Introduction to Stats

MSMI Bootcamp

Lucas De Oliveira

Data Science:

Data Scientist at Capgemini

Formerly D.S. at Nextracker

Education:

M.S. in Data Science from USF

B.A. in Economics from UVA

Bootcamp Files

All files can be found in the following repository:

https://github.com/lbdeoliveira/MSMI_Bootcamp

Statistics

The practice or science of collecting and analyzing **numerical data in large quantities**, especially for the purpose of **inferring proportions in a whole** from those in a **representative sample**.

Google via Oxford definitions

Distributions

- "Large quantities of data" means we can't possibly look at every data point
- Need some way of mapping the values of our data to the frequencies with which they occur
- By looking at the distribution of the data:
 - We know the **range** of values we can expect
 - How much variation there can be from observation to observation.
 - Which values are the most common and which are rare
 - If there is an error in the data (outliers)
 - Which tests and **models** are appropriate for analytic task
- Best tools for understanding the distributions:
 - Histograms & boxplots
 - Summary statistics

Which of the following slides represent 150M

observations in the most digestible way?

The heights of adult men in the United States are approximately normally distributed with a mean of 70 inches and a standard deviation of 3 inches.

> male.height [1] 71.06754 73.11451 61.84861 71.04306 66.60774 75.33142 74.62094 72.63692 [97] 64.34013 64.23323 61.76728 70.61079 70.57338 70.43300 72.92783 67.63482 Г177 68.33232 70.99352 65.63758 69.36915 77.09928 70.62279 69.48665 65.95915 [25] 66.30630 68.19937 71.53821 67.84339 67.32479 69.39501 69.63770 67.74464 F337 69.49204 67.01336 69.78390 64.64162 69.86481 70.43780 70.06455 73.07450 [41] 73.60666 68.70964 65.71801 70.90021 72.76190 72.49512 71.40214 76.93740 [49] 69.35089 66.96217 66.10697 73.27999 70.53302 69.56296 69.75982 66.63332 [57] 66.56938 70.55239 70.04989 67.12970 78.05573 72.51517 66.59052 66.86070 [65] 73.38959 68.49808 66.77838 71.77463 73.20678 73.49998 74.41677 70.78494 [73] 66.86340 71.10229 70.08992 68.68983 68.80659 67.82333 69.32941 67.79487 [81] 63.25352 67.21232 73.70053 74.33421 69.89310 72.34558 75.81894 72.83341 [789] 70.43177 70.94397 71.70117 70.86109 69.67617 68.50836 72.90769 72.83202 [97] 66.50942 66.82059 71.89445 71.22156 72.20907 75.86663 74.74785 71.32591 [105] 69.09332 67.03486 76.53890 67.75556 68.84377 69.61181 70.35590 60.40628 [113] 67.93395 69.47696 70.98217 68.35632 73.42198 64.21601 71.21808 73.28946

[121] 67.71032 65.44334 71.00470 72.37588 67.76722 70.09666 64.83666 67.23576 [129] 67.08049 70.82189 75.41077 74.14673 66.40636 67.30648 71.17763 68.42656 [137] 70.09483 73.74262 72.97166 71.95162 67.87660 66.01770 73.83886 78.20296 [145] 68.87451 73.71010 65.94345 66.40291 70.37389 67.78443 69.39418 68.62636 [153] 70.49621 71.20515 67.94184 67.64369 64.54484 73.52270 66.04990 71.88272 [161] 65.88620 70.95282 67.16262 69.80138 71.26670 69.07512 69.82020 69.88145 [169] 73.95875 65.10009 66.07519 67.79269 71.91866 63.99768 69.40658 66.78826 [177] 77.58736 70.65846 74.24414 69.49611 68.90296 65.32827 72.41118 70.15645 [185] 62.56113 76.69300 73.57599 66.17830 70.25872 70.24269 70.68406 64.01806 [193] 70.31706 67.48835 73.89678 70.42321 75.44047 70.53271 70.77638 71.26605 [201] 77.16321 69.43348 71.61483 67.81959 68.07122 73.61544 70.72869 71.33805

summary(male.height)

67.98 70.00

52.68

Min. 1st Qu. Median

Mean 3rd Qu.

70.00 72.02

Max.

87.45

Histogram of male.height

Visualizing distributions are super useful for understanding our data

& for comparing different populations

"The heights of adult men in the United States are approximately normally distributed with a mean of 70 inches and a standard deviation of 3 inches.

Heights of adult women are approximately normally distributed with a mean of 64.5 inches and a standard deviation of 2.5 inches."

Source

American male v. female heights

The first step in any analysis should be to plot the distribution of your data

Histogram

- A histogram will build "bins" or "buckets" for your data and plot how many observations fall in those buckets
- Example:

```
[1, 3, 6, 12, 15, 3, 4, 8, 13, 12, 7, 2, 10, 11, 12]
```

Bins: 1-5, 6-10, 11-15

Counts: 5, 4, 6

Let's look at the histogram for male height again

We can also **summarize** our data with a few numbers...

Summary statistics

- Central tendency: *mean*, *median*, and *mode*
 - Mean the average value
 - Median the "middle" value
 - Mode the most common value
- Percentiles / quantiles: min, Q1, median, Q3, max
 - Min the lowest value
 - Q1 the 25th percentile
 - Q3 the 75th percentile
 - Max the highest value
- Measures of spread:
 - Variance how "wide" is the distribution? The larger the variance, the higher the spread.
 - Standard deviation square root of the variance

For the list of numbers:

[1, 3, 6, 12, 15, 3, 4, 8, 13, 12, 7, 2, 10, 11, 12]

Calculate:

- Mean, median, mode
- Min, Q1, Q3, and max

Visualizing mean & variance

Same means, different variance

Different means, same variance

Distributions are not always symmetrical

Source

Left-Skewed (Negative Skewness)

Right-Skewed (Positive Skewness)

"inferring proportions in a whole from those in a representative sample"

The fundamental purpose of statistics is to make an inference about a **population** by computing **statistics** about one or multiple samples.

Population and samples

- We can never hope to actually measure all individuals or objects in a population
- A population is the group relevant to our study (ex: all american males, students in San Francisco, etc.)
- We want to understand:
 - The population's distributions
 - The **parameters** that describe that distribution

Recall:

The heights of adult men in the United States are approximately **normally distributed** with a **mean of 70 inches** and a **standard deviation of 3 inches**.

The normal distribution

- The most common distribution you will encounter
- "Bell curve", symmetric
- Described by two parameters: mean and standard deviation/variance
- Empirical rule:
 - 68% of observations fall within 1 standard deviation of mean
 - 95% of observations fall within 2 standard deviations of mean

Example: empirical rule

- Parameters:
 - Mean = 70 inches
 - Standard deviation = 3 inches
- Provide the height intervals that contain:
 - 68% of American males
 - 95% of American males
 - 99.7% of American males

Since we cannot measure all members of a population, we have to estimate the population parameters with sample statistics.

Sampling

- Randomly measuring a subset of your population of interest
- It is important that the sample observations be independent of each other (for instance, if you are trying to get a representative sample of the height of american men, do not survey college basketball players)
- It is also important that the observations be taken from the same distribution (identically distributed)
- The standard for a reliable sample is a collection of i.i.d. (independent identically distributed) observations

Estimating population parameters

- We estimate the population mean (μ) with the sample mean (x̄)
- We estimate the population standard deviation (σ) with the sample standard deviation, also called the standard error (s)

How does **sample size** factor into this?

Experiment in R

Upshot: by increasing sample size, we get a better sense of the actual population distribution & better estimates for its parameters

Central Limit Theorem

As **n increases**, the **sample mean** becomes approximately **normally distributed** with mean equal to the **population mean** and variance equal to **population variance divided by n.**

Note:

- The underlying distribution of X does not matter, the distribution of \overline{X} will be normally distributed if N (sample size) is sufficiently large
- If X is already normally distributed, then it does not matter

Examples in R