Notação

Denota-se por $\delta(A, B)$ a distância entre dois objetos geométricos quaisquer.

- 1. A distância entre dois conjuntos de pontos A e B é definida como a menor distância entre um par de pontos (a, b) tal que $a \in A$ e $b \in B$.
 - (a) Demonstre que a distância entre uma reta r e uma reta s tal que $r \cap s = A$ é sempre 0. Dica: distâncias são sempre números pertencentes aos reais positivos incluindo o zero ou ainda $\delta(A,B) \geq 0, \forall \ A \forall \ B$

Por hipótese, isto é, pelo caso que a questão apresenta:

$$\begin{split} \exists A | A \in r, A \in s \wedge \\ \delta(A,A) &= 0 \wedge \\ \delta(A,B) &\geq 0 \wedge \\ \delta(r,s) &= \min(\{\delta(A,B), \forall A \in r, \forall B \in s\}) \Rightarrow \\ \delta(r,s) &= 0 \quad \Box \end{split}$$

Lendo as sentenças acima, teríamos algo como:

Se existe um ponto A tal que A pertence às duas retas, se a distância entre um ponto e ele mesmo é 0, se qualquer distância entre dois pontos é maior ou igual a 0 e se a distância entre duas retas é a menor distância possível entre dois de seus pontos, então a distância entre r e s é 0. \square

- (b) Demonstre que a distância entre duas retas paralelas r//s é igual a medida de um segmento de reta \overline{AB} , $A \in r$ e $B \in s$ tal que $\overline{AB} \perp r \wedge \overline{AB} \perp s$
 - i. Mostre que a distância entre um ponto A e uma reta r
 tal que A \notin r é determinada pela medida de um segmento de reta \overline{AB} , B \in r tal que $\overline{AB} \perp r$.

Dica: Utilize o Teorema de Pitágoras

- ii. Mostre que, por simetria, todos os pontos de uma reta s
 tal que s//r tem a mesma distância em relação a r. Determine, portanto,
 $\delta(r,s)$.
- (c) Como você calcularia $\delta(r,s)$ se r e s são retas reversas?