PROPERTIES of REGULAR LANGUAGES

Chap. 4

Learning Objectives

- State the closure properties applicable to regular languages.
- Prove that regular languages are closed under the operations of union, concatenation, star-closure, complementation, and intersection.
- Prove that regular languages are closed under reversal.
- Describe a membership algorithm for regular languages.
- Describe an algorithm to determine if a regular language is empty, finite, or infinite.
- Describe an algorithm to determine if two regular languages are equal.
- Apply the Pumping Lemma to show that a language is not regular.

Closure Properties

- Theorem 4.1: If L₁ and L₂ are regular languages, so are the languages that result from the following operations:
 - $L_1 \cup L_2$
 - L₁ ∩ L₂

 - i.e., the family of regular languages is *closed* under union, intersection, concatenation, complementation, and star-closure.

Proof of the Closure Properties

- Since L_1 and L_2 are regular languages, there exist regular expressions r_1 and r_2 to describe L_1 and L_2 , respectively: i.e. $L(r_1) = L_1$ and $L(r_2) = L_2$.
- The union of L_1 and L_2 can be denoted by the regular expression $r_1 + r_2$: i.e. $L(r_1 + r_2) = L_1 \cup L_2$
- The concatenation of L_1 and L_2 can be denoted by the regular expression r_1r_2 : i.e. $L(r_1r_2) = L_1 \cdot L_2$
- The star-closure of L_1 can be denoted by the regular expression r_1^* : $L(r_1^*) = L_1^*$
- ---- See the construction of NFA to accept L(r) in Chap. 3
- Therefore, the union, concatenation, and star-closure of arbitrary regular languages are also regular.

Proof of the Closure Properties (cont.)

• <u>Claim</u>: Closure under complementation of regular language.

Proof) For arbitrary regular language L_1 , assume there exists

a DFA M=
$$(Q, \Sigma, \delta, q_0, F)$$
 that accepts L_1 : $L(M) = L_1$

 \Rightarrow Then, $\exists M'$ s.t. $L(M') = \overline{L_1}$?

Construct a DFA M' that accepts the complement of L_1 ($\overline{L_1}$, L_1^C) as follows:

- M' has the same states, alphabet, transition function, and start state as M.
- The *final states* in M become *non-final states* in M', while the *non-final states* in M become *final states* in M.

i.e. $M' = (Q, \Sigma, \delta, q_0, Q - F)$

- Since M' accepts precisely the strings that M rejects and M' rejects precisely the strings that M accepts, M' accepts the complement of L₁.
- Therefore, the complement of regular language $L_1(\overline{L_1}, L^c)$ is regular.

Q.E.D.

Proof of the Closure Properties (cont.)

<u>Claim</u>: The *intersection* of two regular languages $L_1 \& L_2$ is also regular.

Proof) Two basic approaches exist:

1. Given a DFA M_1 and DFA M_2 that accepts L_1 and L_2 , respectively, construct a new DFA M' with states and transition function resulting from a combination of the states and transition functions from M_1 and M_2 :

i.e.
$$L(M_1) = L_1$$
 and $L(M_2) = L_2 \implies L(M') = L_1 \cap L_2$?

2. Use DeMorgan's Law to show that the intersection of $L_1 \& L_2$ can be obtained by applying union and complementation:

$$L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$$

Since the closure of regular languages under the union and the closure of complementation, the intersection of two regular languages L_1 and L_2 must also produce a regular language.

Q.E.D.

Proof of the Closure Properties (cont.)

<u>Claim</u>: The *intersection* of two regular languages $L_1 \& L_2$ is also regular.

Proof) 1. Given DFAs M_1 =(Q, Σ , δ_1 , q_0 , F_1) and M_2 =(P, Σ , δ_2 , p_0 , F_2)

s.t. $L(M_1)=L_1$ and $L(M_2)=L_2$,

Construct a new DFA M' with states and transition functions

from M_1 and M_2 , s.t. $L(M') = L_1 \cap L_2$:

 $M' = (Q', \Sigma, \delta', q_0', F')$ where

 $Q' = Q \times P = \{ (q_i, p_i) \mid \forall q_i \in Q, \forall p_i \in P \}$

 $q_0' = (q_0, p_0),$

 $\mathsf{F'} = \mathsf{F}_1 \times \mathsf{F}_2 = \{ (q_f, p_f) \mid \forall q_f \in \mathsf{F}_1, \forall p_f \in \mathsf{F}_2 \}$

 $\delta': (Q \times P) \times \Sigma \rightarrow (Q \times P),$

s.t. $\delta'((q_i, p_j), a) = (q_k, p_l), \forall q_i, q_k \in Q, \forall p_j, p_l \in P$

whenever $\delta_1(q_i, a) = q_k$ and $\delta_2(p_j, a) = p_l$.

Then, show that $w \in L_1 \cap L_2$ iff $w \in L(M')$.

Thus, $L_1 \cap L_2$ is regular.

Example: Closure Property

• Example 4.1:

The family of regular language is closed under *difference*. i.e. If L_1 and L_2 are regular, then, $L_1 - L_2$ is also regular.

Proof) Define the set difference by its definition,

$$L_1 - L_2 = L_1 \cap \overline{L_2}$$
.

Since L_2 is regular, so is $\overline{L_2}$ due to the closure of complement.

Since L_1 and $\overline{L_2}$ are regular, so is $L_1 \cap \overline{L_2}$ from the closure of intersection.

Thus, $L_1 - L_2$ is regular.

Closure under Reversal

• Theorem 4.2:

The family of regular language is closed under reversal.

i.e. if L is a regular language, so is L^R (reversal).

 To prove closure under reversal, we can assume the existence of a NFA M with a single final state that accepts L:

i.e. L = L(M) where $M = (Q, \Sigma, \delta, q_0, q_E)$

- Given the transition graph of M, to construct a NFA M^R that accepts L^R :
 - The start state in M becomes the final state in M^R .
 - The final state in M becomes the start state in M^R.
 - The direction of all transition edges in *M* is reversed.
 - i.e. $M^R = (Q, \Sigma, \delta^R, q_F, q_O)$ where $\exists (q_i, a) \rightarrow q_i \in \delta^R, \forall (q_i, a) \rightarrow q_i \in \delta$

Closure under Homomorphism

• Definition 4.1: Suppose Σ and Γ are alphabets.

A function $h: \Sigma \to \Gamma^*$ is called a *homomorphism*;

i.e. a homomorphism is a substitution/mapping in which a single letter is replaced with a string.

The domain of the function *h* is extended to strings;

- If $w=a_1a_2...a_n$, then $h(w)=h(a_1)h(a_2)...h(a_n)$.
- If L is a language on Σ , then its homomorphic image is defined as $h(L) = \{h(w) | w \in L\}.$
- If we have a regular expression r for a language L (i.e. L(r) = L), then a regular expression for h(L) can be obtained by simply applying the homomorphism to each Σ symbol of r, i.e. h(r).

Homomorphism (cont.)

- Theorem 4.3: Let h be a homomorphism.
 If L is a regular language, then its homomorphic image h(L) is regular.
 The family of regular language is closed under any homomorphisms.
- Example 4.2: $\Sigma = \{a, b\}$ and $\Gamma = \{a, b, c\}$. Define h by h(a) = ab, h(b) = bbc.

Then, h(aba) = abbbcab.

• Example 4.3: $\Sigma = \{a, b\}$ and $\Gamma = \{b, c, d\}$. Define h by h(a) = dbcc, h(b) = bdc.

If L is the regular language denoted by REX $r = (a+b^*)(aa)^*$, then, the REX denoting h(L) is

 $r_1 = (dbcc + (bdc)^*)(dbccdbcc)^* = h(r)$

Right Quotient

• <u>Definition 4.2</u>: Let L_1 and L_2 be languages on the same alphabet. Then, the *right quotient* of L_1 with L_2 is defined as

$$L_1/L_2 = \{x \mid xy \in L_1 \text{ for some } y \in L_2\}.$$

• Example 4.4: $L_1 = \{a^n b^m | n \ge 1, m \ge 0\} \cup \{ba\}, L_2 = \{b^m | m \ge 1\}.$

Right Quotient (cont.)

• Theorem 4.4:

If L_1 and L_2 are regular languages, then L_1/L_2 is also regular. i.e. the family of regular languages is closed

under right quotient with a regular language.

Proof) Let $L_1 = L(M)$ for a DFA $M = (Q, \Sigma, \delta, q_0, F)$.

1) Let's construct an DFA $\mathbf{M'}$ = (Q, Σ , δ , q_0 , $\mathbf{F'}$) s.t. L($\mathbf{M'}$) = L₁/L₂ as follows.

Repeat for each $q_i \in Q$,

- determine whether there exists y∈L₂ s.t. δ*(qᵢ, y) = qᵢ ∈F.
 It can be done by looking at DFA Mᵢ = (Q, Σ, δ, qᵢ, F) whose initial state is qᵢ.
- Now, determine whether there exists $y \in L(M_i)$ that is also in L_2 .
- For this, we can use the construction for the intersection of two regular languages in Th^m 4.1, finding the transition graph for $L_2 \cap L(M_i)$.
- If there is any path between its initial state and any final state, then L₂ ∩ L (M_i) ≠Ø.
 If so, add q_i to F'.

F' is determined so that M' is constructed.

Right Quotient (cont.)

Theorem 4.4: If L₁ and L₂ are regular languages, then L₁/L₂ is also regular. i.e. the family of regular languages is closed under *right* quotient with a regular language.

Proof) 2) Prove L(M') = L_1/L_2

←) Show that for any $x \in L_1/L_2$, $x \in L(M')$, x is accepted by M'.

Let $x \in L_1/L_2$. Then there must be a $y \in L_2$ such that $xy \in L_1$.

This implies that $\delta^*(q_0, xy) \in F$, so that there must be some $q \in Q$ such that $\delta^*(q_0, x) = q$ and $\delta^*(q, y) \in F$.

Thus, by construction, $q \in F'$ and M' accepts x because $\delta^*(q_0, x) \in F'$.

 \rightarrow) Show that for any $x \in L(M')$, $x \in L_1/L_2$.

For any $x \in L(M')$, we have $\delta^*(q_0, x) \in F'$.

By construction, it implies that exists a $y \in L_2$ such that $\delta^*(q, y) \in F$.

Thus, xy is in L_1 , and x is in L_1/L_2 , i.e. $x \in L_1/L_2$.

Therefore, $L(M') = L_1/L_2$ and L_1/L_2 is regular.

Right Quotient (cont.)

• Example 4.5: Find L_1/L_2 for $L_1 = L(a*baa*)$ and $L_2 = L(ab*)$.

First, find a DFA M that accepts L_1 . In M,

- For q_0 , $L(M_0) \cap L_2 = L(a*baa*) \cap L(ab*) = \emptyset$
- For q_1 , $L(M_1) \cap L_2 = L(aa^*) \cap L(ab^*) = \{a\}$
- For q_2 , $L(M_2) \cap L_2 = L(a^*) \cap L(ab^*) = \{a\}$
- For q_3 , $L(M_3) \cap L_2 = \emptyset \cap L(ab^*) = \emptyset$

So, F' = $\{q_1, q_2\}$ in M' s.t. L(M') = L_1/L_2

Elementary Questions about Regular Languages

- Given a regular language L and an arbitrary string w,
 is there an algorithm to determine whether w is in L or not?
 - : $membership, w \in L$?
- Given a regular language L, is there an algorithm to determine if L is empty, finite, or infinite?
 - : *emptiness, (in)finiteness, L=* \emptyset ? $|L| \neq \infty$?
- Given two regular languages L₁ and L₂,
 is there an algorithm to determine whether L₁ = L₂ or not?
 - : equality

A Membership Algorithm for Regular Languages

- Theorem 4.5: There exists a membership algorithm for regular languages: $Alg_{MFM}(w \in L)$
- Proof Idea)

To determine if an arbitrary string w is in a regular language L, we assume the existence of a standard unambiguous representation of L, i.e. L = L(r) where r is a REX.

Given a standard representation of L, construct a DFA to accept L. Simulate the operation of the DFA while processing w as the input string.

If the DFA *halts* in a *final state* after processing w, then $w \in L$. So, we can determine the membership of w in the regular language L.

Determining whether a Regular Language is Empty, Finite, or Infinite

- <u>Theorem 4.6:</u> There exists an algorithm to determine if a regular language is empty, finite, or infinite: Alg_{FMP-FINITE}(L)
- Given the transition graph of a DFA that accepts L,
 - If there is a simple path from the start state to any final state,
 L is not empty (since it contains, at least, the corresponding string)
 - If a path from the start state to a final state includes a vertex which is the base of some *cycle*, *L* is infinite; otherwise, *L* is finite.

Equality Algorithm for Two Regular Languages

- For finite languages, equality could be determined by performing a comparison of the individual strings.
- Theorem 4.7: There exists an algorithm to determine if two regular languages L₁ and L₂ are equal: Alg_{EQ}(L₁, L₂)
 Proof)
 - Define the language $L=(L_1\cap \overline{L_2})\cup (\overline{L_1}\cap L_2)$
 - By closure, L is regular, so we can construct a DFA M to accept it, and by Theorem 4.6, we can determine whether L is empty.
 - $L_1 = L_2$ if and only if $L = \emptyset$.

Identifying Nonregular Languages

- Although regular languages can be infinite, their associated automata have finite memory; therefore, incapable of accepting many languages and some limits on the structure of a regular language is imposed.
- A language is regular only if, in processing any string, the information that has to be remembered at any stage is strictly limited.
- Two basic approaches to show that a language is not regular:
 - Use the *Pigeonhole Principle* to construct a *proof by contradiction*.
 - -- If we put n objects into m boxes (pigeonholes), and if n > m, then at least one box must have more than one item in it.
 - Use a *Pumping Lemma* for regular languages.

Identifying Nonregular Languages

• Example 4.6: Is L = $\{a^nb^n \mid n \ge 0\}$ regular?

Proof by contradiction) Suppose L is regular. Then,

 \exists a DFA M = (Q, {a,b}, δ , q_0 , F) s.t. L(M) = L.

Let's look at $\delta^*(q_o, a^i)$ for i=1, 2, 3, ...

Since there are an unlimited number of i's, but only a finite number of states in M, the pigeonhole principle tells us that there must be some state, say q, s.t. $\delta^*(q_o, a^n)=q$ and $\delta^*(q_o, a^m)=q$ with $n\neq m$.

But, since M accepts a^nb^n , we must have $\delta^*(q, b^n) = q_f \in F$:

i.e. $\delta^*(q_0, a^n b^n) = \delta^*(\delta^*(q_0, a^n), b^n) = \delta^*(q, b^n) = q_f \in F$.

From this, we can conclude that

 $\delta^*(q_0, a^m b^n) = \delta^*(\delta^*(q_0, a^m), b^n) = \delta^*(q, b^n) = q_f \in F.$

Contradiction to the assumption that M accepts, a^mb^n only if n = m. Therefore, L can not be regular.

Basis for the Pumping Lemma

- The transition graph for a regular language has certain properties:
 - If the graph has *no cycles*, the language is *finite*.
 - If the graph has a *nonempty cycle*, the language is *infinite*.
 - If the graph has such cycle, the cycle can either be skipped or repeated an arbitrary number of times.
 - So, if the cycle has label v and if the string w_1vw_2 is in the language, so are the strings w_1vvw_2 , w_1vvvw_2 , ..., $w_1v^nw_2$ etc.
 - If such a cycle exists in a DFA with *m* states, the cycle must be entered by the time *m* symbols have been processed.
- As a basis for the pumping lemma,
 we observe that given a language L,

if any string in L does not satisfy these properties, L is not regular.

A Pumping Lemma for Regular Languages

- Theorem 4.8: Given an infinite regular language L, there exists some positive integer m such that any sufficiently long string $w \in L$ with $|w| \ge m$ can be decomposed as
 - *w= xyz* with
 - $|y| \ge 1$ and $|xy| \le m$ where m is an arbitrary integer, $0 < m \le |w|$, s.t.
 - an arbitrary number of repetitions of y yields a string in L: $w_i = xy^iz \in L, i \ge 0.$

 q_0 x q_r z q_r q_r q_r q_r q_r q_r q_r

- The middle section, y, is said to be "pumped" to generate additional strings in L.
- The Pumping Lemma can be used to show, by *contradiction*, that a certain language is *not regular*.

Pumping Lemma: Proof

If *L* is regular, there exists a DFA $M=(Q, \Sigma, \delta, q_0, F)$ that accepts it, i.e. L(M) = L. Let *M* have states labeled $q_0, q_1, q_2, ..., q_n$.

Now, take a string $w \in L$ such that $|w| \ge m = n + 1$.

Since L is assumed to be infinite, this can always be done. Consider the set of states the automaton goes through as it processes w, say $q_0, q_i, q_i, ..., q_f$.

Since this sequence has exactly |w| + 1 entries, at least one state must be repeated, and such a repetition must start no later than the nth move. Thus, the sequence must look like

$$q_0, q_i, q_j, ..., q_r, ..., q_r, ..., q_f,$$

indicating there must be substrings x, y, z of w s.t.

 $\delta^*(q_0,x) = q_r$, $\delta^*(q_r,y) = q_r$, $\delta^*(q_r,z) = q_f$, with $|xy| \le n+1=m$, $|y| \ge 1$. From this, it follows that $\delta^*(q_0,xz) = q_f$.

as well as δ^* $(q_0, xy^1z) = q_f$, δ^* $(q_0, xy^2z) = q_f$, δ^* $(q_0, xy^3z) = q_f$, etc. Therefore, any $w_i = xy^iz \in L$. Q.E.D.

Example: Proof by Pumping Lemma

• Example 4.7: Show that $L = \{a^n b^n \mid n \ge 0\}$ is not regular.

Proof by contradiction) Assume that *L* is regular.

Then, Pumping Lemma must hold.

We don't know the value of m, but whatever it is, we can (always) choose m=n. Thus, in w=xyz where $|xy| \le m=n$,

the substring y must consist of all a's in w. Suppose $|y| = k \ge 1$.

i.e.
$$x = a^j$$
, $y = a^k$, $z = a^{m-j-k}b^m$, for any $m \ge j$, $k \ge 1$

$$|xy| \le m$$

$$a \ a \dots a \ a \dots a \ a \dots b \ b \dots b$$

$$x = a^{j} \quad y = a^{k} \quad z = a^{m-j-k} b^{m}$$

$$|y| \ge 1$$

Example: Proof by Pumping Lemma

• Example 4.7 (cont.): Show that $L = \{a^n b^n \mid n \ge 0\}$ is not regular.

Then, the new string pumping y with i = 0 is $w_0 = a^{m-k}b^m$. and w_0 is clearly not in $L(w_0 \notin L)$.

Contradiction to the Pumping Lemma!

Thus, it contradicts the assumption 'L is regular'.

Therefore, $L = \{a^n b^n \mid n \ge 0\}$ is not regular. Q.E.D.

Example: Proof by Pumping Lemma

• Example 4.8: Show that $L = \{ww^R \mid w \in \Sigma^*\}$ is not regular.

Pf) Assume that *L* is regular. So, Pumping Lemma must hold.

Let's choose $w = a^m b^m b^m a^m \in L$ with $|w| \ge m$. Thus, in w = xyz with $|xy| \le m$, the substring y must consist of all a's s.t.

$$x=a^{j}, y=a^{k}, z=a^{m-j-k}b^{m}b^{m}a^{m}, j, k > 0$$

Suppose $|y| = k \ge 1$.

Then, the new string pumping y with i = 0 is $w_0 = a^{m-k}b^m b^m a^m$ and w_0 is clearly not in L ($w_0 \notin L$). This contradicts the Pumping Lemma.

Thus, the assumption 'L is regular' must be false.

Therefore, $L = \{a^n b^n : n \ge 0\}$ is not regular.

Example: Proof by Pumping Lemma

• Example 4.9: $\Sigma = \{a, b\}$.

Show $L = \{w \in \Sigma^* \mid n_a(w) < n_b(w)\}$ is not regular.

Proof) Suppose m is given. Choose $w = a^m b^{m+1}$ where $|w| \ge m$.

Since $|xy| \le m$, y is with all a's, i.e. $y = a^k$, $m \ge k \ge 1$.

So, $x = a^j$, $y = a^k$, $z = a^{m-j-k}b^{m+1}$, for any $m \ge j$, $k \ge 1$.

Let's pump y with i = 3: $w_3 = a^j a^{3k} a^{m-j-k} b^{m+1} = a^{m+2k} b^{m+1}$.

Since $k \ge 1$, w_3 is clearly not in $L(w_3 \notin L)$.

Contradiction to the Pumping Lemma!

Thus, it contradicts the assumption 'L is regular'.

Therefore, $L = \{w \in \Sigma^* \mid n_a(w) < n_b(w)\}$ is not regular.

Example: Proof by Pumping Lemma

• Example 4.10:

Show that $L = \{(ab)^n a^k \mid n > k, k \ge 0\}$ is not regular.

• Example 4.11:

Show that $L = \{a^n \mid n \text{ is a perfect square}\}\$ is not regular.

• Example 4.12:

Show that $L = \{a^n b^k c^{n+k} \mid n, k \ge 0\}$ is not regular.

• Example 4.13:

Show that $L = \{a^n b^l \mid n \neq l\}$ is not regular.

Pf) See the textbook.