## Lecture 10 - Feb 14, 2023

- Dynamic Programming
- Policy Iteration ? Vector-Form

  Value Iteration ?
  - · Policy Iteration ?
    Matrix-Form
    Value Iteration
- -Approximate Dynamic Programming
  - · Asynchronous DP
  - · Generalized Policy Iteration

Exam 1 - Tuesday, Feb 21

HW2 → Due Feb 17

Project 2 - Due March 3

Wendsdays, 2.pm\_3pm (in-person) TA's office hour: Fridays, 2pm-3pm (virtual)

Dynamic Programines Bellowan E9 VT(S) = 5 P(S'1S, T(S)) [R(S, T(S), S') + & VT(S')] Bollman Optimely Eq V(s)=max [P(s'|s,a)[R(s,a,s')+ (s')]

Approh 7: Postin Iteration

Palicy Evalution (PE)

V. (S) = [ PCSTS, TO) [R(S, TE), S')+ (K(S')]

Policy Improvement

M(s) = argmax & P(s'Is,a) [R(s, 4, 5)+8/(55)]
a & S' To PE > Vr. PI > TI PE VK, PI To . - -.

 $\mathcal{T}_{T} = \mathcal{T}_{T_{T}} = \mathcal{T}^{*}$ 

# Approach 2: Value Iteration (VI)

$$V_0 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \longrightarrow V_1 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \longrightarrow V_2 \longrightarrow \cdots V_T$$

$$\max ||V_T - V_{T-1}|| < \theta \rightarrow V_T = V^*$$

78(5)-argny (\$15,a)

$$V_0 \longrightarrow V_1 \longrightarrow V_2 \sim - - V_1 \stackrel{*}{\longrightarrow} T_1^*$$

Proof. V(s)= max 5 P(s1s, a) [R(s, a, s)+ V(s)] V(s)= max 5 P(s15, a) [R(s, a, 5)+7 V(s)] U. TU. U2 - - - 10, TO1KO V and U are two random veders TV(s) - TU(s) < 11 V-01/20 -max [prosis,a)[Rrs,a,s)+&U(s)]

Temma

| max f(a) - mux g(a) | < max | f(a) g(a) |

 $< \max_{\alpha \in A} | \sum_{s'} P(s|s,\alpha) [V(s') - U(s')] |$   $< \max_{\alpha \in A} | \sum_{s'} P(s|s,\alpha^s) [V(s') - U(s')] |$   $< \delta | V - U|_{\alpha s}$ 

### Example:

$$\mathcal{M}(\alpha^{1}) = \begin{pmatrix} A & B \\ 0.9 & 0.1 \\ 6-1 & 0.9 \end{pmatrix}$$

$$M(a^2) = \begin{cases} A & 0.1 \\ 0.9 & 0.1 \end{cases}$$

(VKH (5)= max & P(5/5,a) [R(5,a,5)+) VK (5)]

$$V_{o} = \begin{bmatrix} o \\ o \end{bmatrix} = \begin{bmatrix} V_{o}(A) \\ V_{o}(B) \end{bmatrix} \quad \frac{VIB}{V_{i}} \quad V_{i} = \begin{bmatrix} V_{i}(A) \\ V_{i}(B) \end{bmatrix}$$

= 
$$\max \left\{ \frac{P(A|A,\alpha')}{P(A|A,\alpha')} \left[ \frac{R(A,\alpha',A)}{P(A,\alpha',A)} + \frac{V_o(A)}{P(A|A,\alpha')} \left[ \frac{R(A,\alpha',B)}{P(A|A,\alpha')} \right] \right\} \right\}$$

$$\forall_1 \in \begin{pmatrix} V_1(A) + V_2(B) \end{pmatrix} \in \begin{pmatrix} 3.5 \\ V_1(B) \end{pmatrix}$$

Vi(B)= max [ p(5/B,a)[R(B,a,5)+7 Vo(5)]

= max  $\left\{ P(B_1 a') \left[ R(B_1 a', B) \right] \right\} P(A|B_1 a') \left[ R(B_1 a', B) \right] + P(A|B_1 a', B') \right]$ 

P(A 1B, a2) [R(B, a3, A)+ & V(A)]+P(B1B, a4) [R(B, a3, B)+6 V(B)]

-1

-05

 $V_1 = \begin{bmatrix} 3-5 \\ 4-5 \end{bmatrix} \longrightarrow V_2 \longrightarrow V_3 \longrightarrow V_{\uparrow}$ 

 $V^* = V_{100} = \begin{pmatrix} 43.17 \\ 44.1 \end{pmatrix}$ 

mers) V<sub>100</sub> - V<sub>99</sub> / c & ~ 0.01



#### Value Iteration

```
Initialize array V arbitrarily (e.g., V(s) = 0 for all s \in S^+)
```

#### Repeat

$$\Delta \leftarrow 0$$

For each  $s \in S$ :

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$
  
$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until  $\Delta < \theta$  (a small positive number)

Output a deterministic policy,  $\pi$ , such that

$$\pi(s) = \arg\max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$



R



|                  | V                  | 4 195            | .96      |
|------------------|--------------------|------------------|----------|
| 9 👭              | 10 <sup>9</sup> 5  | 2018             | 1297     |
| 8 <sup>3</sup> 3 |                    | 14 <sup>95</sup> | 13%      |
| 792              |                    | 16               | 99 1.598 |
| 621              | 5 <i>%</i>         |                  | 78       |
| 4%               | 3 <mark>8</mark> 9 | 288              | 187      |
| Wall             |                    | Bump             | Goal     |

|                | TR |     |    |  |
|----------------|----|-----|----|--|
| 9              | 10 | 11  | 12 |  |
| 8 1            |    | 141 | 13 |  |
| 71             |    | 16  | 15 |  |
| 61             | 5  |     |    |  |
| 4 1            | 3∱ | 2   | 81 |  |
| Wall Bump Goal |    |     |    |  |

Thess= argnux [ PGT sin) [R + 2 VGS]

| 9         | 10 | 11   | 12 |
|-----------|----|------|----|
| 8         |    | 14   | 13 |
| 7         |    | 16   | 15 |
| 6         | 5  |      |    |
| 4         | 3  | 2    | 1  |
| Wall Bump |    | Goal |    |