Introduction to Karas & Impact of Genomic Context on Variant Calling

Arkarachai Fungtammasan (Chai)

Steve Osazuwa Naina Thangaraj Jason Chin

Purpose

- Introduction to Keras and how to use it for deep learning in genomics
- Use case on studying the impact of genomic context on variant calling

About myself

About myself

Science frontier program

 10% of time to work on cutting edge science problems and contribute back to the scientific community

Results frequently published in bllog posts
 <u>https://blog.dnanexus.com</u>, preprints, or presented as a conference talk

Science frontier program

EVALUATING DEEPVARIANT: A NEW DEEP LEARNING VARIANT CALLER FROM THE GOOGLE BRAIN TEAM

Outlines

- What is Keras?
- How to get started?
- Basic Keras code structure
- Real world application: Impact of genomic context on variant calling

Outlines

- What is Keras?
- How to get started?
- Basic Keras code structure
- Real world application: Impact of genomic context on variant calling

Keras (care-ras)

- High level Python library/API for deep learning run on top of TensorFlow, CNTK, and Theano
- Designed with user friendliness, modularity, and extensibility principles
- Support common stuffs:
 - Model: CNN, RNN, combination
 - Hardware: CPU, GPU, TPU, Spark

- Easy to learn and code. "Keras is an API designed for human beings, not machines."
- Popularity

How to get started?

- https://keras.io
 - Install backend
 - pip install keras
- https://www.tensorflow.org/tutorials/
 - Install tensorflow
 - from tensorflow import keras
- Kaggle online kernel

1 Model

```
def keras_dna_model():
    model = Sequential()
    model.add(Flatten(input_shape=(4, 12)))
    model.add(Dense(6, activation='relu'))
    model.add(Dense(1, activation='sigmoid'))
    return model
```


1 Model

```
def keras_dna_model():
    model = Sequential()

    model.add(Flatten(input_shape=(4, 12)))

    model.add(Dense(6, activation='relu'))

    model.add(Dense(1, activation='sigmoid'))

    return model
```


1 Model

```
def keras dna model(input shape):
  X input = Input(input shape)
   X = Flatten()(X input)
  X = Dense(6, activation='relu', name='n1')(X)
   X = Dense(1, activation='sigmoid', name='n2')(X)
  model = Model(inputs=X input, outputs=X, name='keras dna model')
   return model
```

2 Run model

```
model = keras_dna_model(input_dimension)

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

model.fit(X_train, Y_train, epochs=2, batch_size=100)

model.predict(X_test)

model.evaluate(X_test, Y_test, batch_size=20168, verbose=1)
```

Impact of genomic context in variant calling

Impact of genomic context in variant calling

Right flanking

NTTTTTTTTTT concordant with ground truth = 0.71

NTTTTTTTTTC concordant with ground truth = 0.92

*calculation based on high-confidence regions only

Problem formulation

Feature		Response
ATTCGACGGGG	\rightarrow	Correct variant (1)
AAAATCCTAAAA	\rightarrow	Incorrect variant (0)

Indel DeepVariant calling on HG002

Why deep learning?

	feature1	feature2	response	
	GC%	>3 homopolymer		
1	0.2	1	1	
2	0.6	1	0	
3	0.4	0	0	
4	0.2	1	1	

Why deep learning?

Notebook demo

Caveats

Unoptimized model

Size of context

 DeepVariant probably learn a lot about genomic context by itself

Summarize of attribute in one matrix

Next Step

 Production scale of parameter experiment using Papermill <u>https://papermill.readthedocs.io/en/latest/</u>

Thanks to

Jason Chin, Steve Osazuwa, Brett Hannigan, Naina Thangaraj

Jason Williams and Nirav Merchant

Experiment and collaboration

https://github.com/Arkarachai/pag20 19 demo keras for genomics

chai@dnanexus.com

Besides the caveats, how is the model perform?

Bayes error

```
sum(max(concordant_i,discordant_i))/total_case = 74%
```

