Определение типа поверхности второго порядка

Правила пользования

- Пользователь должен ввести коэффициенты поверхности в пространстве.
- Значения коэффициентов должны быть целыми числами или числами с плавающие точкой (при вводе чисел с плавающей точкой использовать вместо точки запятую).
- После ввода коэффициентов при нажатии на кнопку «Выполнить» калькулятор определяет вид поверхности.

Теоретическая часть

$$p(x) = a_{11}\,x_1^2 + a_{22}\,x_2^2 + a_{33}\,x_3^2 + 2\,a_{12}\,x_1\,x_2 + 2\,a_{13}\,x_1\,x_3 + \\ + \,2\,a_{23}\,x_2\,x_3 + 2\,a_1\,x_1 + 2\,a_2\,x_2 + 2\,a_3\,x_3 + a_0$$

Классификация ПВП происходит по инвариантам и соответствующий таблице Пример:

$$\tau_1 = a_{11} + a_{22} + a_{33}, \quad \tau_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{13} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{33} \end{vmatrix}, \\ \delta = \det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{vmatrix}, \quad \Delta = \det P = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{1} \\ a_{12} & a_{22} & a_{23} & a_{2} \\ a_{13} & a_{23} & a_{33} & a_{3} \\ a_{1} & a_{2} & a_{3} & a_{0} \end{vmatrix}, \quad \kappa_2 = \begin{vmatrix} a_{11} & a_{1} \\ a_{1} & a_{0} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{2} \\ a_{2} & a_{0} \end{vmatrix} + \begin{vmatrix} a_{33} & a_{3} \\ a_{2} & a_{0} \end{vmatrix}, \\ \kappa_2 = \begin{vmatrix} a_{11} & a_{12} & a_{1} \\ a_{12} & a_{22} & a_{2} \\ a_{13} & a_{23} & a_{33} & a_{3} \end{vmatrix}, \\ \kappa_3 = \begin{vmatrix} a_{11} & a_{12} & a_{1} \\ a_{12} & a_{22} & a_{2} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} & a_{1} \\ a_{13} & a_{33} & a_{3} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{23} & a_{2} \\ a_{23} & a_{33} & a_{3} \end{vmatrix},$$

	Признаки вида						Название поверхности
Центральные поверхности	δ ≠ 0	Эллипти- ческий тип	$\begin{cases} \tau_2 > 0, \\ \tau_1 \cdot \delta > 0 \end{cases}$ \updownarrow $\lambda_1, \ \lambda_2, \ \lambda_3$ одного знака		Δ < 0		Эллипсоид
					Δ > 0		Мнимый эллипсоид
		Эл			Δ = 0		Мнимый конус
		Гиперболи- ческий тип	$\begin{bmatrix} \tau_2 \leq 0, \\ \tau_1 \cdot \delta \leq 0 \\ & \\ \lambda_1, \ \lambda_2, \ \lambda_3 \\ \text{разных знаков} \end{bmatrix}$		Δ > 0		Однополостный гиперболоид
					Δ < 0		Двуполостный гиперболоид
					Δ = 0		Конус
Нецентральные поверхности	$\delta = 0$	Параболический тип	Δ < 0				Эллиптический параболоид
			Δ > 0				Гиперболический параболоид
			Δ = 0	τ ₂ > 0	$\tau_1 \cdot \kappa_2 < 0$		Эллиптический цилиндр
					$\tau_1 \cdot \kappa_2 > 0$		Мнимый эллиптический цилиндр
					$\kappa_2 = 0$		Пара мнимых пересекающихся плоскостей
				τ ₂ < 0	$\kappa_2 \neq 0$		Гиперболический цилиндр
					$\kappa_2 = 0$		Пара пересекающихся плоскостей
				$\tau_2 = 0$	$\kappa_2 \neq 0$		Параболический цилиндр
					$\kappa_2 = 0$	$\kappa_1 < 0$	Пара параллельных плоскостей
						$\kappa_1 > 0$	Пара мнимых параллельных плоскостей
						$\kappa_1 = 0$	Пара совпадающих плоскостей