# Progetto Modelli Probabilistici per le Decisioni - Smarthouse

Matteo Angelo Costantini - 795125

Alessandro Longhi - 794235

#### **Obiettivi**

- ▶ 1. Definizione della struttura dati
  - Misurazioni derivanti da sensori, con relativi time stamp
  - Attività svolte
- 2. Modello HMM
  - Definizione della struttura HMM per inferire l'attività date le osservazioni derivanti dai sensori
  - Stima dei parametri
- > 3. Previsione dell'attività svolta
  - ▶ Inferire l'attività dell'utente tramite i dati rilevati dai sensori
- 4. Analisi dei dati
  - ▶ Stimare le capacità predittive del modello rispetto alla ground truth

#### Dataset Iniziali

- Due dataset relativi a due abitazioni separate (A e B)
  - ▶ 14 giorni per il dataset A, 21 giorni per il dataset B
- Per ognuna due dataset in formato testuale:
  - Attività rilevate:
    Sensori attivi:
    - start\_time
    - end\_time
    - activity
- ▶ 12 sensori
- ► 10 attività

- - start\_time
  - end\_time
  - ▶ location
  - type
  - place

### Dataset Iniziali

| <b>•</b> | Attività | Start time | End time |            | Activity |               |  |
|----------|----------|------------|----------|------------|----------|---------------|--|
|          | Accivica | 2011-11-28 | 02:27:59 | 2011-11-28 | 10:18:11 | Sleeping      |  |
|          |          | 2011-11-28 | 10:21:24 | 2011-11-28 | 10:23:36 | Toileting     |  |
|          |          | 2011-11-28 | 10:25:44 | 2011-11-28 | 10:33:00 | Showering     |  |
|          |          | 2011-11-28 | 10:34:23 | 2011-11-28 | 10:43:00 | Breakfast     |  |
|          |          | 2011-11-28 | 10:49:48 | 2011-11-28 | 10:51:13 | Grooming      |  |
|          |          | 2011-11-28 | 10:51:41 | 2011-11-28 | 13:05:07 | Spare_Time/TV |  |
|          |          | 2011-11-28 | 13:06:04 | 2011-11-28 | 13:06:31 | Toileting     |  |
|          |          | 2011-11-28 | 13:09:31 | 2011-11-28 | 13:29:09 | Leaving       |  |
|          |          | 2011-11-28 | 13:38:40 | 2011-11-28 | 14:21:40 | Spare_Time/TV |  |
|          |          | 2011-11-28 | 14:22:38 | 2011–11–28 | 14:27:07 | Toileting     |  |
|          |          | 2011-11-28 | 14:27:11 | 2011–11–28 | 15:04:00 | Lunch         |  |

#### Sensori

| Start time                                                                                                                                                    | End time                                                                                                                                                      | Location                                                                           | Туре                                          | Place |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------|-------|
| 2011-11-28 02:27:59<br>2011-11-28 10:21:24<br>2011-11-28 10:21:44<br>2011-11-28 10:23:02<br>2011-11-28 10:25:44<br>2011-11-28 10:34:23<br>2011-11-28 10:34:44 | 2011-11-28 10:18:11<br>2011-11-28 10:21:31<br>2011-11-28 10:23:31<br>2011-11-28 10:23:36<br>2011-11-28 10:32:06<br>2011-11-28 10:34:41<br>2011-11-28 10:37:17 | Bed Pressu Cabinet Magnet Basin PIR Toilet Flush Shower PIR Fridge Magnet Cupboard | ic Bathro<br>Bathroom<br>Bathroom<br>Bathroom | om    |

### Preprocessing

- Correzione manuale di alcuni timestamp
- Eliminazione manuale di caratteri superflui
- Eliminazione delle righe inconsistenti (finiscono prima di iniziare)
- Conversione dei valori categorici in interi (es. attività, sensori)
- Divisione di attività e rilevazioni in timeslice
- Associazione dei sensori attivi durante ogni attività (bit vector)
  - Modellata assenza di attività
- Aggiunto periodo della giornata (divisa in quattro periodi)

#### Dataset Finali

- Uno per ogni abitazione
- Struttura:
  - ▶ timestamp: ora di inizio del timeslice
  - activity: attività corrente
  - sensors: bit vector dei sensori (es. 001010010110)
  - period: periodo della giornata
- Dataset A: 0: Breakfast, 1: Grooming, 2: Leaving, 3: Lunch, 4: Showering, 5: Sleeping, 6: Snack, 7: Spare\_Time/TV, 8: Toileting, 9: No activity
- Dataset B: 0: Breakfast, 1: Dinner, 2: Grooming, 3:
   Leaving, 4: Lunch, 5: Showering, 6: Sleeping, 7: Snack,
   8: Spare\_Time/TV, 9: Toileting, 10: No activity

| timestamp  | activity | sensors      | period |
|------------|----------|--------------|--------|
| 1323128160 | 7        | 00000001000  | 3      |
| 1323128220 | 7        | 00000001000  | 3      |
| 1323128280 | 7        | 00000001000  | 3      |
| 1323128340 | 8        | 00000000001  | 3      |
| 1323128400 | 8        | 10000000001  | 3      |
| 1323128460 | 9        | 00000000000  | 3      |
| 1323128520 | 5        | 010000000000 | 3      |
| 1323128580 | 5        | 010000000000 | 3      |
| 1323128640 | 5        | 01000000000  | 3      |
| 1323128700 | 5        | 01000000000  | 3      |
| 1323128760 | 5        | 010000000000 | 3      |

#### Modello - Hidden Markov Model

- Discretizzazione del tempo basata su timeslice di 60s
- Stato nascosto: attività svolta
- Osservazione: sensori attivi durante il timeslice
  - ► Facoltativamente il periodo della giornata che non è stato considerato a causa delle prestazioni minori
  - Possibilità di considerare le stanze relative ai sensori o la posizione dei sensori. Non considerato anche in questo caso a causa delle prestazioni.
    - Osservazioni più generiche

#### Parametri del modello

- Probabilità a priori:
  - ▶ Percentuale di occorrenza di ogni stato nel training set
- Probabilità di transizione:
  - Ogni stato del training set confrontato col successivo e calcolate le probabilità di transizione
  - Numero di volte in cui lo stato i è seguito dallo stato j rapportato al numero di occorrenze dello stato i
  - P(i|i) particolarmente alta per alcuni stati a causa della suddivisione in timeslice di soli 60 secondi
- Probabilità di emissione:
  - Probabilità di osservare una configurazione di sensori per una certa attività
  - ► Calcolo analogo alla matrice di transizione

### Scelta del Training set

- Divisione in giorni e non casuale o in percentuale causa della dipendenza temporale
- Dimensione del training set scelta: 5 giorni
- Accuracy in funzione del training set (in giorni):



#### Predizioni

- Predizione a breve termine:
  - ► Training set: 5 giorni
  - ► Test set: 3 giorni consecutivi
- Predizione a lungo termine:
  - ► Training set: 5 giorni
  - ▶ Test set: 9 giorni nel caso del dataset A, 16 per il dataset B
- Predizione su sequenza casuale:
  - Training set: 5 giorni
  - ► Testset: 3000/20000 stati
  - Generata dalle distribuzioni di probabilità
    - ▶ Poco imprevedibile

### Risultati - Previsione 3 giorni

Accuracy dataset A: 94.9%



Accuracy dataset B: 92.7%





### Risultati - Previsione 3 giorni

Accuracy dataset A: 94.9%

Accuracy dataset B: 92.7%

|           | precision | recall | f1-score | $\operatorname{support}$ |           | precision | recall | f1-score | support |
|-----------|-----------|--------|----------|--------------------------|-----------|-----------|--------|----------|---------|
| 0         | 0.79      | 0.56   | 0.65     | 27                       | 0         | 0.68      | 0.52   | 0.59     | 29      |
| 1         | 0.75      | 0.56   | 0.64     | 16                       | 1         | 0.18      | 1.00   | 0.30     | 3       |
| 2         | 0.95      | 1.00   | 0.98     | 471                      | 2         | 0.89      | 0.87   | 0.88     | 94      |
| 3         | 1.00      | 0.49   | 0.66     | 45                       | 3         | 0.97      | 1.00   | 0.98     | 1219    |
| 4         | 1.00      | 0.94   | 0.97     | 18                       | 4         | 0.60      | 1.00   | 0.75     | 45      |
| 5         | 1.00      | 1.00   | 1.00     | 1783                     | 5         | 0.94      | 1.00   | 0.97     | 15      |
| 6         | 0.25      | 1.00   | 0.40     | 1                        | 6         | 1.00      | 1.00   | 1.00     | 1452    |
| 7         | 0.95      | 0.99   | 0.97     | 1726                     | 7         | 0.00      | 0.00   | 0.00     | 21      |
| 8         | 0.34      | 0.35   | 0.35     | 54                       | 8         | 1.00      | 0.80   | 0.89     | 899     |
| 9         | 0.34      | 0.30   | 0.35     | 179                      | 9         | 0.81      | 0.87   | 0.84     | 15      |
|           | 0.94      | 0.95   | 0.94     | 4320                     | 10        | 0.69      | 0.84   | 0.76     | 528     |
| avg/total | 0.34      | 0.90   | 0.34     | 4020                     | avg/total | 0.94      | 0.93   | 0.93     | 4320    |

### Risultati - Previsione 9/16 giorni

Accuracy dataset A: 95.7%



Accuracy dataset B: 89.1%





## Risultati - Previsione 9/16 giorni

Accuracy dataset A: 94.9%

Accuracy dataset B: 92.7%

|                       | precision | recall | f1-score       | support |           | precision | recall | f1-score | support |
|-----------------------|-----------|--------|----------------|---------|-----------|-----------|--------|----------|---------|
| 0                     | 0.80      | 0.71   | 0.75           | 85      | 0         | 0.48      | 0.18   | 0.27     | 234     |
| 1                     | 0.94      | 0.84   | 0.88           | 87      | 1         | 0.07      | 0.05   | 0.06     | 96      |
| 2                     | 0.87      | 1.00   | 0.93           | 1474    | 2         | 0.93      | 0.85   | 0.89     | 320     |
| 3                     | 0.92      | 0.51   | 0.65           | 174     | 3         | 0.92      | 1.00   | 0.96     | 4417    |
| $\stackrel{\circ}{4}$ | 0.90      | 0.99   | 0.94           | 72      | 4         | 0.19      | 0.58   | 0.28     | 211     |
| 5                     | 1.00      | 1.00   | 1.00           | 5170    | 5         | 0.93      | 1.00   | 0.96     | 63      |
| 6                     | 0.14      | 0.11   | 0.12           | 9       | 6         | 1.00      | 0.95   | 0.97     | 8353    |
| 7                     | 0.14      | 1.00   | $0.12 \\ 0.99$ | 5263    | 7         | 0.18      | 0.13   | 0.15     | 214     |
| 1                     |           |        |                |         | 8         | 0.98      | 0.86   | 0.92     | 6514    |
| 8                     | 0.50      | 0.56   | 0.53           | 94      | 9         | 0.77      | 0.90   | 0.83     | 129     |
| 9                     | 0.53      | 0.32   | 0.40           | 532     | 10        | 0.61      | 0.77   | 0.68     | 2489    |
| avg/total             | 0.95      | 0.96   | 0.95           | 12960   | avg/total | 0.91      | 0.89   | 0.90     | 23040   |

#### Risultati - Previsione casuale (3000 stati)

Accuracy dataset A: 96.8%



Accuracy dataset B: 91.4%
Confusion matrix



- 0.8

- 0.6

0.4

0.2

0.0

### Risultati - Previsione casuale (3000 stati)

Accuracy dataset A: 94.9%

Accuracy dataset B: 91.4%

|           | precision | recall | f1-score | $\operatorname{support}$ |           | precision      | recall         | f1-score       | $\operatorname{support}$ |
|-----------|-----------|--------|----------|--------------------------|-----------|----------------|----------------|----------------|--------------------------|
| 0         | 0.97      | 0.97   | 0.97     | 30                       | 0         | 1.00           | 0.87           | 0.93           | 52                       |
| 1         | 0.20      | 0.33   | 0.25     | 3                        | 1         | 0.80           | 0.80           | 0.80           | 5                        |
| 2         | 0.89      | 0.85   | 0.87     | 137                      | 2         | 0.76           | 0.81           | 0.79           | 48                       |
| 3         | 0.97      | 0.97   | 0.97     | 116                      | 3         | 0.82           | 0.73           | 0.77           | 393                      |
| 4         | 0.83      | 0.83   | 0.83     | 36                       | 6         | 1.00           | 1.00           | 1.00           | 1055                     |
| 5         | 1.00      | 1.00   | 1.00     | 640                      | 7         | 1.00           | 0.67           | 0.80           | 48                       |
| 6         | 0.33      | 0.33   | 0.33     | 3                        | 8         | 0.98           | 0.98           | 0.98           | 765                      |
| 7         | 0.99      | 0.99   | 0.99     | 1790                     | 9         | 0.15           | $0.35 \\ 0.15$ | 0.15           | 13                       |
| 8         | 0.62      | 0.45   | 0.52     | 29                       |           | $0.13 \\ 0.78$ | $0.15 \\ 0.86$ | $0.13 \\ 0.82$ | 621                      |
| 9         | 0.83      | 0.87   | 0.85     | 216                      | 10        | 1              |                |                |                          |
| avg/total | 0.97      | 0.97   | 0.97     | 3000                     | avg/total | 0.92           | 0.91           | 0.91           | 3000                     |

#### Conclusioni

- ► Il modello risulta particolarmente accurato, ma sembra mostrare dell'overfitting sui dati.
- Alcuni stati sono previsti molto meglio di altri, in particolare quelli per cui si hanno più osservazioni. Questo è dovuto al fatto che queste attività hanno una durata media maggiore rispetto alle altre attività e risulta quindi molto più facile prevedere lo stato successivo (ovvero, lo stato non cambia).
- Forte bias per lo stato di nessuna attività