Lecture 22 – Landau theory

LAST TIME: We discussed phase transitions, in particular behavior near a critical point Systems near a critical point display <u>universality</u> in behavior

Ex: scaling laws near critical point

$$M \sim (T_C - T)^{\beta}$$
 and $\chi \sim (T - T_C)^{-\gamma}$ for a ferromagnet

This universality not only occurs for different materials

Ex: ³He, CO₂, etc. for gas-liquid transition

But also for completely different physical phenomena (provided there are some commonalities like dimensionality)

Ex: gas-liquid, paramagnet-ferromagnet, normal-superconducting phase transitions

Why does this happen? There must be something general about these systems near critical points despite their differences

TODAY: Landau theory of phase transitions (1936)

Formulation of general theory for 2nd order phase transitions (but can be extended to 1st order)

- Phenomenological, i.e. not derived from microscopic theory or first principles (in most cases)
- Mean-field theory

KEY CONCEPT: order parameter

We know that a system minimizes its Gibbs free energy G (or Helmholtz free energy F, if V is constant) at equilibrium during a phase transition – minimizes with respect to what variable(s)?

Phase transitions involve transformation from disordered (high entropy S) phase and ordered (low S) phases:

The <u>order parameter</u> ζ is a single variable that specifies the phase

In disordered phase $\xi = 0$

In ordered phase $\xi > 0$

Ex:

Disordered phase	Ordered phase	Order parameter	Description
gas	liquid	$\xi = \rho - \rho_{c}$	density*
paramagnet	ferromagnet	$\xi = M$	magnetization
normal	superfluid	$\xi = \psi ^2$	superfluid fraction

^{*} $\rho_{\rm c}$ = critical density, i.e. density at the critical point

KEY CONCEPT: Landau free energy

Landau postulated that the system has a <u>Landau free energy</u> $F_L(\xi,T)$ minimized at equilibrium with respect to the order parameter:

$$\left(\frac{\partial F_{l}}{\partial \xi}\right)_{T} = 0 \text{ at equilibrium}$$

(Note: if there is more than 1 local minimum, the global minimum determines the equilibrium state $\xi_{ea}(T)$)

We are interested in the behavior of the system near a critical point $T \approx T_C$ where we expect ζ to be small – therefore, we can expand $F_L(\xi, T \approx T_C)$ about $\zeta = 0$

For $T \approx T_C$:

$$F_{L}(\xi,T) = g_{0}(T) + g_{1}(T)\xi + \frac{1}{2}g_{2}(T)\xi^{2} + \frac{1}{3}g_{3}(T)\xi^{3} + \frac{1}{4}g_{4}(T)\xi^{4} + \cdots$$

Highest order we'll need

where the coefficients $g_i(T)$ are functions of T.

At equilibrium:

$$\left(\frac{\partial F_{L}}{\partial \xi}\right)_{T} = 0 = g_{1}(T) + g_{2}(T)\xi + g_{3}(T)\xi^{2} + g_{4}(T)\xi^{3}$$

We can simplify/refine this expression based on our knowledge of systems undergoing phase transitions:

$$F_{L}(\xi,T) = g_{0}(T) + \frac{1}{2}g_{2}(T)\xi^{2} + \frac{1}{4}g_{4}(T)\xi^{4}$$

Question 1: Analyze the Landau free energy and locate its minima, identifying the conditions under which they are minima

Taking the derivative of $F_i(\xi,T)$:

$$\left(\frac{\partial F_L}{\partial \xi}\right)_T = 0 = g_2(T)\xi + g_4(T)\xi^3$$

which has solutions: $\xi_0 = 0$ and $\xi_{\pm} = \pm \sqrt{\frac{-g_2(T)}{g_A(T)}}$

To determine whether they are minima, look at the second derivative:

$$\left(\frac{\partial^2 F_L}{\partial \xi^2}\right)_T = g_2(T) + 3g_4(T)\xi^2$$

$$= \begin{cases} g_2(T) & \text{for } \xi_0 \\ -2g_2(T) & \text{for } \xi_{\pm} \end{cases}$$

Therefore, ξ_0 is a minimum if $g_2(T) > 0$, ξ_\pm are minima if $g_2(T) < 0$. Note that to ensure <u>real</u> solutions, we must have $g_4(T) > 0$.

2. We expect $\xi_{eq} = 0$ to be the solution for $T \ge T_C$ and $\xi_{eq} \ne 0$ to be the solution for $T < T_C$. This means that $g_2(T) \propto (T - T_C)$ and must flip sign across the transition temperature.

As we are interested in behavior near T_C , we want to expand each coefficient $g_i(T)$ about $T = T_C$:

$$g_i(T) = g_i(T_C) + g_i'(T - T_C) + \cdots$$

The argument above means that $g_2(T_c) = 0$ and

$$g_2(T) = g_2'(T - T_C) \equiv \alpha(T - T_C)$$

We cannot make similar statements for $g_0(T)$ or $g_4(T)$.

So, to lowest non-vanishing order in $T - T_C$ and ξ :

$$F_L(\xi,T) = g_0(T) + \frac{1}{2}\alpha(T - T_C)\xi^2 + \frac{1}{4}g_4\xi^4$$

with $g_{4} > 0$

Let's plot the Landau free energy vs. ξ :

For $T < T_C$ the equilibrium solutions are:

$$\xi_{\pm} = \pm \sqrt{\frac{-g_2(T)}{g_4(T)}} = \pm \sqrt{\frac{\alpha(T_C - T)}{g_4}}$$
$$\sim (T_C - T)^{\beta} \quad \text{with } \beta = \frac{1}{2}$$

We get the same scaling law and critical exponent as in Lect. 21

Now let's plot the Landau free energy vs. *T* at the equilibrium order parameter:

$$F_{L}(T) = \begin{cases} g_{0}(T) & \text{for } T \ge T_{c} \\ g_{0}(T) - \frac{\alpha^{2} (T_{c} - T)^{2}}{4g_{A}} & \text{for } T < T_{c} \end{cases}$$

The system adopts the minimum free energy $F_L(T)$.

This matches the behavior of a ferromagnet at B = 0, also gas-liquid phase transition near its critical point.

Landau's postulate is that <u>all 2nd order phase transitions</u> will have this form of free energy $F_L(\xi,T)$ sufficiently close to the critical temperature – leads to universal behavior, scaling laws with universal critical exponents $(\alpha, \beta, \gamma, \delta, \eta, \text{ and } v)$.

In a ferromagnet, we had a magnetic field *B*. How do we incorporate this in Landau theory? Simple, add an alignment energy –*MB*:

$$F_L(\xi,T) = g_0(T) + \frac{1}{2}\alpha(T - T_c)\xi^2 + \frac{1}{4}g_4\xi^4 - H\xi$$

H is a generalized external force, = B for a magnetic system, = p (pressure) for a gas or liquid

Question 2: Replot the Landau free energy vs. order parameter for H > 0 and $T > T_C$, $T = T_C$, and $T < T_C$, and highlight where the equilibria are.

Notice the unstable state $T < T_C$, matching what we observed in Lect. 21.

Equilibrium ξ is:

$$\left(\frac{\partial F_L}{\partial \xi}\right)_T = 0 = \alpha (T - T_C)\xi + g_4 \xi^3 - H$$

To lowest order (ignoring the ξ^3 term): $\xi = \frac{H}{\alpha(T - T_c)}$

$$\chi = \left(\frac{\partial \xi}{\partial H}\right)_{H=0} \sim \left(T - T_c\right)^{-\gamma} \text{ with } \gamma = 1,$$

as in Lect. 21.

Summary of Landau theory

- Landau theory is phenomenological, but in some cases can be connected directly to microscopic theory (e.g. for ferromagnet-paramagnet, gas-liquid transitions)
- It gets a lot of things qualitatively right. However, because it is a mean field theory, the critical exponents it predicts don't match experiments exactly
- More sophisticated field theoretical techniques are required to get better agreement with experiments

KEY CONCEPT: Extension to 1st order phase transitions (Note: this formalism is different than that used in K & K)

Above we excluded odd powers of ξ . What if we put some back in (assuming H = 0)?

$$F_{L}(\xi,T) = g_{0}(T) + \frac{1}{2}\alpha(T - T_{0})\xi^{2} + \frac{1}{3}g_{3}\xi^{3} + \frac{1}{4}g_{4}\xi^{4}$$

The extrema are found from

$$\left(\frac{\partial F_{L}}{\partial \xi}\right)_{T} = 0 = \alpha (T - T_{0})\xi + g_{3}\xi^{2} + g_{4}\xi^{3}$$
$$= \xi \left(\alpha (T - T_{0}) + g_{3}\xi + g_{4}\xi^{2}\right)$$

which has solutions: $\xi_0=0$ and $\xi_\pm=\frac{-g_3\pm\sqrt{g_3^2-4g_4\alpha(T-T_0)}}{2g_4}$

The latter solutions are real if $g_3^2 - 4g_4\alpha(T - T_0) \ge 0$, i.e. if temperature $T < T_1 \equiv T_0 + \frac{g_3^2}{4g_4\alpha}$

Plotting this function at different temperatures:

Question 3: Plot the order parameter vs. T across the phase transition

 $T > T_1$ the only minimum is at $\xi_0 = 0$

 $T_2 < T < T_1$ there is a second minimum at ξ_+ but this is <u>not a global minimum</u>, so $\xi_0 = 0$ is the equilibrium

 $T < T_2$ the minimum at ξ_+ becomes a <u>global</u> <u>minimum</u> and the equilibrium, ξ jumps discontinuously at T_2 – first order phase transition!

