Machine Learning Pipeline

Bir **makine öğrenimi hattı (pipeline)**, ham veriden başlayıp dağıtıma hazır bir makine öğrenimi modeline ulaşana kadar geçen tüm adımların sistematik ve otomatize edilmiş bir sıraya konulmasıdır. Bunu, bir fabrikanın üretim hattına benzetebiliriz: her bir istasyon (adım), ürünü (modeli) bir sonraki aşamaya hazır hale getirir.

Amacı, bir makine öğrenimi projesindeki farklı süreçleri (veri ön işleme, özellik mühendisliği, model eğitimi, değerlendirme vb.) birbirine bağlamak ve bu süreci **tutarlı, tekrarlanabilir ve yönetilebilir** hale getirmektir.

Keşifçi Veri Analizi (EDA)

- Research→ Pipeline Diye iki .py dosyası oluşturup çalışıp canlı bir pipeline hazırlanır.
- <u>Joblib</u> is a set of tools to provide lightweight pipelining in Python. In particular:

```
import joblib
import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
from sklearn.ensemble import RandomForestClassifier, GradientBoostingCl
assifier, VotingClassifier, AdaBoostClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_validate, GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.preprocessing import StandardScaler
#!pip install catboost
#!pip install lightqbm
#!pip install xgboost
from xgboost import XGBClassifier
from lightgbm import LGBMClassifier
from catboost import CatBoostClassifier
```

pd.set_option('display.max_columns', None) pd.set_option('display.width', 500)

```
print(dataframe.tail(head))
  print("################# NA ###############")
  print(dataframe.isnull().sum())
  #")
  #print(dataframe.quantile([0, 0.05, 0.50, 0.95, 0.99, 1]).T)
  numeric_df = dataframe.select_dtypes(include='number')
  print(numeric_df.quantile([0, 0.05, 0.50, 0.95, 0.99, 1]).T)
def cat_summary(dataframe, col_name, plot=False):
  print(pd.DataFrame({col_name: dataframe[col_name].value_counts(),
             "Ratio": 100 * dataframe[col_name].value_counts() / len(data
frame)}))
  print("#################")
  if plot:
    sns.countplot(x=dataframe[col_name], data=dataframe)
    plt.show(block=True)
def num_summary(dataframe, numerical_col, plot=False):
  quantiles = [0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.9
5, 0.99]
  print(dataframe[numerical_col].describe(quantiles).T)
  if plot:
    dataframe[numerical_col].hist(bins=20)
    plt.xlabel(numerical_col)
    plt.title(numerical_col)
    plt.show(block=True)
def target_summary_with_num(dataframe, target, numerical_col):
  print(dataframe.groupby(target).agg({numerical_col: "mean"}), end="\n
n\n"
def target_summary_with_cat(dataframe, target, categorical_col):
  print(pd.DataFrame({"TARGET_MEAN": dataframe.groupby(categorical_c
ol)[target].mean()}), end="n\n"
def correlation_matrix(df, cols):
```

```
fig = plt.gcf()
  fig.set_size_inches(10, 8)
  plt.xticks(fontsize=10)
  plt.yticks(fontsize=10)
  fig = sns.heatmap(df[cols].corr(), annot=True, linewidths=0.5, annot_kws
={'size': 12}, linecolor='w', cmap='RdBu')
  plt.show(block=True)
def grab_col_names(dataframe, cat_th=10, car_th=20):
  Veri setindeki kategorik, numerik ve kategorik fakat kardinal değişkenleri
n isimlerini verir.
  Not: Kategorik değişkenlerin içerisine numerik görünümlü kategorik deği
şkenler de dahildir.
  Parameters
     dataframe: dataframe
         Değişken isimleri alınmak istenilen dataframe
     cat_th: int, optional
         numerik fakat kategorik olan değişkenler için sınıf eşik değeri
     car_th: int, optinal
         kategorik fakat kardinal değişkenler için sınıf eşik değeri
  Returns
  _____
    cat_cols: list
         Kategorik değişken listesi
     num_cols: list
         Numerik değişken listesi
     cat_but_car: list
         Kategorik görünümlü kardinal değişken listesi
  Examples
    import seaborn as sns
     df = sns.load_dataset("iris")
```

```
print(grab_col_names(df))
  Notes
    cat_cols + num_cols + cat_but_car = toplam değişken sayısı
     num_but_cat cat_cols'un içerisinde.
     Return olan 3 liste toplamı toplam değişken sayısına eşittir: cat_cols +
num_cols + cat_but_car = değişken sayısı
  11 11 11
  # cat_cols, cat_but_car
  cat_cols = [col for col in dataframe.columns if dataframe[col].dtypes ==
"O"1
  num_but_cat = [col for col in dataframe.columns if dataframe[col].nuniqu
e() < cat_th and
           dataframe[col].dtypes != "O"]
  cat_but_car = [col for col in dataframe.columns if dataframe[col].nunique
() > car_th and
           dataframe[col].dtypes == "O"]
  cat_cols = cat_cols + num_but_cat
  cat_cols = [col for col in cat_cols if col not in cat_but_car]
  # num_cols
  num_cols = [col for col in dataframe.columns if dataframe[col].dtypes !=
"O"1
  num_cols = [col for col in num_cols if col not in num_but_cat]
  # print(f"Observations: {dataframe.shape[0]}")
  # print(f"Variables: {dataframe.shape[1]}")
  # print(f'cat_cols: {len(cat_cols)}')
  # print(f'num_cols: {len(num_cols)}')
  # print(f'cat_but_car: {len(cat_but_car)}')
  # print(f'num_but_cat: {len(num_but_cat)}')
  return cat_cols, num_cols, cat_but_car
```

Bunların çoğunu Pipeline dosyasında kullanmayacağız.

df = pd.read_csv("datasets/diabetes.csv")
check_df(df)

check_df(df)	
######################################	
######################################	
Pregnancies int64	
Glucose int64	
BloodPressure int64	
SkinThickness int64	
Insulin int64	
BMI float64	
DiabetesPedigreeFunction float64	
Age int64	
Outcome int64	
dtype: object	
#################### Head ####################################	
Pregnancies Glucose BloodPressure SkinThickness Insulin Bl	MI Diabe
tesPedigreeFunction Age Outcome	
0 6 148 72 35 0 33.6 0.62	7 50
1	
1 1 85 66 29 0 26.6 0.351	31
0	
2 8 183 64 0 0 23.3 0.672	2 32
1	
3 1 89 66 23 94 28.1 0.167	' 21
0	
4 0 137 40 35 168 43.1 2.28	38 33
1	
######################################	
Pregnancies Glucose BloodPressure SkinThickness Insulin E	BMI Diab
etesPedigreeFunction Age Outcome	
).171 63
	,, i 00

ML Pipeline 6

27

0 36.8

0.340 27

70

764

122

0						
765	5	121	72	23	112 26.2	0.245 30
0						
766	1	126	60	0	0 30.1	0.349 47
1						
767	1	93	70	31	0 30.4	0.315 23
0						
######	####	######	##### NA #	#######	+###########	####
Pregnan	cies		0			
Glucose		0				
BloodPre	essure	е	0			
SkinThic	kness	6	0			
Insulin		0				
BMI		0				
Diabetes	sPediç	greeFund	ction 0			
Age		0				
Outcome	е		0			
dtype: ir	nt64					
######	####	######	##### Quai	ntiles ##	##########	!########
		0.00	0.05	0.50	0.95 0.99	1.00
Pregnan	cies		0.000 0.00	0000	3.0000 10.000	000 13.00000 17.0
0						
Glucose		0.	000 79.00	000 117.	0000 181.0000	00 196.00000 199.
00						
BloodPr	essure	Э	0.000 38.	70000	72.0000 90.0	00000 106.00000 1
22.00						
SkinThic	kness	6	0.000 0.0	00000 2	23.0000 44.00	0000 51.33000 9
9.00						
Insulin		0.0	0.0000	0 30.50	000 293.0000	0 519.90000 846.
00						
BMI						50.75900 67.10
	sPedio	greeFund	ction 0.078	0.1403	35 0.3725 1	.13285 1.69833
2.42						
Age						0 67.00000 81.00
Outcom	е	(0.00 0.00	000 0.	0000 1.0000	0 1.00000 1.00

Değişken türlerinin ayrıştırılması cat_cols, num_cols, cat_but_car = grab_col_names(df, cat_th=5, car_th=20)

```
##→ grab_col_names(df, cat_th=5, car_th=20)
#(['Outcome'], ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness',
'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age'], [])
# Kategorik değişkenlerin incelenmesi
ightarrow Sade Target verisi
for col in cat_cols:
  cat_summary(df, col)
11 11 11
                 Ratio
    Outcome
Outcome
0
  500 65.104167
        268 34.895833
11 11 11
# Sayısal değişkenlerin incelenmesi
df[num_cols].describe().T
```

	count	mean	std	min	25%	50%	75%
max							
Pregnancies	76	88.0 3.84	15052	3.3695	578 0.00	00 1.000	00 3.00
00 6.00000	17.00						
Glucose	768	.0 120.89	4531 3	31.97261	8 0.000	99.000	00 117.00
00 140.2500	0 199.00						
BloodPressur	e 7	68.0 69.1	105469	19.355	5807 O.C	000 62.0	0000 7
2.0000 80.0	0000 122	.00					
SkinThicknes	s 7	68.0 20.5	536458	15.95	2218 0.0	00.00	0000 23.
0000 32.000	000 99.0	0					
Insulin	768.0	79.7994	79 115.	.244002	0.000	0.00000	30.500
0 127.25000	846.00						
BMI	768.0	31.9925	78 7.8	84160	0.000 2	7.30000	32.0000
36.60000 67	7.10						
DiabetesPedi	greeFunct	ion 768.0	0.47	1876 0	.331329	0.078	0.24375
	625 2.4						

Age 768.0 33.240885 11.760232 21.000 24.00000 29.00 00 41.00000 81.00

for col in num_cols: num_summary(df, col, plot=True)

Sayısal değişkenkerin birbirleri ile korelasyonu correlation_matrix(df, num_cols)

Target ile sayısal değişkenlerin incelemesi for col in num_cols:

target_summary_with_num(df, "Outcome", col)

11 11 11

Pregnancies

Outcome

0 3.298000

1 4.865672 Glucose

Outcome

0 109.980000

1 141.257463

BloodPressure

Outcome

0 68.184000

1 70.824627

SkinThickness

Outcome

0 19.6640001 22.164179

Insulin

Outcome

0 68.792000

1 100.335821

BMI

Outcome

0 30.304200

1 35.142537

DiabetesPedigreeFunction

Outcome

0.429734 0

1 0.550500

Age

Outcome

0 31.190000

37.067164

11 11 11

									- 1
Pregnancies -	1	0.13	0.14	-0.082	-0.074	0.018	-0.034	0.54	
Glucose -	0.13	1		0.057	0.33	0.22	0.14	0.26	- 0
BloodPressure -		0.15	1	0.21	0.089	0.28	0.041	0.24	- 0
SkinThickness -	-0.082	0.057	0.21	1	0.44	0.39	0.18	-0.11	
Insulin -	-0.074	0.33	0.089	0.44	1	0.2		-0.042	- 0
ВМІ -	0.018	0.22	0.28	0.39	0.2	1		0.036	- o
iabetesPedigreeFunction -	-0.034	0.14	0.041	0.18		0.14	1	0.034	
Age -	0.54	0.26	0.24	-0.11	-0.042	0.036	0.034	1	- o
	gnancies -	Glucose -	Pressure -	hickness -	Insulin -	BMI -	Function -	Age -	_

Veri Ön İşleme (Data Pre-Processing)

```
# 2. Data Preprocessing & Feature Engineering
def outlier_thresholds(dataframe, col_name, g1=0.25, g3=0.75):
  quartile1 = dataframe[col_name].quantile(q1)
  quartile3 = dataframe[col_name].quantile(q3)
  interquantile_range = quartile3 - quartile1
  up_limit = quartile3 + 1.5 * interquantile_range
  low_limit = quartile1 - 1.5 * interquantile_range
  return low_limit, up_limit
def replace_with_thresholds(dataframe, variable):
  low_limit, up_limit = outlier_thresholds(dataframe, variable)
  dataframe.loc[(dataframe[variable] < low_limit), variable] = low_limit
  dataframe.loc[(dataframe[variable] > up_limit), variable] = up_limit
def check_outlier(dataframe, col_name, g1=0.25, g3=0.75):
  low_limit, up_limit = outlier_thresholds(dataframe, col_name, q1, q3)
  if dataframe[(dataframe[col_name] > up_limit) | (dataframe[col_name] < I
ow_limit)].any(axis=None):
    return True
  else:
    return False
#Hem iki sınıflı hem de daha fazla sınıflı kolonlar için kullanılır.
def one_hot_encoder(dataframe, categorical_cols, drop_first=False):
  dataframe = pd.get_dummies(dataframe, columns=categorical_cols, dro
p_first=drop_first)
  return dataframe
# Değişken isimleri büyütmek
df.columns = [col.upper() for col in df.columns]
```

P	REGNAN	CIES	GLUCOS	SE BLOODPR	ESSURE SKIN	THICKNESS INSULIN
BM	11 DIABET	ΓESΡΙ	EDIGREEF	UNCTION A	GE OUTCOME	NEW_GLUCOSE_CA
ΤN	NEW_AGE	_CAT	NEW_BN	/II_RANGE NE	W_BLOODPRE	SSURE
0	6	148	7:	2 35	0 33.6	0.627 50
1	prediabe	etes	middleag	ge obese	normal	
1	1	85	66	29	0 26.6	0.351 31
0	norm	nal	young	overweight	normal	
2	8	183	64	4 0	0 23.3	0.672 32
1	prediabe	etes	young	healty	normal	
3	1	89	66	3 23	94 28.1	0.167 21
0	norm	nal	young	overweight	normal	
4	0	137	40	0 35	168 43.1	2.288 33
1	norm	al	young	obese	normal	

```
(768, 13)
PREGNANCIES
                  int64
GLUCOSE
                int64
BLOODPRESSURE
                   int64
SKINTHICKNESS
                  int64
INSULIN
               int64
             float64
BMI
DIABETESPEDIGREEFUNCTION
                       float64
AGE
              int64
OUTCOME
                int64
NEW_GLUCOSE_CAT
                   category
                 object
NEW_AGE_CAT
NEW_BMI_RANGE
                  category
NEW BLOODPRESSURE
                    category
dtype: object
PREGNANCIES GLUCOSE BLOODPRESSURE SKINTHICKNESS INSULIN
BMI DIABETESPEDIGREEFUNCTION AGE OUTCOME NEW_GLUCOSE_CA
T NEW_AGE_CAT NEW_BMI_RANGE NEW_BLOODPRESSURE
0
     6
        148
                72
                       35
                            0 33.6
                                         0.627 50
1
  prediabetes middleage
                               normal
                      obese
1
        85
               66
                      29
                           0 26.6
                                        0.351 31
0
    normal
            young overweight
                              normal
2
                64
                       0
                            0 23.3
                                         0.672 32
     8
        183
1
  prediabetes
             young
                    healty
                             normal
3
                           94 28.1
     1
         89
                66
                       23
                                         0.167 21
0
            young overweight
                              normal
    normal
4
     0
         137
                40
                       35
                           168 43.1
                                          2.288 33
    normal
            young
                   obese
                            normal
PREGNANCIES GLUCOSE BLOODPRESSURE SKINTHICKNESS INSULI
N BMI DIABETESPEDIGREEFUNCTION AGE OUTCOME NEW_GLUCOSE_
CAT NEW_AGE_CAT NEW_BMI_RANGE NEW_BLOODPRESSURE
```

763	10	101			180 32.9	0.171 63
0		old			normal	
764	2	122	70	27	0 36.8	0.340 27
0	normal	young	obes	e	normal	
765	5	121	72	23	112 26.2	0.245 30
0	normal	young	overwei	ight	normal	
766	1	126	60	0	0 30.1	0.349 47
1	normal	middleag	e obe	ese	normal	
767	1	93	70	31	0 30.4	0.315 23
0	normal	young	obes	e	normal	
####	#######	########	## NA ##	######	############	###
PREG	NANCIES	5	0			
GLUC	OSE	0				
BLOC	DPRESSI	JRE	0			
SKIN	THICKNE	SS	0			
INSUI	LIN	0				
ВМІ		0				
DIABI	ETESPED	IGREEFUN	CTION ()		
AGE		0				
OUTO	OME	0				
	_GLUCOS		0			
	_AGE_CAT	_	0			
	_ROL_O/\ _BMI_RAN		0			
_	_	RESSURE	0			
	: int64	KLOOOKL	J			
•			t## Ouant	ilos ##	##########	+++++
####	"""""				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
DDEC	NIANICIEC					
	NANCIES) (0.000 0.0	00000	3.0000 10.00	0000 13.00000 1
7.00	OCE.	0.0	00 70 00	000 11	70000 101 000	000 106 00000 10
9.00	,USE	0.0	00 79.00	1000 11	7.0000 161.000	000 196.00000 19
		IDE	0.000.0	0.7000	00 70 0000 0	0.00000 100.0000
		JRE	0.000 3	88.7000	00 72.0000 9	0.00000 106.0000
0 122		00	0.000	00000	00 0000 44	00000 540000
		SS	0.000 0.	.00000	23.0000 44.	00000 51.33000
99.00		2.22	0 0000		5000 000 000	00 540 00000 04
	LIN	0.00	0.0000	JU 30.	5000 293.000	00 519.90000 84
6.00		2.222	04.0000	00.0		F0.7F0.00
BMI		0.000	21.80000	32.00	JUU 44.39500	50.75900 67.10

DIABETESPEDIGREEFUNCTION 0.078 0.14035 0.3725 1.13285 1.698

33 2.42

AGE 21.000 21.00000 29.0000 58.00000 67.00000 81.00 OUTCOME 0.000 0.00000 0.0000 1.00000 1.00000 1.0

0

cat_cols, num_cols, cat_but_car = grab_col_names(df, cat_th=5, car_th=20) #(['NEW_AGE_CAT', 'OUTCOME', 'NEW_GLUCOSE_CAT', 'NEW_BMI_RANG E', 'NEW_BLOODPRESSURE'], ['PREGNANCIES', 'GLUCOSE', 'BLOODPRESS URE', 'SKINTHICKNESS', 'INSULIN', 'BMI', 'DIABETESPEDIGREEFUNCTION', 'AGE'], [])

for col in cat_cols:

cat_summary(df, col)

NEW_AGE_CAT Ratio

NEW_AGE_CAT

young 488 63.541667 middleage 230 29.947917

old 50 6.510417

OUTCOME Ratio

OUTCOME

0 500 65.104167 1 268 34.895833

NEW_GLUCOSE_CAT Ratio

NEW_GLUCOSE_CAT

normal 571 74.348958 prediabetes 197 25.651042

NEW_BMI_RANGE Ratio

NEW_BMI_RANGE

obese 472 61.458333 overweight 179 23.307292 healty 102 13.281250 underweight 15 1.953125

NEW_BLOODPRESSURE Ratio

NEW_BLOODPRESSURE

normal 563 73.307292 hs1 145 18.880208 hs2 60 7.812500

for col in cat cols:

target_summary_with_cat(df, "OUTCOME", col)

TARGET_MEAN

NEW_AGE_CAT

middleage 0.543478

old 0.340000

young 0.258197

TARGET_MEAN

OUTCOME

0 0.0 1 1.0

TARGET_MEAN

NEW_GLUCOSE_CAT

normal 0.232925

prediabetes 0.685279

TARGET_MEAN

NEW_BMI_RANGE

underweight 0.133333

healty 0.068627 overweight 0.223464 obese 0.463983

TARGET_MEAN

 NEW_BLOODPRESSURE

 normal
 0.316163

 hs1
 0.420690

 hs2
 0.483333

cat_cols = [col for col in cat_cols if "OUTCOME" not in col]

#['NEW_AGE_CAT', 'NEW_GLUCOSE_CAT', 'NEW_BMI_RANGE', 'NEW_BLO ODPRESSURE']

df = one_hot_encoder(df, cat_cols, drop_first=True)

check_df(df)

(768, 17)

PREGNANCIES int64
GLUCOSE int64

BLOODPRESSURE int64
SKINTHICKNESS int64

INSULIN int64 BMI float64

DIABETESPEDIGREEFUNCTION float64

AGE int64

OUTCOME int64

NEW_AGE_CAT_OLD bool NEW_AGE_CAT_YOUNG bool

NEW_GLUCOSE_CAT_PREDIABETES bool

NEW_BMI_RANGE_HEALTY bool
NEW_BMI_RANGE_OVERWEIGHT bool

NEW_BMI_RANGE_OBESE bool

NEW_BLOODPRESSURE_HS1 bool NEW_BLOODPRESSURE_HS2 bool

dtype: object

PREGNANCIES GLUCOSE BLOODPRESSURE SKINTHICKNESS INSULIN BMI DIABETESPEDIGREEFUNCTION AGE OUTCOME NEW_AGE_CAT_OLD NEW_AGE_CAT_YOUNG NEW_GLUCOSE_CAT_PREDIABETES NEW_BMI_R ANGE_HEALTY NEW_BMI_RANGE_OVERWEIGHT NEW_BMI_RANGE_OBES E NEW_BLOODPRESSURE_HS1 NEW_BLOODPRESSURE_HS2

0	6	148	72	35	0 33.6	0.627 50	
1	Fals	se	False		True	False	F
alse		True		False	False		
1	1	85	66	29	0 26.6	0.351 31	
0	Fals	se	True		False	False	
True		False		False	False		
2	8	183	64	0	0 23.3	0.672 32	
1	Fals	se	True		True	True	F
alse		False		False	False		
3	1	89	66	23	94 28.1	0.167 21	
0	Fals	se	True		False	False	
True		False		False	False		
4	0	137	40	35	168 43.1	2.288 33	
1	Fals	se	True		False	False	F
alse		True		False	False		

PREGNANCIES GLUCOSE BLOODPRESSURE SKINTHICKNESS INSULI N BMI DIABETESPEDIGREEFUNCTION AGE OUTCOME NEW_AGE_CAT_OLD NEW_AGE_CAT_YOUNG NEW_GLUCOSE_CAT_PREDIABETES NEW_B MI_RANGE_HEALTY NEW_BMI_RANGE_OVERWEIGHT NEW_BMI_RANGE_OBESE NEW_BLOODPRESSURE_HS1 NEW_BLOODPRESSURE_HS2

763	10	101	76		48	180 32.9		0.171	63
0	True		False			False	False		
False		True		False		False			
764	2	122	70		27	0 36.8		0.340	27
0	False		True			False	False		
False		True		False		False			
765	5	121	72		23	112 26.2		0.245	30
0	False		True			False	False		

_	_					
True		alse	Fal		False	
766	1		60	0	0 30.1	0.349 47
1	False		alse		False	False F
alse		rue	Fals		False	
767	1	93	70	31	0 30.4	0.315 23
0	False		True		False	False
False		True	Fa	lse	False	
#####	######	######	#### NA i	#####	+#########	######
PREGN	NANCIES		0			
GLUC	OSE		0			
BLOO	PRESSU	JRE	0			
SKINT	HICKNES	SS	0			
INSUL	IN		0			
BMI		0				
DIABE	TESPEDI	GREEFL	INCTION	0		
AGE		0				
OUTC	OME		0			
NEW_	AGE_CAT	_OLD	0			
NEW_	AGE_CAT	_YOUN	€ ()		
NEW_0	GLUCOSI	E_CAT_F	REDIABET	ΓES 0		
NEW_I	BMI_RAN	GE_HEA	ALTY	0		
NEW_I	BMI_RAN	GE_OVE	RWEIGHT	0		
NEW_I	BMI_RAN	GE_OBE	SE	0		
NEW_I	BLOODPI	RESSUR	E_HS1	0		
NEW_I	BLOODPI	RESSUR	E_HS2	0		
dtype:	int64					
#####	:######	######	#### Qua	ntiles #	++++++++++	#########
		0.00	0.05	0.50	0.95 0.9	99 1.00
PREGN	NANCIES		0.000	0.0000	3.0000 1	0.00000 13.00000 1
7.00						
GLUC	OSE	(0.000 79.0	00000	117.0000 181	.00000 196.00000 19
9.00						
BLOO	DPRESSU	JRE	0.000	38.700	72.000	90.00000 106.0000
0 122.						
SKINT	HICKNES	SS	0.000	0.0000	00 23.0000	44.00000 51.33000
99.00						
INSUL	IN	0.0	00.0	000 3	0.5000 293.	00000 519.90000 84
6.00						

BMI 0.000 21.80000 32.0000 44.39500 50.75900 67.10 DIABETESPEDIGREEFUNCTION 0.078 0.14035 0.3725 1.13285 1.698 33 2.42

AGE 21.000 21.00000 29.0000 58.00000 67.00000 81.00 OUTCOME 0.000 0.00000 0.0000 1.00000 1.0

0

Son güncel değişken türlerimi tutuyorum.

cat_cols, num_cols, cat_but_car = grab_col_names(df, cat_th=5, car_th=20) cat_cols = [col for col in cat_cols if "OUTCOME" not in col]

#['NEW_AGE_CAT_OLD', 'NEW_AGE_CAT_YOUNG', 'NEW_GLUCOSE_CAT_P REDIABETES', 'NEW_BMI_RANGE_HEALTY', 'NEW_BMI_RANGE_OVERWEIG HT', 'NEW_BMI_RANGE_OBESE', 'NEW_BLOODPRESSURE_HS1', 'NEW_BLO ODPRESSURE_HS2']

#Outlier Handling

for col in num_cols:

print(col, check_outlier(df, col, 0.05, 0.95))

11 11 11

PREGNANCIES False

GLUCOSE False

BLOODPRESSURE False

SKINTHICKNESS False

INSULIN True

BMI False

DIABETESPEDIGREEFUNCTION False

AGE False

11 11 11

#Missing Handling

replace_with_thresholds(df, "INSULIN")

Standartlaştırma

X_scaled = StandardScaler().fit_transform(df[num_cols])
df[num_cols] = pd.DataFrame(X_scaled, columns=df[num_cols].columns)

y = df["OUTCOME"]
X = df.drop(["OUTCOME"], axis=1)
check_df(df)

(768, 16)

PREGNANCIES float64
GLUCOSE float64
BLOODPRESSURE float64
SKINTHICKNESS float64

INSULIN float64 BMI float64

DIABETESPEDIGREEFUNCTION float64

AGE float64

NEW_AGE_CAT_OLD bool NEW_AGE_CAT_YOUNG bool

NEW_GLUCOSE_CAT_PREDIABETES bool

NEW_BMI_RANGE_HEALTY bool NEW_BMI_RANGE_OVERWEIGHT bool

NEW_BMI_RANGE_OBESE bool
NEW_BLOODPRESSURE_HS1 bool
NEW_BLOODPRESSURE_HS2 bool

dtype: object

PREGNANCIES GLUCOSE BLOODPRESSURE SKINTHICKNESS INSULI N BMI DIABETESPEDIGREEFUNCTION AGE NEW_AGE_CAT_OLD N EW_AGE_CAT_YOUNG NEW_GLUCOSE_CAT_PREDIABETES NEW_BMI_RA NGE_HEALTY NEW_BMI_RANGE_OVERWEIGHT NEW_BMI_RANGE_OBESE NEW_BLOODPRESSURE_HS1 NEW_BLOODPRESSURE_HS2

0 0.639947 0.848324			
0.460400.1.405005			
0.468492 1.425995		False	
False False	True	False	False
1 -0.844885 -1.123396	-0.160546	0.530902 -0.787	7602 -0.684422
-0.365061 -0.190672	False	True	False
False True	False	False	False
2 1.233880 1.943724	-0.263941	-1.288212 -0.787	602 -1.103255
0.604397 -0.105584	False	True	True
True False	False	False	False
3 -0.844885 -0.998208	-0.160546	0.154533 0.21	7583 -0.494043
-0.920763 -1.041549			
	False		False
4 -1.141852 0.504055			
5.484909 -0.020496			
False False			False
###############################			
PREGNANCIES GLUC			
IN BMI DIABETESPED			
NEW_AGE_CAT_YOUNG N			
ANGE_HEALTY NEW_BM			MI_RANGE_OBES
	- 1104 NIENA D		100
E NEW_BLOODPRESSUR			
763 1.827813 -0.62264	2 0.356432	2 1.722735 1.13	7221 0.115169
763 1.827813 -0.62264 -0.908682 2.532136	2 0.356432 True	2 1.722735 1.13 False	7221 0.115169 False
763 1.827813 -0.62264 -0.908682 2.532136 False False	2 0.356432 True True	2 1.722735 1.13 False False	7221 0.115169 False False
763 1.827813 -0.62264 -0.908682 2.532136	2 0.356432 True True	2 1.722735 1.13 False False	7221 0.115169 False False
763 1.827813 -0.62264 -0.908682 2.532136 False False	2 0.356432 True True 08 0.04624	2 1.722735 1.13 False False 5 0.405445 -0	7221 0.115169 False False .787602 0.61015
763 1.827813 -0.62264 -0.908682 2.532136 False False 764 -0.547919 0.03459	2 0.356432 True True 08 0.04624 531023	2 1.722735 1.13 False False 5 0.405445 -0 False True	7221 0.115169 False False .787602 0.61015
763 1.827813 -0.62264 -0.908682 2.532136 False False 764 -0.547919 0.03459 4 -0.398282 -0.	2 0.356432 True True 08 0.04624 531023	2 1.722735 1.13 False False 5 0.405445 -0 False True	7221 0.115169 False False .787602 0.61015
763 1.827813 -0.62264 -0.908682 2.532136 False False 764 -0.547919 0.03459 4 -0.398282 -0. Ise False	2 0.356432 True True 98 0.04624 531023 False	2 1.722735 1.13 False False 5 0.405445 -0 False True	7221 0.115169 False False .787602 0.61015 False False
763 1.827813 -0.62264 -0.908682 2.532136 False False 764 -0.547919 0.03459 4 -0.398282 -0. Ise False False	2 0.356432 True True 08 0.04624 531023 False 1 0.149641	2 1.722735 1.13 False False 5 0.405445 -0 False True True	7221 0.115169 False False .787602 0.61015 False False 0066 -0.735190
763 1.827813 -0.62264 -0.908682 2.532136 False False 764 -0.547919 0.03459 4 -0.398282 -0. Ise False False 765 0.342981 0.00330 -0.685193 -0.275760	2 0.356432 True True 08 0.04624 531023 False 1 0.149641 False	2 1.722735 1.13 False False 5 0.405445 -0 False True True 0.154533 0.41	7221 0.115169 False False .787602 0.61015 False False 0066 -0.735190 False
763 1.827813 -0.62264 -0.908682 2.532136 False False 764 -0.547919 0.03459 4 -0.398282 -0. Ise False False 765 0.342981 0.00330 -0.685193 -0.275760 False True	2 0.356432 True True 08 0.04624 531023 False 1 0.149641 False False	2 1.722735 1.13 False False 5 0.405445 -0 False True True 0.154533 0.41 True False	7221 0.115169 False False .787602 0.61015 False False 0066 -0.735190 False False
763 1.827813 -0.62264 -0.908682 2.532136 False False 764 -0.547919 0.03459 4 -0.398282 -0. lse False False 765 0.342981 0.00330 -0.685193 -0.275760 False True 766 -0.844885 0.15978	2 0.356432 True True 08 0.04624 531023 False 1 0.149641 False False 7 -0.470732	2 1.722735 1.13 False False 5 0.405445 - 0 False True 0.154533 0.41 True False 2 -1.288212 - 0.3	7221 0.115169 False False .787602 0.61015 False False 0066 -0.735190 False False 787602 -0.24020
763 1.827813 -0.62264 -0.908682 2.532136 False False 764 -0.547919 0.03459 4 -0.398282 -0. lse False False 765 0.342981 0.00330 -0.685193 -0.275760 False True 766 -0.844885 0.15978 5 -0.371101 1.170	2 0.356432 True True 08 0.04624 531023 False 1 0.149641 False False 7 -0.470732	2 1.722735 1.13 False False 5 0.405445 - 0 False True 0.154533 0.41 True False 2 -1.288212 - 0.7 se False	7221 0.115169 False False .787602 0.61015 False False 0066 -0.735190 False False 787602 -0.24020 Fals
763 1.827813 -0.62264 -0.908682 2.532136 False False 764 -0.547919 0.03459 4 -0.398282 -0. lse False False 765 0.342981 0.00330 -0.685193 -0.275760 False True 766 -0.844885 0.15978 5 -0.371101 1.170 e False	2 0.356432 True True 08 0.04624 531023 False 1 0.149641 False False 7 -0.470732	2 1.722735 1.13 False False 5 0.405445 - 0 False True 0.154533 0.41 True False 2 -1.288212 - 0.3	7221 0.115169 False False .787602 0.61015 False False 0066 -0.735190 False False 787602 -0.24020 Fals
763 1.827813 -0.62264 -0.908682 2.532136 False False 764 -0.547919 0.03459 4 -0.398282 -0. lse False False 765 0.342981 0.00330 -0.685193 -0.275760 False True 766 -0.844885 0.15978 5 -0.371101 1.170 e False False	2 0.356432 True True 8 0.04624 531023 False 1 0.149641 False False 7 -0.470732 False False False	2 1.722735 1.13 False False 5 0.405445 -0 False True 0.154533 0.41 True False 2 -1.288212 -0.7 se False True	7221 0.115169 False False .787602 0.61015 False False 0066 -0.735190 False False 787602 -0.24020 Fals False
763 1.827813 -0.62264 -0.908682 2.532136 False False 764 -0.547919 0.03459 4 -0.398282 -0. lse False False 765 0.342981 0.00330 -0.685193 -0.275760 False True 766 -0.844885 0.15978 5 -0.371101 1.170 e False False False 767 -0.844885 -0.8730	2 0.356432 True True 8 0.04624 531023 False 1 0.149641 False False 7 -0.470732 0732 Fal False	Palse False 5 0.405445 - 0 False True True 0.154533 0.41 True False 2 -1.288212 - 0.7 se False True 5 0.656358 - 0	7221 0.115169 False False .787602 0.61015 False False 0066 -0.735190 False False 787602 -0.24020 Fals False
763 1.827813 -0.62264 -0.908682 2.532136 False False 764 -0.547919 0.03459 4 -0.398282 -0. lse False False 765 0.342981 0.00330 -0.685193 -0.275760 False True 766 -0.844885 0.15978 5 -0.371101 1.170 e False False	2 0.356432 True True 08 0.04624 531023 False 1 0.149641 False False 7 -0.470732 D732 Fal False	Palse False 5 0.405445 - 0 False True 0.154533 0.41 True False 2 -1.288212 - 0.7 se False True 5 0.656358 - 0 False True	7221 0.115169 False False .787602 0.61015 False False 0066 -0.735190 False False 787602 -0.24020 Fals False

```
False
PREGNANCIES
                    0
GLUCOSE
                  0
BLOODPRESSURE
                     0
SKINTHICKNESS
                    0
INSULIN
                 0
BMI
               0
DIABETESPEDIGREEFUNCTION
AGE
               0
NEW AGE CAT OLD
                      0
NEW_AGE_CAT_YOUNG
                        0
NEW GLUCOSE CAT PREDIABETES 0
NEW_BMI_RANGE_HEALTY
NEW_BMI_RANGE_OVERWEIGHT
                           0
NEW_BMI_RANGE_OBESE
NEW BLOODPRESSURE HS1
                          0
NEW_BLOODPRESSURE_HS2
                          0
dtype: int64
0.50
             0.00
                   0.05
                               0.95
                                     0.99
PREGNANCIES
                 -1.141852 -1.141852 -0.250952 1.827813 2.718712
3.906578
GLUCOSE
              -3.783654 -1.311179 -0.121888 1.881130 2.350587 2.
444478
BLOODPRESSURE
                 -3.572597 -1.571894 0.149641 1.080200 1.90736
4 2.734528
SKINTHICKNESS
                  -1.288212 -1.288212 0.154533 1.471822 1.931619
4.921866
INSULIN
              -0.787602 -0.787602 -0.461451 2.345582 2.614256
2.614256
BMI
            -4.060474 -1.293634 0.000942 1.574106 2.381820 4.4
55807
DIABETESPEDIGREEFUNCTION -1.189553 -1.001249 -0.300128 1.996219
3.704036 5.883565
AGE
             -1.041549 -1.041549 -0.360847 2.106697 2.872487 4.06
3716
```

Functionalization

```
def diabetes_data_prep(dataframe):
  dataframe.columns = [col.upper() for col in dataframe.columns]
  # Glucose
  dataframe['NEW_GLUCOSE_CAT'] = pd.cut(x=dataframe['GLUCOSE'], bi
ns=[-1, 139, 200], labels=["normal", "prediabetes"])
  # Age
  dataframe.loc[(dataframe['AGE'] < 35), "NEW_AGE_CAT"] = 'young'
  dataframe.loc[(dataframe['AGE'] >= 35) & (dataframe['AGE'] <= 55), "NE
W_AGE_CAT"] = 'middleage'
  dataframe.loc[(dataframe['AGE'] > 55), "NEW_AGE_CAT"] = 'old'
  # BMI
  dataframe['NEW_BMI_RANGE'] = pd.cut(x=dataframe['BMI'], bins=[-1, 1
8.5, 24.9, 29.9, 100],
                       labels=["underweight", "healty", "overweight", "obe
se"])
  # BloodPressure
  dataframe['NEW_BLOODPRESSURE'] = pd.cut(x=dataframe['BLOODPRE
SSURE'], bins=[-1, 79, 89, 123],
                         labels=["normal", "hs1", "hs2"])
  cat_cols, num_cols, cat_but_car = grab_col_names(dataframe, cat_th=5,
car_th=20)
  cat_cols = [col for col in cat_cols if "OUTCOME" not in col]
  df = one_hot_encoder(dataframe, cat_cols, drop_first=True)
  df.columns = [col.upper() for col in df.columns]
  cat_cols, num_cols, cat_but_car = grab_col_names(df, cat_th=5, car_th=2
0)
```

```
cat_cols = [col for col in cat_cols if "OUTCOME" not in col]

replace_with_thresholds(df, "INSULIN")

X_scaled = StandardScaler().fit_transform(df[num_cols])
    df[num_cols] = pd.DataFrame(X_scaled, columns=df[num_cols].column
s)

y = df["OUTCOME"]
X = df.drop(["OUTCOME"], axis=1)

return X, y
```

Base Models

Pipeline'da yer almaz sadece sonuçlarınız gözlemlemek için yapılır.

```
def base_models(X, y, scoring="roc_auc"):
  print("Base Models....")
  classifiers = [('LR', LogisticRegression()),
           ('KNN', KNeighborsClassifier()),
           ("SVC", SVC()),
           ("CART", DecisionTreeClassifier()),
           ("RF", RandomForestClassifier()),
           ('Adaboost', AdaBoostClassifier()),
           ('GBM', GradientBoostingClassifier()),
           ('XGBoost', XGBClassifier(use_label_encoder=False, eval_metric
='logloss')),
           ('LightGBM', LGBMClassifier()),
           # ('CatBoost', CatBoostClassifier(verbose=False))
           1
  for name, classifier in classifiers:
     cv_results = cross_validate(classifier, X, y, cv=3, scoring=scoring)
     print(f"{scoring}: {round(cv_results['test_score'].mean(), 4)} ({name})
")
```

base_models(X, y, scoring="accuracy")

```
Base Models....
```

accuracy: 0.7604 (LR) accuracy: 0.7617 (KNN) accuracy: 0.7656 (SVC) accuracy: 0.6784 (CART) accuracy: 0.7656 (RF)

accuracy: 0.7578 (Adaboost) accuracy: 0.7487 (GBM) accuracy: 0.7487 (XGBoost) accuracy: 0.7383 (LightGBM)

base_models(X, y, scoring="roc_auc")

Base Models....

roc_auc: 0.841 (LR) roc_auc: 0.791 (KNN) roc_auc: 0.8355 (SVC) roc_auc: 0.6473 (CART) roc_auc: 0.8279 (RF)

roc_auc: 0.8196 (Adaboost) roc_auc: 0.8226 (GBM) roc_auc: 0.7938 (XGBoost) roc_auc: 0.807 (LightGBM)

Automated Hyperparameter Optimization

```
rf_params = {"max_depth": [8, 15, None],
       "max_features": [5, 7, "auto"],
       "min_samples_split": [15, 20],
       "n_estimators": [200, 300]}
xgboost_params = {"learning_rate": [0.1, 0.01],
          "max_depth": [5, 8],
          "n_estimators": [100, 200]}
lightgbm_params = {"learning_rate": [0.01, 0.1],
           "n_estimators": [300, 500]}
classifiers = [('KNN', KNeighborsClassifier(), knn_params),
         ("CART", DecisionTreeClassifier(), cart_params),
         ("RF", RandomForestClassifier(), rf_params),
         ('XGBoost', XGBClassifier(use_label_encoder=False, eval_metric
='logloss'), xgboost_params),
         ('LightGBM', LGBMClassifier(), lightgbm_params)]
def hyperparameter_optimization(X, y, cv=3, scoring="roc_auc"):
  print("Hyperparameter Optimization....")
  best_models = {}
  for name, classifier, params in classifiers:
    print(f"######## {name} ########")
    cv_results = cross_validate(classifier, X, y, cv=cv, scoring=scoring)
    print(f"{scoring} (Before): {round(cv_results['test_score'].mean(), 4)}")
    gs_best = GridSearchCV(classifier, params, cv=cv, n_jobs=-1, verbose
=False).fit(X, y)
    final_model = classifier.set_params(**gs_best.best_params_)
    cv_results = cross_validate(final_model, X, y, cv=cv, scoring=scoring)
    print(f"{scoring} (After): {round(cv_results['test_score'].mean(), 4)}")
    print(f"{name} best params: {gs_best.best_params_}", end="\n\n")
    best_models[name] = final_model
  return best_models
```

best_models = hyperparameter_optimization(X, y)

Hyperparameter Optimization.... ######### KNN ########## roc_auc (Before): 0.791 roc_auc (After): 0.8211 KNN best params: {'n_neighbors': 20} roc_auc (Before): 0.6433 roc_auc (After): 0.7943 ######## RF ######### roc_auc (Before): 0.8269 roc_auc (After): 0.8372 RF best params: {'max_depth': 8, 'max_features': 5, 'min_samples_split': 15, 'n_estimators': 200} ######## XGBoost ######### roc_auc (Before): 0.7938 roc_auc (After): 0.8139 XGBoost best params: {'learning_rate': 0.01, 'max_depth': 5, 'n_estimators': 100} ######## LightGBM ######### roc_auc (Before): 0.807 roc_auc (After): 0.8185 LightGBM best params: {'learning_rate': 0.01, 'n_estimators': 300}

Stacking & Ensemble Learning

• Ensemble Learning, makine öğrenmesinde birden fazla modelin tahminlerini birleştirerek tek bir modelden daha iyi, daha kararlı ve daha genellenebilir tahminler elde etmeyi amaçlayan genel bir şemsiye terimdir.

Tek bir "uzman" yerine, bir "uzmanlar komitesi"nin daha doğru kararlar vereceği fikrine dayanır. Her modelin farklı güçlü yönleri ve zayıf yönleri olabilir. Bu modellerin birleştirilmesiyle, bireysel modellerin hataları birbirini dengeleyebilir ve genel performansı artırabilir.

<u>Stacking</u> (Stacked Generalization): <u>Stacking</u>, Ensemble Learning teknikleri arasında özellikle <u>farklı türdeki modellerin</u> (<u>heterojen modeller</u>) güçlü yönlerini birleştirmek için kullanılan güçlü bir yöntemdir. <u>Diğer ensemble yöntemlerinden</u> (<u>Bagging</u>, <u>Boosting</u>) temel farkı, <u>modellerin tahminlerini</u> birleştirmek için başka bir model (<u>meta-model</u>) kullanmasıdır.

```
# 5. Stacking & Ensemble Learning
def voting_classifier(best_models, X, y):
  print("Voting Classifier...")
  voting_clf = VotingClassifier(estimators=[('KNN', best_models["KNN"]),
                        ('RF', best_models["RF"]),
                        ('LightGBM', best_models["LightGBM"])],
                 voting='soft').fit(X, y)
    voting: {'hard', 'soft'}, default='hard' If 'hard', uses predicted class la
bels for majority rule voting.
  # Else if 'soft', predicts the class label based on the argmax of the sum
s of the predicted probabilities, which is recommended for
  # an ensemble of well-calibrated classifiers.
  cv_results = cross_validate(voting_clf, X, y, cv=3, scoring=["accuracy", "f
1", "roc_auc"])
  print(f"Accuracy: {cv_results['test_accuracy'].mean()}")
  print(f"F1Score: {cv_results['test_f1'].mean()}")
  print(f"ROC_AUC: {cv_results['test_roc_auc'].mean()}")
  return voting_clf
voting_clf = voting_classifier(best_models, X, y)
```

Accuracy: 0.77083333333333334 F1Score: 0.6350140611304488 ROC_AUC: 0.8358954098181207

1. Hard Voting (Sert Oylama)

- Nasıl Çalışır? Her bir temel modelin (örneğin KNN, Random Forest, LightGBM) doğrudan tahmin ettiği sınıf etiketleri (yani 'evet' veya 'hayır', 0 veya 1 gibi) alınır. Nihai tahmin, çoğunluk oylaması ile belirlenir. En çok oy alan sınıf, nihai sınıf olarak atanır.
- Ne Zaman Kullanılır? Modellerin güven puanları veya olasılık tahminleri önemli olmadığında veya modellerin iyi kalibre edilmediği durumlarda tercih edilebilir.
- **Örnek:** Eğer 3 modelden 2'si sınıf A'yı, 1'i sınıf B'yi tahmin ederse, nihai tahmin A olur.

2. Soft Voting (Yumuşak Oylama)

- Nasıl Çalışır? Her bir temel modelin tahmin ettiği sınıf olasılıkları (veya güven puanları) alınır. Bu olasılıklar, her sınıf için toplanır ve en yüksek toplam olasılığa sahip sınıf, nihai tahmin olarak seçilir. VotingClassifier dokümantasyonunda da belirtildiği gibi, iyi kalibre edilmiş modeller için genellikle önerilen yöntemdir. Modellerin kendi içlerindeki güven derecelerini hesaba katarak daha incelikli bir karar verir.
- Ne Zaman Kullanılır? Modellerin sınıf olasılıkları üretebildiği ve bu olasılıkların güvenilir olduğu durumlarda daha iyi performans gösterebilir. Genellikle daha iyi sonuçlar verir çünkü modellerin "ne kadar emin" olduklarını da dikkate alır.

Örnek:

- Model 1: Sınıf A için 0.9, Sınıf B için 0.1
- Model 2: Sınıf A için 0.4, Sınıf B için 0.6
- Model 3: Sınıf A için 0.2, Sınıf B için 0.8
- **Toplam Olasılıklar:** Sınıf A için (0.9 + 0.4 + 0.2) = 1.5; Sınıf B için (0.1 + 0.6 + 0.8) = 1.5
- Bu örnekte, toplam olasılıklar eşit çıktı, ancak gerçek senaryoda Soft Voting ile yüksek olasılığa sahip sınıf kazanır. Eğer A: 1.6, B: 1.4 olsaydı, A kazanırdı.

New Observation

Pipeline

 "Helper functions" (Yardımcı fonksiyonlar), programlamada çok yaygın ve kullanışlı bir kavramdır. Adından da anlaşılacağı gibi, başka bir ana fonksiyonun veya program parçasının belirli bir görevi yerine getirmesine yardımcı olan fonksiyonlardır.

Kodumuzdaki grab_col_names , outlier_thresholds , replace_with_thresholds , one_hot_encoder , diabetes_data_prep gibi fonksiyonlar bu kategoriye girer.

Parameters

dataframe: dataframe

Değişken isimleri alınmak istenilen dataframe

cat_th: int, optional

numerik fakat kategorik olan değişkenler için sınıf eşik değeri

car_th: int, optinal

kategorik fakat kardinal değişkenler için sınıf eşik değeri

Returns

cat_cols: list

Kategorik değişken listesi

num_cols: list

Numerik değişken listesi

```
cat_but_car: list
         Kategorik görünümlü kardinal değişken listesi
  Examples
    import seaborn as sns
    df = sns.load_dataset("iris")
    print(grab_col_names(df))
  Notes
    cat_cols + num_cols + cat_but_car = toplam değişken sayısı
    num_but_cat cat_cols'un içerisinde.
    Return olan 3 liste toplamı toplam değişken sayısına eşittir: cat_cols +
num_cols + cat_but_car = değişken sayısı
  11 11 11
  # cat_cols, cat_but_car
  cat_cols = [col for col in dataframe.columns if dataframe[col].dtypes ==
"O"1
  num_but_cat = [col for col in dataframe.columns if dataframe[col].nuniqu
e() < cat_th and
           dataframe[col].dtypes != "O"]
  cat_but_car = [col for col in dataframe.columns if dataframe[col].nunique
() > car_th and
           dataframe[col].dtypes == "O"]
  cat_cols = cat_cols + num_but_cat
  cat_cols = [col for col in cat_cols if col not in cat_but_car]
  # num_cols
  num_cols = [col for col in dataframe.columns if dataframe[col].dtypes !=
"O"1
  num_cols = [col for col in num_cols if col not in num_but_cat]
  # print(f"Observations: {dataframe.shape[0]}")
  # print(f"Variables: {dataframe.shape[1]}")
```

```
# print(f'cat_cols: {len(cat_cols)}')
  # print(f'num_cols: {len(num_cols)}')
  # print(f'cat_but_car: {len(cat_but_car)}')
  # print(f'num_but_cat: {len(num_but_cat)}')
  return cat_cols, num_cols, cat_but_car
def outlier_thresholds(dataframe, col_name, q1=0.25, q3=0.75):
  quartile1 = dataframe[col_name].quantile(q1)
  quartile3 = dataframe[col_name].quantile(q3)
  interquantile_range = quartile3 - quartile1
  up_limit = quartile3 + 1.5 * interquantile_range
  low_limit = quartile1 - 1.5 * interquantile_range
  return low_limit, up_limit
def replace_with_thresholds(dataframe, variable):
  low_limit, up_limit = outlier_thresholds(dataframe, variable)
  dataframe.loc[(dataframe[variable] < low_limit), variable] = low_limit
  dataframe.loc[(dataframe[variable] > up_limit), variable] = up_limit
def one_hot_encoder(dataframe, categorical_cols, drop_first=False):
  dataframe = pd.get_dummies(dataframe, columns=categorical_cols, dro
p_first=drop_first)
  return dataframe
def diabetes_data_prep(dataframe):
  dataframe.columns = [col.upper() for col in dataframe.columns]
  # Glucose
  dataframe['NEW_GLUCOSE_CAT'] = pd.cut(x=dataframe['GLUCOSE'], bi
ns=[-1, 139, 200], labels=["normal", "prediabetes"])
  # Age
  dataframe.loc[(dataframe['AGE'] < 35), "NEW_AGE_CAT"] = 'young'
  dataframe.loc[(dataframe['AGE'] >= 35) & (dataframe['AGE'] <= 55), "NE
W_AGE_CAT"] = 'middleage'
  dataframe.loc[(dataframe['AGE'] > 55), "NEW_AGE_CAT"] = 'old'
  # BMI
```

```
dataframe['NEW_BMI_RANGE'] = pd.cut(x=dataframe['BMI'], bins=[-1, 1
8.5, 24.9, 29.9, 100],
                       labels=["underweight", "healty", "overweight", "obe
se"])
  # BloodPressure
  dataframe['NEW_BLOODPRESSURE'] = pd.cut(x=dataframe['BLOODPRE
SSURE'], bins=[-1, 79, 89, 123],
                         labels=["normal", "hs1", "hs2"])
  cat_cols, num_cols, cat_but_car = grab_col_names(dataframe, cat_th=5,
car_th=20
  cat_cols = [col for col in cat_cols if "OUTCOME" not in col]
  df = one_hot_encoder(dataframe, cat_cols, drop_first=True)
  cat_cols, num_cols, cat_but_car = grab_col_names(df, cat_th=5, car_th=2
0)
  replace_with_thresholds(df, "INSULIN")
  X_scaled = StandardScaler().fit_transform(df[num_cols])
  df[num_cols] = pd.DataFrame(X_scaled, columns=df[num_cols].column
s)
  y = df["OUTCOME"]
  X = df.drop(["OUTCOME"], axis=1)
  return X, y
# Base Models
def base_models(X, y, scoring="roc_auc"):
  print("Base Models....")
  classifiers = [('LR', LogisticRegression()),
           ('KNN', KNeighborsClassifier()),
           ("SVC", SVC()),
           ("CART", DecisionTreeClassifier()),
```

```
("RF", RandomForestClassifier()),
           ('Adaboost', AdaBoostClassifier()),
           ('GBM', GradientBoostingClassifier()),
           ('XGBoost', XGBClassifier(use_label_encoder=False, eval_metric
='logloss')),
           ('LightGBM', LGBMClassifier()),
           # ('CatBoost', CatBoostClassifier(verbose=False))
           ]
  for name, classifier in classifiers:
     cv_results = cross_validate(classifier, X, y, cv=3, scoring=scoring)
     print(f"{scoring}: {round(cv_results['test_score'].mean(), 4)} ({name})
")
# Hyperparameter Optimization
# config.py
knn_params = {"n_neighbors": range(2, 50)}
cart_params = {'max_depth': range(1, 20),
         "min_samples_split": range(2, 30)}
rf_params = {"max_depth": [8, 15, None],
        "max_features": [5, 7, "auto"],
        "min_samples_split": [15, 20],
       "n_estimators": [200, 300]}
xgboost_params = {"learning_rate": [0.1, 0.01],
           "max_depth": [5, 8],
           "n_estimators": [100, 200],
           "colsample_bytree": [0.5, 1]}
lightgbm_params = {"learning_rate": [0.01, 0.1],
           "n_estimators": [300, 500],
           "colsample_bytree": [0.7, 1]}
classifiers = [('KNN', KNeighborsClassifier(), knn_params),
```

```
("CART", DecisionTreeClassifier(), cart_params),
         ("RF", RandomForestClassifier(), rf_params),
         ('XGBoost', XGBClassifier(use_label_encoder=False, eval_metric
='logloss'), xgboost_params),
         ('LightGBM', LGBMClassifier(), lightgbm_params)]
def hyperparameter_optimization(X, y, cv=3, scoring="roc_auc"):
  print("Hyperparameter Optimization....")
  best_models = {}
  for name, classifier, params in classifiers:
    print(f"######## {name} ########")
    cv_results = cross_validate(classifier, X, y, cv=cv, scoring=scoring)
    print(f"{scoring} (Before): {round(cv_results['test_score'].mean(), 4)}")
    gs_best = GridSearchCV(classifier, params, cv=cv, n_jobs=-1, verbose
=False).fit(X, y)
    final_model = classifier.set_params(**gs_best.best_params_)
    cv_results = cross_validate(final_model, X, y, cv=cv, scoring=scoring)
    print(f"{scoring} (After): {round(cv_results['test_score'].mean(), 4)}")
    print(f"{name} best params: {gs_best.best_params_}", end="\n\n")
    best_models[name] = final_model
  return best_models
# Stacking & Ensemble Learning
def voting_classifier(best_models, X, y):
  print("Voting Classifier...")
  voting_clf = VotingClassifier(estimators=[('KNN', best_models["KNN"]),
('RF', best_models["RF"]),
                           ('LightGBM', best_models["LightGBM"])],
                    voting='soft').fit(X, y)
  cv_results = cross_validate(voting_clf, X, y, cv=3, scoring=["accuracy", "f
1", "roc_auc"])
  print(f"Accuracy: {cv_results['test_accuracy'].mean()}")
  print(f"F1Score: {cv_results['test_f1'].mean()}")
  print(f"ROC_AUC: {cv_results['test_roc_auc'].mean()}")
  return voting_clf
```

- #utils.py: Bu dosya genellikle, projenin farklı yerlerinde kullanılabilecek genel amaçlı "utility" (yardımcı/araç) fonksiyonlar içerir. Bu fonksiyonlar genellikle belirli bir etki alanına (domain) özel değildir; daha çok genel veri işleme, matematiksel hesaplamalar, string manipülasyonları gibi görevleri yerine getirirler.
 - Örnek Fonksiyonlar: Veri okuma/yazma, tarih/saat formatlama, hata loglama, genel veri temizleme yardımcıları.
- # helpers.py : Benzer şekilde, projenin başka bir yerinde helpers.py adında bir Python dosyası olması muhtemeldir. Bu dosya da yardımcı fonksiyonlar içerir, ancak "utils" ile arasındaki ayrım bazen ince olabilir. Genellikle helpers.py , daha belirli bir bağlama veya belirli bir modüle özel yardımcı fonksiyonlar barındırır. Yani, "utils" daha genelken, "helpers" biraz daha projenin o anki bölümüne veya belirli bir probleme daha yakın olabilir.
 - Örnek Fonksiyonlar: Diyabet projenizde gördüğünüz grab_col_names ,
 outlier_thresholds , replace_with_thresholds , one_hot_encoder gibi fonksiyonlar, aslında
 helpers.py Veya utils.py gibi bir dosyada gruplandırılmaya çok uygun
 "helper functions"dır. Zaten kodunuzda da bu fonksiyonların altında
 belirtilmiş.
- config.py dosyası, Python projelerinde yapılandırma (configuration)
 bilgilerini depolamak için kullanılan yaygın bir adlandırma geleneğidir.
 Projenizin çalışması için gereken, ancak kodun doğrudan mantığına ait olmayan tüm ayarları ve sabit değerleri burada tutarsınız.

Prediction

```
new_model = joblib.load("voting_clf.pkl")

new_model.predict(random_user) # Her değer almıyor.

#Prediction veya scoring işlemi de denir
from diabetes_pipeline import diabetes_data_prep

X, y = diabetes_data_prep(df)

random_user = X.sample(1, random_state=1)

new_model = joblib.load("voting_clf.pkl")

new_model.predict(random_user)
```