Continuous Fused Optimal Transport

Junhyoung Chung*

Department of Statistics Seoul National University Seoul 08826, Republic of Korea junhyoung0534@gmail.com

Abstract

The abstract paragraph should be indented ½ inch (3 picas) on both the left- and right-hand margins. Use 10 point type, with a vertical spacing (leading) of 11 points. The word **Abstract** must be centered, bold, and in point size 12. Two line spaces precede the abstract. The abstract must be limited to one paragraph.

1 Introduction

2 Fused Optimal Transport

Notations. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and (S, d_S) be a compact metric space. A measurable map $X:\Omega \to S$ is called a random element, and its distribution is defined as $\mathbb{P}_X:=\mathbb{P}\circ X^{-1}$. In addition, we introduce a feature space (M,d_M) , which is also a compact metric space. Any measurable map $f:S\to M$ is called a feature function. For two random elements X and Y, we say a measurable map $T:S\to S$ pushes forward \mathbb{P}_X to \mathbb{P}_Y , or simply X to Y, if $\mathbb{P}_X(T^{-1}(A))=\mathbb{P}_Y(A)$ for all $A\in\mathcal{B}(S)$, where $\mathcal{B}(S)$ is the Borel σ -algebra of S. We denote $T_\#\mathbb{P}_X=\mathbb{P}_Y$ or $T(X)\stackrel{d}{=}Y$ if T pushes forward X to Y.

Fused optimal transport. For some known feature function f, we consider the following problem: for some $0 \le \alpha \le 1$,

$$\min_{T:T_{\#}\mathbb{P}_{X}=\mathbb{P}_{Y}} (1-\alpha) \mathbb{E}_{X \sim \mathbb{P}_{X}} \left[d_{M}(f(X), f(T(X))) \right] + \alpha \mathbb{E}_{(X,X') \sim \mathbb{P}_{X} \otimes \mathbb{P}_{X}} \left[K_{h}(X,X') \left| d_{S}(X,X') - d_{S}(T(X), T(X')) \right|^{2} \right], \quad (1)$$

where $K_h(\cdot,\cdot): S\times S\to [0,\infty)$ is a bounded and symmetric $(K_h(x,x')=K_h(x',x))$ kernel with a bandwidth h>0. A solution for (1), denoted as T^* , is called a fused optimal transport (OT) plan.

^{*}https://junhyoung-chung.github.io/