SM SA OSH

Invertible Matrix Theorem

The following are all equivalent:

- 1 Ac Roxm'is invertible
- ② A is row-equivalent to I
- @ A has n. Pivots.
- @ Ax=b has a unique solution for any be IR
- 5) Ax = 0 has only the solution x = 0.
- 1 The columns of A are linearly independent
- (7) Col(A) spans all of IRn → columns of A form a basis
- (8) AT is invertible:
- a A has a one-sided inverse
- (dim (col(A)) = n
- (1) rank(A) = dim (col(A)) = n
- 12) Null (A) = { 0 }
- (3) dim (Null (A)) = 0

Miscellaneous (III)

- Dany vector in Rr can be , 1 represented as a unique linear Combination of vectors in a basis for R^
- 2) If you show something to be true for each of the standard basis vectors of a vector space IR", you have shown it to be true for mett every vector YEIR

Miscellaneous

- 1) row rank A = column rank A
- 2 n LI vectors in Rn span Rn and form a basis for it
- 3 Bases are never unique
- 9 # of columns of A = dim(col(A)) + dim(Nul(A))
- (5) any vector Y1 perpendicular to vector & satisfies $C^T \underline{V}_1 = 0$

Proof Tactics.

Dif NullA) = \$, piv in every column DA LI vecs som basis DIF A cols are basis PR, any b in R^ can be made of LC's of A cols i.e. is in col(A). since Ax expends to a LC of A'S GIS, Ax= b hes naitue besis-vectop soltin for every 6

Morrant MPRICER

Dimeasioas

Column Space (Col(A))

The span of all Linearly Independent columns of A dim(col(A)) = # Pivot vars = # Pivot columns

Null Space (Null(A))

Span of all vecs x Such that $A \times = Q$ dim (Null (A)) = # free vars = # cols A - # Piv cols

ヨリーし

onic.

(Col(AT) Row Space

Span of all LI rows of A

Jim (Col(AT))

Left Null (Null(AT))

Sim (Nul (AT)) = M-, r

Short Version:

Jim (Col(A)) = # Pivots = P Jim (Col(AT)) = P

dim(NullA)) = # free = n-p Sim (NW(AT)) = M-P

Linear Insependence

A set of vectors Y1,..., Yk are Linearly Independent if no vector can be written as a Linear Combination of the others. Otherwise, the set is Linearly Dependent.

Standard Busis Vectors of space irn are and form most intuitive basis of IRM

Proving Linear Independence Vectors are LI if:

- OTHE REF matrix constructed from them has a pivot in every Column
- 2) The eqn. C1 X1 + ... + Cn Xn = 0 has only solution all Ct = 0
- (3) The determinant of the square matrix Constructed from them **≠**0
- 4) The matrix constructed from them satisfies a condition of the Invertible Matrix Thm

Rank rank(A) = dim(col(A)) = # pivots

Thm: subspace dims the only subspace of 1R^ w/ dimension n is 12"

Proving Dasis Vector Representations Are Unique

- ues, basis = ¿y,, ..., yk}
- ひこc/スリ+・・・+ Ck Yk
- if u also = d, Y, + ... + dk YK, R-R=0=(C1-91) オリ・・・
- and all coeffs = 0 bc {Y1, ..., Yk} are LI -50 C1-d1=0
- . " U is unique

Thm: dims of Col(A), Nul(A) AGRMEN.

C, = d1

dim(Col(A)) + dim(Nul(A)) =total # columns = h

Bases From K Vectors (Thm) given sev,

- () if s is dim K, any set OF K LI vectors forms basis for S
- ", any set of K yeas that spon S form a basis for it

Basis

A basis for a subspace 5 of a vector space V is a set of vectors in S which

- 1) are Linearly Independent
- 2 span the subspace And any vector in 5 can bewritten as a Linear Combination

C, Y, + C2 Y2 + ... + C1 Y1 of the basis vectors, which is unique.

Col(A) = span } LI cols A }

NW(A)

= solutions to Ax = 0

Dimension

of a subspace 5 with basis ZYI, ..., YK3 OF K MANY vectors = # vectors in basis = k

Proving a Span Is a Subspace If you can construct every basis vector from an LC of span vectors, than whole space is in span, and, be of dismensions, stan z space.

2 Determine if a set of vectors is Linearly Independent
F CIVI + CZV2+ + CKYK = Q is only solvable for all C = 0, Combine vectors into a matrix
REF matrix if Pivot in every column, vecs are LI. Calc determinant (if square)
if Jet \$0, vecs are LI.
3) Find Perpendicular Vector VII to vec un
$\frac{U:V_{\perp}=0}{V_{\perp}}$ $\frac{U:V_{\perp}=0}{V_{\perp}}$ $\frac{V_{\perp}(A)}{V_{\perp}}$
anstruct [A i u] and solve. If consistent,

ŧ

22 M9 [401]

(1) Compute bases and dimensions of each of the four fundamental subspaces of a matrix A.

Col(A)

- Oreduce to echelon form
- @ Identify Pivots
- 3 identify Pivot columns
- 4) same columns in A form basis of column space
- 5 dim (COILA)) = # pivot variables

[Col (AT)]

- 1) Calc AT
- @ RREF AT
- 3 Pivot columns
- 9 basis is pivot columns from original A
- 5 sim(Col(AT)) = dim(Col(A))

Nul(A)

- To find basis, just characterize the solution set to Ax= 0
- Oreduce to echelon form
- 2 Identify non-pivot columns (Columns without pivots)

- (5) go to reduced-row echelon form
- 6 pivot vars as functions of free vars
- (7) non-pivot vars = free
- (8) write solution set in vector form
- 19 the vectors you just constructed are the basis vectors for NullA)
 - (i) dim (Nul(A)) = # columns - # pivot columns = # vecs in basi's

[Nul(AT)

- (1) variable Ans from RREF AT
- @ eliminate as many vars as possible
- 3) vecs in vector form of solution set form basis = # rows # Pivs (4) dim(Nul(A)) = m-#pivs = # vecs in

Definitions

Basis: If a set of Vectors in Rn

("The smallest) () are Linearly Independent, and

2 Span the space Rn.

then the vectors form a basis of R.

This means that any vector VERT can be Constructed from a unique linear combination of vectors in the basis set.

Span: a set of vectors spans R"

The span of a set of vectors is the set of all linear tombin vectors that can be made from LC's of the span vectors

Span $\{ Y_1, Y_2, \ldots, Y_n \}$ $= \frac{1}{2} \left\{ \underline{X} : \underline{X} = C_1 \underline{Y}_1 + \dots + C_n \underline{Y}_n \right\}$

- Spans are subspaces by definition

Standard Basis Vectors

For a vector space Rn there are 17 standard [1] [1] which form a bases of R^ basis redors


```
Geometric Interp of
                                - 20 subspc is plane
     -Pivots: wen revisit
                                                 line
                                -10
                                 -0 D
                                                  9+
     -dim(
   - dim is most important for telling how many basis vectors
     You're looking for.
 17) if XTY=0, YER, then X=0
             + xTY =0 -> two years are I.
         Trick: if \2b,, ..., boz is a basis for R,
               and XTb =0 for all basis vectors b,
 To show live
 for all 41
 show frue for
               then XTY=0 for all YER"
all basis vectors
       -> (bc any YEIR) is a combination of the vectors b in
         all basis of Rr.)
                     Y ECILIT Cabat... + Caba
                   X^{T}Y = X^{T}(C, b_1 + C_2b_2 + ... + C_nb_n)
                         = xT(c,b,)+... + xT(c,b,)
broot
                         : c, (xTb, ) + ... + Cn (xT bn)
                 IF XThi=0, =0+...+0
                                   2 54 20
```

17) Now, Prove lemma/precondition

Since XTY =0 for any Y, this
will be true if Y=e, e1, etc.

$$x^{T}e_{1}=0$$
 = $x_{1}(1)+x_{2}(0)+...+0$ = $x_{1}=0$
 $x^{T}e_{2}=0$
 $x_{1}=0$
 $x_{1}=0$

for all X: Thus,

3d) big red flag: unique

X= 0

26) false be will always have o