Archivos CSV y el formato JSON ¶

eden proceder de disti

En Python y en cualquier otro lenguaje, los datos de entrada pueden proceder de distintas fuentes: lo más sencillo es introducir datos desde la consola, también es posible hacer que el programa los descargue de una página web de Internet, o que extraiga la información contenida en un archivo almacenado en el disco.

Este último caso es muy frecuente. Un archivo puede venir en texto plano, o codificado en un formato especial, como es el caso de los archivos csv o los archivos json. En esta pequeña sesión atendemos a estos dos casos.

Archivos CSV

He aquí un fragmento de un archivo csv , abierto con el portapapeles y con excell, respectivamente:

El manejo de archivos csv es sencillo en Python. Como referencia básica, puede verse la siguiente, entre otras muchas:

https://docs.python.org/3/library/csv.html

El formato csv (Comma Separated Values) es el más usado para almacenar tablas de datos en archivos de disco.

```
In [1]: | import csv
               csvFile = csv.reader(open("nombres_por_edad_media.csv", "r"))
               for row in csvFile:
                    print(row)
               ['Orden', 'Nombre', 'Frecuencia', 'Edad media']
['1', 'MARIA CARMEN', '656.276', '57']
               ['2', 'MARIA', '606.048', '48', '6']
               ['3', 'CARMEN', '391.563', '60', '4']
               ['4', 'JOSEFA', '276.682', '68']
               ['5', 'ANA MARIA', '273.319', '51', '2']
               ['6', 'ISABEL', '266.967', '57', '4']
               ['7', 'MARIA PILAR', '263.141', '57']
['8', 'MARIA DOLORES', '259.216', '56', '6']
               ['9', 'LAURA', '256.381', '28', '4']
               ['10', 'MARIA TERESA', '251.492', '57', '1']
               ['11', 'ANA', '250.124', '43', '9']
               ['12', 'CRISTINA', '228.428', '33', '7']
['13', 'MARIA ANGELES', '226.047', '55', '4']
               ['14', 'MARTA', '225.323', '29', '3']
               ['15', 'FRANCISCA', '213.820', '64', '9']
['16', 'ANTONIA', '207.597', '64', '7']
['17', 'MARIA ISABEL', '204.354', '52', '8']
               ['18', 'MARIA JOSE', '203.283', '46', '1']
In [2]:
          ₩ # De otro modo:
               with open('nombres_por_edad_media.csv', 'r') as csvFile:
                    reader = csv.reader(csvFile)
                    for row in reader:
                         print(row)
               ['Orden', 'Nombre', 'Frecuencia', 'Edad media']
               ['1', 'MARIA CARMEN', '656.276', '57']
               ['2', 'MARIA', '606.048', '48', '6']
               ['3', 'CARMEN', '391.563', '60', '4']
['4', 'JOSEFA', '276.682', '68']
               ['5', 'ANA MARIA', '273.319', '51', '2']
               ['6', 'ISABEL', '266.967', '57', '4']
               ['7', 'MARIA PILAR', '263.141', '57']
               ['8', 'MARIA DOLORES', '259.216', '56', '6']
               ['9', 'LAURA', '256.381', '28', '4']
['10', 'MARIA TERESA', '251.492', '57', '1']
               ['11', 'ANA', '250.124', '43', '9']
['12', 'CRISTINA', '228.428', '33', '7']
               ['13', 'MARIA ANGÉLES', '226.047', '55', '4']
['14', 'MARTA', '225.323', '29', '3']
               ['15', 'FRANCISCA', '213.820', '64', '9']
               ['16', 'ANTONIA', '207.597', '64', '7']
                 '17', 'MARIA ISABEL', '204.354', '52', '8']
               ['18', 'MARIA JOSE', '203.283', '46', '1']
```

```
In [3]:
            # Y también, leyendo la cabecera por separado,
            # seleccionando algunas columnas y realizando una conversión, ya de paso
            with open('nombres_por_edad_media.csv', 'r') as csvFile:
                reader = csv.reader(csvFile)
                cab = next(reader)
                print(cab[1], cab[3])
                for row in reader:
                    nombre, edad_media = row[1], row[3]
                    print(nombre, int(edad_media))
            Nombre Edad media
            MARIA CARMEN 57
            MARIA 48
            CARMEN 60
            JOSEFA 68
            ANA MARIA 51
            ISABEL 57
            MARIA PILAR 57
            MARIA DOLORES 56
            LAURA 28
            MARIA TERESA 57
            ANA 43
            CRISTINA 33
            MARIA ANGELES 55
            MARTA 29
            FRANCISCA 64
            ANTONIA 64
            MARIA ISABEL 52
            MARIA JOSE 46
```

Aunque el separador natural en csv es la coma, es posible usar otro, como puede ser el punto y coma:

Las instrucciones anteriores deberían especificar el parámetro opcional así: delimiter=';', cuando el separador sea distinto de la coma:

Hecho

Transformación de datos

Los datos leídos de un csv son siempre cadenas de caracteres, pero se pueden convertir en los formatos necesarios con las funciones (y librerías) adecuadas:

```
print(int("7"),int("123.000".replace('.','')))
           # Reales:
           print(float("4.5"), float("4,5".replace(",", ".")))
           print(float("123.000,75".replace('.','').replace(',','.')))
           # Fechas:
           from datetime import datetime
           fecha_str = '10-24-2019'
           fecha_objeto = datetime.strptime(fecha_str, '%m-%d-%Y').date()
           print(type(fecha objeto))
           print(fecha objeto)
           7 123000
           4.5 4.5
           123000.75
           <class 'datetime.date'>
           2019-10-24
```

(Las transformaciones de datos deben realizarse únicamente con los datos sin la cabecera.)

El formato JSON

El formato JSON es una notación sencilla para especificar datos y facilitar su intercambio. En la wikipedia puede leerse que se trata de un subconjunto de la notación literal de objetos de JavaScript, aunque, debido a su amplia adopción como alternativa a XML, actualmente se considera un formato independiente del lenguaje.

La idea subyacente a este formato es explotar la codificación mediante el emparejamiento de clave-valor, y la utilización de listas. Los siguientes ejemplos se han tomado de la direccióin siguiente:

Ejemplo 2:

```
{
                "quiz": {
                    "sport": {
                        "q1": {
                            "question": "Which one is correct team name in NB
            Α?",
                            "options": [
                                 "New York Bulls",
                                "Los Angeles Kings",
                                "Golden State Warriros",
                                 "Huston Rocket"
                            "answer": "Huston Rocket"
                        }
                    },
                    "maths": {
                        "n1"· {
In [6]: ▶ import json
            with open("example_1.json") as archivo:
                datos = json.loads(archivo.read())
            print(datos)
            print(type(datos))
            {'fruit': 'Apple', 'size': 'Large', 'color': 'Red'}
            <class 'dict'>
In [7]:
         # Impresión con sangrado:
            print(json.dumps(datos, indent=4))
            {
                "fruit": "Apple",
                "size": "Large",
                "color": "Red"
            }
In [8]:
         # Obsérvese que el archivo `example_1.json`
            # no contiene un diccionario,
            # sino únicamente cadenas de caracteres:
            with open("example_1.json") as archivo:
                for row in archivo:
                    print(row,end="")
            {
                "fruit": "Apple",
                "size": "Large",
                "color": "Red"
            }
```

```
In [9]: N | with open("example_2.json") as archivo:
                  datos = json.loads(archivo.read())
              datos
     Out[9]: {'quiz': {'sport': {'q1': {'question': 'Which one is correct team name
              in NBA?',
                  'options': ['New York Bulls',
                   'Los Angeles Kings',
                   'Golden State Warriros',
                   'Huston Rocket'],
                  'answer': 'Huston Rocket'}},
                'maths': {'q1': {'question': '5 + 7 = ?',
                  'options': ['10', '11', '12', '13'],
                  'answer': '12'},
                 'q2': {'question': '12 - 8 = ?', 'options': ['1', '2', '3', '4'],
                  'answer': '4'}}}
         # Escritura:
In [10]:
              with open("example_3.json", "w") as archivo:
                  archivo.write(json.dumps(datos))
              # Obviamente, los archivos example_2.json y example_3.json son iguales
          Se puede cargar un archivo json en un diccionario...
In [11]:
           | import json
              f = open("estaciones.json")
              estaciones_dicc = json.load(f)
              estaciones_dicc
    Out[11]: [{'latitud': '431825N']
```

```
'provincia': 'A CORUÑA',
 'altitud': '98',
 'indicativo': '1387E',
 'nombre': 'A CORUÑA AEROPUERTO',
 'indsinop': '08002',
 'longitud': '082219W'},
{'latitud': '432157N',
 'provincia': 'A CORUÑA',
 'altitud': '58',
 'indicativo': '1387',
 'nombre': 'A CORUÑA',
 'indsinop': '08001',
 'longitud': '082517W'},
{'latitud': '430938N',
 'provincia': 'A CORUÑA',
 'altitud': '50',
 'indicativo': '1393',
 'nombre': 'CABO VILAN',
```

Y luego pasar el diccionario a una tabla de pandas:

Out[12]:

	latitud	provincia	altitud	indicativo	nombre	indsinop	longitud
0	431825N	A CORUÑA	98	1387E	A CORUÑA AEROPUERTO	08002	082219W
1	432157N	A CORUÑA	58	1387	A CORUÑA	08001	082517W
2	430938N	A CORUÑA	50	1393	CABO VILAN	08006	091239W
3	434710N	A CORUÑA	80	1351	ESTACA DE BARES	08004	074105W
4	425529N	A CORUÑA	230	1400	FISTERRA	08040	091729W
286	411952N	ZARAGOZA	600	9394X	CALATAYUD	08156	013843W
287	410652N	ZARAGOZA	779	9390	DAROCA	08157	012436W
288	422927N	ZARAGOZA	626	9244X	SOS DEL REY CATÓLICO	08090	011249W
289	413938N	ZARAGOZA	249	9434	ZARAGOZA AEROPUERTO	08160	010015W
290	413715N	ZARAGOZA	254	9434P	ZARAGOZA, VALDESPARTERA	08159	005606W

291 rows × 7 columns

In [13]: ▶ estaciones.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 291 entries, 0 to 290
Data columns (total 7 columns):

	(
#	Column	Non-Null Count	Dtype
0	latitud	291 non-null	object
1	provincia	291 non-null	object
2	altitud	291 non-null	object
3	indicativo	291 non-null	object
4	nombre	291 non-null	object
5	indsinop	291 non-null	object
6	longitud	291 non-null	object

dtypes: object(7)
memory usage: 16.0+ KB

Pero también se puede leer directamente un archivo json en una tabla de pandas:

Out[14]:

	latitud	provincia	altitud	indicativo	nombre	indsinop	longitud
0	431825N	A CORUÑA	98	1387E	A CORUÑA AEROPUERTO	08002	082219W
1	432157N	A CORUÑA	58	1387	A CORUÑA	08001	082517W
2	430938N	A CORUÑA	50	1393	CABO VILAN	08006	091239W
3	434710N	A CORUÑA	80	1351	ESTACA DE BARES	08004	074105W
4	425529N	A CORUÑA	230	1400	FISTERRA	08040	091729W
286	411952N	ZARAGOZA	600	9394X	CALATAYUD	08156	013843W
287	410652N	ZARAGOZA	779	9390	DAROCA	08157	012436W
288	422927N	ZARAGOZA	626	9244X	SOS DEL REY CATÓLICO	08090	011249W
289	413938N	ZARAGOZA	249	9434	ZARAGOZA AEROPUERTO	08160	010015W
290	413715N	ZARAGOZA	254	9434P	ZARAGOZA, VALDESPARTERA	08159	005606W

291 rows × 7 columns