Update on Dual Energy Phase Contrast

Scott Trinkle

November 15, 2017

Model

Measured intensity:

$$I_R^{(j)} = \int w(E) I_0^{(j)}(E) T(E) \left(1 + \frac{R_2}{k(E)} \nabla^2 \phi(E) \right) dE$$

with:

```
w(E)
I_0^{(j)}
         detector response [\approx E]
         entrance intensity for spectrum j [photons/s/0.1%BW/mrad<sup>2</sup>]
T(E)
         transmission factor [unitless]
```

 R_2 sample-detector distance [\approx 30 cm] k(E) wave number $\left[\frac{2\pi}{\lambda(E)}\approx 10^{11}\text{ m}\right]$

phase factor [unitless] $\phi(E)$

Spectra: $I_0^{(j)}(E) \approx 10^{13}$

$\phi(E)$ and T(E)

$$\phi(E) = r_e \lambda(E) \sum_i f_1^{(i)}(E) \int_L n_{a,i}(\vec{x}) dI$$

$$T(E) = \exp\left(-2r_e \lambda(E) \sum_i f_2^{(i)}(E) \int_L n_{a,i}(\vec{x}) dI\right)$$

with:

$$r_{\rm e}$$
 classical electron radius [$\approx 10^{-15}$ m] $\lambda(E)$ wavelength [$\approx 10^{-11}-10^{-9}$ m] f_1 , f_2 oscillation modes per atom [$\approx 10^1-10^2$ atom $^{-1}$] $n_{a,i}(\vec{x})$ "atomic" number density [atoms / cm 3]

f_1 and f_2 from NIST

H₂O and Metal Phantoms

Al filter

No filter

$$\int_L n_{a,i}(\vec{x}) dl$$

Normalized phantom images by number densities:

$$\int_{L} n_{a,i}(\vec{x}) dl \approx \frac{\rho_{i} N_{a}}{A_{i}} \Delta L * \left(\frac{\mathsf{ph}_{i}(\vec{x})}{\mathsf{mean}\{\mathsf{ph}_{i}(\vec{x})\}} \right)$$
$$\approx 10^{25} \; [\mathsf{cm}^{-2}]$$

$$\begin{array}{c|cccc} & H_2O & U & Os \\ \hline \rho \ [g/cm^3] & 1.0 & 19.1 & 22.59 \\ A \ [g/mol] & 18.03 & 238.03 & 190.23 \\ \end{array}$$

$$N_a = 6.022e23$$
 atoms/mole $\Delta L = 2.38$ mm

$\nabla^2 \int_L n_{a,i}(\vec{x}) dI$

	H_2O	Us	U
Mean	4e5	1e6	-1e6
Absolute value mean:	2e23	5e23	3e23
Max:	4e24	2e25	1e25

4□ > 4□ > 4 = > 4 = > = 90

$$\nabla^{2} \phi(E) = r_{e} \lambda(E) \sum_{i} f_{1}^{(i)}(E) \left[\nabla^{2} \int_{L} n_{a,i}(\vec{x}) dl \right]$$

$$\approx [10^{-15} \text{ m}][10^{-11} - 10^{-9} \text{ m}][10^{2}][10^{6} - 10^{25} \text{ m}^{-4}]$$

$$\approx 10^{-18} - 10^{3} \text{ m}^{-2}$$

$\nabla^2 \phi(E)$

Issue: Small phase term

Recall:

$$I_{R}^{(j)} = \int w(E)I_{0}^{(j)}(E)T(E)\left(1 + \frac{R_{2}}{k(E)}\nabla^{2}\phi(E)\right)dE$$

Phase term:

$$\begin{split} &\frac{R_2}{k(E)} \nabla^2 \phi(E) \\ &\approx \frac{\left[10^1 \text{ m}\right]}{\left[10^{11} \text{ m}^{-1}\right]} \cdot \left[10^3 \text{ m}^{-2}\right] \\ &\approx 10^{-7} \end{split}$$

Issue: Small phase term

Mean 7e-26 Absolute value mean: 6e-9 Max: 1e-6

Issue: Small phase term

