Homework 2 for Intro to Computational Complextiy

Shenlong Gu

917-544-8927, sg3301@columbia.edu, 27, September 2015

Part I

We assumes a Non-DTM M_1 decides the language L_1 , and a Non-DTM M_1 decides the language L_2 .

Let $V_1(x,c)$ be the verifier for M_1 and $V_2(x,c)$ be the verifier for M_2 .

1. union

We will construct a poly-time V(x,c) for the language, the union of L_1 and L_2 to solve this problem.

for any input x, given a stratage input string c, let V(x,c)=1 iff $V_1(x,c)=1$ and $V_2(x,c)=1$.

It is easy to see V(x,c) is the verifier which runs in polynomial time given input x and c and V(x,c) is the verifier for the language, the union of L_1 and L_2 . So NP is closes under union operation.

2. concatenation

We will construct a poly-time V(x,c) for the language, the union of L_1 and L_2 to solve this problem.

for any input x, the stratage input c which is the union-encoding of the stratage c_1 for $V_1(x,c)$, the stratage c_2 for $V_2(x,c)$.

V(x,c) works as the follows, creates n+1 pairs, $(i,n-i), 0 \le i \le n$. Decode c into c_1 and c_2

for each pair (i, n - i):

```
if V_1(x[0:i], c_1) == 1 and V_2(x[i:n], c_2) == 1: V(x, c) = 1, accepts
```

end V(x,c)=0, rejects. (Because no pairs work given the stratage c_1 and c_2 .

It is easy to see V(x,c) is the verifier which runs in polynomial time given input x and c and V(x,c) is the verifier for the language, concatenation of L_1 and L_2 . So NP is closes under concatenation operation.

3. star

We will construct a poly-time V(x,c) for the language, the union of L_1 and L_2 to solve this problem.

Given an input x, we let c to encode a segmentation of input x into $x_1, x_2, ... x_k$, and a stratage of $V_1(x, c)$ to these k segmentation $c_1, c_2, ... c_k$.

Then, V(x,c) works as follows:

decode c first, if c can not be decoded, rejects it.

for i = 0 to k:

```
	ext{if } V_1(x_i,c_i) == 1 	ext{:} \ V(x,c) = 1 	ext{, accepts} \ 	ext{end} \ V(x,c) = 0 	ext{, rejects.}
```

It is easy to see V(x,c) is the verifier which runs in polynomial time given input x and c and V(x,c) is the verifier for the language, star of L_1 . So NP is closes under star operation.

Then to prove G and H isomorphic. Given an input x with length n, we encode a permutation of n which is a node mapping from G and H, we give a verifier V(x,c) given the input x and encoding mapping c, it is easy to judge if two maps are isomorphic under this mapping in poly-time (just check if each mapping edge exists or doesn't exist in two graphs).

Part II

First, we will show that if a graph is bipartite, then it can not have a cycle containing an odd number of nodes. Assume there is a such cycle the bipartite, $n_1, n_2, \dots, n_{2*k+1}$. We color the nodes into two part(blue and red) . if n_1 is red, n_2 is blue, then n_{2*k+1} will be red the same as n_1 , and there is an edge between n_1 and n_{2*k+1} , so there comes a contradictory.

Second, if there is no such cycle, we will show it is a bipartite. We also color the node, we randomly selects a node, and gives a color (for example, red), We traverse the edge from this node using dfs or bfs, everytime there is an edge between two nodes, we color the child node with a opposite color from its parent, when there is a back edge. Because there is no cycyle with an odd number of nodes, this node will not result in a contradictory with its ancestor, so we can color all nodes without contradictory, so it is a bipartite.

Third, we will show bipartite problem \in NL.

We change the bipartite judging problem into a existing problem. As proved above, we can change a bipartite judging problem by deciding that there is no cycle containing odd number nodes.

Then we think about the complement problem (because NL equals CO-NL): how to decide that if there is a cycle containing odd number nodes.

To use NDTM to solve this problem:

First, we nondeterministicly selects a start node, s, and set a next node t to nondeterministicly be a child of s, and set a counter to be zero .

```
while counter \leq n:
```

```
(n is total number of nodes, because the length of the cycle can not exceed n) if t equals s:
if counter is odd:
   accepts it
else:
   rejects it
We nondeterministicly set t to be a child of t,(if there is no child, we rejects) counter t = counter t = counter t = counter t
```

We see that this NDTM decides the problem (odd-number-nodes cycle existing problem), and the space it uses is just start node number, next node number, counter which cost just

logarithmic space. So bipartite judging problem \in NL.

Part III

First we assume P = NP, if we can show NEXPTIME = EXPTIME, we get the origin problem proved.

Give a language L in NTIME(2^{n^k}), we will prove it in some EXPTIME.

We construct a L':pad(L, 2^{n^k}), we can easily prove it in NP and because P = NP, so L' in poly-time, and because we can decide L' in P, we can decide L in EXPTIME(2^{n^k}), (just padding L to be L' and simulate L' in poly-time which is some EXPTIME relative to L, so we can show NEXPTIME = EXPTIME, so the origin problem is proved.

Part IV

We first assume P = SPACE(n), and we can get a contradiction.

Given a language L in SPACE (n^2) , we construct a language L': pad (L, n^2) . It is easy to show L' in SPACE(n), and because P = SPACE(n), we can solve L' in poly-time which means we can solve L in poly-time (just use $0(n^2)$ to pad, use $0(n^{2*c})$ to decide L'), so we can find SPACE $(n^2) \subset P$, which means SPACE $(n^2) \subset SPACE(n)$, which causes a contradiction by space hierarchy theorem.