Spanning Trees: Efficient Algorithms

Alexander S. Kulikov

Steklov Institute of Mathematics at St. Petersburg Russian Academy of Sciences

Graph Algorithms Data Structures and Algorithms

Outline

- Building a Network
- 2 Greedy Algorithms
- 3 Cut Property
- 4 Kruskal's Algorithm
- 6 Prim's Algorithm

Building Roads

Building Roads

Minimum spanning tree (MST)

Input: A connected, undirected graph G = (V, E) with positive edge weights.

Output: A subset of edges $E' \subseteq E$ of minimum total weight such that the graph (V, E') is connected.

Minimum spanning tree (MST)

Input: A connected, undirected graph G = (V, E) with positive edge weights.

Output: A subset of edges $E' \subseteq E$ of minimum total weight such that the graph (V, E') is connected.

Remark

The set E' always forms a tree.

■ A tree is an undirected graph that is connected and acyclic.

- A tree is an undirected graph that is connected and acyclic.
- A tree on n vertices has n-1 edges.

- A tree is an undirected graph that is connected and acyclic.
- A tree on n vertices has n-1 edges.
- Any connected undirected graph G(V, E) with |E| = |V| 1 is a tree.

- A tree is an undirected graph that is connected and acyclic.
- A tree on n vertices has n-1 edges.
- Any connected undirected graph G(V, E) with |E| = |V| 1 is a tree.
- An undirected graph is a tree iff there is a unique path between any pair of its vertices.

Outline

- 1 Building a Network
- 2 Greedy Algorithms
- 3 Cut Property
- 4 Kruskal's Algorithm
- 6 Prim's Algorithm

This lesson

Two efficient greedy algorithms for the minimum spanning tree problem.

repeatedly add the next lightest edge if this doesn't produce a cycle

Prim's algorithm

repeatedly add the next lightest edge if this doesn't produce a cycle

Prim's algorithm

repeatedly add the next lightest edge if this doesn't produce a cycle

Prim's algorithm

repeatedly add the next lightest edge if this doesn't produce a cycle

Prim's algorithm

repeatedly add the next lightest edge if this doesn't produce a cycle

Prim's algorithm

repeatedly add the next lightest edge if this doesn't produce a cycle

Prim's algorithm

repeatedly add the next lightest edge if this doesn't produce a cycle

Prim's algorithm

repeatedly add the next lightest edge if this doesn't produce a cycle

Prim's algorithm

repeatedly add the next lightest edge if this doesn't produce a cycle

Prim's algorithm

repeatedly add the next lightest edge if this doesn't produce a cycle

Prim's algorithm

repeatedly add the next lightest edge if this doesn't produce a cycle

Prim's algorithm

repeatedly add the next lightest edge if this doesn't produce a cycle

Prim's algorithm

repeatedly add the next lightest edge if this doesn't produce a cycle

Prim's algorithm

repeatedly add the next lightest edge if this doesn't produce a cycle

Prim's algorithm

repeatedly add the next lightest edge if this doesn't produce a cycle

Prim's algorithm

repeatedly add the next lightest edge if this doesn't produce a cycle

Prim's algorithm

repeatedly add the next lightest edge if this doesn't produce a cycle

Prim's algorithm

Outline

- 1 Building a Network
- 2 Greedy Algorithms
- 3 Cut Property
- 4 Kruskal's Algorithm
- 6 Prim's Algorithm

Cut property

Let $X \subseteq E$ be a part of a MST of G(V, E), $S \subseteq V$ be such that no edge of X crosses between S and V - S, and $e \in E$ be a lightest edge across this partition. Then $X + \{e\}$ is a part of some MST.

Cut property

Let $X \subseteq E$ be a part of a MST of G(V, E), $S \subseteq V$ be such that no edge of X crosses between S and V - S, and $e \in E$ be a lightest edge across this partition. Then $X + \{e\}$ is a part of some MST.

Let $X \subseteq E$ be a part of a MST of G(V, E), $S \subseteq V$ be such that no edge of X crosses between S and V - S, and $e \in E$ be a lightest edge across this partition. Then $X + \{e\}$ is a part of some MST.

subset $X \subseteq E$ of some MST

Let $X \subseteq E$ be a part of a MST of G(V, E), $S \subseteq V$ be such that no edge of X crosses between S and V - S, and $e \in E$ be a lightest edge across this partition. Then $X + \{e\}$ is a part of some MST.

partition of V into S and V-S

Let $X \subseteq E$ be a part of a MST of G(V, E), $S \subseteq V$ be such that no edge of X crosses between S and V - S, and $e \in E$ be a lightest edge across this partition. Then $X + \{e\}$ is a part of some MST.

lightest edge e between S and V-S

Let $X \subseteq E$ be a part of a MST of G(V, E), $S \subseteq V$ be such that no edge of X crosses between S and V - S, and $e \in E$ be a lightest edge across this partition. Then $X + \{e\}$ is a part of some MST.

cut property states that $X + \{e\}$ is also a part of some MST

Let $X \subseteq E$ be a part of a MST of G(V, E), $S \subseteq V$ be such that no edge of X crosses between S and V - S, and $e \in E$ be a lightest edge across this partition. Then $X + \{e\}$ is a part of some MST.

cut property states that $X + \{e\}$ is also a part of some MST

subset $X \subseteq E$ of some MST T

partition of V into S and V-S

lightest edge e between S and V-S

we know that X is a part of some MST T and need to show that $X + \{e\}$ is also a part of a (possibly different) MST

if $e \in T$ then there is nothing to prove; so assume that $e \notin T$

consider the tree T

adding e to T creates a cycle; let e' be an edge of this cycle that crosses S and V-S

then $T' = T - \{e'\} + \{e\}$ is an MST containing $X + \{e\}$: it is a tree, and $w(T') \le w(T)$ since $w(e) \le w(e')$

Outline

- 1 Building a Network
- 2 Greedy Algorithms
- 3 Cut Property
- 4 Kruskal's Algorithm
- 5 Prim's Algorithm

Kruskal's Algorithm

- Algorithm: repeatedly add to X the next lightest edge e that doesn't produce a cycle
- At any point of time, the set X is a forest, that is, a collection of trees
- The next edge e connects two different trees—say, T_1 and T_2
- The edge e is the lightest between T_1 and $V-T_1$, hence adding e is safe

Implementation Details

- use disjoint sets data structure
- initially, each vertex lies in a separate set
- each set is the set of vertices of a connected component
- to check whether the current edge {u, v} produces a cycle, we check whether u and v belong to the same set

Example

Kruskal(G)

for all $u \in V$: MakeSet(v)

 $X \leftarrow \text{empty set}$ sort the edges E by weight

for all $\{u,v\} \in E$ in non-decreasing

weight order:

if Find(u) \neq Find(v): add $\{u, v\}$ to X

Union(u, v)

return X

Sorting edges:

$$O(|E| \log |E|) = O(|E| \log |V|^2) =$$

 $O(2|E| \log |V|) = O(|E| \log |V|)$

Processing edges:

$$2|E| \cdot T(\text{Find}) + |V| \cdot T(\text{Union}) = O((|E|+|V|)\log|V|) = O(|E|\log|V|)$$

■ Total running time: $O(|E| \log |V|)$

Outline

- 1 Building a Network
- 2 Greedy Algorithms
- 3 Cut Property
- 4 Kruskal's Algorithm
- 6 Prim's Algorithm

Prim's Algorithm

- X is always a subtree, grows by one edge at each iteration
- we add a lightest edge between a vertex of the tree and a vertex not in the tree
- very similar to Dijkstra's algorithm

Example

Prim's Algorithm

Prim(G)

for all $u \in V$:

```
cost[u] \leftarrow \infty, parent[u] \leftarrow nil
pick any initial vertex u_0
cost[u_0] \leftarrow 0
PrioQ \leftarrow MakeQueue(V) {priority is cost}
while PrioQ is not empty:
  v \leftarrow \text{ExtractMin}(PrioQ)
  for all \{v,z\} \in E:
     if z \in PrioQ and cost[z] > w(v, z):
        cost[z] \leftarrow w(v,z), parent[z] \leftarrow v
        ChangePriority(PrioQ, z, cost[z])
```

the running time is

 $|V| \cdot T(\text{ExtractMin}) + |E| \cdot T(\text{ChangePriority})$

the running time is

$$|V| \cdot T(\text{ExtractMin}) + |E| \cdot T(\text{ChangePriority})$$

• for array-based implementation, the running time is $O(|V|^2)$

the running time is

$$|V| \cdot T(\text{ExtractMin}) + |E| \cdot T(\text{ChangePriority})$$

- for array-based implementation, the running time is $O(|V|^2)$
- for binary heap-based implementation, the running time is $O((|V| + |E|) \log |V|) = O(|E| \log |V|)$

Summary

Kruskal: repeatedly add the next lightest edge if this doesn't produce a cycle; use disjoint sets to check whether the current edge joins two vertices from different components

Prim: repeatedly attach a new vertex to the current tree by a lightest edge; use priority queue to quickly find the next lightest edge