Quantifying Information

(Claude Shannon, 1948)

Given discrete random variable X

- N possible values: $x_1, x_2, ..., x_N$
- Associated probabilities: p₁, p₂, ..., p_N

Information received when learning that choice was x_i:

$$I(x_i) = \log_2\left(\frac{1}{p_i}\right)$$
bits (binary digits) = number of 0/1's required to encode choice(s)

 $1/p_i$ is proportional to the uncertainty of choice x_i .

Information is measured in bits (binary digits) =

Information Conveyed by Data

Even when data doesn't resolve all the uncertainty

$$I(\text{data}) = \log_2\left(\frac{1}{p_{\text{data}}}\right)$$
 e.g., $I(\text{heart}) = \log_2\left(\frac{1}{13/52}\right) = 2 \text{ bits}$

Common case: Suppose you're faced with N equally probable choices, and you receive data that narrows it down to M choices. The probability that data would be sent is $M \cdot (1/N)$ so the amount of information you have received is

$$I(\text{data}) = \log_2\left(\frac{1}{M \cdot (1/N)}\right) = \log_2\left(\frac{N}{M}\right) \text{ bits}$$

Example: Information Content

Examples:

• information in one coin flip:

$$N=2$$
 $M=1$ Info content= $log_2(2/1) = 1$ bit

card drawn from fresh deck is a heart:

N= 52 M= 13 Info content=
$$log_2(52/13) = 2 bits$$

• roll of 2 dice:

N= 36 M= 1 Info content=
$$log_2(36/1) = 5.17$$

.17 bits ???

Probability & Information Content

Information content

data	$p_{ m data}$	$\log_2(1/p_{data})$
a heart	13/52	2 bits
not the Ace of spades	51/52	0.028 bits
a face card (J, Q, K)	12/52	2.115 bits
the "suicide king"	1/52	5.7 bits

Shannon's definition for information content lines up nicely with my intuition: I get more information when the data resolves more uncertainty about the randomly selected card.