2.2.2 Desirable properties of point estimators

- We discussed several methods of obtaining point estimators.
- It is possible that different methods of finding estimators will lead to same estimator or different estimators.
- In this section we discuss certain properties, which an estimator may or
 may not posses, that will guide us in deciding whether one estimator is
 better than another.

2.2.2.1 Unbiasedness

Definition: Unbiased estimator

An estimator $\hat{\theta}~(=t(X_1,X_2,\dots,X_n))$ is defined to be an **unbiased estimator** of θ if and only if

$$E(\hat{\theta}) = \theta$$

• The difference $E(\hat{\theta}) - \theta$ is called as the bias of $\hat{\theta}$ and denoted by

$$Bias(\hat{\theta}) = E(\hat{\theta}) = \theta$$

• An estimator whose bias is equal to 0 is called **unbiased**.

2.2.3 Consistency

Mean-Squared Error

• The *mean-squared error* is a measure of goodness or closeness of an estimator to the target.

Definition: Mean-squared Error (MSE)

The **mean-squared error** of an estimator $\hat{\theta}$ of θ is defined as

$$MSE(\hat{\theta}) = E\left[(\hat{\theta} - \theta)^2\right]$$

- The MSE measures the average squared difference between $\hat{\theta}$ and θ .
- The MSE is a function of θ and has the interpretation

$$MSE(\hat{\theta}) = Var(\hat{\theta}) + \left[Bias(\hat{\theta})\right]^2$$

- Therefore the MSE incorporates two components, one measuring the variability of the estimator (precision) and the other measuring its bias (accuracy).
- Small value of MSE implies small combined variance and bias.
- If $\hat{\theta}$ is unbiased, then

$$MSE(\hat{\theta}) = Var(\hat{\theta})$$

• The positive square root of MSE is known as the root mean squared error

$$RMSE(\hat{\theta}) = \sqrt{MSE(\hat{\theta})}$$

Consistency

• Estimator $\hat{\theta}$ is said to be consistent for θ if $MSE(\hat{\theta})$ approaches zero as the sample size n approaches ∞ .

$$lim_{n\to\infty}E\left[(\hat{\theta}-\theta)^2\right]=0$$

• Mean-squared error consistency implies that the bias and the variance both approach to zero as n approaches ∞ .