Oficina de Resolução de Problemas Marcelo Xavier

Problema 1 (Math Magazine, 2033) Um baralho é uma coleção de 52 pares (cartas) da forma (n, s) onde $1 \le n \le 13$ é o número da carta, e o naipe s da carta é um dos símbolos: ouro, copas, paus e espada.

Dada uma partição qualquer do baralho em 13 conjuntos S_1, S_2, \ldots, S_{13} de 4 cartas cada, prove que existe uma partição correspondente C_1, C_2, C_3, C_4 do baralho em 4 conjuntos de 13 cartas cada, tal que, para cada parte C_i ($1 \le i \le 4$) vale:

- C_i tem uma carta de S_j para $1 \le j \le 13$;
- todas as cartas em C_i tem números diferentes.

Problema 2 (China Girls MO 2005, 4) Determine todos os reais positivos a tal que exite um inteiro positivo n e conjuntos A_1, A_2, \ldots, A_n satisfazendo as seguintes propriedades:

- cada conjunto A_i tem infinitos elementos;
- cada par de conjuntos distintos A_i e A_j não tem um elemento em comum;
- a união dos conjuntos A_1, A_2, \ldots, A_n é o conjunto de todos os inteiros;
- para cada conjunto A_i , a diferença absoluta de qualquer par de elementos de A_i é pelo menos a^i .

Problema 3 (Banco IMO 2013, N4) Existe um inteiro positivo N e uma sequência infinita de dígitos a_1, a_2, \ldots , todos não-nulos, tais que, para todo k > N, o número cuja representação decimal é $(a_k a_{k-1} \ldots a_1)$ é um quadrado perfeito?