TL494 脉宽调制控制电路

Order this document by TL494/D

TL494

SWITCHMODE PULSE WIDTH MODULATION CONTROL CIRCUIT

SEMICONDUCTOR TECHNICAL DATA

ORDERING INFORMATION

Device	Operating Temperature Range	Package
TL494CD	T _A = 0° to +70°C	SO-16
TL494CN	1 1A = 0 10 170 C	Plastic
TL494IN	$T_A = -25^{\circ} \text{ to } +85^{\circ}\text{C}$	Plastic

TL494 是一种固定频率脉宽调制电路,它主要为开关电源电路而设计。

- 集成了全部的脉宽调制电路
- 内置主从振荡器
- 内置误差放大器
- · 内置 5.0V 参考基准电压源
- 可调整死区时间
- •内置功率晶体管可提供最大 500mA 的

驱动能力

- 输出可控制推拉电路或单端电路
- 欠压保护

最大额定值:

armoss outerwise notes.)

Rating	Symbol	TL494C	TL494I	Unit
Power Supply Voltage	Vcc	4	2	٧
Collector Output Voltage	V _{C1} , V _{C2}	4	٧	
Collector Output Current (Each transistor) (Note 1)	lC1, lC2	500		mA
Amplifier Input Voltage Range	VIR	-0.3 to +42		٧
Power Dissipation @ T _A ≤ 45°C	PD	1000		mW
Thermal Resistance, Junction-to-Ambient	R _{OJA}	8	0	°C/W
Operating Junction Temperature	TJ	12	25	°C
Storage Temperature Range	T _{stg}	–55 to	+125	°C
Operating Ambient Temperature Range TL494C TL494I	ТА	0 to -25 t	°C	
Derating Ambient Temperature	ТД	4	5	°C

注意: 必须注意最大发热限制。

Power supply voltage:电源电压

Collector Output Voltage:集电极输出电压

Collector Output Current(Each transistor): 集电极输出电流(每一个管子)

Amplifier Input Voltage Range: 输入放大器电压范围

Power Dissipation @ TA < 45°C: 45℃下功率损耗

Thermal Resistance,Junction-to-Ambien: 结对环境热敏阻抗

Operating Junction Temperature: 结点工作温度 Storage Temperature Range: 储存温度范围

Operating Ambient Temperature Range: 运行环境范围

Derating Ambient Temperature: 降额温度

推荐工作条件

Characteristics	Symbol	Min	Тур	Max	Unit
Power Supply Voltage	Vcc	7.0	15	40	٧
Collector Output Voltage	V _{C1} , V _{C2}	-	30	40	٧
Collector Output Current (Each transistor)	IC1, IC2	-	-	200	mA
Amplified Input Voltage	V _{in}	-0.3	-	V _{CC} - 2.0	٧
Current Into Feedback Terminal	Ifb	-	-	0.3	mA
Reference Output Current	l _{ref}	-	=	10	mA
Timing Resistor	RT	1.8	30	500	kΩ
Timing Capacitor	CT	0.0047	0.001	10	μF
Oscillator Frequency	fosc	1.0	40	200	kHz

电特性 (VCC = 15 V, CT = 0.01uF, RT = 12 kW, 无特殊说明下)

Characteristics	Symbol	Min	Тур	Max	Unit
-----------------	--------	-----	-----	-----	------

参考区

Reference Voltage (I _O = 1.0 mA)	V _{ref}	4.75	5.0	5.25	٧
Line Regulation (V _{CC} = 7.0 V to 40 V)	Reg _{line}	_	2.0	25	m∨
Load Regulation (I _O = 1.0 mA to 10 mA)	Reg _{load}	-	3.0	15	mV
Short Circuit Output Current (V _{ref} = 0 V)	Isc	15	35	75	mA

输出区

Collector Off-State Current (VCC = 40 V, VCE = 40 V)	IC(off)	_	2.0	100	μА
Emitter Off–State Current VCC = 40 V, VC = 40 V, VE = 0 V)	IE(off)	-	-	-100	μΑ
Collector–Emitter Saturation Voltage (Note 2) Common–Emitter (V _E = 0 V, I _C = 200 mA) Emitter–Follower (V _C = 15 V, I _E = –200 mA)	Vsat(C) Vsat(E)	- -	1.1 1.5	1.3 2.5	٧
Output Control Pin Current Low State (V _{OC} ≤ 0.4 V) High State (V _{OC} = V _{ref})	loch	- -	10 0.2	- 3.5	μA mA
Output Voltage Rise Time Common-Emitter (See Figure 12) Emitter-Follower (See Figure 13)	t _r	_ _	100 100	200 200	ns
Output Voltage Fall Time Common-Emitter (See Figure 12) Emitter-Follower (See Figure 13)	tf	- -	25 40	100 100	ns

Input Offset Voltage (VO (Pin 3) = 2.5 V)	VIO	_	2.0	10	mV
Input Offset Current (VO (Pin 3) = 2.5 V)	110	-	5.0	250	nA
Input Bias Current (VO (Pin 3) = 2.5 V)	IВ	-	-0.1	-1.0	μΑ
Input Common Mode Voltage Range (V _{CC} = 40 V, T _A = 25°C)	VICR	-	0.3 to V _{CC} -2	.0	V
Open Loop Voltage Gain (Δ V $_{O}$ = 3.0 V, V $_{O}$ = 0.5 V to 3.5 V, R $_{L}$ = 2.0 k Ω)	Avol	70	95	-	dB
Unity–Gain Crossover Frequency (V $_{\rm O}$ = 0.5 V to 3.5 V, R $_{\rm L}$ = 2.0 k Ω)	f _C –	-	350	-	kHz
Phase Margin at Unity–Gain (V $_{O}$ = 0.5 V to 3.5 V, R $_{L}$ = 2.0 k Ω)	φm	-	65	-	deg.
Common Mode Rejection Ratio (V _{CC} = 40 V)	CMRR	65	90	-	dB
Power Supply Rejection Ratio (Δ V _{CC} = 33 V, V _O = 2.5 V, R _L = 2.0 k Ω)	PSRR	-	100	-	dB
Output Sink Current (VO (Pin 3) = 0.7 V)	10-	0.3	0.7	-	mA
Output Source Current (VO (Pin 3) = 3.5 V)	10+	2.0	-4.0	_	mA

PWM 比较区(图 11 测试电路)

Input Threshold Voltage (Zero Duty Cycle)	VTH	_	2.5	4.5	٧
Input Sink Current (V(Pin 3) = 0.7 V)	۱μ	0.3	0.7	1	mA

死区电压控制区(图11测试电路)

Input Bias Current (Pin 4) (V _{Pin 4} = 0 V to 5.25 V)	IB (DT)	_	-2.0	-10	μА
Maximum Duty Cycle, Each Output, Push–Pull Mode (VPin 4 = 0 V, CT = 0.01 μF, RT = 12 kΩ) (VPin 4 = 0 V, CT = 0.001 μF, RT = 30 kΩ)	DC _{max}	45 -	48 45	50 50	%
Input Threshold Voltage (Pin 4) (Zero Duty Cycle) (Maximum Duty Cycle)	Vth	- 0	2.8 -	3.3 -	>

振荡区

Frequency (C _T = 0.001 μ F, R _T = 30 k Ω)	fosc	=	40	=	kHz
Standard Deviation of Frequency* (CT = 0.001 μ F, RT = 30 $k\Omega$)	σf _{osc}	-	3.0	-	%
Frequency Change with Voltage (V _{CC} = 7.0 V to 40 V, T _A = 25°C)	$\Delta f_{OSC}(\Delta V)$	-	0.1	-	%
Frequency Change with Temperature ($\Delta T_A = T_{low}$ to T_{high}) ($C_T = 0.01 \mu F$, $R_T = 12 k\Omega$)	$\Delta f_{OSC}(\Delta T)$	_	-	12	%

欠压保护区

Tum-On Threshold (V _{CC} increasing, I _{ref} = 1.0 mA)	V _{th}	5.5	6.43	7.0	V

整个器件

Standby Supply Current (Pin 6 at V_{ref} , All other inputs and outputs open) (V_{CC} = 15 V) (V_{CC} = 40 V)	lcc	-	5.5 7.0	10 15	mA
Average Supply Current $(C_T=0.01~\mu\text{F, R}_T=12~\text{k}\Omega,~\text{V}_{\text{Pin 4}})=2.0~\text{V})\\ (\text{V}_{\text{CC}}=15~\text{V})~\text{(See Figure 12)}$		ı	7.0	_	mA

$$\sigma = \sqrt{\frac{\sum\limits_{\Sigma}^{N}(\times_{n} - \overline{\times})^{2}}{\sum\limits_{N-1}^{n=1}}}$$

*标准差是一种平均统计分布,从右公式得来:

图 1.典型代表方框图

此器件包含 46 个有效晶体管

图 2.时序图

应用资料

TL494 是一个固定频率的脉冲宽度调制电路,内置线性锯齿波振荡器,振荡 频率可通过外部的电阻 RT 和电容 CT 来进行调节,其振荡频率为:

$$f_{OSC} \approx \frac{1.1}{R_T \cdot C_T}$$

输出脉冲的宽度是通过电容 CT 上的正极性锯齿波电压与另外两个控制信号进行比较来实现。功率输出管 Q1 和 Q2 受或非门控制,仅当双稳触发器的时钟信号为低电平时才工作,亦即锯齿波电压大于控制信号期间工作。因此,当控制信号增大时,输出的脉冲宽度将减小(参见图 2)。

控制信号由集成电路外部输入,一路送至死区电压比较器,一路送往误差放大器输入端。死区电压比较器具有 120mv 的输入补偿电压,它限制了最小输出死区时间约等于锯齿波周期的 4%。当输出控制端接地,最大输出占空比为 96%,接参考电压时,占空比为 48%。当把死区时间控制输入端接上固定电压(范围在0~3.3V之间)时,即能在输出脉冲上产生附加的死区时间。

脉冲宽度比较器为误差放大器调节输出宽度提供了一种手段。当反馈电压从 0.5V 变化到 3.5V 时,输出的脉冲宽度从被死区确定的最大导通百分比下降到 0。 两个误差放大器有相同的电压输入范围,从-0.3 到 VCC-2,这可被用于检测电源的输出电压和电流。误差放大器的输出端常处于高电平,它与脉冲宽度调制器的 反相输入端进行或运算。使用这种结构,放大器只需最小的输出即可支配控制回路。

当电容 CT 放电,一个正脉冲出现在死区比较器的输出端,受脉冲约束的双稳触发器进行计时,同时停止输出管 Q1 和 Q2 的工作。若输出控制端连接到参考电压源,那么脉冲交替输至两个输出晶体管,输出频率等于脉冲振荡器的频率的一半。如果工作在单端状态,且最大占空比为 50%时,输出驱动信号分别从晶体管 Q1 和 Q2 取得,输出变压器一个反馈绕组及二极管提供反馈电压。在单端工作模式下,当需要更高的驱动电流输出,亦可将 Q1 和 Q2 并联使用,这时,需要将输出模式控制脚接地以关闭双稳触发器,此状态下,输出频率等于振荡器的频率。

TL494 内置一个 5.0V 的基准电压源,使用外置偏置电路时,可提供高达 10mA 的负载电流。在典型的 0~70℃温度条件下,该基准电源能提供±5%的精确度。

图 3.振荡器频率与定时电阻关系

图 5.死区时间百分比与振荡频率关系

图 6.占空比和死区时间控制电压关系

图 7.射极跟随器输出饱和电压和射极电流关系

图 8.共射极结构输出饱和电压和集电极电流关系

图 9 待机电源电源电流和电源电压关系

图 10.误差放大器特性

图 11.死区时间和反馈控制电路

图 12.共射极电路结构测试电路和波形

图 13.射极跟随器结构测试电路和波形

图 14.误差放大器检测技术

图 15.死区时间控制电路

图 16.软启动电路

图 17.单端输出连接和推拉结构

图 18.驱动两个或者多个控制电路

图 19.在电压>40V 时使用齐纳二极管工作

图 20.脉宽调制式推拉转换器

Test	Conditions	Results
Line Regulation	V _{in} = 10 V to 40 V	14 mV 0.28%
Load Regulation	V_{III} = 28 V, I_{O} = 1.0 mA to 1.0 A	3.0 mV 0.06%
Output Ripple	V _{in} = 28 V, I _O = 1.0 A	65 mV pp P.A.R.D.
Short Circuit Current	V _{in} = 28 V, R _L = 0.1 Ω	1.6 A
Efficiency	V _{in} = 28 V, I _O = 1.0 A	71%

L1 – 3.5 mH @ 0.3 A T1 – Primary: 20T C.T.#28 AWG Secondary: 12OT C.T. #36 AWG Core: Ferroxcube 1408P–L00–3CB

图 21.PWM 降压电路

Test	Conditions	Results
Line Regulation	V _{in} = 8.0 V to 40 V	3.0 mV 0.01%
Load Regulation	V _{in} = 12.6 V, I _O = 0.2 mA to 200 mA	5.0 mV 0.02%
Output Ripple	V _{in} = 12.6 V, I _O = 200 mA	40 mV pp P.A.R.D.
Short Circuit Current	V _{in} = 12.6 V, R _L = 0.1 Ω	250 mA
Efficiency	V _{in} = 12.6 V, I _O = 200 mA	72%

外形尺寸

