Ćwiczenia z ANALIZY NUMERYCZNEJ (M)

Lista M 9

27 listopada 2014 r.

M 9.1. 1,5 punktu Rozważmy aproksymację średniokwadratową na zbiorze dyskretnym $D_N = \{x_0, x_1, \dots, x_N\}$. Niech $\{P_k(x)\}_{k=0,1,\dots,N}$ będzie układem wielomianów ortonormalnych, tzn.

$$\sum_{j=0}^{N} P_r(x_j) P_s(x_j) = \delta_{rs}, \qquad 0 \leqslant r, s \leqslant N,$$

oraz niech $w_n^*(x) := \sum_{k=0}^N d_k P_k(x)$, gdzie $d_k := \sum_{j=0}^N f(x_j) P_k(x_j)$. Uzasadnić, że spośród wszystkich wielomianów $w_n \in \Pi_n$, najmniejszą wartość sumy

$$\sum_{j=0}^{N} |f(x_j) - w_n(x_j)|^2$$

można uzyskać tylko dla wielomianu w_n^* .

- M 9.2. 1 punkt Uzasadnić poprawność metody ortogonalizacji Grama-Schmidta.
- **M 9.3.** 1 punkt Niech f będzie funkcją ciągłą w przedziałe [a,b]. Wykazać, że dla dowolnego podprzedziału [c,d] tego przedziału zachodzi nierówność $E_n(f;[c,d]) \leq E_n(f;[a,b])$, gdzie $E_n(f;T)$ oznacza n-ty błąd apryksymacji jednostajnej dla funkcji f na zbiorze T, tzn. $E_n(f;T) \coloneqq \inf_{w_n \in \Pi_n} \|f w_n\|_{\infty}^T$.
- **M 9.4.** 1,5 punktu Niech f będzie funkcją ciągłą na odcinku [a,b], a w_n wielomianem stopnia nie wyższego niż n. Udowodnić, że jeśli istnieją takie n+2 punkty $x_0,x_1,\ldots,x_{n+1}\in[a,b]$, że $x_0< x_1<\ldots< x_{n+1}$ i że
 - (i) $f(x_j) w_n(x_j) = -[f(x_{j-1}) w_n(x_{j-1})]$ (j = 1, 2, ..., n+1),
 - (ii) $|f(x_k) w_n(x_k)| = ||f w_n||_{\infty}$ (k = 0, 1, ..., n + 1),

to w_n jest n-tym wielomianem optymalnym w sensie aproksymacji jednostajnej dla funkcji f.

- **M 9.5.** 1 punkt Wyznaczyć pierwszy wielomian optymalny w sensie aproksymacji jednostajnej dla funkcji $f(x) = \sqrt{x}$ w przedziale [0,1].
- **M 9.6.** 1 punkt Niech będzie $f(x) = x^{n+1} + a_1 x^n + \ldots + a_n x + a_{n+1}$ $(-1 \le x \le 1; a_1, \ldots, a_{n+1} a_n x + a_n x$
- **M 9.7.** 2 punkty Niech dla $f \in C[a,b]$ istnieją wszystkie pochodne i niech $|f^{(k)}(x)| > 0$ dla każdego $x \in [a,b]$ $(k=1,2,\ldots)$. Wykazać, że dla każdego $n \ge 0$ zachodzi wówczas nierówność $E_n(f) > E_{n+1}(f)$.
- **M 9.8.** 1 punkt Wyznaczyć trzeci wielomian optymalny w sensie normy jednostajnej na zbiorze $\{0,1,2,4,6\}$ dla funkcji o wartościach