Book of Proof: Part III, More on Proof

January 16, 2018

If-and-Only-If Proof

Outline for If-and-Only-If Proof

```
Proposition P if and only if Q.

Proof.

"Only if"

[Prove P \Rightarrow Q by whatever means you can.]

"If"

[Prove Q \Rightarrow P by whatever means you can.]
```

Theorem Suppose A is an $n \times n$ matrix. The following statements are equivalent:

- a. A is invertible.
- b. Ax = b has a unique solution for every $b \in \mathbb{R}^n$.
- c. Ax = 0 has only the trivial solution.
- d. The reduced row echelong form of A is I_n .
- e. $det(A) \neq 0$.
- f. The matrix A does not have 0 as an eigenvector.

$$a \Rightarrow b \Rightarrow c$$
 $\uparrow \qquad \qquad \downarrow$
 $f \Leftarrow e \Leftarrow d$

$$\begin{array}{ccccc}
a & \Rightarrow & b & \Leftrightarrow & c \\
\uparrow & & \downarrow & & \\
f & \Leftarrow & e & \Leftrightarrow & d
\end{array}$$

Proposition There exists an even prime number.

Proposition There exists an even prime number.

Proof. Two is an even prime number.

Proposition There exists an even prime number.

Proof. Two is an even prime number.

Proposition There exists an integer that can be expressed as the sum of two perfect cubes in two different ways.

Proposition There exists an even prime number.

Proof. Two is an even prime number.

Proposition There exists an integer that can be expressed as the sum of two perfect cubes in two different ways. *Proof.*

$$1^3 + 12^3 = 1729$$

 $9^3 + 10^3 = 1729$

Example

Proposition 7.1 If $a, b \in \mathbb{N}$ then there exist $k, \ell \in \mathbb{Z}$ for which $\gcd(a, b) = ak + b\ell$.

Example

Proposition 7.1 If $a, b \in \mathbb{N}$ then

there exist $k, \ell \in \mathbb{Z}$ for which $gcd(a, b) = ak + b\ell$.

Proof. Suppose $a, b \in \mathbb{N}$.

Consider the set $A = \{ax + by : x, y \in \mathbb{Z}\}.$

A contains positive integers and 0.

Let $d \in A$ be the smallest positive integer.

 $d = ak + b\ell$ for some $k, \ell \in \mathbb{Z}$.

We will show that $d = \gcd(a, b)$.

First, prove that $d \mid a$ and $d \mid b$.

Then show that it is the largest such number.