

Создание классификатора для определения эффекторных белков системы секреции VI грамотрицательных бактерий

Иван Петрушин Иркутский государственный университет Лимнологический институт СО РАН

Предсказание свойств белков in silico

Популярный способ отбора

- Аннотация (предсказание функций) генов
 - GeneMark, Glimmer
- Поиск сайтов в белках
 - SignalP
 - TargetP
- Анализ гидрофобности

Type VI secretion system

- Распространена у патогенных бактерий
- Компоненты-белки консервативны
- Секретирует широкий спектр белков
 - Токсины
 - Гидролазы
 - Металлофоры (получение ионов металлов)

Предсказание класса (эффектор)

Исходные данные — последовательность аминокислот Признаки:

- Последовательность
 - ААС (частотность аминокислот)
 - DPC (частота биграммов)
 - QSO (quasi-sequence-order)
- Эволюционные (PSSM, BLOSUM)
- Физико-химические
- Сравнение с базами белков

Архитектура модели

Архитектура модели

Вычисление ряда признаков может быть сложным Position Specific Substitution Matrix — 5 минут (!) Используется только первая группа признаков

Два уровня: SVC для AAC, DPC, QSO — базовые модели Random Forest — финальная модель

Модульная архитектура (ансамбли) позволяет добавлять признаки и тестировать независимо

Тестирование модели

- Проблема данные не сбалансированы
- Ансамблевый подход затрудняет кроссвалидацию
- Значения TN/TP/FP/FN зависят от разбиения

Планы

- Расширить обучающую выборку
- Реализовать остальные признаки
- Использовать многопоточность