

USACO 第五章

内容摘要

通过通俗的语言总结刷完这一章的收获,包括学到的算法,领悟的思想,掌握的技术,得到的历练,还 有其他能够从中挖掘到的东西。

ZhenYi

SYSU 2013-5

USACO 第五章通关总结

By Z.Y.

五章总体来说题目分布相对均衡,总体感觉 DP 多了不少,而且最后两节相对于前面的章节从思路上讲有挑战了不少,但是编码的复杂度低了。只要有好的思路程序不会太长。对于初学者来说这章开始才刚刚有点竞赛的感觉。有很多经典题目,每个经典题目又相应提出了新的算法。二维凸包不是太难,一个Graham 扫描法在线性时间复杂度就出解了。退火算法不是很严谨,取决于对于解的精度要求。矩形切割感觉不再像第一次接触时那么困难了,可能第一次写时写的是手工栈的原因。SCC 的 Tarjan 算法虽然第一次理解起来有点绕,但是时间常数很不错。对于离散数学还应该加强理解。终于写了一棵二维线段树,也算不上二维,就是横竖扫两次。其他的没什么好说的,都是之前遇到过的算法,就是难度加大了。

第五章题目总体类型分布:

第五早 题日总体关至分4:			
Section 5.1	DONE	2010.05.08	PROB Fencing the Cows 二维凸包
	DONE	2010.06.03	PROB Starry Night 矩阵操作+Hash
	DONE	2010.07.06	PROB Musical Themes DP
Section 5.2	DONE	2010.07.08	PROB Snail Trail DFS
	DONE	2013.05.14	PROB Electric Fences 退火算法
	DONE	2013.05.14	PROB Wisconsin Squares DFS
Section 5.3	DONE	2013.05.14	PROB Milk Measuring DFS-ID + DP
	DONE	2013.05.15	PROB Window Area 矩形切割 + 模拟
	DONE	2013.05.16	PROB Network of Schools SCC
	DONE	2013.05.16	PROB Big Barn DP
Section 5.4	DONE	2013.05.19	PROB All Latin Squares DFS + 剪枝(置换群)
	DONE	2013.05.20	PROB Canada Tour DP
	DONE	2013.05.21	PROB Character Recognition DP + 枚举
	DONE	2013.05.21	PROB Betsy's Tour DFS + 剪枝(或状压 DP)
	DONE	2013.05.22	PROB TeleCowmunication 最大流最小割方案
Section 5.5	DONE	2013.05.24	PROB Picture 离散化 + 线段树
	DONE	2013.05.24	PROB Hidden Passwords 暴力(类比 KMP)
	DONE	2013.05.25	PROB Two Five 记忆化搜索(DP)

❖ 第一节:

- 一节的题目都很水,不是裸的算法就是一些很简单的 DFS 或者模拟之类的题目,DP 也不难有思路的话编码实现也很简单,但是作为一个衔接还是不错的。
- 5.1.1:本题目读过课文后可以很快做出来,裸的 Graham 扫描法,程序实现正确后没什么其他的陷阱, USACO 还是很友好的。
- 5.1.2:这道题目可以参考第一章的矩阵操作,来回变换8个方向,然后判断存不存在一样的,我们考虑8个方向一定要构造出来,所以可以节约时间的地方是判断的时候,那可不可以让判断的时间是0(1)呢,如果要这样我们就要用Hash了。方法很简单,Floodfill扫描出所有星座,然后用一个Hash方程八8个方向都压入表中,以后判断时就是哦0(1)的时间复杂度了。
- 5. 1. 3:一个线性的 DP,和最长不降序列的思想一样,满足条件就更新当前的最值。时间复杂度是 $0(N^2)$ 。

❖ 第二节:

- **文**一节也没什么难题,还是一个复习吧,之前练习过的算法,在这里热热手,都是一些地图形式的搜索算法。
- 5.2.1:裸的 DFS,很简单,比之前那些编码很繁杂的题目都简单的多,按照题意把题目说的用代码表现出来就行了。
- 5.2.2:模拟退火算法,其实就是一个迭代逼近搜索。如果我们有一个地图要找到一个尽量价值高的点走到那里,而且这个点的周围的价值都是线性递减的。整张图也都有这个性质。我们可以这么考虑,初始位置先随机选一个点,然后呢,用一个给定步长 S1 在周围随机扩展,扩展的方式是,找到更好的就按那个更好的方位继续走,一定程度后会出现一个情况,按照这个步长继续走走不动了,因为周围的店都不如这个当前的店优。这时我们减少步长,S2 在这个不超过 S1 的范围内继续走.....如此不断缩短 S 知道取到我们要的精度即可。这个方法就是一个模拟现实中退火技术的一个算法,可以用在 NP 类问题中找到一个近似解。
- 5. 2. 3: 同 5. 2. 1,按照题目描述写一个暴力 DFS 就行。

❖ 第三节:

一节开始跟前两节是一个分界点,从这一节才是真正算是进入到了第五章,题目难度明显有提升。一个是思考难度提升,一个是实现技巧变得难了一些了。但也正是因为如此才能够使得我们的思维模式得到强化,分析题目是一个方面,程序实现也是锻炼的另一个方面,多多的敲代码有时候更加重要,毕竟写出程序才算是真正的实现一个算法。

5.3.2:这是个模拟,瓶颈是判断可行性的速度,但是只能用 DFS 所以我们就用类似 3.1.4 的分治思想,可以满足题目要求。

5.3.3:这个是裸的 SCC,同时考察你对于 SCC 的理解,一个理解是有向图强连通分量具有什么性质,另一个是把缩图后的每个分量合成一个整体怎么加边。显然 SCC 是拓扑的,而且加边是 SCC 的缩图中入度为 0 和出度为 0 中个数多的那一个。这两个都能够理解其中的原理也就差不多基本掌握了裸的 SCC。

5.3.4:DP,不难,考虑清楚转移方程就好。

❖ 第四节:

一节我没几道是自己想出来的,每一个都不合乎以往的直觉,而这也说明从这节开始要进步了,不单是进步,还是进一大步。知识多了,也更加考察你是否看得清楚问题的本质,算法也不是一种,其实早就不是一种了,但是在这一节你想不清楚,就真的做不出来。你要想的远比以前来的多。

5.4.1:题目要求很简单构造一个拉丁矩阵,关键是怎么控制时间。剪枝策略中学到了一个 置换群的思想。也就是什么状态中构造出了以前出现过的**本质相同**的状态,我们可以直接 加上这种状态的结果而不用次次都搜索。很妙的一个想法。

5. 4. 2:这题可以多种方式求解,DP 和网络流都行,一开始我怎么也想不通 DP 是怎么保证每一次转移都不使得城市产生交错的。这样想说明我没真正理解 DP,我忘记了 DP 的一个重要性质: 无后效性。我这次的转移不影响下一次,如果我这次没有交叉,下一次还用同样的子结构也不会交叉。因为没有其他可能了,这次的状态只跟以前的有关跟以后的无关。

5. 4. 3:这道题目思考起来很繁杂,也同时说明了 DP 的本质,DP 的本质是对于枚举的优化,牺牲空间换取时间,不做重复工作,所以我起码得把所有可能状态都看一遍才能做出最后的结果。核心 DP 方程是一个线性的扫描,问题的难点就是**枚举**。想清楚枚举,理解了题意这道题目也就迎刃而解。

5.4.4:一个哈密顿回路的 DFS,而且要找到所有,我们用 DFS 怎样才能够做到强大剪枝。 对图本身有很好的理解就行,每个点只能访问一次的性质好好利用,其他的剪枝都是根据 这个性质来的。还可以用基于 SCC 的状态压缩 DP。

❖ 第五节:

一节是所有训练的终节了,毕竟第6章是一个实战,而且有些题目是很经典的题目,我把其中一道我以前没写出来的题解决了,算是了解了一个心愿。不过整体感觉 USACO 的图论题目不是很难,一眼就看得出算法。这部分可以用别的题库加强,但是整体的思维训练还是很有必要的。

- 5.5.1:经典的离散化+线段树,时至今日我才知道离散化本意是什么,这道题目的本质是什么,发现一切思路理清之后真的不难,难者不会会者不难嘛。
- 5.5.2:用类似 KMP 的跳跃方式朴素暴力,也可以用后缀数组,后缀数组更严谨更稳定。
- 5. 5. 3:死活没想出来方程,虽然构造思想跟3. 2. 2的 kimbits 一样,但是实现难度可大多了,而且这个方程我觉得很神奇,看来还是想得太简单了,思考的不够成熟,不够严谨。无论是它的方程还是他的实现都很有趣。一个比较经典的排列组合问题。

★章末总结:

这一章的提高很大,很多的难题困扰我很久,不过却觉得这一章给我的启发不如以前多,更多的是对于**本质的探索**,有些题目本质就是那么回事。所以这一章收获更多的不是惊喜,而是一种<u>稳定和扎实</u>。<u>想清楚</u>了都不难实现。我更多了解到的是自己的底子不牢固,做题量太少。读万卷书,下笔成神的这种典型的题海战术式思想有一定道理的,<u>打拳千遍其意自现</u>。而且我认为到了第五章也仅仅是一个引导,更多更困难的训练还是要靠我们往后自己去探索的,这些就是我第五章得到的收获了。

2013/5/29