

### **Evolution Strategies**

- The first examples of ES were done without the use of computers, using real physical models.
- Early examples:
  - a jet nozzle (1968)
  - using wind tunnel experiments to evolve the shape of a kinked plate with minimal drag (1964).
- Distinguishing features of ES include:
  - Populations are often small;
  - Different selection mechanism from GAs;
  - Often aimed at designing physical objects.

### **ES** Representation

- Often use sequences of real valued parameters. For example:
  - in the jet nozzle, the numbers represent the radii of the nozzle segments;
  - in the kinked plate, the numbers represent the angles between sections of the plate.
- For combinatorial optimisation problems, candidate solutions are permutation vectors (e.g. 1,3,2 representing the ordering item 1, then item 3, then item 2).

### **ES** Operators

Often, the only operator is mutation (no crossover).

### Mutation for real values

- adding normally distributed independent random values, N(0,σ), to each parameter. The value σ determines the size of the changes and is called the mutation strength. (Other distributions may also be used )
- $\blacksquare$  using fixed mutation strength does not work well. There are several schemes for adapting  $\sigma$

## ES self-adaptation Self-adaptation is one way of changing the mutation strength σ: evolve the value of σ along with the solution; each candidate solution has its own mutation strength inherited by its offspring, must specify how it is to be updated, one method is to update σ by multiplying by (1+τN(0,1)), where τ is some value between, say 0.2 and 0.5.















### Overview

- Iron ore mining in Western Australia
- Ore crusher terminology
- A genetic representation of crushers
- Measuring crusher performance
- The multi-objective EA
- Experimental results
- Conclusions

### The Iron Ore Industry in Western Australia

- Iron ore mining was worth AUD\$3.4b to the state in 2000/01
- State has 30b tonnes in reserves (third largest in the world)
- Raw ore varies from dust particles to ~5m boulders
- Export size is <32mm







### The Problem

- Given: a specification of a circuit and models for simulating comminution components
- The task: design a tool for automatically creating better crusher designs for a variety of different scenarios
- The approach: use an evolutionary algorithm to search the space of possible crusher designs

### Genetic Representation

- Represent the machine settings (CSS, eccentric angle, and rotational speed) as realvalued variables in the EA
- The end-points of both liners are fixed, but the internal shape may vary
- Represent each liner as a series of line segments using a variable-length list of coordinates
- Use an ES to evolve the population

# The Base Crusher CSS: 24.0 Angle: 2.35 RPM: 310 Fitness: 1.00 Normalised Capacity: 1.00 Normalised P80: 1.00

### Measuring Crusher Performance

- Crusher performance is measured by two (potentially conflicting) objectives:
  - maximise the capacity of the circuit containing the crusher
  - minimise the size of the product
- Define *P80* as a measure of the size of the 80th percentile in the product
- P80 is to be maximised

### **Capacity Constraints**

- The capacity of a circuit may be limited by any one of three factors:
  - the capacity and throughput of the crusher
  - the power requirements of the crusher
  - the capacity of recirculation conveyors
- Define the capacity (CAP) of the circuit as the minimum of these constraints
- CAP is to be maximised

### A Single Objective Algorithm

- Attempt to combine different objectives into one fitness function
- But which is more important?
- The likely range of CAP values is approximately 20 times the likely range of P80 values
- Use the fitness function: fitness = 0.05 × CAP + 0.95 × P80 as the basis for selection in the EA

### The Multi Objective Algorithm

- Define Pareto dominance between designs using CAP and P80
  - x dominates y if x has higher CAP and higher P80 than y
- Use Pareto ranking instead of fitness
  - Pareto rank of x = number of designs in the population that dominate x







### The Multi Objective Algorithm

- Selection in MOEAs is not based directly on a solution's fitness, but on its rank in the population
- The rank of a solution A is a measure of how 'dominated' A is in the population
- Two ranking schemes are in common use
- Fonseca and Fleming:
  - rank(A) = the number of solutions in S that dominate A
- Goldberg:
  - = rank(A) = 0, if A is non-dominated in S, otherwise
  - rank(A) = the highest rank among the solutions in S that dominate A, plus 1

### The Multi Objective Algorithm

- So the steps of the algorithm are:
- 1. Create an initial population of *n* designs.
- 2. Evaluate CAP and P80 of these designs.
- 3. Create a population of *n* children by mutating the members of the current population.
- 4. Evaluate the CAP and P80 of these children.
- 5. Select the *n* lowest Pareto rank designs from the parents and children together.
- 6. Repeat steps 3 to 5 until done.





# Conclusions The EA has produced crusher designs that have shown an improvement of >10% in P80 (over existing designs); or >200% in CAP; or significant improvement in both simultaneously For the "real" problem, we estimate an improvement in profit of ~US\$20m per year Still needs greater realism (e.g. wear effects, different feeds) validation in field trials



### Objectives

- Circuit performance is measured by two (potentially conflicting) objectives:
  - 1.minimisation of the size of the product2.minimisation of the overall cost of the circuit
- Define cost as a measure of the cost of the circuit:
  - $cost = \sum component cost_c$
- Component cost is non-linear with respect to unit count:
  - component  $cost_c = n_c x$  machine  $cost_c x$  (0.9 + 0.1 $n_c$ )

### Infeasibility

- Not all candidate designs are feasible:
  - crushers may completely fill up with ore particles such that additional ore particles overflow out of the machine
  - ore particles may be too large to enter a crusher
  - product ore particles may be larger than the predefined maximum allowed size
- Not all infeasible solutions are equally bad
- Need some way of rewarding "less bad" solutions
- Add a third error objective to measure how infeasible a design is
- Use the error objective to choose between equally ranked solutions during selection





### Observations Takes ~20 generations before finding first valid (zero error) solution Extent of the Pareto front increases over time Generates a wide range of different designs Produces circuit designs superior in performance to existing designs Difficult to improve P80 beyond a certain value





- Minimises cost of circuit
- Uses large openings for both screens, reducing "sieving" area and cost
- Employs a smaller (and cheaper), yet coarser secondary crusher
- Uses low unit counts
- A similar design was trialed in practice, performance dependent on ore composition



### Summary

- EA generated a wide range of different designs
- EA produced circuit designs superior in performance to existing designs
- Challenges remained in incorporating more realism:
  - varieties in input ore stream
  - interactions with other processing stages
  - better economic cost models
  - operational practicality considerations (e.g. risk of failure)