Prove that $\sqrt{7}$ is irrational.

$$S:\sqrt{7}\in\mathbb{Q}'$$

$$eg S: \sqrt{7} \in \mathbb{Q}$$

We prove S by **contradiction**. That is:

Suppose S;

 $\neg S \rightarrow N \mid S$, where N is some **nonsense**.

We assume $\sqrt{7}$ to be rational, that implies $\sqrt{7}=\frac{p}{q}$, where $p\in\mathbb{Z}\land q\in\mathbb{Z}-\{0\}$ and that p,q are relatively prime, i.e. coprime integers $\Rightarrow \not\exists d\in\mathbb{N}-\{1\}: d\mid p\land d\mid q$.

$$egin{aligned} \sqrt{7} &= rac{p}{q} \ 7 &= \left(rac{p}{q}
ight)^2 \ 7 &= rac{p^2}{a^2} \end{aligned}$$

 $7q^2=p^2\Rightarrow 7\mid p^2$

Assumption: $7 \mid p^2 \Rightarrow 7 \mid p$

$$A:7\mid p^2\Rightarrow 7\mid p$$

$$A': 7 \nmid p \Rightarrow 7 \nmid p^2$$

Let p=7a+1, where $a\in\mathbb{Z}$: $p^2=(7a+1)^2\dots 7\times (7a^2+7a)+1$. Let $(7a^2+7a)=z\Rightarrow 7z+1\Rightarrow 7\nmid 7z+1\Rightarrow 7\nmid p^2$. The assumptions is **true**.

Thus, $7\mid p^2\Rightarrow 7\mid p\Rightarrow p=7a$, where $a\in\mathbb{Z}.$

$$7q^2 = (7a)^2$$

$$7q^2 = 49a^2$$

$$q^2 = 7a^2 \Rightarrow 7 \mid q^2 \Rightarrow 7 \mid q$$

Contradiction with the assumption: p, q are not relatively prime, symbolically:

$$\exists d \in \mathbb{N} - \{1\} : d \mid p \wedge d \mid q \Rightarrow \sqrt{7}
eq rac{p}{q} \Rightarrow \sqrt{7}
otin \mathbb{Q} \Rightarrow \sqrt{7} \in \mathbb{Q}'.$$

Conclusion: $\sqrt{7}$ is an irrational number.