# CS 188: Artificial Intelligence



# **Local Search**



#### Local Search

- Tree search keeps unexplored alternatives on the fringe (ensures completeness)
- Local search: improve a single option until you can't make it better (no fringe!)
- New successor function: local changes



Generally much faster and more memory efficient (but incomplete and suboptimal)

## Hill Climbing

Simple, general idea:

Start wherever

Repeat: move to the best neighboring state

If no neighbors better than current, quit

What's bad about this approach?

- Complete?
- Optimal?
- What's good about it?



## Hill Climbing Diagram



## Hill Climbing Quiz



Starting from X, where do you end up?

Starting from Y, where do you end up?

Starting from Z, where do you end up?

## Simulated Annealing

- Idea: Escape local maxima by allowing downhill moves
  - But make them rarer as time goes on

```
function SIMULATED-ANNEALING (problem, schedule) returns a solution state
inputs: problem, a problem
          schedule, a mapping from time to "temperature"
local variables: current, a node
                     next, a node
                     T, a "temperature" controlling prob. of downward steps
current \leftarrow \text{Make-Node}(\text{Initial-State}[problem])
for t \leftarrow 1 to \infty do
     T \leftarrow schedule[t]
     if T = 0 then return current
     next \leftarrow a randomly selected successor of current
     \Delta E \leftarrow \text{Value}[next] - \text{Value}[current]
     if \Delta E > 0 then current \leftarrow next
     else current \leftarrow next only with probability e^{\Delta E/T}
```



# Simulated Annealing

- Theoretical guarantee:
  - ullet Stationary distribution:  $p(x) \propto e^{rac{E(x)}{kT}}$
  - If T decreased slowly enough, will converge to optimal state!
- Is this an interesting guarantee?
- Sounds like magic, but reality is reality:
  - The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row
  - People think hard about ridge operators which let you jump around the space in better ways



#### Genetic Algorithms



- Genetic algorithms use a natural selection metaphor
  - Keep best N hypotheses at each step (selection) based on a fitness function
  - Also have pairwise crossover operators, with optional mutation to give variety
- Possibly the most misunderstood, misapplied (and even maligned) technique around

#### Example: N-Queens



- Why does crossover make sense here?
- When wouldn't it make sense?
- What would mutation be?
- What would a good fitness function be?

### Next Time: Adversarial Search!