Cálculo Diferencial e Integral

Limites de funções

Uma abordagem inicial

A função Sinc

A função seno cardinal, em sua forma normalizada, é dada por

 $f(t) = \frac{\sin{(\pi t)}}{\pi t}$. É também conhecida como função Sinc e possui aplicações em processamento digital de sinais e informações, algumas justificadas pelo Teorema de Shannon (ou, teorema da amostragem).

Tal teorema estabelece que uma função pode ser completamente determinada a partir de uma amostra discreta, sob algumas hipóteses.

Exemplo de Aplicação

A imagem da esquerda teve 25% dos seus dados corrompidos e esses foram recuperados através de uma metodologia baseada no Teorema de Shannon.

Vamos considerar a seguinte questão:

É possível calcular essa função
$$f(t) = \frac{\operatorname{sen}(\pi t)}{\pi t}$$
 para t igual a zero?

$$f(0) = \frac{\text{sen}(\pi 0)}{\pi 0} = \frac{0}{0}$$

Não é possível a divisão por zero!

Queremos investigar o que acontece com os valores da função $f(t)=\frac{\mathrm{sen}\,(\pi t)}{\pi t}$ na vizinhança de zero.

O que seria vizinhança de zero?

t se aproximando de 0 pela esquerda	Valores da função	t se aproximando de 0 pela direita	Valores da função
-0,4	0, 757	0,4	0, 757
-0,3	0,858	0,3	0,858
- 0,2	0,935	0,2	0,935
-0,1	0,983631643	0,1	0,983631643
-0,05	0,995892735	0,05	0,995892735
-0,02	0,999342156	0,02	0,999342156
-0,01	0,999835514	0,01	0,999835514
-0,001	0,99999835	0,001	0,99999835
-10 ⁻¹⁰	0,9999999	10-10	0,9999999

Para pensar e debater com seus colegas:

O gráfico ao lado foi obtido calculando-se a função para alguns valores de t.

Que observações você consegue levantar a partir dele?

Se ligarmos os pontos desse gráfico, em que valor a curva obtida toca o eixo y? Podemos descobri-lo através da simples substituição t por 0? Desafio você a responder essa pergunta sem a ajuda de um software gráfico!

Para pensar mais um pouco...

Como você acha que poderíamos definir convenientemente a função para que o seu gráfico fosse como ao lado?

Limites...

Considere a função $f(x) = \frac{x^3 - 3x^2 + 4x - 4}{x - 2}$. Vamos analisar o comportamento da função quando x assume valores próximos a 2. Para tanto, faremos uso de uma tabela. Complete-a, calculando f(x) para os valores indicados.

f(x)

X	f(x)
1	2,000000
1,5	2,750000
1,8	3,440000
1,9	3,710000
1,95	3,852500
1,99	3,970100
1,995	3,985025
1,999	3,997001

Desta forma, podemos concluir que **quando x tende a 2** por valores menores que **2**, à esquerda de **2**, a função tende a **4**.

Dizemos que o limite da função $f(x) = \frac{x^3 - 3x^2 + 4x - 4}{x - 2}$ quando x tende a 2 pela esquerda é 4, e denotamos isso da seguinte forma:

$$\lim_{x \to 2^{-}} f(x) = 4$$

X	f(x)
3	
2,5	
2,2	
2,1	
2,05	
2,01	
2,005	
2,001	

Analogamente, vamos estudar o comportamento da função para valores de x, tendendo a 2, porém maiores que 2.

Calcule
$$f(x) = \frac{x^3 - 3x^2 + 4x - 4}{x - 2}$$
 para os valores indicados e complete a tabela!

X	f(x)
3	8,000000
2,5	5,750000
2,2	4,640000
2,1	4,310000
2,05	4,152500
2,01	4,030100
2,005	4,015025
2,001	4,003001

Podemos concluir que **quando x tende a 2** por valores maiores que **2**, à direita de **2**, a função tende a **4**.

Dizemos que o limite da função $f(x) = \frac{x^3 - 3x^2 + 4x - 4}{x - 2}$ quando x tende a 2 pela direita é 4, e denotamos isso da seguinte forma:

$$\lim_{x \to 2^+} f(x) = 4$$

LIMITE NO PONTO

Como
$$\lim_{x\to 2^-} f(x) = 4$$
 e $\lim_{x\to 2^+} f(x) = 4$

Como $\lim_{x\to 2^-} f(x) = 4$ e $\lim_{x\to 2^+} f(x) = 4$ dizemos que o limite da função $f(x) = \frac{x^3 - 3x^2 + 4x - 4}{x - 2}$ quando x tende a 2 é 4, e denotamos isso da seguinte

forma:

ou seja,

$$\lim_{x \to 2} f(x) = 4$$

$$\lim_{x \to 2} \frac{x^3 - 3x^2 + 4x - 4}{x - 2} = 4$$

LIMITE NO PONTO

Sejam f uma função e α uma valor real. Suponhamos que existam m e n tais que os intervalos abertos]m, α [e] α , n[estejam contidos no domínio de f.

Então, o limite da função f(x) quando x tende a α existe e é igual a L se, e somente se, os limites laterais pela direta e pela esquerda em α existem e também são iguais a L. Ou seja:

$$\lim_{x \to a^{-}} f(x) = L \quad \text{(pela esquerda) e} \quad \lim_{x \to a^{+}} f(x) = L \quad \text{(pela direita)}$$

Então:

$$\lim_{x\to a}f(x)=\mathbf{L},$$

Caso os limites laterais em **a** sejam distintos, ou algum deles não exista, dizemos que

$$\lim_{x\to a} f(x)$$
 não existe

Sendo a recíproca verdadeira.

Assim,
$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = L \qquad \Leftrightarrow \qquad \lim_{x \to a} f(x) = L$$

•

Observação: Se f não está definida para valores menores que a, então, analisamos **apenas** o comportamento da função tendendo a a pela direita, ou seja, para valores maiores que a.

E, analogamente, se f não está definida para valores maiores que a, analisamos **apenas** o comportamento da função para valores menores que a.

Nesse caso, alguns autores definem que o limite no ponto corresponde ao limite lateral que está definido, outros simplesmente não o definem, restringindo-se à notação de limite lateral. Vamos adotar essa última abordagem.

Exemplos:

a) $\lim_{x\to 0^+} \sqrt{x} = 0$ (Analisamos apenas valores maiores que 0, pois, a função não existe para x menores que 0.)

b) $\lim_{x\to 1^-} \sqrt{1-x} = 0$ (Analisamos apenas valores menores que 1, pois, a função não existe para x maiores que 1.)

Funções definidas por partes

Muitas vezes, ao utilizarmos matemática para modelar situações do nosso cotidiano, precisamos utilizar mais de um tipo de função no domínio considerado.

Consideremos as três situações a seguir:

Modelagem Matemática

- Situação 1 Retirei um pedaço de carne do freezer ao meio-dia e o deixei no balcão para descongelar. Então eu o cozinhei quando cheguei em casa, no fim do dia.
- Situação 2 Retirei um pedaço de carne do freezer esta manhã e o deixei no balcão para descongelar. Então eu o cozinhei quando cheguei em casa.
- Situação 3 Retirei um pedaço de carne do freezer esta manhã e o deixei no balcão para descongelar. Esqueci-me e saí para comer comida chinesa a caminho de casa, voltando do trabalho. Quando cheguei em casa, coloquei-o na geladeira.

Modelagem Matemática

Relacione cada uma das três situações indicadas com os gráficos abaixo. Em relação ao gráfico que sobrar, descreva uma situação que presente este gráfico.

Situação 1 — Retirei um pedaço de carne do freezer ao meio-dia e o deixei no balcão para descongelar. Então eu o cozinhei quando cheguei em casa, no fim do dia.

Situação 2 — Retirei um pedaço de carne do freezer esta manhã e o deixei no balcão para descongelar. Então eu o cozinhei quando cheguei em casa.

Situação 3 — Retirei um pedaço de carne do freezer esta manhã e o deixei no balcão para descongelar. Esqueci-me e saí para comer comida chinesa a caminho de casa, voltando do trabalho. Quando cheguei em casa, coloquei-o na geladeira.

OUTRO EXEMPLO

Considere a função:
$$g(x) = \begin{cases} 2 & , & -1 \le x < 0 \\ -x + 3 & , & 0 < x < 2 \\ \sqrt{x - 2} & , & x \ge 2, & x \ne 3 \\ 4 & , & x = 3 \end{cases}$$

- a) Esboce o gráfico da função.
- b) Determine os conjuntos domínio e imagem da função.

OUTRO EXEMPLO

Considere a função:
$$g(x) = \begin{cases} 2 & , & -1 \le x < 0 \\ -x + 3 & , & 0 < x < 2 \\ \sqrt{x - 2} & , & x \ge 2, & x \ne 3 \end{cases}$$

$$-1 \le x < 0$$

$$, \qquad 0 < x < 2$$

$$, \qquad x \ge 2, \quad x \ne 3$$

$$, \qquad x = 3$$

c) Estime, analisando o gráfico:

$$g(-1,0001)$$
 não existe
 $g(1,9999) \approx 1$
 $g(-0,9999) = 2$
 $g(2,0001) \approx 0$
 $g(-0,0001) = 2$
 $g(2,9999) \approx 1$
 $g(0,0001) \approx 3$
 $g(3,0001) \approx 1$
 $g(0,9999) \approx 2$
 $g(5,9999) \approx 2$
 $g(1,0001) \approx 2$
 $g(6,0001) \approx 2$

$$g(x) = \begin{cases} 2 & , & -1 \le x < 0 \\ -x + 3 & , & 0 < x < 2 \\ \sqrt{x - 2} & , & x \ge 2, & x \ne 3 \\ 4 & , & x = 3 \end{cases}$$

Escrevemos:

$$\lim_{x \to -1^{+}} g(x) = 2 \qquad \lim_{x \to 2^{-}} g(x) = 1$$

$$\lim_{x \to 0^{-}} g(x) = 2 \qquad \lim_{x \to 2^{+}} g(x) = 0$$

$$\lim_{x \to 0^{+}} g(x) = 3 \qquad \lim_{x \to 3^{-}} g(x) = 1$$

$$\lim_{x \to 1^{-}} g(x) = 2 \qquad \lim_{x \to 3^{+}} g(x) = 1$$

$$\lim_{x \to 1^{+}} g(x) = 2 \qquad \lim_{x \to 6^{-}} g(x) = 2$$

$$\lim_{x \to 1^{+}} g(x) = 2 \qquad \lim_{x \to 6^{-}} g(x) = 2$$

$$\lim_{x \to 6^{+}} g(x) = 2$$

Os valores dos limites laterais dependem do comportamento da função na vizinhança do ponto e não nele.

Observe que como valores menores que -1, não estão no domínio, não faz sentido analisar-

$$\lim_{x\to -1^-} g(x)$$

Escrevemos:

$$\lim_{x \to -1^+} g(x) = 2$$

$$\lim_{x \to 0^-} g(x) = 2$$

$$\lim_{x \to 0^+} g(x) = 3$$

$$\lim_{x \to 1^+} g(x) = 2$$

$$\lim_{x \to 1^+} g(x) = 2$$

$$\lim_{x \to -1^{-}} g(x) = \nexists$$

$$\lim_{x \to -1^{+}} g(x) = 2$$

 $\lim_{x \to -1^{-}} g(x) = \nexists \begin{cases} -1 \text{ \'e ponto extremo \`a esquerda} \\ \text{ent\~ao s\'o se avalia o limite lateral \`a direita.} \end{cases}$ $\lim_{x \to -1^{+}} g(x) = 2 \begin{cases} \text{N\~ao dizemos } \lim_{x \to -1} g(x) \text{ n\~ao existe, apenas} \end{cases}$

não cabe aqui tal abordagem.

$$\lim_{x \to 0^{-}} g(x) = 2$$

$$\lim_{x \to 0^{+}} g(x) = 3$$

$$\lim_{x \to 1^{-}} g(x) = 3$$

$$\lim_{x \to 1^{-}} g(x) = 2$$

$$\lim_{x \to 1^{+}} g(x) = 2$$

$$\lim_{x \to 1^{+}} g(x) = 2$$

$$\lim_{x \to 1^{+}} g(x) = 2$$

Note que os valores dos limites independem dos valores das funções nos pontos.

$$g(-1) = 2$$
 $g(2) = 0$
 $g(0) = \nexists$ $g(3) = 4$
 $g(1) = 2$ $g(6) = 2$

$$\lim_{x \to 2^{-}} g(x) = 1$$

$$\lim_{x \to 2^{+}} g(x) = 0$$

$$\lim_{x \to 3^{-}} g(x) = 1$$

$$\lim_{x \to 3^{-}} g(x) = 1$$

$$\lim_{x \to 3^{+}} g(x) = 1$$

$$\lim_{x \to 6^{-}} g(x) = 2$$

$$\lim_{x \to 6^{+}} g(x) = 2$$

O limite em pontos interiores só existe se os limites laterais existirem e forem iguais.

CONTINUIDADE

Uma função y=f(x) é contínua em um ponto interior \boldsymbol{a} de seu domínio quando

$$\lim_{x\to a} f(x) = f(a)$$

Uma função y = f(x) é contínua na extremidade esquerda \boldsymbol{b} de seu domínio quando

$$\lim_{x\to \frac{b}{+}}f(x)=f(\frac{b}{b})$$

Uma função y=f(x) é contínua na extremidade direita \boldsymbol{c} de seu domínio quando

$$\lim_{x\to c^-} f(x) = f(c)$$

Teste de continuidade em a:

$$f(\mathbf{a})$$
 existe?
 $\lim_{x \to \mathbf{a}} f(x)$ existe?
 $\lim_{x \to \mathbf{a}} f(x) = f(\mathbf{a})$?

Teste de continuidade em **b**:

$$f(b)$$
 existe?
 $\lim_{\substack{x \to b+\\ lim \\ x \to b+}} f(x)$ existe?

Teste de continuidade em c:

$$f(c)$$
 existe?
 $\lim_{x \to c^{-}} f(x)$ existe?
 $\lim_{x \to c^{-}} f(x) = f(c)$?

Ex 1

a	$\lim_{x \to a^{-}} f(x)$	$\lim_{x \to a^+} f(x)$	$\lim_{x\to a} f(x)$	f(a)	É cont. em a?
-2					
-1					
0					
1					
2					
3					

Ex 1

а	$\lim_{x \to a^{-}} f(x)$	$\lim_{x \to a^+} f(x)$	$\lim_{x\to a} f(x)$	f(a)	É cont. em a?
-2	2	2	2	2	Sim
-1	1	-2	∄	1	Não
0	-1	-1	-1	-1	Sim
1	0	0	0	0	Sim
2	1	1	1	1	Sim
3	2	3	∄	2	Não

Ex 2) Faça a representação gráfica da função definida por partes e determine para cada um dos valores de a:

i)
$$\lim_{x \to a^{-}} f(x)$$
 ii) $\lim_{x \to a^{+}} f(x)$ iii) $\lim_{x \to a} f(x)$ iv) $f(a)$

v) Se ela é contínua ou descontínua em x=a

$$f(x) = \begin{cases} x^2, se \ 0 \le x < 1 \\ -x + 3, se \ 1 \le x < 2 \\ 2, se \ x = 2 \\ x^2 - 3x + 2, se \ 2 < x \le 3 \end{cases}$$

а	$\lim_{x\to a^-} f(x)$	$\lim_{x \to a^+} f(x)$	$\lim_{x\to a} f(x)$	f(a)	É contínua em a?
0					
1					
2					
3					

а	$\lim_{x\to a^-} f(x)$	$\lim_{x \to a^+} f(x)$	$\lim_{x\to a} f(x)$	f(a)	É contínua em a?
0	_	0	_	0	Sim
1	1	2	∄	2	Não
2	1	0	∄	2	Não
3	2	_	_	2	Sim