1 Modelo matematico del valor de verdad de una formula

En esta seccion daremos una definicion matematica que modeliza la idea intuitiva de cuando una formula de tipo τ es verdadera en una estructura dada para una asignacion de elementos a las variables libres de dicha formula. Esto corresponde al punto (2) del programa de logica enunciado en la Guia 7.

El valor de un termino en una estructura

Sea $\mathbf{A} = (A, i)$ una estructura de tipo τ . Una asignacion de \mathbf{A} sera un elemento de $A^{\mathbf{N}} = \{\text{infinituplas de elementos de } A\}$. Si $\vec{a} = (a_1, a_2, ...)$ es una asignacion, entonces diremos que a_i es el valor que \vec{a} le asigna a la variable x_i .

Dada una estructura **A** de tipo τ , un termino $t \in T^{\tau}$ y una asignacion $\vec{a} = (a_1, a_2, ...) \in A^{\mathbf{N}}$ definamos recursivamente $t^{\mathbf{A}}[\vec{a}]$ de la siguiente manera

- (1) Si $t = x_i \in Var$, entonces $t^{\mathbf{A}}[\vec{a}] = a_i$
- (2) Si $t = c \in \mathcal{C}$, entonces $t^{\mathbf{A}}[\vec{a}] = i(c)$
- (3) Si $t = f(t_1, ..., t_n)$, con $f \in \mathcal{F}_n$, $n \ge 1$ y $t_1, ..., t_n \in T^{\tau}$, entonces $t^{\mathbf{A}}[\vec{a}] = i(f)(t_1^{\mathbf{A}}[\vec{a}], ..., t_n^{\mathbf{A}}[\vec{a}])$

El elemento $t^{\mathbf{A}}[\vec{a}]$ sera llamado el valor de t en la estructura \mathbf{A} para la asignación \vec{a} .

Veamos un ejemplo. Sea τ el tipo

$$(\{uno, doli\}, \{MAS, P\}, \{Her\}, \{(MAS, 4), (P, 1), (Her, 3)\})$$

y sea $\mathbf{A} = (A, i)$ la estructura de tipo τ con universo $A = \mathbf{R}$ y

- -i(uno) = 9
- -i(doli) = 0
- i(MAS) igual a la operación

$$\begin{array}{ccc} \mathbf{R}^4 & \to & \mathbf{R} \\ (x, y, z, w) & \to & 2x + 4y \end{array}$$

- i(P) igual a la operacion

$$\begin{array}{ccc} \mathbf{R} & \rightarrow & \mathbf{R} \\ x & \rightarrow & 5^x \end{array}$$

-
$$i(\text{Her}) = \{(x, y, z) \in \mathbf{R}^3 : x.y.z = 9\}$$

Sea $\vec{a} = (1, 2, 3, 4, 5, ...)$. Claramente \vec{a} es una asignación de **A**. Se tiene que:

- 1. Si $t=\mathsf{X}554$, entonces $t^{\mathbf{A}}[\vec{a}]=\mathsf{X}554^{\mathbf{A}}[\vec{a}]=554$ (por (1) de la definicion recursiva de $t^{\mathbf{A}}[\vec{a}]$)
- 2. Si t= uno, entonces $t^{\bf A}[\vec{a}]=$ uno $^{\bf A}[\vec{a}]=$ 9 (por (2) de la definicion recursiva de $t^{\bf A}[\vec{a}]$)
- 3. Si t = P(X3), entonces

$$t^{\mathbf{A}}[\vec{a}] = P(X\mathbf{3})^{\mathbf{A}}[\vec{a}]$$

= $i(P)(X\mathbf{3}^{\mathbf{A}}[\vec{a}])$ (por (3) de la definicion de $t^{\mathbf{A}}[\vec{a}]$)
= $i(P)(3)$
= $5^3 = 125$

4. Si t = MAS(X1, uno, X3, X554), entonces

$$t^{\mathbf{A}}[\vec{a}] = \text{MAS}(\mathsf{X}\mathbf{1}, \text{uno}, \mathsf{X}\mathbf{3}, \mathsf{X}55\mathbf{4})^{\mathbf{A}}[\vec{a}]$$

$$= i(\text{MAS})(\mathsf{X}\mathbf{1}^{\mathbf{A}}[\vec{a}], \text{uno}^{\mathbf{A}}[\vec{a}], \mathsf{X}\mathbf{3}^{\mathbf{A}}[\vec{a}], \mathsf{X}55\mathbf{4}^{\mathbf{A}}[\vec{a}])$$

$$= i(\text{MAS})(1, 9, 3, 554)$$

$$= 2.1 + 4.9 = 38$$

Lemma 1 Sea A una estructura de tipo τ y sea $t \in T^{\tau}$. Supongamos que \vec{a}, \vec{b} son asignaciones tales que $a_i = b_i$, cada vez que x_i ocurra en t. Entonces $t^{\mathbf{A}}[\vec{a}] = t^{\mathbf{A}}[\vec{b}]$.

Proof. Sea

- Teo_k: El lema vale para $t \in T_k^{\tau}$.

Teo₀ es facil de probar. Veamos Teo_k \Rightarrow Teo_{k+1}. Supongamos $t \in T_{k+1}^{\tau} - T_{k}^{\tau}$ y sean \vec{a}, \vec{b} asignaciones tales que $a_i = b_i$, cada vez que x_i ocurra en t. Notese que $t = f(t_1, ..., t_n)$, con $f \in \mathcal{F}_n$, $n \ge 1$ y $t_1, ..., t_n \in T_k^{\tau}$. Notese que para cada j = 1, ..., n, tenemos que $a_i = b_i$, cada vez que x_i ocurra en t_j , lo cual por Teo_k nos dice que

$$t_j^{\mathbf{A}}[\vec{a}] = t_j^{\mathbf{A}}[\vec{b}], j = 1, ..., n$$

Se tiene entonces que

$$\begin{array}{lll} t^{\mathbf{A}}[\vec{a}] & = & i(f)(t_1^{\mathbf{A}}[\vec{a}],...,t_n^{\mathbf{A}}[\vec{a}]) \text{ (por def de } t^{\mathbf{A}}[\vec{a}]) \\ & = & i(f)(t_1^{\mathbf{A}}[\vec{b}],...,t_n^{\mathbf{A}}[\vec{b}]) \\ & = & t^{\mathbf{A}}[\vec{b}] \text{ (por def de } t^{\mathbf{A}}[\vec{b}]) \end{array}$$

Ejercicio 1: Sea
$$\tau = (\{0,1\}, \{\text{por}, +\}, \{r\}, \{(\text{por}, 2), (+, 2), (r, 2)\})$$
 y $t = +(x_1, \text{por}(+(\text{por}(x_{1000}, 0), x_{13}), +(\text{por}(+(x_2, x_3), 1), x_{13})))$ Dar $t^{\mathbf{A}}[\vec{a}]$ para los siguientes modelos $\mathbf{A} = (A, i)$ y asignaciones \vec{a} :

(a) $A = \{1, 2, 3\}, i(0) = 1, i(1) = 3, i(r) = \{(1, 1), (2, 2), (3, 3), (1, 3), (3, 2)\}$ $i(\text{por})$ 1 2 3 $i(+)$ 2 3 $i(+)$ 2 3 $i(+)$ 3 2 3 $i(+)$ 2 3 $i(+)$ 3 2 3 $i(+)$ 3 2 3 $i(+)$ 4 3 2 3 $i(+)$ 5 2 2 3 3 3 $i(+)$ 6 2 2 2 3 3 3 $i(+)$ 7 2 3 $i(+)$ 8 2 2 2 3 3 3 $i(+)$ 8 2 2 2 3 3 3 3 2 2 $i(+)$ 8 2 2 2 3 3 3 3 2 2 $i(+)$ 9 3 2 2 $i(+)$ 9 3 3 3 2

Ejercicio 2: V o F o I, justifique

iii. $\vec{a} = (\emptyset, \emptyset, \emptyset, \emptyset, \dots)$

- (a) Sea $\mathbf{A} = (A, i)$ una estructura de tipo τ , sea $t \in T^{\tau}$ y supongamos que \vec{a} es una asignacion de \mathbf{A} . Entonces $Ti(t^{\mathbf{A}}[\vec{a}]) = Ti(A)$
- (b) Sea **A** una estructura de tipo τ , sea $t \in T^{\tau}$ y supongamos que \vec{a} es una asignacion de **A**. Entonces $Ti(t^{\mathbf{A}}[\vec{a}]) = \text{PALABRA}$
- (c) Sea $\mathbf{A}=(A,i)$ una estructura de tipo τ , sea $t\in T^{\tau}$ y supongamos que \vec{a} es una asignacion de \mathbf{A} . Entonces si $a\in A$, se tiene que $Ti(t^{\mathbf{A}}[\vec{a}])=Ti(a)$
- (d) Si $\tau = (\mathcal{C}, \mathcal{F}, \mathcal{R}, a)$ es un tipo, $\mathbf{A} = (A, i)$ una estructura de tipo τ y $t \in T^{\tau}$, entonces $i(t) \in A$
- (e) Sea **A** una estructura de tipo τ , sea $t\in T^\tau$ y supongamos que \vec{a} es una asignacion de **A**. Entonces $t(\vec{a})\in A$

Dada una asignacion $\vec{a} \in A^{\mathbf{N}}$ y $a \in A$, con $\downarrow_i^a (\vec{a})$ denotaremos la asignacion que resulta de reemplazar en \vec{a} el *i*-esimo elemento por a.

Ejercicio 3: Sea τ un tipo. Sea $t \in T^{\tau}$ y sea t' el resultado de reemplazar toda ocurrencia de x_i en t por x_l , la cual no ocurre en t. Entonces para cualquier estructura \mathbf{A} , cualquier asignacion $\vec{a} \in A^{\mathbf{N}}$ y cualquier $a \in A$, se tiene que $t^{\mathbf{IA}}[\downarrow_l^a(\vec{a})] = t^{\mathbf{A}}[\downarrow_l^a(\vec{a})]$

La relacion \models

Dada una asignacion $\vec{a} \in A^{\mathbf{N}}$ y $a \in A$, con $\downarrow_i^a(\vec{a})$ denotaremos la asignacion que resulta de reemplazar en \vec{a} el i-esimo elemento por a. A continuacion definiremos recursivamente la relacion $\mathbf{A} \models \varphi[\vec{a}]$, donde \mathbf{A} es una estructura de tipo τ , \vec{a} es una asignacion y $\varphi \in F^{\tau}$. Escribiremos $\mathbf{A} \not\models \varphi[\vec{a}]$ para expresar que no se da $\mathbf{A} \models \varphi[\vec{a}]$.

(1) Si
$$\varphi = (t \equiv s)$$
, entonces

-
$$\mathbf{A} \models \varphi[\vec{a}] \text{ si y solo si } t^{\mathbf{A}}[\vec{a}] = s^{\mathbf{A}}[\vec{a}]$$

(2) Si
$$\varphi = r(t_1, ..., t_m)$$
, entonces

-
$$\mathbf{A} \models \varphi[\vec{a}] \text{ si y solo si } (t_1^{\mathbf{A}}[\vec{a}], ..., t_m^{\mathbf{A}}[\vec{a}]) \in i(r)$$

(3) Si
$$\varphi = (\varphi_1 \wedge \varphi_2)$$
, entonces

-
$$\mathbf{A} \models \varphi[\vec{a}]$$
 si y solo si $\mathbf{A} \models \varphi_1[\vec{a}]$ y $\mathbf{A} \models \varphi_2[\vec{a}]$

(4) Si
$$\varphi = (\varphi_1 \vee \varphi_2)$$
, entonces

-
$$\mathbf{A} \models \varphi[\vec{a}]$$
 si y solo si $\mathbf{A} \models \varphi_1[\vec{a}]$ o $\mathbf{A} \models \varphi_2[\vec{a}]$

(5) Si
$$\varphi = (\varphi_1 \to \varphi_2)$$
, entonces

-
$$\mathbf{A} \models \varphi[\vec{a}]$$
 si y solo si $\mathbf{A} \not\models \varphi_1[\vec{a}]$ o $\mathbf{A} \models \varphi_2[\vec{a}]$

(6) Si
$$\varphi = (\varphi_1 \leftrightarrow \varphi_2)$$
, entonces

-
$$\mathbf{A} \models \varphi[\vec{a}]$$
 si y solo si ya sea se dan $\mathbf{A} \models \varphi_1[\vec{a}]$ y $\mathbf{A} \models \varphi_2[\vec{a}]$ o se dan $\mathbf{A} \not\models \varphi_1[\vec{a}]$ y $\mathbf{A} \not\models \varphi_2[\vec{a}]$

(7) Si $\varphi = \neg \varphi_1$, entonces

-
$$\mathbf{A} \models \varphi[\vec{a}] \text{ si y solo si } \mathbf{A} \not\models \varphi_1[\vec{a}]$$

(8) Si $\varphi = \forall x_i \varphi_1$, entonces

-
$$\mathbf{A} \models \varphi[\vec{a}]$$
 si y solo si para cada $a \in A$, se da que $\mathbf{A} \models \varphi_1[\downarrow_i^a(\vec{a})]$

(9) Si $\varphi = \exists x_i \varphi_1$, entonces

-
$$\mathbf{A} \models \varphi[\vec{a}]$$
 si y solo si hay un $a \in A$ tal que $\mathbf{A} \models \varphi_1[\downarrow_i^a(\vec{a})]$

Cuando se de $\mathbf{A} \models \varphi[\vec{a}]$ diremos que la estructura \mathbf{A} satisface φ en la asignacion \vec{a} y en tal caso diremos que φ es verdadera en \mathbf{A} para la asignacion \vec{a} . Cuando no se de $\mathbf{A} \models \varphi[\vec{a}]$ diremos que la estructura \mathbf{A} no satisface φ en la asignacion \vec{a} y en tal caso diremos que φ es falsa en \mathbf{A} para la asignacion \vec{a} . Tambien hablaremos del valor de verdad de φ en \mathbf{A} para la asignacion \vec{a} el cual sera igual a 1 si se da $\mathbf{A} \models \varphi[\vec{a}]$ y 0 en caso contrario.

Veamos algunos ejemplos. Sea τ el tipo

$$\{\text{uno, doli}\}, \{\text{MAS, P}\}, \{\text{Her}\}, \{(\text{MAS, 4}), (\text{P, 1}), (\text{Her, 3})\}\}$$

y sea $\mathbf{A} = (A, i)$ la estructura de tipo τ con universo $A = \mathbf{R}$ y

$$-i(uno) = 9$$

$$-i(doli) = 0$$

- i(MAS) igual a la operación

$$\begin{array}{ccc} \mathbf{R}^4 & \to & \mathbf{R} \\ (x, y, z, w) & \to & 2x + 4y \end{array}$$

- i(P) igual a la operacion

$$\mathbf{R} \rightarrow \mathbf{R} \\
x \rightarrow 5^x$$

-
$$i(Her) = \{(x, y, z) \in \mathbf{R}^3 : x.y.z = 9\}$$

Sea $\vec{a} = (1, 2, 3, 4, 5, ...)$. Claramente \vec{a} es una asignación de **A**. Consideremos los siguientes ejemplos:

- (E1) Si $\varphi = (MAS(X1, uno, X3, X554) \equiv P(X3))$, entonces ya que
 - (a) MAS(X1, uno, X3, X554)^A[\vec{a}] = 38
 - (b) $P(X3)^{A}[\vec{a}] = 125$

tenemos que (1) de la definicion nos dice que $\mathbf{A} \models \varphi[\vec{a}]$ si y solo si 38 = 125 por lo cual se saca que $\mathbf{A} \not\models \varphi[\vec{a}]$.

- (E2) Si $\varphi = \neg \text{Her}(P(P(X6)), X3, \text{doli})$, entonces ya que
 - $P(P(X6))^{A}[\vec{a}] = 5^{(5^6)}$
 - $X3^{A}[\vec{a}] = 3$
 - $\operatorname{doli}^{\mathbf{A}}[\vec{a}] = 0$

tenemos que (7) de la definicion nos dice que $\mathbf{A} \models \varphi[\vec{a}]$ si y solo si $\mathbf{A} \not\models \operatorname{Her}(\mathsf{P}(\mathsf{P}(\mathsf{X}\mathbf{6})),\mathsf{X}\mathbf{3},\operatorname{doli})[\vec{a}]$. Pero (2) de la definicion nos dice que $\mathbf{A} \models \operatorname{Her}(\mathsf{P}(\mathsf{P}(\mathsf{X}\mathbf{6})),\mathsf{X}\mathbf{3},\operatorname{doli})[\vec{a}]$ si y solo si $(5^{(5^6)},3,0) \in i(\operatorname{Her})$ ya que no se da que $(5^{(5^6)},3,0) \in i(\operatorname{Her})$, tenemos que $\mathbf{A} \not\models \operatorname{Her}(\mathsf{P}(\mathsf{P}(\mathsf{X}\mathbf{6})),\mathsf{X}\mathbf{3},\operatorname{doli})[\vec{a}]$ lo cual nos dice que $\mathbf{A} \models \varphi[\vec{a}]$.

- (E3) Si $\varphi = \exists X3 \text{Her}(X6, X3, \text{uno})$, entonces por (9) de la definicion tenemos que
 - $\mathbf{A}\models\varphi[\vec{a}]$ sii hay un $r\in\mathbf{R}$ tal que $\mathbf{A}\models\mathrm{Her}(\mathsf{X6},\mathsf{X3},\mathrm{uno})[\downarrow^r_3(\vec{a})]$

es decir que

- $\mathbf{A} \models \varphi[\vec{a}]$ sii hay un $r \in \mathbf{R}$ tal que $\mathbf{A} \models \mathrm{Her}(\mathsf{X}\mathbf{6},\mathsf{X}\mathbf{3},\mathrm{uno})[(1,2,r,4,5,6,\ldots)]$

Pero (2) de la definicion nos dice que cualquiera sea $r \in \mathbf{R}$ se tiene que

-
$$\mathbf{A} \models \text{Her}(X6, X3, \text{uno})[(1, 2, r, 4, 5, 6, ...)] \text{ sii } (6, r, 9) \in i(\text{Her})$$

O sea que obtenemos finalmente que

- $\mathbf{A} \models \varphi[\vec{a}]$ sii hay un $r \in \mathbf{R}$ tal que 6.r.9 = 9

Lo cual claramente implica que $\mathbf{A} \models \varphi[\vec{a}]$ ya que podemos tomar r = 1/6.

- (E4) Si $\varphi = \forall X3((X4 \equiv X3) \rightarrow \exists X6 \text{Her}(X6, X3, \text{uno}))$, entonces por (8) de la definicion tenemos que
 - $\mathbf{A} \models \varphi[\vec{a}]$ sii para cada $r \in \mathbf{R}$ se da que

$$\mathbf{A} \models ((\mathsf{X4} \equiv \mathsf{X3}) \rightarrow \exists \mathsf{X6Her}(\mathsf{X6}, \mathsf{X3}, \mathsf{uno}))[\downarrow_3^r(\vec{a})]$$

es decir que

- $\mathbf{A} \models \varphi[\vec{a}]$ sii para cada $r \in \mathbf{R}$ se da que

$$\mathbf{A} \models ((\mathsf{X4} \equiv \mathsf{X3}) \rightarrow \exists \mathsf{X6Her}(\mathsf{X6}, \mathsf{X3}, \mathsf{uno}))[(1, 2, r, 4, 5, 6, \ldots)]$$

Pero entonces (5) de la definicion nos dice que

- $\mathbf{A} \models \varphi[\vec{a}]$ sii para cada $r \in \mathbf{R}$ se da que

$$\mathbf{A} \not\models (X\mathbf{4} \equiv X\mathbf{3})[(1, 2, r, 4, 5, 6, ...)] \text{ o } \mathbf{A} \models \exists X\mathbf{6} \text{Her}(X\mathbf{6}, X\mathbf{3}, \text{uno}))[(1, 2, r, 4, 5, 6, ...)]$$

O sea que

- $\mathbf{A} \models \varphi[\vec{a}]$ sii para cada $r \in \mathbf{R}$ se da que

$$r \neq 4 \text{ o } \mathbf{A} \models \exists \mathsf{X6Her}(\mathsf{X6}, \mathsf{X3}, \mathsf{uno}))[(1, 2, r, 4, 5, 6, \ldots)]$$

Es decir que debemos ver cuando se da que $\mathbf{A} \models \exists \mathsf{X}\mathbf{6}\mathrm{Her}(\mathsf{X}\mathbf{6},\mathsf{X}\mathbf{3},\mathrm{uno}))[(1,2,r,4,5,6,\ldots)].$ Por (9) y (2) de la definicion tenemos que cualquiera sea el $r \in \mathbf{R}$ se da que

- **A** \models ∃X**6**Her(X**6**, X**3**, uno))[(1, 2, r, 4, 5, 6, ...)] sii hay un $s \in \mathbf{R}$ tal que s.r.9 = 9.

Esto nos dice finalmente que

- $\mathbf{A} \models \varphi[\vec{a}]$ sii para cada $r \in \mathbf{R}$ se da que

$$r \neq 4$$
 o hay un $s \in \mathbf{R}$ tal que $s.r.9 = 9$

Pensando un poco esto nos dice que $\mathbf{A} \models \varphi[\vec{a}]$ (separar los casos r=4 y $r \neq 4$)

Ejercicio 4: Sea **A** una estructura de tipo τ , \vec{a} una asignacion y $\varphi \in F^{\tau}$. Entonces no puede suceder que $\mathbf{A} \models \varphi[\vec{a}]$ y $\mathbf{A} \models \neg \varphi[\vec{a}]$. En particular esto nos dice que $\mathbf{A} \not\models (\varphi \land \neg \varphi)[\vec{a}]$. Ademas claramente se da que ya sea $\mathbf{A} \models \varphi[\vec{a}]$ o $\mathbf{A} \models \neg \varphi[\vec{a}]$.

Ejercicio 5: Sean

$$\varphi_{1} = \exists x_{3}(r(\operatorname{por}(x_{1}, x_{3}), +(0, \operatorname{por}(x_{8}, x_{4}))) \to (x_{1} \equiv 1))
\varphi_{2} = (\exists x_{6}(x_{4} \equiv \operatorname{por}(x_{6}, x_{6})) \land \exists x_{5}((x_{2} \equiv \operatorname{por}(x_{4}, +(x_{5}, 0))) \land (x_{5} \equiv 0)))
\varphi_{3} = \forall x_{1} \exists x_{2}(((\operatorname{por}(x_{1}, x_{16}) \equiv 1) \land (+(x_{1}, x_{2}) \equiv 0)) \to r(x_{1}, x_{16}))
\varphi_{4} = \forall x_{1}((\exists x_{2}(\operatorname{por}(x_{2}, x_{16}) \equiv 1) \to (+(x_{1}, x_{2}) \equiv 0)) \to r(x_{1}, x_{16}))
\varphi_{5} = (\exists x_{2}r(x_{2}, x_{16}) \to r(x_{2}, x_{16}))$$

Para cada φ_i , decidir si $\mathbf{A} \models \varphi_i[\vec{a}]$, para los modelos y asignaciones del Ejercicio 1

Lemma 2 Supongamos que \vec{a}, \vec{b} son asignaciones tales que $s\vec{i}$ $x_i \in Li(\varphi)$, entonces $a_i = b_i$. Entonces $\mathbf{A} \models \varphi[\vec{a}]$ sii $\mathbf{A} \models \varphi[\vec{b}]$

Proof. Probaremos por induccion en k que el lema vale para cada $\varphi \in F_k^\tau$. El caso k=0 se desprende del lema analogo para terminos. Veamos que Teo_k implica Teo_{k+1} . Sea $\varphi \in F_{k+1}^\tau - F_k^\tau$. Hay varios casos:

CASO
$$\varphi = (\varphi_1 \wedge \varphi_2)$$
.

Ya que $Li(\varphi_i) \subseteq Li(\varphi)$, i = 1, 2, Teo_k nos dice que $\mathbf{A} \models \varphi_i[\vec{a}]$ sii $\mathbf{A} \models \varphi_i[\vec{b}]$, para i = 1, 2. Se tiene entonces que

$$\begin{aligned} \mathbf{A} &\models \varphi[\vec{a}] \\ \updownarrow & \text{(por (3) en la def de } \mathbf{A} \models \varphi[\vec{a}]) \\ \mathbf{A} &\models \varphi_1[\vec{a}] \text{ y } \mathbf{A} \models \varphi_2[\vec{a}] \\ \updownarrow & \text{(por Teo}_k) \\ \mathbf{A} &\models \varphi_1[\vec{b}] \text{ y } \mathbf{A} \models \varphi_2[\vec{b}] \\ \updownarrow & \text{(por (3) en la def de } \mathbf{A} \models \varphi[\vec{a}]) \\ \mathbf{A} &\models \varphi[\vec{b}] \end{aligned}$$

CASO $\varphi = (\varphi_1 \vee \varphi_2)$.

Es completamente similar al anterior.

CASO
$$\varphi = (\varphi_1 \to \varphi_2)$$
.

Es completamente similar al anterior.

CASO
$$\varphi = (\varphi_1 \leftrightarrow \varphi_2).$$

Es completamente similar al anterior.

CASO
$$\varphi = \neg \varphi_1$$
.

Es completamente similar al anterior.

CASO
$$\varphi = \forall x_j \varphi_1$$
.

Supongamos $\mathbf{A} \models \varphi[\vec{a}]$. Entonces por (8) en la def de $\mathbf{A} \models \varphi[\vec{a}]$ se tiene que $\mathbf{A} \models \varphi_1[\downarrow_j^a(\vec{a})]$, para todo $a \in A$. Notese que $\downarrow_j^a(\vec{a})$ y $\downarrow_j^a(\vec{b})$ coinciden en toda $x_i \in Li(\varphi_1)$ ya que $Li(\varphi_1) \subseteq Li(\varphi) \cup \{x_j\}$. O sea que por Teo_k se tiene que $\mathbf{A} \models \varphi_1[\downarrow_j^a(\vec{b})]$, para todo $a \in A$, lo cual por (8) en la def de $\mathbf{A} \models \varphi[\vec{a}]$ nos dice que $\mathbf{A} \models \varphi[\vec{b}]$. La prueba de que $\mathbf{A} \models \varphi[\vec{b}]$ implica que $\mathbf{A} \models \varphi[\vec{a}]$ es similar.

CASO
$$\varphi = \exists x_i \varphi_1$$
.

Es similar al anterior.

Corollary 3 Si φ es una sentencia, entonces $\mathbf{A} \models \varphi[\vec{a}]$ sii $\mathbf{A} \models \varphi[\vec{b}]$, cualesquiera sean las asignaciones \vec{a}, \vec{b} .

En virtud del corolario anterior tenemos que el valor de verdad de una sentencia φ en una estructura dada \mathbf{A} para una asignacion \vec{a} no depende de \vec{a} , es decir este valor es ya sea 1 para todas las asignaciones o 0 para todas las asignaciones. En el primer caso diremos que φ es verdadera en \mathbf{A} (y escribiremos $\mathbf{A} \models \varphi$) y en el segundo caso diremos que φ es falsa en \mathbf{A} (y escribiremos $\mathbf{A} \not\models \varphi$)

Ejercicio 6: Sea τ un tipo. Para cada $n \in \mathbf{N}$ dar una sentencia φ_n tal que para todo modelo \mathbf{A} de τ se cumpla $\mathbf{A} \models \varphi_n$ si y solo si A tiene exactamente n elementos

Una sentencia de tipo τ sera llamada universalmente valida si es verdadera en cada modelo de tipo τ .

Ejercicio 7: Sean φ , ϕ y ψ sentencias de tipo τ . Las siguientes son universalmente válidas:

- (a) $\forall x_1 \exists x_2 (x_1 \equiv x_2)$
- (b) $(\varphi \to (\psi \to \varphi))$
- (c) $(((\varphi \to \psi) \land (\varphi \to (\psi \to \phi))) \to (\varphi \to \phi))$
- (d) Strong responsibility property: $(((\varphi \land \psi) \to \phi)) \to ((\varphi \to \phi) \lor (\psi \to \phi)))$

Equivalencia de formulas

Dadas $\varphi, \psi \in F^{\tau}$ diremos que φ y ψ son equivalentes cuando se de la siguiente condicion

- $\mathbf{A} \models \varphi[\vec{a}]$ si y solo si $\mathbf{A} \models \psi[\vec{a}]$, para cada modelo de tipo τ , \mathbf{A} y cada $\vec{a} \in A^{\mathbf{N}}$

Escribiremos $\varphi \sim \psi$ cuando φ y ψ sean equivalentes. Notese que

$$\{(\varphi, \psi) \in F^{\tau} \times F^{\tau} : \varphi \sim \psi\}$$

es una relacion de equivalencia sobre F^{τ} .

Lemma 4 (a) Si $Li(\phi) \cup Li(\psi) \subseteq \{x_{i_1},...,x_{i_n}\}$, entonces $\phi \sim \psi$ si y solo si la sentencia $\forall x_{i_1}...\forall x_{i_n}(\phi \leftrightarrow \psi)$ es universalmente valida.

- (b) $Si \phi_i \sim \psi_i$, i = 1, 2, entonces $\neg \phi_1 \sim \neg \psi_1$, $(\phi_1 \eta \phi_2) \sim (\psi_1 \eta \psi_2)$ $y Qv \phi_1 \sim Qv \psi_1$.
- (c) Si $\phi \sim \psi$ y α' es el resultado de reemplazar en una formula α algunas (posiblemente 0) ocurrencias de ϕ por ψ , entonces $\alpha \sim \alpha'$.

Proof. (a) Tenemos que

```
\varphi \sim \psi
\updownarrow \text{ (por (6) de la def de } \models \text{ )}
\mathbf{A} \models (\phi \leftrightarrow \psi)[\vec{a}], \text{ para todo } \mathbf{A} \text{ y toda } \vec{a} \in A^{\mathbf{N}}
\updownarrow
\mathbf{A} \models (\phi \leftrightarrow \psi)[\downarrow_{i_n}^a(\vec{a})], \text{ para todo } \mathbf{A}, a \in A \text{ y toda } \vec{a} \in A^{\mathbf{N}}
\updownarrow \text{ (por (8) de la def de } \models \text{ )}
\mathbf{A} \models \forall x_{i_n}(\phi \leftrightarrow \psi)[\vec{a}], \text{ para todo } \mathbf{A} \text{ y toda } \vec{a} \in A^{\mathbf{N}}
\updownarrow
\mathbf{A} \models \forall x_{i_n}(\phi \leftrightarrow \psi)[\downarrow_{i_{n-1}}^a(\vec{a})], \text{ para todo } \mathbf{A}, a \in A \text{ y toda } \vec{a} \in A^{\mathbf{N}}
\updownarrow \text{ (por (8) de la def de } \models \text{ )}
\mathbf{A} \models \forall x_{i_{n-1}} \forall x_{i_n}(\phi \leftrightarrow \psi)[\vec{a}], \text{ para todo } \mathbf{A} \text{ y toda } \vec{a} \in A^{\mathbf{N}}
\updownarrow
\vdots
\updownarrow
\mathbf{A} \models \forall x_{i_1} ... \forall x_{i_n}(\phi \leftrightarrow \psi)[\vec{a}], \text{ para todo } \mathbf{A} \text{ y toda } \vec{a} \in A^{\mathbf{N}}
\updownarrow
\forall x_{i_1} ... \forall x_{i_n}(\phi \leftrightarrow \psi) \text{ es universalmente valida}
```

- (b) Es dejado al lector.
- (c) Por induccion en el k tal que $\alpha \in F_k^{\tau}$.

Ejercicio 8: Sea $\tau = (\{0,1\}, \{\text{por}, +\}, \{r\}, \{(\text{por}, 2), (+, 2), (r, 2)\})$. Decida si son equivalentes

- (a) $\exists x_1 \forall x_2 r(x_1, x_2) \text{ y } \forall x_1 \exists x_2 r(x_1, x_2)$
- (b) $(\exists x_1(\text{por}(x_5, x_5) \equiv x_1) \lor (x_3 \equiv x_3)) \text{ y } \exists x_1(\text{por}(x_5, x_5) \equiv x_1)$
- (c) $\exists x_1 \forall x_1 r(x_1, x_1) \text{ y } \exists x_1 r(x_1, x_1)$
- (d) $\exists x_1 \forall x_1 r(x_1, x_1) \ y \ \forall x_1 r(x_1, x_1)$
- (e) $\forall x_1 \ r(x_1, x_2) \ y \ \forall x_1 \ r(x_1, x_3)$

Ejercicio 9: Sea τ un tipo.

- (a) Para $\varphi \in F^{\tau}$ definimos φ' = resultado de reemplazar en φ toda ocurrencia de $\forall x_1 \forall x_2 \exists$ por $\forall x_2 \forall x_1 \exists$. Pruebe que $\varphi' \sim \varphi$
- (b) Sea $\alpha \in F^{\tau}$. Si α' es el resultado de remover de α una ocurrencia de la palabra $\neg \neg$ entonces α' es equivalente a α

Un poco de semantica

Dado que las estructuras de tipo τ constituyen los "mundos posibles" donde las formulas de tipo τ se "interpretan" se suele llamar semantica al estudio general de las estructuras y su vinculacion con el lenguaje. Aqui daremos algunas nociones basicas de semantica.

Homomorfismos

La nocion de homomorfismo estaba restringida a unos pocos casos particulares de estructuras estudiadas pero ahora con nuestra definicion general de estructura podemos generalizarla en forma natural. Antes una notacion muy util. Dado un modelo de tipo τ , $\mathbf{A} = (A, i)$, para cada $s \in \mathcal{C} \cup \mathcal{F} \cup \mathcal{R}$, usaremos $s^{\mathbf{A}}$ para denotar a i(s). Sean \mathbf{A} y \mathbf{B} modelos de tipo τ . Una funcion $F: A \to B$ sera un homomorfismo de \mathbf{A} en \mathbf{B} si se cumplen las siguientes

- (1) $F(c^{\mathbf{A}}) = c^{\mathbf{B}}$, para todo $c \in \mathcal{C}$,
- (2) $F(f^{\mathbf{A}}(a_1,...,a_n)) = f^{\mathbf{B}}(F(a_1),...,F(a_n)), \text{ para cada } f \in \mathcal{F}_n, a_1,...,a_n \in A.$

$$(3) (a_1, ..., a_n) \in r^{\mathbf{A}} \text{ implica } (\overline{F}(a_1), ..., F(a_n)) \in r^{\mathbf{B}}, \text{ para todo } r \in \mathcal{R}_n, \\ \overline{a_1, ..., a_n \in A}.$$

Un isomorfismo de A en B sera un un homomorfismo de A en B el cual sea biyectivo y cuya inversa sea un homomorfismo de B en A. Diremos que los modelos A y B son isomorfos (en simbolos: $A \cong B$), cuando haya un isomorfismo F de A en B. Diremos que $F: A \to B$ es un homomorfismo para expresar que F es un homomorfismo de A en B. Analogamente diremos que $F: A \to B$ es un isomorfismo para expresar que F es un isomorfismo de A en B.

Tal como sucedia para el caso de las distintas estructuras reticuladas estudiadas en las primeras guias, tenemos que cuando $\mathcal{R}=\emptyset$, la nocion de isomorfismo se simplifica

Ejercicio 10: Supongamos $\mathcal{R} = \emptyset$. Sea $F : \mathbf{A} \to \mathbf{B}$ un homomorfismo biyectivo. Entonces F es un isomorfismo

Lemma 5 Sea $F : \mathbf{A} \to \mathbf{B}$ un homomorfismo. Entonces

$$F(t^{\mathbf{A}}[(a_1, a_2, ...)] = t^{\mathbf{B}}[(F(a_1), F(a_2), ...)]$$

para cada $t \in T^{\tau}$, $(a_1, a_2, ...) \in A^{\mathbf{N}}$.

Proof. Sea

- Teo_k: Si $F: \mathbf{A} \to \mathbf{B}$ es un homomorfismo, entonces

$$F(t^{\mathbf{A}}[(a_1, a_2, ...)]) = t^{\mathbf{B}}[(F(a_1), F(a_2), ...)]$$

para cada $t \in T_k^{\tau}, (a_1, a_2, ...) \in A^{\mathbf{N}}.$

Teo₀ es trivial. Veamos que Teo_k implica Teo_{k+1}. Supongamos que vale Teo_k y supongamos $F: \mathbf{A} \to \mathbf{B}$ es un homomorfismo, $t \in T_{k+1}^{\tau} - T_k^{\tau}$ y $\vec{a} = (a_1, a_2, ...) \in A^{\mathbf{N}}$. Denotemos $(F(a_1), F(a_2), ...)$ con $F(\vec{a})$. Ya que $t \in T_{k+1}^{\tau} - T_k^{\tau}$, tenemos que $t = f(t_1, ..., t_n)$, con $n \ge 1$, $f \in \mathcal{F}_n$ y $t_1, ..., t_n \in T_k^{\tau}$. Entonces

$$\begin{array}{lll} F(t^{\mathbf{A}}[\vec{a}]) & = & F(f(t_1,...,t_n)^{\mathbf{A}}[\vec{a}]) \\ & = & F(f^{\mathbf{A}}(t_1^{\mathbf{A}}[\vec{a}],...,t_n^{\mathbf{A}}[\vec{a}])) \\ & = & f^{\mathbf{B}}(F(t_1^{\mathbf{A}}[\vec{a}]),...,F(t_n^{\mathbf{A}}[\vec{a}])) \\ & = & f^{\mathbf{B}}(t_1^{\mathbf{B}}[F(\vec{a})],...,t_n^{\mathbf{B}}[F(\vec{a})])) \\ & = & f(t_1,...,t_n)^{\mathbf{B}}[F(\vec{a})] \\ & = & t^{\mathbf{B}}[F(\vec{a})] \end{array}$$

Lemma 6 Supongamos que $F: \mathbf{A} \to \mathbf{B}$ es un isomorfismo. Sea $\varphi \in F^{\tau}$. Entonces

$$\mathbf{A} \models \varphi[(a_1, a_2, ...)] \ sii \ \mathbf{B} \models \varphi[(F(a_1), F(a_2), ...)]$$

para cada $(a_1, a_2, ...) \in A^{\mathbf{N}}$. En particular **A** y **B** satisfacen las mismas sentencias de tipo τ .

Proof. Por induccion. Sea

- Teo_k: Supongamos que $F: \mathbf{A} \to \mathbf{B}$ es un isomorfismo. Sea $\varphi \in F_k^\tau$. Entonces

$$\mathbf{A} \models \varphi[(a_1, a_2, ...)] \text{ sii } \mathbf{B} \models \varphi[(F(a_1), F(a_2), ...)]$$

para cada $(a_1, a_2, ...) \in A^{\mathbf{N}}$

Prueba de Teo₀. Supongamos que $F: \mathbf{A} \to \mathbf{B}$ es un isomorfismo, $\varphi \in F_0^{\tau}$ y $(a_1, a_2, ...) \in A^{\mathbf{N}}$. Probaremos que

$$\mathbf{A} \models \varphi[(a_1, a_2, ...)] \text{ sii } \mathbf{B} \models \varphi[(F(a_1), F(a_2), ...)]$$

Hay dos casos. Caso $\varphi = r(t_1,...,t_n)$, con $n \geq 1$, $r \in \mathcal{R}_n$ y $t_1,...,t_n \in T^\tau$. Denotemos con \vec{a} a $(a_1,a_2,...)$ y con $F(\vec{a})$ a $(F(a_1),F(a_2),...)$. Tenemos entonces

$$\begin{split} \mathbf{A} &\models \varphi[\vec{a}] \quad \text{sii} \quad (t_1^{\mathbf{A}}[\vec{a}], ..., t_m^{\mathbf{A}}[\vec{a}]) \in r^{\mathbf{A}} \text{ (def de } \models) \\ &\quad \text{sii} \quad (F(t_1^{\mathbf{A}}[\vec{a}]), ..., F(t_n^{\mathbf{A}}[\vec{a}])) \in r^{\mathbf{B}} \text{ (F es iso)} \\ &\quad \text{sii} \quad (t_1^{\mathbf{B}}[F(\vec{a})]), ..., t_n^{\mathbf{B}}[F(\vec{a})]) \in r^{\mathbf{B}} \text{ (Lema \ref{lem:approx}.}) \\ &\quad \text{sii} \quad \mathbf{B} \models \varphi[F(\vec{a})] \end{split}$$

Dejamos al lector completar la prueba de que Teo_k implica Teo_{k+1}

- Ejercicio 11: Completar la prueba del lema anterior
- Ejercicio 12: Encuentre resultados probados o dejados como ejercicios en las guias de posets y reticulados, los cuales sean consecuencia inmediata del lema anterior