

Principles of electronic materials

PYL-102

P. Das

Broad Research Area: Nanoscale magnetism, electronic transport fluctuations

Email: pintu@physics.iitd.ac.in

Course objective

providing basic foundation/training
 to understand
electronic, optoelectonic and other solid state devices

Course-Content

- Energy bands in solids
- Classification of electronic materials: metals, semiconductors, insulators
- Free electron model. conductivity, concepts of Fermi surface
- Effective mass and holes
- Concepts of phonons
- Thermoelectricity
- Intrinsic, extrinsic semiconductors, degenerate semiconductors
- Metal-semiconductor junctions, p-n junctions
- Diffusion and drift transport carrier lifetime and diffusion length
- Direct and Indirect band gaps
- Optical transitions, photon absorption, Exciton
- Photovoltaic effect
- Dielectrics and electrical polazation, depolarization field
- Piezoelectricity, Pyroelectricity and ferroelectricity
- Magnetism in metals

Suggested books

- Band theory and electronic properties of solids, by John Singleton, Oxford University Press
- Introduction to Solid State Physics, by Charles Kittel,
 Wiley publishers
- Solid State Physics by N. Aschcroft and N. Mermin

Course evaluation and attendance policy

Attendance:

• Full attendance required, No entry after 11:05 am.

Grading/Evaluation:

1. Minor-I: 15 points

2. Minor II: 15 points

3. Major: 30 points

4. Quiz: total 40 points (every week!)

No re-minor, No re-major!

Metallic state favoured by most elements

Metals

- Tightly bound ion cores
- Surrounded by a more loosly-bound valence electrons
- Large no. of nearest neighbor (hcp, fcc, bcc, etc.)

- Array of widely spaced, small ion cores
- Mobile electrons move through the volume between the cores

The Drude model

• Electrons collide only with ion cores and nothing else!

- No interaction with each other (independent electron approximation) or with ions (free electron approximation) between collisions!
- collisions are instantaneous, results in change in velocity
- Electron experiences a collision a rate au^{-1} (scattering rate)
- electrons achieve thermal equilibrium with surroundings only through collisions

Failure of Drude's model

Drude's results (equipartition of energy)

$$C = \frac{3}{2}nk_B$$

Experimental heat capacity

Ref.: G. Duyckaerts, Physica 6, 817 (1939).