5.2/5.3: Stability and Equilibria for Autonomous DE

Contents

1	Equilibria	1
2	Graphical Representation	2
3	Stability	2

1 Equilibria

- Ex: Temperature model:

$$\frac{dT}{dt} = k(T_0 - T).$$

Set $\frac{dT}{dt} = 0$. Get $k(T_0 - T) = 0$, so either k = 0 or $T^* = T_0$.

- Note: you should consider all possible scenarios.
- If k = 0, then the temperature of the object *never* changes. (unrealistic)

- If $T^* = T_0$, the temperature of the object is always at the ambient temp.
- Ex:

$$\frac{dy}{dt} = 3(1-y)(y^2+1).$$

Possible equilibria: set $(1-y)(y^2+1)=0$. Get $y^*=1$ is the only equilibrium.

Graphical Representation $\mathbf{2}$

- Introducing: phase-line diagrams.
- Key idea: encode behavior of solutions and equilibrium.
- Ex: Consider diffy-Q $\frac{dy}{dt} = (1 y)$. This is autonomous.
- Equilibrium: $y^* = 1$.
- Draw:

$$y^* = 1$$

- \bullet Draw arrows according to whether y is increasing or decreasing (which you can tell from the diffy-Q).

Stability 3

• We use phase-line diagrams to assess stability of solutions.

- Ex: Using the example with $\frac{dy}{dt} = (1 y)$, we can assess that $y^* = 1$ is a stable equilibrium.
- Ex: using the example with $\frac{dy}{dt} = 1 y^2$ we can assess that the equlibrium $y^* = -1$ is unstable while $y^* = 1$ is stable.
- Stable: all arrows go in. Unstable: all arrows go out.
- $\frac{dy}{dt} = y^2$. Equilibrium: $y^* = 0$. Phase-line diagram:

This is neither stable nor unstable.

- As for discrete dynamical systems, there is a stability theorem:
- Thm: if $\frac{dy}{dt} = f(y)$ has equilibrium y^* , then:

$$y^*$$
 is stable $\left| \begin{array}{c} f'(y^*) < 0 \\ y^*$ is unstable $\left| \begin{array}{c} f'(y^*) > 0 \end{array} \right|$

- If $f'(y^*) = 0$, the test is inconclusive; it may be stable, unstable, or neither.
- Ex: $\frac{dy}{dt} = 8 y^3$. Equilibria: $y^* = 2$. So,

$$f(y) = 8 - y^3, \qquad f'(y) = -3y^2.$$

We see that f'(2) = -12 < 0, so this equilibrium is stable.