What features of potential candidates should be assessed for Covid-19 vaccination?

Jia HUANG, Siyu CHEN, Xia HU, Shuhui CHEN, Gefei LI 2022.08.09

Team Infrastructure

Siyu CHEN	Coordination, Logic, Data Processing, Programming
Xia HU	Data processing, Programming
Jia HUANG	Database, Models, References
Shuhui CHEN	Conclusion, Evaluation, Data Analysis
Gefei LI	Data Processing, Programming

Introduction

Problem Statement

Learn whether the life of a candidate is dangerous once taken the COVID-19 vaccine

Literature Review

Zhu et al. (2021)

 Predict whether a patient would develop severe symptoms of COVID-19 later.

Iwendi et al. (2020)

02

03

 Predict the severity of the case and the possible outcome, recovery, or death.

Shahid et al. (2021)

- A high demand for ML-aided diagnosis systems
- Predict the spread of COVID-19

De la constant de la

Data Description

Outp	ut Features	Input Features				
Vaccine Symptoms	Description	Population Features	Description	Type of Vaccine	Description	
DIED*	Death count	AGE_YRS	Age of samples	VAX_MANU	Vaccine manufacturer (MODERNA/PFIZER)	
L_THREAT	Whether people feel the life threatening	SEX	Sex (female/male) of samples	VAX_DOSE_SERIES	How much dosage of vaccine people accept	
RECOVD	Whether people suffer from side effect recovered					

Binary Description

Input Features								
Vaccine Symptoms	Desc	ription	Population Features	Descr	iption	Type of Vaccine	Descri	ption
	NO	167800		0-30	107937		MODERNA	159109
RECOVD	OVD YES AGE_YRS 30-60 167637 >60 88017	VAX_MANU	PFIZER	134505				
LTUDEAT	NO	328931	CEV	FEMALE	238317	WAY DOOR CEDIFO	1	182188
L_THREAT	YES	6506	SEX	MALE	97120	VAX_DOSE_SERIES	2 >3	112838 19813
Output Features								
DIFD*		NO				330229		
DIED*		YES				5208		

www.islide.cc

Correlation Analysis

Correlation Heat Map

- Category variables: The Gini coefficient was used to calculate variable correlations (row variable is the introduced condition variable)
- The dependent variable Gini coefficient is significantly reduced, indicating that there is a strong correlation between them.

Interesting Findings

Ratio of Having Life Threat Among Different Vaccine Manufacture

In comparison to PFIZER, people getting vaccine with Moderna has less possibility of having life threating based on vaccination side effect.

Interesting Findings

Ratio of Recovery from Vaccination Side Effect Among Different Age

Younger age under 30-year-old has more possibility getting recover from side effect after vaccination than other elder groups.

Imbalanced Data

- ✓ This problem of imbalanced dataset can lead to inaccurate results even when brilliant models are used to process that data.
- ✓ Use SMOTE methods to increase the number of cases in our dataset in a balanced way.

Working Process

Model & Results

Logistic Regression

Score-Evaluating Prediction Results				
Precision Recall Accuracy F1-S				
Score Result	0.861	0.906	0.882	0.883

Confusion Matrix			
Predict			
		No Die Die	
Actual	No Die	71596	11869
	Die	7608	73596

Decision Tree

	Grid Search						
Criterion Max_Depth Max Samples							
Range	ʻgini' ʻentropy'	5, 10, 15, 20, 25	5, 10, 15				
Best	entropy	25	5				

Confusion Matrix			
Predict			
	Not Die Die		
Actual	Not Die	72586	10879
	Die	11788	69416

Score-Evaluating Prediction Results						
	Precision Recall Accuracy F1-Sco					
Score Result	0.866	0.855	0.862	0.859		

No better than our baseline model

Random Forest

Grid Search					
	n_estimators	Max_Depth	Max_Features	Max_Samples_Split	
Range	start =200, stop=1000,num=1 0	start =10, stop=100,num=10	'auto','sqrt	2,5,10	
Best	911	80	auto	10	

Confusion Matrix

		Predict	
		Not Die	Die
Actual	Not Die	82230	13
Actual	Die	1235	81191

Score-Evaluating Prediction Results

	Precision	Recall	Accuracy	F1-Score
Score Result	0.985	0.998	0.992	0.991

Cross Validation (CV=5)

	Mean	std	Quantile (0.0025)
Result	0.992	0.002	[0.9915,0.9917]

High CV scores and low standard means the model fits well

Conclusion & Challenge

Performance Evaluation

No	Approach	Precision	Recall	Accuracy	F1-Score
1	LR	0.861	0.906	0.883	0.882
2	DT	0.866	0.855	0.859	0.862

0.985

0.998

0.991

Scores-Evaluating Prediction Results

- Logistic regression is our baseline model.
 - Random forest perform best.

RF

3

0.992

Important Features

- The 10 most important variables in the random forest model.
- AGE_YRS and ROVODE_Y are far more important than the other variables

Conclusion & Challenge

Conclusion

- Low mortality rate.
- Correlation with Age.
- The Random Forest model achieves relatively better results and can be used to predict the probability of death.
- The most important variable in the Random Forest model is age.

Challenge

Model:

More models should be tried, such as SVM.

The parameters of the existing model should be adjusted in detail to avoid overfitting.

Data:

A lot of information & Too many missing values need to delete.

More methods should be used to refine the dataset to obtain more features.

