12.103 The Science and Policy of Natural Hazards

Module 3 Volcanoes

Natural phenomenon

Natural hazard

The notion of hazard requires human presence (in the wrong place)

Image courtesy of USGS.

Natural hazard

Natural catastrophe

Armero (Nevado del Ruiz) - Nov 13, 1985

23,000 fatalities; 5000 injured; \$7,700M damage

Image courtesy of USGS.

Volcanoes

introduction

Volcanoes

definition 1: a vent in the crust of the earth or another planet through which lava, rock fragments, hot vapor, and gases erupt

definition 2: a mountain formed by volcanic material

Volcanoes

MAGMA: molten rock inside the earth

LAVA: magma that erupts at the Earth's surface

PYROCLAST: all solid fragments ejected from volcanoes

TEPHRA: all pyroclasts that fall to the ground from eruption columns

Volcanic environments

Distribution of volcanoes

- active volcanoes: have erupted in the last 10,000 yr and still have the potential to erupt (~1500 active volcanoes; ~60 eruptions per year; ~20 eruptions at any given time)
- dormant volcanoes: have not erupted in the last 10,000 yr but still have the potential to erupt
- extinct volcanoes: have "no chance" of ever erupting again

Distribution of volcanoes

spreading ridge volcanism: ~75% subduction zone volcanism: ~15% intraplate volcanism: ~10%

Distribution of volcanoes

Melting rocks in the earth

This image has been removed due to copyright restrictions.

Please see "Melting rocks in the earth" in: Houghton, B., H. Rymer, J. Stix, S. McNutt, H. Sigurdsson. *Encyclopedia of Volcanoes*. San Diego, Calif. : Academic, c2000. ISBN: 9780126431407.

Melting rocks in the earth

Image courtesy of NASA.

peridotite

Melting rocks in the earth

This image has been removed due to copyright restrictions.

Please see "Melting rocks in the earth" in: Houghton, B., H. Rymer, J. Stix, S. McNutt, H. Sigurdsson. *Encyclopedia of Volcanoes*. San Diego, Calif.: Academic, c2000. ISBN: 9780126431407.

Melting at spreading ridge

Melting at spreading ridge

Image courtesy of NASA.

Melting at spreading ridge

This image has been removed due to copyright restrictions.

Please see "Melting at spreading ridge" in: Houghton, B., H. Rymer, J. Stix, S. McNutt, H. Sigurdsson. *Encyclopedia of Volcanoes*. San Diego, Calif. : Academic, c2000. ISBN: 9780126431407.

Melting at subduction zones

Melting at subduction zones

This image has been removed due to copyright restrictions.

Please see:

Houghton, B., H. Rymer, J. Stix, S. McNutt, H. Sigurdsson. *Encyclopedia of Volcanoes*. San Diego, Calif. : Academic, c2000.

ISBN: 9780126431407.

Melting at subduction zones

Intraplate magmatism

Types of volcanic eruptions

This image has been removed due to copyright restrictions.

Please see:

http://media-2.web.britannica.com/eb-media/48/4948-004-9AC9A872.jpg

Hawaiian eruption

basaltic eruption with very low viscosity magma (10-100 Pa s), comprising lava fountains and lava flows

This image has been removed due to copyright restrictions.

Please see:

http://www.firstscience.com/images/articles/self/flow.jpg

Strombolian eruption

basaltic eruption with low viscosity magma (100-1000 Pa s), comprising lava fountains and lava flows and series of explosions

Vulcanian eruption

small to moderate-sized volcanic outbursts that eject material to heights <20km and last on the order of seconds to minutes

Image courtesy of USGS.

Plinian eruption

large, explosive events that form enormous dark columns of tephra and gas high into the stratosphere (>20km)

Surtseyan eruption

violent explosions caused by rising basaltic magma that come into contact with abundant surface water (or shallow groundwater)

Image courtesy of NOAA.

Types of volcanic eruptions

This image has been removed due to copyright restrictions.

Please see:

http://media-2.web.britannica.com/eb-media/48/4948-004-9AC9A872.jpg

Volcanic intensity

Volcanoes and volcanic structures

Types of Volcanoes Volcano Type Examples Simplified Diagram Characteristics Very liquid lava; flows very Flood or Columbia River Plateau widespread; emitted from Plateau Basalt fractures Liquid lava emitted from a Larch Mountain, Mount Shield Volcano central vent; large; sometimes Sylvania, Highland Butte, has a collapse caldera Hawaiian volcanoes HITHIL Mount Tabor, Mount Explosive liquid lava; small; Zion, Chamberlain Hill, emitted from a central vent; ncreasing Viscosity ncreasing Violence Cinder Cone Pilot Butte, Lava Butte, if continued long enough, may build up a shield volcano Craters of the Moon Mount Baker, Mount More viscous lavas, much Composite or Rainier, Mount St. Helens, explosive (pyroclastic) debris; Stratovolcano large, emitted from a central Mount Hood, Mount Shasta vent Novarupta, Mount St. Very viscous lava; relatively Helens Lava Dome, small; can be explosive; Volcanic Dome commonly occurs adjacent to Mount Lassen, Shastina, craters of composite volcanoes Mono Craters Very large composite volcano Crater Lake, Newberry, collapsed after an explosive Kilauea, Long Valley, Caldera period; frequently associated Medicine Lake, with plug domes Yellowstone |

■USGS

Image courtesy of USGS.

Topinka, USGS/CVO, 1997, Modified from: Allen, 1975, Volcanoes of the Portland Area, Oregon, Ore-Bin, v.37, no.9

fissure

Image courtesy of USGS.

definition: elongate fracture or crack at the surface from which lava erupts common environments: spreading ridges and intraplate

photo: flank of Kilauea, Hawaii

Cinder cone

definition: steep, conical hill of volcanic fragments that accumulate around and

downwind from a vent

common environments: various

photo: flank of Mauna Kea, Hawaii

Shield volcano

definition: Volcanoes with broad, gentle slopes and built by the eruption of fluid basalt lava

common environments: various (esp. spreading ridges and intraplate)

photo: Mauna Loa, Hawaii Image courtesy of USGS.

Stratovolcano (composite)

definition: steep, conical volcano built by the eruption of viscous lava flows,

tephra, and pyroclastic flows

common environments: subduction zones

photo: Rainier, WA

Volcanic (lava) dome

Image courtesy of USGS. **definition:** rounded, steep-sided mounds built by very viscous magma

common environments: subduction zones

photo: Novarupta vent, Valley of Ten Thousand Smokes, Alaska

Caldera

definition: large, usually circular depression at the summit of a volcano formed when magma is withdrawn or erupted from a shallow underground magma reservoir

common environments: various

photo: Aniakchak Caldera, Alaska

Volcanic hazards

direct hazards:

- tephra and ballistic projectiles
- pyroclastic flows/surges
- lateral directed blasts
- debris avalanches
- debris flows/lahars, floods
- lava flows
- earthquakes

Volcanic hazards

indirect hazards:

- tsunami
- debris flows/lahars, floods
- air pollution
- post-eruption famine and disease
- aerosols and global atmospheric effects
- aircraft encounters with volcanic ash
- biotic extinctions (?)

Volcanoes as a hazard

Type of Hazard	No of Events	
Drought		
Earthquake	899	
Extreme temperature	240	
Famine	77	
Flood	2389	
Landslide	448	
Strom surge	18	
Tornadoes (non-US)	84	
Tornadoes (US)*	9476	
Tsunami	986	
Tropical ctyclone	1337	
Volcano	168	
Wind (other)	793	
Wild fire	269	

Figure by MIT OpenCourseWare.

Volcanoes as a hazard

Type of Hazard	Deaths	Injuries	Homeless	Largest Death Toll Event and Date	Death Toll
Avalanches, Landslides, Mud flows	60,501	8,071	3,759,329	Soviet Union, 1949	12,000
Cold wave	6,807	1,307	17,340	India, Dec 1982	400
Extra-tropical stroms	36,681	117,925	12,606,891	Northen Europe, Feb 1953	4,000
Earthquakes	1,846,119	1,147,676	8,953,296	Tangshan, China, July 1976	242,000
Fires	2,503	1,658	140,776	USA, Oct 1918	1,000
Floods	6,851,740	1,033,572	123,009,662	China, July 1931	3,700,000
Heat wave	14,732	1,364	0	India, May 1998	2,541
Tornado	7,917	27,887	575,511	Bangladesh, Apr 1989	800
Tsunami	10,754	789	-	Sanriku Japan, Mar 1933	3,000
Tropical cyclones	1,147,877	906,311	34,272,470	Bangladesh, Now 1970	300,000
Volcano	96,770	11,154	197,790	Martinique, May 1902	30,000
Total	10,052,401	3,257,714	183,533,065		

Figure by MIT OpenCourseWare.

Volcanoes as a hazard

Type	Cost
Cold wave	\$9,555,000,000
Drought	\$16,800,000,000
Earthquake	\$248,624,900,000
Flood	\$206,639,800,000
Heat wave	\$5,450,000,000
Tropical strom	\$80,077,700,000
Wild fire	\$20,212,800,000
Wind strom	\$43,890,000,000
Total	\$631,250,200,000

Figure by MIT OpenCourseWare.

MIT OpenCourseWare http://ocw.mit.edu

12.103 Science and Policy of Natural Hazards Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.