Optimization Methods (CS1.404) Spring 2024

Naresh Manwani

Machine Learning Lab, IIIT-H

January 20th, 2024

Affine Set

A set $C \subseteq \mathbb{R}^d$ is said to be an affine set if for any two distinct points, the line passing through these points also lied in the set C. Thus, if $\mathbf{x}_1, \mathbf{x}_2 \in C$, then $\theta \mathbf{x}_1 + (1 - \theta)\mathbf{x}_2 \in C$, $\forall \theta \in \mathbb{R}$.

- *C* is an affine set if and only if it contains every affine combination of its points.
- For example, solution of a linear equation is an affine set.

Convex Set

Definition

A set $\mathcal{X} \subseteq \mathbb{R}^d$ is called convex, if for any $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X}$, $\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2 \in \mathcal{X}$, $\forall \lambda \in [0, 1]$.

Convex Set

Definition

A set $\mathcal{X} \subseteq \mathbb{R}^d$ is called convex, if for any $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X}$, $\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2 \in \mathcal{X}$, $\forall \lambda \in [0, 1]$.

• Note that $\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2$, $\forall \lambda \in [0,1]$ represents the line segment joining $\mathbf{x}_1, \mathbf{x}_2$. For $\mathcal X$ to be a convex set, this line segment has to lie inside the set $\mathcal X$.

Definition

A set $\mathcal{X} \subseteq \mathbb{R}^d$ is called convex, if for any $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X}$, $\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2 \in \mathcal{X}$, $\forall \lambda \in [0, 1]$.

• Note that $\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2$, $\forall \lambda \in [0,1]$ represents the line segment joining $\mathbf{x}_1, \mathbf{x}_2$. For $\mathcal X$ to be a convex set, this line segment has to lie inside the set $\mathcal X$.

ОМ

Convex Combination

A convex combination is a linear combination of points (which can be vectors, scalars, or more generally points) where all coefficients are non-negative and sum to 1.

Convex Combination

A convex combination is a linear combination of points (which can be vectors, scalars, or more generally points) where all coefficients are non-negative and sum to 1.

Definition: Convex Combination

Given a finite number of points $\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_n$ in a real vector space, a convex combination of these points is a point of the form

$$\lambda_0 \mathbf{x}_0 + \lambda_1 \mathbf{x}_1 + \ldots + \lambda_n \mathbf{x}_n$$
 where $\lambda_i \geq 0$, $i = 0, 1, \ldots, n$ and $\sum_{i=0}^n \lambda_i = 1$.

Convex Combination

A convex combination is a linear combination of points (which can be vectors, scalars, or more generally points) where all coefficients are non-negative and sum to 1.

Definition: Convex Combination

Given a finite number of points $\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_n$ in a real vector space, a convex combination of these points is a point of the form

$$\lambda_0 \mathbf{x}_0 + \lambda_1 \mathbf{x}_1 + \ldots + \lambda_n \mathbf{x}_n$$
 where $\lambda_i \geq 0, \ i = 0, 1, \ldots, n$ and $\sum_{i=0}^n \lambda_i = 1$.

As a particular example, every convex combination of two points lies on the line segment between the points.

Intersection of Convex Sets

Result

Let $\mathcal{X}_1, \mathcal{X}_2, \dots, \mathcal{X}_k \subseteq \mathbb{R}^d$ be convex sets. Then $\cap_{i=1}^k \mathcal{X}_i$ is also a convex set.

Intersection of Convex Sets

Result

Let $\mathcal{X}_1, \mathcal{X}_2, \dots, \mathcal{X}_k \subseteq \mathbb{R}^d$ be convex sets. Then $\cap_{i=1}^k \mathcal{X}_i$ is also a convex set.

Union of Convex Sets

Result

Let $\mathcal{X}_1, \mathcal{X}_2, \dots, \mathcal{X}_k \subset \mathbb{R}^d$ be convex sets. Then $\cup_{i=1}^k \mathcal{X}_i$ may not be a convex set.

Union of Convex Sets

Result

Let $\mathcal{X}_1, \mathcal{X}_2, \dots, \mathcal{X}_k \subset \mathbb{R}^d$ be convex sets. Then $\cup_{i=1}^k \mathcal{X}_i$ may not be a convex set.

Hyperplane

A hyperplane in \mathbb{R}^d is a set of the form $\{\mathbf{x} \mid \mathbf{w}^T\mathbf{x} = b\}$ where $\mathbf{w} \in \mathbb{R}^d$ is normal to the hyperplane and $b \in \mathbb{R}$ is offset parameter.

Hyperplane is convex set also.

Halfspaces

- A half-space is either of the two parts into which a hyperplane divides.
- A half-space may be specified by a linear inequality, derived from the linear equation that specifies the defining hyperplane.
- A strict linear inequality specifies an open half-space: $w_1x_1 + w_2x_2 + ... + w_dx_d > b$
- A non-strict inequality specifies a closed half-space: $w_1x_1 + w_2x_2 + \ldots + w_dx_d \ge b$
- Here, one assumes that not all of the real numbers a1, a2, ..., an are zero.

Closed half-spaces $\{\mathbf{x} \in \mathbb{R}^d \mid w_1x_1 + w_2x_2 + \ldots + w_dx_d \geq b\}$ and $\{\mathbf{x} \in \mathbb{R}^d \mid w_1x_1 + w_2x_2 + \ldots + w_dx_d \leq b\}$ are convex sets.

Weierstrass Theorem

Theorem

Let $\mathcal{X} \subset \mathbb{R}^n$ be a nonempty compact (closed and bounded) set and $f: \mathcal{X} \to \mathbb{R}$ be a continuous function on \mathcal{X} . Then, f attains a minimum and a maximum on \mathcal{X} .

Weierstrass Theorem is not a necessary condition.

Closest Point Theorem

Theorem

let $S \subset \mathbb{R}^n$ be a nonempty, closed convex set and $\mathbf{y} \notin S$. Then there exists a unique point $\mathbf{x}_0 \in S$ with minimum distance from \mathbf{y} . Further \mathbf{x}_0 is the minimum distance point if and only if $(\mathbf{y} - \mathbf{x}_0)^T (\mathbf{x} - \mathbf{x}_0) \leq 0, \forall \mathbf{x} \in S$.

