CH 18 BO20

$$E(V[k]) = E(A\cos^2(2\pi + k + \phi))$$

$$= \cos^2(2\pi + k + \phi) E(A). \qquad (:: A is the R. V.)$$

$$\Rightarrow E(V[R]) = 0 \quad (::E(A) = 0)$$

$$\mathbb{E} \operatorname{var}(V[K]) = \mathbb{E}((V[K] - \mathbb{E}(V[K]))^2)$$

$$= E\left(\left(\mathbb{E}\left[\mathbb{E$$

=
$$(\omega + (2\pi + k + \phi)) = (A^2)$$

We know that
$$\sigma^2 A = E(A^2) - (E(A))^2$$

$$= \sum_{i=1}^{n} E(A^2) = rA^2$$

Autonomianue =
$$E((v[k-L]-E(v[k-U]))(v[k]-E(v[k]))$$

= $E(v[k-L)v[k])$

=
$$E(A^{2}\cos^{2}(2\pi f k+\phi)\cos^{2}(2\pi f (k-1)+\phi))$$

= $\left(\cos^{2}\left(4\pi+12-2\pi+1+24\right)+\cos\left(2\pi+14\right)\right)^{2}$ $\Rightarrow ACVF of V[k] at any leg l is a function of k.$

> vft. covoriance of v[h] t.

> v[k] is covariance non-stationary

Pg. 4.

Pq. 7

MATLAB Simulation

that UNBIASED estimators are used.

-3. It is ensured that UNBIASO CONTINUED FOR The value Extimate Exercise 7. The value 11.5168 0.753%. -5.546 +3.1% -5.333 -0.0891 0.089 (absolute) -yu [1] 0 3.938 1.55%.	that UNBIASOS and				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 7 t is	ensured some	Estimate	Earn 1.	
-5.546 + 3.1% -5.333 -0.0891 -0.0891 3.938 1.55%		The value		0.753%	
-5.546 -5.333 -0.0891 0.089(absolute) 3.938 1.55%	2	11.604	11-2108		
-yy [1] -5.333 -0.0891 0.089 (absolute) 3.938 1.55%	<i>- y</i>		-5.546		
-yu [1] 0 3.938 1.55%	-44 PI]	-5-333		o.08 g (absolute)	
3.938 1.55%		6	-0.0891		
~ ya [2] 4	Jyu [1]		3.938	1.55%	
7	~40 [2]	4			
	3				

Pg , 9.

(a)
$$L(y; yn) = ln f(yn|y)$$

$$= ln \left(\frac{1}{11} \left(\frac{1}{2\pi\sigma}\right) \left(enp\left(\frac{1}{2} \left(\frac{y(k)-y}{\sigma}\right)^{2}\right)\right)$$

Sence it is a GWN process we have used the"
property that the joint pdf is simply the product
of marginal pdfs.

$$\Rightarrow L = \frac{5}{2} - \frac{1}{2} \left(\frac{9[k] - 4}{5} \right) + C$$

A constant term

$$\frac{N}{2}\left(\frac{y[k]-4}{\sqrt{a}}\right)=0$$

$$\vec{y} = \sum_{k=1}^{N} y[k]$$

Thus, the ML estimate of mean is simply the

$$FI = E\left(\left(\frac{\partial L}{\partial \theta}\right)^{2}\right) = -E\left(\frac{\partial^{2} L}{\partial \theta^{2}}\right)$$

$$\frac{\partial^{2}L}{\partial \mu^{2}} = \frac{\partial}{\partial \mu} \left(+ 2 \left(\frac{4 \ln (1 - \mu)}{2 \ln (1 + \mu)} \right) \right)$$

$$\frac{3^{1}L}{3H^{2}} = -\frac{5^{1}}{5^{1}} \frac{1}{\sigma^{2}} = -\frac{N}{\sigma^{2}}$$

$$F.I., I(M) = -\frac{1}{3} \frac{3^{1}L}{3H^{2}}$$

$$= \frac{1}{3} \frac{1}{2} \frac{1}{3} \frac{1}{3$$

$$\frac{\partial L}{\partial b} = \frac{-2'}{2} \sum_{k=1}^{\infty} \left[y[k] + \alpha \left[k \right] + \alpha x[k] - b \right)$$

$$= \frac{1}{2} \sum_{k=1}^{\infty} y[k] - \sum_{k=1}^{\infty} x[k] - \alpha - \frac{Nb}{2}$$

$$\frac{\partial^{2} L}{\partial b^{2}} = \frac{-1}{2} x^{2} N = \frac{-N}{2}$$

Figher's information matrix: $\begin{bmatrix} -E(\frac{\partial^2 L}{\partial a^2}) & -t(\frac{\partial L}{\partial b^2}) \\ -E(\frac{\partial L}{\partial a^2}) & -t(\frac{\partial^2 L}{\partial b^2}) \end{bmatrix}$

$$-E\left(\frac{\partial L}{\partial a \partial b}\right)$$
 $-E\left(\frac{\partial^{2} L}{\partial b^{2}}\right)$

Since x [k] Afined, we get

F.I. matrix =
$$\begin{bmatrix} \frac{1}{2} \left(h(k) \right)^{2} & \frac{1}{2} \left(h(k) \right)^{2} \\ \frac{1}{2} \left(h(k) \right)^{2} & \frac{1}{2} \left(h(k) \right)^{2} \\ \frac{1}{2} \left(h(k) \right)^{2} & \frac{1}{2} \left(h(k) \right)^{2} \\ \frac{1}{2} \left(h(k) \right)^{2} & \frac{1}{2} \left(h(k) \right)^{2} \\ \frac{1}{2} \left(h(k) \right)^{2} & \frac{1}{2} \left(h(k) \right)^{2} \\ \frac{1}{2} \left(h(k) \right)^{2} & \frac{1}{2} \left(h(k) \right)^{2} \\ \frac{1}{2} \left(h(k) \right)^{2} & \frac{1}{2} \left(h(k) \right)^{2} \\ \frac{1}{2} \left(h(k) \right)^{2} & \frac{1}{2} \left(h(k) \right)^{2} \\ \frac{1}{2} \left(h(k) \right)^{2} & \frac{1}{2} \left(h(k) \right)^{2} \\ \frac{1}{2} \left(h(k) \right)^{2} & \frac{1}{2} \left(h(k) \right)^{2} \\ \frac{1}{2} \left(h(k) \right)^{2} & \frac{1}{2} \left(h(k) \right)^{2} \\ \frac{1}{2} \left(h(k) \right)^{2} & \frac{1}{2} \left(h(k) \right)^{2} \\ \frac{1}{2} \left(h(k) \right)^{2} & \frac{1}{2} \left(h(k) \right)^{2} \\ \frac{1}{2} \left(h(k) \right)^{2} & \frac{1}{2} \left(h(k) \right)^{2} \\ \frac{1}{2} \left(h(k) \right)^{2} & \frac{1}{2} \left(h(k) \right)^{2} \\ \frac{1}{2} \left(h(k) \right)^{2} & \frac{1}{2} \left(h(k) \right)^{2} \\ \frac{1}{2} \left(h(k) \right)^{2} & \frac{1}{2} \left(h(k) \right)^{2} \\ \frac{1}{2} \left(h(k) \right)^{2} & \frac{1}{2} \left(h(k) \right)^{2} \\ \frac{1}{2} \left(h(k) \right)^{2} & \frac{1}{2} \left(h(k) \right)^{2} \\ \frac{1}{2} \left(h(k) \right)^{2} & \frac{1}{2} \left(h(k) \right)^{2} \\ \frac{1}{2} \left(h(k) \right)^{2} & \frac{1}{2} \left(h(k) \right)^{2} \\ \frac{1}{2} \left(h(k) \right)^{2} & \frac{1}{2} \left(h(k) \right)^{2} \\ \frac{1}{2} \left(h(k) \right)^{2} & \frac{1}{2} \left(h(k) \right)^{2} \\ \frac{1}{2} \left(h(k) \right)^{2} & \frac{1}{2} \left(h(k) \right)^{2} \\ \frac{1}{2} \left(h(k) \right)^{2} \\ \frac{1}{2} \left(h(k) \right)^{2} & \frac{1}{2} \left(h(k) \right)^{2} \\ \frac{1}{2} \left(h(k) \right)^{2} & \frac{1}{2} \left(h(k) \right)^{2} \\ \frac{1}{2} \left(h(k) \right)^{2} & \frac{1}{2} \left(h(k) \right)^{2} \\ \frac{1}{2} \left(h(k) \right)^{2} & \frac{1}{2} \left(h(k) \right)^{2} \\ \frac{1}{2} \left(h(k) \right)^{2} & \frac{1}{2} \left(h(k) \right)^{2} \\ \frac{1}{2} \left(h(k) \right)^{2} & \frac{1}{2} \left(h(k) \right)^{2} \\ \frac{1}{2} \left(h(k) \right)^{2} & \frac{1}{2} \left(h(k) \right)^{2} \\ \frac{1}{2} \left(h(k) \right)^{2} & \frac{1}{2} \left(h(k) \right)^{2} \\ \frac{1}{2} \left(h(k) \right)^{2} & \frac{1}{2} \left(h(k) \right)^{2} \\ \frac{1$$

$$I(a) = \frac{1}{\sigma^2} S(x(k))^2$$

$$I(b) = \frac{N}{\sigma^2}$$

many ML estimate: Solve the eque $\frac{\partial L}{\partial a} = 0$; $\frac{\partial L}{\partial b} = 0$ (linear equations to get a & b $\Rightarrow \left(\mathbb{Z}^{2} \mathbf{n} (\mathbf{x}(\mathbf{k}))^{2} \right) a + \mathbf{b} \left(\mathbb{E} (\mathbf{x}(\mathbf{k})) \right) b^{2} = \frac{\mathbb{E}^{2} \mathbf{x}(\mathbf{k}) \mathbf{y}(\mathbf{k})}{\mathbf{n} \mathbf{x} \mathbf{x}}.$ and (Exck)) a + Nb = E y(k) Solution: $\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \sum (x(k))^2 \sum x(k) \end{bmatrix} \begin{bmatrix} \sum x(k)y(k) \\ \sum x(k) \end{bmatrix}$ unique solution enists as long as N S(x(x)) - (Sx(x)) = 0 Numerical extincted is obtained by scarcing the area of a c [113] I in steps of 0.01) b c (214) [in steps of 0.01) à, numerical estimate = 2-03; à analytical, estudi 2-027 6 numerial estimate = 2.78; bbest analytical = 2.7893.

X is general handonly.

Pg.14.