PROYECTO

El Desafío de Don Rene

Integrantes:

- Consuelo Rojas N.
- Daniel Carmona G.

TABLE OF CONTENTS

01.

INTRO

Descripción del problema que aqueja a Don Rene

04.

MODELOS

Modelos usados y sus parámetros

02.

EDA

Exploración de los datos y relaciones

O3.
PRE
PROCESAMIENTO
Codificación y

Codificación y conversión de datos

05.

RESULTADOS

Experimentales y de la competencia

- 06.

CONCLUSION

Sobre el modelo, resultados y proyecto

01. Don Rene

Don René quiere ver si se puede predecir la clasificación de un juego y sus ventas si se tienen algunos datos previos, como lo son su precio

01.DATOS

OBJECTS

Características con strings o listas con strings. Ejemplo: name, developer, publisher, platforms, etc.

Características númericas. Como: required_age, achievements, average_playtime, price

Valoración por el público del juego. Cuenta con 5 clases: negativos, mixtos, mayormente positivos, positivos y muy positivos.

ESTIMATED_SELLS

Estimación de las ventas que produciría un juego en especifico.

Análisis exploratorio de los datos

OZ.COMPOSICIÓN POR PLATAFORMA

OZ. MATRIZ DE CORRELACIÓN

02. CORRELACIÓN

O2.DISTRIBUCIÓN DE VENTAS Y RELACIÓN

03.PRE PROCESAMIENTO

WHAT SETS US APART?

NLP

CountVectorizer() y StemmerTokenizer(), Uni, bi y tri-gramas

CODIFICACIÓN

Diccionario con entidades codificadas

NORMALIZ ACIÓN

Aplicación de MixMaXScaler(), StandarScaler()

04. MODELOS

04.MODELOS

	CATBOOST	XGBOOST
TREE SYMMETRY	Symmetric	Asymmetric, level-wise tree growth
SPLITTING METHOD	Greedy method	Pre-sorted and histogram-based
TYPE OF BOOSTING	Ordered	-
Categorical Support	Support (perform one-hot encoding)	Do not support

05. RESULTADOS

05.RESULTADOS EXPERIMENTOS

TRAIN TEST

05.RESULTADOS EXPERIMENTOS

Best r2-Score: GradientBoost*

TRAIN TEST

O5.RESULTADOS COMPETENCIA

CATBOOST BASELINE

O6. CONCLUSION

NO CONCLUYENTE

Con estos resultados, no se puede concluir la posibilidad de predecir la clasificación de ratings y estimación de ventas

MODELOS Y RESULTADOS

Los resultados de los modelos seleccionados hacen sentido, dado que CatBoost es una implementación de Gradient Boosting, que mejora aspectos de overfitting.

COMPLEJIDAD

El proyecto era una tarea compleja. La articulación de muchos atributos de distintos tipos sin que pierdan relevancia es complejo.

MANA

PROYECTO

El Desafío de Don Rene

Integrantes:

- Consuelo Rojas N.
- Daniel Carmona G.

