Cálculo lambda II Extensiones del cálculo lambda

Paradigmas de Lenguajes de Programación

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Septiembre 2017

En clases anteriores...

- \bullet Introducción a $\mathrm{C}\text{-}\lambda^b$ como lenguaje representativo del paradigma funcional
- Sintaxis. Expresiones de tipos y términos
- Sistema de tipado. Contexto y juicios de tipado. Axiomas y reglas.
- Semántica operacional. Formas normales y valores. Interpretación.

Sintaxis

Expresiones de tipos

$$\sigma ::= \mathit{Bool} \,|\, \sigma \to \tau$$

Términos

$$M ::= x \mid true \mid false \mid if M then P else Q \mid \lambda x : \sigma.M \mid M N$$

¿Son correctas estas expresiones?

- λx:Bool.x
- (λx:Bool.x) x
- y x
- if true then x else false
- λx :true.x
- λx :Bool. λy :Bool.if x then true else y

Los tipos nos permiten caracterizar las expresiones del lenguaje que tienen sentido

Axiomas y reglas de tipado

Semántica

La semántica operacional consiste en interpretar a los términos como estados de una máquina abstracta y definir una función de transición que indica, dado un estado, cuál es el siguiente estado

Evaluación

- La semántica nos permite interpretar las expresiones correctas (términos tipados) del lenguaje.
- El objetivo es saber como se evaluan o ejecutan los términos para conocer su significado.
- La semántica que usamos es "en un paso" (small-step).

Valores

¿Qué significan estas expresiones?

- λx:Bool.x
- $(\lambda x:Bool.x)$ true
- $(\lambda x: \mathsf{Bool} \to \mathsf{Bool}.x) (\lambda x: \mathsf{Bool}.x)$ false

¿Qué son los valores?

Los valores son las expresiones con sentido "directo". Son los posibles resultados de los programas **correctos**.

Los posibles valores en el cálculo λ presentado hasta ahora son:

$$V ::= true \mid false \mid \lambda x : \sigma.M$$

Semántica operacional (en un paso)

$$\frac{M \to M'}{M \ N \to M' \ N} \quad \frac{N \to N'}{V \ N \to V \ N'} \quad \frac{(\lambda x : \sigma.M) \ V \to M[x \leftarrow V]}{(\lambda x : \sigma.M) \ V \to M[x \leftarrow V]}$$

$$\frac{M \to M'}{\text{if } M \text{ then } N \text{ else } O \to \text{if } M' \text{ then } N \text{ else } O}$$

Extendiendo el $C-\lambda$...

- Primera extensión: los naturales
- ¿Qué se agregó?

Sintaxis para cálculo λ con pares

¿Qué hay que agregar?

• ...términos para representar el constructor y los observadores

$$M ::= ... \mid \langle M, N \rangle \mid \pi_1(M) \mid \pi_2(M)$$

• ...y un tipo para estas nuevas expresiones

$$\sigma ::= \dots \mid \sigma \times \tau$$

Reglas de tipado para pares

¿Qué hay que agregar?

- Al menos una regla por cada forma nueva de sintaxis, porque cada una de ellas precisa poder ser tipada.
- Notar que, de no hacerlo, sería imposible construir términos tipables (útiles) con dicha forma.

Regla de tipado para el constructor

$$\frac{\Gamma \triangleright M : \sigma \quad \Gamma \triangleright N : \tau}{\Gamma \triangleright \langle M, N \rangle : \sigma \times \tau}$$

Reglas de tipado para las proyecciones

$$\frac{\Gamma \triangleright M : \sigma \times \tau}{\Gamma \triangleright \pi_1(M) : \sigma}$$

$$\frac{\Gamma \triangleright \mathsf{N} : \sigma \times \tau}{\Gamma \triangleright \pi_2(\mathsf{N}) : \tau}$$

Semántica para pares

¿Qué reglas hay que agregar?

 Necesitamos reducir todos los pares con sentido que no sean valores.

¿Cuáles son los valores?

Empecemos por ahí entonces...

Extensión de los valores

$$V ::= ... \mid \langle V, W \rangle$$

Reglas de semántica para pares

Ahora sí, las reglas

$$\frac{M \to M'}{< M, N > \to < M', N >} \qquad \frac{N \to N'}{< \textcolor{red}{V}, N > \to < \textcolor{red}{V}, N' >}$$

Reglas de semántica para las proyecciones

$$\frac{M \to M'}{\pi_1(M) \to \pi_1(M')} \qquad \frac{M \to M'}{\pi_2(M) \to \pi_2(M')}$$

$$\pi_1(<\textcolor{red}{V},\textcolor{red}{W}>)\rightarrow\textcolor{red}{V}\qquad \pi_2(<\textcolor{red}{V},\textcolor{red}{W}>)\rightarrow\textcolor{red}{W}$$

Sintaxis para cálculo λ con árboles binarios

¿Qué hay que agregar?

...términos para representar los constructores y observadores
 M ::= ... | Nil_σ | Bin(M, N, O) | root(M) | right(M) | left(M) | isNil(M)

• ...y un tipo para estas nuevas expresiones

$$\sigma ::= ... \mid AB_{\sigma}$$

Reglas de tipado para árboles binarios

¿Qué hay que agregar?

• Como antes: una regla por cada forma nueva de sintaxis, porque cada una de ellas precisa poder ser tipada.

Reglas de tipado para los constructores

$$\Gamma \triangleright Nil_{\sigma} : AB_{\sigma}$$

$$\frac{\Gamma \triangleright M : AB_{\sigma} \quad \Gamma \triangleright O : AB_{\sigma} \quad \Gamma \triangleright N : \sigma}{\Gamma \triangleright Bin(M, N, O) : AB_{\sigma}}$$

- Nil_{σ} es una constante diferente según el tipo σ .
 - ¡No tenemos polimorfismo!
- Para Bin, en cambio, el tipo queda determinado por el tipo de los subtérminos.

Reglas de tipado para los observadores

$$\frac{\Gamma \triangleright M : AB_{\sigma}}{\Gamma \triangleright root(M) : \sigma} \qquad \frac{\Gamma \triangleright M : AB_{\sigma}}{\Gamma \triangleright isNil(M) : Bool}$$

$$\frac{\Gamma \triangleright M : AB_{\sigma}}{\Gamma \triangleright left(M) : AB_{\sigma}} \qquad \frac{\Gamma \triangleright M : AB_{\sigma}}{\Gamma \triangleright right(M) : AB_{\sigma}}$$

Semántica para árboles binarios

• Primero, empecemos por los valores:

$$V ::= ... \mid Nil_{\sigma} \mid Bin(V, W, Y)$$

Reglas de semántica para los constructores

$$\frac{M \to M'}{Bin(M, N, O) \to Bin(M', N, O)}$$

$$\frac{\textit{N} \rightarrow \textit{N}'}{\textit{Bin}(\textit{V},\textit{N},\textit{O}) \rightarrow \textit{Bin}(\textit{V},\textit{N}',\textit{O})}$$

$$\frac{O \rightarrow O'}{\textit{Bin}(V, W, O) \rightarrow \textit{Bin}(V, W, O')}$$

Reglas de semántica para los observadores (1/2)

$$\frac{M \to M'}{\mathsf{left}(M) \to \mathsf{left}(M')} \qquad \frac{M \to M'}{\mathsf{right}(M) \to \mathsf{right}(M')}$$

$$rac{M o M'}{root(M) o root(M')} \qquad rac{M o M'}{isNil(M) o isNil(M')}$$

Reglas de semántica para los observadores (2/2)

$$isNil(Nil_{\sigma}) \rightarrow true$$
 $isNil(Bin(V, W, Y)) \rightarrow false$

$$\overline{\textit{left}(\textit{Bin}(V,W,Y)) \rightarrow V} \qquad \overline{\textit{right}(\textit{Bin}(V,W,Y)) \rightarrow Y}$$

$$root(Bin(V, W, Y)) \rightarrow W$$

Otra forma de proyectar/observar

 Vamos a ver otra forma de representar proyectores u observadores más prolija y que requiere menos reglas (aunque una construcción más sofisticada).

 Usamos los árboles nuevamente para ejemplificar, de manera que se pueda comparar correctamente ambas formas.

Sintaxis para cálculo λ con árboles binarios bis

Los tipos quedan igual que en el caso anterior:

$$\sigma ::= ... \mid AB_{\sigma}$$

Y los términos,

$$M ::= ... \mid Nil_{\sigma} \mid Bin(M, N, O) \mid$$

 $Case_{AB_{\sigma}} M \text{ of } Nil \leadsto N \text{ ; } Bin(m, n, o) \leadsto O$

Aquí las minúsculas (m,n,o) representan variables.

Reglas de tipado para árboles binarios bis

• Para los constructores son las que ya teníamos.

$$\Gamma \triangleright Nil_{\sigma} : AB_{\sigma}$$

$$\frac{\Gamma \triangleright M : AB_{\sigma} \quad \Gamma \triangleright O : AB_{\sigma} \quad \Gamma \triangleright N : \sigma}{\Gamma \triangleright Bin(M, N, O) : AB_{\sigma}}$$

Regla de tipado para el Case

```
 \begin{array}{c|c} \Gamma \rhd M : AB_{\sigma} & \Gamma \rhd N : \tau \\ \hline \Gamma \cup \{m : AB_{\sigma}, n : \sigma, o : AB_{\sigma}\} \rhd O : \tau \\ \hline \Gamma \rhd Case_{AB_{\sigma}} M \text{ of } Nil \leadsto N ; Bin(m, n, o) \leadsto O : \tau \end{array}
```

Semántica para los árboles binarios bis

• Tenemos los mismos valores que antes:

$$V ::= ... \mid Nil_{\sigma} \mid Bin(V, W, Y)$$

Reglas de semántica para los constructores

Análogas a las que ya teníamos.

$$\frac{\textit{M} \rightarrow \textit{M}'}{\textit{Bin}(\textit{M},\textit{N},\textit{O}) \rightarrow \textit{Bin}(\textit{M}',\textit{N},\textit{O})}$$

$$\frac{\textit{N} \rightarrow \textit{N}'}{\textit{Bin}(\textit{V},\textit{N},\textit{O}) \rightarrow \textit{Bin}(\textit{V},\textit{N}',\textit{O})}$$

$$\frac{\textit{O} \rightarrow \textit{O'}}{\textit{Bin}(\textit{V}, \textit{W}, \textit{O}) \rightarrow \textit{Bin}(\textit{V}, \textit{W}, \textit{O'})}$$

Reglas de semántica para el Case

$$\begin{array}{c} M \to M' \\ \hline \textit{Case}_{AB_{\sigma}} \ \textit{M of Nil} \leadsto \textit{N} \ ; \textit{Bin}(\textit{m},\textit{n},\textit{o}) \leadsto \textit{O} \\ \to \\ \hline \textit{Case}_{AB_{\sigma}} \ \textit{M' of Nil} \leadsto \textit{N} \ ; \textit{Bin}(\textit{m},\textit{n},\textit{o}) \leadsto \textit{O} \end{array}$$

$$Case_{AB_{\sigma}} \ \textit{Nil}_{\sigma} \ \textit{of} \ \textit{Nil} \leadsto \textit{N} \ ; \textit{Bin}(\textit{m},\textit{n},\textit{o}) \leadsto \textit{O} \rightarrow \textit{N}$$

$$Case_{AB_{\sigma}} Bin(V, W, Y) \text{ of } Nil \leadsto N \text{ ; } Bin(m, n, o) \leadsto O$$

 $\rightarrow O\{m \leftarrow V, n \leftarrow W, o \leftarrow Y\}$

Ejercicio

Objetivo: Extender el lenguaje para soportar una estructura **fold** que servirá como esquema de recursión para los árboles binarios

- Tipos $\sigma ::= ... \mid AB_{\sigma}$
- Términos

$$M ::= ... \mid Nil_{\sigma} \mid Bin(M, N, O) \mid$$

Fold M base $= N$; rec $r_i \in r_d = O$

2010-1c-1r

En la próxima clase...

Inferencia de tipos para $C-\lambda$.

 Mecanismo para reconstruir el tipo de una expresión cualquiera sin anotaciones de tipo.

¡Eso es todo!

 $(\lambda x : Clase.fin x) LambdaCalculo2$