Al and Deep Learning

Deep Learning

Jeju National University Yungcheol Byun

Agenda

- Merging gates in a computation graph
- Vanishing gradient and ReLU
- MNIST application
- Overfitting and drop-out
- Deep Learning

is multiplication of all the local gradients in the graph (chain rule)

Merging gates

Merging gates

is multiplication of all the local gradients in the graph (chain rule)

Merging gates

is multiplication of all the local gradients in the graph (chain rule)

Merging gates

Therefore, the local gradient is derivative of the function.

Derivative of *E* with respect to *w*

$$E = (w \cdot 1 - 1)^2$$

$$\frac{\partial \mathbf{E}}{\partial \mathbf{w}} = \frac{\partial}{\partial \mathbf{w}} (\mathbf{w} \cdot 1 - 1)^2 = 2(\mathbf{w} - 1)$$

Cost/Error function

for logistic regression

$$hypo = \frac{1}{1 + e^{-wx}}$$

$$E = -y \log(hypo) - (1 - y) \log(1 - hypo)$$

Computational Graph

$$\frac{\partial E}{\partial w} =$$

Computational Graph

Merging gates
How we get the local gradient of the merged gate?

3-layer NN

3-layer NN (simplified)

10-layer Neural Network

The giant moster, computational graph!

$$\frac{\partial E}{\partial w} =$$

Hint: chain rule!

Vanishing Gradient

- The derivative of sigmoid function is (1-sigmoid) * sigmoid
- Two multiplication of sigmoid for a single neuron, 20 multiplications for 10 connected neurons
- Each sigmoid squashes the input value into the value between 0 and 1.

Vanishing Gradient

- The influence of w change on E is many multiplications of the values between 0 and 1, which gives us almost 0.
- Vanishing Gradient
- $w = w \alpha$ · (almost 0)
- $b = b \alpha$ · (almost 0)
- Therefore, no change in w and b

(Lab) 18.py

- XOR problem using 4-layer neural networks
- Failed owing to vanishing gradient

The Dark Age in Artificial Intelligence and Neural Networks (~2006)

since back-propagation by Hinton in 1986

proposed by Hahnloser in 2000 and demonstrated for deep networks in 2011

ReLU

using ReLU (Rectified Linear Unit) activation function instead of sigmoid

(Lab) 19.py

- Solving vanishing gradient problem using ReLU activation function
- Back-propagation is working by using ReLU.

So, now can go deeper.

MNIST

Modified National Institute of Standards and Technology (USA)

MNIST

(Lab) 20.py

- 60,000 training images + 10,000 testing images
- Input image : 28 * 28 pixels → 784 pixels
- 784 dimension
- 10 classes (output: 0 ~ 9)
- Softmax
- 90.23% of recognition rate

(Lab) 21.py

- Deep Neural Network (4-layer)
- ReLU
- 94.55% accuracy

(Lab) 22.py

- Applying initialization method for w and b, not randomly
- 97.23% of accuracy

(Lab) 23.py

- Applying initialization method for w and b, not randomly
- 6-layer deep neural networks
- 97.83% of accuracy

Overfitting and drop-out

- The deeper the network is, the more the decision boundary is complex.
- Good at learning data but errors for testing data → overfitted to learning data
- Making it less complex by drop-out some neurons while learning.

Which do you think is desirable decision boundary?

While the black line fits the data well, the green line is overfit.

https://elitedatascience.com

Regularization: **Dropout**

"randomly set some neurons to zero in the forward pass"

(a) Standard Neural Net

(b) After applying dropout.

[Srivastava et al., 2014]

$(Lab) \overline{24.py}$

- Applying dropout
- 98.13% of recognition accuracy

How to Prevent Overfitting

- Train with more data
- Reduce features
- Early stopping
- Ensemble
- regularization

Early stopping

Early stopping

Fully connected, then how many synapses(parameters) are there? 25 * 16 + 16 * 16 + 16 * 9 + 9 * 9 = 881

Fully connected, so how many connections are there? 25 * 16 + 16 * 16 + 16 * 9 + 9 * 9 = 881

Geoffrey Hinton, Yann LeCun, Yoshua Bengio, Andrew Ng

Deep Learning

- in early 2000s (2006, 2010, 2012)
- Deep Neural Networks
- Activation functions (ReLU)
- Weight initialization methods
- Dropout (2014)
- Big data
- GPU

FCNN

Any problem?