1. Dibujar el conjunto de todos los $(x,y) \in \mathbb{R}^2$ tales que:

- (a) $\|(x,y) (1,2)\| < 3$. (b) $2 < \|(x,y) (1,2)\| \le 3$. (c) $\|(x,y) (1,2)\| = 3$.
- (f) $\frac{x^2}{a^2} + \frac{y^2}{b^2} < 1$; a, b no nulos. (d) $||(x,y)-(1,2)||<-\frac{1}{2}$. (e) x>y.
 - 2. Dibujar los siguientes conjuntos:
 - (a) $\{(x,y) \in \mathbb{R}^2 : (x,y) = t(1,2), t \in \mathbb{R}\}.$
 - (b) $\{(x, y, z) \in \mathbb{R}^3 : (x, y, z) = t(1, 0, -1), \ t \in \mathbb{R}\}.$ (c) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le \frac{1}{4}\}.$

 - (d) $\{(x, y, z) \in \mathbb{R}^3 : |x| \le 1, |y| \le 2, |z| \le 3\}.$ (e) $\{(x, y, z) \in \mathbb{R}^3 : |x| < 1, |y| < 2, |z| \le 3\}.$
 - 3. Considerando los conjuntos definidos en los ejercicios 1. y 2., responder las siguientes cuestiones (sin rigurosidad):
 - (a) Decidir si son abiertos, cerrados, ambas, o ninguna de las dos cosas.
 - (b) Identificar sus puntos interiores, de acumulación y su frontera.
 - (c) Hallar su clausura.
 - (d) Decidir cuáles son compactos y cuáles no.
 - **4.** Considerar la función $f(x,y) = \sqrt{4-x^2-y^2}$.
 - (a) Dibujar el dominio de f.
 - (b) Dibujar la imagen de f.
 - (c) Dibujar el gráfico de f.
 - **5.** Dibujar los conjuntos definidos explícitamente por:

(a)
$$z = x + y$$
. (b) $z = \sqrt{1 - 2x^2 - 3y^2}$. (c) $z = x^2 + y^2 + x + 5y$.

(d)
$$z = \sqrt{x^2 + y^2}$$
. (e) $z = x^2 - 36y^2$.

(d)
$$z = \sqrt{x^2 + y^2}$$
. (e) $z = x^2 - 36y^2$. (f) $z = 4 - x^2 - y^2$.

(g)
$$z = \text{sen}(x)$$
.
 (h) $z = \frac{1}{x^2 + y^2}$.
 (i) $z = \begin{cases} 1 & \text{si } |x| < |y|, \\ 0 & \text{si } |x| \ge |y|. \end{cases}$

- 6. Dibujar los conjuntos definidos paramétricamente por las siguientes funciones:
 - (a) $f(t) = (2t, t), -1 \le t \le 1.$

(b)
$$f(t) = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} t + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad t \in \mathbb{R}.$$

(c)
$$g(t) = {2\cos(t) \choose 3\sin(t)}, 0 \le t \le 2\pi.$$
 Ayuda: $\cos(t)^2 + \sin(t)^2 = 1.$

(d)
$$g(t) = (\cos(t), \sin(t), t), t \in \mathbb{R}$$
.
(e) $h(t) = (t, t, t^2), -1 \le t \le 2$.

(e)
$$h(t) = (t, t, t^2), -1 \le t \le 2.$$

7. Dibujar los conjuntos definidos paramétricamente por las siguientes funciones:

(a)
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = f \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad u, v \in \mathbb{R}.$$

(b)
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = g \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} a \cos(u) \sin(v) \\ b \sin(u) \sin(v) \\ c \cos(v) \end{pmatrix}, \qquad \begin{cases} 0 \le u \le 2\pi, \\ 0 \le v \le \frac{\pi}{2}, \\ a, b, c > 0. \end{cases}$$

- **8.** Dibujar los conjuntos definidos implícitamente.
 - (i) En el plano:
 - (a) $25x^2 + 9y^2 100x + 54y 44 = 0$.
 - (b) $(x^2 + y^2 + x)(x^2 + y^2 1) > 0$.
 - (ii) En el espacio:
 - (c) (x + 2y + z 1)(-x + 2y z) = 0.
 - (d) $\frac{x^2}{4} + y^2 z^2 = 1$.
- 9. Encontrar las ecuaciones que corresponden a las ocho superficies etiquetadas del I al VIII en la Figura 1. Dar argumentos para justificar su elección.
 - (a) $x^2 + 4y^2 + 9z^2 = 1$. (b) $9x^2 + 4y^2 + z^2 = 1$. (c) $x^2 y^2 + z^2 = 1$.

- (d) $z = x^2 + 2z^2$.
- (e) $-x^2 + y^2 z^2 = 1$. (f) $y = 2x^2 + z^2$.

- (g) $y^2 = x^2 + 2z^2$. (h) $x^2 + 2z^2 = 1$. (i) $-x^2 y^2 + z^2 = 1$.
- (i) $y = x^2 z^2$.

FIGURA 1. Superficies del ejercicio 9.

- **10.** Sea $f(x,y) = (x^2 y^2, 2xy)$.
 - (a) Encontrar la imagen del segmento de recta y = x entre (0,0) y (1,1).
 - (b) Encontrar el ángulo entre las imágenes de las rectas y = 0, $y = \frac{1}{\sqrt{3}}x$.
 - (c) Hallar la imagen de la región definida por x > 0, y > 0, $x^2 + y^2 < 1$.

Ejercicios de repaso. Los ejercicios marcados con \star son de mayor dificultad.

- $11. \star \text{Para los conjuntos definidos en } 1.(a), 1.(b), 1.(c), \text{ probar cuáles puntos son interio-}$ res, cuáles son de acumulación y cuáles son de frontera (con rigurosidad).
- 12. ★ Probar rigurosamente que el conjunto definido en 2.(c) no es abierto, y que el de 1.(e) no es cerrado.
- 13. Para cada una de las siguientes funciones lineales:
 - (a) Describir y dibujar el dominio y la imagen.

(b) Describir y dibujar el conjunto dado implícitamente por la ecuación $L(\mathbf{x}) = 0$, con \mathbf{x} un vector de \mathbb{R}^2 o \mathbb{R}^3 .

(i)
$$L(x,y) = \begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
.

(ii)
$$L(x,y) = \begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
.

(iii)
$$L(x, y, z) = \begin{pmatrix} 1 & 0 & 2 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
.

- 14. Dibujar los conjuntos definidos implícitamente por:
 - (a) $3x 2y^2 6y + 7 = 0$ (en el plano).
 - (b) $(2x+y-3)(x^2+y^2-4)=0$ (en el plano).

 - (c) x + y = 1 (en el espacio). (d) $9z^2 + 6z x^2 4y^2 = 0$ (en el espacio).
- **15.** Sea $f(x,y) = (x, y(1+x^2))$.
 - (a) ¿Cuáles son las imágenes de las rectas horizontales?
 - (b) ¿Cuál es la imagen de la recta y = x?

Superficie	Ecuación	Superficie	Ecuación
Elipsoide	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ Todas las trazas son elipses. Si $a = b = c$, la elipsoide es una esfera.	Cono	$\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Las trazas horizontales son elipses. Las trazas verticales en los planos $x = k$ y $y = k$ son hipérbolas si $k \neq 0$ pero son pares de líneas si $k = 0$.
Paraboloide elíptico	$\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Las trazas horizontales son elipses. Las trazas verticales son parábolas. La variable elevada a la primera potencia indica el eje del paraboloide.	Hiperboloide de una hoja.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ Las trazas verticales son elipses. Las trazas verticales son hipérbolas. El eje de simetría corresponde a la variable cuyo coeficiente es negativo.
Paraboloide hiperbólico.	$\frac{z}{c} = \frac{x^2}{a^2} - \frac{y^2}{b^2}$ Las trazas horizontales son hipérbolas. Las trazas verticales son parábolas. Se ilustra el caso donde $c < 0$.	Hiperboloide de dos hojas.	$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ Las trazas horizontales en $z = k$ son elipses si $k > c$ o $k < -c$. Las trazas verticales son hipérbolas. Los dos signos menos indican dos hojas.

Figura 2. Superficies cuádricas