MATH 251 Advanced Calculus Lecture Notes of Y. Week 1

Zehra Kaya

February 2024

Contents

1	Top	ological Terminology	1
	1.1	Distance between p and q \ldots	1
	1.2	Open Ball	1
	1.3	Interior of S	2
		1.3.1 Open Set	2
	1.4	Exterior of S	2
		1.4.1 Closed Set	2
	1.5	Boundary of S	2
	1.6	Closure of S	2
	1.7	Bounded and Unbounded sets	2

1 Topological Terminology

1.1 Distance between p and q

Definition 1.1: Let
$$p = (x_1, \ldots, x_n), p = (y_1, \ldots, y_n) \in \mathbb{R}^n$$

Then the distance between p and q, denoted ||p-q||, is given by

$$||p-q|| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

1.2 Open Ball

Definition 1.2: Let $p_0 \in \mathbb{R}^n$ and r > 0. The open ball of radius r centered at p_0 is the set

$$B(p_0, r) = \{ p \in \mathbb{R}^n : ||p - p_0|| < r \}$$

1.3 Interior of S

Definition 1.3: Let $S \subseteq \mathbb{R}^n$. The interior of S, denoted int(S), is the set $int(S) = \{p \in S : \exists r > 0, B(p,r) \subseteq S\}$

- 1.3.1 Open Set
- 1.4 Exterior of S
- 1.4.1 Closed Set
- 1.5 Boundary of S
- 1.6 Closure of S
- 1.7 Bounded and Unbounded sets

 ${\bf Theorem}$

Proposition