Certification of Matrix Interpretations in Coq

Adam Koprowski and Hans Zantema

Eindhoven University of Technology Department of Mathematics and Computer Science

> 29 June 2007 WST

Outline

- CoLoR
- Pormalization of matrix interpretations
 - Introduction to matrix interpretations
 - Monotone algebras
 - Matrices
 - Matrix interpretations
- 3 Certified competition

Outline

- CoLoR
- - Introduction to matrix interpretations
 - Monotone algebras
 - Matrices
 - Matrix interpretations

CoLo

CoLoR: Coq Library on Rewriting and Termination.

Goal: certification of termination proofs produced by various termination provers.

- TPG: common format for termination proofs.
- Tools output proofs in TPG format.
- CoLoR: a Coq library of results on termination.
- Rainbow: a tool for translation from proofs in TPG format to Coq proofs, using results from CoLoR.

CoLo

CoLoR: Coq Library on Rewriting and Termination.

Goal: certification of termination proofs produced by various termination provers.

- TPG: common format for termination proofs.
- Tools output proofs in TPG format.
- CoLoR: a Coq library of results on termination.
- Rainbow: a tool for translation from proofs in TPG format to Coq proofs, using results from CoLoR.

CoLo

CoLoR: Coq Library on Rewriting and Termination.

Goal: certification of termination proofs produced by various termination provers.

- TPG: common format for termination proofs.
- Tools output proofs in TPG format.
- Rainbow: a tool for translation from proofs in TPG format to Cog

CoLo

CoLoR: Coq Library on Rewriting and Termination.

Goal: certification of termination proofs produced by various termination provers.

- TPG: common format for termination proofs.
- Tools output proofs in TPG format.
- CoLoR: a Coq library of results on termination.
- Rainbow: a tool for translation from proofs in TPG format to Coq proofs, using results from CoLoR.

CoLo

CoLoR: Coq Library on Rewriting and Termination.

Goal: certification of termination proofs produced by various termination provers.

- TPG: common format for termination proofs.
- Tools output proofs in TPG format.
- CoLoR: a Coq library of results on termination.
- Rainbow: a tool for translation from proofs in TPG format to Coq proofs, using results from CoLoR.

CoLo

CoLoR: Coq Library on Rewriting and Termination.

Goal: certification of termination proofs produced by various termination provers.

- TPG: common format for termination proofs.
- Tools output proofs in TPG format.
- CoLoR: a Coq library of results on termination.
- Rainbow: a tool for translation from proofs in TPG format to Coq proofs, using results from CoLoR.

CoLoR architecture overview

CoLoR architecture overview

CoLoR architecture overview

Outline

- CoLoR
- Pormalization of matrix interpretations
 - Introduction to matrix interpretations
 - Monotone algebras
 - Matrices
 - Matrix interpretations
- 3 Certified competition

Example

z086.trs

$$a(a(x)) \rightarrow c(b(x)), \quad b(b(x)) \rightarrow c(a(x)), \quad c(c(x)) \rightarrow b(a(x))$$

Matrix interpretation for z086.trs

$$a(x) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 2 \\ 0 \end{bmatrix}$$

$$b(x) = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$c(x) = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Example

z086.trs

$$a(a(x)) \rightarrow c(b(x)), \quad b(b(x)) \rightarrow c(a(x)), \quad c(c(x)) \rightarrow b(a(x))$$

Matrix interpretation for z086.trs

$$a(x) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 0 & 2 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$$

$$b(x) = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$c(x) = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Example ctd.

Termination proof for z086.trs

$$a(a(x)) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 0 & 0 \end{bmatrix} \left(\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 2 \\ 0 \end{bmatrix} \right) + \begin{bmatrix} 0 \\ 0 \\ 2 \\ 0 \end{bmatrix}$$

$$c(b(x)) = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \left(\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Example ctd.

Termination proof for z086.trs

$$a(a(x)) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 0 & 2 \end{bmatrix} \left(\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 0 & 2 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} \right) + \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$$

$$c(b(x)) = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \left(\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \right) + \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \left(\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \right)$$

Monotone algebras

Definition (An extended weakly monotone Σ -algebra)

A weakly monotone Σ -algebra $(A, [\cdot], >, \gtrsim)$ is a Σ -algebra $(A, [\cdot])$ equipped with two binary relations >, \gtrsim on A such that:

- > is well-founded;
- $\bullet > \cdot \gtrsim \subseteq >;$
- for every $f \in \Sigma$ the operation [f] is monotone with respect to >.

Theorem

Let $\mathcal{R}, \mathcal{R}'$ be TRSs over a signature Σ , $(A, [\cdot], >, \gtrsim)$ be an extended monotone Σ -algebra such that:

• $[\ell, \alpha] \gtrsim [r, \alpha]$ for every rule $\ell \to r$ in \mathbb{R} , for all $\alpha : \mathcal{X} \to A$ and • $[\ell, \alpha] > [r, \alpha]$ for every rule $\ell \to r$ in \mathbb{R}' and for all $\alpha : \mathcal{X} \to A$. Then $\mathsf{SN}(\mathbb{R})$ implies $\mathsf{SN}(\mathbb{R} \cup \mathbb{R}')$.

Monotone algebras

Definition (An extended weakly monotone Σ -algebra)

A weakly monotone Σ -algebra $(A, [\cdot], >, \gtrsim)$ is a Σ -algebra $(A, [\cdot])$ equipped with two binary relations $>, \gtrsim$ on A such that:

- > is well-founded;
- $\bullet > \cdot \gtrsim \subseteq >;$
- for every $f \in \Sigma$ the operation [f] is monotone with respect to >.

Theorem

Let $\mathcal{R}, \mathcal{R}'$ be TRSs over a signature Σ , $(A, [\cdot], >, \gtrsim)$ be an extended monotone Σ -algebra such that:

- $[\ell, \alpha] \gtrsim [r, \alpha]$ for every rule $\ell \to r$ in \mathcal{R} , for all $\alpha : \mathcal{X} \to \mathsf{A}$ and
- $[\ell, \alpha] > [r, \alpha]$ for every rule $\ell \to r$ in \mathcal{R}' and for all $\alpha : \mathcal{X} \to A$.

Then $SN(\mathcal{R})$ implies $SN(\mathcal{R} \cup \mathcal{R}')$.

- Monotone algebras are formalized as a functor.
- Apart for the aforementioned requirements there is one additional required to deal with concrete examples: $>_{\mathcal{T}}$ and $\gtrsim_{\mathcal{T}}$ must be decidable.
- More precisely the requirement is to provide a relation ≫, such that
 - \gg \subseteq $>_{\mathcal{I}}$ and
 - >> is decidable
 - similarly for ≥.
- The structure returned by the functor contains all the machinery required to prove (relative)-(top)-termination in Coq.

- Monotone algebras are formalized as a functor.
- Apart for the aforementioned requirements there is one additional required to deal with concrete examples: $>_{\mathcal{T}}$ and $\gtrsim_{\mathcal{T}}$ must be decidable.
- More precisely the requirement is to provide a relation ≫, such that

```
⇒ ⊆ ><sub>T</sub> and
⇒ is decidable
similarly for ≥.
```

• The structure returned by the functor contains all the machinery required to prove (relative)-(top)-termination in Coq.

- Monotone algebras are formalized as a functor.
- Apart for the aforementioned requirements there is one additional required to deal with concrete examples: $>_{\mathcal{T}}$ and $\gtrsim_{\mathcal{T}}$ must be decidable.
- More precisely the requirement is to provide a relation >>, such that
 - $\gg \subseteq >_{\mathcal{T}}$ and
 - >> is decidable
 - similarly for \gtrsim .
- The structure returned by the functor contains all the machinery required to prove (relative)-(top)-termination in Coq.

- Monotone algebras are formalized as a functor.
- Apart for the aforementioned requirements there is one additional required to deal with concrete examples: $>_{\mathcal{T}}$ and $\gtrsim_{\mathcal{T}}$ must be decidable.
- More precisely the requirement is to provide a relation >>, such that
 - $\gg \subseteq >_{\mathcal{T}}$ and

 - similarly for \gtrsim .
- The structure returned by the functor contains all the machinery required to prove (relative)-(top)-termination in Coq.

Formalization of matrices

- Matrices over arbitrary semi-ring of coefficients.
- a number of basic operations over matrices such as:

$$[\cdot], M_{i,j}, M+N, M*N, M^T, \dots$$

- and a number of basic properties such as:
 - M + N = N + M,
 - M*(N*P) = (M*N)*P
 - monotonicity of *
 -

29 June 2007 WST

Formalization of matrices

- Matrices over arbitrary semi-ring of coefficients.
- a number of basic operations over matrices such as:

$$[\cdot], \quad M_{i,j}, \quad M+N, \quad M*N, \quad M^T, \ldots$$

- and a number of basic properties such as:
 - M + N = N + M.
 - M*(N*P) = (M*N)*P
 - monotonicity of *
 - 0 . . .

Formalization of matrices

- Matrices over arbitrary semi-ring of coefficients.
- a number of basic operations over matrices such as:

$$[\cdot], M_{i,j}, M+N, M*N, M^T, \dots$$

- and a number of basic properties such as:
 - M + N = N + M,
 - M * (N * P) = (M * N) * P
 - monotonicity of *
 - ...

Polynomial interpretations in the setting of monotone algebras

- \bullet $A = \mathbb{Z}$,
- \bullet > = > \mathbb{Z} , \gtrsim = \geq \mathbb{Z} ,
- interpretations represented by polynomials $[f(x_1,...,x_n)] = P_{\mathbb{Z}}(x_1,...,x_n),$
- ullet > $_{\mathcal{T}}$ not decidable (positiveness of polynomial) heuristics required.

Polynomial interpretations in the setting of monotone algebras

- \bullet $A=\mathbb{Z}$.
- \bullet > = > \mathbb{Z} , \geq => \mathbb{Z} ,
- interpretations represented by polynomials
- $\bullet >_{\mathcal{T}}$ not decidable (positiveness of polynomial) heuristics

Polynomial interpretations in the setting of monotone algebras

- \bullet $A = \mathbb{Z}$.
- \bullet > = > \mathbb{Z} , \gtrsim = \geq \mathbb{Z} ,
- interpretations represented by polynomials $[f(x_1,...,x_n)] = P_{\mathbb{Z}}(x_1,...,x_n),$
- >_T not decidable (positiveness of polynomial) heuristics required.

Polynomial interpretations in the setting of monotone algebras

- \bullet $A = \mathbb{Z}$.
- \bullet > = > \mathbb{Z} , \gtrsim = \geq \mathbb{Z} ,
- interpretations represented by polynomials $[f(x_1,...,x_n)] = P_{\mathbb{Z}}(x_1,...,x_n),$
- \bullet >_{ \mathcal{T} not decidable (positiveness of polynomial) heuristics required.

- fix a dimension d,
- $A = \mathbb{N}^d$,
- $(u_1,\ldots,u_d)\gtrsim (v_1,\ldots,v_d)$ iff $\forall i,u_i\geq_{\mathbb{N}} v_i$,
- $(u_1, \ldots, u_d) > (v_1, \ldots, v_d)$ iff $(u_1, \ldots, u_d) \gtrsim (v_1, \ldots, v_d) \wedge u_1 >_{\mathbb{N}} v_1$,
- interpretations represented as: $[f(x_1,...,x_n)] = M_1x_1 + ... + M_nx_n + v$ where $M_i \in \mathbb{N}^{d \times d}, v \in \mathbb{N}^d$,
- $>_{\mathcal{T}}$ and $\gtrsim_{\mathcal{T}}$ are decidable in this case but thanks to introducing \gg we do not need to prove completeness of their characterization.
- Domain fixed to \mathbb{N} with natural orders > and >.

- fix a dimension d,
- $A = \mathbb{N}^d$,
- $(u_1,\ldots,u_d)\gtrsim (v_1,\ldots,v_d)$ iff $\forall i,u_i\geq_{\mathbb{N}} v_i$,
- $(u_1, \ldots, u_d) > (v_1, \ldots, v_d)$ iff $(u_1, \ldots, u_d) \gtrsim (v_1, \ldots, v_d) \wedge u_1 >_{\mathbb{N}} v_1$,
- interpretations represented as: $[f(x_1,...,x_n)] = M_1x_1 + ... + M_nx_n + v$ where $M_i \in \mathbb{N}^{d \times d}, v \in \mathbb{N}^d$,
- $>_{\mathcal{T}}$ and $\gtrsim_{\mathcal{T}}$ are decidable in this case but thanks to introducing \gg we do not need to prove completeness of their characterization.
- Domain fixed to \mathbb{N} with natural orders > and >.

- fix a dimension d,
- $A = \mathbb{N}^d$,
- $(u_1,\ldots,u_d)\gtrsim (v_1,\ldots,v_d)$ iff $\forall i,u_i\geq_{\mathbb{N}} v_i$,
- $(u_1, \ldots, u_d) > (v_1, \ldots, v_d)$ iff $(u_1, \ldots, u_d) \gtrsim (v_1, \ldots, v_d) \land u_1 >_{\mathbb{N}} v_1$,
- interpretations represented as: $[f(x_1,...,x_n)] = M_1x_1 + ... + M_nx_n + v$ where $M_i \in \mathbb{N}^{d \times d}, v \in \mathbb{N}^d$,
- $>_{\mathcal{T}}$ and $\gtrsim_{\mathcal{T}}$ are decidable in this case but thanks to introducing \gg we do not need to prove completeness of their characterization.
- Domain fixed to \mathbb{N} with natural orders > and >.

- fix a dimension d,
- $A = \mathbb{N}^d$,
- $(u_1,\ldots,u_d)\gtrsim (v_1,\ldots,v_d)$ iff $\forall i,u_i\geq_{\mathbb{N}} v_i$,
- $(u_1, \ldots, u_d) > (v_1, \ldots, v_d)$ iff $(u_1, \ldots, u_d) \gtrsim (v_1, \ldots, v_d) \land u_1 >_{\mathbb{N}} v_1$,
- interpretations represented as: $[f(x_1,...,x_n)] = M_1x_1 + ... + M_nx_n + v$ where $M_i \in \mathbb{N}^{d \times d}$, $v \in \mathbb{N}^d$,
- $>_{\mathcal{T}}$ and $\gtrsim_{\mathcal{T}}$ are decidable in this case but thanks to introducing \gg we do not need to prove completeness of their characterization.
- Domain fixed to \mathbb{N} with natural orders > and \ge .

- fix a dimension d,
- $A = \mathbb{N}^d$,
- $(u_1,\ldots,u_d)\gtrsim (v_1,\ldots,v_d)$ iff $\forall i,u_i\geq_{\mathbb{N}} v_i$,
- $(u_1, \ldots, u_d) > (v_1, \ldots, v_d)$ iff $(u_1, \ldots, u_d) \gtrsim (v_1, \ldots, v_d) \land u_1 >_{\mathbb{N}} v_1$,
- interpretations represented as: $[f(x_1, ..., x_n)] = M_1 x_1 + ... + M_n x_n + v$ where $M_i \in \mathbb{N}^{d \times d}$, $v \in \mathbb{N}^d$,
- $>_{\mathcal{T}}$ and $\gtrsim_{\mathcal{T}}$ are decidable in this case but thanks to introducing \gg we do not need to prove completeness of their characterization.
- Domain fixed to \mathbb{N} with natural orders > and \ge .

- fix a dimension d,
- $A = \mathbb{N}^d$,
- $(u_1,\ldots,u_d)\gtrsim (v_1,\ldots,v_d)$ iff $\forall i,u_i\geq_{\mathbb{N}} v_i$,
- $(u_1, \ldots, u_d) > (v_1, \ldots, v_d)$ iff $(u_1, \ldots, u_d) \gtrsim (v_1, \ldots, v_d) \land u_1 >_{\mathbb{N}} v_1$,
- interpretations represented as: $[f(x_1, ..., x_n)] = M_1x_1 + ... + M_nx_n + v$ where $M_i \in \mathbb{N}^{d \times d}$, $v \in \mathbb{N}^d$,
- ullet >_T and $\gtrsim_{\mathcal{T}}$ are decidable in this case but thanks to introducing \gg we do not need to prove completeness of their characterization.
- Domain fixed to \mathbb{N} with natural orders > and \ge .

- fix a dimension d,
- $A = \mathbb{N}^d$.
- $(u_1,\ldots,u_d)\gtrsim (v_1,\ldots,v_d)$ iff $\forall i,u_i\geq_{\mathbb{N}} v_i$,
- $(u_1, \ldots, u_d) > (v_1, \ldots, v_d)$ iff $(u_1, \ldots, u_d) \gtrsim (v_1, \ldots, v_d) \land u_1 >_{\mathbb{N}} v_1$,
- interpretations represented as: $[f(x_1, ..., x_n)] = M_1x_1 + ... + M_nx_n + v$ where $M_i \in \mathbb{N}^{d \times d}$, $v \in \mathbb{N}^d$,
- $>_{\mathcal{T}}$ and $\gtrsim_{\mathcal{T}}$ are decidable in this case but thanks to introducing \gg we do not need to prove completeness of their characterization.
- Domain fixed to \mathbb{N} with natural orders > and >.

Outline

- CoLoF
- Formalization of matrix interpretations
 - Introduction to matrix interpretations
 - Monotone algebras
 - Matrices
 - Matrix interpretations
- 3 Certified competition

- In the termination competition this year a new "certified" category was introduced.
- Participants:
 - GiME+ A3PAT (polynomial interpretations, LPO, DP)
 - TPA+ CoLoR (polynomial and matrix interpretations, DF
 - T_TT₂ + CoLoR (matrix interpretations, DP
- TPA+ CoLoR was the winner with the score of 354.
- Every successful proof of TPA was using matrix interpretations

- In the termination competition this year a new "certified" category was introduced.
- Participants:
 - CiME+ A3PAT (polynomial interpretations, LPO, DP)
 - TPA+ CoLoR (polynomial and matrix interpretations, DP)
 - T_TT₂ + CoLoR (matrix interpretations, DP)

- In the termination competition this year a new "certified" category was introduced.
- Participants:
 - CiME+ A3PAT (polynomial interpretations, LPO, DP)
 - TPA+ CoLoR (polynomial and matrix interpretations, DP)
 - T_TT₂ + CoLoR (matrix interpretations, DP)
- TPA+ CoLoR was the winner with the score of 354.
- Every successful proof of TPA was using matrix interpretations.

- In the termination competition this year a new "certified" category was introduced.
- Participants:
 - CiME+ A3PAT (polynomial interpretations, LPO, DP)
 - TPA+ CoLoR (polynomial and matrix interpretations, DP)
 - T_TT₂ + CoLoR (matrix interpretations, DP)
- TPA+ CoLoR was the winner with the score of 354.
- Every successful proof of TPA was using matrix interpretations.

The end

http://color.loria.fr

Thank you for your attention.

