In [2]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

In [3]:

```
df=pd.read_csv(r'C:\Users\Lenovo\Downloads\new clean')
desc=pd.read_csv(r'C:\Users\Lenovo\Documents\LCDataDictionary.csv')
```

In [4]:

```
1 df.head()
```

Out[4]:

	Unnamed: 0	id	member_id	loan_amnt	funded_amnt	funded_amnt_inv	term	int_rate
0	0	1077501	1296599.0	5000.0	5000.0	4975.0	36 months	10.65%
1	1	1077430	1314167.0	2500.0	2500.0	2500.0	60 months	15.27%
2	2	1077175	1313524.0	2400.0	2400.0	2400.0	36 months	15.96%
3	3	1076863	1277178.0	10000.0	10000.0	10000.0	36 months	13.49%
4	4	1075358	1311748.0	3000.0	3000.0	3000.0	60 months	12.69%

5 rows × 48 columns

```
→
```

In [5]:

```
1 df.drop('Unnamed: 0',axis=1,inplace=True)
```

In [6]:

```
for i in range(desc.shape[0]):
    if desc.loc[i]['LoanStatNew'] not in df:
        desc.drop(index=i, inplace=True)
```

In [7]:

```
1 desc.reset_index(drop=True, inplace=True)
```

In [8]:

1 desc

Out[8]:

	LoanStatNew	Description
0	addr_state	The state provided by the borrower in the loan
1	annual_inc	The self-reported annual income provided by th
2	collection_recovery_fee	post charge off collection fee
3	delinq_2yrs	The number of 30+ days past-due incidences of
4	dti	A ratio calculated using the borrower's total
5	earliest_cr_line	The month the borrower's earliest reported cre
6	emp_length	Employment length in years. Possible values ar
7	emp_title	The job title supplied by the Borrower when ap
8	fico_range_high	The upper boundary range the borrower's FICO a
9	fico_range_low	The lower boundary range the borrower's FICO a

In [9]:

1 df.head()

Out[9]:

	id	member_id	loan_amnt	funded_amnt	funded_amnt_inv	term	int_rate	installmer
0	1077501	1296599.0	5000.0	5000.0	4975.0	36 months	10.65%	162.8
1	1077430	1314167.0	2500.0	2500.0	2500.0	60 months	15.27%	59.8
2	1077175	1313524.0	2400.0	2400.0	2400.0	36 months	15.96%	84.3
3	1076863	1277178.0	10000.0	10000.0	10000.0	36 months	13.49%	339.3
4	1075358	1311748.0	3000.0	3000.0	3000.0	60 months	12.69%	67.7
5 rows × 47 columns								

In [10]:

```
1 df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 42350 entries, 0 to 42349
Data columns (total 47 columns):

Data	columns (total 47 column	s):			
#	Column	Non-Null Count	Dtype		
0	id	42350 non-null	 int64		
1	member_id	42350 non-null	float64		
2	loan amnt	42350 non-null	float64		
3	funded_amnt	42350 non-null			
4	funded_amnt_inv	42350 non-null	float64		
5	term	42350 non-null	object		
6	int_rate	42350 non-null	object		
7	installment	42350 non-null	float64		
8	grade	42350 non-null	object		
9	sub_grade	42350 non-null	object		
10	emp_title	42350 non-null	object		
11	emp_length	42350 non-null	object		
12	home_ownership	42350 non-null	object		
13	annual_inc	42350 non-null	float64		
14	verification_status	42350 non-null	object		
15	issue_d	42350 non-null	object		
16	loan_status	42350 non-null	object		
17	purpose	42350 non-null	object		
18	title	42350 non-null	object		
19	zip_code	42350 non-null	object		
20	addr_state	42350 non-null	object		
21	dti	42350 non-null	float64		
22	delinq_2yrs	42350 non-null	float64		
23	earliest_cr_line	42350 non-null	object		
24	fico_range_low	42350 non-null	float64		
25	fico_range_high	42350 non-null	float64		
26	inq_last_6mths	42350 non-null	float64		
27	open_acc	42350 non-null	float64		
28	pub_rec	42350 non-null	float64		
29	revol_bal	42350 non-null	float64		
30	revol_util	42350 non-null	object		
31	total_acc	42350 non-null	float64		
32	out_prncp	42350 non-null	float64		
33	out_prncp_inv	42350 non-null	float64		
34	total pymnt	42350 non-null	float64		
35	total pymnt inv	42350 non-null	float64		
36	total_rec_prncp	42350 non-null	float64		
37	total_rec_int	42350 non-null	float64		
38	total_rec_late_fee	42350 non-null	float64		
39	recoveries	42350 non-null	float64		
40	collection_recovery_fee	42350 non-null	float64		
41	last_pymnt_d	42350 non-null	object		
42	last pymnt amnt	42350 non-null	float64		
43	last_credit_pull_d				
		42350 non-null	object		
44 45	last_fico_range_high	42350 non-null	float64		
45 46	last_fico_range_low	42350 non-null	float64		
46	<pre>pub_rec_bankruptcies</pre>	42350 non-null	float64		
dtypes: float64(28), int64(1), object(18)					

memory usage: 15.2+ MB

```
In [ ]:
 1
In [11]:
 1 df['id'].dtype
Out[11]:
dtype('int64')
In [12]:
 1 def int_rate_clean(i):
 2
        return (i[:-1])
In [13]:
 1 | df['int_rate']=df['int_rate'].apply(int_rate_clean).astype(float)
In [14]:
 1 def term_clean(i):
        return (i[0:3])
 2
In [15]:
 1 | df['term']=df['term'].apply(term_clean).astype(int)
In [16]:
 1 def revol_util_clean(i):
 2
        return (i[:-1])
In [17]:
 1 | df['revol_util']=df['revol_util'].apply(revol_util_clean).astype(float)
In [ ]:
 1
```

```
In [18]:
```

```
1 df.describe()
```

Out[18]:

	id	member_id	loan_amnt	funded_amnt	funded_amnt_inv	term
count	4.235000e+04	4.235000e+04	42350.000000	42350.000000	42350.000000	42350.000000
mean	6.653378e+05	8.266770e+05	11109.211924	10840.211334	10162.262400	42.220165
std	2.188062e+05	2.788685e+05	7409.408311	7145.056871	7130.080610	10.516469
min	5.473400e+04	7.069400e+04	500.000000	500.000000	0.000000	36.000000
25%	4.989700e+05	6.395432e+05	5200.000000	5100.000000	4964.045719	36.000000
50%	6.450115e+05	8.249430e+05	9800.000000	9600.000000	8500.000000	36.000000
75%	8.263058e+05	1.034498e+06	15000.000000	15000.000000	14000.000000	60.000000
max	1.077501e+06	1.314167e+06	35000.000000	35000.000000	35000.000000	60.000000

8 rows × 32 columns

```
→
```

```
In [19]:
```

```
for i in df.columns:
    if df[i].dtype=='object':
        print(i)
```

```
grade
sub_grade
emp_title
emp_length
home_ownership
verification_status
issue_d
loan_status
purpose
title
zip_code
addr_state
earliest_cr_line
last_pymnt_d
last_credit_pull_d
```

In []:

1

In [20]:

```
plt.figure(figsize=(10,6))
sns.set_style('darkgrid')
sns.barplot(y='title',x='loan_amnt',data=df.groupby('title')['loan_amnt'].mean().sort_v
plt.suptitle("Top 10 loan titles of Loan provided by borrower",fontsize=20)
plt.xlabel('Loan Amount',fontsize=15)
plt.ylabel('')
plt.show()
```

Top 10 loan titles of Loan provided by borrower

In [21]:

```
plt.figure(figsize=(10,6))
sns.barplot(y='title',x='annual_inc',data=df.groupby('title')['annual_inc'].mean().sort
plt.suptitle("Top 10 loan title's with highest income per anum",fontsize=20)
plt.xlabel('Annual Income',fontsize=15)
plt.ticklabel_format(style='plain',axis='x')
plt.ylabel('')
plt.show()
```

Top 10 loan title's with highest income per anum

In [22]:

```
plt.figure(figsize=(10,6))
sns.barplot(y='emp_title',x='loan_amnt',data=df.groupby('emp_title')['loan_amnt'].mean(
plt.suptitle("Top 10 loan title's with highest income per anum",fontsize=20)
plt.xlabel('Loan Amount',fontsize=15)
plt.ticklabel_format(style='plain',axis='x')
plt.ylabel('')
plt.show()
```

Top 10 loan title's with highest income per anum

In [23]:

```
plt.figure(figsize=(10,6))
sns.barplot(y='emp_title',x='annual_inc',data=df.groupby('emp_title')['annual_inc'].mea
plt.suptitle("Top 10 loan title's with highest income per anum",fontsize=20)
plt.xlabel('Annual Income',fontsize=15)
plt.ticklabel_format(style='plain',axis='x')
plt.ylabel('')
plt.show()
```

Top 10 loan title's with highest income per anum

In [24]:

```
plt.figure(figsize=(10,6))
sns.countplot(x='grade', data=df.sort_values('grade'))
plt.suptitle("Number of Assigned loan grades",fontsize=20)
plt.xlabel('Grades')
plt.ylabel('')
plt.show()
```

Number of Assigned loan grades

In [25]:

In [26]:

```
plt.figure(figsize=(16,6))
sns.countplot(x='sub_grade', data=df.sort_values('sub_grade'))
plt.title("Number of Assigned loan sub grades",size=20)
plt.xlabel('Sub-Grades')
plt.ylabel('')
plt.show()
```


In [27]:

```
plt.figure(figsize=(16,6))
sns.countplot(x='emp_length', data=df.sort_values('emp_length'))
plt.title("EMPLOYEE LENGH",size=20)
plt.xlabel('No. of Years')
plt.ylabel('')
plt.show()
#HOW MUCH TIME
```

EMPLOYEE LENGH 8000 4000 2000 1 year 10+ years 2 years 3 years 4 years 5 years 8 years 9 years < 1 year No. of Years

In [28]:

```
plt.figure(figsize=(12,6))
sns.countplot(x='home_ownership', data=df)
plt.title("Home_ownership",size=20)
plt.xlabel('Sub-Grades')
plt.ylabel('')
plt.show()
```


In [29]:

Home ownership

In [30]:

```
plt.figure(figsize=(10,6))
sns.countplot(x='verification_status', data=df)
plt.title("Varification status count ",size=20)
plt.xlabel('Sub-Grades',size=15)
plt.ylabel('')
plt.show()
```

Varification status count

In [31]:

In [32]:

```
plt.figure(figsize=(10,6))
sns.countplot(y='loan_status', data=df)
plt.title("Loan status",size=20)

plt.xlabel('Sub-Grades')
plt.ylabel('')
plt.show()
```


In [33]:

```
plt.figure(figsize=(10,6))
sns.countplot(y='purpose', data=df)
plt.title("Purpose of loan",size=20)
plt.xlabel('Sub-Grades')
plt.ylabel('')
plt.show()
```


In [34]:

```
plt.figure(figsize=(10,6))
sns.countplot(x='term', data=df)
plt.title("count of load on the basis of term", size=20)
plt.xlabel('No.of Months')
plt.ylabel('')
plt.show()
```

count of load on the basis of term

In []:

1

In [35]:

```
for i in df.columns:
    if df[i].dtype!='object':
        print(i)
```

```
id
member_id
loan_amnt
funded_amnt
funded_amnt_inv
term
int_rate
installment
annual_inc
dti
delinq_2yrs
fico_range_low
fico_range_high
inq_last_6mths
open_acc
pub_rec
revol_bal
revol_util
total_acc
out_prncp
out_prncp_inv
total_pymnt
total_pymnt_inv
total_rec_prncp
total_rec_int
total_rec_late_fee
recoveries
collection_recovery_fee
last_pymnt_amnt
last_fico_range_high
last_fico_range_low
pub_rec_bankruptcies
```

In [36]:

```
plt.figure(figsize=(10,6))
sns.barplot(x='grade', y='loan_amnt', data=df.groupby('grade')['loan_amnt'].mean().sort
plt.title('Loan amount of Each Grade',size=20)
plt.xlabel('Grade')
plt.ylabel('Total Installment')
plt.show()
```

Loan amount of Each Grade

In [37]:

```
plt.figure(figsize=(16,6))
sns.barplot(x='sub_grade', y='loan_amnt', data=df.groupby('sub_grade')['loan_amnt'].mea
plt.title('loan amount of each sub-grade',size=20)
plt.xlabel('')
plt.ylabel('')
plt.show()
```


In []:

In [38]:

```
plt.figure(figsize=(12,6))
sns.barplot(x='home_ownership', y='loan_amnt', data=df.groupby('home_ownership')['loan_amnt']
plt.title('Home ownership vs loan amount')
plt.show()
```


In [39]:

```
plt.figure(figsize=(8,5))
sns.barplot(x='verification_status', y='loan_amnt', data=df.groupby('verification_status')
plt.title('count of Varification status of borrowers',size=16)
plt.xlabel('')
plt.ylabel('')
plt.show()
```

count of Varification status of borrowers

In [40]:

```
plt.figure(figsize=(12,4))
sns.barplot(y='loan_status', x='loan_amnt', data=df.groupby('loan_status')['loan_amnt']
plt.title('loan amoubt v/s loan status')
plt.xlabel('')
plt.ylabel('')
plt.show()
```


In [41]:

```
plt.figure(figsize=(18,8))
sns.barplot(x='purpose', y='loan_amnt', data=df.groupby('purpose')['loan_amnt'].mean().
plt.title('purpose of loan v\s loan amount')
plt.xlabel('')
plt.ylabel('')
plt.show()
```


In []:

1

In [42]:

```
for i in df.columns:
    if df[i].dtype=='object':
        print(i)
```

grade
sub_grade
emp_title
emp_length
home_ownership
verification_status
issue_d
loan_status
purpose
title
zip_code
addr_state
earliest_cr_line
last_pymnt_d
last_credit_pull_d

In [43]:

```
plt.figure(figsize=(12,8))
sns.barplot(x='grade', y='annual_inc', data=df.groupby('grade')['annual_inc'].mean().so
plt.title('Grade v\s anual income')
4 plt.xlabel('')
5 plt.ylabel('')
6 plt.show()
```


In [44]:

```
plt.figure(figsize=(18,8))
sns.barplot(x='sub_grade', y='annual_inc', data=df.groupby('sub_grade')['annual_inc'].n
plt.title('sub-grade v\s anual income')
plt.xlabel('')
plt.ylabel('')
plt.show()
```


In []:

1

In [45]:

In [46]:

```
plt.figure(figsize=(18,8))
sns.barplot(x='verification_status', y='annual_inc', data=df.groupby('verification_stat')
plt.title('varificatin status v\s annual income')
plt.xlabel('')
plt.ylabel('')
plt.show()
```


In [47]:

```
plt.figure(figsize=(18,8))
sns.barplot(x='loan_status', y='annual_inc', data=df.groupby('loan_status')['annual_inc']
plt.title('loan status v\s anual income ')
plt.xlabel('')
plt.ylabel('')
plt.show()
```


In [48]:

```
plt.figure(figsize=(18,8))
sns.barplot(x='purpose', y='annual_inc', data=df.groupby('purpose')['annual_inc'].mean(
plt.title('purpose v\s annual income')
plt.xlabel('')
plt.ylabel('')
plt.show()
```


In [49]:

```
for i in df.columns:
    if df[i].dtype=='object':
        print(i)
```

grade
sub_grade
emp_title
emp_length
home_ownership
verification_status
issue_d
loan_status
purpose
title
zip_code
addr_state
earliest_cr_line
last_pymnt_d
last_credit_pull_d

In [50]:

```
plt.figure(figsize=(18,8))
sns.barplot(x='grade', y='installment', data=df.groupby('grade')['installment'].mean().
plt.title('installment as per grade')
plt.xlabel('')
plt.ylabel('')
plt.show()
```


In [51]:

```
plt.figure(figsize=(18,8))
sns.barplot(x='sub_grade', y='installment', data=df.groupby('sub_grade')['installment']
plt.title('sub ')
plt.xlabel('')
plt.ylabel('')
plt.show()
```


In []:

1

In [52]:

```
plt.figure(figsize=(18,8))
sns.barplot(x='home_ownership', y='installment', data=df.groupby('home_ownership')['installment']
plt.title('')
plt.xlabel('')
plt.ylabel('')
plt.show()
```


In [53]:

```
plt.figure(figsize=(18,8))
sns.barplot(x='verification_status', y='installment', data=df.groupby('verification_status')
plt.title('')
plt.xlabel('')
plt.ylabel('')
plt.show()
```


In [54]:

```
plt.figure(figsize=(18,8))
sns.barplot(x='loan_status', y='installment', data=df.groupby('loan_status')['installment']
plt.title('')
plt.xlabel('')
plt.ylabel('')
plt.show()
```


In [55]:

```
plt.figure(figsize=(18,8))
sns.barplot(x='purpose', y='installment', data=df.groupby('purpose')['installment'].mea
plt.title('')
plt.xlabel('')
plt.ylabel('')
plt.show()
```


In [56]:

```
for i in df.columns:
    if df[i].dtype=='object':
        print(i)
```

```
grade
sub_grade
emp_title
emp_length
home_ownership
verification_status
issue_d
loan_status
purpose
title
zip_code
addr_state
earliest_cr_line
last_pymnt_d
last_credit_pull_d
```

In [99]:

```
plt.figure(figsize=(18,8))
sns.barplot(x='grade', y='int_rate', data=df.groupby('grade')['int_rate'].mean().sort_v
plt.title('intrest rate as per grade',size=18)
plt.xlabel('')
plt.ylabel('')
plt.show()
```


In [98]:

```
plt.figure(figsize=(18,8))
sns.barplot(x='sub_grade', y='int_rate', data=df.groupby('sub_grade')['int_rate'].mean(
plt.title('sub_grade vs intrest rate',size=18)

plt.xlabel('')
plt.ylabel('')
plt.show()
```


In []:

1

In [97]:

```
plt.figure(figsize=(12,5))
sns.barplot(x='home_ownership', y='int_rate', data=df.groupby('home_ownership')['int_rate']
plt.title('home_ownership vs intrest rate',size=18)
plt.xlabel('')
plt.ylabel('')
plt.show()
```


Not Verified

In [96]:

```
plt.figure(figsize=(12,5))
sns.barplot(x='verification_status', y='int_rate', data=df.groupby('verification_status')
plt.title('varification status vs interst rate',size=18)
plt.xlabel('')
plt.ylabel('')
plt.show()
```

varification status vs interst rate 12 10 8 6 4 2

Source Verified

In [95]:

Verified

```
plt.figure(figsize=(18,8))
sns.barplot(x='loan_status', y='int_rate', data=df.groupby('loan_status')['int_rate'].r
plt.title('loan status vs intrest rate',size=18)
plt.xlabel('')
plt.ylabel('')
plt.show()
```


In [94]:

```
plt.figure(figsize=(18,8))
sns.barplot(x='purpose', y='int_rate', data=df.groupby('purpose')['int_rate'].mean().so
plt.title('purpose of loan vs intrest rate',size=18)

plt.xlabel('')
plt.ylabel('')
plt.show()
```


In [64]:

```
for i in df.columns:
    if df[i].dtype!='object':
        print(i)
```

```
id
member_id
loan_amnt
funded_amnt
funded_amnt_inv
term
int_rate
installment
annual_inc
dti
delinq_2yrs
fico_range_low
fico_range_high
inq_last_6mths
open_acc
pub_rec
revol_bal
revol_util
total_acc
out_prncp
out_prncp_inv
total_pymnt
total_pymnt_inv
total_rec_prncp
total_rec_int
total_rec_late_fee
recoveries
collection_recovery_fee
last_pymnt_amnt
last_fico_range_high
last_fico_range_low
pub_rec_bankruptcies
```

In [101]:

```
plt.figure(figsize=(16,10))
 2
 3
   plt.subplot(2,2,1)
4 plt.suptitle('Funded Amount vs Loan Amount',fontsize=18)
   sns.scatterplot(x='funded_amnt', y='loan_amnt', hue='grade', data=df)
 5
   plt.xlabel('')
 7
   plt.ylabel('Loan Amount')
 8
9
   plt.subplot(2,2,2)
   sns.scatterplot(x='funded_amnt', y='loan_amnt', hue='home_ownership', data=df)
10
11
   plt.xlabel('')
   plt.ylabel('')
12
13
14
   plt.subplot(2,2,3)
   sns.scatterplot(x='funded_amnt', y='loan_amnt', hue='loan_status', data=df)
15
16
   plt.xlabel('Funded Amount')
17
   plt.ylabel('Loan Amount')
18
   plt.subplot(2,2,4)
19
   sns.scatterplot(x='funded_amnt', y='loan_amnt', hue='verification_status', data=df)
20
   plt.xlabel('Funded Amount')
   plt.ylabel('')
22
23
24
   plt.show()
```

Funded Amount vs Loan Amount

In [102]:

```
plt.figure(figsize=(16,10))
 2
 3
   plt.subplot(2,2,1)
   plt.suptitle('Annual Income vs Loan Amount',fontsize=18)
 4
   sns.scatterplot(x='annual_inc', y='loan_amnt', hue='grade', data=df)
 5
   plt.xlabel('')
 7
   plt.ylabel('Loan Amount')
 8
9
   plt.subplot(2,2,2)
   sns.scatterplot(x='annual inc', y='loan amnt', hue='home ownership', data=df)
10
11
   plt.xlabel('')
   plt.ylabel('')
12
13
14
   plt.subplot(2,2,3)
   sns.scatterplot(x='annual_inc', y='loan_amnt', hue='loan_status', data=df)
15
16
   plt.xlabel('Annual Income')
   plt.ylabel('Loan Amount')
17
18
   plt.subplot(2,2,4)
19
   sns.scatterplot(x='annual_inc', y='loan_amnt', hue='verification_status', data=df)
20
   plt.xlabel('Annual Income')
   plt.ylabel('')
22
23
24
   plt.show()
```

Annual Income vs Loan Amount

In [103]:

```
plt.figure(figsize=(16,10))
 2
 3
   plt.subplot(2,2,1)
 4
   plt.suptitle('Total payment vs Loan Amount',fontsize=18)
 5
   sns.scatterplot(x='total_pymnt', y='loan_amnt', hue='grade', data=df)
   plt.xlabel('')
 7
   plt.ylabel('Loan Amount')
 8
9
   plt.subplot(2,2,2)
   sns.scatterplot(x='total_pymnt', y='loan_amnt', hue='home_ownership', data=df)
10
11
   plt.xlabel('')
   plt.ylabel('')
12
13
14
   plt.subplot(2,2,3)
   sns.scatterplot(x='total_pymnt', y='loan_amnt', hue='loan_status', data=df)
15
16
   plt.xlabel('Total payment')
17
   plt.ylabel('Loan Amount')
18
   plt.subplot(2,2,4)
19
   sns.scatterplot(x='total_pymnt', y='loan_amnt', hue='verification_status', data=df)
20
   plt.xlabel('Total payment')
   plt.ylabel('')
22
23
24
   plt.show()
```

Total payment vs Loan Amount

In [104]:

```
plt.figure(figsize=(16,10))
 1
 2
 3
   plt.subplot(2,2,1)
 4
   plt.suptitle('Interest Rate vs Loan Amount',fontsize=18)
   sns.scatterplot(x='int_rate', y='loan_amnt', hue='grade', data=df)
   plt.xlabel('')
   plt.ylabel('Loan Amount')
 7
 8
 9
   plt.subplot(2,2,2)
   sns.scatterplot(x='int_rate', y='loan_amnt', hue='home_ownership', data=df)
10
   plt.xlabel('')
11
12
   plt.ylabel('')
13
14
   plt.subplot(2,2,3)
   sns.scatterplot(x='int_rate', y='loan_amnt', hue='loan_status', data=df)
15
   plt.xlabel('Interest Rate')
16
17
   plt.ylabel('Loan Amount')
18
19
   plt.subplot(2,2,4)
   sns.scatterplot(x='int_rate', y='loan_amnt', hue='verification_status', data=df)
20
   plt.xlabel('Interest Rate')
21
   plt.ylabel('')
22
23
24
   plt.show()
```

Interest Rate vs Loan Amount

In [105]:

```
plt.figure(figsize=(16,10))
 2
   plt.subplot(2,2,1)
4
   plt.suptitle('Total payment vs Recovery', fontsize=18)
 5
   sns.scatterplot(x='total_pymnt', y='recoveries', hue='grade', data=df)
   plt.xlabel('')
 7
   plt.ylabel('Recovery')
 8
9
   plt.subplot(2,2,2)
   sns.scatterplot(x='total pymnt', y='recoveries', hue='home ownership', data=df)
10
11
   plt.xlabel('')
   plt.ylabel('')
12
13
14
   plt.subplot(2,2,3)
   sns.scatterplot(x='total_pymnt', y='recoveries', hue='loan_status', data=df)
15
16
   plt.xlabel('Total payment')
17
   plt.ylabel('Recovery')
18
   plt.subplot(2,2,4)
19
   sns.scatterplot(x='total_pymnt', y='recoveries', hue='verification_status', data=df)
20
   plt.xlabel('Total payment')
   plt.ylabel('')
22
23
24
   plt.show()
```

Total payment vs Recovery


```
In [70]:
```

```
1
    for i in df.columns:
 2
        if df[i].dtype=='object':
 3
             print(i)
grade
sub_grade
emp_title
emp_length
home_ownership
verification_status
issue_d
loan_status
purpose
title
zip_code
addr_state
earliest_cr_line
last_pymnt_d
last_credit_pull_d
In [71]:
 1 date_col=['issue_d','last_pymnt_d','last_credit_pull_d']
In [72]:
 1 | for i in date_col:
        df[i] = pd.to_datetime(df[i])
 2
In [73]:
    for i in df.columns:
 2
        if df[i].dtype=='datetime64[ns]':
 3
            print(i)
issue_d
last_pymnt_d
last_credit_pull_d
In [ ]:
 1
In [ ]:
 1
```

In [106]:

```
plt.figure(figsize=(16,16))
 2
   plt.subplot(3,2,1)
4 plt.suptitle('Average Loans In Each Year', fontsize=18)
   sns.barplot(x='issue_d', y='loan_amnt', data=df[df['issue_d'].dt.year==2007].groupby(df
   plt.title('Year 2007')
   plt.xlabel('')
 7
   plt.ylabel('Amount')
8
9
10
   plt.subplot(3,2,2)
11 sns.barplot(x='issue_d', y='loan_amnt', data=df[df['issue_d'].dt.year==2008].groupby(df
   plt.title('Year 2008')
   plt.xlabel('')
13
14
   plt.ylabel('')
15
16
   plt.subplot(3,2,3)
   sns.barplot(x='issue_d', y='loan_amnt', data=df[df['issue_d'].dt.year==2009].groupby(df
17
18
   plt.title('Year 2009')
   plt.xlabel('')
19
   plt.ylabel('Amount')
20
21
22 plt.subplot(3,2,4)
   sns.barplot(x='issue_d', y='loan_amnt', data=df[df['issue_d'].dt.year==2010].groupby(df
23
24
   plt.title('Year 2010')
   plt.xlabel('Months')
26
   plt.ylabel('')
27
28
   plt.subplot(3,2,5)
29
   sns.barplot(x='issue_d', y='loan_amnt', data=df[df['issue_d'].dt.year==2011].groupby(df
   plt.title('Year 2012')
30
   plt.xlabel('Months')
31
   plt.ylabel('Amount')
32
33
34
   plt.show()
```


In [107]:

```
plt.figure(figsize=(16,8))
sns.lineplot(x='issue_d', y='loan_amnt', data=df)
plt.title('Loan Amount Forecasting',size=18)
plt.xlabel('Issue Date')
plt.ylabel('Loan Amount')
plt.show()
```


In [108]:

```
plt.figure(figsize=(16,8))
sns.lineplot(x='last_pymnt_d', y='total_pymnt', data=df)
plt.title('Payment Amount Forecasting',size=18)

plt.xlabel('Last Payment Date')
plt.ylabel('Amount')
plt.show()
```


In [77]:

```
plt.figure(figsize=(30,14))
sns.heatmap(df.corr(),annot=True)
plt.show()
```


In	In []:	
1	1	
In	In []:	
1	1	
In	In []:	
1	1	