# **Problem Statement**

- Organizations and industries globally are increasingly adopting AI tools, but insights into adoption trends by country, age group, industry, and company size remain fragmented.
- Stakeholders need a clear, data-driven view of AI tool usage (e.g., ChatGPT, Bard, Midjourney) to make informed decisions on investments, training, and resource planning.
- The project aims to address:
  - o Which AI tools have the highest adoption?
  - o Which demographics and industries are adopting AI most actively?
  - o How adoption trends are evolving year-over-year.

# **Tools Used**

- Power BI Desktop For building dynamic, interactive dashboards with visual storytelling.
- Power Query Editor To clean, transform, and model raw data efficiently.
- DAX (Data Analysis Expressions) Used to calculate key metrics like DAU totals, average adoption rates, and YoY growth.

# **Project Brief**

The project focused on analytics the global adoption of AI tools across countries, industries, age groups, and company sizes.

#### Scope of Work:

### • Data Collection & Cleaning:

Gathered raw data on AI tool adoption from multiple sources, cleaned inconsistencies, and prepared the dataset for analysis.

### • Dashboard Development:

Designed a fully interactive Power BI dashboard featuring KPIs like Total DAU, Avg. Adoption %, Year-over-Year (YoY) growth, and visualizations categorized by:

- Country
- Industry
- o Age group
- o Company size
- Al tools

# • Segmentation Analysis:

Evaluated adoption patterns across demographics (e.g., 18–24, 25–34) and company profiles (e.g., startups, SMEs, enterprises) to uncover emerging trends.

### • Performance Tracking:

Highlighted top AI tools (e.g., ChatGPT, Midjourney) based on DAU and growth rate, and analytics their performance over time.

# • Comparative Insights:

Compared AI adoption across different industries and countries to understand market penetration and readiness.

#### User-Focused Reporting:

Delivered insights through clean visuals and user-friendly filters to help stakeholders explore the data by themselves.

# **Dashboard Overview**

# Key Metrics Displayed:

Total DAU: 6M

Average Adoption Rate: 49.09%

YoY DAU Growth: From 1.8M (2023) to 4.4M (2024)

# Top Tools by DAU:

o ChatGPT (2.5M), Midjourney (1.94M), Stable Diffusion (0.88M)

# • Top Industries by Average Adoption:

Transportation (50.62%), Manufacturing (50.58%), Technology (50.15%)

# • Country-wise Insights:

o Most engaged users from USA, India, and Germany

#### • Filters Used:

 Age group, company size, industry, and AI tool selection for drill-down analysis.





| %GT Total DAU | country   | ai_tool | age_group | Avg Adoption % | industry       | Count of adoption_rate |
|---------------|-----------|---------|-----------|----------------|----------------|------------------------|
| 0.03%         | Australia | Bard    | 18-24     | 57.68          | Agriculture    | 35                     |
| 0.03%         | Australia | Bard    | 18-24     | 42.34          | Education      | 46                     |
| 0.02%         | Australia | Bard    | 18-24     | 55-55          | Finance        | 37                     |
| 0.03%         | Australia | Bard    | 18-24     | 51.58          | Healthcare     | 33                     |
| 0.02%         | Australia | Bard    | 18-24     | 45.57          | Manufacturing  | 21                     |
| 0.03%         | Australia | Bard    | 18-24     | 45.68          | Retail         | 39                     |
| 0.03%         | Australia | Bard    | 18-24     | 57.46          | Technology     | 37                     |
| 0.03%         | Australia | Bard    | 18-24     | 55-35          | Transportation | 40                     |
| 0.03%         | Australia | Bard    | 25-34     | 46.17          | Agriculture    | 37                     |
| 0.02%         | Australia | Bard    | 25-34     | 55.05          | Education      | 36                     |
| 0.02%         | Australia | Bard    | 25-34     | 55.09          | Finance        | 32                     |
| 0.03%         | Australia | Bard    | 25-34     | 54.00          | Healthcare     | 41                     |
| 0.02%         | Australia | Bard    | 25-34     | 50.14          | Manufacturing  | 31                     |
| 0.03%         | Australia | Bard    | 25-34     | 46.66          | Retail         |                        |
| 0.02%         | Australia | Bard    | 25-34     | 55.68          | Technology     | 24                     |
| 0.04%         | Australia | Bard    | 25-34     | 47-95          | Transportation | 46                     |
| 0.03%         | Australia | Bard    | 35-44     | 47.21          | Agriculture    | 43                     |
| 0.03%         | Australia | Bard    | 35-44     | 56.44          | Education      | 43                     |
| 0.03%         | Australia | Bard    | 35-44     | 44.58          | Finance        | 49                     |
| 0.03%         | Australia | Bard    | 35-44     | 48.06          | Healthcare     | 33                     |
| 0.03%         | Australia | Bard    | 35-44     | 44.03          | Manufacturing  | 38                     |
| 0.02%         | Australia | Bard    | 35-44     | 59.77          | Retail         | 34                     |
| 0.03%         | Australia | Bard    | 35-44     | 48.32          | Technology     | 44                     |
| 100.00%       |           |         |           | 49.87          |                | 10001                  |



# **Problems Faced**

### Data Granularity & Inconsistency

- Some AI tools had complete data across all dimensions, while others were missing entries for certain countries, industries, or years.
- o Required assumptions and interpolation to maintain data consistency.

# • Segmentation Overlap

- Users often belonged to multiple categories (e.g., industry and age group), complicating analysis.
- Required advanced filtering and DAX logic to prevent duplication and ensure accuracy.

# Dashboard Layout Complexity

- Limited canvas space made it difficult to display all insights clearly.
- Needed a clean layout strategy to avoid clutter while keeping visuals impactful.

#### Performance Issues

- o Large datasets with millions of records led to slower loading and interaction.
- Optimized visuals, minimized unnecessary filters, and improved DAX efficiency.

### Challenges in YoY Growth Calculation

- Missing or partial data for previous years affected growth comparisons.
- o Required fallback logic and default values to ensure consistent metrics.

### Company Size Classification

- Different definitions of company size across sources (e.g., employee count vs. revenue).
- o Manual standardization was needed to align categories across the dashboard.

# **Project Outcome**

- Successfully visualized global AI adoption trends with over 6M DAUs analyzed.
- Identified key user bases—startups and tech industries showed highest adoption rates.
- Provided stakeholders with an intuitive tool to track AI trends and plan outreach or product scaling strategies.
- Enabled year-over-year comparison to monitor growth of specific tools and demographic segments.

# **Key Learnings**

- Al adoption is highly dynamic, varying by industry, age group, and region—no single strategy fits all user segments.
- Young professionals (18–34) and startups lead in adopting emerging AI tools, making them key targets for future product development and outreach.
- **Interactive dashboards** allow stakeholders to explore data in real-time, improving decision-making over static reports.
- **DAX and data modeling** are essential for building accurate, high-performance dashboards, especially when handling overlapping segments.
- Effective filtering and drill-downs enhance usability, enabling users to gain insights quickly without technical knowledge.

| • | <b>Clean layout and visualization design</b> are critical to avoid overwhelming users, especially when dealing with multi-dimensional datasets. |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------|
| • | <b>Performance optimization</b> (reducing visuals, using efficient measures) is crucial when working with large-scale, detailed datasets.       |
|   |                                                                                                                                                 |
|   |                                                                                                                                                 |
|   |                                                                                                                                                 |
|   |                                                                                                                                                 |
|   |                                                                                                                                                 |
|   |                                                                                                                                                 |