Лабораторна робота №4 з Фізичних основ комп'ютерної електроніки

Група: IПС – 11, ФКНК Сенечко Д. В.

Для цієї лабораторної роботи використаємо транзистор BC548A та складемо схему на основі лабораторної роботи №3:

3 цього графіка AC Analysis бачимо, що коефіцієнт підсилення 330.

А з іншого графіка AC Analysis бачимо, що нижня гранична частота 290 Гц, а верхня - близько 60 МГц.

Тут можемо побачити імпульси.

Отримуємо частоту 136 кГц, що не зовсім співпадає з початковими 130 кГц.

Зменшуємо $R_{3,4,5}$ у 5 разів від початкового, та відповідно збільшуємо $C_{2,3,4}$ також у 5 разів.

Далі, за допомогою Parameter Sweep, дивимося, як змінюється коефіцієнт підсилення при зміні опору:

Отримуємо частоту коливань 92 кГц замість очікуваних 130, адже контур навантажений підсилюванням, наші 180 градусів відбиваються на трошки іншій частоті.

Видаляємо PULSE_VOLTAGE та знову визначаємо частоту коливань через Transient

analysis. Знову отримуємо 92 кГц.

Визначаємо коефіцієнт нелінійних спотворень цієї синусоїди за допомогою Fourier analysis. Отримуємо 45%.

Шукаємо інкремент наростання: ділимо 0.558 на 0.477 та беремо \ln від цієї різниці. $\ln(1.1698) = 0.1568$. Отже, інкремент наростання: 0.16.

