Bundesministerium Bildung, Wissenschaft und Forschung

SRDP Standardisierte Reife- und Diplomprüfung

Sitzgelegenheiten

a) Ein Teil des nebenstehend abgebildeten Sessels kann modellhaft durch die Graphen der Funktionen p, f und g beschrieben werden (siehe nachstehende Abbildung).

Bildquelle: © IKEA, https://www.ikea.com/at/de/images/products/poaeng-armchair-birch-veneer-hillared-anthracite__0497120_PE628947_S5.JPG?f=s [26.07.2021] (adaptiert).

Für die Funktionen p und f gilt:

$$p(x) = -0.44 \cdot x^3 + 1.9 \cdot x^2 - 3.6 \cdot x + 7.9$$
 mit $0 \le x \le 2.4$ $f(x) = a \cdot x^4 + b \cdot x^3 - 148 \cdot x^2 + 275 \cdot x - 183$ mit $2.4 \le x \le 3.1$ $x, p(x), f(x)$... Koordinaten in dm

Im Punkt *A* haben die Funktionen *p* und *f* den gleichen Funktionswert und die gleiche Steigung.

- 1) Erstellen Sie ein Gleichungssystem zur Berechnung der Koeffizienten a und b der Funktion f.
- 2) Berechnen Sie die Koeffizienten a und b.

[0/1 P.] [0/1 P.]

Die Gerade *g* ist Tangente an *f* im Punkt *B*.

3) Stellen Sie eine Gleichung der Tangente g auf.

[0/1 P.]

b) Der Zickzack-Stuhl (siehe nebenstehende Abbildung) wurde 1932 vom niederländischen Designer Gerrit Thomas Rietveld entworfen.

Bildquelle: Sailko – own work, CC BY 3.0, https://upload.wikimedia.org/wikipedia/commons/9/91/Gerrit_rietveld,_sedia_zig-zag,_1938_ca.jpg [12.05.2021] (adaptiert).

Eine Tischlermeisterin baut einen Zickzack-Stuhl entsprechend der nachstehenden Abbildung nach.

Es gilt: a = 39 cm, b = 61,5 cm, $\alpha = 45^{\circ}$

1) Berechnen Sie den stumpfen Winkel γ .

[0/1 P.]

Die Sitzhöhe des Originals beträgt 43 cm.

2) Berechnen Sie, um wie viel Prozent die Sitzhöhe h des nachgebauten Stuhls von der Sitzhöhe des Originals abweicht. [0/1 P.]

Bundesministerium Bildung, Wissenschaft und Forschung

c) Ein Hängesessel wird im Punkt A befestigt (siehe nachstehende Abbildung).

Quelle: BMBWF

Die im Punkt A wirkende Gewichtskraft \overrightarrow{G} wird in die zwei Kräfte \overrightarrow{F}_a und \overrightarrow{F}_b zerlegt. Es gilt: $|\overrightarrow{F}_a| = |\overrightarrow{F}_b|$

1) Veranschaulichen Sie in der obigen Abbildung das entsprechende Kräfteparallelogramm und die Gewichtskraft G. [0/1 P.]

Für den Vektor \vec{F}_a (in Newton) gilt: $|\vec{F}_a| = 25$ und $\vec{F}_a = \begin{pmatrix} 20 \\ a_y \end{pmatrix}$ mit $a_y < 0$

2) Berechnen Sie
$$a_y$$
. [0/1 P.]

3) Zeichnen Sie in der obigen Abbildung den Winkel α ein, für den gilt:

$$\cos(\alpha) = \frac{\binom{20}{a_y} \cdot \binom{1}{0}}{25}$$
 [0/1 P.]

= Bundesministerium

Bildung, Wissenschaft und Forschung

Möglicher Lösungsweg

a1)
$$f'(x) = 4 \cdot a \cdot x^3 + 3 \cdot b \cdot x^2 - 296 \cdot x + 275$$

 $p'(x) = -1,32 \cdot x^2 + 3,8 \cdot x - 3,6$

I:
$$f(2,4) = p(2,4)$$

II: $f'(2,4) = p'(2,4)$

oder:

I:
$$a \cdot 2,4^4 + b \cdot 2,4^3 - 148 \cdot 2,4^2 + 275 \cdot 2,4 - 183 = 4,12...$$

II: $4 \cdot a \cdot 2,4^3 + 3 \cdot b \cdot 2,4^2 - 296 \cdot 2,4 + 275 = -2,08...$

a2) Berechnung mittels Technologieeinsatz:

$$a = -\frac{41185}{13824} = -2,97...$$
$$b = \frac{747571}{21600} = 34,60...$$

a3)
$$g(x) = k \cdot x + d$$

$$k = f'(3,1) = 0,1815...$$

 $d = f(3,1) - 3,1 \cdot k = 3,140... - 3,1 \cdot 0,1815... = 2,577...$

$$g(x) = 0,1815... \cdot x + 2,577...$$

- a1) Ein Punkt für das richtige Erstellen des Gleichungssystems.
- a2) Ein Punkt für das richtige Berechnen der Koeffizienten a und b.
- a3) Ein Punkt für das richtige Aufstellen der Gleichung der Tangente.

Bundesministerium

Bildung, Wissenschaft und Forschung

b1) Berechnen der dritten Seite x des Dreiecks (strichliert eingezeichnet):

$$x = \sqrt{a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos(\alpha)} = \sqrt{39^2 + 61,5^2 - 2 \cdot 39 \cdot 61,5 \cdot \cos(45^\circ)} = 43,71...$$

$$\frac{b}{\sin(\gamma_1)} = \frac{x}{\sin(\alpha)}$$

$$\gamma_1 = \arcsin\left(\frac{b \cdot \sin(\alpha)}{x}\right) = \arcsin\left(\frac{61,5 \cdot \sin(45^\circ)}{43,71...}\right) = 84,10...^\circ$$

 $\gamma = 180^\circ - \gamma_1 = 95,89...^\circ$

b2)
$$h = b \cdot \sin(\alpha) = 61.5 \cdot \sin(45^\circ) = 43.48...$$
 $\frac{43.48... - 43}{43} = 0.0113...$

Die Sitzhöhe h des nachgebauten Stuhls weicht um rund 1,1 % von der Sitzhöhe des Originals ab.

- **b1)** Ein Punkt für das richtige Berechnen des stumpfen Winkels γ .
- b2) Ein Punkt für das richtige Berechnen der prozentuellen Abweichung.

c1 und c3)

c2)
$$20^2 + a_y^2 = 25^2$$
 $a_y = -15$

- c1) Ein Punkt für das richtige Veranschaulichen.
- c2) Ein Punkt für das richtige Berechnen von a_v .
- c3) Ein Punkt für das richtige Einzeichnen des Winkels α .