CS4104 Machine Learning

Course Outline

Course Learning Outcomes (CLOs)

- 1. Understand the basic concepts and algorithms in machine learning (ML). Supervised learning, unsupervised learning, reinforcement learning.
- 2. Understand and Apply statistical models to solve problems in ML, with a focus on how the vector-space, Bayesian and decision tree models are implemented and applied to classification, regression and clustering.
- 3. ML models for combination in terms of ensembles, Boosting and stacking and ML algorithms' components including hypothesis, loss functions and optimization.
- 4. Evaluations of the ML algorithms with variance and bias trade-off.

Topics

- Introduction, Supervised Learning, Unsupervised Learning, Semi-Supervised Learning, Reinforcement learning
- Data types for ML, Classification and Regression Algorithms
 - □ KNN
 - Baysian
 - SVM
 - Decision Tree
 - Linear Regression
 - Logistic Regression
 - Evaluations
- Clustering
 - K-Means Clustering
 - Hierarchical Clustering
- Feature Selections
 - Principal Component Analysis (PCA)
- Ensemble and Combination of ML Algorithms
- Neural Network (Back Propagation)

Books

- Machine Learning: An Algorithmic Perspective, Stephen Marsland, Second Edition
- Introduction to Data Mining by Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, Vipin Kumar. Second Edition

Assessments

- Quizzes/Assignments (10 Marks)
 - 5 Programming Assignments
 - 5 Quizzes (short questions Non-Programming)
- Class Project (10 Marks)
 - Assessment will be in three phases
 - Proposal
 - Results prediction
 - Reporting and Visualizations
- Midterms (30 Marks)
 - ☐ Two midterms 15 marks each
- Final Exam (50 Marks)
 - One Exam of 50 marks from all course contents

Course Instructor

- Zeshan Khan
- Office
 - Office # 32, Ground Floor, Academic Block
- Contacts
 - zeshan.khan@nu.edu.pk
 - http://zeshankhanalvi.com

CS4104 Machine Learning

An Introduction

Machine Learning

Field of study that gives computers ability to learn

- Machine learning is programming computers to optimize a performance criterion using example data or past experience.
- There is no need to "learn" to calculate payroll
- Learning is used when:
 - Human expertise does not exist (navigating on Mars),
 - Humans are unable to explain their expertise (speech recognition)
 - Solution changes in time (routing on a computer network)
 - Solution needs to be adapted to particular cases (user biometrics)

Learning

• Tom Mitchell (1998): A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with E

Examples

- Task: Face Recognition
 - Experience: Images or Examples
 - Performance Measure: Accuracy

Applications

- Predict whether a patient, hospitalized due to heart attack, will have a second heart attack
- Predict the price of a stock in 6 months from now
- Pace detection: find faces in images (or indicate if a face is present)
- Spam filtering: identify email messages as spam or non-spam
- Fraud-detection applications that seek patterns in jumbo size data sets

Commercial Viewpoint

- Lots of data is being collected and warehoused
 - Web data, e-commerce
 - purchases at department/grocery stores
 - Bank/Credit Card transactions

Machine Learning

- Supervised
 - Classification
 - Regression
- Un-Supervised
- Semi Supervised
- Reinforcement
- Association

Supervised Learning

- Learn from Supervised Training Data
- For example; spam filtering where Large number of email messages labelled as either
 - Spam
 - non-spam
- New email message will then be classified as spam or non-spam

Supervised Learning Workflow

Classification

- Risk Analysis:
- The risk is higher for the values of income and saving less than the s.
 - ☐ I: Income
 - S: Saving
 - L: Low-Risk
 - H: High-Risk

Applications

- Pattern recognition
- Face recognition: Pose, lighting, occlusion (glasses, beard), make-up, hair style
- Character recognition: Different handwriting styles.
- Speech recognition: Temporal dependency.
- Medical diagnosis: From symptoms to illnesses
- Biometrics: Recognition/authentication using physical and/or behavioral characteristics: Face, iris, signature, etc
- Outlier/novelty detection

Regression

• Example: Price of a used car

• *x* : car attributes

y: price

$$y = g(x \mid \theta)$$

g() model,

 θ parameters

Regression Applications

- Navigating a car: Angle of the steering
- Kinematics of a robot arm

Response surface design

Supervised Learning: Uses

- Prediction of future cases: Use the rule to predict the output for future inputs
- Knowledge extraction: The rule is easy to understand
- Compression: The rule is simpler than the data it explains
- · Outlier detection: Exceptions that are not covered by the rule, e.g., fraud

Data Types

- Categorical
 - A variable that can take on one of a limited number of possible values. E.g. Grades A to F, Olympic games (GameA, GameB etc.)
- Numerical
 - A variable that can take a real value. E.g. 1, 2, 3, 4.
- Some more data types...

Classification Vs Regression

Classification

- Where X is a vector representation of features.
- Y is a class label from a finite set of labels.

Regression

- Where X is a vector representation of features.
- Y is a regression value which can be any real value.

Unsupervised Learning

- The correct classes of training data are not known
- Applications
 - Fraud Detection: Identify groups of motor insurance policy holders with a high average claim cost
 - Social Networks: Recognize communities within large groups of people

Unsupervised Learning Workflow

Example

zeshan.khan@nu.edu.pk

Example...

Raw Data

Output

Unsupervised Learning

- Learning "what normally happens"
- No output
- Clustering: Grouping similar instances
- Example applications
 - Customer segmentation in CRM
 - Image compression: Color quantization
 - Bioinformatics: Learning motifs

Semi-Supervised Learning

• Learning from a small amount of labeled data and a large amount of unlabeled data.

Reinforcement Learning

- Learning a policy: A sequence of outputs
- No supervised output but delayed reward
- Credit assignment problem
- Game playing
- Robot in a maze
- Multiple agents, partial observability, ...

Association

- Basket analysis:

 - \square Example: P (chips | cold drink) = 0.7

CS4104 Machine Learning

K Nearest Neighbors Classifier

Instance Based Learning

- First Example of Supervised Classification
- Rote-learner
 - Memorizes entire training data and performs classification only if attributes of record match one of the training examples exactly
- Nearest neighbor
 - Uses k "closest" points (nearest neighbors) for performing classification

zeshan.khan@nu.edu.pk

Instance Based Learning

Labeled Data

Att1	Att2	Class
1	2	A
5	7	В
2	5	A
4	2	В

Unlabeled Data

Att1	Att2	Class
1	2	?
2	6	?
3	4	?

Nearest Neighbors

K Nearest Neighbors

- Requires three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - 1. Compute distance to other training records
 - 2. Identify k nearest neighbors
 - 3. Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

K Nearest Neighbors (KNN)

K Nearest Neighbors

1. Compute distance to other training records

- 2. Identify k nearest neighbors
- 3. Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Example

X1	X2	Class
1	3	В
2	4	В
3	2	A
5	4	A
2	5	?

• Assuming Distance as city block distance

Example

X 1	X2	Class	Distance
1	3	В	2-1 + 5-3 =3
2	4	В	2-2 + 5-4 =1
3	2	A	2-3 + 5-2 =4
5	4	A	2-5 + 5-4 =4
2	5	?	

1. Compute distance to other training records

- 2. Identify k nearest neighbors
- 3. Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Example (k=1)

X 1	X2	Class	Distance
1	3	В	2-1 + 5-3 =3
2	4	В	2-2 + 5-4 =1
3	2	A	2-3 + 5-2 =4
5	4	A	2-5 + 5-4 =4
2	5	?	

- 1. Compute distance to other training records
- 2. Identify k nearest neighbors
- 3. Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Example (k=2)

X 1	X2	Class	Distance
1	3	В	2-1 + 5-3 =3
2	4	В	2-2 + 5-4 =1
3	2	A	2-3 + 5-2 =4
5	4	A	2-5 + 5-4 =4
2	5	?	

- 1. Compute distance to other training records
- 2. Identify k nearest neighbors
- 3. Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Example (k=1,2)

X 1	X2	Class	Distance
1	3	В	2-1 + 5-3 =3
2	4	В	2-2 + 5-4 =1
3	2	A	2-3 + 5-2 =4
5	4	A	2-5 + 5-4 =4
2	5	В	

- 1. Compute distance to other training records
- 2. Identify k nearest neighbors
- 3. Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Issues in KNN

- Scaling Issues (Data Normalization)
- Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes. E.g. The Salary and GPA have different ranges.

KNN Pseudo Code

- Constructor
- Train
- Test