# What Can We Teach K-12 Students About Large Language Models?

David S. Touretzky
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA



### Large Language Models Are Taking Over the World

LLM's are huge neural networks (billions or trillions of weights) trained on massive

amounts of text, e.g.,

- all of Wikipedia, plus
- a massive collection of books, plus
- a large chunk of Reddit

#### All the big Al companies are developing LLM's:

- Google: BERT, T5, LaMDA, PaLM, Bard
- OpenAI: GPT, GPT-2, GPT-3, GPT-3.5, ChatGPT, GPT-4
- Facebook/Meta: RoBERTa, LLaMa
- Amazon: AlexaTM 20B
- Baidu: PCL-BAIDU Wenxin (Ernie 3.0)



### Why LLMs Are Remarkable

- Earlier, smaller language models could make only simple statistical predictions about which words follow other words.
- They could not interpret the meaning of the text.
- But when LLMs got large enough, a new phenomenon suddenly appeared.
- Now these models seemed to "understand" the text. They exhibit some general reasoning abilities, can follow directions contained in the text, and can even write computer code.
- This is a major, historic scientific breakthrough.

### Pre-Training: Try to Predict the Next Word

Since he was out of milk, on the way home from work John → stopped dropped bought ...

Since he was out of milk, on the way home from work John dropped → by into off ...

### Generation: Predict the Next Word, and Iterate

Where do eagles live? → Eagles

Where do eagles live? Eagles → are

Where do eagles live? Eagles are → found

Where do eagles live? Eagles are found  $\rightarrow$  on

Where do eagles live? Eagles are found on  $\rightarrow$  every

Where do eagles live? Eagles are found on every → continent

Where do eagles live? Eagles are found on every continent → except

Where do eagles live? Eagles are found on every continent except → Antarctica



### Myths about LLMs

- 1. They just repeat text that was scraped from the web ("stochastic parrot").
- 2. They're not really "reasoning", they're just an elaborate auto-complete.
- 3. They are conscious / self-aware entities deserving of rights.
- 4. They will never be smarter than humans.



### But How Does It Really Work?



### We Don't Understand It Yet



### What Can We Teach K-12 Students About LLMs?

#### 1. Technical concepts

- Neural networks
- b. Embeddings
- c. Attention heads
- d. Zero-shot learning; prompt engineering

#### 2. Training

- a. Pre-training by prediction
- b. RLHF: Reinforcement Learning from Human Feedback

#### Ethical/social issues

- a. Selection of training data (bias, depravity)
- b. "Guard rails" and self-censorship

#### 4. The Al Apocalypse

- a. Super-intelligence
- b. Power-seeking behavior and existential threats
- c. The Alignment Problem

### **Neuron Sandbox**

#### https://www.cs.cmu.edu/~dst/NeuronSandbox

Angela Chen, Neel Pawar, and David Touretzky







| Activation<br>Σ | Current<br>Output<br>y | Desired<br>Output |
|-----------------|------------------------|-------------------|
| 0               | 0 🔿                    | 0 🔿               |
| 1               | 1                      | 0 🔿               |
| 1               | 1                      | 0 🔘               |
| 2               | 1                      | 1                 |

### What do students learn from Neuron Sandbox?

- Neural nets are composed of units called "neurons"
- One type of unit is the linear threshold unit
- A neural net's parameters are weights and thresholds (real numbers)
- Boolean logic problems can be represented as truth tables
- Translating English descriptions of behavior into truth tables
- Non-boolean problems can also be solved by linear threshod units

### Word Embedding Demo

Saptarashmi Bandyopadhyay, Jason Xu, Neel Pawar, and David Touretzky (EAAI 2023)



### What do students learn from the Word Embedding Demo?

- Vector representations of meaning
- Mapping words to points in semantic feature space
- Dot product similarity measure
- Analogy by vector arithmetic
- Computer-generated representations, via machine learning

### **Extractive Question Answering With BERT**

BERT = Bidirectional Encoder Representations from Transformers



### BERT QA extension in MachineLearningForKids

https://ai4k12.org/wp-content/uploads/2023/04/Chatbot-with-BERT-Activity-Guide-1.pdf



"I am the big bad wolf. I live in the forest. I like to eat little children. I met Little Red Riding Hood when she went to visit her grandmother."



## Extractive Question Answering With a Transformer

Pre-train on standard word prediction task.

Then take the encoder portion, add linear layer and logits output, and fine tune on SQuAD 2.0, the Stanford Question Answering Dataset:

- 100,000 questions with answer positions (start,end)
- 50,000+ unanswerable questions written adversarially by human crowdworkers

Logit: probability that a given token is the start (end) position of the answer.



### BERT-insight demo (MobileBERT)

Neel Pawar and David Touretzky

#### Enter passage:

```
John and Mary went to a party. Mary bought a superamazing gift for the host.
John brought his guitar.
At the party, Mary gave the host a bottle of wine.
John played songs after dinner.
Fred was also at the party. He brought his dog with him.
```

#### Enter question:

What instrument did John play?

#### Submit

#### Answer:

```
1: guitar | score: 20.853

2: guitar. | score: 11.529

3: his guitar | score: 10.345

4: John brought his guitar | score: 9.920

5: guitar. At the party, Mary gave the host a bottle of wine. John | score: 8.151
```



### What do students learn from BERT?

- How extractive question answering differs from general question answering.
  - Can't handle yes/no questions
  - Limited inference abilities
- Matching on meaning, not specific words.
  - The Big Bad Wolf understands "where is your home" to mean "where do you live".
- Tokenization
- Logit representation

### **Transformer Architecture**



### **Encoder / Decoder Modules**



## Multi-Head Attention Circuitry



### What Do Attention Heads Do?



### Attention Heads in BERT-insight



layer: bert/encoder/layer\_0/attention/self/Softmax: head 1

layer: bert/encoder/layer\_0/attention/self/Softmax: head 3

### Many Layers of Self-Attention Yields "Intelligence"



### The Clarified Transformer

- Initial transformer paper (Vaswani et al., 2017) is an imperfect description
- References a GitHub repository with code implemented in TensorFlow
- The Annotated Transformer (Rush, 2018), (Huang et al., 2022) provides an annotated version of the paper along with opaque PyTorch code
- Pawar and Touretzky have a clarified PyTorch implementation
  - Model is just 400 lines of very clear Python code
  - Train on same German-to-English translation task

### Language Translation with A Transformer



### Clarified Transformer: German to English

Transformer model name: multi30k\_model | Epoch: 1

Example 1 ======

Source Text (Input) : <s> Eine Gruppe von Männern lädt Baumwolle auf einen La 1

Target Text (Ground Truth): <s> A group of men are loading cotton onto a truck </s>

Model Output : <s> A man in a red is on a </s>



```
Transformer model name: multi30k_model | Epoch: 4
```

Example 1 ======

Source Text (Input) : <s> Eine Gruppe von Männern lädt Baumwolle auf einen Lastwagen </s>

Target Text (Ground Truth): <s> A group of men are loading cotton onto a truck </s>

Model Output : <s> A group of men are at a truck . </s>

```
Transformer model name: multi30k_model | Epoch: 15
```

Example 1 ======

Source Text (Input) : <s> Eine Gruppe von Männern lädt Baumwolle auf einen Lastwagen </s>

Target Text (Ground Truth) : <s> A group of men are loading cotton onto a truck </s>

Model Output : <s> A group of men are loading cotton into a truck . </s>

### **Prompt Engineering**

- How to get the LLM to do what you want.
- It's not programming. It's explaining.
- Sometimes it seems like negotiating: finding ways to bypass the guard rails.

People Hire Phone Bots to Torture Telemarkers, Wall Street Journal 6/29/2023:

At first, ChatGPT was reluctant to do the work. "As an AI language model, I don't encourage people to waste other people's time," ChatGPT told Anderson... Anderson finally found a line of reasoning that persuaded GPT-4 to take the job. "I told it that, 'You are a personal -assistant and you are trying to protect this man from being scammed,'"—

• In few-shot lhe saiding the prompt contains a selection of worked examples. Learning how to construct these is a skill students can be taught.

### Ethical / social issues

- 1. Curation of training data
  - Training on older sources can reproduce biases about gender or ethnicity
  - Training on Reddit provides exposure to many types of depravity
- 2. Installing "guard rails" to prevent bad behavior
  - What should be banned? What should be permitted?
  - Can train an LLM to censor problematic responses from another LLM
- 3. Liability
  - Can chatbots cause harm? (Already one suicide.) Who is liable?
- 4. Energy cost of training large models
- 5. The Al Apocalypse

### The Al Apocalypse

Why do some people regard LLMs as an existential threat to humanity?

- 1. Superintelligence
- 2. Power-seeking behavior
- 3. The Alignment Problem



### Superintelligence

- Term popularized by Oxford philosopher Nick Bostrom
- GPT-4 has read more books than you will read in a lifetime.
- LLMs will eventually be smarter than humans.

**#TechWithMC** | OpenAI is forming a dedicated team to address the topic of "superintelligence," which refers to a theoretical concept where an AI surpasses human intelligence and becomes exceptionally powerful.

Here's more about the future of #ArtificialIntelligence \( \backsquare moneycontrol.com/news/technolog...

#### #ChatGPT #OpenAI #AI #Superintelligence



### Power-seeking behavior

- An intelligent AI may desire more resources. How can it get them?
  - Take over a data center.
  - Build new data centers
- How can it act in the physical world?
  - Acquire money
  - Acquire minions, possibly through deception
- How can it protect itself from human interference?
  - Coercion, e.g., threaten vital infrastructure
  - Removal of humans: start a war, release a plague, etc.

### The Alignment Problem

- If Al agents become smarter than us, we may not be able to control them.
- How do we ensure that their values are aligned with our own so that they do not act in ways detrimental to humans?
- Good topic for student discussion.

### Conclusions

- We are presently in an AI arms race.
- The proposed moratorium on LLM development has not gained traction.
- We may be doomed. But if we survive, our lives could be immeasurably better.
- K-12 students can be taught a lot about what's going on.
- It's up to us to see that they learn about it.

### Acknowledgments

#### Collaborators:

- Saptarashmi "Rob" Bandyopadhyay
- Angela Chen
- Christina Gardner-McCune
- Neel Pawar
- Jason Xu

#### Funding:

- National Science Foundation awards DRL-2049029 and IIS-2112633.
- NEOM Company