Formale Grundlagen der Informatik I Abgabe der Hausaufgaben Übungsgruppe 24 am Freitag, d. 21. Juni 2015

Louis Kobras 6658699 4kobras@informatik.uni-hamburg.de

Utz Pöhlmann 6663579 4poehlma@informatik.uni-hamburg.de

Philipp Quach 6706421 4quach@informatik.uni-hamburg.de 21. Juni 2015

Aufgabe 10.4

 $[\qquad /2]$

Beweisenn Sie, dass eine Inferenzregel $R = \frac{F_1, \dots, F_n}{G}$ genau dann korrekt ist, wenn $\{F_1, \dots, F_n\} \models G$ gilt. (Nutzen Sie dazu die Definition der Korrektheit einer Inferenzregel auf Folie 31.)

Aufgabe 10.5

[/3]

Aufgabe 10.5.1

Seien $F = ((A \Leftrightarrow B) \land B \land \neg C)$ und $G = ((B \lor \neg C) \Leftrightarrow \neg C) \land \neg C \land \neg (B \lor \neg C)$. Geben Sie eine Substitution sub an mit sub(F) = G oder begründen Sie, warum dies nicht möglich ist.

Aufgabe 10.5.2

Zeigen Sie, dass für jede Formel F und jede Substitution sub gilt: Wenn F eine Tautologie ist, dann ist auch sub(F) eine Tautologie. Vervollständigen Sie dazu den Beweis aus der Vorlesung. Führen Sie insb. die dort nicht ausgeführte strukturelle Induktion.

Aufgabe 10.6

/7

Aufgabe 10.6.1

Zeigen oder Widerlegen Sie, dass die folgenden Inferenzregeln korrekt sind:

$$\frac{A \Rightarrow B, B \Rightarrow A}{\neg B \lor A} \qquad \qquad \frac{(A \lor B) \Rightarrow C, \neg C \land \neg B}{A \lor B}$$

Aufgabe 10.6.2

Sei $\mathcal{C} = (\mathcal{L}_{AL}, Ax, \mathcal{R})$ ein Kalkül der Aussagenlogik mit $Ax = \{A \Rightarrow B(\Rightarrow A)\}$ und $R = \{\frac{F, F \Rightarrow G}{G}, \frac{F \wedge G}{G}\}$. Sei ferner $M = \{A \wedge B, (C \Rightarrow (A \wedge B)) \Rightarrow (B \wedge A)\}$. Zeigen Sie $M \vdash_{\rfloor} A$ durch Angabe einer Ableitung.