l) Can we conclude that $D_d f(a) \ge 0$ for each $d \in \mathcal{D}(a)$?

Answer. Yes. As $D(a) = \mathcal{D}(a)$.

m) So $Z(a) = \emptyset$ and a = (0, 1, 1/3) is the only KT point.

(Second (algebraic) way.) Recall the problem

a) Suppose that a feasible point a is a KT point. So there exist $\lambda_i \geq 0, w \in \mathbb{R}$ with $\lambda_i g_i(a) = 0$ such that

$$\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = \lambda_1 \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} + \lambda_2 \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix} + \lambda_3 \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} + \lambda_4 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \lambda_5 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \lambda_6 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + w \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}.$$

b) Must $\lambda_2 > 0$? What do we get from here? $\lambda_2 7,0$ $\lambda_2 = 0$ and coordinate we have $\omega \downarrow 0$. So $\lambda_1 \uparrow 0$, $\lambda_6 \uparrow 0$ $\lambda_6 \uparrow 0$ $\lambda_6 \uparrow 0$ $\lambda_7 \circ 0$ $\lambda_8 \circ 0$ λ_8

[Why? If $\lambda_2 = 0$, then $w \leq -\frac{1}{2}$. And so $\lambda_4 > 0$ and $\lambda_6 > 0$. As $\lambda_4 g_4 = 0$ and $\lambda_6 g_6 = 0$, we see that the point a = (0, *, 0). But as a lies on the plane, we must have a = (0, 1.5, 0). But then $a \notin T$.

As $\lambda_2 g_2(a) = 0$, we get that a(2) = 1. Also $\lambda_5 = 0$.

c) Can $\lambda_3 > 0$? What do get from here?

Answer. Suppose that $\lambda_3 > 0$. As $\lambda_3 g_3(a) = 0$, we get a(3) = 1. Hence $a = (\geq 0, 1, 1) \notin T$. We get $\lambda_3 = 0$.

33 Lecture 33

KT theory for lpp

[33.1]**Example** Consider minimizing $f(x) = x_1 + x_2$ on our favorite set $T = \{(x_1, x_2) \mid 0 \le x_1, x_2 \le 1\}$. What are the KT points?

Answer. a) Write the constraints properly first:

Constraints: $g_1(x) \equiv 1 - x_1 \ge 0$, $g_2(x) \equiv 1 - x_2 \ge 0$, $g_3(x) = x_1 \ge 0$ and $g_4(x) = x_2 \ge 0$.

b) Write the expression $\nabla L(a,\lambda) = 0$ and try to identify the points a at which the equality holds, while satisfying the two other conditions of KT points. For that, start like the following and argue.

Let a be a kt pt. or
$$\pm \lambda 70$$
 s.t $\nabla L(a,\lambda) = 0$, at and $\lambda \in \mathcal{A}$ $\lambda \in \mathcal{A$

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \lambda^{1} \begin{bmatrix} 0 \\ -1 \end{bmatrix} + y^{2} \begin{bmatrix} -1 \\ 0 \end{bmatrix} + y^{3} \begin{bmatrix} 0 \\ 1 \end{bmatrix} + y^{4} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

so we must have 7370, xy70. St 2=0, 2=0.

Take
$$\lambda = (0,0,1,1)$$
. Then $\alpha = (0,0) \in T$, $\nabla L(\alpha, \lambda) = 0$ and Let a be a KT point. Then $a \in T$ and $\exists \lambda \geq 0$ λ : So $\alpha = (0,0)$ is the only let A point.

$$\nabla f(a) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \lambda_1 \begin{bmatrix} -1 \\ 0 \end{bmatrix} + \lambda_2 \begin{bmatrix} 0 \\ -1 \end{bmatrix} + \lambda_3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \lambda_4 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 and $\lambda_i g_i(a) = 0, \ i = 1, 2, 3, 4.$

As entries of $\nabla f(a)$ are positive, we see that λ_3 and λ_4 must be positive. This forces, the point to be a=(0,0).

Take $\lambda = (0,0,1,1)$. Then a is a feasible point, $\nabla L(a,\lambda) = 0$ and $\lambda_i g_i(a) = 0$ for each i. So it is the only KT point.

Example Consider maximizing $f(x) = x_1 + x_2$ on our favorite set $T = \{(x_1, x_2) \mid 0 \le x_1, x_2 \le 1\}$. [33.2]What are the KT points?

Answer. a) Constraints: $g_1(x) \equiv 1 - x_1 \ge 0$, $g_2(x) \equiv 1 - x_2 \ge 0$, $g_3(x) = x_1 \ge 0$ and $g_4(x) = x_2 \ge 0$.

b) First we change the problem to a minimization problem. So $h(x) = -x_1 - x_2$.

Take
$$\lambda = (1)^{1}, 0, 0$$
.

Take $\lambda = (1)^{1}, 0, 0$.

Then $\alpha \in T$, $\Delta = (1)^{1}$ is the only let point.

Let a be a KT point. Then $a \in T$ and $\exists \lambda \geq 0$ such that

$$\nabla h(a) = \begin{bmatrix} -1 \\ -1 \end{bmatrix} = \lambda_1 \begin{bmatrix} -1 \\ 0 \end{bmatrix} + \lambda_2 \begin{bmatrix} 0 \\ -1 \end{bmatrix} + \lambda_3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \lambda_4 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad \text{and} \quad \lambda_i g_i(a) = 0, \ i = 1, 2, 3, 4.$$

As entries of $\nabla h(a)$ are negative, we see that λ_1 and λ_2 must be positive. In fact they must be 1 each. This forces, the point to be a = (1, 1).

Take $\lambda = (1, 1, 0, 0)$. Then a is a feasible point, $\nabla L(a, \lambda) = 0$ and $\lambda_i g_i(a) = 0$ for each i. So it is the only KT point.

[33.3] Example Consider minimizing $f(x) = x_1$ on our favorite set $T = \{(x_1, x_2) \mid 0 \le x_1, x_2 \le 1\}$. What are the KT points?

Answer. Constraints: $g_1(x) \equiv 1 - x_1 \ge 0$, $g_2(x) \equiv 1 - x_2 \ge 0$, $g_3(x) = x_1 \ge 0$ and $g_4(x) = x_2 \ge 0$.

b)
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \lambda_1 \begin{bmatrix} -1 \\ 0 \end{bmatrix} + \lambda_2 \begin{bmatrix} 0 \\ -1 \end{bmatrix} + \lambda_3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \lambda_4 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$= \lambda_3 \lambda_3 \lambda_4 = 0 \quad \text{so } \alpha = (0, 1), \quad \text{te}[0, 1].$$

$$= \lambda_3 \lambda_4 \lambda_5 = (0, 0, 1, 0). \quad \text{Men } \alpha \in \mathbb{T}, \quad \text{Tesse are } k \in \mathbb{T}, \quad \text{points}.$$
These are $k \in \mathbb{T}$ points.

Let a be a KT point. Then $a \in T$ and and $\exists \lambda \geq 0$ such that

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \lambda_1 \begin{bmatrix} -1 \\ 0 \end{bmatrix} + \lambda_2 \begin{bmatrix} 0 \\ -1 \end{bmatrix} + \lambda_3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \lambda_4 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad \text{and} \quad \lambda_i g_i(a) = 0, \ i = 1, 2, 3, 4.$$

As first entry of $\nabla f(a)$ is positive, we see that $\lambda_3 = 1$. This forces $a = (0, t), 0 \le t \le 1$.

[Unnecessary: if we take $\lambda_4 > 0$, then we have to take $\lambda_2 > 0$. This is not possible.]

Take $\lambda = (0,0,1,0)$. Then $a = (0,t), \ 0 \le t \le 1$ are feasible points with $\nabla L(a,\lambda) = 0$ and $\lambda_i g_i(a) = 0 \ \forall i$. So these are the only KT points.

In all the previous three cases, the KT points are the points of minimum. Is it true in general? Yes, see the next result.

[33.4] Theorem Let $A \in M_{m,n}(\mathbb{R})$. Consider minimizing $f(x) = c^t x$ over $T = \{x \mid Ax \geq b\}$. Let a be a KT point. Then a is a point of minimum.

Proof.

$$\begin{bmatrix}
x_1 \\
x_n
\end{bmatrix} > \begin{bmatrix}
b_1 \\
b_2
\end{bmatrix}$$

$$\begin{cases}
y_1 = a_{11}x_1 + \cdots + a_{1n}x_n - b_1 > 0 \\
y_m = a_{m1}x_1 + \cdots + a_{mn}x_n - b_m > 0
\end{cases}$$
For simplicity but y_1, \dots, y_k be active at $y_1 = a_1 + a_1 + a_2 + a_2 + a_2 + a_3 + a_4 + a_4 + a_5 + a_$

$$c^{T} = \lambda_{1} [a_{ij} - - - a_{im}] + - - - + \lambda_{K} [a_{K1} - - a_{Kn}]$$

$$Plote \qquad A = \begin{bmatrix} a_{ij} - - a_{ij} \\ - a_{K1} \end{bmatrix}$$

$$conbination of the two of A.$$

$$so \qquad f(x) = cT_{K} is finish.$$
(Not part of proof: we have to write down the constraints first.) Let $g_{i}(x) \equiv A(i, :)x - b_{i}$.

(Not part of proof: next we start like 'let a be a KT point...' and proceed to find out something about the KT points which will help to prove that such points are minimums.)

Let a be a KT point. Then $a \in T$ and $\exists \lambda \geq 0$ such that $\nabla L(a, \lambda) = 0$ and $\lambda_i g_i(a) = 0 \ \forall i$.

The expression $\nabla L(a,\lambda) = 0$ converts to

$$c = \lambda_1 \nabla g_1 + \dots + \lambda_m \nabla g_m = A^t \lambda$$
 implying that $c^t = \lambda^t A$. (13)

For simplicity, let g_i , i = 1, ..., k be the active constraints at a. That is, these are the (positively) supporting hyperplanes at a. Also, as the other g_i are inactive at a, we have $\lambda_{k+1} = \cdots = \lambda_m = 0$.

It now follows from the previous equation that $c^t = \begin{bmatrix} \lambda_1 & \cdots & \lambda_k \end{bmatrix} A_a$, that is, c^t is a nonnegative combination of the rows of A_a .

It now follows from [7.5] that $f(x) = c^t x$ is minimized at a.

[33.5] Remark The converse for the above theorem is also true. That is, for an lpp, a point of minimum is a KT point. This is so, as a point of minimum always satisfies $D_d f(a) \geq 0$, along any feasible direction $d \in \overline{D}(a)$, by FONC. But we already know that $D(a) = \mathcal{D}(a)$. So $Z(a) = \emptyset$ and so a is a KT point.

min
$$f(x) = \overline{C^{1}x}$$

An7,b

For each $d \in \overline{D}(a)$, in him $\langle A \neq A \rangle \geqslant 0$
 $\overline{D^{1}}(a) = \overline{D}(a) = 0$
 $\overline{D^{1}}(a) = \overline{D}(a) = 0$

Question Did you just see another way to solve an lpp? Yes. Just find the KT points.

Checking whether a given point is a KT point using simplex method

Checking whether a given point is a KT point can be done using simplex method, as we have to find some $\lambda_i \geq 0$ and w_i which satisfy certain equalities or inequalities.

[33.6] Example Check using simplex method, whether a = (1, .5) is a KT point of

1) atT

min $x_1^3 - 5x_2$ s.t. $g_1 \equiv x_1^2 - 2x_2 \ge 0, g_2 \equiv x_1 + x_2 \ge 0, h \equiv x_1 - 2x_2 = 0.$

2) OL(4,),w)=0

シ からにいつ

Answer. a) First find out the active constraints.

only g, is active here.

Here only g_1 is active.

- inactive of:

$$\begin{bmatrix} 3 \\ -5 \end{bmatrix} = \lambda_1 \begin{bmatrix} 2 \\ -2 \end{bmatrix} + \omega \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

$$\lambda_1 \lambda_0 \quad \omega \in \mathbb{R}$$

- b) So if a is a KT point, then $\lambda_2 = 0$. (This reduces some of our work as opposed to directly starting with $\nabla L(a, \lambda, w) = 0$ and ultimately concluding that $\lambda_2 = 0$ if a is a KT point.)
 - c) So a is a KT point iff we can find $\lambda_1 \geq 0$, $w \in \mathbb{R}$ such that

$$\begin{bmatrix} 3 \\ -5 \end{bmatrix} = \lambda_1 \begin{bmatrix} 2 \\ -2 \end{bmatrix} + w \begin{bmatrix} 1 \\ -2 \end{bmatrix}.$$

$$xy^1 + 5n = 2$$

$$-\frac{5y^1 - 5n = -2}{3y^1 + n} = 3$$

d) That is, we have to see whether the set

$$T = \left\{ (\lambda_1, w_1, w_2) \mid \begin{bmatrix} 2\lambda_1 + w_1 - w_2 = 3 \\ 2\lambda_1 + 2w_1 - 2w_2 = 5 \end{bmatrix}, \lambda_1, w_i \ge 0 \right\} \neq \emptyset.$$

$$x_{31} + \omega_{1} - 2\omega_{2} = 3$$

- e) We have already dealt with such problems. As T is bounded below, if it is nonempty, it will have a vertex. That will lead to a bfs. So we can use the same simplex method we used to find an initial bfs.
 - f) This can be achieved by the solving lpp min $y_1 + y_2$

s.t.
$$2\lambda_1 + w_1 - w_2 + y_1 = 3$$
$$2\lambda_1 + 2w_1 - 2w_2 + y_2 = 5, \ \lambda_i, w_i, y_i \ge 0.$$

$$\frac{\text{bv}}{\lambda_1} \frac{\lambda_1}{1} \frac{w_1}{0} \frac{w_2}{0} \frac{y_2}{0} \frac{\overline{b}}{0} + \frac{\text{bv}}{0} \frac{\lambda_1}{0} \frac{w_1}{0} \frac{w_2}{0} \frac{\overline{b}}{0} + \frac{1}{0} \frac{1}{0} \frac{1}{0} \frac{1}{0} + \frac{1}{0} \frac{1}{0} \frac{2}{0} + \frac{1}{0} \frac{1}{0} \frac{1}{0} \frac{1}{0} \frac{1}{0} + \frac{1}{0} \frac{1}{0} \frac{1}{0} \frac{1}{0} + \frac{1}{0} \frac{1}{0} \frac{1}{0} + \frac{1}{0} \frac{1}{0} \frac{1}{0} + \frac{1}{0} \frac{1}{0} \frac{1}{0} + \frac{1}{0} \frac{1}{0} \frac{1}{0} \frac{1}{0} \frac{1}{0} + \frac{1}{0} \frac{1}{0} \frac{1}{0} \frac{1}{0} \frac{1}{0} \frac{1}{0} + \frac{1}{0} \frac{1$$

e) We see that $\lambda_1 = .5$, $w = w_1 - w_2 = 2$ satisfies our requirement. So (1, .5) is a KT point.

Regularity conditions

1ctcal

We will only talk about the first order Kuhn-Tucker constraint qualification(KTCQ1) here.

- <u>Definition</u> First order Kuhn-Tucker constraint qualification (ktcq1) is said to hold at $a \in T$, if each nonzero direction d in the linearizing cone $\mathcal{D}(a)$ is the tangent to some \mathcal{C}^1 curve in T at a. That is, $\exists \alpha$ such that
 - and iii) $d = \lim_{t \to 0^+} \frac{\alpha(t) \alpha(0)}{t}$. ii) $\exists \epsilon > 0$ such that $\alpha(t) \in T, \ \forall t \in [0, \epsilon],$ i) $\alpha(0) = a$,

Notice that, this definition is about the feasible set and it is independent of the objective function.

for each
$$d \in \mathfrak{J}(n)$$
 $d = \lim_{t \to 0+} \frac{d(t) - d(0)}{t}$

[33.8] Example (ktcq1 at interior points.) Consider (P2). Show that ktcq1 holds at each $a \in T^{\circ}$.

Answer. a) Let $a \in T^{\circ}$. What is $\mathcal{D}(a)$?

$$\mathcal{J}(\alpha) = lk_{\mathcal{J}}$$

$$\mathcal{D}(\alpha) = lk_{\mathcal{J}}$$

As $a \in T^{\circ}$, suppose that $B_{\delta}(a) \subseteq T$. We know that $D(a) = \mathbb{R}^{n}$. So $\mathcal{D}(a)$ has to be \mathbb{R}^{n} .

- b) To show ktcq1 holds here, let $d \in \mathcal{D}(a)$ be nonzero.
- c) Now, we need to define a suitable curve.

Brus ET

 $a(t) \in B_{r}(a) \subseteq T$

We take the straight line segment that starts at a, goes in the direction of d up to a distance $\delta/2$. (You can take other, but this is one of the simplest.)

That is, take $\epsilon = \delta/2$ and define

$$\alpha(t) = a + td, \qquad t \in [0, \epsilon]. \qquad \begin{array}{c} \text{lim} & \frac{d}{dt} - d(0) \\ \text{total} & \text{total} \end{array} = d$$

The curve is a straight line segment here. Note that the curve $\alpha(t)$, $t \in [0, \epsilon]$ is inside $B_{\delta}(a) \subseteq T$.

d) Is
$$\lim_{t\to 0+} \frac{\alpha(t)-a}{t} = d$$
?

Yes,
$$\lim_{t\to 0+} \frac{\alpha(t) - \alpha(0)}{t} = \lim_{t\to 0+} \frac{a+td-a}{t} \lim_{t\to 0+} \frac{td}{t} = d.$$

e) So ktcq1 holds at a.

[33.9] Example Consider $T = \{x \in \mathbb{R}^2 \mid g_1(x) = x_1^3 - x_2 \ge 0, g_2(x) = x_1 \ge 0, g_3(x) = x_2 \ge 0\}$. Show that ktcq1 holds at all points in T.

Answer. The region is shown here.

- a) There are four types of points here: interior points, point only on x-axis, point only on the curve, and (0,0) which is common.
- b) Do we know that ktcq1 holds at each interior point?

Yes.

c) Let a = (0,0). Find $\mathcal{D}(a)$ and check whether all those directions are tangents of some \mathcal{C}^1 -curves.

Here $A(a) = \{1, 2, 3\}$. So

$$\mathcal{D}(a) = \{d \mid \nabla g_i^t(a)d \ge 0, i \in A(a)\} = \left\{d \mid \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} d \ge 0\right\} = \{d \mid d_1 \ge 0, d_2 = 0\}.$$

Let $d = \begin{bmatrix} d_1 \\ 0 \end{bmatrix} \in \mathcal{D}(a)$. We take $\alpha(t) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} d_1 \\ 0 \end{bmatrix}$, $t \in [0,1]$. Then the curve is in T and

$$\lim_{t\to 0+}\frac{\alpha(t)-\alpha(0)}{t}=\lim_{t\to 0+}\frac{t\begin{bmatrix}d_1\\0\end{bmatrix}-\begin{bmatrix}0\\0\end{bmatrix}}{t}=\begin{bmatrix}d_1\\0\end{bmatrix}=d.$$

So we see that kctq1 holds at a.

d) Let $a = (a_1, 0), a_1 > 0$. Find $\mathcal{D}(a)$ and check whether all those directions are tangents of some \mathcal{C}^1 -curves.

Here $A(a) = \{3\}$ and $\mathcal{D}(a) = \{d \mid d_2 \geq 0\}$. Draw picture to understand.

Let $d = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} \in \mathcal{D}(a)$. If d = 0, we have nothing to prove. We take

$$\alpha(t) = \begin{bmatrix} a_1 \\ 0 \end{bmatrix} + t \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}, \qquad t \in [0, \frac{a_1}{2||d||}].$$

We see (verify) that ktcq1 holds.

e) Let $a = (x > 0, x^3)$. Find $\mathcal{D}(a)$ and check whether all those directions are tangents of some \mathcal{C}^1 -curves.

Here $A(a) = \{1\}$ and

$$\mathcal{D}(a) = \left\{ d \mid \begin{bmatrix} 3a_1^2 \\ -1 \end{bmatrix} d \ge 0 \right\} = \{ d \mid 3a_1^2 d_1 \ge d_2 \}.$$

Taking $\alpha(t) = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} + t \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$.

Is $\alpha(t)$ in T? (Thought: this is on the right side of tangent line at a. So $\alpha(t) \in T$ for small t.)

As both coordinates of a are positive, for t small, both the coordinates of $\alpha(t)$ will also be positive. To see whether $\alpha(t)$ satisfies g_1 , observe that

$$g_1(\alpha(t)) = (a_1 + td_1)^3 - (a_2 + td_2)$$

$$= a_1^3 - a_2 + t(3a_1^2d_1 - d_2) + 3a_1t^2d_1^2 + t^3d_1^3$$

$$= 0 + t(\ge 0) + (3a_1 + td_1)t^2d_1^2 \ge 0,$$

if $3a_1 + td_1 \ge 0$, which holds for all small $t \ge 0$, as $a_1 > 0$. So $\alpha(t) \in T$ for all small t.

As
$$\alpha(t) = a + td$$
, we have $\lim_{t \to 0+} \frac{\alpha(t) - a}{t} = d$, as required.