Package 'nlcv'

October 13, 2022

Type Package

Title Nested Loop Cross Validation

Version 0.3.5

Date 2018-06-29

Author Willem Talloen, Tobias Verbeke

Maintainer Laure Cougnaud < laure.cougnaud@openanalytics.eu>

Description

Nested loop cross validation for classification purposes for misclassification error rate estimation.

The package supports several methodologies for feature selection: random forest, Student t-test, limma,

and provides an interface to the following classification methods in the 'MLInterfaces' package: linear,

quadratic discriminant analyses, random forest, bagging, prediction analysis for microarray, generalized

linear model, support vector machine (svm and ksvm). Visualizations to assess the quality of the classifier are included: plot of the ranks of the features, scores plot for a specific classification algorithm and number of features, misclassification rate

for the different number of features and classification algorithms tested and ROC plot.

For further details about the methodology, please check:

Markus Ruschhaupt, Wolfgang Huber, Annemarie Poustka, and Ulrich Mansmann (2004) <doi:10.2202/1544-6115.1078>.

Depends R (>= 2.10), a4Core, MLInterfaces (>= 1.22.0), xtable

Imports limma, MASS, methods, graphics, Biobase, multtest, RColorBrewer, pamr, randomForest, ROCR, ipred, e1071, kernlab

Suggests RUnit, ALL

License GPL-3

RoxygenNote 6.0.1.9000

NeedsCompilation no

Repository CRAN

Date/Publication 2018-06-29 21:49:59 UTC

2 compareOrig

R topics documented:

compa	function to compare the original matrix of correct classes to each component of the output object for a certain classifier	ı-
Index		25
	Amoreosamina janoiz 100	27
	xtable.summary.mcrPlot	24
	xtable.confusionMatrix	23
	summary.mcrPlot	21
	scoresPlot	20
	rocPlot	19 20
	rankDistributionPlot	19
	print.summary.mcrPlot	18
	print.pamrML	18
	print.nlcvConfusionMatrix	17
	predict.pamrML	17
	pamrTrain	16
	pamrML	14
	pamrIconverter	14
	pamrI	13
	nldaI	12
	nlcvTT_WS	12
	nlcvTT_WHS	12
	nlcvTT SS	11
	nlcvTT SHS	11
	nlcvTT_R	11
	nlcvRF WS	10
	nlcvRF_SS	9 10
	nlcvRF_SHS	9
	nlcvRF_R	8
	nlcv	7
	mcrPlot	5
	limmaTwoGroups	5
	inTrainingSample	4
	confusionMatrix.nlcv	3
	compareOrig	2

Description

function to compare the original matrix of correct classes to each component of the output object for a certain classifier

confusionMatrix.nlcv 3

Usage

```
compareOrig(nlcvObj, techn)
```

Arguments

nlcv0bj return of the nlcv function

techn technique for which the comparison to correct classes should be made

Value

list with for each number of features selected, a matrix of logical values indicating whether the classifier results correspond (TRUE) or not (FALSE) to the original values to be classified

confusionMatrix.nlcv

compute a confusion matrix for the optimal number of features for a given technique used in the nested loop cross validation

Description

The observed and predicted classes are cross-tabulated for a given classification technique used in the nested loop cross validation. The predicted class that is used to construct the confusion matrix is the class that was predicted most of the time (>=50%) across all runs of the nested loop.

Usage

```
## S3 method for class 'nlcv'
confusionMatrix(x, tech, proportions = TRUE, ...)
```

Arguments

x object for which a confusionMatrix should be produced, e.g. one produced by

the nlcv function; for the print method, it is the object to be printed

tech string indicating the classification technique for which the confusion matrix

should be returned

proportions logical indicating whether the cells of the matrix should contain proportions

(TRUE) or raw counts (FALSE)

... Dots argument to pass additional parameters to the confusionMatrix or print

methods

Value

confusionMatrix produces an object of class confusionMatrix which directly inherits from the ftable class (representing the confusion matrix)

Author(s)

Willem Talloen and Tobias Verbeke

4 inTrainingSample

inTrainingSample

Function to define a learning sample based on balanced sampling

Description

This function takes in a factor with class labels of the total dataset, draws a sample (balanced with respect to the different levels of the factor) and returns a logical vector indicating whether the observation is in the learning sample (TRUE) or not (FALSE).

Usage

```
inTrainingSample(y, propTraining = 2/3, classdist = c("balanced",
   "unbalanced"))
```

Arguments

y factor with the class labels for the total data set

propTraining proportion of the data that should be in a training set; the default value is 2/3.

classdist distribution of classes; allows to indicate whether your distribution 'balanced' or 'unbalanced'. The sampling strategy for each run is adapted accordingly.

Value

logical vector indicating for each observation in y whether the observation is in the learning sample (TRUE) or not (FALSE)

Author(s)

Willem Talloen and Tobias Verbeke

```
### this example demonstrates the logic of sampling in case of unbalanced distribution of classes
y <- factor(c(rep("A", 21), rep("B", 80)))

nlcv:::inTrainingSample(y, 2/3, "unbalanced")
table(y[nlcv:::inTrainingSample(y, 2/3, "unbalanced")]) # should be 14, 14 (for A, B resp.)
table(y[!nlcv:::inTrainingSample(y, 2/3, "unbalanced")]) # should be 7, 66 (for A, B resp.)</pre>
```

limmaTwoGroups 5

limmaTwoGroups	Wrapper around limma for the comparison of two groups

Description

Wrapper around limma for the comparison of two groups

Usage

```
limmaTwoGroups(object, group)
```

Arguments

object of class ExpressionSet

group string indicating the variable defining the two groups to be compared

Details

Basically, the wrapper combines the lmFit, eBayes and topTable steps

Value

topTable output for the second (i.e. slope) coefficient of the linear model.

Author(s)

Tobias Verbeke

References

Smyth, G. K. (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. *Statistical Applications in Genetics and Molecular Biology*, Vol. 3, No. 1, Article 3.

http://www.bepress.com/sagmb/vol3/iss1/art3

mcrPlot	Misclassification Rate Plot

Description

plots for each classification technique and a given number of features used the mean misclassification rate (mcr) and its standard error across all runs of the nested loop cross-validation.

Usage

```
mcrPlot(nlcvObj, plot = TRUE, optimalDots = TRUE, rescale = FALSE, layout = TRUE, ...)
```

6 mcrPlot

Arguments

nlcvObj	Object of class 'nlcv' as produced by the nlcv function
plot	logical. If FALSE, nothing is plotted.
optimalDots	Boolean indicating whether dots should be displayed on a panel below the graph to mark the optimal number of features for a given classification technique
rescale	if TRUE, the upper limit of y-axis is dependent on the data (maximum mcr value); defaults to FALSE which implies limits $c(\emptyset,1)$
layout	boolean indicating whether mcrPlot should prespecify a layout for a single plot (default, TRUE) or whether the user takes care of the layout (FALSE)
•••	Dots argument to pass additional graphical parameters (such as main) to the plot function

Value

An MCR plot is output to the device of choice. The dots represent the mean MCR across runs. The vertical lines below and above the dots represent the standard deviation of the MCR values across runs.

Below the plot coloured solid dots (one for each classification technique) indicate for which number of features a given technique reached its minimum MCR.

The function invisibly returns an object of class mcrPlot which is a list with components:

- meanMcrMatrixmatrix with for each number of features (rows) and classification technique (columns) the mean of the MCR values across all runs of the nlcv procedure.
- sdMcrMatrixmatrix with for each number of features (rows) and classification technique (columns) the sd of the MCR values across all runs of the nlcv procedure.

The summary method for the mcrPlot object returns a matrix with for each classification technique, the optimal number of features as well as the associated mean MCR and standard deviation of the MCR values.

Author(s)

Willem Talloen and Tobias Verbeke

See Also

nlcv

nlcv 7

nlcv

Nested Loop Cross-Validation

Description

This function first proceeds to a feature selection and then applies five different classification algorithms.

Usage

```
nlcv(eset, classVar = "type", nRuns = 2, propTraining = 2/3,
  classdist = c("balanced", "unbalanced"), nFeatures = c(2, 3, 5, 7, 10, 15,
  20, 25, 30, 35), fsMethod = c("randomForest", "t.test", "limma", "none"),
  classifMethods = c("dlda", "randomForest", "bagg", "pam", "svm"),
  fsPar = NULL, initialGenes = seq(length.out = nrow(eset)),
  geneID = "ID", storeTestScores = FALSE, verbose = FALSE, seed = 123)
```

Arguments

eset	ExpressionSet object containing the genes to classify
classVar	String giving the name of the variable containing the observed class labels, should be contained in the phenoData of eset
nRuns	Number of runs for the outer loop of the cross-validation
propTraining	Proportion of the observations to be assigned to the training set. By default $propTraining = 2/3$.
classdist	distribution of classes; allows to indicate whether your distribution is 'balanced' or 'unbalanced'. The sampling strategy for each run is adapted accordingly.
nFeatures	Numeric vector with the number of features to be selected from the features kept by the feature selection method. For each number n specified in this vector the classification algorithms will be run using only the top n features.
fsMethod	Feature selection method; one of "randomForest" (default), "t.test", "limma" or "none".
classifMethods	character vector with the classification methods to be used in the analysis; elements can be chosen among "dlda", "randomForest", "bagg", "pam" "svm", "glm", "lda", "nlda", "dlda", "ksvm". The first 5 methods are selected by default
fsPar	List of further parameters to pass to the feature selection method; currently the default for "randomForest" is an empty list() whereas for "t.test", one can specify the particular test to be used (the default being list(test = "f").
initialGenes	Initial subset of genes in the ExpressionSet on which to apply the nested loop cross validation procedure. By default all genes are selected.
geneID	string representing the name of the gene ID variable in the fData of the expression set to use; this argument was added for people who use e.g. both Entrez IDs and Ensemble gene IDs

nlcvRF_R

storeTestScores

should the test scores be stored in the nlcv object? Defaults to FALSE

verbose Should the output be verbose (TRUE) or not (FALSE).

seed integer with seed, set at the start of the cross-validation.

Value

The result is an object of class 'nlcv'. It is a list with two components, output and features.

De output component is a list of five components, one for each classification algorithm used. Each of these components has as many components as there are elements in the nFeatures vector. These components contain both the error rates for each run (component errorRate) and the predicted labels for each run (character matrix labelsMat).

The features list is a list with as many components as there are runs. For each run, a named vector is given with the variable importance measure for each gene. For t test based feature selection, P-values are used; for random forest based feature selection the variable importance measure is given.

Note

The variable importance measure used is the third column of the output returned by the randomForest function.

Author(s)

Willem Talloen and Tobias Verbeke

nlcvRF_R

nlcv results on random data with random forest feature selection

Description

This data set contains the nlcv results of selection of features with random forest on a randomly generated dataset.

Usage

nlcvRF_R

Format

nlcvRF_SHS 9

Section	nlcvRF_SHS	nlcv results on strong hetero signal data with random forest feature selection
---------	------------	--

Description

This data set contains the nlcv results of selection of features with random forest on a dataset with strong hetero signal.

Usage

nlcvRF_SHS

Format

nlcv object

nlcv results on strong signal data a with random forest feature selection
tion

Description

This data set contains the nlcv results of selection of features with random forest on a dataset with strong signal.

Usage

nlcvRF_SS

Format

10 nlcvRF_WS

nl	cvRF.	_WHS

nlcv results on weak signal data with random forest feature selection

Description

This data set contains the nlcv results of selection of features with random forest on a weak signal dataset.

Usage

nlcvRF_WHS

Format

nlcv object

nlcvRF_WS

nlcv results on weak hetero signal data with random forest feature selection

Description

This data set contains the nlcv results of selection of features with random forest on a weak hetero signal dataset.

Usage

nlcvRF_WS

Format

nlcvTT_R

nlcvTT_R

nlcv results on random data with t-test feature selection

Description

This data set contains the nlcv results of selection of features with t-test on a randomly generated dataset.

Usage

nlcvTT_R

Format

nlcv object

nlcvTT_SHS

nlcv results on strong hetero signal data with t-test feature selection

Description

This data set contains the nlcv results of selection of features with t-test on a dataset with strong hetero signal.

Usage

nlcvTT_SHS

Format

nlcv object

nlcvTT_SS

nlcv results on strong signal data a with t-test feature selection

Description

This data set contains the nlcv results of selection of features with t-test on a dataset with strong signal.

Usage

nlcvTT_SS

Format

12 nldaI

nlcvTT_WHS

nlcv results on weak signal data with t-test feature selection

Description

This data set contains the nlcv results of selection of features with t-test on a weak signal dataset.

Usage

nlcvTT_WHS

Format

nlcv object

nlcvTT_WS

nlcv results on weak hetero signal data with t-test feature selection

Description

This data set contains the nlcv results of selection of features with t-test on a weak hetero signal dataset.

Usage

nlcvTT_WS

Format

nlcv object

nldaI

new MLInterfaces schema for lda from MASS

Description

This interface keeps track of the predictions on the training and test set, contrary to the ldaI interface that is made available in the MLInterfaces package.

Usage

nldaI

pamrI 13

Format

An object of class learnerSchema of length 1.

Details

nldaI is an object of class 'learnerSchema' and can be used as such in calls to MLearn (from MLInterfaces).

See Also

See Also IdaI

pamrI

Instance of a learnerSchema for pamr models

Description

This object is an instance of the learnerSchema object and will be typically used as the method argument of an MLearn call.

Usage

pamrI

Format

An object of class learnerSchema of length 1.

Author(s)

Tobias Verbeke

See Also

MLearn

14 pamrML

```
.method = pamrI,
trainInd = 1:15))
```

pamrIconverter

convert from pamrML to classifierOutput

Description

convert from pamrML to classifierOutput

Usage

```
pamrIconverter(obj, data, trainInd)
```

Arguments

obj object as returned by pamrML i.e. of class pamrML

data original data used as input for MLearn trainInd training indices used as input to MLearn

Value

object of class classifierOutput

pamrML

Wrapper function around the pamr.* functions

Description

The pamrML functions are wrappers around pamr.train and pamr.predict that provide a more classical R modelling interface than the original versions.

Usage

```
pamrML(formula, data, ...)
```

Arguments

formula model formula data data frame

... argument for the parmTrain function

pamrML 15

Details

The name of the response variable is kept as an attribute in the pamrML object to allow for predict methods that can be easily used for writing converter functions for use in the MLInterfaces framework.

Value

For pamrML an object of class pamrML which adds an attribute to the original object returned by pamr.train (or pamrTrain).

The print method lists the names of the different components of the pamrML object.

The predict method returns a vector of predicted values

Author(s)

Tobias Verbeke

See Also

```
pamr.train, pamr.predict
```

```
set.seed(120)
x <- matrix(rnorm(1000*20), ncol=20)</pre>
y <- sample(c(1:4), size=20, replace=TRUE)
# for original pam
mydata <- list(x=x, y=y)</pre>
mytraindata \leftarrow list(x=x[,1:15],y=factor(y[1:15]))
mytestdata \leftarrow list(x = x[,16:20], y = factor(y[16:20]))
# for formula-based methods including pamrML
alldf <- cbind.data.frame(t(mydata$x), y)</pre>
traindf <- cbind.data.frame(t(mytraindata$x), y = mytraindata$y)</pre>
testdf <- cbind.data.frame(t(mytestdata$x), y = mytestdata$y)</pre>
### create pamrML object
pamrMLObj <- pamrML(y ~ ., traindf)</pre>
pamrML0bj
### test predict method
predict(object = pamrMLObj, newdata = testdf,
    threshold = 1) # threshold compulsory
```

16 pamrTrain

pamrTrain

Function providing a formula interface to pamr.train

Description

Function that provides a classical R modelling interface, using a formula and data argument

Usage

```
pamrTrain(formula, data, ...)
```

Arguments

```
formula formula data frame
```

... further arguments to be passed to pamr.train

Value

Object that is perfectly identical to the object returned by pamr. train

Author(s)

Tobias Verbeke

See Also

```
pamr.train
```

```
set.seed(120)
x <- matrix(rnorm(1000*20), ncol=20)
y <- sample(c(1:4), size=20, replace=TRUE)
alldf <- cbind.data.frame(t(x), y)
pamrTrain(y ~ ., alldf)</pre>
```

predict.pamrML 17

predict.pamrML

predict pamrML object

Description

```
predict pamrML object
```

Usage

```
## S3 method for class 'pamrML'
predict(object, newdata, ...)
```

Arguments

object pamrML object newdata new data

... additional parameters for the pamr.predict function

Value

```
output of the pamr.predict function
```

```
print. \verb| nlcvConfusionMatrix| \\ print | object | \verb| nlcvConfusionMatrix| \\
```

Description

```
print object nlcvConfusionMatrix
```

Usage

```
## S3 method for class 'nlcvConfusionMatrix' print(x, ...)
```

Arguments

```
x object of class nlcvConfusionMatrix
... additional parameters for the print function
```

Value

no returned value, the object is printed in the output

print.pamrML

print pamrML object

Description

```
print pamrML object
```

Usage

```
## S3 method for class 'pamrML'
print(x, ...)
```

Arguments

x object of class pamrML

... additional parameters for the print function

 $\verb|print.summary.mcrPlot|| print \textit{function for} \verb|summary.mcrPlot|| object$

Description

```
print function for summary.mcrPlot object
```

Usage

```
## S3 method for class 'summary.mcrPlot'
print(x, digits = 2, ...)
```

Arguments

Object of class 'summary.mcrPlot' as produced by the function of the same name
 number of digits to be passed to the default print method
 additional parameters for the print.default function

rankDistributionPlot 19

rankDistributionPlot Plot the Distribution of Ranks of Features Across nlcv Runs

Description

This plot offers an overview of the distribution of the ranks of the n best-ranked features. The order of the features is determined by the median rank of the feature across all nlcv runs.

Usage

```
rankDistributionPlot(nlcvObj, n = 5, ...)
```

Arguments

nlcv0bj object of class nlcv as produced by the nlcv function

n number of features for whicht the distribution should be displayed

additional arguments to the boxplot functions (such as main, sub, etc.

Value

For each of the n features, a boxplot is displayed.

Author(s)

Willem Talloen and Tobias Verbeke

Examples

```
{
  data(nlcvRF_SS)
  rankDistributionPlot(nlcvRF_SS, n = 9)
}
```

rocPlot

Produce a ROC plot for a classification model belonging to a given technique and with a given number of features.

Description

Produce a ROC plot for a classification model belonging to a given technique and with a given number of features.

Usage

```
rocPlot(nlcvObj, tech, nfeat, main = NULL, globalAUCcol = "#FF9900", ...)
```

20 scoresPlot

Arguments

nlcvObj	object of class 'nlev' as produced by the nlev function
tech	technique; character of length one; one of 'dlda', 'lda', 'nlda', 'qda', 'glm', 'randomForest', 'bagg', 'pam', 'svm' or 'ksvm'
nfeat	number of features used in the classification model; numeric of length one
main	main title to be used for the ROC plot
globalAUCcol	color for the global AUC (defaults to '#FF9900')
	further arguments for the plot call (such as sub e.g.)

Value

A ROC plot is drawn to the current device

Author(s)

Tobias Verbeke

Function to Plot a Scores Plot	scoresPlot

Description

Function to plot, for a given nested loop cross-validation object, a given classification technique and a given number of features used for the classification, the scores plot. This plot diplays the proportion of correctly-classified per sample across all runs of the nested loop cross-validation. The class membership of the samples is displayed using a colored strip (with legend below the plot).

Usage

```
scoresPlot(nlcvObj, tech, nfeat, plot = TRUE, barPlot = FALSE,
layout = TRUE, main = NULL, sub = NULL, ...)
```

Arguments

nlcvObj	Object of class 'nlcv' as produced by the nlcv function
tech	string denoting the classification technique used; one of 'dlda', 'bagg', 'pam', 'rf', or 'svm'.
nfeat	integer giving the number of features; this number should be part of the initial set of number of features that was specified during the nested loop cross-validation (nFeatures argument of the nlcv function)
plot	logical. If FALSE, nothing is plotted.
barPlot	Should a barplot be drawn (TRUE) or the alternative MCREstimate-type scores plot (the default, FALSE).

summary.mcrPlot 21

layout	boolean indicating whether mcrPlot should prespecify a layout for a single plot (default, TRUE) or whetherl the user takes care of the layout (FALSE)
main	Main title for the scores plot; if not supplied, 'Scores Plot' is used as a default
sub	Subtitle for the scores plot; if not supplied, the classification technique and the chosen number of features are displayed
	Additional graphical parameters to pass to the plot function

Value

A scores plot is displayed (for the device specified).

The function invisibly returns a named vector containing (for each sample) the proportion of times the sample was correctly classified (for a given technique and a given number of features used).

Author(s)

Willem Talloen and Tobias Verbeke

	summary function for mcrPlot object	summary.mcrPlot
--	-------------------------------------	-----------------

Description

summary function for mcrPlot object

Usage

```
## S3 method for class 'mcrPlot'
summary(object, ...)
```

Arguments

object	Object of class 'mcrPlot' as produced by the function of the same name
	additional arguments, not used here

22 topTable-methods

topTable-methods

Methods for topTable

Description

Methods for topTable. topTable extracts the top n most important features for a given classification or regression procedure.

Usage

```
## S4 method for signature 'nlcv'
topTable(fit, n = 5, method = "percentage")
```

Arguments

fit object resulting from a classification or regression procedure

n number of features that one wants to extract from a table that ranks all features

according to their importance in the classification or regression model

method used to rank the features; one of percentage (percentage of runs the

feature is selected in the top n), meanrank (mean rank of the feature across runs) or medianrank (median rank of the feature across runs); percentage is the

default method

Details

The top n features are extracted across all runs of the nested loop cross-validation. After ranking on their frequency of selection, the top n are retained and returned.

Value

a data frame of one column (percentage) with percentages reflecting the frequency of selection of a feature in the top n across all runs; the features are sorted on decreasing frequency.

Methods

```
nlcv nlcv objects are produced by nlcv
```

Author(s)

```
fit = "nlcv" Willem Talloen and Tobias Verbeke
```

```
data(nlcvRF_SS)
topTable(nlcvRF_SS, n = 7, method = "medianrank")
```

xtable.confusionMatrix 23

```
xtable.confusionMatrix
```

xtable method for confusionMatrix objects

Description

xtable method for confusionMatrix objects

Usage

```
## S3 method for class 'confusionMatrix'
xtable(x, caption = NULL, label = NULL,
    align = NULL, digits = NULL, display = NULL, ...)
```

Arguments

X	object of class 'confusionMatrix' as produced by the confusionMatrix
caption	LaTeX caption, see the xtable help page
label	LaTeX label, see the xtable help page
align	alignment specification, see the xtable help page
digits	number of digits to display, see the xtable help page
display	format of the columns, see the xtable help page
	additional arguments to be passed to xtable

Value

LaTeX table representing the confusion matrix

Author(s)

Willem Talloen and Tobias Verbeke

See Also

```
confusionMatrix, xtable
```

```
xtable.summary.mcrPlot
```

xtable method for summary.mcrPlot objects

Description

xtable method for summary.mcrPlot objects

Usage

```
## S3 method for class 'summary.mcrPlot'
xtable(x, caption = NULL, label = NULL,
   align = NULL, digits = NULL, display = NULL, ...)
```

Arguments

Х	object of class 'summary.mcrPlot' as produced by the summary.mcrPlot
caption	LaTeX caption, see the xtable help page
label	LaTeX label, see the xtable help page
align	alignment specification, see the xtable help page
digits	number of digits to display, see the xtable help page
display	format of the columns, see the xtable help page
	additional arguments to be passed to xtable

Value

LaTeX table representing the summary of the mcrPlot output, i.e. the optimal number of features, the mean MCR and the standard deviation on the MCR for each of the classification methods used.

Author(s)

Willem Talloen and Tobias Verbeke

See Also

```
summary.mcrPlot, mcrPlot, xtable
```

```
data(nlcvRF_SS)
mp <- mcrPlot(nlcvRF_SS, plot = FALSE)
smp <- summary(mp)
xtable(smp)</pre>
```

Index

* htest	nlcvTT_SHS, 11
nlcv, 7	nlcvTT_SS, 11
* manip	nlcvTT_WHS, 12
confusionMatrix.nlcv,3	nlcvTT_WS, 12
inTrainingSample, 4	nldaI, 12
mcrPlot, 5	111441, 12
nldaI, 12	pamr.predict, <i>15</i> , <i>17</i>
rankDistributionPlot, 19	pamr.train, <i>15</i> , <i>16</i>
	pamrI, 13
scoresPlot, 20	pamrIconverter, 14
topTable-methods, 22	pamrML, 14
xtable.confusionMatrix, 23	· ·
xtable.summary.mcrPlot, 24	pamrTrain, 16
* methods	predict.pamrML, 17
topTable-methods, 22	print.nlcvConfusionMatrix, 17
* models	print.pamrML, 18
limmaTwoGroups, 5	print.summary.mcrPlot, 18
pamrI, 13	10:
pamrML, 14	rankDistributionPlot, 19
pamrTrain, 16	rocPlot, 19
* regression	21 . 20
limmaTwoGroups, 5	scoresPlot, 20
• /	summary.mcrPlot, 21, 24
compareOrig, 2	+T-bl- (+T-bl
confusionMatrix, 23	topTable (topTable-methods), 22
confusionMatrix.nlcv, 3	topTable,nlcv-method
	(topTable-methods), 22
inTrainingSample,4	topTable-methods, 22
7.1.7.10	xtable, 23, 24
ldaI, <i>13</i>	
limmaTwoGroups, 5	xtable.confusionMatrix, 23
manDlat 5 24	xtable.summary.mcrPlot,24
mcrPlot, 5, 24	
MLearn, <i>13</i>	
nlcv, 3, 6, 7, 8–12	
nlcvRF_R, 8	
nlcvRF_SHS, 9	
nlcvRF_SS, 9	
nlcvRF_WHS, 10	
nlcvRF_WS, 10	
nlcvTT_R, 11	