

THIẾT KẾ VI MẠCH ĐIỆN TỬ

EXCERSISES

LÊ ĐỨC HÙNG

- 1. Find x_p , x_n , x_d , ψ_0 , C_{j0} , C_j for an applied voltage of -4V of a pn diode with a step junction, $N_A = 5 \times 10^{15} / \text{cm}^3$, $N_D = 10^{20} / \text{cm}^3$, and an area of $10 \mu \text{m}$ by $10 \mu \text{m}$.
- 2. $N_A = 5 \times 10^{15} / \text{cm}^3$, $N_D = 10^{20} / \text{cm}^3$, $D_N = 20 \text{cm}^2 / \text{s}$, $D_P = 10 \text{cm}^2 / \text{s}$, $L_N = 10 \mu \text{m}$, $L_P = 5 \mu \text{m}$, $A = 10 \mu \text{m}^2$. Calculate the saturation current of pn junction.
- 3. Using LTSPICE, sketch I_D - V_{DS} characteristic of NMOS and PMOS (V_{GS} steps from 1V, 2V, 3V, 4V, 5V) for each following transistor sizes: W/L = $10\mu m/10\mu m$, W/L = $10\mu m/1\mu m$, W/L = $1\mu m/10\mu m$, W/L = $1\mu m/10\mu m$.
- 4. Using LTSPICE, sketch I_D - V_{GS} characteristic of NMOS and PMOS (V_{DS} steps from 1V, 2V, 3V, 4V, 5V) for each following transistor sizes: W/L = $10\mu m/10\mu m$, W/L = $10\mu m/1\mu m$, W/L = $1\mu m/10\mu m$, W/L = $1\mu m/10\mu m$.
- 5. Using LTSPICE, sketch R_{ON} - V_{GS} characteristic of NMOS and PMOS with the following transistor sizes: $W/L = 50 \mu m/1 \mu m$, $W/L = 10 \mu m/1 \mu m$, $W/L = 5 \mu m/1 \mu m$.

- 6. Consider an NMOS process technology for which $L_{min} = 0.4mm$, $t_{ox} = 8nm$, $m_n = 450cm^2/Vs$, $V_t = 0.7V$.
- a) Find C_{ox} and k'_{n} .
- b) For a MOSFET with W/L = 8mm/0.8mm, calculate the values of v_{OV} , v_{GS} , and v_{DSmin} needed to operate the transistor in the saturation region with dc current $I_D = 100mA$.
- c) For the device in (b), find the values of v_{OV} and v_{GS} required to cause the device to operate as a $1k\Omega$ resistor for very small v_{DS} .
- 7. Consider an NMOS transistor fabricated in an $0.18 \mu m$ process with L = $0.18 \mu m$ and W = $2 \mu m$. The process technology is specified to have $C_{ox} = 8.6 fF/\mu m^2$, $m_p = 450 cm^2/Vs$, and $V_{tp} = 0.5 V$.
- a) Find V_{GS} and V_{DS} that result in the MOSFET operating at the edge of saturation with $I_D = 100 \mu A$.
- b) If V_{GS} is kept constant, find V_{DS} that results in $I_D = 50 \mu A$.
- c) To investigate the use of the MOSFET as a linear amplifier, let it be operating in saturation with $V_{DS} = 0.3V$. Find the change in i_D resulting from v_{GS} changing from 0.7V by +0.01V and -0.01V.

- 8. An inverter is designed with $(W/L)_n = 10$ and $(W/L)_p = 16$, which is fabricated in a process where $K'_n = 110 \mu A/V^2$, $V_{T0n} = 0.7 V$, $K'_p = 50 \mu A/V^2$, $V_{T0p} = -0.7 V$.
 - a) Calculate the middle point voltage of the inverter V_l , V_{lH} , V_{lL} . Make sure that $V_{lL} < V_l < V_{lH}$. Use LTSPICE to sketch V_{in} - V_{out} function waveform, and Voltage Transfer Characteristic (VTC) curve.
 - b) Adjust $(W/L)_n$ and $(W/L)_p$ so that the middle point voltage is at the center of VTC. Use LTSPICE to sketch V_{in} - V_{out} function waveform, and Voltage Transfer Characteristic (VTC) curve.
- 9. Calculate the middle point voltage V_l , of NAND-2 and NOR-2 with $(W/L)_n = 5$ and $(W/L)_p = 8$, which is fabricated in a process where $K'_n = 110 \mu A/V^2$, $V_{T0n} = 0.7 V$, $K'_p = 50 \mu A/V^2$, $V_{T0p} = -0.7 V$. Use LTSPICE to sketch Voltage Transfer Characteristic (VTC) curve of NAND2 and NOR2.

10. Calculation all of the inverter characteristics with the information provided.

PMOS Parameters	NMOS Parameters
$L = 1 \mu m, W = 7 \mu m$	$L = 1 \mu m, W = 5 \mu m$
$V_{Tn} = 0.7 \text{V}, K'_n = 110 \mu \text{A/V}^2$	$V_{Tp} = -0.8 \text{V}, \text{ K'}_p = 50 \mu \text{A/V}^2$
$C_{j0} = 2.82 \text{x} 10^{-8} \text{F/cm}^2, \ \phi_o = 0.9 \text{V}$	$C_{j0} = 4.85 \text{x} 10^{-8} \text{F/cm}^2, \ \phi_0 = 0.92 \text{V}$
$C_{jsw} = 4.62 \times 10^{-12} \text{F/cm}, \ \phi_{osw} = 0.95 \text{V}$	$C_{jsw} = 1.95 \text{x} 10^{-12} \text{F/cm}, \ \phi_{osw} = 0.97 \text{V}$
Oxide thickness: t_{ox} = 150 Amstrong	
Gate overlap: $L_0 = 0.05 \mu m$	
Power supply: $V_{DD} = 5V$	
Fanout number: FO = 3	

11. Calculation of setup time and hold time. Are there any violations of Setup time and Hold time?

