Student Name:	
Student Number:	
School:	
Year of Entrance:	

ShanghaiTech University Final Examination Cover Sheet EE111 Fall 2023/2024 Exam 2024/1/18 From 8:00am-10:00am 7 Problems in total (3 A4 crib sheets allowed) Answer the Questions in English Two-decimal policy applies for the final answer

Academic Year:	2023 to 2024	Term:	Fall	
Course-offering School:	SIST			
Instructor:	Dr. Xinbo ZOU			
Course Name:	Electrical Circuits			
Course Number:	<u>EE111.01</u>			

Exam Instructions for Students:

- 1. All examination rules must be strictly obeyed throughout the entire test, and any form of cheating is prohibited.
- 2. Other than allowable materials, students taking closed-book tests must place their books, notes, tablets and any other electronic devices in places designated by the examiners.
- 3. Students taking open-book tests may use allowable materials authorized by the examiners. They must complete the exam independently without discussion with each other or exchange of materials.

For Marker's Use:

Problem	1	2	3	4	5	6	7	Total
Marks								
Recheck								

Marker's Signature:	Rechecker's Signature:
Date:	Date:

Q1 (13 points).

For the following circuit, U denotes the voltage across the resistor at the top of circuit graph. U_1 and U_2 denote the node voltage. Please use **nodal** method to derive current I.

Q2(12 points). (First-Order Circuit)

There is no energy stored in the capacitor for t < 0. At t=0, the switch moves to node a. Then, at t = 0.1 s, the switch moves to node b. Find the expression of v_0 for t > 0.

Q3 (15 points). (AC circuit steady-state analysis)

Given $I_g = 10\cos(100t - 90^\circ)$, use **phasor domain method** to find steady-state response of V_0 .

Q4 (12 points).

For the three-phase circuit below, $\mathbb{Z}_{\Delta} = 21 + j24\Omega$, please

- (a) find the total complex power absorbed by the **load** (the part in the dashed box).
- (b) find average power absorbed by **each of** the delta-connected impedance \mathbf{Z}_{Δ} .

Q5 (15 points).

In the circuit below, use mesh current method to find

- (a) Mesh current.
- (b) Complex power released by the voltage source.
- (c) The average power delivered to the 18Ω -resistor.

Q6 (15 points). (General 2nd-order circuits)

Given no initial energy was stored for the energy storage elements, use Laplace domain method **OR** time-domain analysis method to find output voltage v_0 for t > 0.

Q7(18 points)

When t=0, the current through the inductor is 6A and no initial energy is stored for the capacitor.

- (1) Find $i_L(t)$ for t > 0 by Laplace domain method.
- (2) Find $i_L(t)$ for t > 0 by time-domain method.

Scratch Paper -1

Scratch Paper -2

Scratch Paper -3