第二章 一元函数微分学及其应用

第六节 函数性态的研究(2-3学时)

- 函数的单调性
- **函数的极值**
- ▶ 函数的最大(小)值
- ▶ 函数的凹凸性 拐点

```
作业: P165.
3(2)(4), 4(2)(4),7(1)(3)(5), 9(1)(3), 13(1)(3),
16, 19, 22(1)(3), 26(2)
```

第一部分 函数的单调性

一、单调性的判别法

定理6.1 设函数y = f(x)在I上连续,在I内可导,则

- (1) 函数 y = f(x)在 I 上单调增(减)的充要条件为: 在 I 内 $f'(x) \ge 0$ ($f'(x) \le 0$);
 - (2) 如果在I内f' > 0(f' < 0), 则函数y = f(x)在I上严格单调增(减).

证: (1):充分性

设 $\forall x_1, x_2 \in [a,b]$, 且 $x_1 < x_2$, 应用Larange定理,得

$$f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1)$$
 $(x_1 < \xi < x_2)$

$$\therefore x_2 - x_1 > 0,$$

若在(a,b)内, $f'(x) \ge 0$,则 $f'(\xi) \ge 0$,

$$\therefore f(x_2) \ge f(x_1)$$
. $\therefore y = f(x)$ 在[a,b]上单调增

若在(a,b)内, $f'(x) \le 0$,则 $f'(\xi) \le 0$,

$$\therefore f(x_2) \leq f(x_1)$$
. $\therefore y = f(x)$ 在[a,b]上单调减

在以上证明中,若 f' > O(f' < 0), 则命题(2)成立.

(1) f(x)在I上单调增(减)的充要条件为:

在
$$I$$
内 $f'(x) \ge 0$ ($f'(x) \le 0$);

(2) 如果在I内f' > 0(f' < 0),则f(x)在I上严格单调增(减).

(1):必要性

设
$$y = f(x)$$
在[a,b]上单调增

在
$$(a,b)$$
内任取 x ,取 Δx 使 $x + \Delta x \in (a,b)$,

若
$$\Delta x > 0$$
 $(\Delta x < 0)$ 则

$$f(x + \Delta x) \ge f(x)$$
. $f(x + \Delta x) \le f(x)$.

从而
$$\frac{f(x+\Delta x)-f(x)}{\Delta x} \ge 0$$
. 即 $f'(x) = \lim_{\Delta x \to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \ge 0$.

同理可得: 若
$$y = f(x)$$
在[a,b]上单调减

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \le 0.$$

(1)f(x)在I 上单调增(减)的充要条件为: 在I 内f'(x) ≥ 0(f'(x) ≤ 0);

- 定理6.1 设函数y = f(x)在[a,b]上连续,在a,b)内可导则
 - ① 函数 y = f(x)在 [a,b] 上单调增(减)的充要条件为: 在(a,b)内 $f'(x) \ge 0$ ($f'(x) \le 0$);
- (2) 如果在(a,b)内f' > 0(f' < 0), 那么函数y = f(x)在[a,b]上严格单调增(减).

将上述自变量取值范围换为I仍成立

注意:命题(2)的逆命题不一定成立.

如y=x³,此时应分子区间讨论

x=-2:0.01:2 y=x.^3 plot(x,y,'r*') grid on

注意:命题(2)的逆命题不一定成立. 如y=x³,此时应分子区间讨论

例1 讨论函数 $y = e^x - x - 1$ 的单调性.

解
$$:: y' = e^x - 1.$$
又 $:: D: (-\infty, +\infty).$

在
$$(-\infty,0)$$
内, $y'<0$,

∴函数在(-∞,0)上严格单调减;

在(0,+∞)内,y'>0,∴函数在(0,∞)上严格单调增.

注意:函数的单调性是一个区间上的性质,要用导数在这一区间上的符号来判定,而不能用一点处的导数符号来判别一个区间上的单调性.

二、单调区间求法

定义:若函数在其定义域的某个<mark>区间内</mark>是单调的,则该区间称为函数的<u>单调区间</u>.

问题:如上例,函数在定义区间上不是单调的,但在各个部分区间上单调.

导数等于零的点和不可导点,可能是单调区间的分界点.

方法: 用方程 f'(x) = 0的根及 f'(x)不存在的点来划分函数 f(x)的定义区间,然后判断区间内导数的符号.

例2 确定函数 $f(x) = \sqrt[3]{x^2}$ 的单调区间.

$$\mathbf{R}$$
 : $D: (-\infty, +\infty)$.

$$f'(x) = \frac{2}{3\sqrt[3]{x}}, \quad (x \neq 0)$$

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\sqrt[3]{x^2} - 0}{x - 0} = \lim_{x \to 0} \frac{1}{\sqrt[3]{x^2}}$$

$$当x = 0$$
时,导数不存在.

当
$$-\infty$$
< x < 0 时, $f'(x)$ < 0 ; 在 $(-\infty,0)$ 上严格单调减;

当
$$0 < x < +\infty$$
时, $f'(x) > 0$,... 在 $(0, +\infty)$ 上严格单调增;

单调减区间为
$$(-\infty,0)$$
,

单调增区间为
$$(0,+\infty)$$
.

例4 当x > 0时,试证 $x > \ln(1+x)$ 成立.

证 设
$$f(x) = x - \ln(1+x)$$
, 则 $f'(x) = \frac{x}{1+x}$.

- :: f(x)在[0,+∞)上连续,且(0,+∞)可导, f'(x) > 0,
- ∴在 $[0,+\infty)$ 上严格单调增 f(0)=0
- ∴ 当x > 0时, $x \ln(1+x) > 0$,即 $x > \ln(1+x)$.

例5 证明 当
$$0 < x < 1$$
时, $e^{2x} < \frac{1+x}{1-x}$.

i.e.
$$\Leftrightarrow f(x) = e^{2x}(1-x) - (1+x),$$

$$f'(x) = (1-2x)e^{2x} - 1, \ f''(x) = -4xe^{2x},$$

所以,当
$$x \in (0,1)$$
时, $f'(x)$ 严格单调减。而 $f'(0)=0$,

因此 当
$$x \in (0,1)$$
时, $f'(x) < f'(0) = 0$.

从而 当
$$x \in (0,1)$$
时, $f(x) < f(0) = 0$.

即: 当
$$x \in (0,1)$$
时, $e^{2x} < \frac{1+x}{1-x}$.

第二部分 函数的极值

一、函数极值的定义

定义

设函数f(x)在区间(a,b)内有定义, x_0 是 (a,b)内的一个点, 如果存在着点 x_0 的一个邻域,对于这邻域内的任何点 $x,f(x) \leq f(x_0)$ 均成立,就称 $f(x_0)$ 是函数f(x)的一个极大值; 如果存在着点 x_0 的一个邻域,对于这邻域内的

任何点x, $f(x) \ge f(x_0)$ 均成立,就称 $f(x_0)$ 是函数f(x)的一个极小值.

函数的极大值与极小值统称为极值,使函数取得极值的点称为极值点.

二、函数极值的求法

定理1(必要条件) 设 f(x) 在点 x_0 处具有导数且在 x_0 处取得极值,则必有 $f'(x_0)=0$.

定义 使导数为零的点叫做函数 f(x) 的驻点. (即方程 f'(x) = 0 的实根)

注意: 可导函数 f(x) 的极值点必定是它的驻点, 但函数的驻点却不一定是极值点.

例如, $y = x^3$, $y'|_{x=0} = 0$, 但x = 0不是极值点.

定理6.2(第一充分条件)

设f(x)在 x_0 的某领域内可导,且 $f'(x_0)=0$

- (1) 如果 $x \in (x_0 \delta, x_0)$, 有 $f'(x) \ge 0$ 而 $x \in (x_0, x_0 + \delta)$, 有 $f'(x) \le 0$,则f(x)在 x_0 处取得极大值.
- (2) 如果 $x \in (x_0 \delta, x_0)$, 有 $f'(x) \le 0$ 而 $x \in (x_0, x_0 + \delta)$ 有 $f'(x) \ge 0$,则f(x)在 x_0 处取得极小值.
- (3) 如果当 $x \in (x_0 \delta, x_0)$ 及 $x \in (x_0, x_0 + \delta)$ 时, f'(x)符号相同,则 f(x)在 x_0 处无极值.

不可导点也有可能是极值点,如绝对值函数在x=0处

求极值的步骤:

- (1) 求f'(x),及不可导的点
- (2) 求驻点,即方程 f'(x) = 0 的根;
- (3)检查不可导的点,和各驻点左右两侧的符号变化情况;
 - (4) 求极值.

注意:函数的不可导点,也可能是函数的极值点.

例3 求出函数 $f(x) = 1 - (x - 2)^{\frac{2}{3}}$ 的极值.

解
$$f'(x) = -\frac{2}{3}(x-2)^{-\frac{1}{3}}$$
 $(x \neq 2)$

当x = 2时, f'(x)不存在. 但函数f(x)在该点连续.

当
$$x < 2$$
时, $f'(x) > 0$;

当
$$x > 2$$
时, $f'(x) < 0$.

$$\therefore f(2) = 1 为 f(x) 的 极大值.$$

例4 求出函数 $f(x) = x^3 - 3x^2 - 9x + 5$ 的极值.

$$\mathbf{p}'(x) = 3x^2 - 6x - 9 = 3(x+1)(x-3)$$

令 f'(x) = 0, 得驻点 $x_1 = -1, x_2 = 3$. 列表讨论

x	$(-\infty, -1)$	-1	(-1,3)	3	(3,+∞)
f'(x)	+	0	_	0	+
f(x)	1	极大值	1	极小值	1

极大值 f(-1) = 10, 极小值 f(3) = -22.

定理6.3(第二充分条件)设f(x)在 x_0 处具有二阶导数,

且
$$f'(x_0) = 0$$
, $f''(x_0) \neq 0$, 那么

- (1) 当 $f''(x_0) < 0$ 时,函数f(x)在 x_0 处取得极大值
- (2) 当 $f''(x_0) > 0$ 时,函数 f(x) 在 x_0 处取得极小值。

证
$$(1)$$
 :: $f''(x_0) = \lim_{\Delta x \to 0} \frac{f'(x_0 + \Delta x) - f'(x_0)}{\Delta x} < 0$, 故 $\exists U(x_0, \delta)$, 使 $f'(x_0 + \Delta x) - f'(x_0)$ 与 Δx 异号,

当
$$\Delta x < 0$$
时,有 $f'(x_0 + \Delta x) > f'(x_0) = 0$,

当
$$\Delta x > 0$$
时,有 $f'(x_0 + \Delta x) < f'(x_0) = 0$,

所以,函数f(x)在 x_0 处取得极大值

(2)同法可证

定理6.4(第三充分条件)

设函数 f 在 x_0 处 n 阶可导 $(n \ge 2)$,并且

$$f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0, \text{ fith } f^{(n)}(x_0) \neq 0.$$

(2) 当n为奇数时, x_0 不为极值点.

证: 利用f(x) 在 x_0 点的泰勒公式,可得

$$f(x)-f(x_0) = \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n + o((x-x_0)^n)$$

当x充分接近 x_0 时,上式左端正负号由右端第一项确定,故结论正确.

说明:

上述极值的判别法(定理6.2~定理6.4)都是充分的.

当这些充分条件不满足时,不等于极值不存在.

说明:上述极值的判别法都是充分的.

当这些充分条件不满足时,不等于极值不存在.

例如:

$$f(x) = \begin{cases} 2 - x^2 (2 + \sin \frac{1}{x}), & x \neq 0 \\ 2, & x = 0 \end{cases}$$

f(0)=2为极大值,但不满足上述 定理的条件.

$$f'(0) = 0$$

$$f''(0) = \lim_{x \to 0} \frac{f'(x) - f'(0)}{x - 0}$$
不存在

第三部分 函数的最大(小)值

一、最优化问题中最值的求法

若函数 f(x) 在 [a,b] 上连续,则 f(x) 在 [a,b] 上的最大值与最小值存在.

若函数 f(x) 在 [a,b] 上连续,则 f(x) 在 [a,b]上的最大值与最小值存在.

$$[a,b]=(a,b)+\{a\}+\{b\}$$

最值点可能是:极值点(驻点或不可导点),区间端点

若函数 f(x) 在 [a,b] 上连续,则 f(x) 在 [a,b]上的最大值与最小值存在.

$$[a,b]=(a,b)+\{a\}+\{b\}$$

最值点可能是:极值点(驻点或不可导点),区间端点

求最值点步骤:

- 1. 求驻点和不可导点;
- 2.求区间端点及驻点、不可导点的函数值, 比较它们的大小,确定最大值和最小值;

注意:如果区间内只有一个极值,则这个极值就是最值. (最大值或最小值)

二、应用举例

例5 求函数 $y = 2x^3 + 3x^2 - 12x + 14$ 在[-3,4]上的最大值与最小值

$$\mathbf{f}'(x) = 6(x+2)(x-1)$$

 $x_1 = -2, x_2 = 1.$ 解方程 f'(x) = 0,得

计算
$$f(-3) = 23$$
; $f(-2) = 34$; $f(1) = 7$; $f(4) = 142$;

比较得:

最大值 f(4) = 142, 最小值 f(1) = 7.

实际问题求最值应注意:

- (1)建立目标函数;
- (2)求最值;

若目标函数只有唯一驻点,则该点的函数值通常即为所求的最(或最小)值.

例6 某房地产公司有50套公寓要出租,当租金定为每月 180元时,公寓会全部租出去.当租金每月增加10元 时,就有一套公寓租不出去,而租出去的房子每月 需花费20元的整修维护费.试问房租定为多少可获 得最大收入? 例6 某房地产公司有50套公寓要出租,当租金定为每月 180元时,公寓会全部租出去. 当租金每月增加10元 时,就有一套公寓租不出去,而租出去的房子每月 需花费20元的整修维护费. 试问房租定为多少可获 得最大收入?

伊爾入収入。 解 设房租为每月x元,租出去的房子有 $50-\left(\frac{x-180}{10}\right)$ 套,

每月总收入为
$$R(x) = (x-20)\left(50-\frac{x-180}{10}\right)$$

 $R'(x) = \left(68-\frac{x}{10}\right) + (x-20)\left(-\frac{1}{10}\right) = 70-\frac{x}{5}$

$$R'(x) = 0 \Rightarrow x = 350$$
 (唯一驻点)

故每月每套租金为350元时收入最高。

最大收入为
$$R(x) = (350-20) \left(68-\frac{350}{10}\right) = 10890(元)$$

例7 由直线 y=0, x=8 及抛物线 $y=x^2$ 围成一个曲边三角形, 在曲边 $y = x^2$ 上求一点,使曲线在该点处的切线与直线 y = 0及 x = 8所围成的三角形面积最大. 解 如图,设所求切点为 $P(x_0,y_0)$, 则切线PT为 $y-y_0=2x_0(x-x_0)$, $\therefore y_0 = x_0^2, \quad \therefore A(\frac{1}{2}x_0, 0), C(8, 0), B(8, 16x_0 - x_0^2)$ $\therefore S_{\Delta ABC} = \frac{1}{2} (8 - \frac{1}{2} x_0) (16 x_0 - x_0^2) \quad (0 \le x_0 \le 8)$ 令 $S' = \frac{1}{4}(3x_0^2 - 64x_0 + 16 \times 16) = 0$, 解得 $x_0 = \frac{16}{3}$, $x_0 = 16$ (舍去). $:: s''(\frac{16}{3}) = -8 < 0. : s(\frac{16}{3}) = \frac{4096}{217}$ 为极大值. 故 $s(\frac{16}{3}) = \frac{4096}{27}$ 为所有三角形中面积最大的.

函数的单调性和极值,对于了解函数的性态很有帮助,但仅知道单调性还不能比较全面地反映出曲线的性状,还须考虑弯曲方向。

如右图所示, L_1 , L_2 , L_3 虽然都是从A点单调上升到B点,但它们的弯曲方向却不一样。

 L_1 是"凸"弧, L_2 是"凹"弧 $_,L_3$ 既有凸弧,也有凹弧

第四部分 函数图象的凹凸性与拐点

一、曲线凹凸的定义

问题:如何研究曲线的弯曲方向?

图形上任意弧段位 于所张弦的下方

图形上任意弧段位 于所张弦的上方

几何特征:

凡呈凹型的弧段其切线总位于曲线的下方,凡呈凸型的弧段其切线总位于曲线的上方,连续曲线的凹弧段与凸弧段有分界点,

$$x \in (x_1, x_2) \Leftrightarrow 0 < \frac{x_2 - x}{x_2 - x_1} < 1$$

过 $A(x_1, f(x_1))$ 与 $B(x_2, f(x_2))$ 的弦的方程是:

$$y = f(x_2) + \frac{f(x_1) - f(x_2)}{x_1 - x_2} (x - x_2)$$

y = f(x)与弦的方程(函数)在 $x = \lambda x_1 + (1 - \lambda)x_2$ 处的值分别是:

$$f(\lambda x_1 + (1-\lambda)x_2)$$
 $\lambda f(x_1) + (1-\lambda)f(x_2)$

$$\lambda f(x_1) + (1 - \lambda) f(x_2)$$

曲线上任意弧段位于所张弦的下方时,有:

$$f(\lambda x_1 + (1-\lambda)x_2) < \lambda f(x_1) + (1-\lambda)f(x_2)$$

定义6.1: 函数图象的凹性:

$$f\left(\frac{x_1 + x_2}{2}\right) < \frac{f\left(x_1\right) + f\left(x_2\right)}{2}$$

设
$$f:[a,b] \to \mathbb{R}$$
.若 $\forall x_1, x_2 \in [a,b], \forall \lambda \in [0,1],$ 若不等式 $f(\lambda x_1 + (1-\lambda)x_2) < \lambda f(x_1) + (1-\lambda)f(x_2)$

恒成立,则称函数 f(x) 在 [a,b] 上的图象是凹的. 也称曲线 f(x) 在 [a,b] 上是凹的.

$$y = f(x)$$

$$f(x)$$

$$0 \quad x_1 \quad x_2 \quad x$$

曲线上任意弧段位于所张弦的上方时,有:

$$f(\lambda x_1 + (1-\lambda)x_2) > \lambda f(x_1) + (1-\lambda)f(x_2)$$

定义6.1: 函数图象的 凸性:

设
$$f:[a,b] \to \mathbb{R}$$
.若 $\forall x_1, x_2 \in [a,b], \forall \lambda \in [0,1],$ 若不等式 $f(\lambda x_1 + (1-\lambda)x_2) > \lambda f(x_1) + (1-\lambda)f(x_2)$

恒成立,则称函数 f(x) 在 [a,b] 上的图象是凸的.

也称曲线 f(x) 在 [a,b] 上是凸的.

$$f\left(\frac{x_1+x_2}{2}\right) > \frac{f(x_1)+f(x_2)}{2}$$

注: 1.由定义知,若f是(a,b)内的凸(凹)函数,则-f是(a,b)内的凹(凸)函数,

2. 若当 $x \in (a, b)$ 时,曲线 y = f(x)上每一点的切线位于曲线的下(上)方,则称曲线在区间(a, b)内是凹的(凸的).

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

令
$$x = \lambda x_1 + (1 - \lambda)x_2$$
,则 $\lambda = \frac{x - x_2}{x_1 - x_2}$

等价于: $\forall x \in (x_1, x_2)$, 有

$$f(x) \le \frac{x - x_2}{x_1 - x_2} f(x_1) + \frac{x - x_1}{x_2 - x_1} f(x_2)$$

二、曲线凹凸的判定

定理6.5 设 f(x) 在 [a,b]二阶可导,若

(1) f''(x) > 0,则 f(x)的图象在[a,b]是凹的;

(2) f''(x) < 0,则 f(x)的图象在[a,b] 上是凸的.

将上述自变量取值范围换为I仍成立

 $\forall x \in (a,b)$

曲线凹凸的判定

定理6.5 设 f(x) 在 [a,b]二阶可导,若

$$\forall x \in (a,b)$$
 $(1) f''(x) > 0$,则 $f(x)$ 的图象在[a,b]是凹的; $(2) f''(x) < 0$,则 $f(x)$ 的图象在[a,b]上是凸的.

定义6.1: 函数图象的 凸性:

设
$$f: [a,b] \rightarrow \mathbb{R}$$
.若 $\forall x_1, x_2 \in [a,b], \forall \lambda \in [0,1],$

若不等式
$$f(\lambda x_1 + (1-\lambda)x_2) > \lambda f(x_1) + (1-\lambda)f(x_2)$$

恒成立,则称函数 f(x)在 [a,b]上的图象是凸的.

也称曲线 f(x)在 [a,b]上是凸的.

$$f\left(\frac{x_1 + x_2}{2}\right) > \frac{f(x_1) + f(x_2)}{2}$$

(2) f''(x) < 0,则 f(x)的图象在[a,b] 上是凸的.

证明
$$(2) \forall x_1, x_2 \in (a,b), \quad x_1 < x_2$$
 记 $x_0 = \frac{x_1 + x_2}{2}, h = x_0 - x_1 = x_2 - x_0$

对 f(x) 在 $[x_1, x_0]$, $[x_0, x_2]$ 上

$$f\left(\frac{x_1+x_2}{2}\right) > \frac{f(x_1)+f(x_2)}{2}$$

分别应用Lagrange定理,得

$$f(x_0) - f(x_1) = f'(\xi_1)h$$
 $(x_1 < \xi_1 < x_0)$

$$f(x_2) - f(x_0) = f'(\xi_2)h$$
 $(x_0 < \xi_2 < x_2)$

两式相减,得

$$2f(x_0) - [f(x_1) + f(x_2)] = [f'(\xi_1) - f'(\xi_2)]h$$

两式相减,得

$$2f(x_0)-[f(x_1)+f(x_2)]=[f'(\xi_1)-f'(\xi_2)]h$$

由假设 $f''(x) < 0 \Rightarrow f'(x)$ 在[a,b]内单调减

由
$$\xi_1 < \xi_2 \Rightarrow f'(\xi_1) - f'(\xi_2) > 0$$

$$\Rightarrow 2f(x_0) - [f(x_1) + f(x_2)] > 0 \qquad f\left(\frac{x_1 + x_2}{2}\right) > \frac{f(x_1) + f(x_2)}{2}$$

$$\mathbb{P} f\left(\frac{x_1 + x_2}{2}\right) > \frac{f(x_1) + f(x_2)}{2}$$

这就证明了 f(x)的图象在(a,b)内是凸的同理可证(1)

例8 判断曲线 $y = x^3$ 的凹凸性.

解
$$:: y'=3x^2, y''=6x,$$

当x < 0时,y'' < 0,

:.曲线在区间($-\infty$,0)为凸的;

当x > 0时,y'' > 0,:曲线在区间 $(0, +\infty)$ 为凹的;

注意到,点(0,0)是曲线由凹变凸的分界点.

三、曲线的拐点及其求法

- 1. 定义 连续曲线上凹凸的分界点称为曲线的拐点.
- 2. 拐点的求法

定理 如果f(x)在 $(x_0 - \delta, x_0 + \delta)$ 内存在二阶导数,则 点 $(x_0, f(x_0))$ 是拐点的必要条件是 $f''(x_0) = 0$.

证 :: f(x) 二阶可导, :: f'(x) 存在且连续,

又: $(x_0, f(x_0))$ 是拐点,

则 $f''(x) = [f'(x)]' 在 x_0$ 两边变号,

 $\therefore f'(x)$ 在 x_0 取得极值,由可导函数取得极值的条件,

 $\therefore f''(x) = 0.$

注1: $f''(x_0) = 0$ 时, x_0 不一定是 f(x)的拐点 $y = x^4$, $y'|_{x=0} = 0$, $y''|_{x=0} = 0$, 但(0,0)不是拐点.

注1:
$$f''(x_0) = 0$$
 时, x_0 不一定是 $f(x)$ 的拐点 $y = x^4$, $y'|_{x=0} = 0$, $y''|_{x=0} = 0$, 但(0,0)不是拐点.

则
$$x \ge 1$$
时, $f'(x) = \frac{1}{x}$, $f''(x) = \frac{-1}{x^2} < 0$, 凸 $0 < x < 1$ 时, $f'(x) = \frac{-1}{x}$, $f''(x) = \frac{1}{x^2} > 0$, 凹

$$\lim_{x \to 1^{+}} \frac{\ln x - \ln 1}{x - 1} = \lim_{x \to 1^{+}} \frac{1}{x - 1} \ln \left[1 + (x - 1) \right] = \lim_{x \to 1^{+}} \frac{1}{x - 1} (x - 1) = 1$$

$$\lim_{x \to 1^{-}} \frac{-\ln x - \ln 1}{x - 1} = \lim_{x \to 1^{-}} \frac{-1}{x - 1} \ln \left[1 + (x - 1) \right] = \lim_{x \to 1^{-}} \frac{-1}{x - 1} (x - 1) = -1$$

但 f(x)在x = 1处不可导, 更不满足f''(x) = 0.

一阶导数不存在的点,有可能是极值点,

同样,二阶导数不存在的点,有可能是拐点,只要该点两侧二阶导数变号,即使该点处二阶导数不存在,也可能是拐点。

是连续曲线 y = f(x) 的拐点.

函数 $f(x) = \sqrt[3]{x}$ 在 x=0处.

$$f'(x) = \frac{1}{3\sqrt[3]{x^2}} \quad f''(x) = -\frac{2}{9}x^{-\frac{5}{3}} = -\frac{2}{9x\sqrt[3]{x^2}}, \quad (x \neq 0)$$

x = 0是不可导点, y', y"均不存在.

但在($-\infty$,0)内, x < 0, f''(x) > 0 凹 在(0,+ ∞)内, x > 0, f''(x) < 0 凸

∴点(0,0)是曲线 $y = \sqrt[3]{x}$ 的拐点, 但二阶导数不存在.

找拐点方法1:

设函数f(x)在 x_0 的邻域内二阶可导,且 $f''(x_0) = 0$,

- (1) 在 x_0 两侧f''(x)变号,点 $(x_0, f(x_0))$ 即为拐点;
- (2) 在 x_0 两侧f''(x)不变号,点 $(x_0, f(x_0))$ 不是拐点.

例14

求曲线 $y = 3x^4 - 4x^3 + 1$ 的拐点及凹、凸的区间

例9

求曲线 $y = 3x^4 - 4x^3 + 1$ 的拐点及凹、凸的区间

 \mathbf{F} :: $D:(-\infty,+\infty)$

$$y' = 12x^3 - 12x^2$$
, $y'' = 36x(x - \frac{2}{3})$.
 $\Rightarrow y'' = 0$, $\Rightarrow x_1 = 0$, $\Rightarrow x_2 = \frac{2}{3}$.

	x	$(-\infty,0)$	0	$(0,\frac{2}{3})$	2/3	$(\frac{2}{3},+\infty)$	
1	f''(x)	+	0		0	+	
-	f(x)	凹	拐点 (0,1)	凸	拐点 (2/3,11/27)	凹凹	

凹区间为 $(-\infty,0),(\frac{2}{3},+\infty)$. 凸区间为 $(0,\frac{2}{3})$.

例9

求曲线 $y = 3x^4 - 4x^3 + 1$ 的拐点及凹、凸的区间

x	$(-\infty,0)$	0	$(0,\frac{2}{3})$	2/3	$(\frac{2}{3},+\infty)$
f''(x)	+	0	27/10	0	
f(x)	凹	拐点 (0,1)	凸	拐点 (² / ₃ , ¹¹ / ₂₇)	凹

方法2: 设函数 f(x) 在 x_0 的邻域内三阶可导,且 $f''(x_0) = 0$,而 $f'''(x_0) \neq 0$,则 $(x_0, f(x_0))$ 是曲线 y = f(x) 的拐点.

方法2: 设函数 f(x) 在 x_0 的邻域内三阶可导,且 $f''(x_0) = 0$,而 $f'''(x_0) \neq 0$,则 $(x_0, f(x_0))$ 是曲线 y = f(x) 的拐点.

例15 求曲线 $y = \sin x + \cos x$ 在(0,2 π)内的拐点

∴在[0,2π]内曲线有拐点为:

$$(\frac{3\pi}{4},0), \quad (\frac{7\pi}{4},0).$$

方法2: 设函数 f(x) 在 x_0 的邻域内三阶可导,且 $f''(x_0) = 0$,而 $f'''(x_0) \neq 0$,则 $(x_0, f(x_0))$ 是曲线 y = f(x) 的拐点.

曲线
$$y = (x-1)(x-2)^2(x-3)^3(x-4)^4$$
的拐点是()
A.(1,0) B.(2,0) C.(3,0) D.(4,0)

$$y''(3)=0$$
, $y'''(3)\neq 0$, 应选(C)

关于渐近线

曲线 y = f(x)上一点M沿曲线无限远离原点或无限接近间断点时,如果M到一条直线L的距离趋近零,则这条直线L称为该曲线的渐近线。可分为垂直渐近线、水平渐近线和斜渐近线。

$$\lim_{x \to \infty (\pm \infty)} f(x) = y_0$$
 $y = y_0$ 是水平渐近线 $\lim_{x \to c} f(x) = \infty (\pm \infty)$ $x = c$ 是垂直渐近线

斜渐近线方程为:
$$y = kx + b$$
 $k = \lim_{x \to \infty} \frac{f(x)}{x}$
$$b = \lim_{x \to \infty} [f(x) - kx]$$

求曲线
$$y = \frac{x^2}{2x+1}$$
的斜渐近线方程

$$\therefore \lim_{x \to \infty} \frac{y}{x} = \lim_{x \to \infty} \frac{x}{2x+1} = \frac{1}{2}$$

$$\lim_{x \to \infty} \left(y - \frac{1}{2} x \right) = \lim_{x \to \infty} \left[\frac{x^2}{2x + 1} - \frac{1}{2} x \right] = \lim_{x \to \infty} \frac{-x}{2(2x + 1)} = -\frac{1}{4}$$

斜渐近线方程为:
$$y = \frac{1}{2}x - \frac{1}{4}$$

斜渐近线方程为:
$$y = kx + b$$
 $k = \lim_{x \to \infty} \frac{f(x)}{x}$
$$b = \lim_{x \to \infty} [f(x) - kx]$$

思考题1 如果 x_0 为f(x)的极小值点,那么必存在 x_0 的某邻域,在此邻域内,f(x)在 x_0 的左侧 下降,而在 x_0 的右侧上升?

不正确.

于是x = 0为f(x)的极小值点

$$f(x) = \begin{cases} 2 + x^{2}(2 + \sin \frac{1}{x}), & x \neq 0 \\ 2, & x = 0 \end{cases}$$

$$\stackrel{2.015}{\cancel{2.0025}}$$

$$\stackrel{2.005}{\cancel{2.0025}}$$

$$\stackrel{2.005}{\cancel{2.0025}}$$

$$f'(x) = 2x(2 + \sin \frac{1}{x}) - \cos \frac{1}{x}$$

 $2x(2+\sin\frac{1}{x}) \to 0$, $\cos\frac{1}{x}$ 在-1和1之间振荡

因而f(x)在x = 0的两侧都不单调.

故命题不成立.

当 $x \rightarrow 0$ 时,

思考题2 $f'(x_0) > 0$,是否可断定f(x)在 x_0 的某邻域内单调增?

$$f'(0) = 1 > 0$$

x=-0.1:0.00001:0.1; $y=x+2.*x.^2.*sin(1./x);$

但在x = 0的任何邻域内f'(x)都可正可负, $\frac{\text{plot}(x,y,'r.')}{\text{grid on}}$ 故在x = 0的任何邻域内f(x)都非单调增.

• 如果函数二阶可导,则相邻的两个 极值点之间一定至少有一个拐点。

定理6.5 设 f(x) 在 [a,b]二阶可导,若

$$\forall x \in (a,b)$$

 $\forall x \in (a,b)$ (1) f''(x) > 0,则 f(x)的图象在[a,b]是凹的; (2) f''(x) < 0,则 f(x)的图象在[a,b]上是凸的.

实际上,设极值点为 x_1 , x_2 ,且 $x_1 < x_2$,则

$$\mathbf{f'}(\mathbf{x}_1) = \mathbf{f'}(\mathbf{x}_2) = 0$$

如二阶导数在 [x1, x2] 内不变号,则一阶导数单调,无

这与 x_2 是极值点, $f'(x_2) = 0$ 矛盾。

凸图像

例10 讨论函数

$$f(x) = \frac{2x-1}{(x-1)^2}$$
的各种性态,并画出它的草图.

解 定义域为: $x \neq 1, x \in R$. 因为 $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{2x-1}{(x-1)^2} = 0$. 所以 y = 0 (x轴)为水平渐近线.

又因为
$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{2x - 1}{(x - 1)^2} = +\infty.$$

所以 x=1为铅直渐近线

且 当
$$x < \frac{1}{2}$$
时, $y < 0$; 当 $x > \frac{1}{2}$ 时, $y > 0$.

例10 讨论 $f(x) = \frac{2x-1}{(x-1)^2}$ 的各种性态,并画图.

又
$$f'(x) = \frac{-2x}{(x-1)^3}$$
, 得驻点为: $x = 0$ 且为极小值点.

又
$$f''(x) = \frac{2(2x+1)}{(x-1)^4}$$
,得拐点为: $\left(-\frac{1}{2}, -\frac{8}{9}\right)$. 列表如下

\mathcal{X}	$\left(-\infty,-\frac{1}{2}\right)$	$-\frac{1}{2}$	$\left(-\frac{1}{2},0\right)$	0	(0,1)	1	$(1,\infty)$
f'(x)	<u> </u>	-	-	0	+		<u> </u>
f''(x)		0	+	+	+		+
f(x)		拐点		极小值		间断	下页

例10 讨论函数

 $f(x) = \frac{2x-1}{(x-1)^2}$ 的各种性态,并画出它的草图.

