Energetika, okoliš i održivi razvoj (2. ciklus)

Utjecaj elektroenergetskih postrojenja na okoliš

Općenito

- elektroenergetski sektor od početaka do današnjih dana u mnogočemu se promijenio i uznapredovao
 - modernije i efikasnije tehnologije kod proizvodnje, prijenosa, distribucije i potrošnje energije
- novi pristup energetici u prvom planu zaštita okoliša i ljudsko zdravlje
 - ne proizvodi se pod svaku cijenu nego se udovoljava ekološkim standardima
- donošenje odluke o izgradnji elektrane složeno
 - kompromis tri temeline komponente:
 - energetska,
 - ekološka i
 - ekonomska
- analiza utjecaja kvaliteta zraka, voda, mora, tla, emisije u zrak, vodu i tlo...
- proizvodnja električne energije
 - emisije u zrak, odlaganje otpadnih produkata u vodu i tlo
 - povećanje kratkotrajnih ili dugotrajnih utjecaja
 - ekonomski i tehnički faktori ograničavaju smanjenje i ograničenje emisija
 - rizik ovisi o prirodi i količini upotrebljenog goriva, tehnologiji pretvorbe, nivou kontrolnih tehnologija za emisije te učinkovitosti pretvorbe
- utjecaji na raznim razinama:
 - globalno (čitava Zemlja),
 - reginalno (nekoliko stotina km do čitavog kontinenta) i
 - lokalno (područje grada ili industrijske regije)
- emisije
 - vezane uz samo gorivo
 - primarne emisiie kao plinovi
 - sekundarne emisije poslije reakcije u atmosferi (sekundarni polutanti)

Utjecaj termoelektrana na okoliš

- najbitnije emisije (u atmosferu)
 - 。 CO2
 - SO2
 - NOx
 - čestice
 - ostali polutanti (teški metali itd.)
- dodatno
 - otpadne topline
 - emisija onečišćujućih tvari u vode (kontinuirana curenja, akcidentalna ispuštanja ili procjeđivanje oborinskih voda kroz skladišta ugljena)
 - fizički smještaj nagrđivanje prostora
 - rješenje: arhitektonska rješenja, oslikani zidovi, oslikavanje objekata TE
- posljedice na okoliš vrlo različite, a ovise o:

- energentu,
- vrsti i učinkovitosti tehnologije spaljivanja i
- naročito i sustavima koji se koriste za smanjenje emisija u okoliš
- polutanti u atmosferi razlike u posljedicama u ovisnosti o:
 - zadržavanju emitirane tvari u atmosferi i
 - njenim transformacijama i transportima tih transformata ili samih polutanata

Emisije iz termoenergetskih postrojenja

- sagorijevanje fosilnih goriva pored osnovnih sastojaka (ugljik i vodik) sagorijevaju se i primjese među kojima su najznačajniji:
 - sumpor
 - vlaga
 - nesagorljive primjese (pepeo)
 - teški metali (u tragovima)
- pri sagorijevanju dominanti CO2 i H20
 - ovisno o sadržaju sumpora u gorivu i temperaturi goriva još i SO2 te NOx
 - kod plinovitih goriva najznačajniji prirodni plin s preko 90% metana te oko 7% etana
- SO2
 - posljedica izgaranja mazuta i ugljena
 - najveći porast nakon 2. svjetskog rata
 - više od dvije trećine zakiseljenje u atmosferi
 - djelovanje na čovjeka okus, miris, nadraživanje napad na dišne organe
- NOx
- neizbježna posljedica svakog izgaranja
- nastaje u reakciji dušika iz zraka za izgaranje s kisiom, a količina rste s temperaturom izgaranja (eksponencijalno)
- dušik iz goriva također doprinosi emisiji dušičnih oksida
- najveći izvor promet
- višak dušika
 - negativne posljedice po biljke
 - eutrofikacija
 - pojava kod koje zbog prevelike plodnosti dolazi do pojačanog rasta biljaka u vodi - kad te biljke uvenu zbog njihova se raspadanja troši više kisika što dovodi do manjak kisika
- relativno niska toksičnost
- djelovanje na čovjeka smrt 8-48 sati od izlaganja smrtnoj koncentraciji
- zakiseljavanje
 - posljedica prisustva dušičnih i sumpornih oksida u zraku
 - u dodiru s vodom tvore kiseline
 - suho i mokro taloženje
 - suho neposredna blizina izvora emisije
 - kiseline u atmosferi mogu prevaliti velike udaljenosti i padaju u obliku kiselih oborina
 - prirodni obrambeni mehanizam dovod lužine koja veže ion vodika i neutralizira kiselinu
 - u jezerima to radi vapnenac (hidrokarbonat)
 - u tlu vapnenac ima glavnu ulogu održavanja pH vrijednosti
 - padanje pH vrijednosti dovodi do oslobađanja aluminija, kadmija, cinka i olova koji unštavaju korijenje drveća

- kiselost se mjeri pH skalom (koja je logaritamska)
 - sredina (7) neutralno
 - manje od 7 kiselo
 - veće od 7 lužnato
 - normalna kiša pH 5.6 (malo kisela zbog CO2)
 - Los Angeles kiša pH 1.5
- utjecaji na ljudsko zdravlje
 - lokalne emisije polutanata zdravstveni problemi povećavanje rizika od kancerogenih oboljenja
 - ponajprije emisije čestica, ozona, NOx i CO, ali i mnogih drugih spojeva
 - zagađenje otpadnih voda nije primarno posljedica energetskih transformacija
 - daleko značajniji utjecaj industrijskih procesa
 - voda predstavlja resurs koji će biti jedno od glavnih tehnoloških pitanja XXI stoljeća
 - zagađenje bukom, vizualna zagađenje, zagađenje svjetlom
 - šteta jest velika, ali...
 - korist u obliku povećane kvalitete života, produljenog života i povećane individualne slobode je daleko veća
 - moguće je mnogo učiniti za smanjenje zagađenja
- čestice
 - pojačanje bronhitisa i astme, kronične dišne bolesti
- utjecaj na vode i mora
 - toplinski utjecaj (otpadne topline)
 - odbacivanjem rashladne vode
 - nema štetne tvari, ali djeluje na staništa jer ih zagrijava
 - najznačajniji
 - dovedena energija s gorivom se dijeli na 3 dijela
 - proizvedena električna energija,
 - dimni plinovi i zračenje u atmosferu i
 - rashladna voda u rijeku ili more
 - veći stupanj djelovanja znači manju količinu otpadne vode
 - ispuštanje otpadnih voda u vode i more
 - posljedice nezgoda pri transportu
- utjecaj na tlo
 - zauzeće terena objektima i infrastrukturom
 - može biti veliko sukob s lokalnim zajednicama
 - suho i mokro taloženje iz zraka
 - otpad
 - najveći doprinos objekti prerade nafte i proizvodnje gorica
 - promet s drugim radionicama
 - hidrološke promjene vodotokova (hidroelektrane)
- ostali utjecaji
 - buka
 - neugodni mirisi
 - estetsko vizualni utjecaj

Zaštita okoliša

- država na raspolaganju ima sljedeće mjere
 - mjere regulative i kontrole
 - razni standardi i propisi (kvaliteta okolišta, kvaliteta proizvoda, emisijski, tehnološki...)

- ekonomske mjere
 - plaćanja, subvencije i porezi
- djelovanje na javnost
 - edukacija i propaganda
- povećanje energetske učinkovitosti
 - na strani potrošnje
 - treba zakonski poticati proizvodnju i uporabu učinkovitijih uređaja u domaćinstrvima, uslugama i industrijama
 - na strani proizvodnje i prijenosa električne energije
 - učinkovitije proizvodne tehnologije i oprema te smanjenje gubitaka
 - mora biti financijski isplativo
 - ekonomska opravdanost ocjenjuje se prema ukupnim troškovima projekta (koji uključuju i troškove zaštite okoliša i zdravlja)
- tržišne mjere
 - ekonomski efikasnije postižu isti ekološki učinak uz manje troškove
 - novčano vrednovanje štete po okoliš

Tehnologije za smanjenje emisija iz termoelektrana

- dijele se prema relativnom smještaju prema ložištu i kotlu
 - prije izgaranja,
 - na mjestu izgaranja i
 - poslije izgaranja
- SO2
- prije izgaranja
 - ugljen s niskim udjelom sumpora
 - uklanjanje sumpora iz ugljena
 - pranie uklania 20-50%
 - pretvaranje ugljena u tekuće ili plinovito gorivo
- tijekom izgaranja
 - uklanjanje sumpora za vrijeme izgaranja ugljena u fluidiziranom ležištu
 - u ložište se s ugljenom ubacuje i vapno izgaranjem se odstranjuje oko 90% sumpora
 - niža temperatura manje NOx
- nakon izgaranja
 - dimnjaci viših slojeva od temperaturne inverzije
 - mokro odsumporavanje
 - dimni plin ulazi u veliku posudu gdje se dodaje mješavina vapna i vode
 - efikasnost 80-90%
 - suho odsumporavanje
 - atomiziranje mješavine vapna i vode
 - efikasnost 70-90%
 - oporezivanje svake ispuštene jedinice SO2
- najčešće se koristi mokri postupak odsumporavanja (nakon izgaranja)
 - pri ovome se stvara gips koji se odstranjuje i koristi u građevnoj industriji
- NOx
- nastaje u ložištu na 3 načina
 - iz goriva koje nastaje oksidacijom dušika koji se nalazi u gorivu
 - mjere za smanjenje:
 - smanjenje dovoda O2

- termički NOx nastaje oksidacijom dušika iz zraka za izgaranja
 - najviše ovisi o temperaturi plamena (veća temp. više NOx)
 - mjere za smanjenje:
 - smanjenje temperature izgaranje
 - smanjenje vremena zadržavanja u područjima visoke temperature
- trenutni NOx nastaje iz dušika u zraku za izgaranje, a u prisutnosti slobodnih radikala ugljikovodika
 - nastaje kada je smjesa bogata gorivom i kod nižih temperatura
 - mala količina NOx
 - mjere za smanjenje:
 - ne koriste se
- smanjenje:
 - izbor goriva,
 - konstrukcija ložišta,
 - primarne mjere (promjene u izgaranju),
 - odgovarajuća konstrukcija plamenika i stupnjevito dovođenje zraka i goriva
 - sekundarne mjere
 - selektivna nekatalitička redukcija (dovođenje amonijaka)
 - efikasnost oko 70%
 - uvođenje katalizatora povećava efikasnost do 90%
 - odušičivanje dimnih plinova,
 - napredne tehnologije izgaranja
 - oporezivanje ispuštene jedinice NOx
- uklanjanje za vrijeme izgaranja
 - uklanjanje u fluidizirajućem ležištu (učinkovitost 50-75%)
 - snižavanje temperature (učinkovitost 50-60%)
- nakon izgaranja
 - ukanjanje putem selektivne nekatalitičke reakcije
 - ubacivanje ureje ili amonijaka u dimne plinove
 - efikasnost 35-60%
- čestice
 - nesagorene mineralne tvari tvore pepeo
 - dio pepela se ispusti kroz dno ložišta
 - leteći pepeo čestice pepela koje se nalaze u struji dimnih plinova
 - oznaka veličine PM, PM 10 i PM 2,5
 - količina i karakteristika letećeg pepela ovisi o mineralnoj tvari u ugljenu
 - smanjenje emisija čestica na dva načina
 - preventivne mjere
 - poboljšanje efikasnosti rada
 - znatno smanjenje količine letećeg pepela
 - dobro održavanje
 - izbor goriva (čišćeg prirodni plin, tekuća goriva)
 - određen mogućnošću dobave i cijenom
 - čišćenje goriva
 - itd
 - kontrolne tehnologije
 - prije izgaranja
 - pretvaranje ugljena u tekuće ili plinovito gorivo
 - nakon izgaranja
 - elektrostatski taložnici

- uređaji za odstranjivanje čestica
- koriste se od 1923. godine
- efikasnost između 95 i 99%
 - obično preko 99,5%
- također smanjuju i emisiju opasnih tvari
- vrećasti filtri
- oporezivanje svake jedinice ispuštenih čestica
- napredne tehnologije za uporabu ugljena
 - izgaranje ugljena u fluidiziranom sloju
 - pod atmosferskim tlakom
 - vapnenac se ubrizgava u ložište da bi ulovio sumpor i uklonio kao mokri sporedni proizvod
 - temperatura u kotlu 820-840°C (manje NOx)
 - stupanj toplinske učinkovitosti 38-40%
 - pod tlakom višim od atmosferskog s kombiniranom parno-plinskim ciklusom
 - čišćenje dimnih plinova u ložištu
 - poboljšanje učinkovitosti pretvorbe toplinske u električnu energiju
 - mogućnost primjene kombiniranog procesa upotrebom parne i plinske turbine
 - niže temperature
 - proizvodnja pare za pogon turbine
 - dimenzije kotla relativno malene
 - pouzdano rješenje problema odstranjenja letećeg pepela iz vrelih dimnih plinova prije njihovog propuštanja u plinsku turbinu
 - efikasnost oko 42%
 - rasplinjavanje ugljena i upotreba plina u kombiniranom plinsko-parnom procesu
 - temelj
 - rasplinjavanje ugljena te korištenje dobivenog plina u kombiniranom plinsko-parnom toplinskom ciklusu
 - rasplinajvanje se odvija u posebnim pećima plinskim generatorima (rasplinjačima)
 - 3 osnovna dijela
 - postrojenje za proizvodnju pročišćenog plina kao gorivo za plinsku turbinu
 - postrojenje za separaciju zraka
 - postrojenje kombiniranog plinsko-parnog ciklus
 - preko 99% sumpora uklanja se prije izgaranja plina
 - količina NOx smanjena zbog smanjenja temperature
 - temeljna prednost zaštita okoliša
 - količina CO2 također manja
 - rasplinjavanje
 - pretvaranje gorivih sastojaka ugljena u gorive plinove kalorijska vrijednost tih sastojaka odgovara trećini kalorijske vrijednosti prirodnog plina
 - toplinska vrijednost takvog plina je oko 10MJ/Nm^3
 - ako se za rasplinjavanje koristi zrak, količina CO u dimnim plinovima je bitno manja, a kalorijska vrijednost tada pada na svega desetinu kalorijske vrijednosti prirodnog plina
 - energetska bilanca:

- 100% toplinske energije ugljena prelazi u:
 - 75% energije iz rasplinjača u proizvedeni plin
 - 25% para (kojom se hlade vreli plinovi u rasplinjaču)
 - ovih ukupno 90% (75 + 25) se dovode kombiniranom ciklusu i od toga
 - 47% se pretvara u električnu energiju
 - 43% se odvodi u kondenzator parne turbine i dimnjak ispušnih plinova
 - 10% su gubici

Otpad

Općenito

- zabrinutost radi količine otpada i utjecaja na okoliš došla do izražaja u posljedna dva desetljeća
- neodgovarajuće zbrinjavanje otpada dovelo do čitavog niza slučajnog zagađenja tla i podzemnih voda
- sve ljudske aktivnosti su potencijalni izvor otpada (pa tako i otpad od proizvodnje energije)
- poljoprivredne djelatnosti, kopanje rude te industrijske i komunalne djelatnosti su u Europi veći izvor otpada nego proizvodnja energije
- svi sustavi koji proizvode električnu energiju stvaraju:
 - krute,
 - tekuće i
 - plinovite otpade.
- postojćea odlagališta su zasićena, a poteškoće se javljaju pri traženju novih lokacija za odlagališta
- otpad iz termoelektrana:
 - kontaminirane i vodenaste tekućine,
 - tekući cement,
 - mulj,
 - istrošeni filtri,
 - građevinski krš
 - itd.
- od navedenih na okoliš utječu:
 - teški metali (živa,kadmij, arsen),
 - ostali metali,
 - organske kemikalije,
 - radionuklidi,
 - toksični materijali
- plin se navodi kao primjer za smanjenje emisije CO2, međutim ispuštanje metana pri ekstrakciji i rukovanju plinom je vrlo veliko

Zbrinjavanje krutog i tekućeg otpada

- najbolje zbrinjavanje otpada zapravo je sprječavanje njegovog nastanka
- globalno postoji opća težnja ka smanjenju količine otpada
 - prevencija stvaranja

- recikliranje
- povećana efikasnost i racionalna uporaba električne energije
- najviše otpada u TE kao ostatak izgaranja goriva i od pročišćavanja dimnih plinova
 - zbrinjavanje te velike količine je značajan problem
- zbrinjavanje otpada općenito podrazumijeva primjenu raznih tehnologija obrade otpada
 - obrada može rezultirati stvaranjem sekundarnog otpada
- obrada otpada 3 cilja:
 - smanjenje ili potpunu uklanjanje opasnih svojstva otpada
 - smanjenje rizika po zdravlje i okoliš pri prijevozu, skladištenju ili konačnom odlaganju otpada
 - pojednostavljenje odlaganja, npr. smanjenjem količine
- najčešće je to kombinacija ovih ciljeva

Odlaganje otpada

- tekući otpad
 - prije odlaganja se obrađuje i najčešće nastaje:
 - voda dovoljne čistoće da se može ispustiti u okoliš ili
 - talog/mulj ili filtarski materijal koji se spaljuje, solidificira ili koristi kao sekundarna sirovina
- otpad iz termoelektrana
 - velika količina tog otpada problem prijevoza od TE do mjesta odlaganja
- utjecaj na okoliš
 - ovisi o kapacitetu odlagališta, vrsti otpada, projektu odlagališta te karakteristikama lokacije
 - utjecaj procjednih voda i odlagališnog plina
 - uvođenje propisa i kontrole odlaganja otpada
 - potrebna je dozvola za odlaganje
 - za nju treba kompletna karakterizacija (analzia) otpada
 - odlagalište treba obložiti nepropusnim izolirajućim slojevima
 - obavezno:
 - prikupljanje i obrada procjednih voda
 - monitoring podzemnih voda
 - suglasnost dozvola za zatvarnje odlagališta
- površinsko odlaganje
 - glavna značajka uleknuće (udolina)
 - prirodna, ljudski izgrađena (npr. stari kamenolom) ili umjetna (izgrađena baš za odlaganje)
 - sve više umjetno izgrađena zbog oštrijih propisa
 - razvoj obloženih i pokrivenih odlagališta
 - procjedne vode oborinske vode, podzemne vode ili voda koja postoji u vodi ispiru ili otapaju onečišćujuće tvari iz otpada
 - prodor u slojeve podzemne pitke vode ugrožava taj važan resurs
 - dva načela kontrole (rijetko egzistiraju u čistom obliku):
 - razrijedi i rasprši
 - nema procjednih voda
 - skoncentriraj i zadrži
 - jedan od najvažnijih elemenata sigurnosti upravo procjedne vode
 - glavni cilj tlak procjednih voda niži od okolnog tlaka podzemnih voda

- postiže se prikupljanjem i ispumpavanjem procjdnih voda sa nepropusnog dna odlagališta
- niz kanala u obliku riblje kosti na dnu odlagališta gravitacijski voda dolazi na najnižu kotu odakle se ispumpava
- svrha zadržavanje otpada i/ili procjednih voda tako dugo dok se ne osigura potreban stupanj razgradne specifičnih onečiščujućih tvari te njihovo razrjeđenje u podzemnoj vodi
- duboko odlaganje
 - rudnici ili izgrađena duboka odlagališta
 - otpad izoliran od biosfere s višestrukim umjetno napravljenim barijerama
 - mala propusnost i udaljenost od vodonosnika niz uzastopnih barijera sprječava ili ograničava prodor onečiščavajućih tvari u biosferu
 - utiskivanje u duboke bušotine
 - odgovarajuću poroznost i propusnost posebnih geoloških formacija u kojih se utiskuje
 - mora biti okružena naslagama sa slabom propusnošću radi izolacije
 - u Hrvatskoj za odlaganje takozvanog tehnološkog fluida
- miješani otpad
 - opasni otpad jer sadrži radioaktivne i neradioaktivne opasne konstituente
 - zbrinjavanje i odlaganje veliki problem
 - kratki poluživoti radioaktivnih konstituenata olakšavaju problem
 - · različiti propisi za radioaktivne i kemotoksične komponente otpada
 - ne zna se koje propise primijeniti pa dolazi do opasnosti
- strategija odlaganja u Hrvatskoj
- 1. smanjenje volumena
 - reciklaža
- 2. izgradnja centara regionalnih/županijskih/odlagališta
 - sanacija i zatvaranje neuređenih gradskih i općinskih odlagališta pa izgradnja novih
- županijska uređena odlagališta 21 max
- otoci zatvaranje svih odlagališta

Lociranje elektroenergetskih objekata i odlagališta otpada

- utjecaj elektroenergetskog objekta ovisi i o smještaju tog objekta
- pravilnim smještanjem može se umanjiti emisija onečišćenja i smanjiti šteta
- princip preventivnosti bolja lokacija sprečava onečišćenje
- lokacija koja zahtjeva manje zahvata na okolišu ali omogućuje ekološki prihvatljiv normalan rad objekta
- TE mogu kroz incidentni i/ili akcidentni rad objekta izazvati značajan utjecaj na okoliš
- primjer smještanje TE blizu rudnika ili ugljena manje onečišćenja zbog transporta
- proces izbora lokacije
 - ide naičešće u tri faze
 - 1. globalna ocjena cjelokupnog prostora (npr. države)
 - odbacivanje dijelova teritorija koji već "plitkom" razinom provjere pokazuju da su nepodobni
 - pomoću karte (mjerilo npr. 1:300000)
 - rezultat su "potencijalna područja"

- 2. razmatranje "potencijalnih područja"
 - eliminacijski kriteriji
 - detaljnije karte (mjerilo npr. 1:100000)
 - rezultat je veći broj manjih teritorija u "potencijalnim područjima" koji se nazivaju "potencijalne lokacije"
- 3. provjera podobnosti odobrenih lokacija
 - uglavnom se odvija na samim lokacijama (terenski rad)
 - cilj je provjera i potvrda podobnosti lokacija
 - rezultat je isticanje jedne "preferentne lokacije" i njeno potvrđivanje u "lokaciju"
 - potvrđuje nadležno državno tijelo dobivanje "lokacijske dozvole"
- prociena utjecaja zahvata na okoliš
 - postupak ocjenjivanja prihvatljivosti namjeravanog zahvata s obzirom na okoliš i određivanje potrebnih mjera zaštite okoliša
 - postupak se provodi rano i to prije izdavanja lokacijske dozvole
- način informiranja
 - mora se osigurati informiranje javnosti o podnesenom zahtjevu i izdanom aktu
 - o rok informiranja ne može biti kraći od 30 dana
- način sudjelovanja
 - javna rasprava
 - zainteresirana javnost može rano u postupku iznijeti svoje mišljenje, prijedloge i primjedbe
 - javna rasprava (javni uvid i izlaganja)