Отчет по лабораторной работе №7

Эффективность рекламы

Лебедев Ярослав Борисович 2022 Mar 22th

Содержание

Цель работы	3
Задание	
Теоретическое введение	
Выполнение лабораторной работы	
Выводы	
Список литературы	11

Цель работы

Построить графики распространения рекламы для трех случаев. Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение. Для этого написать программу в OpenModelica.

Задание

Вариант 15. Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением (формула условия):

1.
$$\frac{dn}{dt} = (0.89 + 0.000015n(t))(N - n(t))$$

2.
$$\frac{dn}{dt} = (0.000015 + 0.82n(t))(N - n(t))$$

3.
$$\frac{dn}{dt} = \left(\sin(9t) + 0.3\sin(4t)n(t)\right)\left(N - n(t)\right)$$

Формула условия

При этом объем аудитории N=1500, в начальный момент о товаре знает 15 человек. Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

Теоретическое введение

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытиться, и рекламировать товар станет бесполезным [1].

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь п покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих.

Модель рекламной кампании описывается следующими величинами. Считаем, что dn/dt - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, n(t) - число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом: $a_1(t)(N-n(t))$, где N - общее число потенциальных платежеспособных покупателей, $a_1(t)>0$ - характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной $a_2(t)n(t)(N-n(t))$, эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы описывается уравнением (формула 1):

$$\frac{dn}{dt} = (\alpha_1(t) + \alpha_2(t)n(t))(N - n(t)) \tag{1}$$

Формула (1)

При $a_1(t) >> a_2(t)$ получается модель типа модели Мальтуса, решение которой имеет вид (Рис.1):

Рис.1: График решения уравнения модели Мальтуса

В обратном случае, при а_1(t) << a_2(t) получаем уравнение логистической кривой (Рис.2):

Рис.2: График логистической кривой

Выполнение лабораторной работы

Работу я выполнял в OpenModelica. Для решения поставленной задачи необходимо было написать программу (Рис.3).

```
1 model lab7
2 parameter Real N=1500;
3 Real n(start=15);
4 equation
5 der(n)=(0.89+0.000015*n)*(N-n);
6 //der(n)=(0.000015+0.82*n)*(N-n);
7 //der(n)=(sin(9*time)+0.3*sin(4*time)*n)*(N-n);
8 end lab7;
```

Рис.3. Программа

Результаты выполнения программы при первом условии (Рис.4).

Рис.4.График при первом условии

Результаты выполнения программы при втором условии (Рис.5-6). Скорости распространения рекламы при втором условии будет в максимуме практически сразу после начала.

Рис.5. График при втором условии

Рис.6. График скорости распространения рекламы при втором условии Результаты выполнения программы при третьем условии (Рис.7).

Рис.7. График при третьем условии

Выводы

Построены графики распространения рекламы для трех случаев. Для случая 2 определено в какой момент времени скорость распространения рекламы будет иметь максимальное значение. Для этого написана программа в OpenModelica.

Список литературы

1. Методические материалы курса