# Exemplo de Aplicação de Transformações Lineares: Análise das Componentes Principais

#### Guilherme de Alencar Barreto

gbarreto@ufc.br

Departamento de Engenharia de Teleinformática (DETI) Engenharias de Computação, Telecomunicações e Teleinformática Universidade Federal do Ceará — UFC www.researchgate.net/profile/Guilherme\_Barreto2/

# Conteúdo dos Slides

- Transformadas Matriciais
- 2 Descrição do Problema
- Algoritmo PCA: Passo-a-Passo
- O Diagonalização da Matriz de Covariância
- Interpretação Geométrica
- Redução de Dimensionalidade
- Exemplos Teórico-Computacionais

Análise das Componentes Principais

#### Transformadas Matriciais

Para cada  $\mathbf{x} \in \mathbb{R}^p$ , uma transformada matricial é definida por

$$\mathbf{z} = \mathbf{W}\mathbf{x} \quad (\text{ou} \quad \mathbf{W}\mathbf{x} = \mathbf{z}), \tag{1}$$

em que **W** é uma matriz  $q \times p$ .

 Para simplificar, muitas vezes denotamos essa transformação matricial por

$$x \mapsto Wx$$
 (2)

Análise das Componentes Principais

### Diagrama de Blocos

Ajuda muito no entendimento de uma transformação linear se representarmos a relações  $\mathbf{z} = \mathbf{W}\mathbf{x}$  na forma de um diagrama de blocos do tipo entrada-saída.



### Formalização Matemática do Problema

• Considere um conjunto de dados formado por N vetores de atributos  $\mathbf{x}_k$ ,  $k=1,\ldots,N$ , que estão organizados ao longo das colunas da matriz  $\mathbf{X}$ :

$$\mathbf{X} = [\mathbf{x}_1 \mid \mathbf{x}_2 \mid \cdots \mid \mathbf{x}_N], \quad \dim(\mathbf{X}) = p \times N$$
 (3)

• Cada vetor de atributo  $\mathbf{x}_k$  tem dimensão  $p \times 1$ , ou seja

$$\mathbf{x}_{k} = \begin{bmatrix} x_{1,k} \\ x_{2,k} \\ \vdots \\ x_{p,k} \end{bmatrix} \tag{4}$$

• Assume-se que p é muito grande (i.e.  $p \to \infty$ ).

#### Formalização Matemática do Problema

• Deseja-se transformar cada vetor  $\mathbf{x}_k$  no conjunto de dados em um outro vetor  $\mathbf{z}_k$  de dimensão q, ou seja

$$\mathbf{z}_{k} = \begin{bmatrix} z_{1,k} \\ z_{2,k} \\ \vdots \\ z_{q,k} \end{bmatrix}, \quad \text{tal que } q \le p.$$
 (5)

• Isto deve ser feito por meio de uma transformação linear:

$$\mathbf{z}_k = \mathbf{Q}\mathbf{x}_k, \quad \forall k = 1, \dots, N.$$
 (6)

 Além disso, esta transformação deve preservar a informação relevante constante no conjunto X.

• Passo 1 - Determinar o vetor-médio dos dados em X:

$$\bar{\mathbf{x}} = \frac{1}{N} \sum_{k=1}^{N} \mathbf{x}_k. \tag{7}$$

- Passo 2 Centralizar os dados:  $\mathbf{x}_k = \mathbf{x}_k \bar{\mathbf{x}}$ .
- Passo 3 Estimar a matriz de covariância dos dados em X:

$$\mathbf{C}_{\mathbf{x}} = E[\mathbf{x}\mathbf{x}^T], \tag{8}$$

$$\approx \frac{1}{N} \sum_{k=1}^{N} \mathbf{x}_k \mathbf{x}_k^T, \tag{9}$$

em que  $E[\cdot]$  é o operador valor esperado.

• Passo 4 - Determinar os p autovalores da matriz  $\mathbf{C}_{\mathbf{x}}$  e os p autovetores correspondentes. Em outras palavras, resolver o seguinte sistema de equações:

$$\mathbf{C}_{\mathbf{x}}\mathbf{v} = \lambda\mathbf{v},\tag{10}$$

em que  $\lambda$  e  ${\bf v}$  denotam, respectivamente, o autovalor e o autovetor associado.

• Os autovalores são as raízes do polinômio em  $\lambda$ , de ordem p, obtido a partir da seguinte expressão:

$$\det(\mathbf{C}_{\mathbf{x}} - \lambda \mathbf{I}_p) = 0. \tag{11}$$



- A Eq. (10) trata de um problema clássico em sistemas lineares: o problema do autovalor.
- Este é um caso particular do problema mais geral de transformações lineares do tipo  $\mathbf{A}\mathbf{x} = \mathbf{b}$ .
- ullet Lembre-se que a operação matricial  ${\bf A}{\bf x}$  produz um vetor  ${\bf b}$ .
- Para gerar o vetor  $\mathbf{b}$ , o vetor  $\mathbf{x}$  tem sua norma e/ou orientação modificados pela multiplicação pela matriz  $\mathbf{A}$ .
- O problema do autovalor é um caso particular de transformação linear em que  $\mathbf{b} = \lambda \mathbf{x}$ .
- $\bullet$  Ou seja, a matriz **A** altera apenas a norma de **x**, pois gera um vetor múltiplo de **x**.



- Por ser uma matriz simétrica e definida positiva, os p autovalores são sempre positivos.
- Para resolver a Eq. (10), a escrevemos como um sistema homogêneo:

$$\mathbf{C}_{\mathbf{x}}\mathbf{v} = \lambda\mathbf{v} \quad \Rightarrow \quad (\mathbf{C}_{\mathbf{x}} - \lambda\mathbf{I}_p)\mathbf{v} = \mathbf{0}_p,$$
 (12)

em que  $\mathbf{0}_p$  é um vetor de zeros de dimensão  $p \times 1$ .

- Este sistema tem uma única solução  $\mathbf{v} = \mathbf{0}_p$ , chamada de trivial, se o determinante de  $\mathbf{C}_{\mathbf{x}} \lambda \mathbf{I}_p$  for diferente de zero.
- A solução trivial não nos interessa. Logo, buscamos as soluções não-triviais, ou seja, aquelas para as quais o determinante de  $\mathbf{C_x} \lambda \mathbf{I}_p$  é nulo. Vide Eq. (11).



- A Eq. (11) resulta em uma equação polinomial em  $\lambda$  de ordem p. Os autovalores são as raízes deste polinômio.
- $\bullet$  Suponha que a matriz  $\mathbf{C}_{\mathbf{x}}$  é dada por

$$\mathbf{C_x} = \left[ \begin{array}{cc} 1 & 0.8 \\ 0.8 & 4 \end{array} \right]$$

• Neste caso, a matriz  $\mathbf{C}_{\mathbf{x}} - \lambda \mathbf{I}_2$  é dada por

$$\begin{bmatrix} 1 & 0, 8 \\ 0, 8 & 4 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} 1 - \lambda & 0, 8 \\ 0, 8 & 4 - \lambda \end{bmatrix}$$

• Igualando seu determinante a zero, obtemos a seguinte equação polinomial:

$$p(\lambda) = (1-\lambda)(4-\lambda) - (0,8)(0,8) = \lambda^2 - 5\lambda + 3,36 = 0.$$
 (13)

- Cujas raízes são  $\lambda_1 = 0, 8$  e  $\lambda_2 = 4, 2$ .
- Em Octave/Matlab, as raízes de  $p(\lambda)$  podem ser encontradas por meio do seguinte comando:
  - » roots([1 -5 3.36])

- Como a matriz  $C_x$  é positiva definida, todos os seus p autovalores são positivos e distintos.
- Os autovalores devem ser ordenados em ordem decrescente de suas magnitudes:

$$\lambda_1 > \lambda_2 > \lambda_3 > \dots > \lambda_p \tag{14}$$

 $\bullet$  Os autovetores são determinados resolvendo-se o sistema na Eq. (10) p vezes, uma para cada autovalor:

$$\mathbf{C}_{\mathbf{x}}\mathbf{v}_i = \lambda_i \mathbf{v}_i, \quad i = 1, \dots, p.$$
 (15)

em que  $\lambda_i$  e  $\mathbf{v}_i$  são, respectivamente, o *i*-ésimo autovalor e o autovetor associado.

• Note que se  $\mathbf{v}_i$  é uma solução da Eq. (15), então o seu vetor oposto  $-\mathbf{v}_i$  também é, como é facilmente verificável abaixo.

$$\mathbf{C}_{\mathbf{x}}(-\mathbf{v}_i) = \lambda_i(-\mathbf{v}_i), \tag{16}$$

$$-\mathbf{C}_{\mathbf{x}}\mathbf{v}_{i} = -\lambda_{i}\mathbf{v}_{i}, \tag{17}$$

$$\mathbf{C}_{\mathbf{x}}\mathbf{v}_{i} = \lambda_{i}\mathbf{v}_{i}. \tag{18}$$

- Esta propriedade faz com que, a depender do algoritmo numérico usado para resolver a Eq. (15), o conjunto de autovetores encontrados difira entre si apenas pelos sinais.
- Por exemplo, compare o conjunto de autovetores retornados as funções eig e pcacov do Octave/Matlab.

• Os autovetores  $\mathbf{v}_i$ ,  $i = 1, \dots, p$ , formam um conjunto de vetores **ortonormais**:

$$\mathbf{v}_i^T \mathbf{v}_j = \|\mathbf{v}_i\| \cdot \|\mathbf{v}_j\| \cdot \cos(\theta) = \begin{cases} 1, & \text{se } i = j \ (\theta = 0) \\ 0, & \text{se } i \neq j \ (\theta = \pi/2) \end{cases}$$
(19)

ullet Dispor os autovetores ao longo das colunas da matriz  ${f V}$ :

$$\mathbf{V} = [\mathbf{v}_1 \mid \mathbf{v}_2 \mid \cdots \mid \mathbf{v}_p]. \tag{20}$$

• A matriz V é quadrada e de dimensões  $p \times p$ .

- A ortonormalidade de  $\mathbf{V}$  pode ser verificada matricialmente por meio da seguinte operação:  $\mathbf{V}\mathbf{V}^T = \mathbf{I}_p$ , em que  $\mathbf{I}_p$  é a matriz identidade de dimensões  $p \times p$ .
- $\bullet$  Ao analisarmos a expressão anterior, nota-se que a transposta da matriz  ${\bf V}$  é a sua inversa:

$$\mathbf{V}^{-1} = \mathbf{V}^T. \tag{21}$$

• Essa propriedade é resultado da ortogonalidade dos vetores que formam suas colunas e será útil na reconstrução dos dados originais a partir dos dados transformados, ou seja, através do mapeamento inverso de  $\mathbf{z}_k$  para  $\mathbf{x}_k$ .

Análise das Componentes Principais

# Algoritmo PCA: Passo-a-Passo

• Passo 5 - Definir a matriz de transformação Q como

$$\mathbf{Q} = \mathbf{V}^T. \tag{22}$$

 Passo 6 - Aplicar a matriz Q sobre os vetores de atributos originais. Isto pode ser feito vetor a vetor:

$$\mathbf{z}_k = \mathbf{Q}\mathbf{x}_k,\tag{23}$$

para  $k=1,\ldots,N.$  Ou, de forma matricial, em uma única operação dada por

$$\mathbf{Z} = \mathbf{QX}.\tag{24}$$

• O mapeamento inverso é então dado por  $\mathbf{x}_k = \mathbf{Q}^T \mathbf{z}_k$  ou  $\mathbf{X} = \mathbf{Q}^T \mathbf{Z}$ .

4 AP > 4 E > 4 E >

#### Análise das Componentes Principais

- Note que a aplicação da matriz  $\mathbf{Q}$  sobre o vetor de atributos original  $\mathbf{x}_k$  produz um novo vetor de atributos  $\mathbf{z}_k$ .
- Sem perda de generalidade, o índice k é retirado para deixar a notação mais clara.
- Pode-se escrever a transformação linear  $\mathbf{z} = \mathbf{V}^T \mathbf{x}$  em sua forma escalar como um sistema de equações lineares:

$$\begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_i \\ \vdots \\ z_p \end{bmatrix} = \begin{bmatrix} v_{11} & v_{21} & \cdots & v_{i1} & \cdots & v_{p1} \\ v_{12} & v_{22} & \cdots & v_{i2} & \cdots & v_{p2} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ v_{1i} & v_{2i} & \cdots & v_{ii} & \cdots & v_{pi} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ v_{1p} & v_{2p} & \cdots & v_{ip} & \cdots & v_{pp} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_i \\ \vdots \\ x_p \end{bmatrix} = \begin{bmatrix} \mathbf{v}_1^T \mathbf{x} \\ \mathbf{v}_2^T \mathbf{x} \\ \vdots \\ \mathbf{v}_i^T \mathbf{x} \\ \vdots \\ \mathbf{v}_p^T \mathbf{x} \end{bmatrix}$$
(25)

#### Análise das Componentes Principais

• Tomemos a i-ésima componente de  $\mathbf{z}$  na Eq. (25):

$$z_{i} = \mathbf{v}_{i}^{T} \mathbf{x} = \begin{bmatrix} v_{1i} & v_{2i} & \cdots & v_{ii} & \cdots & v_{pi} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{i} \\ \vdots \\ x_{p} \end{bmatrix}, \qquad (26)$$

$$= v_{1i}x_{1} + v_{2i}x_{2} + \cdots + v_{ii}x_{i} + \cdots + v_{pi}x_{p} \qquad (27)$$

- Assim, a i-ésima componente de  $\mathbf{z}$  é uma combinação linear dos atributos de  $\mathbf{x}$ , com as componentes do i-ésimo autovetor  $\mathbf{v}_i$  sendo os coeficientes de ponderação.
- Resumindo,  $z_i$  é o produto escalar de  $\mathbf{v}_i$  e  $\mathbf{x}$ .



- Ao aplicar a matriz Q sobre os vetores de atributos originais, da forma como está definida na Eq. (23), percebemos que as dimensões dos vetores x<sub>k</sub> e z<sub>k</sub> são iguais (i.e. p = q). Portanto, não temos aqui uma redução de dimensionalidade.
- O que, então, acontece com os vetores de dados?
- Que tipo de transformação eles sofreram?
- Para responder estas questões, vamos precisar calcular a matriz de covariância dos dados transformados, ou seja, precisamos determinar

$$\mathbf{C}_{\mathbf{z}} = E[\mathbf{z}\mathbf{z}^T]. \tag{28}$$



Análise das Componentes Principais

# Diagonalização da Matriz $\mathbf{C}_{\mathbf{x}}$

• A partir da Eq. (28) e da Eq. (24), obtemos:

$$\mathbf{C}_{\mathbf{z}} = E[\mathbf{z}\mathbf{z}^T] \tag{29}$$

$$= E[(\mathbf{V}^T \mathbf{x}) (\mathbf{V}^T \mathbf{x})^T]$$
 (30)

$$= E[(\mathbf{V}^T \mathbf{x}) (\mathbf{x}^T \mathbf{V})] \tag{31}$$

$$= E[\mathbf{V}^T \left( \mathbf{x} \mathbf{x}^T \right) \mathbf{V}] \tag{32}$$

$$= \mathbf{V}^T E[\mathbf{x}\mathbf{x}^T]\mathbf{V} \tag{33}$$

$$= \mathbf{V}^T \mathbf{C_x} \mathbf{V} \tag{34}$$

• Este resultado mostra que dada a matriz de covariância dos dados originais  $\mathbf{C}_{\mathbf{x}}$  e a matriz de autovetores  $\mathbf{V}$ , facilmente obtemos a matriz de covariância dos dados transformados  $\mathbf{C}_{\mathbf{z}}$ .



- Contudo, não diz muita coisa sobre a forma da matriz de covariância dos dados transformados.
- Para isso, vamos expandir os produtos matriz-vetor da Eq. (34).
- Primeiro, vamos expandir o produto  $C_xV$ :

$$\mathbf{C}_{\mathbf{x}}\mathbf{V} = [\mathbf{C}_{\mathbf{x}}\mathbf{v}_1 \mid \mathbf{C}_{\mathbf{x}}\mathbf{v}_2 \mid \cdots \mid \mathbf{C}_{\mathbf{x}}\mathbf{v}_p] \tag{35}$$

- Este produto resulta em uma matriz  $p \times p$ .
- Usando a Eq. (15), chegamos ao seguinte resultado:

$$\mathbf{C}_{\mathbf{x}}\mathbf{V} = [\lambda_1 \mathbf{v}_1 \mid \lambda_2 \mathbf{v}_2 \mid \cdots \mid \lambda_p \mathbf{v}_p]$$
 (36)



 $\bullet$  Agora, lembrando que  $\mathbf{V}^T$  também é uma matriz  $p\times p,$  podemos realizar a segunda parte do produto:

$$\mathbf{V}^{T}\mathbf{C}_{\mathbf{x}}\mathbf{V} = \begin{bmatrix} \mathbf{v}_{1}^{T} \\ \cdots \\ \mathbf{v}_{2}^{T} \\ \cdots \\ \vdots \\ \cdots \\ \mathbf{v}_{p} \end{bmatrix} [\lambda_{1}\mathbf{v}_{1} \mid \lambda_{2}\mathbf{v}_{2} \mid \cdots \mid \lambda_{p}\mathbf{v}_{p}]$$
(37)

• Agora, lembrando que  $\mathbf{V}^T$  também é uma matriz  $p \times p$ , podemos realizar a segunda parte do produto:

emos realizar a segunda parte do produto:
$$\mathbf{C}_{\mathbf{z}} = \mathbf{V}^{T} \mathbf{C}_{\mathbf{x}} \mathbf{V} \qquad (38)$$

$$= \begin{bmatrix}
\lambda_{1} \mathbf{v}_{1}^{T} \mathbf{v}_{1} & \lambda_{2} \mathbf{v}_{1}^{T} \mathbf{v}_{2} & \cdots & \lambda_{p} \mathbf{v}_{1}^{T} \mathbf{v}_{p} \\
\lambda_{1} \mathbf{v}_{2}^{T} \mathbf{v}_{1} & \lambda_{2} \mathbf{v}_{2}^{T} \mathbf{v}_{2} & \cdots & \lambda_{p} \mathbf{v}_{2}^{T} \mathbf{v}_{p} \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_{1} \mathbf{v}_{p}^{T} \mathbf{v}_{1} & \lambda_{2} \mathbf{v}_{p}^{T} \mathbf{v}_{2} & \cdots & \lambda_{p} \mathbf{v}_{p}^{T} \mathbf{v}_{p}
\end{bmatrix}$$

$$= \begin{bmatrix}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & \lambda_{p}
\end{bmatrix}$$

$$(40)$$

• O produto  $\mathbf{V}^T \mathbf{C_x} \mathbf{V}$  pode também ser desenvolvido em função dos elementos de  $\mathbf{C_x}$ .

$$\mathbf{C}_{\mathbf{z}} = \mathbf{V}^{T} \mathbf{C}_{\mathbf{x}} \mathbf{V}$$

$$= \begin{bmatrix} \sigma_{1}^{2} \mathbf{v}_{1}^{T} \mathbf{v}_{1} & \sigma_{12} \mathbf{v}_{1}^{T} \mathbf{v}_{2} & \cdots & \sigma_{1n} \mathbf{v}_{1}^{T} \mathbf{v}_{p} \\ \sigma_{21} \mathbf{v}_{2}^{T} \mathbf{v}_{1} & \sigma_{2}^{2} \mathbf{v}_{2}^{T} \mathbf{v}_{2} & \cdots & \sigma_{2n} \mathbf{v}_{2}^{T} \mathbf{v}_{p} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} \mathbf{v}_{p}^{T} \mathbf{v}_{1} & \sigma_{n2} \mathbf{v}_{p}^{T} \mathbf{v}_{2} & \cdots & \sigma_{p}^{2} \mathbf{v}_{p}^{T} \mathbf{v}_{p} \end{bmatrix}$$

$$(41)$$

$$= \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 \cdots & 0 & \sigma_n^2 \end{bmatrix}$$
(43)

• Resumindo, temos que a matriz de covariância dos dados transformados  $\mathbf{C_z} = \mathbf{V}^T \mathbf{C_x} \mathbf{V}$  tem a seguinte forma:

$$\mathbf{C}_{\mathbf{z}} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 \cdots & 0 & \lambda_p \end{bmatrix} = \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 \cdots & 0 & \sigma_p^2 \end{bmatrix}$$
(44)

## Diagonalização da Matriz $C_x$

- Do exposto na Eq. (44), tiramos as seguintes conclusões:
  - A matriz de covariância dos dados transformados é diagonal, ou seja, não há correlação entre as componentes do vetor z.
  - Ou seja, PCA atua sobre os dados em X para gerar um novo conjunto de dados Z, cuja matriz de covariância é diagonal.
  - $\ensuremath{\mathfrak{g}}$  As variâncias das variáveis transformadas são iguais aos autovalores de  $\mathbf{C}_{\mathbf{x}}.$
  - ① Os autovalores, por sua vez, são iguais às variâncias das variáveis originais.
- Uma consequência imediata desses resultados é que não é necessário calcular os autovalores da matriz  $C_z$ , já que eles são iguais às variâncias das variáveis originais!!



### Interpretação Geométrica

- A transformação linear do PCA pode ser entendida como uma mudança de base. Uma base no espaço  $\mathbb{R}^n$  é qualquer conjunto de n vetores linearmente independentes (LI) usado para representar os vetores daquele espaço.
- ullet Por exemplo, a base canônica do  $\mathbb{R}^2$  é formada pelos vetores

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}. \tag{45}$$

• Assim, qualquer vetor  $[a \ b]^T$  no  $\mathbb{R}^2$  pode ser escrito como

$$\begin{bmatrix} a \\ b \end{bmatrix} = a\mathbf{e}_1 + b\mathbf{e}_2 = a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \end{bmatrix}. \tag{46}$$

## Interpretação Geométrica

ullet Uma outra possível base do  $\mathbb{R}^2$  é formada pelos vetores

$$\mathbf{v}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}. \tag{47}$$

• Neste caso, o vetor  $[a \ b]^T$ , originalmente escrito com relação à base  $\mathcal{B}_1 = \{\mathbf{e}_1, \mathbf{e}_2\}$ , com relação à base  $\mathcal{B}_2 = \{\mathbf{v}_1, \mathbf{v}_2\}$  passa ser representado como

$$\begin{bmatrix} a \\ b \end{bmatrix} = a\mathbf{v}_1 + (b-a)\mathbf{v}_2 = a \begin{bmatrix} 0 \\ 1 \end{bmatrix} + (b-a) \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 (48)

$$\begin{bmatrix} a \\ b \end{bmatrix}_{\mathcal{B}_1} \equiv \begin{bmatrix} a \\ (b-a) \end{bmatrix}_{\mathcal{B}_2}.$$
 (49)

## Interpretação Geométrica

- Existem muitas outras possibilidades de se formar uma base no  $\mathbb{R}^2$ , bastando para isso que os vetores sejam LI.
- A base  $\mathcal{B}_1$  é chamada de base ortonormal  $\{\mathbf{e}_1, \mathbf{e}_2\}$ , porque os vetores  $\mathbf{e}_1$  e  $\mathbf{e}_2$  são ortogonais (ou perpendiculares) entre si, pois seu produto interno é nulo.
- Além disso, ambos tem norma unitária (i.e.  $\|\mathbf{e}_1\| = \|\mathbf{e}_2\| = 1$ ).
- Com relação à PCA, os vetores de dados originais  $\mathbf{x}_k$  são escritos em relação à base canônica do  $\mathbb{R}^p$ .
- Enquanto os vetores transformados  $\mathbf{z}_k$  são escritos em relação à base formada pelos autovetores da matriz de covariância  $\mathbf{C}_{\mathbf{x}}$ .



#### Análise das Componentes Principais

## Interpretação Geométrica

- Lembre-se que no espaço original as componentes do vetor  $\mathbf{x}_k$  estão correlacionadas, enquanto no espaço transformado as componentes do vetor  $\mathbf{z}_k$  não.
- Dito de outra forma, no sistema de coordenadas perpendiculares associado à nova base formada pelos autovetores de  $\mathbf{C}_{\mathbf{x}}$ , as componentes de  $\mathbf{z}_k$  são descorrelacionadas.
- Do ponto de vista geométrico, o processo de descorrelação levado a cabo via PCA corresponde a uma rotação do sistema de coordenadas no qual os dados são representados.

Análise das Componentes Principais

## Interpretação Geométrica

 Graficamente, o processo de diagonalização da matriz de covariância de um conjunto de dados, ou equivalente, de descorrelação dos atributos de um conjunto de dados, está mostrado na figura abaixo.





### PCA para Redução de Dimensão

ullet Usando apenas as q primeiras colunas de  ${f V}$ , obtemos

$$\mathbf{V}_q = [\mathbf{v}_1 \mid \mathbf{v}_2 \mid \cdots \mid \mathbf{v}_q], \qquad \Rightarrow \quad \mathbf{Q}_q = \mathbf{V}_q^T, \tag{50}$$

tal que o vetor  $\mathbf{z}_k = \mathbf{Q}_q \mathbf{x}_k = \mathbf{V}_q^T \mathbf{x}_k$  terá dimensão  $q \times 1$ . Note que a matriz  $\mathbf{Q}_q$  agora tem dimensão  $q \times p$ .

• Desta forma, a matriz de covariância dos dados transformados  $\mathbf{C}_{\mathbf{z}}^{(q)}$  terá dimensão  $q \times q$ :

$$\mathbf{C}_{\mathbf{z}}^{(q)} = \mathbf{V}_{q}^{T} \mathbf{C}_{\mathbf{x}} \mathbf{V}_{q} = \begin{bmatrix} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 \cdots & 0 & \lambda_{q} \end{bmatrix}_{q \times q}$$
(51)

## Uma Medida da Informação Contida em X

- Lembrando que nosso objetivo inicial era encontrar uma transformação linear que preservasse a informação relevante contida nos dados originais. Mas, como quantificar a informação relevante em um conjunto de dados?
- ullet Podemos definir a Variância Total (VT) como uma medida da quantidade de informação contida nos dados originais:

$$VT = \sigma_1^2 + \sigma_2^2 + \dots + \sigma_p^2 \tag{52}$$

$$= \lambda_1 + \lambda_2 + \dots + \lambda_p \tag{53}$$

• Como  $\lambda_i = \sigma_i^2$ , podemos criar uma medida de quanto da informação (i.e. variância) do conjunto original está sendo representada no autovalor  $\lambda_i$ .

## Uma Medida da Informação Contida em ${\bf X}$

• Chamaremos esta medida de variância explicada pelo i-ésimo autovalor  $(VE_i)$ :

$$VE_i = 100 \times \frac{\lambda_i}{VT} = 100 \times \left(\frac{\lambda_i}{\lambda_1 + \lambda_2 + \dots + \lambda_p}\right)$$
 (54)

ullet Consequentemente, a porcentagem da variância total dos dados explicada pelos primeiros q autovalores é dada por:

$$VE(q) = 100 \times \frac{\sum_{i=1}^{q} \lambda_i}{VT}$$
 (55)

$$= 100 \times \left(\frac{\lambda_1 + \lambda_2 + \dots + \lambda_q}{\lambda_1 + \lambda_2 + \dots + \lambda_p}\right)$$
 (56)

## Implementação em Matlab/Octave

- Assumiremos que os dados estão dispostos como na matriz
   X definida na Eq. (3).
- $\bullet$  Assim, primeiro passo consiste na estimação da matriz de covariância dos dados ( $\mathbf{C}_{\mathbf{x}}$ ).
  - » Cx=cov(X');
- Atenção: A matriz X entra transposta no comando COV porque, por convenção, o Matlab considera que os dados estão dispostos ao longo das linhas de X, e não ao longo das colunas.

# Implementação em Matlab/Octave (cont.-1)

- $\bullet$  O segundo passo consiste em determinar os autovalores e autovetores da matriz  $\mathbf{C}_{\mathbf{x}}.$ 
  - » [V L]=eig(Cx); % matrizes de autovetores/valores
  - » L=diag(L); % vetor de autovalores nao-ordenados
  - » [L I]=sort(L,'descend'); % autovalores ordenados
  - » V=V(:,I); % ordena autovetores associados
- Atenção: A função EIG retorna uma matriz "L" cujo os autovalores estão na diagonal principal. Daí a necessidade de se usar em seguida o comando DIAG, para extrair os autovalores e colocá-los em um vetor.

# Implementação em Matlab/Octave (cont.-2)

- O terceiro passo consiste em determinar os q maiores autovalores responsáveis por explicar, pelo menos, tol% da informação contida nos dados originais.

  - » VE=cumsum(L)/sum(L); % variancia explicada
  - » q=length(find(VE<=tol)); % Num. compon. principais</pre>
  - » Vq=V(:,1:q); % matriz com q primeiros autovetores
  - » Z=Vq'\*X; % dados transformados
- Atenção: O número de componentes principais vai variar em função do valor de tol. Quanto maior (menor) o valor de tol, maior (menor) será o valor de q.



# Implementação em Matlab/Octave (cont.-3)

- O método descrito anteriormente não é um método eficiente, computacionalmente falando.
- Ou seja, é um método de livro-texto, que tem valor apenas didático, e que não escala bem para dados de alta dimensão.
- Para aplicações práticas, recomenda-se o uso da decomposição em valores singulares (SVD, sigla em Inglês).
  - » [U L V]=svd(Cx);
  - em L é uma matriz diagonal com os autovalores ordenados e V é a matriz de autovetores correspondentes.
- No Octave/Matlab, este método é usado nas funções princomp e pcacov.



# Algoritmo PCA em Classificação

- A aplicação de PCA à matriz de dados originais  $\mathbf{X}$   $(p \times N)$  gerará uma nova matriz  $\mathbf{Z}$   $(q \times N)$ .
- As colunas de **Z** são formadas por  $\mathbf{z}_k = \mathbf{Q}\mathbf{x}_k$ , para  $k = 1, \dots, N$ .
- Assim, em um problemas de classificação, projeta-se o classificador com os pares entrada-saída  $\{(\mathbf{z}_k, \mathbf{y}_k)\}_{k=1}^N$  extraídos das seguintes matrizes:

$$\mathbf{Z} = [\mathbf{z}_1 \,|\, \mathbf{z}_2 \,|\, \cdots \,|\, \mathbf{z}_k \,|\, \cdots \,|\, \mathbf{z}_N] \tag{57}$$

$$\mathbf{Y} = [\mathbf{y}_1 \,|\, \mathbf{y}_2 \,|\, \cdots \,|\, \mathbf{y}_k \,|\, \cdots \,|\, \mathbf{y}_N], \tag{58}$$

em que  $\mathbf{Y}$  é a matriz de rótulos inicialmente associada à matriz  $\mathbf{X}$ .

