Index
· Recall Mean Value Thm
· Application of 1
- Proposition 1
- Corollary
-Proposition 2
- Proposition 3
· Darboux's Thm
· UW3 Zx2

Mean Value Thm:

Let $f: [a,b] \to \mathbb{R}$ be cont. on [a,b] and differentiable at each $x \in (a,b)$ Then, there exists $a \in (a,b)$ s.t. $f'(c) = \frac{f(b) - f(a)}{b-a}$

Application of this Thm:

Proposition: Suppose $f: I \rightarrow \mathbb{R}$ is differentiable at each $x \in I$

f is constant function \Longrightarrow f'(c) = 0 for any $c \in I$

slopes

Proof: (⇒) in Feb3 notes

 (\Leftarrow) Assume that $f'(c) = 0 \quad \forall c \in I$

Strategy: Take any $x \neq y$ in I. Show that f(x) = f(y)

Assume x<y

By Mean Value 7hm, there is a $c \in (x,y)$ s.t.:

 $\frac{f(y)-f(x)}{y-x}=f'(c)=0$

 \Rightarrow $f(y) - f(x) = 0 \Leftrightarrow f(y) = f(x)$

e interva

Corollary: If $f,g:I \rightarrow \mathbb{R}$ are differentiable at each $x \in I$

and if f'(c) = g'(c) at each $c \in I$, then

f(x) = g(x) + C, where C is a fixed constant

Proof: Take
$$f-g$$
. This is differentiable at each $c \in I$, and
$$f'(c) - g'(c) = 0$$
. By $f'(x) - f(x) - f(c) = C$. Then, $f(x) = g(x) + C$.

$$\frac{\text{decreasing}}{\text{Def}}: \quad f: I \to \mathbb{R} \quad \text{is increasing} \quad \text{if} \quad x \le y \quad \Rightarrow f(x) \le f(y)$$

Proposition 2: Let $f: I \to \mathbb{R}$ be differentiable at each $x \in I$ Then f is increasing $\iff f'(c) \ge 0$ for $\forall c \in I$ decreasing $\iff f'(c) \le 0$

Proof: (=) Suppose f is increasing

Take a sequence (Xn) in I s.t.:

$$\cdot \times_n < c$$
 for $\forall n \in \mathbb{N}$

$$(\chi_n) \to c \qquad \chi_{n \le c} \Rightarrow f(\chi_n) \le f(c)$$

Now, define
$$a_n = \frac{f(x_n) - f(c)}{x_n - c} \le 0$$
 $\lim_{n \to \infty} a_n = f'(c)$

Since
$$an \ge 0$$
 for $\forall n \in \mathbb{N} \Rightarrow f(c) \ge 0$

$$(\Leftarrow)$$
 Assume $f'(c) \ge 0$ for $\forall c \in I$

Strategy: Take
$$x, y \in I$$
 with $x < y$. Show that
$$f(x) \leq f(y) \iff 0 \leq f(y) - f(x)$$

By the Mean Value Thm, there is a $c \in (x, y)$ s.t.

$$f'(c) = \frac{f(y) - f(x)}{y - x}$$

$$\Leftrightarrow$$
 $f(y) - f(x) = f'(c)(y-x)$

Since frc ≥ 0 & (y-x) > 0,

it follows that $f(y) - f(x) \ge 0 \iff f(y) \ge f(x)$

Proposition 3: Let $f: I \rightarrow \mathbb{R}$ be differentiable at each $x \in I$ $(x \in Y) \Rightarrow f(x) < f(y)$ If f'(c) > 0 at each $c \in I \Rightarrow f$ is strictly increasing f'(c) < 0 strictly decreasing

Proof: Take x < y in I

By the <u>Mean Value 7hm</u>, $\exists c \in (x,y)$ s.t.

$$f'(c) = \frac{f(y) - f(x)}{y - x} \iff f(y) - f(x) = f'(c) (y - x) > 0$$

Then $f(y) - f(x) > 0 \iff f(y) > f(x)$

Note: In Prop 3 (\Leftarrow) does not hold

Counter example: $f(x) = x^3$ defined on \mathbb{R}

interval

Def: $f: I \rightarrow \mathbb{R}$, let $D = \{x \in I \mid f \text{ is differentiable at } x\}$

Define $f': D \to \mathbb{R}$ Perivative function $x \mapsto f(x)$

 $\mathcal{V} = I$, f is differentiable

Darboux's Thm:

Let $f: [a,b] \rightarrow \mathbb{R}$ be differentiable

Let λ be a value between f'(a) & f'(b) or $f'(b) < \lambda < f'(a)$

Then there exists a $c \in (a,b)$ s.t. f(c) = a

(In other words, f' [a,b] \rightarrow R satisfies the Intermediate Value Property)

<u>MW3 Exercise 2</u> Assume $f(a) < a < f(b) \rightarrow (*)$

1st Step: Define $g: [a,b] \rightarrow \mathbb{R}$ as $g(x) = f(x) - \lambda x$

g'(x) = f'(x) - a

 $(*) \Leftrightarrow g'(a) < 0 < g'(b)$

Goal: Find a $C \in (a,b)$ s.t. g'(c) = 0

 \Rightarrow Part (a): Show that there is an $x \in (a,b)$ s.t. g(x) < g(a)

and a $y \in (a,b)$ s.t. g(x) < g(b)

Part (b): Find $C \in (a,b)$ s.t. g(c) = 0

while $x \rightarrow b$. the height of gca) again by int. Value 7hm

By Rolle's Thm

$$\Rightarrow g'(c) = 0$$

proof of gob < goax & goax = gob) are similar to goax < gob