Fundamentos da Computação 1

Aula 15

Conteúdo

- Criando novas equivalências.
- Resolvendo questões lógicas com o método dedutivo.

Comentário sobre o ponto de participação 5?

$$\sim (p \rightarrow q)$$

Aplicar a propriedade da condicional

$$p \rightarrow q \equiv p \vee q$$

$$\sim$$
(p \rightarrow q) \equiv \sim (\sim p v q) Condicional

Aplicar a propriedade da condicional

$$p \rightarrow q \equiv p \vee q$$

$$\sim$$
(p \rightarrow q) \equiv \sim (\sim p v q) Condicional \equiv \sim ~p \wedge ~q De Morgan

Aplicar a propriedade de De Morgan ~(p v q) ≡ ~p ^ ~q

$$\sim$$
(p → q) \equiv \sim (\sim p v q) Condicional \equiv \sim ~p ^ \sim q De Morgan \equiv p ^ \sim q Dupla Negação

Aplicar a propriedade da Dupla Negação

$$\sim$$
(p → q) \equiv \sim (\sim p v q) Condicional \equiv \sim \sim p ^ \sim q De Morgan \equiv p ^ \sim q Dupla Negação

Concluímos que ~(p → q) ≡ p ^ ~q

$$\sim$$
(p \rightarrow q) \equiv \sim (\sim p v q) Condicional \equiv \sim \sim p $^{\wedge}$ \sim q De Morgan \equiv p $^{\wedge}$ \sim q Dupla Negação

- Concluímos que ~(p → q) ≡ p ^ ~q
- Utilizamos este método, chamado método dedutivo, para demonstrar novas equivalências.

- Mostre que $p \rightarrow (q \rightarrow r) \equiv p \land q \rightarrow r$
 - Dica: Aplicar as equivalências na seguinte seqüência:
 - Condicional
 - Condicional
 - Associativa
 - De Morgan
 - Condicional

$$p \rightarrow (q \rightarrow r) \equiv p \land q \rightarrow r$$

$$p \rightarrow (q \rightarrow r) \equiv -p \vee (q \rightarrow r)$$

Condicional

Condicional

Associativa

De Morgan

Condicional

Propriedade da Condicional p → q ≡ ~p v q

$$p \rightarrow (q \rightarrow r) \equiv p \land q \rightarrow r$$

$$p \rightarrow (q \rightarrow r) \equiv -p \vee (q \rightarrow r)$$

Propriedade da Condicional p → q ≡ ~p v q Condicional
Condicional
Associativa
De Morgan

$$p \rightarrow (q \rightarrow r) \equiv p \land q \rightarrow r$$

$$p \rightarrow (q \rightarrow r) \equiv \sim p \vee (q \rightarrow r)$$

 $\equiv \sim p \vee (\sim q \vee r)$

Propriedade da Condicional p → q ≡ ~p v q

Condicional

Condicional

Associativa

De Morgan

$$p \rightarrow (q \rightarrow r) \equiv p \land q \rightarrow r$$

$$p \rightarrow (q \rightarrow r) \equiv \sim p \vee (q \rightarrow r)$$

 $\equiv \sim p \vee (\sim q \vee r)$

Propriedade Associativa $(p v q) v r \equiv p v (q v r)$

Condicional

Condicional

Associativa

De Morgan

$$p \rightarrow (q \rightarrow r) \equiv p \land q \rightarrow r$$

$$p \rightarrow (q \rightarrow r) \equiv \sim p \vee (q \rightarrow r)$$

 $\equiv \sim p \vee (\sim q \vee r)$
 $\equiv (\sim p \vee \sim q) \vee r$

Propriedade Associativa (p v q) v r ≡ p v (q v r)

Condicional

Condicional

Associativa

De Morgan

$$p \rightarrow (q \rightarrow r) \equiv p \land q \rightarrow r$$

$$p \rightarrow (q \rightarrow r) \equiv \sim p \vee (q \rightarrow r)$$

 $\equiv \sim p \vee (\sim q \vee r)$
 $\equiv (\sim p \vee \sim q) \vee r$

Leis de De Morgan $\sim (p \land q) \equiv \sim p \lor \sim q$

Condicional

Condicional

Associativa

De Morgan

$$p \rightarrow (q \rightarrow r) \equiv p \land q \rightarrow r$$

$$p \rightarrow (q \rightarrow r) \equiv \sim p \ v \ (q \rightarrow r)$$
 Condicional
$$\equiv \sim p \ v \ (\sim q \ v \ r)$$
 Condicional
$$\equiv (\sim p \ v \ \sim q) \ v \ r$$
 Associativa
$$\equiv \sim (p \ ^ q) \ v \ r$$
 De Morgan
$$\equiv$$
 Condicional

Propriedade da Condicional p → q ≡ ~p v q

$$p \rightarrow (q \rightarrow r) \equiv p \land q \rightarrow r$$

$$p \rightarrow (q \rightarrow r) \equiv \sim p \ v \ (q \rightarrow r)$$
 Condicional
 $\equiv \sim p \ v \ (\sim q \ v \ r)$ Condicional
 $\equiv (\sim p \ v \ \sim q) \ v \ r$ Associativa
 $\equiv \sim (p \ ^q) \ v \ r$ De Morgan
 $\equiv (p \ ^q) \rightarrow r$ Condicional

Propriedade da Condicional p → q ≡ ~p v q

$$p \rightarrow (q \rightarrow r) \equiv p \land q \rightarrow r$$

$$p \rightarrow (q \rightarrow r) \equiv \sim p \ v \ (q \rightarrow r)$$
 Condicional
 $\equiv \sim p \ v \ (\sim q \ v \ r)$ Condicional
 $\equiv (\sim p \ v \ \sim q) \ v \ r$ Associativa
 $\equiv \sim (p \ ^q) \ v \ r$ De Morgan
 $\equiv (p \ ^q) \rightarrow r$ Condicional

Mostramos a equivalência usando o método dedutivo

- \sim (p v (\sim p $^{\wedge}$ q)) \equiv (\sim p $^{\wedge}$ \sim q)
 - De Morgan ~(p ∨ q) ≡ ~p ^ ~q
 - De Morgan ~(p ^ q) ≡ ~p v ~q
 - Dupla Negação ~(~p) ≡ p
 - Distributiva p $^(q v r) \equiv (p ^q) v (p ^r)$
 - Negação p ^ ~p ≡ F
 - Elementos Neutros p v F = p

•
$$\sim$$
(p v (\sim p \wedge q)) \equiv (\sim p \wedge \sim q)

$$\sim (p \lor (\sim p \land q)) \equiv \sim p \land \sim (\sim p \land q)$$
• De Morgan $\sim (p \lor q) \equiv \sim p \land \sim q$

- De Morgan $\sim (p \vee q) \equiv \sim p \wedge \sim q$
- De Morgan $\sim (p \land q) \equiv \sim p \lor \sim q$
- Dupla Negação ~(~p) ≡ p
- Distributiva p $(q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
- Negação p ^ ~p ≡ F
- Elementos Neutros p v F = p

•
$$\sim$$
(p v (\sim p \wedge q)) \equiv (\sim p \wedge \sim q)

$$\sim (p \vee (\sim p \wedge q)) \equiv \sim p \wedge \underline{\sim (\sim p \wedge q)}$$

- De Morgan ~(p ^ q) ≡ ~p ∨ ~q
- Dupla Negação ~(~p) ≡ p
- Distributiva p $^(q v r) \equiv (p ^q) v (p ^r)$
- Negação p ^ ~p ≡ F
- Elementos Neutros p v F = p

•
$$\sim$$
(p v (\sim p $^{\wedge}$ q)) \equiv (\sim p $^{\wedge}$ \sim q)

$$\sim (p \ v \ (\sim p \ ^q)) \equiv \sim p \ ^ \sim (\sim p \ ^q)$$

 $\equiv \sim p \ ^ \sim \sim p \ v \ \sim q$

- Dupla Negação ~(~p) ≡ p
- Distributiva p $^(q v r) \equiv (p ^q) v (p ^r)$
- Negação p ^ ~p ≡ F
- Elementos Neutros p v F = p

•
$$\sim$$
(p v (\sim p \wedge q)) \equiv (\sim p \wedge \sim q)

$$\sim (p \ v \ (\sim p \ ^q)) \equiv \sim p \ ^ \sim (\sim p \ ^q)$$
$$\equiv \sim p \ ^ \sim \sim p \ v \ \sim q$$
$$\equiv \sim p \ ^ p \ v \ \sim q$$

- Distributiva p $^(q v r) \equiv (p ^q) v (p ^r)$
- Negação p ^ ~p ≡ F
- Elementos Neutros p v F = p

•
$$\sim$$
(p v (\sim p $^{\wedge}$ q)) \equiv (\sim p $^{\wedge}$ \sim q)

$$\begin{array}{ll}
\sim (p \ v \ (\sim p \ ^q)) & \equiv \sim p \ ^ \sim (\sim p \ ^q) \\
& \equiv \sim p \ ^ \sim \sim p \ v \ \sim q \\
& \equiv \sim p \ ^ (p \ v \ \sim q) \\
& \equiv (\sim p \ ^p) \ v \ (\sim p \ ^ \sim q)
\end{array}$$

- Negação p ^ ~p ≡ F
- Elementos Neutros p v F = p

•
$$\sim$$
(p v (\sim p $^{\wedge}$ q)) \equiv (\sim p $^{\wedge}$ \sim q)

Elementos Neutros p v F = p

•
$$\sim$$
(p v (\sim p $^{\wedge}$ q)) \equiv (\sim p $^{\wedge}$ \sim q)

$$\begin{array}{l}
\sim (p \ v \ (\sim p \ ^q)) & \equiv \sim p \ ^ \sim (\sim p \ ^q) \\
& \equiv \sim p \ ^ \sim \sim p \ v \ \sim q \\
& \equiv (\sim p \ ^p) \ v \ (\sim p \ ^ \sim q) \\
& \equiv (\sim p \ ^ \sim q) \\
& \equiv (\sim p \ ^ \sim q)
\end{array}$$

Demonstrações

- Podemos utilizar este método também para mostrar que uma formula é uma tautologia ou contradição.
- Exemplo:
 - Demonstrar que (p ^ q) → (p v q) é uma tautologia
 - Usaremos: Condicional, De Morgan, Associativa e Comutativa.

$$(p \land q) \rightarrow (p \lor q) \equiv \sim (p \land q) \lor (p \lor q)$$
 Condicional

Propriedade da Condicional p → q ≡ ~p v q

$$(p \land q) \rightarrow (p \lor q) \equiv \sim (p \land q) \lor (p \lor q)$$
 Condicional
 $\equiv (\sim p \lor \sim q) \lor (p \lor q)$ De Morgan

Leis de De Morgan $\sim (p \land q) \equiv \sim p \lor \sim q$

$$(p \land q) \rightarrow (p \lor q) \equiv \sim (p \land q) \lor (p \lor q)$$
 Condicional
 $\equiv (\sim p \lor \sim q) \lor (p \lor q)$ De Morgan
 $\equiv \sim p \lor p \lor \sim q \lor q$ Comutativa

Propriedade Associativa

$$(p v q) v r \equiv p v (q v r)$$

 $(p ^ q) ^ r \equiv p ^ (q ^ r)$

Propriedade Comutativa $p v q \equiv q v p$ $p ^q \equiv q ^p$

Propriedade de Negação p v ~p ≡ V

$$(p \land q) \rightarrow (p \lor q) \equiv \sim (p \land q) \lor (p \lor q)$$
 Condicional
 $\equiv (\sim p \lor \sim q) \lor (p \lor q)$ De Morgan
 $\equiv \sim p \lor p \lor \sim q \lor q$ Comutativa
 $\equiv \lor \lor \lor \lor$ Negação
 $\equiv \lor$

Logo é uma tautologia


```
if ((saída>entrada) and not ((saída>entrada) and (pressão < 1000) ))
então x = x +1;
senão x = x+2;
```



```
if ((saída>entrada) and not ((saída>entrada) and (pressão < 1000)))
então x = x +1;
senão x = x+2;
```

- p: saída>entrada
- q: pressão < 1000


```
if (p and not (p and q))
então x = x + 1;
senão x = x+2;
```

- p: saída>entrada
- q: pressão < 1000


```
- - -
```

```
if (p and not (p and q))
então x = x + 1;
senão x = x+2;
```

- p: saída>entrada
- q: pressão < 1000

$$p \wedge \sim (p \wedge q)$$


```
- - -
```

```
if (p and not (p and q))
então x = x + 1;
senão x = x + 2;
```

- p: saída>entrada
- q: pressão < 1000


```
- - -
```

```
if (p and not (p and q))
então x = x + 1;
senão x = x + 2;
```

- p: saída>entrada
- q: pressão < 1000


```
- - -
```

```
if (p and not (p and q))
então x = x +1;
senão x = x+2;
```

- p: saída>entrada
- q: pressão < 1000


```
---
```

```
if (p and not (p and q))
então x = x +1;
senão x = x+2;
```

- p: saída>entrada
- q: pressão < 1000


```
- - -
```

```
if (p and not (p and q))
então x = x + 1;
senão x = x+2;
```

- p: saída>entrada
- q: pressão < 1000

Negação


```
- - -
```

```
if (p and not (p and q))
então x = x + 1;
senão x = x+2;
```

- p: saída>entrada
- q: pressão < 1000


```
. . .
```

```
if (p and not (p and q))
então x = x + 1;
senão x = x + 2;
```

- p: saída>entrada
- q: pressão < 1000

$$p ^{-}(p ^{-}q)$$
 De Morgan
 $p ^{-}(p ^{-}q)$ Distributiva
 $(p ^{-}p) v (p ^{-}q)$
 $F v (p ^{-}q)$


```
. . .
```

```
if (p and not (p and q))
então x = x + 1;
senão x = x+2;
```

- p: saída>entrada
- q: pressão < 1000

Elementos neutros

. . .

```
if (p and not (p and q))
então x = x + 1;
senão x = x+2;
```

- p: saída>entrada
- q: pressão < 1000

$$p ^{-}(p ^{-}q)$$
 De Morgan
 $p ^{-}(p ^{-}q)$ Distributiva
 $(p ^{-}p) v (p ^{-}q)$
 $F v (p ^{-}q)$
 $(p ^{-}q)$


```
- - -
```

```
if (p and not q)
então x = x + 1;
senão x = x+2;
```

- p: saída>entrada
- q: pressão < 1000

$$p \wedge \sim (p \wedge q)$$
 De Morgan
 $p \wedge (\sim p \vee \sim q)$ Distributiva
 $(p \wedge \sim p) \vee (p \wedge \sim q)$
 $F \vee (p \wedge \sim q)$
 $(p \wedge \sim q)$

- - -

```
if ((saída>entrada)and not
(pressão < 1000))
então x = x +1;
```

senão x = x+2;

- p: saída>entrada
- q: pressão < 1000

Ponto de Participação 6

Indique qual a propriedade utilizada na equivalência:

- Propriedade dos Elementos Neutros
- Propriedade de Dominação
- Propriedade Comutativa
- Lei de De Morgan
- Propriedade Associativa

Exercícios

- 1) Mostre que p → p v q é uma tautologia
 - Dica: condicional; associativa; elemento neutro.
- 2) Mostre que p \rightarrow q \equiv p v q \rightarrow q
 - Dica: partir da proposição maior. Condicional; De Morgan; Distributiva; Negação; Elemento Neutro; Condicional.
- 3) Mostre que $(p \rightarrow q) \land (p \rightarrow \sim q) \equiv \sim p$
 - Dica: Condicional; Distributiva; Negação; Elemento Neutro.

Exercícios

1) Demonstre que as proposições são tautológicas usando o método dedutivo.

$$(p \rightarrow p) \vee (p \rightarrow \sim p)$$

$$(p \rightarrow q) \wedge p \rightarrow q$$

$$(p \rightarrow q) \wedge \sim q \rightarrow \sim p$$

$$(p \vee q) \wedge \sim p \rightarrow q$$

$$(p \rightarrow q) \rightarrow (p \wedge r \rightarrow q)$$

$$p \wedge q \rightarrow p$$

$$p \rightarrow (q \rightarrow p)$$

Exercícios

2) Demonstre as equivalências usando o método dedutivo.

$$\sim (p \lor q) \lor (\sim p \land q) \equiv \sim p$$

$$(p \rightarrow r) \land (q \rightarrow r) \equiv p \lor q \rightarrow r$$

$$(p \rightarrow q) \rightarrow q \equiv p \lor q$$

$$(p \rightarrow q) \land \sim q \equiv \sim (p \lor q)$$

$$(p \rightarrow q) \land p \equiv p \land q$$

$$(p \rightarrow r) \lor (q \rightarrow r) \equiv p \land q \rightarrow r$$

$$(p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow q \lor r$$