Teoretická informatika (TIN) – 2015/2016 Úkol 2

(max. zisk 5 bodů – 10 bodů níže odpovídá 1 bodu v hodnocení předmětu)

1. Dokažte nebo vyvračte, že je jazyk $L = \{a^i b^j c^i d^j \mid i, j \in \mathbb{N}\}$ bezkontextový.

10 bodů

- 2. S využitím uzávěrových vlastností bezkontextových a regulárních jazyků dokažte nebo vyvraťte, že je jazyk $L \setminus L'$ nutně bezkontextový, a to pro každý ze čtyř následujících případů:
 - (a) $L \in \mathcal{L}_3, L' \in \mathcal{L}_3$
 - (b) $L \in \mathcal{L}_3, L' \in \mathcal{L}_2$
 - (c) $L \in \mathcal{L}_2, L' \in \mathcal{L}_3$
 - (d) $L \in \mathcal{L}_2, L' \in \mathcal{L}_2$

8 bodů

- 3. Uvažujme bezkontextové gramatiky nad abecedou $\Sigma\subseteq\mathbb{Z}$. Definujeme váhu slova $w=k_1\cdots k_n\in\Sigma^*$ jako $||w||=\sum_{i=1}^n k_i$. Váha bezkontextové gramatiky G nad abecedou Σ je pak definována jako minimální váha slova jejího jazyka, $||G||=\min\{||w||\mid w\in L(G)\}$. Minimum množiny čísel je definováno standardním způsobem s tím, že $\min(\emptyset)=\infty$, a pokud je S neprázdná množina, která neobsahuje minimální prvek, je $\min(S)=-\infty$. Pro $-\infty$ a ∞ počítáme s pravidly $\min(\{-\infty\}\cup S)=-\infty$ a $\min(\{\infty\}\cup S)=\min(S)$. Navrhněte algoritmus, který pro danou G vrátí ||G||, a to
 - (a) nejdříve pro případ, kdy $\Sigma \subset \mathbb{N}$, tedy mezi symboly nejsou záporná čísla,
 - (b) a potom v obecném případě, kdy $\Sigma \subset \mathbb{Z}$.

15 bodů

4. Dokažte formálně, že $L\subseteq L(G)$, kde $L=\{0^i1^j\mid 0\le 2i\le j\le 3i\}$ a $G=(\{S\},\{0,1\},P,S)$ je bezkontextová gramatika s pravidly

$$S \rightarrow 0S11 \mid 0S111 \mid \epsilon$$
.

Důkaz veď te indukcí k počtu symbolů 0 ve slově $w \in L$.

10 bodů

Poznámka: Pro důkaz L = L(G) by bylo třeba ještě ukázat, že $L \supseteq L(G)$. To lze provést přímočarou inkukcí k délce derivace slova (můžete si zkusit, nebude hodnoceno).

5. Mějme gramatiku $G = (\{S\}, \{\mathbf{if}, \mathbf{else}, cond, com\}, P, S)$ s pravidly

$$S \to \mathbf{if} \ cond \ S \mid \mathbf{if} \ cond \ S \ \mathbf{else} \ S \mid com \ .$$

- (a) Je gramatika jednoznačná? Dokažte.
- (b) Je L(G) jazyk s inherentní víceznačností? Zdůvodněte.
- (c) Navrhněte deterministický zásobníkový automat akceptující L(G). Prezentujte jej přechodovým diagramem a demonstrujte jeho běh na slově if cond if cond com else com else if cond com.

7 bodů