Steph_Gervasi_Employee_Retention

February 20, 2019

```
In [2]: # Import the basics for some inital EDA
        import numpy as np
        import pandas as pd
       from scipy import stats
        import matplotlib.pyplot as plt
       %matplotlib inline
       plt.rcParams['figure.figsize'] = (10.0, 8.0)
        import seaborn as sns
In [3]: # Some information I've been given about the data:
        ##### Columns I have:
        ## employee_id : id of the employee. Unique by employee per company
        ## company_id : company id.
        ## dept : employee dept
        ## seniority : number of yrs of work experience when hired
        ## salary: avg yearly salary of the employee during her tenure within the company
        ## join_date: when the employee joined the company, it can only be between 2011/01/24
        ## quit_date: when the employee left her job (if she is still employed as of 2015/12/1
In [4]: # Get the data
       dc1 = pd.read_csv("employee_retention_data.csv")
In [5]: # Check data dimensions
       print("The data has {0} rows and {1} columns".format(dc1.shape[0], dc1.shape[1]))
The data has 24702 rows and 7 columns
In [6]: # Take a quick look to see what the data look like
       dc1.head()
Out[6]:
          employee_id company_id
                                               dept seniority salary
                                                                          join_date \
       0
              13021.0
                                                            28 89000.0 2014-03-24
                                7 customer_service
       1
             825355.0
                               7
                                         marketing
                                                          20 183000.0 2013-04-29
       2
            927315.0
                               4
                                          marketing
                                                          14 101000.0 2014-10-13
       3
             662910.0
                               7 customer_service
                                                          20 115000.0 2012-05-14
```

```
4
              256971.0
                                 2
                                        data_science
                                                             23 276000.0 2011-10-17
           quit_date
        0 2015-10-30
        1 2014-04-04
                  NaN
        3 2013-06-07
        4 2014-08-22
In [7]: # Confirm column names
        list(dc1.columns.values)
Out[7]: ['employee_id',
         'company_id',
         'dept',
         'seniority',
         'salary',
         'join_date',
         'quit_date']
In [8]: # Get info about data types and missingness
        dc1.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 24702 entries, 0 to 24701
Data columns (total 7 columns):
employee_id
               24702 non-null float64
company_id
              24702 non-null int64
               24702 non-null object
dept
seniority
              24702 non-null int64
               24702 non-null float64
salary
join_date
               24702 non-null object
               13510 non-null object
quit_date
dtypes: float64(2), int64(2), object(3)
memory usage: 1.3+ MB
In [9]: # Check percentage of missing values in the columns to decide whether to drop, impute,
       miss = dc1.isnull().sum()/len(dc1)
       print(type(miss))
       miss = miss[miss > 0]
       miss.sort_values(inplace = True)
        # I know that these data are missing because it means that the people still work there
<class 'pandas.core.series.Series'>
Out[9]: quit_date
                     0.453081
        dtype: float64
```



```
ax = sns.countplot(y="company_id", hue = "dept", data=dc1)
ax.set(xlabel='Overall Employee Dept Affiliation', ylabel='Count')
plt.show()
```

CONCLUDE:

Trend observed above seems to also be present in the within company context : most

In [13]: # Next look at the seniority variable: np.sort(dc1['seniority'].unique()) # It is highly unlikely that someone has a seniority status of 98 or np.sort(dc1['sen Out[13]: array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 98, 99])

Need to get rid of those outliers - don't have any information on how to correct th

Out[14]: <seaborn.axisgrid.JointGrid at 0x102bc1588>

Out[15]: <matplotlib.axes._subplots.AxesSubplot at 0x1a09baed30>


```
In [16]: # deal with outliers in seniority column, here only 2, so will remove. Check shape be dc1.shape
Out[16]: (24702, 7)
In [17]: # Process of removing seniority outliers based on being above 3 st deviations of the target = dc1['seniority']
    mean = target.mean()
    sd = target.std()
    reduced_dc1 = dc1[(target > mean - 3*sd) & (target < mean + 3*sd)]
    reduced_dc1.shape

# this removed 2 outliers that were beyond 3 sd of the mean.
Out[17]: (24700, 7)
In [18]: # Now take a look at the variable, salary, by itself
    sns.distplot(reduced_dc1['salary'], rug = True, color = 'y')
    # looks like some outliers here, too, at the high end. These could interfere with pre
Out[18]: <matplotlib.axes._subplots.AxesSubplot at Ox1a15240b00>
```



```
In [19]: ## Here applying the same process/criteria for outlier removal in the salary column a
        target2 = reduced_dc1['salary']
        mean2 = target2.mean()
        sd2 = target2.std()
        reduced2_dc1 = reduced_dc1[(target2 > mean2 - 3*sd2) & (target2 < mean2 + 3*sd2)]</pre>
        reduced2_dc1.shape
         # As a result, this removed 22 additional data points.
Out[19]: (24678, 7)
In [20]: # give the new dataframe a more intuitive name after outlier removal from the seniori
         dc1_NEW = reduced2_dc1
In [21]: # Our reduced dataframe:
        dc1_NEW.head()
Out[21]:
            employee_id company_id
                                                       seniority
                                                                             join_date \
                                                 dept
                                                                    salary
        0
                13021.0
                                  7 customer_service
                                                              28
                                                                   89000.0 2014-03-24
        1
               825355.0
                                  7
                                            marketing
                                                              20 183000.0 2013-04-29
                                                              14 101000.0 2014-10-13
        2
               927315.0
                                  4
                                            marketing
```

7 customer_service

20 115000.0 2012-05-14

3

662910.0

```
4
               256971.0
                                  2
                                                              23 276000.0 2011-10-17
                                         data_science
            quit_date
        0 2015-10-30
         1 2014-04-04
                  NaN
         3 2013-06-07
         4 2014-08-22
In [22]: # Now, look at company_id variable
        dc1_NEW['company_id'].nunique()
         # size of companies clearly varies 11 and 12 are smaller than the rest - this could b
Out [22]: 12
In [23]: # Now, check the employee_id variable (make sure no duplicate IDs; # rows should = #
        dc1_NEW['employee_id'].nunique()
Out [23]: 24678
In []: # The next steps will be to join and quit dates: first take a look and then convert th
In [236]: # First do a quick visual scan to make sure they're all in the same format (although
          #dc1_NEW['join_date'].value_counts(dropna = False)
In [237]: #dc1_NEW['quit_date'].value_counts(dropna = False)
In [26]: # get all dates in standard format before calculating difference in time to get tenur
         import datetime
        dc1_NEW['join_date'] = pd.to_datetime(dc1_NEW['join_date'])
         dc1_NEW['quit_date'] = pd.to_datetime(dc1_NEW['quit_date'])
        dc1_NEW.head()
/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:2: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm
/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:3: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm
 This is separate from the ipykernel package so we can avoid doing imports until
Out [26]:
            employee_id company_id
                                                                    salary join_date \
                                                 dept seniority
```

7 customer_service

28

89000.0 2014-03-24

0

13021.0

```
1
               825355.0
                                  7
                                                              20 183000.0 2013-04-29
                                            marketing
         2
                                                              14 101000.0 2014-10-13
               927315.0
                                            marketing
         3
               662910.0
                                  7 customer_service
                                                              20 115000.0 2012-05-14
         4
               256971.0
                                  2
                                         data_science
                                                              23 276000.0 2011-10-17
            quit_date
         0 2015-10-30
         1 2014-04-04
                 NaT
         3 2013-06-07
         4 2014-08-22
In [27]: # Check updated format of date columns
         dc1_NEW.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 24678 entries, 0 to 24699
Data columns (total 7 columns):
employee_id
               24678 non-null float64
company id
               24678 non-null int64
dept
               24678 non-null object
               24678 non-null int64
seniority
               24678 non-null float64
salary
join_date
               24678 non-null datetime64[ns]
              13501 non-null datetime64[ns]
quit_date
dtypes: datetime64[ns](2), float64(2), int64(2), object(1)
memory usage: 1.5+ MB
In [29]: # Calcualte a new column for total tenure, which is the time someone has worked at th
        dc1_NEW['total_tenure'] = dc1_NEW['quit_date'] - dc1_NEW['join_date']
        dc1 NEW.head()
         # string and number are the output of this new column
/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm
  """Entry point for launching an IPython kernel.
Out [29]:
            employee_id
                         company_id
                                                       seniority
                                                                    salary join_date \
                                                 dept
        0
                13021.0
                                  7 customer_service
                                                              28
                                                                   89000.0 2014-03-24
         1
               825355.0
                                  7
                                                              20 183000.0 2013-04-29
                                            marketing
         2
               927315.0
                                  4
                                            marketing
                                                              14 101000.0 2014-10-13
```

2

7 customer_service

data_science

20 115000.0 2012-05-14

23 276000.0 2011-10-17

3

4

662910.0

256971.0

```
0 2015-10-30
                          585 days
         1 2014-04-04
                          340 days
                               NaT
                 NaT
         3 2013-06-07
                          389 days
         4 2014-08-22
                         1040 days
In [30]: # Convert the variable total_tenure that was just created so that it only includes th
         dc1_NEW['days_employeed'] = (dc1_NEW['quit_date'] - dc1_NEW['join_date']).dt.days
         dc1 NEW.head()
         # just number of days and NaNs in this new column, days_employeed
/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm
  """Entry point for launching an IPython kernel.
Out [30]:
            employee_id company_id
                                                 dept seniority salary join_date \
                                                              28 89000.0 2014-03-24
         0
                13021.0
                                  7 customer_service
         1
               825355.0
                                  7
                                            marketing
                                                              20 183000.0 2013-04-29
         2
                                                              14 101000.0 2014-10-13
               927315.0
                                  4
                                            marketing
         3
                                  7 customer_service
                                                              20 115000.0 2012-05-14
               662910.0
                                                              23 276000.0 2011-10-17
                                         data_science
               256971.0
            quit_date total_tenure days_employeed
         0 2015-10-30
                          585 days
                                             585.0
         1 2014-04-04
                          340 days
                                             340.0
                 {\tt NaT}
                               NaT
                                               {\tt NaN}
         3 2013-06-07
                          389 days
                                             389.0
         4 2014-08-22
                         1040 days
                                            1040.0
In [32]: # Change the NAs in the new days_employeed column to something meaningful, because th
         dc1_NEW['days_employeed'].fillna('currently_employeed', inplace = True)
         dc1_NEW.head()
/anaconda3/lib/python3.6/site-packages/pandas/core/generic.py:5434: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm
  self._update_inplace(new_data)
Out [32]:
            employee_id company_id
                                                 dept seniority
                                                                    salary join_date \
         0
               13021.0
                                  7 customer_service
                                                                   89000.0 2014-03-24
         1
               825355.0
                                            marketing
                                                              20 183000.0 2013-04-29
                                  7
         2
               927315.0
                                                              14 101000.0 2014-10-13
                                  4
                                            marketing
```

quit_date total_tenure

```
3
                                                      20 115000.0 2012-05-14
      662910.0
                             customer_service
                                                      23 276000.0 2011-10-17
      256971.0
                         2
                                 data_science
   quit_date total_tenure
                                 days_employeed
0 2015-10-30
                 585 days
                                            585
1 2014-04-04
                                            340
                 340 days
                      NaT
                            currently_employeed
3 2013-06-07
                 389 days
                                            389
4 2014-08-22
                                           1040
                1040 days
```

/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:2: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm

/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:3: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm This is separate from the ipykernel package so we can avoid doing imports until

```
Out [33]:
            employee_id
                                                         seniority
                                                                      salary join_date \
                         company_id
                                                   dept
                13021.0
                                                                     89000.0 2014-03-24
                                   7 customer_service
               825355.0
                                                                20 183000.0 2013-04-29
         1
                                   7
                                             marketing
         2
               927315.0
                                   4
                                             marketing
                                                                14 101000.0 2014-10-13
                                      customer_service
                                                                20 115000.0 2012-05-14
         3
               662910.0
                                   7
         4
               256971.0
                                   2
                                          data_science
                                                                23 276000.0 2011-10-17
            quit_date total_tenure
                                          days_employeed start_year
                                                                       start_month
         0 2015-10-30
                           585 days
                                                      585
                                                                 2014
                                                                                  3
         1 2014-04-04
                           340 days
                                                      340
                                                                 2013
                                                                                  4
         2
                  NaT
                                {\tt NaT}
                                                                 2014
                                                                                 10
                                     currently_employeed
         3 2013-06-07
                                                      389
                                                                 2012
                                                                                  5
                           389 days
         4 2014-08-22
                          1040 days
                                                     1040
                                                                 2011
                                                                                 10
```

In []: # May also want to take the continuous column/feature called days_employeed and turn i

Now, turn the string 'curr_employeed' into a high number 1800 is 5 years so use 185

```
dc1_NEW['days_employeed_cont'] = dc1_NEW['days_employeed_cont'].replace('currently_employeed_cont'].replace('currently_employeed_cont')
```

/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:2: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html

/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:5: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm

Out[34]:	employee_id	company_id	dept	seniority	salary join_date	\
0	13021.0	7	customer_service	28 8	89000.0 2014-03-24	
1	825355.0	7	marketing	20 18	83000.0 2013-04-29	
2	927315.0	4	marketing	14 10	01000.0 2014-10-13	
3	662910.0	7	customer_service	20 11	15000.0 2012-05-14	
4	256971.0	2	data_science	23 27	76000.0 2011-10-17	
	quit_date t	otal tenure	days_employeed	l start_year	start_month \	
0	2015-10-30	585 days	585		3	
	2014-04-04	340 days	340	2013	4	
2	NaT	NaT	currently_employeed		10	
3	2013-06-07	389 days	389		5	
4	2014-08-22	1040 days	1040	2011	10	
	days_employ	eed cont				
0	days_empioy	585.0				
1		340.0				
2		1850.0				
3						
		389.0				
4		1040.0				

In [36]: # Now, the column days_employeed_cont is all numeric values, and we can inspect furth sns.distplot(dc1_NEW['days_employeed_cont'], kde=True, rug=False, norm_hist= False, continue to the state of the state

Out[36]: <matplotlib.axes._subplots.AxesSubplot at 0x1a18b68c50>


```
In [37]: # After first trying to use the quartile method, it seems like it might be best to ma
   bins = [0, 360, 720, 1080, 1440, 1850]
   names = ['<1yr', '1-2yr', '2-3yr', '3-4yr', '4+yrs']

# a new column called tenure_category is the binned times/durations that people were
   dc1_NEW['tenure_category'] = pd.cut(dc1_NEW['days_employeed_cont'], bins, labels=name:
   dc1_NEW.head(20)</pre>
```

/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:5: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

#print(dc1_NEW.dtypes)

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm

```
Out[37]: employee_id company_id dept seniority salary join_date \
     0 13021.0 7 customer_service 28 89000.0 2014-03-24
```

		_	_			
1	825355		7	marketing	20	183000.0 2013-04-29
2	927315		4	marketing	14	101000.0 2014-10-13
3	662910		7	customer_service	20	115000.0 2012-05-14
4	256971		2	data_science	23	276000.0 2011-10-17
5	509529	. 0	4	data_science	14	165000.0 2012-01-30
6	88600	. 0	4	customer_service	21	107000.0 2013-10-21
7	716309	. 0	2	customer_service	4	30000.0 2014-03-05
8	172999	. 0	9	engineer	7	160000.0 2012-12-10
9	504159	.0	1	sales	7	104000.0 2012-06-12
10	892155	. 0	6	customer_service	13	72000.0 2012-11-12
11	904158	. 0	2	marketing	17	230000.0 2015-05-11
12	939058	.0	1	marketing	1	48000.0 2012-12-10
13	163427	.0	10	marketing	23	154000.0 2012-06-18
14	461248	. 0	2	sales	20	201000.0 2013-09-16
15	265226	.0	1	data_science	4	80000.0 2014-05-27
16	932790	. 0	7	${ t marketing}$	10	88000.0 2011-11-30
17	69693	. 0	7	customer_service	6	54000.0 2014-03-31
18	721600	. 0	2	marketing	20	193000.0 2014-12-29
19	982668	. 0	1	customer_service	14	76000.0 2015-07-27
				_		
	quit_date	total_to	enure	days_employeed	start_yea	ar start_month \
0	2015-10-30		days	585	201	
1	2014-04-04		days	340	201	13 4
2	NaT		NaT	currently_employeed	201	10
3	2013-06-07	389	days	389	201	12 5
4	2014-08-22		days	1040	201	10
5	2013-08-30		days	578	201	
6	NaT		NaT	currently_employeed	201	
7	NaT		NaT	currently_employeed	201	
	2015-10-23	1047	days	1047	201	
9	NaT		NaT	currently_employeed	201	
10	2015-02-27	837	days	837	201	
11	NaT		•	currently_employeed	201	
12	2013-11-15	340	days	340	201	
	2015-09-25		days	1194	201	
	2014-08-22		days	340	201	
	2015-07-10		days	409	201	
	2013-11-22		days	723	201	
17	NaT		NaT	currently_employeed	201	
18	NaT		NaT	currently_employeed	201	
19	NaT		NaT	currently_employeed	201	
					201	
	davs emplo	oveed co	nt ten	ure_category		
0		585		1-2yr		
1		340		<1yr		
2		1850		4+yrs		
3						
C)				•		
4		389 1040	. 0	1-2yr 2-3yr		

```
5
                   578.0
                                    1-2yr
6
                  1850.0
                                    4+yrs
7
                  1850.0
                                    4+yrs
8
                                    2-3yr
                  1047.0
9
                  1850.0
                                    4+yrs
                                    2-3yr
10
                  837.0
11
                  1850.0
                                    4+yrs
12
                   340.0
                                     <1yr
13
                  1194.0
                                    3-4yr
14
                   340.0
                                     <1yr
                                    1-2yr
15
                   409.0
16
                                    2-3yr
                  723.0
17
                  1850.0
                                    4+yrs
18
                                    4+yrs
                  1850.0
19
                  1850.0
                                    4+yrs
```

/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:2: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html

Out $[42]$:	employee_id	company_id	dept	seniority	salary join_date \
0	13021.0	7	customer_service	28	89000.0 2014-03-24
1	825355.0	7	marketing	20 1	183000.0 2013-04-29
2	927315.0	4	marketing	14 1	101000.0 2014-10-13
3	662910.0	7	customer_service	20 1	115000.0 2012-05-14
4	256971.0	2	data_science	23 2	276000.0 2011-10-17
5	509529.0	4	data_science	14 1	165000.0 2012-01-30
6	88600.0	4	customer_service	21 1	107000.0 2013-10-21
7	716309.0	2	customer_service	4	30000.0 2014-03-05
8	172999.0	9	engineer	7 1	160000.0 2012-12-10
9	504159.0	1	sales	7 1	104000.0 2012-06-12
	quit_date t	otal_tenure	days_employeed	start_year	r start_month \
0 :	2015-10-30	585 days	585	2014	1 3
1 :	2014-04-04	340 days	340	2013	3 4
2	NaT	NaT	currently_employeed	2014	10
3 :	2013-06-07	389 days	389	2012	2 5
4 :	2014-08-22	1040 days	1040	2011	1 10
5 :	2013-08-30	578 days	578	2012	2 1
6	NaT	NaT	currently_employeed	2013	3 10

```
NaT
                                NaT
                                     currently_employeed
                                                                  2012
                                                                                   6
            days_employeed_cont tenure_category still_employeed
         0
                           585.0
                                            1-2yr
         1
                           340.0
                                             <1yr
                                                                 0
         2
                          1850.0
                                            4+yrs
                                                                 1
         3
                                                                 0
                           389.0
                                            1-2yr
         4
                          1040.0
                                            2-3yr
                                                                 0
         5
                           578.0
                                                                 0
                                            1-2yr
         6
                                            4+yrs
                          1850.0
                                                                 1
         7
                          1850.0
                                            4+yrs
                                                                 1
         8
                                            2-3yr
                                                                 0
                          1047.0
         9
                          1850.0
                                            4+yrs
                                                                 1
In [40]: #Look at counts of two created groups for still employeed or not to see if they are b
         dc1_NEW['still_employeed'].value_counts(dropna = False)
Out[40]: 0
              13501
              11177
         Name: still_employeed, dtype: int64
In [41]: # Sanity check
         dc1_NEW.isnull().sum(axis = 0)
Out[41]: employee_id
                                      0
         company_id
                                      0
         dept
                                      0
                                      0
         seniority
         salary
                                      0
         join_date
                                      0
         quit_date
                                 11177
         total_tenure
                                 11177
```

currently_employeed

1047

NaT

1047 days

2014

2012

3

12

7

NaT

8 2015-10-23

days_employeed

tenure_category

still_employeed

dtype: int64

days_employeed_cont

start_year

 ${\tt start_month}$

/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:2: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

0

0

0

0

0

0

Out[44]:	employee_id	compa	any_id	dept	seniority	salary	join_date	\
0	13021.0		7	customer_service	28	89000.0	2014-03-24	
1	825355.0		7	marketing	20	183000.0	2013-04-29	
2	927315.0		4	marketing	14	101000.0	2014-10-13	
3	662910.0		7	customer_service	20	115000.0	2012-05-14	
4	256971.0		2	data_science	23	276000.0	2011-10-17	
5	509529.0		4	data_science	14	165000.0	2012-01-30	
6	88600.0		4	customer_service	21	107000.0	2013-10-21	
7	716309.0		2	customer_service	4	30000.0	2014-03-05	
8	172999.0		9	engineer	7	160000.0	2012-12-10	
9	504159.0		1	sales	7	104000.0	2012-06-12	
10	892155.0		6	customer_service	13	72000.0	2012-11-12	
11	904158.0		2	marketing	17	230000.0	2015-05-11	
12	939058.0		1	marketing	1	48000.0	2012-12-10	
13	163427.0		10	marketing	23	154000.0	2012-06-18	
14	461248.0		2	sales	20	201000.0	2013-09-16	
15	265226.0		1	data_science	4	80000.0	2014-05-27	
16	932790.0		7	marketing	10	88000.0	2011-11-30	
17	69693.0		7	customer_service	6	54000.0	2014-03-31	
18	721600.0		2	marketing	20	193000.0	2014-12-29	
19	982668.0		1	customer_service	14	76000.0	2015-07-27	
	quit_date t			days_employeed	•		_month \	
0	2015-10-30		days	585			3	
1	2014-04-04	340	days	340			4	
2	NaT		NaT	currently_employeed			10	
3	2013-06-07		days	389			5	
4	2014-08-22		days	1040			10	
5	2013-08-30	578	days	578			1	
6	NaT		NaT	currently_employeed			10	
7	NaT		NaT	currently_employeed			3	
8	2015-10-23	1047	days	1047			12	
9	NaT		NaT	currently_employeed			6	
	2015-02-27	837	days	837			11	
11	NaT		NaT	currently_employeed			5	
	2013-11-15		days	340			12	
	2015-09-25		days	1194			6	
	2014-08-22		days	340			9	
	2015-07-10		days	409			5	
	2013-11-22	723	days	723			11	
17	NaT		NaT	currently_employeed			3	
18	NaT		NaT	currently_employeed			12	
19	NaT		NaT	currently_employeed	1 20	15	7	

```
days_employeed_cont tenure_category still_employeed salary_rank
0
                    585.0
                                      1-2yr
                                                            0
                                                                        med
                                       <1yr
1
                    340.0
                                                            0
                                                                      high
2
                   1850.0
                                      4+yrs
                                                            1
                                                                        med
3
                                      1-2yr
                                                            0
                    389.0
                                                                        med
4
                   1040.0
                                      2-3yr
                                                            0
                                                                 very_high
5
                    578.0
                                      1-2yr
                                                            0
                                                                       high
6
                   1850.0
                                                            1
                                      4+yrs
                                                                        med
7
                   1850.0
                                      4+yrs
                                                            1
                                                                        low
8
                                                            0
                   1047.0
                                      2-3yr
                                                                       high
9
                                      4+yrs
                                                            1
                   1850.0
                                                                        med
                                                            0
10
                    837.0
                                      2-3yr
                                                                        low
                                                            1
11
                   1850.0
                                      4+yrs
                                                                 very_high
                                                            0
12
                    340.0
                                       <1yr
                                                                        low
13
                   1194.0
                                      3-4yr
                                                            0
                                                                       high
14
                    340.0
                                       <1yr
                                                            0
                                                                 very_high
15
                    409.0
                                      1-2yr
                                                            0
                                                                        med
16
                    723.0
                                      2-3yr
                                                            0
                                                                        med
17
                   1850.0
                                      4+yrs
                                                            1
                                                                        low
18
                   1850.0
                                      4+yrs
                                                            1
                                                                 very_high
19
                   1850.0
                                      4+yrs
                                                            1
```

```
Out [70]:
               company_id total_number_of_employees
                                                     8472
          0
                         1
                         2
                                                     4213
          1
          2
                         3
                                                     2749
          3
                         4
                                                     2062
          4
                         5
                                                     1755
          5
                         6
                                                     1291
                         7
          6
                                                     1224
          7
                         8
                                                     1047
          8
                         9
                                                      961
          9
                        10
                                                      864
          10
                        11
                                                       16
          11
                        12
                                                       24
```

In [72]: total_employees_by_dept = dc1_NEW.groupby(['company_id', 'dept']).size().reset_index(statal_employees_by_dept.tail(20) # check tail for those small companies - 11 and 12.

```
Out [72]:
              company_id
                                         dept
                                               number_of_employees_by_dept
         50
                        9
                                       design
                                                                            60
         51
                        9
                                    engineer
                                                                          188
         52
                        9
                                   marketing
                                                                          124
         53
                        9
                                                                          113
                                        sales
```

```
54
             10
                 customer_service
                                                               336
55
             10
                      data_science
                                                               109
56
             10
                            design
                                                                41
57
             10
                          engineer
                                                               171
                         marketing
58
             10
                                                                96
59
             10
                             sales
                                                               111
60
             11
                 customer_service
                                                                  6
                      data_science
                                                                  2
61
             11
62
             11
                          engineer
                                                                  6
63
                         marketing
                                                                  2
             11
64
             12
                 customer_service
                                                                 12
65
             12
                      data_science
                                                                  4
             12
                                                                  1
66
                            design
                          engineer
67
             12
                                                                  4
68
             12
                         marketing
                                                                  1
                                                                  2
69
             12
                             sales
```

In []: ######## A few quick visuals to look at how some of the features are potentially rel

```
In [45]: # Salary and tenure category:
    table=pd.crosstab(dc1_NEW.salary_rank, dc1_NEW.tenure_category)
    table.div(table.sum(1).astype(float), axis=0).plot(kind='bar', stacked=True)
    plt.title('Stacked Bar Chart of Salary vs Tenure Category')
    plt.xlabel('Salary')
    plt.ylabel('Tenure Category')

# CONCLUDE:
    # Really, not stand-out trends. But, it is surprising that the very high salary group
```



```
In [48]: # Company ID and tenure category:
    table=pd.crosstab(dc1_NEW.company_id, dc1_NEW.tenure_category)
    table.div(table.sum(1).astype(float), axis=0).plot(kind='bar', stacked=True)
    plt.title('Stacked Bar Chart of Company ID vs Tenure Category')
    plt.xlabel('Company')
    plt.ylabel('Tenure Category')

# CONCLUDE:
# company 11 and 12 really appear different than the others.
# previously looked at sum of number of employees - counts - need to include this her
```

Out[48]: Text(0, 0.5, 'Tenure Category')


```
past_employees_df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 13501 entries, 0 to 24699
Data columns (total 15 columns):
employee_id
                      13501 non-null float64
company_id
                      13501 non-null int64
dept
                      13501 non-null object
                      13501 non-null int64
seniority
salary
                      13501 non-null float64
                      13501 non-null datetime64[ns]
join_date
quit_date
                      13501 non-null datetime64[ns]
                      13501 non-null timedelta64[ns]
total_tenure
days_employeed
                      13501 non-null int64
start_year
                      13501 non-null int64
start_month
                      13501 non-null int64
days_employeed_cont
                      13501 non-null float64
tenure_category
                      13501 non-null category
                      13501 non-null object
still_employeed
                       13501 non-null category
salary_rank
dtypes: category(2), datetime64[ns](2), float64(3), int64(5), object(2), timedelta64[ns](1)
memory usage: 2.1+ MB
/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm
  """Entry point for launching an IPython kernel.
/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:2: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm
```

In [63]: # Let's visualize days employeed by department and company for this past employees da

g = sns.catplot(x="days_employeed", y="dept", col="company_id", data=past_employees_d

For the people who *have* quit, iut doesn't look like there's a huge departmental d # Company 11 and 12 are really different than the rest b/c of the dept that they have

past_employees_df["days_employeed"] = past_employees_df["days_employeed"].astype(int)

CONCLUDE:

In [49]: # Swithcing back to large/whole dataset, visualize relationship between dept and bina
 pd.crosstab(dc1_NEW.dept,dc1_NEW.still_employeed).plot(kind='bar')

```
plt.xlabel('Department')
plt.ylabel('Turnover')

# CONCLUDE:
# Maybe, the gap between those who have left (0) and those who have stayed (1) at the
```

Out[49]: Text(0, 0.5, 'Turnover')

plt.title('Turnover for Department')

CONCLUDE:

Maybe, the gap between those who quit and those who are still working is larger for


```
In [235]: # Seniority and turnover classification (still employeed or not)
    plt.rcParams['figure.figsize'] = (12.0, 12.0)
    pd.crosstab(dc1_NEW.seniority,dc1_NEW.still_employeed).plot(kind='bar')
    plt.title('Turnover and Seniority')
    plt.xlabel('Seniority')
    plt.ylabel('Turnover')

# CONCLUDE:
    # Not a super striking pattern, but maybe for mid-range seniority levels 5-20 years,
    # Only instance where more people stayed than left is 4 years experience.
```

Out[235]: Text(0, 0.5, 'Turnover')

In [65]: # OK! Now we've looked at the data and are ready to get started with analyses with ei
 # A categorical Y/outcome could be the multiple tenure categories or the binary tenur
 dc1_NEW.head(20)

\	join_date	salary	seniority	dept	company_id	employee_id	Out[65]:
	2014-03-24	89000.0	28	customer_service	7	13021.0	0
	2013-04-29	183000.0	20	marketing	7	825355.0	1
	2014-10-13	101000.0	14	marketing	4	927315.0	2
	2012-05-14	115000.0	20	customer_service	7	662910.0	3
	2011-10-17	276000.0	23	data_science	2	256971.0	4
	2012-01-30	165000.0	14	data_science	4	509529.0	5
	2013-10-21	107000.0	21	customer_service	4	88600.0	6
	2014-03-05	30000.0	4	customer service	2	716309.0	7

```
8
       172999.0
                             9
                                                             7
                                                                160000.0 2012-12-10
                                         engineer
                                                                104000.0 2012-06-12
9
       504159.0
                             1
                                                             7
                                            sales
                             6
10
       892155.0
                                customer_service
                                                            13
                                                                 72000.0 2012-11-12
11
       904158.0
                             2
                                                                230000.0 2015-05-11
                                        marketing
                                                            17
                             1
                                                                 48000.0 2012-12-10
12
       939058.0
                                        marketing
                                                             1
13
       163427.0
                            10
                                                            23
                                                                154000.0 2012-06-18
                                        marketing
                             2
14
       461248.0
                                            sales
                                                            20
                                                                201000.0 2013-09-16
15
       265226.0
                             1
                                    data science
                                                                 80000.0 2014-05-27
16
       932790.0
                             7
                                                            10
                                                                 88000.0 2011-11-30
                                        marketing
                             7
                                                                 54000.0 2014-03-31
17
        69693.0
                                customer_service
                                                             6
                             2
       721600.0
                                                            20
                                                                193000.0 2014-12-29
18
                                        marketing
19
       982668.0
                             1
                                customer_service
                                                            14
                                                                  76000.0 2015-07-27
    quit_date total_tenure
                                    days_employeed
                                                      start_year
                                                                    start_month
   2015-10-30
                                                                               3
                    585 days
                                                 585
                                                             2014
                                                                               4
   2014-04-04
                    340 days
                                                 340
                                                             2013
1
2
           NaT
                         NaT
                               currently_employeed
                                                             2014
                                                                              10
                    389 days
3
   2013-06-07
                                                             2012
                                                                               5
                                                 389
4
   2014-08-22
                   1040 days
                                                1040
                                                                              10
                                                             2011
5
   2013-08-30
                    578 days
                                                 578
                                                             2012
                                                                               1
6
           NaT
                         NaT
                               currently_employeed
                                                             2013
                                                                              10
7
                                                                               3
           NaT
                         NaT
                               currently_employeed
                                                             2014
8
   2015-10-23
                   1047 days
                                                1047
                                                             2012
                                                                              12
9
           NaT
                         NaT
                                                             2012
                                                                               6
                               currently_employeed
10
   2015-02-27
                    837 days
                                                 837
                                                             2012
                                                                              11
                                                                               5
11
           NaT
                         NaT
                               currently_employeed
                                                             2015
                    340 days
                                                                              12
   2013-11-15
                                                             2012
12
                                                 340
                                                                               6
13
   2015-09-25
                   1194 days
                                                1194
                                                             2012
                                                                               9
   2014-08-22
                    340 days
                                                             2013
                                                 340
   2015-07-10
                    409 days
                                                 409
                                                             2014
                                                                               5
                    723 days
16
   2013-11-22
                                                 723
                                                             2011
                                                                              11
17
           NaT
                         NaT
                               currently_employeed
                                                             2014
                                                                               3
18
           NaT
                         NaT
                               currently_employeed
                                                             2014
                                                                              12
19
           NaT
                         NaT
                               currently_employeed
                                                             2015
                                                                               7
    days_employeed_cont tenure_category still_employeed salary_rank
0
                    585.0
                                                            0
                                     1-2yr
                                                                       med
1
                    340.0
                                       <1yr
                                                            0
                                                                      high
2
                   1850.0
                                                            1
                                     4+yrs
                                                                       med
                                                            0
3
                    389.0
                                     1-2yr
                                                                       med
4
                   1040.0
                                                            0
                                     2-3yr
                                                                very_high
5
                                                            0
                    578.0
                                     1-2yr
                                                                      high
6
                   1850.0
                                                            1
                                     4+yrs
                                                                       med
7
                                                            1
                   1850.0
                                     4+yrs
                                                                       low
8
                                                            0
                   1047.0
                                     2-3yr
                                                                      high
9
                   1850.0
                                     4+yrs
                                                            1
                                                                       med
10
                    837.0
                                     2-3yr
                                                            0
                                                                       low
11
                  1850.0
                                     4+yrs
                                                            1
                                                                very_high
```

```
340.0
12
                                      <1yr
                                                           0
                                                                      low
13
                  1194.0
                                     3-4yr
                                                           0
                                                                     high
14
                   340.0
                                                           0
                                      <1yr
                                                               very_high
15
                   409.0
                                     1-2yr
                                                           0
                                                                      med
16
                   723.0
                                     2-3yr
                                                           0
                                                                      med
17
                  1850.0
                                     4+yrs
                                                           1
                                                                      low
18
                  1850.0
                                     4+yrs
                                                           1
                                                               very_high
                  1850.0
19
                                     4+yrs
                                                           1
                                                                      low
```

In [73]: # I have a dataframe called 'dc1_NEW' that includes all 12 companies.

But, because company 11 and 12 seem to be very different from the rest, I may want

reduced_companies_df = dc1_NEW[dc1_NEW.company_id <= 10]
reduced_companies_df.head(20)</pre>

 $\#reduced_companies_df['company_id'].unique() \# double check that this did what I aske$

Out[73]:	employee_io	d company_id	dept s	seniority	salary join_date
0	13021.0	7	customer_service	28	89000.0 2014-03-24
1	825355.0	7	marketing	20	183000.0 2013-04-29
2	927315.0) 4	marketing	14	101000.0 2014-10-13
3	662910.0	7	customer_service	20	115000.0 2012-05-14
4	256971.0	2	data_science	23	276000.0 2011-10-17
5	509529.0) 4	data_science	14	165000.0 2012-01-30
6	88600.0) 4	customer_service	21	107000.0 2013-10-21
7	716309.0	2	customer_service	4	30000.0 2014-03-05
8	172999.0	9	engineer	7	160000.0 2012-12-10
9	504159.0) 1	sales	7	104000.0 2012-06-12
10	892155.0	6	customer_service	13	72000.0 2012-11-12
11	904158.0	2	marketing	17	230000.0 2015-05-11
12	939058.0) 1	marketing	1	48000.0 2012-12-10
13	163427.0	10	marketing	23	154000.0 2012-06-18
14	461248.0	2	sales	20	201000.0 2013-09-16
15	265226.0) 1	data_science	4	80000.0 2014-05-27
16	932790.0		marketing	10	88000.0 2011-11-30
17	69693.0		customer_service	6	54000.0 2014-03-31
18	721600.0		marketing	20	193000.0 2014-12-29
19	982668.0) 1	customer_service	14	76000.0 2015-07-27
	quit date 1	total_tenure	days_employeed	start_yea	ar start_month \
0	2015-10-30	585 days	585	201	-
1	2014-04-04	340 days	340	201	
2	NaT	NaT	currently_employeed	201	
3	2013-06-07	389 days	389	201	12 5
4	2014-08-22	1040 days	1040	201	10
5	2013-08-30	578 days	578	201	12 1
6	NaT	NaT	currently_employeed	201	13 10
7	NaT	NaT	currently_employeed	201	.4 3

```
8 2015-10-23
                  1047 days
                                              1047
                                                           2012
                                                                           12
9
          NaT
                        NaT
                              currently_employeed
                                                           2012
                                                                            6
10 2015-02-27
                   837 days
                                               837
                                                           2012
                                                                           11
                        NaT
                                                                            5
11
                              currently_employeed
                                                           2015
          NaT
12 2013-11-15
                   340 days
                                               340
                                                           2012
                                                                           12
13 2015-09-25
                  1194 days
                                              1194
                                                                            6
                                                           2012
14 2014-08-22
                   340 days
                                               340
                                                           2013
                                                                            9
15 2015-07-10
                   409 days
                                               409
                                                           2014
                                                                            5
16 2013-11-22
                                               723
                   723 days
                                                           2011
                                                                           11
17
          NaT
                        NaT
                              currently_employeed
                                                           2014
                                                                            3
                                                                           12
18
          NaT
                        NaT
                              currently_employeed
                                                           2014
                              currently_employeed
                                                                            7
19
          NaT
                        NaT
                                                           2015
```

	days_employeed_cont	tenure_category	still_employeed	salary_rank
0	585.0	1-2yr	0	med
1	340.0	<1yr	0	high
2	1850.0	4+yrs	1	med
3	389.0	1-2yr	0	med
4	1040.0	2-3yr	0	very_high
5	578.0	1-2yr	0	high
6	1850.0	4+yrs	1	med
7	1850.0	4+yrs	1	low
8	1047.0	2-3yr	0	high
9	1850.0	4+yrs	1	med
10	837.0	2-3yr	0	low
11	1850.0	4+yrs	1	very_high
12	340.0	<1yr	0	low
13	1194.0	3-4yr	0	high
14	340.0	<1yr	0	very_high
15	409.0	1-2yr	0	med
16	723.0	2-3yr	0	med
17	1850.0	4+yrs	1	low
18	1850.0	4+yrs	1	very_high
19	1850.0	4+yrs	1	low

 $\textbf{In []: \# \textit{Now I also have a data frame called 'reduced_companies_df' that includes just companion of the property of the$

```
In [ ]: ######## MODELING PORTION OF NB STARTS HERE ######## --->
```

In [97]: # I will first define the X array and the Y/target variable in two sets from the redu # 'Can I determine whether someone stays at a company for less than a year, 1-2 years

```
y = reduced_companies_df[['tenure_category']]
```

I decided not to include company ID as a predictor here since I presumably want to # will use continuous values of salary here, first instead of the categorical salary

X = reduced_companies_df[['dept','seniority', 'salary', 'start_year', 'start_month']]

```
In [98]: # Check new X df
         X.head()
         #X.shape
Out [98]:
                               seniority
                                            salary
                         dept
                                                     start_year start_month
         0 customer_service
                                      28
                                           89000.0
                                                           2014
                                                                            3
                                                           2013
                   marketing
                                      20 183000.0
                                                                            4
         1
                                      14 101000.0
                                                           2014
                                                                           10
                   marketing
           customer_service
                                      20 115000.0
                                                           2012
                                                                            5
         3
                data science
                                      23 276000.0
                                                           2011
                                                                           10
In [99]: # Check new y dataframe
         y.head()
         y.shape
Out [99]: (24638, 1)
In [100]: # Get dummy variables for categorical features; use drop_first to get rid of the ext
          X = pd.concat([X,pd.get_dummies(X['dept'], prefix='dept', drop_first=True)],axis=1)
          X.head()
          # drop old dept column since it is no longer informative.
          X = X.drop(['dept'], axis=1)
          X.head()
Out[100]:
             seniority
                          salary start_year start_month dept_data_science
          0
                    28
                          89000.0
                                         2014
                                                          3
                                                                              0
          1
                    20 183000.0
                                         2013
                                                          4
                                                                              0
          2
                                                                              0
                    14 101000.0
                                         2014
                                                         10
          3
                    20 115000.0
                                         2012
                                                          5
                                                                              0
                    23 276000.0
                                         2011
                                                         10
             dept_design dept_engineer dept_marketing dept_sales
          0
          1
                        0
                                       0
                                                        1
                                                                     0
          2
                        0
                                       0
                                                                     0
                                                        1
          3
                        0
                                       0
                                                        0
                                                                     0
          4
                        0
                                       0
                                                                     0
In [101]: #check new X dataframe
          X.shape
Out[101]: (24638, 9)
In [102]: # Import modules and libraries for modeling
          from sklearn.model_selection import train_test_split # to create the split in traini
          {\tt from \ sklearn.model\_selection \ import \ RandomizedSearchCV} \ \# \ test \ a \ bunch \ of \ parameter \ v
```

from sklearn.model_selection import GridSearchCV # hone in on exact parameter values

```
from sklearn.model_selection import cross_val_score # to get performance in the 5 (o
          from sklearn import metrics # to be able to use recall and any other metric for mode
          from sklearn.metrics import classification_report # nice format to show all model pe
          from sklearn.metrics import confusion_matrix # classic TP/FP assessment
          from sklearn.metrics import roc_curve # another metric of performance for comparing
In [103]: # create training and test data sets based on X and y defined above. Will set test s
          X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state
In [104]: # take a look at the new X_train, X_test, y_train, and y_test
          X_train.head()
          X_train.shape
Out[104]: (19710, 9)
In [105]: X_test.shape
Out[105]: (4928, 9)
In [106]: y_train.shape
Out[106]: (19710, 1)
In [107]: y_test.shape
          y_test.head()
Out[107]:
                tenure_category
          4396
                           <1yr
          20473
                          2-3yr
          9680
                          4+yrs
          21359
                          4+yrs
          15854
                          4+yrs
In [108]: # Check for class imbalance, which could affect model performance metrics like accur
          y_train.tenure_category.value_counts()
Out[108]: 4+yrs
                   9181
          1-2yr
                   4654
          <1yr
                   2625
          2-3yr
                   2170
          3-4yr
                   1080
          Name: tenure_category, dtype: int64
In [109]: y_test.tenure_category.value_counts()
Out[109]: 4+yrs
                   2296
          1-2yr
                   1163
                    656
          <1yr
          2-3yr
                    543
          3-4yr
                    270
          Name: tenure_category, dtype: int64
```

```
In [110]: # Determine that there is a pretty big class imbalance: i will use smote to balance
          import imblearn as imblearn # for SMOTE applied to training set only
          from imblearn.over_sampling import SMOTE # for SMOTE applied to training set only
          from collections import Counter # to easily check old and new class sizes
          sm = SMOTE(random_state=11)
          X_res_train, y_res_train = sm.fit_resample(X_train, y_train)
          print('Resampled dataset shape %s' % Counter(y_res_train))
/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:761: DataConversionWarning:
 y = column_or_1d(y, warn=True)
Resampled dataset shape Counter({'1-2yr': 9181, '4+yrs': 9181, '<1yr': 9181, '2-3yr': 9181, '3
In [114]: # Check new df
          y_res_train.shape
          #y_res_train
Out[114]: (45905,)
In [116]: # Check new df
          X_res_train.shape
          \#X_{res_train}
Out[116]: (45905, 9)
In [ ]: # Great! Now I'm ready to run some classifier models. Can't use logistic regression wi
        # I won't do any recursive feature selection to begin because there's already such a r
        # Start by defining some randomized search parameters for hyperparameter tuning follow
In [144]: # parameters that CAN be set in RF classifier; set up random space over which to sea
          # Number of trees in random forest
          n_estimators = [int(x) for x in np.linspace(start = 10, stop = 100, num = 5)]
          # Number of features to consider at every split
          max_features = ['auto', 'sqrt', 2, 4, 8]
          # Maximum number of levels in tree
          max_depth = [int(x) for x in np.linspace(2, 10, 2)]
          max_depth.append(None)
          # Minimum number of samples required to split a node
          min_samples_split = [10, 50]
          # Minimum number of samples required at each leaf node
          min_samples_leaf = [5, 10, 25]
          # Method of selecting samples for training each tree
          \#bootstrap = [True]
```

```
In [145]: # Create the random grid
         random_grid = {'n_estimators': n_estimators,
                         'max_features': max_features,
                         'max_depth': max_depth,
                         'min_samples_split': min_samples_split,
                         'min_samples_leaf': min_samples_leaf,
                         'bootstrap': bootstrap}
         print(random_grid)
{'n_estimators': [10, 32, 55, 77, 100], 'max_features': ['auto', 'sqrt', 2, 4, 8], 'max_depth'
In [146]: from sklearn.ensemble import RandomForestClassifier
          # Use the random grid to search for best hyperparameters
          # First create the base model to tune
         RF = RandomForestClassifier()
          #RF.fit(X_res_train, y_res_train)
          #y_pred=RF.predict(X_test)
          #print(classification_report(y_test, y_pred))
          # Random search of parameters, using 5 fold cross validation, on the training set; I
         RF_random = RandomizedSearchCV(estimator = RF, param_distributions = random_grid, n_
In [147]: # Fit the random search model to the SMOTE adjusted training data set
         RF_random.fit(X_res_train, y_res_train)
Fitting 5 folds for each of 100 candidates, totalling 500 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 4 concurrent workers.
[Parallel(n_jobs=-1)]: Done 33 tasks | elapsed:
                                                       42.3s
[Parallel(n_jobs=-1)]: Done 154 tasks
                                         | elapsed: 3.8min
[Parallel(n_jobs=-1)]: Done 357 tasks | elapsed: 7.2min
[Parallel(n_jobs=-1)]: Done 500 out of 500 | elapsed: 9.8min finished
Out[147]: RandomizedSearchCV(cv=5, error_score='raise-deprecating',
                   estimator=RandomForestClassifier(bootstrap=True, class_weight=None, criter
                      max_depth=None, max_features='auto', max_leaf_nodes=None,
                      min_impurity_decrease=0.0, min_impurity_split=None,
                     min_samples_leaf=1, min_samples_split=2,
                     min_weight_fraction_leaf=0.0, n_estimators='warn', n_jobs=None,
                      oob_score=False, random_state=None, verbose=0,
                      warm_start=False),
                   fit_params=None, iid='warn', n_iter=100, n_jobs=-1,
                   param_distributions={'n_estimators': [10, 32, 55, 77, 100], 'max_features'
```

```
pre_dispatch='2*n_jobs', random_state=42, refit=True,
                    return_train_score='warn', scoring='accuracy', verbose=2)
In [148]: # Get the best parameters from the randomized search
          RF_random.best_params_
Out[148]: {'n_estimators': 100,
           'min_samples_split': 10,
           'min_samples_leaf': 5,
           'max_features': 8,
           'max_depth': None,
           'bootstrap': True}
In [149]: # Run cross validation using the best parameters and then average them to get an ide
          CV_scores = cross_val_score(RF_random, X_res_train, y_res_train, cv=5, scoring = 'ac
          print(CV_scores)
Fitting 5 folds for each of 100 candidates, totalling 500 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 4 concurrent workers.
[Parallel(n_jobs=-1)]: Done 33 tasks
                                           | elapsed:
                                                        40.9s
[Parallel(n_jobs=-1)]: Done 154 tasks
                                           | elapsed:
                                                       2.5min
[Parallel(n_jobs=-1)]: Done 357 tasks
                                           | elapsed: 5.2min
[Parallel(n_jobs=-1)]: Done 500 out of 500 | elapsed: 7.0min finished
Fitting 5 folds for each of 100 candidates, totalling 500 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 4 concurrent workers.
[Parallel(n_jobs=-1)]: Done 33 tasks
                                           | elapsed:
                                                        30.1s
[Parallel(n_jobs=-1)]: Done 154 tasks
                                           | elapsed: 2.2min
[Parallel(n_jobs=-1)]: Done 357 tasks
                                         | elapsed: 4.7min
[Parallel(n_jobs=-1)]: Done 500 out of 500 | elapsed: 6.8min finished
Fitting 5 folds for each of 100 candidates, totalling 500 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 4 concurrent workers.
[Parallel(n_jobs=-1)]: Done 33 tasks
                                          | elapsed:
                                                        29.0s
[Parallel(n_jobs=-1)]: Done 154 tasks
                                           | elapsed: 2.1min
[Parallel(n_jobs=-1)]: Done 357 tasks
                                           | elapsed: 4.5min
[Parallel(n_jobs=-1)]: Done 500 out of 500 | elapsed: 6.1min finished
```

Fitting 5 folds for each of 100 candidates, totalling 500 fits

```
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 4 concurrent workers.
[Parallel(n_jobs=-1)]: Done 33 tasks
                                           | elapsed:
                                                        27.7s
[Parallel(n_jobs=-1)]: Done 154 tasks
                                           | elapsed:
                                                       2.0min
[Parallel(n_jobs=-1)]: Done 357 tasks
                                           | elapsed: 4.3min
[Parallel(n_jobs=-1)]: Done 500 out of 500 | elapsed:
                                                       5.9min finished
Fitting 5 folds for each of 100 candidates, totalling 500 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 4 concurrent workers.
[Parallel(n_jobs=-1)]: Done 33 tasks
                                           | elapsed:
                                                        27.5s
[Parallel(n_jobs=-1)]: Done 154 tasks
                                           | elapsed: 2.0min
[Parallel(n_jobs=-1)]: Done 357 tasks
                                           | elapsed: 4.3min
[Parallel(n_jobs=-1)]: Done 500 out of 500 | elapsed: 5.9min finished
[0.43048449 0.60141612 0.64858388 0.61448802 0.61023965]
In [150]: print("Accuracy of A RF classifier in Cross Validation: %0.2f (+/- %0.2f)" % (CV_sco
Accuracy of A RF classifier in Cross Validation: 0.58 (+/- 0.15)
In [151]: print(classification_report(y_test, y_pred))
          # Not very good performance but notice that the model has an easier time classifying
          # Maybe it would be easier to lump everyone who has quit (groups <1year up to 3-4yea
                          recall f1-score
              precision
                                              support
                             0.37
       1-2yr
                   0.33
                                       0.35
                                                 1163
       2-3yr
                             0.20
                   0.20
                                       0.20
                                                  543
                   0.20
                             0.24
                                       0.22
       3-4yr
                                                  270
       4+yrs
                   0.71
                             0.70
                                       0.70
                                                 2296
                   0.18
                             0.12
                                       0.14
        <1yr
                                                  656
                   0.46
                             0.46
                                       0.46
                                                 4928
  micro avg
                             0.33
                                       0.32
                                                 4928
  macro avg
                   0.32
weighted avg
                   0.46
                                       0.46
                                                 4928
                             0.46
In [152]: # Showign the breakdown of classification with this RF model.
          confusion_matrix(y_test, y_pred)
```

97,

21,

53, 1604, 150],

48, 233, 79]])

53],

26],

Out[152]: array([[432, 168, 106, 315, 142],

111,

125,

89,

62,

60,

65,

[222,

[96,

[364,

[207,

```
In [153]: print('Accuracy of A RF classifier on Test Set:', metrics.accuracy_score(y_test,y_property)
Accuracy of A RF classifier on Test Set: 0.4648944805194805
In [162]: # Re-run the model with parameters that I found above in randomized search:
          # {'n_estimators': 100,
           #'min_samples_split': 10,
           #'min_samples_leaf': 5,
           #'max_features': 8,
           #'max_depth': None,
           #'bootstrap': True}
          RF_test = RandomForestClassifier(n_estimators=100, min_samples_split=10, min_samples
          #RF_test = RandomForestClassifier()
          RF_test.fit(X_res_train, y_res_train)
          y_pred=RF_test.predict(X_test)
          print(classification_report(y_test, y_pred))
              precision
                           recall f1-score
                                               support
       1-2yr
                   0.33
                             0.37
                                        0.35
                                                  1163
       2-3yr
                   0.20
                             0.20
                                        0.20
                                                   543
       3-4yr
                   0.21
                             0.32
                                        0.25
                                                   270
       4+yrs
                   0.72
                             0.74
                                        0.73
                                                  2296
        <1yr
                   0.18
                             0.08
                                        0.11
                                                   656
                             0.48
                                                  4928
  micro avg
                   0.48
                                        0.48
  macro avg
                   0.33
                             0.34
                                        0.33
                                                  4928
weighted avg
                   0.47
                             0.48
                                        0.47
                                                  4928
In [163]: # For this poorly performing model we can get an idea of which features might matter
          names = X.columns
          feature_imp = pd.Series(RF_test.feature_importances_,index=names).sort_values(ascend
          feature_imp
Out[163]: start_year
                               0.390510
          salary
                               0.224351
          seniority
                               0.146317
          start_month
                               0.141169
          dept_sales
                               0.023781
          dept_marketing
                               0.021610
          dept_engineer
                               0.019929
          dept_data_science
                               0.019435
          dept_design
                               0.012898
```

dtype: float64

In [164]: # Plot feature imporance values from the RF classfier.

```
from matplotlib import rcParams
names = X.columns
feature_imp = pd.Series(RF_test.feature_importances_,index=names).sort_values(ascend
feature_imp
plt.rcParams['figure.figsize'] = (15, 12)
plt.rcParams['axes.labelweight'] = 'bold'
\#plt.rcParams["axes.labelsize"] = 30
rcParams['axes.titlepad'] = 20
sns.set(style='whitegrid')
sns.set_context("paper", rc={"font.size":32,"axes.titlesize":32,"axes.labelsize":30,
sns.barplot(x=feature_imp, y=feature_imp.index, palette='Reds_d')
# Add labels to your graph
plt.xlabel('Importance Score')
#plt.ylabel('Features')
plt.title("Visualizing Important Features from a Random Forest Classifier")
plt.legend()
```

No handles with labels found to put in legend.

Out[164]: <matplotlib.legend.Legend at 0x1a1dcc04e0>

In [165]: # A quick reminder about the df: I will again use the reduced set of 10 companies fo

reduced_companies_df.head(20)

12 2013-11-15

Out[165]:	employee_i	_	any_id	dept	seniority	salary join_date \setminus	
0	13021.		7	customer_service	28	89000.0 2014-03-24	
1	825355.	0	7	${ t marketing}$	20	183000.0 2013-04-29	
2	927315.	0	4	${ t marketing}$	14	101000.0 2014-10-13	
3	662910.	0	7	customer_service	20	115000.0 2012-05-14	
4	256971.	0	2	data_science	23	276000.0 2011-10-17	
5	509529.	0	4	data_science	14	165000.0 2012-01-30	
6	88600.	0	4	customer_service	21	107000.0 2013-10-21	
7	716309.	0	2	customer_service	4	30000.0 2014-03-05	
8	172999.	0	9	engineer	7	160000.0 2012-12-10	
9	504159.	0	1	sales	7	104000.0 2012-06-12	
10	892155.	0	6	customer_service	13	72000.0 2012-11-12	
11	904158.	0	2	marketing	17	230000.0 2015-05-11	
12	939058.	0	1	marketing	1	48000.0 2012-12-10	
13	163427.	0	10	marketing	23	154000.0 2012-06-18	
14	461248.	0	2	sales	20	201000.0 2013-09-16	
15	265226.	0	1	data_science	4	80000.0 2014-05-27	
16	932790.	0	7	marketing	10	88000.0 2011-11-30	
17	69693.	0	7	customer_service	6	54000.0 2014-03-31	
18	721600.	0	2	marketing	20	193000.0 2014-12-29	
19	982668.	0	1	customer_service	14	76000.0 2015-07-27	
	quit_date	total_te	enure	days_employeed	d start_ye	ar start_month \	
0	2015-10-30	585	days	585	5 20	14 3	
1	2014-04-04	340	days	340	20	13 4	
2	NaT		NaT	currently_employeed	d 20	14 10	
3	2013-06-07	389	days	389	9 20	12 5	
4	2014-08-22	1040	days	1040	20	11 10	
5	2013-08-30	578	days	578	3 20	12 1	
6	NaT		NaT	currently_employeed	d 20	13 10	
7	NaT		NaT	currently_employeed	d 20	14 3	
8	2015-10-23	1047	days	1047	7 20	12 12	
9	NaT		NaT	currently_employeed	i 20	12 6	
10	2015-02-27	837	days	837	7 20	12 11	
11	NaT		NaT	currently_employeed	d 20	15 5	

340 days

340

2012

12

```
16 2013-11-22
                             723 days
                                                         723
                                                                     2011
                                                                                     11
          17
                                   NaT
                                        currently_employeed
                                                                     2014
                                                                                      3
                     NaT
          18
                     NaT
                                   NaT
                                        currently_employeed
                                                                     2014
                                                                                     12
                                        currently_employeed
          19
                     NaT
                                                                     2015
                                                                                      7
               days_employeed_cont tenure_category still_employeed salary_rank
          0
                             585.0
                                               1-2yr
                                                                    0
                                                                    0
          1
                             340.0
                                                <1yr
                                                                              high
          2
                             1850.0
                                               4+yrs
                                                                    1
                                                                               med
          3
                                                                    0
                             389.0
                                               1-2yr
                                                                               med
          4
                                                                    0
                                                                        very_high
                             1040.0
                                               2-3yr
          5
                                                                    0
                             578.0
                                               1-2yr
                                                                              high
          6
                             1850.0
                                                                    1
                                                                               med
                                               4+yrs
          7
                             1850.0
                                               4+yrs
                                                                    1
                                                                               low
          8
                                                                    0
                             1047.0
                                               2-3yr
                                                                              high
          9
                             1850.0
                                               4+yrs
                                                                    1
                                                                               med
                                                                    0
          10
                             837.0
                                               2-3yr
                                                                               low
                             1850.0
                                                                    1
          11
                                               4+yrs
                                                                        very_high
          12
                             340.0
                                                                    0
                                                <1yr
                                                                               low
                                                                    0
          13
                             1194.0
                                               3-4yr
                                                                              high
          14
                             340.0
                                                                    0
                                                                        very_high
                                                <1yr
          15
                             409.0
                                               1-2yr
                                                                    0
                                                                               med
          16
                             723.0
                                                                    0
                                               2-3yr
                                                                               med
          17
                             1850.0
                                               4+yrs
                                                                    1
                                                                               low
          18
                                                                    1
                             1850.0
                                               4+yrs
                                                                        very_high
          19
                             1850.0
                                               4+yrs
                                                                    1
                                                                               low
In [166]: # Here the outcome/predicted variable will be binary, still employeed or not.
          y = reduced_companies_df[['still_employeed']]
          # I decided not to include company ID as a predictor here since I presumably want to
          # will use continuous values of salary here, first instead of the categorical salary
          X = reduced_companies_df[['dept','seniority', 'salary', 'start_year', 'start_month']
In [167]: y.head()
Out [167]:
            still employeed
          0
                           0
          1
                           0
          2
                           1
          3
                           0
          4
                           0
In [168]: y.shape
```

1194

340

409

2012

2013

2014

6

9

5

13 2015-09-25

14 2014-08-22

15 2015-07-10

1194 days

340 days

409 days

```
Out[168]: (24638, 1)
In [169]: X.head()
Out [169]:
                         dept seniority
                                            salary start_year start_month
             customer_service
                                      28
                                           89000.0
                                                          2014
          1
                    marketing
                                      20 183000.0
                                                          2013
                                                                           4
          2
                    marketing
                                      14 101000.0
                                                          2014
                                                                          10
          3
            customer_service
                                                                           5
                                      20
                                         115000.0
                                                          2012
          4
                 data_science
                                      23 276000.0
                                                          2011
                                                                          10
In [170]: # get dummy variables; use drop_first to get rid of the extra column when creating d
          X = pd.concat([X,pd.get_dummies(X['dept'], prefix='dept', drop_first=True)],axis=1)
          X.head()
          # drop old dept column since it is no longer informative.
          X = X.drop(['dept'], axis=1)
          X.head()
Out[170]:
                         salary start_year start_month dept_data_science
             seniority
                         89000.0
                    28
                                        2014
                                                        3
                    20 183000.0
          1
                                        2013
                                                        4
                                                                            0
          2
                    14 101000.0
                                        2014
                                                       10
                                                                            0
          3
                    20 115000.0
                                        2012
                                                        5
                                                                            0
                    23 276000.0
                                        2011
                                                       10
             dept_design dept_engineer dept_marketing dept_sales
          0
          1
                       0
                                      0
                                                      1
                                                                  0
          2
                       0
                                      0
                                                      1
                                                                  0
          3
                       0
                                      0
                                                      0
                                                                  0
          4
                       0
In [171]: # create training and test data sets based on X and y defined above. Will set test s
          X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_st
In [173]: # check for class imbalance
          y_train.still_employeed.value_counts()
Out[173]: 0
               10781
                8929
          Name: still_employeed, dtype: int64
In [175]: # Class imbalance is not too bad here, but I will apply SMOTE anyway, to give us the
          sm = SMOTE(random_state=11)
          X_res_train, y_res_train = sm.fit_resample(X_train, y_train.values.ravel())
          print('Resampled dataset shape %s' % Counter(y_res_train))
Resampled dataset shape Counter({'1': 10781, '0': 10781})
```

In [176]: # Now we are ready now to try logistic regression and then RF with this binary outcomes

```
RF = RandomForestClassifier()
RF.fit(X_res_train, y_res_train)
y_pred=RF.predict(X_test)
print(classification_report(y_test, y_pred))
```

Not too bad! no parameter tuning at this point and already doing better than the p

/anaconda3/lib/python3.6/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The defarmation of the forest of the second of the secon

		precision	recall	f1-score	support
	0	0.75	0.81	0.78	2696
	1	0.75	0.67	0.71	2232
micro	avg	0.75	0.75	0.75	4928
macro	avg	0.75	0.74	0.75	4928
weighted	avg	0.75	0.75	0.75	4928

```
In [177]: confusion_matrix(y_test, y_pred)
```

In [179]: print('Overall accuracy of a binary RF classifier on the Test Set:', metrics.accuracy

Overall accuracy of a binary RF classifier on the Test Set: 0.7508116883116883

Out[180]:	start_year	0.481252
	salary	0.259028
	seniority	0.141801
	start_month	0.086294
	dept_marketing	0.007004
	dept_engineer	0.006501
	dept_sales	0.006479
	dept_data_science	0.006001
	dept_design	0.005639
	dtype: float64	

```
In [181]: names = X.columns

    feature_imp = pd.Series(RF.feature_importances_,index=names).sort_values(ascending=F.feature_imp)

plt.rcParams['figure.figsize'] = (15, 12)
    plt.rcParams['axes.labelweight'] = 'bold'
    #plt.rcParams["axes.labelsize"] = 30
    rcParams['axes.titlepad'] = 20
    sns.set(style='whitegrid')
    sns.set_context("paper", rc={"font.size":32,"axes.titlesize":32,"axes.labelsize":30,

    sns.barplot(x=feature_imp, y=feature_imp.index, palette='Reds_d')
    # Add labels to your graph
    plt.xlabel('Importance Score')
    #plt.ylabel('Features')
    plt.title("Visualizing Important Features from a Random Forest Classifier")
    plt.legend()
```

No handles with labels found to put in legend.

Out[181]: <matplotlib.legend.Legend at 0x1a200bdd30>


```
In [195]: # Summary up to here: I could now tune the hyperparameters of this RF before moving
          from sklearn.linear_model import LogisticRegression
          logreg = LogisticRegression()
          #logreg.fit(X_res_train, y_res_train)
          #y_pred = logreg.predict(X_test)
          #logreg.score(X_test,y_test)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Des
  FutureWarning)
Out [195]: 0.5355113636363636
In [186]: c_space = np.logspace(-5, 8, 15)
          param_grid = {'C': c_space, 'penalty': ['11', '12']}
In [187]: # Instantiate the GridSearchCV object: logreg_cv
          logreg_cv = GridSearchCV(logreg, param_grid, cv=5, scoring = 'accuracy')
In [188]: logreg_cv.fit(X_res_train, y_res_train)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: De:
  FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: De:
  FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: De:
  FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: De
  FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Des
  FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Des
  FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: De
  FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: De:
  FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Des
  FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: De:
  FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: De:
  FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Des
  FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Des
 FutureWarning)
```

```
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: De:
  FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: De
  FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: De
  FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear model/logistic.py:433: FutureWarning: De
  FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Des
  FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: De
  FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: De:
  FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: De:
  FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: De:
  FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Des
  FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Des
  FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: De
  FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: De
  FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: De:
  FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: De:
  FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: De:
  FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: De:
  FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: De
  FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: De
  FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Des
  FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Des
  FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: De:
  FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: De:
```

/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: De:

FutureWarning)

FutureWarning)

```
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Deficiency FutureWarning)
```

- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Deficiency FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Liblinear: "the number of iterations.", ConvergenceWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Liblinear: "the number of iterations.", ConvergenceWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)

```
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: DefitureWarning)
```

- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: DefitureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Liblinear: "the number of iterations.", ConvergenceWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Liblinear: "the number of iterations.", ConvergenceWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Liblinear: "the number of iterations.", ConvergenceWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)

- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Liblinear: "the number of iterations.", ConvergenceWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Liblinear: "the number of iterations.", ConvergenceWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Liblinear: "the number of iterations.", ConvergenceWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Liblinear: "the number of iterations.", ConvergenceWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Liblinear: "the number of iterations.", ConvergenceWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Liblinear: "the number of iterations.", ConvergenceWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Liblinear: "the number of iterations.", ConvergenceWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Liblinear: "the number of iterations.", ConvergenceWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)

```
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: DefitureWarning)
```

- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Deficiency FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Liblinear: "the number of iterations.", ConvergenceWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Liblinear: "the number of iterations.", ConvergenceWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Liblinear: "the number of iterations.", ConvergenceWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Liblinear: "the number of iterations.", ConvergenceWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Liblinear: "the number of iterations.", ConvergenceWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Liblinear: "the number of iterations.", ConvergenceWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Liblinear: "the number of iterations.", ConvergenceWarning)

```
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
```

- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Liblinear: "the number of iterations.", ConvergenceWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Liblinear: "the number of iterations.", ConvergenceWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Liblinear: "the number of iterations.", ConvergenceWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Liblinear: "the number of iterations.", ConvergenceWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Liblinear: "the number of iterations.", ConvergenceWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)

- /anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Liblinear: "the number of iterations.", ConvergenceWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Liblinear: "the number of iterations.", ConvergenceWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Liblinear: "the number of iterations.", ConvergenceWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Deficiency FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Liblinear: "the number of iterations.", ConvergenceWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Liblinear: "the number of iterations.", ConvergenceWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Liblinear: "the number of iterations.", ConvergenceWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Liblinear: "the number of iterations.", ConvergenceWarning)
- /anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Definition FutureWarning)

```
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: De:
    FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: De
    FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py:931: ConvergenceWarning: Liblinear
    "the number of iterations.", ConvergenceWarning)
Out[188]: GridSearchCV(cv=5, error_score='raise-deprecating',
                                 estimator=LogisticRegression(C=1.0, class_weight=None, dual=False, fit_interc
                                       intercept_scaling=1, max_iter=100, multi_class='warn',
                                      n_jobs=None, penalty='12', random_state=None, solver='warn',
                                      tol=0.0001, verbose=0, warm_start=False),
                                 fit_params=None, iid='warn', n_jobs=None,
                                 param_grid={'C': array([1.00000e-05, 8.48343e-05, 7.19686e-04, 6.10540e-03, 5
                                 4.39397e-01, 3.72759e+00, 3.16228e+01, 2.68270e+02, 2.27585e+03,
                                 1.93070e+04, 1.63789e+05, 1.38950e+06, 1.17877e+07, 1.00000e+08]), 'penalty':
                                 pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
                                 scoring='accuracy', verbose=0)
In [189]: logreg_cv.best_params_
Out[189]: {'C': 268.2695795279727, 'penalty': '11'}
In [190]: CV_scores = cross_val_score(logreg, X_res_train, y_res_train, cv=5, scoring = 'accurate train, cv=5, scoring = 'accurate t
                   print(CV_scores)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: De
    FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: De
   FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: De:
    FutureWarning)
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: De
   FutureWarning)
[0.5336115  0.5403525  0.52017625  0.50834879  0.53200371]
/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: De
   FutureWarning)
In [191]: print("Accuracy of A logistic regression classifier in Cross Validation: %0.2f (+/-
Accuracy of A logistic regression classifier in Cross Validation: 0.53 (+/- 0.02)
In [192]: print('Accuracy of A logistic regression classifier on the Test Set:', metrics.accurately.
```

start year and start month is important in both the RF and logreg models. There's


```
In []: # So it appears that the logistic regression model performs less well than the random
                 # I will now go back to the RF classifier and look a little bit deeper at what the fea
In [198]: # Go back to the binary random forest classifier and do some hyperparameter tuning.
                     RF = RandomForestClassifier()
In [201]: # parameters that CAN be set in RF classifier:
                     # Number of trees in random forest
                     n_{estimators} = [int(x) for x in np.linspace(start = 10, stop = 1000, num = 6)]
                     # Number of features to consider at every split
                     max_features = ['auto', 'sqrt', 2, 4, 8]
                     # Maximum number of levels in tree
                     max_depth = [int(x) for x in np.linspace(2, 10, 2)]
                     max_depth.append(None)
                     # Minimum number of samples required to split a node
                     min_samples_split = [10, 50]
                     # Minimum number of samples required at each leaf node
                     min_samples_leaf = [5, 10, 25]
                     # Method of selecting samples for training each tree
                     \#bootstrap = [True]
In [202]: # Create the random grid
                     random_grid = {'n_estimators': n_estimators,
                                                     'max_features': max_features,
                                                     'max_depth': max_depth,
                                                      'min_samples_split': min_samples_split,
                                                      'min_samples_leaf': min_samples_leaf,
                                                      'bootstrap': bootstrap}
                     print(random_grid)
{'n_estimators': [10, 208, 406, 604, 802, 1000], 'max_features': ['auto', 'sqrt', 2, 4, 8], 'max_features': ['auto', sqrt', 3, 4, 8], 'max_features': ['auto', sqrt', sqrt
In [203]: # Random search of parameters, using 5 fold cross validation, on the training set
                     RF_random = RandomizedSearchCV(estimator = RF, param_distributions = random_grid, n_
                     # Fit the random search model to the SMOTE adjusted training data set
                     RF_random.fit(X_res_train, y_res_train)
Fitting 5 folds for each of 100 candidates, totalling 500 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 4 concurrent workers.
[Parallel(n_jobs=-1)]: Done 33 tasks | elapsed: 2.1min
```

```
[Parallel(n_jobs=-1)]: Done 154 tasks
                                           | elapsed: 8.1min
[Parallel(n_jobs=-1)]: Done 357 tasks
                                          | elapsed: 16.4min
/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/externals/loky/process_executor
  "timeout or by a memory leak.", UserWarning
[Parallel(n_jobs=-1)]: Done 500 out of 500 | elapsed: 22.8min finished
Out[203]: RandomizedSearchCV(cv=5, error_score='raise-deprecating',
                    estimator=RandomForestClassifier(bootstrap=True, class_weight=None, criter
                      max_depth=None, max_features='auto', max_leaf_nodes=None,
                      min_impurity_decrease=0.0, min_impurity_split=None,
                      min_samples_leaf=1, min_samples_split=2,
                     min_weight_fraction_leaf=0.0, n_estimators='warn', n_jobs=None,
                      oob_score=False, random_state=None, verbose=0,
                      warm_start=False),
                    fit_params=None, iid='warn', n_iter=100, n_jobs=-1,
                    param_distributions={'n_estimators': [10, 208, 406, 604, 802, 1000], 'max_
                    pre_dispatch='2*n_jobs', random_state=42, refit=True,
                    return_train_score='warn', scoring='accuracy', verbose=2)
In [204]: RF_random.best_params_
Out[204]: {'n_estimators': 1000,
           'min_samples_split': 10,
           'min_samples_leaf': 5,
           'max_features': 'auto',
           'max_depth': 10,
           'bootstrap': True}
In [205]: CV_scores = cross_val_score(RF_random, X_res_train, y_res_train, cv=5, scoring = 'ac
          print(CV_scores)
Fitting 5 folds for each of 100 candidates, totalling 500 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 4 concurrent workers.
[Parallel(n_jobs=-1)]: Done 33 tasks
                                        | elapsed: 1.2min
[Parallel(n_jobs=-1)]: Done 154 tasks
                                           | elapsed: 6.5min
[Parallel(n_jobs=-1)]: Done 357 tasks
                                      | elapsed: 12.9min
[Parallel(n_jobs=-1)]: Done 500 out of 500 | elapsed: 17.7min finished
Fitting 5 folds for each of 100 candidates, totalling 500 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 4 concurrent workers.
[Parallel(n_jobs=-1)]: Done 33 tasks
                                          | elapsed: 1.5min
[Parallel(n_jobs=-1)]: Done 154 tasks
                                           | elapsed: 6.7min
[Parallel(n_jobs=-1)]: Done 357 tasks
                                         | elapsed: 13.0min
```

```
/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/externals/loky/process_executo:
  "timeout or by a memory leak.", UserWarning
/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/externals/loky/process_executor
  "timeout or by a memory leak.", UserWarning
[Parallel(n_jobs=-1)]: Done 500 out of 500 | elapsed: 18.0min finished
Fitting 5 folds for each of 100 candidates, totalling 500 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 4 concurrent workers.
[Parallel(n_jobs=-1)]: Done 33 tasks
                                          | elapsed: 1.4min
[Parallel(n_jobs=-1)]: Done 154 tasks
                                           | elapsed: 7.2min
[Parallel(n_jobs=-1)]: Done 357 tasks
                                           | elapsed: 13.0min
[Parallel(n_jobs=-1)]: Done 500 out of 500 | elapsed: 17.4min finished
Fitting 5 folds for each of 100 candidates, totalling 500 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 4 concurrent workers.
[Parallel(n_jobs=-1)]: Done 33 tasks
                                          | elapsed: 1.8min
[Parallel(n_jobs=-1)]: Done 154 tasks
                                           | elapsed: 6.7min
[Parallel(n_jobs=-1)]: Done 357 tasks | elapsed: 13.1min
/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/externals/loky/process_executor
  "timeout or by a memory leak.", UserWarning
[Parallel(n_jobs=-1)]: Done 500 out of 500 | elapsed: 17.4min finished
Fitting 5 folds for each of 100 candidates, totalling 500 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 4 concurrent workers.
[Parallel(n_jobs=-1)]: Done 33 tasks
                                           | elapsed: 1.1min
[Parallel(n_jobs=-1)]: Done 154 tasks
                                           | elapsed: 6.2min
[Parallel(n_jobs=-1)]: Done 357 tasks
                                          | elapsed: 11.7min
[Parallel(n_jobs=-1)]: Done 500 out of 500 | elapsed: 17.5min finished
[0.78789986 0.80612245 0.78501855 0.79754174 0.81864564]
In [208]: print("Average accuracy of a tuned classifier in 5-fold cross validation on the train
```

In [209]: print('Accuracy of A logistic regression classifier on the held out test data set:',
Accuracy of A logistic regression classifier on the held out test data set: 0.7508116883116883

Average accuracy of a tuned classifier in 5-fold cross validation on the training data set : 0

In []: # The hyperparameter tuning applied to this RF classifier on a binary outcome (quit vs

In [210]: print(classification_report(y_test, y_pred))

		precision	recall	f1-score	support
	0 1	0.75 0.75	0.82 0.67	0.78 0.71	2696 2232
micro	avo	0.75	0.75	0.75	4928
macro	•	0.75	0.74	0.75	4928
weighted	avg	0.75	0.75	0.75	4928

so somehow with this random state the performance was just slightly better than be

		precision	recall	f1-score	support
	0	0.79	0.84	0.81	2696
	1	0.79	0.72	0.75	2232
micro a	•	0.79	0.79	0.79	4928
macro a		0.79	0.78	0.78	4928
weighted a	vg	0.79	0.79	0.79	4928

y_pred=RF_test.predict(X_test)

print(classification_report(y_test, y_pred))

Out[214]: start_year 0.874300 salary 0.047493

```
start_month
                               0.032968
                               0.022776
          seniority
          dept_engineer
                               0.006700
          dept_data_science
                               0.005563
          dept_sales
                               0.004785
          dept_marketing
                               0.003260
          dept_design
                               0.002155
          dtype: float64
In [215]: names = X.columns
          feature_imp = pd.Series(RF_test.feature_importances_,index=names).sort_values(ascend
          feature_imp
          plt.rcParams['figure.figsize'] = (15, 12)
          plt.rcParams['axes.labelweight'] = 'bold'
          #plt.rcParams["axes.labelsize"] = 30
          rcParams['axes.titlepad'] = 20
          sns.set(style='whitegrid')
          sns.set_context("paper", rc={"font.size":32,"axes.titlesize":32,"axes.labelsize":30,
          sns.barplot(x=feature_imp, y=feature_imp.index, palette='Reds_d')
          # Add labels to your graph
          plt.xlabel('Importance Score')
          #plt.ylabel('Features')
          plt.title("Visualizing Important Features from a Random Forest Classifier")
Out[215]: Text(0.5, 1.0, 'Visualizing Important Features from a Random Forest Classifier')
```

Visualizing Important Features from a Random Forest Classifier

In []: # OVERALL SUMMARY AND RESPONSES TO GOAL AND HINT QUESTIONS:
 # A random forest classifier was used to predict whether an employee is still working

Caveats:

I have tried includeing and excluding company ID in my predictive models. It did not # I also did not include number of days as a covariate or run a regression model with

In most of my analyses here, I used start year to potentiall explain stochasticity ${f a}$

The goal was to predict employee retention and understand its main drivers.

According to the RF model the main drivers of whether an employee was retained or no

In terms of salary: Employees at medium and high salary levels (compared to low and # In terms of seniority: Again, employees within the mid-range seniority category (mor

In terms of start month: Only real anomoly is November; people whose hire date falls

If you look at the further exploratory analysis below, you can see that really, year

Further questions:

```
## What are the main factors that drive employee churn? Do they make sense?
        # We really need more information, but it seems like incentives for mid-range salary a
        ## What might you be able to do for the company to address employee Churn, what would
        # Ask for more information about employees themselves. We do not have data from very f
        ## If you could add to this data set just one variable that could help explain employe
        # I would want some information about rate of change in salary as well as some informa
In [ ]: ######## FURTHER INVESTIGATION BELOW (EXTRA) ######### -->
In [229]: #dc1_NEW.head(20)
In [218]: # Further exploration:
          # RF model with company included and all 12 companies.
          # Here the outcome/predicted variable will be binary, still employeed or not.
          y = dc1_NEW[['still_employeed']]
          # Here I use the full company set (1-12) company ID.
          X = dc1_NEW[['company_id','dept','seniority', 'salary', 'start_year', 'start_month']
In [219]: # Get dummy variables for categorical features; use drop_first to get rid of the ext
          X = pd.concat([X,pd.get_dummies(X['dept'], prefix='dept', drop_first=True)],axis=1)
          X = pd.concat([X,pd.get_dummies(X['company_id'], prefix='company', drop_first=True)]
          # drop old dept column since it is no longer informative.
          X = X.drop(['dept'], axis=1)
          X = X.drop(['company_id'], axis=1)
          X.head()
Out[219]:
             seniority
                          salary start_year start_month dept_data_science
                                        2014
                         89000.0
                    28
                                                        3
          1
                    20 183000.0
                                        2013
                                                        4
                                                                           0
          2
                    14 101000.0
                                        2014
                                                       10
                                                                            0
                    20 115000.0
          3
                                        2012
                                                        5
                                                                            0
          4
                    23 276000.0
                                        2011
                                                       10
                                                                            1
             dept_design dept_engineer dept_marketing dept_sales
                                                                     company_2 \
          0
                       0
                                      0
                                                      0
                                                                  0
                                                                             0
                       0
                                      0
                                                                              0
          1
                                                      1
                                                                  0
          2
                       0
                                      0
                                                                              0
                                                      1
                                                                  0
          3
                       0
                                      0
                                                                              0
                                                      0
                                                                  0
          4
                                      0
                                                                              1
             company_3 company_4 company_5 company_6 company_7 company_8 \
          0
                     0
                                0
                                           0
                                                      0
                                                                 1
                                                                             0
          1
                     0
                                0
                                           0
                                                      0
                                                                            0
                                                                 1
```

```
3
                                0
                                                       0
                                                                             0
                     0
                                            0
                                                                  1
                                            0
                                                       0
                     0
                                0
             company_9
                        company_10
                                    company_11
          0
                     0
                                 0
                                             0
          1
                     0
                                 0
                                              0
                                                          0
          2
                     0
                                 0
                                              0
                                                          0
          3
                     0
                                 0
                                              0
                                                          0
In [220]: # create training and test data sets based on X and y defined above. Will set test s
          X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state
In [221]: # check for class imbalance
          y_train.still_employeed.value_counts()
Out[221]: 0
               10801
                8941
          Name: still_employeed, dtype: int64
In [222]: sm = SMOTE(random_state=11)
          X_res_train, y_res_train = sm.fit_resample(X_train, y_train)
          print('Resampled dataset shape %s' % Counter(y_res_train))
Resampled dataset shape Counter({'0': 10801, '1': 10801})
/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:761: DataConversionWarning:
  y = column_or_1d(y, warn=True)
In [225]: # just try an out-of-the box RF here to see how it performs compared to previous mod
          RF = RandomForestClassifier()
          RF.fit(X_res_train, y_res_train)
          y_pred=RF.predict(X_test)
          print(classification_report(y_test, y_pred))
          # performance is about equal - maybe a little bit better, but lots more features sin
/anaconda3/lib/python3.6/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The defa
  "10 in version 0.20 to 100 in 0.22.", FutureWarning)
              precision
                           recall f1-score
                                               support
```

0.80

0.72

0.76

2700

2236

4936

0

1

micro avg

0.76

0.78

0.76

0.84

0.68

0.76

```
0.77
weighted avg
In [226]: print('Overall accuracy of a binary RF classifier on the Test Set:', metrics.accuracy
Overall accuracy of a binary RF classifier on the Test Set: 0.7647893030794165
In [227]: # Get feature imporance values and then plot
          names = X.columns
          feature_imp = pd.Series(RF.feature_importances_,index=names).sort_values(ascending=Feature_importances_)
          feature_imp
Out[227]: start_year
                                0.454974
          salary
                                0.204059
          seniority
                                0.129628
          start_month
                                0.102820
          company_2
                                0.013910
          dept_marketing
                                0.009270
          company_3
                                0.009185
          dept_engineer
                                0.008783
          company_4
                                0.007978
          dept_sales
                                0.007902
          company_5
                                0.007783
          dept_data_science
                                0.007013
          company_6
                                0.006659
          company_7
                                0.006651
          dept_design
                                0.005853
          company_10
                                0.005708
          company_9
                                0.005627
          company_8
                                0.005559
          company_12
                                0.000321
          company_11
                                0.000315
          dtype: float64
In [231]: names = X.columns
          feature_imp = pd.Series(RF.feature_importances_,index=names).sort_values(ascending=Feature_importances_)
          feature_imp
          plt.rcParams['figure.figsize'] = (10, 10)
          plt.rcParams['axes.labelweight'] = 'bold'
          rcParams['axes.titlepad'] = 20
          sns.set(style='whitegrid')
          sns.set_context("paper", rc={"font.size":32,"axes.titlesize":32,"axes.labelsize":30,
          sns.barplot(x=feature_imp, y=feature_imp.index, palette='Blues_d')
```

0.77

macro avg

0.76

0.76

0.76

0.76

4936

4936

```
# Add labels to your graph
plt.xlabel('Importance Score')
#plt.ylabel('Features')
plt.title("Visualizing Important Features from a Random Forest Classifier")
```

Out[231]: Text(0.5, 1.0, 'Visualizing Important Features from a Random Forest Classifier')

Visualizing Important Features from a Random Forest Classifier

plt.xlabel('Salary')
plt.ylabel('Turnover')

Turnover and Salary

Turnover and Salary


```
# CONCLUDE:
```

Including start year is sort of like an artifact. More people are likely to have q # Perhaps this should really be removed from the model, because it's giving the 'wro

Out[242]: Text(0, 0.5, 'Turnover')

Turnover and Start Year

[#] CONCLUDE

[#] The only month where number of people who have stayed vs. left is higher is Novemb

Turnover and Start Month


```
In [244]: # One last thing... what happens when start year is removed from the final model abo
y = dc1_NEW[['still_employeed']]

# Here I use the full company set (1-12) company ID.
X = dc1_NEW[['company_id', 'dept', 'seniority', 'salary', 'start_month']]

In [245]: # Get dummy variables for categorical features; use drop_first to get rid of the ext
X = pd.concat([X,pd.get_dummies(X['dept'], prefix='dept', drop_first=True)],axis=1)
X = pd.concat([X,pd.get_dummies(X['company_id'], prefix='company', drop_first=True)]
```

drop old dept column since it is no longer informative.

```
X = X.drop(['dept'], axis=1)
          X = X.drop(['company_id'], axis=1)
          X.head()
Out [245]:
             seniority
                           salary
                                   start_month dept_data_science dept_design
          0
                    28
                          89000.0
                                              3
                                                                  0
          1
                    20 183000.0
                                              4
                                                                  0
                                                                               0
          2
                    14 101000.0
                                             10
                                                                  0
                                                                               0
          3
                    20 115000.0
                                              5
                                                                  0
                                                                               0
          4
                    23
                        276000.0
                                                                                0
                                             10
                                                                  1
                             dept_marketing dept_sales
             dept_engineer
                                                          company_2
                                                                      company_3 company_4
          0
                          0
                                                       0
                                                                   0
                                                                                          0
                          0
                                                                   0
                                                                              0
          1
                                           1
                                                       0
                                                                                          0
          2
                          0
                                           1
                                                       0
                                                                   0
                                                                              0
                                                                                          1
          3
                          0
                                           0
                                                       0
                                                                   0
                                                                              0
                                                                                          0
          4
                                           0
                                                                              0
                                                                                          0
                          0
                                                       0
                                                                   1
                         company_6 company_7 company_8 company_9
             company_5
          0
                      0
                                 0
                                             1
                                                                    0
          1
                      0
                                 0
                                             1
                                                        0
                                                                    0
                                                                                0
                                             0
          2
                      0
                                 0
                                                        0
                                                                    0
                                                                                0
          3
                      0
                                 0
                                             1
                                                        0
                                                                    0
                                                                                0
          4
                      0
                                 0
                                             0
                                                        0
                                                                    0
                                                                                0
             company_11
                          company_12
          0
                       0
          1
                       0
                                   0
          2
                       0
                                   0
          3
                       0
                                   0
          4
                       0
                                   0
In [247]: # create training and test data sets based on X and y defined above. Will set test s
          X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_st
In [248]: # check for class imbalance
          y_train.still_employeed.value_counts()
Out[248]: 0
               10801
                8941
          Name: still_employeed, dtype: int64
In [249]: sm = SMOTE(random_state=11)
          X_res_train, y_res_train = sm.fit_resample(X_train, y_train)
          print('Resampled dataset shape %s' % Counter(y_res_train))
Resampled dataset shape Counter({'0': 10801, '1': 10801})
```

/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:761: DataConversionWarning:
 y = column_or_1d(y, warn=True)

In [250]: # just try an out-of-the box RF here to see how it performs compared to previous mod

```
RF = RandomForestClassifier()
RF.fit(X_res_train, y_res_train)
y_pred=RF.predict(X_test)
print(classification_report(y_test, y_pred))
```

/anaconda3/lib/python3.6/site-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default in version 0.20 to 100 in 0.22.", FutureWarning)

		precision	recall	f1-score	support
	0	0.56	0.64	0.60	2700
	1	0.47	0.38	0.42	2236
micro	avg	0.53	0.53	0.53	4936
macro	avg	0.51	0.51	0.51	4936
weighted	avg	0.52	0.53	0.52	4936

In [251]: print('Overall accuracy of a binary RF classifier on the Test Set:', metrics.accuracy
Overall accuracy of a binary RF classifier on the Test Set: 0.5251215559157212

In [252]: # $\mbox{\it Get feature imporance values and then plot}$

names = X.columns

feature_imp = pd.Series(RF.feature_importances_,index=names).sort_values(ascending=Feature_imp

Out [252]:	salary	0.435520
	seniority	0.250622
	start_month	0.162833
	company_2	0.020925
	company_3	0.013500
	dept_engineer	0.012430
	company_4	0.011655
	dept_sales	0.011543
	company_5	0.010378
	dept_marketing	0.009656
	company_8	0.009457
	company_7	0.009100
	dept_data_science	0.009088

```
      company_6
      0.008901

      dept_design
      0.008119

      company_10
      0.007977

      company_9
      0.007313

      company_11
      0.000523

      company_12
      0.000462

      dtype: float64
```

In [253]: names = X.columns

```
feature_imp = pd.Series(RF.feature_importances_,index=names).sort_values(ascending=Feature_imp

plt.rcParams['figure.figsize'] = (10, 10)
plt.rcParams['axes.labelweight'] = 'bold'
rcParams['axes.titlepad'] = 20
sns.set(style='whitegrid')
sns.set_context("paper", rc={"font.size":32,"axes.titlesize":32,"axes.labelsize":30,
sns.barplot(x=feature_imp, y=feature_imp.index, palette='Greens_d')
# Add labels to your graph
plt.xlabel('Importance Score')
#plt.ylabel('Features')
plt.title("Visualizing Important Features from a Random Forest Classifier")
```

Out[253]: Text(0.5, 1.0, 'Visualizing Important Features from a Random Forest Classifier')

Visualizing Important Features from a Random Forest Classifier

Out[283]: <matplotlib.legend.Legend at 0x1a2c662da0>

