February 17

MATH 3472

Adam Clay

Test 1

50 minutes

Name:

Solutions.

Student ID:

Q1]...[10 points] Show that the function

$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

is not differentiable at (0,0), but that all its directional derivatives exist there.

Consider lin f(x,y), approaching (0,0) along the $(x,y) \rightarrow (0,0)$ Then

 $\lim_{t \to 0} \frac{t^2 \cdot t^2}{t^4 + t^4} = \lim_{t \to 0} \frac{t^4}{2t^4} = 1/2$

So $f(x_{iy})$ cannot be continuous at (0,0) since f(0,0) = 0. This it is not differentiable there, since differentiable \Rightarrow cts.

Now, let $\vec{V} = (V_1, V_2)$ be an arbitrary nonzero vector and consider

 $f'((0,0); \vec{v}) = \lim_{h \to 0} f((0,0) + ((\vec{v}_1, \vec{v}_2)) - f(0,0)$

 $= \lim_{h\to 0} \frac{h^3 V_1^2 V_2}{h \left(h^4 V_1^4 + h^2 V_2^2\right)}$

= $\lim_{h\to 0} \frac{V_1^2 V_2}{h^2 V_1^4 + V_2^2} = \frac{V_1^2}{V_2}$, provided $V_2 \neq 0$.

If V2=0, then the limit 13

 $\lim_{h\to 0} \frac{0}{h(\text{etc.})} = 0.$

So all directional derivatives exist at (0,0).

Q2]...[10 points] Show that the function

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin\left(\frac{1}{x^2 + y^2}\right) & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

is differentiable everywhere. (You may use without proof that compositions/sums/products/differences of rational functions and trig functions are continuous on their domain).

To show the function is differentiable at $(x,y) \neq (0,0)$, it suffices to show the partials are continuous at (x,y). We comprehe

$$\frac{\partial f}{\partial x} = 2x \sin\left(\frac{1}{x^2 + y^2}\right) + (x^2 + y^2) \cos\left(\frac{1}{x^2 + y^2}\right) \cdot \frac{-1}{(x^2 + y^2)^2} \cdot 2x$$

and $\frac{\partial f}{\partial y} = 2y \sin\left(\frac{1}{\chi^2 + y^2}\right) + (\chi^2 + y^2) \cos\left(\frac{1}{\chi^2 + y^2}\right) \cdot \frac{-1}{(\chi^2 + y^2)^2} \cdot 2y$.

These functions are continuous on their domains, which is $\mathbb{R} \setminus \{(0,0)\}$. Thus (since their domain is open) this implies that f is differentiable at (x,y), by a theorem from class.

At (0,0), we use claim f'(0,0) exists and it is zero. To see this, consider the Taylor formula with $\dot{c}=(0,0)$ and $\dot{v}=(v_1,v_2)$:

$$f((0,0)+(v_1,v_2)) = f(0,0) + 0 + ||(v_1 + v_2)|| E(v)$$
derivative

 $=) \left(V_1^2 + V_2^2\right) \sin\left(\frac{1}{V_1^2 + V_2^2}\right) = ||(V_1, V_2)|| E(\vec{v}). \text{ We must show}$ that such an $E(\vec{v})$ exists, and $E(\vec{v}) \rightarrow 0 \text{ as } \vec{v} \rightarrow 0.$

Take
$$E(\bar{v}) = (V_1^2 + V_2^2) \sin(\frac{1}{(V_1^2 + V_2^2)}) = (V_1^2 + V_2^2) \sin(\frac{1}{(V_1^2 + V_2^2)}) = (V_1^2 + V_2^2) \sin(\frac{1}{(V_1^2 + V_2^2)})$$

 $= \sqrt{V_1^2 + V_2^2} \sin \left(\frac{1}{V_1^2 + V_2^2} \right)$

Now lim $\sqrt{v_1^2 + v_2^2} \sin\left(\frac{1}{v_1^2 + v_2^2}\right) = 0$, since $\sin\left(\frac{1}{v_1^2 + v_2^2}\right)$ is bdd and $\sqrt{v_1^2 + v_2^2} \longrightarrow 0$.

=> f is differentiable.

Q3]...[10 points] (a) Suppose that $f: \mathbb{R}^2 \to \mathbb{R}$ satisfies f'(x,y) = 0 for all (x,y) in $S^1 = \{(x,y) \mid x^2 + y^2 = 1\}$. Prove that f is constant on S^1 .

Let $g: \mathbb{R} \longrightarrow \mathbb{R}^2$ be g(t) = (cost, smt). Then the image of g is S'. The composition $h = f \circ g$ has derivative $h'(t) = f'(cost, sint) \cdot g'(t)$

= 0. g'(t) = 0. Thus, as h has derivative zero on R_1 h is constant. Thus f must be constant on image of g = 5!.

(b) Give an example of an open set $S \subset \mathbb{R}^2$ and a continuous function $f : \mathbb{R}^2 \to \mathbb{R}$ such that $f'(\mathbf{c}) = 0$ for all $\mathbf{c} \in S$, yet f is not constant on S.

Let $S = \{(x,y) \mid x < 0\} \cup \{(x,y) \mid x > 1\}.$

Let f(x,y) be the function,

$$f(x,y) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } 0 < x < 1 \\ 1 & \text{if } x > 1. \end{cases}$$

Then f is continuous, yet on the given open set f' is zero as the function is constant there.

Q4]...[10 points] Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function whose partial derivatives are differentiable everywhere. For a fixed $\mathbf{v} \in \mathbb{R}^n$, define a new function $f_{\mathbf{v}}: \mathbb{R}^n \to \mathbb{R}$ by $f_{\mathbf{v}}(\mathbf{x}) = f'(\mathbf{x}; \mathbf{v})$. Prove or disprove: $f'_{\mathbf{v}}(\mathbf{x}; \mathbf{u}) = f'_{\mathbf{v}}(\mathbf{x}; \mathbf{v})$ for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$.

We compute $f_v(\vec{x})$ using the formula for directional derivatives:

$$f_{v}(\vec{x}) = f'(\vec{x}; \vec{v}) = \nabla f(\vec{x}) \cdot \vec{v}$$

$$= \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(\hat{x}) v_{i}, \text{ if } \vec{v} = (v_{i}, ..., v_{n}).$$

Now to compute $f'_v(\dot{x}; \vec{u})$ we apply the directional derivative formula again.

$$f_{v}'(\vec{x}_{i}\vec{u}) = \nabla \left(\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(\vec{x}) v_{i} \right)$$

$$= \sum_{j=1}^{n} \frac{\partial}{\partial x_{j}} \left(\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(\vec{x}) v_{i} \right) u_{j}$$

$$= \sum_{j=1}^{n} \sum_{i=1}^{n} \frac{\partial^{2} f}{\partial x_{i} x_{i}} (\vec{x}) v_{i} u_{j}$$

$$= \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} x_{j}} (\vec{x}) u_{j} \right) v_{i}$$

by equality of mixed partials, since the first order partials are differentiable

= by the same steps as above, but in reverse ...

=
$$f'_{u}(\vec{x}, \vec{v})$$
.