Valós számsorok

Elméleti áttekintés

1. Definíció. Legyen $(x_n)_{n\in\mathbb{N}}$ egy valós számsorozat, és képezzük az alábbi sorozatot

$$\sigma_1 = x_1
\sigma_n = x_1 + \cdots + x_n, \quad (n \in \mathbb{N}, n \geqslant 2).$$

Ekkor a $(\sigma_n)_{n\in\mathbb{N}}$ sorozatot az $(x_n)_{n\in\mathbb{N}}$ sorozatból képzett **sor**nak nevezzük, és a továbbiakban $\sum_{n=1}^{\infty} x_n$ -nel jelöljük. Ha

létezik a $\lim_{n\to\infty} \sigma_n$ határérték, akkor azt mondjuk, hogy a $\sum_{n=1}^{\infty} x_n$ sor **konvergens**. A $\sum_{n=1}^{\infty} x_n$ sort **abszolút konvergens**nek

nevezzük, ha a $\sum_{n=1}^{\infty} |x_n|$ sor konvergens. Ha a $\sum_{n=1}^{\infty} x_n$ sor konvergens, de nem abszolút konvergens, akkor **feltételesen** konvergensnek nevezzük.

- **1. Tétel (Abszolút konvergencia)⇒ konvergencia).** Ha egy valós sor abszolút konvergens, akkor konvergens is.
- **2. Tétel.** Ha a $\sum_{n=1}^{\infty} x_n$ sor konvergens, akkor $\lim_{n\to\infty} x_n = 0$.
- **3. Tétel (Összehasonlító kritérium).** Legyenek $\sum_{n=1}^{\infty} x_n$ és $\sum_{n=1}^{\infty} y_n$ olyan nemnegatív tagú sorok, hogy $x_n \leqslant y_n$ teljesül minden $n \in \mathbb{N}$ esetén. Ekkor,
 - (i) $ha \sum_{n=1}^{\infty} y_n$ konvergens, akkor $\sum_{n=1}^{\infty} x_n$ is konvergens; (ii) $ha \sum_{n=1}^{\infty} x_n$ divergens, akkor $\sum_{n=1}^{\infty} y_n$ is divergens.
- **4. Tétel (Összehasonlító kritérium II.).** Legyenek $\sum_{n=1}^{\infty} x_n$ és $\sum_{n=1}^{\infty} y_n$ olyan pozitív tagú sorok, melyekre létezik és pozitív a $\lim_{n\to\infty} \frac{x_n}{y_n}$ határérték. Ekkor a $\sum_{n=1}^{\infty} x_n$ és a $\sum_{n=1}^{\infty} y_n$ sorok egyszerre konvergensek, illetve egyszerre divergensek.
- **5. Tétel (Cauchy-féle gyökkritérium).** Legyen $\sum_{n=1}^{\infty} x_n$ egy valós sor.
 - (i) $Ha \lim_{n\to\infty} \sqrt[n]{|x_n|} < 1$, $akkor\ a \sum_{n=1}^{\infty} x_n \ sor\ abszolút$ (ii) $Ha \lim_{n\to\infty} \sqrt[n]{|x_n|} > 1$, $akkor\ a \sum_{n=1}^{\infty} x_n \ sor\ divergens$.
- **6. Tétel (D'Alembert-féle hányadoskritérium).** Legyen $\sum_{n=1}^{\infty} x_n$ egy olyan valós sor, melynek minden tagja nullától különböző.
 - (i) $Ha \lim_{n\to\infty} \frac{|x_{n+1}|}{|x_n|} < 1$, $akkor\ a \sum_{n=1}^{\infty} x_n \ sor\ abszolút$ (ii) $Ha \lim_{n\to\infty} \frac{|x_{n+1}|}{|x_n|} > 1$, $akkor\ a \sum_{n=1}^{\infty} x_n \ sor\ diverkonvergens$.
- **7. Tétel (Leibniz-féle kritérium alternáló sorokra).** Legyen $(x_n)_{n\in\mathbb{N}}$ egy monoton nullsorozat, ekkor a $\sum_{n=1}^{\infty} (-1)^n x_n$ sor konvergens.
- **8. Tétel (Cauchy-féle ritkítási kritérium).** Legyen $(x_n)_{n\in\mathbb{N}}$ egy nemnegatív tagú, monoton csökkenő valós számsorozat. Ekkor a $\sum_{n=1}^{\infty} x_n$ valós sor pontosan akkor konvergens, ha a $\sum_{n=1}^{\infty} 2^n x_{2^n}$ sor konvergens.
- **9. Tétel (A geometriai sor).** Legyen $q \in \mathbb{R}$ olyan, hogy |q| < 1, ekkor a $\sum_{n=1}^{\infty} q^n$ sor konvergens, és

$$\sum_{n=1}^{\infty} q^n = \frac{q}{1-q}.$$

10. Tétel (A harmonikus sor). Legyen $\alpha > 0$ adott, ekkor a $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ sor abszolút konvergens, ha $\alpha > 1$ és divergens, ha $\alpha \leq 1$.

Feladatok

1. Feladat. A definíció felhasználásával mutassuk meg, hogy az alábbi sorok mindegyike konvergens és határozzuk meg a szóban forgó sorok összegét is.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

(c)
$$\sum_{n=1}^{\infty} 100 \cdot (0,9)^n$$

(e)
$$\sum_{n=1}^{\infty} \frac{1}{(3n-2)(3n+1)}$$

(b)
$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2}$$

(d)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{3^n}$$

(f)
$$\sum_{n=1}^{\infty} \frac{1}{9n^2 - 3n - 2}$$

2. Feladat. Igazoljuk, hogy a következő sorok divergensek.

(a)
$$\sum_{n=1}^{\infty} \sqrt{n+1} - \sqrt{n},$$

$$(b) \sum_{n=1}^{\infty} \frac{n+1}{n},$$

(c)
$$\sum_{n=1}^{\infty} \sqrt[n]{0,2}$$
.

3. Feladat. Határozzuk meg, hogy az alábbi sorok közül melyek konvergensek, abszolút konvergensek és melyek divergensek.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}},$$

$$(d) \sum_{n=1}^{\infty} \frac{1}{3n-1}$$

$$(g) \sum_{n=1}^{\infty} \frac{n}{(n+1)^2}$$

(j)
$$\sum_{n=1}^{\infty} \frac{1}{2n^3 + 3}$$

(b)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}}$$
,

$$(e) \sum_{n=1}^{\infty} \frac{1}{(n+1)\sqrt{n}}$$

$$(h) \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}\sqrt{n\sqrt{n}}}$$

$$(k) \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \sin\left(\frac{\pi}{n}\right)$$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{10n+3}$$
,

(f)
$$\sum_{n=1}^{\infty} \frac{7n}{(6n+1)^3}$$

(i)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{n}$$

$$(l) \sum_{n=1}^{\infty} \frac{\sqrt{n+2} - \sqrt{n-2}}{n^{\alpha}}$$

4. Feladat. Döntsük el, hogy az alábbi sorok közül melyek konvergensek.

$$(a) \sum_{n=1}^{\infty} \frac{n!}{5^n},$$

(e)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt[n]{3}}$$
,

$$(i) \sum_{n=1}^{\infty} \frac{2n}{3^n}$$

$$(m) \sum_{n=1}^{\infty} \frac{n^5}{3^n + 2^n}$$

$$(b) \sum_{n=1}^{\infty} \frac{1}{n^n},$$

(f)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^n}{n^2}$$

$$(j) \sum_{n=1}^{\infty} \frac{\pi^n}{n^3}$$

(n)
$$\sum_{n=1}^{\infty} \frac{1}{10^{n!}}$$

(c)
$$\sum_{n=1}^{\infty} \frac{100^n}{n!}$$
,

(g)
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{2^{n^2}}$$

(k)
$$\sum_{n=1}^{\infty} \frac{1000n}{(1,1)^n}$$

(o)
$$\sum_{n=1}^{\infty} \frac{2 + (-1)^n}{2^n}$$

$$(d) \sum_{n=1}^{\infty} \frac{3^n n!}{n^n},$$

(h)
$$\sum_{n=1}^{\infty} \frac{n^{1+\frac{1}{n}}}{\left(1+\frac{1}{n}\right)^n}$$

(1)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt[10]{n}}$$

$$(p) \sum_{n=1}^{\infty} \frac{\alpha \cos^2\left(\frac{n\pi}{3}\right)}{2^n}$$

5. Feladat. Mely $x \in \mathbb{R}$ számok esetén lesznek a következő sorok (abszolút) konvergensek?

$$(a) \sum_{n=1}^{\infty} \frac{x^n}{3^n}$$

$$(c) \sum_{n=1}^{\infty} 4^n x^n$$

$$(e) \sum_{n=1}^{\infty} x^n n$$

$$(g) \sum_{n=1}^{\infty} \frac{\sin(nx)}{2^n}$$

(i)
$$\sum_{i=1}^{\infty} ne^{-nx}$$

$$(b) \sum_{i=1}^{\infty} (x-4)^n$$

(d)
$$\sum_{n=1}^{\infty} \frac{(x+3)^n}{2^{n+1}}$$

(f)
$$\sum_{n=1}^{\infty} \sin(nx)$$

$$(h) \sum_{n=1}^{\infty} \frac{\cos(x^n)}{n^2}$$

(b)
$$\sum_{n=1}^{\infty} (x-4)^n$$
 (d) $\sum_{n=1}^{\infty} \frac{(x+3)^n}{2^{n+1}}$ (f) $\sum_{n=1}^{\infty} \sin(nx)$ (h) $\sum_{n=1}^{\infty} \frac{\cos(x^n)}{n^2}$ (j) $\sum_{n=1}^{\infty} \frac{(-1)^n}{(n+x)^{\alpha}}$

6. Feladat. Igazold, hogy ha a $\sum_{n=0}^{\infty} x_n$ pozitív tagú sor konvergens, akkor a $\sum_{n=0}^{\infty} x_n^2$ sor is konvergens. Igaz-e a megfordítás?

7. Feladat. Bizonyítsd be, hogy ha a $\sum_{n=0}^{\infty} x_n^2$ és $\sum_{n=0}^{\infty} y_n^2$ sorok konvergensek, akkor a $\sum_{n=0}^{\infty} |x_n y_y|$ és a $\sum_{n=0}^{\infty} (x_n + y_n)^2$ sor is konvergens.