

Procesamiento de datos genómicos

Biól. Manuel García Ulloa Gámiz manuel.gug@hotmail.com

Génesis (1975)

Secuenciación de Sanger

Sanger Sequencing

Ventajas:
-Alta precisión, ideal para
secuencias cortas
(conocidas)

Desventajas: -Cara -Lenta

Mutaciones puntuales

2da generación (1990's - 2011)

Sequenciación de siguiente generación (NGS)

Elementos comunes entre tecnologías NGS

- Preparación de librerías
 - Fragmentación de librerías
 - Ligación de adaptadores (linker + primer + barcode)
 - Posicionamiento en superficie

- Secuenciación
 - Amplificación
 - Lectura de secuencias

Emulsion PCR

TIPOS DE SECUENCIACIÓN

- a) Por Síntesis
 -cons: tasa de error
 aumenta con el largo de
 la secuencia debido a la
 remoción incompleta
 de fluoróforo.
- b) Pirosecuenciación

 -cons: cara, alta tasa de
 error en secuencias con
 6 nt seguidos iguales.
- c) Por ligación -cons: reads muy cortos (máximo 75pb)

Pyrosequencing

- Generación de datos
 - Formato FASTQ

Comparación de tecnologías

 Cobertura: cantidad de veces que un nucleótido particular promedio es secuenciado.

ATGACTGCTGA

TGACTGCTGATTG

Cobertura según A= **5x**

GACTGCTGATTGAACT

TGCTGATTGAACT

GATTGAACTATGGTGA

Pirosecuenciación

Roche	GS Junior	GS Junior Plus	GS FLX+ System		
			GS FLX Titanium XL+	GS FLX Titanium XLR70	
Human	0	0	0	0	
Mouse	0	0	0	0	
Arabidopsis thaliana	0	1	5	3	
E-Coli	8	15	151	97	

Secuenciación por síntesis

Illumina	MiSeq	NextSeq 500		HiSeq 2500		HiSeq 3000	HiSeq 4000
Human	5	12	36	91	303	227	455
Mouse	5	14	43	107	357	268	536
Arabidopsis thaliana	111	289	889	2,222	7,407	5,556	11,111
E-Coli	3,233	8,407	25,866	64,666	215,553	161,665	323,330

Secuenciación por ligación

Applied Discustoms	Genetic Analyzer V2.0			
Applied Biosystems	5500W System	5500xl W System		
Human	48	97		
Mouse	57	114		
Arabidopsis thaliana	1,185	2,370		
E-Coli	34,489	68,977		

3ra generación (2011 -)

Secuenciación SMRT (single molecule real time)

- Genera secuencias muchas muy largas (hasta 50,000 secuencias de 30kb)
- Detecta metilación
- Alta tasa de error (hasta 10%)

Secuenciación Nanopore

- Aún en desarrollo
- Secuencias de hasta 79kb
- Tasa de error de 15-40%...

Ejercicio: Proyecto típico de genómica

Pasos

- 1) Limpieza de datos
- 2) Ensamble de genoma
- 3) Control de calidad
- 4) Anotación de genoma
- 5) Filogenia

Datos

- Secuenciación del genoma de Carsonella ruddii strain BT (genoma bacteriano más pequeño: 150-170 kb, ~180 ORFS)
- Tipo de datos: Illumina paired-end 2x300 (secuenciación por síntesis)
- Carpeta "DATOS":
 - reads_B1_2900x300bp_0S_0I_0D_0U_0N_1.fq
 - reads_B1_2900x300bp_0S_0I_0D_0U_0N_2.fq

Mate-pair vs paired-end (Illumina)

Paired-end

- -Mayor cobertura y exactitud
- -Cortos (máx 500pb)
- -Problemas con secuencias repetitivas
- ✔ Polimorfismos, indels

Mate-pair

- -Menor cobertura y exactitud
- -Largos (máx 5kb)
- -Buenos con secuencias repetitivos
- ✓ Variación estructural, rearreglos

Uso conjunto

Ensamble de genoma

 Ensamblador: programa que organiza reads de tal manera que la secuencia de la cual fueron obtenidos sea reconstruida (lo mejor posible dadas las condiciones iniciales de los datos).

¿Cómo están mis datos?

Limpieza de datos crudos

- http://www.usadellab.org/cms/?page=trimmomatic
 - Version 0.38: binary
- \$ java -jar trimmomatic-0.38.jar PE -phred33
 ../DATOS/reads/reads_B1_2900x300bp_0S_0I_0D_0U_0N_2.fq
 ../DATOS/reads/reads_B1_2900x300bp_0S_0I_0D_0U_0N_2.fq
 NOMBRE_1_paired.fq NOMBRE_1_unpaired.fq
 NOMBRE_2_paired.fq NOMBRE_2_unpaired.fq
 ILLUMINACLIP:/home/mint/Downloads/Trimmomatic 0.38/adapters/TruSeq2-PE.fa:2:30:10 LEADING:3 TRAILING:3
 SLIDINGWINDOW:4:15 MINLEN:50
- \$ scp NOMBRE*.fq ohta@132.248.49.136: /home/ohta/Desktop/CURSO_BIOINFO/GENOMICA/2_ensamble/SP Ades-3.13.0-Linux/bin

Bioinformatics. 2013 Jul 15; 29(14): 1718-1725.

Published online 2013 May 10. doi: 10.1093/bioinformatics/btt273

PMCID: PMC3702249

PMID: 23665771

GAGE-B: an evaluation of genome assemblers for bacterial organisms

<u>Tanja Magoc</u>, ¹ <u>Stephan Pabinger</u>, ^{1,2} <u>Stefan Canzar</u>, ¹ <u>Xinyue Liu</u>, ³ <u>Qi Su</u>, ³ <u>Daniela Puiu</u>, ¹ <u>Luke J. Tallon</u>, ³ <u>and Steven L. Salzberg</u>^{1,*}

Bioinformatics. 2013 Jul 15; 29(14): 1718-1725.

Assembler

Published online 2013 May 10. doi: 10.1093/bioinformatics/btt273

PMCID: PMC3702249

PMID: 23665771

GAGE-B: an evaluation of genome assemblers for bacterial organisms

Tanja Magoc, ¹ Stephan Pabinger, ^{1,2} Stefan Canzar, ¹ Xinyue Liu, ³ Qi Su, ³ Daniela Puiu, ¹ Luke J. Tallon, ³ and Steven L. Salzberg1,*

Species assembled

**N50 en kb

				•			
	HiSeq (100 bp) reads			MiSeq (250 bp) reads			
	R.sphaeroide s	M.abscessus	V.cholerae	B.cereus	R.sphaeroide s	M.abscessus	V.cholerae
ABySS	13.0	115.7	93.0	130.6	21.4	68.5	60.3
CABOG	11.2	78.2	48.8	150.5	30.5	8.3	32.5
MIRA	17.7	129.2	87.1	100.0	15.4	75.0	108.7
MaSuRCA	176.8	194.0	236.4	246.7	130.7	36.2	71.6
SGA	12.1	27.9	23.4	25.5	9.1	12.8	27.3
SOAPdenovo	10.5	147.2	106.5	246.3	33.5	113.3	65.5
SPAdes	83.5	147.9	77.1	103.7	118.1	215.4	246.6
Velvet	13.1	60.3	39.5	24.5	24.2	41.5	67.1
i							

SPAdes

- Algoritmo basado en gráficas de Bruijn
 - Ruptura de reads en k-meros (secuencias cortas de k longitud, debe ser número impar)
 - Sobrelape de k-1 entre k-meros
 - Búsqueda de camino más corto

e.g. 111000 = 111 -> 110 -> 100 -> 000

Gráfica para: **111000**k = 3

1 1 1

1 1 0

0 0 0

1 1 1 0 0 0

Para qué usamos k-meros?

- Para poder usar gráficas de Bruijn es necesario que los reads sobrelapen L-1 pb. Sin embargo:
 - Por sí mismos, no todos los reads sobrelaparán de la misma manera debido a:
 - Errores de secuenciación
 - "Agujeros" de cobertura
 - No todos los reads tendrán la misma longitud,
 dependiendo de la tecnología utilizada y el paso de limpieza.

Diferencias entre tamaño de k-meros

SPAdes

- Desde Ohta:
- \$ cd Desktop/CURSO_BIOINFO/GENOMICA/2_ensamble/SPAdes-3.13.0-Linux/bin
- \$ cat NOMBRE_*_unpaired.fq > NOMBRE_unpaired_all.fq
- \$ python spades.py -1 NOMBRE_1_paired.fq -2 NOMBRE_2_paired.fq -s _NOMBRE_unpaired_all.fq -t 2 -o NOMBRE_ensamble
- \$ cd NOMBRE_ensamble
- mv contigs.fasta NOMBRE_contigs.fasta

Control de calidad

- Tamaño de ensamble
- %GC
- Número de contigs
- Contig más grande

N50

Total contig length = 200K + 140K + 110K + 70K + 65K + 50K + 35K + 18K + 12K + 3K = 703K

50% total contig length= 703K x 50%= 351.5K

:: 200K+140K +110K> 351.5K , :: N50= 110K

QUAST: Quality Assessment Tool for Genome Assemblies

\$ python quast.py -o NOMBRE_quast
 ../../2_ensamble/SPAdes-3.13.0 Linux/bin/NOMBRE_PRUEBA/NOMBRE_contigs.f
 asta

• \$ cd NOMBRE quast

\$ less report.txt

Anotación

- Búsqueda de marcos de lectura abiertos (ORF's).
- Predicción de genes:
 - Proteína = ATG.....*STOP*
 - Sitios/dominios funcionales
- Uso de base de datos como referencia
- Anotadores populares:
 - PROKKA
 - Augustus
 - Glimmer

PROKKA

- \$ \$HOME/prokka/bin/prokka --outdir NOMBRE_prokka ../2_ensamble/SPAdes-3.13.0-Linux/bin/OUTPUT_PRUEBA/NOMBRE_contigs.fa sta
- \$ less PROKKA*.txt
- \$ less PROKKA*.faa
- \$ grep "phos" PROKKA*.faa

Filogenia de genomas

- Alineamiento de secuencias
- Remoción de genoma accesorio (la filogenia se hace con el core)
- Filogenia

Alineamiento de genomas y extracción de genoma core con progressive Mauve

- \$ progressiveMauve --output=NOMBRE_mauve.xmfa ../2_ensamble/SPAdes-3.13.0-Linux/bin/OUTPUT_PRUEBA/NOMBRE_contigs.fasta ../DATOS/para_filogenia/*
- \$ stripSubsetLCBs NOMBRE_mauve.xmfa
 NOMBRE_mauve.xmfa.bbcols NOMBRE_core.xmfa 500
 6
- \$ perl xmfa2fasta.pl --file NOMBRE_core.xmfa > NOMBRE_core.fasta

Filogenia con FastTree

- \$./FastTreeMP -nt -gtr < NOMBRE_core.fasta
 - > NOMBRE_core.tree

Visualización

https://github.com/rambaut/figtree/releases

- scp NOMBRE_core.tree a su computadora
- Abrir archivo NOMBRE_core.tree con figtree
- Activar "branch labels" y cambiar a "label"
- Cambiar tipo de filogenia a estrella

Filogenia de genomas core

Resultados

- Calidad de ensamble
 - Tamaño de ensamble
 - %GC
 - Número de contigs
 - Contig más grande
 - N50
- Anotación
 - Número de proteínas
 - Número de ORF's
- Filogenia
 - Cercano a referencias?
 - Observaciones