MACHINE LEARNING FOR DATA SCIENCE LAB-ASSESMENT-2

NAME: R. SURYA

REGNO:19MDT0023

1.) There are two directories Data Folder and Data set description in the following link:

https://archive.ics.uci.edu/ml/datasets/banknote+authentication

Download the dataset from the above link and store it locally on your machine

PROGRAM:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.metrics import classification_report, confusion_matrix

data = pd.read csv("D:\\data banknote authentication.csv")

#split dataset

x=data.iloc[:,[0,1,2,3]].values

y=data.iloc[:,-1].values

#train test split

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.20)

#model building

from sklearn.svm import SVC

svclassifier = SVC(kernel='linear')

svclassifier.fit(x_train, y_train)

#Prediction

y pred = svclassifier.predict(x test)

#Accuracy

print(confusion_matrix(y_test,y_pred))

print(classification_report(y_test,y_pred))

```
#next model
```

```
svclassifier1 = SVC(kernel='linear', C = 1.0)
svclassifier1.fit(x_train, y_train)
y_pred1 = svclassifier1.predict(x_test)
svclassifier2 = SVC(kernel='poly', degree=8)
svclassifier2.fit(x_train, y_train)
y_pred2 = svclassifier2.predict(x_test)
#Accuracy
print(confusion_matrix(y_test,y_pred2))
print(classification_report(y_test,y_pred2))
```

OUTPUT:

#model1 output

[[161 2]
[2 110]]
 precision recall f1-score support

 0 0.99 0.99 0.99 163
 1 0.98 0.98 0.98 112

accuracy 0.99 275
macro avg 0.98 0.98 0.98 275
weighted avg 0.99 0.99 0.99 275

#model2 output

[[155 8]
[0 112]]
 precision recall f1-score support

0 1.00 0.95 0.97 163

1 0.93 1.00 0.97 112

accuracy 0.97 275

macro avg 0.97 0.98 0.97 275

weighted avg $0.970.970.97$