Mathematics 227

Eigenvalues and Eigenvectors

1. Suppose that A is a 2×2 matrix and that \mathbf{v}_1 is an eigenvector with associated eigenvalue $\lambda_1 = -1$ and \mathbf{v}_2 is an eigenvector with associated eigenvalue $\lambda_2 = \frac{1}{2}$. Sketch the vectors $A\mathbf{x}$ and $A^2\mathbf{x}$.

2. We have seen that the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ has eigenvectors $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and associated eigenvalues $\lambda_1 = 3$ and $\lambda_2 = -1$.

If $\mathbf{x} = 2\mathbf{v}_1 - 3\mathbf{v}_2$, write $A\mathbf{x}$ as a linear combination of \mathbf{v}_1 and \mathbf{v}_2 .

The eigenvectors \mathbf{v}_1 and \mathbf{v}_2 form a basis \mathcal{B} for \mathbb{R}^2 . If $\{\mathbf{x}\}_{\mathcal{B}} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$, find $\{A\mathbf{x}\}_{\mathcal{B}}$.

If
$$\{\mathbf{x}\}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$
, find $\{A\mathbf{x}\}_{\mathcal{B}}$.

Find a matrix D such that $\{A\mathbf{x}\}_{\mathcal{B}} = D\{\mathbf{x}\}_{\mathcal{B}}$.

3. Consider the matrix $A=\begin{bmatrix}5&-4&6\\-1&3&-1\\-2&3&-3\end{bmatrix}$. Use Sage to find the eigenvectors using the command A.eigenvalues().

For each eigenvector λ , find a basis for the eigenspace E_{λ} . State the dimension of each eigenspace.

Can you form a basis for \mathbb{R}^3 consisting of eigenvectors of A? If so, give such a basis.

Write the vector $\mathbf{x}_0 = \left[\begin{array}{c} 5 \\ 5 \\ 2 \end{array} \right]$ as a linear combination of eigenvectors.

Suppose that $x_1 = A\mathbf{x}_0$ and $x_2 = A\mathbf{x}_1$ and so forth. Express \mathbf{x}_1 , \mathbf{x}_2 , and \mathbf{x}_3 as a linear combination of eigenvectors of A.

Suppose that \mathcal{B} is the basis of \mathbb{R}^3 consisting of eigenvectors that you found above.

Find $\{x\}_{\mathcal{B}}$, the \mathcal{B} -coordinate representation of $x = \begin{bmatrix} 5 \\ 5 \\ 2 \end{bmatrix}$.

Find $\{A\mathbf{x}\}_{\mathcal{B}}$.

Find $\{A^2\mathbf{x}\}_{\mathcal{B}}$.

Find $\{A^k \mathbf{x}\}_{\mathcal{B}}$.

Suppose that x is a vector such that
$$\{x\}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$
. What is $\{Ax\}_{\mathcal{B}}$?

Find a matrix D such that $D\{\mathbf{x}\}_{\mathcal{B}} = \{A\mathbf{x}\}_{\mathcal{B}}$.