UBC Mathematics 320(101)—Assignment 9 Due by PDF upload to Canvas at 18:00, Saturday 11 Nov 2023

References: Loewen, lecture notes on Point-Set Topology (2023-11-04 or newer—see Canvas); Rudin pp. 30b–36a; Thomson-Bruckner-Bruckner, Sections 13.1–13.5

Presentation: To qualify for full credit, submissions must satisfy the detailed specifications provided on Canvas.

- 1. Solve in either order:
 - (a) Construct, with justification, a subset A of \mathbb{R} such that every point of A is isolated and $A' \neq \emptyset$.
 - (b) Rudin Chapter 2, problem 5, page 43.
- 2. (a) Give an example of two sets A and B in some HTS satisfying

$$int(A \cup B) \neq int(A) \cup int(B)$$
.

(b) Give an example of two sets A and B in some HTS satisfying

$$\overline{A \cap B} \neq \overline{A} \cap \overline{B}$$
.

- (c) Working in \mathbb{R}^k with the usual topology, express the open ball $\mathbb{B}[0;1)$ as a union of closed sets. Can $\mathbb{B}[0;1)$ be expressed as an intersection of closed sets?
- **3.** Define a family \mathcal{T} of subsets of \mathbb{R} as follows:

A set $G \subseteq \mathbb{R}$ belongs to \mathcal{T} if and only if for every x in G, there exists r > 0 such that $[x, x + r) \subseteq G$.

(a) Prove that $(\mathbb{R}, \mathcal{T})$ is a HTS. (It is called the *Sorgenfrey line*.)

All our terminology—open set, closed set, boundary point, limit point, convergence—depends on what topology we use. Use the Sorgenfrey topology in parts (b)–(d):

- (b) Show that the interval [0, 1) is open.
- (c) Find all boundary points of the interval (0,1).
- (d) Let $s_n = -1/n$ and $t_n = 1/n$. Prove that one of these sequences converges to 0, and the other does not. Use the definition given in class, i.e., $x_n \to \widehat{x}$ means that for every open set U containing \widehat{x} , there exists $N \in \mathbb{N}$ such that for all n > N, $x_n \in U$.
- **4.** Let A be a subset of a HTS (X, \mathcal{T}) . The **boundary of** A is a set denoted ∂A : we say $z \in \partial A$ if and only if every open U containing z satisfies both $U \cap A \neq \emptyset$ and $U \cap A^c \neq \emptyset$. Prove:
 - (a) $\partial A = \overline{A} \cap \overline{A^c}$.
 - (b) A is closed if and only if $\partial A \subseteq A$.
 - (c) A is open if and only if $A \cap \partial A = \emptyset$.
- **5.** Prove: For every set A in a HTS (X, \mathcal{T}) , A' is closed.
- **6.** Recall the sequence space ℓ^2 from HW07 Q3. Given a specific $M=(M_1,M_2,\ldots)$ in ℓ^2 , let

$$S = \left\{ x \in \ell^2 : \forall n \in \mathbb{N}, |x_n| \le M_n \right\}.$$

Prove: every sequence $(x^{(n)})$ in S has a convergent subsequence, whose limit lies in S.

Practice Problems—Not for Credit

These are not to be handed in. Solutions will be provided.

- 7. Let A be a subset of a HTS (X, \mathcal{T}) . Prove:
 - (a) $\overline{A} = A \cup \partial A$.
 - (b) $A^{\circ} = A \setminus \partial A$.
- **8.** Let A and B be subsets of \mathbb{R} . Write

$$A + B = \{a + b : a \in A, b \in B\}.$$

If A and B are closed, does it follow that A+B is closed? Does this follow if in addition one of the two is bounded?