Alice chooses	Bob —	-> Alice
Finite field k s.t. $\#k=q$ P, $Q \in k[x]$ s.t. $\deg P(x) = m$, $\deg Q(x) = n$. P, $Q \in Z[x]$ s.t. $\gcd(e,f) = 1$, where $f = (q^m-1)(q^n-1)$		
Alice publishes		
• $e \in \mathbb{Z}_{>0}$ s.t. $gcd(e,f)=1$, where $f=(q^m-1)(q^n-1)$ • $N:=PQ$, i.e. $N(x)=P(x)\cdot Q(x)$		
Bob chooses		
· M(x) (mod P(x)Q(x)), where M \in k(x) s.t.gcd (M	(x), N(x))	
Bob sends		
$C(x) := M(x) \pmod{P(x) Q(x)}$		
Explain how Alice can decrypt the copher text	N-pg in RSA, with	pro large old p
First note that f=(qm-1)(qm-1) plays the same role as	(n) in regular F	?SA-
The decryption algorithm on Alice's side is the follow	ving:	
· Comprte d = e' (mod f). This means that ed=	1+86 3867	(1)
· Comprte Cd (mod P(x) Q(x)) = M.		
proof: Cd mod PQ = (Me) mod PQ = M1+8f mod PQ =	M. (Mf) mod PQ)
Claim: Mf mod PQ = 1		
Let $H_1 = \frac{k \omega}{\langle P c_0 \rangle}$. We have that ##.	* = 9m - 1 (for theo 3.4.2.	reu) (3)
Moreover, we have		
$M = 1 \pmod{P} $ (2)		

