

VALUE STREAM MAPPING

Learning to see

FUTURE STATE

Alberto PORTIOLI STAUDACHER Dipartimento Ing. Gestionale Politecnico di Milano Dep. Management, Economics and Industrial Engineering ouside such context, nor to alberto.portioli@polimi.it

This material and what the Professors say in class are intended for didactical use only and cannot be used imply professors' specific believes or opinion

KEY QUESTIONS FOR FUTURE-STATE DESIGN

- 1. What is the takt time?
- 2. Will you build to a finished goods supermarket, or directly to shipping?
- 3. Where can you use continuous flow processing?
- 4. Where will you need to use supermarket pull systems to control production of upstream processes?
- 5. At what single point in the production chain (the "pacemaker process") will you schedule production?
- 6. How will you level the production mix at the pacemaker process?
- 7. What increment of work will you consistently release and take away at the pacemaker process?
- 8. What process improvements will be necessary for the value stream to flow as your future-state design specifies?

Takt time

Available Working Time: 28,800 – 1200 = 27,600 seconds per shift

Available Working Time = 27,600 sec. / 460 units per shift

Customer Demand

Acme Steering Bracket Assembly Takt Time = 60 seconds

Acme stamping current cycle time

Line balancing

Takt time

Takt time

Ideal situation (pursue perfection)

Waste quantification

Minimum number of people

Work content / Takt Time

KEY QUESTIONS FOR FUTURE-STATE DESIGN

- 1. What is the takt time?
- 2. Will you build to a finished goods supermarket, or directly to shipping?
- 3. Where can you use continuous flow processing?
- 4. Where will you need to use supermarket pull systems to control production of upstream processes?
- 5. At what single point in the production chain (the "pacemaker process") will you schedule production?
- 6. How will you level the production mix at the pacemaker process?
- 7. What increment of work will you consistently release and take away at the pacemaker process?
- 8. What process improvements will be necessary for the value stream to flow as your future-state design specifies?

Present state

Example: Building Directly to Shipping

Production Control schedules assembly

Example: Building to a Supermarket

The supermarket pulls assembly (Acme's choice)

KEY QUESTIONS FOR FUTURE-STATE DESIGN

- 1. What is the takt time?
- 2. Will you build to a finished goods supermarket, or directly to shipping?
- 3. Where can you use continuous flow processing?
- 4. Where will you need to use supermarket pull systems to control production of upstream processes?
- 5. At what single point in the production chain (the "pacemaker process") will you schedule production?
- 6. How will you level the production mix at the pacemaker process?
- 7. What increment of work will you consistently release and take away at the pacemaker process?
- 8. What process improvements will be necessary for the value stream to flow as your future-state design specifies?

Separate workstation

Continous flow

Continuous flow

Present state

Linking processes

Continous flow Welding + assembly cell

- setup time
- machine availability

KEY QUESTIONS FOR FUTURE-STATE DESIGN

- 1. What is the takt time?
- 2. Will you build to a finished goods supermarket, or directly to shipping?
- 3. Where can you use continuous flow processing?
- 4. Where will you need to use supermarket pull systems to control production of upstream processes?
- 5. At what single point in the production chain (the "pacemaker process") will you schedule production?
- 6. How will you level the production mix at the pacemaker process?
- 7. What increment of work will you consistently release and take away at the pacemaker process?
- 8. What process improvements will be necessary for the value stream to flow as your future-state design specifies?

Supermarket

Present state

KEY QUESTIONS FOR FUTURE-STATE DESIGN

- 1. What is the takt time?
- 2. Will you build to a finished goods supermarket, or directly to shipping?
- 3. Where can you use continuous flow processing?
- 4. Where will you need to use supermarket pull systems to control production of upstream processes?
- 5. At what single point in the production chain (the "pacemaker process") will you schedule production?
- 6. How will you level the production mix at the pacemaker process?
- 7. What increment of work will you consistently release and take away at the pacemaker process?
- 8. What process improvements will be necessary for the value stream to flow as your future-state design specifies?

Scheduling point

Schedule production at a single point in the production chain (the "pacemaker process")

FIFO line downstream of scheduling point

Acme Stamping Lead-Time Improvement

	Coils	Stamped Parts	Weld/Assy WIP	Finished Goods	Production Lead Time	Total Inventory Turns
Before	5 Days	7.6 Days	6.5 Days	4.5 Days	23.6 Days	10
So Far	2 Days	1.5 Days	0	4.5 Days	8 Days	30

- Welding and Assembly U cell
- Press setup reduction
- "Milk run" coils delivery

KEY QUESTIONS FOR FUTURE-STATE DESIGN

- 1. What is the takt time?
- 2. Will you build to a finished goods supermarket, or directly to shipping?
- 3. Where can you use continuous flow processing?
- 4. Where will you need to use supermarket pull systems to control production of upstream processes?
- 5. At what single point in the production chain (the "pacemaker process") will you schedule production?
- 6. How will you level the production mix at the pacemaker process?
- 7. What increment of work will you consistently release and take away at the pacemaker process?
- 8. What process improvements will be necessary for the value stream to flow as your future-state design specifies?

Level production

- Opt A

Example

Level production

- Opt B

Load-leveling box (Heijunka)

Kanban are responded to from left to right at pitch increment

Example-Non digital

Example-Digital

Level production

- Opt C

KEY QUESTIONS FOR FUTURE-STATE DESIGN

- 1. What is the takt time?
- 2. Will you build to a finished goods supermarket, or directly to shipping?
- 3. Where can you use continuous flow processing?
- 4. Where will you need to use supermarket pull systems to control production of upstream processes?
- 5. At what single point in the production chain (the "pacemaker process") will you schedule production?
- 6. How will you level the production mix at the pacemaker process?
- 7. What increment of work will you consistently release and take away at the pacemaker process?
- 8. What process improvements will be necessary for the value stream to flow as your future-state design specifies?

What is your management interval?

Pitch: lot of information

KEY QUESTIONS FOR FUTURE-STATE DESIGN

- 1. What is the takt time?
- 2. Will you build to a finished goods supermarket, or directly to shipping?
- 3. Where can you use continuous flow processing?
- 4. Where will you need to use supermarket pull systems to control production of upstream processes?
- 5. At what single point in the production chain (the "pacemaker process") will you schedule production?
- 6. How will you level the production mix at the pacemaker process?
- 7. What increment of work will you consistently release and take away at the pacemaker process?
- 8. What process improvements will be necessary for the value stream to flow as your future-state design specifies?

ACME future state-Digital

Collaborative robots: https://www.youtube.com/watch?v=ArBxq3mOt2s AGV: https://www.youtube.com/watch?v=jwu9SX3YPSk POLITECNICO MILANO 1863

Example-Digital

In manufacturing,

Also in service: https://www.youtube.com/watch?v=Ti0cRYFjHqg

Further links to digital tools

Further links to digital tools

OEE software: https://www.youtube.com/watch?v=EGjKSFXzNc4

E-Andon: https://www.youtube.com/watch?v=6RxFHICfcZo
https://www.youtube.com/watch?v=c4gU3lWYErl

Augmented reality: https://www.youtube.com/watch?v=0m6701Em7dY

https://www.youtube.com/watch?v=UhW12bILH7U

https://www.youtube.com/watch?v=cfdBgJdFC6Q

Smart Factory: https://www.youtube.com/watch?v=qCgRSJZiloE

Acme Stamping Lead-Time Improvement

	Coils	Stamped Parts	Weld/Assy WIP	Finished Goods	Production Lead Time	Total Inventory Turns
Before	5 Days	7.6 Days	6.5 Days	4.5 Days	23.6 Days	10
Continuous Flow & Pull	2 Days	1.5 Days	0	4.5 Days	8 Days	30
With Leveling	1.5 Days	1 Day	0	2 Days	4.5 Days	53

Present state in a hospital

