

Page 1 of 45

TEST REPORT

Product : Coolbox
Trade mark : Coolbox
Model/Type reference : CB-RED
Serial Number : N/A

Report Number : EED32H00168802 FCC ID : 2AH8W-CB-RED

Date of Issue: : Apr. 14, 2016

Test Standards : 47 CFR Part 15 Subpart C (2015)

Test result : PASS

Prepared for:

Coolbox, LLC 16851 Saybrook Ln. Huntington Beach, CA 92649

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Lon Yang

Reviewed by:

Enen-Li

Luv

Sheek Luo Lab manager Date:

Apr. 14, 2016

Check No.:2212805597

Page 2 of 45

2 Version

Version No. Date		Description			
00	Apr. 14, 2016		Original		
		130	(3)	(30)	
((3)		(67)	(0,)	

Report No.: EED32H00168802 Page 3 of 45

3 Test Summary

Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS	
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013		
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Remark:

The tested sample(s) and the sample information are provided by the client.

Page 4 of 45

4 Content

PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS......37

Report No. : EED32H00168802 Page 5 of 45

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Antenna Tower

Antenna Tower

Ground Reference Plane

Test Receiver

Angulee Controlles

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:				
Temperature:	24 °C			
Humidity:	50 % RH			
Atmospheric Pressure:	1010mbar	(6.)		

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel			
	TX/KX	Low(L)	Middle(M)	High(H)	
0501/	04000411 0400 0411	Channel 1	Channel 20	Channel40	
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
Transmitting mode:	The EUT transmitted the continuous modulation test signal at the specific channel(s)				

6 General Information

6.1 Client Information

Report No.: EED32H00168802

Applicant:	Coolbox, LLC
Address of Applicant:	16851 Saybrook Ln. Huntington Beach, CA 92649
Manufacturer:	JIANFA ELECTRICAL MANUFACTURES (SHENZHEN) CO., LTD.
Address of Manufacturer:	NO.74 GUXU YILU, XIXIANG TOWN, BAOAN, SHENZHEN, GUANGDONG, 518126, CHINA

6.2 General Description of EUT

Product Name:	Coolbox		
Model No.(EUT):	CB-RED		
Tark Mark:	Coolbox		
EUT Supports Radios application	Bluetooth V4.0 BLE		
Power Supply:	AC 120V, 60Hz	(3)	
Sample Received Date:	Oct.12, 2015	(6,7.7)	(8,2)
Sample tested Date:	Oct.12, 2015 to Apr. 14, 2016		

6.3 Product Specification subjective to this standard

Operation I	requency:	2402M	2402MHz~2480MHz				
Bluetooth \	/ersion:	BT 4.0					/
Modulation	Type:	Blueto	Bluetooth V4.0 BLE				
Number of	Channel:	40					
Test Power	r Grade:	50 (ma	nufacturer de	clare)	(30)		(3
Test Softwa	are of EUT:	CSR B	lueTest3 (mai	nufacturer de	eclare)		(0)
Antenna Ty	/pe and Gain::	Type: Gain:0	Integral dBi				
Test Voltag	Voltage: AC 120V, 60Hz						
Operation I	requency eac	h of channe	I	(25))	(3))
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Certification	Supplied by
Mobile phone	SAMSUNG	GT-19082i	FCC ID	CTI

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd.has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 565659

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 565659.

IC-Registration No.: 7408A

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A.

IC-Registration No.: 7408B

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B.

Report No.: EED32H00168802 Page 9 of 45

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions

None.

6.9 Other Information Requested by the Customer

None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE november desired	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB(1GHz-18GHz)
3	Dadiated Spurious emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB(1GHz-12.75GHz)
	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Report No. : EED32H00168802 Page 10 of 45

7 Equipment List

RF test system							
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016		
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017		
Communication test set test set	Agilent	N4010A	MY47230124	04-02-2015	04-01-2016		
Communication test set	Agilent	N4010A	MY51400230	04-01-2016	03-31-2017		
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2015	03-31-2016		
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-31-2017		
Signal Generator	Keysight	N5182B	MY53051549	03-31-2015	03-30-2016		
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-31-2017		
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002		01-13-2015	01-12-2016		
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017		
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4	75	01-13-2015	01-12-2016		
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017		
band rejection filter (GSM900)	Sinoscite	FL5CX01CA09C L12-0395-001		01-13-2015	01-12-2016		
band rejection filter (GSM900)	Sinoscite	FL5CX01CA09C L12-0395-001		01-12-2016	01-11-2017		
band rejection filter (GSM850)	Sinoscite	FL5CX01CA08C L12-0393-001		01-13-2015	01-12-2016		
band rejection filter (GSM850)	Sinoscite	FL5CX01CA08C L12-0393-001		01-12-2016	01-11-2017		
band rejection filter (GSM1800)	Sinoscite	FL5CX02CA04C L12-0396-002	(4)	01-13-2015	01-12-2016		
band rejection filter (GSM1800)	Sinoscite	FL5CX02CA04C L12-0396-002		01-12-2016	01-11-2017		
band rejection filter (GSM1900)	Sinoscite	FL5CX02CA03C L12-0394-001		01-13-2015	01-12-2016		
band rejection filter (GSM1900)	Sinoscite	FL5CX02CA03C L12-0394-001		01-12-2016	01-11-2017		
DC Power	Keysight	E3642A	MY54436035	03-31-2015	03-30-2016		
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2017		
PC-1	Lenovo	R4960d	(43)	04-01-2015	03-31-2016		
PC-1	Lenovo	R4960d		04-01-2016	03-31-2017		
BT&WI-FI Automatic control	R&S	OSPB157	101374	04-01-2015	03-31-2016		
BT&WI-FI Automatic control	R&S	OSP120	101374	04-01-2016	03-31-2017		
RF control unit	JS Tonscend	JS0806-2	2015860006	04-01-2015	03-31-2016		

Page 11 of 45

RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-31-2017
BT&WI-FI Automatic test software	JS Tonscend	JSTS1120-2	(6)	04-01-2015	03-31-2016
BT&WI-FI Automatic test software	JS Tonscend	JSTS1120-2		04-01-2016	03-31-2017

		3M Semi/full-anech	noic Chamber	•	
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber	TDK	SAC-3	(44)	06-02-2013	06-01-2016
TRILOG Broadband Antenna	schwarzbeck	VULB9163	9163-617	07-31-2015	07-29-2016
Microwave Preamplifier	Agilent	8449B	3008A02425	02-05-2015	02-04-2016
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-30-2015	06-28-2016
Receiver	R&S	ESCI	100435	06-30-2015	06-28-2016
Multi device Controller	maturo	NCD/070/10711112		01-13-2015	01-12-2016
Multi device Controller	maturo	NCD/070/10711112		01-12-2016	01-11-2017
LISN	schwarzbeck	NNBM8125	81251547	06-30-2015	06-28-2016
LISN	schwarzbeck	NNBM8125	81251548	06-30-2015	06-28-2016
Signal Generator	Agilent	E4438C	MY45095744	04-19-2015	04-18-2016
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	07- 08-2015	07-06-2016
Communication test set	Agilent	E5515C	GB47050533	04-27-2015	04-26-2016
Cable line	Fulai(7M)	SF106	5219/6A	01-13-2015	01-12-2016
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017
Cable line	Fulai(6M)	SF106	5220/6A	01-13-2015	01-12-2016
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5216/6A	01-13-2015	01-12-2016
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5217/6A	01-13-2015	01-12-2016
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017
Communication test set	R&S	CMW500	152394	04-19-2015	04-18-2016
High-pass filter(3-	Sinoscite	FL3CX03WG18NM		01-13-2015	01-12-2016

Page 12 of 45

18GHz)		12-0398-002	13	1	2
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18NM 12-0398-002		01-12-2016	01-11-2017
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-13-2015	01-12-2016
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA09CL1 2-0395-001		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX01CA09CL1 2-0395-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA08CL1 2-0393-001		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX01CA08CL1 2-0393-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA04CL1 2-0396-002		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX02CA04CL1 2-0396-002		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA03CL1 2-0394-001		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX02CA03CL1 2-0394-001		01-12-2016	01-11-2017

	Co	nducted distu	rbance Test		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100009	06-30-2015	06-28-2016
Temperature/ Humidity Indicator	Belida	TT-512	101	07-09-2015	07-07-2016
Communication test set	Agilent	E5515C	GB47050533	04-27-2015	04-26-2016
Communication test set	R&S	CMW500	152394	04-19-2015	04-18-2016
LISN	R&S	ENV216	100098	06-30-2015	06-28-2016
LISN	schwarzbeck	NNLK8121	8121-529	06-30-2015	06-28-2016
Voltage Probe	R&S	ESH2-Z3	100042	07-09-2014	07-08-2017
Current Probe	R&S	EZ17	100106	07-09-2014	07-08-2017
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	01-27-2017

Report No. : EED32H00168802 Page 13 of 45

8 Radio Technical Requirements Specification

Reference documents for testing:

		9
No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

Report No. : EED32H00168802 Page 14 of 45

Appendix A): 6dB Occupied Bandwidth

Test Result

	Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
3	BLE	LCH	0.6905	1.0442	PASS	(3)
	BLE	MCH	0.6918	1.0407	PASS	Peak
	BLE	HCH	0.6877	1.0450	PASS	detector

Test Graphs

Page 15 of 45

Report No. : EED32H00168802 Page 16 of 45

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	4.253	PASS
BLE	MCH	5.472	PASS
BLE	НСН	6.145	PASS

Test Graphs

Page 17 of 45

Report No. : EED32H00168802 Page 18 of 45

Appendix C): Band-edge for RF Conducted Emissions

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	4.045	-56.462	-15.96	PASS
BLE	HCH	6.114	-49.457	-13.89	PASS

Test Graphs

Report No.: EED32H00168802 Page 19 of 45

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	3.953	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	5.303	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	5.990	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graphs

Page 20 of 45

Page 21 of 45

Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-11.357	PASS
BLE	MCH	-9.867	PASS
BLE	HCH	-9.016	PASS

Test Graphs

Page 23 of 45

Report No. : EED32H00168802 Page 24 of 45

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna car be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Report No. : EED32H00168802 Page 25 of 45

Appendix G): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz-30MHz
	1) The mains terminal disturbance voltage test was conducted in a shielded room.
	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu\text{H} + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
	3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
	4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the

Limit:

	Fraguency range (MUz)	Limit (c	lBuV)
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
P	0.5-5	56	46
	5-30	60	50

^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

NOTE: The lower limit is applicable at the transition frequency

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Page 26 of 45

Live line: 80.0 dBuV Limit AVG: 30 -20 0.150 0.5 (MHz) 30.000 5 Measurement Reading_Level Correct Limit Margin No. Freq. (dBuV) (dBuV) Factor (dB) (dBuV) MHz QP QΡ QΡ P/F Comment Peak AVG dΒ AVG AVG QP AVG peak 0.1824 47.07 42.50 30.14 52.30 1 9.80 56.87 39.94 64.37 54.37 -12.07 -14.43 Ρ 2 0.2500 37.43 33.20 17.53 9.80 47.23 27.33 -24.42 43.00 61.75 51.75 -18.753 0.3019 31.81 27.05 11.42 9.80 41.61 36.85 21.22 60.19 50.19 -23.34-28.97 -1.20 12.34 9.80 22.34 8.80 4 4.3939 10.00 19.80 56.00 46.00 -36.20 -37.20 Ρ 5 22.3500 24.74 23.17 22.36 10.45 35.19 33.62 32.81 60.00 50.00 -26.38 -17.19 Р

6

24.9817 24.39 21.62

10.40

34.79

32.02

21.51

60.00

31.91

-18.09

50.00

-27.98

Page 27 of 45

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No. : EED32H00168802 Page 28 of 45

Appendix H): Restricted bands around fundamental frequency (Radiated)

	Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
		30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak	(
		Above 1CHz	Peak	1MHz	3MHz	Peak	(6)
		Above 1GHz	Peak	1MHz	10Hz	Average	100
9	Test Procedure:	Below 1GHz test procedu a. The EUT was placed of at a 3 meter semi-aned determine the position b. The EUT was set 3 meters was mounted on the total control of the antenna height is a determine the maximum polarizations of the antenna was tuned table was turned from the antenna was turned from the e. The test-receiver systems Bandwidth with Maximum at a 1 meters of the seminary	ure as below: on the top of a rotal choic camber. The of the highest race ters away from the pof a variable-heavaried from one man value of the field enna are set to manission, the EUT of the heights from 100 degrees to 360 cm was set to Peaum Hold Mode.	ating table e table wa diation. ne interfere eight anter neter to fo ld strength nake the m was arran 1 meter to degrees t ak Detect I	e 0.8 meters rotated 3 ence-receinna tower. ur meters a. Both horneasurement ged to its value 4 meters a of find the information a	rs above the 360 degrees iving antenna above the grizontal and vent. worst case a and the rotate maximum read of the rotate and Specified	to a, which cound to vertical ad ther able ading.
		f. Place a marker at the e frequency to show com bands. Save the spect for lowest and highest	npliance. Also me rum analyzer plot	asure any	emissions	s in the restri	
		frequency to show combands. Save the spectron for lowest and highest Above 1GHz test procedum of the foliation of the foliat	npliance. Also me rum analyzer plot channel ure as below: we is the test site, aber change form 1 meter and table towest channel, the ments are perforred found the X axis	change fr table 0.8 is 1.5 med he Highest med in X, s positioni	emissions for each por form Semi- metre to 1 fre). for channel Y, Z axis p ng which i	s in the restri ower and mode Anechoic Ch .5 metre(Ab positioning fo t is worse ca	dulation namber ove r
)	Limit:	frequency to show combands. Save the spectron for lowest and highest Above 1GHz test procedum of the fully Anechoic Chammat 18GHz the distance is how to fully Anechoic Chammat 18GHz the EUT in the low in the radiation measure Transmitting mode, and its Repeat above procedum is the save fully save full save fully save full save f	npliance. Also me rum analyzer plot channel ure as below: ve is the test site, aber change form 1 meter and table owest channel, the ments are perforred found the X axistres until all frequence.	change fr table 0.8 is 1.5 med he Highest med in X, s positioni encies me	emissions for each position of each position of the community of the commu	Anechoic Ch.5 metre(Ab	dulatio namber ove r
)	Limit:	frequency to show combands. Save the spectron for lowest and highest Above 1GHz test procedured. G. Different between above to fully Anechoic Chaman 18GHz the distance is h. Test the EUT in the lower in the rediation measure that Transmitting mode, and j. Repeat above procedure. Frequency	rum analyzer plot channel ure as below: we is the test site, aber change form 1 meter and table owest channel, the ments are perform d found the X axis ares until all frequential (dBuV/n).	change fr table 0.8 is 1.5 med he Highest med in X, s positioni encies me	om Semi- metre to 1 tre). channel Y, Z axis p ng which is	Anechoic Ch.5 metre(Ab	dulatio nambe ove r
)	Limit:	frequency to show combands. Save the spectron for lowest and highest Above 1GHz test procedum of the fully Anechoic Chamalage of the full Ane	rpliance. Also me rum analyzer plot channel ure as below: ve is the test site, aber change form 1 meter and table owest channel, the ments are perforred found the X axis ares until all frequents (dBuV/n 40.0)	change fr table 0.8 is 1.5 med he Highest med in X, s positioni encies me	remissions for each portion Semi-metre to 1 tre). channel Y, Z axis pang which it easured was Rer Quasi-pe	Anechoic Ch.5 metre(Abecositioning for tis worse cast complete.	dulatio nambe ove r
	Limit:	frequency to show combands. Save the spectron for lowest and highest Above 1GHz test procedums. G. Different between above to fully Anechoic Chammat 18GHz the distance is h. Test the EUT in the low in the radiation measure Transmitting mode, and j. Repeat above procedums. Frequency 30MHz-88MHz 88MHz-216MHz	rum analyzer plot channel ure as below: ve is the test site, aber change form 1 meter and table owest channel , the ments are perforred found the X axis ares until all frequences. Limit (dBuV/n 40.0 43.5	change fr table 0.8 is 1.5 med he Highest med in X, s positioni encies me	com Semi- metre to 1 tre). channel Y, Z axis p ng which i asured wa Rer Quasi-pe	Anechoic Ch.5 metre(Abecositioning for tis worse cast complete. mark eak Value eak Value	dulatio nambe ove r
	Limit:	frequency to show combands. Save the spectron for lowest and highest Above 1GHz test procedums. Different between above to fully Anechoic Chammand 18GHz the distance is how to fully Anechoic Chammand 18GHz the distance is how the fully Anechoic Chammand 18GHz the distance is how to fully Anechoic Chammand 18GHz the distance is how the fully Anechoic Chammand 18GHz the fully for the fully full	npliance. Also me rum analyzer plot channel ure as below: ve is the test site, aber change form 1 meter and table owest channel, the ments are perforred found the X axis ares until all freques Limit (dBuV/n 40.0 43.5 46.0	change fr table 0.8 is 1.5 med he Highest med in X, s positioni encies me	remissions for each por each p	Anechoic Ch.5 metre(Abecositioning for tis worse cast complete. mark eak Value eak Value	dulatio nambe ove r
	Limit:	frequency to show combands. Save the spectron for lowest and highest Above 1GHz test procedums. G. Different between above to fully Anechoic Chamaland 18GHz the distance is horizontal in the low in the radiation measure. Transmitting mode, and in the procedum in the p	Inpliance. Also me rum analyzer plot channel In as below: In as below: In a b	change fr table 0.8 is 1.5 med he Highest med in X, s positioni encies med m @3m)	remissions or each por each por each por each por each por each por each each each each each each each each	Anechoic Ch.5 metre(Abecositioning for tis worse cast complete. mark eak Value eak Value eak Value eak Value	dulatio nambei ove r
	Limit:	frequency to show combands. Save the spectron for lowest and highest Above 1GHz test procedums. Different between above to fully Anechoic Chammand 18GHz the distance is how to fully Anechoic Chammand 18GHz the distance is how the fully Anechoic Chammand 18GHz the distance is how to fully Anechoic Chammand 18GHz the distance is how the fully Anechoic Chammand 18GHz the fully for the fully full	npliance. Also me rum analyzer plot channel ure as below: ve is the test site, aber change form 1 meter and table owest channel, the ments are perforred found the X axis ares until all freques Limit (dBuV/n 40.0 43.5 46.0	change fr table 0.8 is 1.5 med ne Highest med in X, s positioni encies me	remissions for each por each each each each each each each each	Anechoic Ch.5 metre(Abecositioning for tis worse cast complete. mark eak Value eak Value	dulatio nambei ove r

Report No. : EED32H00168802 Page 29 of 45

Test plot as follows:

Worse case	e mode:	GFSK	(0,)		(0)	7		(0,)		
Freqency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Antenna Polaxis	Remark	Test channel
2390	32.53	37.21	4.28	44.91	44.51	74	-29.49	Н	PK	Lowest
2390	32.53	37.21	4.28	44.89	44.49	74	-29.51	V	PK	Lowest
2483.5	32.71	37.19	4.51	50.72	50.75	74	-23.25	Н	PK	Highest
2483.5	32.71	37.19	4.51	49.2	49.23	74	-24.77	V	PK	Highest

Note

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No. : EED32H00168802 Page 30 of 45

Appendix I): Radiated Spurious Emissions

Receiver Setup:

				N. W. W. W
Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
Above TGHZ	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

	Ŀ	-	_	-	
ī	i	m	١i٠	١.	

	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
L	0.490MHz-1.705MHz	24000/F(kHz)	-	100	30
1	1.705MHz-30MHz	30	-	(2-3)	30
١	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No.: EED32H00168802 Page 31 of 45

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)

MEASUREMENT RESULT:

Frequency MHz	Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
95.960000	30.50	14.0	43.5	13.0	QP	200.0	12.00	HORIZONTAL
142.520000	34.20	11.7	43.5	9.3	QP	200.0	70.00	HORIZONTAL
175.500000	30.80	12.7	43.5	12.7	QP	200.0	12.00	HORIZONTAL
253.100000	42.20	14.8	46.0	3.8	QP	100.0	11.00	HORIZONTAL
326.820000	39.70	16.8	46.0	6.3	QP	200.0	70.00	HORIZONTAL
809.880000	32.70	25.6	46.0	13.3	QP	200.0	221.00	HORIZONTAL

Page 32 of 45

MEASUREMENT RESULT:

Frequency MHz	Level dBµV/m		Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
37.760000	34.40	15.3	40.0	5.6	QP	100.0	67.00	VERTICAL
61.040000	33.80	14.9	40.0	6.2	QP	100.0	301.00	VERTICAL
76.560000	33.00	10.7	40.0	7.0	QP	100.0	358.00	VERTICAL
99.840000	36.00	14.7	43.5	7.5	QP	100.0	21.00	VERTICAL
255.040000	37.08	14.9	46.0	8.2	QP	200.0	22.00	VERTICAL
322.940000	36.50	16.7	46.0	9.5	QP	200.0	331.00	VERTICAL

Report No. : EED32H00168802 Page 33 of 45

Transmitter Emission above 1GHz

Hansinitte	Lillioon	on above	10112		A100 A100 A100 A100 A100 A100 A100 A100		1 - 750 71	
Worse case mode:			GFSK		Test chann	nel:	2402MHz	
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Antenna Polaxis
1326.513	30.52	38.25	2.66	48.40	43.33	74	-30.67	H
3003.173	33.60	37.10	5.62	48.05	50.17	74	-23.83	Н
3700.260	33.02	36.95	5.49	45.85	47.41	74	-26.59	Н
4804.000	34.69	36.82	5.11	45.84	48.82	74	-25.18	Н
7206.000	36.42	37.46	6.66	44.02	49.64	74	-24.36	Н
9608.000	37.88	37.82	7.73	44.25	52.04	74	-21.96	Н
1818.842	31.43	37.52	3.10	44.83	41.84	74	-32.16	V
3192.366	33.43	37.06	5.58	45.96	47.91	74	-26.09	V
3883.622	32.88	36.92	5.46	45.97	47.39	74	-26.61	V
4804.000	34.69	36.82	5.11	44.37	47.35	74	-26.65	V
7206.000	36.42	37.46	6.66	45.21	50.83	74	-23.17	V
9608.000	37.88	37.82	7.73	43.85	51.64	74	-22.36	V

Worse case mode:		GFSK		Test chann	nel:	2440MHz		
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Antenna Polaxis
1597.401	31.05	37.82	2.92	46.91	43.06	74	-30.94	H
3003.173	33.60	37.10	5.62	46.85	48.97	74	-25.03	H
3766.785	32.97	36.94	5.48	45.54	47.05	74	-26.95	Н
4880.000	34.85	36.81	5.08	45.61	48.73	74	-25.27	Н
7320.000	36.43	37.43	6.77	44.19	49.96	74	-24.04	Н
9760.000	38.05	37.85	7.60	43.75	51.55	74	-22.45	Н
1659.574	31.16	37.73	2.97	48.29	44.69	74	-29.31	V
2995.538	33.59	37.10	5.61	47.79	49.89	74	-24.11	V
3903.444	32.87	36.92	5.46	45.41	46.82	74	-27.18	V
4880.000	34.85	36.81	5.08	45.15	48.27	74	-25.73	V
7320.000	36.43	37.43	6.77	46.05	51.82	74	-22.18	V
9760.000	38.05	37.85	7.60	43.57	51.37	74	-22.63	V

Page 34 of 45

Worse case mode:			GFSK		Test chann	nel:	2480MHz	
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Antenna Polaxis
1545.405	30.96	37.90	2.87	48.49	44.42	74	-29.58	H
3003.173	33.60	37.10	5.62	46.69	48.81	74	-25.19	H
3776.385	32.96	36.94	5.48	46.14	47.64	74	-26.36	Н
4960.000	35.02	36.80	5.05	46.44	49.71	74	-24.29	Н
7440.000	36.45	37.41	6.88	42.96	48.88	74	-25.12	Н
9960.000	38.26	37.89	7.44	44.32	52.13	74	-21.87	Н
1693.716	31.22	37.68	3.00	45.35	41.89	74	-32.11	V
3200.502	33.42	37.06	5.58	45.52	47.46	74	-26.54	V
4321.837	33.60	36.87	5.30	45.04	47.07	74	-26.93	V
4960.000	35.02	36.80	5.05	47.41	50.68	74	-23.32	V
7440.000	36.45	37.41	6.88	42.35	48.27	74	-25.73	V
9960.000	38.26	37.89	7.44	43.86	51.67	74	-22.33	V

Note

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor—Antenna Factor—Cable Factor

PHOTOGRAPHS OF TEST SETUP

Test mode No.: CB-RED

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Page 36 of 45

Report No. : EED32H00168802 Page 37 of 45

PHOTOGRAPHS OF EUT Constructional Details

Test mode No.: CB-RED

View of product-1

View of product-2

Page 38 of 45

View of product-3

Page 39 of 45

View of product-6

Page 40 of 45

View of product-7

Page 41 of 45

View of product-9

View of product-11

View of product-12

Page 43 of 45

Report No.: EED32H00168802

View of product-13

Page 44 of 45

View of product-15

View of product-16

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

