

Wyższa Szkoła Oficerska Sił Powietrznych

Katedra Nauk Ogólnokształcących

Sprawozdanie

z ćwiczenia przeprowadzonego w zintegrowanym laboratorium fizyki, mechaniki i termodynamiki.

Temat ćwiczenia: Badanie drgań harmonicznych sprężyny spiralnej. Wyznaczanie stałej sprężystości k.

Słuchacz: Igor Buhaj, Łukasz Kusek, Patryk Łudzik

Grupa: C9D	
	Ćwiczenie zaliczono:

Spis rysunków

1	Wykres zaobserwowanego ruchu harmonicznego (wychylenia, prędkości i przy-	
	spieszenia) dla zawieszonej na sprężynie masy $m=60~g$	6
2	Wykres zaobserwowanego ruchu harmonicznego (wychylenia, prędkości i przy-	
	spieszenia) dla zawieszonej na sprężynie masy $m=80~g$	6
3	Wykres zaobserwowanego ruchu harmonicznego (wychylenia, prędkości i przy-	
	spieszenia) dla zawieszonej na sprężynie masy $m=100~g$	8

Spis tablic

- Odczyty długości okresów dla zawieszonej masy $m=60g\ldots$ Odczyty długości okresów dla zawieszonej masy $m=80g\ldots$

1 Opis ćwiczenia

Każdy ruch powtarzający się w regularnych odstępach czasu nazywamy $ruchem\ okre-sowym$.

Jedną z ważnych własności opisujących taki ruch jest jego częstość (częstotliwość) f, czyli liczba pełnych drgań (cykli) wykonanych w ciągu jednej sekundy.

Z częstością związany jest ${\it okres\ ruchu\ }T,$ czyli czas, w jakim wykonywane jest jedno pełne drganie.

Częstość związana jest okresem wzorem

$$T = \frac{1}{f} \tag{1}$$

Szczególnym rodzaj ruchu okresowego opisany wzorem

$$x(t) = A \cos(\omega t + \varphi) \tag{2}$$

Jest to *ruch harmoniczny*, czyli ruch okresowy opisany sinusoidalną funkcją czasu.

Wyrażenia we wzorze [2], to

- $\bullet\,$ A amplituda wartość bezwzględna maksymalnego przemieszczenia ciała w obu kierunkach,
- \bullet ω częstość kołowa (kqtowa) dana wzorem

$$\omega = \frac{2\pi}{T} = 2\pi f \tag{3}$$

- $\omega t + \varphi$ faza
- φ \boldsymbol{faza} $\boldsymbol{początkowa}$ wartość fazy, gdy t=0

Przyspieszenie w takim ruchu wyprowadzamy z

$$a(t) = \frac{d^2 x(t)}{dt^2} \tag{4}$$

czyli

$$a(t) = -\omega^2 x(t) \tag{5}$$

Korzystając z drugiej zasady dynamiki Newtona otrzymujemy zależność siły od wychylenia

$$F(t) = m a(t) = -(\omega^2 m) x(t)$$
 (6)

Przyjmując stałą sprężystości k

$$k = m \,\omega^2 \tag{7}$$

otrzymujemy prawo Hooke'a

$$F = -k x \tag{8}$$

Układ opisany prawem Hooke'a tworzy oscylator harmoniczny (liniowy).

W rzeczywistości jeżeli ruch oscylatora słabnie na skutek działania sił zewnętrznych, to taki oscylator nazywamy **oscylatorem tłumionym**, a jego drgania nazywamy **tłumionymi**.

Gdy założymy, że ruch odbywa się z niewielką prędkością w kierunku drgań, to siłę oporu można opisać wzorem

$$F_0 = -b v (9)$$

gdzie b jest stałq tlumienia.

Układ drgający działa siłą $F_S = -k x$. Jeżeli założymy, że **siła ciężkości** działająca na układ drgający jest **znikomo mała** w porównaniu z F_0 i F_S . Wówczas drugą zasadę dynamiki Newtona dla składowej wzdłuż osi x ($F_x = m a_x$) zapisujemy w postaci

$$-b v - k x = m a \tag{10}$$

Przekształcając równanie [10] otrzymujemy równanie różniczkowe

$$m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = 0 (11)$$

którego rozwiązaniem jest równanie opisujące wychylenie od czasu oscylatora tłumionego

$$x(t) = A e^{\frac{-bt}{2m}} \cos(\omega' t + \varphi)$$
 (12)

Częstość kołowa oscylatora tłumionego

$$\omega' = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}} \tag{13}$$

Gdy

 $\bullet \ b=0,$ to otrzymujemy wzór na częstość kołową oscylatora nietłumionego

$$\omega = \sqrt{\frac{k}{m}} \tag{14}$$

• $b \ll \sqrt{k m}$, to

$$\omega' \approx \omega$$
 (15)

Przyjmując założenia

- \bullet siła ciężkościdziałająca na układ drgający jest $znikomo\ mała$ w porównaniu z F_0 i F_S
- $b \ll \sqrt{k m}$

możemy wyznaczyć $stałq\ sprężystości\ k$ sprężyny mierząc $okres\ drgań\ T$ oraz $masę\ m$ zawieszonego na sprężynie odważnika.

Korzystamy ze wzoru

$$\omega = \sqrt{\frac{k}{m}} \tag{16}$$

otrzymujemy

$$k(m,T) = \frac{4\pi^2 m}{T^2} \tag{17}$$

2 Tabela odczytów i pomiarów

m[g]	T[s]	$k\left[\frac{N}{m}\right]$
60	$0,875 \pm 0,000$	$3,09 \pm 0,51$
80	$1,010 \pm 0,018$	$3,1 \pm 0,6$
100	$1,222 \pm 0,007$	$3,13 \pm 0,41$

3 Opracowanie pomiarów i wyniki. Ocena błędów

Po przeprowadzeniu pomiarów otrzymaliśmy wyniki w postaci wykresów oraz danych liczbowych dla zawieszonych mas $60\,g,\,80\,g$ i $100\,g.$

Odczytaliśmy długości okresów dla pomiaru przy zawieszonej masie $60\,g$, które umieszczone są w tabeli [1]. Zamieściliśmy poglądowy wykres dla tego pomiaru [1].

Dla tego pomiaru otrzymaliśmy okres

$$T = (0,875 \pm 0,000) [s]$$

Wykorzystując wzór [17], metodę różniczki zupełnej

Początek drgania $[s]$	Koniec drgania $[s]$	Długość okresu $[s]$
10,6750	11,5500	0,8750
11,5500	12,4250	0,8750
12,4250	13,3000	0,8750
13, 3000	14, 1750	0,8750
14, 1750	15,0500	0,8750
15,0500	15,9250	0,8750
16,8500	17,7250	0,8750

Tablica 1: Odczyty długości okresów dla zawieszonej masy m=60g

$$\Delta k = \left| \frac{\partial k}{\partial m} \cdot \Delta m \right| + \left| \frac{\partial k}{\partial T} \cdot \Delta T \right|$$

$$\frac{\partial k}{\partial m} = \frac{4 \pi^2}{T^2}$$

$$\frac{\partial k}{\partial T} = \frac{-8 \pi^2 m}{T^3}$$
(18)

średni błąd kwadratowy wartości średniej

$$\Delta T = \sqrt{\frac{\sum_{i=1}^{n} \left(T_i - \overline{T}\right)^2}{n(n-1)}}$$
(19)

współczynnik rozkładu Studenta dla poziomu ufności 95%oraz przyjmując

$$\Delta m = 0,005$$

obliczyliśmy stałą sprężystości dla tego pomiaru

$$k = (3,09 \pm 0,51) \left[\frac{N}{m} \right]$$

Długości okresów dla pomiaru przy zawieszonej masie 80g umieszczone zostały w tabeli [2], a wykres dla tego pomiaru [2].

Dla tego pomiaru otrzymaliśmy okres

$$T = (1,010 \pm 0,018) [s]$$

oraz stałą sprężystości

$$k = (3, 1 \pm 0, 6) \left[\frac{N}{m} \right]$$

Rysunek 1: Wykres zaobserwowanego ruchu harmonicznego (wychylenia, prędkości i przyspieszenia) dla zawieszonej na sprężynie masy $m=60\ g$

Początek drgania $[s]$	Koniec drgania $[s]$	Długość okresu $[s]$
8,1250	9, 1250	1,0000
9,1250	10, 1500	1,0250
10, 1500	11, 1500	1,0000
11, 1500	12, 1500	1,0000
12, 1500	13, 1750	1,0250

Tablica 2: Odczyty długości okresów dla zawieszonej masy m=80g

Rysunek 2: Wykres zaobserwowanego ruchu harmonicznego (wychylenia, prędkości i przyspieszenia) dla zawieszonej na sprężynie masy $m=80\ g$

Początek drgania $[s]$	Koniec drgania [s]	Długość okresu $[s]$
4,5250	5,6500	1,1250
5,6500	6,7750	1,1250
6,7750	7,9000	1,1250
7,9000	9,0250	1,1250
9,0250	10, 1500	1,1250
10, 1500	11, 2500	1,1000
11,2500	12,3750	1,1250
12,3750	13,5000	1,1250
13,5000	14,6250	1,1250

Tablica 3: Odczyty długości okresów dla zawieszonej masy m=100g

Pomiar przy zawieszonej masie 100 g opisuje tabela [3] oraz wykres [3].

Dla tego pomiaru otrzymaliśmy okres

$$T = (1, 122 \pm 0, 007) [s]$$

oraz stałą sprężystości

$$k = (3, 13 \pm 0, 41) \left[\frac{N}{m} \right]$$

Ostatecznie otrzymaliśmy stałą sprężystości korzystając ze średniej arytmetycznej pomiarów stałej sprężystości dla mas m=60~g,~m=80~g,~m=100~g, średniego błędu kwadratowego wartości średniej [19] oraz prawa przenoszenia błędów

$$\Delta k = \sqrt{\Delta k^2 + \frac{\delta k^2}{3}} \tag{20}$$

$$k = (3,11 \pm 0,35) \left[\frac{N}{m} \right]$$

4 Wnioski i spostrzeżenia

Zbadana stała sprężystości dla badanej sprężyny jest zbliżona do nominalnej stałej tej sprężyny, która wynosiła 3 $\frac{N}{m}$.

Na podstawie przeprowadzonego doświadczenia stwierdziliśmy, że stała sprężystości rośnie wraz ze wzrostem zamocowanej masy. Przypuszczamy, że związane jest to z własnościami materiału, z którego wykonana jest sprężyna, tj. wraz ze wzrostem wydłużenia zwiększa się sztywność sprężyny.

Rysunek 3: Wykres zaobserwowanego ruchu harmonicznego (wychylenia, prędkości i przyspieszenia) dla zawieszonej na sprężynie masy $m=100\;g$