۱ جلسهی پنجم

قبلاً ثابت کردهایم که تصویر بردار a روی بردار -b برابر است با

$$||a||\cos\theta \frac{\mathbf{b}}{||b||}$$

همواره هنگام اثبات این فرمول شکلهائی کشیدیم که در آنها زاویهی θ میان بردارهای a,b کمتر از ۹۰ درجه بود. توجه کنید که اگر زاویهی یادشده از ۹۰ درجه بیشتر باشد، باز هم همان فرمول کار میکند و در این صورت $\cos\theta$ کمتر از ۰ خواهد شد. در واقع مطابق شکل زیر تصویر بردار a روی بردار -b برابر است با

$$||a||\cos(\pi-\theta)\frac{-\mathbf{b}}{||b||} = ||a||\cos\theta\frac{\mathbf{b}}{||b||}$$

 ${\bf b}$ یعنی تصویر بردار ${\bf a}$ روی بردار ${\bf b}$ برابر است با تصویر بردار ${\bf a}$

تا کنون با صفحهها و خطها آشنا شده ایم. نیز برخی رویه ها را نیز مطالعه کرده ایم. هدف بعدی ما در این درس، مطالعه ی «منحنی های فضائی» است. برای رسیدن به این هدف، نیازمند ابزارهای دیگری

در فضاهای برداری هستیم که در این جلسه آنها را مرور میکنیم.

ضرب خارجی دو بردار

با دو بردار می توان به یک صفحه رسید. مانند شکل زیر:

چگونه می توان برداری پیدا کرد که بر هر دو بردار ${f a}$ و ${f a}$ عمود باشد؟ فرض کنیم ${f a}=(a_1,a_7,a_7)$ و ${f b}=(b_1,b_7,b_7)$ و ${f b}=(a_1,a_7,a_7)$ با ${f a}\times{f b}$ نشان می دهیم، بردارِ معرفی شده در زیر است:

$$\mathbf{a} \times \mathbf{b} = (a_{\mathsf{T}}b_{\mathsf{T}} - a_{\mathsf{T}}b_{\mathsf{T}}, a_{\mathsf{T}}b_{\mathsf{T}} - a_{\mathsf{T}}b_{\mathsf{T}}, a_{\mathsf{T}}b_{\mathsf{T}} - a_{\mathsf{T}}b_{\mathsf{T}})$$

به بیان دیگر

$$\mathbf{a} \times \mathbf{b} = (a_{\mathsf{Y}}b_{\mathsf{Y}} - a_{\mathsf{Y}}b_{\mathsf{Y}})\mathbf{i} + (a_{\mathsf{Y}}b_{\mathsf{Y}} - a_{\mathsf{Y}}b_{\mathsf{Y}})\mathbf{j} + (a_{\mathsf{Y}}b_{\mathsf{Y}} - a_{\mathsf{Y}}b_{\mathsf{Y}})\mathbf{k}$$

توجه. بردار $\mathbf{a} \times \mathbf{b}$ هم بر \mathbf{a} و هم بر \mathbf{a} عمود است؛ یعنی

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = \mathbf{a}$$

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = \mathbf{a}$$

جهت بردار $\mathbf{a} \times \mathbf{b}$ با استفاده از قاعده ی دست راست تعیین می شود. (در کلاس توضیح داده شده است)

$$\mathbf{a} \times \mathbf{b} = -\mathbf{a} \times \mathbf{b}$$

برای به خاطر سپردن فرمولِ ضرب خارجی دو بردار، از دترمینانِ یک ماتریس فرضی به صورت زیر استفاده میکنیم.

$$\mathbf{a} = (a_1, a_7, a_7)$$

$$\mathbf{b} = (b_1, b_7, b_7)$$

$$A = \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_7 & a_7 \\ b_1 & b_7 & b_7 \end{pmatrix}$$

$$\mathbf{a} \times \mathbf{b} = \det(A) =$$

$$(a_{\mathsf{Y}}b_{\mathsf{Y}} - a_{\mathsf{Y}}b_{\mathsf{Y}})\mathbf{i} - (a_{\mathsf{Y}}b_{\mathsf{Y}} - a_{\mathsf{Y}}b_{\mathsf{Y}})\mathbf{j} + (a_{\mathsf{Y}}b_{\mathsf{Y}} - a_{\mathsf{Y}}b_{\mathsf{Y}})\mathbf{k}$$

قضيه ١.

- هم بر $\mathbf{a} \times \mathbf{b}$.۱ هم بر $\mathbf{a} \times \mathbf{b}$.۱
- ۲. ضرب خارجی هر بردار در خودش صفر است.

$$\mathbf{a} \times \mathbf{a} = \mathbf{a}$$

$$(\mathbf{a} \times \mathbf{a}) = (a_{\mathsf{Y}} a_{\mathsf{Y}} - a_{\mathsf{Y}} a_{\mathsf{Y}}) \mathbf{i} - (a_{\mathsf{Y}} a_{\mathsf{Y}} - a_{\mathsf{Y}} a_{\mathsf{Y}}) \mathbf{j} + (a_{\mathsf{Y}} a_{\mathsf{Y}} - a_{\mathsf{Y}} a_{\mathsf{Y}}) \mathbf{k} = \mathbf{i}$$

 $\mathbf{a} \cdot \mathbf{b} = \|a\| \|b\| \cos \theta$

قضیه ۲. اگر a و b دو بردار و θ زاویه ی بین آن دو باشد، آنگاه

 $\|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin \theta$

 ${\bf a}$ بنابراین اندازه ی ضرب خارجی ${\bf a}$ و ${\bf b}$ برابر است با مساخت متوازی الاضلاع ساخته شده توسط ${\bf b}$.

$$\|\mathbf{a} \times \mathbf{b}\|^{\Upsilon} = \|\mathbf{a}\|^{\Upsilon} \|\mathbf{b}\|^{\Upsilon} \overbrace{\sin^{\Upsilon} \theta}^{1-\cos^{\Upsilon} \theta}$$

اثبات به عهدهی دانشجو است.

نتیجه ۳. دو بردار a و b با هم موازیند اگر و تنها اگر

$$\mathbf{a} \times \mathbf{b} = \overrightarrow{\cdot}$$

 $\sin \theta$ زیرا دو بردار در صورتی موازیند که زاویه ی بین آنها یا صفر باشد یا π و در هر دو صورت مصفر است.

مثال ۴. معادلهی صفحهای را بیابید که شامل نقاط زیر است.

پاسخ. برای پیدا کردن معادلهی صفحه نیازمند دانستن بردار عمود بر آن و نقطهای روی آن صفحه هستیم.

$$\mathbf{PQ} = (-\mathbf{r}, \mathbf{1}, -\mathbf{v})$$

$$\mathbf{PR} = (\cdot, -\Delta, -\Delta)$$

میدانیم که بردار $\mathbf{PQ} \times \mathbf{PR}$ برداری است عمود بر صفحه ی مورد نظر ما. در نتیجه بردار نرمال صفحه برابر است با

$$\mathbf{PQ} \times \mathbf{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -\mathbf{r} & \mathbf{1} & -\mathbf{v} \\ \mathbf{\cdot} & -\mathbf{\delta} & -\mathbf{\delta} \end{vmatrix} = (-\mathbf{\delta} - \mathbf{r}\mathbf{\delta})\mathbf{i} + (-\mathbf{1}\mathbf{\delta})\mathbf{j} + (\mathbf{1}\mathbf{\delta})\mathbf{k} = (-\mathbf{f}\mathbf{\cdot}, -\mathbf{1}\mathbf{\delta}, \mathbf{1}\mathbf{\delta})$$

(x,y,z) است و از نقطه ی صفحه یکه بردار عمودش (a,b,c) است و از نقطه ی صفحه یادآوری میکنیم که معادله ی صفحه یادآوری میکنیم که معادله ی صفحه یادآوری میکنیم که میکنیم است:

$$ax + by + cz = ax \cdot + by \cdot + cz \cdot$$

در تنیجه با توجه به بردار نرمال بدست آمده داریم:

$$-\mathbf{f} \cdot x - \mathbf{1} \Delta y + \mathbf{1} \Delta y = -\mathbf{f} \cdot \times \mathbf{1} - \mathbf{1} \Delta \times \mathbf{f} + \mathbf{1} \Delta \times \mathbf{f} = \mathbf{1} \cdot \mathbf{f}$$

مثال ۵. مساحت مثلث با رئوس زیر را حساب کنید.

$$P=({\bf 1},{\bf Y},{\bf 9}),Q=(-{\bf Y},{\bf 0},-{\bf 1}),R=({\bf 1},-{\bf 1},{\bf 1})$$

 $\|PQ\|\sin\theta$ و ارتفاع برابر است با اندازه مخط PR و ارتفاع برابر است با بنابراین مساحت مثلث برابر است با

$$\frac{\|PR\|\|PQ\|\sin\theta}{\mathbf{Y}} = \frac{\|\mathbf{P}\mathbf{R}\times\mathbf{P}\mathbf{Q}\|}{\mathbf{Y}}$$

توجه ۶.

$$\mathbf{j}\times\mathbf{k}=\mathbf{i}$$

$$\mathbf{k}\times\mathbf{i}=\mathbf{j}$$

$$\mathbf{i}\times\mathbf{j}=\mathbf{k}$$

ویژگیهای ضرب خارجی

توجه کنید که در رابطههای زیر از آنجا که $\mathbf{a} imes \mathbf{b} \neq \mathbf{b} imes \mathbf{a}$ باید به ترتیب بردارها دقت داشته باشیم.

٠١

$$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$$

٠٢.

$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$$

$$(\mathbf{b} + \mathbf{c}) \times \mathbf{a} = \mathbf{b} \times \mathbf{a} + \mathbf{c} \times \mathbf{a}$$

.٣

$$\mathbf{a}\cdot(\mathbf{b}\times\mathbf{c})=(\mathbf{a}\times\mathbf{b})\cdot\mathbf{c}$$

، $\mathbf{a}=(a_1,a_7,a_7)$ نوجه ۷. روش محاسبه $\mathbf{a}\cdot(\mathbf{b}\times\mathbf{c})$ به صورت زیر است: فرض کنید $\mathbf{c}=(c_1,c_7,c_7)$ و $\mathbf{b}=(b_1,b_7,b_7)$

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} a_1 & a_7 & a_7 \\ b_1 & b_7 & b_7 \\ c_1 & c_7 & c_7 \end{vmatrix}$$

$\mathbf{c}\cdot(\mathbf{a} imes\mathbf{b})$ تعبیر هندسی

حجم متوازى السطوح برابر است با مساحت قاعده در ارتفاع آن.

 $\|\mathbf{a} \times \mathbf{b}\|$ مطابق شكل بالا مساحت قاعده برابر است با

برای محاسبه ی ارتفاع کافی است اندازه ی تصویر بردار $\bf c$ را روی یک بردار عمود بر $\bf a$ و $\bf d$ محاسبه کنیم. بردار $\bf a \times \bf b$ بر $\bf a \times \bf b$ بردار $\bf a \times \bf b$ پیدا کنیم:

$$(\|\mathbf{c}\|\cos\theta)$$

پس حجم متوازى السطوح يادشده برابر است با:

$$(\|\mathbf{c}\|\cos\theta)(\|\mathbf{a}\times\mathbf{b}\|)$$

داريم

$$\cos \theta = \frac{\mathbf{c}.(\mathbf{a} \times \mathbf{b})}{\|\mathbf{c}\| \|\mathbf{a} \times \mathbf{b})\|}$$

با قرار دادن عبارت بالا در رابطهی * میبینیم که حجم متوازی السطوح برابر است با

$$|\mathbf{c}.(\mathbf{a} \times \mathbf{b})|$$

نتیجه ۸. حجم متوازیالسطوح ساخته شده توسط بردارهای ${\bf b}$ ، ${\bf d}$ و ${\bf c}$ برابر است با

$$|\mathbf{c}\cdot(\mathbf{a}\times\mathbf{b})|$$

 ${\bf a}=({\,}^{ullet},-{\,}^{\hskip -1pt},{\,}^{\hskip -1pt},{\,}^{\hskip -1pt})$ و ${\bf b}=({\,}^{\hskip -1pt},-{\,}^{\hskip -1pt},{\,}^{\hskip -1pt},{\,}^{\hskip -1pt})$ و در ${\bf a}=({\,}^{\hskip -1pt},-{\,}^{\hskip -1pt},{\,}^{\hskip -1pt},-{\,}^{\hskip -1pt})$ در مثال ${\bf b}=({\,}^{\hskip -1pt},-{\,}^{\hskip -1pt},{\,}^{\hskip -1pt})$ و در ${\bf a}=({\,}^{\hskip -1pt},-{\,}^{\hskip -1pt},-{\,}^{\hskip -1pt},-{\,}^{\hskip -1pt})$ در مثال ${\bf b}=({\,}^{\hskip -1pt},-{\,}^{\hskip -1pt},-{\,}^{\hskip -1pt},-{\,}^{\hskip -1pt},-{\,}^{\hskip -1pt})$ در مثال ${\bf b}=({\,}^{\hskip -1pt},-{\,}^{\hskip -1pt},-{\,}^{\hskip$

پاسخ. كافيست نشان دهيم

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{c}$$

در واقع اگر این بردارها در یک صفحه نباشند یک متوازی السطوح میسازند که حجم آن ناصفر است. محاسبه ی عبارت بالا را به عهده ی دانشجو می گذاریم.

تمرين تحويلي ١.

- ۱. معادله ی خطی را بیابید که از نقاط (+, -1, 1) و (+, 1, 1, 0) میگذرد.
- ۲. معادله ی صفحه ای را بنویسید که شامل نقاط $(\mathfrak{r},\mathfrak{r},\mathfrak{t})$ ، $(\mathfrak{r},\mathfrak{r},\mathfrak{r},\mathfrak{t})$ و $(\mathfrak{r},\mathfrak{r},\mathfrak{r},\mathfrak{t})$ است.