EC2101 MICROECONOMIC ANALYSIS I

Semester 2 AY 2019/2020 Dr. Zhang Yang

COURSE OVERVIEW CONSTRAINED OPTIMIZATION PREFERENCE

Part 1

Course Overview

Course Objectives

- Master key concepts and principles in Microeconomic theory
- Develop a set of analytical tools
 - Using graphs, mathematics, and logic to make qualitative and quantitative analysis
- Prepare for more advanced modules

What is Microeconomics?

- Microeconomics studies how individual economic units make decisions
 - Individual economic units
 - consumers, households, workers, firms, etc.
 - Assuming individual economic units seek to maximize their objective function
 - When facing limited resources

Basic Information

- Lecture
 - L1: Thursday 2:00 pm 4:00 pm, LT8
 - L2: Friday 2:00 pm 4:00 pm, LT9
- Consultation hours
 - Wednesday 3:00 pm 5:00 pm
 - Thursday 4:00 pm 6:00 pm
 - Or by appointment
- Contact
 - AS2-04-36, 6516-6830, <u>zhangyang@nus.edu.sg</u>

Reading

Textbook

- Besanko and Braeutigam, Microeconomics, 5th edition (international student version), Wiley, 2015 (BB)
- The 4th edition of the book is also acceptable
- Solutions to textbook exercises
 - Will not be distributed
- Slides
 - Available on LumiNUS every Wednesday by 2:00 pm

Tentative Course Outline

- Part 1 Consumer Theory
 - Week 1-4, BB: Chapter 3-5
- Part 2 Exchange (General Competitive Equilibrium)
 - Week 5-6, BB: Chapter 16 + additional reading on LumiNUS
- Part 3 Production and Costs
 - Week 8-10, BB: Chapter 6-8
- Part 4 Competitive Markets
 - Week 11-13, BB: Chapter 9-10

EC2101 and EC1101E/EC1301

- EC1101E/EC1301
 - Introductory level
 - Focus on knowing basic concepts
 - Limited mathematics
- **EC2101**
 - Intermediate level
 - Focus on understanding economic models
 - Uses calculus

EC2101 and EC3101

- □ Think of EC2101 and EC3101 as one big course
 - EC2101 covers first half
 - Consumer theory
 - Producer theory
 - Competitive markets
 - EC3101 covers second half
 - Advanced topics in consumer theory
 - Monopoly and oligopoly markets
 - Game theory
 - Uncertainty and asymmetric information

Blended Learning

- Blended learning means
 - Face-to-face lecturing + online learning
- Blended lectures
 - Lecture 1 (week 1, optional)
 - Lecture 3 (week 3)
 - Lecture 9 (week 10)
 - Lecture 12 (week 13)

What are you supposed to do for a blended lecture?

Normal Lectures

- Come to class
- Work on tutorial questions
- Come to tutorial

Blended Lectures

- Watch the pre-lecture video
 - **□** 10-20 minutes
- □ Take the pre-lecture quiz
- Come to class
 - Participate in in-class exercises via Poll Everywhere
- Work on tutorial questions
- Come to tutorial

Other In-Class Activities

- □ Fill in the blanks
 - There are some blanks in the lecture notes to be filled in during lecture
- Concept checks
 - A few questions will be given at the beginning/end of some lectures to gauge your understanding
 - Participate via Poll Everywhere

Use of LumiNUS

- Announcement
- Files
- Forum
- Gradebook
- Multimedia
 - Pre-lecture videos
- Quiz
 - Pre-lecture quizzes
- Web lectures
 - Webcasts

Grading

- Pre-Lecture LumiNUS Quiz 5%
- □ Homework 15%
- Participation (tutorial) 10%
- □ Midterm 25%
 - □ Closed-book
- □ Final 45%
 - Cumulative, closed-book

Pre-Lecture LumiNUS Quiz

- □ There are 3 graded quizzes
 - Quiz 1 is optional and not graded
 - □ Quiz 2 4 are graded
- Each quiz contains a few multiple choice questions
- The quizzes test your understanding of the pre-lecture videos
- Grading
 - 3 attempts are allowed for each quiz
 - Only the highest score will be recorded
 - No extension of deadline

Homework

- Two group homework
 - Homework 1 due 17 February at 2 pm
 - Homework 2 due 6 April at 2 pm
- Each group only needs to submit one copy
- Submit on time to my mailbox
- Late homework policy
 - 25% of marks will be deducted for each day past the due date

Homework Groups

- Why group homework?
 - Makes discussion legitimate
 - Forming studying groups is an effective way to learn
- Form a group of 2-3 with your classmates from the same tutorial
- If you really really do not want to work in a group
 - You have the option of doing individual homework
- Let you tutor know your choice and group members by tutorial 2 (week 4)
- Be a responsible group member!!!

Tutorials and Practice Problems

- Tutorials start from week 3
 - No tutorial in week 7 (midterm week)
- Practice problems will be assigned after each lecture
 - Starting from week 2
- Solutions to practice problems discussed in tutorials
 - Students present the solutions
 - Written solutions will be posted on LumiNUS
- Additional questions will be discussed if time permits

Grading of Participation

- Participation graded by tutorial presentations and general participation in tutorials
- Presentation (5%)
 - Each student presents once (only the first presentation will be graded)
 - Graded based on effort
 - Not on correctness
- General participation (5%)
 - Attendance
 - Participation in tutorial discussions
 - Volunteer to present more than once

A Few Words on Presentations

- Students volunteer for presentations
 - Your tutor may call someone to present if no one volunteers
- How to present?
 - Not the same as simply writing down your answer on the board
 - You need to explain!
 - When you present, you are the teacher and you are responsible for your classmates' learning

Exams

- Midterm
 - 3 March evening
 - Makeup midterm offered to students with conflicting schedules
 - 5 March and/or 6 March at regular lecture hours
 - Need to register for makeup midterm in advance
- Final
 - 28 April 9:00 am to 11:00 am
 - No makeup final will be offered

Public Holiday and Rescheduling

- 24 January (Friday)
 - Eve of Chinese New Year
 - No class after 2 pm
- 27 January (Monday)
 - Chinese New Year
 - W1-W6 to be rescheduled
- □ 10 April (Friday)
 - Good Friday
 - L2 to be rescheduled

A Few More Things

- Attendance of tutorials
 - □ Will be taken
 - □ Inform your tutor if you have to miss a tutorial and try to go for a makeup
- Past-year questions and questions from other sources
 - Will not be discussed

Part 2

Constrained Optimization

Review: Derivative and Slope

Positive derivative: the curve is upward sloping

Negative derivative: the curve is downward sloping

Unconstrained Optimization with One Variable

What is the maximum of the following function?

$$y = -x^2 + 2x + 10$$

□ At the maximum, the slope of the function must be 0 – *the first-order* condition

$$\frac{dy}{dx} = -2x + 2 = 0$$

- \square At the maximum, x=1
- □ The maximum value of *y* is 11

Maximum vs. Minimum

Second-Order Condition

At the maximum,

$$\frac{d^2y}{dx^2} \le 0$$

Using our earlier example,

$$\frac{d^2y}{dx^2} = \frac{d(-2x+2)}{dx} = -2$$

At the minimum,

Unconstrained Optimization with Two Variables

Suppose you want to find the maximum of

$$f(x,y) = -x^2 + 2x - y^2 + 4y + 5$$

□ Same idea — two first-order conditions

$$\frac{\partial f}{\partial x} = -2x + 2 = 0$$

$$\frac{\partial f}{\partial y} = -2y + 4 = 0$$

□ The function reaches its maximum when x=1 and y=2, and the maximum is 10

Constrained Optimization

- Suppose you still want to find the maximum of the same function
- However, now you need to satisfy another equation

$$x + y = 1$$

- This is a constrained maximization problem
 - The *objective function* is

$$f(x,y) = -x^2 + 2x - y^2 + 4y + 5$$

□ The *constraint* is

$$x + y = 1$$

Lagrange Multiplier Method

We first rewrite the constraint as

$$1 - x - y = 0$$

We then construct the Lagrangian function

$$\Lambda(x, y, \lambda) = -x^2 + 2x - y^2 + 4y + 5 + \lambda(1 - x - y)$$

- \square The new unknown λ is the *Lagrange multiplier*
- To find the solution to the constrained maximization problem, we just need to maximize the Lagrangian function

Lagrange Multiplier Method Cont'

There are three first-order conditions,

$$\frac{\partial \Lambda}{\partial x} = -2x + 2 - \lambda = 0$$

$$\frac{\partial \Lambda}{\partial y} = -2y + 4 - \lambda = 0$$

$$\frac{\partial \Lambda}{\partial \lambda} = 1 - x - y = 0$$

Solving for the three equations, we have

$$x = 0$$
, $y = 1$, $\lambda = 2$

□ The maximum value of the function is 8

General Form of the Lagrange Multiplier Method

The constrained optimization problem is

$$\max_{x,y} f(x,y)$$

$$s.t. \quad g(x,y) = 0$$

- $\Box f(x,y)$ is the objective function
- $\square g(x,y)$ is the constraint
- The Lagrangian function is

$$\Lambda(x, y, \lambda) = f(x, y) + \lambda g(x, y)$$

General Form of the Lagrange Multiplier Method Cont'

□ To find the maximum, we derive the first-order conditions

$$\frac{\partial \Lambda}{\partial x} = \frac{\partial f(x, y)}{\partial x} + \lambda \frac{\partial g(x, y)}{\partial x} = 0$$

$$\frac{\partial \Lambda}{\partial y} = \frac{\partial f(x, y)}{\partial y} + \lambda \frac{\partial g(x, y)}{\partial y} = 0$$

$$\frac{\partial \Lambda}{\partial x} = g(x, y) = 0$$

Use the three equations for the three unknowns

Part 3

Preference

Key Questions in Consumer Theory

- Consumer choice
 - How do consumers choose what to buy and how much to buy?
- Demand function
 - How do consumers' choices change with prices and income?
- Consumer welfare
 - How to measure the gain/loss to consumers when prices change?

Consumer Choice: How do consumers make decisions?

- Basic assumptions
 - Consumers are rational
 - Specifically, consumers maximize utility
 - Consumers face budget constraints
 - Consumers are fully informed
- What do consumers like?
 - Preference
- Prices and income
 - Budget constraint

F

Preference

- How do consumers rank two goods?
- Definition 1.1 A consumer (strictly) prefers A to B
 - If the consumer is more satisfied with A than with B
 - \square We use the notation $A \succ B$
- Definition 1.2 A consumer is indifferent between A and B
 - If the consumer is equally satisfied with A or B
 - We use the notation $A \approx B$
- Preference is not the same as choice
 - Preference does not change with prices or income

Consumption Basket

	Food	Clothing	All others
Basket 1	40 units	20 units	10 units
Basket 2	50 units	10 units	20 units
Basket 3	30 units	30 units	15 units

- □ For simplicity, assume a *consumption basket* consists of two goods
 - For example, food and clothing

Fundamental Assumptions on Preference

- Completeness
 - For any two baskets A and B
 - \blacksquare Either $A \succ B$
 - \square Or $B \succ A$
 - \square Or $A \approx B$
- Transitivity
 - □ If $A \succ B$ and $B \succ C$, then $A \succ C$
 - Similarly, if A > B and $B \approx C$ then A > C

How to represent preference in graph?

- Suppose a consumer is indifferent between
 - □ A: 20 units of food + 30 units of clothing
 - B: 30 units of food + 22 units of clothing
 - □ C: 15 units of food + 40 units of clothing

Indifference Curve

Indifference curves do not cross!

Another Common Assumption on Preference

- □ If "more is better" is satisfied for a good
 - Consumer likes the good
 - Consuming more increases satisfaction level
- □ For example, if "more is better" is satisfied for both food and clothing
 - 20 units of food + 30 units of clothing preferred to 19 units of food +30 units of clothing
 - 20 units of food + 30 units of clothing preferred to 20 units of food + 26 units of clothing
 - 20 units of food + 30 units of clothing preferred to 18 units of food + 28 units of clothing

Which baskets are preferred/less preferred to A?

Indifference Curves are Downward Sloping when Consumer Likes Both Goods

Direction of Preference when Consumer Likes Both Goods

Summary on Three Assumptions

- We always assume
 - Completeness
 - Transitivity
- "More is better" may be violated
 - E.g., Shin-chan hates "bell pepper" but likes "hamburger"
 - "More is better" not satisfied for bell pepper
 - More bell pepper, lower satisfaction

