Course	Thing	Explanation	Date	Important	Index
MA1521	Precise Definition of limit	$\forall \epsilon > 0$, $\exists \delta \epsilon > 0$ st $ f(x)-L < \epsilon$ whenever $0 < x-a < \delta \epsilon$	18/08/2021	Important	43
MA1521	Composite limit	$\lim[x \to a] f(g(x)) = f(\lim[x \to a] g(x)).$	18/08/2021		44
MA1521	Continuous functions	A function is continuous on an interval if it is continuous at every number in the interval.	18/08/2021		45
	Continuous functions	Preserved under addition, multiplication, division,	16/06/2021		40
MA1521	Limit laws	exponentiation	18/08/2021		46
MA1521	Prove continuous	$\lim[h\to 0]f(x+h) = f(x)$	25/08/2021		86
MA1521	Prove differentiable	$\lim[h\rightarrow 0](f(x+h)-f(x))/h$	25/08/2021		87
		If f continuous in interval, then it contains an absolute max and			
MA1521	Extreme Value Theorem	min value; so there are numbers in the interval and the function is between the max and min for every other in the interval	27/08/2021	Important	99
MA1521	First Derivative Theorem	f'(x) = 0 at the max or min value	27/08/2021	portant	100
	r not Bonnauro mostem	If f continuous and differentiable and $f(a) = f(b)$, then $\exists c$ such	2770072021		
MA1521	Rolle's theorem	that $f^{-1}(c) = 0$	01/09/2021	Important	135
MA1521	Maan Value Theorem	If f continuous and differentiable, then $\exists c f^{-1}(c) = (f(b)-f(a))/(b c)$	01/00/2021	Important	126
IVIA 152 I	Mean Value Theorem	(b-a) if f and g continuous and differentiable, then $\exists c f^{-1}(c)/g(c) = (f$	01/09/2021	ппропапі	136
MA1521	Cauchy Mean Value Theorem	(b)- $f(a)$)/($g(b)$ - $g(a)$)	01/09/2021		137
MA1521	Riemann Sum	$\sum f(c)$ (size of interval)	03/09/2021		141
		Instead of comparing by inequality, you can take the quotient of the two limits to be tested; If the new limit is not zero or ∞, then the two smaller limits are both convergent or both divergent;			
MA1521	Limit comparison test	$\lim \sum f(x) = \lim (f(x) / g(x)) \Rightarrow \text{ if zero or } \infty, \text{ then nature of } f(x) \text{ is the nature of } g(x)$	06/10/2021		262
		$\lim \sum f(x) \Rightarrow \text{compare the size of } f(x) \text{ vs } g(x) \Rightarrow \text{can corrale the } f$	33 3/2021		232
MA1521	Comparison test	(x) using the nature of $g(x)$	06/10/2021		263
MA1521	Absolute convergence	$\sum f(\mathbf{x}) \Rightarrow \sum f(\mathbf{x})$	06/10/2021		264
MA1521	Conditionally convergent	∑a□ convergent and ∑ a□ divergent	06/10/2021		266
		If the terms > 0 and have upper bound, then limit is the upper			
MA1521	Monotonic sequence theorem	bound; If the terms < 0 and have lower bound, then limit is lower bound	06/10/2021		267
	monotonio doquonioo tirooroni	$\sum f(x) \approx [f(x)dx \Rightarrow \text{the integral from 1 to} \infty \text{ will decide whether}]$	00/10/2021		
MA1521	Integral test	the sum is convergent or divergent	06/10/2021		268
		$\lim_{ a \to 1/a } = L;$			
		L < 1 ⇒ absolutely convergent; L > 1 or infinite ⇒ divergent;			
MA1521	Ratio test	L = 1 ⇒ inconclusive	06/10/2021		269
		lim(n√a□) = L;			
		L < 1 ⇒ absolutely convergent; L > 1 or infinite ⇒ divergent;			
MA1521	Root test	L = 1 ⇒ inconclusive	06/10/2021		270
		∑(-1) ⁿ u□ convergent if:			
		$\rightarrow u \square > 0$ $\rightarrow u \square_{+1} \le u \square$			
MA1521	Alternating series test	\rightarrow u \square \rightarrow 0	10/11/2021		270.5
MA1521	Absolute convergence test	$\Sigma a\square $ convergent $\rightarrow \Sigma a\square$ convergent	10/11/2021		270.75
		$R = \lim c \square / c \square_{+1} = \lim 1/c \square^{-1} ;$			
		$\begin{aligned} x-a &< R \\ \Leftrightarrow \sum_{C} \square (x-a)^k \text{ convergent} \\ \Leftrightarrow \sum_{C} \square k(x-a)^{k-1} \text{ convergent} \end{aligned}$			
	Find radius of convergence of power	$R = 0 \Rightarrow \sum c \Box (x - a)^k \text{ convergent only at a}$	00/40/0004		0.11
MA1521	series	$R = \infty \Rightarrow \sum C \square (x - a)^k \text{ convergent everywhere}$	08/10/2021	Important	311
MA1521	Open/closed region	Closed region contains all boundary points; Open region contains only interior points	08/10/2021		312
MA1521	Derivative of inverse function	$f^{-1}(x)' = 1 / f'(f^{-1}(x))$	09/10/2021	Important	331
		sec²x = 1 + tan²x; csc²x = 1 + cot²x; sinAcosB = ½[sin(A-B)+sin(A+B)]; sinAsinB = ½[cos(A-B)-cos(A+B)]; cscAcosB = ½[cos(A-B)+cos(A+B)]; (tanx)' = sec²x; (cotx)' = -csc²x; (secx)' = tanxsecx; (cscx)' = -cotxcsx; (sin⁻x)' = 1/√(1-x²); (cos⁻x)' = -1/√(1-x²); (tan⁻x)' = 1/√(1+x²); (cot⁻x)' = -1/√(1+x²); (sec⁻x)' = 1/√(1x²); (sec⁻x)' = 1/√(1x√(x²-1)); [1/(x²+d²)dx = tan⁻x(x/d)/d); [scc(x)dx = -in(csc(x) + cot(x)); [cot(x)dx = ln(sin(x)); [sec(x)dx = ln(sec(x) + tan(x)); [1/(a²-x²)dx = ln(+x/a-x)/2a; [1/√(a²-x²)dx = ln(+x/a-x)/2a; [1/√(a²-x²)dx = sin⁻√(x/a);			
MA1521	Trigo identities	$\int 1/\sqrt{(x^2 \pm a^2)} dx = \ln(x + \sqrt{(x^2 \pm a^2))};$	09/10/2021	Important	332
MA1521	Mean Value Theorem for Definite Integrals	$\exists c \ s.t. \ f(c) = \int f(x)dx / (b-a);$ There is a value $f(c)$ that equals to the average y of the integral	12/10/2021	Important	335
MA1521	Series	Limit of the sequence of partial sums (limit of Σ)	15/10/2021	p	371
-	Precise definition of limit in 2	The limit at a point (x_0, y_0) exists if $\exists \delta, \varepsilon$ such that $\sqrt{(x-x_0)^2 + (y-x_0)^2}$			27.
MA1521	dimensions	$(y_0)^2 < \delta \Rightarrow f(x,y) - L < \varepsilon$	15/10/2021		372

Course	Thing	Explanation	Date	Important	Index
MA1521	Find limit of multivariable expressions	Use substitution; Use composite functions;	15/10/2021		373
MA1521	Partial Derivative	$f_X(x_0, y_0) = (\partial f / \partial x)(x_0, y_0) = \lim[h \rightarrow 0](f(x_0 + h, y_0) - f(x_0, y_0) / h)$	15/10/2021	Important	374
MA1521	Mixed Derivative Theorem	$f_{xy} = f_{yx}$ iff continuous	15/10/2021		375
MA1521	Clairaut's theorem	$f_{xy} = f_{yx}$ iff continuous	20/10/2021		406
MA1521	Partial Derivatives and Continuity	Partial derivatives may exist even if the function is not continuous, as long as the x and y directions are both continuous; (1, 1) direction may be discontinuous	20/10/2021	Important	407
MA1521	Prove multivariable function is continuous	Prove that f_x and f_y is continuous	20/10/2021		408
MA1521	Find rate of change of f	$df/dt = (\partial f/\partial x)(dx/dt) + (\partial f/\partial y)(dy/dt)$	20/10/2021	Important	409
MA1521	Saddle point	Critical point with some neighbours more than it and some neighbours less than it	20/10/2021		410
MA1521	Second derivative test for multivariable function	Saddle point: $f_{xx}f_{yy} - f_{xy}^2 < 0$ Maximum point: $f_{xx}f_{yy} - f_{xy}^2 > 0$ and $f_{xx} < 0$ Minimum point: $f_{xx}f_{yy} - f_{xy}^2 > 0$ and $f_{xx} > 0$	20/10/2021	Important	411
MA1521	Critical points at boundary	Sub in the equation for the boundary, then find the critical point using one variable	20/10/2021		412
MA1521	Prove divergent	Use nth term test	21/10/2021		418
MA1521	Find Lagrange multiplier (with one constraint)	Find the maximum value of f when travelling across g \rightarrow Let f , g be continuous and differentiable, and $g(a, b) = 0$ \rightarrow Then, $(g_X(a, b), g_Y(a, b)) \neq (0, 0) \Rightarrow (f_X(a, b), f_Y(a, b)) = \lambda(g_X(a, b), g_Y(a, b))$ \rightarrow Sub into g to solve for λ	22/10/2021	Important	431
MA1521	Find maxima and minima of closed regions	\rightarrow Find interior critical points using f_x and f_y \rightarrow Find boundary critical points by subbing in (x, 9-x) for y = 9 - x	09/11/2021		467
MA1521	Volume of revolution (disc)	πʃy²dx	09/11/2021		468
MA1521	Volume of revolution (shell)	2πʃxydx	09/11/2021		469
MA1521	Arc length	$\int \sqrt{(1 + y')} dx$	09/11/2021		470
MA1521	Surface area of revolution	$2\pi \int y\sqrt{1+y'}dx$	09/11/2021		471