HAZEL2: "inversion" mode

Shuo Wang

Dept. of Astronomy, NMSU DKIST Ambassador

NSO 5th NCSP DKIST Data-Training Workshop: He I Diagnostics in the Solar Atmosphere

Basic Functions of HAZEL2

- Synthesis (Core function)
- **Inversion** (Call synthesis repeatedly, and return the values with best match.)

Input Dangersion

- Stokes profiles (I, Q, U, V)
- Observer angle (θ, χ, γ)

Hazel2 documents > 5.3.1.

The geometry for the scattering event

Inversion Dutput

- ullet Magnetic field vector (B_x, B_y, B_z)
- Thermal velocity affecting the width of the line
- Bulk velocity of the plasma leading to a redshift / blueshift
- Optical depth of the line
- Line damping parameter

Steps to invert

- Data file
- 2 Initial guess file
- 3 Configuration file
- 4 Invert
- 5 Read results

Data file

```
noise = 2<mark>e-4</mark>
f = open('10830aStokes.1d', 'wb')
f.write(b'# LOS theta_LOS, phi_LOS, gamma_LOS\n')
f.write(b'0 0 90\n')
f.write(b'\n')
f.write(b'# Boundary condition I/Ic(mu=1), Q/Ic(mu=1), U/Ic(mu=1), V/Ic(mu=1)\n')
f.write(b'1 0 0 0\n')
f.write(b'\n')
f.write(b'# SI SQ SU SV sigmaI sigmaQ sigmaU sigmaV\n')
tmp = np.vstack([stokes, noise*np.ones(stokes.shape)])
np.savetxt(f, tmp.T)
f.close()
```

Noise can be different for all Stokes, all wavelength.

Data file

```
-n 10830aStokes.1d
%cat
    1 # LOS theta_LOS, phi_LOS, gamma_LOS
       # Boundary condition I/Ic(mu=1), Q/Ic(mu=1), U/Ic(mu=1), V/Ic(mu=1)
       # SI SQ SU SV sigmal sigmaQ sigmaU sigmaV
```

2 Initial guess file

hazel2/examples/chromospheres/model_chromosphere.1d

```
%cat -n model_chromosphere.1d

1 Bx By Bz tau v deltav beta a ff
2 0 0 10.0 1.0 0.0 8.0 1.0 0.5 1
```

- Initial values should be within ranges.
- A very good guess (e.g. do a second round using the results of first round as initial values) cost less computation time and may lead to slightly better fitting results.

3 Configuration file

hazel2/examples/configurations

3.1 Working mode

```
%cat -n conf.ini
1  # Hazel configuration File
3  [Working mode]
4  Output file = output.h5
5  Number of cycles = 2
```

Number of cycles to carry out during inversion. Cycle 1 is to invert Stokes I only. Cycle 2 is to invert Stokes Q, U, and V.

3.2 Spectral regions

```
14 [Spectral regions]
15         [[Region 1]]
16         Name = spec1
17         Wavelength = 10828, 10831, 50
18         Topology = ch1
19         Observations file = '10830aStokes.1d'
20         Weights Stokes I = 1, 0
21         Weights Stokes Q = 0, 1
22         Weights Stokes U = 0, 1
23         Weights Stokes V = 0, 1
```

Weights are float numbers. E.g. Use 0.5 for noisy Stokes V.

3.3 Atmospheres

Relative path refers to the current folder. HAZEL goes to the folder that contains the configuration file to find files such as 'model_chromosphere.1d'.

Ranges

Narrower ranges may be faster, with more accurate results.

If some values in your results are very close to range limits: Make sure initial values are in range. Expand ranges and redo inversion.

Nodes

In the first cycle, use Stokes I to invert tau, v, deltav, a. In the last cycle, use Stokes Q, U, and V to invert B. beta and ff are not changed. O or 1 for chromosphere.

4 Invert

```
modi = hazel.Model('conf.ini', working_mode='inversion')
modi.read_observation()
modi.open_output()
modi.invert()
modi.write_output()
modi.close_output()
```

```
# OSError: Unable to create file (unable to truncate a file which is already open)
```

To fix this error, in 5, explicitly close .h5 files when no longer in use.

5 Read results

Print model results.

```
res = h5py.File('output.h5', 'r') # explicitly close when no longer in use.
sto = ['Bx','By','Bz','tau','v','deltav','beta','a','ff']
stp = ''
for i in sto:
    sti = res['ch1'][i][0,0,0]
    stp += ', '+i+':'+f'{sti:.2f}'
chi2 = res['spec1']['chi2'][0,0,0]
print(stp[2:]+', chi2:'+f'{chi2:.2f}')
# Bx:-199.58, By:53.06, Bz:100.03, tau:1.02, v:-3.01,
# deltav:6.13, beta:1.00, a:0.47, ff:1.00, chi2:0.61
```

5 Read results

Plot fitting lines.

```
for i in range(4):
    plt.subplot(221+i)
    plt.plot(ms.wavelength_axis, res['spec1']['stokes'][0,0,i])
    plt.xlabel('Wavelength [$\AA$]')
    plt.ylabel(iq[i]+'/Ic')
res.close()
```

Explicitly close .h5 files when no longer in use.

This series of presentations focus on **basic functions** of HAZEL2. **Everything required** for HAZEL2 synthesis and inversion has been shown.

You will find things that are not covered in the presentations (E.g. weights file, extra lines in configuration file). They are **optional**, and more information can be found in <u>Hazel2 documents</u>.

Now, let's piece all the code snippets together.

<u>hazel2simple.ipynb</u>