1-ая неделя

4.09.2023

Теорема 1 (Необходимое условие дифференцируемости). Если $f: \mathbb{R}^n \supseteq O \to \mathbb{R}^m$ дифференцируема в точке $a,\ mo\ \forall u\in\mathbb{R}^n\ \exists rac{\partial f}{\partial u}(a)\ (\partial$ алее показано, что это эквивалентно для частных производных только по $x_i).$

Теорема 2 (Дифференциал композиции). Пусть $g: X \to Y$, $f: Y \to Z$. Тогда если g дифференцируема в точке a и f дифференцируема b точке g(a), то $f \circ g$ дифференцируема b точке a и $d_a(f \circ g) = d_{g(a)}f \cdot d_ag$. Или, если рассматривать матрицу Якоби, $(f \circ g)'(a) = f'(g(a)) \cdot g'(a)$

Теорема 3 (Дифференцирование результата арифметических действий). Пусть $O \subseteq \mathbb{R}^n$, $a \in O$; $f, g : O \to \mathbb{R}^n$ \mathbb{R}^m , $\lambda: O \to R$; f, g, λ дифференцируемы в точке $a; A, B \in \mathbb{R}$. Тогда

- 1. Af + Bg дифференцируемо в точке a и $d_a(Af + Bg) = Ad_af + Bd_ag$
- 2. λf дифференцируемо в точке a и $d_a(\lambda f) = f(a) \cdot d_a \lambda + \lambda(a) \cdot d_a f$ Или на языке матриц: $(\lambda f)' = f(a) \cdot \lambda'(a) + \lambda(a) \cdot f'(a)$
- 3. $\langle f,g \rangle$ дифференцируемо в точке a и $d_a \langle f,g \rangle = (g(a))^T d_a f + (f(a))^T d_a g$ $(\langle f, g \rangle)' = (g(a))^T \cdot f'(a) + (f(a))^T \cdot g'(a)$
- 4. Если m=1 и $g(a) \neq 0$, то f/g дифференцируемо в точке a и $d_a(f/g) = \frac{g(a)d_af f(a)d_ag}{g^2(a)}$

если g дифференцируема в точке a и f дифференцируема в точке g(a), то $f \circ g$ дифференцируема в точке a $u \ d_a(f \circ g) = d_{g(a)} f \cdot d_a g.$

Или, если рассматривать матрицу Якоби, $(f \circ g)'(a) = f'(g(a)) \cdot g'(a)$

Теорема 4 (Теорема Лагранжа для отображений). Пусть $f: \mathbb{R}^n \supseteq O(om\kappa pumoe) \to \mathbb{R}^m$, $f \ \partial u \phi \phi e penuupye$ мо в O; $a, b \in O$, $\forall t \in (0,1) \ a + t(b-a) \in O$.

Тогда
$$\exists \theta \in (0,1) : ||f(b) - f(a)|| \le ||f'(a + \theta(b-a))|| \cdot ||b - a||$$

Следствие 1. Если $\forall \theta \in (0,1) ||f'(a+\theta(b-a))|| \leq M \in \mathbb{R}, mo ||f(b)-f(a)|| \leq M||(b-a)||$

Следствие 2. Если m=1 и $\forall u \in O \ \forall i=1..n \ || \frac{\partial f}{\partial x_i}(u)|| \leq M, \ mo \ ||f(b)-f(a)|| \leq M\sqrt{n}||(b-a)||$

Теорема 5 (Достаточное условие дифференцируемости). Пусть $f: \mathbb{R}^n \supseteq O(om\kappa pumoe) \to \mathbb{R}^m, \ a \in O;$ $\frac{\partial f}{\partial x_i} \ \forall i \in 1..n \ 1)$ определен в некоторой окрестности точки а 2) непрерывен в точке а Тогда f дифференцируема в точке a.

Замечание. f дифференцируема в точке $a \Leftrightarrow f(a+h) - f(a) - f'(a) \cdot h = o(h)$ при $h \to 0$

Определение 1. Пусть $f: \mathbb{R}^n \supseteq O(omкpыmoe) \to \mathbb{R}, \ g(u) = \frac{\partial f}{\partial x_i}(u)$ для некоторого i определена в точке a $u \exists \frac{\partial g}{\partial x_i}(a)$ для некоторого j.

Torda
$$f_{x_i x_j} := \frac{\partial^2 f}{\partial x_j \partial x_i}(a) := \frac{\partial g}{\partial x_i}(a)$$

Определение 2. $\frac{\partial^2 f}{\partial x^2} \coloneqq \frac{\partial^2 f}{\partial x_i \partial x_i}$ - чистая частная производная.

Определение 3. $f_{x_ix_j}$, где $i \neq j$, - смешанная производная.

Теорема 6. Пусть $f: \mathbb{R}^n \supseteq O(om\kappa pumoe) \to \mathbb{R}, \ i \neq j; \ \frac{\partial^2 f}{\partial x_i \partial x_i} \ u \ \frac{\partial^2 f}{\partial x_i \partial x_i} \ onpedenenu \ u непрерывны в окрест$ ности точка а. Тогда $\frac{\partial^2 f}{\partial x_j \partial x_i}(a) = \frac{\partial^2 f}{\partial x_i \partial x_j}(a)$

Определение 4. Если $f: \mathbb{R}^n \supseteq O \to \mathbb{R}, \ h \in \mathbb{R}^n, \ mo \ d_a^2 f(h) \coloneqq d(d_a f(h))(h)$

- ▶ !skipped! $X \in X$. !skipped! $X : X \notin X$
- ightharpoonup Пусть $X \notin X$. Тогда X должен !skipped! X