Core-Maths-C4 - 2011-January

Question 1

Use integration to find the exact value of

$$\int_0^{\frac{\pi}{2}} x \sin 2x \, \mathrm{d}x$$

(6)

Question 2

The current, I amps, in an electric circuit at time t seconds is given by

$$I = 16 - 16(0.5)^t$$
, $t \ge 0$

Use differentiation to find the value of $\frac{dI}{dt}$ when t = 3.

Give your answer in the form $\ln a$, where a is a constant.

(5)

(a) Express $\frac{5}{(x-1)(3x+2)}$ in partial fractions.

(3)

(b) Hence find $\int \frac{5}{(x-1)(3x+2)} dx$, where x > 1.

(3)

(c) Find the particular solution of the differential equation

$$(x-1)(3x+2)\frac{dy}{dx} = 5y, x > 1,$$

for which y = 8 at x = 2. Give your answer in the form y = f(x).

(6)

Question 4

Relative to a fixed origin O, the point A has position vector $\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$ and the point B has position vector $-2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$. The points A and B lie on a straight line I.

(a) Find \overrightarrow{AB} .

(2)

(b) Find a vector equation of l.

(2)

The point C has position vector $2\mathbf{i} + p\mathbf{j} - 4\mathbf{k}$ with respect to O, where p is a constant. Given that AC is perpendicular to l, find

(c) the value of p,

(4)

(d) the distance AC.

(2)

(a) Use the binomial theorem to expand

$$(2-3x)^{-2}$$
, $|x|<\frac{2}{3}$,

in ascending powers of x, up to and including the term in x^3 . Give each coefficient as a simplified fraction.

(5)

$$f(x) = \frac{a+bx}{(2-3x)^2}$$
, $|x| < \frac{2}{3}$, where a and b are constants.

In the binomial expansion of f(x), in ascending powers of x, the coefficient of x is 0 and the coefficient of x^2 is $\frac{9}{16}$. Find

(b) the value of a and the value of b,

(5)

(c) the coefficient of x^3 , giving your answer as a simplified fraction.

(3)

The curve C has parametric equations

$$x = \ln t$$
, $y = t^2 - 2$, $t > 0$

Find

(a) an equation of the normal to C at the point where t = 3,

(6)

(b) a cartesian equation of C.

(3)

Figure 1

The finite area R, shown in Figure 1, is bounded by C, the x-axis, the line $x = \ln 2$ and the line $x = \ln 4$. The area R is rotated through 360° about the x-axis.

(c) Use calculus to find the exact volume of the solid generated.

(6)

$$I = \int_{2}^{5} \frac{1}{4 + \sqrt{(x-1)}} dx$$

(a) Given that $y = \frac{1}{4 + \sqrt{(x-1)}}$, complete the table below with values of y corresponding to x = 3 and x = 5. Give your values to 4 decimal places.

х	2	3	4	5
у	0.2		0.1745	

(2)

(b) Use the trapezium rule, with all of the values of y in the completed table, to obtain an estimate of I, giving your answer to 3 decimal places.

(4)

(c) Using the substitution $x = (u-4)^2 + 1$, or otherwise, and integrating, find the exact value of I.

(8)