1, \neg v_3\}\}$.

P1.2
$$U_1 := \{\{v_2, \neg v_1, v_1\}\}.$$

P1.3
$$S'_2 := \{\{v_2, v_1\}, \{v_2, \neg v_1, v_1\}\}; S_2 := \{\{v_2, v_1\}\}.$$

P1.4
$$i := 2$$
 and go to P2.1.

P2.1
$$x_2 := v_2$$
; $\mathcal{T}_2^1 := \{\{v_2, v_1\}\}\}$; $\mathcal{T}_2^0 := \emptyset$.

P2.2
$$\mathcal{U}_2 := \emptyset$$
.

P2.3
$$S_3 := \emptyset$$
.

Algoritmul Davis-Putnam (DP)

$$\mathcal{S} = \{ \{ \neg v_1, v_2, \neg v_4 \}, \{ \neg v_3, \neg v_2 \}, \{ v_1, v_3 \}, \{ v_1 \}, \{ v_3 \}, \{ v_4 \} \}.$$

$$i := 1. \ \mathcal{S}_1 := \mathcal{S}.$$

P1.1
$$x_1 := v_1; \mathcal{T}_1^1 := \{\{v_1, v_3\}, \{v_1\}\}; \mathcal{T}_1^0 := \{\{\neg v_1, v_2, \neg v_4\}\}.$$

P1.2
$$U_1 := \{\{v_3, v_2, \neg v_4\}, \{v_2, \neg v_4\}\}.$$

P1.3
$$S_2 := \{ \{\neg v_3, \neg v_2\}, \{v_3\}, \{v_4\}, \{v_3, v_2, \neg v_4\}, \{v_2, \neg v_4\} \}.$$

P1.4
$$i := 2$$
 and go to P2.1.

P2.1.
$$x_2 := v_2$$
; $\mathcal{T}_2^1 := \{\{v_3, v_2, \neg v_4\}, \{v_2, \neg v_4\}\}; \mathcal{T}_2^0 := \{\{\neg v_3, \neg v_2\}\}.$

P2.2
$$U_2 := \{\{v_3, \neg v_4, \neg v_3\}, \{\neg v_4, \neg v_3\}\}.$$

P2.3
$$S_3 := \{\{v_3\}, \{v_4\}, \{\neg v_4, \neg v_3\}\}.$$

P2.4
$$i := 3$$
 and go to P3.1.

P3.1
$$x_3 := v_3$$
; $\mathcal{T}_3^1 := \{\{v_3\}\}\}$; $\mathcal{T}_3^0 := \{\{\neg v_4, \neg v_3\}\}$.

P3.2.
$$U_3 := \{ \{ \neg v_4 \} \}.$$
 P3.3 $S_4 := \{ \{ v_4 \}, \{ \neg v_4 \} \}.$

P3.4
$$i := 4$$
 and go to P4.1.

P4.1
$$x_4 := v_4$$
; $\mathcal{T}_4^1 := \{\{v_4\}\}\}$; $\mathcal{T}_4^0 := \{\{\neg v_4\}\}$.

P4.2
$$\mathcal{U}_4 := \{\Box\}.$$
 P4.3 $\mathcal{S}_5 := \{\Box\}.$

P4.4
$$S$$
 nu este satisfiabilă.

110

Algoritmul DP - terminare

Notăm:

$$Var(C) := \{x \in V \mid x \in C \text{ sau } \neg x \in C\}, \quad Var(S) := \bigcup_{C \in S} Var(C).$$

Aşadar, $Var(C) = \emptyset$ ddacă $C = \square$ și $Var(S) = \emptyset$ ddacă $S = \emptyset$ sau $S = \{\square\}$.

Propoziția 1.93

Fie n := |Var(S)|. Atunci algoritmul DP se termină după cel mult n pași.

Dem.: Se observă imediat că pentru orice *i*,

$$Var(S_{i+1}) \subseteq Var(S_i) \setminus \{x_i\} \subsetneq Var(S_i)$$
.

Prin urmare, $n = |Var(S_1)| > |Var(S_2)| > |Var(S_3)| > \ldots \geq 0$.

Algoritmul DP - corectitudine și completitudine

Fie $N \leq n$ numărul de pași după care se termină DP. Atunci $\mathcal{S}_{N+1} = \emptyset$ sau $\square \in \mathcal{S}_{N+1}.$

Teorema 1.94

Algoritmul DP este corect și complet, adică,

S este nesatisfiabilă ddacă $\square \in S_{N+1}$.

12

LOGICA DE ORDINUL I

Limbaje de ordinul l

Definiția 2.1

Un limbaj \mathcal{L} de ordinul l este format din:

- ightharpoonup o mulțime numărabilă $V = \{v_n \mid n \in \mathbb{N}\}$ de variabile;
- ightharpoonup conectorii \neg și \rightarrow ;
- paranteze: (,);
- ► simbolul de egalitate =;
- **▶** cuantificatorul universal ∀;
- ▶ o mulțime R de simboluri de relații;
- ▶ o mulțime 𝓕 de simboluri de funcții;
- ▶ o mulțime C de simboluri de constante;
- ightharpoonup o funcție aritate ari : $\mathcal{F} \cup \mathcal{R} \to \mathbb{N}^*$.
- $ightharpoonup \mathcal{L}$ este unic determinat de cvadruplul $\tau := (\mathcal{R}, \mathcal{F}, \mathcal{C}, \operatorname{ari})$.
- ightharpoonup au se numește signatura lui $\mathcal L$ sau vocabularul lui $\mathcal L$ sau alfabetul lui $\mathcal L$ sau tipul de similaritate al lui $\mathcal L$

123

Limbaje de ordinul I

Fie \mathcal{L} un limbaj de ordinul I.

• Mulțimea $Sim_{\mathcal{L}}$ a simbolurilor lui \mathcal{L} este

$$\mathit{Sim}_{\mathcal{L}} := V \cup \{\neg, \rightarrow, (,), =, \forall\} \cup \mathcal{R} \cup \mathcal{F} \cup \mathcal{C}$$

- Elementele lui $\mathcal{R} \cup \mathcal{F} \cup \mathcal{C}$ se numesc simboluri non-logice.
- Elementele lui $V \cup \{\neg, \rightarrow, (,), =, \forall\}$ se numesc simboluri logice.
- Notăm variabilele cu x, y, z, v, \ldots , simbolurile de relații cu $P, Q, R \ldots$, simbolurile de funcții cu f, g, h, \ldots și simbolurile de constante cu c, d, e, \ldots
- Pentru orice $m \in \mathbb{N}^*$ notăm:

 \mathcal{F}_m := mulțimea simbolurilor de funcții de aritate m;

 \mathcal{R}_m := mulțimea simbolurilor de relații de aritate m.

125

Limbaje de ordinul I

Definiția 2.2

Mulțimea $\mathsf{Expr}_{\mathcal{L}}$ a $\mathsf{expresiilor}$ lui \mathcal{L} este mulțimea tuturor șirurilor finite de simboluri ale lui \mathcal{L} .

- ightharpoonup Expresia vidă se notează λ .
- **L**ungimea unei expresii θ este numărul simbolurilor din θ .

Definiția 2.3

Fie $\theta = \theta_0 \theta_1 \dots \theta_{k-1}$ o expresie a lui \mathcal{L} , unde $\theta_i \in Sim_{\mathcal{L}}$ pentru orice i.

- ▶ Dacă $0 \le i \le j \le k-1$, atunci expresia $\theta_i \dots \theta_j$ se numește (i,j)-subexpresia lui θ ;
- Spunem că o expresie ψ apare în θ dacă există $0 \le i \le j \le k-1$ a.î. ψ este (i,j)-subexpresia lui θ ;
- Notăm cu $Var(\theta)$ mulțimea variabilelor care apar în θ .

126