TD1:

Exercice 1. Vrai ou faux?

- a) Toute partie majorée de \mathbb{R} possède une borne supérieure.
- b) Si une partie A de \mathbb{R} possède une borne supérieure M, tout réel inférieur à M appartient à A.
- c) La somme de deux irrationnels est un irrationnel.
- d) La somme d'un rationnel et d'un irrationnel est un irrationnel.
- e) L'ensemble des irrationnels est un intervalle de \mathbb{R} .
- f) Entre deux rationnels distincts, il existe toujours un irrationnel.
- g) La fonction partie entière est croissante.
- h) Tout réel possède des approximations rationnelles à 10^{-p} près, quel que soit l'entier p.

Exercice 2. Démontrer que pour tous réels x et y :

a)
$$|x| + |y| \le |x + y| + |x - y|$$

b)
$$1 + |xy - 1| \le (1 + |x - 1|)(1 + |y - 1|)$$

Exercice 3. *Montrer que :*

1.
$$\forall (a,b) \in \mathbb{R}^2$$
, $\sqrt{a+b} \leq \sqrt{a} + \sqrt{b}$. Etudier dans quel cas on a l'égalite.

2.
$$\forall (a,b) \in \mathbb{R}^2$$
, $\left| \sqrt{|a|} - \sqrt{|b|} \right| \le \sqrt{|a-b|}$

Exercice 4. *On considère la partie de* \mathbb{R} *suivante :*

$$A = \left\{ \frac{x^2 + 2}{x^2 + 1} \mid x \in \mathbb{R} \right\}$$

Déterminer, s'ils existent, sup A, inf A, min A, max A.

Exercice 5.

Montrer que $\sqrt{3} \notin \mathbb{Q}$

Exercice 6.

On suppose que $\sqrt{2}$, $\sqrt{3}$ et $\sqrt{6}$ sont irrationnels. Montrer que

1.
$$\sqrt{2} + \sqrt{3} \notin \mathbb{Q}$$

2.
$$\left(\sqrt{2}+\sqrt{3}\right)^2\notin\mathbb{Q}$$

3.
$$\sqrt{2} + \sqrt{3} + \sqrt{6} \notin \mathbb{Q}$$

4.
$$(3\sqrt{2} + 2\sqrt{3} + \sqrt{6})^2 \notin \mathbb{Q}$$

On rappelle que $(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc$

Exercice 7.

- 1. Montrer que $\forall x \in \mathbb{Z}$, E(x) + E(-x) = 0.
- 2. Montrer que $\forall x \in \mathbb{R} \backslash \mathbb{Z}$, E(x) + E(-x) = -1

Exercice 8 (Valeurs approchées de racines carrées).

Soient deux réels strictement positifs $a \leq b$, $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ les deux suites strictement positives définies par :

$$\begin{cases} u_0 = a & et \quad v_0 = b \\ u_{n+1} = \frac{2u_n v_n}{u_n + v_n} & et \quad v_{n+1} = \frac{u_n + v_n}{2} \end{cases}$$

- 1. Montrer que, pour tout $n \in \mathbb{N}$, $u_n \leq v_n$ (on pourra exprimer $v_n u_n$ sous forme d'une fraction en u_{n-1} et v_{n-1}).
- 2. Montrer que $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont convergentes, puis que leurs limites sont égales.
- 3. À l'aide du produit $u_n v_n$ déterminer la valeur de cette limite.
- 4. Application : donner des approximations rationnelles de $\sqrt{2}$ et $\sqrt{3}$.

Exercice 9. Soit la suite numérique (u_n) définie sur \mathbb{N} par : $u_0 = 2$ et, pour tout entier naturel n, $u_{n+1} = \frac{2}{3}u_n + \frac{1}{3}n + 1$.

- 1. a) Calculer u_1 , u_2 , u_3 et u_4 . On pourra en donner des valeurs approchées à 10^{-2} près.
 - b) Formuler une conjecture sur le sens de variation de cette suite.
- 2. a) Démontrer que pour tout entier naturel n, $u_n \leq n+3$.
 - b) Démontrer que pour tout entier naturel n, $u_{n+1} u_n = \frac{1}{3}(n+3-u_n)$.
 - c) En déduire le sens de variation de la suite (u_n) .
- 3. On désigne par (v_n) la suite définie sur \mathbb{N} par $v_n = u_n n$.
 - a) Démontrer que la suite (v_n) est une suite géométrique de raison $\frac{2}{3}$.
 - b) En déduire que pour tout entier naturel n, $u_n = 2 \times (\frac{2}{3})^n + n$
 - c) Déterminer la limite de la suite (u_n) .
- 4. Pour tout entier naturel non nul n, on pose :

$$S_n = \sum_{k=0}^n u_n = u_0 + u_1 + \dots + u_n$$
 et $T_n = \frac{S_n}{n^2}$.

2

- a) Exprimer S_n en fonction de n.
- b) Déterminer la limite de la suite (T_n) .

Exercice 10. Soit $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et la relation de récurrence

$$u_{n+1} = \frac{u_n + 8}{2u_n + 1}$$

Et soit $(v_n)_{n\in\mathbb{N}}$ définie par

$$v_{n+1} = \frac{u_n - 2}{u_n + 2}.$$

- 1. Montrer que $(u_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison $\frac{-3}{5}$
- 2. Exprimer v_n en fonction de n.
- 3. Exprimer u_n en fonction de n.
- 4. Montrer que $(u_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite.