Intro: Apprentissage Automatique et Big Data

Simon Lacoste-Julien

Chercheur CR Équipe-Projet SIERRA, INRIA - École Normale Supérieure

Qu'est-ce que le Big Data?

- Mot tendance pour décrire *beaucoup* de données!
- ▶ Buzz:

Obama announces "Big Data initiative"

Qu'est-ce que le Big Data?

- Mot tendance pour décrire *beaucoup* de données!
- nous vivons à l'ère de l'information
 - accumulation de données dans tous les domaines:
 - internet
 - biologie: génome humain, séquençage d'ADN
 - physique: Large Hadron Collider, 10²⁰ octets/jour par senseurs
 - appareils d'enregistrement:
 - senseurs, portables, interactions sur internet, ...
- défis en informatique:
 - stockage, recouvrement, calcul distribué...
 - 3V's: volume, vélocité, variété
- donner un sens aux données: apprentissage automatique

Donner du sens au (Big) <u>Data</u>

- Nous voulons utiliser les données pour:
 - faire des prédictions, détecter des failles, résoudre des problèmes...
- Science derrière tout cela:
 - apprentissage automatique / statistiques computationnelles
- Autres termes en pratique:
 - data mining, business analytics, pattern recognition, ...

Qu'est-ce que l'apprentissage automatique?

Question centrale selon Tom Mitchell:

"Comment construire des systèmes informatiques qui s'améliorent avec l'expérience, et quelles sont les lois fondamentales qui gouvernent tous les processus d'apprentissage automatique?"

Mélange d'informatique et de statistiques

CS: "Comment construire des machines qui résolvent des problèmes, et quels problèmes sont intrinsèquement faisables / infaisables?"

Statistiques: "Que peut-il être déduit à partir de données et un ensemble d'hypothèses de modélisation?

-> comment un ordinateur peut-il *apprendre* à partir de données?

Apprentissage statistique

informatique + statistique / math. appliquées

vs statistiques traditionnelles:

- analyse de données en grande dimension
 - modèles complexes / structurées
- sensible aussi à l'efficacité des algorithmes (aspect computationnel)

Intro à l'apprentissage automatique

Traditional programming:

Machine learning:

Exemple simple: régression linéaire

learn a predictive model

Choose w₀, w₁ to minimize sum of squared errors

Learning law #1: Occam's razor and overfitting

linear model:

$$a = w_0 + w_1 *F$$

quadratic model:

$$a = w_0 + w_1 *F + w_2 *F^2$$

cubic model (degree 3)

degree 10

Occam's razor principle:

Between two models / hypotheses which explain as well the data, choose the simplest one

- In Machine Learning:
 - we usually need to tradeoff between
 - training error $\hat{h} = \arg\min_{h \in \mathcal{H}} \quad \underbrace{\hat{\mathbb{E}}\left[\ell(\mathbf{y}, h(\mathbf{x}))\right]}_{\text{empirical error}} + \underbrace{\Omega(h)}_{\text{regularizer}}$
 - can be formalized precisely in statistics (biasvariance tradeoff, etc.)

Rasoir d'Occam

Erreur de prédiction

Classification

training data

Regroupement (clustering)

some warnings...

Pitfalls for Big Data hype

- Hype: With enough data, we can solve "everything" with "no assumptions"!
- Theory: No Free Lunch Theorem!
 - If we do not make assumptions about the data, all learning methods do as bad "on average" on unseen data as a random prediction!
- consequence: need some assumptions
 - for example, that time series vary 'smoothly'

Fléau de la dimension

- Problème avec données en grandes dimensions: explosion combinatoire de possibilités (exponentiel en d)
- Exemple: classification d'images
 - entrées: 16x16 pixels binaires (d=16²=256)
 - sortie: {-1,1} [2 classes]
 - nombre d'entrées possible: 2²⁵⁶ ~ 10⁷⁷
 vs. nombre d'images sur Facebook: ~10¹²
- => impossible d'apprendre la fonction de classification sans supposition!

Pitfall 2 - mining random patterns

- We can 'discover' meaningless random patterns if we look through too many possibilities
 - "Bonferroni's principle"; exemplified by Birthday Paradox
- NSA example: say we consider suspicious when a pair of (unrelated) people stayed at least twice in the same hotel on the same day
 - suppose 10⁹ people tracked during 1000 days
 - each person stays in a hotel 1% of the time (1 day out of 100)
 - each hotel holds 100 people (so need 10⁵ hotels)
 - -> if everyone behaves **randomly** (i.e. no terrorist), can we still detect something suspicious?
 - Probability that a **specific** pair of people visit same hotel on same day is 10^{-9} ; probability this happens twice is thus 10^{-18} (tiny),
 - ... but there are many possible pairs
 - => Expected number of "suspicious" pairs is actually about 250,000!

Morale de l'histoire...

- Il faut bien connaître ses statistiques en plus de l'informatique pour faire du sens du Big Data!
 - -> métier de « Data-Scientifique »

Q SEAR

THE MAGAZINE

BLOGS

VIDEO BOOKS CASES

WEBINARS

co

Guest

Register today and save 20% off your first order! Details

THE MAGAZINE

October 2012

ARTICLE PREVIEW To read the full article: Sign in or Register for free. HBR Subscribers activate your free archive access »

Data Scientist: The Sexiest Job of the 21st Century

by Thomas H. Davenport and D.J. Patil

Comments (87)

RELATED

Executive Summary

ALSO AVAILABLE

Buy PDF

http://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century/ar/1

Un métier « sexy »? Datascientifique!

LE MONDE | 08.04.2014 à 21h10 • Mis à jour le 09.04.2014 à 11h03 | Par Maryline Baumard

Vous connaissez le métier le plus « sexy » du moment ? La très sérieuse Harvard Business Review ose ce qualificatif pour les « data scientists », ces « scientifiques des données ». Si l'article paru fin 2012 a fait grand bruit, la revue n'a rien inventé, juste donné un bel écho à l'idée lancée par Hal Varian. Le chef économiste de Google, professeur à Berkeley, en Californie, avait déclaré que « le métier le plus sexy du moment [était celui de] statisticien ». Il ne parlait évidemment pas du statisticien lambda qui se bagarre avec deux colonnes de chiffres, mais du « datascientifique ».

http://abonnes.lemonde.fr/economie/article/2014/04/08/un-metier-sexydatascientifique 4397951 3234.html?xtmc=data scientist&xtcr=1

opportunities...

Some success stories using machine learning

- spam classification (Google)
- machine translation (not pretty, but 'functional')
- speech recognition (used in your smart phone)
- self-driving cars (again Google)

Démonstration de Skype Translator à Microsoft Techdays

https://www.youtube.com/watch?v=QuwfcZ23fAI

TechDays : Microsoft passe à l'heure du machine learning

voir aussi: http://www.journaldunet.com/solutions/analytics/techdays-2015-microsoft-passe-a-l-heure-du-machine-learning-hdinsight-et-azure-machine-learning.shtml

Résumé

- 'révolution' du Big Data: disponibilités de données
 - avancées dans les outils computationnels et statistiques
 - = opportunités pour résoudre de nouveaux problèmes!
- apprentissage automatique domaine en pleine croissance...
 - par contre domaine extrêmement multidisciplinaire: combine informatique, maths appliquées, statistiques
- `success stories' dans les domaines des sciences et technologies

Statistics vs. Machine Learning

from Larry Wasserman's blog:

http://normaldeviate.wordpress.com/2012/06/12/statistics-versus-machine-learning-5-2/

Statistics Machine Learning

Estimation Learning

Classifier Hypothesis

Data point Example/Instance

Regression Supervised Learning

Classification Supervised Learning

Covariate Feature

Response Label

and of course:

Statisticians use R.

Machine Learners use Matlab.

Cours M1: Apprentissage Statistique

http://www.di.ens.fr/~slacoste/teaching/apprentissage-fall2015/

Vendredi 8h30-12h30 - Salle UV premier cours: 18 sept.

co-enseigné par:

Simon Lacoste-Julien Francis Bach

chargé de TD: Jean-Baptiste **Alayrac**

Équipe-Projet SIERRA, INRIA / ENS

Liens avec d'autres disciplines

Math:

- Statistiques et théorie de l'information
- Optimisation et analyse convexe
- Mais aussi:
 - Théorie spectrale des opérateurs
 - Transformée de Fourier (traitement du signal)
 - Géométrie différentielle et riemannienne

Info:

- Algorithmique (e.g. programmation dynamique)
- Programmation

Domaines appliqués:

- Vision par ordinateur
- Biologie Computationnelle
- Traitement du Langage Naturel
- Robotique
- Fouille de données

Pourquoi prendre ce cours?

- comme porte d'entrée pour le master MVA de l'ENS Cachan!
- pour rendre plus concret des outils des math appliquées (statistiques, algèbre linéaire, analyse, etc.)
- pour comprendre la base de l'analyse de données de grande dimension
 - soit pour continuer en recherche en statistiques, traitement du signal, apprentissage, etc.
 - soit pour avoir la base théorique pour poursuivre en industrie (croissance des rôles de data scientists)
 - soit par curiosité! Concepts utilisés dans plusieurs domaines où les données sont analysées

Logistique:

- ▶ 6 ECTS
- Note déterminée à 60% par l'examen et 40% par un TP à rendre
- Normalement:
 - cours magistral de 8h30 à 10h20
 - une pause d'environ 20 minutes
 - TD de 10h40 à 12h30 -> apportez votre portable!
- Nos mails de contact se trouvent sur nos sites webs!
- Premier DM pour le prochain cours:
 - inscription sur la mailing list + sondage: http://bit.ly/ML_survey_2015
 - faire le TP d'intro de Matlab (voir site web)

Curriculum (prévisionnel)

18/09	Simon Simon		Introduction Apprentissage supervisé	06/11	Simon JB		Régression linéaire / logistique (TD) Régression linéaire / logistique
25/09	Simon JB		Méthodes par moyennage local (TD) Apprentissage supervisé	13/11	Francis JB		Méthode à noyaux (I) (TD) Méthode à noyaux (I)
02/10	Simon JB		Validation croisée / sélection de modèles (TD) Méthodes par moyennage local	20/11	Francis JB		Méthode à noyaux (II) (TD) Méthodes à noyaux (II)
09/10	Francis JB		Analyse convexe (TD) Analyse convexe	27/11	Francis JB		Classification linéaire par pertes convexes (TD) Pertes convexes
16/10	Francis JB		Optimisation convexe (TD) Optimisation convexe	04/12	Simon JB		Régularisation (Stein, analyse biais/variance) (TD) Régularisation (Stein, biais/variance)
23/10	Simon JB		Théorie, concentration et borne PAC (TD) Théorie, concentration et borne PAC	08/01	Simon Simon		Prédiction structurée Résumé et questions / réponses
30/10	Simon JB	2h 2h	Méthodes probabilitistes (maximum de vraisemblance) (TD) Méthodes probabilistes (maximum de vraisemblance)	22/01		3h	EXAMEN