IBM NAAN MUDHALVAN

PHASE4

DEVELOPMENT PHASE

COVID 19 VACCINE ANALYSIS

PROBLEM STATEMENT

Forecasting of time taken for completing 100% total vaccinations of particular region over the time period. By this, vaccine manufacturing companies get to know the prior requirements of vaccine which helps to produce the vaccines in large scale and complete the vaccination drive with in calculated time.

1.Data Understanding

importing data and libraries

import pandas as pd

import seaborn as sns

import numpy as np

import matplotlib.pyplot as plt

import plotly.express as px

import io

import requests

import warnings

warnings.filterwarnings('ignore')

url = "https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/owid-covid-data.csv"

read_data = requests.get(url).content

address = pd.read_csv(io.StringIO(read_data.decode('utf-8')))

address.head()

	country	iso_code	date	total_vaccinations	people_vaccinated	people_fully_vaccinated	daily_vaccinations_raw
0	Albania	ALB	2021-	0.0	0.0	NaN	NaN
1	Albania	ALB	2021- 01-11	NaN	NaN	NaN	NaN
2	Albania	ALB	2021- 01-12	128.0	128.0	NaN	NaN
3	Albania	ALB	2021- 01-13	188.0	188.0	NaN	60.0
4	Albania	ALB	2021-	266.0	266.0	NaN	78.0

```
url2= "https://raw.githubusercontent.com/owid/covid-19-
data/master/public/data/vaccinations/vaccinations-by-manufacturer.csv"
read_data = requests.get(url2).content
vaccine=pd.read_csv(io.StringIO(read_data.decode('utf-8')))
data=address
data.columns
Index(['iso_code', 'continent', 'location', 'date', 'total_cases', 'new_cases',
    'new_cases_smoothed', 'total_deaths', 'new_deaths',
    'new_deaths_smoothed', 'total_cases_per_million',
   'new_cases_per_million', 'new_cases_smoothed_per_million',
    'total_deaths_per_million', 'new_deaths_per_million',
   'new_deaths_smoothed_per_million', 'reproduction_rate', 'icu_patients',
    'icu_patients_per_million', 'hosp_patients',
   'hosp_patients_per_million', 'weekly_icu_admissions',
    'weekly_icu_admissions_per_million', 'weekly_hosp_admissions',
    'weekly_hosp_admissions_per_million', 'total_tests', 'new_tests',
    'total_tests_per_thousand', 'new_tests_per_thousand',
    'new_tests_smoothed', 'new_tests_smoothed_per_thousand',
    'positive_rate', 'tests_per_case', 'tests_units', 'total_vaccinations',
    'people_vaccinated', 'people_fully_vaccinated', 'total_boosters',
    'new_vaccinations', 'new_vaccinations_smoothed',
```

'total_vaccinations_per_hundred', 'people_vaccinated_per_hundred',
'people_fully_vaccinated_per_hundred', 'total_boosters_per_hundred',
'new_vaccinations_smoothed_per_million',
'new_people_vaccinated_smoothed',
'new_people_vaccinated_smoothed_per_hundred', 'stringency_index',
'population', 'population_density', 'median_age', 'aged_65_older',
'aged_70_older', 'gdp_per_capita', 'extreme_poverty',
'cardiovasc_death_rate', 'diabetes_prevalence', 'female_smokers',
'male_smokers', 'handwashing_facilities', 'hospital_beds_per_thousand',
'life_expectancy', 'human_development_index',
'excess_mortality_cumulative_absolute', 'excess_mortality_cumulative',
'excess_mortality', 'excess_mortality_cumulative_per_million'],
dtype='object')

data.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 191376 entries, 0 to 191375

Data columns (total 67 columns):

# Column	Non-Null Count Dtype
0 iso_code	191376 non-null object
1 continen	t 180250 non-null object
2 location	191376 non-null object
3 date	191376 non-null object
4 total_cas	ses 183834 non-null float64
5 new_cas	es 183621 non-null float64

6 new_cases_smoothed	182447 non-null float64
7 total_deaths	165368 non-null float64
8 new_deaths	165361 non-null float64
9 new_deaths_smoothed	164198 non-null float64
10 total_cases_per_million	182986 non-null float64
11 new_cases_per_million	182773 non-null float64
12 new_cases_smoothed_per_r	nillion 181604 non-null float64
13 total_deaths_per_million	164533 non-null float64
14 new_deaths_per_million	164526 non-null float64
15 new_deaths_smoothed_per_	million 163368 non-null float64
16 reproduction_rate	140710 non-null float64
17 icu_patients	25496 non-null float64
18 icu_patients_per_million	25496 non-null float64
19 hosp_patients	26747 non-null float64
20 hosp_patients_per_million	26747 non-null float64
21 weekly_icu_admissions	6222 non-null float64
22 weekly_icu_admissions_per_	million 6222 non-null float64
23 weekly_hosp_admissions	12397 non-null float64
24 weekly_hosp_admissions_pe	er_million 12397 non-null float64
25 total_tests	77683 non-null float64
26 new_tests	74008 non-null float64
27 total_tests_per_thousand	77683 non-null float64
28 new_tests_per_thousand	74008 non-null float64
29 new_tests_smoothed	101315 non-null float64

30 new_tests_smoothed_per_thousand 101315 non-null float64

31 positive_rate	93441 non-null float64
32 tests_per_case	91681 non-null float64
33 tests_units	104079 non-null object
34 total_vaccinations	52388 non-null float64
35 people_vaccinated	49909 non-null float64
36 people_fully_vaccinated	47375 non-null float64
37 total_boosters	24452 non-null float64
38 new_vaccinations	42912 non-null float64
39 new_vaccinations_smoothed	d 103578 non-null float64
40 total_vaccinations_per_hund	red 52388 non-null float64
41 people_vaccinated_per_hunc	lred 49909 non-null float64
42 people_fully_vaccinated_per_	_hundred 47375 non-null float64
43 total_boosters_per_hundred	24452 non-null float64
44 new_vaccinations_smoothed	d_per_million 103578 non-null float64
45 new_people_vaccinated_smo	oothed 102491 non-null float64
46 new_people_vaccinated_smo	oothed_per_hundred 102491 non-null float64
47 stringency_index	148621 non-null float64
48 population	190211 non-null float64
49 population_density	170524 non-null float64
50 median_age	158052 non-null float64
51 aged_65_older	156377 non-null float64
52 aged_70_older	157223 non-null float64
53 gdp_per_capita	157205 non-null float64
54 extreme_poverty	102625 non-null float64
55 cardiovasc_death_rate	157692 non-null float64

56 diabetes_prevalence 165401 non-null float64

57 female_smokers 119268 non-null float64

58 male_smokers 117633 non-null float64

59 handwashing_facilities 77477 non-null float64

60 hospital_beds_per_thousand 139914 non-null float64

61 life_expectancy 178964 non-null float64

62 human_development_index 153621 non-null float64

63 excess_mortality_cumulative_absolute 6553 non-null float64

64 excess_mortality_cumulative 6553 non-null float64

65 excess_mortality 6553 non-null float64

66 excess_mortality_cumulative_per_million 6553 non-null float64

dtypes: float64(62), object(5)

memory usage: 97.8+ MB

data.describe(include='all')

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4568 entries, 0 to 4567
Data columns (total 15 columns):
# Column
                                        Non-Null Count Dtype
0 country
                                        4568 non-null object
    iso_code
                                        4260 non-null
                                                      object
    date
                                        4568 non-null
3 total_vaccinations
                                       2988 non-null
                                                      float64
4 people_vaccinated
                                       2541 non-null float64
                                       1702 non-null
   people_fully_vaccinated
6 daily_vaccinations_raw
                                       2523 non-null
                                                      float64
 7 daily_vaccinations
                                        4409 non-null float64
8 total_vaccinations_per_hundred
                                       2988 non-null
                                                      float64
    people_vaccinated_per_hundred
                                        2541 non-null
                                                       float64
10 people_fully_vaccinated_per_hundred 1702 non-null float64
 11 daily_vaccinations_per_million
                                       4409 non-null
                                                      float64
    vaccines
                                        4568 non-null
                                                       object
 13 source_name
                                       4568 non-null
                                                       object
14 rce_website
dtypes: float64(9), object(6)
                                        4568 non-null object
 emory usage: 535.4+ KB
```

vaccine.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 42395 entries, 0 to 42394

Data columns (total 4 columns):

Column Non-Null Count Dtype

--- -----

0 location 42395 non-null object

1 date 42395 non-null object

2 vaccine 42395 non-null object

3 total_vaccinations 42395 non-null int64

dtypes: int64(1), object(3)

vaccine.describe()

total_vaccinations

count 4.239500e+04

mean 1.782378e+07

std 5.733925e+07

min 0.000000e+00

25% 1.075450e+05

50% 1.528400e+06

75% 9.792642e+06

max 6.141617e+08

2.data preprocessing

data.isnull().sum()

iso_code 0

continent 11126

location 0

date 0

total_cases 7542

•••

human_development_index 37755

excess_mortality_cumulative_absolute 184823

excess_mortality_cumulative 184823

excess_mortality 184823

excess_mortality_cumulative_per_million 184823

Length: 67, dtype: int64

data['date']=pd.to_datetime(data['date'])

vaccine['date']=pd.to_datetime(data['date'])

data.drop(['new_cases_smoothed', 'new_deaths_smoothed', 'new_cases_smoothed_per_million',

'new_deaths_smoothed_per_million', 'reproduction_rate', 'icu_patients',

'new_tests_smoothed', 'new_tests_smoothed_per_thousand',

'new_vaccinations_smoothed',

'new_vaccinations_smoothed_per_million',

'new_people_vaccinated_smoothed',

'new_people_vaccinated_smoothed_per_hundred'], axis=1, inplace=True)

data.drop(['icu_patients_per_million','hosp_patients','hosp_patients_per_million','weekly_icu_adm issions',

'weekly_icu_admissions_per_million','weekly_hosp_admissions','weekly_hosp_admissions_per_million',

'new_tests_per_thousand','excess_mortality_cumulative_absolute','excess_mortality_cumulative',

'excess_mortality','excess_mortality_cumulative_per_million','stringency_index','life_expectancy',' human_development_index','extreme_poverty',

'cardiovasc_death_rate',

'diabetes_prevalence',

'female_smokers',

'male_smokers',

'handwashing_facilities',

'hospital_beds_per_thousand'],axis= 1,inplace=True)

checking for the null values

x=data.isnull().sum()*100/len(data)

Х

iso_code 0.000000

continent 5.813686

location 0.000000

date 0.000000

total_cases 3.940933

new_cases 4.052232

total_deaths 13.590001

new_deaths 13.593659

total_cases_per_million 4.384040

new_cases_per_million 4.495339

total_deaths_per_million 14.026315

new_deaths_per_million 14.029972

total_tests 59.408181

new_tests 61.328484

total_tests_per_thousand 59.408181

positive_rate 51.174128

tests_per_case 52.093784

tests_units 45.615438

total_vaccinations 72.625617

people_vaccinated 73.920972

people_fully_vaccinated 75.245067

total_boosters 87.223058

new_vaccinations 77.577126

total_vaccinations_per_hundred 72.625617

people_vaccinated_per_hundred 73.920972

people_fully_vaccinated_per_hundred 75.245067

total_boosters_per_hundred 87.223058

population 0.608749

population_density 10.895828

median_age 17.412842

aged_65_older 18.288082

aged_70_older 17.846020

gdp_per_capita 17.855426

dtype: float64

checking for duplicate values

duplicate = data[data.duplicated()]

duplicate

iso_code continent location date total_cases new_cases total_deaths

new_deaths total_cases_per_million new_cases_per_million ...

total_vaccinations_per_hundred people_vaccinated_per_hundred

people_fully_vaccinated_per_hundred total_boosters_per_hundred population

population_density median_age aged_65_olderaged_70_oldergdp_per_capita

0 rows × 33 columns

```
print(data.isnull().values.any())
True
data['total_deaths'].mean()
64774.858037830774
data['total_deaths'].median()
917.0
data['total_deaths'].replace(np.nan,data['total_deaths'].median()).head(10)
0 917.0
1 917.0
2 917.0
3 917.0
4 917.0
5 917.0
6 917.0
7 917.0
8 917.0
9 917.0
Name: total_deaths, dtype: float64
using bfill method to fill nan cells
data.fillna(method="bfill")
```

```
Oxford/AstraZeneca
                                                                  57
Moderna, Oxford/AstraZeneca, Pfizer/BioNTech
                                                                  20
Oxford/AstraZeneca, Pfizer/BioNTech
Johnson&Johnson, Moderna, Oxford/AstraZeneca, Pfizer/BioNTech
                                                                  12
Pfizer/BioNTech
Oxford/AstraZeneca, Sinopharm/Beijing
                                                                   8
Sinopharm/Beijing
                                                                   8
Sputnik V
Moderna, Pfizer/BioNTech
Oxford/AstraZeneca, Pfizer/BioNTech, Sinovac
Name: vaccines, dtype: int64
```

data.isnull().values.any() #Checking fo nan values in whole dataframe

True

data.head()

```
iso_code
             continent
                          location
                                                                        total_deaths
                                       date
                                             total cases
                                                           new cases
             total_cases_per_million
new_deaths
                                       new_cases_per_million
total_vaccinations_per_hundred
                                 people_vaccinated_per_hundred
people_fully_vaccinated_per_hundred
                                       total_boosters_per_hundred population
population_density
                   median_age
                                aged_65_olderaged_70_oldergdp_per_capita
0
      AFG
                   Afghanistan
                                2020-02-24
                                              5.0
                                                    5.0
                                                                 NaN
                                                                        0.126 0.126
             Asia
                                                           NaN
                                       39835428.0
             NaN
                   NaN
                          NaN
                                NaN
                                                    54.422 18.6
                                                                 2.581 1.337
      ...
1803.987
1
      AFG
             Asia
                   Afghanistan
                                2020-02-25
                                              5.0
                                                    0.0
                                                           NaN
                                                                 NaN
                                                                        0.126 0.000
             NaN
                   NaN
                          NaN
                                NaN
                                       39835428.0
                                                    54.422 18.6
                                                                 2.581 1.337
1803.987
2
      AFG
             Asia
                   Afghanistan
                                2020-02-26
                                              5.0
                                                    0.0
                                                           NaN
                                                                 NaN
                                                                        0.126 0.000
             NaN
                   NaN
                          NaN
                                NaN
                                       39835428.0
                                                    54.422 18.6
                                                                 2.581 1.337
1803.987
3
      AFG
             Asia
                   Afghanistan
                                2020-02-27
                                              5.0
                                                    0.0
                                                           NaN
                                                                 NaN
                                                                        0.126 0.000
                                       39835428.0
                                                    54.422 18.6
                                                                 2.581 1.337
             NaN
                   NaN
                          NaN
                                NaN
      ...
1803.987
4
      AFG
             Asia
                   Afghanistan
                                2020-02-28
                                              5.0
                                                    0.0
                                                           NaN
                                                                 NaN
                                                                        0.126 0.000
                   NaN
             NaN
                          NaN
                                NaN
                                       39835428.0
                                                    54.422 18.6
                                                                 2.581 1.337
1803.987
5 rows × 33 columns
data.info(
```

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 191376 entries, 0 to 191375

Data columns (total 33 columns):

# Column	Non-Null Count Dtype
0 iso_code	191376 non-null object
1 continent	180250 non-null object
2 location	191376 non-null object
3 date	191376 non-null datetime64[ns]
4 total_cases	183834 non-null float64
5 new_cases	183621 non-null float64
6 total_deaths	165368 non-null float64
7 new_deaths	165361 non-null float64
8 total_cases_per_millio	n 182986 non-null float64
9 new_cases_per_millio	n 182773 non-null float64
10 total_deaths_per_mill	ion 164533 non-null float64
11 new_deaths_per_milli	on 164526 non-null float64
12 total_tests	77683 non-null float64
13 new_tests	74008 non-null float64
14 total_tests_per_thous	and 77683 non-null float64
15 positive_rate	93441 non-null float64
16 tests_per_case	91681 non-null float64
17 tests_units	104079 non-null object
18 total_vaccinations	52388 non-null float64
19 people_vaccinated	49909 non-null float64

20 people_fully_vaccinated 47375 non-null float64

21 total_boosters 24452 non-null float64

22 new_vaccinations 42912 non-null float64

23 total_vaccinations_per_hundred 52388 non-null float64

24 people_vaccinated_per_hundred 49909 non-null float64

25 people_fully_vaccinated_per_hundred 47375 non-null float64

26 total_boosters_per_hundred 24452 non-null float64

27 population 190211 non-null float64

28 population_density 170524 non-null float64

29 median_age 158052 non-null float64

30 aged_65_older 156377 non-null float64

31 aged_70_older 157223 non-null float64

32 gdp_per_capita 157205 non-null float64

dtypes: datetime64[ns](1), float64(28), object(4)

memory usage: 48.2+ MB

data.drop(['tests_units'],axis=1,inplace=True)

null_percentage=data.isna().sum()*100/len(data)

null_percentage.head(38)

iso_code 0.000000

continent 5.813686

location 0.000000

date 0.000000

total_cases 3.940933

new_cases 4.052232

total_deaths 13.590001

new_deaths	13.593659
------------	-----------

total_cases_per_million 4.384040

new_cases_per_million 4.495339

total_deaths_per_million 14.026315

new_deaths_per_million 14.029972

total_tests 59.408181

new_tests 61.328484

total_tests_per_thousand 59.408181

positive_rate 51.174128

tests_per_case 52.093784

total_vaccinations 72.625617

people_vaccinated 73.920972

people_fully_vaccinated 75.245067

total_boosters 87.223058

new_vaccinations 77.577126

total_vaccinations_per_hundred 72.625617

people_vaccinated_per_hundred 73.920972

people_fully_vaccinated_per_hundred 75.245067

total_boosters_per_hundred 87.223058

population 0.608749

population_density 10.895828

median_age 17.412842

aged_65_older 18.288082

aged_70_older 17.846020

gdp_per_capita 17.855426

dtype: float64

data=data.fillna(method="bfill")

null_percentage=data.isna().sum()*100/len(data)

null_percentage.head(38)

iso_code 0.000000

continent 0.000000

location 0.000000

date 0.000000

total_cases 0.000000

new_cases 0.000000

total_deaths 0.000000

new_deaths 0.000000

total_cases_per_million 0.000000

new_cases_per_million 0.000000

total_deaths_per_million 0.000000

new_deaths_per_million 0.000000

total_tests 0.000523

new_tests 0.007838

total_tests_per_thousand 0.000523

positive_rate 0.000523

tests_per_case 0.000523

total_vaccinations 0.001045

people_vaccinated 0.001045

people_fully_vaccinated 0.001045

total	boosters	0.001045
ισιαι	noosieis	0.001043

new_vaccinations 0.001045

total_vaccinations_per_hundred 0.001045

people_vaccinated_per_hundred 0.001045

people_fully_vaccinated_per_hundred 0.001045

total_boosters_per_hundred 0.001045

population 0.000000

population_density 0.000000

median_age 0.000000

aged_65_older 0.000000

aged_70_older 0.000000

gdp_per_capita 0.000000

dtype: float64

data = new_df[['country','total_vaccinations']].nlargest(25,'total_vaccinations')

fig = px.bar(data, x = 'country',y = 'total_vaccinations',title="Number of total vaccinations according to countries",)

fig.show()

Covid-19 Vaccination country wise

data = new_df[['country','daily_vaccinations']].nlargest(25,'daily_vaccinations')

fig = px.bar(data, x = 'country',y = 'daily_vaccinations',title="Number of daily vaccinations according to countries",)

fig.show()

Number of daily vaccinations according to countries

