

★★★ MODULE APPLICATION NOTE APPROVAL FORM ★★★ 模块应用指引确认单

MOUDLE PART NUMBER:

模块型号: /

Sample Lot No.:/

样品单号: /

Prepared By:

制作: Zhao Yaqi

Date:

日期: 2017-7-27

Customer Name (客户名称): /

APPLICATION NOTE VERSION:

应用文档版本: 0.1

Qty:/

数量: /

Approved By:

审批: Zhan Junbin

Date:

日期: 2017-7-27

The intent of this form is for you to provide confirmation as to the accompanying module sample meeting your testing criteria. • Once you have completed your evaluation, please sign and date the appropriate approvedor rejected signature block, along with any comments you wish to make, After we are in receipt of this document reflecting approval of this test condition, if you issue a purchase order, we will begin to product this module with the test condition of this document. 此表格中的所有项目内容仅用于确认模块样品是否符合测试标准。请相关人员评估各个项目之后,在其后面的 Appr'd一栏的空格中或者Rej'd一栏的空格中签名,并填写时间和意见。如果所有项目都确认OK并回传此确认函 至我司,我司将按照此文件所确认的测试标准进行后续订单的生产。

	STAT	US
* CHECK ITEM	Appr'd	Rej'd
The schematic of the testing		
circuit and the value of	As Application Note V0.1	
components 测试线路的原理图和元		
器件的电气值		
The input voltage and current of		
the testing circuit测试线路的输	As Application Note V0.1	
入电压和输入电流值		
The software setting	As Application Note V0.1	
软件设置		

Specification规格

(If Appr'd, Please write APPLICATION NOTE's REV NO;

如果确认OK, 请填写APPLICATION NOTE的版本编码

If Rej'd, Please write improving advice)

如果确认NG,请填写改善建议。

Notes:

- ① If APPLICATION NOTE is updated, we use approval APPLICATION NOTE's the latest version as a testing
 - 如果APPLICATION NOTE有所更新,我们将以最新版本的APPLICATION NOTE的测试条件为准
- ② If APPLICATION NOTE approval item is default, it means that you accept APPLICATION NOTE's contents. 如果APPLICATION NOTE的某些项目没有做出回应,将默认为确认OK。
- 3 If the LCD modules have been operating for a long time showing the same display patterns, the display patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. A normal operating status can be regained by suspending use for some time. It should be noted that this phenomenon does not adversely affect performance reliability.

如果液晶显示模块长时间工作于同一个显示图案,换屏时会出现鬼影,也会出现轻微的对比

度不均。停止使用一段时间后可恢复到正常状态。此现象不会严重影响性能可靠性。

* NOTE: Please place an " \checkmark " in the appropriate Approved or Rejected block for each subject category 备注:每个项目,如果确认OK,请在后续的Appr'd栏的空格打"√",如果确认NG,请在Rej'd 栏的空格打"√"。

	*** COMMENTS ***	
APPROVED	评论	AUTHORIZED SIGNATURE&DATE
批准		签字及日期
REJECTED		
拒绝		

If customer don't agree the APPLICATION NOTE, please provide customer's testing tool and inspecting method.

若客户拒绝此模块应用指引,请提供客户的测试工具及检测方法。

Version:0.1

Jul,27,2017

PRODUCT : LCD MODULE

: TRULY SEMICONDUCTORS LTD. **SUPPLIER**

CERT. No.QAC0946535 CERT. No.HKG002005 (ISO9001) (ISO14001)

APPLICATION NOTE

This application note is only for reference and maybe changed without any notice .

Please contact TRULY R&D department for update files and product status before design for this product or release the order.

WRITTEN BY	APPROVED BY
Zhao Yaqi	Zhan Junbin

■ APPLICATION CIRCUIT

测试外围电路: 24-Bit RGB Interface VCC=IOVCC=3.3V

Backlight: If=20mA, Vf= 10.0V~13.2V (TYP 12V)

	The	M CI	-	interface	mode	select
_	1116	171 -	_	IIII.CIII acc	HIOUGE	301001.

	The meet interface mead delect.				
	IM2	IM 1	IM 0	MPU Interface Mode	Data pin
	0	0	0	8080 18-bit Interface	DB[17:0]
	0	0	1	8080 9-bit Interface	DB[8:0]
	0	1	0	8080 16-bit Interface	DB[15:0]
	0	1	1	8080 8-bit Interface	DB[7:0],
	1	n	n	Reserve	
ı	1	0	1	3SPI	SDA, SDO
	1	1	n	MIPI	MIPI_DATA
		1	U	IVIIF I	MIPI_CLOCK
	1	1	1	4Line SPI	SDA, SDO

■ Timing Diagrams

8.4.1.1 Write Sequence.

In the write mode of 3-line serial interface contains a D/CX (data/command) select bit and a transmission byte. If the D/C bit is "0", the transmission byte is interpreted as a command byte. If the D/C bit is "1", the transmission byte is display data, or stored in the command register as parameter data.

8 Bit Data Trasmission Byte

The instruction of ST7796s can be sent in any order, and the MSB is transmitted first. The 3-line serial interface is initialized when the CSX keeps high level. In this state, the SCL clock pulse and SDA data have no effect. A falling edge on CSX enables the serial interface and indicates the start of data transmission.

8.4.1.2 Read Sequence

In the read mode of the interface, the host reads the register value from the ST7796s. The host sends out a command (Read ID or register command), then a byte is (bytes are) transmitted in the opposite direction. The ST7796s samples the SDA (input data) at the rising edges of the SCL (serial clock), and shifts to SDO (output data) at the falling edges of the SCL (serial clock). The read mode has three types of transmitted command data (8-/24-/32-bit) according to the command code.

4-line serial protocol (for RDID1/RDID2/RDID3/0Ah/0Bh/0Ch/0Dh/0Eh/0Fh command: 8-bit read):

7.4.2 3-SPI Serial Data Transfer Interface Characteristics:

3-SPI Interface Timing Characteristics

VDDI=1.8V,VDDA=2.8V, AGND=DGND=0V, Ta=25 ℃

	1			Ī		
Signal	Symbol	Parameter	Min	Max	Unit	Description
	T _{css}	Chip select setup time (write)	15		ns	
	Тсѕн	Chip select hold time (write)	15		ns	
CSX	T _{css}	Chip select setup time (read)	60		ns	
	T _{scc}	Chip select hold time (read)	65		ns	
	T _{CHW}	Chip select "H" pulse width	40		ns	
	T _{scycw}	Serial clock cycle (Write)	66		ns	
	T _{shw}	SCL "H" pulse width (Write)	15		ns	
SCL	T _{sLW}	SCL "L" pulse width (Write)	15		ns	
SCL	T _{SCYCR}	Serial clock cycle (Read)	150		ns	
	T _{SHR}	SCL "H" pulse width (Read)	60		ns	
	T _{SLR}	SCL "L" pulse width (Read)	60		ns	
SDA	T _{sps}	Data setup time	10		ns	
(DIN)	T _{SDH}	Data hold time	10		ns	
DOLLT	T _{ACC}	Access time	10	50	ns	For maximum CL=30pF
DOUT T _{OH}		Output disable time	15	50	ns	For minimum CL=8pF

3-SPI Interface Characteristics

8.3.3 RGB Interface Timing

The timing chart of RGB interface DE mode is shown as follows.

Note: The setting of front porch and back porch in host must match that in IC as this mode.

Timing Chart of Signals in RGB Interface DE Mode

The timing chart of RGB interface HV mode is shown as follows.

Timing chart of RGB interface HV mode

Please refer to the following table for the setting limitation of RGB interface signals.

Parameter	Symbol	Min.	Тур.	Max.	Unit
Horizontal Sync. Width	hpw	2	-	hpw + hbp = 75	Clock
Horizontal Sync. Back Porch	hbp	4	-	11pw + 11bp = 75	Clock
Horizontal Sync. Front Porch	hfp	2	38	-	Clock
Vertical Sync. Width	VS	2	4		Line
Vertical Sync. Back Porch	vbp	2	4	-	Line
Vertical Sync. Front Porch	vfp	2	8	-	Line

■ RESET input Timing

7.4.5 Reset Timing:

Figure 7 Reset Timing

VDDI=1.65 to 3.3V, VDD=2.4 to 3.3V, AGND=DGND=0V, Ta=-30 \sim 70 $^{\circ}$

Related Pins	Symbol	Parameter	MIN	MAX	Unit
	TRW	Reset pulse duration	10	-	us
RESX TRT	Reset cancel	-	5 (Note 1, 5)	ms	
	IKI	Reset cancer		120 (Note 1, 6, 7)	ms

Table 8 Reset Timing

Notes:

- 1. The reset cancel includes also required time for loading ID bytes, VCOM setting and other settings from NVM (or similar device) to registers. This loading is done every time when there is HW reset cancel time (tRT) within 5 ms after a rising edge of RESX.
 - 2. Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below:

RESX Pulse	Action
Shorter than 5us	Reset Rejected
Longer than 9us	Reset
Between 5us and 9us	Reset starts

- 3. During the Resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out –mode. The display remains the blank state in Sleep In –mode.) and then return to Default condition for Hardware Reset.
 - 4. Spike Rejection also applies during a valid reset pulse as shown below:

■ EXTERNAL DIMENSIONS

For more information please refer to ST7796S data sheet.

■ Iintial code

```
void LCDICINIT(void) //VDD=3.3V
{
CS(1);
SCLK(1);
SDI(1);
LCD_RST(1);
WaitTime(10);
LCD RST(0);
WaitTime(10);
LCD RST(1);
WaitTime(150);
LCDSPI_InitCMD(0x11); //Sleep Out
WaitTime(150);
LCDSPI InitCMD(0x36); // Memory Data Access Control MY,MX
LCDSPI_InitDAT(0x48); //
LCDSPI_InitCMD(0x3A) ://Interface Pixel Format
LCDSPI_InitDAT(0x66);//
LCDSPI_InitCMD(0xF0); // Command Set Control
LCDSPI InitDAT(0xC3);
LCDSPI_InitCMD(0xf0);
LCDSPI InitDAT(0x96);
LCDSPI InitCMD(0xB0);//Interface Mode Control
LCDSPI InitDAT(0x80);// VSCP HSCP PKP DEP 极性
LCDSPI_InitCMD(0xB4) ;//Display Inversion Control
LCDSPI InitDAT(0x01);//
LCDSPI_InitCMD(0xB5) ;//Display Function Control
LCDSPI InitDAT(0x0A); //
LCDSPI_InitDAT(0x14);
LCDSPI InitDAT(0x00);
LCDSPI_InitDAT(0x0A);
LCDSPI_InitCMD(0xB6) ;//Display Function Control
LCDSPI InitDAT(0xB0); //
LCDSPI_InitDAT(0x02);
LCDSPI InitDAT(0x3B);
```

```
Entry Mode Set
LCDSPI_InitCMD(0xB7);//
LCDSPI_InitDAT(0xC6); //
LCDSPI_InitCMD(0xE8);//Display Output Ctrl Adjust
LCDSPI InitDAT(0x40);
LCDSPI_InitDAT(0x8A);
LCDSPI InitDAT(0x00);
LCDSPI InitDAT(0x00);
LCDSPI_InitDAT(0x29);
LCDSPI InitDAT(0x19);
LCDSPI_InitDAT(0xA5);
LCDSPI InitDAT(0x33);
LCDSPI InitCMD(0xC0);//Power Control 1
LCDSPI_InitDAT(0x80);//AVDD, AVCL
LCDSPI InitDAT(0x51);//
LCDSPI_InitCMD(0xC1);//VAP(GVDD),VAN(GVCL)
LCDSPI InitDAT(0x19);
LCDSPI_InitCMD(0xC2);
LCDSPI InitDAT(0xA7);
LCDSPI_InitCMD(0xc5);//VCOM Control
LCDSPI_InitDAT(0x08);//
LCDSPI InitCMD(0xE0);
LCDSPI_InitDAT(0xA0);
LCDSPI InitDAT(0x0B);
LCDSPI_InitDAT(0x14);
LCDSPI InitDAT(0x0B);
LCDSPI_InitDAT(0x0B);
LCDSPI_InitDAT(0x27);
LCDSPI InitDAT(0x3E);
LCDSPI InitDAT(0x33);
LCDSPI InitDAT(0x56);
LCDSPI_InitDAT(0x3B);
LCDSPI InitDAT(0x1A);
LCDSPI InitDAT(0x19);
LCDSPI_InitDAT(0x31);
LCDSPI InitDAT(0x33);
LCDSPI_InitCMD(0xE1);
LCDSPI InitDAT(0xA0);
```



```
LCDSPI_InitDAT(0x0B);
LCDSPI_InitDAT(0x14);
LCDSPI_InitDAT(0x0B);
LCDSPI_InitDAT(0x0B);
LCDSPI_InitDAT(0x27);
LCDSPI_InitDAT(0x3E);
LCDSPI_InitDAT(0x33);
LCDSPI_InitDAT(0x56);
LCDSPI_InitDAT(0x3B);
LCDSPI_InitDAT(0x1A);
LCDSPI InitDAT(0x19);
LCDSPI_InitDAT(0x31);
LCDSPI InitDAT(0x33);
LCDSPI_InitCMD(0xF0);
LCDSPI_InitDAT(0x3C);
LCDSPI_InitCMD(0xF0);
LCDSPI InitDAT(0x69);
WaitTime(120); // Delay 120ms
LCDSPI_InitCMD(0x29); // Display ON
WaitTime(120); // Delay 120ms
LCDSPI_InitCMD(0x21);
}
```