МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ ОДЕСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені І.І.МЕЧНИКОВА

Кваліфікаційна наукова праця на правах рукопису

СЕМЕНОВ АНДРІЙ КОСТЯНТИНОВИЧ

УДК 538.956, 537.9, 544.72.05, 544.77

ДИСЕРТАЦІЯ ЕЛЕКТРОФІЗИЧНІ ВЛАСТИВОСТІ БАГАТОФАЗНИХ ДИСПЕРСНИХ СИСТЕМ

01.04.02 — теоретична фізика Природничі науки

Подається на здобуття наукового ступеня кандидата фізико-математичних наук

Дисертація містить результати власних досліджень. Використання ідей, ре-
зультатів і текстів інших авторів мають посилання на відповідне джерело

Науковий керівник:

Сушко Мирослав Ярославович, кандидат фізико-математичних наук, доцент

АНОТАЦІЯ

Семенов А.К. Електрофізичні властивості багатофазних **дисперсних систем.** – Кваліфікаційна наукова праця на правах рукопису.

Дисертація на здобуття наукового ступеня кандидата фізико-математичних наук за спеціальністю 01.04.02 — теоретична фізика. — Одеський національний університет імені І.І. Мечникова, МОН України, Одеса, 2020.

В роботі побудовано модель квазістатичного електричного відгуку невпорядкованих тривимірних систем частинок з морфологією тверде ядропроникна оболонка. Оболонки в загальному випадку вважалися електрично неоднорідними; при їх перекриванні локальне значення комплексної діелектричної проникності визначалося властивостями оболонки найближчого до заданої точки ядра. Обчислення виконано на базі методу компактних груп неоднорідностей. Вимога виконання для гомогенізованого середовища відомих граничних умов для нормальних компонент комплексних полей дозволила зробити теорію замкненою.

Для тестування теоретичних результатів були використані існуючі дані числових симуляцій зі статичної провідності вказаних систем з різними діаметрами ядер та товщин електрично однорідних та неоднорідних оболонок. Беручи до уваги особливості алгоритму симуляцій та пов'язані з цим проблеми відображення результатів моделі на дані симуляцій, показано, що теорія спроможна повністю відтворити ці дані.

Продемонстровано застосовність моделі для опису електричної провідності реальних твердих композитних та полімерних композитних електролітів. Проаналізовано фізичний зміст отриманих за результатами обробки експерименту модельних профілів провідності оболонок та наведено аргументи, що різні їх ділянки ефективно відображають внески фізико-хімічних ефектів, що домінують на відповідних інтервалах концентрацій.

Модель також застосовано для аналізу електричної перколяції в системі типу ізолятор–провідник з міжфазним шаром. Проаналізовано поведінку еле-

ктричної провідності та діелектричної проникності, встановлено, що в рамках моделі поріг перколяції залежить лише від відносної товщини оболонки, тоді як ефективні критичні індекси залежать не лише від геометричних та електричних параметрів компонентів, але й від способу обробки даних.

Використаний в роботі теоретичний підхід застосовано для критичного аналізу диференціальної схеми обчислення ефективних квазістатичних електричних параметрів дисперсних систем. Показано, що вона є застосовною лише для систем з малими різницями діелектричних проникностей компонентів та у вузьких концентраційних інтервалах.

Ключові слова: метод компактних груп, модель ядро-оболонка, електрична провідність, діелектрична проникність, дисперсна система, перколяція, композитні електроліти, нанокомпозити, диференціальний метод

ABSTRACT

Semenov A.K. Electrophysical properties of multiphase disperse systems. – Qualification scientific paper, manuscript.

Thesis for a Candidate of Science in Physics and Mathematics (Philosophy Doctor) degree by specialty 01.04.02 – theoretical physics. – Odesa I.I. Mechnikov National University, the MES of Ukraine, Odesa, Ukraine, 2020.

We have developed a model for quasi-static electric response of random 3-D systems of particles with a hard-core—penetrable-shell morphology. The shells were in general electrically inhomogeneous. The derivations were carried out using the method of compact groups of inhomogeneities. The requirement that the known boundary conditions for the normal component of complex fields be valid for the homogenized medium allowed us to close the theory.

The theory was tested using existing simulation data for the system under consideration. Taking into account the peculiarities of the simulations, it was shown to be capable of reproducing the data fully.

The theory was shown to be applicable for the description of real solid composite and polymer composite electrolytes. A physical interpretation was discussed of different parts of the shell's conductivity profile obtained by fitting the experimental data.

The theory was also used to analyze electric percolation in insulator/conductor systems. It was shown that within the model, the percolation threshold depends only on the relative thickness of the shell, whereas the effective critical exponents depend not only on the geometric and electrical parameters of the components, but also on the widths of the processed concentration intervals.

It was also shown that existing differential schemes for calculating the effective quasi-static electric parameters of dispersed systems are applicable only for systems with slightly differing dielectric constants of the components and within narrow concentration ranges. **Key words:** compact group approach, core-shell model, electric conductivity, dielectric permittivity, disperse system, percolation, composite electrolytes, nanocomposites, differential scheme

СПИСОК ПУБЛІКАЦІЙ ЗДОБУВАЧА

Публікації в наукових журналах:

- [1*] Sushko M. Ya. Conductivity and permittivity of dispersed systems with penetrable particle-host interphase / M. Ya. Sushko, A. K. Semenov // Cond. Matter Phys. 2013 Vol. 16 No. 1 13401 P. 1-10. (SJR Q3) doi: 10.5488/CMP.16.13401
- [2*] Semenov A. K. On applicability of differential mixing rules for statistically homogeneous and isotropic dispersions / A. K. Semenov // J. Phys. Commun. 2018. Vol. 2. No. 3 035045. P. 1-8. doi: 10.1088/2399-6528/aab060
- [3*] Sushko M. Ya. A mesoscopic model for the effective electrical conductivity of composite polymeric electrolytes. / M. Ya. Sushko, A. K. Semenov // J. Mol. Liq. — 2019. — Vol. 279 — P. 677-686. (SJR Q1) doi: 10.1016/j.molliq.2019.02.009
- [4*] Sushko M. Ya. Rigorously solvable model for the electrical conductivity of dispersions of hard-core—penetrable-shell particles and its applications / M. Ya. Sushko, A. K. Semenov // Phys. Rev. E 2019. Vol. 100. 052601. P. 1-14. (SJR Q1) doi: 10.1103/PhysRevE.100.052601
- [5*] Семенов А. К. Вплив неоднорідності міжфазного шару на перколяційну поведінку провідності дисперсних систем типу ізолятор-провідник / А. К. Семенов // Фізика аеродисперсних систем. 2020. Т. 58. прийнято до друку.

Тези доповідей на наукових конференціях:

Semenov A. Complex permittivity of disperse systems with penetrable particle-host interphase / A. Semenov, M. Sushko // 4-th International Conference on Statistical Physics: Modern Trends and Applications, abstract – Lviv (Ukraine), 2012. – P. 175.

- 2. Семенов А.К. Роль межфазной границы в формировании проводимости и диэлектрической проницаемости мелкодисперсных систем / А.К. Семенов, М.Я. Сушко // 25-th International Conference: Disperse Systems, abstract Odesa (Ukraine), 2012. P. 221.
- 3. Sushko M. Ya. Finding the parameters of the interphase layers in fine dispersions with dielectric spectroscopy studies near the electrical percolation threshold / M.Ya. Sushko, A.K. Semenov // 5-th International Symposium: Methods and Applications of Computational Chemistry, abstract Kharkiv (Ukraine), 2013. P. 44.
- 4. Sushko M. Ya. Effect of interphase on the effective electrophysical parameters of fine dispersions and nanofluids / M.Ya. Sushko, A.K. Semenov // 6-th International Conference Physics of Liquid Matter: Modern Problems, abstract Kyiv (Ukraine), 2014. P. 177.
- 5. Семенов А. К. Диэлектрическая проницаемость и проводимость дисперсных систем с неоднородной межфазной границей / А.К. Семенов, М.Я. Сушко // 26-th International Conference: Disperse Systems, abstract Odesa (Ukraine), 2014. P. 163.
- Semenov A. K. A model for conductivity and permittivity of heterogeneous systems with complex microstructures / A.K. Semenov, M.Ya. Sushko // 2015 International Young Scientists Forum on Applied Physics, abstract – Dnipropetrovsk (Ukraine), 2015. – P. 1. doi: 10.1109/YSF.2015.7333251
- 7. Бабий К. А Особенности электрической проводимости дисперсных систем на основе полимерных матриц / К.А. Бабий, А.К. Семенов, М.Я. Сушко // 27-th International Conference: Disperse Systems, abstract Odesa (Ukraine), 2016. Р. 28.
- 8. Семенов А. К. Роль міжфазних шарів у формуванні провідних та діелектричних властивостей дісперсноподібних систем: модель та застосування / А.К. Семенов, М.Я. Сушко // International conference: The development of innovation in Engineering, Physical and Mathematical Sciences, abstract –

- Mykolayiv (Ukraine), 2016. P. 21.
- 9. Sushko M. Ya. Effective electrical conductivity of composite polymer electrolytes / M.Ya. Sushko, A.K. Semenov // 8-th International Conference Physics of Liquid Matter: Modern Problems, abstract Kyiv (Ukraine), 2018. P. 81.
- 10. Sushko M. Ya. Recent developments in the theory of electrodynamic homogenization of random particulate systems / M.Ya. Sushko, A.K. Semenov // 5-th International Conference on Statistical Physics: Modern Trends and Applications, abstract Lviv (Ukraine), 2019. P. 160.
- 11. Semenov A. K. Hard-core—penetrable-shell model for effective electric parameters of random particulate systems / A.K. Semenov, M.Ya. Sushko // 7-th International Conference: Nanotechnologies and Nanomaterials, abstract Lviv (Ukraine), 2019. P. 257.
- 12. Семенов А. К. Моделювання електрофізичного відгуку дисперсних систем з твердим дисперсійним середовищем / А.К. Семенов, М.Я. Сушко // 28-th International Conference: Disperse Systems, abstract Odesa (Ukraine), 2019. Р. 90.

3MICT

СПИСС)K OCHOI	ВНИХ ПОЗНАЧЕНЬ, СКОРОЧЕНЬ ТА ТЕРМІНІВ .	12	
ВСТУІ	Ι		13	
РОЗДІ	Л 1. СУЧА	АСНИЙ СТАН ТЕОРЕТИЧНИХ ДОСЛІДЖЕНЬ	19	
1.1.	. Теорія перколяції			
1.2.	Класичні	підходи Максвелла-Гарнетта та Бругемана	21	
	1.2.1. Tee	орія Накамури Нана Вічорека	24	
1.3.	Диферені	ціальний підхід	26	
1.4.	Межі Хашина-Штрікмана			
1.5.	. Теорія сильних флуктуацій			
1.6.	Метод ког	мпактних груп неоднорідностей	36	
1.7.	Висновки		41	
РОЗДІ	Л 2. ДОСЛ	ПІДЖУВАНА МОДЕЛЬ	43	
2.1.	. Узагальнення МКГ на провідні системи			
2.2.	Знаходження $\hat{\varepsilon}_{\mathrm{f}}$			
2.3.	Застосування для моделі тверде ядро-проникна оболонка 5			
2.4.	Висновки			
РОЗДІ	Л 3. ТЕСТ	ГУВАННЯ Й ЗАСТОСУВАННЯ МОДЕЛІ ДО АНА-		
	ЛІЗУ	ЕФЕКТИВНОЇ ПРОВІДНОСТІ КОМПОЗИТНИХ ЕЛЕ	<u>:</u> -	
	KTPO	ОЛІТІВ	59	
3.1.	Тестуванн	ня моделі на існуючих результатах симуляцій RRN	59	
	3.1.1. Ал	поритм Random Resistor Network (RRN)	59	
	3.1.2. Tee	стування моделі у випадку однорідних оболонок	63	
	3.1.3. Tee	стування моделі у випадку неоднорідних оболонок	68	
3.2.	Застосува	ння до твердих композитних електролітів	69	
	3.2.1. Пр	оцедура обробки експериментальних даних	70	

	3.2.2.	Результати обробки концентраційної залежності	71	
3.3.	Засто	сування до полімерних композитних електролітів	74	
	3.3.1.	Процедура обробки експериментальних даних	75	
	3.3.2.	Результати обробки концентраційних залежностей	76	
	3.3.3.	Результати обробки температурних залежностей	80	
3.4.	Висно	вки	83	
РОЗДІ.	Л 4. Е	ФЕКТ ЕЛЕКТРИЧНОЇ ПЕРКОЛЯЦІЇ В СИСТЕМАХ		
	T	ИПУ ІЗОЛЯТОР-ПРОВІДНИК	89	
4.1.	Аналіз	з провідності моделі з електрично однорідною оболонкою.	89	
	4.1.1.	Поріг електричної перколяції	90	
	4.1.2.	Ефективні критичні індекси провідності	91	
4.2.	Повед	інка квазістатичної ефективної проникності	94	
	4.2.1.	Ефект подвійної перколяції	95	
4.3.	Порів	няння з експериментальними даними	97	
4.4.	Висновки			
РОЗДІ.	Л 5. К	РИТИЧНИЙ АНАЛІЗ ДИФЕРЕНЦІАЛЬНОГО ПІДХО-		
	Д	У В РАМКАХ МКГ	100	
5.1.	Побуд	ова диференціальної схеми та аналіз результатів	100	
	5.1.1.	АМБ в рамках формалізму МКГ	100	
	5.1.2.	Диференціальна схема в рамках МКГ	102	
	5.1.3.	Спроба уточнення підходу АМБ	104	
5.2.	Порів	няння отриманих результатів з межами Хашина-Штрікмана	ı105	
5.3.	Висно	вки	107	
висно	ЭВКИ		109	
СПИСО	ОК ВИ	КОРИСТАНИХ ДЖЕРЕЛ	111	
дОДА	ion A.	ТАБЛИЦІ ДОПОМІЖНИХ ЦИФРОВИХ ДАНИХ ТА	191	

ДОДАТОК Б.	СПИСОК ПУБЛІКАЦІЙ ЗДОБУВАЧА ТА АПРОБА-	
	ЦІЯ РЕЗУЛЬТАТІВ ДИСЕРТАЦІЇ	122

СПИСОК ОСНОВНИХ ПОЗНАЧЕНЬ, СКОРОЧЕНЬ ТА ТЕРМІНІВ

МКГ – метод компактних груп

ММГ – модель Максвела-Гарнетта

СМБ – симетрична модель Бругемана

АМБ – асиметрична модель Бругемана

МХШ – межі Хашина-Штрікмана

ТСФ – теорія сильних флуктуацій

RRN – Random Resistor Network

 $\hat{\varepsilon}$ — комплексна квазістатична діелектрична проникність

 ε – дійсна частина квазістатичної діелектричної проникності

 σ – квазістатична провідність

 ω – циклічна частота поля

c – об'ємна концентрація твердих ядер частинок

 ϕ – об'ємна концентрація ядер разом з оболонками

 $c_{\rm c}$

 δ – відношення товщини оболонки до радіусу ядра

 $\delta \hat{arepsilon}(\mathbf{r})$ – локальні відхилення комплексної проникності за рахунок компактних груп

$$\widetilde{\delta \hat{arepsilon}}_{\mathrm{CGA}}(\mathbf{r})$$

$$\delta\hat{arepsilon}_{
m ABM}^{(l)}({f r})$$
 –

$$\delta\hat{arepsilon}_{
m ABM}^{(h)}({f r})$$
 –

ВСТУП

Актуальність теми. Актуальність роботи визначається як нагальними практичними задачами створення та застосування нових композитних матеріалів з бажаними та контрольованими електрофізичними властивостями (наприклад, тверді композитні та полімерні композитні електроліти), суттєво відмінними від властивостей природних речовин, так і необхідністю побудови і вдосконалення надійних теоретичних моделей для кількісного опису та діагностики їх характеристик.

Робота присвячена побудові та аналізу теоретичної моделі для опису найменш дослідженого, але найбільш поширеного типу тривимірних невпорядкованих систем, утворених диспергуванням частинок наповнювача в несучу матрицю. Ключовими проблемами, далекими до свого розв'язання, при створенні послідовної теорії таких систем є врахування різного роду міжфазних ефектів (нерегулярність форми частинок; контактний опір; утворення оксидних шарів; формування високопровідних областей з підвищеною концентрацією дефектів чи іонів; аморфізація полімерної матриці тощо), змін властивостей самої матриці (внаслідок неконтрольованого легування, забруднення, змін внутрішньої структури тощо) та послідовний розрахунок багаточастинкових поляризаційних та кореляційних ефектів.

Побудована в дисертаційній роботі аналітична теорія ефективного квазістатичного електричного відгуку невпорядкованих систем частинок з морфологією тверде ядро-проникна оболонка є багаточастинковою та дозволяє враховувати вплив міжфазних та матричних ефектів через моделювання одночастинкового електричного профілю комплексної діелектричної проникності оболонок. Здобуті основні теоретичні співвідношення між ефективною статичною електричною провідністю системи та електричними і геометричними параметрами компонентів підтверджуються результатами їх порівняння з існуючими даними симуляцій методом Random Resistor Network (RRN) та спроможністю адекватно описувати широкі масиви експериментальних даних для ефективної квазістатичної провідності твердих композитних і полімерних композитних електролітів, ефективних електричної провідності та діелектричної проникності в околі порогу електричної перколяції в системі діелектрик-провідник із міжфазним шаром. Теорія також дозволяє показати непослідовність та обмеженість поширеної диференціальної схеми для обчислення ефективних електричних параметрів гетерогенних систем.

Зв'язок з науковими програмами, планами, темами. Дисертаційна робота виконувалась на кафедрі теоретичної фізики і астрономії Одеського національного університету імені І. І. Мечникова, а також є складовою частиною досліджень, які проводились за держбюджетною темою "Дослідження термодинамічних, критичних та кінетичних властивостей рідких металів та їх сплавів" No 0118U000202, а також за держбюджетною темою "Рівняння стану, термодинамічні та кінетичні властивості нанофлюїдів. Дослідження структурування нанофлюїдів на основі кореляційної спектроскопії та спектроскопії діелектричної проникності" No 113U000374.

Мета, задачі, об'єкт, предмет та методи досліджень. *Метою* роботи є побудова теорії ефективних електричних властивостей невпорядкованих дисперсних систем частинок з морфологією тверде ядро-проникна оболонка. У зв'язку з цим були поставлені *задачі*:

- 1. Розробити теорію електродинамічної гомогенізації невпорядкованих систем провідних частинок у рамках методу компактних груп (МКГ) [1–4], для чого узагальнити та замкнути МКГ на випадок провідних частинок.
- 2. Проаналізувати в рамках цієї теорії ефективні електричні властивості невпорядкованих систем частинок з морфологією тверде ядропроникна оболонка та протестувати теорію шляхом порівняння отриманих результатів з даними числових симуляцій.

- 3. Дослідити застосовність теорії до опису електричних властивостей твердих та полімерних композитних електролітів.
- 4. Дослідити застосовність теорії до опису електричної перколяції в дисперсноподібних композитах.
- 5. Виконати критичний аналіз диференціальної схеми обчислення ефективних електрофізичних параметрів гетерогенних систем

Об'ект дослідження: невпорядковані дисперсні системи частинок з морфологією тверде ядро–проникна оболонка.

Предмет дослідження: ефективні електрична провідність та діелектрична проникність.

Методи дослідження. У роботі був використаний метод компактних груп неоднорідностей [1–4], який дозволяє врахувати багаточастинкові поляризаційні і кореляційні ефекти в довгохвильовому наближенні без їх надмірної модельної деталізації.

Наукова новизна отриманих результатів. В роботі отримано наступні результати:

- В рамках методу компактних груп неоднорідностей побудовано внутрішньо замкнену статистичну модель квазістатичного електричного відгуку макроскопічно однорідних та ізотропних дисперсних систем частинок з морфологією типу тверде ядро—проникна оболонка.
- Показано адекватність моделі для опису концентраційних залежностей статичної провідності, отриманих методом числових симуляцій RRN для модельних систем з електрично однорідними та неоднорідними оболонками, та її суттєві переваги над моделям Максвелла-Гарнетта, Бруггемана та Накамури-Нана-Вєчорика.
- Показано застосовність теорії до кількісного опису експериментальних даних з ефективної провідності твердих композитних та полімерних композитних електролітів та аналізу ролі різних фізико-хімічних механізмів у її формуванні. Внески останніх можна ефективно врахувати через модельний профіль комплексної діелектричної проникності

проникних оболонок.

- Показано застосовність теорії до кількісного опису ефективних електричної провідності та діелектричної проникності твердих невпорядкованих композитів з міжфазним проникним шаром в околі порогу електричної перколяції. Встановлено залежність положення порогу перколяції від геометричних параметрів оболонки. Продемонстровано залежність ефективних критичних індексів для таких систем від геометричних та електричних параметрів компонентів та способу обробки експериментальних даних.
- Показано загальну обмеженість диференціальної схеми для аналізу ефективних квазістатичних електричних параметрів диспесних систем.

Практичне значення отриманих результатів. Розвинута теорія може розглядатися як новий гнучкий інструмент для аналізу та діагностики ефективних електрофізичних параметрів широкого кола практично важливих невпорядкованих композитних систем, включаючи тверді композитні та полімерні композитні електроліти, системи типу ізолятор—провідник з міжфазним шаром, колоїди тощо. Методи, використані в роботі, можуть бути застосовані до розвитку нових теоретичних моделей ефективних електрофізичних властивостей інших багатофазних систем зі складною мікроструктурою.

Особистий внесок здобувача. Три статті [1*, 3*, 4*] виконані у співавторстві з науковим керівником. Загальна постановка задач статей [1*, 3*, 4*] та метод компактних груп неоднорідностей належать доц. Сушку М.Я. При роботі над цими статтями здобувач брав участь в пошуку та аналізі пов'язаних з ними теоретичних матеріалів та експериментальних даних, виконував з науковим керівником паралельні взаємоконтролюючі теоретичні розрахунки та обробки даних симуляцій та експерименту, брав участь в аналізі, інтерпретації результатів та підготовці їх до опублікування. Також здобувачем було виказано ідею про використання крайових умов для замикання процедури

гомогенізації, виявлено проблеми, що виникають при відображенні результатів досліджуваної моделі на результати існуючих комп'ютерних симуляцій, запропоновано спосіб відновлення провідності реальної матриці через параметри дальньої частини модельного профілю провідності оболонки.

Постановка задач статей $[2^*, 5^*]$ та їх розв'язання належать здобувачеві.

Апробація результатів дисертації. Результати дисертації доповідалися на семінарах кафедри теоретичної фізики, а також були представлені автором на наукових конференціях/школах/семінарах, з яких дванадцять міжнародних:

- 1. 4-th International Conference on Statistical Physics: Modern Trends and Applications, Lviv, Ukraine, 2012.
- 2. 25-th International Conference: Disperse Systems, Odesa, Ukraine, 2012.
- 3. 5-th International Symposium: Methods and Applications of Computational Chemistry, Kharkiv, Ukraine, 2013.
- 4. 6-th International Conference Physics of Liquid Matter: Modern Problems, Kyiv, Ukraine, 2014.
- 5. 26-th International Conference: Disperse Systems, Odesa, Ukraine, 2014.
- 2015 International Young Scientists Forum on Applied Physics, Dnipropetrovsk, Ukraine, 2015.
- 7. 27-th International Conference: Disperse Systems, Odesa, Ukraine, 2016.
- 8. International conference: The development of innovation in Engineering, Physical and Mathematical Sciences, Mykolayiv, Ukraine, 2016.
- 9. 8-th International Conference Physics of Liquid Matter: Modern Problems, Kyiv, Ukraine, 2018.
- 10. 5-th International Conference on Statistical Physics: Modern Trends and Applications, Lviv, Ukraine, 2019.
- 11. 7-th International Conference: Nanotechnologies and Nanomaterials, Lviv, Ukraine, 2019.
- 12. 28-th International Conference: Disperse Systems, Odesa, Ukraine, 2019.

Структура та обсяг роботи. Дисертація складається зі вступу, п'яти розділів, висновків і списку використаних джерел, що містить ?? посилання. Загальний обсяг дисертації — ??? сторінок друкованого тексту.

РОЗДІЛ 1 СУЧАСНИЙ СТАН ТЕОРЕТИЧНИХ ДОСЛІДЖЕНЬ

В даному розділі надається огляд деяких з основних результатів теоретичного дослідження електрофізичних властивостей (діелектричної проникності та електричної провідності) невпорядкованих дисперсних систем. Для демонстрації співвідношень, якщо не буде зазначено інше, буде розглянута двофазна система сферичних частинок, що мають діелектричну проникність ε_1 (електричну провідність σ_1) диспергованих в однорідній матриці з проникністю ε_0 (провідністю σ_0). У даному Розділі й надалі буде використовуватись система СГС(E); частота тестуючого поля вважається достатньо малою, щоб вкладами діелектричних втрат можна було знехтувати.

1.1. Теорія перколяції

Термін "перколяція" (регсоlation – англ.), або "протікання" вперше з'явився у роботі Бродбента і Хаммерслі у 1957 році [5], де математично вивчалася загальна задача проходження "рідини" через "пористий матеріал". Суть цих термінів змінюється в залежності від задачі [6]: аномальний ріст електричної провідності в дисперсних системах типу ізолятор-провідник [7, 8] та композитних електролітах [9–11], зміна модулю пружності в залежності від концентрації розколів [12], розкол гетерогенних структур [13], розповсюдження епідемій [14, 15] тощо. Через те, що такі процеси дуже розповсюджені, теорія перколяції досить швидко отримала сильну математичну базу (див. [6, 16–21]). Далі перколяція буде розглянута с точки зору вивчення електричних характеристик дисперсних систем [22], тобто в якості "рідини" буде виступати електричний струм, в якості "пористого матеріалу" — дисперсна система, в якості самих "пор" — провідні частинки дисперсної фази.

класси задач: ґраткова перколяція, неперервна перколяція, задачі random

мах

site (rPercolation)

Для таких систем ефект електричної перколяції головним чином проявляється у вигляді різкої зміни провідності на вузьких концентраційних інтервалах за рахунок формування високопровідних шляхів (перколяційних кластерів). Останні можуть бути сформовані як за рахунок міжфазних шарів, так і самих частинок. Концентрацію частинок, при якій виникає перколяція, називають порогом перколяції $c_{\rm c}$. В околі цієї точки провідність системи зазвичай інтерполюють степеневими законами:

$$\sigma \sim \begin{cases} (c_{\rm c} - c)^{-s}, & c < c_{\rm c}; \\ (c - c_{\rm c})^t, & c > c_{\rm c}, \end{cases}$$

Однією з нагальних сучасних задач матеріалознавства та виробництва є створення дисперсних систем з наперед заданими електричними характеристиками. Типовий фактор, що слід враховувати, є формування міжфазних шарів навколо частинок дисперсної фази: оксидні шари на поверхні металевих частинок [1,2], області просторового заряду в твердих композитних електролітах [3,4] та аморфізованого полімеру в полімерних композитних електролітах [5], подвійні електричні шари в колоїдах [6] тощо. Електричні властивості таких шарів та їх можливе об'єднання істотним чином впливають на формування ефективних характеристик таких систем [7]. Зокрема, якщо питома провідність таких шарів більша за питому провідність матриці, то вони можуть приводити до появи ефекту електричної перколяції [8].

Вплив міжфазних шарів на перколяційні характеристики системи є мало вивченим через те, що перколяція — суттєво багато-частинковий ефект, тому для його опису потрібно знати кореляційні та поляризаційні внески вищих порядків. Це є нетривіальною задачею вже для електрично однорідних шарів, та робить вивчення більш розповсюдженого випадку неоднорідних шарів однією з нагальних задач теорії електричної перколяції в дисперсних систе-

1.2. Класичні підходи Максвелла-Гарнетта та Бругемана

Одним з перших спроб опису ефективних характеристик дисперсних систем був підхід Максвелла-Гарнетта (МГ) [23,24], який базується на ідеї, що при низьких концентраціях у квазістатичному режимі кожну частинку системи можна розглядати в матриці окремо від інших (нехтуючи кореляційними та поляризаційними ефектами, викликаними наявністю інших частинок). Для того, щоб отримати формальний вигляд підходу МГ простіше всього скористатися підходом Клаузіуса-Массотті для розріджених газів в середовищі з проникністю ε_0 :

$$\frac{\varepsilon_{\text{eff}} - \varepsilon_0}{\varepsilon_{\text{eff}} + 2\varepsilon_0} = \frac{4\pi}{3} \sum_{j} N_j \alpha_i, \tag{1.1}$$

де підсумування ведеться по всім типам молекул газу j, що мають поляризовність α_i . В рамках методу МГ поляризованість молекул замінюється поляризованістю частинок дисперсної фази (див. [25]); для двофазної системи шарів отримаємо:

$$\frac{\varepsilon_{\text{eff}} - \varepsilon_0}{2\varepsilon_0 + \varepsilon_{\text{eff}}} = c \frac{\varepsilon_1 - \varepsilon_0}{2\varepsilon_0 + \varepsilon_1},\tag{1.2}$$

де ε_1 – проникність дисперсної фази, що має обємну концентрацію c. Аналогічний результат можна отримати й для провідності розглядаючи відповідну модифікацію підходу (1.1).

Судячи вже з визначення підходу МГ можна зробити висновок, що він є суттєво одночастинковим наближенням, та не може використовуватися на концентраціях при яких міжчастинковими ефектами не можна знехтувати. Саме через цей факт підхід МГ неспроможній дати ефект перколяції для двофазних систем з істотним контрастом провідностей ($\sigma_1/\sigma_0\gg 1$). Крім цього, підхід МГ для систем еліпсоїдальних частинок в межі великих концентрацій ($c\to 1$) дає нефізичні результати. Нарешті, якщо йде мова про багатофазні системи, підхід МГ також дає нефізичні результати: при концентраціях включень, що відповідають стану коли вся система повинна бути зайнята лише дисперсною фазою, ефективні характеристики, в рамках підходу МГ, будуть також залежати й від матриці. Різноманітні узагальнення та полі-

пшення цоього піходу можна знайти в [26]. Зокрема, узагальнення формули (1.2) на комплексні значення проникностей носить назву підходу Максвела-Вагнера [27].

Бругеману вдалося [28,29] обійти ряд недоліків підходу Максвелла-Гарнетта, розглядаючи дисперсну систему симетричним чином. Розглянемо ту ж саму двофазну систему діелектричних шарів. В рамках моделі Бругемана кожна з компонент системи (включаючи матрицю) розглядається окремо в ефективному середовищі, $\varepsilon_{\rm eff}$ якого формується всіма іншими компонентами; при цьому вважається, що середній за об'ємом стрибок значення потоку електричного поля крізь i-ті компоненти системи $\Delta \Phi_i$ дорівнює нулю:

$$(1-c)\Delta\Phi_0 + c\Delta\Phi_1 = 0. (1.3)$$

Для сферичних включень напруженості поля всередині \mathbf{E}_{in} та зовні \mathbf{E}_{out} *i*-ої компоненти мають вигляд (див. [30]):

$$\mathbf{E}_{\rm in} = \frac{3\varepsilon_{\rm eff}}{2\varepsilon_{\rm eff} + \varepsilon_i} E_0 \left(\cos\theta \,\mathbf{r} - \sin\theta \,\vartheta\right),\,$$

$$\mathbf{E}_{\text{out}} = \left(1 + 2\frac{\varepsilon_i - \varepsilon_{\text{eff}}}{2\varepsilon_{\text{eff}} + \varepsilon_i} \frac{R^3}{r^3}\right) E_0 \cos\theta \,\mathbf{r} + \left(-1 + \frac{\varepsilon_i - \varepsilon_{\text{eff}}}{2\varepsilon_{\text{eff}} + \varepsilon_i} \frac{R^3}{r^3}\right) E_0 \sin\theta \,\vartheta,$$

де ${\bf r}$ та ϑ – орти сферичної системи координат; ${\bf E}_0$ – прикладене однорідне поле. Тоді

$$\Delta\Phi_{i} = 2\pi \left[\int_{0}^{R} dr r \varepsilon_{i} E_{\text{in}} - \int_{0}^{R} dr r \varepsilon_{\text{eff}} E_{\text{out}} \right] = 2\pi R^{2} \varepsilon_{\text{eff}} \frac{\varepsilon_{i} - \varepsilon_{\text{eff}}}{2\varepsilon_{\text{eff}} + \varepsilon_{i}} E_{0}.$$
 (1.4)

Підставляючи (1.4) до (1.3) отримуємо правило Бругемана для знаходження ε_{eff} двофазної дисперсної системи діелектричних шарів:

$$(1-c)\frac{\varepsilon_0 - \varepsilon_{\text{eff}}}{2\varepsilon_{\text{eff}} + \varepsilon_0} + c\frac{\varepsilon_1 - \varepsilon_{\text{eff}}}{2\varepsilon_{\text{eff}} + \varepsilon_1} = 0.$$
 (1.5)

Аналогічним чином, розглядаючи провідні та слабко-провідні системи, можна знайти рівняння для знаходження $\sigma_{\rm eff}$ та $\hat{\varepsilon}_{\rm eff} = \varepsilon_{\rm eff} + i4\pi\sigma_{\rm eff}/\omega$, що матимуть таку ж саму структуру, що й (1.5) [31].

Через такий спосіб моделювання системи цей підхід отримав назву підходу ефективного середовища Бругемана; він легко узагальнюється на системи несферичних та анізотропних частинок, багатофазні та нелінійні системи, та став основою для цілого ряду теорій, що досі застосовуються та розвиваються [25, 31, 32].

Зазначимо, що у наближенні низьких концентрацій $(c \to 0)$ підхід Бругемана зводиться до підходу МГ, але невідмінну від останнього для провідних систем з $\sigma_1/\sigma_0 \gg 1$ він показує перколяційну поведінку провідності:

$$\sigma_{
m eff} \propto \left\{ egin{array}{ll} (c_{
m c}-c)^{-s}, & c < c_{
m c}, \ (c-c_{
m c})^t, & c > c_{
m c}, \end{array}
ight.$$

де c_c — поріг перколяції, що дорівнює 1/3 для сферичних частинок; s та t — критичні індекси перколяції, що в рамках теорії ефективного середовища дорівнюють одиниці. Виходячи зі стандартної теорії перколяції [6,16,18,20-22,33,34] такі значення c_c , s та t відповідають наближенню середнього поля. Це пов'язано з тим, що при усередненні стрибка потоку поля нехтують міжчастинковими ефектами, призводячи до того, що властивості ефективного середовища, в якому розглядається кожна з компонент системи, формуються всіма іншими компонентами еквівалентним чином незалежно від їх відстані до розглядуваного компонента.

Інший істотній недолік цього підходу проявляється при розгляданні системи еліпсоїдальних частинок [35]: крім того, що як і для моделі МГ, модель Бругемана дає нефізичні результати, він передбачає залежність порогу перколяції від форми самих частинок. Це суперечить результатам аналізу перколяційної поведінки таких систем [36], що свідчать про незалежність порогу перколяції від форми включень — концепція універсальності. Це, як і для підходу МГ, також є наслідком розглядання кожної частинки окремо від інших. Тут також треба зазначити, що для несферичних частинок компонента матриці, в рамках моделі Бругемана, має таку ж саму форму, що фізично невиправдано [37]. Ці та інші питання щодо недоліків та границь застосування підходу Бругемана можна знайти в [25].

Підхід ефективного середовища Бруггемана відноситься до класу так званих симетричних підходів розглядання мікроструктури гетерогенної системи, в рамках яких кожна з компонент системи (матриця та частинки дисперсної фази) розглядаються еквівалентним чином. Через це надалі, як прийнято, цей підхід будемо називати симетричною моделлю Бруггемана (СМБ). Класичним прикладом асиметричного підходу є підхід МГ, де при розгляданні системи робиться чітке розмежування між термінами "матриця" та "частинки".

1.2.1. Теорія Накамури Нана Вічорека

Спроба модифікувати підхід СМБ на випадок систем частинок, що мають проникні оболонки був вперше запропонований Наном для твердих двофазних композитних електролітів [9,38,39]. Цей підхід базується на емпіричному методі Накамури [40], що по суті є ще одною спробою модифікації підходу Бругемана задля поліпшення його перколяційної поведінки.

В рамках методу Накамури робиться припущення, що двофазна дисперсна система може бути розглянута за законом Бругемана, але для того, щоб у граничних випадках малих та високих концентрацій ефективна провідність задовільняла правилу Максвела-Гарнетта, провідність матриці замінювалась нижньою границею Хашіна-Штрікмана (5.14), а провідність частинок — верхньою (5.13). Якщо ж йде мова про частинки з проникною оболонкою, то такі системи, за припущенням Нана, можна розглядати в рамках методу Накамури в двох концентраційних областях, до та після максимуму провідності, наступним чином.

1. Трьохфазна система матриця-ядро-оболонка розглядається як квазідвофазна — матриця-дисперсна фаза, де провідність останньої дорівнює ефективній провідності σ_{cs} частинки (радіусом R та провідністю σ_1) з оболонкою (товщиною t та провідністю σ_2); ця провідність роз-

раховується за правилом Максвела-Гарнетта [41, 42]:

$$\sigma_{cs} = \sigma_1 \frac{2\sigma_1 + \sigma_2 + 2\psi(\sigma_2 - \sigma_1)}{2\sigma_1 + \sigma_2 - \psi(\sigma_2 - \sigma_1)},$$

де
$$\psi = (1 + \delta)^{-3}$$
; $\delta = t/R$.

2. До максимуму провідності $(c \leqslant c^*)$ вважається, що частинки можуть перекриватися, тому поріг перколяції дорівнює $c_c \approx 0.28$ [9]. Ефективна провідність $\sigma_{\rm eff}$ системи знаходиться з рівняння:

$$(1 - \phi_t) \frac{\sigma_0^- - \sigma_{\text{eff}}}{\sigma_{\text{eff}} + c_c(\sigma_0^- - \sigma_{\text{eff}})} + \phi_t \frac{\sigma_1^- - \sigma_{\text{eff}}}{\sigma_{\text{eff}} + c_c(\sigma_1^- - \sigma_{\text{eff}})} = 0,$$

де σ_0^- дорівнює нижній границі Хашіна-Штрікмана при нульовій провідності другої фази (σ_0 – провідність матриці):

$$\sigma_0^- = 2\sigma_0 \frac{1 - \phi_t}{2 + \phi_t};$$

 σ_1^- розраховується за верхнею межею Хашіна-Штрікмана, де провідність матриці вважається нульовою:

$$\sigma_1^- = 2\sigma_{cs} \frac{\phi_t}{3 - \phi_t}.$$

3. Максимум провідності, в рамках підходу Накамури-Нана, досягається при $\phi_t = 1$, або $c^* = \psi$. Після максимуму провідності $(c > c^*)$ вважається, що весь матеріал початкової матриці був витіснений матеріалом оболонки частинок, тому в цій області, в рамках підходу Накамури-Нана, розглядається двофазна система твердих частинок у матриці, що має властивості поверхневих шарів, тому поріг перколяції тепер приймається за $c_c' = 0.15$ [9]; $\sigma_{\rm eff}$ знаходиться з рівняння:

$$(1-c)\frac{\sigma_0^+ - \sigma_{\text{eff}}}{\sigma_{\text{eff}} + c_c'(\sigma_0^+ - \sigma_{\text{eff}})} + (c-\psi)\frac{\sigma_1^+ - \sigma_{\text{eff}}}{\sigma_{\text{eff}} + c_c'(\sigma_1^+ - \sigma_{\text{eff}})} = 0.$$

Тут σ_0^+ знаходиться як верхня границя Хашіна-Штрікмана для системи, що складається з матриці σ_c та включень з нульовою провідністю:

$$\sigma_0^+ = 2\sigma_c \frac{1 - c + \psi}{2(1 + c) - \psi};$$

 σ_2^+ знаходиться як нижня межа Хашіна-Штрікмана для системи з нульовою матрицею та включеннями провідністю σ_1 :

$$\sigma_1^+ = 2\sigma_1 \frac{c - \psi}{3 - c + \psi}.$$

Такий частково-гладкий підхід дозволяє отримати максимум провідності, але знову ж таки має ряд недоліків: 1) це емпіричний підхід, що має в якості бази дуже грубі фізичні міркування; 2) хоча й з міркувань слідує, що частинки перекриваються, формально вони є непроникними, а сама властивість проникності враховується за рахунок різних значень порогів перколяції та використання границь Хашіна-Штрікмана для різних типів систем; 3) оболонки можуть бути лише електрично однорідними. Останній фактор дуже звужує клас систем, до яких можна застосувати це наближення.

Однією з вдалих спроб розширення цієї теорії на клас систем типу полімерних композитних електролітів був запропонований Вічореком та колегами [11,43,44]. Для того щоб взяти до уваги проникність оболонок було запропоновано ввести залежність відносної товщини оболонки δ від концентрації частинок c; електрична неоднорідність оболонки враховувалась за рахунок представлення у вигляді поліному другого ступеня за c параметра T_g , який пов'язаний з провідністю через емпіричний закон Фогеля-Таммана-Фульхера [ССЫЛКИ!!!], що часто використовується для обробки температурної залежності полімерів:

 $\sigma = \frac{A}{\sqrt{T}} \exp\left[-\frac{B}{T - T_0}\right],\tag{1.6}$

де $A,\ B$ та T_0 – підгінні параметри; T_0 зазвичай беруть на 30-50 градусів нижче ніж T_g [44].

1.3. Диференціальний підхід

Ідею асиметричного розгляду системи також можна реалізувати й в рамках підходу ефективного середовища. Розглянемо діелектричну систему, та припустимо, що значення ефективної проникності відомо при деякій концентрації c включень та дорівнює ε . Ставиться задача знаходження ефективної

Рис. 1.1: Схематичне представлення диференціального алгоритму АМБ: (а) додавання порції нових частинок з концентрацією $\Delta c/(1-c)$ у вільній від частинок області в дане ефективне середовище з проникністю ε (світліша область) призводить до (б) формування нового ефективного середовища з проникністю $\varepsilon + \Delta \varepsilon$, що грає роль матриці для наступної порції включень. Таким чином, попередні порції електрично взаємодіють з новими тільки за рахунок ефективного середовища (нові частинки зображені темнішим кольором).

проникності $\varepsilon' = \varepsilon + \Delta \varepsilon$ цієї системи після збільшення концентрації частинок на малу величину Δc (див. рис. 1.1а), вважаючи розподіл частинок до та після додавання рівноважним. Одним з можливих варіантів вирішення цієї задачі є асиметрична модель Бругемана [28] (АМБ): вважається, що нова порція частинок (з концентрацією $\Delta c/(1-c)$ у вільній від вже присутніх в системі частинок області) після її додавання може розглядатися окремо на фоні ефективної проникності ε . Іншими словами, робиться припущення, що для будь-якого значення c взаємодія між старими частинками та новими може бути замінена взаємодією нових частинок з ефективним середовищем, сформованим старими частинками (див. рис. 1.1б). Тому вважаючи концентрацію $\Delta c/(1-c)$ достатньо малою, нову проникність ε' можна шукати за стандартним законом Максвела-Гарнетта (1.2) для нової порції частинок в

матриці з проникністю ε :

$$\frac{\Delta c}{1 - c} \frac{\varepsilon_1 - \varepsilon}{2\varepsilon + \varepsilon_1} = \frac{\varepsilon' - \varepsilon}{2\varepsilon + \varepsilon'} = \frac{\Delta \varepsilon}{3\varepsilon + \Delta \varepsilon}$$
 (1.7)

З цих припущень видно, що в рамках АМБ при будь-якій концентрації ефективна проникність формується рекурсивним чином, крок за кроком за законом Максвела-Гарнетта. Числові методи вирішення рівняння (1.7) носять назву поступового ("інкрементного") підходу Максвела-Гарнетта (incremental Maxwell-Garnett formalism) [45,46].

Переходячи до нескінченно малих в (1.7), отримуємо диференціальне рівняння:

$$\frac{dc}{1-c} = \frac{d\varepsilon}{3\varepsilon} \frac{(2\varepsilon + \varepsilon_1)}{(\varepsilon_1 - \varepsilon)},\tag{1.8}$$

що має особливість в точці c=1, а рішення в цій точці має задовольняти рівності $\varepsilon=\varepsilon_1$. Закон АМБ отримуємо інтегруючи ліву частину (1.8) в межах від нуля до c та праву – від ε_0 до шуканого значення ε_{eff} :

$$1 - c = \frac{\varepsilon_{\text{eff}} - \varepsilon_1}{\varepsilon_0 - \varepsilon_1} \left(\frac{\varepsilon_0}{\varepsilon_{\text{eff}}}\right)^{1/3}.$$
 (1.9)

Аналогічним чином знаходиться рівняння АМБ для випадку, коли включеннями вважаються порції матеріалу матриці, що зменшують кількість частинок [47]:

$$-\frac{dc}{c} = \frac{d\varepsilon}{3\varepsilon} \frac{(2\varepsilon + \varepsilon_0)}{(\varepsilon_0 - \varepsilon)};$$
(1.10)

$$c = \frac{\varepsilon_{\text{eff}} - \varepsilon_0}{\varepsilon_1 - \varepsilon_0} \left(\frac{\varepsilon_1}{\varepsilon_{\text{eff}}}\right)^{1/3}.$$
 (1.11)

Узагальнення цього методу для комплексних проникностей носить назву моделі Бруггемана-Ханая або Максвела-Вагнера-Ханая [47,48]).

Ці підходи добре описують емульсії типу вода-олія/олія-вода при частотах тестуючого поля порядку ГГц, але їх границі застосування не чітко видно з визначення. У Розділі 5 буде доведено, що ці схеми моделювання дисперсних систем у довгохвильовому наближенні не є повним, як вже частково зазначалося в літературі [37], та повинні використовуватись на практиці з обережністю. Загальну схему отримання співвідношень для $\varepsilon_{\rm eff}$ виходячи з диференціальних рівнянь будемо називати диференціальним підходом.

1.4. Межі Хашина-Штрікмана

Ефективні діелектрична проникність ε_{eff} та провідність σ_{eff} будь-якої дисперсної системи знаходяться у деяких межах $[a^-; a^+]$ (a^-) узагальнене позначення для ε та σ), при цьому чим більше інформації відомо про систему (мікроструктура системи, значення її макропараметрів, тощо) тим точнішими будуть границі. Історично перші границі для ε_{eff} та σ_{eff} були отримані Вінером [49], який розглянув два граничних випадки мікроструктури двофазної системи (див. рис. 1.2): (а) паралельно впорядковані пластини, що мають характеристики a_1 й a_2 та об'ємні долі c_1 та $c_2 = 1 - c_1$ (верхня границя); (б) ті ж самі пластини, але послідовно впорядковані (нижня границя).

Рис. 1.2: Фізична інтерпретація границь Вінера двофазної системи (номера областей позначають індекси фаз в тексті): (а) верхня границя — плоскопаралельні пластини по відношенню до поля; (б) нижня границя — послідовно впорядковані пластини по відношенню до поля.

Тоді, вирішуючи відповідні електростатичні задачі, можна легко показати, що a^- та a^+ будуть мати наступний вигляд:

$$a^{-} = \left(\frac{c_1}{a_1} + \frac{c_2}{a_2}\right)^{-1}$$
$$a^{+} = c_1 a_1 + c_2 a_2.$$

Більш строгий підхід знаходження границь ефективних характеристик дисперсних систем був запропонований Хашиним та Штрікманом в рамках

Рис. 1.3: Фізична інтерпретація границь Хашина-Штрікмана двофазної системи (номера областей позначають індекси фаз в тексті): дисперсна система, що складається зі сфер із зовнішньою непроникною оболонкою; верхня границя досягається при $a_2 > a_1$, а нижня – при $a_2 < a_1$.

варіаційного принципу [50]:

$$a^{-} = a_{1} + \frac{3c_{2}a_{1}(a_{2} - a_{1})}{3a_{1} + c_{2}(a_{2} - a_{1})}$$

$$a^{+} = a_{2} + \frac{3c_{1}a_{2}(a_{1} - a_{2})}{3a_{2} + c_{1}(a_{1} - a_{2})}.$$

$$(1.12)$$

Фізично ці границі відповідають ефективним значенням a системи, що складається з щільно упакованих взаємо-непроникних шарів різного діаметру, які мають структуру типу ядро—оболонка (див. рис. 1.3). Якщо фаза ядра "1" має більш високе значення a ніж фаза оболонки "2" ($a_1 > a_2$) досягається нижня границя значення $a_{\rm eff}$; якщо $a_2 > a_1$ отримуємо верхню границю. Не зважаючи на таку просту фізичну інтерпретацію, границі Хашина-Штрікмана (ГХШ) досі є одними з найбільш загальних результатів для ефективних параметрів дисперсних систем через те, що вони базуються на варіаційному принципі, який може бути сформульований для низки ефективних параметрів системи (коефіцієнт теплопровідності, намагніченість, стисливість, та ін.).

Більш докладна інформація щодо отримання границь дисперсних систем з

урахуванням їх мікроструктури, внутрішньої симетрії, високочастотних ефектів та специфікацій процесів, що присутні в даному класі дисперсних систем, може бути знайдена в розділах математичної теорії гомогенізації [51,52].

1.5. Теорія сильних флуктуацій

Одними з перших засновників підходу теорії сильних флуктуацій (ТСФ) у 1960-их роках були Бюрре [53] та група радянських вчених – Рижов, Тамойкін та Татарський [54, 55], далі теорія розвивалася в роботах Тсанга [56] та ін., та отримала остаточну назву в роботах Маки, Лакхтакії та Вейглхофера [57, 58] у 2000-их роках. Останні автори в побудові теорії спиралися на результати Тсанга [56] розробивши схему вирішення загальної задачі про знаходження ефективних електромагнітних характеристик сприйнятливості в неоднорідних стахостичних середовищах, користуючись узагальненим розкладом Дайсона перенормованого на сингулярний вклад електричного поля [59]. При цьому задля найшвидшого збігання ряду та уникнення розбіжностей в теорії закладалась рівність нулю першого моменту стахостичної змінної, що задає локальні значення характеристик системи. Задля демонстрації загальної структури підходу розглянемо лише задачу розрахунку ефективної комплексної діелектричної проникності $\varepsilon_{\mathrm{eff}}(\omega)$ в макроскопічно однорідних та ізотропних непровідних та немагнітних середовищ у так званому білокальному наближенні [56] (наближенні Бюрре [53]): з точністю до другого порядку малості за відношенням лінійного розміру частинки a до довжини хвилі λ в середовищі. Ефективна проникність $\varepsilon_{\rm eff}$ моделюється як коефіцієнт пропорційності між середніми індукцією D та напруженістю E електричного поля у припущені, що ці поля залежать від часу як $\sim \exp{(i\omega t)^1}$:

$$\langle \mathbf{D}(\mathbf{r}) \rangle = \langle \varepsilon(\mathbf{r}) \mathbf{E}(\mathbf{r}) \rangle = \varepsilon_{\text{eff}} \langle \mathbf{E}(\mathbf{r}) \rangle,$$

¹Можна розглянути й загальний випадок часової залежності, але він все одно зведеться до даного за рахунок взяття Фур'є образів за часом.

де $\varepsilon(\mathbf{r})$ – локальне значення діелектричної проникності в середовищі; кутові дужки позначають статистичне усереднення. Поле $\mathbf{E}(\mathbf{r})$ знаходиться, як рішення рівняння розповсюдження електромагнітної хвилі в середовищі (див. [54, 56]), вважаючи, що джерело випромінювання знаходиться досить далеко від розглянутої області:

$$\Delta \mathbf{E}(\mathbf{r}) - \operatorname{grad} \operatorname{div} \mathbf{E}(\mathbf{r}) + k_0^2 \varepsilon_f \mathbf{E}(\mathbf{r}) = -k_0^2 [\varepsilon(\mathbf{r}) - \varepsilon_f] \mathbf{E}(\mathbf{r}), \tag{1.13}$$

де Δ – оператор Лапласу; k_0 – модуль хвильового вектора в вакуумі; $\varepsilon_{\rm f}$ – допоміжна проникність, що не залежить від координат (її величина та зміст, в рамках ТС Φ , стане зрозумілим пізнише). Далі запишемо це рівняння в інтегральному вигляді

$$\mathbf{E}(\mathbf{r}) = \mathbf{E}_0(\mathbf{r}) - k_0^2 \int_V d\mathbf{r}' \,\mathrm{T}(|\mathbf{r} - \mathbf{r}'|) [\varepsilon(\mathbf{r}') - \varepsilon_f] \,\mathbf{E}(\mathbf{r}'). \tag{1.14}$$

Тут $\mathbf{E}_0(\mathbf{r}) = \mathbf{E}_0 e^{i\mathbf{k}\mathbf{r}}$; \mathbf{E}_0 , $\mathbf{k} = \sqrt{\varepsilon_f} \, \mathbf{k}_0$ – відповідно, амплітуда та хвильовий вектор падаючої хвилі в середовищі з ε_f ; T – тензор Гріна (пропагатор) рівняння (1.13). Декартові компоненти тензора T, відносно фінітної обмеженої скалярної функції ψ у сенсі рівності

$$\int_{V} d\mathbf{r} \psi(\mathbf{r}) T(\mathbf{r}) = \int_{V} d\mathbf{r} \psi(\mathbf{r}) \widetilde{T}(\mathbf{r}),$$

можуть бути записані у наступному еквівалентному (УБРАТЬ S) вигляді [60, 61]:

$$\widetilde{T}_{\alpha\beta}(\mathbf{r}) = S_{\alpha\beta}\delta(\mathbf{r}) + \mathcal{P}\widetilde{T}_{\alpha\beta}(\mathbf{r}),$$
(1.15)

$$\mathcal{P}\widetilde{T}_{\alpha\beta}(\mathbf{r}) = \frac{1}{4\pi k^2} \left(\frac{1}{r^3} - \frac{ik}{r^2} \right) \left(\delta_{\alpha\beta} - 3e_{\alpha}e_{\beta} \right) e^{ikr} - \frac{1}{4\pi r} \left(\delta_{\alpha\beta} - e_{\alpha}e_{\beta} \right) e^{ikr},$$

де квазістатична частина (для сферичної виколотої області)

$$S_{\alpha\beta} = (3k_0^2 \varepsilon_{\rm f})^{-1} \delta_{\alpha\beta} \, e^{ikr};$$

символ \mathcal{P} позначає головну частину (principal value) в сенсі інтегрування; $e_{\alpha}=r_{\alpha}/r$ — нормовані компоненти радіус-вектору ${f r};\;k=\sqrt{arepsilon_{
m f}}k_0$ — модуль

хвильового вектора в середовищі з проникністю ε_f ; $\delta_{\alpha\beta}$ — символ Кронекера; $\delta(\mathbf{r})$ — дельта-функція Дірака. Підставляючи (1.15) до (1.14) та користуючись явним виглядом сингулярної частини пропагатора, перенормуємо поле \mathbf{E} :

$$\mathbf{F}(\mathbf{r}) = \mathbf{E}_0(\mathbf{r}) - 3\varepsilon_f k_0^2 \int_V d\mathbf{r}' \, \mathcal{P}\widetilde{\mathbf{T}}(|\mathbf{r} - \mathbf{r}'|) \xi(\mathbf{r}') \, \mathbf{F}(\mathbf{r}'); \qquad (1.16)$$

$$\mathbf{F}(\mathbf{r}) = \frac{2\varepsilon_{\mathrm{f}} + \varepsilon(\mathbf{r})}{3\varepsilon_{\mathrm{f}}} \mathbf{E}(\mathbf{r}), \qquad \xi(\mathbf{r}) = \frac{\varepsilon(\mathbf{r}) - \varepsilon_{\mathrm{f}}}{2\varepsilon_{\mathrm{f}} + \varepsilon(\mathbf{r})}.$$

З фізичної точки зору, $\xi(\mathbf{r})$ спів-падає з поляризацією сфери проникністю $\varepsilon(\mathbf{r})$, що знаходиться в середовищі з проникністю $\varepsilon_{\rm f}$. При цьому поля \mathbf{F} та \mathbf{E} грають роль зовнішнього та внутрішнього полів, відповідно. Ці вирази також можна знайти, якщо застосувати одразу ітераційну процедуру для сингулярних вкладів пропагатора [55].

Рівняння (1.16) вирішується методом ітерацій (також відомим як або розклад Борна, що базується на принципі стискуючого відображення), слідуючи за чим проходить усереднення кожного члена ряду окремо [59]. Задля найшвидшого збігання ряду та щоб позбавитись від секулярних (розбіжних) доданків, накладається наступна умова [54,56]:

$$\langle \xi(\mathbf{r}) \rangle = 0. \tag{1.17}$$

З цього рівняння визначається значення ε_f , що виступає квазістатичної частини проникності. Крім цієї вимоги накладається умова на пропагатор: симетрія сингулярної (квазістатичної) частини $S_{\alpha\beta}$ пропагатора повинна збігатися з симетрією кореляційної функцій середовища [56]. Ми розглянемо лише сферично-симетричний випадок.

Після усереднення ітераційного ряду використовується метод підсумування Фейнманівських діаграм, що добре відомий з квантової теорії поля, остаточно ми отримаємо інтегральне рівняння Дайсоновського типу для середнього поля $\langle \mathbf{F} \rangle$:

$$\langle \mathbf{F}(\mathbf{r}) \rangle = \mathbf{E}_0(\mathbf{r}) - k_0^2 \int d\mathbf{r}_1 d\mathbf{r}_2 \mathcal{P} \widetilde{\mathbf{T}}(\mathbf{r} - \mathbf{r}_1) \xi_{\text{eff}}(\mathbf{r}_1 - \mathbf{r}_2) \langle \mathbf{F}(\mathbf{r}_2) \rangle,$$

де

$$\xi_{\text{eff}}(\mathbf{r}) = -\frac{1}{k_0^2} Q(\mathbf{r}),$$

та Q — так званий масовий оператор, що складається з нескінченного ряду незвідних Фейнманівських діаграм. У випадку гаусового характеру стохастичної величини $\xi(\mathbf{r})$ (поле флуктуації вважається однорідним), масовий оператор буде мати наступний вигляд [55]:

$$Q(\mathbf{r}_{1} - \mathbf{r}_{2}) = k_{0}^{4} \langle \xi(\mathbf{r}_{1})\xi(\mathbf{r}_{2}) \rangle \mathcal{P}\widetilde{T}(\mathbf{r}_{1} - \mathbf{r}_{2}) + k_{0}^{8} \int d\mathbf{r}_{3} d\mathbf{r}_{4} \mathcal{P}\widetilde{T}(\mathbf{r}_{1} - \mathbf{r}_{3}) \mathcal{P}\widetilde{T}(\mathbf{r}_{3} - \mathbf{r}_{4}) \mathcal{P}\widetilde{T}(\mathbf{r}_{4} - \mathbf{r}_{2}) \times [\langle \xi(\mathbf{r}_{1})\xi(\mathbf{r}_{2}) \rangle \langle \xi(\mathbf{r}_{3})\xi(\mathbf{r}_{4}) \rangle + \langle \xi(\mathbf{r}_{1})\xi(\mathbf{r}_{3}) \rangle \langle \xi(\mathbf{r}_{2})\xi(\mathbf{r}_{4}) + \langle \xi(\mathbf{r}_{1})\xi(\mathbf{r}_{4}) \rangle \langle \xi(\mathbf{r}_{2})\xi(\mathbf{r}_{3}) \rangle \rangle] + \dots$$

$$(1.1)$$

У білокальному наближенні у розрахунках обмежуються лише першим вкладом в масовий оператор. Строго кажучи, вкладами вищих порядків можна знехтувати за умовою:

$$\langle \xi^2 \rangle k_0 a \ll 1$$

для великомасштабних неоднорідностей ($k_0 a \gg 1$, де a – масштаб неоднорідностей $\xi(\mathbf{r})$), та

$$\langle \xi^2 \rangle k_0^2 a^2 \ll 1$$

для мало-масштабних неоднорідностей [55]. З останнього випадку видно, що граничний випадок малих неоднорідностей накладає дуже слабкі умови на величину флуктуацій ξ : остання нерівність дозволяє значення $\langle \xi^2 \rangle \gtrsim 1$ (сильні флуктуації).

Для розрахунку (1.21) в білокальному наближенні треба знайти наступний корелятор:

$$\langle \xi(\mathbf{r}_1)\xi(\mathbf{r}_2)\rangle = D_{\xi}R_{\xi}(|\mathbf{r}_1 - \mathbf{r}_2|),$$

де D_{ξ} – дисперсія $\xi(\mathbf{r})$, а $R_{\xi}(r)$ – нормована кореляційна функція ξ ($R_{\xi}(0)$ = 1). У низькочастотному наближенні ефективна проникність визначається як [56]:

$$\varepsilon_{\text{eff}} = \varepsilon_{\text{f}} + \frac{1}{4\pi} \xi_{\text{eff}}^{(0)},$$

де $\xi_{\mathrm{eff}}^{(0)}$ – Фур'є образ $\xi_{\mathrm{eff}}(\mathbf{r})$ в нулі:

$$\xi_{\text{eff}}^{(0)} = D_{\xi} k_0^2 \int d\mathbf{r} \mathcal{P} \widetilde{\mathbf{T}}(r) R_{\xi}(r). \tag{1.19}$$

Для простоти далі буде використана тривіальна кореляційна функція:

$$R_{\xi}(r) = \theta(a-r),$$

де $\theta(r)$ – функція Хевісайда. Підставляючи це до (1.19), отримаємо [56]:

$$\xi_{\text{eff}}^{(0)} = D_{\xi} k_0^2 \frac{2}{3} \left(\frac{a^2}{2} + \frac{i k_0 \sqrt{\varepsilon_f} a^3}{3} \right).$$

Таким чином рівняння для знаходження $\varepsilon_{\mathrm{eff}}$ прийме вигляд:

$$\varepsilon_{\text{eff}} = \varepsilon_{\text{f}} + D_{\xi} k_0^2 \frac{2}{3} \left(\frac{a^2}{2} + \frac{i k_0 \sqrt{\varepsilon_{\text{f}}} a^3}{3} \right), \tag{1.20}$$

де проникність $\hat{\varepsilon}_{\rm f}$ визначається з рівняння (1.17), тобто:

$$\left\langle \frac{\varepsilon(\mathbf{r}) - \varepsilon_{\mathrm{f}}}{2\varepsilon_{\mathrm{f}} + \varepsilon(\mathbf{r})} \right\rangle = 0.$$
 (1.21)

Якщо ми маємо два значення випадкової величини $\varepsilon(\mathbf{r})$: ε_0 та ε_1 з ймовірностями (1-c) та c, відповідно, (випадок двофазної системи) рівняння для знаходження $\varepsilon_{\rm f}$ зведеться до рівняння Бругеманівського типу:

$$(1-c)\frac{\varepsilon_0 - \varepsilon_f}{2\varepsilon_f + \varepsilon_0} + c\frac{\varepsilon_1 - \varepsilon_f}{2\varepsilon_f + \varepsilon_1} = 0, \tag{1.22}$$

тоді як дисперсія буде мати вигляд:

$$D_{\xi} = 9\varepsilon_{\rm f}^2 \left[(1 - c) \left(\frac{\varepsilon_0 - \varepsilon_{\rm f}}{2\varepsilon_{\rm f} + \varepsilon_0} \right)^2 + c \left(\frac{\varepsilon_1 - \varepsilon_{\rm f}}{2\varepsilon_{\rm f} + \varepsilon_1} \right)^2 \right]. \tag{1.23}$$

Як видно з (1.20), у квазістатичному наближенні ми отримаємо гомогенізацію теорії ефективного середовища, тож ефективна проникність буде знаходитися за (1.22).

В загальному випадку $TC\Phi$ можна розвинути для анізотропних середовищ, при цьому розраховуючи також й ефективну намагніченість системи [55, 57].

1.6. Метод компактних груп неоднорідностей

Метод компактних груп неоднорідностей (МКГ) був розроблений М. Я. Сушко досить недавно [1,4,61], але вже зарекомендував себе як ефективний підхід до опису квазістатичних діелектричних характеристик статистично однорідних та ізотропних гетерогенних систем різного типу: діелектричні властивості систем анізотропних частинок [3] та неоднорідних повністю проникних частинок [4], нанофлюїдів [62], опис оптичних властивостей рідин поблизу критичної точки [63,64]. Під терміном "компактна група" розуміється макроскопічна область неоднорідної системи, що має розміри набагато менші ніж довжина хвилі тестуючого поля. По відношенню до поля ці групи ведуть себе як точкові неоднорідності, що дозволяє звести задачу розрахунку напруженості електромагнітного поля у неоднорідному середовищі до підсумування ітераційних рядів лише від сингулярних вкладів. Таким чином у довгохвильовому наближенні вдається взяти до уваги всі багаточастинкові кореляційні та поляризаційні вклади, уникаючи прямого розрахунку n-частинкових вкладів.

Для того, щоб описати загальну суть МКГ обмежимося розгляданням статичного випадку макроскопічно однорідної та ізотропної системи \mathcal{D} однакових діелектричних шарів проникністю ε_1 , що знаходяться в однорідному середовищі (матриці) з проникністю ε_0 . Шукана ефективна діелектрична проникність ε_{eff} моделюється, як коефіцієнт пропорціональності між середніми напруженістю та індукцією електричного поля в середовищі:

$$\overline{\mathbf{D}(\mathbf{r})} = \overline{\varepsilon(\mathbf{r})\mathbf{E}(\mathbf{r})} = \varepsilon_{\text{eff}}\overline{\mathbf{E}(\mathbf{r})}, \tag{1.24}$$

де $\varepsilon(\mathbf{r})$ – локальне значення діелектричної проникності; риска зверху позначає усереднення за об'ємом 2 .

Для знаходження середніх $\overline{\mathbf{D}}$ та $\overline{\mathbf{E}}$ в рамках МКГ розглянемо допоміжну систему \mathcal{S} , що складається з реальної системи \mathcal{D} , розташованій у деякій однорідній матриці \mathcal{M} з поки невідомою проникністю ε_{f} . В рамках МКГ вва-

²Далі буде показано, що для даних систем згідно з ергодичною гіпотезою статистичне усереднення та усереднення за об'ємом еквівалентні (див. Розділ 2.1.)

жається, що у довгохвильовому наближенні відгук \mathcal{S} еквівалентний відгуку \mathcal{D} [2,4], тобто ε_{f} є параметром електродинамічної гомогенізації системи. Сама ж система \mathcal{S} розглядається як сукупність областей (компактних груп) з лінійними розмірами d, набагато меншими за довжину хвилі λ в системі, але досить великими, щоб мати властивості всієї \mathcal{S} . Тоді локальне значення проникності можна записати наступним чином:

$$\varepsilon(\mathbf{r}) = \varepsilon_{\rm f} + \delta \varepsilon(\mathbf{r}),$$

де $\delta \varepsilon(\mathbf{r})$ — частково гладка функція локальних відхилень проникності, викликаних компактною групою в околі точки \mathbf{r} . Середні поля знаходяться як довгохвильове наближення ітераційного рішення рівняння розповсюдження електромагнітної хвилі (1.13) в \mathcal{S} , та може бути записано наступним чином [2]:

$$\Delta \mathbf{E}(\mathbf{r}) - \operatorname{grad} \operatorname{div} \mathbf{E}(\mathbf{r}) + k_0^2 \varepsilon_f \mathbf{E}(\mathbf{r}) = -k_0^2 \delta \varepsilon(\mathbf{r}) \mathbf{E}(\mathbf{r}), \tag{1.25}$$

що в еквівалентній інтегральній формі має вигляд, схожий на (1.14) для ТСФ:

$$\mathbf{E}(\mathbf{r}) = \mathbf{E}_0(\mathbf{r}) - k_0^2 \int_V d\mathbf{r}' \, \mathrm{T}(|\mathbf{r} - \mathbf{r}'|) \delta \varepsilon(\mathbf{r}') \, \mathbf{E}(\mathbf{r}'). \tag{1.26}$$

Пропагатор (1.15) надалі в даному Розділі будемо записувати у наступному вигляді [1,2]:

$$\widetilde{T}_{\alpha\beta}(\mathbf{r}) = \widetilde{T}_{\alpha\beta}^{(1)}(\mathbf{r}) + \widetilde{T}_{\alpha\beta}^{(2)}(\mathbf{r}) + \widetilde{T}_{\alpha\beta}^{(3)}(\mathbf{r}), \qquad (1.27)$$

$$\widetilde{T}_{\alpha\beta}^{(1)}(\mathbf{r}) = \frac{1}{3k^2} \delta_{\alpha\beta} \delta(\mathbf{r}) e^{ikr},$$

$$\widetilde{T}_{\alpha\beta}^{(2)}(\mathbf{r}) = \frac{1}{4\pi k^2} \left(\frac{1}{r^3} - \frac{ik}{r^2} \right) (\delta_{\alpha\beta} - 3e_{\alpha}e_{\beta}) e^{ikr},$$

$$\widetilde{T}_{\alpha\beta}^{(3)}(\mathbf{r}) = -\frac{1}{4\pi r} (\delta_{\alpha\beta} - e_{\alpha}e_{\beta}) e^{ikr}.$$

Тут перший доданок описує ближні перевипромінювання всередині компактної групи, другий та третій доданки — дільні перевипромінювання між компактними групами.

Ітераційне рішення рівняння (1.13) має наступний вигляд:

$$\mathbf{E}(\mathbf{r}) = \mathbf{E}_0(\mathbf{r}) + \sum_{s=1}^{\infty} \mathbf{E}_s(\mathbf{r}), \tag{1.28}$$

$$\mathbf{E}_{s}(\mathbf{r}) = (-k_{0})^{2s} \int_{V} d\mathbf{r}_{1} \int_{V} d\mathbf{r}_{2} \dots \int_{V} d\mathbf{r}_{s} \mathrm{T}(|\mathbf{r} - \mathbf{r}_{1}|) \mathrm{T}(|\mathbf{r}_{1} - \mathbf{r}_{2}|) \dots \mathrm{T}(|\mathbf{r}_{s-1} - \mathbf{r}_{s}|) \delta \varepsilon(\mathbf{r}_{1}) \delta \varepsilon(\mathbf{r}_{2}) \dots \delta \varepsilon(\mathbf{r}_{s})$$

Підставляючи (2.12) в (2.11), *s*-ий вклад в ітераційного рішення (2.13) можна записати у наступному вигляді:

$$\mathbf{E}_{s} = \mathbf{E}_{s}^{(1)} + \mathbf{E}_{s}^{(1,2)} + \mathbf{E}_{s}^{(1,2,3)},\tag{1.29}$$

де перший доданок включає лише вклад $\widetilde{\mathbf{T}}^{(1)}$, другий — $\widetilde{\mathbf{T}}^{(1)}$ і $\widetilde{\mathbf{T}}^{(2)}$, третій — всі три вклади. Усереднюючи цей вираз за об'ємом системи, можна показати [1], що останній доданок в (2.14) дає вклад не більший ніж ($\varepsilon_{f}k_{0}^{2}L^{3}/d$) s , де L — лінійний розмір системи та d — характерний лінійний розмір компактної групи. Цей вираз можна зробити скільки завгодно малим шляхом відповідного вибору ω , при умові скінчених розмірів L. Другий доданок $\overline{\mathbf{E}}_{s}^{(1,2)}$ зануляється за рахунок особливості функціональної форми його кутової частини та макроскопічної однорідності та ізотропності досліджуваних систем [1,2]. Таким чином, переходячи до квазістатичного наближення $\omega \to 0$, розрахунок середнього електричного поля та індукції зводиться до усереднення за об'ємом ітераційного ряду, що складається лише з сингулярних доданків, після інтегрування яких вирази для полів можна записати наступним чином:

$$\overline{\mathbf{E}(\mathbf{r})} = \left[1 + \overline{Q(\mathbf{r})} \right] \mathbf{E}_0; \tag{1.30}$$

$$\overline{\mathbf{D}(\mathbf{r})} = \varepsilon_{\mathrm{f}} \left[1 - 2\overline{Q(\mathbf{r})} \right] \mathbf{E}_{0}, \tag{1.31}$$

де

$$Q(\mathbf{r}) \equiv \sum_{s=1}^{\infty} \left(-\frac{1}{3\varepsilon_{\rm f}} \right)^s (\delta \varepsilon(\mathbf{r}))^s. \tag{1.32}$$

Підставляючи ці вирази до (1.24) отримаємо:

$$\overline{Q(\mathbf{r})} = -\frac{\varepsilon_{\text{eff}} - \varepsilon_{\text{f}}}{2\varepsilon_{\text{f}} + \varepsilon_{\text{eff}}}.$$

Таким чином, щоб розрахувати середні поля та знайти ε_{eff} треба знати значення ε_{f} та явний вид $\delta \varepsilon(\mathbf{r})$.

У якості прикладу розглянемо просту двофазну систему N твердих (непроникних) частинок проникністю ε_1 розташованих в матриці з проникністю ε_0 . Для неї $\delta \varepsilon(\mathbf{r})$ матиме наступний вигляд:

$$\delta \varepsilon(\mathbf{r}) = [1 - \tilde{\chi}_1(\mathbf{r})] \ \Delta \varepsilon_0 + \tilde{\chi}_1(\mathbf{r}) \ \Delta \varepsilon_1, \tag{1.33}$$

де $\Delta \varepsilon_j = [\varepsilon_j - \varepsilon_{\text{eff}}] \ (j = \{0, 1\}); \ \tilde{\chi}_1$ – характеристична функція області всіх N частинок. Явний вид $\tilde{\chi}_1$ можна записати через одночастинкові характеристичні функції $\chi_1^{(a)}$:

$$\tilde{\chi}_1(\mathbf{r}) = \sum_{a=1}^N \chi_1^{(a)}(\mathbf{r}), \tag{1.34}$$

користуючись властивістю їх непроникності:

$$\chi_1^{(a)}(\mathbf{r})\chi_1^{(b)}(\mathbf{r}) = \delta_{a,b},$$

де $\delta_{a,b}$ – символ Кронекера. Користуючись цими виразами, моменти розраховуються досить просто:

$$\overline{(\delta \varepsilon(\mathbf{r}))^s} = (1 - c)(\Delta \varepsilon_0)^s + c(\Delta \varepsilon_1)^s,$$

де $c\equiv\overline{\tilde{\chi}_1}$ – об'ємна концентрація частинок. Після підстановки цього виразу до (1.30) та (1.31) задача зводиться до розрахунку середніх від ряду (1.32), що за умови $|\Delta\varepsilon_j/3\varepsilon_{\rm eff}|<1$ збігаються, як сума геометричної прогресії:

$$\sum_{s=1}^{\infty} \left(-\frac{\Delta \varepsilon_j}{3\varepsilon_{\text{eff}}} \right)^s = -\frac{\varepsilon_j - \varepsilon_{\text{eff}}}{2\varepsilon_{\text{eff}} + \varepsilon_j}.$$

Якщо зазначена нерівність не виконується, ліву частину наведеного виразу можна трактувати як асимптотичний розклад правої частини [4,55], як це буде показано далі. Таким чином вимогою $|\Delta\varepsilon_j/3\varepsilon_{\rm eff}|<1$ можна знехтувати, а остаточне рівняння для знаходження $\varepsilon_{\rm eff}$ матиме наступний вигляд:

$$(1-c)\frac{\varepsilon_0 - \varepsilon_f}{2\varepsilon_f + \varepsilon_0} + c\frac{\varepsilon_1 - \varepsilon_f}{2\varepsilon_f + \varepsilon_1} = \frac{\varepsilon_{\text{eff}} - \varepsilon_f}{2\varepsilon_f + \varepsilon_{\text{eff}}}.$$

Єдиним невідомим параметром залишається $\varepsilon_{\rm f}$, що визначає електродинамічну гомогенізацію неоднорідного середовища. Наприклад, поклавши $\varepsilon_{\rm f}=$

 ε_0 ми одразу отримаємо правило Максвела-Гарнета (1.2), а при $\varepsilon_f = \varepsilon_{\rm eff}$ – правило ефективного середовища СМБ (1.5). Насправді тільки останній вибір ε_f є сумісним з МКГ; це можна показати кількома способами: використовуючи варіаційний принцип Хашіна-Штрікмана [50] для енергії електричного поля в системі [4], або з граничних умов для нормальних компонент електричного струму та індукції, як буде показано далі в Розділі 2.

В рамках МКГ за прийнятою гомогенізацією СМБ для низькоконцентрованих систем [30, 65] також можуть бути отримані й інші класичні закони Луєнги [66] та Лихтенекера [67]:

$$\varepsilon_{\text{eff}}^{1/3} = (1 - c)\varepsilon_0^{1/3} + c\varepsilon_1^{1/3},$$

$$\log \varepsilon_{\text{eff}} = (1 - c) \log \varepsilon_0 + c \log \varepsilon_1,$$

використовуючи в якості $\delta \varepsilon$ формальний вираз

$$\delta \varepsilon(\mathbf{r}) = (f(\varepsilon_0) - f(\varepsilon_{\text{eff}}))(1 - \tilde{\chi}_1(\mathbf{r})) + (f(\varepsilon_1) - f(\varepsilon_{\text{eff}}))\tilde{\chi}_1(\mathbf{r}), \tag{1.35}$$

де $f(x) = \{x^{1/3}, \log x\}$, відповідно, та залишаючи тільки перші порядки за $|f(\varepsilon_i) - f(\varepsilon_{\text{eff}})| \ (i = 0, 1)$. Однак, ці $\delta \varepsilon$ навряд мають прозорий фізичний зміст.

Зазначимо, що формально отриманий результат співпадає з (1.5), а сам підхід дуже схожий на $TC\Phi$, але по суті МКГ якісно відрізняється. В рамках СМБ кожна з домішок (разом із матрицею) розглядаються окремо в ефективному середовищі з шуканою проникністю $\varepsilon_{\rm eff}$, тобто поляризація кожної частинки знаходиться індивідуально в ефективному середовищі, при цьому вважається, що матриця поляризується таким же чином, що й частинки [68]. Умова гомогенізації $\varepsilon_{\rm f} = \varepsilon_{\rm eff}$ є основним припущенням цієї моделі. Використання цих двох умов для систем несферичних частинок не є послідовним [37]. В рамках $TC\Phi$ система розглядається як сильно флуктуююче середовище на фоні середовища \mathcal{M}^3 , при цьому кількість значень амплітуд флуктуацій

 $^{^3}$ Під слабкими флуктуаціями маються на увазі такі відхилення локальної проникності від $\varepsilon_{\rm f}$, що виконується нерівність $\langle \Delta \varepsilon^2 \rangle / \langle \varepsilon \rangle^2 \ll 1$ [55, 56]. Для них розв'язок $\varepsilon_{\rm f} = 0$ може мати місце.

співпадають з кількістю компонент в системі, а їх геометрична структура задається однаковим чином. При цьому кожний кореляційний внесок повинен розраховуватись окремо. Зазначимо, що у одночастинковому наближенні ТСФ завжди зводиться до СМБ. В рамках МКГ розглядаються локальні відхилення, що створені макроскопічними компактними групами на фоні \mathcal{M} , а остаточні результати, з точністю до вкладів $o(\omega^2)$ як буде показано далі, будуть збігатися тільки для випадку сферичних частинок; це не буде відбуватися вже при розгляданні, наприклад, макроскопічно-однорідних систем еліпсоїдальних частинок [3,56].

1.7. Висновки

У даному Розділі розглянуті основні класичні та сучасні підходи до теоретичного вивчення ефективної комплексної проникності макроскопічно однорідних та ізотропних систем у квазістатичному наближенні. Зазначено, що класична теорія перколяції та чисельні методи хоч й дуже розвинуті, але потребують уточнень, введення допоміжних параметрів, та достатніх комп'ютерних потужностей для коректного аналізу реальних систем. Класичні підходи та їх різноманітні модифікації є насамперед одночастинковими підходами, та часто не беруть до уваги основні ефекти, що грають роль в тій чи іншій системі. Теорія сильних флуктуацій на даний момент є одним з найрозвинутіших підходів, але вона передбачає мікроскопічний підхід до задачі, тобто розрахунок багаточастинкових кореляційних вкладів (що будуть ускладнюватись в рамках моделі ядро-оболонка), та електродинамічна гомогенізація системи обґрунтована лише математично без фізичних підстав. Тому для подальшого аналізу був вибраний метод компактних груп неоднорідностей через те, що він є 1) багаточастинковим у довгохвильовому наближенні, 2) дуже гнучким в сенсі моделювання системи, що дозволяє легко використати модель ядро-оболонка для взяття до уваги міжфазних ефектів, як вже було зазначено у Вступі, 3) дозволяє визначити електричну гомогенізацію спираючись

на фізичні основи.

РОЗДІЛ 2 ДОСЛІДЖУВАНА МОДЕЛЬ

В даному розділі описується застосування теорії МКГ для аналізу низькочастотної комплексної діелектричної проникності невпорядкованих дисперсних систем зі сферичними частинками типу ядро-оболонка. Зокрема, приводиться переформулювання МКГ у низькочастотному наближенні для провідних систем. Далі знаходиться тип електродинамічної гомогенізації згідно з граничних умов на межі розділу гомогенізованої та негомогенізованої систем. Після цього моделюється профіль провідності системи для моделі однорідної оболонки, що потім узагальнюється на випадок радіально неоднорідного шару. Та нарешті ми отримаємо загальний результат для квазістатичних ефективних провідності та проникності системи.

2.1. Узагальнення МКГ на провідні системи

Розглянемо статистично однорідну та ізотропну дисперсну систему \mathcal{D} , з компонентами, що мають ненульову провідність, вважаючи частоти тестуючого поля ω достатньо малими, щоб внесками діелектричних втрат можна було знехтувати. У цьому наближенні комплексна діелектрична проникність $\hat{\varepsilon}$ записується у вигляді [30]:

$$\hat{\varepsilon}(\omega) = \varepsilon + i \frac{4\pi\sigma}{\omega},\tag{2.1}$$

де ε , σ — відповідно, низькочастотні дійсна частина діелектричної проникності та статична провідність. Щоб уникнути неаналітичності, пов'язаної з переходом до статичного наближення ($\omega \to 0$) при аналізі лінійного відгуку системи, зручніше працювати з комплексною провідністю $\hat{\sigma}$, що пов'язана з $\hat{\varepsilon}$ наступним чином [69]:

$$\hat{\sigma} = -i\frac{\omega}{4\pi}\,\hat{\varepsilon} = \sigma - i\frac{\omega}{4\pi}\,\varepsilon. \tag{2.2}$$

Цей зв'язок для таких систем можна знайти при розгляданні макроскопічних рівнянь Максвелла

$$\operatorname{div} \mathbf{D} = 4\pi\rho, \tag{2.3}$$

 $\operatorname{div} \mathbf{H} = 0$,

$$rot \mathbf{E} = i \frac{\omega}{c} \mathbf{H}, \tag{2.4}$$

$$\operatorname{rot} \mathbf{H} = \frac{4\pi}{c} \mathbf{j} - i \frac{\omega}{c} \mathbf{D}, \tag{2.5}$$

та рівняння неперервності

$$-i\omega\rho + \operatorname{div}\mathbf{j} = 0, \tag{2.6}$$

де всі рівняння записані в Фур'є-представленні за часом; ${\bf E}, {\bf D}, {\bf H}$ та ${\bf j}$ – вектори напруженості та індукції електричного поля, вектор індукції магнітного поля та вектор щільності струму в дисперсній системі; ρ – щільність вільних зарядів; ${\bf c}$ – швидкість світла в вакуумі. Розглядаючи лише лінійний відгук системи

$$\mathbf{D} = \varepsilon \, \mathbf{E}, \quad \mathbf{j} = \sigma \, \mathbf{E}, \tag{2.7}$$

де $\varepsilon = \varepsilon(\mathbf{r})$, $\sigma = \sigma(\mathbf{r})$ – локальні значення проникності та провідності, відповідно, та використовуючи (2.6) й (2.3), знайдемо наступне співвідношення для щільності комплексного струму **J** в системі \mathcal{D} :

$$\operatorname{div} \mathbf{J} = 0, \qquad \mathbf{J} = \hat{\sigma} \mathbf{E} = -i \frac{\omega}{4\pi} \,\hat{\varepsilon} \mathbf{E}. \tag{2.8}$$

Друге співвідношення в (2.8) можна також знайти використовуючи рівняння (2.7) та (2.5).

Задача полягає в знаходженні ефективної квазістатичної комплексної провідності $\hat{\sigma}_{\text{eff}}$ (чи проникності $\hat{\varepsilon}_{\text{eff}}$, в рамках співвідношення (2.2)) системи \mathcal{D} . Будемо її шукати як коефіцієнт пропорційності між середніми щільністю комплексного струму $\langle \mathbf{J} \rangle$ та напруженістю електричного поля $\langle \mathbf{E} \rangle$:

$$\langle \mathbf{J}(\mathbf{r}) \rangle = -i \frac{\omega}{4\pi} \langle \hat{\varepsilon}(\mathbf{r}) \mathbf{E}(\mathbf{r}) \rangle = -i \frac{\omega}{4\pi} \hat{\varepsilon}_{\text{eff}} \langle \mathbf{E}(\mathbf{r}) \rangle,$$
 (2.9)

де $\mathbf{J}(\mathbf{r})$, $\mathbf{E}(\mathbf{r})$ та $\hat{\varepsilon}(\mathbf{r})$ є локальними значеннями, відповідно, щільності комплексного струму, напруженості електричного поля та комплексної діелектричної проникності в системі; кутові дужки відповідають за статистичне усереднення. Переходячи до границі $\omega \to 0$ (2.9) зводиться до класичного закону Ома для неоднорідних систем:

$$\langle \mathbf{j}(\mathbf{r}) \rangle = \langle \sigma(\mathbf{r}) \mathbf{E}(\mathbf{r}) \rangle = \sigma_{\text{eff}} \langle \mathbf{E}(\mathbf{r}) \rangle.$$

Для знаходження середніх $\langle \mathbf{J} \rangle$ та $\langle \mathbf{E} \rangle$ у квазістатичному наближенні в рамках МКГ будемо розглядати допоміжну систему \mathcal{S} , що складається з реальної системи \mathcal{D} , яка розташована у деякій однорідній матриці \mathcal{M} з поки що невідомою проникністю $\hat{\varepsilon}_{\mathrm{f}}$. В рамках МКГ вважається, що у довгохвильовому наближенні відгук \mathcal{S} еквівалентний відгуку \mathcal{D} [4], тобто $\hat{\varepsilon}_{\mathrm{f}}$ є параметр електродинамічної гомогенізації системи. Сама ж система \mathcal{S} розглядається як сукупність областей (компактних груп) з лінійними розмірами d, набагато меньшими за довжину хвилі λ в системі, але досить великими, щоб мати властивості всієї \mathcal{S} . Тоді локальне значення комплексної проникності можна записати наступним чином:

$$\hat{\varepsilon}(\mathbf{r}) = \hat{\varepsilon}_{\mathrm{f}} + \delta \hat{\varepsilon}(\mathbf{r}),$$

де $\delta \hat{\varepsilon}(\mathbf{r})$ – частково гладка функція локальних відхилень проникності, викликаних компактною групою у точці \mathbf{r} .

Середні поля знаходяться як довгохвильове наближення рішення рівняння розповсюдження електромагнитної хвилі в S [1]. Це рівняння формально співпадає з (1.13) та може бути отримано, беручи ротор від (2.4) та підставляючи до нього (2.5):

$$\Delta \mathbf{E}(\mathbf{r}) - \operatorname{grad} \operatorname{div} \mathbf{E}(\mathbf{r}) + k_0^2 \hat{\varepsilon}_f \mathbf{E}(\mathbf{r}) = -k_0^2 \delta \hat{\varepsilon}(\mathbf{r}) \mathbf{E}(\mathbf{r}), \tag{2.10}$$

що може бути записано в еквівалентній інтегральній формі:

$$\mathbf{E}(\mathbf{r}) = \mathbf{E}_0(\mathbf{r}) - k_0^2 \int_V d\mathbf{r}' \, \mathrm{T}(|\mathbf{r} - \mathbf{r}'|) \delta \hat{\varepsilon}(\mathbf{r}') \, \mathbf{E}(\mathbf{r}'). \tag{2.11}$$

Тут: $\mathbf{E}_0(\mathbf{r}) = \mathbf{E}_0 e^{i\mathbf{k}\mathbf{r}}$; \mathbf{E}_0 , $\mathbf{k} = \sqrt{\hat{\varepsilon}_f} \, \mathbf{k}_0 \, (\mathrm{Im}\sqrt{\hat{\varepsilon}_f} \geqslant 0)$ – відповідно, амплітуда та хвильовий вектор падуючої хвилі в \mathcal{M} ; Т – тензор Гріна (пропагатор) рівняння (2.10), що має вигляд (1.15). Далі буде зручно скористатися наступним записом (1.15):

$$\widetilde{T}_{\alpha\beta}(\mathbf{r}) = \widetilde{T}_{\alpha\beta}^{(1)}(\mathbf{r}) + \widetilde{T}_{\alpha\beta}^{(2)}(\mathbf{r}) + \widetilde{T}_{\alpha\beta}^{(3)}(\mathbf{r}) = \frac{1}{3k^2} \delta_{\alpha\beta} \delta(\mathbf{r}) e^{ikr} + \frac{1}{4\pi k^2} \left(\frac{1}{r^3} - \frac{ik}{r^2}\right) \left(\delta_{\alpha\beta} - 3e_{\alpha}e_{\beta}\right) e^{ikr} - \frac{1}{4\pi r} \left(\delta_{\alpha\beta} - e_{\alpha}e_{\beta}\right) e^{ikr}$$

де $e_{\alpha}=r_{\alpha}/r$ – нормовані компоненти радіус-вектору ${\bf r};\;\delta_{\alpha\beta}$ – символ Кронекера; $\delta({\bf r})$ – дельта-функція Дірака.

Ітераційне рішення цього рівняння має наступний вигляд:

$$\mathbf{E}(\mathbf{r}) = \mathbf{E}_0(\mathbf{r}) + \sum_{s=1}^{\infty} \mathbf{E}_s(\mathbf{r}), \tag{2.13}$$

де

$$\mathbf{E}_{s}(\mathbf{r}) = (-k_{0})^{2s} \int_{V} d\mathbf{r}_{1} \int_{V} d\mathbf{r}_{2} \dots \int_{V} d\mathbf{r}_{s} \mathrm{T}(|\mathbf{r} - \mathbf{r}_{1}|) \mathrm{T}(|\mathbf{r}_{1} - \mathbf{r}_{2}|) \dots \mathrm{T}(|\mathbf{r}_{s-1} - \mathbf{r}_{s}|) \delta \varepsilon(\mathbf{r}_{1}) \delta \varepsilon(\mathbf{r}_{2}) \dots \delta \varepsilon(\mathbf{r}_{s})$$

Підставляючи (1.15) в (2.11), s-ий вклад в ітераційного рішення (2.13) прийме вигляд

$$\mathbf{E}_s = \mathbf{E}_s^{(1)} + \mathbf{E}_s^{(1,2)} + \mathbf{E}_s^{(1,2,3)}, \tag{2.14}$$

де перший доданок включає лише $\widetilde{\mathbf{T}}^{(1)}$, другий — $\widetilde{\mathbf{T}}^{(1)}$ і $\widetilde{\mathbf{T}}^{(2)}$, третій — всі три вклади.

Статистичне середнє цього виразу зводиться до інтегрування за об'ємом всієї системи за рахунок ергодичної гіпотези [17,30] для макроскопічно однорідних та ізотропних дисперсних систем. Другий доданок $\langle \mathbf{E}_s^{(1,2)} \rangle$ зануляється за рахунок особливості функціональної форми його кутової частини та макроскопічної однорідності та ізотропності досліджуваних систем [1,4]. Останній доданок (2.14) дає вклад за модулем не більший ніж ($|\hat{\varepsilon}_{\mathbf{f}}|k_0^2L^3/d$) s (за умовою, що вкладами діелектричних втрат можна знехтувати), де L – лінійний розмір системи та d – характерний розмір компактної групи. Цей вираз можна зробити скільки завгодно малим шляхом відповідного вибору ω , при

умові скінчених розмірів L. Такий вибір ω гарантує відсутність вкладів у $\langle \mathbf{E} \rangle$, що залежать від ω , що узгоджується з вибором форми запису (2.1) для комплексних проникностей. Таким чином, переходячи до квазістатичного наближення $\omega \to 0$, розрахунок середнього електричного поля та комплексного струму зводиться до усереднення за об'ємом ітераційного ряду, що складається лише з сингулярних доданків, після інтегрування яких вирази для полів можна записати наступним чином:

$$\langle \mathbf{E}(\mathbf{r}) \rangle = \left[1 + \langle \hat{Q}(\mathbf{r}) \rangle \right] \mathbf{E}_0;$$
 (2.15)

$$\langle \mathbf{J}(\mathbf{r}) \rangle = -i \frac{\omega \hat{\varepsilon}_{f}}{4\pi} \left[1 - 2 \langle \hat{Q}(\mathbf{r}) \rangle \right] \mathbf{E}_{0},$$
 (2.16)

де

$$\hat{Q}(\mathbf{r}) = \sum_{s=1}^{\infty} \left(-\frac{1}{3\hat{\varepsilon}_{f}} \right)^{s} (\delta \hat{\varepsilon}(\mathbf{r}))^{s}. \tag{2.17}$$

Можна показати, що цей ряд є асимптотичним у наступному плані.

Якщо одразу перейти до границі $\omega \to 0$, залишаючи лише перші порядки за ω , вираз для компонентів пропагатора (2.12) можна переписати:

$$\lim_{\omega \to 0} k_0^2 \hat{\varepsilon}_f \widetilde{T}_{\alpha\beta} = \tau_{\alpha\beta}^{(1)} + \tau_{\alpha\beta}^{(2)} = \frac{1}{3} \delta(\mathbf{r}) \delta_{\alpha\beta} + \frac{\delta_{\alpha\beta} - 3e_{\alpha}e_{\beta}}{4\pi r^3}.$$

Підставляючи цей вираз до (2.11), роблячи прості алгебраїчні маніпуляції та статистично усереднюючи, з урахуванням $\omega \to 0$ отримаємо наступні вирази для середніх полів:

$$\langle \mathbf{E}(\mathbf{r}) \rangle = \left\langle \frac{3\hat{\varepsilon}_{f}}{3\hat{\varepsilon}_{f} + \delta\hat{\varepsilon}(\mathbf{r})} \right\rangle \mathbf{E}_{0} - 3 \int_{V} d\mathbf{r}' \tau^{(2)} (|\mathbf{r} - \mathbf{r}'|) \left\langle \frac{\delta\hat{\varepsilon}(\mathbf{r}')}{3\hat{\varepsilon}_{f} + \delta\hat{\varepsilon}(\mathbf{r})} \mathbf{E}(\mathbf{r}') \right\rangle, \quad (2.18)$$

$$\langle \mathbf{J}(\mathbf{r}) \rangle = -i \frac{\omega}{4\pi} \hat{\varepsilon}_{f} \left[1 + 2 \left\langle \frac{\delta \hat{\varepsilon}(\mathbf{r})}{3\hat{\varepsilon}_{f} + \delta \hat{\varepsilon}(\mathbf{r})} \right\rangle \right] \mathbf{E}_{0} + i \frac{3}{4\pi} \int_{V} d\mathbf{r}' \tau^{(2)} (|\mathbf{r} - \mathbf{r}'|) \left\langle \frac{\omega \hat{\varepsilon}(\mathbf{r}) \delta \hat{\varepsilon}(\mathbf{r}')}{3\hat{\varepsilon}_{f} + \delta \hat{\varepsilon}(\mathbf{r})} \mathbf{E}(\mathbf{r}') \right\rangle.$$
(2.19)

Для макроскопічно однорідних та ізотропних систем статистичні середні залежать лише від $|\mathbf{r} - \mathbf{r}'|$. Тому, знову ж таки, зважаючи на форму кутової частини $\tau_{\alpha\beta}^{(2)}$, інтеграли в (2.18) та (2.19) зануляються. Використовуючи (2.18),

(2.19) разом з (2.9), отримуємо рівняння (2.15) та (2.16), де \hat{Q} визначається як:

$$\hat{Q}(\mathbf{r}) = -\frac{\delta \hat{\varepsilon}(\mathbf{r})}{3\varepsilon_{\rm f} + \delta \hat{\varepsilon}(\mathbf{r})}.$$

Розклавши в ряд Маклорена праву частину цього рівняння за $\delta \hat{\varepsilon}$ отримаємо вираз (2.17).

Підставляючи вирази для середніх полів (2.15), (2.16) до (2.9) отримаємо наступне рівняння для ε_{eff} , що залежить лише від $\hat{\varepsilon}_{\text{f}}$ та $\delta\hat{\varepsilon}$:

$$\langle \hat{Q} \rangle = \frac{\hat{\varepsilon}_{f} - \hat{\varepsilon}_{eff}}{2\hat{\varepsilon}_{f} + \hat{\varepsilon}_{eff}}.$$
 (2.20)

Для випадку діелектричних систем компоненти пропогатора електричного поля (1.15) в системі у довгохвильовому наближенні ($|\mathbf{k}| \to 0$) будуть мати наступний вигляд

$$k_0^2 \widetilde{T}_{\alpha\beta}(\mathbf{r}) = \widetilde{T}_{\alpha\beta}^{(1)}(\mathbf{r}) + \widetilde{T}_{\alpha\beta}^{(2)}(\mathbf{r}) = \frac{1}{3\varepsilon_{\rm f}} \delta(\mathbf{r}) \delta_{\alpha\beta} + \frac{1}{4\pi\varepsilon_{\rm f} r^3} \left(\delta_{\alpha\beta} - 3\frac{r_{\alpha}r_{\beta}}{r^2} \right).$$

Підставляючи цей вираз до інтегрального рівняння розподілу електричного поля (2.11)

$$\mathbf{E}(\mathbf{r}) = \mathbf{E}_0(\mathbf{r}) - \frac{\delta \varepsilon(\mathbf{r})}{3\varepsilon_f} \mathbf{E}(\mathbf{r}) - \int_V d\mathbf{r}' \widetilde{\mathbf{T}}^{(2)}(|\mathbf{r} - \mathbf{r}'|) \delta \varepsilon(\mathbf{r}') \mathbf{E}(\mathbf{r}'),$$

переносячи сингулярний вклад у ліву сторону, поділивши на $(1 + \delta \varepsilon/3\varepsilon_f)$ та усереднюючи, отримаємо наступне рівняння:

$$\langle \mathbf{E}(\mathbf{r}) \rangle = \left\langle \frac{3\varepsilon_{\mathrm{f}}}{3\varepsilon_{\mathrm{f}} + \delta\varepsilon(\mathbf{r})} \right\rangle \mathbf{E}_{0} - 3\varepsilon_{\mathrm{f}} \int_{V} d\mathbf{r}' \widetilde{\mathbf{T}}^{(2)}(|\mathbf{r} - \mathbf{r}'|) \left\langle \frac{\delta\varepsilon(\mathbf{r}')}{3\varepsilon_{\mathrm{f}} + \delta\varepsilon(\mathbf{r})} \mathbf{E}(\mathbf{r}') \right\rangle. \quad (2.21)$$

Для макроскопічно однорідних та ізотропних систем статистичне середнє під інтегралом залежить лише від $|\mathbf{r} - \mathbf{r}'|$, тож, зважаючи на специфіку кутової частини $\widetilde{\mathbf{T}}^{(2)}$, інтеграл зануляється, а рівняння (2.21) можна записати наступним чином:

$$\langle \mathbf{E}(\mathbf{r}) \rangle = \eta \mathbf{E}_0, \quad \eta = \left\langle \frac{3\varepsilon_{\rm f}}{3\varepsilon_{\rm f} + \delta\varepsilon(\mathbf{r})} \right\rangle.$$
 (2.22)

Ефективну діелектричну проникність $\varepsilon_{\rm eff}$ знаходимо як коефіцієнт пропорційності між середніми індукцією $\langle {\bf D}({\bf r}) \rangle$ та напруженістю $\langle {\bf E}({\bf r}) \rangle$ електричного поля:

$$\langle \mathbf{D}(\mathbf{r}) \rangle = \varepsilon_{\mathrm{f}} \eta \mathbf{E}_{0} + \langle \delta \varepsilon(\mathbf{r}) \mathbf{E}(\mathbf{r}) \rangle = \varepsilon_{\mathrm{eff}} \langle \mathbf{E}(\mathbf{r}) \rangle.$$
 (2.23)

Записуючи $\langle \delta \varepsilon(\mathbf{r}) \mathbf{E}(\mathbf{r}) \rangle$ у явному вигляді

$$\langle \delta \varepsilon(\mathbf{r}) \mathbf{E}(\mathbf{r}) \rangle = 3\varepsilon_{\mathrm{f}} \left\langle \frac{\delta \varepsilon(\mathbf{r})}{3\varepsilon_{\mathrm{f}} + \delta \varepsilon(\mathbf{r})} \right\rangle \mathbf{E}_{0} = 3\varepsilon_{\mathrm{f}} \xi \mathbf{E}_{0}$$

рівняння (2.23) можно переписати:

$$\langle \mathbf{D}(\mathbf{r}) \rangle = \varepsilon_{\mathrm{f}} (1 + 2\xi) \mathbf{E}_{0} = \varepsilon_{\mathrm{eff}} \langle \mathbf{E}(\mathbf{r}) \rangle,$$
 (2.24)

де було взято до уваги, що

$$\xi + \eta = 1. \tag{2.25}$$

Зазначемо, що розкладуючи в ряд Маклорена ξ та η за параметром $(-\delta \varepsilon(\mathbf{r})/3\varepsilon_{\mathrm{f}})$ ми отримаємо ітараційні рішення МКГ (\ref{MKF}) та (2.15) [1,2].

Підставляючи (2.22) у праву частину (2.24), беручи до уваги (2.25), отримаємо

$$\varepsilon_{\text{eff}} - \varepsilon_{\text{f}} = (\varepsilon_{\text{eff}} + 2\varepsilon_{\text{f}})\xi.$$
 (2.26)

Щоб знайти невідоме ε_f користуємося граничними рівняннями нормальної компоненти індукції на межі дотику гомогенізованого середовища та однорідної матриці з проникністю ε_f :

$$\varepsilon_{\rm f} \mathbf{E}_{0n} = \varepsilon_{\rm eff} \left\langle \mathbf{E} \right\rangle_n = \varepsilon_{\rm eff} \eta \mathbf{E}_{0n}.$$

Користуючись (2.25), знаходимо, що

$$\varepsilon_{\rm eff} - \varepsilon_{\rm f} = \varepsilon_{\rm eff} \xi.$$

тож, з урахуванням (2.26),

$$\xi = \frac{\varepsilon_{\rm eff} - \varepsilon_{\rm f}}{2\varepsilon_{\rm f} + \varepsilon_{\rm eff}} = \frac{\varepsilon_{\rm eff} - \varepsilon_{\rm f}}{\varepsilon_{\rm eff}}.$$

Це рівняння має два корені: 1) $\varepsilon_f = 0$; 2) $\varepsilon_f = \varepsilon_{\rm eff}$, що збігаються зі знайденими у Розділі 1. Тож беручи до уваги друге рішення отимуємо $\xi|_{\varepsilon_f=\varepsilon_{\rm eff}}=0$, тобто

$$\left\langle \frac{\delta \varepsilon(\mathbf{r})}{3\varepsilon_{\text{eff}} + \delta \varepsilon(\mathbf{r})} \right\rangle = 0.$$
 (2.27)

Цей результат можна знайти використовуючи варіаційний принцип Хашина-Штрікмана [4], або стандартними методами теорії ефективного середовища [25] (але нагадаємо, що результати будуть формально співпадати лише у випадку невпорядкованої системи кульок).

Зазначимо, що аналогічний підхід був використаний у розглянутому в Розділі ?? підході сильних флуктуацій [54–57], але в рамках нього вибір електродинамічної гомогенізації був обумовлений вимогою найкращої збіжності ітераційного ряду. В рамках МКГ система розглядається з макроскопічної точки зору, а вибір гомогенизації є наслідком граничних умов накладених на систему.

$\mathbf{2.2.}$ Знаходження $\hat{arepsilon}_{\mathrm{f}}$

Можна показати, що за умовою, коли вкладами діелектричних втрат можна знехтувати, тобто з точністю до другого порядку за ω в розкладі комплексної провідності, сумісною з МКГ є гомогенізація типу Бруггемана $\hat{\varepsilon}_{\rm f} = \hat{\varepsilon}_{\rm eff}$. Дійсно, згадаємо граничні умови для нормальних компонент комплексних полів на границі розділу двох матеріалів [70], допоміжної матриці \mathcal{M} та гомогенізованим середовищем:

$$\hat{\varepsilon}_{\mathbf{f}} \mathbf{E}_0 = \hat{\varepsilon}_{\text{eff}} \langle \mathbf{E}(\mathbf{r}) \rangle.$$
 (2.28)

Користуючись цією рівністю та виразом (2.15), отримаємо

$$\langle \hat{Q} \rangle = \frac{\hat{\varepsilon}_{\rm f} - \hat{\varepsilon}_{\rm eff}}{\hat{\varepsilon}_{\rm eff}},$$

що разом з (2.20) дає рівняння для заходження $\hat{\varepsilon}_{\rm f}$ та $\hat{\varepsilon}_{\rm f}$. Відкидаючи фізично непослідовний розв'язок $\hat{\varepsilon}_{\rm f}=0$, отримуємо

$$\hat{\varepsilon}_{\rm f} = \hat{\varepsilon}_{\rm eff}; \tag{2.29}$$

$$\langle \hat{Q}(\mathbf{r}) \rangle = 0. \tag{2.30}$$

Ця рівність, як вже було зазначено, може бути отримана окремо для дійсної та уявної частин використовуючи теорему Хашіна-Штрікмана [50] в рамках МКГ, як було зроблено в роботі [4], розглядаючи крім чисто діелектричних систем провідні системи, будуючи функціонал $U_{\mathbf{T}}$ від $\mathbf{T} = \mathbf{j} - \sigma_{\mathbf{f}} \mathbf{E}$, та трактуючи його стаціонарне значення за Джоулеві втрати $U_{\mathbf{T}}^s = \langle \mathbf{E} \rangle \langle \mathbf{j} \rangle V / 8\pi$.

Рівняння (2.30) є точним у наближенні $\omega \to 0$. Моделюючи $\delta \hat{\varepsilon}(\mathbf{r})$ для відповідних мікроструктур, та підсумовуючи ряди (2.17) отримуємо явний вигляд рівняння для $\hat{\varepsilon}_{\text{eff}}$. Але функціональна форма $\delta \varepsilon(\mathbf{r})$ не фіксована; в залежності від її вигляду ми можемо отримати ту чи іншу модель (наприклад, СМБ або АМБ). Модель ядро-оболонка буде розвинена в рамках симетричного підходу через те, що він не робить додаткових припущень щодо моделювання компонентів, може бути застосований для всієї концентраційної області та, як буде показано у Розділі 5, є більш послідовним ніж асиметричний диференціальний підхід.

2.3. Застосування для моделі тверде ядро-проникна оболонка

Розглянемо макроскопічно однорідну та ізотропну систему сферичних частинок, що знаходяться в однорідній матриці з проникністю $\hat{\varepsilon}_0$ (див. рис. 2.1). Кожна частинка складається з твердого (непроникного) ядра радіусом $R_1 = d/2$ та проникністю $\hat{\varepsilon}_1$, покритого електрично однорідною концентричною проникною оболонкою із зовнішнім радіусом $R_2 = R_1(1 + \delta)$ та проникністю $\hat{\varepsilon}_2$. Всі проникності комплексні та мають форму (2.1).

Локальне значення проникності $\hat{\varepsilon}(\mathbf{r})$ такої моделі можна подати у вигляді ступінчатої функції, що залежить від відстані $l = \min_{1 \leqslant a \leqslant N} |\mathbf{r} - \mathbf{r}_a|$ від даної точки \mathbf{r} до найближчої частинки:

$$\hat{\varepsilon}(\mathbf{r}) = \begin{cases} \hat{\varepsilon}_0, & l > R_2 \\ \hat{\varepsilon}_1, & l < R_1 \\ \hat{\varepsilon}_2, & R_1 < l < R_2. \end{cases}$$

Рис. 2.1: Схематичне зображення моделі ядро-оболонка: чорні області — непроникні ядра; сірі — проникна оболонка; біла область — матриця.

Користуючись цим виразом, $\delta \hat{\varepsilon}$ можна записати в термінах характеристичних функцій відповідних областей:

$$\delta \hat{\varepsilon}(\mathbf{r}) = (1 - \tilde{\chi}_2(\mathbf{r})) \Delta \hat{\varepsilon}_0 + \tilde{\chi}_1(\mathbf{r}) \Delta \hat{\varepsilon}_1 + (\tilde{\chi}_2(\mathbf{r}) - \tilde{\chi}_1(\mathbf{r})) \Delta \hat{\varepsilon}_2,$$

де $\Delta \hat{\varepsilon}_j = [\hat{\varepsilon}_j - \hat{\varepsilon}_f]$ ($j = \{0, 1, 2\}$); $\tilde{\chi}_1$ та $\tilde{\chi}_2$ – характеристичні функції, відповідно, всіх ядер (всієї чорної області на рис. 2.1) та частинок разом з їх оболонками (всі чорні та сірі області). Зазначимо, що для цих функцій виконується рівність $\tilde{\chi}_1 \tilde{\chi}_2 = \tilde{\chi}_1$.

Явний вид $\tilde{\chi}_1$ для непроникних ядер має форму (1.34). Явний вигляд $\tilde{\chi}_2$ можна записати використовуючи одночастинкові характеристичні функції $\chi_2^{(a)}$ області a-ої частинки, що складається з області ядра та його оболонки [71]:

$$\tilde{\chi}_{2}(\mathbf{r}) = 1 - \prod_{a=1}^{N} \left(1 - \chi_{2}^{(a)}(\mathbf{r}) \right) = \sum_{a=1}^{N} \chi_{2}^{(a)}(\mathbf{r}) - \sum_{a < b} \chi_{2}^{(a)}(\mathbf{r}) \chi_{2}^{(b)}(\mathbf{r}) + \sum_{a < b < c} \chi_{2}^{(a)}(\mathbf{r}) \chi_{2}^{(b)}(\mathbf{r}) \chi_{2}^{(c)}(\mathbf{r}) - \dots$$
(2.31)

ПРОЯСНИТИ І ЗАПИСАТИ (ПОКИ ЩО ДЛЯ СЕБЕ ТА ДИСЕРТА-ЦІЇ) ДЕТАЛІ -ПЕРКУС ЙЄВІК, КІРКВУД ДЛЯ БАГАТОЧАСТИНОВИХ ФУНКЦІЙ, scaled-particle approximation [68] for hard-sphere fluids (CAME

ЦЕЯ АПРОКСИМАЦІЯ Є ТОЧНОЮ НА РІВНІ ТРЕТЬОГО ВІРІАЛЬНО-ГО КОЕФІЦІЄНТА)

Використовуючи властивості цих характеристичних функцій, моменти $\delta \hat{\varepsilon}$ можна записати у наступному вигляді:

$$\langle (\delta \hat{\varepsilon})^s \rangle = (1 - \phi)(\Delta \hat{\varepsilon}_0)^s + c(\Delta \hat{\varepsilon}_1)^s + (\phi - c)(\Delta \hat{\varepsilon}_2)^s, \tag{2.32}$$

де

$$\phi = \langle \tilde{\chi}_2(\mathbf{r}) \rangle = N \langle \chi_2^{(1)}(\mathbf{r}) \rangle - \frac{N(N-1)}{2} \langle \chi_2^{(1)}(\mathbf{r}) \chi_2^{(2)}(\mathbf{r}) \rangle + \dots$$

є об'ємною концентрацією всіх частинок разом з їх оболонками. Задля розрахунку ϕ для обраної моделі потрібно знати багаточастинкові функції розподілу $F_n(\mathbf{r}; \mathbf{r}^n)$ ($\mathbf{r}^n \equiv \{\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_n\}$) для відповідної мікроструктури.

Для обраної нами моделі системи сферичних частинок з вільно проникною оболонкою та твердими ядрами у статистичній рівновазі (див. рис. 2.1) треба брати функції розподілу, що відповідають системі твердих частинок з радіусом R_1 [72,73]. В роботі [74] приведено розрахунок ϕ з точністю до третього віріального коефіцієнту в рамках суперпозиційного наближення Кірквуда:

$$\phi(c,\delta) = 1 - (1-c) \exp\left[-\frac{(1-\psi)\phi_t}{1-c}\right] \times \exp\left[-\frac{3c\phi_t}{2(1-c)^3} \left(2 - 3\psi^{1/3} + \psi - c\left(3\psi^{1/3} - 6\psi^{2/3} + 3\psi\right)\right)\right],$$
(2.33)

де

$$\phi_t = c(1+\delta)^3 = c/\psi \tag{2.34}$$

є об'ємною концентрацією ядер з твердими оболонками ($\psi = (1+\delta)^{-3}$). Авторами стверджується, що цей результат є точним в даному наближенні. Крім цього, він добре узгоджується з розрахунками методами Монте-Карло [75], а для товщин $\delta < [(\cos \pi/6)^{-1} - 1] \approx 0.16$ стає строгим через те, що для них неможливі перекриття трьох та більше оболонок, тож незвідні кореляційні вклади порядків n > 2 зануляються.

Для знаходження остаточного рівняння для $\hat{\varepsilon}_{\text{eff}}$ потрібно підставити вираз для моментів $\delta\hat{\varepsilon}$ для відповідної моделі до (2.30) з урахуванням (2.29) та

підсумувати отриманий ряд. Так для моделі з однорідними оболонками (2.32) отримаємо:

$$(1 - \phi)\frac{\hat{\varepsilon}_0 - \hat{\varepsilon}_{\text{eff}}}{2\hat{\varepsilon}_{\text{eff}} + \hat{\varepsilon}_0} + c\frac{\hat{\varepsilon}_1 - \hat{\varepsilon}_{\text{eff}}}{2\hat{\varepsilon}_{\text{eff}} + \hat{\varepsilon}_1} + (\phi - c)\frac{\hat{\varepsilon}_2 - \hat{\varepsilon}_{\text{eff}}}{2\hat{\varepsilon}_{\text{eff}} + \hat{\varepsilon}_2} = 0; \tag{2.35}$$

Через те, що, за визначенням моделі, $\hat{\varepsilon}_{\text{eff}}$ шукається у формі (2.1), ці рівняння можна спростити користуючись методами теорії збурень, а саме залишаючи лише перші порядки за ω . Таким чином, комплексні рівняння (2.35) та (2.40) зведуться до систем дійсних рівнянь для ефективних квазістатичних провідності σ_{eff} та діелектричної проникності ε_{eff} , відповідно:

$$(1 - \phi)\frac{\sigma_0 - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_0} + c\frac{\sigma_1 - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_1} + (\phi - c)\frac{\sigma_2 - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_2} = 0, \tag{2.36a}$$

$$(1 - \phi)\frac{\varepsilon_0 \sigma_{\text{eff}} - \varepsilon_{\text{eff}} \sigma_0}{(2\sigma_{\text{eff}} + \sigma_0)^2} + c\frac{\varepsilon_1 \sigma_{\text{eff}} - \varepsilon_{\text{eff}} \sigma_1}{(2\sigma_{\text{eff}} + \sigma_1)^2} + (\phi - c)\frac{\varepsilon_2 \sigma_{\text{eff}} - \varepsilon_{\text{eff}} \sigma_2}{(2\sigma_{\text{eff}} + \sigma_2)^2} = 0.$$
 (2.366)

Розвинений підхід легко узагальнити на випадок електрично неоднорідних радіально-симетричних оболонок з кусково-гладким профілем $\hat{\varepsilon}_2(r)$. Розглянемо спершу випадок системи частинок типу ядро-оболонка, аналогічний розглянутому у попередньому підрозділі, але тепер ядро буде оточено M концентричними оболонками (див. рис. 2.2). Кожна m-а оболонка ($1 \le m \le M$) має зовнішній радіус $R_{2,m} = R_1(1 + \delta_m)$ ($R_{2,m-1} < R_{2,m}$) та проникність $\hat{\varepsilon}_{2,m}$. Правило перекриття оболонок таке ж саме, що й у попередньому випадку, тому локальне значення проникності можна записати у наступному вигляді, використовуючи те ж саме означення l:

$$\hat{\varepsilon}(\mathbf{r}) = \begin{cases} \hat{\varepsilon}_{0}, & l > R_{2,M} \\ \hat{\varepsilon}_{1}, & l < R_{1} \\ \hat{\varepsilon}_{2,1}, & R_{1} < l < R_{2,1} \\ \hat{\varepsilon}_{2,m}, & R_{2,m-1} < l < R_{2,m}, & 2 \leqslant m \leqslant M \end{cases}$$

$$(2.37)$$

Нехай $\chi_{2,m}^{(a)}$ – характеристична функція області, що складається з області ядра a-ої частинки та всіх областей його перших m оболонок. Тоді характеристична функція всіх таких областей $\tilde{\chi}_{2,m}$ матиме вигляд аналогічний (2.31):

$$\tilde{\chi}_{2,m}(\mathbf{r}) = 1 - \prod_{a=1}^{N} \left(1 - \chi_{2,m}^{(a)}(\mathbf{r}) \right).$$
 (2.38)

Рис. 2.2: Схематичне зображення моделі M-оболонок. Білі області — матриця; темні — непроникні ядра; сірі концентричні області — M оболонок навколо кожного ядра.

Для цих функцій виконуються тотожності: (1) $\tilde{\chi}_{2,m}\tilde{\chi}_1 = \tilde{\chi}_1$; (2) $\tilde{\chi}_{2,l}\tilde{\chi}_{2,m} = \tilde{\chi}_{2,\min(l,m)}$. Використовуючи функції (2.38), перепишемо вираз (2.37) в термінах $\delta\hat{\varepsilon}$:

$$\delta \hat{\varepsilon}(\mathbf{r}) = (1 - \tilde{\chi}_{2,M}(\mathbf{r})) \Delta \hat{\varepsilon}_0 + \tilde{\chi}_1(\mathbf{r}) \Delta \hat{\varepsilon}_1 + (\tilde{\chi}_{2,1}(\mathbf{r}) - \tilde{\chi}_1(\mathbf{r})) \Delta \hat{\varepsilon}_{2,1} + \sum_{m=2}^{M} (\tilde{\chi}_{2,m}(\mathbf{r}) - \tilde{\chi}_{2,m-1}(\mathbf{r})) \Delta \hat{\varepsilon}_{2,m},$$

де $\Delta \hat{\varepsilon}_{2,m} = [\hat{\varepsilon}_{2,m} - \hat{\varepsilon}_{\mathrm{f}}]$. Користуючись властивостями характеристичних функцій відповідних областей, моменти $\delta \hat{\varepsilon}$ можна записати у наступному вигляді:

$$\langle (\delta \hat{\varepsilon})^s \rangle = (1 - \phi(c, \delta))(\Delta \hat{\varepsilon}_0)^s + c(\Delta \hat{\varepsilon}_1)^s + \sum_{m=1}^M (\phi(c, \delta_m) - \phi(c, \delta_{m-1}))(\Delta \hat{\varepsilon}_{2,m})^s,$$

де було введено позначення $\delta_0 = 0$ ($\phi(c, \delta_0) = c$), та $\phi(c, \delta_m) \equiv \langle \tilde{\chi}_{2,m}(\mathbf{r}) \rangle$ – об'ємна концентрація областей всіх ядер разом з їх першими m найближчими оболонками, що для сферичних частинок дається виразом (2.33) при $\delta = \delta_m$. Нарешті переходячи до границь $M \to \infty$, $|\delta_{2,m} - \delta_{2,m-1}| \to 0$, ($\delta_M = \text{const}$) та вимагаючи, щоб $\phi(c, \delta)$ була диференційована за δ , для систем частинок з

кусково-гладкої функції профілю оболонки $\hat{\varepsilon}_2(r)$ отримуємо:

$$\langle (\delta \hat{\varepsilon})^s \rangle = (1 - \phi(c, \delta))(\Delta \hat{\varepsilon}_0)^s + c(\Delta \hat{\varepsilon}_1)^s + \int_0^{\delta_m} \frac{\partial \phi(c, u)}{\partial u} (\Delta \hat{\varepsilon}_2(u))^s du, \qquad (2.39)$$

де $\Delta \hat{\varepsilon}_2(u)$ є функція $\hat{\varepsilon}_2(r) - \hat{\varepsilon}_f$, що виражена в термінах змінної $u = (r - R_1)/R_1$, а δ_M відповідає зовнішній границі оболонки. Для однорідної оболонки ($\Delta \hat{\varepsilon}_2(u) = {\rm const}$) вираз (2.39) одразу зводиться до (2.32) при $\delta = \delta_M = \delta_1$. для моделі з неоднорідними оболонками (2.39):

$$(1 - \phi)\frac{\hat{\varepsilon}_0 - \hat{\varepsilon}_{\text{eff}}}{2\hat{\varepsilon}_{\text{eff}} + \hat{\varepsilon}_0} + c\frac{\hat{\varepsilon}_1 - \hat{\varepsilon}_{\text{eff}}}{2\hat{\varepsilon}_{\text{eff}} + \hat{\varepsilon}_1} + \int_0^{\delta_M} \frac{\partial \phi(c, u)}{\partial u} \frac{\hat{\varepsilon}_2(u) - \hat{\varepsilon}_{\text{eff}}}{2\hat{\varepsilon}_{\text{eff}} + \hat{\varepsilon}_2(u)} du = 0.$$
 (2.40)

Зазначимо, що форма частинок грала роль лише на етапі вибору їх статистичного розподілу, тобто вибору функції ϕ ; в загальному випадку, результати (2.35) та (2.40) можуть бути застосовані до будь-яких багатофазних макроскопічно однорідних та ізотропних систем у довгохвильовому наближенні, відповідним чином вибираючи функцію ϕ .

$$(1 - \phi)\frac{\sigma_0 - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_0} + c\frac{\sigma_1 - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_1} + \int_0^{\delta_M} \frac{\partial \phi(c, u)}{\partial u} \frac{\sigma_2(u) - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_2(u)} du = 0, \quad (2.41a)$$

$$(1 - \phi)\frac{\varepsilon_0 \sigma_{\text{eff}} - \varepsilon_{\text{eff}} \sigma_0}{(2\sigma_{\text{eff}} + \sigma_0)^2} + c\frac{\varepsilon_1 \sigma_{\text{eff}} - \varepsilon_{\text{eff}} \sigma_1}{(2\sigma_{\text{eff}} + \sigma_1)^2} + \int_0^{\delta_M} \frac{\partial \phi(c, u)}{\partial u} \frac{\varepsilon_2(u)\sigma_{\text{eff}} - \varepsilon_{\text{eff}} \sigma_2(u)}{(2\sigma_{\text{eff}} + \sigma_2(u))^2} du = 0.$$
(2.416)

Такий розклад можливий лише за умов

$$|\sigma_i - \sigma_{\text{eff}}| \gg \epsilon_0 \omega(\varepsilon_i + 2\varepsilon_{\text{eff}})$$
 (2.42)

для всіх складових системи (i=0,1,2). За інших умов рівняння (2.36a) та (2.41a) треба трактувати як рівняння на знаходження ефективної статичної провідності системи, а рівняння (2.366) та (2.416) для квазістатичної проникності вже не є вірними. Для провідних систем на достатньо малих частотах, з якими ми будемо працювати, можна вважати, що (2.42) виконуються.

Загальний розв'язок рівняння (2.35) робиться за допомогою формул Кардано, а (2.40) — тільки використовуючи спеціальний вигляд $\hat{\varepsilon}_2(u)$, однак аналіз основних характеристик моделі більш практично робити для окремих класів систем.

Зазначимо, що якщо ми не будемо використовувати граничні умови (2.28), з'являється свобода у виборі значення $\hat{\varepsilon}_{\rm f}$. Його різні значення будуть давати різні співвідношення для $\hat{\varepsilon}_{\rm eff}$ згідно (2.20); так, наприклад, поклавши $\hat{\varepsilon}_{\rm f} = \hat{\varepsilon}_{\rm 0}$ (див. [1,2,4]) отримаємо співвідношення типу Максвелла-Гарнетта для систем частинок з морфологією тверде ядро–проникна оболонка:

$$\frac{\hat{\varepsilon}_{\text{eff}} - \hat{\varepsilon}_{0}}{2\hat{\varepsilon}_{0} + \hat{\varepsilon}_{\text{eff}}} = c \frac{\hat{\varepsilon}_{1} - \hat{\varepsilon}_{0}}{2\hat{\varepsilon}_{0} + \hat{\varepsilon}_{1}} + \int_{0}^{\delta_{M}} \frac{\partial \phi(c, u)}{\partial u} \frac{\hat{\varepsilon}_{2}(u) - \hat{\varepsilon}_{0}}{2\hat{\varepsilon}_{0} + \hat{\varepsilon}_{2}(u)} du,$$

що у квазістатичному наближенні дає наступне співвідношення для σ_{eff} :

$$\frac{\sigma_{\text{eff}} - \sigma_0}{2\sigma_0 + \sigma_{\text{eff}}} = c \frac{\sigma_1 - \sigma_0}{2\sigma_0 + \sigma_1} + \int_0^{\delta_M} \frac{\partial \phi(c, u)}{\partial u} \frac{\sigma_2(u) - \sigma_0}{2\sigma_0 + \sigma_2(u)} du. \tag{2.43}$$

2.4. Висновки

В даному Розділі МКГ був узагальнений на випадок провідних систем в квазістатичному наближенні, тобто на частотах коли можна знехтувати вкладами діелектричних втрат. МКГ було застосовано для розвинення теорії знаходження ефективної квазістатичної комплексної діелектричної проникності немагнітних макроскопічно однорідних та ізотропних систем сферичних частинок типу тверде-ядро-проникна-оболонка. Оболонка в загальному випадку має радіально-симетричний неоднорідний профіль електричної провідності. Запропоновано фізично обґрунтований метод знаходження типу електричної гомогенізації системи. В рамках цього методу показано, що єдиним сумісним типом гомогенізації в рамках МКГ є гомогенізація типу ефективного середовища Бругемана. На основі цих результатів отримані рівняння для знаходження ефективної комплексної проникності систем з електрично однорідними та неоднорідними оболонками. Ці результати зведені до систем

дійсних рівнянь на ефективні квазістатичні провідності та проникності відповідних систем.

Показано, що в рамках МКГ тільки функція ϕ відповідає за форму частинок, тож загальний результат може бути застосовано для будь-яких макроскопічно однорідних та ізотропних систем у вибраному частотному діапазоні, вибираючи відповідним чином ϕ .

РОЗДІЛ 3

ТЕСТУВАННЯ Й ЗАСТОСУВАННЯ МОДЕЛІ ДО АНАЛІЗУ ЕФЕКТИВНОЇ ПРОВІДНОСТІ КОМПОЗИТНИХ ЕЛЕКТРОЛІТІВ

Щоб протестувати строгість отриманого співвідношення між ефективною статичною провідністю та геометричними й електричними параметрами системи, уникаючи урахування неконтрольованих експериментальних похибок та різноманітних ефектів й механізмів, що можуть виникати у конкретній системі, спочатку використовувалися результати числових симуляцій для обраної моделі. Широкий масив даних для тривимірних систем був отриманий в літературі рамках алгоритму Random Resistor Network (RRN) [76–78].

Далі розроблена модель застосовується для обробки експериментальних даних для ефективної квазістатиної провідності як функції від концентрації для невпорядкованих ТКЕ на основі LiI з частинками Al_2O_3 [79], та функції концентрації й температури для невпорядкованих ПКЕ на основі поліетиленоксиду (PEO) та оксіметилен-поліетиленоксиду (ОМРЕО) з частинками NASICON ("Na super ionic conductor" $Na_{3.2}Zr_2P_{0.8}Si_{2.2}O_{12}$) [11], $\theta - Al_2O_3$ [44] та поліакріламіду (PAAM) [11,44] з додаванням солей NaI або LiClO₄.

3.1. Тестування моделі на існуючих результатах симуляцій RRN

3.1.1. Алгоритм Random Resistor Network (RRN)

Алгоритм Random Resistor Network (RRN) [76–78] складається з трьох наступних кроків (див рис. 3.1):

а) Генерація досліджуваної тривимірної системи частинок з морфологією тверде ядро-проникна оболонка. Розглядається тривимірний за-

Рис. 3.1: Схематичне зображення алгоритму RRN: а) модельна система типу тверде ядро–проникна оболонка; б) її апроксимація системою кубів; в) отримана тривимірна кубічна ґратка резисторів. Рисунок взято з [78].

мкнутий простір із заданими розмірами та періодичними граничними умовами. Центри ядер кожної частинки розташовуються по черзі наступним чином: координати центру поточного ядра генеруються за рівномірним розподілом; якщо ці координати належать області деякого попередньо доданого ядра, або ж передбачають перекриття двох ядер, то поточні координати відкидаються та генеруються нові. Цей процес повторюється доки не буде отримана бажана об'ємна концентрація ядер с. Далі вважається, що навколо кожного ядра існує проникна оболонка з деякою товщиною та розподілом провідності (у останньому випадку задаються також правила перекриття оболонок).

- б) Генерація системи кубічних комірок виходячи з попередньо згенерованої моделі. Для цього розглядається тривимірний простір з тими ж розмірами, розбитий на комірки із заданою довжиною ребра. Далі цей простір накладається на попередньо згенеровану модель. Якщо центр комірки попадає в область ядра, вважається, що він має ті ж самі електричні властивості що й ядро. Те ж саме для оболонки та матриці. При цьому алгоритм побудований так, що виконуються умова рівності отриманої об'ємної концентрації c' комірок, що відповідають ядрам, та c.
- в) Побудова ґратки резисторів на основі отриманої системи комірок за

наступними правилами. Центр кожної комірки є вузлом вихідної ґратки. Кожні дві сусідні комірки розбиваються на дві рівні частини, з яких утворюється плоско-паралельний конденсатор, що має лінійні розміри однієї комірки. Далі такий конденсатор замінюється резистором між відповідними вузлами ґратки з імпедансом поточного конденсатора. Вважається, що ефективні електричні властивості отриманої ґратки еквівалентні властивостям вхідної моделі.

Щоб протестувати розвинуту теорію на результатах цих симуляцій треба спочатку врахувати особливості переходу від системи а) до системи б).

3.1.1.1. Зміна геометричних параметрів оболонок

Можна помітити, що в рамках алгоритму RRN при заданій абсолютній товщині оболонок t їх відносна товщина δ після переходу від а) до б) змінюється, за умови, що при цьому об'ємна концентрація ядер зберігається (c=c'). Дійсно, розглянемо N сферичних ядер з радіусом $R_1=a/2$ та товщиною оболонок t в об'ємі V; тоді $c=(\pi/6)a^3N/V$ та $\delta=2t/a$. Розглянемо тривіальний випадок, коли на одну кульку припадає одна комірка з довжиною ребра a'. Для того, щоб задовільнити вимозі c=c' ($c'=a'^3N/V$) потрібно, щоб $a'=(\pi/6)^{1/3}a$. Відповідно, відносна товщина після переходу $\delta'=2t/a'$ буде дорівнювати

$$\delta' = K^{-1}\delta,\tag{3.1}$$

де наразі $K = k \equiv (\pi/6)^{1/3} \approx 0.806$. Вважаючи параметр K підгінним, можна узагальнити (3.1) на випадок, коли на одну кульку припадає більше ніж одна комірка. Чим більша кількість цих комірок, тим ближче K до одиниці. Таким чином у загальному випадку виконується нерівність:

$$k \leqslant K \leqslant 1 \approx 1.241k$$
.

Відзначимо, що в числових експериментах [76–78], що розглядалися в даній роботі, лінійні розміри комірки a' були 0.5 мкм, а ядра $a\leqslant 11$ мкм, тож відхилення K від одиниці повинні бути помітними.

Рис. 3.2: Дані [78] з об'ємної концентрації оболонок як функції концентрації ядер c та їх обробка за (2.33) для різних K в (3.1) при t=5 мкм та (a) d=7 (\blacktriangle) , (б) d=3 (\spadesuit) , 5 (\blacksquare) , та 9 (\bullet) мкм; пусті точки (\circ) на рис. (a) – отримані після симуляції дані для c' (середньоквадратична похибка дорівнювала ≈ 0.0024). Неперервні лінії — найкращі результати обробки.

Щоб підтвердити необхідність використання параметру K, порівняємо теоретичні розрахунки ($\phi-c$) за (2.33) та відповідні дані симуляції в рамках алгоритму RRN [78] (див. рис. 3.2). Видно, що тільки за відповідним вибором K ми можемо кількісно описати дані симуляцій. Найбільша середньоквадратична похибка представлених найкращих обробок (неперервні лінії) дорівнює ≈ 0.014 (при d=7 мкм, K=1.13 $k\approx 0.91$). Також зазначимо, що знайдені значення K лежать близько до наведених вище оцінок.

3.1.1.2. Зміна електричних параметрів неоднорідних оболонок

У роботі [77] профіль провідності оболонок моделювався у вигляді гаусового сферично-симетричного розподілу, максимум σ_{max} якого знаходився на відстані t/2 від поверхні ядра, а на зовнішніх границях оболонки він приймав мінімального значення σ_{min} (див. Таблицю 3.1). Явний вигляд цієї функції та правило її апроксимації, за яким кожній комірці області оболонки ставилось у відповідність значення провідності, не були зазначені у роботі [77].

Базуючись на даному визначенні цієї функції, у найпростішій формі вона має наступний вигляд:

$$\sigma_2(u) = \sigma_{\text{max}} \exp \left[-\frac{4 \left(u - \delta/2 \right)^2}{\delta^2} \ln \left(\frac{\sigma_{\text{max}}}{\sigma_{\text{min}}} \right) \right]. \tag{3.2}$$

Нехай n = t/a є середнє число комірок, що припадають на радіальну товщину оболонки, з центрами у точках $u_i = (2i-1)\delta'/2n$, i = 1..n. Якщо провідність i-ої комірки визначалася як значення функції $\sigma_2(u)$ у точці u_i , тоді значення параметрів σ'_{\max} , σ'_{\min} в симуляціях [77] та σ_{\max} , σ_{\min} в рамках нашої моделі, пов'язані наступним чином:

$$\sigma_{\max} = \sigma_2(u_{n/2}) = \sigma_2(u_{n/2+1}) = \sigma'_{\max} \left(\frac{\sigma'_{\max}}{\sigma'_{\min}}\right)^{-1/n^2},$$

$$\sigma_{\min} = \sigma_2(u_1) = \sigma_2(u_n) = \sigma'_{\max} \left(\frac{\sigma'_{\max}}{\sigma'_{\min}}\right)^{-(n-1)^2/n^2}.$$

У наближенні $n\to\infty$: $\sigma_{\max}=\sigma'_{\max}$ та $\sigma_{\min}=\sigma'_{\min}$; для скінченних n: $\sigma_{\max}<\sigma'_{\max},\ \sigma_{\min}>\sigma'_{\min},$ та

$$rac{\sigma_{ ext{max}}}{\sigma_{ ext{min}}} = \left(rac{\sigma'_{ ext{max}}}{\sigma'_{ ext{min}}}
ight)^{(n-2)/n}.$$

Тобто значення параметрів профілю (3.2) після апроксимації залежать від деталей самої апроксимації. У даному випадку ці деталі не були зазначені в роботі [77], тому для обробки даних використовуючи (3.2) один з параметрів можна вибрати підгінним, а інший — зафіксувати у значенні з Таблиці 3.1; наразі $\sigma_{\rm max}$ був вибраний у якості підгінного.

3.1.2. Тестування моделі у випадку однорідних оболонок

Спираючись на отриманий результат ми можемо приступити до тестування рівняння (2.36а) для провідності систем частинок з однорідними оболонками на даних симуляцій RRN [78]. При цьому результат (2.36а) можна використовувати, спираючись як на аналітичний вигляд (рівняння (2.33), (3.1)), так і на експериментальні дані залежності ($\phi - c$) від c.

Значення провідності відповідних компонент системи в C/см, що використовувались в числових експериментах RRN [76–78].

Експерименти	σ_0	σ_1	σ_2	$\sigma'_{ m min}$	$\sigma'_{ m max}$
[76, 78]	1×10^{-8}	1×10^{-12}	1×10^{-4}		
[77]	1×10^{-8}	1×10^{-12}		1×10^{-6}	1×10^{-4}

В рамках алгоритму RRN вивчалися залежності провідності досліджуваних систем від об'ємної концентрації ядер при різних діаметрах ядер та товщинах оболонок для двох випадків: електрично однорідні оболонки [76,78] та електрично неоднорідними оболонками, де провідність залежить від відстані до поверхні ядра за Гаусовим законом [77], а локальне значення провідності при перекритті підкоряється тим самим правилам, що були описані в підрозділі ??. Використані параметри підсумовані в Таблиці 3.1.

Отримані таким чином результати, разом з результатами симуляцій [78] представлені на рис. З.З. При $c \gtrsim 0.07$ дані дуже добре узгоджуються з теорією (максимальна середньоквадратична відносна похибка Δ_{σ} дорівнює ≈ 0.065). Нижче цієї концентрації наша теорія передбачає перколяційну поведінку провідності, поріг перколяції c_c якої може бути оцінений із співвідношення $\phi(c_c, \delta) = 1/3$ (див. Розділ 1.1). Для розглянутих даних, згідно з рівнянь (2.33) та (3.1), $c_c = 0.020$ (K/k = 1.04), 0.034 (K/k = 1.07) та 0.046 (K/k = 1.13). При цьому сама провідність, виходячи з даних симуляцій, швидко росте при концентраціях набагато нижчих ніж ці значення. Ця ситуація типова для симуляцій на обмежених системах, де поріг перколяції є випадковою негаусовою величиною [80].

Використовуючи отриманий результат (3.1) та (2.36a), ми можемо також відновити дані всіх десятьох серій симуляцій [76] (див. рис. 3.4), що є дуже серйозним аргументом на користь розробленої моделі.

Рис. 3.3: Дані симуляцій [78] з провідності як функції концентрації ядер c та їх обробка за (2.36а) при t=5 мкм та (а) різних K (у відповідних позначеннях ліній з рис. 3.2(а); товста неперервна ліня – K=1.03k) й d=7 (\blacktriangle); (б) d=5 (\spadesuit), 7 (\blacksquare), and 9 (\bullet) мкм, пусті точки – отримані результати для відповідних δ при ϕ взятому з симуляцій на рис. 3.2(б). Лінія $1-\sigma_{\rm eff}$ використовуючи ϕ для твердих оболонок (2.34) при K=1.07k; лінія 2 – розрахунок $\sigma_{\rm eff}$ за отриманим рівняння типу Максвелла-Гарнетта (2.43) при K=1.03k.

3.1.2.1. Знаходження положень максимумів провідності

За умовою $\sigma_1 \ll \sigma_0 \ll \sigma_2$, що типові для розглянутих симуляцій (та композитних електролітів в цілому), рівняння (2.36а) може бути спрощене переходячи до границі $\sigma_1 \to 0$:

$$4\sigma_{\text{eff}}^3 - 2\left[(2 - 3\phi)\sigma_0 - (1 + 3c - 3\phi)\sigma_2\right]\sigma_{\text{eff}}^2 - (2 - 3c)\sigma_0\sigma_2\sigma_{\text{eff}} = 0.$$
 (3.3)

Нетривіальне фізично обґрунтоване рішення цього рівняння є

$$\sigma_{\text{eff}} = \frac{3}{4} \left(A + \sqrt{B + A^2} \right), \tag{3.4}$$

де

$$A \equiv \left(\frac{2}{3} - \phi\right)\sigma_0 + \left(\phi - c - \frac{1}{3}\right)\sigma_2,$$
$$B \equiv \frac{4}{3}\left(\frac{2}{3} - c\right)\sigma_0\sigma_2.$$

Рис. 3.4: Дані симуляцій [78] з провідності як функції концентрації ядер c при (a) t=5 мкм та d=3 (\blacksquare), 5 (\square), 7 (\bullet), 9 (\circ) та 11 (\spadesuit) мкм; (б) d=5 мкм та t=3 (\blacksquare), 5 (\square), 7 (\bullet), 9 (\circ) та 11 (\spadesuit) мкм. Використані параметри наведені в Таблиці 3.2.

Таблиця 3.2 Використані параметри для обробки даних симуляцій, зображених на рис. 3.4 за формулою (2.36a).

(a)	d, mkm	3	5	7	9	11
	K/k	1.0	1.05	1.05	1.07	1.10
(б)	t, MKM	3	5	7	9	11
	K/k	1.08	1.05	1.06	1.07	1.06

Для серій експериментів на рис. 3.4 графіки залежностей $\sigma_{\rm eff}$ від c за (2.36a) та (3.4) не відрізняються.

Положення максимумів провідності $c_{\rm max}$ знаходиться за співвідношенням $\partial \sigma_{\rm eff}/\partial c=0$ та $\partial^2 \sigma_{\rm eff}/\partial c^2<0$. Через те, що біля цих максимумів виконується умова $\sigma_{\rm eff}\gg\sigma_0$, з рівняння (3.3) дістаємо для першої умови:

$$\frac{\partial \phi(c,\delta)}{\partial c} \bigg|_{c=c_{\text{max}}} = 1, \tag{3.6}$$

а похідні $\partial^2 \sigma_{\rm eff}/\partial c^2$ та $\partial^2 \phi/\partial c^2$ мають однаковий знак у точці $c=c_{\rm max}$. Згідно з рівняння (2.33), $\partial^2 \sigma_{\rm eff}/\partial c^2 < 0$ для $\delta > 0$. Таким чином, у точці $c=c_{\rm max}$, що

Рис. 3.5: Результати симуляцій [76]: (а) положення максимумів провідності c_{max} як функція δ , взяті з даних рис. 3.4 (Δ – (а) та \blacktriangle – (б)), та побудовані згідно (3.6), (2.33) та (3.1) (неперервна лінія); (б) значення σ_{max} як функції діаметру d при фіксованих σ_2 та t=3 (\blacksquare), 5 (\square), 7 (\bullet), 9 (\circ) та 11 (\blacklozenge) мкм, оброблені (неперервні лінії) в рамках (3.4), (3.6) та (3.1) при K=k (точкові лінії – те ж саме для t=3 та 5 мкм при K/k=1.15 та 1.07, відповідно).

знаходиться з умови (3.6), провідність дійсно досягає свого максимального значення, яке можна знайти з (3.4).

Залежність c_{max} від c згідно (3.6) зображена на рис. 3.5(а). Вона дуже добре (**як? похибки?**) узгоджується з даними симуляцій [76]. Цей факт відображає внутрішню послідовність приведеної процедури обробки даних. Залежність σ_{max} від діаметру частинок d (тобто δ) зображена на рис. 3.5(б). Видно, що приведена теорія відновлює майже всі дані симуляцій, крім даних з найменшими δ , тобто де похибка алгоритму апроксимації (а тому й результатів симуляцій) максимальна.

Треба зазначити, що за умовою $\sigma_1 \ll \sigma_0 \ll \sigma_2$, рівняння (3.6) та нерівність $\partial^2 \phi / \partial c^2 < 0$ можуть розглядатися як умови знаходження максимуму об'ємної концентрації оболонок $\phi - c$. Якщо частинки проникні, то показано, що цей максимум з'являється у точці $c = c_{\text{max}}$, на відміну від випадку твердих оболонок, для яких ϕ знаходиться з рівняння (??), а σ_{eff} немає локальних ма-

ксимумів. Один із способів виходу із даної ситуації це робота рамках підходу Накамури-Нана-Сміта, що був розглянутий у першому Розділі, де частинка із оболонкою замінялися однорідною твердою частинкою, а положення максимума провідності визначалося як підгінний параметр з експерименту.

3.1.3. Тестування моделі у випадку неоднорідних оболонок

Тестування результату (2.41a) проводиться на основі результатів симуляцій RRN [77]. На рис. 3.6 продемонстрована обробка даних симуляцій [77] використовуючи рівняння (2.41a), де $\phi(c,\delta)$, δ та $\sigma_2(u)$ представлені у виді, відповідно, (2.33), (3.1) та (3.2). Використані значення K та $\sigma_{\rm max}$ подані у Таблиці 3.3. Як видно за рисунку та даних середньоквадратичної похибки, теорія спроможна відновити дані симуляції у досить доброму наближенні. Зазначимо, що згідно з наданими аргументами для даних значень $\sigma'_{\rm max}/\sigma'_{\rm min}$, $\log_{10}(\sigma'_{\rm max}/\sigma'_{\rm min}) = 2(n-2)/n$. У випадках t=9 мкм (n=18) та t=11 мкм (n=22), що дають найкращі результати, зазначене рівняння дає $\log_{10}(\sigma'_{\rm max}/\sigma'_{\rm min}) \approx 1.78$ та 1.82, відповідно. Ці дані відрізняються від отриманих з підгонки не більш ніж на 17 та 12%, відповідно.

Tаблиця~3.3 Використані параметри для обробки даних симуляцій, зображених на рис. 3.6 за формулою (2.41a) з Гаусовим профілем (3.2) оболонок при $\sigma'_{\min} = \sigma_{\min},~\sigma_0 = 10^{-8}~\mathrm{C/cm},~\sigma_1 = 10^{-12}~\mathrm{C/cm}.$

(a)	d, mkm	3	5	7	9	11
	K/k	1.09	1.02	1.13	1.11	1.09
	$\log_{10}\left(\sigma_{ m max}/\sigma_{ m min} ight)$	1.83	1.89	1.82	1.88	1.98
(б)	t, MKM	3	5	7	9	11
	K/k	1.00	1.00	1.05	1.07	1.13
	$\log_{10}\left(\sigma_{ m max}/\sigma_{ m min} ight)$	1.90	1.89	1.85	1.85	1.87

Рис. 3.6: Точки: результати симуляцій [77] концентраційної залежності провідності систем частинок з гаусовим профілем оболонок при (a) t=5 мкм та d=3 (\blacksquare), 5 (\square), 7 (\bullet), 9 (\circ) та 11 (\blacklozenge) мкм; (б) d=5 мкм та t=3 (\blacksquare), 5 (\square), 7 (\bullet), 9 (\circ) та 11 (\blacklozenge) мкм. Неперервні лінії: теоретичні результати (2.41а) в рамках профілю (3.2) з параметрами, що представлені у Таблиці 3.3.

3.2. Застосування до твердих композитних електролітів

Експериментальні зразки ТКЕ LiI — Al_2O_3 виготовлялися наступним чином [79]. Суміш порошків безводного LiI та Al_2O_3 , висушеного при 600°C, у різних співвідношеннях перемішувались, запікалась при 550°C приблизно 17 годин, гасилась до кімнатної температури та дробилася. Все це виконувалось в сухій ємності, заповненій гелієм. Далі, для того щоб виготовити комірку конденсатора, відповідна зважена кількість порошку LiI — Al_2O_3 пресувалась до гранули у стальній матриці діаметром приблизно 1.5 см під тиском 690 МПА. Геометричні параметри гранули вимірювались поки вона ще знаходилась у матриці. До обох боків гранули були підключені літієві електроди зі стальними колекторами під тиском у 345 МПа. Вимірювання провідності отриманої комірки проводилися при 1 к Γ ц.

3.2.1. Процедура обробки експериментальних даних

Процедура аналізу даних [79] складається з наступних кроків.

- 1) Обробка даних за допомогою рівняння (2.41a), вважаючи ядра частинок непровідними $(x_1 \to 0)$, з наступними трьома типами профілів оболонок $x_2 = x_2(u)$:
 - а) однорідна оболонка:

$$x_2(u) = x_{2,1} + (1 - x_{2,1})\theta(u - \delta_1); \tag{3.7}$$

б) подвійна оболонка:

$$x_2(u) = x_{2,1} + (x_{2,2} - x_{2,1})\theta(u - \delta_1) + (1 - x_{2,2})\theta(u - \delta_2);$$
 (3.8)

в) неперервна гладка оболонка типу сигмоїди, що є більш послідовною з фізичної точки зору, ніж попередні:

$$x_2(u) = X_{2,1} + \frac{X_{2,2} - X_{2,1}}{1 + \exp\left(-\frac{u - \Delta_1}{\alpha}\right)} + \frac{1 - X_{2,2}}{1 + \exp\left(-\frac{u - \Delta_2}{\alpha}\right)}.$$
 (3.9)

Тут: $x_{2,i} = \sigma_{2,i}/\sigma_0$ – відносні провідності оболонок з відносними товщинами δ_i ; $X_{2,i}$, Δ_i та α виступають в ролі параметрів функції профілю оболонки. У наближенні $\alpha \to 0$ параметри $X_{2,i}$, Δ_i прямують до $x_{2,i}$ та δ_i , відповідно, а рівняння (3.9) приймає вигляд (3.8).

Всі параметри оболонок вважалися підгінними.

2) Аналіз та фізична інтерпретація отриманих профілів провідності. Об'ємна концентрація різних частин оболонки має максимум у різних концентраційних інтервалах, тож саме в останніх вклади відповідних частин профілю оболонки будуть домінуючими: в області малих концентрацій після порогу перколяції найбільш вагомим є вклад дальньої від ядра частини профілю; при збільшенні концентрації починають грати роль все ближчі частини. За рахунок цього, вважається, що різні частини профілю можуть ефективно враховувати вклади процесів та механізмів, що впливають на формування

ефективних електрофізичних властивостей системи на відповідному концентраційному проміжку. У цьому сенсі на практиці зручно використовувати модель зі ступінчатою функцією профілю (наприклад, (3.8)): концентраційний проміжок $(c_{c,j}, c_{c,j-1})$, що відповідає j-ій оболонці (j>1), можна визначити як інтервал між порогом перколяції $c_{c,j}$, що відповідає формуванню перколяційного кластеру за рахунок даної оболонки та знаходиться зі співвідношення $\phi(c_{c,j}, \delta_j) = 1/3$, та $c_{c,j-1}$, що відповідає формуванню перколяційного кластеру за рахунок сусідньої, ближчої до ядра, оболонки (при $j=1, c_{c,0}=1/3$).

чим більша різниця між провідностями сусідніх оболонок тим помітнішим буде вплив. З фізичної точки зору, якщо різниця між відносними провідностями сусідніх частин оболонки істотна, ці частини можна трактувати як ефективний прояв різних процесів.

3.2.2. Результати обробки концентраційної залежності

Результати обробки представлені на рис. 3.7 та у Таблиці 3.4. Добрі результати досягаються при умові, що $\sigma_2(r)$ можна розділити на дві істотно різні частини, суть яких полягає у наступному. По-перше, зазначимо, що застосована модель проникних оболонок є зручним методом моделювання ефективної мікроструктури та провідності системи, та способом аналізу можливих механізмів формування провідності; реальна провідність навколо твердих оболонок може відрізнятися від $\sigma_2(r)$.

Розглянемо, наприклад, модель (3.8), що адекватно описує всю множину розглянутих даних. В рамках цієї моделі, рівняння (2.41а) може бути еквівалентно представлено у виді системи двох рівнянь:

$$[1 - \phi(c, \delta_1)] \frac{\sigma_0(c) - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_0(c)} + c \frac{\sigma_1 - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_1} + [\phi(c, \delta_1) - c] \frac{\sigma_{2,1} - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_{2,1}} = 0,$$

$$(1 - \phi(c, \delta_1)) \frac{\sigma_0(c) - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_0(c)} = (1 - \phi(c, \delta_2)) \frac{\sigma_0 - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_0} + (\phi(c, \delta_2) - \phi(c, \delta_1)) \frac{\sigma_{2,2} - \sigma_{\text{eff}}}{2\sigma_{\text{eff}} + \sigma_{2,2}},$$
(3.10)

Рис. 3.7: (а) Експериментальні дані [79] (\circ) з $\sigma_{\rm eff}$ для ТКЕ LiI/Al₂O₃ та їх обробка в рамках а) однорідної (3.7) (точкова лінія), б) подвійної (3.8) (штрихована лінія) та в) сигмойдної (3.9) (неперервна лінія) моделей профілів $\sigma_2(r)$. Використані параметри приведені в Таблиці 3.4. Відповідні профілі оболонок представлені на рис. (б).

перше з яких можна вважати рівнянням для знаходження σ_{eff} в рамках моделі однорідної оболонки (3.7) для системи, де провідність матриці залежить від концентрації частинок за законом (3.10). При низьких концентраціях має місце $\sigma_{\text{eff}} \approx \sigma_0(c)$, тобто σ_{eff} визначається через $\sigma_0(c)$, що в свою чергу залежить від параметрів зовнішньої частини профілю $\sigma_2(r)$.

Залежність $\sigma_0(c)$, знайдена з рівняння (3.10), для ТКЕ LiCl — Al₂O₃ [79] показана на рис. 3.8. Для $c\lesssim 0.1$ ця залежність дуже схожа на низькоконцентраційну область залежності $\sigma_{\rm eff}$ від c на рис. 3.7. Це означає, внутрішні оболонки $\sigma_2(r)$ не вносять свій вклад в $\sigma_{\rm eff}$ в цій області, не зважаючи на їх велике значення провідності. Ситуація змінюється поблизу порогу перколяції $c_{\rm c}\approx 0.126$ (що визначається за товщиною внутрішньої оболонки δ_1) — значну роль починає грати внутрішня частина $\sigma_2(r)$.

Процеси в матриці, що збільшують провідність, можуть включати: фор-

Параметри, що використовувались для обробки даних [79] з $\sigma_{\rm eff}$ для ТКЕ LiI/Al₂O₃ в рамках однорідної (3.7), подвійної (3.8), та сигмойдної (3.9) моделей профілів $\sigma_2(r)$; $\sigma_0 = 2.5 \times 10^{-7} \, {\rm S/cm}, \, x_1 = 0.$

a)	x_2	δ			
	150	0.5			
б)	$x_{2,1}$	$x_{2,2}$	δ_1	δ_2	
	185	14	0.40	1.50	
в)	$x_{2,1}^*$	$x_{2,2}^*$	δ_1^*	δ_2^*	α
	185	12	0.38	1.41	0.03

мування поблизу поверхні частинок області просторового заряду за рахунок високої концентрації дефектів в полікристалічній матриці [81]; розвинення високопровідної мережі зв'язаних дислокацій, що викликані механічним або термальним шляхом [82–84]; швидкий іонний транспорт уздовж поверхні розділу матриця-частинки та/або дислокацій [85, 86]; однорідне добування матриці за рахунок розчинення неоднорідностей та малих частинок [87–89].

Типовими прикладами міжфазних процесів, що призводять до високої провідності областей навколо частинок є: формування за рахунок адсорбції (десорбції) області просторового заряду – великої концентрації точкових дефектів [90]; швидкий іонний транспорт уздовж границі частинка-матриця за рахунок пошкодження структури матриці [85,91]; стабілізація провідних нерівноважних станів за рахунок прилеглих частинок [43,92]; формування нової "суперструктури" за рахунок хімічних реакцій у міжфазній області [93]. Для ТКЕ LiI — $-Al_2O_3$, внутрішня частина $\sigma_2(r)$ може бути асоційована з областю просторового заряду. Дійсно, наші значення $\delta_1=0.4$ та $x_{2,1}=185$ добре корелюють з результатами Джіанга та Вагнера $\delta=0.4,\ x_2=324$ [94,95] отриманих для області просторового заряду, моделюючи систему у вигляді кубічної гратки з ідеальним розподілом частинок; надані оцінки отримані в рамках комбінування методів теорії перколяції та моделі просторового заря-

Рис. 3.8: Залежність провідності матриці від c (неперервна лінія), згідно рівняння (3.10) для подвійного профілю на рис. 3.7(б) (та його параметрів у стрічці б) Таблиці 3.4). Штрихована лінія: поріг перколяції $c_{\rm c}\approx 0.126$ у системі з внутрішньою оболонкою.

ду.

Для інших типів композитних електролітів, у формуванні провідності оболонки та матриці можуть грати й інші механізми.

3.3. Застосування до полімерних композитних електролітів

В дисертаційній роботі проаналізовано ефективну квазістатичну провідність двох типі ПКЕ: з неорганічною дисперсною фазою (NASICON [11], $\theta - \text{Al}_2\text{O}_3$ [44]), на основі РЕО з додаванням NaI, та з органічною дисперсною фазою (PAAM), на основі РЕО [11,44] та ОМРЕО [44] з додаванням LiClO₄.

Для виготовлення КПЕ полімерна матриця та сіль розчинялися у ацетонітрилі куди додавалися частинки дисперсної фази. Отримана суспензія перемішувалась до видимої однорідності та поміщалась на плоску скляну або тефлонову підкладку. Розчинник випарювався під вакуумом у вакуумному ексикаторі. Далі отримані композити висушувалися при 60°С приблизно 48

годин до будь-яких вимірювань. РААМ отримувався полімеризацією акриламіда в ацетонітрильному розчині використовуючи пероксид бензолу. Далі він висушувався при 100°С 48 годин. Всі етапи проходили у наповненій аргоном сухій ємності.

Провідність зразків вимірювалась методами імпедансної спектроскопії у частотному проміжку 5 Гц–13 Гц. Мікроструктура зразків вивчалася рентгенівською дифрактометрією. Для отримання рівня кристалізованості використовували метод диференційної скануючої калориметрії.

3.3.1. Процедура обробки експериментальних даних

Процедура обробки експериментів складається з наступних кроків:

- 1) (ДОПИСАТИ) Для обробки даних [79] використовувалось рівняння (2.41a) для випадку непровідних ядер $(x_1 \to 0)$ для наступних трьох типів профілів оболонок $x_2 = x_2(u)$ (u > 0):
 - а) потрійна оболонка:

$$x_2(u) = x_{2,1} + (x_{2,2} - x_{2,1})\theta(u - \delta_1) + (x_{2,3} - x_{2,2})\theta(u - \delta_2) + (1 - x_{2,3})\theta(u - \delta_3);$$
(3.11)

б) неперервна гладка оболонка типу сигмоїди:

$$x_2(u) = x_{2,1}^* + \frac{x_{2,2}^* - x_{2,1}^*}{1 + \exp\left(-\frac{u - \delta_1^*}{\alpha}\right)} + \frac{x_{2,3}^* - x_{2,2}^*}{1 + \exp\left(-\frac{u - \delta_2^*}{\alpha}\right)} + \frac{1 - x_{2,3}^*}{1 + \exp\left(-\frac{u - \delta_3^*}{\alpha}\right)}.$$
(3.12)

Тут: $x_{2,i} = \sigma_{2,i}/\sigma_0$ – відносні провідності оболонок з відносними товщинами δ_i (відносні відстані зовнішнього радіусу i-ої оболонки до поверхні ядра); $x_{2,i}^*$, δ_i^* та α виступають в ролі параметрів функції профілю оболонки. У наближенні $\alpha \to 0$ параметри $x_{2,i}^*$, δ_i^* прямують до $x_{2,i}$ та δ_i , відповідно, а рівняння (3.9) приймає вигляд (3.8). Верхня межа інтегрування δ_M була зафіксована у значенні 5, що не вливало на остаточні результати розрахунку.

Для початку розглянемо застосування теорії до одних з перших експериментальних результатів з провідності композитних електролітів [79].

3.3.2. Результати обробки концентраційних залежностей

Експериментальні дані [11,44] для декількох типів ПКЕ на основі РЕО та ОМРЕО свідчать про немонотонну залежність $\sigma_{\rm eff}$ від c, з максимумом $\sigma_{\rm eff}$, що знаходиться у межах значень c від 0.05 до 0.1 для РЕО–NaI–NASICON та (PEO)₁₀–NaI– θ Al₂O₃ (див. рис. 3.9a), та від 0.2 до 0.3 для РЕО–LiClO₄–PAAM та ОМРЕО–LiClO₄–PAAM (рис. 3.10a), та з можливим мінімумом $\sigma_{\rm eff}$ при значенні c близького до 0.1 для ОМРЕО–LiClO₄–PAAM. Результати наших підгонок (див. рис. 3.9a, 3.10a та Таблицю ??) для різних видів $\sigma(r)$ оболонки (рис. 3.96 та 3.106, відповідно) дають явну якісну уяву про електричну структуру її неоднорідності: добре узгодження теорії з даними [11,44] (див. рис. 3.11 — відсоткове відхилення експериментальних даних від представлених підгонок за параметрами та відповідними значеннями R^2 з Таблиці ??) досягається в рамках моделі подвійної оболонки для ПКЕ з неорганічними провідними (NASICON) та непровідними (θ Al₂O₃) доданками, та моделі потрійної оболонки для ПКЕ з органічними (PAAM) доданками.

Використання моделі неперервної оболонки, що з фізичної точки зору здається більш адекватним, може істотно змінити форму профілів провідності оболонки, які стають дуже схожими на Гаусів профіль, що був розглянутий у Розділі 3.2. Однак, щонайменш для зазначених ПКЕ, такі профілі не призводять до значного покращення результатів для $\sigma_{\rm eff}$ у порівнянні з дискретними профілями оболонки, але дещо покращують значення R^2 . Це дає підставу застосовувати модель дискретних профілів до аналізу температурної залежності $\sigma_{\rm eff}$ (див. наступний Розділ).

Базуючись на отриманих значеннях (Таблиця $\ref{eq:condition}$), можна зробити висновок, що $\sigma_{\rm eff}$ формується на основі декількох наступних механізмів:

1. Аморфізація полімерної матриці навколо частинок дисперсної фази, що суть формування аморфної високопровідної (за рахунок значної рухливості полімерних молекул та, як наслідок, підвищеної іонної провідності) полімерної фази у області границі полімер-доданок. Цей ефект

Рис. 3.9: (а) Експериментальні дані з $\sigma_{\rm eff}$ як функції від c для ПКЕ РЕО–NaI–NASICON [11] (\circ) та (РЕО)₁₀–NaI– θ -Al₂O₃ [44] (\bullet), та їх підгонки в рамках моделей однорідної, подвійної та неперервної оболонок. Позначення вказують на відповідні параметри, що приведені у Таблиці ??. (б) Відповідні одночастинкові профілі провідності, що були використані для моделювання мезоскопічної структури ПКЕ.

поясняється уповільненням кристалізації полімеру поблизу поверхні частинок, що грають ролі як центрів зародження полімерної фази, так й механічних перешкод для росту полімерних кристалітів.

2. Вплив твердості дисперсної фази на аморфну фазу матриці, що проявляються у зниженні гнучкості сегментів полімерних ланок та, як наслідок, пониженні іонної рухливості в околі розділу дисперсної та полімерної фаз. Це призводить до зниження локального значення провідності $\sigma_{2,1}$ у порівнянні зі значеннями на більших відстанях від поверхні розділу. Вважається також, що найближча до поверхні розділу оболонка, з провідністю $\sigma_{2,1}$, бере до уваги ефекти, пов'язані з несферичною формою частинок (наприклад, для полімерних глобул

Рис. 3.10: (а) Експериментальні дані з $\sigma_{\rm eff}$ як функції від c для ПКЕ РЕО-LiClO₄–РААМ [11,44] (\circ) та ОМРЕО-LiClO₄–РААМ [44] (\bullet), та їх підгонки в рамках моделей подвійної, потрійної та неперервної оболонок. Позначення вказують на відповідні параметри, що приведені у Таблиці ??. (б) Відповідні одночастинкові профілі провідності, що були використані для моделювання мезоскопічної структури ПКЕ.

PAAM).

3. Ефективне зниження (у порівнянні з чистим матеріалом) провідності високопровідних частинок в ПКЕ за рахунок формування низькопровідного шару на межі розділу дисперсної та полімерної фаз.

Також цікавий той факт, що КПЕ на основі ОМРЕО демонструють пік з подальшою западиною у той час, як КПЕ на основі РЕО демонструють тільки пік (див. рис. 3.96 та 3.106) у поведінці профілів їх оболонок. Для того щоб це пояснити, повернемося до визначення проникних оболонок та зазначимо, що їх профілі провідності не еквівалентні реальному розподілу провідності навколо частинок, а представляють собою зручний спосіб моделювання ефективної мікроструктури реальних КПЕ. Електричні властивості

Рис. 3.11: Відносні відхилення експериментальних даних з залежностей $\sigma_{\rm eff}$ від c для ПКЕ РЕО–NaI–NASICON [11], (PEO)₁₀–NaI– θ -Al₂O₃ [44], PEO–LiClO₄–PAAM [11, 44] та ОМРЕО–LiClO₄–PAAM [44] від підгінних кривих 1с (\square), 2с (\triangle), 3b (∇) та 4b (\Diamond), відповідно (див рис. 3.9 та 3.10). Замальовані точки: те ж саме для кривих 1d, 2d, 3c, and 4c, відповідно. Процентне відхилення $\approx 1040\,\%$ експериментальної точки $c\approx 0.18,\,x_{\rm eff}\approx 2.8$ для (PEO)₁₀–NaI– θ -Al₂O₃ (п'ята • на рис. 3.9) від кривої 2c не показана. Значення R^2 для вказаних підгонок приведені у Таблиці ??.

зовнішніх частин оболонок визначають поведінку $\sigma_{\rm eff}$ при малих значеннях c, коли на $\sigma_{\rm eff}$ у значній мірі впливає матриця. Якщо чистий полімер, з якого складається матриця, має відносно високу провідність (наприклад, аморфний ОМРЕО по відношенню до напівкристалічного РЕО), тоді додавання низькопровідного полімеру (такого як РААМ) може істотно знизити його провідність (наприклад, за рахунок формування комплексів катіонів Li⁺ та РААМ). В рамках запропонованого підходу цей ефект можна взяти до уваги за рахунок мінімуму у дальній частині модельного профілю $\sigma_2(r)$. Зі зростанням c все більшу роль починають грати високопровідні аморфні області навколо частинок, що призводить до зростання $\sigma_{\rm eff}$.

На останок, порівняємо результати модифікованої для ПКЕ теорії Накамури-

Рис. 3.12: Порівняння результатів потрійної моделі (неперервні лінії 3b та 4b, див. Таблицю ??) з модифікованою для ПКЕ теорією Накамури-Нана [44] (штрихована лінія, див. Таблицю 7 та рис. 10 у [44]), відносно обробки даних [44] для РЕО–LіСlO₄–РААМ (◦) та ОМРЕО–LіСlO₄–РААМ (після отжигу) (•) при 25°С (концентрація LіClO₄ дорівнювала 10 mol % по відношенню до концентрації ефіру кисню).

Нана та розвинутої теорії для двох систем з рис. 3.10 (див. рис. 3.12). З рисунку явно видно, що розвинута теорія більш гнучка при кількісному описі електричної провідності ПКЕ.

3.3.3. Результати обробки температурних залежностей

Результати застосування моделі потрійної оболонки до трьох изотерм концентраційних залежностей $\sigma_{\rm eff}$ [44] для ПКЕ ОМРЕО–LiClO₄–PAAM (з концентрацією LiClO₄ 10 mol %, після отжигу) представлені на рис. 3.13, 3.14 та у Таблиці 3.7; параметри $\delta_1 = 0.40$, $\delta_2 = 0.80$ та $\delta_3 = 1.40$ (див. Таблицю ??) вважалися не залежними від температури (що, в загальному випадку, не є вірним). Підгінні значення параметрів σ_0 та $\sigma_{2,i}$ були використані для оцінки параметрів рівняння Φ Т Φ для відповідних компонент ПКЕ; вони представ-

Рис. 3.13: Експериментальні дані [44] при $t=0^{\circ}\mathrm{C}$ (\circ), 25°C (\bullet) та 100°C (∇) ізотерм σ_{eff} для ПКЕ ОМРЕО–LіClO₄–PAAM як функції концентрації РААМ. Штриховані лінії: підгонки за законом ФТФ [44] за параметрами, що вказані у Таблиці 5 в [44]. Неперервні лінії: підгонки з використанням моделі потрійної оболонки; параметри вказані в Таблиці 3.7. Відносні відхилення цих даних та значення R^2 для підгонок в рамках запропонованої моделі представлені на рис. 3.14.

лені у Таблиці 3.8. Ці дані були використані для того, щоб відновити температурні залежності σ_{eff} , що представлені в [44], використовуючи рівняння (1.6) у рамках моделі трьох оболонок; ці результати представлені на рис. 3.15 та 3.16.

Зважаючи на отримані результати, треба зробити декілька зауважень:

1. Наші оцінки $B=1270{
m K}$ та $T_0=190{
m K}$ для чистого ОМРЕО дуже близькі за значенням до оцінок, отриманих в [44]: $B=1200{
m K}$ та $T_0=195{
m K}$. Однак преекспоненцальний множник A, в рамках наших оцінок, істотно відрізняється від значень [44]: A=36.1 та $27.0{
m \, Cm\cdot \, K^{1/2}/cm}$, відповідно. Ураховуючи той факт, що наші теоретичні криві краще відновлюють експериментальні дані, цей результат може свідчити про те, що ефективні електричні властивості полімерної матриці можуть

Рис. 3.14: Відносні відхилення даних [44] експериментальних концентраційних залежностей $\sigma_{\rm eff}$ для трьох ізотерм ПКЕ ОМРЕО–LiClO₄–PAAM від підгонок за приведеною теорією, що представлені на рис. 3.13. Позначення \circ , \bullet та ∇ відповідають тим самим даним, що на рис. 3.13. Значення R^2 для цих підгонок 87.2, 91.4 та 94.5 %, відповідно.

змінюватися в процесі приготування ПКЕ, можливість чого вже була показана для ТКЕ.

- 2. Всі наші оцінки параметрів ФТФ для оболонок лягають у допустимі границі, вказані у [44] для всіх зразків ОМРЕО–LiClO₄–PAAM. З цієї точки зору наші результати узгоджені.
- 3. Беручи до уваги початкові неточності в значеннях порвідності оболонок, що були отримані підгонкою ізотерм, можна зробити висновок, що експериментальні дані для зразків з 5, 25 та 40 % вмісту РААМ достатньо добре відновлюються нашою теорією. Дані зразків з 10 та 50 % вмісту РААМ відновлюються якісно; істотного покращення можна досягти за рахунок домноження теоретичних результатів на сталий множник. Цей факт можна пояснити зазначеними розбіжностями в значеннях A для провідності матриці.

3.4. Висновки

В даному Розділі модель ядро-оболонка в рамках МКГ була застосована до вивчення ефективної квазістатичної провідності композитних електролітів на основі неорганічних та органічних (полімерних) матриць. Спершу модель було протестовано на числових результатах симуляцій RRN для однорідного та неоднорідного шарів. Показано, що алгоритм RRN не є достатньо точним в сенсі апроксимації неперервної системи шарів системою кубів. Для уточнення опису реальної системи вводився параметр апроксимації, що дозволив з достатньою точністю відновити дані на всьому проміжку концентрацій. Значні похибки виникали лише в області перколяцій провідності через те, що поріг перколяції в обмежених системах не є точним, а носить складний негаусів характер. Далі модель

Tаблиця 3.5: Параметри, що були використані для обробки даних [11, 44] з концентраційних залежностей для ПКЕ при $t=25\,^{\circ}\mathrm{C}$ в рамках моделей дискретних (рівняння (3.7)) та неперервних (рівняння (3.9)) оболонок та значення R^2 для найкращих результатів.

Оболонка	La	x_1	$\delta_1{}^{ m b}$	$\delta_2{}^{ m b}$	$x_{21}^{\rm b}$	$x_{22}^{\rm b}$	R^2 , %	
Оболонка			$\delta_1^{*{ m c}}$	$\delta_2^{*{ m c}}$	x_{21}^{*c}	x_{22}^{*c}	11 , /0	
PEO-NaI-NASICON ($\sigma_0 \approx 9.86 \times 10^{-9} \text{ S/cm}$)								
однорідна	1a	1.4×10^4	1.6	_	1000	_	_	
однорідна	1b	1.4	1.6	_	1300	_	_	
подвійна	1c	70	1.0	1.55	400	20000	99.4	
неперервна,	1d	70	1.0	1.55	400	6000	95.5	
$\alpha = 0.05$								
$(PEO)_{10}$ -NaI- θ -Al ₂ O ₃ $(\sigma_0 \approx 1.54 \times 10^{-8} \text{ S/cm})$								
однорідна	2a		2.1	_	230	_	_	
подвійна	2b		0.7	2.1	0.12	435	92.8	
подвійна	2c	6.5×10^{-13}	0.8	2.1	0.12	520	98.6	
неперервна,	2d		0.9	2.1	0.12	560	95.0	
$\alpha = 0.05$								

^а Використані позначення для підгонок на відповідних рисунках.

^b Параметри для моделей дискретних оболонок.

^с Параметри для моделей неперервних оболонок.

 $Tаблиця\ 3.6$: Параметри, що були використані для обробки даних [11, 44] з концентраційних залежностей для ПКЕ при $t=25\,^{\circ}\mathrm{C}$ в рамках моделей дискретних (рівняння (3.11)) та неперервних (рівняння (3.12)) оболонок та значення R^2 для найкращих результатів.

		I	Г		1	T	1	1	
Оболонка	La	x_1	$\delta_1{}^{ m b}$	$\delta_2^{ m b}$	$\delta_3{}^{ m b}$	$x_{21}^{\rm b}$	x_{22}^{b}	$x_{23}^{\rm b}$	R^2 , %
Ooolonka			$\delta_1^{*{ m c}}$	$\delta_2^{*{ m c}}$	$\delta_3^{*{ m c}}$	x_{21}^{*c}	x_{22}^{*c}	x_{23}^{*c}	
PEO-LiClO ₄ -PAAM ($\sigma_0 \approx 6.12 \times 10^{-7} \text{ S/cm}$)									
подвійна	3a		0.15	0.60	_	5.0	800	_	88.7
потрійна	3b	16 × 10-6	0.16	0.50	0.80	5.0	1800	27	92.3
неперервна,	3c	1.6×10^{-6}	0.32	0.45	0.48	2.0	9400	27	92.9
$\alpha = 0.03$									
OMPEO-LiClO ₄ -PAAM, після отжигу ($\sigma_0 \approx 1.61 \times 10^{-5} \; \mathrm{S/cm}$)									
подвійна	4a	6.2×10^{-8}	0.36	0.75	_	0.60	75	_	46.3
потрійна	4b		0.40	0.80	1.40	0.57	750	0.10	93.8
неперервна,	4c		0.54	0.64	1.53	0.44	14200	0.10	81.7
$\alpha = 0.02$									

^а Використані позначення для підгонок на відповідних рисунках.

^b Параметри для моделей дискретних оболонок.

^с Параметри для моделей неперервних оболонок.

 $\it Tаблиця~3.7$: Значення провідності, в См/см, що були використані для підгонок ізотерм концентраційних залежностей $\sigma_{\rm eff}$ для ПКЕ ОМРЕО–LiClO₄–PAAM ^{a,b} (див. рис. 3.13).

Складова	t = 0 °C	$t = 25\mathrm{^oC}$	$t = 100\mathrm{^oC}$
Матриця, σ_0	4.64×10^{-7}	1.57×10^{-5}	1.78×10^{-3}
Перша оболонка, σ_{21}	5.75×10^{-7}	8.70×10^{-6}	4.21×10^{-4}
Друга оболонка, σ_{22}	1.025×10^{-3}	7.74×10^{-3}	1.00×10^{-1}
Третя оболонка, σ_{23}	1.07×10^{-7}	3.12×10^{-6}	1.36×10^{-4}

 $^{^{\}rm a}$ 3 молярною долею LiClO₄ 10 %.

Складова	$A, \operatorname{Cm} \cdot \operatorname{K}^{1/2}/\operatorname{cm}$	<i>B</i> , K	T_0 , K
Матриця, σ_0	36.1 ^a	1270	190
Перша оболонка, σ_{21}	4.33	1210	180
Друга оболонка, σ_{22}	71.1	634	197
Третя оболонка, σ_{23}	0.229	720	212

 $^{^{\}rm a}$ 3 молярною долею LiClO₄ 10 %.

^b За рахунок формування комплексів катіонів Li⁺ з ланцюгами РААМ, ядра РААМ–LiClO₄ непровідні, та мають при кімнатній температурі провідність $\sigma_1 \sim 1 \times 10^{-12}$ См/см [44]. Це значення й було використано в наших розрахунках. Зростання σ_1 на декілька порядків не вплинуло на отримані результати (у границях потрібної точності).

Рис. 3.15: Експериментальні дані [44] для температурної залежності $\sigma_{\rm eff}$ ПКЕ ОМРЕО–LiClO₄–PAAM (з молярною концентрацією LiClO₄ 10 %, після отжигу) з 5 (∇), 10 (\circ), 25 (\square), 40 (\blacktriangle) та 50 (\bullet) % об'ємної концентрації РААМ. Штриховані лінії, (b): підгонки за Φ T Φ , використовуючи параметри з Таблиці 5 в [44], що запропоновані відповідними авторами для цих ПКЕ при 10 та 50 % РААМ. Неперервні лінії: результати наших розрахунків в рамках моделі трьох оболонок, вважаючи, що провідності складових підкоряються закону Φ T Φ (1.6) з параметрами, представленими у Таблиці 3.8. Точкові лінії, (b): те ж саме, але з використанням сталого множнику для $\sigma_{\rm eff}$: 0.40 $\sigma_{\rm eff}$ та 0.75 $\sigma_{\rm eff}$ для ПКЕ з 10 та 50 % РААМ, відповідно. Відносні відхилення представлених даних від експериментальних та значення R^2 для розрахованих кривих представлені на рис. 3.15.

Рис. 3.16: Відносні відхилення температурних залежностей даних $\sigma_{\rm eff}$ [44] для ПКЕ ОМРЕО–LiClO₄–PAAM (з молярною концентрацією LiClO₄ 10 %, після отжигу) від розрахованих кривих, зображених на рис. 3.15. Відхилення розраховані для всіх зразків ПКЕ з 5 (∇), 10 (\circ), 25 (\square), 40 (\blacktriangle) та 50 (\bullet) % РААМ. Значення R^2 для зазначених кривих дорівнюють, відповідно, 94.8, 94.0, 83.4, 77.5 та 96.0 %.

РОЗДІЛ 4

ЕФЕКТ ЕЛЕКТРИЧНОЇ ПЕРКОЛЯЦІЇ В СИСТЕМАХ ТИПУ ІЗОЛЯТОР-ПРОВІДНИК

В даному розділі аналізується класичний ефект електричної перколяції в рамках найпростішої системи непровідної матриці та провідних частинок з однорідною оболонкою за умови $\sigma_0 \ll \sigma_2 \ll \sigma_1$. Знаходиться залежність порогу перколяції від характеристик системи. Знаходяться критичні індекси системи та аналізується метод їх порівняння з експериментально знайденими (ефективними) критичними індексами. Проводиться порівняння результатів результатів з експериментаьними даними систем на основі КСІ з частинками Ад, покритими проникним оксидним шаром, та систем на основі парафіну с частинками термографіту, заліза, алюмінію, СиО та Fe2O3. Аналізується ефект подвійної перколяції.

4.1. Аналіз провідності моделі з електрично однорідною оболонкою

Загальний розв'язок рівняння (2.36б) робиться за допомогою формул Кардано, однак аналіз основних характеристик моделі можна зробити виходячи з простіших міркувань. Для зручності в (2.36а) та (2.36б) перейдемо до обезрозмірених змінних $x = \sigma_{\rm eff}/\sigma_1, \ y = \varepsilon_{\rm eff}/\varepsilon_0$, та $x_i = \sigma_i/\sigma_1, \ y_i = \varepsilon_i/\varepsilon_0 \ (i=0,1,2)$. Будемо розглядати системи з $x_0 << 1$ та $y \geqslant 1$.

Рис. 4.1: Ефекти перколяції (штрихована лінія, $\delta=0$) та "подвійної" перколяції (неперервна лінія, $\delta=0.05$); $x_0=1\times 10^{-10},\, x_2=5\times 10^{-5}.$

4.1.1. Поріг електричної перколяції

У наближені непровідної матриці $(x_0 \to 0)$ рівняння (2.36a) має три розв'язки: x=0 та

$$x = \frac{3}{4} \left[\left(c - \frac{1}{3} \right) + \left(\phi - c - \frac{1}{3} \right) \pm \sqrt{\frac{4}{3} \left(\phi - \frac{1}{3} \right) x_2 + \left[\left(c - \frac{1}{3} \right) + \left(\phi - c - \frac{1}{3} \right) x_2 \right]^2} \right].$$
(4.1)

Через те, що $x_2 > 0$, фізично послідовний нетривіальний результат (зі знаком плюс перед коренем) з'являється тільки за умови, що

$$\phi(c_c, \delta) = \frac{1}{3} \tag{4.2}$$

та не залежить від x_2 .

Відношення (4.2) визначає поріг перколяції c_c ефективної провідності. Його значення визначається лише геометрією поверхневого шару та не залежить від його провідності або проникності. Переходячи до границі $x_2 \to 0$ або $\delta \to 0$, отримуємо відоме значення порогу перколяції для СМБ.

Наші розрахунки c_c як функції δ показані на рис. 4.2 для виду (2.33) функції ϕ . Аналіз показав, що для реалістичних значень концентрації $c \lesssim 0.5$,

Рис. 4.2: Ефекти перколяції (штрихована лінія, $\delta = 0$) та "подвійної" перколяції (неперервна лінія, $\delta = 0.05$); $x_0 = 1 \times 10^{-10}$, $x_2 = 5 \times 10^{-5}$.

для знаходження порогу може бути використане співвідношення $c_c = \frac{1}{3}(1 + \delta)^{-3}$.

У околі порогу перколяції $c_c \ (c \to c_c + 0)$ для ненульових δ , формула (4.1) приймає форму

$$x \approx \frac{3}{4}x_2 \left[1 + \frac{\frac{1}{3} + c(1 - x_2)}{\frac{1}{3} - c(1 - x_2)} \right] \left(\phi - \frac{1}{3} \right).$$
 (4.3)

Відповідно, ефективна провідність $\sigma \propto (c-c_c)^t$, де критична експонента $t \approx 1$. Ефективна проникність, як це видно з рівняння (2.36б) аномально росте при $x_0 \to 0$. Останній факт відповідає аргументам наведеним у [22].

4.1.2. Ефективні критичні індекси провідності

На практиці, як поріг перколяції c_c так і критичний індекс t знаходяться шляхом інтерполяції експериментальних даних з провідності $\sigma = \sigma(c)$, отриманих для деякого інтервалу концентрацій $c \in [c_1, c_2]$ поблизу c_c $(c_1 \to c_c + 0)$, за скейлінговим законом $\sigma = A(c - c_c)^t$, де A і t не залежать від c. Тоді,

$$t_{eff} = \lg \frac{\sigma(c_2)}{\sigma(c_1)} / \lg \frac{c_2 - c_c}{c_1 - c_c},$$
 (4.4)

та воно вважається не залежним від c, в той час як, згідно з асимптотикою (4.3), навіть малі відхилення c від c_c викликають значні зміни виразу

Рис. 4.3: Ефективний критичний індекс провідності як функція c_2 при фіксованому c_1 , $\delta=0.1$ ($c_c\approx0.251$) та $x_2=5\times10^{-5}$, розрахований за формулами (4.1) та (4.4). Знизу догори, $c_1=0.26,0.27,0.28$.

в квадратних дужках, який в свою чергу пропорційний до A. Це значить, що пряме використання зазначеної процедури та формули (4.4) до системи з провідністю (4.1) призведе до залежності ефективного (вимірюваного на експерименті) критичного індексу t_{eff} до параметрів c_1 та c_2 (рис. 4.3). Зокрема, для даного $\delta \neq 0$, t_{eff} зростає зі змінами інтервалу $[c_1, c_2]$ $(c_2 < 1/3)$: (а) зсув до більших значень c (при фіксованій ширині інтервалу); (б) розширення інтервалу з фіксованим значенням c_1 . Зазначимо, що поріг перколяцій, знайдений згідно цієї процедури, буде перевищувати c_c .

Різні тривимірні моделі перколяції [34] та розрахунки ренорм групи [96,97] дають оцінки для $t \approx 1.3 \div 1.7$ та $\approx 1.9, 2.14$, відповідно. Експериментальні значення t зазвичай лежать у проміжку $1.5 \div 2$ та іноді можуть бути навіть в два рази вище [9]. Як видно з рис. 4.3 наша теорія може відновити всі ці значення.

Для реальних систем $x_0 \neq 0$, хоча й може бути дуже малим. Взявши це до уваги перколяційна поведінка x в залежності від c змінюється на гладку функцію, з різко зростаючим кутом нахилу поблизу c_c . Водночає, максимальне значення y стає обмеженим зверху та спадає з ростом x_0 (рис. 4.4). Положення максимуму зсувається до менших концентрацій з ростом δ (рис. 4.5).

Рис. 4.4: Вплив провідності матриці на ефективну провідність. Згори донизу, $x_0 = 1 \times 10^{-6}$, 1×10^{-5} , та 1×10^{-4} . Інші параметри: $y_1 = 1.5$, $y_2 = 1$, $x_2 = 0.05$, $\delta = 0.005$.

Розрахунки показують, що воно практично не залежить від x_2 та насправді співпадає з c_c .

Нижче порогу перколяції ефективна провідність зазвичай апроксимується скейлінговим законом $\sigma = B(c_c-c)^{-s}$. За наявності експериментальних даних на деякому інтервалі $[c_1,c_2]$ $(c_2\to c_c-0)$ ефективні значення s_{eff} критичного індексу s знаходяться зі співвідношення:

$$s_{eff} = -\lg \frac{\sigma(c_2)}{\sigma(c_1)} / \lg \frac{c_c - c_2}{c_c - c_1}. \tag{4.5}$$

Наші оцінки s_{eff} згідно з формулами (2.36а) та (4.5) показані на рисунку 4.6. Вони добре корелюють з типовими теоретичними [96, 97] та експериментальними значеннями [9] значеннями 0.75 та $0.7 \div 1.0$, відповідно.

Рис. 4.5: Вплив товщини оболонки на ефективну провідність. З права наліво, $\delta=0,\,0.05$ та 0.10. Інші параметри: $y_1=1.5,\,y_2=1,\,x_0=1\times 10^{-5},\,x_2=0.05.$

4.2. Поведінка квазістатичної ефективної проникності

Згідно з рівнянням (2.36б) ефективна проникність розраховується наступним чином:

$$\varepsilon = x \frac{(1-\phi)\varepsilon_0 + c\frac{(2x+x_0)^2}{(2x+1)^2}\varepsilon_1 + (\phi-c)\frac{(2x+x_0)^2}{(2x+x_2)^2}\varepsilon_2}{(1-\phi)x_0 + c\frac{(2x+x_0)^2}{(2x+1)^2} + (\phi-c)\frac{(2x+x_0)^2}{(2x+x_2)^2}x_2}.$$
(4.6)

Для слабо провідних систем $(x_0 \to 0)$ та за умовою $x \ll 1$, зазначимо три наступних випадки.

- 1. Система знаходиться нижче порогу перколяції за умов $x \ll \sqrt{x_0}$, $x \ll \sqrt{x_0x_2}$, $x \ll x_2$ (тобто $\sigma_{\rm eff} \ll \sqrt{\sigma_0\sigma_1}$, $\sigma_{\rm eff} \ll \sqrt{\sigma_0\sigma_2}$ та $\sigma_{\rm eff} \ll \sigma_2$). Тоді основний вклад в чисельник та знаменник вносять перші доданки, тож очікується, що $\varepsilon_{\rm eff} \sim x \sim (c_c c)^{-s}$.
- 2. Система вище порогу перколяції та $x \gg \sqrt{x_0}$, $x \gg \sqrt{x_2}$, $x \gg x_2$ $(\sigma_{\text{eff}} \gg \sqrt{\sigma_0 \sigma_1}, \ \sigma_{\text{eff}} \gg \sqrt{\sigma_1 \sigma_2} \ \text{та} \ \sigma_{\text{eff}} \gg \sigma_2)$. Тепер основний вклад вносять перший та третій доданки в чисельнику (останній майже не залежить від x) та другий вклад у знаменнику. Відповідно, залежність

Рис. 4.6: Ефективний критичний індекс провідності нижче c_c як функція x_0 для $\delta=0.1$ ($c_c\approx0.251$) та $x_2=5\times10^{-5}$, розрахована за формулами (2.36а) та (4.5) при $c_1=0.24$ та $c_2=0.25$.

 $\varepsilon_{\rm eff}$ від c очікується близькою до $\varepsilon_{\rm eff} \sim x^{-1} \sim (c-c_c)^t$ з константою пропорціональності слабко залежною від c.

Критичні індекси у двох попередніх скейлінгових залежностях не залежать від проникностей ε_i компонент системи.

3. Система знаходиться близько до порогу перколяції, $x \gg \sqrt{x_0}$ та $x \gg x_2$ ($\sigma_{\rm eff} \gg \sqrt{\sigma_0 \sigma_1}$, $\sigma_{\rm eff} \gg \sigma_2$). Тоді чисельник майже не залежить від x, в той час як найголовнішими є другий та третій доданки у знаменнику. залежність $\varepsilon_{\rm eff}$ від x приймає вигляд $\varepsilon_{\rm eff} \sim ax/(1+bx^2)$ (коефіцієнти a та b легко відновити використовуючи (4.6)).

Якщо порогів перколяції декілька (див. далі), то така поведінка проникності виникає поблизу кожного з них в системах з великими різницями провідностей типу матриця «оболонка «ядро.

4.2.1. Ефект подвійної перколяції

Для проміжних значень x_2 ($x_0 \ll x_2 \ll x_1$) можливий ефект подвійної перколяції, що полягає у послідовному різкому зростанню x (рис. 4.1); така поведінка супроводжується появою нового піку на концентраційній залежності ефективної проникності (рис. 4.7). Фізика цього феномену досить проста

Рис. 4.7: Ефективна проникність при подвійній перколяції; $x_0=1\times 10^{-8},$ $x_2=5\times 10^{-4},$ $y_1=1.5,$ $y_2=1,$ $\delta=0.05.$

– у концентрованій системі тверді ядра частинок з проникними оболонками починають контактувати та утворюють перколяційний кластер, що дає свій внесок у поведінку провідності та проникності. Цей ефект може спостерігатися наприклад для систем багатостінних нанотрубок [98], або при використанні двокомпонентної матриці [99, 100].

Поріг подвійної перколяції c'_c близький до значення 1/3. В області $|c-1/3| \ll x_2 \ll 1$, залежність ефективної провідності (4.1) представлена кореневою залежністю:

$$x = \frac{1}{2} (3x_2)^{1/2} \left[\phi(c, \delta) - \frac{1}{3} \right]^{1/2} + O(x_2) = \frac{1}{2} \left[3x_2 \phi'(c_c, \delta) \right]^{1/2} (c - c_c)^{1/2} + O(x_2),$$
(4.7)

де ϕ' – похідна від ϕ за c. Для концентрацій, що задовільняють умові $c-1/3\gg x_2$, ця залежність стає лінійною:

$$x = \frac{3}{2} \left(c - \frac{1}{3} \right) + O(x_2),$$

з істотно більшою амплітудою ніж у (4.3) та (4.7). Тобто поріг перколяції дорівнює $c_c = 1/3$.

Також можна показати, що спад x відбувається при $c \sim c_c'$ в системах з $x_2 \gg 1$. Цей ефект буде розглянуто далі для систем композитних електролітів

4.3. Порівняння з експериментальними даними

МОЖЛИВО, АЛЕ СКОРІШЕ НЕ ТРЕБА (В ТЕКСТЫ ДИСЕРТАЦІЇ - ОБОВЯЗКОВО):

ДОДАТИ ДЕТАЛІ - ДЛЯ ОПИСУ ПРОНИКНОСТІ ДОСТАТНЬО ОДНО-ГО АПЛІТУДНОГО ЗНАЧЕННЯ поиникності ПРИ НУЛЬОВІЙ КОНЦЕН-ТРАЦІЇ та критичного індкса. ПЕРЕВІРИТИ ЦЕ. АНАЛОГІЧНО ДЛЯ ПРО-ВІДНОСТІ. дані иожуть дещо відрізнятися, оскільки це різні зразки

Рисунок 4.8 показує результат обробки за формулою (4.6) експериментальних даних [101] з ефективної проникності композитів, виготовлених шляхом додавання сферичних частинок Ag (маючих середній радіус ≈ 10 нм) у матрицю з КСІ. Частинки були виготовлені шляхом випаровування Ag у присутності газів аргону та оксигену, щоб створити на них тонку (згідно з оцінками авторів 1 нм, $\delta \approx 0.1$) оболонку оксиду. Ця оболонка не давала частинкам злипатися, але була достатньо тонкою для того, щоб дозволити контакт метал-метал під великим тиском.

Як видно з рис. 4.8, формула (4.6) не тільки відновлює дані [101] на всьому розглянутому проміжку концентрацій Ag, але й дає оцінки $\delta \approx 0.14 \div 0.19$, дуже близьких до очікуваних значень.

Дані з провідності (опору $\rho_{\rm eff}$) для декількох зразків композитів KCl-Ag, виготовлених згідно із зазначеним вище методом, подані у [7]. Вивчалася дуже вузька область в околі порогу перколяції, де $\rho_{\rm eff}$ спадає на 7 порядків з ростом концентрації Ag лише на 1%; параметри матриці KCl не були визначені в роботі. Як показує рис. 4.9, формула (2.36а) може досить добре відновити дані роботи [7]. Кращі підгонки можуть бути отримані задаючи неоднорідність оболонки або залежність від c параметрів моделі. Ці факти можуть позначати, що крім експериментальних похибок різноманітні фактори та ефекти (неточність функції ϕ для несферичних частинок, розподіл частинок за роз-

Рис. 4.8: Дані з ефективної проникності [101] для двох серій зразків композитів КСІ-Ад (кружки та трикутники) нижче порогу перколяції та їх обробка за формулою (4.6) при $\varepsilon_0 = 5$, $\delta = 0.186$ (чорна лінія, для кружків) та $\varepsilon_0 = 7.0$, $\delta = 0.145$ (сіра лінія, для трикутників). Точкові лінії — скейлінгові підгонки (при $c_c = 0.20$, $s_{eff} = 0.72$ та $c_c = 0.22$, $s_{eff} = 0.74$, відповідно) запропоновані в [101] для даних при c > 0.11.

мірами, ефекти поляризації, локальні пробої матриці тощо) починають грати важливу роль при наближенні до c_c . Їх аналіз залежить від специфіки компонент та процесу виготовлення системи та виходить за рамки розглядуваної теми.

4.4. Висновки

У даному Розділі виведена модель ядро-оболонка в рамках МКГ, та проаналізовані особливості її перколяційних характеристик. Показано, що положення порогу перколяції у такій моделі залежить лише від геометричних характеристик оболонки; критичні індекси провідності не носять універсальний характер, а залежать від області, на якій вони вимірюються. Модель пе-

Рис. 4.9: Дані з ефективного опору [7] для зразків композитів КСІ-Ад (квадрати) нижче порогу перколяції та їх обробка за формулою (2.36а) при $\delta=0.162$ ($c_c\approx0.214$), $\sigma_1=6.3\times10^7$ См/м, $x_0=5\times10^{-16}$, $x_2=4\times10^{-6}$. Чорна лінія (з права) – модель з проникною оболонкою (2.33), сіра (зліва) – модель з твердою оболонкою (??).

редбачає виникнення ефекту подвійної перколяції, що має місце у системах нанотрубок. Зроблено узагальнення моделі на системи частинок з подвійну концентричною оболонкою.

Показано, що дана модель спроможна не тільки відновити експериментальні дані різних систем типу діелектрик-провідник краще ніж перколяційна модель та УПЕС, але й дозволяє робити деякі висновки про мікроструктуру досліджуваних систем.

[102, 103]

РОЗДІЛ 5

КРИТИЧНИЙ АНАЛІЗ ДИФЕРЕНЦІАЛЬНОГО ПІДХОДУ В РАМКАХ МКГ

В даному розділі МКГ застосовується для критичного аналізу диференціальних схем обчислення ефективної діелектричної проникності (електричної провідності) невпорядкованих систем та на прикладі системи твердих діелектричних куль в діелектричній матриці демонструється їх обмеженість у квазістатичному наближенні. Для цього, спершу показується як відновити класичну АМБ в рамках рівняння (2.27). Далі, це рівняння використовується для побудови загальних диференціальних рівнянь для діелектричної проникності. Показується, що спроби покращити ці підходи порушують межі Хашина-Штрікмана, що свідчить про їх обмеженість та неможливість екстраполяції розв'язків диференціальних рівнянь, побудованих для вузьких концентраційних інтервалів, на весь концентраційний інтервал.

5.1. Побудова диференціальної схеми та аналіз результатів

5.1.1. AMБ в рамках формалізму МКГ

Для отримання співвідношень АМБ (1.9), (1.11) в рамках МКГ будемо виходити з тих же припущень, що були розглянуті в Розділі 1.3. Нехай значення ефективної проникності ε відомо при деякій концентрації включень $c = \langle \tilde{\chi}_1(\mathbf{r}) \rangle$ ($\tilde{\chi}_1(\mathbf{r})$ – характеристична функція всіх частинок). При додаванні порції нових включень з концентрацією $\Delta c = \langle \Delta \tilde{\chi}_1(\mathbf{r}) \rangle$ ($\tilde{\chi}_1 \cdot \Delta \tilde{\chi}_1 = 0$) до системи (виділена область на рис. 1.1(а)) проникність системи зміниться на $\varepsilon + \Delta \varepsilon$ (рис. 1.1(б)). До та після додавання розподіл всіх включень в системі є рівноважним. Вважається, що наявне ефективне середовище слугує однорідною матрицею для цієї порції частинок та не містить попередніх. Останнє

означає, що характеристичну функцію такої матриці можна записати у вигляді $(1-\tilde{\chi}_1(\mathbf{r})-\Delta\tilde{\chi}_1(\mathbf{r}))$. Тоді $\delta\varepsilon$ після додавання можна записати у вигляді:

$$\delta \varepsilon_{\text{ABM}}^{(l)}(\mathbf{r}) = (\varepsilon - (\varepsilon + \Delta \varepsilon))[1 - \tilde{\chi}_1(\mathbf{r}) - \Delta \tilde{\chi}_1(\mathbf{r})] + (\varepsilon_1 - (\varepsilon + \Delta \varepsilon))\Delta \tilde{\chi}_1(\mathbf{r}) \approx$$

$$\approx -\Delta \varepsilon [1 - \tilde{\chi}_1(\mathbf{r})] + (\varepsilon_1 - \varepsilon)\Delta \tilde{\chi}_1(\mathbf{r}), \qquad (5.1)$$

де були залишені тільки перші порядки малості за $\Delta \tilde{\chi}_1$ (у сенсі його середнього значення) та $\Delta \varepsilon$; ε в (2.27) також потрібно замінити на $\varepsilon + \Delta \varepsilon$:

$$\left\langle \frac{\delta \varepsilon_{\text{ABM}}^{(l)}(\mathbf{r})}{3(\varepsilon + \Delta \varepsilon) + \delta \varepsilon_{\text{ABM}}^{(l)}(\mathbf{r})} \right\rangle = 0; \tag{5.2}$$

верхній індекс l у (5.1) підкреслює, що ми працюємо починаючи з області малих концентрацій включень. Підставляючи (5.1) до (5.2), беручи до уваги умову ортогональності для характеристичних функцій $(1-\tilde{\chi}_1-\Delta\tilde{\chi}_1)\Delta\tilde{\chi}_1=0$ та ергодичну гіпотезу, статистичне усереднення в (5.2) може бути розбито на усереднення по області, що займає матриця, та усереднення по області, що займають нові включення:

$$-\left\langle \frac{\Delta\varepsilon[1-\tilde{\chi}_1-\Delta\tilde{\chi}_1]}{3(\varepsilon+\Delta\varepsilon)+\Delta\varepsilon[1-\tilde{\chi}_1-\Delta\tilde{\chi}_1]} \right\rangle + \left\langle \frac{(\varepsilon_1-(\varepsilon+\Delta\varepsilon))\Delta\tilde{\chi}_1}{3(\varepsilon+\Delta\varepsilon)+(\varepsilon_1-(\varepsilon+\Delta\varepsilon))\Delta\tilde{\chi}_1} \right\rangle \approx \\ \approx -\frac{\Delta\varepsilon}{3\varepsilon}(1-c) + \frac{\varepsilon_1-\varepsilon}{2\varepsilon+\varepsilon_1}\Delta c = 0,$$

де знову були залишені перші порядки малості за тими ж самими змінними. Переходячи до інфінітезимальних змінних $d\varepsilon$ та dc отримуємо диференціальне рівняння (1.8).

За такою ж схемою можливо отримати рівняння (1.10), розглядаючи зменшення кількості включень, як додавання порцій матеріалу матриці. Тепер включення розглядаються в якості "матриці", а матриця — в якості "включень" з характеристичною функцією $\tilde{\chi}_0 = (1 - \tilde{\chi}_1)$. Порція "включень" з характеристичною функцією $\Delta \tilde{\chi}_0 = -\Delta \tilde{\chi}_1$ додається у "матрицю" у вільну від інших "включень" область з характеристичною функцією $(1 - \tilde{\chi}_0 - \Delta \tilde{\chi}_0)$. Відповідно,

$$\delta \varepsilon_{\text{ABM}}^{(h)}(\mathbf{r}) = (\varepsilon - (\varepsilon + \Delta \varepsilon))[1 - \tilde{\chi}_1(\mathbf{r}) - \Delta \tilde{\chi}_1(\mathbf{r})] + (\varepsilon_1 - (\varepsilon + \Delta \varepsilon))\Delta \tilde{\chi}_1(\mathbf{r}) \approx$$

$$\approx -[1 - \tilde{\chi}_0(\mathbf{r})]\Delta\varepsilon + (\varepsilon_0 - \varepsilon)\Delta\tilde{\chi}_0(\mathbf{r}) =$$
$$= -\tilde{\chi}_1(\mathbf{r})\Delta\varepsilon - (\varepsilon_0 - \varepsilon)\Delta\tilde{\chi}_1(\mathbf{r}).$$

Підставляючи (??) до (5.2) та переходячи до нескінченно малих, отримаємо шукане диференціальне рівняння АМБ (1.10).

Можливість отримати АМБ в рамках МКГ дає змогу побудувати та проаналізувати загальну диференціальну схему вивчення ефективних характеристик невпорядкованих дисперсних систем.

5.1.2. Диференціальна схема в рамках МКГ

Для системи діелектричних куль в діелектричній матриці локальні відхилення діелектричної проникності в системі за рахунок компактної групи в околі точки \mathbf{r} визначаються розподілом (1.33):

$$\delta \varepsilon_{\text{CGA}}(\mathbf{r}) = (\varepsilon_0 - \varepsilon)[1 - \tilde{\chi}_1(\mathbf{r})] + (\varepsilon_1 - \varepsilon)\tilde{\chi}_1(\mathbf{r}), \tag{5.3}$$

де ε – ефективна діелектрична проникність, сформована наявними компактними групами при деякій концентрації включень $c = \langle \tilde{\chi}_1 \rangle$. Припустимо, що інфінітезимальна зміна кількості включень в системі викликають малі зміни їх концентрації $\Delta c = \langle \Delta \tilde{\chi}_1 \rangle$ та ефективної проникності $\Delta \varepsilon$. Тоді, розподіл (5.3) та співвідношення (2.27) приймуть наступний вигляд, відповідно:

$$\widetilde{\delta\varepsilon}_{\text{CGA}}(\mathbf{r}) = (\varepsilon_0 - (\varepsilon + \Delta\varepsilon))[1 - (\tilde{\chi}_1(\mathbf{r}) + \Delta\tilde{\chi}_1(\mathbf{r}))] + \\
+ (\varepsilon_1 - (\varepsilon + \Delta\varepsilon))[\tilde{\chi}_1(\mathbf{r}) + \Delta\tilde{\chi}_1(\mathbf{r})];$$
(5.4)

$$\left\langle \frac{\widetilde{\delta\varepsilon}_{\text{CGA}}(\mathbf{r})}{3(\varepsilon + \Delta\varepsilon) + \widetilde{\delta\varepsilon}_{\text{CGA}}(\mathbf{r})} \right\rangle = 0.$$
 (5.5)

Нехтуючи другими порядками малості за Δc та $\Delta \varepsilon$, (5.4) можна записати у вигляді суми трьох доданків:

$$\widetilde{\delta\varepsilon}_{\text{CGA}}(\mathbf{r}) \approx (\varepsilon_0 - \varepsilon)[1 - \tilde{\chi}_1(\mathbf{r})] - (\varepsilon_0 - \varepsilon)\Delta\tilde{\chi}_1(\mathbf{r}) - [1 - \tilde{\chi}_1(\mathbf{r})]\Delta\varepsilon
+ (\varepsilon_1 - \varepsilon)\tilde{\chi}_1(\mathbf{r}) + (\varepsilon_1 - \varepsilon)\Delta\tilde{\chi}_1(\mathbf{r}) - \tilde{\chi}_1(\mathbf{r})\Delta\varepsilon =
= \delta\varepsilon_{\text{CGA}}(\mathbf{r}) + \delta\varepsilon_{\text{ABM}}^{(l)}(\mathbf{r}) + \delta\varepsilon_{\text{ABM}}^{(h)}(\mathbf{r}),$$
(5.6)

де $\delta \varepsilon_{\text{CGA}}(\mathbf{r})$ – внесок (5.3) заданої компактної групи; $\delta \varepsilon_{\text{ABM}}^{(l)}(\mathbf{r})$ – внесок (5.1), що враховує вплив нових частинок на $\delta \varepsilon_{\text{CGA}}$; $\delta \varepsilon_{\text{ABM}}^{(h)}(\mathbf{r})$ – внесок (??), що враховує вплив зміни матриці $\delta \varepsilon_{\text{CGA}}$. Підставляючи (5.6) до (5.5) та переходячи до інфінітезимальних змінних отримуємо наступне диференціальне рівняння:

$$\left[dc \frac{\varepsilon_1 - \varepsilon}{2\varepsilon + \varepsilon_1} - (1 - c) d\varepsilon \frac{3\varepsilon_0}{(2\varepsilon + \varepsilon_0)^2} \right] - \left[dc \frac{\varepsilon_0 - \varepsilon}{2\varepsilon + \varepsilon_0} + c d\varepsilon \frac{3\varepsilon_1}{(2\varepsilon + \varepsilon_1)^2} \right] = 0, \quad (5.7)$$

що ϵ диференціальною формою рівняння (1.5).

Таким чином, в рамках МКГ, зміни ε , що викликані додаванням малої порції включень, не зводяться лише до внесків, викликаних тільки цими включеннями ($\delta \varepsilon_{ABM}^{(l)}$, як в АМБ), але ще й обумовлені змінами в самій матриці (внесок $\delta \varepsilon_{ABM}^{(h)}$) та станом системи до додавання даної порції (внесок $\delta \varepsilon_{CGA}$). Класичні співвідношення АМБ (1.9), (1.11) отримаємо, якщо знехтувати внесками $\delta \varepsilon_{ABM}^{(h)}$ та $\delta \varepsilon_{CGA}$ або $\delta \varepsilon_{ABM}^{(l)}$ та $\delta \varepsilon_{CGA}$, відповідно.

Внеском $\delta \varepsilon_{\text{ABM}}^{(h)}$ можна знехтувати, якщо розглядати область достатньо малих концентрацій частинок c. Дійсно, якщо значення c на стільки мале, що $c\Delta \varepsilon$ можна вважати величиною другого порядку малості, можна знехтувати першим доданком в (??); це ж саме припущення гарантує виконання рівності $\varepsilon \approx \varepsilon_0 + O(c)$, що дозволяє знехтувати й другим доданком в (??). Внесок $\delta \varepsilon_{\text{CGA}}$ стає першого порядку малості. Зазначимо, що зроблене припущення дозволяє знехтувати обома доданками у другій квадратній дужці в (5.7) та формально звести його до шуканого (1.8), використовуючи рівність $\varepsilon \approx \varepsilon_0 + O(c)$. Однак це не дозволяє знехтувати внеском $\delta \varepsilon_{\text{CGA}}$ частинок до додавання нової порції. Додатково припустивши, що різниця між дієлектричими проникностями компонентів $|\varepsilon_0 - \varepsilon_1|$ мала, можна знехтувати другим доданком в (5.3), що робить $\delta \varepsilon_{\text{CGA}}$ порядку O(c). Тобто внесок компактної групи, утвореної частинками до додавання нової порції, стає малою величиною, що разом з рівністю $\varepsilon \approx \varepsilon_0 + O(c)$ (матрицею для нових порцій є поточне ефективне середовище) відповідає припущенням АМБ.

Аналогічні викладки дають такий самий результат й для випадку великих концентрацій, коли можна знехтувати внеском $\delta \varepsilon_{\mathrm{ABM}}^{(l)}$.

Таким чином, співвідношення АМБ (1.9), (1.11) мають місце тільки коли концентрація компоненту, що додається, досить мала; самі ж припущення АМБ неповні та можливі лише за умов, що

- 1) концентрація компоненту, що додається, мала;
- 2) різниця між діелектричними проникностями компонентів малі.

Розглядаючи тільки умову, ми можемо спробувати уточнити класичні співвідношення АМБ, знехтувавши тільки другою (або першою, для високих концентрацій) квадратною дужкою в (5.7).

5.1.3. Спроба уточнення підходу АМБ

Спершу розглянемо низькоконцентраційних випадок:

$$\widetilde{\delta\varepsilon}_{\text{CGA}}^{(l)} \approx \delta\varepsilon_{\text{ABM}}^{(l)} + \delta\varepsilon_{\text{CGA}},$$
(5.8)

та знехтуємо лише другою квадратною дужкою в (5.7), що дає наступне диференціальне рівняння:

$$\frac{dc}{1-c} = d\varepsilon \frac{3\varepsilon_0(2\varepsilon + \varepsilon_1)}{(\varepsilon_1 - \varepsilon)(2\varepsilon + \varepsilon_0)^2}.$$
 (5.9)

Це рівняння також може бути отримано прямою підстановкою (5.8) до (5.5).

Аналогічна процедура для висококонцентраційного наближення дає

$$\widetilde{\delta\varepsilon}_{\text{CGA}}^{(h)} \approx \delta\varepsilon_{\text{ABM}}^{(h)} + \delta\varepsilon_{\text{CGA}},$$

$$\frac{dc}{c} = -d\varepsilon \frac{3\varepsilon_1(2\varepsilon + \varepsilon_0)}{(\varepsilon_0 - \varepsilon)(2\varepsilon + \varepsilon_1)^2}.$$
(5.10)

Рівняння (5.9) та (5.10) є покращеними диференціальними рівняннями у тому сенсі, що вони частково враховують взаємодію між частинками нової порції та складовими системи до її додавання, за рахунок вкладу $\delta \varepsilon_{\text{CGA}}$. Після інтегрування цих рівнянь отримаємо наступні рівняння для низько- та високо- концентраційних наближень, відповідно:

$$\ln(1-c) = \frac{9\varepsilon_0\varepsilon_1}{(2\varepsilon_1 + \varepsilon_0)^2} \ln \frac{3\varepsilon_0(\varepsilon_{\text{eff}} - \varepsilon_1)}{(\varepsilon_0 - \varepsilon_1)(2\varepsilon_{\text{eff}} + \varepsilon_0)} - \frac{2(\varepsilon_0 - \varepsilon_1)(\varepsilon_0 - \varepsilon_{\text{eff}})}{(2\varepsilon_1 + \varepsilon_0)(2\varepsilon_{\text{eff}} + \varepsilon_0)}; \quad (5.11)$$

$$\ln c = \frac{9\varepsilon_0\varepsilon_1}{(2\varepsilon_0 + \varepsilon_1)^2} \ln \frac{3\varepsilon_1(\varepsilon_{\text{eff}} - \varepsilon_0)}{(\varepsilon_1 - \varepsilon_0)(2\varepsilon_{\text{eff}} + \varepsilon_1)} - \frac{2(\varepsilon_1 - \varepsilon_0)(\varepsilon_1 - \varepsilon_{\text{eff}})}{(2\varepsilon_0 + \varepsilon_1)(2\varepsilon_{\text{eff}} + \varepsilon_1)}.$$
 (5.12)

5.2. Порівняння отриманих результатів з межами Хашина-Штрікмана

В порівнянні зі співвідношеннями АМБ очікується, що отримані рівняння (5.11), (5.12) є більш точними та враховують більшу кількість ефектів. Для перевірки цих результатів, розглянемо верхню та нижню МХШ (1.12) для діелектричної проникності

$$\varepsilon^{+} = \varepsilon_{1} + \frac{3(1-c)\varepsilon_{1}(\varepsilon_{0} - \varepsilon_{1})}{3\varepsilon_{1} + c(\varepsilon_{0} - \varepsilon_{1})},$$
(5.13)

$$\varepsilon^{-} = \varepsilon_0 + \frac{3c\varepsilon_0(\varepsilon_1 - \varepsilon_0)}{3\varepsilon_0 + (1 - c)(\varepsilon_1 - \varepsilon_0)}.$$
 (5.14)

Легко показати, що рівняння (5.11) та (5.12) не задовільняють цим границям. Дійсно, розглянемо (5.11) для випадку $\varepsilon_1 \gg \varepsilon_0$ при концентраціях коли $\varepsilon_{\rm eff} \sim \varepsilon_1 \; (|\varepsilon_{\rm eff} - \varepsilon_1| \sim \varepsilon_1)$:

$$\ln(1-c) \approx \frac{9\varepsilon_0}{4\varepsilon_1} \ln \frac{3\varepsilon_0(\varepsilon_1 - \varepsilon_{\text{eff}})}{2\varepsilon_{\text{eff}}\varepsilon_1} - \frac{\varepsilon_1\varepsilon_{\text{eff}} - \varepsilon_0(\varepsilon_1 + \varepsilon_{\text{eff}})}{2\varepsilon_1\varepsilon_{\text{eff}} + \varepsilon_0(\varepsilon_{\text{eff}} + \varepsilon_1)} \approx -\frac{1}{2}.$$

Таким чином, $\varepsilon \to \varepsilon_1$ для $c > (1 - e^{-1/2}) \approx 0.393$, що лежить вище ніж верхня МХШ (5.13) для тих самих концентрацій ($\varepsilon^+/\varepsilon_1 \approx 0.3$). В області низьких концентрацій (5.11) збігається з (1.9) та лежить в рамках МХШ.

Розглядаючи співвідношення (5.12) для того ж самого випадку при концентраціях коли $\varepsilon_{\rm eff} \sim \varepsilon_0$ аналогічним чином отримаємо:

$$\ln c \approx \frac{9\varepsilon_0}{\varepsilon_1} \ln \frac{3(\varepsilon_{\text{eff}} - \varepsilon_0)}{\varepsilon_1} - 2 \approx -2.$$

Тобто при $c < e^{-2} \approx 0.135$, маємо $\varepsilon \to \varepsilon_0$, що нижче ніж нижня МХШ (5.14) при даній концентрації $(\varepsilon^-/\varepsilon_0 \approx 2)$.

Для довільних значень ε_1 та ε_0 концентрації, для яких порушуються МХШ, залежать від відношення $\varepsilon_1/\varepsilon_0$. Рисунок 5.1 демонструє випадок коли $\varepsilon_1/\varepsilon_0 = 10^2$. Помітимо, що оригінальні співвідношення АМБ (1.9) та (1.11) задовільняють МХШ. Згідно з вище приведеними аргументами, цей факт ще не значить, що вони кращі ніж їх модифікації (5.11) та (5.12), а відображає взаємозв'язок між $\delta \varepsilon_{\text{ABM}}^{(l)}(\mathbf{r})$, $\delta \varepsilon_{\text{ABM}}^{(h)}(\mathbf{r})$ та $\delta \varepsilon_{\text{CGA}}(\mathbf{r})$, що грає роль в формуванні

Рис. 5.1: Концентраційні залежності $\varepsilon_{\rm eff}$ згідно з: новими низько- (5.11) та високо- (5.12) концентраційними законами (лінії 1 та 2, відповідно); нижня (5.14) та верхня (5.13) МХШ (лінії 3, 4); МКГ (1.5) (штрихована лінія); класичні низько- (1.9) та високо- (1.11) концентраційні підходи АМБ (лінії 5, 6). Було використано значення $\varepsilon_1/\varepsilon_0=10^2$.

 $\varepsilon_{\rm eff}$ при зміні c. Іншими словами, проста екстраполяція уточненого підходу на вузькому концентраційному інтервалі не дозволяє взяти до уваги всі ефекти, що грають роль у формуванні $\varepsilon_{\rm eff}$ при інших концентраціях.

Зазначимо, що наведені результати кількісно підтверджують відомі якісні аргументи [37,104] про те, що на високих концентраціях підходи АМБ та Максвелла-Вагнера-Ханая не повністю беруть до уваги міжчастинкові поляризаційні ефекти. Вони також пояснюють чому часто потрібно модифікувати класичні диференційні підходи, або навіть вводити допоміжні підгінні параметри, щоб розширити область застосування моделей [105,106]. Також вони задовольняють результатам методу кінцевих елементів [107], який показує, що при малих концентраціях зміни ефективної проникності, викликані додаванням нових порцій частинок, більші ніж ті, що передбачають диференціальні методи.

5.3. Висновки

Аналіз класичної диференціальної схеми, реалізованої в рамках переформульованого МКГ для простих діелектричних макроскопічно однорідних та ізотропних систем в низькочастотному наближенні, показав:

- 1. Класичні диференціальні підходи АМБ можуть бути отримані в рамках МКГ тільки за умови, якщо електродинамічна взаємодія нової порції частинок з вже присутніми заміняється на взаємодію з даним ефективним середовищем. Таким чином, припущення класичних підходів АМБ, в загальному випадку, фізично не послідовні та, строго кажучи, можуть використовуватися лише для розбавлених (відносно однієї з компонент) систем з близькими значеннями їх складових. Співвідношення АМБ можна використовувати для будь-яких розбавлених (відносно однієї з компонент) систем.
- 2. Повна зміна $\varepsilon_{\rm eff}$, викликана додаванням інфінітизимальних порцій наповнювача, викликана як обома компонентами та залежить від стану системи перед додаванням. Ігноруючи вклад одного з компонентів ми отримуємо узагальнення класичних законів АМБ.
- 3. Нові узагальнені закони, знову ж таки, можуть бути використані тільки на визначених концентраційних інтервалах, за межами яких порушуються границі Хашина-Штрікмана. Це значить, що за формування ε_{eff} відповідають різні механізми на різних концентраційних інтервалах. Просто екстраполяція результатів, отриманих на одному з інтервалів, не бере до уваги всіх механізмів необхідниих для формування ε_{eff} на всьому концентраційному інтервалі.

Отримані результати можуть бути узагальнені на випадок макроскопічно однорідних та ізотропних систем з комплексними проникностями компонент (беручи до уваги такі ефекти як поляризація Максвела-Вагера).

Тобто класичні припущення АМБ, в загальному випадку, є фізично не послідовними, а співвідношення (1.9), (1.11) застосовні лише у вузьких кон-

центраційних інтервалах.

ВИСНОВКИ

Основні висновки з результатів роботи наступні.

- Адекватний опис макроскопічних електричних властивостей реальних дисперсних систем вимагає виходу за межі двофазних моделей. Зокрема, він може ефективно здійснюватися в рамках статистичної моделі ефективного електричного відгуку невпорядкованих систем частинок з морфологією тверде ядро—проникна оболонка, побудованої в роботі шляхом узагальнення методу компактних груп на системи провідних частинок.
- Отримані рівняння для ефективної статичної провідності розглянутих модельних систем підтверджуються результатами порівняння їх розв'язків з даними симуляцій, отриманих методом Random Resistor Network як для електрично однорідних, так і неоднорідних проникних оболонок.
- При відповідному виборі одночастинкових профілів провідності оболонок модель кількісно описує експериментальні дані для квазістатичної провідності різних типів твердих композитних та полімерних композитних електролітів. Ці профілі ефективно враховують вплив основних міжфазних та матричних фізико-хімічних механізмів в системі на формування її електричних властивостей та можуть бути використані для аналізу цих механізмів.
- Також модель кількісно описує поведінку ефективних провідності та діелектричної проникності твердих невпорядкованих композитів типу діелектрик—провідник з проникним міжфазним шаром. Положення порогу електричної перколяції в моделі визначається відносною товщиною оболонки, а значення ефективних критичних індексів залежать як від геометричних та електричних параметрів компонентів,

- так і способу обробки експериментальних даних, а тому демонструють широкий спектр значень, спостережуваних на експерименті.
- Диференціальна схема аналізу ефективних квазістатичних електричних параметрів дисперсних систем застосовна лише для систем з малими різницями діелектричних проникностей компонентів у вузьких концентраційних інтервалах диспергованих компонентів.

Таким чином, розроблена модель є новим гнучким інструментом для електроспектроскопічного аналізу багатофазних дисперсних систем.

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

- [1] Сушко, М.Я. О диэлектрической проницаемости суспензий / М.Я. Сушко // ЖЭТФ. 2007. Т. 132. С. 478–484.
- [2] Сушко, М.Я. Метод компактных групп в теории диэлектрической проницаемости гетерогенных систем / М.Я. Сушко, С.К. Криськив // $\text{ЖТ\Phi}.-2009.-\text{T}.$ 79. С. 97–101.
- [3] Sushko, M.Ya. Effective permittivity of mixtures of anisotropic particles / M.Ya. Sushko // J. Phys. D: Appl. Phys. 2009. Vol. 42. P. 155410.
- [4] Sushko, M.Ya. Effective dielectric response of dispersions of graded particles / M.Ya. Sushko // Phys. Rev. E. 2017. Vol. 96. P. 062121, 8 p.
- [5] Broadbent, S. R. Percolation processes. I. Crystals and mazes. / S. R. Broadbent, J. M Hammersley // Proc. Cambridge Philos. Soc. — 1957. — Vol. 53. — P. 629.
- [6] Sahimi, M. Applications of percolation theory / M. Sahimi. CRC Press, 1994.
- [7] Chen, L. Materials for solid state batteries / L. Chen. World Scientific, Singapore, 1986.
- [8] Sotskov, V.A. Electrical Characteristics of Insulator-Conductor and Insulator-Semiconductor Macrosystems / V.A. Sotskov // Semiconductors. — 2005. — Vol. 39. — P. 254.
- [9] Nan, C.-W. Physics of inhomogeneous inorganic materials / C.-W. Nan // Prog. Mater. Sci. 1993. Vol. 37. P. 1–116.
- [10] Dudney, N. Composite electrolytes / N. Dudney // Annu. Rev. Mater. Sci. 1989. Vol. 19. P. 103.
- [11] Przyluski, J. Effective medium theory in studies of conductivity of composite polymeric electrolytes / J. Przyluski, M. Siekierski, W. Wiec-

- zorek // Electrichimica A. -1995. Vol. 40. P. 2101.
- [12] Davis, P. M. The elastic modulus, percolation, and disaggregation of strongly interacting, intersecting antiplane cracks / P. M. Davis, L. Knopoff // PNAS. — 2009. — Vol. 106. — P. 12634.
- [13] Chelidze, T.L. Percolation and fracture / T.L. Chelidze // Physics of the Earth and Planetary Interiors. 1982. Vol. 28. P. 93.
- [14] Cardy, J. L. Epidemic models and percolation / J. L. Cardy, P. Grassberger // J. Phys. A: Math. Gen. 1985. Vol. 18. P. L267.
- [15] Miller, J. C. Percolation and epidemics in random clustered networks / J. C. Miller // Phys. Rev. E. 2009. Vol. 80. P. 020901.
- [16] Introduction to percolation theory. -2nd edition.
- [17] Torquato, S. Random Heterogeneous Materials: Microstructure and Macroscopic Propertie / S. Torquato.—Springer, New York, 2002.
- [18] Sahimi, M. Heterogeneous materials I: Linear transport and optical properties / M. Sahimi. Springer-Verlag, 2003.
- [19] Bollobas, B. Random graphs / B. Bollobas. 2nd edition. Cambridge university press, 2001.
- [20] Meester, R. Continuum percolation / R. Meester, R. Roy. Cambridge university press, 1996.
- [21] Hunt, A. Percolation Theory for Flow in Porous Media / A. Hunt, R. Ewing.—Springer-Verlag, 2009.
- [22] Efros, A. Critical Behaviour of Conductivity and Dielectric Constant near the Metal-Non-Metal Transition Threshold / A. Efros, B. Shklovskii // Phys. Stat. Sol. B. 1976. Vol. 76. P. 475.
- [23] Maxwell-Garnett, J. Colours in metal glasses and metalic films / J. Maxwell-Garnett // Trans. R. Soc. Lond. 1904. Vol. 203. P. 385.
- [24] Landauer, R. Electrical Transport and Optical Properties of Inhomogeneous Media / R. Landauer / Ed. by J.C. Garland, D. B. Tanner. Woodbury, New York: American Institute of Physics, 1967. P. 2–43.

- [25] Choy, T. C. Effective medium theory. Principles and applications / T. C. Choy; Ed. by J. Birman, S.F. Edwards, R. Friend et al. 2 edition. Oxford University Press, 2016.
- [26] Sihvola, A. Mixing rules with complex dielectric coefficients / A. Sihvola // Subsurface Sensing Technologies and Applications. 2000. Vol. 1.—P. 393.
- [27] Wagner, K.W. / K.W. Wagner // Arch. Elektrotech. 1914. Vol. 2. P. 371.
- [28] Bruggeman, D. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen / D. Bruggeman // Ann. Phys. 1935. Vol. 416. P. 636.
- [29] Landauer, R. The Electrical Resistance of Binary Metallic Mixtures / R. Landauer // J. Appl. Phys. -1952. Vol. 23. P. 779.
- [30] Ландау, Л.Д. Теоретическая физика / Л.Д. Ландау, Е.М. Лифшиц. Φ ИЗМАТЛИТ, 2005.
- [31] Stroud, D. The effective medium approximations: some recent developments / D. Stroud // Superlattices and Microstructures. 1998. Vol. $23.-P.\ 567.$
- [32] Milton, G. W. The theory of composites / G. W. Milton; Ed. by P.G. Ciarlet, A. Iserles, R.V. Kohn, M.H. Wright. Cambridge University Press, 2004.
- [33] Stauffer, D. Introduction to Percolation Theory (2nd revised ed) / D. Stauffer, A. Aharony. Taylor & Francis, 2003.
- [34] Kirkpatrick, S. Percolation and Conduction / S. Kirkpatrick // Rev. Mod. Phys. 1973. Vol. 45. P. 574.
- [35] Brouers, F. Percolation threshold and conductivity in metal-insulator composite mean-field theories / F. Brouers // J. Phys. C: Solid State Phys. 1986. Vol. 19. P. 7183–7193. http://iopscience.iop.org/0022-3719/19/36/010.

- [36] Kirkpatrick, S. Classical transport in disordered media: scaling and effective-medium theories / S. Kirkpatrick // Phys. Rev. Lett. 1971. Vol. 27. P. 1722.
- [37] Челидзе, Т. Л. Электрическая спектроскопия гетерогенных систем / Т. Л. Челидзе, А. И. Деревянко, О. Д. Куриленко. — Наукова думка, Київ, 1977.
- [38] Nan, C.-W. Conduction theory of ionic conductor containing dispersed second phase / C.-W. Nan // Acta Physica Sinica. 1987. Vol. 36. P. 191.
- [39] Nan, C.-W. A.c. electrical properties of composite solid electrolytes / C.-W. Nan, D.M. Smith // Mat. Sci. Eng. B. 1991. Vol. 10. P. 99.
- [40] Nakamura, M. Conductivity for the site-percolation problem by an improved effective-medium theory / M. Nakamura // Phys. Rev. B. 1984.-Vol. 29.-P. 3691.
- [41] Brailsford, A. D. A phenomenological classification of the electrical conductivity of dispersed solid electrolyte systems / A. D. Brailsford // Solid State Ionics. -1986. Vol. 21. P. 159.
- [42] Chettiar, U. Internal homogenization: Effective permittivity of a coated sphere / U. Chettiar, N. Engheta // Optics Express. — 2012. — Vol. 20. — P. 22976.
- [43] Wieczorek, W. / W. Wieczorek, et al. // Solid State Ionics. 1989. Vol. 36. P. 255.
- [44] Wieczorek, W. Polyether, Polyacrylamide, LiClO4 Composite Electrolytes with Enhanced Conductivity / W. Wieczorek, K. Such, Z. Florjanczyk, J.R. Stevens // J. Phys. Chem. 1994. Vol. 98. P. 6840.
- [45] Lakhtakia, A. Incremental Maxwell Garnett formalism for homogenizing particulate composite media / A. Lakhtakia // Microw. Opt. Technol. Lett. — 1998. — Vol. 17. — P. 276.
- [46] Michel, B. Incremental and differential Maxwell Garnett formalisms for bi-anisotropic composites / B. Michel, A. Lakhtakia, W.S. Weiglhofer,

- T.G. Mackay // Composites Science and Technology. 2001. Vol. 61. P. 13.
- [47] Sen, P. A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads / P. Sen, C. Scala, M. Cohen // Geophysics. 1981. Vol. 46. P. 781.
- [48] Hanai, T. Theory of the Dielectric Dispersion due to the Interfacial Polarization and its Application to Emulsions / T. Hanai // Kolloid-Zeitschrift. 1960. Vol. 171. P. 23.
- [49] Wiener, O. Die Theorie des Mischkörpers für das Feld der Stationären Strömung / O. Wiener // Abh. Math. Phys. K1 Königl. Sächs. Ges. 1912. Vol. 32. P. 509.
- [50] Hashin, Z. A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials / Z. Hashin, S. Shtrikman // J. Appl. Phys. 1962. Vol. 33. P. 3125.
- [51] Cioranescu, D. Introduction to homogenization / D. Cioranescu, P. Donato. Oxford university press, 1999.
- [52] Jikov, V.V. Homogenization of differential operators and integral functionals / V.V. Jikov, S.M. Kozlov, O.A. Oleinik. Springer-Verlag Berlin Heidelberg, 1994.
- [53] Bourret, R. C. Stochastically perturbed fields, with applications to wave propagation in random media / R. C. Bourret // Nuovo Cimento. $1962.-\text{Vol.}\ 26.-\text{P.}\ 1.$
- [54] Ryzhov, Yu. A. Spacal dispersion of inhomogeneous media / Yu. A. Ryzhov, V. V. Tamoĭkin, V. I. Tatarskiĭ // Sov. Phys. JETP.— 1965.—Vol. 21.—P. 433–438.
- [55] Ryzhov, Yu. A. Radiation and propagation of electromagnetic waves in randomly inhomogeneous media / Yu. A. Ryzhov, Tamoikin // Radiophys. Quantum Electron. 1970. Vol. 13. P. 273–300.
- [56] Tsang, L. Scattering of electromagnetic waves from random media with strong permittivity fluctuations / L. Tsang, J. A. Kong // Radio Sci. —

- 1981. Vol. 16. P. 303.
- [57] Mackay, T. Strong-property-fluctuation theory for homogenization of bianisotropic composites: Formulation / T. Mackay, A. Lakhtakia, W. Weiglhofer // Phys. Rev. E. – 2000. — Vol. 65. — P. 6052.
- [58] Mackay, T. G. Third-order implementation and convergence of the strong-property-fluctuation theory in electromagnetic homogenization / T. G. Mackay, A. Lakhtakia, W. S. Weiglhofer // Phys. Rev. E. — 2001. — Vol. 64. — P. 066616.
- [59] Dence, D. Probabilistic methods in applied mathematics / D. Dence, J.E. Spence; Ed. by A.T. Bharucha-Reid. — Academic Press, 1973. — Vol. 2.
- [60] Weiglhofer, W. On Singularities of Dyadic Green Functions and Long Wavelength Scattering / W. Weiglhofer, A. Lakhtakia // Electromagnetics. 1995. Vol. 15. P. 209.
- [61] Сушко, М.Я. О молекулярном рассеянии света кратности 1.5 / М.Я. Сушко // ЖЭТФ. 2004. Т. 126. С. 1355—1361.
- [62] Sushko, M.Ya. Finding the effective structure parameters for suspensions of nano-sized insulating particles from low-frequency impedance measurements / M.Ya. Sushko, V.Ya. Gotsulskiy, M.V. Stiranets // Journal of Molecular Liquids. 2016. Vol. 222. P. 1051.
- [63] Sushko, M. Ya. Compact group approach to the analysis of dielectric and optical characteristics of finely dispersed systems and liquids / M. Ya. Sushko // Journal of Physical Studies. 2009. Vol. 13, no. 4. P. 4708. http://physics.lnu.edu.ua/jps/2009/4/abs/a4708-5.html.
- [64] Sushko, M. Ya. Experimental observation of triple correlations in fluids /
 M. Ya. Sushko // Cond. Matter Phys. 2013. Vol. 16. P. 13003.
- [65] Simpkin, R. Derivation of Lichtenecker's Logarithmic Mixture Formula From Maxwell's Equations / R. Simpkin // IEEE Transactions on Microwave Theory and Techniques. 2010. Vol. 58. P. 545.
- [66] Looyenga, H. / H. Looyenga // Physica. 1965. Vol. 31. P. 401.

- [67] Lichtenecker, K. Dielectric constant of natural and synthetic mixtures /
 K. Lichtenecker // Physik. Z. 1926. Vol. 27. P. 115.
- [68] Banhegyi, G. / G. Banhegyi // Colloid Polym. Sci. 1986. Vol. 264. P. 1030.
- [69] Broadband Dielectric Spectroscopy / Ed. by F. Kremer, A. Schönhals.— Springer-Verlag Berlin Heidelberg GmbH, 2003.
- [70] Sillars, R.W. The properties of a dielectric containing semiconducting particles of various shapes / R.W. Sillars // J. Inst. El. Eng. 1937. Vol. 80. P. 378.
- [71] Torquato, S. Bulk properties of twophase disordered media. I. Cluster expansion for the effective dielectric constant of dispersions of penetrable spheres / S. Torquato // J. Chem. Phys. 1984. Vol. 81. P. 5079.
- [72] Wertheim, M. S. Exact solution of the Percus-Yevick integral equation for hard spheres / M. S. Wertheim // Phys. Rev. Lett. — 1963. — Vol. 10. — P. 321.
- [73] Lebowitz, J. L. Exact solution of generalized Percus-Yevick equation for a mixture of hard spheres / J. L. Lebowitz // Phys. Rev. — 1964. — Vol. 133. — P. A895.
- [74] Rikvold, P. D-dimensional interpenetrable-sphere models of random two-phase media: Microstructure and an application to chromatography / P. Rikvold, G. Stell // J. Coll. and Int. Sci. 1985. Vol. 108. P. 158.
- [75] Rottereau, M. 3d Monte Carlo simulation of site-bond continuum percolation of spheres / M. Rottereau, J. Gimel, T. Nicolai, D. Durand // Eur. Phys. J. E. 2003. Vol. 11. P. 61–64.
- [76] Siekierski, M. Modeling of conductivity in composites with random resistor networks / M. Siekierski, K. Nadara // Electrochimica Acta. 2005. Vol. 50. P. 3796.
- [77] Siekierski, M. Conductivity simulation in composite polymeric electrolytes / M. Siekierski, K. Nadara, P. Rzeszotarski // J. New Mat. Electrochem. Systems. 2006. Vol. 9. P. 375.

- [78] Siekierski, M. Mesoscale models of ac conductivity in composite polymeric electrolytes / M. Siekierski, K. Nadara // J. Pow. Sour. — 2007. — Vol. 173. — P. 748.
- [79] Liang, C. C. Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes / C. C. Liang // J. Electrochem. Soc. — 1973. — Vol. 120. — P. 1289.
- [80] Berlyand, L. Non-Gaussian Limiting Behavior of the Percolation Threshold in a Large System / L. Berlyand, J. Wehr // Commun. Math. Phys. 1997. Vol. 185. P. 73.
- [81] Maier, J. On conductivity of polycrystalline materials / J. Maier // Ber. Bunsenges. Phys. Chem. 1986. Vol. 90. P. 26.
- [82] Dudney, N. J. Enhanced ionic conduction in AgCl Al₂O₃ composites induced by plastic deformation / N. J. Dudney // J. Am. Ceram. Soc. — 1987. — Vol. 70. — P. 65.
- [83] Dudney, N. J. Enhanced ionic conductivity composite electrolytes /
 N. J. Dudney // Solid State Ionics. 1988. Vol. 28/30. P. 1065.
- [84] The Ionic Conductivity Profile of Thin Evaporated AgCI Films on a Planar Sapphire Substrate / S. M'uhlherr, K. L'auger, E. Schreck et al. // Solid State Ionics. 1988. Vol. 28/30. P. 1495.
- [85] Phipps, J.B. Effect of composition and imperfections on ion transport in lithium iodine / J.B. Phipps, D.L. Johnson, D.H. Whitmore // Solid State Ionics. — 1981. — Vol. 5. — P. 393.
- [86] Atkinson, A. Surface and Interface Mass Transport in Ionic Materials / A. Atkinson // Solid State Ionics. 1988. Vol. 28/30. P. 1377.
- [87] Wen, T. L. On the co-ionic conductivity in CaF_2 / T. L. Wen, R. A. Huggins, A. Rabenau, W. Weppner // Revue de Chimie Minerale. 1983. Vol. 20. P. 643.
- [88] Dupree, R. NMR Studies of Lithium Iodide Based Solid Electrolytes / R. Dupree, J. R. Howells, A. Hooper, F. W. Poulsen // Solid State Ionics. — 1983. — Vol. 9/10. — P. 131.

- [89] Dudney, N. J. Effect of Interfacial Space-Charge Polarization on the Ionic Conductivity of Composite Electrolytes / N. J. Dudney // J. Am. Ceram. Soc. -1985. Vol. 68. P. 538.
- [90] Jow, T. The effect of dispersed alumina particles on the electrical conductivity of cuprous chloride / T. Jow, J. B. Jr. Wagner // J. Electrochem. Soc. -1979. Vol. 126. P. 1963.
- [91] Phipps, J. B. Ioin Transport in LiI SiO₂ Composites / J. B. Phipps,
 D. H. Whitmore // Solid State Ionics. 1983. Vol. 9/10. P. 123.
- [92] Plocharski, J. PEO Based Composite Solid Electrolyte Containing NASI-CON / J. Plocharski, W. Wieczorek // Solid State Ionics. — 1988. — Vol. 28-30. — P. 979–982.
- [93] Schmidt, J.A. Interaction of AgI with $\gamma \text{Al}_2\text{O}_3$ / J.A. Schmidt, J.C. Bazán, L. Vico // Solid State Ionics. 1988. Vol. 27. P. 1.
- [94] Jiang, Sh. A theoretical model for composite electrolytes I. Space charge layer as a cause for charge-carrier enhancement / Sh. Jiang, B. Jr. Wagner // J. Phys. Chem. Solids. 1995. Vol. 56. P. 1101.
- [95] Jiang, Sh. A theoretical model for composite electrolytes II. Percolation model for ionic conductivity enhancement / Sh. Jiang, B. Jr. Wagner // J. Phys. Chem. Solids. — 1995. — Vol. 56. — P. 1113.
- [96] Bernasconi, J. Real-space renormalization of bond-disordered conductance lattices / J. Bernasconi // Phys. Rev. B. 1978. Vol. 18. P. 2185.
- [97] Luck, J. M. A real-space renormalisation group approach to electrical and noise properties of percolation clusters / J. M. Luck // J. Phys. A: Math. Gen. — 1985. — Vol. 47. — P. 5371.
- [98] Tomylko, S. Two-step electrical percolation in nematic liquid crystal filled by multiwalled carbon nanotubes / S. Tomylko, O. Yaroshchuk, N. Lebovka // Phys. Rev. E. 2015. Vol. 92. P. 012502.
- [99] Al-Saleh, M. Nanostructured carbon black filled polypropylene/polystyrene blends containing styrene-butadiene-styrene copolymer:

- Influence of morphology on electrical resistivity / M. Al-Saleh, U. Sundararaj // Eur. Pol. J. -2008. Vol. 44. P. 1931.
- [100] Konishi, Y. Nanoparticle induced network self-assembly in polymercarbon black composites / Y. Konishi, M. Cakmak // Polymer. — 2006. — Vol. 47. — P. 5371.
- [101] Grannan, D. Critical Behavior of the Dielectric Constant of a Random Composite near the Percolation Threshold / D. Grannan, J. Garland, D. Tanner // Phys. Rev. Lett. — 1981. — Vol. 46. — P. 375–378.
- [102] Sushko, M. Ya. Conductivity and permittivity of dispersed systems with penetrable particle-host interphase / M. Ya. Sushko, A. K. Semenov // Cond. Matter Phys. — 2013. — Vol. 16. — P. 13401.
- [103] Семенов, А.К. Вплив неоднорідності міжфазного шару на перколяційну поведінку провідності дисперсних систем типу ізолятор-провідник / А.К. Семенов // Фізика аеродисперсних систем. 2020. Т. 58.
- [104] Chelidze, T. Electrical spectroscopy of porous rocks: a review I. Theoretical models / T. Chelidze, Y. Gueguen // Geophys. J. Int. 1999. Vol. 137. P. 1.
- [105] Davis, B. W. Encyclopedia of Emulsion Technology: Basic Theory, Measurement, Applications / B. W. Davis; Ed. by P. Becher. Marcel Dekker Inc., 1987. Vol. 3.
- [106] Jylhä, L. Equation for the effective permittivity of particle-filled composites for material design applications / L. Jylhä, A. Sihvola // J. Phys. D: Appl. Phys. 2007. Vol. 40. P. 4966.
- [107] Mejdoubi, A. Controllable effective complex permittivity of functionally graded composite materials: A numerical investigation / A. Mejdoubi,
 C. Brosseau // J. Appl. Phys. 2007. Vol. 102. P. 094105.

Додаток А

Таблиці допоміжних цифрових даних та ілюстрації допоміжного характеру

ТАБЛИЦІ та графіки відхилень

Додаток Б

Список публікацій здобувача та апробація результатів дисертації

Публікації в наукових журналах:

- [1*] Sushko M. Ya. Conductivity and permittivity of dispersed systems with penetrable particle-host interphase / M. Ya. Sushko, A. K. Semenov // Cond. Matter Phys. 2013 Vol. 16 No. 1 13401 P. 1-10. (SJR Q3) doi: 10.5488/CMP.16.13401
- [2*] Semenov A. K. On applicability of differential mixing rules for statistically homogeneous and isotropic dispersions / A. K. Semenov // J. Phys. Commun. 2018. Vol. 2. No. 3 035045. P. 1-8. doi: 10.1088/2399-6528/aab060
- [3*] Sushko M. Ya. A mesoscopic model for the effective electrical conductivity of composite polymeric electrolytes. / M. Ya. Sushko, A. K. Semenov // J. Mol. Liq. — 2019. — Vol. 279 — P. 677-686. (SJR Q1) doi: 10.1016/j.molliq.2019.02.009
- [4*] Sushko M. Ya. Rigorously solvable model for the electrical conductivity of dispersions of hard-core–penetrable-shell particles and its applications / M. Ya. Sushko, A. K. Semenov // Phys. Rev. E 2019. Vol. 100. 052601. P. 1-14. (SJR Q1) doi: 10.1103/PhysRevE.100.052601
- [5*] Семенов А. К. Вплив неоднорідності міжфазного шару на перколяційну поведінку провідності дисперсних систем типу ізолятор-провідник / А. К. Семенов // Фізика аеродисперсних систем. 2020. Т. 58. прийнято до друку.

Тези доповідей на наукових конференціях:

1. Semenov A. Complex permittivity of disperse systems with penetrable particle-

- host interphase / A. Semenov, M. Sushko // 4-th International Conference on Statistical Physics: Modern Trends and Applications, abstract Lviv (Ukraine), 2012. P. 175.
- 2. Семенов А.К. Роль межфазной границы в формировании проводимости и диэлектрической проницаемости мелкодисперсных систем / А.К. Семенов, М.Я. Сушко // 25-th International Conference: Disperse Systems, abstract Odesa (Ukraine), 2012. P. 221.
- 3. Sushko M. Ya. Finding the parameters of the interphase layers in fine dispersions with dielectric spectroscopy studies near the electrical percolation threshold / M.Ya. Sushko, A.K. Semenov // 5-th International Symposium: Methods and Applications of Computational Chemistry, abstract Kharkiv (Ukraine), 2013. P. 44.
- 4. Sushko M. Ya. Effect of interphase on the effective electrophysical parameters of fine dispersions and nanofluids / M.Ya. Sushko, A.K. Semenov // 6-th International Conference Physics of Liquid Matter: Modern Problems, abstract Kyiv (Ukraine), 2014. P. 177.
- 5. Семенов А. К. Диэлектрическая проницаемость и проводимость дисперсных систем с неоднородной межфазной границей / А.К. Семенов, М.Я. Сушко // 26-th International Conference: Disperse Systems, abstract Odesa (Ukraine), 2014. P. 163.
- Semenov A. K. A model for conductivity and permittivity of heterogeneous systems with complex microstructures / A.K. Semenov, M.Ya. Sushko // 2015 International Young Scientists Forum on Applied Physics, abstract – Dnipropetrovsk (Ukraine), 2015. – P. 1. doi: 10.1109/YSF.2015.7333251
- 7. Бабий К. А Особенности электрической проводимости дисперсных систем на основе полимерных матриц / К.А. Бабий, А.К. Семенов, М.Я. Сушко // 27-th International Conference: Disperse Systems, abstract Odesa (Ukraine), 2016. Р. 28.
- 8. Семенов А. К. Роль міжфазних шарів у формуванні провідних та діеле-

- ктричних властивостей дісперсноподібних систем: модель та застосування / А.К. Семенов, М.Я. Сушко // International conference: The development of innovation in Engineering, Physical and Mathematical Sciences, abstract Mykolayiv (Ukraine), 2016. P. 21.
- 9. Sushko M. Ya. Effective electrical conductivity of composite polymer electrolytes / M.Ya. Sushko, A.K. Semenov // 8-th International Conference Physics of Liquid Matter: Modern Problems, abstract Kyiv (Ukraine), 2018. P. 81.
- Sushko M. Ya. Recent developments in the theory of electrodynamic homogenization of random particulate systems / M.Ya. Sushko, A.K. Semenov // 5-th International Conference on Statistical Physics: Modern Trends and Applications, abstract Lviv (Ukraine), 2019. P. 160.
- 11. Semenov A. K. Hard-core—penetrable-shell model for effective electric parameters of random particulate systems / A.K. Semenov, M.Ya. Sushko // 7-th International Conference: Nanotechnologies and Nanomaterials, abstract Lviv (Ukraine), 2019. P. 257.
- 12. Семенов А. К. Моделювання електрофізичного відгуку дисперсних систем з твердим дисперсійним середовищем / А.К. Семенов, М.Я. Сушко // 28-th International Conference: Disperse Systems, abstract Odesa (Ukraine), 2019. Р. 90.