Practice Project Overview

Estimated Effort: 5 mins

Project Scenario

You have to perform data analytics on a medical insurance charges dataaset. This is a filtered and modified version of the <u>Medical Insurance Price Prediction</u> dataset, available under the <u>CC0 1.0 Universal License</u> on the <u>Kaggle</u> website.

Parameters

The parameters used in the dataset are:

1. Age

Age of the insured. Integer quantity.

2. Gender

Gender of the insured. This parameter has been mapped to numerical values in the following way.

Gender Assigned Value

Female 1

Male 2

3. **BMI**

Body Mass Index of the insured. Float value quantity.

4. No of Children

Number of children the insured person has. Integer quantity.

5. Smoker

Whether the insured person is a smoker or not. This parameter has been mapped to numerical values in the following way.

Smoker Assigned Value

Smoker

1

Non smoker 2

6. Region

Which region of the USA does the insured belong to. This parameter has been mapped to numerical values in the following way.

Region Assigned Value

Northwest 1

Northeast 2

Southwest 3

Region Assigned Value

Southeast 4

7. Charges

Charges for the insurance in USD. Floating value quantity.

Objectives

In this project, you will:

- Load the data as a pandas dataframe
- Clean the data, taking care of the blank entries
- Run exploratory data analysis and identify the attributes that most affect the charges
- Develop single variable and multi variable Linear Regression models for predicting the charges
- Use Ridge regression to refine the performance of Linear regression models.

Author(s)

Abhishek Gagneja

Vicky Kuo

Changelog

Date (YYYY-MM-DD)	Version	Changed By	Change Description
2023-09-16	0.1	Abhishek Gagneja	Initial Version Created
2023-09-19	0.2	Vicky Kuo	Reviewed and Revised

Copyright © 2023 IBM Corporation. All rights reserved.