Лабораторная работа №1. Ковалёва Елена Сергеевна. 20152

In [2]:

```
from sklearn import datasets
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from pandas import DataFrame
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import matplotlib.colors as colors
from sklearn import svm
import warnings
warnings.filterwarnings("ignore")
```

1. Вычисление корреляции между признаками на всей таблице и отдельно по классам. Визуализирование распределения классов на всех парах переменных.

Исходные данные:

три класса, три вида ириса:

1)ирис щетинистый (Iris setosa)

2)ирис виргинский (Iris virginica)

3)ирис разноцветный (Iris versicolor)

по четырем признакам:

1)длина наружной доли околоцветника (sepal length)

2)ширина наружной доли околоцветника (sepal width)

3)длина внутренней доли околоцветника (petal length)

4)ширина внутренней доли околоцветника (petal width)

Исходные данные представленны в виде таблицы

In [33]:

```
iris = datasets.load_iris()
kind = [iris['target_names'][target] for target in iris['target']]
a_tar = pd.DataFrame(data= np.c_[iris['data'], iris['target']], columns= iris['feature_name
a_lda = pd.DataFrame(data= np.c_[iris['data'], iris['target']], columns= iris['feature_name
a = pd.DataFrame(data = iris['data'], columns= iris['feature_names'])
a_type = pd.DataFrame(data= np.c_[iris['data'], kind], columns= iris['feature_names'] + ['t
print("a:", a)
a_type
```

a:	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width
(cm)				
0	5.1	3.5	1.4	0.
2	4.0	2.0	1 1	0
1 2	4.9	3.0	1.4	0.
2	4.7	3.2	1.3	0.
2	7.,	3.2	1.5	0.
3	4.6	3.1	1.5	0.
2				
4	5.0	3.6	1.4	0.
2				
• •	• • •	• • •	• • •	
 145	6.7	3.0	5.2	2.
3	0.7	5.0	3.2	۷.
146	6.3	2.5	5.0	1.
9				
147	6.5	3.0	5.2	2.
0				
148	6.2	3.4	5.4	2.
3	F 0	2.0	F 4	4
149 8	5.9	3.0	5.1	1.
0				

[150 rows x 4 columns]

Out[33]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	type
			Peta: 10119111 (0111)	peta:a (e)	.,,,,,
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

Представим корелляцию между признаками в виде диагональных таблиц.

Лучше всего скореллированы:

ширина внутренней доли околоцветника(petal width) и длина внутренней доли околоцветника(petal length)

Хороший уровень корелляции:

1)длина наружной доли околоцветника и ширина внутренней доли околоцветника (sepal length-petal width)

2)длина наружной доли околоцветника и длина внутренней доли околоцветника (sepal length-petal length) Антикорелляция наблюдается между:

ширина наружной доли околоцветника(sepal width) и длина внутренней доли околоцветника(petal length)

In [34]:

```
a0 = a.iloc[0:50,:]
a1 = a.iloc[50:100,:]
a2 = a.iloc[100:150,:]
b = a.corr()
b0 = a0.corr()
b1 = a1.corr()
b2 = a2.corr()
mask = np.zeros_like(b)
mask[np.triu_indices_from(mask)] = True
c = sns.heatmap(b, xticklabels=b.columns.values, yticklabels=b.columns.values, annot=True,
```


Корреляция на классе Ирис щетинистый (Iris setosa).

Наиболее скореллированы:

длина наружной доли околоцветника(sepal length) и ширина наружной доли околоцветника(sepal width) Хуже всего скореллированы:

ширина наружной доли околоцветника(sepal width) и длина внутренней доли околоцветника(petal length)

In [35]:

c0 = sns.heatmap(b0, xticklabels=b0.columns.values, yticklabels=b0.columns.values, annot=Tr

Корреляция на классе Ирис виргинский (Iris virginica).

Наиболее скореллиованы:

ширина внутренней доли околоцветника(petal width) и длина внутренней доли околоцветника(petal length)

Наименьшая корелляция:

длина наружной доли околоцветника(sepal length) и ширина наружной доли околоцветника(sepal width)

In [36]:

c1 = sns.heatmap(b1, xticklabels=b1.columns.values, yticklabels=b1.columns.values, annot=Tr

Корреляция на классе Ирис разноцветный (Iris versicolor)

Наибольшая корелляция:

длина наружной доли околоцветника(sepal length) и длина внутренней доли околоцветника(petal length) Наименьшая корелляция:

длина ширина наружной доли околоцветника(sepal width) и длина внутренней доли околоцветника(petal length)

In [37]:

sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)

Визуализируем распределения по классам на всех парах переменных:

In [38]:

```
data = a_tar
plt.figure(2, figsize=(8,6))
plt.clf()
xx='sepal length (cm)'
yy='sepal width (cm)'
plt.scatter(data.loc[data.target==0,xx].values, data.loc[data.target==0,yy].values, c='red'
plt.scatter(data.loc[data.target==1,xx].values, data.loc[data.target==1,yy].values, c='gree
plt.scatter(data.loc[data.target==2,xx].values, data.loc[data.target==2,yy].values, c='blue
plt.xlabel(xx)
plt.ylabel(yy)
plt.legend()
```

Out[38]:

<matplotlib.legend.Legend at 0x1fdb04cc3d0>

In [39]:

```
plt.figure(2, figsize=(8,6))
plt.clf()
xx='petal length (cm)'
yy='petal width (cm)'
plt.scatter(data.loc[data.target==0,xx].values, data.loc[data.target==0,yy].values, c='red'
plt.scatter(data.loc[data.target==1,xx].values, data.loc[data.target==1,yy].values, c='gree
plt.scatter(data.loc[data.target==2,xx].values, data.loc[data.target==2,yy].values, c='blue
plt.xlabel(xx)
plt.ylabel(yy)
plt.legend()
```

Out[39]:

<matplotlib.legend.Legend at 0x1fdb05be2e0>

In [40]:

```
plt.figure(2, figsize=(8,6))
plt.clf()
xx='sepal length (cm)'
yy='petal length (cm)'
plt.scatter(data.loc[data.target==0,xx].values, data.loc[data.target==0,yy].values, c='red'
plt.scatter(data.loc[data.target==1,xx].values, data.loc[data.target==1,yy].values, c='gree
plt.scatter(data.loc[data.target==2,xx].values, data.loc[data.target==2,yy].values, c='blue
plt.xlabel(xx)
plt.ylabel(yy)
plt.legend()
```

Out[40]:

<matplotlib.legend.Legend at 0x1fdb068ea60>

In [41]:

```
plt.figure(2, figsize=(8,6))
plt.clf()
xx='sepal width (cm)'
yy='petal width (cm)'
plt.scatter(data.loc[data.target==0,xx].values, data.loc[data.target==0,yy].values, c='red'
plt.scatter(data.loc[data.target==1,xx].values, data.loc[data.target==1,yy].values, c='gree
plt.scatter(data.loc[data.target==2,xx].values, data.loc[data.target==2,yy].values, c='blue
plt.xlabel(xx)
plt.ylabel(yy)
plt.legend()
```

Out[41]:

<matplotlib.legend.Legend at 0x1fdb06f7490>

In [42]:

```
plt.figure(2, figsize=(8,6))
plt.clf()
xx='petal length (cm)'
yy='sepal length (cm)'
plt.scatter(data.loc[data.target==0,xx].values, data.loc[data.target==0,yy].values, c='red'
plt.scatter(data.loc[data.target==1,xx].values, data.loc[data.target==1,yy].values, c='gree
plt.scatter(data.loc[data.target==2,xx].values, data.loc[data.target==2,yy].values, c='blue
plt.xlabel(xx)
plt.ylabel(yy)
plt.legend()
```

Out[42]:

<matplotlib.legend.Legend at 0x1fdb0bbdd90>

In [43]:

```
plt.figure(2, figsize=(8,6))
plt.clf()
xx='petal width (cm)'
yy='sepal width (cm)'
plt.scatter(data.loc[data.target==0,xx].values, data.loc[data.target==0,yy].values, c='red'
plt.scatter(data.loc[data.target==1,xx].values, data.loc[data.target==1,yy].values, c='gree
plt.scatter(data.loc[data.target==2,xx].values, data.loc[data.target==2,yy].values, c='blue
plt.xlabel(xx)
plt.ylabel(yy)
plt.legend()
```

Out[43]:

<matplotlib.legend.Legend at 0x1fdb068b370>

2. Строим и визуализируем (разделяющей кривой) решения методами:

- 1)линейный и квадратичный дискриминант
- 2) логистическая регрессия
- 3)SVM (линейное и квадратичное ядро)

In [44]:

```
iris = datasets.load_iris()
X = iris.data[:, :2]
Y = iris.target
errors=[]
def doAll(classifier):
    y pred= classifier.predict(X)
    errors.append(len(Y) - accuracy_score(Y,y_pred, normalize=False))
    x_{min}, x_{max} = X[:, 0].min() - .5, X[:, 0].max() + .5
    y_{min}, y_{max} = X[:, 1].min() - .5, X[:, 1].max() + .5
    h = 0.02
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    Z = classifier.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    plt.figure(1, figsize=(10,8))
    plt.contourf(xx, yy, Z, cmap = plt.cm.coolwarm, alpha=0.8)
    plt.scatter(X[:,0], X[:,1], c=Y, cmap=plt.cm.coolwarm,marker='o',edgecolors="blue")
    plt.xlabel('Sepal length')
    plt.ylabel('Sepal width')
    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())
    plt.xticks(())
    plt.yticks(())
    plt.show()
plt.title('Линейный дискриминант')
lin_disc= LinearDiscriminantAnalysis().fit(X,Y)
doAll(lin_disc)
```


In [45]:

```
quad_disc= QuadraticDiscriminantAnalysis().fit(X,Y)
plt.title('Квадратичный дискриминант')
doAll(quad_disc)
```


In [46]:

```
logreg = LogisticRegression().fit(X, Y)
plt.title('Логистическая регрессия')
doAll(logreg)
```


In [47]:

```
svc= svm.SVC(kernel='linear').fit(X,Y)
plt.title('SVM (линейное ядро)')
doAll(svc)
```


In [48]:

```
poly_svc=svm.SVC(degree=2).fit(X,Y)
plt.title('SVM (квадратичное ядро)')
doAll(poly_svc)
```


3. Строим линейный дискриминант на всех переменных. Визуализируем ответы алгоритма.

По результатам предыдущих вычислений определено, что классы:

- 1)Ирис виргинский (Iris virginica)
- 2)Ирис разноцветный (Iris versicolor)

наиболее перемешаны

In [50]:

```
x= iris.data
y= iris.target
errors=[]
x=x[50:,:]
y=y[50:]
lin_disc= LinearDiscriminantAnalysis().fit(x,y)
y_predict=lin_disc.predict(x)
errors.append(len(y)- accuracy_score(y,y_predict,normalize=False))
print('Общее количество ошибок:',errors)
data=pd.DataFrame(x,columns=['Sepal length (cm)', 'Sepal width (cm)','Petal length (cm)','P
sns.set()
sns.set(rc={'figure.figsize':(8, 6)})
ax= sns.scatterplot(x='Sepal length (cm)', y='Sepal width (cm)', data=data, hue=y_predict,
```


In [51]:

```
errors=[]
lin_disc= LinearDiscriminantAnalysis().fit(x,y)
y_predict=lin_disc.predict(x)
errors.append(len(y)- accuracy_score(y,y_predict,normalize=False))
print('Общее количество ошибок:',errors)
data=pd.DataFrame(x,columns=['Sepal length (cm)', 'Sepal width (cm)','Petal length (cm)','P
sns.set()
sns.set(rc={'figure.figsize':(8, 6)})
ax= sns.scatterplot(x='Petal length (cm)', y='Petal width (cm)', data=data, hue=y_predict,
```


In [52]:

```
lin_disc= LinearDiscriminantAnalysis().fit(x,y)
y_predict=lin_disc.predict(x)
errors=[]
errors.append(len(y)- accuracy_score(y,y_predict,normalize=False))
print('Общее количество ошибок:',errors)
data=pd.DataFrame(x,columns=['Sepal length (cm)', 'Sepal width (cm)','Petal length (cm)','P
sns.set()
sns.set(rc={'figure.figsize':(8, 6)})
ax= sns.scatterplot(x='Sepal width (cm)', y='Petal width (cm)', data=data, hue=y_predict, s
```


In [53]:

```
lin_disc= LinearDiscriminantAnalysis().fit(x,y)
y_predict=lin_disc.predict(x)
errors=[]
errors.append(len(y)- accuracy_score(y,y_predict,normalize=False))
print('Общее количество ошибок:',errors)
data=pd.DataFrame(x,columns=['Sepal length (cm)', 'Sepal width (cm)','Petal length (cm)','P
sns.set()
sns.set(rc={'figure.figsize':(8, 6)})
ax= sns.scatterplot(x='Petal length (cm)', y='Sepal length (cm)', data=data, hue=y_predict,
```


In [54]:

```
lin_disc= LinearDiscriminantAnalysis().fit(x,y)
y_predict=lin_disc.predict(x)
errors=[]
errors.append(len(y)- accuracy_score(y,y_predict,normalize=False))
print('Общее количество ошибок:',errors)
data=pd.DataFrame(x,columns=['Sepal length (cm)', 'Sepal width (cm)','Petal length (cm)','P
sns.set()
sns.set(rc={'figure.figsize':(8, 6)})
ax= sns.scatterplot(x='Petal width (cm)', y='Sepal width (cm)', data=data, hue=y_predict, s
```


In [55]:

```
lin_disc= LinearDiscriminantAnalysis().fit(x,y)
y_predict=lin_disc.predict(x)
errors=[]
errors.append(len(y)- accuracy_score(y,y_predict,normalize=False))
print('Общее количество ошибок:',errors)
data=pd.DataFrame(x,columns=['Sepal length (cm)', 'Sepal width (cm)','Petal length (cm)','P
sns.set()
sns.set(rc={'figure.figsize':(8, 6)})
ax= sns.scatterplot(x='Sepal length (cm)', y='Petal length (cm)', data=data, hue=y_predict,
```

Общее количество ошибок: [3]

4. Вычисляем на двух переменных из п.2 квадратичной разделяющей функции по оценкам ковариационных матриц и средних.

In [56]:

```
#Воспользуемся QDA
quad_disc= QuadraticDiscriminantAnalysis().fit(x,y)
titles=('Quadratic Discriminant')
def qda_score(x,mu_k,sigma,pi_k):
    sigma_inv=np.linalg.inv(sigma)
    return (np.log(pi_k) -1/2 * np.log(np.linalg.det(sigma_inv)) - 1/2 * (x-mu_k).T @ sigma
def predict_qda_class(x,mu_list,sigma_list,pi_list):
    scores_list=[]
    classes=len(mu list)
    for p in range(classes):
        score= qda_score(x.reshape(-1,1), mu_list[p].reshape(-1,1), sigma_list[p], pi_list[
        scores_list.append(score)
    return np.argmax(scores_list)
##Выводим результат в таблицу
a1 = data[['Sepal length (cm)', 'Sepal width (cm)']]
a1 = a1.join(pd.DataFrame(y, columns=['species']))
a1.head()
print(a1)
```

	Sepal length (c	m) Sepal	width (cm)	species
0	7	.0	3.2	1
1	6	.4	3.2	1
2	6	.9	3.1	1
3	5	.5	2.3	1
4	6	.5	2.8	1
95	6	.7	3.0	2
96	6	5.3	2.5	2
97	6	5.5	3.0	2
98	6	5.2	3.4	2
99	5	.9	3.0	2

[100 rows x 3 columns]

Визуализируем решение и сравниваем его с п.2.

In [57]:

```
mu_list = np.split(a1.groupby('species').mean().values, 2)
sigma_list = np.split(a1.groupby('species').cov().values, 2)
pi_list = a1.iloc[:,2].value_counts().values / len(a1)
X_data = a1.iloc[:,1:2]
N = 200
X = np.linspace(4, 8, N)
Y = np.linspace(1.5, 5, N)
X, Y = np.meshgrid(X, Y)
my_norm = colors.Normalize(vmin= -1.,vmax= 1.)
g= sns.FacetGrid(a1, hue='species', height=10,palette='bright').map(plt.scatter,'Sepal leng
my_ax = g.ax
zz= np.array([predict_qda_class(np.array([xx, yy]).reshape(-1,1), mu_list, sigma_list, pi_l
Z= zz.reshape(X.shape)
my_ax.contourf(X,Y,Z,2, alpha= .2)
my_ax.contour(X,Y,Z,2, alpha= 1, colors=('red'))
my_ax.set_xlabel('X')
my_ax.set_ylabel('Y')
my_ax.set_title('QDA and boundaries')
plt.show()
```


In [58]:

Общая доля ошибок:

0.290000000000000004