Predictive Modelling - III

Regression

Rita P. Ribeiro

Data Mining I - 2023/2024

- DATA MINING I 23/24 - PREDICTIVE MODELLING - III

.

Summary

- Regression
 - · Problem Definition
 - Bias and Variance
 - Evaluation Metrics
- Linear Regression Methods

Regression

Regression: Problem Definition

Setting

- $D = \{\langle \mathbf{x_i}, y_i \rangle\}_{i=1}^N$
- $\mathbf{x_i}$ feature vector with p predictor variables
- $y_i \in \mathbb{R}$ target numerical variable Y
- There is an unknown function $Y = f(\mathbf{x})$

Goal: Learn the best approximation of the unknown function f()

Approach

- Approximate f() by $h_{\theta}(\mathbf{x})$
- Follow a preference criterion over the parameterization space $\boldsymbol{\theta}$
- Search for the "best" h() according to the criterion and the data set

Regression: Problem Definition

Regression Model

- A function that transforms a vector of values of the predictors, x, into a real number, y
- · It assumes the following relationship

$$y_i = h_{\theta}(\mathbf{x}_i) + \varepsilon_i$$

where

- $h_{\theta}(\mathbf{x}_i)$ is a regression model with the set of parameters θ
- ε_i are observation errors (i.e. residuals)
- DATA MINING I 23/24 PREDICTIVE MODELLING III

,

Bias and Variance

Bias-variance decomposition of the error helps:

- explain why simple learners can outperform powerful ones
- explain why model ensembles outperform single models
- · understand and avoid overfitting

Bias and Variance

Avoid overfitting

• Polynomials of different orders *M* to fit the data.

· Which one overfitts the data?

- DATA MINING I 23/24 - PREDICTIVE MODELLING - III

6

Bias and Variance

- Given a traning set $D = \{\langle \mathbf{x_i}, y_i \rangle\}_{i=1}^N$
- The learner induces a regression model $\hat{y} = h_{\theta}(x)$
- · Loss functions measure the quality of learner's predictions
 - Squared loss: $L(y, \hat{y}) = (y \hat{y})^2$
 - Absolute Loss: $L(y, \hat{y}) = |y \hat{y}|$
 - Zero-one loss: $L(y, \hat{y}) = 0$ if $y = \hat{y}$, 1 otherwise
 - ...
- In the training set, we can obtain the Expected Loss, i.e. $E[L(y,\hat{y})]$

Bias and Variance

Expected Loss = Bias + Variance

- DATA MINING I 23/24 - PREDICTIVE MODELLING - III

8

Bias and Variance

Expected Loss = Bias + Variance

Bias and Variance

Bias-variance trade-off

Fig. 6 Bias and variance contributing to total error.

- DATA MINING I 23/24 - PREDICTIVE MODELLING - III

10

Bias and Variance

What should \hat{y} be?

· Prediction with minimum average loss relative to all predictions

$$\hat{y} = \underset{y'}{\operatorname{argmin}} E[L(y, y')]$$

- for Squared Loss is the mean, i.e. $\hat{y} = \bar{y}$
- for Absolute Loss is the median, i.e. $\hat{y} = \tilde{y}$
- for Zero-one Loss is the mode

How to obtain reliable estimates of the error to compare models performance?

Evaluation Metrics

Mean Squared Error (MSE)

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

where

- \hat{y}_i is the prediction of the model under evaluation for the case i
- y_i the respective true target variable value.
- It is measured in a unit that is squared of the original variable scale.
- Thus, it is common to use the Root Mean Squared Error $RMSE = \sqrt{MSE}$

Mean Absolute Error (MAE)

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |\hat{y}_i - y_i|$$

where

- \hat{y}_i is the prediction of the model under evaluation for the case i
- y_i the respective true target variable value.
- MAE is measured in the same unit as the original variable scale.

- DATA MINING I 23/24 - PREDICTIVE MODELLING - III

13

Evaluation Metrics

Relative Error Metrics

- Unit less metrics which means that their scores can be compared across different domains.
- They are calculated by comparing the scores of the model under evaluation against the scores of some baseline model.
- The relative score is expected to be a value between 0 and 1, with values nearer (or even above) 1 representing performances as bad as the baseline model, which is usually chosen as something too naive.

- A common baseline model is the constant model that predicts for all test cases the average target variable value (\bar{y}) calculated in the training data.
- Normalized Mean Squared Error (NMSE)

NMSE =
$$\frac{\sum_{i=1}^{N} (\hat{y}_i - y_i)^2}{\sum_{i=1}^{N} (\bar{y} - y_i)^2}$$

Normalized Mean Absolute Error (NMAE)

NMAE =
$$\frac{\sum_{i=1}^{N} |\hat{y}_i - y_i|}{\sum_{i=1}^{N} |\bar{y} - y_i|}$$

- Both vary between 0 an 1. The closer to 0, the better.
- DATA MINING I 23/24 PREDICTIVE MODELLING III

15

Evaluation Metrics

Correlation Coefficient

$$\rho_{\hat{y},y} = \frac{\sum_{i=1}^{N} (\hat{y}_i - \bar{\hat{y}})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{N} (\hat{y}_i - \bar{\hat{y}}_i)^2 \sum_{i=1}^{N} (\hat{y}_i - \bar{y}_i)^2}}$$

- Varies between -1 and 1.
- Values between -0.8 and 0.8 are not, typically, considered relevant.

Coefficient of determination - ratio R²

$$R^2 = 1 - \frac{\sum_{i=1}^{N} (\hat{y}_i - \bar{y})^2}{\sum_{i=1}^{N} (y_i - \bar{y})^2}$$

- Varies between 0 and 1.
- The closer to 1, the better.
- Gives the notion of the percentage of observed variation explained by the model.

- DATA MINING I 23/24 - PREDICTIVE MODELLING - III

17

Evaluation Metrics: Wrap-up

- MSE-related metrics amplify the large errors
 - It may be good in areas where large errors are intolerable.
- MAE-related metrics are not as sensitive to large errors
 - Treats all errors the same way
 - Gives a better indication of the "typical" error of the model

Evaluation Metrics: Wrap-up

- The relative measures (e.g. NMSE,NMAE) have the advantage of independence of the application domain.
- The correlation coefficient measures the strength of the relationship between the model output and the true target variable.
 - For multiple linear regression it is difficult to explain because we have multiple variables involved here.
- The coefficient of determination R^2 is indicative of the level of explained variability in the data set.
 - If $R^2 = 0.50$, then approximately half of the observed variation can be explained by the model
 - · It is a convenient rescaling of MSE that is unit invariant

- DATA MINING I 23/24 - PREDICTIVE MODELLING - III

19

Linear Regression Methods

Predictive Modelling: Where we at?

- Distance-based Approaches
 - e.g. kNN
- Probabilistic Approaches
 - · e.g. Naive Bayes, Bayesian Networks
- Mathematical Formulae
 - · e.g. multiple linear regression
- Logical Approaches
 - e.g. CART
- Optimization Approaches
 - · e.g. SVM, ANN
- Ensemble Approaches

- DATA MINING I 23/24 - PREDICTIVE MODELLING - III

20

Simple Linear Regression

The very simplest case: one predictor variable x and one target variable y.

· The model is a straight line that approximates the relationship between the two, defined by

$$y_i = \beta_0 + \beta_1 \cdot x_i + \varepsilon_i$$

where

- β_0 is the *y* intercept
- β_1 is the slope
- ε_i is the error for instance *i*

Multiple Linear Regression

- One of the approaches to the multiple regression problem
- · The functional form of the regression model is

$$Y = \beta_0 + \beta_1 \cdot X_1 + \dots + \beta_p \cdot X_p$$

• The goal is to find the vector of parameters β that minimizes the sum of the squared errors (SSE)

$$SSE = \sum_{i=1}^{N} (y_i - (\beta_0 + \beta_1 \cdot X_1 + \dots + \beta_p \cdot X_p))^2$$

• The minimization of SSE can be solved by $\beta = (X^T \cdot X)^{-1} \cdot X^T \cdot Y$ or by using Singular Value Decomposition (SVD).

- DATA MINING I 23/24 - PREDICTIVE MODELLING - III

22

Multiple Linear Regression

Multicollinearity problem

- highly correlated predictor variables cause variance to be large,
 highly dependent on the training data
- · model predictions become unstable

Regularization

- · Tune the model to achieve a good bias-variance trade-off.
- Add a bias to the regression estimate to make sure that the coefficients are, on average, small in magnitude - shrinkage

Multiple Linear Regression

• *Ridge Regression*: shrinks the coefficients using least squares by adding the regularization term $\lambda \sum_i \beta_i^2$ (L_2 norm).

$$\sum_{i=1}^{N} (y_i - (\beta_0 + \beta_1 \cdot X_1 + \dots + \beta_p \cdot X_p))^2 + \lambda \sum_{i} \beta_i^2$$

• *Lasso Regression*: shrinks the coefficients using least absolute values by adding the regularization term $\lambda \sum_{i} |\beta_{i}|$ (L_{1} norm).

$$\sum_{i=1}^{N} (y_i - (\beta_0 + \beta_1 \cdot X_1 + \dots + \beta_p \cdot X_p))^2 + \lambda \sum_{i} |\beta_i|$$

_>

- DATA MINING I 23/24 - PREDICTIVE MODELLING - III

24

Linear Regression using Gradient Descent

Gradient Descent

- An iterative optimization algorithm to find the minimum of a function.
- In case of regression the goal is to minimize the error function.
- In linear regression it calculates the partial derivative of the loss function w.r.t. to each coefficient and updates them until the loss reaches a very small value, ideally 0.

Linear Regression using Gradient Descent

Gradient Descent operates by training epochs

It can be slow to run on very large datasets.

- DATA MINING I 23/24 - PREDICTIVE MODELLING - III

26

Linear Regression using Gradient Descent

Batch

• calculates the error for each example in the training data and, only afterwards, updates the model

Stochastic

 calculates the error and updates the model for each example in the training data.

Mini-batch

 training data is split into small batches that are used to calculate the error and update the model.

Linear Regression: Wrap-up

Pros

- Well-known with many variants of this simple methodology
- Effective approach when the "linearity" assumption holds
- The model is intuitive a set of additive effects of each variable towards the prediction
- Computationally very efficient

Cons

Too strong assumptions on the shape of the unknown function

Note

- Techniques such as regularization, gradient descendent can be applied to other regression methods.
- DATA MINING I 23/24 PREDICTIVE MODELLING III

28

Other Regression Methods

- k-Nearest Neighbors
 - · Predicts the average of the target variable values of the neighbors
- LOESS (Locally Estimated Scatterplot Smoothing)
 - Non-parametric method that combines multiple linear least squares regression models in a k-nearest neighbor-based way
- MARS (Multiple Additive Regression Splines)
 - Non-parametric method that extends linear regression, tackling nonlinearities and interactions between variables.

Other Regression Methods

- Support Vector Machines
- Artificial Neural Networks
- Random Forests
 - · based on ensemble of CART trees
- eXtreme Gradient Boosting (XGBoost)
 - optimized distributed gradient boosting provided by parallel tree boosting
- Many more exist . . .

- DATA MINING I 23/24 - PREDICTIVE MODELLING - III

30

References

References

- Aggarwal, Charu C. 2015. Data Mining, the Texbook. Springer.
- Gama, João, André Carlos Ponce de Leon Ferreira de Carvalho, Katti Faceli, Ana Carolina Lorena, and Márcia Oliveira. 2015. *Extração de Conhecimento de Dados: Data Mining -3rd Edition*. Edições Sílabo.
- Han, Jiawei, Micheline Kamber, and Jian Pei. 2011. *Data Mining: Concepts and Techniques*. 3rd ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
- Moreira, João, Andre Carvalho, and Tomás Horvath. 2018. *Data Analytics: A General Introduction*. Wiley.
- Tan, Pang-Ning, Michael Steinbach, Anuj Karpatne, and Vipin Kumar. 2018. *Introduction to Data Mining*. 2nd ed. Pearson.
- Torgo, Luís. 2017. "Data Mining i Course." Slides.

- DATA MINING I 23/24 - PREDICTIVE MODELLING - III

31