# Differentiable Point-Based Radiance Fields for Efficient \* View Synthesis

Qiang Zhang, Szymon Rusinkiewicz, Seung-Hwan Baek, Felix Heide

Siggraph Asia 2022

Presenter: Jason Yuan (jcyuan)



#### Motivation

#### Novel view synthesis but...

Fast inference

Fast training

Low memory

#### This would enable...

Novel view synthesis for video

#### Related Work

NeRF: MLPs + volumetric rendering

Slow training and inference

PlenOxels: explicit volume instead of MLP.

Big memory requirement

STNeRF: for videos, conditions MLP on time t.

Quality worse than frame-byframe models

## Method

Model: 3D point cloud (xyz) w Radiance parameter (H). Learnable parameters.



Input: viewing direction (i.e. camera intrinsics/extrinsics info, parameters R,t,M)





view direction (R,t) + radiance parameter (H) -> view-dependent color with Spherical Harmonics.

$$v_i^j = \frac{R_j P_i + t_j}{\|R_j P_i + t_j\|}, \quad c_i^j = \sum_{l=0}^{l_{\max}} \sum_{m=-l}^{l} h_{i,lm} Y_l^m(v_i^j)$$





view information (R,t,M) + 3D positions (xyz) -> project into 2D and retain depth

$$p_i^j = \left( M_j (R_j P_i + t_j) \right)^{\downarrow}$$





Splat Render the points:

For a given pixel (U), compute effect of each Point (P) -> Gaussian Kernel

$$\alpha_i^j(u) = \frac{1}{\sqrt{2\pi r^2}} e^{-\frac{\|p_i^J - u\|^2}{2r^2}}$$



Splat Render the points:

Do regular alpha blending. After sorting by depth Z.

where  $A_i^j(u)$  represents the net contribution of the *i*-th point:

$$A_i^j(u) = \alpha_i^j(u) \prod_{k=1}^{i-1} (1 - \alpha_k^j(u)),$$
 (7)



#### Training: SGD

$$\mathcal{L} = \sum_{j=1}^{N} ||I_j - \hat{I}_j||_2^2 + \lambda TV(\hat{I}_j).$$
 (8)

**Training Procedure** 



#### In addition to SGD...

#### Aggregate

Aggregate clusters of points into a single point by averaging the parameters.

#### Filter

Filter outliers, points too far from other points.

#### Add

Add new points

### • Summary



- Model scene as a 3D point cloud (xyz) with view dependent radiance (H, spherical harmonics).
- Learn these parameters. Optimize with SGD.
- Use "splat rendering" to render in a single pass, unlike NERF which takes many passes. More efficient.

## Results

### Blender Dataset



**Ground Truth** 



32 FPS 9 MB











Plenoxels 11 min 15 FPS 1.1 GB

Ground Truth



Point-Based 3 min 32 EPS



NeRF 20 h 0.08 FPS 14 MB



Plenoxels 11 min 15 FPS 1.1 GB





| Synthetic Dataset                   | Pretraining | Training | Inference | Model Size | Rendering Quality |       |        |
|-------------------------------------|-------------|----------|-----------|------------|-------------------|-------|--------|
| Symmetic Dataset                    |             |          |           |            | PSNR↑             | SSIM↑ | LPIPS↓ |
| NeRF [Mildenhall et al. 2020]       | None        | 20 h     | 1/12 fps  | 14 MB      | 31.0 dB           | 0.947 | 0.081  |
| IBRNet [Wang et al. 2021]           | 1 day       | 30 min   | 1/25 fps  | 15 MB      | 28.1 dB           | 0.942 | 0.072  |
| MVSNeRF [Chen et al. 2021b]         | 20 h        | 15 min   | 1/14 fps  | 14 MB      | 27.0 dB           | 0.931 | 0.168  |
| Plenoxels [Yu et al. 2021a]         | None        | 11 min   | 15 fps    | 1.1 GB     | 31.7 dB           | 0.958 | 0.050  |
| Plenoxels_s [Yu et al. 2021a]       | None        | 8.5 min  | 18 fps    | 234 MB     | 28.5 dB           | 0.926 | 0.100  |
| Pulsar [Lassner and Zollhofer 2021] | None        | 95 min   | 4 fps     | 228 MB     | 26.9 dB           | 0.923 | 0.184  |
| PBNR [Kopanas et al. 2021]          | None        | 3 h      | 4 fps     | 2.96 GB    | 27.4 dB           | 0.932 | 0.164  |
| Ours                                | None        | 3 min    | 32 fps    | 9 MB       | 30.3 dB           | 0.945 | 0.078  |

### Video Dataset















STNeRF

NeRF-t

| STNeRF | Train  | Render   | Model  | Rendering Quality |       |        |  |
|--------|--------|----------|--------|-------------------|-------|--------|--|
|        |        |          |        | PSNR↑             | SSIM† | LPIPS↓ |  |
| NeRF   | 40 h   | 1/25 fps | 14 MB  | 23.7 dB           | 0.853 | 0.304  |  |
| NeRF-t | 100 h  | 1/26 fps | 16 MB  | 28.9 dB           | 0.913 | 0.259  |  |
| STNeRF | 50 h   | 1/30 fps | 12 MB  | 32.1 dB           | 0.918 | 0.224  |  |
| Ours   | 30 min | 25 fps   | 110 MB | 34.6 dB           | 0.927 | 0.207  |  |





- A new approach combining point-based radiance and differentiable splatting.
- Outperforms SOTA neural rendering on memory, train time, inference time.
- Enables rendering of videos with frame-by-frame modeling.
- SOTA render quality on novel view synthesis for video.





- A mask is needed for initializing the point clouds
- The splatting technique doesn't work well for semi-transparent objects, like fur