Содержание

1	Оргинфа	2
2	Дифференциальные уравнения первого порядка	2
3	Дифференциальные уравнения высшего порядка	15
4	Обыкновенные дифференциальные уравнения	18

1 Оргинфа

Ведет Крыжевич Сергей Геннадьевич +79219181076 и +48572768176 kryzhevicz@gmail.com и serkryzh@pg.edu.pl

2 Дифференциальные уравнения первого порядка

Definition 2.1. Дифференциальные уравнения первого порядка

 $D\subset\mathbb{R}^2$ – область, $f:D\to\mathbb{R}$ – непрерывная функция Дифференциальные уравнения первого порядка – это уравнения вида y'=f(x,y)

Example 2.1.

$$y' = xy$$

Definition 2.2. Решение дифференциального уравнения

 $\langle a,b \rangle$ — интервал

Функция $\varphi(x)$ – решение дифференциального уравнения на $\langle a,b \rangle$, если

- 1. φ, φ' непрерывны на $\langle a, b \rangle$
- 2. $(x, \varphi(x)) \in D \ \forall x \in \langle a, b \rangle$
- 3. $\varphi'(x) = f(x, \varphi(x))$

Example 2.2.

$$y' = xy$$

Решениями будут:

1.
$$y = 0$$

2.
$$y = e^{\frac{x^2}{2}}$$

$$y' = xe^{\frac{x^2}{2}} = xy$$

На самом деле решением будет любая функция вида $y=Ce^{\frac{x^2}{2}}$

Notation 2.1. Начальные данные для дифференциального уравнения

2

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

Definition 2.3. Задача Коши

Задача Коши – дифференциальное уравнение с начальными данными

$\overline{\text{Example } 2.3.}$

$$\begin{cases} y'=xy\\ y(0)=5\\ y=Ce^{\frac{x^2}{2}}\\ 5=Ce^0=C\\ \mbox{Получаем ответ }y=5e^{\frac{x^2}{2}} \end{cases}$$

Definition 2.4. Общее решение дифференциального уравнения

Общее решение дифференциального уравнения – совокупность всех его решений (= решение с параметром)

Definition 2.5. Интегральная кривая

Интегральная кривая – график решения дифференциального уравнения, т.е. график $\{x, \varphi(x)\}$

Remark 2.1.

$$y' = \sqrt{y}; \ y \ge 0$$

Здесь множество не является открытым, но считается, что y=0 является решением (хотя формально им не является)

Если в каких-то задачах такое будет, в рамках курса не считаем это ошибкой

Remark 2.2. Единственность решений задачи Коши

Почти всегда задача Коши имеет единственное решение. Но есть исключения, например $\begin{cases} y' = 3y^{\frac{2}{3}} \\ y(0) = 0 \end{cases}$

Очевидное решение y=0, но также $y=x^3$. Более того, решением будет любая функция вида $y=(x+C)^3$. График есть на записи

Более того, можно собрать решение покусочно (ветка параболки вниз + прямая y=0 + ветка параболы вверх)

Definition 2.6. Точка единственности/ветвления

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

Точка (x_0, y_0) – точка единственности, если решение задачи Коши единственно. В противном случае это точка ветвления

3

Definition 2.7. Особое решение

Решение называется особым, если любая его точка – точка ветвления

Theorem 2.1.

Если в уравнении y' = f(x, y) функция f непрерывна и имеет непрерывную производную по переменной y в области D, то для любой точки (x_0, y_0) из D решение задачи Коши с начальными данными $y(x_0) = y_0$ существует и единственно

Remark 2.3.

По x нужна только непрерывность, производной существовать не обязательно

Definition 2.8. Дифференциальные уравнения в симметричной форме

$$P(x,y)dx + Q(x,y)dy = 0$$

Example 2.4.

$$ydx-xdy=0\mapsto y'=rac{y}{x}$$
 или $x'=rac{x}{y}$

Remark 2.4.

Предполагаем, что P и Q – функции, непрерывные в некоторой области D на плоскости и они не обращаются в ноль одновременно ни в одной точке D

Definition 2.9. Решение уравнения в симметричной форме

- 1. $y' = -\frac{P(x,y)}{Q(x,y)}$, решением будет $y = \varphi(x)$: $P(x,\varphi(x)) + Q(x,\varphi(x))\varphi'(x) = 0$ 2. $x' = -\frac{Q(x,y)}{P(x,y)}$, решением будет $x = \psi(y)$: $P(\psi(y),y)\psi'(y) + Q(\psi(y),y) = 0$ 3. $y = \varphi(t), x = \psi(t)$, хотим $P(\psi(t),\varphi(t))\psi'(t) + Q(\psi(t),\varphi(t))\varphi'(t) = 0$

Definition 2.10. Системы обыкновенных дифференциальных уравнений

4

$$t, x_1, \ldots, x_n \in \mathbb{R}; \ t$$
 – время, $x_1 \ldots x_n$ – фазовые переменные

$$\begin{cases} x_1 = f_1(t, x_1, \dots, x_n) \\ \dots & - \text{cr} \end{cases}$$

 $\begin{cases} x_1 = f_1(t,x_1,\ldots,x_n) \\ \dots & \text{- скалярная запись системы} \\ x_n = f_n(t,x_1,\ldots,x_n) \end{cases}$

$$x_n = f_n(t, x_1, \dots, x_n)$$

$$x = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$$
; $f = \begin{pmatrix} f_1 \\ \dots \\ f_n \end{pmatrix}$ — векторная запись системы

Notation 2.2. Как свести уравнение высшего порядка к системам?

Пусть есть уравнение $x^{(n)} = g(t, x, x', \dots, x^{(n-1)})$ Полагаем $x_1 = x, \dots, x_n = x^{(n-1)}$

Получаем
$$\begin{cases} x_1 - x_2 \\ \dots \\ x'_{n-1} = x_n \\ x'_n = g(t, x_1, \dots, x_n) \end{cases}$$

Example 2.5.

$$x'' + \sin x = 0$$

$$\begin{cases} x'_1 = x_2 \\ x'_2 = -\sin x_1 \end{cases}$$

Remark 2.5.

Предполагается что $f:D\to\mathbb{R}^n$ – непрерывна и $D\subset\mathbb{R}^{n+1}$

Definition 2.11. Решение системы

Функция $\varphi:\langle \alpha,\beta \rangle \to \mathbb{R}^n$ называется решением системы если

- 1. $\varphi \in C^1$
- 2. $(t, \varphi(t)) \in D \ \forall t \in \langle \alpha, \beta \rangle$
- 3. $\varphi(t) = f(t, \varphi(t)) \ \forall t \in \langle \alpha, \beta \rangle$

Definition 2.12. Задача Коши для систем

Пусть $t_0, x_{01}, \dots, x_{0n} \in \mathbb{R}; \ (t_0, x_{01}, \dots, x_{0n}) \in D$

Начальные условия: $\begin{cases} x_1(t_0) = x_{01} \\ \dots \\ x_n(t_0) = x_{0n} \end{cases}$

Или в векторной форме: $x(t_0)=x_0$, где $x_0=\begin{pmatrix} x_{01} \\ \dots \\ x_{0n} \end{pmatrix}$

Задача Коши – уравнение + начальные условия

$$\begin{cases} x' = f(t, x) \\ x(t_0) = x_0 \end{cases}$$

Definition 2.13. Эквивалентное интегральное уравнение

$$x(t) = x_0 + \int_{t_0}^{t} f(x, x(s)) ds$$

Функция $\varphi: \langle \alpha, \beta \rangle \to \mathbb{R}^n$ называется решением эквивалентного интегрального уравнения, если

- 1. φ непрерывна
- 2. $(t, \varphi(t)) \in D \ \forall t \in \langle \alpha, \beta \rangle$
- 3. $\varphi(t) = x_0 + \int_{t_0}^t f(s, \varphi(s)) ds \ \forall t \in \langle \alpha, \beta \rangle$

Lemma 2.1.

Функция $\varphi(t)$ – решение задачи Коши тогда и только тогда, когда она является решением эквивалентного интегрального уравнения

Доказательство:

- \Rightarrow Пусть $\varphi(t)$ решение задачи Коши
 - 1. φ непрерывна очевидно
 - 2. $(t, \varphi(t)) \in D \ \forall t \in \langle \alpha, \beta \rangle$ то же условие
 - 3. $\varphi(t) = x_0 + \int_{t_0}^t f(s, \varphi(s)) ds \ \forall t \in \langle \alpha, \beta \rangle$ получается интегрированием уравнения $\varphi'(t) = f(t, \varphi(t))$ с учетом начальных условий
- \Leftarrow Пусть $\varphi(t)$ решение интегрального уравнения
 - 1. φ непрерывна и есть интеграл от непрерывной функции значит дифференцируема
 - 2. $(t, \varphi(t)) \in D \ \forall t \in \langle \alpha, \beta \rangle$ то же условие
 - 3. $\varphi'(t)=f(t,\varphi(t))\ \forall t\in\langle\alpha,\beta\rangle$ получается дифференцированием интегрального уравнения

Theorem 2.2. Теорема существования решений

Пусть правая часть f(t,x) системы x'=f(t,x) непрерывна в области $D\subset\mathbb{R}^{n+1}$. Пусть $(t_0,x_0)\in D$. Тогда существует решение задачи Коши $\int x'=f(t,x)$

 $x(t_0) = x_0$ определенное на промежутке $[t_0 - h, t_0 + h]$

Remark 2.6.

Этот промежуток называется промежутком Пеано

Доказательство:

Будем вместо решения задачи Коши искать решение эквивалентного интегрального уравнения $x(t) = x_0 + \int\limits_{t_0}^t f(s,x(s))ds$

Поскольку D – область (открытое множество), выберем константы a,b>0 такие, что $K:=\{(t,x):|t-t_0|\leq a;\;|x-x_0|\leq b\}\subset D$

K – компакт, значит непрерывная функция огр. Пусть $M = \max_{(t,x) \in K} |f(t,x)|; \ h := \min(a, \frac{b}{M})$

Remark 2.7.

Длина промежутка Пеано непрерывно зависит от начальной точки

Definition 2.14. Векторные нормы

Понятие нормы в \mathbb{R}^n :

- 1. $||x|| \ge 0$; $||x|| = 0 \Leftrightarrow x = 0$
- 2. $||ax|| = |a|||x|| \ \forall a \in \mathbb{R}, x \in \mathbb{R}^n$
- 3. $||x+y|| \le ||x|| + ||y|| \ \forall x, y \in \mathbb{R}^n$

Example 2.6.

- 1. $||x||_1 = |x| = \max(|x_1|, \dots, |x_n|)$ с этой нормой и будем работать
- 2. $||x||_2 = \sqrt{x_1^2 + \ldots + x_n^2}$ евклидова норма
- 3. $||x||_3 = |x_1| + \ldots + |x_n|$

Definition 2.15. Равностепенная непрерывность

Последовательность функций $\varphi_k : [\alpha, \beta] \to \mathbb{R}^n, \ k \in \mathbb{N}$ – равностепенно непрерывна, если $\forall \varepsilon > 0 \ \exists \delta > 0 : \forall t_1, t_2 \in [\alpha, \beta], \ k \in \mathbb{N}$ верно $|t_1 - t_2| < \delta \Rightarrow |\varphi_k(t_1) - \varphi_k(t_2)| < \varepsilon$

Definition 2.16. Равномерная ограниченность

Последовательность функций $\varphi_k : [\alpha, \beta] \to \mathbb{R}^n, \ k \in \mathbb{N}$ – равномерно ограничена, если $\exists C > 0 : \forall t \in [\alpha, \beta], \ k \in \mathbb{N}$ верно $|\varphi_k(t)| \leq C$

Theorem 2.3. Теорема Арцела Асколи

Пусть последовательность функций $\varphi_k: [\alpha, \beta] \to \mathbb{R}^n, \ k \in \mathbb{N}$ равностепенно непрерывна и равномерно ограничена. Тогда существует равномерно сходящаяся подпоследовательность $\varphi_{n_k} \rightrightarrows \varphi_*$ на $[\alpha, \beta]$

Definition 2.17. Кусочно-гладкая функция

Функция $\varphi: [\alpha, \beta] \to \mathbb{R}^n$ называется кусочно-гладкой, если она непрерывна, имеет производную везде, кроме конечного числа точек, а в тех точках имеет односторонние пределы

Definition 2.18. ε -решение системы

Пусть $\varepsilon>0$. Кусочно-гладкая функция $\varphi:[\alpha,\beta]\to\mathbb{R}^n$ называется ε -решением системы, если

- 1. $(t, \varphi(t)) \in D \ \forall t \in [\alpha, \beta]$
- 2. $|\varphi'(t) f(t,\varphi(t))| \leq \varepsilon$ во всех точках, где производная определена

Lemma 2.2.

Пусть $\varepsilon_m \to 0$ и $\varphi_m(t)$ – последовательность ε_m -решений системы на отрезке $[\alpha, \beta]$, такая, что $\varphi_m(t_0)=x_0; \ |f(t,\varphi_m(t))|\leq M$ и $\varphi_m\rightrightarrows\varphi_*.$ Тогда φ_* – решение задачи Коши

Доказательство:

Пусть Δ_m – последовательность функций, заданных формулой

$$\varphi_m(t) = x_0 + \int_{t_0}^t f(s, \varphi_m(s)) ds + \Delta_m(t)$$

Интегрируя неравенство $|\varphi'(t)-f(t,\varphi(t))|\leq \varepsilon_m$ от t_0 до t, с учетом того, что $\varphi_m(t_0)=\varphi(t_0)=0$ x_0 , получаем $|\Delta_m(t)| \leq \varepsilon_m(\beta - \alpha)$

Переходя к пределу в первой формуле, получаем, что $\varphi_*(t)$ – решение эквивалентного интегрального уравнения, а значит, и задачи Коши

Remark 2.8.

Далее, мы предложим метод построения таких приближенных решений. Мы будем строить эти решения на промежутке $[t_0, t_0 + h]$, построение на промежутке $[t_0 - h, t_0]$ аналогично

Definition 2.19. Ломаные Эйлера

Фиксируем $m \in \mathbb{N}$. Разделим отрезок $[t_0, t_0 + h]$ на m равных частей:

$$t_j = t_0 + \frac{hj}{m}; \ j = 0, \dots, m$$

Положим $\varphi_m(t_0) = x_0$ и последовательно определим $\varphi_m(t) = \varphi_m(t_i) + f(t_i, \varphi_m(t_i))(t - t_i)$ при $j = 0, \dots, m-1$ и $t \in [t_i, t_{i+1}]$

В частности
$$\varphi_m(t_{j+1}) = \varphi_m(t_j) + f(t_j, \varphi_m(t_j)) \frac{h}{m}$$

В частности $\varphi_m(t_{j+1}) = \varphi_m(t_j) + f(t_j, \varphi_m(t_j)) \frac{h}{m}$ Если положить $A_j = (t_j, \varphi_m(t_j))$, то график $\varphi_m(t)$ – ломаная, соединяющая точки A_j

Proposition 2.1.

$$K:=\{(t,x):=|t-t_0|\leq a;\;|x-x_0|\leq b\}\subset D$$

Для любого $m\in\mathbb{N},t\in[t_0,t_0+h]$ верно $(t,\varphi_m(t))\in K$

Доказательство:

1.
$$|t - t_0| \le h = \min(a, \frac{b}{M})$$

1.
$$|t - t_0| \le h = \min(a, \frac{b}{M})$$

2. $t^* = \min_{t \in [t_0, t_0 + h]} \{ |\varphi_m(t) - x_0| \ge b \}$

С другой стороны,
$$|\varphi_m(t^*)-x_0|=|\varphi_m(t^*)-\varphi_m(t_0)|\leq \int\limits_t^{t^*}|\varphi_m'(s)|ds\leq M(t^*-t_0)\leq Mh\leq b$$

Proposition 2.2.

 $\forall \varepsilon > 0 \ \exists m_0$, такое что при $m \geq m_0$ функция φ_m является ε -решением системы

Доказательство:

$$|\varphi_m(t_1) - \varphi_m(t_2)| \le M|t_1 - t_2|$$

Если
$$t \in [t_j, t_{j+1}]$$
, то $|t - t_j| \le \frac{h}{m}$; $|f(t_j, \varphi_m(t_j)) - f(t, \varphi_m(t))| \xrightarrow[m \to \infty]{} 0$ равномерно по t

Proposition 2.3.

Функции $\varphi_m(t)$ равномерно ограничены

Доказательство:

$$|\varphi_m(t)| \le M|t - t_0| + |x_0| \le Mh + |x_0|$$

Proposition 2.4.

Функции $\varphi_m(t)$ равностепенно непрерывны

Доказательство:

$$|\varphi_m(t_1) - \varphi_m(t_2)| \le M|t_1 - t_2|$$

Theorem 2.4. Теорема Кнезера

В условиях теоремы существования, для любого $t_1 \in [t_0 - h, t_0 + h]$ множество значений решений задачи Коши $\{x(t_1): x(t) - \text{решение}\}$ замкнуто и связно

Exercise 2.1.

Доказать замкнутость (пользуемся утверждениями 2.1-2.4, леммой 2.1 и теоремой Арцела-Асколи)

Lemma 2.3. Лемма Гронуолла-Беллмана

Пусть $u(t) \geq 0; \ f(t) \geq 0; u(t), f(t) \in C[t_0, \infty),$ при этом

для $t \geq t_0$ выполняется неравенство $u(t) \leq c + \int\limits_{t_0}^t f(t_1) u(t_1) dt_1$, где c > 0 — константа

9

Тогда при $t \geq t_0$ имеем оценку $u(t) \leq c \cdot \exp(\int\limits_{t_0}^t f(t_1) dt_1)$

Доказательство:

Из неравенства получаем
$$\frac{u(t)}{c+\int\limits_{t_0}^t f(t_1)u(t_1)dt_1} \le 1$$
 и $\frac{f(t)u(t)}{c+\int\limits_{t_0}^t f(t_1)u(t_1)dt_1} \le f(t)$

Т.к.
$$\frac{d}{dt} \left[c + \int_{t_0}^t f(t_1) u(t_1) dt_1 \right] = f(t) u(t)$$
, то проинтегрировав от t_0 до t , получим

$$\ln \left[c + \int\limits_{t_0}^t f(t_1)u(t_1)dt_1\right] - \ln c \le \int\limits_{t_0}^t f(t_1)dt_1, \text{ отсюда и из неравенства}$$

$$u(t) \le c + \int\limits_{t_0}^t f(t_1) u(t_1) dt_1 \le c \cdot \exp(\int\limits_{t_0}^t f(t_1) dt_1),$$
 чтд

Theorem 2.5. Следствие леммы Гронуолла-Беллмана

1.
$$u(t) \leq \int_{t_0}^{t} f(t_1)u(t_1)dt_1 \Rightarrow u(t) \equiv 0$$

2. $t \leq t_0$

2.
$$t < t_0$$

$$u(t) \le c + \left| \int_{t_0}^t f(t_1)u(t_1)dt_1 \right| \Rightarrow u(t) \le c \cdot \exp \left| \int_t^{t_0} f(t_1)dt_1 \right|$$

Доказательство:

В пункте 2 замена s=-t

Lemma 2.4. Усиленная лемма Гронуолла-Беллмана

Пусть функция u(x) неотрицательна и непрерывна в промежутке $[x_0, x_0 + h]$ и удовлетворяет там неравенству $0 \le u(x) \le A + B \int_{x_0}^x u(t) dt + \varepsilon (x - x_0)$ при $A, B, \varepsilon \ge 0$

Тогда при $x \in [x_0, x_0 + h]$ справедливо неравенство $u(x) \le Ae^{B(x-x_0)} + \frac{\varepsilon}{B}(e^{B(x-x_0)} - 1)$

Exercise 2.2.

Доказать усиленную лемму Гронуолла-Беллмана

Definition 2.20. Условие Липшица

Непрерывная функция (вектор-функция) $f: A \mapsto \mathbb{R}^n$ удовлетворяет условию Липшица, $f\in Lip(A)$, если существует такая константа L>0, что $|f(x)-f(y)\leq L|x-y|$ для любых $x, y \in A$

Definition 2.21. Локальное условие Липшица

Непрерывная функция (вектор-функция) $f:A\mapsto\mathbb{R}^n$ удовлетворяет локальному условию Липшица, если для любого $x_0 \in A$ существует окрестность U точки x_0 , в которой функция f удовлетворяет условию Липшица

Lemma 2.5.

Функция $f:U\to\mathbb{R}^n$ – непрерывно дифференцируема, где U – область в \mathbb{R}^m , значит fудовлетворяет в этой области локальному условию Липшица

Доказательство:

Возьмем точку $x_0 \in U$ и замкнутый шарик B с центром в x_0 такой, что $B \subset U$. Пусть $M = \max |Df(x)|$. Тогда по теореме о среднем $|f(x) - f(y)| \le M|x - y|$ для любых $x, y \in B$

Definition 2.22. Условие Липшица по переменной x

Пусть $U\subset \mathbb{R}^{n+1}_{t,x}$ — область. Непрерывная вектор-функция $f:U\to \mathbb{R}^n$ удовлетворяет условию Липшица по переменной $x, f \in Lip_x(A)$ если существует такая константа L>0,что $|f(t,x_1)-f(t,x_2)| \le L|x_1-x_2|$ для любых $(t,x_1),(t,x_2) \in U$

Definition 2.23. Локальное условие Липшица по переменной x

Пусть $U \subset \mathbb{R}^{n+1}_{t,x}$ — область. Непрерывная вектор-функция $f: U \to \mathbb{R}^n$ удовлетворяет локальному условию Липшица по переменной $x, f \in Lip_{loc,x}(A)$, если для любой точки $(t_0, x_0) \in U$ существует окрестность V этой точки и такая константа L > 0, что $|f(t, x_1) - f(t, x_2)| \le L|x_1 - x_2|$ для любых $(t, x_1), (t, x_2) \in V$

Theorem 2.6. Теорема об условии Липшица в компакте

Пусть вектор-функция f удовлетворяет локальному условию Липшица по x в области U. Тогда для любого компакта $K \subset U$ эта функция липшицева по x на этом компакте

Доказательство:

Пусть это утверждение неверно. Тогда существуют последовательности $(t_k, x_k) \in K$ и $(t_k, y_k) \in K, x_k \neq y_k$, такие что $|f(t_k, x_k) - f(t_k, y_k)| \geq k|x_k - y_k|$

НУО можем считать, что $t_k \to t^*, \ x_k \to x^*, \ y_k \to y^*.$ При этом $(t^*, x^*), (t^*, y^*) \in K$

Возможны два случая:

- 1. $x^* \neq y^*$ Тогда $\frac{|f(t_k, x_k) f(t_k, y_k)|}{|x_k y_k|} \to \infty$, $|x_k y_k| \not\to 0 \Rightarrow |f(t_k, x_k) f(t_k, y_k)|$ не ограничено. Противоречие (т.к. f непрерывна на компакте)
- воречие (т.к. f непрерывна на компакте) 2. $x^* = y^*$

В этом случае существует окрестность U точки (t^*, x^*) такая, что существует константа L>0, что $|f(t,x)-f(t,y)|\leq L|x-y|$ для любых $(t,x),(t,y)\in U$

Значит, такое неравенство выполнено для всех $(t_k, x_k), (t_k, y_k)$ начиная с некоторого номера. Противоречие

Theorem 2.7. Теорема единственности

Пусть x'=f(t,x) — система оду. $f:D\to \mathbb{R}^n;\ D\subset \mathbb{R}^{n+1}$ — область. Пусть f непрерывна и локально липшицева по x в области D

Тогда для любой пары $(t_0,x_0)\in D$ задача Коши $\begin{cases} x'=f(t,x)\\ x(t_0)=x_0 \end{cases}$ имеет единственное решение

Пусть утверждение теоремы неверно. Есть такая точка $(t_0, x_0) \in D$, что задача Коши имеет два различных решения $\varphi(t)$ и $\psi(t)$ на промежутке $[t_0 - h, t_0 + h]$

$$K = \{(t, \varphi(t)) : t \in [t_0 - h, t_0 + h]\} \cup \{(t, \psi(t)) : t \in [t_0 - h, t_0 + h]\}$$

Множество K – компакт. На нем выполнено глобальное условие Липшица по x, в частности $|f(t,\varphi(t))-f(t,\psi(t))| \leq L|\varphi(t)-\psi(t)|$. Положим $u(t)=|\varphi(t)-\psi(t)|$

$$\varphi(t) = x_0 + \int_{t_0}^t f(s, \varphi(s)) ds; \ \psi(t) = x_0 + \int_{t_0}^t f(s, \psi(s)) ds$$

$$\varphi(t) - \psi(t) = \int_{t_0}^{t} \left[f(s, \varphi(s)) - f(s, \psi(s)) \right] ds$$

$$|\varphi(t) - \psi(t)| = \left| \int_{t_0}^t \left[f(s, \varphi(s)) - f(s, \psi(s)) \right] ds \right| \le \int_{t_0}^t |f(s, \varphi(s)) - f(s, \psi(s))| ds \le L \int_{t_0}^t |\varphi(s) - \psi(s)| ds$$

 $u(t) \leq L\int\limits_{t_0}^t u(s)ds$ по следствию из леммы Гронуолла-Беллмана $u(t)\equiv 0$ и $\varphi(t)\equiv \psi(t)$

Theorem 2.8. Следствие

Пусть x' = f(t,x) — система оду. $f: D \to \mathbb{R}^n; \ D \subset \mathbb{R}^{n+1}$ — область. Пусть f непрерывна и непрерывно дифференцируема по x в области D. Тогда для любой пары $(t_0,x_0) \in D$ задача Коши $\begin{cases} x' = f(t,x) \\ x(t_0) = x_0 \end{cases}$ имеет единственное решение

Remark 2.9.

Условие теоремы единственности достаточное, но не необходимое

$$y' = y \ln |y|; \ y \neq 0; \ y' = 0$$
 при $y = 0$

$$y=0$$
 или $\ln |\ln |y||=x+c\Rightarrow y=e^{ce^x}$

Единственность решений есть, а условия Липшица (даже локального) нет

Definition 2.24. Продолжение решения

Пусть есть решения $\varphi: \langle a, b \rangle \to \mathbb{R}^n, \ \psi: \langle a_1, b_1 \rangle \to \mathbb{R}^n$. Говорим, что решение ψ есть продолжение решения φ (продолжает решение φ), если

- 1. $\langle a,b\rangle \not\subseteq \langle a_1,b_1\rangle$
- 2. $\psi \mid_{\langle a,b\rangle} = \varphi$

Definition 2.25. Продолжимость влево

Решение $\varphi(t)$ называется продолжимым влево за a, если существует решение $\psi(t)$, продолжающее решение, и при этом $a_1 < a$

Definition 2.26. Продолжимость вправо

Решение $\varphi(t)$ называется продолжимым вправо за b, если существует решение $\psi(t)$, продолжающее решение, и при этом $b_1 > b$

Definition 2.27. Максимально продолженное решение

Решение $\varphi(t)$ называется непродолжимым или максимально продолженным, если решения $\psi(t)$, продолжающего $\varphi(t)$, не существует

Theorem 2.9. Теорема о продолжимости решений вправо за b

Пусть решение $\varphi(t)$ уравнения x' = f(t,x) задано на промежутке $\langle a,b \rangle$, причем существует предел $\lim_{t \to b_{-}} \varphi(t) = x_{0}$ и $(b,x_{0}) \in D$. Тогда решение $\varphi(t)$ продолжимо вправо за b

Теорема о продолжимости решения влево за a выглядит аналогично

Доказательство:

Рассмотрим некоторое решение $\psi(t)$ задачи Коши для уравнения x' = f(x,t) с начальными данными $x(b) = x_0$, заданное на промежутке Пеано [b-h,b+h] и положим

$$\chi(t) = \begin{bmatrix} \varphi(t) \text{ если } t \in \langle a, b \rangle \\ \psi(t) \text{ если } t \in [b, b+h] \end{bmatrix}$$

Достаточно показать, что $\chi(t)$ – решение системы. Для этого достаточно проверить справедливость интегрального уравнения $\chi(t) = x_0 + \int\limits_0^t f(s,\chi(s))ds$

Пусть
$$\varphi(t_1) = x_1$$
, $\varphi(t) = x_1 + \int_{t_1}^t f(s, \varphi(s)) ds$; $\varphi(b) = x_0 = x_1 + \int_{t_1}^b f(s, \varphi(s)) ds$

Definition 2.28. Частничный порядок

Пусть \mathfrak{M} – некоторое множество. Отношение \preccurlyeq на этом множестве называется частичным порядком, а само множество частично упорядоченным, если выполнены следующие соотношения

- 1. $a \leq a$ для любого $a \in \mathfrak{M}$ (рефлексивность)
- 2. $a \leq b, \ b \leq c \Rightarrow a \leq c$ для любых $a,b,c \in \mathfrak{M}$ (транзитивность)
- 3. $a \leq b, b \leq a \Rightarrow a = b$ (антисимметричность)

Example 2.7.

Обычный порядок на \mathbb{R} , делимость натуральных чисел, порядок по ключению для всех подмножеств некоторого множества \mathfrak{A} $(A \leq B \Leftrightarrow A \subset B)$

Definition 2.29. Максимальный элемент

Элемент $a \in \mathfrak{M}$ называется максимальным, если $a \preccurlyeq b \Rightarrow b = a$

Definition 2.30. Линейный порядок

Частично упорядоченное множество называется линейно упорядоченным (или цепью), если для любых $a,b\in\mathfrak{M}$ либо $a\preccurlyeq b$, либо $b\preccurlyeq a$

Definition 2.31. Верхняя грань

Пусть $\mathfrak{A}\subset\mathfrak{M}$. Элемент $a\in\mathfrak{M}$ называется верхней гранью множества $\mathfrak{A},$ если $b\preccurlyeq a$ для любого $b\in\mathfrak{A}$

Lemma 2.6. Лемма Цорна

Если в частично-упорядоченном множестве \mathfrak{M} каждое линейно упорядоченное подмножество имеет верхнюю грань, то само множество имеет максимальный элемент

Доказательство:

Доказывается как следствие из аксиомы выбора

Theorem 2.10.

Для любого $(t_0, x_0) \in D$ существует максимально продолженное решение задачи коши $\begin{cases} x' = f(t, x) \\ x(t_0) = x_0 \end{cases}$

Доказательство:

Пусть \mathfrak{M} — множество всех решений задачи Коши. Для любых двух решений φ, ψ задачи Коши говорим, что $\varphi \preccurlyeq \psi$, если ψ продолжает φ либо они совпадают. Для каждого решения φ обозначим символом $I(\varphi)$ область определения этого решения

Пусть \mathfrak{B} – некоторое линейно упорядоченное множество решений задачи. Положим $J=\bigcup_{\varphi\in\mathfrak{B}}I(\varphi)$. Отметим, что для каждой точки $t\in J$ все значения $\varphi(t)$ при $\varphi\in\mathfrak{B}$ совпадают

В самом деле, если $\varphi, \psi \in \mathfrak{B}$, по одно решение является продолжением другого и, если они определены в одной точке, то их значения там совпадают

Тогда можно корректно определить решение $\eta(t)$, продолжающее все решения из $\mathfrak B$ (или совпадающее с кем-то из них). Это будет верхняя грань. Существование максимального элемента $\mathfrak M$ следует из леммы Цорна

Theorem 2.11.

Пусть $\varphi(t)$ — максимально продолженное решение системы, заданное на отрезке $(a,b);\ K\subset D$ — компакт. Тогда существует $\varepsilon>0$, такое, что $\varphi(t)\notin K$ для любого $t\in(a,a+\varepsilon)\cup(b-\varepsilon,b)$

Доказательство:

Пусть не так. НУО существует $t_k \to b$ такая, что $\varphi(t_k) \in K$ для любого k. Можно считать, что $(t_k, \varphi(t_k)) \to (b, \varphi^*) \in K$

Тогда $(t, \varphi(t)) \to (b, \varphi^*)$ при $t \to b$. Существует $h_0 > 0, M > 0$ такие, что если $(t_0, \varphi(t_0)) \in K$, то решение $\varphi(t)$ определено на $[t_0 - h, t_0 + h]$ и на этом отрезке $|\varphi'(t)| \leq M$. Следует из построения промежутка Пеано

При больших $k \ t_{k+1} - t_k < h; \ |\varphi(t) - \varphi(t_k)| \le M(t - t_k)$ для любых $t \in [t_k, t_{k+1}]$

Отсюда $(t,\varphi(t))\to (b,\varphi^*)$ при $t\to b$. Тогда $\varphi(t)$ можно продолжить вправо за b. Противоречие

Definition 2.32. Почти линейные системы

Пусть $f: \mathbb{R}^{n+1} \to \mathbb{R}^n$ – непрерывная

Система x'=f(t,x) почти линейная, если существуют такие непрерывные функции $A(t), B(t) \geq 0$, что $|f(t,x) \leq A(t)|x| + B(t)$

Theorem 2.12.

Любое решение почти линейной системы продолжимо на \mathbb{R}

3 Дифференциальные уравнения высшего порядка

Definition 3.1. Линейные дифференциальные уравнения высшего порядка

 $a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_0(x)y = f(x)$ – линейное неоднородное порядка n $a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_0(x)y = 0$ – линейное однородное порядка nПредполагается, что все функции a_i и f непрерывны на некотором промежутке I =(a,b), который может быть прямой или лучом. При этом $a_n(x) \neq 0$ для любого $x \in I$. Переменная у может быть вещественной и комплексной

Theorem 3.1. Основные свойства решений линейного уравнения

Решения – функции класса гладкости C^n , определенные на I и дающие при подстановке

Тheorem 3.1. Основные свойства решений линейного уравнения

Решения – функции класса гладкости
$$C^n$$
, определенные на I и дающие при подстанов $\begin{cases} y_1' = y_2 \\ \dots \\ y_{n-1}' = y_n \\ y_n' = \frac{-a_{n-1}(x)y_n - \dots - a_0(x)y_1 + f(x)}{a_n(x)} \end{cases}$

Отсюда следует, что решения уравнения с любыми начальными данными x_0

Отсюда следует, что решения уравнения с любыми начальными данными $x_0 \in$ $I, (y_0, \ldots, y_n) \in \mathbb{R}^n$ определены, единственны и продолжимы на I

Definition 3.2. Пространство решений однородной системы

Обозначим левую часть уравнения символом $\mathcal{L} := a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_0(x)y$ Это линейный оператор: $\mathcal{L}(\alpha u + \beta v) = \alpha \mathcal{L}(u) + \beta \mathcal{L}(v)$

Соответственно, множество решений однородного уравнения – линейное пространство. Поскольку каждым начальным данным соответствует ровно одно решение, размерность пространства равна n

Решения с начальными данными $(1,0,\ldots,0),(0,1,0,\ldots,0),\ldots,(0,0,\ldots,1)$ образуют базис пространства решений. Это начальные данные $(y(x_0), y'(x_0), \dots, y^{(n-1)}(x_0))$

Remark 3.1.

Решения $\varphi_1(x), \dots, \varphi_k(x)$ системы линейно зависмы, если существует константы C_1,\ldots,C_k , не все равные нулю, такие, что $C_1\varphi_1(x)+\ldots+C_n\varphi_n(x)\equiv 0$

Definition 3.3. Определитель Вронского

Пусть $\varphi_1(x), \ldots, \varphi_n(x)$ – решения системы. Вронскианом или определителем Вронского этого семейства решений называется функция от x:

$$W(x) = W_{\varphi_1, \dots, \varphi_n}(x) = \begin{vmatrix} \varphi_1(x) & \varphi_2(x) & \dots & \varphi_n(x) \\ \varphi'_1(x) & \varphi'_2(x) & \dots & \varphi'_n(x) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1^{(n-1)}(x) & \varphi_2^{(n-1)}(x) & \dots & \varphi_n^{(n-1)}(x) \end{vmatrix}$$

Theorem 3.2. Свойства определителя Вронского

Пусть $\varphi_1(x), \dots, \varphi_n(x)$ – решения уравнения. Тогда равносильны следующие условия:

- 1. $W_{\varphi_1,\dots,\varphi_n}(x) \equiv 0$
- 2. Существует $x_0 \in I$ такой, что $W_{\varphi_1,...,\varphi_n}(x_0) = 0$
- 3. Решения $\varphi_1(x), \ldots, \varphi_n(x)$ линейно зависимы

Доказательство:

$1 \Rightarrow 2$ Очевидно

$$2\Rightarrow 3$$
 $W_{\varphi_1,\dots,\varphi_n}(x_0)=0.$ Тогда существуют константы C_1,\dots,C_n , не все нулевые, такие что
$$\begin{cases} C_1\varphi_1(x_0)+\dots+C_n\varphi_n(x_0)=0\\ C_1\varphi_1'(x_0)+\dots+C_n\varphi_n'(x_0)=0\\ \dots\\ C_1\varphi_1^{(n-1)}(x_0)+\dots+C_n\varphi_n^{(n-1)}(x_0)=0 \end{cases}$$
 Положим $\psi(x)=C_1\varphi_1(x)+\dots+C_n\varphi_n(x)$ Тогда $\psi(x_0)=\psi'(x_0)=\dots=\psi^{(n-1)}(x_0)=0\Rightarrow \psi(x)\equiv 0$ $3\Rightarrow 1$ $C_1\varphi_1(x)+\dots+C_n\varphi_n(x)\equiv 0\Rightarrow C_1\varphi_1^{(k)}(x)+\dots+C_n\varphi_n^{(k)}(x)\equiv 0$ для любого $k=1,\dots,n-1\Rightarrow 0$ $k=1,\dots,n-1$

Theorem 3.3. Формула Остроградского-Лиувилля

Для любых $x_0, x \in I$ справедливо соотношение $W(x) = W(x_0)e^{-\int_{x_0}^x \frac{a_{n-1}(t)}{a_n(t)}dt}$

Доказательство:

Для начала, докажем формулу подсчета производных определителей:

Пусть
$$U(x) = \begin{vmatrix} u_{11}(x) & \dots & u_{1n}(x) \\ u_{21}(x) & \dots & u_{2n}(x) \\ \vdots & \ddots & \vdots \\ u_{n1}(x) & \dots & u_{nn}(x) \end{vmatrix}$$
 — определитель, состоящий из дифференцируемых функ-

ций. Тогда

$$U'(x) = \begin{vmatrix} u'_{11}(x) & \dots & u'_{1n}(x) \\ u_{21}(x) & \dots & u_{2n}(x) \\ \vdots & \ddots & \vdots \\ u_{n1}(x) & \dots & u_{nn}(x) \end{vmatrix} + \dots + \begin{vmatrix} u_{11}(x) & \dots & u_{1n}(x) \\ u_{21}(x) & \dots & u_{2n}(x) \\ \vdots & \ddots & \vdots \\ u'_{n1}(x) & \dots & u'_{nn}(x) \end{vmatrix}$$

Формула следует из формулы производной произведения функций и из представления определителя в виде

16

$$U(x) = \begin{vmatrix} u_{11}(x) & \dots & u_{1n}(x) \\ u_{21}(x) & \dots & u_{2n}(x) \\ \vdots & \ddots & \vdots \\ u_{n1}(x) & \dots & u_{nn}(x) \end{vmatrix} = \sum_{p \in \prod_n} (-1)^{|p|} \prod_{i=1}^n u_{ip_i}(x)$$

Здесь \prod_n – всевозможные перестановки n элементов, |p| – четность перестановки

Отеюда
$$W'(x) = \begin{vmatrix} \varphi_1'(x) & \varphi_2'(x) & \dots & \varphi_n'(x) \\ \varphi_1'(x) & \varphi_2'(x) & \dots & \varphi_n'(x) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1^{(n-1)}(x) & \varphi_2^{(n-1)}(x) & \dots & \varphi_n^{(n-1)}(x) \end{vmatrix} + \begin{vmatrix} \varphi_1(x) & \varphi_2(x) & \dots & \varphi_n(x) \\ \varphi_1'(x) & \varphi_2'(x) & \dots & \varphi_n'(x) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1^{(n-1)}(x) & \varphi_2^{(n-1)}(x) & \dots & \varphi_n^{(n-1)}(x) \end{vmatrix} + \begin{vmatrix} \varphi_1(x) & \varphi_2(x) & \dots & \varphi_n'(x) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1^{(n-1)}(x) & \varphi_2^{(n-1)}(x) & \dots & \varphi_n^{(n-1)}(x) \\ \varphi_1^{(n-1)}(x) & \varphi_2^{(n-1)}(x) & \dots & \varphi_n^{(n-1)}(x) \end{vmatrix} + \begin{vmatrix} \varphi_1(x) & \varphi_2(x) & \dots & \varphi_n(x) \\ \varphi_1'(x) & \varphi_2'(x) & \dots & \varphi_n'(x) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1^{(n)}(x) & \varphi_2^{(n)}(x) & \dots & \varphi_n^{(n)}(x) \end{vmatrix} = \\ = 0 + 0 + \dots + 0 + \begin{vmatrix} \varphi_1(x) & \varphi_2(x) & \dots & \varphi_n(x) \\ \varphi_1'(x) & \varphi_2'(x) & \dots & \varphi_n'(x) \\ \varphi_1'(x) & \varphi_2'(x) & \dots & \varphi_n'(x) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1^{(n)}(x) & \varphi_2'(x) & \dots & \varphi_n'(x) \end{vmatrix} = \\ = \begin{vmatrix} \varphi_1(x) & \varphi_2(x) & \dots & \varphi_n(x) \\ \varphi_1'(x) & \varphi_2'(x) & \dots & \varphi_n'(x) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1^{(n)}(x) & \varphi_2'(x) & \dots & \varphi_n'(x) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1^{(n)}(x) & \varphi_2'(x) & \dots & \varphi_n'(x) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1^{(n)}(x) & \varphi_2'(x) & \dots & \varphi_n'(x) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1^{(n)}(x) & \varphi_2'(x) & \dots & \varphi_n'(x) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1^{(n)}(x) & \varphi_2'(x) & \dots & \varphi_n'(x) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1^{(n)}(x) & \varphi_2(x) & \dots & \varphi_n(x) \\ \varphi_1'(x) & \varphi_2(x) & \dots & \varphi_n'(x) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1^{(n)}(x) & \varphi_2'(x) & \dots & \varphi_n'(x) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1^{(n)}(x) & \varphi_2'(x) & \dots & \varphi_n'(x) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1^{(n)}(x) & \varphi_2'(x) & \dots & \varphi_n'(x) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1^{(n)}(x) & \varphi_2'(x) & \dots & \varphi_n'(x) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1^{(n)}(x) & \varphi_2'(x) & \dots & \varphi_n'(x) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1^{(n)}(x) & \varphi_2'(x) & \dots & \varphi_n'(x) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1^{(n)}(x) & \varphi_2'(x) & \dots & \varphi_n'(x) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1^{(n)}(x) & \varphi_2'(x) & \dots & \varphi_n'(x) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1^{(n)}(x) & \varphi_2'(x) & \dots & \varphi_n'(x) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1^{(n)}(x) & \varphi_2'(x) & \dots & \varphi_n'(x) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1^{(n)}(x) & \varphi_2'(x) & \dots & \varphi_n'(x) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1^{(n)}(x) & \varphi_2'(x) & \dots & \varphi_n'(x) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1^{(n)}(x) & \varphi_1^{(n)}(x) & \varphi_1^{(n)}(x) & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1^{(n)}(x) & \varphi_1^{(n)}(x) & \varphi_1^{(n)}(x) & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1^{(n)}(x) & \varphi_1^{(n)}(x) & \varphi_1$$

Remark 3.2. Зачем нужна формула Остроградского-Лиувилля?

$$y'' + xy' - y = 0$$

Догадались, что решение y=x. Пусть другое решение – $\varphi(x)$

$$\begin{vmatrix} \varphi(x) & x \\ \varphi'(x) & 1 \end{vmatrix} = W(0)e^{-\frac{x^2}{2}}. \text{ HYO } W(0) = -1$$

 $\begin{vmatrix} \varphi(x) & x \\ \varphi'(x) & 1 \end{vmatrix} = W(0)e^{-\frac{x^2}{2}}.$ НУО W(0)=-1 $y'x-y=e^{-\frac{x^2}{2}}.$ $\varphi(x)$ – решение. Решение линейного однородного уравнения y'x-y=0 – это y=Cx

$$y = ux \Rightarrow u'x^2 + ux - ux = e^{-\frac{x^2}{2}} \Rightarrow u' = x^{-2}e^{-\frac{x^2}{2}}$$

4 Обыкновенные дифференциальные уравнения

Definition 4.1. Квазимногочлены

Так называются выражения $f(x) = P_1(x)e^{\lambda_1 x} + \ldots + P_n(x)e^{\lambda_n x}$, где $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ и $P_1(x), \ldots, P_n(x)$ – многочлены с комплексными коэффициентами

Example 4.1.

- 1. $x \sin x$
- 2. $e^x + x^2 + e^{2x}$

Lemma 4.1.

Пусть наборы $(k_1, \lambda_1), \dots, (k_m, \lambda_m); k_j \in \mathbb{N} \cup \{0\}; \lambda_j \in \mathbb{C}$ попарно различны (то есть для любых двух пар либо первая, либо вторая компоненты разные)

Тогда функции $\{x^{k_j}e^{\lambda_j x}, j=1,\ldots,m\}$ линейно независимы

Lemma 4.2.

Для любого квазимногочлена $f(x) = P_1(x)e^{\lambda_1 x} + \ldots + P_n(x)e^{\lambda_n x}$ верно следующее $f(x) \equiv 0 \Leftarrow P_1(x) \equiv P_2(x) \equiv \ldots \equiv P_n(x) \equiv 0$

Доказательство:

Отметим следующий факт. Пусть $\lambda \neq 0$, $k \in \mathbb{N} \cup \{0\}$. Тогда $(x^k e^{\lambda x})' = (\lambda x^k + k x^{k-1}) e^{\lambda x}$, то есть справа при $e^{\lambda x}$ стоит многочлен степени k. Отсюда, следует, что если $\lambda \neq 0$ и P(x) – многочлен, то $(P(x)e^{\lambda x})' = Q(x)e^{\lambda x}$, где Q(x) – многочлен и $\deg Q = \deg P$

Будем доказывать индукцией по n – числу слагаемых

База: n=1. Очевидно. $P(x)e^{\lambda x}\equiv 0 \Rightarrow P(x)\equiv 0$

Переход: $n \to n+1$. Пусть $P_1(x)e^{\lambda_1x}+\ldots+P_ne^{\lambda_nx}+P_{n+1}(x)e^{\lambda_{n+1}x}\equiv 0$, причем $\deg P_{n+1}=m$ $P_1(x)e^{(\lambda_1-\lambda_{n+1})x}+\ldots+P_n(x)e^{(\lambda_n-\lambda_{n+1})x}+P_{n+1}(x)\equiv 0$

Продифференцируем полученное равенство m+1 раз по x. Получим

 $Q_1(x)e^{(\lambda_1-\lambda_{n+1})x}+\ldots+Q_n(x)e^{(\lambda_n-\lambda_{n+1})x}\equiv 0$, причем $\deg P_j=\deg Q_j$

Степень нулевого многочлена — $-\infty$. В силу индукционного предположения получаем, что $P_1(x) \equiv \ldots \equiv P_n(x) \equiv 0$. Тогда в силу базы $P_{n+1}(x) \equiv 0$

Notation 4.1.

Сейчас будем рассматривать уравнения с постоянными коэффициентами:

 $\mathcal{L}y := a_n y^{(n)} + a_{n-1} y^{(n-1)} + \ldots + a_1 y' + a_0 y = 0$, где $a_0, \ldots, a_n \in \mathbb{R}$ и $a_n \neq 0$

Remark 4.1.

Почти все результаты лекции применимы к случаю уравнений с комплексными коэффициентами

Definition 4.2. Характеристический многочлен

Многочлен $\chi(\lambda) := a_n \lambda^n + a_{n-1} \lambda^{n-1} + \ldots + a_1 \lambda + a_0$ называется характеристическим многочленом уравнения $\mathcal{L}y = 0$

Example 4.2.

$$y'' + 3y' + 2y = 0$$

$$\lambda^2 + 3\lambda + 2 = \chi(\lambda)$$
 – характеристическое уравнение

Заметим, что для любого
$$\lambda \in \mathbb{C}, m \in \mathbb{N}, (e^{\lambda x})^{(m)} = \lambda^m e^{\lambda x}$$

Отсюда следует, что
$$\mathcal{L}[e^{\lambda x}] = \chi(\lambda)e^{\lambda x}$$

В частсности, если λ – корень характеристического многочлена, то $e^{\lambda x}$ – решение уравнения. Например, e^{-x} и e^{-2x} – решения данного уравнения

Theorem 4.1.

Пусть λ_0 – корень характеристического уравнения кратности $k \in \mathbb{N}$. Тогда функции $e^{\lambda_0 x}, x e^{\lambda_0 x}, \dots, x^{k-1} e^{\lambda_0 x}$ – решения уравнения $\mathcal{L} y = 0$

Доказательство:

Если
$$\lambda_0$$
 – корень кратности k , то $\chi(\lambda_0)=\chi'(\lambda_0)=\ldots=\chi^{(k-1)}(\lambda_0)=0$

С другой стороны, пусть $m \in \{0, \dots, k-1\}$. Продифференцируем $\mathcal{L}[e^{\lambda x}] = \chi(\lambda)e^{\lambda x}$ m раз по λ . С одной стороны, дифференцирования по x и λ коммутируют между собой и с умножением на константы. Следовательно $\frac{\partial^m}{\partial \lambda^m} \mathcal{L}[e^{\lambda x}] = \mathcal{L}[\frac{\partial^m}{\partial \lambda^m}e^{\lambda x}] = \mathcal{L}[x^m e^{\lambda x}]$

С другой стороны, по формуле производной произведения $\frac{\partial^m}{\partial \lambda^m}(\chi(\lambda)e^{\lambda x}) = \sum_{j=0}^m C_m^j \chi^{(j)}(\lambda) x^{m-j} e^{\lambda x}$

Подставляя $\lambda = \lambda_0$, получаем, что $\mathcal{L}[x^m e^{\lambda_0 x}] = 0$, значит $x^m e^{\lambda_0 x}$ – решение уравнения

Example 4.3.

1.
$$y''' + 5y'' + 6y' = 0$$

$$\chi(\lambda) = \lambda^3 + 5\lambda^2 + 6\lambda$$
. Корни – 0, –2, –3. Решения: 1, e^{-2x} , e^{-3x}

$$2. \ y''' + y'' - y' - y = 0$$

$$\chi(\lambda) = \lambda^3 + \lambda^2 - \lambda - 1$$
. Корни – –1 (кратности 2), 1. Решения: e^{-x}, xe^{-x}, e^x

Lemma 4.3.

Пусть $\varphi(x)$ – комплексное решение уравнения с вещественными коэффициентами, тогда $\operatorname{Re}\varphi(x)$ и $\operatorname{Im}\varphi(x)$ – тоже решения

19

Example 4.4.

$$y'' - 8y' + 25y = 0 \Rightarrow \lambda^2 - 8\lambda + 25 = 0 \Rightarrow \lambda_{1,2} = 4 \pm 3i$$

Будут решения $e^{(4\pm 3i)x} = e^{4x}(\cos 3x \pm i \sin 3x)$

Remark 4.2.

Если $\lambda=\alpha+i\beta$ – корень характеристического уравнения кратности k, то $\overline{\lambda}=\alpha-i\beta$ – тоже. Этой паре корней отвечает набор из 2k решений:

$$e^{\alpha x}\cos \beta x, xe^{\alpha x}\cos \beta x, \dots, x^{k-1}e^{\alpha x}\cos \beta x$$

 $e^{\alpha x}\sin \beta x, xe^{\alpha x}\sin \beta x, \dots, x^{k-1}e^{\alpha x}\sin \beta x$

Example 4.5.

$$y''''+2y''+y=0\Rightarrow \lambda^4+2\lambda^2+1=0\Rightarrow \lambda=\pm i$$
 (кратности 2)

Решения: $\cos x, x \cos x, \sin x, x \sin x$

Definition 4.3. Уравнения Эйлера

Это уравнения вида $a_n x^n y^{(n)} + a_{n-1} x^{n-1} y^{(n-1)} + \ldots + a_1 x y' + a_0 y = 0$

Они заданы при x>0 и при x<0. Соответственно, замены $x=e^t$ и $x=-e^t$ ($t=\ln|x|$) сводят уравнения Эйлера к уравнению с постоянными коэффициентами

Характеристический многочлен имеет вид

$$\chi(\lambda) = a_n \lambda(\lambda - 1) \dots (\lambda - n + 1) + a_{n-1} \lambda(\lambda - 1) \dots (\lambda - n + 2) + \dots + a_1 \lambda + a_0$$

Lemma 4.4.

Пусть λ_0 – корень характеристического уравнения кратности $k \in \mathbb{N}$. Тогда ему отвечает набор решений $|x|^{\lambda_0}, |x|^{\lambda_0} \ln |x|, \dots, |x|^{\lambda_0} (\ln |x|)^{k-1}$

Если есть пара комплексно сопряженных корней $\alpha \pm i\beta$ кратности k, то ей отвечают решения

 $|x|^{\alpha}\cos(\beta \ln |x|), |x|^{\alpha}\ln |x|\cos(\beta \ln |x|), \dots, |x|^{\alpha}(\ln |x|)^{k-1}\cos(\beta \ln |x|)$ $|x|^{\alpha}\sin(\beta \ln |x|), |x|^{\alpha}\ln |x|\sin(\beta \ln |x|), \dots, |x|^{\alpha}(\ln |x|)^{k-1}\sin(\beta \ln |x|)$

Example 4.6.

$$x^2y'' + xy' - y = 0 \Rightarrow \chi(\lambda) = \lambda(\lambda - 1) + \lambda - 1 = \lambda^2 - 1 \Rightarrow \lambda = \pm 1$$

Definition 4.4. Почти линейная система

Пусть $f: \mathbb{R}^{n+1} \to \mathbb{R}^n$ – непрерывная функция

Система x'=f(t,x) почти линейная, если существуют такие непрерывные на всей оси функции $A(t), B(t) \geq 0$, что $|f(t,x)| \leq A(t)|x| + B(t)$

Theorem 4.2.

Любое решение почти линейной системы продолжимо на $\mathbb R$

Доказательство:

Пусть ||x|| – евклидова норма. Ясно, что для любого решения x(t) системы имеем $\frac{d}{dt}(||x(t)||^2) = \frac{d}{dt}\langle x(t), x(t)\rangle = 2\langle x(t), x'(t)\rangle$

Пусть максимальный промежуток существования решения x(t) – интервал (a, b), содержащий точку t_0 . Из последнего неравенства следует, что

$$||x(t)||^{2} \leq ||x(t_{0})||^{2} + \left| \int_{t_{0}}^{t} \left| \frac{d}{ds} ||x(s)||^{2} \right| = ||x(t_{0})||^{2} + 2 \left| \int_{t_{0}}^{t} |\langle x(s), x'(s) \rangle| ds \right| \leq$$

$$\leq ||x(t_{0})||^{2} + 2 \left| \int_{t_{0}}^{t} |\langle x(s), f(s, x(s)) \rangle| ds \right| \leq ||x(t_{0})||^{2} + 2 \left| \int_{t_{0}}^{t} |x(s)|| f(s, x(s))| |ds \right| \leq$$

$$\leq ||x(t_{0})||^{2} + 2 \left| \int_{t_{0}}^{t} ||x(s)|| (A(s)||x(s)|| + B(s)) ds \right| \leq (*)$$

Пусть решение не продолжимо вправо за b. Тогда $b < +\infty$ и решение x(t) стремится к бесконечности при $t \to b$ (оно же обязано покидать любой компакт!)

Тогда положим
$$C_1 = 2 \max_{t \in [t_0, b]} (\max(A(t)), B(t)), C_2 = C_1 |b - t_0|$$

Воспользовавшись неравенством $||x(s)|| \leq \frac{1}{2}(||x(s)||^2+1)$, для оценки B(s)||x(s)||, получаем

$$(*) \le ||x(t_0)||^2 + C_1 \left| \int_{t_0}^t ||x(s)||^2 ds \right| + C_1 |t - t_0|$$

Отсюда и из леммы Гронуолла следует, что $||x(t)||^2$ ограничено на $[t_0, b]$. Противоречие Продолжимость влево на $(-\infty, t_0]$ проверяется аналогично