AoPS Community

2024 Romanian Master of Mathematics

15th RMM 2024

www.artofproblemsolving.com/community/c3771372

by Tintarn, Assassino9931

Day 1 February 28

Let n be a positive integer. Initially, a bishop is placed in each square of the top row of a $2^n \times 2^n$ chessboard; those bishops are numbered from 1 to 2^n from left to right. A *jump* is a simultaneous move made by all bishops such that each bishop moves diagonally, in a straight line, some number of squares, and at the end of the jump, the bishops all stand in different squares of the same row.

Find the total number of permutations σ of the numbers $1, 2, \ldots, 2^n$ with the following property: There exists a sequence of jumps such that all bishops end up on the bottom row arranged in the order $\sigma(1), \sigma(2), \ldots, \sigma(2^n)$, from left to right.

Israel

Consider an odd prime p and a positive integer N < 50p. Let a_1, a_2, \ldots, a_N be a list of positive integers less than p such that any specific value occurs at most $\frac{51}{100}N$ times and $a_1 + a_2 + \cdots + a_N$ is not divisible by p. Prove that there exists a permutation b_1, b_2, \ldots, b_N of the a_i such that, for all $k = 1, 2, \ldots, N$, the sum $b_1 + b_2 + \cdots + b_k$ is not divisible by p.

Will Steinberg, United Kingdom

Given a positive integer n, a collection $\mathcal S$ of n-2 unordered triples of integers in $\{1,2,\ldots,n\}$ is $[\mathbf i]n$ -admissible[/ $\mathbf i$] if for each $1\leq k\leq n-2$ and each choice of k distinct $A_1,A_2,\ldots,A_k\in\mathcal S$ we have

$$|A_1 \cup A_2 \cup \cdots A_k| \ge k + 2.$$

Is it true that for all n>3 and for each n-admissible collection \mathcal{S} , there exist pairwise distinct points P_1,\ldots,P_n in the plane such that the angles of the triangle $P_iP_jP_k$ are all less than 61° for any triple $\{i,j,k\}$ in \mathcal{S} ?

Ivan Frolov, Russia

Day 2 February 29

Fix integers a and b greater than 1. For any positive integer n, let r_n be the (non-negative) remainder that b^n leaves upon division by a^n . Assume there exists a positive integer N such that $r_n < \frac{2^n}{n}$ for all integers $n \ge N$. Prove that a divides b.

Pouria Mahmoudkhan Shirazi, Iran

2024 Romanian Master of Mathematics

Let BC be a fixed segment in the plane, and let A be a variable point in the plane not on the line BC. Distinct points X and Y are chosen on the rays CA^{\rightarrow} and BA^{\rightarrow} , respectively, such that $\angle CBX = \angle YCB = \angle BAC$. Assume that the tangents to the circumcircle of ABC at B and C meet line XY at P and Q, respectively, such that the points X, P, Y and Q are pairwise distinct and lie on the same side of BC. Let Ω_1 be the circle through X and Y centred on Y0 centred on Y1 and Y2 intersect at two fixed points as Y2 varies.

Daniel Pham Nguyen, Denmark

A polynomial P with integer coefficients is *square-free* if it is not expressible in the form $P = Q^2R$, where Q and R are polynomials with integer coefficients and Q is not constant. For a positive integer n, let P_n be the set of polynomials of the form

$$1 + a_1x + a_2x^2 + \dots + a_nx^n$$

with $a_1, a_2, \ldots, a_n \in \{0, 1\}$. Prove that there exists an integer N such that for all integers $n \ge N$, more than 99% of the polynomials in P_n are square-free.

Navid Safaei, Iran