Student Information

Full Name : Melis Ece Ünsal

 $Id\ Number:\ 2237865$

Answer 1

a)

p	q	$\neg p$	$ q \rightarrow \neg p $	$p \leftrightarrow q$	$ \mid (q \to \neg p) \leftrightarrow (p \leftrightarrow q) $
T	T	F	F	T	F
T	F	F	T	F	F
F	T	T	T	F	F
F	F	T	T	T	T

b)

$\mid p$	q	r	$p \lor q$	$p \leftrightarrow r$	$q \rightarrow r$	$ (p \lor q) \land (p \leftrightarrow r) \land (q \to r) $	$\big ((p \lor q) \land (p \leftrightarrow r) \land (q \to r)) \to r$
T	T	T	T	T	T	T	T
$\mid T$	T	F	T	F	F	T	T
$\mid T$	F	T	T	T	T	T	T
$\mid T$	F	F	T	F	T	T	T
$\mid F$	T	T	T	T	T	T	T
$\mid F$	T	F	T	T	F	T	T
$\mid F$	F	T	F	T	T	T	T
$\mid F$	F	F	F	T	T	T	T

Since at the end we reach all True's, then this means that we found tautology.

Answer 2

We need to prove $\neg p \rightarrow (q \rightarrow r) \equiv q \rightarrow (p \lor r)$:

$$\neg p \to (q \to r)$$

- $\equiv p \vee (q \rightarrow r)$ logical eqv. implication elim.
- $\equiv p \vee (\neg q \vee r)$ logical eqv. implication elim.
- $\equiv \neg q \lor (p \lor r)$ assosiative law
- $\equiv q \rightarrow (p \vee r)$ logical egv. implicaton introduction

Answer 3

- a) $\forall x \ L(x,Burak)$
- b) $\forall y \ L(Hazal,y)$
- $c) \forall x \exists y \ L(x,y)$

```
d)¬∃x (\forally L(x,y))
e)
f)¬∃x (L(x,Burak) \wedge L(x,Mustafa))
g)∃x∃y (L(Ceren,x) \wedge L(Ceren,y) \wedge (x \neq y))\wedge \forallz (L(Ceren,z) \rightarrow ((z=x) \vee (z=y)))
h)\forallx ((∃y L(x,y)) \wedge \forallz (L(x,z) \rightarrow (z=y)))
i)\forallx ¬L(x,x)
j) ∃x∃y (L(x,y) \wedge y ¬x) \wedge \forallz(L(x,z) \wedge (z=y) \wedge (z\neqx))
```

Answer 4

1	$p \to (r \to q)$	premise
2	$q \to s$	premise
3	p	premise
4	$r \to q$	→e 1,3
5	q	Assumption
6	r	Assumption
7	q	$\rightarrow e, 4$
8	\perp	$\neg e, 2, 5$
9	$\neg r$	$\neg i, 6-8$
_10	$\neg r \lor s$	$\forall i,9$
11	$.\neg q \to (s \lor \neg r)$	→i,5-10

Answer 5

1	$\forall x (p(x) \to q(x))$	premise
2	$\exists x \neg r(x)$	premise
3	$\exists x (p(x) \land q(x))$	premise
4	$\neg r(a)$	Assumption
5	$c p(c) \vee r(a)$	Assumption
6	p(c)	Assumption
7	p(c)	copy
8	r(a)	Assumption
9	\perp	$\neg e, 4, 8$
10	p(c)	$\perp e, 9$
11	p(c)	$\forall e, 5, 6-7, 8-10$
12	$\forall y (p(y) \to q(y))$	$\forall xe, 1$
13	$p(c) \to q(c)$	$\forall xe, 12$
_14	q(c)	$\rightarrow e, 11, 13$
15	$\exists z q(z)$	$\exists zi, 5-14$
16	$\exists z q(z)$	$\exists ze, 4-15$