本課程為教育部109年度智慧聯網技術課程推廣計畫之補助課程 教材內容也自教育部智慧聯網技術重點模組(人工智慧視覺感知運算系統模組)教材改編

人工智慧視覺運算方法

謝東佑

可測及可靠系統實驗室

(Testable And Reliable Systems Lab., TARS)

國立中山大學電機系

Office: エEC-7038

07-5252000 Ext. 4114

tyhsieh@mail.ee.nsysu.edu.tw

Keep feet on the ground

DPAML

Unit1-1

Al vs Machine Learning vs Deep Learning

- AI: 模擬人類智慧
 - 結果有智慧就算
 - 一個擁有非常詳盡的 rule-based 系統 也可以是 AI
- Machine learning是達成 AI 的一種方法
 - 從資料當中學習出 rules
 - 找到一個夠好的 function 能解決特定的問題
- Deep learning 是machine learning的
 - 一種
 - 從feature engineering 走向architecture engineering
 - 不再人工萃取特徵
 - 深層網路萃取更抽象特徵

Deep Learning v.s. Feature Engineering

Raw data: pixel grid

Better	{x1: 0.7,	{x1: 0.0,
features:	y1: 0.7}	y2: 1.0}
clock hands'	{x2: 0.5,	{x2: -0.38
coordinates	v2: 0.0}	2: 0.32}

Even better features: angles of clock hands theta1: 45 theta2: 0 theta1: 90 theta2: 140

- 讓機器看時鐘報時
- 直接看圖
 - 要用CNN才行
 - 需要大量資料
- 放點工人智慧
 - 用指針座標
 - 簡單的ML就可以
 - 少量資料就可以
- 更多工人智慧
 - 用指針角度(像人看時鐘 一樣)
 - 連ML都不用,查表就可 以

對DL來講,好的特徵可以幫助你用較少資源與資料, 資料最少

反過來,若你的資料資源很少,你會需要比較好的特徵(aka.更多工人智慧)

DPAML Unit1-3 NSYSUEE-TYHSIEH

影像處理 (Image Processing)

- 改變影像內容/本質,以方便
 - 人眼辨識
 - 機器辨識

加強影線的邊緣線條,呈現更銳利的影像。見圖1.1

圖1.1 影像銳利化(a) 原始影像(b) 銳利化結果

讓人看得更清晰

去除影像的雜訊。見圖1.2

圖1.2 去除影像雜訊 (a) 原始影像 (b) 去除雜訊結果

© 2005年,新加坡商亞洲湯姆生國際出版有限公司版權所有。

讓人看得更清晰

去除影像的動態模糊現象。見圖1.3

圖 1.3 去除影像模糊現象 (a) 原始影像 (b) 去除模糊現象結果

© 2005年,新加坡商亞洲湯姆生國際出版有限公司版權所有。

讓機器方便看 (取得特徵)

取得影線邊緣線條,這個動作是為了測量影像中的物體。見圖1.4 (a與b)

圖1.4 取得影像邊緣線條 (a) 原始影像 (b) 物體邊緣線條

THOM:

DPAML

車牌辨識

Source: http://www.csie.chu.edu.tw/ezfiles/11/1011/bbs/22/bbs_119_1038141_85574.pdf

Unit1-8

NSYSUEE-TYHSIEH

Gartner Hype Cycle for Artificial Intelligence, 2019

gartner.com/SmarterWithGartner

AI VISUAL ALGORITHMS

DPAML Unit1-10 NSYSUEE-TYHSIEH

How Does A Computer Classify Pictures?

- A picture is only a group of pixels for a computer.
- Modern Al nets learn features of objects.

Images source: CC dataset

Object Classification

- Modern Al algorithms for object classification
 - AlexNet, 5 CNN layers and 3 FC layers, 2012
 - VGG, 16 CNN layers and 3 FC layers, 2014
 - GoogLenet, 21 CNN layers and 1 FC layer, 2014
 - ResNet, 151 CNN layers and 1 FC layer, 2015
- Foundation of object detection
- Limitation
 - One object in one picture, no localization NSYSUEE-TYHSIEH

DPAML

ILSVRC(IMAGENET Large Scale Visual Recognition Competition)

AlexNet

- CONV Layers: 5
- Fully Connected Layers: 3
- Weights: 61M
- MACs: 724M

DPAML Unit1-14 NSYSUEE-TYHSIEH

- CONV Layers: 16
- Fully Connected Layers: 3
- Weights: 138M
- MACs: 15.5G

GoogLenet

- CONV Layers: 21
- Fully Connected Layers: 1
- Weights: 7.0M
- MACs: 1.43G

ResNet

- Main idea
 - Residual layer
- CONV Layers: 151
- Fully Connected Layers: 1
- Weights: 25.5M

MACs: 3.9G

DPAML Unit1-17 NSYSUEE-TYHSIEH

Idea of CNN (Convolutional Neural Network)

Source: https://medium.com/jameslearningnote/資料分析-機器學習-第5-1講-捲積神經網絡介紹-convolutional-neural-network-4f8249d65d4f

DPAML Unit1-18 NSYSUEE-TYHSIEH

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	0	1
1	0	0
0	1	1

Input Image

Feature Detector Feature Map

卷積運算

Source: https://medium.com/jameslearningnote/資料分析-機器學習-第5-1講-捲積神經網絡介紹-convolutional-neural-network-4f8249d65d4f

DPAML Unit1-19 NSYSUEE-TYHSIEH

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	0	1
1	0	0
0	1	1

Input Image

Feature Detector

卷積運算

Feature Map

Source: https://medium.com/jameslearningnote/資料分析-機器學習-第5-1講-捲積神經網絡介紹-convolutional-neural-network-4f8249d65d4f

DPAML Unit1-20 NSYSUEE-TYHSIEH

16種不同的Feature Detector

Source: https://medium.com/jameslearningnote/資料分析-機器學習-第5-1講-捲積神經網絡介紹-convolutional-neural-network-4f8249d65d4f

利用Feature Detector萃取出物體的邊界

使用Relu函數去掉負值,更能淬煉出物體的形狀

Source: https://medium.com/jameslearningnote/資料分析-機器學習-第5-1講-捲積神經網絡介紹-convolutional-neural-network-4f8249d65d4f

DPAML Unit1-23 NSYSUEE-TYHSIEH

使用Relu函數去掉負值,更能淬煉出物體的形狀

DPAML Unit1-24 NSYSUEE-TYHSIEH

使用Relu函數去掉負值,更能淬煉出物體的形狀

DPAML Unit1-25 NSYSUEE-TYHSIEH

其他函數

Source: https://medium.com/jameslearningnote/資料分析-機器學習-第5-1講-捲積神經網絡介紹-convolutional-neural-network-4f8249d65d4f

DPAML Unit1-26 NSYSUEE-TYHSIEH

Pooling Layer 池化層

- Max Pooling
- 當圖片整個平移幾個Pixel的話對判斷上完全不會造成影響,以及有很好的抗雜訊功能

D Source: https://medium.com/jameslearningnote/資料分析-機器學習-第5-1講-捲積神經網絡介紹-convolutional-neural-network-4f8249d65d4f

Fully Connected Layer 全連

接層

將之前的結果平坦化之後接到最基本的神經網絡

Flattening

1	1	0
4	2	1
0	2	1

Pooled Feature Map

0 0

Source: https://medium.com/jameslearningnote/資料分析-機器學習-第5-1講-捲積神經網絡介紹-convolutional-neural-network-4f8249d65d4f

DPAML Unit1-28 NSYSUEE-TYHSIEH

Fully Connected Layer 全連

接層

將之前的結果平坦化之後接到最基本的神經網絡

Source: https://medium.com/jameslearningnote/資料分析-機器學習-第5-1講-捲積神經網絡介紹-convolutional-neural-network-4f8249d65d4f

DPAML Unit1-29 NSYSUEE-TYHSIEH

Fully Connected Layer 全連

接層

將之前的結果平坦化之後接到最基本的神經網絡

Source: https://medium.com/jameslearningnote/資料分析-機器學習-第5-1講-捲積神經網絡介紹-convolutional-neural-network-4f8249d65d4f

DPAML Unit1-30 NSYSUEE-TYHSIEH

Objection Localization

 Besides class, the computer needs to know the location of each object.

DPAML Unit1-31 NSYSUEE-TYHSIEH

Modern Al Algorithms for Object Detection

- RCNN (Region-based CNN), fast RCNN, faster RCNN
- YOLO (You Only Look Once)
- SSD (Single Shot Detection)

DPAML Unit1-32 NSYSUEE-TYHSIEH

Object Detection

- Two-stage object detection
 - Good detection accuracy but slow operation
 - Ex: Faster R-CNN

- One-stage object detection
 - Fast operation and acceptable detection accuracy
 - Ex: SSD, YOLO

NSYSUEE-CTHSU 33

RCNN (Region-Based CNN), Fast RCNN, Faster RCNN

Two-stage ways

Region proposal (SS)				
Feature extra (deep net)	action			
Classificati on (SVM)	(regression)			

Region proposal (SS)

Feature extraction, Classification, Rect. refine (deep net) Region proposal, Feature extraction, Classification, Rect. refine (deep net)

RCNN Slow in both training and testing

Fast-RCNN Few seconds per frame Faster-RCNN A dozen of fps on k40

DPAML Unit1-34 NSYSUEE-TYHSIEH

Two-Stage Ways

YOLO (YOU ONLY LOOK ONCE)

One-stage way

YOLO V3

SSD (Single Shot Detection)

- +Multi-scale feature maps
- FC layers

DPAML Unit1-38 NSYSUEE-TYHSIEH

Performance Evaluation Indexes

- TP, FP, TN, FN
- Precision, Recall
- mAP (mean Average Precision)

DPAML Unit1-39 NSYSUEE-TYHSIEH

TP, FP, TN, FN

TP: True Positive

FP: False Positive

TN: True Negative

FN: False

Negative

DPAML Unit1-40 NSYSUEE-TYHSIEH

Precision, Recall

mAP (mean Average Precision)

- AP: the average precision of precisions of different recalls
- mAP: the mean of APs of different kinds of objects

Important Parameters

- IoU (Intersection over Union)
 - 一般IoU>0.5時為預測成功
- Confidence threshold

$$IoU(A, B) = \frac{A \cap B}{A \cup B}$$

- Class: people
 - TP: 5
 - FP: 0
 - FN: 0
 - Precision: 5/5
 - Recall: 5/5

Class: people

• TP: 4

• FP: 0

• FN: 1

• Precision: 4/4

• Recall: 4/5

		Actual	
		Positive	Negative
Predictive	Positive	TP	FP
	Negative	FN	TN

$$\frac{TP}{TP+FP} = \frac{TP}{TP+FN}$$
Recall =
$$\frac{TP}{TP+FN}$$

Class: people

• TP: 5

• FP: 1

• FN: 0

• Precision: 5/6

• Recall: 5/5

		Actual	
		Positive	Negative
Predictive	Positive	TP	FP
	Negative	FN	TN

Precision =
$$\frac{TP}{TP+FP}$$
 Recall = $\frac{TP}{TP+FN}$

Assume

- Recall 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0
- Precision 0.70 0.74 0.78 0.82 0.85 0.89 0.93 0.96 0.98 0.99 1.00
- AP=(0.7+0.74+...+1)/11=0.88

$$mAP = \frac{\sum_{i=1}^{n} AP_i}{n}$$
 for n classes

DPAML Unit1-47 NSYSUEE-TYHSIEH

How Does IoU Affect AP?

Judging criteria of a nice shot

DPAML Unit1-48 NSYSUEE-TYHSIEH

Commonly Used Indexes

- AP-50: IoU=0.5 as the threshold
 - Both case I (IoU=0.88) and case II (IoU=0.58) get 1 TP
- AP-75: IoU=0.75 as the threshold
 - Case I (IoU=0.88) is TP, but case II (IoU=0.58) is not
 - Besides losing 1 TP, case II generates 1 FP and 1 FN simultaneously
- AP@[0.5 : 0.95]: from IoU=0.5 to IoU=0.95 with a step size of 0.05 (adopted in COCO dataset)

DPAML Unit1-49 NSYSUEE-TYHSIEH