Direct solution for flux						
	K	num cells				
zone 1	1	12				
zone 2	1	0				
zone 3	1	0				
Keq	1					
q	1					

z	K zone cell	K cell	Н	q	zone 1	zone 2	zone 3
60	1	1	60		1	0	0
55	1	1	55	1	1	0	0
50	1	1	50	1	1	0	0
45	1	1	45	1	1	0	0
40	1	1	40	1	1	0	0
35	1	1	35	1	1	0	0
30	1	1	30	1	1	0	0
25	1	1	25	1	1	0	0
20	1	1	20	1	1	0	0
15	1	1	15	1	1	0	0
10	1	1	10	1	1	0	0
5	1	1	5	1	1	0	0
0	1	1	0	- 1	1	0	0

Map of node and cell numbers						
	node	cell				
1	-		1			
2	-		2			
3	-		3			
4	-		4			
5	-		5			
6	-		6			
7	-		7			
8	-		8			
9	-		9			
10	-		10			
11	-		11			
12	-		12			

The Challenge:

Create a 1D, vertical steady state model with constant head top and bottom boundaries.

Show, based on the flux with depth, that the model is steady state.

Repeat this for a homogeneous and for a heterogeneous column.

Show that the steady state flux agrees with the direct calculation based on the harmonic mean average K.

Show the steady state head profile for a column with approximately equal-thickness layers with different K values.

Use this profile to explain why the equivalent hydraulic conductivity, Keg, is closer to the lower of the K values.