E303: Communication Systems

Professor A. Manikas Chair of Communications and Array Processing

Imperial College London

An Overview of Fundamentals: PN-codes/signals & Spread Spectrum (Part B)

Table of Contents

- Introduction
 - Modelling of PN-signals in SSS
 - Equivalent Energy Unitisation Efficiency (EUE)
 - Comments
- Classification of Jammers in SSS
- 3 Direct Sequence SSS
 - Introductory Concepts and Mathematical Modelling
 - PSD(f) of a Random Pulse Signal
 - PSD(f) of a PN-Signal b(t) in DS-SSSs
 - PSD(f) of DS/BPSK Spread Spectrum Tx Signal s(t)
- DS-BPSK Spread Spectrum
 - Output SNIR
 - Bit Error Probability with Jamming
- 5 DS-SSS on the (p_e, EUE, BUE) -parameter plane
 - Anti-Jam Margin
- Frequency Hopping SSSs
- 8 Appendices
 - Appendix A. Block Diagram of a Typical SSS
 - Appendix B. BPSK/DS/SS Transmitter and Receiver

Introduction

Modelling of PN-signals in SSS

- Consider $-\begin{cases} \{\alpha[n]\} = \text{a sequence of } \pm 1/s \\ c(t) = \text{an energy signal of duration } T_c, \text{ e.g. } c(t) = \text{rect } \left\{\frac{t}{T_c}\right\} \end{cases}$ We have seen that the PN signal b(t) can be modelled as follows:
 - DS-SSS (Examples: DS-BPSK, DS-QPSK):

$$b(t) = \sum_{n} \alpha[n].c(t - nT_c)$$
 (1)

FH-SSS (Examples: FH-FSK)

$$b(t) = \sum_{n} \exp \{ j(2\pi k[n]F_1t + \phi[n]) \} .c(t - nT_c)$$
 (2)

where $\{k[n]\}$ is a sequence of integers such that

$$\{\alpha[n]\} \mapsto \{\mathsf{k}[n]\}\tag{3}$$

and with $\phi[n]=\mathsf{random}\colon \mathsf{pdf}_{\phi[n]}=rac{1}{2\pi}\mathsf{rect}\Big\{rac{\phi}{2\pi}\Big\}$

4 / 56

Equivalent Energy Utilisation Efficiency (EUE)

Remember:

- ★ Jamming source, or, simply Jammer = intentional interference
- ★ Interfering source = unintentional interference

- * With area-B = area-A we can find N_j
- * $P_j = 2 \times \underline{\text{area} \mathbf{A}} = 2 \times \underline{\text{area} \mathbf{B}} = N_j B_j \Rightarrow N_j = \frac{P_j}{B_i}$

if

$$B_J = qB_{ss}; \ 0 < q \le 1 \tag{4}$$

then

$$EUE_J = \frac{E_b}{N_J} = \frac{P_s.B_J}{P_J.r_b} = \frac{P_s.q.B_{ss}}{P_J.B} = PG \times SJR_{in} \times q \quad (5)$$

$$EUE_{equ} = \frac{E_b}{N_0 + N_J} \tag{6}$$

$$= \underbrace{\mathsf{PG} \times \mathsf{SJR}_{in} \times q}_{\mathsf{EUE}_j} \times \left(\frac{\mathsf{N}_0}{\mathsf{N}_j} + 1\right)^{-1} \tag{7}$$

where

$$SJR_{in} \triangleq \frac{P_s}{P_I} \tag{8}$$

Comments

- EUE_{equ} (or EUE_J): very important since bit error probabilities are defined as function of EUE_{equ} (or of EUE_J)
- For a specified performance
 - $\left\{ \begin{array}{l} \text{the smaller the SIR}_{in} \Rightarrow \text{the better for the signal} \\ \text{the larger the SIR}_{in} \ \Rightarrow \text{the better for the jammer} \end{array} \right.$
- Jammer limits the performance of the communication system i.e. effects of channel noise can be ignored i.e. Jammer Power $\gg P_n \Rightarrow \mathsf{EUE}_{equ} = \frac{E_b}{N_0 + N_J} \simeq \frac{E_b}{N_J} = \mathsf{EUE}_J$

N.B. exception to this:

- i) non-uniform fading channels
- ii) multiple access channels
- ∃ ∞ number of possible jamming waveforms
- There is no single jamming waveform that is worst for all SSSs
- There is no single SSS that is best against all jamming waveforms.

Classification of Jammers in SSS

BROADBAND NOISE JAMMER

Spreads Gaussian Noise of total power P, evently over the total frequency range of the spread spectrum bandwidth B_{aa}

$$EUE_J = \frac{E_b}{N_j}$$

The only knowldge available to (and exploited by) the jammer is the bandwidth B_{ij} of the SSS

 $D_{\cdot\cdot}$: same as that with additive white Gaussian noise of PSD_(f)=N/2

The performance with this type of jammer is known as

BASELINE PERFORMANCE

PARTIAL NOISE

Spreads noise of total power P, evently over some frequency range B_i with $\hat{B}_{i,j} \ni \hat{B}_i$

$$o = \frac{B_j}{B_{ss}} \le 1$$

CWJAMMER

$$j(t) = \sqrt{2P_j} \cos(2\pi F_1 t + \vartheta)$$

MULTITONE JAMMER

$$j(t) = \sum_{\mathbf{I}} \sqrt{\frac{2P_j}{N_j}} \cos(2\pi F_l t + \vartheta_l)$$

PULSE JAMMER

The jammer transmits with power

$$P_{j, peak} = \frac{P_j}{\rho}$$

for a fraction ρ of the time and nothing for the ramaining 1-ρ of the time The jammer first estimates some parameters of the SSSignal and

REPEAT-BACK **JAMMER**

frequ.following iammer

then transmits jamming signals which use this information.

Effective against FH-SSS with slow hop-rate enough for the jammer to respond within the hop duration.

Can be neutralized by increasing hop-rate.

ARBITRARY JAMMER POWER DISTRIBUTION

Spread Gaussian noise with arbitrary PSD(f) of total power P over the total frequency range (or some frequency range) of the SSSignal bandwidth B_{ss}

Direct Sequence SSS

Introductory Concepts & Mathematical Modelling

 If BPSK digital modulator is employed then the BPSK-signal can be modelled as:

BPSK
$$s(t) = A_c \cdot \sin(2\pi F_c t + m(t) \cdot \frac{\pi}{2})$$
 (9)

where the data waveform can be modelled as follows:

$$m(t) \equiv \sum_{n} a[n] \cdot \underbrace{c_1(t - n \cdot T_{cs})}_{rect\left\{\frac{t - n \cdot T_{cs}}{T_{cs}}\right\}}; \quad nT_{cs} \leq t < (n+1) \cdot T_{cs}$$
 (10)

with $\{a[n]\}=$ sequ. of independent data (message) bits $(\pm 1$'s)

- 4 ロ b - 4 団 b - 4 豆 b - 4 豆 - り Q O

• Equation (9) can be rewritten as follows:

$$\mathsf{BPSK} \mid s(t) = A_c \cdot m(t) \cdot \cos(2\pi F_c t)$$

$$\therefore \mathsf{BPSK} \mathsf{ can be considered as } \left\{ \begin{array}{c} \mathsf{PM} \\ \mathsf{AM} \end{array} \right. \tag{11}$$

remember:

• The PSD(f)'s of m(t) and s(t) are shown below

 If a DS/BPSK modulator is employed, then the SS-transmitted signal is

DS/BPSK:
$$s(t) = A_c \sin \left(2\pi F_c t + \underbrace{m(t)b(t)}^{\pm 1} \frac{\pi}{2} \right)$$
 (12)
= $A_c m(t)b(t) \cos(2\pi F_c t)$ (13)

$$\text{where} \left\{ \begin{array}{l} m(t) \equiv \sum\limits_{n} \mathbf{a}[n] \cdot \underbrace{c_1(t-nT_{cs})}_{\uparrow}; \quad nT_{cs} \leq t < (n+1)T_{cs} \\ \text{rect}\{\frac{t-nT_{cs}}{T_{cs}}\} \\ b(t) = \sum\limits_{k} \alpha[k] \cdot \underbrace{c_2(t-kT_{cs})}_{\uparrow}; \quad kT_c \leq t < (k+1)\overset{\downarrow}{T_c} \\ \text{rect}\{\frac{t-kT_c}{T_c}\} \end{array} \right.$$

BPSK DS/CDMA Transmitter & Receiver

• TX (see also Appendix-B):

• Rx (see also Appendix-B):

- The PN-sequence $\{\alpha[I]\}$ (whose elements have values ± 1)
- is M times faster than the data sequence $\{a[n]\}$.

• i.e.

$$T_{cs} = M \cdot T_c \tag{15}$$

i.e.

$$PN-signal Bandwidth \geqslant \boxed{data-Bandwidth}$$
 (16)

Systems which have coincident data and SS code clocks

are often said to have a "data privacy feature"

such systems are easy to build and can be combined in single units

• Note: $chip = T_c = smallest time increment$

• If the above "data privacy feature" is taken into account

then

$$\begin{cases} m(t) \equiv \sum_{n} a[n].c_1(t - n \cdot T_{cs}) & nT_{cs} < t < (n+1) T_{cs} \\ b(t) = \sum_{k} \alpha[k].c_2(t - kT_c) & kT_c < t < (k+1) T_c \end{cases}$$
with $T_{cs} = MT_c$; $\left\lfloor \frac{k}{M} \right\rfloor = n$; (17)

where

$$n \cdot T_{cs} + k' \cdot T_c \le t < n \cdot T_{cs} + (k'+1) \cdot T_c$$

 $\forall k' = 0, 1, \dots, M-1 = k \mod M$

Conclusion

•

except that the apparent data rate is M times faster

signal spectrum is M times wider

Therefore

$$\mathsf{PG} = \frac{B_{\mathsf{ss}}}{B} = M \tag{18}$$

- Note:
 - message cannot be recovered without knowledge of PN-sequence i.e. PRIVACY
 - 2 typical:
 - **★** PN-chip-rate → several **M bits/sec**
 - ★ data rate → few bits/sec

PSD of DS/BPSK/SS Transmitted Signal

Tx signal

$$\begin{array}{rcl} s(t) & = & m(t) \cdot b(t) \cdot A_c \cdot \cos(2\pi F_c t) \\ & & \Downarrow \\ \operatorname{PSD}_s(f) & = & \operatorname{PSD}_m(f) * \operatorname{PSD}_b(f) * \operatorname{PSD}_{A_c \cos(2\pi F_c t)}(f) \\ & & \Downarrow \\ \operatorname{PSD}_s(f) & = & \operatorname{PSD}_m(f) * \operatorname{PSD}_b(f) * \operatorname{PSD}_{A_c \cos(2\pi F_c t)}(f) \end{array}$$

remember

$$\mathsf{PSD}_{A_c \cos(2\pi F_c t)}(f) = \frac{A_c^2}{4} \cdot \left(\delta \left(f - F_c\right) + \delta \left(f + F_c\right)\right)$$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ②

•
$$m(t) \equiv \sum_{n} a[n].c(t - n \cdot T_{cs}) \Rightarrow (\text{see "line-codes"})$$

$$\boxed{ \mathsf{PSD}_m(f) = \frac{|\mathsf{FT}(c(t))|^2}{T_{cs}} \cdot \left[R_{\mathsf{aa}}[0] + \sum_{\substack{k = -\infty \\ k \neq 0}}^{+\infty} R_{\mathsf{aa}}[k] \exp(-j2\pi f k T_{cs}) \right] }$$
 (19)

• Note that if statistical indep. we have:

$$R_{aa}[k] = \begin{cases} \mathcal{E}\left\{a_n^2\right\} \text{ for } k = 0\\ \mathcal{E}\left\{a_n\right\} \cdot \mathcal{E}\left\{a_{n+k}\right\} \text{ for } k \neq 0 \end{cases}$$

i.e.
$$R_{\rm aa}[k]=\left\{ egin{array}{l} \mu_{\rm a}^2+\sigma_{\rm a}^2 \ {\rm for} \ k=0 \ {\rm where} \ \mu_{\rm a}={\rm mean \ and} \ \sigma_{\rm a}={\rm std} \ \mu_{\rm a}^2 \ {\rm for} \ k\neq 0 \end{array}
ight.$$

then

$$\boxed{ \mathsf{PSD}_m(f) = \underbrace{\sigma_{\mathsf{a}}^2 \frac{\big|\mathsf{FT}(c(t))\big|^2}{T_{cs}}}_{\mathsf{Continuous Spectrum}} + \underbrace{\frac{\mu_{\mathsf{a}}^2}{T_{cs}^2} \cdot \mathsf{comb}_{\frac{1}{T_{cs}}} \big(\big|\mathsf{FT}(c(t))\big|^2\big)}_{\mathsf{Discrete Spectrum}} }$$

19 / 56

PSD(f) of a Random Pulse Signal

• For a random pulse signal $m(t) \equiv \sum\limits_{n} a[n].c(t-n\cdot T_{cs})$

(i.e. a sequence of pulses where there is an invariant average time of separation T_{cs} between pulses) with all pulses of the same form but with

- random amplitudes a[n] with mean= $\mu_a = \mathcal{E}\{a[n]\}$ and std= $\sigma_a^2 = \mathcal{E}\{(a[n] \mu_a)^2\}$
- statistical independent random time of occurrence ,

Then:

$$\mathsf{PSD}_m(f) = \underbrace{\sigma_a^2 \frac{\left|\mathsf{FT}(c(t))\right|^2}{T_{cs}}}_{\mathsf{Continuous Spectrum}} + \underbrace{\frac{\mu_a^2}{T_{cs}^2} \cdot \mathsf{comb}_{\frac{1}{T_{cs}}} (\left|\mathsf{FT}(c(t))\right|^2)}_{\mathsf{Discrete Spectrum}}$$

Note that if $\mu_a=0$ (this is a very common case) then

$$| \mathsf{PSD}_m(f) = \mathcal{E}\{\mathsf{a}[n]^2\} \frac{|\mathsf{FT}(\mathsf{single pulse})|^2}{T_{cs}}$$

Prof. A. Manikas (Imperial College) E303: PN-signals and SSS (Part B) v.17 20 / 56

Example: PSD of a random BINARY signal m(t)

 Consider a random binary sequence of 0's and 1's. This binary sequence is transmitted as random signal m(t) with 1's and 0's being sent using the pulses shown below.

For instance a random binary sequence/waveform could be

• If 1's and 0's are statistically independent with Pr(0) = Pr(1) = 0.5, the PSD of the transmitted signal can be estimated as follows:

21 / 56

$$PSD_{m}(f) = \mathcal{E}\left\{a[n]^{2}\right\} \cdot \frac{\left\|FT\left(\underbrace{T_{cs}}\right)^{1}\right\|^{2}}{T_{cs}}$$

$$= \mathcal{E}\left\{a[n]^{2}\right\} \cdot \frac{T_{cs}^{2} \cdot \operatorname{sinc}^{2}(fT_{cs})}{T_{cs}}$$

$$= \mathcal{E}\left\{a[n]^{2}\right\} \cdot \frac{T_{cs} \cdot \operatorname{sinc}^{2}(fT_{cs})}{T_{cs}}$$

$$= \mathcal{E}\left\{a[n]^{2}\right\} \cdot \frac{T_{cs} \cdot \operatorname{sinc}^{2}(fT_{cs})}{T_{cs}}$$

$$= \mathcal{A}^{2}\left\{a[n]^{2}\right\} \cdot \frac{T_{cs} \cdot \operatorname{sinc}^{2}(fT_{cs})}{T_{cs}}$$

$$= \mathcal{A}^{2}\left\{T_{cs}\operatorname{sinc}^{2}\left\{fT_{cs}\right\}\right\}$$

PSD(f) of a PN-Signal b(t) in DS-SSSs

• Autocorrelation function: $R_{bb}(\tau)$

$$R_{bb}(\tau) = \frac{N_c + 1}{N_c} \operatorname{rep}_{N_c T_c} \left\{ \Lambda \left(\frac{\tau}{T_c} \right) \right\} - \frac{1}{N_c}$$

$$N_c^{1} \qquad N_c T_c \qquad (20)$$

• Using the FT tables the $PSD_b(f) = FT\{R_{bb}(\tau)\}$ of the signal b(t) is:

$$PSD_{b}(f) = \frac{N_{c}+1}{N_{c}^{2}} comb_{\frac{1}{N_{c}T_{c}}} \left\{ sinc^{2} \left\{ f \cdot T_{c} \right\} \right\} - \frac{1}{N_{c}} \delta(f)$$

$$\frac{sinc^{2}}{\sqrt{N_{c}T_{c}}} \left\{ \frac{A_{c}^{2}}{\sqrt{N_{c}T_{c}}} \right\}$$

$$\frac{A_{c}^{2}}{\sqrt{N_{c}T_{c}}} \left\{ \frac{A_{c}^{2}}{\sqrt{N_{c}T_{c}}} \right\}$$

◆ロ > ◆母 > ◆き > ◆き > き の Q ©

PSD(f) of DS/BPSK Spread Spectrum Tx Signal s(t)

$$s(t) = m(t) \cdot b(t) \cdot A_c \cdot \cos(2\pi F_c t)$$

$$\Rightarrow \mathsf{PSD}_s(f) = \mathsf{PSD}_m(f) * \underbrace{\mathsf{PSD}_b(f) * \frac{A_c^2}{4} \left(\delta(f - F_c) + \delta(f + F_c)\right)}_{\text{term 1}}$$

• **Ignore** (for the time being) the effects of m(t)

$$\begin{split} \mathsf{PSD}_{\mathsf{term1}}(f) &= \frac{A_c^2}{4} \cdot \mathsf{PSD}_b(f) * \left(\delta(f - F_c) + \delta(f + F_c) \right) \\ &= \frac{A_c^2}{4} \cdot \left\{ \frac{N_c + 1}{N_c^2} \cdot \mathsf{comb}_{\frac{1}{N_c T_c}} \left\{ \mathsf{sinc}^2(f \cdot T_c) \right\} - \frac{1}{N_c} \cdot \delta(f) \right\} \\ &* \left(\delta(f - F_c) + \delta(f + F_c) \right) \\ &= \frac{A_c^2}{4} \cdot \frac{N_c + 1}{N_c^2} \cdot \left(\mathsf{comb}_{\frac{1}{N_c T_c}} \left\{ \mathsf{sinc}^2 \left\{ (f - F_c) T_c \right\} \right\} \right) \\ &+ \mathsf{comb}_{\frac{1}{N_c T_c}} \left\{ \mathsf{sinc}^2 \left\{ (f + F_c) T_c \right\} \right\} \right) \\ &- \frac{A_c^2}{4} \frac{1}{N_c} \left(\delta(f - F_c) + \delta(f + F_c) \right) \end{split}$$

$$PSD_{term1}(f) = \frac{A_c^2}{4} \cdot \frac{N_c + 1}{N_c^2} \cdot \left(comb_{\frac{1}{N_c T_c}} \left\{ sinc^2 \left\{ (f - F_c) T_c \right\} \right\} + comb_{\frac{1}{N_c T_c}} \left\{ sinc^2 \left\{ (f + F_c) T_c \right\} \right\} \right) - \frac{A_c^2}{4} \frac{1}{N_c} \left(\delta(f - F_c) + \delta(f + F_c) \right)$$
(22)

- If m(t) is used, then each discrete frequency in Equation (22) becomes a sinc² function.
- ► There are two cases:

• CASE-1:

$$\frac{1}{T_{cs}} < \frac{1}{2N_c T_c}$$

• CASE-2:

$$\frac{1}{T_{cs}} \geq \frac{1}{N_c T_c}$$

the peaks will merge into a continuous smooth spectrum

• CASE-1:

• CASE-2:

N.B.:

► If

$$b(t) = random$$

then

$$s(t) = A_c m(t) b(t) \cos(2\pi F_c t)$$

▶ If the effects of m(t) are ignored then

$$PSD_{s}(f) = A_{c}^{2} T_{c}^{2} sinc \left\{ fT_{c} \right\} * \frac{1}{4} \left(\delta(f - F_{c}) + \delta(f + F_{c}) \right)$$

$$\downarrow \qquad \qquad \downarrow$$

$$PSD_{s}(f) = \frac{T_{c}}{4} A_{c}^{2} \left(sinc^{2} \left\{ (f - F_{c}) T_{c} \right\} + sinc^{2} \left\{ (f + F_{c}) T_{c} \right\} \right)$$

i.e. PSD is similar to 'CASE-2' above

DS-BPSK Spread Spectrum:

Output SNIR

 Consider the block diagram of a SS-Communication System which employs a BPSK digital modulator:

• N.B.:
$$B_{ss} = \frac{1}{T_c}$$
; $B = \frac{1}{T_{cs}}$; $PG = \frac{B_{ss}}{B} = \frac{T_{cs}}{T_c}$

• Then, at point | T1 |, we have

$$s(t) = A_c \cdot m(t) \cdot b(t) \cdot \cos(2\pi F_c t) \tag{23}$$

and at point $\left|\frac{\wedge}{\mathsf{T}1}\right|$:

$$s(t) + n(t) + j(t)$$
 (for $k = 1$) (24)

 At the input of the receiver the Signal-to-Noise-plus-Interference Ratio (SNIR_{in}) is:

$$SNIR_{in} = \frac{EUE}{PG \cdot (1 + JNR_{in})} = \frac{EUE_{equ}}{PG}$$
 (25)

• at point $\stackrel{\wedge}{\mathsf{T}}$:

$$(s(t) + n(t) + j(t)) \cdot b(t - \tau) \cdot 2\cos(2\pi F_c t + \theta)$$
 (26)

• at point T0:

$$P_{\text{unwanted}} = P_{n_{\text{out}}} + P_{\text{code-noise}} + P_{j_{\text{out}}}$$
 (27)

• if $\tau = 0$ and $\theta = 0$ (i.e. the system is synchronized) then:

$$P_{\mathsf{code} ext{-noise}} = 0$$

and

$$SNIR_{out-max} = 2EUE_{equ}$$
 (28)

However,

$$SNIR_{in} = \frac{EUE}{PG \cdot (1 + JNR_{in})} = \frac{EUE_{equ}}{PG}$$
 (29)

Therefore,

$$SNIR_{out-max} = 2EUE_{equ} = 2.PG.SNIR_{in}$$
 (30)

Bit Error Probability with Jamming

A. CONSTANT POWER BROADBAND JAMMER:

• From the "Detection Theory" topic we know that the bit-error-probability p_e for a Binary Phase-Shift Key (BPSK) communication system is given by:

$$p_{e} = T \left\{ \underbrace{\sqrt{2 \cdot EUE}}_{SNR_{out, matched filter}} \right\} \quad \text{where EUE} = \frac{E_{b}}{N_{0}}$$
 (31)

• Consider a DS/BPSK SSS which operates in the presence of a constant amplitude broadband jammer with double sided power spectral density

$$\mathsf{PSD}_j(f) = \frac{N_j}{2} \tag{32}$$
3: PN-signals and SSS (Part B) v.17 35 / 56

Prof. A. Manikas (Imperial College)

Then.

$$p_{\mathsf{e}} = T \left\{ \sqrt{2 \cdot \mathsf{EUE}_{\mathsf{equ}}}
ight\}$$

where
$$\mathsf{EUE}_{\mathsf{equ}} = \frac{E_b}{N_0 + N_j}$$
 with $N_j = \frac{P_J}{B_{\mathsf{ss}}}$

• If we make the assumption that $N_i \gg N_0$ then

$$p_{e} = T\{\sqrt{2 \cdot EUE_{J}}\}$$
 (33)

where
$$EUE_J = \frac{E_b}{N_j}$$

 This is known as the BASELINE PERFORMANCE of a DS/BPSK SSS

B. PULSE JAMMER:

- Consider a DS/BPSK SSS which operates in the presence of a jammer which transmits "broadband noise" with large power but only a fraction of the time.
- The double-sided power spectral density of the jammer is given by:

$$PSD_j(f) = \frac{N_j}{2\rho} \tag{34}$$

- where
 - $ho \equiv$ the fraction of time the jammer is "on".
 - $ightharpoonup P_i$ = average jamming power
 - $ightharpoonup rac{P_j}{
 ho}=$ actual power during a jamming pulse duration

- Let the jammer pulse duration be greater than T_{cs} (data bit time).
 - Then $\begin{cases} & \text{Pr(jammer} = \text{"on"}) = \rho \\ & \text{Pr(jammer} = \text{"off"}) = 1 \rho \end{cases}$ and the bit-error-probability is given by:

$$p_{e} = \underbrace{(1 - \rho)T\left\{\sqrt{2\frac{E_{b}}{N_{0}}}\right\}}_{\simeq 0 \text{ (very small)}} + \rho T\left\{\sqrt{2\frac{E_{b}}{N_{0} + \frac{N_{j}}{\rho}}}\right\}$$
(35)

which can be simplified to

$$p_e = \rho \cdot T \left\{ \sqrt{2\rho \cdot EUE_J} \right\} \quad \text{where } EUE_J = \frac{E_b}{N_i}$$
 (36)

 \bullet By plotting the above equation for different values of ρ we get:

Note that

- lacktriangle the value of which maximizes p_e decreases with increasing values of ${\sf EUE}_j$
- there is a value of ρ which maximizes the probability of error p_e . This value can be found by differentiating Equation-36 with respect to ρ . That is

$$\frac{dp_e}{d\rho} = 0 \Rightarrow \rho^* = \begin{cases} \frac{0.709}{\text{EUE}_j} & \text{if EUE}_j > 0.709\\ 1 & \text{if EUE}_j \le 0.709 \end{cases}$$
 (37)

Therefore

$$p_{e_{\text{max}}} = \max_{\rho} \left\{ \rho \cdot T \left\{ \sqrt{2\rho \text{EUE}_{j}} \right\} \right\}$$

$$p_{e_{\text{max}}} = \rho^{*} \cdot T \left\{ \sqrt{2\rho^{*} \text{EUE}_{j}} \right\}$$
(38)

$$\implies p_{\mathsf{e}_{\mathsf{max}}} = \begin{cases} \frac{0.083}{\mathsf{EUE}_j} & \text{if } \mathsf{EUE}_j > 0.709 \\ \mathsf{T} \left\{ \sqrt{2\mathsf{EUE}_j} \right\} & \text{if } \mathsf{EUE}_j \le 0.709 \end{cases} \tag{39}$$

N.B.:

- when jammer pulse length is shorter than a data bit time T_{cs} then the above expression is not valid.
- ▶ However, Equation-39 represents an UPPER BOUND on the bit-error-probability p_e .
- The next graph illustrates
 - ▶ the bit-error-prob. plotted against the EUE; for a baseline jammer (i.e. $\rho=1$) and
 - the worst case jammer (i.e. $\rho = \rho^*$) for a DS/BPSK SSS.
- Note the huge difference between the two curves.

DS-SSS on the (pe, EUE, BUE)-parameter plane

Anti-Jam Margin

 An important parameter of SSS is the ANTIJAM MARGIN which is defined as follows:

$$\label{eq:db} \begin{split} \mathsf{dB}(\mathsf{AJM}) &\equiv \mathsf{dB}(\mathsf{EUE}_{\mathsf{equ}}) - \mathsf{dB}(\mathsf{EUE} \; \mathsf{which} \; \mathsf{corresponds} \; \mathsf{to} \; \mathsf{the} \; \rho_{e,PR}) \\ \Rightarrow & \boxed{\mathsf{dB}(\mathsf{AJM}) \equiv 10 * \mathsf{log}(\mathsf{EUE}_{\mathsf{equ}}) - 10 * \mathsf{log}(\mathsf{EUE}_{\rho_e,PR})} \end{split}$$

 AJM represents a safety margin against jammer (or against jammer plus noise).

Frequency Hopping SSSs

 Consider that the following part of the spectrum has been allocated to a FH/SSS:

• Let us partition the above spectrum onto L different frequency slots of bandwidth F_1 (or of bandwidth qF_1 where q is a constant). Then $B_{ss} = q \cdot F_1 \cdot L$

• Define the following symbols:

$$T_c = ext{hop duration (i.e. hop rate } r_{hop} = rac{1}{T_c})$$
 $T_{cs} = ext{message bit duration (i.e. bit rate } r_b = rac{1}{T_{cs}})$
 $M = ext{number of hops per message bit (i.e. } T_{cs} = M \cdot T_c)$

$$ullet$$
 FH/SSS:
$$\left\{ egin{array}{ll} {\sf Fast hop} &
ightarrow r_{hop} > r_b \ {\sf slow hop} &
ightarrow r_{hop} < r_b \ {\sf balance hop} &
ightarrow r_{hop} = r_b \end{array}
ight.$$

• The frequency slot is constant in each time chip T_c , BUT changes from chip-to-chip.

This can be represented by the following diagram:

• In general, the No. of different frequency slots *L* over which the signal may hop, is a power of 2.

• F_1 is, in general, equal to $\frac{1}{T_c}$,

i.e. $F_1 = \frac{1}{T_c}$ (but this is not a necessary requirement).

- several FH signals occupy a common RF channel
- FH model of b(t) (complex representation):

$$b(t) = \sum_{n} \exp \left\{ j(2\pi.k[n].F_1t + \phi_n) \right\} \cdot \text{rect} \left\{ \frac{t - nT_c}{T_c} \right\}$$

where

- $k[n] = \mathbf{f}_{\{PN-\text{sequ } \{\alpha[n]\}\}}$
- \blacktriangleright k[n] is an integer that is formed by a codeword which is formed by one or more m-sequences

Transmitter-Receiver path:

A Different Implementation:

• L frequencies are produced by the digital Frequ. Synthesizer, separated by F_1

$$B_s \simeq q \cdot F_1 \cdot L \tag{40}$$

- Note:
 - ▶ if reception= coherent:
 - * more difficult to achieve
 - ★ places constraints on the transmitted signal and transmitted medium
 - ▶ if reception= non-coherent :
 - ★ PN-gen. can run at a considerably slower rate in this type of system than in a DS system

FH: non-coherent ⇒ poorer performance against thermal noise.

- Performance:
 - Coherent FSK (CFSK)

$$p_{e,CFSK} = T \left\{ \sqrt{\mathsf{EUE}} \right\}$$

Non-Coherent FSK (NFSK)

$$p_{e,NFSK} = \frac{1}{2} \exp\left(-\frac{\mathsf{EUE}}{2}\right)$$

very strong signals at receiver swapping out the effects of weaker signal

"near-far" problem

- A serious problem is the
 - ▶ DS: severe problem
 - ▶ FH: much more susceptible
- acquisition: much faster in FH than in DS
- $PG = \frac{B_{ss}}{B} = it$ is not very good criterion for FH

Appendices

Appendix A. Block Diagram of a Typical SSS

(terrestrial & satellite comm. systems)

Appendix B. BPSK/DS/SS Transmitter and Receiver BPSK/DS/SS Transmitter

BPSK/DS/SS Receiver

