Домашняя работа № 5

Потоцкая Анастасия Б8303а

28 марта 2019 г.

№18

Терм М разрешимый, если найдутся переменные x_1,\ldots,x_m и термы N_1,\ldots,N_n такие, что $(\lambda x_1,\ldots,x_m.M)N_1,\ldots,N_n=I.$ Определить, какие из термов разрешимые:

$$Y, Y \text{ not}, K, YI, x\Omega, YK, n$$

Доказательство.

1. Представим Y в форме $\lambda f.f((\lambda x.f(xx))(\lambda x.f(xx))).$ Пусть $N_1=(\lambda z.(\lambda x.x))$

$$(\lambda f. f((\lambda x. f(xx))(\lambda x. f(xx))))(\lambda z. (\lambda x. x)) \rightarrow$$

$$\rightarrow (\lambda z. (\lambda x. x))((\lambda x. (\lambda z. (\lambda x. x))(xx))(\lambda x. (\lambda z. (\lambda x. x))(xx))) \rightarrow$$

$$\rightarrow \lambda x. x \equiv I$$

Терм Y разрешимый.

2. Так как Y not не имеет HNF, то для любых $x: \lambda x.Y$ not $\to Y$ not. Откуда следует, что не сущетвует таких $x_1 \dots x_m, \ N_1 \dots N_n$, что

$$(\lambda x_1 \dots x_m.(Y \text{ not})) N_1 \dots N_n = I$$

3. Представим K в форме $\lambda xy.x.$ Пусть $N_1 = \lambda z.z, N_2 = b.$

$$(\lambda xy.x)(\lambda z.z)b \to (\lambda y.(\lambda z.z))b \to \lambda z.z \equiv I$$

Терм K разрешимый.

- 4. Тоже, что и 2 пункте. Так как YI не определен, то терм неразрешимый.
- 5. Представим $x\Omega$ в форме $\lambda x.(x\Omega)$. Пусть $N_1 = \lambda z.(\lambda y.y)$.

$$(\lambda x.(x\Omega))(\lambda z.(\lambda y.y)) \to (\lambda z.(\lambda y.y))\Omega \to \lambda y.y \equiv I$$

Терм $x\Omega$ разрешимый.

6. Тоже, что и 2 пункте. Так как YK не определен, то терм неразрешимый.

7. Представим \underline{n} в форме $\lambda fx.f(f(...f(fx))).$ Пусть $N_1 = \lambda z.(\lambda y.y), N_2 = a$ Терм K разрешимый.

$$(\lambda fx.f(f(\dots f(fx))))(\lambda z.(\lambda y.y))a \to$$
$$\to (\lambda x.(\lambda z.(\lambda y.y))(\dots))a \to$$
$$\to (\lambda x.\lambda y.y)a \to \lambda y.y \equiv I$$

Nº19

Терм M называется разрешимым, если $\exists x_1,\ldots,x_m,\ N_1,\ldots,N_n$, такие, что $(\lambda x_1\ldots x_m.M)N_1\ldots N_n=I.$ Доказать, что если M терм определенный, то он разрешимый.

Доказательство:

Представим M в HNF: $M=\lambda y_1\dots y_k.yM_1\dots M_l.$ Пусть

$$x_1,\ldots,x_m=y,z_1,\ldots,z_q,$$

где z_1,\ldots,z_m - свободные переменные в M_1,\ldots,M_l . Тогда колличество N_1,\ldots,N_n равно n=m+k=1+q+k. Найдем представления для N_1,\ldots,N_n , такие, чтобы выполнялось

$$(\lambda y z_1 \dots z_q (\lambda y_1 \dots y_k y M_1 \dots M_l)) N_1 \dots N_n = I$$

Пусть N_1 имеет вид: $(\lambda u_1 \dots u_l.(\lambda x.x))$. Тогда:

$$(\lambda y z_1 \dots z_q \cdot (\lambda y_1 \dots y_k \cdot y M_1 \dots M_l))((\lambda u_1 \dots u_l \cdot (\lambda x \cdot x))) N_2 \dots N_n \to (\lambda z_1 \dots z_q y_1 \dots y_k \cdot (\lambda u_1 \dots u_l \cdot (\lambda x \cdot x)) M_1 \dots M_k) N_2 \dots N_n \to (\lambda z_1 \dots z_q y_1 \dots y_k \cdot (\lambda x \cdot x)) N_2 \dots N_n \to (\lambda x \cdot x)$$

Откуда следует, что $N_2 \dots N_n$ могут иметь любой вид.

N₂0

Проверить, имеет ли головную нормальную форму терм RR, где $R=\lambda x. \, \mathrm{not}(xx).$

$$RR \to (\lambda x. \operatorname{not}(xx))(\lambda x. \operatorname{not}(xx)) \to \operatorname{not}((\lambda x. \operatorname{not}(xx))(\lambda x. \operatorname{not}(xx))) \equiv \operatorname{not}(RR)$$
 RR - не имеет HNF.