يسم الله الرحمن الرحيم

نظریه زبانها و ماشینها

جلسه ۵

مجتبی خلیلی دانشکده برق و کامپیوتر دانشگاه صنعتی اصفهان

اتوماتای متناهی نامعین (NFA)

DEFINITION 1.37

A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- **2.** Σ is a finite alphabet,
- 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

IUT-ECE

Recall the NFA N_1 :

مثال

The formal description of N_1 is $(Q, \Sigma, \delta, q_1, F)$, where

1.
$$Q = \{q_1, q_2, q_3, q_4\},\$$

2.
$$\Sigma = \{0,1\},$$

3.
$$\delta$$
 is given as

	0	1	arepsilon
q_1	$\{q_1\}$	$\{q_1,q_2\}$	Ø
q_2	$\{q_3\}$	\emptyset	$\{q_3\}$
q_3	Ø	$\{q_4\}$	Ø
q_4	$\{q_4\}$	$\{q_4\}$	$\emptyset,$

- **4.** q_1 is the start state, and
- 5. $F = \{q_4\}.$

تعریف فرمال محاسبه (پذیرش) NFA

Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA and w a string over the alphabet Σ . Then we say that N accepts w if we can write w as $w = y_1 y_2 \cdots y_m$, where each y_i is a member of Σ_{ε} and a sequence of states r_0, r_1, \ldots, r_m exists in Q with three conditions:

- 1. $r_0 = q_0$,
- **2.** $r_{i+1} \in \delta(r_i, y_{i+1})$, for i = 0, ..., m-1, and
- **3.** $r_m \in F$.

زبان یک NFA

○ مجموعه همه رشتههای پذیرفته شده توسط یک NFA

زبان یک NFA

ورت تعریف NFA کنید N یک NFA است. زبانی را که توسط N تشخیص داده می شود به این صورت تعریف می کنیم:

$$L(N) = \{ w \in \Sigma^* \mid w \text{ is accepted by } N \}$$

مثال

زبان NFA زیر چیست؟

- A. $\{0^k \mid k \text{ is a multiple of 2}\}.$
- B. $\{0^k \mid k \text{ is a multiple of } 3\}$.
- C. $\{0^k \mid k \text{ is a multiple of 6}\}.$
- D. $\{0^k \mid k \text{ is a multiple of 2 or 3}\}.$
- E. None.

رابطه بین DFA و NFA

○ هر DFA، یک NFA است؛ بنابراین قدرت NFAها دست کم به اندازه قدرت DFAهاست.

○ اما آیا برعکس نیز صادق است؟ آیا زبانی وجود دارد که زبان یک NFA باشد اما زبان یک DFA نباشد؟

مثال

یک NFA که یک رشته باینری را تشخیص دهد
 که سومین حرف از آخر برابر 1 باشد.

یک DFA که یک رشته باینری را تشخیص دهد
 که سومین حرف از آخر برابر 1 باشد.

THEOREM 1.39 -----

Every nondeterministic finite automaton has an equivalent deterministic finite automaton.

○ ماشین M1 هم ارز ماشین M2 است اگر (M2)=(M1)

COROLLARY 1.40 ------

A language is regular if and only if some nondeterministic finite automaton recognizes it.

اثبات:

- . باشد. NFA غرض کنید $N=(Q,\Sigma,\delta,q_0,F)$ باشد.
- . هدف: ساخت یک DFA به صورت $M=(Q',\Sigma,\delta',q_0',F')$ که زبان $M=(Q',\Sigma,\delta',q_0',F')$ و تشخیص دهد.

ایده:

- شبیهسازی NFA با یک DFA
- تحت یک ورودی، همه شاخههای محتمل NFA در نظر گرفته شود.
- در NFA، هر حالت میتواند چندین حالت بعدی داشته باشد که باید در DFA متناظر این حالتها در یک حالت نشان داده شود.
- در DFA معادل، همه حالتهای محتمل متناظر در NFA در نظر گرفته شود.
 - اگر NFA دارای k حالت است آنگاه 2^k زیرمجموعه محتمل دارد.
- ✓ هر زیرمجموعه یکی از موارد محتمل است که DFA باید بخاطر بسپارد.
 - √ در نتیجه DFA دارای 2^k حالت است.

○ مثال:

اثبات:

- . باشد. NFA غرض کنید $N=(Q,\Sigma,\delta,q_0,F)$ باشد.
- . هدف: ساخت یک DFA به صورت $M=(Q',\Sigma,\delta',q_0',F')$ که زبان $M=(Q',\Sigma,\delta',q_0',F')$ و تشخیص دهد.

$$M = (Q', \Sigma, \delta', q_0', F')$$

$$\circ$$
 Q' = \mathcal{P} (Q)

$$\mathbf{Q'} = \mathbf{P}(\mathbf{Q}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}.$$

 $\bigcirc\emptyset$

$$\boxed{\boxed{\{1,3\}}}$$

 $\mathbf{Q'} = \mathbf{\mathcal{P}} \ (\mathbf{Q}) = \big\{ \emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\} \big\}.$

$$M = (Q', \Sigma, \delta', q_0', F')$$

$$O$$
 $Q' = \mathcal{P}(Q)$

برای سادگی، ابتدا فرض کنیم ϵ نداریم: \circ

o δ'(R, a) =
$$\cup_{r \in R}$$
 δ(r, a)
R ∈ Q'
a ∈ Σ

{3}

 $\{2\}$

ϵ-Closure

برای حالت $q\in Q$ از E(q) برای نمایش مجموعه حالتهایی استفاده می کنیم که از حالت ϵ با کمک ϵ -transition در δ قابل رسیدن هستند.

ϵ-Closure

$$E(q_0) = \{q_0, q_1, q_2, q_3, q_4\}$$

$$M = (Q', \Sigma, \delta', q_0', F')$$

$$O$$
 $Q' = \mathcal{P}(Q)$

اکنون ϵ داریم: \circ

ο δ' (R, a) =
$$\cup_{r \in R}$$
 E(δ (r, a))

 $R \in Q'$

 $a \in \Sigma$

E(q) = {q' ∈ Q : q' reachable from q by traveling along 0 or more ε-arrow}

$$M = (Q', \Sigma, \delta', q_0', F')$$

$$O$$
 $Q' = P(Q)$

$$ο δ'(R, a) = ∪_{r∈R} E(δ(r, a))$$

$$o q_0' = E(\{q_0\})$$

F' = {R ∈ Q' : R contains at least an accept state of N)

مثال

EXAMPLE 1.41

