TABLE 6 The Truth Table for the Biconditional $p \leftrightarrow q$.		
p	q	$p \leftrightarrow q$
T	T	Т
T	F	F
F	T	F
F	F	Т

BICONDITIONALS We now introduce another way to combine propositions that expresses that two propositions have the same truth value.

Definition 6

Let p and q be propositions. The biconditional statement $p \leftrightarrow q$ is the proposition "p if and only if q." The biconditional statement $p \leftrightarrow q$ is true when p and q have the same truth values, and is false otherwise. Biconditional statements are also called *bi-implications*.

The truth table for $p \leftrightarrow q$ is shown in Table 6. Note that the statement $p \leftrightarrow q$ is true when both the conditional statements $p \to q$ and $q \to p$ are true and is false otherwise. That is why we use the words "if and only if" to express this logical connective and why it is symbolically written by combining the symbols \rightarrow and \leftarrow . There are some other common ways to express $p \leftrightarrow q$:

"p is necessary and sufficient for q"

"if p then q, and conversely"

"p iff q." "p exactly when q."

The last way of expressing the biconditional statement $p \leftrightarrow q$ uses the abbreviation "iff" for "if and only if." Note that $p \leftrightarrow q$ has exactly the same truth value as $(p \to q) \land (q \to p)$.

EXAMPLE 13

Let p be the statement "You can take the flight," and let q be the statement "You buy a ticket." Then $p \leftrightarrow q$ is the statement

Examples

"You can take the flight if and only if you buy a ticket."

This statement is true if p and q are either both true or both false, that is, if you buy a ticket and can take the flight or if you do not buy a ticket and you cannot take the flight. It is false when p and q have opposite truth values, that is, when you do not buy a ticket, but you can take the flight (such as when you get a free trip) and when you buy a ticket but you cannot take the flight (such as when the airline bumps you).

IMPLICIT USE OF BICONDITIONALS You should be aware that biconditionals are not always explicit in natural language. In particular, the "if and only if" construction used in biconditionals is rarely used in common language. Instead, biconditionals are often expressed using an "if, then" or an "only if" construction. The other part of the "if and only if" is implicit. That is, the converse is implied, but not stated. For example, consider the statement in English "If you finish your meal, then you can have dessert." What is really meant is "You can have dessert if and only if you finish your meal." This last statement is logically equivalent to the two statements "If you finish your meal, then you can have dessert" and "You can have dessert only if you finish your meal." Because of this imprecision in natural language, we need to make an assumption whether a conditional statement in natural language implicitly includes its converse. Because precision is essential in mathematics and in logic, we will always distinguish between the conditional statement $p \rightarrow q$ and the biconditional statement $p \leftrightarrow q$.