

B38EM Introduction to Electricity and Magnetism Lecture 6

Magnetic materials

Dr. Yuan Ding (Heriot-Watt University)
yuan.ding@hw.ac.uk
yding04.wordpress.com

Magnetic Flux Density

$$B = \mu H$$

$$\mu = \mu_r \mu_0$$

Permeability is the degree of magnetization of a material in response to a magnetic field.

$$\mu_o = 4\pi \times 10^{-7} \,\text{H/m}$$

$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 3 \times 10^8 \qquad (m/s)$$

Magnetic Dipole - Magnetic Fields in Matter

Just as the electric dipole was helpful to understand the behaviour of dielectric materials

PERMITTIVITY ε : Level of polarizability

The magnetic dipole is helpful to understand the behaviour of magnetic materials

PERMEABILITY μ : Ability to support formation of **B**

Permeability is the degree of magnetization of a material in response to a magnetic field.

Magnetic Fields in Matter

- All magnetic phenomena are due to electric charges in motion
 - horseshoe magnets , compass needles

- Examination on atomic level reveals SMALL "CURRENT LOOPS"
 - electrons "orbiting" around nuclei or "spinning" about their axes
- Macroscopic purposes
 - Treated as magnetic dipoles
- If no magnetic field is applied
 - random orientation → dipole fields cancel each other out

Magnetic Fields in Matter

magnetic dipole can be viewed as pair of magnetic charges (in analogy to electric dipole)

magnetic dipole is the elementary source of the magnetic field

a magnetic field exerts a force (torque) on a magnetic dipole

dipole moment distribution sets up induced secondary fields:
Field in free space due to

Total field
$$\leftarrow \mathbf{B}_{total} = \mathbf{B}_{app} + \mathbf{B}_{ind} \leftarrow$$
Field due to induced magnetic dipoles

Concept of Permeability

For most materials, the magnetisation is proportional to the

H field,
$$\mathbf{M} = \chi_m \mathbf{H}$$
 magnetic susceptibility (dimensionless)

Furthermore, we obtain

$$\mathbf{B} = \mu_0 \left(\mathbf{H} + \mathbf{M} \right) = \mu_0 \left(1 + \chi_m \right) \mathbf{H} = \mu \mathbf{H}$$

where μ is the **permeability** of the material

* M shows how the applied H-field affects the H-field inside the material

Material	Susceptibility	Material	Susceptibility
Diamagnetic:		Paramagnetic:	
Bismuth	-1.6×10^{-4}	Oxygen	1.9×10^{-6}
Gold	-3.4×10^{-5}	Sodium	8.5×10^{-6}
Silver	-2.4×10^{-5}	Aluminum	2.1×10^{-5}
Copper	-9.7×10^{-6}	Tungsten	7.8×10^{-5}
Water	-9.0×10^{-6}	Platinum	2.8×10^{-4}
Carbon Dioxide	-1.2×10^{-8}	Liquid Oxygen (-200° C)	3.9×10^{-3}
Hydrogen	-2.2×10^{-9}	Gadolinium	4.8×10^{-1}

- Concept of Permeability
 - Knowing the permeability of a magnetic material tells us all we need to know from the point of view of macroscopic electromagnetics
 - The relative permeability of a magnetic material is the ratio of the permeability of the magnetic material to the permeability of free space

$$\mu_r = \frac{\mu}{\mu_0}$$

- Concept of Permeability
 - What happens when we apply a magnetic field?
 - Medium becomes magnetically polarised (magnetised)
 - The induced magnetic dipole modifies the magnetic field.. ..both inside and outside the magnetized material
 - Electric fields → electric polarisation has always direction of E
 - Magnetic fields → materials acquire different magnetisations

MAGNETISATION	Aligned as B	Aligned opposite to B	Magnetisation remains after external field is removed
TYPE OF MATERIAL	PARAMAGNETIC	DIAMAGNETIC	FERROMAGNETIC

 Permanent magnet (Material remains magnetised in the absence of an applied magnetic field)

Magnetic Properties of Solids

All materials react to an applied external magnetic field. Magnetic materials can be placed in 3 categories:

Diamagnetic: $\mu_r < 1$ (e.g. $\mu_{r_copper} = 0.999994$)

materials that get magnetized in **opposition** of an externally applied magnetic field. (**Most materials**)

They repel **B** lines (both poles).

Silver, Lead, Copper, Water, superconductors

(levitation)

Paramagnetic: µr>1

materials that get magnetized in the direction of, and

proportional to, the applied magnetic field.

They weakly attract **B** lines (either pole).

Platinum, aluminum, oxygen

Ferromagnetic: μr very large iron: 200 - 300,000 nickel=100 - 600,

materials that produce magnetization often orders of

magnitude greater than the applied **B** field.

Permanent Magnets

Magnetic Properties of Solids

Material	Relative Permeability	
Copper	0.9999906	
Silver	0.9999736	
Lead	0.9999831	
Air	1.00000037	
Oxygen	1.000002	
Aluminum	1.000021	
Titanium 6-4 (Grade 5)	1.00005	
Palladium	1.0008	
Platinum	1.0003	
Manganese	1.001	
Cobalt	250	
Nickel	600	
Iron	280,000	

