Rocket Math Stuff

1 Variables

Variable	Symbol	Units	Description
Height	h(t)	\overline{m}	Height off ground
Velocity	v(t)	m/s	Velocity of rocket
Acceleration	a(t)	m/s^2	Acceleration of rocket
Thrust	T(t)	$kg \cdot m/s^2$	Thrust of rocket
Burn rate	$\mid B \mid$	m/s	Fuel burn rate (time, not energy)
Gravity	$\mid g \mid$	m/s^2	Gravity (≈ 9.807)
Mass	m(t)	kg	Mass of rocket
Core Radius	R_c	m	Initial radius of inner core (function of angle if not cylindrical co
Inner radius	r(t)	m	Radius of core at given time
Rocket Length	$\mid L$	m	Vertical length of rocket
Rocket Radius	R	m	Inner rocket radius (e.g. exclude PVC thickness)
Outer Radius	R_o	m	Outer rocket radius (measured from center to edge of PVC)
Fuel density	$ ho_f$	kg/m^3	Fuel density
Air Density	$\rho_a(h)$	kg/m^3	Air density (decreases with height)
Drag	C_d	None	Drag coefficient (related to Reynold's number)
Rocket Area	$\mid A \mid$	m^2	Cross sectional area of rocket (for drag computation)

2 Equations

2.1 Velocity/Height

Governing equation:

$$\sum F = T(t) - gm(t) - \gamma v^2 = m(t)a(t) = m(t)\dot{v}$$

$$\dot{v} = \frac{T(t)}{m(t)} - g - \frac{\gamma v^2}{m(t)}$$
(1)

Drag is proportional to v^2 for turbulent flows (is this turbulent or laminar..? not sure since high speed but moderately aerodynamic object). If it's laminar, proportional to v. Drag coefficient equation (source: Wikipedia):

$$\gamma = \frac{1}{2}\rho_a C_d A = \frac{\pi}{2} C_d R_o^2 \rho_a(h) \tag{2}$$

Gravity (approximated for now to get rid of nonlinearities):

$$g = \frac{GM_{\oplus}}{R_{\oplus} + h(t)} \approx 9.807$$

2.1.1 Mass

In a given moment, $2\pi r(t)Hdr$ m^3 of fuel is being burned (assumptions: symmetric cylindrical burn).

Assuming the fuel burns outward at a constant rate:

$$r(t) = \begin{cases} Bt + r_c & t \leq \frac{R - r_c}{B} \\ r_c & t > \frac{R - r_c}{B} \end{cases}$$
 (3)

With this, the mass of the rocket is:

$$m(t) = M_0 - \int_0^t 2\pi (B\tau + r_c) H \, d\tau = M_0 - \pi H \left[2r_c t + Bt^2 \right]$$
 (4)