

编译论坛

深度学习硬件平台

嘉宾: 韩梅

主要内容

先进编译实验室 **Advanced Compiler**

人工智能芯片

应用场景

背景background

随着深度神经网络模型层数的增加,与之相对应的权重参数 成倍地增长,从而对硬件的计算能力、内存带宽及数据存储等有较高的要求。所以必须找到更好的硬件计算加速方案,以满足不断增长的数据量和不断扩大的网络规模。

四类人工智能芯片

GPU FGPA ASIC 类脑芯片

传统cpu局限性

四大类人工智能芯片

根据其技术架构,可分为GPU、FPGA、ASIC及类脑芯片。针对数据训练阶段,被业内广泛接受的是 CPU + GPU 的异构模式。而针对数据推断阶段,则较多地依赖于CANTAGERGA 或 ASIC。

Control ALU ALU ALU ALU Cache DRAM CPU

Advanced Compiler

GPU

英伟达在 2006 年推出了统一计算设备构架 CUDA 及对应的 G80 平台,第一次让 GPU 具有可编程性,使得 GPU 的流式处理器除了处理图形也具备处理单精度浮点数的能力。自从 AlexNet在 2012 年的 ImageNet 比赛中取得优异成绩以来,

大量依赖 GPU 运算的深度神经网络软件框架(如TensorFlow、PyTorch、Caffe 等)的出现极大地降低了 GPU 的使用难度,因此它也成为人工智能硬件首选,在云端和终端各种场景均被率先应用,也是目前应用范围最广、灵活度最高的 AI 硬件。

先进编译实验室 Advanced Compiler FPGA全称为可编程逻辑门阵列,是一种"可重构" 芯片,主要包含可编程逻辑块、片上储存器及用 于连接逻辑模块的可重构互连层次结构。

在计算单元上,FPGA采用了大量的可配置逻辑单元模块(CLB),这些模块通过查找表(LUT)的方式实现各种功能。

在存储方面,出于灵活性的考虑,通常FPGA在 片内提供了很多存储资源,可以配置成不同的形 式来使用。

在控制上,FPGA则需要设计者通过配置CLB的式来控制和使用片内的资源。

01

可重构

FPGA 芯片可以被重 复编程 02

可定制

FPGA 可以根据应用需求灵活地对数据位宽进行配置

03

低功耗

FPGA平均功耗低于 GPU 04

高性能

FPGA 芯片上具有大量的片上存储资源,可以提供强大的带宽和并行访存能力。

基本单元的 计算能力有限

硬件编程困难

FPGA 价格较 为昂贵

全定制化的ASIC

ASIC 是专用集成电路,是指应特定用户要求和特定电子系统的需要而设计、制造的集成电路。 ASIC从性能、能效、成本均极大的超越了标准芯片,非常适合AI计算场景,是当前AI公司开发的目标产品之一。

例如近些年类似谷歌的 TPU、寒武纪的 NPU、 地平线的 BPU、英特尔的 Nervana、微软的 DPU、百度的 XPU 等芯片,本质上都属于基 于特定应用的人工智能算法的 ASIC 定制芯片。

周期长

需要大量设计时间以及验 证和物理设计周期, 因此 需要相对多的上市时间

成本低

量产后 ASIC 的成本会远 远低于FPGA 方案

不可更改

ASIC 一旦制造完成将不能更改

ASIC的三大特点

相比于同样工艺 FPGA 实现,ASIC 可以实现 5-10 倍的计算加速,且量产后 ASIC 的成本会大大降低。

不同于可编程的 GPU 和 FPGA,ASIC 一旦制造完成将不能更改,因此具有开发成本高、周期长、

先进编译实验室 Advanced Compiler

等问题

类脑芯片

类脑芯片不采用经典的冯·诺依曼架构, 而是基于神经形态架构设计,算法是脉冲神经网络(SNN)。在基于冯诺依曼结构的计算芯片中,计算模块和存储模块分离处理从而引入了延时及功耗浪费。类脑芯片侧重于仿照人类大脑神经元模型及其信息处理的机制。

它的内存、CPU 和通信部件完全集成在一起。信息的处理完全在本地进行,而且由于本地处理的数据量并不大,传统计算机内存与 CPU 之间的瓶颈不复存在。其中典型的有 IBM 的 TrueNorth、英特尔的Loihi、高通的 Zeroth、清华大学的天机芯等。

技术架构	定制化程度	可编辑性	算力	价格	优点	缺点
GPU	通用性	不可编辑	中	高	1、通用性较强且适合大规模并行运算; 2、设计和制造工艺成熟	并行运算能力在推理端 无法完全发挥
FPGA	半定制化	容易编辑	高	中	1、可通过编程灵活配置 芯片架构适应算法迭代, 平均性能较高; 2、功耗较低; 3、开发时间较短(6个月)	1、量产单价高; 2、峰值计算能力较低; 3、硬件编程困难
ASIC	全定制化	难以编辑	高	低	通过算法固化实现极致的性能和能效、平均性很强; 功耗很低;体积小;量产 后成本最低	1、前期投入成本高; 2、研发时间长(1年); 3、技术风险大
类脑芯片	模拟人脑	不可编辑	高	-	最低功耗; 通信效率高; 认知能力强	目前仍处于探索阶段
Compiling V						

随着技术成熟化、AI芯片的应用场景除了在云端及大数据中心、也会随着算力逐渐向边缘侧移动。智能产品种类也日趋丰富。未来、AI计算将无处不在。

边缘侧

对于某些应用,由于各种原因 (如延迟,带宽和隐私问题) 必须在边缘节点上执行推断

云端

当前,大多数AI训练和推理工作负载都发生在公共云和私有云中,云仍是AI的中心。

终端设备

可以第一时间对收集的数据进行处理,极为加快了系统响应也减少了系统处理延迟

云端训练

- 可部署芯片: GPU/GPU/ASIC
- 芯片特征: 高吞吐量、高精 确率、可编程性、分布式、 可扩展性、高内存与带宽
- **计算能力与功耗**: >30TOPS, >50W
- 应用: 云/HPC/数据中心

云端推理

- 芯片特征: 高吞吐量、高精 确率、分布式、可扩展性、 低延时
- **计算能力与功耗**: 30TOPS, >50W
- 成用: 云/HPC/数据中心

边缘计算

可部署芯片: GPU/GPU/ASIC/FPGA

- 芯片特征:降低AI计算延迟、可单独 部署或与其他设备组合(如5G基站) 可将多个终端用户进行虚拟化、较小 的机架空间、扩展性及加速算法
- 计算能力与功耗:

5~30TOPS, 4~15W

应用:智能制造、智慧家居、智慧交通等、智慧金融等众多领域

终端设备

■ 可部署芯片:

GPU/GPU/ASIC/FPGA

- 芯片特征: 低功耗、高能效、推理任务为主、较低的吞吐量、低延迟、成本敏感
- 计算能力与功耗:
 <8TOPS, <5W

■ 应用: 各类消费电子,产品形态多

样; 以及物联网领域

参考文献

- 1.2022中国人工智能芯片行业研究报告
- 2.aichip人工智能芯片研究报告2018
- 3.背景_深度学习相关研究综述_张军阳
- 4.深度神经网络 FPGA 设计进展、实现与展望_焦礼成
- 5.智能计算系统_陈云霁等
- 6.人工智能芯片技术白皮书 (2018)

