Soal dan Solusi UTS Analisis Real I 2022

Wildan Bagus Wicaksono

MATEMATIKA 2022

Question 1

- (a). Jika E himpunan bagian dari \mathbb{R} , E tidak kosong, E terbatas ke atas dan terbatas ke bawah, maka inf $E \leq \sup E$. Buktikan!
- (b). Buktikan bahwa jika m bilangan bulat, maka pernyataan berikut benar. Jika m^2 kelipatan 3, maka m kelipatan 3.

Penyelesaian.

- (a). Perhatikan bahwa jika $x \in E$, maka inf $E \le x \le \sup E \implies \inf E \le \sup E$, terbukti.
- (b). Andaikan m bukan kelipatan 3, maka m = 3n + 1 atau m = 3n + 2 untuk suatu bilangan bulat n. Maka $m^2 = 9n^2 + 6n + 1 = 3(3n^2 + 2n) + 1$ atau $m^2 = 9n^2 + 12n + 4 = 3(3n^2 + 4n + 1) + 1$ yang mana masing-masing bukan kelipatan 3, kontradiksi. Jadi, haruslah m = 3n yang berarti m kelipatan 3.

▼

Question 2

Dalam ruang metrik (X, d), buktikan

$$|d(x,y) - d(x,z)| \le d(y,z)$$

untuk setiap $x, y, z \in X$.

Penyelesaian.

Hal ini ekuivalen dengan membuktikan bahwa $-d(y,z) \le d(x,y) - d(x,z) \le d(y,z)$.

Akan dibuktikan bahwa $-d(y,z) \leq d(x,y) - d(x,z)$. Perhatikan bahwa berdasarkan definisi metrik berlaku $d(x,z) \leq d(x,y) + d(y,z)$ yang memberikan $-d(y,z) \leq d(x,y) - d(x,z)$ seperti yang ingin dibuktikan.

Akan dibuktikan bahwa $d(x,y)-d(x,z) \leq d(y,z)$. Dengan cara yang sama, $d(x,y) \leq d(x,z)+d(z,y) = d(x,z)+d(y,z) \implies d(x,y) \leq d(x,z)+d(y,z)$ sehingga diperoleh $d(x,y)-d(x,z) \leq d(y,z)$. Diperoleh seperti yang ingin dibuktikan pada soal.

Question 3

- (a). Buatlah suatu fungsi korespondensi 1-1 dari selang terbuka (-1,1) ke \mathbb{R} .
- (b). Diberikan himpunan $E = \{(-1)^n + \frac{1}{n} : n \in \mathbb{N}\}$. Tentukan himpunan semua titik limit E dan himpunan semua titik interior E.

Penyelesaian.

- (a). Pandang fungsi $f:(-1,1)\to\mathbb{R}$ dengan $f(x)=\tan\left(\frac{\pi x}{2}\right)$. Akan dibuktikan f bijektif. Pertama, akan dibuktikan f fungsi 1-1. Misalkan $x,y\in(-1,1)$ yang memenuhi f(x)=f(y), yaitu $\tan\left(\frac{\pi x}{2}\right)=\tan\left(\frac{\pi y}{2}\right)$. Diperoleh $\frac{\pi x}{2}=\frac{\pi y}{2}+\pi k$ di mana k bilangan bulat, yang berarti $x=y+2k\iff x-y=2k$. Karena $(x-y)\in(-2,2)\implies k\in(-1,1)$, maka haruslah k=0. Ini memberikan x=y, terbukti f fungsi 1-1. Akan dibuktikan f surjektif. Ambil sebarang $a\in\mathbb{R}$ dan tinjau $t=\frac{2}{\pi}\tan^{-1}(a)$ yang mana $\tan^{-1}:\mathbb{R}\to\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ well-defined. Akibatnya, $t=\frac{2}{\pi}\tan^{-1}(a)\in(-1,1)$ yang mana $f(t)=\tan\left(\frac{\pi t}{2}\right)=\tan\left(\tan^{-1}a\right)=a$. Jadi, terdapat $t\in(-1,1)$ yang memenuhi f(t)=a sehingga f surjektif. Jadi, f bijektif seperti yang ingin dibuktikan.
- (b). Pandang

$$E = \left\{ 1 + \frac{1}{2n} : n \in \mathbb{N} \right\} \cup \left\{ -1 + \frac{1}{2n-1} : n \in \mathbb{N} \right\}.$$

Akan dibuktikan bahwa $E' = \{-1,1\}$. Akan dibuktikan $1 \in E'$, ambil sebarang $\varepsilon > 0$. Jika $\varepsilon = 1$, tinjau $\frac{3}{2} \in N_{\varepsilon}(1)$ yang mana juga $\frac{3}{2} \in [N_{\varepsilon}(1) \cap E] \setminus \{1\}$. Jadi, $[N_{\varepsilon}(1) \cap E] \setminus \{1\} \neq \emptyset$. Untuk $\varepsilon \neq 1$, tinjau $\frac{1}{\varepsilon - 1} \in \mathbb{R}$ sehingga menurut Archimedes terdapat bilangan asli N yang memenuhi $\frac{1}{\varepsilon - 1} < N < 2N \implies \frac{1}{\varepsilon - 1} < 2N$ sehingga $1 + \frac{1}{2N} < \varepsilon$. Ini berarti $1 + \frac{1}{2N} \in [N_{\varepsilon}(1) \cap E] \setminus \{1\}$. Ini berarti untuk setiap $\varepsilon > 0$ berakibat $[N_{\varepsilon}(1) \cap E] \setminus \{1\}$ tak kosong. Jadi, $1 \in E'$.

Akan dibuktikan $-1 \in E'$. Ambil sebarang $\varepsilon > 0$. Tinjau $\frac{1}{\varepsilon+1} \in \mathbb{R}$ sehingga menurut Archimedes terdapat bilangan asli M yang memenuhi $\frac{1}{\varepsilon+1} < M \le 2M-1 \implies \frac{1}{\varepsilon+1} < 2M-1$. Diperoleh $-1 + \frac{1}{2M-1} < \varepsilon$ yang berarti $-1 + \frac{1}{2M-1} \in [N_{\varepsilon}(-1) \cap E] \setminus \{-1\}$ sehingga $[N_{\varepsilon}(-1) \cap E] \setminus \{E\}$ tak kosong untuk setiap $\varepsilon > 0$. Jadi, $-1 \in E'$.

Akan dibuktikan apabila $c \notin \{-1, 1\}$, maka $c \notin E'$.

• Jika 0 < c < 1, pilih $\varepsilon = \frac{1}{2} \min\{c, 1 - c\}$. Misalkan $x \in \mathbb{R}$ dengan $x \in N_{\varepsilon}(c)$. Maka

$$|x - c| < \varepsilon \iff c - \varepsilon < x < c + \varepsilon$$

yang mana

$$c+\varepsilon \leq c+\frac{1-c}{2} = \frac{1+c}{2} < 1, \quad c-\varepsilon \geq c-\frac{c}{2} = \frac{c}{2} > 0.$$

Diperoleh $0 < c - \varepsilon < x < c + \varepsilon < 1$ sehingga 0 < x < 1. Akibatnya, $x \notin E$ sehingga $[N_{\varepsilon}(c) \cap E] \setminus \{c\} = \emptyset$. Jadi, $c \notin E'$.

• Jika $c\in E$ dengan c>0, maka $c=1+\frac{1}{2K}$ untuk suatu bilangan asli K. Pilih $\varepsilon=\frac{1}{2}\left(\frac{1}{2K}-\frac{1}{2K+2}\right)=\frac{1}{4K(K+1)}$. Maka

$$c+\varepsilon<1+\frac{1}{2K}+\frac{1}{4K(K+1)}=1+\frac{2(K+1)+1}{4K(K+1)}=1+\frac{2K+3}{4K(K+1)}.$$

Akan dibuktikan $\frac{2K+3}{4K(K+1)}<\frac{1}{2K-1}.$ Hal ini ekuivalen dengan membuktikan

$$(2K+3)(2K-1) < 4K(K+1) \iff 4K^2 + 4K - 3 < 4K^2 + 4K$$

dan diperoleh seperti yang diinginkan. Maka jika $x < c + \varepsilon$ berlaku

$$x < c + \varepsilon < 1 + \frac{2K+3}{4K(K+1)} < 1 + \frac{1}{2K-1} \implies x < 1 + \frac{1}{2K-1}.$$

Tinjau

$$c - \varepsilon > 1 + \frac{1}{2K} - \frac{1}{4K(K+1)} = 1 + \frac{2(K+1) - 1}{4K(K+1)} = 1 + \frac{2K+1}{4K(K+1)}.$$

Akan dibuktikan $\frac{2K+1}{4K(K+1)}>\frac{1}{2K+2}.$ Hal ini ekuivalen dengan membuktikan

$$(2K+1)(2K+2) > 4K(K+1) \iff 4K^2 + 6K + 2 > 4K^2 + 4K$$

seperti yang ingin dibuktikan. Maka jika $x > c - \varepsilon$ berlaku

$$x > c - \varepsilon > 1 + \frac{1}{2K + 2} \implies x > 1 + \frac{1}{2K + 2}.$$

Jadi, $1 + \frac{1}{2K+2} < x < 1 + \frac{1}{2K-2}$ sehingga $[N_{\varepsilon}(c) \cap E] \setminus \{c\} = \emptyset$. Akibatnya, $c \notin E'$.

• Jika $1 < c \le \frac{3}{2}$ dengan $c \notin E$. Akan dibuktikan bahwa terdapat bilangan asli T yang memenuhi $1 + \frac{1}{2T+2} < c < 1 + \frac{1}{2T}$. Perhatikan bahwa $\frac{1}{c-1} \ge 2$. Berdasarkan akibat Archimedes, terdapat bilangan bulat asli $L \ge 2$ yang memenuhi $L \le \frac{1}{c-1} < L+1$. Jika L ganjil, misalkan L = 2T+1 di mana T bilangan bilangan bulat asli, maka $2T+1 \le \frac{1}{c-1} < 2T+2$ dan tulis $2T < 2T+1 \le \frac{1}{c-1} < 2T+2 \implies 2T < \frac{1}{c-1} < 2T+2$. Jika L genap, misalkan L = 2T' untuk suatu bilangan asli T', tulis $2T' \le \frac{1}{c-1} < 2T'+1 < 2T'+2 \implies 2T' \le \frac{1}{c-1} < 2T'+2$. Jadi, telah dibuktikan bahwa terdapat bilangan asli T yang memenuhi $2T \le \frac{1}{c-1} < 2T+2$. Diperoleh $\frac{1}{2T+2} < c-1 \le \frac{1}{2T} \implies 1+\frac{1}{2T+2} < c \le 1+\frac{1}{2T}$. Sekarang, pilih $\varepsilon = \frac{1}{2} \min \left\{ 1 + \frac{1}{2T} - c, c - 1 - \frac{1}{2T+2} \right\}$. Jika $x < c + \varepsilon$ berlaku

$$x < c + \varepsilon \le c + \frac{1}{2} \left(1 + \frac{1}{2T} - c \right) = \frac{c}{2} + \frac{1}{2} + \frac{1}{4T} \le \frac{1}{2} + \frac{1}{4T} + \frac{1}{2} + \frac{1}{4T} = 1 + \frac{1}{2T} = 1$$

sehingga $x < 1 + \frac{1}{2T}.$ Jika $c - \varepsilon < x$ berlaku

$$x > c - \varepsilon \ge c - \frac{1}{2} \left(c - 1 - \frac{1}{2T + 2} \right) = \frac{c}{2} + \frac{1}{2} + \frac{1}{4T + 2} \ge \frac{1}{2} + \frac{1}{4T + 2} + \frac{1}{2} + \frac{1}{4T + 2} = 1 + \frac{1}{2T + 1} = 1 + \frac{$$

sehingga $x > 1 + \frac{1}{2T+2}$. Karena $1 + \frac{1}{2T+2} < x < 1 + \frac{1}{2T}$, akibatnya $[N_{\varepsilon}(c) \cap E] \setminus \{c\} = \varnothing$ sehingga $c \notin E'$.

• Jika $c > \frac{3}{2}$. Pilih $\varepsilon = \frac{1}{2} \left(c - \frac{3}{2} \right)$, maka $x > c - \varepsilon$ berakibat

$$x > c - \varepsilon = c - \frac{1}{2} \left(c - \frac{3}{2} \right) = \frac{c}{2} + \frac{3}{4} > \frac{3}{4} > \frac{3}{4} = \frac{3}{2} \implies x > \frac{3}{2}.$$

Dari sini berakibat $[N_{\varepsilon}(c) \cap E] \setminus \{c\} = \emptyset$ sehingga $c \notin E'$.

• Jika c < -1, pilih $\varepsilon = \frac{-1-c}{2}$. Maka $x < c + \varepsilon$ berakibat

$$x < c + \varepsilon = c + \frac{-1-c}{2} = \frac{c-1}{2} < -1 \implies x < -1.$$

Dari sini berakibat $[N_{\varepsilon}(c) \cap E] \setminus \{c\} = \emptyset$ sehingga $c \notin E'$.

 • Jika $c \leq 0$ dan $c \in E$, maka $c = -1 + \frac{1}{2K-1}$ untuk suatu bilangan asli K. Apabila K = 1, maka c=0. Pilih $\varepsilon=\frac{1}{2}$, maka $x>c-\varepsilon=-\frac{1}{2}>-1+\frac{1}{2(2)-1}$ dan $x< c+\varepsilon=\frac{1}{2}<1$. Ini berarti $[N_{\varepsilon}(c) \cap E] \setminus \{c\} = \emptyset$ sehingga $c = 0 \notin E'$.

Jika
$$K \ge 2$$
. Pilih $\varepsilon = \frac{1}{2} \left(\frac{1}{2K-1} - \frac{1}{2K+1} \right) = \frac{1}{(2K-1)(2K+1)}$. Jika $x < c + \varepsilon$ berlaku

$$x < c + \varepsilon = -1 + \frac{1}{2K - 1} + \frac{1}{(2K - 1)(2K + 1)} = -1 + \frac{(2K + 1) + 1}{(2K - 1)(2K + 1)} = -1 + \frac{2K + 2}{(2K - 1)(2K + 1)}.$$

Akan dibuktikan $\frac{2K+2}{(2K-1)(2K+1)} < \frac{1}{2K-3}$ yang ekuivalen dengan

$$(2K-3)(2K+2) < (2K-1)(2K+1) \iff 4K^2 - 2K - 6 < 4K^2 - 1$$

seperti yang ingin dibuktikan. Diperoleh

$$x < c + \varepsilon = -1 + \frac{2K + 2}{(2K - 1)(2K + 1)} < -1 + \frac{1}{2K - 3} \implies x < -1 + \frac{1}{2K - 3}.$$

Jika $x > c - \varepsilon$ berlaku

$$x > c - \varepsilon = -1 + \frac{1}{2K - 1} - \frac{1}{(2K - 1)(2K + 1)} = -1 + \frac{(2K + 1) - 1}{(2K - 1)(2K + 1)}$$
$$= -1 + \frac{2K}{(2K - 1)(2K + 1)} > -1 + \frac{1}{2K - 1}$$

karena $\frac{2K}{2K+1}<1.$ Jadi, $x>-1+\frac{1}{2K-1}$ sehingga $-1+\frac{1}{2K-1}< x<-1+\frac{1}{2K-3}.$ Akibatnya, $[N_{\varepsilon}(c) \cap E] \setminus \{c\} = \emptyset$ sehingga $c \notin E'$.

• Jika -1 < c < 0 dan $c \notin E'$ sehingga diperoleh 0 < c+1 < 1. Karena $\frac{1}{c+1} > 1$, berdasarkan akibat Archimedes berlaku terdapat bilangan asli U yang memenuhi $U \leq \frac{1}{c+1} < U+1$. Jika Ubilangan genap, misalkan U=2Xdi mana Xbilangan asli. Maka $2X \leq \frac{1}{c+1} < 2X+1$ yang berarti $2X-1 < 2X \leq \frac{1}{c+1} < 2X+1 \implies 2X-1 < \frac{1}{c+1} < 2X+1.$ Jika U bilangan ganjil, misalkan U = 2X' - 1 di mana X' bilangan asli. Maka $2X' - 1 \le \frac{1}{c+1} < 2X < 1$ $2X+1 \implies 2X'-1 \le \frac{1}{c+1} < 2X+1$. Jadi, terdapat bilangan asli X yang memenuhi $2X - 1 \leq \frac{1}{c+1} < 2X + 1. \text{ Diperoleh } \frac{1}{2X+1} < c+1 \leq \frac{1}{2X-1} \iff -1 + \frac{1}{2X+1} < c \leq -1 + \frac{1}{2X-1}.$ Sekarang, pilih $\varepsilon = \frac{1}{2} \min \left\{ c + 1 - \frac{1}{2X+1}, -1 + \frac{1}{2X-1} - c \right\}$. Jika $x < c + \varepsilon$ berakibat

$$x < c + \varepsilon \le c + \frac{1}{2} \left(-1 + \frac{1}{2X - 1} - c \right) = \frac{c}{2} - \frac{1}{2} + \frac{1}{4X - 2} < -\frac{1}{2} + \frac{1}{4X - 2} < -1 + \frac{1}{2X - 1} < -\frac{1}{2X - 1} < -\frac{1}$$

sehingga $x < c + \varepsilon < -1 + \frac{1}{2N-1}$. Lalu, jika $c - \varepsilon < x$ berakibat

$$x > c - \varepsilon = c - \frac{1}{2} \left(c + 1 - \frac{1}{2X + 1} \right) = \frac{c}{2} - \frac{1}{2} + \frac{1}{4X + 2} > -\frac{1}{2} - \frac{1}{2} + \frac{1}{2X + 1} = -1 + \frac{1}{2X + 1}.$$

sehingga $x>c-\varepsilon>-1+\frac{1}{2X+1}$. Jadi, $-1+\frac{1}{2X+1}< c-\varepsilon< x< c+\varepsilon<-1+\frac{1}{2X-1}$ yang berarti $[N_{\varepsilon}(c) \cap E] \setminus \{c\} = \emptyset$. Diperoleh $c \notin E'$.

Terbukti bahwa $E' = \{-1, 1\}.$

Akan dibuktikan $int(E) = \emptyset$. Misalkan $x \in E$ dan ambil sebarang $\varepsilon > 0$. Tinjau bahwa $N_{\varepsilon}(x) = (x - \varepsilon, x + \varepsilon) \subseteq \mathbb{R}$ dan di selang tersebut selalu mengandung suatu bilangan irasional, yang jelas bukan anggota E. Akibatnya, $N_{\varepsilon}(x) \not\subseteq E$.

Question 4

Yang manakah di antara himpunan-himpunan di dalam \mathbb{R} yang tidak terbuka sekaligus tidak tertutup dan berikan alasannya.

- (a). $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$.
- (b). $\{1, 2, 3, 4, 5\}$.
- (c). $\{x : 2 < x \le 4\}$.

Penyelesaian.

(a). Tidak terbuka maupun tidak tertutup.

Akan dibuktikan tidak tertutup. Klaim bahwa 0 titik limit dari $A := \left\{\frac{1}{n} : n \in \mathbb{N}\right\}$. Ambil sebarang $\varepsilon > 0$, dari Archimedes terdapat bilangan asli N yang memenuhi $\frac{1}{\varepsilon} < N \iff \frac{1}{N} < \varepsilon$. Ini berarti $\frac{1}{N} \in N_{\varepsilon}(0) \implies [N_{\varepsilon}(0) \cap A] \setminus \{0\}$ sehingga $[N_{\varepsilon}(0) \cap A] \setminus \{0\}$ tak kosong. Jadi, $0 \in A'$ namun $0 \notin A$ sehingga A tidak tertutup.

Akan dibuktikan A tidak terbuka. Misalkan $\frac{1}{n} \in A$ di mana $n \in \mathbb{N}$ dan ambil sebarang $\varepsilon > 0$. Perhatikan bahwa $N_{\varepsilon}\left(\frac{1}{n}\right) = \left(\frac{1}{n} - \varepsilon, \frac{1}{n} + \varepsilon\right)$. Sebagaimana sebelumnya, diantara $\left(\frac{1}{n} - \varepsilon, \frac{1}{n} + \varepsilon\right)$ terdapat bilangan irasional sehingga $N_{\varepsilon}\left(\frac{1}{n}\right) \not\subseteq A$. Jadi, A tidak terbuka.

(b). Tidak terbuka dan tertutup.

Akan dibuktikan $B := \{1, 2, 3, 4, 5\}$ tidak terbuka. Misalkan $x \in B$ dan sebarang $\varepsilon > 0$. Tinjau pada selang $N_{\varepsilon}(x) = (x - \varepsilon, x + \varepsilon)$ mengandung bilangan real yang tak bulat, maka $N_{\varepsilon}(x) \not\subseteq B$. Jadi, B tidak terbuka.

Akan dibuktikan B tertutup. Klaim bahwa B tidak memiliki titik limit. Akan dibuktikan $x \in B$ bukan titik limit. Pilih $\varepsilon = \frac{1}{2}$, maka $N_{\varepsilon}(x) \cap B = \{x\} \implies [N_{\varepsilon}(x) \cap B] \setminus \{x\} = \emptyset$ yang berarti terbukti. Akan dibuktikan $x \in \mathbb{R}$ dengan $x \notin B$ juga bukan titik limit. Dari akibat Archimedes, terdapat bilangan bulat k yang memenuhi $k \le x < k+1$. Dengan memilih $\varepsilon = \frac{1}{2}$ akan diperoleh $[N_{\varepsilon}(x) \cap B] \setminus \{x\} = \emptyset$ karena setiap anggota di $N_{\varepsilon}(x)$ bukan bilangan bulat.

(c). Tidak tertutup dan tidak terbuka.

Akan dibuktikan $C:=\{x:2< x\leq 4\}$ tidak terbuka. Ambil sebarang $\varepsilon>0$ dan tinjau $N_{\varepsilon}(x)=(4-\varepsilon,4+\varepsilon)$. Tinjau bahwa $4+\frac{\varepsilon}{2}\in N_{\varepsilon}(4)$ namun $4+\frac{\varepsilon}{2}\not\in C$. Ini artinya, $N_{\varepsilon}(4)\not\subseteq C$. Terbukti C tidak terbuka.

Akan dibuktikan C tidak tertutup dengan membuktikan $2 \in C'$. Ambil sebarang $\varepsilon > 0$, tinjau bahwa min $\left\{2 + \frac{\varepsilon}{2}, 3\right\} \in C$ dan min $\left\{2 + \frac{\varepsilon}{2}, 3\right\} \in N_{\varepsilon}(2)$. Jadi, min $\left\{2 + \frac{\varepsilon}{2}, 3\right\} \in [N_{\varepsilon}(2) \cap C] \setminus \{2\}$ sehingga $[N_{\varepsilon}(2) \cap C] \setminus \{2\}$ tak kosong. Jadi, $2 \in C'$ namun $2 \notin C$ sehingga C tidak tertutup.

V