Relatório Metas M1 e M2

Equipamentos e sensores instalados:

- 1 Raspberry pi 3B
- 1 ESP32 WROOM
- 9 sensores NTC digitais DS18B20
- 2 transdutores de pressão GTP 1000 Gulton 4mAh 20mAh
- 1 Wattimetro PZEM-004T-v30-master
- 1 Sistema de refrigeração com compressor, 2 manômetros, evaporadora, condensadora, caixa de isopor
- Cabos diversos para ligação dos sensores/sistema embarcado

Sensores de temperatura:

T1 -	Sucção
T2 -	Descarga
T3 -	Filtro secador
T4 -	Entrada evaporador
T5 -	Saída evaporador
T6 -	Linha líquido
T7 -	Meio evaporador
T8 -	Ambiente
T9 -	Compressor

Locais sensores:

Sistema montado com os dutos de isolação:

Transdutor de pressão:

Wattímetro:

Sistema embarcado montado:

Código, testes e resultados:

O código utilizado está disponível neste mesmo Github com o nome ESP32.ino, link direto: https://github.com/GuilhermeFFe/loT-sistema-refrigeracao/blob/master/ESP32.ino

Gráfico com uma bateria de testes de 4 horas:

Canal do ThingSpeak para visualização em tempo real:

https://thingspeak.com/channels/1202330

Esse canal possui a limitação de 8 campos, por isso não estão adicionados todos os sensores e dados coletados.

Próximas etapas:

- E10 Configuração de um servidor na Raspberry Pi, que receberá os dados dos sistemas embarcados.
- E11 Configuração de uma página web simples onde os dados serão visualizados, com formatação simples e possibilidade de download
- E12 Definição do Layout e softwares da interface para consulta dos dados.