ANALISI FUNZIONALE PROF. ALESSIO MARTINI A.A. 2023-2024

ESERCITAZIONE 7

- 1. Consideriamo X = C[0,1] come spazio di Banach con la norma della convergenza uniforme. Sia $Y=C^1[0,1]$ pensato come sottospazio di X, dotato della norma indotta da X. Sia $T:Y\to X$ definito da Tf = f' per ogni $f \in Y$.
 - (a) Dimostrare che $T \in \mathcal{L}(Y, X)$.
 - (b) Dimostrare che il grafico di T è chiuso in $Y \times X$.
 - (c) Dimostrare che l'operatore T non è limitato.
 - (d) Perché l'operatore T non costituisce un controesempio al teorema del grafico chiuso?
- 2. Siano X e Y spazi normati. Sia $T:X\to Y$ un'isometria lineare.
 - (a) Dimostrare che l'operatore T è coercivo in norma.
 - (b) Dimostrare che, se X è uno spazio di Banach, allora $\operatorname{Im} T$ è un sottospazio vettoriale chiuso di Y.
 - (c) Rimane vero il risultato del punto precedente se non si assume che X è completo?
- 3. Sia X uno spazio di Banach. Ricordiamo che l'insieme $\mathcal{I}(X) = \{T \in \mathcal{B}(X) : T \text{ è invertibile}\}$ è un sottoinsieme aperto di $\mathcal{B}(X)$; possiamo dunque considerare $\mathcal{I}(X)$ come spazio metrico con la metrica indotta da $\mathcal{B}(X)$.
 - (a) Determinare se $\mathcal{I}(X)$ è un sottospazio vettoriale di $\mathcal{B}(X)$.
 - Sia $\Phi: \mathcal{I}(X) \to \mathcal{I}(X)$ la mappa di inversione, definita da $\Phi(T) = T^{-1}$ per ogni $T \in \mathcal{I}(X)$.
 - (b) Dimostrare che $ST \in \mathcal{I}(X)$ e $\Phi(ST) = \Phi(T)\Phi(S)$ per ogni $S, T \in \mathcal{I}(X)$.

Sia $I = id_X$. Osserviamo che $I \in \mathcal{I}(X)$.

- (c) Dimostrare che $\|\Phi(I+E) I\|_{\text{op}} \le \|E\|_{\text{op}}/(1-\|E\|_{\text{op}})$ per ogni $E \in \mathcal{B}(X)$ con $\|E\|_{\text{op}} < 1$.
- (d) Dimostrare che $\Phi: \mathcal{I}(X) \to \mathcal{I}(X)$ è continua nel punto I.
- (e) Dimostrare che $\Phi: \mathcal{I}(X) \to \mathcal{I}(X)$ è continua. |Suggerimento: verificare che, per ogni $S \in \mathcal{I}(X)$, si ha $\Phi(S+E) = \Phi(I+S^{-1}E)\Phi(S)$ per ogni $E \in \mathcal{B}(X)$ con $||E||_{\text{op}} < 1/||S^{-1}||_{\text{op}}.|$ (f) Dimostrare che $\Phi : \mathcal{I}(X) \to \mathcal{I}(X)$ è un omeomorfismo.
- 4. Sia $A: \ell^3 \to \mathbb{F}$ definito da $A\underline{x} = x_1 2x_2$ per ogni $\underline{x} \in \ell^3$.
 - (a) Determinare se $A \in (\ell^3)'$.
 - (b) In caso positivo, determinare $||A||_{(\ell^3)'}$.
- 5. Assumiamo $\mathbb{F} = \mathbb{C}$. Sia $A: L^2(0,1) \to \mathbb{C}$ definito da

$$Af = i \int_{1/2}^{1} x f(x) dx$$

per ogni $f \in L^2(0,1)$.

- (a) Determinare se $A \in (L^2(0,1))'$.
- (b) In caso positivo, determinare $||A||_{(L^2(0,1))'}$.
- 6. Sia $\underline{w} = (1+k)_{k \in \mathbb{N}}$. Sia $H = \ell^2(\underline{w}) = \{\underline{x} \in \mathbb{F}^{\mathbb{N}} : \sum_{k=0}^{\infty} |x_k|^2 w_k < \infty\}$ lo spazio di Hilbert definito nell'esercizio 4 dell'esercitazione 3. Sia $A : H \to \mathbb{F}$ definito da $A\underline{x} = 3x_1 x_2$ per ogni $\underline{x} \in H$.
 - (a) Determinare se $A \in H'$.
 - (b) In caso positivo, determinare $||A||_{H'}$.
- 7. Siano $H = \ell^2$, dotato dell'usuale struttura di spazio di Hilbert, e $D = \ell^1$. Ricordiamo che D è un sottospazio vettoriale denso di H. Sia $A: D \to \mathbb{F}$ definito da $A\underline{x} = \sum_{k=0}^{\infty} x_k$ per ogni $\underline{x} \in D$.
 - (a) Dimostrare che $A \in \mathcal{L}(D, \mathbb{F})$.
 - (b) Dimostrare che non esiste $\underline{z} \in H$ tale che $A\underline{x} = \langle \underline{x}, \underline{z} \rangle_{\ell^2}$ per ogni $\underline{x} \in D$.
 - (c) Dimostrare che il funzionale lineare $A:D\to\mathbb{F}$ non si estende a un elemento del duale H' di H. Per ogni $n \in \mathbb{N}$, sia $B_n : H \to \mathbb{F}$ definito da $B_n \underline{x} = \sum_{k=0}^n \frac{x_k}{1+k}$.
 - (d) Dimostrare che $B_n \in H'$.
 - (e) Dimostrare che $(B_n)_n$ è una successione limitata in H'.
 - (f) Dimostrare che la successione $(B_n)_n$ converge in H'.
 - (g) Detto $B \in H'$ il limite della successione $(B_n)_n$ in H', calcolare $||B||_{H'}$.

8. Sia X uno spazio di Banach. Siano $(A_k)_{k\in\mathbb{N}}$ e $(B_k)_{k\in\mathbb{N}}$ successioni a valori in $\mathcal{B}(X)$. Supponiamo che le serie $\sum_{k=0}^{\infty} A_k$ e $\sum_{k=0}^{\infty} B_k$ convergano assolutamente in $\mathcal{B}(X)$. Poniamo

$$C_k = \sum_{j=0}^k A_j B_{k-j}$$
 per ogni $k \in \mathbb{N}$.

Inoltre, per ogni $n \in \mathbb{N}$, sia $S_n = \sum_{k=0}^n B_k$ la n-esima somma parziale della serie $\sum_{k=0}^\infty B_k$.

(a) Dimostrare che $\sum_{k=0}^n C_k = \sum_{j=0}^n A_j S_{n-j}$ per ogni $n \in \mathbb{N}$.

(b) Dimostrare che $\sum_{k=0}^n \|C_k\|_{\text{op}} \leq (\sum_{k=0}^n \|A_k\|_{\text{op}})(\sum_{k=0}^n \|B_k\|_{\text{op}})$ per ogni $n \in \mathbb{N}$.

(c) Dimostrare che la serie $\sum_{k=0}^\infty C_k$ converge assolutamente in $\mathcal{B}(X)$.

La serie $\sum_{k=0}^\infty C_k$ è detta prodotto secondo Cauchy delle serie $\sum_{k=0}^\infty A_k$ e $\sum_{k=0}^\infty B_k$. Vogliamo ora dimentare also la sua somma dimostrare che la sua somma

$$C = \sum_{k=0}^{\infty} C_k$$

è uguale al prodotto delle somme

$$A = \sum_{k=0}^{\infty} A_k, \qquad B = \sum_{k=0}^{\infty} B_k.$$

- (d) Dimostrare che $\sum_{k=0}^{n} C_k \sum_{j=0}^{n} A_j B = \sum_{j=0}^{n} A_j (S_{n-j} B)$ per ogni $n \in \mathbb{N}$.

$$\left\| \sum_{k=0}^{n} C_k - \sum_{j=0}^{n} A_j B \right\|_{\text{op}} \le \sum_{j=0}^{\infty} \|A_j\|_{\text{op}} \sup_{k \ge \lceil n/2 \rceil} \|S_k - B\|_{\text{op}} + \sum_{j=\lfloor n/2 \rfloor}^{\infty} \|A_j\|_{\text{op}} \sup_{k \in \mathbb{N}} \|S_k - B\|_{\text{op}}$$

per ogni $n \in \mathbb{N}$.

Suggerimento: partendo dall'identità in (d), spezzare la somma nel membro destro a seconda che $j < \lfloor n/2 \rfloor$ oppure $j \ge \lfloor n/2 \rfloor$.

- (f) Dimostrare che C = AB.
 - [Suggerimento: passare al limite per $n \to \infty$ in (e).]
- 9. Sia X uno spazio di Banach.
 - (a) Dimostrare che, per ogni $T, S \in \mathcal{B}(X)$, se $T \in S$ commutano (cioè ST = TS) allora vale la formula del binomio di Newton

$$(T+S)^k = \sum_{j=0}^k \binom{k}{j} T^j S^{k-j} \qquad \forall k \in \mathbb{N}.$$
 (*)

(b) Siano $T, S \in \mathcal{B}(X)$. Dimostrare che vale l'identità

$$(T+S)^2 = T^2 + 2TS + S^2$$

(cioè la formula (*) per k=2) se e solo se T e S commutano.

Definiamo, per ogni $T \in \mathcal{B}(X)$, l'esponenziale di T ponendo

$$\exp(T) = \sum_{k=0}^{\infty} \frac{T^k}{k!}.$$
 (†)

- (c) Dimostrare che la serie a secondo membro di (\dagger) converge assolutamente in $\mathcal{B}(X)$ e che quindi $\exp(T) \in \mathcal{B}(X)$ è ben definito per ogni $T \in \mathcal{B}(X)$.
- (d) Dimostrare che $\exp(0) = I$, dove $0 \in \mathcal{B}(X)$ denota l'operatore nullo e $I = \mathrm{id}_X$.
- (e) Dimostrare che, se $T, S \in \mathcal{B}(X)$ commutano, allora

$$\exp(T+S) = \exp(T)\exp(S) = \exp(S)\exp(T).$$

[Suggerimento: utilizzare il prodotto secondo Cauchy delle serie (esercizio 8.) e la formula del binomio di Newton.

- (f) Dimostrare che $\exp(T) \in \mathcal{I}(X)$ per ogni $T \in \mathcal{B}(X)$ e trovare un'espressione per l'inverso $\exp(T)^{-1}$. Supponiamo ora che $X=\ell^2$ con l'usuale struttura di spazio di Hilbert. Ricordiamo che, per ogni $\underline{w} \in \ell^{\infty}$, denotiamo con $D_{\underline{w}}$ l'operatore di moltiplicazione per \underline{w} (vedi esercitazione 6, esercizio 5).
- (g) Sia $\underline{w} \in \ell^{\infty}$. Dimostrare che $\exp(D_{\underline{w}}) = D_{\underline{z}}$ con $\underline{z} = (e^{w_k})_{k \in \mathbb{N}}$.