3D visualization of the electromagnetic field intensity distribution for UHF-RFID-identification

Garching bei Muenchen, April 2016 IDP Presentation Morteza Mostajab

> fml – Lehrstuhl für Fördertechnik Materialfluss Logistik Prof. Dr.-Ing. Dipl.-Wi.-Ing. W. A. Günthner Technische Universität München

Agenda

- 1 Introduction
- 2 Problem Definition
- 3 Setting up the virtual world
- 4 Data Collection
- 5 Data Visualization
- 6 Results

Introduction

- UHF-RFID-System demands reliable detection of transponders
- A knowledge of the field strength distribution in an area of interest
 - Speeds up optimizing the installation
- The general goal of the whole project:
 - Create a method and hardware to measure the field strength distribution.
 - Using a mobile device

Problem Definition

- Building a model of examined installation in 3d virtual world.
 - Should be fast and intractable (Using tracking system).
- Assist the user during measurement by specific visualization.
 - Make the measurement process faster.
 - Collect enough data for an accurate visualization.
- Visualize collected data in different ways.
 - Investigate appropriate visualization methods.
 - To detect weak/strong parts of the environment.

ART-Tracker

ART-Tracker

ART-Tracker

Markers

Coordinate System Origin Marker

Antenna Pose Marker

Dipole Tracking Marker

Setting up the virtual world

Requirements

- Environment coordinate's origin
- Gate dimensions
- UHF Antenna's position and orientation
- Defining these specifications:
 - Manually using mouse or keyboard.
 - Requires measurements
 - Hard to measure orientation and position accurately
 - Use a tracking system to detect them by processing the images.

Setting up the virtual world

Defining environment coordinate system's origin

- Defining Antenna's position and orientation
 - Defines the gate's dimensions implicitly

Gate Dimension Determination

Data Collection

- Area of interest is an axis-aligned bounding box which the magnetic field values in it is of interest.
- Defining the area of interest:
 - Using dipole's head to determine its min and max points.
 - Manually enter the area of interest resolution.

User Assistant During Data Collection

Progress bar per grid's element

User Assistant During Data Collection

Data Visualization

- Visualizing all collected data
- Visualizing magnetic field magnitude
- Visualizing grid elements
- Visualizing the magnetic field volume

Torus/Sphere Glyph

- Rendering high number of torus/spheres on GPU
 - Generating geometries on the GPU using geometry shader
 - Using higher order primitives method

Torus/Sphere Glyph using Geometry Shader

Cons:

Not smooth -> Limitation in number of generated primitives and vertices.

Torus/Sphere Glyph with Higher-Order Primitives (HOP)

- Ray-casting sphere/torus:
 - Intersecting ray-sphere equation
 - Intersecting ray-torus equation:
 - Quartic Function
 - Requires double precision computation to reduce aliasing
- Pros:
 - Pixel-Accurate Primitives

Transparency

- Focus on part of dataset using transparency
 - Using two scrollbars to define transparency for weak/strong values

Direct Volume Rendering (DVR)

- 2D Projection of a 3D scalar field
 - Ray casting the volumetric data

Future Works

Add Order Independent Transparency (OIT)

Wrong rendering order

Right rendering order

Future Works

ClearView Technique to focus on a specific part of dataset

Vielen Dank für Ihre Aufmerksamkeit!

Prof. Dr.-Ing. Dipl.-Wi.-Ing. Willibald A. Günthner

Technische Universität München fml - Lehrstuhl für Fördertechnik Materialfluss Logistik

Boltzmannstr. 15 85748 Garching

Tel +49.89.289.15921 Fax +49.89.289.15922 E-Mail: kontakt@fml.mw.tum.de