COMP 4983: Lab Exercise #10 Mark: /40

[Due: Mar 30, 2020 @1730 Assignment Submission

Folders]

Name: BCIT ID: Lab Set: 3M

Instructions:

In this lab, you will

- construct the maximal margin classifier on paper for a trivial dataset
- investigate the effect of the cost parameter, $\mathcal C$, for the support vector classifier (SVC) as well as determine the best value of $\mathcal C$ using 10-fold cross-validation

Part 1: Maximal Margin Classifier (on paper)

[20 marks] In this part of the lab, you will

- draw a hyperplane in a 2-dimensional space
- construct a maximal margin classifier for a trivial dataset
- 1) [4 marks] Draw the hyperplane $1+3X_1-X_2=0$. Indicate the region for which $1+3X_1-X_2>0$, as well as the region for which $1+3X_1-X_2<0$.
- 2) Consider a training set consisting of the following seven (7) training samples:

Sample	Input Vector	Output Value
x_1	(3, 4)	Red
x_2	(2, 2)	Red
x_3	(4, 4)	Red
x_4	(1, 4)	Red
<i>x</i> ₅	(2, 1)	Blue
x_6	(4, 3)	Blue
x_7	(4, 1)	Blue

- a) [4 marks] Plot the training samples and draw the maximal margin hyperplane given the training samples.
- b) [1 mark] Indicate the margin, M, for the maximal margin hyperplane.
- c) [10 marks] Derive the equation for the maximal margin hyperplane in the form of $\beta_0 + \beta_1 X_1 + \beta_2 X_2 = 0$ subject to $\sum_{i=1}^p \beta_i^2 = 1$.
- d) [1 mark] Predict the output value for the test sample (3.5, 2).

Show all your steps and add comments as necessary to make sure your answers are clear and unambiguous.

Part 2: Support Vector Classifier

[20 marks] In this part of the lab, you will

- perform classification using the SVC.fit() and SVC.predict() function from sklearn.svm on a dataset
- ullet determine the best value of the cost parameter, ${\cal C}$, using 10-fold cross-validation on the training set
- evaluate the error rate (percentage of misclassifications) of the SVC classifier on the test set

Steps:

- 1) Download the dataset, data_lab10.csv, from BCIT Learning Hub (Content | Laboratory Material | Lab 10) and save it in your working directory. The dataset, data_lab10.csv, contains 201 rows (including a header row) and 3 columns. Each row contains two features followed by the class label.
- 2) Create a new Python script using the filename SVC_lab10_lastname_firstname.py and save it in your working directory.
- 3) Add to your script, SVC_lab10_lastname_firstname.py, to read from data_lab10.csv.
- 4) Split the dataset into training and test sets, with the first 75% of the dataset for training and the remaining 25% for testing.
- 5) For each C = [0.0001, 0.001, 0.01, 0.1, 1, 5, 10, 100] (which is referred to as the penalty parameter in sklearn.svm.SVC), apply SVC on the training set and evaluate the average cross-validation estimate of prediction error using 10-fold cross-validation. Ensure that the argument kernel='linear' is specified when instantiating sklearn.svm.SVC. Plot the average cross-validation estimate of prediction error as a function of C. Include in your plot, a terse descriptive title, x-axis label, y-axis label and a legend.
- 6) Determine the best value of $\mathcal C$ from Step (5).
- 7) Using the best value of \mathcal{C} , evaluate and output the error rate (percentage of misclassifications) on the test set.

<u>Deliverables</u>:

All work submitted is subject to the standards of conduct as specified in BCIT Policy 5104. Late submissions will not be accepted.

[Mar 30, 2020 @1730]

- Submit your scanned solution to Part 1 of this lab exercise to BCIT Learning Hub (Laboratory Submission | Lab 10). Your submission must include a cover page clearly specifying your name and student number.
- Ensure that your source code for Part 2 is adequately commented and submit using the filename $SVC_lab10_lastname_firstname.py$ to BCIT Learning Hub (Laboratory Submission | Lab 10).