An to the	Q-NO-1
-----------	--------

a

Hem	wei	Pro
1	3	12
2	4	8
3	6	15
9	8	17

corperty M = 10

After decating sarts: (based on bi/mi)

	lui	1 bi	bi/wi	John mi	I total si	Lemaning w.
1				3		10-3=7
2	96	1 5	2.5	3+6=9	12+15	7-6=1
3	68	1917	2-125	0+1210	27+2.125	1-120
9	84	108	2			

Total Manimum Profit in 29.125 4.

update 0:

$$0 \rightarrow 7, 0 + 3 2 \infty$$

 $0 \rightarrow 3, 0 + 7 2 8 \infty$
 $0 \rightarrow 8, 0 + 8 2 \infty$

50	TI	2	3	9
to	2	25	8	-
-	-	-	-	

update 1)

$$1 \rightarrow 2,3+3 < \infty$$

 $1 \rightarrow 3,3+947$

1	2	3	9
3	2	7	8
0	-	0	0
	130	2	3

update 2: all nodes are viriteel

1	C	TI	2	3	4
1	0	3	9	7	8
1	-	0	1	0	0

Antothe QNO -2

Hubbran Algorithm Teodiny is a lorsless empression feetingue, which is used in data compression.

chens

$$6 \rightarrow 100$$

	<u>b</u>	
Hem	a weight	1 Benefit
	2	\$9
2	3	\$5
3	9	\$6
9	Ь	\$10

٨	10	0	1	2	3	4	5	
8	0	0	0	0	0	0	19	
		0	0	a	9	a	9	-74
	2	0	0	CI	5	5	0/1	-> O
	2	0		G	5	5	0	
		0	0	1	3	5	101	1
	9	0	0	4	2 5	1	1	
				1				

So, Manimum Genitit > 0)

From starting node →1

to -> node: 6

10h1,63 26, h1,23

mode → 6

to - node-5

25, 6, 53 26, 61, 2)

mode →5

to -> node -> G

22, (5,4) 24, 45,7) 24, 41,229

onode - 4

to-mode-3

12(3,43) 18, (4,9) 29 (3) 26 (3)

node:3

to -> node 2

node:2 Josnode 7

1442,77

so the most we tound is

b (from 4 NO)

int (30 do, 12) P

\$

3) n+n+1

cute choose siggest pouver et n,

So space complexity = O(P)

Am. to the . d. NO - 3

6

Bellman Ford Derstime consuming	Dijkstra more time consuming than Bellman ford.
implement early to distributed	implement not easy to
used Ødynamie	used greedy approach
want on negative aeight cycle	negentine meight cycle.

AO	111	2	3	9	
	0				
2	a	0	3	0XI	
3	A	2	0	2	
4	Joul	1-1	12	0	
	,		11		

Ad_	11	2	13	1 4
1	0	2	-2	L
2	9	0	2	~
3	The state of the state of	d	0	2
9	100	4-1	人人	0

A2 1/2	1 3	9
100	× -2	N
2 9		
		2
4 31-	-11 2	0
A 151 27	AI [],	2) + (2,3)
A, [1,2]	A	*
	+	4,61,27 + (2,4)
A, E(,97)		4, [1,2] + [2,4] + + 4
~	1	3,29 + (2,1)
A, 159,17	AL	+ 4
7	2 1	
A K3, 43	A, C	(9,2) + [2,4] X
A [3,4]	1	X T
	→ A	[Eq. 2]+[2/1]
ALE,17	>	Q-1 9
		[9,2]H[2,9]
A, [4, 3]	", [
2	>	-1 + -1

A3 11 12 19 19
1020
29029
A. 51,27 A2[1,37+[3,2]
A2 [1,2]
7
AZ[1,4] > AZ[1,3] [3,4)
A 2 [2, 37 Ad 3, 17
H. (1)
$A_{2}[2,9]$ $A_{2}[2,9]$ $A_{2}[2,9]$
2
L AZEG,37 AZEG,17
A2[9,1] <
AZ [4,2] AZ[4,3] AZ[5,2)
2

Step 1:

in viviled

3 7 6 2 1 0

Stacks

Step 2:

Step 2:

Step 2:

Stack. 5×-0 6×-0 6×-0 7×-0

sto norted greph;

