Machine Learning for Data Science (CS4786) Lecture 14

Latent Variables, EM Algorithm

Course Webpage:

http://www.cs.cornell.edu/Courses/cs4786/2016sp/

EXAMPLES

- Gaussian Mixture Model
 - Each θ consists of mixture distribution $\pi = (\pi_1, \dots, \pi_K)$, means $\mu_1, \dots, \mu_K \in \mathbb{R}^d$ and covariance matrices $\Sigma_1, \dots, \Sigma_K$
 - At time *t* we generate a new tree as follows:

$$c_t \sim \pi$$
, $x_t \sim N(\mu_{c_t}, \Sigma_{c_t})$

each theta consists μ 1- μ k: tree location of center $\pi = (0.2, 0.1, 0.7)\mu$ u -> u1 u2 u3 covariance matrices Σ 1, Σ 2, Σ 3

PROBABILISTIC MODELS

More generally:

- ⊖ consists of set of possible parameters
- We have a distribution P_{θ} over the data induced by each $\theta \in \Theta$
- Data is generated by one of the $\theta \in \Theta$
- Learning: Estimate value or distribution for $\theta^* \in \Theta$ given data

MAXIMUM LIKELIHOOD PRINCIPAL

Pick $\theta \in \Theta$ that maximizes probability of observation

$$\theta_{MLE} = \operatorname{argmax}_{\theta \in \Theta} \underbrace{\log P_{\theta}(x_1, \dots, x_n)}_{\text{Likelihood}}$$

MAXIMUM A POSTERIORI

Pick $\theta \in \Theta$ that is most likely given data

$$\theta_{MAP} = \operatorname{argmax}_{\theta \in \Theta} \log P(\theta | x_1, \dots, x_n)$$

$$= \operatorname{argmax}_{\theta \in \Theta} \log \underbrace{\underbrace{P(x_1, \dots, x_n | \theta)}_{\text{likelihood}} \underbrace{P(\theta)}_{\text{prior}}}_{\text{prior}}$$

$$= \operatorname{argmax}_{\theta \in \Theta} \log \underbrace{(P(x_1, \dots, x_n | \theta))}_{\text{log likelihood}} + \log \underbrace{(P(\theta))}_{\text{log prior}}$$

EXAMPLE: GAUSSIAN MIXTURE MODEL

MLE:
$$\theta = (\mu_1, \ldots, \mu_K), \pi, \Sigma$$

$$P_{\theta}(x_1,\ldots,x_n) = \prod_{t=1}^n \left(\sum_{i=1}^K \pi_i \frac{1}{\sqrt{(2*3.1415)^2 |\Sigma_i|}} \exp\left(-(x_t - \mu_i)^{\top} \Sigma_i (x_t - \mu_i)\right) \right)$$

Find θ that maximizes $\log P_{\theta}(x_1, \dots, x_n)$

MLE FOR GMM

Let us consider the one dimensional case,

$$\log P_{\theta}(x_{1,...,n}) = \sum_{t=1}^{n} \log \left(\sum_{i=1}^{K} \pi_{i} \frac{1}{\sqrt{2 * 3.1415\sigma_{i}^{2}}} \exp\left(-(x_{t} - \mu_{i})^{2} / \sigma_{i}^{2}\right) \right)$$

Now consider the partial derivative w.r.t. μ_1 , we have:

$$\frac{\partial \log P_{\theta}(x_{1,\dots,n})}{\partial \mu_{1}} = \sum_{t=1}^{n} \frac{\frac{\pi_{1}}{\sigma_{1}} \exp\left(-\frac{(x_{t}-\mu_{1})^{2}}{\sigma_{1}^{2}}\right)}{\sum_{i=1}^{K} \frac{\pi_{i}}{\sigma_{i}} \exp\left(-\frac{(x_{t}-\mu_{i})^{2}}{\sigma_{i}^{2}}\right)}$$

Even given all other parameters, optimizing w.r.t. just μ_1 is hard!

MLE FOR GMM

Say by some magic you knew cluster assignments, then

$$\log P_{\theta}((x_{t}, c_{t})_{1,...,n}) = \sum_{t=1}^{n} \log \left(\frac{\pi_{c_{t}}}{\sqrt{2 * 3.1415\sigma_{c_{t}}^{2}}} \exp \left(-\frac{(x_{t} - \mu_{c_{t}})^{2}}{2\sigma_{c_{t}}^{2}} \right) \right)$$

$$= \sum_{t=1}^{n} \left(\log(\pi_{c_{t}}) - \log(2 * 3.1415 * \sigma_{c_{t}}^{2}) - \frac{(x_{t} - \mu_{c_{t}})^{2}}{2\sigma_{c_{t}}^{2}} \right)$$

Now consider the partial derivative w.r.t. μ_i , we have:

$$\begin{split} \frac{\partial \log P_{\theta}((x_{t}, c_{t})_{1, \dots, n})}{\partial \mu_{i}} &= -\frac{\partial}{\partial \mu_{i}} \sum_{t=1}^{n} \left(\frac{1}{2\sigma_{c_{t}}^{2}} (x_{t} - \mu_{c_{t}})^{2} \right) \\ &= -\frac{1}{2\sigma_{i}^{2}} \frac{\partial}{\partial \mu_{i}} \sum_{t: c_{t} = i} (x_{t} - \mu_{i})^{2} \\ &= \frac{1}{\sigma_{i}^{2}} \sum_{t: c_{t} = i} (x_{t} - \mu_{i}) \end{split}$$

LATENT VARIABLES

- We only observe x_1, \ldots, x_n , cluster assignments c_1, \ldots, c_n are not observed
- Finding $\theta \in \Theta$ (even for 1-d GMM) that directly maximizes Likelihood or A Posteriori given x_1, \dots, x_n is hard!
- Given latent variables c_1, \ldots, c_n , the problem of maximizing likelihood (or a posteriori) became easy

Can we use latent variables to device an algorithm?

EXPECTATION MAXIMIZATION ALGORITHM

• For demonstration we shall consider the problem of finding MLE (MAP version is very similar)

EXPECTATION MAXIMIZATION ALGORITHM

- For demonstration we shall consider the problem of finding MLE (MAP version is very similar)
- Initialize $\theta^{(0)}$ arbitrarily, repeat unit convergence:

(E step) For every t, define distribution Q_t over the latent variable c_t as:

$$Q_t^{(i)}(c_t) = P(c_t|x_t, \theta^{(i-1)})$$

(M step)

$$\theta^{(i)} = \operatorname{argmax}_{\theta \in \Theta} \sum_{t=1}^{n} \sum_{c_t} Q_t^{(i)}(c_t) \log P(x_t, c_t | \theta)$$

EXAMPLE: EM FOR GMM

• E step: For every $k \in [K]$,

$$Q_t^{(i)}(c_t = k) = P\left(c_t = k | x_t, \theta^{(i-1)}\right) = P\left(x_t | c_t = k, \theta^{(i-1)}\right) \times P\left(c_t = k | \theta^{(i-1)}\right)$$

$$\propto \underbrace{\Phi\left(x_t; \mu_k^{(i-1)}, \Sigma_k^{(i-1)}\right)}_{\text{gaussian p.d.f.}} \times \pi_k^{(i-1)}$$

EXAMPLE: EM FOR GMM

• E step: For every $k \in [K]$,

$$Q_t^{(i)}(c_t = k) = P\left(c_t = k | x_t, \theta^{(i-1)}\right) = P\left(x_t | c_t = k, \theta^{(i-1)}\right) \times P\left(c_t = k | \theta^{(i-1)}\right)$$

$$\propto \underbrace{\Phi\left(x_t; \mu_k^{(i-1)}, \Sigma_k^{(i-1)}\right)}_{\text{gaussian p.d.f.}} \times \pi_k^{(i-1)}$$

• M step: Given Q_1, \ldots, Q_n , we need to find

$$\theta^{(i)} = \underset{\theta \in \Theta}{\operatorname{argmax}} \sum_{t=1}^{n} \sum_{k=1}^{K} Q_{t}^{(i)}(k) \log P(x_{t}, c_{t} = k | \theta)$$

$$= \underset{\theta}{\operatorname{argmax}} \sum_{t=1}^{n} \sum_{k=1}^{K} Q_{t}^{(i)}(k) \left(\log P(x_{t} | c_{t} = k, \theta) + \log P(c_{t} = k | \theta) \right)$$

$$= \underset{\pi, \mu_{1, \dots, K}, \Sigma_{1, \dots, K}}{\operatorname{argmax}} \sum_{t=1}^{n} \sum_{c_{t}=1}^{K} Q_{t}^{(i)}(k) \left(\log \varphi(x_{t}; \mu_{k}, \Sigma_{k}) + \log \pi_{k} \right)$$

EXAMPLE: EM FOR GMM

For every $k \in [K]$, the maximization step yields,

$$\mu_k^{(i)} = \frac{\sum_{t=1}^n Q_t^{(i)}(k) x_t}{\sum_{t=1}^n Q_t(k)} , \quad \Sigma_k^{(i)} = \frac{\sum_{t=1}^n Q_t^{(i)}(k) \left(x_t - \mu_k^{(i)} \right) \left(x_t - \mu_k^{(i)} \right)^{\top}}{\sum_{t=1}^n Q_t(k)}$$

$$\pi_k^{(i)} = \frac{\sum_{t=1}^n Q_t^{(i)}(k)}{n}$$

A very high level view:

• Performing E-step will never decrease log-likelihood (or log a posteriori)

A very high level view:

- Performing E-step will never decrease log-likelihood (or log a posteriori)
- Performing M-step will never decrease log-likelihood (or log a posteriori)

Steps to show that $\log \text{Lik}(\theta^{(i+1)}) \ge \log \text{Lik}(\theta^{(i)})$:

$$\log P_{\theta^{(i+1)}}(x_1, \dots, x_n) = \sum_{t=1}^n \log P_{\theta^{(i+1)}}(x_t)$$

$$\geq \sum_{t=1}^n \sum_{c_t=1}^K Q^{(i)}(c_t) \log \left(\frac{P_{\theta^{(i+1)}}(x_t, c_t)}{Q^{(i)}(c_t)} \right)$$

$$\geq \sum_{t=1}^n \sum_{c_t=1}^K Q^{(i)}(c_t) \log \left(\frac{P_{\theta^{(i)}}(x_t, c_t)}{Q^{(i)}(c_t)} \right)$$

$$= \sum_{t=1}^n \log P_{\theta^{(i)}}(x_t)$$

- Likelihood never decreases
- So whenever we converge we converge to a local optima
- However problem is non-convex and can have many local optimal
- In general no guarantee on rate of convergence
- In practice, do multiple random initializations and pick the best one!

EM IN GENERAL

- There was nothing special about GMM or clustering problems
- EM can be used as a general strategy for any problem with latent/missing/unobserved variables
- The MAP version only involves an extra prior term over θ multiplied to the likelihood
- In general probabilistic models with observed and latent variables can be represented succinctly as graphical models.
 Next time...