Logic-Independent Proof Search in Logical Frameworks (short paper)

Michael Kohlhase¹ Florian Rabe¹ Claudio Sacerdoti Coen²

Jan Frederik Schaefer¹

¹FAU Erlangen-Nürnberg

²Università di Bologna

IJCAR

remotely from Erlangen, Germany July 2, 2020

Logic development in MMT/LF

- Logical frameworks can be used to describe logics
- We have a tool for this: MMT

→ Large modular collection of logics

others exist LATIN project

- Free proof checking
- Wouldn't it be nice to also generate provers?
- We report on an experiment in this direction

Logic Syntax in MMT/LF

```
theory PropLog =
    prop: type
    not : prop \rightarrow prop
   and : prop \rightarrow prop \rightarrow prop
   or : prop \rightarrow prop \rightarrow prop
                                                             PropLog
theory FOL =
   include PropLog
   term : type
   forall : (term \rightarrow prop) \rightarrow prop // Higher-order abstract syntax
   exists : (term \rightarrow prop) \rightarrow prop
```

Natural Deduction in MMT/LF

```
theory PropLog_ND = include PropLog  
// ded X is type of proofs for X (judgments as types)  
ded : prop \rightarrow type  
andEl : {A,B} ded (and A B) \rightarrow ded A  
orE : {A,B,C} ded (or A B) \rightarrow (ded A \rightarrow ded C) \rightarrow  
(ded B \rightarrow ded C) \rightarrow ded C
```

Generating Provers in ELPI

• ELPI is an extension of $\lambda Prolog$

- \approx Prolog + HOAS
- Optimized for fast execution of logical algorithms type inference, unification, proof search, . . .

LF rule and El : $\{A,B\}$ ded $\{A,B\} \rightarrow A$

ELPI equivalent

direct: $\operatorname{pi} A \setminus \operatorname{pi} B \setminus \operatorname{ded} (\operatorname{and} A B) => \operatorname{ded} A$.

syn. sugar: ded A := ded (and A B).

From LF to ELPI

Example: Or-Elimination

LF: orE :
$$\{A,B,C\}$$
 ded (or A B) \rightarrow (ded A \rightarrow ded C) \rightarrow (ded B \rightarrow ded C) \rightarrow ded C

ELPI: ded C := ded (or A B), ded A => ded C, ded B => ded C.

Example: Forall-Introduction

LF: forallI : $\{P\}$ ($\{x\}$ ded (P x)) \rightarrow ded (forall P)

ELPI: ded (forall P) :— $\mathbf{pi} \times \setminus \text{ded } (P \times)$.

Controlling the Proof Search

- Problem: Search diverges searching harder than checking
- Solution: Control search with helper predicates: inspired by ProofCert project by Miller et al.
 - Intuition: Decide whether to apply rule
 - Do not affect correctness
 - Extra argument tracks aspects of proof state

Before: ded A := ded (and A B).

Now: $\operatorname{ded} X A := \operatorname{help/andEl} X A B X1$, $\operatorname{ded} X1$ (and A B).

Helper Predicates

Name	Predicate	Argument
Iter. deepening	checks depth	remaining depth
Proof term	generates term	proof term
Product	calls other predicates	arguments for other predicates
Backchaining	Prolog's backchaining (\approx forward reasoning from axioms via \Rightarrow/\forall elimination rules)	pattern of formula to be proven (e.g. a conjunc- tion)

Example helper: Iterative deepening

help/andEl (idcert N) _ _ (idcert N1) :- N > 0, N1 is N - 1.

Tableau Provers

$$\begin{array}{c|c} & [A^F] & [B^F] \\ \hline A^F \mid B^F \end{array} \text{ and } F \qquad \begin{array}{c|c} A \wedge B^F & \bot & \bot \\ \hline \bot & & \\ \end{array} \text{ and } F$$

LF: and F:
$$\{A,B\}$$
 $A \land B^F \rightarrow (A^F \rightarrow \bot) \rightarrow (B^F \rightarrow \bot) \rightarrow \bot$
ELPI: closed $X := \frac{AB}{AB} \times \frac{AB}{AB} \times$

With iterative deepening we get a working prover!

→ Other helpers result in more efficient provers

Conclusion

Summary:

- Develop logic in MMT/LF
- Generate ELPI provers from specified calculi
- Soundness w.r.t. MMT specification for free
- Can show soundness of calculus in MMT

Goals:

Help logic developers with provers

MMT users

Help prover makers test strategies across logics

ELPI users

Evaluation:

Experiment at an early stage

more logics, strategies

Translation to FOL probably often more efficient

• Test run: Generated (ND) Me Vampire $1.007 \text{ s (depth 9)} \approx 16 \text{ min} 0.001 \text{s}$

Bonus: Soundness and Completeness in MMT

- Express ND rules in terms of tableau rules
- Express tableau rules in terms of ND rules
- ND and tableau calculus can prove same set of propositions
- → ND sound and complete ⇔ tableau sound and complete

Bonus: Helper Predicates in ELPI (as they are generated)

```
% iterative deepening help/andEl (idcert X3) A B (idcert X2) :— X3 > 0 , X2 is X3 - 1. % record proof terms help/andEl (ptcert (andEl A B X2)) A B (ptcert X2).
```

% combine helpers

help/andEl (prodcert X3/1 X3/2) A B (prodcert X2/1 X2/2) :— help/andEl X3/1 A B X2/1 , help/andEl X3/2 A B X2/2.

% back—chaining

help/andEl (bccert X3) A B (bccert (bc/fwdLocked X2)) :— bc/val X3 X4 , X4 > 0 , X2 is X4 — 1 , bc/fwdable (and A B).