§1 Lecture 11-22

Non constant $f \in \mathbb{F}[x]$ is <u>irreducible over F</u> if f cannot be expressed as f = gh where $\deg(g), \deg(h) \geq 1$

Theorem 1.1 (Fundamental Theorem of Algebra)

Every $f \in \mathbb{C}[x]$ can be expressed as $f = l(x - r_1)(x - r_2)(\cdots)(x - r_n)$ where l is the leading coefficient of f and n is the degree of f.

Corollary 1.2

Only degree 1 polynomials can be irreducible in \mathbb{C} .

Example 1.3

Let $f \in \mathbb{R}[x]$ with $\deg(f)$ is odd and $\deg(f) > 1$.

Theorem 1.4

An ideal $\langle p \rangle \subset \mathbb{F}[x]$ is maximal $\Leftrightarrow p$ is irreducible over \mathbb{F} .

Recall 1.5. Ideal p = gh. $\langle p \rangle \subsetneq \langle g \rangle \subseteq \mathbb{F}[x]$

Theorem 1.6

 $\mathbb{F}[x]/\langle p \rangle$ is a field $\Leftrightarrow \langle p \rangle$ is a maximal ideal $\Leftrightarrow p$ is irreducible.

So $\mathbb{F}[x]/\langle p \rangle$ is a field $\Leftrightarrow p$ is irreducible.

Example 1.7

 $\mathbb{C} \cong \mathbb{R}[x]/\langle x^2 + 1 \rangle$ motivating amazing case.

Lemma 1.8

A degree 2 or 3 polynomial $p \in \mathbb{F}[x]$ is irreducible $\Leftrightarrow p$ has no zero.

Proof. If p = gh with $\deg(g), \deg(h) \ge 1$, then one of these, say g, has $\deg(g) = 1$. Therefore p = (x - r)g for $r \in \mathbb{F} \Leftrightarrow p(r) = 0$.

 $x^3 + x + 1$ is irreducible in $\mathbb{Z}_2[x]$ because it has no roots. p(0) = 1 and p(1) = 1.

 $x^3 + x + 1$ is reducible in $\mathbb{Z}_3[x]$ because it has a root. p(0) = 1. p(1) = 0. p(2) = 2

 $x^3 + x + 1$ is irreducible in $\mathbb{Z}_5[x]$ has no roots.

Therefore

$$\mathbb{Z}_2[x]/\langle x^3+x+1\rangle \text{ is a field}$$

$$\mathbb{Z}_5[x]/\langle x^3+x+1\rangle \text{ is a field}$$

$$\mathbb{Z}_3[x]/\langle x^3+x+1\rangle \text{ is not a field}$$

$$(x+2+\langle x^3+x+1\rangle)((x^2+ax+b)+\langle x^3+x+1\rangle)=0+\langle x^3+x+1\rangle$$

Lemma 1.10

Each element of $\mathbb{Z}_n[x]/\langle p \rangle$ (where n is prime) is of the form $a_{d-1}x^{d-1} + a_{d-2}x^{d-2} +$ $\cdots + a_0 + \langle p \rangle$. Assume p is monic and that p is irreducible of degree d.

Note that each element can be written in the form $f = \langle p \rangle$ to hvae $\deg(f) < 1$ $d = \deg(p)$.

Idea:

$$p = x^d + q$$
$$(x^d + \langle p \rangle) + (q + \langle p \rangle) = (x^d + q + \langle p \rangle) = 0 + \langle p \rangle.$$

So we can replace any occurrence of x^d by -q and have the same element.

§1.1 Eisention's Criterion

Let p be prime.

Let
$$f = a_n x^n + \dots + a_0 \in \mathbb{Z}[x]$$

Suppose

- 1. p divides each a_i except a_n
- 2. p^2 does not divide a_0

Then f is irreducible over \mathbb{Q} .

Example 1.11 $2x^3 + 25x + 5 \text{ is irreducible use } p = 5.$ $2x^5 + 6x^4 + 5x^3 + 9x^2 + 0x^1 + 30$

$$2x^5 + 6x^4 + 5x^3 + 9x^2 + 0x^1 + 30$$