

Bases Formales de la Computación

Gerardo M. Sarria M.

Pontificia Universidad Javeriana

4 de octubre de 2008

RELACIONES DE SIMULACIÓN

El Problema con la Teoría de Autómatas Clásica

Gerardo M. Sarria M.

Dados los siguientes autómatas:

La teoría permite deducir que $a \cdot (b + c) = a \cdot b + a \cdot c$. De ahí que los estados p_0 y q_0 son equivalentes.

Necesitamos equivalencias más fuertes que no validen lo anterior.

Relaciones de Simulación y Bisimulación Fuerte

Gerardo M Sarria M.

Los sistemas de transiciones son solo automatas en los cuales los estados inicial y final son irrelevantes.

Simulación Fuerte

Sea T un sistema de transición. Una relación $R \subseteq S(T) \times S(T)$ es una simulación fuerte si y solo si para cada $(p,q) \in R$:

si
$$p \stackrel{a}{\rightarrow} p'$$
 entonces existe q' tal que $q \stackrel{a}{\rightarrow} q'$ y $(p', q') \in R$.

Bisimulación Fuerte

Una relación R es una bisimulación fuerte si y solo si R y su inversa R^{-1} son ambas simulaciones.

Gerardo M. Sarria M.

Similaridad

Decimos que p simula fuertemente a q si y solo si existe una simulación R tal que $(p,q) \in R$.

Bisimilaridad

Decimos que p y q son fuertemente bisimilares, escrito $p \sim q$, si existe una bisimulación R tal que $(p,q) \in R$.

Si p simula a q y q simula a p, entonces p y q son bisimilares?

Gerardo M. Sarria M.

Aquí p_0 simula a q_0 mediante la relación:

$$R = \{(q_0, p_0), (q_1, p_1), (q'_1, p_1), (q_2, p_2), (q_3, p_3)\}$$

pero q_0 no simula a p_0 . Por lo tanto p_0 y q_0 no son bisimilares.

Gerardo M. Sarria M.

Ejemplo:

¿Cómo probamos que p_0 y q_0 son bisimilares?

Gerardo M. Sarria M.

Ejemplo:

Definimos la relación:

$$R = \{(p_0, q_0), (p_0, q_2), (p_1, q_1), (p_2, q_1)\}$$

y probamos que R es una bisimulación.

Gerardo M. Sarria M.

Ejemplo:

Gráficamente enlazamos los estados relacionados en el grafo.

Gerardo M. Sarria M.

Ejercicio

$$R = \{(p_0, q_0), (p_0, q_2), (p_1, q_1), (p_2, q_1)\}$$

Pruebe que R es una simulación fuerte y luego escriba R^{-1} y muestre que también es una simulación fuerte.

Bisimilaridad en CCS

Gerardo M. Sarria M.

El sistema de transición etiquetado de CCS tiene \mathcal{P} como sus estados y sus transiciones, dados por la semántica operacional.

Decimos que $P \sim Q$ si y solo si los estados correspondientes a P y Q son bisimilares.

Ejemplo:

P = a.(b.0 + c.0) corresponde a p_0 y Q = a.b.0 + a.c.0 corresponde a q_0 . Por lo tanto, $P \not\sim Q$.

Algunas bisimilaridades básicas:

- *P* || *Q* ∼ *Q* || *P*
- P || 0 ~ P
- $\bullet \ (P \parallel Q) \parallel R \sim P \parallel (Q \parallel R)$
- $(\nu a)0 \sim 0$
- $P \parallel (\nu a) Q \sim (\nu a) (P \parallel Q)$
- $(\nu a)P \sim (\nu b)P[b/a]$

Suponga que $P \sim Q$. Quisieramos que $P \parallel R \sim Q \parallel R$.

De manera más general, quisieramos que

$$C[P] \sim C[Q]$$

donde $C[\cdot]$ es un contexto de proceso.

Queremos que ~ sea una congruencia.

Sarria M.

En principio, P y Q deben ser equivalentes si y solo si otro proceso (el ambiente, un observador) no puede observar alguna diferencia den sus comportamientos.

Note que $\tau.P \not\sim P$, aunque τ es una acción no observable. Así que \sim tal vez es muy fuerte.

Buscamos otra noción de equivalencia enfocada en términos de acciones observables.

Pensamos cualquier acción $\stackrel{a}{\rightarrow}$ $(a \neq \tau)$ como una observación.

Decimos que e es un experimiento si e es una secuencia $a_1.a_2...a_n$ de acciones observables.

Si $s = \alpha_1 \dots \alpha_n \in Act^*$, entonces

$$\stackrel{s}{\Longrightarrow} = \left(\stackrel{\tau}{\to}\right)^* \stackrel{\alpha_1}{\longrightarrow} \left(\stackrel{\tau}{\to}\right)^* \dots \left(\stackrel{\tau}{\to}\right)^* \stackrel{\alpha_n}{\longrightarrow} \left(\stackrel{\tau}{\to}\right)^*$$

Bisimulación Débil

Una relación binaria (y simétrica) R sobre procesos es una bisimulación débil si y solo si para cada $(P,Q) \in R$

si $P \stackrel{e}{\Longrightarrow} P'$ entonces existe Q' tal que $Q \stackrel{e}{\Longrightarrow} Q'$ y $(P',Q') \in R$.

P y Q son débilmente bisimilares, escrito $P \approx Q$, si y solo si existe una bisimulación débil que contiene la pareja (P, Q).

Ejemplos:

- $P \approx \tau.P$
- $a.0 + b.0 \approx a.0 + \tau.b.0$
- $a.(b.c.0 + b.d.0 \approx a.b.c.0 + a.b.d.0$
- $a.0 + b.0 \not\approx (\nu c)(c.0 \parallel \overline{c}.a.0 \parallel \overline{c}.b.0)$

Ejemplo: Lotería

Gerardo M. Sarria M.

Construir una máquina de lotería L que escoja aleatoriamente un "balota" del conjunto $\{b_1, \ldots, b_n\}$ y cuando hay sacado una balota (acción observable) repita el proceso.

Usando au para representar la escogencia interna, se puede especificar el comportamiento de la lotería como el proceso:

Lotspec
$$\stackrel{\text{def}}{=} \tau.b_1.$$
Lotspec $+ \ldots + \tau.b_n.$ Lotspec

Se asume que se puede escoger repetidamente la misma balota, y que continua indefinidamente.

Ejemplo: Lotería

Gerardo M. Sarria M.

Construir una máquina de lotería L que escoja aleatoriamente un "balota" del conjunto $\{b_1, \ldots, b_n\}$ y cuando hay sacado una balota (acción observable) repita el proceso.

Usando au para representar la escogencia interna, se puede especificar el comportamiento de la lotería como el proceso:

$$Lotspec \stackrel{\text{def}}{=} \tau.b_1.Lotspec + \ldots + \tau.b_n.Lotspec$$

Se asume que se puede escoger repetidamente la misma balota, y que continua indefinidamente.

¿Podemos construir loterías para un *n* arbitrario a partir de un conjunto fijo de componentes?

Para n = 3:

$$A \stackrel{\text{def}}{=} \overline{a}.C$$
, $C \stackrel{\text{def}}{=} \tau.C + c.A$, $B \stackrel{\text{def}}{=} b.C$

Los tres estados de la lotaria están definidos por:

$$L_1 = (\nu a_1 a_2 a_3)(C_1 \parallel A_2 \parallel A_3)$$

$$L_2 = (\nu a_1 a_2 a_3)(A_1 \parallel C_2 \parallel A_3)$$

$$L_3 = (\nu a_1 a_2 a_3)(A_1 \parallel A_2 \parallel C_3)$$

La lotería puede repetirse indefinidamente entre L_1 , L_2 y L_3

pero puede, en algún momento, alcanzar un estado en el cual una balota particular b_i tenga que ser tomada (una acción observable).

Como de aquí es posible alcanzar estados estables como $L_1' = (\nu a_1 a_2 a_3)(B_1 \parallel A_2 \parallel A_3)$ (cuando está listo para tomar la balota b_1), el grafo de transiciones es:

> Ejercicio: Probar que $L_1 \approx Lotspec$.

Ejercicio:

Probar que $L_1 \approx Lotspec$.

Ayuda: Prueba que

 $R \stackrel{\mathrm{def}}{=} \big\{ \big(L_i, Lotspec\big) \big| 1 \leq i \leq n \big\} \cup \big\{ \big(L_i', b_i. Lotspec\big) \big| 1 \leq i \leq n \big\}$

es una bisimulación débil.

Fin de la Presentación