1 The computation of $G_n(\mathbb{Q}_p)$

1.1 The computation of the first block M_{11}

Proposition 1.1.1. Let $x = \sum_{i=1}^{n-1} \lambda_i e_{i,i+1}$, where $\lambda_i \in \mathbb{Q}_p$ not all zero. Then $\dim \mathcal{C}_{\gamma_3}(x) = l+m$, where \boldsymbol{l} is the number of sequences of non-zero coefficients of the form $\lambda_j, \lambda_{j+1}, \ldots, \lambda_{j+k-1}, \lambda_{j+k}$ and $\lambda_{j-1} = \lambda_{j+k+1} = 0^1$, and \boldsymbol{m} is the number of zero coefficients $\lambda_j = 0$, such that also $\lambda_{j-1} = \lambda_{j+1} = 0$.

Proof. Let $y = \sum_{i=1}^{n-1} \mu_i e_{i,i+1} \in \mathcal{C}_{\gamma_3}(x)$, where $\lambda_i \in \mathbb{Q}_p$. For every $1 \leq 1$ $i \leq n-1$, denote by c_i the constraint equation $[\lambda_i e_{i,i+1}, \mu_{i+1} e_{i+1,i+2}]$ $[\lambda_{i+1}e_{i+1,i+2}, \mu_i e_{i,i+1}] = (\lambda_i \mu_{i+1} - \lambda_{i+1}\mu_i)e_{i,i+2} = 0.$ Let $1 \le j \le n-1$ and $1 \le k \le n-1-j$ be two indices, such that $\lambda_{j-1} = \lambda_{j+k+1} = 0$, and $\lambda_j, \lambda_{j+1}, \dots, \lambda_{j+k-1}, \lambda_{j+k}$ are all non-zero, then by constraints $c_j, c_{j+1}, \dots, c_{m-1}$, we have that $\mu_m = \frac{\lambda_m}{\lambda_{m-1}} \mu_{m-1} = \frac{\lambda_m}{\lambda_{m-1}} \frac{\lambda_{m-1}}{\lambda_{m-2}} \mu_{m-2} = \frac{\lambda_m}{\lambda_{m-2}} \mu_{m-2} = \cdots = \frac{\lambda_m}{\lambda_j} \mu_j$, for every $j+1 \leq m \leq j+k-1$, which means that all μ coefficients of y, with indices from j+1 to j+k, depend on the first coefficient, namely μ_i . We denote the free choice of μ_i by $\mu_i = *$. One easily checks that we can choose freely any coefficient μ_m from j+1 to j+k, instead of μ_j , and all other coefficients in that range will depend on our choice of μ_m . By constraint c_{j-1} , we have that $\lambda_{j-1}\mu_j - \lambda_j\mu_{j-1} = 0$, but $\lambda_{j-1} = 0$, hence $\lambda_j\mu_{j-1}$ must vanish, but $\lambda_j \neq 0$, which obviously means that $\mu_{j-1} = 0$. Similarly, we have that $\mu_{j+k+1} = 0$, due to constraint c_{j+k} . By constraint c_{j+k+1} , we have that $\lambda_{k+k+1}\mu_{j+k+2} - \lambda_{j+k+2}\mu_{j+k+1} = 0$, but $\lambda_{j+k+1} = \mu_{j+k+1} = 0$, hence, $\lambda_{j+k+1}\mu_{j+k+2}$ must vanish, but $\lambda_{j+k+1}=0$, which means that we need to look at constraint c_{j+k+2} , that is, $\lambda_{j+k+2}\mu_{j+k+3} - \lambda_{j+k+3}\mu_{j+k+2} = 0$. We check the different options. If $\lambda_{j+k+2} = 0$, then $\lambda_{j+k+3}\mu_{j+k+2}$ must vanish. Therefore, if $\lambda_{j+k+3} \neq 0$, then $\mu_{j+k+2} = 0$, but if $\lambda_{j+k+3} = 0$, then $\mu_{j+k+2} = *$. If $\lambda_{j+k+2} \neq 0$, then again $\mu_{j+k+2} = *$. If $\lambda_{j+k+2} \neq 0$, then $\mu_{j+k+2} = *$, and we continue the same way as for λ_i and its following coefficients.

¹We extend our notation of indices, to include also the case where j=1 or j+k=n-1, and define that $\lambda_{j-1}=\lambda_0=0$ or $\lambda_{j+k+1}=\lambda_n=0$, respectively