Appunti di Analisi Matematica

Liam Ferretti

1 ottobre 2025

Sommario

Per i ricevimenti bisogna prenotarsi via e-mail, e si svolgeranno nell'edificio 105 dell'edificio Castel Nuovo Si potranno trovare note ed esercizi su e-learning

- Programma:
 Numeri reali
- Funzioni di variabili reali
- Successioni e serie
- Limiti e continuità
- Calcolo differenziale ad una variabile
- Integrali
- Equazioni differenze lineari
- Funzioni di più variabili (tutti i capitoli precedenti comprendono le funzioni a più variabili)

I libri di testo sono presenti su e-learning, ed è consigliato "Crasta Malusa", da cui assegnerà gli esercizi.

L'esame sarà composto da scritto più orale, non ci sarà probabilmente un esonero, e con l'orale si può incrementare o decrementare il voto di fino a 3 punti in positivo o 3 in negativo, tranne nel caso in cui si commettano errori su: limiti, continuità o divisione per 0, che comporta la bocciatura immediata.

Indice

1	Cer	nni di logica ed insiemistica
	1.1	Notazione
	1.2	Le proposizioni
	1.3	Insiemi
		1.3.1 Notazione degli insiemi
		1.3.2 Relazione di ordine o inclusione
		1.3.3 Proprietà degli insiemi
		1.3.4 Operazioni tra insiemi
	1.4	Predicato
		1.4.1 Confronto simbologia logica e insiemistica
		1.4.2 Notazione
		1.4.3 Insieme parti di I

1 Cenni di logica ed insiemistica

La matematica si costruisce su:

• elementi di base:

```
oggetti di base (enti primitivi)
proprietà di basa (assiomi)
```

• regole di deduzione che sono fissate

1.1 Notazione

La notazione si divide in:

• Connettiva:

```
¬ , non

\lor , e

\land , o

⇒ , implica

\iff , equivale (se e solo se)

: (t.c.) , tale che / tale per cui
```

• Quantificativa:

```
∃ , esiste
∄ , non esiste
∃! , esiste ed è unico
∀ , per ogni
```

1.2 Le proposizioni

Per proposizione Si intende una affermazione.

Es:

- P = oggi è martedì
- $\neg P = oggi non è martedì$
- Q = c'è il sole
- \bullet P \wedge Q = oggi è martedì e c'è il sole
- \bullet P \lor Q = oggi è martedì oppure c'è il sole
- $\neg(P \land Q) \Rightarrow P \lor Q$ può essere vera (P oppure Q), ma $P \land Q$ non può essere vera (P e Q), quindi non possono essere vere allo stesso tempo

 $A \Rightarrow B$, vuol dire se A è vero allora B è vero.

 $A \iff B = (A \Rightarrow B) \land (B \Rightarrow A)$, e vuol dire se e solo se A allora B.

Partendo dalla proposizione precedente, è vero che:

$$A \Rightarrow B \iff \neg B \Rightarrow \neg A$$

cioè è utile nelle dimostrazioni per assurdo. Nelle dimostrazioni si parte dagli assiomi e con le regole logiche si fanno ipotesi (affermazioni) che nel caso in cui fosse vera rende la tesi (la validità di una o più proprietà).

OSS: è sbagliato dire che:

$$A \Rightarrow B \iff \neg A \Rightarrow \neg B$$

in quanto il non avvenire di A non implica che B non possa avvenire per altre motivazioni.

1.3 Insiemi

Un insieme è una collezioni di elementi

1.3.1 Notazione degli insiemi

- definizione di insieme: $G := \{e_1, e_2, e_3, ...\}$, è necessario l'uso di := per definire un insieme, e vuol dire "definito come".
- quando due insiemi hanno gli stessi elementi si dichiara l'uguaglianza tra I_1 e I_2 , con il simbolo =, ad esempio

$$F := \{0, 1\}, H := \{1, 0\} \to F = H$$

• per definire l'appartenenza di un elemento in un insieme si scrive $a \in I$, se questo elemento non appartiene all'insieme si rappresenta $a \notin I$ con a un elemento qualsiasi e I un insieme qualsiasi.

1.3.2 Relazione di ordine o inclusione

Se $A_1 \subset A_2 \to A_1$ è contenuto in A_2 , e A_1 è al tal più grande quanto A_2 , ovvero A_1 è un sotto insieme di A_2 .

Se i due insiemi non sono uguali allora si segna $A_1 \not\subseteq A_2$, è quindi strettamente contenuto.

Se invece i due insiemi possono essere uguali, si scrive $A_1 \subseteq A_2$.

Es:

contengono gli stessi elementi quindi: $A_1 = A_2$

in questo caso A_2 contiene più elementi di $A_1,$ quindi $A_1\not\subseteq A_2$

1.3.3 Proprietà degli insiemi

Gli insiemi hanno 3 proprietà principali:

- $\bullet\,$ Riflessiva: $A\subseteq A,$ per Ainsieme qualsiasi, quindi l'insieme contiene se stesso
- Antisimmetrica: $(A\subseteq B) \wedge (B\subseteq A) \Rightarrow A=B,$ per A,Binsiemi qualsiasi
- Transitiva: $(A \subseteq B) \land (B \subseteq C) \Rightarrow A \subseteq C$, per A, B, C insiemi qualsiasi

1.3.4 Operazioni tra insiemi

Presi due insiemi A, B allora esistono diverse proprietà:

• Unione (o): $A \cup B := \{a : a \in A \lor a \in B\}$

• Intersezione (e): $A \cap B := \{a : a \in A \land a \in B\}$

• Differenza (-): $A \setminus B := \{a : a \in A, a \notin B\}$

• Prodotto cartesiano: $A \times B := \{(a, b) : a \in A \land b \in B\}$

1.4 Predicato

Una preposizione può dipendere da una o più variabili, ovvero un ente che varia in un gruppo, in quel caso prende il nome di predicato. Es:

P = oggi è martedì

P(x) = x è martedì

allora preso $A := \{luned, marted, ..., domenica\}, x \in A$

 $B := \{x \in A : P(x)\} = \{marted\}, \text{ con } P(x) \text{ si intendono le x che rendono } P(x) \text{ vera, quindi si cercano le x appartenenti ad } A \text{ t.c. } P(x) \text{ sia vera.}$

1.4.1 Confronto simbologia logica e insiemistica

La simbologia nella logica e nella insiemistica è diversa, ma i termini sono gli stessi:

Logica

A, ovvero A è vera $\neg A$, ovvero A non è vera $\neg (A \land B) = \neg A \lor \neg B$ $\neg (A \lor B) = \neg A \land \neg B$ \Rightarrow , ad esempio $A \Rightarrow B$

 \iff , ad esempio $A\iff B$

Insiemistica

 $A := \{x \in I : A(x)\}, \text{ con } A \subset I$ $A^c := \{x \in B : \neg A(x)\}, \text{ con } A^c \not\subset B$ $(A \cap B)^c = A^c \cup B^c$ $(A \cup B)^c = A^c \cap B^c$

 $A \subset B$, perchè A è definito come gli elementi x appartenenti ad un insieme I t.c. A(x) sia vera, allo stesso tempo B è definito come gli elementi x appartenenti ad un insieme I t.c. B(x) sia vera, perciò dire che A implica B, vuol dire che gli elementi x che rendono veri A sono contenuti in B

A=B, riprendendo la stessa argomentazione in questo caso B è vera se A è vera, ma allo stesso tempo A è vera se B è vera, perciò i due insiemi coincideranno

1.4.2 Notazione

- $x \in A \stackrel{def}{\Longrightarrow} x$ è elemento di A
- $x \notin A \xrightarrow{def}$ x non è elemento di A, quindi $x \in A^c$
- $A \cap B := \{a : A(a) \land B(a)\} = \{x : x \in A \land x \in B\}\}$
- $A \cup B := \{a : A(a) \lor B(a)\} = \{x : x \in A \lor x \in B\}$
- $\bullet \ A \setminus B := \{a: A(a) \vee \neg B(a)\} = \{x: x \in A \vee x \not \in B\} = \{x: x \in A \vee x \in B^c\}$
- $\bullet \ A\Delta B:=(A\setminus B)\cup (B\setminus A)=(A\cap B)^c$

1.4.3 Insieme parti di I

L'insieme parti di I, è definito come:

$$P(I) := \{X : X \subset I\}, \text{con } X \text{ insieme}$$

Preso $I:=\{0,1\}\Rightarrow P(I)=\{0,1,\{0,1\}\},\ P(I)$ rappresenta l'insieme parti, ovvero l'insieme composto da tutti i possibili sottoinsiemi di I