Digital Electronics

Principles & Applications
Fifth Edition

Roger L. Tokheim

Chapter 10 **Arithmetic Circuits**

CHAPTER 10 PREVIEW

- Binary Addition
- Half & Full Adders
- Binary Subtraction
- Half & Full Subtractors
- Parallel Adders and Subtractors
- Using Adders for Subtraction
- Binary Multiplication
- Binary Multipliers
- Half & Full Adders
- 2s Complement

BINARY ADDITION

- Conceptually similar to decimal addition
- Example: Add the binary numbers 1010 and 11

TEST

Add the Binary numbers 11010 and 1100

HALFADDER

- Logic device that adds two binary numbers
- Only adds Least Significant Digit (LSD) column (1s column) in binary addition

FULL ADDER

Used for adding binary place values other than the 1s place

BINARY SUBTRACTION

Example: Subtract binary number 101 from 1011

Subtract binary number 11 from 1010

HALF SUBTRACTOR

Subtracts LSD column in binary subtraction

Logic Diagram:

FULL SUBTRACTOR

Used for subtracting binary place values other than the 1s place

Logic Diagram:

PARALLEL ADDING

- Use half adder for LSD
- Use full adder for other digits

PARALLEL ADDER

1110 + 0110

Parallel adders are available in IC form.

1s place uses half-adder

2s, 4s, 8s places use full adders

BINARY MULTIPLICATION

Example: Multiply the binary numbers 111 and 101.

			1	1	1	Multiplicand
		X	1	0	1	Multiplier
			1	1	1	1st partial product
		0	0	0		2nd partial product
	1	1	1			3rd partial product
1	0	0	0	1	1	Product

111 x 101 can also be calculated: 111 + 111 + 111 + 111 + 111

TEST

Multiply the binary numbers 101 and 100.

BINARY MULTIPLIERS

Binary multiplier circuits - utilize repeated addition.

2s COMPLEMENT NOTATION

- 2s complement representation widely used in microprocessors.
- Represents sign and magnitude

Decimal: +7 +4 +1 0 -1 -4 -7
2s Complement: 0111 0100 0001 0000 1111 1100 1001

2s COMPLEMENT - CONVERSIONS

- Converting positive numbers to 2s complement:
 - Same as converting to binary
- Converting negative numbers to 2s complement:

ADDING/SUBTRACTING IN 2s COMPLEMENT

2s complement notation makes it possible to add and subtract signed numbers

TEST

Add the following 2s complement numbers:

PRACTICAL SUGGESTION FOR BINARY MATH

- Use a scientific calculator.
- Most scientific calculators have DEC, BIN, OCT, and HEX modes and can either convert between codes or perform arithmetic in different number systems.
- Most scientific calculators also have other functions that are valuable in digital electronics such as AND, OR, NOT, XOR, and XNOR logic functions.

