

DAYANANDA SAGAR UNIVERSITY SCHOOL OF ENGINEERING

VISUALIZATION AND FORECASTING OF STOCKS USING HISTORICAL DATA

Implementation On Model

Implementation

Code

```
from keras.models import Sequential
from keras.layers import Dense, LSTM
model = Sequential()
model.add(LSTM(128, return sequences=True,
input shape= (x train.shape[1], 1)))
model.add(LSTM(64, return sequences=False))
model.add(Dense(25))
model.add(Dense(1))
model.compile(optimizer='adam',
loss='mean squared error')
model.fit(x train, y train, batch size=1, epochs=1)
```

```
test data = scaled data[training data len - 60: , :]
y test = dataset[training data len:, :]
for i in range(60, len(test data)):
    x test.append(test data[i-60:i, 0])
x test = np.array(x test)
x test = np.reshape(x test, (x test.shape[0],
x test.shape[1], 1 ))
predictions = model.predict(x test)
predictions = scaler.inverse transform(predictions)
rmse = np.sqrt(np.mean(((predictions - y test) ** 2)))
```

Result Analysis

Online Stock Dataset - APPLE(AAPL)

	0pen	High	Low	Close	Adj Close	Volume	company_name
Date							
2021-06-01	125.080002	125.349998	123.940002	124.279999	123.573990	67637100	APPLE
2021-06-02	124.279999	125.239998	124.050003	125.059998	124.349556	59278900	APPLE
2021-06-03	124.680000	124.849998	123.129997	123.540001	122.838203	76229200	APPLE
2021-06-04	124.070000	126.160004	123.849998	125.889999	125.174850	75169300	APPLE
2021-06-07	126.169998	126.320000	124.830002	125.900002	125.184792	71057600	APPLE
2022-05-23	137.789993	143.259995	137.649994	143.110001	143.110001	117726300	APPLE
2022-05-24	140.809998	141.970001	137.330002	140.360001	140.360001	104132700	APPLE
2022-05-25	138.429993	141.789993	138.339996	140.520004	140.520004	92482700	APPLE
2022-05-26	137.389999	144.339996	137.139999	143.779999	143.779999	90601500	APPLE
2022-05-27	145.389999	149.679993	145.259995	149.639999	149.639999	90796900	APPLE

Summary statistics of attributes of Training Dataset

	Open	High	Low	Close	Adj Close	Volume
count	252.000000	252.000000	252.000000	252.000000	252.000000	2.520000e+02
mean	155.075357	156.930318	153.398968	155.263849	154.786610	8.883695e+07
std	14.100912	14.344764	13.723100	13.987362	14.096246	2.679411e+07
min	124.070000	124.849998	123.129997	123.540001	122.838203	4.100000e+07
25%	145.514999	147.052502	144.419998	145.857502	145.246201	6.955788e+07
50%	152.235001	154.675003	150.510002	152.284996	151.900703	8.489835e+07
75%	167.607498	169.727493	165.512501	166.727497	166.482895	1.035052e+08
max	182.630005	182.940002	179.119995	182.009995	181.511703	1.954327e+08

Summary statistics of LSTM Model

```
Model: "sequential"
Layer (type)
                            Output Shape
                                                      Param #
1stm (LSTM)
                             (None, 60, 128)
                                                      66560
lstm_1 (LSTM)
                             (None, 64)
                                                      49408
dense (Dense)
                             (None, 25)
                                                      1625
dense 1 (Dense)
                            (None, 1)
                                                      26
Total params: 117,619
Trainable params: 117,619
Non-trainable params: 0
```

Stock Information Page

Stocks Comparing Page

Forecast Stock Page

Testing

Stock Information Testing

SI NO.:	Input	Expected Output (\$)			Actual Output (\$)			Status
	Stocks Name	Closed Price	Max. Close	Day Range	Closed Price	Max. Close	Day Range	700
1	AAPL	149.64	182.01	145.26-149.68	149.64	182.01	145.26-149.68	Pass
2	GOOG	2255.98	3014.18	2191.0-2257.36	2255.98	3014.18	2191.0-2257.36	Pass
3	MSFT	273.24	343.11	267.56-273.34	273.24	343.11	267.56-273.34	Pass
4	AMZN	2302.93	3731.41	2252.56-2303.74	2302.93	3731.41	2252.56-2303.74	Pass
5	TSLA	759.63	1229.91	720.53-759.8	759.63	1229.91	720.53-759.8	Pass
6	FB	195.13	382.18	189.8-195.33	195.13	382.18	189.8-195.33	Pass

Conclusion

Conclusion

We've discovered that machine learning can be used to anticipate and compare stock market prices. The result demonstrates how historical data may be used to anticipate stock movement with fair accuracy, but the technique chosen is dependent on the factors required, such as time, variance, and mean accuracy. The LSTM is a superior choice if high accuracy and low variation are required, but it is also slower. Backpropagation is preferable if high speed and accuracy are required. We've included seven criteria (Date, Open, Close, High, Low, Adj Close, Volume) that influence stock performance in this implementation. A better degree of accuracy can be attained if a larger number of factors are employed, and the data is preprocessed and filtered properly before being used to train the network model.

THANK YOU