PONTIFICIA UNIVERSIDAD CATÓLICA FACULTAD DE CIENCIAS SOCIALES ESPECIALIDAD DE ECONOMIA

ESTADISTICA INFERENCIAL EXAMEN FINAL

Clave: EST241 Horario: 0622

Profesora: Zaida Quiroz Cornejo

- 1. (3 puntos) El consumo de un cierto producto en una familia de cuatro miembros durante los meses de verano, es una variable aleatoria con distribución uniforme en el intervalo $(\alpha, \alpha + \beta)$, donde $\alpha > 0$ y $\beta > 0$. Sea (X_1, \ldots, X_n) una muestra aleatoria de consumos de distintas familias.
 - a) Halle los estimadores (EMM) de α y β por el método de momentos. (1.5 puntos) Sugerencia: Use $\frac{1}{n} \sum_{i=1}^{n} X_j^2 (\frac{\sum_{i=1}^{n} X_j}{n})^2 = \frac{\sum_{i=1}^{n} (X_j \bar{X})^2}{n} = \tilde{\sigma}^2$
 - b) Si α es conocido pruebe que el EMV de β está dado por $\hat{\beta}_{EMV} = max\{Y_1, \dots, Y_n\}$, donde $Y_i = X_i \alpha$. (1.5 puntos)
- 2. (5 puntos) Sean Y_1, \ldots, Y_n variables independientes donde $Y_i \sim N(\beta x_i, \sigma^2), i = 1, \ldots, n$; donde Y_i mide la tasa de crecimiento del PIB real y x_i la tasa de crecimiento de la masa monetaria. Siendo x_i conocidas, y asumiendo que σ^2 es conocido. Note que, en este caso las variables Y_i no son identicamente distribuidas.
 - a) Encuentre el estimador de máxima verosimilitud de β . (2 puntos)
 - b) Si usamos el modelo $Y_i = \beta x_i + \epsilon_i$ donde $\epsilon_i \sim (0, \sigma^2)$; encuentre el estimador de mínimos cuadrados de β . (2 puntos)
 - c) Asumiendo que se satisfacen los supuestos clásicos, pruebe que el estimador en (b) es un estimador insesgado y consistente. (1 punto)
- 3. (2 puntos) Sea X la v.a. que representa la duración, medida en minutos, de un artículo producido por una determinada empresa. Si se conoce que X se distribuye segpun una $N(\mu, \sigma^2)$, constrúyase los intervalos de confianza del 99% para la duración media de los artículos en los supuestos:
 - a) Que se conozca $\sigma = 4$ minutos.

(1 punto)

(b) Que no se conozca σ .

(1 punto)

En ambos casos se cuenta con la información suministrada por una muestra de tamaño n=100 de la que se conocen su media muestral 17.25 minutos y su varianza muestral 15.05 minutos.

4. (5 puntos) Sea X_1, \ldots, X_n m.a. de tiempos de servicio de n clientes en una instalación, donde la distribución subyacente está dada por

$$f(x) = \theta e^{-\theta x}; x > 0$$

- a) ¿Cuál es el estimador de máxima verosimilitud (EMV) de θ ? (1 punto)
- b) Construya un Intervalo de confianza al 95% para θ a partir de la cantidad pivotal $\theta \sum_{i=1}^{n} X_{i}$. (2 puntos)

Sugerencia: Use los siguientes resultados:

- (i) $\sum_{i=1}^{n} X_i \sim Gamma(n, \theta)$
- (ii) Si $X \sim Gamma(n, \theta)$ entonces $\alpha X \sim Gamma(n, \theta/\alpha)$
- c) Pruebe que la Región Crítica del Test de razón de verosimilitud para probar

$$H_0: \theta = 1, H_1: \theta \neq 1$$

está dada por:

$$RC = \{(X_1, \dots, X_n; g(x)) = \bar{X}^n \exp\{n(1 - \bar{X})\} < c, 0 < c < 1\}$$

Si en una muestra de tamaño n=5 se observa los siguientes valores

$$x = \{0.8; 1.3; 1.8; 0.9; 1\}$$
 $\overline{\chi} = 1.66$

¿Cuál sería su conclusión si escogemos la constante c=0.5?

$$\chi = 1.16$$
 (2 puntos)

- 5. (5 puntos) Suponga que el precio de un bien en soles es una v.a. X con distribución normal de media $\mu=380$ y varianza σ^2 , donde 380 soles es el precio sugerido por el fabricante.
 - a) Tomada una muestra aleatoria X_1, \ldots, X_n de X, muestre que la v.a.

$$Y = \sum_{i=1}^{n} \frac{(X_i - 380)^2}{\sigma^2}$$

tiene una distribución chi-cuadrado indicando sus grados de libertad. (1 punto)

- b) Obtenga, usando como variable pivote a Y, un intervalo de confianza al 98% para σ^2 . (2 puntos)
- c) Encuentre la Región crítica UMP para probar $H_0: \sigma^2 = \sigma_0^2$ versus $H_1: \sigma_0^2 = \sigma_1^2$; cuando $\sigma_0^2 < \sigma_1^2$. (1 punto)
- d) Si $\sigma_0^2 = 1$, $\sigma_1^2 = 2$, n = 2 y $\alpha = 0.05$, ¿cuál sería la región crítica? (1 punto)

Pando, 7 de Julio de 2018

oque de la companya d