Homework 4: TV distance, KL-Divergence, and Introduction to

课程 □ Unit 3 Methods of Estimation □ MLE

☐ 3. Concave functions

3. Concave functions

(a)

3/3 points (graded)

Are the following functions concave, convex, or neither?

$$f_{1}\left(x
ight) =\ln x,\quad x>0.$$

● Concave □

Convex

Not concave and not convex

$$f_{2}\left(x
ight) =-x^{4}+x^{2}-40x,\quad x\in \mathbb{R}$$

Concave

Convex

lacktriangle Not concave and not convex \Box

$$f_{3}\left(x
ight) =rac{1}{\exp \left(x
ight) -1},\quad x>0$$

Concave

● Convex □

Not concave and not convex

Solution:

Recall that for a twice continuously differentiable function f, we can check concavity by testing whether $f''(x) \leq 0$ for all x in the (convex) domain in question.

To begin, compute

$$f_{1}^{\prime}\left(x
ight) =rac{1}{x}$$

$$f_{1}^{\prime\prime}\left(x
ight) = ext{ }-rac{1}{x^{2}}<0, ext{ for }x>0,$$

so f_1 is concave.

$$egin{array}{ll} f_2'\left(x
ight) = & -4x^3 + 2x - 40 \ f_2''\left(x
ight) = & -12x^2 + 2, \end{array}$$

which means $f_2''\left(x
ight)>0$ for $x\in\left(-rac{1}{\sqrt{6}},rac{1}{\sqrt{6}}
ight)$, but $f_2''\left(x
ight)<0$ for $x
otin\left[-rac{1}{\sqrt{6}},rac{1}{\sqrt{6}}
ight]$, hence f_2 is neither concave or convex.

$$egin{align} f_3'\left(x
ight) &=& -rac{e^x}{\left(e^x-1
ight)^2} \ f_3''\left(x
ight) &=& -rac{e^x\left(e^x-1
ight)-2e^{2x}}{\left(e^x-1
ight)^3} \ &=& rac{e^{2x}+e^x}{\left(e^x-1
ight)^3} > 0, \quad ext{for } x > 0. \end{array}$$

That means that f is convex for x>0 .

提交

你已经尝试了1次(总共可以尝试1次)

☐ Answers are displayed within the problem

(b)

2/2 points (graded)

A symmetric 2×2 matrix \mathbf{A} (i.e. $\mathbf{A}^T = \mathbf{A}$) is negative semi- definite, i.e. $\mathbf{x}^T \mathbf{A} \mathbf{x} \leq \mathbf{0}$ for all $\mathbf{x} \in \mathbb{R}^2$, if and only if both of the following is true:

- $\operatorname{tr}(\mathbf{A}) \leq 0$
- $\det(\mathbf{A}) \geq 0$

(This fact can be explained in terms the eigenvalues of $\bf A$. Let λ_1 and λ_2 be the eigenvalues of $\bf A$, then ${\rm tr}\,({\bf A})=\lambda_1+\lambda_2$ while ${\rm det}\,({\bf A})=\lambda_1\lambda_2$. The two conditions above ensure that $\lambda_1,\lambda_2\leq 0$.)

Use the fact given above to determine whether the following functions concave, convex, or neither.

$$f_4\left(heta_1, heta_2
ight) = - heta_1^2 + rac{1}{2}(heta_1- heta_2)^2 - 3 heta_2^2, \quad (heta_1, heta_2) \in \mathbb{R}^2$$

- Concave
- Convex
- Not concave and not convex

$$f_5\left(heta_1, heta_2
ight)=- heta_1^4- heta_2^4-\left(heta_2- heta_1
ight)^3,\quad \left(heta_1, heta_2
ight)\in\mathbb{R}^2, ext{ with } heta_1< heta_2$$

● Concave □

- Convex
- Not concave and not convex

Solution:

If f is function from $\Omega \subseteq \mathbb{R}^d \to \mathbb{R}$, then it is concave if the Hessian of f is negative semi-definite. In the special case of two dimensions, this can be checked by testing whether both $\operatorname{tr} \nabla^2 f \leq 0$ and $\operatorname{det} \nabla^2 f \geq 0$ are true.

$$egin{aligned}
abla f_4\left(heta_1, heta_2
ight) &=& egin{pmatrix} - heta_1- heta_2 \ - heta_1-5 heta_2 \end{pmatrix} \ Hf_4\left(heta_1, heta_2
ight) &=& egin{pmatrix} -1 & -1 \ -1 & -5 \end{pmatrix}. \end{aligned}$$

Since ${
m tr}\,
abla^2 f_4 = -6 < 0$ and ${
m det}
abla^2 f_4 = 4 > 0$, we have $abla^2 f$ is negative semi-definite for all $\, heta$, and in turn, $\,f_4\,$ is concave.

$$egin{aligned}
abla f_5\left(heta_1, heta_2
ight) = & egin{pmatrix} -4 heta_1^3 + 3(heta_2 - heta_1)^2 \ -4 heta_2^3 - 3(heta_2 - heta_1)^2 \end{pmatrix} \ Hf_5\left(heta_1, heta_2
ight) = & egin{pmatrix} -12 heta_1^2 - 6\left(heta_2 - heta_1
ight) & 6\left(heta_2 - heta_1
ight) \ 6\left(heta_2 - heta_1
ight) & -12 heta_2^2 - 6\left(heta_2 - heta_1
ight) \end{pmatrix}. \end{aligned}$$

We again check

$$\operatorname{tr}
abla^2 f_5\left(heta_1, heta_2
ight) = -12 heta_1^2 - 12\left(heta_2 - heta_1
ight) - 12 heta_2^2 < 0, \quad ext{if } heta_1 < heta_2,$$

$$egin{aligned} \det &
abla^2 f_5 \left(heta_1, heta_2
ight) = & \left(12 heta_1^2 + 6 \left(heta_2 - heta_1
ight)
ight) \left(12 heta_2^2 + 6 \left(heta_2 - heta_1
ight)
ight) - 36 (heta_2 - heta_1)^2 \ & = & 144 heta_1^2 heta_2^2 + 72 \left(heta_1^2 + heta_2^2
ight) \left(heta_2 - heta_1
ight) > 0, & ext{if } heta_1 < heta_2. \end{aligned}$$

Combined, f_5 is concave on $\left\{ heta_1 < heta_2
ight\}$.

提交

你已经尝试了1次(总共可以尝试1次)

☐ Answers are displayed within the problem

讨论

显示讨论

主题: Unit 3 Methods of Estimation:Homework 4: TV distance, KL-Divergence, and Introduction to MLE / 3. Concave functions

认证证书是什么?

© 保留所有权利