Name Agush Jain SAP 50: 6000 4200132 Div : B Computer Engineering FLAT - Tutorial 3 -> 1) Two FSM's M and M' are given below. Check the equivalence of the two by applying moore's algorithm mi For given FSM. Sol: £ = 80,12 = n So we need to create 411 columns (V, , V,') (vo, vo') (V, V') (91,931) (90,90') (90,901) : (91,931) is a combination of intermediate state and final state , two FSM's are not equivalent.

Sundaram

→ 2>	(0+1)*	(00+11)								
				transition.	ch output	t symb	01 12				
	associated with each transition. $M = (90, E, A, 9, 8, \Delta)$ where $E = \{0, 13\}$										
		To = initial state (VS)									
	Q	8 = { 95, 90, v1, 92, 93 }									
				: Accept, A	s. Relient						
					· · · · · · · · · ·						
	Transition	Table	:		Outpu	ut Map	ping:				
	03 5	0			3 €	0	1				
	→9s		91		→ VS	N	N				
	(6)90	92	91		(0) 20	4	N				
	(1) VI	%0	913		(1) %	2	У				
	(00)9/2	9/2	91		(00) V2	У	N				
	(11) 93	90	9/3		(11) 9/3	N	Ч				
								0			
	Diagram:										
	Oly do Oly Dild										
	(QS) OIN										
		11/11	0,								
	和	1	1								
		(v) ←	IN	922014							
Sundaram				FOR EDUCATION	NAL USE		Pag	e 2			

	,		C - Y -	1.00				
	(1) Construct DFA:							
	PE: (0+1)* (00+11)							
	(0,000000000000000000000000000000000000							
$\rightarrow (0)$	(a) (a) (b) (c) (c) (d) (d) (d)							
			Transcoulant of the second					
	Step 2 '							
		E-closure (7)			8 (5,0)		815,1)	
		No. Stanford For Propagation (St.).						
A	→ €03	{0,1,2,4,7,8,9,11} {3,6,7,1,2,4,10,3			{3,10} (8) {3,13} {3,10,13}		£ 5, 123 (c)	
B 	85,109	(5,12,6,7,8,7,1,1,2,4)			£10,33 (B)		£ 5,123 (c)	
D	{3,10,13}	£3,10,13,6,7,8,9,11,1,2,4			83,10,137 (0)		£ 5,123 (C)	
E	85,12,149	[5,12,14,6,7,8,9,11,1,2,4]		1,63	£10,33 (B)		25,12,143 (E)	
	Steps:	8 2	0					
	Steps	→ A	В	- (-			-
		8	D	C				
		C	В	E			Andrew Control of the	
		D*	D	C				
~	-	E.	8	E		Term Windows		
(Jundaram)			Arreston.		FOR FEUCATION	IAL USE	Pag	je 3

		1-1-1-1
\rightarrow 3 \rangle	S -> aB1bA	DET
	$A \rightarrow alasibAA$	
	B -> blbsla88	
	String: 'aaabbabbba'	
	0	
	i) LMD	
	$S \rightarrow aB \qquad (S \rightarrow aB)$	
	Imd aabb (B - abb)	
	Ind aaaBBB (B > aBB)	
	1md aaabBB (B→b)	
	1md aaabbsB (B -> bs)	
	Imb aaabbaBB (S -> aB)	
	Ind acabbabb (B -> b)	
	Imd aaabbabbs (B > 65)	
	Ind aaabbabbba (8 -> bA)	
	Ind aaabbabbba (A > a)	
	2) RMd S -> aB (S-> aB)	
	omo aaBB (B -> aBB)	
	200 aabbs (B-365)	
	rmd aaBbbA (S→bA)	MY to Assess His
	aabbba (A -> a)	
	amd aaabbba (B-)abb)	
	md aaaBbbba (B→b)	
	and aaa bs bbba (B -> bs)	
	aaabbAbbba (S-> bA)	
	and aaabba bbba (A-> a)	
Sundaram	FOR EDUCATIONAL USE	Page 5

Н	
→ 4)	$s \rightarrow xsy xx yy$
	$x \rightarrow zAl \in$
	Y → yB16
	Here, there are two e-productions,
	$\times \rightarrow \epsilon$, $4 \rightarrow \epsilon$
	Abter eliminating E-production,
	S-> xsy lxx ly y lxs lx ly
	$X \rightarrow \chi_A$
	Y -> YB
	Productions of A and B are not present, they can be
	climinated
	: s -
→5>	S-> Albb S-> Albbla
	$A \rightarrow B \mid b \rightarrow A \rightarrow B \mid b$
	$s \rightarrow a$
	Production B is not present, hence it can be removed.
	: S -> Albbla
	$A \rightarrow b$
	: S > A is a unit product oit can be eliminated.
	:S→blbbla
Sundaram	FOR EDUCATIONAL USE Page 7