Workshop 9 Eigenvalues

Instructions:

Get into groups and work on the following exercises. Each group is expected to turn in one neatly written copy of their solutions at the end of the class period.

Exercise 1. Let A be an $n \times n$ matrix with the property that the row sums all equal the same number s. Show that s is an eigenvalue of A. [Hint: Find an eigenvector. To see what's going on you may want to take n = 2 or 3 first.]

Exercise 2. Let A be an $n \times n$ matrix with the property that the column sums all equal the same number s. Show that s is an eigenvalue of A. [Hint: Use Exercise 1 and the fact, proven in homework, that A and A^T have the same eigenvalues.]

Exercise 3. Let A be an $n \times n$ matrix. Show that if $A^2 = 0$ then the only eigenvalue of A is 0. [Hint: Multiply both sides of the equation $A\mathbf{v} = \lambda \mathbf{v}$ by A.]

Exercise 4.* Let

$$A = \begin{pmatrix} -2 & 4 & -4 \\ 3 & -3 & 4 \\ 6 & -8 & 9 \end{pmatrix}, B = \begin{pmatrix} -6 & -2 & 3 \\ 10 & 4 & -4 \\ -11 & -3 & 6 \end{pmatrix}.$$

- a. Show that A and B have the same characteristic polynomials (and hence the same eigenvalues with the same multiplicities).
- b. Show that A is diagonalizable but that B is not. Conclude that A and B are *not* similar. [Hint: Show that if a matrix C is diagonalizable so is any matrix similar to C.]
- c. Show that A and B are both roots of their characteristic polynomials. Show further that A is a root of a degree 2 divisor of its characteristic polynomial but that B does not have this property. It is far from obvious, but it is precisely this fact that prevents A from being similar to B.