Matrizes

Matriz transposta

Definição

Definição

A matriz transposta de uma matriz A é obtida trocando-se suas linhas por colunas (ou colunas por linhas). Se A é uma matriz $m \times n$, então sua transposta A^T será uma matriz $n \times m$.

$$A = egin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \end{bmatrix} \quad \implies \quad A^T = egin{bmatrix} a_{11} & a_{21} \ a_{12} & a_{22} \ a_{13} & a_{23} \end{bmatrix}$$

Exemplo prático

Seja

Exemplo Prático

A transposta será:

$$A = egin{bmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \end{bmatrix}_{2 imes 3}$$

$$A^T = egin{bmatrix} 1 & 4 \ 2 & 5 \ 3 & 6 \end{bmatrix}_{3 imes 2}$$

Propriedades Importantes

Propriedades importantes

$$(A^T)^T=A$$
 $(A+B)^T=A^T+B^T$ $(k\cdot A)^T=k\cdot A^T$, para qualquer número real k . $(A\cdot B)^T=B^T\cdot A^T$

Se A é simétrica ($A=A^T$), então A é chamada de **matriz simétrica**.

Aplicações Práticas

Aplicações práticas

Usada em geometria analítica e álgebra linear.

Facilita o cálculo em **produtos escalares** de vetores.

Base para definição de matrizes simétricas (muito usadas em estatística).

Utilizada em métodos numéricos e otimização.

Resumo Esquemático

Resumo esquemático

Definição: trocar linhas por colunas.

Dimensão: $m \times n \rightarrow n \times m$.

Propriedades: mantém soma e multiplicação por escalar, mas inverte a ordem no produto.

Aplicações: geometria, estatística, ciência de dados, otimização.