Fitting the directed S¹ model to real networks

- Inputs from a real network:
 - 1. joint degree distribution $P(k^{\text{in}}, k^{\text{out}})$
 - 2. reciprocity r
- 3. density of triangles
- Assuming uniform angular positions for nodes,
- 1. infer $(\kappa^{\rm in},\kappa^{\rm out})$ to replicate $P(k^{\rm in},k^{\rm out})$ on average (analytical)
 - 2. set ν to reproduce r (analytical)
 - 3. adjust β to recreate the density of triangles (semi-analytical)
- Generate a sample of random directed networks:
 - 1. assign angular positions randomly
 - 2. draw directed links using the probabilities defined by the framework for deliberate reciprocity

Inference algorithm adapted from New J. Phys. 21, 123033 (2019).

Fitting the directed S¹ model to real networks

Inputs from a real network:

- 1. joint degree distribution $P(k^{\text{in}}, k^{\text{out}})$
- 2. reciprocity *r*
- 3. density of triangles

Assuming uniform angular positions for nodes,

- 1. infer $(\kappa^{\text{in}}, \kappa^{\text{out}})$ to replicate $P(k^{\text{in}}, k^{\text{out}})$ on average (analytical)
- 2. set ν to reproduce r (analytical)
- 3. adjust β to recreate the density of triangles (semi-analytical)

Generate a sample of random directed networks:

- 1. assign angular positions randomly
- 2. draw directed links using the probabilities defined by the framework for deliberate reciprocity

Realistic clustering patterns in directed geometric networks

