Lecture 19: Hypothesis testing framework

Ciaran Evans

General framework for hypothesis tests

Definition: Let $\theta \in \mathbb{R}^p$ be some parameter of interest. A **hypothesis** is a statement about θ . The goal of a hypothesis test is to compare two competing hypotheses:

Ho:
$$\theta \in \Theta_0$$
 $H_A: \theta \in \Theta_1$

If $\Theta_0 = \{0,0\}$, H_0 is a simple hypothesis otherwise. Θ_0 is a composite hypothesis (livewise for Θ_1)

Ex: $H_0: \begin{bmatrix}33\\3\end{bmatrix} = \begin{bmatrix}0\\0\end{bmatrix}$
 $H_A: \begin{bmatrix}83\\3\\3u\end{bmatrix} \neq \begin{bmatrix}0\\0\end{bmatrix}$

simple null alternative

Outcomes

$$H_0: \theta \in \Theta_0 \qquad H_A: \theta \in \Theta_1$$

The test either rejects H_0 or fails to reject H_0 . Possible outcomes:

		Tuta Ho is the	Ho is false
Decision	Fail ter [reject	/	type I cres (fake regative)
	reject	type I error (false positive)	/

Goal

	H_0 is true	H_0 is false
fail to reject reject	correct decision type I error	type II error correct decision

Goal: Minimize type II error rate, subject to control of type I error rate

Constructing a test

$$H_0: \theta \in \Theta_0$$
 $H_A: \theta \in \Theta_1$
Gosene date x_1, \dots, x_n
 O Calculate a test statistic $T_n = T(x_1, \dots, x_n)$

- (2) Choose = rejection region $R = \{(x_1,...,x_n): \text{ reject tho}\}$
- 3) Reject to if (X,,..., X,) ER

Constructing a test

Given observed data $X_1, ..., X_n$:

- 1. Calculate a test statistic $T_n = T(X_1, ..., X_n)$
- 2. Choose a rejection region $\mathcal{R} = \{(x_1, ..., x_n) : \text{ reject } H_0\}$
- 3. Reject H_0 if $(X_1,...,X_n) \in \mathcal{R}$

Example:
$$X_1, ..., X_n$$
 iid with mean μ and variance σ^2 rejection egian $T(X_1, ..., X_n) = \frac{\overline{X_n - M_0}}{\sigma / \overline{x_n}} > \frac{\overline{X_n - M_0}}{\sqrt{2}}$ by desired type T

Prob. of a type T error T and T are T are T and T are T are T are T and T are T and T are T and T are T are

Power function

Suppose we reject H_0 when $(X_1,...,X_n) \in R$. The **power function** $\beta(\theta)$ is

$$\beta(\theta) = P_{\theta}((X_{1},...,X_{n}) \in R)$$
function of θ

probability of rejecting the if

the personneter is θ

(boal: Went $\beta(\theta)$ Small when $\theta \in \mathcal{H}_{\theta}$

and $\beta(\theta)$ large when $\theta \in \mathcal{H}_{\theta}$

Fernally: θ

Fix $\alpha \in [0,1]$
 θ

The personneter is θ

and $\beta(\theta)$ large when $\theta \in \mathcal{H}_{\theta}$

Subject to $\beta(\theta) \vdash \alpha$ for $\theta \in \mathcal{H}_{\theta}$

subject to $\beta(\theta) \vdash \alpha$ for $\theta \in \mathcal{H}_{\theta}$

If sup $\beta(\theta) = \alpha$, our test is lead α
 $\theta \in \mathcal{H}_{\theta}$

If $\beta(\theta) \vdash \alpha$, our test is lead α

Example

 $X_1,...,X_n$ iid from a population with mean μ and variance σ^2 .

 $H_0: \mu = \mu_0 \qquad H_A: \mu \neq \mu_0$

$$\beta(\mu) = P_{\mu} \left(\left| \frac{\bar{x}_{n} - \mu_{0}}{\sigma_{N} \bar{x}_{n}} \right| > \bar{z}_{\alpha} \right)$$

$$= P_{\mu} \left(\frac{\bar{x}_{n} - \mu_{0}}{\sigma_{N} \bar{x}_{n}} > \bar{z}_{\alpha} \right) + P_{\mu} \left(\frac{\bar{x}_{n} - \mu_{0}}{\sigma_{N} \bar{x}_{n}} \right) - \bar{z}_{\alpha}$$

$$P_{\mu} \left(\frac{\bar{x}_{n} - \mu_{0}}{\sigma_{N} \bar{x}_{n}} > \bar{z}_{\alpha} \right)$$

$$\Rightarrow P_{\mu} \left(\frac{\bar{x}_{n} - \mu_{0}}{\sigma_{N} \bar{x}_{n}} > \bar{z}_{\alpha} \right)$$

$$\approx N(o, 1) \quad ((LT)$$

$$\Rightarrow \beta(\mu) \approx 1 - \Phi \left(\bar{z}_{\alpha} - \left(\frac{\mu_{0} - \mu_{0}}{\sigma_{N} \bar{x}_{n}} \right) \right) + \Phi \left(-\bar{z}_{\alpha} - \left(\frac{\mu_{0} - \mu_{0}}{\sigma_{N} \bar{x}_{n}} \right) \right)$$

Example

N(O,1)

 $X_1,...,X_n$ iid from a population with mean μ and variance σ^2 .

$$H_0: \mu = \mu_0 \qquad H_A: \mu \neq \mu_0$$

$$\beta(\omega) \approx 1 - \Phi\left(Z_{\frac{\alpha}{2}} - \left(\frac{\omega - \omega_0}{\sigma / \sqrt{n}}\right)\right) + \Phi\left(-Z_{\frac{\alpha}{2}} - \left(\frac{\omega - \omega_0}{\sigma / \sqrt{n}}\right)\right)$$
For any n : if $\mu = \mu_0$ (Ho is the)
$$\beta(\omega) \approx 1 - \Phi\left(Z_{\frac{\alpha}{2}}\right) + \Phi\left(-Z_{\frac{\alpha}{2}}\right) = \infty$$

$$Fix n: cs |\mu - \mu_0| \to \infty \quad , \beta(\omega) \to 1$$

$$Fix \mu \neq \mu_0: cs n \to \infty \quad , \beta(\omega) \to 1$$

Rejecting H_0

$$H_0: \theta \in \Theta_0 \qquad H_A: \theta \in \Theta_1$$

Question: A hypothesis test rejects H_0 if $(X_1, ..., X_n)$ is in the rejection region \mathcal{R} . Are there any issues if we only use a rejection region to test hypotheses?

p-values

$$H_0: \theta \in \Theta_0 \qquad H_A: \theta \in \Theta_1$$

Given α , we construct a rejection region \mathcal{R} and reject H_0 when $(X_1,...,X_n) \in \mathcal{R}$. Let $(x_1,...,x_n)$ be an observed set of data.

Definition: The **p-value** for the observed data $(x_1, ..., x_n)$ is the smallest α for which we reject H_0 .

p-values

Suppose we have a test which rejects H_0 when $T(X_1,...,X_n)>c_{\alpha}$, where c_{α} is chosen so that

$$\sup_{\theta \in \Theta_0} \beta(\theta) = \sup_{\theta \in \Theta_0} P_{\theta}(T(X_1, ..., X_n) > c_{\alpha}) = \alpha$$

Let $x_1, ..., x_n$ be a set of observed data.

Theorem: The p-value for the set of observed data $x_1, ..., x_n$ is

$$p = \sup_{\theta \in \Theta_0} P_{\theta}(T(X_1, ..., X_n)) > T(x_1, ..., x_n))$$
observed test statistic

orobability of observed test statistic

or more extreme, under the

Proof of theorem