Stability and Edge-Localized Mode Characterization in I-Mode Pedestals

JR Walk,* JW Hughes, AE Hubbard, B LaBombard,
DF Brunner, JL Terry, DG Whyte, and AE White

MIT Plasma Science and Fusion Center

PB Snyder

General Atomics

E Edlund

Princeton Plasma Physics Laboratory

(Dated: November 23, 2014)

I-mode is a novel high-confinement tokamak regime characterized by H-mode-like enhanced energy confinement and the formation of a strong temperature pedestal, without the accompanying density pedestal or enhanced particle confinement, maintaining an L-mode-like density profile. I-mode exhibits a number of desirable properties for a reactor regime, including a lack of strong degradation of energy confinement with heating power and apparent naturally-occurring suppression of large ELMs, avoiding the need for externally-applied ELM suppression. However, under certain conditions (particularly, reduced toroidal field) small, intermittent ELM-like events are seen, although these cases are modeled to be stable to the peeling-ballooning MHD instability associated with the ELM trigger, as is typical of I-mode pedestals. We examine these events in detail to better characterize the edge stability behavior in I-mode. The majority of observed ELM candidates are observed to be synchronized with the sawtooth heat pulse reaching the pedestal, which measurably perturbs the temperature pedestal. However, this perturbation appears to be insufficient to reach the peeling-ballooning stability boundary; moreover, the ELM candidate does not include a "crash" in the pedestal temperature or stored energy. precursor fluctuations? include Ahmed? Ref divertor heat flux measurements? In short, these events do not appear to be true instability-driven ELMs, but rather are benign H_{α} spikes driven by the sawtooth heat pulse. A minority of the ELM candidates in I-mode

2

do include the characteristic temperature crash associated with an ELM, and are

not necessarily sawtooth-triggered – however, these events are isolated, and the sta-

tionary pedestal structure in these I-modes is also modeled to be stable to the ELM

trigger, indicating that transient events in the pedestal drive these ELMs, rather

than an inherent instability of the pedestal.

PACS numbers: 52.55.Fa, 52.55.Tn, 52.35.Py, 52.25.Fi, 52.40.Hf

 * jrwalk@psfc.mit.edu

I. INTRODUCTION

The development of tokamak magnetic-confinement fusion into a viable & economical form of power generation faces two overarching (and seemingly contradictory) requirements. First, a high level of energy confinement is necessary for net energy production with the desired level of self-heating of the plasma by fusion products. At the same time, sufficient particle transport is needed to avoid the deleterious effects of accumulated impurities (both helium "fusion ash" and higher-Z impurities from the erosion of plasma-facing components) due to fuel dilution and radiative losses. This has been achieved in a number of operating regimes, collectively termed "high-confinement" or H-modes [1].

H-modes are characterized by a steep gradient region at the plasma edge in density, temperature, and pressure, termed the pedestal, the height of which is strongly correlated with global fusion performance [2]. These strong gradients have been shown to drive edge MHD instabilities [3–5] resulting in an Edge-Localized Mode (ELM), an explosive perturbation to the pedestal expelling energy and particles into the plasma exhaust [6]. On existing experiments, ELMs drive sufficient particle transport to allow stationary operation with acceptable radiative losses [7]; as ELMy H-modes are robust and straightforward to achieve, this regime is considered the baseline for ITER operation [8, 9]. However, on ITER-scale devices ELMs drive transient heat loads to the divertor, leading to unacceptable levels of erosion and damage to plasma-facing components [10, 11]. This introduces an additional requirement for tokamak fusion reactor concepts – the avoidance, suppression, or mitigation of large ELMs, either via externally-applied engineering solutions (pellet pacing [12, 13] or resonant magnetic perturbations [14, 15]), or via alternate high-confinement regimes which regulate the pedestal below the ELM limit (e.g., the Enhanced D_{α} (EDA) H-mode [16, 17] or the QH-mode [18, 19]).

The I-mode [20–22], pioneered on the Alcator C-Mod tokamak [23], is one such alternate regime for high-performance operation.

ACKNOWLEDGMENTS

Experimental work on Alcator C-Mod is supported by US DOE agreement DE-FC02-99ER54512. Theory work at General Atomics is supported by US DOE agreement DE-

FIG. 1. (left) characteristic time traces for an I-mode. After the L-I transition, the core and edge temperature rise over several sawtooth cycles (visible in the oscillations in $T_e(0)$ and $T_{e,ped}$) before reaching a steady level; global pressure and confinement rise accordingly. However, the density remains unchanged from the L-mode level. No ELMs are exhibited on the D_{α} trace. (right) pedestal profiles for L-, I-, and H-modes. The I-mode (green) retains a density profile similar to L-mode (black), unlike the ELMy (red) and EDA (blue) H-modes, which form a strong density pedestal. However, the I-mode forms a higher temperature pedestal than either H-mode, resulting in comparable pedestal pressures to H-mode while retaining L-mode particle transport.

team for supporting the experiments reported here.

- [1] F. Wagner, G. Becker, K. Behringer, D. Campbell, A. Eberhagen, W. Engelhardt, G. Fussmann, O. Gehre, J. Gernhardt, G. v. Gierke, G. Haas, M. Huang, F. Karger, M. Keilhacker, O. Klüber, M. Kornherr, K. Lackner, G. Lisitano, G. G. Lister, H. M. Mayer, D. Meisel, E. R. Müller, H. Murmann, H. Niedermeyer, W. Poschenrieder, H. Rapp, H. Röhr, F. Schneider, G. Siller, E. Speth, A. Stäbler, K. H. Steuer, G. Venus, O. Vollmer, and Z. Yü, Physical Review Letters 49, 1408 (1982).
- [2] J. E. Kinsey, G. M. Staebler, J. Candy, R. E. Waltz, and R. V. Budny, Nuclear Fusion 51, 083001 (2011).
- [3] G. T. A. Huysmans, Plasma Physics and Controlled Fusion 47, B165 (2005).
- [4] P. Maget, J.-F. Artaud, M. Bcoulet, T. Casper, J. Faustin, J. Garcia, G. T. A. Huijsmans, A. Loarte, and G. Saibene, Nuclear Fusion 53, 093011 (2013).
- [5] P. B. Snyder, H. R. Wilson, J. R. Ferron, L. L. Lao, A. W. Leonard, T. H. Osborne, A. D. Turnbull, D. Mossessian, M. Murakami, and X. Q. Xu, Physics of Plasmas 9, 2037 (2002).
- [6] H. Zohm, Plasma Physics and Controlled Fusion 38, 105 (1996).
- [7] M. Keilhacker, G. Becker, K. Bernhardi, A. Eberhagen, M. ElShaer, G. FuBmann, O. Gehre, J. Gernhardt, G. v. Gierke, E. Glock, G. Haas, F. Karger, S. Kissel, O. Kluber, K. Kornherr, K. Lackner, G. Lisitano, G. G. Lister, J. Massig, H. M. Mayer, K. McCormick, D. Meisel, E. Meservey, E. R. Muller, H. Murmann, H. Niedermeyer, W. Poschenrieder, H. Rapp, B. Richter, H. Rohr, F. Ryter, F. Schneider, S. Siller, P. Smeulders, F. Soldner, E. Speth, A. Stabler, K. Steinmetz, K.-H. Steuer, Z. Szymanski, G. Venus, O. Vollmer, and F. Wagner, Plasma Physics and Controlled Fusion 26, 49 (1984).
- [8] ITER Physics Expert Group on Confinement, Transport and ITER Physics Expert Group on Confinement Modelling and Database, and ITER Physics Basis Editors, Nuclear Fusion 39, 2175 (1999).
- [9] M. Shimada, D. J. Campbell, V. Mukhovatov, M. Fujiwara, N. Kirneva, K. Lackner, M. Nagami, V. D. Pustovitov, N. Uckan, J. Wesley, N. Asakura, A. E. Costley, A. J. H. Donné, E. J. Doyle, A. Fasoli, C. Gormezano, Y. Gribov, O. Gruber, T. C. Hender, W. Houlberg, S. Ide, Y. Kamada, A. Leonard, B. Lipschultz, A. Loarte, K. Miyamoto, V. Mukhovatov,

- T. H. Osborne, A. Polevoi, and A. C. C. Sips, Nuclear Fusion 47, S1 (2007).
- [10] A. Loarte, G. Saibene, R. Sartori, D. Campbell, M. Becoulet, L. Horton, T. Eich, A. Herrmann,
 G. Matthews, N. Asakura, A. Chankin, A. Leonard, G. Porter, G. Federici, G. Janeschitz,
 M. Shimada, and M. Sugihara, Plasma Physics and Controlled Fusion 45, 1549 (2003).
- [11] G. Federici, A. Loarte, and G. Strohmayer, Plasma Physics and Controlled Fusion 45, 1523 (2003).
- [12] L. R. Baylor, N. Commaux, T. C. Jernigan, S. J. Meitner, S. K. Combs, R. C. Isler, E. A. Unterberg, N. H. Brooks, T. E. Evans, A. W. Leonard, T. H. Osborne, P. B. Parks, P. B. Snyder, E. J. Strait, M. E. Fenstermacher, C. J. Lasnier, R. A. Moyer, A. Loarte, G. T. A. Huijsmans, and S. Futatani, Physics of Plasmas 20, 082513 (2013).
- [13] P. T. Lang, A. Burckhart, M. Bernert, L. Casali, R. Fischer, O. Kardaun, G. Kocsis, M. Maraschek, A. Mlynek, B. Plöckl, M. Reich, F. Ryter, J. Schweinzer, B. Sieglin, W. Suttrop, T. Szepesi, G. Tardini, E. Wolfrum, D. Zasche, H. Zohm, and the ASDEX Upgrade Team, Nuclear Fusion 54, 083009 (2014).
- [14] T. E. Evans, R. A. Moyer, P. R. Thomas, J. G. Watkins, T. H. Osborne, J. A. Boedo, E. J. Doyle, M. E. Fenstermacher, K. H. Finken, R. J. Groebner, M. Groth, J. H. Harris, R. J. La Haye, C. J. Lasnier, S. Masuzaki, N. Ohyabu, D. G. Pretty, T. L. Rhodes, H. Reimerdes, D. L. Rudakov, M. J. Schaffer, G. Wang, and L. Zeng, Physical Review Letters 92, 235003 (2004).
- [15] T. E. Evans, R. A. Moyer, K. H. Burrell, M. E. Fenstermacher, I. Joseph, A. Leonard, T. H. Osborne, G. Porter, M. J. Schaffer, P. B. Snyder, P. R. Thomas, J. G. Watkins, and W. P. West, Nature Physics 2, 419 (2006).
- [16] M. Greenwald, R. Boivin, P. Bonoli, R. Budny, C. Fiore, J. Goetz, R. Granetz, A. Hubbard, I. Hutchinson, J. Irby, B. LaBombard, Y. Lin, B. Lipschultz, E. Marmar, A. Mazurenko, D. Mossessian, T. Sunn Pedersen, C. S. Pitcher, M. Porkolab, J. Rice, W. Rowan, J. Snipes, G. Schilling, Y. Takase, J. Terry, S. Wolfe, J. Weaver, B. Welch, and S. Wukitch, Physics of Plasmas 6, 1943 (1999).
- [17] A. E. Hubbard, R. L. Boivin, R. S. Granetz, M. Greenwald, J. W. Hughes, I. H. Hutchinson, J. Irby, B. LaBombard, Y. Lin, E. S. Marmar, A. Mazurenko, D. Mossessian, E. Nelson-Melby, M. Porkolab, J. A. Snipes, J. Terry, S. Wolfe, S. Wukitch, B. A. Carreras, V. Klein, and T. S. Pedersen, Physics of Plasmas 8, 2033 (2001).

- [18] K. H. Burrell, M. E. Austin, D. P. Brennan, J. C. DeBoo, E. J. Doyle, P. Gohil, C. M. Greenfield, R. J. Groebner, L. L. Lao, T. C. Luce, M. A. Makowski, G. R. McKee, R. A. Moyer, T. H. Osborne, M. Porkolab, T. L. Rhodes, J. C. Rost, M. J. Schaffer, B. W. Stallard, E. J. Strait, M. R. Wade, G. Wang, J. G. Watkins, W. P. West, and L. Zeng, Plasma Physics and Controlled Fusion 44, A253 (2002).
- [19] W. Suttrop, V. Hynnen, T. Kurki-Suonio, P. T. Lang, M. Maraschek, R. Neu, A. Stäbler, G. D. Conway, S. Hacquin, M. Kempenaars, P. J. Lomas, M. F. F. Nave, R. A. Pitts, K.-D. Zastrow, the ASDEX Upgrade team, and contributors to the JET-EFDA workprogramme, Nuclear Fusion 45, 721 (2005).
- [20] D. G. Whyte, A. E. Hubbard, J. W. Hughes, B. Lipschultz, J. E. Rice, E. S. Marmar, M. Greenwald, I. Cziegler, A. Dominguez, T. Golfinopoulos, N. Howard, L. Lin, R. M. McDermott, M. Porkolab, M. L. Reinke, J. Terry, N. Tsujii, S. Wolfe, S. Wukitch, Y. Lin, and the Alcator C-Mod Team, Nuclear Fusion 50, 105005 (2010).
- [21] J. R. Walk, J. W. Hughes, A. E. Hubbard, J. L. Terry, D. G. Whyte, A. E. White, S. G. Baek, M. L. Reinke, C. Theiler, R. M. Churchill, J. E. Rice, P. B. Snyder, T. Osborne, A. Dominguez, and I. Cziegler, Physics of Plasmas 21, 056103 (2014).
- [22] J. R. Walk, Pedestal Structure and Stability in High-Performance Plasmas on Alcator C-Mod, Sc.D. thesis, Massachusetts Institute of Technology (2014).
- [23] I. H. Hutchinson, R. Boivin, F. Bombarda, P. Bonoli, S. Fairfax, C. Fiore, J. Goetz, S. Golovato, R. Granetz, M. Greenwald, S. Horne, A. Hubbard, J. Irby, B. LaBombard, B. Lipschultz, E. Marmar, G. McCracken, M. Porkolab, J. Rice, J. Snipes, Y. Takase, J. Terry, S. Wolfe, C. Christensen, D. Garnier, M. Graf, T. Hsu, T. Luke, M. May, A. Niemczewski, G. Tinios, J. Schachter, and J. Urbahn, Physics of Plasmas 1, 1511 (1994).