1 nalen

צונזר.

2 nolen

א. בייאוסף תרגילים פתוריםיי קבוצה 3 שאלה 10הי, מראים כי קבוצת הסדרות הסופיות של טבעיים היא בת-מניה. בשאלה שלפנינו עוסקים לא בסדרות אלא בתת-קבוצות של N. נתאים לכל קבוצה סופית של מספרים טבעיים - סדרה סופית: פשוט נסדר את אברי הקבוצה בסדר עולה. בכך הגדרנו פונקציה של הקבוצה K שבשאלה אל קבוצת הסדרות הסופיות של טבעיים. פונקציה זו אינה על (מדועי) אך מובן שהיא חד-חד-ערכית. לפיכך $|K| \leq \aleph_0$

מצד שני, K היא אינסופית, מכיון שהיא מכילה את כל הקבוצות מהצורה $\{n\}$, לכל n טבעי. מכאן לפי משפט קנטור-שרדר-ברנשטיין $|K|=\aleph_0$ (למעשה אין כאן צורך במשפט הנייל, שהוא בגדר ייתותח כבדיי. ניתן להראות בלעדיו, שקבוצה אינסופית המוכלת בקבוצה בת-מניה היא בת מניה).

- ב. הפונקציה ${\bf N}$ -ם המתאימה לכל קבוצה את המשלים שלה ב- $g:L \to K$ היא חחייע ועל. לפיכך |L|=|K|, ולפי סעיף אי גודל זה הוא
 - $K \cup L \cup M = P(\mathbf{N})$ ורות זו לזו, ו- K, ארות ארובוצות ג. נשים לב שהקבוצות

כעת, אילו M היתה בת-מניה, היינו מקבלים ש- $P(\mathbf{N})$ היא איחוד של 3 קבוצות זרות בנות-מניה הוא מניה. עייי שימוש חוזר בשאלה 4.3 בעמי 119 בספר (איחוד שתי קבוצות זרות בנות-מניה הוא בר-מניה) היינו מקבלים כי $P(\mathbf{N})$ היא בת-מניה - בסתירה למשפט 5.25 , וכן בסתירה למשפט 5.6 (משפט קנטור).

.לכן M אינה בת-מניה

ד. לפי סעיפים א, ב יחד עם שאלה 4.3 בעמי 119 בספר, אינה בת-מניה. ד. לפי סעיפים א, ב יחד עם שאלה 7.8 בעמי ממשפט 5.6 (משפט קנטור), אינה בת-מניה.

. | $P(\mathbf{N}) - (K \cup L)$ | = | $P(\mathbf{N})$ | נקבל , בעזרת משפט 35.13 משני אלה יחד , בעזרת

. $P(\mathbf{N}) - (K \cup L) = M$ אבל איחוד זר, לכן $K \cup L \cup M = P(\mathbf{N})$

. $|M| = |P(\mathbf{N})| = C$: קיבלנו

3 nalen

א. שתי חלוקות אפשריות המקיימות זאת מתוארות בחוברת "אוסף תרגילים פתורים",
קבוצה 1, בתשובה לשאלה 4 ה'. יש כמובן דרכים רבות נוספות.

. ב. העובדה $f: {f N} imes {f N} o {f N}$ פירושה שקיימת פירושה $|{f N} imes {f N}| = |{f N}|$ חד-חד-ערכית ועל. $A_n = {f N} imes \{n\} \subset {f N} imes {f N}$ לכל $n \in {f N}$, $n \in {f N}$

אוסף אינסופיות זרות אכולן אינסופיות. א ${\bf N}\times{\bf N}$ לי חלוקה אכולן אינסופיות אוסף הקבוצות הקבוצות אוסף תחו A_n תמונת הקבוצה תחי תהי $K_n\subset {\bf N}$ האמורה למעלה.

: מהווה הקבוצות את המקיימת אל האווה חלוקה של \mathbf{N} המקיימת את הנדרש

כל $N \times N$ נמצא לפחות באחת הקבוצות K_n מכיון ש- f היא **על** N, קיים ב- $N \times N$ מקור ל- A_i מקור ש- A_i ומכיוון ש- A_i היא חלוקה של A_i היא חלוקה של A_i המתאימה. A_i המתאימה של איבר ב- A_i כלשהי, כלומר שייך לקבוצה A_i המתאימה.

j=f(y) אם j=f(x) אז j=f(x) אז $j\in K_n\cap K_m$ נניח בשלילה נניח בשלילה וגם j=f(x) אז j=f(x) אם j=f(x) אז וניח בשלילה ווער ב- j=f(x) אונים בי j=f(x) אונים ווער ב- j=f(x) אונים ווער ב- j=f(x) אונים בי j=f(x) אונים ווער ב- j=f(x) אונים ווער ב- j=f(x) אונים בי j=f(x) אונים בי

A,B אגב, הוכחה זו היא דוגמא לטענה כללית הרבה יותר. באופן מאד לא פורמלי: אם קבוצות אגב, הוכחה זו היא דוגמא לטענה כללית הרבה יותר. מעל A'' (למשל: מבנה אלגברי כלשהו, חלוקה, יחס כלשהו שהגדרנו מעל A') ל-A', והתוצאה היא "העתק נאמן למקור" של מה שנעשה ב-A'. ניסוח מדויק של טענה זו שייך לתחום הלוגיקה המתימטית.

4 22167

. $k_1,\,k_2$, m_1,m_2 בהתאמה בהתאמותיהן קבוצות קבוצות קבוצות A_1,A_2 , B_1,B_2 א. $m_1 \leq m_2 \quad , k_1 \leq k_2 \quad \text{ (מון }$

כדי לקצר מעט את ההוכחה ניעזר בטריק השימושי הבא: אנו חופשים לבחור כראות עינינו את כדי לקצר מעט את ההוכחה ניעזר בטריק השימושי הבא: אנו חופשים העוצמות העוצמות הנדרשות. הקבוצות שנבחר הן בעלות העוצמות הנדרשוה מתוך הנתון, לפי שאלה 5.1א בחוברת "פרק 5", קיימת קבוצה חלקית של B_1 שעוצמתה שווה לעוצמת B_1 , וקיימת קבוצה חלקית של B_2 שעוצמתה שווה לעוצמת B_1 , וקיימת קבוצה חלקית של בטריק השימות הביצה השווה לעוצמת ו

(!) $B_1 \subseteq B_2$, $A_1 \subseteq A_2$ לכן ב.ה.כ. נניח

. $k_2\cdot m_2=|A_2\times B_2|$, $k_1\cdot m_1=|A_1\times B_1|$ בעת מהגדרת כפל עוצמות . $A_1\times B_1\subseteq A_2\times B_2$ הבל מכיוון ש- $A_1\times B_1\subseteq A_2\times B_2$, מהגדרת מכפלה קרטזית נקבל $A_1\times B_1\subseteq A_2\times B_2$

. $k_{1}\cdot m_{1} \leq k_{2}\cdot m_{2}$, בהסתמך על שאלה לכן , לכן

- . א $\cdot C \leq C \cdot C = C$, א ולכן בעזרת אולכן א $\aleph_0 \leq C$, א מצד אחד, אולכן בדומה ולכן בדומה ולכן אולכן פולכן אולכן משני הכיוונים יחד, בעזרת קנטור-שרדר-ברנשטיין, נובע המבוקש.
 - ג. לפי משפט 5.26, נציב זאת ונקבל . $2^{\aleph_0}=C$,5.26 ג. $C^C=(2^{\aleph_0})^C=2^{\aleph_0\cdot C}=2^C$. נבטברים נעזרנו במשפט 5.27 ובסעיף ב של שאלה זו.

איתי הראבן