1 1D-neutronics

1.1 1D-fuel

 \bullet Mesh: 1D-fuel.msh

• Transient problem.

Figure 1 shows the results.

Figure 1: Group 1 and 2 fluxes at 10 msec.

1.2 1D-fuel-action

• Mesh: GeneratedMesh

• Transient problem.

Figure 2 shows the results.

Figure 2: Group 1 and 2 fluxes at 10 msec.

1.3 1D-fuel-eig

 \bullet Mesh: 1D-fuel.msh

• Eigenvalue problem: InversePowerMethod

Figure 3 shows the results. FDM $k_{eff}=1.415296$. Both fluxes are normalized to the maximum value of the group 1 flux. Moltres: $k_{eff}=1.415418$.

Figure 3: Steady state Group 1 and 2 fluxes.

1.4 1D-fuel-reflec

 \bullet Mesh: 1D-fuel-reflec.msh

• Transient problem.

Figure 4 shows the results.

1.5 1D-fuel-reflec-eig

 \bullet Input files: 1D-fuel-reflec-eig1.i and 1D-fuel-reflec-eig2.i

 \bullet Mesh: 1D-fuel-reflec.msh

• Eigenvalue problem: InversePowerMethod and NonlinearEigen.

Figures 5 and 6 show the results. FDM $k_{eff}=1.420210$. Both fluxes are normalized to the maximum value of the group 1 flux. Moltres:

• Inverse power method $k_{eff} = 1.424621$.

• Non linear eigenvalue method $k_{eff} = 1.424644$.

Figure 4: Transient problem fluxes.

Figure 5: Steady state Group 1 and 2 fluxes using 1D FDM.

Figure 6: Steady state Group 1 and 2 fluxes for different eigenvalue iteration methods.