Двоичная арифметика

Двоичная арифметика включает в себя арифметические действия над двоичными числами.

Правила выполнения арифметических действий над двоичными числами задаются таблицами двоичного сложения, вычитания и умножения:

Таблица 1

Слагаемое 1	Слагаемое 2	Сумма
0	0	0
0	1	1
1	0	1
1	1	0 (единица переноса в старший разряд)

Таблица 2

Уменьшаемое	Вычитаемое	Разность	
0	0	0	
0	1	1(заем единицы из старшего разряда)	
1	0	1	
1	1	0	

Таблина 3

Сомножитель 1	Сомножитель 2	Произведение
0	0	0
0	1	0
1	0	0
1	1	1

Правила арифметики во всех позиционных системах счисления аналогичны. Поэтому сложение двух чисел в двоичной системе можно выполнять столбиком, начиная с младшего разряда, подобно тому, как это делается в десятичной системе. В каждом разряде в соответствии с таблицей двоичного сложения производится сложение двух цифр слагаемых или этих двух цифр и 1, если имеется перенос из соседнего младшего разряда. В результате получается цифра соответствующего разряда суммы и, возможно, также 1 переноса в старший разряд.

Рис. 1. Сложение

Вычитание чисел в двоичной системе выполняется подобно вычитанию в десятичной системе. При вычитании в данном разряде при необходимости занимается 1 из следующего старшего разряда. Эта занимаемая 1 равна двум 1 данного разряда. Занимание производится каждый раз, когда цифра в разряде вычитаемого больше цифры в том же разряде уменьшаемого.

Рис. 2. Вычитание

Умножение двоичных многоразрядных чисел производится путем образования частичных произведений и последующего их суммирования. В соответствии с таблицей двоичного умножения каждое частичное произведение равно 0, если в соответствующем разряде множителя стоит 0, или равно множимому, сдвинутому на соответствующее число разрядов влево, если в разряде множителя стоит 1. Таким образом, операция умножения многоразрядных двоичных чисел сводится к операциям сдвига и сложения. Положение запятой определяется так же, как при умножении десятичных чисел.

Рис. 3. Умножение

Деление чисел в двоичной системе производится аналогично делению десятичных чисел. Достаточно рассмотреть деление двух целых двоичных чисел, так как делимое и делитель всегда могут быть приведены к такому виду путем переноса запятой в делителе и делимом на одинаковое число разрядов и дописывания 0 в недостающие справа разряды.

Рис. 4. Деление

Благодаря простоте правил двоичного сложения, вычитания и умножения применение в ЭВМ двоичной системы счисления позволяет упростить схемы устройств, выполняющих арифметические операции.