2023 年全国硕士研究生招生考试数学 (一)

一、选择题:1~10 小题,每小题 5 分,共 50 分,下列每题给出的四个选项中,只有一个选项是符合题目

要求的,请将所选选项前的字母填在答题卡指定位置.

- (1) 【答案】(B) $y=x+\frac{1}{\rho}$.
- (2) 【答案】(C) a=0, b>0
- (3) 【答案】(C) f'(x)连续, f"(0)不存在
- (4) 【答案】(A) 充分必要条件
- (5) 【答案】(B) r₁ ≤ r₂ ≤ r₂
- (6) 【答案】(D) $\begin{pmatrix} 1 & 1 & a \\ 0 & 2 & 2 \\ 0 & 0 & 2 \end{pmatrix}$
- (7) 【答案】(D) $k \begin{bmatrix} 1 \\ 5 \\ 8 \end{bmatrix}, k \in \mathbb{R}$
- (8) 【答案】(C) $\frac{2}{e}$
- (9) 【答案】(D) $\frac{2S_1^2}{S_2^2} F(n-1, m-1)$
- (10) 【答案】(A) $\frac{\sqrt{\pi}}{2}$
- 二、填空题:11~16 小题,每小题 5 分,共 30 分.
- (11)【答案】-2
- (12)【答案】x+2y-z=0
- (13)【答案】0

三、解答题:17~22 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.

- (17)【答案】(I) $y(x) = x(2 \ln x)$;(II)最大值为 $f(e^2) = \frac{1}{4}e^4 \frac{5}{4}$.
- (18)【答案】极小值为 $f(\frac{2}{3},\frac{10}{27})=-\frac{4}{729}$.
- (19)【答案】利用高斯公式得 $\frac{5}{4}$ π.
- (20)【答案】(I) 利用泰勒公式在x=0展开,再结合介值定理得结论.
- (II) 利用泰勒公式在极值点展开,利用重要不等式放缩得结论.

(21) 【答案】(I)
$$P = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
; (II) 不存在.

(22) 【答案】(I)
$$DX = DY = \frac{1}{3}$$
;(II) 不独立;(III) $f_z(z) = \begin{cases} 2z, & 0 < z < 1 \\ 0, & 其他 \end{cases}$.

一、选择题:1~10 小题,每小题 5 分,共 50 分,下列每题给出的四个选项中,只有一个选项是符合题目

要求的,请将所选选项前的字母填在答题卡指定位置.

(2) 【答案】(D)
$$F(x) = \begin{cases} \ln(\sqrt{1+x^2} + x) + 1, x \le 0 \\ (x+1)\sin x + \cos x, x > 0 \end{cases}$$

- (3) 【答案】(C) a=0, b>0
- (5) 【答案】(C) f'(x)在x=0连续, f''(0)不存在.
- (7) 【答案】(C) [1,2)
- (8) 【答案】(D) $\begin{pmatrix} |B|A^* & -A^*B^* \\ O & |A|B^* \end{pmatrix}$
- (9) 【答案】(B) y₁¹-y₂²
- (10) 【答案】(D) $k \begin{bmatrix} 1 \\ 5 \\ 8 \end{bmatrix}, k \in R$
- 二、填空题:11~16 小题,每小题 5 分,共 30 分.
- (11)【答案】-2
- (12)【答案】 $\sqrt{3} + \frac{4}{3}\pi$
- (13)【答案】 $-\frac{3}{2}$
- (14)【答案】-11g
- (15)【答案】 $\frac{1}{2}$

2023 年全国硕士研究生招生考试数学 (二)

三、解答题:17~22 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤。

(17) 【答案】(I) $y(x) = x(2 - \ln x)$;

- (II) 曲线L在点 $(e^{\frac{3}{2}}, \frac{1}{2}e^{\frac{3}{2}})$ 处的切线与两坐标轴所围成三角形面积最小,且最小面积为 $S=e^3$.
- (18)【答案】极小值为 $f(-e,k\pi)=-\frac{e^2}{2}$,其中k为偶数.
- (19)【答案】(I) 面积为 ln(√2+1);
- (II) 根据旋转体体积公式,旋转体体积为 $\pi(1-\frac{\pi}{4})$.
- (20)【答案】 $\frac{\pi \ln 2}{8\sqrt{3}}$
- (21)【答案】】(I) 利用泰勒公式在x=0展开,再结合介值定理得结论.
- (II) 利用泰勒公式在极值点展开,利用重要不等式放缩得结论.

(22) 【答案】
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & 1 \\ 0 & 1 & -1 \end{pmatrix}; P = \begin{pmatrix} 4 & 0 & -1 \\ 3 & -1 & 0 \\ 1 & 1 & 2 \end{pmatrix}, P^{-1}AP = \Lambda = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}.$$

一、选择题:1~10 小题,每小题 5 分,共 50 分,下列每题给出的四个选项中,只有一个选项是符合题目

要求的,请将所选选项前的字母填在答题卡指定位置.

(2) 【答案】 (D)
$$F(x) = \begin{cases} \ln(\sqrt{1+x^2} + x) + 1, x \le 0 \\ (x+1)\sin x + \cos x, x > 0 \end{cases}$$

- (3) 【答案】(C) a=0, b>0
- (4) 【答案】(A) 充分必要条件

(5) 【答案】(B)
$$\begin{pmatrix} |B|A^* & -A^*B^* \\ O & |A|B^* \end{pmatrix}$$

- (6) 【答案】(B) y₁²-y₂²
- (7) 【答案】(D) $k \begin{bmatrix} 1 \\ 5 \\ 8 \end{bmatrix}, k \in R$
- (8) 【答案】(C) $\frac{2}{e}$
- (9) 【答案】 (D) $\frac{2S_1^2}{S_2^2} \sim F(n-1, m-1)$
- (10) 【答案】(A) $\frac{\sqrt{\pi}}{2}$
- 二、填空题:11~16小题,每小题5分,共30分.
- (11)【答案】2.根据到代换和泰勒公式求得结果.
- (12) 【答案】 $\frac{\pi}{3}$. 根据全微分求出原函数 $f(x,y) = \arctan \frac{y}{x}$.

2023 年全国硕士研究生招生考试数学 (三)

- (14) 【答案】 2e -2t-2
- (15) 【答案】8
- (16) 【答案】-13

三、解答题: 17~22 小题, 共 70 分. 解答应写出文字说明、证明过程或 演算步骤.

(17) (本题满分10分)

【答案】(I) a=1,b=-1; (II) x=0 是 y(x) 的极大值点.

(18) (本题满分 12 分)

【答案】(I) 面积 $S = \ln(1+\sqrt{2})$; (II) 体积 $V_x = \pi - \frac{\pi^2}{4}$.

(19) (本题满分 12 分)

【答案】
$$3\sqrt{3} - \frac{\pi}{9} - \frac{32}{9}$$
;

(20) (本题满分 12 分)

【答案】(I) 利用泰勒公式在x=0展开, 再结合介值定理得结论:

- (II) 利用泰勒公式在极值点展开,利用重要不等式放缩得结论.
- (21) (本题满分 12 分)

【答案】
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & 1 \\ 0 & 1 & -1 \end{pmatrix}; P = \begin{pmatrix} 4 & 0 & -1 \\ 3 & -1 & 0 \\ 1 & 1 & 2 \end{pmatrix}, P^{-1}AP = \Lambda = \begin{pmatrix} 2 & & \\ & -2 & \\ & & 1 \end{pmatrix}.$$

(22) (本题满分 12 分)

