PHYSICS 115B, Fall 2017 Final Exam (100 points in total)

- You are allowed to bring a formula sheet (both sides).
- Please write down the necessary intermediate steps.
- Write your answers in the space provided. Use additional paper if necessary.

Name: Seejia yn ID: 164658649

Problem #1	
Problem #2	15
Problem #3	
Problem #4	
Problem #5	
Problem #6	13
Problem #7	14
Total	77

44

1. Derive the density of states for 1D free electron gas at T = 0. (12 points)

$$= \frac{\partial \mathcal{L}}{\partial \varepsilon} = \frac{\partial \mathcal{L}}{\partial \varepsilon} = \frac{\partial \mathcal{L}}{\partial \varepsilon} \left(\frac{1}{2} \right) \left(\frac{\partial \mathcal{L}}{\partial \varepsilon} \right)^{\frac{1}{2}}$$

$$= \frac{\mathcal{L}}{\partial \varepsilon} \left(\frac{1}{2} \right) \left(\frac{\partial \mathcal{L}}{\partial \varepsilon} \right)^{\frac{1}{2}}.$$

- 2. Suppose there are three noninteracting particles (all of mass m) in the 1D infinite square well of width L.
 - (a) Construct the completely antisymmetric wave function $\psi(x_A, x_B, x_C)$ for three identical fermons, one in the state ψ_5 , one in the state ψ_7 , and one in the state ψ_{17} . (6 points)
- (b) Construct the completely symmetric wave function $\psi(x_A, x_B, x_C)$ for three identical bosons, (i) if all three are in state ψ_{11} , (ii) if two are in state ψ_{1} and one is in state ψ_{19} , and (iii) if one is in the state ψ_{5} , one in the state ψ_{7} and one in the state ψ_{17} . (9 points)

$$= \sqrt{6} \left[4_{5}(K_{1}) \left(4_{7}(K_{2}) + 4_{7}(K_{3}) - 4_{7}(K_{2}) + 4_{7}(K_{2}) \right) - 4_{5}(K_{2}) \left(4_{7}(K_{1}) + 4_{7}(K_{2}) + 4_{7}(K_{2}) + 4_{7}(K_{1}) + 4_{7}(K_{1}) + 4_{7}(K_{1}) + 4_{7}(K_{1}) \right) \right]$$

 $=\frac{1}{\sqrt{6}}\left[\frac{4}{5}(x_1)\frac{1}{7}(x_2)\frac{1}{7}(x_3)-\frac{1}{5}(x_1)\frac{1}{7}(x_3)\frac{$

(b) (i)
$$\psi = \frac{1}{16} \left[\frac{1}{1} \frac{1}$$

= to [4,11,1 4,(12) 4,(13) + 4(11) 4,(13) 4,(12) + 4,(16) 4,(11) 4,(15) + 4,(16) 4,(11

15=6.242x10 Mer

3. A quark (mass = $m_p/3$) is confined in a cubical box with sides of length 2 fermis = 2×10^{-15} m. Find the excitation energy from the ground state to the first excited state in MeV. [proton mass: $m_p = 1.67 \times 10^{-27}$ kg and $\hbar = 1.05 \times 10^{-34}$ J·s] (10 points)

Particle in a cabilal box:
$$\frac{-k^2}{2m} Y^2 = EY$$
. $K^2 = \frac{2mE}{\hbar^2}$
 $\frac{1}{2m} Y^2 = \frac{1}{2m} Y^2 = \frac{1}{2m$

grand stade:
$$E_{11} = \frac{1}{2m} \left(\frac{\pi}{L}\right)^2 \cdot 3 = \frac{3+\pi^2}{2m} \left(\frac{\pi}{L}\right)^2$$

1st excited
$$E_{1/2} = E_{1/2} = E_{1/2} = \frac{h^2}{2m} (\frac{\pi}{L})^2 (\frac{3^2 + 1^2 + 1^4}{2m})^2$$

$$= \frac{3}{2} \frac{(1.05 \times 10^{-34} \text{Js})^{2}}{(1.67 \times 10^{-21} \text{kg})} \left(\frac{77}{2 \times 10^{-15} \text{m}}\right)^{2} \qquad (1.05 \times 10^{-37}) = 1.10 \times 10^{-68}$$

$$= 7.4 \times 10^{-11} \text{J} \qquad (\frac{7}{2 \times 10^{-17}})^{2} = 0.557 \times 10^{-77}$$

$$= (7.4 \times 10^{-11} \text{J} 6.747 \times 10^{-7} \text{MeV})$$

$$= 46^{2} \text{MeV}$$

1.81

Consider an angular momentum 1 ss

4. Consider an angular momentum 1 system, represented by the state vector $\psi = \frac{1}{\sqrt{26}} \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix}$. What is the

probability that a mesaurement of L_x yields the value 0? (15 points)

$$So lx = \frac{1}{2}(L++L-) = \frac{1}{2}h \begin{pmatrix} 0 & \sqrt{2} & 0 \\ \sqrt{2} & 0 & \sqrt{2} \\ 0 & \sqrt{2} & 0 \end{pmatrix}$$

=)
$$\langle \Psi | L_{Y} | \Psi \rangle = \frac{1}{26} \left[\frac{1}{2} \left[(143) \cdot \left(\frac{0}{52} \cdot \frac{0}{52} \cdot \frac{0}{52} \right) \left(\frac{4}{7} \right) \right]$$

= $\frac{\pi}{48} \left[(1-43) \cdot \left(\frac{4J_{Z}}{4J_{Z}} \right) \right]$
= $\frac{\pi}{48} \left[(1-43) \cdot \left(\frac{4J_{Z}}{4J_{Z}} \right) \right]$
= $\frac{\pi}{12} \left[1 + 4 + 3 \right] = \frac{J_{Z}h}{12} \cdot 8 = \frac{2J_{Z}h}{3} \cdot \frac{h}{12}$
 $S_{0} P(L_{Y}=0) = 0$

Cipuld of Lx: deta
$$\begin{pmatrix} -1 & 12 & 0 \\ \sqrt{2}h - \lambda & \sqrt{2}h \end{pmatrix} = 0$$

 $-2h(\lambda^2 - 2h^2) + 2h(-10h\lambda) = 0$
 $-2h(\lambda^2 - 2h^2) + 2h(\lambda - 2h) = 0$

$$|\mathcal{T}=0\rangle$$

$$= \frac{1}{100}$$

$$= \frac$$

$$|\lambda=-2\rangle$$

$$= \int_{\mathbb{Z}} \int_{\mathbb{Z}}$$

$$|\lambda = 0| = \sqrt{2} \left(\frac{1}{2}\right), \quad |\lambda = 2\rangle = \left(\frac{1}{2}\right), \quad |\lambda = -2\rangle = \left(\frac{1}{2}\right)$$

$$= \frac{1}{2}\left(\frac{1}{2}\right) + \frac{1}{2}\left(\frac{1}{2}\right) + \frac{1}{2}\left(\frac{1}{2}\right) + \frac{1}{2}\left(\frac{1}{2}\right)$$

$$= \frac{1}{2}\left(\frac{1}{2}\right) + \frac{1}{2}\left(\frac{1}{2}\right) + \frac{1}{2}\left(\frac{1}{2}\right) + \frac{1}{2}\left(\frac{1}{2}\right)$$

$$= \frac{1}{2}\left(\frac{1}{2}\right) + \frac{1}{2}\left(\frac{1}{2}\right) + \frac{1}{2}\left(\frac{1}{2}\right)$$

$$= \frac{1}{2}\left(\frac{1}{2}\right) + \frac{1}{2}\left(\frac{1}{2}\right) + \frac{1}{2}\left(\frac{1}{2}\right) + \frac{1}{2}\left(\frac{1}{2}\right)$$

$$= \frac{1}{2}\left(\frac{1}{$$

5. A system of two particles each with spin 1/2 is described by an effective Hamiltonian $\hat{H} = A(\hat{S}_{1z} + \hat{S}_{2z}) + B\hat{S}_1 \cdot \hat{S}_2$, where \hat{S}_1 and \hat{S}_2 are the two spins, \hat{S}_{1z} and \hat{S}_{2z} are their z-components, and A and B are constants. Find all the energy levels of this Hamiltonian. (16 points)

$$S_{1} \neq S_{22} = \frac{h}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \implies S_{12} + S_{24} = h \begin{pmatrix} 1 & 6 \\ 0 & -1 \end{pmatrix}$$

$$S_{1} = (S_{1}^{1}) S_{1}^{1}, S_{2}^{2}, S_{2}^{2}, S_{3}^{2}, S_{3}^{2} = (\frac{h}{2})^{2} {\binom{1}{2}} {\binom{1}{2$$

So eignut are diagnol ten:
$$E_{+}=-ht+\frac{2}{3}Bh^{2}$$
, $E_{-}=-ht+\frac{2}{3}Bh^{2}$

9.

- 6. A preparatory Stern-Gerlach experiment has established that the z-component of the spin of an electron is -/2. A uniform magnetic field in the x-direction of magnitude B is then switched on at time t = 0.
 (a) Predict the result of a single mesaurement of the z-component of the spin after elapse of time T.
 (8 points)
- (b) If, istead of mesauring the z-component of the spin, the x-component is mesasured, predict the result of such a single mesaurement after elapse of time T. (8 points)

=)
$$|\Psi(t)\rangle = \sqrt{2} \left(|\eta_{+}\gamma_{-}| |\eta_{-}\rangle \right)$$
 algebra wing
=) $|\Psi(t)\rangle = \sqrt{2} \left(|e^{i\partial B_{1}T}| |\eta_{+}\rangle + e^{i\partial B_{1}T}| |\eta_{-}\rangle \right) + 3$
= $\frac{1}{2} \left(|e^{i\partial B_{1}T}| + e^{i\partial B_{1}T}| + e^{i$

$$S_{(\Psi)}^{(T)}(S_{Z}|\Psi(T)) = \left(\cos\left(\frac{\partial B_{1}T}{2}\right), \sin\left(\frac{\partial B_{1}T}{2}\right) + \left(\cos\left(\frac{\partial B_{2}T}{2}\right)\right)$$

$$= \left(\cos\left(\frac{\partial B_{1}T}{2}\right), \sin\left(\frac{\partial B_{2}T}{2}\right)\right)$$

$$= \left(\cos\left(\frac{\partial B_{2}T}{2}\right), \cos\left(\frac{\partial B_$$

e it But t

 $= \frac{\left(\cos\left(\frac{\delta B \times T}{2}\right), \sin\left(\frac{\delta B \times T}{2}\right)}{\sin\left(\frac{\delta B \times T}{2}\right)}, \sin\left(\frac{\delta B \times T}{2}\right) \frac{10}{2} \left(\cos\left(\frac{\delta B \times T}{2}\right)\right)$ $= \int_{-\infty}^{\infty} \frac{\left(\cos\left(\frac{\delta B \times T}{2}\right) + \cos\left(\frac{\delta B \times T}{2}\right)\right)}{\sin\left(\frac{\delta B \times T}{2}\right)}$ $= \int_{-\infty}^{\infty} \frac{1}{2} \left(\cos\left(\frac{\delta B \times T}{2}\right) + \cos\left(\frac{\delta B \times T}{2}\right)\right)$

+ B

7. A particle of mass m is constrained to move between two concentric impermeable spheres of radii r = a and r = b. There is no other potential. Find the ground state energy and normalized wave function. (16 points)

In between 2 spheres:

Radial equals - the later of the willing) U-EU, when U= r. R(r) - dur there postilion.

Impose Bounty condition:

$$SV A e^{ka} + Be^{-ka} = Ae^{kb} + Be^{-kb}$$

 $A(e^{ka} + e^{kb}) = B(e^{-kb} - e^{-ka})$
 $2A sinh(ka) = 2B (osh(kb))$

$$\frac{\partial R(r)}{\partial r}\Big|_{r=u} = \frac{\partial R(r)}{\partial r}\Big|_{r \neq u} = 0$$

	ő.	
	2	
*25		

$$R(r) = \frac{1}{r} \left[e^{2kq} e^{kr} + e^{-kr} \right]$$

$$|rvomelizate| \int |Rr|^2 d^2r = 1$$

$$|romelizate| \int$$

angala part 4(0,4) = A Parcoso d'ma

14

Algely