Московский физико-технический институт (национальный исследовательский университет) Факультет общей и прикладной физики

Лабораторная работа №6.11.1 (Основы современной физики)

Определение ширины запрещенной зоны полупроводника

Работу выполнил: Иванов Кирилл, 625 группа

г. Долгопрудный 2019 год

Цель работы: исследовать температурную зависимость проводимости полупроводника; определить ширину запрещенной зоны полупроводника из полученной зависимости.

1. Теоретическое введение

1.1 Температурная зависимость проводимости металлов

Свойства металлов достаточно хорошо описываются моделью свободных электронов: в отсутствии внешних полей электроны движутся прямолинейно и с постоянной скоростью, столкновения их друг с другом и с ионами считаются мгновенными.

При наличии постоянного электрического поля E возникает постоянный ток, и дрейфовая скорость электронов равна:

$$v_d = \frac{eE\tau}{m}$$

3десь τ - время релаксации.

Из закона Ома, плотность тока j пропорциональна напряженности поля $E\colon j=\sigma E,\,\sigma$ - удельная проводимости вещества.

С учетом выражения для плотности тока $j=env_d$, где n - концентрация электронов, получим:

$$\sigma = \frac{j}{E} = \frac{ne^2\tau}{m}$$

Концентрация n электронов в зоне проводимости мало зависит от температуры, а время релаксации τ уменьшается при нагревании из-за увеличения числа фононов. Причем в большом диапазоне температур верно:

$$\sigma_m \propto 1/T$$

1.2 Температурная зависимость проводимости полупроводников

Проводимость в полупроводниках зависит от количества электронов в зоне проводимости и дырок в валентной зоне.

Вероятность заполнения $f(\varepsilon)$ энергетических уровней электронами определяется функцией Ферми:

$$f(\varepsilon) = \frac{1}{1 + \exp\left(\frac{\varepsilon - \mu}{kT}\right)}$$

Здесь ε - значение энергии уровня в зоне проводимости, μ - уровень Ферми.

В приближении $(\varepsilon - \mu) >> kT$ имеем:

$$f(\varepsilon) \approx \exp\left(-\frac{\varepsilon - \mu}{kT}\right)$$

При небольших температурах электроны занимают нижние уровни, то есть $\varepsilon \approx \varepsilon_c$, ε_c энергия, соответствующая дну зоны проводимости. Тогда количество электронов n_n равно:

$$n_n = Q_n \cdot f(\varepsilon) \approx Q_n \exp\left(-\frac{\varepsilon_c - \mu}{kT}\right)$$

Здесь Q_n - количество занятых электронами уровней.

Вероятность возникновения дырки равна $1-f(\varepsilon)$. В рассматриваемом приближении энергию дырок будем считать равной энергии верхней границы валентной зоны ε_v , тогда число дырок n_p в валентной зоне определяется аналогично:

$$n_p = Q_p \cdot (1 - f(\varepsilon)) \approx Q_p \exp\left(\frac{\varepsilon_v - \mu}{kT}\right)$$

В чистых полупроводниках $n_n \approx n_p$, следовательно верно:

$$n_p n_n = n^2 = Q_n Q_p \exp\left(-\frac{\varepsilon_c - \varepsilon_v}{kT}\right)$$

Ширину запрещенной зоны обозначим $\Delta = \varepsilon_c - \varepsilon_v$, тогда получим:

$$n \propto \exp\left(-\frac{\Delta}{2kT}\right)$$

В присутствии электрического поля E средняя скорость v носителя заряда пропорциональна ему: $v \propto E$.

Плотность тока в случае полупроводника запишется так: $j = j_n + j_p = |e|(n_n v_n + n_p v_p) \propto nE$, где индексы n и p соответствуют электронам и дыркам. Из полученной пропорциональности следует температурная зависимость проводимости полупроводника:

$$\sigma_s \propto \exp\left(-\frac{\Delta}{2kT}\right)$$

2. Экспериментальная установка

Схема установки, используемой в работе, приведена на рисунке 1. Исследуемые образцы O_1 и O_2 помещены в электронагревательную печь Π ; их сопротивление изменяется вольтметром B7-34A. Абсолютную погрешность измерений сопротивления примем равной $2 \cdot 10^{-4}$ кОм.

Полупроводниковый образец имеет форму параллелепипеда, его параметры: $4.0 \times 4.0 \times 39$ (в мм). Медный образец - тонкая проволока длиной l=20 м диаметра d=0.05 мм.

Удельная проводимость σ связана с измеряемым сопротивлением R следующей формулой:

Рис. 1: Схема установки для измерения зависимости $\sigma(T)$

$$\sigma = \frac{l}{RS} \tag{1}$$

Здесь l - длина образца, S - его поперечное сечение.

Температура образцов измеряется с помощью термопары, один спай которой расположен в печи, а другой - в сосуде Дьюара Д.

3. Выполнение работы

В соответствии с графиком термопары, приложенным к установке, будем изменять значение напряжения на ней и устанавливать соответствующую температуру. Измерения начнем с $T_0=26^\circ$

Измерения зависимости сопротивлений меди R_{Cu} и полупроводника R_s от температуры T приведены в таблице. Также рассчитаны σ по формуле (1) для полупроводника и меди, и значения 1/T и $\ln \sigma, \ln \left(\frac{\sigma}{\sigma_0}\right)$, где $\sigma_0 = \sigma(T_0)$. Построим графики зависимости $\sigma(T)$ для полупроводника, а также график $\ln \left(\frac{\sigma}{\sigma_0}\right)$ от 1/T для полупроводника.

Для определения температурного коэффициента сопротивления меди построим линейный график $R_{Cu}(T)$.

Таблица 1: Результаты измерений

№	€, мВ	R _{пп} , кОм	R_{Cu} , кОм	$T,^{\circ}$	$\sigma_{\rm mn}, \frac{10^2}{{ m Om}\cdot{ m mm}}$	$\sigma_{Cu}, \frac{10^4}{\mathrm{Om} \cdot \mathrm{mm}}$	$\frac{10^2}{T}$,°	$\ln \sigma_{\text{nn}}$	$\ln \frac{\sigma_{\text{nn}}}{\sigma_0}$
1	-0.08	0.7703	0.091	26	0.3	6.69	3.85	-5.8	0
2	0.12	0.604	0.0922	31	0.39	6.6	3.23	-5.56	0.24
3	0.32	0.4775	0.0937	36	0.49	6.49	2.78	-5.32	0.48
4	0.52	0.3805	0.0952	41	0.61	6.39	2.44	-5.09	0.71
5	0.72	0.307	0.0969	46	0.76	6.28	2.17	-4.88	0.92
6	0.92	0.2535	0.0984	51	0.92	6.18	1.96	-4.69	1.11
7	1.12	0.2095	0.1	56	1.11	6.08	1.79	-4.5	1.3
8	1.32	0.1736	0.1015	61	1.34	5.99	1.64	-4.31	1.49
9	1.52	0.1456	0.1031	66	1.6	5.9	1.52	-4.13	1.67
10	1.72	0.1215	0.1047	71	1.92	5.81	1.41	-3.95	1.85
11	1.92	0.1038	0.1063	76	2.25	5.72	1.32	-3.8	2
12	2.12	0.0882	0.1078	81	2.64	5.64	1.23	-3.63	2.17
13	2.32	0.0757	0.1094	86	3.08	5.56	1.16	-3.48	2.32
14	2.52	0.0651	0.111	91	3.58	5.48	1.1	-3.33	2.47
15	2.72	0.0565	0.1125	96	4.13	5.41	1.04	-3.19	2.61
16	2.92	0.0501	0.114	101	4.65	5.34	0.99	-3.07	2.73

Таблица 2: Результаты фитов линейными ф-ми y=ax+b

	Estimate	Standard Error					
Для графика рис. 3							
b	-0.94	0.45					
a	0.59	0.15					
Для графика рис. 4							
b	13.667	0.085					
a	-4.073	0.028					
Для графика рис. 5							
b	0.082583	0.000084					
a	$311,3 \cdot 10^{-6}$	$6,2 \cdot 10^{-6}$					

Из графика рис. 5 получаем, что для $R=a'T+b \Rightarrow a=a'\cdot 10^3~{\rm Om/K}\approx 313,3\pm 6,2~{\rm мOm/K},$ откуда температурный коэффициент сопротивления $\alpha=\frac{a}{R(T_0)}\approx (34,8\pm 0,7)\cdot 10^{-4}1/{\rm K}.$

Рис. 2: Зависимость $\sigma(T)$ для полупроводника

Из графика зависимости $\ln \left(\frac{\sigma}{\sigma_0} \right)$ от 1/T для полупроводника мы получаем,

$$\ln\left(\frac{\sigma}{\sigma_0}\right) = \frac{a'}{1000} \cdot \frac{1}{T} + b, \ \Rightarrow \ a' = -4073 \pm 28 \text{ K}^{-1} = -\frac{\Delta}{2k} \ \Rightarrow \ \Delta = 2 \cdot 4073 \cdot 8, 6 \cdot 10^{-5} \approx 0,70 \pm 0,01 \text{ 9B}$$

Это значение очень близко к величине запрещенной зоны для **германия**: $\Delta_{Ge} = 0.67$ Эв.

4. Вывод

В работе мы проверили экспериментально проверили зависимости проводимости металла и полупроводника от температуры — они согласуются с теорией. Мы также определили температурный коэффициент сопротивления меди ($\alpha \approx (34.8 \pm 0.7) \cdot 10^{-4} 1/\mathrm{K}$). Также мы получили ширину запрещённой зоны полупроводника, которая с хорошей точностью совпадает с табличной для германия.

Рис. 3: Зависимость $\sigma(T)$ для меди

Рис. 4: Зависимость $\ln \left(\frac{\sigma}{\sigma_0} \right)$ от 1/T для полупроводника

Рис. 5: Зависимость R_{Cu} от T