# Machine Learning 4771

Instructor: Tony Jebara

#### Topic 4

- Tutorial: Matlab
- Perceptron, Online & Stochastic Gradient Descent
- Convergence Guarantee
- Perceptron vs. Linear Regression
- Multi-Layer Neural Networks
- Back-Propagation
- Demo: LeNet
- Deep Learning

#### **Tutorial: Matlab**

- Matlab is the most popular language for machine learning
- •See <u>www.cs.columbia.edu</u>->computing->Software->Matlab
- Online info to get started is available at: <a href="http://www.cs.columbia.edu/~jebara/tutorials.html">http://www.cs.columbia.edu/~jebara/tutorials.html</a>
- Matlab tutorials
- List of Matlab function calls
- Example code: for homework #1 will use polyreg.m
- •General: help, lookfor, 1:N, rand, zeros, A', reshape, size
- •Math: max, min, cov, mean, norm, inv, pinv, det, sort, eye
- Control: if, for, while, end, %, function, return, clear
- •Display: figure, clf, axis, close, plot, subplot, hold on, fprintf
- Input/Output: load, save, ginput, print,
- BBS and TA's are also helpful

# Perceptron (another Neuron)

•Classification scenario once again but consider +1, -1 labels

$$\mathcal{X} = \left\{ \! \left( \boldsymbol{x}_{\!\scriptscriptstyle 1}, \boldsymbol{y}_{\!\scriptscriptstyle 1} \right) \!, \! \left( \boldsymbol{x}_{\!\scriptscriptstyle 2}, \boldsymbol{y}_{\!\scriptscriptstyle 2} \right) \!, \ldots, \! \left( \boldsymbol{x}_{\!\scriptscriptstyle N}, \boldsymbol{y}_{\!\scriptscriptstyle N} \right) \! \right\} \quad \boldsymbol{x} \in \mathbb{R}^{\scriptscriptstyle D} \quad \boldsymbol{y} \in \left\{ -1, 1 \right\}$$

•A better choice for a classification squashing function is

$$g(z) = \begin{cases} -1 \text{ when } z < 0 \\ +1 \text{ when } z \ge 0 \end{cases}$$





And a better choice is classification loss

$$L(y, f(\mathbf{x}; \theta)) = \text{step}(-yf(\mathbf{x}; \theta))$$

Actually with above g(z) any loss is like classification loss

$$R\!\left(\boldsymbol{\theta}\right) = \frac{_1}{^{4N}} {\sum\nolimits_{i=1}^{^{N}}} \! \left(\boldsymbol{y} - g\!\left(\boldsymbol{\theta}^{T}\boldsymbol{x}_{\!i}\right)\!\right)^{\!2} \equiv \frac{_1}{^{N}} {\sum\nolimits_{i=1}^{^{N}}} \mathrm{step}\!\left(\!-\boldsymbol{y}_{\!i}\boldsymbol{\theta}^{T}\boldsymbol{x}_{\!i}\right)$$

•What does this  $R(\theta)$  function look like?

#### Perceptron & Classification Loss

- Classification loss for the Risk leads to hard minimization
- •What does this  $R(\theta)$  function look like?

$$R(\theta) = \frac{1}{N} \sum_{i=1}^{N} \text{step}(-y_i \theta^T x_i)$$

 Qbert-like, can't do gradient descent since the gradient is zero except at edges when a label flips



#### Perceptron & Perceptron Loss

Instead of Classification Loss

$$R(\theta) = \frac{1}{N} \sum_{i=1}^{N} \text{step}(-y_i \theta^T x_i)$$



$$R^{\mathit{per}}\left(\theta\right) = -\frac{1}{\mathit{N}} \sum\nolimits_{i \in \mathit{misclassified}} y_{i} \left(\theta^{\mathit{T}} x_{i}\right)$$





Get reasonable gradients for gradient descent

$$\begin{split} & \nabla_{\boldsymbol{\theta}} R^{\textit{per}} \left( \boldsymbol{\theta} \right) = -\frac{1}{N} \sum_{i \in \textit{misclassified}} y_i \mathbf{x}_i \\ & \boldsymbol{\theta}^{t+1} = \boldsymbol{\theta}^t - \eta \left. \nabla_{\boldsymbol{\theta}} R^{\textit{per}} \right|_{\boldsymbol{\theta}^t} = \boldsymbol{\theta}^t + \eta \frac{1}{N} \sum_{i \in \textit{misclassified}} y_i \mathbf{x}_i \end{split}$$

# Perceptron vs. Linear Regression

 Linear regression gets close but doesn't do perfectly

classification error = 2 squared error = 0.139

Perceptron gets zero error

classification error = 0 perceptron err = 0



0.2

0.4

0.8

#### Stochastic Gradient Descent

- Gradient Descent vs. Stochastic Gradient Descent
- •Instead of computing the average gradient for all points and then taking a step

$$abla_{\boldsymbol{\theta}} R^{per}\left(\boldsymbol{\theta}\right) = -\frac{1}{N} \sum_{i \in \textit{misclassified}} y_i \mathbf{x}_i$$

Update the gradient for each mis-classified point by itself

$$\nabla_{\boldsymbol{\theta}} R^{per} \left( \boldsymbol{\theta} \right) = -y_i \mathbf{x}_i$$

if i mis-classified

•Also, set  $\eta$  to 1 without loss of generality

$$\theta^{t+1} = \theta^t - \eta \nabla_{\theta} R^{per} \Big|_{\theta^t} = \theta^t + y_i \mathbf{x}_i \qquad \text{if i mis-classified}$$

#### Online Perceptron

- Apply stochastic gradient descent to a perceptron
- •Get the "online perceptron" algorithm:

```
\begin{split} & initialize \ t = 0 \ \ and \ \theta^0 = \vec{0} \\ & while \ not \ converged \ \{ \\ & pick \ i \in \left\{1, \dots, N\right\} \\ & if \left(y_i x_i^T \theta^t \leq 0\right) \quad \left\{ \begin{array}{l} \theta^{t+1} = \theta^t + y_i x_i \\ & t = t+1 \end{array} \right. \right\} \ \} \end{split}
```

- •Either pick i randomly or use a "for i=1 to N" loop
- •If the algorithm stops, we have a theta that separates data
- •The total number of mistakes we made along the way is t

# Online Perceptron Theorem

<u>Theorem</u>: the online perceptron algorithm converges to zero error in finite t if we assume

- 1) all data inside a sphere of radius r:  $\|\mathbf{x}_i\| \le r \ \forall i$ 2) data is separable with margin  $\gamma$ :  $y_i \left(\theta^*\right)^T \mathbf{x}_i \ge \gamma \ \forall i$

#### Proof:

•Part 1) Look at inner product of current  $\theta^t$  with  $\theta^*$ assume we just updated a mistake on point i:

$$\left(\boldsymbol{\theta}^*\right)^{\!\!\!\!T}\boldsymbol{\theta}^t = \left(\boldsymbol{\theta}^*\right)^{\!\!\!\!T}\boldsymbol{\theta}^{t-1} + \boldsymbol{y}_i\!\left(\boldsymbol{\theta}^*\right)^{\!\!\!\!T}\mathbf{x}_i \geq \!\left(\boldsymbol{\theta}^*\right)^{\!\!\!T}\boldsymbol{\theta}^{t-1} + \boldsymbol{\gamma}$$

after applying t such updates, we must get:

$$\left(\theta^*\right)^T \theta^t = \left(\theta^*\right)^T \theta^t \ge t \gamma$$

# Online Perceptron Proof

•Part 1) 
$$\left(\theta^{*}\right)^{T}\theta^{t}=\left(\theta^{*}\right)^{T}\theta^{t}\geq t\gamma$$

$$\begin{array}{ll} \bullet \text{Part 2)} & \left\| \boldsymbol{\theta}^{t} \right\|^{2} = \left\| \boldsymbol{\theta}^{t-1} + y_{i} \mathbf{x}_{i} \right\|^{2} = \left\| \boldsymbol{\theta}^{t-1} \right\|^{2} + 2 y_{i} \left( \boldsymbol{\theta}^{t-1} \right)^{T} \mathbf{x}_{i} + \left\| \mathbf{x}_{i} \right\|^{2} \\ & \leq \left\| \boldsymbol{\theta}^{t-1} \right\|^{2} + \left\| \mathbf{x}_{i} \right\|^{2} & \text{since only update mistakes} \\ & \leq \left\| \boldsymbol{\theta}^{t-1} \right\|^{2} + r^{2} & \text{middle term is negative} \\ & < t r^{2} & \end{array}$$

Part 3) Angle between optimal & current solution

$$\cos\left(\theta^{*}, \theta^{t}\right) = \frac{\left(\theta^{*}\right)^{T} \theta^{t}}{\left\|\theta^{t}\right\| \left\|\theta^{*}\right\|} \geq \frac{t\gamma}{\left\|\theta^{t}\right\| \left\|\theta^{*}\right\|} \geq \frac{t\gamma}{\sqrt{tr^{2}} \left\|\theta^{*}\right\|}$$
 apply part 1 then part 2

•Since 
$$\cos \le 1 \Rightarrow \frac{t\gamma}{\sqrt{tr^2} \|\theta^*\|} \le 1 \Rightarrow t \le \frac{r^2}{\gamma^2} \|\theta^*\|^2$$
 ...so t is finite

#### Multi-Layer Neural Networks

- •What if we consider cascading multiple layers of network?
- Each output layer is input to the next layer
- Each layer has its own weights parameters
- •Eg: each layer has linear nodes (not perceptron/logistic)



•Above Neural Net has 2 layers. What does this give?

# Multi-Layer Neural Networks

- Need to introduce non-linearities between layers
- Avoids previous redundant linear layer problem



•Neural network can adjust the basis functions themselves...



# Multi-Layer Neural Networks

- Multi-Layer Network can handle more complex decisions
- •1-layer: is linear, can't handle XOR
- •Each layer adds more flexibility (but more parameters!)
- Each node splits its input space with linear hyperplane
- •2-layer: if last layer is AND operation, get convex hull
- •2-layer: can do almost anything multi-layer can by fanning out the inputs at 2<sup>nd</sup> layer



•Note: Without loss of generality, we can omit the 1 and  $\theta_0$ 

- •Gradient descent on squared loss is done layer by layer
- •Layers: input, hidden, output. Parameters:  $\theta = \left\{w_{ij}, w_{jk}, w_{kl}\right\}$



- •Each input  $x_n$  for n=1..N generates its own a's and z's
- Back-Propagation: Splits layer into its inputs & outputs
- •Get gradient on output...back-track chain rule until input

•Cost function:  $R(\theta) = \frac{1}{N} \sum_{n=1}^{N} L(y^n - f(x^n))$ 



$$rac{\partial R}{\partial w_{kl}} = rac{1}{N} \sum_{n} \left[ rac{\partial L^{n}}{\partial a_{_{l}}^{n}} \right] \left( rac{\partial a_{_{l}}^{n}}{\partial w_{_{kl}}} \right)$$
 Chain Rule

define 
$$L^n \coloneqq \frac{1}{2} \Big( y^n - f \Big( x^n \Big) \Big)^2$$

•Cost function:  $R(\theta) = \frac{1}{N} \sum_{n=1}^{N} L(y^n - f(x^n))$ 

$$= \frac{1}{N} \sum_{n} \frac{1}{2} \left( y^{n} - g \left( \sum_{k} w_{kl} g \left( \sum_{j} w_{jk} g \left( \sum_{i} w_{ij} x_{i}^{n} \right) \right) \right) \right)^{2}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$z_{i}$$

$$w_{ij}$$

$$a_{j}$$

$$z_{j}$$

$$w_{jk}$$

$$a_{k}$$

$$z_{k}$$

$$w_{kl}$$

$$a_{l}$$

$$z_{l}$$

$$\begin{split} \frac{\partial R}{\partial w_{kl}} &= \frac{1}{N} \sum_{n} \left[ \frac{\partial L^{n}}{\partial a_{l}^{n}} \right] \left( \frac{\partial a_{l}^{n}}{\partial w_{kl}} \right) & \textbf{Chain Rule} \\ &= \frac{1}{N} \sum_{n} \left[ \frac{\partial \frac{1}{2} \left( y^{n} - g\left( a_{l}^{n} \right) \right)^{2}}{\partial a_{l}^{n}} \right] \left( \frac{\partial a_{l}^{n}}{\partial w_{kl}} \right) \end{split}$$

define 
$$L^n \coloneqq \frac{1}{2} \Big( y^n - f \Big( x^n \Big) \Big)^2$$

•Cost function:  $R(\theta) = \frac{1}{N} \sum_{n=1}^{N} L(y^n - f(x^n))$ 



$$\frac{\partial R}{\partial w_{kl}} = \frac{1}{N} \sum_{n} \left[ \frac{\partial L^{n}}{\partial a_{l}^{n}} \right] \left( \frac{\partial a_{l}^{n}}{\partial w_{kl}} \right)$$
 Chain Rule 
$$= \frac{1}{N} \sum_{n} \left[ \frac{\partial \left[ \frac{\partial L^{n}}{\partial a_{l}^{n}} \right]}{\partial a_{l}^{n}} \right] \left( \frac{\partial a_{l}^{n}}{\partial w_{kl}} \right) = \frac{1}{N} \sum_{n} \left[ -\left( y^{n} - z_{l}^{n} \right) g'(a_{l}^{n}) \right] \left( z_{k}^{n} \right)$$

•Cost function:  $R(\theta) = \frac{1}{N} \sum_{n=1}^{N} L(y^n - f(x^n))$ 

$$=\frac{1}{N}\sum_{n}\frac{1}{2}\left(y^{n}-g\left(\sum_{k}w_{kl}g\left(\sum_{j}w_{jk}g\left(\sum_{i}w_{ij}x_{i}^{n}\right)\right)\right)\right)^{2}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$z_{i}$$

$$w_{ij}$$

$$a_{j}$$

$$z_{j}$$

$$w_{jk}$$

$$a_{k}$$

$$z_{k}$$

$$w_{kl}$$

$$a_{l}$$

$$z_{l}$$

$$\frac{\partial R}{\partial w_{kl}} = \frac{1}{N} \sum_{n} \left[ \frac{\partial L^{n}}{\partial a_{l}^{n}} \right] \left( \frac{\partial a_{l}^{n}}{\partial w_{kl}} \right) \quad \text{Chain Rule}$$

$$= \frac{1}{N} \sum_{n} \left[ \frac{\partial \left[ \frac{\partial L^{n}}{\partial w_{kl}} \right]}{\partial a_{l}^{n}} \right] \left( \frac{\partial a_{l}^{n}}{\partial w_{kl}} \right) = \frac{1}{N} \sum_{n} \left[ -\left( y^{n} - z_{l}^{n} \right) g'(a_{l}^{n}) \right] \left( z_{k}^{n} \right) = \frac{1}{N} \sum_{n} \delta_{l}^{n} z_{k}^{n}$$

•Cost function:  $R(\theta) = \frac{1}{N} \sum_{n} \frac{1}{2} \left( y^n - g \left( \sum_{k} w_{kl} g \left( \sum_{j} w_{jk} g \left( \sum_{i} w_{ij} x_i^n \right) \right) \right) \right)^2$ 



$$\frac{\partial R}{\partial w_{kl}} = \frac{1}{N} \sum_{n} \left[ \frac{\partial L^{n}}{\partial a_{_{l}}^{n}} \right] \left( \frac{\partial a_{_{l}}^{n}}{\partial w_{kl}} \right) = \frac{1}{N} \sum_{n} \left[ -\left(y^{n} - z_{_{l}}^{n}\right) g'\left(a_{_{l}}^{n}\right) \right] \left(z_{_{k}}^{n}\right) = \frac{1}{N} \sum_{n} \delta_{_{l}}^{n} z_{_{k}}^{n}$$

•Next, hidden layer derivative:

$$rac{\partial R}{\partial w_{jk}} = rac{1}{N} \sum_{n} \left[ rac{\partial L^{n}}{\partial a_{k}^{n}} 
ight] \left( rac{\partial a_{k}^{n}}{\partial w_{jk}} 
ight)$$

•Cost function:  $R(\theta) = \frac{1}{N} \sum_{n} \frac{1}{2} \left( y^n - g \left( \sum_{k} w_{kl} g \left( \sum_{j} w_{jk} g \left( \sum_{i} w_{ij} x_i^n \right) \right) \right) \right)^2$ 



$$\frac{\partial R}{\partial w_{kl}} = \frac{1}{N} \sum_{n} \left[ \frac{\partial L^{n}}{\partial a_{_{l}}^{n}} \right] \left( \frac{\partial a_{_{l}}^{n}}{\partial w_{kl}} \right) = \frac{1}{N} \sum_{n} \left[ -\left(y^{n} - z_{_{l}}^{n}\right) g'\left(a_{_{l}}^{n}\right) \right] \left(z_{_{k}}^{n}\right) = \frac{1}{N} \sum_{n} \delta_{_{l}}^{n} z_{_{k}}^{n}$$

Next, hidden layer derivative:

$$\frac{\partial R}{\partial w_{jk}} = \frac{1}{N} \sum_{n} \left[ \frac{\partial L^{n}}{\partial a_{k}^{n}} \right] \left( \frac{\partial a_{k}^{n}}{\partial w_{jk}} \right) = \frac{1}{N} \sum_{n} \left[ \sum_{l} \frac{\partial L^{n}}{\partial a_{l}^{n}} \frac{\partial a_{l}^{n}}{\partial a_{k}^{n}} \right] \left( \frac{\partial a_{k}^{n}}{\partial w_{jk}} \right) \quad \text{Multivariate Chain Rule}$$

•Cost function:  $R(\theta) = \frac{1}{N} \sum_{n} \frac{1}{2} \left( y^n - g \left( \sum_{k} w_{kl} g \left( \sum_{j} w_{jk} g \left( \sum_{i} w_{ij} x_i^n \right) \right) \right) \right)^2$ 



$$\frac{\partial R}{\partial w_{kl}} = \frac{1}{N} \sum_{n} \left[ \frac{\partial L^{n}}{\partial a_{_{l}}^{n}} \right] \left( \frac{\partial a_{_{l}}^{n}}{\partial w_{kl}} \right) = \frac{1}{N} \sum_{n} \left[ -\left(y^{n} - z_{_{l}}^{n}\right) g'\left(a_{_{l}}^{n}\right) \right] \left(z_{_{k}}^{n}\right) = \frac{1}{N} \sum_{n} \delta_{_{l}}^{n} z_{_{k}}^{n}$$

•Next, hidden layer derivative:

$$\begin{split} \frac{\partial R}{\partial w_{jk}} &= \frac{1}{N} \sum_{n} \left[ \frac{\partial L^{n}}{\partial a_{k}^{n}} \right] \left( \frac{\partial a_{k}^{n}}{\partial w_{jk}} \right) = \frac{1}{N} \sum_{n} \left[ \sum_{l} \frac{\partial L^{n}}{\partial a_{l}^{n}} \frac{\partial a_{l}^{n}}{\partial a_{k}^{n}} \right] \left( \frac{\partial a_{k}^{n}}{\partial w_{jk}} \right) \end{split} \quad \begin{array}{c} \textbf{Multivariate Chain Rule} \\ &= \frac{1}{N} \sum_{n} \left[ \sum_{l} \delta_{l}^{n} \frac{\partial a_{l}^{n}}{\partial a_{k}^{n}} \right] \left( z_{j}^{n} \right) \end{split}$$

•Cost function:  $R(\theta) = \frac{1}{N} \sum_{n} \frac{1}{2} \left( y^n - g \left( \sum_{k} w_{kl} g \left( \sum_{j} w_{jk} g \left( \sum_{i} w_{ij} x_i^n \right) \right) \right) \right)^2$ 



$$\frac{\partial R}{\partial w_{kl}} = \frac{1}{N} \sum_{n} \left[ \frac{\partial L^{n}}{\partial a_{_{l}}^{n}} \right] \left( \frac{\partial a_{_{l}}^{n}}{\partial w_{kl}} \right) = \frac{1}{N} \sum_{n} \left[ -\left(y^{n} - z_{_{l}}^{n}\right) g'\left(a_{_{l}}^{n}\right) \right] \left(z_{_{k}}^{n}\right) = \frac{1}{N} \sum_{n} \delta_{_{l}}^{n} z_{_{k}}^{n}$$

Next, hidden layer derivative:

$$\begin{split} \frac{\partial R}{\partial w_{jk}} &= \frac{1}{N} \sum_{n} \left[ \frac{\partial L^{n}}{\partial a_{k}^{n}} \right] \left( \frac{\partial a_{k}^{n}}{\partial w_{jk}} \right) = \frac{1}{N} \sum_{n} \left[ \sum_{l} \frac{\partial L^{n}}{\partial a_{l}^{n}} \frac{\partial a_{l}^{n}}{\partial a_{k}^{n}} \right] \left( \frac{\partial a_{k}^{n}}{\partial w_{jk}} \right) \end{split} \quad \textbf{Multivariate Chain Rule} \\ &= \frac{1}{N} \sum_{n} \left[ \sum_{l} \delta_{l}^{n} \frac{\partial a_{l}^{n}}{\partial a_{k}^{n}} \right] \left( z_{j}^{n} \right) \end{split}$$

Recall  $a_{l} = \sum_{k} w_{kl} g\left(a_{k}\right)$ 

•Cost function:  $R(\theta) = \frac{1}{N} \sum_{n} \frac{1}{2} \left( y^n - g \left( \sum_{k} w_{kl} g \left( \sum_{j} w_{jk} g \left( \sum_{i} w_{ij} x_i^n \right) \right) \right) \right)^2$ 



$$\frac{\partial R}{\partial w_{kl}} = \frac{1}{N} \sum_{n} \left[ \frac{\partial L^{n}}{\partial a_{_{l}}^{n}} \right] \left( \frac{\partial a_{_{l}}^{n}}{\partial w_{kl}} \right) = \frac{1}{N} \sum_{n} \left[ -\left(y^{n} - z_{_{l}}^{n}\right) g'\left(a_{_{l}}^{n}\right) \right] \left(z_{_{k}}^{n}\right) = \frac{1}{N} \sum_{n} \delta_{_{l}}^{n} z_{_{k}}^{n}$$

•Next, hidden layer derivative:

$$\begin{split} \frac{\partial R}{\partial w_{jk}} &= \frac{1}{N} \sum_{n} \left[ \frac{\partial L^{n}}{\partial a_{k}^{n}} \right] \left( \frac{\partial a_{k}^{n}}{\partial w_{jk}} \right) = \frac{1}{N} \sum_{n} \left[ \sum_{l} \frac{\partial L^{n}}{\partial a_{l}^{n}} \frac{\partial a_{l}^{n}}{\partial a_{k}^{n}} \right] \left( \frac{\partial a_{k}^{n}}{\partial w_{jk}} \right) \end{split} \quad \textbf{Multivariate Chain Rule} \\ &= \frac{1}{N} \sum_{n} \left[ \sum_{l} \delta_{l}^{n} \frac{\partial a_{l}^{n}}{\partial a_{k}^{n}} \right] \left( z_{j}^{n} \right) = \frac{1}{N} \sum_{n} \left[ \sum_{l} \delta_{l}^{n} w_{kl} g' \left( a_{k}^{n} \right) \right] \left( z_{j}^{n} \right) \end{split}$$

$$\textbf{Recall } a_{l} = \sum_{k} w_{kl} g \left( a_{k} \right) \end{split}$$

•Cost function:  $R(\theta) = \frac{1}{N} \sum_{n} \frac{1}{2} \left( y^n - g \left( \sum_{k} w_{kl} g \left( \sum_{j} w_{jk} g \left( \sum_{i} w_{ij} x_i^n \right) \right) \right) \right)^2$ 



$$\frac{\partial R}{\partial w_{kl}} = \frac{1}{N} \sum_{n} \left[ \frac{\partial L^{n}}{\partial a_{_{l}}^{n}} \right] \left( \frac{\partial a_{_{l}}^{n}}{\partial w_{kl}} \right) = \frac{1}{N} \sum_{n} \left[ -\left(y^{n} - z_{_{l}}^{n}\right) g'\left(a_{_{l}}^{n}\right) \right] \left(z_{_{k}}^{n}\right) = \frac{1}{N} \sum_{n} \delta_{_{l}}^{n} z_{_{k}}^{n}$$

Next, hidden layer derivative:

$$\begin{split} \frac{\partial R}{\partial w_{jk}} &= \frac{1}{N} \sum_{n} \left[ \frac{\partial L^{n}}{\partial a_{k}^{n}} \right] \left( \frac{\partial a_{k}^{n}}{\partial w_{jk}} \right) = \frac{1}{N} \sum_{n} \left[ \sum_{l} \frac{\partial L^{n}}{\partial a_{l}^{n}} \frac{\partial a_{l}^{n}}{\partial a_{k}^{n}} \right] \left( \frac{\partial a_{k}^{n}}{\partial w_{jk}} \right) \end{split} \quad \begin{array}{c} \textbf{Multivariate Chain Rule} \\ &= \frac{1}{N} \sum_{n} \left[ \sum_{l} \delta_{l}^{n} \frac{\partial a_{l}^{n}}{\partial a_{k}^{n}} \right] \left( z_{j}^{n} \right) = \frac{1}{N} \sum_{n} \left[ \sum_{l} \delta_{l}^{n} w_{kl} g^{\, !} \left( a_{k}^{n} \right) \right] \left( z_{j}^{n} \right) = \frac{1}{N} \sum_{n} \delta_{k}^{n} z_{j}^{n} \end{split}$$

Recall  $a_l = \sum_k w_{kl} g(a_k)$  Define as  $\delta$ 

•Cost function:  $R(\theta) = \frac{1}{N} \sum_{n} \frac{1}{2} \left( y^n - g \left( \sum_{k} w_{kl} g \left( \sum_{j} w_{jk} g \left( \sum_{i} w_{ij} x_i^n \right) \right) \right) \right)^2$ 



$$\frac{\partial R}{\partial w_{kl}} = \frac{1}{N} \sum_{n} \left[ \frac{\partial L^{n}}{\partial a_{_{l}}^{n}} \right] \left( \frac{\partial a_{_{l}}^{n}}{\partial w_{kl}} \right) = \frac{1}{N} \sum_{n} \left[ -\left(y^{n} - z_{_{l}}^{n}\right) g'\left(a_{_{l}}^{n}\right) \right] \left(z_{_{k}}^{n}\right) = \frac{1}{N} \sum_{n} \delta_{_{l}}^{n} z_{_{k}}^{n}$$

$$\frac{\partial R}{\partial w_{jk}} = \frac{1}{N} \sum_{n} \left[ \frac{\partial L^{n}}{\partial a_{k}^{n}} \right] \left( \frac{\partial a_{k}^{n}}{\partial w_{jk}} \right) = \frac{1}{N} \sum_{n} \left[ \sum_{l} \delta_{l}^{n} w_{kl} g' \left( a_{k}^{n} \right) \right] \left( z_{j}^{n} \right) = \frac{1}{N} \sum_{n} \delta_{k}^{n} z_{j}^{n}$$

•Any previous (input) layer derivative: repeat the formula!

$$\frac{\partial R}{\partial w_{ij}} = \frac{1}{N} \sum_{n} \left[ \frac{\partial L^{n}}{\partial a_{j}^{n}} \right] \left( \frac{\partial a_{j}^{n}}{\partial w_{ij}} \right) = \frac{1}{N} \sum_{n} \left[ \sum_{k} \frac{\partial L^{n}}{\partial a_{k}^{n}} \frac{\partial a_{k}^{n}}{\partial a_{j}^{n}} \right] \left( \frac{\partial a_{j}^{n}}{\partial w_{ij}} \right) = \frac{1}{N} \sum_{n} \left[ \sum_{k} \delta_{k}^{n} w_{jk} g'(a_{j}^{n}) \right] \left( z_{i}^{n} \right) = \frac{1}{N} \sum_{n} \delta_{j}^{n} z_{i}^{n}$$

•What is this last z?

Again, take small step in direction opposite to gradient

$$w_{ij}^{t+1} = w_{ij}^t - \eta \frac{\partial R}{\partial w_{ij}} \qquad \qquad w_{jk}^{t+1} = w_{jk}^t - \eta \frac{\partial R}{\partial w_{jk}} \qquad \qquad w_{kl}^{t+1} = w_{kl}^t - \eta \frac{\partial R}{\partial w_{kl}}$$

• Early stop before when error bottoms out on validation set



#### Neural Networks Demo

- Again, take small step in direction opposite to gradient
- Digits Demo: LeNet... http://yann.lecun.com
- Problems with back-prop
   is that MLP over-fits...



- Other problems: hard to interpret, black-box
- •What are the hidden inner layers doing?

#### **Auto-Encoders**

Make the neural net reconstruct the input vector



- Set the target y vector to be the x vector again
- •But, it gets narrow in the middle!
- So, there is some information "compression"
- This leads to better generalization
- •This is unsupervised learning since we only use the **x** data

#### **Auto-Encoders**



#### A target function:

| Input    |               | Output   |
|----------|---------------|----------|
| 10000000 | $\rightarrow$ | 10000000 |
| 01000000 | $\rightarrow$ | 01000000 |
| 00100000 | $\rightarrow$ | 00100000 |
| 00010000 | $\rightarrow$ | 00010000 |
| 00001000 | $\rightarrow$ | 00001000 |
| 00000100 | $\rightarrow$ | 00000100 |
| 00000010 | $\rightarrow$ | 00000010 |
| 00000001 | $\rightarrow$ | 00000001 |

Can this be learned??

#### **Auto-Encoders**

A network:





Learned hidden layer representation:

| Input    |               | Hidden |     |     | Output        |          |  |  |
|----------|---------------|--------|-----|-----|---------------|----------|--|--|
| Values   |               |        |     |     |               |          |  |  |
| 10000000 | $\rightarrow$ | .89    | .04 | .08 | $\rightarrow$ | 10000000 |  |  |
| 01000000 | $\rightarrow$ | .01    | .11 | .88 | $\rightarrow$ | 01000000 |  |  |
| 00100000 | $\rightarrow$ | .01    | .97 | .27 | $\rightarrow$ | 00100000 |  |  |
| 00010000 | $\rightarrow$ | .99    | .97 | .71 | $\rightarrow$ | 00010000 |  |  |
| 00001000 | $\rightarrow$ | .03    | .05 | .02 | $\rightarrow$ | 00001000 |  |  |
| 00000100 | $\rightarrow$ | .22    | .99 | .99 | $\rightarrow$ | 00000100 |  |  |
| 00000010 | $\rightarrow$ | .80    | .01 | .98 | $\rightarrow$ | 00000010 |  |  |
| 00000001 | $\rightarrow$ | .60    | .94 | .01 | $\rightarrow$ | 00000001 |  |  |

#### Deep Learning

We can stack several independently trained auto-encoders



- •Using back-propagation, we do pre-training
- •Train Net 1 to go from 2000 inputs to 1000 to 2000 inputs
- •Train Net 2 to go from 1000 hidden values to 500 to 1000
- •Train Net 3 to go from 500 hidden to 30 to 500
- •Then, do unrolling link up the learned networks as above

# Deep Learning

•Then do *fine-tuning* of the overall neural network by running back-propagation on the whole thing to reconstruct **x** from **x** 



#### Deep Learning

- •Does good reconstruction!
- Beats PCA on images of unaligned faces.
- •PCA is better when face images are aligned...
- •We will cover PCA in a few lectures...



original image

reconstructed from 2000-1000-500-30 DBN reconstructed from 2000-300, linear PCA

# Minimum Training Error?

- •Is minimizing Empricial Risk the right thing?
- Are Perceptrons and Neural Networks giving the best classifier?
- •We are getting: minimum training error not minimum testing error
- Perceptrons are giving a bunch of solutions:



... a solution with guarantees  $\rightarrow$  SVMs