RF TEST REPORT

Report No.: CE_SL18040201-RIO-001 2.4GHz Rev_2.0

Supersede Report No.: CE_SL18040201-RIO-001_2.4GHz Rev_1.0

Applicant	Resin.io		
Product Name	Raspberry Compute Module 3 Lite		
Model No.	Balena Fin		
Test Standard	EN 300 328 V2.1.1 (2016-11)		
Test Method	EN 300 328 V2.1.1 (2016-11)		
Date of test	05/01/2018 - 06/14/2018		
Issue Date	01/07/2019		
Test Result	<u>Pass</u> Fail		
Equipment compl	Equipment complied with the specification [x]		
Equipment did not comply with the specification []		[]	
	my Ch		
Benjamin Jing		Chen Ge	
Test Engineer		Engineer Reviewer	
	This test report may be reproduced in full only Test result presented in this test report is applicable to the tested sample only		

Issued By:
SIEMIC Laboratories
775 Montague Expressway, Milpitas, 95035 CA

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	2 of 39

Laboratory Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

Country/Region	Scope	
USA	FCC, A2LA	EMC, RF/Wireless, Telecom
Canada	IC, A2LA, NIST	EMC, RF/Wireless, Telecom
Taiwan	BSMI, NCC, NIST	EMC, RF, Telecom, Safety
Hong Kong	OFTA, NIST	RF/Wireless, Telecom
Australia	NATA, NIST	EMC, RF, Telecom, Safety
Korea	KCC/RRA, NIST	EMI, EMS, RF, Telecom, Safety
Japan	VCCI, JATE, TELEC, RFT	EMI, RF/Wireless, Telecom
Mexico	NOM, COFETEL, Caniety	Safety, EMC, RF/Wireless, Telecom
Europe	A2LA, NIST	EMC, RF, Telecom, Safety
Israel	MOC, NIST	EMC, RF, Telecom, Safety

Accreditations for Product Certifications

Country	Accreditation Body	Scope
USA	FCC TCB, NIST	EMC, RF, Telecom
Canada	IC FCB, NIST	EMC, RF, Telecom
Singapore	iDA, NIST	EMC, RF, Telecom
EU	NB	EMC & R&TTE Directive
Japan	MIC (RCB 208)	RF, Telecom
Hong Kong	OFTA (US002)	RF, Telecom

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	3 of 39

CONTENTS

1	R	REPORT REVISION HISTORY	4
2	Е	EXECUTIVE SUMMARY	5
3	С	CUSTOMER INFORMATION	5
4	Т	TEST SITE INFORMATION	5
5	M	MODIFICATION	5
6	Е	EUT INFORMATION	6
	6.1	EUT Description	6
	6.2	Radio Description	6
	6.3	EUT Operational Condition	7
	6.4	Adaptive Equipment	7
	6.5	EUT test modes/configuration Description.	7
7	S	SUPPORTING EQUIPMENT/SOFTWARE AND CABLING DESCRIPTION	8
	7.1	Supporting Equipment	8
	7.2	Cabling Description	8
	7.3	Test Software Description	8
8	Т	FEST SUMMARY	9
9	M	MEASUREMENT UNCERTAINTY	10
	9.1	Radiated Emissions (30MHz to 1GHz)	10
	9.2	Radiated Emissions (1GHz to 40GHz)	10
	9.3	RF conducted measurement	11
10	0	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	12
	10.1	1 RF Output Power	12
	10.2	Power Spectral Density	15
	10.3	3 Adaptivity	17
	10.4	4 Occupied Channel Bandwidth	21
	10.5	5 TX Unwanted Emissions in the OOB domain	24
	10.6	Radiated TX Unwanted Emissions in the spurious domain	27
	10.7	7 Radiated Receiver Spurious Emissions	32
	10.8	8 Receiver Blocking	34
Α	NNE	X A. TEST INSTRUMENT	36
Α	NNE	X B. SIEMIC ACCREDITATION	37

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	4 of 39

Report Revision History

Report No.	Report Version	Description	Issue Date
CE_SL18040201-RIO-001_2.4GHz	None	Original	06/15/2018
CE_SL18040201-RIO-001_2.4GHz Rev_1.0	Rev_1.0	Add Adaptivity Data	12/30/2019
CE_SL18040201-RIO-001_2.4GHz Rev_2.0	Rev_2.0	Updated Adaptivity Data	01/07/2020

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	5 of 39

2 **Executive Summary**

The purpose of this test program was to demonstrate compliance of following product

Company: Resin.io

Product: Raspberry Compute Module 3 Lite

Model: Balena Fin

against the current Stipulated Standards. The specified model product stated above has demonstrated compliance with the Stipulated Standard listed on 1st page.

3 Customer information

Applicant Name	Resin.io
Applicant Address	One London Wall 6th floor London EC2Y 5EB United Kingdom
Manufacturer Name	Resin.io
Manufacturer Address	One London Wall 6th floor London EC2Y 5EB United Kingdom

4 Test site information

Lab performing tests	SIEMIC Laboratories	
Lab Address	775 Montague Expressway, Milpitas, CA 95035	
FCC Test Site No.	881796	
IC Test Site No.	4842D-2	
VCCI Test Site No.	A0133	

5 Modification

Index	Item	Description	Note
-	-	-	-

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	6 of 39

EUT Information

<u>6.1</u> **EUT Description**

Product Name	Raspberry Compute Module 3 Lite
Model No.	Balena Fin
Trade Name	Resin.io
Serial No.	N/A
Host Model No.	N/A
Input Power	220VAC/50Hz
Power Adapter Manu/Model	VEL36US120-US-JA
Power Adapter SN	E317867
Date of EUT received	04/15/2018
Equipment Class/ Category	DTS, UNII
Port/Connectors	1 X RJ45 Ethernet , 2 X USB, 1 X mini USB, 1 X HDMI

6.2 **Radio Description**

Radio Type	802.11b	802.11g	802.11n-20M	802.11n-40M		
Operating Frequency	2412-2462MHz	2412-2462MHz	2412-2462MHz	2422-2452MHz		
Modulation	DSSS (CCK, DQPSK, DBPSK)	OFDM-CCK (BPSK, QPSK, 16QAM, 64QAM, 256QAM)	OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM)	OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM)		
Channel Spacing	5MHz	5MHz	5MHz	5MHz		
Number of Channels	11	11	11	7		
Antenna Type		External antenna : ¼ Dipole Omni Embedded antenna : SMT				
Antenna Gain (Peak)	External antenna : 2 dBi Embedded antenna : 1 dBi					
Antenna Connector Type	U.FL					

EUT Power Level Setting

Mode	Frequency (MHz)	Power setting
802.11-b	2412	14
802.11-b	2442	15
802.11-b	2472	15
802.11-g	2412	14
802.11-g	2442	15
802.11-g	2472	15
802.11-n-20	2412	14
802.11-n-20	2442	15
802.11-n-20	2472	15
802.11-n-40	2422	14
802.11-n-40	2442	14
802.11-n-40	2462	14

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	7 of 39

EUT Operational Condition

Item	Range			
Battery Voltage	N/A			
AC Adapter Voltage	220VAC			
Environmental Condition	Tnom = 25 °C	Tmax = 50 °C	Tmin = 0 °C	

6.4 Adaptive Equipment

			Adaptive Equipment			
\boxtimes	Adaptive Equipment without the possibility to switch to a non-adaptive mode:					
	\boxtimes	The	equipment has implemented an LBT based DAA mechanism			
			The equipment is Frame Based equipment			
		\boxtimes	The equipment is Load Based equipment			
		☐ The equipment can switch dynamically between Frame Based and Load Based equipment				
		The	equipment has implemented and non-LBT based DAA mechanism			
	☐ The equipment can operate in more than one adaptive mode					
		Adaptive Frequency Hopping using other forms of DAA (non-LBT based) / without Short Control Signaling Transmissions				
	Adaptive Equipment which can also operate in a non-adaptive mode					

<u>6.5</u> **EUT test modes/configuration Description**

Test mode

Test Mode			
Pre_test_mode_1	Continuous Transmit	-	
Pre_test_mode_2	Normal Operation Mode (duty cycle transmit power)	-	

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com: Follow us at:

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	8 of 39

Supporting Equipment/Software and cabling Description

Supporting Equipment 7.1

Item	Supporting Equipment Description	Model	Serial Number	Manufacturer	Note
1	Laptop	LATITUDE 3550	N/A	Dell	-
2	Router	WNR2000	N/A	Netgear	

7.2 **Cabling Description**

Name	Connection Start		Connecti	on Stop	Length / shi	elding Info	Note
Name	From I/O Port		То	I/O Port	Length (m)	Shielding	Note
Ethernet	RJ-45	EUT	RJ-45	Laptop	Ethernet 1 m	no	Unshielded

Test Software Description 7.3

Test Item	Software	Description
RF Testing	Dut Labtool	Set the EUT to transmit continuously in different test modes and channels

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	9 of 39

Test Summary

Summary for 2.4GHz WLAN

Test Item		Test standard	Test Method/Procedure	Pass / Fail
RF Output Power		EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass
I	Power Spectral Density	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass
Duty	Cycle, Tx-sequence, Tx-gap	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	N/A
Dwell time, Minimum Frequency Occupation & Hopping Sequence		EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	N/A
Hopping Frequency Separation		EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	N/A
Medium Utilisation		EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	N/A
Adaptivity		EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass
Occ	cupied Channel Bandwidth	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass
TX Unwant	ted Emissions in the OOB domain	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass
TX Unwante	d Emissions in the spurious domain	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass
Receiver spurious emissions		EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass
Receiver Blocking		EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass
All measurement uncertainties do not take into consideration for all presented test results.				
Remark 2. The applicant shall ensure frequency stability by showing that an emission is maintained within the band of operating all normal operating conditions as specified in the user's manual.				operation under

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	10 of 39

Measurement Uncertainty

9.1 Radiated Emissions (30MHz to 1GHz)

The test is to measure the radiated emissions of the EUT. Some error sources that can contribute to the total uncertainty:

- Uncertainty of the receiver
- Uncertainty of the antenna
- Uncertainty of cables
- Uncertainty due to the mismatches
- NSA Calibration
- Etc., details see the below table

Source of Uncertainty	Value (dB)	Probability Distribution	Division	Sensitivity Coefficient	Expanded Uncertainty
Receiver Reading	0.12	Rectangular	1.732	1	0.069284
Cable Insertion Loss	0.21	Normal	2	1	0.105
Filter Insertion Loss	0.25	Normal	2	1	0.125
Antenna Factor	0.65	Normal	2	1	0.325
Receiver CW accuracy	0.5	Rectangular	1.732	1	0.2886836
Pulse Amplitude Response	1.5	Rectangular	1.732	1	0.86605081
PRF Response	1.5	Rectangular	1.732	1	0.86605081
Mismatch Filter - Receiver	0.25	U-Shape	1.414	1	0.1768033
NSA Calibration	4.0	U-Shape	1.414	1	2.8288543
Combined Standard Uncertaint	3.0059131				
Expanded Uncertainty (K=2)	6.0118262				

The total derived measurement uncertainty is +/- 6.00 dB.

9.2 Radiated Emissions (1GHz to 40GHz)

The test is to measure the radiated emissions of the EUT.

Some error sources that can contribute to the total uncertainty:

- Uncertainty of the receiver
- Uncertainty of the antenna
- Uncertainty of cables
- Uncertainty due to the mismatches
- VSWR Calibration
- Etc., details see the below table

Source of Uncertainty	Value	Probability	Division	Sensitivity	Expanded
Source of Uncertainty	(dB)	Distribution	DIVISION	Coefficient	Uncertainty
Receiver Reading	0.12	Rectangular	1.732	1	0.0692840
Cable Insertion Loss	0.21	Normal	2	1	0.1050000
Filter Insertion Loss	0.25	Normal	2	1	0.1250000
Antenna Factor	0.65	Normal	2	1	0.3250000
Receiver CW accuracy	0.5	Rectangular	1.732	1	0.2886836
Pulse Amplitude Response	1.5	Rectangular	1.732	1	0.8660508
PRF Response	1.5	Rectangular	1.732	1	0.8660508
Mismatch Filter - Receiver	0.25	U-Shape	1.414	1	0.1768033
VSWR Calibration	2.0	U-Shape	1.414	1	1.4144272
Combined Standard Uncertain	4.2363				
Expanded Uncertainty (K=2	8.4726				

The total derived measurement uncertainty is +/- 8.47 dB.

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	11 of 39

9.3 RF conducted measurement

The test is to measure the RF output power from the EUT.

Some error sources that can contribute to the total uncertainty:

- Uncertainty of the Reference Level Uncertainty
- Uncertainty of variable attenuators
- Uncertainty of cables
- Uncertainty due to the mismatches

	Value	Probability	Division	Sensitivity	Expanded
Source of Uncertainty	(dB)	Distribution		Coefficient	Uncertainty
Reference Level	0.12	Rectangular	1.732	1	0.069284
Cable Insertion Loss	0.21	Normal	2	1	0.105
Attenuator	0.25	Normal	2	1	0.125
Mismatch	0.25	U-Shape	1.414	1	0.1768033
Combined Standard Unce	0.476087				
Expanded Uncertainty (I	<= 2)				0.952174

The total derived measurement uncertainty is +/- 0.95 dB.

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	12 of 39

10 Measurements, Examination and Derived Results

10.1 RF Output Power

	<u>t Power</u>			1	
Spec	Item	Requirement		Applicable	
EN 300 328 V2.1.1 (2016-11)	4.3.1	The maximum RF output power for adaptive Frequency Hopping equipmed equal to or less than 20 dBm.	nent shall		
EN 300 328 V2.1.1 (2016-11)	4.3.1	The maximum RF output power for non-adaptive Frequency Hopping equipment, hall be equal to or less than the value declared by the supplier. This declared alue shall be equal to or less than 20 dBm.			
EN 300 328 V2.1.1 (2016-11)	4.3.2	for adaptive equipment using wide band modulations other than FHSS, the naximum RF output power shall be 20 dBm.			
EN 300 328 V2.1.1 (2016-11)	4.3.2	The maximum RF output power for non-adaptive equipment shall be dethe supplier and shall not exceed 20 dBm.	clared by		
Test Setup		Environmental Chamber			
Procedure	2. F - C tt 3. F - C - T b	Use a fast power sensor suitable for 2,4 GHz and capable of 1 MS/s. For conducted measurements on devices with one transmit chain: Connect the power sensor to the transmit port, sample the transmit signal a hese stored samples in all following steps. For conducted measurements on devices with multiple transmit chains: Connect one power sensor to each transmit port for a synchronous measu frigger the power sensors so that they start sampling at the same time. Make the samples of all sensors is less than half the time between two for each instant in time, sum the power of the individual samples of all por stored samples in all following steps.	rement on all ake sure the ti samples.	transmits ports ime difference	
	5. E tl 6. T 7. A 8. I - If		IS power over n e.i.r.p. calcul na. maximum over A + G + Y	the burst. Save lations. rall antenna	
Test Date	5. E tl 6. T 7. A 8. I - If	Between the start and stop times of each individual burst calculate the RM hese P_{burst} values, as well as the start and stop times for each burst. The highest of all P_{burst} values (value "A" in dBm) will be used for maximum add the (stated) antenna assembly gain "G" in dBi of the individual antennal fl applicable, add the additional beamforming gain "Y" in dB. If more than one antenna assembly is intended for this power setting, the regain (G or G + Y) shall be used. The RF Output Power (P) shall be calculated using the formula: $P = P_{burst}$ Temperature	IS power over n e.i.r.p. calcul na. maximum over A + G + Y	the burst. Save	
Test Date Remark	5. E tl 6. T 7. A 8. I - If 9	Between the start and stop times of each individual burst calculate the RM hese P_{burst} values, as well as the start and stop times for each burst. The highest of all P_{burst} values (value "A" in dBm) will be used for maximum add the (stated) antenna assembly gain "G" in dBi of the individual antennal f applicable, add the additional beamforming gain "Y" in dB. If more than one antenna assembly is intended for this power setting, the regain (G or G + Y) shall be used. The RF Output Power (P) shall be calculated using the formula: Temperature Environmental condition Environmental condition	IS power over n e.i.r.p. calcul na. maximum over A + G + Y	the burst. Save lations. rall antenna 24 °C 42 %	

Test Data \boxtimes Yes (See below) \square N/ATest Plot \square Yes (See below) \boxtimes N/A

Test was done by Benjamin Jing at radio test site .

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	13 of 39

Test Results

802.11b Low CH: 2412 MHz

Туре	Condition	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
EIRP	Norm Temp (25°C)	2	17.1	20
	Low Temp (-20 °C)	2	16.4	20
	Low Temp (-20 °C)	2	16.4	20
	High Temp (55°C)	2	17.8	20
	High Temp (55°C)	2	17.8	20

802.11b Mid CH: 2442 MHz

Туре	Condition	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	2	17.9	20
	Low Temp (-20 °C)	2	17.2	20
EIRP	Low Temp (-20 °C)	2	17.2	20
	High Temp (55°C)	2	18.3	20
	High Temp (55°C)	2	18.3	20

802.11b High CH: 2472 MHz

Type	Condition	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	2	17.3	20
	Low Temp (-20 °C)	2	16.5	20
EIRP	Low Temp (-20 °C)	2	16.5	20
	High Temp (55°C)	2	17.8	20
	High Temp (55°C)	2	17.8	20

802.11g Low CH: 2412 MHz

Туре	Condition	Directional Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	2	16.2	20
	Low Temp (-20 °C)	2	15.7	20
EIRP	Low Temp (-20 °C)	2	15.7	20
	High Temp (55°C)	2	16.9	20
	High Temp (55°C)	2	16.9	20

802.11g Mid CH: 2442 MHz

Туре	Condition	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	2	16.6	20
	Low Temp (-20 °C)	2	15.8	20
EIRP	Low Temp (-20 °C)	2	15.8	20
	High Temp (55°C)	2	17.2	20
	High Temp (55°C)	2	17.2	20

802.11g High CH: 2472 MHz

Type	Condition	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	2	16.4	20
	Low Temp (-20 °C)	2	15.5	20
EIRP	Low Temp (-20 °C)	2	15.5	20
	High Temp (55°C)	2	17.3	20
	High Temp (55°C)	2	17.3	20

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	14 of 39

802.11n-20 Low CH: 2412 MHz

Type	Condition	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	2	15.3	20
	Low Temp (-20 °C)	2	14.8	20
EIRP	Low Temp (-20 °C)	2	14.8	20
	High Temp (55°C)	2	15.9	20
	High Temp (55°C)	2	15.9	20

802.11n-20 Mid CH: 2442 MHz

Туре	Condition	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	2	15.7	20
	Low Temp (-20 °C)	2	15.1	20
EIRP	Low Temp (-20 °C)	2	15.1	20
	High Temp (55°C)	2	16.3	20
	High Temp (55°C)	2	16.3	20

802.11n-20 High CH: 2472 MHz

Type	Condition	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	2	15.6	20
	Low Temp (-20 °C)	2	14.9	20
1EIRP	Low Temp (-20 °C)	2	14.9	20
	High Temp (55°C)	2	16.1	20
	High Temp (55°C)	2	16.1	20

802.11n-40M Low CH: 2422 MHz

Type	Condition	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	2	11.3	20
	Low Temp (-20 °C)	2	10.7	20
1EIRP	Low Temp (-20 °C)	2	10.7	20
	High Temp (55°C)	2	11.8	20
	High Temp (55°C)	2	11.8	20

802.11n-40M Mid CH: 2442 MHz

Туре	Condition	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	2	10.9	20
	Low Temp (-20 °C)	2	10.2	20
EIRP	Low Temp (-20 °C)	2	10.2	20
	High Temp (55°C)	2	11.4	20
	High Temp (55°C)	2	11.4	20

802.11n-40M High CH: 2462 MHz

002:11111 101	70211 III 40III IIIgii Gili 2402 IIII 2			
Type	Condition	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	2	10.6	20
	Low Temp (-20 °C)	2	10.1	20
EIRP	Low Temp (-20 °C)	2	10.1	20
	High Temp (55°C)	2	11.2	20
	High Temp (55°C)	2	11.2	20

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	15 of 39

- mm	Itom	Poquiroment			Applicable
Spec	Item	Requirement			Applicable
EN 300 328 V2.1.1 (2016-11	4.3.2	For equipment using wide bar Spectral Density is limited to 1	nd modulations other than FHS 10 dBm per MHz	S, the maximum Power	
Test Setup		EUT	Spectrum A	nalyzer	
Procedure	2 3 4 5	- Start Frequency: 2 400 M - Stop Frequency: 2 483,5 - Resolution BW: 10 kHz - Video BW: 30 kHz - Sweep Points: > 8 350 - Detector: RMS - Trace Mode: Max Hold - Sweep time: Auto For non-continuous signals, For conducted measuremer clause 5.1.3.2), repeat the rup the amplitude (power) values for amplit Normalize the individual value.i.r.p.) measured. Starting from the first sample representing a 1 MHz segment This is the Power Spectral E. Shift the start point of the salue. Starting from the first sample and the salue and the recorded results.	wait for the trace to be comple ats on smart antenna systems to measurement for each of the trace alues for the different transmit of tude (power) for all the samples ues for amplitude so that the sure in the file (lowest frequency), ent and record the results for poensity (e.i.r.p.) for the first 1 Mamples added up in step 5 by 1 of the data set and record the	ted. Save the (trace) data susing either operating mode ansmit ports. For each frequential hains and use this as the near in the file. If add up the power of the form ower and position (i.e. same Hz segment which shall be sample and repeat the progradiated Power Spectral Designation (i.e. same sample and seconds are seconds and seconds and seconds and seconds and seconds and seconds and seconds are seconds and seconds and seconds and seconds and seconds and seconds and seconds are seconds and seconds and seconds and seconds and seconds are seconds and seconds and seconds and seconds are seconds and seconds and seconds are seconds and seconds and seconds are	e 2 or 3 (see uency point, add ew data set. ut Power llowing samples uple #1 to #100) recorded. cedure in step sensity values for ensity values for ity for the UUT.
Test Date	05/23/	2018	Environmental condition	Temperature Relative Humidity Atmospheric Pressure	23 °C 42 % 1019 mbar
Remark	NONE				
		ss 🗆 Fail			

Test was done by Benjamin Jing at radio test site .

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	16 of 39

PSD measurement results

Туре	Freq (MHz)	Test mode	СН	Measured PSD (dBm/1MHz) (E.I.R.P)	Limit (dBm/1MHz) (E.I.R.P)	Result
Maximum PSD	2412	802.11b	Low	9.15	≤10	Pass
Maximum PSD	2442	802.11b	Mid	9.30	≤10	Pass
Maximum PSD	2472	802.11b	High	9.41	≤10	Pass
Maximum PSD	2412	802.11g	Low	7.62	≤10	Pass
Maximum PSD	2442	802.11g	Mid	8.96	≤10	Pass
Maximum PSD	2472	802.11g	High	8.83	≤10	Pass
Maximum PSD	2412	802.11n-20M	Low	7.49	≤10	Pass
Maximum PSD	2442	802.11n-20M	Mid	7.98	≤10	Pass
Maximum PSD	2472	802.11n-20M	High	8.46	≤10	Pass
Maximum PSD	2422	802.11n-40M	Low	5.71	≤10	Pass
Maximum PSD	2442	802.11n-40M	Mid	6.32	≤10	Pass
Maximum PSD	2462	802.11n-40M	High	5.14	≤10	Pass

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	17 of 39

10.3 Adaptivity

Requirement(s):

	Item	Requirement	T.			Applicable
EN 300 328 V2.1.1 (2016-11)	4.3.2.6.3	LBT based Detect and Avoid	802.11-2207 clauses 15, 17, 18 or 19, in IEEE Std. 802.11-2009, clause 20 or in IEEE Std. 802.15.4-2006 - Detection Level = - 70 dBm/MHz + 10 * log ₁₀ (100mW / P _{out})			\boxtimes
EN 300 328 V2.1.1 (2016-11)	4.3.2.6.4	wide band m	ed, Short Control Si odulations other that		f adaptive equipment using ximum TxOn / (TxOn + TxOff)	\boxtimes
		from com	nal mean power panion device	Wanted Signal param Unwanted signal frequency (MHz)	Unwanted signal power (dBm)	
EN 300 328 V2.1.1 (2016-11) 4.3.2.6.	4.3.2.6.3	sufficient to maintain the link (see note 2) NOTE 1: The highest frequency shall be used for testing operating channels within the range 2 400 MHz to 2 442 MHz, while the lowest frequency shall be used for testing operating channels within the range 2 442 MHz to 2 483,5 MHz. See clause 5.4.6.1. NOTE 2: A typical value which can be used in most cases is -50 dBm/MHz. NOTE 3: The level specified is the level in front of the UUT antenna. In case of conducted measurements, this level has to be corrected by the actual antenna assembly gain.				
		UUT	Splitter/ Combiner	Spectrum Analyzer Direct. Coupler	Companion Device	
Test Setup		Figur	e 5: Test set-up for v	Splitter/Combiner	Interference Signal Generator Unwanted Signal Generator equipment	
Test Setup Procedure	Refer to C	Figur lause 5.4.6 of ETSI EN		Splitter/Combiner	Signal Generator Unwanted Signal Generator	
	Interfer shall be Occupion Occupion Unwan	lause 5.4.6 of ETSI EN ence signal: A 100 % du e a band limited noise si ed Channel Bandwidth o ed Channel Bandwidth.	300 328 V2.1.1 (2 uty cycle interferer gnal with a flat Po of the UUT. The m y cycle CW signal	rerifying the adaptivity of an 016-11) Ince signal is injected cerwer Spectral Density, are aximum ripple of this interpretate of the centered at either 2 395	Signal Generator Unwanted Signal Generator	ater than the B within the

Test Data \boxtimes Yes (See below) \square N/ATest Plot \boxtimes Yes (See below) \square N/A

Test was done by Shuo Zhang at RF test site.

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	18 of 39

Test Result for Adaptivity COT:

Test Mode	Frequency (MHz)	Maximum Channel Occupancy Time (COT) (ms)	Limit (ms)	Result
802.11b	2412	0.095	≤13	Pass
802.11b	2472	0.095	≤13	Pass

CCA:

Test Mode	Frequency (MHz)	Clear Channel Assessment(CCA)(us)	Limit (ms)	Result
802.11b	2412	18.125	≥18	Pass
802.11b	2472	18.125	≥18	Pass

Short Control:

Test Mode	Frequency (MHz)	Adaptivity	Unwanted Signal
802.11b	2412	Pass	Pass
802.11b	2472	Pass	Pass

Note:

Actual Adaptivity Detection Threshold Level (dBm) = -70 dBm Unwanted Signal Level (dBm) = - 35 dBm

Test Result for Short Control Signaling Transmissions

Test Mode	Frequency (MHz)	Short Control Signaling Transmissions (ms)	Limit (ms)	Result
802.11b	2412	0	≤5	Pass
802.11b	2472	0	≤5	Pass

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	19 of 39

Test Plots

 Test report No.
 CE_SL18040201-RIO-001_2.4GHz Rev_2.0

 Page
 20 of 39

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	21 of 39

10.4 Occupied Channel Bandwidth

Spec	Item	Requirement			Applicable
EN 300 328 V1.9.1 (2015-02)	4.3.2	The Occupied Channe MHz.	l Bandwidth shall fall completely wi	thin the band of 2400 – 2483.5	\boxtimes
EN 300 328 V1.9.1 (2015-02)	4.3.2		ems using wide band modulations on the occupied channel bandwidth sha		
Test Setup		Spectrum Analyzer	EUT		
Procedure	3.	- Centre Fred - Resolution I - Video BW: 3 - Frequency 3 - Detector Mo Wait until the trace is Find the peak value o Use the 99 % bandwid Bandwidth of the UUT This value shall be rec Make sure that the power	Span: 2 × Occupied Channel Bandode: RMS completed. If the trace and place the analyser round the function of the spectrum analyser.	e channel under test g below 1 % width (e.g. 40 MHz for a 20 MHz marker on this peak. er to measure the Occupied Cha	nnel
Test Date	05/17/2018 –06/12/2018/		Environmental condition	Relative Humidity 4	4 ℃ 0 % 019 mbar
Remark	None			•	
Result	⊠ Pas	s 🗆 Fail			

Test Data		□ N/A
Test Plot	⊠ Yes	□ N/A

Test was done by Benjamin Jing at radio test site .

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	22 of 39

Test Result:

Туре	Freq (MHz)	Test mode	99% Bandwidth (MHz)	F∟ at 99% Bandwidth (MHz)	Fн at 99% Bandwidth (MHz)	Limit (FL/FH) (MHz)
99%OBW	2412	802.11b	13.3	2405.3	2418.7	2400.0
99%OBW	2472	802.11b	13.3	2465.3	2478.7	2483.5
99%OBW	2412	802.11g	16.4	2403.8	2420.2	2400.0
99%OBW	2472	802.11g	16.7	2463.6	2480.4	2483.5
99%OBW	2412	802.11n-20M	17.1	2403.4	2420.6	2400.0
99%OBW	2472	802.11n-20M	17.1	2463.4	2480.6	2483.5
99%OBW	2422	802.11n-40M	35.4	2404.3	2439.7	2400.0
99%OBW	2462	802.11n-40M	36.4	2443.8	2480.2	2483.5

Test Plots

Test report No. CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page 23 of 39

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	24 of 39

10.5 TX Unwanted Emissions in the OOB domain

Spec	Item	Requirement			
		The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in figure at below, Spurious Domain Out Of Band Domain (OOB) Allocated Band Out Of Band Domain (OOB) Spurious Domain			
EN 300 328 V1.9.1 (2015- 02)	4.3.1, 4.3.2	A 2 400 MHz - 2BW 2 400 MHz - BW 2 400 MHz 2 483,5 MHz 2 483,5 MHz + BW 2 483,5 MHz + 2BW A: -10 dBm/MHz e.i.r.p. B: -20 dBm/MHz e.i.r.p. B: -20 dBm/MHz e.i.r.p. C: Spurious Domain limits BW = Occupied Channel Bandwidth in MHz or 1 MHz whichever is greater			
Test Setup		EUT Spectrum Analyzer			
Procedure	2.	 Centre Frequency: 2 484 MHz Span: 0 Hz Resolution BW: 1 MHz Filter mode: Channel filter Video BW: 3 MHz Detector Mode: RMS Trace Mode: Clear / Write Sweep Mode: Continuous Sweep Points: 5 000 Trigger Mode: Video trigger Sweep Time: Suitable to capture one transmission burst 	el shall be ch the RMS is the RMS n the I MHz e last 1 MHz		

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	25 of 39

- 3. (segment 2 483,5 MHz + BW to 2 483,5 MHz + 2BW)
- Change the centre frequency of the analyser to 2 484 MHz + BW and perform the measurement for the first 1 MHz segment within range 2 483,5 MHz + BW to 2 483,5 MHz + 2BW. Increase the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + 2 BW 0,5 MHz.
- 4. (segment 2 400 MHz BW to 2 400 MHz)
- Change the centre frequency of the analyser to 2 399,5 MHz and perform the measurement for the first 1 MHz segment within range 2 400 MHz BW to 2 400 MHz Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz 2BW + 0,5 MHz.
- 5. (segment 2 400 MHz 2BW to 2 400 MHz BW)
- Change the centre frequency of the analyser to 2 399,5 MHz BW and perform the measurement for the first 1 MHz segment within range 2 400 MHz 2BW to 2 400 MHz BW. Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz 2BW + 0,5 MHz.
- 6. In case of conducted measurements on equipment with a single transmit chain, the declared antenna assembly gain "G" in dBi shall be added to the results for each of the 1 MHz segments and compared with the limits provided by the mask given in figures 1 or 3. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered.
- 7. In case of conducted measurements on smart antenna systems (equipment with multiple transmit chains), the measurements need to be repeated for each of the active transmit chains. The declared antenna assembly gain "G" in dBi for a single antenna shall be added to these results. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered. Comparison with the applicable limits shall be done using any of the options given below:
- Option 1: the results for each of the transmit chains for the corresponding 1 MHz segments shall be added. The additional beamforming gain "Y" in dB shall be added as well and the resulting values compared with the limits provided by the mask given in figures 1 or 3.
- Option 2: the limits provided by the mask given in figures 1 or 3 shall be reduced by 10 x log10(Ach) and the additional beamforming gain "Y" in dB. The results for each of the transmit chains shall be individually compared with these reduced limits.

NOTE 2: Ach refers to the number of active transmit chains.

Test Date	05/24/2018		Environmental condition	Temperature Relative Humidity Atmospheric Pressure	24 °C 40 % 1019 mbar
Remark	None				
Result	⊠ Pass	☐ Fail			

Test Data		□ N/A
Test Plot	☐ Yes (See below)	⊠ N/A

Test was done by Benjamin Jing at RF test site.

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	26 of 39

Test Result

Туре	Frequency (MHz)	Mode	OOB Frequency (MHz)	OOB Emission level (dBm)	Limit (dBm)	Result
OOB	2412	802.11b	2398.4	-28.725	-10	Pass
OOB	2472	802.11b	2484.2	-32.338	-10	Pass
OOB	2412	802.11g	2399.7	-14.505	-10	Pass
OOB	2472	802.11g	2484.5	-14.574	-10	Pass
OOB	2412	802.11n-20	2391.4	-13.733	-10	Pass
OOB	2472	802.11n-20	2484.3	-13.050	-10	Pass
OOB	2422	802.11n-40	2393.7	-15.229	-10	Pass
OOB	2462	802.11n-40	2484.2	-13.952	-10	Pass

Note: The results above show only the worst case.

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	27 of 39

10.6 Radiated TX Unwanted Emissions in the spurious domain

Spec Radiated	Item	Requirement	Applicable
EN 300 328 V2.1.1 (2016-11)	4.3.1, 4.3.2	The spurious emissions of the transmitter shall not exceed the values in the tables below in the indicated bands. Transmitter limits for narrowband spurious emissions Frequency range Maximum power Bandwidth 30 MHz to 47 MHz -36 dBm 100 KHz 47 MHz to 74 MHz -54 dBm 100 KHz 74 MHz to 87.5 MHz -36 dBm 100 KHz 87.5 MHz to 118 MHz -54 dBm 100 KHz 118 MHz to 174 MHz -36 dBm 100 KHz 118 MHz to 230 MHz -36 dBm 100 KHz 230 MHz to 470 MHz -36 dBm 100 KHz 470 MHz to 862 MHz -36 dBm 100 KHz 862 MHz to 1 GHz -36 dBm 100 KHz 1 GHz to 12.75 GHz -30 dBm 100 KHz	\boxtimes
Test Setup Below 1GHz		Semi Anechoic Chamber Radio Absorbing Material Total Antenna Antenna Ground Plane	n. er
Test Setup Above 1GHz		Semi Anechoic Chamber Radio Absorbing Material 3m Antenna 1.4m Spectrum Ana	yzer
Procedure	Refer to	o Clause 5.3.10.2.2 of EN 300 328 V2.1.1 (2016-11)	
Remark	Both ho	prizontal and vertical polarities were investigated. The results show only the worst case	
Result	⊠ Pas	s 🗆 Fail	

Test was done by Benjamin Jing at 10m Chamber.

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	28 of 39

802.11b - Low CH 2412 MHz

In	dicated		Test A	Antenna			Su	bstituted			
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
189.63	-48.27	275	110	V	189.63	-73.45	0	1.28	-72.17	-54	-18.17
189.63	-44.46	96	229	Н	189.63	-65.41	0	1.28	-64.13	-54	-10.13
4824	-65.13	236	165	V	4804	-42.05	10.54	4.32	-48.27	-30	-18.27
4824	-67.24	167	176	Н	4804	-44.16	10.54	4.32	-50.38	-30	-20.38
7206	-78.16	264	168	V	7206	-46.86	10.13	4.36	-52.63	-30	-22.63
7206	-80.25	252	162	Н	7206	-48.95	10.13	4.36	-54.72	-30	-24.72

802.11b - High CH 2472 MHz

In	ndicated		Test A	Antenna	Substituted							
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
206.12	-46.52	70	130	V	206.12	-67.17	0	1.31	-65.86	-54	-11.86	
206.12	-40.48	142	220	Н	206.12	-64.56	0	1.31	-63.25	-54	-9.25	
4944	-66.34	236	165	V	4960	-43.26	10.52	4.35	-49.43	-30	-19.43	
4944	-68.02	167	176	Н	4960	-44.94	10.52	4.35	-51.11	-30	-21.11	
7440	-78.64	264	168	V	7440	-47.34	10.67	4.38	-53.63	-30	-23.63	
7440	-80.48	252	162	Н	7440	-49.18	10.67	4.38	-55.47	-30	-25.47	

802.11g - Low CH 2412 MHz

Ir	dicated		Test A	Antenna	Substituted							
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
4824	-66.93	236	165	V	4804	-43.85	10.54	4.32	-50.07	-30	-20.07	
4824	-68.22	167	176	Н	4804	-45.14	10.54	4.32	-51.36	-30	-21.36	
7206	-78.45	264	168	V	7206	-47.15	10.13	4.36	-52.92	-30	-22.92	
7206	-80.32	252	162	Н	7206	-49.02	10.13	4.36	-54.79	-30	-24.79	

802.11a - High CH 2472 MHz

In	dicated		Test Antenna		Substituted							
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
4944	-66.24	236	165	V	4960	-43.16	10.52	4.35	-49.33	-30	-19.33	
4944	-68.45	167	176	Н	4960	-45.37	10.52	4.35	-51.54	-30	-21.54	
7440	-78.27	264	168	V	7440	-46.97	10.67	4.38	-53.26	-30	-23.26	
7440	-79.13	252	162	Н	7440	-47.83	10.67	4.38	-54.12	-30	-24.12	

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com: Follow us at:

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	29 of 39

802.11n20 - Low CH 2412 MHz

In	dicated		Test Antenna		Substituted							
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
4824	-65.13	236	165	V	4804	-42.05	10.54	4.32	-48.27	-30	-18.27	
4824	-67.24	167	176	Н	4804	-44.16	10.54	4.32	-50.38	-30	-20.38	
7206	-78.16	264	168	V	7206	-46.86	10.13	4.36	-52.63	-30	-22.63	
7206	-80.25	252	162	Н	7206	-48.95	10.13	4.36	-54.72	-30	-24.72	

802.11n20 - High CH 2472MHz

In	dicated		Test Antenna		Substituted							
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
4944	-66.34	236	165	V	4960	-43.26	10.52	4.35	-49.43	-30	-19.43	
4944	-68.02	167	176	Н	4960	-44.94	10.52	4.35	-51.11	-30	-21.11	
7440	-78.64	264	168	V	7440	-47.34	10.67	4.38	-53.63	-30	-23.63	
7440	-80.48	252	162	Н	7440	-49.18	10.67	4.38	-55.47	-30	-25.47	

802.11n40 - Low CH 2422 MHz

			Test A	Antenna	Substituted							
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
206.12	-46.52	70	130	V	206.12	-67.17	0	1.31	-65.86	-54	-11.86	
206.12	-40.48	142	220	Н	206.12	-64.56	0	1.31	-63.25	-54	-9.25	
4844	-66.93	236	165	V	4804	-43.85	10.54	4.32	-50.07	-30	-20.07	
4844	-68.22	167	176	Н	4804	-45.14	10.54	4.32	-51.36	-30	-21.36	

802.11n40 - High CH 2462 MHz

In	dicated		Test Antenna		Substituted							
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
207.03	-46.52	66	100	٧	207.03	-68.17	0	1.31	-66.86	-54	-12.86	
207.03	-40.48	138	229	Н	207.03	-62.56	0	1.31	-61.25	-54	-7.25	
4924	-66.24	236	165	V	4960	-43.16	10.52	4.35	-49.33	-30	-19.33	
4924	-68.45	167	176	Н	4960	-45.37	10.52	4.35	-51.54	-30	-21.54	

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	30 of 39

Embedded Antenna

802.11b - Low CH 2412 MHz

In	dicated		Test A	Antenna		Substituted							
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)		
227.03	-41.59	353	143	V	227.03	-63.29	0	1.35	-61.94	-54	-7.94		
227.03	-35.63	116	159	Н	227.03	-58.33	0	1.35	-56.98	-54	-2.98		
4824	-65.13	236	165	V	4804	-42.05	10.54	4.32	-48.27	-30	-18.27		
4824	-67.24	167	176	Н	4804	-44.16	10.54	4.32	-50.38	-30	-20.38		
7206	-78.16	264	168	V	7206	-46.86	10.13	4.36	-52.63	-30	-22.63		
7206	-80.25	252	162	Н	7206	-48.95	10.13	4.36	-54.72	-30	-24.72		

802 11h - High CH 2472 MHz

Ir	ndicated		Test A	Antenna	Substituted						
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
206.12	-46.52	70	130	V	206.12	-67.17	0	1.31	-65.86	-54	-11.86
206.12	-40.48	142	220	Н	206.12	-64.56	0	1.31	-63.25	-54	-9.25
4944	-66.34	236	165	V	4960	-43.26	10.52	4.35	-49.43	-30	-19.43
4944	-68.02	167	176	Н	4960	-44.94	10.52	4.35	-51.11	-30	-21.11
7440	-78.64	264	168	V	7440	-47.34	10.67	4.38	-53.63	-30	-23.63
7440	-80.48	252	162	Н	7440	-49.18	10.67	4.38	-55.47	-30	-25.47

802.11g - Low CH 2412 MHz

In	dicated		Test A	Antenna			Su	bstituted			
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
4824	-66.93	236	165	V	4804	-43.85	10.54	4.32	-50.07	-30	-20.07
4824	-68.22	167	176	Н	4804	-45.14	10.54	4.32	-51.36	-30	-21.36
7206	-78.45	264	168	V	7206	-47.15	10.13	4.36	-52.92	-30	-22.92
7206	-80.32	252	162	Н	7206	-49.02	10.13	4.36	-54.79	-30	-24.79

802.11a - High CH 2472 MHz

Ir	dicated		Test A	Antenna			Su	bstituted			
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
4944	-66.24	236	165	V	4960	-43.16	10.52	4.35	-49.33	-30	-19.33
4944	-68.45	167	176	Н	4960	-45.37	10.52	4.35	-51.54	-30	-21.54
7440	-78.27	264	168	V	7440	-46.97	10.67	4.38	-53.26	-30	-23.26
7440	-79.13	252	162	Н	7440	-47.83	10.67	4.38	-54.12	-30	-24.12

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com: Follow us at:

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	31 of 39

802.11n20 - Low CH 2412 MHz

In	ndicated		Test A	Antenna			Substituted					
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
4824	-65.13	236	165	V	4804	-42.05	10.54	4.32	-48.27	-30	-18.27	
4824	-67.24	167	176	Н	4804	-44.16	10.54	4.32	-50.38	-30	-20.38	
7206	-78.16	264	168	V	7206	-46.86	10.13	4.36	-52.63	-30	-22.63	
7206	-80.25	252	162	Н	7206	-48.95	10.13	4.36	-54.72	-30	-24.72	

802.11n20 - High CH 2472MHz

In	dicated		Test A	Antenna	Substituted						
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
4944	-66.34	236	165	V	4960	-43.26	10.52	4.35	-49.43	-30	-19.43
4944	-68.02	167	176	Н	4960	-44.94	10.52	4.35	-51.11	-30	-21.11
7440	-78.64	264	168	V	7440	-47.34	10.67	4.38	-53.63	-30	-23.63
7440	-80.48	252	162	Н	7440	-49.18	10.67	4.38	-55.47	-30	-25.47

802.11n40 - Low CH 2422 MHz

			Test A	Antenna	Substituted						
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
206.12	-46.52	70	130	V	206.12	-67.17	0	1.31	-65.86	-54	-11.86
206.12	-40.48	142	220	Н	206.12	-64.56	0	1.31	-63.25	-54	-9.25
4844	-66.93	236	165	V	4804	-43.85	10.54	4.32	-50.07	-30	-20.07
4844	-68.22	167	176	Н	4804	-45.14	10.54	4.32	-51.36	-30	-21.36

802 11n/0 - High CH 2/62 MHz

802.11n40 - F		462 WHZ	1		1						
In	Indicated Test Antenna			Antenna	Substituted						
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
207.03	-46.52	66	100	V	207.03	-68.17	0	1.31	-66.86	-54	-12.86
207.03	-40.48	138	229	Н	207.03	-62.56	0	1.31	-61.25	-54	-7.25
4924	-66.24	236	165	V	4960	-43.16	10.52	4.35	-49.33	-30	-19.33
4924	-68.45	167	176	Н	4960	-45.37	10.52	4.35	-51.54	-30	-21.54

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com: Follow us at:

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	32 of 39

10.7 Radiated Receiver Spurious Emissions

Requirement(s):

Spec	Item	Requirement			Applicable				
		Receiver spurious emissions are received mode.							
EN 300 328 V2.1.1 (2016-	4.3.2.9	The spurious emissions of the receiver shall not exceed the values in the tables below in the indicated bands.							
11)		Frequency range 30 MHz to 1GHz 1 GHz to 12.75 GHz	Maximum power -57 dBm -47 dBm	Bandwidth 100 KHz 1 MHz					
Test Setup Below 1GHz		Radio Absorbing Material	3m Antenna Ground Plane	1-4m Spectrum Analy	The state of the s				
Test Setup Above 1GHz		Radio Absorbing Material EUT 1.5m	3m Ground Plane	ntenna 1-4m Spectrum Anal	o. Zzer				
Procedure	Refer to	Clause 5.3.11.2.1 of EN 300 328 \	/2.1.1 (2016-11)						
Remark	NONE								
Result	⊠ Pass	□ Fail							
Test Data ⊠ Y	es (See b	elow) □ N/A							
Test Plot □ Y	es (See b	elow) 🖾 N/A							

Test was done by Benjamin at 10m chamber.

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	33 of 39

RX at 2412 MHz

In	Indicated Test Antenna				Substituted						
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
207.5	-46.55	66	100	V	207.025	-68.42	0	1.31	-67.11	-57	-10.11
207.5	-40.47	138	229	Н	207.025	-62.58	0	1.31	-61.27	-57	-4.27
1632	-79.27	264	150	V	1632	-68.53	10.08	1.78	-76.83	-47	-29.83
1632	-79.38	252	150	Н	1632	-68.64	10.08	1.78	-76.94	-47	-29.94

RX at 2472 MHz

In	Indicated Test Antenna					Substituted						
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
190.6	-48.14	280	100	V	190.656	-73.14	0	1.28	-71.86	-57	-14.86	
190.6	-44.26	93	230	Н	190.656	-66.27	0	1.28	-64.99	-57	-7.99	
1952	-79.43	236	150	V	1952	-66.65	10.25	2.08	-74.82	-47	-27.82	
1952	-79.76	167	150	Н	1952	-66.98	10.25	2.08	-75.15	-47	-28.15	

Note: Both horizontal and vertical polarities were investigated. The results above show only the worst case.

Embedded Antenna

RX at 2412 MHz

In	Indicated Test Antenna				Substituted						
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
227.1	-41.18	353	143	V	227.031	-63.27	0	1.35	-61.92	-57	-4.92
227.1	-38.29	116	159	Н	227.031	-61.31	0	1.35	-59.96	-57	-2.96
1632	-79.27	264	150	V	1632	-68.53	10.08	1.78	-76.83	-47	-29.83
1632	-79.38	252	150	Н	1632	-68.64	10.08	1.78	-76.94	-47	-29.94

RX at 2472 MHz

In	Indicated Test Antenna					Substituted						
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
227.3	-41.18	353	143	V	227.031	-63.27	0	1.35	-61.92	-57	-4.92	
227.3	-38.29	116	159	Н	227.031	-61.31	0	1.35	-59.96	-57	-2.96	
1952	-79.43	236	150	V	1952	-66.65	10.25	2.08	-74.82	-47	-27.82	
1952	-79.76	167	150	Н	1952	-66.98	10.25	2.08	-75.15	-47	-28.15	

Note: Both horizontal and vertical polarities were investigated. The results above show only the worst case.

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com: Follow us at:

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	34 of 39

10.8 Receiver Blocking

Requirement(s):

Spec	Item	Requirement					Applicable	
		4.3.2.11.4.2 Table 14 conta	Receiver Categorins the Receiver Blocking p	arameters for Receiver				
			Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 2)	Type of blocking signal		
EN 300			P _{min} + 6 dB	2 380 2 503,5	-53	CW		
328 V2.1.1 4.3.2.11		P _{min} + 6 dB	2 300 2 330 2 360	-47	cw	X		
(2016-11)			P _{min} + 6 dB	2 523,5 2 553,5 2 583,5 2 683,5 2 643,5 2 643,5 2 673,5	-47	cw		
			any blocking sign NOTE 2: The levels specifi	um level of the wanted nance criteria as defined lal. ied are levels in front of urements, the levels ha	d in clause 4.3.2.1 the UUT antenna	1.3 in the absence of . In case of		
EN 300		4.3.2.11.4.3 Table 15 contai	Category 2 equipn receiver catego Blocking signal power (dBm)	ry 2 equipment Type of blocking signal				
328	4.3.2.11	-	device (dBm)	(MHz) 2 380	(see note 2)	0144		
V2.1.1 (2016-11)		_	P _{min} + 6 dB P _{min} + 6 dB	2 503,5 2 300	-57 -47	CW		
,			NOTE 1: P _{min} is the minimum level of the wanted signal (in dBm) required to meet the minimum performance criteria as defined in clause 4.3.2.11.3 in the absence of any blocking signal. NOTE 2: The levels specified are levels in front of the UUT antenna. In case of conducted measurements, the levels have to be corrected by the actual antenna assembly gain.					
Test Setup		Signallir Or Compa Devi Blocking Soul	signal ce	Spectrum Analyzer	ATT. ATT. Optional	Performance Monitoring Device		
Dungarden	Defends (Name E 4 44 -4 ET		st Set-up for receiver	r blocking			
Procedure	Refer to (Diause 5.4.11 of ETS	SI EN 300 328 V2.1.1	(2016-11)				
Result	□ Pass	☐ Fail						

Test Data \boxtimes Yes (See below) \square N/ATest Plot \square Yes (See below) \boxtimes N/A

Test was done by Rachana Khanduri at RF test site.

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	35 of 39

Test Result for Receiver Blocking

WLAN:

802.11b Low CH: 2412 MHz

Туре	Frequency (MHz)	Level (dBm)	Туре	Result
	2380	E2		Pass
	2503.5	-53	-	Pass
	2300			Pass
	2330	-47		Pass
Bossiyor	2360			Pass
Receiver Blocking	2523.5		CW	Pass
Blocking	2553.5			Pass
	2583.5	-47		Pass
	2613.5	-41		Pass
	2643.5			Pass
	2673.5			Pass

802.11b Mid CH: 2442 MHz

Туре	Frequency (MHz)	Level (dBm)	Туре	Result
	2380	-53		Pass
	2503.5	-55		Pass
	2300			Pass
	2330	-47		Pass
Receiver	2360			Pass
Blocking	2523.5		CW	Pass
Diocking	2553.5			Pass
	2583.5	-47		Pass
	2613.5	-41		Pass
	2643.5			Pass
	2673.5			Pass

802.11b High CH: 2472 MHz

Туре	Frequency (MHz)	Level (dBm)	Туре	Result
	2380	-53		Pass
	2503.5	-55		Pass
	2300			Pass
	2330	-47		Pass
Daneius [2360			Pass
Receiver - Blocking -	2523.5		CW	Pass
Blocking	2553.5			Pass
	2583.5	-47		Pass
	2613.5	-47		Pass
	2643.5			Pass
	2673.5			Pass

Note: The EUT is category 1 receiver

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	36 of 39

Annex A. TEST INSTRUMENT

Instrument	Model	Serial #	Cal Date	Cal Cycle	Cal Due	In use
Radiated Emissions						
Keysight EXA 44GHz Spectrum Analyzer	N9010A	MY51440112	08/02/2017	1 Year	08/02/2018	<u> </u>
Keysight Signal Generator	MXG N5182A	MY47071065	04/12/2018	1 Year	04/12/2019	>
Pre-Amplifier (1 - 40GHz)	SAS-474	579	04/04/2018	1 Year	04/04/2019	₹
RF Preamplifier (100KHz-7GHz)	LPA-6-30	11170602	02/09/2018	1 Year	02/09/2019	V
Bi-Log antenna (30MHz~2GHz)	JB1	A030702	01/13/2018	1 Year	01/13/2019	~
Horn Antenna (1-26.5GHz)	3115	10SL0059	08/11/2017	1 Year	08/11/2018	<u><</u>
Horn Antenna (700MHz-18GHz)	SAS-571	411	04/13/2018	1 Year	04/13/2019	<u>\</u>
Tuned Dipole Antenna 30 - 1000 MHz (4pcs set)	AD-100	40133	03/08/2018	1 Year	03/08/2019	•
3 Meters SAC	3M	N/A	09/09/2017	1 Year	09/09/2018	
10 Meters SAC	10M	N/A	10/06/2017	1 Year	10/06/2018	<
RF Conducted Measurement						
Agilent Spectrum Analyzer	N9010A	10SL0219	11/16/2017	1 Year	11/16/2018	~
Test Equity Environment Chamber	1007H	61201	07/21/2017	1 Year	07/21/2018	<
ETS-Lingren USB RF Power Sensor	7002-006	10SL0190	11/15/2017	1 Year	11/15/2018	>
Receiver Blocking						
R & S Wideband Communication Tester	CMW500	108852	07/28/2017	1 Year	07/28/2018	>

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	37 of 39

Annex B. SIEMIC Accreditation

ccreditations	Document	Scope / Remark
ISO 17025 (A2LA)	7	Please see the documents for the detailed scope
ISO Guide 65 (A2LA)	Z	Please see the documents for the detailed scope
TCB Designation		A1, A2, A3, A4, B1, B2, B3, B4, C
FCC DoC Accreditation	72	FCC Declaration of Conformity Accreditation
FCC Site Registration	7	3 meter site
FCC Site Registration	7	10 meter site
IC Site Registration	7	3 meter site
IC Site Registration	7	10 meter site
EU NB		Radio & Telecommunications Terminal Equipment: EN45001 – EN ISO/IEC 17025
	7	Electromagnetic Compatibility: EN45001 – EN ISO/IEC 17025
Singapore iDA CB(Certification Body)	12	Phase I, Phase II
Vietnam MIC CAB Accreditation	B	Please see the document for the detailed scope
	2	(Phase II) OFCA Foreign Certification Body for Radio and Telecom
Hong Kong OFCA	7	(Phase I) Conformity Assessment Body for Radio and Telecom
Industry Canada CAB	7	Radio: Scope A – All Radio Standard Specification in Category I
	7	Telecom: CS-03 Part I, II, V, VI, VII, VIII

ccreditations	Document	Scope / Remark
ISO 17025 (A2LA)	72	Please see the documents for the detailed scope
ISO Guide 65 (A2LA)	72	Please see the documents for the detailed scope
TCB Designation		A1, A2, A3, A4, B1, B2, B3, B4, C
FCC DoC Accreditation	7	FCC Declaration of Conformity Accreditation

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	38 of 39

A Bureau Veritas Group Company		
FCC Site Registration		3 meter site
FCC Site Registration	7	10 meter site
IC Site Registration	7	3 meter site
IC Site Registration	7	10 meter site
EU NB		Radio & Telecommunications Terminal Equipment: EN45001 – EN ISO/IEC 17025
		Electromagnetic Compatibility: EN45001 – EN ISO/IEC 17025
Singapore iDA CB(Certification Body)	包包	Phase I, Phase II
Vietnam MIC CAB Accreditation		Please see the document for the detailed scope
Hong Kong OFCA	7	(Phase II) OFCA Foreign Certification Body for Radio and Telecom
	7	(Phase I) Conformity Assessment Body for Radio and Telecom
Industry Canada CAB		Radio: Scope A – All Radio Standard Specification in Category I
		Telecom: CS-03 Part I, II, V, VI, VII, VIII

Japan Recognized Certification Body Designation	包包	Radio: A1. Terminal equipment for purpose of calling Telecom: B1. Specified radio equipment specified in Article 38-2, Paragraph 1, Item 1 of the Radio Law
Korea CAB Accreditation	₹ <u>a</u>	EMI: KCC Notice 2008-39, RRL Notice 2008-3: CA Procedures for EMI KN22: Test Method for EMI EMS: KCC Notice 2008-38, RRL Notice 2008-4: CA Procedures for EMS KN24, KN61000-4-2, -4-3, -4-4, -4-5, -4-6, -4-8, -4-11: Test Method for EMS Radio: RRL Notice 2008-26, RRL Notice 2008-2, RRL Notice 2008-10, RRL Notice 2007-49, RRL Notice 2007-20, RRL Notice 2007-21, RRL Notice 2007-80, RRL Notice 2004-68 Telecom: President Notice 20664, RRL Notice 2007-30, RRL Notice 2008-7 with attachments 1, 3, 5, 6; President Notice 20664, RRL Notice 2008-7 with attachment 4
Taiwan NCC CAB Recognition	B	LP0002, PSTN01, ADSL01, ID0002, IS6100, CNS14336, PLMN07, PLMN01, PLMN08

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_2.0
Page	39 of 39

Taiwan BSMI CAB Recognition	72	CNS 13438
Japan VCCI	B	R-3083: Radiation 3 meter site C-3421: Main Ports Conducted Interference Measurement T-1597: Telecommunication Ports Conducted Interference Measuremet
Australia CAB Regocnition	T	EMC: AS/NZS CISPR 11, AS/NZS CISPR 14.1, AS/NZS CISPR22, AS/NZS 61000.6.3, AS/NZS 61000.6.4 Radiocommunications: AS/NZS 4281, AS/NZS 4268, AS/NZS 4280.1, AS/NZS 4280.2, AS/NZS 4295, AS/NZS 4582, AS/NZS 4583, AS/NZS 4769.1, AS/NZS 4769.2, AS/NZS 4770, AS/NZS 4771
		Telecommunications: AS/ACIF S002:05, AS/ACIF S003:06, AS/ACIF S004:06 AS/ACIF S006:01, AS/ACIF S016:01, AS/ACIF S031:01, AS/ACIF S038:01, AS/ACIF S040:01, AS/ACIF S041:05, AS/ACIF S043.2:06, AS/ACIF S60950.1
Australia NATA Recognition	B	AS/ACIF S002, AS/ACIF S003, AS/ACIF S004, AS/ACIF S006, AS/ACIF S016, AS/ACIF S031, AS/ACIF S038, AS/ACIF S040, AS/ACIF S041, AS/ACIF S043.2