Методическая комиссия по физике при центральном оргкомитете Всероссийских олимпиад школьников

XLVI Всероссийская олимпиада школьников по физике

Заключительный этап

Экспериментальный тур

Методическое пособие

Саранск, 2012 г.

Комплект задач подготовлен методической комиссией по физике при центральном оргкомитете Всероссийских олимпиад школьников Телефоны: (495) 408-80-77, 408-86-95.

E-mail: physolymp@gmail.com

Авторы задач

9 класс

- 1. Замятнин М., Сабаев С.
- 2. Подлесный Д., Радайкин В.

10 класс

- 1. Сабаев С., Слободянин В.
- 2. Гуденко А.

11 класс

1. Костарев В.

Общая редакция — Ко́зел С., Слободянин В.

Оформление и вёрстка — Паринов Д., Цыбров Ф.

При подготовке оригинал-макета использовалась издательская система IATEX $2_{\mathcal{E}}$. © Авторский коллектив Подписано в печать 3 июля 2013 г. в 16:29.

141700, Московская область, г. Долгопрудный Московский физико-технический институт

Задача 1. «Чёрный ящик-1»

В «чёрном ящике» с тремя выводами («К» — красный, «С» — синий, «Б» — белый) собрана электрическая цепь, состоящая из двух батареек, двух одинаковых светодиодов, размещённых на корпусе ящика, а также переключателя, который может находиться в трёх положениях (рис. 1). В центральном положении 3 все контакты переключателя разомкнуты.

Полупроводниковый светодиод – это устройство, которое пропускает электрический ток только в одном направ-

лении и излучает при этом свет. Если светодиод включить в обратном направлении, ток через него течь не будет.

1. Расшифруйте и нарисуйте схему «чёрного ящика» без определения номиналов элементов. (Для выполнения этого пункта пользоваться мультиметрами не обязательно). Объясните ход вашего решения.

Примечание. Во избежание перегорания светодиодов последовательно каждому включен балластный резистор с сопротивлением $R=510~{
m Om}$.

2. Получите вольт-амперную харакатеристику (BAX) **одного** светодиода без балластного резистора в диапазоне напряжений на самом диоде $0 \div 1,8$ В. Постройте график BAX при значениях напряжения на светодиоде $1,2 \div 1,8$ В. Нанесите на него погрешности.

Примечание. Приборная погрешность прямых измерений напряжения и силы тока мультиметром равна 0.5~% от значения измеряемой величины.

Оборудование. «Чёрный ящик», потенциометр, батарейка «Крона», колодка для подключения батарейки (положительному выводу соответствует красный провод), миллиметровая бумага, два мультиметра.

Задача 2. Шарик в жидкости

Известно, что сила сопротивления F_c , действующая со стороны жидкости на движущийся в ней со скоростью v шарик диаметром d, может при определённых условиях выражаться формулой

$$F_c = A\eta dv$$

а при других условиях — формулой

$$F_c = B\rho_{\rm K}d^2v^2$$

где A и B — некоторые безразмерные константы, $\rho_{\mathbf{ж}}$ — плотность жидкости, η — её вязкость.

- 1. Определите, какая из двух приведённых формул лучше описывает зависимость силы сопротивления от скорости выданных вам свинцовых шариков (плотность свинца 11,3 г/см³).
- 2. Определите плотность шариков из неизвестного материала. Считайте плотность жидкости равной плотности воды.

Примечание. Погрешности не учитывать.

Оборудование. Стеклянный сосуд, наполненный жидкостью (высота столба жидкости порядка 40 см), миллиметровая бумага, секундомер, резинки, набор свинцовых шариков (охотничьей дроби) с известными диаметрами, несколько одинаковых шариков из неизвестного материала с известным диаметром.

Задача 1. Чёрный ящик-2

В чёрном ящике с тремя выводами («K» — красный, «C» — синий, «E» — белый) находятся конденсатор, резистор (сопротивление резистора несколько мегаом) и цепочка последовательно соединённых диода и выключателя. Эти три элемента соединены либо «звездой», либо «треугольником».

- 1. Расшифруйте схему чёрного ящика.
- 2. Определите сопротивление резистора.
- 3. Определите ёмкость конденсатора.
- 4. Снимите вольт-амперную характеристику диода. Постройте её график.

Считайте, что погрешность измерений мультиметром составляет 0.5% от результата.

Оборудование. Чёрный ящик, соединительные провода, потенциометр, резистор с сопротивлением $R=100~{\rm Om}~(\pm 5\%)$, батарейка, цифровой вольтметр с внутренним сопротивлением $R_V=1~{\rm MOm}~(\pm 0.5\%)$, секундомер.

Известно, что при скоростях движения шарика, превышающих $\sim \! \! 10$ см/с, сила сопротивления воздуха определяется формулой

$$F_c = \beta S^m v^n \rho^p, \tag{1}$$

где β — безразмерный коэффициент, S — площадь максимального поперечного сечения шарика (рис. 2), v — скорость его движения, ρ — плотность воздуха, m, n, p — некоторые числа.

- 2. Опишите эксперимент, позволяющий с помощью имеющегося оборудования определить зависимость силы сопротивления воздуха от скорости движения шарика. Проведите этот эксперимент.
- 3. По результатам измерений определите значение коэффициента β .

Примечание: плотность воздуха $\rho = 1,3$ кг/м 3 . Считайте, что скорость шарика устанавливается на пути порядка размера шарика.

Оборудование. Большой воздушный шарик с лёгкой ниткой, наполненный гелием, кусочек пластилина, 10 скрепок массой $m=0.41\pm0.01$ г каждая, секундомер, нить и ученическая линейка, миллиметровая бумага. Эксперимент проводится в помещении с известной высотой.

11 класс

Задача 1. Диод

С каждым годом промышленность осваивает производство все более мощных и эффективных светодиодов (рис. 3). Современные технологии позволяют получать большие излучающие кристаллы в компактной оболочке, потребляющие мощность до 30 Вт и испускающие мощный поток света.

Задание 1.

- 1. **(1 балл)** Измерьте минимальное напряжение U_0 на светодиоде, при котором он начинает светиться.
- 2. (4 балла) Снимите зависимость силы тока I от напряжения U на светодиоде. Поскольку при заданном напряжении сила тока зависит от температуры, подождите пока температура при заданном напряжении стабилизируется. Укажите время стабилизации. Постройте вольт-амперную характеристику (BAX) светодиода при силе тока, протекающего через него $0 \div 0.7$ A.
- 3. (8 баллов) Вычислите КПД η светодиода в режиме, когда сила тока, протекающего через него, $I_{\rm max}=0.7$ А. Зарисуйте схему, опишите методику измерения.
- 4. **(6 баллов)** Определите теплоёмкость C дополнительного радиатора. Зная молярную теплоёмкость алюминия $C_{\rm M}=3R$ и его молярную массу $\mu=27$ г/моль вычислите массу m дополнительного радиатора.

Примечание.

- 1. Согласно закону Ньютона-Рихмана тепловой поток от радиатора (количество теплоты за единицу времени) в окружающую среду прямо пропорционален разности температур радиатора и воздуха в комнате.
- 2. Категорически запрещается пропускать через светодиод ток силой более $0.75~\mathrm{A}$ и нагревать систему до температуры более $80^{\circ}\mathrm{C}$. Несоблюдение этих правил может привести к выходу из строя светодиода, который повторно не выдаётся.
- 3. Запрещается крутить регулировку силы тока CURRENT на источнике.

Задание 2.

Видимый спектр излучения светодиода представляет собой узкую коротковолновую и широкую длиноволновую полосы (рис. 4).

- 1. **(4 балла)** Определите среднее значение длины волны λ_0 коротковолновой полосы излучения светодиода.
- 2. **(4 балла)** Определите её ширину $\Delta \lambda$.

3. (3 балла) Зарисуйте схему, опишите методику измерения.

Внимание! При оптических измерениях напряжение на светодиоде не должно превышать 10 В.

Оборудование. Светодиод на основном алюминиевом радиаторе, дополнительный радиатор (изготовлен из того же профиля, что и основной), мультиметр с термопарой, источник постоянного тока с регулируемым напряжением и встроенным вольтметром и амперметром, секундомер, кольцевая резинка, пенополистироловый клин, брусок с пазом, мерная лента длиной 1 м, дифракционная решетка (500 штрихов/мм) с подставкой, кусочек чёрной бумаги с прорезью, стикеры (клеящиеся бумажки), лист бумаги.

Возможные решения 9 класс

Задача 1. «Чёрный ящик-1»

- 1. Поскольку в «чёрном ящике» находятся батарейки, начнём анализ цепи без подключения внешного источника.
- а) Замыкаем между собой выводу «К» и «Б». В положении (1) переключателя загорается светодиод А. В других положениях переключателя светодиоды не горят. Возможный фрагмент схемы приведен на рис. 5.
- б) Замыкаем между собой выводу «Б» и «С». В положении (2) переключателя загорается светодиод Б. В других положениях переключателя светодиоды не горят. Возможный фрагмент схемы приведен на рис. 6.
- в) Проверяем, соединены ли точки «Х» и «Y». Для этого подключаем положительный вывод батарейки к выводу «С», а отрицательный к «К». Загораются оба светодиода. Следовательно выводы «Х» и «Y» замкнуты накоротко.
- Γ) Для проверки, замкнём накоротко выводы «K» и «C». При всех положениях ключа светодиоды не горят. Отсюда получаем схему «чёрного ящика» (рис. 7).

2. Для снятия вольт-амперной характеристики соберем схему (рис. 8). Сила тока I через диод равна силе тока I_A через амперметр, Напряжение на диоде вычисляем по формуле $U=U_V/2-I_AR$, где U_V — напряжение на вольтметре. Для увеличения точности проводим измерения три раза и строим график I(U). Пример BAX светодиода приведен на рис. 9.

Задача 2. Шарик в жидкости

1. При установившемся падении шарика в жидкости, сила сопротивления уравновешивается силой тяжести и архимедовой силой:

$$mg = F_c + F_A$$
,

где $m=\pi d^3/6$ — масса шарика. Если сила сопротивления задаётся формулой $F_{\rm c}=A\eta dv,$ то:

$$\frac{\pi(\rho - \rho_{\mathsf{x}})gd^3}{6} = A\eta dv,$$

отсюда

$$v = (\rho - \rho_{\mathsf{x}}) K_1 d^2,$$

где $K_1 = \frac{\pi g}{6A\eta}$ — некоторая константа, зависящая только от свойств жидкости.

Аналогично для случая, если выполняется зависимость $F_{\rm c} = B \rho_{\rm x} d^2 v^2$:

$$\frac{\pi(\rho - \rho_{\mathsf{x}})gd^3}{6} = B\rho_{\mathsf{x}}d^2v^2,$$

$$v^2 = K_2(\rho - \rho_{\mathsf{xK}})d,$$

где $K_2 = \frac{\pi g}{6B \rho_{\mathbf{ж}}}$ — некоторая константа, зависящая только от свойств жидкости.

Чтобы выведенные соотношения выполнялись, нужно убедиться, что установилось равномерное движение. Для этого зафиксируем резиночками два одинаковых расстояния и сравним время прохождения шарика.

Измеряем время t движения шарика с постоянной скоростью. При этом шарик проходит расстояние x, которое зафиксируем при помощи резинок. Тогда скорость движения шарика v=x/t.

Построим на графике зависомости $t^{-1}(d^2)$ и $t^{-2}(d)$.

Для шариков каждого диаметра проведём не менее трёх измерений.

Прямую линию, проходящую через ноль, получаем только на первом графике, это означает, что верна формула

$$F_{\rm c} = A\eta dv$$
.

2. Проведём несколько измерений для шариков из неизвестного материала и получим среднее значение $t_{\rm cp}$. Значение $\alpha=\frac{(\rho-\rho_{\rm ж})K_1}{x}$ определим как угловой коэффициент наклона прямой на графике $t^{-1}(d^2)$ для свиноцовых шариков. Получим,

$$\frac{1}{t_{\rm cp}} = \frac{(\rho_0 - \rho_{\rm sc}) K_1 d_0^2}{x},$$

$$\rho_0 = \frac{\rho - \rho_{\mathsf{x}}}{\alpha t_{\mathsf{cp}} d_0^2} + \rho_{\mathsf{x}}.$$

Задача 1. Чёрный ящик-2

1. Определим схему черного ящика. Для этого будем подключать источник к каждой паре контактов (чтобы точно зарядить конденсатор) и смотреть напряжение на выходе. Понятно, что при схеме подключения «звезда» на паре контактов, содержащей резистор и диод при любом положении ключа напряжения не будет. При схеме подключения «треугольник» наоборот, между любыми двумя выводами есть напряжение, что и наблюдается в эксперименте. Таким образом мы определяем, что элементы в схеме соединены «треугольником».

Проделывая такой же эксперимент, можно определить положение резистора, а также положение, в котором ключ замкнут (в этом положении напряжение на резисторе будет, при другом — нет). Сопротивление резистора порядка нескольких МОм и сравнимо с сопротивлением вольтметра. Поэтому можно определить положение полностью заряженного конденсатора (при разомкнутом ключе напряжение на нем равно напряжению батарейки).

2. Есть много способор определения сопротивления резистора. Например, полностью зарядим конденсатор и разомкнем ключ. Подключим вольтметр к выводам, содержащим диод. При этом

$$\frac{R}{R_V} = \frac{U}{U_0 - U},$$

где R — сопротивление резистора, U — напряжение на нем в начальный момент, R_V — сопротивление вольтметра, U_0 — напряжение батарейки.

Совершенно аналогично можно разомкнуть ключ и соединить резистор, вольтметр и батарейку последовательно.

3. Емкость конденсатора можно определить по его разрядке. Зарядим его, соединим последовательно с резистором и вольтметром и будем снимать зависимость напряжения на вольтметре от времени. При разрядке напряжение на конденсаторе

$$U = U_0 e^{-t/(R+R_V)C}.$$

По снятой зависимости можно получить величину $-t/(R+R_V)C$, а следовательно и C.

4. Для снятия ВАХ диода будем использовать потенциометр для регулировки напряжения. Ключ должен быть замкнут. При подключении источника к диоду ток по остальной части черного ящика течь не будет (из-за большого сопротивления резистора). Вольтметр должен быть подключен последовательно с ящиком. По напряжению на нем мы узнаем ток, по разности напряжения батарейки и этого напряжения — напряжение на диоде.

Задача 2. Воздушный шарик

1. Применим метод размерностей к уравнению (1):

$$[F_{\rm c}] = \frac{{\rm K}\Gamma^p {\rm M}^{2m+n-3p}}{{\rm c}^n} = {\rm H} = \frac{{\rm K}\Gamma \cdot {\rm M}}{{\rm c}^2}.$$

Откуда, решив систему уравнений, получим: m=1, n=2 и p=1.

2. К шарику можно прикрепить скрепки и кусочек пластилина. При подъёме, на него действует сила сопротивления $F_{\rm c}$, постоянная выталкивающая сила $F_{\rm A}$ и сила тяжести Mg, где M — масса шарика и нагрузки. При установившемся равномерном движении шарика, второй закон Ньютона для него запишется в виде:

$$F_{\rm A} = F_{\rm c} + Mg$$
.

Нагружая шарик, добьёмся его равновесия, при этом $F_{\rm c}=0$. Если теперь убрать n скрепок, то при установившемся движении $F_{\rm c}=nmg$. Убирая разное количество скрепок и замеряя время поднятия шарика (на участке с установившимся движением), получим зависимость силы сопротивления от скорости.

3. Используя экспериментальные данные, полученные в предыдущем пункте, построим график $F_{\rm c}(v^2)$. Он должен получиться линейным. Коэффициент наклона прямой $k=\beta S\rho$. Максимальную площадь поперечного сечения шарика найдём, измерив нитью периметр этого сечения l. Предполагая, что сечение — окружность, получим $S=l^2/(4\pi)$. Зная S и коэффициент k, вычислим β .

I_{max} U_0 U_0

Задача 1. Диод Задание 1.

- 1. Подключим светодиод к источнику постоянного тока. По вольтметру на источнике тока минимальное напряжение U_0 . Качественный вид вольтамперной характеристики показан на рисунке 10.
- 2. Полезная мощность светодиода P_1 излучениие, остальная мощность P_2 идёт на нагрев основного радиатора (тепловые потери), поэтому КПД равен:

$$\eta = \frac{P_1}{P_1 + P_2}.$$

Прикрепим дополнительный радиатор к основному радиатору (рис. 11) при помощи кольцевой резинки (на рисунке не показана). Тогда мощность P_1 идёт на нагрев дополнительного радиатора. Установим светодиод на подставку так, чтобы рёбра радиаторов были вериткальны. Прижмём чувствительную часть термопары пенополистироловым клинышком к дополнительному радиатору. Включим светодиод, снимем зависимость температуры t_1 радиатора вблизи его середины от времени τ излучения светодиода, и построим график $t_1(\tau)$. Считая, что в начальный момент теплообмен радиатора с воздухом отстутстувет, получим:

$$P_1 \Delta \tau = C_1 \Delta t_1,$$

$$P_1 = C_1 K_1,$$

где C_1 — теплоёмкость дополнительного радиатора, K_1 — коэффициент наклона касательной на графике $t_1(\tau)$ в начальный момент времени.

Аналогично, для основного радиатора:

$$P_2 = C_2 K_2.$$

Радиаторы изготовлены из одинакового профиля, поэтому теплоёмкость одного радиатора пропорциональна длине L. Тогда КПД равен:

$$\eta = \frac{L_1 K_1}{L_1 K_1 + L_2 K_2}.$$

3. Для нахождения теплоёмкости C_1 дополнительного радиатора воспользуемся соотношени-

$$P_1 = C_1 K_1 = \eta P = \eta I_{max} U_{max},$$

где U_{max} — напряжения на диоде при силе тока I_{max} ,

$$C_1 = \frac{\eta I_{max} U_{max}}{K_1}.$$

Вычислим массу m дополнительного радиатора:

$$m = \frac{C_1}{c_{y_A}} = \frac{C_1 \mu}{3R}.$$

Задание 2. Соберем установку с дифракционной решёткой. Наблюдение ведётся в проходящем свете, как показано на рис. 12. Для первого максимума дифракционной решётки выполняется условие:

$$d\sin\varphi = \lambda,$$

где $\sin(\varphi) = x/\sqrt{x^2 + L^2}$. Чтобы повысить точность измерений следует максимально увеличть базу L.

При взгляде сквозь решетку заметим, что коротковолновой полосе излучения светодиода соответствует синий цвет. Глазом проще заметить положение минимумов интенсивности x_1 и x_2 , чем положение максимума x_0 . Поэтому, максимуму интенсивности λ_0 соответствует координата $x_0=(x_1+x_2)/2$, отсюда

$$\lambda_0 = d \frac{x_0}{\sqrt{x_0^2 + L^2}} pprox 460$$
 нм,
$$\Delta \lambda = d \left(\frac{x_2}{\sqrt{x_2^2 + L^2}} - \frac{x_1}{\sqrt{x_1^2 + L^2}} \right) pprox 10$$
 нм.

Рис. 12

ем: