```
In [1]: import math
        import pandas as pd
        import numpy as np
        import random
        from statistics import mean, stdev, median, mode
        from sklearn.model_selection import train_test_split,cross_val_score, cross_va
        from sklearn.decomposition import KernelPCA
        import matplotlib.pyplot as plt
        import matplotlib.pyplot as mp
        from sklearn.linear model import LogisticRegression
        from sklearn.svm import SVC
In [2]: data1 = np.loadtxt('data.csv')
        #data1
In [3]: def minimum(x,y):
            min = np.argmin(y)
            return x[min]
        \# x=[1,2,3,4]
        # y=[5,6,7,8]
        \# z = minimum(x,y)
        # Z
In [4]: def minimum3(x,y,z):
            min = np.argmin(z)
            return x[min], y[min], z[min]
```

```
In [5]: def decisionRegion(clf, X, Y):
        # Lists to hold inpoints, predictions and assigned colors
            xPred = []
            yPred = []
            cPred = []
        # Use input points to get predictions here
            for xP in range(-100,100):
                xP = xP/100.0
                for yP in range(-100,100):
                     yP = yP/100.0
                    xPred.append(xP)
                     yPred.append(yP)
                     if(clf.predict([[xP,yP]])=="1.0"):
                         cPred.append("b")
                     else:
                         cPred.append("r")
        ## Visualize Results
        #plot the points
            mp.scatter(X,Y,s=3,c=colors)
        #plot the regions
            mp.scatter(xPred,yPred,s=3,c=cPred,alpha=.1)
        #setup the axes
            mp.xlim(-1,1)
            mp.xlabel("Average Intensity")
            mp.ylim(-1,1)
            mp.ylabel("Intensity Variance")
```

```
In [6]: #shuffle the data and select training and test data
         np.random.seed(100)
         np.random.shuffle(data1)
         features = []
         digits = []
         for row in data1:
             #import the data and select only the 1's and 5's
             if(row[0] == 1 or row[0] == 5):
                 features.append(row[1:])
                 digits.append(str(row[0]))
         #Select the proportion of data to use for training.
         #Notice that we have set aside 80% of the data for testing
         numTrain = int(len(features)*.2)
         trainFeatures = features[:numTrain]
         testFeatures = features[numTrain:]
         trainDigits = digits[:numTrain]
         testDigits = digits[numTrain:]
In [7]: # Q)1)
In [8]: KPCA = KernelPCA(n_components = 2, kernel = 'poly', degree = 1)
         data = KPCA.fit transform(trainFeatures)
In [9]: | train = pd.DataFrame(data = data)
         train.head()
Out[9]:
                  0
                           1
           0.662562 -0.078380
         1 -0.249190 -0.186351
           0.387871
                    0.056345
            0.636381 -0.098758
         4 -0.171666 0.280755
```

```
In [10]: #Colors will be passed to the graphing library to color the points.
#1's are blue: "b" and 5's are red: "r"
colors = []
for index in range(len(trainFeatures)):
    if(trainDigits[index]=="1.0"):
        colors.append("b")
    else:
        colors.append("r")

#plot the data points

plt.scatter(train[[0]],train[[1]], s=10,c=colors)
plt.xlabel('First Component')
plt.ylabel('Second Component')
plt.title("Figure 2.1")
```

Out[10]: Text(0.5, 1.0, 'Figure 2.1')


```
In [11]: #Convert the 256D data (trainFeatures) to 2D data
         #We need X and Y for plotting and simpleTrain for building the model.
         #They contain the same points in a different arrangement
         X = []
         Y = []
         simpleTrain = []
         #Colors will be passed to the graphing library to color the points.
         #1's are blue: "b" and 5's are red: "r"
         colors = []
         for index in range(len(trainFeatures)):
             #produce the 2D dataset for graphing/training and scale the data so it is
          in the [-1,1] square
             xNew = 2*np.average(trainFeatures[index])+.75
             yNew = 3*np.var(trainFeatures[index])-1.5
             X.append(xNew)
             Y.append(yNew)
             simpleTrain.append([xNew,yNew])
             #trainDigits will still be the value we try to classify. Here it is the st
         ring "1.0" or "5.0"
             if(trainDigits[index]=="1.0"):
                  colors.append("b")
             else:
                  colors.append("r")
         #plot the data points
         ### https://matplotlib.org/api/_as_gen/matplotlib.pyplot.scatter.html
         mp.scatter(X,Y,s=3,c=colors)
         #specify the axes
         mp.xlim(-1,1)
         mp.xlabel("Average Intensity")
         mp.ylim(-1,1)
         mp.ylabel("Intensity Variance")
         mp.title("Figure 1.1")
         #display the current graph
         mp.show()
```


In [13]: KPCA = KernelPCA(n_components = 2, kernel = 'poly', degree = 3)
data3 = KPCA.fit_transform(trainFeatures)

In [14]: train3 = pd.DataFrame(data = data3)
 train3.head()

Out[14]:

	0	1
0	1.704466	-0.165921
1	-0.762189	-0.610113
2	1.149909	0.109357
3	1.653838	-0.186883
4	-0.400848	0.914819

```
In [15]: #Colors will be passed to the graphing library to color the points.
#1's are blue: "b" and 5's are red: "r"
colors = []
for index in range(len(trainFeatures)):
    if(trainDigits[index]=="1.0"):
        colors.append("b")
    else:
        colors.append("r")

#plot the data points

plt.scatter(train3[[0]],train3[[1]], s=10,c=colors)
plt.xlabel('First Component')
plt.ylabel('Second Component')
plt.title("Figure 2.2")
```

Out[15]: Text(0.5, 1.0, 'Figure 2.2')

In [16]: # 1)b) Yes. This kpca (degree 3) seperates the data better than the above one (degree 1) because there are less data points near the # decision boundary when compared to the no of data points near the decision b oundary for kpca of degree 1

In [17]: # Q)2)

```
In [18]: LR = LogisticRegression(penalty = '12',C = 0.01)
    clf = LR.fit(simpleTrain, trainDigits)

decisionRegion(clf, X, Y)
    mp.title("Figure 2.3")
    mp.show()
```

C:\Users\kalya\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.py:4
32: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify
a solver to silence this warning.
FutureWarning)


```
In [19]: LR = LogisticRegression(penalty = 'l2',C = 2.0)
    clf = LR.fit(simpleTrain, trainDigits)

decisionRegion(clf, X, Y)
    mp.title("Figure 2.4")
    mp.show()
```

C:\Users\kalya\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.py:4
32: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify
a solver to silence this warning.
FutureWarning)


```
In [20]: LR = LogisticRegression(penalty = '11',C = 0.01)
    clf = LR.fit(simpleTrain, trainDigits)

decisionRegion(clf, X, Y)
    mp.title("Figure 2.3b")
    mp.show()
```

C:\Users\kalya\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.py:4
32: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify
a solver to silence this warning.
FutureWarning)


```
In [21]: LR = LogisticRegression(penalty = 'l1',C = 2.0)
    clf = LR.fit(simpleTrain, trainDigits)

decisionRegion(clf, X, Y)
    mp.title("Figure 2.4b")
    mp.show()
```

C:\Users\kalya\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.py:4
32: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify
a solver to silence this warning.
FutureWarning)

In [22]: #Q) 2) Graduate student question:

From the figures 2.3 and 2.3b, for C = 0.01, both l1 and l2 underfit the da
ta but l1 completely underfit the data
For C = 2.0, the regularization techniques behaved conversely, l1 has less
number of training errors compared to l2
It looks like the regularization parameter C has more role to play than regu
larization techniques in making a model overfit or underfit.

In [23]: # Q) 3)

```
In [24]: # USING 2D dimensional data
         X = []
         y = []
         z = []
         p = []
         for i in range(1,25):
             c = np.random.uniform(0.01,100)
             model2 = SVC(C= c, gamma= 'auto')
             #model2.predict(testFeatures)
             cvs = cross_val_score(model2, simpleTrain, trainDigits, cv = 10, scoring=
          'accuracy')
             err = 1-cvs
             evsm = 1-(cvs.mean())
             p.append(err)
             x.append(c)
             y.append(evsm)
             z.append([x,evsm])
         # print(len(x))
         # print(len(y))
         # print(count)
         mp.scatter(x,y, s=10)
         mp.xlabel("C")
         mp.xscale('log')
         mp.ylabel("Error Ecv")
         mp.title("Figure 2.5")
         mp.show()
         m = []
         std =[]
         #print(y)
         for i in range(len(p)):
             m.append(mean(p[i]))
             std.append(2*stdev(p[i]))
         mp.errorbar(x, m, yerr=std, fmt='.k');
         mp.xlabel("C")
         mp.xscale('log')
         mp.ylabel("Error Ecv")
         mp.title("Figure 2.5b")
         mp.show()
```



```
In [25]: # USING 256D dimensional data
         x256 = []
         y256 = []
         p256 =[]
         for i in range(1,25):
             c256 = np.random.uniform(0.01,100)
             model2 = SVC(C= c256, gamma= 'auto')
             #model2.predict(testFeatures)
             cvs256 = cross_val_score(model2, trainFeatures, trainDigits, cv = 10, scor
         ing='accuracy')
             err256 = 1-cvs256
             evsm256 = 1-(cvs256.mean())
             p256.append(err256)
             x256.append(c256)
             y256.append(evsm256)
         # print(len(x))
         # print(len(y))
         # print(count)
         mp.scatter(x256,y256, s=10)
         mp.xlabel("C")
         mp.xscale('log')
         mp.ylabel("Error Ecv")
         mp.title("Figure 2.6")
         mp.show()
         m256=[]
         std256 =[]
         #print(y)
         for i in range(len(p256)):
             m256.append(mean(p256[i]))
             std256.append(2*stdev(p256[i]))
         mp.errorbar(x256, m256, yerr=std256, fmt='.k');
         mp.xlabel("C")
         mp.xscale('log')
         mp.ylabel("Error Ecv")
         mp.title("Figure 2.6b")
         mp.show()
```



```
In [26]: # from Figure 2.5, the error is low for x = 3
c_opt = minimum(x,y)
c_opt
```

Out[26]: 91.37569810087598

```
In [27]: svm = SVC(C = c_opt, gamma= 'auto')
    clf = svm.fit(simpleTrain, trainDigits)

decisionRegion(clf, X, Y)
    mp.title("Figure 2.7")
    mp.show()
```



```
In [28]: # Gamma vs Degree
         x1 = []
         y1 = []
         z1 = []
         p1 =[]
         c_{opt4} = []
         degree = [2,5, 10, 20]
         r= []
         for i in degree:
             X = []
             y = []
             z = []
             p = []
             for j in range(1,25):
                 c = np.random.uniform(0.01,100)
                  svm = SVC(kernel = 'poly', C = c, degree = i, gamma= 'auto')
                  cvs = cross_val_score(svm, simpleTrain, trainDigits, cv = 10, scoring=
          'accuracy', n_jobs = -1)
                 err = 1-cvs
                  evsm = 1-(cvs.mean())
                  p.append(err)
                 x.append(c)
                 y.append(evsm)
                  z.append(i)
                 p1.append(err)
                 x1.append(c)
                 y1.append(evsm)
                  z1.append(i)
             coptimal = minimum(x,y)
             c_opt4.append(coptimal)
             r.append(y[np.argmin(y)])
             mp.scatter(x,y, s=10)
             mp.xlabel("C")
             mp.xscale('log')
             mp.ylabel("Error Ecv")
             mp.title("Degree: " + str(i))
             mp.show()
               svm = SVC(kernel = 'poly', C = coptimal, degree = i, gamma= 'auto')
               svm.fit(simpleTrain, trainDigits)
               decisionRegion(svm, X, Y)
               mp.title("Degree: " + str(i))
               mp.show()
         print('\n')
         print("Optimal C Values for Degrees " + str(degree) +" are: " + str(c opt4))
         d_opt, c_optf, Min_Ecv = minimum3(z1,x1,y1)
         print('\n')
         print("Min Ecv Value is: " + str(Min_Ecv))
         print("Optimal degree is: " + str(d_opt))
         print("Optimal C Value is: " + str(c optf))
         plt.scatter(degree,r)
         plt.xlabel('Degree')
         plt.ylabel('Min Ecv')
```

```
plt.title('Gamma vs Ecv')
plt.show()

plt.scatter(degree,c_opt4)
plt.xlabel('Degree')
plt.ylabel('C value of Min Ecv')
plt.title('Degree vs C')
plt.show()
```


Optimal C Values for Degrees [2, 5, 10, 20] are: [92.43749300503877, 38.46581 334768249, 50.928567409015486, 1.2483293853873412]

Min Ecv Value is: 0.009576612903225756

Optimal degree is: 2

Optimal C Value is: 92.43749300503877

In [29]: # Q) 3)
With smaller degree, there is higher chance of overfitting so, to compensate
that we need a greater C value which gave me lesser Ecv.
And in case of higher degree which causes overfitting, we need smaller C v
alue to get less cross validation error Ecv
It is evident in the above observations.

```
In [30]: svm = SVC(C = c_optf, kernel = 'poly', degree = d_opt, gamma= 'auto')
    clf = svm.fit(simpleTrain, trainDigits)

decisionRegion(clf, X, Y)
    mp.title("Figure 2.8")
    mp.show()
```


In [31]: # Q)3) From the above plot, it is evident that this SVM model is best in terms of seperating the training data.

In [32]: # Graduate Student Question

```
In [33]: svm = SVC(C = 0.000001, gamma = 'auto')
clf = svm.fit(simpleTrain, trainDigits)

decisionRegion(clf, X, Y)
mp.title("Figure 2.9a")
mp.show()
```



```
In [34]: svm = SVC(C = 10000, gamma = 'auto')
    clf = svm.fit(simpleTrain, trainDigits)

decisionRegion(clf, X, Y)
    mp.title("Figure 2.9b")
    mp.show()
```


In [35]: # Q)3) Graduate Student Question
When C is Low, the hinge loss would be high and svm model produces high marg
in and the model underfits. It is evident in the figure 2.9a
When C is high, the hinge loss would be low and SVM model tries to overfit t
he data. Check the figure 2.9b

In [36]:	# Extra Credit
In []:	

```
In [37]: # Varying only C. Keeping C and Gamma constant
         X = []
         y = []
         z = []
          p = []
          degree = [2,5,10,20]
         for i in range(1,10):
              gamma = np.random.randint(1,1500)
              svm = SVC(kernel = 'rbf', gamma= gamma)
              cvs = cross_val_score(svm, simpleTrain, trainDigits, cv = 10, scoring='acc
          uracy')
             err = 1-cvs
              evsm = 1-(cvs.mean())
              p.append(err)
             x.append(gamma)
             y.append(evsm)
             z.append([x,evsm])
              svm.fit(simpleTrain, trainDigits)
              decisionRegion(svm,X, Y)
              mp.title("Gamma: " + str(gamma))
             mp.show()
          z = minimum(x,y)
          print("Optimal Value of Gamma = " + str(z))
          mp.scatter(x,y)
          mp.xlabel('Gamma')
         mp.ylabel('Ecv')
         mp.title("Gamma vs Ecv")
          mp.show()
```


Average Intensity

-1.00 -1.00

-0.75

-0.50

-0.25

0.00

Average Intensity

0.25

0.50

0.75

1.00

Optimal Value of Gamma = 631

In [38]: # From the above plots, we could say that the models with smaller values of gamma underfit the data.
And the models with greater values of gamma formed smaller islands i.e. over fit the data.

```
In [39]: # Varying both C and Gamma
         x1 = []
         y1 = []
         z1 = []
         p1 =[]
         c_{opt4} = []
         g =[]
         r = []
         for i in range(1,5):
             X = []
             y = []
             z = []
             p = []
             gamma = np.random.randint(1,1500)
             g.append(gamma)
             for j in range(1,25):
                  c = np.random.uniform(0.01,100)
                  svm = SVC(kernel = 'rbf', C = c, gamma= gamma)
                  cvs = cross_val_score(svm, simpleTrain, trainDigits, cv = 10, scoring=
          'accuracy', n_jobs = -1)
                  err = 1-cvs
                  evsm = 1-(cvs.mean())
                  p.append(err)
                  x.append(c)
                  y.append(evsm)
                  z.append(gamma)
                  p1.append(err)
                  x1.append(c)
                  y1.append(evsm)
                  z1.append(gamma)
             coptimal = minimum(x,y)
             c_opt4.append(coptimal)
             r.append(y[np.argmin(y)])
             mp.scatter(x,y, s=10)
             mp.xlabel("C")
             mp.ylabel("Error Ecv")
             mp.title("Gamma: " + str(gamma))
             mp.show()
             svm = SVC(kernel = 'rbf', C = coptimal, gamma= gamma)
             svm.fit(simpleTrain, trainDigits)
             decisionRegion(svm, X, Y)
             mp.title("Gamma: " + str(gamma))
             mp.show()
         print('\n')
         print("Optimal C Values for Gamma " + str(g) +" are: " + str(c_opt4))
         g_opt, c_optf, Min_Ecv = minimum3(z1,x1,y1)
         print('\n')
         print("Min Ecv Value is: " + str(Min Ecv))
         print("Optimal Gamma is: " + str(g_opt))
         print("Optimal C Value is: " + str(c_optf))
         plt.scatter(g,r)
         plt.xlabel('Gamma')
```

```
plt.ylabel('Min Ecv')
plt.title('Gamma vs Ecv')
plt.show()

plt.scatter(g,c_opt4)
plt.xlabel('Gamma')
plt.ylabel('C value of Min Ecv')
plt.title('Gamma vs C')
plt.show()
```


Optimal C Values for Gamma [834, 1175, 1069, 205] are: [56.35449406742604, 8 3.44924095746192, 11.683787668967264, 63.033547798534364]

Min Ecv Value is: 0.006350806451612789

Optimal Gamma is: 834

Optimal C Value is: 56.35449406742604

In [40]: # As models with higher values of Gamma tend to overfit the data, we need smal
ler value of C to get minimum cross validation error.
Similarly, we need higher value of C for models with smaller value of Gamma
as these models tend to underfit the data
It makes sense from the above Gamma vs C plot

```
In [41]: # Varying only degree. Keeping C and Gamma constant
         x = []
         y = []
         z = []
         p = []
         degree = [2,5,10,20]
         for i in range(1,10):
             degree = np.random.randint(1,1500)
             svm = SVC(kernel = 'rbf', gamma= 'auto', degree = degree)
             cvs = cross_val_score(svm, simpleTrain, trainDigits, cv = 10, scoring='acc
         uracy')
             err = 1-cvs
             evsm = 1-(cvs.mean())
             p.append(err)
             x.append(gamma)
             y.append(evsm)
             z.append([x,evsm])
             svm.fit(simpleTrain, trainDigits)
             decisionRegion(svm,X, Y)
             mp.title("degree: " + str(degree))
             mp.show()
```


-0.75

-1.00 -1.00

-0.75

-0.50

-0.25

0.00

Average Intensity

0.25

0.50

0.75

1.00

In [42]: # As you can see in above plots, the parameter degree has no effect on the mod
el performance.
This makes sense as degree parameter is only valid for the poly kernel

In []:	
In []:	