Optimización PARCIAL 2

12 de Noviembre de 2024

- 1. Considere el método del gradiente con $f(x) = \frac{1}{2}x^TAx + b^Tx + c$, donde $A \in \mathbb{R}^{n \times n}$ es una matriz simétrica definida positiva, $b \in \mathbb{R}^n$ y $c \in \mathbb{R}$. Sea \tilde{x} una solución de $x^0 = \tilde{x}' + \mu v$, donde v es un autovector de A asociado al autovalor λ y $\mu \in \mathbb{R}$.
 - a) Probar que $\nabla f(x^0) = \mu \lambda v$ y que la búsqueda lineal exacta a partir de x^0 converge en un sólo paso.
 - b) Usando lo anterior probar que el método del gradiente converge en una iteración, cualquiera sea el x^0 si $A = \alpha I$, $\alpha \in \mathbb{R}$.
- 2. Sea $f(x) = 10(x_2 x_1^2)^2 + (1 x_1)^2$. Considerar el subproblema de región de confianza

$$q_k(p) = f(x_k) + \nabla f(x_k)^T p + \frac{1}{2} p^T H_k p$$
, sujeto a, $||p|| = \Delta_k$,

donde H_K es la Hessiana de f en x_k . Dibujar las curvas de nivel del subproblema y hacer una iteración del método con $x_0 = (0,0)$ y $\Delta_0 = 1$.

3. Considerar el problema

minimizar
$$f(x_1, x_2) = -2x_1 - 3x_2$$

sujeto a $x_1 + x_2 \le 8$,
 $-x_1 + 2x_2 \le 4$,
 $x_1 \ge 0$,
 $x_2 \ge 0$.

- a) Escribir las condiciones de KKT.
- b) Para cada punto extremo verifique si las condiciones se satisfacen. Encontrar una solución.
- 4. Considerar el problema de encontrar una esfera de radio mínimo que contiene un conjunto de vectores dados $y_1, y_2, \dots, y_p \in \mathbb{R}^n$, este problema puede ser escrito como el problema de minimax

minimizar
$$\max\{\|x-y_1\|^2,\ldots,\|x-y_p\|^2\}$$

sujeto a $x \in \mathbb{R}^n$.

a) Interpretar por qué este problema es equivalente al problema

minimizar
$$r^2$$
 sujeto a $||x - y_j||^2 \le r^2$, para $j \in \{1, \dots, p\}$.

y escribir las condiciones KKT de este último problema

- b) Considerar el caso con p=3 y caracterizar la solución optimal en función de los vectores $y_1, y_2 y_3$.
- 5. Resolver el problema

minimizar
$$f(x_1, x_2) = \frac{1}{2}(x_1^2 + x_2^2)$$

sujeto a $2 \le x_1$,

1

usando el método de barrera logarítmica.

6. Considerar el problema unidimensional

minimizar
$$f(x) = -\frac{1}{2}x^2$$

sujeto a $x = 1$.

Mostrar que la función de Lagrangiano aumentado $L_{\rho}(x,\lambda)$ no está acotada inferiormente si $\rho<1$ y es estrictamente convexa si $\rho>1$.