Math40002 Analysis 1

Problem Sheet 4

- 1. Consider the following properties of a sequence of real numbers $(a_n)_{n\geq 0}$:
 - (i) $a_n \to a$, or
 - (ii) " a_n eventually equals a" i.e. $\exists N \in \mathbb{N}$ such that $\forall n \geq N, \ a_n = a$, or
 - (iii) " (a_n) is bounded" i.e. $\exists R \in \mathbb{R}$ such that $|a_n| < R \ \forall n \in \mathbb{N}$.

For each statement (a-e) below, which of (i-iii) is it equivalent to? Proof?

- (a) $\exists N \in \mathbb{N}$ such that $\forall n \geq N, \ \forall \epsilon > 0, \ |a_n a| < \epsilon$.
- (b) $\forall \epsilon > 0$ there are only finitely many $n \in \mathbb{N}$ for which $|a_n a| \ge \epsilon$.
- (c) $\forall N \in \mathbb{N}, \ \exists \epsilon > 0 \text{ such that } n \geq N \ \Rightarrow \ |a_n a| < \epsilon.$
- (d) $\exists \epsilon > 0$ such that $\forall N \in \mathbb{N}, |a_n a| < \epsilon \ \forall n \ge N.$
- (e) $\forall R > 0 \ \exists N \in \mathbb{N} \text{ such that } n \ge N \ \Rightarrow \ a_n \in (a \frac{1}{R}, a + \frac{1}{R}).$
- 2. Given a sequence $(a_n)_{n\geq 1}$ of *complex* numbers, define what $a_n \to a$ means. For $x,y \in \mathbb{R}$ and $z := x + iy \in \mathbb{C}$ show $\max(|x|,|y|) \leq |z| \leq \sqrt{2}\max(|x|,|y|)$, and

$$a_n \to a + ib \in \mathbb{C} \iff \operatorname{Re}(a_n) \to a \text{ and } \operatorname{Im}(a_n) \to b.$$

- 3. Suppose that $a_n \leq b_n \leq c_n \ \forall n$ and that $a_n \to a$ and $c_n \to a$. Prove that $b_n \to a$.
- 4. Suppose that $a_n \to 0$ and (b_n) is bounded. Prove that $a_n b_n \to 0$.
- 5. * Suppose that (a_n) and (b_n) are sequences of real numbers such that $a_n \to a$ and $b_n \to b \neq 0$. Prove that the set $\{a_n : n \in \mathbb{N}\}$ is bounded and that

$$\exists N \in \mathbb{N} \text{ such that } n \geq N \Rightarrow |b_n| > |b|/2.$$

Therefore $(a_n/b_n)_{n\geq N}$ is a sequence of real numbers; prove it tends to a/b.

6. Given functions $f_n:(0,1)\to\mathbb{R}$ and $f:(0,1)\to\mathbb{R}$, suppose we make the following

Definition: f_n converges to f (or $f_n \to f$) if and only if $\forall x \in (0,1), f_n(x) \to f(x)$.

Consider the examples $f_n(x) = \begin{cases} n, & x \le 1/n \\ 0, & x > 1/n \end{cases}$ for all $n \in \mathbb{N}$. Draw them! Do they converge to some function $f: (0,1) \to \mathbb{R}$?

Prove your answer. Compare with the sequence of real numbers $a_n := \int_0^1 f_n$.

7. We call a sequence Buzzard if it satisfies the condition

$$\forall \epsilon > 0 \; \exists N \in \mathbb{N} \; \; n \ge N \; \Rightarrow \; |a_n - a_{n+1}| < \epsilon.$$

Give an example of a Buzzard sequence which diverges to $+\infty$. Conclude that Buzzard is not as strong as Cauchy.

8. Give an example of a Cauchy sequence in \mathbb{Q} which does not converge in \mathbb{Q} .

In lectures we show that in \mathbb{R} , a sequence is Cauchy if and only if it is convergent. Show that it is impossible to prove this using only the arithmetic and order axioms of \mathbb{R} (i.e. all the axioms except the completeness axioms – the one about the existence of least upper bounds).

You should prepare starred questions * to discuss with your personal tutor.