Parallel Recurrent Neural Network Architectures for Feature-rich Session-based Recommendations

Balázs Hidasi, Gravity R&D (@balazshidasi)
Massimo Quadrana, Politecnico di Milano (@mxqdr)
Alexandros Karatzoglou, Telefonica Research (@alexk_z)
Domonkos Tikk, Gravity R&D (@domonkostikk)

Session-based recommendations

- Permanent (user) cold-start
 - User identification
 - Changing goal/intent
 - Disjoint sessions

- Item-to-Session recommendations
 - Recommend to previous events

Next event prediction

GRU4Rec [Hidasi et. al. ICLR 2016]

- Gated Recurrent Unit
 - $z_t = \sigma(W^z x_t + U^z h_{t-1})$
 - $r_t = \sigma(W^r x_t + U^r h_{t-1})$
 - $\hat{h}_t = \sigma(Wx_t + U(r_t \circ h_{t-1}))$
 - $h_t = (1 z_t)h_{t-1} + z_t\hat{h}_t$

- Adapted to the recommendation problem
 - Session-parallel mini-batches

- Ranking loss: TOP1= $\frac{1}{N_S}\sum_{j=1}^{N_S}\sigma(\hat{r}_{s,i}-\hat{r}_{s,j})+\sigma(\hat{r}_{s,j}^2)$
- Sampling the output

Item features & user decisions

- Clicking on recommendations
- Influencing factors
 - Prior knowledge of the user
 - The stuff they see
 - Image (thumbnail, product image, etc)
 - Text (title, short description, etc)
 - o Price
 - Item properties
 - O ...
- Feature extraction from images and text

Naive solution 1: Train on the features

Item features on the input

Bad offline accuracy

- Recommendations make sense
 - but somewhat general

Naive solution 2: Concat. session & feature info

- Concatenate one-hot vector of the ID and the feature vector of the item
- Recommendation accuracy similar to the ID only network
- ID input is initially stronger signal on the next item
 - Dominates the image input
 - Network learns to focus on weights of the ID

Parallel RNN ItemID (next) One-hot vector Scores on items Weighted output W_{ID} W_{image} Subnet output Subnet output **GRU** layer **GRU** layer One-hot vector Image feature vector ItemID

- Separate RNNs for each input type
 - ID
 - Image feature vector
 - **-** ...
- Subnets model the sessions separately
- Concatenate hidden layers
 - Optional scaling / weighting
- Output computed from the concat. hidden state

Training

Backpropagate through the network in one go

 Accuracy is slightly better than for the ID only network

- Subnets learn similar aspects of the sessions
 - Some of the model capacity is wasted

Alternative training methods

- Force the networks to learn different aspects
 - Complement each other
- Inspired by ALS and ensemble learning
- Train one subnet at a time and fix the others
 - Alternate between them
- Depending on the frequency of alternation
 - Residual training (train fully)
 - Alternating training (per epoch)
 - Interleaving training (per minibatch)

Experiments on video thumbnails

- Online video site
 - 712,824 items
 - Training: 17,419,964 sessions; 69,312,698 events
 - Test: 216,725 sessions; 921,202 events
 - Target score compared to only the 50K most popular items
- Feature extraction
 - GoogLeNet (Caffe) pretrained on ImageNet dataset

- Features: values of the last avg. pooling layer
 - Dense vector of 1024 values
 - Length normalized to 1

Results on video thumbnails

- Low number of hidden units
 - MRR improvements
 - o +18.72% (vs item-kNN)
 - o +15.41% (vs ID only, 100)
 - o +14.40% (vs ID only, 200)
- High number of hidden units
 - 500+500 for p-RNN
 - 1000 for others
 - Diminishing return for increasing the number of epochs or the hidden units
 - +5-7% in MRR

Method	#Hidden units	Recall@20	MRR@20
Item-kNN	_	0.6263	0.3740
ID only	100	0.6831	0.3847
ID only	200	0.6963	0.3881
Feature only	100	0.5367	0.3065
Concat	100	0.6766	0.3850
P-RNN (naive)	100+100	0.6765	0.4014
P-RNN (res)	100+100	0.7028	0.4440
P-RNN (alt)	100+100	0.6874	0.4331
P-RNN (int)	100+100	0.7040	0.4361

Experiments on text

- Classified ad site
 - 339,055 items
 - Train: 1,173,094 sessions; 9,011,321 events
 - Test: 35,741 sessions; 254,857 events
 - Target score compared with all items
 - Multilanguage user generated titles and item descriptions
- Feature extraction
 - Concatenated title and description
 - Bi-grams with TF-IDF weighting
 - o Sparse vectors of 1,099,425 length; 5.44 avg. non-zeroes

- Experiments with high number of hidden units
- +3.4% in recall
- +5.37% in MRR

Summary

- Incorporated image and text features into sessionbased recommendations using RNNs
- Naive inclusion is not effective
- P-RNN architectures
- Training methods for P-RNNs

Future work

Revisit feature extraction

Try representations of the whole video

Use multiple aspects for items

Thanks!

Q&A

