Воспользуемся критерием Михайлова для характеристического уравнения $\lambda^4+3\lambda^3+26\lambda^2+74\lambda+85=0$. $p(\xi)=\xi^2-26\xi+85$, $q(\eta)=-3\eta+74$. $\eta_1=\frac{74}{3}=24\frac{2}{3}$. Критерий $\xi_1<\eta_1<\xi_2$ выполнен тогда и только тогда, когда $p(\eta_1)<0$. При этом квадратичная функция $p(\xi)$ имеет точку минимума $\xi_0=13$, значит правее этой точки $p(\xi)$ возрастает и $p(\eta_1)>p(24)=37>0$. Следовательно, критерий Михайлова не выполняется.

Если $\lambda_m = ai$ – корень уравнения, то тогда $a^4 - 3a^3i - 26a^2 + 74ai + 85 = 0$, откуда $\begin{cases} a^4 - 26a^2 + 85 = 0 \\ -3a^3 + 74a = 0 \end{cases}$. Последнее невозможно.

Значит, чисто мнимых корней нет и обязательно для некоторого корня $Re(\lambda) > 0$, и нулевое решение неустойчиво.