Método de Diferencias Finitas para Ecuaciones en Derivadas Parciales

Ecuaciones Elípticas y Parabólicas

Introducción

- Una ecuación diferencial en la que aparecen dos o más variables independientes se llama ecuación en derivadas parciales (EDP).
- □ EDP de orden 2, lineal y de coeficientes constantes:

$$A.\mathbf{u}_{xx}+B.\mathbf{u}_{xy}+C.\mathbf{u}_{yy}+D.\mathbf{u}_{x}+E.\mathbf{u}_{y}+F.\mathbf{u}=G$$

$$\mathbf{u}_{xx} = \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2}, \ \mathbf{u}_{xy} = \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x} \partial \mathbf{y}}, \ \mathbf{u}_{yy} = \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2}, \mathbf{u}_{x} = \frac{\partial \mathbf{u}}{\partial \mathbf{x}}, \mathbf{u}_{y} = \frac{\partial \mathbf{u}}{\partial y}, \mathbf{u}_{z} = \mathbf{u}(\mathbf{x}, \mathbf{y})$$

- Clasificación:
 - □ Si $B^2 4$.A.C < 0, la ecuación se llama *elíptica*
 - □ Si $B^2 4$.A.C = 0, la ecuación se llama *parabólica*
 - □ Si $B^2 4$.A.C > 0 , la ecuación se llama *hiperbólica*

EDP Elípticas

$$\nabla^{2} u = \frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} = f(x, y) \begin{cases} f = 0 : \text{Laplace} \\ f \neq 0 : \text{Poisson} \end{cases}$$

Solución Numérica de la Ecuación de Laplace

$$\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

Dominio de la solución

Diferencias Finitas

$$\frac{\partial^2 u}{\partial x^2} \approx \frac{u_{i-1,j} - 2.u_{i,j} + u_{i+1,j}}{\Delta x^2}$$

$$\frac{\partial^2 u}{\partial y^2} \approx \frac{u_{i,j-1} - 2.u_{i,j} + u_{i,j+1}}{\Delta y^2}$$

$$\frac{\partial u}{\partial x} \approx \frac{u_{i+1,j} - u_{i-1,j}}{2.\Delta x}$$

$$\frac{\partial u}{\partial x} \approx \frac{u_{i+1,j} - u_{i-1,j}}{2.\Delta x} \qquad \frac{\partial u}{\partial y} \approx \frac{u_{i,j+1} - u_{i,j-1}}{2.\Delta y}$$

Aproximación por diferencias finitas para la solución de la ecuación de Laplace

$$\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

$$\frac{\partial^2 u}{\partial x^2} \approx \frac{u_{i-1,j} - 2.u_{i,j} + u_{i+1,j}}{\Delta x^2}$$

$$\frac{\partial^2 u}{\partial x^2} \approx \frac{u_{i,j-1} - 2.u_{i,j} + u_{i,j+1}}{\Delta y^2}$$

$$\frac{u_{i-1,j} - 2.u_{i,j} + u_{i+1,j}}{\Delta x^2} + \frac{u_{i,j-1} - 2.u_{i,j} + \ddot{u}_{i,j+1}}{\Delta y^2} = 0$$
 para una malla de cuadrados resulta
$$\Delta x = \Delta y$$

$$\Rightarrow u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} - 4.u_{i,j} = 0$$

Esta ecuación puede representarse en forma gráfica mediante el siguiente «Stencil»:

Ejemplo: cálculo de las líneas de corriente del escurrimiento fluido

SUCESIVAS POSICIONES DEL OPERADOR

Sistema de Ecuaciones Resultante

$$30 + u_2 + u_3 + 20 - 4u_1 = 0$$

$$30 + 30 + u_4 + u_1 - 4u_2 = 0$$

$$u_1 + u_4 + 0 + 10 - 4u_3 = 0$$

$$u_2 + u_5 + 0 + u_3 - 4u_4 = 0$$

$$30 + u_6 + 0 + u_4 - 4u_5 = 0$$

$$30 + 15 + 0 + u_5 - 4u_6 = 0$$

Formulación Matricial del Sistema denominando u=**Y**

Sistema de Ecuaciones Resultante

$$\begin{bmatrix} -4 & 1 & 1 & 0 & 0 & 0 \\ 1 & -4 & 0 & 1 & 0 & 0 \\ 1 & 0 & -4 & 1 & 0 & 0 \\ 0 & 1 & 1 & -4 & 1 & 0 \\ 0 & 0 & 0 & 1 & -4 & 1 \\ 0 & 0 & 0 & 0 & 1 & -4 \end{bmatrix} * \begin{bmatrix} \Psi_1 \\ \Psi_2 \\ \Psi_3 \\ \Psi_4 \\ \Psi_5 \\ \Psi_6 \end{bmatrix} = \begin{bmatrix} -50 \\ -60 \\ -10 \\ 0 \\ -30 \\ -45 \end{bmatrix}$$

Resolución del Sistema en MATLAB

```
>> A=[-4 1 1 0 0 0;1 -4 0 1 0 0; 1 0 -4 1 0 0;0 1 1 -4 1 0;0 0 0 1 -4 1; 0 0 0 0 1 -4]
A =
>> b=[-50;-60; -10; 0; -30; -45]
b =
 -50
 -60
  -10
  0
 -30
 -45
>> psi=inv(A)*b
psi=
 21.0090
 23.2681
 10.7681
 12.0633
 14.2169
 14.8042
```

Solución del Sistema de Ecuaciones

$$\Psi_1 = 21.009$$
 $\Psi_2 = 23.268$
 $\Psi_3 = 10.768$
 $\Psi_4 = 12.063$
 $\Psi_5 = 14.267$
 $\Psi_6 = 14.804$

Valores de la función de corriente Y en la grilla discreta

EDP parabólicas

- Las ecuaciones parabólicas se emplean para caracterizar problemas dependientes del tiempo y el espacio
- □ Un ejemplo:

ECUACIÓN DE CONDUCCIÓN DE CALOR

Ecuación de Conducción del Calor

Se puede usar la conservación de calor para desarrollar un balance de energía en un elemento diferencial de una barra larga y delgada aislada, considerando la cantidad de calor que se almacena en un periodo de tiempo Δt

Se llega a:

$$\mathbf{u}_{\mathbf{t}} - \alpha \,\mathbf{u}_{\mathbf{x}\mathbf{x}} = 0$$

en la que **a** es el coeficiente de difusividad térmica, que depende del material de la barra

Para unas dadas **condiciones iniciales y de contorno** la solución de esta EDP parabólica permite conocer la temperatura en cualquier posición de la barra y para cualquier instante : $\mathbf{u}(\mathbf{x},t)$ con $0 < \mathbf{x} < \mathbf{L}$; t > 0

Condición Inicial

□ Temperatura de la barra para t=0

$$u(x, 0) = f(x)$$

(constante o función de la posición)

Condiciones de Contorno

□ Temperatura de la barra en los extremos x=0 ; x=L

$$u(0, t) = T_0$$
 $u(L, t) = T_L$

Solución Numérica de la Ecuación del Calor

Encontraremos la solución aproximada de

$$\mathbf{u}_{t} - \alpha \mathbf{u}_{xx} = 0$$

Para algunos puntos del dominio

Método de Diferencias finitas

- □ Discretización del dominio (Grilla Discreta)
- Condiciones de Contorno e Iniciales en el Dominio Discretizado
- Reemplazo de las derivadas parciales de la EDP por sus aproximaciones numéricas. Se obtiene una Ecuación en Diferencias (ED)

EDP ED

 Aplicación de la ED a los puntos de la Grilla Discreta

Convergencia Consistencia y Estabilidad

- □ EDP F(x,y,u)=0 Solución: u(x,y)
- □ ED $G_{i,j}(h,k,\hat{\mathbf{u}})=0$, para cada (i,j) $\tilde{u}_{h,k}(x_i,y_j)$
- Convergencia

$$\widetilde{u}_{h,k}(x_i, y_j) \xrightarrow{h,k \to 0} u(x_i, y_j)$$

Consistencia

$$G_{i,j}(h,k,\widetilde{u}) \xrightarrow{h,k\to 0} F(x,y,u)$$

Estabilidad: la diferencia entre la solución numérica y la solución exacta tiende a cero a medida que avanza el cálculo con una cantidad de pasos tendiente a infinito

Discretización del Dominio

Para elegir los puntos en los cuales calcularemos la solución aproximada de la EDP

-Particionamos el espacio secciones de la barra separadas una distancia h=Dx $x_i=i\cdot h$, $i=0,1,\dots m$

 $X_i X_{i+1}$

 X_{i-1}

-Elegimos una partición para el tiempo k=Dt

$$t_j = j \cdot k$$
 , $j=0, 1, ...n$

Aproximaciones Numéricas de las derivadas parciales de la EDP

- Derivada parcial primera
 - Hacia adelante

$$u_{t}(x_{i},t_{j}) \approx \frac{u(x_{i},t_{j}+k)-u(x_{i},t_{j})}{k} = \frac{u_{i,j+1}-u_{i,j}}{k} \quad error \quad O(k)$$

□ Hacia atrás

$$u_{t}(x_{i},t_{j}) \cong \frac{u(x_{i},t_{j}) - u(x_{i},t_{j}-k)}{k} = \frac{u_{i,j} - u_{i,j-1}}{k}$$
 error $O(k)$

Aproximaciones Numéricas de las derivadas parciales de la EDP

Derivada parcial segunda

Centrada

$$u_{xx}(x,t) \cong \frac{u(x-h,t) - 2u(x,t) + u(x+h,t)}{h^2} = \frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{h^2}$$

error $O(h^2)$

Ecuación del Calor. Método Explícito

- □ Derivada Primera: hacia delante
- Derivada Segunda: centrada
- □ Ecuación en diferencias

$$\frac{u_{i,j+1} - u_{i,j}}{k} - \alpha \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} = 0$$

multiplicando por k:

parámetro de Courant $u_{i,j+1} - u_{i,j} - \frac{\alpha \cdot k}{h^2} \cdot (u_{i+1,j} - 2u_{i,j} + u_{i-1,j}) = 0$

Ecuación del Calor. Método Explícito

Ecuación en diferencias

$$u_{i,j+1} - u_{i,j} - \lambda \cdot (u_{i+1,j} - 2u_{i,j} + u_{i-1,j}) = 0$$

$$u_{i,j+1} = u_{i,j} (1-2.\lambda) + \lambda u_{i+1,j} + \lambda u_{i-1,j}$$

Stencil

Estabilidad Numérica del Método Explícito

El método explícito se puede expresar en forma matricial:

$$\mathbf{w}^{(j)} = \mathbf{A} \cdot \mathbf{w}^{(j-1)}$$

con **w**^(j): conjunto de las aproximaciones u para el paso del tiempo j.

w^(j-1): conjunto de las aproximaciones u para el paso del tiempo j-1

A: matriz tridiagonal

$$\begin{bmatrix} (1-2\lambda) & \lambda & 0 & 0 \\ \lambda & (1-2\lambda) & \lambda & & \\ 0 & \cdots & \cdots & 0 \\ & & \lambda & (1-2\lambda) & \lambda \\ 0 & & \lambda & (1-2\lambda) \end{bmatrix}$$

Estabilidad Numérica del Método Explícito

□Para que el Método sea estable debe cumplirse que el radio espectral $\rho(A) \le 1$

Esto es equivalente a que $\lambda \le \frac{1}{2}$

Como
$$\lambda = \frac{\alpha \cdot k}{h^2} \le \frac{1}{2}$$
 esto condiciona los valores de **h** y **k** que se

adopten para la discretización (no puede utilizarse cualquier combinación de **h** y **k**).

Ecuación del Calor. Método explícito. Ejemplo

Hallar la temperatura para t = 0.3 s de una barra de 1m cuyos extremos se mantienen a 20°C y a 40°C. La temperatura inicial de la barra es de 100°C y el coeficiente $\mathbf{a} = 0.1$. Tomar $\Delta x = 0.2$ m y $\Delta t = 0.1$ s. Justificar la aplicabilidad del método explícito.

Description Parámetro de Courant $\lambda = \frac{\alpha \cdot \mathbf{k}}{\mathbf{h}^2} = \frac{0.1 \cdot 0.1}{0.04} = 0.25 \le \frac{1}{2}$

Método Explícito. Cálculo con Excel

20					40
20					40
20					40
20	100	100	100	100	40

Ecuación del Calor. Método Implícito

- □ Derivada Primera : hacia atrás
- Derivada Segunda: centrada
- Ecuación en diferencias

$$\frac{u_{i,j} - u_{i,j-1}}{k} - \alpha \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} = 0$$

Ecuación del Calor. Método Implícito

Ecuación en diferencias

$$u_{i,j} - u_{i,j-1} - \lambda \cdot (u_{i+1,j} - 2u_{i,j} + u_{i-1,j}) = 0$$

$$u_{i,j} (1+2\lambda) - u_{i,j-1} - \lambda \cdot u_{i+1,j} - \lambda \cdot u_{i-1,j} = 0$$

Stencil $-\lambda$ $i+2.\lambda$ $-\lambda$ i+1, j Este esquema plantear la so

Este esquema permite plantear la solución en el instante tj a partir de la solución en el instante tj-1

Estabilidad Numérica del Método Implícito

- □La aplicación sucesiva del stencil da como resultado un sistema de ecuaciones, que resulta ser tridiagonal.
- □El método implícito se puede expresar en forma matricial:

A
$$.w^{(j)} = w^{(j-1)}$$

con $\mathbf{w}^{(j)}$: conjunto de las aproximaciones u para el paso del tiempo j.

w^(j-1): conjunto de las aproximaciones u para el paso del tiempo j-1

A: matriz

tridiagonal

$$A = \begin{bmatrix} (1+2\lambda) & -\lambda & 0 & 0 \\ -\lambda & (1+2\lambda) & -\lambda & \\ 0 & \cdots & \cdots & \\ & & -\lambda & (1+2\lambda) & -\lambda \\ 0 & & & -\lambda & (1+2\lambda) \end{bmatrix}$$

Estabilidad Numérica del Método Implícito

□Analizando la Matriz A correspondiente al Método Implícito, se observa que el radio espectral

 $\rho(\mathbf{A}^{-1}) < 1$

Para cualquier valor del parámetro de Courant, por lo que este método es incondicionalmente estable.

Ecuación del Calor. Método implícito. Ejemplo

□ Hallar la temperatura para t = 0.3 s de una barra de 1m cuyos extremos se mantienen a 20°C y a 40°C. La temperatura inicial de la barra es de 100°C y el coeficiente $\mathbf{a} = 0.1$. Tomar $\Delta x = 0.2$ m y $\Delta t = 0.1$ s.

□ Parámetro de Courant

$$\lambda = \frac{\alpha \cdot k}{h^2} = \frac{0.1 \cdot 0.1}{0.04} = 0.25$$

Método de Crank-Nicolson

Idea: obtener un método con error $O(k^2+h^2)$

¿Cómo?

- ☐ Se promedian las diferencias hacia delante en el j-ésimo paso en t y las diferencias hacia atrás en el (j+1)ésimo paso en t
- El método es incondicionalmente estable
- Stencil

tencil
$$-\lambda/2$$
 $1+\lambda$ $-\lambda/2$ $i-1,j+1$ $i,j+1$ $i+1,j+1$ $\lambda/2$ $i-1,j$ i,j $i+1,j$