Université Paris Cité - LIPADE

Algorithmic Complexity

Turing Machines and Decidability

Jean-Guy Mailly (jean-guy.mailly@u-paris.fr)

2022

Some General Knowledge Alan Mathison Turing

- ► UK, 1912 1954
- Mathematician, computer scientist, cryptanalyst
- Most famous works:
 - Computation model (« Turing Machines »)
 - ► Work on Enigma during WWII
 - ► Imitation Game (« Turing Test »)
- Father of theoretical CS and AI
- ► Turing Award ≃ Nobel Award for CS

Outline

Turing Machines

Introduction to Turing Machines Turing Machines and Decision Problems Non-Determinism Church-Turing Thesis

Decidability

Recognizable and Decidable Problems
Halting Problem and Reductions

Turing Machines

Computing Machine [Turing 1936]

- Abstract model to compute any « calculable » decimal number i.e. any number which can be computed with a finite amount of resources
- Proposed years before the apparition of computer, but quite a faithful abstraction of modern machines
- Roughly speaking,
 - tape (sequence of squares) browsed by a reader/writer: memory of a computer
 - transition function: processor of a computer

Definition of Turing Machines

A Turing machine is a tuple $\langle Q, \Gamma, B, \Sigma, q_0, \delta, F \rangle$ with:

- $ightharpoonup Q = \{q_0, q_1, \dots, q_m\}$, a finite set of *states*
- Γ, the finite set of symbols used by the machine (vocabulary)
- ▶ B ∈ Γ, a particular symbol called *blank*
- Σ ⊆ Γ, the *input vocabulary*
- ▶ $q_0 \in Q$, the *initial state* of the machine
- ▶ $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$, the *transition function*
- ▶ $F \subseteq Q$, the set of *final states*

Transition Function

$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$$

- Input: a pair (current state, symbol on the tape) called configuration
- Output: a tuple (next state, symbol to write, move)

Example of Turing Machines (1/2)

Multiplying Integers by 2

Let us consider $\mathcal{M} = \langle Q, \Gamma, B, \Sigma, q_0, \delta, F \rangle$ with:

$$\Gamma = \{0, 1, B\}$$

$$\Sigma = \{0, 1\}$$

$$ightharpoonup \delta$$
 as described in the table

Current state	Current symbol	Next State	Write	Move
in_progress	0	in_progress	0	R
in_progress	1	in_progress	1	R
in_progress	В	done	0	R
done	STOP			

Example of Turing Machines (1/2)

Multiplying Integers by 2

Let us consider $\mathcal{M} = \langle Q, \Gamma, B, \Sigma, q_0, \delta, F \rangle$ with:

$$\Gamma = \{0, 1, B\}$$

$$\Sigma = \{0, 1\}$$

$$ightharpoonup \delta$$
 as described in the table

Current state	Current symbol	Next State	Write	Move
in_progress	0	in_progress	0	R
in_progress	1	in_progress	1	R
in_progress	В	done	0	R
done		STOP		

Alternative notation of δ

On each transition, X/Y/Z is:

- ► X: the current symbol
- ➤ Y: the new symbol
- ► Z: the move

► Read 1 in state *in_progress*: write 1, move right, state *in_progress*

▶ Read 0 in state in_progress: write 0, move right, state in progress

► Read 1 in state *in_progress*: write 1, move right, state *in_progress*

Read 0 in state in_progress: write 0, move right, state in_progress

▶ Read 1 in state in_progress: write 1, move right, state in_progress

Read 0 in state in_progress: write 0, move right, state in_progress

► Read *B* in state *in_progress*: write 0, move right, state *done*

► State *done*: stop

Accept vs Reject vs Loop

We consider a special class of Turing machines, with three possible « results ». For an input x, we say that the Turing machine $\mathcal M$

- ▶ accepts x if M reaches the final state YES after a finite number of steps (i.e. transitions)
- rejects x if M reaches the final state NO after a finite number of steps
- ▶ *loops* on x if \mathcal{M} never reaches a final state

Language of a Turing Machine

9

We call language of a Turing Machine $\mathcal M$ the set of all inputs which are accepted by $\mathcal M$

$$\mathcal{L}(\mathcal{M}) = \{x \in \Sigma^* \mid \mathcal{M} \text{ stops on } x \text{ and } \mathcal{M}(x) = \text{ YES}\}$$

Example

If \mathcal{M} returns YES on inputs $P \in \mathbb{N}[X]$ with exactly one root, then $\mathcal{L}(\mathcal{M}) = \{P \in \mathbb{N}[X] \mid P \text{ is a polynomial with exactly one root } \}$

Language of a Turing Machine

We call language of a Turing Machine $\mathcal M$ the set of all inputs which are accepted by $\mathcal M$

$$\mathcal{L}(\mathcal{M}) = \{x \in \Sigma^* \mid \mathcal{M} \text{ stops on } x \text{ and } \mathcal{M}(x) = \text{ YES} \}$$

Example

If \mathcal{M} returns YES on inputs $P \in \mathbb{N}[X]$ with exactly one root, then $\mathcal{L}(\mathcal{M}) = \{P \in \mathbb{N}[X] \mid P \text{ is a polynomial with exactly one root } \}$

We associate the language $\mathcal{L}(\mathcal{M})$ of a Turing Machine \mathcal{M} to a decision problem \mathcal{P}

 $x \in \mathcal{L}(\mathcal{M})$ iff x is a positive instance of \mathcal{P}

(Non-)Deterministic Turing Machines

Definition

Given \mathcal{M} a Turing machine and δ its transition function, \mathcal{M} is deterministic (DTM) if δ is a mapping from any configuration (q, x) to (at most) a single image (q', x', m)Otherwise, \mathcal{M} is non-deterministic (NDTM)

(Non-)Deterministic Turing Machines

Definition

Given \mathcal{M} a Turing machine and δ its transition function, \mathcal{M} is deterministic (DTM) if δ is a mapping from any configuration (q, x) to (at most) a single image (q', x', m)Otherwise, \mathcal{M} is non-deterministic (NDTM)

Solving a Decision Problem

- A DTM solves a decision problem P if the sequence of transitions leads to the answer for any instance
- Not so easy for NDTM: when the transition function has several images, each of them must be checked The machine solves the problem if
 - for each positive instance, at least one sequence of transitions leads to a final state with the answer YES
 - for each negative instance, every possible sequence of transitions leads to a final state with the answer NO

Illustration: DTM vs NDTM

Other Computing Models

Other models have been proposed

- Turing machines with several tapes/several dimensions/several readers-writers
- λ-calculus [Church 1936]
- Kolmogorov-Uspensky machines [Kolmogorov and Uspensky 1958]
- Schönhage machines [Schönhage 1980]
- ...

Power of Turing machines: the Church-Turing Thesis

Everything which can be computed with any of these models can be computed with a Turing machine

Other Computing Models

Other models have been proposed

- Turing machines with several tapes/several dimensions/several readers-writers
- λ-calculus [Church 1936]
- ► Kolmogorov-Uspensky machines [Kolmogorov and Uspensky 1958]
- ► Schönhage machines [Schönhage 1980]
- **.**..

Power of Turing machines: the Church-Turing Thesis

Everything which can be computed with any of these models can be computed with a Turing machine

Turing completeness

A system (computing model, programming language,...) is called *Turing complete* if it can compute every possible computable function

Outline

Turing Machines

Introduction to Turing Machines Turing Machines and Decision Problems Non-Determinism Church-Turing Thesis

Decidability

Recognizable and Decidable Problems Halting Problem and Reductions

Recognizability

Recognizability of a Problem

A problem \mathcal{P} is called *recognizable* if there exists a Turing machine \mathcal{M} such that, for each instance i of \mathcal{P} , $\mathcal{M}(i)$ answers YES iff i is a positive instance of \mathcal{P}

Recognizability of a Language

A language $\mathcal L$ is called *recognizable* if there exists a Turing machine $\mathcal M$ such that $\mathcal L=\mathcal L(\mathcal M)$

Recognizability

Recognizability of a Problem

A problem \mathcal{P} is called *recognizable* if there exists a Turing machine \mathcal{M} such that, for each instance i of \mathcal{P} , $\mathcal{M}(i)$ answers YES iff i is a positive instance of \mathcal{P}

Recognizability of a Language

A language \mathcal{L} is called *recognizable* if there exists a Turing machine \mathcal{M} such that $\mathcal{L} = \mathcal{L}(\mathcal{M})$

Prime Numbers

▶ Is $n \in \mathbb{N}$ a prime number?

This problem/language is recognizable: we can write an algorithm which answers YES when *n* is prime, and doesn't care of non-prime numbers

Decidability

A problem \mathcal{P} is called *decidable* if there exists a Turing machine \mathcal{M} such that, for each instance i of \mathcal{P} ,

- $ightharpoonup \mathcal{M}(i)$ answers YES when i is a positive instance of \mathcal{P}
- $ightharpoonup \mathcal{M}(i)$ answers NO when i is a negative instance of \mathcal{P}

Decidability of a Problem

A language $\mathcal L$ is called *decidable* if there exists a Turing machine $\mathcal M$ which accepts each $x \in \mathcal L$ and rejects each $x \notin \mathcal L$ Equivalently: $\mathcal L$ is decidable iff both $\mathcal L$ and $\bar{\mathcal L}$ are recognizable

Decidability

A problem \mathcal{P} is called *decidable* if there exists a Turing machine \mathcal{M} such that, for each instance i of \mathcal{P} ,

- $ightharpoonup \mathcal{M}(i)$ answers YES when i is a positive instance of \mathcal{P}
- ▶ $\mathcal{M}(i)$ answers NO when i is a negative instance of \mathcal{P}

Decidability of a Problem

A language $\mathcal L$ is called *decidable* if there exists a Turing machine $\mathcal M$ which accepts each $x \in \mathcal L$ and rejects each $x \notin \mathcal L$ Equivalently: $\mathcal L$ is decidable iff both $\mathcal L$ and $\bar{\mathcal L}$ are recognizable

Prime Numbers

▶ Is $n \in \mathbb{N}$ a prime number?

This problem/language is decidable: we can write an algorithm which answers YES when *n* is prime, and NO otherwise

Complement of a Decision Problem

Definition

A problem \mathcal{P}_1 is called the complement of \mathcal{P}_2 $\mathcal{L}(\mathcal{P}_1) = \overline{\mathcal{L}(\mathcal{P}_2)}$. Equivalently:

- \triangleright \mathcal{P}_1 and \mathcal{P}_2 are defined on the same set of instances
- ▶ Positive instances of \mathcal{P}_1 are negative instances of \mathcal{P}_2
- \blacktriangleright Negative instances of \mathcal{P}_1 are positive instances of \mathcal{P}_2

Notation: $\mathcal{P}_1 = \overline{\mathcal{P}_2}$

Complement of a Decision Problem

Definition

A problem \mathcal{P}_1 is called the complement of \mathcal{P}_2 $\mathcal{L}(\mathcal{P}_1) = \overline{\mathcal{L}(\mathcal{P}_2)}$. Equivalently:

- \triangleright \mathcal{P}_1 and \mathcal{P}_2 are defined on the same set of instances
- ▶ Positive instances of \mathcal{P}_1 are negative instances of \mathcal{P}_2
- ▶ Negative instances of \mathcal{P}_1 are positive instances of \mathcal{P}_2

Notation: $\mathcal{P}_1 = \overline{\mathcal{P}_2}$

Prime Numbers

▶ Given $n \in \mathbb{N}$, is there $m \in \mathbb{N}$, $m \neq 1$, $m \neq n$, s.t. m divides n?

This problem is the complement of the prime number problem.

Halting Problem

Is there a Turing machine \mathcal{H} which has two parameters:

- ► A Turing machine *M*
- ► An input i of \mathcal{M}

and which returns

- ▶ YES when \mathcal{M} stops on i
- ▶ NO when \mathcal{M} loops on i

If there is such a machine, then Halting problem is decidable; otherwise, it is undecidable

Halting Problem

Is there a Turing machine \mathcal{H} which has two parameters:

- ► A Turing machine M
- ▶ An input i of \mathcal{M}

and which returns

- ▶ YES when \mathcal{M} stops on i
- ▶ NO when \mathcal{M} loops on i

If there is such a machine, then Halting problem is decidable; otherwise, it is undecidable

Result from [Turing 1936]

Halting is undecidable

Reducing a Problem to Another

Functional Reduction

A functional reduction f is a total computable function from a problem \mathcal{P}_1 to a problem \mathcal{P}_2 such that, for any instance i of \mathcal{P}_1 , i is a positive instance iff f(i) is a positive instance of \mathcal{P}_2 Notation:

$$\mathcal{P}_1 \leq_f \mathcal{P}_2$$

Reducing a Problem to Another

Functional Reduction

A functional reduction f is a total computable function from a problem \mathcal{P}_1 to a problem \mathcal{P}_2 such that, for any instance i of \mathcal{P}_1 , i is a positive instance iff f(i) is a positive instance of \mathcal{P}_2 Notation:

$$\mathcal{P}_1 \leq_f \mathcal{P}_2$$

Theorem

If $\mathcal{P}_1 \leq_f \mathcal{P}_2$ and \mathcal{P}_1 is undecidable, then \mathcal{P}_2 is undecidable

(Trivial) Example of Functional Reduction

- ▶ \mathcal{P}_1 : Given $n \in \mathbb{N}$, is n even?
- ▶ \mathcal{P}_2 : Given $n \in \mathbb{N}$, is n odd?
- ▶ $f: \mathbb{N} \to \mathbb{N}$ is defined by f(n) = n + 1

(Trivial) Example of Functional Reduction

- ▶ \mathcal{P}_1 : Given $n \in \mathbb{N}$, is n even?
- ▶ \mathcal{P}_2 : Given $n \in \mathbb{N}$, is n odd?
- ▶ $f: \mathbb{N} \to \mathbb{N}$ is defined by f(n) = n + 1

For a positive instance i of \mathcal{P}_1 , f(i) is a positive instance of \mathcal{P}_2 . For a negative instance i of \mathcal{P}_1 , f(i) is a negative instance of \mathcal{P}_2 .

(Trivial) Example of Functional Reduction

- \triangleright \mathcal{P}_1 : Given $n \in \mathbb{N}$, is n even?
- ▶ \mathcal{P}_2 : Given $n \in \mathbb{N}$, is n odd?
- ▶ $f : \mathbb{N} \to \mathbb{N}$ is defined by f(n) = n + 1

For a positive instance i of \mathcal{P}_1 , f(i) is a positive instance of \mathcal{P}_2 . For a negative instance i of \mathcal{P}_1 , f(i) is a negative instance of \mathcal{P}_2 . So $\mathcal{P}_1 \leq_f \mathcal{P}_2$

(Trivial) Example of Functional Reduction

- ▶ \mathcal{P}_1 : Given $n \in \mathbb{N}$, is n even?
- ▶ \mathcal{P}_2 : Given $n \in \mathbb{N}$, is n odd?
- ▶ $f : \mathbb{N} \to \mathbb{N}$ is defined by f(n) = n + 1

For a positive instance i of \mathcal{P}_1 , f(i) is a positive instance of \mathcal{P}_2 .

For a negative instance i of \mathcal{P}_1 , f(i) is a negative instance of \mathcal{P}_2 .

So $\mathcal{P}_1 \leq_f \mathcal{P}_2$

Here we also have $\mathcal{P}_2 \leq_f \mathcal{P}_1$; this is trivial since these are decidable problems.

A Less Trivial Example

Language

$$\mathcal{L}_1 = \{ \mathcal{M} \mid \mathcal{M} \text{ halts on } \epsilon \}$$

with ϵ the empty word. Is \mathcal{L}_1 decidable?

A Less Trivial Example

Language

$$\mathcal{L}_1 = \{ \mathcal{M} \mid \mathcal{M} \text{ halts on } \epsilon \}$$

with ϵ the empty word. Is \mathcal{L}_1 decidable?

Proof of Undecidability

We need a mapping $f:(\mathcal{M},x)\mapsto \mathcal{M}'$ s.t. $(\mathcal{M},x)\in \mathsf{Halting}$ iff $\mathcal{M}'\in\mathcal{L}_1$

A Less Trivial Example

Language

$$\mathcal{L}_1 = \{ \mathcal{M} \mid \mathcal{M} \text{ halts on } \epsilon \}$$

with ϵ the empty word. Is \mathcal{L}_1 decidable?

Proof of Undecidability

We need a mapping $f:(\mathcal{M},x)\mapsto \mathcal{M}'$ s.t. $(\mathcal{M},x)\in \mathsf{Halting}$ iff $\mathcal{M}'\in\mathcal{L}_1$

- $ightharpoonup \mathcal{M}'_{x}(y) = \mathcal{M}(x.y)$ with x.y the concatenation of words
- $ightharpoonup \mathcal{M}_X'(\epsilon) = \mathcal{M}(X)$, so obviously:
 - ▶ If \mathcal{M} halts on x, then \mathcal{M}'_x halts on ϵ
 - ▶ If \mathcal{M} loops on x, then \mathcal{M}'_x loops on ϵ

« Algorithmic » Proof

If \mathcal{P}_1 is known to be undecidable, we can prove that \mathcal{P}_2 is undecidable with an algorithm which computes \mathcal{P}_1 using only « simple » steps and calls to \mathcal{P}_2

« Algorithmic » Proof

If \mathcal{P}_1 is known to be undecidable, we can prove that \mathcal{P}_2 is undecidable with an algorithm which computes \mathcal{P}_1 using only « simple » steps and calls to \mathcal{P}_2

Remember: $\mathcal{L}_1 = \{\mathcal{M} \mid \mathcal{M} \text{ halts on } \epsilon\}$. Suppose that $\mathcal{M}_{\mathcal{L}_1}$ is a Turing Machine which decides \mathcal{L}_1 .

Algorithm 2 Halting

```
Input: \mathcal{M}, x = x_0 x_1 \dots x_n

if x = \epsilon then

return \mathcal{M}_{\mathcal{L}_1}(\mathcal{M})

else

x' = x_1 \dots x_n

\mathcal{M}' = \mathcal{M} with q_0 replaced by \delta(q_0, x_0)

return \mathsf{Halting}(\mathcal{M}', x')

end if
```


« Algorithmic » Proof

If \mathcal{P}_1 is known to be undecidable, we can prove that \mathcal{P}_2 is undecidable with an algorithm which computes \mathcal{P}_1 using only « simple » steps and calls to \mathcal{P}_2

Remember: $\mathcal{L}_1 = \{\mathcal{M} \mid \mathcal{M} \text{ halts on } \epsilon\}$. Suppose that $\mathcal{M}_{\mathcal{L}_1}$ is a Turing Machine which decides \mathcal{L}_1 .

Algorithm 3 Halting

```
Input: \mathcal{M}, x = x_0 x_1 \dots x_n

if x = \epsilon then

return \mathcal{M}_{\mathcal{L}_1}(\mathcal{M})

else

x' = x_1 \dots x_n

\mathcal{M}' = \mathcal{M} with q_0 replaced by \delta(q_0, x_0)

return \mathsf{Halting}(\mathcal{M}', x')

end if
```


« Algorithmic » Proof

If \mathcal{P}_1 is known to be undecidable, we can prove that \mathcal{P}_2 is undecidable with an algorithm which computes \mathcal{P}_1 using only « simple » steps and calls to \mathcal{P}_2

Remember: $\mathcal{L}_1 = \{\mathcal{M} \mid \mathcal{M} \text{ halts on } \epsilon\}$. Suppose that $\mathcal{M}_{\mathcal{L}_1}$ is a Turing Machine which decides \mathcal{L}_1 .

Algorithm 4 Halting

```
Input: \mathcal{M}, x = x_0 x_1 \dots x_n

if x = \epsilon then

return \mathcal{M}_{\mathcal{L}_1}(\mathcal{M})

else

x' = x_1 \dots x_n

\mathcal{M}' = \mathcal{M} with q_0 replaced by \delta(q_0, x_0)

return \mathsf{Halting}(\mathcal{M}', x')

end if
```

How to Prove Decidability?

 $\blacktriangleright \ \ \text{Prove} \ \mathcal{P}_1 \leq_{\mathit{f}} \mathcal{P}_2 \ \text{with} \ \mathcal{P}_2 \ \text{decidable}, \ \text{then} \ \mathcal{P}_1 \ \text{is decidable}$

How to Prove Decidability?

- ▶ Prove $\mathcal{P}_1 \leq_f \mathcal{P}_2$ with \mathcal{P}_2 decidable, then \mathcal{P}_1 is decidable
- Write an algorithm which solves your problem with only « simple » steps!

Of course, the more complex is the algorithm, the less easy it is to be sure that it is correct :(

How to Prove Decidability?

- ▶ Prove $\mathcal{P}_1 \leq_f \mathcal{P}_2$ with \mathcal{P}_2 decidable, then \mathcal{P}_1 is decidable
- Write an algorithm which solves your problem with only « simple » steps!

Of course, the more complex is the algorithm, the less easy it is to be sure that it is correct :(

Example: Is $n \in \mathbb{N}$ a prime number?

```
Input: n \in \mathbb{N}

for x \in \{2, ..., \lfloor \sqrt{n} \rfloor \} do

if \exists y \in \mathbb{N} s.t. n = x \times y then

return false

end if

end for
```

Algorithm 7 Prime

return true

- [Turing 1936] A. M. Turing, *On computable numbers, with an application to the Entscheidungsproblem.* Proceedings of the London Mathematical Society, 1936.
- [Church 1936] A. Church, *An unsolvable problem of elementary number theory*. American Journal of Mathematics, 1936.
- [Kolmogorov and Uspensky 1958] A. N. Kolmogorov and V. Uspensky, *On the definition of an algorithm*. Uspekhi Mat. Naut, 1958.
- [Schönhage 1980] A. Schönhage, *Storage modification machines*. SIAM Journal on Computing, 1980.