AL-TR-90-004

AD:

Final Report for the period September 1986 to November 1989

New High Energy Density Small Ring Systems

4D-A231 309

December 1990

Author: K. Lammertsma University of Alabama at Birmingham Department of Chemistry UAB Station Birmingham AL 35294

F04611-86-K-0073

Approved for Public Release

Distribution is unlimited. The AL Technical Services Office has reviewed this report, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nationals.

Prepared for the: Astronautics Laboratory (AFSC)

Air Force Space Technology Center

Space Systems Division Air Force Systems Command Edwards AFB CA 93523-5000

NOTICE

When U.S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any way licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may be related thereto.

FOREWORD

This final report was submitted by University of Alabama at Birmingham, Department of Chemistry, Birmingham AL on completion of contract F04611-86-K-0073 with the Astronautics Laboratory (AFSC), Edwards Air Force Base, CA. AL Project Manager was Lt Pete Dolan.

This report has been reviewed and is approved for release and distribution in accordance with the distribution statement on the cover and on the DD Form 1473.

PETE DOLAN, 1LT, USAF

Project Manager

STEPHEN I. PONCERS

Chief, Applied Research in Energy

Storage Office

FOR THE DIRECTOR

ROBERT C. CORLEY

Director, Astronautical Sciences

Division

REPORT DOCUMENTATION PAGE					Form Approved OMB No. 0704-0188	
ORT SECURITY CLASSIFICATION		16 RESTRICTIVE MARKINGS				
CLASSIFIED		<u> </u>				
URITY CLASSIFICATION AUTHORITY			V/AVAILABILITY	-		
CLASSIFICATION / DOWNGRADING SCHE	DULE		for Public tion is unl		2 ;	
ORMING ORGANIZATION REPORT NUM	MBER(S)	5. MONITORING	ORGANIZATION	REPORT NU	IMBER(S)	
		AL-TR-90			·	
ME OF PERFORMING ORGANIZATION	6b. OFFICE SYMBOL	7a. NAME OF M	ONITORING ORG	ANIZATION		
rersity of Alabama	(If applicable)					
3irmingham		Astronau	tics Labora	tory (AF	FSC)	
DRESS (City, State, and ZIP Code)		7b. ADDRESS (C	ity, State, and ZIF	Code)		
artment of Chemistry		AL/LSX				
Station		Edwards	AFB CA 9352:	3-5000		
ningham AL 35294		<u> </u>				
ME OF FUNDING / SPONSORING GANIZATION	8b. OFFICE SYMBOL (If anolicable)	9. PROCUREMEN	IT INSTRUMENT I	DENTIFICAT	ION NUMBER	
GANIZATION	(If anywable)	F04611-8	6-K-0073			
DRESS (City, State, and ZIP Code)		10. SOURCE OF	FUNDING NUMBE	RS		
		PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO	WORK UNIT ACCESSION NO.	
		62302F	5730	00		
'LE (Include Security Classification)		1 023021	7730	1 00) WR	
RSONAL AUTHOR(S) mertsma, K. YPE OF REPORT 13b. TIME	COVERED	14. DATE OF REPO	ORT (Year Month	. Dav) 15.	PAGE COUNT	
1 FROM <u>8</u>	•	9012	(1001,11101,111	,,,,,,	41	
PPLEMENTARY NOTATION endices A-F are reproduce ence Publishers, B.V.	d by permission o	f the Americ	an Chemical	Societ	y and Elsevier	
COSATI CODES	18 SUBJECT TERMS (Tetraatomics,	Continue on rever	se if necessary an	nd identify i	by block number)	
ELD GROUP SUB-GROUP	Tetraatomics,	dicarbides,	diborides,	cluster	s, potential	
704	energy surface	, energy sto	rage, speci	.Ilc lmp	uise, bond-	
2109	stretch isomer		2562, 64,	2312,	13 ⁿ , nebe,	
STRACT (Continue on reverse if necessa	ry and identify by block n	umber)				
A theoretical research inven in order to find propel as show that the rhombic go dicarbides and diborides nerism, bonding pattern chargy - 87 kcal/mole to 122k	lants with revolu eometry is a glob composed of H, L ange, these rhomb cal/mole. Only i	tionary perf al minima or i, Be, B, C, ic species on the case o	formance. In the potent, and Si. Et an store sind B ₂ Be ₂ was	The ab itial ene By means Egnifica on the te	nitio calcula- rgy surface of of bond-stretch nt amounts of trahedral form	
e stable. All of the four provide high specific impu	1	nd stable by			n are estimated	
Accession Number: 342390						
STRIBUTION / AVAILABILITY OF ABSTRAC		21. ABSTRACT SE	CURITY CLASSIFIC	CATION		
INCLASSIFIED/UNLIMITED SAME A	S RPT. DTIC USERS	UNCLASSI				
AME OF RESPONSIBLE INDIVIOUAL			(Include Area Cod			
DOLAN, 2Lt, USAF		(80 <u>5</u>) 275-	5/60	AJ	L/LSX	

TABLE OF CONTENTS

INTRODUCTION	1
Energies of Four-Membered Ring Structures	1
Rhombic Tetracarbon, C ₄	2
Diprotonated Rhombic C ₄	3
TECHNICAL DISCUSSION	4
RHOMBIC STRUCTURES - Structures and Energies	4
Tetraatomic Dicarbides	4
Tetraatomic Diborides	6
BONDING PATTERNS	6
Dicarbides	8
C ₄ in more detail	11
Diborides	11
TETRAHEDRAL STRUCTURES	13
ESTIMATED SPECIFIC IMPULSES	13
CLUSTER MOLECULES - Potential Energy Surfaces	15
Disilicondicarbide, Si ₂ C ₂	15
Diberylliumdiboride, B ₂ Be ₂	17
Dilithiodiboride, B ₂ Li ₂	18
The Li ₃ H Ion-Pair	21
BOND-STRETCH ISOMERISM	21
HYDROGENATED TETRAATOMICS	23
Hydrogenated Diberyllium Diboride, B ₂ Be ₂ H ₂	23
Dialane(6), Al ₂ H ₆ , and Digallane(4), Ga ₂ H ₄	24
CONCLUSIONS AND RECOMMENDATIONS	27
REFERENCES	29
APPENDIX A - Publications	A-1

SUMMARY

Theoretical ab initio calculations have been carried out on tetraatomic systems in the search for advanced chemical propellants. In the approach to identify systems with revolutionary specific impulses ($I_{sp} > 500 \text{ sec}$) we concentrated on molecular systems that are (a) composed of elements with high combustion energies, (b) that have a high degree of unsaturation (H-deficient), and (c) are very strained (inverted geometries of carbon and boron). The research efforts were focussed on cyclic tetraatomics to develop an understanding of their structural, energetic, and electronic properties.

The rhombic forms of C_4 , C_4H^+ , and $C_4H_2^{2+}$ were used as parent molecules. Although the linear triplet C_4 form has been observed, there are experimental indications for the excistance of a rhombic isomer (the two structure are of equal stability). However, for the diprotonated species the coexistence of the linear and rhombic forms in the gasphase is unequivocal and based on charge separations that give excellent agreement with theoretical data. The estimated heat of formation of 726 kcal/mol for rhombic $C_4H_2^{2+}$ is one of the highest for a dication.

The question has been addressed whether other elemental combinations could render similar systems of high energy. Related to this question we have developed an understanding of the bonding pattern of these molecules and how their energy content may be manipulated.

A survey of light four-atom systems at the HF/6-31G* level of theory has been conducted on dicarbides and diborides with ligands ranging from Li, Be, BeH, BH, C, CH, AlH, to Si. Of the dicarbides 24 different rhombic structures are minima on the potential energy surface and 21 diborides have been characterized as are minima. While the distance between the bridgehead carbons (borons) is virtually constant throughout all dicarbides (diborides) their bonding varies significantly. To evaluate the viability of rhombic forms also tetrahedral diboride combinations have been explored. Of the 24 diborides only three light elemental combinations are minima. These are B₂Li₂, B₂Be₂, and B₂Be₂H⁻.

To inspect in more detail the theoretical levels required to describe rhombic tetraatomics and to evaluate their energic properties, full potential energy surface scans have been performed on C₂Si₂, B₂Be₂, and B₂Li₂. The latter two light element systems have eslimated I_{sp} values of 646 and 531 sec, respectively. These values are based on MP4/6-31G* binding energies. The calculations show that electron correlation has a large influence on the relative stabilities and binding energies, but only marginally influences the geometrical parameters of isomeric structures. To inspect the chemical properties of such systems toward hydrogen, we have investigated the potential energy surface of B₂Be₂H₂.

Bonding patterns have been evaluated by analysis of the electron densities. It has been found that no transannular bond exists between the 1.523 Åseparated bridgehead carbons of C_4 . However a small reduction in length results in CC bond formation, or conversely lengthening the CC distance results in further depletion of electron density in the center of the rhombic structure as is the case in C_4H^+ and $C_4H_2^{2+}$.

Because of the variation in bridgehead CC (and BB) overlap, and the notable lack of a CC bond in C₄, we have investigated whether breaking of the transannular CC (and BB) bond can render vibrational stable species of higher energy. Such a mechanism, bond stretch isomerism, has been found in several systems. In the case of C₂Si₂, which is isovalent with C₄, such a rhombic structure is found 78 kcal/mol higher in energy than the global rhombic minimum. Similarly, in the case of B₂Be₂ a rhombic form is found 60.6 kcal/mol higher in energy than the global minimum. The barrier for interconversion between the two rhombic structure has not been determined but is estimated to be high because it would represent a symmetry forbidden process. This may suggest that the high energy rhombic forms have substantial kinetic stability.

Structures containing lithium atoms like B₂Li₂ have ionic bonds. Therefore the properties of B₂Li₂ and B₂Be₂ differ greatly. In collaboration with Michels we investigated how ionic complexes may render high energy materials. It was found that in the Li₃H the H⁻ anion is complexed to the side of triangular Li₃⁺ cation unit (i.e. rendering rhombic Li₃H), thereby leaving the properties of this Li₃⁺ cation unit in tact.

An investigation exploring the potential of briding diboride units with Al atoms has been initiated. Because of the general lack of theoretical information available on Al-Al interactions, as compared with that on B-B bonds, exploratory studies have been conducted on Al₂H₆ as well as on the recently observed Ga₂H₆ and Ga₂H₄. These studies focussed on determining binding energies and the influences governing ionic versus covalent bonding.

LIST OF FIGURES

Gradient vector field and the Laplacian concentration of	
the HF/6-31G* charge density of C ₂ Li ₂ , C ₂ Be ₂ , C ₂ B ₂ ,	
and C_4 .	9
Gradient vector field and the Laplacian concentration of	
the HF/6-31G* charge density of C ₄ (MP2), C ₄ H ⁺ , and	
$C_4H_2^{2+}$	10
Gradient vector field and the Laplacian concentration of	
the HF/6-31G* charge density of B ₂ Li ₂ , B ₂ Be ₂ , and B ₄ .	12
HF/6-31G* geometries of B ₂ Li ₂ isomers.	19
Plot of relative B ₂ Li ₂ energies basis set.	20
Molecular graph, gradient vector field, and the Laplacian	
concentration of the MP2/6-31+G* charge density of	
B_2Li_2 (11s).	22
	the HF/6-31G* charge density of C ₂ Li ₂ , C ₂ Be ₂ , C ₂ Be ₂ , and C ₄ . Gradient vector field and the Laplacian concentration of the HF/6-31G* charge density of C ₄ (MP2), C ₄ H ⁺ , and C ₄ H ₂ ²⁺ Gradient vector field and the Laplacian concentration of the HF/6-31G* charge density of B ₂ Li ₂ , B ₂ Be ₂ , and B ₄ . HF/6-31G* geometries of B ₂ Li ₂ isomers. Plot of relative B ₂ Li ₂ energies basis set. Molecular graph, gradient vector field, and the Laplacian concentration of the MP2/6-31+G* charge density of

LIST OF TABLES

1.	6-31G* energies (in a.u.), heats of formation (ΔH_f , in kcal/mol).	2
2.	Rhombic Dicarbides RHF/6-31G* Energies, NIMAG, and Geometrical Data.	5
3.	Rhombic Diborides RHF/6-31G* Energies, NIMAG, and Geometrical Data.	7
4 .	Tetrahedral Diborides RHF/6-31G* Energies, NIMAG,	
	and Geometrical Data.	14
5.	Estimated I _{sp} values. ^a	15
6.	Total (au) and Relative (kcal/mole) Energies of Li ₂ B ₂	
	Isomers	19
7.	MP2/6-31+G* Bond Properties for 11s and 12s	22
8.	Total (au) and Relative (kcal/mole) Energies of B ₂ Be ₂ H ₂	
	Isomers.	25

INTRODUCTION

For decades chemists have been intrigued by small ring compounds. Many studies have been devoted to highly strained, small hydrocarbons, carboranes, and silicon derivatives. Although giant steps have been made in materials science and there is an increasing understanding of Li clusters, B clusters, Be clusters, C clusters and Si clusters, the information concerning bonding and energetic properties of mixed cluster compounds remains very limited. In the past three years, we systematically investigated a series of over 50 tetraatomic diborides and dicarbides by ab initio molecular orbital theory. In this report, we describe the results of this theoretical survey study on potentially high energy four-membered ring compounds composed of the elements Li, Be, B, C, Al, and Si.

The foundation for developing high energy density systems is often based on:

- (a) increasing the unsaturation by stripping molecules of all their hydrogens.
- (b) increasing the strain energy by inverting the carbon (and boron) geometries.

For example, there are numerous strained hydrocarbons that have either inverted tetracoordinated (sp³) geometries⁴ or pyramidelized olefinic bonds. In this investigation, we
capitalized on the properties of inverted tricoordinated (sp²) boron and carbon atoms.⁵
Below follows a description which uses C₄ as an example of how we developed such unsaturated systems with inverted carbon geometries, to find highly energetic, yet stable,
strained ring systems.

Energetic Four-Membered Ring Structures; C₄.

The expected increase in energy on depletion of hydrogen from the cyclic C_4 -frame is evident from the HF/6-31G* data listed in Table 1. At this level of theory, the heat of formation ΔH_f° of rhombic C_4 (D_{2h}) is 228 kcal/mol (estimated from calculated heats of hydrogenation in combination with experimental reference points—). The deduction of this value includes corrections for Δ zero point energy, hydrogenation (each 6.4 kcal/mol), ΔH_f° (0-298°), and for differences (7 kcal/mol) between calculated and experimental values. The ΔH_f° value of 228 kcal/mol for rhombic C_4 (inverted sp²) is large compared to the heat of formation of 89 kcal/mol (HF/6-31G*) for stable [1.1.1]propellane (inverted sp³), which has a strain energy SE of 103 kcal/mol. The experimentally known $C_4H_2^{2+}$ dication, with the highest ΔH_f° of any cationic system (726 kcal/mol), provides further evidence of this contrast. In this investigation we made use of this contrast

TABLE 1. 6-31G* energies (in a.u.), heats of formation (ΔH_f , in kcal/mol), and strain energies (SE, in kcal/mol) for C₄ structures.

Compound	Formula	Energy	ΔH_f	SE
14,6	C ₄	-151.14598	228	
2^6	$C_4H_2^{2+}$	-151.53998	726	
Cyclobutadiene dication ⁷	$C_4H_4^{2+}$	-152.91650	623	
Bicyclo[1.1.0]butene ⁸	C_4H_4	-153.58016	142	127
1,3-Cyclobutadiene9	C_4H_4	-153.64120	103	65
Bicyclo[1.1.0]butane8	C_4H_6	-154.87176	51.9	65
Cyclobutene ¹⁰	C_4H_6	-154.89962	37.5	29
Cyclobutane ¹⁰	C_4H_8	-156.09703	6.8	26
Hydrogen ⁸	H_2	-1.12683		

between C₄ and [1.1.1]propellane to design over forty, stable, high energy, tetraatomic species.

Rhombic Tetracarbon, C4.

We⁶ and others¹³ have demonstrated that rhombic C_4 (1) is of nearly the same energy as triplet linear C_4 . The unusual stability of cyclic C_4 can be explained by inspection of its molecular orbital framework.⁶ The highest occupied molecular orbital, HOMO, is a non-bonding σ orbital between the bridgehead carbons with the electron density located outside the molecule. Hence, the HOMO does not contribute to ring strain. The stabilization of rhombic C_4 results from aromatic π bonding; a σ -bridged- π MO is also present. Besides its σ skeleton, the molecule has two lone electron pairs. In simple Lewis terms, the bonding of both bridgehead C atoms in C_4 can be described as follows: (a) two valence electrons are involved in ring C-C bonding, (b) the third electron participates in aromatic ring π bonding, while (c) the fourth electron is involved in σ nonbonding.

Scheme I. Inverted tetracoordinate geometries at carbon

Scheme II. Inverted tricoordinate geometries at carbon

Diprotonated Rhombic C4.

Our study on the $C_4H_2^{2+}$ dication underscores the validity of inverted planar tricoordinate carbons.⁶ Cyclic $C_4H_2^{2+}$ (2, D_{2d}) is only 13.3 kcal/mol (MP3/6-31G*) less
stable than its triplet linear diacetylenic isomer, despite the anticipated strong electrostatic charge-charge repulsion.^{12a} Both isomers have been observed in the gas phase.^{12a}
An alternative (but empirical) explanation for the stability of rhombic $C_4H_2^{2+}$ can be
given along the lines shown for strain build-up in saturated hydrocarbons, now adapted
for olefins (Scheme I and II). Stepwise replacement of the vicinal hydrogens from the parent
ethylene by CH⁺-groups gives either the cyclopropenyl cation or cyclic $C_4H_2^{2+}$, (note that
in this series the tricoordinate carbon is completely inverted, while the 2π stabilization is
maintained!).

TECHNICAL DISCUSSION

The question this investigation addressed is whether the inverted tricoordinate geometry concept developed for high energy density small ring hydrocarbons can be expanded to include other elements. There are two important aspects to consider.

- (a) Do the characteristics of an inverted planar tricoordinate carbon change using bridging elements other than carbon?
- (b) Can the bridgehead carbons be replaced by other elements while maintaining the high energy density properties of the system?

To address these questions we discuss a large number of tetraatomic rhombic and tetrahedral structures and will analyze several small clusters. These latter potential energy surface studies are presented in a summarized fashion. A complete ar alysis for each cluster is presented in the appendices, which have appeared or are to appear in the scientific literature.

RHOMBIC STRUCTURES — Structures and Energies

Tetraatomic Dicarbides. We have examined at the 6-31G* level of theory 25 rhombic dicarbides with ligands ranging from Li, Be, BH, C, AlH, and Si, in virtually all combinations. The data are listed in Table 2. This group of planar structures includes anions, cations, and dipolar molecules. Of these 25 dicarbides, 24 are minima on the 6-31G* potential energy surface, as indicated by the zero number of imaginary frequencies. These data strongly support the viability of rhombic structures that contain inverted tricoordinate carbons irrespective of the type of bridging ligand.

Similarly impressive in these dicarbides is their rather short C-C distance which has an average value of only 1.457 Å (dianions excluded). This is unexpected because of the range of bridging elements involved. Inspection of the Mulliken overlap population indeed shows that the nature of bonding between the carbons must vary significantly. Representative values are -0.236 for C₄H₂²⁺, -0.063 for C₄, and +0.306 for C₂Be₂. However, the Mulliken population analyses is subject to criticism, in particular for unsymmetrical bonding arrangements, and hence can not rigorously answer what types of bonding are operative in the dicarbides. We attempted Weinhold's superior Natural Bond Order approach, 14,15 but found too many complications in using this method due to ionicity in the rhombics. The Bader electron analysis, which we will describe in the following section on bonding patterns, allowed us to characterize the bonding in these molecules.

TABLE 2. Rhombic Dicarbides RHF/6-31G* Energies, NIMAG, and Geometrical Data.

Structure			Во	ond Distan	ices
X-C ₂ -Y	Energy	Nimag	CC	С—Х	C—Y
Li-(C ₂)-Li	-90.37222	0	1.249	2.108	2.108
$Li-(C_2)-Be$	-97.58752	0	1.436	1.907	1.571
$Li-(C_2)-BH$	-108.30443	0	1.426	1.881	1.472
$Li-(C_2)-CH$	-121.50728	0	1.470	1.968	1.348
Li-(C ₂)-C:	-120.84757	0	1.402	1.880	1.418
$Li-(C_2)-AlH$	-325.48897	1	1.374	1.922	1.899
$Be-(C_2)-Be$	-104.79129	0	1.459	1.565	1.565
$Be-(C_2)-BH$	-115.47831	0	1.445	1.558	1.473
$Be-(C_2)-CH$	-128.39388	0	1.484	1.619	1.345
$Be-(C_2)-C$:	-127.98366	0	1.418	1.563	1.421
$Be-(C_2)-AlH$	-332.67417	0	1.451	1.561	1.857
$BeH-(C_2)-BH$	-116.13470	0	1.449	1.670	1.45
$BeH-(C_2)-CH$	-129.26994	0	1.501	1.739	1.339
Beh- (C_2) -C:	-128.66892	0	1.433	1.677	1.408
$BeH-(C_2)-AlH$	-333.31024	0	1.419	1.683	1.853
$BH-(C_2)-BH$	-126.15541	0	1.470	1.470	1.470
$BH-(C_2)-CH$	-139.01220	0	1.529	1.526	1.345
BH-(C ₂)-C:	-138.65329	0	1.462	1.479	1.418
$BH-(C_2)-AlH$	-343.35876	0	1.449	1.470	1.848
$CH-(C_2)-CH$	-151.53998	0	1.593	1.386	1.386
$CH-(C_2)-C$:	-151.45693	0	1.520	1.352	1.472
$CH-(C_2)-AlH$	-356.27607	0	1 494	1.342	1.919
C:-(C ₂)-C:	-151.14598	0	1.457	1.425	1.425
$C:-(C_2)-AlH$	-355.86570	0	1.436	1.418	1.857
$AlH-(C_2)-AlH$	-560.55536	0	1.436	1.858	1.858
$:Si-(C_2)-Si:$	-653.41467	0	1.415	1.818	1.818
BH-(Si ₂)-BH	-628.24903	0	2.461	1.950	1.950
:C-(Si ₂)-C:	-649.77894	_	2.292	1.863	1.863
AlH-(Si ₂)-AlH	-1057 08620	_	2.628	2.337	2.337

Tetraatomic Diborides. We have examined at the HF/6-31G* level of theory 28 rhombic diborides with ligands ranging from Li, Be, BH, C, AlH, and Si, in virtually all combinations. The 6-31G* data for these systems, that contain two valence electrons less than the discussed dicarbides, are listed in Table 3. Like the planar dicarbides this group also includes anions, cations, and dipolar molecules. Of the 28 diborides, 21 are minima on the HF/6-31G* potential energy surface, as indicated by the zero number of imaginary frequencies; the other 7 are transition structures. Similar to the dicarbides these data support the viability of rhombic structures now containing inverted tricoordinate borons with a large variety of bridging ligands.

Considering the two-electron difference with dicarbides these diborides have a relatively short average B-B distance of 1.833 Å. However, as will be shown, the bonding nature of these systems is entirely different from that in the dicarbides.

BONDING PATTERNS

An understanding of the bonding nature in the rhombic structures can be obtained by analyzing the electron density (ρ) properties of these molecules. Prof. R.F.W. Bader of McMaster University was so kind to provide us with the software that his research group has developed. A detailed description of his method and its applications can be found in the literature (also Appendix C). However, a synopsis of the method assists in comprehending the figures in this report.

In short, the method is concerned with the electron density ρ although connections with molecular orbitals can be made. The programs EXTREME and PROAIM were interfaced with GAUSSIAN 86 and 88 and use the same basis sets. The properties of a molecular charge distribution, based on Bader's topological analysis of density of atoms in molecules, are summarized in terms of its critical points. These are points where the charge density is a maximum, a minimum, or a saddle of the gradient path of the gradient vector field i.e., $\nabla \rho = 0$. A critical point is characterized by the signs of its three principal curvatures of ρ i.e., λ_1 . λ_2 , and λ_3 . A bond critical point (3,-1) has a minimum (positive curvature) in ρ on the bond path connecting two nuclei and two negative curvatures in orthogonal planes; the charge density has the appearence of a saddle. Ring critical points (3,+1) have one negative and two positive curvatures. Three positive curvatures (3,+3) define a minimum (cage critical point). The (3,-3) critical point represents atoms or nuclear attractors ("pseudo atoms") where all curvatures are positive. In the figures presented the connectivity of atoms via bond critical points are given (the molecular graphs) in both plots of the gradient vector field, (which give the separation of atoms in molecules by

TABLE 3. Rhombic Diborides RHF/6-31G* Energies, NIMAG and Geometrical Data

Structure		Bond Distances					
$X-B_2-Y$	Energy	Nimag	В—В	ВХ	BY		
Li-(B ₂)-Li	-64.04676	0	1.540	2.197	2.197		
Be-(B ₂)-Be	-78.33038	0	2.013	1.760	1.760		
$Be-(B_2)-BeH$	-78.95048	1	1.888	1.755	1.862		
$Be-(B_2)-BH$	-89.03080	0	1.809	1.753	1.598		
Be-(B ₂)-CH	-102.02063	0	1.823	1.813	1.443		
Be-(B ₂)-C:	-101.63581	0	1.863	1.754	1.383		
$Be-(B_2)-AlH$	-306.22846	1	1.997	1.756	2.040		
$Be-(B_2)-Si$:	-352.67586	0	1.790	1.758	1.911		
$BeH-(B_2)-BH$	-89.67334	1	1.742	1.870	1.594		
$BeH-(B_2)-CH$	-102.86362	0	1.787	1.937	1.445		
BeH-(B ₂)-C:	-102.28936	0	1.765	1.906	1.39		
$BeH-(B_2)-AlH$	-306.86504	1	1.877	1.858	2.036		
$BeH-(B_2)-Si:$	-353.32652	1	1.734	1.881	1.920		
BH-(B ₂)-BH	-99.72164	0	1.690	1.604	1.604		
BH-(B ₂)-CH	-112.66014	0	1.719	1.658	1.444		
BH-(B ₂)-C:	-112.28438	0	1.645	1.642	1.399		
BH-(B ₂)-AlH	-316.93016	0	1.819	1.594	2.032		
BH-(B ₂)-Si:	-363.35948	0	1.683	1.607	1.941		
$CH-(B_2)-CH$	-125.29859	0	1.740	1.482	1.482		
$CH-(B_2)-C$:	-125.15331	0	1.623	1.464	1.460		
$CH-(B_2)-AlH$	-329.91335	0	1.848	1.440	2.102		
$CH-(B_2)-Si$:	-376.30524	0	1.726	1.442	2.047		
:C-(B ₂)-C:	-124.63404	1	1.752	1.420	1.420		
:C-(B ₂)-Si:	-375.93214	0	1.689	1.392	2.004		
:C-(B ₂)-AlH	-329.53246	0	1.813	1.382	2.037		
AlH-(B ₂)-AlH	-534.12534	1	1.996	2.037	3.553		
AlH-(B ₂)-Si:	-580.57306	0	1.778	2.037	1.910		
:Si-(B ₂)-Si:	-627.00013	0	1.666	1.947	1.910		

"zero flux" lines) and the Laplacian field of the charge density $\nabla^2 \rho$ (the sign of which also characterizes the polarity of a bond).

Tetraatomic Dicarbides. The variation of bonding possible in planar rhombic dicarbides can be illustrated in the neutral series C_2Li_2 , C_2Be_2 , C_2B_2 , and C_4 , which shows a gradual changeover from the fully ionic C_2Li_2 system to the covalently bonded C_4 . Figure 1 gives a representation of the gradient vector field of their charge density (HF/6-31G*) in terms of the paths traced out by the vectors $\nabla \rho$ and also displays the corresponding contour maps of the Laplacian of their charge density overlaid with bond paths.

The lithiums in C₂Li₂ are bonded to the center of the C-C bond. In fact, the C-C bond path has three bond critical points and two "pseudo atoms" (nuclear attractors, (3,-3)). This unusual behavior can be interpreted as a C-C triple bond with a long path of virtually constant electron density. Recently, pseudo atoms were also found in studies by Bader and Gatti on Li and Na clusters. 17 They argued tentatively that these nuclear attractors may be associated with metallic behavior. However, our observations of these (3,-3) critical points in dicarbides and diborides (vida infra) may indicate a more universal behavior. In replacing Li for Be to give C₂Be₂, bond paths are found at the circumference of the rhombic structure, although there remains a high degree of ionicity. The results on C₂Be₂ agree with those reported by Cremer and Schleyer. ¹⁸ The difference between C₂B₂ and C4 reveals an interesting feature. While the zero-flux line of the bridging ligand in C₂B₂ is clearly defining the boron, in C₄ it is penetrating the rhombic structure. In fact, the two ring critical points (3,+1) and the bond critical point (3,-1) of the bridgeheadbridgehead C-C bond path in C₄ nearly coalesce, an observation also made by Ritchie. 19 Evidently, the center of C₄ represents a near catastrophy point. This means that a small perturbation of C₄ can eliminate bonding between the bridgehead carbons, despite their short 1.457 Å (HF/6-31G*) separation.

The change in bonding between the bridgehead carbons becomes even more pronounced in comparing the series C_4 , C_4H^+ , and $C_4H_2^{2+}$. Their 6-31G* transannular C-C distance are 1.523 (MP2), 1.520 (HF), and 1.593 Å (HF), respectively. The Laplacian of ρ for these systems are shown in Figure 2. From this Figure it is quite clear that there is electron depletion in the center of $C_4H_2^{2+}$ and consequently this structure does not possess a transannular C-C bond.

Figure 1. Gradient vector field and the Laplacian concentration of the HF/6-31G* charge density of C2Li2, C2Be2, C2B2, and C4.

Figure 2. Gradient vector field and the Laplacian concentration of the HF/6-31G* charge density of CA (MP2), CAH+, CAH2++

 C_4 in more detail. Because of the crucial position of C_4 in the discussed series of rhombic dicarbides, we wanted to study its properties in more detail. As mentioned, it seems that at the HF/6-31G* level of theory the transannular C-C interaction changes from multiple C-C bonding in C_2Li_2 to no C-C bonding in $C_4H_2^{2+}$. Because C_4 is the structure where this C-C bonding is lost (or formed), it seemed to us that an analysis of C_4 at higher levels of theory was desired. A brief summary of this study follows. The full analysis is given in a draft manuscript²⁰ in Appendix A.

The molecular orbital and topological electron density analysis of the MP2(Full)/6-31G* optimized rhombic C₄ structure shows that there is no transannular C-C bond despite the 1.523 Å separation between the inverted tricoordinate carbons. The peripheral bonds are short (1.451 Å, bond order = 1.15) due to strong surface (σ) and π -delocalization. This contrasts with [1.1.1]propellane, which at the same level of theory, does have bonding between the inverted tetracoordinate carbons which are separated by 1.592 Å.

Diborides. To demonstrate the difference in bonding behavior of diborides and dicarbides, we have analyzed the electron density properties of the planar rhombic forms of B_2Li_2 , B_2Be_2 , and B_4 . Figure 3 displays the gradient vector field of their charge density in terms of the paths traced out by the vectors $\nabla \rho$ (left), while the contour maps of the Laplacian of their charge density overlaid with bond paths are given on the right hand side.

Some remarkable features are apparent. In the diborides the borons are bonded with two bond critical points (3,-1) located either on the same B-B bond path (separated by a pseudo atom) or on two separate B-B bond paths.

In the case of the covalent B₄ structure, the four ring B-B bond paths have two bond critical points each. The center of the molecule shows a depletion of charge with no bonding between the atoms (instead it is a (3,+1) ring critical point). The bonding pattern in planar B₂Be₂ is different. The two borons are bonded by two curved bond paths with an "electron density hole" (i.e., a (3,+1) ring critical point) in the center. The molecule contains four conventional, although slightly polarized B-Be bonds. A combination of some of the B₄ and B₂Be₂ features is found in B₂Li₂. This cluster has two highly curved B-B bond paths, each containing two bond critical points. The center between the borons also contains a bond critical point which connects the "pseudo atoms" on the two B-B bond paths, to which also the two lithiums are bonded. This structure has no bonding at the circumference and is highly ionic.

Figure 3. Gradient vector field and the Laplacian concentration of the HF/6-31G* charge density of B₂Li₂, B₂Be₂, and B₄.

This analysis and the comparison with diborides makes clear that these tetraatomic diboride clusters have special bonding features, which were as of yet undiscovered. In our opinion we have just scratched the surface of the bonding features possible for boron based clusters. A more detailed study of B₂Be₂ and B₂Li₂ is given in section 2.5.2 and 2.5.3, respectively.

TETRAHEDRAL STRUCTURES

Light elemental clusters, like the tetraatomic Be₄, may form tetrahedral structures (vida infra). Because several rhombic species were calculated to be transition structures we decided to evaluate tetrahedral diboride structures, which can also be considered as high density species. An incentive for this study was also provided by the fact that the above discussed rhombic structures are not necessarily the global minima. For example, linear triplets can be energetically competitive as in C₄, C₄H⁺, and C₄H₂²⁺, (all 16 valence electrons)⁶ and even be strongly preferred as in the 12 valence electron C₂Be₂. The lighter 10 valence electron ionic dilithiodicarbide C₂Li₂, however, has again a rhombic structure. Although, Li₄ is also a planar rhombic (in sharp contrast to H₄), a higher energy tetrahedral form is also feasible.

We calculated 24 tetrahedral-like diborides at the HF/6-31G* level of theory. Their geometries and energies are listed in Table 4. Of the 24 structures 3 are minima (B₂Li₂, B₂Be₂, and B₂Be₂H⁻) and 16 are transition structures. This data shows that densily packed tetrahedral structures are preferred for certain light elemental combinations.

ESTIMATED SPECIFIC IMPULSES

Having established that rhombic carbon structures are of high energy, and having determined that indeed a large variety of tetraatomic rhombic and some tetrahedral clusters are minima (but not necessarily global minima) on the potential energy surface, a crude estimate of their specific impulses can be obtained with the following formula:

$$I_{sp} = 265 \times \sqrt{[(\text{heat of formation})/(\text{mol. weight})]}$$

The heat of formation is estimated from our ab initio calculated binding energy and the heats of formation of gaseous atoms from elements in their standard states. In Table 5 ab initio energies (MP4 and HF/6-31G*) of rhombic structures are used except for B₂Be₂ for which the more stable tetrahedral-like isomer was used (vida infra).

 ${\bf TABLE~4.~Tetrahedral~Diborides~RHF/6-31G^*~Energies,~NIMAG~and~Geometrical~Data.}$

Structure				Bond D	istances	
X-B ₂ -Y	Energy	Nimag	В—В	BX	В—Ү	XY
Li-(B ₂)-Li	-64.06043	0	1.548	2.252	2.252	3.504
$Be-(B_2)-Be$	-78.37354	0	1.548	1.772	1.772	2.156
$Be-(B_2)-BeH$	-79.01726	0	1.529	1.802	1.926	2.447
$Be-(B_2)-BH$	-88.99520	1	1.520	1.764	1.653	2.131
$Be-(B_2)-CH$	-101.87523	1	1.447	1.962	1.717	1.571
$Be-(B_2)-C$:	-101.50896	1	1.484	2.102	1.511	1.557
$Be-(B_2)-AlH$	-306.26094	1	1.544	1.766	2.049	2.554
$Be-(B_2)-Si:$	-352.64423	1	1.524	1.763	1.993	2.569
$BeH-(B_2)-BH$	-89.64323	2	1.531	1.903	1.625	2.226
$BeH-(B_2)-CH$	-102.74791	2	1.525	2.173	1.480	1.852
$BeH-(B_2)-AlH$	-306.90465	1	1.535	1.927	1.994	2.752
$BH-(B_2)-BH$	-99.59929	2	1.567	1.656	1.656	1.908
$BH-(B_2)-CH$	-112.51562	1	1.427	1.884	1.675	1.450
BH-(B ₂)-AlH	-316.87552	1	1.528	1.660	2.038	2.404
BH-(B ₂)-Si:	-363.24008	2	1.445	1.844	2.259	1.945
$CH-(B_2)-CH$	-125.16082	1	1.447	1.716	1.716	1.340
$CH-(B_2)-C$:	-125.00759	1	1.430	1.682	1.687	1.342
$CH-(B_2)-AlH$	-329.75801	1	1.500	1.502	2.246	2.129
CH-(B ₂)-Si:	-376.15976	1	1.433	1.654	2.332	1.826
$:C-(B_2)-C:$	-124.61891	2	1.407	1.750	1.750	1.383
$:C-(B_2)-AlH$	-329.40172	1	1.488	1.516	2.405	1.814
AlH-(B ₂)-AlH	-534.14341	1	1.538	2.043	2.043	2.912
AlH-(B ₂)-Si:	-580.52553	1	1.526	2.040	1.997	2.823
:Si-(B ₂)-Si:	-626.90122	1	1.458	2.135	2.135	2.364

TABLE 5. Estimated I_{sp} values.^a

System	Binding Energy (kcal/mol)		Specifi	c Impulse
			(sec)
	MP4	HF	MP4	HF
B_2Li_2	178.5	87.8	591	727
B_2Be_2	195.4	122.7	646	738
C_4	576.4	496.8	399	524
C_2Si_2	379.0	415.5	396	354

These data confirm our supposition that rhombic structures indeed have large estimated I_{sp} values and that, as expected, they are largest for those systems that are composed of elements with the highest combustion energies. The data for B_2Li_2 and B_2Be_2 also demonstrate the significant influence of electron correlation in determining calculated binding energies. Therefore, the given I_{sp} values are only rough estimates, because of the direct relationship between the estimated magnitude of the specific impulse and the accuracy of the calculated binding energy.

CLUSTER MOLECULES - Potential Energy Surfaces

In this section we elaborate in more detail the potential energy surfaces for a selected group of tetraatomics. Although we have demonstrated that most rhombic structure are viable species (minima), it is also apparent that they need not be the global minima. To further evaluate the potential of rhombic (or tetrahedral) species for consideration as high energy density systems, it is relavant to investigate more fully the structures of certain elemental combinations. We report here our analysis of C_2Si_2 , B_2Be_2 , B_2Li_2 , and Li_3H , which cover a group of widely different species ranging from light to heavy elemental combinations.

Disilicondicarbide, Si_2C_2 . Our first objective was to investigate a binary cluster for its structural, energetic, and electronic properties. As already noted, the 16 valence electron C_4 shows a slight preference for the rhombic over linear structure, which reverses on mono- and diprotonation to C_4H^+ and to $C_4H_2^{2+}$. In contrast, the related 16 electron Si_4 strongly favors a rhombic form, with its 20 electron tetraanion Si_4^{4-} fragment being tetrahedral. It is well recognized that the bonding properties of silylenes differ significantly from those of the corresponding carbon compounds. It this then relavant to investigate the properties of a mixed cluster that contains both C and Si. We give here a very brief summary of our investigation of the potential energy surface for the C_2Si_2

system. A full description of this work has appeared in the literature²⁴ and is attached in appendix B.

The structures and energies of the binary disilicon dicarbide C₂Si₂ in the lowest singlet (s) and triplet (t) states (14 isomers) were investigated by ab initio MO theory. Full fourth-order Møller-Plesset (MP4) perturbation theory was employed on seven HF/6-31G* optimized geometries. Rhombic dicarbide 3s is the global minimum and 8.5 kcal/mol more stable than the rhomboidal structure 4s, which contains an inverted tricoordinate carbon as well as an inverted tricoordinate silicon. Both cyclic structures are energetically favored over a linear triplet isomer 5t. Whereas the relative energies are very sensitive to electron correlation effects, addition of diffuse functions (MP2 and HF/6-31+G*) has little influence.

This study shows that disilicon dicarbide has similarities with the related C₄ and Si₄ but also that it is inherently more complex; an important aspect of this will be emphasized in section 2.6. We note that there is an isoelectronic relationship between 3s and the rhombic Al₂Si₂²⁻ fragment in the CaAl₂Si₂ material,²⁵ which is representive for a large class of solid Zintl complexes.²⁶ The rhomboidal structure 4s, with its mixed C/Si bonding, is also unique to binary clusters and similarly may well be an important structural type.

Diberylliumdiboride, B₂Be₂. This 10 valence electron species is composed of the two elements with the highest combustion energies. Because of its anticipated importance as a high energy material, B₂Be₂ was subjected to a full (singlet s and triplet t) potential energy surface study to characterize its global minimum, to determine its stability, and to investigate its binding energies and properties. Because of its smaller difference in elemental electron negativities than that in the isoelectronic dilithium dicarbide (C₂Li₂ has a preferred (6°) puckered rhombic structure)²¹ and the 12 val. el. diberyllium dicarbide C₂Be₂, ¹⁸ the properties of B₂Be₂ were expected to deviate from C₂Li₂ C₂Be₂, and other tetraatomics. Beryllium borides are known since the turn of the century with crystal structures (powder patterns) reported for BBe₆, BBe₃, BBe₂, B₂Be, B₄Be, B₆Be, B₈Be, B₁₀Be, and B₁₂Be with the noticable exception of B₂Be₂. Here we give here a very brief summary of our study of the B₂Be₂ system. A full analysis is given in Appendix C and is to appear in the literature.²⁸

The ab initio molecular orbital study of the 10 val. el. diberyllium diboride (B₂Be₂) potential energy hypersurface yields a singlet tetrahedrallike form 6s as the global minimum at the HF and MP2/6-31G* levels of theory. At MP4/6-31G* the energy difference of 6s with any other isomer is at least 30 kcal/mol; (high spin-contamination in triplet structures was ambilated). The topological electron density analysis, based on the theory of atoms in molecules, shows 6s to have its Be atoms polar π - complexed to the B-B bond with an angle of 80.1° between the π planes; despite the short 2.156 Å Be-Be distance, there is no Be-Be bond. The inversion barrier ($6s \rightleftharpoons 7s \rightleftharpoons 6s$) amounts to 11.7 kcal/mol at MP4/6-31G* + ZPE and 14.6 kcal/mol at MP2/6-311G(df) +ZPE. The D_{2h} st victures 7s and 8s are related by means of "bond-stretch" isomerism. The electron density analysis shows that the electron density is concentrated in the center of structures 7s whereas 8s shows a depletion of electron density in the center as compared to the periphery of this rhombic structure. The trapezoidal 9s and the Be-substituted B₂Be ring 10s are discussed for their structural and electronic properties. All B₂Be₂ structures show short B-B bonds (i.e., 1.549 Å for 6s, MP2/5-31G*) with the exception of 8s (1.869 Å, MP2/6-31G*). The effects of electron correlation on relative energies and binding energies is significant. The binding energy of the four elements in 6s is 204 kcal/mol and that of one beryllium in 6s is 76 kcal/mol (all MP4/6-31G*). A calculated specific impuls for 6s is given in section 2.4.

From this study we infer that the nature of bonding (covalent and ionic complexation) is an important aspect for the formation of large clusters that may form molecular solids. This supports the finding of Dr. Brener's at the Louisiane State University that larger clusters (molecular solids) of the tetrahedral B₂Be₂ unit cell are favorable.²⁵

Dilithiodiboride, B₂Li₂. Both finely dispersed Li and boron compounds are known to boost the performance of rocket fuels. Therefore, our next step was to investigate the properties of the even lighter tetraatomic system, the 8 val. el dilithio diboride B₂Li₂.

An ab initio molecular orbital study was performed on the B₂Li₂ singlet and triplet potential energy hypersurface. The singlet rhombic form 11s is the global minimum at the HF and MP4/6-31+G* levels of theory of the 10 isomers investigated. Figure 4 displays the HF/6-31G* optimized structures. At the correlated level this isomer is favored by 8.3 kcal/mol over the tetrahedral isomer and by at least 20 kcal/mol more than any other isomer. However, the data listed in Table 6 show a rather strong oscillation between the MP2, MP3, and MP4 relative energies for 11s and 12s, indicating that probably a multireference wave function is required for determination of accurate energies. The effects of electron correlation on all relative energies is very significant as graphically shown in Figure 5. A calculated specific impuls for 11s is given in section 2.4.

TABLE 6. Total (au) and Relative (kcal/mole) Energies of Li₂B₂ Isomers

	272				
11s -64.04 11t -64.05 12s -64.06 12t -64.08 13s -64.05 13t -64.03 14s -64.01 15t -64.07 16t -64.08 17t -64.06	$\begin{array}{cccc} 044 & -2.3 \\ 043 & -8.6 \\ 114 & -21.6 \\ 724 & -6.6 \\ 463 & 7.6 \\ 299 & 21.2 \\ 447 & -17.4 \\ 134 & -21.7 \end{array}$	(0) (0) (1) (1) (0) (2) (2) (2) (0) (0) (1)	2.03 2.25 2.03 2.21 2.05 2.05	-64.30754 -64.25693 -64.29335 -64.26819 -64.24349 -64.23644 -64.24051 -64.25147 -64.26682 -64.25268	0.0 31.8 8.9 24.7 40.3 44.6 42.1 35.2 25.6 34.4

Figure 4. HF/6-31G* geometries of B₂Li₂ isomers.

Figure 5. Plot of relative B2Li2 energies basis set.

The topological electron density analysis for the rhombic B_2Li_2 structure shows that the Li atoms complex ionicly to the B_2 -unit. This is evident from the gradient vector field and the Laplacian of ρ , which are displayed in Figure 6. The molecular graph for 11s, also displayed in Figure 6, shows a complex topology. This propably results from the use of a limited basis set $(MP2/6-31+G^*)$ to describe the electron density properties of the electron-rich B_2^{2-} group. The bond properties for 11s and 12s are listed in Table 7.

The Li₃H Ion-Pair This study was performed in collaboration with J.A. Montgomery and H.H. Michels of United Technology Reseach Center. Our interest in this 4 val. el. system relates to the chemistry of small clusters and ion-pair states. A full analysis of our study, which has appeared in the literature,³⁰ is given in Appendix D. A brief abstract of the work follows.

Ab initio calculations on Li₃H ion-pair states and a topological analysis of the charge density of the resulting optimized structures are reported. The global Li₃H minimum is a planar C_{2v} structure with H-Li₃+ ion-pair character. The pyramidal C_{3v} structure, which is 21.5 kcal/mol higher in energy (MP2/6-311++G**), is found to have ionic H-Li bonds, but no Li-Li bonds. Although vibrational analysis indicates this structure to be a true minimum on the potential energy surface, inclusion of the vibrational zero-point energy makes the thermodynamic stability of this structure questionable.

BOND-STRETCH ISOMERISM

In the course of this work we determined that many tetraatomic systems may have the properties of bond-stretch isomerism. We resorted to the C_2Si_2 and B_2Be_2 systems to analyze this phenomenon in more detail and to establish its value in small cluster molecules. The properties of the B_2Be_2 system have been fully analyzed in the already discussed B_2Be_2 potential energy surface study that is given in Appendix C.²⁸ The study of the bond stretch isomerism in C_2Si_2 is discussed separately in full detail in Appendix E. A brief abstract of this published research³¹ follows.

The differences in bonding and electronic properties between the MP2/6-31G* optimized disilicon dicarbide structures 3 and 18 can be related to bond stretch isomerism, which occurs through a level-crossing mechanism. Their energy differences are calculated to be 78.4 at the MP4 and 91.4 kcal/mol at GVB/6-31G*. Because of the symmetry forbidden transformation no barrier for this process was calculated. Electron density analysis indicates concentration of charge in the center of rhombic structure 3 with some multiple bonding character between its transannular carbons. In contrast, the higher energy isomer

Figure 6. Molecular graph, gradient vector field, and the Laplacian concentration of the MP2/6-31+G* charge density of B₂Li₂ (11s).

TABLE 7. MP2/6-31+G* Bond Properties for 11s and 12s

Struct./Crit.Pt.	Type	λ_1	λ_2	λ_3	ϵ	dir	$ ho({f r})$	$ abla^2 ho({f r})$	$H(\mathbf{r})$
11s a	[3,-1]	-1.21	-0.40	0.32	2.09	1	0.73	-1.28	-0.60
Ь	[3, -3]	-0.67	-0.64	-0.58	0.04		0.73	-1.89	-0.57
c	[3,-1]	-1.90	-0.65	0.67	1.94	Ï	0.73	-1.88	-0.61
d	[3,-1]	-0.80	-0.43	4.66	0.87	[[0.21	3.43	0.02
e		0.28	1.10	5.33	_	_	0.71	6.70	-0.56
f	[3,+1]	-1.55	0.76	3.20	_	-	0.71	3.41	-0.59
12s a	[3, -3]	-5.87	-3.10	-0.33	0.89	T	1.09	-9.29	-0.95
b	[3,-1]	-6.35	-3.05	2.92	1.08	\perp	1.08	-6.48	-1.13
c	[3,-1]	-0.65	-0.23	3.63	1.80	Τ	0.18	2.75	0.01

18 has a depletion of charge in the center relative to the circumference of the rhombic structure.

HYDROGENATED TETRAATOMICS

Another question we addressed concerns the effect of hydrogen substitution on small inorganic clusters. In contrast to the extensive literature on carbon systems, very little is known about the related inorganic systems. In light of the special bonding characteristics associated with B₂Be₂ (section 2.5.2) we decided to investigate the effect of its hydrogenation. Since boranes are energetic materials and because little is known about alanes we also explored Al₂H₆. The latter research is a first step to a closer investigation of rhombic and tetrahedral diborides with bridging aluminum ligands.

Hydrogenated Diberyllium Diboride, B₂Be₂H₂. An ab initio molecular orbital study was performed on the B₂Be₂H₂ singlet potential energy hypersurface. Structure 19 is the global minimum of the eight isomers analyzed. These eight HF/6-31G* optimized B₂Be₂H₂ structures are shown under Table 8 that lists their total and relative energies at the HF and MP4/6-31G* levels. At the correlated level 19 is energetically favored by at least 14 kcal/mol over any other isomer. It is also evident that the effect of electron correlation is much less pronounced than was the case in the hydrogen-void B₂Be₂ system. However, the geometries and the data listed in Table 8 also indicate special properties related to the hydrogenation of tetrahedral/rhombic B₂Be₂. For example, the energy difference between hydrogenation on the borons versus hydrogenation on beryllium (which formally become tricoordinate) amounts to only 15 kcal/mol.

It appears that hydrogenation of B₂Be₂ is preferred on both borons followed by hydrogenation on the two berylliums. The global minimum 19 can be regarded as a diborane(2)

complexed with two beryllium atoms. Consequently, structure 19 would also be a very energetic system. We anticipate that similar to the tetrahedral-like B₂Be₂ isomer also 19 will not contain Be—Be bonding (despite the 1.886 Å seperation) but instead will have its berylliums complexed to the center of the 1.764 Å B-B bond. The 'second best' structure is ca. 15 kcal/mol less stable than 19 and contains a 1.5 Å short B-B bond with bridging Be-H groups in either a planar (22) or 'butterfly' (21) orientation; the nature of the stationary point must be determined at correlated levels. Clearly, the bonding characteristics of this system warrant further investigation.

Dialane(6), Al₂H₆, and Digallane(4), Ga₂H₄. In contrast to the vast amount of literature on small boranes, carbon, and silicon molecules, only very little is known on small aluminum based molecules. Since aluminum, for a second row element, has a rather high combustion energy and because of its likely suitability (as boron) to form high density materials, we decided to investigate the experimentally still elusive dialane(6). An additional incentive for this study was the recent experimental observation of digallane(6). Therefore, a theoretical study on Al₂H₆ and Ga₂H₆ would enable us to calibrate the ab initio data against experimental Ga₂H₆ values as well as to determine the binding energy and bonding properties of Al₂H₆. Since we recently reported on dialane(4) Al₂H₄, ³³ it was also decided to study Ga₂H₄ with the intention to further calibrate hydrogenated group III elements. This research is considered to be a necessary first step for closer inspection of rhombic and tetrahedral systems that contain aluminum ligands. A brief summary of our studies on Al₂H₆/Ga₂H₆³⁴ and Ga₂H₄³⁵ follows. The full analysis of these systems is given in Appendix F and G, respectively, which are to appear in the literature.

The structure, harmonic frequencies, and binding energies of dialane(6) and digallane(6) are calculated with ab initio MO theory. Excellent agreement is found with IR spectroscopic data on Ga_2H_6 . The binding energy for Al_2H_6 is 31.5 kcal/mol at MP4/6-31G** and for Ga_2H_6 a value of 23.4 kcal/mol is obtained with a Huzinaga valence triple ζ basis set after correction for ZPE and electron correlation effects at MP4.

The potential energy surface of digallane(4) Ga_2H_4 has been studied by ab initio molecular orbital theory at the MP2 level using a Huzinaga valence triply ζ basis set supplemented with d-polarization functions. Six of the eight HF/3-21G* optimized structures were characterized as minima. Their bonding properties were studied by a topological electron density analysis. Of the ionic, covalent, and μ -hydrido bridged species the triand bidentate $Ga^+[GaH_4]^-$ forms 27 and 28, respectively, are the most stable isomers. However, the energy differences with the other isomers are less than 15 kcal/mol. The

TABLE 8. Total (au) and Relative (kcal/mole) Energies of B₂Be₂H₂ Isomers.

Structure	Tot. En.	Rel. En.	NIMAG	Tot. En.	Rel. En.
19 C _{2v}	-79.62424	0.0	(0)	-79.93443	0.0
20 D_{2h}	-79.56060	39.9	(0)	-79.89878	22.4
$21 C_{2v}$	-79.59930	15.7	(0)	-79.91033	15.1
$22 D_{2h}$	-79.58958	21.8	(1)	-79.91144	14.4
23 C _s	-79.58598	24.0	(0)	-79.85155	52.0
24 C _s	-79.55500	43.5	(1)	-79.84456	56.4
25 C _s	-79.53958	53.0	(0)	-79.83565	62.0
26 C _{2v}	-79.53812	54.0	(1)	-79.83335	63.4

The potential energy surface of digallane(4) Ga_2H_4 has been studied by ab initio molecular orbital theory at the MP2 level using a Huzinaga valence triply ζ basis set supplemented with d-polarization functions. Six of the eight HF/3-21G* optimized structures were characterized as minima. Their bonding properties were studied by a topological electron density analysis. Of the ionic, covalent, and μ -hydrido bridged species the triand bidentate $Ga^+[GaH_4]^-$ forms 27 and 28, respectively, are the most stable isomers. However, the energy differences with the other isomers are less than 15 kcal/mol. The covalent D_{2d} isomer 29 is 3.5 kcal/mol less stable than 27. The head and tail complexes of :GaH with GaH_3 (30 and 31), which are of similar energy, are ca. 13 kcal/mol higher in energy than 29. The potential energy surface of Ga_2H_4 is similar to that of Al_2H_4 but differences are noted.

CONCLUSIONS AND RECOMMENDATIONS

The main conclusions from our general survey on small cluster molecules (ca 60) and from our studies on seven selected systems are as follows:

The ab initio molecular orbital study on tetraatomic systems has shown that 24 of the 25 investigated rhombic dicarbides and 21 of 28 studied rhombic diborides are local or global minima on the potential energy structures. This confirms the general viability of rhombic clusters composed of the elements H, Li, Be, B, C, Al, and Si. We found that only the rhombic, tetrahedral, and (triplet) linear structures compete for the global minima. Only 3 tetrahedral (light) diboride clusters out of 24 combinations are equilibrium structures. We have also demonstrated the high energy content in these rhombic and tetrahedral clusters, which are composed of high combustion light elements. The most energetic systems investigated (MP4/6-31G*//MP2/6-31G*) are B₂Li₂ and B₂Be₂. They have the highest estimated I_{sp} values (591 seconds and 646 seconds, resp.).

The general survey study also establishes that the bonding character between the bridgehead atoms (B or C) in rhombic and tetrahedral structures varies widely (i.e., from double bonding to no bonding) and depends on the nature (electronegativity) of the bridging ligands. For example, rhombic C₄ has no transannular bonding, but C₂Be₂ has strong C-C bonding as does C₂Si₂. Similarly B₄H₂ has no transannular bonding, but in B₂Li₂ there is a multiple B-B bond.

The potential energy surface studies on B₂Li₂, B₂Be₂, Li₃H, and C₂Si₂ demonstrate an extreme sensitivity of these tetraatomics to the effects of electron correlation.

Bond-stretch isomerism is a likely mechanism for energy storage and is common to the frame of rhombic tetraatomics as demonstrated in B₂Be₂ and C₂Si₂. Such isomers have large energy differences and are separated by level crossing mechanisms, implying that the high energy isomers lie in deep potential wells.

To study the structural, energetic, and electronic properties of small clusters, composed of light elements, the total electron density of such systems must be analyzed in combination with standard ab initio molecular orbital analysis.

The main recommendations from this research toward high energy density materials are:

- (a). Higher levels of theory are required as well as a mapping of all dissocation modes for the light elemental clusters (H, Li, B, and Be) to obtain kinetic and thermodynamic data of enough accuracy to predict reliable I_{sp} values.
- (b). More work is required to predict the stabilities and properties of small clusters in convential fuel systems.
- (c). An in-depth study of the scope of bond-stretch isomerism is needed both to evaluate its potential as an energy promoting mechanism and to find practical systems that serve as energy storage devices.

REFERENCES

- (a) Greenberg, A.; Liebman, J. F. "Strained Organic Molecules;" Academic Press: New York, 1978.
 (b) Ginsburg, D. "Propellanes;" Verlag Chemie: Weinheim, Germany, 1975.
 (c) "Cyclophanes;" Ed. Keehn, P. M.; Rosenfeld, S. M.; Organic Chemistry Monographs, Vol 45-I and II; Academic Press; New York, 1983.
 (d) "Cyclophanes I and II;" Topics in Current Chemistry Vol. 113 and 115; Springer-Verlag: New York, 1983.
- (a) Odom, J. D. Comprehensive Organomet. Chem., Ed. Wilkinson, G.; Stone, F. G. A.; Abel, E. W. 1982, 1, 253 (Chapter 5.1). (b) Onak, T. Ibid. 1, 411 (Chapter, 5.4). (c) Wade, K. Adv. Inorg. Chem. 1. (d) Lipscomb, W. N. in "Boron Hydride Chemistry;" Ed. Mutterties, E. L.; Academic Press: New York, 1975, p39. (e) Beall, H. Ibid. p301. (f) Onak, T. Ibid. p349. (g) Libscomp, W. N. "Boron Hydrides;" Benjamin: New York, 1963.
- (a) Raabe, G.; Michl, J. Chem. Rev. 1985, 85, 419. (b) Cowley, A. H. Acc. Chem. Res. 1984, 17, 386. (c) Idem. Polyhedron 1984, 3, 389. (d) West Pure Appl. Chem. 1984, 56, 163. (e) Wiberg, N. J. Organomet. Chem. 1984, 273, 141. (f) Scheaffer, H. F., III Acc. Chem. Res. 1982, 9, 283. (g) Weber, W. P. "Silicon Reagents for Organic Synthesis:" Springer-Verlag: New York, 1983. (h) Reviews in "Silicon Compounds Register and Review" by Washburn, S. S.; Cunico, R. F.; Larson, G. L.; Brook, A. G.; West, R.; Muller, R.; Petrarch Systems, Inc.: Bristol, PA, 1984.
- 4. Wiberg, K. B. Acc. Chem. Res. 1984, 17, 379.
- 5. Lammertsma, K. J. Am. Chem. Soc. 1986, 108, 5127.
- 6. Lammertsma, K.; Pople, J. A.; Schleyer, P. v. R. J. Am. Chem. Soc. 1986, 108, 7.
- Krogh-Jespersen, K.; Cremer, D.; Dill, J. D.; Pople, J. A.; Schleyer, P. v. R. J. Am. Chem. Soc. 1981, 103, 2589. Chandrasekhar, J.; Schleyer, P. v. R.; Krogh-Jespersen, K. J. Comput. Chem. 1981, 2, 356.
- 8. Wiberg, K. B.; Bonneville, G.; Dempsey, R. Isr. J. Chem. 1983, 23, 85.
- 9. Hess, B. A. Jr.; Carsky, P.; Schaad, L. J. J. Am. Chem. Soc. 1983, 105, 695.
- 10. Wiberg, K. B.; Wendoloski, J. J. Ibid. 1982, 104, 5679.

- Honjou, N.; Pacansky, J.; Yoshimine, M. J. Am. Chem. Soc. 1985, 107, 5232. Ibid.
 1984, 106, 5361. Kello, V.; Urban, M.; Noga, J.; Diercksen, G. H. F. J. Am. Chem.
 Soc. 1984, 106, 5864.
- 12. Lammertsma, K.; Schleyer, P. v. R.; Schwarz, H. Angew. Chem. 101, 1313.
- Whiteside, R. A.; Krishnan, R.; DeFrees, D. J.; Pople, J. A.; Schleyer, P. v. R. Chem. Phys. Lett. 1981, 78, 538. Epiotis, N. D. J. Am. Chem. Soc. 1984, 106, 3170.
 Ritchie, J. P.; King, H. F.; Young, W. S. Proceedings of the NATO/ASI. Greece. Sept., 1985. Shavitt, I. presented at the 188th ACS National meeting in Philidelphia, August, 1984 and the 39th Symposium on Molecular Spectroscopy.
- 14. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.
- (a) Foster, J. P.; Weinhold, F. J. Am. Chem. Soc. 1980,102, 7211. (b) Reed. A. E.: Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735. (c) Reed. A. E.: Weinhold, F. J. Chem. Phys. 1985, 83, 1736.
- (a) Bader, R. F. W. Acc. Chem. Res. 1985, 18, 9. (b) Bader, R. F. W.; Nguyen-Dang, T. T. Adv. Quantum Chem. 1981, 14, 63. (c) Idem, Rep. Prog. Phys. 1981, 44, 893. (d) Bader, R. F. W.; Larouche, C.; Carroll, M. T.; MacDougall, P. J.; Wiberg, K. B. J. Chem. Phys. 1987, 87, 1142. (e) Bader, R. F. W.; Carroll, M. T.; Cheeseman, J. R.; Chang, C. Ibid 1987, 109, 7968. (f) Cremer, D.; Kraka, E. Croat. Chem. Acta 1984, 57, 1259. (g) Wiberg, K. B.; Bader, R. F. W.; Lau, C. D. H. J. Am. Chem. Soc. 1987, 109, 985, 1001. (h) Cremer, D.; Kraka, E. Ibid 1985, 107, 3800, 3811. (i) Cremer, D.; Gauss, J. Ibid 1986, 108, 7467. (d) Bader, R. F. W.; MacDougall, P. J.; Lau, C. D. H. Ibid 1984, 106, 1594. (e) Bader, R. F. W.; Slee. T. S.; Cremer, D.; Kraka, E. Ibid, 1983, 105, 5061.
- 17. (a) Cao, W. L.; Gatti, C.; MacDougall, P. J.; Bader, R. F. W. Chem. Phys. Lett. 1987, 141, 380 (b) Gatti, C.; Fantucci, P.; Pacchioni, G. Theoret. Chim. Acta 1987, 72, 433.
- Koch, W.; Frenking, G.; Gauss, J.; Cremer, D.; Sawaryn, A.; Schleyer. P. v. R. J. Am. Chem. Soc. 1986, 108, 5732.
- (a) Ritchie, J. P.; King, H. F.; Young, W. S. J. Chem. Phys. 1986, 85, 5175. For related recent studies on C₄ see: (b) Magers, D. H.; Harrison, R. J.; Bartlett, R. J. J. Chem. Phys. 1986, 84, 3284. (c) Rao, B. K.; Khanna, S. N.; Jena, P. Solid State Commun. 1986, 58, 53.
- 20. Lammertsma, K.; Güner, O. F.; Bader, R. F. W. submitted for publication

- 21. (a) Ritchie J. P. Tetrahedron Lett. 1982, 4999. See also Apeloig, Y.; Schleyer, P. v. R.; Binkley, J. S.; Pople, J. A.; Jorgensen, W. L. Tetrahedron Lett. 1976, 5923. (b) Lammertsma, K.; Güner, O. F. unpublished results.
- 22. (a) Raghavachari, K. J. Chem. Phys. 1986, 84, 5672. (b) Rachavachari, K.; Logovinsky, V. Phys. Rev. Lett. 1985, 55, 2853.
- 23. Kliche, G.; Schwarz, M.; v. Schnering, H.-G. Angew. Chem. Int. Ed. Engl. 1987, 26, 349.
- 24. Lammertsma, K.; Güner, O. F. J. Am. Chem. Soc. 1988, 110, 5239. See also cited references.
- 25. Gladyshevskii, E. I.; Kipyakevich, P. I.; Bodak, O. I. Ukr. Fiz. Zh. 1967, 12, 447.
- 26. Zheng, C.; Hoffmann, R.; Nesper, R.; Schnering, H.-G. v. J. Am. Chem. Soc. 1986, 108, 1876.
- (a) Sands, D. E.; Cline, C. F.; Zalkin, A.; Hoenig, C. L. Acta Cryst. 1961, 14, 309.
 (b) Markovsky, L. Ya.; Kondrashev, Yu. D.; Kaputovskaya, G. V. J. Gen. Chem. USSR 1955, 25, 1007. (c) Morgova, M. P.; Rybakova, G. A. Zh. Fiz. Khim. 1974, 48, 1608.
- 28. Lammertsma, K.; Güner, O. F. J. Am. Chem. Soc., 1990, 112, 508.
- 29. Brener, N. private communication. Brener, N. E.; Callaway, J.; Kestner, N. R. Proceedings of the Air Force High Energy Density Materials Contractors Conference, Newport Beach CA, 1989, page 147, 153-5.
- 30. Montgomery Jr., J. A.; Michels, H. H.; Güner, O. F.; Lammertsma, K. Chem. Phys. Lett. 1989 161, 291.
- 31. Sudhakar, P. V.; Güner, O. F.; Lammertsma, K. J. Phys. Cherv. 8, 7289 7292 (1989).
- 32. Downs, A. J.; Goode, M. J.; Pulham, C. R. J. Am. Chem. Soc. 1989, 111, 1936.
- 33. K. Lammertsma, K.; Güner, O. F.; Drewes, R. M.; Reed, A. E.; Schleyer, P. v. R. *Inorg. Chem.* 1989 28, 313.
- 34. Lammertsma, K.; Leszczyński, K. J. Phys. Chem., in press.
- 35. Lammertsma, K.; Leszczyński, J. J. Phys. Chem., in press.

APPENDIX A

PUBLICATIONS

The significant research results obtained under this contract have been prepared for publication in technical journals. These papers are listed below. All of these papers can be found in the open literature.

Technical Reports in Journals:

- 1. "Structures and Energies of Disiliciumdicarbide, C₂Si₂". K. Lammertsma and O.F. Guner. J. Am. Chem. Soc. 110, 5239-5245(1988).
- 2. "Bond Stretch isomerism in Rhombic C₂Si₂". K. Lammertsma and O.F. Guner, J. Phys. Chem. 8, 7289-7292(1989).
- 3. "The Structure and Bonding of Li₃H Ion-Pair States". J.A, Montgomery, Jr., H.H. Michels, O.F. Guner and K. Lammertsma. Chemical Physics Letters 161, 291-295 (1989).
- 4. "Structural and Electronic Properties of the Tetra-atomic B₂Be₂ Cluster". K. Lammertsma and O.F. Guner. J. Am. Chem. Soc. 112, 508-516(1990).
- 5. Ab Initio Study on Dialane(6) and Digallane(6)". K. Lammertsama and J. Leszczynski. J. Phys. Chem. 94, 2806-2809(1990).
- 6 "Rhombic C₄: Does it Contain the Shortes Non-bonding C-C Distance". K. Lammertsma. O.F. Guner, and P.V. Sudhakar. To be submitted to J. Am. Chem. Soc., 1990.