Análisis complejo

Taller 4

El principio del máximo; principio de la identidad. Fecha de entrega: 05 de septiembre de 2024

- 1. Sea f una función entera y sea $\xi = e^{2\pi i/n}$ para un $n \in \mathbb{N}$. Suponga que $f(\xi z) = f(z)$ para todo $z \in \mathbb{C}$. Demuestre que existe una función entera g tal que $f(z) = g(z^n)$ para todo $z \in \mathbb{C}$.
- 2. (a) Sea $U \subset \mathbb{C}$ una región y sea $K \subset U$ un subconjunto compacto con interior K° no vacío. Sea $f: U \to \mathbb{C}$ holomorfa con |f| constante en la frontera de K. Muestre que f es constante o tiene un cero en K° .
 - (b) Sea $U \subset \mathbb{C}$ abierto, $z_0 \in U$, $\varepsilon > 0$ tal que la bola cerrada $\overline{B_{\varepsilon}(z_0)}$ es un subconjunto de U. Sea $f: U \to \mathbb{C}$ holomorfa con $|f(z_0)| < \min\{|f(z)| : |z z_0| = \varepsilon\}$. Muestre que f tiene un cero en $B_{\varepsilon}(z_0)$.
- 3. Sea $U \subset \mathbb{C}$ abierto y conexo, $f: U \to X$ una función holomorfa no constante y $N := \{z \in \mathbb{C} : f(z) = 0\}$. Muestre que N es cerrado y discreto en U.
- 4. Sea $U \subset \mathbb{C}$ abierto y acotado, sin puntos aislados de la fontera, y sea $M \subset U$ un conjunto sin puntos de acumulación en U. Muestra que cada función biholomorfa $^1 f: U \setminus M \to U \setminus M$ tiene una extensión biholomorfa $g: U \to U$.
- 5. Ejercicio adicional para código 4. Sea $f(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n$ una serie de potencias con radio de convergenc $R \in (0, \infty)$. Muestre que f tiene por lo menos un punto singular² en la frontera del disco de convergencia.

 $f: U \to V$ se llama biholomorfa si f es una biyección y tanto f como f^{-1} son holomorfas.

²Un punto p en la frontera de $B_R(z_0)$ se llama $punto\ singular$, si no existe ninguna vecindad U de p y $\widetilde{f}: U \to \mathbb{C}$ holomorfa tal que $\widetilde{f}(z) = f(z)$ para $z \in U \cap B_R(z_0)$.