Q02-Ledwe 10
What have we learned so for?
- "Phonomenological Wlodels
La Einstein rate equations
Letheory of a laser
- Study of pertubations
Li Finite (disarrte) levels => Rombi osallation
La Quasi-continuam =) exponential decay, Ferrandon Codden Rule.
- Semiclassical interaction between atom of field.
Ladipole approx., RWA
La optical Block equations
Loadiabatic basis/Landan-Zener
- Fully quantum
Layre's - Cummings
Lo Rabi revival
- Light effects
La caturation

Phew! Lot's of things to study, mostly two-level atoms!

L. broadening

THE LAST LECTURE

We have studied 2-level systems in great debail. Do any new phonomona emerge with 3-level systems?

To understand this system, we must go through some math (which will look familiar). However, before we do this, consider Sc > 1 or Sc = 0. We can treat the $2 \rightarrow 3$ system as a two level system. What are the eigenerorgies? In the rotating frame:

This means that the 11) state will experience two coupled levels, whose energies differ by to 2.

What happens when Ω_c is not very big?

~ M ?

Betwee we get the answer, let's learn about

Optical Pumping and Coherent Population Trapping

So for, we have considered an idealized 2-level atom. Real atoms, though they might have isolated 2-level-like states, have angular momentum! For a hydrogenic atom, the good quantum numbers are J = L75, and MJ.

The transition matrix elements $\langle n_1, J_1, m_1 | \dot{\Xi} \cdot \dot{d} | n_2, J_2, m_2 \rangle$

determine the rate at which an atom moves between levels when illuminated with $\vec{E} = \vec{\Sigma} E_0 \cos \omega t$.

when $\tilde{\Xi} = \tilde{\Xi}_{z}$ (linearly polarized), the transition natrix elements are zero unless:

 $\int_{1}^{2} J_{1} - J_{2} = \pm 1$ or 0 $m_{1} - m_{2} = 0$

These selection rules determine which states are coupled.

So consider the following level scheme?

Similarly, for circularly polarized light, we can derive!

$$J_1 - J_2 = 0$$
, ± 1
 $m_1 - m_2 = \pm 1$ (+ sign for J_+ , - sign for J_-)

Finally, consider the $|n_1, J=1/2, m_3\rangle \Rightarrow |n_2, J=1/2, m_3\rangle$ trunsition:

If illuminated by σ_{τ} light, atom eventually gets stuck in $|n_1, J^{-1/2}, m_{\tau}^{-1/2}\rangle$ (since there is nowhere for it to go once it lands there).

This is called OPTICAL POMPING.

Coherent Population Trapping

Consider ?

Define the dipole moments?

and the two states:

Note that:

14) is called a 'dark state' : one an atom finds itself in the dark state, it remains there (as there is no compling to other levels).

Since spontaneous emission from the excited state populates 14+/2), but no process is capable of exciting the system out of 14-), the system will rapidly populate 14-).

Consider

$$(4-)^{2} = \frac{1}{\sqrt{52^{2}+52^{2}}} \left(\frac{9}{22} \left(\frac{1}{9} \right) - \frac{1}{9} \left(\frac{1}{92} \right) \right)$$

We can write the interaction Hamiltonian as

And show that

Which is & when

This is called the ETT condition (electromagnetically induced transparency).

When it is satisfied, the absorption goes to zero because the system is trapped in the dark state!

assignment) yields: The full treatment (see > Stunderd 2-level atom Sp = S, - S2 = (w,-wg,)-(wz-wg) This has other consequences! Recall (from undugrad) that the real part of X is related to the imaginary gort (Kramers-Knonig) by: X'(w) = 2 (w'dw' (X''(w')) Then we get: Standard 2-level atom. When diz=0, grow velouty Vg = C n+w dn/dw SLOW LIGHT! World record: ~100 km/h .

In summary, small en => ETT large 2, => Auther-Tornes Effect