Paraphrasing via Ranking Many Candidates

Joosung Lee Kakao Enterprise, South Korea

Kakaoenterprise

Motivation

- Paraphrasing sentences can be utilized in various NLP applications.
- It is difficult to ensure that one generation method always generates the best paraphrase in various domains.
- Even a good system does not paraphrase all sentences with good quality.
- We focus on finding the best candidate from multiple candidates, rather than assuming that there is only one combination of generative models and decoding options.

Problem Setting

- 1. (P1) Ranking the various generated paraphrase candidates
 - Dataset: QQP, Medical
- Step1) Source sentence \rightarrow Paraphrased sentence
- Step2) Ranking the quality of paraphrased sentences with an automatic evaluation metric
- 2. (P2) Check the effectiveness of our approach on downstream tasks
- Dataset: Financial, Hate Speech (eng), Hate Speech (kor)
- To limit data-poor scenarios, we use randomly sampled balanced training data.
- Step1) Data augmentation for training sentences
- Step2) Comparison of model performance differences according to the presence or absence of augmented data

Approach

- Backbone
- Pre-trained translation model: M2M100
- M2M100 is a multilingual encoder-decoder model that can handle 100 languages
- Generation Framework
 - 1. (F1) Source-Encoder + Source-Decoder
 - (Ex. English) Sentence → English-encoder → English-decoder → New sentence
 - A kind of autoencoder
 - 2. (F2) Round-trip translation
 - (Ex. English&Korean) Sentence → English-encoder → Korean decoder → Korean-encoder → English-decoder
 - We used English, Korean, French, Japanese, Chinese, German, and Spanish as the language pool.
 - Decoder Options
 - (F1) Beam search with the beam size of 10 is used and the top-5 candidate sentences are generated
 - (F2) 3-beam-search is used in both the forward and backward paths, and the top-1 candidate sentence is generated
 - (Both) Do not overlap more than half of the length of the source sentence in succession with the source tokens
 - (Both) Prevented from generating repetitive 3-grams within the output sentence
- Ranking and Filtering
- 1. Overlapping filtering
 - Remove sentences with only differences in case and space
- 2. Diversity filtering
 - Score metric: Word Error Rate (WER) refers to the Levenshtein distance between the source sentence and the candidates
 - Only min(5, #num(overlap_cands)/2) sentences with a high diversity score are left
- 3. Fluency filtering
 - Score metric: PPL (perplexity) using a language model (GPT2-medium)
 - Only min(3, #num(diversity_cands)/2) sentences with a low PPL
- 4. Semantic filtering
 - Score metric: BERTScore leverages the contextual embeddings and matches words in the candidates and the source sentence by cosine similarity.
 - The candidate with the highest semantic score is chosen as the final sentence

Experiments

1. P1

- Evaluation Metrics: Use different metrics than the ranking section
- Semantic: Bleurt
- Diversity: isacrebleu (= 100-sacrebleu)
- Fluency: GPT2-small

Methods		QQP			Medical		
		Semantic	Diversity	Fluency	Semantic	Diversity	Fluency
		Bleurt	isacrebleu	PPL	Bleurt	isacrebleu	PPL
supervised	Edlp	-1.066	86.843	585.384	-	-	-
	Edlps	-0.857	83.504	597.024	-	-	-
unsuperivsed	UPSA	-0.729	65.749	392.833	-1.351	89.418	476.069
	CGMH(50)	-0.842	65.35	556.163	-1.405	88.95	818.307
	M2M100	0.036	43.539	346.17	-0.561	35.688	296.672
	Ours	0.083	69.421	171.61	-0.508	68.735	158.76
source	input sentence	0.124	0	270.781	-0.523	0	249.107
	gold reference	1	72.002	278.163	1	88.632	171.786

2 P2

- Downstream task: classification task
- Training model: BERT-base, Transformer
- Data augmentation: M2M, Ours

Methods	augmentation	Financial	Hate Speech	Hate Speech	
Wicthous	augmentation	Tillaliciai	(eng)	(kor)	
BERT-base	X	95.3	64.94	52.78	
	M2M	95.15	66.2	54.52	
	Ours	96.33	68.31	55.03	
Transformer	X	80.47	53.24	52.27	
	M2M	85.9	55.69	49.26	
	Ours	86.49	63.14	51.04	

Conclusion

- Our approach avoids the risk of relying on one model and one decoding option.
- However, our approach may suffer from speed issues for inferencing heavy models in parallel on one server.
- For real-service, it will be effective to extract candidates along with a simple model.
- In addition, our method can be used as data augmentation in data-poor environments.

