BMSim

IoT Fundamentals Course

Amirreza Hosseini 9820363

Third scenario: A network with friends and low-power nodes.

we need to design a network with the same properties as the past ones. Here we have a friend node, a relay, and a friend node, and for each of them a low-power node. To achieve this, first, we need to modify the choice_feature.py file. Before this, we first need to know about the topology of our network for preventing any disconnection from happening in it. We experiment with this with a grid and a random network.

The important thing is that the distance between a friend and a low-power node should not be more than one hop.

```
#our new configuration
nodes[0].feature = 4 #low power
nodes[6].feature = 4 #low power

nodes[1].feature = 5 #friend and relay
nodes[5].feature = 6 #friend

#friendship
nodes[0].friend_Id = 1
nodes[6].friend_Id = 5

nodes[1].LOW_POWER_ID = 0
nodes[5].LOW_POWER_ID = 6
```

We want to delete the id of low-power nodes from heartbeat messages to prevent them to receive these messages. We will achieve simplicity for our network by doing this task because the friend of their nodes will receive them anyway. (Modification of event_driven.py file in HEARTBEAT_EVENT_Adv37 section)

```
destination.remove(nodes[1].LOW_POWER_ID)
destination.remove(nodes[5].LOW_POWER_ID)
```

One other thing is to set the low-power nodes as the destination of some packet generator nodes. To do so, we need to modify the event_driven.py file in GENERATION_EVENT_Adv37

```
#destination assignment for the generative nodes
    if i_node == 23:
        destination1=[0]
    if i_node == 17:
        destination1=[6]
```

Our focus in this scenario is on the energy consumption of the network because we have low-energy nodes here.

The default algorithm for a grid network:

a) the topology of our grid network same as this:

Graph with 49 nodes and 84 edges

initial [[776, 1], [12, 6], [16, 6], [12, 6], [13, 6], [25, 6], [814, 1], [2, 6], [9, 6], [7, 6], [9, 6], [26, 6], [17, 6], [4, 6], [16, 6], [11, 6], [17, 6], [20, 6], [26, 6], [16, 6], [15, 6], [0, 6], [28, 6], [4, 6], [27, 6], [14, 6], [15, 6], [7, 6], [9, 6], [13, 6], [13, 6], [13, 6], [29, 6], [29, 6], [30, 6], [9, 6], [17, 6], [23, 6], [10, 6], [18, 6], [13, 6], [16, 6], [1

b) here is our configuration for the generator nodes:

```
#destination assignment for the generative nodes
    if i_node == 23:
        destination1=[0]
    if i_node == 17:
        destination1=[6]
```

we want to check if the generated packets from node 23 will receive to the low-power node 0 or not:

In 23.log we have:

(generate) 23 6 [0] 1

(generate) 23 1006.05 [0] 2

In 30.log we have:

(relay) 23 23 6.0 1 6 127 1

(advertise) 30 31.2 23 1

In 29.log we have:

(relay) 30 23 31.2 1 6 126 1

(advertise) 29 31.4 23 1

In 22.log we have:

(relay) 29 23 31.6 1 6 125 1

(advertise) 22 31.8 23 1

In 21.log we have:

(relay) 22 23 32.0 1 6 124 1

(advertise) 21 32.2 23 1

In 14.log we have:

(relay) 21 23 32.2 1 6 123 1

(advertise) 14 32.4 23 1

In 7.log we have:

(relay) 14 23 32.4 1 6 122 1

(advertise) 7 35.2 23 1

In 8.log we have:

(relay) 7 23 35.4 1 6 121 1

(advertise) 8 40.0 23 1

In 1.log we have:

(relay) 8 23 40.01 1 6 120 1

here we have arrived packets at 0.log file from node 23:

(main) 23 1 6 0 6745.03

(main) 23 3 2006.2 0 6850.84

(main) 23 4 3006.4 0 6976.05

(main) 23 5 4006.99 0 7035.06

So, there is a path from node 23 to node 0. And the system works well.

We do the same thing with node 17 as a generative and node 6 as a low-power node.

In 10.log we have:

(relay) 17 17 1680.62 1 1680.02 127 1

(advertise) 10 1697.82 17 1

In 3.log we have:

(relay) 10 17 1698.82 1 1680.02 126 1

(advertise) 3 1700.22 17 1

In 4.log we have:

(relay) 3 17 1701.2 1 1680.02 125 2

(advertise) 4 1724.82 17 1

here we have arrived packets at 6.log file from node 17:

(main) 17 1 1680.02 6 8004.25

(main) 17 2 2680.19 6 8119.66

(main) 17 3 3680.39 6 8262.88

So, there is a path from node 17 to node 6. And the system works well.

c) The performance metrics that are calculated for this scenario are these:

nodes PDR [66.6666666666666, 100.0, 96.55172413793103, 100.0, 100.0, 100.0, 90.0, 96.55172413793103, 96.55172413793103, 100.0, 100.0, 100.0, 100.0, 100.0, 96.55172413793103, 10.344827586206897, 100.0, 100.0, 100.0, 100.0, 100.0, 24.137931034482758, 0, 93.10344827586206, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 96.55172413793103, 100.0, 100.0, 100.0, 100.0, 93.10344827586206, 100.0, 100.0, 93.10344827586206, 100.0, 100.0, 96.55172413793103, 93.10344827586206, 100.0]

average PDR in the network [94.5713601532567]

average latency in each node [67.9390000000001, 40.1720689655171, 56.57214285714283, 53.8048148148146, 45.68206896551713, 19.474827586207123, 41.32827586206911, 41.32928571428568, 43.63071428571413, 44.76172413793064, 11.677586206896656, 27.24999999999936, 12.924482758621009, 19.291785714285407, 20.653793103448216, 12.12275862068941, 11.663571428571256, 5001.86666666667, 16.26241379310364, 26.724137931034875, 47.63931034482766, 13.178620689654924, 14.804827586206603, 2671.184285714286, 0, 2.026296296296508, 16.866206896551816, 15.981379310344852,

26.37666666666649,
17.4541379310344,
37.09206896551721,
23.06379310344861,
16.480344827586123
47.31896551724123]

27.581379310345152, 31.728275862069072, 23.55689655172455, 32.80896551724134, 17.35862068965513, 14.713793103448552, 44.26793103448282, 33.255714285714184, 22.27241379310332, 32.368571428571215, 1.2558620689655355, 30.836896551723918, 16.33103448275879, 32.80629629629638, 22.94629629629644,

scanning energy	in ea	ach node	[86.619240000	00126,	1213.328220002952	, 1218.82428000297	72,
1213.9870800029	544,	1220.31	71400029773,	124	47.7891000030775,	42.267120000003	39,
1213.2364800029	516,	1215.021	2400029582,	1204	.0791600029183,	1213.903680002954	42,
1200.7515000029	061,	1213.978	7400029543,	121	3.3532400029521,	1219.38306000297	74,
1204.2126000029	189,	1207.448	5200029308,	1193	3.1621000028786,	1206.255900002926	54,
1203.1450800029	15,	1218.1070	400029694,	1213	.8286200029538,	1214.629260002956	57,
1194.1879200028	823,	1249.523	8200030838,	1191	4941000028725,	1213.253160002953	17,
1212.6777000029	497,	1218.557	400002971,	1202	.7614400029136,	1205.238420002922	26,
1191.9361200028	74,	1199.867	460002903,	1197	.9492600028962,	1217.18130000296	56,
1211.1264600029	442,	1212.761	.1000029501,	120	1.535460002909,	1209.566880002938	34,
1196.0811000028	893,	1214.195	5800029552,	121	3.027980002951,	1219.833420002975	58,
1210.6010400029	42,	1214.395	740002956,	1207.	2316800029298,	1217.25636000296	54,
1210.884600002943, 1221.3513000029811]							

switching energy in each node [0.1844640000000002, 2.421090000000604, 2.0521620000000462, 2.378268000000059, 1.963224000000043, 0.14164200000000002, 0.14493600000000023, 2.4540300000000617, 2.3189760000000565, 3.037068000000041, 2.391444000000059, 3.201768000000016, 2.3650920000000584, 2.440854000000061, 2.015928000000045, 3.0173040000000437, 2.790018000000074, 3.7123379999999386, 2.9086020000000605, 3.0733020000000355, 2.1015720000000484, 2.4210900000000604, 2.292624000000055, 3.689279999999942, 0.02305799999999995, 3.8375099999999196, 2.4177960000000605, 2.4770880000000624, 2.0883960000000474, 3.1062420000000306, 2.9448360000000546, 3.8111579999999234, 3.2511780000000083, 3.3763499999999893, 2.1213360000000487, 2.572614000000066, 2.444148000000061, 3.1589460000000225, 2.67143400000007, 3.5278739999999664, 2.361798000000058, 2.470500000000062, 2.0027520000000445, 2.3486220000000575, 2.780136000000074, 2.1542760000000505, 2.549556000000065,

transmitting energy in each node [1.2946752000000015, 16.992611999999124, 14.403261599999349, 13.779043199999403, 16.692062399999152, 0.9941255999999994, 1.0172447999999996, 17.223803999999106, 16.275916799999187, 21.31590239999875, 16.78453919999914, 22.47186239999865, 16.59958559999916, 17.131327199999113, 14.14895039999937, 21.17718719999876, 19.581962399998897, 26.055338399998373, 20.414253599998826, 14.750049599999318, 21.570213599998727, 16.992611999999124, 16.0909631999992, 25.893503999998348, 0.16183440000000002, 26.933867999998625, 16.969492799999127, 17.38563839999909, 14.657572799999327, 21.801405599998706, 20.668564799998805, 26.748914399998572, 22.818650399998617, 23.697179999998543, 14.888764799999306, 18.05609519999903, 17.15444639999911, 22.171312799998674, 18.74967119999897, 24.76066319999845, 16.57646639999916, 17.33939999999999, 14.056473599999379, 17.894260799999046, 16.483989599999166, 19.512604799998908, 15.119956799999287, 18.032975999999035, 13.24730159999945]

total energy in each	node [89.316979200012	26, 1232.7419220029512,	1235.2797036029713,		
1233.0574104029538,	1236.059407202977,	1248.9248676030775,	44.6947008000039,		
1232.9143140029507,	1233.6161328029573,	1228.4321304029172,	1233.0796632029535,		
1226.4251304029049,	1232.9434176029536,	1232.9254212029514,	1235.5479384029734,		
1228.4070912029176,	1229.8205004029298,	1222.929776402877,	1229.5787556029252,		
1227.7885956029136,	1234.9586616029687,	1233.242322002953,	1233.012847202956,		
1223.7707040028806,	1249.7087124030838,	1222.265478002871,	1232.640448802951,		
1232.540426402949,	1235.3033688029705,	1227.6690876029124,	1228.8518208029216,		
1222.4962924028725,	1225.9372884029017,	1225.0227900028947,	1234.1914008029655,		
1231.7551692029433,	1232.3596944029493,	1226.8657188029078,	1230.9879852029376,		
1224.3696372028876,	1233.1338444029545,	1232.8378800029502,	1235.8926456029753,		
1231.0448568029412,	1233.2283516029552,	1229.5244208029287,	1234.5305928029657,		
1231.486896002942, 1236.4860636029807]					

network energy consumption (mJ) 58020.599263738346

The default algorithm for a random network:

a) the topology of our random network:

Graph with 49 nodes and 181 edges

initial [[20, 6], [198, 1], [69, 1], [4, 6], [21, 6], [7, 6], [0, 6], [2, 6], [29, 6], [17, 6], [20, 6], [24, 6], [10, 6], [23, 6], [14, 6], [18, 6], [18, 6], [19, 6], [22, 6], [13, 6], [15, 6], [29, 6], [23, 6], [17, 6], [30, 6], [27, 6], [5, 6], [11, 6], [12, 6], [24, 6], [24, 6], [24, 6], [24, 6], [24, 6], [21, 6], [4, 6], [6, 6], [11, 6]]

b) here is our configuration for the generator nodes:

```
#destination assignment for the generative nodes
    if i_node == 28:
        destination1=[1]
    if i_node == 7:
        destination1=[2]
```

we want to check if the generated packets from node 28 will receive to the low-power node 1 or not:

in 28.log we have:

```
(generate) 28 3862.27 [1] 3
in 29.log we have:
(relay) 28 28 3863.28 3 3862.27 127 1
(advertise) 29 3875.88 28 3
```

In 32.log we have:

(advertise) 32 3895.68 28 3

In 0.log we have:

here we have arrived packets at 1.log file from node 28:

(main) 28 5 5863.17 1 8749.67

(main) 28 6 6863.28 1 8899.28

So, there is a path from node 28 to node 1. And the system works well.

We do the same thing with node 7 as a generative and node 2 as a low-power node.

In 7.log we have:

In 13.log we have:

In 43.log we have:

here we have arrived packets at 2.log file from node 7:

So, there is a path from node 7 to node 2. And the system works well.

Here are the traced packets for the above topology:

c) the performance metrics that are calculated for this scenario are these:

nodes PDR [100.0, 76.6666666666667, 73.3333333333333, 100.0, 100.0, 96.55172413793103, 68.96551724137932, 96.55172413793103, 100.0, 75.86206896551724, 100.0,100.0, 100.0, 96.55172413793103, 100.0, 100.0, 100.0, 96.55172413793103, 100.0, 96.55172413793103, 96.55172413793103, 100.0, 96.55172413793103, 100.0, 86.20689655172413, 100.0, 96.55172413793103, 0, 96.55172413793103, 100.0, 96.55172413793103, 100.0, 100.0, 62.06896551724138, 68.96551724137932, 89.65517241379311, 96.55172413793103, 96.55172413793103, 100.0, 55.172413793103445, 100.0, 72.41379310344827, 82.75862068965517, 75.86206896551724, 100.0]

average PDR in the network [92.63649425287356]

average latency in each node [24.391034482758915, 29.198695652173697, 6.951818181818143, 0.4620689655173386, 33.576206896551405, 17.423571428571677, 3.259000000000424, 2320.5049999999997, 1.4896551724137241, 3.7027272727273672, 0.5417241379308476, 3.6927586206900367, 6.245517241379267, 15.167241379310576, 24.639310344827773, 5.71413793103457, 6.631379310344951, 11.230357142857267, 3.5134482758622685, 15.244482758620741, 13.784482758620847, 2.8232142857144464, 3.237241379310168, 9.444642857142858, 0.6155172413794562, 2.3603571428577164, 11.68107142857154, 0.46724137931024134, 2010.6144, 0.5975862068966354, 10.94785714285745, 0, 16.695714285714537, 3.553103448275939, 0.6985714285710368, 11.939655172413973, 1.63999999999653, 21.2166666666634, 5.136500000000251, 18.413846153845988, 17.3350000000002, 23.588571428571317, 18.92413793103453, 8.763749999999874, 9.347619047619121, 2.5622727272726915, 14.934827586206737, 6.216666666666981, 14.459655172414026]

average burst packet loss in each node [[0, 0.30434782608695654, 0.36363636363636365, 0, 0, 0, 0.35, 0.03571428571428571, 0, 0.03571428571428571, 0, 0.04, 0, 0.03571428571428571, 0.03571428571428571, 0, 0.03571428571428571, 0, 0, 0.55555555555556, 0.45, 0.03571428571428571, 0.11538461538461539, 0.03571428571428571, 0.8125, 0.38095238095238093, 0.16666666666666666, 0.3181818181818182, 0]]

scanning energy in each node [1208.4910200029344, 141.5965199999626, 192.9458999999159, 1214.8711200029575, 1211.0263800029436, 1215.50496000296, 1226.0634000029984, 1204.0708200029183, 1213.1197200029512, 1202.9282400029142, 1213.6451400029532, 1206.5061000029273, 1208.4993600029345, 1212.9195600029504, 1208.5410600029347, 1213.1781000029514, 1212.1189200029476, 1210.4926200029417, 1213.6951800029533, 1206.2308800029261, 1209.0331200029364, 1210.0172400029398, 1203.7622400029172, 1203.3035400029155, 1208.2074600029334, 1213.2364800029516, 1209.0581400029366, 1203.0450000029145, 1215.3882000029594, 1206.7980000029283, 1214.8961400029577, 1250.107620003086, 1204.3126800029193, 1209.8921400029396, 1213.328220002952, 1216.072080002962, 1215.7134600029606, 1215.0379200029583, 1225.0209000029945, 1225.437900002996, 1224.7623600029935, 1219.383060002974, 1211.0013600029436, 1219.8000600029757, 1210.7511600029427, 1218.3655800029703, 1246.2879000030719, 1218.9910800029727, 1213.319880002952]

switching energy in each node [2.7142560000000713, 0.2734019999999937, 0.3030479999999991, 2.3420340000000572, 2.5462620000000653, 2.292624000000055, 1.62394200000003, 2.42767800000006, 2.9777760000000497, 2.4210900000000604, 3.076596000000035, 2.832840000000072, 2.7406080000000723, 2.4177960000000605, 2.7274320000000722, 2.41450200000006, 2.5297920000000644, 2.5890840000000668, 2.378268000000059, 2.855898000000068, 2.997540000000047, 2.697786000000071, 2.6286120000000683, 3.04365600000004, 2.7406080000000723, 2.378268000000059, 2.6582580000000693, 3.10953600000003, 2.2893300000000556, 2.8460160000000703, 2.2860360000000552, 0.023057999999999995, 2.964600000000052, 2.6286120000000683, 2.3749740000000585, 2.2695660000000544, 2.292624000000055, 2.2959180000000554, 1.6568820000000315, 1.6568820000000315, 1.6601760000000316, 1.9994580000000444, 2.539674000000065, 2.015928000000045, 2.5561440000000655, 2.068632000000047, 0.2964599999999991, 2.068632000000047, 2.4243840000000607]

transmitting energy in each node [19.050220799998943, 1.9188936000000056, 2.1269664000000073, 16.437751199999173, 17.871141599999046, 16.0909631999992, 11.397765599999609, 17.03885039999912, 20.899756799998784, 16.992611999999124, 21.593332799998723, 19.882511999998872, 19.23517439999893, 16.969492799999127, 19.142697599998936, 16.94637359999913, 17.75554559999906, 18.17169119999902, 16.692062399999152, 18.449121599999, 20.04434639999886, 18.934624799998954, 21.038471999998773, 21.362140799998745, 19.23517439999893, 16.692062399999152, 18.65719439999898, 21.824524799998706, 16.067843999999205, 19.974988799998865, 16.04472479999921, 0.16183440000000002, 20.80727999999879, 18.449121599999, 16.668943199999152, 15.929128799999216, 16.0909631999992, 16.1140823999992, 11.62895759999959, 17.824903199999053, 11.62895759999959, 11.652076799999588, 14.03335439999938, 2.0807280000000064, 14.14895039999937, 17.940499199999042, 14.51885759999934, 14.51885759999934, 17.01573119999912]

total energy in each	node [1230.2554968029	333, 144.9726155999626,	196.5096143999159,		
1233.6509052029567,	1231.4437836029426,	1233.8885472029592,	1239.0851076029978,		
1233.1116684029523,	1227.948352802917,	1232.5334220029504,	1227.598168802913,		
1229.221452002926,	1230.4751424029334,	1232.3068488029496,	1230.4111896029337,		
1232.5389756029506,	1232.4042576029467,	1231.2533952029407,	1232.7655104029527,		
1229.131124402925,	1230.6655308029356,	1231.0949736029388,	1227.7982520029161,		
1227.7093368029143,	1230.1832424029324,	1232.306810402951,	1230.3735924029359,		
1227.9790608029132,	1233.7453740029587,	1229.619004802927,	1233.2269008029568,		
1250.292512403086,	1228.0845600029181,	1230.9698736029386,	1232.3721372029513,		
1234.2707748029611,	1234.0970472029599,	1233.4479204029576,	1238.3067396029942,		
1238.7237396029957,	1238.0746128029932,	1235.4158724029733,	1231.3659372029426,		
1235.9649384029751,	1231.247803202942,	1234.9530696029697,	1248.6650880030718,		
1235.578569602972, 1232.7599952029514]					

network energy consumption (mJ) 58290.79884853869

Conclusion:

As the charts illustrate, we could see a huge difference between the first and current scenarios. When we have low-power nodes in our network it could have various impacts on our network.

For example, the total energy consumption decreased in comparison to the network without any low power node in it.

The other effect is on the Packet delivery ratio and latency. As a matter of fact, putting low-power and friend nodes in our network could change the behavior of packet delivery In our network for both random and grid topologies.