Лабораторная работа №1 "Симплекс-метод"

Работу выполнили: Шевченко Валерий, Иванов Александр М33001

Постановка задачи

Задача линейного программирования - задача, которая имеет вид:

$$c_1x_1 + c_2x_2 + \cdots + c_nx_n o \max(\min) \ \left\{ egin{align*} a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n \leq b_i, i = 1, \ldots, m \ a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n = b_i, i = m+1, \ldots, m+p \ x_i \geq 0, i = 1, \ldots, n \end{array}
ight.$$

где c_i - коэффициенты целевой функции, a_{ij} - коэффициенты ограничений, b_i - правые части ограничений, x_i - переменные

Описание симплекс метода

Алгоритм симплекс метода состоит из нескольких шаков

- 1. Построение опорного плана
 - 1. Выбор базиса
 - 2. Построение базисного решения
- 2. Построение оптимального плана
 - 1. Поиск переменной для вхождения в базис (ведущего столбца)
 - 2. Поиск переменной для вымещения из базиса (ведущей строки)
 - 3. Вычисление базисного решения, при его неоптимальности повторяем процесс

Решение задач из примеров

Пример 1

$$f(x) = -6x_1 - x_2 - 4x_3 + 5x_4
ightarrow \min \ egin{dcases} 3x_1 + x_2 - x_3 + x_4 = 4 \ 5x_1 + x_2 + x_3 - x_4 = 4 \ x_j \geq 0, j = 1, 2, 3, 4 \end{cases}$$

Ответ:
$$x_1 = 0, x_2 = 4, x_3 = 0, x_4 = 0, f(x) = -4$$

Пример 2

$$f(x) = -x_1 - 2x_2 - 3x_3 + x_4 o \min \ egin{cases} x_1 - 3x_2 - x_3 - 2x_4 = -4 \ x_1 - x_2 + x_3 = 0 \ x_j \geq 0, j = 1, 2, 3, 4 \end{cases}$$

Ответ:
$$x_1=2, x_2=2, x_3=0, x_4=0, f(x)=-6$$

Пример 3

$$f(x) = -x_1 - 2x_2 - 3x_3 + x_4
ightarrow \min \ egin{dcases} x_1 - 3x_2 - x_3 - 2x_4 = -4 \ x_1 + x_2 + x_3 + 3x_4 + 2x_5 = 9 \ x_2 + x_3 + 2x_4 + x_5 = 6 \ x_j \geq 0, j = 1, 2, 3, 4, 5 \end{cases}$$

Ответ:
$$x_1=3, x_2=2, x_3=4, x_4=0, x_5=0, f(x)=-11$$

Пример 4

$$f(x) = -x_1 - 2x_2 - x_3 + 3x_4 - x_5 o min \ egin{cases} x_1 + x_2 + 2x_4 + x_5 = 5 \ x_1 + x_2 + x_3 + 3x_4 + 2x_5 = 9 \ x_2 + x_3 + 2x_4 + x_5 = 6 \ x_j \geq 0, j = 1, 2, 3, 4, 5 \end{cases}$$

Ответ:
$$x_1=4, x_2=0, x_3=0, x_4=1, x_5=7, f(x)=-10$$

Пример 5

$$f(x) = -x_1 + 4x_2 - 3x_3 + 10x_4
ightarrow \min \ egin{cases} x_1 + x_2 - x_3 - 10x_4 = 0 \ x_1 + 14x_2 + 10x_3 - 10x_4 = 11 \ x_j \geq 0, j = 1, 2, 3, 4 \end{cases}$$

Ответ:

$$x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0, f(x) = -4$$

Пример 6

$$f(x) = -x_1 + 5x_2 + x_3 - x_4
ightarrow \min \ egin{cases} x_1 + 3x_2 + 3x_3 + x_4 \leq 3 \ 2_x 1 + 3x_3 - x_4 \leq 4 \ x_j \geq 0, j = 1, 2, 3, 4 \end{cases}$$

Ответ:
$$x_1=2rac{1}{3}, x_2=0, x_3=0, x_4=rac{2}{3}, x_5=0, x_6=0, f(x)=-3$$

Пример 7

$$f(x) = -x_1 - x_2 + x_3 - x_4 + 2x_5
ightarrow \min \ \begin{cases} 3x_1 + x_2 + x_3 + x_4 - 2x_5 = 10 \ 6x_1 + x_2 + 2x_3 + 3x_4 - 4x_5 = 20 \ 10x_1 + x_2 + 3x_3 + 6x_4 - 7x_5 = 30 \ x_j \geq 0, j = 1, 2, 3, 4, 5 \end{cases}$$

Ответ:
$$x_1=0, x_2=0, x_3=10, x_4=0, x_5=0, f(x)=10$$

Ответы на вопросы

1. Общая и каноническая форма задачи линейного программирования.

Задача линейного программирования в произвольной (общей) форме - задача, в которой требуется минимизировать или максимизировать линейную форму при заданных ограничениях (как равенствах, так и неравенствах).

Задача ЛП в канонической форме - задача вида:

$$egin{cases} c^T \cdot \overline{x}
ightarrow min(max) \ A \cdot \overline{x} = \overline{b} \ \overline{x} \geq \overline{0} \end{cases}$$

2. Двойственная задача ЛП.

Двойственная задача ЛП - задача, которая получается их исходной задачи ЛП следующим образом:

- Каждая переменная из исходной задачи становится ограничением в двойственной задачи.
- Каждое ограничение из исходной задачи становится переменной в двойственной задачи.
- Направление решенея задачи изменяется, максимум на минимум и наоборот.

$$egin{cases} ar{\overline{c}}^T \cdot \overline{x}
ightarrow min(max) \ A \cdot \overline{x} = \overline{b} \ \overline{x} \geq \overline{0} \end{cases}
ightarrow min(max)
ightarrow ar{\overline{b}}^T \cdot \overline{y}
ightarrow max(min) \ A^T \cdot \overline{y} = \overline{c} \ \overline{y} \geq \overline{0} \end{cases}$$

3. Метод искусственного базиса.

Метод искусственного базиса используется для нахождения базисного решения задачи ЛП. В ограничения и в функцию вводят "искусственные" переменные следующим образом:

$$egin{cases} \overline{c}^T \cdot \overline{x} - m \cdot \overline{r}
ightarrow min(max) \ A \cdot \overline{x} + \overline{r} = \overline{b} \ \overline{x} > \overline{0} \end{cases}$$

Для данной системы строится симплекс таблица и делаются такие же преобразования, как и в при обычном решением симплекс методом. Цель - свести переменные r к 0, когда это произойдёт их можно будет исключить из таблицы и продолжить решение уже без "искусственных" переменных.

4. Доказать, что ОДР является выпуклым множеством.

Предположим, что в области есть хотя бы две угловые точки, возьмём любые две. Пусть это \overline{x}_1 и \overline{x}_2 , они же - два допустимых решения, они же - два вектора. Пусть ограничения задачи в матричной форме: $A\cdot \overline{x}_1=\overline{b}$ и $A\cdot \overline{x}_2=\overline{b}$.

Пусть $\overline{x}_3=lpha\overline{x}_1+(1-lpha)\overline{x}_2$ - произвольная линейная комбинация векторов \overline{x}_1 и \overline{x}_2 .

Покажем, что \overline{x}_3 - тоже допустимое решение.

$$egin{aligned} A \cdot \overline{x}_3 &= A \cdot (lpha \overline{x}_1 + (1-lpha) \overline{x}_2) \ A \cdot \overline{x}_3 &= lpha A \cdot \overline{x}_1 + A \cdot (1-lpha) \overline{x}_2 \ A \cdot \overline{x}_3 &= lpha \overline{b} + \overline{b} - lpha \overline{b} &= \overline{b} \end{aligned}$$

Так как результат линейной комбинации двух любых положительных компонент \overline{x}_1 и \overline{x}_2 и каких-то неотрицательных коэфициентов α и $1-\alpha$ является допустимым решением, то множество допустимых решений - выпуклое.

5. Может ли ОДР в задаче ЛП состоять из одной единственной точки? Если да, то привести пример.

Если результатом пересечения ограничений будет одна точка, то множество ОДР будет состоять из одной точки.

Пример:

$$\begin{cases} x_1 + x_2 >= 5 \\ x_1 + 2x_2 <= 6 \\ -x_1 + 11x_2 >= 7 \end{cases}$$

6. В чём заключается графический метод решения задачи ЛП?

В случае если в задаче размерность \overline{x} равна двум, на плоскости строится область допустимых решений. Потом строится прямая, отвечающая значению функции F равно нулю и вектор-градиент, составленный из коэффициентов целевой функции. Будем параллельно двигать прямую до первого или последнего касания ОДР (в случае с минимизацией последнее, в случае максимизации - последнее). Угловая точка, в которой будет пересечение - минимальное/максимальное решение.

7. Используя графический метод, найти решение задачи линейного программирования:

$$f(x) = -3x_1 - 2x_2 o min, \ egin{cases} x_1 + 2x_2 \le 7 \ 2x_1 + x_2 \le 8 \ x_2 \le 3 \ x_i \ge 0, i = 1, 2 \end{cases}$$

Построим ОДР.

Построим прямую и вектор-градиент (на рисунке обозначен точкой).

Параллельно переносим прямую до касания ОДР.

Прямая касается ОДР в угловой точке (3,2). Найдём минимальное значение функции $f(x) = -3 \cdot 3 - 2 \cdot 2 = -13$

Ответ: $\overline{x}=(3,2), f(x)_{min}=-13$

8. Используя графический метод, найти решение задачи линейного программирования:

$$f(x) = -x_1 - 2x_2 o min, \ \begin{cases} x_1 + x_2 \geq 1 \ 2x_1 - x_2 \geq -1 \ x_1 - 2x_2 \leq 0 \ x_i \geq 0, i = 1, 2 \end{cases}$$

Построим прямую и вектор-градиент (на рисунке обозначен точкой).

Как мы можем заметить, прямую можно переносить бесконечное количество раз, а угловая точка так и не будет встречена, то есть значение функции будет дальше уменьшаться, значит минимального значения функции нет.

Ответ: Нет минимального значения, ОДР неограничена.

9. Решить задачу симплекс-методом, используя x_0 в качестве начальной точки.

$$f(x) = -5x_1 + 4x_2 - x_3 - 3x_4 - 5x_5 \Rightarrow min \ \begin{cases} 3x_1 - x_2 + 2x_4 + x_5 = 5 & (1) \ 2x_1 - 3x_2 + x_3 + 2x_4 + x_5 = 6 & (2) \ 3x_1 - x_2 + x_3 + 3x_4 + 2x_5 = 9 & (3) \ x_j \geq 0, j = 1, 2, 3, 4, 5 \ \overline{x} = (0, 0, 1, 2, 1) \end{cases}$$

Выбираем x_3 , x_4 и x_5 , как базисные переменные.

Вычтем из уравнения (2) уравнение (1), переменные x_4 и x_5 сократятся.

$$-x_1 - 2x_2 + x_3 = 1$$
 (4)

Выразим x_3 из уравнения (4) и подставим в уравнения (2) и (3).

$$3x_1 - x_2 + 2x_4 + x_5 = 5$$
 (5)
 $4x_1 + x_2 + 3x_4 + 2x_5 = 8$ (6)

Домножим уравнение (5) на 2 и вычтем из него уравнение (6).

$$2x_1 - x_2 + x_4 = 2$$
 (7)

Выразим из уравнения (7) x_4 и подставим в уравнение (6).

$$-x_1 + 2x_2 + x_5 = 1$$
 (8)

В итоге получаем систему ограничений.

$$egin{cases} -x_1-2x_2+x_3=1\ 2x_1-x_2+x_4=2\ -x_1+2x_2+x_5=1\ x_j\geq 0, j=1,2,3,4,5 \end{cases}$$

Построем симплекс-таблицу.

базис	x_1	x_2	x_3	x_4	x_5	b
\overline{F}	-5	4	-1	-3	-5	0
x_3	-1	-2	1	0	0	1
x_4	2	-1	0	1	0	2
x_5	-1	2	0	0	1	1
Δ	5	-9	0	0	0	-12

План не оптимален, так как Δ_1 положительна. Возьмём первый столбец, как разрешающий. Определим разрешающую строку. Отношения коэффициентов b к коэффициентам x_5 : $(\infty, 1, \infty)$. Таким образом, разрешающая строка - вторая.

Делим вторую строку на 2 и из первой и третьей строк вычитаем вторую строку домноженную на соответствуюбщий коэффициент из разрешающего столбца.

базис	x_1	x_2	x_3	x_4	x_5	b
\overline{F}	-5	4	-1	-3	-5	0
x_3	0	-2.5	1	0.5	0	2
x_1	1	-0.5	0	0.5	0	1
x_5	0	1.5	0	0.5	1	2
Δ	0	-6.5	0	-2.5	0	-17

План оптимален, так как все Δ_i отрицательны.

Ответ: $\overline{x} = (1,0,2,0,2), f(x)_{min} = -17$

10. Найти наибольшее значение функции

$$f(x) = -x_1 + 3x_2 o max, \ \begin{cases} x_1 + 2x_2 \le 4 \ x_1 - x_2 \ge 1 \ x_1 + x_2 \le 8 \ x_i \ge 0, i = 1, 2 \end{cases}$$

Приведём задачу к канонической форме, добавлением дополнительных переменных.

$$f(x) = -x_1 + 3x_2
ightarrow max, \ \begin{cases} x_1 + 2x_2 + x_3 = 4 \ -x_1 + x_2 + x_4 = -1 \ x_1 + x_2 + x_5 = 8 \ x_i \geq 0, i = 1, 2, 3, 4, 5 \end{cases}$$

Выбираем x_3 , x_4 и x_5 в качестве базисных переменных и построим симплекс-таблицу.

базис	x_1	x_2	x_3	x_4	x_5	b
\overline{F}	-1	3	0	0	0	0
x_3	1	2	1	0	0	4
x_4	-1	1	0	1	0	-1
x_5	1	1	0	0	1	8
Δ	1	-3	0	0	0	0

В столбце свободных переменных есть отрицательный коэффициент -1 во второй строке, это будет разрешающая строка. Разрешающим столбцом будет столбец, в котором находится наименьший коэффициент в строке. Это будет первый столбец.

Делим вторую строку на -1 и из первой и второй строк вычитаем второю строку домноженную на соответствующий коэффициент из разрешающего столбца.

базис	x_1	x_2	x_3	x_4	x_5	b
F	-1	3	0	0	0	0
x_3	0	3	1	1	0	3
x_1	1	-1	0	-1	0	1
x_5	0	2	0	1	1	7
Δ	0	-2	0	1	0	-1

План не оптимален, так как Δ_2 отрицательная, берём второй столбец, как разрешающий и найдём разрешающую строку. Отношения коэффициентов b к коэффициентам x_2 : $(1, \infty, 3.5)$. Следовательно разрешающая строка - первая.

Делим первую строку на 3 и из второй и третьей строк вычитаем первую строку домноженную на соответствуюбщий коэффициент из разрешающего столбца.

базис x_1 x_2 x_3 x_4 x_5 b

базис	x_1	x_2	x_3	x_4	x_5	b
F	-1	3	0	0	0	0
x_2	0	1	0.33	0.33	0	1
x_1	1	0	0.33	-0.66	0	2
x_5	0	0	-0.66	0.33	1	5
Δ	0	0	0.66	1.66	0	1

План оптимален, так как все Δ_i положительны. Можно отбросить добавочные переменные.

Ответ: $\overline{x}=(2,1), f(x)_{min}=-1$