CH 1 - Etude de fonctions

Définition 1. Soit f une fonction. On dit qu'elle est définie sur un ensemble D si pour tout x de D on peut associer une valeur à f(x).

Définition 2. On dit qu'une fonction f est croissante (respectivement décroissante) sur un intervalle I si pour tout $x, y \in I$,

$$x \le y \Longrightarrow f(x) \le f(y)$$
 resp. $f(x) \ge f(y)$

Définition 3. Soit f une fonction définie sur $D \subset \mathbb{R}$. On appelle courbe représentative de f (ou graphe), la courbe du plan notée C_f et définie par :

$$\mathcal{C}_f = \{(x, f(x)) \in \mathbb{R}^2 \mid x \in D\}.$$

I Dérivation

Définition 4. Dérivabilité d'une fonction en un point : Soient $f: I \to \mathbb{R}$ et $x_0 \in I$.

- On dit que f est dérivable en x_0 si $x\mapsto \frac{f(x)-f(x_0)}{x-x_0}$ admet une limite quand x tends vers x_0
- Si cette limite existe, elle est notée $f'(x_0)$ et est appelée le nombre dérivée de f en x_0 :

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0).$$

Proposition 1. Soient u et v deux fonctions dérivables sur I.

 \star La somme u + v est dérivable sur I et

$$(u+v)' = u' + v'$$

 \star Le produit uv est dérivable sur I et

$$(uv)' = u'v + uv'$$

 \star Si v ne s'annule pas sur I, alors le quotient de u par v est dérivable sur I et

$$\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$$

 \star En particulier si v ne s'annule pas sur I, alors l'inverse de v est dérivable sur I et

$$\left(\frac{1}{v}\right)' = \frac{-v'}{v^2}$$

Proposition 2. Si f est dérivable alors

- f est croissante sur $I \iff \forall x \in I, f'(x) \geqslant 0$.
- f est décroissante sur $I \iff \forall x \in I, \ f'(x) \leqslant 0$.
- f est constante sur $I \iff \forall x \in I, f'(x) = 0.$

Proposition 3. Tangente:

Si la fonction f est dérivable en x_0 alors la courbe C_f admet au point d'abscisse x_0 une tangente qui a pour équation :

$$y - f(x_0) = f'(x_0)(x - x_0)$$

Remarque. La connaissance de la tangente T à C_f permet de tracer la courbe au voisinage du point M d'abscisse x_0 . Pour un tracé encore plus précis, on étudie souvent la position de la courbe par rapport à la tangente, à savoir le signe de $f(x) - y = f(x) - f(x_0) - f'(x_0)(x - x_0)$.

II Composition

Définition 5. Soit E, F et G trois ensembles. Soit $f: E \to F$ et $g: F \to G$ deux fonctions, alors on définit $g \circ f$, dite composée de f et g, et prononcée "g rond f". C'est la fonction de E vers G qui vérifie pour tout $x \in E$:

$$g \circ f(x) = g(f(x))$$

L'ordre est important! Avec les notations de la définition, on ne pourrait pas considérer $f \circ g$ en effet g 'mange' un élément de F et renvoie un élément de G mais alors f(g(x)) n'a pas de sens, car f 'mange' un élément de F et non de F0. Quand bien même les deux ont du sens, les fonctions $f \circ g$ et $g \circ f$ ne sont généralement pas égale comme le montre l'exemple suivant.

Exemples.

$$f(x) = x + 1$$
 et $g(x) = x^2$ On a

$$f \circ g(x) = x^2 + 1$$
 et $g \circ f(x) = (x+1)^2 = x^2 + 2x + 1$

Proposition 4. Soit I, J et K trois intervalles de $\mathbb R$. Soit $f: I \to J$ et $g: J \to K$ deux fonctions dérivables. Alors $g \circ f$ est dérivable et pour tout $x \in I$:

$$(g \circ f)'(x) = f'(x) \times g' \circ f(x) = f'(x)g'(f(x))$$

Exemples. Dérivées des composées de référence : soit u une fonction dérivable sur I et $n \in \mathbb{N}^*$.

• La fonction u^n est dérivable sur I et

$$(u^n)' = nu'u^{n-1}$$

• Si $\forall x \in I, u(x) > 0$ alors \sqrt{u} est dérivable sur I et

$$(\sqrt{u})' = \frac{u'}{2\sqrt{u}}$$

• Si $\forall x \in I, u(x) > 0$ alors la fonction $\ln u$ est dérivable sur I et

$$(\ln u)' = \frac{u'}{u}$$

• La fonction e^u est dérivable sur I et

IIILimites

Pour l'instant vous devez connaître les limites suivantes :

- $\lim_{x \to +\infty} \exp(x) = +\infty$ et $\lim_{x \to -\infty} \exp(x) = 0$ $\lim_{x \to +\infty} \ln(x) = +\infty$ et $\lim_{x \to 0} \ln(x) = -\infty$ $\lim_{x \to +\infty} x^n = +\infty$ et $\lim_{x \to -\infty} x^n = \pm \infty$ (en fonction de la parité de n)
 $\lim_{x \to +\infty} \sqrt{x} = +\infty$ et $\lim_{x \to +\infty} \frac{1}{x} = 0$ $\lim_{x \to 0^+} \frac{1}{x} = +\infty$ et $\lim_{x \to 0^-} \frac{1}{x} = -\infty$

Proposition 5. Soient I et J deux intervalles de \mathbb{R} , $f:I\to\mathbb{R}$ et $g:J\to\mathbb{R}$. Soient x_0 un élément de I ou une borne (finie ou infinie) de I, y_0 un élément de J ou une borne (finie ou infinie) de J et $\ell \in \mathbb{R} \cup \{-\infty, +\infty\}$. Alors

$$\begin{cases} \lim_{x \to x_0} f(x) &= y_0 \\ \lim_{y \to y_0} g(y) &= \ell \end{cases} \implies \lim_{x \to x_0} g \circ f(x) = \ell.$$

Théorème 6. Théorème des croissances comparées. Pour tous réels a > 0 et b > 0, on a :

- $\bullet \lim_{x \to +\infty} \frac{(\ln x)^b}{x^a} = 0$
- $et \quad \lim_{x \to 0^+} x^a (\ln x)^b = 0$

 $\bullet \lim_{x \to +\infty} \frac{x^a}{e^{bx}} = 0$

et $\lim_{x \to -\infty} x^a e^{bx} = 0$

Démonstration. Remarquez tout d'abord que l'on peut se ramener à a = b = 1.

- Considérer $f(x) = \frac{\ln(x)}{\sqrt{x}}$ pour montrer que $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$ et changement de variable $y = \frac{1}{x}$
- Changement de variable $y = e^x$ puis y = -x

Proposition 7. Taux d'accroissements en 0

- $\bullet \lim_{x \to 0} \frac{\sin(x)}{x} = 1$ $\bullet \lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$
- $\bullet \lim_{x \to 0} \frac{\exp(x) 1}{x} = 1$ $\bullet \lim_{x \to 0} \frac{(1+x)^{\alpha} 1}{x} = 1$

Démonstration. Considérer la bonne fonction

Proposition 8. $\lim_{x\to 0} \frac{\cos(x)-1}{x^2} = \frac{-1}{2}$

Démonstration. Changement de variable x=2y puis manipulation algébrique sur cos

IVThéorème des valeurs intermédiaires

Théorème 9. Soit f une fonction continue sur un intervalle [a, b]. Alors pour tout y compris entre f(a) et f(b), il existe $c \in [a, b]$ tel que y = f(c).

Si de plus la fonction est strictement monotone alors le réel c est unique