Перейдем к параметрическим уравнениям окружности: $\begin{cases} x = c_1 \cos t, \\ y = c_1 \sin t. \end{cases}$

2) $\frac{dy}{x} = \frac{dz}{b}$, bdy = xdz, $bc_1 \cos tdt = c_1 \cos tdz$, dz = bdt. Общее решение системы (семейство векторных линий):

$$\begin{cases} x = c_1 \cos t, \\ y = c_1 \sin t, \\ z = bt + c_2. \end{cases}$$

Найдем уравнение векторной линии, проходящей через точку P(1,0,0):

$$\begin{cases} 1 = c_1 \\ 0 = 0 \\ 0 = 0 + c_2 \end{cases} \Rightarrow \begin{cases} c_1 = 1 \\ c_2 = 0 \end{cases} \Rightarrow \begin{cases} x = \cos t \\ y = \sin t \\ z = bt \end{cases}$$

- уравнение винтовой линии.

ОПРЕДЕЛЕНИЕ. Пусть в векторном поле \vec{a} расположена произвольная площадка Σ , ограниченная замкнутым контуром Γ . Проведём через границу этой площадки векторные линии. Образуемая при этом фигура называется **векторной трубкой** (при этом векторные линии, проходящие через Σ , целиком лежат внутри векторной трубки).

1.5.2. Плоское векторное поле

ОПРЕДЕЛЕНИЕ. Векторное поле называется плоским, если все вектора лежат в параллельных плоскостях. Уравнение векторных линий (для случая, когда векторы поля параллельны координатной плоскости *Oxy*)

$$\frac{dx}{a_x} = \frac{dy}{a_y} = \frac{dz}{0}.$$

В плоском поле векторные линии есть плоские кривые вида $y = \varphi(x)$ или f(x,y) = 0.

2. ПОВЕРХНОСТНЫЕ ИНТЕГРАЛЫ

2.1. Односторонние и двусторонние поверхности

Рассмотрим гладкую и незамкнутую поверхность Σ , ограниченную кусочно-гладким контуром γ . Это означает, что для уравнения поверхности существуют непрерывные частные производные по всем переменным. В точке P

проведём нормаль \vec{n} к поверхности. Через точку P проведем замкнутый кусочно-гладкий контур Γ , не имеющий общих точек с границей γ .

При обходе контура возможны две ситуации:

- а) нормаль к поверхности \vec{n} при возвращении в точку P сохранит свое направление;
- б) при непрерывном движении вдоль замкнутого контура Γ , непрерывно меняясь по направлению, нормаль изменит направление на противоположное при возвращении в исходную точку.

В случае а) поверхность называется двусторонней, в случае б) — односторонней. Совокупность точек поверхности с определенным направлением нормали \vec{n} называется стороной поверхности.

Классическим примером односторонней поверхности является лист Мебиуса.

2.2. Площадь поверхности

Пусть S — ограниченная гладкая поверхность. Разобьем ее на участки ΔS_i , (i=1,...,n), с помощью сети кривых. Выберем в каждом участке ΔS_i точку P_i . Проведем в точке P_i касательную плоскость к поверхности S и спроектируем ΔS_i на касательную плоскость. На проекции получим плоскую фигуру с площадью $\Delta S_i'$.

ОПРЕДЕЛЕНИЕ. Площадью поверхности S называется предел суммы площадей $\Delta S_i'$ (i=1,...,n) при условии, что $n\to\infty$, а ранг разбиения $r_n=\max\left(\operatorname{diam}\Delta S_i\right)$ стремится к нулю: $S=\lim_{\substack{n\to\infty\\r_n\to 0}}\sum_{i=1}^n\Delta S_i'$. Поверхность, имеющая площадь, называется **квадрируемой**.

Пусть поверхность задается явным уравнением z=z(x,y), где z(x,y) – непрерывно дифференцируемая функция, и однозначно проектируется в плоскую область Σ_{xy} на координатной плоскости Oxy. Возможны две ориентации нормали \vec{n} к поверхности S, как вектора, ортогонального к касательной плоскости. Ее компоненты: $\vec{n}_{\pm} = \pm \left\{ \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, -1 \right\}$, направляющие косинусы нормали \vec{n} равны:

$$\cos\left(\widehat{\vec{n},\vec{i}}\right) = \cos\alpha = \pm \frac{\frac{\partial z}{\partial x}}{\sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2}};$$

$$\cos\left(\widehat{n}, \widehat{j}\right) = \cos\beta = \pm \frac{\frac{\partial z}{\partial y}}{\sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2}};$$
$$\cos\left(\widehat{n}, \widehat{k}\right) = \cos\gamma = \mp \frac{1}{\sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2}}.$$

Выбор знака перед радикалом определяет сторону поверхности S; верхние знаки соответствуют тупому, нижние — острому углу нормали \vec{n} с осью Oz.

Спроектируем элементы $\Delta S_i'$ на касательной плоскости на координатную плоскость Oxy; площадь проекции

$$\Delta \sigma_i = \Delta S_i' \cdot \left| \cos \gamma \right| = \frac{\Delta S_i'}{\sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2}}.$$

Следовательно,

$$\Delta S_i' = \frac{\Delta \sigma_i}{|\cos \gamma|} = \Delta \sigma_i \cdot \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2}$$

и предел, фигурирующий в определении площади поверхности S , представляет собой двойной интеграл по области Σ_{xy}

$$S = \iint_{\Sigma_{xy}} \frac{dx \, dy}{|\cos \gamma|} = \iint_{\Sigma_{xy}} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} \, dx \, dy.$$

Если уравнение поверхности S дано в виде x = x(y,z) или y = y(x,z), то площадь может быть представлена как

$$S = \iint_{\Sigma_{yz}} \frac{dy \, dz}{|\cos \alpha|} = \iint_{\Sigma_{yz}} \sqrt{1 + \left(\frac{\partial x}{\partial y}\right)^2 + \left(\frac{\partial x}{\partial z}\right)^2} \, dy \, dz$$

или

$$S = \iint_{\Sigma_{xz}} \frac{dy \, dz}{|\cos \beta|} = \iint_{\Sigma_{xz}} \sqrt{1 + \left(\frac{\partial y}{\partial x}\right)^2 + \left(\frac{\partial y}{\partial z}\right)^2} \, dx \, dz,$$

где Σ_{yz} и Σ_{xz} – проекции поверхности S на плоскости Oyz и Oxz .

2.3. Система координат и ориентация поверхности

Введем систему координат в пространственной области G. Система векторов $\bar{a}, \bar{b}, \bar{c}$ образует правую тройку, если поворот от вектора \bar{a} к вектору \bar{b} , видимый из конца вектора \bar{c} , совершается против часовой стрелки; в противном случае тройка называется левой. В дальнейшем будем работать с правой системой координат.

В случае незамкнутой поверхности сторону можно определить, задавая направление обхода контура.

Выберем определенную сторону незамкнутой двусторонней поверхности, ограниченной замкнутым контуром Γ , и зададим на нем направление обхода.

Проведём нормаль к выбранной стороне поверхности и рассмотрим, каким видится обход контура Γ в заданном направлении. Если при наблюдении из конца восставленной нормали обход в заданном направлении представляется совершающимся против часовой стрелки, то поверхность называется положительно ориентированной (иначе — "положительная сторона поверхности", "положительная нормаль"). Если при наблюдении из конца восставленной нормали обход в заданном направлении представляется совершающимся по часовой стрелке, то поверхность называется отрицательно ориентированной (иначе — "отрицательная сторона поверхности", "отрицательная нормаль").

Таким образом, для незамкнутой поверхности ориентация поверхности связывается с выбором направления обхода границы.

Для замкнутой поверхности считается, что внешняя сторона поверхности ориентирована положительно, а внутренняя – отрицательно.

2.4. Поверхностный интеграл 1-го рода

Поверхностный интеграл первого рода — обобщение понятия двойного интеграла по плоской области D . Пусть в трехмерной области G заданы поверхность Σ и функция f(P) = f(x,y,z). Как при вычислении площади поверхности, разобьем поверхность на участки $\Delta \sigma_i$ (площадь которых также обозначим через $\Delta \sigma_i$), на каждом участке выберем произвольную точку P_i , вычислим значение функции $f(P_i)$ и составим интегральную сумму из произведений $\sum\limits_{i=1}^n f(P_i) \Delta \sigma_i$.

Предел интегральной суммы называется поверхностным интегралом 1-го рода от функции f(P) = f(x, y, z) по поверхности Σ .

$$\iint_{\Sigma} f(x, y, z) d\sigma = \lim_{r_n \to 0} \sum_{i=1}^{n} f(P_i) \Delta \sigma_i.$$

2.4.1. Вычисление поверхностных интегралов 1-го рода

Вычислим
$$\iint_{\Sigma} f(x,y,z) d\sigma$$
. Пусть $f(x,y,z) \ge 0$,

а поверхность Σ задана уравнением z = z(x, y).

Лемма. Площадь проекции плоского участка одной плоскости P_1 на другую плоскость P_2 равна площади самого участка, умноженной на модуль косинуса двугранного угла между плоскостями: $S_{\rm np} = S \cdot |\cos \varphi|$.

Доказательство:

$$S=l\cdot a\;. \qquad S_{\rm np}=a\cdot l\cdot \left|\cos\phi\right|=S\left|\cos\phi\right| \qquad ({\rm поскольку}$$
 $S_{\rm np}\geq 0$, косинус берется по модулю).

Пусть требуется вычислить поверхностный интеграл 1-го рода по поверхности Σ . Область D является проекцией поверхности Σ на плоскость xOy. Через точку $A(\overline{x},\overline{y},\overline{z})$ проведем касательную плоскость. Ее уравнение:

$$z - \overline{z} = \frac{\partial z}{\partial x} (x - \overline{x}) + \frac{\partial z}{\partial y} (y - \overline{y}).$$

Выберем часть поверхности $d\sigma$ и спроектируем ее на касательную плоскость. Обозначим проекцию $d\tilde{\sigma}$. Будем считать $d\sigma \sim d\tilde{\sigma}$. Обозначим через \vec{n} нормаль

к касательной плоскости:
$$\vec{n} = \left\{ \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, -1 \right\}$$
.

Обозначим через $\vec{k} = \{0,0,1\}$ нормаль

к xOy; угол между касательной плоскостью и плоскостью Oxy равен углу γ между векторами \vec{n} и \vec{k} .

Найдем связь между dS (проекцией $d\tilde{\sigma}$ на плоскость xOy) и $d\tilde{\sigma}$

$$\cos \varphi = \frac{\left(\vec{n}, \vec{k}\right)}{\left|\vec{n}\right| \cdot \left|\vec{k}\right|} = \frac{-1}{\sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2}}; \quad \left|\cos \gamma\right| = \frac{1}{\sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2}}$$

в пределе при $r_n \to 0$, $d\sigma = d\tilde{\sigma}$, $dS = d\sigma \cdot |\cos \gamma|$, $d\sigma = \frac{dS}{|\cos \gamma|}$;

$$d\sigma = dS \cdot \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} = \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dxdy;$$

$$\iint_{\Sigma} f(x, y, z) d\sigma = \iint_{D_{xy}} f(x, y, z(x, y)) \frac{dxdy}{|\cos(\gamma)|} =$$

$$= \iint_{D} f(x, y, z(x, y)) \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2}} dxdy.$$

Так записывается поверхностный интеграл, если поверхность Σ задана уравнением z = z(x, y).

Если поверхность Σ задана уравнением y = y(x, z), то

$$\iint_{\Sigma} f(x, y, z) d\sigma = \iint_{D_{rr}} f(x, y(x, z), z) \sqrt{1 + \left(\frac{\partial y}{\partial x}\right)^2 + \left(\frac{\partial y}{\partial z}\right)^2} dxdz.$$

Аналогично, если поверхность Σ задана уравнением x = x(y, z), то

$$\iint_{\Sigma} f(x, y, z) d\sigma = \iint_{D_{yz}} f(x(y, z), y, z) \sqrt{1 + \left(\frac{\partial x}{\partial y}\right)^2 + \left(\frac{\partial x}{\partial z}\right)^2} dy dz,$$

где D_{xz}, D_{yz} – проекции Σ на плоскости $O\!xz, \ O\!yz$.

2.5. Поверхностный интеграл 2-го рода

Рассмотрим ориентированную поверхность Σ . Спроектируем элемент поверхности $\Delta \sigma_i$ на координатную плоскость Oxy. Составим интегральную сумму произведений значений функции в произвольной точке $P_i \in \Delta \sigma_i$ на ΔS_i – величину площади проекции элемента $\Delta \sigma_i$ на координатную плоскость Oxy:

$$\sum_{i=1}^{n} f(P_i) \cdot \Delta S_i = \sum_{i=1}^{n} f(x_i, y_i, z_i) \cdot \Delta S_i.$$

Конечный предел этой интегральной суммы при стремлении диаметра разбиения к нулю называется поверхностным интегралом 2-го рода от функции f(x,y,z) по определенной стороне поверхности и обозначается:

$$I_{xy} = \pm \iint_{\Sigma} f(P) dx dy = \pm \iint_{\Sigma} f(x, y, z) dx dy.$$

Знак (+) соответствует положительной (внешней), а (–) отрицательной (внутренней) сторонам поверхности.

Если на данной поверхности заданы другие функции $f_1(x,y,z)$, $f_2(x,y,z)$, то проектирование на другие координатные плоскости дает интегралы:

$$I_{yz} = \pm \iint_{\Sigma} f_1(x, y, z) dy dz$$
, $I_{xz} = \pm \iint_{\Sigma} f_2(x, y, z) dx dz$.

Соединение этих интегралов дает общее выражение для поверхностного интеграла 2-го рода:

$$I = \pm \iint\limits_{\Sigma} f(x, y, z) dxdy + f_1(x, y, z) dydz + f_2(x, y, z) dxdz.$$

Между поверхностными интегралами 1-го и 2-го рода существует следующая связь:

$$\iint_{\Sigma} f(x, y, z) \cos \gamma d\sigma = \pm \iint_{\Sigma} f(x, y, z) dx dy,$$

причем при интегрировании по положительной стороне поверхности:

$$\cos \gamma > 0$$
; $\cos \gamma d\sigma = +dxdy$,

а по отрицательной:

$$\cos \gamma < 0; \cos \gamma d\sigma = -dxdy$$
.

Поверхностные интегралы 2-го рода обладают всеми свойствами двойных интегралов.

Поверхностный интеграл 2-го рода может быть также записан в более компактном виде. Пусть $\vec{a} = \left\{a_x, a_y, a_z\right\}$, где $a_x = a_x(x, y, z)$, $a_y = a_y(x, y, z)$, $a_z = a_z(x, y, z)$ — векторное поле. Составим для координат этого вектора поверхностный интеграл 2-го рода.

$$I = \iint_{\Sigma} a_x(x, y, z) dy dz + a_y(x, y, z) dx dz + a_z(x, y, z) dx dy =$$

$$= \iint_{\Sigma} \left(a_x(x, y, z) \cos \alpha + a_y(x, y, z) \cos \beta + a_z(x, y, z) \cos \gamma \right) d\sigma.$$

Так как $\vec{n}_0 = \{\cos\alpha, \cos\beta, \cos\gamma\}$, \vec{n}_0 — единичный вектор нормали к выбранной стороне поверхности S, то $I = \iint_{\Sigma} (\vec{a}(x,y,z) \cdot \vec{n}_0) d\sigma$.

Вводя $\overrightarrow{d\sigma} = \overrightarrow{n}_0 \cdot d\sigma$ — векторный элемент площади, направленный по нормали \overrightarrow{n}_0 и имеющий длину $d\sigma$, получаем $I = \iint_{\Sigma} \left(\overrightarrow{a}(x,y,z) \cdot \overrightarrow{d\sigma} \right)$.

3. ПОТОК ВЕКТОРНОГО ПОЛЯ

3.1. Определение потока векторного поля

Пусть $\vec{a} = \vec{a}(P)$ — непрерывное векторное поле, а Σ — ориентированная кусочно-гладкая поверхность. Разобьем поверхность на n частей $\Sigma_1, \Sigma_2, ..., \Sigma_n$, каждая из которых имеет площадь $\Delta \sigma_1, \Delta \sigma_2, ..., \Delta \sigma_n$, и выберем точку P_i на каждом из участков Σ_i . В точке P_i построим единичный вектор нормали $\vec{n}_0(P_i)$ к поверхности Σ_i .

Составим вектор $\Delta \vec{\sigma}_i = \vec{n}_0(P_i) \cdot \Delta \sigma_i$ с длиной $\Delta \sigma_i$, направленный по нормали $\vec{n}_0(P_i)$. Вычислим скалярное произведение $(\vec{a}(P_i) \cdot \Delta \vec{\sigma}_i)$, просуммируем по всем участкам $\sum_{i=1}^n (\vec{a}(P_i) \cdot \Delta \vec{\sigma}_i)$ и рассмотрим предел суммы при $\max(\Delta \sigma_i) \rightarrow 0$.

ОПРЕДЕЛЕНИЕ. Если этот предел существует и не зависит от способа разбиения поверхности Σ на участки Σ_i и от выбора точки P_i , то он называется потоком векторного поля $\vec{a} = \vec{a}(P)$ через поверхность Σ .

$$\Pi = \iint_{\Sigma} (\vec{a} \cdot d\vec{\sigma}) = \iint_{\Sigma} \vec{a} \cdot d\vec{\sigma} = \lim_{\max(\Delta\sigma) \to 0} \sum_{i=1}^{n} (\vec{a}(P_i) \cdot \Delta\vec{\sigma}).$$

ОПРЕДЕЛЕНИЕ. Используя введенное ранее понятие поверхностного интеграла 2-го рода, можно определить поток вектора \vec{a} через поверхность Σ как поверхностный интеграл второго рода от вектора \vec{a} по поверхности Σ .

Поток вектора \vec{a} — скалярная характеристика векторного поля.

3.2. Свойства потока

- 1. Поток меняет знак на обратный с изменением ориентации поверхности Σ : $\iint_{\Sigma^+} (\vec{a} \cdot d\vec{\sigma}) = -\iint_{\Sigma^-} (\vec{a} \cdot d\vec{\sigma}) \, .$
- 2. Свойство аддитивности по отношению к области интегрирования. Если поверхность Σ можно разбить на несколько частей Σ_1 , Σ_2 , ..., Σ_n , то поток векторного поля \vec{a} через поверхность Σ равен сумме потоков поля \vec{a} через поверхности Σ_1 , Σ_2 , ..., Σ_n :

$$\Pi = \sum_{i=1}^{n} \Pi_{i} = \sum_{i=1}^{n} \iint_{\Sigma_{i}} (\vec{a} \cdot d\vec{\sigma}).$$

3. Свойство линейности

$$\iint_{\Sigma} ((\alpha \vec{a} + \beta \vec{a}) \cdot d\vec{\sigma}) = \alpha \iint_{\Sigma} (\vec{a} \cdot d\vec{\sigma}) + \beta \iint_{\Sigma} (\vec{a} \cdot d\vec{\sigma}),$$

где α и β – некоторые постоянные.

3.3. Вычисление потока

Представим векторный дифференциальный элемент поверхности в виде $d\vec{\sigma} = \vec{n}_0 d\sigma$, тогда

$$(\vec{a} \cdot d\vec{\sigma}) = (\vec{a} \cdot \vec{n}_0 d\sigma) = (\vec{a} \cdot \vec{n}_0) d\sigma,$$

$$\iint_{\Sigma} (\vec{a} \cdot d\vec{\sigma}) = \iint_{\Sigma} (\vec{a} \cdot \vec{n}_0) d\sigma = \iint_{\Sigma} (\Pi p_{\vec{n}_0} \vec{a}) d\sigma.$$

Таким образом, по данной формуле поток сводится к интегралу 1-го рода по поверхности Σ от скалярного произведения вектора $\vec{a}(P)$ на нормаль $\vec{n_0}(P)$ к этой поверхности Σ (иначе: от проекции поля $\vec{a}(P)$ на нормаль к поверхности $\vec{n_0}(P)$).

3.3.1. Проектирование на одну координатную плоскость

Пусть поверхность Σ задана явно уравнением z=f(x,y) и однозначно проектируется в область D_{xy} на координатной плоскости Oxy .

Тогда $\vec{n} = \{f'_x, f'_y, -1\},$

$$\vec{n}_0 = \pm \frac{\vec{n}}{|\vec{n}|} = \pm \left\{ \frac{f_x'}{\sqrt{(f_x')^2 + (f_y')^2 + 1}}; \frac{f_y'}{\sqrt{(f_x')^2 + (f_y')^2 + 1}}; -\frac{1}{\sqrt{(f_x')^2 + (f_y')^2 + 1}} \right\}$$

и поток вектора $\vec{a} = \vec{a}(P) = \vec{a}(x, y, z)$ через эту поверхность равен

$$\iint_{\Sigma} (\vec{a} \cdot \vec{n}_0) d\sigma = \iint_{D} (\vec{a} \cdot \vec{n}_0) \frac{dxdy}{|\cos \gamma|} = \iint_{D} (\vec{a} \cdot \vec{n}_0) \sqrt{(f_x')^2 + (f_y')^2 + 1} dxdy =$$

$$= \pm \iint_{D_{xy}} (a_x(x, y, f(x, y)) \cdot f_x' + a_y(x, y, f(x, y)) \cdot f_y' - a_z(x, y, f(x, y))) dxdy,$$

т. е. вычисление потока сводится к вычислению двойного интеграла. Знак зависит от направления положительной нормали к поверхности (нормали к положительной стороне поверхности).

Аналогичные формулы получаются при проектировании на другие координатные плоскости для поверхностей вида x = f(y, z) и y = f(x, z).

3.3.2. Проектирование на три координатные плоскости

Пусть поверхность Σ задана (неявно) уравнением F(x, y, z) = 0;

$$\vec{n} = \left\{ F_x', F_y', F_z' \right\}, \ \left| \vec{n} \right| = \sqrt{\left(F_x' \right)^2 + \left(F_y' \right)^2 + \left(F_z' \right)^2} \ ,$$

$$\vec{n}_0 = \pm \frac{\vec{n}}{\left| \vec{n} \right|} = \pm \left\{ \frac{F_x}{\sqrt{\left(F_x' \right)^2 + \left(F_y' \right)^2 + \left(F_z' \right)^2}} ; \frac{F_y}{\sqrt{\left(F_x' \right)^2 + \left(F_y' \right)^2 + \left(F_y' \right)^2 + \left(F_z' \right)^2}} ; \frac{F_z}{\sqrt{\left(F_x' \right)^2 + \left(F_y' \right)^2 + \left(F_z' \right)^2}} \right\}.$$

Пусть α, β, γ — углы, которые образует нормаль с осями координат. Тогда орт $\overrightarrow{n_0}$ имеет координаты: $\overrightarrow{n_0}(\cos\alpha,\cos\beta,\cos\gamma)$. Так как $\overrightarrow{a}=\left\{a_x,a_y,a_z\right\}$, то

$$(\vec{a} \cdot \overline{n}_0) = a_x \cos \alpha + a_y \cos \beta + a_z \cos \gamma$$

И

$$\iint_{\Sigma} (\vec{a} \cdot \vec{n}_0) d\sigma = \iint_{\Sigma} a_x \cos \alpha d\sigma + \iint_{\Sigma} a_y \cos \beta d\sigma + \iint_{\Sigma} a_z \cos \gamma d\sigma.$$

Рассмотрим отдельные слагаемые: $\iint\limits_{\Sigma}a_z\cos\gamma d\sigma$. Если поверхность Σ описыва-

ется уравнением z = z(x, y), а поле $\vec{a}(P)$ в поверхностном интеграле берётся в точке $P \in \Sigma$, для любой его компоненты координата z выражается через x

и
$$y$$
, $a_z(x,y,z) = a_z(x,y,z(x,y))$, $d\sigma = \frac{dxdy}{|\cos \gamma|}$, и

$$\iint_{\Sigma} a_z \cos \gamma d\sigma = \iint_{Dxy} a_z(x, y, z(x, y)) \cos \gamma \frac{dxdy}{|\cos \gamma|} = \pm \iint_{Dxy} a_z(x, y, z(x, y)) dxdy.$$

Знак (+) соответствует острому углу между нормалью и осью z ($\cos \gamma > 0$), знак (-) – тупому углу между нормалью и осью z ($\cos \gamma < 0$). Аналогично

$$\iint_{\Sigma} a_{x} \cos \alpha d\sigma = \pm \iint_{Dyz} a_{x}(x(y,z), y, z) dy dz,$$

$$\iint_{\Sigma} a_{y} \cos \beta d\sigma = \pm \iint_{Dxz} a_{y}(x, y(x,z), z) dx dz,$$

и окончательно имеем:

$$\iint_{\Sigma} (\vec{a} \cdot d\vec{\sigma}) = \pm \iint_{D_{YZ}} a_x(x, (y, z), y, z) dy dz \pm \iint_{D_{YZ}} a_y(x, y(x, z), z) dx dz \pm \iint_{D_{YZ}} a_z(x, y, z(x, y)) dx dy.$$

- Знаки перед слагаемыми соответствуют знакам направляющих косинусов нормали cos α, cos β, cos γ.
- 2). Вычисление потока векторного поля сводится к вычислению трёх двойных интегралов при условии, что поверхность взаимно однозначно проектируется на все три координатные плоскости. Если это не имеет места, поверхность нужно разбить на однозначно проектирующиеся участки.
- 3). Указанная формула устанавливает связь между потоком и поверхностным интегралом 2-го рода

$$\iint\limits_{\mathbb{R}} (\vec{a} \cdot d\vec{\sigma}) = \iint\limits_{\mathbb{R}} \left(\pm a_x(x, y, z) dy dz \pm a_y(x, y, z) dx dz \pm a_z(x, y, z) dx dy \right).$$

3.4. Физический смысл потока

Пусть $\vec{a}(P)$ — поле скоростей некоторой жидкости $\vec{a}=\vec{V}$, а Σ — некоторая поверхность в поле, тогда: $(\vec{a}\cdot d\vec{\sigma})=(\vec{a}\cdot \vec{n_0})d\sigma=\left|\vec{V}\right|\cos\phi d\sigma=np_{\vec{n_0}}\vec{V}\cdot d\sigma$ — объём столба жидкости с основанием $d\sigma$ и высотой $\Pi p_{\vec{n_0}}\vec{V}$, т. е. объем жидкости, протекающей через площадку $d\sigma$ в единицу вре-

мени в направлении \vec{n}_0 . Суммируя по поверхности Σ , получаем, что $\iint_{\Sigma} (\vec{a} \cdot d\vec{\sigma})$

- поток жидкости, протекающей через поверхность Σ в единицу времени.

ПРИМЕР. Вычислить поток векторного поля радиусвектора $\vec{a} = \vec{r}(x,y,z)$ через внешнюю сторону цилиндра (H- высота, R- радиус).

Решение:

$$ec{a}(ec{r})=ec{r}$$
 , $\Sigma=\Sigma_1\cup\Sigma_2\cup\Sigma_3$, следовательно,
$$ec{\Pi}=ec{\Pi}_1+ec{\Pi}_2+ec{\Pi}_3.$$

$$ec{\Pi}_1=\iint_{\Sigma_1} ig(ec{a}\cdot d\, \vec{\sigma}ig)=\iint_{\Sigma_1} ig(ec{r}\cdot ec{n}_0ig) d\, \sigma=\dots$$

 $\{\left(\vec{r}\cdot\vec{n}_{0}\right)=R$, из рисунка ясно, что проекция \vec{r} на нормаль к Σ_{1} равна $R\}$

$$\dots = \iint_{\Sigma_1} Rd\sigma = R \iint_{\Sigma_1} d\sigma = 2\pi R^2 H.$$

$$\Pi_3 = \iint_{\Sigma_3} (\vec{r} \cdot d\vec{\sigma}) = \iint_{\Sigma_3} (\vec{r} \cdot \vec{n}_0) d\sigma = \dots$$

{из рисунка ясно, что проекция \vec{r} на \vec{n}_0 по Σ_3 равна H, т. е. $\left(\vec{a}\cdot\vec{n}_0\right)_{\Sigma_3}=H$ }

$$\dots = \iint_{\Sigma_3} H d\sigma = H \iint_{\Sigma_3} d\sigma = \pi R^2 H$$

$$\Pi_2 = \iint_{\Sigma_2} (\vec{a} \cdot d\vec{\sigma}) = \iint_{\Sigma_3} (\vec{r} \cdot \vec{n}_0) d\sigma = 0.$$

$$\Pi = \Pi_1 + \Pi_2 + \Pi_3 = 3\pi R^2 H.$$

ПРИМЕР. Вычислить поток векторного поля $\vec{a}(\vec{r}) = y^2 \vec{j} + z \vec{k}$ через замкнутую поверхность Σ , образованную поверхностями $z = x^2 + y^2$ и z = 2 (нормаль внешняя).

Решение:

Разобьем поверхность на две части $\Sigma = \Sigma_1 \cup \Sigma_2$ и представим поток в виде $\Pi = \Pi_1 + \Pi_2$;

$$\Pi_{1} = \iint_{\Sigma_{1}} (\vec{a} \cdot d\vec{\sigma}) = \iint_{\Sigma_{1}} (\vec{a} \cdot \vec{n}_{0}) d\sigma,$$

$$\vec{a}(\vec{r}) = (0, y^{2}, z); \ \vec{n} = (2x, 2y, -1),$$

$$|\vec{n}| = \sqrt{4x^{2} + 4y^{2} + 1}, \ \vec{n}_{0} = \pm \frac{\vec{n}}{|\vec{n}|} \text{ (знак выбирается «+», так как } \cos(\gamma) > 0),$$

$$\vec{n}_{0} = \left\{ \frac{2x}{\sqrt{4x^{2} + 4y^{2} + 1}}; \frac{2y}{\sqrt{4x^{2} + 4y^{2} + 1}}; \frac{-1}{\sqrt{4x^{2} + 4y^{2} + 1}} \right\}.$$

$$\Pi_{1} = \iint_{\Sigma_{1}} \frac{2y^{3} - z}{\sqrt{4x^{2} + 4y^{2} + 1}} d\sigma = \iint_{D_{xy}} \frac{2y^{3} - z}{\sqrt{4x^{2} + 4y^{2} + 1}} \sqrt{4x^{2} + 4y^{2} + 1} dx dy =$$

$$= \iint_{D_{xy}} (2y^{3} - (x^{2} + y^{2})) dx dy = \dots$$

{перейдем в полярную систему координат}

... =
$$\int_{0}^{2\pi} d\varphi \int_{0}^{\sqrt{2}} \rho d\rho (2\rho^{3} \sin^{3} \varphi - \rho^{2}) = ... = -2\pi$$
.
 $\Pi_{2} = \iint_{\Sigma_{2}} (\vec{a} \cdot d\vec{\sigma}) = \iint_{\Sigma_{2}} (\vec{a} \cdot \vec{n}_{0}) d\sigma = ...$
 $\{ \vec{n}_{0} = (0; 0; 1) \Rightarrow (\vec{a} \cdot \vec{n}_{0}) = z \}$
... = $\iint_{D_{xy}} z dx dy = 2 \iint_{D_{xy}} dx dy = 2\pi (\sqrt{2})^{2} = 4\pi$.
 $\Pi = \Pi_{1} + \Pi_{2} = -2\pi + 4\pi = 2\pi$.

ПРИМЕР

Найдите поток вектора $\vec{a} = xy\vec{i} + yz\vec{j} + xz\vec{k}$ через расположенную в первом октанте часть сферы $x^2 + y^2 + z^2 = 1$ (нормаль внешняя).

Решение:

$$\Pi = \iint\limits_{\Sigma} a_x dy dz + a_y dx dz + a_z dx dy$$

{компоненты поля и области интегрирования обладают симметрией относительно замены $x \to y \to z$ и $D_{yz} \to D_{xy} \to D_{xz}$ }

$$\Pi = 3 \iint_{D_{xy}} a_z dx dy = 3 \iint_{Dxy} x \sqrt{1 - x^2 - y^2} dx dy = 3 \int_{0}^{\pi/2} \cos \varphi d\varphi \int_{0}^{1} \rho \sqrt{1 - \rho^2} \rho d\rho = \frac{3}{16} \pi.$$

Важно отметить, что $\cos \alpha$, $\cos \beta$, $\cos \gamma$ положительны, перед всеми интегралами берется знак (+), так как сторона поверхности — внешняя.

3.5. Дивергенция векторного поля

Дивергенция — это дифференциальная и локальная (зависит от точки) количественная характеристика векторного поля. Пусть вектор-функция $\vec{a}(P) = a_x \vec{i} + a_y \vec{j} + a_z \vec{k}$ имеет непрерывные частные производные первого порядка по всем переменным.

ОПРЕДЕЛЕНИЕ. Дивергенцией векторного поля $\vec{a} = \vec{a}(P)$ в точке P(x,y,z) называется число $div \, \vec{a} = \frac{\partial a_x(x,y,z)}{\partial x} + \frac{\partial a_y(x,y,z)}{\partial y} + \frac{\partial a_z(x,y,z)}{\partial z}$, или, опуская аргументы: $div \, \vec{a} = \frac{\partial a_x}{\partial x} + \frac{\partial a_y}{\partial y} + \frac{\partial a_z}{\partial z}$. Используя оператор Гамильтона (набла): $\vec{\nabla} = \vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z}$, дивергенцию можно записать в виде скалярного произведения $div \, \vec{a} = (\vec{\nabla} \cdot \vec{a})$.

3.5.1. Свойства дивергенции

- 1. Линейность $div(\lambda \vec{a} + \mu \vec{b}) = \lambda \, div \, \vec{a} + \mu \, div \, \vec{b}$, где λ и μ произвольные постоянные.
- 2. Пусть u = u(x, y, z) скалярное поле, тогда $div(u \cdot \vec{a}) = u \, div \, \vec{a} + (\vec{a} \cdot grad \, u)$.

Доказательство:

$$div(u \cdot \vec{a}) = \frac{\partial (u \cdot a_x)}{\partial x} + \frac{\partial (u \cdot a_y)}{\partial y} + \frac{\partial (u \cdot a_z)}{\partial z} =$$

$$= \frac{a_x \partial u}{\partial x} + \frac{a_y \partial u}{\partial y} + \frac{a_z \partial u}{\partial z} + u \left(\frac{\partial a_x}{\partial x} + \frac{\partial a_y}{\partial y} + \frac{\partial a_z}{\partial z} \right) = \vec{a} \cdot grad \ u + u \cdot div \ \vec{a} \ .$$

ПРИМЕР. 1). $\vec{a} = \vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$.

$$div \vec{r} = \frac{\partial}{\partial x} x + \frac{\partial}{\partial y} y + \frac{\partial}{\partial z} z = 1 + 1 + 1 = 3.$$
2). $\vec{a} = (c_1, c_2, c_3)$, $div \vec{a} = \frac{\partial}{\partial x} c_1 + \frac{\partial}{\partial y} c_2 + \frac{\partial}{\partial z} c_3 = 0.$