Etude de systèmes thermodynamiques

T1 - Chapitre 2

I. Systèmes purement thermiques

$$dU = TdS = CdT$$

$$\begin{array}{ll} \text{indilatable} & \Leftrightarrow & \left(\frac{\partial V}{\partial T}\right)_P = 0 \\ \\ \text{incompressible} & \Leftrightarrow & \left(\frac{\partial V}{\partial P}\right)_T = 0 \end{array}$$

II. Système ouvert

1. Corps pur homogène

Ext. S V n ou m
Int. T
$$-P$$
 μ ou g $dU = TdS - PdV + \mu dn$

$$g = \left(\frac{\partial U}{\partial m}\right)_{SV}$$
 ou $\mu = \left(\frac{\partial U}{\partial n}\right)_{SV} = \left(\frac{\partial H}{\partial n}\right)_{SV} = \left(\frac{\partial F}{\partial n}\right)_{TV} = \left(\frac{\partial G}{\partial n}\right)_{TV}$

2. Relations massique et molaires

Equation d'Euler :
$$G = \mu n$$
 $X = mx = nX_m$

Relation de Gibbs Duhem :
$$SdT - VdP + nd\mu = 0$$

On a donc
$$\mu = G_m(T, P)$$
, c'est le potentiel chimique. $d\mu = -S_m dT + V_m dP$

$$\underline{\mu(T,P) = \mu^0(T) + RT \ln \frac{P}{P^0}} \quad \text{à } T = cst$$

3. Equilibre chimique d'un système isolé

S est maximum à l'équilibre.
$$T_A = T_B \qquad P_A = P_B \qquad \mu_A = \mu_B$$

4. Equilibre entre N espèces chimique à T_{ext} et P_{ext} constantes

$$x_i = \frac{m_i}{m} \qquad g_1 = \dots = g_N$$