MA1521 Finals Cheatsheet

~github/reidenong/cheatsheets~, AY23/24 S1

1. Limits

1.2 Continuity

f is continuous at x = c if (1) $\lim_{x \to c} f(x)$ exists and (2) $\lim_{x \to c} f(x) = f(c)$

· Differentiability implies continuity

1.4 Trigonometric identities

$$\begin{array}{l} \text{if } \lim_{x \to c} g(x) = 0, \text{ for } \sin x \text{ and } \tan x, \\ \lim_{x \to c} \frac{g(x)}{\sin(g(x))} = \lim_{x \to c} \frac{\sin(g(x))}{g(x)} = 1 \end{array}$$

2. Derivatives

2.1 Definition

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

2.2 Standard Derivatives

2.2 Standard Derivatives	
f(x)	f'(x)
$\tan(x)$	$\sec^2(x)$
sec(x)	$\sec(x)\tan(x)$
$\csc(x)$	$-\csc(x)\cot(x)$
$\cot(x)$	$-\csc^2(x)$
$\sin^{-1} x$	$\frac{1}{\sqrt{1-x^2}}$
$\cos^{-1} x$	$-\frac{1}{\sqrt{1-x^2}}$
$\tan^{-1} x$	$\frac{1}{1+x^2}$
$\cot^{-1} x$	$-\frac{1}{1+x^2}$
$\sec^{-1} x$	$\frac{1}{ x \sqrt{x^2-1}}, x >1$
$\csc^{-1} x$	$-\frac{1}{ x \sqrt{x^2-1}}, x >1$
$a^x, a \in \mathbb{R}$	$a^x \ln(a)$

Rules of Differentiation

Quotient rule:

$$\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) = \frac{f'(x)g(x) - f(x)g'(x)}{\left(g(x) \right)^2}$$

3. Applications of Differentiation

3.2 Increasing and decreasing Functions

f'(x) > 0 on $(a, b) \to f$ is increasing on (a, b)f'(x) < 0 on $(a, b) \rightarrow f$ is decreasing on (a, b)

Critical points

a number c in function f is a critical point if

1. it is not a end point and

2. f'(c) = 0 or f'(c) does not exist

3.8 Rolle's Theorem and Mean Value Theorem Rolle's Theorem:

if f is continous on [a, b] and differentiable on (a, b) and f(a) = f(b),

then there exists c in (a, b) such that f'(c) = 0

Mean Value Theorem:

if f is continous on [a, b] and differentiable on (a, b), then there exists c in (a,b) such that $f'(c) = \frac{f(b) - f(a)}{b-a}$

4.Integrals

$\int \frac{1}{ax+b} dx$	$\frac{1}{a}\ln ax+b +C$
$\int \tan(ax+b)dx$	$\frac{1}{a}\ln \mathrm{sec}(ax+b) +C$
$\int \sec(ax+b)dx$	$\frac{1}{a}\ln \sec(ax+b) + \tan(ax+b) + C$
$\int \csc(ax+b)dx$	$-\frac{1}{a}\ln \csc(ax+b) + \cot(ax+b) + C$
$\int \cot(ax+b)dx$	$-\frac{1}{a}\ln \csc(ax+b) + C$
$\int \sec^2(ax+b)dx$	$\frac{1}{a}\tan(ax+b)+C$
$\int \csc^2(ax+b)dx$	$-\frac{1}{a}\cot(ax+b)+C$
$\int \sec(ax+b)\tan(ax+b)dx$	$\frac{1}{a}\sec(ax+b) + C$
$\int \csc(ax+b)\cot(ax+b)dx$	$-\frac{1}{a}\csc(ax+b) + C$
$\int rac{1}{a^2+(x+b)^2}dx$	$\frac{1}{a}\tan^{-1}\frac{x+b}{a} + C$
$\int \frac{1}{\sqrt{a^2 - (x+b)^2}} dx$	$\sin^{-1}\frac{x+b}{a} + C$
$\int -\frac{1}{\sqrt{a^2-(x+b)^2}}dx$	$\cos^{-1}\frac{x+b}{a} + C$
$\int rac{1}{a^2-(x+b)^2} dx$	$\frac{1}{2a}\ln\left \frac{x+b+a}{x+b-a}\right + C$
$\int \frac{1}{(x+b)^2 - a^2} dx$	$\frac{1}{2a}\ln\left \frac{x+b-a}{x+b+a}\right + C$
$\int \frac{1}{\sqrt{(x+b)^2 + a^2}} dx$	$\ln\left (x+b) + \sqrt{(x+b)^2 + a^2}\right + C$
$\int \frac{1}{\sqrt{(x+b)^2 - a^2}} dx$	$\ln\left (x+b) + \sqrt{(x+b)^2 - a^2}\right + C$
$\int \sqrt{a^2-x^2}dx$	$\frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2}\sin^{-1}\frac{x}{a} + C$
$\int \sqrt{x^2 - a^2} dx$	$\frac{x}{2}\sqrt{x^2-a^2} + \frac{a^2}{2}\ln\left x + \sqrt{x^2-a^2}\right + C$

4.3 Partial Fractions

$$\frac{px+q}{(ax+b)(cx+d)} = \frac{A}{ax+b} + \frac{B}{cx+d}$$

$$\frac{px^2 + qx + r}{(ax+b)(cx+d)^2} = \frac{A}{ax+b} + \frac{B}{cx+d} + \frac{C}{(cx+d)^2}$$

$$\frac{px^2 + qx + r}{(ax+b)(x^2 + c^2)} = \frac{A}{ax+b} + \frac{Bx + C}{x^2 + c^2}$$

4.4 Integration by Substitution Trigonometric Substitution

$\sqrt{a^2-x^2}$	$x = a \sin \theta$
$\sqrt{x^2 + a^2}$	$x = a \tan \theta$
$\sqrt{x^2-a^2}$	$x = a \sec \theta$

4.5 Integration by Parts $\int u dv = uv - \int v du$

Logarithmic	differentiate it
Inverse Trigonometric	differentiate it
Algebraic	differentiate it
Trigonometric	differentiate/integrate
Exponential	integrate it

4.6 Riemann Sums and Definite Integrals Formula for Riemann Sum:

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{b-a}{n} \cdot f\left(a + (b-a)\frac{i}{n}\right)$$

5.2 Volumes of revolution

Disk method:

When the curve of y = f(x) is rotated about the x-axis, the volume of the resulting solid is

$$V = \pi \int_{a}^{b} (f(x))^{2} dx$$

Cylindrical Shell method

When the curve of y = f(x) is rotated about the y-axis, the volume of the resulting solid is

$$V = 2\pi \int_{a}^{b} x |f(x)| dx$$

5.4 Arc length of a curve

The length of a curve $y = f(x), a \le x \le b$, is given by $\int_{a}^{b} \sqrt{1 + (f'(x))^2} dx$

6. Sequences and Series

6.2 Series Properties

If $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.

Theorem 6.5: n-th term test for divergence

If $\lim_{n\to\infty} a_n$ does not exist or is not equal to 0, then $\sum_{n=1}^{\infty} a_n$ diverges.

Theorem 6.7: Integral test

If f is a continuous, positive, decreasing function on $[1, \infty)$, then the series $\sum_{n=1}^{\infty}f(n)$ and the improper integral $\int_{1}^{\infty} f(x)dx$ either both converge or both diverge.

Theorem 6.8: p-series test

The series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1 and diverges if $p \le 1$.

Theorem 6.9: Comparison Test

Suppose $0 \le a_n \le b_n$ for all $n \ge N$ and

- 1. $\sum_{n=1}^{\infty} b_n$ converges. Then $\sum_{n=1}^{\infty} a_n$ converges. 2. $\sum_{n=1}^{\infty} a_n$ diverges. Then $\sum_{n=1}^{\infty} b_n$ diverges.

Theorem 6.10/6.11: Ratio/Root Test

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L, or \lim_{n \to \infty} \left(|a_n| \right)^{\frac{1}{n}} = L$$

- 1. If $0 \le L < 1$, then $\sum_{n=1}^{\infty} a_n$ converges absolutely $(\sum_{n=1}^{\infty} |a_n| \text{ converges}).$ 2. If L > 1 then $\sum_{n=1}^{\infty} a_n$ diverges.
 3. If L = 1, then the test is inconclusive.

Theorem 6.12: Alternating Series Test

If $a_n \geq 0$ for all n and $\lim_{n \to \infty} a_n = 0$ and a_n is decreasing, then the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges.

6.10 Power Series

Theorem 6.14: Characteristics of Power Series

For a given power series $\sum_{n=0}^{\infty}c_n(x-a)^n$, either 1. The series converges only when x=a.

- 2. The series converges for all x.
- 3. There exists a positive number R such that the series converges absolutely if |x - a| < R and diverges if |x-a| > R, where R is the Radius of Convergence
- The interval of convergence is then [a-R, a+R].

Theorem 6.15: Calculating the Radius of Convergene Consider the power series $\sum_{n=0}^{\infty} c_n (x-a)^n$.

$$\lim_{n\to\infty}\left|\frac{c_{n+1}}{c_n}\right|=L, or\lim_{n\to\infty}\left(|c_n|\right)^{\frac{1}{n}}=L$$

Then the radius of convergence $R = \frac{1}{L}$

6.12 Taylor and Maclaurin Series

If f has a power series representation at x = a, then it has a Taylor Series of the form

$$f(x) = \sum_{n=0}^{\infty} \frac{f^n(a)}{n!} (x - a)^n$$

The Maclaurin series is the Taylor series at x = 0.

$$f(x) = \sum_{n=0}^{\infty} \frac{f^n(0)}{n!} x^n$$

Common Expansions

e^x	$\sum_{n=0}^{\infty} \frac{x^n}{n!}$
$\sin x$	$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$
$\cos x$	$\sum_{n=0}^{\infty} \left(-1\right)^n \frac{x^{2n}}{(2n)!}$
$\ln(1+x)$	$\sum_{n=1}^{\infty} \left(-1\right)^{n+1} \frac{x^n}{n}$
$\frac{1}{1-x}$	$\sum_{n=0}^{\infty} x^n$
$\frac{1}{1+x}$	$\sum_{n=0}^{\infty} \left(-1\right)^n x^n$
$\frac{1}{1+x^2}$	$\sum_{n=0}^{\infty} \left(-1\right)^n x^{2n}$
$(1+x)^n, x <1$	$\textstyle \sum_{n=0}^{\infty} \frac{n(n-1)\dots(n-r+1)}{r!} x^r$
$(a+b)^n, n>0$	$a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + b^{n}$

7. Vectors and Geometry of Space

Theorem 7.2: Equation of a Sphere

The equation of a sphere with center (h,k,l) and radius r is $(x-h)^2+(y-k)^2+(z-l)^2=r^2$

7.4 Projections

Projection of b onto a:

$$comp_{\boldsymbol{a}}\boldsymbol{b} = \|\boldsymbol{b}\|\cos\theta = \frac{\boldsymbol{a}\cdot\boldsymbol{b}}{\|\boldsymbol{a}\|}$$

projected area = original area $\times \cos \theta$

Distance from a point to a plane:

for point $P(x_0, y_0, z_0)$ to the plane ax + by + cz = d is

$$\frac{|ax_0 + by_0 + cz_0 - d|}{\sqrt{a^2 + b^2 + c^2}}$$

7.5 Dot Product and Cross Product

$$a \cdot b = ||a|| ||b|| \cos \theta$$
 and $a \times b = ||a|| ||b|| \sin \theta$

$$m{a} = egin{pmatrix} a_1 \ a_2 \ a_3 \end{pmatrix}, m{b} = egin{pmatrix} b_1 \ b_2 \ b_3 \end{pmatrix}, m{a} imes m{b} = egin{pmatrix} a_2 b_3 - a_3 b_2 \ a_3 b_1 - a_1 b_3 \ a_1 b_2 - a_2 b_1 \end{pmatrix}$$

8. Functions of Several Variables

8.4 Arc Length of a Space Curve

for a curve C given by $r(t)=\langle f(t),g(t),h(t)\rangle, a\leq t\leq b,$ the length of the curve l is

$$l = \int_a^b \|r'(t)\| dt = \int_a^b \sqrt{\left(f'(t)\right)^2 + \left(g'(t)\right)^2 + \left(h'(t)\right)^2} dt$$

if f', g', h' are continuous on [a, b]

${\bf 8.6\ Cylinders\ and\ Quadric\ Surfaces}$

Definition 8.5: Cylinder

A surface is a cylinder if there is a plane P such that all the planes parallel to P intersect the surface in the same curve. Any equation in x, y, z where one of the variables is missing is a cylinder.

Definition 8.7: Elliptic Paraboloid

 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z}{c}$, symmetric about the z-axis, if c is +ve then it opens up, if c is -ve then it opens down.

Definition 8.8: Ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{a^2} = 1$$

Theorem 8.4: Clairaut's Theorem

Suppse f is defined on a disk D that conains (a,b). If the functions f_{xy} and f_{yx} are both continuous on D, then $f_{xy}=f_{yx}$

Theorem 8.5: Equation of Tangent Plane

A normal vector to the tangent plane at (a,b,f(a,b)) to the surface z=f(x,y) is

$$\langle f_{x(a,b)}, f_{y(a,b)}, -1 \rangle$$

Theorem 8.6: Chain Rule

Case 1: Suppose that z=f(x,y) is a differentiable function of x and y, where x=g(t) and y=h(t) are both differentiable functions of t. Then z is a differentiable function of t and

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

Case 2: Suppose that z = f(x,y) is a differentiable function of x and y, where x = g(s,t) and y = h(s,t) are both differentiable functions of s and t. Then.

$$\frac{\partial z}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s}, \text{ and } \frac{\partial z}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t}$$

Theorem 8.9: Implicit Differentiation on Two independent variables

Suppose that F(x,y,z)=0, where F is differentiable, defines z implicitly as a differentiable function of x and y. Then, $\frac{\partial z}{\partial x}=-\frac{F_x(x,y,z)}{F_z(x,y,z)}$ and $\frac{\partial z}{\partial y}=-\frac{F_y(x,y,z)}{F_z(x,y,z)}$ provided $F_z(x,y,z)$ is not equal to 0.

Increments and Differentials

Let z=f(x,y), and suppose Δx and Δy are increments. The increment in z is defined

$$\begin{split} \Delta z &= f(x+\Delta x,y+\Delta y) - f(x,y). \text{ The differentials} \\ dx &= \Delta x, dy = \Delta y, \text{ and the total differential is} \\ dz &= f_x(x,y) dx + f_y(x,y) dy. \end{split}$$

Theorem 8.10: Total Differential

If z=f(x,y) is differentiable, then the total differential dz is given by

$$\Delta z \approx dz = f_x(x, y)\Delta x + f_y(x, y)\Delta y$$

Definition 8.15: Directional Derivative

The directional derivative of f(x,y) at (x_0,y_0) in the direction of *unit vector* $u=\langle a,b\rangle$ is

$$D_u f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

Theorem 8.11: Computing Directional Derivatives

If f is differentiable, then f has a directional derivative in the direction of the unit vector $u=\langle a,b\rangle$ and

$$D_u f(x,y) = f_x(x,y)a + f_y(x,y)b = \nabla f(x,y) \cdot u$$

where $\nabla f(x,y) = \langle f_x, f_y \rangle$ is the gradient vector of f at (x,y).

Both equations for directional derivatives 8.15, 8.11 can be extrapolated for nth-D variables.

Theorem 8.13: Level Curve vs ∇f

Suppose $\nabla f(x_0, y_0) \neq \mathbf{0}$. Then $\nabla f(x_0, y_0)$ is perpendicular to the level curve f(x, y) at (x_0, y_0) where $f(x_0, y_0) = k$

Theorem 8.14: Level Surface vs ∇f

Let r(t) be a parametric equation of curve C which lies on level surface S such that $r(t_0)=(x_0,y_0,z_0)$. Suppose $\nabla f(x_0,y_0,z_0) \neq 0$. Then $\nabla f(x_0,y_0,z_0)$ is perpendicular to the level surface f(x,y,z) at (x_0,y_0,z_0) where $f(x_0,y_0,z_0)=k$, ie. $\nabla f(x_0,y_0,z_0)\cdot r'(t_0)=0$

Theorem 8.16: Maximizing Rate of Increase/Decrease f

Suppose f is a differentiable function of two or three variables. Let P denote a given point. Assuming that $\nabla f(P) \neq \mathbf{0}$, letting u be a unit vector making a angle θ with ∇f . Then

- 1. $D_u f(P) = \|\nabla f(P)\| \cos \theta$
- 2. $\nabla f(P)$ points in the direction of maximum rate of increase of f and P, where maximum value of $D_u f(P)$ is $\|\nabla f(P)\|$
- 3. $-\nabla f(P)$ points in the direction of maximum rate of decrease of f and P, where minimum value of $D_u f(P)$ is $-\|\nabla f(P)\|$

Extrema of multivariable functions

If f has a local maximum or minimum at (a,b) and the first-order partial derivatives of f exist there, then $f_x(a,b)=f_y(a,b)=0.$

Definition 8.20: Critical Point

A critical point of f is a point (a,b) in the domain of f such that $f_x(a,b)=f_y(a,b)=0$ or one of the partial derivatives does not exist.

Theorem 8.18: Second Derivative Test

Suppose f(x,y) has continuous second-order partial derivatives on a disk that contains the point (a,b) and $f_x(a,b)=f_v(a,b)=0$.

Discriminant, $D(a,b) = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^2$

- 1. D > 0 and $f_{xx}(a, b) > 0$, then f(a, b) is a local minimum.
- 2. D > 0 and $f_{xx}(a,b) <$ 0, then f(a,b) is a local maximum.
- 3. D < 0, then (a, b) is a saddle point.
- 4. D = 0, then the test is inconclusive.

9. Double Integrals

Theorem 9.2: Fubini's Theorem

If f is continuous on the rectangle $R = [a, b] \times [c, d]$, then

$$\iint_R f(x,y) dA = \int_a^b \int_c^d f(x,y) dy dx = \int_c^d \int_a^b f(x,y) dx dy$$

Theorem 9.3: Special case of Fubini

If f(x, y) can be factored into a product of two functions, one of x and one of y, then

$$\iint g(x)\cdot h(y)dA = \left(\int_a^b g(x)dx\right)\left(\int_c^d h(y)dy\right)$$

Double Integral over General Region

Type 1 Region is a plane region D lies between the graphs of two continuous functions, and a Type 2 Region is a plane region D lies between the graphs of two continuous functions of y.

Finding Area using double Integral Theorem 9.10: Area of plane region

Area of plane region D =
$$\iint_D 1dA$$
 Surface Area = $\iint_D dS = \iint_D \sqrt{(f_x^2 + f_y^2 + 1)}dA$

Theorem 9.12: Changing to Polar Coordinates

Polar coordinates: $r^2=x^2+y^2$, $x=r\cos\theta$, $y=r\sin\theta$. A circle $x^2+y^2=\alpha^2$ is now described as $R=\{(r,\theta)\mid 0\leq r\leq\alpha, 0\leq\theta\leq 2\pi\}$ with

$$\iint_D f(x,y) dA = \int_0^\alpha \int_0^{2\pi} f(r\cos\theta,r\sin\theta) \cdot r \cdot d\theta dr$$

10. Ordinary Differential Equations First Order Ordinary DEs

1. Separable ODEs:

$$\frac{dy}{dx} = f(x) \cdot g(y) \Rightarrow \int \frac{1}{g(y)} dy = \int f(x) dx + C$$

Reduction to Separable ODEs can be done by substitution of $v = \frac{y}{x}$ or u = ax + by.

Linear ODF

$$\frac{dy}{dx} + P(x)y = Q(x) \Rightarrow y \cdot I(x) = \int Q(x) \cdot I(x) dx$$

Where integrating factor $I(x) = e^{\int P(x)dx}$.

Bernoulli Equation

$$\frac{dy}{dx} + P(x)y = Q(x) \cdot y^n \Rightarrow \text{use substitution } u = y^{1-n}$$

Appendix

Useful Trigonometric Identities:

$$\begin{split} \sec^2 x - 1 &\equiv \tan^2 x \\ \csc^2 x - 1 &\equiv \cot^2 x \\ \sin(A \pm B) &\equiv \sin A \cos B \pm \cos A \sin B \\ \cos(A \pm B) &\equiv \cos A \cos B \mp \sin A \sin B \end{split}$$

$$\tan(A \pm B) \equiv \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

 $\sin 2A \equiv 2\sin A\cos A$ $\cos 2A \equiv \cos^2 A - \sin^2 A \equiv 2\cos^2 A - 1 \equiv 1 - 2\sin^2 A$

$$\tan 2A \equiv \frac{2\tan A}{1 - \tan^2 A}$$

$$\begin{split} \sin P + \sin Q &\equiv 2 \sin \left(\frac{P+Q}{2}\right) \cos \left(\frac{P-Q}{2}\right) \\ \sin P - \sin Q &\equiv 2 \cos \left(\frac{P+Q}{2}\right) \sin \left(\frac{P-Q}{2}\right) \\ \cos P + \cos Q &\equiv 2 \cos \left(\frac{P+Q}{2}\right) \cos \left(\frac{P-Q}{2}\right) \\ \cos P - \cos Q &\equiv -2 \sin \left(\frac{P+Q}{2}\right) \sin \left(\frac{P-Q}{2}\right) \\ \sin A \cos B &\equiv \left(\frac{1}{2}\right) (\sin (A+B) + \sin (A-B)) \\ \cos A \sin B &\equiv \left(\frac{1}{2}\right) (\cos (A+B) - \sin (A-B)) \\ \cos A \cos B &\equiv \left(\frac{1}{2}\right) (\cos (A+B) - \cos (A+B)) \\ \sin A \sin B &\equiv \left(\frac{1}{2}\right) (\cos (A-B) - \cos (A+B)) \end{split}$$

More on Limits

1.3 Leading terms

$$\lim_{x \to \pm \infty} \frac{P(x)}{Q(x)} = \lim_{x \to \pm \infty} \frac{Ax^{\alpha}}{Bx^{\beta}} = \begin{cases} 0, \alpha < \beta \\ \frac{A}{B}, \alpha = \beta \\ \pm \infty, \alpha > \beta \end{cases}$$

1.6 Squeeze theorem

if $f(x) \le g(x) \le h(x)$ and $\lim_{x \to c} f(x) = \lim_{x \to c} h(x) = L$, then $\lim_{x \to c} g(x) = L$

1.7 Intermediate value theorem

if f(x) is continous on [a,b] and f(a) < 0 < f(b), then there exists c in [a,b] such that f(c) = 0