Name: Ruizhe Zhang

Batch code: LISUM10: 30 May - 30 Aug 2022

Submission date: 06/30/2022

Submitted to: Canvas (GitHub URL)

Data Choosing

In order to understand how to use Flask better, I select the dataset showing NBA players' points, rebounds, assists and salary (shown in the files as "NBA.csv"), trying to predict NBA player's salary based on his performance:

	Α	В	С	D	E	F	G	Н
1	pts	rbd	ast	salary				
2	17.6	5	6.7	41.4				
3	27.2	7.9	7	41.4				
4	34.3	6.6	7.5	41.3				
5	25.3	7.8	10.2	39.2				
6	21.5	5.7	3.9	35.5				
7	14.4	3.2	4.4	34.5				
8	19.6	6.9	3.2	34.4				
9	19.9	6.7	6	34.4				
10	20.4	3.9	4.8	34.4				
11	27.1	7.1	4.9	34.4				
242	6	2.3	0.9	2.3				
243	6.9	2	2.5	2.3				
244	8.3	2.2	1.4	2.3				
245	10.1	2.2	0.8	2.3				
246	11.2	2	1.7	2.3				
247	3.6	2.3	0.5	2.2				
248	8.7	4.9	1.2	2.2				
249	8.8	2.1	2.4	2.1				
250	9.3	1.9	1.9	2.1				
251	3.7	2.6	0.4	2				
252	6.7	1.9	1.2	2				
253	7.6	4.5	1	2				
254								

Part 1: API

Model:

```
temp.py X app.py X model.py X

# Importing the libraries
import numpy as np
import pandas as pd
import pickle

dataset = pd.read_csv('NBA.csv')

X = dataset.iloc[:, :3]

y = dataset.iloc[:, -1]

from sklearn.linear_model import LinearRegression
regressor = LinearRegression()

#Fitting model with trainig data
regressor.fit(X, y)

# Saving model to disk
pickle.dump(regressor, open('model.pkl','wb'))
```

App:

```
temp.py X app.py X model.py X
     from flask import Flask, request, jsonify
     import pickle
2
     import pandas as pd
     app = Flask(__name__)
     @app.route('/', methods=['GET','POST'])
     def home():
         if(request.method=='GET'):
             data = "Hello World"
             return jsonify({'data':data})
     @app.route('/predict/')
     def predict():
         model = pickle.load(open('model.pkl', 'rb'))
         pts = request.args.get('pts')
rbd = request.args.get('rbd')
         ast = request.args.get('ast')
         test_df = pd.DataFrame({'pts':[pts],'rbd':[rbd],'ast':[ast]})
         pred_price = model.predict(test_df)
         return jsonify({'The salary of this player should be':str(pred_price)})
     if __name__ == "__main__":
         app.run(debug=True)
```

Deployment on Flask:

```
Microsoft Windows [版本 10.0.22000.739]
(c) Microsoft Corporation。保留所有权利。

C:\Users\Ruizhe Zhang\Desktop\Flask-Deployment>python app.py
* Serving Flask app 'app' (lazy loading)
* Environment: production
WARNING: This is a development server. Do not use it in a production deployment.
Use a production WSGI server instead.
* Debug mode: on
* Running on http://127.0.0.1:5000 (Press CTRL+C to quit)
* Restarting with stat
* Debugger is active!
* Debugger PIN: 772-791-613
```

Predicting using endpoints:

Part 2: Heroku

Model:

```
# Importing the libraries
import numpy as np
import pandas as pd
dimport pickle

dataset = pd.read_csv('NBA.csv')

X = dataset.iloc[:, :3]

y = dataset.iloc[:, -1]

from sklearn.linear_model import LinearRegression regressor = LinearRegression()

#Fitting model with trainig data regressor.fit(X, y)

# Saving model to disk
pickle.dump(regressor, open('model.pkl','wb'))

# Loading model to compare the results
model = pickle.load(open('model.pkl','rb'))
print(model.predict([[36, 9, 12]]))
```

App:

```
import numpy as np
from flask import Flask, request, render_template
import pickle

app = Flask(_name_)
model = pickle.load(open('model.pkl', 'rb'))

@app.route('/')
def home():
    return render_template('index.html')

@app.route('/predict', methods=['POST'])
def predict():
    ''.'

    For rendering results on HTML GUI

    ''.'

int_features = [float(x) for x in request.form.values()]
final_features = [np.array(int_features)]
    prediction = model.predict(final_features)
    output = round(prediction[0], 2)

    return render_template('index.html', prediction_text='The salary of the player should be $ {} million'.format(output))

if __name__ == "__main__":
    app.run(debug=True)
```

Deployment on Heroku:

Test:

