

FVL2025第六期学习讲座

基于2D高斯建模的任意尺度超分辨率重建方法

主讲人: 詹丹丹

背景介绍

背景介绍

• 基于INR的任意尺度超分辨率重建

(b) Training

$$I^{(i)}(x_q) = f_{\theta}(z^*, x_q - v^*)$$

Local ensemble

$$I^{(i)}(x_q) = \sum_{t \in \{00,01,10,11\}} \frac{S_t}{S} \cdot f_{\theta}(z_t^*, x_q - v_t^*)$$

• 基于INR的任意尺度超分辨率重建


```
for vx in vx lst:
    for vy in vy lst:
       coord = coord.clone()
       coord [:, :, 0] += vx * rx + eps_shift
       coord [:, :, 1] += vy * ry + eps shift
       coord .clamp (-1 + 1e-6, 1 - 1e-6)
       q_feat = F.grid_sample(
           feat, coord .flip(-1).unsqueeze(1),
           mode='nearest', align corners=False)[:, :, 0, :] \
            .permute(0, 2, 1)
       q coord = F.grid sample(
            feat coord, coord .flip(-1).unsqueeze(1),
            mode='nearest', align corners=False)[:, :, 0, :] \
            .permute(0, 2, 1)
       rel coord = coord - q coord
       rel coord[:, :, 0] *= feat.shape[-2]
       rel_coord[:, :, 1] *= feat.shape[-1]
       inp = torch.cat([q feat, rel_coord], dim=-1)
```

```
bs, q = coord.shape[:2]
pred = self.imnet(inp.view(bs * q, -1)).view(bs, q, -1)
preds.append(pred)
```


2

GaussianSR: High Fidelity 2D Gaussian Splatting for Arbitrary-Scale Image Super-Resolution

• 动机

Local ensemble会增加计算负担, 可能会成为实时应用的瓶颈

• 动机

Pixels are discrete points.

Pixels are self-adaptive continuous fields.

核心思想:像素值本质上表现出强度变化,这些变化可以通过连续的高斯表示更准确地捕捉

GaussianSR

• 方法

: LR Latent Code

[2] J. Hu, B. Xia, B. Chen, et. al., "GaussianSR: High Fidelity 2D Gaussian Splatting for Arbitrary-Scale Image Super-Resolution," *AAAI*, 2025.

GaussianSR

• 方法

(a) Data preparation

• 方法

2 GaussianSR =

• 实验结果

Methods	G	eneral10	00		BSD100)	J	Urban10	0	N	Manga10	19	D	IV2K10	00
Methods	×2	×3	×4	×2	×3	×4	×2	×3	×4	×2	×3	×4	×2	×3	×4
Bicubic	32.14	28.56	26.58	28.25	25.96	24.69	25.68	23.07	21.77	29.98	25.68	23.52	31.45	28.42	26.81
EDSR-baseline	38.23	33.93	31.48	32.16	29.09	27.57	31.98	28.15	26.04	38.54	33.45	30.35	34.55	30.90	28.94
EDSR-baseline-MetaSR	38.22	33.93	31.40	32.16	29.09	27.55	32.08	28.12	25.95	38.53	33.51	30.37	34.64	30.93	28.92
EDSR-baseline-LIIF	38.25	33.97	31.53	32.17	29.10	27.60	32.15	28.22	26.15	38.63	33.47	30.54	34.67	30.96	29.00
EDSR-baseline-ITSRN	38.25	33.95	31.48	32.18	29.10	27.58	32.13	28.14	26.06	38.58	33.47	30.47	34.67	30.93	28.97
EDSR-baseline-ALIIF	38.21	33.95	31.48	32.18	29.11	27.60	32.09	28.19	26.14	38.53	33.42	30.47	34.65	30.95	28.99
EDSR-baseline-DIINN†	-	-	-	30.69	27.73	26.22	30.29	26.46	24.49	-	-	-	34.63	30.93	28.98
EDSR-baseline-GaussianSR	38.31	34.02	31.55	32.20	29.13	27.61	32.25	28.28	26.19	38.64	33.57	30.54	34.71	31.00	29.03
	G	eneral10	M		BSD100	1	I	Jrban10	0	1	Manga10	10	Г	IV2K10	00
Methods	×1.5	×2.4	×3.6	×1.5	×2.4	×3.6	×1.5	×2.4	×3.6	×1.5	×2.4	×3.6	×1.5	×2.4	×3.6
Bicubic	34.89	30.12	27.17	30.78	27.09	25.11	27.92	24.25	22.21	33.12	27.50	24.15	34.00	29.75	27.31
EDSR-baseline [†]	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EDSR-baseline-MetaSR	42.16	36.14	32.30	35.69	30.60	28.08	36.05	30.07	26.74	42.67	36.18	31.56	38.57	32.78	29.62
EDSR-baseline-LIIF	42.20	36.18	32.37	35.69	30.62	28.11	36.13	30.16	26.89	42.67	36.19	31.59	38.57	32.82	29.67
EDSR-baseline-ITSRN	42.24	36.18	32.34	35.70	30.62	28.10	36.14	30.12	26.81	42.68	36.18	31.55	38.61	32.80	29.64
EDSR-baseline-ALIIF	42.14	36.16	32.33	35.67	30.60	28.10	36.02	30.07	26.84	42.56	36.11	31.53	38.54	32.79	29.65
EDSR-baseline-GaussianSR	42.24	36.23	32.40	35.73	30.64	28.13	36.27	30.23	26.94	42.72	36.25	31.60	38.64	32.85	29.70

2 GaussianSR

• 实验结果

Pixel to Gaussian: Ultra-Fast Continuous Super-Resolution with 2D Gaussian Modeling

动机

基于INR的方法通常涉及多次上采样和解码步骤,不仅效率低下,还会因为隐函数的表达能力 有限而导致重建结果质量下降

a. Existing Methods Total Time: 136+86×N+40×N ms

b. Motivation

c. Our Method Total Time: 229+1×N ms

d. Speed and PSNR Comparison

[3] L. Peng, A. Wu, W. Li, et. al., "Pixel to Gaussian: Ultra-Fast Continuous Super-Resolution with 2D Gaussian Modeling," arXiv:2503.06617, 2025.

动机

数字图像由真实连续场景通过采样、量化和一系列后续处理得到,通过学习该过程的逆过程, 即对高质量的连续函数进行显式建模,可以直接根据实际需求采样得到目标分辨率结果,而不 需要进行多次上采样和解码操作

a. Existing Methods Total Time: 136+86×N+40×N ms

c. Our Method Total Time: 229+1×N ms

b. Motivation

d. Speed and PSNR Comparison

• 方法

$$\Sigma = \begin{bmatrix} \sigma_x^2 & \rho \sigma_x \sigma_y \\ \rho \sigma_x \sigma_y & \sigma_y^2 \end{bmatrix}, \mu = \begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix}, c_{rgb} = \begin{bmatrix} c_r \\ c_g \\ c_b \end{bmatrix} \quad G_i(x, y, c_{rgb}, \Sigma) = c_{rgb} \frac{1}{2\pi |\Sigma_i|} \exp\left(-\frac{1}{2} d^\top \Sigma_i^{-1} d\right)$$

• 方法

DGP-Driven Covariance Weighting (DDCW)

$$\sigma_{i,x}^2, \sigma_{i,y}^2 \sim \mathcal{P}(\sigma_x^2), \mathcal{P}(\sigma_y^2); \rho_i \sigma_{i,x} \sigma_{i,y} \sim \mathcal{P}(\rho \sigma_x \sigma_y)$$

$$\mathcal{K} = \{G_i(\begin{bmatrix} \sigma_{i,x}^2 & \rho_i \sigma_{i,x} \sigma_{i,y} \\ \rho_i \sigma_{i,x} \sigma_{i,y} & \sigma_{i,y}^2 \end{bmatrix})\}_{i=1}^N \qquad G_{\text{target}} = \sum_{i=1}^N w_i \cdot G_i$$

Adaptive Position Drifting (APD)

$$P_{\rm off} = {\rm Tanh}(\mathcal{M}_{\rm pos}(\mathcal{F}_{\rm LR}))$$

$$P_{\text{final}} = P_{\text{init}} + P_{\text{off}}.$$

• 实验结果

average runtime across 45 different scales, ranging from x4 to x48

PSNR↑	Methods	×4	×6	×8	×10	×12	×16	×18	×20	×32	×48	AT
	MetaSR [24]	26.76	24.31	22.92	22.02	21.31	20.35	19.96	19.65	18.38	17.48	41.4
	LIIF [11]	26.68	24.20	22.79	21.84	21.15	20.19	19.80	19.51	18.30	17.45	110.0
	LTE [34]	27.24	24.62	23.17	22.23	21.50	20.47	20.06	19.77	18.47	<u>17.52</u>	151.8
Urban100 [26]	SRNO [63]	26.98	24.43	23.02	22.06	21.36	20.35	19.95	19.67	18.39	17.51	65.7
Cibaliioo [20]	CiaoSR [3]	<u>27.42</u>	<u>24.84</u>	<u>23.34</u>	22.34	21.60	<u>20.54</u>	20.11	<u>19.77</u>	18.45	17.51	341.5
	MambaSR [66]	27.02	24.44	23.01	22.06	21.36	20.34	19.95	19.65	18.29	17.48	90.5
	GaussianSR [23]	26.20	23.76	22.35	21.38	20.66	19.68	19.31	19.03	17.86	17.07	321.4
	Ours	28.22	25.43	23.87	22.86	22.08	20.95	20.54	20.21	18.77	17.70	4.6
	MetaSR [24]	29.33	27.03	25.66	24.69	23.94	22.82	22.39	22.01	20.42	19.25	123.5
	LIIF [11]	29.27	26.99	25.60	24.63	23.89	22.77	22.34	21.94	20.36	19.19	480.6
	LTE [34]	29.50	27.20	25.81	24.84	24.09	22.94	22.50	22.12	20.50	<u>19.31</u>	1407.5
DIV2K [1]	SRNO [63]	29.42	27.12	25.74	24.77	24.03	22.90	22.46	22.06	20.47	19.27	390.9
DIV2K [1]	CiaoSR [3]	<u>29.59</u>	<u>27.28</u>	<u>25.89</u>	<u>24.91</u>	24.15	22.99	22.54	<u>22.16</u>	<u>20.50</u>	19.30	1857.8
	MambaSR [66]	29.36	27.08	25.70	24.74	23.99	22.87	22.44	22.05	20.46	19.27	398.3
	GaussianSR [23]	29.03	26.73	25.29	24.23	23.44	22.26	21.81	21.42	19.90	18.76	4962.8
	Ours	29.80	27.47	26.07	25.08	24.33	23.18	22.74	22.35	20.68	19.45	4.7
	MetaSR [24]	26.54	24.64	23.54	22.79	22.24	21.42	21.09	20.80	19.62	18.68	50.4
	LIIF [11]	26.49	24.59	23.49	22.75	22.21	21.40	21.09	20.75	19.59	18.65	226.4
	LTE [34]	26.73	24.78	23.65	22.88	22.33	21.48	21.15	20.85	19.66	<u>18.71</u>	451.5
LSDIR [35]	SRNO [63]	26.65	24.72	23.61	22.85	22.30	21.45	21.12	20.83	19.64	18.69	163.6
	CiaoSR [3]	<u>26.80</u>	<u>24.84</u>	23.69	22.92	22.35	21.48	21.14	20.84	19.63	18.67	1289.3
	MambaSR [66]	26.62	24.69	23.59	22.83	22.28	21.44	21.11	20.82	19.64	18.70	197.7
	GaussianSR [23]	26.25	24.39	23.28	22.49	21.92	21.06	20.74	20.45	19.29	18.38	1284.3
	Ours	27.14	25.07	23.91	23.13	22.54	21.89	21.35	21.06	19.79	18.82	4.6

• 实验结果

Metrics	Methods	×4	×6	×8	×10	×12	×16	×18	×20	×32	×48
	LIIF [11]	0.7911	0.6861	0.6148	0.5642	0.5270	0.4790	0.4617	0.4503	0.4106	0.3918
	LTE [34]	0.8069	0.7045	0.6321	0.5810	0.5422	0.4900	0.4710	0.4588	0.4145	0.3931
SSIM↑	GaussianSR [23]	0.7751	0.6633	0.5867	0.5334	0.4967	0.4521	0.4369	0.4277	0.3969	0.3835
	CiaoSR [3]	0.8110	<u>0.7126</u>	0.6415	0.5887	0.5503	0.4974	<u>0.4777</u>	0.4637	<u>0.4168</u>	0.3921
	Ours	0.8292	0.7343	0.6624	0.6089	0.5683	0.5097	0.4893	0.4746	0.4216	0.3958
	LIIF [11]	0.1611	0.2178	0.2589	0.2926	0.3209	0.3659	0.3835	0.3990	0.4678	0.5322
	LTE [34]	0.1570	0.2126	0.2541	0.2872	0.3157	0.3611	0.3799	0.3960	0.4695	0.5362
DISTS↓	GaussianSR [23]	0.1740	0.2374	0.2890	0.3296	0.3631	0.4109	0.4302	0.4466	0.5157	0.5713
	CiaoSR [3]	0.1533	0.2074	0.2453	0.2771	0.3049	0.3510	<u>0.3701</u>	0.3863	0.4513	0.4998
	Ours	0.1356	0.1901	0.2299	0.2601	0.2860	0.3324	0.3504	0.3670	0.4439	<u>0.5144</u>
	LIIF [11]	4.76	24.87	50.05	77.54	102.47	145.25	164.41	179.44	256.95	311.09
	LTE [34]	3.84	21.01	45.15	70.56	92.85	136.54	156.24	170.92	253.52	296.27
$FID\downarrow$	GaussianSR [23]	5.64	29.30	57.00	89.25	120.02	166.20	181.59	202.18	264.27	315.97
	CiaoSR [3]	<u>3.74</u>	20.48	43.25	58.60	<u>92.58</u>	133.77	<u>151.70</u>	168.89	247.84	<u>294.49</u>
	Ours	2.91	16.50	37.09	58.83	78.72	116.30	130.32	143.52	216.21	281.27

Memory Usage	×4	×6	$\times 8$	×12	×16
LIIF	4.12	6.49		19.27	
CiaoSR	12.17	22.83	\mathbf{OOM}	OOM	OOM
Ours	2.48	2.49	2.50	2.52	2.54

• 实验结果

• 消融实验

Ablation studies on proposed APD, DDCW, and DGP.

DDCW	APD	PSNR	P_{init}	$P_{ m off}$	PSNR	K	PSNR
√		10.5	√		27.8	\mathcal{K}_1	27.7
	\checkmark	12.3		\checkmark	10.5	$/\mathcal{K}_2$	27.7 27.1
\checkmark	\checkmark	28.2	✓	\checkmark	28.2	$/\mathcal{K}_{DCR}$	28.2
					[0, 1	.] [0	, 10]

		•		T.
	um	her	Ωt	K
1	um	$\mathbf{u}\mathbf{u}$	OI.	I λ .

	PSNR	SSIM
100	28.12	0.8277
500 730	28.19 28.22	0.8286 0.8292

Number of N

	PSNR	SSIM
1	28.01	0.8254
4	28.22	0.8292
9	28.18	0.8284

Ablation on P_{off}

	PSNR	SSIM
0.5	28.03	0.8259
1	28.22	0.8292
2	28.17	0.8283

高斯核位置分布

感谢聆听