$\mathrm{ULB} \hspace{3cm} 2018/2019$

MATHF214 - Compléments de mathématiques

Assistant : Robson Nascimento Titulaire : Dimitri Leemans

LISTE 8 - GROUPES

Exercice 1. Soient $(G_1, *_1)$ et $(G_2, *_2)$ deux groupes et $f: G_1 \to G_2$ un morphisme de groupe (c'est-à-dire que $f(g *_1 g') = f(g) *_2 f(g'), \forall g, g' \in G_1$). On dénote par e_2 l'élément neutre de G_2 . Prouver que le noyau de f, c'est-à-dire le sous-ensemble de G_1 défini par

$$Ker(f) := f^{-1}(e_2) = \{g \in G_1, \ f(g) = e_2\}$$

est un sous-groupe. Même question avec l'image de f, c'est-à-dire le sous-ensemble de G_2 défini par

$$Im(f) := f(G_1) = \{ f(g), g \in G_1 \}.$$

Exercice 2. Soit G un groupe fini muni de la loi *. Donner la définition de sous-groupe de G. Montrer que si H_1 et H_2 sont deux sous-groupes de G, alors l'ensemble $H_1 \cap H_2$ est encore un sous-groupe de G.

Exercice 3. Montrer qu'un groupe non commutatif d'ordre 10 admet exactement 4 ou 7 représentations irréductibles et déterminer leurs dimensions possibles.

Exercice 4. Soit $C_{4v} = \{E, C_4^1, C_4^2, C_4^3, \sigma_v, \sigma_{v'}, \sigma_{v''}, \sigma_{v'''}\}$ le groupe de symétrie constitué de l'idendité E, des rotations C_4^1, C_4^2, C_4^3 d'angle $\pi/2, \pi$ et $3\pi/2$ autour d'un axe d, et des symétries de réflexion par rapport à quatre plans passant par d faisant chacun un angle de $\pi/4$ avec le précédent.

- 1. Déterminer les classes d'éléments conjugués du groupe C_{4v} .
- 2. Déterminer les matrices de la représentation R telle que

$$R(C_4^1) = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \qquad R(\sigma_v) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Exercice 5. Soit G un groupe d'ordre 24 comportant de 5 classes de conjugaison C_i , avec $1 \le i \le 5$. Ces classes comprennent respectivement 1, 6, 3, 8 et 6 éléments. Compléter la table suivante qui donne les caractères des éléments du groupe G dans les représentations irréductibles R_1, R_2, R_3, R_4 et R_5 de ce groupe (on rappelle que R_1 est la représentation triviale).

	$ C_1 $	$6\mathcal{C}_2$	$3\mathcal{C}_3$	$8C_4$	$6\mathcal{C}_5$
R_1					
R_2	1	-1	1	1	
R_3	2	0			0
R_4		1		0	
R_5	3	-1		0	

Exercice 6. Soit G un groupe d'ordre 12 comportant de 4 classes de conjugaison C_1, C_2, C_3 et C_4 . Ces classes comprennent respectivement 1, 3, 4 et 4 éléments. Compléter la table suivante qui donne les caractères des éléments du groupe G dans les représentations irréductibles R_1, R_2, R_3 et R_4 de ce groupe, où on note $\omega = e^{2i\pi/3} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$.

	\mathcal{C}_1	$3\mathcal{C}_2$	$4\mathcal{C}_3$	$4\mathcal{C}_4$
R_1				
R_2			ω	
R_3	1			ω
R_4		-1		0

Suggestion : commencer par calculer les possibles dimensions des représentations et remplir la première colonne en faisant deux cas.