Prelab

1. Fill in the remaining entries in Table 1. You may find the discussion on Generating Timing Delays in the background section helpful.

Table 1: Traffic Light Controller States

State	Highway Output	Farm Road Output	Delay (seconds)	Delay (cc)
S0	red	red	1	50,000,000
S1	green	red	30	1,500,000,000
S2	yellow	red	3	150,000,000
S3	red	red	1	50,000,000
S4	red	green	15	750,000,000
S5	red	yellow	3	150,000,000

2. Based on the column entries you just calculated, what is the necessary value of n in Figure 5?

The largest number that will need to be represented in binary is 1,500,000,000. That number in binary is 1011001011010000010111100000000 which consits of 31 bits thus n = 31 wires.

3. Given Table 1 and Figure 6, create a state diagram for the traffic light controller FSM. Be sure to include the appropriate input and output labels. Assume S0 is the reset state.

4. Now describe the traffic light controller FSM in Verilog using the following module interface

Code Block 1: TLC FSM Verilog

```
module tlc_fsm (
1
           output reg [2:0] state, // output for debugging
2
           output reg RstCount, // use an always block
3
           // another always block for these as well
4
           output reg [1:0] highwaySignal, farmSignal,
5
           input wire [31-1:0] Count,
6
           input wire Clk, Rst // clokc and reset
7
8
           );
9
           parameter S0 = 3'b000,
10
```

```
11
                        S1 = 3'b001,
12
                        S2 = 3'b010,
13
                        S3 = 3'b011,
                        S4 = 3'b100,
14
15
                        S5 = 3'b101,
16
                        GREEN = 2'b00,
17
                        YELLOW = 2'b01,
18
                        RED = 2'b10;
19
20
            reg [2:0] nextState;
21
            // Output logic
22
23
            always @ (state or RstCount) begin
24
                     case (state)
25
                             S0: begin
26
                              if (RstCount) begin
                                      highwaySignal = GREEN;
27
                                      farmSignal = RED;
28
29
                             end else begin
30
                                      highwaySignal = RED;
                                      farmSignal = RED;
31
32
                             end
33
                             end
34
                             S1: begin
35
                              if (RstCount) begin
                                      highwaySignal = YELLOW;
36
                                      farmSignal = RED;
37
                             end else begin
38
                                      highway Signal = GREEN;
39
                                      farmSignal = RED;
40
                             end
41
```

42	end
43	S2: begin
44	if (RstCount) begin
45	highwaySignal = RED;
46	farmSignal = RED;
47	end else begin
48	highwaySignal = YELLOW;
49	farmSignal = RED;
50	end
51	end
52	S3: begin
53	if (RstCount) begin
54	highwaySignal = RED;
55	farmSignal = GREEN;
56	end else begin
57	highwaySignal = RED;
58	farmSignal = RED;
59	end
60	end
61	S4: begin
62	if (RstCount) begin
63	highwaySignal = RED;
64	farmSignal = YELLOW;
65	end else begin
66	highwaySignal = RED;
67	farmSignal = GREEN;
68	end
69	end
70	S5: begin
71	if (RstCount) begin
72	highwaySignal = RED;

```
73
                                       farmSignal = RED;
                              end else begin
74
                                       highwaySignal = GREEN;
 75
                                       farmSignal = YELLOW;
76
77
                              end
78
                              end
79
80
                               default: ;
81
                      endcase
82
             end
83
84
85
86
87
             // Next state logic
             always @ ( * ) begin
88
                      case (state)
89
                              S0: begin
90
                                       if (Count = 50000000) begin
91
                                                nextState = S1;
92
93
                                       end else begin
94
                                                nextState = S0;
95
                                       end
96
                                       end
                              S1: begin
97
                                       if (Count = 1500000000) begin
98
99
                                                nextState = S2;
100
                                       end else begin
                                                nextState = S1;
101
102
                                       end
103
                                       end
```

104		S2: begin
105		if (Count == 150000000) begin
106		nextState = S3;
107		end else begin
108		nextState = S2;
109		end
110		end
111		S3: begin
112		if (Count = 50000000) begin
113		nextState = S4;
114		end else begin
115		nextState = S3;
116		end
117		end
118		S4: begin
119		if (Count == 750000000) begin
120		nextState = S5;
121		end else begin
122		nextState = S4;
123		end
124		end
125		S5: begin
126		if (Count == 150000000) begin
127		nextState = S1;
128		end else begin
129		nextState = S5;
130		end
131		end
132		default: ;
133	endcase	
134	end	

```
135
136
             always @ (posedge Clk) begin
137
                      if (Rst) begin
138
                               stat \le S0;
139
                      end else begin
140
                               state <= nextState;</pre>
141
                      end
142
             end
143
             assign Count = 0;
144
145
146 endmodule // tlc_-fsm
```