GCGGCCACAC CGCCGGTGTG AlaAlaThrPro	ccagrcccc ggrcacggc roseralaarg	CGGGGTCCTG GCCCCAGGAC 1GlyValLeu	TTGTGTCCAC AACACAGGTG LeuCysProPro	GCCTCCCATG CGGAGGGTAC ysLeuProCys	TGACAATTCT ACTGTTAAGA NASPASNSer	CACAAAGAAT GTGTTTCTTA HisLysGluSer	TCGGCTCAGG AGCCGAGTCC leglyserGly	CGAGATTCTG GCTCTAAGAC nGluileLeu	CCAGGGGAGG GGTCCCTCC ProGlyGluAla	TGATGCTGTT ACTACGACAA euMetLeuPhe
AGAGGCAGCC G TCTCCGTCGG C rGluAlaAla A	CAGCACGGAC C GTCGTGCCTG G GlnHisGlyP r	TTGTCGTCGT C AACAGCAGCA G hevalvalva l	TTTGGGAGAG T AAACCCTCTC A oLeuGlyGlu L	TTGTTTGCTT G AACAAACGAA C LeuPheAlaC y	CTTTCCGGAA T GAAAGGCCTT A hrPheargas n	CGAGTGTGTC .C. GCTCACACAG G' eGluCysVal H	TGTTGTTGCA TA ACAACAACGT AA CYSCYSCYSI LA	ATGCTCACAA CO TACGAGTGTT GO SNAlaHisAS NO	TGTACAGTCC CO ACATGTCAGG GO	ACTGAGACTC TO TGACTCTGAG AO ThrGluThrL eo
CCAGTGGGAC CCTCACCCTG	CTCCATGGGA GAGGTACCCT	ACCTTCAAGT TGGAAGTTCA ThrPheLysP	; AACATAGCCC ; TTGTATCGGG ; luHisSerPr	TTCCAACAAT AAGGTTGTTA aSerAsnAsn	AAACCAGGAA TTTGGTCCTT LysProGlyT	GGAGTGACAT CCTCACTGTA rpserAspil	GCTGATTGTC CGACTAACAG lLeulleval	GCTGAGGACA CGACTCCTGT AlaGluAspA	CAGGTGTCAC GTCCACAGTG hrGlyvalth	TGCTGACCCC ACGACTGGGG yAlaAspPro
GGGAGCGCAG CCCTCGCGTC	GCTCCCTAC CGCAGGGATG	GGTCCACAAG CCAGGTGTTC GyalHisLys	A CAGCAATGGG F GTCGTTACCC F GlnGlnTrpG	r acaccaarge x rgrggrracg r yrrhrasnal	TACACTGC TACACTCACG	r TGTACGCCCT A ACATGCGGGA CysThrProT	TGGTGGCTGT ACCACCGACA euValAlaVa	AGGCCTGGG TCCCGGACCC GGlyProGly	GCAGATTTGA CGTCTAAACT AlaaspleuT	CAGCAAATGG GTCGTTTACC
C TCCGAATCCC S AGGCTTAGGG h rProAsnPro	s egccgaggag c ccgcrccrc y glyargglya	C CTCGGCTCCG G GAGCCGAGGC P roargleuar	c AATTGGCACA 5 TTAACCGTGT 8 rileGlyThr	GGTGTGGGTT CCACACCCAA GlyvalGlyT	A GGAACACAGC F CCTTGTGTCG A rgAsnThral	A GGTCAAGGAT F CCAGTTCCTA / SValLysAsp	CCGTTGCTGT GGGACA	GTCTCCTACG CAGAGGATGC Hybeubeuar	ccassasccs; sercerccscccccccccccccccccccccccccccccc	CTGCTGGTTC GACGACCAAG
c rescaereac s accercacre L eualavalth	c acgagggggg s TGCTCCGCC r oargGlyGly	s caaccaccc c ctrcccrcc g clualaserP	C ATGATCAATC S TACTAGTTAG H isAspGlnSe	s GTGCACAGAG C CACGTGTCTC r gCysThrGlu	c Accacgacca s restectes s thribriba	GGATGGTCAA CCTACCAGTT JyMetvalLy	TTTGGTTGTT AAACCAACAA LLEUVAlVA	TGGCGCTTGG; ACCGCGACC; TrpArgleuG	: AAATGGAAAG : TTTACCTTTC : lnMetGluse	GAGGAGGAGG CTCCTCCTCC nArgargarg
A GGTGCCTTCC T CCACGCAAGG U GlyAlaPheL	A GGATTGAACC F CCTAACTTGG A rgileGluPr	s gccgcccccc c cgccccccc r gProAlaArg	C ATCAAACTTC S TAGTTTGAAG r IleLysLeuH	CCTGTAACCG GGACATTGGC	a AAGTCCCTGC TTCAGGGACG	; TGCCCCAGAG ; ACGGGGTCTC ; CysProArgG	TGGTTGTGAC ACCAACACTG euValValTh	GGTGTGTTTC CCACACAAAG GValCysPhe	TCTGAGCAGC AGACTCGTCG SerGluGlnG	AAGGGTCTCA TTCCCAGAGT luGlySerGl
s AGTACATCTA C TCATGTAGAT r gValHisLeu	r TCCGCGGGA A AGGCGCCCT r SerAlaGlyA	CAGGACCCAG GTCCTGGGTC ProGlyProAr	S AGCTGCAACC F TCGACGTTGG F TAlaAlaThr	A CGTCCTGGAG F GCAGGACCTC ARGPROGLYA	; AAGAAGAGAG; TTCTTCTC; luGluGluAr	CAGCACAGGG; GTCGTGTCCC	TGGGTGATTT ACCCACTAAA TrpValileL	GCATGGACAG CGTACCTGTC YSMetAspAr	CACTTTCGTC GTGAAAGCAG rThrPheVal	GCAGAAGCTG CGTCTTCGAC AlaGluAlaG
c caccagctag s grggrcarc P roProalaar	r Gregescrer	A GGGGGGGCCC F CCCGCGGGGGGGGGGGGGGGGGGGG	TACCTAGCTC TATGGATCGAG	A TAGATCAGAA F ATCTAGTCTT i sargserglu	r AAATCAGATG TTTAGTCTAC LysseraspG	GCCGGAAGTG GGGCCTTCAC SysArgLysCy	ACATAATATA TGTATTATAT YHisAsn <u>ile</u>	GACCCCAAGT CTGGGGTTCA ASPProLySC	ACTCGCTGTC TGAGCGACAG spserLeuse	GCTGGGACCG CGACCTGGC uLeuGlyPro
1 ATGGCGCCAC TACCGCGGTG 1 MetAlaProP	CCAGCAAAGT GGTCGTTTCA SerLysva	. GGCCCGGGCA CCGGGCCCGT	CTGCAGGTCG GACGTCCAGC LeuGlnValV	CAGGATCTCA GTCCTAGAGT GlySerHi	TACAGCTIGT ATGICGACA Thralacys	GCTGAGATGT CGACTCTACA AlaGluMetC	CAGGCAATGG GTCCGTTACC GlyAsnGl	TTGTGGAGGG AACACCTCCC CYSG1YG1Y	AGCAACGCAG TCGTTGCGTC SerAsnAlaA	CACAGTGTCT GTGTCACAGA GlnCysle
., 17	101	201	301	401	501	601	701	801	301	1001

regr	VCC.	аС1у	
CAGAGC	3TCTCC.	largal	
1101 CITICACAAG TITGCAAACA TUGTUGUTTI TGAUTUTTIGG GACCAGCICA TGAGGCAGGI GGACCICAGG AAAAATGAGA TCGAIGIGT	GAAACTGITC AAACGITIGI AGGAGGGAA ACTEGGAGG CIGGICGAGT ACTECGIGGA CCTGGAGTGG TETTERCTCT AGGIAGACCA GICTGGAGGA	PERTURE ASPGINDENM et.ArgGIND UASPLeuThr DysAsnGluI leAspValVa lArgAlaGly	
AAAAATGAGA	THEFTER	LysAsnGluI	
GGACCTCACG	CCTGGAGTGC	uAspLeuThr	
TGAGGCAGCT	ACTCCGTCGA	etArgGlnLe	
GACCAGCTCA	CTGGTCGAGT	AspGlnLeuM	
TGACTCCTGG	ACTIONORAGE	eAspserTrp	
Tegrecett	AGCACGCCAA	levalreoPh	
TTTGCAAACA	AAACGTTTGT	368 PheAspLys PheAlaAsnI leValProPh eAsp	
CTTTGACAAG	GAAACTGTTC	PheAspLys	
1101		368	

401 ThralaglyP roglyAspAl aLeuTyrAla MetLeuMetL ysTrpValAs nLysThrGly ArgAsnAlaS erIleHisTh rLeuLeuAsp AlaLeuGluArg 1201 ACAGCAGGCC CAGGGGATGC CTTGTATGCA ATGCTGATGA AATGGGTCAA CAAAACTGGA GGGAAGGCCT GGATGCACAC CCTGCTGGAT GCCTTGGAGA TGTCGTCCGG GTCCCCTACG GAACATACGT TACCCAGTT GTTTTGACCT GCCTTGCGGA GCTAGGTGTG GGACGACCTA CGGAACCTCT

MetGluGl uArgHisAla LysGluLysI leGlnAspLe uLeuValAsp SerGlyLysP helleTyrLe uGluAspGly ThrGlySerA laValSerLeu 1301 GGATGGAAGA GAGACATGCA AAAGAGAAGA TTCAGGACCT CTTGGTGGAC TCTGGAAAGT TCATCTACTT AGAAGATGGC ACAGGCTCTG CCGTGTCCTT CCTACCTICT CICTGTAGGT ITTCICTTCT AAGTCCTGGA GAACCACCTG AGACCTTTCA AGTAGATGAA TCTTCTACCG TGTCCGAGAC GGCACAGGAA 435

1401 GGAGTGA

CCTCACT

Fig. 1 (cont.)

10² FL1-H 103

Fig. 2

Fig. 3

Fig.4

Fig. 5

Fig. 6

Affinities of Apo2Rs and mAbs

Affinity (pM)	82	25.52	20
	to Apo2L to Apo2Ľ	to DR4-IgG to to	to DR5-IgG to
	DH4-IgG DR5-IgG	mAb 4E7 mAb 4H6 mAb 5G11	mAb 3F11 mAb 3H3

AffinIties were determined using KinExA

Fig. 7

Apoptosi of 9D c lis by anti-DR4 mAbs plus compl ments or goat anti-mous lg-FC

Fig. 8A

Apoptosis of anti DR4 mAbs plus goat anti FcAb

Apoptosis induced by anti DR4 mAbs plus Complements

Effect of anti DR4 MAb with complement on HCT 116

Fig. 12

Mean tumor volume (mm3)

Tumor Weight (mmg)

General Characteristics of Anti-DR4 mAbs

y DCR2	ı	ı	ı	-/ +	•	•	•	•
reactivit DCR1			•	•	•		•	ŧ
Cross DR5		•	ı	+	•	+	+	‡
DR4	ŧ	‡	‡	‡.	‡	‡	‡	‡
Block	2	2	ı		1	+	•	N
Apop + C		2	2	•	+	•	2	+
Apop + &Fc	1	+	•	+	+	+	+	+
Apop w/o L			•	‡	‡	‡		
Kd-1 (pM)				0		വ		22
Isotype	lgG2a	IgG1	lgG1	IgG1	lgG2a	<u>laa</u> 1	<u>la</u> 61	lgG2b
	1H5.24.9	1H8.17.5	3G1.17.2	4E7.24.3	4G7.18.8	4H6.17.8	4G10.20.6	5G11.17.1

w/o L: The apoptotic ability of mAbs by themselves was detected on 9D cells, skmes cells, HCT116 and colo 205 + &FC: The apoptotic ability of mAbs was determined in combination with goat anti-mouse IgG FC. + C': The apoptotic ability of mAbs was determined in the presence of rabbit complement Degrees of binding (+) to DR5 by Mabs 4E7 and 4H6 at 10 ug/ml are 15% of the binding to DR4. All these mAbs recognize DR4 on 9D cells and immune precipitate DR4-lgG.

Fig. 17

< 4H6ApDR1

< 4H6 Anti DR4, Murine variable, Human kappaconstant

ELEMENT: Component (start: 1557/1559; end: 5390/5390)

< length: 702

929 AT GGGATGGTCA TGTATCATCC TTTTTCTAGT AGCAACTGCA

TA CCCTACCAGT ACATAGTAGG AAAAAGATCA TCGTTGACGT

1M G W S C I I L F L .
^Signal Sequence

971 ACTGGAGTAC ATTCAGATAT CCAGATGACA CAGACTACAT CCTCCCTGTC TGACCTCATG TAAGTCTATA GGTCTACTGT GTCTGATGTA GGAGGGACAG

^D is first amino acid of variable FRI TGCCTCTCTG GGAGACAGAG TCACCATCAG TTGCAGGGCA AGTCAGGACA CCICIGICIC AGIGGIAGIC AACGICCCGI ICAGICCIGI œ, ACGGAGAGAC 32

1071 TTAGCAATTA TTTAAACTGG TATCAGCGGA AACCAGATGG AACTGTTAAA AATCGTTAAT AAATTTGACC ATAGTCGCCT TTGGTCTACC TTGACAATTT adri FRI 49

CICCIGAICI ACIACACAIC ACGAITACAC ICAGGAGICC CAICACGGII FRZ CDRI 1121

TGATGTGTAG TGCTAATGTG AGTCCTCAGG GTAGTGCCAA > ტ 二 ᆸ GORZ SAGGACTAGA L I 65

AGCAACCTGG TCGTTGGACC S N L E	TACGCTTCCA ATGCGAAGGT T L P	33	CCGTGGCTGC GGCACCGACG V A A	CHI	AAATCTGGAA TTTAGACCTT K S G T)	AGAGGCCAAA TCTCCGGTTT E A K			O E S	AGCAGCACCC		ACAAAGTCTA CGCCTGCGAA
TCTCACCATT AGAGTGGTAA L T I	AACAGGGTAA TTGTCCCATT Q G N	CDR3	CTAACTCGGA GATTGAGCCT L T R T	į	TGAGCAGTTG ACTCGTCAAC F O L	×	TCTATCCCAG AGATAGGGTC Y P R	E	AGCCCATTGA	ω Ω Ν	CTACAGCCTC	Y S L	ACAAAGTCTA
CAGATTATTC GTCTAATAAG D Y S	FR3 TACTTTTGCC ATGAAAACGG Y F C Q		CAAGCTGGAA GTTCGACCTT K L E		CGCCATCTGA GCGGTAGACT	,	CHI CTGAATAACT GACTTATTGA L N N F	-±000	GCGGGAGGTT	A L Q		Iccidicate D S T	CH! TACGAGAAAC
GGGTCTGGAA CCCAGACCTT G S G T	TATTGCCACT ATAACGGTGA I A T	FR3	GCTCGGCCAC CGAGCCGGTG S A T	F84	TTCATCTTCC AAGTAGAAGG	7 7	TGTGTGCCTG ACACACGGAC V C L		AGGTGGATAA TCCACCTATT	N Q A .		GICCIGICGI Q D S K	CAAAGCAGAC
CAGTGGCAGT GTCACCGTCA S G S	AACAAGAAGA TTGTTCTTCT Q E D		TTCACGTTCG AAGTGCAAGC F T F G	cor3	ACCATCTGTC TGGTAGACAG	٥	CTGCCTCTGT GACGGAGACA A S V		GTACAGTGGA	V Q W K	TGTCACAGAG	ACAGTGTCTC V T E	TGACGCTGAG
1171	1221		1271		1321	132	1371		1421	165	1471	182	1521

Fig. 18C

GICACCCATC AGGGCCTGAG CICGCCCGTC ACAAAGAGCT TCAACAGGGG CAGTGGGTAG TCCCGGACTC GAGCGGGCAG TGTTTCTCGA AGTTGTCCCC ACTGCGACTC GITICGICIG AIGCICITIG IGITICAGAI GCGGACGCII N R G Ø × S P V × U H J S C C Ø 1621 AGAGTGTTAA TCTCACAATT O U Ш V T H 199 1571 215 232

- < humanized MaE11 version 1 HEAVY CHAIN</p>
- < 4H6 Anti DR4, murine variable, Human IgG1 heavy constant
- < 4H6Amonomer
- length: 1431
- 930 A IGGGAIGGIC AIGIAICAIC CITITICIAG IAGCAACIGC I ACCCIACCAG IACAIAGIAG GAAAAAGAIC AICGIIGACG
 - M G W S C I I L F L V A T
 - ^ signal sequence
- ^E is amino acid 1 of variable heavy E S G ഗ

FR.

1021 IGGCGCCCTC ACAGAGCCTG ICCAICACTT GCACTGICTC IGGGITITCA ACCGCGGGAG IGICICGGAC AGGIAGIGAA CGIGACAGAG ACCCAAAAGI T V S SITC N N

FRI

- GACCCAAGCG GICGGAGGIC CITICCCAGA 1071 TTAACCAGCT ATGGTGTACA CTGGGTTCGC CAGCCTCCAG GAAAGGGTCT Д AATTGGTCGA TACCACATGT > ♂ CDRI 48
- GGAGTGGCTG GGAGTAATAT GGGCTGTTGG AAGCACAAAT TATAATTCGG CCICACCGAC CCICATIAIA CCCGACAACC IICGIGIIIA AIAIIAAGCC A V G G V I W Z Z 1121 65
- 1171 CTCTCATGTC CAGACTGAGC ATCAGCAAAG ACAACTCCAA GAGCCAAGTT

Fig. 18D

CTCGGTTCAA S Q V	TGTACTACTG ACATGATGAC Y Y C	CTATCTTACC GATAGAATGG L S Y H	CTCCTCAGCC GAGGAGTCGG S S A	GHI	CCAAGAGCAC GGTTCTCGTG K S T		TACTTCCCG ATGAAGGGGC Y F P E	CGGCGTGCAC GCCGCACGTG G V H
CTCG		CTAT GATA L S						*
TGTTGAGGTT N S K	GACACAGCCA CIGIGICGGI D I A M	TAGTAGTCTC ATCATCAGAG S S L	CAGTCACCGT GTCAGTGGCA V T V		GCACCCTCCT CGTGGGAGGA A P S S		GGTCAAGGAC CCAGTTCCTG V K D	CCCTGACCAG GGGACTGGTC L T S
TAGTCGTTTC I S K D	GCAAACTGAT GACACGGCCA CGTTTGACTA CTGTGTCGGT Q T D D T A M	ATTACTACGG TAATGATGCC Y Y G COR3	CAAGGAACCT CAGTCACCGT GTTCCTTGGA GTCAGTGGCA Q G T S V T V	FR4	CTTCCCCCTG GAAGGGGGAC F P L	0 H I	TGGGCTGCCT ACCCGACGGA G C L	AACTCAGGCG CCCTGACCAG TTGAGTCCGC GGGACTGGTC N S G A L T S
GAGAGTACAG GTCTGACTCG TAGTCGTTTC TGTTGAGGTT L M S R L S I S K D N S K CDR2	TGAACAGTCT ACTTGTCAGA N S L	TGCCAGAGAG GGGGAATTCG ATTACTACGG ACGGTCTCTC CCCTTAAGC TAATGATGCC A E G E F D Y Y G FR3	CTTCTGGGGT GAAGACCCCA F W G		GCCCATCGGT CGGGTAGCCA P S V		CTCTGGGGGC ACAGCGGCCC GAGACCCCCG TGTCGCCGGG	D E S
GAGAGTACAG L M S CDR2	TTCTTAAAAA AAGAATTTT F L K M	TGCCAGAGAG ACGGTCTCTC A R E FR3	ATTCTATGAA TAAGATACTT S M N	CDR3	AAAACGACGG TTTTGCTGCC K T T G		CTCTGGGGGC GAGACCCCCG	CCGGT GGCCA P V
8	1221	1271	1321		1371		1421	1471

CHI

Fig. 18F

0	TGGAAGGGCC	GACAGGATGT	CAGGAGTCCT	GAGATGAGGG	AGICGICGCA
1	-		72.	2	,
1571	GGTGACTGTG	CCCTCTAGCA	GCTTGGGCAC	CCAGACCTAC	ATCTGCAACG
	CCACTGACAC	GGGAGATCGT	CGAACCCGTG	GGTCTGGATG	TAGACGTTGC
215	V T V	P S S	L G T	O T Y	I C N V
			CHI		
1621	TGAATCACAA	GCCCAGCAAC	ACCAAGGTGG	ACAAGAAAGT	TGAGCCCAAA
	ACTIAGIGIT	CGGGTCGTTG	TGGTTCCACC	TGTTCTTTCA	ACTCGGGTTT
232	N H K	D N	T K V D	K K V	E P K
			1#2		
1671	TCTTGTGACA	AAACTCACAC	ATGCCCACCG	TGCCCAGCAC	CIGAACICCI
	AGAACACTGT	TTTGAGTGTG	TACGGGTGGC	ACGGGTCGTG	GACTTGAGGA
248	SCDK	T H T	О Ч	C P A P	ы П
			CHI		
1721	GGGGGGACCG	TCAGTCTTCC	TCTTCCCCC	AAAACCCAAG	GACACCCTCA
	CCCCCTGGC	AGTCAGAAGG	AGAAGGGGGG	TTTTGGGTTC	CTGTGGGAGT
265	ტ ტ	S V F L	면 면	K P K	DTLM
			CH2		
1771	TGATCTCCCG	GACCCCTGAG	GTCACATGCG	TGGTGGTGGA	CGTGAGCCAC
	ACTAGAGGGC	CTGGGGACTC	CAGTGTACGC	ACCACCACCT	GCACTCGGTG
282	I S R	T P E	VTCV	V V D	V S H
			CHZ		
1821	GAAGACCCTG	AGGTCAAGTT	CAACTGGTAC	GTGGACGGCG	TGGAGGTGCA
	CTTCTGGGAC	TCCAGTTCAA	GTTGACCATG	CACCTGCCGC	ACCTCCACGT
298	E D P E	V K F	N W Y	V D G V	E V H
			CH2		
1871	TAATGCCAAG	ACAAAGCCGC	GGGAGGAGCA	GTACAACAGC	ACGTACCGGG
	ATTACGGTTC	TGTTTCGGCG	CCCTCCTCGT	CATGTTGTCG	TGCATGGCCC
315	N A K	T N P R	ы ы	X N N	T Y R V

EH2

Fig. 186

GAG CTC E	AAC TTG	TGC ACG	CTG	ACC G	ACG	CAG
TGGCAAGGAG ACCGTTCCTC G K E	TCGAGAAAAC AGCTCTTTTG E K T	TACACCCTGC ATGTGGGACG Y T L P	GACCTGCCTG CTGGACGGAC T C L	AGAGCAATGG TCTCGTTACC S N G	GACTCCGACG CTGAGGCTGC D S D G	CAGGTGGCAG GTCCACCGTC R W Q
ACTGGCTGAA TGACCGACTT W L N	CCAGCCCCCA GGTCGGGGGT P A P I	A ACCACAGGIG TGGIGICCAC P Q V	AGGTCAGCCT TCCAGTCGGA V S L	CGACATCGCC GTGGAGTGGG AGAGCAATGG GCTGTAGCGG CACCTCACCC TCTCGTTACC D I A V E W E S N G	TCCCGTGCTG AGGCACGAC P V L	TGGACAAGAG ACCTGTTCTC D K S
CTGCACCAGG ACTGGCTGAA GACGTGGTCC TGACCGACTT L H Q D W L N C H L	CAAAGCCCTC GTTTCGGGAG K A L	AGCCCCGAGA TCGGGGCTCT P R E	ACCAAGAACC TGGTTCTTGG T K N C	CGACATCGCC GCTGTAGCGG D I A	AGACCACGCC TCTGGTGCGG T T P	AAGCTCACCG TTCGAGTGGC K L T V
CCTCACCGTC GGAGTGGCAG L T V	AGGTCTCCAA TCCAGAGGTT V S N	CATCTCCAAA GCCAAAGGGC AGCCCCGAGA GTAGAGGTTT CGGTTTCCCG TCGGGGCTCT I S K A K G Q P R E	GGAAGAGATG CCTTCTCTAC E E M	TCTATCCCAG AGATAGGGTC Y P S	AACAACTACA TTGTTGATGT N N Y K	CCTCTACAGC GGAGATGTCG L Y S
TGGTCAGCGT ACCAGTCGCA V S V	TACAAGTGCA ATGTTCACGT Y K C K	CATCTCCAAA GTAGAGGTTT I S K	CCCCATCCGG GGGGTAGGGC	GTCAAAGGCT CAGTITCCGA V K G F	GCAGCCGGAG CGTCGGCCTC Q P E	GCTCCTTCTT CGAGGAAGAA S F F
1921	1971	2021	2071	2121	2171	2221

2271 CAGGGGAACG TCTTCTCATG CTCCGTGATG CATGAGGCTC TGCACAACCA GTCCCCTTGC AGAAGAGTAC GAGGCACTAC GTACTCCGAG ACGTGTTGGT

피					
z					
н					
448 Q G N V F S C S V M H E A L H N H		GGGTAAATGA	CCCATTTACT	0	
ď		AAA	LTJ	~	
囝		3TZ	CAI	124	
出		G G	ŭ	ប	
Σ		CCCTGTCTCC	GGGACAGAGG	ርሳ	
>	CH3	GTC	ACAG	ഗ	
ഗ	Ü	CCCI	GGG7	YTQKSLSLSPGKO	CH3
U		CT	1GA	ഗ	2
ഗ		AAGAGCCTCT	TTCTCGGAGA	Ы	
[14		GAC	CI	ഗ	
			ŢŢ	×	
>		CTACACGCAG	GATGTGCGTC	α	
Z		CG	g	<u></u>	
U		4CA	ıGT	⊢	
O		CI	GA.	×	
448		2321		465	

SKMES

Concentration µg/ml

Fig. 19

Fig. 20

Comparison of the in vivo efficacy of Murine and Chimera 4H6

Fig. 21