Preview

- ●本授業のサポートページ
- ●QRコードのリンク先からご覧いただけます
- ●サポートページにスライドもおいてあります

第3章「式と曲線」 極極座標と極方程式

数学系 佐々木正吾 情報工学系 橋本龍徳

復習

復習:極座標

●座標平面上の点は

- 原点からの距離 r
- ・x軸の正の方向から測った角heta

で記述できた。

これを用いて座標平面上の点を (r,θ) と表したものを極座標といった。

極方程式

極方程式へのモチベーション

- ●平面上の点が極座標で表せた
- ●平面上の曲線の方程式も、極座標に書き換えられる!

直交座標の点が極座標でかけたなら、

平面上の方程式も極座標の形でかけるんじゃね?

普通にできるで

定義 極方程式

平面上の曲線Cが極座標 (r,θ) によって、

$$r = f(\theta)$$

$$\blacksquare F(r,\theta) = 0$$

のいずれかの形で書かれるとき、この方程式をcの極方程式という。

定義極方程式

定義を見てもさっぱりわからないので、具体例をたくさん確認してイメージをつかもう。

$$r = f(\theta)$$

$$F(r,\theta) = 0$$

の形をした方程式を極方程式っていうんやで

極方程式の例1:アルキメデスの螺旋

極方程式 $r = \theta \ (0 \le \theta \le 6\pi)$ は次のような螺旋を表す。 この曲線をアルキメデスの螺旋という。

極方程式の例2:カージオイド

極方程式 $r=1+\cos\theta~(0\leq\theta\leq 2\pi)$ は次のような曲線を表す。 この曲線をカージオイドという。

では、極方程式 $r=\sin 2\theta$ が表す曲線の概形はどうなるだろうか?

極方程式から人力で曲線の概形を調べるには…

<u>◎ 各θに対して具体的にいくつかの点をプロットして形を予想する</u>

ことが有効だ。

●有名角でのr(= $\sin 2\theta$)を具体的に計算してみよう。

θ	0	$\frac{\pi}{6}$	$rac{\pi}{4}$	$rac{\pi}{3}$	$rac{\pi}{2}$	$rac{2}{3}\pi$	$rac{3}{4}\pi$	$rac{5}{6}\pi$
igg r								
θ	π	$rac{7}{6}\pi$	$rac{5}{4}\pi$	$rac{4}{3}\pi$	$rac{3}{2}\pi$	$rac{5}{3}\pi$	$rac{7}{4}\pi$	$\frac{11}{6}\pi$
r								

θ	0	$\frac{\pi}{6}$	$rac{\pi}{4}$	$rac{\pi}{3}$	$rac{\pi}{2}$	$rac{2}{3}\pi$	$rac{3}{4}\pi$	$rac{5}{6}\pi$
ig r	0	$rac{1}{2}$	1	$rac{1}{2}$	0	$-\frac{1}{2}$	-1	$-\frac{1}{2}$
θ	π	$rac{7}{6}\pi$	$rac{5}{4}\pi$	$rac{4}{3}\pi$	$rac{3}{2}\pi$	$rac{5}{3}\pi$	$rac{7}{4}\pi$	$\frac{11}{6}\pi$
r	0	$\frac{1}{2}$	1	$\frac{1}{2}$	0	$-\frac{1}{2}$	-1	$-rac{1}{2}$

θ	0	$rac{\pi}{6}$	$rac{\pi}{4}$	$rac{\pi}{3}$	$\frac{\pi}{2}$
r	0	$rac{1}{2}$	1	$rac{1}{2}$	0

θ	0	$\frac{\pi}{6}$	$rac{\pi}{4}$	$rac{\pi}{3}$	$rac{\pi}{2}$	
r	0	$rac{1}{2}$	1	$rac{1}{2}$	0	

θ	0	$rac{\pi}{6}$	$rac{\pi}{4}$	$rac{\pi}{3}$	$rac{\pi}{2}$	
r	0	$rac{1}{2}$	1	$rac{1}{2}$	0	

θ	0	$\frac{\pi}{6}$	$rac{\pi}{4}$	$rac{\pi}{3}$	$rac{\pi}{2}$	
r	0	$\frac{1}{2}$	1	$rac{1}{2}$	0	

θ	0	$\frac{\pi}{6}$	$rac{\pi}{4}$	$rac{\pi}{3}$	$rac{\pi}{2}$	
r	0	$\frac{1}{2}$	1	$\frac{1}{2}$	0	

問題演習(20分)

- ●次は自分の手で色々な曲線を描いてみよう。
- ●A問題とB問題をペアで分担。解けたらお互いに説明し合ってみよう。
- ●例題と似た曲線なので、困ったら例題のアニメーションを参考にしよう。
- ●A問題とB問題で描いた曲線を比較・考察する際は次のような観点で 考えると良いかもしれない
 - ■二つの図を比較して、パラメータにはどのような関係がある?
 - ■楽に描く工夫で思いつくものはある?
 - ■もし、この曲線をx,yの方程式で表そうとするとどの様な感じになりそう?

まとめ

まとめ

◎平面上の曲線を極座標の形で表現したものを<u>極方程式</u>という。

- ◎極方程式で表された曲線を描くには
 - ■コンピュータを使う
 - ■複数の点をプロットして、概形を予想する 方法がある。

お疲れ様でした! (プリントを必ず提出してください)