Assignment 3

Automatic Conversion from Regular Expressions to Finite Automata

1.

(10%) Construct the expression tree for the following regular expression (a \mid b)* a \mid a* b

(40%) Construct a nondeterministic finite automaton (NFA) for the regular expression using the Thompson's construction algorithm

(50%) Convert the NFA into a deterministic finite automaton (DFA) using the subset construction algorithm

$$\varepsilon$$
 -closure({0}) = {0,1,2,3,5,8,10,11,13} = A

$$\varepsilon$$
 -closure(move(A, a)) = ε -closure({4,9,12})

$$= \{2,3,4,5,7,8,9,11,12,13,15\} = \mathbf{B}$$

$$\varepsilon$$
 -closure(move(A, b)) = ε -closure({6,14}) = {2,3,5,6,7,8,14,15} = \mathbb{C}

$$\varepsilon$$
 -closure(move(B, a)) = ε -closure({4,9,12}) = B

$$\varepsilon$$
 -closure(move(B, b)) = ε -closure({6,14}) = C

$$\varepsilon$$
 -closure(move(C, a)) = ε -closure({4,9}) = {2,3,4,5,7,8,9,15} = D

$$\varepsilon$$
 -closure(move(C, b)) = ε -closure({6}) = {2,3,5,6,7,8} = \mathbf{E}

$$\varepsilon$$
 -closure(move(D, a)) = ε -closure({4,9}) = D

$$\varepsilon$$
 -closure(move(D, b)) = ε -closure({6}) = E

$$\varepsilon$$
 -closure(move(E, a)) = ε -closure({4,9}) = D

$$\varepsilon$$
 -closure(move(E, b)) = ε -closure({6}) = E

State	Input Symbol	
	а	b
A={0,1,2,3,5,8,10,11,13}	В	С
B={2,3,4,5,7,8,9,12,13,15}	В	С
C={2,3,5,6,7,8,14,15}	D	E
D={2,3,4,5,7,8,9,15}	D	E
E={2,3,5,6,7,8}	D	E

