異なるFault Localization手法の 欠陥種別に基づく比較評価

鷲崎研究室 M0 高井悠宇 1W182187-0

背景

Fault Localization (FL)

- プログラム内の欠陥を自動的に推定する技術
- アルゴリズムの違いから様々な手法が提案されている
 - e.g. Spectrum Based Fault Localization(SBFL), Mutation Based Fault Localization(MBFL)
- 欠陥を含むプログラムとテストスイートが入力
- statement毎の怪しさの度合い(疑惑値)を出力

背景: Spectrum Based Fault Localization(SBFL)

提案と研究課題

欠陥種別に応じて検出性能は変化しないか?

- アルゴリズムとの親和性
- 単純、複雑な欠陥

現状の評価

- 利用する欠陥は適当に設定される
- 欠陥種別という観点からの評価は行なわれない

提案と研究課題

現状の評価における問題点

- データセットによって検出性能が変化する可能性(RQ1, RQ2)
- 正しくFL手法の性格・特徴が理解できない
 - 偶然得意(不得意)な欠陥種別ばかりで構成されている可能性
- 未知のソフトウェアに対して実用的でない(汎用性がない)
 - 苦手な欠陥種別ばかりが含まれていたらどうするのか

提案と研究課題

どの手法でも検出しにくい欠陥は存在するか?(RQ3)

- 様々なFL手法を組み合わせた複合的手法の提案 [1][2]
 - どの手法でも検出しにくい欠陥は複合的手法でも検出しにくい

欠陥種別を分類した際に何か顕著な特徴が見られるか?(RQ4)

- ODC分析を用いて手動で分類

実験結果(RQ2)

RQ2. データセットによって大きく性能が変化するFL 手法は存在したか?

- 標準化順位(rScore)が0.9より大きい = 正確に欠陥箇所を推定できた
- 複数のFL手法について検出性能の変化がみられた

rScore が 0.9より大きい欠陥の割合

	DStar	Metallaxis
Closure	80%	59%
Lang	22%	37%

実験結果(RQ3, RQ4)

RQ3. 手法によらず検出しにくい欠陥は存在するか?

- 全体の18%の欠陥については手法によらず標準化順位が0.9以下であった

RQ4. 特定の欠陥種別において検出しにくい(しやすい)手法は存在するか?

Defect Type	ochiai	DStar	Metallaxis	MUSE	slicing	stack trace	predicate switching
all	38%	38%	48%	24%	23%	18%	6%
assignment/initialization	47%	47%	63%	16%	26%	26%	11%
checking	31%	31%	41%	26%	31%	15%	10%
algorithm/method	45%	45%	55%	30%	20%	25%	0%
timing/serialization	60%	60%	60%	20%	0%	0%	0%
interface/message	-	-	-	-	-	-	-
relationship	-	-	-	-	-	-	-
function/class/method	25%	25%	33%	25%	8%	8%	0%
GUI	-	-	-	-	-	-	-

まとめと今後の展望

- 1. FL手法の性能がデータセットにより異なるという結果が得られた
- 2. 欠陥種別という観点からFL 手法の評価を行った

展望

- RQ3, RQ4 の更なる考察
- ODC分析という分類方法についての再検討
 - 欠陥種別の改善
 - 自動化
- 特に複合的なFL手法など、さらなるFL手法の追加実験

参考文献

- [1] 鷲崎弘宜, "機械学習を中心としたai活用によるソフトウェアの品質保証," inシステム/制御/情報, vol.66, no. 5, 2022, pp. 1-7.
- [2] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang, "An empirical study of fault localization families and their combinations," IEEE Transactions on Software Engineering, vol. 47, no. 2, pp. 332–347, 2021.

FL手法の評価

ODC分析

- 直交した属性を用いてタグ付けを行い分類する方法
 - Trigger
 - いつ欠陥を発見したか
 - e.g. Variation, Interaction
 - Defect Type
 - 修正した欠陥の種類
 - e.g. Checking, Algorithm/Method
 - Qualifier
 - 欠陥埋め込みの種類
 - e.g. incorrect, missing
 - Age
 - いつ作りこまれたか
 - e.g. new, base

表 7 少なくとも 1 つ以上の手法で標準化順位が n 以上であった欠陥数と割合

n	欠陥数	割合	合計
0.9	292	82%	357
0.95	259	73%	357
0.96	242	68%	357
0.97	225	63%	357
0.98	198	55%	357
0.99	162	45%	357
0.995	133	37%	357

Triggerが"Recovery/Exception"である欠陥のstack traceの結果が優れていた

- 全体の欠陥のうち約11%しか正しく推定できていない
- "Recovery/Exception"である欠陥については5つの欠陥のうち4つを正しく推定できている
 - 全体的な精度に比べると非常に高い精度となった
 - サンプル数は少ないが偶然でない可能性がある

表 10 Trigger が recovery & exceptions' であった欠陥に対する stack trace の標準化順位

Fault	stack trace	dstar	metallaxis	MUSE
time-6	0.99	1.00	1.00	0.23
chart-17	0.99	0.99	0.99	1
lang-6	1.00	0.25	0.80	0.02
lang-13	0.96	0.86	0	0
lang-14	0	0.25	0	0