Analisi D for Dummies

 $bug \ report: \ mario.piccinelli@gmail.com$

24 dicembre 2010

Quest'opera stata rilasciata sotto la licenza Creative Commons Attribuzione 2.5 Italia. Per leggere una copia della licenza visita il sito web http://creativecommons.org/licenses/publicdomain/ o spedisci una lettera a Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Indice

1 Funzioni di una variabile complessa					
	1.1	Definizion	ni	Ĺ	
		1.1.1 D	istanza4	Ĺ	
		1.1.2 Pa	alla aperta	Ĺ	
		1.1.3 Pa	alla chiusa	Ĺ	
		1.1.4 C	irconferenza	Ĺ	
		1.1.5 P	unto interno)	
		1.1.6 In	sieme aperto	í	
		1.1.7 P	unto di accumulazione	j	
	1.2	Limite .		j	
	1.3	Continuit	tá	7	
	1.4	Derivabil	itá	7	
	1.5		iabilitá	3	
	1.6	Teorema	di Cauchy-Riemann		
		1.6.1 D	imostrazione)	
	1.7		Cammini in C)	
		1.7.1 C	¹ a tratti)	
		1.7.2 C	urva)	
		1.7.3 C	urve equivalenti)	
		1.7.4 R	elazione di Equivalenza)	
		1.7.5 C	lassi di equivalenza)	
			urva Orientata	-	
		1.7.7 Se	omma di cammini		
		1.7.8 C	ammino inverso		
	1.8	Integrale	di una funzione di variabile complessa	_	
		1.8.1 L	unghezza di C)	
		1.8.2 Fr	unzione Olomorfa	3	
		1.8.3 Te	eorema di Cauchy (1 versione)	3	
		1.8.4 C	ircuiti omotopi	Į	
		1.8.5 Te	eorema di Cauchy (2 versione)	Į	
		1.8.6 Te	eorema di Morera	Į	
	1.9		in serie	í	
		1.9.1 Fr	unzione analitica	í	
		1.9.2 Se	erie di Taylor	í	
		1.9.3 Se	erie assolutamente convergente	í	
		1.9.4 Te	eorema	j	
		1.9.5 Fe	ormule di Cauchy	;	
		1.9.6 Te	eorema	;	
	1.10	Singolari	tá isolate	7	
		1.10.1 Te	eorema		
		1 10 2 C	18	2	

			Feorema	_
		1.10.4	Classificazione (ai limiti)	19
		1.10.5 7	Геоrema	19
		1.10.6	Classificazione (alla serie di Laurent)	19
	1.11		· · · · · · · · · · · · · · · · · · ·	
			Calcolo residui	21
			Teorema (prodotto alla Cauchy)	22
			Ceorema dei residui	22
	1 10		i Polidrome	26
	1.12			
			Logaritmo	26
	4 40		Radice	26
	1.13	0	i di Lebesgue	27
			Misura	27
			Proposizione Quasi Vera (?!?)	28
		1.13.3 S	Successione di Cauchy	28
		1.13.4	Convergenza	28
		1.13.5 7	Геоrema	29
		1.13.6 H	Funzione Caratteristica	29
			Funzione a Scala	29
			ntegrale di funzione a scala	29
			ntegrabilitá secondo Lebesgue	29
			ntegrale secondo Lebesgue	30
			nsieme misurabile	30
			nsieme di misura finita	30
			ntegrabilitá secondo Lebesgue su insieme finito	
				30
			Confronto con l'integrale secondo Riemann	
			Feorema di Lebesgue della convergenza dominata	
		1.13.16 H	Esempio: confronto con la teoria classica (di Riemann)	31
_				
	C	• 11	• 1•	00
2	_		riali normati	32
2	Spa 2.1	Norma		32
2	_	Norma 2.1.1 V		32 33
2	2.1	Norma 2.1.1 V 2.1.2 U		32 33 33
2	_	Norma 2.1.1 V 2.1.2 U Spazio n	Verifica norma Jguaglianza Oormato	32 33 33 33
2	2.1	Norma 2.1.1 V 2.1.2 U Spazio n 2.2.1 I	Verifica norma Verifica norma Uguaglianza Oormato Lemma	32 33 33 33 34
2	2.1	Norma 2.1.1 V 2.1.2 U Spazio n 2.2.1 I	Verifica norma Jguaglianza Oormato	32 33 33 33
2	2.1	Norma 2.1.1 V 2.1.2 U Spazio r 2.2.1 I Successi	Verifica norma Verifica norma Uguaglianza Oormato Lemma	32 33 33 34 34
2	2.1	Norma 2.1.1 V 2.1.2 U Spazio n 2.2.1 I Successi 2.3.1 I	Verifica norma Jguaglianza normato Lemma oni	32 33 33 34 34
2	2.1	Norma 2.1.1 V 2.1.2 U Spazio n 2.2.1 I Successi 2.3.1 I 2.3.2 I	Verifica norma Jguaglianza normato Lemma oni	32 33 33 34 34 35
2	2.1	Norma 2.1.1 V 2.1.2 U Spazio r 2.2.1 I Successi 2.3.1 I 2.3.2 I 2.3.3 U	Verifica norma Jguaglianza Jormato Lemma oni Lemma Proposizione	32 33 33 34 34 35 35
2	2.1 2.2 2.3	Norma 2.1.1 V 2.1.2 U Spazio r 2.2.1 I Successi 2.3.1 I 2.3.2 I 2.3.3 U Serie in	Verifica norma Jguaglianza normato Lemma Oni Lemma Proposizione Corollario	32 33 33 34 34 35 35 35
2	2.1 2.2 2.3	Norma 2.1.1 V 2.1.2 U Spazio r 2.2.1 I Successi 2.3.1 I 2.3.2 I 2.3.3 U Serie in 2.4.1 U	Verifica norma Jguaglianza Iormato Lemma Oni Lemma Proposizione Corollario V Convergenza	32 33 33 34 34 35 35 35 35
2	2.1 2.2 2.3	Norma 2.1.1 V 2.1.2 U Spazio r 2.2.1 I Successi 2.3.1 I 2.3.2 I 2.3.3 U Serie in 2.4.1 U 2.4.2 I	Verifica norma Jguaglianza normato Lemma oni Lemma Proposizione Corollario V Convergenza Dimensione	32 33 33 34 34 35 35 35 35 35
2	2.1 2.2 2.3	Norma 2.1.1 V 2.1.2 U Spazio r 2.2.1 I Successi 2.3.1 I 2.3.2 I 2.3.3 U Serie in 2.4.1 U 2.4.2 I 2.4.3 I	Verifica norma Jguaglianza Jormato Jemma Oni Jemma Proposizione Corollario V Convergenza Dimensione Georema	32 33 33 34 34 35 35 35 35 36 36
2	2.1 2.2 2.3 2.4	Norma 2.1.1 V 2.1.2 U Spazio r 2.2.1 I Successi 2.3.1 I 2.3.2 I 2.3.3 U Serie in 2.4.1 U 2.4.2 I 2.4.3 I 2.4.4 I	Verifica norma Jguaglianza Jormato Lemma Oni Lemma Proposizione Corollario V Convergenza Dimensione Feorema Proposizione	32 33 33 34 34 35 35 35 35 36 36 36
2	2.1 2.2 2.3	Norma 2.1.1 V 2.1.2 U Spazio r 2.2.1 I Successi 2.3.1 I 2.3.2 I 2.3.3 U Serie in 2.4.1 U 2.4.2 I 2.4.3 I 2.4.4 I Spazio c	Verifica norma Jguaglianza Jormato Lemma Oni Lemma Proposizione Corollario V Convergenza Dimensione Feorema Proposizione Onoposizione Ompleto	32 33 33 34 34 35 35 35 35 36 36 36
2	2.1 2.2 2.3 2.4	Norma 2.1.1 V 2.1.2 U Spazio r 2.2.1 I Successi 2.3.1 I 2.3.2 I 2.3.3 U Serie in 2.4.1 U 2.4.2 I 2.4.3 I 2.4.4 I Spazio c 2.5.1 S	Verifica norma Uguaglianza normato Lemma Oni Lemma Proposizione Corollario V Convergenza Dimensione Feorema Proposizione Coropsizione Convergenza Dimensione Coroma Coropsizione Cor	32 33 33 34 34 35 35 35 36 36 36 36 36
2	2.1 2.2 2.3 2.4	Norma 2.1.1 V 2.1.2 U Spazio r 2.2.1 I Successi 2.3.1 I 2.3.2 I 2.3.3 U Serie in 2.4.1 U 2.4.2 I 2.4.3 I 2.4.4 I Spazio c 2.5.1 S 2.5.2 I	Verifica norma Uguaglianza normato Lemma oni Lemma Proposizione Corollario V Convergenza Dimensione Feorema Proposizione Coccessione di Cauchy Feorema	32 33 33 34 34 35 35 35 36 36 36 36 36 36 36
2	2.1 2.2 2.3 2.4	Norma 2.1.1 V 2.1.2 U Spazio r 2.2.1 I Successi 2.3.1 I 2.3.2 I 2.3.3 U Serie in 2.4.1 U 2.4.2 I 2.4.3 I 2.4.4 I Spazio c 2.5.1 S 2.5.2 I 2.5.3 I	Verifica norma Jguaglianza Jguaglianza Jormato Jemma Oni Jemma Proposizione Corollario V Convergenza Dimensione Feorema Proposizione Completo Successione di Cauchy Feorema Feorema Feorema Feorema Feorema	32 33 33 34 34 35 35 35 36 36 36 36 36 36 36
2	2.1 2.2 2.3 2.4	Norma 2.1.1 V 2.1.2 U Spazio r 2.2.1 I Successi 2.3.1 I 2.3.2 I 2.3.3 U Serie in 2.4.1 U 2.4.2 I 2.4.3 I 2.4.4 I Spazio c 2.5.1 S 2.5.2 I 2.5.3 I 2.5.4 S	Verifica norma Jguaglianza Jguaglianza Jormato Jemma Oni Jemma Proposizione Corollario V Convergenza Dimensione Feorema Proposizione Couclessione Jordon di Cauchy Jordon di Banach	32 33 33 34 34 35 35 35 36 36 36 36 36 36 36 36 37
2	2.1 2.2 2.3 2.4	Norma 2.1.1 V 2.1.2 U Spazio r 2.2.1 I Successi 2.3.1 I 2.3.2 I 2.3.3 U Serie in 2.4.1 U 2.4.2 I 2.4.3 I 2.4.4 I Spazio c 2.5.1 S 2.5.2 I 2.5.3 I 2.5.4 S Prodotte	Verifica norma Jguaglianza normato Lemma Oni Lemma Proposizione Corollario V Convergenza Dimensione Feorema Proposizione Coroma Proposizione Coroma Proposizione Coroma Proposizione Coroma Proposizione Coroma Proposizione Coroma Proposizione Concersione di Cauchy Feorema Feorema Feorema Feorema Feorema Feorema Feorema Feorema Feorema Forema	32 33 33 34 34 35 35 35 36 36 36 36 36 36 36 37 37
2	2.1 2.2 2.3 2.4	Norma 2.1.1 V 2.1.2 U Spazio r 2.2.1 I Successi 2.3.1 I 2.3.2 I 2.3.3 U Serie in 2.4.1 U 2.4.2 I 2.4.3 I 2.4.4 I Spazio c 2.5.1 S 2.5.2 I 2.5.3 I Prodotte 2.6.1 I	Verifica norma Jguaglianza normato Lemma oni Lemma Proposizione Corollario V Convergenza Dimensione Feorema Proposizione completo Successione di Cauchy Feorema Feorema Feorema Foroma Foro	32 33 33 34 34 35 35 35 36 36 36 36 36 36 37 37
2	2.1 2.2 2.3 2.4	Norma 2.1.1 V 2.1.2 U Spazio r 2.2.1 I Successi 2.3.1 I 2.3.2 I 2.3.3 U Serie in 2.4.1 U 2.4.2 I 2.4.3 I 2.4.4 I Spazio c 2.5.1 S 2.5.2 I 2.5.3 I 2.5.4 S Prodotte 2.6.1 I 2.6.2 S	Verifica norma Jguaglianza normato demma Oni demma Proposizione Corollario V Convergenza Dimensione Feorema Proposizione completo Successione di Cauchy Feorema Foresione di Cauchy Feorema Feorema Feorema Feorema Foresione di Cauchy Feorema Feorema Feorema Feorema Foresione di Cauchy Feorema Feorema Feorema Foresione di Cauchy Feorema Feorema Feorema Feorema Foresione di Cauchy Feorema Feorema Feorema Feorema Feorema Feorema Foresione di Cauchy Feorema Feorema	32 33 33 34 34 35 35 35 36 36 36 36 36 37 37 37
2	2.1 2.2 2.3 2.4	Norma 2.1.1 V 2.1.2 U Spazio r 2.2.1 I Successi 2.3.1 I 2.3.2 I 2.3.3 U Serie in 2.4.1 U 2.4.2 I 2.4.3 I 2.4.4 I Spazio c 2.5.1 S 2.5.2 I 2.5.3 I 2.5.4 S Prodotte 2.6.1 I 2.6.2 S 2.6.3 I	Verifica norma Jguaglianza normato Lemma oni Lemma Proposizione Corollario V Convergenza Dimensione Feorema Proposizione completo Successione di Cauchy Feorema Feorema Feorema Foroma Foro	32 33 33 34 34 35 35 35 36 36 36 36 36 37 37 37 37 38
2	2.1 2.2 2.3 2.4	Norma 2.1.1 V 2.1.2 U Spazio r 2.2.1 I Successi 2.3.1 I 2.3.2 I 2.3.3 U Serie in 2.4.1 U 2.4.2 I 2.4.3 I 2.4.4 I Spazio c 2.5.1 S 2.5.2 I 2.5.3 I 2.5.4 S Prodotte 2.6.1 I 2.6.2 S 2.6.3 I 2.6.4 I	Verifica norma Jguaglianza normato demma Oni demma Proposizione Corollario V Convergenza Dimensione Feorema Proposizione completo Successione di Cauchy Feorema Foresione di Cauchy Feorema Feorema Feorema Feorema Foresione di Cauchy Feorema Feorema Feorema Feorema Foresione di Cauchy Feorema Feorema Feorema Foresione di Cauchy Feorema Feorema Feorema Feorema Foresione di Cauchy Feorema Feorema Feorema Feorema Feorema Feorema Foresione di Cauchy Feorema Feorema	32 33 33 34 34 35 35 35 36 36 36 36 36 37 37 37
2	2.1 2.2 2.3 2.4	Norma 2.1.1 V 2.1.2 U Spazio r 2.2.1 I Successi 2.3.1 I 2.3.2 I 2.3.3 U Serie in 2.4.1 U 2.4.2 I 2.4.3 I 2.4.4 I Spazio c 2.5.1 S 2.5.2 I 2.5.2 I 2.5.3 I 2.5.4 S Prodotte 2.6.1 I 2.6.2 S 2.6.3 I 2.6.4 I 2.6.5 U	Verifica norma Uguaglianza normato Lemma oni Lemma Proposizione Corollario V Convergenza Dimensione Feorema Proposizione Successione di Cauchy Feorema Spazio di Banach o Scalare Disuguaglianza di Cauchy - Schwartz Spazio di Hilbert Feorema Leorema Corollario	32 33 33 34 34 35 35 35 36 36 36 36 36 37 37 37 37 38
2	2.1 2.2 2.3 2.4	Norma 2.1.1 V 2.1.2 U Spazio r 2.2.1 I Successi 2.3.1 I 2.3.2 I 2.3.3 U Serie in 2.4.1 U 2.4.2 I 2.4.3 I 2.4.4 I Spazio c 2.5.1 S 2.5.2 I 2.5.2 I 2.5.3 I 2.5.4 S Prodotte 2.6.1 I 2.6.2 S 2.6.3 I 2.6.4 I 2.6.5 U	Verifica norma Jguaglianza normato emma oniemma Proposizione Corollario V Convergenza Dimensione Feorema Proposizione Ouccessione Guccessione di Cauchy Feorema	32 33 33 34 34 35 35 35 36 36 36 36 36 37 37 37 37 38 38
2	2.1 2.2 2.3 2.4 2.5	Norma 2.1.1 V 2.1.2 U Spazio r 2.2.1 I Successi 2.3.1 I 2.3.2 I 2.3.3 U 2.4.1 U 2.4.2 I 2.4.3 I 2.4.4 I Spazio c 2.5.1 S 2.5.2 I 2.5.2 I 2.5.3 I 2.6.4 I 2.6.5 U Definizio	Verifica norma Uguaglianza normato Lemma oni Lemma Proposizione Corollario V Convergenza Dimensione Feorema Proposizione Successione di Cauchy Feorema Spazio di Banach o Scalare Disuguaglianza di Cauchy - Schwartz Spazio di Hilbert Feorema Leorema Corollario	32 33 33 34 34 35 35 35 36 36 36 36 36 37 37 37 37 38 38 38

		2.7.3	Supporto	39									
		2.7.4	Insieme compatto										
		2.7.5	Corollario	39									
3	Dist	ribuzio	ni :	39									
	3.1		delle funzioni test D										
	3.2		a										
			i localmente sommabili L^1_{loc}										
	3.4		genza in L^1_{loc}										
	3.5		ale lineare \dots										
	3.6		genza in D										
	3.7		zione: definizione										
	3.8		delle distribuzioni D'										
	3.9	-	a di caratterizzazione										
	3.10		genza in D'										
			a di completezza										
			a della divergenza di Gauss										
			e di distribuzioni										
	0.20		Osservazione:										
	3.14		e multiple										
			a di Schwartz										
	0.10		Dimostrazione										
	3.16		a										
	00		Dimostrazione										
4		asformata di Fourier 46											
	4.1	-	tá										
			Dimostrazioni										
	4.2		rio										
		4.2.1	Dimostrazione										
	4.3		a inversione										
		4.3.1	Inversione nel caso $n \equiv 2$	47									

1 Funzioni di una variabile complessa

$$f: \quad \Omega \to C \qquad \qquad \Omega \subset C$$

$$z \in \Omega \to f(z) \in C$$

$$\begin{array}{ll} z \in C \Rightarrow z = x + iy & x,y \in R \\ x = \Re(z) & y = \Im(z) \end{array}$$

Modulo di z: $|z| = \sqrt{x^2 + y^2} \ge 0$

1.1 Definizioni

1.1.1 Distanza

Distanza tra z_1 e z_2 :

$$dist(z_1, z_2) = |z_1 - z_2| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} = \sqrt{|x_1 - x_2|^2 + |y_1 - y_2|^2}$$

1.1.2 Palla aperta

Palla aperta di centro z_0 e raggio R:

$$B_R(z_0) = \{ z \in C : |z - z_0| < R \}$$

1.1.3 Palla chiusa

Palla chiusa di centro z_0 e raggio R:

$$\overline{B_R(z_0)} = \{ z \in C : |z - z_0| < R \}$$

1.1.4 Circonferenza

Circonferenza di centro z_0 e raggio R:

$$C_R(z_0) = \overline{B_R(z_0)} - B_R(z_0) = \{z \in C : |z - z_0| = R\}$$

1.1.5 Punto interno

Definizione: $z_0\in\Omega\subset C$ é un punto interno di Ω se:

$$\exists R > 0 : B_R(z_0) \subset C$$

Esempio $\Omega = B_1(1) \cup B_1(-1) \cup \{0\}$

 $z_0=0$ NON é un punto interno di Ω (non esiste una palla centrata in z_0 che sia interna a $\Omega)$ $z_0'=1+i\frac12$ é un punto interno

Esempio $\Omega = B_R(z_0)$

Si vede che qualunque punto z_1 della palla aperta é un punto interno, poiché:

$$B_R(z_1) \subset B_R(z_0)$$
 per ogni $r < R - \mid z_0 - z_1 \mid$

1.1.6 Insieme aperto

 $\Omega \subset C$ é un insieme aperto se ogni suo punto é un punto interno.

1.1.7 Punto di accumulazione

Dato $\Omega \subset C$ un punto $z_0 \in C$ é un punto di accumulazione per Ω se

$$\forall R>0 \quad B_R(z_0)$$
 contiene punti di Ω

eventualmente diversi da z_0 .

Esempio: $\Omega_2 = B_1(1) \cup B_1(-1)$

I punti indicati sono tutti punti di accumulazione.

NB: z_0 punto interno di Ω implica z_0 punto di accumulazione Questo implica che un insieme aperto é formato solo da punti interni.

inoltre se Ω ha un punto di accumulazione, allora Ω ha infiniti punti.

1.2 Limite

 $f:\Omega\in C\to C\quad z_0\in C$ punto di accumulazione per Ω

fha un limite finito per z tendente a z_0

$$\lim_{z \to z_0} f(z) = L \quad \in C$$

se

$$\forall \varepsilon > 0 \quad \exists R > 0 \quad : \quad |f(z) - L| < \varepsilon \quad \forall z \in \Omega \cap B_R(z_0) \quad z \neq z_0$$

1.3 Continuitá

$$f: \Omega \to C \quad \Omega \subset C \text{ aperto} \quad z_0 \in \Omega$$

 $f \in \underline{\text{continua}} \text{ in } z_0 \text{ se } \lim_{z \to z_0} f(z) = f(z_0)$

$$\forall \varepsilon > 0 \quad \exists R > 0 \quad : \quad |f(z) - f(z_0)| < \varepsilon \quad \forall z \in \Omega \hat{B}_R(z_0)$$

1.4 Derivabilitá

 $f: \Omega \to C \quad \Omega \subset C \text{ aperto} \quad z_0 \in \Omega$

fé derivabile in z_0 se \exists finito

$$\frac{f(z) - f(z_0)}{z - z_0} = f'(z_0)$$

Esempio $f(z) = z^2$ $f: C \to C$ derivabile in tutto C

Scrivendo $z = z_0 + h \pmod{h \in C}$ ho

$$f'(z_0) = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{f} = \lim_{h \to 0} \frac{(z_0 + h)^2 - z_0^2}{h} = \lim_{h \to 0} \frac{z_0^2 + 2z_0h + h^2 - z_0^2}{h} = \lim_{h \to 0} (2z_0 + h) = 2z_0$$

Esempio $f(z) = \Re(z)$ $f: C \to C$

$$z = x + iy \quad \to \quad f(z) = x$$

$$f'(z) = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = \lim_{h \to 0} \frac{\Re(z_0 + h) - \Re(z_0)}{h} = \lim_{h \to 0} \frac{\Re(h)}{h}$$

- $\bullet \,$ h puramente reale $\lim_{h \to 0} \frac{\Re(h)}{h} = 1$
- h puramente immaginaria $\lim_{h \to 0} \frac{0}{h} = 0$

Poiché il limite non é definito (ho due risultati diversi) la funzione non é derivabile $\forall z_0$

1.5 Differenziabilitá

f é <u>differenziabile</u> in z_0 se:

$$\exists \lambda \in C : f(z) = f(z_0) + \lambda \cdot (z - z_0) + R(z - z_0)$$

dove il resto $R(z-z_0)$ soddisfa la seguente:

$$\lim_{z \to z_0} \frac{R(z - z_0)}{z - z_0} = 0$$

Se f é differenziabile in z_0 , allora $\lambda = \frac{f'}{z_0}$

f differenziabile implica f derivabile

Si puó riscrivere cosí la definizione:

$$\exists \lambda \in C$$
 : $f(z_0 + h) = f(z_0) + \lambda \cdot h + R(h)$

Quindi

$$\lim_{h \to 0} \frac{R(h)}{h} = 0 = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0) - \lambda \cdot h}{h} = \lim_{h \to 0} \left(\frac{f(z_0 + h) - f(z_0)}{h} - \lambda \right) = 0$$

 $(R(h) \text{ \'e detto o piccolo di } h, \text{ ovvero } o(h) \text{ per } h \to 0)$

Il che implica che:

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = \lambda$$

1.6 Teorema di Cauchy-Riemann

Scrivendo z = x + iy, si puó scrivere:

$$f(z) = \underbrace{\Re(f(z))}_{u} + i \underbrace{\Im(f(z))}_{v}$$
$$= u(x, y) + iv(x, y)$$

In tal modo, la funzione f risulta divisa in due funzioni separate:

$$f: C \to C$$
$$u: R^2 \to R$$
$$v: R^2 \to R$$

Quindi, supponendo $f:C\to C$ con $\Omega\subset C$ aperto

f é derivabile in z se e solo se u e v sono differenzibili (come campi scalari) in (x, y), e valgono le equazioni:

$$\frac{\delta u}{\delta x} = \frac{\delta v}{\delta y} \qquad \frac{\delta u}{\delta y} = -\frac{\delta v}{\delta x}$$

equazioni di Cauchy-Riemann

$$\begin{split} f(z) &= \Re(z) = x \quad [z = x + iy] \\ u(x,y) &= x \\ v(x,y) &= 0 \\ \frac{\delta u}{\delta x} &= 1 \neq \frac{\delta v}{\delta y} = 0 \quad \Rightarrow \quad f \text{ non derivabile} \end{split}$$

Esempio

$$\begin{split} f(z) = & |z|^2 = |x + iy|^2 = x^2 + y^2 \\ u(x, y) = x^2 + y^2 \\ v(x, y) = 0 \\ \frac{\delta u}{\delta x} = 2x = \frac{\delta v}{\delta y} = 0 & \Leftrightarrow x = 0 \\ \frac{\delta u}{\delta y} = 2y = \frac{\delta v}{\delta x} = 0 & \Leftrightarrow y = 0 \end{split}$$

 \Rightarrow la funzione é derivabile solo nell'origine (0,0)

Esempio

$$f(z) = e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!} \quad \text{oppure} \quad e^{x+iy} = e^x e^{iy} = e^x \cdot (\cos x + i \sin y)$$

$$u(x,y) = e^x \cos y$$

$$v(x,y) = e^x \sin y$$

$$\frac{\delta u}{\delta x} = e^x \cos y = \frac{\delta v}{\delta y}$$

$$\frac{\delta u}{\delta y} = -e^x \sin x = -\frac{\delta v}{\delta x}$$

$$\Rightarrow f(z) = e^z \text{ \'e derivabile in tutto } C$$

1.6.1 Dimostrazione

ipotesi: f derivabile in $z \Leftrightarrow$ differenziabile in z

$$\Rightarrow f(z+h) = f(z) + f'(z) \cdot h + o(h) \quad \text{per } h \to 0 \quad \left(\lim_{h \to 0} \frac{o(h)}{h} = 0\right)$$

$$u_0 = u(x,y) \quad v_0 = (x,y)$$

$$u = u(x+h_1,y+h_2) \quad v = v(x+h_1,y+h_2)$$

$$h = (h_1,h_2) \quad o(h) = o(h) + i \cdot o(h) \quad \text{per le proprietá di o piccolo}$$

$$f(z+h) = u + iv = u_0 + iv_0 + (\alpha + i\beta)(h_1 + h_2) + o(h) + io(h)$$

$$\Rightarrow \quad u = u_0 + \alpha h_1 - \beta h_2 + o(h) \quad \Rightarrow \quad \text{u differenziabile in } (x,y)$$

$$e \text{ inoltre si vede che } \frac{\delta u}{\delta x} = \alpha \quad \frac{\delta u}{\delta y} = -\beta$$

$$\Rightarrow \quad v + v_0 + \beta h_1 + \alpha h_2 + o(h) \quad \Rightarrow \quad \text{v differenziabile in } (x,y)$$

$$e \text{ inoltre } \frac{\delta v}{\delta x} = \beta \quad \frac{\delta v}{\delta y} = \alpha$$

Quindi é dimostrato che:

$$\alpha = \frac{\delta u}{\delta x} = \frac{\delta v}{\delta y}$$
$$\beta = \frac{\delta v}{\delta x} = -\frac{\delta u}{\delta y}$$

1.7 Curve e Cammini in C

Al variare di t, il punto z si sposta lungo un percorso $R \in [a, b]$

$$t \to r(r) = \Re(r(t)) + \Im(r(t))$$

1.7.1 C^1 a tratti

 $r:[a,b]\to C$ é ${\bf C^1}$ a tratti se:

- r é continua su [a, b]
- \exists un numero finito di punti $t_1,t_2,\ldots,t_n\in]a,b[$ tali che $t_0=a$ e $t_n=b$ e r(t) é C^1 in $[t_i,t_{i+1}]$ $i=0,1,\ldots,n-1$

1.7.2 Curva

Se $r:[a,b]\to C$ é C^1 a tratti, allora individua una **curva** in C.

1.7.3 Curve equivalenti

$$r_1: [a_1,b_1] \to C$$

$$r_2: [a_2,b_2] \to C$$

 $\exists \varphi: [a_2,b_2] \to [a_1,b_1] \quad \text{biiettiva, strettamente crescente, C^1 a trattitale che $r_2(t) = r_1((\varphi(t)))$} \quad \forall t \in [a,b]$

allora r_1 e r_2 sono **curve equivalenti**.

Esempio:

$$\begin{aligned} v_2(t) &= \cos(t) + i \sin(t) & t \in [0, \pi] \\ v_1(\tau) &= \cos(\tau) + i \sin(\tau) & \tau \in [0, 2\pi] \\ \varphi(t) &= \frac{1}{2}t : [0, 2\pi] \to [0, \pi] \end{aligned}$$

1.7.4 Relazione di Equivalenza

$$r_1\sim r_2 \quad\Rightarrow\quad r_2\sim r_1$$
 simmetria
$$r_1\sim r_1$$
 riflessione
$$r_1\sim r_2 \quad e\quad r_2\sim r_3 \quad\Rightarrow\quad r_1 \ e\ r_3 \ {\rm sono\ equivalenti}$$

1.7.5 Classi di equivalenza

Insieme di tutte le curve equivalenti.

1.7.6 Curva Orientata

La curva orientata é una classe di equivalenza di funzioni \mathbb{C}^1 a tratti equivalenti tra loro.

L'orientamento é il senso di percorrenza uguale per ogni curva della stessa classe.

Ognuna delle funzioni della classe di equivalenza é detta rappresentazione parametrica della curva.

$$r:[a,b]\to C$$

- $\bullet \ r(a)$ e r(b)sono detti estremi della curva C.
- r([a,b]) é detto sostegno della curva C.
- r(a) = r(b) indica un cammino chiuso o circuito.

1.7.7 Somma di cammini

$$egin{aligned} r:[a,b] &
ightarrow C & C \ r:[a,c] &
ightarrow C & C_1 \ r:[c,b] &
ightarrow C & C_2 \end{aligned}$$

con a < c < b, allora:

$$C = C_1 + C_2$$

1.7.8 Cammino inverso

Dato un cammino C con $r:[a,b]\to C$ il **cammino inverso** ha lo stesso sostegno percorso in senso opposto.

Cammino inverso: -C

1.8 Integrale di una funzione di variabile complessa

Data una curva C orientata in C, $r:[a,b]\to C$, C^1 a tratti, suppongo che il mio sostegno sia il dominio di una funzione

$$f: sost(C) \rightarrow C$$
 continua

$$\int_{C} f(z) dz := \int_{a}^{b} f(r(t)) \cdot r'(t) dt$$
$$z \in sost(C) \quad z = r(t)$$

Dato che il prodotto $f(r(t)) \cdot r'(t)$ risulta continuo a tratti posso esprimere l'integrale come somma di integrali di funzioni continue in ogni intervallo.

$$\sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} \underbrace{f(r(t)) \cdot r'(t)}_{C_0} dt$$

Proprietá:

• Linearitá:

$$\int_C (\lambda \cdot f + \mu g) \, dz = \lambda \cdot \int_C f \, dz + \mu \int_C g \, dz$$

• Additivitá:

$$\int_{C_1 + C_2} f(z) \, dz = \int_{C_1} \dots + \int_{C_2} \dots$$

 $\int_{-C} = -\int_{C}$

1.8.1 Lunghezza di C

$$l(C) = \int_{a}^{b} |r'(t)| dt$$

Fare molta attenzione se la curva presenta parte reale e parte immaginaria!

Esempio:

$$r(t) = u(t) + ig(t)$$

$$l(C) = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}}$$

Ora vado a fare una maggiorazione dell'integrale:

$$|\int_{C} f(z) dz| \leq \int_{a}^{b} |f(r(t)) \cdot r'(t)| dt \leq \int_{a}^{b} \max |f(z)| \cdot |r'(t)| dt = \max_{z \in sost(C)} f(z) \cdot l(C)$$

Esempio $f(z) = z^n$ $n \in \mathbb{Z}$

•
$$n \ge 0$$
 $f: C \to C$ $\Omega = C$

•
$$n < 0$$
 $f: C - \{0\} \to C$ $\Omega = C - \{0\}$

Supponiamo di voler calcolare:

$$\int_{C_R(0)} f(z) \, dz$$

con

$$C_R(0): z = R \cdot e^{it} = R(\cos t + i\sin t) = r(t) \quad t \in [0, 2\pi]$$

Si procede in questo modo:

$$\int_{C_R(0)} f(z) dz = \int_{C_R(0)} z^n dz$$

$$= \int_0^{2\pi} (R \cdot e^{it})^n \cdot R \cdot i \cdot e^{it} dt$$

$$= \int_0^{2\pi} R^{n+1} \cdot i \cdot e^{(n+1) \cdot i \cdot t} dt$$

$$= R^{n+1} \cdot i \cdot \int_0^{2\pi} e^{(n+1) \cdot i \cdot t} dt =$$

$$n+1 \neq 0 = R^{n+1} \cdot i \cdot \frac{e^{(n+1) \cdot i \cdot t}}{(n+1) \cdot i} \Big|_0^{2\pi} = \frac{R^{n+1}}{n+1} \Big(\underbrace{e^{2\pi i (n+1)}}_{1} - 1 \Big) = 0$$

$$n+1 = 0 = R^0 \cdot i \cdot \int_0^{2\pi} e^0 dt = 2\pi \cdot i$$

Si verifica la maggiorazione:

$$\left| \int_{C_R(0)} z^n \, dz \right| \le \max_{z \in C_R(0)} |z^n| \cdot l(C_R(0)) =$$

$$= R^n \cdot 2\pi \cdot R = 2\pi R^{n+1}$$

Esempio

$$\int_{C_R(z_0)} (z - z_0)^n \, dz$$

sapendo che $z = r(t) = z_0 + Re^{it}$ con $t \in [0, 2\pi]$

$$= \int_0^{2\pi} (Re^{it}) \cdot R \cdot i \cdot e^{it} dt$$

 z_0 scompare, e il risultato é esattamente come prima.

1.8.2 Funzione Olomorfa

 $f:\Omega\subset C\to C$ Ω aperto

fé detta **olomorfa** (in $\Omega)$ se é derivabile in ogni punto di $\Omega.$

1.8.3 Teorema di Cauchy (1 versione)

f olomorfa in Ω ;

C circuito in Ω ($sost(C) \subset \Omega$) con interno tutto contenuto in Ω ;

Allora:

$$\int_C f(z) \, dz = 0$$

Esempio

$$\int_{C_R(0)} \frac{dz}{z} = 2\pi i$$

$$\int_{C_2} \frac{dz}{z} = ?$$

Creo un circuito $\Gamma = C_2 + [B,A] - C_R(0) + [A,b]$ cammino chiuso, C^1 a tratti, che non contiene 0 all'interno. (tratteggiato nel disegno)

$$\begin{split} \int_{\Gamma} \frac{dz}{z} &= \int_{C_2} + \int_{[B,A]} + \int_{-C_R(0)} + \int_{[A,B]} = \\ &= \int_{C_2} + \int_{[B,A]} - \int_{C_R(0)} - \int_{[B,A]} = 0 \end{split}$$

per il teorema

Quindi:

$$\int_{C_2} = \int_{C_R(0)} = 2\pi i$$

1.8.4 Circuiti omotopi

 C_1 e C_2 due circuiti di Ω $(sost(C_1) \subset \Omega)$ sono Ω -omotopi se esiste una funzione

$$F:[0,1]x[a,b]\to\Omega$$

continua (nelle due variabili) tale che:

- $\forall \lambda \in [0,1], H(\lambda,\cdot)$ é una parametrizzazione di un circuito in Ω .
- $\lambda = 0 \Rightarrow H(0, \cdot)$ é una parametrizzazione di C_1 .
- $\lambda = 1 \Rightarrow H(0, \cdot)$ é una parametrizzazione di C_2 .

In particolare, se ho un circuito Ω -omotopo ad un punto si dice Ω -omotopo a 0.

1.8.5 Teorema di Cauchy (2 versione)

 $f:\Omega\to C,\,\Omega$ aperto, folomorfa; C_1 e C_2 circuiti $\Omega\text{-omotopi.}$ Allora:

$$\int_{C_1} f(z) dz = \int_{C_2} f(z) dz$$

In particolare, se C é $\Omega\text{-omotopa}$ a zero,

$$\int_C f(z) \, dz = 0$$

1.8.6 Teorema di Morera

 $f:\Omega\to C$ continua

 $\forall C$ circuito in Ω succede che se:

$$\int_C f(z) \, dz = 0$$

Allora f é olomorfa. (Condizione sufficiente, non necessaria).

Esempio:

$$f(z) = \frac{1}{z}$$
 olomorfa in $C - \{0\}$

$$\int_{C_R(0)} \frac{dz}{z} = 2\pi i \neq 0$$

1.9 Sviluppi in serie

1.9.1 Funzione analitica

 $f: \Omega \to C, \Omega \subset C$ aperto

fé analitica in Ω se é sviluppabile in serie di potenze di $\Omega,$ cioé se:

 $\forall z_0 \in \Omega \quad \exists \delta > 0 \quad : \quad B_\delta(z_0) \subset \Omega \quad \text{ e } \quad \exists \{c_n\}_{n \in N} \subset C \quad \text{ tale che:}$

$$f(z) = \sum_{n=0}^{\infty} \underbrace{c_n(z - z_0)^n}_{\text{serie di pot. con raggio di conv.} R \ge \delta} \quad \forall z \in B_{\delta}(z_0)$$

Si nota che:

- la serie di potenze é derivabile termine a termine
- la serie delle derivate é una serie con lo stesso raggio di convergenza
- f é derivabile infinite volte in B_{δ} , quindi anche in Ω , quindi $f \in C^{\infty}$

1.9.2 Serie di Taylor

 $f: \Omega \to C$, Ω aperto $\subset C$, f analitica in C $\forall z_0 \in \Omega \quad \exists \delta > 0$ tale che

$$f(z) = \sum_{n=0}^{\infty} C_n (z - z_0)^n \quad \forall z \in B_{\delta}(z_0) \subset \Omega$$

serie con raggio di convergenza $R \geq \delta$, derivabile termine a termine, dalle derivate con lo stesso R

$$f'(z) = \sum_{n=1}^{\infty} n \cdot C_n (z - z_0)^{n-1} \quad \text{in } B_{\delta}(z_0)$$

$$f''(z) = \dots$$

$$f'''(z) = \dots$$

$$\vdots$$

$$f(z_0) = C_0$$

$$f'(z_0) = 1 \cdot C_1$$

$$f''(z_0) = 2 \cdot 1 \cdot C_2$$

$$\vdots$$

$$f^{(n)}(z_0) = n! \cdot C_n$$

$$C_n = \frac{f^{(n)}(z_0)}{n!} \quad \text{Coefficiente di Taylor}$$

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n \quad \text{Serie di Taylor}$$

fanalitica in $\Omega\Rightarrow f$ sviluppabile in serie di Taylor in $\Omega,$ ovvero: $\forall z_0\in\Omega\quad \exists \delta>0\quad :\quad B_\delta(z_0)\subset\Omega$

$$f(z) = \sum \text{Taylor}$$

1.9.3 Serie assolutamente convergente

$$\sum_{n=0}^{\infty} |C_n| \cdot |z - z_0|^n \qquad \text{\'e convergente}$$

1.9.4 Teorema

Serie as solutamente convergente in $B_{\delta}(z_0), \mid z-z_0 \mid < \delta$

Serie uniformemente convergente in $\overline{B_r(z_0)}$, $0 < r < \delta$, $|z - z_0| \le r$

immagine

1.9.5 Formule di Cauchy

$$\int_{C_r(z_0)} \frac{f(z)}{(z-z_0)^{k+1}} dz = \int_{C_r(z_0)} \frac{\sum_{n=0}^{\infty} c_n (z-z_0)^n}{(z-z_0)^{k+1}}$$

$$= \sum_{n=0}^{\infty} \int_{C_r(z_0)} c_n (z-z_0)^{n-k+1} dz$$

$$= \sum_{n=0}^{\infty} c_n \int_{C_r(z_0)} (z-z_0)^{n-k+1} dz$$

Tutti gli integrali sono nulli a meno che l'argomento non sia pari a -1, in questo caso varrá $2\pi i$

$$= \sum_{n-k-1\neq 1}^{\infty} c_n \int_{C_r(z_0)} (z-z_0)^{n-k-1} + c_k \int_{z_0} (z-z_0)^{-1} dz = 2\pi i \cdot c_k$$

Da cui saltano fuori le formule:

$$c_k = \frac{1}{2\pi i} \int_{c_r(z_0)} \frac{f(z)}{(z - z_0)^{k+1}} dz$$
$$c_n = \frac{1}{2\pi i} \int_{c_r(z_0)} \frac{f(z)}{(z - z_0)^{n+1}} dz$$

Ora ricavo le derivate (formule di Cauchy):

$$f^{n}(z_{0}) = \frac{n!}{2\pi i} \int_{C_{r}(z_{0})} \frac{f(z)}{(z - z_{0})^{n+1}} dz$$
$$f(z_{0}) = \frac{1}{2\pi i} \int_{C_{r}(z_{0})} \frac{f(z)}{z - z_{0}} dz$$

Conosco la funzione al contorno del cerchio e posso trovarmi la funzione al centro:

$$f(w) = \frac{1}{2\pi i} \int_{C_r(z_0)} \frac{f(z)}{z - w} dz \qquad \forall w \in B_r(z_0)$$

Parto dalla funzione al contorno per trovare qualsiasi punto w all'interno della palla:

$$f'(w) = \frac{1}{2\pi i} \int_{C_r(z_0)} \frac{f(z)}{(z-w)^2} dz$$

1.9.6 Teorema

 $f:\Omega\to C,\,\Omega$ aperto
 $\subset C.$ Allora fé olomorfa in
 $\Omega\Leftrightarrow f$ é analitica.

Inoltre:

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n dz \qquad \forall B_{\delta}(z_0) \subset \Omega$$

Nel caso reale: f analitica $\stackrel{\not=}{\Rightarrow}$ sviluppabile in serie di potenze $\stackrel{\not=}{\Rightarrow}$ $f \in C^{\infty} \stackrel{\not=}{\Rightarrow}$ f derivabile.

Nel caso complesso: f derivabile $\Leftrightarrow f$ analitica $(\Leftrightarrow f \in C^{\infty})$

1.10 Singolaritá isolate

 $\Omega \subset C$ aperto, $z_0 \in \Omega$

 $f: \Omega \setminus \{z_0\} \to C$ olomorfa, f non definita in z_0 (é un punto interno, quindi esiste una palla centrata in z_0 nella quale f é definita).

Allora z_0 é una **singolaritá isolata** per f.

Esempio

$$f(z) = \frac{1}{z}$$

 $f:C\backslash\{0\}\to C,$ quindi $z_0=0$ singolaritá isolata

Esempio

$$f(z) = \frac{1}{\sin z}$$

 $f:C\backslash (\bigcup_{k\in z}\{k\pi\})\to C,$ quindi $z=k\pi$ singolaritá isolate

1.10.1 Teorema

Dunque, ricordiamo che in assenza di singolaritá abbiamo che, con f olomorfa in $B_{\delta}(z_0) \subset C$,

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n \quad \forall z \in B_{\delta}(z_0)$$

Se invece siamo in presenza di singolaritá, quindi

 $\Omega \subset C$ aperto, $z_0 \in \Omega$ singolaritá isolata, $f: \Omega \setminus \{0\} \to C$ olomorfa, e supponiamo di avere $B_R(z_0) \subset \Omega$,

Allora esiste $\{c_n\}_{n\in\mathbb{Z}}$ tale che $\forall z\in B_R(z_0)$, con $z\neq z_0$

$$f(z) = \underbrace{\sum_{n=0}^{\infty} c_n (z - z_0)^n}_{\text{parte regolare}} + \underbrace{\sum_{n=1}^{\infty} c_{-n} (z - z_0)^{-n}}_{\text{parte singolare}}$$
 Serie di Laurent

Inoltre,

- $\sum_{n=0}^{\infty} c_n w^n$ ha raggio di convergenza $\geq R$
- $\sum_{n=1}^{\infty} c_{-n} w^n$ ha raggio di convergenza $+\infty$

Quindi:

$$f(z) = \sum_{n = -\infty}^{+\infty} c_n (z - z_0)^n \qquad 0 < |z - z_0| < R$$

$$c_n = \frac{1}{2\pi i} \int_{C_r(z_0)} \frac{f(z)}{(z - z_0)^{n+1}} dz$$
 $0 < r < R \quad \forall n \in \mathbb{Z}$

Esempio

$$f(z) = \frac{1}{z}$$

con $f: C \setminus \{0\} \to C$, quindi $z_0 = 0$ singolaritá isolata.

$$f(z) = \sum_{n=-\infty}^{\infty} c_n z^n = z^{-1}$$

- $c_n = 0 \ \forall n \neq -1$
- $c_{-1} = 1$

$$f(z) = \frac{1}{z(1-z)}$$

definita per $z \neq 0, z \neq -1$

Attorno a 0:

$$f(z) = \sum_{n=-\infty}^{\infty} c_n z^n = \frac{1}{z} + \frac{1}{1-z} = \frac{1}{z} + \sum_{n=0}^{\infty} z^n$$

- $c_n = 1 \ \forall n \ge 0$
- $c_{-1} = 1$
- $c_n = 0 \ \forall n < -1$

 $\sum_{n=0}^{\infty} c_n z^n = \sum_{n=0}^{\infty} w^n \text{ ha raggio } 1$

 $\sum_{n=1}^{\infty} c_{-n} z^n = w$ ha raggio ∞

Esempio

$$f(z) = e^{\frac{1}{z}} \qquad z \neq 0$$

$$f(z) = \sum_{n=-\infty}^{\infty} c_n z^n = \sum_{n=0}^{\infty} \frac{(\frac{1}{z})^n}{n!} = \sum_{n=0}^{\infty} \frac{1}{n!} z^{-n} = 1 + \sum_{n=1}^{\infty} \frac{1}{n!} z^{-n}$$

- 1 (parte regolare): raggio ∞
- $\sum_{n=1}^{\infty} \frac{1}{n!} z^{-n}$ (parte singolare): raggio ∞

1.10.2 Classificazione

 $\bullet \ z_0$ é una singolaritá eliminabile se

$$\exists f^*: \Omega \to C$$
 olomorfa tale che $f(z) = f^*(z) \quad \forall z \neq z_0$

ovvero
$$\exists f^*(z_0) = \lim_{z \to z_0} f^*(z) = \lim_{z \to z_0} f(z)$$

 $f^*(z)$, continua in z_0 , é detta prolungamento olomorfo di f

• z_0 é un **polo** se

 $\exists \lim_{z \to z_0} f(z) = \infty$ (che corrisponde a dire $\lim_{z \to z_0} |f(z)| = +\infty$)

• z_0 é una singolaritá essenziale in tutti gli altri casi.

Esempio

$$f(z) = \frac{\sin z}{z} \qquad z \neq 0$$

$$f(z) = \frac{1}{z} \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k+1}}{(2k+1)!} = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k}}{(2k+1)!} := f^*(z)$$

Quindi $z_0 = 0$ é una singolaritá eliminabile.

Esempio

$$f(z) = \frac{1}{z^m} \qquad m \ge 1 \quad z_0 = 0$$

$$\lim_{z\to 0}\mid \frac{1}{z^m}\mid = \lim_{|z|\to 0}\frac{1}{\mid z\mid^m} = \infty$$

Quindi $z_0 = 0$ é un polo.

$$f(z) = e^{\frac{1}{z}} \qquad z_0 = 0$$

Proviamo a studiare il limite sull'asse reale: $z = x \in R$

- $\lim_{x\to 0^-} e^{\frac{1}{x}} = 0$ (quindi non é un polo)
- $\lim_{x\to 0^+}e^{\frac{1}{x}}=\infty$ (diversa da prima, quindi non é una singolaritá eliminabile) Quindi z_0 é una singolaritá essenziale.

1.10.3 Teorema

 $f:\Omega\backslash\{z_0\}\to C,\,z_0$ singolaritá isolata.

se $\exists \delta > 0$: f é limitata in $B_{\delta}(z_0) \subset C$

Allora z_0 é una singolaritá eliminabile.

(ovvero se
$$\exists \delta > 0, M > 0$$
 : $|f(z)| \leq M \quad \forall z \in B_{\delta}(z_0)$)

Da qui deriva che, se \exists finito $\lim_{z\to z_0}$, allora f é limitata in $B_\delta(z_0)$ con δ opportuno.

 z_0 singolaritá eliminabile $\Leftrightarrow \exists \lim_{z \to z_0} f(z) = f^*(z_0)$

1.10.4 Classificazione (ai limiti)

• z_0 singolaritá eliminabile se

$$\exists$$
 finito $\lim_{z\to z_0} f(z)$

• z_0 polo se

$$\exists \lim_{z \to z_0} f(z) = \infty$$

• z_0 singolaritá essenziale se

$$\exists \lim_{z \to z_0} f(z)$$

1.10.5 Teorema

 z_0 polo per f. Allora \exists un unico $n_0 \in N \ge 1$ tale che:

$$\exists \text{ finito } \lim_{z \to z_0} (z - z_0)^{n_0} f(z) \neq 0$$

ovvero

$$f(z) \approx \frac{1}{(z - z_0)^{n_0}}$$

 n_0 é detto **ordine del polo**.

1.10.6 Classificazione (alla serie di Laurent)

• z_0 é singolaritá eliminabile se e solo se la sua serie di Laurent ha solo parte regolare.

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n \qquad c_n = 0 \forall n \le 1$$

• z_0 é un **polo** se e solo se la parte singolare della sua serie di Laurent ha solo un numero finito di termini.

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n + \sum_{n=1}^{n_0} c_{-n} (z - z_0)^{-n} \qquad c_{-n_0} \neq 0$$

 n_0 ordine del polo.

• z_0 é **singolaritá essenziale** se e solo se la parte singolare della sua serie di Laurent ha un numero infinito di termini.

19

$$f(z) = \frac{\sin z}{z} = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k}}{(2k+1)!}$$

(ha solo parte regolare, quindi é una singolaritá eliminabile)

$$f(z) = \frac{1}{z^m} \qquad \lim_{z \to z_0} z^m \frac{1}{z^m} \neq 0$$

(quindi $z_0 = 0$ é un polo di ordine m).

$$f(z) = e^{\frac{1}{z}} = \sum_{m=1}^{\infty} \frac{1}{m!} z^{-m}$$

(la parte singolare ha ∞ termini, quindi é una singolaritá essenziale)

1.11 Residui

Dunque, sappiamo che:

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z - z_0)^n$$
 $0 < |z - z_0| < R$

$$c_n = \frac{1}{2\pi i} \int_{C_{-}(z_0)} \frac{f(z)}{(z - z_0)^{n+1}} dz \qquad 0 < r < R$$

A partire da qui, definiamo **residuo** di f in z_0

$$C^{-1} = res(f, z_0) = \frac{1}{2\pi i} \int_{C_r(z_0)} f(z) dz$$

Esempio z_0 singolaritá eliminabile.

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n \qquad c_n = 0 \forall n \le 1$$

quindi $res(f, z_0) = 0$

Esempio

$$f(z) = \frac{1}{z}$$
 $c_n = 0 \forall n \neq 1$ $c_{-1} = 1$

quindi $res(\frac{1}{z},0)=1$

Esempio

$$f(z) = \frac{\sin z}{z^3} \qquad \forall z \neq 0 \quad z_0 = 0$$

$$= \frac{1}{z^3} \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k+1}}{(2k+1)!} =$$

$$= \frac{1}{z^3} \{ z - \frac{z^3}{3!} + \frac{z^5}{5!} + \dots \} =$$

$$= \frac{1}{z^2} - \frac{1}{3!} + \frac{z^2}{5!} - \frac{z^4}{7!} + \dots$$

 $c_{-1} = 0$ quindi res(f, 0) = 0

1.11.1 Calcolo residui

Supponiamo di avere un polo di ordine ≤ 3

$$f(z) = c_{-3}(z - z_0)^{-3} + c_{-2}(z - z_0)^{-2} + c_{-1}(z - z_0)^{-1} + c_0 + \dots$$

Se l'ordine del polo é 3, allora $c_{-3} \neq 0$

Creiamo la funzione:

$$g(z) = (z - z_0)^3 f(z) = c_{-3} + c_{-2}(z - z_0) + c_{-1}(z - z_0)^2 + \dots$$

Funzione analitica, quindi somma di serie di potenze, quindi la serie di Taylor di g centrata in z_0 é:

$$= g(z_0) + g'(z_0)(z - z_0) + \underbrace{\frac{g''(z_0)}{2!}(z - z_0)^2}_{\text{residuo}} + \dots$$

Quindi:

$$c_{-1} = \frac{g''(z_0)}{2!} = \frac{1}{2!} \frac{d^2}{dz^2} ((z - z_0)^3 f(z)) |_{z=z_0}$$

Poiché $f(z_0)$ non é definita

$$= \frac{1}{2!} \lim_{z \to z_0} \frac{d^2}{dz^2} \Big((z - z_0)^3 f(z) \Big)$$

Quindi, se ho un polo di ordine $\leq n$:

$$res(f, z_0) = \frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} \Big((z - z_0)^n f(z) \Big)$$

Esempio

$$res(f,0) = 1 \cdot \lim_{z \to 0} \frac{d}{dz} (z - z_0)^2 f(z) = \lim_{z \to 0} \frac{d}{dz} (z^2 \frac{\sin z}{z^3}) = \lim_{z \to 0} \frac{z \cos z - \sin z}{z^2}$$

- $\cos(z) = 1 \frac{z^2}{2!} + \frac{z^4}{4!} + \dots = 1 \frac{z^2}{2!} + o(z^3)$
- $\sin(z) = z \frac{z^3}{3!} + \frac{z^5}{5!} + \dots = z + o(z^2)$

$$= \lim_{z \to 0} \frac{z(1 - \frac{z^2}{2!} + o(z^3)) - (z + o(z^2))}{z^2} = \lim_{z \to 0} \frac{o(z^2)}{z^2} = 0$$

Esempio

$$f(z) = \frac{e^{\frac{1}{z}}}{1 - z}$$

- $z_0 = 0$ singolaritá essenziale
- $z_1 = 1$ polo di ordine 1

$$res(f,1) = \frac{1}{0!} \lim_{z \to 1} \frac{d^0}{dz^0} \left((z-1)^1 \frac{e^{\frac{1}{z}}}{1-z} \right) = \lim_{z \to 1} (-e^{\frac{1}{z}}) = -e^{\frac{1}{z}}$$

É stato facile, poiché sapevo l'ordine del polo. Se non l'avessi conosciuto a priori i conti sarebbero stati molto piú complessi.

$$res(f=0) = ?$$

(non posso usare la formula semplificata per i poli, devo trovare lo sviluppo di Laurent)

$$f(z) = e^{\frac{1}{z}} \frac{1}{1-z} =$$

$$= \sum_{n=0}^{\infty} \frac{\left(\frac{1}{z}\right)^n}{n!} \cdot \sum_{k=0}^{\infty} z^k =$$

$$= \left(1 + \frac{z^{-1}}{1!} + \frac{z^{-1}}{2!} + \dots\right) \cdot \left(1 + z + z^2 + z^3 + \dots\right) =$$

$$= \left(1 + z + z^2 + z^3 + \dots\right) + \frac{z^{-1}}{1!} \cdot \left(1 + z + z^2 + \dots\right) + \frac{z^{-2}}{2!} \cdot \left(1 + z + z^2 + \dots\right) =$$

$$= 1 + 1 + 1 + \dots + \frac{z^{-1}}{1!} + \frac{z^{-1}}{1!} + \frac{z^{-1}}{1!} + \dots =$$

$$= \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{z^{-n}}{n!} z^k$$
 prod. alla Cauchy

Poiché la prima serie converge $\forall z \neq 0$ e la seconda per | z |< 1,

$$f(z) = \sum_{n,k=0}^{\infty} \frac{1}{n!} z^{-n+k}$$

$$res(f,0) = c_{-1} = \sum_{\substack{n,k=0 \ -n+k=-1}}^{\infty} \frac{1}{n!} = \sum_{n=1}^{\infty} \frac{1}{n!} = e - 1 \qquad \left(e = \sum_{n=0}^{\infty} \frac{1}{n!}\right)$$

1.11.2 Teorema (prodotto alla Cauchy)

 $\sum_{n=0}^{\infty}a_nz^n,\,\sum_{n=0}^{\infty}b_nw^n$ entrambe assolutamente convergenti. Allora:

$$\left(\sum_{n=0}^{\infty} a_n z^n\right) \cdot \left(\sum_{k=0}^{\infty} b_k w^k\right) = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} a_n b_k z^n w^k$$

1.11.3 Teorema dei residui

 $\Omega \subseteq C$ aperto, C circuito Ω -omotopo a 0

 z_1,z_2,\ldots,z_n interni a $C,\,f:\Omega\backslash\{z_1,\ldots,z_n\}\to C$ olomorfa

Allora:

$$\int_C f(z) dz = 2\pi i \Big(res(f, z_1) + \dots + res(f, z_n) \Big)$$

Infatti, nel caso di unica singolaritá abbiamo:

$$res(f, z_0) = c_{-1} = \frac{1}{2\pi i} \int_{C_r(z_0)} f(z) dz$$

$$\int_{C_2(0)} \frac{1}{z^4 - 8z^2 - 9} dz = I$$

$$z^4 - 8z^2 - 9 = (z^2 - 9)(z^2 + 1) = 0 \quad \Leftrightarrow \quad \underbrace{z = \pm 3, z = \pm i}_{4 \text{ poli del 1 ordine}}$$

Si nota che i punti interni alla circonferenza sono solo $\pm i$, quindi:

$$I = 2\pi i \left[res(f, 1) + res(f, -i) \right]$$

Si calcolano i residui:

$$res(f,i) = \lim_{z \to i} \frac{1}{0!} \frac{d^0}{dz^0} \Big[(z-1)f(z) \Big] =$$

$$= \lim_{z \to 1} \frac{(z-i)}{(z-i)(z+1)(z-3)(z+3)} =$$

$$= \frac{1}{2i(i+3)(i-3)}$$

$$res(f,-1) = \lim_{z \to -i} \frac{1}{0!} \frac{d^0}{dz^0} \Big[(z+i)f(z) \Big] =$$

$$= \frac{1}{-2i(-i+3)(-i3)}$$

Da cui:

$$res(f, i) + res(f, -i) = 0 \Leftrightarrow I = 0$$

Esempio

$$I = \int_{-\infty}^{+\infty} \frac{1}{1+x^2} \, dx$$

Il metodo sempilce per calcolare l'integrale é:

$$I = \lim_{R \to \infty} \int_{-R}^{R} \frac{dx}{1 + x^2} = \lim_{R \to \infty} \arctan x \mid_{-R}^{R} = \lim_{R \to \infty} 2 \arctan R = 2\frac{\pi}{2} = \pi$$

Oppure si puó fare con il metodo visto prima. Parametrizziamo la funzione f(z):

$$f(z) = \frac{1}{1+z^2}, \, f: C \backslash \{\pm i\} \to C$$
olomorfa

E poi costruiamo il seguente circuito chiuso:

$$C = C_R^+ + [-R, R]$$

$$\begin{split} & \int_{C} f(z) \, dz = \int_{C_{R}^{+}(0)} f(z) \, dz + \int_{-R}^{R} f(x) \, dx = 2\pi i \cdot res(f, i) \\ & = 2\pi i \cdot \lim_{z \to i} (z - i) f(z) = 2\pi i \lim_{z \to i} \frac{z - i}{(z + i)(z - i)} = 2\pi i \frac{1}{2i} = \pi \end{split}$$

A questo punto, dobbiamo calcolare il valore dell'integrale:

$$\int_{C_R^+(0)} \frac{1}{1+z^2} \, dz$$

Che, parametrizzando la curva, diventa:

- $z = r(t) = Re^{it}$, con $t \in [0, \pi]$
- $dz = r'(t) = Re^{it}i dt$

$$\int_0^\pi \frac{Rie^{it}}{1 + R^2e^{2it}} dt$$

che in modulo puó essere maggiorato da:

$$\leq \int_0^\pi \frac{R}{R^2 - 1} dt = \frac{R\pi}{R^2 - 1} dt \to 0 \quad \text{per } R \to \infty$$

Quindi, essendo nullo quest'ultimo integrale, risulta che:

$$0 + \int_{-R}^{R} f(x) \, dx = \pi$$

Esempio

$$\int_{-\infty}^{\infty} \frac{\sin x}{x} \, x$$

Definisco f(z):

$$f(z) = \frac{e^{iz}}{z},$$
con $x \in R,\, f: C \backslash \{0\} \to C$ olomorfa

in modo tale che l'integrale risulta:

$$= \lim_{\stackrel{R \to +\infty}{\varepsilon \to 0^+}} \int_{\varepsilon < |x| \le R} \frac{\sin x}{x} \, dx$$

Construisco un percorso:

$$C = C_R^+(0) + [-R, -\varepsilon] - C_\varepsilon^+(0) + [\varepsilon, R]$$

Poiché non ci sono singolaritá in C,

$$\int_{C} f(z) dz = 0 = \int_{C_{R}^{+}(0)} + \int_{-R}^{-\varepsilon} + \int_{C_{\varepsilon}^{+}(0)} + \int_{\varepsilon}^{R} \lim_{R \to +\infty} \int_{C_{R}^{+}(0)} - \lim_{\varepsilon \to 0} \int_{C_{\varepsilon}^{+}(0)} + \lim_{\varepsilon \to 0} \left[\int_{-R}^{-\varepsilon} + \int_{\varepsilon}^{R} \right] = 0$$

Calcoliamo il valore dei singoli integrali:

$$\begin{split} \lim_{R \to \infty} \int_{C_R^+(0)} \frac{e^{iz}}{z} &= \int_0^\pi \frac{e^{iRe^{it}}}{Re^{it}} Rie^{it} \, dt = \\ &= \int_0^\pi i e^{iRe^{it}} \, dt \\ &\leq \int_0^\pi \mid e^{iRe^{it}} \mid \, dt \\ &= \int_0^\pi \mid e^{iR(\cos t + i \sin t)} \mid \, dt \\ &= \int_0^\pi \mid \underbrace{e^{iR\cos t} \cdot e^{-R \sin t}}_{\text{modulo 1}} \cdot dt \\ &= \int_0^\pi e^{-R \sin t} \, dt \to 0 \end{split}$$

che in modulo puó essere maggiorato da

$$\lim_{\varepsilon \to 0} \int_{C_\varepsilon^+(0)} \frac{e^{iz}}{z} \, dz = \lim_{\varepsilon \to 0} \int_0^\pi i e^{i\varepsilon e^{it}} \, dt = \int_0^\pi i \, dt = \pi i$$

Quindi;

$$0 - \pi i + \int_{-\infty}^{\infty} \frac{e^{ix}}{x} dx = 0$$

$$\frac{e^{ix}}{x} dx = \pi i = \int_{-\infty}^{+\infty} \frac{\cos x + i \sin x}{x} dx = \underbrace{\int_{-\infty}^{-\infty} \frac{\cos x}{x}}_{I} + \underbrace{i \underbrace{\int \frac{\sin x}{z}}_{I}}_{I} = \pi i$$

$$J + iI = \pi i \quad \Rightarrow \quad J = 0 \quad I = \int_{-\infty}^{\infty} \frac{\sin x}{x} x = \pi$$

1.12 Funzioni Polidrome

1.12.1 Logaritmo

Logaritmo: $z \to w$ funzione inversa di $z = e^w$: $w \to z$ (esponenziale).

Dato $z \neq 0, \, z = \rho e^{i\theta}, \, \rho > 0,$ definiamo:

$$w = \log \rho + i(\theta + 2\pi k)$$

per ogni $k \in \mathbb{Z}$. A questo punto, verifichiamo inserendo il w appena definito nell'esponenziale:

$$e^w = e^{\log \rho + i(\theta + 2\pi k)} = e^{\log \rho} \cdot e^{i(\theta + 2\pi k)} = \rho e^{i\theta} \underbrace{e^{i2\pi k}}_{1} = \rho e^{i\theta} = z$$

per ogni $k \in \mathbb{Z}$. Quindi, abbiamo verificato che:

$$e^w = z \quad \forall k$$

ovvero per infiniti valori di w, in cui la fase varia di $k2\pi$. Abbiamo realizzato una funzione a piú valori, ovvero **multivoca**. Definiamo:

$$arg(z) = \left\{ \theta \in R : z = |z| e^{i\theta} \right\}$$

$$\log(z) = \left\{ \log \mid z \mid +i\theta, \quad \theta \in arg(z) \right\}$$

La funzione é detta funzione con ∞ branche, ciascuna delle quali impedisce un giro completo attorno all'origine. Ad esempio, sono equivalenti:

$$f_1(z) = \log |z| + i\theta \qquad \qquad \theta \in]0, 2\pi[$$

$$f_2(z) = \log |z| + i\theta \qquad \qquad \theta \in]-\frac{\pi}{2}, \frac{3}{2}\pi[$$

$$f_3(z) = \log |z| + i\theta \qquad \qquad \theta \in]-\pi, \pi[$$

z=0 é detto **punto di diramazione**.

1.12.2 Radice

La radice é funzione inversa della potenza $w \to z = w^n$, quindi $w \sim \sqrt[n]{z}$

Scrivendo $z = \rho e^{i\theta}$, immaginiamo un w_k :

$$w_k = \sqrt[n]{\rho} \cdot e^{i\frac{\theta + 2k\pi}{n}}$$

Verifichiamo inserendo w_k nella potenza:

$$w_k^n = \left(\sqrt[n]{\rho} \cdot e^{i\frac{\theta + 2k\pi}{n}}\right)^n = \rho \cdot e^{i(\theta + 2\pi i)} = \rho \cdot e^{i\theta} \quad \forall k \in Z$$

Quindi definiamo la radice di z come:

$$\sqrt[n]{z} = \left\{ \sqrt[n]{\rho} \cdot e^{i\frac{\theta}{n}} \quad \theta \in arg(z) \right\}$$

Come prima, abbiamo una suddivisione in infinite branche per poter avere una funzione univoca (olomorfa). $z_0 = 0$ é ancora detto **punto di diramazione**.

$$\int_{-\infty}^{+\infty} \frac{\sqrt{x}}{1+x^2}$$

Definiamo:

$$f(z) = \frac{\sqrt{z}}{z^2 + 1}$$

Con:

- z = 0 punto di diramazione della radice
- $z = \pm i$ poli di ordine 1

Scelgo la branca che esclude il semiasse positivo:

$$\sqrt{z} = \sqrt{|z|} e^{i\frac{\theta}{2}} \qquad \theta \in]0, 2\pi[$$

$$C = C_R(0) + [R, \varepsilon] - C_{\varepsilon}(0) + [\varepsilon, R]$$
$$\int_C f(z) dz = 2\pi i [res(f, i) + res(f, -1)]$$

Quindi posso ridurre l'integrale al calcolo dei residui dei due poli:

$$res(f,i) = \lim_{z \to i} (z - i) f(z) =$$

$$= \lim_{z \to i} (z - i) \frac{\sqrt{z}}{(z + i)(z - i)} = \frac{\sqrt{i}}{2i} = \frac{\sqrt{1} \cdot e^{i\frac{\pi}{2 \cdot 2}}}{2i} = \left(\sqrt{z} = \sqrt{|z|} \cdot e^{i\frac{\theta}{2}}\right)$$

$$= \frac{e^{i\frac{\pi}{4}}}{2i} = \frac{\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}}{2i} = \frac{\sqrt{2}}{4i} + \frac{\sqrt{2}}{4}$$

$$res(f, -i) = \cdots = \frac{\sqrt{2}}{4i} - \frac{\sqrt{2}}{4}$$

Quindi:

$$\int_{-\infty}^{+\infty} \frac{\sqrt{x}}{1+x^2} = 2\pi i \left(\frac{\sqrt{2}}{4i} + \frac{\sqrt{2}}{4} + \frac{\sqrt{2}}{4i} - \frac{\sqrt{2}}{4} \right) = \pi \sqrt{2}$$

1.13 Integrali di Lebesgue

Metodo piú potente dei precedenti per il calcolo di integrali e funzioni non integrabili normalmente.

1.13.1 Misura

- A partire da I intervallo limitato in R, definiamo **misura** di I = m(I) = mis(I) = |I| = b aEsempi:
 - -I = [a, b[(estremo mancante)
 - $-I = \{a\}$ punto, quindi |I| = 0

• R rettangolo in R^n

$$-R = I_1 \times I_2 \times I_3 \times \cdots \times I_n$$

- $mis(R) = |I_1| \cdot |I_2| \cdot \cdots \cdot |I_n| = \prod_{k=1}^n |I_k|$

 \bullet P plurirettangolo

$$-P = \bigcup_{k=1}^{m} R_k$$

 $-mis(P) = \sum_{k=1}^{m} mis(R_k)$ (se gli R_k non hanno interni in comune)

Inoltre, $A \subset \mathbb{R}^n$ ha **misura nulla** (mis(A) = 0) se:

 $\forall \varepsilon > 0 \quad \exists \{R_k\}_{k \geq 1} \text{ tale che:}$

- $A \subset \bigcup_{k=1}^{\infty} R_k$
- $\sum_{k=1}^{\infty} m(R_k) < \varepsilon$

Esempio $n = 2, R = [a, b] \times \{c\}$

$$\forall \varepsilon > 0 \quad | R_{\varepsilon} | = (b-a) \cdot \frac{\varepsilon}{2(b-a)} = \frac{\varepsilon}{2} < \varepsilon$$

1.13.2 Proposizione Quasi Vera (?!?)

Una proposizione P(x) é vera per quasi ogni x (q.o.x) se:

$$mis\Big(\Big\{x : P(x) \text{ \'e falsa}\Big\}\Big) = 0$$

Esempi:

• u, v due funzioni.

u = v per q.o.x se $m(\{u : u(x) \neq v(x)\}) = 0$

• u(x) = 1 se $x \in Q$, 0 se $x \in R \setminus Q$ $\{x \in R : u(x) \neq 0\} = \{x \in R : u(x) = 1\} = Q$ $mis(Q) = 0 \longrightarrow u(x) = 0$ q.o.x

1.13.3 Successione di Cauchy

 $\{a_n\}_{n\in\mathbb{N}}\subset R$ é una successione di Cauchy se:

$$\forall \varepsilon > 0 \quad \exists n_0 \in N \quad : \quad \forall n, m \ge n_0 \quad | a_n - a_m | < \varepsilon$$

1.13.4 Convergenza

 $\{a_n\}_{n\in N}$ é **convergente** a L se:

$$\forall \varepsilon > 0 \quad \exists n_i \in N \quad : \quad \forall n \ge n_i \quad | a_n - L | < \varepsilon \quad e \quad \lim_{n \to \infty} a_n = L$$

Inoltre, accade che se $\{a_n\}$ é una successione convergente, allora é una successione di Cauchy.

Dimostrazione:

$$\forall \varepsilon > 0 \quad \exists n_1 : \forall n \ge n_1 \quad | a_n - L | < \frac{\varepsilon}{2}$$

$$\forall n, m \geq n \quad |a_n - a_m| = |a_n - L - (a_m - L)| \leq |a_n - L| + |a_m - L| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} < \varepsilon$$

1.13.5 Teorema

 $\{a_n\}_{n\in\mathbb{N}}\subset R$ successione di Cauchy é una successione convergente.

convergente
$$\stackrel{\text{(in R)}}{\Longleftrightarrow}$$
 Cauchy

Esempio $\sqrt{2} \in R \backslash Q$ numero irrazionale

 $\{x_k\} \in Q, x \to \sqrt{2} \text{ per } k \to \infty$

 $\{x_k\}$ é convergente in $R \Rightarrow$ Cauchy in $R \Rightarrow$ Cauchy in Q, ma non é convergente in Q poiché converge a un numero irrazionale!

1.13.6 Funzione Caratteristica

 $A \in \mathbb{R}^n$ é funzione caratteristica dell'insieme A:

$$\chi_A(x) = 1 \quad x = A$$
$$= 0 \quad x \neq A$$

Esempio

$$u(x) = 1 \quad x \in Q$$

$$= 0 \quad x \notin Q$$

$$u = \chi Q$$

1.13.7 Funzione a Scala

 $u: \mathbb{R}^n \to \mathbb{C}$ é una funzione a scala

$$u(x) = \sum_{k=1}^{m} C_k \cdot \chi_{R_k}(x)$$

con R_k rettangoli, $C_k \in C$

1.13.8 Integrale di funzione a scala

$$\int_{R^n} u = \int_{R^n} u(x) \, dx = \sum_{k=1}^m C_k \cdot m(R_k)$$

1.13.9 Integrabilitá secondo Lebesgue

 $u: R \to C$ é integrabile secondo Lebesgue (o sommabile) se:

1. u é misurabile, ovvero esiste una successione $\{u_k\}_{k\in\mathbb{N}}$ di funzioni a scala tale che:

$$u(x) = \lim_{k \to \infty} u_k(x)$$
 q.o.x

2. $\forall \varepsilon > 0 \quad \exists k_0 \in N \text{ tale che } \forall k, k' \geq k_0 \text{ si ha che}$

$$\int_{R^n} |u_k(x) - u_{k'}(x)| dx < \varepsilon$$

Osservazione La successione numerica $\{\int_{\mathbb{R}^n} u_k(x) dx\}$ é una successione di Cauchy.

$$\left| \int_{R^n} u_k(x) \, dx - \int_{R^n} u_{k'}(x) \right| = \left| \int_{R^n} [u_k(x) - u_{k'}(x)] \, dx \right| \le$$

$$\le \int_{R^n} |u_k(x) - u_{k'}(x)| \, dx < \varepsilon \quad \forall k, k' \ge k_0$$

Quindi la successione $\{\int_{\mathbb{R}^n} u_k(x) dx\}$ é convergente in C.

1.13.10 Integrale secondo Lebesgue

L'integrale secondo Lebesgue di u é:

$$\int_{\mathbb{R}^n} u \, dx = \int_{\mathbb{R}^n} u(x) \, dx = \lim_{k \to \infty} \int_{\mathbb{R}^n} u_k(x) \, dx$$

Proposizione u misurabile é integrabile se esiste una funzione φ integrabile tale che

$$|u(x)| \le \varphi(x)$$
 q.o.x

Quindi u é integrabile se e solo se |u| é integrabile. Si dimostra semplicemente sapendo che:

- u integrabile $\Rightarrow |u|$ integrabile. (dalla definizione)
- |u| integrabile; basta scegliere $\varphi = |u|$ e applicare la proposizione.

1.13.11 Insieme misurabile

Un insieme A é misurabile se χ_A é una funzione misurabile

ovvero se esiste una successione di funzioni a scala $\{u_k\}$ tale che $u_k \to \chi_A(x)$ q.o.x

1.13.12 Insieme di misura finita

Se χ_A é integrabile, si dice che A é un **insieme di misura finita**.

$$|A| = m(A) = mis(A) = \int_{\mathbb{R}^n} \chi_A(x) \, dx$$

Se χ_A non é integrabile, si dice che A ha **misura infinita**.

Esempio $mis(R^n) = \infty$

1.13.13 Integrabilitá secondo Lebesgue su insieme finito

 $u:A\to C,\,A$ misurabile $\subset R$

u é integrabile su A (secondo Lebesgue) se

$$\tilde{u}(x) = \left\{ \begin{array}{cc} u(x) & x \in A \\ 0 & x \notin A \end{array} \right.$$

se \tilde{u} é integrabile su \mathbb{R}^n . (sono tornato alla definizione di integrale su tutto \mathbb{R}^n).

1.13.14 Confronto con l'integrale secondo Riemann

Data $u: \mathbb{R}^n \to \mathbb{C}$ limitata, u nulla fuori da un insieme limitato, integrabile secondo Riemann.

Allora u é integrabile secondo Lebesgue e vale:

$$\int_{L} u = \int_{R} u$$

Se u é integrabile secondo Lebesgue, allora |u| é integrabile secondo Lebesgue.

Dunque l'integrale improprio secondo Riemann esiste solo se questo é assolutamente convergente.

Possono esistere funzioni con integrale improprio ma non l'integrale secondo Lebesgue.

Esempio Esiste l'integrale improprio

$$\int_{R} \frac{\sin x}{x} \, dx = \pi$$

ma non l'integrale secondo Lebesgue:

$$\int_{R} \left| \frac{\sin x}{x} \right| dx = +\infty$$

1.13.15 Teorema di Lebesgue della convergenza dominata

- $u_k: A \to C$, A misurabile, u_k funzioni integrabili.
- $u_k \to u \text{ q.o.} x \in A$
- $\exists \varphi \geq 0$ integrabile su A tale che $|u_k(x)| \leq \varphi(x)$ q.o.x, $\forall k$

Allora:

- 1. u é integrabile.
- 2. $\int_A u_k(x) dx \to \int_A u(x) dx$

1.13.16 Esempio: confronto con la teoria classica (di Riemann)

La teoria classica prevede che:

- $f_n: [a,b] \to R$ integrabili
- $f_n \to f$ uniformemente in [a, b]

in tal caso:

- 1. f integrabile
- 2. $\int_a^b f_n(x) dx \to \int_a^b f(x) dx$

Quindi, ad esempio, per risolvere l'integrale:

$$\lim_{k\to\infty} \int_0^\pi e^{-k\sin x} \, dx$$

Si studia $u_k(x) = e^{-k \sin x}$ che é continua in $[0, \pi]$. Peró:

$$u(x) = \lim_{k \to \infty} e^{-k \sin x} = \begin{cases} 1 & x = 0, \pi \\ 0 & x \in]0, \pi[\end{cases}$$

Quindi non c'é convergenza uniforme, e la teoria classica non é dunque applicabile.

Invece, con Lebesgue, noto che $|u_k(x)| \le 1 \quad \forall x, \forall k$. Scelgo dunque $\varphi(x) = 1$, integrabile su $[0, \pi]$.

$$\int_0^\pi e^{-k\sin x} dx = \int_0^\pi u(x) dx$$
$$u(x) = 0 \quad q.o.x \quad \Rightarrow \quad \int_0^\pi u(x) dx = 0$$

Ovvero, con Lebesgue le discontinuitá che costituiscono insiemi di misura nulla (come i due estremi dell'esempio) non influiscono sul risultato.

Corollario

$$\int_A |u_k(x) - u(x)| \, dx \to 0 \quad \text{per } k \to \infty$$

Si dimostra a partire dal fatto che u integrabile $\Rightarrow |u|$ integrabile:

$$|u_k(x) - u(x)| \to 0 \quad q.o.x$$

$$|u_k(x) - u(x)| \le |u_k(x)| + |u(x)| \le \varphi(x) + |u(x)| \quad \forall k, q.o.x$$

$$\int_A |u_k(x) - u(x)| dx \to 0$$

2 Spazi vettoriali normati

V é spazio vettoriale su C (o R) se

 $\forall u, v \in V \quad \forall \lambda, \mu \in C \quad \text{vale che} \quad \lambda \cdot u + \mu \cdot v \in V$

2.1 Norma

 $||\cdot||:V\to R$ é una **norma** se:

- 1. $||u|| \ge 0 \ \forall u, \ ||u|| = 0 \Leftrightarrow u = 0$
- 2. $||\lambda \cdot u|| = |\lambda| \cdot ||u||, \forall \lambda \in C, \forall u \in V$
- 3. $||u+v|| \le ||u|| + ||v||, \forall u, v \in V$ (disuguaglianza triangolare)

Esempio

$$V = C^n \quad u = (u_1, \dots, u_n), u_k \in C$$

1. norma euclidea:

$$||u||_2 = \sqrt{u_1^2 + \dots + u_n^2} = \sqrt{u_1 u_1^* + \dots + u_n u_n^*}$$

Ad esempio, per n=2:

$$B_1(0) = \{u \in C : ||u||_2 < 1\} = \{u \in C : x^2 + y^2 < 1\}$$

$$IMMAGINE$$

2.

$$||u||_1 = |u_1| + \dots + |u_n|$$

per n=2:

$$B_1(0) = \{i \in C : ||u||_1 < 1\} = \{u \in C : |u_1| + |u_2| < 1\}$$

$$IMMAGINE$$

3.

$$||u||_{\infty} = \max_{1 \le k \le n} |u_k|$$

per n=2:

$$B_1(0) = \{i \in C : ||u||_{\infty} < 1\} = \{u \in C : \max(|u_1|, |u_2|) < 1\}$$

$$IMMAGINE$$

4.

$$||u||_p = (|u_1|^p + \dots + |u_n|^p)^{\frac{1}{p}}$$

 $(\text{con } 1 \le p < \infty)$

Esempio (funzioni)

$$V=C^0([a,b];C)$$
 (é uno spazio vettoriale)
$$\Big(u\in V\quad se\quad u:[a,b]\to C \text{ \'e continua}\Big)$$

$$||u||_{2} = \left(\int_{a}^{b} |u(x)|^{2} dx\right)^{\frac{1}{2}}$$

$$||u||_{1} = \int_{a}^{b} |u(x)| dx$$

$$||u||_{\infty} = \max_{x \in [a,b]} u(x)$$

$$||u||_{p} = \left(\int_{a}^{b} |u(x)|^{p} dx\right)^{\frac{1}{p}}$$

2.1.1 Verifica norma

u integrabile secondo Lebesgue su A misurabile.

$$u:A\to C$$
 $A\subseteq R^n$

$$||u|| \stackrel{?}{=} \int_A |u(x)| dx$$
 é norma?

Verifichiamo le proprietá:

3. $||u+v|| \le ||u|| + ||v||$

$$\int_{A} |u(x) + v(x)| \, dx \le \int_{A} \left(|u(x)| + |v(x)| \right) dx = \int_{A} |u(x)| \, dx + \int_{A} |v(x)| \, dx = ||u|| + ||v||$$

2. $||\lambda u|| = |\lambda| \cdot ||u||$

$$\int_{A}\left|\lambda u(x)\right|dx=\int_{A}\left|\lambda\right|\cdot\left|u(x)\right|dx=\left|\lambda\right|\int_{A}\left|u(x)\right|dx=\left|\lambda\right|\cdot\left|\left|u(x)\right|\right|$$

1. • $||u|| \ge 0 \quad \forall u$

$$\int_{A} |u(x)| \, dx \ge 0$$

• $||u|| = 0 \Leftrightarrow u = 0$

$$u(x) = 0 \quad \Rightarrow \quad \int_A 0 \, dx = 0$$

$$\int_A |u(x)| \, dx = 0 \quad \Rightarrow \quad |u(x)| = 0 \quad q.o.x$$

E questo é un problema, poiché non ci basta la convergenza q.o.x, noi avevamo richiesto che il vettore a norma nulla fosse sempre il vettore nullo. Soluzione: ridefiniamo il concetto di uguaglianza tra funzioni.

2.1.2 Uguaglianza

$$u = v \iff u(x) = v(x) \quad q.o.x$$

2.2 Spazio normato

 $1 \le p \le +\infty$, $A \subseteq \mathbb{R}^n$ insieme misurabile.

$$\begin{split} L^p(A) = & \Big\{ u : A \to C \text{ misurabile} & : \quad x \to |u(x)|^p \text{ \'e integrabile} \Big\} \\ = & \Big\{ u : A \to C \text{ misurabile} & : \quad \int_A |u(x)|^p \text{ \'e finito} \Big\} \end{split}$$

 $L^p(A)$ é uno spazio normato

$$||u||_{L^p(A)} = \left(\int_A |u(x)|^p dx\right)^{\frac{1}{p}}$$

Esempio

$$L^{1}(A) = \{u \text{ integrabile su } A\}$$

$$||u||_{L^{1}(A)} = \int_{A} |u(x)| dx$$

$$L^{2}(A) = \{u \text{ con } |u|^{2} \in L^{1}(A)\}$$

$$||u||_{L^{2}(A)} = \left(\int_{A} |u(x)|^{2}\right)^{\frac{1}{2}}$$

$$L^{\infty}(A) = \{u: A \to C \text{ misurabile e essenzialmente limitata } \} =$$

$$= \{u: A \to C \text{ misurabile e tale che } \exists M > 0 \quad : \quad |u(x)| \leq M \quad q.o.x \in A \}$$

$$||u||_{L^{\infty}(A)} = ess.sup._{x \in A}|u(x)| =$$

= $\min\{M \ge 0 : |u(x)| \le M \quad q.o.x \in A\}$

2.2.1 Lemma

 $L^p(A)$, $1 \le p \le +\infty$ é uno spazio normato.

Esempio $A = [1, +\infty[, u(x) = \frac{1}{x}]$ u continua \Rightarrow misurabile

$$\int_{1}^{+\infty} |u(x)|^{p} dx = \lim_{c \to +\infty} \int_{1}^{c} x^{-p} dx = \lim_{c \to +\infty} \frac{1}{-p+1} x^{-p+1} \Big|_{1}^{c} = \lim_{c \to +\infty} \frac{c^{1-p}-1}{1-p} \stackrel{p \neq 1}{=} \frac{1}{p-1} > 0$$

$$\Rightarrow u \in L^p(1, +\infty) \quad \forall p > 1$$

per p = 1:

$$\lim_{c \to +\infty} \log x \Big|_{1}^{c} = \lim_{c \to +\infty} \log c = +\infty \quad \Rightarrow \quad u \notin L^{1}(1, +\infty)$$

per $p = +\infty$

$$|u(x)| = \left|\frac{1}{x}\right| \le 1 \quad \forall x \in [1, +\infty[\quad \Rightarrow \quad u \in L^{\infty}(1, +\infty)]$$

norma:

$$||u||_{L^p(1,\infty)} = \frac{1}{(p-1)^{\frac{1}{p}}}$$

Esempio $u(x) = \frac{1}{\sqrt{1}}, x \in]0, 1]$

$$\int_0^1 |u(x)|^p dx = \int_0^1 \left(\frac{1}{\sqrt{p}}\right)^p dx = \lim_{c \to 0} \int_c^1 x^{-\frac{p}{2}} dx = \lim_{c \to 0} \underbrace{\frac{1}{-\frac{p}{2}+1}}_{p \neq 2} x^{\frac{p}{2}+1} \Big|_c^1 = \lim_{c \to 0} \frac{2}{2-p} \left[1 - c^{\frac{2-1}{2}}\right] = \lim_{c \to 0} \frac{1}{\sqrt{p}} \left[1 - c^{\frac{2-1}{2}}\right] = \lim_{c \to 0} \frac{$$

$$= \frac{2}{2-p}$$

$$= +\infty$$

$$2-p < 0 \quad p < 2$$

$$p > 2$$

per p=2:

$$\lim_{c \to 0} \int_{c}^{1} x^{-1} dx = \lim_{c \to 0} \log x \Big|_{c}^{1} = \lim_{c \to 0} (-\log c) = +\infty \quad \Rightarrow \quad u \in L^{p}(0, 1) \quad \forall p : 1 \le p < 2$$

$$||u||_{L^p(0,1)} = \left(\frac{2}{2-p}\right)^{\frac{1}{p}}$$

per $p = \infty$:

$$\sup_{0 < x \le 1} |u(x)| = +\infty \quad \Rightarrow \quad u \notin L^{\infty}(0, 1)$$

2.3 Successioni

V spazio normato in C (o R). $\{v_n\}_{n\in\mathbb{N}}$ é **convergente** a v in V se

$$\lim_{n \to \infty} ||v_n - v||_V = 0$$

Esempio $\{v_n\}_{n\in\mathbb{N}}\subseteq L^p(A)$

$$v_n \to v \text{ in } L^p(A) \text{ per } n \to \infty \quad \Leftrightarrow \quad \lim_{n \to \infty} \left(|v_n(x) - v(x)|^p dx \right) = 0$$

Esempio
$$\{v_n\}_{n\in\mathbb{N}}\subset L^{\infty}(A), c\in L^{\infty}(A)$$

$$v_n \to v$$
 in $L^{\infty}(A)$ per $n \to \infty$, ovvero $||v_n - v||_{L^{\infty}} \to 0$ per $n \to \infty \Leftrightarrow$

$$ess.sup._{x \in A}|v_n(x) - v(x)| \to 0 \text{ per } n \to \infty$$

2.3.1 Lemma

$$C^0[a,b] \subset L^\infty(a,b), u \in C^0[a,b], u : [a,b] \to R$$
 continua

Secondo Weierstrass, u ha max e min \Rightarrow u é limitata $\Rightarrow u \in L^{\infty}(a,b)$

$$\{v_n\}_{n\in\mathbb{N}}\subset C^0[a,b]\subseteq L^\infty(a,b),\,v\in L^\infty(a,b)$$

$$v_n \to v \text{ in } L^{\infty}(a,b)$$

$$\sup_{x \in [a,b]} |v_n(x) - v(x)| \to 0 \text{ per } n \to \infty$$

 \Rightarrow v é continua su [a,b], $v \in C^0[a,b]$

2.3.2 Proposizione

$$v_n \to v \text{ in } V \implies ||v_n|| \to ||v|| \text{ (in } R)$$

Si dimostra:

$$\begin{aligned} ||v_n - v|| &\to 0 \\ &\ge & & \Downarrow \\ \Big|||v_n|| - ||v||\Big| &\to 0 \end{aligned}$$

2.3.3 Corollario

se $v_n \to v$ in V per $n \to \infty$, allora $\{v_n\}_{n \in N}$ é limitata in V

Dimostrazione: $||v_n|| \to ||v||$ per $n \to \infty \quad \Rightarrow \quad \{||v_n||\}_{n \in N} \subset R$ é limitata

$$\Rightarrow \exists M > 0$$
 : $||v_n|| \leq M \quad \forall n \quad \Leftrightarrow \quad \{v_n\}_{n \in N}$ é limitata in V

2.4 Serie in V

Si definisce somma parziale (o ridotta) della serie $\{v_n\}_{n\in\mathbb{N}}\subset V$

$$S_n = \sum_{k=0}^n v_k$$

la successione $\{S_n\}_{n\in\mathbb{N}}$ delle somme parziali é detta **serie** di elemento v_k

$$\sum_{k=0}^{\infty} v_k$$

2.4.1 Convergenza

la serie é detta **convergente** in V a S se:

$$\lim_{n \to \infty} S_n = S \quad \text{in } V$$

$$\lim_{n \to \infty} ||S_n - S||_V = 0$$

$$\lim_{n \to \infty} \left| \left| \sum_{k=0}^{\infty} v_k - S \right| \right| = 0$$

S é detto somma della serie.

2.4.2 Dimensione

Lo spazio vettoriale ha **dimensione n** se in esso esistono n elementi linearmente indipendenti, e ogni sistema di n+1 elementi é linearmente dipendente.

V ha dimensione infinita se $\forall n$ esistono n elementi linearmente indipendenti.

Esempi:

$$dim(R^n) = n$$

$$dim(C^n) = n$$

$$dim(R^{\infty}) = \infty \qquad v = (v_1, v_2, \dots, v_n, \dots) = \{v_n\} \text{ successione}$$

 $V=C^0[0,2\pi]$ ha dimensione ∞

 $1, \cos x, \sin x, \cos 2x, \sin 2x, \dots$ infinite funzioni in V linearmente indipendenti

2.4.3 Teorema

A misurabile $\subseteq \mathbb{R}^n$ con $1 \le p \le \infty$. Allora $L^p(A)$ ha dimensione ∞

2.4.4 Proposizione

Se $\{v_n\} \subset V$ é convergente allora é di Cauchy.

Si dimostra nel seguente modo:

$$|v_n \to v \quad \Rightarrow \quad ||v_n - v_{n'}|| = ||v_n - v + (v - v_{n'})|| \le \underbrace{||v_n - v||}_{\to 0} - \underbrace{||v - v_{n'}||}_{\to 0} \quad \Rightarrow \quad \to 0$$

2.5 Spazio completo

Lo spazio normato V é detto completo se in esso ogni successione di Cauchy é convergente.

2.5.1 Successione di Cauchy

 $\{v_n\}_{n\in\mathbb{N}}\subset V$ spazio normato é una successione di Cauchy se

$$\forall \varepsilon > 0 \quad \exists n_0 \in N \quad : \quad \forall n, n \ge n_0 \quad ||v_n, v_{n'}||_V < \varepsilon$$

$$\left(\lim_{n, n' \to \infty} ||v_n - v_{n'}|| = 0\right)$$

2.5.2 Teorema

Ogni spazio normato V (su C o R) di dimensione finita é completo.

Esempi

- \mathbb{R}^n é completo
- $V=C^0[a,b],$ $||u||_{C^0}=\sup_{x\in[a,b]}|u(x)|=\max_{x\in[a,b]}|u(x)|$ V ha dimensione infinita, per é completo.
- $V = C^0[a, b]$, $||u||_2 = \left(\int_a^b |u(x)|^2 dx\right)^{\frac{1}{2}}$ V non é completo, poiché $\exists \{v_n\}$ di Cauchy tale che $\forall \varepsilon > 0 \quad \exists n_0 : \forall n, n' \geq 0$ avviene che $\left(\int_a^b |v_n(x) - v_{n'}(x) dx\right)^{\frac{1}{2}} < \varepsilon$ e $\{v_n\}$ non é convergente ad alcuna funzione $v \in C^0[a, b]$

2.5.3 Teorema

 $1 \leq p \leq \infty$. $L^p(A)$ é uno spazio normato completo rispetto alla norma $||\cdot||_{L^p}$

2.5.4 Spazio di Banach

Uno spazio normato completo é detto Spazio di Banach.

Esempio $\{v_n\} \subset L^p(A)$ di Cauchy.

$$\forall \varepsilon > 0 \quad \exists n_0 : \forall n, n' \ge n_0 \quad ||v_n - v_{n'}|| < \varepsilon$$

$$\Downarrow$$

$$\exists v \in L^p(A) : v = \lim_{n \to \infty} v_n \text{ in } L^p(A) \quad \Rightarrow \quad \lim_{n \to \infty} \int_A |v_n(x) - v_{n'}(x)|^p dx = 0$$

2.6 Prodotto Scalare

Si definisce **prodotto scalare** in V spazio vettoriale complesso (su C) l'operazione:

$$(\cdot,\cdot):V\times V\to C$$

che gode delle seguenti proprietá:

1.
$$(x,x) \in R$$
 $(x,x) \ge 0 \forall x$ $(x,x) = 0 \Leftrightarrow x = 0 \in V$

2.
$$(x,y) = \overline{(y,x)} \quad \forall x, \forall y$$

3.
$$(\lambda x, y) = \lambda(x, y) \quad \forall \lambda \in C, \forall x, y \in V$$

4.
$$(x + y, z) = (x, z) + (y, z) \quad \forall x, y, z \in V$$

Inoltre si definisce la norma su V come:

$$||v|| = \sqrt{(x,x)}$$

Esempio $V = C^n, x = (x_1, ..., x_n)$

$$(x,y) = x_1\overline{y_1} + \dots + x_n\overline{y_n} = \sum_{k=1}^n x_n\overline{y_n}$$

Esempio $V = C^0[a, b]$

$$(u,v)_{C^0} = \int_a^b u(x)\overline{v(x)} \, dx$$

2.6.1 Disuguaglianza di Cauchy - Schwartz

$$|(u,v)| \le ||u|| \cdot ||v|| \quad \forall u,v \in V$$

In L^2 :

$$\Big| \int_{A} u(x) \overline{v(x)} \, dx \Big| \le \left(\int_{A} |u(x)|^{2} \, dx \right)^{\frac{1}{2}} \cdot \left(\int_{A} |v(x)|^{2} \, dx \right)^{\frac{1}{2}}$$

2.6.2 Spazio di Hilbert

V spazio euclideo e completo rispetto alla norma $||u|| = \sqrt{(x,x)}$ é detto **Spazio di Hilbert**.

Sapendo che uno spazio normato completo é anche uno spazio di Banach, si deduce che:

$$Hilbert \Rightarrow Banach$$

2.6.3 Teorema

 $A\subseteq R^n$ misurabile. Allora $L^2(A)$ é uno spazio di Hilbert rispetto al prodotto scalare

$$(u,v)_{L^2(A)} = \int_A u(x)\overline{v(x)} dx \quad \forall u,v \in L^2(A)$$

Possiamo comunque verificare che la suddetta operazione sia effettivamente un prodotto scalare:

$$\Big| \int_A u(x) \overline{v(x)} \, dx \Big| \le \int_A |u(x) \overline{v(x)}| \, dx = \int_A |u(x)| \cdot |v(x)| \, dx$$

sapendo che $2ab \le a^2 + b^2$, ovvero $ab \le \frac{a^2 + b^2}{2}$

$$\leq \frac{1}{2} \int_{A} |u(x)|^2 + |v(x)|^2 dx = \frac{1}{2} \left(||u||_{L^2}^2 + ||v||_{L^2}^2 \right) < +\infty$$

inoltre:

$$(u,u)_{L^2} = \int_A u(x)\overline{v(x)} \, dx = \int_A |u(x)|^2 \, dx = ||u||_{L^2}^2 \quad \Rightarrow \quad ||u||_{L^2} = \sqrt{(u,u)_{L^2}}$$

2.6.4 Lemma

 $A \subseteq \mathbb{R}^n$ misurabile con $mis(A) < \infty$

$$L^{\infty}(A) \subset L^{2}(A) \subset L^{1}(A)$$

Inoltre:

- 1. $||u||_{L^2} \le ||u||_{L^{\infty}} (mis(A))^{\frac{1}{2}}$
- 2. $||u||_{L^1} \leq ||u||_{L^2} (mis(A))^{\frac{1}{2}}$

Dimostrazione

1. $L^{\infty} \subset L^2 \quad \Leftrightarrow \quad u \in L^{\infty}(A) \Rightarrow u \in L^2(A)$

$$\int_{A} |u(x)|^{2} dx \le \int_{A} \left(\sup_{x' \in A} |u(x')| \right)^{2} dx =$$

$$\int_{A} ||u||_{L^{\infty}}^{2} dx = ||u||_{L^{\infty}}^{2} \int_{A} 1 dx = ||u||_{L^{\infty}}^{2} \cdot mis(A) < +\infty$$

2. $L^2 \subset L^1 \Leftrightarrow u \in L^2(A) \Rightarrow u \in L^1(A)$ applicando Schwartz con v = 1:

$$\int_{A} |u(x)| \cdot 1 \, dx \leq \Big(\int_{A} |u(x)|^2 \Big)^{\frac{1}{2}} \cdot \Big(\int_{A} 1^2 \, dx \Big)^{\frac{1}{2}} = ||u||_{L^2} \cdot \Big(mis(A) \Big)^{\frac{1}{2}} < +\infty$$

2.6.5 Corollario

$$\{v_k\}_{k\in\mathbb{N}}\subset L^\infty(A),\,v\in L^\infty(A)$$

Se $v_k \to v$ in $L^{\infty}(A)$ per $k \to \infty$, allora $v_k \to v$ in $L^2(A)$

Dimostrazione $\{v_k\} \subset L^{\infty}(A) \subset L^2(A), v \in L^{\infty}(A) \subset L^2(A)$

$$\underbrace{||v_k - v||_{L^2}}_{\rightarrow 0} \leq \underbrace{||v_k - v||_{L^{\infty}}}_{\rightarrow 0} \cdot mis(A)$$

2.7 Definizioni

2.7.1 Spazio denso

V spazio normato, $A \subseteq V$. A é **denso in V** se:

$$\forall v \in V \quad \exists \{v_k\} \subset A \quad : \quad v_k \to v \quad \text{in } V$$

2.7.2 Lemma

 $C^1[a,b]$ é denso in $C^0[a,b]$ rispetto alla norma $||u||_{C^0} = \max_{x \in [a,b]} |u(x)|$.

Oppure:

 $\forall u: [a,b] \to R$ continua, $\exists \{u_k\} \subset C^1[a,b] \quad u_k: [a,b] \to R$ con u_k continua tale che $u_k \to u$ uniformemente in [a,b]

2.7.3 Supporto

 $\Omega \subset \mathbb{R}^n$, $u:\Omega \to C$. Si definisce **supporto di u** l'insieme:

$$supp(u) = \overline{\{x \in \Omega \backslash u(x) = 0\}}$$

ovvero l'insieme dei punti dove $u(x) \neq 0$ più i punti limite di successioni di punti dove $u \neq 0$

2.7.4 Insieme compatto

 $K \subseteq \mathbb{R}^n$ é un **compatto** se é chiuso e limitato, ovvero:

- 1. K chiuso $\Leftrightarrow R^n \setminus K$ é aperto, ovvero se $\forall \{x_k\} \subset K$ convergente a x si ha $x = \lim_k x_n \in K$
- 2. K limitato $\Leftrightarrow \exists M > 0$: $\forall x \in K \ |x| \leq M \text{ (ovvero } k \subset \overline{B_M(0)})$

2.7.5 Corollario

u ha supporto compatto $\Leftrightarrow \exists M > 0$: $u(x) = 0 \quad \forall |x| > M$

3 Distribuzioni

3.1 Spazio delle funzioni test D

 $C_0^{\infty}(\Omega)$ oppure $\mathfrak{D}(\Omega)$ é lo spazio vettoriale delle funzioni C^{∞} (derivabili infinite volte) a supporto compatto.

3.2 Teorema

 $1 \leq p < +\infty$. Allora $C_0^{\infty}(\Omega)$ é denso in $L^p(\Omega)$

ovvero:

$$\forall u \in L^p(\Omega) : \int_A |u(x)|^p dx < \infty$$

$$\exists \{u_k\} \quad u_k \in C_0^{\infty}(\Omega) \quad \left(u \in C^{\infty} \quad u(x) = 0 \forall x \ge M_K\right)$$

$$u_k \to u \text{ in } L^p(\Omega)$$

ovvero:

$$\int_{R} |u(x) - u_k(x)|^p dx \to 0 \quad \text{per } k \to \infty$$

3.3 Funzioni localmente sommabili L^1_{loc}

Esempio $\Omega =]0, +\infty[, u(x) = \frac{1}{x} \quad x \in R$

 $u \not\in L^{\infty}(\Omega)$ (diverge in 0)

$$\int_0^\infty \frac{dx}{x} = \int_\Omega |u(x)| \, dx = \infty \quad \Rightarrow \quad u \notin L^1(\Omega)$$

$$\int_{\Omega} |u(x)|^p \, dx = \int_0^1 \frac{dx}{x} + \int_1^\infty \frac{dx}{x}, \text{ diverge per } 1$$

u é localmente sommabile su Ω se $\forall K \subset \Omega$ compatto si ha che $u \in L^1(K)$, ovvero:

$$\int_{\mathcal{K}} |u(x)| \, dx < \infty \quad \Rightarrow \quad u \in L^1_{loc}(\Omega)$$

Inoltre si dimostra che

$$u \in L^1(\Omega) \implies u \in L^1_{loc}(\Omega)$$

 L^1_{loc} non é uno spazio normato

Esempio di prima $u(x) = \frac{1}{x}, x \in]0, \infty[=\Omega]$

 $u \notin L^1(\Omega)$, per $u \in L^1_{loc}(\Omega)$, poiché:

$$\int_{K} |u(x)| dx = \int_{K} \frac{dx}{x}$$

$$\downarrow \qquad \qquad \downarrow \qquad K \subset]0, \infty[\quad K \subset [a, b] \quad 0 < a < b < \infty$$

$$\downarrow \qquad \qquad \leq \int_{a}^{b} \frac{dx}{x} = \log \frac{b}{a} < \infty$$

3.4 Convergenza in L_{loc}^1

$$\{u_k\} \subset L^1_{loc}(\Omega), u \in L^1_{loc}(\Omega)$$

 u_k converge a u in $L^1_{loc}(\Omega)$ per $k \to \infty$ se

$$\int_{K} |u_{k}(x) - u(x)| dx \to 0 \quad \forall K \in \Omega \text{ compatto}$$

Esempio $u_k \to u$ in $L^1(\Omega)$, quindi $u_k \to u$ in $L^1_{loc}(\Omega)$, poiché

$$\int_{K} |u_{k} - u| \, dx \le \int_{\Omega} |u_{k} - u| \, dx = ||u_{k} - u||_{L^{1}} \to 0$$

3.5 Funzionale lineare

V spazio vettoriale, $L: V \to C$

L applicazione lineare: $L(\lambda u + \mu v) = \lambda L(u) + \mu L(v) \quad \forall \lambda, \mu \in C, \forall u, v \in V$

allora L é un funzionale lineare (a valori complessi o reali).

Esempio $u:\Omega \to C$ funzione fissata, $v:\Omega \to C$ variabile, $v\in V$ spazio vettoriale

$$L: V \to C$$

 $v \to \int_{\Omega} u(x)v(x) dx$

Dimostriamo che é un funzionale lineare:

1.
$$u \in L^1(\Omega), v \in L^{\infty}(\Omega) = V$$

$$\Big| \int_{\Omega} u(x)v(x) \, dx \Big| < \int_{\Omega} |uv| \, dx \le ||v||_{L^{\infty}} \cdot ||u||_{L^{1}} < \infty$$

2. $u \in L^1_{loc}(\Omega), v \in L^{\infty}(\Omega)$ a supporto compatto, $supp(V) = K_1$

$$\Big|\int_{\Omega}u(x)v(x)\,dx\Big|\leq \int_{\Omega}|uv|\,dx=\int_{K_1}|uv|\,dx\leq ||u||_{L^1(K_1)}\cdot||v||_{L^{\infty}(K_1)}$$

3.6 Convergenza in \mathfrak{D}

$$\{v_k\}\subset\mathfrak{D}(\Omega),\,v\in\mathfrak{D}(\Omega)$$

La successione $\{v_k\}$ converge a v in $\mathfrak{D}(\Omega)$ per $k \to \infty$ se:

- 1. $\exists K \subset \Omega$ compatto tale che $supp(v_k) \subset K \ \forall k \in N$
- 2. $D^{(\alpha)}v_k(x) \to D^{(\alpha)}v(x)$ uniformemente in $\Omega \quad \forall \alpha$

Con:

$$\alpha = (\alpha_1, \dots, \alpha_n), \alpha_n \in N$$

$$\begin{split} D_n^\alpha &= \frac{\delta^{\alpha_1}\delta^{\alpha_2}\dots\delta^{\alpha_n}\cdot u}{\delta x_1^{\alpha_1}\delta x_2^{\alpha_2}\dots\delta x_n^{\alpha_n}} \\ & \quad \ \, \downarrow \quad \alpha_1 + \alpha_2 + \dots + \alpha_n = |\alpha| \quad \text{numero derivate} \\ & = \frac{\delta^{|\alpha|}u}{\delta x_1^{\alpha_1}\delta x_2^{\alpha_2}\dots\delta x_n^{\alpha_n}} \end{split}$$

3.7 Distribuzione: definizione

Un funzionale lineare $L: \mathfrak{D}(\Omega) \to C$ é una **distribuzione** se: $\forall \{v_k\} \subset \mathfrak{D}(\Omega)$, con $v_k \to v$ in $\mathfrak{D}(\Omega)$, si ha:

$$L(v_k) \to L(v) \quad \text{per } k \to \infty$$

Le distribuzioni generalizzano le funzioni.

Esempio $u \in L^1_{loc}(\Omega)$.

$$L: \mathfrak{D}(\Omega) \to C$$

 $v(x) \to \int_{\Omega} u(x)v(x) dx$

Per essere una distribuzione, deve verificare che:

$$L(v_k) = \int_{\Omega} u(x)v(x) \, dx \quad \Rightarrow \quad L(v) = \int_{\Omega} u(x)v(x) \, dx$$

Ovvero devo mostrare la convergenza:

$$L(v_k) - L(v) = L(v_k - v) = \int_{\Omega} u(x)[v_k(x) - v(x)] dx$$

Che risulta convergente se (per le regole viste prima sulla convergenza in \mathfrak{D}):

- 2. $\alpha = 0$ $v_k \to v$ uniformemente in Ω $\sup_{x \in R} |v_k(x) - v(x)| \to 0 \text{ per } k \to \infty$ $\Rightarrow v_k(x) \to v(x) \quad \forall x$
- 1. $\forall x_0 \notin K$ $v_k(x_0) = 0 \quad \forall k$ $v(x_0) = \lim_k v_k(x_0) = 0$ $\Rightarrow supp(v) \in K$

Da cui risulta quindi, tornando alla convergenza di prima:

$$\left| \int_{\Omega} u(x) [v_k(x) - v(x)] dx \right| \le \int_{\Omega} |u(x)| \cdot |v_k(x) - v(x)| dx \le$$

$$\le \sup_{x \in K} |v_k(x') - v(x')| \cdot ||u||_{L^1(K)} \to 0$$

Quindi la proprietá é rispettata e u(x) é una distribuzione.

3.8 Spazio delle distribuzioni \mathfrak{D}'

Lo spazio delle distribuzioni é indicato come $\mathfrak{D}'(\Omega)$

Dall'esempio precedente abbiamo che, se L é una distribuzione,

$$L(v) = \int_{\Omega} u(x)v(x) dx = \langle u, v \rangle$$

e inoltre $u \in L'_{loc}(\Omega)$. Posso praticamente identificare u con L, quindi u é una distribuzione.

$$u \in \mathfrak{D}'(\Omega) \quad \Rightarrow \quad L'_{loc}(\Omega) \subset D'(\Omega)$$

Esempio $1 \le p \le \infty$

$$L^p(\Omega)\subset L'_{loc}(\Omega)\quad \Rightarrow \quad L^p(\Omega)\subset \mathfrak{D}'(\Omega)$$

Esempio: Delta di Dirac δ

$$\delta: \mathfrak{D}(\Omega) \to C$$

$$v \to v(0)$$

- 1. δ é un funzionale lineare: $\lambda v + \mu w \rightarrow (\lambda v + \mu w)(0) = \lambda v(0) + \mu w(0)$
- 2. $v_k \to v$ in $\mathfrak{D}'(\Omega) \Rightarrow v_k \to v$ uniformemente in $\Omega \Rightarrow v_k \to v$ puntualmente $\forall x \in \Omega \Rightarrow v_k(0) \to v(0)$, ovvero $\delta(v_k) \to \delta(v)$

Quindi é una distribuzione.

Esempio $u \in \mathfrak{D}'(\Omega)$ distribuzione.

$$\begin{aligned} u:&\mathfrak{D}(\Omega)\to C\\ v\to u(v)=&< u,v>=\int_{\Omega}uv=\int_{\Omega}u(x)v(v)\,dx \end{aligned}$$

3.9 Teorema di caratterizzazione

 $L: \mathfrak{D}(\Omega) \to C$ funzionale lineare é una distribuzione $(L \in \mathfrak{D}'(\Omega))$ se e solo se $\forall K \in \Omega$ compatto $\exists M_k > 0$, $m_k \in N$ tale che:

$$\forall v \in \Omega \quad \text{con } supp(v) \subset K \quad \text{si ha} \quad |L(v)| \leq M_k \max_{|\alpha| < m_k} \max_{v \in K} |D^{\alpha}v(x)|$$

Se si puó scegliere m_k indipendentemente da K, il minimo $m=m_k$ é l'ordine della funzione.

Esempio
$$u \in L^1_{loc}(\Omega); u(v) = \langle u, v \rangle = \int_{\Omega} u(x)v(x) dx \quad \forall v \in \mathfrak{D}(\Omega).$$

 $\forall K \text{ compatto}, supp(v) \subset K$

$$|< u, v>| = \Big| \int_{\Omega} u(x)v(x) \, dx \Big| \leq \int_{\Omega} |u(x)v(x)| \, dx \leq \max_{x' \in K} |v(x')| \int_{K} |u(x)| \, dx = \max_{x' \in K} |v(x')| \cdot \underbrace{||u||_{L'(K)}}_{M_{L}}$$

$$|\alpha| = 0 \Rightarrow m'_k \to 0$$

Esemplo $\delta: \mathfrak{D}(\Omega) \to C$ funzionale lineare. $\delta(v) = <\delta, v> = v(0)$.

$$|<\delta, v>|=|v(0)| \le \max_{x \in \Omega} \underbrace{|v(x)|}_{m_x=0} \cdot \underbrace{1}_{M_k}$$

Quindi ordine 0.

3.10 Convergenza in \mathfrak{D}'

 $u_k \subset \mathfrak{D}'(\Omega), u \in \mathfrak{D}'(\Omega).$ u_k converge a u in $\mathfrak{D}'(\Omega)$ (ovvero al senso delle distribuzioni) se:

 $\langle u_k, v \rangle \rightarrow \langle u, v \rangle$ per $k \rightarrow \infty$, $\forall v \in \mathfrak{D}(\Omega)$, con v funzione di test

Esempio $\{u_k\} \subset L^1_{loc}(\Omega); u_k \to u \text{ in } L^1_{loc}(\Omega). \text{ Allora } u_k \to u \text{ in } \mathfrak{D}'(\Omega).$

Per verificare quanto detto, devo dimostrare che: $\langle u_k, v \rangle \rightarrow \langle u, v \rangle \quad \forall v \in \mathfrak{D}(\Omega)$, ovvero:

$$\int_{\Omega} u_k(x)v(x) dx \quad \stackrel{?}{\to} \quad \int_{\Omega} u(x)v(x) dx$$

$$\left| \int_{\Omega} u_k(x)v(x) \, dx - \int_{\Omega} u(x)v(x) \, dx \right| = \left| \int_{\Omega} [u_k(x) - u(x)]v(x) \, dx \right| \le$$

$$\le \int_{K} |u_k(x) - u(x)| \cdot |v(x)| \, dx \qquad K = supp(v)$$

$$\le \max_{x' \in \Omega} |v(x')| \cdot \int_{K} |u_k(x)v(x)| \, dx =$$

$$= \max_{x \in \Omega} |v(x')| \cdot ||u_k - u||_{L^1(K)} \to 0$$

3.11 Teorema di completezza

 $\{u_k\}\subset \mathfrak{D}'(\Omega).$

Se $\forall v \in \mathfrak{D}(\Omega)$ \exists finito (in C) $\lim_{k \to \infty} \langle u_k, v \rangle$

Allora $\exists u \in \mathfrak{D}'(\Omega), u = \lim_{k \to \infty} u_k \text{ in } \mathfrak{D}'(\Omega)$

$$\langle u, v \rangle = \lim_{k \to \infty} \langle u_k, v \rangle \quad \forall v \in \mathfrak{D}(\Omega)$$

Esempio $u \in L^1(\mathbb{R}^n), \int_{\mathbb{R}^n} u(x) dx = 1.$

$$u_k(x) = k^n \cdot u(kx) \quad k \in N.$$

$$u_k(x) = k^n u(kx)$$
 \Rightarrow $u_k(x) = 0 \Leftrightarrow |k_x| > 1 \Leftrightarrow |x| > \frac{1}{h}$

Per verificare di essere $\subset L^1(\mathbb{R}^n)$:

$$\int_{R^n} |u_k(x)| \, dx = \int_{R^n} |k^n u(kx)| \, dx =$$

Poiché $y=kx\Rightarrow x=\frac{1}{k}y$ $dx=dx_1,\ldots,dx_n=\frac{1}{k}dy_1,\frac{1}{k}dy_2,\ldots,\frac{1}{k}dy_n=\frac{1}{k^n}dy$

$$= \int_{R^n} k^n |u(y)| \frac{1}{k^n} \, dy = ||u||_{L^1(R^n)} < \infty$$

Quindi $u_k \in L^1(\mathbb{R}^n) \Rightarrow \{u_k\} \subset L^1(\mathbb{R}^n) \subset \mathfrak{D}'(\mathbb{R}^n)$ (ovvero puó essere visto come successione).

Applico il teorema di completezza:

$$\forall v \in \mathfrak{D}'(R^n) \quad < u_k, v > = \int_{R^n} u_k(x)v(x) \, dx = \int_{R^n} k^n u(kx)v(x) \, dx =$$

(sapendo che y = kx)

$$= \int_{\mathbb{R}^n} k^n u(y) v\left(\frac{y}{k}\right) \frac{1}{k^n} dy = \int_{\mathbb{R}^n} u(y) v\left(\frac{y}{k}\right) dy =$$

Applico il teorema di Lebesgue:

1. Convergenza puntuale:

$$\forall y \quad u(y)v\left(\frac{y}{k}\right) \stackrel{k\to\infty}{\longrightarrow} u(y)v(0)$$

2. Devo trovare una maggiorazione integrabile e indipendente da k:

Devo trovare una maggiorazione integrabile e indipendente da k:
$$\left|u(x)v\left(\frac{y}{k}\right)\right| \leq |u(y)| \max_{x \in R^n} |v(x)| = |u(y) \cdot \underbrace{||v||_{L^{\infty}(R^n)}}_{\text{costante}} \in L^1(R_n) \forall k$$

Quindi si puó applicare il teorema:

$$\langle u_k, v \rangle = \int_{R^n} u(x)v\left(\frac{y}{k}\right)dy \quad \to \quad \int_{R^n} u(y)v(0)\,dy = v(0)\underbrace{\int_{R^n} u(y)}_{l}\,dy = v(0)$$

Ho visto che:

$$\forall v \in \mathfrak{D}(R^n) \quad \exists \text{ finito } \lim_K < u_k, v >= v(0)$$

Quindi, per il teorema di completezza:

$$\exists \delta \in \mathfrak{D}'(R^n)$$
 distribuzione $u_k \to \delta$ in $\mathfrak{D}'(R^n)$

che agisce su una funzione di test v come:

$$<\delta, v>=\lim_k < u_k, v>=v(0)$$
 Delta di Dirac

Teorema della divergenza di Gauss

 $\vec{v}: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^n$. Si definisce divergenza del vettore $\vec{v} = (v_1, \dots, v_n)$:

$$div \ \vec{v} = \nabla \cdot \vec{v} = \frac{\delta v_1}{\delta x_1} + \frac{\delta v_2}{\delta x_2} + \dots + \frac{\delta v_n}{\delta x_n}$$

Il teorema afferma che:

$$\int_{\Omega} div \ \vec{v}(\vec{x}) \, dx = \oint_{d\Omega} \vec{v}(\vec{x}) \cdot \nu(\vec{x}) \, d\sigma_x$$

Dove $d\Omega$ é il contorno dell'insieme Ω , e $\nu(\vec{x})$ il vettore tangente al contorno di Ω in \vec{x} .

Facendo un pó di calcoli:

$$\vec{v}:\Omega\to R^n \qquad u:\Omega\to R$$

$$div(u\vec{v}) = u \ div \ \vec{v} + \vec{v} \cdot \nabla u$$

$$\int_{\Omega} div(u\vec{v}) dx = \int_{\Omega} [u \ div \ \vec{v} + \vec{v} \cdot \nabla u] dx = \oint_{d\Omega} u\vec{v} \cdot \nu \, d\sigma_x$$

$$\Rightarrow \int_{\Omega} u \ div \ \vec{v} \, dx = \oint_{d\Omega} u \vec{v} \cdot \nu \, d\sigma_x - \int_{\Omega} \vec{v} \cdot \nabla u \, dx$$

Svolgendo i conti per il caso semplice $\vec{v} = (0, \dots, 0, v, 0, \dots, 0)$ (un valore solo all'i-mo posto):

$$div \ \vec{v} = \sum_{k=1}^{n} \frac{\delta v_k}{\delta x_k} = \frac{\delta v}{\delta x_i}$$

$$\vec{v} \cdot \nu = v \cdot \nu_i$$

$$\vec{v} \cdot \nabla u = \sum_{k=1}^{n} v_k \frac{\delta u}{\delta x_k} = v \frac{\delta u}{\delta x_i}$$

Risulta:

$$\int_{\Omega} u \frac{\delta v}{\delta x_i} dx = \oint_{\partial \Omega} u v \nu_i d\sigma_x - \int_{\Omega} v \frac{\delta u}{\delta x_i}$$

che guarda caso é la formula dell'integrazione per parti, e vale $\forall u, v \in C^1(\Omega) \cap C^0(\overline{\Omega})$.

Nel caso delle distribuzioni:

$$u \in C^1(\Omega), \ v \in \mathfrak{D}(\Omega) = C_0^{\infty}(\Omega)$$

$$\int_{\Omega} u \frac{\delta v}{\delta x_i} \, dx = -\int_{\Omega} v \frac{\delta u}{\delta x_i} \, dx$$

3.13 Derivate di distribuzioni

 $u\in \mathfrak{D}'(\Omega)$. Voglio trovare una nuova distribuzione $\frac{\delta u}{\delta x_i}$ tale che, sfruttando Gauss:

$$\left\langle \frac{\delta u}{\delta x_i},v\right\rangle = -\left\langle u,\frac{\delta v}{\delta x_i}\right\rangle \quad v\in\mathfrak{D}(\Omega) \text{ funzione di test}$$

Definisco il funzionale L:

$$L: \mathfrak{D}(\Omega) \to C$$

$$v \to -\left\langle u, \frac{\delta v}{\delta x_i} \right\rangle$$

$$v \in \mathfrak{D}(\Omega) \quad \Rightarrow \quad \frac{\delta v}{\delta x_i} \in \mathfrak{D}(\Omega)$$

Inoltre L é un funzionale lineare su $D(\Omega)$, e $L \in \mathfrak{D}'(\Omega)$ (distribuzione)

Definisco L derivata parziale i-ma di u:

$$L = \frac{\delta u}{\delta x_i}$$
 $L(v) = -\left\langle u, \frac{\delta v}{\delta x_i} \right\rangle$

3.13.1 Osservazione:

una funzione in \mathfrak{D}' é derivabile infinite volte, sempre in \mathfrak{D}' :

$$u \in \mathfrak{D}'(\Omega) \quad \Rightarrow \quad \exists \text{ sempre } \frac{\delta u}{\delta x_i} \in \mathfrak{D}'(\Omega)$$

$$\Rightarrow \exists \frac{\delta}{\delta x_i} \left(\frac{\delta u}{\delta x_i} \right) \in \mathfrak{D}'(\Omega)$$

$$\Rightarrow \quad \forall \alpha \in N^n \quad \exists D^\alpha u \in \mathfrak{D}'(\Omega)$$

Questo si estende al caso di $u\in L^1_{loc},$ poiché $L^1_{loc}(\Omega)\subset \mathfrak{D}'(\Omega)$

Esempio $\delta' \in \mathfrak{D}'(R), v \in \mathfrak{D}(R)$. Allora:

$$<\delta', v> = -<\delta, v'> = -v'(0)$$

 $|<\delta', v>| = |v'(0)| \le \max_{x \in R} |v'(x)|$

Quindi δ' distribuzione di ordine 1.

Esempio H(x) = 1 se x > 0 / 0 se x < 0.

$$H \in L^{\infty}(R) \subset \mathfrak{D}'(R)$$

$$H'(x) = 0 \quad \forall x \neq 0, \text{ peró } \not\exists H'(0)$$

Se la guardiamo invece come distribuzione:

$$< H', v> = - < H, v'> = - \int_R H(x)v'(x) = - \int_0^\infty v'(x) dx =$$

$$= -[\underbrace{v(\infty)}_0 - v(0)] = v(0) = < \delta, v>$$

Come volevasi dimostrare, $H' = \delta \in \mathfrak{D}'(R)$

3.14 Derivate multiple

$$< D^{\alpha}u, v> = \left\langle \frac{\delta^{\alpha_1+\alpha_2+\dots+\alpha_n}u}{\delta x_1^{\alpha_1}\delta x_2^{\alpha_2}\dots\delta x_n^{\alpha_n}}, v \right\rangle = (-1)^{\alpha_1} \left\langle \frac{\delta^{\alpha_2+\dots+\alpha_n}u}{\delta x_2^{\alpha_2}\dots\delta x_n^{\alpha_n}}, \frac{\delta^{\alpha_1}v}{\delta x_1} \right\rangle = \\ = (-1)^{\alpha_1+\alpha_2+\dots+\alpha_n} < u, D^{\alpha}(v)> = (-1)^{|\alpha|} < u, D^{\alpha}v>$$

3.15 Teorema di Schwartz

 $v \in C^2(\Omega)$. Allora:

$$\frac{\delta^2 v}{\delta x_i \delta x_j} = \frac{\delta^2 v}{\delta x_j \delta x_i} \qquad \forall i, j$$

Se $u \in \mathfrak{D}'(\Omega)$:

$$\frac{\delta^2 u}{\delta x_i \delta x_j} = \frac{\delta^2 u}{\delta x_j \delta x_i} \qquad \forall i, j = 1, \dots, n$$

3.15.1 Dimostrazione

$$\left\langle \frac{\delta^2 u}{\delta x_i \delta x_j}, v \right\rangle = -\left\langle \frac{\delta u}{\delta x_j}, \frac{\delta v}{\delta x_i} \right\rangle = \left\langle u, \frac{\delta}{\delta x_j} \left(\frac{\delta v}{\delta x_i} \right) \right\rangle$$

 $v \in C^{\infty}$, quindi posso scambiare le derivate:

$$\left\langle u, \frac{\delta^2 v}{\delta x_j \delta x_i} \right\rangle = \left\langle u, \frac{\delta^2 v}{\delta x_i \delta x_j} \right\rangle = \left\langle \frac{\delta^2 v}{\delta x_j \delta x_i}, v \right\rangle \quad \forall v$$

$$\Rightarrow \quad \frac{\delta^2 u}{\delta x_i \delta x_j} = \frac{\delta^2 v}{\delta x_j \delta x_i} \quad \text{uguaglianza in } \mathfrak{D}'(\Omega)$$

3.16 Teorema

 $\{u_k\} \in \mathfrak{D}'(\Omega), u_k \to u \text{ in } \mathfrak{D}'(\Omega).$ Allora:

$$\forall \alpha \quad D^{\alpha}u_k \to D^{\alpha}u \quad \text{ in } \mathfrak{D}'(\Omega)$$

3.16.1 Dimostrazione

4 Trasformata di Fourier

$$u: R_x^n \to C, \, \hat{u}: R_\xi^n \to C$$

$$\hat{u}\{\xi\} = \mathfrak{F}[u](\xi) = \int_{\mathbb{R}^n} u(x)e^{-i\xi x} dx$$

con
$$x = (x_1, x_2, \dots) \in \mathbb{R}^n$$
 e $\xi = (\xi_1, \xi_2 \dots) \in \mathbb{R}^n$. $(\xi \cdot x = \xi_1 x_1 + \dots + \xi_n x_n)$.

4.1 Proprietá

 $u \in L^1(\mathbb{R}^n)$. Allora \hat{u} é ben definita $\forall \xi$ e:

1.
$$\hat{u}(\xi) \in L^{\infty}, ||\hat{u}||_{L^{\infty}} \le ||u||_{L^{\infty}}$$

2.
$$\hat{u} \in C^0(\mathbb{R}^n)$$

3.
$$\lim_{|\xi| \to \infty} \hat{u}(\xi) = 0$$

4.1.1 Dimostrazioni

$$|\hat{u}(\xi)| = \left| \int_{R^n} u(x) e^{-i\xi x} \, dx \right| \leq \int_{R^n} |u(x)| \cdot \underbrace{|e^{-i\xi x}|}_{=1} = \int_{R^n} |u(x)| \, dx = ||u||_{L^1(R^n)} < \infty$$

Quindi \hat{u} é ben definita $\forall \xi$. Inoltre:

- 1. $|\hat{u}(\xi)| \le ||u||_{L^1(\mathbb{R}^n)} \forall \xi \in \mathbb{R}^n$, quindi $\sup_{\xi \in \mathbb{R}^n} |\hat{u}(\xi)| = ||\hat{u}||_{L^{\infty}(\mathbb{R}^n)} \le ||u||_{L^{\infty}(\mathbb{R}^n)}$
- 2. $\xi_0 \in \mathbb{R}^n$. Dimostro che $\lim_{\xi \to \xi_0} \hat{u}(\xi) = \hat{u}(\xi_0)$
 - $\Leftrightarrow \quad \{\xi_k\} \subset R^n, \, \xi_k \to \xi_0 \text{ per } k \to \infty, \, \text{devo dimostrare che: } \lim_{k \to \infty} \hat{u}(\xi_k) = \hat{u}(\xi_0)$
 - $\Leftrightarrow \quad \hat{u}(\xi_k) = \int_{R^n} u(x) e^{-i\xi_k x} \, dx \text{ quindi } \hat{u}(\xi_0) = \int_{R^n} u(x) e^{-i\xi_0 x} \, dx$

Per poter applicare Lebesgue:

- $u(x)e^{-i\xi_k x}$ $\xrightarrow{\xi_k \to \xi_0}$ $u(x)e^{-i\xi_0 x}$
- $|u(x)e^{-i\xi_k x}| = |u(x)| \in L^1(\mathbb{R}^n) \quad \forall k$

Quindi, secondo Lebesgue:

$$\underbrace{\int_{R_n} u(x)e^{-i\xi_k x} dx}_{\hat{u}(\xi_k)} \longrightarrow \underbrace{\int_{R_n} u(x)e^{-i\xi_0 x} dx}_{\hat{u}(\xi_0)}$$

4.2 Corollario

$$\{u_k\} \subset L^1(\mathbb{R}^n), u_k \to u \text{ in } L^1(\mathbb{R}^n).$$

Allora: $\hat{u}_k \to \hat{u}$ in $L^{\infty}(\mathbb{R}^n)$

4.2.1 Dimostrazione

$$||u_k - u||_{L^{\infty}(\mathbb{R}^n)} = ||(u_k - u)^{\hat{}}||_{L^{\infty}(\mathbb{R}^n)} \le ||u_k - u||_{L^1(\mathbb{R}^n)} \to 0$$

4.3 Teorema inversione

 $u \in L^1(\mathbb{R}^n)$ continua su \mathbb{R}^n con $\hat{u} \in L^1(\mathbb{R}^n)$. Allora:

$$u(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \hat{u}(\xi) e^{+i\xi x} d\xi \qquad \forall x \in \mathbb{R}^n$$

Rispetto alla formula diretta si applicano queste sostituzioni: $x \leftrightarrow \xi, \ u \leftrightarrow \hat{u}, \ i \leftrightarrow -i.$

4.3.1 Inversione nel caso n=2

 $u \in L^1(R)$ continua a tratti su ogni intervallo di R limitato, $\hat{u} \in L^1(R)$ (possono dunque anche esserci salti).

$$u(x) = \frac{u(x^+) + u(x^-)}{2} = \frac{1}{2\pi} \int_{B} \hat{u}(\xi) e^{+1\xi x} d\xi$$