Linear models with categorical outcomes

Jeff Leek

@jtleek

www.jtleek.com

Fitting lines = fitting means

Many analyses fit the 'additive model'

$$y = \beta_0 + \beta \times \#$$
minor alleles

An alternative is the 'dominant model';

$$y = \beta_0 + \beta \times (G \neq AA)$$

An alternative is the 'dominant model';

$$y = \beta_0 + \beta \times (G \neq AA)$$

or the 'recessive model';

$$y = \beta_0 + \beta \times (G == AA)$$

$$y = \beta_0 + \beta_{Aa} \times (G == Aa) + \beta_{aa} \times (G == aa)$$

Interaction terms

Slide courtesy: Ingo Ruczinski

Expression = Baseline + RM Effect + BY Effect + (RM Effect * BY Effect) + Noise

Notes and further reading

- Linear models is a whole class (no joke): https://www.coursera.org/course/regmods
- Basic thing to keep in mind is how many levels do you want to fit? What makes sense biologically?
- Great additional notes in Chapter 2 here: http://genomicsclass.github.io/book/