Yizhou Shan

Ph.D. Candidate Computer Science and Engineering UCSD Email: ys@ucsd.edu
Web: lastweek.io
Last Updated: Aug 2021

RESEARCH INTERESTS

My research interests span Distributed System, Operating System, and Computer Architecture, with a focus on building fast and reliable systems for datacenters. I work at Wuklab, UCSD, under the supervision of Prof. Yiying Zhang.

EDUCATION

University of California San Diego	2019-2022
Ph.D. in Computer Science and Engineering	(expected)

Purdue University 2016-2019

Ph.D. in Computer Engineering (Transferred to UCSD)

Institute of Computing Technology, Chinese Academy of Sciences 2014-2016

Research Assistant

Beijing University of Aeronautics and Astronautics 2010-2014

B.E. in Computer Engineering

INDUSTRY EXPERIENCE

Research Intern, Microsoft Research Redmond, WA, Summer 2021

Collaborators: Ziqiao Zhou, Weidong Cui, Andrew Baumann, and Marcus Peinado

Research Intern, VMware Research Palo Alto, CA, Summer 2019

Collaborator: Marcos K. Aguilera

Research Intern, VMware Research Palo Alto, CA, Summer 2018

Collaborator: Stanko Novakovic

PUBLICATIONS

Yizhou Shan, Will Lin, Arvind Krishnamurthy, Yiying Zhang, "Disaggregating and Consolidating Network Functionalities with SuperNIC", under submission.

Yizhou Shan*, Zhiyuan Guo* (co-first author), Xuhao Luo, Yutong Huang, Yiying Zhang, "Clio: A Hardware-Software Co-Designed Disaggregated Memory System", https://arxiv.org/pdf/2108.03492.pdf.

Shin-Yeh Tsai, Yizhou Shan, Yiying Zhang, "Disaggregating Persistent Memory and Controlling Them Remotely: An Exploration of Passive Disaggregated Key-Value Stores", 2020 USENIX Annual Technical Conference (ATC '20)

Stanko Novakovic, **Yizhou Shan**, Aasheesh Kolli, Michael Cui, Yiying Zhang, Haggai Eran, Liran Liss, Michael Wei, Dan Tsafrir, Marcos Aguilera, "**Storm: a fast distributed storage system using remote memory primitives**", 12th ACM International Systems and Storage Conference (**SYSTOR** '19) (**Best Paper Award**)

Yizhou Shan, Yutong Huang, Yilun Chen, Yiying Zhang, "LegoOS: A Disseminated, Distributed OS for Hardware Resource Disaggregation", 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI '18) (Best Paper Award)

Yizhou Shan, Shin-Yeh Tsai, Yiying Zhang, "**Distributed Shared Persistent Memory**", Proceedings of the ACM Symposium on Cloud Computing 2017 (*SoCC '17*)

WORKSHOPS AND POSTERS

Yizhou Shan, Yutong Huang, Yiying Zhang, "Challenges in Building and Deploying Disaggregated Persistent Memory", 10th Annual Non-Volatile Memories Workshop (*NVMW '19*)

Yizhou Shan, Shin-Yeh Tsai, Yiying Zhang, "Distributed Shared Persistent Memory", 9th Annual Non-Volatile Memories Workshop (*NVMW '18*)

Yizhou Shan, Yiying Zhang, "Disaggregating Memory with Software-Managed Virtual Cache", the 2018 Workshop on Warehouse-scale Memory Systems (*WAMS '18*) (co-located with ASPLOS '18)

Yiying Zhang, **Yizhou Shan**, Sumukh Hallymysore, "Disaggregated Operating System", 17th International Workshop on High Performance Transaction Systems (*HPTS '17*)

Yizhou Shan, Yilun Chen, Yutong Huang, Sumukh Hallymysore, Yiying Zhang, "Lego: A Distributed, Decomposed OS for Resource Disaggregation", Poster at the 26th ACM Symposium on Operating Systems Principles (*SOSP '17*)

Yizhou Shan, Sumukh Hallymysore, Yutong Huang, Yilun Chen, Yiying Zhang, "Disaggregated Operating System", Poster at the ACM Symposium on Cloud Computing 2017 (*SoCC '17*)

AWARDS

2020 Facebook Fellowship Finalist

SYSTOR'19 Best Paper Award

OSDI '18 Jay Lepreau Best Paper Award

OSDI '18 Student Travel Grant

SOSP '17 Student Travel Grant

SoCC '17 Student Travel Grant

PROFESSIONAL SERVICES

Program Committee

ASPLOS '21 (External)
OSDI '20 (Artifact Evaluation)

Journal Review

ACM Transactions on Storage (TOS): 2020 IEEE/ACM Transactions on Networking: 2020

RESEARCH EXPERIENCE

Network Design for Disaggregated Datacenter (Work-in-Progress)

2020-Current

UCSD

How to build a disaggregated datacenter when both the number of network ports and bandwidth requirement exploded? We propose a way to solve this issue without disrupting the existing network infrastructure.

Programmable Disaggregated Memory System (Under Submission)

2018-Current

Purdue University and UCSD

We are building a hardware-based active disaggregated memory system using FPGA. This is a follow-up work of LegoOS. We build a distributed hardware-based virtual memory system, and a framework for building memory services.

Serverless on Disaggregated Datacenter (WIP)

2019-Current

UCSD

We are trying to demonstrate when serverless means no server. Instead of using monolithic machines, we explore the possibility of using a disaggregated datacenter. Instead of optimizing existing VM and container technologies, we explore a new way to run serverless functions: using library OS.

An Operating System Inside Cloud FPGA (Concluded)

2019-2020

UCSD

We are building a new operating system inside a cloud FPGA. This new runtime overcomes the limitations of static compile-time approaches and provides a set of new services. We explored how this helps reduce cost and enable new FPGA apps.

Optimize Page Faults

2019 May-Aug

VMware Research

Ancient old page fault handling is the driving wheel for many emerging datacenter systems and applications. But the page fault handling mechanism was designed for millisecond-level disk operations, there is a performance mismatch when it is used by fast devices like RDMA, or PM. We are now trying to close the gap.

LegoOS: A Disaggregated Operating System

Purdue University

We propose a new OS model called the splitkernel to manage disaggregated systems. Splitkernel disseminates traditional OS functionalities into loosely-coupled monitors, each of which runs on and manages a hardware component. Using the splitkernel model, we built LegoOS, a new OS designed for hardware resource disaggregation.

Hotpot: Distributed Shared Persistent Memory

2016-2017

Purdue University

We propose Distributed Shared Persistent Memory (DSPM), a new framework for using persistent memories in datacenter environments. We designed and implemented *Hotpot*, the first DSPM system in the Linux kernel. Hotpot provides low-latency, transparent memory accesses, data persistence, data reliability and high availability.

Non-Volatile Memory (NVM) Emulator

2015-2016

Institute of Computing Technology, Chinese Academy of Sciences

We designed and implemented a NVM emulator in Linux kernel, which leverages Intel's Performance Monitoring Unit to emulate NVM's slower read/write latency and smaller bandwidth on physical DRAM. This emulator runs on bare-metal x86 machines.

ARMv8 CPU Project 2013

Institute of Computing Technology, Chinese Academy of Sciences

I participated in the Register-Transfer Level design and verification of some blocks within the cache unit and load-store unit. It is a commercial project collaborated with Huawei.

SKILLS

Languages: x86 Assembly, C, C++, Python, Scala, Rust, Go, TCL, Verilog, Java

Systems: Linux Kernel, DPDK/RDMA, KVM, QEMU, Docker, k8s, Pytorch, Tensorflow, Spark, Memcached, Vivado, Vivado HLS, Vitis, SpinalHDL, Chisel

2017-2018