Cmput 466 / 551

Computational Learning Theory

R Greiner

HTF: ?? (7.9) B: Ch 7.1.5 RN, Chapter 18.5

+ Valiant: Theory of the Learnable Cmput 466 / 551

Thanks to A Blum

Computational Learning Theory

- Inductive Learning
 - Protocol
 - Error
- Probably Approximately Correct Learning
 - Consistency Filtering
 - Sample Complexity
 - Eg: <u>Conjunction</u>, <u>Decision List</u>
- Issues
 - Bound
 - Other Models

What General Laws constrain Inductive Learning?

- Sample Complexity
 - How many training examples are sufficient to learn target concept?
- Computational Complexity
 - Resources required to learn target concept?
- Want theory to inter-relate:
 - Training examples
 - Quantity
 - Quality
 - How presented
 - Complexity of hypothesis/concept space H, C
 - Accuracy of approx to target concept
 - Probability of successful learning

Framework

- X: Space of examples
 - Eg: \Re^n or $\{0,1\}^n$ or ...
- D: Fixed (unknown) dist'n over X
 - Uniform $U[0,1]^n$ or
 - Gaussian $N(\mu, \Sigma)$ or
 - Arbitrary PDF or
 - ...
- C: Set of possible target concepts
 - Linear Separators L_n
 ... or 2nd-order or 3rd-order, ...
 - Boolean Functions B_n or Conjunctions, or k-CNF, or ...
- H: Set of hypotheses
 - ... see above...
 - Note can have H≠C

Protocol

| Solution | Solution

- Given:
 - space of examples X
 - fixed (unknown) dist'n D over X
 - set of possible target concepts C
 - set of hypotheses H
- Learner L(.) observes labeled sample $S = \{ [x_i, c(x_i)] \}$
 - instances x_i drawn from dist'n D
 - Labeled c(x_i) by target concept c ∈ C
 (Learner does NOT know c(.), D)
- Learner L(.) outputs $h \in H$, as estimate of c
 - h is evaluated by performance on instances drawn from D
- For now:
 - C = H (so c ∈ H)
 - Noise-free data

True Error of Hypothesis

Instances x where c and h disagree

Def'n: The true error of hypothesis h wrt

- target concept c
- distribution D
- probability that h will misclassify instance drawn from D

$$= \operatorname{err}_{D}(h) = \operatorname{Pr}_{x \sim D}[c(x) \neq h(x)] = \sum_{x: c(x) \neq h(x)} \operatorname{Pr}(x)$$

Probably Approximately Correct

Goal:

PAC-Learner produces hypothesis $\hat{\mathbf{h}}$ that is approximately correct,

$$err_D(\hat{h}) \approx 0$$

with high probability

$$P(err_D(\hat{h}) \approx 0) \approx 1$$

$$P(err_D(\hat{h}) < \varepsilon) > 1 - \delta$$

- Double "hedging"
 - approximately
 - probably

Need both!

PAC-Learning

- Learner L can draw labeled instance [x, c(x)] in unit time
 - $x \in X$ drawn from distribution D, labeled by target concept $c \in C$

```
Def'n: Learner L PAC-learns class C (by H) if
```

- 1. for any target concept $c \in C$, any distribution D, any ϵ , $\delta > 0$,
 - L returns $h \in H$ s.t. $w/ \text{ prob } \ge 1 - \delta$, $err_D(h) < \varepsilon$
- 2. L's run-time (and hence, sample complexity) is poly(size(x), size(c), $1/\epsilon$, $1/\delta$)
- Sufficient:
 - 1. Only poly(...) training instances
 - 2. Only poly time / instance ...
- Often C = H

Adversary, who knows C, H, can pick c, D ϵ , δ

Space of Hypotheses

Def'n of " ε -Close Hypothesis"

- Space of Hypotheses
- Target concept $c \in C$
 - as C = H, $c \in H$

$$err_{D,c}(h) < \varepsilon$$

- $H_{good} = \{ h \mid err_{D,c}(h) < \varepsilon \}$

Eliminate all Bad Hypotheses

```
Idea: Find m = m_H(\epsilon, \delta) s.t. after seeing m examples, every BAD hypothesis h (err<sub>D</sub>(h) \geq \epsilon) will be ELIMINATED with high probability (> 1 - \delta) leaving only good hypotheses
```

```
Eliminate ALL

H_{bad} = \{ h \in H \mid err_{D}(h) \geq \epsilon \}

Leave SOME

H_{good} = \{ h \in H \mid err_{D}(h) < \epsilon \}
```

... then pick ANY of the remaining good ($err_D(h) < \varepsilon$) hyp's

Find *m* large enough that very small chance that a "bad" hypothesis is consistent with *m* examples

Simple Learning Algorithm: Consistency Filtering

- Draw $m_H(\epsilon, \delta)$ random (labeled) examples S_m
- Remove every hypothesis that is inconsistent with any $[\mathbf{x}, \mathbf{y}] \in S_m$
- Return any remaining (consistent) hypothesis

Challenges:

- Q1: Sample size: $m_H(\epsilon, \delta)$
- Q2: Need to decide if h ∈ H is consistent w/ all S_m
 ... efficiently ...

Def'n of "Consistent"

Boolean function maps $\{0,1\}^n \rightarrow \{0,1\}$

$$h_{+X_1 \lor -X_2}(x_1, x_2, x_3) = \begin{cases} 1 & \text{if } x_1 = 1 \text{ or } x_2 = 0 \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{array}{l} h_{+X_1 \vee -X_2}(1,1,0) = \\ h_{+X_1 \vee -X_2}(0,1,1) = 1 \end{array}$$

 Labeled instance [x, y] is consistent

with hypothesis h(.) iff h(x) = y

Sample Bounds – Derivation

- Let h_1 be ϵ -bad hypothesis ... err(h_1) > ϵ
 - \Rightarrow h₁ mis-labels example w/prob P(h₁(x) \neq c(x)) > ϵ
 - \Rightarrow h₁ correctly labels random example w/prob \leq (1 ϵ)
- As examples drawn INDEPENDENTLY ...
 - P(h_1 correctly labels x_1 and x_2)
 - = P(h_1 correctly labels x_1) \times
 - P(h_1 correctly labels x_1 | h_1 correctly labels x_2)
 - = P(h_1 correctly labels x_1) × P(h_1 correctly labels x_2)
 - $\leq (1-\varepsilon) \times (1-\varepsilon) = (1-\varepsilon)^2$
 - P(h₁ correctly labels m examples) ≤ $(1 ε)^m$ 18

Sample Bounds

Derivation II

- Let h₂ be another ε-bad hypothesis
- What is probability that either h₁ or h₂ survive m random examples?

```
P(h_1 v h_2 survives)

= P(h_1 survives) + P(h_2 survives)

- P(h_1 \& h_2 survives)

\leq P(h_1 survives) + P(h_2 survives)

\leq 2 (1 -\epsilon)<sup>m</sup>
```

■ If k ε-bad hypotheses $\{h_1, ..., h_k\}$: $P(h_1 v ... v h_k \text{ survives }) \le k(1 - ε)^m$

Sample Bounds, con't

Let
$$H_{bad} = \{ h \in H \mid err_{D,c}(h) > \epsilon \}$$

Probability that any h ∈ H_{bad} survives is

P(any h_b in H_{bad} is consistent with m exs.)

$$\leq$$
 $|H_{bad}| (1 - \varepsilon)^m \leq |H| (1 - \varepsilon)^m$

• This is $\leq \delta$ if $|H| (1 - \varepsilon)^m \leq \delta$

For
$$0 \le \varepsilon \le 1$$
, $(1 - \varepsilon) \le e^{-\varepsilon}$

$$\Rightarrow m_H(\varepsilon, \delta) \geq \frac{\log \frac{|H|}{\delta}}{-\log(1-\varepsilon)} \geq \frac{1}{\varepsilon} \log \frac{|H|}{\delta}$$

• $m_H(\epsilon, \delta)$ is "Sample Complexity" of hypothesis space H

Sample Complexity

- Hypothesis Space (expressiveness):
- Error Rate of Resulting Hypothesis: ε
 - $err_{D,c}(h) = P(h(x) \neq c(x)) \leq \varepsilon$
- Confidence of being ε -close:
 - P($err_{D,c}(h) \le ε$) > 1 δ
- Sample size: $m_H(\varepsilon, \delta)$
- Any hypothesis consistent with

$$m_H(\varepsilon, \delta) = \frac{1}{\varepsilon} \log \frac{|H|}{\delta}$$

examples,

has error of at most ε , with prob $\leq 1 - \delta$

Boolean Function... Conjunctions

- Boolean Instance: $[x_1, ..., x_n]$
 - [1,0,1,1] for $[x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 1]$
- Boolean function: $f([x_1, ..., x_n]) \in \{0, 1\}$
- Conjunction (type of Boolean function)

(must match each literal mentioned)

$$f_{10_{-0_{-1}}}[1,0,1,0,0,1] = 1$$

- $f_{10} = f_{10} = 0 = 0$
- Only 3^n possible conjunctions, out of 2^{2^n} Boolean fn's

Learning Conjunctions

 $H_c =$ conjunction of literals

$$|H_c| = 3^n \Rightarrow m_{H_c} = \frac{1}{\epsilon} \left[n \ln 3 + \ln \frac{1}{\delta} \right]$$

Alg:

Collect
$$m_{H_c} = \frac{1}{\epsilon} \left[n \ln 3 + \ln \frac{1}{\delta} \right]$$
 labeled instances
Let $h(.) = x_1 \ \overline{x_1} \ x_2 \ \overline{x_2} \ \cdots \ x_n \ \overline{x_n}$
For each +example $y = \Lambda_i \pm_i x_i$

Remove from h any literal NOT included in y

Data

Current Hyp
$$\overline{x_1}$$
 \overline{x}_1 \overline{x}_2 \overline{x}_2 \overline{x}_3 \overline{x}_3

Never true

True only for "101"

True only for "10*"

- Just uses +examples!
 - Finds "smallest" hypothesis (true for as few +examples as possible)
 - ... No mistakes on –examples
- As each step is efficient O(n), only poly(n, $1/\epsilon$, $1/\delta$) steps
 - \Rightarrow algorithm is *efficient!*

Learning Conjunctions

	\ \	TIO!		Current Hyp					
			x_1	\bar{x}_1	x_2	\bar{x}_2	x_3	\bar{x}_3	Never true
$\langle \langle 1 \rangle$	0	$1\rangle + \rangle$	x_1			\bar{x}_2	x_3		True only for "101"
⟨⟨0	1	$1 \rangle - \rangle$	x_1			\bar{x}_2	x_3		,
$\langle \langle 1 \rangle$	0	0 > + >	x_1			\bar{x}_2			True only for "10*"
((0	0	0 > - >	x_1			\bar{x}_2			

- Just uses +-examples!
 - Finds "smallest" hypothesis (true for as few +examples as possible)
 - ... No mistakes on –examples
- As each step is efficient O(n), only poly $(n, 1/\epsilon, 1/\delta)$ steps ⇒ algorithm is *efficient!*

PAC-Learning k-CNF

$$\binom{n}{k} = O(n^k)$$

- CNF ≡ Conjunctive Normal Form
 - $(x_1 \lor \overline{x}_2 \lor x_7) \& (x_2 \lor x_4 \lor \overline{x}_9) \& ... \& (x_7 \lor \overline{x}_8 \lor \overline{x}_9)$
- k-CNF \equiv CNF where each clause has $\leq k$ literals
 - 1-CNF \equiv conjunctions; above \in 3-CNF
- As $\exists o(\binom{n}{k}3^k)$ possible clauses with $\leq k$ literals

$$|H_{k-CNF}| = 2^{O\left(\binom{n}{k}3^k\right)} \Rightarrow m_{H_{k-CNF}} = O\left(\frac{1}{\epsilon}\left[(3n)^k + \ln\frac{1}{\delta}\right]\right)$$

Alg: Consistency Filtering

Collect
$$m_{H_c} = O(\frac{1}{\epsilon} \left[(3n)^k + \ln \frac{1}{\delta} \right])$$
 labeled instances

Let
$$T = \text{all } O\left(\binom{n}{k} 3^k\right)$$
 possible k-clauses

After seeing each +example y

Remove from T all clauses INCONSISTENT w/ y Return $\wedge T$

- Similar for Disjunctions, k-DNF
- ? What about CNF = n-CNF ?

4

Decision Lists

- When to go for walk?
 - Vars: rainy, warm, jacket, snowy
 - If rainy: Don't go for walk.

Otherwise, if warm: Go for a walk.

Otherwise, if ¬jacket: Don't go for walk.

Otherwise, if snowy: Don't go for walk.

Otherwise: Go for a walk.

- Defn: A DL ≡ List of "if-then-rules", where
 - Condition ≡ a literal
 - Consequent ∈ { Yes, No }
 - ≡ decision tree, with just one long path
- How many DLs?

```
4n possible "rules", each of form "\pm x_i \Rightarrow \pm" \Rightarrow (4n)! orderings, so |H_{DL}| \le (4n)! (Actually: \le n! \ 4^n)
```

4

Example of Learning DL

- 1. When $x_1 = 0$, class is "B" Form $h = \langle \neg x_1 \mapsto B \rangle$ Eliminate i_2 , i_4
- 2. When $\mathbf{x}_2 = \mathbf{1}$, class is "A" Form $\mathbf{h} = \langle \neg \mathbf{x_1} \mapsto \mathbf{B}; \mathbf{x_2} \mapsto \mathbf{A} \rangle$ Eliminate \mathbf{i}_3 , \mathbf{i}_5
- 3. When $x_4 = 1$, class is "A" Form $h = \langle \neg x_1 \mapsto B; x_2 \mapsto A; x_4 \mapsto A \rangle$ Eliminate i_1
- 4. Always have class "B"

 Form $h = \langle \neg x_1 \mapsto B; x_2 \mapsto A; x_4 \mapsto A; t \mapsto B \rangle$ Eliminate rest (i_6)

PAC-Learning Decision Lists

```
Let: S= set of m_{DL}=O(\frac{1}{\epsilon}[n\ln(n)+\ln\frac{1}{\delta}]) training instances h= empty list R= all 4n possible rules
```

While $S \neq \{\}$ do

- 1. Find $r \in R$ s.t. + consistent w/ S + r applies to ≥ 1 $s \in S$ (If none, halt w/ "Failure")
- 2. $h := h \circ r$ (Put rule at BOTTOM of hypothesis)
- 3. $S := S \{s \mid s \text{ classified by } h\}$ (Throw out examples classified by current hypothesis)

Covering Algorithm

Proof (PAC-Learn DL)

Correctness#1: Enough data?

Yes.
$$\frac{1}{\varepsilon} \log \frac{|H_{DL}|}{\delta}$$

Correctness#2: Consistency?

If ∃ DL consistent w/data...

- $\exists \ge 1$ choice for step 1 (eg, first rule in L satisfied by ≥ 1 example)
- ∃ DL consistent w/ remaining data: (remnant of) original DL!
- Efficiency: Algorithm runs in poly time, since
 - each iteration requires poly time, and
 - each iteration removes ≥ 1 example (only poly examples)
- Generalization: k-DL
 - ... whose nodes each contain CONJUNCTION of k literals (So earlier $DL \equiv 1-DL$)

k-DL ⊃ k-CNF, k-DNF, k-depth DecTree, ...

Why Learning May Succeed

- Learner L produces classifier h = L(S) that does well on training sample S
- Probably will do well in general! Why?
 - 1. If training sample S is representative,
 - then very-likely x will occurs in S
 - As h does well on S,
 h(x) is probably correct on x
 - 2. If example x appears rarely $(P(x) \approx 0)$

then h suffers only small penalty for being wrong.

See Covariate Shift!

- Assumption: Distribution is "stationary"
 - Distr'n for testing = distr'n for training

Comments on Model

Simplify task:

$$m_H(\varepsilon, \delta) = \frac{1}{\varepsilon} \log \frac{|H|}{\delta}$$

- 1*. Assume c ∈ H, where H known
 - (Eg, lines, conjunctions, . . .)
- 2*. Noise free training data
- 3. Only require approximate correctness:
 - h is " ϵ -good": $P_x(h(x) \neq c(x)) < \epsilon$
- 4. Allow learner to (rarely) be completely off
 - If examples NOT representative, cannot do well
 - P(h_1 is ϵ -good) $\geq 1 \delta$

Complicate task:

- 1. Learner must be computationally efficient
- 2. Over any instance distribution

Comments: Sample Complexity

• If k parameters,
$$[v_1, ..., v_k]$$

$$m_H(\varepsilon, \delta) = \frac{1}{\varepsilon} \log \frac{|H|}{\delta}$$

- $\Rightarrow |H_k| \approx B^k$ $\Rightarrow m_{H_k} \approx \log(B^k)/\epsilon \approx k/\epsilon$
- Too GENEROUS:
 - Based on pre-defined C = {c_{1, ...}} = H
 Where did this come from???
 - Assumes c ∈ H, noise-free
 - If err \neq 0, need O($1/\epsilon^2$...)

Why is Bound so Lousy!

- Assumes error of all ε-bad hypotheses $\approx ε$ (Typically most bad hypotheses are really bad \Rightarrow get thrown out much sooner)
- Uses P(A or B) ≤ P(A)+P(B).
 (If hypotheses are correlated, then if one inconsistent, others probably inconsistent too)
- Assumes $|H_{bad}| = |H|$... see VCdimension
- WorstCase:
 - over all c ∈ C
 - over all distribution D over X
 - over all presentations of instances (drawn from D)
- Improvements
 - "Distribution Specific" learning Known single dist (ε-cover)
 Gaussian, . . .
 - Look at instances as observed! \Rightarrow Sequential PAC Learning ₃₄

Fundamental Tradeoff in Machine Learning $m_H(\varepsilon, \delta) = \frac{1}{\varepsilon} \log \frac{|H|}{\delta}$

$$m_H(\varepsilon, \delta) = \frac{1}{\varepsilon} \log \frac{|H|}{\delta}$$

- Larger H is more likely to include
 - (approx to) target f
 - but it requires more examples to learn
- w/few examples, cannot reliably find good hypothesis from large hyp. space
- To learn effectively (ε) from small # of samples (m), only consider H where $|H| \approx e^{\epsilon m}$
- Restrict form of Boolean function to reduce size of hypotheses space.
 - Eg, for H_C = conjunctions of literals, $|H_C| = 3^n$, so only need poly number of examples!
 - Great if target concept is in H_C, but ...

Issues

- Computational Complexity
- Sampling Issues:

	Finite	Countable	Uncountable
Realizable	$\frac{1}{\varepsilon} \log \frac{ H }{\delta}$	Nested Class	VC dim
Agnostic	$O\left(\frac{1}{\varepsilon^2}\log\frac{ F }{\delta}\right)$	$\left(\frac{ A }{S}\right)$ –	VC dim

Learning = Estimation + Optimization

- 1. Acquire required relevant information by examining enough labeled samples
- 2. Find hypothesis $h \in H$ consistent with those samples
 - ... often "smallest" hypothesis
- Spse H has 2^k hypotheses
 Each hypothesis requires k bits

$$m_H(\varepsilon, \delta) = \frac{1}{\varepsilon} \log \frac{|H|}{\delta}$$

$$\Rightarrow \log |H| \approx ||h|| = k$$

- \Rightarrow SAMPLE COMPLEXITY not problematic (as poly in ||h||)
- But optimization often is intractable!
 - Eg, consistency for 2term—DNF is NP-hard, ...
- Perhaps find best hypothesis in F > H
 - 2-CNF ⊃ 2term-DNF
 - ... easier optimization problem!

Extensions to this Model

- Occam Algorithm: Can PAC-learn H iff
 - can "compress" samples
 - have efficient consistency-finding algorithm
- Data Efficient Learner

Gathers samples sequentially, autonomously decides when to stop & return hypothesis

- Exploiting other information
 - Prior background theory
 - Relevance
- Degradation of Training/Testing Information

```
Error | Training | Attribute Value | Omissions | Testing | Class Label
```


Other Learning Models

- Learning in the Limit [Recursion Theoretic]
 - Exact identification, no resource constraints
- On-Line learning
 - After seeing each unlabeled instance, learner returns (proposed) label
 - Learner then given correct label provided (penalized if wrong)
 - Q: Can learner converge, after making only k mistakes?
- Active Learners
 - Actively request useful information from environment
 - "Experiment"
- "Agnostic Learning"
 - What if target is not in hypothesis space: $\neg[f \in H]$?
 - Want to find CLOSEST hypotheses
 - Typically NP-hard ...
- Bayesian Approach: Model Averaging, ...

Computational Learning Theory

- Inductive Learning is possible
 - With caveats: error, confidence
 - Depends on complexity of hypothesis space
- Probably Approximately Correct Learning
 - Consistency Filtering
 - Sample Complexity
 - Eg: Conjunctions, DecisionLists
- Many other meaningful models

Computational Learning Theory

- Framework/Protocols
- 1. Finite \mathcal{H} , Realizable case
- 2. Finite \mathcal{H} , Unrealizable case
- 3. Infinite #

(Vapnik-Chervonenkis Dimension)

- 4. Variable size Hypothesis Space
- Data-dependent Bounds (Max Margin)
- 6. Mistake Bound (Winnow)
- Topics:
 - Extensions to PAC
 - Other Learning Models
 - Occam Algorithms

Case 2: Finite \mathcal{H} , Unrealizable

- What if perfect classifier ∉ hyp. space ℋ?
 - either none exists (data inconsistent) or
 - hypothesis space is restricted
- Let: h* = argmin_{h∈ H} { err_D(h) } be optimal h∈ H
- Want: \hat{h} s.t. $err_D(\hat{h}) \le err_D(h^*) + \varepsilon$

-

Case 2: Finite \mathcal{H} , Unrealizable

- What if perfect classifier ∉ hyp. space ℋ?
 - either none exists (data inconsistent) or
 - hypothesis space is restricted
- Let: $h^* = \operatorname{argmin}_{h \in \mathcal{H}} \{ \operatorname{err}_{D}(h) \}$ be optimal $h \in \mathcal{H}$
- Want: \hat{h} s.t. $err_D(\hat{h}) \leq err_D(h^*) + \varepsilon$
- Alg: Draw $m = m(\varepsilon, \delta)$ instances SReturn $\hat{h} = \underset{h \in \mathcal{H}}{\operatorname{argmin}}_{h \in \mathcal{H}} \{ \underset{\text{core, over } S}{\operatorname{err}}_{S}(h) \}$

$$(\widehat{\text{err}}_{S}(h)) = \frac{1}{m} \sum_{x \in S} \text{err}(h, x) \text{ is EMPIRICAL score})$$

- Issues:
 - How many instances?
 - Computational cost of $\underset{h \in \mathcal{H}}{\operatorname{argmin}}_{h \in \mathcal{H}} \{ \widehat{\operatorname{err}}_{S}(h) \}$

Sample Complexity

Goal: Want enough instances that, w/prob $\geq 1 - \delta$

$$\hat{h} = \operatorname{argmin}_{h \in \mathcal{H}} \{ \widehat{\operatorname{err}}_{S}(h) \}$$
 is within ε of $h^* = \operatorname{argmin}_{h \in \mathcal{H}} \{ \operatorname{err}_{D}(h) \}$

• Step1: Sufficient to estimate ALL h's to within $\varepsilon/2$.

$$|\operatorname{err}_{D}(h) - \widehat{\operatorname{err}}_{S}(h)| \leq \varepsilon/2$$

If so, then

$$\begin{split} & e_D(\hat{h}) - e_D(h^*) \\ & = e_D(\hat{h}) - \underline{e}_S(\hat{h}) + \underline{e}_S(\hat{h}) - \underline{e}_S(h^*) + \underline{e}_S(h^*) - e_D(h^*) \\ & \leq \frac{\varepsilon}{2} + 0 + \frac{\varepsilon}{2} = \varepsilon \end{split}$$

Sample Complexity, con't

Goal: Want enough instances that, w/prob $\geq 1 - \delta$

```
\hat{h} = \operatorname{argmin}_{h \in \mathcal{H}} \{ \operatorname{\underline{err}}_{S}(h) \} is within \varepsilon of h^* = \operatorname{argmin}_{h \in \mathcal{H}} \{ \operatorname{\underline{err}}_{D}(h) \}
```

Step2: Sufficient to estimate EACH h's to within ε/2

with
$$\operatorname{prob} \geq 1 - \frac{\delta}{|\mathcal{H}|}$$

If so, then
$$P(\exists h \in \mathcal{H} \mid \operatorname{err}_{D}(h) - \widehat{\operatorname{err}}_{S}(h)| \leq \varepsilon/2)$$

$$\leq \sum_{h \in \mathcal{H}} P(|\operatorname{err}_{D}(h) - \widehat{\operatorname{err}}_{S}(h)| \leq \varepsilon/2)$$

$$\leq |\mathcal{H}| \frac{\delta}{|\mathcal{H}|} = \delta$$

Step3: How many instances |S| s.t.

$$P(|err_D(h) - \widehat{err}_S(h)| \le \frac{\varepsilon}{2}) \le \frac{\delta}{|\mathcal{H}|}?$$

Hoeffding's Equality

Defn:
$$S_m = \frac{1}{m} \sum_{i=1}^m X_i$$
 observed average over m r.v.s in $\{0,1\}$

•
$$P[S_m > \mu + \lambda] < e^{-2m \lambda^2}$$

$$\Pr[|S_m - \mu| < \lambda] \ge 1 - 2e^{-2m(\lambda/\Gamma)^2}$$

- Holds ∀ (bounded) distributions ... not just Bernoulli...
- Sample average likely to be close to true value as #samples (m) increases...

Complexity of "Agnostic Learning"

- Sample Complexity: Good news!
- Hoeffding Inequality ⇒ Need only $m(\varepsilon, \delta) = \frac{2}{\varepsilon^2} \ln \frac{2|H|}{\delta}$

instances to estimate EACH h's to within $\varepsilon/2$ with prob $\geq 1 - \delta / |\mathcal{H}|$

 $P(err_D(h) - \widehat{err}_S(h)| \le \varepsilon/2)$ $\le 2 \exp(-2 \text{ m } (\varepsilon/2)^2) \le \delta / |\mathcal{H}|$

Computational Complexity: Bad news! NP-hard to find CONJUNCTION h∈ ℋ that is BEST FIT to DNF c ∈ C

(target space = DNF; hypothesis space = Conjunctions)

Note: Sample size typically poly;
 Hardness tends to be Consistency/Optimization

Computational Learning Theory

- Framework/Protocols
- 1. Finite #, Realizable case
- 2. Finite \mathcal{H} , Unrealizable case
- 3. Infinite #

(Vapnik-Chervonenkis Dimension)

- 4. Variable size Hypothesis Space
- Data-dependent Bounds (Max Margin)
- 6. Mistake Bound (Winnow)
- Topics:
 - Extensions to PAC
 - Other Learning Models
 - Occam Algorithms

Skip

4

Case 3: ∞ Hypothesis Spaces ⇒ VC Dim

Learning an initial subinterval.

```
"Factory is ok iff Temperature \leq a" for some (unknown) a \in [0, 100] \Rightarrow target concept is some initial interval C = H = { [0, a] | a \in [0, 100] }
```

Observe M instances
Return [0, b],
where b is largest positive example seen.

Clearly poly time per example. How many examples? 100

Sample Complexity of Learning Initial Segment

- Approach#1: Use $m_H(\varepsilon, \delta) = \frac{1}{\varepsilon} \left(\log \frac{|\mathcal{H}|}{\delta} \right)$ instances ? But \mathcal{H} is UNCOUNTABLE!
- Approach#2:
 - Let a_{ε} be real value < a s.t. $[a_{\varepsilon}, a]$ has probability ε P($[a_{\varepsilon}, a]$) = ε

• Alg succeeds *iff* it sees example in $[a_{\epsilon}, a]$

P(failure) = P(none of M examples in $[a_{\epsilon}, a]$) = $(1 - \epsilon)^{M}$

So for P(failure) $\leq \delta$, need

$$M \ge \frac{1}{\varepsilon} \ln \frac{1}{\delta}$$

Uniform Convergence

- Simultaneously estimating all $\{ [a_{\varepsilon}, a] | a \in [0, 100] \} !$
- Q: Why possible?
- A: Only one "degree of freedom"
 - ⇒ each sample provides LOTS of information about many hypothesis
- Q: How much is a degree of freedom worth? Are they all worth the same?
- A: Look at "effective number" of concepts, as fn of number of data points seen.

 Only grows linearly....
- Number of "effective degrees of freedom": called "VC-dimension"

Skip VC Dim

Shattering a Set of Instances

Hypothesis class # trivially fit

$$X = \{x_1, ..., x_k\}$$

if

 \forall labeling of examples in **X**, \exists h \in **#** matching labeling

- k instances; |ℋ| ≥ 2^k
 Any subset of size k 1 is unconstrained!
- Defn: Set of points $\mathbf{X} = \{x_i\}$ is shattered by hypothesis class $\boldsymbol{\mathcal{H}}$ if

$$\forall$$
 S \subset X, \exists h_S \in \mathcal{H} s.t.

•
$$h_S(x) = 1 \quad \forall \ x \in S$$

•
$$h_S(x) = 0 \quad \forall \ x \notin S$$

Example of Shattering

- $\mathcal{H} = \{ [a, b] | a < b \} = \text{intervals on real line}$
- Can shatter (any!) 2 points:

■ ∃ 3 points that can NOT be shattered:

Vapnik-Chervonenkis Dimension

- Def'n: VCdim of concept class #
 - \equiv largest # of points shattered by \mathcal{H}
 - If arbitrarily large finite sets of X shattered by \mathcal{H} , then $VCdim(\mathcal{H}) = \infty$
 - $VCdim(\mathcal{H}) = d \Leftrightarrow$

 \exists set of d points that can be shattered, but no set of d+1 points can be shattered

- Note: VCdim(ℋ) ≤ log₂ |ℋ|
- VCdim(H) measures complexity of H
 - ... how many distinctions can its elements exhibit

VC-dimension: Linear Separator

- $\mathcal{H}_{\mathcal{L}S2} = \{ [w_0, w_1, w_2] \in \Re^3 \}$
 - = linear separators in 2-D
- Trivial to fit (any non-linear!) 3 points

- But cannot shatter ANY set of 4 points
 - If one point inside convex hull of others, can not make inside "—" and outsides "+"
 - Otherwise, label alternatingly in cycle
 - \Rightarrow VC ($\mathcal{H}_{\mathcal{L}S2}$)=VC(LinearSeparator in 2Dim) = 3

4

Some VC Dims

- VCdim(LinearSeparator in k-Dim) = k +1
- Multi-layer perceptron network over n inputs of depth s:

```
d \leq 2(n+1)s(1+\ln s)
```

- Exact value for sigmoid units is ?unknown?... probably slightly larger...
- Typically VCdim(model) ≈# of non-redundant tunable parameters

4

VCdim of . . .

- H_{int} = { intervals of real line }2
- $H_{box} = \{axis-parallel boxes in 2-D\}$
 - **4**

Consider 5 points. Draw smallest enclosing axis-parallel box.

For each side of box, pick one point.. colorded red.

Must be at least one pt left – blue.

Can't have Red=+, Blue = —

- H_{md} = {monotone disjunctions (*n* features) }
 - n

Clearly \geq n as {100, 010, 001}.

Can not be >n as only 2^n monotone disjunctions

- H_{all} = {all boolean functions on n features }
 - 2ⁿ

How does VCdim measure Complexity?

- Def'n: H[m] = maximum number of ways to split m points using concepts in H
- For $m \le VCdim(H)$, $H[m] = 2^m$ For $m \ge VCdim(H)$, ...
- Theorem: $H[m] = O(m^{VCdim(H)})$
 - Ie, only H[m] "different" concepts in H wrt any set of m examples.
- ⇒? Replace In(|H|) by H[m] in PAC bounds YES (kinda)! . . . but NOT OBVIOUS, since different data ⇒ different concepts

Upper/Lower Bounds using VCdim

Theorem 1: Given class C, for any distribution D, target concept in C, given a sample size:

$$\frac{1}{\epsilon} \left(4 \log_2 \left(\frac{2}{\delta} \right) + 8 \text{ VCdim}(\mathcal{C}) \log_2 \left(\frac{13}{\epsilon} \right) \right)$$
kinda like O(1/\epsilon [log(1/\delta) + log |H|])

then with prob $\geq 1-\delta$, any consistent $h \in C$ has error $\leq \epsilon$.

• **Theorem 2:** If $|C| \le 2$, then for any learning alg A, ∃ distribution D over X, distribution over C s.t. expected error of A is > ε if A sees sample of size under $\frac{VCdim(C) - 1}{326}$

Comments on VC Dimension

VCdim provides good measure of complexity of class:

Upper/Lower (worst case) bounds:

$$\widetilde{\Theta}(VC\dim(C))$$

- Does this mean. . .
 - ... can't learn classes of infinite VCdimension?
 - A: No: just use poly dependence on size(c)
 - ... complicated hypotheses are bad?
 - A: No. Just need a lot of data to learn complicated concept classes...

Proof of Theorem#2 (Sketch)

Theorem 2: ... need at least $m = \frac{VCdim(C) - 1}{8\epsilon}$

```
(#examples needed for uniform convergence . . . for all bad h \in C to look bad . . . )
```

Proof: Consider d = VCdim(C) points $\{x_1, x_2, ..., x_d\}$ that can be shattered by target concepts $\{c_i\}_{i=1}^{2^k}$

- Define distribution D:
 - $1 4\varepsilon$ on x_1
 - 4ε / (d-1) on each other
- Given m instances, expect to see only ½ of { x₂, ..., x_d } so E[#notSeen] ≥ (d 1) / 2
- As can only do 50/50 on instances NOT seen, expected error is #notSeen $\frac{1}{2}$ 4 ϵ / (d 1) = ϵ

Summary of Training vs Test Error

- $egin{array}{lll} egin{array}{lll} & \epsilon &= \mbox{"true" error of hyp h} \\ & \epsilon^* &= \mbox{minimum true error of any member of \mathcal{H}} \\ & \epsilon_T &= \mbox{"training set" error of hyp h} \end{array}$
- After m examples, w/ probability $\geq 1 \delta$, ...
 - Finite Hypothesis Class; "Realizable"

$$\epsilon \leq \frac{1}{m} \left[\ln |\mathcal{H}| + \ln \frac{1}{\delta} \right]$$

Finite Hypothesis Class; "UnRealizable"

$$\epsilon \leq \epsilon^* + \sqrt{\frac{1}{2m} \left[\ln |\mathcal{H}| + \ln \frac{1}{\delta} \right]}$$

 $-d = VCdim(\mathcal{H})$

$$\epsilon \leq 2\epsilon_T + \frac{4}{m} \left[d \log \frac{2e \, m}{d} + \ln \frac{4}{\delta} \right]$$

Computational Learning Theory

- Framework/Protocols
- 1. Finite \mathcal{H} , Realizable case
- 2. Finite \mathcal{H} , Unrealizable case
- 3. Infinite #

(Vapnik-Chervonenkis Dimension)

- 4. Variable size Hypothesis Space
- Data-dependent Bounds (Max Margin)
- 6. Mistake Bound (Winnow)
- Topics:
 - Extensions to PAC
 - Other Learning Models
 - Occam Algorithms

Skip

Case 4: Why SINGLE Hypothesis Space?

- Large H is likely to include (approx to) target c
 but . . .
- w/few examples, cannot reliably find good hypothesis from large hypothesis space
- That is...
 - Underfitting: Every h ∈ H has high ε_T
 ⇒ consider larger hypothesis space H' ⊃ H
 - Overfitting: Many $h \in H$ have $\varepsilon_T \approx 0$ ⇒ consider smaller $H'' \subset H$ to get lower d
- \Rightarrow To learn effectively (> 1 ε) from m instances, only consider H s.t. | H | \approx e^{εm}

How Learning Algorithms Manage This Tradeoff

S1: Start with small hypothesis space \mathcal{H}_1

S2: Grow hypothesis space $\mathcal{H}_1 \subset \mathcal{H}_2 \subset \mathcal{H}_3 \subset \dots$ until finding a good (nearly consistent) hypothesis

```
Eg1 \mathcal{H}_1 = "leaf", then \mathcal{H}_2 = "one DecTree node", then \mathcal{H}_3 = "two DecTree nodes", then ...

Eg2 \mathcal{H}_1 = "constants", then \mathcal{H}_2 = "linear functions", then \mathcal{H}_3 = "quadratic functions", then ...
```

Approaches

- 1. Easy: $\bigcup_i \mathcal{H}_i$ countable, and realizable
- 2. General: Structural Risk Minimization
- 3. "Occam Algorithms"

#4a: Dealing w/∞ Set of Hypotheses

```
    Incremental algorithms:

                     \mathcal{H}_1 \subset \mathcal{H}_2 \subset \ldots \subset \mathcal{H}_n \subset \ldots
               1 - DNF \subset 2 - DNF \subset 3 - DNF \subset \dots
 Assume: m(\mathcal{H}_i, \epsilon, \delta) instances sufficient to PAC(\epsilon, \delta)-learn \mathcal{H}_i
Alg? Assume target in \mathcal{H}_1
               Draw m(\mathcal{H}_1, \epsilon, \delta) ) instances
               Stop if find good h_1 \in \mathcal{H}_1
               Otherwise...
         Assume target in \mathcal{H}_2
               Draw m(\mathcal{H}_2, \epsilon, \delta)
                                               ) more instances
               Stop if find good h_2 \in \mathcal{H}_2
               Otherwise...
         Assume target in \mathcal{H}_i
               Draw m(\mathcal{H}_i, \ \epsilon, \ \delta \ ) ) more instances
               Stop if find good h_i \in \mathcal{H}_i
               Otherwise...
```

67

4

Correct Algorithm?

- Q: Suppose find "good" h_k at iteration k. What is prob of making mistake?
- A: P(mistake) = $\sum_{i=1..k}$ P(mistake @ iteration i) $\leq \sum_{i=1..k} \delta \leq k \delta$
- \Rightarrow Need to use δ_i s.t. $\sum_{i=1..k} \delta_i \leq \delta$ for any k
- Eg: $\delta_i = \delta/2^i$
 - Note: P(mistake) $\leq \sum_{i=1..k} \delta_i = \delta \sum_{i=1..k} \frac{1}{2^i} = \delta$
- Takes k bits to identify member of 2k-size hypothesis space
 - takes k bits just to express such a hypothesis
- \Rightarrow reasonable to allow learning alg'm time poly in $1/\epsilon$, $1/\delta$ and SIZE OF HYPOTHESIS

#4b: Structural Risk Minimization

- Consider
 - nested series: $H_1 \subset H_2 \subset ... \subset H_k \subset ...$
 - with VCdim: $d_1 \le d_2 \le ... \le d_k \le ...$
 - training errors: $\varepsilon_1 \geq \varepsilon_2 \geq ... \geq \varepsilon_k \geq ...$
- Choose $h_k \in H_k$ that minimizes

$$\epsilon \quad \leq \quad 2\epsilon^k + \frac{4}{m} \left[d_k \log \frac{2e\,m}{d_k} + \ln \frac{4}{\delta} \right]$$

Structural Risk Minimization

For $h \in \mathcal{H}$

L(h) Probability of miss-classification

 $\hat{L}_n(h)$ Empirical fraction of miss-classifications

Vapnik and Chervonenkis 1971: For any distribution with prob. $1 - \delta$, $\forall h \in \mathcal{H}$,

$$L(h) < \underbrace{\hat{L}_n(h)}_{\text{emp. error}} + c \sqrt{\frac{\text{VCdim}(\mathcal{H})\log n + \log \frac{1}{\delta}}{n}}_{\text{complexity penalty}}$$

An Improved VC Bound II

Canonical hyper-plane:

$$\min_{1 \le i \le n} |\mathbf{w}^\top \mathbf{x}_i + b| = 1$$

(No loss of generality)

Improved VC Bound (Vapnik 95) VC dimension of set of canonical hyper-planes such that

$$\|\mathbf{w}\| \le A$$

 $\mathbf{x}_i \in \text{Ball of radius } L$

is

$$\operatorname{VCdim} \leq \min(A^2L^2,d) + 1$$

Observe: Constraints reduce VC-dim bound

Canonical hyper-planes with mini-

mal norm yields best bound

Suggestion: Use hyper-plane with minimal

norm

Case 5: Data Dependent Bounds

- So far, bounds depend only on
 - ε_T
 - quantities computed prior to seeing S
 (eg, size of H)
 - \Rightarrow "worst case" as must work for all but δ of possible training sets
- Data dependent bounds consider how h fits data
- If S is not worst case training set
 - ⇒ tighter error bound!

Margin Bounds

• g(x) is real-valued function "thresholded at 0" to produce h(x):

$$g(x) > 0 \Rightarrow h(x) = +1$$

 $g(x) < 0 \Rightarrow h(x) = -1$

• Margin of h(x) wrt S is $\gamma(g,S) = \min_i \{y_i g(x_i)\}$

Margin Bounds: Key Intuition

Let $G = \{g(x)\}$ = set of real-valued functions that can be thresholded at 0 to give h(x).

ullet Consider "thickening" each $g \in G$... must correctly classify every point w/ margin $\geq \gamma$

fat shattering dimension: fat_γ(G)

 ≡ VCdim of these "fat" separators:

Note $fat_{\gamma}(G) \leq VCdim(G)$

Noise Free Margin Bound

- Spse find $g \in G$ with margin $\gamma = \gamma(g, S)$ for a training set of size m
- \bullet Then, with probability $1-\delta$

$$\epsilon \leq \frac{2}{m} \left[d \log \frac{2e \, m}{d \gamma} \log \frac{32m}{\gamma^2} + \log \frac{4}{\delta} \right]$$

 $d = \operatorname{fat}_{\gamma/8}(G)$ with margin $\gamma/8$

Note fat.(G) kinda-like VCdim(G)!

Soft Margin Classification (2)

ullet Error rate of linear separator with unit weight vector and margin γ on training data lying in a sphere of radius R is, with probability $\geq 1-\delta$,

$$\epsilon \le \frac{C}{m} \left[\frac{R^2 + \|\xi\|^2}{\gamma^2} \log^2 m + \log \frac{1}{\delta} \right]$$

(constant C)

- \Rightarrow we should
 - maximize margin γ
 - minimize slack $\|\xi\|^2$

... see support vector machines!

Fat Shattering for Linear Separators: Noise-Free

Spse support for $P(\mathbf{x})$ within sphere of radius R $\|\mathbf{x}\| \leq R$

$$G = \{ g | g(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} \& ||w|| = 1 \}$$

Then $fat_{\gamma}(G) = \left(\frac{R}{\gamma}\right)^2$

$$\Rightarrow \quad \epsilon \quad \leq \quad \frac{2}{m} \left[\frac{64R^2}{\gamma^2} \log \frac{em\gamma}{8R^2} \log \frac{32m}{\gamma^2} + \log \frac{4}{\delta} \right] \\ \in \quad \tilde{O}\left(\frac{R^2}{m\gamma^2}\right)$$

 \Rightarrow For fixed R, m:

seek g that maximizes γ !

maximum margin classifier

• Even with kernel $K(\cdot,\cdot)...$ where $\|\mathbf{x}\| = \sqrt{K(\mathbf{x},\mathbf{x})}$

•

Soft Margin Classification

- Extension of margin analysis:
 When data is not linearly separable:
- $\xi_i = \max\{0, \ \gamma y_i, g(\mathbf{x}_i)\}$ "margin slack variable" for $\langle \mathbf{x}_i, y_i \rangle$

Note: $\xi_i > \gamma \implies \mathbf{x}_i$ misclassified by h

• $\xi = \langle \xi_1, \dots, \xi_m \rangle$ "margin slack vector for h on S"

Computational Learning Theory

- Framework/Protocols
- 1. Finite **#**, Realizable case
- 2. Finite \mathcal{H} , Unrealizable case
- 3. Infinite #

(Vapnik-Chervonenkis Dimension)

- 4. Variable size Hypothesis Space
- Data-dependent Bounds (Max Margin)
- 6. Mistake Bound (Winnow)
- Topics:
 - Extensions to PAC
 - Other Learning Models
 - Occam Algorithms

Skip

Irrelevant Features

- Consider learning CD(n) = disjunction of n features "List-then-Eliminate" makes O(n) mistakes
 - PAC-learning: O($n/\epsilon \log(1/\delta)$)
- Spse n is HUGE
 - Words in text
 - Boolean combination of "atomic" features
 - Features extracted in 480x560 image
 - ... but only r << n features "relevant"
 - Eg: concept $x_4 \vee \neg x_{91} \vee \neg x_{203} \vee x_{907}$
- ∃ learning alg that makes O(r ln n) mistakes! "Winnow"

Winnow Algorithm

- Initialize weights w₁, ..., w_n to 1
- Do until bored:
 - Given example $\mathbf{x} = [x_1, ..., x_n]$, If $w_1x_1 + w_2x_2 + ... + w_nx_n \ge n$ output 1 otherwise 0
 - If mistake:
 - (a) If predicts 0 on 1-example, then for each $x_i = 1$, set $w_i := w_i \times 2$
 - (b) If predicts 1 on 0-example, then
 for each x_i = 1, set w_i := w_i / 2

Winnow's Effectiveness

Theorem Winnow MB-learns CD(n), making at most 2+3r(1+lg n) mistakes when target concept is disjunction of r var's.

Proof: 1. Any mistake made on 1-example must double params

- ≥1 weights in target function (the relevant weights),
- & mistake on 0-example will not halve these weights.
- Each "relevant" weight can be doubled ≤ 1+lg n times, since only weights ≤ n can be doubled.
 (Never double any weight w_i > n as that weight alone ⇒ class is 1)
- \Rightarrow Winnow makes $\leq r(1+\lg n)$ mistakes on 1-examples
- 2. Negative examples?
- Let sw_t be sum of weights $\sum w_i = n$, at time t. Initially $sw_0 = n$. Each mistake on 1-example increases sw by $\leq n$ (... before doubling, we know $w_1x_1 + w_2x_2 + ... + w_nx_n < n$) Each mistake on 0-example decreases sw by $\geq n/2$ (... before halving, we know $w_1x_1 + w_2x_2 + ... + w_nx_n \geq n$)
- As sw ≥ 0, number of mistakes made on 0-examples
 ≤ 2+ 2number of mistakes made on 1-examples.
- So total # of mistakes is $r(1+\ln n) + [2+2r(1+\lg n)]$

Incorporating Winnow Into PAC Model

- Given a MB(M)-learner, can PAC(ε , δ)-learn
 - Return any h_i that makes $\frac{1}{\epsilon} \log(\frac{M}{\delta})$ correct predictions
 - Requires $m = \frac{M}{\epsilon} \log(\frac{M}{\delta}) = \frac{r \log(n)}{\epsilon} \log(\frac{r \log(n)}{\delta})$ instances
- Better PAC-learner: $O(\frac{1}{\epsilon}[r \log(n) + \log(\frac{1}{\delta})])$
 - 1. Draw $m_1 = 4/\epsilon \max \{ M, 2 \ln(2/\delta) \}$ instances, S_1
 - 2. Run Winnow (a MB-learner) on S_1 , generating \leq M hypotheses $H = \{ h_1, ..., h_M \}$
 - 3. Draw $m_2 = O(8/\epsilon \log(2M/\delta))$ more instances S_2
 - 4. Use S₂ to find best hypothesis, h* in H
 - 5. Return h*
 - Why: Most ε-bad hypotheses have error >> ε ⇒ reveal "badness" in < $\frac{1}{\epsilon} \log(\frac{M}{\delta})$ instances

Proof

- m₁ guarantees that ≥ 1 of H is good
 m₂ distinguishes good h* from bad members of H.
- After m₁ instances, ≥ 1 of H has error ≤ ε/2
 PROOF: Spse first k − 1 hyp's all have error > ε/2, and hk had error ≤ ε/2
 What is prob that hk occurs after m₁ instances?

Worst if k = M and each $err_D(h_i) = \epsilon/2$ Chernoff bounds $\Rightarrow \delta/2$:

- Consider flipping (sequence of M) $\varepsilon/2$ weighted coins
- (each "head" \equiv error)
- After m_1 flips, expect $m_1 \times \varepsilon/2 \le 2M$ "heads"
- Prob of getting under M (≤ ½ exp. number) heads ≤ P(Y_M ≤ (1 − ½) ϵ /2) ≤ exp(− M ϵ /2 ½)/2) ≤ exp(− M ϵ /8) ≤ δ

Proof (II)

```
Use m_2, select h^* w/ err_S(h^*) \le 3/4 \ \epsilon

With prob \ge 1 - \delta/2 err_D(h^*) \le \epsilon

PROOF: Need to show err_S(h_i)

[average # mistakes made by h_i over m_2 samples]

is within 3/4 of \mu_i = err_D(h_i)

• P(err_S(h_i) < err_D(h_i) \times (1 - 1/4)) \le exp(-(m_2 \ \epsilon 1/4)/2) \le \delta / (2M)

• So prob ANY h_i \in H is off by < 3/4 is under \delta /2

• m_1 is leading term

\Rightarrow O(1/\epsilon [r log(n) + log(1/\delta)])
```

- Best known bound for learning r of n disjuncts!
- Note: Might NOT find 0 error r-disjunction. . .

Extensions to this Model

- Occam Algorithm: Can PAC-learn H iff
 - can "compress" samples
 - have efficient consistency-finding algorithm
- Data Efficient Learner

Gathers samples sequentially, autonomously decides when to stop & return hypothesis

- Exploiting other information
 - Prior background theory
 - Relevance
- Degradation of Training/Testing Information

```
Error | Training | Attribute Value | Omissions | Testing | Class Label
```

4

Other Learning Models

- Learning in the Limit [Recursion Theoretic]
 - Exact identification, no resource constraints
- On-Line learning
 - After seeing each unlabeled instance, learner returns (proposed) label
 - Learner then given correct label provided (penalized if wrong)
 - Q: Can learner converge, after making only k mistakes?
- Active Learners
 - Actively request useful information from environment
 - "Experiment"
- "Agnostic Learning"
 - What if target \neg [f \in H]?
 - Want to find CLOSEST hypotheses. . .
 - Typically NP-hard. . .
- Bayesian Approach: Model Averaging, . . .

Computational Learning Theory

- Framework/Protocols
- 1. Finite \mathcal{H} , Realizable case
- 2. Finite \mathcal{H} , Unrealizable case
- 3. Infinite #

(Vapnik-Chervonenkis Dimension)

- 4. Variable size Hypothesis Space
- Data-dependent Bounds (Max Margin)
- 6. Mistake Bound (Winnow)
- Topics:
 - Occam Algorithms
 - Extensions to PAC
 - Other Learning Models