

Outline

- Linearity property
- Superposition
- Thevenin's theorem
- Source transformation
- Norton's theorem
- Power transfer

- Q1: If $R_2 = 1\Omega$, I = ?
- Q2: What if $R_2 = 5\Omega$, I = ?
- ??

Thevenin's Theorem – Motivation

- In many circuits, it is quite common that only one element (called the load) is variable while others are fixed.
 - An example is the household outlet: different appliances may be plugged into the outlet, each presenting a different resistance.
 - Ordinarily one has to re-analyze the circuit upon changing load.
 - This complexity can be simplified by circuit theorem (e.g. <u>Thevenin's theorem</u>), which provides a technique to replace the fixed part of the circuit with an equivalent circuit.

Thevenin's Theorem (1880s, Leon Thevenin, French)

 Thevenin's theorem states that a two terminal circuit (including resistors, linear dependent sources, and independent sources.) may be replaced with a voltage source in series with a resistor:

24

Thévenin equivalent circuit

Lecture 3 [Source: Berkeley]

Electric Circuits (Fall 2024)

- Use Thévenin Equivalent Circuits
- Q1: If $R_2 = 1\Omega$, I = ?
- Q2: What if $R_2 = 5\Omega$, I = ?

How Do We Find Thévenin Equivalent Circuits?

Method 1: Equivalent Resistance

- 1. Analyze circuit to find v_{oc}
- 2. Deactivate all independent sources by replacing voltage sources with short circuits and current sources with open circuits.
- 3. Simplify circuit to find equivalent resistance.

Equivalent-Resistance Method

Note: This method does not apply to circuits that contain dependent sources.

Example Thévenin Equivalent Circuit

(Circuit has no dependent sources)

How Do We Find Thévenin Equivalent Circuits?

Method 2: Open/short circuit

- 1. Analyze circuit to find v_{oc}
- 2. Analyze circuit to find i_{sc}

$$v_{\mathrm{Th}} = v_{\mathrm{oc}}$$
 $R_{\mathrm{Th}} = \frac{v_{\mathrm{oc}}}{i_{\mathrm{sc}}}$

Note: This method is applicable to any linear circuit, whether or not it contains dependent sources.

Lecture 3

Practice

How Do We Find Thévenin Equivalent Circuits?

Method 3:

Step 1. Again $v_{\mathrm{Th}} = v_{\mathrm{oc}}$

Step 2. External-Source Method

If a circuit contains both dependent and independent sources, $R_{\rm Th}$ can be determined by (a) deactivating independent sources (only), (b) adding an external source $v_{\rm ex}$, and then (c) solving the circuit to determine $i_{\rm ex}$. The solution is $R_{\rm Th} = v_{\rm ex}/i_{\rm ex}$.

