program to compute area, sufrace area and volume

A

В

```
In [2]: from sympy import*
    x,y=symbols('x,y')
    w=integrate(x+y,(y,0,x),(x,0,1))
    print(w)

1/2
```

C

```
In [3]: from sympy import*
    x,y,z=symbols('x,y,z')
    w=integrate(x*y*z,(z,0,3-x-y),(y,0,3-x),(x,0,3))
    print(w)
```

81/80

D

```
In [6]: from sympy import*
    x,y,z=symbols('x,y,z')
    w=integrate(exp(x+y+z),(z,0,x+log(y)),(y,0,x),(x,0,log(2)))
    print(w)
    -19/9 + 8*log(2)/3
```

2

Find the area of an ellipse by double integration

Α

```
In [8]: from sympy import*
    x,y=symbols('x,y')
    a=4
    b=6
    w=4*integrate(1,(y,0,b/a*sqrt(a**2-x**2)),(x,0,a))
    print(w)
```

24.0*pi

В

Find the area of positive quadrant of the circle

```
In [9]: from sympy import*
    x,y=symbols('x,y')
    w=integrate(1,(y,0,sqrt(16-x**2)),(x,0,4))
    print(w)

4*pi
```

Find the area of cardioid r=a(1+cos(theta)) by double integration

```
In [10]: from sympy import*
    r,t,a=symbols('r,t,a')
    area=2*integrate(r,(r,0,a*(1+cos(t))),(t,0,pi))
    print(area)
```

3

Α

Find the volume of the tetrahedral bounded by the planes(x=0,y=0,z=0,x/a+y/b+z/c=1)

B Find the volume of tetrahedral bonded by the planes(x=0,y=0,z=0,x/2+y/3+z/4=1)

4

Ш

Evaluation of beta and Gamma function

1) a)

```
In [16]: from sympy import*
    x=Symbol('x')
    u=integrate(exp(-x),(x,0,oo))
    print(u)
```

1) b

```
In [17]: from sympy import*
t=Symbol('t')
u=integrate(exp(-t)*cos(2*t),(t,0,oo))
print(u)
```

1/5

1) C Evaluate Gamma(5) using definition gamma(5)

```
In [5]: from sympy import*
    x=Symbol('x')
    Gamma=integrate(exp(-x)*x**4,(x,0,float('inf')))
    print(simplify(Gamma))
```

24

2 a) Find beta(3,5) and gamma(5)

2 B) Find beta(5/2,7/2) and Gamma(5/2)

```
In [4]: from sympy import beta,gamma
    m=float(5/2)
    n=float (7/2)
    beta_value=beta(m,n)
    gamma_value=gamma(m)
    print("Beta (5/2,7/2)=",beta_value)
    print("Gamma (5/2)=",gamma_value)

Beta (5/2,7/2)= 0.0368155389092554
    Gamma (5/2)= 1.32934038817914
```

```
In [9]: from sympy import beta,gamma
    m=5
    n=7
    m=float(m)
    n=float (n)
    s=beta(m,n)
    t=(gamma(m)*gamma(n))/gamma(m+n)
    print(s,t)
    if(s==t):
        print("beta and gamma are related")
    else:
        print("given values are wrong")
```

0.000432900432900433 0.000432900432900433 beta and gamma are related

Finding gradient, divergence and curl

To find gradient of phi=x^2y+2xz-4

```
In [15]: from sympy.vector import*
    from sympy import symbols
    x,y,z=symbols('x,y,z')
    N=CoordSys3D('N')
    A=N.x**2*N.y+2*N.x*N.z-4
    print("\n Gradient is:")
    display(gradient(A))
```

Gradient is:

$$(2\mathbf{x}_{\mathbf{N}}\mathbf{y}_{\mathbf{N}} + 2\mathbf{z}_{\mathbf{N}})\,\hat{\mathbf{i}}_{\mathbf{N}} + (\mathbf{x}_{\mathbf{N}}^{2})\,\hat{\mathbf{j}}_{\mathbf{N}} + (2\mathbf{x}_{\mathbf{N}})\,\hat{\mathbf{k}}_{\mathbf{N}}$$

To find divergence of $F=x^2yz^2 + Y^2zx^2 + z^2xyk^2$

```
In [20]: from sympy.vector import*
from sympy import symbols
x,y,z=symbols('x,y,z')
N=CoordSys3D('N')
A=N.x**2*N.y*N.z*N.i+N.y**2*N.z*N.x*N.j+N.z**2*N.x*N.y*N.k
print("\n Divergence is:")
display(divergence(A))
Divergence is:
6x<sub>N</sub>y<sub>N</sub>z<sub>N</sub>
```

To find curl of $F=x^2yz^2 + Y^2zx^2 + z^2xyk^2$

```
In [21]: from sympy.vector import* from sympy import symbols  
    x,y,z=symbols('x,y,z')  
    N=CoordSys3D('N')  
    A=N.x**2*N.y*N.z*N.i+N.y**2*N.z*N.x*N.j+N.z**2*N.x*N.y*N.k  
    print("\n curl is:")  
    display(curl(A))  

    curl is:  
    (-x_Ny_N^2 + x_Nz_N^2)\hat{i}_N + (x_N^2y_N - y_Nz_N^2)\hat{j}_N + (-x_N^2z_N + y_N^2z_N)\hat{k}_N
```

computing the inner product and orthogonality

1) find the inner product of the vectors (2,1,5,4) and (3,4,7,8)

```
In [1]: import numpy as np
A=np.array([2,1,5,4])
B=np.array([3,4,7,8])
output=np.dot(A,B)
print("Inner product of the vectors is",output)
```

Inner product of the vectors is 77

2) verify the vectors (2,1,5,4) and (3,4,7,8) are orthogonal

```
In [2]: import numpy as np
A=np.array([2,1,5,4])
B=np.array([3,4,7,8])
output=np.dot(A,B)
print("Inner product of the vectors is",output)
if output==0:
    print("Given vectors are orthogonal")
else:
    print("Given vectors are not orthogonal")
```

Inner product of the vectors is 77 Given vectors are not orthogonal

Rank nulity theorem and dimension of the vector space

1) Verify the rank nullity theorem for the linear transformation by T(x,y,z)=(x+4y7z,2x+5y+8z,3x+6y+9z)

```
In [5]: import numpy as np
        from scipy.linalg import null space
        A=np.array([[1,2,3],[4,5,6],[7,8,9]])
        rank=np.linalg.matrix rank(A)
        print("rank of the matrix ",rank)
        ns=null space(A)
        print("null space of the matrix",ns)
        nullity=ns.shape[1]
        print("nullity of the matrix is", nullity )
        if rank+nullity==A.shape[1]:
            print("Rank-nullity theorem hold")
        else:
             print("Rank-nullity theorem does not hold")
        rank of the matrix 2
        null space of the matrix [[-0.40824829]
         [ 0.81649658]
         [-0.40824829]]
        nullity of the matrix is 1
        Rank-nullity theorem hold
```

2) find the dimension of the subspace spanned by the vectors (1,2,3),(2,3,1) and (3,1,2)

```
In [6]: import numpy as np
V=np.array([[1,2,3],[2,3,1],[3,1,2]])
dimension=np.linalg.matrix_rank(V)
print("Dimension of the subspace spanned by the vector is",dimension)
```

Dimension of the subspace spanned by the vector is 3

Integration result by trapezoidal method is:1.374219

Computation of area under the curve using trapezoidal ,1/3rd ,and 3/8th rule.

1a)

```
In [22]: def v(x):
             return 1/(1+x**2)
         xo=float(input("Enter the lower limit of integration:"))
         xn=float(input("Enter the upper limit of integration:"))
         n=int(input("Enter sub-intervals:"))
         def trapezoidal(xo,xn,n):
             h=(xn-xo)/n
             sum=v(xo)+v(xn)
             for i in range(1,n):
                 k=xo+i*h
                 sum=sum+2*v(k)
                 integration=sum*h/2
             return integration
         print("Integration result by trapezoidal method is:%.6f"%trapezoidal(xo,xn,n))
         Enter the lower limit of integration:0
         Enter the upper limit of integration:5
         Enter sub-intervals:6
```

1b

```
In [28]: from sympy import *
def y(x):
    return sin(x)**2
xo=0
xn=pi
n=6
def trapezoidal(xo,xn,n):
    h=(xn-xo)/n
    sum=y(xo)+y(xn)
    for i in range(1,n):
        k=xo+i*h
        sum=sum+2*y(k)
        integration=sum*h/2
    return integration
print("Integration result by trapezoidal method is:%.4f"%trapezoidal(xo,xn,n))
```

Integration result by trapezoidal method is:1.5708

2a

```
In [24]: def y(x):
             return 1/(1+x**2)
         xo=float(input("Enter the lower limit of integration:"))
         xn=float(input("Enter the upper limit of integration:"))
         n=int(input("Enter sub-intervals:"))
         def simpson1 3 (xo,xn,n):
             h=(xn-xo)/n
             sum=y(xo)+y(xn)
             for i in range(1,n):
                 k=xo+i*h
                 if i%2==0:
                     sum=sum+2*y(k)
                 else:
                     sum=sum+4*y(k)
                 integration=sum*h/3
             return integration
         result=simpson1 3(xo,xn,n)
         print("Integration result by simpson method is:%.6f"%result)
         Enter the lower limit of integration:0
         Enter the upper limit of integration:5
```

```
Enter the lower limit of integration.8

Enter the upper limit of integration:5

Enter sub-intervals:6

Integration result by simpson method is:1.350901
```

2b

```
In [27]: def y(x):
             return x^{**2}/(1+x^{**3})
         xo=0
         xn=1
         n=6
         def simpson1_3 (xo,xn,n):
             h=(xn-xo)/n
             sum=y(xo)+y(xn)
             for i in range(1,n):
                 k=xo+i*h
                 if i%2==0:
                     sum=sum+2*y(k)
                 else:
                     sum=sum+4*y(k)
                 integration=sum*h/3
             return integration
         result=simpson1 3(xo,xn,n)
         print("Integration result by simpson1_3 method is:%.6f"%result)
```

Integration result by simpson1_3 method is:0.231057

3a)

```
In [19]: def y(x):
             return 1/(1+x**2)
         xo=0
         xn=5
         n=6
         def simpson3_8 (xo,xn,n):
             h=(xn-xo)/n
             sum=y(xo)+y(xn)
             for i in range(1,n):
                 k=xo+i*h
                 if i%3==0:
                     sum=sum+2*y(k)
                 else:
                     sum=sum+3*y(k)
                 integration=sum*h*(3/8)
             return integration
         result=simpson3 8(xo,xn,n)
         print("Integration result by simpson3_8 method is:%.6f"%result)
```

Integration result by simpson3_8 method is:1.340634

3b)

```
In [21]: from sympy import *
         def y(x):
             return exp(-x**2)
         xo=0
         xn=0.6
         n=6
         def simpson3 8 (xo,xn,n):
             h=(xn-xo)/n
             sum=y(xo)+y(xn)
             for i in range(1,n):
                 k=xo+i*h
                 if i%3==0:
                     sum=sum+2*y(k)
                 else:
                     sum=sum+3*y(k)
                 integration=sum*h*(3/8)
             return integration
         result=simpson3_8(xo,xn,n)
         print("Integration result by simpson3 8 method is:%.6f"%result)
```

Integration result by simpson3_8 method is:0.535158

In []:

Solution of algebraic and transcendenatl equation by Newton Raphons method and Regula falsi

REGULA FALSI

```
In [12]: from sympy import *
    x=Symbol('x')
    fn=input("Enter the function")
    f=lambdify(x,fn)
    a=float(input("Enter the value of a:"))
    b=float(input("Enter the value of b:"))
    N=int(input("enter no of iterations"))
    for i in range (1,N+1):
        c=(a*f(b)-b*f(a))/(f(b)-f(a))
        if (f(a)*f(c)<0):
            b=c
        else:
            a=c
        print("Iteration %d \t the root %0.3f \t function value %0.3f \n"%(i,c,f(c)))
    print("Hence x= %0.3f"%c)</pre>
```

Enter the fund	tionx**3-2*x-5	
Enter the valu	ie of a:2	
Enter the valu	ie of b:3	
enter no of it	erations5	
Iteration 1	the root 2.059	function value -0.391
Iteration 2	the root 2.081	function value -0.147
Iteration 3	the root 2.090	function value -0.055
Iteration 4	the root 2.093	function value -0.020
Iteration 5	the root 2.094	function value -0.007

2 Newton Raphson

```
In [24]: from sympy import *
         x=Symbol('x')
         fn=input("Enter the function:")
         f=lambdify(x,fn)
         d fn=diff(fn)
         d f=lambdify(x,d fn)
         x0=float(input("enter the intial approximation:"))
         N=int(input("enter no of iterations"))
         for i in range (1,N+1):
             x1=(x0-(f(x0)/d f(x0)))
             print("Iteration %d \t the root %0.3f \t function value %0.3f \n "%(i,x1,f(x1)))
             x0=x1
         print("Hence x= %0.3f"%x1)
         Enter the function: 3*x-cos(x)-1
         enter the intial approximation:1
         enter no of iterations5
```

```
Iteration 1
                 the root 0.620
                                         function value 0.046
                 the root 0.607
                                         function value 0.000
Iteration 2
Iteration 3
                 the root 0.607
                                          function value 0.000
Iteration 4
                 the root 0.607
                                          function value 0.000
Iteration 5
                 the root 0.607
                                         function value 0.000
Hence x = 0.607
```

10 solution of ODE of 1st order and 1st degree

1 R-K method

```
In [13]: from sympy import *
         import numpy as np
         def R K(g,x0,h,y0,xn):
             x,y=symbols('x,y')
             f=lambdify([x,y],g)
             xt=x0+h
             y=[y0]
             while xt<xn:
                 k1=h*f(x0,y0)
                 k2=h*f(x0+h/2,y0+k1/2)
                 k3=h*f(x0+h/2,y0+k2/2)
                 k4=h*f(x0+h,y0+k3)
                 y1=y0+1/6*(k1+2*k2+2*k3+k4)
                 y.append(y1)
                 x0=xt
                 y0=y1
                 xt=xt+h
             return np.round(y,2)
         R K('1+y/x',1,0.2,2,2)
```

Out[13]: array([2. , 2.62, 3.27, 3.95, 4.66, 5.39])

2) solve y'=x^2+y/2 at y(1.4) given that y(1)=2 y(1.1)=2.2156 y(1.2)=2.4649 Y(1.3)=2.7514

```
In [12]: from sympy import *
         x0=1
         h=0.1
         x1=x0+h
         x2=x1+h
         x3=x2+h
         x4=x3+h
         v0=2
         y1=2.2156
         y2=2.4649
         v3=2.7514
         def f(x,y):
             return x^{**}2+(y/2)
         f0=f(x0,y0)
         f1=f(x1,y1)
         f2=f(x2,y2)
         f3=f(x3,y3)
         y4P=y0+(4*h/3)*(2*f1-f2+2*f3)
         print("Predicted value of v4 is: %0.3f"%v4P)
         f4=f(x4,y4P)
         for i in range (1,4):
             y4C=y2+(h/3)*(f2+4*f3+f4)
             print("The corrected value y4 after \t iteration %d \t %0.5f"%(i,y4C))
             f4=f(x4,y4C)
```

```
Predicted value of y4 is: 3.079

The corrected value y4 after iteration 1 3.07940

The corrected value y4 after iteration 2 3.07940

The corrected value y4 after iteration 3 3.07940
```

solve y'-2y=3e $^(x)$ with y(0)=0 bt taylor series method at x=0.1(0.1)0.3

```
In [42]: from numpy import array,zeros,exp
         x=0.0
         xn=0.3
         y=array([0.0])
         h=0.1
         def taylor(derivative,x,y,xn,h):
             X=[]
             Y=[]
             X.append(x)
             Y.append(y)
             while x<xn:
                  D=derivative(x,y)
                 H=1.0
                 for j in range (3):
                      H=H*h/(j+1)
                      y=y+D[j]*H
                 x=x+h
                 X.append(x)
                 Y.append(y)
             return array(X),array(Y)
         def derivative (x,y):
             D=zeros((4,1))
             D[0]=[2*y[0]+3*exp(x)]
             D[1]=[4*y[0]+9*exp(x)]
             D[2]=[8*y[0]+21*exp(x)]
             D[3]=[16*y[0]+45*exp(x)]
             return D
         X,Y=taylor(derivative,x,y,xn,h)
         print("The required values are: at x=\%0.2f, y=\%0.5f, x=\%0.2f, y=\%0.5f, x=\%0.2f, y=\%0.5f, x=\%0.2f, y=\%0.5f"%(X[0],Y[0],X[1],Y[0])
```

The required values are: at x=0.00, y=0.00000, x=0.10, y=0.34850, x=0.20, y=0.81079, x=0.30, y=1.41590

Solve $y'=e^{(x)}$ with y(0)=-1 using Eulers method at x=0.2(0.2)0.6

```
In [40]:
    import numpy as np
    import matplotlib.pyplot as plt
    f=lambda x,y:np.exp(-x)
    h=0.2
    y0=-1
    n=3
    Y=np.zeros(n+1)
    X=np.zeros(n+1)
    X[0]=0
    Y[0]=y0
    for i in range (0,n):
        X[i+1]=X[i]+h
        Y[i+1]=Y[i]+h*f(X[i],Y[i])
    print("The required values are: at x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,y=%0.5f,x=%0.2f,x=%0.2f,x=%0.2f,x=%0.2f,x=%0.2f,x=%0.2f,x=%0.2f,x=%0.2f,x=%0.2f,x=%0.2f,x=%0.2f,x=%0.2f,x=%0.2f,x=%0.2f,x=%0.2f,x=%0.2f,x=%0.2f,x=%0.2f,x=%0.2f,x=%0.2f,x=%0.2f,x=%0.2f,x=%0.2f,x=%0.2f,x=%0.2f,x=%0.2f,x=%0.2f,x=%0.2f,x=%0.2f,x=%0.2f,x=%0.2f,x=%0.2f,x=%0
```

The required values are: at x=0.00, y=-1.00000, x=0.20, y=-0.80000, x=0.40, y=-0.63625, x=0.60, y=-0.50219

use newton Forward interpolation to obtain interpolating polynomial and hence calculate y(2)

```
In [8]: from sympy import *
        import numpy as np
        n=int(input("Enter the number of data point:"))
        x=np.zeros((n))
        y=np.zeros((n,n))
        print("Enter data for x and y:")
        for i in range(n):
            x[i]=float(input('x['+str(i)+']='))
            y[i][0]=float(input('y['+str(i)+']='))
        for i in range(1,n):
            for j in range (0,n-i):
                y[j][i]=y[j+1][i-1]-y[j][i-1]
        print("\n Forward difference table \n")
        for i in range (0,n):
            print("%0.2f "%(x[i]),end='')
            for j in range(0,n-i):
                  print('\t \t %0.2f'%(y[i][j]),end='')
            print()
        t=Symbol('t')
        f=[]
        h=x[1]-x[0]
        p=(t-x[0])/h
        f.append(p)
        for i in range (1,n-1):
            f.append(f[i-1]*(p-i)/(i+1))
        sum=y[0][0]
        for i in range (n-1):
            sum=sum+y[0][i+1]*f[i]
            sum=simplify(sum)
        print('\n The interpolating polynomial is :\n')
        display(sum)
        inter=input("Do you want to interpolate at a point(yes/no)?")
        if inter=='yes':
            a=float(input("Enter the x value or data point:"))
            y value=lambdify(t,sum)
            result=y value(a)
        print("\n They y value at x=",a,'is:',result)
```

```
Enter the number of data point:5
```

Enter data for x and y:

x[0]=1

y[0]=6

x[1]=3

y[1]=10

x[2]=5

y[2]=62

x[3]=7

y[3]=210

x[4]=9

y[4]=502

Forward difference table

1.00	6.00	4.00	48.00	48.00	0.00
3.00	10.00	52.00	96.00	48.00	
5.00	62.00	148.00	144.00		
7.00	210.00	292.00			
9.00	502.00				

The interpolating polynomial is :

$$1.0t^3 - 3.0t^2 + 1.0t + 7.0$$

Do you want to interpolate at a point(yes/no)?yes Enter the x value or data point:2

They y value at x=2.0 is: 5.0

use Newton's Backward interpolation formula to obtain the interpolating formula and hence calculate y(8)

```
In [9]: from sympy import *
        import numpy as np
        n=int(input("Enter the number of data point:"))
        x=np.zeros((n))
        y=np.zeros((n,n))
        print("Enter data for x and y:")
        for i in range(n):
            x[i]=float(input('x['+str(i)+']='))
            y[i][0]=float(input('y['+str(i)+']='))
        for i in range(1,n):
            for j in range (n-1,i-2,-1):
                y[j][i]=y[j][i-1]-y[j-1][i-1]
        print("\n Backward difference table \n")
        for i in range(0,n):
            print("%0.2f "%(x[i]),end='')
            for j in range(0, i+1):
                print('\t \t %0.2f'%(y[i][j]),end='')
            print()
        t=symbols('t')
        f=[]
        h=x[1]-x[0]
        p=(t-x[n-1])/h
        f.append(p)
        for i in range (1,n-1):
            f.append(f[i-1]*(p+i)/(i+1))
        sum=y[n-1][0]
        for i in range(n-1):
            sum=sum+y[n-1][i+1]*f[i]
            sum=simplify(sum)
        print('\n The interpolating polynomial is :\n')
        display(sum)
        inter=input("Do you want to interpolate at a point(yes/no)?")
        if inter=='yes':
            a=float(input("Enter the x value or data point:"))
            y value=lambdify(t,sum)
            result=y value(a)
        print("\n They y value at x=",a,'is:',result)
```

0.00

Enter the number of data point:5

Enter data for x and y:

x[0]=1

y[0]=6

x[1]=3

y[1]=10

x[2]=5

y[2]=62

x[3]=7

y[3]=210

x[4]=9

y[4]=502

Backward difference table

1.00	6.00				
3.00	10.00	4.00			
5.00	62.00	52.00	48.00		
7.00	210.00	148.00	96.00	48.00	
9.00	502.00	292.00	144.00	48.00	

The interpolating polynomial is :

$$1.0t^3 - 3.0t^2 + 1.0t + 7.0$$

Do you want to interpolate at a point(yes/no)?yes Enter the x value or data point:8

They y value at x=8.0 is: 335.0

In []: