KORELASI DAN REGRESI LINEAR

ANALISIS REGRESI

 Salah satu metode untuk menentukan apakah ada tidaknya hubungan sebabakibat, mengukur kekuatan hubungan, atau membuat ramalah yang didasarkan kepada kuat lemahnya hubungan antara satu variable dengan variabel yang lain.

- Varibel "penyebab" disebut variable eksplanatorik, variable independent, predictor atau variable bebas X
- Sedangkan untuk variable yang terkena akibat dikenal sebagai variable yang dipengaruhi, variable dependen, variable terikat, criterion atau variable Y

Regresi Linear Sederhana

 Model Regresi Ŷ = a + bX Σχγ $\sum x^2$ $n\Sigma XY - (\Sigma X)(\Sigma Y)$ $n \Sigma X^2 - (\Sigma X)^2$ $\overline{a} = \overline{Y} - \overline{bX}$

$$\overline{Y} - b\overline{X}$$

$$(\Sigma X^2)(\Sigma Y) - (\Sigma X)(\Sigma XY)$$

$$\overline{\qquad \qquad }$$

$$n \Sigma X^2 - (\Sigma X)^2$$

Jumlah Kuadrat

- a. Jumlah kuadrat total: JK (T) = ΣY^2
- b. Jumlah Kuadrat regresi a : JK(a) = $\frac{(\Sigma Y)^2}{n}$
- c. Jumlah kuadrat tereduksi JK (R) = $\sum Y^2 \frac{(\sum Y)^2}{n} = \sum y^2$
- d. Jumlah kuadrat regresi b: JK (b) = JK(reg) = $b\Sigma xy$
- e. Jumlah kuadrat sisa:

JK (S) = JK (R) - JK(reg)
=
$$\sum y^2$$
 - b $\sum xy$
 $(\sum xy)^2$
= $\sum y^2$ - $\sum X^2$

Jumlah Kuadrat galat

JK (G) =
$$\sum (y_k^2)$$

 $(\sum Y)^2$
= $\sum Y^2$ - n_k

Jumlah kuadrat tuna cocokJK (TC) = JK(S) - JK(G)

• Uji Signifikansi Regresi

$$F_h = \frac{JK (reg)}{JK(S)/(n-2)}$$

 $F_h > F_t \rightarrow regresi signifikan$

Uji Linearitas Regresi
 JK(TC)/(k-2)
 F_h = ______
 JK(G)/(n-k)

 $F_h < F_t \rightarrow regresi linear$

• Galat Baku Taksiran

$$S_{yx} = \sqrt{\frac{JK(S)}{n-2}}$$

Contoh Regresi Linear Sederhana Y atas X

10

Deskripsi Data

14

guru	Х	Y	Х	X ²	у	y ²	ху
А	20	16	6	36	6	36	36
В	20	12	6	36	2	4	12
С	12	10	-2	4	0	0	0
D	12	8	-2	4	-2	4	4
Е	6	4	-8	64	-6	36	48
Σ	70	50	0	144	0	80	100

Model Regresi $\hat{Y} = a + bX$

Model Regresi
$$\hat{Y} = a + bX$$

$$\Sigma xy \qquad 100$$

$$b = \frac{\Sigma x^2}{\Sigma x^2} = 0,69$$

$$a = \overline{Y} - bX$$

$$= 10 - (0,69)(14) = 0,34$$

Model regresi: $\hat{Y} = 0.34 + 0.69X$

Jumlah Kuadrat

• JK (T) =
$$\sum Y^2$$
 = 580
 $(\sum Y)^2$ $(50)^2$
• Regresi a: JK(a) = $\frac{1}{2}$ = $\frac{1}{2}$ = 500

- Total Direduksi/koreksi: $JK(R) = JK(T) JK(a) = \sum y^2 = 80$
- Regresi b: $JK(b) = JK(reg) = b \sum xy = (0.69)(100) = 69$
- Sisa (JK(S) = JK(R) JK(reg) = 80 69 = 11

• Galat: $JK(G) = \sum (\sum y^2_k) =$

$$(16^{2} + 12^{2} - \left\{\frac{(16+12)^{2}}{2}\right\} + 10^{2} + 8^{2} - \left\{\frac{(16+8)^{2}}{2}\right\} + 4^{2} - \left\{\frac{4^{2}}{1}\right\} = 10$$

Tuna Cocok

$$JK (TC) = JK(S) - JK(G) = 11 - 10 = 1$$

TABEL ANAVA untuk Regresi Linear Sederhana

Sumber Varians	db	JK	RJK	F_h	F _t
Total	5	580			
Reg. a	1	500	500		
Reg. b	1	69	69	18,6	10,13
Sisa	3	11	3,7		
Tuna Cocok	1	1	1	0,2	18,51
Galat	2	10	5		

Uji Signifikansi Regresi dan Uji Linearitas Regresi

a. Ho: $\beta = 0$

H1: $\beta > 0$

Karena Fh = 18,6 > 10,13 = Ft, maka regresi significan

b. Ho: $Y = \alpha + \beta X$

H1: $Y \neq \alpha + \beta X$

Karena Fh = 0,2 < 18,51 = Ft, maka regresi linear

Koefisien Korelasi

$$r_{xy} = \frac{\sum xy}{\sqrt{(x^2)(y^2)}} = \frac{100}{\sqrt{(144)(80)}} = \frac{100}{107,3} = 0,93$$

Uji signifikansi Korelasi

$$t_h = \frac{r\sqrt{n-2}}{\sqrt{(1-r^2)}} = \frac{0.93\sqrt{3}}{\sqrt{0.1351}} = 4.38$$

$$t_t = t_{(0,95;3)} = 2,35$$

Karena t $_{\rm h}$ > $\rm t_{\rm t}$, maka korelasi signifikan

Kesimpulan

 Karena thit = 4,38 > ttab = 2,35, maka Ho ditolak artinya koefisien korelasi signifikansi

UJI KORELASI SEDERHANA DENGAN SPSS

- Uji Korelasi bertujuan untuk mengetahui tingkat keeratan hubungan antar variable yang dinyatakan dengan koefisien korelasi (r)
- Jenis hubungan antar variable X dan Y dapat bersifat positif dan negatif

DASAR PENGAMBILAN KEPUTUSAN

- Jika nilai signifikansi < 0,05 maka berkorelasi
- Jika nilai signifikansi > 0,05 maka tidak berkorelasi

PEDOMAN DERAJAT HUBUNGAN

- Nilai Pearson Correlation 0,00 s/d 0,20 = tidak ada korelasi
- Nilai Pearson Correlation 0,21 s/d 0,40 = korelasi lemah
- Nilai Pearson Correlation 0,41 s/d 0,60 = korelasi sedang
- Nilai Pearson Correlation 0,61 s/d 0,80 = korelasi kuat
- Nilai Pearson Correlation 0,81 s/d 1,00 = korelasi sempurna

Jika Nilai Signifikansi Tepat di Angka 0,05 ??

Membandingkan Pearson Correlation dengan r table

- Pearson correlation > r table = berhubungan
- Pearson correlation < r table = tidak
 berhubungan

Regresi linear sederhana

_	-	_		. a
Co	eff	ıc	ıe	ntsa

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	.278	2.344		.119	.913
	KEPEMIMPINAN	.694	.156	.932	4.443	.021

a. Dependent Variable: KINERJA

Model Regresi Linear Sederhana Model regresi: $\hat{Y} = 0.278 + 0.694X$

Model Summary

						Cha	nge Statistic	S	
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change
1	.932ª	.868	.824	1.87577	.868	19.737	1	3	.021

a. Predictors: (Constant), KEPEMIMPINAN

Interpretasi Regression

Model Summary

Kolom R adalah Korelasi

r= 0,932, artinya terdapat korelasi antara kepemimpinan terhadap kinerja adalah positif dan kuat

Uji Koefisien Determinasi (R²)

- Koefisen determinasi digunakan untuk mengetahui keeratan pengaruh antara variabel bebas dengan variabel terikat. Nilai R^2 terletak antara 0 sampai dengan 1 (0 $\leq R^2 \leq 1$).
- Koefisien Determinasi adalah 0.868 = 86.8%
- Artinya 86,8 % dari kinerja dapat dinyatakan oleh kepemimpinan, sedangkan sisanya 13,2 % dari kinerja dinyatakan oleh varibel lainnya

Model Summary

						Cha	nge Statistic	S	
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change
1	.932ª	.868	.824	1.87577	.868	19.737	1	3	.021

a. Predictors: (Constant). KEPEMIMPINAN.

UJI HIPOTESIS (UJI HIPOTESIS ANOVA)

HIPOTESIS

Ho: $\beta = 0$ (tidak ada pengaruh secara bersama-sama antara variable bebas dengan variable terikat

 H_1 : $\beta \neq 0$ (ada pengaruh secara bersama-sama antara variable bebas dengan variable terikat)

Sig hitung = 0.21

Kesimpulan:

Tingkat signifikansi $\alpha = 5\% = 0.05$

Kuncinya: Jika α < sighitung maka Ho diterima; H1 ditolak berarti tidak ada pengaruh. Demikian juga sebaliknya jika Jika α > sighitung maka Ho ditolak; H1 diterima berarti ada pengaruh

Hasil 0,05 > 0,021, maka Ho ditolak, H1 diterima artinya ada pengaruh yang cukup signifikan antara variable kepemimpinan dengan kinerja

		A	NOVA			
Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	69.444	1	69.444	19.737	.021 ^t
	Residual	10.556	3	3.519		
	Total	80.000	4			

Dependent Variable: KINERJA

b. Predictors: (Constant), KEPEMIMPINAN

Uji T (Uji Parsial)

- Uji t digunakan untuk menguji pengaruh secara parsial (pervariabel) terhadap variabel terikatnya, apakah memiliki pengaruh yang berarti terhadap variabel terikat atau tidak. Kriteria pengujian adalah Jika thitung < t_{tabel} , maka variabel bebas secara individu tidak berpengaruh signifikan terhadap variabel terikat. Sebaliknya jika $t_{hitung} > t_{tabel}$, maka variabel bebas secara individu berpengaruh signifikan terhadap variabel terikat.
- Hipotesis: Ho: β = 0 (tidak ada pengaruh secara bersama-sama antara variable bebas dengan variable terikat

 H_1 : $\beta \neq 0$ (ada pengaruh secara bersama-sama antara variable bebas dengan variable terikat)

Artinya pada hasil ini akan diuji apakah ada pengaruh yang signifikan antara kepemimpinan dengan kinerja.

• Hasil t hitung = 4.443; $t_{(0,95;3)}$ = 2,35, maka = 4.443 > 2,35, sehingga variabel bebas secara individu berpengaruh signifikan terhadap variabel terikat

		Co	oefficients ^a			
		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	.278	2.344		.119	.913
	KEPEMIMPINAN	.694	.156	.932	4.443	.021