Redes Neuronales Convolucionales

Residual Networks

Francisco Cervantes Octubre, 2019

ResNet (He et al., 2015)

$$a^{[l+1]} = g(z^{[l+1]}) \qquad \qquad a^{[l+2]} = g(z^{[l+2]})$$

$$z^{[l+1]} = w^{[l+1]}a^{[l]} + b^{[l+1]} \qquad \qquad z^{[l+2]} = w^{[l+2]}a^{[l+1]} + b^{[l+2]}$$

ResNet (He et al., 2015)

Short cut / skip connection

Main path

$$a^{[l+1]} = g(z^{[l+1]}) \qquad \qquad a^{[l+2]} = g(z^{[l+2]})$$

$$z^{[l+1]} = w^{[l+1]}a^{[l]} + b^{[l+1]} \qquad \qquad z^{[l+2]} = w^{[l+2]}a^{[l+1]} + b^{[l+2]}$$

ResNet (He et al., 2015)

Short cut / skip connection

 $a^{[l+2]} = g(z^{[l+2]} + a^{[l]})$

Main path

$$a^{[l+1]} = g(z^{[l+1]}) \qquad \qquad a^{[l+2]} = g(z^{[l+2]})$$

$$z^{[l+1]} = w^{[l+1]}a^{[l]} + b^{[l+1]} \qquad z^{[l+2]} = w^{[l+2]}a^{[l+1]} + b^{[l+2]}$$

4

Residual Network

Red residual

Red simple

Residual Network

Nesidual Network

No. de capas