Introduccion a Reinforcement Learning

2.4 metodos de solución Jorge Vasquez

Ejercicio de Grilla

Un MDP está definido por:

- Set de Estados S
- Set de acciones A
- Función de Transición P(s' | s, a)
- Función de Refuerzo R (s, a, s')
- Estado inicial So
- Factor descuento γ
- Horizonte H

Objetivo:

$$max_{\pi} \mathbb{E}\left[\sum_{t=0}^{H} \gamma^{t} R(S_{t}, A_{t}, S_{t+1}) | \pi\right]$$

Política:

$$V^*(s) = \max_{\pi} \mathbb{E} \left[\sum_{t=0}^{H} \gamma^t R(s_t, a_t, s_{t+1}) \mid \pi, s_0 = s \right]$$

Asumamos:

Las acciones son exitosas en forma determinística gamma = 1, y H = 100

$$V^*(s) = \max_{\pi} \mathbb{E} \left[\sum_{t=0}^{H} \gamma^t R(s_t, a_t, s_{t+1}) \mid \pi, s_0 = s \right]$$

Asumamos:

Las acciones son exitosas en forma determinística, gamma = 1, y H = 100

- V* (4,3) \nearrow 1
- $V^*(3,3) = 1$
- $V^*(2,3) = 1$
- V*(1,1) = 1
- V*(4,2)=

$$V^*(s) = \max_{\pi} \mathbb{E} \left[\sum_{t=0}^{H} \gamma^t R(s_t, a_t, s_{t+1}) \mid \pi, s_0 = s \right]$$

Asumamos:

Las acciones son existosas en forma determinística, gamma = 0.9, y H = 100

•
$$V^*(4,3) = 1$$

• $V^*(3,3) = 3$
• $V^*(2,3) = 3$
• $V^*(1,1) = 3$
• $V^*(1,1) = 3$
• $V^*(4,2) = 3$

•
$$V^*(4,2) = \frac{1}{4}$$

$$V^*(s) = \max_{\pi} \mathbb{E} \left[\sum_{t=0}^{H} \gamma^t R(s_t, a_t, s_{t+1}) \mid \pi, s_0 = s \right]$$

Asumamos:

Las acciones son exitosas en forma determinísticas, gamma = 0.9, y H = 100

•
$$V^*(4,3) = 1$$

•
$$V^*(2,3) =$$

•
$$V*(1,1) =$$

•
$$V^*(4,2) =$$

$$V^*(s) = \max_{\pi} \mathbb{E} \left[\sum_{t=0}^{H} \gamma^t R(s_t, a_t, s_{t+1}) \mid \pi, s_0 = s \right]$$

Asumamos:

Las acciones son son exitosas en forma determinística, gamma = 0.9, y H = 100

- $V^*(4,3) = 1$
- $V^*(3,3) = 0.9$
- $V^*(2,3) = 0.9*0.9=0.81$
- $V^*(1,1) =$
- $V^*(4,2) =$

$$V^*(s) = \max_{\pi} \mathbb{E} \left[\sum_{t=0}^{H} \gamma^t R(s_t, a_t, s_{t+1}) \mid \pi, s_0 = s \right]$$

Asumamos:

Las acciones son son exitosas en forma determinística, gamma = 0.9, y H = 100

- $V^*(4,3) = 1$
- V*(3,3) = 0.9
- $V^*(2,3) = 0.9*0.9=0.81$
- $V^*(1,1) = 0.9^5 = 0.59$
- V*(4,2) = -1

$$V^*(s) = \max_{\pi} \mathbb{E} \left[\sum_{t=0}^{H} \gamma^t R(s_t, a_t, s_{t+1}) \mid \pi, s_0 = s \right]$$

Asumamos:

Las acciones son exitosas con probabilidades de 0.8, gamma = 0.9, y H = 100

•
$$V^*(4,3) = 1$$

• $V^*(3,3) = 0.8 * 0.9 * V^*(4,3) + 0.1 * 0.9 * V^*(3,2) + 0.8 * 0.9 * 0.9 * V^*(3,2) + 0.8 * 0.9 * 0$

•
$$V^*(2,3) = V^*(1,1) = V^*(1,1$$

•
$$V^*(4,2) =$$

- $V_0^*(s) = \text{valor optimo para estado } \underline{s} \text{ cuando } \underline{H=0}$ $V_0^*(s) = 0 \ \forall s$
- $V_1^*(s)$ = valor óptimo para estados cuando H $\neq 1$

•
$$V_1^*(s) = max_a \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma V_0^*(s'))$$

- $V_2^*(s)$ = valor óptimo para estado s cuando H=2
 - $V_1^*(s) = \max_a \sum_{s'} P(s'|s,a)(R(s,a,s') + \gamma V_0^*(s'))$

•
$$V_k^*(s) = \text{valor optimo para estado s cuando } H=k$$
• $V_k^*(s) = \max_a \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma V_{k-1}^*(s'))$

50 SI V= max V T S 5'

algoritmo:

Comienza con
$$V_0^*(s) = 0 \ \forall s$$

Para $k=1, ..., H$

Para todos los estados s en S:

$$V_k^*(s) = \max_{a} \sum_{s'} P(s'|\overline{s}, a) (R(s, a, s') + p) V_{k-1}^*(s')$$

$$\pi_k^*(s) = \underset{s}{\operatorname{argmax}} \sum_{a} P(s'|s,a)(R(s,a,s') + \gamma V_{k-1}^*(s'))$$

$$V_0^*(s) \leftarrow 0$$

$$k=0$$

0	0	0	0
0		0	0
0	0	0	0

Valores después de 0 iteración

$$V_2^*(s) \leftarrow \max_a \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma V_1^*(s'))$$

k=1

0	0	0	1
0		0	-1
0	0	0	0

Valores después de 1 iteración

$$V_3^*(s) \leftarrow \max_a \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma V_1^*(s'))$$

$$k=2$$

0	0	0.72	1
0		0	-1
0	0	0	0

Valores después de 2 iteraciones

$$V_{k+1}^*(s) \leftarrow \max_{a} \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma V_k^*(s'))$$

0.64	0.74	0.85	1.00
0.55		0.57	-1.00
0.46)	0.40	0.47	0.27

Valores después de 9 iteraciones

0.64	0.74	0.85	1.00
0.55		0.57	-1.00
0.49	0.43	0.48 💢	0.28

Valores después de 100 iteraciones

Teorema:

El valor iterado converge. En convergencia, encontramos que la función de valor optimal V^* para el problema de horizontes infinitos descontados , lo que satisface a las ecuaciones de Bellman.

$$\forall S \in S:$$

$$V^*(s) \leftarrow \max_{A} \sum_{s'} T(s, a, s') \left[(R(s, a, s') + \gamma V_k^*(s')) \right]$$

$$T \leftarrow \arg\max_{A} \sum_{s'} T(s, a, s') \left[(R(s, a, s') + \gamma V_k^*(s')) \right]$$

Ecuaciones de Bellman.

$$V^*(s) \leftarrow max_A \sum_{s'} T(s, a, s') [(R(s, a, s') + \gamma V_k^*(s'))]$$

Ecuaciones de Bellman.

$$V^*(s) \leftarrow max_A \sum_{s'} T(s, a, s') [(R(s, a, s') + \gamma V_k^*(s'))]$$

Ecuaciones de Bellman (Godate Rule)

$$\underline{\underline{V^*(s)}} \leftarrow \max_{A} \sum_{S} \underbrace{\mathcal{P}(s, a, s')} \left[(R(s, a, s') + \gamma V_k^*(s')) \right]$$

- Def > Regla

de

Actualización

- Recursiva odinamia

Ahora sabemos como actuar para horizontes infinitos con recompensas descontadas.

- 1. Hacer correr la iteración del valor hasta su convergencia
- 2. Esto genera V*, lo que nos dice como actuar, y se escribe así:

$$\pi^* (s) = argmax_{a \in A} \sum_{s'} T(s, a, s') [(R(s, a, s') + \gamma V^* (s'))]$$

Notar que la política optimal de horizontes infinitos es estacionaria, esto quiere decir la acción optima para el estado s es la misma acción siempre

- V* (s) suma de recompensas esperadas acumuladas desde el estado s, actuando óptimamente para pasos infinitos.
- V_H^{**} (s) suma de recompensas esperadas acumuladas desde el estado s, actuando óptimamente para H numero pasos.
- Adicionalmente, recompensas coleccionadas sobre tiempo H+1, H*2

$$\gamma^{H+1}R(s_{H+1}) + \gamma^{H+2}R(s_{H+2}) + \ldots \leq \gamma^{H+1}R_{max} + \gamma^{H+2}R_{max} + \ldots = \frac{\gamma^{H+1}}{1-\gamma}R_{max}$$

- Tiende a cero cuando H va a infinito
- Entonces,

$$V_H^* \xrightarrow{H \to \infty} V *$$