Pandas

Python Overview

In R I Want	In Python I Use
Base R	numpy
dplyr/tidyr	pandas
ggplot2	matplotlib/seaborn

Pandas versus Tidyverse

These are the equivalencies you should have in mind.

<DataFrame>.fun() means that fun() is a method of the
<DataFrame> object.

<Series>.fun() means that fun() is a method of the
<Series> object.

```
-----|
|`bind_rows()`
              | `pandas.concat()`|
|`filter()`
              | `<DataFrame>.query()`|
| `gather() ` and `pivot longer() ` | `<DataFrame>.melt() ` |
|`glimpse()`
               `<DataFrame>.info()` and |
                               `<DataFrame>.head()`|
                `<DataFrame>.groupby()`|
|`group_by()`
|`if else()`
               `numpy.where()`|
|`left join()`
              | `pandas.merge()`|
|`library()`
               `import`
|`mutate()`
                `<DataFrame>.eval()` and |
                             `<DataFrame>.assign()`|
| read csv() 
               `pandas.read_csv()`|
```

| pandas |

| tidyverse

```
tidyverse
                  | pandas |
|`read csv()`
                | `pandas.read csv()`|
l`recode()`
                  `<DataFrame>.replace()` |
l`rename()`
                | `<DataFrame>.rename()`|
| `select() `
                  `<DataFrame>.filter()` and
                                    `<DataFrame>.drop()`|
|`separate()`
                | `<Series>.str.split()`|
l`slice()`
                | `<DataFrame>.iloc()`|
|`spread()` and `pivot_wider()` | |
             `<DataFrame>.pivot_table().reset_index()`|
|`summarize()` | `<DataFrame>.agg()`|
```

| `<Series>.str.cat()`|

Enclose pipeline in `()`|

|`unite()` |`%>%`

Importing libraries

```
Python: import <package> as <alias>.
```

Python

```
import numpy as np
import pandas as pd
```

You can use the alias that you define in place of the package name. In Python we write down the package name a lot, so it is nice for it to be short.

R equivalent

R

library(tidyverse)

Reading in and Printing Data

- ▶ We'll demonstrate most methods with the "estate" data that we've seen before: https://data-sciencemaster.github.io/lectures/data/estate.csv
- You can read about these data here: https://data-science-master.github.io/lectures/data.html
- Python: pd.read_csv(). There is a family of reading functions in pandas (fixed width files, e.g.). Use tab-completion to scroll through them.

```
estate = pd.read_csv("../data/estate.csv")
```

```
R equivalent:
   R
   estate1 <- read_csv("../data/estate.csv")</pre>
   Use the info() and head() methods to get a view of the
   data.
   Python
   estate.info()
   <class 'pandas.core.frame.DataFrame'>
   RangeIndex: 522 entries, 0 to 521
   Data columns (total 12 columns):
        Column Non-Null Count Dtype
    0
        Price
                 522 non-null
                                  int64
        Area
                 522 non-null
                                 int64
    2
        Bed
                 522 non-null
                                 int64
    3
        Bath
                 522 non-null
                                 int64
    4
        AC
                 522 non-null
                                  int64
    5
                                  int64
        Garage
                 522 non-null
```

Python

estate.head()

ob out of its day										
		Price	Area	Bed	${\tt Bath}$	AC		Year	Quality	Sty1
	Λ	360000	3033	1	1	1		1072	Modium	

	Price	Area	Bed	Bath	AC	 Year	${\tt Quality}$	Sty
0	360000	3032	4	4	1	 1972	Medium	

1	340000	2058	4	2	1	 1976	Medium
)	250000	1780	4	3	1	1980	Medium

1	340000	2036	4		Τ.	 1910	Medium	
2	250000	1780	4	3	1	 1980	Medium	1
3	205500	1638	4	2	1	 1963	Medium	1

2	2	250000	1780	4	3	1	 1980	Medium	1
3	3	205500	1638	4	2	1	 1963	Medium	1
4	4	275500	2196	4	3	1	 1968	Medium	7

[5	rows	x	12	columns
				00 = 0

R equivalent:

Rows: 522 Columns: 12

R

glimpse(estate1)

```
$ Area
                                       <dbl> 3032, 2058, 1780, 1638, 2196, 1966, 2216, 3
$ Bed
                                       <dbl> 4, 4, 4, 4, 4, 4, 3, 2, 3, 3, 7, 3, 5, 5, 5
$ Bath
                                    <dbl> 4, 2, 3, 2, 3, 3, 2, 1, 2, 3, 5, 4, 4, 4, 3
$ AC
                                       <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1
$ Garage <dbl> 2, 2, 2, 2, 5, 2, 1, 2, 1, 2, 3, 3, 2, 2
$ Pool
                                       <dbl> 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0
$ Year <dbl> 1972, 1976, 1980, 1963, 1968, 1972, 1972,
$ Quality <chr> "Medium", 
$ Style <dbl> 1, 1, 1, 1, 7, 1, 7, 1, 1, 1, 7, 1, 7, 5,
$ Lot
                                    <dbl> 22221, 22912, 21345, 17342, 21786, 18902, 3
```

DataFrames and Series

- Pandas reads in tabular data as a DataFrame object.
- Just as R's data.frame is a list of a bunch of vectors, Panda's DataFrame contains a bunch of Series objects.

➤ A Series object is a generalization of a numpy array. So you can use numpy functions on it.

```
Python
x = pd.Series([1, 4, 2, 1])
```

x[2:3]

 $x[x \ge 2]$ np.sum(x)

x[pd.Series([0, 2])]

Extract Variables

Python: Use a period. This extracts the column as a Pandas Series.

Python

```
estate.Price
```

▶ Then you can use all of those numpy functions on the Series

```
np.mean(estate.Price)
np.max(estate.Price)
```

R equivalent: Use a \$:

R

estate1\$Price

Filtering/Arranging Rows (Observations)

► Filter rows based on booleans (logicals) with query(). The queries need to be in quotes.

```
estate.query('(Price > 300000) & (Area < 2500)')
```

Some folks use bracket notation, which is more similar to base $\ensuremath{\mathsf{R}}$

Python

estate[(estate.Price > 300000) & (estate.Area < 2500)]</pre>

R equivalent:

R

```
filter(estate1, Price > 300000, Area < 2500)
```

Select rows by numerical indices with iloc()

Python

```
estate.iloc[[1, 4, 10]]
```

	Price	Area	веа	Batn	AC	 rear	Quality	Style
1	340000	2058	4	2	1	 1976	Medium	1
4	275500	2196	4	3	1	 1968	Medium	7
10	190000	2812	7	5	0	 1966	Low	7

[3 rows x 12 columns]

R equivalent:

3 160000 1976

```
R
```

```
slice(estate1, 1, 4, 10)
```

3

1918 Low

Arrange rows by sort_values().

Python

estate.sort_values(by="Price", ascending=False)

R equivalent

R

arrange(estate1, desc(Price))

Exercise: Use both the tidyverse and pandas to extract all medium

quality homes that have a pool and arrange the rows in increasing order of price.

Selecting Columns (Variables)

➤ Variables are selected using filter().

```
estate.filter(["Price"])
estate.filter(["Price", "Area"])
```

Some folks use bracket notation, which is more similar to Base ${\sf R}.$

Python

estate[["Price"]]

Python estate[["Price", "Area"]]

The inner brackets [] just creates a Python list. The outer brackets []

says that we are subsetting the columns.

R equivalent:

R

select(estate1, Price)

R

select(estate1, Price, Area)

Dropping a column is done by drop(). The axis=1 argument says to drop by

columns (rather than by "index", which is something we haven't covered).

```
estate.drop(["Price", "Area"], axis=1)
```

R: just use select() with a minus sign.

R

select(estate1, -Price, -Area)

Renaming variables is done with rename().

```
estate.rename({'Price': 'price', 'Area': 'area'},
axis = 'columns')
```

R equivalence:

10 160000

R

```
rename(estate1, price = Price, area = Area)
         A tibble: 522 x 12
                                                                                                          Bed
                                                                                                                                        Bath AC Garage Pool Year Qualit
                       price
                                                                area
                        <dbl> 
       1 360000
                                                                3032
                                                                                                                       4
                                                                                                                                                          4
                                                                                                                                                                                                                                       2
                                                                                                                                                                                                                                                                                             1972 Medium
      2 340000 2058
                                                                                                                      4
                                                                                                                                                                                                                                       2
                                                                                                                                                                                                                                                                                             1976 Medium
      3 250000 1780
                                                                                                                      4
                                                                                                                                                          3
                                                                                                                                                                                                                                       2
                                                                                                                                                                                                                                                                                             1980 Medium
      4 205500 1638
                                                                                                                     4
                                                                                                                                                                                                                                                                                             1963 Medium
      5 275500 2196
                                                                                                                                                          3
                                                                                                                                                                                                                                       2
                                                                                                                      4
                                                                                                                                                                                                                                                                                             1968 Medium
      6 248000
                                                                1966
                                                                                                                       4
                                                                                                                                                          3
                                                                                                                                                                                                                                       5
                                                                                                                                                                                                                                                                                              1972 Medium
      7 229900
                                                                 2216
                                                                                                                       3
                                                                                                                                                                                                                                       2
                                                                                                                                                                                                                                                                                              1972 Medium
               150000
                                                                1597
                                                                                                                                                                                                                                        1
                                                                                                                                                                                                                                                                                             1955 Medium
                195000
                                                                1622
                                                                                                                       3
                                                                                                                                                                                                                                       2
                                                                                                                                                                                                                                                                                             1975 Low
```

3

0

1

1918 Low

1976 i 512 more rows 3

Exercise:				

Use the tidyverse and pandas to select year, price, and area.

Creating New Variables (Mutate)

New variables are created in Python using eval(). Note that we need to place the expression in quotes.

```
estate.eval('age = 2013 - Year')
```

You can use assign(), but then you need to reference the DataFrame

as you extract variables:

```
estate.assign(age = 2013 - estate.Year)
```

R equivalent:

R

```
mutate(estate1, age = 2013 - Year)
```

Exe	ercise:
	Use the tidyverse and pandas to calculate the price per unit area.

Piping

- ➤ All of these pandas functions return DataFrames. So, we can apply methods to these DataFrames by just appending methods to the end.
- ► E.g., suppose we want to find the total number of beds/baths and only select the price and this total number to print. Then the following code would work.

```
Python
```

estate.eval('tot = Bed + Bath').filter(["Price", "tot"])

If you want to place these operations on different lines, then just place

the whole operation within parentheses.

```
Python
```

```
(
estate.eval('tot = Bed + Bath')
.filter(["Price", "tot"])
)
```

This looks similar to piping in the tidyverse

```
estate1 %>%
  mutate(tot = Bed + Bath) %>%
  select(Price, tot)
```

Exercise:

Use pandas to extract all medium quality homes that have a pool and arrange the rows in increasing order of price. Use piping.

Group Summaries

Summaries can be calculated by the agg() method. You usually first select the columns whose summaries you want before running agg().

Python

```
(
estate.filter(["Price", "Area"])
.agg(np.mean)
)
```

Price 277894.147510 Area 2260.626437

dtype: float64

R equivalent

```
R
summarize(estate1, Price = mean(Price), Area = mean(Area))
# A tibble: 1 x 2
    Price Area
    <dbl> <dbl>
1 277894, 2261.
```

Use groupby() to create group summaries.

```
Python
```

```
(
estate.filter(["Price", "Area", "Bed", "Bath"])
   .groupby(["Bed", "Bath"])
   .agg(np.mean)
)
```

R equivalent

```
estate1 %>%
  group_by(Bed, Bath) %>%
  summarize(Price = mean(Price), Area = mean(Area))
```

You can get multiple summaries out by passing a list of functions:

```
Python
```

```
(
estate.filter(["Price", "Area", "Quality"])
  .groupby("Quality")
  .agg([np.mean, np.var])
)
```

You can create your own functions and pass those

Python

```
def cv(x):
    """Calculate coefficient of variation"""
    return(np.sqrt(np.var(x)) / np.mean(x))

(
    estate.filter(["Price", "Area"])
        .agg(cv)
)
```

Price 0.495841 Area 0.314242 dtype: float64

Recoding

Use replace() with a dict object to recode variable values.
Python

```
estate.replace({'AC' : {0: "No AC", 1: "AC"}})
```

R equivalent:

To recode values based on logical conditions, use np.where().

Python

```
estate.assign(isbig = np.where(estate.Price > 300000,
"expensive", "cheap"))
```

R equivalence:

Gathering

- Problem: One variable spread across multiple columns.
- Column names are actually *values* of a variable
- ▶ Recall table4a from the tidyr package

```
data("table4a")
```

```
Python
```

2

country 1999 2000 0 Afghanistan 745 2666 1 Brazil 37737 80488

China 212258 213766

Solution: melt().

Python

```
table4a.melt(id_vars='country',
value_vars=['1999', '2000'])
```

	country	variable	value
0	Afghanistan	1999	745
1	Brazil	1999	37737
2	China	1999	212258
3	Afghanistan	2000	2666
4	Brazil	2000	80488
5	China	2000	213766

R equivalences:

```
gather(table4a, key = "variable", value = "value",
      `1999`. `2000`)
# A tibble: 6 \times 3
 country variable value
 <chr> <chr> <chr> <chr>
1 Afghanistan 1999
                      745
2 Brazil
            1999
                     37737
3 China 1999 212258
4 Afghanistan 2000
                      2666
5 Brazil 2000 80488
6 China 2000 213766
R
pivot longer(table4a, cols = c("1999", "2000"),
           names_to = "variable",
           values to = "value")
```

RDS visualization:

```
![](../graphix/tidy-9.png) \\ \\
```

Exercise: Use pandas to gather the monkeymem data frame (available at

https://data-science-master.github.io/lectures/data/tidy_exercise/monkeymem.csv). The cell values represent identification accuracy of some objects (in percent of 20 trials).

Spreading

- Problem: One observation is spread across multiple rows.
- One column contains variable names. One column contains values for the different variables.
- Recall table2 from the tidyr package

R

data("table2")

```
Python
table2 = pd.DataFrame({'country': ['Afghanistan', 'Afghanis
                                     'Afghanistan', 'Afghanis
                                     'Brazil', 'Brazil', 'Bra
```

```
'Brazil', 'China', 'Chin
            'China', 'China'],
'year': [1999, 1999, 2000, 2000, 199
```

```
2000, 2000, 1999, 1999, 200
'type': ['cases', 'population', 'cas
            'population', 'cases', 'population', 'cases', 'population'
```

'count':

'cases', 'population', 'cas 'population', 'cases', 'population', 'cases', 'population'

[745, 19987071, 2666, 208

172006362, 80488, 174504

1272915272, 213766, 1280

Python

table2

	country	year	type	count
0	Afghanistan	1999	cases	745
1	Afghanistan	1999	population	19987071
2	Afghanistan	2000	cases	2666
3	Afghanistan	2000	population	20595360
4	Brazil	1999	cases	37737
5	Brazil	1999	population	172006362
6	Brazil	2000	cases	80488
7	Brazil	2000	population	174504898
8	China	1999	cases	212258
9	China	1999	population	1272915272
10	China	2000	cases	213766
11	China	2000	population	1280428583

Solution: pivot_table() followed by reset_index().

Python

```
(
table2.pivot_table(index=['country', 'year'],
columns='type', values='count')
   .reset_index()
)
```

type	country	year	cases	population
0	Afghanistan	1999	745.0	1.998707e+07
1	Afghanistan	2000	2666.0	2.059536e+07
2	Brazil	1999	37737.0	1.720064e+08
3	Brazil	2000	80488.0	1.745049e+08
4	China	1999	212258.0	1.272915e+09
5	China	2000	213766.0	1.280429e+09

pivot_table() creates a table with an index attribute
defined by the columns you pass to the index argument. The
reset_index() converts that attribute to columns and

changes the index attribute to a sequence [0, 1, ...,

n-1].

R equivalences

```
R
spread(table2, key = "type", value = "count")
# A tibble: 6 x 4
 country
         year cases population
 <chr>
            <dbl> <dbl>
                              <dbl>
1 Afghanistan 1999
                     745 19987071
2 Afghanistan 2000 2666 20595360
3 Brazil
              1999 37737 172006362
4 Brazil
              2000
                   80488 174504898
              1999 212258 1272915272
5 China
6 China
              2000 213766 1280428583
```

```
R
```

```
# A tibble: 6 x 4
country year cases population
<chr> <dbl> <dbl> <dbl> <dbl> 1 Afghanistan 1999 745 19987071

2 Afghanistan 2000 2666 20595360

3 Brazil 1999 37737 172006362

4 Brazil 2000 80488 174504898

5 China 1999 212258 1272915272

6 China 2000 213766 1280428583
```

RDS visualization:

```
![](../graphix/tidy-8.png) \\ \\
```

Exercise:

Use pandas to spread the flowers1 data frame (available at https://data-science-master.github.io/lectures/data/tidy_exercise/flowers1.csv).

Separating

Sometimes we want to split a column based on a delimiter:

```
R
```

```
data("table3")
```

```
Python
```

```
table3 = pd.DataFrame({'country': ['Afghanistan', 'Afghanis
                                    'Brazil', 'China', 'Chin
                        'year': [1999, 2000, 1999, 2000, 199
```

'rate': ['745/19987071', '2666/2059 '37737/172006362', '80488/ '212258/1272915272', '21376

table3 country year rate 745/19987071 Afghanistan 1999 Afghanistan 2000 2666/20595360 Brazil 1999 37737/172006362

```
Python
```

```
table3[['cases', 'population']] = table3.rate.str.split(partable3.drop('rate', axis=1))
```

```
population
      country
               year
                     cases
  Afghanistan
               1999
                       745
                              19987071
  Afghanistan
              2000
                      2666
                              20595360
2
       Brazil
              1999 37737 172006362
3
       Brazil 2000
                     80488
                             174504898
4
              1999
                    212258 1272915272
        China
5
               2000
                    213766 1280428583
        China
```

R equivalence

```
separate(table3, col = "rate", sep = "/",
    into = c("cases", "population"))
```

Exercise:

Use pandas to separate the flowers2 data frame (available at https://data-science-master.github.io/lectures/data/tidy_exercise/flowers2.csv).

Uniting

Sometimes we want to combine two columns of strings into one column.

R

data("table5")

Python

```
table5 = pd.DataFrame({'country': ['Afghanistan', 'Afghanistan', 'China', '
```

'212258/1272915272', '21376

table5

	country	century	year	rate	
0	Afghanistan	19	99	745/19987071	
1	Afghanistan	20	00	2666/20595360	
2	Brazil	19	99	37737/172006362	
3	Brazil	20	00	80488/174504898	
4	China	19	99	212258/1272915272	
5	China	20	00	213766/1280428583	

You can use str.cat() to combine two columns.

```
Python
(
table5.assign(year = table5.century.str.cat(table5.year))
   .drop('century', axis = 1)
```

	country	year	rate
0	Afghanistan	1999	745/19987071
1	Afghanistan	2000	2666/20595360
2	Brazil	1999	37737/172006362
3	Brazil	2000	80488/174504898
4	China	1999	212258/1272915272
5	China	2000	213766/1280428583

R equivalence:

```
R
unite(table5, century, year, col = "year", sep = "")
# A tibble: 6 \times 3
  country
             year
                    rate
  <chr>
             <chr> <chr>
1 Afghanistan 1999 745/19987071
2 Afghanistan 2000 2666/20595360
              1999 37737/172006362
3 Brazil
4 Brazil
             2000 80488/174504898
              1999 212258/1272915272
5 China
6 China
             2000 213766/1280428583
```

Exercise:

Use pandas to re-unite the data frame you separated from the flowers2 exercise. Use a comma for the separator.

Joining

We will use these DataFrames for the examples below.

Python

Binding rows is done with pd.concat().

Python

pd.concat([xdf, ydf])

R equivalence:

R

bind_rows(xdf, ydf)

All joins use pd.merge().

Inner Join (visualization from RDS):

pd.merge(left=xdf, right=ydf, how="inner", on="mykey")

```
R
inner_join(xdf, ydf, by = "mykey")
```

Outer Joins (visualization from RDS):

Left Join

Python

pd.merge(left=xdf, right=ydf, how="left", on="mykey")

```
R
left_join(xdf, ydf, by = "mykey")
```

Right Join

Python

```
pd.merge(left=xdf, right=ydf, how="right", on="mykey")
```

```
R
right_join(xdf, ydf, by = "mykey")
```

Full Join

Python

pd.merge(left=xdf, right=ydf, how="outer", on="mykey")

```
R
full_join(xdf, ydf, by = "mykey")
```

Use the left_on and right_on arguments if the keys are named differently.

▶ The on argument can take a list of key names if your key is multiple columns.

Extra Resources

Here are some resources if you want to learn more:

- Python Data Science Handbook
- Python for Data Analysis
- ► Another Book on Data Science