CSCI1270 Introduction to Database Systems

Normalization

Another Use for FD's: Schema Design

Schema Design: Approach #1

- 1. Construct E/R diagram
- 2. Translate into tables
 Subjective: How do we know if any good?

Schema Design: Approach #2

- 1. Start with universal relation
- 2. Determine FD's
- 3. "Decompose" UR using FD's as guide

Schema Design: Approach #3

- 1. Construct E/R diagram to come up with 1st cut design
- 2. Use FD's to verify or refine

Decomposition

1. Decomposing the Schema

Notation:

$$R = R_1 \cup R_2$$

Decomposition

2. Decomposing the Instance

R =	bname	bcity	assets	cname	lno	amt
	Dntn	Bkln	9M	Jones	L-17	1000
	Dntn	Bkln	9M	Johnson	L-23	2000
	Mianus	Hnck	1.7M	Jones	L-93	500
	Dntn	Bkln	9M	Hayes	L-17	1000

$R_1 =$	bname	bcity	assets	cname
	Dntn	Bkln	9M	Jones
	Dntn	Bkln	9M	Johnson
	Mianus	Hnck	1.7M	Jones
	Dntn	Bkln	9M	Hayes

cname	lno	amt
Jones	L-17	1000
Johnson	L-23	2000
Jones	L-93	500
Hayes	L-17	1000

BTW: Not a Good Decomposition

Goals of Decomposition

1. Lossless Joins

Want to be able to reconstruct big relation by joining smaller ones (Natural join) (i.e.: $R_1 \bowtie R_2 = R$?)

2. Dependency Preservation

Want to minimize the cost of global integrity constraints based on FD's (i.e.: Avoid big joins in assertions)

3. Redundancy Avoidance

Avoid unnecessary data dupl. (motivation for decomposition)

Summary:

LJ: Information loss DP: Efficiency (time)

RA: Efficiency (space), update anomalies

Another Use for FD's: Schema Design

Example:

R =

bname	bcity	assets	cname	lno	amt
Dntn	Bkln	9M	Jones	L-17	1000
Dntn	Bkln	9M	Johnson	L-23	2000
Mianus	Hnck	1.7M	Jones	L-93	500
Dntn	Bkln	9M	Hayes	L-17	1000

R: "Universal Relation"

Tuple meaning: Jones has a loan (L-17) for \$1000 taken out of the Dntn branch in Bkln which has assets of \$9M

Design: pro: Fast queries (No need for joins!)

con: Redundancy, update anomalies, deletion anomalies

Decomposition Goal #1: Lossless Joins

A Bad Decomposition

<u>bname</u>	bcity	assets	<u>cname</u>
Dntn	Bkln	9M	Jones
Dntn	Bkln	9M	Johnson
Mianus	Hnck	1.7M	Jones
Dntn	Bkln	9M	Hayes

<u>cname</u>	<u>lno</u>	<u>amt</u>
Jones	L-17	1000
Johnson	L-23	2000
Jones	L-93	500
Hayes	L-17	1000

=

bname	bcity	assets	cname	lno	amt
Dntn	Bkln	9M	Jones	L-17	1000
Dntn	Bkln	9M	Jones	L-93	500
Dntn	Bkln	9M	Johnson	L-23	3000
Mianus	Hnck	1.7M	Jones	L-17	1000
Mianus	Hnck	1.7M	Jones	L-93	500
Dntn	Bkln	9M	Hayes	L-17	1000

Decomposition Goal #1: Lossless Joins

A Bad Decomposition

		bname	bcity	assets	cname	lno	amt
		Dntn	Bkln	9M	Jones	L-17	1000
	\longrightarrow	Dntn	Bkln	9M	Jones	L-93	500
=		Dntn	Bkln	9M	Johnson	L-23	3000
	\longrightarrow	Mianus	Hnck	1.7M	Jones	L-17	1000
		Mianus	Hnck	1.7M	Jones	L-93	500
		Dntn	Bkln	9M	Hayes	L-17	1000

Problem: ⋈ adds meaningless tuples

"Lossy join": By adding noise, have lost meaningful information as a result of decomposition

Lossless Joins

Is the Following Decomposition Lossless or Lossy?

 $R_1 =$

bname	bcity	assets	cname
Dntn	Bkln	9M	Jones
Dntn	Bkln	9M	Johnson
Mianus	Hnck	1.7M	Jones
Dntn	Bkln	9M	Hayes

 $R_2 =$

bname	lno	amt
Dntn	L-17	1000
Dntn	L-23	2000
Mianus	L-93	500

A: Lossy.

 $R_1 \bowtie R_2$ includes:

 $(R_1 \bowtie R_2 \text{ has } 7$

tuples, whereas R has 4)

bname	bcity	assets	cname	lno	amt
Dntn	Bkln	9M	Jones	L-23	2000
Dntn	Bkln	9M	Johnson	L-17	1000
Dntn	Bkln	9M	Hayes	L-23	2000

Lossless Joins

 $R_2 =$

Is the Following Decomposition Lossless or Lossy?

$R_1 =$	bname	assets	cname	lno
	Dntn	9M	Jones	L-17
	Dntn	9M	Johnson	L-23
	Mianus	1.7M	Jones	L-93
	Dntn	9M	Hayes	L-17

lno	bcity	amt
L-17	Bkln	1000
L-23	Bkln	2000
L-93	Hnck	500

A: Lossless. $R_1 \bowtie R_2$ has 4 tuples

Lossless Joins

Lossless or Lossy?

 $\overline{R}_1 =$

bname	bcity	assets
Dntn	Bkln	9M
Mianus	Bkln	1.7M

 $R_2 =$

bname	lno	amt	cname
Dntn	L-17	1000	Jones
Dntn	L-23	2000	Johnson
Mianus	L-93	500	Jones
Dntn	L-17	1000	Hayes

A: Lossless. $R_1 \bowtie R_2$ has 4 tuples

Q: When is decomposition lossless?

Ensuring Lossless Joins

A Decomposition of R, R = $R_1 \cup R_2$ is Lossless iff

$$R_1 \cap R_2 \rightarrow R_1$$
 or $R_1 \cap R_2 \rightarrow R_2$

(i.e.: Intersecting atts must form a super key for one of the resulting smaller relations)

Intuition: Original relation R has n tuples

■ A not a key \Rightarrow $|R_1| = n$ \therefore n tuples in result

Decomposition Goal #2: Dependency Preservation

Goal: Efficient integrity checks of FD's

An Example With No Dependency Preservation:

```
Decomposition: R = R_1 \cup R_2
R_1 = (bname, assets, cname, lno)
R_2 = (lno, bcity, amt)
```

Lossless, but Not DP. Why?

Decomposition Goal #2: Dependency Preservation (cont.)

```
Decomposition (cont.): R = R<sub>1</sub> ∪ R<sub>2</sub>

R<sub>1</sub> = (bname, assets, cname, lno)
R<sub>2</sub> = (lno, bcity, amt)

Lossless, but Not DP. Why?
A: bname → bcity crosses 2 tables

CREATE ASSERTION bname-bcity
CHECK NOT EXISTS
(SELECT *
```

 y_1 .bcity \Leftrightarrow y_2 .bcity)

FROM R_1 AS x_1 , R_2 AS y_1 , R_1 AS x_2 , R_2 AS y_2

WHERE $x_1.lno = y_1.lno$ AND $x_2.lno = y_2.lno$ AND

 $x_1.lno = x_2.lno AND x_1.bname = x_2.bname AND$

Decomposition Goal #2: Dependency Preservation

To Ensure Best Possible Efficiency of FD Checks

Ensure that only a SINGLE table be examined for each FD

i.e.: Ensure that A_1 , ..., $A_n \rightarrow B_1$, ..., B_m can be checked by examining one table as in:

Above: R_i "covers" the FD, A_1 , ..., $A_n \rightarrow B_1$, ..., B_m

To Test if Decomposition $R = R_1 \cup ... R_n$ is DP,

- 1. See which FD's of R are covered by R_1 , ..., R_n
- 2. Compare closure of (1) to closure of FD's of \mathbb{R}

Decomposition Goal #2: Dependency Preservation

More Formally:

To test if $R = R_1 \cup ... \cup R_n$ is dependency preserving wrt R's FD set, F:

- 1. Compute F⁺
- 2. Compute G

$$G \leftarrow \emptyset$$
 For $i \leftarrow 1$ to n DO Add to G those FD's in F+ covered by R_i

3. Compute G⁺

4. If $F^+ = G^+$: Decomposition is DP If $F^+ \neq G^+$: Decomposition is not DP

Decomposition Goal #2: Dependency Preservation (cont.)

More Formally (cont.):

To test if $R = R_1 \cup ... \cup R_n$ is dependency preserving wrt R's FD set, F:

- 1. Compute F⁺
- 2. Compute G
- 3. Compute G+
- 4. Compute F⁺ G⁺

Example:

$$F = \{A \rightarrow B, AB \rightarrow D, C \rightarrow D\}$$

$$R_1 = (A, B, C); R_2 = (C, D)$$

Is this decomposition of (A, B, C, D) DP?

Decomposition Goal #2: Dependency Preservation

Example:

:. Decomposition is not DP

Decomposition Goal #2: Dependency Preservation

Example:

```
F = \{A \rightarrow B, AB \rightarrow D, C \rightarrow D\}
What is a DP decomposition of F?
```

A:
$$R = R_1 \cup R_2$$
 s.t. $R_1 = (A, B, D)$; $R_2 = (C, D)$
1. $F^+ = \{A \rightarrow B, AB \rightarrow D, C \rightarrow D\}^+$
2. $G^+ = \{A \rightarrow B, AB \rightarrow D, C \rightarrow D\}^+$
3. $F^+ = G^+$
Note: G^+ cannot introduce FD's not in F^+

:. Decomposition is DP

Q: Does it satisfy lossless joins?

A: No

Decomposition Goals Summary

Lossless Joins

Motivation: Avoid information loss

Idea: No noise introduced when reconstitution universal relation via joins

Test: At each decomposition test: $R = R_1 \cup R_2$

 $(R_1 \cap R_2) \rightarrow R_1 \text{ or } (R_1 \cap R_2) \rightarrow R_2$

Ensured for: BCNF, 3NF

Dependency Preservation

Motivation: Efficient FD assertions

Idea: No gic's require joins of more than 1 table with itself

Test: $R = R_1 \cup ... \cup R_n$ is DP if closure of FD's covered by each $R_i =$ closure of

FD's covered by $R = F^+$

Ensured for: 3NF

Decomposition Goal #3 Redundancy Avoidance

Redundancy:

- Name FD of this relation?Ans: B → C
- 2. Name the super keys of this relation A: All sets of atts that include A
- When do we have redundancy?
 A: When ∃ some FD, X → Y covered by relation & X not a super key

Decomposition Goals Summary (cont.)

Redundancy Avoidance

Motivation: Avoid update, deletion anomalies

Idea: Avoid update anomalies, wasted space

Test: For any $X \rightarrow Y$ covered by R_i ,

X should be a superkey of R_i

Ensured for: BCNF

Boyce-Codd Normal Form

What is a Normal Form?

Characterization of schema decomposition in terms of properties it satisfies

BCNF:

Guarantees no redundancy and lossless joins (Not DP!)

Defined: Relation schema \mathbb{R} , with FD set \mathbb{F} , is in BCNF if: For all nontrivial $\mathbb{X} \to \mathbb{Y}$ in \mathbb{F}^+ : $\mathbb{X} \to \mathbb{R}$ (i.e.: \mathbb{X} is a super key)

Example:

$$R = (A, B, C)$$

$$F = \{A \rightarrow B, B \rightarrow C\}$$

Is R in BCNF?

A: Consider the nontrivial dependencies in \mathbb{F}^+ :

- 1. $A \rightarrow B$, $A \rightarrow R$ (A is a key)
- 2. $A \rightarrow C$, $A \rightarrow R$ (A is a key)
- 3. $B \not\rightarrow C$, $B \not\rightarrow A$ (B is not a key)

Therefore, R not in BCNF

Example:

```
R = R_1 \cup R_2 R_1 = (A, B); R_2 = (B, C)

F = \{A \rightarrow B, B \rightarrow C\}
```

Are R_1 , R_2 in BCNF?

- A: 1. Test R₁:
 A → B covered, A → R₁ (all other FD's covered trivial)
 2. Test R₂:
 B → C covered, B → R₂ (all other FD's covered trivial)
 - \therefore R₁, R₂ in BCNF

Decomposition Algorithm

```
ALGORITHM BCNF (R: Relation, F: FD set)
     BEGIN
              Compute F+
          2. Result \leftarrow \{R\}
          3. While some R_i \in Result not in BCNF, DO
                     a. Choose (X \rightarrow Y) \in F^+ s.t.
                          \rightarrow (X \rightarrow Y) covered by R<sub>i</sub>
                          \rightarrow X \not\rightarrow R_i
                    b. Decompose R_i on (X \rightarrow Y)
                         R_{i1} \leftarrow X \cup Y
                         R_{i2} \leftarrow R_i - Y
                     c. Result \leftarrow Result -\{R_i\} \cup \{R_{i1}, R_{i2}\}
          4. Return result
     END
```

CSCI1270: Introduction to Database Systems

Decomposition Algorithm

Each Step:

Decompose R; that is not in BCNF

CSCI1270: Introduction to Database Systems

Decomposition Algorithm (cont.)

Example:

$$R = (A, B, C, D)$$

$$F = \{A \rightarrow B, AB \rightarrow D, B \rightarrow C\}$$

Decompose R into BCNF?

1. Compute F+:

$$F^{+} = \{A \rightarrow B, AB \rightarrow D, B \rightarrow C, A \rightarrow C, A \rightarrow D, AB \rightarrow C, AC \rightarrow D, AC \rightarrow D, AD \rightarrow C, ABC \rightarrow D, ABC \rightarrow D, ABC \rightarrow D, ABD \rightarrow C\} + all trivial dep's$$

Decomposition Algorithm (cont.)


```
R = (A, B, C, D, E, H)
F = \{A \rightarrow BC, E \rightarrow HA\}
```

Decompose R into BCNF:

```
F^{+} = \{A \rightarrow B, A \rightarrow C, A \rightarrow BC \\ E \rightarrow H, E \rightarrow A, E \rightarrow HA \\ E \rightarrow B, E \rightarrow C, E \rightarrow BC \\ E \rightarrow HB, E \rightarrow HC, E \rightarrow AB \\ E \rightarrow AC, \\ AE \rightarrow ..., \\ ABE \rightarrow ..., \\ ACE \rightarrow ..., \\ ADE \rightarrow ..., \\ ...\} + all trivial dep's
```

Note: This will suffice!

Find 2 decompositions, 1 DP and 1 not DP

BCNF Decomposition

$$R = (A, B, C, D, E, H)$$

$$F = \{A \rightarrow BC, E \rightarrow HA\}$$

(Note: $F_c = F$)

Decomposition #1: $R = R_1 \cup R_3 \cup R_4$

$$R = (A, B, C, D, E, H)$$

Decompose on $A \rightarrow BC$

$$R_1 = (\underline{A}, B, C)$$

Q: Is this DP?

A: Yes. All F_c covered by R_1 , R_3 , R_4 . Therefore F^+ covered

BCNF Decomposition (cont.)

$$R = (A, B, C, D, E, H)$$

 $F = \{A \rightarrow BC, E \rightarrow HA\}$ (Note: $F_c = F$)

Decomposition #2: $R = R_1 \cup R_3 \cup R_5 \cup R_6$

$$R = (A, B, C, D, E, H)$$

$$Decompose on A \rightarrow B$$

$$R_{2} = (A, C, D, E, H)$$

$$Decompose on E \rightarrow HA$$

$$R_{3} = (A, E, H) \qquad R_{4} = (C, D, E)$$

$$Decompose on E \rightarrow C$$

$$R_{5} = (C, E) \qquad R_{6} = (E, D)$$

A: A \rightarrow C not covered by R_1 , R_3 , R_5 , R_6 .

More BCNF (cont.)

Q: Can we decompose on FD's in F_c to get a DP BCNF decomposition?

Sometimes, BCNF + DP not possible

$$R = (J, K, L)$$

$$F = \{JK \rightarrow L, L \rightarrow K\}$$

Decomposition #1:

$$R = (J, K, L)$$
Decompose on $L \rightarrow K$

$$R_1 = (\underline{L}, K) \quad R_2 = (\underline{J}, \underline{L})$$

Not DP: $JK \rightarrow L$ not covered

Decomposition #2:

$$R = (J, K, L)$$

$$R = (J, K, L)$$

$$Decompose on L \to K$$

$$Decompose on JK \to L$$

$$R_1 = (\underline{L}, K) \quad R_2 = (\underline{J}, \underline{L})$$

$$R_1 = (\underline{J}, \underline{K}, L) \quad R_2 = (\underline{J}, \underline{L})$$

$$Not DP: JK \to L \quad not covered$$

$$Still \ not \ in \ BCNF$$

(L not a superkey)

CSCI1270: Introduction to Database Systems

Aside

Is This a Realistic Example?

$$JK \rightarrow L$$
$$L \rightarrow K$$

A: BankerName → BranchName

BranchName CustomerName → BankerName

Every banker works at one branch

A customer works with the same banker at a given branch

Testing for FDs Across Relations

- Decomposition not dependency preserving => an extra materialized view (MV) for each dependency $\alpha \rightarrow \beta$ in F_c that is not preserved in the decomposition
- The MV is a projection on α β of the join of the relations in the decomposition
- DBMS maintains MV when the relations are updated.
 - → No extra coding effort for programmer.
- Space overhead: storing MV
- Time overhead: keeping MV up to date

Multivalued Dependencies

- There are database schemas in BCNF that do not seem to be sufficiently normalized
- Consider a database classes(course, teacher, book)
- The database lists for each course the set of teachers any one of which can be the course's instructor, and the set of books, all of which are required for the course (no matter who teaches it).

course	teacher	book
database	Avi	DB Concepts
database	Avi	Ullman
database	Hank	DB Concepts
database	Hank	Ullman
database	Sudarshan	DB Concepts
database	Sudarshan	Ullman
operating systems	Avi	OS Concepts
operating systems	Avi	Shaw
operating systems	Jim	OS Concepts
operating systems	Jim	Shaw

classes

(course, teacher, book) is the only key, and therefore the relation is in BCNF

Insertion anomalies – i.e., if Sara is a new teacher that can teach database, two tuples need to be inserted

(database, Sara, DB Concepts) (database, Sara, Ullman)

Therefore, it is better to decompose *classes* into:

course	teacher
database	Avi
database	Hank
database	Sudarshan
operating systems	Avi
operating systems	Jim

teaches

course	book
database	DB Concepts
database	Ullman
operating systems	OS Concepts
operating systems	Shaw

text

We shall see that these two relations are in Fourth Normal Form (4NF)

Multivalued Dependencies (MVDs)

Let R be a relation schema and let $\alpha \subseteq R$ and $\beta \subseteq R$. The multivalued dependency

$$\alpha \rightarrow \beta$$

holds on R if in any legal relation r(R), for all pairs of tuples t_1 and t_2 in r such that $t_1[\alpha] = t_2[\alpha]$, there exist tuples t_3 and t_4 in r such that:

$$t_{1}[\alpha] = t_{2}[\alpha] = t_{3}[\alpha] = t_{4}[\alpha]$$

 $t_{3}[\beta] = t_{1}[\beta]$
 $t_{3}[R - \beta] = t_{2}[R - \beta]$
 $t_{4}[\beta] = t_{2}[\beta]$
 $t_{4}[R - \beta] = t_{1}[R - \beta]$

MVD (Cont.)

Tabular representation of $\alpha \rightarrow \beta$

	α	β	$R-\alpha-\beta$
t_1	$a_1 \dots a_i$	$a_{i+1} \dots a_j$	$a_{j+1} \dots a_n$
t_2	$a_1 \dots a_i$	$b_{i+1} \dots b_j$	$b_{j+1} \dots b_n$
t_3	$a_1 \dots a_i$	$a_{i+1} \dots a_j$	$b_{j+1} \dots b_n$
t_4	$a_1 \dots a_i$	$b_{i+1} \dots b_j$	$a_{j+1} \dots a_n$

Example

• Let *R* be a relation schema with a set of attributes that are partitioned into 3 nonempty subsets.

We say that Y →→ Z (Y multidetermines Z)
if and only if for all possible relations r(R)

$$< y_1, z_1, w_1 > \in r$$
 and $< y_1, z_2, w_2 > \in r$ implies

$$< y_1, z_1, w_2 > \in r \text{ and } < y_1, z_2, w_1 > \in r$$

• Note that since the behavior of Z and W are identical it follows that $Y \rightarrow Z$ if $Y \rightarrow W$

Example (Cont.)

In our example:

```
course →→ teacher course →→ book
```

 The above formalizes the notion that a particular value of Y (course) has associated with it a set of values of Z (teacher) and a set of values of W (book), and these two sets are in some sense independent of each other.

Note:

```
If Y \rightarrow Z then Y \rightarrow Z
Indeed we have (in above notation) Z_1 = Z_2
The claim follows.
```

Use of Multivalued Dependencies

- We use multivalued dependencies in two ways:
 - 1. To test relations to determine whether they are legal under a given set of functional and multivalued dependencies
 - 2. To specify constraints on the set of legal relations. We shall thus concern ourselves only with relations that satisfy a given set of functional and multivalued dependencies.
- If a relation r fails to satisfy a given multivalued dependency, we can construct a relation r' that does satisfy the multivalued dependency by adding tuples to r.

Fourth Normal Form

A relation schema R is in 4NF with respect to a set D of functional and multivalued dependencies if for all multivalued dependencies in D+ of the form α →→ β, where α ⊆ R and β ⊆ R, at least one of the following hold:

 $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$ or $\alpha \cup \beta = R$) α is a superkey for schema R

If a relation is in 4NF it is in BCNF