Answers prepared by Leong Yee Pak

Current of Electricity

19.1 Electric current

19.2 Potential difference

- **1 June 03 P1 Q29 B p.d. V = energy transferred per unit charge = W/Q
- ***2 June 03 P1 Q30 C Charge = (average I) x t OR charge = area under the graph I-t
- *3 Nov 03 P1 Q29 B p.d. = energy transferred per unit charge = W/Q
- ***4 Nov 03 P1 Q30 D Current I = Q/t. I = Ne/t. Hence N = It/e = 2.0 x (1 x 60 x 60) / e
- **5 June 04 P1 Q32 B Potential difference = energy transferred per unit charge. V = W/Q
- **6 June 04 P1 Q34 A Energy = VIT. 12 = 20 I x 15
- *7 Nov 04 P1 Q31 C Potential difference = energy transferred per unit charge. Divide top and bottom by time. Energy per unit time = power, and charge per unit time = current
- **8 Nov 04 P1 Q32 B Use the formula, power $P = I^2R$
- **9 June 05 P1 Q32 C $I = \frac{Q}{t}$, $I = \frac{Ne}{t}$. Hence $\frac{N}{t} = \frac{I}{e}$
- **10 June 06 P1 Q31 C Refer to June 05 P1 Q32 C $I = \frac{Q}{t}$, $I = \frac{Ne}{t}$. Hence $\frac{N}{t} = \frac{I}{e}$
- ***11 Nov 06 P1 Q31 A $I = \frac{Q}{t}$. For 1 rotation, Charge = 4Q. For N rotation, charge = 4QN.

Hence
$$I = \frac{4QN}{t} = 4Qf$$

- **12 June 07 P1 Q32 A Charge Q = It
- *13 Nov 07 P1 Q28 B potential difference = energy transferred per unit charge from electrical energy to non-electrical energy
- **14 Nov 07 P1 Q29 D Power = V^2 / R . Form 2 equations.

$$P = 12^2 / R_x$$
(1) and $6^2 / R_y$ (2)

Equating and solve:

**15 June 08 P1 Q32 B Use power $P = I^2R$. For cable X, $P_X = I^2R$. For cable Y, $P_Y = (\frac{1}{2}I)^2$ (2R). Take ratio

- **16 June 08 P1 Q33 A Uses energy W = VQ. V = 12 / 100 = 0.12 V
- **17 June 08 P1 Q35 C Use $W = VQ = 12 \times 4 = 48 \text{ J}$ and Q = It. 4 = 2 t
- **18 Nov 08 P1 Q34 D For each time the starter motor run, charge supply $Q = It = 200 \times 2.0 = 400$ C. Hence number of times the motor run = $(100 \times 10^3) / 400 = 250$
- **19 June 09 P1 Q30 A I = Q/t

Section B

1 Nov 03 P2 Q7 (a)(i) use P = VI

(ii) use
$$P = V^2 / R$$
 or $V = IR$

- **(b)(i)** Apply V = IR, $V = 5.0 \times 4.0 = 20 V$
 - (ii) Total V = 20 + 240
 - (iii) Use $P = I^2 R = 5.0^2 x 4.0 = 100 W$ OR P = VI = 20 x 5 = 100 W
- (c) Power dissipated at heater = $1.2 \times 10^3 \text{ W}$.

Power input from supply = $VI = 260 \times 5 = 1300 \text{ W}$.

Efficiency = 1200 / 1300 = 0.923

- 2 Nov 07 P2 Q6 (a) Use P = VI. $10.5 \times 10^3 = 230 I$. I = 45.7 A
 - **(b)(i)** p.d. drop across cable = 230 225 = 5 V. Use V = IR. 5 = 46 R. Max R = 0.109 Ω
 - (ii) Use formula R = $\frac{\rho L}{A}$ and substitute values. Take note the L = 2 x 16 m = 32 m
 - (c) (i) power = V^2/R . power $\propto V^2$. Ratio of power = $210^2 / 230^2$
- (ii) For smaller cross-sectional area of the cable, resistance is higher. Heat dissipated per second $\propto R$. For the same current flow but with a higher resistance, heat per second dissipated in the cable is high. This may cause fire hazard.

19.3 Resistance and resistivity

19.4 Sources of electromotive force

- *1 June 02 P1 Q30 B
- **2 June 02 P1 Q31 C e.m.f. = energy per unit charge supplied to the whole circuit. E.m.f. = W/Q = E/Q. Current = rate of charge flow = Q/t
- *3 Nov 02 P1 Q30 C resistance = ratio of V to I. R = V/I
- **4 Nov 02 P1 Q32 A R = V/I. At V = +1.0 V, $R = 1.0 / 50 \text{ x } 10^{-3}$; at V = -1.0 V, R = -1.0 / 0
- **5 June 03 P1 Q32 B terminal p.d. = p.d. across the external resistor. Apply V = IR to 15 ohm resistor. 7.5 = I x 15
- **6 June 04 P1 Q31 D $R = \frac{\rho l}{A}$. Hence $\frac{V}{I} = \frac{\rho l}{A}$. Area of cross-section for P = 4 times area of cross-section for Q. Form 2 equations and solve.
- **7 June 04 P1 Q33 C
- ** 8 June 04 P1 Q35 D Apply Ohm's law: V = IR
- **9 Nov 04 P1 Q34 C When V increases, the increase in I causes heat dissipated at the thermistor. Temperature rises and the resistance of the thermistor decreases. This in turn causes a higher proportion of current to flow.
- **10 June 05 P1 Q33 D Apply $R = \frac{\rho l}{A}$. When *l* increases 2 times, *A* decreases 2 times. Hence *R* increases 4 times.
- **11 June 05 P1 Q34 D Power P = VI. For the same I, $P \propto V$. Since V or P = 2.0 V and V or Q = 4.0, power dissipated at Q = 2 times power dissipated at P.
- *12 Nov 05 P1 O32 B
- *13 Nov 05 P1 Q33 D R ∞l and R $\infty 1/A$
- ***14 Nov 05 P1 Q34 C Nov 05 P1 Q34 C R = V/I. Ratio of V to I at C is the smallest.
- **15 June 06 P1 Q32 B
- ***16 June 06 P1 O34 C Apply E = I(R + r). 12 = I(3.0 + 1.0). I = 4.0 A.

Apply
$$W = I^2 R = 4^2 x 3 = 48 W$$

- *17 Nov 06 P1 Q32 D As temperature of filament lamp increases, its resistance increases. Hence, as V increases, I increases with a smaller proportion. Ratio of V to I increases.
- ***18 Nov 06 P1 Q33 B
- *19 June 07 P1 Q31 D

**20 June 07 P1 Q35 C e.m.f. = energy per unit charge supplied by cell to the whole circuit. Current = charge flow per unit time.

***21 June 07 P1 Q36 C Terminal p.d. = e.m.f. – p.d. across internal resistance. = p.d. across external resistance

p.d. across external resistor = $\frac{4}{6}$ x 3.0. Output power = power dissipated at 4.0 Ω = V^2 / R =

***22 June 07 P1 Q37 C Second wire: area reduced 7 times. Resistance of each length increases 7 times. 7 lengths connected in parallel, effective R reduced 7 times.

**23 Nov 07 P1 Q30 D Apply V = IR to find the current. Then use Q = It to find the charge.

*24 Nov 08 P1 Q33 B As V increases, heat dissipated increases. Temperature increases and resistance increases. The increase in I is proportionally smaller than that of V.

**25 June 09 P1 Q31 D Apply W = VQ

*26 June 09 P1Q32 A

Section B

1 June 03 P2 Q5 (a)(i) Apply R = V/I $R = 6/40 \times 10^{-3} = 150 \text{ ohm}$

(ii) Find R at V = 8.0 V. $R = 8/50 \text{x} 10^{-3} = 160 \text{ ohm}$. Find the difference =

(b)(i) Apply R = V/I. Select $V = 10 \ V$, $200 = 10 \ / \ I$. $I = 50 \ mA$. Plot the straight line graph from origin (0, 0) joining (10, 50)

(ii) Lamp operates normally at 6.0 V. At 6 V, current = 40 mA. Draw a horizontal line at I = 40 mA. Read off p.d. across R for current flow =40 mA. Sum up p.d. across lamp and p.d. across R

2 Nov 03 P2 Q7

- 4 Nov 04 P2 Q6 (a)(i) Resistance. Reason: for an increase in V, there is larger proportion increase in I.
 - (ii) Resistance $R = V/I = 4.0 / 2.0 \times 10^{-3} = 2000 \text{ ohm}$
- **(b)(i)** If V = 6.0 V, $6.0 = I \times 1500$. I = 4 mA. For temperature, $I \propto V$. Hence graph is a straight line passing through the origin. Draw a straight line passing through (0, 0) and (6, 4)
- (ii) Resistor R and component C are connected in parallel. Hence the p.d. across them are the same. At V = 2.0 V, draw a vertical straight line to cut both lines. Read off the current I_R in resistor and the current I_C in component C. Current supplied by battery $I_R + I_C$
- (c) For series connection, the currents passing through both components are the same. Imagine that you to draw a line vertically upwards at V=7.0~V, resistance for component C is larger than resistance for resistor. Apply heat dissipated per second = I^2R . For the same I, and $R_C > R_R$. Hence heat dissipated at C is larger.

- 5 June 05 P2 Q7 (a) Resistance = ratio of p.d. to the current flow
 - **(b) (i) 1.** $\max P = 1.13 \text{ W}$

2.
$$V = 1.5 V$$

- (ii) Use formula $P = V^2/R$. $1.13 = 1.5^2/R$. R = 1.99 ohm
- (iii) Apply V= IR. I = 0.7538 A. p.d. across internal resistance = 3.0 1.5 = 1.5 V. Apply V = Ir and find r.
- OR Since current passing through R = current passing through the internal resistor, and p.d. across them are equal, their resistance are equal. Hence internal resistance = 1.99 ohm.
- (c) p.d. across the internal resistance = $3.00 V_R$. When p.d. across R is higher, p.d. across internal resistance is lower and vice versa. Power $P = V^2 / r$. For P less, V_r is less. Hence p.d. across R is higher, which is 1.9 V.
- 6 Nov 06 P2 Q6 (a)(i) $R = \frac{\rho L}{A}$

(ii)
$$R = \frac{\rho L}{4}$$
(1)

(ii)
$$R = \frac{\rho L}{A}$$
(1)
For A constant, $\Delta R = \frac{\rho}{A} \Delta L$ (2)

Equation (2) divided by (1):
$$\frac{\Delta R}{R} = \frac{\Delta L}{L} = \text{strain}, \, \epsilon$$

(b) Young Modulus E = stress / strain.
$$E = \frac{F}{A \varepsilon} \frac{1}{\varepsilon}$$
 . $\varepsilon = \frac{F}{AE} = \frac{F}{AE}$

Substitute into equation in (a)(ii) above, $\frac{\Delta R}{R} = \varepsilon$

7 June 07 P2 Q6 (a)(i) 1. Total $R = 0.10 + 0.060 = 0.160 \Omega$

2. Total e.m.f. =
$$14 - E$$

(ii) Apply
$$E = IR OR Kirchhoff's 2^{nd} law: (14 - E) = 42 x 0.160. E = 7.28 V$$

- **(b) (i)** Charge $Q = It = 12.5 \times (4.0 \times 60 \times 60) = 180000 \text{ C}$
 - (ii) Energy supplied by charger = $VQ = 14 \times 180000 \text{ J} = 2.52 \times 10^6 \text{ J}$
 - (iii) Energy dissipated in resistance = I^2Rt . Total energy dissipated in the internal resistance = $12.5^2 \times 0.160 \times (4.0 \times 60 \times 60) = 3.60 \times 10^5 \text{ J}$
- (c) Energy stored in battery = energy supplied by charger energy dissipated at the internal resistance. Efficiency = (energy stored in battery / energy supplied by charger) x 100%