Vol. 63 No. 5 JUCHE106(2017).

(자연과학)

주체106(2017)년 제63권 제5호

(NATURAL SCIENCE)

다항분수계상미분방정식의 한가지 일반화된 여러점경계값문제의 풀이의 유일존재성

최희철, 정금성

경애하는 최고령도자 김정은동지께서는 다음과 같이 말씀하시였다.

《기초과학은 과학기술강국을 떠받드는 주추입니다. 기초과학이 든든해야 나라의 과학 기술이 공고한 로대우에서 끊임없이 발전할수 있습니다.》(《조선로동당 제7차대회에서 한 중앙 위원회사업총화보고》 단행본 40페지)

론문에서는 최근시기 활발히 연구되고있는 분수계미분방정식의 여러점경계값문제에 대 한 한가지 존재성문제에 대하여 론의한다.

선행연구들[1-6]에서는 여러가지 의미에서의 도함수들을 가진 분수계미분방정식의 경계값문제들에 대한 풀이의 존재성과 유일성에 대하여 연구하였다.

선행연구들[7, 8]에서는 몇가지 분수계상미분방정식의 *m*점경계값문제의 풀이, 비령풀이의 존재성을 연구하였다.

선행연구[9]에서는 다항분수계상미분방정식의 m점경계값문제

$$^{c}D_{0}^{q}u(t) = f(t, u(t), ^{c}D_{0}^{\sigma}u(t)), 2 < q < 3, 0 < \sigma < 1$$

$$u(0) = 0, \ ^{c}D_{0}^{p}u(1) = \sum_{i=1}^{m-2} \xi_{i} \ ^{c}D_{0}^{p}u(\eta_{i}), \ u''(1) = 0, \ 0$$

의 풀이의 존재성과 유일성을 연구하였다.

론문에서는 선행연구[9]의 문제에서 강한 제한인 $0 < \sigma < 1$ 을 $0 < \sigma < q$ 로 약화시키면서 경계조건을 일반화한 다음의 무제에 대한 풀이의 존재성을 론의한다.

$$^{c}D_{0}^{q}u(t) = f(t, u(t), ^{c}D_{0}^{\sigma}u(t)), t \in (0, 1)$$
 (1)

$${}^{c}D_{0}^{p}u(1) = \sum_{i=1}^{m-2} \xi_{i} {}^{c}D_{0}^{p}u(\eta_{i})$$
(2)

$$\alpha_1 u(0) + \beta_1 u''(1) = \lambda_1 \int_0^1 K_1(s, u(s)) ds, \quad \alpha_2 u(0) + \beta_2 u''(1) = \lambda_2 \int_0^1 K_2(s, u(s)) ds$$
 (3)

여기서 $0 < \xi_i, \eta_i < 1, 2 < q < 3, 0 < p < 1, 0 < \sigma < q$ 이다.

보조정리 1 $p, q \ge 0, f \in L_1[0, 1]$ 이라고 하면 다음의 평가식들이 성립된다.

$$I_0^p I_0^q f(t) = I_0^{p+q} f(t) = I_0^q I_0^p f(t), \quad {}^c D_0^q I_0^q f(t) = f(t), \quad t \in [0, 1]$$

$$p \ge q$$
, ${}^cD_0^pI_0^qf(t) = I_0^{q-p}f(t)$, $t \in [0, 1]$, $f \in L_1[0, 1]$

보조정리 2 $\alpha > 0$, $g \in C[0, 1]$ 이라고 하면 동차방정식 $^cD_0^{\alpha}g(t) = 0$ 은 풀이

$$g(t) = c_0 + c_1 t + c_2 t^2 + \dots + c_{n-1} t^{n-1}$$

을 가진다. 여기서 $c_i \in \mathbf{R}$, $i = 0, 2, \dots, n-1, n = \lceil \alpha \rceil$ 이다.

보조정리 3 $\alpha > 0$, $\lambda > \lceil \alpha \rceil - 1$ 일 때 ${}^cD_0^{\alpha}t^{\lambda} = \Gamma(\lambda + 1)/\Gamma(\lambda - \alpha + 1) \cdot t^{\lambda}$, ${}^cD_0^{\alpha}t^i = 0$, $i = 0, 1, \dots, \lceil \alpha \rceil - 1$ 이 성립된다.

기정
$$\begin{vmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 \end{vmatrix} \neq 0$$
, $1 - \sum_{i=1}^{m-2} \xi_i \eta_i^{1-p} \neq 0$

 $0 < \xi_i, \, \eta_i < 1, \, \, 2 < q < 3, \, \, 0 < p < 1 \,$ 이라고 할 때 다음의 보조문제를 생각하자.

$$^{c}D_{0}^{q}u(t) = y(t), \ t \in (0, 1)$$
 (4)

$${}^{c}D_{0}^{p}u(1) = \sum_{i=1}^{m-2} \xi_{i} {}^{c}D_{0}^{p}u(\eta_{i})$$
 (5)

$$\alpha_1 u(0) + \beta_1 u''(1) = \mu_1, \quad \alpha_2 u(0) + \beta_2 u''(1) = \mu_2$$
 (6)

일반성을 잃지 않고 $2 < \sigma$ 라고 하자.

그리고 공간 X와 X에서의 노름 $\|\cdot\|_X$ 를 다음과 같이 정의한다.

 $X := \{u \mid {}^cD^\sigma u \in C[0,1], \ u \in AC^3[0,1]\}, \ \|u\|_X := \|u\|_\infty + \|u'\|_\infty + \|u''\|_\infty + \|{}^cD^\sigma u\|_\infty$ 정리 1 공간 $(X, \|\cdot\|_X)$ 는 바나흐공간이다.

증명 $\{u_n\}\subset X$ 를 기본렬 즉 $\forall \varepsilon>0$, $\exists n_0\in N$; $n_0\leq \forall n,\ m\in N$, $\|u_n-u_m\|_X<\varepsilon$ 이 성립된다고 하면 X에서의 노름의 정의로부터

$$||u_n - u_m||_{\infty} + ||u_n' - u_m'||_{\infty} + ||u_n'' - u_m''||_{\infty} + ||^c D^{\sigma} u_n - ^c D^{\sigma} u_m||_{\infty} < \varepsilon$$

이 성립된다.

$$\begin{split} \| \, u_n - u_m \, \|_{\infty} < \varepsilon, \quad \| \, u_n' - u_m' \, \|_{\infty} < \varepsilon, \quad \| \, u_n'' - u_m'' \, \|_{\infty} < \varepsilon \,, \quad \|^c D^{\sigma} u_n - {^c} D^{\sigma} u_m \, \|_{\infty} < \varepsilon \,, \\ \exists (u_*, \ v_*, \ w_*, \ \mu_*) \in C[0, \ 1]^4; \ u_n \to u_*, \ u_n' \to v_*, \quad u_n'' \to w_*, \ {^c} D^{\sigma} u_n \to \mu_* \end{split}$$

이면 $u_n(x) - u_n(0) = \int_0^x u_n'(t)dt \to \int_0^x v_*(t)dt$ 로부터 $\lim_{n \to \infty} (u_n(x) - u_n(0)) = u_*(x) - u_*(0) = \int_0^x v_*(t)dt$ 가 성립된다. 즉 $u_*'(x) = v_*(x)$, $u_* \in C^1[0, 1]$ 이다.

한편 $\int_{0}^{x} u_{n}''(t)dt \rightarrow \int_{0}^{x} w_{*}(t)dt$, $\int_{0}^{x} u_{n}''(t)dt = u_{n}'(x) - u_{n}'(0)$ 이므로 다음의 식이 성립된다.

$$\lim_{n \to \infty} (u'_n(x) - u'_n(0)) = v_*(x) - v_*(0) = \int_0^x w_*(t) dt$$

따라서 $u_*''(x) = v_*'(x) = w_*(x), u_* \in C^2[0, 1]$ 이다.

 $u_n \in X$ 로부터 $u_n' \in AC^2[0, 1], u_n'' \in AC[0, 1]$ 이고 $I_0^{\sigma c}D^{\sigma}u_n(x) \rightarrow I_0^{\sigma}\mu_*(x)$ 를 고려하면 $I_0^{\sigma c}D^{\sigma}u_n(x) = u_n(x) - u_n(0) - u_n'(0)x - u_n''(0)x^2/2,$

$$\lim_{n \to \infty} (u_n(x) - u_n(0) - u_n'(0)x - u_n''(0)x^2 / 2) = u_*(x) - u_*(0) - v_*(0)x - w_*(0)x^2 / 2 = I_0^{\sigma} \mu_*(x)$$

가 성립된다. 즉 $u_*(x) = u_*(0) + v_*(0)x + w_*(0)x^2/2 + I_0^{\sigma} \mu_*(x)$ 가 성립된다.

$$\mu_* \in C[0, 1], 2 < \sigma$$
이므로 $u_*''(x) = w_*(0) + I_0^{\sigma-2} \mu_*(x)$ 이다.

그러면 $I_0^{\sigma-2}\mu_* \in AC[0, 1]$ 로부터 $u_*'' \in AC[0, 1], u_* \in AC^3[0, 1]$ 이 나온다.

또한 $u_*(x) = u_*(0) + v_*(0)x + w_*(0)x^2 / 2 + I_0^\sigma \mu_*(x)$ 로부터 $^c D^\sigma u_*(x) = \mu_*(x)$ 이다. 즉 $^c D^\sigma u_* \in C[0,1]$ 로부터 $u_* \in X$ 임을 알수 있다.(증명끝)

정의 문제 (1)-(3)을 만족시키는 $u \in X$ 를 문제 (1)-(3)의 풀이이라고 한다.

정리 2 $y \in C[0, 1]$ 이고 가정이 성립된다고 할 때 u(t)가 보조문제 (4)-(6)의 풀이이면 u(t)는 v(t)에 관하여 다음과 같다.

$$u(t) = I_0^q y(t) + \left(\frac{A_2 \cdot t}{2 \cdot A_1} - \frac{t^2}{2}\right) I_0^{q-2} y(t) |_{t=1} + \left(\sum_{i=1}^{m-2} \xi_i I_0^{q-p} y(t) |_{t=\eta_i} - I_0^{q-p} y(t) |_{t=1}\right) \frac{t}{A_1} + \varphi(t)$$
(7)
$$\varphi(t) = 2(\beta_2 \mu_1 - \beta_1 \mu_2) / \Delta + (\alpha_2 \mu_1 - \alpha_1 \mu_2) A_2 t / (\Delta A_1) - (\alpha_2 \mu_1 - \alpha_1 \mu_2) t^2 / \Delta$$

$$A_1 = \frac{1}{\Gamma(2-p)} \left(1 - \sum_{i=1}^{m-2} \xi_i \eta_i^{1-p}\right), \quad A_2 = \frac{2}{\Gamma(3-p)} \left(1 - \sum_{i=1}^{m-2} \xi_i \eta_i^{2-p}\right), \quad \Delta = 2 \begin{vmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 \end{vmatrix}$$

이 정리로부터 다음의 따름이 쉽게 증명된다.

[다름 정리 1의 가정이 성립된다고 할 때 u(t) 가 문제 (1)-(3)의 풀이이기 위해서는 u(t)가 다음의 방정식의 풀이일것이 필요하고 충분하다.

$$\begin{split} u(t) &= I_0^q f(t,\ u(t),\ ^cD_0^\sigma u(t)) + \frac{A_2 t}{2A_1} I_0^{q-2} f(t,\ u(t),\ ^cD_0^\sigma u(t)) \mid_{t=1} - \frac{t^2}{2} I_0^{q-2} f(t,\ u(t),\ ^cD_0^\sigma u(t)) \mid_{t=1} + \\ &\quad + \left(\sum_{i=1}^{m-2} \xi_i I_0^{q-p} f(t,\ u(t),\ ^cD_0^\sigma u(t)) \mid_{t=\eta_i} - I_0^{q-p} f(t,\ u(t),\ ^cD_0^\sigma u(t)) \mid_{t=1} \right) \frac{t}{A_1} + \overline{\varphi}(t) \\ & \Leftrightarrow \forall \mid \not \lambda \mid \quad \overline{\varphi}(t) = \frac{\lambda_2}{\Delta} \int_0^1 K_2(s,\ u(s)) ds \left[\alpha_1 t^2 - \frac{A_2}{A_1} \alpha_1 t - 2\beta_1 \right] - \frac{\lambda_1}{\Delta} \int_0^1 K_1(s,\ u(s)) ds \left[\alpha_2 t^2 - \frac{A_2}{A_1} \alpha_2 t - 2\beta_2 \right]. \end{split}$$

앞으로 다음과 같은 가정들을 받아들여 론의한다.

$$\forall x_1, x_2, y_1, y_2 \in \mathbb{R}, \forall t \in [0, 1], |f(t, x_1, y_1) - f(t, x_2, y_2)| \le L_1(|x_1 - x_2| + |y_1 - y_2|)$$

$$\forall x_1, x_2 \in \mathbf{R}, \forall t \in [0, 1], |K_1(t, x_1) - K_1(t, x_2)| \le L_2 |x_1 - x_2|$$

$$\forall x_1, x_2 \in \mathbb{R}, \ \forall t \in [0, 1], \ |K_2(t, x_1) - K_2(t, x_2)| \le L_3 |x_1 - x_2|$$

풀이의 유일존재성을 증명하기 위하여 연산자

$$\begin{split} (\theta u)(t) &:= I_0^q f(t, \ u(t), \ ^cD_0^\sigma u(t)) + \left[A_2 t/(2A_1) - t^2/2 \right] I_0^{q-2} f(t, \ u(t), \ ^cD_0^\sigma u(t)) \mid_{t=1} + \\ &+ \left(\sum_{i=1}^{m-2} \xi_i I_0^{q-p} f(t, \ u(t), \ ^cD_0^\sigma u(t)) \mid_{t=\eta_i} - I_0^{q-p} f(t, \ u(t), \ ^cD_0^\sigma u(t)) \mid_{t=1} \right) \frac{t}{A_1} + \\ &+ \frac{\lambda_2}{\Delta} \int_0^1 K_2(s, \ u(s)) ds \left[\alpha_1 t^2 - \frac{A_2}{A_1} \alpha_1 t - 2\beta_1 \right] - \frac{\lambda_1}{\Delta} \int_0^1 K_1(s, \ u(s)) ds \left[\alpha_2 t^2 - \frac{A_2}{A_1} \alpha_2 t - 2\beta_2 \right] \end{split}$$

를 정의하면 이로부터

$$\begin{split} (\theta u)'(t) &= I_0^{q-1} f(t,\ u(t),\ ^cD_0^\sigma u(t)) + (A_2/(2A_1) - t)I_0^{q-2} f(t,\ u(t),\ ^cD_0^\sigma u(t)) \mid_{t=1} + \\ &+ \left(\sum_{i=1}^{m-2} \xi_i I_0^{q-p} f(t,\ u(t),\ ^cD_0^\sigma u(t)) \mid_{t=\eta_i} - I_0^{q-p} f(t,\ u(t),\ ^cD_0^\sigma u(t)) \mid_{t=1} \right) \frac{1}{A_1} + \\ &+ \frac{\lambda_2}{\Delta} \int_0^1 K_2(s,\ u(s)) ds \left(2\alpha_1 t - \frac{A_2}{A_1} \alpha_1 \right) - \frac{\lambda_1}{\Delta} \int_0^1 K_1(s,\ u(s)) ds \left(2\alpha_2 t - \frac{A_2}{A_1} \alpha_2 \right), \\ &(\theta u)''(t) = I_0^{q-2} f(t,\ u(t),\ ^cD_0^\sigma u(t)) - I_0^{q-2} f(t,\ u(t),\ ^cD_0^\sigma u(t)) \mid_{t=1} + \\ &+ \frac{2\alpha_1 \lambda_2}{\Delta} \int_0^1 K_2(s,\ u(s)) ds - \frac{2\alpha_2 \lambda_1}{\Delta} \int_0^1 K_1(s,\ u(s)) ds, \end{split}$$

$$({}^{c}D^{\sigma}\theta u)(t) = I_0^{q-\sigma} f(t, u(t), {}^{c}D_0^{\sigma}u(t)).$$

그러면 $\forall x, y \in X$ 에 대하여 다음의 식이 성립된다.

$$\begin{split} \| \, \theta x - \theta y \, \|_{C[0, \ 1]} &= \left\| I_0^q (f(t, \ x(t), \ ^cD_0^\sigma x(t)) - f(t, \ y(t), \ ^cD_0^\sigma y(t))) + \left(\frac{A_2 t}{2A_1} - \frac{t^2}{2} \right) I_0^{q-2} (f(t, \ x(t), \ ^cD_0^\sigma x(t)) - f(t, \ y(t), \ ^cD_0^\sigma x(t)) - f(t, \ y(t), \ ^cD_0^\sigma x(t)) - f(t, \ y(t), \ ^cD_0^\sigma y(t))) \right\|_{t=\eta_i} - \\ &- I_0^{q-p} (f(t, \ x(t), \ ^cD_0^\sigma x(t)) - f(t, \ y(t), \ ^cD_0^\sigma y(t))) \big|_{t=1} \right) + \\ &+ \frac{\lambda_2}{\Delta} \left[\alpha_1 t^2 - \frac{A_2}{A_1} \alpha_1 t - 2\beta_1 \right] \cdot \int_0^1 (K_2(s, x(s)) - K_2(s, \ y(s))) ds - \\ &- \frac{\lambda_1}{\Delta} \left[\alpha_2 t^2 - \frac{A_2}{A_1} \alpha_2 t - 2\beta_2 \right] \cdot \int_0^1 (K_1(s, x(s)) - K_1(s, \ y(s))) ds \right\|_{C[0, \ 1]} \end{split}$$

웃식의 오른변의 매 항들을 평가하고 종합하면 다음과 같다.

$$\| \theta x - \theta y \|_{C[0, 1]} \le L_1 \left(\frac{1}{\Gamma(q+1)} + \frac{|A_1| + |A_2|}{2|A_1|} \cdot \frac{1}{\Gamma(q-1)} + \left(\sum_{i=1}^{m-2} \xi_i \eta_i^{q-p} + 1 \right) / [|A_1| \cdot \Gamma(q-p+1)] \right) \cdot$$

 $\cdot (\|x(t) - y(t)\|_{C[0,1]} + \|^c D_0^{\sigma} x(t) - ^c D_0^{\sigma} y(t)\|_{C[0,1]}) + (\mu_1 L_2 + \mu_2 L_3) \|x(t) - y(t)\|_{C[0,1]}$

$$\| (\theta x)' - (\theta y)' \|_{C[0, 1]} \le L_{1} \left[\frac{1}{\Gamma(q)} + \left(\frac{|A_{2}|}{2|A_{1}|} + 1 \right) \frac{1}{\Gamma(q - 1)} + \left(\sum_{i=1}^{m-2} \xi_{i} \eta_{i}^{q - p} \right) / [|A_{1}| \cdot \Gamma(q - p + 1)] \right] \cdot$$

$$\cdot (\| x(t) - y(t) \|_{C[0, 1]} + \|^{c} D_{0}^{\sigma} x(t) - {}^{c} D_{0}^{\sigma} y(t) \|_{C[0, 1]}) +$$

$$+ \left(2 + \frac{|A_{2}|}{|A_{1}|} \right) \frac{L_{2} |\lambda_{2}| \cdot |\alpha_{1}| + L_{3} |\lambda_{1}| \cdot |\alpha_{2}|}{|\Delta|} \cdot \| x(t) - y(t) \|_{C[0, 1]},$$

$$\| (\theta x)'' - (\theta y)'' \|_{C[0, 1]} \le \frac{2L_{1}}{\Gamma(q - 1)} (\| x(t) - y(t) \|_{C[0, 1]} + \|^{c} D_{0}^{\sigma} x(t) - {}^{c} D_{0}^{\sigma} y(t) \|_{C[0, 1]}) +$$

$$+ \frac{2}{|\Delta|} (L_{2} |\lambda_{2}| \cdot |\alpha_{1}| + L_{3} |\lambda_{1}| \cdot |\alpha_{2}|) \| x(t) - y(t) \|_{C[0, 1]},$$

$$\| (\theta x)^{\sigma} \theta y - {}^{c} D^{\sigma} \theta y \|_{L^{\infty}} \le \frac{L_{1}}{|\Delta|} (\| x(t) - y(t) \|_{L^{\infty}} + \| {}^{c} D^{\sigma} x(t) - {}^{c} D^{\sigma} y(t) \|_{L^{\infty}})$$

 $\|^{c}D^{\sigma}\theta x - {^{c}D^{\sigma}\theta y}\|_{C[0, 1]} \le \frac{L_{1}}{\Gamma(a - \sigma + 1)} (\|x(t) - y(t)\|_{C[0, 1]} + \|^{c}D_{0}^{\sigma}x(t) - {^{c}D_{0}^{\sigma}y(t)}\|_{C[0, 1]})$

임을 알수 있다.

이상의 사실을 종합하고

$$\begin{split} & \omega_{1} := L_{1} \Biggl(\frac{1}{\Gamma(q+1)} + \frac{1}{\Gamma(q)} + \frac{7 \mid A_{1} \mid + 2 \mid A_{2} \mid}{2 \mid A_{1} \mid \cdot \Gamma(q-1)} + \Biggl(2 \sum_{i=1}^{m-2} \xi_{i} \eta_{i}^{q-p} + 1 \Biggr) \bigg/ [\mid A_{1} \mid \cdot \Gamma(q-p+1)] + \frac{1}{\Gamma(q-\sigma+1)} \Biggr) \\ & \omega_{2} := \frac{1}{\mid \Delta \mid} \Biggl[\mid \lambda_{2} \mid L_{2} \Biggl[\Biggl(5 + \frac{2 \mid A_{2} \mid}{\mid A_{1} \mid} \Biggr) \cdot \mid \alpha_{1} \mid + 2 \mid \beta_{1} \mid \Biggr] + \mid \lambda_{1} \mid L_{3} \Biggl[\Biggl(5 + \frac{2 \mid A_{2} \mid}{\mid A_{1} \mid} \Biggr) \cdot \mid \alpha_{2} \mid + 2 \mid \beta_{2} \mid \Biggr] \Biggr] \end{split}$$

로 놓으면 다음의 식이 성립된다.

$$\| \partial x - \partial y \|_{X} \le \omega_{1}(\| x(t) - y(t) \|_{C[0, 1]} + \|^{c} D_{0}^{\sigma} x(t) - {^{c}} D_{0}^{\sigma} y(t) \|_{C[0, 1]}) + \omega_{2} \| x(t) - y(t) \|_{C[0, 1]} \le$$

$$\le (\omega_{1} + \omega_{2}) \| x(t) - y(t) \|_{X}$$

우의 과정으로부터 다음의 정리가 성립된다.

정리 3 $\omega_1 + \omega_2 < 1$ 이면 문제 (1)-(3)의 풀이는 X에서 유일존재한다.

참 고 문 헌

- [1] 김일성종합대학학보(자연과학), 58, 7, 16, 주체101(2012).
- [2] B. Ahmad et al.; Comput. Math. Appl., 58, 1838, 2009.
- [3] C. S. Goodrich; Comput. Math. Appl., 61, 191, 2011.
- [4] R. A. Khan et al.; Fractional Differential Equations, 1, 1, 29, 2011.
- [5] R. A. Khan et al.; Dynamic Systems and Applications, 14, 281, 2005.
- [6] A. H. Sallo et al.; International Journal of Engineering and Sciences, 2, 18, 2013.
- [7] A. H. Salem; J. Comput. Appl. Math., 224, 2, 565, 2009.
- [8] J. J. Nieto et al.; Comput. Math. Appl., 59, 11, 3438, 2010.
- [9] R. A. Khan et al.; J. Fract. Calc., 5, 2, 121, 2014.

주체106(2017)년 1월 5일 원고접수

Uniqueness and Existence of the Solution for a Generalized Multi-Point Boundary Value Problem of Multi-Term Fractional Ordinary Differential Equation

Choe Hui Chol, Jong Kum Song

We proposed a generalized fractional multi-point boundary value problem which had a weaker limitation than previous works and studied the existence and uniqueness of the solution for this problem. For this we defined new solution space, proved that this space was a Banach space in respect to its norm and gave a sufficient condition that the solution of integral equation equivalent to main problem existed uniquely.

Key word: multi-point boundary value problem