Grundlagen der Programmierung (Vorlesung 5)

Ralf Möller, FH-Wedel

- Vorige Vorlesung:
 - Boole'sche Logik & Boole'sche Algebra
 - Normalformen, Resolution
- Inhalt dieser Vorlesung
 - Fortsetzung der Besprechung des Resolutionsverfahrens
- Lernziele:
 - Anwendung des Resolutionsverfahrens
 - Lösen von Logeleien

Danksagung

Die Folien zu Normalformen und Kalkülen wurden übernommen von Javier Esparza (http://www.brauer.in.tum.de/lehre/logik/SS99/)

Eine Logelei: Supermann existiert nicht!

Wenn Supermann das Böse verhindern kann und will, dann wird er es tun. Wenn Supermann das Böse nicht verhindern kann, dann ist er machtlos; wenn er es nicht verhindern will, dann ist er böswillig. Supermann verhindert das Böse nicht. Wenn Supermann existiert, ist er weder machtlos noch böswillig. Darum existiert Supermann nicht.

Gesucht wird ein mechanisches Verfahren

- Wir definieren einen Operator ⊢
- F1, F2, ..., Fk $\vdash G$
- Ansprüche an ⊢
- Korrektheit
 - **■** Wenn $\{F1, F2, ..., Fk\} \vdash G dann <math>\{F1, F2, ..., Fk\} \models G$
- Vollständigkeit
 - **■** Wenn $\{F1, F2, ..., Fk\} \models G \text{ dann } \{F1, F2, ..., Fk\} \vdash G$

Normalformen

Definition (Normalformen)

Ein *Literal* ist eine atomare Formel oder die Negation einer atomaren Formel. (Im ersten Fall sprechen wir von einem *positiven*, im zweiten Fall von einem *negativen* Literal). Eine Formel *F* ist in *konjunktiver Normalform* (**KNF**), falls sie eine Konjunktion von Disjunktionen von Literalen ist:

$$F = (\bigwedge_{i=1}^{n} (\bigvee_{j=1}^{m_i} L_{i,j})),$$

wobei
$$L_{i,j} \in \{A_1, A_2, \dots\} \cup \{\neg A_1, \neg A_2, \dots\}$$

Eine Formel F ist in disjunktiver Normalform (**DNF**), falls sie eine Disjunktion von Konjunktionen von Literalen ist:

$$F = (\bigvee_{i=1}^{n} (\bigwedge_{j=1}^{m_i} L_{i,j})),$$

wobei
$$L_{i,j} \in \{A_1, A_2, \dots\} \cup \{\neg A_1, \neg A_2, \dots\}$$

Umformungsmethode

Gegeben: eine formel *F*.

1. Ersetze in F jedes Vorkommen einer Teilformel der Bauart

$$\neg G$$
 durch G
 $\neg (G \land H)$ durch $(\neg G \lor \neg H)$
 $\neg (G \lor H)$ durch $(\neg G \land \neg H)$

bis keine derartige Teilformel mehr vorkommt.

2. Ersetze jedes Vorkommen einer Teilformel der Bauart

$$(F \lor (G \land H))$$
 durch $((F \lor G) \land (F \lor H))$
 $((F \land G) \lor H$ durch $((F \lor H) \land (G \lor H))$

bis keine derartige Teilformel mehr vorkommt.

Mengendarstellung

• Klausel: Menge von Literalen (Disjunktion).

$$\{A,B\}$$
 stellt $(A \vee B)$ dar.

• Formel: Menge von Klauseln (Konjunktion).

$$\{\{A,B\},\{\neg A,B\}\}\$$
 stellt $((A\vee B)\wedge(\neg A\vee B))$ dar.

• Block: Menge von Formeln (Disjunktion).

$$\{F,G\}$$
 stellt $(F \vee G)$ dar.

Die leere Klausel ist äquivalent zu ⊥.

Die leere Formel ist äquivalent zu \top .

Der leere Block ist äquivalent zu ⊥.

Zusammenfassung, Kernpunkte

- Normalformen
 - Disjunktive Normalform
 - Konjunktive Normalform (Klauselschreibweise)

Was kommt beim nächsten Mal?

Das Resolutionsverfahren