AP Calculus BC
Practice Taylor Series Test
Spring 2017

Name:	
Date	Period:

No Calculator Permitted

Consider the series $\sum_{n=1}^{\infty} \frac{e^n}{n!}$. If the ratio test is applied to the series, which of the following inequalities results, implying that the series converges?

(a)

$$\lim_{n\to\infty}\frac{e}{n!}<1$$

$$\lim_{n\to\infty}\frac{n!}{\varrho}<1$$

$$\lim_{n\to\infty}\frac{n+1}{e}<1$$

$$\lim_{n\to\infty}\frac{e}{n+1}<1$$

$$\lim_{n\to\infty}\frac{e}{n!}<1 \qquad \qquad \lim_{n\to\infty}\frac{n!}{e}<1 \qquad \qquad \lim_{n\to\infty}\frac{n+1}{e}<1 \qquad \qquad \lim_{n\to\infty}\frac{e}{n+1}<1 \qquad \qquad \lim_{n\to\infty}\frac{e}{(n+1)!}<1$$

Which of the following series converges for all real numbers x?

(a) $\sum_{n=1}^{\infty} \frac{x^n}{n}$

(b)
$$\sum_{n=1}^{\infty} \frac{x^n}{n^2}$$

(c)
$$\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$$

(b)
$$\sum_{n=1}^{\infty} \frac{x^n}{n^2}$$
 (c) $\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$ (d) $\sum_{n=1}^{\infty} \frac{e^n x^n}{n!}$ (e) $\sum_{n=1}^{\infty} \frac{n! x^n}{e^n}$

(e)
$$\sum_{n=1}^{\infty} \frac{n! x^n}{e^n}$$

What are all values of x for which the series $\sum_{n=1}^{\infty} \left(\frac{2}{x^2+1}\right)^n$ converges?

(a) -1 < x < 1

- (b) x > 1 only
- (c) $x \ge 1$ only
- (d) x < -1 and x > 1 only
- (e) $x \le -1$ and $x \ge 1$
- What is the sum of the series $1 + \ln(2) + \frac{(\ln(2))^2}{2!} + \dots + \frac{(\ln(2))^n}{n!} + \dots$

(a)

ln(2)

ln(1+ln(2))

The series diverges

- 5. $\sum_{n=1}^{\infty} a_n$ diverges and $0 \le a_n \le b_n$ for all n, which of the following statements must be true?
- (a) $\sum_{n=0}^{\infty} (-1)^n a_n$ converges
- (b) $\sum_{n=0}^{\infty} (-1)^n b_n$ converges
- (c) $\sum_{n=0}^{\infty} (-1)^n b_n$ diverges
- (d) $\sum_{n=0}^{\infty} b_n$ converges
- (e) $\sum_{n=0}^{\infty} b_n$ diverges

AP Calculus BC
Chapter 9 Test
Spring 2012

Name:	
Date	Period:

6. Let
$$f(x) = \ln(1+x^3)$$

- (a) [5 points] The Maclaurin series for $\ln(1+x)$ is $x \frac{x^2}{2} + \frac{x^3}{3} \frac{x^4}{4} + \dots + \frac{(-1)^{n+1}x^n}{n} + \dots$. Use the series to write the first four nonzero terms and the general term of the Maclaurin series for f.
- (b) [4 points] The radius of convergence of the Maclaurin series for f is 1. Determine the interval of convergence. Show the work that leads to your answer.

6 Continued

Let
$$f(x) = \ln(1+x^3)$$
 and $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + \frac{(-1)^{n+1}x^n}{n} + \dots$

- (c) [6 points] Write the first four nonzero terms of the Maclaurin series for $f'(t^2)$. If $g(x) = \int_0^x f'(t^2) dt$ use the first two nonzero terms of the Maclaurin series for g to approximate g(1).
- (d) [3 points] The Maclaurin series for g, evaluated at x=1, is a convergent alternating series with individual terms that decrease in absolute value to 0. Show that your approximation in part (c) must differ from g(1) by less than $\frac{1}{5}$.

- 7. Let $f(x) = \sin(x^2) + \cos(x)$. The graph of $y = |f^{(5)}(x)|$ is shown at right.
- (a) [6 points] Write the first four nonzero terms of the Taylor series for $\sin(x)$ about x = 0, and write the first four nonzero terms of the Taylor series for $\sin(x^2)$ about x = 0.
- (b) [6 points] Write the first four nonzero terms of the Taylor series for $\cos(x)$ about x = 0. Use this series and the series for
- $\sin(x^2)$, found in part (a), to write the first four nonzero terms of the Taylor series for f about x = 0.

7 Continued

- (c) [3 points] Find the value of $f^{(6)}(0)$.
- (d) [3 points] Let $P_4(x)$ be the fourth-degree Taylor polynomial for f about x = 0. Using information from the graph of $y = f^{(5)}(x)$ shown at right, show that

$$\left| P_4 \left(\frac{1}{4} \right) - f \left(\frac{1}{4} \right) \right| \le \frac{1}{3000}.$$

