

Lógica Computacional

Diego Silveira Costa Nascimento

Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte diego.nascimento@ifrn.edu.br

26 de agosto de 2020

Ementa do Curso

- Introdução
- 2 Lógica Proposicional
- 3 Construção de Tabelas-verdade
- 4 Implicação e Equivalência Lógica
- Método Dedutivo
- 6 Inferência Lógica
- Lógica de Predicados

Ementa do Curso

- Introdução
- 2 Lógica Proposiciona
- 3 Construção de Tabelas-verdade
- 4 Implicação e Equivalência Lógica
- Método Dedutivo
- 6 Inferência Lógica
- Lógica de Predicados

Lógica

Definição

É a ciência das leis ideais do pensamento e a arte de aplicá-las à pesquisa e à demonstração da verdade.

- Deriva do Grego (logos); e
- Significa:
 - palavra;
 - pensamento;
 - ideia;
 - argumento;
 - relato;
 - razão
 - lógica; ou
 - princípio lógico.

Origem

- A Lógica teve início na Grécia em 342 a.C.;
- Aristóteles sistematizou os conhecimentos existentes em Lógica, elevando-a à categoria de ciência;
- Obra chamada Organon (Ferramenta para o correto pensar);
- Aristóteles preocupava-se com as formas de raciocínio que, a partir de conhecimentos considerados verdadeiros, permitiam obter novos conhecimentos; e
- A partir dos conhecimentos tidos como verdadeiros, caberia à Lógica a formulação de leis gerais de encadeamentos lógicos que levariam à descoberta de novas verdades.

Princípios Lógico

A Lógica Formal repousa sobre três princípios fundamentais que permitem todo seu desenvolvimento posterior, e que dão validade a todos os atos do pensamento e do raciocínio.

Princípio da Identidade

Afirma A = A e não pode ser B, o que é, é.

Princípio da Não Contradição

A=A e nunca pode ser não-A, o que é, é e não pode ser sua negação, ou seja, o ser é, o não ser não é.

Princípio do Terceiro Excluído

Afirma que Ou A é x ou A é y, não existe uma terceira possibilidade.

Ementa do Curso

- Introdução
- 2 Lógica Proposicional
- 3 Construção de Tabelas-verdade
- 4 Implicação e Equivalência Lógica
- Método Dedutivo
- 6 Inferência Lógica
- Lógica de Predicados

Proposição

- Chama-se proposição todo o conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo;
- As proposições transmitem pensamentos; e
- Afirmam fatos ou exprimem juízos que formamos a respeito de determinados entes.

Exemplos

A Lua é um satélite da terra Sócrates é um homem Eu estudo lógica Não está chovendo

A Linguagem

Considere o conjunto de símbolos:

$$A = \{(,), \neg, \wedge, \vee, \rightarrow, \leftrightarrow, p, q, r, \ldots\}$$

- A esse conjunto é chamado de alfabeto da Lógica Proposicional;
- As letras são símbolos não lógico (letras sentenciais); e
- O restante são símbolos lógicos (parênteses e conectivos lógicos).

Letras Sentenciais

As letras sentenciais são usadas para representar proposições elementares ou atômicas, isto é, proposições que não possuem partes que sejam também proposições.

Exemplos

p = O céu é azul

Q = Eu estudo lógica

r = 2 + 2 = 4

s = Sócrates é um homem

Importante

As partes dessas proposições não são proposições mais simples, mas sim, componentes subsentenciais: expressões, palavras, sílabas ou letras.

Conectivos Lógicos

- As proposições compostas são obtidas combinando proposições simples através de certos termos chamados conectivos;
- A Lógica dispõe de cinco tipos de conectivos e seus operadores:
 - Não (Negação), ¬;
 - E (Conjunção), ∧;
 - Ou (Disjunção), √;
 - Se então (Condicional), \rightarrow ;e
 - \bullet Se e somente se (Bicondicional), $\leftrightarrow.$

Operador de Negação

A característica peculiar da negação, tal como ela se apresenta na lógica proposicional clássica, é que toda proposição submetida à operação de negação resulta na sua contraditória.

Exemplos

p = Está chovendo.

Ler-se $\neg p$, como: "Não está chovendo".

Tabela-verdade para Negação

- Se p é uma proposição, a expressão $\neg p$ é chamada negação de p; e
- Claramente, a negação inverte o valor verdade de uma expressão.

р	¬р
V	F
F	V

Operador de Conjunção

A característica peculiar da conjunção está no fato de fórmulas conjuntivas expressarem a concomitância de fatos. A fórmula $(p \land q)$ expressa que o fato expresso por p ocorre ao mesmo tempo que o fato expresso por q.

Exemplos

p = Est'a chovendo.

q =Está ventando.

Ler-se $p \land q$, como: "Está chovendo e está ventando."

Tabela-verdade para Conjunção

- Se p e q são proposições, a expressão $p \wedge q$ é chamada conjunção de p e q; e
- ullet As proposições p e q são chamadas fatores da expressão.

р	q	$p \wedge q$
٧	٧	V
٧	F	F
F	٧	F
F	F	F

Operador de Disjunção

A característica peculiar da disjunção consiste no fato de proposições disjuntivas expressarem que pelo menos um de dois fatos ocorre. A fórmula $(p \lor q)$ expressa que, dentre os fatos expressos por p e q respectivamente, pelo menos um deles ocorre.

Exemplos

p = Está nublado.

q = Está chovendo.

Ler-se $p \lor q$, como: "Está nublado ou está chovendo."

Tabela-verdade para Disjunção

- Se p e q são proposições, a expressão $p \lor q$ é chamada disjunção inclusiva de p e q; e
- As proposições p e q são chamadas parcelas da expressão.

р	q	$p \lor q$
V	٧	V
V	F	V
F	٧	V
F	F	F

Operador Condicional

A característica peculiar dessa operação consiste em que um condicional $(p \to q)$ expressa que a ocorrência do fato expresso por p garante necessariamente a ocorrência do fato expresso por q.

Exemplos

 $p = \mathsf{Choveu}$.

q =Está molhado.

Ler-se $p \rightarrow q$, como: "Se choveu, então está molhado."

Tabela-verdade para Condicional

- Se p e q são proposições, a expressão $p \rightarrow q$ é chamada condicional de p e q;
- A proposição p é chamada antecedente, e a proposição q consequente da condicional; e
- A operação de condicionamento indica que o acontecimento de p é uma condição para que q aconteça.

р	q	$p \to q$
V	V	V
V	F	F
F	٧	V
F	F	V

Operador Bicondicional

A característica peculiar dessa operação consiste em que um bicondicional $(p \leftrightarrow q)$ assevera que os fatos expressos por p e q são interdependentes, isto é, ou os dois ocorrem juntos ou nenhum dos dois ocorrem.

Exemplos

p = Será aprovado.

q = Estudar.

Ler-se $p \leftrightarrow q$, como: "Aprenderá, se e somente se estudar".

Tabela-verdade para Bicondicional

- Se p e q são proposições, a expressão $p \leftrightarrow q$ é chamada bicondicional de p e q; e
- A operação de bicondicionamento indica que p é uma condição para que q aconteça, e vice-versa.

р	q	$p \leftrightarrow q$
V	V	V
V	F	F
F	٧	F
F	F	V

Parênteses

A necessidade de usar parênteses na simbolização das proposições se deve ao fato de se evitar qualquer tipo de ambiguidade.

Exemplos

```
p = Estudar.
```

q = Fazer a prova.

r = Fazer o trabalho.

s =Serei aprovado.

Ler-se $((p \land q) \lor r) \rightarrow s$, como:

"Se ((estudar e fazer a prova) ou fazer o trabalho), então será aprovado."

Ementa do Curso

- Introdução
- 2 Lógica Proposicional
- Construção de Tabelas-verdade
- 4 Implicação e Equivalência Lógica
- Método Dedutivo
- 6 Inferência Lógica
- Lógica de Predicados

Proposição Composta

Dadas várias proposições simples p, q, r, ..., podemos combiná-las pelos operadores lógicos $\land, \lor, \rightarrow, \leftrightarrow$ e construir proposições compostas:

estudadas: $\neg p, p \land q, p \lor q, p \rightarrow q$ e $p \leftrightarrow q$;

Então, com o emprego das tabelas-verdade das operações lógicas fundamentais já

- É possível construir a tabela-verdade correspondente a qualquer proposição composta; e
- A tabela-verdade exibirá exatamente os casos em que a proposição composta será verdadeira (V) ou falsa (F), admitindo-se que o seu valor lógico só depende dos valores lógicos das proposições simples.

Ordem de Precedência dos Operadores

- Percorra a expressão da esquerda para a direita, executando as operações de negação, na ordem em que aparecerem;
- Percorra novamente a expressão, da esquerda para a direita, executando as operações de conjunção e disjunção, na ordem em que aparecerem;
- Percorra outra vez a expressão, da esquerda para a direita, executando desta vez as operações de condicionamento, na ordem em que aparecerem; e
- Percorra uma última vez a expressão, da esquerda para a direita, executando as operações de bicondicionamento, na ordem em que aparecerem.

Construindo a Tabela-verdade (Passo 1)

Proposição

$$\neg(p \wedge \neg q)$$

- Forma-se, em primeiro lugar, o par de colunas correspondentes às duas proposições simples p e q; e
- \bullet O total de linhas é igual a 2^n , onde n corresponde ao número de proposições simples.

Construindo a Tabela-verdade (Passo 2)

• Em seguida, forma-se a coluna para $\neg q$.

p	q	$\neg q$
٧	٧	F
V	F	V
F	٧	F
F	F	V

Construindo a Tabela-verdade (Passo 3)

• Depois, forma-se a coluna para $p \wedge \neg q$.

р	q	$\neg q$	$p \wedge \neg q$
٧	٧	F	F
V	F	V	V
F	V	F	F
F	F	V	F

Construindo a Tabela-verdade (Passo 4)

• Por fim, forma-se a coluna relativa aos valores lógicos da proposição composta $\neg(p \land \neg q)$.

р	q	$\neg q$	$p \wedge \neg q$	$\neg(p \wedge \neg q)$
٧	٧	F	F	V
٧	F	V	V	F
F	٧	F	F	V
F	F	V	F	V

Tautologia

Definição

Tautologia é toda proposição composta P(p, q, r, ...) cujo valor lógico é sempre verdadeiro, quaisquer que sejam os valores lógicos das proposições simples p, q, r, ...

Exemplo: $\neg(p \land \neg p)$

p	$\neg p$	$p \wedge \neg p$	$\neg (p \wedge \neg p)$
V	F	F	V
F	V	F	V

Contradição

Definição

Contradição é toda proposição composta P(p, q, r, ...) cujo valor lógico é sempre falso, quais quer que sejam os valores lógicos das proposições simples p, q, r, ...

Exemplo: $p \leftrightarrow \neg p$

р	$\neg p$	$p \leftrightarrow \neg p$
V	F	F
F	V	F

Contingência

Definição

Contingencia é toda a proposição composta que não é tautologia nem contradição.

Exemplo: $p \rightarrow \neg p$

р	$\neg p$	p o eg p
V	F	F
F	F V '	

Ementa do Curso

- Introdução
- 2 Lógica Proposiciona
- Construção de Tabelas-verdade
- 4 Implicação e Equivalência Lógica
- Método Dedutivo
- 6 Inferência Lógica
- Lógica de Predicados

Implicação Lógica

Definição

A proposição P(p,q,r,...) implica a proposição Q(p,q,r,...), isto é:

$$P(p,q,r,...) \Rightarrow Q(p,q,r,...)$$

se e somente se a condicional:

 $P(p, q, r, ...) \rightarrow Q(p, q, r, ...)$ é tautológica.

Exemplo: $(p \rightarrow q) \land p, q$

р	q	p o q	$(p ightarrow q) \wedge p$	$((p \to q) \land p) \to q$
V	V	V	V	V
V	F	F	F	V
F	٧	V	F	V
F	F	V	F	V

Portanto, simbolicamente: $(p \rightarrow q) \land p \Rightarrow q$

Equivalência Lógica

Definição

A proposição P(p, q, r, ...) é equivalente à proposição Q(p, q, r, ...), isto é:

$$P(p, q, r, ...) \Leftrightarrow Q(p, q, r, ...)$$

se e somente se a bicondicional:

$$P(p, q, r, ...) \leftrightarrow Q(p, q, r, ...)$$
 é tautológica.

Exemplo: $\overline{\neg p \rightarrow p, p}$

p	$\neg p$	eg p o p	$(\neg p o p) \leftrightarrow p$
V	F	V	V
F	V	F	V

Portanto, simbolicamente: $\neg p \rightarrow p \Leftrightarrow p$

Ementa do Curso

- Introdução
- 2 Lógica Proposiciona
- 3 Construção de Tabelas-verdade
- 4 Implicação e Equivalência Lógica
- Método Dedutivo
- 6 Inferência Lógica
- Lógica de Predicados

Equivalência Lógica

Definição

Dado um argumento $P_1, P_2, P_3 \rightarrow Q$ chama-se demonstração ou dedução de Q a partir das premissas $P_1, P_2, ... P_n$, a sequência finita de proposições $X_1, X_2, ... X_m$, tal que cada X_i ou é uma premissa ou decorre logicamente de proposições anteriores da sequência, e de tal modo que a última proposição X_m seja a conclusão Q do argumento dado. Desta forma, se for possível obter a conclusão Q através do procedimento de dedução, o argumento é válido, caso contrário, não é válido.

Álgebra das Proposições

- Propriedades da Conjunção;
- Propriedades da Disjunção;
- Propriedades da Conjunção e Disjunção; e
- Negação da Condicional e Bicondicional.

Propriedades da Conjunção

Idempotente

$$p \land p \Leftrightarrow p$$

Comutativa

$$p \land q \Leftrightarrow q \land p$$

Associativa

$$(p \wedge q) \wedge r \Leftrightarrow p \wedge (q \wedge r)$$

Identidade

$$p \land t \Leftrightarrow p \in p \land c \Leftrightarrow c$$

Sejam t e c proposições também simples cujos valores lógicos respectivos são verdadeiro e falso.

Propriedades da Disjunção

Idempotente

$$p \lor p \Leftrightarrow p$$

Comutativa

$$p \lor q \Leftrightarrow q \lor p$$

Associativa

$$(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$$

Identidade

$$p \lor t \Leftrightarrow t \in p \lor c \Leftrightarrow p$$

Sejam t e c proposições também simples cujos valores lógicos respectivos são verdadeiro e falso.

Propriedades da Conjunção e Disjunção

Distributiva

$$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r) \text{ ou } p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$$

Absorção

$$p \land (p \lor q) \Leftrightarrow p \text{ ou } p \lor (p \land q) \Leftrightarrow p$$

Regras De Morgan

$$\neg(p \land q) \Leftrightarrow \neg p \lor \neg q \text{ ou } \neg(p \lor q) \Leftrightarrow \neg p \land \neg q$$

Negação da Condicional e Bicondicional

Condicional

$$\neg(p \land q) \Leftrightarrow p \land \neg q$$

Bicondicional

$$\neg(p \leftrightarrow q) \Leftrightarrow (p \land \neg q) \lor (\neg p \land q)$$

Demonstração da Implicação

Exemplo: $p \land q \Rightarrow p$

Tautologia

$$p \land q \rightarrow p$$
 $\neg(p \land q) \lor p$
 $(\neg p \lor \neg q) \lor p$ - Comutativa
 $(\neg q \lor \neg p) \lor p$ - Associativa
 $\neg q \lor (\neg p \lor p)$
 $\neg q \lor Tautologia$ - Identidade

Demonstração da Equivalência

Exemplo: $p \rightarrow q \Leftrightarrow p \lor q \rightarrow q$ $p \lor q \rightarrow q$ $\neg (p \lor q) \lor q$ $(\neg p \land \neg q) \lor q - \text{Distributiva}$ $(\neg p \lor q) \land (\neg q \lor q)$ $(\neg p \lor q) \land Tautologia - \text{Identidade}$ $(\neg p \lor q)$ $p \rightarrow q$

Ementa do Curso

- Introdução
- 2 Lógica Proposiciona
- 3 Construção de Tabelas-verdade
- 4 Implicação e Equivalência Lógica
- Método Dedutivo
- 6 Inferência Lógica
- Lógica de Predicados

Inferência

Definição

É o processo pelo qual se chega a uma proposição, firmada na base de uma ou outras mais proposições aceitas como ponto de partida do processo.

- Regra de Adição (AD);
- Regra de Simplificação (SIMP);
- Regra da Conjunção (CONJ);
- Regra de Absorção (ABS);
- Regra Modus ponens (MP);
- Regra Modus tollens (MT);
- Regra do Silogismo disjuntivo (SD);
- Regra do Silogismo hipotético (SH);
- Regra do Dilema construtivo (DC); e
- Regra do Dilema destrutivo (DD).

Regras de Inferência

Adição

$$\frac{p}{p \lor q}$$

Simplificação

$$\frac{p \wedge q}{p}$$

Conjunção

$$\frac{p}{q}$$

Absorção

$$rac{p
ightarrow q}{p
ightarrow (p\wedge q)}$$

Regras de Inferência

Modus Ponens

$$rac{p o q}{q}$$

Modus Tollens

$$egin{array}{c} p
ightarrow q \
eg p \
eg$$

Silogismo Disjuntivo

$$p \lor q$$
 $\neg q$
 p

Silogismo Hipotético

$$\begin{array}{c}
p \to q \\
q \to r \\
\hline
p \to r
\end{array}$$

Regras de Inferência

Dilema Construtivo

$$\begin{array}{c}
p \to q \\
r \to s \\
p \lor r
\end{array}$$

$$q \lor s$$

Dilema Destrutivo

$$\begin{array}{c}
p \to q \\
r \to s \\
\neg q \lor \neg s \\
\hline
\neg p \lor \neg r
\end{array}$$

Demonstração

Exemplo: $p \rightarrow q, p \land r \vdash q$

$$(1)p \rightarrow q$$

$$(2)p \wedge r$$

$$(3)p \quad 2 - SP$$

 $(4)q \quad 1, 3 - MP$

$$(4)q 1, 3 - MP$$

Ementa do Curso

- Introdução
- 2 Lógica Proposiciona
- Construção de Tabelas-verdade
- 4 Implicação e Equivalência Lógica
- Método Dedutivo
- 6 Inferência Lógica
- Dúgica de Predicados

Termo e Predicado

- Na Lógica Proposicional as interpretações não dependem da estrutura interna de suas proposições, mas unicamente no modo como se combinam;
- Já lógica de Predicados, dada uma proposição simples qualquer, pode destacar dela dois entes:
 - Termo; e
 - Predicado;
- O termo pode ser entendido como o sujeito da sentença declarativa; e
- O predicado é uma declaração a respeito do termo.

Exemplo:

Sócrates é mortal

Termo: Sócrates

Predicado: é mortal

Função Proposicional

- Seja T um conjunto de termos, uma função proposicional em T é um predicado p associado a um termo x, p(x);
- A expressão p(a) é verdadeira só e somente se $a \in T$; e
- Nas funções proposicionais, os termos são variáveis, enquanto que as proposições são constantes.

```
Seja o conjunto Z=\{1,2,3,4,\ldots\}, são funções proposicionais: par(x) primo(x)
```


Quantificadores

Definição

São operadores lógicos que restringem as funções proposicionais, de forma que elas se refiram a todo um conjunto de termos T, ou parte dele.

- Universal: ∀; e
- Existencial: ∃.

Exemplo:

 $\forall x (homem(x) \rightarrow mortal(x))$, ler-se: Todos os homens são mortais.

 $\exists x (homem(x) \land \neg atleta(x))$, ler-se: Existe homem que não é atleta.

Negação dos Quantificadores

Universal

$$\neg \forall x (p(a)) \Leftrightarrow \exists x \neg (p(a))$$

Existencial

$$\neg \exists x (p(a)) \Leftrightarrow \forall x \neg (p(a))$$

Exemplo:

Não existe baleia que seja réptil

$$\neg \exists x (baleia(x) \land reptil(x))$$

$$\forall x \neg (baleia(x) \land reptil(x))$$

$$\forall x (\neg baleia(x) \lor \neg reptil(x))$$

$$\forall x (baleia(x) \rightarrow \neg reptil(x))$$

Todas as baleias não são répteis.

Validade de Argumentos com Quantificadores

- É possível provar a validade de argumentos que envolva proposições quantificadas;
- Para isso, é necessário transformar os argumentos com quantificadores em argumentos não quantificados, por meio de exemplificações;
- Em seguida, aplicar as regras de inferências lógicas já estudadas; e
- Por fim, uma vez concluída a prova de validade do argumento, usa-se a generalização para obter a conclusão do argumento quantificado.

Exemplificação Existencial

Definição

Dado um conjunto de termos T e um predicado qualquer p. Se existe um termo associado ao predicado p, estipulamos que tal termo seja c.

$$\frac{\exists x (p(x))}{p(c)}$$

Exemplificação Universal

Definicão

Dado um conjunto de termos T e um predicado qualquer p. Se todos os termos são associado ao predicado p, escolhemos um deles, c, um termo constante.

$$\frac{\forall x (p(x))}{p(c)}$$

Generalização Existencial

Definição

Dado um conjunto de termos T e um predicado qualquer p. Se concluímos que um termo c constante está associado ao predicado p, então existe um termo associado a p.

$$\frac{p(c)}{\exists x p(x)}$$

Generalização Universal

Definição

Dado um conjunto de termos T e um predicado qualquer p. Se o termo c tomado na exemplificação pode ser qualquer um, ou seja, pode ser tomado aleatoriamente, então qualquer termo está associado ao predicado p.

$$\frac{p(c)}{\forall x p(x)}$$

Demonstração

Exemplo

Todos os jogadores são atletas.

Todos os atletas sofrem contusões.

Logo, todos os jogadores sofrem contusões.

```
(1)\forall x (jogador(x) \rightarrow atleta(x))
```

$$(2)\forall x(atleta(x) \rightarrow contusao(x))$$

$$(3)$$
jogador $(Zico) \rightarrow atleta(Zico)$ $1 - EU$

$$(4)$$
Atleta($Zico$) \rightarrow contusao($Zico$) $2 - EU$

$$(5)iogador(Zico) \rightarrow contusao(Zico) 3.4 - SH$$

$$(5)$$
jogador $(Zico) \rightarrow contusao(Zico) 3,4 - SH$

$$(6) \forall x (jogador(x) \rightarrow contusao(x))$$
 5 – GU

