Ozone groups and centers of skew polynomial rings arXiv: 2302.11471

ui/(iv. 2002.11111

Seattle Noncommutative Algebra Days Seattle, WA March 18, 2023

> Jason Gaddis Miami University (no, the other one)

My collaborators

Kenneth Chan

Robert Won

James Zhang

Setup

Let k be a field of characteristic zero.

Let $\mathbf{p} = (p_{ij}) \in M_n(\mathbb{k}^{\times})$ be multiplicatively antisymmetric $(p_{ii} = 1 \text{ for all } i \text{ and } p_{ij} = p_{ji}^{-1} \text{ for all } i \neq j)$.

The skew polynomial ring S_p is the k-algebra

$$S_{\mathbf{p}} = \mathbb{k}_{\mathbf{p}}[x_1, \dots, x_n] = \frac{\mathbb{k}\langle x_1, \dots, x_n \rangle}{(x_j x_i = p_{ij} x_i x_j)}$$

- S_p is AS regular
- S_p has global and GK dimension n
- S_p is PI if and only if each p_{ij} is a root of unity

Motivation

In case S_p is PI, we want to understand the properties of S_p and its center $Z=ZS_p$. For example, when is Z Gorenstein or regular (a polynomial ring)?

Example (n = 2)

Let $S = \mathbb{k}_{\mathbf{p}}[x_1, x_2]$. Then

$$\mathbf{p} = \begin{pmatrix} 1 & \rho_{12} \\ \rho_{12}^{-1} & 1 \end{pmatrix}$$

where p_{12} is an ℓth root of unity.

Which monomials are central?

$$(x_1^i x_2^j) x_1 = p_{12}^j x_1 (x_1^i x_2^j)$$

$$(x_1^i x_2^j) x_2 = p_{12}^{-i} x_2 (x_1^i x_2^j)$$

So $x_1^i x_2^j$ central if and only if $i \equiv j \equiv 0 \mod \ell$. Thus,

$$Z(S) = \Bbbk[x_1^\ell, x_2^\ell]$$

The case n=3 is already significantly harder. Here we will give one way of attacking this problem.

Let $\phi_i \in Aut_{gr}(S_p)$ denote conjugation by x_i :

$$\phi_i(f) = x_i^{-1} f x_i$$
 for all $f \in S_p$

Let $O = \langle \phi_1, \dots, \phi_n \rangle$, which is a subgroup of $\operatorname{Aut}_{\operatorname{gr}}(S_p)$.

It is clear that

$$Z=ZS_{\mathbf{p}}=S_{\mathbf{p}}^{O},$$

so we can employ tools from (noncommutative) invariant theory.

One can show that $O = Aut_{Z-alg}(S)$.

Some other famous ozones:

The ozone molecule

The G.I. Joe character

The Motown funk band

OZONE

Definition

Let A be a noetherian PI AS regular algebra with center Z. The ozone group of A is

$$Oz(A) = Aut_{Z-alg}(A).$$

In general we have

$$1 \leq |\operatorname{Oz}(A)| \leq \operatorname{rank}(A_Z)$$
.

The ozone group can be used to characterize skew polynomial rings.

Theorem (CGWZ)

Suppose $\mathbb{k} = \overline{\mathbb{k}}$ and A is generated in degree 1. Then A is a skew polynomial ring if and only if Oz(A) is abelian and $|Oz(A)| = rank(A_Z)$.

Example

Let A be the quantum Heisenberg algebra

$$\mathbb{k}\langle x, y, z \rangle / (zx = pxz, zy = p^{-1}yz, yx = pxy - z^2).$$

where p is a primitive ℓ th root of unity.

Set
$$\Omega = (yx - p^2xy)$$
. The center of A is generated by x^{ℓ} , y^{ℓ} , z^{ℓ} , and $\Omega z^{\ell-1}$.

Let $\phi \in Oz(A)$. A computation shows

$$\phi(x) = \epsilon_1 x$$
, $\phi(y) = \epsilon_2 y$, $\phi(z) = \epsilon_3 z$

where each ϵ_i is an ℓ th root of unity.

In order to fix $\Omega z^{\ell-1}$ and satisfy $0 = \phi(yx - pxy + z^2)$, we must have

$$\epsilon_3 = 1$$
 and $\epsilon_2 = \epsilon_1^{-1}$.

This implies that $Oz(A) \cong C_{\ell}$.

Lemma

If A and B are noetherian PI AS regular algebras, then

$$Oz(A \otimes B) = Oz(A) \times Oz(B).$$

Hence, every finite abelian group is realizable as the ozone group of a noetherian PI AS regular algebra.

Example

Let A be the 3-dimensional Sklyanin algebra S(1,1,-1)

$$\mathbb{k}\langle x,y,z\rangle/(xy+yx=z^2,yz+zy=x^2,zx+xz=y^2).$$

A similar computation to the previous one shows that the ozone group of A is trivial.

We conjecture that the ozone group is abelian for every PI AS regular algebra.

For non-connected algebras the ozone group may be non-abelian.

The mozone

One can ask if there is a "Galois-like" correspondence for the ozone group.

Definition

Let A be a noetherian PI AS regular algebra with center Z.

- (1) A subring R of A is called ozone if R is AS regular and $Z \subseteq R \subseteq A$.
- (2) The set of all ozone subrings of A is denoted by $\Phi_Z(A)$.
- (3) If R is a minimal element in $\Phi_Z(A)$ via inclusion, then R is called a mozone subring of A.

Proposition (CGWZ)

Let $S = S_p$ be PI and let O be the ozone group of S. Let H denote the subgroup of O generated by reflections. Then S^H is a mozone subring of S.

Reflections

Let $S = S_p$ be PI, let $Z = ZS_p$, and let O be the ozone group of S.

Since the automorphisms of O are diagonal, a reflection of O is a classical reflection.

Let H denote the subgroup of O generated by reflections.

Theorem (Kirkman, Kuzmanovich, Zhang (2010))

Let G be a finite subgroup of $\operatorname{Aut}_{\operatorname{gr}}(S)$. Then S^G has finite global dimension if and only if G is generated by reflections of S. In this case, S^G is again a skew polynomial ring.

By the above theorem, Z is regular if and only if O = H.

Theorem (Kirkman, Kuzmanovich, Zhang (2009))

Let G be a finite subgroup of $\operatorname{Aut}_{\operatorname{gr}}(S)$. Then S^G is Gorenstein if and only if G/H acts on S^H with trivial homological determinant.

Reflections

Proposition (CGWZ)

Set

$$\mathfrak{f}_i=\gcd\{d_i\mid x_1^{d_1}\cdots x_i^{d_i}\cdots x_n^{d_n}\in Z\}.$$

Then

$$H = \prod_{i=1}^{n} \langle r_i \rangle$$
 where $r_i : x_j \mapsto \begin{cases} x_j & j \neq i \\ c_i x_i & j = i \end{cases}$

for some root of unity c_i . Moreover, the order of c_i is f_i , so

$$\mathcal{S}^H = \Bbbk_{\mathbf{q}}[x_1^{\mathfrak{f}_1}, \dots, x_n^{\mathfrak{f}_n}]$$

and

$$\mathfrak{f}_i=\min\{d_i>0\mid x_1^{d_1}\cdots x_i^{d_i}\cdots x_n^{d_n}\in Z\}.$$

An immediate consequence is that O contains no reflections if and only if each $f_i=1$.

Auslander's Theorem

Let A be an algebra and let G a subgroup of $\operatorname{Aut}(A)$. The Auslander map $A\#G \to \operatorname{End}(A_{A^G})$ is given by

$$a\#g\mapsto \left(egin{array}{ccc}A& o&A\\b&\mapsto&ag(b)\end{array}
ight)$$

Auslander's original theorem says that for A a polynomial ring, the Auslander map is an isomorphism if and only if G is small (contains no reflections).

Theorem (CGWZ)

The following are equivalent:

- (1) The Auslander map is an isomorphism for (S, O).
- (2) O is small (in the classical sense).
- (3) $f_i=1$ for all i. (There is an element of the form $x_1^{a_1}\cdots x_i\cdots x_n^{a_n}\in Z$.)

We can work this out explicitly (in terms of the parameters) for small n.

Auslander's Theorem

First, note that for the parameters $\mathbf{p}=(p_{ij})$ we can find some ℓ th root of unity ξ (where ℓ is minimal) such that $p_{ij}=\xi^{b_{ij}}$ for some integers b_{ij} .

$$\mathbf{p} = \begin{pmatrix} 1 & p_{12} & p_{13} \\ p_{12}^{-1} & 1 & p_{23} \\ p_{13}^{-1} & p_{23}^{-1} & 1 \end{pmatrix} = \begin{pmatrix} 1 & \xi^{b_{12}} & \xi^{b_{13}} \\ \xi^{-b_{12}} & 1 & \xi^{b_{23}} \\ \xi^{-b_{13}} & \xi^{-b_{23}} & 1 \end{pmatrix}$$

$$B = \begin{pmatrix} 0 & b_{12} & b_{13} \\ -b_{12} & 0 & b_{23} \\ -b_{13} & -b_{23} & 0 \end{pmatrix} \in M_3(\mathbb{Z}/\ell\mathbb{Z})$$

The matrix $B = (b_{ij})$ is (honestly) anti-symmetric.

Recall that the Pfaffian of (a skew-symmetric matrix) B is

$$pf(B) = \sqrt{\det(B)}$$

Auslander's Theorem

Theorem (CGWZ)

- (n = 2) The Auslander map is not an isomorphism for (S, O).
- (n=3) The Auslander map is an isomorphism if and only if $\gcd(b_{ij},\ell)=1$ for each $i\neq j$.
- (n=4) The Auslander map is an isomorphism if and only if $pf(B)=0 \mod \ell$ and there does not index j and integer k such that $kb_{ij}=0 \mod \ell$ for all but one i.

In case n = 3, pf(B) is automatically zero. This demonstrates that the Pfaffian plays an important role in analyzing these algebras.

Regular center

Recall that, in the n = 2 case, Z is always regular.

There is an algorithm for working out this problem in general which is explained in our paper. Here is the key lemma:

Lemma

Let \overline{B} be the matrix obtained from B by reduction mod ℓ . Let $\overline{K} = \ker(\overline{B})$ and let $K \subset \mathbb{Z}^n$ be its inverse image.

Then $Z = \mathbb{k}[x_1^{\mathfrak{f}_1}, \dots, x_n^{\mathfrak{f}_n}]$ if and only if $\mathfrak{f}_i \mathbf{e}_i \in K$ for each i.

Equivalently, $f_i \mathbf{e}_i \otimes 1 \in K \otimes \mathbb{Z}_{(p)}$ for every prime $p \mid \ell$ and each i.

For each $p \mid \ell$, we work out an explicit generating set of $K \otimes \mathbb{Z}_{(p)}$ in the cases above. These can then be glued together to get a generating set for K.

Regular center

Let n=3. The Smith normal form D=LBR of B over the ring $\mathbb{Z}_{(p)}$ is

$$D = \begin{bmatrix} b_{12} & 0 & 0 \\ 0 & -b_{12} & 0 \\ 0 & 0 & 0 \end{bmatrix}, L = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ b_{23}/b_{12} & -b_{13}/b_{12} & 1 \end{bmatrix}, R = \begin{bmatrix} 0 & 1 & b_{23}/b_{12} \\ 1 & 0 & -b_{13}/b_{12} \\ 0 & 0 & 1 \end{bmatrix}.$$

The kernel of $D_{(p)}$ is generated, as a $\mathbb{Z}_{(p)}$ -module, by $p^N \mathbf{e}_1$, $p^N \mathbf{e}_2$, \mathbf{e}_3 .

Applying R to these gives that $K_{(p)}$ is generated as a $\mathbb{Z}_{(p)}$ -module by $p^N \mathbf{e}_i$ and

$$\frac{1}{b_{12}} \begin{bmatrix} b_{23} \\ -b_{13} \\ b_{12} \end{bmatrix}.$$

Theorem (CGWZ)

(n=3) Z is regular if and only if the orders of p_{12} , p_{13} , and p_{23} are pairwise coprime.

(n=4) Let $\rho=\gcd(\ell,\operatorname{pf}(B))$, $c_{ij}=\gcd(b_{ij},\rho)$, ω be a primitive ρ th root of unity, and set $q_{ij}=\omega^{c_{ij}}$. Then Z is regular if and only if the orders of the $\{q_{ij}\}_{i< j}$ are pairwise coprime.

Gorenstein center

We introduce here some "new" invariants. Several of these are "ozone versions" of invariants defined by Kirkman and Zhang (2021).

Ozone Invariants

- The ozone Jacobian of S is $\mathfrak{oj}_S := \prod_{i=1}^n x_i^{\mathfrak{f}_i-1}$.
- The ozone arrangement of S is $\mathfrak{oa}_S := \prod_{f_i>1}^n x_i$.
- The ozone Jacobian of S is $\mathfrak{od}_S := \prod_{\mathfrak{f}_i>1}^n x_i^{\mathfrak{f}_i} = \mathfrak{oj}_S \mathfrak{oa}_S$.
- The product of generators of S is $\mathfrak{pg}_S := \prod_{i=1}^n x_i$.

The first three are algebra invariants (up to a nonzero scalar) but the last one is not (depends on the presentation).

When Z is Gorenstein, then \mathfrak{od}_S is the same as $\mathfrak{j}_{S,O}$ as defined by Kirkman and Zhang.

Gorenstein center

Theorem (CGWZ)

The following are equivalent.

- (1) Z is Gorenstein.
- (2) $\mathfrak{oj}_{S}\mathfrak{pg}_{S} = \prod_{i=1}^{n} x_{i}^{\mathfrak{f}_{i}}$.
- (3) For all i, we have $\prod_{j=1}^n p_{ij}^{\mathfrak{f}_j} = 1$.

Again, when n = 2, Z is regular so Gorenstein.

Theorem (CGWZ)

(n = 3) Z is Gorenstein if and only if

$$\overline{B}(b_{23}^{\prime},b_{13}^{\prime},b_{12}^{\prime})^{T}=0$$
 where $b_{ij}^{\prime}=\gcd(b_{ij},\ell)$

(n = 4) Z is Gorenstein if and only if

$$\frac{\ell}{\gcd(\mathsf{pf}(B),\ell)}\overline{B}(v_1,v_2,v_3,v_4)^T=0 \quad \textit{where} \quad v_i=\gcd(\ell,\{b_{jk}\mid j,k\neq i\})$$

But wait! There's more!

Corollary (CGWZ)

- (1) S is Calabi-Yau if and only $\mathfrak{pg}_S \in Z$ if and only if Z is Gorenstein and Auslander's Theorem holds for (S,O).
- (2) If S is Calabi-Yau, then Z is not regular.

Questions

• Characterize S_p when ZS_p is a hypersurface ring, or a complete intersection

$$\textit{regular} \Rightarrow \textit{hypersurface} \Rightarrow \textit{complete intersection} \Rightarrow \textit{Gorenstein}$$

• For A a PI AS regular algebra, is there a semisimple Hopf algebra H such that

$$Z(A) = A^{H}$$
?

- Is there a version of previous corollary for A?
- Can we define the ozone invariants for A so that they control properties of the center?

Thank You!

Thanks James!