Lista de Exercícios 4

Thaís Paiva 22/04/2018

Inferência

Exercício 1

No gráfico abaixo, vemos a distribuição do logaritmo das indenizações por incêndio na Dinamarca. Mesmo após aplicar o logaritmo, vemos que a distribuição dos dados ainda é bastante assimétrica.

Histograma e densidade empírica

Exercício 2

As distribuições Gama e Lognormal podem ser ajustadas aos dados de indenizações usando a função fitdist do pacote fitdistrplus, que encontra os estimadores de máxima verossimilhança para as distribuições especificadas. Os valores dos estimadores estão na Tabela 1.

```
## ajustando gama e lognormal
x = x + 0.0001  # adicionando constante para evitar zeros
fgam = fitdist(x, "gamma", lower=0)  # gama
flnorm = fitdist(x, "lnorm")  # lognormal
```

params.	Gama	params.	Lognormal
shape	$1.125610 \\ 1.430252$	meanlog	-0.7454713
rate		sdlog	1.2797658

Exercício 3

No gráfico abaixo, vemos o histograma dos valores transformados das indenizações, juntamente com as curvas das distribuições Gama e Lognormal ajustadas, e a curva da densidade empírica. De acordo com as

densidades, vemos que a densidade da Gama está mais próxima da densidade observada nos dados.

Histograma e densidades ajustadas

Exercício 4

QQ-plot Dados de Incêndio

De acordo com os gráficos das funções de distribuição acumulada ajustadas e dos quantis teóricos e empíricos, vemos que a distribuição gama tem um ajuste mais próximo da distribuição observada nos dados.

Exercício 5

```
## quantil observado
qemp = quantile(x, prob=.95)

## quantis teóricos
qgam = qgamma(.95, shape=fgam$estimate[1], rate=fgam$estimate[2])
qlnorm = qlnorm(.95, meanlog=flnorm$estimate[1], sdlog=flnorm$estimate[2])
```

	Emp	Gama	Lognormal
95%	2.299929	2.261656	3.894464

Novamente, pela comparação entre os quantis de 95% empírico e teóricos, vemos que a distribuição gama apresentou um ajuste mais próximo aos dados observados.

Aprendizagem Estatística

Exercício 6

No gráfico abaixo, vemos a distribuição marginal da variável checking_status que mostra o saldo da conta corrente em marcos alemães dos clientes do banco de dados de análise de crédito. Vemos que as categorias com saldo negativo e saldo até 200 marcos contém 27% dos dados cada, enquanto a categoria com saldo acima de 200 marcos concentra apenas 6% dos clientes. A categoria com maior frequência, com quase 40% dos dados, é a de clientes sem conta corrente ou que não se sabe.

Para analisar se há diferença na distribuição dessa variável checking_status com relação à classificação dos clientes, vemos abaixo a proporção de clientes classificados como bons (class=0) ou ruins (class=1) em cada categoria de saldo da conta corrente. Vemos que nas duas primeiras categorias (saldo negativo e saldo até 200 marcos alemães), a proporção de bons e maus clientes é parecida, em torno de 50% e 60% respectivamente. Já na categoria de saldo maior que 200 marcos, 77% dos clientes foram classificados como bons. Para clientes sem conta corrente ou conta desconhecida, essa proporção aumenta para 88%. Essas proporções podem ser visualizadas para as quatro categorias de conta corrente no gráfico abaixo, com a proporção geral destacada na linha pontilhada.

Table 3: Classificação dos clientes de acordo com o saldo em conta corrente

	0	1
<0	0.507	0.493
0-200	0.610	0.390
>200	0.778	0.222
não tem	0.883	0.117

Exercício 7

Na tabela e no gráfico abaixo, vemos a proporção de clientes classificados como bons de acordo com a duração do empréstimo. Para empréstimos com menos de 6 meses, quase 90% dos clientes são classificados como bons. Podemos ver que essa proporção diminui a medida em que a duração do empréstimo aumenta, chegado a 48% para empréstimos com mais de 3 anos.

Table 4: Classificação dos clientes de acordo com a duração do empréstimo em meses

	0	1
0-6	0.890	0.110
6-12	0.758	0.242
12-18	0.701	0.299
18-24	0.705	0.295
24 - 36	0.601	0.399
36+	0.483	0.517

Proporção de bons clientes por duração do emprésti

Duração do empréstimo em meses