Лабораторная работа №1

Задача о погоне

Кувшинова К.О. группа НФИ-02-19

Содержание

1	Цель работы	4
2	Задание работы 2.0.1 Вариант 36	5
3	Теоретичсекое введение	6
4	Выполнение лабораторной работы 4.1 Постановка задачи	7 7 10
5	Вывод	15
6	Библиография	16

List of Figures

4.1	Положение катера и лодки в начальный момент времени	7
4.2	Разложение скорости катера на тангенциальную и радиальную	
	составляющие	9
4.3	Koд в Scilab	10
4.4	График в первом случае	11
4.5	Приближение графика в первом случае	12
4.6	График во втором случае	13
4.7	Приближение графика во втором случае	14

1 Цель работы

Научиться строить математические модели в Scilab, а также ознакомиться с задачей о погоне.

2 Задание работы

2.0.1 Вариант 36

На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии 14,4 км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 4,7 раза больше скорости браконьерской лодки. 1. Запишите уравнение, описывающее движение катера, с начальными условиями для двух случаев (в зависимости от расположения катера относительно лодки в начальный момент времени). 2. Постройте траекторию движения катера и лодки для двух случаев. 3. Найдите точку пересечения траектории катера и лодки

3 Теоретичсекое введение

Scilab — пакет прикладных математических программ, предоставляющий открытое окружение для инженерных (технических) и научных расчётов [1].

4 Выполнение лабораторной работы

4.1 Постановка задачи

- 1. Принимает за $t_0=0,\,x_0=0$ место нахождения лодки браконьеров в момент обнаружения, $x_0=k$ место нахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки.
- 2. Введем полярные координаты. Считаем, что полюс это точка обнаружения лодки браконьеров $x_0(\theta=x_0=0)$,а полярная ось г проходит через точку нахождения катера береговой охраны. (fig. 4.1)

Figure 4.1: Положение катера и лодки в начальный момент времени

3. Траектория катера должна быть такой, чтобы и катер, и лодка все время были на одном расстоянии от полюса θ , только в этом случае траектория

катера пересечется с траекторией лодки. Поэтому для начала катер береговой охраны должен двигаться некоторое время прямолинейно, пока не окажется на том же расстоянии от полюса, что и лодка браконьеров. После этого катер береговой охраны должен двигаться вокруг полюса удаляясь от него с той же скоростью, что и лодка браконьеров.

4. Чтобы найти расстояние x (расстояние после которого катер начнет двигаться вокруг полюса), необходимо составить простое уравнение. Пусть через время t катер и лодка окажутся на одном расстоянии x от полюса. За это время лодка пройдет x, а катер k-x (или k+x, в зависимости от начального положения катера относительно полюса). Время, за которое они пройдут это расстояние, вычисляется как x/v или k-x/4.7v (во втором случае k+x/4.7v). Так как время одно и то же, то эти величины одинаковы. Тогда неизвестное расстояние x можно найти из следующего уравнения:

$$\frac{x}{v} = \frac{k - x}{4.7v}$$

в первом случае или

$$\frac{x}{v} = \frac{k+x}{4.7v}$$

во втором. Отсюда мы найдем два значения $x_1=2.53$ и $x_2=3.89$. Задачу будем решать для двух случаев.

5. После того, как катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса удаляясь от него со скоростью лодки v. Для этого скорость катера раскладываем на две составляющие: v_r - радиальная скорость и v_τ - тангенсальная скорость (fig. 4.2). Радиальная скорость - это скорость, с которой катер удаляется от полюса, $v_r = \frac{dr}{dt}$. Нам нужно, чтобы эта скорость была равна скорости лодки, поэтому полагаем $\frac{dr}{dt} = v$ Тангенциальная скорость – это линейная скорость вращения катера относительно полюса. Она равна произведению угловой

скорости $\frac{d\theta}{dt}$ на радиус r, $v_{ au} = \frac{d\theta}{dt}$

Figure 4.2: Разложение скорости катера на тангенциальную и радиальную составляющие

Из рисунка видно: $v_{ au}=\sqrt{(4.7v)^2)-v^2}=\sqrt{21.09}v$ (учитывая, что радиальная скорость равна v). Тогда получаем $r\frac{d\theta}{dt}=\sqrt{21.09}v$

6. Решение исходной задачи сводится к решению системы из двух дифференциальных уравнений: $\begin{cases} \frac{dr}{dt} = v \\ r\frac{d\theta}{dt} = \sqrt{21.09}v \end{cases}$ с начальными $\begin{cases} \theta_0 = 0 \\ r_0 = x_1 \end{cases}$ или $\begin{cases} \theta_0 = -\pi \\ r_0 = x_2 \end{cases}$, где $x_1 = 2.53$, а $x_2 = 3.89$.

условиями
$$egin{cases} heta_0=0 \\ r_0=x_1 \end{cases}$$
 или $egin{cases} heta_0=-\pi \\ r_0=x_2 \end{cases}$, где $x_1=2.53$, а $x_2=3.89$

Исключая из полученной системы производную по t, можно перейти к следующему уравнению: $\frac{dr}{d\theta} = \frac{r}{\sqrt{21.09}}$ Начальные условия остаются прежними. Решив это уравнение, мы получим траекторию движения катера в полярных координатах.

4.2 Код в Scilab

Решаем дифференциальное уравнение в Scilab. (fig. 4.3)

```
1 s=14.4; ...//расстояние · в · момент · первого · обнаружения · лодки
2 k=4.7; · · // · во · сколько · раз · скорость · катера · больше · скорости · лодки ·
3 fi=3*%pi/4; ·//угол · под, · которым · будет · двигаться · лодка
5 //"движение - катера"
1 function dr=f(theta,r)
   -- dr=r/(sqrt(21.09));
2
3 endfunction
9 // "Начальные - условия - 1"
10 theta0=0;
11 r0=s/k+1; //2.53
12
13 // "Начальные - условия - 2"
14 / *theta0=-%pi;
15 r0=s/(k-1); · · //3.89*/
16
17 theta=0:0.01:2*%pi; ·//Интервал · от · 0 · до · 2*П · с · шагом · 0.01
18 r=ode (r0, theta0, theta, f); ·//решение · дифф · уравнения
19
20 // "Функция - движения - лодки - браконьеров"
1 function xt=f2(t)
2 - xt=tan(fi)*t; -//таким-образом-лодка-будет-двигаться-вперед
3 endfunction
24 t=0:1:30;
25 //Построение - траектории - движения - катера - в - полярных - координатах
26 polarplot (theta, r, style=color ('blue'));
27 plot2d(t, f2(t), style=color('pink').);
28
```

Figure 4.3: Код в Scilab

Точка пересечения траекторий в первом случае - (9.5;-9.5) (fig. 4.4)(fig. 4.5)

Figure 4.4: График в первом случае

Figure 4.5: Приближение графика в первом случае

Точка пересечения траекторий во втором случае - (18.1;-18.1) (fig. 4.6)(fig. 4.7)

Figure 4.6: График во втором случае

Figure 4.7: Приближение графика во втором случае

5 Вывод

В ходе выполнения работы мы научились строить математические модели в Scilab, а также ознакомиться с задачей о погоне.

6 Библиография

1. Wikipedia: Scilab ([1]: https://ru.wikipedia.org/wiki/Scilab)