自动驾驶汽车传感器超强解读

概述

自动驾驶技术主要分为三大部分: 感知、决策和控制。自动驾驶系统通过传感器感知车辆当前所处状态(位置、周围车辆、行人障碍物等),由决策算法得出最优的行驶策略,最终由控制部分将此策略转换为车身部件实际操作。图1表示自动驾驶系统的基本工作原理。在实际应用中,由感知系统和高精度地图可实现对车辆行驶位置精确定位(SLAM),感知系统为自动驾驶车辆提供周围车辆、行人、车道线等环境信息,为规控系统计算最优行驶策略提供依据。

图1. 自动驾驶系统基本原理

传感器分类

当前自动驾驶系统传感器主要包括:

- 摄像头
- 1 红外传感器
- 毫米波雷达
- 中短距离 毫米波雷达
- 长距离 毫米波雷达
- 激光雷达
- 超声波雷达

摄像头,功能类似数码相机,感光芯片每秒记录N组(帧)数字形式的图像,通过车载以太网或LVDS方式发送给自动驾驶系统的计算机,计算机通过图像识别技术分析数据,进而判断车辆周围状况。摄像

头技术对应传统的人眼视觉,应用中摄像头形式包括单目、双目和三目,根据摄像头安装的位置分为前视、后视、环视和车内监控摄像头;红外传感系统是用红外线为介质的测量系统;毫米波雷达,通过发送电磁波(毫米波),测量反射波从发射到接收的时间,计算车辆到各个目标的距离。雷达的多普勒效应可以用以测量目标速度。毫米波雷达抗干扰能力强,作用范围大,但不能对目标进行识别,分辨率较低;激光雷达,发射激光(波长600~1000nm),通过反射脉冲的飞行时间(TOF)测量距离,激光雷达在短时间内可发送大量激光脉冲,通过旋转镜头方式构建周围较大扫描区域内的3D点云数据。激光雷达不仅作用距离大,还可以测量速度,而且具备很好的目标识别能力,缺点是成本较高;超声波雷达,测量发射超声波(>20kHz)反射回来的时间,从而判断障碍物的存在和距离。超声波雷达的缺点是作用距离短,传输依赖介质,速度慢,只适用于低速下的停车辅助。

由工作机制决定的固有属性,让不同传感器适用于不同的应用场景。没有一种传感器可以满足自动驾驶所有类型的任务,在实际应用中要结合不同传感器的优势,利用传感器融合技术,为自动驾驶汽车提供全面、及时和准确的周边环境信息,便于自动驾驶系统作出最准确的决策。图2列出2013年欧洲市场OEM厂商针对特定辅助驾驶(ADAS)功能的传感器选择情况。

图2. ADAS传感器选型 (Euro Market 2013)

传感器分布

在自动驾驶汽车上,传感器的分布、功能及作用范围大致如图3所示。由图可以看出不同类型的传感器作用的范围(距离 & 角度)有所差别,应用中需要使用多个不同类别的传感器,分布在车身的不同位置以实现对车辆周围环境360°无死角覆盖。例如,Google自动驾驶汽车Waymo上部署有 3 个激光雷达、9 个摄像头, x 个毫米波雷达。

图3. 自动驾驶汽车传感器分布

传感器特性比较

表1是根据公开资料整理的不同类型自动驾驶传感器的特性对比。

技术	激光雷达	亳米波雷达		超声波	担係公	AT AL
特征		中短距 24GHz	长距 77GHz	超円液	摄像头	红外
短距离范围	<200m		<250m	<2m		
(0~2m)	\200III	<50m	\25011	72111		
中等距离范围		分辨率不高	分辨率不高		不可测距	
(2~30m)			73 MT 42 1 1 PS	超出范围	1 1 3 2032	
长距离范围		超出范围	分辨率不高	каптуста		
(30 ~100m)			73 新中年211月			
可探测垂直角度		仅速度				
(<10°范围)		IX AMISE				
可探测垂直角度						
(>30°范围)						
角度分辨率						
目标分类						
目标速度测量						
车道线检测						
天气适应性						
弱光操作						
光源敏感性						
防尘特性						
成本						
工作方式	主动	主动	主动	主动	被动	主动
适用场景	自适应巡航自动紧急刹车	自适应巡航 自动紧急刹车 盲点检测		停车辅助 盲点检测	停车辅助 交通牌识别 盲点检测 车道偏离预警	夜视 (待 补充)

理想方案 满足要求 有待改进

(金) 8848汽车技术论坛

表1. 自动驾驶传感器特性比较

注:以上内容不尽准确,如对于超声波,在Tesla Autopilot 2.0上作用距离可达到8m。应用中,以厂家具体参数为准。

传感器成本

图4列出自动驾驶/ADAS的关键部件的物理分布及其成本估计。

当前自动驾驶/ADAS的关键部件,比如高精度惯导、激光雷达的成本非常之高,Google无人驾驶车上使用的 Velodyne 64线激光雷达价格高达 \$75,000,整套设备成本在 \$150,000 左右。随着市场化和技术的发展,激光雷达等传感器成本必然会逐渐下降。在激光雷达领域,Velodyne已推出低成本的16线产品,售价 \$8,000;创业公司 Quanergy 也承诺将推出成本 \$250 左右的低成本激光雷达。

图4. 自动驾驶关键部件成本估计(BCG 2015)

市场趋势

图5 和图6分别是市场调研机构IHS对于未来全球ADAS功能装车量和传感器数量发展的预计。

图5. 全球ADAS市场(按功能划分)

图6. 全球ADAS传感器市场