Title: Question Paper

FF No. 868

~				
Reg.No.				
NCE.INO.				

Bansilal Ramnath Agarwal Charitable Trust's VISHWAKARMA INSTITUTE OF TECHNOLOGY, PUNE – 411037.

(An Autonomous Institute Affiliated to Savitribai Phule Pune University)

Examination: ESE

Year:TY

Branch: Computer Engg

Subject: Artificial Intelligence

Subject Code: CS3013

Max. Marks: 100

Total Pages of Question Paper: 2

Day & Date: Thu 02/05/2019

Time: 10:00 - 13:00

Instructions to Candidate

- 1. All questions are compulsory.
- 2. Neat diagrams must be drawn wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Use of nonprogrammable electronic pocket calculator, mollier charts, steam tables and statistical table are allowed.

Marks

Q.1	a	Apply CSP and if E=4 then identify value of D.	8
		Ј Е × В В	CO3
		J E	
		+ J E A	
		BADE	
	b	Demonstrate AO* algorithm on the following graph. Show the marker of further	8
		search and identify the value at root node.	
		and value at 100t node.	CO3
		$\begin{pmatrix} 7 \end{pmatrix}$	
		$\begin{pmatrix} 4 \\ 1 \end{pmatrix}$	
		$\frac{1}{2}$	
		$\binom{2}{5}$ $\binom{5}{9}$ $\binom{7}{7}$	
		0 0 0	
Q.2	-		
Ų.2		Solve Any 3	
	i	Elaborate "Problem Solving Agents" and its properties.	6
	ii	Illustrate Conditional planning with respect to suitable examples.	CO1
		Finance with respect to suitable examples.	6
	iii		CO5
	111	Design heuristic functions to solve 8 Puzzle Problem.	6
	iv	List the order of inspection till deep blind search and shallow blind search	CO3
_		woop utilly search and shallow blind search	6

_	ISHV	vakarma institute of Technology Issue of Activities	
		algorithms terminate on following graph. Start search from P.	CO^{5}
		R P V	
Q.3		Only 2	
4.5	i	Design Rules for knowledge based agent for Wumpus World using prepositional	-
	•	logic in which agent finds and kills Wumpus.	8 CO ₄
	ii	The law says that it is a crime for an American to sell weapons to hostile nations.	8
		The country Nono, an enemy of America, has some missiles, and all of its	
		missiles were sold to it by Colonel West, who is American. Prove that Col. West	CO ₄
		is a criminal using Resolution.	
	iii	Summarize justification base truth maintenance system with suitable example.	8
			CO
Q.4	i	Design Prolog system for designing family tree. Derive rules to check relation of	8
		uncle(_,_), grandfather(_, _). Use fact father(_,_).	CO ₄
	ii	Differentiate between Belief Network and Hidden Markov network.	8
			CO
Q.5		Solve Any Two	
	i	Differentiate between forward reasoning and Backward reasoning with suitable example.	8 CO4
	ii	Draw architecture of expert system and Discuss MYCIN medical diagnosis expert	8
		system.	CO4
	iii	Elaborate significance of Non-Monotonic reasoning in AI with an example.	8
			CO6
Q.6	a	Design a spam filter application using Naïve Bays technique.	6
-			CO
	b	Design an expert system for choosing gemstone. Use prolog representation.	6
			CO4
	С	Convert following statements to CNF	6
		 Everything attracts everything. Something attracts something. 	CO4
		 Something attracts something. Everything attracts something. 	
		4. Nothing attracts everything.	
		5. Nothing attracts anything.	
	1	6. Something attracts nothing.	