AG H	Głosowa łączność z komputerem autor : Blanka Hasior nr indeksu: 266683						
Kierunek: Inżynieria Biomedyczna	Rok: V	Grupa:	Data wykonania: 31.08.2018	Data oddania: 01.09.2018			
Temat projektu: Rozpoznawanie komend głosowych							

Cel projektu

Celem projektu było stworzenie algorytmu do rozpoznawania wypowiadanych komend głosowych na potrzeby inteligentnych domów, które stają się coraz bardziej popularne również w Polsce.

Etapy algorytmu

Algorytm został podzielony na dwie części : przetworzenie komend wypowiadanych przez użytkownika inteligentnego domu oraz klasyfikacja komend za pomocy klasyfikatora. Algorytm został napisany za pomocą języka skryptowego python a wyświetlony w środowisku jupyter.

1. Nagrywanie sygnałów

Etap ten polegał na nagraniu poleceń najczęściej wydawanych w domach. Nagrania zostały nagrane o różnych pora dnia: rano, przed południem, po południu oraz wieczorem. W programie Audacity dokonano oznaczenia poszczególnych słów. Zestaw nagranych komend znajduje się poniżej:

- 1. Zapal światło w kuchni.
- 2. Otwórz drzwi do garażu
- 3. Włącz zmywarkę.
- 4. Wyłącz telewizor.
- 5. Podnieś rolety w sypialni.
- 6. Zamknij bramę.
- 7. Zwiększ ogrzewanie o jeden stopień.
- 8. Zakręć wodę w łazience.
- 9. Ustaw alarm.
- 10. Przycisz radio.
- 11. Zmień kanał.
- 12. Podlej kwiatki.
- 13. Zaparz kawę.
- 14. Wyłacz alarm w garażu.
- 15. Zagotuj wodę

Rys.1 Przedstawia komendę 'Zapal' wypowiedzianą rano z której będzie generowany wektor cech.

{'GARAZU': 8, 'SWIATLO': 4, 'STOPIEN': 4, 'OTWORZ': 4, 'KUCHNI': 4, 'RADIO': 4, 'ZMIEN': 4, 'PODLEJ': 4, 'OGRZEWANIE': 4, 'ZMYWARKE': 4, 'TELEWIZOR': 4, 'W': 16, 'SYPIALNI': 4, 'ROLETY': 4, 'ZAMKNIJ': 4, 'KANAL': 4, 'ZAPAL': 4, 'WYLACZ': 8, 'BRAME': 4, 'WODE': 8, 'DRZ WI': 4, 'ALARM': 8, 'ZWIEKSZ': 4, 'WLACZ': 4, 'KAWE': 4, 'JEDEN': 4, 'DO': 4, 'PRZYCISZ': 4, 'ZAGOTUJ': 4, 'USTAW': 4, 'O': 4, 'PODNI ES': 4, 'KWIATKI': 4, 'ZAKREC': 4, 'ZAPARZ': 4, 'LAZIENCE': 4}

Tab.1 Przedstawiająca ile razy powtarza się poszczególne słowa w komendach rannych, przed południem, po południu oraz wieczorem.

2. Wektora cech

Jednym z ważniejszych etapów algorytmu jest utworzenie wektora cech z każdego słowa znajdującego się w komendach. Zdecydowano się wykorzystać bibliotekę librosa , która odnosi się do analizy sygnałów dźwiękowych. Za wyodrębnienie wektora cech wykorzystano funkcję mfcc() w której zaimplementowany jest algorytm MFCCs, natomiast do obliczenia odległości między otrzymanymi wektorami ech wykorzystano algorytm DTW.

```
{'USTAW': array([[-4.87952977e+02, -4.58362441e+02, -4.23583356e+02, -4.05933201e+02, -3.99818058e+02, -3.68037632e+02, -3.28656691e+02, -2.93514148e+02, -2.80598148e+02, -3.03368134e+02, -3.44944699e+02, -3.88072770e+02, -3.77204942e+02, -3.57934266e+02, -3.16702549e+02, -2.63069691e+02, -2.36164611e+02, -2.49704832e+02, -2.84771618e+02, -3.19815577e+02, -3.75623705e+02, -4.58926697e+02, -4.88197214e+02, -4.94993561e+02, -4.99169578e+02, -5.24308593e+02, -5.87283755e+02, -6.54912708e+02, -6.83084827e+02, -6.81882029e+02, -6.83993462e+02, -6.85843238e+02, -6.86354302e+02, -6.86202276e+02, -6.86714225e+02, -6.84259903e+02, -6.85952370e+02],
```

Tab. 2 Utworzony wektor cech za pomocą MFCCs + DTW dla przykładowej komendy Ustaw.

3. Klasyfikacja

Ostatnim etapem było przeprowadzenie klasyfikacji słów. Działanie klasyfikatora polega na tym, że sprawdza on do którego słowa z zestawu testowego klasyfikowany dźwięk ma najmniejszą odległość i to słowo jest przyporządkowywane. Gdy minimalna odległość między słowami przekracza 200, słowo nie zostaje sklasyfikowane. K

	USTAW	KANAL	W	DO	ROLETY	0	JEDEN	PRZYCISZ	KAWE	RADIO	
USTAW	2.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	
KANAL	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	
W	0.0	0.0	5.0	1.0	0.0	0.0	9.0	0.0	0.0	0.0	
DO	0.0	0.0	0.0	4.0	0.0	0.0	0.0	0.0	0.0	0.0	
ROLETY	0.0	0.0	0.0	0.0	4.0	0.0	0.0	0.0	0.0	0.0	
0	0.0	0.0	0.0	0.0	0.0	4.0	0.0	0.0	0.0	0.0	
JEDEN	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0.0	0.0	0.0	
PRZYCISZ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0.0	0.0	
KAWE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0	0.0	
RADIO	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0	
ZAKREC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
DRZWI	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
KWIATKI	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	
SWIATLO	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
PODLEJ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
ZAMKNIJ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
WODE	0.0	1.0	0.0	1.0	0.0	0.0	4.0	0.0	0.0	0.0	
PODNIES	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

Tab.1 Macierz wynikowa klasyfikacji poszczególnych komend.

	USTAW	KANAL	W	DO	ROLETY	0	JEDEN	PRZYCISZ
USTAW	50.0	0.0	0.00	0.00	0.0	0.0	25.00	0.0
KANAL	0.0	50.0	0.00	0.00	0.0	0.0	0.00	0.0
W	0.0	0.0	31.25	6.25	0.0	0.0	56.25	0.0
DO	0.0	0.0	0.00	100.00	0.0	0.0	0.00	0.0
ROLETY	0.0	0.0	0.00	0.00	100.0	0.0	0.00	0.0
0	0.0	0.0	0.00	0.00	0.0	100.0	0.00	0.0
JEDEN	0.0	0.0	0.00	0.00	0.0	0.0	100.00	0.0
PRZYCISZ	0.0	0.0	0.00	0.00	0.0	0.0	0.00	100.0
KAWE	0.0	0.0	0.00	0.00	0.0	0.0	0.00	0.0
RADIO	0.0	0.0	0.00	0.00	0.0	0.0	0.00	0.0
ZAKREC	0.0	0.0	0.00	0.00	0.0	0.0	0.00	0.0
DRZWI	0.0	0.0	0.00	0.00	0.0	0.0	0.00	0.0
KWIATKI	0.0	0.0	0.00	0.00	0.0	0.0	25.00	0.0
SWIATLO	0.0	0.0	0.00	0.00	0.0	0.0	0.00	0.0
PODLEJ	0.0	0.0	0.00	0.00	0.0	0.0	0.00	0.0
ZAMKNIJ	0.0	0.0	0.00	0.00	0.0	0.0	0.00	0.0
WODE	0.0	12.5	0.00	12.50	0.0	0.0	50.00	0.0
PODNIES	0.0	0.0	0.00	0.00	0.0	0.0	0.00	0.0

Tab.2 Macierz procentowa algorytmu klasyfikacji.

Rezultaty

Powstały algorytm pozwala na wykrycie komend dla większości słów około 56%. Należy zwrócić uwagę na wagę stworzonego algorytmu. Program poprawia jakość życia w inteligentnych domach, źle rozpoznanie komend nie spowoduje zagrożenia życia lub zdrowia człowieka, jedynie nie wykona określonych pleceń. W rezultacie wynik osiągniętego algorytmu można przyjąć jako wystarczający. Aby uzyskać lepszy wynik należało wyciągnąć lepszy wektor cech , poszukać bardziej skutecznego klasyfikatora. Poniżej przedstawiono kod realizujący procentowy stan algorytmu.

```
In [18]:
    success = (171-error)/171*100
    print('Success rate: %.2f percent'%(success))
    Success rate: 55.56 percent
```