Biostat 216 Homework 6

Due Nov 11 Friday @ 11:59pm

Submit a PDF (scanned/photographed from handwritten solutions, or converted from RMarkdown or Jupyter Notebook) to Gracescope on BruinLearn.

Eigenvalues and eigenvectors

• Q1. Diagonalize (show the steps to find eigenvalues and eigenvectors)

$$\mathbf{A} = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

and compute $\mathbf{X} \mathbf{\Lambda}^k \mathbf{X}^{-1}$ to prove the formula

$$\mathbf{A}^k = \frac{1}{2} \begin{pmatrix} 1 + 3^k & 1 - 3^k \\ 1 - 3^k & 1 + 3^k \end{pmatrix}.$$

- Q2. Suppose the same X diagonalize both A and B. That is they have the same eigenvectors in $A = X\Lambda_1X^{-1}$ and $B = X\Lambda_2X^{-1}$. Prove that AB = BA.
- Q3. Suppose the eigenvalues of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ are $\lambda_1, \ldots, \lambda_n$. Show that $\det(\mathbf{A}) = \prod_{i=1}^n \lambda_i$. Hint: λ_i s are roots of the characteristic polynomial.
- Q4. Ture of false. For each statement, indicate it is true or false and gives a brief explanation.
 - 1. If the columns of X (eigenvectors of a square matrix A) are linearly independent, then (a) A is invertible; (b) A is diagonalizable; (c) X is invertible; (d) X is diagonalizable.
 - 2. If the eigenvalues of A are 2, 2, 5 then the matrix is certainly (a) invertible; (b) diagonalizable.
 - 3. If the only eigenvectors of \mathbf{A} are multiples of $\begin{pmatrix} 1 \\ 4 \end{pmatrix}$, then the matrix has (a) no inverse; (b) a repeated eigenvalue; (c) no diagonalization $\mathbf{X}\mathbf{\Lambda}\mathbf{X}^{-1}$.
- Q5. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times m}$. Show that $\mathbf{A}\mathbf{B}$ and $\mathbf{B}\mathbf{A}$ share the same non-zero eigenvalues. Hint: examine the eigen-equations.

• Q6. Find the eigenvalues of A, B and A + B:

$$\mathbf{A} = \begin{pmatrix} 3 & 0 \\ 1 & 1 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 1 & 1 \\ 0 & 3 \end{pmatrix}.$$

Are eigenvalues of A + B equal to the sum of eigenvalues of A and B?

- Q7. Suppose A has eigenvalues 0, 3, 5 with independent eigenvectors u, v, w respectively.
 - 1. Give a basis for $C(\mathbf{A})$ and a basis for $\mathcal{N}(\mathbf{A})$.
 - 2. Find a particular solution to A = v + w. Find all solutions.
 - 3. Show that the linear equation Ax = u has no solution.

Positive definite matrices

- Q8. Suppose C is positive definite and A has independent columns. Apply the energy test to show that A'CA is positive definite.
- Q9. Show that the diagonal entries of a positive definite matrix are positive.
- Q10. Suppose **S** is positive definite with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n > 0$ with corresponding orthonormal eigenvectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$.
 - 1. What are the eigenvalues of the matrix $\lambda_1 \mathbf{I} \mathbf{S}$? Is it positive semidefinite?
 - 2. How does it follow that $\lambda_1 x' x \ge x' S x$ for every x?
 - 3. Draw the conclusion: The maximum value of the Rayleigh quotient

$$R(\mathbf{x}) = \frac{\mathbf{x}' \mathbf{S} \mathbf{x}}{\mathbf{x}' \mathbf{x}}$$

is λ_1 .

- 4. Show that the maximum value of the Rayleigh quotient subject to the condition $\mathbf{x} \perp \mathbf{u}_1$ is λ_2 . Hint: expand \mathbf{x} in eigenvectors $\mathbf{u}_1, \dots, \mathbf{u}_n$.
- 5. Show that the maximum value of the Rayleigh quotient subject to the conditions $\mathbf{x} \perp \mathbf{u}_1$ and $\mathbf{x} \perp \mathbf{u}_2$ is λ_3 .
- 6. What is the maximum value of $\frac{1}{2}\mathbf{x}'\mathbf{S}\mathbf{x}$ subject to the constraint $\mathbf{x}'\mathbf{x}=1$. Hint: write down the Lagrangian and set its derivative to zero.