

Zeta Functions as Knot Invariants

Minh-Tâm Quang Trinh

Howard University

- O. Kivinen, M. Trinh. The Hilb-vs-Quot conjecture. Crelle's Journal (2025), 44 pp.
- 1 The Riemann Hypothesis
- 2 Weil's Rosetta Stone
- 3 From Curves to Knots
- 4 Cherednik's New Hypothesis

Also featuring:

- M. Trinh. From the Hecke category to the unipotent locus. 88 pp. arXiv:2106.07444
- P. Galashin, T. Lam, M. Trinh, N. Williams. Rational noncrossing Coxeter-Catalan combinatorics. *Proc. London Math. Soc.* (2024), 50 pp.

O. Kivinen, M. Trinh. The Hilb-vs-Quot conjecture. Crelle's Journal (2025), 44 pp.

- 1 The Riemann Hypothesis
- 2 Weil's Rosetta Stone
- 3 From Curves to Knots
- 4 Cherednik's New Hypothesis

Also featuring

M. Trinh. From the Hecke category to the unipoten locus. 88 pp. arXiv:2106.07444

P. Galashin, T. Lam, M. Trinh, N. Williams. Rational noncrossing Coxeter-Catalan combinatorics. *Proc. Londo* Math. Soc. (2024), 50 pp.

1 The Riemann Hypothesis

(Euler \sim 1730s) Proof of the infinitude of primes:

If there were finitely many, then we'd have

$$\prod_{\text{prime } p > 0} \left(1 + \frac{1}{p} + \frac{1}{p^2} + \dots \right) = \sum_{n=1}^{\infty} \frac{1}{n}.$$

But the series diverges—a contradiction.

He also implicitly studied the $zeta\ function$

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

For
$$s > 1$$
, we have $\zeta(s) = \prod_{p} \left(1 + \frac{1}{p^s} + \frac{1}{p^{2s}} + \cdots\right)$.

1 The Riemann Hypothesis

(Euler ~1730s) Proof of the infinitude of primes:

If there were finitely many, then we'd have

$$\prod_{\text{prime } p > 0} \left(1 + \frac{1}{p} + \frac{1}{p^2} + \dots \right) = \sum_{n=1}^{\infty} \frac{1}{n}.$$

But the series diverges—a contradiction.

He also implicitly studied the zeta function

$$\zeta(s) = \sum_{s=1}^{\infty} \frac{1}{n^s}.$$

For
$$s > 1$$
, we have $\zeta(s) = \prod \left(1 + \frac{1}{p^s} + \frac{1}{p^{2s}} + \cdots\right)$.

What if we allow s to be complex?

(Riemann 1859) A unique C-valued function ζ that is

- holomorphic (complex-differentiable) when $s \neq 1$.
- given by $\sum_{n=1}^{\infty} \frac{1}{n^s}$ when Re(s) > 1.

He checked that $\zeta(s)=0$ for $s=-2,-4,-6,\ldots$ by relating these zeros to poles of the gamma function.

He speculated from examples that all other zeros of ζ live on the *critical line* $\operatorname{Re}(s) = \frac{1}{2}$.

Location of zeros \iff distribution of prime numbers.

1 The Riemann Hypothesis

(Euler ~1730s) Proof of the infinitude of primes: If there were finitely many, then we'd have

$$\prod_{\text{prime } p > 0} \left(1 + \frac{1}{p} + \frac{1}{p^2} + \cdots \right) = \sum_{n=1}^{\infty} \frac{1}{n}.$$

But the series diverges—a contradiction.

He also implicitly studied the zeta function

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

For
$$s > 1$$
, we have $\zeta(s) = \prod_{p} \left(1 + \frac{1}{p^s} + \frac{1}{p^{2s}} + \cdots \right)$.

What if we allow s to be complex?

(Riemann 1859) A unique C-valued function ζ that is

- holomorphic (complex-differentiable) when $s \neq 1$.
- given by $\sum_{n=1}^{\infty} \frac{1}{n^s}$ when Re(s) > 1.

He checked that $\zeta(s) = 0$ for $s = -2, -4, -6, \dots$ by relating these zeros to poles of the gamma function.

He speculated from examples that all other zeros of ζ live on the $critical\ line\ \mathrm{Re}(s)=\frac{1}{2}.$

Location of zeros \iff distribution of prime numbers.

What if we allow s to be complex?

(Riemann 1859) A unique C-valued function ζ that is

- holomorphic (complex-differentiable) when $s \neq 1$.
- given by $\sum_{n=1}^{\infty} \frac{1}{n^s}$ when Re(s) > 1.

He checked that $\zeta(s)=0$ for $s=-2,-4,-6,\ldots$ by relating these zeros to poles of the gamma function.

He speculated from examples that all other zeros of ζ live on the *critical line* $\mathrm{Re}(s)=\frac{1}{2}.$

Location of zeros \iff distribution of prime numbers.

Wikipedia

(Hardy 1914) Infinitely many zeros on the line.

(Pratt-Robles-Zaharescu-Zeindler 2020) Among *nontrivial zeros*, over five-twelfths on the line.

Wikipedia

(Hardy 1914) Infinitely many zeros on the line.

(Pratt-Robles-Zaharescu-Zeindler 2020) Among *nontrivial zeros*, over five-twelfths on the line.

(Dedekind ~1860s) Generalize the formula

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

by replacing **Z** with other rings R.

Thus R is a set with operations resembling addition and multiplication.

$$\zeta_R(s) = \sum_{\substack{\text{ideals } I \subseteq R \\ |R/I| < \infty}} \frac{1}{|R/I|^s}$$

An *ideal* $I \subseteq R$ is the set of all linear combinations $c_{\alpha_1} x_{\alpha_1} + \cdots + c_{\alpha_k} x_{\alpha_k}$ for some given $\{x_{\alpha}\}_{\alpha} \subseteq R$.

The quotient R/I is the set of translates $y + I \subseteq R$.

Wikipedia

(Hardy 1914) Infinitely many zeros on the line.

(Pratt-Robles-Zaharescu-Zeindler 2020) Among *nontrivial zeros*, over five-twelfths on the line.

(Dedekind ~1860s) Generalize the formula

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

by replacing **Z** with other rings R.

Thus R is a set with operations resembling addition and multiplication.

$$\zeta_R(s) = \sum_{\substack{\text{ideals } I \subseteq R \\ |R/I| < \infty}} \frac{1}{|R/I|^s}$$

An *ideal* $I \subseteq R$ is the set of all linear combinations $c_{\alpha_1} x_{\alpha_1} + \cdots + c_{\alpha_k} x_{\alpha_k}$ for some given $\{x_{\alpha}\}_{\alpha} \subseteq R$.

The quotient R/I is the set of translates $y + I \subseteq R$.

(Dedekind ~1860s) Generalize the formula

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

by replacing Z with other rings R.

Thus R is a set with operations resembling addition and multiplication.

$$\zeta_R(s) = \sum_{\substack{\text{ideals } I \subseteq R \\ |R/I| < \infty}} \frac{1}{|R/I|^s}$$

An *ideal* $I \subseteq R$ is the set of all linear combinations $c_{\alpha_1} x_{\alpha_1} + \cdots + c_{\alpha_k} x_{\alpha_k}$ for some given $\{x_{\alpha}\}_{\alpha} \subseteq R$.

The quotient R/I is the set of translates $y + I \subseteq R$.

Note Requires that for each n > 0, there are finitely many I such that |R/I| = n.

Ex Every ideal of **Z** takes the form

 $n\mathbf{Z} = \{\text{multiples of } n\}$ for some integer $n \geq 0$.

For instance, the ideal generated by 30 and 2025 is

$$\{c_130 + c_22025 \mid c_1, c_2 \in \mathbf{Z}\} = 15\mathbf{Z}.$$

Check that $\mathbb{Z}/0\mathbb{Z} = \mathbb{Z}$, while $|\mathbb{Z}/n\mathbb{Z}| = n$ for n > 0.

$$\zeta_{\mathbf{Z}}(s) = \sum_{\substack{n\mathbf{Z} \subseteq \mathbf{Z} \\ n > 0}} \frac{1}{|\mathbf{Z}/n\mathbf{Z}|^s} = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

Note Requires that for each n > 0, there are finitely many I such that |R/I| = n.

Ex Every ideal of **Z** takes the form

$$n\mathbf{Z} = \{\text{multiples of } n\}$$
 for some integer $n \geq 0$.

For instance, the ideal generated by 30 and 2025 is

$$\{c_130 + c_22025 \mid c_1, c_2 \in \mathbf{Z}\} = 15\mathbf{Z}.$$

Check that $\mathbb{Z}/0\mathbb{Z} = \mathbb{Z}$, while $|\mathbb{Z}/n\mathbb{Z}| = n$ for n > 0.

$$\zeta_{\mathbf{Z}}(s) = \sum_{n\mathbf{Z} \subseteq \mathbf{Z}} \frac{1}{|\mathbf{Z}/n\mathbf{Z}|^s} = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

Why care?

(Hilbert–Pólya ~1910s) To prove RH, prove that

 $\{e^{i\gamma}\mid \tfrac{1}{2}+i\gamma \text{ is a nontrivial zero of }\zeta\}$

is the set of eigenvalues of an infinite ${\it unitary}$ matrix.

($\implies e^{i\gamma}$ on the unit circle of \mathbf{C} \implies γ real.)

(Weil $\sim 1940s$) Fix a particular prime p.

Can we prove an analogue for ζ_R , for certain rings R appearing in algebraic geometry modulo p?

(Grothendieck–Deligne ~1960s–70s) Yes

Note Requires that for each n > 0, there are finitely many I such that |R/I| = n.

Ex Every ideal of **Z** takes the form

 $n\mathbf{Z} = \{\text{multiples of } n\} \text{ for some integer } n \geq 0.$

For instance, the ideal generated by 30 and 2025 is

$$\{c_130 + c_22025 \mid c_1, c_2 \in \mathbf{Z}\} = 15\mathbf{Z}.$$

Check that $\mathbb{Z}/0\mathbb{Z} = \mathbb{Z}$, while $|\mathbb{Z}/n\mathbb{Z}| = n$ for n > 0.

$$\zeta_{\mathbf{Z}}(s) = \sum_{\substack{n\mathbf{Z}\subseteq\mathbf{Z}\\n>0}} \frac{1}{|\mathbf{Z}/n\mathbf{Z}|^s} = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

Why care?

(Hilbert–Pólya ~1910s) To prove RH, prove that

$$\{e^{i\gamma}\mid \tfrac{1}{2}+i\gamma \text{ is a nontrivial zero of }\zeta\}$$

is the set of eigenvalues of an infinite ${\it unitary}$ matrix.

(
$$\implies e^{i\gamma}$$
 on the unit circle of $\mathbf{C} \implies \gamma$ real.)

(Weil ~1940s) Fix a particular prime p.

Can we prove an analogue for ζ_R , for certain rings R appearing in algebraic geometry modulo p?

(Grothendieck–Deligne $\sim 1960s-70s$) Yes.

Why care

(Hilbert–Pólya ~1910s) To prove RH, prove that $\{e^{i\gamma}\mid \frac{1}{2}+i\gamma \text{ is a nontrivial zero of }\zeta\}$

is the set of eigenvalues of an infinite unitary matrix. ($\implies e^{i\gamma}$ on the unit circle of $\mathbb{C} \implies \gamma$ real.)

(Weil ~1940s) Fix a particular prime p.

Can we prove an analogue for ζ_R , for certain rings R appearing in algebraic geometry modulo p?

(Grothendieck–Deligne \sim 1960s–70s) Yes.

2 Weil's Rosetta Stone Algebraic geometry studies varieties: shapes cut out by polynomial equations.

For simplicity, we'll stick to $(affine)\ hypersurfaces$

$$V_f = {\vec{a} = (a_0, a_1, \dots, a_d) \mid f(\vec{a}) = 0},$$

cut out by a single polynomial $f \in \mathbf{Z}[x_0, x_1, \dots, x_d]$.

 V_f is smooth at $\vec{a} \mod p$ when $\frac{\partial f}{\partial x_j}(\vec{a}) \not\equiv 0 \pmod{p}$ for some j. Else, singular.

Ex For d = 1, hypersurfaces are plane curves.

$$f(x,y) = y^2 - x^3 - c \implies V_f = \{y^2 = x^3 + c\}$$

For which c is V_f smooth everywhere mod p?

2 Weil's Rosetta Stone Algebraic geometry studies *varieties*: shapes cut out by polynomial equations.

For simplicity, we'll stick to $(affine)\ hypersurfaces$

$$V_f = {\vec{a} = (a_0, a_1, \dots, a_d) \mid f(\vec{a}) = 0},$$

cut out by a single polynomial $f \in \mathbf{Z}[x_0, x_1, \dots, x_d]$.

 V_f is smooth at $\vec{a} \mod p$ when $\frac{\partial f}{\partial x_j}(\vec{a}) \not\equiv 0 \pmod{p}$ for some j. Else, singular.

Ex For d = 1, hypersurfaces are plane curves.

$$f(x,y) = y^2 - x^3 - c \implies V_f = \{y^2 = x^3 + c\}$$

For which c is V_f smooth everywhere mod p?

The ring of polynomial functions on $V_f \mod p$ is

$$R_{f,p} := \mathbf{F}_p[x_0, \dots, x_d] / f \mathbf{F}_p[x_0, \dots, x_d],$$

where $\mathbf{F}_{p} := \mathbf{Z}/p\mathbf{Z}$.

In a letter to his sister, Weil described a dictionary:

 \mathbf{Z} $R_{f,p}$ $V_f \mod p$ $n\mathbf{Z}$ ideals subvarieties $p\mathbf{Z}$ maximal ideals points

The first and last columns = Rosetta stone between number theory and algebraic geometry.

Conj (Weil 1948) Assume V_f is smooth everywhere. Then zeros of $\zeta_{R_{f,p}}(s)$ have $\text{Re}(s) \in \{\frac{1}{2}, \frac{3}{2}, \dots, \frac{2d-1}{2}\}$. Weil proved it for many cases. 2 Weil's Rosetta Stone Algebraic geometry studies *varieties*: shapes cut out by polynomial equations.

For simplicity, we'll stick to (affine) hypersurfaces

$$V_f = {\vec{a} = (a_0, a_1, \dots, a_d) \mid f(\vec{a}) = 0},$$

cut out by a single polynomial $f \in \mathbf{Z}[x_0, x_1, \dots, x_d]$.

 V_f is smooth at $\vec{a} \mod p$ when $\frac{\partial f}{\partial x_j}(\vec{a}) \not\equiv 0 \pmod p$ for some j. Else, singular.

Ex For d = 1, hypersurfaces are plane curves.

$$f(x,y) = y^2 - x^3 - c \implies V_f = \{y^2 = x^3 + c\}$$

For which c is V_f smooth everywhere mod p?

The ring of polynomial functions on V_f mod p is

$$R_{f,p} := \mathbf{F}_p[x_0, \dots, x_d] / f \mathbf{F}_p[x_0, \dots, x_d],$$

where $\mathbf{F}_p := \mathbf{Z}/p\mathbf{Z}$.

In a letter to his sister, Weil described a dictionary:

 \mathbf{Z} $R_{f,p}$ $V_f \mod p$ $n\mathbf{Z}$ ideals subvarieties

 $p\mathbf{Z}$ maximal ideals points

The first and last columns = Rosetta stone between number theory and algebraic geometry.

Conj (Weil 1948) Assume V_f is smooth everywhere.

Then zeros of $\zeta_{R_{f,p}}(s)$ have $\text{Re}(s) \in \{\frac{1}{2}, \frac{3}{2}, \dots, \frac{2d-1}{2}\}.$

Weil proved it for many cases.

The ring of polynomial functions on $V_f \mod p$ i

$$R_{f,p} := \mathbf{F}_p[x_0,\ldots,x_d]/f\mathbf{F}_p[x_0,\ldots,x_d],$$

where $\mathbf{F}_p := \mathbf{Z}/p\mathbf{Z}$.

In a letter to his sister, Weil described a dictionary

$$egin{array}{lll} {f Z} & R_{f,p} & V_f \bmod p \\ n{f Z} & \mbox{ideals} & \mbox{subvarieties} \\ p{f Z} & \mbox{maximal ideals} & \mbox{points} \\ \end{array}$$

The first and last columns = Rosetta stone between number theory and algebraic geometry.

Conj (Weil 1948) Assume V_f is smooth everywhere. Then zeros of $\zeta_{R_{f,p}}(s)$ have $\mathrm{Re}(s) \in \{\frac{1}{2}, \frac{3}{2}, \dots, \frac{2d-1}{2}\}$. Weil proved it for many cases.

$$\text{Recall: } \zeta_{R_{f,p}}(s) = \sum_{I} \frac{1}{|R_{f,p}/I|^s}.$$

(Grothendieck ~1964) Introduce the variable

$$\mathbf{q} := p^{-s}.$$

There are polynomials $\phi_0, \phi_1, \dots, \phi_{2d-1}$ such that

$$\zeta_{R_{f,p}}(s) = \frac{\phi_1(\mathsf{q}) \cdot \phi_3(\mathsf{q}) \cdots \phi_{2d-1}(\mathsf{q})}{\phi_0(\mathsf{q}) \cdot \phi_2(\mathsf{q}) \cdots \phi_{2d-2}(\mathsf{q})}.$$

 ϕ_k is the charpoly of a certain operator on a certain vector space, describing the *étale topology* of V_f .

Conj For all k, the roots of $\phi_k(\mathbf{q})$ live on the <u>circle</u>

$$|\mathbf{q}| = p^{-k/2}.$$

⇒ Weil's Riemann Hypothesis.

Recall:
$$\zeta_{R_{f,p}}(s) = \sum_{I} \frac{1}{|R_{f,p}/I|^s}$$
.

(Grothendieck ~1964) Introduce the variable

$$\mathbf{q} := p^{-s}$$
.

There are polynomials $\phi_0, \phi_1, \dots, \phi_{2d-1}$ such that

$$\zeta_{R_{f,p}}(s) = \frac{\phi_1(\mathsf{q}) \cdot \phi_3(\mathsf{q}) \cdots \phi_{2d-1}(\mathsf{q})}{\phi_0(\mathsf{q}) \cdot \phi_2(\mathsf{q}) \cdots \phi_{2d-2}(\mathsf{q})}.$$

 ϕ_k is the charpoly of a certain operator on a certain vector space, describing the *étale topology* of V_f .

Conj For all k, the roots of $\phi_k(q)$ live on the <u>circle</u>

$$|\mathbf{q}| = p^{-k/2}.$$

⇒ Weil's Riemann Hypothesis.

(Deligne 1974) True for all f (smooth mod p).

Ex Taking
$$d = 1$$
 and $f(x, y) = y^2 - x^3 - c$:

$$\phi_0(t) = 1 - p\mathbf{q}$$

$$\phi_1(t) = 1 - \frac{a_p}{q} + pq^2$$
 for some integer $\frac{a_p}{q}$,

giving
$$\zeta_{R_{f,p}}(s) = \frac{1 - a_p p^{-s} + p^{1-2s}}{1 - p^{1-s}}$$
. It turns out:

- $-2p^{1/2} \le a_p \le 2p^{1/2}$.
- So the two roots of $\phi_1(q)$ satisfy $|q| = p^{-1/2}$.
- So the zeros of $\zeta_{R_{f,p}}(s)$ satisfy $\text{Re}(s) = \frac{1}{2}$.

Recall:
$$\zeta_{R_{f,p}}(s) = \sum_{I} \frac{1}{|R_{f,p}/I|^s}$$
.

(Grothendieck \sim 1964) Introduce the variable

$$q := p^{-s}.$$

There are polynomials $\phi_0, \phi_1, \dots, \phi_{2d-1}$ such that

$$\zeta_{R_{f,p}}(s) = \frac{\phi_1(\mathsf{q}) \cdot \phi_3(\mathsf{q}) \cdots \phi_{2d-1}(\mathsf{q})}{\phi_0(\mathsf{q}) \cdot \phi_2(\mathsf{q}) \cdots \phi_{2d-2}(\mathsf{q})}.$$

 ϕ_k is the charpoly of a certain operator on a certain vector space, describing the *étale topology* of V_f .

Conj For all k, the roots of $\phi_k(q)$ live on the <u>circle</u>

$$|\mathbf{q}| = p^{-k/2}.$$

⇒ Weil's Riemann Hypothesis.

(Deligne 1974) True for all f (smooth mod p).

Ex Taking
$$d = 1$$
 and $f(x, y) = y^2 - x^3 - c$:

$$\begin{split} \phi_0(t) &= 1 - p \mathsf{q} \\ \phi_1(t) &= 1 - \frac{a_p}{\mathsf{q}} + p \mathsf{q}^2 \quad \text{for some integer a_p,} \end{split}$$

giving
$$\zeta_{R_{f,p}}(s) = \frac{1 - a_p p^{-s} + p^{1-2s}}{1 - p^{1-s}}$$
. It turns out:

- $\bullet \quad -2p^{1/2} \le a_p \le 2p^{1/2}.$
- So the two roots of $\phi_1(q)$ satisfy $|q| = p^{-1/2}$.
- So the zeros of $\zeta_{R_{f,p}}(s)$ satisfy $\operatorname{Re}(s) = \frac{1}{2}$.

(Deligne 1974) True for all f (smooth mod p).

Ex Taking
$$d = 1$$
 and $f(x, y) = y^2 - x^3 - c$:

$$\phi_0(t) = 1 - pq$$

$$\phi_1(t) = 1 - a_p q + pq^2 \quad \text{for some integer } a_p,$$

giving
$$\zeta_{R_{f,p}}(s) = \frac{1 - a_p p^{-s} + p^{1-2s}}{1 - p^{1-s}}$$
. It turns out:

- $-2p^{1/2} \le a_p \le 2p^{1/2}.$
- So the two roots of $\phi_1(q)$ satisfy $|q| = p^{-1/2}$.
- So the zeros of $\zeta_{R_{f,p}}(s)$ satisfy $\operatorname{Re}(s) = \frac{1}{2}$.

In fact, Weil conjectured—and Deligne proved—result for all varieties, not just hypersurfaces.

What if V_f has singularities?

Simplest case: f(x, y) with unique singularity at (0, 0). It turns out that here,

$$\zeta_{R_{f,p}}(s) = \zeta_{R_{f,p}}^{\star}(s) \cdot \zeta_{R_{f,p}^0}(s),$$

where:

- $\zeta_{R_{f,p}}^{\star}$ satisfies Weil's Riemann Hypothesis.
- $\zeta_{R_{f,p}^0}$ is analogous to $\zeta_{R_{f,p}}$, with

$$R_{f,p}^0 := \mathbf{F}_p[\![x,y]\!]/f\mathbf{F}_p[\![x,y]\!]$$

in place of $R_{f,p}$. Above, $[\![\]\!]$ means power series.

Does
$$\zeta_{R_{f,p}^0}(s) = \sum_I \frac{1}{|R_{f,p}^0/I|^s}$$
 satisfy a RH?

What if V_f has singularities?

Simplest case: f(x, y) with unique singularity at (0, 0). It turns out that here,

$$\zeta_{R_{f,p}}(s) = \zeta_{R_{f,p}}^{\star}(s) \cdot \zeta_{R_{f,p}^0}(s),$$

where:

- $\zeta_{R_{f,n}}^{\star}$ satisfies Weil's Riemann Hypothesis.
- $\zeta_{R_{f,p}^0}$ is analogous to $\zeta_{R_{f,p}}$, with

$$R_{f,p}^{0} := \mathbf{F}_{p}[\![x,y]\!] / f \mathbf{F}_{p}[\![x,y]\!]$$

in place of $R_{f,p}$. Above, $\llbracket \quad \rrbracket$ means power series.

Does
$$\zeta_{R_{f,p}^0}(s) = \sum_I \frac{1}{|R_{f,p}^0/I|^s}$$
 satisfy a RH?

Ex For
$$f = y^2 - x^3$$
,

$$\zeta_{R_{f,p}^0}(s) = \frac{1 - p^{1-2s}}{1 - p^{-s}} = \frac{1 + pq^2}{1 - q}.$$

Ex For
$$f = y^3 - x^4$$
,

$$\zeta_{R_{f,p}^0}(s) = \frac{1 + p \mathsf{q}^2 + p^2 \mathsf{q}^3 + p^2 \mathsf{q}^4 + p^3 \mathsf{q}^6}{1 - \mathsf{q}}.$$

Here, not all roots satisfy $|\mathbf{q}| = p^{-1/2}$.

WolframAlpha

What if V_f has singularities?

Simplest case: f(x, y) with unique singularity at (0, 0). It turns out that here,

$$\zeta_{R_{f,p}}(s) = \zeta_{R_{f,p}}^{\star}(s) \cdot \zeta_{R_{f,p}^0}(s),$$

where:

- $\zeta_{R_{f,n}}^{\star}$ satisfies Weil's Riemann Hypothesis.
- $\zeta_{R_{f,p}^0}$ is analogous to $\zeta_{R_{f,p}}$, with

$$R_{f,p}^{0} := \mathbf{F}_{p}[\![x,y]\!]/f\mathbf{F}_{p}[\![x,y]\!]$$

in place of $R_{f,p}$. Above, [] means power series.

Does
$$\zeta_{R_{f,p}^0}(s) = \sum_I \frac{1}{|R_{f,p}^0/I|^s}$$
 satisfy a RH?

Ex For
$$f = y^2 - x^3$$
,

$$\zeta_{R_{f,p}^0}(s) = \frac{1-p^{1-2s}}{1-p^{-s}} = \frac{1+p\mathsf{q}^2}{1-\mathsf{q}}.$$

Ex For
$$f = y^3 - x^4$$
,

$$\zeta_{R_{f,p}^0}(s) = \frac{1 + p \mathsf{q}^2 + p^2 \mathsf{q}^3 + p^2 \mathsf{q}^4 + p^3 \mathsf{q}^6}{1 - \mathsf{q}}.$$

Here, not all roots satisfy $|\mathbf{q}| = p^{-1/2}$.

WolframAlpha

Ex For
$$f = y^2 - x^3$$
,

$$\zeta_{R_{f,p}^0}(s) = \frac{1 - p^{1-2s}}{1 - p^{-s}} = \frac{1 + pq^2}{1 - q}.$$

Ex For $f = y^3 - x^4$,

$$\zeta_{R_{f,p}^0}(s) = \frac{1 + p\mathsf{q}^2 + p^2\mathsf{q}^3 + p^2\mathsf{q}^4 + p^3\mathsf{q}^6}{1 - \mathsf{q}}.$$

Here, not all roots satisfy $|\mathbf{q}| = p^{-1/2}$.

WolframAlph

3 From Curves to Knots For general f(x, y),

it turns out there's $\Psi_f(\mathsf{t},\mathsf{q}) \in \mathbf{Z} \left[\mathsf{t},\mathsf{q}, \frac{1}{1-\mathsf{q}} \right]$ such that

$$\zeta_{R_{f,p}^0}(s) = \frac{\Psi_f(p, p^{-s})}{1 - p^{-s}} \quad \text{for almost all } p.$$

These polynomials have many surprising features.

(Piontkowski 2007) Take
$$f = y^n - x^{n+1}$$
.

Then
$$\Psi_f(1,1) = \frac{(2n)!}{(n+1)!n!}$$
, the *n*th Catalan number.

Ex If
$$f = y^3 - x^4$$
, then

$$\begin{split} &\Psi_f(\mathsf{t},\mathsf{q}) = 1 + \mathsf{t}\mathsf{q}^2 + \mathsf{t}^2\mathsf{q}^3 + \mathsf{t}^2\mathsf{q}^4 + \mathsf{t}^3\mathsf{q}^6, \\ &\Psi_f(1,1) = 5. \end{split}$$

3 From Curves to Knots For general f(x, y),

it turns out there's $\Psi_f(\mathsf{t},\mathsf{q}) \in \mathbf{Z}\left[\mathsf{t},\mathsf{q},\frac{1}{1-\mathsf{q}}\right]$ such that

$$\zeta_{R_{f,p}^0}(s) = \frac{\Psi_f(p, p^{-s})}{1 - p^{-s}} \quad \text{for almost all } p.$$

These polynomials have many surprising features.

(Piontkowski 2007) Take
$$f = y^n - x^{n+1}$$
.

Then
$$\Psi_f(1,1) = \frac{(2n)!}{(n+1)!n!}$$
, the *n*th Catalan number.

Ex If
$$f = y^3 - x^4$$
, then

$$\Psi_f(\mathsf{t},\mathsf{q}) = 1 + \mathsf{t}\mathsf{q}^2 + \mathsf{t}^2\mathsf{q}^3 + \mathsf{t}^2\mathsf{q}^4 + \mathsf{t}^3\mathsf{q}^6, \ \Psi_f(1,1) = 5.$$

The Ψ_f also arise from knot/link invariants.

A *knot* is an embedding of a circle into \mathbb{R}^3 or S^3 .

A *link* is a generalization allowing multiple circles.

Two links are *isotopic* when we can deform one into the other without self-intersections.

Chmutov-Duzhin-Mostovoy

3 From Curves to Knots For general f(x, y),

it turns out there's $\Psi_f(t,q) \in \mathbf{Z}\big[t,q,\frac{1}{1-q}\big]$ such that

$$\zeta_{R_{f,p}^0}(s) = \frac{\Psi_f(p, p^{-s})}{1 - p^{-s}} \quad \text{for almost all } p.$$

These polynomials have many surprising features.

(Piontkowski 2007) Take $f = y^n - x^{n+1}$.

Then $\Psi_f(1,1) = \frac{(2n)!}{(n+1)!n!}$, the *n*th Catalan number.

Ex If
$$f=y^3-x^4$$
, then
$$\Psi_f(\mathsf{t},\mathsf{q})=1+\mathsf{t}\mathsf{q}^2+\mathsf{t}^2\mathsf{q}^3+\mathsf{t}^2\mathsf{q}^4+\mathsf{t}^3\mathsf{q}^6,$$

$$\Psi_f(1,1)=5.$$

The Ψ_f also arise from knot/link invariants.

A *knot* is an embedding of a circle into \mathbb{R}^3 or S^3 .

A *link* is a generalization allowing multiple circles.

Two links are isotopic when we can deform one into the other without self-intersections.

 ${\bf Chmutov-Duzhin-Mostovoy}$

The Ψ_f also arise from knot/link invariants.

A *knot* is an embedding of a circle into \mathbb{R}^3 or S^3 .

A *link* is a generalization allowing multiple circles.

Two links are *isotopic* when we can deform one into the other without self-intersections.

Chmutov-Duzhin-Mostovo

Let
$$S_{\epsilon}^{3} = \{(x, y) \in \mathbf{C}^{2} \mid |x|^{2} + |y|^{2} = \epsilon\}$$
. The subset $L_{\epsilon} = \{(x, y) \in S_{\epsilon}^{3} \mid f(x, y) = 0\}$

is a link in S_{ϵ}^3 when $\epsilon > 0$ is small enough.

Ex If $f = y^n - x^m$, then L_f is the (m, n) torus link. It's a knot when m and n are coprime.

Wolfram Language

Ex If $f = y^4 - 2x^3y^2 - 4x^5y + x^6 - x^7$, then L_f is the closure of the braid

Cherednik-Danilenko

Let
$$S_{\epsilon}^{3} = \{(x, y) \in \mathbf{C}^{2} \mid |x|^{2} + |y|^{2} = \epsilon\}$$
. The subset
$$L_{f} = \{(x, y) \in S_{\epsilon}^{3} \mid f(x, y) = 0\}$$

is a link in S_{ϵ}^3 when $\epsilon > 0$ is small enough.

Ex If $f = y^n - x^m$, then L_f is the (m, n) torus link. It's a knot when m and n are coprime.

Wolfram Language

Ex If $f = y^4 - 2x^3y^2 - 4x^5y + x^6 - x^7$, then L_f is the closure of the braid

Cherednik-Danilenko

Conj (Oblomkov-Shende ~2010)

$$\Psi_f(1,\mathbf{q}^2) = \lim_{\mathbf{a} \to 0} \left[(\mathbf{q}/\mathbf{a})^{\mu} \, \mathbb{P}_{L_f}(\mathbf{a},\mathbf{q}) \right],$$

where $\mu \in \mathbf{Z}$ and \mathbb{P} is the *HOMFLYPT invariant*, discovered in 1986 and defined by the *skein rules*:

(1)
$$\mathbb{P}_{\bigcirc} = 1$$

(2)
$$\mathbf{aP} - \mathbf{a}^{-1} \mathbf{P} = (\mathbf{q} - \mathbf{q}^{-1}) \mathbf{P}_{5}$$

Full statement incorporates a, by upgrading Ψ_f .

(Maulik 2012) True for all plane curves.

Proof sketch Blow up the singularity repeatedly. Control Ψ_f via wall crossing and \mathbb{P}_{L_f} via skein rules.

Let $S_{\epsilon}^{3} = \{(x, y) \in \mathbb{C}^{2} \mid |x|^{2} + |y|^{2} = \epsilon \}$. The subset

$$L_f = \{(x, y) \in S_{\epsilon}^3 \mid f(x, y) = 0\}$$

is a link in S^3_{ϵ} when $\epsilon > 0$ is small enough.

Ex If $f = y^n - x^m$, then L_f is the (m, n) torus link. It's a knot when m and n are coprime.

Wolfram Language

Ex If $f = y^4 - 2x^3y^2 - 4x^5y + x^6 - x^7$, then L_f is the closure of the braid

Cherednik-Danilenko

Conj (Oblomkov-Shende ~2010)

$$\Psi_f(1,\mathbf{q}^2) = \lim_{\mathbf{a} \to 0} \left[(\mathbf{q}/\mathbf{a})^{\mu} \, \mathbb{P}_{L_f}(\mathbf{a},\mathbf{q}) \right],$$

where $\mu \in \mathbf{Z}$ and \mathbb{P} is the *HOMFLYPT invariant*, discovered in 1986 and defined by the *skein rules*:

$$\mathbb{P}_{\bigcirc} = 1$$

(2)
$$\mathbf{aP} - \mathbf{a}^{-1} \mathbf{P} = (\mathbf{q} - \mathbf{q}^{-1}) \mathbf{P}_{5 \zeta}$$

Full statement incorporates a, by upgrading Ψ_f .

(Maulik 2012) True for all plane curves.

 $Proof\ sketch\quad \hbox{Blow up the singularity repeatedly}.$

Control Ψ_f via wall crossing and \mathbb{P}_{L_f} via skein rules.

Conj (Oblomkov-Shende ~2010)

$$\Psi_f(1,\mathbf{q}^2) = \lim_{\mathbf{a} \to 0} \left[(\mathbf{q}/\mathbf{a})^{\mu} \, \mathbb{P}_{L_f}(\mathbf{a},\mathbf{q}) \right],$$

where $\mu \in \mathbf{Z}$ and \mathbb{P} is the *HOMFLYPT invariant*, discovered in 1986 and defined by the *skein rules*:

$$\mathbb{P}_{\bigcirc} = 1$$

$$\mathbf{aP}_{\mathbf{x}^{\mathbf{y}}} - \mathbf{a}^{-1} \mathbf{P}_{\mathbf{x}^{\mathbf{y}}} = (\mathbf{q} - \mathbf{q}^{-1}) \mathbf{P}_{\mathbf{5} \, \mathbf{7}}$$

Full statement incorporates a, by upgrading Ψ_f .

(Maulik 2012) True for all plane curves.

Proof sketch Blow up the singularity repeatedly. Control Ψ_f via wall crossing and \mathbb{P}_{L_f} via skein rules.

Conj (Oblomkov-Rasmussen-Shende ~2013)

$$\Psi_f(\mathsf{t}^2,\mathsf{q}^2) = \lim_{\mathsf{a} o 0} \left[(\mathsf{q}/\mathsf{a})^\mu \, \mathbf{P}_{L_f}(\mathsf{a},\mathsf{t},\mathsf{q})
ight],$$

where **P** is the *Khovanov–Rozansky invariant*, a refinement of \mathbb{P} discovered in 2006.

 ${\bf P}$ is defined by *categorifying* (1)–(2). Unknown how to categorify Maulik's proof.

Melissa Zhang

(Kivinen-T 2025) True for $f = y^3 - x^m$ with $3 \nmid m$. Cor (Kivinen-T) New closed formula for $\mathbf{P}_{\mathrm{torus}(m,3)}$.

Conj (Oblomkov-Rasmussen-Shende ~2013)

$$\Psi_f(\mathsf{t}^2,\mathsf{q}^2) = \lim_{\mathsf{a} o 0} \left[(\mathsf{q}/\mathsf{a})^\mu \, \mathbf{P}_{L_f}(\mathsf{a},\mathsf{t},\mathsf{q})
ight],$$

where **P** is the *Khovanov–Rozansky invariant*, a refinement of \mathbb{P} discovered in 2006.

 ${f P}$ is defined by categorifying (1)–(2). Unknown how to categorify Maulik's proof.

Melissa Zhang

(Kivinen-T 2025) True for $f = y^3 - x^m$ with $3 \nmid m$.

Cor (Kivinen-T) New closed formula for $\mathbf{P}_{torus(m,3)}$.

Proof Sketch $\mathbf{P}_{\text{torus}(m,n)} \rightsquigarrow \Psi_{y^n-x^m}$?

1 Recursions that compute $\mathbf{P}_{\text{torus}(m,n)}(\mathsf{a},\mathsf{t},\mathsf{q})$, due to Elias–Hogan camp–Mellit.

$$\simeq \left((TQ^{-1})^{1-n} | K_n \right) \rightarrow Q^2 | K_{n-1}$$
 Elias-Hogancamp

Encoding of braids into grid diagrams, due to Mellit.

Conj (Oblomkov–Rasmussen–Shende ~2013)

$$\Psi_f(\mathsf{t}^2,\mathsf{q}^2) = \lim_{\mathsf{a} \to 0} \left[(\mathsf{q}/\mathsf{a})^\mu \, \mathbf{P}_{L_f}(\mathsf{a},\mathsf{t},\mathsf{q}) \right],$$

where **P** is the *Khovanov–Rozansky invariant*, a refinement of \mathbb{P} discovered in 2006.

 ${\bf P}$ is defined by categorifying (1)–(2). Unknown how to categorify Maulik's proof.

Melissa Zhang

(Kivinen-T 2025) True for $f = y^3 - x^m$ with $3 \nmid m$.

 $\mbox{ Cor (Kivinen-T)} \quad \mbox{New closed formula for } \mathbf{P}_{\mbox{torus}(m,3)}.$

Proof Sketch $\mathbf{P}_{\text{torus}(m,n)} \rightsquigarrow \Psi_{y^n-x^m}$?

 $\label{eq:problem} \begin{array}{ll} 1 & \text{Recursions that compute } \mathbf{P}_{\text{torus}(m,n)}(\mathsf{a},\mathsf{t},\mathsf{q}), \, \text{due} \\ \text{to Elias-Hogancamp-Mellit.} \end{array}$

$$\simeq \left((TQ^{-1})^{1-n} \begin{array}{c} K_n \\ K_n \end{array} \right) \rightarrow Q^2 \begin{array}{c} K_{n-1} \\ K_{n-1} \\ \end{array}$$

 ${}^{\rm Elias-Hogan camp}$ Encoding of braids into grid diagrams, due to Mellit.

Proof Sketch $\mathbf{P}_{\text{torus}(m,n)} \rightsquigarrow \Psi_{y^n-x^m}$?

1 Recursions that compute $\mathbf{P}_{\text{torus}(m,n)}(\mathsf{a},\mathsf{t},\mathsf{q})$, due to Elias–Hogancamp–Mellit.

Elias-Hogancamp

Encoding of braids into grid diagrams, due to Mellit.

2 For m, n coprime, yields a sum over *Dyck paths* in an $m \times n$ grid.

Meanwhile, $R_{f,p}^0 \simeq \mathbf{F}_p[\![u^m, u^n]\!]$ when $f = y^n - x^m$.

We relate Dyck paths to $R_{f,p}^0$ -submodules $M \subseteq \mathbf{F}_p[\![u]\!]$.

$$\begin{aligned} & 3 \quad \text{Recall } \frac{\Psi_f(p,p^{-s})}{1-p^{-s}} = \zeta_{R^0_{f,p}}(s) = \sum_I \frac{1}{|R^0_{f,p}/I|^s}. \end{aligned}$$
 We relate it to
$$\sum_M \frac{1}{|\mathbf{F}_p[\![u]\!]/M|^s}.$$

Uses Serre duality. For now, requires $\min(m, n) \leq 3$.

2 For m, n coprime, yields a sum over $Dyck\ paths$ in an $m \times n$ grid.

Meanwhile, $R_{f,n}^0 \simeq \mathbf{F}_p[\![u^m, u^n]\!]$ when $f = y^n - x^m$.

We relate Dyck paths to $R_{f,p}^0$ -submodules $M \subseteq \mathbf{F}_p[\![u]\!]$.

$$\mbox{3} \quad \mbox{Recall } \frac{\Psi_f(p,p^{-s})}{1-p^{-s}} = \zeta_{R^0_{f,p}}(s) = \sum_I \frac{1}{|R^0_{f,p}/I|^s}.$$

We relate it to $\sum_{M} \frac{1}{|\mathbf{F}_{p}[\![u]\!]/M|^{s}}.$

Uses Serre duality. For now, requires $min(m, n) \leq 3$.

Big Picture I study special functions that appear in

- algebraic geometry
- knot theory
- combinatorics

We can decompose them into simpler functions via representation theory.

The Dyck-path decomposition of Ψ_f comes from the representation theory of $symmetric\ groups.$

Another case:

(T 2021) Generalizations of \mathbb{P} , **P** arising from the representation theory of *Coxeter groups*.

(Galashin-Lam-T-Williams 2024) Ideas from (T) solve conjectures in Coxeter combinatorics from 2012.

2 For m, n coprime, yields a sum over Dyck paths in an $m \times n$ grid.

Meanwhile, $R_{f,p}^0 \simeq \mathbf{F}_p[\![u^m,u^n]\!]$ when $f = y^n - x^m$.

We relate Dyck paths to $R_{f,p}^0$ -submodules $M \subseteq \mathbf{F}_p[\![u]\!]$.

$$\begin{array}{ll} 3 & \text{Recall } \frac{\Psi_f(p,p^{-s})}{1-p^{-s}} = \zeta_{R_{f,p}^0}(s) = \sum_I \frac{1}{|R_{f,p}^0/I|^s}. \end{array}$$
 We relate it to
$$\sum_M \frac{1}{|\mathbf{F}_p[\![u]\!]/M|^s}.$$

Uses Serre duality. For now, requires $min(m, n) \leq 3$.

Big Picture I study special functions that appear in

- algebraic geometry
- knot theory
- ullet combinatorics

We can decompose them into simpler functions via $representation\ theory.$

The Dyck-path decomposition of Ψ_f comes from the representation theory of $symmetric\ groups.$

Another case:

(T 2021) Generalizations of \mathbb{P} , **P** arising from the representation theory of *Coxeter groups*.

(Galashin-Lam-T-Williams 2024) Ideas from (T) solve conjectures in Coxeter combinatorics from 2012.

Big Picture I study special functions that appear in

- algebraic geometry
- knot theory
- combinatorics

We can decompose them into simpler functions via representation theory.

The Dyck-path decomposition of Ψ_f comes from the representation theory of $symmetric\ groups.$

Another case

(T 2021) Generalizations of \mathbb{P} , \mathbf{P} arising from the representation theory of *Coxeter groups*.

(Galashin-Lam-T-Williams 2024) Ideas from (T) solve conjectures in Coxeter combinatorics from 2012.

4 Cherednik's New Hypothesis

Recall: For $f = y^3 - x^4$ and prime p, the roots of

$$\Psi_f(p, \mathbf{q}) = 1 + p\mathbf{q}^2 + p^2\mathbf{q}^3 + p^2\mathbf{q}^4 + p^3\mathbf{q}^6$$

do not all satisfy $|\mathbf{q}| = p^{-1/2}$.

Conj (Cherednik 2018) For any plane curve f:

$$0 < t \le \frac{1}{2} \implies \text{all roots of } \Psi_f(t, \mathbf{q}) \text{ satisfy} \\ |\mathbf{q}| = t^{-1/2}.$$

Would imply arithmetic constraints on $\mathbf{P}_{L_f}(\mathsf{a},\mathsf{t},\mathsf{q}).$

Dream (Cherednik) Related to the Lee–Yang theorem on zeros of *partition functions* in statistical mechanics.

4 Cherednik's New Hypothesis

Recall: For $f = y^3 - x^4$ and prime p, the roots of

$$\Psi_f(p, \mathbf{q}) = 1 + p\mathbf{q}^2 + p^2\mathbf{q}^3 + p^2\mathbf{q}^4 + p^3\mathbf{q}^6$$

do not all satisfy $|\mathbf{q}| = p^{-1/2}$.

Conj (Cherednik 2018) For any plane curve f:

$$0 < t \le \frac{1}{2} \implies \begin{array}{c} \text{all roots of } \Psi_f(t, \mathbf{q}) \text{ satisfy} \\ |\mathbf{q}| = t^{-1/2}. \end{array}$$

Would imply arithmetic constraints on $\mathbf{P}_{L_f}(\mathsf{a},\mathsf{t},\mathsf{q})$.

Dream (Cherednik) Related to the Lee–Yang theorem on zeros of *partition functions* in statistical mechanics.

$$f = y^3 - x^4,$$

$$t=2,1,\frac{1}{2}$$

$$f = y^4 - 2x^3y^2 - 4x^5y + x^6 - x^7,$$

$$t = 1, \frac{1}{2}, \frac{1}{4}$$

4 Cherednik's New Hypothesis

Recall: For $f = y^3 - x^4$ and <u>prime</u> p, the roots of

$$\Psi_f(p,{\bf q}) = 1 + p{\bf q}^2 + p^2{\bf q}^3 + p^2{\bf q}^4 + p^3{\bf q}^6$$

do not all satisfy $|\mathbf{q}| = p^{-1/2}$.

Conj (Cherednik 2018) For any plane curve f:

$$0 < t \le \frac{1}{2} \implies \text{all roots of } \Psi_f(t, \mathsf{q}) \text{ satisfy}$$

 $|\mathsf{q}| = t^{-1/2}.$

Would imply arithmetic constraints on $\mathbf{P}_{L_f}(\mathsf{a},\mathsf{t},\mathsf{q})$.

Dream (Cherednik) Related to the Lee–Yang theorem on zeros of partition functions in statistical mechanics.

$$f = y^3 - x^4,$$

$$t = 2, 1, \frac{1}{2}$$

$$f = y^4 - 2x^3y^2 - 4x^5y + x^6 - x^7, \qquad t = 1, \frac{1}{2}, \frac{1}{4}$$

$$t = 1, \frac{1}{2}, \frac{1}{4}$$

$$f = y^3 - x^4, \qquad t = 2, 1, \frac{1}{2}$$

$$t = 2, 1, \frac{1}{6}$$

$$f = y^4 - 2x^3y^2 - 4x^5y + x^6 - x^7,$$

$$t = 1, \frac{1}{2}, \frac{1}{4}$$

Thank you for listening.