	Broblem Set 3.
	Xuangi Wei
	1009353209 Q3.
proof:	Let c be a sequence of length l with \(\gamma \) zet.
	Let A = 9 Za: a is a sequence of length & with a < c and Za > t].
	LoTS: $\exists c'$ be a sequence of length ℓ . $\circ c' \leq c$ and $\circ z c' = t$. Since c is a sequence of length ℓ with $\circ c \leq c$ and $\circ z c > t \Rightarrow z c \geq t$.
	gives A -13 not our empty set. The WOP. gives. I comin 6 A, comin has beingth & with comin < C and I comin = to > t.
	Since $\geq C_{min} = to \geq t$, and we want to show $\geq C_{min} = to = t$ Assume for contradiction $\geq C_{min} = to > t$, which $\geq C_{min} \geq t + 1$.
	Since $t \in IM$ and $\Xi cmin \ge t+1$, gives $\Xi cmin \rightarrow s$ positive and some element of $cmin$, say $cmin_k \rightarrow s$ positive and $cmin_k \ge 1$.
	Jake Cruin' = Cruin Cruinx + Cruinx - 1], which Cruin' is a sequence which the element Cruinx
	cle creased by I and other elements in Cmin remain the same. Since the number of elements in Cmin' is the same as Cmin, then length of Cmin' is
	Still I, gives Cmin' & Cmin & C., from the question's elepinition. Since Cmin' is a sequence which the element Cmins cleavesed by I and other elements
	in Cruin remain the same, $\sum C_{\min}' = \sum C_{\min} - \ge (t+1) - = t$. Since $C_{\min}' \le C$ and $\sum C_{\min}' \ge t$, gives $C_{\min}' \in A$.
	However, since $\sum Cmin' = \sum Cmin - 1 < \sum Cmin$, $Cmin' \leq Cmin$, contradicts to $Cmin$ is the least element in A .
	Therefore since $\geq c_{min} \geq t$ and $\geq c_{min}$ not bigger then t , $\geq c_{min} = t$, which live
	found such $C' = C_{min}$, that $\geq C' = \mathcal{L}$