

## Unit 4

#### Grammars

Grammars express languages

Example: the English language

$$\langle noun\_phrase \rangle \rightarrow \langle article \rangle \langle noun \rangle$$

 $\langle predicate \rangle \rightarrow verb \rangle$ 

### **Grammar Notation**

#### **Production Rules**



Variable

Terminal

### Some Terminal Rules

$$\langle ARTICLE \rangle \rightarrow A$$

$$\langle ARTICLE \rangle \rightarrow THE$$

$$\langle noun \rangle \rightarrow cat$$
 $\langle noun \rangle \rightarrow dog$ 

$$\langle verb \rangle \rightarrow runs$$
  
 $\langle verb \rangle \rightarrow walks$ 

#### A RESULTING SENTENCE

```
\langle sentence \Rightarrow \langle noun\_phrase \rangle \langle predicate \rangle
                   \Rightarrow \langle noun\_phrase \rangle \langle verb \rangle
                          \langle \Rightarrow article noun(verb) \rangle
                   \Rightarrow the \langle nounyerb \rangle
                   \Rightarrow the dog verb \rangle
                   \Rightarrow the dog walks
```

#### THE RESULTING LANGUAGE

```
L = \{ \text{"a cat runs"}, 
      "a cat walks",
      "the cat runs",
      "the cat walks",
      "a dog runs",
      "a dog walks",
      "the dog runs",
      "the dog walks" }
```

#### Definition of a Grammar

$$G = (V, T, S, P)$$

V: Set of variables

T: Set of terminal symbols

S: Start variable

P: Set of Production rules

## A Simple Grammar

• Grammar: 
$$S \rightarrow aSb$$
  $S \rightarrow \lambda$ 

Derivation of sentence

$$S \Rightarrow aSb \Rightarrow ab$$

$$S \rightarrow aSb^{S} \rightarrow \lambda$$

## **Example Grammar Notation**

$$S \rightarrow aSb$$
 $S \rightarrow \lambda$ 

$$G = (V, T, S, P)$$

$$V = \{S\} \qquad T = \{a,b\}$$

$$P = \{S \rightarrow aSb, S \rightarrow \lambda\}$$

#### Deriving Strings in the Grammar

Grammar:

$$S \rightarrow aSb$$
 $S \rightarrow \lambda$ 

ullet Derivation of sentence aabb:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$

$$S \rightarrow aSb \qquad S \rightarrow \lambda$$

#### SENTENTIAL FORM

 A sentence that contains variables and terminals

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$$

Sentential Forms sentence

#### General Notation for Derivations

• In general we write:  $w_1 \rightarrow w_n$ 

• If:  $W_1 \Rightarrow W_2 \Rightarrow W_3 \Rightarrow \square \Rightarrow W_n$ 

• It is always the case that:  $W \Rightarrow W$ 

## Why Notation Is Useful

We can now write:

\*

$$S \Rightarrow aaabbb$$

Instead of:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$$

#### Language of a Grammar

Grammar can produce some set of strings

Set of strings over an alphabet is a language

Language of a grammar is all strings produced by the grammar

$$L(G) = \{w : S \Rightarrow w\}$$

String of terminals

#### Example Language

$$S \rightarrow aSb$$

$$S \rightarrow \lambda$$

Consider the set of all strings that can derived from this grammar.....

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$$

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb$$

$$\Rightarrow aaaaSbbbb \Rightarrow aaaabbbb$$

What language is being described?

#### THE RESULTING LANGUAGE

$$S \rightarrow aSb$$
 $S \rightarrow \lambda$ 

Always add on a and b on each side resulting in:

a's at the left

b's at the right

equal number of a's and b's

#### LINEAR GRAMMARS

 Grammars with at most one variable at the right side of a production

• Examples:  $S \rightarrow aSb$ 

$$S \rightarrow \lambda$$

### A Non-Linear Grammar

Grammar 
$$G: S \to SS$$

$$S \to \lambda$$

$$S \to aSb$$

$$S \to bSa$$

$$L(G) = \{w$$

$$\vdots$$

$$n_a(w) = n_b(w)\}$$

Number of a'sstring

### **Another Linear Grammar**

Grammar 
$$G: S \to A$$
 
$$A \to aB \mid \lambda$$
 
$$B \to Ab$$

$$L(G) = \{a^n b^n : n \ge 0\}$$

#### RIGHT-LINEAR GRAMMARS

All productions have form:

$$A \rightarrow xB$$

• Example:  $S \rightarrow abS$ 

$$S \rightarrow a$$



#### Left-Linear Grammars

All productions have form:

$$A \rightarrow Bx$$
or
 $A \rightarrow x$ 
string of terminals

• Example:  $S \to Aab$   $A \to Aab \mid B$   $B \to a$ 

## Regular Grammars

#### REGULAR GRAMMARS

 A regular grammar is any right-linear or left-linear grammar

• Examples:

$$S \rightarrow abS$$

$$S \rightarrow a$$

$$S \rightarrow Aab$$

$$A \rightarrow Aab \mid B$$

$$B \rightarrow a$$



What languages are generated by these grammars?

#### Languages and Grammars

 $S \rightarrow abS$ 

$$S \rightarrow a$$
 
$$A \rightarrow Aab \mid B$$
 
$$B \rightarrow a$$
 
$$L(G_1) = (ab) * a \qquad L(G_2) = aab(ab) *$$
 Note both these languages are regular we have regular expressions for these languages (above) we can convert a regular expression into an NFA (how?) we can convert an NFA into a DFA (how?) we can convert a DFA into a regular expression (how?) Do regular grammars also describe regular languages??

 $S \rightarrow Aab$ 

## Example

Given right linear grammar:

$$V_0 \rightarrow aV_1$$

$$V_1 \rightarrow abV_0|b$$

## STEP 1: CREATE STATES FOR EACH VARIABLE

• Construct NFA  $\ \$  such that every state is a grammar variable:



$$V_0 \rightarrow aV_1$$
 $V_1 \rightarrow abV_0|b$ 

## STEP 2.1: EDGES FOR PRODUCTIONS

ullet Productions of the form  $V_i 
ightarrow a V_j$  result in  $\delta(V_i,a)=V_j$ 



$$V_0 
ightarrow aV_1$$
 $V_1 
ightarrow abV_0 | b$ 

## STEP 2.2: EDGES FOR PRODUCTIONS

• Productions of the form  $V_i \to w V_j$  are only slightly harder.... Create row of states that derive w and end in  $V_j$ 



## STEP 2.3: EDGES FOR PRODUCTIONS

• Productions of the form  $V_i o w$ Create row of states that derive w and end in a final state



#### In General

- Given any right-linear grammar, the previous procedure produces an NFA
  - We sketched a proof by construction
  - Result is both a proof and an algorithm
  - Why doesn't this work for a non linear grammar?
- Since we have an NFA for the language, the right-linear grammar produces a regular language

#### NFA TO GRAMMAR EXAMPLE

ullet Since L is regular there is an NFA



# Step 1: Convert Edges to Productions

$$q_{0} \rightarrow aq_{1}$$

$$q_{1} \rightarrow bq_{1}$$

$$q_{1} \rightarrow aq_{2}$$

$$q_{2} \rightarrow bq_{3}$$

$$M$$

$$q_{0} \rightarrow aq_{1}$$

$$q_{1} \rightarrow aq_{2}$$

$$\lambda$$

$$q_{3} \rightarrow bq_{3}$$

## Step 2:

## <sup>λ</sup> Edges and Final States



#### STEP 2:

### <sup>1</sup> Edges and Final

### STATES

$$q_0 \rightarrow aq_1$$

$$q_1 \rightarrow bq_1$$

$$q_1 - aq$$

$$q_2 \rightarrow bq_3$$

$$q_3 \rightarrow q_1$$

$$q_3 \rightarrow \lambda$$



If  $q_i$  is a final state, add  $q_i 
ightarrow \lambda$ 

#### In General

- Given any NFA, the previous procedure produces a right linear grammar
  - We sketched a proof by construction
  - Result is both a proof and an algorithm
- Every regular language has an NFA
  - Can convert that NFA into a right linear grammar
  - Thus every regular language has a right linear grammar
- Combined with Part 1, we have shown right linear grammars are yet another way to describe regular languages

#### But What About Left-Linear Grammars

 What happens if we reverse a left linear grammar as follows:

$$V_i 
ightarrow V_j w$$
 Reverses to  $V_i 
ightarrow w^R V_j$ 

- $V_i 
  ightharpoonup w$  Reverses to  $V_i 
  ightharpoonup w^R$  The result is a right linear grammar.
  - If the left linear grammar produced L, then what does the resulting right linear grammar produce?

#### But What About Left-Linear Grammars

The previous slide reversed the language!
 Reverses to

$$V_i 
ightarrow V_j w$$
 Reverses to  $V_i 
ightarrow w^R V_j$   $V_i 
ightarrow w$   $V_i 
ightarrow w^R$ 

• If the left linear grammar produced language  $\,$  , L then the resulting right linear grammar produces

Claim we just proved left linear grammars produce regular languages? Why?

#### Left-Linear Grammars Produce Regular Languages

- Start with a Left Linear grammar that produces L want to show L regular
- Can produce a right linear grammar that produces
- All right linear grammars produce regular languages so is  $L^R$  gular language
- The reverse of a regular language is regular so  $(L^R)^R = L$  is a regular language!

FOR REGULAR LANGUAGES we will prove that:

Union:  $L_1 \cup L_2$ 

Concatenation:

Star:  $L_1$  \*

Reversal: 1 R

Complement:  $L_1$ 

Are regular Languages

Intersection:

#### WE SAY: REGULAR LANGUAGES ARE CLOSED UNDER

Union: 
$$L_1 \cup L_2$$

Concatenation: 
$$L_1L_2$$

Star: 
$$L_1$$
\*

Reversal: 
$$L^{R_1}$$

Complement: 
$$L_1$$

Intersection: 710 72

REGULAR LANGUAGE 1

$$L(M_1) = L_1$$

Single final state

Regular language  $\frac{L}{2}$ 

$$L(M_2)=L_2$$



Single final state

$$L_1 = \{a^n b\}$$

$$n \ge 0$$

$$M_1$$

$$a$$

$$b$$

$$0$$

$$L_2 = \{ba\} \qquad \begin{array}{c} M_2 \\ b \\ \end{array}$$

### **Union**



NFA for 
$$L_1 \cup L_2 = \{a^nb\} \cup \{ba\}$$

$$L_1 = \{a^nb\}$$

$$a \rightarrow b \rightarrow b$$

$$\lambda$$

$$L_2 = \{ba\} \lambda$$

### **Concatenation**



$$L_1L_2 = \{a^nb\}\,\{ba\} = \{a^nbba\}$$
 NFA for

$$L_{1} = \{a^{n}b\}$$

$$L_{2} = \{ba\}$$

$$b \leftarrow b \leftarrow b$$

## **Star Operation**





#### REVERSE



- 1. Reverse all transitions
- 2. Make initial state final state and vice versa

$$L_1 = \{a^n b\}$$

$$\frac{M_1}{a}$$

$$L_1^R = \{ba^n\}$$



### COMPLEMENT





- 1. Take the **DFA** that accepts  $\frac{L}{1}$
- 2. Make final states non-final, and vice-versa



$$\overline{L}_{1} = \{a,b\} * -\{a^{n}b\}$$

#### **INTERSECTION**

DeMorgan's Law: 
$$L_1 \cap L_2 = L_1 \cup L_2$$

$$\begin{array}{ccc} & L_1, L_2 & \text{regular} \\ & \underline{\hspace{0.5cm}} & \underline{\hspace{0.5cm}} & \\ & \underline{\hspace{0.5cm}} & L_1, L_2 & \end{array}$$

$$\longrightarrow L_1 \cup L_2$$

$$\longrightarrow L_1 \cup L_2$$
 regular

$$\longrightarrow L_1 \cap L_2$$
 regular

#### CONTEXT SENSITIVE GRAMMAR(CSG)

- Context Sensitive Grammar(CSG) is a quadruple G=(N,Σ,P,S), where
  - N is set of non-terminal symbols
     Σ is set of terminal symbols
  - S is set of start symbol
  - P's are of the form  $aAβ \rightarrow aγβ$  where γ f = s where  $(a, β, γ) ∈ (N ∪ Σ)^*$  and (A ∈ N)
- Why Context Sensitive??
  - Given a production :  $aA\beta \rightarrow a\gamma\beta$  where  $\gamma f = s$ . During derivation non-terminal A will be changed to  $\gamma$  only when it is present in context of a and  $\beta$
- As a consequence of  $\gamma$  f = s we have  $a \to \beta \Rightarrow |a| \le |\beta|$  (Noncontracting grammar)

#### CONTEXT SENSITIVE LANGUAGES

- The language generated by the Context Sensitive Grammar is called context sensitive language.
- If G is a Context Sensitive Grammar then

• 
$$L(G) = \{w | w \in \Sigma^* \text{ and } S \Rightarrow w \}$$

- CSG for L =  $\{a^nb^nc^n | n \ge 1\}$ 
  - $^{\bullet}$  N: {S, B} and  $^{\Sigma}$  = {a, b, c}
  - P: S  $\rightarrow$  aSBc | abc cB  $\rightarrow$  Bc bB  $\rightarrow$  bb
- Derivation of aabbcc :

$$S \Rightarrow aSBc \Rightarrow aabcBc \Rightarrow aabBcc \Rightarrow aabbcc$$

#### Linear Bounded Automata - Definition

Linear Bounded Automata is a single tape Turing Machine with two special tape symbols call them left marker < and right marker > The transitions should satisfy these conditions:

- It should not replace the marker symbols by any other
- \_ symbol.

It should not write on cells beyond the marker symbols.

Thus the initial configuration will be:

< q0a1a2a3a4a5.....an >

- A linear bounded automaton can be defined as an 8-tuple (Q, X,  $\Sigma$ , q<sub>0</sub>, ML, MR,  $\delta$ , F) where –
- Q is a finite set of states
- X is the tape alphabet
- $\square$   $\sum$  is the input alphabet
- $\mathbf{q}_0$  is the initial state
- $\mathbf{M}_{\mathbf{L}}$  is the left end marker
- floor  $M_R$  is the right end marker where  $M_R \neq M_L$
- δ is a transition function which maps each pair (state, tape symbol) to (state, tape symbol, Constant 'c') where c can be 0 or +1 or -1
- **F** is the set of final states

# END