20053722 Student Number Bryan Hoang Name

3.

(a) Solution:

Proof. Suppose that $X_n \xrightarrow{a.s.} X$ and $Y_n \xrightarrow{a.s.} Y$. Then

$$P\left(\left\{\omega \in \Omega : \lim_{n \to \infty} (X_n + Y_n)(\omega) = (X + Y)(\omega)\right\}\right)$$

$$= P\left(\left\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) + Y_n(\omega) = X(\omega) + Y(\omega)\right\}\right)$$

$$= P\left(\left\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) + \lim_{n \to \infty} Y_n(\omega) = X(\omega) + Y(\omega)\right\}\right)$$

$$= P\left(\left\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega) \text{ and } \lim_{n \to \infty} Y_n(\omega) = Y(\omega)\right\}\right)$$

$$= 1$$

since

$$P\left(\left\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\right\}\right) = 1$$

and

$$P\left(\left\{\omega \in \Omega : \lim_{n \to \infty} Y_n(\omega) = Y(\omega)\right\}\right) = 1$$

Therefore, $X_n + Y_n \xrightarrow{a.s.} X + Y$.

(b) Solution:

Proof. We have

$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X}_n)^2 = \frac{1}{n} \sum_{i=1}^{n} \left(X_i^2 - 2X_i \overline{X}_n + \overline{X}_n^2 \right)
= \frac{1}{n} \sum_{i=1}^{n} X_i^2 - \frac{1}{n} \sum_{i=1}^{n} 2X_i \overline{X}_n + \frac{1}{n} \sum_{i=1}^{n} \overline{X}_n^2
= \frac{1}{n} \sum_{i=1}^{n} (X_i^2) - 2\overline{X}_n^2 + \overline{X}_n^2
= \frac{1}{n} \sum_{i=1}^{n} (X_i^2) - \overline{X}_n^2$$
(1)

The first term is essentially a sample mean of the squared X_i 's. For instance, define $Y_i = X_i^2$ and let \overline{Y}_n be the sample mean of the Y_i 's. Then since each Y_i are i.i.d. with finite mean and variance (since that X_i 's are i.i.d. with finite mean and variance), then by the strong law of large numbers, we have that

$$\frac{1}{n} \sum_{i=1}^{n} (X_i^2) = \overline{Y}_n \xrightarrow{a.s.} E[Y_i] = E[X_i^2]$$

But we also know that

$$Var(X_i) = E[X_i^2] - E[X_i]^2$$

MTHE/STAT 353 -- Homework 8, 2020

20053722 Student Number Bryan Hoang Name

$$\sigma^2 = \mathrm{E}[X_i^2] - \mu^2$$

$$\implies \mathrm{E}[X_i^2] = \sigma^2 + \mu^2$$

Hence, $\frac{1}{n} \sum_{i=1}^{n} (X_i^2) \xrightarrow{a.s.} \sigma^2 + \mu^2$.

For the second term in (1), since $\overline{X}_n \xrightarrow{a.s.} \mu$ and $f(x) = x^2$ is a continuous function, then it follows that $\overline{X}_n^2 \xrightarrow{a.s.} \mu^2$.

By part a, we have that (1) $\xrightarrow{a.s.}$ $\sigma^2 + \mu^2 - \mu^2 = \sigma^2$

Therefore,
$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X}_n)^2 \xrightarrow{a.s.} \sigma^2$$
.