COURSE 4

2.3. Hermite interpolation (continuation)

Let $x_k \in [a,b], \ k = 0,1,...,m$ be such that $x_i \neq x_j$, for $i \neq j$ and let $r_k \in \mathbb{N}, \ k = 0,1,...,m$. Consider $f:[a,b] \to \mathbb{R}$ such that there exist $f^{(j)}(x_k), \ k = 0,1,...,m; \ j = 0,1,...,r_k$ and $n = m + r_0 + ... + r_m$.

The Hermite interpolation problem (HIP) consists in determining the polynomial P of the smallest degree for which

$$P^{(j)}(x_k) = f^{(j)}(x_k), \quad k = 0, ..., m; \ j = 0, ..., r_k.$$

Definition 1 A solution of (HIP), if exists, is called **Hermite interpolation polynomial**, denoted by H_nf .

Hermite interpolation polynomial, denoted by H_nf , satisfies the interpolation conditions:

$$(H_n f)^{(j)}(x_k) = f^{(j)}(x_k), \quad k = 0, ..., m; \ j = 0, ..., r_k.$$

Hermite interpolation polynomial is given by

$$(H_n f)(x) = \sum_{k=0}^m \sum_{j=0}^{r_k} h_{kj}(x) f^{(j)}(x_k) \in \mathbb{P}_n,$$
 (1)

where $h_{kj}(x)$ denote the Hermite fundamental interpolation polynomials. These fulfills relations:

$$\begin{split} h_{kj}^{(p)}(x_{\nu}) &= 0, \ \nu \neq k, \quad p = 0, 1, ..., r_{\nu} \\ h_{kj}^{(p)}(x_{k}) &= \delta_{jp}, \ p = 0, 1, ..., r_{k}, \quad \text{for } j = 0, 1, ..., r_{k} \text{ and } \nu, k = 0, 1, ..., m, \\ \text{with } \delta_{jp} &= \left\{ \begin{array}{ll} 1, & j = p \\ 0, & j \neq p. \end{array} \right. \end{split}$$

We denote by

$$u(x) = \prod_{k=0}^{m} (x - x_k)^{r_k + 1}$$
 and $u_k(x) = \frac{u(x)}{(x - x_k)^{r_k + 1}}$.

The Hermite interpolation formula is

$$f = H_n f + R_n f$$

where $R_n f$ denotes the remainder term (the error).

Theorem 2 If $f \in C^n[\alpha, \beta]$ and $f^{(n)}$ is derivable on (α, β) , with $\alpha = \min\{x, x_0, ..., x_m\}$ and $\beta = \max\{x, x_0, ..., x_m\}$, then there exists $\xi \in (\alpha, \beta)$ such that

$$(R_n f)(x) = \frac{u(x)}{(n+1)!} f^{(n+1)}(\xi).$$
 (2)

Proof. Consider

$$F(z) = \left| \begin{array}{cc} u(z) & (R_n f)(z) \\ u(x) & (R_n f)(x) \end{array} \right|.$$

 $F \in C^n[\alpha, \beta]$ and there exists $F^{(n+1)}$ on (α, β) .

We have

$$F(x) = 0$$
, $F^{(j)}(x_k) = 0$, $k = 0, ..., m$; $j = 0, ..., r_k$;

because

$$u(x) = \prod_{k=0}^{m} (x - x_k)^{r_k + 1} \Rightarrow u^{(j)}(x_k) = 0, \ j = 0, ..., r_k$$

and

$$(R_m f)^{(j)}(x_k) = f^{(j)}(x_k) - (H_n f)^{(j)}(x_k) = f^{(j)}(x_k) - f^{(j)}(x_k) = 0.$$

So, F and its derivatives have n+2 distinct zeros in (α,β) . Applying successively Rolle's theorem it follows that F' has at least n+1 zeros in $(\alpha,\beta)\Rightarrow ...\Rightarrow F^{(n+1)}$ has at least one zero $\xi\in(\alpha,\beta),\,F^{(n+1)}(\xi)=0$.

We have

$$F^{(n+1)}(z) = \begin{vmatrix} u^{(n+1)}(z) & (R_n f)^{(n+1)}(z) \\ u(x) & (R_n f)(x) \end{vmatrix},$$

with $u(z) = \prod_{k=0}^{m} (z - z_k)^{r_k+1} \in \mathbb{P}_{n+1} \Rightarrow u^{(n+1)}(z) = (n+1)!$, and $(R_n f)^{(n+1)}(z) = f^{(n+1)}(z) - (H_n f)^{(n+1)}(z) = f^{(n+1)}(z)$ (as, $H_n f \in \mathbb{P}_n$)

 \mathbb{P}_n). We get

$$F^{(n+1)}(\xi) = \left| \begin{array}{cc} (n+1)! & f^{(n+1)}(\xi) \\ u(x) & (R_n f)(x) \end{array} \right| = 0,$$

whence it follows (2).

The Hermite interpolation formula is $f(x) = (H_n f)(x) + (R_n f)(x)$, where $(R_n f)(x)$ denotes the remainder term (the error).

Corollary 3 If $f \in C^{n+1}[a,b]$ then

$$|(R_n f)(x)| \le \frac{|u(x)|}{(n+1)!} ||f^{(n+1)}||_{\infty}, \quad x \in [a,b]$$

where $\|\cdot\|_{\infty}$ denotes the uniform norm $(\|f\|_{\infty} = \max_{x \in [a,b]} |f(x)|).$

Remark 4 In case of m=0, i.e., $n=r_0$, (HIP) becomes Taylor interpolation problem. Taylor interpolation polynomial is

$$(T_n f)(x) = \sum_{j=0}^n \frac{(x-x_0)^j}{j!} f^{(j)}(x_0).$$

Example 5 Find the Hermite interpolation formula for the function $f(x) = xe^x$ for which we know f(-1) = -0.3679, f(0) = 0, f'(0) = 1, f(1) = 2.7183, (equivalent with $x_0 = -1$ simple, $x_1 = 0$ multiple of order 2 and $x_2 = 1$ simple). Which is the limit of the error for approximating $f(\frac{1}{2})$?

Hermite interpolation with double nodes

Example 6 In the following table there are some data regarding a moving car. We may estimate the position (and the speed) of the car when the time is t = 10 using Hermite interpolation.

Consider $f:[a,b]\to\mathbb{R},\ x_0,x_1,...,x_m\in[a,b]$

and the values $f(x_0), f(x_1), ..., f(x_m), f'(x_0), f'(x_1), ..., f'(x_m)$.

The Hermite interpolation polynomial with double nodes, H_{2m+1} , satisfies the interpolation properties:

$$H_{2m+1}(x_i) = f(x_i), i = \overline{0, m},$$

 $H'_{2m+1}(x_i) = f'(x_i), i = \overline{0, m}.$

It is a polynomial of n = 2m + 1 degree.

For computation: use Lagrange polynomial written in Newton form, with divided differences table having each node x_i written twice.

Consider
$$z_0 = x_0$$
, $z_1 = x_0$, $z_2 = x_1$, $z_3 = x_1$, ..., $z_{2m} = x_m$, $z_{2m+1} = x_m$.

Form divided differences table: each node appear twice, in the first column write the values of f for each node twice; in the second column, at the odd positions put the values of the derivatives of f; the other elements are computed using the rule from divided differences.

We obtain the following table:

z_0	$f(z_0)$	$(\mathcal{D}^1 f)(z_0) = f'(x_0)$	$(\mathcal{D}^2 f)(z_0)$	$(\mathcal{D}^{2m}f)(z_0)$	$(\mathcal{D}^{2m+1}f)(z_0)$
z_1	$f(z_1)$	$(\mathcal{D}^1 f)(z_1)$:	$(\mathcal{D}^{2m}f)(z_1)$	
z_2	$f(z_2)$	$(\mathcal{D}^1 f)(z_2) = f'(x_1)$			
z_3	$f(z_3)$:			
÷	:	$(\mathcal{D}^1 f)(z_{2m-1})$	$(\mathcal{D}^2f)(z_{2m-1})$		
z_{2m}	$f(z_{2m})$	$(\mathcal{D}^1 f)(z_{2m}) = f'(x_m)$			
z_{2m+1}	$f(z_{2m+1})$				

Newton interpolation polynomial for the nodes $x_0,...,x_n$ is

$$(N_n f)(x) = f(x_0) + \sum_{i=1}^n (x - x_0) \dots (x - x_{i-1}) (\mathcal{D}^i f)(x_0),$$

so Hermite interpolation polynomial is

$$(H_{2m+1}f)(x) = f(z_0) + \sum_{i=1}^{2m+1} (x-z_0)...(x-z_{i-1})(\mathcal{D}^i f)(z_0),$$

where $(\mathcal{D}^i f)(z_0)$, i=1,...,2m+1 are the elements from the first line and columns 2,...,2m+1.

Example 7 Consider the double nodes $x_0 = -1$ and $x_1 = 1$, and f(-1) = -3, f'(-1) = 10, f(1) = 1, f'(1) = 2. Find the Hermite interpolation polynomial, that approximates the function f, in both forms, using the classical formula and using divided differences.

Sol. We present here the method with divided diffrences. We have $m=1, r_0=r_1=1 \Rightarrow n=3$

$z_0 = -1$	f(-1) = -3	f'(-1) = 10	$\frac{\frac{f(1)-f(-1)}{2}-f'(-1)}{2} = -4$	$\frac{0-(-4)}{2} = 2$
$z_1 = -1$	f(-1) = -3	$\frac{f(1)-f(-1)}{1-(-1)} = 2$	$\frac{f'(1) - \frac{f(1) - f(-1)}{2}}{2} = 0$	
$z_2 = 1$	f(1) = 1	f'(1) = 2		
$z_3 = 1$	f(1) = 1			

The Hermite interpolation polynomial is

$$(H_3f)(x) = f(z_0) + \sum_{i=1}^{3} (x - z_0)...(x - z_{i-1})(\mathcal{D}^i f)(z_0)$$

= $f(z_0) + (x - z_0)(\mathcal{D}^1 f)(z_0) + (x - z_0)(x - z_1)(\mathcal{D}^2 f)(z_0)$
+ $(x - z_0)(x - z_1)(x - z_2)(\mathcal{D}^3 f)(z_0)$

i.e.,

$$(H_3f)(x) = f(-1) + (x+1)f'(-1) + (x+1)^2 \frac{f(1) - f(-1) - 2f'(-1)}{4}$$

$$+ (x+1)^2 (x-1) \frac{2f'(1) - f(1) + f(-1)}{4}$$

$$= -3 + 10(x+1) - 4(x+1)^2 + 2(x+1)^2 (x-1)$$

$$= 2x^3 - 2x^2 + 1.$$