

What we claim is:

1 1. A process for forming at least one transistor on a substrate,
2 which process comprises depositing on the substrate at least one layer of
3 semiconductor material, wherein the substrate comprises a polyphenylene polyimide.

1 2. A process according to claim 1 wherein the polyphenylene
2 polyimide is a derivative of biphenyl-3,3',4,4'-tetracarboxylic acid.

1 3. A process according to claim 2 wherein the polyimide is a
2 derivative of biphenyl-3,3',4,4'-tetracarboxylic acid and an α,ω -alkanediamine.

1 4. A process according to claim 1 wherein a passivating layer is
2 deposited on the substrate before the semiconductor material is deposited thereon.

1 5. A process according to claim 4 wherein the passivating layer
2 comprises silicon dioxide or aluminum nitride.

1 6. A process according to claim 4 wherein the passivating layer
2 has a thickness in the range of about 20 to about 100 nm.

1 7. A process according to claim 4 wherein the passivating layer is
2 deposited on both surfaces of the substrate.

1 8. A process according to claim 4 wherein the substrate is heated
2 to a temperature greater than about 150°C for a period of at least about 1 minute
3 before deposition of the passivating layer.

1 9. A process according to claim 4 wherein the substrate is heated
2 to a temperature greater than about 250°C for a period of at least about 5 hours after
3 deposition of the passivating layer.

1 10. A process according to claim 1 wherein the substrate is heated
2 to a temperature greater than about 250°C for a period of at least about 1 hour before
3 deposition of the semiconductor material.

1 11. A process according to claim 1 wherein the substrate comprises
2 a metal layer on the side thereof remote from the semiconductor material.

1 12. A process according to claim 11 wherein the metal layer has
2 walls defining apertures extending through the metal layer.

1 13. A process according to claim 1 wherein the deposition of the
2 semiconductor material is effected at a temperature in excess of about 300°C.

1 14. A process according to claim 1 wherein a metal layer is
2 deposited upon the substrate on the same side thereof as the semiconductor material
3 but prior to the deposition of the semiconductor material.

1 15. A process according to claim 14 wherein the metal layer
2 comprises chromium.

1 16. A process according to claim 14 wherein the metal layer is
2 deposited as a continuous film and is thereafter patterned prior to deposition of the
3 semiconductor material thereon.

1 17. A process according to claim 14 wherein a layer of dielectric
2 material is deposited over the metal layer prior to the deposition of the semiconductor
3 material.

1 18. A process according to claim 17 wherein the dielectric layer
2 comprises silicon nitride.

1 19. A process according to claim 1 wherein the dielectric layer is
2 deposited by plasma enhanced chemical vapor deposition.

1 20. A process according to claim 1 wherein the semiconductor
2 material comprises amorphous silicon.

1 21. A process according to claim 20 wherein the semiconductor
2 material is deposited by plasma enhanced chemical vapor deposition.

1 22. A process according to claim 20 wherein the amorphous silicon
2 is not patterned so that it extends continuously between at least some pairs of adjacent
3 transistors

1 23. A process according to claim 20 wherein the semiconductor
2 material further comprises a layer of n-type silicon deposited over the amorphous
3 silicon.

1 24. A process according to claim 23 wherein a continuous layer of
2 the n-type silicon is deposited over the amorphous silicon, a patterned layer of metal is
3 thereafter formed over the n-type silicon, and the resultant structure is thereafter
4 etched to remove portions of the n-type silicon not covered by the patterned layer of
5 metal.

1 25. A process according to claim 1 wherein deposition of the
2 semiconductor material is effected on a continuous web of substrate.

1 26. A substrate comprising a polyphenylene polyimide, the
2 substrate bearing at least one transistor

1 27. A substrate according to claim 26 wherein the polyphenylene
2 polyimide is a derivative of biphenyl-3,3',4,4'-tetracarboxylic acid.

1 28. A substrate according to claim 27 wherein the polyimide is a
2 derivative of biphenyl-3,3',4,4'-tetracarboxylic acid and an α,ω -alkanediamine.

1 29. A substrate according to claim 26 having a passivating layer
2 between the substrate and the transistor.

1 30. A substrate according to claim 27 having a metal layer on the
2 side thereof remote from the transistor.

1 31. A substrate according to claim 27 wherein the transistor
2 comprises at least one amorphous silicon layer.

1 32. A substrate according to claim 31 bearing at least at least two
2 transistors, each of the transistors comprising at least one amorphous silicon layer and
3 the silicon layer extending continuously between the two transistors.

1 33. A substrate according to claim 27 wherein the transistor further
2 comprises at least one n-type silicon layer in contact with the amorphous silicon layer.