DEAV2003/0008 US NP

PATENT

Amendments to the claims:

Serial No. 10/773,772

Please amend the claims as indicated below. This listing of claims replaces all earlier versions of the claims in the application:

 (Currently amended) A method for treating a degenerative joint disease, in a patient in need thereof, wherein said degenerative joint disease is selected from the group consisting of osteoarthrosis, spondyloses and cartilage atrophy, wherein said method comprises comprising administering to the patient a pharmaceutically effective amount of a compound of formula I

$$A-B-X-E-F-K-(D)-TIC-G-M-F'-I$$
 (1)

wherein:

A is hydrogen,

 (C_1-C_8) -alkyl, (C_1-C_8) -alkanoyl, (C_1-C_8) -alkoxycarbonyl or (C_1-C_8) alkylsulfonyl, each of which is optionally substituted one, two or three times by carboxyl, amino, (C_1-C_4) -alkyl, (C_1-C_4) -alkyl-amino, hydroxy, (C_1-C_3) alkoxy, halogen, di- (C_1-C_4) -alkyl-amino, carbamoyl, sulfamoyl, (C_1-C_4) alkoxycarbonyl, (C₆-C₁₂)-aryl or (C₆-C₁₂)-aryl-(C₁-C₅)-alkyl, or each of which is optionally substituted one time by (C₃-C₈)-cycloalkyl, (C₁-C₄)alkylsulfonyl, (C_1 - C_4)-alkylsulfinyl, (C_6 - C_{12})-aryl-(C_1 - C_4)-alkylsulfonyl, (C_6 - C_{12} -aryl- (C_1-C_4) -alkylsulfinyl, (C_6-C_{12}) -aryloxy, (C_3-C_9) -heteroaryl or $(C_$ C₉)-heteroaryloxy, and is further optionally substituted one or two times by carboxyl, amino, (C₁-C₄)-alkylamino, hydroxy, (C₁-C₄)-alkoxy, halogen, di-(C₁-C₄)-alkylamino, carbamoyl, sulfamoyl, (C₁-C₄)-alkyloxycarbonyl, (C₆- C_{12})-aryl or (C_6-C_{12}) -aryl- (C_1-C_5) -alkyl, wherein the heteroaryl is optionally substituted one, two, three or four times by carboxyl, amino, nitro, hydroxy, cyano, (C₁-C₄)-alkylamino, (C₁-C₄)-alkyl, (C₁-C₄)-alkoxy, halogen, di-(C₁- C_4)-alkylamino, carbamoyl, sulfamoyl or (C_1-C_4) -alkoxycarbonyl, (C3-C8)-cycloalkyl, carbamoyl, which is optionally substituted on the nitrogen by (C₁-C₆)-alkyl or (C_6-C_{12}) -aryl,

. .

DEAV2003/0008 US NP Serial No. 10/773,772

PATENT

 (C_6-C_{12}) -aryl, (C_6-C_{12}) -aroyl, (C_6-C_{12}) -arylsulfonyl, (C_3-C_9) -heteroaryl or (C_3-C_9) -heteroaroyl, wherein the heteroaryl, aroyl, arylsulfonyl and heteroaroyl are each independently optionally substituted one, two, three or four times by carboxyl, amino, nitro, hydroxy, cyano, (C_1-C_4) -alkylamino, (C_1-C_4) -alkyl, (C_1-C_4) -alkoxy, halogen, di- (C_1-C_4) -alkylamino, carbamoyl, sulfamoyl or (C_1-C_4) -alkoxycarbonyl,

OT

of formula II,

wherein

R(1) is

hydrogen,

 (C_1-C_3) -alkyl, (C_1-C_3) -alkanoyl, (C_1-C_3) -alkoxycarbonyl or (C₁-C₈)-alkylsulfonyl, each of which is optionally substituted one, two or three times by carboxyl, amino, (C₁-C₄)-alkyl, (C₁- C_4)-alkyl-amino, hydroxy, (C_1 - C_3)-alkoxy, halogen, di-(C_1 - C_4)alkyl-amino, carbamoyl, sulfamoyl, (C₁-C₄)-alkoxycarbonyl, (C_6-C_{12}) -aryl or (C_6-C_{12}) -aryl- (C_1-C_5) -alkyl, or each of which is optionally substituted one time by (C_3-C_8) -cycloalkyl, (C_1-C_4) alkylsulfonyl, (C_1-C_4) -alkylsulfinyl, (C_6-C_{12}) -aryl- (C_1-C_4) alkylsulfonyl, (C_6-C_{12}) -aryl- (C_1-C_4) -alkylsulfinyl, (C_6-C_{12}) aryloxy, (C₃-C₉)-heteroaryl or (C₃-C₉)-heteroaryloxy, and is further optionally substituted one or two times by carboxyl, amino, (C₁-C₄)-alkylamino, hydroxy, (C₁-C₄)-alkoxy, halogen, di-(C₁-C₄)-alkylamino, carbamoyl, sulfamoyl, (C₁-C₄)alkyloxycarbonyl, (C_6-C_{12}) -aryl or (C_6-C_{12}) -aryl- (C_1-C_5) -alkyl, wherein the heteroaryl is optionally substituted one, two, three or four times by carboxyl, amino, nitro, hydroxy, cyano, (C1-C₄)-alkylamino, (C₁-C₄)-alkyl, (C₁-C₄)-alkoxy, halogen, di-(C₁-C₄)-alkylamino, carbamoyl, sulfamoyl or (C₁-C₄)alkoxycarbonyl,

 (C_3-C_8) -cycloalkyl, carbamoyl, which is optionally substituted on the nitrogen by (C_1-C_6) -alkyl or (C_6-C_{12}) -aryl,

OT

 (C_6-C_{12}) -aryl, (C_6-C_{12}) -aroyl, (C_6-C_{12}) -arylsulfonyl, (C_3-C_9) -heteroaryl or (C_3-C_9) heteroaroyl, wherein the heteroaryl, aroyl, arylsulfonyl and heteroaroyl are each independently optionally substituted one, two, three or four times by carboxyl, amino, nitro, hydroxy, cyano, (C_1-C_4) -alkylamino, (C_1-C_4) -alkyl, (C_1-C_4) -alkoxy, halogen, di- (C_1-C_4) -alkylamino, carbamoyl, sulfamoyl or (C_1-C_4) -alkoxycarbonyl,

R(2) is hydrogen or methyl,

R(3)

is

hydrogen or (C₁-C₆)-alkyl, wherein the alkyl is optionally monosubstituted by amino, substituted amino, hydroxy, carbamoyl, guanidino, substituted guanidino, ureido, mercapto, methyl-mercapto, phenyl, 4-chlorophenyl, 4-fluorophenyl, 4-nitrophenyl, 4-methoxyphenyl, 4-hydroxyphenyl, phthalimido, 4-imidazolyl, 3-indolyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl or cyclohexyl, wherein the substituted amino is -NH-A'- and the substituted guanidino is-NH-C(NH)-NH-A'-, wherein A' is

hydrogen,

 (C_1-C_8) -alkyl, (C_1-C_8) -alkanoyl, (C_1-C_8) -alkylsulfonyl, each of which is optionally substituted one, two or three times by carboxyl, amino, (C_1-C_4) -alkyl, (C_1-C_4) -alkyl-amino, hydroxy, (C_1-C_3) -alkoxy, halogen, di- (C_1-C_4) -alkyl-amino, carbamoyl, sulfamoyl, (C_1-C_4) -alkoxycarbonyl, (C_6-C_{12}) -aryl or (C_6-C_{12}) -aryl- (C_1-C_5) -alkyl, or each of which is optionally substituted one time by (C_3-C_8) -cycloalkyl, (C_1-C_4) -alkylsulfonyl, (C_1-C_4) -alkylsulfinyl, (C_6-C_{12}) -aryl- (C_1-C_4) -alkylsulfonyl, (C_6-C_{12}) -aryl- (C_1-C_4) -alkylsulfonyl, (C_6-C_{12}) -aryl- (C_1-C_4) -alkylsulfonyl, (C_6-C_{12}) -aryl- (C_1-C_4) -alkylsulfinyl, (C_6-C_1) -aryl- (C_1-C_4) -alkylsulfinyl

P. 6

NO. 1654

DEAV2003/0008 US NP Serial No. 10/773,772

PATENT

or (C3-C9)-heteroaryloxy, and is further optionally substituted one or two times by carboxyl, amino, (C1-C₄)-alkylamino, hydroxy, (C₁-C₄)-alkoxy, halogen, di-(C₁-C₄)-alkylamino, carbamoyl, sulfamoyl, (C₁-C₄)alkyloxycarbonyl, (C_6-C_{12}) -aryl or (C_6-C_{12}) -aryl- (C_1-C_{12}) - (C_1-C_1) - $(C_1$ C₅)-alkyl, wherein the heteroaryl is optionally substituted one, two, three or four times by carboxyl, amino, nitro, hydroxy, cyano, (C1-C4)-alkylamino, (C1- C_4)-alkyl, (C_1-C_4) -alkoxy, halogen, di- (C_1-C_4) alkylamino, carbamoyl, sulfamoyl or (C₁-C₄)alkoxycarbonyl, (C_3-C_8) -cycloalkyl, carbamoyl, which is optionally substituted on the nitrogen by (C₁-C₆)-alkyl or (C₆-C₁₂)-aryl, or (C_6-C_{12}) -aryl, (C_6-C_{12}) -aroyl, (C_6-C_{12}) -arylsulfonyl, (C_3-C_{12}) -arylsulfonyl, C₉)-heteroaryl or (C₃-C₉)heteroaroyl, wherein the heteroaryl, aroyl, arylsulfonyl and heteroaroyl are each independently optionally substituted one, two, three or four times by carboxyl, amino, nitro, hydroxy, cyano, (C_1-C_4) -alkylamino, (C_1-C_4) -alkyl, (C_1-C_4) -alkoxy, halogen, di-(C₁-C₄)-alkylamino, carbamoyl, sulfamoyl or (C_1-C_4) -alkoxycarbonyl;

B is Arg, Lys, Orn, 2,4-diaminobutyroyl or L-homo-arginine, wherein the amino or the guanidino group of the side chain of Arg, Lys, Orn, 2,4-diaminobutyroyl or L-homo-arginine is independently optionally substituted by

hydrogen,

 (C_1-C_8) -alkyl, (C_1-C_8) -alkanoyl, (C_1-C_8) -alkoxycarbonyl or (C_1-C_8) alkylsulfonyl, each of which is optionally substituted one, two or three times by carboxyl, amino, (C₁-C₄)-alkyl, (C₁-C₄)-alkyl-amino, hydroxy, (C₁-C₃)-alkoxy, halogen, di-(C₁-C₄)-alkyl-amino, carbamoyl, sulfamoyl, (C₁-C₄)-alkoxycarbonyl, (C₆-C₁₂)-aryl or (C₆-C₁₂)-aryl-(C₁- C_5)-alkyl, or each of which is optionally substituted one time by (C_3-C_8) -cycloalkyl, (C_1-C_4) -alkylsulfonyl, (C_1-C_4) -alkylsulfinyl, (C_6-C_{12}) -aryl- (C_1-C_4) -alkylsulfonyl, (C_6-C_{12}) -aryl- (C_1-C_4) -alkylsulfinyl, (C_6-C_{12}) -aryloxy, (C_3-C_9) -heteroaryl or (C_3-C_9) -heteroaryloxy, and is further optionally substituted one or two times by carboxyl, amino, (C_1-C_4) -alkylamino, hydroxy, (C_1-C_4) -alkoxy, halogen, di- (C_1-C_4) -alkylamino, carbamoyl, sulfamoyl, (C_1-C_4) -alkyloxycarbonyl, (C_6-C_{12}) -aryl- (C_1-C_5) -alkyl, wherein the heteroaryl is optionally substituted one, two, three or four times by carboxyl, amino, nitro, hydroxy, cyano, (C_1-C_4) -alkylamino, (C_1-C_4) -alkyl, (C_1-C_4) -alkoxy, halogen, di- (C_1-C_4) -alkylamino, carbamoyl, sulfamoyl or (C_1-C_4) -alkoxy, halogen, di- (C_1-C_4) -alkylamino, carbamoyl, sulfamoyl or (C_1-C_4) -alkoxycarbonyl,

(C₃-C₈)-cycloalkyl,

carbamoyl, which is optionally substituted on the nitrogen by (C_1-C_6) -alkyl or (C_6-C_{12}) -aryl,

or

 (C_6-C_{12}) -aryl, (C_6-C_{12}) -aroyl, (C_6-C_{12}) -arylsulfonyl, (C_3-C_9) -heteroaryl or (C_3-C_9) -heteroaroyl, wherein the heteroaryl, aroyl, arylsulfonyl and heteroaroyl are each independently optionally substituted one, two, three or four times by carboxyl, amino, nitro, hydroxy, cyano, (C_1-C_4) -alkylamino, (C_1-C_4) -alkyl, (C_1-C_4) -alkoxy, halogen, di- (C_1-C_4) -alkylamino, carbamoyl, sulfamoyl or (C_1-C_4) -alkoxycarbonyl;

X is of formula IIIa or IIIb

$$G'-NH-(CH_2)_n-CO$$
 (IIIb),

wherein G' independently of one another is of formula IV

PATENT

wherein R(4) and R(5) together with the atoms they connect to form a heterocyclic mono-, bi- or tricyclic ring having 2 to 15 carbon atoms, and n is 2 to 8;

- E is phenylalanine optionally substituted by halogen in the 2-, 3-or 4-ring position, tyrosine, O-methyltyrosine, 2-thienylalanine, 2-pyridylalanine or naphthylalanine;
- F is covalent bond, or neutral, acidic or basic aliphatic or aromatic amino acid, which is optionally substituted in the side chain;

(D)-TIC is of formula V

- G is G' or a covalent bond;
- F' is covalent bond, -NH-(CH₂)_n- wherein n is 2 8, or basic amino acid Arg or Lys in the L or D form, wherein the guanidino group or amino group of the side chain of the Arg or Lys is optionally substituted by

hydrogen,

 (C_1-C_8) -alkyl, (C_1-C_8) -alkanoyl, (C_1-C_8) -alkoxycarbonyl or (C_1-C_8) -alkylsulfonyl, each of which is optionally substituted one, two or three times by carboxyl, amino, (C_1-C_4) -alkyl, (C_1-C_4) -alkyl-amino, hydroxy, (C_1-C_3) -alkoxy, halogen, di- (C_1-C_4) -alkyl-amino, carbamoyl, sulfamoyl, (C_1-C_4) -alkoxycarbonyl, (C_6-C_{12}) -aryl or (C_6-C_{12}) -aryl- (C_1-C_5) -alkyl, or each of which is optionally substituted one time by (C_3-C_8) -cycloalkyl, (C_1-C_4) -alkylsulfonyl, (C_1-C_4) -alkylsulfinyl, (C_6-C_{12}) -aryl- (C_1-C_4) -alkylsulfonyl, (C_6-C_{12}) -aryl- (C_1-C_4) -alkylsulfonyl, (C_3-C_9) -heteroaryloxy, and is further optionally substituted one or two times by carboxyl, amino, (C_1-C_4) -alkylamino, hydroxy, $(C_1^2-C_4)$ -alkoxy, halogen, di- (C_1-C_4) -alkylamino, carbamoyl, sulfamoyl, (C_1-C_4) -alkyloxycarbonyl, (C_6-C_{12}) -aryl or (C_6-C_{12}) -aryl- (C_1-C_5) -alkyl, wherein the heteroaryl is

. . .

optionally substituted one, two, three or four times by carboxyl, amino, nitro, hydroxy, cyano, (C₁-C₄)-alkylamino, (C₁-C₄)-alkyl, (C₁-C₄)-alkoxy, halogen, di-(C₁-C₄)-alkylamino, carbamoyl, sulfamoyl or (C₁-C₄)-alkoxycarbonyl, (C₃-C₈)-cycloalkyl, carbamoyl, which is optionally substituted on the nitrogen by (C₁-C₆)-alkyl or (C₆-C₁₂)-aryl, or (C₆-C₁₂)-aryl, (C₆-C₁₂)-aroyl, (C₆-C₁₂)-arylsulfonyl, (C₃-C₉)-heteroaryl

 (C_6-C_{12}) -aryl, (C_6-C_{12}) -aroyl, (C_6-C_{12}) -arylsulfonyl, (C_3-C_9) -heteroaryl or (C_3-C_9) -heteroaroyl, wherein the heteroaryl, aroyl, arylsulfonyl and heteroaroyl are each independently optionally substituted one, two, three or four times by carboxyl, amino, nitro, hydroxy, cyano, (C_1-C_4) -alkylamino, (C_1-C_4) -alkyl, (C_1-C_4) -alkoxy, halogen, di- (C_1-C_4) -alkylamino, carbamoyl, sulfamoyl or (C_1-C_4) -alkoxycarbonyl;

I is -OH, -NH₂ or NHC₂H₅;

K is covalent bond or -NH-(CH₂)_x-CO, wherein x is 1 to 4; and

M is covalent bon, or neutral, acidic or basic aliphatic or aromatic amino acid, which is optionally substituted in the side chain;

or its physiologically tolerable salts thereof.

2. (Original) The method according to claim 1, wherein

B is Arg, Orn or Lys,
wherein the guanidino group or the aminó group of the side chain is each
independently optionally substituted by (C₁-C₈)-alkanoyl, (C₆-C₁₂)-aroyl, (C₃C₉)-heteroaroyl, (C₁-C₈)-alkylsulfonyl or (C₆-C₁₂)-arylsulfonyl, wherein the
aroyl, arylsulfonyl and heteroaroyl are each independently optionally
substituted one, two, three or four times by carboxyl, amino, nitro, hydroxy,
cyano, (C₁-C₄)-alkylamino, (C₁-C₄)-alkyl, (C₁-C₄)-alkoxy, halogen, di-(C₁C₄)-alkylamino, carbamoyl, sulfamoyl or (C₁-C₄)-alkoxycarbonyl;

E is phenylalanine, 2-chlorophenylalanine, 3-chloro-phenylalanine, 2-fluorophenylalanine, 3-fluorophenyl-alanine, 4-fluorophenylalanine, tyrosine, O-methyl-tyrosine or β -(2-thienyl)alanine;

K is covalent bond; and

PATENT

M is covalent bond.

3. (Original) The method according to claim 1, wherein:

A is hydrogen, (D)- or (L)-H-Arg, (D)- or (L)-H-Lys or (D)- or (L)-H-Om;

B is Arg, Om or Lys,

wherein the guanidino group or the amino group of the side chain is optionally substituted by hydrogen, (C_1-C_8) -alkanoyl, (C_6-C_{12}) -aroyl, (C_3-C_9) -heteroaroyl, (C_1-C_8) -alkylsulfonyl or (C_6-C_{12}) -arylsulfonyl, wherein the aroyl, arylsulfonyl and heteroaroyl are each independently optionally substituted one, two, three or four times by methyl, methoxy or halogen;

X is Pro-Pro-Gly, Hyp-Pro-Gly or Pro-Hyp-Gly;

E is Phe or Thia;

F is Ser, Hser, Lys, Leu, Val, Nle, Ile or Thr;

K is covalent bond

M is covalent bond

G is of the formula IV,

wherein R(4) and R(5) together with the atoms they connect to form pyrrolidine, piperidine, tetrahydro-isoquinoline, cis- or trans-decahydroisoquinoline, cis-endo-octahydroindole, cis-exo-octahydro-indole, trans-octahydroindole, cis-endo-, cis-exo-, trans-octahydrocyclopentano[b]pyrrole, or hydroxyproline;

F' is Arg; and

I is OH.

PATENT

- (Original) The method according to claim 1, wherein the compound of the formula I 4.
 - H-(D)-Arg-Arg-Pro-Hyp-Gly-Thia-Ser-(D)-Tic-Oic-Arg-OH,
 - H-(D)-Arg-Arg-Pro-Pro-Gly-Thia-Ser-(D)-Tic-Oic-Arg-OH,
 - H-(D)-Arg-Arg-Pro-Hyp-Gly-Phe-Ser-(D)-Tic-Oic-Arg-OH,
 - H-(D)-Arg-Arg-Hyp-Pro-Gly-Phe-Ser-(D)-Tic-Oic-Arg-OH or
 - H-(D)-Arg-Arg-Pro-Pro-Gly-Phe-Ser-(D)-Tic-Oic-Arg-OH.
- (Original) The method according to claim 1, wherein the compound of the formula I 5. is D-arginyl-L-arginyl-L-prolyl-L-prolylglycyl-3-(2-thienyl)- L-alanyl-L-seryl-(3R)-1,2,3,4-tetrahydro-3-isoquinolinecarbonyl-(2S,3aS,7aS)-octahydro-1H-indole-2carbonyl-L-arginine.
- 6. (Cancelled)
- 7. (Original) The method according to claim 1, wherein the administration is carried out by subcutaneous, intraarticular, intraperitoneal or intravenous injection or transdermal administration.