Homework #2

Environment

Matlab R2018a

Problem 1

(a)

1st Order Edge Detection

這裡我分別測試 3 points, 4 points 跟 9 points,在實際測試之後我發現 9 points 用 Prewitt Mask 的效果最好,做法依照講義分別計算 Row gradient 跟 Column gradient,然後再試各個 threshold,threshold 設太高會導致一些比較不明顯的邊被損失,threshold 設太小的話會有很多雜訊,最後試起來 40 的結果最好。

1st order transform(9 point, Prewitt)

2nd Order Edge Detection

這裡我測了 Laplacian impulse response 跟 Laplacian of Gaussian,首先我分別測試 8 neighbor 的 separable 跟 non-separable 的差別。因為 4 neighbor 只看最近的四個,會錯過一些邊所以不用。每一種分別套 8 跟 13 兩個 zero-crossing 的 threshold(t)(更大的 threshold 會導致邊的不連續更嚴重,即一些比較細的邊會不見)來比較

從下面的圖我們可以發現 threshold 小的話雜點會比較多,而如果 threshold 大的話雜點會比較少,而 non-separable 的非邊的地方留的比較多,separable 留的比較少,故 separable 比較適合這張圖。

接著我測的是 Laplacian of Gaussian,這裡的 Laplacian 用的是 8 neighbor的 separable,而 Low pass Filter 用的是 Lecture 2 提到的 3x3 Low pass Filter。

這三種當中效果最好的是 Laplacian of Gaussian, threshold 為 5。

2nd order transform(LIR, non-sep, t = 8)

2nd order transform(LIR, non-sep, t = 13)

 \uparrow 2nd order transform(LIR, sep, t = 8) \downarrow Laplacian of Gaussian(sep, t = 2)

↑ 2nd order transform(LIR, sep, t = 13)

↓ Laplacian of Gaussian(sep, t = 5)

Canny Edge Detection

跟 Laplacian of Gaussian 一樣,先跑 3x3 的 Low-pass filter,跑完後用 9 point 的 Prewitt Mask 來找 gradient magnitude 跟邊的角度,然後用找到的角度做 Non-maximal suppression,接著以兩個 threshold(這裡在試過幾組後用的是30, 40)做 Hysteretic thresholding,最後如果 candidate 的 3x3 中有 Edge 就把 candidate 當做 Edge,沒有就當做 Non-Edge。

after Low-pass Filter

after Non-maximal suppression

gradient magnitude

Hysteretic thresholding

(b)

左圖便是 Canny Edge Detection 的結果,我們可以看出來 Canny Edge
Detection 是抓 Edge 抓的最乾淨的,抓出來的只有 Edge 沒有其他的噪點雜訊。
下面用表格簡單比較優缺點

	Pros	Cons
1st order	樹影的部分的邊 留得最好、最多	手腕和水果都有留一 些雜訊
2nd order	明暗的感覺比較 明顯,而且保留 比較多的掌紋	雜訊最多,而且如果 再調高 threshold 的話會造成邊的損失
Canny Edge	雜訊最少,看上 去只有邊	手掌的邊抓到的最 少,樹影的邊也介於 1st order 跟 2nd order 之間

直接使用 Canny edge detection,利用 Canny Edge Detection 的 Low-pass Filter 來濾 noise。結果如下圖。這裡的 threshold 用的是 33, 40。

Problem 2

(a)

High pass filtering

首先先照講義的做法做 High pass Filter,用的是右邊的這個。 結果如下圖。可以發現在邊出來的同時,很多噪點也都出來了。

$$H = \begin{bmatrix} -1 & -1 & -1 \\ -1 & 9 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Unsharp Masking

這裡用的是 3x3 的 Low Pass Filter,C 用的是 $\frac{3}{5}$ (左圖),C 越大會越接近原圖,另外有試過 $\frac{5}{6}$ (右邊),但邊不怎麼明顯。比較後最後選的是 $\frac{3}{5}$ 的 Unsharp Masking。

(b)

在試了幾個不同的 cos 值轉換之後最後用的是

$$x = x + 14 * cos(\frac{y}{25} - \frac{47\pi}{32}) - 5)$$

$$y = y + 14 * cos(\frac{x}{35} - \frac{49\pi}{32}) - 5)$$

做出來的圖形在左,給的形狀在右。

Bonus

對 Canny edge detection 做出來的圖做兩次 Morphologic close 補出大概的圖形,再對原圖做如果 close 後為 1 (在圖形內)的話就不做的 threshold 過濾(Picture1 (左)的 threshold 為 95 Picture2 (右)的 threshold 為 50),過濾後再做一個排掉 0的 Global Histogram Equalization 以加強細節,即分別得兩張圖。

