

CUNSB-RFIE: Context-aware Unpaired Neural Schrödinger Bridge in Retinal Fundus Image Enhancement

Xuanzhao Dong^{1*}, Vamsi K. Vasa^{1*}, Wenhui Zhu¹, Peijie Qiu², Xiwen Chen³, Yi Su⁴, Yujian Xiong¹, Zhangsihao Yang¹, Yanxi Chen¹, Yalin Wang¹

¹Arizona State University, ²Washington University in St.Louis, ³Clemson University, ⁴Banner Alzheimer's Institute

Introduction

Retinal fundus image enhancement

WashU

- Why: Enhancing retinal image quality is essential to ensure accurate diagnosis of ocular diseases by reducing noise and revealing critical clinical details like blood vessels and lesions
- **Input:** low-quality, noisy retinal images (illumination, spot artifacts, and blurring)
- Output: High-quality retinal images counterparts
- How: Learning the Schrödinger Bridge (SB) between different image domains

Motivation

Contribution

- SB-Based Method: Eliminates prior assumptions and reduces inference steps while retaining diffusion benefits
- **CUNSB-RFIE**: Combines Dynamic Snake Convolution (DSC), PatchNCE, and SSIM for contextual preservation.
- Extensive Validation: Outperforms multiple baselines

Results **Smooth Influence**

Contact

Email: xdong64@asu.edu
GitHub: https://github.com/Retinal-Research/CUNSB-RFIE