# Chapter 9

# Internet Control Message Protocol Version 4 (ICMPV4)

### 9-1 INTRODUCTION

The IP protocol has no error-reporting or error correcting mechanism. What happens if something goes wrong? What happens if a router must discard a datagram because it cannot find a router to the final destination, or because the time-to-live field has a zero value? These are examples of situations where an error has occurred and the IP protocol has no built-in mechanism to notify the original host.

### Topics Discussed in the Section

- **✓** The position of ICMP in the TCP/IP suite
- **✓** Encapsulation of ICMP Packets





Figure 9.2 ICMP encapsulation



## 9-2 MESSAGES

ICMP messages are divided into two broad categories: error-reporting messages and query messages.

- The error-reporting messages report problems that a router or a host (destination) may encounter when it processes an IP packet.
- The query messages, which occur in pairs, help a host or a network manager get specific information from a router or another host. Also, hosts can discover and learn about routers on their network and routers can help a node redirect its messages.

## Topics Discussed in the Section

- **✓ Message Format**
- **✓ Error Reporting Messages**
- **✓ Query Messages**
- **✓** Checksum

 Table 9.1
 ICMP messages

| Category        | Туре     | Message                    |
|-----------------|----------|----------------------------|
|                 | 3        | Destination unreachable    |
|                 | 4        | Source quench              |
| Error-reporting | 11       | Time exceeded              |
| messages        | 12       | Parameter problem          |
|                 | 5        | Redirection                |
| Query           | 8 or 0   | Echo request or reply      |
| messages        | 13 or 14 | Timestamp request or reply |

Figure 9.3 General format of ICMP messages



#### **ICMP Parameter Message Format**

| 0 1 2 3 4 5 6 7                                     | 8 9 10 11 12 13 14 15 | 16 17 18 19 20 21 22 23 | 24   25   26   27   28   29   30   31 |  |
|-----------------------------------------------------|-----------------------|-------------------------|---------------------------------------|--|
| Туре                                                | Code                  | Chec                    | ksum                                  |  |
| 0                                                   | 1                     | 2                       | 3                                     |  |
| Pointer                                             | Unused                |                         |                                       |  |
| 4                                                   | 5                     | 6                       | 7                                     |  |
| Internet Header + 8 bytes of Original Data Datagram |                       |                         |                                       |  |
| 8                                                   |                       |                         |                                       |  |

| Type | Code | Meaning                           |  |
|------|------|-----------------------------------|--|
| 0    | 0    | Echo Reply                        |  |
| 3    | 0    | Net Unreachable                   |  |
|      | 1    | Host Unreachable                  |  |
|      | 2    | Protocol Unreachable              |  |
|      | 3    | Port Unreachable                  |  |
|      | 4    | Frag needed and DF set            |  |
|      | 5    | Source route failed               |  |
|      | 6    | Dest network unknown              |  |
|      | 7    | Dest host unknown                 |  |
|      | 8    | Source host isolated              |  |
|      | 9    | Network admin prohibited          |  |
|      | 10   | Host admin prohibited             |  |
|      | 11   | Network unreachable for TOS       |  |
|      | 12   | Host unreachable for TOS          |  |
|      | 13   | Communication admin prohibited    |  |
| 4    | 0    | Source Quench (Slow down/Shut up) |  |
|      |      |                                   |  |
|      |      |                                   |  |
|      |      |                                   |  |

| Туре | Code | Meaning                                         |
|------|------|-------------------------------------------------|
| 5    | 0    | Redirect datagram for the network               |
|      | 1    | Redirect datagram for the host                  |
|      | 2    | Redirect datagram for the TOS & Network         |
|      | 3    | Redirect datagram for the TOS & Host            |
| 8    | 0    | Echo                                            |
| 9    | 0    | Router advertisement                            |
| 10   | 0    | Router selection                                |
| 11   | 0    | Time To Live exceeded in transit                |
|      | 1    | Fragment reassemble time exceeded               |
| 12   | 0    | Pointer indicates the error (Parameter Problem) |
|      | 1    | Missing a required option (Parameter Problem)   |
|      | 2    | Bad length (Parameter Problem)                  |
| 13   | 0    | Time Stamp                                      |
| 14   | 0    | Time Stamp Reply                                |
| 15   | 0    | Information Request                             |
| 16   | 0    | Information Reply                               |
| 17   | 0    | Address Mask Request                            |
| 18   | 0    | Address Mask Reply                              |
| 30   | 0    | Traceroute (Tracert)                            |

# ICMP always reports error messages to the original source.





# **Important Points:**

No ICMP error messages are generated for:

- Datagram carrying a ICMP error message.
- Fragmented datagram that is not the first fragment.
- Multicast address
- Datagram having special address such as loopback or 0.0.0.0

Figure 9.5 Contents of data field for the error message



#### **TCP & UDP Header**



#### Figure 9.6 Destination-unreachable format

| Type: 3                                                                                      | Code: 0 to 15 | Checksum |  |
|----------------------------------------------------------------------------------------------|---------------|----------|--|
| Unused (All 0s)                                                                              |               |          |  |
| Part of the received IP datagram including IP header plus the first 8 bytes of datagram data |               |          |  |

Destination-unreachable messages with codes 2 or 3 can be created only by the destination host.

Other destination-unreachable messages can be created only by routers.



There is no flow-control or congestion-control mechanism in the IP protocol.

#### Figure 9.7 Source-quench format



A source-quench message informs the source that a datagram has been discarded due to congestion in a router or the destination host.

The source must slow down the sending of datagrams until the congestion is relieved.

One source-quench message is sent for each datagram that is discarded due

to congestion.

#### **Time Exceeded:**

Whenever a router decrements a datagram with a time-to-live value to zero, it discards the datagram and sends a time-exceeded message to the original source.

When the final destination does not receive all of the fragments in a set time, it discards the received fragments and sends a time-exceeded message to the original source.

#### Figure 9.8 Time-exceeded message format



In a time-exceeded message, code 0 is used only by routers to show that the value of the time-to-live field is zero.

Code 1 is used only by the destination host to show that not all of the fragments have arrived within a set time.



A parameter-problem message can be created by a router or the destination host.

Figure 9.9 Parameter-problem message format

| Type: 12                                                                                     | Code: 0 or 1    | Checksum |
|----------------------------------------------------------------------------------------------|-----------------|----------|
| Pointer                                                                                      | Unused (All 0s) |          |
| Part of the received IP datagram including IP header plus the first 8 bytes of datagram data |                 |          |

#### Figure 9.10 Redirection concept



A host usually starts with a small routing table that is gradually augmented and updated.

One of the tools to accomplish this is the redirection message.

#### Figure 9.11 Redirection message format

| Type: 5                                                                                      | Code: 0 to 3 | Checksum |  |
|----------------------------------------------------------------------------------------------|--------------|----------|--|
| IP address of the target router                                                              |              |          |  |
| Part of the received IP datagram including IP header plus the first 8 bytes of datagram data |              |          |  |

# A redirection message is sent from a router to a host on the same local network.

#### **Echo Request and Reply**

An echo-request message can be sent by a host or router.

An echo-reply message is sent by the host or router that receives an echo-request message.

Echo-request and echo-reply messages can be used by network managers to check the operation of the IP protocol.

Echo-request and echo-reply messages can test the reachability of a host.

This is usually done by invoking the ping command.

Type 8: Echo request Type 0: Echo reply

| Type: 8 or 0                                                             | Code: 0 | Checksum        |
|--------------------------------------------------------------------------|---------|-----------------|
| Identifier                                                               |         | Sequence number |
| Optional data Sent by the request message; repeated by the reply message |         |                 |



Type 13: request Type 14: reply

| Type: 13 or 14     | Code: 0 | Checksum        |  |
|--------------------|---------|-----------------|--|
| Identifier         |         | Sequence number |  |
| Original timestamp |         |                 |  |
| Receive timestamp  |         |                 |  |
| Transmit timestamp |         |                 |  |



Timestamp-request and timestamp-reply messages can be used to calculate the round-trip time between a source and a destination machine even if their clocks are not synchronized.

The timestamp-request and timestamp-reply messages can be used to synchronize two clocks in two machines if the exact one-way time duration is known.