Throughput Maximization on Identical Machines

Coauthors: Benjamin Moseley, Kirk Pruhs, Clifford Stein IPCO 2022

Summary

- A deterministic O(1)-competitive alg. for Online Throughput Maximization on m > 1 machines.
- Concludes 20-year line of research since m=1 case settled

Summary

- A deterministic O(1)-competitive alg. for Online Throughput Maximization on m > 1 machines.
- Concludes 20-year line of research since m=1 case settled

Summary

- A deterministic O(1)-competitive alg. for Online Throughput Maximization on m > 1 machines.
- Concludes 20-year line of research since m=1 case settled
- Algorithm: Run 3 algs. on m/3 machines each

• m identical machines \Box

:

time ----

- m identical machines \Box
- Jobs arrive online at their release times with sizes and deadlines

• m identical machines \Box

• m identical machines \square

• m identical machines

• m identical machines \Box

• m identical machines \Box

• m identical machines

time

• m identical machines

• m identical machines

Q: How can Alg. know what is the 'right' job to preempt for?

Q: How can Alg. know what is the 'right' job to preempt for?

Q: How can Alg. know what is the 'right' machine?

Hard examples = jobs have low laxity

Hard examples = jobs have low laxity

- Hard examples = jobs have low laxity
- All jobs have $laxity = \Omega(size) \Rightarrow O(1)$ —competitive alg. known

- laxity = lifetime sizeHard examples = jobs have low laxity
- All jobs have $laxity = \Omega(size) \Rightarrow O(1)$ —competitive alg. known

Brendan Lucier, Ishai Menache, Joseph Naor, Jonathan Yaniv: Efficient online scheduling for deadline-sensitive jobs. SPAA 2013.

Franziska Eberle, Nicole Megow, Kevin Schewior: Optimally handing commitment issues in online throughput maximization. ESA 2020.

- laxity = lifetime sizeHard examples = jobs have low laxity
- All jobs have $laxity = \Omega(size) \Rightarrow O(1)$ —competitive alg. known

Main Challenge: How to handle jobs where $laxity \ll size$?

Brendan Lucier, Ishai Menache, Joseph Naor, Jonathan Yaniv: Efficient online scheduling for deadline-sensitive jobs. SPAA 2013.

Franziska Eberle, Nicole Megow, Kevin Schewior: Optimally handing commitment issues in online throughput maximization. ESA 2020.

• SRPT Sketch:

- If SRPT also completes red $\Rightarrow \odot$
- Else when Opt runs red, SRPT must be running m jobs with even shorter remaining size than red $\Rightarrow \odot$

SRPT Sketch:

- If SRPT also completes red $\Rightarrow \odot$
- Else when Opt runs red, SRPT must be running m jobs with even shorter remaining size than red $\Rightarrow \odot$

Main Challenge: How does New Alg. handle jobs where $laxity \le size + preempted by Opt?$

Alg. for Low-Laxity + Preempted

• Idea: each mach. maintains a stack of jobs \sim chain of preemptions

Alg. for Low-Laxity + Preempted

- Idea: each mach. maintains a stack of jobs \sim chain of preemptions
- Always run top job of stack

Alg. for Low-Laxity + Preempted

- Idea: each mach. maintains a stack of jobs \sim chain of preemptions
- Always run top job of stack

Alg. for Low-Laxity + Preempted

- Idea: each mach. maintains a stack of jobs \sim chain of preemptions
- Always run top job of stack

First Try – Job Release

- When job *j* released:
 - If there exists stack with $size(j) \le \epsilon \times laxity(top\ job\ of\ stack)$, then push j onto such a stack

First Try – Job Release

- When job *j* released:
 - If there exists stack with $size(j) \le \epsilon \times laxity(top\ job\ of\ stack)$, then push j onto such a stack

- When job j released*:
 - If there exists stack with $size(j) \le \epsilon \times laxity(top\ job\ of\ stack)$, then push j onto such a stack
- When job *j* completed:
 - Pop j off its stack; continue popping that stack until the top job can be feasibly completed

- When job *j* released*:
 - If there exists stack with $size(j) \le \epsilon \times laxity(top job \ of \ stack)$, then push j onto such a stack
- When job *j* completed:
 - Pop j off its stack; continue popping that stack until the top job can be feasibly completed

- When job j released*:
 - If there exists stack with $size(j) \le \epsilon \times laxity(top\ job\ of\ stack)$, then push j onto such a stack
- When job *j* completed:
 - Pop j off its stack; continue popping that stack until the top job can be feasibly completed

^{*}consider modified release times

- When job j released*:
 - If there exists stack with $size(j) \le \epsilon \times laxity(top job \ of \ stack)$, then push j onto such a stack
- When job *j* completed:
 - Pop j off its stack; continue popping that stack until the top job can be feasibly completed

Need to sometimes replace current job

^{*}consider modified release times

• Recall: *m* machines

• Recall: *m* machines

• Recall: *m* machines

:

• Recall: *m* machines

• Recall: *m* machines

• Recall: m machines

...

E

Idea: If new job is much better than majority of the stacks, then replace

- When job *j* released*:
 - If there exists stack with $size(j) \le \epsilon \times laxity(top job \ of \ stack)$, then push j onto such a stack
 - Else if $\Omega(m)$ stacks satisfy $size(j) \le \epsilon \times laxity(second\ job\ of\ stack)$ and $laxity(j) > laxity(top\ job\ of\ stack)$ for some such stack, then replace* the top job with j
- When job *j* completed:
 - Pop j off its stack; continue popping that stack until the top job can be feasibly completed

- When job *j* released*:
 - If there exists stack with $size(j) \le \epsilon \times laxity(top job \ of \ stack)$, then push j onto such a stack
- Else if $\Omega(m)$ stacks satisfy $size(j) \le \epsilon \times laxity(second\ job\ of\ stack)$ and $laxity(j) > laxity(top\ job\ of\ stack)$ for some such stack, then replace* the top job with j
- When job *j* completed:
 - Pop j off its stack; continue popping that stack until the top job can be feasibly completed

^{*}consider modified release times

^{*}some tie-breaking rules apply

• Show # (Pushes by Final Alg.) = $\Omega(\#(Completions\ by\ Opt))$

- Show # (Pushes by Final Alg.) = $\Omega(\#(Completions\ by\ Opt))$
- Show do not pop many jobs due to being infeasible

- Show # (Pushes by Final Alg.) = $\Omega(\#(Completions\ by\ Opt))$
- Show do not pop many jobs due to being infeasible
 - If job *j* is popped due to being infeasible:
 - \Rightarrow many pushes/replacements on j's stack

- Show # (Pushes by Final Alg.) = $\Omega(\#(Completions\ by\ Opt))$
- Show do not pop many jobs due to being infeasible
 - If job *j* is popped due to being infeasible:
 - \Rightarrow many pushes/replacements on j's stack
 - If many pushes, then charge to completion of those pushes
 - If many replacements, then can find long interval where Final Alg. is running jobs much smaller than $j \Rightarrow$ witness that SRPT is running even better jobs

Summary

- A deterministic O(1)-competitive alg. for Online Throughput Maximization on m > 1 machines.
- ullet Concludes 20-year line of research since m=1 case settled
- Algorithm: Run 3 algs. on m/3 machines each

Summary

- A deterministic O(1)-competitive alg. for Online Throughput Maximization on m > 1 machines.
- Concludes 20-year line of research since m=1 case settled
- Algorithm: Run 3 algs. on m/3 machines each

Open Question: Can make Alg. non-migratory?