Név:	Algebra parciális
Csoport:	2022.12.06

A

- **1.** Adottak az $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} 2x, & \text{ha } x < 1 \\ x+1, & \text{ha } x \geq 1 \end{cases}$ és $g: \mathbb{R} \to \mathbb{R}$, $g(x) = x^2$ függvények.
 - (a) (0.5p) Ábrázold az f és g függvényeket!
 - (b) (0.5p) Injektív-e, szürjektív-e, bijektív-e az f, illetve g függvény?
 - (c) (0.5p) Számold ki az $f \circ g$ összetételt!
- 2. (1p) Az $M = \mathbb{Z}$ halmazon értelmezzük a következő homogén relációt: xry akkor és csakis akkor, ha $x^2 + y^2$ páros. Az r reláció esetén tanulmányozd a reflexivitást, szimmetriát, antiszimmetriát és tranzitivitást! Ekvivalenciareláció-e vagy rendezési reláció-e az r az M halmazon?
- **3.** Az $M = \{1, 2, 3, 4\}$ halmazon adottak a r = (M, M, R) és s = (M, M, S) homogén relációk, ahol $R = \{(1, 2), (3, 2), (3, 1), (4, 2), (4, 4)\}$ és $S = \{(1, 3), (2, 4), (3, 3), (4, 1)\}.$
 - (a) (0.5p) Határozd meg az $r \circ s$ összetett relációt!
 - (b) (0.5p) Függvények-e az r, illetve s relációk?
- **4.** Legyen $\mathcal{M} = \left\{ \begin{pmatrix} a & b \\ 0 & \bar{a} \end{pmatrix} \mid a, b \in \mathbb{C} \right\}.$
 - (a) (1p) Bizonyítsd be, hogy $(\mathcal{M}, +, \cdot)$ részgyűrűje az $(M_2(\mathbb{C}), +, \cdot)$ gyűrűnek! Igaz-e, hogy $(\mathcal{M}, +, \cdot)$ test?
 - (b) (0.5p) Igazold, hogy $f:(\mathcal{M},+,\cdot)\to(\mathcal{C},+,\cdot),\ f\begin{pmatrix}a&b\\0&\bar{a}\end{pmatrix}=a$ egy gyűrűmorfizmus!
- 5. Adottak a $\sigma=\begin{pmatrix}1&2&3&4&5&6&7&8&9\\3&5&4&7&9&8&1&6&2\end{pmatrix}$ és $\tau=\begin{pmatrix}1&2&3&4&5&6&7&8&9\\2&4&5&1&9&7&3&8&6\end{pmatrix}$ 9-edrendű permutációk.
 - (a) (0.25p) Írd fel a σ permutációt diszjunkt ciklusok szorzataként.
 - (b) (0.5p) Írd fel a $(1\ 3\ 5)(1\ 4\ 2)(2\ 5)$ szorzatot diszjunkt ciklusok szorzataként, majd írd fel 9-ed rendű permutáció alakjában!
 - (c) (1.25p) Határozd meg a következőket: $\sigma \tau$, σ^{-1} , $inv(\sigma)$, $sgn(\sigma)$, σ^{2022} .
- **6.** (1p) Invertálható-e a $\widehat{428}$ a \mathbb{Z}_{1331} gyűrűben? Ha igen, akkor számold ki az inverzét!
- ${\bf 7.}~({\rm 1p})$ Az egész számok halmazán old
d meg a következő egyenletet:

$$10x \equiv 6 \pmod{24}.$$

 ${\bf 8.}\ (1{\rm p})$ Az egész számok halmazán old
d meg a következő egyenletrendszert:

$$\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{4} \\ x \equiv 7 \pmod{11} \end{cases}$$