$\verb"pyED" documentation (v1.0 - stable release)"$

Jamin Kidd

Tulane University

 $E ext{-}mail: jkidd@tulane.edu$

Co	Contents					
1	Intr	\mathbf{r} oduction	2			
2	The	oretical background	2			
	2.1	Fermion operators	2			
	2.2	Basis set	2			
	2.3	Matrix representation	3			
	2.4	Hamiltonian	4			
	2.5	Diagonalization	5			
	2.6	Observables	5			
3	Usi	ng the code	6			
	3.1	Installation	6			
	3.2	Minimal run	6			
\mathbf{A}	Imp	elementation notes	7			
	A.1	Lattice convention	7			
	A.2	Lin hashing	8			
В	para	ams.yaml	9			

1 Introduction

pyED is a simple toolkit for numerically diagonalizing an interacting spinful fermion Hamiltonian on a small lattice. It makes use of the implicitly restarted Lanczos algorithm (Chapter 4 of Ref. [1]) to obtain a low-energy subspace of the full eigenspectrum. It also contains analysis tools for computing observables at arbitrary temperature.

2 Theoretical background

2.1 Fermion operators

The model is written in terms of fermionic raising/lowering operators satisfying the anticommutation relations

$$\left\{c_{i\alpha}^{(d_1)}, c_{j\beta}^{(d_2)}\right\} = (1 - \delta_{d_1 d_2}) \,\delta_{ij} \delta_{\alpha\beta},$$
 (2.1)

where

- Latin letters (i.e., i and j) label Wannier orbitals spanning a lattice with L sites,
- Greek letters (i.e., α and β) label spin (\uparrow or \downarrow), and
- the superscript (i.e., d_1 and d_2) is used to distinguish raising (d = +1) and lowering (d = -1) operators. Explicitly,

$$\begin{cases}
c_{i\alpha}^{-1} = c_{i\alpha} \\
c_{i\alpha}^{+1} = c_{i\alpha}^{\dagger}
\end{cases}$$
(2.2)

The occupation number is given by

$$n_{i\alpha} = c_{i\alpha}^{+1} c_{i\alpha}^{-1} \tag{2.3}$$

The vacuum state, denoted $|0\rangle$, has the property that for any i and α ,

$$c_{i\alpha}^{-1}|0\rangle = 0, (2.4)$$

i.e., the null state.

2.2 Basis set

The full Hilbert space possesses a complete, orthonormal basis consisting of states that generically have the form

$$|n\rangle = \left(\prod_{j=1}^{N_{\uparrow}} c_{i_{j}\uparrow}^{+1}\right) \left(\prod_{j=1}^{N_{\downarrow}} c_{k_{j}\downarrow}^{+1}\right) |0\rangle \tag{2.5}$$

The state is normally ordered such that $c_{1\alpha}^{+1}$ always appears to the left of $c_{2\alpha}^{+1}$, etc. To assign each basis state a unique integer label, pyED uses the hashing method of Lin [2], which we summarize in Appendix ??.

2.3 Matrix representation

Any operator \hat{O} on the Hilbert space can be written as a linear combination of fermion "strings" with complex coefficients, i.e.,

$$\hat{O} = \sum_{l} \lambda_l \hat{O}^{(l)} \tag{2.6}$$

where $\lambda_l \in \mathbb{C}$. A generic string $\hat{O}^{(l)}$ appearing in the sum is a product of M fermion operators,

$$\hat{O}^{(l)} = \prod_{j=1}^{M} c_{i_j \alpha_j}^{(d_j)} \tag{2.7}$$

which may or may not be normally ordered. To encode the operator numerically, pyED uses a simple matrix representation, i.e.,

$$O_{mn} = \sum_{l} \lambda_{l} \langle m | \hat{O}^{(l)} | n \rangle \tag{2.8}$$

The idea is to directly compute the state $\hat{O}^{(l)}|n\rangle$ by applying Eqns. 2.1 and 2.4 as necessary. In Fock representation (Eqn. A.2),

$$\hat{O}^{(l)}|n\rangle = c_{i_1\alpha_1}^{(d_1)} \dots c_{i_{M-1}\alpha_{M-1}}^{(d_{M-1})} \left(c_{i_M\alpha_M}^{(d_M)} | \dots n_{i_M\alpha_M} \dots \right)$$
 (2.9)

The first step is to consider the term inside the parentheses. There are apparently four cases, summarized in the following table:

	$n_{i_M\alpha_M}=1$	$n_{i_M\alpha_M}=0$
$d_M = -1$	$e^{i\phi_M} \mid \dots \mid 0 \mid \dots \rangle$	$\dots c_{i_M\alpha_M}^{-1} 0\rangle = 0$
$d_M = +1$	$\dots \left(c_{i_M\alpha_M}^{+1}\right)^2 \dots 0\rangle = 0$	$e^{i\phi_M} \dots 1 \dots \rangle$

For the two non-zero cases highlighted in green, Eqn. 2.1 must be applied such that the resulting state is normally ordered. Hence, a phase factor $e^{i\phi_M} = \pm 1$ is generally acquired, depending on the parity of the exchange (even = +1, odd = -1). This procedure is then iterated over each operator, from right to left (i.e., from the j = M - 1 term to the j = 1 term). There are two possible outcomes:

- 1. If the state became null at any step, then $\hat{O}^{(l)}|n\rangle = 0$.
- 2. If the state survives at each step, then the iteration yields

$$\hat{O}^{(l)}|n\rangle = e^{i\Phi_n(l)}|f_n(l)\rangle \tag{2.10}$$

where

$$\Phi_n(l) = \sum_{j=1}^{M} \phi_j \tag{2.11}$$

and

$$|f_n(l)\rangle = |\dots n_{i_j\alpha_j} + d_j \dots\rangle$$
 (2.12)

The set of all $|n\rangle$ that fall under the second category generally depends on the form of the operator. Denoting this set as \mathcal{N}_l , the matrix element for the fermion string is

$$O_{mn}^{(l)} = \begin{cases} e^{i\Phi_n(l)} & \text{if } n \in \mathcal{N}_l \text{ and } m = f_n(l) \\ 0 & \text{otherwise} \end{cases}$$
 (2.13)

which immediately yields O_{mn} when combined with Eqn. 2.8.

2.4 Hamiltonian

The Hamiltonian is defined as

$$\hat{H} = \sum_{m=1}^{N_0} \hat{H}_0^{(m)} + \sum_{m=1}^{N_{\text{int}}} \hat{H}_{\text{int}}^{(m)}, \tag{2.14}$$

where the individual terms are of the following form:

• $\hat{H}_0^{(m)}$ is a free Hamiltonian, i.e., quadratic in fermion operators:

$$\hat{H}_{0}^{(m)} = \sum_{i,j} \sum_{\alpha,\beta} T_{ij}^{\alpha\beta} c_{i\alpha}^{(d_1)} c_{j\beta}^{(d_2)}$$
(2.15)

 \bullet $\hat{H}_{\mathrm{int}}^{(m)}$ is an interaction Hamiltonian, i.e., quartic in fermion operators:

$$\hat{H}_{\text{int}}^{(m)} = \sum_{i,j,k,l} \sum_{\alpha,\beta,\gamma,\sigma} V_{ijkl}^{\alpha\beta\gamma\sigma} c_{i\alpha}^{(d_1)} c_{j\beta}^{(d_2)} c_{k\gamma}^{(d_3)} c_{l\sigma}^{(d_4)}$$
(2.16)

It is useful to consider the symmetries of the model. We first define

$$\hat{N}_{\sigma} = \sum_{i} n_{i\sigma} \tag{2.17}$$

for spin σ (= \uparrow or \downarrow), which satisfies the eigenvalue equation $\hat{N}_{\sigma} |n\rangle = N_{\sigma} |n\rangle$ by Eqn. 2.5. We then define the total particle number,

$$N = N_{\uparrow} + N_{\downarrow}, \tag{2.18}$$

and total spin,

$$S_z = N_{\uparrow} - N_{\downarrow}. \tag{2.19}$$

Since each site can be at most doubly occupied, the eigenvalues of N range from 0 to 2L, while the eigenvalues of S_z range from -L to L. For fixed N, flipping one spin from \downarrow to \uparrow increases S_z by 2. Hence, the allowed values of S_z are

$$S_z = |N - L| - L, |N - L| - L + 2, \dots, |L - |N - L|.$$
 (2.20)

Similarly, for fixed S_z , the allowed particle numbers are

$$N = |S_z|, |S_z| + 2, \dots, 2L - |S_z|.$$
(2.21)

One can easily verify the above expressions by writing down the possible spin configurations for the case L=3. The Hamiltonian may be symmetric under one, both, or neither of the two operators \hat{N} and \hat{S}_z . The condition for particle number symmetry is that each of the $N_0 + N_{\text{int}}$ terms in Eqn. 2.14 satisfies $\sum_i d_i = 0$. For example, terms of the form

$$c_{i\alpha}^{+1}c_{j\beta}^{+1} \tag{2.22}$$

do not conserve N. Similarly, S_z symmetry requires that there are no "spin flip" terms, e.g.,

$$c_{i\uparrow}^{+1}c_{i\downarrow}^{-1} \tag{2.23}$$

2.5 Diagonalization

In any pyED calculation, the primary goal is to solve the eigenvalue problem

$$\hat{H} |\Psi_k\rangle = E_k |\Psi_k\rangle \tag{2.24}$$

where $|\Psi_k\rangle$ is a many-body eigenstate. Expressing this numerically is very simple using the basis described in §2.2. Given this basis, we have

$$|\Psi_k\rangle = \sum_n \alpha_n^{(k)} |n\rangle \tag{2.25}$$

Applying $\langle m|$ to both sides of Eqn. 2.24 yields

$$\sum_{n} H_{mn} \alpha_n^{(k)} = E_k \alpha_m^{(k)} \tag{2.26}$$

which is just a matrix eigenvalue equation $H\vec{\alpha} = E\vec{\alpha}$. Typically, the matrix H_{mn} is very sparse, meaning that most of its entries are zero. Hence, it benefits greatly from using the Lanczos algorithm. This algorithm will introduce a small error that is typically negligible at low temperatures. Nevertheless, full diagonalization is also available in pyED through numpy.linalg.eig. Generally, one should test how the memory usage of a full diagonalization job scales with system size L before running the target calculation.

2.6 Observables

When computing observables at finite temperature $T = 1/\beta$, the Boltzmann factors $e^{-\beta E_k}$ are generally too large to store as a float. Therefore, instead of computing the partition function, we compute the quantity

$$Z_0 = Ze^{\beta E_0} = \sum_k e^{-\beta(E_k - E_0)}$$
 (2.27)

where E_0 is the ground state energy. The average value of an operator \hat{O} is then

$$\langle \hat{O} \rangle = \frac{1}{Z_0} \text{Tr} \left[e^{-\beta \left(\hat{H} - E_0 \right)} \hat{O} \right]$$
 (2.28)

$$= \frac{1}{Z_0} \sum_{k} e^{-\beta(E_k - E_0)} \langle \Psi_k | \hat{O} | \Psi_k \rangle \qquad (2.29)$$

$$= \frac{1}{Z_0} \sum_{k} \sum_{m,n} e^{-\beta(E_k - E_0)} \bar{\alpha}_m^{(k)} \alpha_n^{(k)} O_{mn}$$
 (2.30)

This expression simplifies at T=0. Denoting the ground state degeneracy as g, we have

$$\lim_{\beta \to \infty} Z_0 = g \tag{2.31}$$

and hence

$$\lim_{\beta \to \infty} \langle \hat{O} \rangle = \frac{1}{g} \sum_{k < g} \sum_{m,n} \bar{\alpha}_m^{(k)} \alpha_n^{(k)} O_{mn}$$
 (2.32)

The above expressions can be used to compute energies, order parameters, correlation functions, etc.

3 Using the code

3.1 Installation

Navigate to your preferred installation folder. Then, run the following:

```
git clone https://github.com/jkidd1/pyED.git
cd pyED
bash install.bash
```

To check the installation, you can run

```
bash tests/run_tests.bash
```

3.2 Minimal run

The main input file required by pyED is called params.yaml. It is a YAML file, meaning it has the following basic structure:

```
parameter_1: value_1
parameter_2: value_2
```

pyED has several built-in models and lattices, described in §??

A Implementation notes

A.1 Lattice convention

The 2D lattice is assumed to be a finite tiling of a unit cell with side lengths L_x and L_y in the x and y directions, respectively. Each cell has N_{sub} sublattices, meaning that the total number of sites is $L = N_{\text{sub}} \times L_x \times L_y$. To label the Wannier orbitals, a multi-index convention must be chosen. pyED uses the following convention:

$$\{\mathbf{R}, s\} \to j = N_{\text{sub}} \left(L_x R_y + R_x \right) + s, \tag{A.1}$$

where $\mathbf{R} = (R_y, R_x)$ is the cell coordinate and s denotes the sublattice index. R_y can be viewed as a layer index, with each layer consisting of $N_{\text{sub}} \times L_x$ sites. To remain consistent with Python, each index always starts at zero. Table 1 highlights the basic structure of the mapping, while Fig. 1 provides an illustration for the case of the 2×2 zigzag honeycomb lattice.

j	0	1	• • •	$N_{ m sub}-1$	$N_{ m sub}$	• • •	$N_{\mathrm{sub}} \times L_x - 1$	$N_{ m sub} imes L_x$	• • •	L-1
R_y	0	0		0	0		0	1		$L_y - 1$
R_x	0	0		0	1		$L_x - 1$	0		L_x-1
s	0	1		$N_{\mathrm{sub}} - 1$	0		$N_{ m sub}-1$	0		$N_{ m sub}-1$

Table 1. Site labelling convention used by pyED following Eqn. A.1 (the top row is the multi-index j). The colors indicate different partitions of the lattice: red contains only one unit cell (i.e., fixed $\mathbf{R} = \mathbf{0}$), blue contains only one layer (i.e., fixed $R_y = 0$), and yellow-green can generally contain multiple layers (i.e., $R_y = 1, \ldots, L_y - 1$).

Figure 1. Illustration of the 2×2 zigzag honeycomb lattice with $N_{\text{sub}} = 2$. Sites are labelled from 0 to 7 according to the convention of Eqn. A.1. The color of each site is chosen to match Table 1.

A.2 Lin hashing

In the Fock representation, $|n\rangle$ is expressed as a binary string of occupation numbers:

$$|n_{1\uparrow}\dots n_{L\uparrow} \ n_{1\downarrow}\dots n_{L\downarrow}\rangle$$
 (A.2)

with each $n_{i\alpha}$ either 0 or 1. For a given N_{\uparrow} and N_{\downarrow} , the corresponding domain includes all possible permutations of $N = N_{\uparrow} + N_{\downarrow}$ copies of 1 and 2L - N copies of 0, subject to the constraint that the first L (last L) digits of the sequence have N_{\uparrow} (N_{\downarrow}) copies of 1. With this structure in mind, it is convenient to define $S_z = N_{\uparrow} - N_{\downarrow}$, a quantity that may or may not be conserved by the Hamiltonian (see §2.4). The full (labelled) basis set can then be generated using the following simple algorithm:

- If S_z is conserved:
 - 1. From S_z and N, compute N_{\uparrow} and N_{\downarrow}
 - 2. From N_{\uparrow} and N_{\downarrow} , programmatically obtain the list of all valid permutations
 - 3. Sort the list by binary values (e.g., 1010 > 0110 > 0101)
 - 4. Finally, label each string according its position in the list
- If S_z is not conserved:
 - 1. Repeat the above steps 1–3 for each $S_z = -N, -N+2, \ldots, N-2, N$ (combining the lists each time)
 - 2. Optionally, re-sort the large list (e.g., 0101 > 0100)¹
 - 3. As before, assign labels based on list index

¹This step removes the block structure of the Hamiltonian. In pyED, it is turned off by default.

 ${\bf B}$ params.yaml

References

- [1] R.B. Lehoucq, D.C. Sorensen and C. Yang, $ARPACK\ Users'\ Guide$ (Society for Industrial and Applied Mathematics, 1998) .
- [2] H.Q. Lin, Exact diagonalization of quantum-spin models, Phys. Rev. B 42 (1990) 6561.

Parameter	Type	Description
		Run
	str	The method used to diagonalize the Hamiltonian. Options are full or Lanczos:
solver		• full: convert sparse matrix to a NumPy array and call np.linalg.eig. This has poor scaling, so it is not recommended unless the total number of sites $L \leq 6$.
		• Lanczos: use the sparse matrix algorithm from scipy.sparse.linalg.eigsh.
num_eigs	int	In the Lanczos solver, only the num_eigs lowest-energy eigenstates will be found. If set to null, then the number of eigenstates is automatically set to half the dimension of the Hilbert space.
		Lattice
$lattice_type$	str	Name of either (1) a built-in type or (2) the Python script containing the neighbor function(s). Do not include .py at the end!
LX	int	Number of unit cells in the x -direction.
LY	int	Number of unit cells in the y -direction.
		Model
$model_type$	str	Name of either (1) a built-in type or (2) the Python script containing the couplings. Do not include .py at the end!
(couplings)	float	The values for all coupling parameters present in the model, e.g., t and U for nnHubbard.
		Conserved quantities
		Number of fermions, i.e., $N_{\uparrow} + N_{\downarrow}$. Options are the following:
		ullet If the model conserves N , set to one of
		$\{0, \ldots, 2L\}$
N	int	where $L = L_X \cdot L_Y \cdot N_{\text{orb}}$ (for half-filling, use $N = L$).
		• If the model does not conserve N , set to null. The Hamiltonian will include matrix elements that couple different sectors of N . Be mindful of system size scaling!
	int	Net spin, i.e., $N_{\uparrow} - N_{\downarrow}$. Options are the following:
		• If the model conserves S_z , set to one of
Sz		$\{-N, -N+2, \ldots, N-2, N\}.$
		• If the model does not conserve S_z , set to null. The Hamiltonian will include matrix elements that couple different $\overline{\sec^{11}_{crs}}$ of S_z . Be mindful of system size scaling!

Boundary conditions					
openX	bool	If True, remove all bonds between cell 0 and cell $L_X - 1$.			
open Y	bool	If True, remove all bonds between cell 0 and cell $L_Y - 1$.			