

System Software Compiler Design

School of Computer Engineering and Technology

Role of Parser / Syntax Analysis Analysis

3

Role of Parser / Syntax Analysis

- Checks whether the token stream meets the Grammatical Specification of the Language and generates the Syntax Tree.
- A grammar of a programming language is typically described by a Context Free Grammar, which also defines the structure of the parse tree.
- A syntax error is produced by the compiler when the program does not meet the grammatical specification.

Definition of Context-Free Grammars Grammars

- A context-free grammar G = (T, N, S, P) consists of: 1. T, a set of terminals (scanner tokens).
- 2. **N**, a set of *nonterminals* (syntactic variables generated by productions).
- 3.5, a designated start nonterminal.
- 4. P, a set of *productions*. Each production has the form, $A:=\alpha$, where A is a nonterminal and α is a *sentential form*, i.e., a string of zero or more grammar symbols (terminals/nonterminals).

Context-Free Grammars

- A context-free grammar defines the syntax of a programming language
- The syntax defines the syntactic categories for language constructs
 - Statements
 - Expressions
 - Declarations
- Categories are subdivided into more detailed categories

<assignment> ::= <identifier> := <expression>

- A Statement is a
 - Por-statement
 - If-statement
 - Assignment

Syntax Analysis Analysis

Syntax Analysis Problem Statement: To find a derivation sequence in a grammar for the input token stream (or say that none exists).

6

Derivation

Given the following grammar:

$$\mathsf{E} \to \mathsf{E} + \mathsf{E} \, | \, \mathsf{E} \, * \, \mathsf{E} \, | \, (\, \mathsf{E} \,) \, | \, \text{-} \, \mathsf{E} \, | \, \text{id}$$

Is the string -(id + id) a sentence in this grammar?

Yes because there is the following

derivation:
$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E + E) \Rightarrow -$$

$$(id + id)$$

Where \Rightarrow reads "derives in one step".

A parse tree is a graphical representation of a derivation sequence of a sentential form.

Tree nodes represent symbols of the grammar (nonterminals or terminals) and tree edges represent derivation steps.

8

Derivation

$$E \rightarrow E + E \mid E * E \mid (E) \mid - E \mid id$$

Lets examine this derivation:

$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E + E) \Rightarrow -(id + id)$$

9

parse tree

Another Derivation Example

 $E \rightarrow E + E \mid E * E \mid (E) \mid - E \mid id$

Find a derivation for the expression:

According to the grammar, both are correct.

A grammar that produces more than one parse tree for any input sentence is said to be an ambiguous grammar.

Parse Trees and Derivations

Derivations

Top-down parsing

Bottom-up parsing

$$E \Rightarrow E + E$$
 $\Rightarrow id + E$
 $\Rightarrow id + E * E$
 $\Rightarrow id + id * id$
 $\Rightarrow E + E * E$
 $\Rightarrow E + E * id$
 $\Rightarrow E + id * id$
 $\Rightarrow id + id * id$
 $\Rightarrow id + id * id$

Top—Down Parsing

- Representation root to leaves
- The traversal of parse trees is a preorder traversal
- Tracing leftmost derivation
- Two types:

Backtracking: Try different structures and backtrack if it does not matched the input

Predictive: Guess the structure of the parse tree from the next input

Bottom-Up Parsing

- A parse tree is created from leaves to root
- The traversal of parse trees is a reversal of postorder traversal
- Tracing rightmost derivation
- More powerful than top- down parsing

Parser

Parsing Techniques Techniques Top-Down Parser

Imp

Bottom-Up Parser

Left Recursion

Consider the grammar:

$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid$
 $F \rightarrow (E) \mid id$

A top-down parser might loop forever when parsing an expression using this grammar

16

Left Recursion

Consider the grammar:

A grammar that has at least one production of the form $A \Rightarrow A\alpha$ is a left recursive grammar.

Top-down parsers do not work with left-recursive grammars.

Left-recursion can often be eliminated by rewriting the grammar.

Elimination of Left Recursion

- A grammar is **left recursive** if it has a NT A such that there is a derivation $A + \longrightarrow A\alpha$ for some string α .
- Top down parsing methods cannot handle left recursive grammars, so a transformation that eliminates left recursion is needed.

E.g. APA $\alpha \mid \beta$

 $A' ? \alpha A' | \varepsilon$

Contd...

• The technique to eliminate left recursion is:

APA
$$\alpha$$
1 | A α 1 | ... | β 1 | β 2 | ... | β n no β i begins with A.

So we replace the A-productions

by
$$A \mathbb{P} \beta_1 A' | \beta_2 A' | \dots | \beta_n A'$$

 $A' \mathbb{P} \alpha_1 A' | \alpha_2 A' | \dots | \alpha_m A' | \epsilon$

e.g. consider the G as

A
$$\mathbb{C}$$
Ac | Sd | ε

Left Recursion

This left-recursive grammar:

$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid id$

Can be re-written to eliminate the immediate left recursion:

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \epsilon$$

$$F \rightarrow (E) \mid id$$

Left Factoring

The following grammar:

```
stmt → if expr then stmt else stmt
| if expr then stmt
```

Cannot be parsed by a predictive parser that looks one element ahead.

But the grammar can be re-written:

```
stmt \rightarrow if expr then stmt stmt' stmt' \rightarrow else stmt | \epsilon
```

Where ε is the empty string.

Rewriting a grammar to eliminate multiple productions starting with the same token is called **left factoring**.

21

How to do left factoring :algorithm

Algorithm: Left factoring a grammar

Input:Grammar G

Output: Eq. left factored grammar

for each NT A find the longest prefix α common to two or more its alternatives.

if $\alpha \neq \varepsilon$ i.e. there is a common prefix,replace all the A- productions

$$A \mathbb{P} \alpha \beta_1 | \alpha \beta_2 | \dots | \alpha \beta_n | \gamma$$

Where γ : all alternatives that do not begin with

 α by AP α A' | γ

$$A' \square \beta_1 | \beta_2 | \dots | \beta_n$$

Here A' is a new NT.

- A parser that uses a set of recursive procedures to recognize its input is called a recursive descent parsing.
- It is an attempt to find a leftmost derivation for an input string
- It can be viewed as an attempt to construct a parse tree for the i/p starting from the root and creating the nodes of the parse tree in **preorder**.
- **Predictive parsing** is special case of RDP where no backtracking is required.
- Recursive descent parsers will **look ahead one character** and **advance** the input stream reading pointer when proper matches occur.

 $S \rightarrow cAd$

 $A \rightarrow ab \mid a$

i/p is cad

 $S \rightarrow cAd$

 $S \rightarrow cAd \rightarrow cabd$

 $S \rightarrow cAd \rightarrow cad$

A left recursive grammar can cause a RDP, even with backtracking to go into an infinite loop.

• The procedures for the arithmetic expression grammar:

$$\bullet E \rightarrow TE'$$

$$E' \rightarrow +TE' | \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' | \epsilon$$

$$F \rightarrow (E)|id$$

input is:id+id*id\$


```
Procedure E():
   begin
        T()
       E'()
   End;
procedure E'():
     If input symbol = '+'
      then begin
       ADVANCE()
        T()
       E'()
      end;
```

Contd...

```
procedure T():
     begin
         F( )
        T'()
    End;
procedure T'( )
      If input_symbol = '*'
      then begin
      ADVANCE()
       F()
        T'()
      End;
```

Contd...

```
procedure F():
    If input symbol = 'id'
     then ADVANCE()
    Else if input Symbol=' (' then
     begin
       ADVANCE()
       E()
       If input symbol = ')'
       then ADVANCE()
       else ERROR()
    end
    else
       ERROR()
```

NOTE: ADVANCE() moves the input pointer to the next input symbol

Top Down Con...

we can have (LL(k))

parsers also

- No Backtracking Parser:
- Writing Special Grammar Eliminating Left Recursion & Left Factoring.
- Must know Current Input Symbol (a)
 & Non terminal (A) to be expanded.
 A -> α1/α2/α3...../αη
- Prediction of Match

- LL(1) Parser uses explicit STACK rather than Recursive calls.
- Stack Implementation:

Grammar:

$$\begin{array}{l} \mathsf{E} \to \mathsf{TE'} \\ \mathsf{E'} \to +\mathsf{TE'} \mid \epsilon \\ \mathsf{T} \to \mathsf{FT'} \\ \mathsf{T'} \to *\mathsf{FT'} \mid \epsilon \\ \mathsf{F} \to (\mathsf{E}) \mid \mathsf{id} \end{array}$$

Parsing Table:

	NON-	INPUT SYMBOL						
_	TERMINAL	id	+	*	()	\$	
	Е	E → TE'			E → TE′			
	Ε'		E' → +TE'			$E' \rightarrow \epsilon$	$E' \rightarrow \epsilon$	
	Т	$T \rightarrow FT'$			$T \rightarrow FT'$			
	T'		T′→ ε	T' → *FT'		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$	
	F	F → id			F → (E)			

TERMINAL

TABLE:

Ε

E'

Т

id

E → TE'

 $T \rightarrow FT'$

 $F \rightarrow id$

 $E' \rightarrow +TE'$

T′→ ε

T' → *FT'

6/5/2021

E → TE'

 $T \rightarrow FT'$

 $F \rightarrow (E)$

 $E' \rightarrow \epsilon$

 $T' \rightarrow \epsilon$

 $E' \rightarrow \epsilon$

 $T' \rightarrow \epsilon$

TERMINAL

TABLE:

Ε

E'

id

 $E \rightarrow TE'$

 $T \rightarrow FT'$

 $F \rightarrow id$

 $E' \rightarrow +TE'$

 $T' \rightarrow \epsilon$

T' → *FT'

6/5/2021

E → TE'

T → FT'

 $F \rightarrow (E)$

 $E' \rightarrow \epsilon$

 $T' \rightarrow \epsilon$

 $E' \rightarrow \epsilon$

 $T' \to \epsilon$

(Aho,Sethi,

Ullman,

pp. 186)

E → TE'

T → FT'

F → id

Е

E'

Т

T'

F

TABLE:

 $E' \rightarrow +TE'$

T′→ ε

 $\mathsf{E} \to \mathsf{TE'}$

 $T \rightarrow FT'$

F → (E)

T' → *FT'

6/5/2021

 $E' \rightarrow \epsilon$

 $T' \rightarrow \epsilon$

 $E' \rightarrow \epsilon$

 $T' \rightarrow \epsilon$

(Aho,Sethi,

Ullman,

pp. 188)

Action when Top(Stack) = input \neq \$: Pop stack, advance input.

PARSIN G TABLE:

NON-						
TERMINAL	id	+	*	()	\$
E	E → TE′			E → TE′		
E'		E' → +TE'			E' → ε	E' → ε
Т	T → FT′			$T \rightarrow FT'$		
T'		T′→ ε	T' → *FT'		T' → ε	T' → ε
F	F → id		6/5/2021	F → (E)		

A Predictive Parser

NON-		INPUT SYMBOL					
TERMINAL	id	+	*	()	\$	
E	E → TE′			E → TE′			
E'		E' → +TE'			E' → ε	E' → ε	
Т	T → FT′			T → FT′			
T'		T ′→ ε	T' → *FT'		T' → ε	$T' \rightarrow \epsilon$	
F	F → id		6/5/2021	F → (E)			

A Predictive Parser

The predictive parser proceeds in this fashion emiting the following productions:

$$T \rightarrow FT'$$

$$F \rightarrow id$$

$$\mathbf{F} \rightarrow \mathbf{id}$$

$$T' \rightarrow \epsilon$$

When Top(Stack) = input = \$
the parser halts and accepts the input string.

LL(k) Parser

This parser parses from left to right, and does a leftmost-derivation. It looks up 1 symbol ahead to choose its next action. Therefore, it is known as a LL(1) parser.

An **LL(k)** parser looks **k symbols ahead** to decide its action.

6/5/2021

Given this grammar:

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \epsilon$$

$$F \rightarrow (E) \mid id$$

How is this parsing table built?

NON-		INPUT SYMBOL				
TERMINAL	id	+	*	()	\$
E	E → TE′			E → TE′		
E'		E' → +TE'			E' → ε	E' → ε
Т	T → FT′			T → FT'		
T'		T′→ ε	T' → *FT'		T' → ε	T' → ε
F	F → id			F → (E)		

FIRST and FOLLOW We need to build a FIRST set and a FOLLOW

We need to build a FIRST set and a FOLLOW set for each symbol in the grammar.

The elements of FIRST and FOLLOW are terminal symbols.

FIRST(α) is the set of <u>terminal symbols</u> that can begin any string derived from α .

FOLLOW(α) is the set of <u>terminal symbols</u> that can follow α :

 $t \in FOLLOW(\alpha) \leftrightarrow \exists$ derivation containing αt

Rules to Create FIRST

GRAMMAR:

```
\begin{array}{c} \mathsf{E} \to \mathsf{TE'} \\ \mathsf{E'} \to +\mathsf{TE'} \mid \epsilon \\ \mathsf{T} \to \mathsf{FT'} \\ \mathsf{T'} \to *\mathsf{FT'} \mid \epsilon \\ \mathsf{F} \to (\;\mathsf{E}\;) \mid \mathsf{id} \end{array}
```

SETS:

```
FIRST(id) = {id}

FIRST(*) = {*}

FIRST(+) = {+}

FIRST(() = {(})

FIRST(E') = {\epsilon} {+, \epsilon}

FIRST(T') = {\epsilon} {*, \epsilon}

FIRST(F) = {(, id}

FIRST(E) = FIRST(F) = {(, id}

FIRST(E) = FIRST(T) = {(, id}
```

FIRST rules:

```
1. If X is a <u>terminal</u>, FIRST(X) = {X}
2. If X \to \varepsilon, then \varepsilon \in FIRST(X)
3. If X \to Y_1Y_2 \dashrightarrow Y_k
and Y_1 \dashrightarrow Y_{i-1}
\stackrel{*}{\Rightarrow} \varepsilon \quad \text{and a}
\in FIRST(Y_i) \text{ then a}
\in FIRST(X)
```

FIRST(E') =
$$\{+, \epsilon\}$$

FIRST(T') = $\{*, \epsilon\}$
FIRST(F) = $\{(, id)\}$
FIRST(T) = $\{(, id)\}$
FIRST(E) = $\{(, id)\}$

es to Create FOLLOW

OLLOW

GRAMMAR:

SETS:

```
FOLLOW(E) = {$\$ { }, $\}
FOLLOW(E') = { }, $\}
FOLLOW(T) = { }, $\}
```

FOLLOW rules:

- 1. If S is the start symbol, then $\$ \in FOLLOW(S)$
- 2. If $A \rightarrow \alpha B\beta$, and $a \in FIRST(\beta)$ and $a \neq \epsilon$ then $a \in FOLLOW(B)$
- 3. If $A \rightarrow \alpha B$ and $a \in FOLLOW(A)$ then $a \in FOLLOW(B)$ 3a. If $A \rightarrow \alpha B\beta$ and $\beta \Rightarrow *$

and a ∈ FOLLOW(A)

then a FOLLOWIR

A and B are non-terminals, α and β are strings of grammar symbols

```
FIRST(E') = \{+, \epsilon\}

FIRST(T') = \{+, \epsilon\}

FIRST(F) = \{(, id)\}

FIRST(T) = \{(, id)\}

FIRST(E) = \{(, id)\}
```

ules to Create FOLLOW

GRAMMAR:

```
E \rightarrow TE'
E' \rightarrow +TE' \mid \epsilon
T \rightarrow FT'
T' \rightarrow *FT' \mid \epsilon
F \rightarrow (E) \mid id
```

SETS:

```
FOLLOW(E) = \{), \$\}
FOLLOW(E') = \{), \$\}
FOLLOW(T) = \{), \$\} \{+, \}, \$\}
```

FOLLOW rules:

```
1. If S is the start symbol, then $ ∈ FOLLOW(S)
2. If A \rightarrow \alpha B\beta,
   and a \in FIRST(\beta)
   and \mathbf{a} \neq \mathbf{\epsilon}
   then a \in FOLLOW(B)
3. If A \rightarrow \alpha B
   and a \in FOLLOW(A)
   then a ∈ FOLLOW(B)
3a. If A_* \rightarrow \alpha B\beta \epsilon
   and a \in FOLLOW(A)
   then a ∈ FOLLOW(B)
```

```
FIRST(E') = \{+, \epsilon\}

FIRST(T') = \{*, \epsilon\}

FIRST(F) = \{(, id)\}

FIRST(T) = \{(, id)\}

FIRST(E) = \{(, id)\}
```

les to Create FOLLOW

GRAMMAR:

```
E \rightarrow TE'
E' \rightarrow +TE' \mid \epsilon
T \rightarrow FT'
T' \rightarrow +FT' \mid \epsilon
F \rightarrow (E) \mid id
```

SETS:

```
FOLLOW(E) = \{), \$\}
FOLLOW(E') = \{), \$\}
FOLLOW(T) = \{+, \}, \$\}
```

FOLLOW rules:

```
    If S is the start symbol, then $ ∈ FOLLOW(S)
    If A → αBβ,
and a ∈ FIRST(β)
and a ≠ ε
```

then a ∈ FOLLOW(B)

```
3a. If A→ αBβ ε and β ⇒* ε and a ∈ FOLLOW(A) then a ∈ FOLLOW(B)
```

```
FIRST(E') = \{+, \epsilon\}

FIRST(T') = \{*, \epsilon\}

FIRST(F) = \{(, id)\}

FIRST(E) = \{(, id)\}
```

lles to Create FOLLOW

OLLOW

GRAMMAR:

```
\begin{array}{c} \mathsf{E} \to \mathsf{TE'} \\ \mathsf{E'} \to +\mathsf{TE'} \mid \epsilon \\ \mathsf{T} \to \mathsf{FT'} \\ \mathsf{T'} \to *\mathsf{FT'} \mid \epsilon \\ \mathsf{F} \to (\mathsf{E}) \mid \mathsf{Id} \end{array}
```

SETS:

```
FOLLOW(E') = { ), $}

FOLLOW(T) = {+, ), $}

FOLLOW(T') = {+, ), $}

FOLLOW(F) = {+, ), $}
```

 $FOLLOW(E) = \{ \mathbf{)}, \$ \}$

FOLLOW rules:

- 1. If S is the start symbol, then $\$ \in FOLLOW(S)$
- 2. If $A \rightarrow \alpha B\beta$, and $a \in FIRST(\beta)$ and $a \neq \epsilon$ then $a \in FOLLOW(B)$
- 3. If $A \rightarrow \alpha B$ and $a \in FOLLOW(A)$ then $a \in FOLLOW(B)$

3a. If
$$A_* \rightarrow \alpha B\beta$$
 and $\beta \Rightarrow^* \epsilon$ and $\alpha \in FOLLOW(A)$ then $\alpha \in FOLLOW(B)$

```
FIRST(E') = \{+, \epsilon\}

FIRST(T') = \{*, \epsilon\}

FIRST(F) = \{(, id)\}

FIRST(E) = \{(, id)\}
```

ules to Create FOLLOW

FOLLOW

GRAMMAR:

```
E \rightarrow TE'
E' \rightarrow +TE' \mid \epsilon
T \rightarrow FT'
T' \rightarrow *FT' \mid \epsilon
F \rightarrow (E) \mid id
```

SETS:

```
FOLLOW(E) = { ), $}

FOLLOW(E') = { ), $}

FOLLOW(T) = {+, ), $}

FOLLOW(T') = {+, ), $}

FOLLOW(F) = {+, }, $}
```

FOLLOW rules:

```
1. If S is the start symbol, then \$ \in FOLLOW(S)
 2. If A \rightarrow \alpha B\beta,
     and a \in FIRST(\beta)
     and \mathbf{a} \neq \mathbf{\epsilon}
     then a \in FOLLOW(B)
  3. If A \rightarrow \alpha B
     and a \in FOLLOW(A)
      then a ∈ FOLLOW(B)
3a. If A_* \rightarrow \alpha B\beta and \beta \Rightarrow \alpha \beta = \epsilon
     and a \in FOLLOW(A)
      then a \in FOLLOW(B)
```

GRAMMAR: $E \rightarrow TE'$ $E \rightarrow TE' \mid \epsilon$ $T \rightarrow FT'$

 $T' \rightarrow *FT' \mid \epsilon$

 $F \rightarrow (E) | id$

FIRST SETS:

 $FIRST(E) = \{(, id)\}$

FOLLOW SETS:

FIRST(E') = $\{+, \epsilon\}$ FIRST(T') = $\{*, \epsilon\}$ FIRST(F) = $\{(, id)\}$ FIRST(T) = $\{(, id)\}$

arsing

FOLLOW(E) = {**)**, \$}

FOLLOW(E') = {**)**, \$}

FOLLOW(T) = {**+**, **)**, \$}

FOLLOW(T') = {**+**, **)**, \$}

 $FOLLOW(F) = \{+, *,), \}$

1. If $A \rightarrow \alpha$: if $a \in FIRST(\alpha)$, add $A \rightarrow \alpha$ to M[A, a]

				•			
NON-		INPUT SYMBOL					
TERMINAL	id	+	*	()	\$	
Е	E → TE′			E → TE'			
E'		E' → +TE'			E' → ε	E' → ε	
Т	T → FT′			T → FT'			
T'		T′→ ε	T' → *FT'		T' → ε	T' → ε	
F	F → id			F → (E)			

 $F \rightarrow (E) | id$

E → TE' E' → +TE' ε T → FT' T' → *FT' | ε

FIRST SETS:

FIRST(E') =
$$\{+, \epsilon\}$$

FIRST(T') = $\{*, \epsilon\}$
FIRST(F) = $\{(, id)\}$
FIRST(T) = $\{(, id)\}$
FIRST(E) = $\{(, id)\}$

FOLLOW SETS:

1. If
$$A \rightarrow \alpha$$
:
if $a \in FIRST(\alpha)$, add $A \rightarrow \alpha$ to M[A, a]

NON-			INPUT SYMBOL						
TERMIN	AL	id	+	*	()	\$		
Е		E → TE′			E → TE′				
E'			E' → +TE'			E' → ε	E' → ε		
Т		T → FT′			T → FT′				
T'			T′ → ε	T' → *FT'		T' → ε	T' → ε		
F		F → id			F → (E)				

FIRST SETS:

FOLLOW SETS:

FIRST(E') = $\{+, \epsilon\}$ FIRST(T') = $\{*, \epsilon\}$ FIRST(F) = $\{(, id\})$ FIRST(T) = $\{(, id\})$

 $FIRST(E) = \{(, id)\}$

FOLLOW(E) = {**)**, \$}

FOLLOW(E') = {**)**, \$}

FOLLOW(T) = {**+**, **)**, \$}

FOLLOW(T') = {**+**, **)**, \$}

 $FOLLOW(F) = \{+, *,), \$\}$

1. If $A \rightarrow \alpha$: if $a \in FIRST(\alpha)$, add $A \rightarrow \alpha$ to M[A, a]

PARSIN G TABLE:

NON-		INPUT SYMBOL				
TERMINAL	id	+	*	()	\$
E	E → TE′			E → TE′		
E'		E' → +TE'			E' → ε	E' → ε
Т	T → FT′			T → FT′		
T'		T′→ ε	T' → *FT'		T' → ε	T' → ε
F	F → id			F → (E)		

arsin

E → TE' E' → +TE' | ε T → FT'

FIRST SETS:

FIRST(E') = $\{+, \epsilon\}$ FIRST(T') = $\{*, \epsilon\}$ FIRST(F) = $\{(, id)\}$ FIRST(T) = $\{(, id)\}$ FIRST(E) = $\{(, id)\}$

FOLLOW SETS:

FOLLOW(E) = {), \$}

FOLLOW(E') = {), \$}

FOLLOW(T) = {+,), \$}

FOLLOW(T') = {+,), \$}

FOLLOW(F) = {+, *, }, \$}

1. If
$$A \rightarrow \alpha$$
:
if $a \in FIRST(\alpha)$, add $A \rightarrow \alpha$ to M[A, a]

NON-		INPUT SYMBOL				
TERMINAL	id	+	*	()	\$
Е	E → TE′			E → TE′		
E'		E' → +TE'			E' → ε	E' → ε
Т	T → FT′			T → FT′		
T'		T′→ ε	T' → *FT'		T' → ε	T' → ε
F	F → id			F → (E)		

$E \rightarrow TE'$ $E' \rightarrow +TE' \mid \epsilon$ $T \rightarrow FT'$ $T' \rightarrow *FT' \mid \epsilon$

FIRST SETS:

FIRST(E') =
$$\{+, \epsilon\}$$

FIRST(T') = $\{*, \epsilon\}$
FIRST(F) = $\{(, id)\}$
FIRST(T) = $\{(, id)\}$
FIRST(E) = $\{(, id)\}$

FOLLOW SETS:

1. If
$$A \rightarrow \alpha$$
:
if $a \in FIRST(\alpha)$, add $A \rightarrow \alpha$ to M[A, a]

NON-		INPUT SYMBOL				
TERMINAL	id	+	*	()	\$
E	E → TE′			E → TE′		
E'		E' → +TE'			E' → ε	E' → ε
Т	T → FT′			T → FT′		
T'		T ′→ ε	T' → *FT'		T' → ε	T' → ε
F	F → id			F → (E)		

FIRST SETS:

FOLLOW SETS:

FIRST(E') =
$$\{+, \epsilon\}$$

FIRST(T') = $\{*, \epsilon\}$
FIRST(F) = $\{(, id)\}$
FIRST(T) = $\{(, id)\}$
FIRST(E) = $\{(, id)\}$

FOLLOW(E) = {), \$}

FOLLOW(E') = {), \$}

FOLLOW(T') = {+,), \$}

FOLLOW(T') = {+,), \$}

FOLLOW(F) = {+, *,), \$}

	INPUT SYMBOL				
id	+	*	()	\$
E → TE'			E → TE′		
	E' → +TE'			E' → ε	E' → ε
T → FT'			T → FT′		
	T′→ ε	T' → *FT'		T' → ε	T' → ε
F → id			F → (E)		
	E → TE' T → FT'	$E \rightarrow TE'$ $E' \rightarrow +TE'$ $T \rightarrow FT'$ $T' \rightarrow \epsilon$	id* $E \rightarrow TE'$ * $E' \rightarrow +TE'$ * $T \rightarrow FT'$ T' $\rightarrow *FT'$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

 \rightarrow *FT' | ϵ

E → TE' E' → +TE' | ε T → FT'

FIRST SETS:

FIRST(E') = $\{+, \epsilon\}$ FIRST(T') = $\{*, \epsilon\}$ FIRST(F) = $\{(, id)\}$ FIRST(T) = $\{(, id)\}$ FIRST(E) = $\{(, id)\}$

FOLLOW SETS:

FOLLOW(E) = {), \$}

FOLLOW(E') = {), \$}

FOLLOW(T') = {+,), \$}

FOLLOW(T') = {+,), \$}

FOLLOW(F) = {+, *,), \$}

1. If
$$A \to \alpha$$
:
if $a \in FIRST(\alpha)$, add $A \to \alpha$ to M[A, a]
2. If $A \to \alpha$:

if $\varepsilon \in \mathsf{FIRST}(\alpha)$, add $\mathsf{A} \to \alpha$ to M[A, b] for each terminal $\mathsf{b} \in \mathsf{FOLLOW}(\mathsf{A})$,

NON-		INPUT SYMBOL				
TERMINAL	id	+	*	()	\$
E	E → TE′			E → TE′		
E'		E' → +TE'			E' → ε	E' → ε
Т	T → FT′			T → FT′		
T'		T ′→ ε	T' → *FT'		T' → ε	T ′ → ε
F	F → id			F → (E)		

FIRST SETS:

FOLLOW SETS:


```
FIRST(E') = \{+, \epsilon\}
FIRST(T') = \{*, \epsilon\}
FIRST(F) = \{(, id)\}
FIRST(T) = \{(, id\}
FIRST(E) = \{(, id)\}
```

 $FOLLOW(E) = \{ \mathbf{j}, \$ \}$ arsin FOLLOW(E') = { **)**, **\$**} $FOLLOW(T) = \{+,), \$\}$ FOLLOW(T') = {**+**, **)**, **\$**

 $FOLLOW(F) = \{+, *,), \}$

```
1. If A \rightarrow \alpha:
    if a \in FIRST(\alpha), add A \rightarrow \alpha to M[A, a]
2. If A \rightarrow \alpha:
    if \varepsilon \in \mathsf{FIRST}(\alpha), add \mathsf{A} \to \alpha to \mathsf{M}[\mathsf{A}, \mathsf{b}]
    for each terminal b \in FOLLOW(A),
3. If A \rightarrow \alpha:
    if \varepsilon \in FIRST(\alpha), and S \in FOLLOW(A),
   add A \rightarrow \alpha to M[A, $]
```

1							
	NON-						
	TERMINAL	id	+	*	()	\$
	Е	E → TE′			E → TE′		
	E'		E' → +TE'			E' → ε	E' → ε
	Т	T → FT′			T → FT′		
	T′		T′→ ε	T' → *FT'		T' → ε	T' → ε
	F	F → id			F → (E)		

LL(I) Parsing Algorithm: (Table

Based)

Given

An LL(1) grammar, a parsing algorithm that uses the LL(1) parsing table

- Note: Assuming that '\$' indicates the bottom of the stack and the end of the input string —
- 1. Push the start symbol onto the top of the parsing stack.
- 2. "While" the top of the stack ≠\$ and the next input token ≠\$ do
- 3. If the top of the parsing stack is terminal a and the next input token = a

6/5/2021

```
then (match and pop)
                                               Algo con...
  pop the parsing stack
  advance the input
elseif the top of the parsing stack is Non Terminal A and
  the next input is Terminal a and parsing table entry M[A]
  a] contains production A->X1,X2,....Xn
 then (generate)
  pop the parsing stack
for(i=n;i<=1;i++)
  push Xi on top of the stack
else error
  if (the top of the parsing stack =$)
    and the next input token =$
   then accept
else error.
               Back
                              6/5/2021
```

58

Bottom Up Parser

- Bottom-up parsers are basically those generates a parse tree starting from Leaves (Bottom) and creating nodes up to Root of parse tree.
- The reduction steps trace a rightmost derivation on reverse.
- More Powerful than Top down Parsers.
- Uses explicit Stack.

Bottom Up Parser

• Stack Implementation:

Symbol

- Different types of Bottom up parser:
 - Shift Reduce Parser:
 - Operator Precedence Parser:
 - LR Parsers:
 - Simple LR (SLR)parser
 - LALR parser
 - Canonical LR (CLR)parser

6/5/2021

- Actions:
 - Shift:
 - Reduce:
 - Accept:
 - Error:

Consider the Grammar:

$$S \rightarrow aABe$$

 $A \rightarrow Abc \mid b$
 $B \rightarrow d$

We want to parse the input string abbcde.

We are not reducing here in this example.

A parser would reduce, get stuck and then backtrack!

 $\begin{array}{c} \textbf{Production} \\ \textbf{S} \rightarrow \textbf{aABe} \\ \textbf{A} \rightarrow \textbf{Abc} \\ \textbf{A} \rightarrow \textbf{b} \\ \textbf{B} \rightarrow \textbf{d} \end{array}$

This parser is known as an LR Parser because it scans the input from Left to right, and it constructs a Rightmost derivation in reverse order.

Handle pruning

- Principles of Bottom Up Parsing Handles
- The leftmost simple phrase of a sentential form is called the handle.

The basic steps of a bottom-up parser are

- to identify a *substring* within a *rightmost sentential form* which matches the *RHS of a rule*.
- when this substring is replaced by the LHS of the matching rule, it must produce the previous rightmost- sentential form.

Such a substring is called a *handle*.

- A *handle* of a right sentential form γ , is
 - a production rule $A \rightarrow \beta$, and
- an occurrence of a sub-string β in γ

such that when the occurrence of β is replaced by A in γ , we get the previous right sentential form in a rightmost derivation of γ .

Handle pruning

$$S \stackrel{*rm}{\Rightarrow} \alpha A w \stackrel{rm}{\Rightarrow} \alpha \beta w$$

then the rule $A \square \beta$ and the occurrence β is the handle in β w.

Grammar is

E->E+E

 $E \rightarrow E*E$

 $E \rightarrow (E)$

 $E \rightarrow id$

Derive string "id+id*id" using rightmost derivation.

Note: String at the right of handle contains only terminal symbols.

Handle pruning

The process of discovering a handle & reducing it to the appropriate left-hand side is called *handle pruning*.

Handle pruning forms the basis for a bottom-up parsing method.

Reduction made by a shift reduce reduce parser

Right sentential

Handle

Reducing Production

Form

id1 + id2 * id3

E + id2 * id3

E + E * id3

E + E * E

E + E

E

id1

id2

id3

E * E

E + E

E→id

 $E \rightarrow id$

 $E \rightarrow id$

 $E \rightarrow E*E$

 $E \rightarrow E + E$

$$E \to E + T \mid E - T \mid T$$

$$T \to T * F \mid T/F \mid F$$

$$F \to P * * F \mid P$$

$$P \to -P \mid B$$

$$B \to (E) \mid \text{id}$$

Input string is: — id ** id/id

Stack	Input	Parser move
\$	- id ** id/id\$	shift –
\$ -	id** id /id \$	shift id
-id	** id / id \$	reduce by B□ id
-B	** id / id \$	reduce by $P \square$ B
\$ – P	** id / id \$	reduce by $P \square$ -
		P
\$ P	** id / id \$	shift **
•••	•••	• • • •
\$E	\$	accept

- Shift- reduce parsers require the following data structures
- 1. a buffer for holding the input string to be parsed
- 2. a data structure for detecting handles (stack)
- a data structure for storing and accessing the LHS and RHS of rules.

Stack implementation of shift-reduce parsing

In handle pruning 2 problems are to be solved

- 1. Locate the substring to be reduced in a right sentential form
- 2. Determine what prod to choose in case there is more that one prod with that substring on the right side
- The parser operates by shifting zero or more i/p symbols onto the stack until a handle β is on top.
 - Then reduce β to the left side of the appropriate prod.
 - Repeat until an error is detected or stack contains the start symbol and i/p is empty.
- Show moves by parser for string "id1+id2*id3" using arithmetic expression G.

• Basic actions of the shift-reduce parser are:

Shift: Moving a single token from the input buffer onto the stack till a handle appears on the stack.

Reduce: When a handle appears on the stack, it is popped and replaced by the left hand side of the corresponding production.

Accept: When the stack contains only the start symbol and input buffer is empty, the parser halts announcing a *successful* parse.

Error: When the parser can neither shift nor reduce nor accept. Halts announcing an error.

Conflicts in a Shift-Reduce Parser

Following conflicting situations may get into shift-reduce grammar

1. Shift - reduce conflict

A handle β occurs on **TOS**; the next token a is such that $\beta a \gamma$ happens to be another handle.

the parser has two options

- Reduce the handle using $\mathbf{A} \mathbf{P} \mathbf{\beta}$
- Ignore the handle β ; shift **a** and continue parsing and eventually reduce using **B** β β α

2. Reduce- reduce conflict

the stack contents are $\alpha\beta\gamma$ and both $\beta\gamma$ and γ are handles with AP $\beta\gamma$ and BP γ as the corresponding rules.

Then parser has two reduce possibilities:

- Choose shift(or reduce) in a shift reduce conflict
- Prefer one reduce (over others) in a reduce-reduce conflict

LR Parsers

- Used for Large Class of 'G'/ CFG.
- Called LR(K) Parsing.

LR Parsers

Scans Input from Left to Right

Properties of LR Parsers

- Can be constructed for which it is possible to write CFG.
- Most general Non-backtracking S-R parsing method.
- Proper Superset of CFG that can be parsed by Predictive Parsers.
- Can detect Syntactic Errors as soon as while Scanning the i/p.
- Major drawback is Too much work to construct an LR parser by hand.

Automatic Parser Generator - YAGG2021

Block Schematic of LR Parser:

 A table driven Parser has an I/p Buffer, a Stack, a Parsing Table and O/p stream along with Driver Program.

GRAMMAR: (1) $E \rightarrow E + T$ LR Parser Example (3) $T \rightarrow T * F$ $(4) T \rightarrow F$ (5) $F \rightarrow (E)$ INPUT id \$ id id (6) $F \rightarrow id$ LR Parsing STACK Program **State** action goto id s5 0 s4 s6 acc s7 r2 r4 r4 r4 r4 3 s5 s4 r6 r6 r6 r6 3 s5 s4 s5 10 s4 **s6** s11 r1 s7 r1 r1 10 r3 r3 r3 r3

r5

r5

11

OUTPUT

2

0

(2) E → T

(3) $T \rightarrow T * F$

 $(4) T \rightarrow F$

 $(5) F \rightarrow ($

E)

(6) F → id

STACK

R Parser Example

State	action							goto		
	id	+	*	()	\$	Ε	Т	F	
0	s5			s4			1	2	3	
1		s6				acc				
2		r2	s7		r2	r2				
3		r4	r4		r4	r4				
4	s5			s4			8	2	3	
5		r6	r6		r6	r6				
6	s5			s4				9	3	
7	s5			s4					10	
8		s6			s11					
9		r1	s7		r1	r1				
10		r3	r3		r3	r3				
11		r5	r5		r5	r5				

GRAMMAR: (1) $E \rightarrow E +$ LR Parser Example (2) E' \to T (3) T \to T * F (4) T \to F **INPUT** id id $(5) \mathsf{F} \longrightarrow (\mathsf{E})$ LR Parsing STACK Program 2 Т **State** action 0 id s5 s4 0 s6 acc s7 r2 r2 r4 r4 r4 r4 s5 s4 r6 r6 r6 r6 s5 s4 s4 **s6** s11 r1 s7 r1 r1

10

11

r3

r3

r5

r3

r3

r5

\$

goto

3

3

10

GRAMMAR: $(1) E \rightarrow E$ LR Parser Example + T (2) E' \to T (3) T \to T * F **OUTPUT (5) F** → **F**→ (**INPUT** \$ id id id (6) F → **id** LR Parsing STACK 5 Program id * **State** action goto 2 id s5 s4 т 0 s6 acc id 0 s7 r2 r2 r4 r4 r4 r4 s5 3 s4 r6 r6 r6 r6 3 s5 s4 s5 10 s4 s6 s11 r1 s7 r1 r1 10 r3 r3 r3 r3 (Aho, Sethi, Ullman, pp. 220) 11 r5 r5

GRAMMAR: $(1) E \rightarrow E +$ LR Parser Example $(3) T \rightarrow T * F$ **OUTPUT** $(5) \mathsf{F} \longrightarrow (\mathsf{E})$ **INPUT** \$ id id id (6) $F \rightarrow id$ LR Parsing STACK 10 Program F * **State** action goto 2 id s5 Т s4 0 s6 acc id 0 **s**7 r2 r2 r4 r4 r4 r4 s5 3 s4 5 r6 r6 r6 r6 3 s5 s4 s5 s4 10 s6 s11 9 s7 r1 r1 r1 10 r3 r3 r3 r3 11 r5 r5

GRAMMAR: LR Parser Example **INPUT** id id (6) F LR Parsing STACK 2 Program т 0 **State** action id s5 s4 0 s6 **s**7 r2 r4 r4 r4 s5 s4 r6 r6 r6 s5 s4 s5 s4 s6 s11 r1 s7 r1

10

11

r3

r3

r5

\$

goto

3

3

10

id

acc

r2

r4

r6

r1

r3

r5

r3

- (1) E → E + T
- (2) E' → T
- (3) $T \rightarrow T * F$
- $(4) T \rightarrow F$
- $(5) F \rightarrow (E)$
- $(6) F \rightarrow id$

STACK

E

LR Parser Example

State	action							goto		
	id	+	*	()	\$	Е	Т	F	
0	s5			s4			1	2	3	
1		s6				acc				
2		r2	s7		r2	r2				
3		r4	r4		r4	r4				
4	s5			s4			8	2	3	
5		r6	r6		r6	r6				
6	s5			s4				9	3	
7	s5			s4					10	
8		s6			s11					
9		r1	s7		r1	r1				
10		r3	r3		r3	r3				
11		r5	r5		r5	r5				

(2) E' → T

(3) $T \rightarrow T * F$

 $(4) T \rightarrow F$

 $(5) F \rightarrow ($

 \rightarrow id

6

Ε

0

E)

(6) F

STACK

R Parser Example

State	action							goto		
	id	+	*	()	\$	Ε	Т	F	
0	s5			s4			1	2	3	
1		s6				acc				
2		r2	s7		r2	r2				
3		r4	r4		r4	r4				
4	s5			s4			8	2	3	
5		r6	r6		r6	r6				
6	s5			s4				9	3	
7	s5			s4					10	
8		s6			s11					
9		r1	s7		r1	r1				
10		r3	r3		r3	r3				
11		r5	r5		r5	r5				

GRAMMAR: LR Parser Example **OUTPUT INPUT** id id id (6) Fid LR Parsing STACK 3 Program F 6 **State** action goto 1 id s5 s4 E 0 s6 acc id 0 **s**7 r2 r2 r4 r4 r4 r4 s5 3 s4 r6 r6 r6 r6 3 **s**5 s4 s5 s4 10 s6 s11 9 **s**7 r1 r1 r1 10 r3 r3 r3 r3 11 r5 r5

GRAMMAR: (2) E' → T (3) T → T*F (4) T → F **OUTPUT** $(5) \mathsf{F} \longrightarrow (\mathsf{E})$ **INPUT** id id id (6) $F \rightarrow id$ LR Parsing STACK 9 Program Т 6 **State** action goto 1 id s5 s4 E 0 s6 acc id 0 **s**7 r2 r2 r4 r4 r4 r4 s5 3 s4 r6 r6 r6 r6 3 s5 s4 s5 s4 10 **s6** s11 9 r1 s7 r1 r1 10 r3 r3 r3 r3 11 r5 r5

(Aho,Sethi,Ullman, pp. 220)

(2) E' → T

(3)
$$T \rightarrow T * F$$

$$(4) T \rightarrow F$$

$$(5) F \rightarrow ($$

(6) F

STACK

→	Ia
	1
	П

R Parser Example

State	action								goto		
	id	+	*	()	\$	Ε	Т	F		
0	s5			s4			1	2	3		
1		s6				acc					
2		r2	s7		r2	r2					
3		r4	r4		r4	r4					
4	s5			s4			8	2	3		
5		r6	r6		r6	r6					
6	s5			s4				9	3		
7	s5			s4					10		
8		s6			s11		·				
9		r1	s7		r1	r1					
10		r3	r3		r3	r3					
11		r5	r5		r5	r5					

(Aho, Sethi, Ullman, pp. 220)

All LR parsers use the same parsing program that we demonstrated in the previous slides.

What differentiates the LR parsers are the action and the goto tables:

Simple LR (SLR): succeds for the fewest grammars, but is the easiest to implement. (See AhoSethiUllman pp. 221-230).

Canonical LR: succeds for the most grammars, but is the hardest to implement. It splits states when necessary to prevent reductions that would get the parser stuck. (See AhoSethiUllman pp. 230-236).

Lookahead LR (LALR): succeds for most common syntatic constructions used in programming languages, but produces LR tables much smaller than canonical LR.

(See AhoSethiUllman pp. 236-247).

Closure()

- I set of items of G
- Closure(I)
 Initially every item of I is included in Closure(I)
- Repeat

If A-> α .B β in closure(I) and B-> γ is a production, add B->. γ (If it is not already present) to closure, Until no new items can be added to closure (I)

goto()

- Goto(I,X), I set of items, X grammar symbol
- Goto(I,X) := closure($\{A->\alpha X.\beta | A->\alpha.X\beta\}$
- \in I)) For valid items I for viable prefix γ , then goto(I,X) = valid items for viable prefix γ X
- Kernel Items:Which includes the initial item S'2.S, and all items whose dots are not at the Left End.
- Nonkernel Items: Which have their dots at the Left End.

Set of Items Construction

```
procedure
items(G'); begin
C := closure(\{S'->.S\});
repeat
for each set of items I in C and each
grammar symbol X such that goto(I,X) is not
empty and not in C do
add goto(I,X) to C
until no more items can be added to
C end
```


- E' -> E
- E -> E + T |
- T -> T * F |
 - F
- F -> (E) | id

- IO =
- I1 =
- I2 =
- I3 =
- I4 =
- I5 =
- I6 =
- I7 =
- I8 =
- I9 =
- I10 =
- I11


```
I0 = E' -> .E
E \rightarrow .E + T
E -> .T
T -> .T *
FT->.F
F -> .(E)
F -> id
```


$$I3 = T -> F$$
.

$$I3 = T -> F$$
.

F -> id

$$I3 = T -> F$$
.

$$15 = F -> id.$$

$$I2 = E -> T$$
.
T-> T. * F

$$I3 = T -> F$$
.

15 = F -> id.

6/5/2021 122

$$I2 = E -> T$$
.
T ->T. * F

$$I3 = T -> F$$
.

15 = F -> id.

123

$$I3 = T -> F$$

$$15 = F -> id.$$

$$I3 = T -> F$$
.

15 = F -> id.

I5 = F -> id.

$$I10 = T -> T*F.$$

$$15 = F -> id.$$

F -> id

$$I10 = T -> T*F.$$

6/5/2021

128

• •

- Input: An Augmented Grammar G'
- Output: The SLR Parsing Table function action and goto for G'.
- Method:
- I. Construct $C=\{I0,I1...In\}$, the collection of sets of LR(0) items for G'.
- 2. State i is constructed from Ii . The parsing actions for the state i are determined as follows:

a] If $[A->\alpha.a\beta]$ is in Ii and goto(Ii, a) = Ij, then set action[i, a] to "shift j". Here a must be terminal.

Continue..

- b] If [A-> α .] is in Ii, then set action[i, a] to "reduce A-> α " for all 'a' in FOLLOW(A); here A may not be S'.
- C] If [S'->S.] is in Ii, then set action[i, \$] to "Accept".
- 3. The goto transitions for state i are constructed for all nonterminals A using rule: If goto(Ii, A) = Ij, then goto[i, A] = j.
- 4. All entries not defined by rules (2) and (3) are made "error".
- 5. The initial state of the parser is the one [Sconstructed from the set of items

b] If $[A->\alpha]$ is in **Ii**, then **set action**[**i**, **a**] **to "reduce A->** α " for all a in FOLLOW(A); here A may not be S'.

C] If [S'->S.] is in Ii, then set action[i, \$] to "Accept".

3. The goto transitions for state i are constructed for all nonterminals A using rule

If any conflicting actions are the abserce raded (a,byc), we say the grammar is not SLR(1). The algorithm fails to produce a parser in this case.

constructed from the set of items containing [S'->:S]

6/5/2021

BACK

133

anonical LR Parsing Table

Constructing Canonical LR Parsing Table Table

- The extra information is incorporated into the state by redefining items which includes a terminal symbol as a Second Component. (is
- [OAL>a,β,d of the item A->αβ is prod.

 a]

 a is terminal or \$

Second Component

 We call such an object as an LR(1) item.

Closure(I)

- Begin
 - Repeat

```
for each item [A->\alpha.B\beta, a] in
   (I) each production B-> \gamma is in
   G',
   and each terminal b in FIRST(βa)
   such that [B->.\gamma, b] is not in I
      (If it is
  not already present) do add [B->.v, b] to
  I;
```

Until no new items can be added to closure

goto(I, X)

begin

Let J be the set of items [A-> α X. β , a] such that [A-> α .X β , a is in I; return closure(J)

end;

Procedure items(G');

begin

 $C = \{closure(\{[S'].S, \$]\})\};$

repeat

for each set of items I in C and each grammar symbol X,

such that goto(I, X) is not empty and not in C do add goto(I, X) to C.

Until more items can be added to C end.

Example..

- Input: An Augmented Grammar G'
- Output: The canonical LR Parsing
 Table function action and goto for G'.
- Method:
- I. Construct $C=\{I0,I1...In\}$, the collection of sets of LR(1) items for G'.
- 2. State i is constructed from Ii .The parsing actions for the state i are determined as follows:

Here a must be terminal

a] If $[A->\alpha.a\beta, b]$ is in Ii and goto(Ii, a) = Ij, then set action[i, a] to "shift j".

138

- b] If $[A->\alpha., a]$ is in Ii, then set action[i, a] to "reduce $A->\alpha$ ", here A may not be S'.
- C] If [S'->S., \$] is in Ii, then set action[i, \$] to "Accept".
- 3. The goto transitions for state i are constructed for all nonterminals A using rule: If goto(Ii, A) = Ij, then goto[i, A] = j.
- 4. All entries not defined by rules (2) and (3) are made "error".
- 5. The initial state of the parser is the one constructed from the set of items containing [S'->.S, \$]. 6/5/2021

C] If [S'->S., \$] is in Ii, then set action[i, a] to "Accept".

If any conflicting actions are generated by the above rules (a,b,c), we say the grammar is not LR(1). The algorithm fails to produce a parser in this case.

Constructing Lookahead-LR (LALR) Parsing Table

- The table obtained are smaller than Canonical.
- Also It can handle some constructs that cannot be handled by SLR Grammar.
- We look for sets of *LR(1)* items having the same core, that is, set of first components and we may merge these sets with common cores into one set of items.

- Input: An Augmented Grammar G'
- Output: The LALR Parsing Table functions action and goto for G'.
- Method:
- I. Construct C={I0,I1....In}, the collection of sets of LR(1) items.
- 2. For each core present among the set of LR(1) items, find all sets having that core, and replace these sets by their union.
- 3. Let $C' = \{J1, J2, ..., Jm\}$ be the resulting sets of LR(1) items. The parsing actions for state i are constructed from Ji in the same manner as in algorithm (CLR).

If there is a parsing action conflict., the algorithm fails to produce a parser, and the grammar is said not to **bALR(1)**. 6/5/2021 (LALR (1) 144

Continue...

4. The goto table is constructed as follows.

If J is union of one or more sets of

the cores of goto(I1, X), goto(I2, X) goto(Ik, X) are the same, since I1, I2, Ik all have the same core. Let K be the union of all sets of items having the same core as goto(I1, X).

Then goto(J, X) = K.

If there are no parsing action conflicts, then the given grammar is said to be an LALR(1) grammar

LALR parsing table for grammar

		Action	Go to		
State	C	d	\$	S	C
0	S36	S47		1	2
1			acc		
2	S36	S47			5
36	S36	S47			89
47	r3	r3	r3		
5			r1		
89	r2	r2	r2		

Com

pare

CLR Vs LALR

- SLR Vs

Semantic Analysis

- Here Whisiler tries to discover the meaning of a program by analyzing its Parse Tree or Abstract Syntax Tree.
- Checks whether the SP is according to Syntactic and Semantic Conventions of Source Lang or not.
- Also known as Context Sensitive Analysis.
- Answer depends on Value nettribytestark Symbols

Attribute Grammar

Attribute Evaluation Rules

Indexing of Grammar Symbols

Type Checking

- TYPE CHECKING is the main activity in semantic analysis.
- Goal: calculate and ensure consistency of the type of every expression in a program
- If there are type errors, we need to notify the user.
- Otherwise, we need the type information to generate code that is correct.