# NEWS ARTICLE

## CATEGORY PREDICTOR



## MEET THE TEAM



Nthabiseng Mokhachane



Lindelwe Mathonsi



Melokuhle Makhwasa



Lamel Kekana



Sanele Bhembe

## INTRODUCTION

## AIM

 Develop a robust model to correctly categorize a news article based on the analyses of the articles' content.



A Data loading and inspection

B Data cleaning

C Data preprocessing

D Exploratory data analysis (EDA)

E Model development

F Model evaluation

G Model deployment



## **OBJECTIVES**



## DATA CLEANING

• From a Github source.

| Headline | Description | Content | Url  | Category |
|----------|-------------|---------|------|----------|
| text     | text        | text    | text | text     |
| text     | text        | text    | text | text     |





- Drop duplicate value.
- Standardize column naming convention.

## DATA PREPROCESSING

Text cleaning

Tokenization

Remove Stopwords



Lemmatization

Feature Extraction

Vectorization

Visualising the training data





## Visualising the testing data





• Top 5 frequent words per category



• Top 5 frequent words per category



## **MODELS**



- K-Nearest Neighbor
  - Naive Bayes
    - Neural Networks
      - Logistic Regression
        - Random Forest Classifier
          - AdaBoost Classifier
            - Support Vector Machine (SVM)

## VALIDATION

| Model                    | Hyperparameters                                                                                                      | Log loss |
|--------------------------|----------------------------------------------------------------------------------------------------------------------|----------|
| K-Nearest Neighbour      | metric: euclidean, n_neighbors: 30, weights: distance                                                                | 0.1276   |
| Naive Bayes              | alpha: 0.1, class_prior: None, fit_prior: True                                                                       | 0.05148  |
| Neural Networks          | activation: relu, alpha: 0.0001, batch_size: 32, hidden_layer_sizes: (20, 20), learning_rate: constant, max_iter: 20 | 0.9882   |
| Logistic Regression      | C: 10, max_iter: 500, multi_class: ovr, solver: lbfgs                                                                | 0.08862  |
| Random Forest Classifier | max_depth: None, n_estimators: 1000                                                                                  | 0.2410   |
| Adaboost Classifier      | algorithm: SAMME.R, estimatormax_depth: 5, learning_rate:<br>0.01, n_estimators: 100                                 | 0.2464   |
| Support Vector Machine   | max_iter: 1000, kernel: linear, C: 1.0                                                                               | 0.0442   |

• Model performance on unseen data.



• Model performance on unseen data.



Most important features for the best 3 models.

| 1. | Na    | ive | Baves | Model |
|----|-------|-----|-------|-------|
|    | - 10- |     |       |       |

education entertainment news technology film

#### 2. Neural Networks Model

education business technology student entertainment

## 3. Support Vector Machine Model

film
student
technology
education
business

## Best 3 models







- F1 SCORE: 0.9800
- LOG LOSS: 0.0668

- F1 SCORE: 0.9875
- LOG LOSS: 0.0512

- F1 SCORE: 0.9840
- LOG LOSS: 0.0556

## APP DEMONSTRATION



• News article predictor app

#### CONCLUSION

- Predictive model to identify the category of a given news article.
- 7 models were developed.
- 3 models outperformed other models.
- Predict the category with a minimum accuracy of 98%.
- Likely to misclassify business articles as technology.
- Models were deployed on Streamlit app.

#### RECOMMENDATIONS

- Investigate model performance based on externally sourced data.
- Update the model to better predict articles where the url content does not contain the target category.
- Update the model to cast predictions with missing information.
- Update the model to identify additional categories.



# THANK YOU

