Introdução ao PSO Aplicado a Controle de Processos

M.Sc. André Felipe Oliveira de Azevedo Dantas

Tópicos Abordados

- Origens;
- Ideia;
- O algoritmo Básico;
- Principais variantes;
- Pesquisas na Área;
- Aplicação a controle;
- Exemplo de aplicação.

Origens do PSO

Como os pássaros, peixes, abelhas possuem um comportamento coletivo tão coordenado?

Origens do PSO

Reynolds propôs um modelo de comportamento nos quais os agentes seguem 3 regras:

- Separação:
 - Cada agente tenta se distanciar de seus vizinhos se estiverem muito perto.
- Alinhamento :
 - Cada agente se move em direção a média dos vizinhos;
- Coesão:
 - Cada agente tenta posicionar-se na média dos vizinhos;

Origens do PSO

Kennedy and Eberhart incluíram um ponto central num modelo semelhante ao de Reynolds tal que:

- Cada agente fosse atraído em direção ao ponto;
- Cada agente "lembrasse" o quão próximo está do ponto;
- Cada agente compartilhasse informações com seus vizinhos sobre a localização mais próxima do ponto.

A ideia do PSO

E se a noção de distância desse ponto fosse variante de acordo com uma função desconhecida? Os agentes conseguiriam atingir ao mínimo da função?

O algoritmo Básico

- Criar duas populações de agentes distribuídos uniformemente ao longo de um plano X (chamdos partículas) e de agentes distribuídos uniformemente ao longo de um plano Pbi (Melhores Locais).
- Avaliar a posição de cada partícula de acordo com a função escolhida que se deseja minimizar ou maximizar.

O algoritmo Básico

- Se a posição avaliada é melhor que a atual "melhor posição", substitua pala partícula.
- Determinar a melhor partícula.
- Atualize as velocidades de acordo com a equação:

$$\mathbf{v}_{i}^{t+1} = \mathbf{v}_{i}^{t} + \varphi_{1}\mathbf{U}_{1}^{t}(\mathbf{pb}_{i}^{t} - \mathbf{x}_{i}^{t}) + \varphi_{2}\mathbf{U}_{2}^{t}(\mathbf{gb}^{t} - \mathbf{x}_{i}^{t}).$$

Mova as partículas para novas posições:

$$\mathbf{x}_{i}^{t+1} = \mathbf{x}_{i}^{t} + \mathbf{v}_{i}^{t+1}$$
.

O algoritmo Básico

 Se o critério de avaliação não foi atingido volte para o ponto 2. Caso tenha sido satisfeito finalize a otimização.

Principais variantes do PSO

 Quase todas as modificações são realizadas de alguma maneira na lei de adaptação da velocidade das partículas.

$$\mathbf{v}_{i}^{t+1} = \underbrace{\mathbf{v}_{i}^{t}}_{inertia} + \underbrace{\varphi_{1}\mathbf{U}_{1}^{t}(\mathbf{pb}_{i}^{t} - \mathbf{x}_{i}^{t})}_{personal influence} + \underbrace{\varphi_{2}\mathbf{U}_{2}^{t}(\mathbf{gb}^{t} - \mathbf{x}_{i}^{t})}_{social influence}$$

Principais variantes do PSO

- Algumas variantes do PSO são adaptadas para incorporar:
 - Diferentes topologias dinâmicas de vizinhos;
 - Aumento da diversidade entre as partículas;
 - Componentes de outras técnicas;
 - Adaptações para sistemas discretos;

Pesquisas na Área de PSO

- As principais linhas de pesquisas, na área de PSO, em desenvolvimento são:
 - Utilização do PSO em vários tipos de sistemas (Dinâmicos, estocásticos, combinatórios);
 - Seleção de parâmetros (quantas partículas deveriam ser utilizadas, qual topologia);
 - Comparação entre diferentes tipos de PSOs já existentes;
 - Novas variantes do algoritmo (híbridos, modificações);
 - Aspectos teóricos (Convergência, comportamento das partículas, como melhorar a busca)

Aplicação a Controle

- A Utilização do PSO em controle de processos visa "melhorar" um determinado processo otimizando funções que refletem comportamento desejado para o referido sistema. É possível utilizá-lo para:
 - Identificar um sistema dinâmico (otimizando modelos não lineares, sujeitos a ruídos de várias naturezas);
 - Otimizar parâmetros de controladores (encontrando o melhor parâmetro para o desempenho desejado);
 - Otimizar as funções dos controladores (sintetizando o sinal de controle utilizando o algoritmo).

- Sintonia de Controladores PID:
 - Dado o seguinte sistema:

O controlador PID sintetiza a seguinte lei de controle:

$$u(t) = K(e(t) + \frac{1}{T_i} \int_{t}^{t} e(\tau)d\tau + T_d \frac{de(t)}{dt})$$

- Ou seja, em cada controlador existem 3 parâmetros a ser encontrados. Para isso existem métodos consagrados na literatura que são facilmente implementados. Ex:
 - Ziegler e Nichols;
 - Método do Relé (adaptativo).

 Porém, para uma malha de controle com mais de um controlador como encontrar melhores parâmetros para que o controle do sistema inteiro seja o melhor possível?

Controlador PI, ou seja, Td = 0.

Algoritmo Base para coleta de dados do simulador.

```
function [OI] = SintoniaPred(X)
    SIMIN1 = [0; X(1:2)'];
    for i=1:2;
         SIMIN1 = [SIMIN1 [0; X(1:2)']];
    end
    save('PI1','SIMIN1');
    sim('gasliftwells33_03pocos_03hidros.mdl')
    RefO = 0.5;
    OI = Ss.signals(1,1).values - RefO;
end
```


Conclusões

- Sistema otimizado com sucesso;
- Esforço de controle dentro das limitações e não muito alterado;
- Aplicações em linguagens mais rápidas pode ser um diferencial devido ao custo computacional;

Perguntas?

