

DILATED CONVOLUTION:

基于进化算法的脉动阵列快速硬核布局方法

张年崧 16308149

2020年5月10日

School of Electronics and Information Technology, Sun Yat-sen University

Table of Contents

- 1. Introduction
- 2. 3-Dimensional Proposed Method
- 3. Taylor-series Method
- 4. Spherical-Interpolation Method
- 5. Cramér-Rao Lower Bound
- 6. Divide and Conquer
- 7. Simulation Results

Introduction

Dilated Convolution

Assuming a source is emitting signal in all directions and an array of sensors are picking up the signal, it will arrive at different sensors at different time.

TDOA: Time Difference Of Arrival

Then the location of the source can be estimated by measuring the delay of signal arriving at different sensor.

Figure 1: Sensors and source.

Position Fix by TDOA: Noise

Vector of TDOA:

$$\mathbf{d} = \begin{bmatrix} d_2 - d_1 & d_3 - d_1 & \cdots \end{bmatrix}^\mathsf{T}$$

However, 100% precise measurement of **TDOA** is not possible. Noise is always present.

Naturally, the noise in **TDOA** is a *multivariate Gaussian distribution* centered at true value, with covariance given by matrix:

$$Q = \sigma^2 \begin{bmatrix} 1 & 0.5 & \cdots & 0.5 \\ 0.5 & 1 & \cdots & 0.5 \\ \vdots & \vdots & \ddots & \vdots \\ 0.5 & 0.5 & \cdots & 1 \end{bmatrix}$$

where σ^2 is the noise power.

3-Dimensional Proposed Method

3D Proposed Method

• By assuming x, y, z and r_1 are independent, the non-linear equations can be reduced into linear ones.

3D Proposed Method

- By assuming x, y, z and r_1 are independent, the non-linear equations can be reduced into linear ones.
- Given different situations, use *Maximum Likelihood* (ML) estimator to solve the linear equations.

3D Proposed Method

- By assuming x, y, z and r_1 are independent, the non-linear equations can be reduced into linear ones.
- Given different situations, use *Maximum Likelihood* (ML) estimator to solve the linear equations.
- Incorporate the dependent relationship back into the solution (if necessary) to get more accurate solution.

3D Proposed Method: Work-flow

Figure 2: Flowchart of the proposed method in 3D.

3D Proposed Method: Arbitrary Array

"Arbitrary" refers to that sensors are arranged in a non-linear manner, thus avoiding singularity during computation.

• With 4 sensors (M = 4), system is not overdetermined.

- · Therefore, the solution can be found simply by
 - 1. solving a quadratic equation of r_1 :
 - 2. insert r_1 back and solve the linear equation groups of x and y.

Proposed Method: Arbitrary Array (cont'd)

- · With more than 4 sensors, the system is overdetermined.
- · Here we denote:

$$\mathbf{h} = \frac{1}{2} \begin{bmatrix} r_{2,1}^2 - K_2 + K_1 \\ r_{3,1}^2 - K_3 + K_1 \\ \vdots \\ r_{M,1}^2 - K_M + K_1 \end{bmatrix}$$

$$\mathbf{G}_a = - \begin{bmatrix} X_{2,1} & Y_{2,1} & Z_{2,1} & r_{2,1} \\ X_{3,1} & Y_{3,1} & Z_{3,1} & r_{3,1} \\ \vdots & \vdots & \vdots \\ X_{M,1} & Y_{M,1} & Z_{M,1} & r_{M,1} \end{bmatrix}$$

$$\mathbf{B} = \mathbf{diag}\{r_2^0, r_{3,1}^0, \dots, r_{M}^0\}$$

- Additional dimension reflects on the change in G_{α} .

Proposed Method: Dependency of Arbitrary Array

- The next step is to consider the dependency between x, y and r_1 .
- · Again using ML, we have

$$\mathbf{z}_{a}^{'} = (\mathbf{G}_{a}^{'T}\mathbf{\Psi}^{'-1}\mathbf{G}_{a}^{'})^{-1}\mathbf{G}_{a}^{'T}\mathbf{\Psi}^{'-1}\mathbf{h}^{'}$$

where

$$\mathbf{h}' = \begin{bmatrix} (x - x_1)^2 \\ (y - y_1)^2 \\ (z - z_1)^2 \\ r_1^2 \end{bmatrix}, \quad \mathbf{G}'_a = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

and

$$\Psi^{'} = 4B^{'}(G_{a}^{0T}\Psi^{-1}G_{a}^{0})^{-1}B^{'}, \quad B^{'} = diag\{x - x_{1}, y - y_{1}, z - z_{1}, r_{1}^{0}\}$$

Proposed Method: Solution of Arbitrary Array

- Similar simplification can be made when the source is far away, by substituting Ψ with \mathbf{Q} .
- · After acquiring $\mathbf{z}_{a}^{'}$, we have

$$\mathbf{z}_{a}^{'} = \begin{bmatrix} (x^{0} - x_{1})^{2} \\ (y^{0} - y_{1})^{2} \\ (z^{0} - z_{1})^{2} \end{bmatrix}$$

- Then x^0 , y^0 , z^0 can be calculated by taking square roots of the positive values.
- Interested solution will be chosen among different sign combinations yield by square root.

Proposed Method: Coplanar Array

If the sensors are coplanar, i.e. sit on the same plane, then the positions can be described by

$$z = ax + by + c$$

Here the procedure used for *Arbitrary Array* would fail due to matrix singularity.

However, a similar solution can be developed with slight modifications

Coplanar array corresponds to linear array in 2D scenario.

Proposed Method: Coplanar Array (cont'd)

• Taking the relationship z = ax + by + c, rewrite \mathbf{z}_a and \mathbf{G}_a as

$$\mathbf{z}_{l} = \begin{bmatrix} x + az \\ y + bz \\ r_{1} \end{bmatrix}, \quad \mathbf{G}_{l} = - \begin{bmatrix} x_{2,1} & y_{2,1} & r_{2,1} \\ x_{3,1} & y_{3,1} & r_{3,1} \\ \vdots & \vdots & \vdots \\ x_{M,1} & y_{M,1} & r_{M,1} \end{bmatrix}$$

· We can have something very similar to that in arbitrary array

$$\mathbf{z}_l = (\mathbf{G}_l^\mathsf{T} \mathbf{\Psi}^{-1} \mathbf{G}_l)^{-1} \mathbf{G}_l^\mathsf{T} \mathbf{\Psi}^{-1} \mathbf{h}$$

where Ψ and h are the same as in arbitrary Array.

- Similar approach of taking \mathbf{Q} for Ψ and use of iteration can be applied here.

11

Proposed Method: Solution of Coplanar Array

We now have
$$\mathbf{z}_l = \begin{bmatrix} x + az \\ y + bz \\ r_1 \end{bmatrix}$$
, denoted as $\mathbf{z}_l = \begin{bmatrix} w \\ v \\ r_1 \end{bmatrix}$.

· x, y, z can be solved through quadratic equation

$$z = \frac{-E \pm \sqrt{E^2 - 4AC}}{2A}, \quad x = w - az, \quad y = v - bz$$

where

$$A = 1 + a^{2} + b^{2}$$

$$E = -2aw - 2bv - 2z_{1} + 2x_{1} + 2by_{1}$$

$$C = w^{2} + v^{2} - 2x_{1}w - 2y_{1}v + K_{1} - r_{1}^{2}$$

• When a = 0 and b = 0, the solution becomes

$$z = \pm \sqrt{r_1^2 - (w - x_1)^2 - (v - y_1)^2} + z_1, \quad x = w, \quad y = v$$

Taylor-series Method

Taylor-Series Method

We are given:

$$r_{i,1} = cd_{i,1} = r_i - r_1$$

Linearize above equation by Taylor-series expansion and then solve iteratively:

- · Compute position deviation
- · Add position deviation to initial guess
- · Solve again until deviation is considerably small

Convergence is not guaranteed

Taylor-series Method

The position deviation is computed by:

$$\begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = (G_t^T Q^{-1} G_t)^{-1} G_t^T Q^{-1} h_t$$

where h_t and G_t are given as follows

$$G_{t} = \begin{bmatrix} (x_{1} - x)/r_{1} - (x_{2} - x)/r_{2} & (y_{1} - y)/r_{1} - (y_{2} - y)/r_{2} \\ (x_{1} - x)/r_{1} - (x_{2} - x)/r_{3} & (y_{1} - y)/r_{1} - (y_{3} - y)/r_{3} \\ (x_{1} - x)/r_{1} - (x_{M} - x)/r_{M} & (y_{1} - y)/r_{1} - (y_{M} - y)/r_{M} \end{bmatrix}$$
(2)

Spherical-Interpolation Method

The Equation-Error Formulation

We first map the spatial origin to an arbitrary sensor j, this gives:

$$\underline{\mathbf{x}}_{\mathbf{j}} \triangleq \underline{\mathbf{0}} \Longrightarrow \begin{cases} R_{j} &= \mathbf{0} \\ D_{j} &= R_{s} \end{cases}$$

From the Pythagorean theorem, we have:

$$(R_s + d_{ij})^2 = R_i^2 - 2\underline{\mathbf{x}}_i^{\mathsf{T}}\underline{\mathbf{x}}_s + R_s^2$$

which is also:

$$0 = R_i^2 - d_{ij}^2 - 2R_s d_{ij} - 2\underline{\mathbf{x}}_i^{\mathsf{T}}\underline{\mathbf{x}}_{\mathsf{s}}$$

Fig. 4. Geometric representation of the relationship given in (5).

The Equation-Error Fomulation

If we take the first sensor as origin, i.e. j=1As the delays are typically not measured precisely, we introduce "equation error"

$$\epsilon_i = R_i^2 - d_{ij}^2 - 2R_s d_{ij} - 2\underline{\mathbf{x}}_i^{\mathsf{T}}\underline{\mathbf{x}}_{\mathsf{s}} \quad (i = 2, 3, \dots, N)$$

where ϵ_i is to be minimized. With N-1 measurements, this equation can be written in matrix notaion:

$$\underline{\boldsymbol{\epsilon}} = \underline{\boldsymbol{\sigma}} - 2R_{\scriptscriptstyle S}\underline{\mathbf{d}} - 2\mathbf{S} \cdot \underline{\mathbf{x}}_{\scriptscriptstyle S}$$

where

$$\underline{\boldsymbol{\sigma}} \triangleq \begin{bmatrix} R_2^2 - d_{21}^2 \\ R_3^2 - d_{31}^2 \\ \vdots \\ R_N^2 - d_{N1}^2 \end{bmatrix} \qquad \underline{\mathbf{d}} \triangleq \begin{bmatrix} d_{21} \\ d_{31} \\ \vdots \\ d_{N1} \end{bmatrix} \qquad \mathbf{S} \triangleq \begin{bmatrix} x_2 & y_2 \\ x_3 & y_3 \\ \vdots & \vdots \\ x_N & y_N \end{bmatrix}$$

The Spherical-Interpolation Method

The formal least-squares solution for $\underline{\mathbf{x}}_{s}$ given R_{s} is

$$\underline{\mathbf{x}}_{s} = \frac{1}{2}\mathbf{S}_{W}^{*}(\underline{\boldsymbol{\sigma}} - 2R_{s}\underline{\mathbf{d}})$$

where

$$S_W^* \triangleq (S^T S)^{-1} S^T$$

The SI method is to minimize the equation error agian with respect to R_s . i.e. rewriting the equation error to eliminate \underline{x}_s by substituting it with R_s , yielding a new equation error $\underline{\epsilon}'$ which is linear in R_s :

$$\underline{\epsilon}' = \underline{\sigma} - 2R_{s}\underline{d} - SS_{W}^{*}(\underline{\epsilon} - 2R_{s}\underline{d})$$
$$= (I - SS_{W}^{*})(\underline{\epsilon} - 2R_{s}\underline{d})$$

We notice that the formal least-squares estimate of $\underline{\mathbf{x}}_s$ given R_s is itself LINEAR in R_s . When the minimizing R_s value is found in this new equation, the corresponding value of $\underline{\mathbf{x}}_s$ is automatically a minimizer of the squared equation-error norm.

The Spherical-Interpolation Method

The solution is given by

$$R_s = \frac{\underline{d}^T P_s^{\perp} V P_s^{\perp} \underline{\boldsymbol{\sigma}}}{2\underline{d}^T P_s^{\perp} V P_s^{\perp} \underline{d}}$$

where P_s^{\perp} is defined as

$$P_s^\perp \triangleq I - SS_W^*$$

Substituting this solution into

$$\underline{\mathbf{x}}_{s} = \frac{1}{2} \mathbf{S}_{W}^{*} (\underline{\boldsymbol{\sigma}} - 2R_{s}\underline{\mathbf{d}})$$

yields the source location estimate

$$\underline{\hat{X}}_s = \frac{1}{2} (S^TWS)^{-1} S^TW (I - \frac{\underline{d} \ \underline{d}^T P_s^\perp V P_s^\perp}{\underline{d}^T P_s^\perp V P_s^\perp \underline{d}}) \underline{\sigma}$$

The Spherical-Interpolation Method

When $\mathbf{W} = \mathbf{V}$, this estimator is the minimizer of the weighted norm of the projected equation error

$$\mathbf{Z}_{\underline{x}_s} = \underline{\boldsymbol{\epsilon}}^\mathsf{T} \mathbf{P}_{d}^\perp \mathbf{W} \mathbf{P}_{d}^\perp \underline{\boldsymbol{\epsilon}}$$

Minimizing Z_{x_c} , one gets a simplified expression of the estimator

$$\underline{\hat{X}}_{s} = \frac{1}{2} (S^{T} P_{\underline{d}}^{\perp} W P_{\underline{d}}^{\perp} S)^{-1} S^{T} P_{\underline{d}}^{\perp} \underline{\sigma}$$

By now, the Maximum Likelihood Estimation of the \underline{x}_s is obtained.

IN SIMULATION:

The weighting matrices W and V are both set to Q^{-1}

Cramér-Rao Lower Bound

Cramér-Rao Lower Bound

In the simplest form, the CRLB states that the variance of any unbiased estimator is no smaller than the inverse of the Fisher information matrix.

$$\operatorname{var}(\hat{\theta}) \geqslant \operatorname{J}(\theta)^{-1}$$

It is derived from the APPENDIX that the CRLB of the localization problem is given by

$$\mathbf{\Phi}^{\mathbf{0}} = c^2 (\mathbf{G}_t^{\mathbf{0}\mathsf{T}} \mathbf{Q}^{-1} \mathbf{G}_l^{\mathbf{0}})^{-1}$$

Also, it is proved that the proposed method with arbitrary sensor array can achieve CRLB, therefore, one can use the following method to compute the lower bound of covariance matrix

$$\Phi^{0} = \text{cov}(\mathbf{z}_{p}) = \frac{1}{4}\mathbf{B}^{"-1}\text{cov}(\mathbf{z}_{a}')\mathbf{B}^{"-1}$$
$$= c^{2}(\mathbf{B}^{"}\mathbf{G}_{a}^{'T}\mathbf{B}^{'-1}\mathbf{G}_{a}^{0T}\mathbf{B}^{-1}\mathbf{Q}^{-1}\mathbf{B}^{-1}\mathbf{G}_{a}^{0}\mathbf{B}^{'-1}\mathbf{G}_{a}'\mathbf{B}^{"})^{-1}$$

which is the covariance matrix of \mathbf{z}_p when errors are ignored.

Cramér-Rao Lower Bound

$$\mathbf{\Phi}^{0} = c^{2} (\mathbf{B}^{"} \mathbf{G}_{a}^{'T} \mathbf{B}^{'-1} \mathbf{G}_{a}^{0T} \mathbf{B}^{-1} \mathbf{Q}^{-1} \mathbf{B}^{-1} \mathbf{G}_{a}^{0} \mathbf{B}^{'-1} \mathbf{G}_{a}^{'} \mathbf{B}^{"})^{-1}$$

where

$$G_{a}^{0} = -\begin{bmatrix} x_{2} & y_{2} & r_{2} - r_{1} \\ x_{3} & y_{3} & r_{3} - r_{1} \\ \vdots & \vdots & \vdots \\ x_{M} & y_{M} & r_{M} - r_{1} \end{bmatrix} \qquad B'' = \begin{bmatrix} (x^{0} - x_{1}) & 0 \\ 0 & (y^{0} - y_{1}) \end{bmatrix}$$

$$B' = \text{diag}\{(x^{0} - x_{1}), (y^{0} - y_{1}), r_{1}^{0}\} \qquad G'_{a} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}'$$

$$B = \text{diag}\{r_{0}^{0}, r_{0}^{0}, \dots, r_{M}^{0}\}$$

The covariance matrix of position estimate contains the uncertainty information in localization. In particular, the position mean-square error (MSE) is equal to the trace of Φ .

Divide and Conquer

Divide and Conquer

 The divide and conquer estimate is formed by combining maximum likelihood parameter estimates based on subsections of the data vector.

- The observation X is partitioned into m possibly overlapping subvectors X_i.
- Each subvector is used to estimate, via maximum likelihood, parameters θ_i .

Divide and Conquer (cont'd)

• The parameter θ_i is given by:

$$\theta_i = S_i \theta$$

where S_i is a selection matrix (the identity matrix with appropriate rows removed).

· The estimates, denoted by $\hat{m{ heta}}_{DAC}$ is given by:

$$\hat{\boldsymbol{\theta}}_{DAC} = (\mathbf{S}^{\mathsf{T}}\mathbf{W}\mathbf{S})^{-1}\mathbf{S}^{\mathsf{T}}\mathbf{W}\hat{\boldsymbol{v}}$$

where $\hat{m{v}}$ and ${f S}$ are concatenations of the $\hat{m{ heta}}_i$ and the ${f S}_i$,

$$\hat{\boldsymbol{v}}_i = \begin{bmatrix} \hat{\boldsymbol{\theta}}_1 \\ \hat{\boldsymbol{\theta}}_2 \\ \vdots \\ \hat{\boldsymbol{\theta}}_m \end{bmatrix}, \quad \mathbf{s} = \begin{bmatrix} \mathbf{S}_1 \\ \mathbf{S}_2 \\ \vdots \\ \mathbf{S}_m \end{bmatrix}$$

and **W** is a weighting matrix chosen to minimize MSE.

Divide and Conquer (cont'd)

• In our estimation, the maximum likelihood estimator of \mathbf{z}_a is given by

$$\mathbf{z}_{a} = arg[min\{(\mathbf{h} - \mathbf{G}_{\mathbf{a}}\mathbf{z}_{\mathbf{a}})^{\mathsf{T}}\mathbf{\Psi}^{-1}(\mathbf{h} - \mathbf{G}_{\mathbf{a}}\mathbf{z}_{\mathbf{a}})\}]$$

- · Therefore, X corresponds to h and $\hat{ heta}$ corresponds to z_a .
- Dividing **h** into subsections and performing ML estimation each yields $\hat{m{ heta}}_i$
- Combine $\hat{m{ heta}}_i$ to get $\hat{m{ heta}}_{DAC}$

Simulation Results

Simulation Results

TABLE I

COMPARISON OF MSE FOR THE SI, TAYLOR-SERIES AND PROPOSED METHODS; ARBITRARY ARRAY AND NEAR SOURCE

MSE	M=3	M=4	M=5	M=6	M=7	M=8	M=9	M=10
А	no.sol.	1.5741	0.1585	0.1487	0.1241	0.1165	0.1138	0.1106
В	2.1646	0.7095	0.1463	0.1338	0.1153	0.1059	0.1031	0.0947
С	2.1701	0.7003	0.1451	0.1411	0.1155	0.1105	0.1050	0.0981
D	2.1546	0.6854	0.1492	0.1361	0.1150	0.1077	0.1037	0.0961
Е	1.9766	0.6873	0.1448	0.1332	0.1141	0.1052	0.1030	0.0941

A: SI method. B: Taylor series method. C: proposed method, { (14b), (22b), (24)}. D: proposed method, { (14b), (14a), (22a), (24)}.

- SI performs worst and our solution method gives a slightly smaller MSE than the Taylor-series method.
- The proposed method with the simplified formulae still performs better than the SI method.

E: theoretical MSE of the new method = CRLB.

Simulation Results

TABLE II

COMPARISON OF MSE FOR THE PROPOSED AND TAYLOR-SERIES METHODS: LINEAR ARRAY AND NEAR SOURCE

MSE	M=3	M=4	M=5	M=6	M=7	M=8	M=9	M=10
В	no.sol.	1.3342	0.3794	0.1247	0.0618	0.0283	0.0175	0.0096
С	8.2421	1.1107	0.3563	0.1222	0.0619	0.0286	0.0178	0.0098
D	8.2289	1.1020	0.3566	0.1219	0.0613	0.0286	0.0174	0.0096
Е	7.2718	1.0984	0.3543	0.1217	0.0611	0.0283	0.0174	0.0095

B: Taylor series method. C: proposed method, $\{(28) \text{ with } \Psi = Q, (29)\}$. D: proposed method, $\{(28) \text{ with } \Psi = Q, (28), (29)\}$.

E: theoretical MSE of the new method = CRLB.

CONCLUSIONS

- The localization MSE decreases as the number of sensor increases.
- The Taylor-series method gives almost identical results as the new method.

Simulation Results

TABLE III

COMPARISON OF MSE FOR THE SI, TAYLOR-SERIES AND PROPOSED METHODS;

ARBITRARY	A 0.0 41/	 DIOTALIT	Couper

MSE	M=4	M=5	M=6	M=7	M=8	M=9	M=10
А	14796	212.10	48.16	40.70	42.02	39.99	37.57
В	346.52	147.50	44.98	38.77	39.40	37.56	33.39
С	450.65	143.92	44.74	38.69	38.53	36.85	34.14
E	328.36	143.73	44.00	38.48	38.47	36.41	33.68

A: SI method. B: Taylor series method. C: proposed method, { (14b), (22b), (24)}

E: theoretical MSE of the new method = CRLB.

CONCLUSIONS

- The proposed method performs much better than SI and slightly better than Taylor-series method.
- The proposed method performs significantly better when M is small.

Simulation Results

TABLE IV

COMPARISON OF MSE FOR THE PROPOSED AND TAYLOR-SERIES METHODS;

LINEAR ARRAY AND DISTANT SOURCE

MSE	M=4	M=5	M=6	M=7	M=8	M=9	M=10
В	1802.42	435.16	155.40	68.87	34.52	18.77	10.83
С	1583.04	406.42	153.59	68.45	34.30	18.81	10.87
Ε	1435.26	407.60	153.83	67.96	34.20	18.54	10.87

B: Taylor series method. C: proposed method, { (14b), (22b), (24)}.

CONCLUSIONS

• The proposed method performs better than Taylor-series method especially when M is small.

E: theoretical MSE of the new method = CRLB.

Simulation Results

CONCLUSIONS

- $\boldsymbol{\cdot}$ The proposed method performs only a little worse than the CRLB.
- \cdot The error thresholding effect doesn't occur until $\sigma_d^2=0.0001$

Comparison between methods

CONCLUSIONS

- DAC has the worst performance.
- · Taylor-series, SI and proposed method has similar performance.

3D Simulation: Case I

CASE I: 3D MAP

- Test Space: $500m \times 500m \times 120m$
- · All sensors are randomly placed on ground.
- · 10000 independent tests were run, result averaged.

3D Simulation: Case I

CASE I: INDEPENDENT RESULTS

- Each result of independent tests is displayed (simplified for visual convenience).
- The error in every direction is no larger than 0.5.

3D Simulation: Case I

CASE I: ERROR DISTANCE, ERROR IN X, Y, Z DIRECTION

• The distance between estimated position and real position is no larger than 0.4m, and mostly concentrated between [0, 0.1].

The common in Court Lead to the first transfer to the court of the cou

• The error in x, y, z direction is roughly normally distributed.

3D Simulation: Case II

CASE II: 3D MAP

- Test Space: $500m \times 500m \times 120m$
- N-1 sensors are randomly placed on ground, 1 sensor at (0,0,40).

3D Simulation: Case II

CASE II: INDEPENDENT RESULTS

- Each result of independent tests is displayed (simplified for visual convenience).
- The error in every direction is no larger than 0.5m.

3D Simulation: Case II

CASE II: ERROR DISTANCE, ERROR IN X, Y, Z DIRECTIONS

- The distance is no larger than 0.1m, performance is even better than coplanar case.
- · Small error region verifies the algorithm in arbitrary case.

Discussion: Distribution of Sensors

Question: How does the distribution of sensors affect the results?

AVAILABLE CHOICES:

- · sensors wrap up the source
- · sensors distributes on one side of the source

EXPERIMENT CONDITIONS:

- 1st sensor placed at: $(0,0,z), z \in \{4,8,12,\ldots,120\}.$
- · Other sensors stay on the ground.
- Source is placed at (x, y, 60).
- Record the error distance, and error in x, y, z directions of each z.

When z < 60, sensors distributes on one side of source; When z > 60, sensors wrap up the source.

Discussion: Distribution of Sensors

SIMULATION RESULT OF DIFFERENT SENSOR DISTRIBUTION

Discussion: Distribution of Sensors

CONCLUSION

- When z < 60, the error distance is larger than case of z > 60
- The difference in y directions is not obvious
- When z > 60, the error in x, y direction gets smaller as z grows.
- Error in "wrapping up" case is smaller than "one side" case.