Introduction to Regression

Administrivia

o Homework 6 posted later tonight. Due Friday after Break.

Statistical Modeling

Thus far we've talked about

- Descriptive Statistics: This is the way my sample is
- o Inferential Statistics: This is what I can likely conclude from my sample

Today we move towards what we might call **Predictive Statistics**

Linear Regression for Prediction

Examples:

- o Given a person's age and gender, predict their height
- Given the area of a house, predict its sale price
- Given unemployment, inflation, number of wars, and economic growth, predict the president's approval rating.
- Given a person's browser history, predict how long they'll stay on a product page
- Given the advertising budget expenditures in various media markets, predict the number of products they'll sell

Linear Regression for Inference

Examples:

- o Is a person's age and gender related to their height
- o Is the area of a house, related to its sale price
- Is unemployment, inflation, number of wars, and economic growth related to the president's approval rating.
- Is a person's browser history related to how long they'll stay on a product page
- Is the advertising budget expenditures in various media markets related the number of products they'll sell

Area as Predictor for House Price

Area as Predictor for House Price

Exploration

Open up your computer and load the Lecture 20 in-class notebook

Simple Linear Regression Model

Defs and Assumptions of SLR model:

1.
$$y_i = x + \beta x_i + \epsilon_i$$

3.
$$Ei \sim N(0, \sigma^2)$$

Simple Linear Regression Model

SLR model vocabulary:

Y= K+BX+E

X: the independent variable, the predictor, the explanatory variable, the feature

Y: the dependent variable or the response variable

* RANDOWN VARIABLE

 \circ ϵ : the random deviation or **random error**

Question: What exactly is ϵ doing?

Simple Linear Regression Model

The points $(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)$ resulting from n independent observations will be scattered about the true regression line

Simple Linear Regression Theory

Question: How do we know that the simple linear regression is appropriate?

Interpreting SLR Parameters

Area (Hundreds of Sq Ft)

Interpreting SLR Parameters

 $\circ \alpha$ is the intercept of the true regression line (the so-called baseline average)

Interpreting SLR Parameters

 \circ β is the slope of the true regression line

Interpreting the Error Term

 \circ The variance parameter σ^2 determines the extent to which each normal curve spreads

about the true regression line

Directional Considerations

- So far we've come up with a framework where we can choose the model parameters and then generate random data. This is called a generative model.
- But really, we want to run this process in reverse. We have data, and we want to find/learn/estimate the parameters that explain the data.

How Can We Estimate Params from Data?

- \circ Plan of Attack: The variance of our model σ^2 will be smallest if the differences between between the estimate of the true regression line and each point is the smallest. This is our goal: minimize σ^2
- \circ We'll use our sample data, $(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)$, to estimate the parameters of the regression line
- O What are we assuming about each of the observations?

Estimating Model Parameters

Estimating Model Parameters

 \circ The sum of the squared-errors for the points $(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)$ to the regression line is given by

o The point-estimates (estimates from data) of the slope and the intercept parameters are called the least-square estimates, and are defined to be the values that minimize the

Estimating Model Parameters

O The fitted regression line or the least-squares line is then the line given by

$$\hat{y} = \hat{\alpha} + \hat{\beta} \times$$

Question: How do we actually find the parameter estimates?

Estimating Model Parameters

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

$$SSE = \sum_{i=1}^{n} (y_i - (x + \beta x_i))^2$$

How Can We Do This in Practice?

Get your laptops back out and let's figure it out!

$$\hat{x} = y - \beta \bar{x}$$

$$\hat{\beta} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

$$\sum_{i=1}^{n} (x_i - \bar{x})^2$$

Residuals

 The fitted or predicted values ______ are obtained by plugging in the independent data variables into the fitted model

The residuals are the differences between the observed and predicted responses:

- An alternate method for estimating model parameters is to create a likelihood function involving the model parameters and the data, and choose the value of the parameter that maximizes it
- We've done this before, just haven't called it Maximum Likelihood Estimation

Example: Suppose you have a biased coin, you flip it 6 times and get 5 Heads and 1 Tails. Estimate the parameter p for the coin.

OK! Let's Go to Work!

Get in groups, get out laptop, and open the Lecture 20 In-Class Notebook

Let's:

O Do some stuff!