Estimating visual corrective reaction times in double-step paradigms using machine learning: A proof of principle

John de Grosbois

Rotman Research Institute at Baycrest Health Sciences

The Double-Step Paradigm

CORRECTIVE REACTION TIME (CRT)

Measuring Corrective Reaction-Time?

- Threshold methods (e.g., Briere & Proteau, 2011)
- Multiple T-tests (e.g., Prablanc & Martin, 1992)
- Regression and Extrapolation (e.g., Oostwoud Wijdenes et al., 2011)

Measuring Corrective Reaction-Time?

- Threshold methods (e.g., Briere & Proteau, 2011)
- Multiple T-tests (e.g., Prablanc & Martin, 1992)
- Regression and Extrapolation (e.g., Oostwoud Wijdenes et al., 2011)
- In these cases we are...
 - Fitting a model (setting 'rules' OR pre-specifying a pattern)
 - Using this model to estimate the outcome

Machine Learning

• Rather than setting the rules (as explicitly), in machine learning we can....

Machine Learning

- Rather than setting the rules (as explicitly), in machine learning we can....
- Give the 'machine' data, and let it 'learn' the patterns in the data
 - 'Supervised' if Data and Labels are provided during learning

Machine Learning

- We provide data and labels in a TRAINING-SET
 - The 'machine' learns patterns in this data-set to maximize prediction accuracy with this data

Machine Learning

- We provide data and labels in a TRAINING-SET
 - The 'machine' learns patterns in this data-set to maximize prediction accuracy with this data
- We then evaluate our model on the remainder of our data, the TEST-SET (or validation-set)
 - Similar in principle to cross-validation from regression

Research Question

 Can we use supervised machine learning to get an estimate of CRT?

Research Question

 Can we use supervised machine learning to get an estimate of CRT?

 How early, post-perturbation, will we see an improvement in classification accuracy?

3D-Reach

- Double-Step at 150 or 250 ms relative to gosignal.
- Equal probability of Single- and Double-Step.

- Data Selection AND Scaling:
 - Only used the 250 ms jump condition
 - RTs < ~240 ms

Moher & Song, 2019 Slide # 25

- Data Selection AND Scaling:
 - Only used the 250 ms jump condition
 - RTs < ~240 ms
 - Avoid Anticipation Trials
 - RTs > 140 ms & < ~240 ms
 - Movement angle at jump + 250 ms < 45 degrees relative to target

Moher & Song, 2019 Slide # 26

- Data Selection AND Scaling:
 - Only used the 250 ms jump condition
 - RTs < ~240 ms
 - Avoid Anticipation Trials
 - RTs > 140 ms & < ~240 ms
 - Movement angle at jump + 250 ms < 45 degrees relative to target
 - MTs > 300 ms
 - Took data from jump 2 samples to jump + ~270 ms
 - Re-scaled to position at time of jump

- Data Selection AND Scaling:
 - Only used the 250 ms jump condition
 - RTs < ~240 ms
 - Avoid Anticipation Trials
 - RTs $> 140 \text{ ms } \& < \sim 240 \text{ ms}$
 - Movement angle at jump + 250 ms < 45 degrees relative to target
 - MTs > 300 ms
 - Took data from jump 2 samples to jump + ~270 ms
 - Re-scaled to position at time of jump
 - Pooled all remaining trials across participants

Data Reduction

Random Forest Classifier:

Random Forest Classifier:

LABEL	SAMPL E-1	SAMPL E-2	SAMPL E-3	
JUMP	p1	p2	р3	pn
NO- JUMP	p1	P2	р3	pn
	p1	p2	р3	pn

Random Forest Classifier:

LABEL	SAMPL E-1	SAMPL E-2	SAMPL E-3	
JUMP	p1	p2	р3	pn
NO- JUMP	p1	P2	р3	pn
	p1	p2	р3	pn

Decision Tree

Random Forest Classifier:

LABEL	SAMPL E-1	SAMPL E-2	SAMPL E-3		Dec
JUMP	p1	p2	р3	pn	Column-Valu
NO- JUMP	p1	P2	р3	pn	X1-Jumps
	p1	p2	р3	pn	Y1-NoJumps

Random Forest Classifier:

LABEL	SAMPL E-1	SAMPL E-2	SAMPL E-3		
JUMP	p1	p2	р3	pn	
NO- JUMP	p1	P2	р3	pn	X
	p1	p2	р3	pn	Y1

Random Forest Classifier:

• For both primary ('Y') and secondary ('X') movement axes

Random Forest Classifier:

- For both primary ('Y') and secondary ('X') movement axes
- Trained Random forests on incrementally larger time-ranges, up to ~270 ms
 - Started with the first 4 samples, worked up to all 'n'-samples
 - Due to unequal trials in each condition, stratified sampling with 100 re-samplings was used to get an average TEST accuracy estimate
- Python 'sklearn.RandomForestClassifier'
 - 2000 'Trees'
 - 25% of variables in each 'Tree'
 - Trained on 60 % of the data, tested on 40%

Random Forest Classifier:

- For both primary ('Y') and secondary ('X') movement axes
- Trained Random forests on incrementally larger time-ranges, up to ~270 ms
 - Started with the first 4 samples, worked up to all 'n'-samples
 - Due to unequal trials in each condition, stratified sampling with 100 re-samplings was used to get an average TEST accuracy estimate
- Python 'sklearn.RandomForestClassifier'
 - 2000 'Trees'
 - 25% of variables in each 'Tree'
 - Trained on 60 % of the data, tested on 40%
- Hypothesized that TEST accuracy would start to increase at CRT

Results

Results

Discussion

• vs Moher and Song (2019)?

Dadination Lateran	Device				
Redirection Latency	3DReach	Mouse	Stylus		
Double Step 250 ms	$204 \pm 7 \; ms$	$222 \pm 6 \ ms$	$230\pm 8\ ms$		
RF Approach:	175 ms	192 ms	205 ms		

Discussion

• vs Moher and Song (2019)?

Dadiraction Latence	Device				
Redirection Latency	3DReach	Mouse	Stylus		
Double Step 250 ms	$204\pm7\ ms$	$222\pm6\ ms$	$230\pm 8\;ms$		
RF Approach:	175 ms	192 ms	205 ms		

• Limitations? Other Methods? Pooled Data?

Take-Away

 Machine-learning Classifiers may indeed represent an additional avenue With which to dissociate experimental conditions such as quantifying corrective reaction times.

Take-Away

 Machine-learning Classifiers may indeed represent an additional avenue With which to dissociate experimental conditions such as quantifying corrective reaction times.

- Open-science is awesome... please do it more!!!
 - OpenClipart.org
 - Moher & Song (2019)
 - Open Science Framework (http://osf.io)

THANK YOU

Paper

Moher & Song, 2019

