Probabilistic **3D reconstruction** of the **circumstellar environments** of evolved stars

Frederik De Ceuster (KU Leuven, FWO Fellow)

in collaboration with

A. Coenegrachts, J. Malfait, T. Ceulemans, M. Esseldeurs, S. Maes,

T. Konings, T. Danilovich, J. Cockayne, L. Decin, J. Yates, (You?)

High-resolution observations revealed **complex morphologies**

ATOMIUM: ALMA Large Program, Decin et al. (2020)

High-resolution observations revealed **complex morphologies**

ATOMIUM: ALMA Large Program, Decin et al. (2020)

But, (forward) modelling these observations is **challenging**...

ATOMIUM: ALMA Large Program, Decin et al. (2020)

Malfait et al. (2021), Maes et al. (2021), Siess et al. (2022), Esseldeurs et al. (2023), ...

Possible solution: start from the observations, i.e. inverse modelling / 3D reconstruction / deprojection

Spectral line **observations**

Assume a spherically symmetric **velocity** field

Guélin et al. (2018)

Montargès et al. (2019)

Coenegrachts et al. (2023)

Assume a spherically symmetric **velocity** field

- → Monotonic projection along the line-of-sight
- → Each velocity / frequency corresponds to a **unique** position along the line-of-sight

Guélin et al. (2018)

Montargès et al. (2019)

Coenegrachts et al. (2023)

Assume a spherically symmetric velocity field

- → Monotonic projection along the line-of-sight
- → Each velocity / frequency corresponds to a unique position along the line-of-sight
- → Each channel map corresponds to a unique contour of constant velocity

Guélin et al. (2018)

Montargès et al. (2019)

Coenegrachts et al. (2023)

Nog invoegen!

NaCl around IK Tauri

Issues:

- False assumption of assigning an entire channel map to a single contour
- Difficult to incorporate more physics or chemistry
- Strong assumptions on the velocity structure
- Difficult to **combine** different observations
- Difficult to deal with uncertainties

Deprojection as **others** know it

Drawing inspiration from solar/plasma physics, machine learning, and medical imaging

Bayesian inversion, compressed sensing, ...

Asensio Ramos et al. (2007)

Asensio Ramos & de la Cruz Rodríguez (2015)

• •

Reviews

del Toro Iniesta & Ruiz Cobo (2016) de la Cruz Rodríguez & van Noort (2017)

Recent developments

Asensio Ramos et al. (2022)
Díaz Baso et al. (2022)
Štepán et al. (2022)
Vicente Arévalo et al. (2022)

Visual deprojection — Balakrishnan et al. (2019)

FDC, T. Ceulemans, J. Cockayne, L. Decin, and J. Yates (2023)

FDC, T. Ceulemans, J. Cockayne, L. Decin, and J. Yates (2023)

Lucy (1974); Asensio Ramos et al. (2007); Stuart (2010)

Bayes' rule $p\left(m{m} \,|\, m{o}
ight) = rac{p\left(m{o} \,|\, m{m}
ight)p\left(m{m}
ight)}{p\left(m{o}
ight)}$

Bayes' rule

$$p\left(\boldsymbol{m} \mid \boldsymbol{o}\right) = \frac{p\left(\boldsymbol{o} \mid \boldsymbol{m}\right)p\left(\boldsymbol{m}\right)}{p\left(\boldsymbol{o}\right)}$$

Reconstruct m by maximising the posterior, or, equivalently, by minimising the negative log posterior

$$-\log p\left(\boldsymbol{m} \mid \boldsymbol{o}\right) = -\log p\left(\boldsymbol{o} \mid \boldsymbol{m}\right) - \log p\left(\boldsymbol{m}\right)$$

Bayes' rule $p\left(m{m} \mid m{o}
ight) = rac{p\left(m{o} \mid m{m}
ight)p\left(m{m}
ight)}{n\left(m{o}
ight)}$

$$-\log p\left(\boldsymbol{m} \mid \boldsymbol{o}\right) = -\log p\left(\boldsymbol{o} \mid \boldsymbol{m}\right) - \log p\left(\boldsymbol{m}\right)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{L}_{\text{tot}}\left(\boldsymbol{m}, \boldsymbol{o}\right) = \mathcal{L}_{\text{rep}}\left(f(\boldsymbol{m}), \boldsymbol{o}\right) + \mathcal{L}_{\text{reg}}\left(\boldsymbol{m}\right)$$

Bayes' rule $p\left(oldsymbol{m}\,|\,oldsymbol{o}
ight) = rac{p\left(oldsymbol{o}\,|\,oldsymbol{m}
ight)p\left(oldsymbol{m}
ight)}{n\left(oldsymbol{o}
ight)}$

Reconstruct m by maximising the posterior, or,

equivalently, by minimising the negative log posterior, or by minimising the loss

$$-\log p\left(oldsymbol{m}\,|\,oldsymbol{o}
ight) \ = \ -\log p\left(oldsymbol{o}\,|\,oldsymbol{m}
ight) \ - \ \log p\left(oldsymbol{m}
ight) \ + \ \mathcal{L}_{ ext{reg}}\left(oldsymbol{m},oldsymbol{o}
ight) \ = \ \mathcal{L}_{ ext{rep}}\left(f(oldsymbol{m}),oldsymbol{o}
ight) \ + \ \mathcal{L}_{ ext{reg}}\left(oldsymbol{m}
ight)$$

Mean square reproduction loss implies a Gaussian likelihood

$$\mathcal{L}_{\text{rep}}\left(f(\boldsymbol{m}), \boldsymbol{o}\right) = \|f(\boldsymbol{m}) - \boldsymbol{o}\|^2 \implies p\left(\boldsymbol{o} \mid \boldsymbol{m}\right) = \mathcal{N}\left(\boldsymbol{o}, \boldsymbol{\Sigma}\right)$$

Bayes' rule $p\left(m{m}\,|\,m{o}
ight) = rac{p\left(m{o}\,|\,m{m}
ight)p\left(m{m}
ight)}{p\left(m{o}
ight)}$

$$-\log p\left(\boldsymbol{m} \mid \boldsymbol{o}\right) = -\log p\left(\boldsymbol{o} \mid \boldsymbol{m}\right) - \log p\left(\boldsymbol{m}\right)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{L}_{\text{tot}}\left(\boldsymbol{m}, \boldsymbol{o}\right) = \mathcal{L}_{\text{rep}}\left(f(\boldsymbol{m}), \boldsymbol{o}\right) + \mathcal{L}_{\text{reg}}\left(\boldsymbol{m}\right)$$

The **regularisation loss** / **prior** represents our *a priori* assumptions about the model

FDC, et al. (in prep.)

Our *a priori* assumptions about the model

Bayes' rule

$$p\left(\boldsymbol{m} \mid \boldsymbol{o}\right) = \frac{p\left(\boldsymbol{o} \mid \boldsymbol{m}\right)p\left(\boldsymbol{m}\right)}{p\left(\boldsymbol{o}\right)}$$

FDC, et al. (in prep.)

Our *a priori* assumptions about the model

Bayes' rule $n \left(\mathbf{o} \mid \mathbf{m} \right)$

$$p\left(\boldsymbol{m} \mid \boldsymbol{o}\right) = \frac{p\left(\boldsymbol{o} \mid \boldsymbol{m}\right)p\left(\boldsymbol{m}\right)}{p\left(\boldsymbol{o}\right)}$$

Our *a priori* assumptions about the model

Bayes' rule $p\left(oldsymbol{m} \mid oldsymbol{o} ight) = rac{p\left(oldsymbol{o} \mid oldsymbol{m} ight)p\left(oldsymbol{m} ight)}{p\left(oldsymbol{o} ight)}$

Our *a priori* assumptions about the model

The model

$$\boldsymbol{m} = \{ \rho(\boldsymbol{x}), \, \boldsymbol{v}(\boldsymbol{x}), \, T(\boldsymbol{x}) \}$$

$$p\left(\boldsymbol{m} \mid \boldsymbol{o}\right) = \frac{p\left(\boldsymbol{o} \mid \boldsymbol{m}\right)p\left(\boldsymbol{m}\right)}{p\left(\boldsymbol{o}\right)}$$

Our *a priori* assumptions about the model

The model

$$\boldsymbol{m} = \{ \rho(\boldsymbol{x}), \, \boldsymbol{v}(\boldsymbol{x}), \, T(\boldsymbol{x}) \}$$

Our *a priori* assumptions

$$p\left(\boldsymbol{m} \mid \boldsymbol{o}\right) = \frac{p\left(\boldsymbol{o} \mid \boldsymbol{m}\right)p\left(\boldsymbol{m}\right)}{p\left(\boldsymbol{o}\right)}$$

Our *a priori* assumptions about the model

The model

$$\boldsymbol{m} = \{ \rho(\boldsymbol{x}), \, \boldsymbol{v}(\boldsymbol{x}), \, T(\boldsymbol{x}) \}$$

Our a priori assumptions

Regularity

minimise
$$\|\nabla \rho(\boldsymbol{x})\|^2$$

$$p\left(\boldsymbol{m} \mid \boldsymbol{o}\right) = \frac{p\left(\boldsymbol{o} \mid \boldsymbol{m}\right) p\left(\boldsymbol{m}\right)}{p\left(\boldsymbol{o}\right)}$$

Our *a priori* assumptions about the model

The model

$$\boldsymbol{m} = \{ \rho(\boldsymbol{x}), \, \boldsymbol{v}(\boldsymbol{x}), \, T(\boldsymbol{x}) \}$$

Our a priori assumptions

- Regularity minimise $\|
 abla
 ho({m x}) \|^2$
- Symmetry minimise $\mathbb{V}\left[
 ho(oldsymbol{x})
 ight]$ on spheres

Bayes' rule $p\left(m{m} \mid m{o}
ight) = rac{p\left(m{o} \mid m{m}
ight)p\left(m{m}
ight)}{p\left(m{o}
ight)}$

Our *a priori* assumptions about the model

The model

$$\boldsymbol{m} = \{ \rho(\boldsymbol{x}), \, \boldsymbol{v}(\boldsymbol{x}), \, T(\boldsymbol{x}) \}$$

Our a priori assumptions

- Regularity minimise $\|
 abla
 ho({m x}) \|^2$
- ullet Symmetry minimise $\mathbb{V}\left[
 ho(oldsymbol{x})
 ight]$ on spheres
- Hydrodynamic steady state $\partial_t \rho = \partial_t \boldsymbol{v} = \partial_t T = 0$

Bayes' rule $p\left(m{m}\,|\,m{o}
ight) = rac{p\left(m{o}\,|\,m{m}
ight)p\left(m{m}
ight)}{p\left(m{o}
ight)}$

Our *a priori* assumptions about the model

The model

$$\boldsymbol{m} = \{ \rho(\boldsymbol{x}), \, \boldsymbol{v}(\boldsymbol{x}), \, T(\boldsymbol{x}) \}$$

Our a priori assumptions

- Regularity minimise $\| \nabla \rho({m x}) \|^2$
- ullet Symmetry minimise $\mathbb{V}\left[
 ho(oldsymbol{x})
 ight]$ on spheres
- Hydrodynamic steady state $\partial_t \rho = \partial_t \boldsymbol{v} = \partial_t T = 0$

Bayes' rule $p\left(m{m} \mid m{o}
ight) = rac{p\left(m{o} \mid m{m}
ight)p\left(m{m}
ight)}{p\left(m{o}
ight)}$

Our *a priori* assumptions about the model

The model

$$\boldsymbol{m} = \{ \rho(\boldsymbol{x}), \, \boldsymbol{v}(\boldsymbol{x}), \, T(\boldsymbol{x}) \}$$

Our a priori assumptions

- Regularity minimise $\| \nabla \rho({m x}) \|^2$
- Symmetry minimise $\mathbb{V}\left[
 ho(oldsymbol{x})
 ight]$ on spheres
- Hydrodynamic steady state $\partial_t \rho = \partial_t {m v} = \partial_t T = 0$

$$p\left(\boldsymbol{m} \mid \boldsymbol{o}\right) = \frac{p\left(\boldsymbol{o} \mid \boldsymbol{m}\right)p\left(\boldsymbol{m}\right)}{p\left(\boldsymbol{o}\right)}$$

Euler equations
$$\frac{\partial \not p}{\partial t} + \nabla \cdot (\rho \, \pmb{v}) = 0$$

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} + \frac{1}{\rho} \nabla P + \nabla \Phi = 0$$

$$\frac{\partial E'}{\partial t} + \nabla \cdot ((E+P)\mathbf{v}) + \Lambda = 0$$

Reconstruct $m{m}$ by maximising the posterior, or, equivalently, by minimising the loss

$$\mathcal{L}_{\text{tot}}(\boldsymbol{m}, \boldsymbol{o}) = \mathcal{L}_{\text{rep}}(f(\boldsymbol{m}), \boldsymbol{o}) + \mathcal{L}_{\text{reg}}(\boldsymbol{m})$$

$$egin{aligned} \mathcal{L}_{ ext{rep}}\left(f(oldsymbol{m}),oldsymbol{o}
ight) &= & \|f(oldsymbol{m}) - oldsymbol{o}\|^2 \ \mathcal{L}_{ ext{reg}}\left(oldsymbol{m}
ight) &= & w_{ ext{reg}}\,\mathcal{L}_{ ext{reg}}'\left(oldsymbol{m}
ight) \ &+ w_{ ext{sym}}\,\mathcal{L}_{ ext{sym}}\left(oldsymbol{m}
ight) \ &+ w_{ ext{hvd}}\,\,\mathcal{L}_{ ext{hvd}}\left(oldsymbol{m}
ight) \end{aligned}$$

Goal: Find the model that minimises the loss

Goal: Find the model that minimises the loss

Model:

$$\boldsymbol{m} = \{ \rho(\boldsymbol{x}), \, \boldsymbol{v}(\boldsymbol{x}), \, T(\boldsymbol{x}) \}$$

Goal: Find the model that minimises the loss

Model: Variables as PyTorch tensors

$$\boldsymbol{m} = \left\{ \rho(\boldsymbol{x}_d), \, \boldsymbol{v}(\boldsymbol{x}_d), \, T(\boldsymbol{x}_d) \right\}$$

Goal: Find the model that minimises the loss

Model: Variables as PyTorch tensors

$$\boldsymbol{m} = \left\{ \rho(\boldsymbol{x}_d), \, \boldsymbol{v}(\boldsymbol{x}_d), \, T(\boldsymbol{x}_d) \right\}$$

Algorithm: Stochastic Gradient Descent (SGD)

Goal: Find the model that minimises the loss

Model: Variables as PyTorch tensors

$$\boldsymbol{m} = \left\{ \rho(\boldsymbol{x}_d), \, \boldsymbol{v}(\boldsymbol{x}_d), \, T(\boldsymbol{x}_d) \right\}$$

Algorithm: Stochastic Gradient Descent (SGD)

• Spectral Line Formation: $oldsymbol{o} = f(oldsymbol{m})$

Goal: Find the model that minimises the loss

Model: Variables as PyTorch tensors

$$\boldsymbol{m} = \left\{ \rho(\boldsymbol{x}_d), \, \boldsymbol{v}(\boldsymbol{x}_d), \, T(\boldsymbol{x}_d) \right\}$$

Algorithm: Stochastic Gradient Descent (SGD)

- Spectral Line Formation: o = f(m)
- Compute losses

Goal: Find the model that minimises the loss

Model: Variables as PyTorch tensors

$$\boldsymbol{m} = \left\{ \rho(\boldsymbol{x}_d), \, \boldsymbol{v}(\boldsymbol{x}_d), \, T(\boldsymbol{x}_d) \right\}$$

Algorithm: Stochastic Gradient Descent (SGD)

- Spectral Line Formation: ${m o}=f({m m})$
- Compute losses
- Update model towards a minimum of the loss

Goal: Find the model that minimises the loss

Model: Variables as PyTorch tensors

$$\boldsymbol{m} = \left\{ \rho(\boldsymbol{x}_d), \, \boldsymbol{v}(\boldsymbol{x}_d), \, T(\boldsymbol{x}_d) \right\}$$

Algorithm: Stochastic Gradient Descent (SGD)

- ullet Spectral Line Formation: $oldsymbol{o}=f(oldsymbol{m})$
 - Compute losses
- Update model towards a minimum of the loss

Example R Aquilae

Future work

- Learn hyperparameters from simulations
- Implement non-LTE line radiative transfer
- Model observations in the visibility domain (uv-plane)
- ...
- (Your project?)

More info:

freddeceuster.github.io/p3droslo

Get in touch!

frederik.deceuster@kuleuven.be

