DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING **EXAMINATIONS 2004**

MSc and EEE PART IV: MEng and ACGI

TRAFFIC THEORY & QUEUEING SYSTEMS

Thursday, 6 May 10:00 am

Time allowed: 3:00 hours

There are FIVE questions on this paper.

Answer FOUR questions.

All questions carry equal marks

Corrected Copy

Any special instructions for invigilators and information for candidates are on page 1.

Examiners responsible

First Marker(s):

J.A. Barria

Second Marker(s): P. De Wilde

Especial Information for Invigilators: NIL

Traffic capacity on basis of Erlang B. formula.

Page 1 of 6

- 1.
- a) Briefly indicate how the Erlang model should be modified in each one of the following situations:
 - i) When the full availability assumption is not valid (e.g. restricted access).
 - ii) When the number of users of the system is of the same order of magnitude as the number of channels in the link.
 - iii) When the link analysed is a second choice link (e.g. traffic overflow from first choice link).
 - iv) When there is coexistence of two types of calls with different arrival rate and different holding times.

[10]

b) If an N-channel link is fed by M sources (M > N), and if the offered traffic per free source is α , show that the total traffic offered to the link, ρ_0 , is given by

$$\rho_0 = \frac{\alpha M}{1 + \alpha (1 - B_c)}$$

where, B_c is the call congestion.

[10]

2.

a) The stationary distribution of a Markov chain can be derived using balance equations.

Using a practical example, that is, by introducing a traffic model known to you:

- i) Describe and discuss at least two balance equations known to you.
- ii) Derive the stationary distribution of the model of your example using the two balance equations introduced in (i).

[10]

b) Consider the computer system shown in Figure 2.1 (three identical computers connected to each other by duplicated buses).

Assume that the computer system can be fully repaired only if it has failed (three computers in failure condition).

Also assume that the system can be represented by a Markov model, and that you know the following parameters:

hp(t) = failure rate of each computer,

hb(t) = failure rate of each bus,

r(t) = repair rate of the system.

- i) Define the state (space) of the system.
- ii) Derive the state-space transition diagram of this system
- iii) Set up the equations to obtain the stationary probability distributions.
- iv) Do the local balances equation hold in this case?

[10]

Figure 2.1

- a) If an M/M/K system is operating with a FIFO queue discipline, what can be said about:
 - i) The queue length distribution seen by arrivals that find all K servers busy?
 - ii) The unconditional queue length distribution?
 - iii) The waiting-time distribution for delayed arrivals (i.e. the ones that find K servers busy)?
 - iv) The waiting-time distribution for all arrivals (whether delayed or not)?

[10]

b) Determine the mean and variance of the carried traffic when ρ Erlangs of Poisson traffic is offered to a single communication channel via an infinite FIFO queue buffer.

[4]

Calculate the following performance parameters when ρ = 0.95 and the mean service time is $1/\mu$ = 0.25 s.:

- i) Mean queue length,
- ii) Mean waiting time,
- iii) Mean transit time.

[6]

4.

- a) Using a closed queuing network model as a simple approximation of a leaky bucket mechanism:
 - i) Discuss the underlying features and characteristics of the model,
 - ii) Derive the throughput λ^* of the modelled leaky bucket,
 - iii) State clearly and discuss any assumptions made in your derivations.

[10]

b)

- i) Describe the stochastic Knapsack problem and give a practical system model example.
- Describe and discuss an equivalent capacity model known to you. State clearly and discuss any assumptions made.

[10]

5.

Show that for a fluid model approximation the stationary probability, $F_i(x)$, that the buffer occupancy is less or equal to x, given i sources in talkspurt can be obtained from the following equation:

$$(i-C)\alpha \frac{\partial F_i(x)}{\partial x} = [N-(i-1)]\lambda F_{i-1}(x) - [(N-i)\lambda + i\alpha]F_i(x) + (i+1)\alpha F_{i+1}(x)$$
[5]

- i) Discuss when it would be reasonable to use a fluid flow approximation.
- ii) Define and explain the relevance of C, α, x and λ .
- iii) State clearly and discuss any assumptions made in your derivations.

[5]

- b) How many channels would be needed for the following:
 - i) For 1 link to carry 15 Erlangs of pure chance traffic at a loss probability 0.005?
 - ii) For 3 separate links each carrying 5 Erlangs at a loss probability of 0.005?
 - iii) For 5 separate links each carrying 3 Erlangs at a loss probability of 0.005?

For each of the above cases determine the mean channel occupancy.

[6]

- iv) Discuss which one of alternatives i), ii) or iii) you would choose if you need to take into account cost considerations,
- v) Discuss which one of alternatives i), ii) or iii) you would choose if you need to take into account reliability aspects.

[4]

TRAFFIC THEORY + QUEUENG 2004 Examinations: 199-9 Session Sy 1 TiEm 1 Confidential MODEL ANSWER and MARKING SCHEME First Examiner Di Marcia E4.05-507 Paper Code be be wilde Second Examiner Question Page 1 out of 13 Question labels in left margin Marks allocations in right margin Enlag hedp QI i) Parson amud stream ii) exponential hadding trip in) Foll availability accen iv) Ho re-sub unistion redipietions i) restricted availability : use loss factors to represent the effect of the restrictions ii) limited minher of traffic sources: vee the 7 winth coefficients of the form (M-i)2, where H is the number of sources and i is the 7 state ini) For our flow treffic: use bunth coefficiats of the Janua (Kti) A to generate traffic with 2 Vaniona > men iv) dieun knopsach preblie

		Francisco do como de la como de l	
	MO	Examinations: 199 9 Session	Confidential
First E	xaminer	DEL ANSWER and MARKING SCHEME	
l	i Examiner	Paper Code	13
	on labels in left margin	Question Page 2-out	s of
	on facers in left margin	Marks allocation	s in right margin
Q((0)	Offered traffic	, is	
	ro = tolf	red traffic free source] x E (momber	g
		fnee sov	· 1 1
		$\times E(N-H_t)$	
	= ×	$\times [M - E(N_t)]$	
	= 0	(H -x[(1-B)po]	
	=) /0 =	1 + (1-Bc) a	4
	l	$1+(1-13c)$ α	
	Then; total	ranical traffic = (1-Bc)/o	
			4
		· .	
			7
		·	

Zacf	
Examinations: 199 - 9 Session	Confidentia
MODEL ANSWER and MARKING SCHEME	•
First Examiner Paper Code	
Second Examiner Question Page 3 ou	t of
Question labels in left margin Marks allocation	ns in right margin
Q2 i) globral balance equation \[\bar{Z} \tau \tau \tau \tau \tau \tau \tau \tau	
2 Thi qui = 2 Thy qui	
これは、 これは、 これは、 これは、 これは、 これは、 これは、 これは、	
Local balance exprahei	
Trogoj = Try gio	
(for each pain i) 7 i)	
of states	2 5
ii) Elgset Glabal	
[(M-i)d+ip]TTi = (M-i+1)d Ti-1 + (i+1) mTi+1	
Ti = Eq : State probability in state;	
n = calling nate free counce	
Ergest local	
(M-i+1) ATI = inti (M-iH) d (M-i) d (M-iH) d (M-i) d	5
ip (i+1)m	

MODEL ANSWER and MARKING SCHEME First Examiner Second Examiner Question Page 4 out of Carried Marks allocations in right	idential
First Examiner Second Examiner Question Page 4 out of Comparine Question labels in left margin Marks allocations in right	
Second Examiner Question Page 4 out of Company of Comp	7
Question labels in left margin Question labels in left margin Marks allocations in righ	7
Q .	
Q .	t margin
E=(# operational computers, # operational husu) At least E(2,1) to be operational therefor, all possible state (3,2) = fully operational systems (3,1) = one hus down (2,2) = one computer down (2,1) = one computer and one hus down (x,x) = system in failed condutions ii) 32 310	
32) $\frac{3}{2}$	3 2 3

	10	1		
	Examinations:	· Session	Confid	lential
	MODEL ANSWER and M	IARKING SCH	HEME	•
First E	xaminer	Paper Code	7	
Second	l Examiner	Question	Page 5 out of 17	
Questi	on labels in left margin	1	Marks allocations in right	margin
Q3 a)	i) P[G4=i Veloy] = (1-	P)pi		
	ii) P[Ge=i] = P[Delay]	P [at=i/D	velous J	
	+ P[No dela	y] Plat	=i (No delay)	
		= (i =0 i > 0	
	= DKLA) ((1-p)pi	ن > ی	
	EI-DD	E(A) *	i=0	3
	PEDELEN J = DKAI			
	DKA) = EKA)	-		
	(1-p) +p			
	$E_{K}(A) = (A^{K}/K!) / \frac{K}{2}$	AK/ 12!	·	- <u>:</u>)
	iii) P[w>6/Qt=i]=P[[z (i+1) d (c,3)]	eparture m	
	- <u>-</u>	= (Kmz	j e-khs	7
	iv) P[w < 2 w>c] = 1.	- e-Km	(1-1)2	2

	2009	
	Examinations: 199-9 Session Co	nfidential
	MODEL ANSWER and MARKING SCHEME	•
First Exa	aminer Paper Code	
Second 1	Examiner Question Page out of	13
Question	labels in left margin Marks allocations in ri	ght margin
Q3 b)	System is an MIM/1 quevering system and for equilibrium p<1	
	let X = mn of may channels at him t [=0 or =1]	
	Then,	
j	$E[x_t] = 1, P[x_t=1] + 0, P[x_t=0]$	
	$= ptx_{t=1} = p$	
	similarly E[X+2] =[
	so that $Van [Xt] = E[Xt^2] - [E(Xt)]^2 = b(v-b)$	4
	to b=0.82 1/W=0.52	
	Hear greve length $E(at) = f^2 = 18.05$	2
	Mean wanty this $E(W) = (f) m = 4.75 \text{ sec}$	7
	Mean fraunit This E(T) = H(W) + E(S) = 5.0 See	. 2
ŀ		

	2004	
		fidential
	L ANSWER and MARKING SCHEME	
First Examiner	Paper Code	, O
Second Examiner	Question Page 2 out of	[J
Question labels in left margin	Marks allocations in rig	ht margin
4a) i) rully su	M } toher pool	
Tato	halt sa	
$\downarrow \downarrow $	1-8-	3
once for D sce, of fish. At this for the this cone the trem the home loss (PL rep.	a all mint have a token ausmitted. Tokens are generated and wait in the huffer until huffer in me forther token is generated. It differs a unage throughput it differs it herears of the possible cell nexults the all han probability) a" grove is anyty or the probability) a" grove is anyty or the probability)	2
$C_{*} = \sqrt{N} = \sqrt{N}$. 1.4	4

	200				
	Examinations: Session		C	Confid	lential
	MODEL ANSWER and MARKING SCHE	EME			
First I	Examiner Paper Code	•			
Secon	nd Examiner Question	Page	E out of	13	
Quest	tion labels in left margin Ma	arks all	ocations in	right	margin
Q4S)		cc-	t		2

·	2004	
	Examinations: - Session Conj	fidential
	MODEL ANSWER and MARKING SCHEME	•
First E	xaminer Paper Code	
Second	Examiner Question Page question Question	(
Questic	on labels in left margin Marks allocations in right	nt margin
T	makes allocations in right ii) $C_{L} = \text{nuin} \left[C_{LS}, C_{LF} \right]$ A: longe nucleu of source nucleighered (C_{LS}) $P >> 1$, $P \ll 1$ ii) $P = P = P = P = P = P = P = P = P = P $	nt margin
	Lar (ETT E) = ln ($\frac{\sigma}{c-m}$) - $\frac{(c-m)^2}{2\sigma^2}$ Clo = Me Rp + σ J - ln (2π) - 2 ln ϵ Rp, B: Effect of the acres Bro ffer G(x) ~ App P e - Me ×/12p (prehability in ffer occupancy > x)	5

	2004		
Examinations:	- Session	Confi	idential
MODEL ANSWER and	MARKING SO	СНЕМЕ	•
First Examiner	Paper Code	_	
Second Examiner	Question	Page 10 out of 13	
Question labels in left margin		Marks allocations in right	t margin
Q4 (i) cont			
Q4 in) count. $R = (1-p)\left(1+\frac{\alpha}{p}\right)\left[\left(1-\frac{c}{p}\right)\right]$	(cap)		
U = NBBB			
of p~1 ANP~1 PL=e-Mex/2p			
PL=e-Mex/Rp			
pax/ap =-luft			
EC = 1-k 1 (1-k)2+	thp		
$C_{4} = RPN\left(\frac{1-k}{2}\right) + R$	PH 1 1-162	+ 12p	5
L			
•			
			ŕ

Examinations: Confidential MODEL ANSWER and MARKING SCHEME First Examiner Paper Code Page 11 out of 13 Second Examiner Question Question labels in left margin Marks allocations in right margin \$5 i) The fluid flow made armoner that the number of cells generated during atalk sport is so large that it affects like a continuous flow of fluid. The meffer occupancy thus becomes a continuous random Variable X ii) The unit of x are defined to be the number of cells aming ching a talk speat. - One voice source, generation cells at the note of Viells/See during a talk sport of average (cell length yx see will, on the average, increment & my V/0x cells during a talk grant. - The kulter is emptying at note oc. Therepo the kulturi fillip of i>c and emplying. i < chi) Fi(tix) OSIEN: wouldtive prebability distribution at time to with the system in Matri. Assure greve infinite Fi(t+Bt,x): at an minemental tre Dt

Using the hugenfillip (empty up natus:

neared with the huffer

- if there are i sources in talk sport they

hater in terms of the probabilities at theet. are "pumpip" di "unit of information" per

Examinations: - Session Confidents
MODEL ANSWER and MARKING SCHEME
First Examiner Paper Code
Second Examiner Question Page 12 out of 13
Question labels in left margin Marks allocations in right marg
Q5 Cont
(iti) × Ot Fiti (t,x) +
1-[(N-i)2+cox]0+fti [+,x-(i-c)xs+]+
o(DE)
It is assumed that Fell and From () are
agral to zero.
Now expand Fi (t+ st,x) and Fi (t,x-sx),
(DX = (i-c) x Dt) in their respective Taylor server,
agring apposituate continuity condutions
counting and let state to
aquator surplier to
$\frac{\partial \mathcal{F}_{i}(t,x)}{\partial t} = \left[\mathcal{V} - (i-1) \right] \partial \mathcal{F}_{i+1}(t,x) + (i+1) \partial \mathcal{F}_{i+1}(t,x)$
- [(H-i)+id] Fi (+,x)-(i-c) x D Fi (+,x)
0x 5

	2004.				
	Examinations: - Session Confide	ntial			
	MODEL ANSWER and MARKING SCHEME				
First E	First Examiner Paper Code				
Second	Examiner Question Page 13 out of 13				
Questic	on labels in left margin Marks allocations in right m	nargin			
Q5	Grade af dervie = c.cos Bc=c.cos				
	15 Enlargs => 25 claurels	2			
	3 hilm / 5 ETCloops => 3×12 = 36 chemely	2			
	5 huhs) 3 Enlarge = 7 srq = 45 chernel	2			
	dis asseine				
	mean drawd coerping				
	(1-Pa)p				
	p= offered fraffin	4			