Tema 1: Lógica Proposicional

Lógica-GIA

Curso 2024-2025

Tema 1: Lógica Proposicional

Curso 2024-2025

Lógica

Grado en Inteligencia Artificial

Felicidad Aguado, Pedro Cabalar, Gilberto Pérez, Concepción Vidal

Introducción

- A veces llamada el cálculo de la informática porque proporciona un soporte matemático para tratar con información y razonar sobre el comportamiento de los programas.
- En Computación, las reglas de la lógica se usan en el diseño, desarrollo, verificación y mantenimiento de programas informáticos.
- La lógica trata de la formalización del lenguaje y los métodos de razonamiento.
- La lógica proporciona técnicas para determinar si un argumento (razonamiento) es válido o no.

Lógica Proposicional: Proposiciones

Definición

Una proposición o enunciado es una oración declarativa que es verdadera o falsa pero no ambas cosas a la vez.

Le asignaremos uno y sólo uno de los valores de verdad: verdadero (1) o falso (0).

Lógica Proposicional: Proposiciones

Definición

Una proposición o enunciado es una oración declarativa que es verdadera o falsa pero no ambas cosas a la vez.

Le asignaremos uno y sólo uno de los valores de verdad: verdadero (1) o falso (0).

Son proposiciones:

- Los triángulos tienen cuatro vértices (0)
- Pedro Almodóvar es el director de La guerra de las galaxias (0)
- 2+2=4 (1)
- 2+4=7 (0)

Lógica Proposicional: Proposiciones

Definición

Una proposición o enunciado es una oración declarativa que es verdadera o falsa pero no ambas cosas a la vez.

Le asignaremos uno y sólo uno de los valores de verdad: verdadero (1) o falso (0).

No son proposiciones:

- Ojalá que haga sol este fin de semana.
- ¿A qué hora vamos al cine?
- x + 4 = 10

Hay proposiciones simples y proposiciones compuestas

Definición

Una proposición simple (o primitiva o atómica) es aquella que no hay forma de descomponerla en otra más sencilla. Es frecuente llamarlas átomos. Un conjunto de átomos se llama signatura At.

Pondremos p, q, r, \dots

Para obtener las proposiciones compuestas se utilizan los conectivos u operadores lógicos:

$$\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$$

• Negación (\neg) Si p es una proposición, la negación de p se denota por $\neg p$ v se lee:

"no p" "no ocurre p" "no es cierto p"

• Conjunción (\land) Si p y q son proposiciones, la conjunción de p y q se denota por $p \wedge q$ y se lee:

"p y q" "p, no obstante q" "p, pero q" "p, sin embargo q" "p, q" "p, augustication of the second content of t "p. aunque q"

• **Disyunción** (\vee) Si p y q son proposiciones, la disyunción de p y qse denota por $p \lor q$ y se lee:

```
"p o q (o ambos)" "como mínimo p o
                                           "p a menos que q"
"al menos p o q"
                                            "p a no ser que q"
```

• Condicional (\rightarrow) Si p y q son proposiciones, el condicional $p \rightarrow q$ se lee:

```
"Si p, entonces q"
"Si p, q"
"p solo si q"
"cuando p, entonces q"
"p es suficiente para q"
```

```
"a si p"
"q siempre que p"
"a cuando p"
"q es necesario para p"
"no p a no ser que q"
"no p a menos que q"
```

• **Bicondicional** (\leftrightarrow) Si p y q son proposiciones, el bicondicional $p \leftrightarrow q$ se lee:

```
"p si, y solo si, q"
"p es suficiente y necesario para q"
```

Definición

Dada una signatura At, las reglas para construir una fórmula (bien formada) son:

- \bigcirc \top $y \perp$ son f.b.f.
- 2 Los átomos son f.b.f.
- **3** Si α es una f.b.f., $\neg \alpha$ es una f.b.f.
- **3** Si α y β son f.b.f., entonces $\alpha \wedge \beta$, $\alpha \vee \beta$, $\alpha \rightarrow \beta$ y $\alpha \leftrightarrow \beta$ son f.b.f.
- No hay más reglas.

El conjunto de fórmulas construidas con At es \mathcal{L}_{At} .

Una teoría $\Gamma \subseteq \mathcal{L}_{At}$ es un conjunto de fórmulas.

OJO

Ejemplo

 $p \rightarrow \neg q$ es una f.b.f., pero $p \rightarrow q$ y $p \lor \land q$ no lo son.

- Se pueden usar paréntesis o corchetes,
- Si hay más de una conectiva en una fórmula, entenderemos que cada conectiva afecta a la letra proposicional inmediata o al conjunto de proposiciones inmediatas encerradas entre paréntesis.

$$\neg p \lor q \qquad \neg (p \lor q)$$

Jerarquía: \neg , \land , \lor , \rightarrow , \leftrightarrow

Ejemplo

- $p \rightarrow (q \land r)$ puede escribirse como $p \rightarrow q \land r$
- $p \rightarrow q \land \neg r$ es $p \rightarrow (q \land (\neg r))$

Jerarquía:
$$\neg$$
, \land , \lor , \rightarrow , \leftrightarrow

Los paréntesis a veces son necesarios

Ejemplo

$$\neg p \land (r \rightarrow t)$$

 $\neg p \land r \rightarrow t$ representa a $(\neg p \land r) \rightarrow t$

Ejemplo

$$\neg p \land (q \lor r)$$

 $\neg p \land q \lor r$ representa a $(\neg p \land q) \lor r$

Ejemplo

p: Me mareo, q: Voy en coche

• "Me mareo si voy en coche"

Ir en coche es suficiente para que me maree

$$q \rightarrow p$$

Ejemplo

p: Me mareo, q: Voy en coche

• "Me mareo si voy en coche" Ir en coche es suficiente para que me maree

$$q \rightarrow p$$

"Me mareo solo si voy en coche" Ir en coche es necesario para que me maree

$$p \rightarrow q$$

Partimos de

$$I: At \rightarrow \{0,1\}$$

I se denomina interpretación

- Si I(p) = 0, p es falsa
- Si I(p) = 1, p es verdadera

Identificamos I con $\{p \in At ; I(p) = 1\}$

Ejemplo

Si $At = \{p, q, r, s\}$, entonces

- Si $I = \{p, q\}, \ I(p) = I(q) = 1, \ I(r) = I(s) = 0$
- $Si\ I = \{r\},\ I(r) = 1,\ I(p) = I(q) = I(s) = 0$
- Si $I = \{p, q, r, s\}, I(p) = I(q) = I(r) = I(s) = 1$
- Si $I = \emptyset$, I(p) = I(q) = I(r) = I(s) = 0

Dada
$$I: At \rightarrow \{0,1\}$$
 y $p, q \in At$:

 \bullet \perp es siempre falsa y \top es siempre verdadera.

Lógica-GIA Tema 1: Lógica Proposicional

Dada $I: At \rightarrow \{0,1\}$ y $p, q \in At$:

- ullet Les siempre falsa y \top es siempre verdadera.
- La negación $\neg p$ es verdadera únicamente cuando p es falsa.

Lógica-GIA Tema 1: Lógica Proposicional Curso 2024–2025

Dada $I: At \rightarrow \{0,1\}$ y $p, q \in At$:

- ullet Les siempre falsa y \top es siempre verdadera.
- La **negación** $\neg p$ es verdadera únicamente cuando p es falsa.
- La conjunción $p \land q$ es verdadera cuando tanto p como q son verdaderas, y falsa en cualquier otro caso.

Lógica-GIA

Dada $I: At \rightarrow \{0,1\}$ y $p, q \in At$:

- La **negación** $\neg p$ es verdadera únicamente cuando p es falsa.
- La **conjunción** $p \land q$ es verdadera cuando tanto p como q son verdaderas, y falsa en cualquier otro caso.
- La disyunción $p \lor q$ es falsa cuando tanto p como q son falsas, y verdadera en cualquier otro caso.

Dada $I: At \rightarrow \{0,1\}$ y $p, q \in At$:

- La **negación** $\neg p$ es verdadera únicamente cuando p es falsa.
- La **conjunción** $p \wedge q$ es verdadera cuando tanto p como q son verdaderas, y falsa en cualquier otro caso.
- La disyunción $p \lor q$ es falsa cuando tanto p como q son falsas, y verdadera en cualquier otro caso.
- El condicional $p \to q$ es falso cuando p es verdadera y q es falsa, y verdadero en cualquier otro caso.

Dada $I: At \rightarrow \{0,1\}$ y $p, q \in At$:

- ullet Les siempre falsa y \top es siempre verdadera.
- La **negación** $\neg p$ es verdadera únicamente cuando p es falsa.
- La **conjunción** $p \land q$ es verdadera cuando tanto p como q son verdaderas, y falsa en cualquier otro caso.
- La disyunción $p \lor q$ es falsa cuando tanto p como q son falsas, y verdadera en cualquier otro caso.
- El **condicional** $p \rightarrow q$ es falso cuando p es verdadera y q es falsa, y verdadero en cualquier otro caso.
- El **bicondicional** $p \leftrightarrow q$ es verdadero cuando p y q tienen los mismos valores de verdad, y falso en los otros casos.

р	$\neg p$	
0	1	
1	0	

	p	q	$p \wedge q$	$p \lor q$	p o q	$p \leftrightarrow q$
	0	0	0	0	1	1
Ì	0	1	0	1	1	0
	1	0	0	1	0	0
	1	1	1	1	1	1

Lógica-GIA

Dada una fórmula $\alpha: (p \lor q) \land (p \to \neg q)$, α es verdadera o falsa dependiendo del valor de verdad de $\{p,q\}$.

- Si I(p) = I(q) = 1, α es falsa
- I(p) = 1, I(q) = 0, α es verdadera

 α admite 2² interpretaciones ($I: \{p, q\} \rightarrow \{0, 1\}$).

Definición

Una tabla de verdad para una fórmula α es un método que proporciona los valores de verdad de α , a partir de los valores de verdad de $At(\alpha)$.

$$At(\alpha) = \{ p \in At ; p \text{ aparece en } \alpha \}$$

Ejemplo

La tabla de verdad de $(p \lor q) \land (p \to \neg q)$ es:

p	q	$p \lor q$	$\neg q$	$p \rightarrow \neg q$	$(p \lor q)$	\wedge	(p ightarrow eg q)
0	0	0	1	1		0	
0	1	1	0	1		1	
1	0	1	1	1		1	
1	1	1	0	0		0	

Cada fila de la tabla de verdad de α es una interpretación de α Si $|At(\alpha)| = n$, la tabla tiene 2^n interpretaciones (exponencial!)

p	q	$p \lor q$	$\neg q$	p ightarrow eg q	$(p \lor q)$	\wedge	(p ightarrow eg q)
0	0	0	1	1		0	
0	1	1	0	1		1	
1	0	1	1	1		1	
1	1	1	0	0		0	

Lógica-GIA Tema 1: Lógica Proposicional Curso 2024–2025 12 / 28

Una interpretación $I: At \rightarrow \{0,1\}$ se puede extender a $I: \mathcal{L}_{At} \rightarrow \{0,1\}$:

- $I \not\models \bot$, $I \models \top$
- $I \models p \text{ si } I(p) = 1 \text{ para } p \in At$
- $I \models \neg \alpha \text{ si } I \not\models \alpha$
- $I \models \alpha \land \beta$ si $I \models \alpha$ e $I \models \beta$
- $I \models \alpha \lor \beta$ si $I \models \alpha$ o $I \models \beta$
- $I \models \alpha \rightarrow \beta$ si $I \not\models \alpha$ o $I \models \beta$
- $I \models \alpha \leftrightarrow \beta$ si $(I \models \alpha \in I \models \beta)$ o $(I \not\models \alpha \in I \not\models \beta)$

$$I(\alpha) := 1 \text{ si } I \models \alpha$$

- Si $I(\alpha) = 1$ o $I \models \alpha$, I se llama modelo de α
- Si $I(\alpha) = 0$ o $I \not\models \alpha$, I se llama contraejemplo (o contramodelo) de α

Lógica-GIA

Sea
$$At = \{p, q\}$$

$$M(\alpha) = \{ \text{ modelos de } \alpha \}$$

•
$$M(\bot) = \emptyset$$
 y $M(\top) = 2^{At} = \mathcal{P}(At)$

•
$$M(p) = \{\{p\}, \{p, q\}\}$$

•
$$M(\neg p) = \{\{\}, \{q\}\} \ (\{\} = \emptyset)$$

•
$$M(p \wedge q) = \{\{p, q\}\}$$

•
$$M(p \lor q) = \{\{p\}, \{q\}, \{p, q\}\}$$

•
$$M(p \rightarrow q) = \{\{\}, \{q\}, \{p, q\}\}$$

Definición

Dadas dos fórmulas α y β , se dice que α es más fuerte que β (o β es más débil que α) si $M(\alpha) \subseteq M(\beta)$

- $M(q) = \{\{q\}, \{p, q\}\}$
- $M(p \wedge q) = \{\{p, q\}\}$
- $M(p \lor q) = \{\{p\}, \{q\}, \{p, q\}\}$
- $M(p \rightarrow q) = \{\{\}, \{q\}, \{p, q\}\}$
- $M(p \leftrightarrow q) = \{\{\}, \{p, q\}\}$
- ullet q es más fuerte que $p \lor q$ y que $p \to q$
- ullet $p \leftrightarrow q$ es más fuerte que $p \rightarrow q$ y que $q \rightarrow p$
- $p \land q$ es más fuerte que q y que $p \lor q$

Dada una fórmula α :

• α es una tautología si $M(\alpha) = 2^{At}$ (solo tiene modelos)

$$\top$$
, $\neg p \lor p y \neg \alpha \lor \alpha$

• α es una contradicción si $M(\alpha) = \emptyset$ (solo tiene contramodelos)

$$\perp$$
, $\neg p \wedge p y \neg \alpha \wedge \alpha$

ullet α es una contingencia si tiene modelos y contramodelos

$$(p \lor q) \land (p \to \neg q)$$

• α es satisfacible si $M(\alpha) \neq \emptyset$ (admite algún modelo)

Lógica-GIA

Una fórmula α es satisfacible si $M(\alpha) \neq \emptyset$ (admite algún modelo).

Definición

El conjunto de fórmulas $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ es satisfacible (o consistente) si la fórmula $\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_n$ es satisfacible.

Existe un modelo común para todas las α_i ($1 \le i \le n$)

El conjunto $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ es insatisfacible (o inconsistente) si la fórmula $\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_n$ no es satisfacible.

No existe un modelo común para todas las α_i (1 $\leq i \leq n$)

$$\{p \wedge \neg q, \neg p \to q\}$$
 es consistente $\{p \wedge \neg q, p \to q\}$ es inconsistente

Definición

Dos fórmulas α y β son lógicamente equivalentes si, para cada interpretación, ambas tienen los mismos valores de verdad (es decir, la fórmula $\alpha \leftrightarrow \beta$ es una tautología). Equivalentemente, $M(\alpha) = M(\beta)$. Esta situación se representa por

$$\alpha \equiv \beta$$

Definición

Dos fórmulas α y β son lógicamente equivalentes si, para cada interpretación, ambas tienen los mismos valores de verdad (es decir, la fórmula $\alpha \leftrightarrow \beta$ es una tautología). Equivalentemente, $M(\alpha) = M(\beta)$. Esta situación se representa por

$$\alpha \equiv \beta$$

También puede denotarse por $\alpha \iff \beta$.

Definición

Dos fórmulas α y β son lógicamente equivalentes si, para cada interpretación, ambas tienen los mismos valores de verdad (es decir, la fórmula $\alpha \leftrightarrow \beta$ es una tautología). Equivalentemente, $M(\alpha) = M(\beta)$. Esta situación se representa por

$$\alpha \equiv \beta$$

También puede denotarse por $\alpha \iff \beta$. Es importante diferenciar "≡" de "↔"

- $\neg (p \lor q) \equiv \neg p \land \neg q \quad \checkmark (\neg (p \lor q) \leftrightarrow \neg p \land \neg q \text{ es una tautología})$
- $\neg(p \lor q) \equiv \neg p \lor \neg q$ NO $(\neg(p \lor q) \leftrightarrow \neg p \lor \neg q \text{ no es una tautología})$
- $\neg(p \lor q) \leftrightarrow \neg p \lor \neg q$ \checkmark (es una fórmula bien formada)

Lógica-GIA

Ejemplo

 $\neg(p \land q) \ y \ \neg p \lor \neg q \ son \ l\'{o}gicamente \ equivalentes:$

p	q	$\neg(p \land q)$	$\neg p \lor \neg q$	$\mid \neg (p \wedge q) \leftrightarrow (\neg p \vee \neg q) \mid$
0	0	1	1	1
0	1	1	1	1
1	0	1	1	1
1	1	0	0	1

Lógica-GIA

Principales equivalencias lógicas	
Leyes Conmutativas	$ \begin{array}{c} p \lor q \equiv q \lor p \\ p \land q \equiv q \land p \end{array} $
Leyes Asociativas	$ \begin{array}{c} p \wedge q = q \wedge p \\ (p \vee q) \vee r \equiv p \vee (q \vee r) \\ (p \wedge q) \wedge r \equiv p \wedge (q \wedge r) \end{array} $
Leyes Distributivas	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
Ley de la Doble Negación	$\neg\neg p \equiv p$
Leyes de De Morgan	$ egin{array}{l} \neg(p\lor q)\equiv(\neg p\land \neg q) \\ \neg(p\land q)\equiv(\neg p\lor \neg q) \end{array}$
Leyes de Dominación	$ \begin{array}{c} p \lor \top \equiv \top \\ p \land \bot \equiv \bot \end{array} $
Leyes de Identidad	$ \begin{array}{c} p \wedge \top \equiv p \\ p \vee \bot \equiv p \end{array} $
Leyes de la Negación	$ \begin{array}{c} p \lor \neg p \equiv \top \\ p \land \neg p \equiv \bot \end{array} $
Ley de la Contraposición	$(p ightarrow q) \equiv (\neg q ightarrow \neg p)$

Tabla: Tabla de equivalencias

Principales equivalencias lógicas	
Leyes de la Implicación	$(p ightarrow q)\equiv (eg pee q) \ eg (p\wedge eg q)$
Leyes de la Equivalencia	$(p \leftrightarrow q) \equiv [(p \rightarrow q) \land (q \rightarrow p)] \ (p \leftrightarrow q) \equiv (p \land q) \lor (\neg p \land \neg q)$
Leyes Idempotentes	$p \equiv (p \land p)$ $p \equiv (p \lor p)$
Leyes de Absorción	$ \begin{array}{c} p \wedge (p \vee q) \equiv p \\ p \vee (p \wedge q) \equiv p \end{array} $
Ley de la Reducción al absurdo	$(p ightarrow q) \equiv [(p \wedge eg q) ightarrow ot]$

Tabla: Tabla de equivalencias

Sea α una fórmula y β una subfórmula de α .

Ejemplo

$$\alpha: \neg(p \lor q) \to r \ y \ \beta: \neg(p \lor q)$$

Si $\beta \equiv \beta^*$, y sustituimos alguna ocurrencia de β en α por β^* , obtenemos α^* y $\alpha^* \equiv \alpha$.

Sea α una fórmula y β una subfórmula de α .

Ejemplo

$$\alpha: \neg (p \lor q) \to r \ y \ \beta: \neg (p \lor q)$$

Si $\beta \equiv \beta^*$, y sustituimos alguna ocurrencia de β en α por β^* , obtenemos $\alpha^* \vee \alpha^* \equiv \alpha$.

Ejemplo

Como
$$\beta : \neg (p \lor q) \equiv \neg p \land \neg q$$
, entonces:

$$\neg(p \lor q) \to r \equiv \neg p \land \neg q \to r$$

Ejemplo

```
 \begin{array}{ccc} (\rho \vee q) \wedge (\rho \to \neg q) & \equiv & (\rho \vee q) \wedge (\neg \rho \vee \neg q) \\ \equiv & (\rho \wedge \neg \rho) \vee (\rho \wedge \neg q) \vee (q \wedge \neg \rho) \vee (q \wedge \neg q) \\ \equiv & \perp \vee (\rho \wedge \neg q) \vee (q \wedge \neg \rho) \vee \perp \\ \equiv & (\rho \wedge \neg q) \vee (q \wedge \neg \rho) & \perp \end{array}
```

Ley de la implicación Ley distributiva Ley de la negación Ley Identidad

Lógica-GIA Tema 1: Lógica Proposicional Curso 2024–2025 19 / 28

Definición

Se dice que una fórmula α implica lógicamente una fórmula β si $\alpha \to \beta$ es una tautología). Equivalentemente, $M(\alpha) \subseteq M(\beta)$. Esta situación se representa por

$$\alpha \models \beta$$

También se dice que β es consecuencia lógica de α , que α es más fuerte que β o que β es más débil que α .

Definición

Se dice que una fórmula α implica lógicamente una fórmula β si $\alpha \to \beta$ es una tautología). Equivalentemente, $M(\alpha) \subseteq M(\beta)$. Esta situación se representa por

$$\alpha \models \beta$$

También se dice que β es consecuencia lógica de α , que α es más fuerte que β o que β es más débil que α .

- $p \models p \lor q$
- $p \land q \models p$
- $p \land q \models p \lor q$

Definición

Se dice que una fórmula α implica lógicamente una fórmula β si $\alpha \to \beta$ es una tautología). Equivalentemente, $M(\alpha) \subseteq M(\beta)$. Esta situación se representa por

$$\alpha \models \beta$$

También se dice que β es consecuencia lógica de α , que α es más fuerte que β o que β es más débil que α .

Definición

Se dice que una fórmula α implica lógicamente una fórmula β si $\alpha \to \beta$ es una tautología). Equivalentemente, $M(\alpha) \subseteq M(\beta)$. Esta situación se representa por

$$\alpha \models \beta$$

También se dice que β es consecuencia lógica de α , que α es más fuerte que β o que β es más débil que α .

Es importante diferenciar " \models " de " \rightarrow "

- $p \rightarrow p \land q \quad \checkmark$ (es una fórmula bien formada)
- $p \models p \land q$ NO $(p \rightarrow p \land q \text{ no es una tautología})$
- $p \models p \lor q \quad \checkmark \ (p \to p \lor q \text{ es una tautología})$

Principales implicaciones lógicas	
Modus Ponens	$[(p ightarrow q) \wedge p] \models q$
Modus Tollens	$[(p ightarrow q) \wedge eg q] \models eg p$
Silogismo	$[(p \to q) \land (q \to r)] \models (p \to r)$
Leyes de Simplificación	$ \begin{array}{c} (p \wedge q) \models p \\ (p \wedge q) \models q \end{array} $
Leyes de Adición	$ \begin{array}{l} p \models (p \lor q) \\ q \models (p \lor q) \end{array} $
Silogismo Disyuntivo	$((p \lor q) \land \neg p) \models q \ ((p \lor q) \land \neg q) \models p$
Ley de Casos	$[(p ightarrow q) \wedge (\lnot p ightarrow q)] \models q$
Ley de Inconsistencia	$[p \land \neg p] \models q$

Tabla: Tabla de implicaciones lógicas

Definición

Dado un conjunto de proposiciones $\{H_1, H_2, \dots, H_n\}$ y una proposición C se dice que el argumento $\{H_1, H_2, \dots, H_n\} \models C$ es válido si

$$H_1 \wedge H_2 \wedge \ldots \wedge H_n \models C$$

Las proposiciones H_1, H_2, \ldots, H_n se llaman hipótesis o premisas y C se llama conclusión. El argumento es válido si, siempre que todas las hipótesis son verdaderas, también lo es la conclusión.

23 / 28

Tablas semánticas

Para decidir si una fórmula α es satisfacible (o si un conjunto de fórmulas es consistente o inconsistente), se puede utilizar una tabla semántica. Para construirla se determinan los valores de verdad de las subfórmulas de α desde las más sencillas hasta las más complejas.

Tablas semánticas

Se construye un árbol donde los nodos (finitos) son las proposiciones. Partiendo de:

Representamos $p \rightarrow q$ y $p \leftrightarrow q$ como:

Tema 1: Lógica Proposicional

25 / 28

Tablas semánticas

- Queremos comprobar si $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ es consistente
- Representamos $\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n$
- Si en una sucesión de nodos del árbol, (camino), aparece una proposición y su negación, se dice que es un camino cerrado y se marca con *.
 - Si al finalizar todos los caminos se cierran, la proposición $\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n$ es una contradicción o el conjunto $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ es inconsistente
 - Si al finalizar algún camino no se cierra, ese camino es un modelo de $\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n$ y el conjunto $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ es consistente

26 / 28

Tablas semánticas: Ejemplo

- Queremos comprobar si $\{r \to p, r, \neg q, \neg p \to q\}$ es consistente
- Representamos $(r o p) \wedge r \wedge \neg q \wedge (\neg p o q)$

Lógica-GIA Tema 1: Lógica Proposicional

Tablas semánticas: Ejemplo

- Queremos comprobar si $\{r \to p, r, \neg q, \neg p \to q\}$ es consistente
- Representamos $(r \to p) \land r \land \neg q \land (\neg p \to q)$ $\neg p \rightarrow q \equiv p \lor q$

Tablas semánticas: Ejemplo

- Al final del proceso queda un camino abierto
- $I = \{p, r\}$ (I(p) = I(r) = 1, I(q) = 0) es un modelo de $(r \rightarrow p) \land r \land \neg q \land (\neg p \rightarrow q)$
- $\{r \rightarrow p, r, \neg q, \neg p \rightarrow q\}$ es consistente

¿El argumento $\{p \rightarrow q, p\} \models q$ es válido?

¿El argumento $\{p \to q, p\} \models q$ es válido? ¿La fórmula $(p \to q) \land p \land \neg q$ es una contradicción?

¿El argumento $\{p \to q, p\} \models q$ es válido? ¿La fórmula $(p \to q) \land p \land \neg q$ es una contradicción?

¿El argumento $\{p \rightarrow q, p\} \models q$ es válido? ¿La fórmula $(p \rightarrow q) \land p \land \neg q$ es una contradicción?

Son equivalentes:

- $\{H_1, H_2, \dots, H_n\} \models C$ es válido
- $H_1 \wedge H_2 \wedge ... \wedge H_n \rightarrow C$ es una tautología
- $H_1 \wedge H_2 \wedge ... \wedge H_n \wedge \neg C$ es una contradicción
- El conjunto $\{H_1, H_2, \dots, H_n, \neg C\}$ es inconsistente