McEliece Cryptosystem

An overview

Jannis Priesnitz

University of Applied Sciences Darmstadt Department of Computer Science Schöfferstraße 3 64295 Darmstadt

June 2, 2017

Outline

- Post quantum cryptography
 - Post quantum computing
 - Shors algorithm
 - Canditates for post quantum cryptography
- 2 Error correcting codes
 - Historical overview
 - Classes of error correcting codes.
- McEliece Cryptosystem
 - Basics
 - Key generation
 - Encryption
 - Decryption
 - Signature creation
 - Key space
 - Correctness
 - Security properties
- Mindarraitar cryptocyctom

Quantum computing

What is quantum computing?

- Computer based on principle of quantum mechanics
- Quantum computer contains qbits instead of bit
 - Every qbit can be in state 0 or 1 but can also be in every *sperposition* in between
 - The state is destroyed by reading it (see Schrödingers cat)
- They are able to solve computational strong problems efficient

How real is it?

- 2001: IBM Almaden Research Center realized a system with 7 Qubits
 - Factored 15 into it's prime factors 3 und 5
- ...
- 2013: D-Wave Systems sells first quantum computes to Google and NASA

We can say that quantum computing is a huge game changer on the filed of computation.

We can't say how real they are.

Cryptography pre- and post quantum

What is changing with focus on cryptography?

- Asymmetric state of the art security is no longer secure
 - RSA → prime factorization
 - ullet ECC o discrete logarithm problem
- Symmetric algorithms are still secure

We need other asymmetric cryptographic schemes than the established ones.

Post quantum computing

Post quantum cryptography

- Created by Daniel J. Bernstein
- Algorithm loosing almost no security executed on a quantum computer
- Completely different mathematical base than established ones

Shors algorithm

Shors algorithm

- Developed 1994 by Peter Shor
- Solves prime factorization and discrete logarithm problem efficiently
- Monte Carlo Algorithm
- Classical part
 - Mainly calculating gcd
- Quantum part
 - Mainly quantum Fouriertransformation

Classical part

For n as composed number:

```
start:
select an integer 1 < x < n
if gdc(x,n) is 1 // Euclidian algorithm
 return 1
else
 r = compute\_order(x) // quantum part
 if r is odd or x^(r/2) is equivalent -1 \pmod{n}
 goto start
 else
  return gcd(x^{(r/2)} - 1, n)
```

Quantum part (sketch)

For n as input from the classical part:

```
start: Determine q as power of 2 with n^2 <= q <= 2n^2 Init the input register with superposition of a mod q Init the output register with x^a \pmod n Perform quantum Fouriertransformation on input register r = meassurement of output register if r != order(x) goto start else return r
```

Note: The input quantum reg has all possible states of a mod.

Complexity considerations

- $O((log n)^3)$ Instructions
- Complexity class of BQP
- •

Shors algorithm

Lattice-based cryptography

- Came um in 1996
- Lattice over a n-dimensional finite Euclidian field
 - Strong peridicity required
- Set of vectors setting up the base
- Unique representation
- Cryptographic problem: Finding closest vector to an lattice point
- •

Multivariate cryptography

- First mentione 1988
- Multivariate polynomials over a finite field F
- Defined over both a ground and an extension field
- Promising for digital signatures
- Private key consist of two affine transformations having an group endomorphism
- Public key is the concatination of them

Hash-based cryptography

- Created by Lamport and Merkle in 1979
- Only usable for digital signatures
- Hash-based cryptographic algorithms
 - PQ resistance required
- Limited count of signatures for one key

Code-based cryptography

- Founded by Robert McEliece in 1978
- Based on error correcting codes
 - Goppa Codes
 - Irreducibility
- Good for encryption
- Difficult for signing

Historical overview

CRC

Classes of error correcting codes.

Hamming codes

PQ Crypto

Basics

McEliece Cryptosystem

- Binary, irreducibility Goppa codes C
 - Length: $n = 2^m$
 - Dimension of k >= n tm
 - Correct up to t errors
- Irreducible polynomial
 - Degree: t over $GF(2^m)$.
 - Dimension of k >= n tm

Establishing a key pair

Key generation

- Select n and t which defines the code
- Select an polynomial of degree t over $GF(2^m)$
- Test t if it is irreducible
 - repeat if it is reducible
- Produce a $n \times k$ generator matrix G
- To improve the efficiency G can be transformed into canonical form

• Camouflage G

- Select S
 - Random dense $k \times k$ matrix
 - Nonsingular "scrambling"
- Select Permutationmatrix P
 - Random $n \times n$ matrix
- Compute G' = SGP
 - Same rate and distance like G

- Divide message into k-bit blocks u
- x = uG' + z
 - ullet z is a random vector with length n and weight t
- x will be transmitted encrypted to the key owner

Decryption

Decrypting a message

With x as received cipher text message block:

- Eliminate P: $x' = xP^{-1}$
 - P^{-1} inverse of permutation matrix
- Perform correcting algorithm for C
 - Codeword u' next to x' is calculated
 - Suggested error correction: Algorithm of Patterson
- Get the plaintext $u = u'S^{-1}$
 - Eliminate

Signature creation

•

Issues with creating a signature

Solutions

Key space

Lenght of cryptographically strong keys

Correctness

Correctness of the presented scheme

Security properties

Security properties

Comparison to McEliece cryptosystem

Introduction to Niederreither cryptosystem

Introduction to Niederreither cryptosystem

Example of the McEliece Cryptosystem

Setup

- Generator
- Die andere Matrix etc.

Example of the McEliece Cryptosystem

Setup

- Generator
- Die andere Matrix etc.

Example of the McEliece Cryptosystem

Setup

- Generator
- Die andere Matrix etc.

....

• test