Aufgabe 2.4: Bearbeiten Sie die Aufgaben 1 bis 4 von Wdh. Statistik

- 1. Berechnen Sie den Mittelwert, die Varianz und die Standardabweichung der Liste 2; 0; 5; 6; 3; 8
- 2. Von einer Lieferung Fahrradspeichen wurde bei einer Stichprobe die Länge der Speichen (in mm) gemessen: 269; 274; 269; 268; 272; 270; 269; 270; 268; 271.
 - Nenne Sie die bei dieser Erhebung die Grundgesamtheit, den Mermalsträger, das untersuchte Merkmal, den Stichprobenumfang und die Merkmalsausprägungen.
 - Berechnen Sie den Mittelwert, die Varianz und die Standardabweichung
- 3. Die Anzahl der Regentage beträgt im langjährigen Mittel für Amsterdam bzw. Rangun:
 - Stellen Sie die Verteilung der Anzahl der Regentage grafisch dar.
 - Berechnen Sie für beide Messreihen den Mittelwert und die Standartabweichung
- 4. Gegeben ist die nebenstehende relative Häufgikeitsveteilung.
 - · Beschriften Sie die Achsen passend
 - Bestimmen Sie den Mittelwert und die Standardabwichung
 - Untersuchen Sie, welche Werte aus b) sich ändern, wenn alle Säulen gleich hoch sind

Theorem 2.1: Die Bedeutung von Mittelwert, Varianz und Standardabweichung

Mittelwert

Der Mittelwert gibt sozusagen den Durchschnitt gegebener Daten an. Diesen Berechnet man durch das Addieren aller Elemente und dem Teilen von der Anzahl der Elemente.

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Varianz

Die Varianz misst, wie stark die Werte um den Mittelwert streuen. Dazu berechnet man die Abweichungen jedes Wertes vom Mittelwert, quadriert diese (damit Abweichungen nach oben und unten nicht wegfallen) und mittelt sie wieder:

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

Standardabweichung

Die Standardabweichung ist die Wurzel der Varianz. Sie gibt die Streuung in derselben Einheit wie die Daten an (praktischer als die quadrierten Werte der Varianz):

$$s = \sqrt{s^2}$$

Lösung 2.5: Aufgabe 1

1. Mittelwert

$$\overline{x} = \frac{2+0+5+6+3+8}{6} = \boxed{\frac{24}{6} = 4}$$

2. Varianz

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n}$$

$$= \frac{(2 - 4)^{2} + (0 - 4)^{2} + (5 - 4)^{2} + (6 - 4)^{2} + (3 - 4)^{2} + (8 - 4)^{2}}{6}$$

$$= \frac{4 + 16 + 1 + 4 + 1 + 16}{6} = \boxed{\frac{42}{6} = 7}$$

3. Standardabweichung

$$s = \sqrt{s^2} \to \sqrt{7} \approx 2.65$$

Lösung 2.6: Aufgabe 2

1. Aufgabe A

Grundgesamtheit: Alle Fahrradspeichen in der gesamten Lieferung

Merkmalsträger: Eine einzelne Fahrradspeiche

Merkmal: Die Länge der Speiche in mm

Stichprobenumfang: Es wurden 10 Speichen gemessen $\rightarrow n = 10$

Merkmalausprägungen: 269; 274; 269; 268; 272; 270; 269; 270; 268; 271

2. Aufgabe B

Mittelwert

$$\overline{x} = \frac{269 + 274 + 269 + 268 + 272 + 270 + 269 + 270 + 268 + 271}{10} = \boxed{\frac{2700}{10} = 270}$$

Varianz

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$= \frac{(269 - 270)^{2} + (274 - 270)^{2} + (269 - 270)^{2} + (268 - 270)^{2} + (272 - 270)^{2}}{10} + \frac{(270 - 270)^{2} + (269 - 270)^{2} + (270 - 270)^{2} + (268 - 270)^{2} + (271 - 270)^{2}}{10}$$

$$= \frac{1 + 16 + 1 + 4 + 4 + 0 + 1 + 0 + 4 + 1}{10}$$

$$= \boxed{\frac{32}{10} = 3.2}$$

Standardabweichung

$$s = \sqrt{s^2} = \sqrt{3.2} \approx \boxed{1.79}$$

Lösung 2.7: Aufgabe 3

2.1 Aufgabe A

Monat	Jan.	Feb.	März	April	Mai	Juni	Juli	Aug.	Sept.	Okt.	Nov.	Dez.
Amsterdam	10	8	11	8	9	9	11	11	10	13	11	11
Rangun	1	1	1	2	13	23	25	24	20	11	4	1

2.2 Aufgabe B

Amsterdam

$$\overline{x}_A = \frac{10+8+11+8+9+9+11+11+10+13+11+11}{12}$$

$$= \boxed{\frac{122}{12} \approx 10.17}$$

$$s_{A}^{2} = \frac{1}{12} \sum_{i=1}^{12} (x_{i} - \overline{x}_{A})^{2}$$

$$= \frac{(10 - 10.17)^{2} + (8 - 10.17)^{2} + \dots + (11 - 10.17)^{2}}{12}$$

$$= \frac{24.67}{12} \approx \boxed{2.06}$$

$$s_{R}^{2} = \frac{1}{12} \sum_{i=1}^{1} (x_{i} - \overline{x}_{R})^{2}$$

$$= \frac{(1 - 10.5)^{2} + (1 - 10.5)^{2} + \dots + (1 - 10.5)^{2}}{12}$$

$$= \frac{971}{12} \approx \boxed{80.92}$$

$$s_A = \sqrt{s_A^2} = \boxed{\sqrt{2.06} \approx 1.43}$$

Rangun

$$\overline{x}_{A} = \frac{10+8+11+8+9+9+11+11+10+13+11+11}{12} \qquad \overline{x}_{R} = \frac{1+1+1+2+13+23+25+24+20+11+4+1}{12}$$

$$= \left[\frac{122}{12} \approx 10.17\right] \qquad = \left[\frac{126}{12} = 10.5\right]$$

$$s_R^2 = \frac{1}{12} \sum_{i=1}^{12} (x_i - \overline{x}_R)^2$$

$$= \frac{(1 - 10.5)^2 + (1 - 10.5)^2 + \dots + (1 - 10.5)^2}{12}$$

$$= \frac{971}{12} \approx \boxed{80.92}$$

$$s_R = \sqrt{s_R^2} = \sqrt{80.92} \approx 8.99$$

Lösung 2.8: Aufgabe 4

1. Achsenbeschriftung

- X-Achse: "Merkmal" bzw. "Anzahl Ereignisse"
- Y-Achse: "Relative Häufigkeit [%]"
- Skalierung: 0% bis 40% in 10%-Schritten

2. Mittelwert und Standardabweichung

Gegeben:

$$x_i = 0, 1, 2, 3,$$
 $f_i = 0.1, 0.2, 0.3, 0.4$

Mittelwert:

$$\overline{x} = \sum_{i} x_i \cdot f_i = 0 \cdot 0.1 + 1 \cdot 0.2 + 2 \cdot 0.3 + 3 \cdot 0.4 = 2.0$$

Varianz:

$$s^{2} = \sum_{i} f_{i} \cdot (x_{i} - \overline{x})^{2} = 0.1 \cdot (0 - 2)^{2} + 0.2 \cdot (1 - 2)^{2} + 0.3 \cdot (2 - 2)^{2} + 0.4 \cdot (3 - 2)^{2} = 1.0$$

Standardabweichung:

$$s = \sqrt{1.0} = 1.0$$

3. Gleich hohe Säulen

Falls alle $f_i = 0.25$ gilt:

Mittelwert:

$$\overline{x} = 0 \cdot 0.25 + 1 \cdot 0.25 + 2 \cdot 0.25 + 3 \cdot 0.25 = 1.5$$

Varianz:

$$s^2 = 0.25 \cdot (0 - 1.5)^2 + 0.25 \cdot (1 - 1.5)^2 + 0.25 \cdot (2 - 1.5)^2 + 0.25 \cdot (3 - 1.5)^2 = 1.25$$

Standardabweichung:

$$s = \sqrt{1.25} \approx 1.118$$