第1章 数字逻辑基础

1.1 什么是数字电路?与模拟电路相比,数字电路具有哪些特点?

答: 处理数字信号并能完成数字运算的电路系统称为数字电路。特点: 采用二进制,结 构简单易于集成: 可用于数值计算和逻辑运算: 抗干扰, 精度高: 便干长期存储和远程传输, 保密性好, 通用性强。

1.2 模拟电路与数字电路之间的联系纽带是什么?

答:模拟电路与数字电路之间的联系纽带是模-数或数-模转换。

1.3 举例说明我们身边的模拟信号和数字信号。

答: 我们身边常见的模拟信号有: 温度、速度、压力、流量、亮度等等: 而常见的数字 信号有: 开关、二极管的状态、电灯的状态等。

1.4 把下列二进制数转换成十进制数。

- (1) $(11000101)_2 = (197)_{10}$
- (2) $(0.01001)_2 = (0.28)_{10}$ (3) $(1010.001)_2 = (10.125)_{10}$
- (4) $(01011100)_2 = (92)_{10}$ (5) $(11.01101)_2 = (3.40625)_{10}$
- (6) $(111.11001)_2 = (7.78125)_{10}$

1.5 把下列十进制数转换成二进制数。

- (1) $(12.0625)_{10} = (1100.0001)_2$ (2) $(127.25)_{10} = (1111111.01)_2$ (3) $(101)_{10} = (1100101)_2$
- (4) $(51.125)_{10} = (110011.001)_2$ (5) $(87.625)_{10} = (1010111.101)_2$ (6) $(191)_{10} = (101111111)_2$
- 1.6 把下列二进制数分别转换成十进制数、八进制数和十六进制数。
- (1) $(110101111.110)_2 = (431.75)_{10} = (657.6)_8 = (1AF.C)_{16}$
- (2) $(1101111.0110)_2 = (111.375)_{10} = (157.3)_8 = (6F.6)_{16}$
- (3) $(11111.1010)_2 = (31.625)_{10} = (37.5)_8 = (1F.A)_{16}$
- (4) $(100001111.10)_2 = (271.5)_{10} = (417.4)_8 = (10F.8)_{16}$
- (5) $(1000111.0010)_2 = (71.125)_{10} = (107.1)_8 = (47.2)_{16}$
- (6) $(10001.1111)_2 = (17.9375)_{10} = (21.74)_8 = (11.F)_{16}$

1.7 把下列八进制数分别转换成十进制数、十六进制数和二进制数。

- (1) $(623.77)_8 = (403.98)_{10} = (193.FC)_{16} = (110010011.111111)_2$
- (2) $(701.53)_8 = (449.671875)_{10} = (1C1.AC)_{16} = (111000001.101011)_2$
- (3) $(23.07)_8 = (19.109375)_{10} = (16.1C)_{16} = (010110.000111)_2$
- (4) $(156.72)_8 = (110.90625)_{10} = (6E.E8)_{16} = (1101110.111010)_2$
- (5) $(353.17)_8 = (235.234375)_{10} = (EB.3C)_{16} = (11101011.001111)_2$
- (6) $(73.71)_8 = (59.890625)_{10} = (3B.E4)_{16} = (111011.111001)_2$

1.8 把下列十六进制数分别转换成十进制数、八进制数和二进制数。

- (1) $(2AC5.D)_{16} = (10949.81)_{10} = (25305.64)_8 = (10101011000101.1101)_2$
- (2) $(1FB9.F)_{16} = (8121.9375)_{10} = (17671.74)_8 = (1111110111001.1111)_2$
- (3) $(B2C85.E)_{16}$ = $(732293.875)_{10}$ = $(2626205.7)_8$ = $(10110010110010000101.111)_2$
- **(4)** $(6BE7.F)_{16} = (27623.9375)_{10} = (65747.74)_8 = (110101111100111.1111)_2$
- (5) (5CAC5.AB)₁₆=(379589. 668)₁₀ =(1345305.526)₈ =(101110010111000101.1010111)₂
- (6) $(9AF1.A)_{16}$ = $(39665.625)_{10}$ = $(115361.5)_8$ = $(1001101011110001.1010)_2$

1.9 把下列十进制数转换成五进制数。

- (1) $(432.13)_{10} = (3212.0316)_5$ (2) $(7132.3)_{10} = (212012.12)_5$
- **(3)** $(52.93)_{10} = (202.43)_5$
- (5) $(212.78)_{10} = (1322.34)_5$
- **(6)** $(382.013)_{10} = (3012.03)_5$
- (7) $(43.75)_{10} = (133.34)_5$

- 1.10 用 8421BCD 码表示下列十进制数。
- (1) $(42.78)_{10} = (0100\ 0010.0111\ 1000)_{8421BCD}$
- (2) $(103.65)_{10} = (0001\ 0000\ 0011.0110\ 0101)_{8421BCD}$
- **(3) (9.04)**₁₀ =(1001.0000 0100)_{8421BCD}
- (4) $(102.08)_{10} = (0001\ 0000\ 0010.\ 0000\ 1000)_{8421BCD}$
- (5) $(412.12)_{10} = (0100\ 0001\ 0010.\ 0001\ 0010)_{8421BCD}$
- (6) $(70.124)_{10} = (0111\ 0000.\ 0001\ 0010\ 0100)_{8421BCD}$
- 1.11 把下列 8421BCD 码表示成十进制数。
- (1) $(0101\ 1000)_{8421BCD} = (58)_{10}$
- (2) $(1001\ 0011\ 0101)_{8421BCD} = (935)_{10}$
- (3) (0011 0100.0111 0001)_{8421BCD} = $(34.71)_{10}$
- (4) $(0111\ 0101.0110)_{8421BCD} = (75.6)_{10}$
- 1.12 把下列 8421BCD 码表示成二进制数。
- (1) $(1000)_{8421BCD} = (1000)_2$
- (2) $(0011\ 0001)_{8421BCD} = (11111)_2$
- (3) $(1000\ 1000)_{8421BCD} = (88)_{10} = (11111)_2$
- 1.13 把下列 8421BCD 码与 5421BCD 码互换。
- (1) $(1001\ 0011)_{8421BCD} = (93)_{10} = (1100\ 0011)_{5421BCD}$
- (2) $(1100\ 0101)_{5421BCD} = (95)_{10} = (1001\ 0101\)_{8421BCD}$
- (3) $(0110\ 0011)_{8421BCD} = (63)_{10} = (1001\ 0011)_{5421BCD}$
- (4) $(1001\ 0011)_{5421BCD} = (63)_{10} = (0110\ 0011)_{8421BCD}$

1.14 填空。

- (1) $(58.23)_{10} = (111010.01)_2 = (72.2)_8 = (0101\ 1000.0010\ 0011)_{8421BCD}$
- (2) (0001 1000 1001.0011 0101)_{8421BCD} = $(189.35)_{10}$ = $(10111101.0110)_2$

1.15 填写下表中的空格。

原码	反码	补码	偏移码	
1,0010	1,1101	1,1110	0,1110	
0,1010.01	0,1010.01	0,1010.01	1,1010.01	
1,00110.10	1,11001.01	1,11001.10	0.11001.10	
1,0000	1,1111	1,0000	0,0000	

1.16 求下列二进制数的补码和反码。

原码	补码	反码
(1) 1,1010101	1,0101011	1,0101010
(2) 0,0111000	0,0111000	0,0111000
(3) 1,0000001	1,1111111	1,1111110
(4) 1 10000	1 10000	1 01111

1.17 求下列十进制数的二进制数原码、反码和补码表示。

	原码	补码	反码
$(1) (+418)_{10}$	0,110100010	0,110100010	0,110100010
$(2) (-52)_{10}$	1,110100	1,001100	1,001011
$(3) (-39)_{10}$	1.100111	1.011001	1.011000

- (4) $(+112)_{10}$ 0,11100000,11100000,1110000(5) $(-12)_{10}$ 1,11001,01001,0011(6) $(-89)_{10}$ 1,10110011,01001111,0100110
- 1.18 求下列各数的二进制数偏移码表示。
- $(1) (+325)_{10}$

(原码)(0,101000101)₂=(补码)(0,101000101)₂=(偏移码)(1,101000101)₂

 $(2) (-78)_{10}$

(原码)(1,1001110)₂=(补码)(1,0110010)₂=(偏移码)(0,0110010)₂

 $(3) (-78)_{10}$

(原码)(1,1001110)₂=(补码)(1,0110010)₂=(偏移码)(0,0110010)₂

 $(4) (+125)_{10}$

(原码)(0,1111101)₂=(补码)(0,1111101)₂=(偏移码)(1,1111101)₂

 $(5) (-28)_{10}$

(原码)(1,11100)₂=(补码)(1,00100)₂=(偏移码)(0,00100)₂

 $(6) (-108)_{10}$

(原码) (1.1101100) = (补码) (1.0010100) = (偏移码) (0.0010100) = (6.0010100) = (6.0010100) = (6.0010100) = (6.0010100) = (6.0010100) = (6.0010100) = (6.0010100) = (6.0010100) = (6.0010

1.19 求下列各数的二进制数原码、反码、补码及偏移码表示。

	原码	反码	补码	偏移码
$(1) (+312)_8$	0,011001010	0,011001010	0,011001010	1,011001010
$(2) (-75)_8$	1,111101	1,000010	1,000011	0,000011
$(3) (-25)_5$	不存在这样的	5 进制表示		
$(3) (+B73)_{16}$	0,101101110011	0,101101110011	0,101101110011	1,101101110011
(4) (-C82) ₁₆	1,110010000010	1,001101111101	1,001101111110	0,0011011111110
$(2) (-75)_{10}$	1,1001011	1,0110100	1,0110101	0,0110101

- 1.20 用二进制补码运算求下列各式的值。
 - (1) $(+51)_{10} + (+32)_{10} = (0,0110011)_{\text{pp}}, \text{ if } + (0,0100000)_{\text{pp}}, \text{ if } + (0,0100000)_{\text{pp}}$

$$=(0,1010011)_{\mathbb{R}}=(+83)_{10}$$

(2)
$$(-51)_{10} + (-32)_{10} = (1,0110011)_{\mathbb{R}} + (1,0100000)_{\mathbb{R}}$$

= $(1,1001101)_{\mathbb{R}} + (1,1100000)_{\mathbb{R}}$

$$=(1,0101101)$$
_N $=(1,1010011)$ _E $=(-83)$ ₁₀

(3)
$$(+51)_{10} + (-32)_{10} = (0,110011)_{\mathbb{R}} + (1,100000)_{\mathbb{R}}$$

$$=(0,110011)_{\text{?}}+(1,100000)_{\text{?}}$$

$$=(0.010011)_{\%}=(0.010011)_{\%}=(+19)_{10}$$

(4)
$$(-51)_{10} + (+32)_{10} = (1,110011)_{\mathbb{R}} + (0,100000)_{\mathbb{R}}$$

$$=(1,001101)_{\uparrow\uparrow}+(0,100000)_{\uparrow\uparrow}$$

$$=(1,101101)_{\text{A}}=(1,010011)_{\text{B}}=(-19)_{10}$$

1.21 用二进制补码运算求(10011.10)2 (01100.01)2。

答:
$$(10011.10)_2$$
 $(01100.01)_2 = (0,10011.10)_{\text{\heta}} + (1,10011.11)_{\text{\heta}}$
= $(0,00111.01)_{\text{\heta}} = (0,00111.01)_{\text{\pi}}$