

Monitoring, Control and Supervision of PV Solar Power Plants

MONITOR

your PV plant's condition

COLLECT

your PV plant's field data

CONTROL

your PV plant's energy flows

MANAGE

grid integration and stability

SUPERVISE

your plant from anywhere

MAXIMIZE

the profitability of your solar

Our Innovation - Your Benefit

Power Plant Control for Utility-Scale Photovoltaic Installations

skytron® energy GmbH

Ernst-Augustin-Str. 12 D – 12489 Berlin Germany, Berlin

www.skytron-energy.com

1. Monitoring, Control and Supervision

- 2. Control... of what? And Why?
- 3. Different Control Approaches
- 4. skytron's Power Plant Controller

1. Monitoring, Control and Supervision

2. Control... of what? And Why?

- 3. Different Control Approaches
- 4. skytron's Power Plant Controller

Source: Siemens AG

TODAY:

- <u>Distributed</u> bulk power systems feed into an electricity grid which originally was designed for centralized, top-down electricity distribution and supply.
- At low-voltage and medium-voltage levels
- - Wind power plants
 - Photovoltaic power plants
 - CSP power plants
 - Biogas power plants
 - Tidal wave plant
 - Geothermal plants

The Effect Upon the Electricity Grid

Today's Electricity Grid Characteristics

- Fluctuating load profiles (day, night)
- Fluctuating energy injection by "Renewables" due to variable weather conditions
- Irregular energy injection and energy extraction in sub-grids
- Limited energy transport capacities of "historic" transmission and distribution grids
- Limited capabilities of conventional power plants to balance out those fluctuations
- Grid faults sudden load shedding and short circuits

Grid Security

Grid security management measures

- On-demand reduction of energy injection in the event of grid overload

Grid Stability

Decentralized grid stability measures

- Voltage support
- Injection of reactive power (cos ø)
- Frequency stability monitoring
- Fault ride through
- Provision of short circuit current (LVFRT)

- Improved grid stability thanks to decentralized grid support:
 - Voltage support
 - Injection of reactive power
 - Frequency monitoring
- The controllable power plant improves the grid quality
 - either instantly, according to actual demand of power supply company
 - or according to an agreed specification

- 1. Monitoring, Control and Supervision
- 2. Control... of what? And Why?

3. Different Control Approaches

4. skytron's Power Plant Controller

Power Plant Control: Two Approaches

Inverter Level

Plant Level

- Typically open-loop control
- Feedback of actual value P, Q?
- Actual value pick-up at injection point: LV
- Integration in SCADA system possible?

- Closed-loop control
- Feedback of actual value P, Q: Yes
- Actual value pick-up at injection point: LV, MV, HV
- Integration in SCADA system possible? Yes

skytron's Approach: Power Plant Controller

- 1. Monitoring, Control and Supervision
- 2. Control... of what? And Why?
- 3. Different Control Approaches

4. skytron's Power Plant Controller

Characteristics and Control Parameters

- Genuine closed-loop control
- Feedback of actual values at grid injection point at medium or high voltage level
- Grid parameters:
 - effective power P
 - reactive power Q
 - grid frequency f
 - grid voltage V
- Effective power control
 (NSM Network Security Management)
- Reactive power compensation
- Reactive power injection (grid support function)

skycontrol: The Control Principle

skycontrol: The Hardware

Different-size cubicles, depending on required

- control features
- housing
- interfaces

Customized to suit

- interfaces specified by power supply company
- mounting space available
- layout and configuration of PV power plant
- required functional scope

skycontrol

- is NOT a standard power plant controller
- is a plant control system adjusted to customer

skycontrol: The Functional Scope

Functions

Network Security management (NSM)

Effective Power Control

Reactive Power Control

Integration of System Protection Signals

Setpoint inputs:

- Discrete switching signals (0%, 30%, 60%, 100%)
- Analog signals (4 to 20 mA, 0 to 10 V)
- Digital interfaces (MODBUS, BACnet)
- Discrete switching signals (0%, 30%, 60%, 100%)
- Analoge signals (4 to 20 mA, 0 to 10 V)
- Digital interfaces (MODBUS, BACnet)
- Characteristic working curve of grid frequency \rightarrow P(f)
- Agreed value, fixed
- Discrete switching signals (cos φ: -0.9, -0.95, 1, +0.95, +0.9)
- Analog signals (4 to 20 mA, 0 to 10 V)
- Digital interfaces (MODBUS, IEC 60870)
- Characteristic working curve of effective power → Q(P)
- Characteristic working curve of reactive power → Q(V)
- Grid injection enable
- Emergency OFF / Fast trip
- Inverter control in the event of MV / HV switch-off

skytron® energy GmbH

Ernst-Augustin-Str. 12 D – 12489 Berlin, Germany

www.skytron-energy.com

+49 (0)30 688 31 59 – 76 m.can@skytron-energy.com