B.Sc.- III (Complex Analysis –Analytic Function)

ssignment

1.	Cauchy –Riemann equation for	w = u + iv = f	(z)	are:
----	------------------------------	----------------	-----	------

a. $u_x = v_x$, $u_y = v_y$ b. $u_x = v_y$, $u_y = v_x$ c. $u_x = v_y$, $u_y = -v_x$

d. none of these

2. An analytic function with constant modulo is:

a. variable

b. may be variable or constant c. constant

d. none of these

3. If a function is analytic at all points of a bounded domain except finitely many points, then these points

a. singular points

b. simple points

c. continuous points

d. none of these

4. $Exp(2 \pm 3i\pi) =$

a. e^{-2}

c. $e^{\pm 3}$

5. At z=0, the function $f(z) = \overline{z}$ is:

a. not analytic

b. not differentiable

c. not continuous

d. none of these

6. The polar form of the complex number -5+5i is:

a $5\sqrt{2}e^{i\pi/4}$

b. $5\sqrt{2}e^{-i3\pi/4}$

d. none of these

7. If f(z) = u + iv is analytic function in a finite region and $u = x^3 - 3xy^2$, then $v = x^3 - 3xy^2$, then $v = x^3 - 3xy^2$

a. $3x^2y - y^3 + c$ b. $3x^2y^2 - y^3$ c. $3x^2y - y^2 + c$

d. none of these

8. For any two complex numbers $z_1, z_2, |z_1 - z_2|$ is:

a. $\geq |z_1| - |z_2|$

b. $\geq |z_1| + |z_2|$ c. $= |z_1| + |z_2|$

d. none of these

9. A conjugate harmonic of $u(x, y) = e^x \sin y$ is :

a. $e^y \cos x$ b. $e^x \cos y$

c. $-e^x \cos y + 1$

d. $e^y / \sin x$

10. Which of the function f(z) is analytic in complex plane where f(z) =

a. Re z

b. Im z

c. cot z

11. Cauchy – Riemann equations (in usual notations) are:

a. $u_x = v_x, u_y = v_y$ b. $u_x = v_y, u_y = v_x$ c. $u_x = v_x, u_y = -v_y$ d. $u_x = v_y, u_y = -v_x$

12. Which of the following is correct for w = f(z)?

a. $\frac{dw}{dz} = \frac{\partial w}{\partial x}$ b. $\frac{dw}{dz} = -\frac{\partial w}{\partial x}$ c. $\frac{dw}{dz} = \frac{\partial w}{\partial y}$ d. $\frac{dw}{dz} = -\frac{\partial w}{\partial y}$

13. Cauchy – Riemann equations in polar form are:

a. $\frac{\partial u}{\partial r} = \frac{1}{r} \cdot \frac{\partial v}{\partial \theta}$ and $\frac{1}{r} \cdot \frac{\partial u}{\partial \theta} = -\frac{\partial v}{\partial r}$

b. $\frac{\partial u}{\partial r} = r \cdot \frac{\partial v}{\partial \theta}$ and $r \cdot \frac{\partial u}{\partial \theta} = -\frac{\partial v}{\partial r}$

c. $\frac{\partial u}{\partial r} = -\frac{1}{r} \cdot \frac{\partial v}{\partial \theta}$ and $\frac{1}{r} \cdot \frac{\partial u}{\partial \theta} = \frac{\partial v}{\partial r}$

d. $\frac{\partial u}{\partial r} = -r \cdot \frac{\partial v}{\partial \theta}$ and $r \cdot \frac{\partial u}{\partial \theta} = \frac{\partial v}{\partial r}$

14. The derivative of a function $w = f(z)$ in polar form is given by	14.	The deriva	itive of a	function	w = f	(z)) in 1	polar	form	is	given	by	:
---	-----	------------	------------	----------	-------	-----	--------	-------	------	----	-------	----	---

a.
$$\frac{dw}{dz} = \frac{\partial w}{\partial x} e^{ix}$$

a.
$$\frac{dw}{dz} = \frac{\partial w}{\partial r}e^{i\theta}$$
 b. $\frac{dw}{dz} = -\frac{\partial w}{\partial \theta}e^{i\theta}$ c. $\frac{dw}{dz} = \frac{\partial w}{\partial r}e^{-i\theta}$ d. $\frac{dw}{dz} = -\frac{\partial w}{\partial \theta}e^{-i\theta}$

c.
$$\frac{dw}{dz} = \frac{\partial w}{\partial r} e^{-i\theta}$$

d.
$$\frac{dw}{dz} = -\frac{\partial w}{\partial \theta}e^{-i}$$

15. If
$$f(z) = u(x, y) + iv(x, y)$$
 is an analytic and $u = \log(x^2 + y^2)$ then v is:

a. 2arc
$$\tan \frac{y}{x} + \epsilon$$

a. 2arc
$$\tan \frac{y}{x} + c$$
 b. $\frac{1}{2} \arctan \frac{y}{x} + c$ c. $\tan^{-1} \frac{y}{x} + c$

c.
$$\tan^{-1} \frac{y}{x} + c$$

d. none of these

16. If the function
$$f(z) = e^x (\cos ky + i \sin ky)$$
, $z = x + iy$, is analytic iff $k = 1$

d. none of these

17. The function conjugate harmonic to
$$u = e^{xy} \cos \frac{1}{2} (x^2 - y^2)$$
 is:

a.
$$-e^{xy} \sin \frac{1}{2} (x^2 - y^2) + c$$

b.
$$e^{xy} \sin \frac{1}{2} (x^2 - y^2) + c$$

c.
$$\frac{1}{2}e^{xy}\sin\frac{1}{2}(x^2-y^2)$$

d. none of these

18. The analytic function whose real part is
$$e^x \cos y$$
 is:

a.
$$e^z + ci$$

b.
$$e^{2z}$$

c.
$$xe^{z}$$

d. none of these

19. The analytic function whose real part is
$$e^x(x\cos y - y\sin y)$$
 is:

a.
$$ze^z + ci$$

b.
$$z^2e^{z^2}$$

c.
$$ze^{x^2+x^2}$$

d. none of these

20. If
$$f(z)$$
 is analytic in a simply connected domain D enclosed by a rectifiable Jordan curve C and $f(z)$

is continuous on C, then for any point z_0 in D, we have $f(z_0) =$

a.
$$\frac{1}{2\pi} \int_C \frac{f(z)}{z - z_0} dz$$

a.
$$\frac{1}{2\pi} \int_C \frac{f(z)}{z - z_0} dz$$
 b. $\frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0} dz$ c. $2\pi \int_C \frac{f(z)}{z - z_0} dz$ d. $2\pi i \int_C \frac{f(z)}{z - z_0} dz$

c.
$$2\pi \int_C \frac{f(z)}{z-z} dz$$

d.
$$2\pi i \int_C \frac{f(z)}{z-z_0} dz$$

21. Which of the following is true:

a.
$$|\int_{L} f(z) dz| = \int_{L} |f(z)| |dz|$$

b.
$$\left| \int_{L} f(z) dz \right| \leq \int_{L} \left| f(z) \right| dz \right|$$

c.
$$\left| \int_{L} f(z) dz \right| < \int_{L} \left| f(z) \right| dz \right|$$

$$d. \left| \int_{L} f(z) dz \right| > \int_{L} |f(z)| |dz|$$

22. If L is circle
$$|z-a|=r$$
, then $\int_{L} \frac{dz}{z-a}$ is:

a
$$2\pi i$$

 $d. - 2\pi i$

23. If L is circle
$$|z| = r$$
, then $\int_{L} \overline{z} dz$ is:

$$a \pi$$

$$h 2\pi i$$

d. none of these

24. Let
$$f(z)$$
 be continuous in a simply connected domain G enclosed by a rectifiable Jordan curve L and let

$$f(z)$$
 be continuous on L . Then $\int_L \frac{f(z)}{z-z_0} dz$ is :

a.
$$2\pi i f(z_0)$$

b.
$$2\pi i f'(z_0)$$

b.
$$2\pi i f'(z_0)$$
 c. $2\pi f(z_0)$

d. none of these

25 When October the expension of	1	: a.
25. When $0 \le z \le 4$, the expansion of	$\overline{4z-z^2}$	18:

a.
$$\sum_{n=0}^{\infty} \frac{z^{n+1}}{4^{n+1}}$$

a.
$$\sum_{n=0}^{\infty} \frac{z^{n+1}}{4^{n+1}}$$
 b.
$$\sum_{n=0}^{\infty} \frac{\left(-1\right)^n z^{n+1}}{4^{n+1}}$$
 c.
$$\sum_{n=0}^{\infty} \frac{z^{n-1}}{4^{n+1}}$$

c.
$$\sum_{n=0}^{\infty} \frac{z^{n-1}}{4^{n+1}}$$

d. none of these

26. The value of
$$\frac{1}{2\pi i} \int_{|z|=4} \frac{e^z}{(z+2)^2} dz$$
 is:

a.
$$e^3$$

$$b, e^2$$

d. none of these

27. The value of
$$\frac{2!}{2\pi i} \int_{|z|=3}^{z} \frac{z^2 + 3z + 4}{(z-1)^3} dz$$
 is:

c. *πi*

d. none of these

28. The value of
$$\frac{n!}{2\pi i} \int_{|z|=3}^{\infty} \frac{z^n + az^{n-2} + bz}{(z-3)^{n+1}} dz \text{ is :}$$

b.
$$(n+1)!$$

d. 0

29. If L is a closed curve and
$$z = a$$
 is out side L, then $\int_{L} \frac{1}{z - a} dz$ is:

c.
$$2\pi i$$

30. If L is the circle, the value of then
$$\int_{L} \frac{1}{z-2} dz$$
 is:

c.
$$\pi i$$

31. The function
$$f(z) = \overline{z}$$
 is:

32. The function
$$f(z) = z^n$$
 is:

34. For
$$w = f(z)$$
, which of the following is correct:

a.
$$\frac{dw}{dz} = \frac{-\partial w}{\partial x}$$
 b. $\frac{dw}{dz} = \frac{\partial w}{\partial x}$ c. $\frac{dw}{dz} = \frac{\partial w}{\partial y}$

b.
$$\frac{dw}{dz} = \frac{\partial w}{\partial x}$$

c.
$$\frac{dw}{dz} = \frac{\partial w}{\partial y}$$

35. If w = u + iv be an analytic function z = x + iy then the families of the curve

$$u(x, y) = c_1$$
 and $v(x, y) = c_2$ form:

a. orthonormal system b. analytic system

c. harmonic system

d. none of these

36. If u is a harmonic function then a function is said to be harmonic conjugate of u if:

a. v is harmonic

b. u&v satires C-R equation

c. both (a) and (b) are true

d. none of these

37. Two function
$$u \& v$$
 are harmonic conjugate to each other if:

a. *u* is constant

b. v is constant

c. both u and v are constant

d. none of these

 $c. z^2 e^{-x} \left\{ \cos y - i \sin y \right\}$

	vent vitante (<u>weece</u>					
38.	. If $u = x^2 - y^2$ is harmonic, then its conjugate harmonic is:						
	a. 2xy	b. 2xy+c	$c. x^2y^2$	d. xy+c			
39.	Harmonic conjugate of	the function $e^x \cos y$ is	:				
	a. $e^x \sin y + c$	b. $e^{-x}\cos y + c$	c. $e^x \sin y + e^x \cos y$	d. none of these			
40.	Any function of <i>x</i> and <i>y</i> be harmonic function if		partial derivatives of the	first and second order is said			
	a. Laplace equation	b. Euler's equation	c. C-R equation	d. none of these			
41.	If harmonic function u	and v satisfying C-R eq	uation then $u + iv$ is:				
	a. not analytic	b. analytic	c. can't anything	d. none of these			
42.	Analytic function with	its derivatives zero for al	ll points in the domain is				
	a. <i>z</i>	b. $ze^z + c$	c. constant	d. none of these			
43.	If $f(z) = u + iv$ and u	$u - v = e^x \left(\cos y - \sin y\right)$	then $f(z)$ in terms of	z is:			
	a. $e^z + c$	b. $e^z + z + c$	c. $z^2 + c$	d. none of these			
44.	The function $x^3 - 3xy^2$	$x^2 + 3x^2 - 3y^2 + 1$ is:					
	a. harmonic	b. non-harmonic	c. can't say	d. none of these			
46.	value of $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)$	is:		1 0			
	a. $4\frac{\partial^2}{\partial z.\partial \overline{z}}$	b. $2\frac{\partial^2}{\partial z.\partial z}$	c. $-4\frac{\partial^2}{\partial z.\partial z}$	d. none of these			
47.	Which of the functions	f(z) and $g(z)$ in a re	gion R :				
	a. $f(z)+g(z)$ is anal	lytic in R	b. $f(z)-g(z)$ is ana	l <mark>ytic</mark> in R			
	c. $f(z).g(z)$ is analy	tic in R	d. $f(z)/g(z)$ is anal	ytic in R			
48.	Which of the function i	s not analytic :	-				
	a. $f(z) = z^6$	b. $f(z) = 1/z$	$z^4 (z \neq 0)$				
	c. $f(z) = \log r + i\theta$ d. $f(z) = 1/(z-1)^3$						
	e. $f(z) = 1/(z-1)^3, z$						
49.	Which of the following	s functions $f(z)$ satisfi	ies C-R equation :				
	a. $f(z) = \overline{z} = x - iy$ a	t z = 1 + i	b. $f(z) = z ^2$ at $z(z)$	≠ 0)			
	c. $f(z) = \sqrt{ xy }$ at $z =$		Value of the same	$\frac{y^3(1-i)}{y^2}$ at $z \neq 0$, $f(0) = 0$			
50.	The analytic function v	$v = u + iv$ where $u = e^{-x}$	$\int_{0}^{\infty} \left\{ \left(x^2 - y^2 \right) \cos y + 2xy \right.$	$\sin y$ is:			
	a. $e^{-x}(x-iy)^2 \{\cos y - iy\}$	$-i\sin y$	b. $e^{-x} (x - iy)^2 \{\cos y \}$	$+i\sin y$			

d. none of these

to