09-04-01-LinearAlgebra

Created on 20230405.

Last modified on 2024 年 9 月 15 日.

目录

4 目录

Chapter 1 Overall

2 条主线: linear space, linear mapping

Chapter 2 Space

线性空间(加法、乘法)->线性映射<->矩阵

现实几何空间还有距离和角度的概念,可用内积(双线性函数)来刻画。具有度量的线性空间。分类:欧几里得空间(实数域、有限维、线性空间、内积,内积有交换律)、酉空间(复数域、有限维、线性空间、内积,内积有共轭交换律)。

线性变换:空间 A 到空间 AZ 自身的线性映射。

2.0.1 Linear Space

向量加法、标量乘法构成的单位环。

2.0.2 Metric Space

Definition 2.1. The set X with a distance function d, d satisfies??. Metric Space is noted as (X, d).

Definition 2.2. 紧集: (X,d) 中的子集 A, A 中任意序列都存在一子列 x_n,x_n 收敛到 A 中某点。

Definition 2.3. 稠密集: (X,d) 中的子集 A, 对于 X 中的任意点 x, A 中存在点 a, 使得 $d(x,a)<\varepsilon$

Definition 2.4. X 可分: (X,d) 中存在一个可数稠密集。

2.0.2.1 Complete Metric Space

Definition 2.5. 收敛: sequence $\{x_n\}$ 收敛到 c, means that $\lim_{x\to\infty} d(x_n,c)=0$, noted as $\lim_{x\to\infty} x_n=c$

Definition 2.6. Cauchy 基本列: $\lim_{m\to\infty,n\to\infty} d(x_m,x_n)=0$

Definition 2.7. 完备距离空间: 所有 Cauchy 基本列收敛于一点

Definition 2.8. 不完备:对于苹果空间,从宇宙开始到宇宙结束的所有苹果序列,收敛到我,则不完备。

CHAPTER 2. SPACE

2.0.3 Banach Space

完备、赋范、线性。

2.0.4 Inner Product Space

$$(\alpha x + \beta y) \cdot z = \alpha x \cdot z + \beta y \cdot z,$$
 线性
$$x \cdot (\alpha y + \beta z) = \bar{\alpha} x \cdot y + \bar{\beta} x \cdot z,$$
 共轭线性
$$x \cdot y = y \bar{\cdot} x,$$
 共轭对称
$$x \cdot x \geqslant 0,$$
 正定 $\Rightarrow ||x|| = \sqrt{x \cdot x}$
$$|x \cdot y| \leqslant ||x|| \cdot ||y||,$$
 satisfies Cauchy $-$ Schwarz

2.0.5 Hilbert Space

完备,内积。

内积 ⇒ 范数 ⇒ 完备

Proposition 2.1. [0,1] 上的复连续函数空间 C([0,1]), 定义内积 $f \cdot g = \int_0^1 f(t)g(t) dt$, proof that C([0,1]) 不是 Hilbert Space

$$f_n(t) = \begin{cases} 1, & 0 \leqslant t \leqslant \frac{1}{2} \\ -2n(t - \frac{1}{2}) + 1, & \frac{1}{2} < t \leqslant \frac{1}{2n} + \frac{1}{2} \\ 0, & \frac{1}{2n} + \frac{1}{2} < t \leqslant 1 \end{cases}$$

$$||f_n - f_m|| \leqslant (\frac{1}{n} + \frac{1}{m})^{\frac{1}{2}} \to 0, \text{ is Cauchy Sequence.}$$

$$\lim f_n = \begin{cases} 1, 0 \leqslant t \leqslant \frac{1}{2} \\ 0, \frac{1}{2} < t \leqslant 1 \end{cases}$$

$$\therefore \lim f_n \notin C([0, 1])$$

2.0.6 Euclid Space

仍然成立。

有序的 n 元组的全体称为 n 维 Euclid 空间,记为 \mathbb{R}^n ,称 $\mathbf{p}=(p_i)_{i=1}^n\in\mathbb{R}^n$ 是 \mathbb{R}^n 的一个点。为便于研究,本论文以 \mathbb{R}^3 为背景空间,所涉及的函数默认为可微实值函数。如果实函数 f 的任意阶偏导数存在且连续,则称函数是可微的(或无限可微的,或光滑的,或 C^∞ 的)。由于微分运算是函数的局部运算,限制所讨论函数的定义域在 \mathbb{R}^3 中的任意开集,所讨论的结论

自然坐标函数: 定义在 \mathbb{R}^n 上的实值函数 $x_i:\mathbb{R}^n\to\mathbb{R}$, 使得 $\boldsymbol{p}=(p_i)_{i=1}^n=(x_i(\boldsymbol{p}))_{i=1}^n$

切向量:由 \mathbb{R}^n 中的二元组构成, $v_p = (p, v)$,其中 p 是作用点,v 是向量部分

切空间 $T_p\mathbb{R}^n$: 作用点 $p\in\mathbb{R}^n$ 的所有切向量的集合。利用向量加法与数量乘法使某点的切空间称为向量空间,与背景空间存在非平凡同构。

向量场 V: 作用于空间点的向量函数, $V(p) \in T_p \mathbb{R}^n$

逐点化原理: (V + W)(p) = V(p) + W(p), (fV)(p) = f(p)V(p)

自然标架场: 定义 $U_i = (\delta_j^i)_{j=1}^n$,接 Einstein 求和约定,有 $V(p) = v^i(p)U_i(p)$,称 v^i 为场的 Euclid 坐标函数,其中 Kronecker δ 函数定义为:

$$\delta_i^j = \begin{cases} 1, i = j \\ 0, i \neq j \end{cases} \tag{2.3}$$

与度量有关的线性变换: 正交变换对称变换

2.0.7 Unitary Linear Space

酉空间

与度量有关的线性变换: 酉变换 Hermite 变换

Chapter 3 linear mapping

Chapter 4 Vector

4.1 Basic Defination

we define the basic element as following, where e_i means $x_i = 1, x_j = 0$ for all $j \neq i$. When we say a vector, it means a column vector.

$$\vec{x} = \boldsymbol{x} = [x_1, x_2, \dots]^T = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \Sigma x_i \boldsymbol{e_i}$$
(4.1)

We define Kronecker sign to simply the description of $e_i \cdot e_j$.

$$\delta_{ij} := \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

$$(4.2)$$

The set of bases $\{e_i\} \xrightarrow{apply} x \longrightarrow \{x_i\}.$

4.2 Operation

4.2.1 Dot Product

We define in algebra, $\boldsymbol{x} \cdot \boldsymbol{y} := \sum x_i y_i \delta_{ij} = \boldsymbol{x}^T \cdot \boldsymbol{y}$.

Then the defination is restricted to the choose of the coordinate system.

4.2.2 Cross Product

 $a,b\in\mathbb{F}^m,a\wedge b=c\in\mathbb{F}^n,$ if m = n, we have m = 0, 1, 3, 7. Therefore, we define cross product in 3d.

$$u \times v = \begin{vmatrix} i & j & k \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$
 (4.3)

Proposition 4.1. 外积对于 u、v 双线性。从定义易知。

Proposition 4.2. $(a \times b) \times c = (c \cdot a)b - (b \cdot c)a$

证明:

$$\begin{vmatrix} i & j & k \\ 23 & 31 & 12 \\ 1 & 2 & 3 \end{vmatrix}$$
 (4.4)

例如对 i 分量,有 $31 \cdot 3 - 12 \cdot 2$,形式上 ijk 一样,因而证明 i 即可。展开后,按正负号分类,we have (313 + 212) - (133 + 122),两部分都加上 111 即得。b 和-a 的线性组合。

Proposition 4.3. 混合积 $(u, v, w) = (u \times v) \cdot w$, 其具有轮换对称性。

证明: for $\cdot w$, we have $23 \cdot 1 + 31 \cdot 2 + 12 \cdot 3$

231 - 321,312 - 132,123 - 213

对 $\cdot v$, 即中间元素按 1,2,3 顺序组合, 易有 wu; 同样对 $\cdot u$, 易有 vw。即证。

另外, 从展开后的分量对应上, 易有

$$(u, v, w) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

$$(4.5)$$

4.2.3 Add

$$x + y := \sum (x_i + y_i)e_i$$

$$k \cdot x := \sum kx_ie_i$$
(4.6)

Law x + y = y + x, law (x + y) + z = x + (y + z) is not obvious in the view of Set Theory.

4.2. OPERATION 15

4.2.4 geometry Properties

4.2.4.1 Length and Angle

$$\| \boldsymbol{x} \| := \sqrt{\boldsymbol{x} \cdot \boldsymbol{x}}$$

$$\cos \theta_{x,y} := \frac{\boldsymbol{x} \cdot \boldsymbol{x}}{\| \boldsymbol{x} \| \cdot \| \boldsymbol{y} \|}$$
(4.7)

4.2.4.2 Distance

Distance function satisfies the following:

$$d(x, y) \ge 0$$

 $d(x, y) = d(y, x)$ (4.8)
 $d(x, y) \le d(x, z) + d(z, y)$

$$d_p = \left[\sum_i |x_i - y_i|^p\right]^{\frac{1}{p}}, 1 \leqslant p < \infty$$

$$d_\infty = \max_i |x_i - y_i|$$
(4.9)

Chapter 5 Matrix Theory

5.1 Basic Notation

Normally, we consider vector space over the fields of real or complex numbers.

5.1.1 linear equation Ax = B

5.1.1.1 Defination

linear equation in n variables. $\sum_{i=1}^{i=n} a_i x^i = b$, which can be written as $\boldsymbol{a}^T \boldsymbol{x} = b$. We collect m equations and write like this:

$$\begin{bmatrix} \boldsymbol{a}_{1}^{T} \\ \vdots \\ \boldsymbol{a}_{m}^{T} \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{x} \end{bmatrix} = \begin{bmatrix} b_{1} \\ \vdots \\ b_{m} \end{bmatrix}$$
 (5.1)

Noticed that x_1 is only applied toe the first column of the left matrix, we can say that x is one point, or a specific composition, of the space spanned by the column vector of the matrix. Then it is easy to see that this equation has the solution, only if the vector b is in the space spanned by the column vector of the matrix.

Or we can write like this:

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ & \ddots & \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$
 (5.2)

The equation Ax = b has solution, means y 可由 A 的列向量线性表出。

If b = 0, called homogeneous linear equations, homogeneous because 所有非 0 项是 1 次的。 if $b \neq 0$, it is inhomogeneous. 显然 0 向量 (zero solution, or trivial solution) 是一个解. A 的列向量正交,只有零解;若 A 的列向量线性相关,有多解,即可按多种方式回到原点。

5.1.1.2 Complex Matrices

5.1.1.2.1 Conjugate Transposition for matrix $C \in \mathbb{C}^{m \times n}$, we mark the Conjugate Transposition as C^H , where $c_{ji}^T = \overline{c}_{ij}$

in representation, C = A + iB. Usually 4 real matrix multiplications are needed to calculate (C + iD)(E + iF), actually 3 multiplications are enough. (C + iD)(E + iF) = (C + D)(E - F) + CF - DE + i(DE + CF)

5.1.1.3 Number of solution

5.1.1.3.1 非齐次线性 n 元线性方程组解的个数等解集结构的研究,期待在不求解的情况下有所了解,就需要研究系数矩阵表示的 n 维向量空间的性质。

构造增广矩阵 [A,b] 后,初等行变换化为阶梯型,如??所示,解的个数讨论。

Figure 5.1: [number of solution]

总共有 n+1 列,下面 r 行都是 0.

(1)d = 0,即最后一个个主元在第 n+1 列,即存在方程 0=1,无解, no solution。

(2)d=1,即最后一个个主元在第 n 列,唯一解, one solution, $tr A_{mn}=m$ 。

(3)d > 1,即最后一个个主元在第 t 列,t < n。高度 R 所在的行号记为 r。有无穷个解。解可以这样写出,共 R 行,即 R 个主元,每个主元都用所在行的常数项 d 和 n-r 个自由元表示出来。

根据主元的构造过程, t 的列号一定大于等于 r。

当 A_{ii} 都是主元的时候, $d \neq 1$, $tr \boldsymbol{A}_{mn} < m$,inifinity solution,最后一行是解的超平面方程, 图中 d 是解的维度, $d = n - tr \boldsymbol{A}_{mn}$, 如 d 为 3,有 3 列独立的,即解空间是三维的。齐次方程组的未知数个数大于方程个数,有无数解。

5.1. BASIC NOTATION 19

 $\det \mathbf{A} = 0$, no solution, or infinite solution. $\det \mathbf{A} \neq 0$, one solution.

5.1.1.3.2 齐次线性 一定有 0 解,因而当有非 0 解时,有无穷个解。n 列时,系数矩阵的秩 $r < n_{\,\circ}$

方程个数 s < n 时,由于 $r \le s < n$,易知有无穷个解。

5.1.2 Matrix

5.1.2.1 Defination

If we have a serious of x, we have a serious of b, like this:

$$A_{mn} \cdot X_{nt} = B_{mt} \Longrightarrow \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ & \ddots & \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} x_{11} & \cdots & x_{1t} \\ \vdots & & \vdots \\ x_{n1} & \cdots & x_{nt} \end{bmatrix} = \begin{bmatrix} b_{11} & \cdots & b_{1t} \\ \vdots & \ddots & \vdots \\ b_{m1} & \cdots & b_{mt} \end{bmatrix}$$
(5.3)

The normal definition of the product of two matrix is as above.

5.1.2.2 Multiplication

There are 6 views sorting with the loop order, we fully understand that, for example, we can think the order jki(j is the outer, i is the inner) as follows

$$i: | \cdot = |$$
 $k: [|] | = \sum |$
 $j: [|] [|] = [|]$

$$(5.4)$$

We collect the 6 vews into one table as fallows.

Table 5.1: $A_{ik}X_{kj} = B_{ij}$

Order	${\rm inner} {\rm Loop}$	${\bf Middle Loop}$	dataAccess	view	comment
ijk	S-S:dot	rowV-M	$oldsymbol{A}_{lpha:}, [oldsymbol{X}_{:eta}], oldsymbol{B}_{lpha:}$	$[-]\cdot[]=[-]$	dot view → ↓
jik	S-S:dot	M-columnV	$[oldsymbol{A}_{lpha:}], oldsymbol{X}_{:eta}, oldsymbol{B}_{:eta}$	$[\equiv] \cdot []] = []$	dot view $\vdash \rightharpoonup$
ikj	S-rowV:saxpy	rowV-M:gaxpy	$oldsymbol{A}_{lpha:}, [oldsymbol{X}_{eta:}], oldsymbol{B}_{lpha:}$	$[_]gaxpy[\equiv] = [_]$	useOfA →↓
jki	colV-S:saxpy	M-colV:gaxpy	$[oldsymbol{A}_{:lpha}],oldsymbol{X}_{:eta},oldsymbol{B}_{:lpha}$	[]gaxpy[] = []	useOfB ↓⊸
kij	S-rowV:saxpy	colV-rowV:outP	$oldsymbol{A}_{:lpha},oldsymbol{X}_{eta:},igstyle\sumoldsymbol{B}_{row}$	$\sum[outProd[_] = \sum[\equiv]$	$on A \mid outProd \rightharpoonup$
kji	colV-S:saxpy	$\operatorname{colV-rowV}$:outP	$oldsymbol{A}_{:lpha},oldsymbol{X}_{eta:},\sumoldsymbol{B}_{col}$	$\sum[]outProd[_] = \sum[]$	$on X \mid outProd \rightharpoonup$

¹ S for scalar, V for vector, M for matrix; colV for column vector; outP for out product.

 $[\]begin{array}{l} ^{2}\left[-\right] gaxpy[\equiv]=[-] \text{ is } \sum [\cdot] gaxpy[-]=\sum [-]. \\ ^{3}\left[|||] gaxpy[|]=[|] \text{ is } \sum [||] gaxpy[\cdot]=\sum [|]. \end{array}$

Order	InnerLoop	MiddleLoop	OuterLoop
ijk	(rowV, colV) = S	(rowV, [colV]) = rowV	collection
jik	(rowV, colV) = S	([rowV], colV) = rowV	collection
ikj	(S, colV) = colV	$(rowV, [colV]) = \sum colV$	collection
jki	(colV, S) = colV	$([colV], colV) = \sum colV$	collection
kij	(S, rowV) = rowV	(colV, rowV) = [rowV]	collection and $\sum [rowV]$
kji	(colV, S) = colV	(colV, rowV) = [colV]	collection and $\sum [colV]$

Table 5.2: $A_{ik}X_{kj} = B_{ij}$

5.1.2.3 Transposition

Defination: $a_{ij}^T = a_{ji}$

Proposition 5.1. $(AB)^T = B^T A^T$

Proof:
$$L = (a_{ik}b_{kj})^T = c_{ij}^T = c_{ji} = b_{jk}a_{ki} = R \square$$

Proposition 5.2. We take a look a the product with reflect $T: x \to T \cdot x$. $(Tx)^T Ty = x^T (T^T T)y = [(TT^T)x]^T y$. $0 \le ||TT^T|| < 1$, T is a contractive mapping.

5.1.3 operation

5.1.3.1 dot procuct AX = B

Focus on each element of B.

5.1.3.1.1 vector vector for vector, $x \cdot y = x^T y$,

5.1.3.1.2 matrix matrix for matrix, this is the definition of the multiplication of the matrix, $A_{mn} * B_{mn} = [a_{ij} \cdot b_{ij}]_{mn}$

5.1.3.2 outer product AX = B

Focus on each element of X, with X is seperated as row by row.

5.1.3.2.1 vector vector
$$xy^T := [x_i]_{m1} \cdot [y_j]_{1n} = [x_iy_j]_{mn}$$

In row view, we have $i \to: \mathbf{A}_{i:} = x_i \cdot \mathbf{y}^T$, this notation means that for each i, we do the follows. And $\mathbf{A}_{i:}$ means the ith row of the row separation of \mathbf{A}

In column view, we have $j \to : \mathbf{A}_{:j} = \mathbf{x} \cdot y_j$

 $^{^{1}\}sum$ comes with k.

5.1. BASIC NOTATION 21

5.1.3.2.2 matrix matrix [|||]outerProduct[-] = [], we just sum each matrix M, where M = [|]outerProduct[-].

$$X_{mk} \cdot Y_{kn} = k \rightarrow: outerProduct \ of(X_{:k}, Y_{k:})$$

We carefully focus on the use of each element of the matrix Y, like $A_{11}, A_{12}, A_{13}, \cdots$, we can see it is true.

5.1.3.2.3 question

Question 5.1. power function 001 solve $(xy^T)^k$. If k=1, easy. if k>1, and $=(y^Tx)^{k-1}xy^T$

Question 5.2. power function 002

solve $(\mathbf{X}\mathbf{Y}^T)^k, X, Y \in \mathbb{R}^{n \times 2}$. Same trick like power function 001.

- 5.1.3.3 saxpi
- **5.1.3.3.1** scalar scalar y = ax + y
- 5.1.3.3.2 scalar vector $y = a \cdot x + y$
- 5.1.3.3.3 matrix vector $y = A \cdot x + y$
 - **5.1.3.3.3.1** view row: $[-] \cdot | = [-]$ This is the basic view of the dot product of the matrix. in view row first, we have:

Algorithm 1: saxpyMatrixVectorRowAlgo1

Input: A_{mn}, x, y

Output: y

- ${\it 1 \ Initialization:} i=0, j=0;$
- 2 for $i \leftarrow 0$ to m-1 do

$$\begin{array}{c|c} \mathbf{3} & \mathbf{for} \ j \leftarrow 0 \ \mathbf{to} \ n-1 \ \mathbf{do} \\ \mathbf{4} & y_i \leftarrow A_{ij}x_j + y_i \\ \mathbf{5} & \mathbf{end} \end{array}$$

- 6 end
- 7 return y;

We separate \mathbf{A} as row, $\mathbf{A}_{mn} = [\mathbf{r}_i^T, ...]^T$, the j range can be shinked, the algorithm is as follows. This means that, we operate each row at a time, and think each row is one whole object.

Algorithm 2: saxpyMatrixVectorRowAlgo2

Input: $A_{mn} = [r_i^T, ...]^T, x, y$

Output: y

- 1 Initialization: i = 0, j = 0;
- 2 for $i \leftarrow 0$ to m-1 do
- $\mathbf{3} \quad y_i \leftarrow \boldsymbol{r}_i^T \cdot \boldsymbol{x} + y_i$
- 4 end
- 5 return y;

5.1.3.3.3.2 view column: [|||] outerProduct[-] = [] $A_{mn}x = y$, we separate A column by column, x row by row, use outer product, focus on the use of x.

in column view, we add each column of A to the same output column to get the new y, and the weight of each column comes from each row of x

Algorithm 3: saxpyMatrixVectorColumnAlgo1

Input: A_{mn}, x, y

Output: y

- 1 Initialization: i = 0, j = 0;
- 2 for $j \leftarrow 0$ to n-1 do

3 | for
$$i \leftarrow 0$$
 to $m-1$ do

- $\mathbf{4} \quad | \quad y_i \leftarrow A_{ij}x_j + y_i$
- 5 end
- 6 end
- 7 return y;

Algorithm 4: saxpyMatri

Input: $oldsymbol{A}_{mn} = [oldsymbol{c}_i,...], oldsymbol{c}_i$

Output: y

Also with column separation of $A_{mn} = [c_i, ...]$, we have the vector view algorithm:

- 1 Initialization: i = 0, j = 0
- 2 for $j \leftarrow 0$ to n-1 do
- $egin{array}{ccc} oldsymbol{y} \leftarrow oldsymbol{c}_i \cdot x_j + oldsymbol{y} \ & oldsymbol{a} \end{array}$ end
- 5 return y;

5.1.4 solve equation

 $A_{mn}x = y$ 求解方法,如消元法、迭代法等。

5.2. DETERMINANT 23

5.1.4.1 elimination 消元法

 ${f 5.1.4.1.1}$ Gaussian Elimination 基础步骤的 O(n) 的,但是最终组合起来就是 $O(n^3)$ 的。

利用初等变换化(同解变换)为"阶梯形(或称上三角形)",从下往上回代。

阶梯型: 1) 0 行在下方; 2) 每行首个非 0 元的列号随行号增大而严格增大。

简化阶梯型: 1) 阶梯型; 2) 主元是 1; 3) 主元所在列其他元素是 0.

简化阶梯型后,可直接写出一般解,如下方程,其中主变量是 x_1,x_3 ,其余是自由未知量。

$$\begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$$
(5.5)

 $Ans: x_1 = x_2 + 2; x_3 = -1$

Augmented matrix

5.2 determinant

行列式,定义、性质、展开、Gramer 法则等

5.2.1 排列

5.2.1.0.1 偶排列 如 2431, 顺序对有 24, 23, 逆序对有 21, 43, 41, 31, 逆序数是 4, 记为 $\tau(2431) = 4$. 是偶数则为偶排列。

Lemma 5.1. 对换改变奇偶性,如 2431 是偶排列,对换 4 和 1 后得到的 2134 是奇排列。证明:对换 ab,

若 ab 相邻: 偏序函数原来查询 (ab), 记为 P(a,b), 对换后改为 P(b,a), 反号, 而 b 更后面的元素相关的查询不受影响, 因而改变符号;

若 ab 不相邻: 记为 $ax_1 \cdots x_t b$, 经过 t 次对换变为 $x_1 \cdots x_t a b$, 经过 t+1 次对换变为 $bx_1 \cdots x_t a$, 即改变符号。若 ab 不相邻, 还可以这样考虑: 对换前后,与 a 和 b 有关的查询为 $(a,[x_i,b]),(x_i,b)$, 对换后即将其中 a 和 b 互换, 影响的查询共有 2t+1 个, 即改变符号。即证。

5.3 polynomial

因式分解定理, 多项式的根, 多元多项式。

5.4 operation

初等变换、代数运算、分块运算、乘法、秩

5.5 Transformation

线性变换、坐标变换、像与核、特征向量、特征子空间、商空间 正交变换规范变换 酉相似

5.5.1 Elementary Transformation

初等变换。

- 1) 交换两行: $A \xrightarrow{(i,j)} B$
- (2) 某行乘以不为 (0) 的数: (A) $\xrightarrow{\lambda(i)}$ (B)
- 3) 某行乘以不为 0 的数加到另一行上: $\mathbf{A} \xrightarrow{\lambda(i)+(j)} \mathbf{B}$ 初等矩阵: 单位矩阵执行一系列初等变换得到的矩阵. 初等变换作用于矩阵 \mathbf{A} , 等于初等变换作用于单位阵之后得到的初等矩阵 \mathbf{E} 再作用于 \mathbf{A} .

5.6 Form

5.6.1 Jordan

Jordan 型、根子空间分解、循环子空间、多项式矩阵相抵不变量、特征方阵与相似标准型

5.6.2 二次

配方法构造、对称方阵的相合、相合不变量