PUSH-PULL TEST FOR IN SITU DETERMINATION OF MICROBIAL METABOLIC ACTIVITIES: DENITRIFICATION AND METHANOGENESIS

by

Paul James Odenthal

A PROJECT submitted to Oregon State University

in partial fulfillment of the requirements for the degree of

Master of Science

September 1995

19960229 086

Abstract

Quantitative information on subsurface microbial processes is needed for many applications, but information obtained by existing methods can be difficult to interpret. The goal of this project was to develop a single well, "push-pull" test for the determination of in situ microbial metabolic activities. The method consists of an injection of a test solution into an existing monitoring well followed by the extraction of the groundwater/test solution mixture from the same well. The test solution consists of a tracer and one or more reactive solutes selected to investigate the activity of a specific microbial system. During the extraction phase, the concentrations of all components of the test solution and potential reaction products are measured and used to develop breakthrough curves. A series of tests were used to investigate the processes of denitrification and methanogenesis by injecting solutions with nitrate, nitrite, or dissolved hydrogen gas in a petroleum contaminated, anaerobic zone of an unconfined, alluvial aquifer and in an uncontaminated, aerobic zone of the same aquifer located directly upgradient of the contaminated zone. Nitrate and nitrite injections yielded utilization rates that were approximately 2.5 times greater in the contaminated zone (than in the uncontaminated zone) where 80% of the injected nitrate mass and 90% of the injected nitrite mass were utilized. During the nitrate injection tests, trace amounts of produced mitrite were detected. The hydrogen injection test resulted in a 60% loss of hydrogen with no detectable methane production in the contaminated well. The "push-pull" field procedure developed in this project was shown to be capable of determining and quantifying microbial metabolic activity in situ.

Tables

- Table 1. Summary of Sampling for MW-2 and MW-4
- Table 2. Initial Groundwater Concentrations
- Table 3. Comparison of Nitrate Injection Tests
- Table 4. Results of Nitrite Injection Tests
- Table 5. Results of the Hydrogen Injection Test

Figures

- Figure 1. Injection System
- Figure 2. Extraction and Measurement System
- Figure 3. Monitoring Well Locations
- Figure 4. Water Table Contour Map
- Figure 5. Breakthrough Curve, Nitrate Injection in MW-2, 18 August 1995
- Figure 6. Breakthrough Curve, Nitrate Injection in MW-4, 13 September 1995
- Figure 7. Breakthrough Curve, Nitrite Injection in MW-2, 17 August 1995
- Figure 8. Breakthrough Curve, Nitrate Injection in MW-4, 22 August 1995
- Figure 9. Breakthrough Curve, Hydrogen Injection in MW-4, 6 September 1995

Appendices

Appendix I. Boring Log and Construction Data For Monitoring Well MW-4

Appendix II. Chronological Record of Tests Performed at the Chevron Site

Appendix III. Field Notes and Calculations for Nitrate Injection Tests.

Appendix IV. Field Notes and Calculations for Nitrite Injection Tests.

Appendix V. Field Notes and Calculations for Hydrogen Injection Test

PUSH-PULL TEST FOR IN SITU DETERMINATION OF MICROBIAL METABOLIC ACTIVITIES: DENITRIFICATION AND METHANOGENESIS.

Introduction

Background

There is a growing need for the ability to determine microbial activity in the field.

This information is needed for a variety of applications. It is necessary for quantifying rates of intrinsic bioremediation (natural attenuation) of groundwater contaminants. It can also provide site-specific values for microbial activities used in designing enhanced in situ bioremediation systems. Field determination is also a powerful tool for comparing the effectiveness of proposed alternate remediation strategies. In a broad sense, it also improves our understanding of microbially mediated reactions in the subsurface at contaminated and pristine sites.

Information on *in situ* microbial activity obtained using existing methods can be inaccurate, difficult to interpret, and time intensive. Several methods which are commonly used are: rate calculations based on monitoring well data; batch, column and microcosm reactor studies; direct observation, cell counts, and biochemical markers; analysis of geochemistry data; and molecular methods. Several problems limit the usefulness of these existing methods. Several methods require core material which may not be readily available or can be costly to obtain. Another major limitation is that determining field conditions and reproducing them in an artificial laboratory environment is difficult and never completely achieved. Small sample volumes used in these methods may not provide an adequate representation of actual field conditions and often a mass

balance can not be determined. Sample collection procedures can also disturb actual conditions and contamination often occurs during sampling. Selective growth and enrichment techniques also are of limited value as they do not provide an overall picture of competing processes in a complex consortium of microbial species.

Objective

The overall objective of this research was to develop a simple yet effective field procedure that allows microbial metabolic activity to be measured *in situ*. This resulted in the development of a single well, push-pull method which has applications for both aerobic and anaerobic processes. In a push-pull test a solution is injected into a groundwater aquifer through a well and then extracted from the same well. The test allows for various electron acceptors or donors to be introduced to the subsurface in an ionic form or as a dissolved gas. In most cases, the test can be performed in a single day in most monitoring wells. The push-pull procedure also allows for a rigorous mass balance and calculation of reaction rates.

Microbial Processes

Denitrification

Denitrification is an anaerobic respiration process where nitrate (NO₃⁻¹) is sequentially reduced to gaseous forms such as nitrous oxide (N₂O) and nitrogen gas (N₂). The denitrification process is mediated by facultative aerobic bacteria such as *Pseudomonas* which in the absence of oxygen will use nitrate or other inorganics as electron acceptors (Brock et al., 1994).

The nitrate is first reduced to nitrite (NO_2^{-1}) . In this reaction the nitrogen is taken from a +5 oxidation state to +3. Nitrate acts as an electron acceptor and the transformation is characterized by the half reaction and the free energy of formation $(\Delta G^{\circ \circ})$:

$$0.5 \text{ NO}_3^{-1} + \text{H}^+ + e^- \rightarrow 0.5 \text{ NO}_2^{-1} + 0.5 \text{ H}_2\text{O}$$

$$\Delta G^{\text{o}} = -41.7 \text{ KJ/} e^- \text{-mole}$$

When coupled with an organic compound as the electron donor a generalized equation would be of the form:

Carbon Source +
$$NO_3^{-1} \rightarrow NO_2^{-1} + CO_2 + H_2O$$

The nitrite is then reduced predominantly to nitrous oxide or nitrogen gas which have nitrogen oxidation states of +1, and 0, respectively. Nitrous oxide can be produced directly from nitrite or with nitric oxide (oxidation state +2) as an intermediate. The electron acceptor half reaction in which nitrite is transformed to nitrous oxide is:

$$0.5 \text{ NO}_2^{-1} + 1.5 \text{ H}^+ + e^- \rightarrow 0.25 \text{ N}_2\text{O} + 0.75 \text{ H}_2\text{O}$$

$$\Delta G^{\text{o}} = -73.5 \text{ KJ/} e^- \text{-mole}$$

A complete reaction can be generalized by:

Carbon Source +
$$NO_2^{-1} \rightarrow N_2O + CO_2 + H_2O$$

Nitrous oxide can be further reduced to nitrogen gas:

$$0.5 \text{ N}_2\text{O} + \text{H}^+ + e^- \rightarrow 0.5 \text{ N}_2 + 0.5 \text{ H}_2\text{O}$$

 $\Delta G^{\text{o}} = -130.9 \text{ KJ/} e^-\text{-mole}$

Methanogenesis

Methanogenesis is an anaerobic respiration where methane is formed as a product.

This process is mediated by a highly specialized group of obligate anaerobes called methanogens. The most prevalent methanogenic process involves hydrogen gas as the electron donor and carbon dioxide as the electron acceptor:

$$4 H_2 + CO_2 \rightarrow CH_4 + 2 H_2O$$

$$\Delta G^{\circ}$$
 = -130.7 KJ/ reaction

In this reaction carbon is reduced from an oxidation state of +4 to -4 and hydrogen is oxidized from an oxidation state of 0 to +1 (Brock et al., 1994).

Hydrogen is available through a process called interspecies hydrogen transfer. In this process, energetically unfavorable reactions which convert higher carbon forms to acetate and also produce hydrogen are coupled with the above methanogenic reaction to yield an overall energetically favorable reaction.

Methods and Materials

Overview

The field experiments were conducted at a petroleum contaminated site in Corvallis, Oregon. Two existing monitoring wells were used. The first well is located in an uncontaminated, aerobic zone directly upgradient of the contaminated zone. The second well is located in the contaminated, anaerobic zone of the aquifer. The experiments consisted of an injection phase and an extraction phase. The injection was made using a measured quantity of tap water with a bromide tracer and various electron acceptors or donors. The extraction was accomplished using a submersible pump. During the

extraction, the concentrations of injected solution components and possible reaction products were measured. Concentration breakthrough curves were plotted. Mass balances and utilization rates were computed.

Pretest Pumping

Prior to beginning the injection phase the initial water level was measured using a contact meter (Model L 50M, Leupold and Stevens, Inc., Beaverton, Oregon).

Approximately 3 casing volumes (volume of the saturated portion of the well and the pore space of the sand pack) were extracted from the well to obtain an initial groundwater sample. The sample was used to calibrate test equipment, measure background concentrations of solution components, and determine the initial groundwater temperature.

Injection Phase

The injection consisted of 3 casing volumes of a prepared injection solution followed by 1 casing volume of tap water with no added solutes ("clean water"). In all tests, the clean water was sparged with nitrogen gas to remove dissolved oxygen. The injection solution was prepared using tap water and potassium bromide to establish a 100 mg/l (1.25 mM) bromide tracer solution. In the nitrate tests, sodium nitrate (NaNO₃) was added to the injection solution to prepare a 5 mg/l NO₃-1-N (0.36 mM NO₃-1-N) solution. The injection solution was sparged with compressed nitrogen gas to remove oxygen. In the nitrite tests, sodium nitrite (NaNO₂) was used to prepare a 0.5 mg/l NO₂-1-N (0.14 mM NO₂-1-N) solution and the solution was sparged with nitrogen gas. In the hydrogen

tests, the injection solution was first sparged with compressed nitrogen gas to remove dissolved oxygen and then sparged with compressed hydrogen gas to achieve hydrogen saturation.

The injection system is illustrated in Figure 1. The injection was accomplished using a two stage gas transfer system. Initial sparging occurred in a 125 gallon storage tank.

The solution was then pumped to a small gas adsorption column on the well head. Once entering the column the solution was distributed over a ceramic ring packing material.

The compressed gas entered the column below the packing material. A portion of the gas then traveled through the packing material, countercurrent to the water flow to provide effective gas transfer. After passing through the packing material the injection solution traveled through a hose to the bottom of the well accompanied by a small portion of gas. The gas traveling to the bottom of the well served to ensure that high dissolved concentrations were maintained during injection and also formed bubbles which serve to vertically mix the injection solution within the well casing.

The injection rate was selected to keep water table mounding (a vertical rise in the water table elevation) less than 20 centimeters (0.65 feet). Injection rates ranged from 0.75 liters per minute (0.2 gallons per minute (gpm)) to 2 liters per minute (0.5 gpm). Extraction Phase

The extraction system is shown in Figure 2. The extraction was accomplished using a portable sampling system (REEL E-Z Model 200, Instrumentation Northwest, Inc., Redmond, Washington) which includes an electrical submersible pump (MP1 Model

Page 7

Page 8

1A106003, Grundfos, Dierikon, Switzerland) controlled by a variable frequency inverter (INVERTRON BMI/MP1-115V Model 1A9915, Grundfos, Dierikon, Switzerland).

The extraction rate was selected to keep drawdown (vertical decline in the water table elevation) less than 20 centimeters (0.65 feet). Extraction rates ranged from 0.75 liters per minute (0.2 gpm) to 2 liters per minute (0.5 gpm).

The discharge from the sampling system was directed into 10 liter (2.6 gallon) volumetric containers. Samples were taken every 5 liters (1.3 gallons) or 10 liters (2.6 gallons) of extraction and elapsed time from the beginning of the extraction phase was recorded to establish the flow rate. The total extracted volume was approximately three times the volume of the total injected volume.

Sample Analysis

Bromide

Bromide concentrations were measured by a combination glass body bromide electrode (Model 27502-05, Cole-Parmer Instrument Company, Niles, Illinois). The bromide electrode was connected to an ion-specific meter (Accumet Model 25, Denver Instrument Company, Arvada, Colorado) which displayed the probe potential in millivolts. Millivolt readings were converted to concentrations using standard curves developed in the field prior to the start of each experiment. The standard curve consisted of eight data points ranging from 5 mg/l (0.06 mM) to 120 mg/l (1.5 mM) with an average correlation coefficient in excess of 0.999.

Dissolved Hydrogen Gas

Dissolved hydrogen concentrations were determined using amperimetric methods as described in Hanus *et al.* (1980) using a Clark type polarigraphic oxygen probe (Model 5331, Yellow Springs Instrument Co., Yellow Springs, OH). The probe was conditioned using an electrode preconditioning oscillator and connected to a modified dissolved oxygen meter (YSI Model 5300 Biological Oxygen Monitor, Yellow Springs Instrument Co., Yellow Springs, OH) as described in Sweet et al. (1980). The meter displayed the dissolved hydrogen concentration in percent of saturation. Measurements were conducted in a water jacketed glass chamber using the extraction pump discharge as the temperature control fluid.

Nitrate

Nitrate-nitrogen concentrations in the range of 0 to 1 mg/l (0.07 mM) and 1 (0.07 mM) to 5 mg/l (0.36 mM) expressed as NO₃⁻¹-N, were determined using CHEMets® self filling ampoules for colorimetric analysis (Cat. No. K-6902, CHEMetrics, Inc., Calverton, Virginia). The method is described in APHA (1992), ASTM (1993), and EPA (1983). Nitrite

Nitrite-nitrogen concentrations in the range of 0 to 0.4 mg/l (0.03mM) and 0.4 (0.03 mM) to 2 mg/l (0.14 mM) expressed as NO₂⁻¹-N, were determined using CHEMets® self filling ampoules for colorimetric analysis (Cat. No. K-7002, CHEMetrics, Inc., Calverton, Virginia). The method is referenced in APHA (1980).

Methane

Ten milliliters groundwater samples were taken from the extraction pump discharge using a syringe and injected into a 40 mL serum bottle. After allowing 24 hours for equilibration with the gas phase, a 100 μ L headspace sample was analyzed using a gas chromatograph (Model GC-8A, Shimadzu Instrumentation, Inc., Columbia, Maryland) with a 1 meter, 0.125 inch inside diameter stainless steel column and a flame ionization detector.

Dissolved Oxygen

Dissolved oxygen concentrations in the range of 0 to 100 μg/l (3 μM) and 0 to 1 mg/l (0.03 mM) were determined by using CHEMets® self filling ampoules for colorimetric analysis (Cat. No. K-7599 and Cat. No. Ķ-7501, CHEMetrics, Inc., Calverton, Virginia). The method is referenced in ASTM (1984).

Field Logistics

A one ton flatbed truck with stake sides was used to transport equipment and served as a work platform. Power was supplied for electrical equipment by a 4400 watt, 8 horsepower gasoline powered generator (Model LR4400, Homelite, Charlotte, North Carolina). Three 125 gallon polyolefin tanks (TK125X30, Snyder Industries, Inc., Lincoln, NE) were used for holding injection solutions and extracted groundwater. A 12 inch dumpy level (Model 2040, Seiler Instrument and Manufacturing Co., St. Louis, MO), a Philadelphia rod (Type C, Keuffel and Esser Co.) and a contact meter were used to determine the elevation of the well heads.

Site Description

History, Location, and Nature of Contamination

The test site is a former Chevron Bulk Terminal Transfer Station, # 100-1761, located at 1225 SE Third Street, in Corvallis, Oregon. The site was contaminated with petroleum hydrocarbons from leaking underground storage tanks and surface spills during transfer operations. A total of fourteen monitoring wells and one recovery well were installed for monitoring and remediation. The monitoring wells were sampled for BTEX (Benzene, Toluene, Ethylbenzene, and Xylenes) contamination over a five year period. At the conclusion of the remediation phase, several of the wells were abandoned. The locations of the remaining active monitoring wells are shown on Figure 3.

Test Well Descriptions

The existing wells used for this study consist of an upgradient well, MW-2, and a downgradient well, MW-4. A water table elevation contour map with the locations of MW-2 and MW-4 superimposed is shown in Figure 4. Groundwater flow at the site is towards the Northeast at approximately one foot per day (0.3 meters per day).

The upgradient well, MW-2, is a 4 inch (10.2 centimeter) diameter monitoring well approximately 21 feet (6.4 meters) deep, fully screened across a saturated thickness of approximately 3.3 feet (1 meter). The downgradient well, MW-4, is a 2 inch (5.1 centimeters) diameter monitoring well approximately 30.5 feet deep (9.3 meters) with a 15 foot (4.6 meters) screened interval, and average saturated thickness of approximately

Page 13

Page 14

11 feet (3.4 meters). In general, the stratigraphy consists of a clayey silt overlying interbedded sands and gravels. The boring log for MW-4 is included as Appendix I. The boring log for MW-2 is not available.

Nature Of Contamination and Chemistry of Test Wells

MW-2 and MW-4 were tested periodically for BTEX contamination from August of 1989 to August of 1994. The testing dates and concentration ranges encountered are summarized in Table 1. Initial groundwater concentrations of injection solution components is given in Table 2.

Results and Discussion

Nitrate Injection Tests

Appendix II is a chronological record of all tests performed. Five nitrate injection tests were conducted; two in the upgradient well, MW-2 and three in the downgradient well, MW-4. The field data and calculations for the five tests are included as Appendix III. Table 3 is a summary of the results of two tests. The first test was conducted on 18 August 1995 in MW-2. The second test was conducted on 13 September 1995 in MW-4. Breakthrough curves for the tests performed in MW-2 and MW-4 are given as Figure 5 and Figure 6, respectively. The breakthrough curves are a plot of the relative concentration (C) measured divided by the injection concentration (Co) of each component versus the volume extracted divided by the total volume injected (Extracted/Injected).

In Table 3, the mass injected for bromide and nitrate were determined by the test method. The injected mass of nitrite reported is an assumed value based on the complete

Table 1: Summary of Sampling for MW-2 AND MW-4

Location	Date	Benzene	Toluene	Ethylbenzene	Xylene
		(ppb)	(ppb)	(ppb)	(ppb)
MW-2	Aug-89	ND	ND	ND	2
	Dec-89	ND	ND	3	ND
\	Apr-90	ND	ND	ND	ND
	Oct-90	ND	ND	ND	ND
	Dec-90	ND	ND	ND	ND
	Feb-91	ND	ND	ND	ND
	Sep-91	ND	ND	ND	ND
	Sep-92	*	*	*	*
	Sep-93	<0.5	<0.5	<0.5	<0.5
	Nov-93	<0.5	<0.5	<0.5	<0.5
	Feb-94	<0.5	<0.5	<0.5	<0.5
	May-94	<0.5	<0.5	<0.5	<0.5
	Aug-94	<0.5	<0.5	<0.5	<0.5
MW-4	Aug-89	2	ND	2	ND
	Dec-89	0.4	0.5	0.2	0.1
	Apr-90	1.5	0.4	0.8	0.8
\	Oct-90	ND	ND	ND	ND
	Dec-90	0.3	ND	0.3	0.2
	Feb-91	ND	ND	ND	ND
	Sep-91	ND	ND	ND	ND
	Sep-92	*	*	*	*
	Sep-93	1.2	<0.5	<0.5	<0.5
	Nov-93	*	*	*	*
	Feb-94	1.1	<0.5	<0.5	<0.5
	May-94	1.0	<0.5	<0.5	<0.5
	Aug-94	*	*	*	¥

=NOT MEASURED, SAMPLED OR ANALYZED

ND =NOT DETECTED ABOVE REPORTING LIMIT AS REPORTED BY OTHERS BTEX ANALYSIS BY EPA METHOD 8020

Table 2: Initial Groundwater Concentrations

Component	MW-2 mg/l	MW-4 mg/l
Oxygen	0.80	0.01
Nitrate-N	0.10	0.00
Nitrite-N	0.02	0.00
Hydrogen	0.02	0.03
Methane	ND*	0.067
Sulfate	16	0

^{*} ND = Not determined.

Table 3: Nitrate Injection Test Results

Well Date	:MW-2 18 August 1995	1995	MW-4 13 September 1995	-4 ber 1995	
	Volume Liters	Time <i>Minutes</i>	Volume Liters	Time Minutes	
Injection Solution Clean Total Extraction	58 30 88 142.5	86 24 110 161	90 35 125 247.5	100 30 130 197	
Component	Injection Concentration Mass mg/l mg	Extraction Percent Mass Recovery mg	t Injection Mass mg// mg// mg	Extraction Percent Mass Recovery mg	cent
Bromide Nitrate-N Nitrite-N*	93.57 5445.06 4.75 275.50 N/A 80.50	5144.06 93.92% 195.00 70.78% 3.88 4.81%	:% 107.65 9709.13 8% 4.50 405.00 % N/A 321.00	9671.80 84.00 1.00	99.62% 20.74% 0.31%
	Utilization Rate mg/l-min	Rate in	Utilization Rate mg/l-min	n Rate nin	
Nitrate-N Nitrite-N	0.0052	3 6	0.013	3	

* The nitrite injection mass given in this table is equal unrecovered nitrate mass.

Figure 5: Breakthrough Curve, Nitrate Injection in MW-2, 18 August 1995

Figure 6: Breakthrough Curve, Nitrate Injection in MW-4, 13 September 1995

conversion of the unrecovered nitrate to nitrite. The utilization rate was computed as the mass injected ($M_{injected}$) minus the mass recovered ($M_{recovered}$) divided by the volume injected ($V_{injected}$) and the time from the beginning of the injection phase to the mass centroid time of the bromide breakthrough curve ($T_{inject-centroid}$) or:

Utilization Rate = $(M_{injected} - M_{recovered})/(T_{inject-centroid} \times V_{injected})$

Comparing the results of the two tests, the utilization rates for nitrate were approximately 2.5 times greater for MW-4 than for MW-2. Approximately 71% of the nitrate was recovered in MW-2 compared to 21% in MW-4. Nitrite appeared in both tests in small quantities.

The breakthrough curves for both wells have a similar shape; however, the concentrations towards the end of the experiments tended to decrease more slowly in MW-4 than in MW-2. This effect appeared in all tests that were conducted. A possible explanation for this is that the localized groundwater flow at MW-4 is greater than at MW-2 causing more drift or dilution of the tracer. It is also possible that the difference in saturated thickness between the wells (approximately 3 meters at MW-4 and 1 meter at MW-2) created variances in mixing during injection. Also related to the difference in saturated thickness is the fact that the extraction pump inlet is near the bottom of the well and may not withdraw water uniformly across the saturated thickness.

Nitrite Injection Tests

A single test was run in each well where nitrite was injected into the aquifer. The first test was conducted in MW-2 on 17 August 1995 and the second in MW-4 on 22

August 1995. A summary of the test results is included as Table 4. The field notes and calculations are included as Appendix IV. Figure 7 and Figure 8 are the breakthrough curves.

The utilization rate was computed in the same fashion as described in the nitrate injection test section. MW-4 had a nitrite utilization rate that was 2.6 times greater than that of MW-2. The severe drop on the nitrite breakthrough curve in MW-4 indicates that the majority of the nitrite which reached the aquifer was converted.

Hydrogen Injection Test

A hydrogen test was performed in MW-4 on 6 September 1995. A summary of results is given in Table 5. The field notes and calculations are included as Appendix V. Figure 9 is the breakthrough curve.

In table 5, the injected mass of methane reported is the quantity of methane that would be produced if 100% of the unrecovered hydrogen was converted to methane by methanogenesis. Although only 40% of the hydrogen was recovered, the recovered mass of dissolved methane was extremely low. The shape of the methane breakthrough curve, Figure 9, shows a gradual return to the initial groundwater concentration with no detectable increase due to methane production. This does not mean that methanogenesis did not occur. It is possible that the duration of the test was not long enough for methane production to be detected above the initial groundwater concentration or that the reaction is limited by a lack of carbon dioxide. Due to the high diffusivity of hydrogen it is

Table 4: Nitrite Injection Test Results

Well Date	MW-2 17 August 1995	1995			MW-4 22 August 1995	1995	
	Volume Liters	Time <i>Minutes</i>	Time <i>dinutes</i>	Volume Liters		Time Minutes	ne Ites
Injection Solution Clean Total Extraction	55 30 85 232.5	39 34 73 203	3 4 6	84 30 114 242.5		87 28 114 193	ν π 4 ε
Component	Injection Concentration Mass <i>mg/l</i> mg	Extraction Mass mg	Percent Recovery	Injection Concentration mg//	Mass mg	Extraction Mass mg	Percent Recovery
Bromide Nitrite-N	115.90 6386.15 0.50 27.50	5614.10 19.80	87.91% 72.00%	93.74	7892.76 42.00	7898.06 3.30	100.07% 7.86%
	Utilization Rate mg/l-min	Rate in			Utilization Rate <i>mg/l-min</i>	Rate nin	
Nitrite-N	69000'0	69			0.0018	8	

Figure 7: Breakthrough Curve, Nitrite Injection in MW-2, 17 August 1995

Figure 8: Breakthrough Curve, Nitrite Injection in MW-4, 22 August 1995

Table 5: Hydrogen Injection Test Results

Well	M 6 Septer	MW-4 6 September 1995	
	Volume Liters	Time	se,
Injection Solution Clean Total Extraction	115 30 145 282.5	110 31 141	
Component	Injection Concentration Mass <i>mg/l mg</i>	Extraction Mass mg	Percent Recovery
Bromide Hydrogen Methane*	88.42 10185.08 1.63 187.44 N/A 446.59	.08 9238.47 .44 75.80 .59 6.15	90.71% 40.44% 1.38%
	Utilizat	Utilization Rate mg/l-min	
Hydrogen	0.0	0.0036	

* The methane injection mass given in this table is equal to the unrecovered hydrogen mass converted at a 1:4 molar ratio.

Figure 9: Breakthrough Curve, Hydrogen Injection in MW-4, 6 September 1995

plausible that a large quantity of mass was lost by diffusion through the tubing used for extraction or possibly reacted with another unidentified electron acceptor present in the groundwater.

Due to seasonal fluctuations in the groundwater table a test in MW-2 could not be performed.

Conclusions

The push-pull test developed is a powerful tool for determining microbial metabolic activity. The field tests conducted in this project demonstrated the application of this procedure for denitrification and methanogenesis. All experimental results were well defined and a rigid mass balance was achieved.

The nitrate and nitrite injection tests showed a significant difference in utilization rates between the contaminated and uncontaminated wells. This strongly suggests that denitrification occurred in the downgradient well. The hydrogen injection test showed a significant loss of hydrogen with no detectable methane production. No conclusion can be made as to whether methanogenesis occurred other than it is not as highly favorable a process as denitrification.

Recommendations

In tests where the initial groundwater concentration of a component was significant, the injection of the clean water flush made it impossible to directly distinguish the background concentration from the injected or produced quantity. A conservative tracer (other than that used in the injection solution) added to the clean water flush would allow for the differentiation between groundwater, injection solution, and clean water. This

however adds the complication of testing for another tracer. It may be possible to eliminate the clean water flush and increase the volume of the injected solution. This should yield data which could be interpreted similar to the results of this project.

It became apparent towards the end of the field tests that the gas adsorption column was capable of complete gas transfer without sparging in the 125 gallon tanks. In future tests, gas transfer could be performed effectively in a single stage using the gas adsorption column. This will not only simplify the procedure but will substantially decrease the amount of compressed gas required.

Acknowledgments

Funding for this research was provided by Chevron Research and Technology

Company and the National Center for Integrated Bioremediation Research and

Development. My participation in this research was with the permission and funded by
the Naval Facilities Engineering Command of the United States Navy. Thank you to

Jonathan D. Istok, Michael R. Hyman, Joseph B. Samer, Mark D. Humphrey, and Jeremy

Donaldson who collaborated in the development and implementation of the field
procedure. Also thanks to Glenn Salm and Allison Sears who assisted with field work. I
am also grateful for the support of Janet, Andrew, and Joanna who put up with long hours
and erratic work schedules.

References

- American Public Health Association. 1980. Standard Methods For the Examination of Water and Wastewater, 15th ed., p.380, method 419.
- American Public Health Association. 1992. Standard Methods For the Examination of Water and Wastewater, 18th ed., p.4-89, method 4500- NO₃-E.
- American Society for Testing and Materials. 1984. Power Plant Manual, First ed., p.169.
- American Society for Testing and Materials. 1993. Vol. 11.01 (I), p.583, method D 3867, part B.
- Brock, Thomas D., Madigan, Michael T., Martinko, John M., Parker, Jack. 1994. <u>Biology of Microorganisms</u>. Seventh Edition. Prentice Hall, Englewood Cliffs, New Jersey.
- Environmental Protection Agency. 1983. Methods for Analysis of Waters and Wastes, method 353.3.
- Hanus, F. Joe, Carter, Kevin R., and Evans, Harold J. 1980. Techniques for Measurement of Hydrogen Evolution by Nodules. Methods in Enzymology, 69, 731-739.
- HartCrowser Earth and Environmental Technologies. 1995. Soil Remediation Report-1994 Former Chevron Bulk Terminal No. 100-1761.
- Sweet, William J., Houchin, Jeffrey P., Rosen, Paul R., and Arp, Daniel J. 1980. Polarographic Measurement of H₂ in Aqueous Solutions. Analytical Biochemistry, 107, 337-340.

Appendix I

Boring Log and Construction Data For Monitoring Well MW-4

Boring Log and Construction Data for Monitoring Well MW-4

Geologic Log

Monitoring Well Design

- 1. Refer to Figure A-1 for explanation of descriptions and symbols.
- 2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
- *Overdrilled previously existing well MW-4. Descriptions from 0 to 18.5 feet based on log for previous well by others.
- Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.
- 5. Elevations are relative to Oreon State Highway Department Benchmark B-192 (elevation = 224.557 feet msl).

Appendix II

Chronological Record of Tests Performed at the Chevron Site

Chronological Record of Tests Performed at the Chevron Site

^{*} A bromide tracer was used in all tests.

Appendix III

Field Notes and Calculations for Nitrate Injection Tests

Field Test #11 Well MW-4 02 August 1995

Initial Groundwater Information

	il Cimia	
Component	Concentration	tration
	mV	l/gm
Bromide	161.6	1.12
Nitrate-N	N/A	0
OO	N/A	0.01

GW Temperature 22 °C

Injection Phase

Solution	Volume		Bromide		Z	Vitrate-N	Temp	Injection	Injection Rate
Type		Conc.	6	Mass	Conc.	Mass	ပွ	Tlme	Flow Rate
	Liters	/m	mg/l	mg	/bu	mg		min	Umin
NO ₃ /Bromide	105	99	66.06	9553.74	4.5	472.50	18	72.0	1.46
Clean Water	32	195	0.28	9.79	0	00.00	18	22.6	1.55
Total	140			9563.53		472.50			

Mass Balance

Mass Daiging			
Solution	Mass	SS	Percent
Component	Injected	Recovered	Recovered
	Вш	mg	
Bromide	6263.53	8562.02	89.53%
Nitrate-N	472.50	147.75	31 27%

Mass Utilization Rate

92.39 minutes	0.012 mg/l-min
Centroid of Mass	NO ₃ -N Utilization Rate

		164.39	0.6252	0.9996	80	9					
	Output:				,			-55.33	0.47	٠.	
	Regression Output	Constant	Std Err of Y Est	R Squared	No. of Observations	Degrees of Freedom		X Coefficient(s)	Std Err of Coef.		
	Conductance	س		125.9	108.2	92.7	76.8	66.1	58.8	53.2	49.4
urve		LOG(PPM)		0.70	1.00	1.30	1.60	1.78	1.90	2.00	2.08
Bromide Standard Curve	Standard Concentration	mg/l		5	10	20	40	09	80	100	120

Field Test #11 Well MW-4 02 August 1995

		_	m		O.	_	~		-	_	~	_	·	_	۵.		<u> </u>	_	600	_	60	_	-	_	-					_
	C/Co		0.13		0.22		0.33		0.44		0.33		0.18		0.22		0.09		0.18		0.18		0.09		0.13		0.07		0.04	
Nitrate-N	Mass	bu	ı	8.00		12.50		17.50		17.50		11.50		9.00		7.00		00.9		8.00		00.9		2.00		4.50		2.50		2.50
Z	Conc.	l/gm	09.0		1.00		1.50		2.00		1.50		08.0		1.00		0.40		08.0		0.80		0.40		09.0		0.30		0.20	
	တို့		0.18	0.28	0.45	0.51	0.57	0.61	0.64	0.59	0.59	0.54	0.53	0.49	0.48	0.45	0.43	0.40	0.38	0.35	0.34	0.32	0.31	0.30	0.29	0.28	0.27	0.26	0.25	0.24
e	Mass	mg		102.83	158.27	211.14	246.21	270.56	284.90	279.76	268.73	256.95	243.20	232.92	221.03	211.60	200.48	188.37	178.03	167.01	157.44	151.05	143.40	137.24	132.47	128.13	124.45	120.63	115.73	111.22
Bromide	Conc.	mg/l	16.11	25.02	38.29	46.17	52.31	55.91	58.05	53.86	53.63	49.15	48.13	45.03	43.38	41.26	38.93	36.42	34.79	32.01	30.96	29.46	27.90	26.99	26.00	25.25	24.53	23.72	22.57	21.92
	Conduct.	mV	97.60	87.02	76.80	72.30	69.30	67.70	08.99	68.60	68.70	70.80	71.30	72.90	73.80	75.00	76.40	78.00	79.10	81.10	81.90	83.10	84.40	85.20	86.10	86.80	87.50	88.30	89.50	90.20
	Extr./Inj.		0.05	0.05	0.09	0.13	0.16	0.20	0.23	0.27	0.30	0.34	0.38	0.41	0.45		0.52	0.55	0.59	0.63	0.66	0.70	0.73	0.77	0.80	0.84	0.88	0.91	0.95	0.98
Volume	Corrected	liters	2.50	7.50	12.50	17.50	22.50	27.50	32.50	37.50	42.50	47.50	52.50	57.50	62.50	67.50	72.50	77.50	82.50	87.50	92.50	97.50	102.50	107.50	112.50	117.50	122.50	127.50	132.50	137.50
	Recorded	liters	10.00	15.00	20.00	25.00	30.00	35.00	40.00	45.00	20.00	55.00	00.09	65.00	70.00	75.00	80.00	85.00	90.00	95.00	100.00	105.00	110.00	115.00	120.00	125.00	130.00	135.00	140.00	145.00
Time		minutes	6.73	10.08	13.42	16.92	20.17	23.75	28.67	31.67	34.42	37.83	40.00	43.75	46.00	49.00	51.67	54.75	57.75	61.67	64.17	67.17	70.17	72.92	75.67	78.25	81.33	84.08	87.17	90.17

Field Test #11 Well MW-4 02 August 1995

	လိုင		0.07		0.04		0.04		0.04		0.04		0.04		0.02		0.02		0.04		0.02		0.02		0.02		0.02		0.02		0.02
Nitrate-N	Mass	mg		2.50		2.00		2.00		2.00		2.00		1.50		1.00		1.50		1.50		1.00		1.00		1.00		1.00		1.00	
Ž	Conc.	₩ Mg/I	0.30		0.20		0.20		0.20		0.20		0.20		0.10		0.10		0.20		0.10		0.10		0.10		0.10		0.10		0.10
	c/Co		0.23	0.23	0.22	0.21	0.21	0.20	0.20	0.20	0.19	0.19	0.18	0.17	0.17	0.16	0.15	0.16	0.16	0.16	0.15	0.15	0.15	0.15	0.15	0.15	0.14	0.14	0.14	0.14	0.14
9	Mass	mg	107.59	104.27	101.91	98.79	95.15	91.66	89.76	89.57	87.21	84.85	82.78	78.92	76.79	73.86	70.22	71.12	72.89	71.85	70.36	69.56	68.84	68.84	69.56	68.50	65.57	63.94	63.67	63.01	61.97
Bromide	Conc.	mg/l	21.11	20.59	20.17	19.35	18.71	17.95	17.95	17.88	17.01	16.94	16.18	15.39	15.33	14.22	13.87	14.58	14.58	14.16	13.98	13.84	13.70	13.84	13.98	13.41	12.81	12.76	12.71	12.50	12.29
	Conduct.	mV	91.10	91.70	92.20	93.20	94.00	95.00	95.00	95.10	96.30	96.40	97.50	98.70	98.80	100.60	101.20	100.00	100.00	100.70	101.00	101.25	101.50	101.25	101.00	102.00	103.10	103.20	103.30	103.70	104.10
	Extr./Inj.		1.02	1.05	1.09	1.13	1.16	1.20	1.23	1.27	1.30	1.34	1.38	1.41	1.45	1.48	1.52	1.55	1.59	1.63	1.66	1.70	1.73	1.77	1.80	1.84	1.88	1.91	1.95	1.98	2.02
Volume	Corrected	liters	142.50	147.50	152.50	157.50	162.50	167.50	172.50	177.50	182.50	187.50	192.50	197.50	202.50	207.50	212.50	217.50	222.50	227.50	232.50	237.50	242.50	247.50	252.50	257.50	262.50	267.50	272.50	277.50	282.50
	Recorded	liters	150.00	155.00	160.00	165.00	170.00	175.00	180.00	185.00	190.00	195.00	200.00	205.00	210.00	215.00	220.00	225.00	230.00	235.00	240.00	245.00	250.00	255.00	260.00	265.00	270.00	275.00	280.00	285.00	290.00
Time		minutes	93.17	96.00	98.92	101.50	104.83	108.83	111.83	115.33	117.83	120.75	123.92	129.67	131.75	134.50	138.00	141.00	143.50	146.29	149.08	151.92	154.75	158.13	161.50	164.58	167.65	170.78	173.92	176.96	180.00

Well MW-4 02 August 1995 Field Test #11

Г	Ç		T	0 0	3	0 0		0 00		0 0	X.5	0 00		0 02		0.02		0.01		0 0		0.01		5
	C/C)				C		C		C		0		0		0		0		C		0		0 0
Nitrate-N	Mass	ma	1 00		1 00		1 00		1 00		1 00		1,00		100		0.75		0.50		0.50		0.50	
Z	Conc	l/gm		0 10		0.10		0.10		0.10		0.10		0.10		0.10		0.05		0.05		0.05		0.05
	ပို		0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.12	0.13	0.13	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.11	0.12	0.12	0.11	0.11
9	Mass	mg	61.33	61.20	60.82	60.19	59.94	59.94	59.20	57.51	56.79	57.26	56.56	54.93	54.13	53.91	53.57	53.02	52.58	52.25	52.36	53.02	52.80	51.93
Bromide	Conc.	<i>Mg</i> ∕	12.24	12.24	12.09	11.99	11.99	11.99	11.69	11.31	11.40	11.50	11.12	10.85	10.80	10.76	10.67	10.54	10.49	10.41	10.54	10.67	10.45	10.32
	Conduct.	NM	104.20	104.20	104.50	104.70	104.70	104.70	105.30	106.10	105.90	105.70	106.50	107.10	107.20	107.30	107.50	107.80	107.90	108.10	107.80	107.50	108.00	108.30
	Extr./Inj.		2.05	2.09	2.13	2.16	2.20	2.23	2.27	2.30	2.34	2.38	2.41	2.45	2.48	2.52	2.55	2.59	2.63	2.66	2.70	2.73	2.77	2.80
Volume	Corrected	liters	287.50	292.50	297.50	302.50	307.50	312.50	317.50	322.50	327.50	332.50	337.50	342.50	347.50	352.50	357.50	362.50	367.50	372.50	377.50	382.50	387.50	392.50
	Recorded	liters	295.00	300.00	305.00	310.00	315.00	320.00	325.00	330.00	335.00	340.00	345.00	350.00	355.00	360.00	365.00	370.00	375.00	380.00	385.00	390.00	395.00	400.00
Time		minutes	183.25	186.50	189.50	192.50	195.42	198.33	201.42	204.50	207.75	211.00	214.17	217.33	220.54	223.75	227.38	231.00	233.54	236.08	239.21	242.33	245.17	248.00

Total Recovered Bromide = Total Recovered Nitrate-N = Extraction Flow Rate =

8562.02 mg 147.75 mg 1.61 L/min

Initial Groundwater Information

	tration	∥b/u	1.76	0.1	0.4
minoring and	Concentration	mV	159.8	N/A	N/A
minds of our particular and interest	Component		Bromide	Nitrate-N	8

GW Temperature 20 °C

Injection Phase

Solution	Volume		Bromide		Z	Vitrate-N	Temp	Injectio	Injection Rate
Type		Conc.		Mass	Conc.	Mass	ပွ	Time	Flow Rate
	Liters	mV	₩	mg	<i>Mg∕l</i>	mg		min	Umin
NO ₃ /Bromide	89	55.8	102.62	5951.79	ß	290.00	19	39.0	1.49
Clean Water	30	201	0.35	10.54	0	00.0	19	33.8	0.89
Total	88			5962.33		290.00			

Mass Balance

Solution	Mass	parawood	Percent
	mg	maiena	200
Bromide	5962.33	5418.07	90.87%
Vitrate-N	290.00	212.75	73.36%

Mass Utilization Rate

minutes	mg/l-min
44.63	0.0075
Centroid of Mass	NO ₃ -N Utilization Rate

Bromide Standard Curve

	174.24	0.8585	0.9993	60	9					
Output:							-58.89	0.65		
Regression Output	Constant	Std Err of Y Est	R Squared	No. of Observations	Degrees of Freedom		X Coefficient(s)	Std Err of Coef.		
Conductance	/m		132.4	116.8	96.6	79.8	70.3	62	56.6	51.4
entration	LOG(PPM)		0.70	1.00	1.30	1.60	1.78	1.90	2.00	2.08
Standard Concentration	mg/l		5	10	20	40	09	80	100	120

Field Test #12 Well MW-2 04 August 1995

	C/Co		0.12		0.20		0.20		0.40		0.70		0.80		0.50		0.35		0.25		0.20		0.12		0.08		90.0	
Nitrate-N	Mass	mg		8.00		10.00		15.00		27.50		37.50		32.50		21.25		15.00		11.25		8.00		5.00		3.50		2.75
Z	Conc.	mg/l	09.0		1.00		1.00		2.00		3.50		4.00		2.50		1.75		1.25		1.00		09.0		0.40		0.30	
	C/C0		0.07	0.17	0.17	0.22	0.29	0.41	0.56	· 0.69	0.78	0.81	0.82	0.81	0.78	0.70	09.0	0.50	0.36	0.27	0.21	0.15	0.13	0.10	0.09	0.08	0.07	0.07
9	Mass	mg		60.56	86.62	99.43	131.07	181.89	250.83	322.03	377.39	408.28	418.69	417.88	409.03	380.35	333.95	283.83	221.38	162.78	124.65	93.91	72.01	59.09	49.30	42.83	38.74	35.22
Bromide	Conc.	mg/l	7.10	17.12	17.53	22.25	30.18	42.57	57.76	71.06	79.90	83.41	84.07	83.09	80.53	71.61	61.97	51.57	36.98	28.13	21.73	15.83	12.97	10.67	9.05	8.08	7.42	6.67
	Conduct.	mV	124.1	101.6	101	94.9	87.1	78.3	70.5	65.2	62.2	61.1	6.09	61.2	62	92	68.7	73.4	81.9	88.9	92.5	103.6	108.7	113.7	117.9	120.8	123	125.7
	Extr./Inj.		0.03	0.09	0.14	0.20	0.26	0.31	0.37	0.43	0.48	0.54	0.60	0.65	0.71	0.77	0.82	0.88	0.94	0.99	1.05	1.11	1.16	1.22	1.28	1.34	1.39	1.45
Volume	Corrected	liters	2.50	7.50	12.50	17.50	22.50	27.50	32.50	37.50	42.50	47.50	52.50	57.50	62.50	67.50	72.50	77.50	82.50	87.50	92.50	97.50	102.50	107.50	112.50	117.50	122.50	127.50
	eq	liters	10.00	15.00	20.00	25.00	30.00	35.00	40.00	45.00	50.00	55.00	00.09	65.00	70.00	75.00	80.00	85.00	90.00	95.00	100.00	105.00	110.00	115.00	120.00	125.00	130.00	135.00
Time		minutes	2.00	2.00	8.00	11.33	14.50	18.50	21.67	25.33	29.00	32.50	36.25	40.17	43.67	47.50	51.25	54.67	28.67	62.50	96.00	70.00	73.75	77.67	81.50	85.17	88.50	92.50

Field Test #12 Well MW-2 04 August 1995

Г	_		5		2	Г	S	Т	4	Г	4	Т	က		က	_	က		က
	C/Co		0.05		0.05		0.05		0.04		0.04		0.03		0.03		0.03		0.03
Nitrate-N	Mass	mg		2.50		2.50		2.25		2.00		1.75		1.50		1.50		1.50	
	Conc.	l/bu	0.25		0.25		0.25		0.20		0.20		0.15		0.15		0.15		0.15
	0)()		90.0	0.05	0.05	0.05	0.05	0.04	0.04	0.04	0.04	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
e e	Mass	mg	32.66	29.97	27.39	26.04	24.51	22.85	21.29	20.23	19.12	18.13	17.85	17.57	17.30	16.25	15.32	15.20	14.68
Bromide	Conc.	mg/l	6.39	5.60	5.36	5.05	4.75	4.39	4.12	3.97	3.68	3.57	3.57	3.46	3.46	3.04	3.09	2.99	2.88
	Conduct.	mV	126.8	130.2	131.3	132.8	134.4	136.4	138	139	140.9	141.7	141.7	142.5	142.5	145.8	145.4	146.2	147.2
	Extr./Inj.		1.51	1.56	1.62	1.68	1.73	1.79	1.85	1.90	1.96	2.02	2.07	2.13	2.19	2.24	2.30	2.36	2.41
Volume	Corrected	liters	132.50	137.50	142.50	147.50	152.50	157.50	162.50	167.50	172.50	177.50	182.50	187.50	192.50	197.50	202.50	207.50	212.50
	Recorded	liters	140.00	145.00	150.00	155.00	160.00	165.00	170.00	175.00	180.00	185.00	190.00	195.00	200.00	205.00	210.00	215.00	220.00
Time		minutes	96.00	99.75	103.50	107.33	110.17	114.33	118.67	122.67	126.00	130.25	133.33	137.50	150.33	154.00	159.00	152.17	156.08

Total Recovered Bromide = 5418.07 mg

Total Recovered Nitrate-N = 212.75 mg

Extraction Flow Rate = 1.41 L/min

Field Test #13 Well MW-4 07 August 1995

Initial Groundwater Information

Component	Concentration	itration
	mV	//bm
Bromide	151	1.51
N- ² ON	N/A	0
N-ZON	W/A	0
00	A/N	0.01

GW Temperature 22 °C

Injection Phase

_			4	₩	
njection Rate	Flow Rate	L/min	1.7	4.1	
Injectic	Time	min	86.1	24.3	
Temp	ပ္စ		19	19	
Vitrate-N	Mass	mg	490.00	0.00	490.00
Ē	Conc.	l∕gm	5	0	
	Mass	Bu	10125.69	9.51	10135.20
Bromide		l/gm	103.32	0.27	
	Conc.	mV	51.3	200	
Volume		Liters	86	38	133
Solution	Type		NO ₃ /Bromide	Clean Water	Total

Mass Balance

The section of the se			
Solution	Ma	Mass	Percent
Component	Injected	Recovered	Recovered
	шg	mg	
Bromide	10135.20	8426.76	83.14%
Nitrate-N	490.00	193.00	39.39%
Nitrite-N*	297.00	32.6	3.15%
barility. Old odt of legica a agricy bataging. Old odf *	of leaves of order	the Min tilian	-

89.47 minutes 0.011 mg/l-min 0.011 mg/l-min

Centroid of Mass NO₃-N Utilization Rate NO₂-N Utilization Rate

Mass Utilization Rate

		167.39	0.4659	0.9998	00	9		-			
	Output:							-57.64	0.35		
	Regression Output:	Constant	Std Err of Y Est	R Squared	No. of Observations	Degrees of Freedom		X Coefficient(s)	Std Err of Coef.		
	Conductance	/m		126.9	109.8	92.8	75.5	64.2	57.2	52.3	47.9
					i I						
Bromide Standard Curve	Standard Concentration	LOG(PPM)		0.70	1.00	1.30	1.60	1.78	1.90	2.00	2.08

Field Test #13 Well MW-4 07 August 1995

Γ	c/co		0.03		0.04		0.04		0.02		0.02		0.02		0.01		0.01		0.00		0.00		0.00		0.00			Γ				_			Γ			
z				72	-	8		9		00		0	-	5	_	0	-	2		0	_	0		0		-	-		L	_	_	L		_			Н	-
Nitrite-N	Mass	mg		1.75		2.00		1.50		1.00		1.00		0.85		09.0		0.35		0.20		0.10		0.00														
	Conc.	mg/l	0.15		0.20		0.20		0.10		0.10		0.10		0.07		0.05		0.02		0.02		0.00		0.00													
	c/Co		0.20		0.30		0.40	0.45	0.40		0.35		0.30		0.30	0.25	0.20		0.20		0.20		0.18		0.16		0.14		0.10		90.0		0.07		90.0		0.05	
Nitrate-N	Mass	mg		12.50		17.50	10.63	10.63		18.75		16.25		15.00	6.88	5.63		10.00		10.00		9.50		8.50		7.50		6.00		4.50		3.75		3.25		2.75		2.50
ž	Conc.	mg/l	1.00		1.50		2.00	2.25	2.00		1.75		1.50		1.50	1.25	1.00		1.00		1.00		0.90		0.80		0.70		0.50		0.40		0.35		0:30		0.25	
-	တိုင		0.19	0.27	0.36	0.47	0.56	0.61	0.62	0.61	0.59	0.56	0.53	0.50	0.48	0.44	0.42	0.40	0.37	0.35	0.33	0.31	0.30	0.29	0.28	0.26	0.26	0.25	0.23	0.22	0.21	0.21	0.20	0.19	0.19	0.18	0.18	0.17
	Mass	mg		119.81	162.58	212.22	265.17	302.76	318.60	317.97	309.24	296.57	282.14	265.79	252.73	239.14	222.92	210.36	198.92	187.01	176.09	165.57	157.72	152.19	146.20	138.88	132.82	129.44	123.89	116.71	111.20	108.13	104.74	101.24	97.86	94.78	92.34	89.80
Bromide	Conc.	/bu	19.61	28.32	36.71	48.17	57.89	63.21	64.23	62.96	60.74	57.89	54.96	51.35	49.74	45.92	43.25	40.90	38.67	36.13	34.30	31.92	31.17	29.71	28.77	26.78	26.35	25.42	24.14	22.55	21.93	21.32	20.57	19.92	19.22	18.69	18.25	17.67
	Conduct.	mΛ	92.9	83.7	77.2	70.4	65.8	63.6	63.2	63.7	64.6	65.8	67.1	68.8	9.69	71.6	73.1	74.5	75.9	9.77	78.9	80.7	81.3	82.5	83.3	85.1	85.5	86.4	87.7	89.4	90.1	80.8	91.7	92.5	93.4	94.1	94.7	95.5
	Extr./Inj.		0.02	90.0	0.09	0.13	0.17	0.21	0.24	0.28	0.32	0.36	0.39	0.43	0.47	0.51	0.55	0.58	0.62	99.0	0.70	0.73	0.77	0.81	0.85	0.88	0.92	96.0	1.8	1.03	1.07	1.11	1.15	1.18	1.22	1.26	1.30	1.33
Volume	Corrected	liters	2:50	7.50	12.50	17.50	22.50	27.50	32.50	37.50	42.50	47.50	52.50	57.50	62.50	67.50	72.50	77.50	82.50	87.50	92.50	97.50	102.50	107.50	112.50	117.50	122.50	127.50	132.50	137.50	142.50	147.50	152.50	157.50	162.50	167.50	172.50	177.50
	Recorded (liters	10.00	15.00	20.00	25.00	30.00	35.00	40.00	45.00	20.00	55.00	60.00	65.00	70.00	75.00	80.00	85.00	90.00	95.00	100.00	105.00	110.00	115.00	120.00	125.00	130.00	135.00	140.00	145.00	150.00	155.00	160.00	165.00	170.00	175.00	180.00	185.00
Time		minutes	4.00	8.00	12.00	15.25	19.00	23.17	26.25	30.00	33.50	37.67	41.67	45.75	48.75	53.33	57.25	60.75	64.75	68.75	72.00	76.00	79.25	83.50	86.50	29.06	94.17	98.25	102.33	107.33	110.17	113.75	117.50	121.17	125.08	129.33	133.00	137.00

Field Test #13 Well MW-4 07 August 1995

_			_		_	_	_		т	_	_	_	_		,	_	_	_	T-	_	_	_	_	_	_	_	_	_	_	_	·
	ပို့																														
Nitrite-N	Mass	mg																													
	Conc.	l/gm																													
	၀)/၁		0.05		0.05		0.04		0.03		0.02		0.02		0.00		0.00		0.00		0.01		0.00		0.00		0.00		0.00		0.00
Nitrate-N	Mass	mg		2.50		2.25		1.75		1.25		1.00		0.50		0.00		0.00		0.25		1.50									
Z	Conc.	l/gm	0.25		0.25		0.20		0.15		0.10		0.10		0.00		0.00		0.00		0.05										0.01
	လို		0.17	0.17	0.16	0.16	0.16	0.15	0.15	0.14	0.14	0.14	0.14	0.14	0.13	0.13	0.13	0.13	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.13	0.12	0.11	0.11	0.11
0	Mass	mg	87.49	86.97	85.27	82.08	80.93	80.13	77.32	74.13	73.24	72.95	71.94	99.02	68.58	67.35	67.62	66.82	64.72	63.56	63.43	63.18	63.05	62.67	61.80	62.18	64.47	63.85	60.12	58.21	58.56
Bromide	Conc.	l/gru	17.32	17.46	16.65	16.19	16.19	15.87	15.06	14.59	14.71	14.47	14.30	13.96	13.47	13.47	13.58	13.15	12.74	12.69	12.69	12.58	12.64	12.43	12.29	12.58	13.20	12.34	11.71	11.57	11.85
	Conduct.	mV	96	92.8	26	7.76	7.76	98.2	99.5	100.3	100.1	100.5	100.8	101.4	102.3	102.3	102.1	102.9	103.7	103.8	103.8	104	103.9	104.3	104.6	104	102.8	104.5	105.8	106.1	105.5
	Extr./Inj.		1.37	1.41	1.45	1.48	1.52	1.56	1.60	1.64	1.67	1.71	1.75	1.79	1.82	1.86	1.90	1.94	1.97	2.01	2.05	2.09	2.12	2.16	2.20	2.24	2.27	2.31	2.35	2.39	2.42
Volume	Corrected	liters	182.50	187.50	192.50	197.50	202.50	207.50	212.50	217.50	222.50	227.50	232.50	237.50	242.50	247.50	252.50	257.50	262.50	267.50	272.50	277.50	282.50	287.50	292.50	297.50	302.50	307.50	312.50	317.50	322.50
	Recorded	liters	190.00	195.00	200.00	205.00	210.00	215.00	220.00	225.00	230.00	235.00	240.00	245.00	250.00	255.00	260.00	265.00	270.00	275.00	280.00	285.00	290.00	295.00	300.00	305.00	310.00	315.00	320.00	325.00	330.00
Time		minutes	140.50	144.33	148.50	152.17	156.17	160.50	164.08	168.67	171.75	175.50	179.25	183.00	186.75	190.50	195.00	199.00	203.50	207.67	211.08	214.50	218.50	222.50	226.50	231.93	236.00	239.00	242.67	247.83	255.50

Total Recovered Bromide = 8426.76 mg

Total Recovered Nitrate-N = 9.35 mg

Extraction Flow Rate = 1.29 L/min

Initial Groundwater Information

GW Temperature 19°C

Injection Phase

Mass Balance

Solution	Mass	SS	Percent
Component	Injected	Recovered	Recovered
	Вш	Вш	
Bromide	5445.06	5114.06	93.92%
Nitrate-N	275.50	195.00	70.78%
Nitrite-N*	80.50	3.875	4.81%
			-

66.62 minutes 0.0052 mg/l-min 0.0049 mg/l-min

Centroid of Mass NO₃-N Utilization Rate NO₂-N Utilization Rate

Mass Utilization Rate

* The NO₂ injected value is equal to the NO₃ utilized.

Bromide Standard Curve

Field Test #17 Well MW-2 18 August 1995

	00/0		0.00	0.00	0.00	0.00	0.00	0.00	0.01		0.01		0.01		0.02		0.02		0.01		0.01		00.0		0.00		0.00			Γ	
									L				_	_				_						L		L	L	L	L	L	
Nitrite	Mass	mg		0.00	0.00	0.00	0.00	0.0	0.13	0.50		0.50		0.63		0.75		0.63		0.50		0.25		0.8							
	Conc.	l∕gm	0.000	0.000	0.000	0.000	0.000	0.000	0.050		0.050		0.050		0.075		0.075		0.050		0.050		0.000		0.000		0.000				
	တိုင		0.04	0.17	0.21	0.32	0.47	0.53	0.63	0.63	0.74	0.74	0.74	0.68	0.63	0.47	0.32	0.21	0.19		0.08		0.05		0.02		0.02		0.02		0.05
Nitrate-N	Mass	вш		2.50	4.50	6.25	9.38	11.88	13.75	15.00	16.25	17.50	17.50	16.88	15.63	13.13	9.38	6.25	4.75	6.50		3.25		1.75		1.00		1.00		1.8	
Ž	Conc.	Mg∕l	0.200	0.800	1.000	1.500	2.250	2.500	3.000	3.000	3.500	3.500	3.500	3.250	3.000	2.250	1.500	1.000	0.900		0.400		0.250		0.100		0.100		0.100		0.100
	တ္တ		0.05	0.13	0.18	0.28	0.41	0.61	0.75	0.84	0.87	0.88	0.87	0.85	0.78	0.67	0.58	0.48	0.37	0.26	0.22	0.17	0.16	0.11	60.0	0.07	0.07	0.07	0.07	0.04	0.05
9	Mass	тд		43.92	73.35	106.40	161.41	238.57	316.31	371.24	400.33	408.84	408.06	401.06	379.62	338.11	292.58	247.52	199.22	149.50	113.19	90.87	77.56	64.80	47.41	37.67	33.74	33.42	32.06	25.69	21.59
Bromide	Conc.	mg/l	4.95	12.62	16.72	25.84	38.72	56.71	69.82	78.68	81.45	82.08	81.14	79.29	72.56	62.68	54.35	44.66	35.03	24.77	20.51	15.84	15.18	10.73	8.23	6.84	99.9	6.71	6.12	4.16	4.48
	Conduct.	m٧	136.100	111.800	104.500	93.200	82.700	72.800	67.400	64.300	63.400	63.200	63.500	64.100	66.400	70.200	73.900	79.000	85.300	94.300	99.200	105.900	107.000	116.000	122.900	127.700	128.400	128.200	130.600	140.600	138.700
	Extr./Inj.		0.03	0.09	0.14	0.20	0.26	0.31	0.37	0.43	0.48	0.54	09.0	0.65	0.71	0.77	0.82	0.88	0.94	0.99	1.05	1.11	1.16	1.22	1.28	1.34	1.39	1.45	1.51	1.56	1.62
Volume	Corrected	liters	2.50	7.50	12.50	17.50	22.50	27.50	32.50	37.50	42.50	47.50	52.50	57.50	62.50	67.50	72.50	77.50	82.50	87.50	92.50	97.50	102.50	107.50	112.50	117.50	122.50	127.50	132.50	137.50	142.50
	Recorded (liters	10.00	15.00	20.00	25.00	30.00	35.00	40.00	45.00	20.00	55.00	00:00	65.00	70.00	75.00	80.00	85.00	90.00	95.00	100.00	105.00	110.00	115.00	120.00	125.00	130.00	135.00	140.00	145.00	150.00
Time		minutes	4.50	10.50	15.00	20.50	26.17	31.50	37.50	42.83	49.00	55.50	60.75	67.75	74.50	84.00	88.83	96.50	102.33	111.75	114.17	118.00	120.50	128.00	138.33	139.33	142.50	148.25	151.83	157.17	161.00

Total Recovered Bromide = 5114.06 mg

Total Recovered Nitrate-N = 3.875 mg

Extraction Flow Rate = 0.93 L/min

▲ Nitrite 2.50 Nitrate Injection in MW-2 Field Test #17, 18 August 1995 2.00 Extracted/Injected 1.50 1.00 0.50 0.00 0.00 0.00 0.80 0.10 -0.10 0.70 0.50 0.40 0.30 0.60 0.20 ၀၁/၁

Field Test #22 Well MW-4 13 September 1995

Initial Groundwater Information

IIIII SI SANKILARISI IIII SIIII IIII SIIII III SIIII III SIIII III SIIII III SIIII SIIII SIII SI		
Component	Concentration	ıtration
	NM.	Ngm
Bromide	138.8	5.61
NO ₃ -N	N/A	0
NO ₂ -N	N/A	0
DO	N/A	0.01

GW Temperature 21 °C

Injection Phase

	-	The second name of the second na							
Solution	Volume		Bromide		Ź	Vitrate-N	Temp	Injection	njection Rate
Type		Conc.	<u>ت</u>	Mass	Conc.	Mass	ပွ	Time	Flow Rate
	Liters	mV	<i>Mg∕</i> I	Вш	l⁄gm	mg		min	Umin
NO ₃ /Bromide	06	1.65	107.65	9688.84	4.5	405.00	19	99.7	0.90
Slean Water	32	200	0.58	20.28	0	00.0	10	29.8	1.18
Total	125			9709.13		405.00			

ss Balance

mass Dalance			
Solution	Mass	SS	Percent
Component	Injected	Recovered	Recovered
	Вш	bu	
Bromide	9709.13	9671.80	99.62%
Nitrate-N	405.00	84.00	.20.74%
Nitrite-N*	321.00	1.00	0.31%

75.89 minutes 0.013 mg/l-min 0.012 mg/l-min

Mass Utilization Rate
Centroid of Mass
NO₃-N Utilization Rate
NO₂-N Utilization Rate

* The NO₂ injected value is equal to the NO₃ utilized.

Bromide Standard Curve

		185.29	0.5045	0.9998	00	9					
	Output:							-62.10	0.38		
	Regression Output:	Constant	Std Err of Y Est	R Squared	No. of Observations	Degrees of Freedom		X Coefficient(s)	Std Err of Coef.		
	Conductance	<u>پ</u>		142.6	122.8	104	85.4	75	6.99	61.1	56.8
2A Inc	entration	LOG(PPM)		0.70	1.00	1.30	1.60	1.78	1.90	2:00	2.08
Digiting Statistate out ve	Standard Concentration	√gш		5	10	20	40	09	90	100	120

Field Test #22 Well MW-4 13 September 1995

	တို		0.01	0.02	0.01	0.01	0.01	0.00	0.00	0.00	0.00	00.0				0.00																			
Nitrite-N	Mass	mg		0.31	0.31	0.19	0.13	90.0	0.00	0.00	0.00	0.00				0.00																			
	Conc.	mg/l	0.05	0.08	0.05	0.03	0.03			0.00		0.00								0.00															
	လိုင်		0.22	0.22	0.28	0.33	0.33			0.22		0.18	0.18	0.13	0.09		0.0		0.07		0.04		0.04		0.03		0.03		0.02		0.02		0.02		0 00
Nitrate-N	Mass	mg		5.00	5.63	6.88	7.50	6.88	5.63	5.00	5.00	4.50	4.00	3.50	2.50	4.00		3.50		2.50		2.00		1.75		1.50		1.25		1.00		1.00		1.00	
Z	Conc.	Mg/l	1.00	1.00	1.25	1.50	1.50	1.25	1.00	1.00	1.00	0.80	0.80	09.0	0.40		0.40		0.30		0.20		0.20		0.15		0.15		0.10		0.10		0.10		0 10
	တိ/၁		0.32	0.49	0.65	0.74	0.75	0.74	0.71	0.67	0.64	0.61	0.58	0.53	0.51	0.48	0.46	0.44	0.42	0.39	0.38	0.36	0.35	0.34	0.32	0.30	0.30	0.28	0.28	0.27	0.27	0.27	0.25	0.25	0.25
de	Mass	mg		219.27	307.45	372.25	400.88	403.09	391.40	370.34	351.47	336.23	319.80	298.81	279.81	267.17	255.04	243.08	232.45	220.40	208.75	200.44	192.05	185.06	177.67	168.72	162.51	156.10	150.89	148.41	144.86	143.79	139.65	134.51	133.51
Bromide	Conc.	mg/l	34.49	53.22	92.69	79.14	81.22	80.02	76.54	71.60	68.99	65.50	62.42	57.10	54.82	52.05	49.97	47.26	45.71	42.45	41.05	39.12	37.70	36.33	34.74	32.74	32.26	30.18	30.18	29.19	28.76	28.76	27.10	26.70	26.70
	Conduct.	mV	89.8	78.1	70.8	67.4	2.99	67.1	68.3	70.1	71.1	72.5	73.8	76.2	77.3	78.7	79.8	81.3	82.2	84.2	85.1	86.4	87.4	88.4	9.68	91.2	91.6	93.4	93.4	94.3	94.7	94.7	6.3	96.7	7 96
	Extr./Inj.	•	0.02	0.06	0.10	0.14	0.18	0.22	0.26	0.30	0.34	0.38	0.42	0.46	0.50	0.54	0.58	0.62	99.0	0.70	0.74	0.78	0.82	0.86	06.0	0.94	0.98	1.02	1.06	1.10	1.14	1.18	1.22	1.26	1 30
Volume	Corrected	liters	2.50	7.50	12.50	17.50	22.50	27.50	32.50	37.50	42.50	47.50	52.50	57.50	62.50	67.50	72.50	77.50	82.50	87.50	92.50	97.50	102.50	107.50	112.50	117.50	122.50	127.50	132.50	137.50	142.50	147.50	152.50	157.50	162 50
	Recorded	liters	10.00	15.00	20.00	25.00	30.00	35.00	40.00	45.00	20.00	55.00	00.09	65.00	70.00	75.00	80.00	85.00	90.00	95.00	100.00	105.00	110.00	115.00	120.00	125.00	130.00	135.00	140.00	145.00	150.00	155.00	160.00	165.00	170 00
Time		minutes	5.50	8.50	11.67	15.17	19.00	23.00	26.17	29.17	33.00	37.75	41.17	45.25	49.25	53.75	27.00	66.25	65.50	69.75	73.00	05.77	81.17	85.33	29.68	93.83	29.76	101.75	104.75	109.17	113.25	117.00	120.75	125.17	129 50

Field Test #22 Well MW-4 13 September 1995

			_				_		_	_			_	_	_	,	_		·
	လ လ																		
Nitrite-N	Mass	mg																	
	Conc.	l/gm																	
	°C/C			0.01		0.01		0.01		0.01		0.00		0.00		0.00		0.00	
Nitrate-N	Mass	mg	0.75		0.50		0.50		0.50		0.25		0.00		0.00		0.00		
Z	Conc.	<i>Mg∕</i>		0.05		0.05		0.05		0.05		00.0		00.0		0.00		00.0	
	ပိုင်		0.23	0.24	0.22	0.22	0.22	0.22	0.21	0.21	0.21	0.21	0.20	0.20	0.20	0.20	0.20	0.21	0.20
9	Mass	mg	129.67	126.29	123.33	119.90	119.24	118.35	115.77	113.62	113.00	111.33	109.29	109.09	109.49	109.49	109.49	109.90	108.70
Bromide	Conc.	<i>Mg∕l</i>	25.16	25.35	23.98	23.98	23.71	23.63	22.68	22.77	22.43	22.10	21.62	22.02	21.78	22.02	21.78	22.18	21.30
	Conduct.	mV	98.3	98.1	9.66	9.66	6.66	100	101.1	101	101.4	101.8	102.4	101.9	102.2	101.9	102.2	101.7	102.8
	Extr./Inj.		1.34	1.38	1.42	1.46	1.50	1.54	1.58	1.62	1.66	1.70	1.74	1.78	1.82	1.86	1.90	1.94	1.98
Volume	Corrected	liters	167.50	172.50	177.50	182.50	187.50	192.50	197.50	202.50	207.50	212.50	217.50	222.50	227.50	232.50	237.50	242.50	247.50
	Recorded (liters	175.00	180.00	185.00	190.00	195.00	200.00	205.00	210.00	215.00	220.00	225.00	230.00	235.00	240.00	245.00	250.00	255.00
Time		minutes	132.75	136.25	141.33	145.50	149.83	153.25	157.33	162.08	165.75	170.00	174.17	177.25	181.67	184.50	189.17	193.25	197.17

Total Recovered Bromide = 9671.80 mg

Total Recovered Nitrate-N = 84.00 mg

Total Recovered Nitrite-N = 1.29 L/min

Appendix IV

Field Notes and Calculations for Nitrite Injection Tests

Initial Groundwater Information

	tration	₩ J	1.28	0.02	0.8
monnage	Concentration	mV	162.5	N/A	N/A
mind ologiameter implination	Component		Bromide	NO ₂ -N	DO

GW Temperature 19.5 °C

Injection Phase

Injection Rate	Flow Rate	Umin	1.41	0.89	
Injectio	Time	min	39.0	33.8	
Temp	ပွ		19	19	
Jitrite-N	Mass	mg	27.50	0.00	27.50
ž	Conc.	<i>l</i> /bu	0.5	0	
	Mass	mg	6374.37	11.78	6386.15
Bromide	ri.	₩ W	115.90	0.39	
	Conc.	mV	53.7	191	
Volume		Liters	99	30	85
Solution	Type		NO ₂ /Bromide	Clean Water	Total

Mass Balance

Percent	Recovered		87.91%	72.00%
Mass	Recovered Recovered	mg	5614.10	19.80
Ma	Injected	тд	6386.15	27.50
Solution	Component		Bromide	Nitrite-N

Mass Utilization Rate

Centroid of Mass	57.90	minutes
102-N Utilization Rate	0.00069	mg/l-min

Bromide Standard Curve

		168.44	1.13193	0.9996	80	9					
	Output:							-55.59	0.86		
	Regression Output:	Constant	Std Err of Y Est	R Squared	No. of Observations	Degrees of Freedom		X Coefficient(s)	Std Err of Coef.		
	Conductance	\m_		128	113.7	97.1	79.9	70.7	62.3	57.1	51.5
ou ve	entration	LOG(PPM)		0.70	1.00	1.30	1.60	1.78	1.90	2.00	2.08
Diolinge Stational Culive	Standard Concentration	mg/l		5	10	20	40	09	80	100	120

Field Test #16 Well MW-2 17 August 1995

Nitrite-N	Mass C/Co	mg	0.10	0.63	0.15	0.88	0.20	1.50	0.40	2.50	09.0	3.50	0.80	3.75	0.70	2.75	0.40	1.75	0.30	1.13	0.15	0.63	0.10	0.40	90.0	0.28	-
	Conc.	mg/l	0.05		0.08		0.10		0.20		0.30		0.40		0.35		0.20		0.15		0.08		0.05		0.03		
	c/co		0.05	0.07	0.10	0.16	0.28	0.44	0.59	0.73	0.82	0.84	0.83	0.80	0.74	0.62	0.53	0.40	0.30	0.22	0.17	0.13	0.11	0.08	0.07	0.06	
qe	Mass	mg		25.47	49.31	75.56	126.10	207.83	297.40	382.18	450.86	482.98	485.96	472.18	444.85	394.83	334.43	269.26	202.68	151.58	114.45	88.10	69.14	55.21	45.54	39.17	
Bromide	Conc.	mg/l	2.34	7.85	11.88	18.35	32.09	51.04	67.92	84.95	95.39	97.80	96.59	92.29	85.66	72.28	61.49	46.21	34.86	25.77	20.01	15.23	12.43	9.65	8.56	7.11	
	Conduct.	m/	147.90	118.70	108.70	98.20	84.70	73.50	09.99	61.20	58.40	57.80	58.10	59.20	61.00	65.10	69.00	75.90	82.70	90.00	96.10	102.70	107.60	113.70	116.60	121.10	
	Extr./Inj.		0.03	0.09	0.15	0.21	0.26	0.32	0.38	0.44	0.50	0.56	0.62	0.68	0.74	0.79	0.85	0.91	0.97	1.03	1.09	1.15	1.21	1.26	1.32	1.38	
Volume	Corrected	liters	2.50	7.50	12.50	17.50	22.50	27.50	32.50	37.50	42.50	47.50	52.50	97.50	62.50	67.50	72.50	77.50	82.50	87.50	92.50	97.50	102.50	107.50	112.50	117.50	
	Recorded	liters	10.00	15.00	20.00	25.00	30.00	35.00	40.00	45.00	50.00	25.00	00.09	65.00	70.00	75.00	80.00	85.00	90.00	95.00	100.00	105.00	110.00	115.00	120.00	125.00	
Time		minutes	9.25	15.33	19.50	23.33	27.17	30.50	34.00	38.00	42.08	46.33	20.00	54.50	58.00	63.00	66.67	71.25	75.33	79.67	83.17	87.50	91.50	96.00	100.00	104.00	

Field Test #16 Well MW-2 17 August 1995

	C/Co		0.00		0.00													
Z-o	Mass C	mg		0.00														
Nitrite-N	Conc. M	mg/l	0.00		00.0													
-		E	0.04	0.03	0.03	0.03	0.03	0.03	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
	C/Co																	
de	Mass	mg	24.02	20.73	19.41	18.45	16.89	15.78	14.49	14.31	14.22	13.82	12.60	24.49	22.24	18.30	18.82	19.48
Bromide	Conc.	mg/l	4.51	3.79	3.98	3.40	3.36	2.95	2.84	2.88	2.81	2.72	2.32	2.58	1.87	1.79	1.98	1.92
	Conduct.	mV	132.10	136.30	135.10	138.90	139.20	142.30	143.20	142.90	143.50	144.30	148.10	145.60	153.30	154.40	152.00	152.70
	Extr./Inj.		1.56	1.62	1.68	1.74	1.79	1.85	1.91	1.97	2.03	5.09	2.15	2.26	2.38	2.50	2.62	2.74
Volume	Corrected	liters	132.50	137.50	142.50	147.50	152.50	157.50	162.50	167.50	172.50	177.50	182.50	192.50	202.50	212.50	222.50	232.50
	Recorded	liters	140.00	145.00	150.00	155.00	160.00	165.00	170.00	175.00	180.00	185.00	190.00	200.00	210.00	220.00	230.00	240.00
Time		minutes	116.00	121.00	125.00	129.33	133.00	138.25	142.50	147.00	150.67	155.50	160.00	168.50	175.00	187.33	196.17	202.83

Total Recovered Bromide =
Total Recovered Nitrite-N =
Extraction Flow Rate =

5614.10 mg 19.80 mg 1.18 L/min

—←—Bromide ———Nitrite 3.00 2.50 Field Test #16, 17 August 1995 2.00 Nitrite Injection in MW-2 Extracted/Injected 1.50 1.00 0.50 0.00 0.10 東 0.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 C/C0

Initial Groundwater Information

illing Cloudanate Intollington	III CHIIII CHIII	
Component	Concentration	ıtration
	Jm/	mg/l
Bromide	170.9	1.32
NO ₂ -N	A/N	0
DO	W/A	10.0

GW Temperature 21 °C

Injection Phase

	ate		76.0	60	
Injection Rate	Flow Rate	L/min		-	
Injecti	TIme	min	98.5	27.5	
Temp	ပွ		18	18	
Vitrite-N	Mass	mg	42.00	00.00	42.00
Ž	Conc.	<i>l</i> /g <i>u</i>	0.5	0	
	Mass	mg	7874.56	18.20	7892.76
Bromide	ပ	√gm	93.74	0.61	
	Conc.	/m	60.1	191	
Nolume		Liters	84	30	114
Solution	Type		NO ₂ /Bromide	Clean Water	Total

Mass Balance

Solution	Ma	Mass	Percent
Component	Injected	Recovered	Recovered
	mg	mg	
Bromide	7892.76	2898.06	100.07%
Nitrite-N	42.00	3.30	7.86%

Mass Utilization Rate

Centroid of Mass	72.57	minutes
O ₂ -N Utilization Rate	0.0018	mg/l-min

mide Standard Curv

	178.02	1.1965	0.9996	80	9					
Output:							-59.80	0.90		
Regression Output:	Constant	Std Err of Y Est	R Squared	No. of Observations	Degrees of Freedom		X Coefficient(s)	Std Err of Coef.		•
Conductance			137	117.9	98.1	83.5	72.4	64.7	58.6	52.7
5	LOG(PPM)		0.70	1.00	1.30	1.60	1.78	1.90	2.00	2.08
Standard Concentration			5	10	20	40	09	80	100	120

Field Test #18 Well MW-4 22 August 1995

	C/Co		0.30	0.30	0.26	0.20	0.16	0.10	0.10	0.05	00.00		0.00		00.00			,										
Nitrite-N	Mass	mg		0.75	0.70	0.58	0.45	0.33	0.25	0.19	90.0	0.00		0.00														
Z	Conc.	mg/l	0.150	0.150	0.130	0.100	080.0	0.050	0.050	0.025	0.000		0.000		0.000													
	0)/0		0.26	0.46	0.61	0.70	0.72	0.73	0.68	0.64	0.62	0.57	0.54	0.50	0.48	0.45	0.43	0.39	0.38	0.37	0.34	0.32	0.32	0.30	0.29	0.28	0.28	700
e	Mass	mg		168.98	251.80	308.80	334.68	339.85	329.10	309.94	297.04	278.50	260.10	244.73	230.82	219.25	205.30	191.99	182.14	175.96	166.78	155.92	150.52	145.48	138.57	133.12	129.53	107 04
Bromide	Conc.	mg/l	24.36	43.23	57.49	66.03	67.84	68.10	63.54	60.44	58.38	53.02	51.02	46.87	45.45	42.25	39.88	36.92	35.94	34.45	32.26	30.10	30.10	28.09	27.34	25.91	25.91	00 30
	Conduct.	mV	95.100	80.200	72.800	69.200	68.500	68.400	70.200	71.500	72.400	74.900	75.900	78.100	78.900	80.800	82.300	84.300	85.000	86.100	87.800	89.600	89.600	91.400	92.100	93.500	93.500	000
	Extr./Inj.		0.02	0.07	0.11	0.15	0.20	0.24	0.29	0.33	0.37	0.45	0.46	0.50	0.55	0.59	0.64	0.68	0.72	0.77	0.81	0.86	06.0	0.94	0.99	1.03	1.07	4 40
Volume	Corrected	liters	2.50	7.50	12.50	17.50	22.50	27.50	32.50	37.50	42.50	47.50	52.50	27.50	62.50	67.50	72.50	77.50	82.50	87.50	92.50	97.50	102.50	107.50	112.50	117.50	122.50	427 ED
	Recorded	liters	10.00	15.00	20.00	25.00	30.00	35.00	40.00	45.00	50.00	25.00	00.09	00.39	20.00	75.00	80.00	85.00	00.06	95.00	100.00	105.00	110.00	115.00	120.00	125.00	130.00	125.00
Time		minutes	4.83	8.17	12.17	15.67	19.50	25.50	28.67	32.50	35.50	39.50	42.50	46.33	49.33	52.00	26.67	61.00	63.83	67.33	71.00	75.50	78.00	81.67	84.50	89.00	91.50	05.00

Field Test #18 Well MW-4 22 August 1995

_			_	_	,	_			,		_		,			_	_			
	C/Co																			
Nitrite-N	Mass	bu																		
	Conc.	l/gm																		
	c/Co		0.26	0.26	0.25	0.25	0.24	0.24	0.24	0.23	0.22	0.23	0.23	0.23	0.24	0.23	0.22	0.22	0.21	0.22
	Mass	mg	125.12	122.28	119.93	117.88	115.41	113.42	111.69	109.36	105.05	106.09	109.77	109.77	220.81	219.97	210.17	203.26	201.33	204.53
Bromide	Conc.	mg/l	24.83	24.08	23.89	23.26	22.90	22.47	22.21	21.53	20.48	21.95	21.95	21.95	22.21	21.79	20.25	20.40	19.86	21.04
	Conduct.	mV	94.600	95.400	95.600	96.300	96.700	97.200	97.500	98.300	009.66	97.800	97.800	97.500	98.000	99.900	99.700	100.400	98.900	96.800
•	Extr./Inj.		1.16	1.21	1.25	1.29	1.34	1.38	1.43	1.47	1.51	1.56	1.60	1.64	1.69	1.78	1.86	1.95	2.04	2.13
Volume	Corrected	liters	132.50	137.50	142.50	147.50	152.50	157.50	162.50	167.50	172.50	177.50	182.50	187.50	192.50	202.50	212.50	222.50	232.50	242.50
	Recorded	liters	140.00	145.00	150.00	155.00	160.00	165.00	170.00	175.00	180.00	185.00	190.00	195.00	200.00	210.00	220.00	230.00	240.00	250.00
Time		minutes	98.83	103.50	106.50	110.17	115.17	120.00	125.17	129.50	133.50	137.67	140.75	145.00	148.17	155.83	163.00	170.25	179.75	193.00

Total Recovered Bromide = 7

Total Recovered Nitrite-N = Extraction Flow Rate = 7

7898.06 mg 3.30 mg 1.34 L/min

Appendix V

Field Notes and Calculations for Hydrogen Injection Test

Field Test #20 Well MW-4 06 September 1995

Initial Groundwater Information

Component		Concentration	
	Reading	units	l∕gm
Bromide	170.2	Λm	1.61
H ₂	2.1	%	0.03
CH4	2815	GC Area	6.68E-2
DO	N/A	N/A	0.01

GW Temperature 18 °C

Injection Phase

Solution	Volume		Bromide		Hydrogen	gen	Temp	Injecti	Injection Rate
Type		Conc.	õ	Mass	Conc.	Mass	ပွ	TIme	Flow Rate
	Liters	mV	<i>l</i> ∕g <i>m</i>	mg	l/gm	mg		min	L/min
H ₂ /Bromide	115	61.9	88.42	10167.95	1.63	187.44	8	110.0	1.05
Clean Water	30	198.2	25.0	17.14	0	0.00	20	31.3	0.96
Total	145			101.85.08		187.44			

Mass Balance

Solution	Mass	SS	Percent
Component	Injected	Recovered	Recovered
	Вш	mg	
Bromide	10185.08	9238.47	90.71%
Hydrogen	187.44	75.80	40.44%
Methane*	446.59	6.15	1.38%
* The Old Color is a second to the color of	4. 11 - 44 - 41-	4.4	

72.80 minutes 0.0036 mg/L-min

Mass Utilization Rate Centroid of Mass H₂ Utilization Rate

The CH4 value is equal to the H2 utilized on a 1:4 molar basis

Sromide Standard Curvent

		183.07	0.6787	0.9996	80	9					
	put:							-62.25	0.51		
	Regression Output:	Constant	Std Err of Y Est	R Squared	No. of Observations	Degrees of Freedom		X Coefficient(s)	Std Err of Coef.		
	Conductance	<i>m</i> V		139.6	120.1	102.3	84.2	72.5	65.3	58.3	52.7
Jurve		(mdd)bor)		0.70	1.00	1.30	1.60	1.78	1.90	2.00	2.08
Diomina Standard Curve	Standard Concentration	l/gm		2	10	20	40	09	80	100	120

Field Test #20 Well MW-4 06 September 1995

Gas Solubility in Water

	Concentration	Meter
	√gm	Reading
H ₂ Saturated	1.63	100.00
CH₄ Saturated	25.01	
Temperature	20	20 Celcius

Methane Standard Curve

Total Methane	lane	O	Concentration		29
volume	mass	Headspace	Water	αM	Area
microL	mg	<i>l</i> /g <i>m</i>	<i>NgM</i>	l/bm	
1	6.66E-04	2.43E-02	9.14E-04	6.66E-02	2906
2.5	1.77E-03	6.03E-02	1.45E-02	1.77E-01	6713
5	3.54E-03	1.21E-01	2.89E-02	3.54E-01	13373
7.5	5.32E-03	1.81E-01	4.34E-02	5.32E-01	20961
10	7.09E-03	2.41E-01	5.79E-02	7.09E-01	28507
		Regression Output:	utput:		
	Constant			0	
	Std Err of Y Est	**		430.019	
	R Squared			0.9983	
	No. of Observations	tions	٠	r	
	Degrees of Freedom	edom		4	
•					
	X Coefficient(s)	_	42149.20		
0,0	Std Err of Coef.		470.56		

Field Test #20 Well MW-4 06 September 1995

	9	ပိ ပိ	1 76F.3	207E-3	2.65E-3	3.18E-3	3.97E-3	457E-3	5.09E-3	5.44E-3	6.40E-3	5.89E-3	6.36E-3	7.26E-3	7.12E-3	7.57E-3	7.27E-3	7.84E-3	7.88E-3	7.71E-3	8.05E-3		8.84E-3		8.37E-3		8.69E-3		1.02E-2		8.77E-3		9.14E-3		9.24E-3	9.46E-3	9.61E-3	9.63E-3	9.72E-3	9.95E-3	9 90 F.3
	ane	Mass	-	6.23E-2	7.69E-2	9.51E-2	1.17E-1	1.39E-1	1.57E-1	1.72E-1	1.93E-1	2.00E-1	2.00E-1	2.22E-1	2.34E-1	2.39E-1	2.42E-1	2.46E-1	2.56E-1	2.54E-1	2.57E-1	5.51E-1		5.61E-1		5.56E-1		6.16E-1		6.19E-1		5.84E-1		5.99E-1			L	6.27E-1	6.31E-1		A 101 0
	Methane	Conc.	1.15F-2	1.35E-2	1.73E-2	2.08E-2	2.59E-2	2.98E-2	3.32E-2	3.56E-2	4.17E-2	3.84E-2	4.14E-2	4.73E-2	4.64E-2	L	4.74E-2	5.11E-2	5.14E-2	5.03E-2	5.25E-2		5.77E-2		5.45E-2	_	5.67E-2		6.66E-2		5.72E-2	Ш	5.96E-2		6.02E-2	Ш	6.27E-2	6.28E-2	6.34E-2		0 11720
	7	GC Area	483.00	288.00	729.00	875.00	1092.00	1257.00	1398.00	1485.00	1758.00	1619.00	1747.00	1995.00	1957.00	2079.00	1998.00	2155.00	2166.00	2120.00	2212.00		2430.00		2299.00		2388.00		2806.00		2411.00		2512.00		2538.00	2601.00	2642.00		2672.00		100,720
	3	3	000	0.41	0.52	0.57	0.54	0.51	0.51	0.45	0.42	0.38	0.35	0.32	0.30	0.28	0.25	0.24	0.23	0.19	0.19	0.17	0.16	0.15	0.15	0.14	0.13	0.11	0.11	0.11	0.10	0.08	8	8	0.08	0.08	0.05	90.0	0.04	0. Q	100
	Maco	mg		2.01	3.78	4.45	4.52	4.28	4.16	3.92	3.53	3.24	2.96	2.71	2.54	2.36	2.14	2.01	1.92	1.72	1.56	4.6	<u>4</u>	1.26	1.22	1.15	1.08	0.38	0.92	0.92	0.89	0.81	0.77	0.74	0.88	1.26	1.02	0.77	0.71	0.68	-
	Conc	mg/	0.14	99.0	0.85	0.93	0.88	0.83	0.83	0.74	0.68	0.62	0.56	0.52	0.49	0.45	0.41	0.39	0.37	0.32	0.31	0.28	0.25	0.25	0.24	0.22	0.21	0.18	0.18	0.19	0.17	0.15	0.15	0.14	0.13	0.12	90.0	0.07	0.07	0.07	
	Motor	% in a control of the	8.80	40.50	52.30	22.00	54.00	51.00	51.1	45.20	41.50	38.10	34.50	32.00	30.30	27.50	25.10	24.20	22.90	19.40	18.90	17.30	15.60	15.40	14.60	13.60	12.80	11.30	11.20	11.40	10.40	9.40	9.40	8.80	7.90	7.50	2.00	4.50	4.20	4.10	
ľ	200	3	0.32	0.52	99.0	0.74	0.77	0.75	0.75	0.73	0.69	0.65	0.62	0.60	0.56	55.	0.52	0.50	0.48	0.46	0.44	0.42	0.41	0.39	0.38	0.37	0.36	8	93	0.32	0.31	0.00	80	0.29	0.28	0.27	0.27	0.24	0.24	0.24	-
	Mass	mg		184.55	259.84	307.59	331.96	336.23	333.74	327.68	312.94	295.52	280.55	268.86	256.28	242.88	233.15	224.30	216.51	208.33	199.60	192.03	184.34	177.34	170.88	165.89	160.47	154.64	150.12	45.49	139.94	136.11	13.64	128.29	124.54	240.96	235.62	223.22	213.63	212.08	
Bromido	Conc	mg/l	27.88	45.94	58.00	65.04	67.74	66.75	66.75	64.32	60.85	57.36	54.87	52.68	49.83	47.32	45.94	. 43.78	42.82	40.51	39.33	37.48	36.25	8. 88	33.67	32.69	31.50	30.36	29.68	28.51	27.47	26.57	20.08	57.53	24.59	23.61	23.52	21.13	21.80	20.82	-
	Conduct	mV	93.10	79.60	73.30	70.20	89.10	69.50	69.50	70.50	72.00	73.60	74.80	75.90	77.40	78.80	79.60	86.9	81.50	83.00	83.80	85.10	86.00	87.20	88:00	88.80	89.80	90.80	91.40	92.50	93.50	8.8	3 2	8.8	36.50	97.60	97.70	100.60	100.00	00.101	
	Extr./Ini.		0.02	0.05	0.00	0.12	0.16	0.19	0.22	0.26	0.29	0.33	0.36	0.40	0.43	0.47	0.50	0.53	0.57	0.60	0.64	0.67	0.71	0.74	0.78	0.81	0.84	0.88	0.91	8 6	850	1.02	9 8	3 3	1.12	1.19	1.26	1.33	9.	1.4/	
Volume	Q		2.50	7.50	12.50	17.50	22.50	27.50	32.50	37.50	42.50	47.50	52.50	57.50	62.50	67.50	72.50	77.50	82.50	87.50	92.50	97.50	102.50	107.50	112.50	117.50	122.50	127.50	132.50	137.50	142.50	34/30	132.30	00.70	162.50	1/2.50	182.50	192.50	202.50	212:50	
	Recorded		10.00	15.00	20.02	25.00	30.00	35.00	40.00	45.00	20:00	SS:00	80.00	85.00	90.02	75.00	80.00	85.00	80.00	95.00	100.00	105.00	110.00	115.00	120.00	125.00	130.00	135.00	140.00	145.00	130.00	888	38.8	38	3000	180.00	150.00	20000	210.00	330	TANK AND A
Time	2	minutes	7.67	1.8	14.00	17.33	20.25	23.33	26.50	29.33	32.50	36.00	39.00	83	433	48.25	20.50	53.83	27.08	61.50	8,0	67.00	88.	73.00	75.83	78.83	82.33	86.00	200	8.8	25.52	2.5	S. 5	28.5	3 3	24.8	120.00	30.50	13/38	36.00	

Field Test #20 Weil MW-4 06 September 1995

ſ		3	1	96F-3	100	7-13			i	100	24-2
	Č	3		6	-	-				•	7
Aethano	Man	Mass	ľ	7.05E-1	1	0.00			2.03F+0		
Mat		2010	6	6.49E-2	67150	O. / IE-2				0 1000	0.00 1-7
	Co. Area	ב ב ב		2/3/.00	2830.00	20.00				2000	30.00
	0/0	3	18	3	200	3	000		9	200	3
	Mass	2000	27.0	00.00	0.52	3	0.50		0.46	0 15	2
Hvdrogen	Conc	mal	100	3	500		000	1	2	200	3.5
	Meter	%	0000	3.30	3.10		300	9	2.7	280	200:3
	သို		20.01	0.4	0.21		0.21	8	0.20	020	-
le	Mass	bu	186.20	100.40	185.95		184.58	1000	107.71	189.62	
Bromide	Conc.	/bu	18.63	3	18.56		18.36	9	0.00	19.84	
	Conduct.	/m	10401	3	6.19	0, ,0,	54.45	201.00	3	102.30	
	Extr./Inj.		1.67		1.74	3	.0.	1 88	3	8.	
Volume	Corrected	liters	242.50		252.50	000 000	202.30	272 FO	3	282.50	
	Recorded	liters	250,00		260.00	00.07.0	2/0.00	280 00		280.00	
Time		minutes	164.75		172.33	470 C	3.67	18500		192.00	

9238.47 mg 75.80 mg 15.33 mg 1.51 L/mln

Total Recovered Bromide =
Total Recovered Hydrogen =
Total Recovered Methane =
Extraction Flow Rate =

Hydrogen Injection in MW-4 Field Test #20, 06 September 1995 0.80 0.00 0.70

0.60

0))

