

From Statistics to Data Mining

Master 1
COlour in Science and Industry (COSI)
Cyber-Physical Social System (CPS2)
Saint-Étienne, France

Fabrice MUHLENBACH

https://perso.univ-st-etienne.fr/muhlfabr/

e-mail: fabrice.muhlenbach@univ-st-etienne.fr

- Linear Regression
- let the following points:

Xi	1	2	4		
y _i	2	1	3		

- represent the points graphically
- then find the linear regression line
 - = the line fitting at best the points

Linear Regression

 \circ $\mathbb{R}^2 \rightarrow$ the parameters θ_0 and θ_1 are given by:

$$\theta_1 = \frac{\operatorname{cov}(x,y)}{V(x)}, \ \theta_0 = \overline{y} - \theta_1 \overline{x}$$

$$\bar{x} = \frac{1+2+4}{3} = \frac{7}{3}$$
 $\bar{y} = \frac{2+1+3}{3} = 2$

$$\overline{x^2} = \frac{1^2 + 2^2 + 4^2}{3} = 7 \rightarrow V(x) = \overline{x^2} - \overline{x}^2 = 7 - \left(\frac{7}{3}\right)^2 \rightarrow \theta_1 = \frac{3}{7}$$

$$\theta_0 = \overline{y} - \theta_1 \overline{x} = 2 - \frac{3}{7} \times \frac{7}{3} = 2 - 1 = 1 \rightarrow y = \frac{3}{7}x + 1$$

Principal Component Analysis

let the following points:

Xi	1	3	3	5	5	6	8	9
y _i	2	3	5	4	6	5	7	8

- plot the data in the original 2D-space
- \succ compute the covariance matrix Σ from the zero mean values $(x \bar{x})$
- > solve the characteristic equation $det(\Sigma \lambda I) = 0$ to get the eigenvalues
- deduce the first eigenvector \mathbf{u}_1 from the largest eigenvalue λ_1 by solving $\mathbf{u}_1\Sigma = \lambda_1\mathbf{u}_1$ (nota: first assume that one of the variables is equal to 1, then find the other one and finally normalize the vector to make it unit-length)
- \triangleright use \mathbf{u}_1 to find the projection $t_i = \mathbf{u}_1^T x_i$ for every training data x_i
- \succ plot the points in the new space according to the first component \mathbf{u}_1
- compute the part of the total variance explained by this 1-D space.

From Statistics 2 DM –Tutorial

F. Muhlenbach

Principal Component Analysis

- \triangleright compute the covariance matrix Σ from the zero mean values $(x \bar{x})$:
- o covariance matrix $\Sigma = \begin{pmatrix} cov(X, X) & cov(X, Y) \\ cov(Y, X) & cov(Y, Y) \end{pmatrix}$

$$\bar{x} = \frac{1+3+3+5+5+6+8+9}{8} = \frac{40}{8} = 5$$

$$\bar{y} = \frac{2+3+5+4+6+5+7+8}{8} = \frac{40}{8} = 5$$

x_i	1	3	3	5	5	6	8	9	$\Sigma = 40$
y_i	2	3	5	4	6	5	7	8	$\Sigma = 40$
$x_i - \bar{x}$	-4	-2	-2	0	0	1	3	4	$\Sigma = 0$
$y_i - \bar{y}$	-3	-2	0	-1	1	0	2	3	$\Sigma = 0$
$(x_i - \bar{x})^2$	16	4	4	0	0	1	9	16	$\Sigma = 50$
$(y_i - \bar{y})^2$	9	4	0	1	1	0	4	9	$\Sigma = 28$
$(x_i - \bar{x}) \times (y_i - \bar{y})$	12	4	0	0	0	0	6	12	$\Sigma = 34$

Principal Component Analysis

- \triangleright compute the covariance matrix Σ from the zero mean values $(x \bar{x})$:
- o covariance matrix $\Sigma = \begin{pmatrix} cov(X,X) & cov(X,Y) \\ cov(Y,X) & cov(Y,Y) \end{pmatrix}$
- $cov(X, X) = \frac{50}{8} = \frac{25}{4} = 6.25$
- $cov(X,Y) = cov(Y,X) = \frac{34}{8} = \frac{17}{4} = 4.25$
- \circ $cov(Y,Y) = \frac{28}{8} = \frac{7}{2} = 3.5$

Principal Component Analysis

 \triangleright solve the characteristic equation $det(\Sigma - \lambda I) = 0$ to get the eigenvalues

$$\cot(\Sigma - \lambda I) = 0 \Leftrightarrow \det\left(\frac{\frac{25}{4} - \lambda}{\frac{17}{4}} \quad \frac{\frac{17}{4}}{\frac{7}{2} - \lambda}\right) = 0$$

$$\Leftrightarrow \det\left(\frac{\frac{25 - 4\lambda}{4}}{\frac{17}{4}} \quad \frac{\frac{17}{4}}{\frac{14 - 4\lambda}{4}}\right) = 0$$

$$\Leftrightarrow \frac{25 - 4\lambda}{4} \times \frac{14 - 4\lambda}{4} - \frac{17}{4} \times \frac{17}{4} = 0$$

$$\Leftrightarrow \frac{(25-4\lambda)\times(14-4\lambda)-17^2}{4^2}=0$$

$$\Leftrightarrow (25 - 4\lambda) \times (14 - 4\lambda) - 17^2 = 0$$

$$\Leftrightarrow 350 - 100\lambda - 56\lambda + 16\lambda^2 - 289 = 0$$

$$\Leftrightarrow 16\lambda^2 - 156\lambda + 61 = 0$$

Principal Component Analysis

- \triangleright solve the characteristic equation $det(\Sigma \lambda I) = 0$ to get the eigenvalues
- o $\det(\Sigma \lambda I) = 0 \Leftrightarrow 16\lambda^2 156\lambda + 61 = 0 \Rightarrow \text{discriminant}$:

$$\delta = (-156)^2 - 4 \times 16 \times 61 = 20432$$

- o solutions are $\lambda_1 = \frac{156 + \sqrt{\delta}}{2 \times 16} = 9.34$ and $\lambda_2 = \frac{156 \sqrt{\delta}}{2 \times 16} = 0.41$
- \triangleright deduce the first eigenvector \mathbf{u}_1 from the largest eigenvalue λ_1 by solving

$$\mathbf{u}_1 \Sigma = \lambda_1 \mathbf{u}_1 \Rightarrow \Sigma e_i = \lambda e_i$$

$$\Leftrightarrow \begin{pmatrix} \frac{25}{4} & \frac{17}{4} \\ \frac{17}{4} & \frac{14}{4} \end{pmatrix} \begin{pmatrix} e_{1,1} \\ e_{1,2} \end{pmatrix} = \lambda_1 \begin{pmatrix} e_{1,1} \\ e_{1,2} \end{pmatrix}$$

$$\Leftrightarrow \left\{ \begin{array}{ccc} \frac{25}{4}e_{1,1} + \frac{17}{4}e_{1,2} & = & \lambda_1 e_{1,1} \\ \frac{17}{4}e_{1,1} + \frac{14}{4}e_{1,2} & = & \lambda_1 e_{1,2} \end{array} \right\}$$

$$\Leftrightarrow \left(\frac{25 - 4\lambda_1}{4}\right) e_{1,1} = -\frac{17}{4} e_{1,2}$$

Principal Component Analysis

 \succ deduce the first eigenvector \mathbf{u}_1 from the largest eigenvalue λ_1 by solving

u₁
$$\Sigma = \lambda_1$$
u₁ $\Rightarrow \Sigma e_i = \lambda e_i$ $\Leftrightarrow \left(\frac{25 - 4\lambda_1}{4}\right) e_{1,1} = -\frac{17}{4} e_{1,2}$ $\Leftrightarrow e_{1,1} = -\frac{17}{25 - 4\lambda_1} e_{1,2} = 1,374563 \times e_{1,2}$ $\Leftrightarrow e_1 \sim \begin{bmatrix} 1,374563\\1 \end{bmatrix}$

$$||e_1|| = \sqrt{(1,374563)^2 + 1^2} = 1,69983.$$

o we divide the eigenvector e_1 by its norm to have the unit vector \mathbf{u}_1 :

$$u_1 \sim \begin{bmatrix} 0,8086471\\0,588294 \end{bmatrix} \quad e_{2,1} = -\frac{17}{25-4\times\lambda_2}e_{2,2}, \qquad e_2 \sim \begin{bmatrix} -0.727504\\1 \end{bmatrix}$$
$$u_2 \sim \begin{bmatrix} -0,588294\\0,8086471 \end{bmatrix}$$

From Statistics 2 DM –Tutorial

F. Muhlenbach

Principal Component Analysis

use \mathbf{u}_1 to find the projection $t_i = \mathbf{u}_1^T x_i$ for every training data x_i

$$c_1 = (x_i - \bar{x}) \times u_{1,1} + (y_i - \bar{y}) \times u_{1,2}.$$

$$c_2 = (x_i - \bar{x}) \times u_{2,1} + (y_i - \bar{y}) \times u_{2,2}.$$

x_i	1	3	3	5	5	6	8	9
y_i	2	3	5	4	6	5	7	8
c_1	-4.9994705	-2.7938823	-1.6172942	-0.5882940	0.5882940	0.8086471	3.6025294	4.9994705
c_2	-0.07276523	-0.44070617	1.17658805	-0.80864711	0.80864711	-0.58829402	-0.14758786	0.07276523

plot the points in the new space according to the first component \mathbf{u}_1

Composante 1 compute the part of the total variance explained by this 1-D space:

$$\frac{\lambda_1}{\lambda_1 + \lambda_2} = 0.96$$