Análisis Matemático II

Tema 7: Integración de funciones reales

• Funciones integrables

2 Teorema de la convergencia dominada

Aditividad y continuidad absoluta

Conjuntos de medida finita

Versión definitiva de la integral

Funciones integrables y su integra

Seguimos trabajando en un conjunto medible $\Omega \subset \mathbb{R}^N$

 $f\in\mathcal{L}(\Omega)$ es integrable en un conjunto medible $E\subset\Omega$ cuando: $\int_{E}|f|<\infty$

Se tiene entonces que
$$\int_E f^+ < \infty$$
 y $\int_E f^- < \infty$

y se define la integral de f sobre E como el número real dado por

$$\int_{E} f = \int_{E} f^{+} - \int_{E} f^{-}$$

- Cuando $f \geqslant 0$, esta integral coincide con la que conocíamos
- f es integrable en E si y sólo si lo es $f|_{E}$, y las integrales coinciden

Observaciones inmediatas sobre de integral

Localización

Funciones integrables

 $f \in \mathcal{L}(\Omega)$ es integrable en un conjunto medible $E \subset \Omega$

si, y sólo si, $\chi_E f$ es integrable en Ω , en cuyo caso se tiene:

$$\int_{E} f = \int_{\Omega} \chi_{E} f$$

Denotamos por $\mathcal{L}_1(\Omega)$ al conjunto de las funciones integrables en Ω , es decir,

$$\mathcal{L}_1(\Omega) = \left\{ f \in \mathcal{L}(\Omega) : \int_{\Omega} |f| < \infty \right\}$$

Los elementos de $\mathcal{L}_1(\Omega)$ son las funciones integrables

Propiedades clave de la integral

Linealidad

 $\mathcal{L}_1(\Omega)$ es un subespacio vectorial de $\mathcal{L}(\Omega)$

y definiendo:
$$I(f) = \int_{\Omega} f \quad \forall f \in \mathcal{L}_1(\Omega)$$
 ,

se obtiene una aplicación lineal $I:\mathcal{L}_1(\Omega)\to\mathbb{R}$

Positividad

$$h \in \mathcal{L}_1(\Omega), h \geqslant 0 \implies \int_{\Omega} h \geqslant 0$$

- $\bullet \quad f,g \in \mathcal{L}_1(\Omega), \quad f \leqslant g \quad \Longrightarrow \quad \int_{\Omega} f \leqslant \int_{\Omega} g$

Se dice que la integral es un funcional lineal positivo en $\mathcal{L}_1(\Omega)$

Relación de la integral con la convergencia puntual

La convergencia puntual no preserva la integrabilidad

Para $n \in \mathbb{N}$ sea f_n la función característica de $[-n, n]^N$. Entonces: $f_n \in \mathcal{L}_1(\mathbb{R}^N)$ para todo $n \in \mathbb{N}$, y $\{f_n\}$ converge puntualmente en \mathbb{R}^N a la función $f: \mathbb{R}^N \to \mathbb{R}$ dada por f(x) = 1 para todo $x \in \mathbb{R}^N$ pero f no es integrable en \mathbb{R}^N

En general, no podemos permutar límite e integral

Para cada $n \in \mathbb{N}$ sea $q_n = (2n)^{-N} f_n \in \mathcal{L}_1(\mathbb{R}^N)$, donde $\{f_n\}$ es la sucesión del ejemplo anterior Ahora $\{g_n\}$ converge uniformemente a cero en \mathbb{R}^N pero $\lim_{n\to\infty}\int_{\mathbb{R}^N}g_n=1$

Teorema de la convergencia dominada de Lebesgue

Sea $\{f_n\}$ una sucesión de funciones reales medibles, que converge puntualmente en Ω a una función $f:\Omega\to\mathbb{R}$.

Supongamos que existe una función integrable $g: \Omega \to \mathbb{R}_0^+$ tal que:

$$|f_n(x)| \leq g(x) \quad \forall x \in \Omega, \ \forall n \in \mathbb{N}$$

Entonces f es integrable y se verifica que

$$\lim_{n \to \infty} \int_{\Omega} |f_n - f| = 0$$
, de donde: $\int_{\Omega} f = \lim_{n \to \infty} \int_{\Omega} f_n$

il corolatio de los dos teoremas de convergener

Teorema de la convergencia absoluta

Sea $\{f_n\}$ una sucesión de funciones integrables tal que $\sum_{n=1}^{\infty}\int_{\Omega}|f_n|<\infty$.

Entonces existe un conjunto $E \subset \Omega$, con $\lambda(\Omega \setminus E) = 0$ tal que:

la serie $\sum f_n$ converge absolutamente en E.

Además, definiendo
$$f(x) = \sum_{n=1}^{\infty} \chi_E(x) f_n(x)$$
 para todo $x \in \Omega$,

Se tiene que
$$f \in \mathcal{L}_1(\Omega)$$
 con $\int_{\Omega} f = \sum_{i=1}^{\infty} \int_{\Omega} f_i$.

La integral como función del conjunto en el que se integra

Notació

Fijada $f \in \mathcal{L}_1(\Omega)$, consideramos la función $\Phi_f : \mathcal{M} \cap \mathcal{P}(\Omega) \to \mathbb{R}$ definida por:

$$\Phi_f(E) = \int_E f \quad \forall E \in \mathcal{M} \cap \mathcal{P}(\Omega)$$

Aditividad

La función Φ_f es σ -aditiva, es decir:

Si
$$E = \biguplus E_n \text{ con } E_n \in \mathcal{M} \cap \mathcal{P}(\Omega) \quad \forall n \in \mathbb{N}$$
, entonces:

$$\int_{E} f = \Phi_{f}(E) = \sum_{n=1}^{\infty} \Phi_{f}(E_{n}) = \sum_{n=1}^{\infty} \int_{E_{n}} f$$

Continuidad creciente y decreciente

La función Φ_f es crecientemente y decrecientemente continua, es decir:

si
$$A_n \in \mathcal{M} \cap \mathcal{P}(\Omega) \ \ \forall \, n \in \mathbb{N}$$
, y $\{A_n\} \nearrow A$ o bien $\{A_n\} \searrow A$, entonces:
$$\int_A f = \Phi_f(A) = \lim_{n \to \infty} \Phi_f(A_n) = \lim_{n \to \infty} \int_A f$$

Continuidad absoluta de la integral

Continuidad absoluta

Para $f \in \mathcal{L}_1(\Omega)$, la función Φ_f es absolutamente continua en el siguiente sentido: para cada $\varepsilon > 0$ existe un $\delta > 0$ tal que

$$E \in \mathcal{M} \cap \mathcal{P}(\Omega), \ \lambda(E) < \varepsilon \implies \left| \int_{E} f \right| \le \int_{E} |f| < \varepsilon$$

Versión para sucesiones

$$f \in \mathcal{L}_1(\Omega), E_n \in \mathcal{M} \cap \mathcal{P}(\Omega) \ \forall n \in \mathbb{N}, E \in \mathcal{M} \cap \mathcal{P}(\Omega)$$

$$\{\lambda(E \setminus E_n) + \lambda(E_n \setminus E)\} \to 0 \implies \int_E f = \lim_{n \to \infty} \int_{E_n} f$$

Integral sobre conjuntos de medida finita (I)

Integrabilidad de las funciones acotadas

Si
$$\lambda(\Omega)<\infty$$
 y $f\in\mathcal{L}(\Omega)$ verifica que $|f(x)|\leqslant M<\infty$ $\forall x\in\Omega$, entonces $f\in\mathcal{L}(\Omega)$, ya que $\int_{\Omega}|f|\leqslant M\,\lambda(\Omega)$

Teorema de la convergencia acotada

Sea $\{f_n\}$ una sucesión de funciones reales medibles, que converge puntualmente en Ω a una función $f:\Omega\to\mathbb{R}$.

Supongamos que $\lambda(\Omega)<\infty$ y que $|f_n(x)|\leqslant M<\infty$ $\forall x\in\Omega,\ \forall n\in\mathbb{N}$

Entonces
$$f\in\mathcal{L}(\Omega)$$
 es integrable y se tiene $\lim_{n o\infty}\int_{\Omega}|f_n-f|=0$,

$$\mathsf{de}\;\mathsf{donde}\;\int_{\Omega}f\;=\lim_{n\to\infty}\int_{\Omega}f_{n}$$

Integral sobre conjuntos de medida finita (II)

Convergencia uniforme

Supongamos que $\lambda(\Omega) < \infty$

y sea $\{f_n\}$ una sucesión de funciones integrables en Ω , que converge uniformemente en Ω a una función $f:\Omega\to\mathbb{R}$.

Entonces
$$f\in\mathcal{L}_1(\Omega)$$
 y se tiene $\lim_{n\to\infty}\int_\Omega|f_n-f|=0$, de donde $\int_\Omega f=\lim_{n\to\infty}\int_\Omega f_n$