Linearni splajn i po dijelovima kubična interpolacija Odabrana poglavlja matematike

Matea Novak Filip Novački

12. lipnja 2018.

(ロ) (御) (注) (注) 注 り((

Uvod

Glavna ideja

Algoritmi

Linearna interpolacija Kubična interpolacija

Primjer na funkciji $f(x) = \sin x$

Primjer na funkciji $g(x) = \frac{1}{x^2+1}$

Uvod

Glavna ideja

Motivacija

Predviđanje vrijednosti između dviju izmjerenih diskretnih vrijednosti

Glavna ideja

Motivacija

Predviđanje vrijednosti između dviju izmjerenih diskretnih vrijednosti

Tipovi interpolacija:

Linearna Svojstva:

- Jednostavna za računati
 - Nije uvijek dovoljno precizna

Kvadratna Svojstva:

- Nema fizikalne podloge
- Kontrola derivacije nedovoljno dobra

Kubična Svojstva:

- Glatka (neprekidna u čvorovima)
- Relativno precizna
- Dovoljno jednostavna za računati

Višeg reda Svojstva:

- Teške za računati
- Imaju tendenciju divljati u ekstremnim točkama

Algoritam za linearnu interpolaciju

Zadavanje zadataka:

Pravac između čvorova za x_i i x_{i+1}

$$x_i = a + ih$$
, $i = 0, 1, ..., n$, $h = \frac{b - a}{n}$

$$y = \left(\frac{y_{i+1} - y_i}{x_{i+1} - x_i}\right)(x - x_i) + y_i \tag{1}$$

Primjer izračuna

Čvor za točku u x = 0, funkcija $f(x) = \sin x$

$$x_0 = 0 \rightarrow y_0 = f(0) = 0$$

$$x_1 = a + ih$$

$$= 0 + 1\frac{2\pi - 0}{40}$$

$$= 0.15707963267948966$$

$$y_1 = f\left(\frac{2\pi}{40}\right)$$

$$= 0.15643446504023087$$

Interpolacijski pravac

$$y = 1.0041242039539873x \tag{2}$$

Algoritam za kubičnu interpolaciju

Zadavanje zadataka

Hermitova jednadžba polinoma

$$x_i = a + ih$$
, $i = 0, 1, ..., n$, $h = \frac{b - a}{n}$

$$C_{k,i} = \frac{f^{i'}(x_0)}{i!}, \quad k \in [0,3]$$

$$P_{i}(x) = C_{0,i} + C_{1,i}(x - x_{i-1}) + C_{2,i}(x - x_{i-1})^{2} + C_{3,i}(x - x_{i-1})^{3}$$

$$x \in [x_{i-1}, x_{i}], i = 1, ..., n$$

Primjer izračuna

Čvor za točku u
$$x = 0$$
 u funkciji $g(x) = \frac{1}{x^2+1}$

$$C_{0,1} = \frac{g(x_0)}{0!} = \frac{\frac{1}{x_0^2 + 1}}{0!} = 1$$

$$C_{1,1} = \frac{g'(x_0)}{1!} = \frac{-\frac{2x_0}{(x_0^2 + 1)^2}}{1!} = 0$$

$$C_{2,1} = \frac{g''(x_0)}{2} = \frac{\frac{2(3x^2 - 1)}{(x^2 + 1)^3}}{2!} = -2$$

$$C_{3,1} = \frac{g'''(x_0)}{3!} = \frac{-\frac{24x(x^2 - 1)}{(x^2 + 1)^4}}{6} = 0$$

Interpolacijski polinom

$$P_0 = 0 - 2(x - 0) + 0(x - 0)^2 + 0(x - 0)^3 = 1 - 2x^2$$

$f(x) = \sin x$ - linearna interpolacija

Slika: Usporedba funkcije $f(x) = \sin(x)$ i linearne interpolacije. Plavom bojom je prikazana interpolacija, a narančastom funkcija. Izvor: autorska izrada

$f(x) = \sin x$ - kubična interpolacija

Slika: Prikaz funkcije $f(x) = \sin x$ (crveno) i interpolacije te funkcije polinomom trećeg stupnja $P_0(x) = 1x - \frac{1}{6}x^3$ (plavo)

$g(x) = \frac{1}{x^2 + 1}$ - linearna interpolacija

Slika: Usporedba funkcije $g(x) = \frac{1}{x^2+1}$ i linearne interpolacije za i = 9 te i = 20. Plavom bojom je prikazana interpolacija, a narančastom funkcija. Izvor: autorska izrada

$g(x) = \frac{1}{x^2+1}$ - kubična interpolacija

Slika: Prikaz funkcije $g(x) = \frac{1}{x^2+1}$ (crveno) i interpolacije te funkcije polinomom trećeg stupnja $P(x) = 1 - 2x^2$ (plavo)

Zaključak

Hvala! Pitanja?