Traducción de textos automatizada aplicando Deep Learning con Keras y Python

Pablo Vargas Ibarra

Málaga, 7 Octubre 2018

OUTLINE

- 1) DL & Keras Introduction
- 2) Sequence Models
- 3) Recurrent Neural Networks
- 4) Neural Machine Translation with attention
- 5) Problem
- >> Bibliography

INTRODUCTION

DL & Keras Introduction

- Branch of machine learning
- Re-branded from neural networks
- State of the art results in speech recognition, computer vision, nlp and more...

- Deep Learning framework written in Python
- Open source, created in 2015
- Intuitive high-level API, easy to get started

SEQUENCE MODELS

Andrej Karpathy, The Unreasonable Effectiveness of Recurrent Neural Networks

many to one

Time Series

Video Activity Recognition

one to many

Language Model

Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep.

Image Captioning

A person riding a motorcycle on a dirt road.

many to many

Name-entity recognition

Yesterday, Harry Potter met Hermione Granger.

Yesterday, Harry Potter met Hermione Granger.

many to many

Machine Translation

Voulez-vous chanter avec _____

Do you want to sing with me?

Why not a standard network?

Problems:

- Inputs, outputs can be different lengths in different examples.
- Doesn't share features learned across different positions of text.

Me parecen interesantes las matemáticas.

Las matemáticas me parecen interesantes.

RECURRENT NETWORKS

Recurrent Neural Networks

Recurrent Neural Networks

Backpropagation through time: Just like we sum up the errors at output, we sum up the gradients at each time step

$$\frac{\partial E_3}{\partial W} = \sum_{h=0}^{3} \frac{\partial E_3}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial h_3} \frac{\partial h_3}{\partial h_k} \frac{\partial h_k}{\partial W}$$

Example back-prop in time with 3 time-steps

Recurrent Neural Networks

Gated Recurrent Units (GRU), Kyunghyun Cho et al. (2014)

Long Short-Term Memory (LSTM), Hochreiter & Schmidhuber (1997)

NEURAL MACHINE TRANSLATION

seq2seq: RNN as an encoder-decoder structure

Attention Mechanism

Additive attention:

$$sim(h_i, s_j) = w^T \tanh(W_h h_i + W_s s_j)$$

Multiplicative attention:

$$sim(h_i, s_j) = h_i^T W s_j$$

Dot product also works:

$$sim(h_i, s_j) = h_i^T s_j$$

Attention Mechanism

The model automatically finds the correspondence structure between two languages (alignment).

(Edge thicknesses represent the attention weights found by the attention model)

Attention Mechanism

Data: ACL WMT '14

RNN Enc-Dec vs RNN-Search

Example of problem

Example of problem

BIBLIOGRAPHY

SOME BIBLIOGRAPHY

I. Goodfellow, Y. Bengio, & A. Courville (2016). Deep Learning. MIT Press. http://www.deeplearningbook.org

A. Ng (2017). Deep Learning Specialization. Coursera.

https://www.coursera.org/specializations/deep-learning

D. Bahdanau, K. Cho, and Y. Bengio. Neural Machine Translation by Jointly Learning to Align and Translate. (2014) https://arxiv.org/abs/1409.0473

HSE (2018). Natual Language Processing. Coursera. https://www.coursera.org/learn/language-processing

Ilya Sutskever, Oriol Vinyals, Quoc V. Le Sequente to Sequence Learning with Neural Network.

https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

Andrej Karpathy, The Unreasonable Effectiveness of Recurrent Neural Networks http://karpathy.github.io/2015/05/21/rnn-effectiveness/