Paths of analysis*

Synthia

March 3, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: FGI, FGI with protections

Max. paths returned: 5

Max. iterations: 300

Commercial:

- 1. Max. molecular weight 1000 g/mol
- 2. Max. price 1000 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 10

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

Strategies: none selected

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection

with the rights afforded in the license agreement and for no other purpose.

FGI Coeff: 0

JSON Parameters: {}

2 Paths

 $2~{\rm paths}$ found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 127.93

Figure 1: Outline of path 1

2.1.1 N-Sulfonylation

Substrates:

- 1. 2,6-Difluoroaniline available at Sigma-Aldrich
- 2. 1-Propanesulfonyl chloride available at Sigma-Aldrich

Products:

 $1. \ \mathrm{CCCS}(=\mathrm{O})(=\mathrm{O})\mathrm{Nc1c}(\mathrm{F})\mathrm{cccc1F}$

Typical conditions: THF.rt

Protections: none

Yield: good

Reference: 10.1055/s-0029-1217565 and 10.1002/(SICI)1099-0690(199806)1998:6<945::AID-EJOC945>3.0.CO;2-3 and 10.1055/s-2001-14567 and 10.1016/j.bmc.2014.07.022

Retrosynthesis ID: 14717

2.1.2 DoM fluoride carbamoyls

Substrates:

1. N-methoxy-N-methylcarbamoyl chloride - Combi-Blocks

2. CCCS(=O)(=O)Nc1c(F)cccc1F

Products:

1. CCCS(=O)(=O)Nc1c(F)ccc(C(=O)N(C)OC)c1F

 $\textbf{Typical conditions:} \ \, \textbf{RLi.or.LiNR2.-78C.THF.} then. electrophile$

Protections: none

Yield: good

Reference: 10.1016/S0040-4039(00)60805-5 AND 10.1016/S0040-4039(00)93486-60805-6

Retrosynthesis ID: 4396

2.1.3 Iodination of aromatic compounds

Substrates:

1. 5-(4-Chlorophenyl)-1H-pyrrolo[2,3-b]pyridine - Combi-Blocks

Products:

 $1. \ \, Clc1ccc(-c2cnc3[nH]cc(I)c3c2)cc1$

Typical conditions: I2 or other iodinating agent e.g. NIS

Protections: none

Yield: good

Reference: DOI: 10.1039/C5SC00964B and 10.1016/j.tetlet.2005.05.117 and

10.1007/s11178-005-0256-1

Retrosynthesis ID: 10697

2.1.4 Synthesis of ketones from Weinreb amides

Substrates:

1. Clc1ccc(-c2cnc3[nH]cc(I)c3c2)cc1

2. CCCS(=O)(=O)Nc1c(F)ccc(C(=O)N(C)OC)c1F

Products:

 $1. \ \ CCCS(=O)(=O)Nc1c(F)ccc(C(=O)c2c[nH]c3ncc(-c4ccc(Cl)cc4)cc23)c1F$

 $\textbf{Typical conditions:} \ 1.RmgBr.THF \ 2.TFA.DCM$

Protections: none

 $\bf Yield: \ good$

Reference: 10.1021/jm051185t and 10.1021/ol101021v (supporting info)

Retrosynthesis ID: 5060

2.2 Path 2

Score: 185.41

Figure 2: Outline of path 2

2.2.1 Chan-Lam Coupling

Substrates:

- 2. 3-Bromo-2,6-difluorophenylboronic acid AOBChem

Products:

 $1. \ \, \mathrm{C9H10BrF2NO2S}$

 $\textbf{Typical conditions:} \ \ \text{Cu(OAc)} \\ 2.\text{K2CO3.H2O or Cu(OAc)} \\ 2.\text{pyridine.DCM.MS} \\$

4A

Protections: none

Yield: good

Reference: 10.1016/j.molcata.2014.02.017 and 10.1039/C4RA08137D and

 $WO2008073956~\mathrm{p.88}$

Retrosynthesis ID: 31015970

2.2.2 Bromination of aromatic compounds

Substrates:

 $1. \ 5\hbox{-} (4\hbox{-}Chlorophenyl)\hbox{-}1H\hbox{-}pyrrolo[2,3\hbox{-}b]pyridine} \ \hbox{-} \ \ Combi\hbox{-}Blocks$

Products:

1. Clc1ccc(-c2cnc3[nH]cc(Br)c3c2)cc1

Typical conditions: Br2.Fe

Protections: none

Yield: good

Reference: 10.1021/acs.accounts.6b00120

Retrosynthesis ID: 7777000

2.2.3 Arylation of hydrazones with bromoarene

Substrates:

1. Isobutanal - available at Sigma-Aldrich

2. C9H10BrF2NO2S

Products:

1. CCCS(=O)(=O)Nc1c(F)ccc(C=C(C)C)c1F

 $\textbf{Typical conditions:}\ 1. TsNH2NH2.2. PdCl2(MeCN)2/Xphos.tBuOLi. ArX. dioxane. heating the conditions of the conditio$

Protections: none

Yield: good

Reference: 10.1002/anie.200701815

Retrosynthesis ID: 9990497

2.2.4 Heck Reaction

Substrates:

1. CCCS(=O)(=O)Nc1c(F)ccc(C=C(C)C)c1F

2. Clc1ccc(-c2cnc3[nH]cc(Br)c3c2)cc1

Products:

1. CCCS(=O)(=O)Nc1c(F)ccc(C(=C(C)C)c2c[nH]c3ncc(-c4ccc(Cl)cc4)cc23)c1F

Typical conditions: Pd (cat). Ligand e.g. TXPTS. Base. Temp

Protections: none

Yield: good

Reference: 10.1016/j.tetlet.2013.01.077 or 10.1021/ja508165a 10.3390/molecules16108353 or 10.1039/C3GC40493E 10.1021/ol0360288 or 10.1021/ol702755g or 10.1055/s-0033-1340319 or 10.1016/j.tet.2004.10.049

Retrosynthesis ID: 9174

2.2.5 Ozonolysis

Substrates:

1. CCCS(=O)(=O)Nc1c(F)ccc(C(=C(C)C)c2c[nH]c3ncc(-c4ccc(Cl)cc4)cc23)c1F

Products:

1. CCCS(=O)(=O)Nc1c(F)ccc(C(=O)c2c[nH]c3ncc(-c4ccc(Cl)cc4)cc23)c1F

 $\textbf{Typical conditions:} \ \ O3. MeOH. CH2Cl2. PPh3 \ or \ Me2S. low \ temperature$

Protections: none

Yield: good

Reference: 10.1016/j.tet.2017.03.039

Retrosynthesis ID: 5079