

SPRAWOZDANIE

ĆWICZENIE: 4		TERMIN: PT 16:45-19:00		DATA: 06.12.2023	GRUPA: C4
TEMAT: MIKROFLUIDYCZNY DETEKTOR SPEKTROFOTOMETRYCZNY (VIS)					
1.	MATEUSZ			Kowalczyk	268533
2.	MICHAŁ			Kozłowski	268693

Wprowadzenie

Mikrofluidyczny detektor spektrofotometryczny stanowi innowacyjne narzędzie w dziedzinie analizy chemicznej i biochemicznej, umożliwiając precyzyjne i czułe pomiary w skali mikroobjętości. Zastosowanie mikrofluidyki w detekcji spektrofotometrycznej pozwala na wykrywanie oraz analizę substancji z niezwykłą dokładnością, minimalizując zużycie próbek i reagentów. Celem tego sprawozdania jest zgłębienie zasad pracy oraz budowy chipa mikrofluidycznego do spektrofotometrycznej analizy cieczy w zakresie światła widzialnego oraz analiza transmitancji próbek.

Metoda

Na początku ćwiczenia sprawdzaliśmy kompletność stanowiska oraz zapoznaliśmy się z zasadami pomiaru za pomocą pipety labolatoryjnej. Następnie przygotowaliśmy próbki o różnych stężeniach analitu w celu późniejszej obserwacji i analizy ich transmitancji. Stanowisko pomiarowe wyglądało w uproszczeniu następująco (Rysunek 1.):

Rysunek 2 Stanowisko pomiarowe

Wyznaczanie konkretnych wartości poszczególnych spektrum odbywało się w programie Spectra Suite.

Eksperyment

Charakterystka transmitancji T próbek (Rysunek 2.) według wzoru:

$$T~=~\frac{I_A}{I_R}~\times~100\,\%$$

 $, gdzie\;I_{A}\;=\;spektrum\;analitu,\;I_{R}\;=\;spektrum\;referencyjne$

Charakterystyki transmitancji T próbek

Rysunek 2 Charakterystyki transmitancji T próbek

Rysunek 3 Charakterystyki spektrum próbek

Rysunek 4 Charakterystyki transmisji z zastosowaniem FFT

LABORATORIUM CZUJNIKI W MEDYCYNIE

Wnioski i podsumowanie

Na podstawie przeprowadzonych pomiarów jesteśmy w stanie jednoznacznie stwierdzić, że spektrum posiada największą intensywność podczas pomiaru próbki wody. Natomiast najmniejszą intensywność podczas pomiaru stężenia 100% wina.

Zauważyć możemy również przesunięcia spektrum w funkcji stężenia analitu - wraz ze wzrostem stężenia wina widma przesuwają się w stronę większej długości fali naszego spektrum. Jest to związane z kolorem wina, ponieważ próbki wraz ze wzrostem stężenia wina miały bardziej intensywny kolor czerwony i tym samym przedstawiały widmo o większej długości fali.

Charakterystyczne piki natomiast dalej występują i pokrywają się w tym samym miejscu w dziedzinie długości fali widma.

Rola studenta

Analiza stanu techniki: Mateusz Kowalczyk, Michał Kozłowski Kontrola stanowiska przed wykonaniem badań: Mateusz Kowalczyk, Michał Kozłowski.; Przeprowadzenie badań: Mateusz Kowalczyk, Michał Kozłowski; Przetwarzanie wyników: Mateusz Kowalczyk; Edycja sprawozdania: Mateusz Kowalczyk; Kontrola jakości sprawozdania: Michał Kozłowski

Bibliografia

• Literatura obowiązkowa: Nanoliter detector for flow systems,