Teoría de juegos Estrategias Mixtas (Parte 2)

TEORÍA DE LAS DECISIONES

M. PAULA BONEL

¿Consultas clase anterior?

Continuación: Penales

- •Supongamos que el arquero mejora su destreza para parar los penales que le lanzan a su lado derecho, por lo que la tasa de éxito del lanzador desciende del 70 al 60 por ciento.
- •¿Cómo afecta eso a las probabilidades que conforman las combinaciones del arquero?

		ARQUERO	
		IZQ (q) DER (1-q)	
	IZQ (p)	58,42	95,5
JUGADOR	DER (1-p)	93,7	60,40

¿Cómo cambió el equilibrio? ¿Por qué?

- •Cuando el arquero aprende a parar mejor los penales que le lanzan a la derecha, el jugador lanzará a la derecha menos a menudo. El arquero, al recibir más disparos a la izquierda, elige ese lado en mayor proporción a la hora de combinar estrategias (efecto indirecto o estratégico).
- •El objetivo de mejorar alguna de nuestras debilidades es no tener que utilizarla tan a menudo.
 - Nuevas combinaciones en el EN: p = 0.471 y q = 0.5.
- •¿Mejorar mis habilidades me permite alcanzar un mejor pago?
 - El esfuerzo realizado por el arquero sí da sus frutos: la tasa media de éxito del lanzador en el equilibrio se reduce del 79,6 al 76,5 por ciento.
- •Lo mejor para nosotros depende no sólo de lo que hagamos nosotros sino también de lo que hagan los demás jugadores.

Creencias

¿Qué significan los p-mix de los jugadores?

- En juegos de suma cero → Las ventajas de randomizar son claras. Busco que mi oponente no pueda anticipar mi jugada.
- Sin embargo, también puede haber ventajas de randomizar en juegos que no son de suma cero (por ejemplo, juegos de coordinación).
- En estos juegos los participantes no tienen incentivos a ocultar sus acciones.
 Entonces, ¿qué significan las probabilidades en estos casos?
 - Creencias correctas que presentan incertidumbre sobre la acción del otro (incertidumbre subjetiva).
 - Verán ejemplos de estos juegos en la clase práctica. La forma de resolución es la misma.

		COLUMNA	
		L	R
FILA	U	3,0	0,1
	M	0,0	3,1
	D	1,1	1,0

- No tenemos estrategias puras estrictamente dominadas.
- Podemos verificar fácilmente que D no está estrictamente dominada por estrategias puras para el jugador
 1. Ni U ni M generan <u>siempre</u> mejores pagos.
- Sin embargo, D resulta sospechosa ya que nunca es mejor respuesta a las estrategias puras L y R del jugador 2.
- ¿Podría ser D una estrategia estrictamente dominada para el jugador 1? ¿Qué sucede si probamos contra una estrategia mixta?
- Supongamos que las creencias del jugador 1 son tales que su p-mix = (0.5 ; 0.5 ; 0). ¿Cuál es el pago esperado de esta estrategia?

		COLUMNA	
		L	R
FILA	(0.5) U	3,0	0,1
	(0.5) M	0,0	3,1
	(0) D	1,1	1,0
	Mixta	1.5 , -	1.5 , -

- D es estrictamente dominada por la estrategia con las creencias p-mix = (0.5 ; 0.5 ; 0).
- A partir de aquí podemos realizar el proceso de ESEED tal como lo vimos en unidades anteriores.
- (M, R) es el único resultado que sobrevive a la eliminación sucesiva de estrategias estrictamente dominadas.

		COLUMNA	
		L	R
FILA	(p) U	3,0	0,1
	(1-p) M	0,0	3,1
	(0) D	1,1	1,0

- En el ejemplo anterior partimos del p-mix = (0.5 ; 0 ; 0.5) para hacer el análisis de dominancia.
- ¿Cómo generalizamos la búsqueda de estrategias mixtas que dominen estrictamente a una pura?
- Consideramos el caso general p-mix = (p ; 1-p ; 0)
- Necesitamos que los pagos esperados del p-mix sean mayores que los pagos de D frente a todas las estrategias puras del jugador 2.

		COLUMNA	
		L	R
FILA	(p) U	3,0	0,1
	(1-p) M	0,0	3,1
	(0) D	1,1	1,0

Cuando el jugador 2 juega L necesitamos que:

$$3p + 0 (1 - p) > 1$$

 $p > 1/3$

Y cuando el jugador 2 juega R necesitamos que:

$$0p + 3 (1 - p) > 1$$

 $2/3 > p$

 Para que la estrategia mixta domine en forma estricta a D necesitamos que AMBAS condiciones se cumplan.

$$p \in \left(\frac{1}{3}, \frac{2}{3}\right)$$

		COLUMNA	
		L	R
FILA	U	2,0	2,0
	M	3,0	0,1
	D	0,1	3,0

		COLUMNA	
		L	R
FILA	(0) U	2,0	2,0
	(p) M	3,0	0,1
	(1-p) D	0,1	3,0

- Repetimos el análisis anterior
- •Cuando el jugador 2 juega L necesitamos que:

$$3p + 0 (1 - p) > 2$$

 $p > 2/3$

Y cuando el jugador 2 juega R necesitamos que:

$$0p + 3(1 - p) > 2$$

 $1/3 > p$

 No existe valor de p posible tal que ambas condiciones se cumplan. U no es una estrategia estrictamente dominada.

		COLUMNA		
		L (0.5)	R (0.5)	Mixta
	U	2,0	2,0	2,-
FILA	М	3,0	0,1	1.5 , -
	D	0,1	3,0	1.5 , -

- ¿Por qué no podemos eliminar U?
- La estrategia no es mejor respuesta a ninguna de las estrategias puras del jugador Columna.
- ¿Qué sucede con las estrategias mixtas del jugador Columna? Probemos con q-mix = (0.5; 0.5).
- U es la mejor respuesta de Fila frente a ese q-mix del otro jugador.