Test di auto-valutazione

Quanti bit ci sono in 1 TeraByte?

- ~ 103
- $\sim 10^{6}$
- $\sim 10^{8}$
- ~ 109
- $\sim 10^{12}$
- ~ 10¹³
- ~ 10¹⁵
- ~ 10¹⁶
- ~ 10¹⁸

Che grandezza misura l'oscilloscopio?

- corrente
- frequenza
- energia
- capacità
- differenza di potenziale
 - oscillazione
 - temperatura
 - campo elettrico
 - induttanza

Quanto vale l'impedenza in ingresso di un oscilloscopio?

 $\sim 1\Omega$ $\sim 10\Omega$

Se pensavate al bottone a 50Ω

~ 50MΩ

 $\sim 1G\Omega$

 $\sim 100G\Omega$

~ 5TΩ

~ 100TΩ

Quanta RAM ha il vostro pc o smartphone?

- ~ 1Kb
- ~ 100KB
- ~ 1MB
- ~1GB
- ~ 100GB
- ~ 1Tb
- ~ 10TB
- ~ 1PB
- ~ 1Pb

Quanta corrente può fornire la porta USB di un computer?

- $\sim 1 \text{mA}$
- ~ 10mA

~ 1kA

- 0.6 A storicamente

~ 1A

- 5 A

~ 10A

attualmente

- ~1nA
- ~ 1MA
- ~ 1GA

corrente USB

Qual è la velocità di banda di un dispositivo USB?

- ~ 1Kb/s
- ~ 10Kb/s
- ~ 10KB/s
- ~1Mb/s
- ~ 1MB/s
- ~ 10GB/s
- ~ 10Gb/s
- ~ 100Mb/s

- 1.5 Mbps la 1.0
- 12 Mbps la 1.1
- 480 Mbps la 2.0
- 4.8 Gbps la 3.0
- 10 Gbps la 3.1

velocità banda USB

Scrivere il codice C/C++ per fare il prodotto dei primi *n* numeri naturali

```
int n = <numero voluto>;
int prodotto = 1;

for (int ii=0; ii<n; ii++) {
      prodotto *= i;
}</pre>
```

questo codice è ovviamente stupido in quanto si parte da 0 (è un intero) quindi il prodotto farà zero...

Quanto vale l'AND fra i numeri binari "01010100" e "10010001"?

- 01010100
- 10010001
- 10000000
- 10010001
- 10101010
- 11111111
- 00010000
- 00000000

01010100 AND 10010001

Qual è la velocità di <u>upload</u> della vostra ADSL/Fibra di casa?

~56Kb/s

~ 128Kb/s

~ 10Mb/s

~ 10MB/s

~ 1Gb/s

~ 10GB/s

~ 1MB/s

~ 1Mb/s

5, 10 o 20 o anche 50 o 100 Mbps o anche quasi 1 Gbps con Fibra...

1 Mbps era la tipica velocità di upload con un ADSL

Quale è la frequenza della tensione di rete?

- 8Hz
- 440Hz
- 50Hz
- 220Hz
- 44100Hz
- 16Hz
- 666Hz
- 130Hz
- 110Hz

Frequenza tensione di rete

Quanto vale V?

- 9V
- 4.5V
- 0.9V

E*R2/(R1+R2)

- 5V
- 3.5V
- 90V
- 0.9mV
- 1V
- 500V

25

Quanta potenza consuma un asciugacapelli?

- ~ 100W
- ~ 1GW
- ~ 1MW
- ~ 1kW
- ~ 10W
- ~1nW
- $\sim 1 \mu W$
- ~ 10kW
- ~ 1mW

Quanta potenza è in grado di dissipare un resistore standard prima di rompersi?

- ~ 0.25W
- ~ 0.33mW
- ~ 0.2MW
- ~ 12kW
- ~ 45W
- ~ 1.5nW
- $\sim 0.2 \mu W$
- ~ 15kW

Potenza massima resistore

Quale è l'accuratezza di questa misura?

- 1V
- 0.1V
- 0.01V
- 1mV
- 10V
- 100V
- 1µV
- 1kV
- 1nV

Un laser verde emette fotoni a quale lunghezza d'onda?

- ~ 2m
- ~ 500km
- ~ 70mm
- ~ 20nm
- ~ 500nm

il verde è fra 490nm e 570nm

- ~ 200pm
- $\sim 3\mu m$
- ~ 2km

Quale è la massima frequenza udibile dall'orecchio umano?

- ~ 1Hz
- ~ 200Hz
- ~ 1kHz
- ~ 3MHz
- ~2GHz
- ~ 100MHz
- ~2THz
- ~ 20kHz

Massima frequenza udibile umani

Quanti caratteri differenti possono essere rappresentati con un codice ASCII a 7 bit?

```
• 10<sup>7</sup>
```

710

- 2256
- 2128
- **7**²
- 256
- 96

```
!"#$%&'()*+,-./
0123456789:;<=>?
@ABCDEFGHIJKLMNO
PQRSTUVWXYZ[\]^
`abcdefghijklmno
pqrstuvwxyz{|}~
```

Caratteri ASCII a 7bit

Quale è il massimo numero intero scrivibile con un *int* (32 bit)?

Table 7—simple-type-specifiers and the types they specify

- 2³²
- 2³¹
- 2³²-1
- 2³¹-1

"-1" perché c'è lo 0

"31" perché un bit per il segno

- 10³²
- 10³¹
- 10³²-1
- 10³¹-1

Specifier(s)	Type
type-name	the type named
char	"char"
unsigned char	"unsigned char"
signed char	"signed char"
bool	"bool"
unsigned	"unsigned int"
unsigned int	"unsigned int"
signed	"int"
signed int	"int"
int	"int"
unsigned short int	"unsigned short int"
unsigned short	"unsigned short int"
unsigned long int	"unsigned long int"
unsigned long	"unsigned long int"
signed long int	"long int"
signed long	"long int"
long int	"long int"
long	"long int"
signed short int	"short int"
signed short	"short int"
short int	"short int"
short	"short int"
wchar_t	"wchar_t"
float	"float"
double	"double"
long double	"long double"
void	"void"

Attraverso una resistenza $R=10\pm0.5 \text{ k}\Omega$ scorre una corrente di 10±0.5 mA. Con che accuratezza conosciamo il ΔV ai capi di R?

fatta lineare invece che in quadratura

12 —

Quanto vale la differenza di potenziale ai capi di un diodo scollegato?

0.7 al silicio

0.2 al germanio

~ 100V

~ 1mV

0V

~ 1kV

 $\sim 1 \mu V$

~ 10V

~3.6V

