Physics 7AW Homework 1 — Calculus Review & Vectors

Alejandro Pelcastre Physics 7AW - WAT 2020 edition

February 28, 2020

Exercise 1. Given vectors $\mathbf{A} = 3\hat{\mathbf{i}} + 5\hat{\mathbf{j}} - 7\hat{\mathbf{k}}$ and $\mathbf{B} = 2\hat{\mathbf{i}} + 7\hat{\mathbf{j}} - \hat{\mathbf{k}}$ Find:

- a) $\boldsymbol{B} + \mathbf{A}$
- (b) A B
- c) |A|
- d) |B|
- e) Angle θ between \boldsymbol{A} and \boldsymbol{B}

Exercise 2. Find a unit vector perpendicular to $m{A}=\hat{m{i}}+\hat{m{j}}-\hat{m{k}}$ and

$$m{B} = 2\hat{\pmb{i}} + \hat{\pmb{j}} - 3\hat{\pmb{k}}$$

Answer $\hat{\pmb{C}} = \pm \frac{1}{\sqrt{6}}(-2\hat{\pmb{i}} + \hat{\pmb{j}} - \hat{\pmb{k}})$
Show your work!

Exercise 3. Compute
$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 15 & 6 \\ 12 & 45 & 18 \end{vmatrix}$$

Is there a quick way you could have solved this?

Exercise 4. Show that for an N-dimensional vector $\mathbf{A} = \mathbf{a}_0 \hat{e_0} + a_1 \hat{e_1} + ... + a_N \hat{e_N}$ $|\mathbf{A}| = \sqrt{\sum a_i^2}$

Exercise 5. Consider that standard \mathbb{R}^3 space.

Let $\hat{e_1}$ be a unit vector pointing in the x-axis, $\hat{e_2}$ unit vector in y-axis, and $\hat{e_3}$ unit vector in z-axis. Find the following:

- i) $\hat{e_1} \times \hat{e_2}$

- ii) $\hat{e_1} \times \hat{e_2}$ iii) $\hat{e_1} \times \hat{e_3}$ iii) $\hat{e_2} \times \hat{e_1}$ iv) $\hat{e_3} \times \hat{e_1}$ v) $\hat{e_1} \times \hat{e_2} \times \hat{e_3}$

Exercise 6. Show that $B \times A = -A \times B$ in \mathbb{R}^3

Exercise 7. Solve the following:

i)
$$\frac{d}{dt}cos(\omega t + x\psi)$$

ii)
$$\frac{d}{dx}sin(\omega t + x\psi)$$

iii)
$$\frac{d}{dt}e^{i\theta t}cos(\omega t + \phi)$$

iv)
$$\frac{d}{dt}(A\cos(\omega t)e^{-i\Omega t} + B(t)ln(t+x))$$

v)
$$\frac{d}{d\theta}cot(\theta)$$

vi)
$$\int \frac{1}{at+b} dt$$

Exercise 8. Show that $u(x,t)=e^{i(kx-\omega t)}$ satisfies the following equation:

$$\frac{d^2}{dt^2}u(x,t) = c^2 \frac{d^2}{dx^2}u(x,t)$$
 (1)

where $c=\sqrt{\frac{\omega}{k}}.$ This is known as the wave equation