Existence of a least increasing surjection from an artinian poset onto a set of ordinals¹

Pierre-Yves Gaillard

Let X be a set. If $g: X \to S$ and $h: X \to T$ are surjections and S and T are sets of ordinals, say that $g \le h$ if $g(x) \le h(x)$ for all x. If X is a poset, say that g is **increasing** if x < y implies g(x) < g(y), and that it is **weakly increasing** if $x \le y$ implies $g(x) \le g(y)$.

Theorem 1. If X is an artinian poset, then there is a least increasing surjection f from X onto a set of ordinals.

The theorem will follow from Propositions 3 and 4 below.

If β is a ordinal, we write $[0, \beta)$ (resp. $[0, \beta]$) for the set of all ordinals $< \beta$ (resp. $\le \beta$). If S is a set of ordinals, we denote by $\alpha(S)$ the least ordinal not in S, and by $\omega(S)$ the least ordinal larger than all the elements of S. We obviously have $\alpha(S) \le \omega(S)$.

Lemma 2. The following conditions are equivalent:

- (a) $\alpha(S) = \omega(S)$,
- (b) $S = [0, \beta)$ for some ordinal β ,
- (c) $S = [0, \alpha(S)),$
- (d) $S = [0, \omega(S)),$
- (e) no element of S is larger than $\alpha(S)$.

The proof is left to the reader.

Recall that X is an artinian poset. For x in X, set $X_x := \{y \in X \mid y < x\}$. Let κ be a cardinal larger that the cardinality of X, and set $A := [0, \kappa]$. For x in X let A^{X_x} be the set of all maps from X_x to A. Define $r_x : A^{X_x} \to A$ by letting $r_x(h)$ be the minimum of κ and $\alpha(h(X_x))$, and $s_x : A^{X_x} \to A$ by letting $s_x(h)$ be the minimum of κ and $\omega(h(X_x))$. If $h : X \to A$ is a map, we denote by $h|X_x$ the restriction of h to X_x . By the last statement in

https://github.com/Pierre-Yves-Gaillard/The-Transfinite-Recursion-Theorem

there is a unique map $f: X \to A$ such that $f(x) = r_x(f|X_x)$ for all x in X, and a unique map $g: X \to A$ such that $g(x) = s_x(g|X_x)$ for all x in X. For all x in X set $\alpha_x := \alpha(f(X_x))$ and $\alpha_x := \alpha(g(X_x))$.

Proposition 3. We have:

- (f) f = g,
- (g) $f(X_x) = [0, \alpha_x) = [0, \omega_x)$ for all x.
- (h) $f(x) = \alpha_x = \omega_x$ for all x.

Proof. Note that f and g are weakly increasing. Let (f') be the condition (obviously equivalent to (f)) that f(x) = g(x) for all x. Assume by contradiction that at least one of the three conditions

¹available at https://github.com/Pierre-Yves-Gaillard/Artin-poset-to-ordinals.

(f'), (g), (h) is false. Let x be minimal among the elements for which (f'), (g) or (h) fails. Note that $f(X_y) = g(X_y)$ for $y \le x$.

We have $\alpha_x \leq \omega_x$. If $\alpha_x = \omega_x$, then the lemma implies $f(X_x) = [0, \alpha_x)$, and (f'), (g) and (h) hold for x, contradiction. We conclude that $\alpha_x < \omega_x$. By (e) there is a y less than x such that $f(y) > \alpha_x \notin f(X_x)$.

Claim: We have $f(z) < \alpha_x$ for z < y.

Proof: Otherwise we would have $\alpha_x < f(z)$, and thus

$$\alpha_x \in [0, f(z)) = [0, \alpha_z) = [0, \omega_z) = f(X_z) \subset f(X_x),$$

contradiction. This proves the claim.

By the claim α_x is larger than each element of $f(X_y)$, hence $\alpha_x \geq \omega_y$, hence $f(y) = \omega_y \leq \alpha_x < f(y)$, contradiction.

Proposition 4. We have:

- (i) $f(X) = [0, \alpha(f(X))) = [0, \omega(f(X))),$
- (j) $f: X \to [0, \alpha(f(X)))$ is the least increasing surjection from X onto a set of ordinals.

Proof. Define the poset Y be the following conditions: $Y = X \cup \{\infty\}, \infty \notin X, X$ is a sub-poset of Y. Then Y is artinian and satisfies $Y_{\infty} = X$, and we can prove (i) by applying Proposition 3 to Y (instead of X). More precisely, let $f: X \to S$ (resp. $g: X \to S$) be the least increasing surjection from X (resp. Y) onto a set of ordinals. We have $f(X) = g(X) = [0, \alpha(f(X))) = [0, \omega(f(X)))$, the first equality following from the fact that $Y_{\infty} = X$, the second and third equalities following from (g) above. Then (j) is a consequence of (i) and Proposition 3.

The following corollary to Propositions 3 and 4 is well known.

Corollary 5. Let β be an ordinal, X a subset of $[0,\beta)$ and $f:X\to [0,\gamma)$ the least increasing surjection of X onto a set of ordinals. Then we have $f(x)\leq x$ for all x, and $\gamma\leq \beta$.

Proof. It suffices to show $f(x) \leq x$ for all x. Suppose not, and let x be the least element of X satisfying f(x) > x. We get $x < f(x) = \alpha(f(X_x)) = \omega(f(X_x))$ and $f(X_x) = [0, f(x)) \ni x$, hence x = f(y) for some y less than x, hence $f(y) \leq y < x = f(y)$, contradiction.

We end with a loosely related question. If X and Y are posets and $f: X \to Y$ and $g: Y \to X$ are increasing surjections, are X and Y necessarily isomorphic? The following example shows that the answer is no. Let X and Y be the posets respectively given by the Hasse diagrams

$$\begin{array}{cccc} b_1 & b_2 & b_3 \\ \mid & \mid & \mid & \cdots \\ a_1 & a_2 & a_3 \end{array}$$

and

$$\begin{array}{ccccc} d_1 & d_2 & d_3 & d_4 \\ & & | & | & \cdots \\ c_1 & c_3 & c_4 \end{array}$$

We see that if we identify a_1 and a_2 in X we get a poset isomorphic to Y, and if we identify d_1 and d_2 in Y we get a poset isomorphic to X.