Time Series Interview Questions

(Practice Project)

Easy

1.What is a time series?

Ans: A times series is a dataset that might comprise the successive observations listed in order of time of occurrence. It depicts any change of a variable against time and is generally used to inspect trends, pattern, and seasonality.

2. What are the major components of a time series?

Answer: The main components of a time series are:

Trend: A very long-term rise or fall in the data.

Seasonality: Regular variation that recurs within known fixed periods.

Cyclic patterns: Changes that recur at irregular intervals.

Noise: Random variations in data.

3. What is the difference between a trend and seasonality of a timeseries?

Answer: A trend is a broad upward or downward movement in the data; seasonality, on the other hand, describes regular patterns or cycles that recur at fixed periods (e.g., monthly, yearly).

4. What is stationarity in time series?

Answer: A time series is said to be stationary if its statistical properties such as mean, variance, and autocorrelation are time-invariant.

5. What is differencing in time series analysis?

Answer: Differencing is a technique used to make a time series stationary by simply subtracting the previous observation from the current observation.

6. What is a lag in time series?

Answer: A lag refers to the shifting of a time series by one or more time periods. It is used to compare current values with past values.

7. What is the difference between a time series and cross-sectional data?

Answer: A time series consists of observations over time, whereas cross-sectional data consists of observations at a single point in time.

Medium Level

1.Describe the ARIMA model.

Ans: ARIMA stands for AutoRegressive Integrated Moving Average. It is also a class of models to explain a time series based on its own past values, differencing to make it stationary, and lagged forecast errors. The model is denoted as ARIMA(p, d, q), where

p: Number of lagged observations.

d: Degree of differencing.

q: Order of moving average.

2. What is the difference between ACF and PACF?

Ans:The ACF-Autocorrelation Function measures the correlation between a time series and its lagged values over variable time intervals. PACF-Partial Autocorrelation Function calculates the correlation between a time series and its past values while eliminating the effect of the intervening observations.

3. How can we check for stationarity in a time series?

Ans: The following can be used to check for stationarity:

Visual inspection: The plotting of time series and the check for constant mean and variance.

Statistical tests: Augmented Dickey-Fuller test or KPSS test.

Autocorrelation plots: Stationarity in a series will be indicated by rapidly declining autocorrelations.

p, d, and q are the parameters of an ARIMA model.

4. What is the role of the p, d, and q parameters in an ARIMA model?

Answer:

p: Number of lagged observations in the model - AutoRegressive part.

d: Specifies the number of times the data needs to be differenced to achieve stationarity.

q: Number of lagged forecast errors in model (Moving Average part).

5. What is the basic difference between an AR model and an MA model?

Answer: The AR-AutoRegressive model provides the forecast of a series based on its past values. The MA, or Moving Average, model is one that generates predictions of the next value as a weighted average of past errors in forecasting.

6.Describe the operation of exponential smoothing in forecasting time series.

Answer:The forecasting method known as exponential smoothing gives more weight to recent observations while decreasing the weights assigned to earlier ones. To create short-term forecasts, it smoothes the time series data.

7. What distinguishes Random Walk from White Noise?

Answer: A time series with a constant mean, variance, and lack of autocorrelation is referred to as white noise. A random walk is a type of time series that frequently produces non-stationary data, with the current value equal to the previous value plus a random step.

Hard

1.In what way would you manage a seasonal non-stationary time series?

Ans: The following is how to deal with a seasonal non-stationary time series: Applying differencing will help you get rid of the trend.

Seasonal Differencing: Deduct the observation from the preceding cycle's corresponding time period. Break down the series into its trend, seasonality, and residuals. Then, model each component independently.

Appling SARIMA: Using Seasonal ARIMA (SARIMA), a version of the ARIMA model that incorporates seasonal elements.

2.Explain the difference between additive and multiplicative decomposition in time series analysis.

Answer: In additive decomposition, the time series is assumed to be a sum of its components: Y(t)=T(t)+S(t)+R(t) where T is trend, S is seasonality, and R is residuals. In multiplicative decomposition, the time series is assumed to be the product of its components: $Y(t)=T(t)\times S(t)\times R(t)$. Additive is used when the seasonal variations are constant, and multiplicative is used when the seasonal variations increase with the level of the time series.

3.For model identification, how should ACF and PACF charts be interpreted?

Ans: The ACF plot for an MA(q) model will exhibit notable spikes up to lag q before stopping. The ACF for an AR(p) model will progressively deteriorate.

PACF Plot: The PACF for an AR(p) model will exhibit notable spikes up until lag p, at which point it will stop. The PACF for an MA(q) model will progressively deteriorate.

4. Give an example of the model diagnostics you would carry out following the fitting of an ARIMA.

Residual Analysis: Analyze the residuals to see if they are white noise, meaning that they should have zero mean, constant variance, and no autocorrelation.

Residuals' ACF and PACF: Plot the residuals' ACF and PACF to make sure there isn't any discernible autocorrelation.

Ljung-Box Test: To look for autocorrelation in residuals, do the Ljung-Box test.

Prediction Accuracy: Use measures such as Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), or AIC/BIC for model comparison when evaluating the model.

5. How are missing values in time series data handled?

Ans: In time series, methods for handling missing values include forward filling, backward filling, interpolation, and more complex time series-specific imputation algorithms.

6. What function does the Dickey-Fuller test serve in the analysis of time series?

In order to determine whether a time series is stationary, one might apply the Dickey-Fuller test. It specifically tests the null hypothesis that the series is non-stationarity due to the presence of a unit root.