introduction_project

November 23, 2023

1 Réseau de chambres magmatique

Lorette Drique et Sylvain Brisson Master géophysique de l'IPGP Encadré par Raphaël Grandin

1.1 I. Modélisation d'un écoulement au sein d'un réseau de chambres magmatiques

1.1.1 Modélisation du problème

On suppose G un graphe valué de chambres magmatiques. Les valeurs des arrêtes λ_{ij} représente la conductivité hydraulique entre la chambre i et la chambre j, les valeurs prisent pas les sommets b_i représentent la compressibilité de la chambre.

Par conservation de la masse on obtient l'équation suivante :

$$b_i\dot{p}_i = \sum_{j\neq i} \lambda_{ij}(p_j-p_i) + f_i$$

Avec p_i la pression dans la chambre i et f_i un terme source.

On peut réecrire ce système sous la forme :

$$\dot{p}_i = A_{ij}p_j + f_i$$

Avec A telle que:

$$A_{ij} = \begin{cases} \lambda_{ij}/b_i & \text{si } i \neq j \\ -\left(\sum_{k \neq i} \lambda_{ik}\right)/b_i & \text{si } i = j \end{cases}$$

On se propose d'implémenter un tel système avec la bibliothèse networkx puis de résoudre ce problème numériquement puis analytiquement.

1.1.2 Implémentation du problème avec networkx

```
[24]: import networkx as nx import matplotlib.pyplot as plt import numpy as np from scipy.integrate import odeint import matplotlib as mpl import matplotlib
```

```
matplotlib.rc('figure', figsize=(10, 5))
plt.style.use('ggplot')
```

```
def graph_1D_N_chambers(N):
    """

Graph 1D de N chambres magmatiques, compressibilités et conductivités_
constantes

Chambre 0 : compressibilité infinie
    """

G = nx.Graph()

# 1. ajout des noeuds
G.add_node(0, compressibility=1e12)
for i in range(1,N+1):
    G.add_node(i, compressibility=1)

# 2. ajout des arrêtes
for i in range(N):
    G.add_edge(i, i+1, conductivity=1)

return G
```

```
def get_compressibility(G,i):
    """Retourne la compressibilité de la chambre i"""
    return G.nodes[i]["compressibility"]

def get_conductivity(G,i,j):
    """Retourne la conductivité du conduit entre i et j"""
    try :
        # print(i,j,G.get_edge_data(i,j)["conductivity"])
        return G.get_edge_data(i,j)["conductivity"]
    except:
        # print(i,j,O)
        return O.
```

```
[3]: def draw_chambers(G, node_size_factor=400, edge_width_factor=4):

seed = 13648
pos = nx.spring_layout(G, seed=seed)

node_sizes = [G.nodes[node]["compressibility"]*node_size_factor for node in_u
G.nodes]
```

```
node_sizes[0] = 5*node_size_factor
  edge_sizes = [G.edges[edge]["conductivity"]*edge_width_factor for edge in G.

dedges]

nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color="indigo")
nx.draw_networkx_edges(
        G,
        pos,
        node_size=node_sizes,
        width=edge_sizes,
    )

nx.draw_networkx_labels(G, pos, font_color="w")

ax = plt.gca()
ax.set_axis_off()
plt.show()
```

```
[25]: G = graph_1D_N_chambers(2)
draw_chambers(G)
```


1.1.3 Résolution numérique du système

Appel à la fonction odeint de scipy.

```
[6]:  # Construction de la matrice du système A
```

```
def build_matrix_A(G):
    11 11 11
    Construit à partir de la description du système sous forme de graph la⊔
 \hookrightarrow matrice A du système dp/dt = Ap
    11 11 11
    # Initiation matrice
    N = len(G) - 1 \# N'inclut pas la source
    A = np.zeros((N,N))
    # Remplissage des coefficients
    for i in range(1,N+1):
        for j in range(1,N+1):
            # Terme en i,i
            if j == i:
                # print("i=j",i)
                A[i-1,i-1] = - sum([get\_conductivity(G,i,k) for k in range(N+1)_{\sqcup})
 →if k != i]) / get_compressibility(G,i)
            # Terme en i, j (j!=i)
            else :
                 # print("i!=j",i,j)
                A[i-1,j-1] = get_conductivity(G,i,j)/get_compressibility(G,i)
    return A
# Construction du vecteur de pondération du terme source
def build_vector_B(G):
    # Initiation matrice
    N = len(G) - 1 \# N'inclut pas la source
    B = np.zeros(N)
    for i in range(1,N+1):
        B[i-1] = get_conductivity(G,0,i)/get_compressibility(G,i)
    return B
```

```
[8]: def compute_pressure_time_serie(G, source, t_max, p0):

# Domaine temporel de résolution (système adimentionalisé : temps

caractéristique ~ 1)

t_space = np.linspace(0.,t_max,1000)

# Construction matrice du système
```

```
A = build_matrix_A(G)
B = build_vector_B(G)

source_B = lambda t : B * source(t)

# Résolution du système
def system(p, t):
    dpdt = np.dot(A, p) + source_B(t)
    return dpdt

p = odeint(system, p0, t_space)

return p
```

```
[28]: # Construction du graph des chambres
N = 3
G = graph_1D_N_chambers(N)

# Conditions initiales
p0 = np.zeros(N)

# définition du terme source : ici marche de pression dans la chambre 0
def source(t, t_s=0.): return 1 if t >= t_s else 0

# temps résolution
t_max = 20.

p = compute_pressure_time_serie(G, source, t_max, p0)
```

[29]: []

[30]: []


```
[31]: # Exemple plus complexe
G = nx.Graph()

# 1. ajout des noeuds
G.add_node(0, compressibility=1e12)
for i in range(1,4):
        G.add_node(i, compressibility=1)

# 2. ajout des arrêtes
G.add_edge(0, 1, conductivity=4)
G.add_edge(1, 2, conductivity=4)
G.add_edge(2, 3, conductivity=4)
G.add_edge(0, 3, conductivity=1)

draw_chambers(G, node_size_factor=500, edge_width_factor=2)
```



```
[32]: # Construction du graph des chambres
N = len(G) - 1

# Conditions initiales
p0 = np.zeros(N)

# définition du terme source : ici marche de pression dans la chambre 0
def source(t, t_s=0.): return 1 if t >= t_s else 0

# temps résolution
t_max = 5.

p = compute_pressure_time_serie(G, source, t_max, p0)
```

```
[33]: # # Tracé des pressions dans les 3 chambres au cours du temps
# plt.plot(t, [source(t_)[0] for t_ in t], label="Source", color="k", ls=":")

t_space = np.linspace(0, t_max, p.shape[0])
plt.plot(t_space, [source(t_) for t_ in t_space], label="Source", color="k", ls=":")

for i in range(N):
    plt.plot(t_space, p[:,i], label=f"Chambre {i+1}")

plt.xlabel("Time")
plt.ylabel("Pressure")

# plt.xlim([0, 10])
```

```
plt.legend()
plt.plot()
```

[33]: []

[34]: []

1.1.4 Résolution analytique

On applique à notre système la transformée de Laplace, on recourt au module de calcul symbolique sympy pour : 1. Définir la matrice gouvernant le système 2. L'inverser 3. Résoudre le système en multipliant l'inverse par le terme source 4. Appliquer une transformée de laplace inverse

```
[35]: from sympy import Matrix, symbols, print_latex
    from sympy import laplace_transform, inverse_laplace_transform
    from sympy import lambdify

[36]: # définition des symboles
    s,t = symbols('s,t') # coordonée de laplace et temps

[47]: # COnstruction de la matrice M = sI - A

N = 3
    G = graph_1D_N_chambers(N)
    A = build_matrix_A(G)

M = Matrix(
    [
        [s, 0, 0],
        [0, s, 0],
        [0, o, s]
    ]) - A
```

```
# inversion
        iM = M.inv()
        iΜ
[47]: [
            1.0s^2 + 3.0s + 1.0
                                      1.0s + 1.0
         \frac{1.0s+2.0}{1.0s^3+5.0s^2+6.0s+1.0} \underbrace{\frac{1.0s^2+4.0s+3.0}{1.0s^3+5.0s^2+6.0s+1.0}}
         \frac{1.0s^3 + 5.0s^2 + 6.0s + 1.0}{1.0s^3 + 5.0s^2 + 6.0s + 1.0}
                                \frac{1.0s^3 + 5.0s^2 + 6.0s + 1.0}{1.0s + 2.0}
\frac{1.0s^3 + 5.0s^2 + 6.0s + 1.0}{1.0s^3 + 5.0s^2 + 6.0s + 1.0}
         \frac{1.0}{1.0s^3 + 5.0s^2 + 6.0s + 1.0} 
[48]: # Définition du terme source
        # TL d'une fonction heaviside : 1/s
        f L vector = Matrix([1/s, 0, 0])
        # Calcul de l'expression des pression (toujours en Laplace)
        p_L_vector = iM * f_L_vector
        p_L_vector
[48]:
         \frac{1.0s^2 + 3.0s + 1.0}{s(1.0s^3 + 5.0s^2 + 6.0s + 1.0)}1.0s + 1.0
         \overline{s(1.0s^3+5.0s^2+6.0s+1.0)}
         \frac{1.0}{s(1.0s^3+5.0s^2+6.0s+1.0)} 
[49]: # Transformée de laplace inverse
        p_symb = \{\}
        for i in range(N):
             try:
                   p_symb[i+1] = inverse_laplace_transform(p_L_vector[i], s, t)
              except ValueError:
                   p_symb[i+1] = "Sympy error"
[50]: p_symb[1]
 [50]: 1.0 \left(-0.107574342326077 e^{1.75302039628253 t} - 0.349291695416089 e^{3.44504186791263 t} - 0.543133962257834 e^{4.801937735802039628253 t} \right) 
       1.1.5 Comparaison méthodes numériques et symboliques
[51]: # Conditions initiales
        p0 = np.zeros(N)
        \# définition du terme source : ici marche de pression dans la chambre 	extit{O}
        def source(t, t_s=0.): return 1 if t >= t_s else 0
        # temps résolution
        t_max = 20.
        p = compute_pressure_time_serie(G, source, t_max, p0)
[53]: t_space = np.linspace(0, t_max, p.shape[0])
```

 $N_t = len(t_space)$

[53]: []

