Goal: LC Circuit
- example of simple harmonic oscillator
· What is it that's oscillating? Current and Voltage
Inductors: also store energy, like capacitors, but they do so in the magnetic field
- usually cylindrical windings of wire
- 'inductance' L in Henries (H)
- device law: $V_{L} = L \frac{d\dot{t}}{dt}$
V _L
Solving LC Circuit:
Recall $i = c \frac{dV_c}{dt}$ (device law, capacitors)
$LC \frac{d^2 V_c}{dt^2} + V_c = 0$
$\frac{d^2 V_c}{dt^2} + \frac{1}{Lc} V_c = 0 \iff \frac{d^2 x}{dt^2} + \omega^2 x = 0$
* See 'SHO Solution analogous to analogous to
Derivation in lesson 1 * Sol= form: Vc(E)= Acos (wt) + Bsin(wt)
$-\Delta w^2 \cos(\omega t) - B\omega^2 \sin(\omega t) + \frac{1}{LC} \left[A\cos(\omega t) + B\sin(\omega t) \right] = 0$
$\frac{1}{LC} \left[A\cos(\omega t) + B\sin(\omega t) \right] = \omega^2 \left[A\cos(\omega t) + B\sin(\omega t) \right]$
$w = \frac{1}{1 \text{LC}}$
To solve for $A \not\in B$, we use the initial conditions $V_c(t=0) = V_0$ and $i(t=0) = i_0$
$V_{c}(t=0) = \Delta = V_{0}$
$i(t) = c \frac{dV_c}{dt} = c \left[-A\omega \sin(\omega t) + B\omega \cos(\omega t) \right]$
$i(t=0) = C \otimes w = i_0, \qquad \beta = \frac{i_0}{wc} = \frac{i_0\sqrt{LC}}{C} = i_0\sqrt{\frac{L}{C}}$
$V_c(t) = V_o \cos\left(\frac{t}{\sqrt{1c'}}\right) + i_o \sqrt{\frac{t}{c}} \sin\left(\frac{t}{\sqrt{1c'}}\right)$

V _L + V _C = 0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$V=0$ Device cap: $i(t) = c \frac{dV_c}{dt}$	
$-L \frac{d}{dt} \left[c \frac{dV_c}{dt} \right] - V_c = 0$	
$\frac{d^2 V_c}{dt^2} - V_c = 0$	
dt ²	
$\frac{d^2 V_c}{d \theta^2} + \frac{1}{L_c} V_c = 0$	
-auti	
$\frac{d^2 V_c}{d\theta^2} + \frac{1}{L_c} V_c = 0 \qquad \Longleftrightarrow \qquad \frac{d^2 x}{d\theta^2} + \frac{x}{m} x = 0$	
13759	
d' die	
quess: Vc(t) = Asin(wt) + Bcos(wt)	
$\frac{dV_c}{dt} = Aw \cos(wt) - Bw \sin(wt)$	
$\frac{d^2 v_c}{dt^2} = -Aw^2 \sin(wt) - Bw^2 \cos(wt)$	
$-A\omega^{2} \sin(\omega t) - B\omega^{2} \cos(\omega t) + \frac{1}{LC} \left(A \sin(\omega t) + B \cos(\omega t) \right) = 0$	
$\frac{1}{LC}\left(A\sin(\omega t) + B\cos(\omega t)\right) = A\omega^2 \sin(\omega t) + B\omega^2 \cos(\omega t)$	
$\frac{1}{10}\left(A\sin(\omega t) + B\cos(\omega t)\right) = \omega^2\left(A\sin(\omega t) + B\cos(\omega t)\right)$	
$\frac{1}{1c} = \omega^2$	
$\omega = \sqrt{\frac{1}{C'}}$	

V_{clt} = Asin(wt) + Bcos(wt) , $W = \frac{1}{\sqrt{Lc'}}$	eets	W= VK	
	×o		
$V_0 = V_c(t=0) = \frac{1}{2}$	Vo		
i. = ilt=0) =?			
$V_c(t=0) = V_0 = B$			
Vc(t) = Asin(wt) + Vo cos(wt)			
$device law i(t) = c \frac{dVc(t)}{dt}$			
(lt) = C (Awcos(wt) - Vowsin(wt))			
i(t=0) = C(Aw+0) = io			
io= CwA			
A= io cw			
master cq 2 .			
$V_c(t) = \frac{i_o}{cw} \sin(wt) + V_o \cos(wt), w = \frac{i}{\sqrt{Lc'}}$			
$i t\rangle = c \frac{dv_{c}(t)}{dt} = c \frac{d}{dt} \left[\frac{i_{o}}{c_{w}} \sin(\omega t) + v_{o}\cos(\omega t) \right]$)t)] \		
= C \[\frac{\frac{10}{c}}{c} \cos(\pi \frac{1}{c}) - V_0 \pi \sin \frac{1}{c}	(wt)]		
ilt) = io coo(wt) - vowc sin	(wt)		
How is the energy moving around in this circuit?			
$\varepsilon_{tot} = \varepsilon_{c} + \varepsilon_{c}$			
$E_{c} = \frac{1}{2} C V_{l}(t)^{2}$			
$= \frac{1}{2} L i(t)^2$			

