## Relatório de Planejamento e Análise de Experimentos

Clevia Bento de Oliveira 22/09/2021

# Relatório referente à análise de um banco de dados em DIC, utilizando parcela subdividida.

## Introdução

No experimento em parcelas subdivididas, as parcelas experimentais são divididas em sub parcelas. São estudados dois ou mais fatores simultaneamente, tais fatores são chamados primários, secundários e assim por diante.

Os fatores primários são aleatorizados nas parcelas, os secundários nas sub parcelas. O modelo linear para o experimento em parcelas subdivididas no delineamento em blocos ao acaso é dado por:

```
yijk = \mu + \tau i + \beta j + eij + \theta k + \gamma ik + \mathcal{E}ikj onde:
```

- μ é a média geral;
- ті é o efeito do i-ésimo tratamento sobre a variável resposta;
- βj é o efeito do j-ésimo bloco sobre a variável resposta;
- eik é o resíduo aleatório à nível de parcelas;
- θk é o efeito do k-ésimo sub-tratamento sobre a variável resposta;
- vik é o efeito da interação do i-ésimo tratamento com o j-ésimo subtratamento sobre a variável resposta;
- Eijk é o resíduo aleatório associado a observação yijk à nível de sub-parcelas.

Neste trabalho será analisado um banco de dados fictício de um experimento em blocos casualizados, onde há 3 espécies diferentes de cultivares (CULT1, CULT2 e CULT3), 4 tipos diferentes de irrigação (irrigacao1,irrigacao2,irrigacao3 e irrigacao4) com 3 repetições em blocos casualizados.

## Objetivo:

Comparar se há diferença significativa de produção no plantio de diferentes espécies de cultivares e diferentes tipos de irrigação.

### Metodologia

Para esta análise será utilizado o pacote ExpDes.pt para obter a ANOVA e demais resultados.

Visualização dos 10 primeiros dados do Banco de Dados

| Cultivares | Irrigacao  | Bloco | Prod |
|------------|------------|-------|------|
| CULT1      | irrigacao1 | 1     | 66   |
| CULT1      | irrigacao1 | 2     | 64   |
| CULT1      | irrigacao1 | 3     | 76   |
| CULT1      | irrigacao2 | 1     | 70   |
| CULT1      | irrigacao2 | 2     | 67   |
| CULT1      | irrigacao2 | 3     | 83   |
| CULT1      | irrigacao3 | 1     | 63   |
| CULT1      | irrigacao3 | 2     | 61   |
| CULT1      | irrigacao3 | 3     | 69   |
| CULT1      | irrigacao4 | 1     | 57   |

#### Análise Descritiva

```
Cultivares
                                      Prod
                Irrigacao
                           Bloco
## CULT1:12 irrigacao1:9 Min. :1 60
## CULT2:12 irrigacao2:9 1st Qu.:1 66
                                        : 2
  CULT3:12 irrigacao3:9
                       Median :2
                                  68
##
            irrigacao4:9 Mean :2
                                   69
                                        : 2
                         3rd Qu.:3
                                   70
##
                         Max. :3
                                  71
                                       : 2
                                   (Other):24
```

```
## tibble [36 x 4] (S3: tbl_df/tbl/data.frame)
## $ Cultivares: Factor w/ 3 levels "CULT1", "CULT2", ...: 1 1 1 1 1 1 1 1 1 1 1 ...
## $ Irrigacao : Factor w/ 4 levels "irrigacao1", "irrigacao2", ...: 1 1 1 2 2 2 3 3
3 4 ...
## $ Bloco : num [1:36] 1 2 3 1 2 3 1 2 3 1 ...
## $ Prod : Factor w/ 27 levels "57", "59", "60", ...: 7 6 16 11 8 20 5 4 10 1
...
```

## Visualização do Experimento

Aqui vemos a Irrigação dado os Cultivares





#### Aqui vemos os Cultivares dada a Irrigação



## Teste de Hipóteses

#### Hipóteses que queremos testar:

H0: Não há diferença entre as irrigações em relação a produtividade.

H1: Há influência da irrigação na produtividade.

H0:Há diferença entre os blocos.

H1: Não há diferença entre os blocos.

H0: Não há diferença entre os cultivares na produtividade.

H1: Há diferença dos cultivares na produção.

H0: A interação entre os cultivares e irrigação não é significativa.

H1: A interação é significativa.

```
dados1.av = aov(Prod ~ Cultivares*Irrigacao + Error(Bloco:Cultivares))
summary(dados1.av)
```

#### Análise de Resíduos

```
dados.avb = aov(Prod ~ Cultivares*Irrigacao + Bloco*Cultivares-Bloco)
summary(dados.avb)
```

```
## Cultivares 2 1687 843.4 39.186 8.17e-08 ***

## Irrigacao 3 2245 748.3 34.767 2.49e-08 ***

## Cultivares:Irrigacao 6 3564 593.9 27.596 6.33e-09 ***

## Cultivares:Bloco 3 597 199.1 9.252 0.000425 ***

## Residuals 21 452 21.5

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
par(mfrow=c(2,2))
plot(dados.avb)
```



No segundo gráfico (superior à direita), estudamos a normalidade dos resíduos. Quanto mais próximo da reta os pontos se distribuem mais parecerá com uma distribuição normal, nesse caso os dados se distribuem normalmente.

#### Teste de Normalidade

```
shapiro.test(dados.avb$residuals)

##
## Shapiro-Wilk normality test
##
## data: dados.avb$residuals
## W = 0.93821, p-value = 0.0447
```

Podemos ver que o teste deu significativo, ou seja, os dados seguem uma distribuição Normal.

```
## [1] "14" "5" "32"
## [1] "14" "32" "35"
```



```
##
## Bartlett test of homogeneity of variances
##
## data: dados.avb$residuals and Irrigacao
## Bartlett's K-squared = 1.5667, df = 3, p-value = 0.667
```

```
##
## Bartlett test of homogeneity of variances
##
## data: dados.avb$residuals and Cultivares
## Bartlett's K-squared = 0.059896, df = 2, p-value = 0.9705
```

## Análise utilizando o pacote ExpDes.pt

```
## Legenda:
## FATOR 1 (parcela): Cultivares
## FATOR 2 (subparcela): Irrigação
## -----
##
## $`Quadro da analise de variancia\n
----\n`
                     SQ QM Fc Pr(>Fc)
                 GL
                 2 1686.7 843.36 26.750 0.004839 **
## Cultivares
                 2 722.7 361.36 11.462 0.022073 *
## Bloco
## Erro a
                 4 126.1 31.53
                 3 2244.8 748.25 67.175 < 2.2e-16 ***
## Irrigação
## Cultivares*Irrigação 6 3563.5 593.92 53.319 < 2.2e-16 ***
                18 200.5 11.14
## Erro b
## Total
                 35 8544.3
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## CV 1 = 7.305333 %
## CV 2 = 4.342245 %
##
## Interacao significativa: desdobrando a interacao
## -----
## Desdobrando Cultivares dentro de cada nivel de Irrigação
## -----
                                                 QM
##
                                \operatorname{GL}
                                        SQ
## Cultivares : Irrigação irrigacaol 2.00000 4.666667 2.333333 0.143713
## Cultivares : Irrigação irrigação 2.00000 2546.000000 1273.000000 78.405474
## Cultivares : Irrigação irrigação 2.00000 480.888889 240.444444 14.809239
## Cultivares : Irrigação irrigacao4 2.00000 2218.666667 1109.333333 68.325064
                           13.58219 220.521944 16.236111
## Erro combinado
##
                            valor.p
## Cultivares : Irrigação irrigacaol 0.867436
## Cultivares : Irrigação irrigacao2
## Cultivares : Irrigação irrigacao3 0.000387
## Cultivares : Irrigação irrigacao4 0
## Erro combinado
##
##
## Cultivares dentro de Irrigação irrigacaol
## ------
## De acordo com o teste F, as medias desse fator sao estatisticamente iquais.
## -----
  Niveis Medias
## 1 CULT1 68.66667
## 2 CULT2 68.33333
## 3 CULT3 70.00000
```

```
##
## Cultivares dentro de Irrigação irrigacao2
## -----
## Teste de Tukey
## ------
## Grupos Tratamentos Medias
## a CULT3 112.3333
## b
    CULT2 81.33333
## b
    CULT1 73.33333
## ------
## Cultivares dentro de Irrigação irrigacao3
## -----
## Teste de Tukey
## -----
## Grupos Tratamentos Medias
## a CULT2 81
## b
    CULT3 67
## b CULT1 64.33333
## ------
##
## Cultivares dentro de Irrigação irrigacao4
## ------
## Teste de Tukey
## -----
## Grupos Tratamentos Medias
## a CULT2 100
    CULT3 73.33333
## b
## c CULT1 62.66667
##
## Desdobrando Irrigação dentro de cada nivel de Cultivares
## -----
                GL SQ
                         QM Fc valor.p
## Irrigação : Cultivares CULT1 3 205.5833 68.52778 6.15212 0.004577
## Irrigação : Cultivares CULT2 3 1531.3333 510.44444 45.825436
## Irrigação : Cultivares CULT3 3 4071.3333 1357.11111 121.83541
## Erro b
                18 200.5000 11.13889
##
##
 Irrigação dentro de Cultivares CULT1
## -----
## Teste de Tukey
## -----
## Grupos Tratamentos Medias
  irrigacao2 73.33333
## a
    irrigacao1
            68.66667
## ab
## b irrigacao3
            64.33333
    irrigacao4
            62.66667
## ------
## ------
##
```

```
Irrigação dentro de Cultivares CULT2
 ______
## Teste de Tukev
 ______
 Grupos Tratamentos Medias
## a irrigacao4 100
 b irrigacao2 81.33333
 b irrigacao3
           81
 c irrigacaol 68.33333
 ______
##
##
 Irrigação dentro de Cultivares CULT3
## -----
## Teste de Tukey
 ______
## Grupos Tratamentos Medias
## a irrigacao2 112.3333
           73.33333
## b irrigacao4
## b irrigacao1
           70
## b irrigacao3
           67
```

## Conclusão

Pela análise de Variâncias as interações foram significativas.

Analisando os desdobramentos temos que:

Para a Irrigação 1, os Cultivares não apresentaram diferença significatica.

Para a Irrigação 2, o Cultivar 3 teve melhor desempenho, seguido do Cultivar 2.

Para a Irrigação 3, o Cultivar 2 teve melhor desempenho.

Para a Irrigação 4, o Cultivar 2 teve melhor desempenho. Com isso podemos concluir que dentre os 3 Cultivares, o Cultivar 2 apresenta melhores resultados em relação ás Irrigações.

Para o Cultivar 1, a Irrigação 2 apresenta melhores resultados.

Para o Cultivar 2, a Irrigação 4 apresenta melhores resultados.

Para o Cultivar 3, a Irrigação 2 apresenta melhores resultados.

Podemos concluir que dentre as 4 Irrigações, a Irrigação 2 apresenta melhores resultados em relação aos Cultivares.