Лекция 12. Рекуррентность и транзитивность.

12.1. Времена возвращений и числа возвращений.

Определение 12.1. *Если* $A \subseteq E$, *то назовём:*

(a) **Временем достижения множества А** - случайную величину $T_A: \Omega \to N \cup \{\infty\}$, определённую следующим образом:

$$T_A := \min\{ \boldsymbol{n} \geq \boldsymbol{0} : X_n \in A \}$$

(в частности, $T_A=0$, $ecnu X_0 \in A$).

(b) **Временем возвращения в множество A** - случайную величину $S_A: \Omega \to N \cup \{\infty\}$, определённую следующим образом:

$$S_A := \min\{ \boldsymbol{n} \geq \boldsymbol{1} : X_n \in A \}$$

(слова «время возвращения» связаны с тем, что с.в. S_A обычно рассматривают для тех траекторий цепи Маркова, которые начинаются в A, т.е. для которых $X_0 \in A$. Если $X_0 \notin A$, то T_A совпадает с S_A).

(c) Последовательными временами возвращения в множество A - случайные величины $S_A^{(k+1)}$, где, по определению, $S_A^{(0)}=0$ и, далее, рекуррентно

$$S_A^{(k+1)} = \min \left\{ n \ge S_A^{(k)} + 1 : X_n \in A \right\}.$$

(очевидно, $S_A^{(1)} = S_A$).

(d) **Числом посещений (визитов) процессом X_n множества A** – случайную величину

$$N_A = \sum_{k=0}^{\infty} 1_A(X_k) = \# \{k \ge 0 : X_k \in A\}$$

Предложение 12.1. Случайные величины T_A , S_A и $S_A^{(k)}$ являются **моментами остановки (марковскими моментами)**, то есть для любого n события $\{T_A = n\}$, $\{S_A = n\}$, $\{S_A^{(k)} = n\}$ измеримы относительно сигма-алгебры $\mathcal{F}_n = \sigma(X_0, X_1, X_2, ..., X_n)$.

$$\{S_A=n\}=\{X_0\in A,X_1\not\in A,\dots,X_{n-1}\not\in A,X_n\in A\}\cup$$

$$\{X_0\not\in A,X_1\not\in A,\dots,X_{n-1}\not\in A,X_n\in A\}\in\mathcal{F}_n.$$

Доказательство для T_A и $S_A^{(k)}$ столь же просто, предлагаем это сделать читателю в качестве упражнения. Докажите также, что N_A не является моментом остановки. В случае, когда множество A состоит из одной точки $\{i\}$, мы будем использовать обозначения:

$$S(i) = S_{\{i\}}, \ S^{(k)}(i) = S_{\{i\}}^{(k)} \ \text{if } N(i) = N_{\{i\}}.$$

Будем обозначать $P_i(A) = P(A|X_0 = i)$.

Определение 12.2. *Назовём состояние* $i \in E$ *рекуррентным (возвратным, существенным)*, если

$$a(i) := \mathbf{P}_i \{ S(i) < \infty \} = 1$$

и транзитивным (невозвратным, несущественным), если

$$a(i) := P_i \{ S(i) < \infty \} < 1$$

(то есть на множестве положительной условной меры $P_i(\cdot)$ время возвращения бесконечно, $P_i(S(i)=\infty)>0$. Выйдя из состояния $\{i\}$, с положительной вероятностью цепь в него никогда не вернётся).

Несущественные состояния не играют роли при изучении *долговременного поведения* цепи Маркова, а потому их чаще всего игнорируют (отсюда и их название «несущественные»). Заметим, что из Определения 12.2. следует, что всё множество состояний цепи E разбивается на два непересекающихся подмножества, $E = E_R \cup E_T$, где E_R - множество рекуррентных состояний, а E_T — множество транзитивных состояний. Рекуррентные и транзитивные состояния можно охарактеризовать также *в терминах числа посещений этих состояний*. Эта характеризация дана в следующей теореме.

Теорема 12.1.

(a) Eсли $i \in E$ рекуррентно, то

$$\mathbf{P}_i\{N(i)=\infty\}=1.$$

Если $i \in E$ транзитивно, то

$$\mathbf{P}_i\{N(i)<\infty\}=1.$$

То есть с вероятностью 1 мы посещаем это состояние лишь конечное число раз и потом покидаем навсегда это состояние. Отсюда ясно, почему пренебрегают этими состояниями при изучении долговременного поведения цепи.

Последнее утверждение можно уточнить:

(b) Если $i \in E$ транзитивно, то случайная величина N(i) имеет геометрическое распределение с параметром $a(i) = P_i \{ S(i) < \infty \} < 1$. Это означает, что

$$P_i(N(i) = k) = (1 - a(i))a(i)^{k-1}.$$

Доказательство. Пусть цепь Маркова имеет начальное распределение $\delta_{\{i\}}$, то есть $P\{X_0=i\}=1$. Обозначим через R(n,i) событие $\{S^{(n)}(i)<\infty\}$: «n-е возвращение в состояние i происходит в конечный момент времени» или, что то же самое, «число возвращений в состояние $\{i\}$ не менее n», а через R(n-1,i,t) обозначим событие $\{R(n-1,i)\cap S^{(n-1)}(i)=t\}$: «имеется не менее (n-1)-го возвращения в состояние i, и (n-1) - е возвращение происходит в момент t». Это последнее событие принадлежит $\mathcal{F}_t=\sigma(X_0,X_1,X_2,\ldots,X_t)$, точнее, $R(n-1,i,t)=\{X_t=i\}\cap A_{t-1}$, где $A_{t-1}\in\mathcal{F}_{t-1}$. Обозначим

$$S_t(i) = \min\{n \ge t + 1: X_n = i\},$$

т.е. $S_t(i)$ - момент первого после t возвращения в состояние i . Имеем

$$P(R(n,i)) = \sum_{t=0}^{\infty} P(R(n-1,i), S^{(n-1)}(i) = t, X_t = i, S_t(i) < \infty) =$$

$$\sum_{t=0}^{\infty} \mathbf{P}(S_t(i) < \infty | R(n-1,i,t), X_t = i) \cdot \mathbf{P}(R(n-1,i,t), X_t = i).$$

Применяя Теоремы 11.2 и 11.3 и учитывая, что $\{S_t(i) < \infty\} \in$ $F(X_{t+1}, X_{t+2}, \dots), R(n-1, i, t) = \{X_t = i\} \cap A_{t-1},$ где $A_{t-1} \in \mathcal{F}_{t-1}$, получим

$$P(R(n,i)) = \sum_{t=0}^{\infty} P(S_t(i) < \infty | X_t = i) P(R(n-1,i,t), X_t = i) =$$

$$\sum_{t=0}^{\infty} \mathbf{P}(S_0(i) < \infty | X_0 = i) \mathbf{P}(R(n-1,i,t)) =$$

$$P(S_0(i) < \infty | X_0 = i) \sum_{t=0}^{\infty} P(R(n-1,i,t)) =$$

$$\mathbf{P}(S_0(i) < \infty | X_0 = i) \mathbf{P}(R(n-1,i)) = a(i) \mathbf{P}(R(n-1,i)),$$

где $a(i) = P_i(S(i) < \infty)$ (заметим, что из определения $S_t(i)$ следует, что $S_0(i) = S(i)$). Из последнего соотношения следует (заметим, что $P\big(R(0,i)\big) = P\big(S^{(0)}(i) = 0 < \infty\big) = 1$)

$$\mathbf{P}(R(n,i)) = (a(i))^n.$$

Если *і рекуррентно* ($\Leftrightarrow a(i) = 1$), то для всех n

$$P(R(n,i)) = 1^n = 1$$
 и $\{N(i) = \infty\} = \bigcap_{n \ge 1} R(n,i)$. Поэтому $P_i\{N(i) = \infty\} = P_i\{\bigcap_{i \ge 1} R(n,i)\} = 1$.

Если i *транзитивно* ($\Leftrightarrow a(i) < 1$)) и траектория выходит из состояния $\{i\}$, то число посещений N(i) состояния $\{i\}$ будет не меньше n+1 тогда и только тогда, когда наступает событие $R(n,i) = \{S^{(n)}(i) < \infty\}$ (напомним, что мы выходим из состояния i и, по определению, подсчёт числа визитов N(i) начинается с момента 0). Поэтому

$$\mathbf{P}_i(N(i) \ge n+1) = \mathbf{P}_i(R(n,i)) = a(i)^n.$$

Следовательно, для всех $n \ge 1$

$$P_i(N(i) = n) = P_i(N(i) \ge n) - P_i(N(i) \ge n + 1) =$$

$$a(i)^{n-1} - a(i)^n = a(i)^{n-1}(1 - a(i)).$$

Таким образом, для транзитивного состояния i случайная величина N(i) имеет *геометрическое распределение* с параметром $a(i) = P_i(S(i) < \infty)$. Вторая часть утверждения а) следует из того, что

$$P_i\{N(i) < \infty\} = \sum_{n=1}^{\infty} P_i\{N(i) = n\} =$$

$$\sum_{n=1}^{\infty} a(i)^{n-1} (1 - a(i)) = 1.$$

Предложение 12.2. Обозначим $N_i = N_{\{i\}}$. Тогда $E_i N_i = V_{ii}$, где $V - r \times r$ матрица

$$V = I + P + P^2 + \dots = \sum_{k=0}^{\infty} P^k.$$

Доказательство. Число посещений N_i состояния i является с.в., представимой в виде $N_i = \sum_{k \geq 0} \mathbf{1}_{\{i\}}(X_k)$, её условное математическое ожидание (при условии $X_0 = i$) равно

$$E_i N_i = E_i \sum_{k \ge 0} \mathbf{1}_{\{i\}}(X_k) = \sum_{k \ge 0} P_i(X_k = i) = \sum_{k \ge 0} (P^k)_{ii}$$

Таким образом, $E_i N_i = V_{ii}$.

Следствие 12.1. Состояние i рекуррентно (возвратно) тогда и только тогда, когда $\sum_{k\geq 0} (P^k)_{ii} = \infty$.

Доказательство. По Теореме 12.1 i рекуррентно $\Leftrightarrow \mathbf{P}_i(N_i = \infty) = 1 \Rightarrow E_i N_i = \sum_{k \geq 0} (P^k)_{ii} = \infty$. Обратно, заметим, что $E = E_R \cup E_T, E_R \cap E_T = \emptyset$ (здесь E_R — множество рекуррентных состояний, а E_T — множество транзитивных состояний). Если из того, что $E_i N_i = \sum_{k \geq 0} (P^k)_{ii} = \infty \Rightarrow i$ рекуррентно, то i должно быть транзитивным и, снова по Теореме 12.1, N_i имеет геометрическое распределение с параметром $a(i) = \mathbf{P}_i(S(i) < \infty) < 1$. Но тогда

$$\begin{split} E_i N_i &= \sum_{k=0}^{\infty} k \ a(i)^{k-1} \Big(1 - a(i) \Big) = \Big(1 - a(i) \Big) \sum_{k=0}^{\infty} k \ a(i)^{k-1} = \\ \Big(1 - a(i) \Big) \frac{d}{da} \Bigg(\sum_{k=0}^{\infty} a(i)^k \Bigg) = \Big(1 - a(i) \Big) \frac{d}{da} \Big(\frac{1}{1 - a(i)} \Big) = \\ \frac{1}{1 - a(i)} &< \infty. \end{split}$$

Полученное противоречие завершает доказательство следствия.

Обозначим через N_{ij} число посещений состояния j цепи, исходящей из состояния i, $i \neq j$. Справедливо следующее обобщение Предложения 12.2.

Упражнение. Доказать, что

a)
$$\boldsymbol{E}_{i}(N_{ij}) = V_{ij}$$

b)
$$V_{ij} = \mathbf{P}_i(S(j) < \infty) \cdot V_{jj}$$
.

Доказательство. Утверждение a) доказывается аналогично Предложению 12.2. Для доказательства утверждения b) заметим, что, согласно a),

$$\begin{split} V_{ij} &= \mathbf{E}_{i} N_{ij} = \mathbf{E}_{i} \sum_{n \geq 0} \mathbf{1}_{\{j\}}(X_{n}) = \sum_{n \geq 0} \mathbf{P}_{i}(X_{n} = j) = \sum_{n \geq l} \sum_{l \geq 1} \mathbf{P}_{i}(X_{n} = j, S(j) = l) = \\ \sum_{n \geq l} \sum_{l \geq 1} \mathbf{P}_{i}(X_{n} = j | S(j) = l) \mathbf{P}_{i}(S_{j} = l) = \\ \sum_{n \geq l} \sum_{l \geq 1} \mathbf{P}(X_{n} = j | X_{l} = j, X_{l-1} \neq j, \dots, X_{1} \neq j, X_{0} = i) \mathbf{P}_{i}(S(j) = l) = \\ \sum_{n \geq l} \sum_{l \geq 1} \mathbf{P}(X_{n} = j | X_{l} = j) \mathbf{P}_{i}(S(j) = l) = \sum_{l \geq 1} \mathbf{P}_{i}(S(j) = l) \sum_{n - l \geq 0} (P^{n-l})_{jj} = \\ V_{jj} \sum_{l \geq 1} \mathbf{P}_{i}(S(j) = l) = \mathbf{P}_{i}(S(j) < \infty) \cdot V_{jj}. \end{split}$$

12.2. Неприводимость и апериодичность цепей Маркова.

Дальнейшая классификация состояний состоит в следующем. Приведём необходимые определения. Состояние $i \in E$ называется:

• *Поглощающим*, если $p_{ii}(1) = 1$,

- Периодическим с периодом d > 1, если НОД $\{t: p_{ii}(t) > 0\} = d$,
- *Непериодическим (апериодическим)*, если НОД $\{t: p_{ii}(t) > 0\} = 1$,
- *Несущественным (транзитивным)*, если $\exists j \in E : i \to j, j \nrightarrow i$ (иначе говоря, из этого состояния можно «уйти в некоторое состояние j и не вернуться обратно в i»),
- Существенным (рекуррентным), если $\forall j \in E : i \to j \Rightarrow j \to i$,
- Возвратным, если $P\{\exists t < \infty : X_t = i | X_0 = i\} = 1,$
- Возвратным нулевым, если при этом $p_{ii}(t) \to 0$, $t \to \infty$,
- Возвратным положительным, если $\overline{\lim}_{t \to \infty} p_{ii}(t) > 0$.

(в англоязычной литературе употребляют термины null recurrent u positive recurrent)

Соотношение ~ является отношением эквивалентности на множестве состояний, поэтому можно говорить о *классах эквивалентных состояний*.

Замечания. Сделаем несколько замечаний по поводу введённых определений. Каждое поглощающее состояние является существенным (рекуррентным) и представляет собой отдельный класс, состоящий из одного элемента. Каждое состояние $i \in E$, для которого $p_{ii}(1) > 0$, является апериодическим (непериодическим). Множество возвратных состояний (нулевых или положительных) совпадает с множеством существенных (рекуррентных) состояний. Множества транзитивных и несущественных состояний также совпадают.

На множестве *классов сообщающихся состояний* можно определить отношение *частичного порядка*: класс состояний B следует за классом состояний $A, A \to B$, если хотя бы одно состояние $j \in B$ следует за какимлибо состоянием $i \in A$.

Упражнение. Доказать, что $A \to B$, $B \to A \Rightarrow A = B$.

Предложение 12.3. Если і и ј два сообщающихся состояния, то:

- а) Они оба либо рекуррентны, либо транзитивны.
- b) *Они оба имеют один и тот же период.*

Таким образом, можно говорить о классах рекуррентных или транзитивных состояний и о периоде класса. Доказательство.

a) В самом деле, $i \in A$ рекуррентно $\iff \sum_{k=0}^{\infty} (P^k)_{ii} = \infty$. Если j – другое состояние этого же класса, то, по определению класса, $\exists k, l$ такие, что $(P^k)_{ij} > 0$, $(P^l)_{ji} > 0$. Очевидно, $(P^m)_{ii} > 0$ влечёт $(P^{k+l+m})_{jj} > (P^l)_{ji} (P^m)_{ii} (P^k)_{ij} > 0$. Следовательно,

$$\sum_{m=0}^{\infty} (P^m)_{jj} \ge \sum_{m=0}^{\infty} (P^{k+l+m})_{jj} \ge (P^l)_{ji} (P^k)_{ij} \sum_{m=0}^{\infty} (P^m)_{ii} = \infty,$$

- т.е. рекуррентность состояния i влечёт рекуррентность любого сообщающегося с ним состояния j. Если же i было транзитивным, то и любое j из этого класса транзитивно, ибо если бы j было рекуррентным, то, по доказанному, любое состояние из этого класса, в том числе и i, было бы рекуррентным, а это не так.
- b) Как и в п. а), $\exists M,N$ такие, что $(P^M)_{ij}>0$, $(P^N)_{ji}>0$. Для любого $k\geq 1$ $(P^{M+nk+N})_{ii}\geq (P^M)_{ij}[(P^k)_{jj}]^n(P^N)_{ji},$ (поскольку путь

 $\{X_0=i, X_M=j, X_{M+k}=j, X_{M+2k}=j, ..., X_{M+nk}=j, X_{M+nk+N}=i\}$ это только *один из возможных* путей перехода из i в i за M+nk+N шагов). Мы получаем, что для любого $k\geq 1$ такого, что $(P^k)_{jj}>0$ переходная вероятность $(P^{M+nk+N})_{ii}>0$ *при любом* $n\geq 1$. Отсюда следует, что период d_i состояния i является делителем M+nk+N **при любом** $n\geq 1$, где $k\geq 1$ такое, что $(P^k)_{jj}>0$. Но тогда d_i также является делителем k. В самом деле, d_i делитель M+nk+N и делитель M+(n+1)k+N=k+(M+nk+N), то есть d_i - делитель k. Итак, d_i – делитель любого k, для которого $(P^k)_{jj}>0$. По определению, d_j — *наибольший* делитель, обладающим таким свойством, то есть $d_i\leq d_j$. Симметричное рассуждение (замена i на j и

j на i) показывает, что $d_j \leq d_i$. Таким образом, $d_i = d_j$, то есть **период** — **это** *свойство класса*.

Рассмотрим некоторые примеры, связанные со случайными блужданиями.

1. Пусть $\zeta_1, \zeta_2, ...$ - независимые случайные величиы,

$$P\{\zeta_k = 1\} = p, P\{\zeta_k = -1\} = q = 1 - p, k = 1, 2, ...$$

и $S_0=0$, $S_n=\zeta_1+\dots+\zeta_n$, $n=1,2,\dots$ Последовательность $\{S_n\}$ - цепь Маркова со счётным множеством состояний $\{0,\pm 1,\pm 2,\dots\}$, все состояния которой сообщаются. Траектория случайного блуждания $\{S_n\}$ возвращается в 0 тогда и только тогда, когда числа шагов в положительном и отрицательном направлениях одинаковы. Поэтому вероятность возвращения в 0 за нечётное число шагов равна 0, а за чётное число шагов равна

$$p_{00}(2n) = C_{2n}^n p^n q^n \sim \frac{(4pq)^n}{(\pi n)^{1/2}}$$
 при $n \to \infty$,

так как по формуле Стирлинга при $n \to \infty$

$$C_{2n}^{n} = \frac{(2n)!}{(n!)^{2}} = \frac{\sqrt{2\pi \cdot 2n} \left(\frac{2n}{e}\right)^{2n}}{\left(\sqrt{2\pi n} \left(\frac{n}{e}\right)^{n}\right)^{2}} \cdot \left(1 + o(1)\right) \sim \frac{2^{2n}}{\sqrt{\pi n}}.$$

Если $p \neq q$, то 4pq < 1, и ряд $\sum_{n \geq 1} p_{00}(n)$ сходится,т.е. при $p \neq q$ состояние 0 невозвратно. Если же $p = q = \frac{1}{2}$, то 4pq = 1 и $\sum_{n \geq 1} p_{00}(n) = \infty$, т.е. для *симметричного* одномерного случайного блуждания состояние 0 возвратно.

2. Рассмотрим случайное блуждание на плоскости

$$(S_{1,0}, S_{2,0}) = (0,0), (S_{1,n}, S_{2,n}) = \sum_{k=1}^{n} (\zeta_{2k-1}, \zeta_{2k}), n \ge 1,$$

где $\{\zeta_k\}$ - та же последовательность случайных величин, что и в п.1. Это блуждание является совокупностью $(S_{1,n},S_{2,n})$ двух независимых случайных блужданий на множестве целых чисел из п.1. При $p \neq q$ случайное блуждание $S_{1,n}$ невозвратно, а поэтому невозвратно и двумерное случайное блуждание. Рассмотрим случай $p = q = \frac{1}{2}$. Вероятность

возвращения в точку (0,0) за 2n шагов равна произведению вероятностей того, что каждое из двух блужданий вернётся в точку (0,0) за 2n шагов:

$$p_{(0,0)(0,0)}(2n) = (p_{(0,0)}(2n))^2 = (2^{-2n}C_{2n}^n)^2 \sim \frac{1}{\pi n}$$
 при $n \to \infty$.

т.е. для симметричного *двумерного* случайного блуждания состояние (0,0) также возвратно.

3. Однако для для симметричного *трёхмерного* случайного блуждания, образованного совокупностью $(S_{1,n}, S_{2,n}, S_{3,n})$ трёх независимых случайных блужданий из пункта 1, состояние (0,0.0) невозвратно, потому что

$$p_{(0,0,0)(0,0,0)}(2n)=(p_{(0,0)}(2n))^3=(2^{-2n}C_{2n}^n)^3\sim\frac{1}{\pi n^{3/2}}\text{ при }n\to\infty.$$
 и ряд $\sum_{n\geq 1}p_{(0,0,0)(0,0,0)}(n)$ сходится.