```
# если блок падает с ошибкой, раскомментируйте эту строчку и перезапустите ноутбук # !pip install numpy pandas matplotlib scipy sklearn import enum import numpy as np import pandas as pd import matplotlib.pyplot as plt import scipy.stats as sts from sklearn import linear_model, metrics, model_selection from sklearn.datasets import fetch_california_housing %matplotlib inline
```

↓ Цены на жильё

Это пятая задача второго ДЗ блока по статистике. Она важна тем, что показывает, как мыслить в анализе данных (в частности в машинном обучении) статистически.

Мы будем работать с готовым датасетом California Housing - это данные о ценах на жильё в Калифорнии вместе с разными характеристиками жилья, например количество комнат или широта расположения.

```
data = fetch_california_housing(as_frame=True)

X = data['data']
y = data['target']
```

Здесь X - это данные о жилье (матрица признаков), y - стоимость. Обе эти переменные - это объекты класса DataFrame библиотеки pandas, которую очень любят аналитики. Она красиво отображает таблицы и позволяет удобно проводить операции над табличными данными.

Κ

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude
0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	-122.23
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-122.22
2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	-122.24
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-122.25
4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	-122.25
20635	1.5603	25.0	5.045455	1.133333	845.0	2.560606	39.48	-121.09
20636	2.5568	18.0	6.114035	1.315789	356.0	3.122807	39.49	-121.21
20637	1.7000	17.0	5.205543	1.120092	1007.0	2.325635	39.43	-121.22
20638	1.8672	18.0	5.329513	1.171920	741.0	2.123209	39.43	-121.32
20639	2.3886	16.0	5.254717	1.162264	1387.0	2.616981	39.37	-121.24

20640 rows × 8 columns

У

```
4.526
         3.585
1
         3.521
3
         3.413
         3.422
         0.781
20635
20636
         0.771
20637
         0.923
20638
         0.847
20639
         0.894
Name: MedHouseVal, Length: 20640, dtype: float64
```

Так можно посмотреть на свойства распределений значений по колонкам - среднее, стандартное отклонение и выборочные квантили.

```
X.describe()
```

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude
count	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000
mean	3.870671	28.639486	5.429000	1.096675	1425.476744	3.070655	35.631861	-119.569704
std	1.899822	12.585558	2.474173	0.473911	1132.462122	10.386050	2.135952	2.003532
min	0.499900	1.000000	0.846154	0.333333	3.000000	0.692308	32.540000	-124.350000
25%	2.563400	18.000000	4.440716	1.006079	787.000000	2.429741	33.930000	-121.800000
50%	3.534800	29.000000	5.229129	1.048780	1166.000000	2.818116	34.260000	-118.490000
75%	4 743250	37 000000	6 052381	1 099526	1725 000000	3 282261	37 710000	-118 010000

y.describe()

count	20640.000000
mean	2.068558
std	1.153956
min	0.149990
25%	1.196000
50%	1.797000
75%	2.647250
max	5.000010

Name: MedHouseVal, dtype: float64

1. Решаем регрессию

Мы построим статистическую модель на этих данных и проверим её качество. Чтобы быть уверенными, что качество репрезентативно, сразу отделим часть данных так, как будто проверяем модель "в боевых действиях" - есть данные, на которых модель строится, а есть те, на которых она проверяется (это классическое для анализа данных разделение на train и test)

```
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.33, random_state=42)
```

Применим к данным модель линейной регрессии. Пусть ϵ - вектор независимых случайных величин, $\epsilon_i \sim \mathcal{N}(0,\sigma^2)$. X - матрица размера $N_1 \times p$, где N_1 - размер тренировочной выборки, p - количество признаков каждого элемента. Тогда, $y = X\beta + \epsilon$.

1. Для начала проверим наше предположение. Графически проверьте зависимость переменной y от разных признаков X.

```
# чтобы извлечь из X отдельный признак, достаточно обратиться к нему по ключу: ave_rooms = X_train['AveRooms'] # чтобы получить список всех признаков: all names = X train.columns
```

ваши графики и мысли

2. Вспомним решение задачи линейной регрессии методом наименьших квадратов:

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

вычислите оценку. помните, что для построения модели мы пользуемся только тренировочной частью выборки # hat_beta = # используйте X_train, y_train

Теперь, нам приходят новые данные X_t (X_test). Предсказанием для них в нашей модели, очевидно, будет $\hat{y_t} = X_t \hat{eta}$.

Теперь сравним y_t (y_test) и $\hat{y_t}$. Для этого вычислим сумму квадратов наших ошибок

$$e = \sum_{i=1}^{n} (y_{ti} - \hat{y}_{ti})^2$$

вычислите предсказание модели и ошибку

эта ошибка большая или маленькая? а в процентном соотношении?

В нашем предположении тренировочные и тестовые данные имеют одно и то же распределение, то есть если N_2 - размер тестовой выборки, а ϵ_t - вектор независимых случайных величин с распределением $\mathcal{N}(0,\sigma^2)$ размера N_2 , то справедливо

$$y = X\beta + \epsilon$$
,

$$y_t = X_t \beta + \epsilon_t.$$

3. Проверьте удачность выбора модели статистическим тестом. Воспользуйтесь критерием Вальда и проверьте гипотезу $H_0: \beta=\hat{\beta}$ для тренировочной и тестовой выборки. В качестве подсказки - выборка $Z_i=y_i-X_i\beta$ имеет нормальное распределение с параметрами $0,\sigma^2$. Вместо дисперсии шума можно взять его состоятельную оценку.

Отвергается ли гипотеза? При каком уровне доверия можно сказать, что построенная модель не подходит для предсказаний на тестовой выборке?

▼ 2. Применяем регрессию

Воспользуемся готовой линейной регрессией и сравним результаты.

```
lr = linear_model.LinearRegression()
# примените регрессию и получите предсказания
# y_pred =
```

Для получения значения ошибки есть готовая функция.

```
# metrics.mean_squared_error(y_pred, y_test)
```

Какой метод оказался лучше - from scratch или готовый? Как вы думаете, почему?

▼ 3. Улучшаем результаты?

На самом деле, можно улучшить результаты применения нашей модели. Для этого нужно выяснить, являются ли признаки в данных скореллированными и исключить такие признаки, если они есть. Объяснение этого выходит за рамки нашего блока, так как требует рассмотрения самих данных X как случайных величин.

Для каждой пары признаков найдите коэффициенты корреляции Пирсона и Спирмэна. Сделать это для двух выборок X,Y можно так:

```
# corr_pearson = sts.pearsonr(X, Y)[0]
# corr_spearman = sts.spearmanr(X, Y)[0]
```

Теперь выберите пару признаков с наибольшим коэффициентом корреляции. Как вы думаете, является ли такое значение достаточным, чтобы отвергнуть гипотезу об их независимости? Отобразите пару признаков на графике, проверьте своё предположение.

```
# plt.scatter(..., ...)
```

Теперь удалите из данных признак "Label" из найденной пары, который вам кажется менее влияющим на предсказание (напомню, мы пытаемся предсказать стоимость жилья). Сделать это можно так:

```
# X_train.drop(labels='Label', axis=1, inplace=True)
# X_test.drop(labels='Label', axis=1, inplace=True)
# metrics.mean_squared_error(y_pred, y_test)
```

Снова воспользуйтесь линейной регрессией, получите предсказания и сравните ошибку с предыдущей. Если ошибка не уменьшилась, попробуйте объяснить почему. Если она осталась прежней, предположите, стоит ли при использовании модели удалять данный признак из данных.