Thomas Haslwanter

An Introduction to Statistics With Python

– Errata –

February 5, 2018

Springer

Input from other formats

On p. 49, the file data.mat mentioned in 3.3.1 Matlab has been added to the folder ISP\Exercise_Solutions in the github repository.

And in the corresponding code segment, the last variable should be struct_string, not strunct_string.

Background

On p. 78, **Eq. 5.4** should be

For discrete distributions, the integral over *x* is replaced by the sum over all possible values:

$$E[X] = \sum_{i} x_i P_i. \tag{0.1}$$

where x_i represents all possible values that the measured variable can have.

Distributions of One Variable

On p. 108, the wrong figure has been inserted. Fig. 6.11 should be

Fig. 0.1 Demonstration of the Central Limit Theorem for a uniform distribution: Left) Histogram of uniformly distributed random data between 0 and 1. Center) Histogram of average over two data points.) Right) Histogram of average over 10 data points.

Tests of Means of Numerical Data

 On p. 155, the Summary: Selecting the Right Test for Comparing Groups should read

No. of Groups Compared	Independent Samples	Paired Samples
Groups of Nominal Data		
2 or more	Fisher's exact test or Chi-Square	McNemar's test
	test	
Groups of Ordinal Data		
2	Mann-Whitney U test	Wilcoxon signed rank test
3 or more	Kruskal-Wallis test	Friedman test
Groups of Continuous Data		
1	one-sample t-test or Wilcoxon	_
	signed rank sum test	
2	Student's t-test or Mann-Whitney	Paired t-test or Wilcoxon signed-
	test	rank sum test
3 or more	ANOVA or Kruskal-Wallis test	Repeated Measures ANOVA or
		Friedman test

Table 0.1 Typical tests for statistical problems, for nominal and ordinal data. Note that the tests for comparing one group to a fixed value are the same as comparing two groups with paired samples.

Hypothetical Examples

- 1 group, nominal Average calory intake. E.g. "Do our children eat more than they should?"
- 1 group, ordinal Sequence of giant-planets. E.g. "In our solar system, are giant planets further out than average in the sequence of planets?"
- 2 groups, nominal male/female, blond-hair/black-hair. E.g. "Are females more blond than males?"
- 2 groups, nominal, paired 2 labs, analysis of blood samples. E.g. "Does the blood analysis from Lab1 indicate more infections than the analysis from Lab2?"
- 2 groups, ordinal Jamaican/American, ranking 100m sprint. E.g. "Are Jamaican sprinters more successful than American sprinters?"
- 2 groups, ordinal, paired sprinters, before/after diet. E.g. "Does a chocolate diet make sprinters more successful?"
- 3 groups, ordinal single/married/divorces, ranking 100m sprint. E.g. "Does the marital status have an effect on the success of sprinters?"
- 3 groups, ordinal, paired sprinters, before/after diet. E.g. "Does a rice diet make Chinese sprinters more successful?"
- 2 groups, continuous male/female, IQ. E.g. "Are women more intelligent than men?"

- 2 groups, continuous, paired male/female, looking at diamonds. E.g. "Does looking at sports cars raise the male heart-beat more than the female?
- 3 groups, continuous Tyrolians, Viennese, Styrians; IQ. E.g. "Are Tyrolians smarter than people from other Austrian federal states?"
- 3 groups, continuous, paired Tyrolians, Viennese, Styrians; looking at mountains. E.g. "Does looking at mountains raise the heartbeat of Tyrolians more than those of other people?"
- On p. 157, The heading of the first exercise in 8.1 should be One sample t-test for the mean and Wilcoxon signed rank sum test

Tests on Categorical Data

- On p. 170, in Table 9.5, Subject 9 should be listed only once.
- On p. 171, the code line obs = [[a,b], [c, d]] is wrong. However, the ISP-Quantlet listed there is correct.