PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2000038418 A

(43) Date of publication of application: 08 . 02 . 00

(51) Int. CI

C08F210/00 C08F 4/654 C08F290/00

(21) Application number: 10210114

(22) Date of filing: 24 . 07 . 98

(71) Applicant:

IDEMITSU PETROCHEM CO LTD

(72) Inventor:

MACHIDA SHUJI MINAMI YUTAKA GOTO YASUHIRO

(54) PRODUCTION OF POLYOLEFIN

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a process for the production of a branched polyolefin comparable or superior to conventional polypropylene polymer in physical properties and having high melt tension and excellent resin compatibility.

SOLUTION: A polyolefin composed of an olefinic macromonomer and one or more comonomers selected from a 2-20C α -olefin, a cycloolefin and a styrene

compound is produced by using a catalyst composed of (A) a catalyst component containing at least one kind of compound selected from compounds of group 4 transition metal of the periodic table and (B) a cocatalyst component. The olefinic macromonomer satisfies the requirements that (1) the weight-average molecular weight is 200-100,000, (2) the ratio of vinyl group in total unsaturated terminal is $_{\approxeq}60\%$ and (3) the content of ethylene or propylene is >50 mol.%.

COPYRIGHT: (C)2000,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-38418

(P2000-38418A)

(43)公開日 平成12年2月8日(2000.2.8)

(51) Int.Cl. 7 職別記号 F I デーマコート*(参考)
C 0 8 F 210/00 C 0 8 F 210/00 4 J 0 2 7
4/654 4/654 4/654 4 J 0 2 8
290/00 290/00 4 J 1 0 0

審査請求 未請求 請求項の数6 OL (全 24 頁)

(21)出顧番号 特願平10-210114

(22)出願日 平成10年7月24日(1998.7.24)

(71)出願人 000183657

出光石油化学株式会社

東京都港区芝五丁目6番1号

(72) 発明者 町田 修司

千葉県市原市姉崎海岸1番地1

(72)発明者 南 裕

千葉県市原市姉崎海岸1番地1

(72)発明者 後藤 康博

千葉県市原市姉崎海岸1番地1

(74)代理人 100078732

弁理士 大谷 保

最終頁に続く

(54) 【発明の名称】 ポリオレフィンの製造方法

(57)【要約】

【課題】 従来のポリプロピレン系重合体と同等又は同等以上の物性を有するとともに、溶融張力が高く、樹脂相溶性に優れる分岐状ポリオレフィンを製造する方法を提供すること。

【解決手段】 (A) 周期律表第4族の遷移金属化合物の中から選ばれた少なくとも一種を含む触媒成分と

- (B) 助触媒成分とからなる触媒の存在下、オレフィン系マクロモノマーと、炭素数2~20のα-オレフィン、環状オレフィン及びスチレン類から選ばれる一種以上のコモノマーとからなるポリオレフィンを製造する方法において、上記オレフィン系マクロモノマーが
- ①重量平均分子量が200~10000であり、
- ②全不飽和末端に占めるビニル基の割合が60%以上であり、かつ
- ③エチレン又はプロピレン含有量が50モル%を超える ポリオレフィンである。

などの特定の要件を満たすことを特徴とするポリオレフィンの製造方法である。

【特許請求の範囲】

【請求項1】 (A) 周期律表第4族の遷移金属化合物 の中から選ばれた少なくとも一種を含む触媒成分と

(B) 助触媒成分とからなる触媒の存在下、オレフィン 系マクロモノマーと、炭素数2~20のα-オレフィ ン、環状オレフィン及びスチレン類から選ばれる一種以 上のコモノマーとからなるポリオレフィンを製造する方 法において、上記オレフィン系マクロモノマーが以下の (1)、(2)及び(3)

(1) ①重量平均分子量が200~10000であ ŋ.

②全不飽和末端に占めるビニル基の割合が60%以上で あり、かつ

③エチレン又はプロピレン含有量が50モル%を超える ポリオレフィンである。

(2) ①重量平均分子量が200~10000であ り、

②極限粘度〔η〕 (デシリットル/g) と末端ビニル濃 度C(個/炭素原子1000個)との積〔η〕・Cが0. 05~2.0の範囲にあり、

③エチレン又はプロピレン含有量が50モル%を超える ポリオレフィンである。

(3) ①炭素数2~20のα-オレフィン、環状オレフ ィン及びスチレン類から選ばれる一種以上のコモノマー とポリエンとからなり、かつ重量平均分子量が200~ 100000であり、

②極限粘度〔η〕(デシリットル/g)と、末端ビニル 濃度とポリエン由来の炭素-炭素二重結合濃度の和C' (個/炭素原子1000個) との積〔η〕・C'が0.0 **5~10の範囲にあり、**

③ポリエン含有量が0を超え20モル%以下であるポリ オレフィンである。

のいずれかであることを特徴とするポリオレフィンの製 造方法。

【請求項2】 周期律表第4族の遷移金属化合物がチタ ン化合物であって、触媒成分が、該チタン化合物、マグ ネシウム及びハロゲンを含むものであり、助触媒成分 が、周期律表第1~3族の有機金属化合物である請求項 1 記載の製造方法。

【請求項3】 周期律表第4族の遷移金属化合物がシク ロペンタジエニル骨格を有する化合物であり、助触媒成 分が(B-1)アルミニウムオキシ化合物、(B-2) 上記遷移金属化合物と反応してカチオンに変換しうるイ オン性化合物並びに (B-3) 粘土, 粘土鉱物及びイオ* *ン交換性層状化合物の中から選ばれた少なくとも一種か らなるものである請求項1記載の製造方法。

【請求項4】 シクロペンタジエニル骨格を有する周期 律表第4族の遷移金属化合物が、(A-1)一般式

(I)、(A-2)一般式(II)、(A-3)一般式(II I)

 $C p M^{1}R^{1}_{a}R^{2}_{b}R^{3}_{c}$ · · · (I)

 $C p_2M^1R^1_dR^2$ · · · (II)

 $(C p - A_f^1 - C p) M^1 R_d^1 R^2$ · · · (III)

〔式(I)~(III)において、M1は周期律表第4族遷 移金属を示し、Cpはシクロペンタジエニル基、置換シ クロペンタジエニル基、インデニル基、置換インデニル 基、テトラヒドロインデニル基、置換テトラヒドロイン デニル基、フルオレニル基及び置換フルオレニル基から 選ばれる基を示し、R¹, R²及びR³は、それぞれ独 立に配位子を示し、A1は共有結合による架橋を示す。 $a \sim e$ はそれぞれ独立に $0 \sim 4$ の整数を示し、a + b + $c = (M^1 の価数) - 1, d + e = (M^1 の価数) - 2$ を満たす。fは0~6の整数を示す。R¹, R²及びR 20 3は、その2以上が互いに結合して環を形成してもよ い。(II) 式及び(III)式において、2つのCpは同一 のものであってもよく、互いに異なるものであってもよ い。〕で表される遷移金属化合物、(A-4)一般式 (IV)

【化1】

〔式中、M²は周期律表第4族遷移金属を示し、Lはシ 30 クロペンタジエニル基、置換シクロペンタジエニル基、 インデニル基、置換インデニル基、テトラヒドロインデ ニル基、置換テトラヒドロインデニル基、フルオレニル 基及び置換フルオレニル基から選ばれる基を示し、A² は周期律表の第13、14、15及び16族の元素の中 から選ばれた元素を含む二価の基、Bは周期律表の第1 4、15及び16族の元素の中から選ばれた元素を含む 結合性基を示し、該A2とBは、任意に一緒になって環 を形成していてもよく、X¹はσ結合性の配位子、キレ ート性の配位子又はルイス塩基を示し、nはM'の原子 価により変化する0~6の整数であり、nが2以上の場 合は複数のX1は同一であっても異なっていてもよ い。〕で表される遷移金属化合物、並びに(A-5)-般式 (V)

【化2】

30

〔式中、M³ はチタン、ジルコニウム又はハフニウムを 示し、E'及びE'はそれぞれ置換シクロペンタジエニ ル基、インデニル基、置換インデニル基、ヘテロシクロ ペンタジエニル基、置換ヘテロシクロペンタジエニル 基、アミド基、ホスフィド基、炭化水素基及びケイ素含 有基の中から選ばれた配位子であって、A3及びA4を 介して架橋構造を形成しており、またそれらはたがいに 同一でも異なっていてもよく、X²はσ結合性の配位子 を示し、X²が複数ある場合、複数のX²は同じでも異 なっていてもよく、他のX², E¹, E²又はY¹と架 橋していてもよい。Y'はルイス塩基を示し、Y'が複 数ある場合、複数のY'は同じでも異なっていてもよ く、他のY¹, E¹, E²又はX²と架橋していてもよ く、A' 及びA' は二つの配位子を結合する二価の架橋 基であって、炭素数1~20の炭化水素基、炭素数1~ 20のハロゲン含有炭化水素基、珪素含有基、ゲルマニ ウム含有基、スズ含有基、-O-、-CO-、-S-、 $-SO_2 - - - Se - - - NR^{24} - - - PR^{24} - - - P$ (O) R²⁴-、-BR²⁴-又は-A1R²⁴-を示し、R *は水素原子、ハロゲン原子、炭素数1~20の炭化水 素基、炭素数1~20のハロゲン含有炭化水素基を示 し、それらはたがいに同一でも異なっていてもよい。 q は1~5の整数で〔(M³の原子価)-2〕を示し、r は0~3の整数を示す。〕で表される遷移金属化合物か ら選ばれたものである請求項3記載の製造方法。

【請求項5】 周期律表第4族の遷移金属化合物及び助 触媒の少なくとも一つが担体に固定されたものである請 求項1記載の製造方法。

【請求項6】 請求項1~5のいずれかに記載の方法で 製造されたポリオレフィン。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ポリオレフィンの 製造方法に関し、さらに詳しくは、従来のプロピレン系 共重合体と同等又は同等以上の物性を有するとともに、 溶融張力が高く、樹脂相溶性に優れる分岐状ポリオレフィンを製造する方法に関するものである。

[0002]

【従来の技術】ポリオレフィンは、その優れた特性を活かして、多くの分野において、広範囲に用いられている。しかしながら、従来のポリオレフィンにおいては、溶融張力及び溶融粘弾性が不足し、大型プロー成形におけるパリソンの安定性に劣るために、ドローダウンの現象が起こりやすく、大型部品の成形は困難であった。また、溶融張力を向上させるために高分子量化させた場合には、溶融流動性が低下し、複雑な形状の成形には適用できないという問題が生じる。

【0003】また、発泡成形体の分野においては、軽量化、断熱性、制振性などとともに、耐熱性を有する発泡成形体に対する要求が高まり、ポリプロピレン性発泡成 50

形体が期待されているが、従来のポリプロピレンでは溶融張力が不足し、十分に満足しうる発泡成形体は得られにくいのが実状である。このポリプロピレンの利用分野をさらに拡大させるためには、押出成形加工性の改良が必要である。従来、ポリオレフィンの溶融加工性を改善しようとする試みが種々なされており、例えば、ポリオレフィンの製造時における重合触媒や重合処方を改良して、その分子量分布を拡大することにより、溶融加工性を改善する方法、ポリオレフィンを部分的に架橋させて

10 溶融加工性を改善する方法などが試みられている。

【0004】一方、エチレン系重合体においては、最近、メタロセン触媒とアルミノキサンなどを組み合わせた触媒系によって、分子量分布が狭いにもかかわらず、溶融張力が改良されたエチレン系重合体が提案されている(特開平4-213306号公報)。また、拘束幾何型触媒により製造されるエチレン系重合体についても、同様に分子量分布が狭いにもかかわらず、溶融張力が改良されることが開示されており(特開平3-163088号公報)、長鎖分岐の存在が示唆されている。しかしながら、未だ溶融張力向上により押出成形加工性の向上は小さいものである。また、ポリスチレン系樹脂では、ポリエチレン系樹脂やポリプロピレン系樹脂では、ポリエチレン系樹脂やポリプロピレン系樹脂と比較して溶融張力は高いものの、深絞りのシート成形等においては、未だ性能不足である。

【0005】一般に、ポリマー鎖に長鎖分岐を導入すると、その分岐により溶融加工特性が向上するが、主鎖ポリマーと異なる単量体で分岐鎖を構成した分岐ポリマーでは、異種ポリマーからなるいわゆる複合材料分野で、異種ポリマー間の界面張力を低下させてポリマーの分散性を高め、衝撃強度と剛性といった両立しがたい物性を効果的に付与することが可能である。また、ミクロ相分離構造をとるため各種エラストマーへの応用も可能である。しかし、今まで、ポリオレフィン分野においては、分岐を導入することには制限があるため、用途展開の限界があった。これが可能となれば、ポリオレフィンが本来有している優れた機械物性、リサイクル性に代表される環境適合性より、その用途分野が大きく拡大すると期待される。

【0006】ところで、ポリオレフィンの溶融張力を改 40 良し、溶融加工特性を向上させる方法としては、これま で、(1)溶融張力の高い高分子量の高密度ポリエチレ ンを混合する方法(特公平6-55868号公報)、

(2) クロム系触媒によって製造される溶融張力の高い 高密度ポリエチレンを混合する方法(特開平8-924 38号公報)、(3)一般的な高圧ラジカル重合法によ り製造される低密度ポリエチレンを混合する方法、

(4) 一般的なポリオレフィンに光照射することにより 溶融張力を高める方法、(5) 一般的なポリオレフィン に架橋剤や過酸化物の存在下、光照射することにより溶 融張力を高める方法、(6) 一般的なポリオレフィンに

スチレンなどのラジカル重合性モノマーをグラフトする 方法、(7) オレフィンとポリエンを共重合させる方法 (特開平5-194778号公報、特開平5-1947 79号公報)などが試みられている。

【0007】しかしながら、上記(1)~(3)の方法においては、溶融張力を高める成分の弾性率、強度、耐熱性が不足するために、ポリオレフィン、とりわけポリプロピレン本来の特徴が損なわれるのを免れない。また、上記(4)及び(5)の方法においては、副反応として起こる架橋反応を制御することが困難であって、ゲ 10ルの発生により外観不良や機械特性に悪影響が生じる上、成形加工性を任意に制御することに限界があり、制御範囲が狭いという問題がある。さらに、上記(6)の方法においては、ゲルの発生や製造コストに問題を生じ、また、上記(7)の方法においては、溶融張力の改良効果が小さく、充分な効果が発揮されない上、ゲルの発生も懸念される。

[0008]

【発明が解決しようとする課題】本発明は、このような 状況下で、従来のポリプロピレン系重合体と同等又は同 等以上の物性を有するとともに、充分な溶融張力,溶融 粘弾性,溶融流動性などを有し、溶融加工特性に優れ、 特に大型プロー成形や押出し発泡成形、シート成形など に好適に用いられ、さらにプロピレン系複合材料の高性 能化、エラストマーなどにも好適なポリオレフィンを製 造する方法を提供することを目的とするものである。

【0009】本発明者らは、上記目的を達成するために 鋭意研究を重ねた結果、特定の触媒の存在下で、特定の オレフィン系マクロモノマーと、炭素数2~20のαー オレフィン, 環状オレフィン及びスチレン類から選ばれ 30 る一種以上とを共重合させて得られるポリオレフィン が、その目的を達成することを見出した。本発明は、か かる知見に基づいて完成したものである。

【0010】すなわち、本発明は、周期律表第4族の遷移金属化合物の中から選ばれた少なくとも一種を含む触媒成分と助触媒成分とからなる触媒の存在下、オレフィン系マクロモノマーと、炭素数2~20のαーオレフィン、環状オレフィン及びスチレン類から選ばれる一種以上のコモノマーとからなるポリオレフィンを製造する方法において、上記オレフィン系マクロモノマーが以下の40(1)、(2)及び(3)

(1) ①重量平均分子量が200~100000であり、

②全不飽和末端に占めるビニル基の割合が60%以上であり、かつ

③エチレン又はプロピレン含有量が50モル%を超える ポリオレフィンである。

(2) ①重量平均分子量が200~100000であり、

②極限粘度〔η〕 (デシリットル/g) と末端ビニル濃 50

度C (個/炭素原子1000個) との積 [η]・Cが0.05~2.0の範囲にあり、

③エチレン又はプロピレン含有量が50モル%を超える ポリオレフィンである。

(3) ①炭素数 2~20のα-オレフィン、環状オレフィン及びスチレン類から選ばれる一種以上のコモノマーとポリエンとからなり、かつ重量平均分子量が 200~10000であり、

②極限粘度 $[\eta]$ (デシリットル/g) と、末端ビニル 濃度とポリエン由来の炭素ー炭素二重結合濃度の和C' (個/炭素原子1000個) との積 $[\eta]$ · C' が0.0 $5\sim10$ の範囲にあり、

③ポリエン含有量が 0 を超え 2 0 モル%であるポリオレフィンである。

のいずれかであることを特徴とするポリオレフィンの製造方法を提供するものである。

[0011]

【発明の実施の形態】本発明の製造方法において、触媒成分は、周期律表第4族の遷移金属化合物の中から選ばれた少なくとも一種を含むものである。この触媒成分としては、(A-I)周期律表第4族の遷移金属化合物としてチタン化合物を用い、該チタン化合物、マグネシウム及びハロゲンを含むもの、(A-II)シクロペンタジエニル基を有する周期律表第4族の遷移金属化合物が好適である。まず、(A-I)成分について説明すると、(A-I)成分の好ましい担体となるものは、金属マグネシウムとアルコールとハロゲン及び/又はハロゲン含有化合物から得られる。この場合、金属マグネシウムとしては、顆粒状、リボン状、粉末状等のものを用いることができる。また、この金属マグネシウムは、その表面に酸化マグネシウム等の被覆が形成されていないものが好ましい。

【0012】アルコールとしては、炭素数1~6の低級アルコールを用いるのが好ましく、触媒性能の発現を著しく向上させる上記担体が得られる点から、特にエチルアルコールが好ましい。ハロゲンとしては、塩素、臭素、ヨウ素が好ましく、特にヨウ素が好ましい。また、ハロゲン含有化合物としては、MgCl2、MgI2が好適に使用できる。

【0013】アルコールの使用量は、金属マグネシウム1モルに対して好ましくは2~100モル、特に好ましくは5~50モルである。ハロゲン又はハロゲン含有化合物の使用量は、金属マグネシウム1グラム原子に対して、ハロゲン原子又はハロゲン含有化合物中のハロゲン原子が0.0001グラム原子以上、好ましくは0.0005グラム原子以上、さらに好ましくは0.001グラム原子以上である。ハロゲン及びハロゲン含有化合物はそれぞれ一種を単独で使用してもよく、二種以上を併用してもよい。

【0014】金属マグネシウムとアルコールとハロゲン

40

及び/又はハロゲン含有化合物との反応方法は、金属マ グネシウムとアルコールとハロゲン及び/又はハロゲン 含有化合物とを、還流下(約79℃)で水素ガスの発生 が認められなくなるまで(通常20~30時間)反応さ せて担体を得る方法である。この反応は、窒素ガス、ア ルゴンガス等の不活性ガス雰囲気下で行うことが好まし い。このような反応により得られた担体を次に示す固体 触媒成分の合成に用いる場合、乾燥させたものを用いて もよく、また濾別し、ヘプタン等の不活性溶媒で洗浄し たものを用いてもよい。

【0015】(A-I)成分を製造するには、上記担体 に少なくともチタン化合物を接触させる。このチタン化 合物としては、例えば一般式 TiX³、(OR⁴) 4t (式中、X³はハロゲン原子、R¹は炭素数1~10 の炭化水素基、tは0~4の整数を示す。OR'が複数 存在する場合、各R'は同一でも異なっていてもよ い。)で表される化合物を挙げることができる。このよ うなチタン化合物の例としては、テトラメトキシチタ ン, テトラエトキシチタン, テトラーnープロポキシチ タン, テトライソプロポキシチタン, テトラーnープト キシチタン、テトライソプトキシチタン、テトラシクロ ヘキシロキシチタン, テトラフェノキシチタンなどのテ トラアルコキシチタン、四塩化チタン、四臭化チタン、 四ヨウ化チタンなどのテトラハロゲン化チタン、メトキ シチタニウムトリクロリド, エトキシチタニウムトリク ロリド, プロポキシチタニウムトリクロリド, n-ブト キシチタニウムトリクロリド, エトキシチタニウムトリ プロミドなどのトリハロゲン化モノアルコキシチタン、 ジメトキシチタニウムジクロリド, ジエトキシチタニウ ムジクロリド,ジプロポキシチタニウムジクロリド,ジ 30 -n-プトキシチタニウムジクロリド, ジエトキシチタ ニウムジブロミドなどのジハロゲン化ジアルコキシチタ ン、トリメトキシチタニウムクロリド、トリエトキシチ タニウムクロリド, トリプロポキシチタニウムクロリ ド、トリーnープトキシチタニウムクロリドなどのモノ ハロゲン化トリアルコキシチタンなどが挙げられるが、 これらの中で高ハロゲン含有チタン化合物、特に四塩化 チタンが好適である。またこれらのチタン化合物は一種 だけで用いてもよく、二種以上を組み合わせて用いても よい。

【0016】(A-I)成分は、上記担体にさらに電子 供与性化合物を接触させて得られる。この電子供与性化 合物としては、芳香族カルボン酸、酸無水物、炭素数3 ~15のケトン類, 炭素数2~15のアルデヒド類, 炭 素数2~18のエステル類、芳香族ジカルボン酸のモノ エステル及びジエステル, 炭素数2~20の酸ハロゲン 化物類、炭素数2~20のエーテル類、酸アミド、Si -O-C結合を有する有機ケイ素化合物等を挙げること ができる。これらのうち、芳香族ジカルボン酸ジエステ ルが好ましく、特にフタル酸ジエチル,フタル酸ジプチ 50 ル、フタル酸ジイソプチル、フタル酸ジヘキシルが好ま しい。これらは一種を単独で用いてもよく、二種以上を 併用してもよい。

【0017】また、上記担体にチタン化合物と電子供与 性化合物を接触させる際に、四塩化ケイ素等のハロゲン 含有ケイ素化合物を接触させるとよい。(A-I)成分 は、公知の方法で調製することができる。例えば、ペン タン、ヘキサン、ヘプタン又はオクタン等の不活性炭化 水素を溶媒に、上記担体、電子供与性化合物及びハロゲ ン含有ケイ素化合物を投入し、攪拌しながらチタン化合 物を投入する方法である。この際、電子供与性化合物 は、マグネシウム原子に対するモル比が、通常0.01~ 10、好ましくは0.05~5になるように接触させるの が有利であり、また、チタン化合物は、マグネシウム原 子に対するモル比が、通常1~50、好ましくは2~2 0モルになるように接触させるのが有利である。接触温 度は特に制限はないが、通常0~200℃において5分 ~10時間の条件、好ましくは30~150℃において 30分~5時間の条件で接触反応を行えばよい。なお、 反応終了後は、n-ヘキサン, n-ヘプタン等の不活性 炭化水素を用いて、生成した固体触媒成分を洗浄するこ とが好ましい。

【0018】(A-I)成分を用いる場合、助触媒とし ては、周期律表第1~3族の有機金属化合物を用いるこ とが好ましい。該有機金属化合物としては、トリアルキ ルアルミニウム、ジアルキルモノハロゲン化アルミニウ ムなどが挙げられる。本発明においてはこの中でトリエ チルアルミニウム, トリイソプチルアルミニウム, ジエ チルアルミニウムモノクロリドなどが好適に使用され る。

【0019】(A-I)成分と上記助触媒からなる触媒 における(A-I)成分と助触媒との使用割合は、アル ミニウム/チタン原子比が通常1~1000、好ましく は10~500の範囲になるように用いられる。また、 重合には、必要に応じ上述の電子供与性化合物を添加す ることが好ましい。特にこの中で有機ケイ素化合物が好 ましく、有機ケイ素化合物の中てもケイ酸エステル、シ ロキサン類、カルボン酸のシリルエステルが好ましい。 ここで、重合に用いる電子供与性化合物/有機アルミニ ウム化合物のモル比は、通常0~50、好ましくは0.0 1~20の範囲である。

【0020】(A-II)成分のシクロペンタジエニル骨 格を有する周期律表第4族の遷移金属化合物としては、 例えば(A-1)~(A-5)成分から選ばれた一種以 上を挙げることができる。

(A-1), (A-2) 及び(A-3) 成分: (A-1), (A-2)及び(A-3)成分は、一般式 $(I) \sim (III)$

 $C p M^1 R^1 R^2 R^3$ · · · (I) · · · (II) $C p_2M^1R^1_dR^2$

 $(Cp-A^1_t-Cp)$ $M^1R^1_dR^2_t$ ・・・ (III) 〔式 (I) ~ (III)において、 M^1 は周期律表第4族遷移金属を示し、Cp はシクロペンタジエニル基,置換シクロペンタジエニル基,置換インデニル基,テトラヒドロインデニル基,置換テトラヒドロインデニル基,フルオレニル基及び置換フルオレニル基から選ばれる基を示し、 R^1 , R^2 及び R^3 は、それぞれ独立に配位子を示し、 A^1 は共有結合による架橋を示す。 $a\sim e$ はそれぞれ独立に $0\sim 4$ の整数を示し、 $a+b+c=(M^1$ の価数) -1, $d+e=(M^1$ の価数) -2 を満たす。 f は $0\sim 6$ の整数を示す。 R^1 , R^2 及び R^3 は、その 2 以上が互いに結合して環を形成してもよい。 (II) 式及び (III)式において、2 つの Cp は同のであってもよく、互いに異なるものであってもよ

【0021】一般式(I)~(III)において、M¹で示される周期律表第4族遷移金属としては、チタン,ジルコニウム又はハフニウムなどが挙げられる。また、置換シクロペンタジエニル基としては、例えばメチルシクロペンタジエニル基;イソプロピルシクロペンタジエニル基;1,2ージメチルシクロペンタジエニル基;1,3ージメチルシクロペンタジエニル基;1,2,3ートリメチルシクロペンタジエニル基;1,2,4ートリメチルシクロペンタジエニル基;ペンタメチルシクロペンタジエニル基;ペンタメチルシクロペンタジエニル基などが挙げられる。

い。〕で表される遷移金属化合物である。

【0022】上記式 (I) ~ (III)におけるR¹, R² 及びR³は、それぞれ独立にσ結合性の配位子、キレー ト性の配位子、ルイス塩基などの配位子を示し、σ結合 性の配位子としては、具体的には水素原子,酸素原子, ハロゲン原子、炭素数1~20のアルキル基、炭素数1 ~20のアルコキシ基、炭素数6~20のアリール基, アルキルアリール基若しくはアリールアルキル基、炭素 数1~20のアシルオキシ基、アリル基、置換アリル 基、ケイ素原子を含む置換基などを例示でき、また、キ レート性の配位子としては、アセチルアセトナート基, 置換アセチルアセトナート基などを例示できる。R1, R'及びR'は、その2以上が互いに結合して環を形成 してもよい。上記Cpが置換基を有する場合には、該置 40 換基は炭素数1~20のアルキル基が好ましい。R¹~ R³の具体例としては、例えばハロゲン原子としてフッ 素原子, 塩素原子, 臭素原子, ヨウ素原子、炭素数1~ 20のアルキル基としてメチル基, エチル基, n-プロ ピル基,イソプロピル基, n-プチル基,オクチル基, 2-エチルヘキシル基、炭素数1~20のアルコキシ基 としてメトキシ基、エトキシ基、プロポキシ基、プトキ シ基,フェノキシ基、炭素数6~20のアリール基,ア ルキルアリール基若しくはアリールアルキル基としてフ ェニル基、トリル基、キシリル基、ベンジル基、炭素数 50

1~20のアシルオキシ基としてヘプタデシルカルボニ ルオキシ基、ケイ素原子を含む置換基としてトリメチル シリル基、(トリメチルシリル)メチル基、ルイス塩基 としてジメチルエーテル、ジエチルエーテル、テトラヒ ドロフランなどのエーテル類、テトラヒドロチオフェン などのチオエーテル類、エチルベンゾエートなどのエス テル類、アセトニトリル;ベンゾニトリルなどのニトリ ル類、トリメチルアミン;トリエチルアミン;トリプチ ルアミン; N, N-ジメチルアニリン; ピリジン; 2, 10 2'ービピリジン;フェナントロリンなどのアミン類、 トリエチルホスフィン; トリフェニルホスフィンなどの ホスフィン類、エチレン;ブタジエン;1-ペンテン; イソプレン;ペンタジエン;1-ヘキセン及びこれらの 誘導体などの鎖状不飽和炭化水素、ベンゼン;トルエ ン;キシレン;シクロヘプタトリエン;シクロオクタジ エン;シクロオクタトリエン;シクロオクタテトラエン 及びこれらの誘導体などの環状不飽和炭化水素などが挙 げられる。また、上記式 (III)におけるAの共有結合に よる架橋としては、例えば、メチレン架橋、ジメチルメ チレン架橋, エチレン架橋, 1, 1'-シクロヘキシレ ン架橋、ジメチルシリレン架橋、ジメチルゲルミレン架 橋、ジメチルスタニレン架橋などが挙げられる。

【0023】上記一般式(I)で表される化合物〔(A -1)成分〕としては、例えば、(ペンタメチルシクロ ペンタジエニル) トリメチルジルコニウム, (ペンタメ チルシクロペンタジエニル) トリフェニルジルコニウ ム、 (ペンタメチルシクロペンタジエニル) トリベンジ ルジルコニウム、(ペンタメチルシクロペンタジエニ ル) トリクロロジルコニウム、 (ペンタメチルシクロペ ンタジエニル) トリメトキシジルコニウム, (シクロペ ンタジエニル) トリメチルジルコニウム, (シクロペン タジエニル) トリフェニルジルコニウム, (シクロペン タジエニル) トリベンジルジルコニウム, (シクロペン タジエニル) トリクロロジルコニウム, (シクロペンタ ジエニル) トリメトキシジルコニウム, (シクロペンタ ジエニル) ジメチル (メトキシ) ジルコニウム、 (メチ ルシクロペンタジエニル) トリメチルジルコニウム, (メチルシクロペンタジエニル) トリフェニルジルコニ ウム。 (メチルシクロペンタジエニル) トリベンジルジ ルコニウム, (メチルシクロペンタジエニル) トリクロ ロジルコニウム、(メチルシクロペンタジエニル)ジメ チル (メトキシ) ジルコニウム, (ジメチルシクロペン タジエニル) トリクロロジルコニウム, (トリメチルシ クロペンタジエニル) トリクロロジルコニウム, (トリ メチルシクロペンタジエニル) トリメチルジルコニウ ム, (テトラメチルシクロペンタジエニル) トリクロロ ジルコニウムなど、さらにはこれらにおいて、ジルコニ ウムをチタン又はハフニウムに置換した化合物が挙げら れる。

【0024】上記一般式(II)で表される化合物〔(A

12

- 2) 成分〕としては、例えばビス(シクロペンタジエ ニル) ジメチルジルコニウム, ビス (シクロペンタジエ ニル) ジフェニルジルコニウム, ビス (シクロペンタジ エニル) ジエチルジルコニウム, ピス (シクロペンタジ エニル) ジベンジルジルコニウム, ビス (シクロペンタ ジエニル) ジメトキシジルコニウム, ビス (シクロペン タジエニル) ジクロロジルコニウム, ピス (シクロペン タジエニル) ジヒドリドジルコニウム, ビス (シクロペ ンタジエニル) モノクロロモノヒドリドジルコニウム. ビス (メチルシクロペンタジエニル) ジメチルジルコニ 10 ウム、ビス (メチルシクロペンタジエニル) ジクロロジ ルコニウム, ビス (メチルシクロペンタジエニル) ジベ ンジルジルコニウム、ピス(ペンタメチルシクロペンタ ジエニル) ジメチルジルコニウム, ビス (ペンタメチル シクロペンタジエニル) ジクロロジルコニウム, ビス (ペンタメチルシクロペンタジエニル) ジベンジルジル コニウム, ビス (ペンタメチルシクロペンタジエニル) クロロメチルジルコニウム,ビス (ペンタメチルシクロ ペンタジエニル) ヒドリドメチルジルコニウム, (シク ロペンタジエニル) (ペンタメチルシクロペンタジエニ ル) ジクロロジルコニウムなど、さらにはこれらにおい て、ジルコニウムをチタン又はハフニウムに置換した化 合物が挙げられる。

【0025】また、上記一般式 (III)で表される化合物 [(A-3)成分]としては、例えばエチレンビス(イ ンデニル) ジメチルジルコニウム, エチレンビス (イン デニル) ジクロロジルコニウム, エチレンビス (テトラ ヒドロインデニル) ジメチルジルコニウム, エチレンビ ス (テトラヒドロインデニル) ジクロロジルコニウム, ジメチルシリレンビス (シクロペンタジエニル) ジメチ 30 ルジルコニウム、ジメチルシリレンビス(シクロペンタ ジエニル) ジクロロジルコニウム, イソプロピリデン (シクロペンタジエニル) (9-フルオレニル) ジメチ ルジルコニウム、イソプロピリデン(シクロペンタジエ ニル) (9-フルオレニル) ジクロロジルコニウム, [フェニル (メチル) メチレン] (9-フルオレニル) (シクロペンタジエニル) ジメチルジルコニウム, ジフ ェニルメチレン (シクロペンタジエニル) (9-フルオ レニル) ジメチルジルコニウム, エチレン (9-フルオ レニル) (シクロペンタジエニル) ジメチルジルコニウ ム,シクロヘキサリデン(9-フルオレニル)(シクロ ペンタジエニル) ジメチルジルコニウム、シクロペンチ リデン(9-フルオレニル)(シクロペンタジエニル) ジメチルジルコニウム,シクロプチリデン (9-フルオ レニル) (シクロペンタジエニル) ジメチルジルコニウ ム, ジメチルシリレン (9-フルオレニル) (シクロペ ンタジエニル) ジメチルジルコニウム, ジメチルシリレ ンピス(2,3,5-トリメチルシクロペンタジエニ ル) ジクロロジルコニウム, ジメチルシリレンビス

チルジルコニウム, ジメチルシリレンビス (インデニ ル) ジクロロジルコニウム、ジメチルシランジイルービ ス-1-(2-メチル-4-フェニルインデニル)ージ ルコニウムジクロリド、ジメチルシランジイルービスー 1- [2-メチル-4- (1-ナフチル) インデニル] -ジルコニウムジクロリド、ジメチルシランジイルービ ス-1-(2-エチル-4-フェニルインデニル) -ジ ルコニウムジクロリド、ジメチルシランジイルービスー 1- [2-エチル-4-(1-ナフチル) インデニル] ジルコニウムジクロリド, フェニルメチルシランジイル ーピス-1-(2-メチル-4-フェニルインデニル) -ジルコニウムジクロリド、フェニルメチルシランジイ ルービス-1-[2-メチル-4-(1-ナフチル)イ ンデニル〕ージルコニウムジクロリド、フェニルメチル シランジイルービス-1-(2-エチル-4-フェニル インデニル) -ジルコニウムジクロリド, フェニルメチ ルシランジイルービス-1-[2-エチル-4-(1-ナフチル) インデニル] -ジルコニウムジクロリド, r a c - ジメチルシリレンーピス-1-(2-メチル-4 -エチルインデニル) -ジルコニウムジクロリド, ra c-ジメチルシリレンーピス-1-(2-メチルー4-イソプロピルインデニル) -ジルコニウムジクロリド, rac-ジメチルシリレン-ビス-1-(2-メチルー 4-第三プチルインデニル) -ジルコニウムジクロリ ド、rac-フェニルメチルシリレンービス-1-(2 ーメチルー4ーイソプロピルインデニル)ージルコニウ ムジクロリド, rac-ジメチルシリレンービス-1-(2-エチル-4-メチルインデニル) -ジルコニウム ジクロリド, rac-ジメチルシリレンービス-1-(2, 4-ジメチルインデニル) -ジルコニウムジクロ リド, racージメチルシリレンーピスー1ー(2-メ チルー4ーエチルインデニル) –ジルコニウムジメチル などの2, 4-位置換体、rac-ジメチルシリレンー ビス-1-(4, 7-ジメチルインデニル)ージルコニ ウムジクロリド、 rac-1、2-エタンジイルービス -1-(2-メチル-4, 7-ジメチルインデニル) -ジルコニウムジクロリド, rac-ジメチルシリレンー ピス-1-(3, 4, 7-トリメチルインデニル) -ジ ルコニウムジクロリド, rac-1, 2-エタンジイル ーピスー1ー(4,7ージメチルインデニル)ージルコ ニウムジクロリド, rac-1, 2-プタンジイルービ ス-1-(4, 7-ジメチルインデニル)ージルコニウ ムジクロリドなどの4,7-位,2,4,7-位又は 3, 4, 7-位置換体,ジメチルシランジイルービスー 1-(2-メチル-4,6-ジイソプロピルインデニ ル) -ジルコニウムジクロリド, フェニルメチルシラン ジイルーピスー1-(2-メチルー4,6-ジイソプロ ピルインデニル) -ジルコニウムジクロリド, rac-ジメチルシランジイルービスー1~(2-メチルー4, (2, 3, 5-トリメチルシクロペンタジエニル) ジメ 50 6-ジイソプロピルインデニル) ージルコニウムジクロ

リド, rac-1, 2-エタンジイルーピス-1-(2-メチルー4,6-ジイソプロピルインデニル)ージル コニウムジクロリド、 rac - ジフェニルシランジイル ービスー1ー(2-メチルー4,6-ジイソプロピルイ ンデニル) -ジルコニウムジクロリド、 rac-フェニ ルメチルシランジイルービス-1-(2-メチル-4, 6-ジイソプロピルインデニル) -ジルコニウムジクロ リド、racージメチルシランジイルーピスー1ー (2, 4, 6-トリメチルインデニル) -ジルコニウム ジクロリドなどの2, 4, 6-位置換体, rac-ジメ チルシランジイルービス-1-(2,5,6-トリメチ ルインデニル) -ジルコニウムジクロリドなどの2, 5,6-位置換体、ジメチルシランジイルービス-1-(2-メチル-4, 5-ベンゾインデニル) ジルコニウ ムジクロリド,フェニルメチルシランジイルーピスー1 - (2-メチル-4, 5-ベンゾインデニル) -ジルコ ニウムジクロリド, rac - ジメチルシランジイルービ ス-1-(2-メチル-4,5-ベンゾインデニル)-ジルコニウムジクロリド, rac-フェニルメチルシラ ンジイルービス-1-(2-メチル-4,5-ベンゾイ 20 ンデニル) -ジルコニウムジクロリド, rac-エタン ジイルービス-1-(2-メチル-4,5-ベンゾイン*

$$R^{6}_{2}Y^{2} < (R^{5}_{u}-C_{5}H_{4-u}) > M^{4} < X^{4}_{X^{4}}$$
 · · · (111-a)

【0028】で表される化合物またはその誘導体を挙げ ることができる。上記一般式(III-a) 中のY'は炭 素、ケイ素、ゲルマニウム又はスズ原子、R⁵⋅ - C₅H ← 及びR⁵ ー C₅H ← はそれぞれ置換シクロペンタ ジエニル基、t及びuは1~4の整数を示す。ここで、 R⁵は水素原子、シリル基又は炭化水素基を示し、互い に同一であっても異なっていてもよい。また、少なくと も片方のシクロペンタジエニル基には、Y°に結合して いる炭素の隣の少なくとも片方の炭素上にR゚が存在す る。R⁶は水素原子、炭素数1~20のアルキル基又は 炭素数6~20のアリール基、アルキルアリール基若し くはアリールアルキル基を示す。M'はチタン、ジルコ ニウム又はハフニウム原子を示し、X'は水素原子, ハ ロゲン原子, 炭素数1~20のアルキル基、炭素数6~ 20のアリール基、アルキルアリール基若しくはアリー 40 ルアルキル基又は炭素数1~20のアルコキシ基を示 す。X'は互いに同一であっても異なっていてもよく、 R⁶も互いに同一であっても異なっていてもよい。

【0029】また、上記一般式(III-a) における置換 シクロペンタジエニル基としては、例えばメチルシクロ ペンタジエニル基;エチルシクロペンタジエニル基;イ ソプロピルシクロペンタジエニル基; 1, 2-ジメチル シクロペンタジエニル基; 1, 3-ジメチルシクロペン タジエニル基; 1, 2, 3-トリメチルシクロペンタジ エニル基; 1, 2, 4-トリメチルシクロペンタジエニ※50

*デニル) -ジルコニウムジクロリド、racープタンジ イルービス-1-(2-メチル-4,5-ベンゾインデ ニル) ージルコニウムジクロリド, racージメチルシ ランジイルービスー1ー(4,5ーベンゾインデニル) ージルコニウムジクロリド、racージメチルシランジ イルービスー1-(2-メチル $-\alpha-$ メチル $-\alpha-$ アセ ナフトインデニル) -ジルコニウムジクロリド、 rac ーフェニルメチルシランジイルーピス-1-(2-メチ ルーαーアセナフトインデニル)ージルコニウムジクロ 10 リドなどのベンゾインデニル型又はアセナフトインデニ ル型化合物などが、さらには、これらにおいて、ジルコ ニウムをチタン又はハフニウムに置換した化合物が挙げ られる。

【0026】さらに、上記一般式 (III)の中で、置換若 しくは無置換の2個の共役シクロペンタジエニル基(但 し、少なくとも1個は置換シクロペンタジエニル基であ る)が周期律表の14族から選ばれる元素を介して互い に結合した多重配位性化合物を配位子とする4族遷移化 合物を好適に用いることができる。このような化合物と しては、例えば一般式(III-a)

【化3】

[0027]

※ル基などが挙げられる。X'の具体例としては、ハロゲ ン原子としてF, C1, Br, 1、炭素数1~20のア ルキル基としてメチル基, エチル基, n-プロピル基, イソプロピル基、n-プチル基、オクチル基、2-エチ 30 ルヘキシル基、炭素数1~20のアルコキシ基としてメ トキシ基、エトキシ基、プロポキシ基、ブトキシ基、フ ェノキシ基、炭素数6~20のアリール基、アルキルア リール基若しくはアリールアルキル基としてフェニル 基、トリル基、キシリル基、ベンジル基などが挙げられ る。R⁶の具体例としてはメチル基, エチル基, フェニ ル基、トリル基、キシリル基、ベンジル基などが挙げら れる。このような一般式(III-a) の化合物としては、 例えばジメチルシリレンビス(2,3,5-トリメチル シクロペンタジエニル) ジルコニウムジクロリド、及び これらのジルコニウムをチタン又はハフニウムに置換し た化合物を挙げることができる。

(A-4) 成分: (A-4) 成分は、一般式 (IV) [0030] 【化4】

【0031】〔式中、M²は周期律表第4族遷移金属を 示し、しはシクロペンタジエニル基、置換シクロペンタ ジエニル基、インデニル基、置換インデニル基、テトラ

20

30

16

ヒドロインデニル基、置換テトラヒドロインデニル基、 フルオレニル基及び置換フルオレニル基から選ばれる基 を示し、A²は周期律表の第13、14、15及び16 族の元素の中から選ばれた元素を含む二価の基、Bは周 期律表の第14、15及び16族の元素の中から選ばれ た元素を含む結合性基を示し、該A2とBは、任意に一 緒になって環を形成していてもよく、X¹はσ結合性の 配位子、キレート性の配位子又はルイス塩基を示し、n はM²の原子価により変化する0~6の整数であり、n が2以上の場合は複数のX¹は同一であっても異なって いてもよい。〕で表されるものである。上記一般式(I V) において、M'としてはチタン、ジルコニウム、ハ フニウムが挙げられる。A²としてはSiR¹2, C R^{7}_{2} , $SiR^{7}_{2}SiR^{7}_{2}$, $CR^{7}_{2}CR^{7}_{2}$, $CR^{7}_{2}CR^{7}_{2}$ CR_2^{\prime} , $CR^{\prime} = CR^{\prime}$, $CR_2^{\prime}S i R_2^{\prime}X \& G e R_2^{\prime}$ が挙げられ、Bとしては-N(R®-,-O-,-S ー、-P(R⁸)-が挙げられる。上記R⁷は水素原子又 は20個までの非水素原子をもつアルキル, アリール, シリル, ハロゲン化アルキル, ハロゲン化アリール基及 びそれらの組合せから選ばれた基であり、R®は炭素数 1~10のアルキル若しくは炭素数6~10のアリール 基であるか、又は1個若しくはそれ以上のR'と30個 までの非水素原子の環を形成してもよい。X1はσ結合 性の配位子、キレート性の配位子又はルイス塩基を示 し、具体例として水素原子、ハロゲン原子、炭素数1~ 20のアルキル基、炭素数6~20のアリール基、アル キルアリール基若しくはアリールアルキル基、炭素数1 ~20のアルコキシ基、有機メタロイド基、アミノ基、 炭化水素基、ヘテロ原子含有炭化水素基などを挙げるこ とができる。 nは上記M'の原子価により変化する0~ 6の整数であり、nが2以上の場合は複数のX1は同一 であっても異なっていてもよい。

【0032】上記一般式(IV)で表される遷移金属錯体 化合物の好ましい例としては、(t-プチルアミド)ジ メチル (テトラメチルー η 5 ーシクロペンタジエニル) シランチタンジクロリド、(t-プチルアミド)ジメチ ル (テトラメチルー η 5 ーシクロペンタジエニル) シラ ンチタンジプロミド、(t-プチルアミド) ジメチル (テトラメチルー η 5 ーシクロペンタジエニル) シラン チタンジフルオリド、(t-プチルアミド)ジメチル (テトラメチルー n5 ーシクロペンタジエニル) シラン ジルコンジクロリド、(t-プチルアミド)ジメチル (テトラメチルー η 5 – シクロペンタジエニル) シラン ジルコンジプロミド、(t-プチルアミド) ジメチル (テトラメチルー η 5 ーシクロペンタジエニル) シラン ジルコンジフルオリド、(t-プチルアミド)ジメチル (テトラメチルー η 5 ーシクロペンタジエニル) シラン チタンジハイドライド、(t-プチルアミド)ジメチル (テトラメチルー η 5 ーシクロペンタジエニル) シラン チタンクロルハイドライド、(t -プチルアミド)ジメ 50 ル)シランチタンジプロミド、(t -プチルアミド)ジ

チル (テトラメチルー η 5 ーシクロペンタジエニル) シ ランチタンジメチル、(t-プチルアミド)ジメチル (テトラメチルー η 5 ーシクロペンタジエニル) シラン チタンメチルクロリド、(t-プチルアミド)ジメチル (テトラメチルー η 5 ーシクロペンタジエニル) シラン チタンジエチル、(t-プチルアミド)ジメチル (テト ラメチルー η 5 ーシクロペンタジエニル) シランチタン ジイソプロポキサイド、(t-ブチルアミド)ジメチル (テトラメチルー η 5 ーシクロペンタジエニル) シラン チタンジ (オルソジメチルアミノ) ベンジル、(t ープ チルアミド) ジメチル (テトラメチルー η 5 ーシクロペ ンタジエニル) シランチタン (III) (オルソジメチルア ミノ) ベンジル、(t-プチルアミド) ジメチル (テト ラメチルー η 5 ーシクロペンタジエニル) シランチタン ジ (N-メチル-N-フェニルアミン)、(t-プチル アミド) ジメチル (テトラメチルーη 5 ーシクロペンタ ジエニル) シランチタン (オルソジメチルアミノ) ベン ジルクロリド、(t-プチルアミド)ジメチル (テトラ メチルー η 5 ーシクロペンタジエニル) シランチタン (III)クロリド、(t-プチルアミド) ジメチル (テト ラメチルー η 5 ーシクロペンタジエニル) シランタンタ ルジクロリド、(t-プチルアミド)(テトラメチルー $\eta^5 - シクロペンタジエニル) - 1, 2 - エタンジイル$ チタンジクロリド、 (メチルアミド) (テトラメチルー チタンジクロリド、 (エチルアミド) (テトラメチルー $\eta^5 - シクロペンタジエニル) - 1, 2 - エタンジイル$ チタンジクロリド、(t-プチルアミド)(テトラメチ ルーη 5 ーシクロペンタジエニル) メチレンチタンジク ロリド、 (エチルアミド) (テトラメチルーη 5ーシク ロペンタジエニル) メチレンチタンジクロリド、(ベン ジルアミド) ジメチル (テトラメチルーη 5 -シクロペ ンタジエニル) シランチタンジクロリド、(フェニルフ オスフィド) ジメチル (テトラメチルー η 5 ーシクロペ ンタジエニル) シランジルコンジクロリド、(t-ブチ ルアミド) ジメチル (インデニル) シランチタンジクロ リド、(t-プチルアミド)ジメチル(1-ホスファー 2, 3, 4, 5-テトラメチルシクロペンタジエニル) シランチタンジクロリド、(t-プチルアミド)ジメチ エニル) シランチタンジクロリド、(t-ブチルアミ ド) ジメチル (3-ホスファインデニル) シランチタン ジクロリド、(t-プチルアミド)ジメチル(1-ボラ -2, 3, 4, 5-r+7ル) シランチタンジクロリドなどが挙げられる。これら の化合物の中で特に好ましいものは、(t-ブチルアミ ド) ジメチル (テトラメチルー η 5 ーシクロペンタジエ ニル) シランチタンジクロリド、(t-プチルアミド) ジメチル (テトラメチルー η ゚ーシクロペンタジエニ

* [0033]

【化5】

18

メチル (テトラメチルー η^5 – シクロペンタジエニル) シランチタン (III)クロリドである。

(A-5) 成分: (A-5) 成分は、一般式 (V)

【0034】〔式中、M³はチタン、ジルコニウム又は ハフニウムを示し、E¹及びE²はそれぞれ置換シクロ ペンタジエニル基、インデニル基、置換インデニル基、 ヘテロシクロペンタジエニル基、置換ヘテロシクロペン タジエニル基, アミド基, ホスフィド基, 炭化水素基及 びケイ素含有基の中から選ばれた配位子であって、A³ 及びA'を介して架橋構造を形成しており、またそれら はたがいに同一でも異なっていてもよく、X²はσ結合 性の配位子を示し、X'が複数ある場合、複数のX'は 同じでも異なっていてもよく、他のX², E¹, E²又 はY¹と架橋していてもよい。Y¹はルイス塩基を示 し、Y'が複数ある場合、複数のY'は同じでも異なっ ていてもよく、他のY1, E1, E2又はX2と架橋し ていてもよく、A3及びA1は二つの配位子を結合する 二価の架橋基であって、炭素数1~20の炭化水素基、 炭素数1~20のハロゲン含有炭化水素基、珪素含有 基、ゲルマニウム含有基、スズ含有基、-O-、-CO -, -S-, -SO₂-, -Se-, -NR²⁴-, -P $R^{24}-$, -P (O) $R^{24}-$, $-BR^{24}-$ X t^2-A1R^{24} -を示し、R*は水素原子、ハロゲン原子、炭素数1~ 20の炭化水素基、炭素数1~20のハロゲン含有炭化 30 水素基を示し、それらはたがいに同一でも異なっていて もよい。 q は 1~5の整数で〔(M³の原子価)-2〕 を示し、rは0~3の整数を示す。〕で表される遷移金 属化合物(以下、二重架橋型錯体と称することがあ る。) である。

【0035】上記一般式(V)において、M³はチタン、ジルコニウム又はハフニウムを示すが、ジルコニウム及びハフニウムが好適である。E¹及びE²は上述のようにそれぞれ、置換シクロペンタジエニル基、インデニル基、置換インデニル基、ヘテロシクロペンタジエニ 40ル基、置換ヘテロシクロペンタジエニル基、アミド基(-N<)、ホスフィド基(-P<)、炭化水素基〔>CR-、>C<〕及びケイ素含有基〔>SiR-、>Si<〕(但し、Rは水素または炭素数1~20の炭化水素基あるいはヘテロ原子含有基である)の中から選ばれた配位子を示し、A³及びA¹を介して架橋構造を形成している。また、E¹及びE²はたがいに同一でも異なっていてもよい。このE¹及びE²としては、置換シクロペンタジエニル基、インデニル基及び置換インデニル基が好ましい。 ※50

※【0036】また、X2で示されるσ結合性配位子の具 体例としては、ハロゲン原子, 炭素数1~20の炭化水 素基, 炭素数1~20のアルコキシ基, 炭素数6~20 のアリールオキシ基、炭素数1~20のアミド基、炭素 数1~20のケイ素含有基、炭素数1~20のホスフィ ド基, 炭素数1~20のスルフィド基, 炭素数1~20 のアシル基などが挙げられる。このX²が複数ある場 合、複数のX²は同じでも異なっていてもよく、他のX 2, E1, E2 又はY1 と架橋していてもよい。一方、 Y¹で示されるルイス塩基の具体例としては、アミン 20 類、エーテル類、ホスフィン類、チオエーテル類などを 挙げることができる。このY¹が複数ある場合、複数の Y¹は同じでも異なっていてもよく、他のY¹やE¹, E'又はX'と架橋していてもよい。次に、A'及びA ²で示される架橋基のうち、少なくとも一つは炭素数1 以上の炭化水素基からなる架橋基であることが好まし い。このような架橋基としては、例えば一般式

[0037]

【化6】

【0038】(R°及びR"はそれぞれ水素原子又は炭 素数1~20の炭化水素基で、それらはたがいに同一で も異なっていてもよく、またたがいに結合して環構造を 形成していてもよい。 e は1~4の整数を示す。) で表 されるものが挙げられ、その具体例としては、メチレン 基, エチレン基, エチリデン基, プロピリデン基, イソ プロピリデン基、シクロヘキシリデン基、1、2-シク ロヘキシレン基, ビニリデン基 (CH₂=C=) などを 挙げることができる。これらの中で、メチレン基、エチ レン基及びイソプロピリデン基が好適である。このA1 及びA²は、たがいに同一でも異なっていてもよい。こ の一般式(III) で表される遷移金属化合物において、E 1及びE2が置換シクロペンタジエニル基、インデニル 基又は置換インデニル基である場合、A1及びA2の架 橋基の結合は、(1, 1') (2, 2') 二重架橋型で あってもよく、(1, 2') (2, 1') 二重架橋型で あってもよい。このような一般式 (V) で表される遷移 ※50 金属化合物の中では、一般式 (V-a)

[0039]

30

40

【0040】で表される二重架橋型ピスシクロペンタジ エニル誘導体を配位子とする遷移金属化合物が好まし い。上記一般式 (V-a) において、M³, A¹, A^2 , q及びrは上記と同じである。 X^6 は σ 結合性の 配位子を示し、X6が複数ある場合、複数のX6は同じ でも異なっていてもよく、他のX⁶又はY⁶と架橋して いてもよい。このX'の具体例としては、一般式(v) のX'の説明で例示したものと同じものを挙げることが できる。Y'はルイス塩基を示し、Y'が複数ある場 合、複数のY'は同じでも異なっていてもよく、他のY '又はX'と架橋していてもよい。このY'の具体例と しては、一般式(V)のY¹の説明で例示したものと同 じものを挙げることができる。R"~R"はそれぞれ水 素原子, ハロゲン原子, 炭素数1~20の炭化水素基, 炭素数1~20のハロゲン含有炭化水素基,ケイ素含有 基又はヘテロ原子含有基を示すが、その少なくとも一つ は水素原子でないことが必要である。また、R20~R25 はたがいに同一でも異なっていてもよく、隣接する基同 士がたがいに結合して環を形成していてもよい。

【0041】この二重架橋型ビスシクロペンタジエニル 誘導体を配位子とする遷移金属化合物は、配位子が

(1, 1') (2, 2') 二重架橋型及び(1, 2') (2, 1') 二重架橋型のいずれであってもよい。この 一般式(V)で表される遷移金属化合物の具体例として は、(1, 1'-エチレン)(2, 2'-エチレン)-ビス (インデニル) ジルコニウムジクロリド, (1, 2'-エチレン) (2, 1'-エチレン) -ビス (イン デニル) ジルコニウムジクロリド, (1, 1'ーメチレ ン) (2, 2'ーメチレン)ービス (インデニル) ジル コニウムジクロリド, (1, 2'ーメチレン) (2, 1'ーメチレン)ービス (インデニル) ジルコニウムジ クロリド、(1, 1'-イソプロピリデン)(2, 2' ーイソプロピリデン)ービス (インデニル) ジルコニウ ムジクロリド、(1, 2'-イソプロピリデン)(2, 1'ーイソプロピリデン)ービス (インデニル) ジルコ ニウムジクロリド、(1,1'-エチレン)(2,2' ーエチレン)ーピス (3-メチルインデニル) ジルコニ ウムジクロリド、(1, 2'-エチレン)(2, 1'-エチレン) ービス (3-メチルインデニル) ジルコニウ ムジクロリド、(1,1'-エチレン)(2,2'-エ チレン) - ビス (4, 5 - ベンゾインデニル) ジルコニ ウムジクロリド,(1,2'-エチレン)(2,1'- 50 プロピリデン)-ビス(インデニル)ジルコニウムジク

エチレン)ービス(4,5-ベンゾインデニル)ジルコ 10 ニウムジクロリド、(1, 1'-エチレン)(2, 2' ーエチレン) ービス (4ーイソプロピルインデニル) ジ ルコニウムジクロリド、(1, 2'-エチレン)(2, 1'-エチレン)-ビス(4-イソプロピルインデニ ル) ジルコニウムジクロリド, (1, 1'-エチレン) (2, 2'-エチレン) ービス (5, 6 ージメチルイン デニル) ジルコニウムジクロリド、(1,2'-エチレ ン) (2, 1'-エチレン) -ビス(5, 6-ジメチル インデニル) ジルコニウムジクロリド, (1, 1'-エ チレン) (2, 2'-エチレン) - ビス (4, 7-ジイ 20 ソプロピルインデニル)ジルコニウムジクロリド, (1, 2'-エチレン) (2, 1'-エチレン) ービス (4. 7-ジイソプロピルインデニル) ジルコニウムジ クロリド、(1, 1'-エチレン)(2, 2'-エチレ ン) - ビス (4-フェニルインデニル) ジルコニウムジ クロリド、(1, 2'-エチレン)(2, 1'-エチレ ン) ービス (4-フェニルインデニル) ジルコニウムジ クロリド, (1, 1'-エチレン) (2, 2'-エチレ ン) ービス (3-メチルー4-イソプロピルインデニ ル) ジルコニウムジクロリド, (1, 2'-エチレン) (2, 1'-エチレン)ービス(3-メチルー4-イソ プロピルインデニル)ジルコニウムジクロリド, (1, 1'-エチレン) (2, 2'-エチレン) ービス (5, 6-ベンゾインデニル) ジルコニウムジクロリド, (1, 2'-エチレン) (2, 1'-エチレン) ービス (5, 6-ベンゾインデニル) ジルコニウムジクロリ ド, (1, 1'-エチレン) (2, 2'-イソプロピリ デン) ービス (インデニル) ジルコニウムジクロリド, (1, 2'-エチレン) (2, 1'-イソプロピリデ ン) ービス (インデニル) ジルコニウムジクロリド, (1, 1'-イソプロピリデン) (2, 2'-エチレ ン)ービス (インデニル) ジルコニウムジクロリド, (1, 2'-メチレン) (2, 1'-エチレン) ービス (インデニル) ジルコニウムジクロリド、(1, 1'-メチレン) (2, 2'-エチレン) -ビス (インデニ ル) ジルコニウムジクロリド, (1, 1'-エチレン) (2, 2'ーメチレン)ービス (インデニル) ジルコニ ウムジクロリド、(1,1'ーメチレン)(2,2'ー イソプロピリデン)ービス (インデニル) ジルコニウム ジクロリド、(1, 2'ーメチレン)(2, 1'ーイソ

(12)

ロリド、(1, 1'-イソプロピリデン)(2, 2'-メチレン) - ビス (インデニル) ジルコニウムジクロリ ド, (1, 1'-メチレン) (2, 2'-メチレン) (3-メチルシクロペンタジエニル) (シクロペンタジ エニル) ジルコニウムジクロリド, (1, 1'ーイソプ ロピリデン) (2, 2'-イソプロピリデン) (3-メ チルシクロペンタジエニル) (シクロペンタジエニル) ジルコニウムジクロリド、(1,1'-プロピリデン) (2, 2'ープロピリデン) (3-メチルシクロペンタ ジエニル) (シクロペンタジエニル) ジルコニウムジク ロリド, (1, 1'-エチレン) (2, 2'-メチレ ン) ービス (3ーメチルシクロペンタジエニル) ジルコ ニウムジクロリド、(1, 1'ーメチレン)(2, 2' -エチレン) -ビス (3-メチルシクロペンタジエニ ル) ジルコニウムジクロリド, (1,1'-イソプロピ リデン) (2, 2'ーエチレン)ービス(3ーメチルシ クロペンタジエニル)ジルコニウムジクロリド, (1, 1'-エチレン) (2, 2'-イソプロピリデン)ービ ス (3-メチルシクロペンタジエニル) ジルコニウムジ

クロリド、(1, 1'ーメチレン)(2, 2'ーメチレ

ン)ービス(3-メチルシクロペンタジエニル)ジルコ

ニウムジクロリド、(1、1'ーメチレン)(2,2'

-イソプロピリデン)ービス(3-メチルシクロペンタ ジエニル) ジルコニウムジクロリド, (1, 1'ーイソ プロピリデン) (2, 2'-イソプロピリデン)ービス (3-メチルシクロペンタジエニル) ジルコニウムジク ロリド、(1,1'-エチレン)(2,2'-メチレ ン) ービス (3, 4ージメチルシクロペンタジエニル) ジルコニウムジクロリド, (1, 1'ーエチレン) (2, 2'-イソプロピリデン)ービス(3, 4-ジメ チルシクロペンタジエニル)ジルコニウムジクロリド, (1, 1'-メチレン) (2, 2'-メチレン) ービス (3, 4-ジメチルシクロペンタジエニル) ジルコニウ ムジクロリド、(1,1'ーメチレン)(2,2'ーイ ソプロピリデン)ービス(3,4-ジメチルシクロペン タジエニル) ジルコニウムジクロリド, (1, 1'ーイ ソプロピリデン) (2, 2'-イソプロピリデン)ービ ス(3,4-ジメチルシクロペンタジエニル)ジルコニ ウムジクロリド、(1, 2'-エチレン)(2, 1'-メチレン)ービス(3-メチルシクロペンタジエニル) ジルコニウムジクロリド、(1, 2'-エチレン)

*メチルシクロペンタジエニル)ジルコニウムジクロリ ド、(1, 2'ーメチレン)(2, 1'ーイソプロピリ デン)ービス (3-メチルシクロペンタジエニル) ジル コニウムジクロリド、(1,2'-イソプロピリデン) (2, 1'ーイソプロピリデン)ービス(3-メチルシ クロペンタジエニル)ジルコニウムジクロリド, (1, 2'-エチレン) (2, 1'-メチレン) - ビス (3, 4-ジメチルシクロペンタジエニル) ジルコニウムジク ロリド、(1, 2'-エチレン)(2, 1'-イソプロ 10 ピリデン) ービス (3, 4 – ジメチルシクロペンタジエ ニル) ジルコニウムジクロリド, (1, 2'ーメチレ ン) (2, 1'ーメチレン)ービス(3, 4ージメチル シクロペンタジエニル) ジルコニウムジクロリド, (1, 2'-メチレン) (2, 1'-イソプロピリデ ン)ービス(3,4ージメチルシクロペンタジエニル) ジルコニウムジクロリド、(1,2'-イソプロピリデ ン)(2,1'-イソプロピリデン)-ビス(3,4-ジメチルシクロペンタジエニル) ジルコニウムジクロリ ドなど及びこれらの化合物におけるジルコニウムをチタ ン又はハフニウムに置換したものを挙げることができ

【0042】上記遷移金属化合物(I)~(V)は、一種用いてもよいし、二種以上を組み合わせて用いてもよい。二種以上を用いる場合、特に、ジルコニウム化合物 ーハフニウム化合物, ジルコニウム化合物ージルコニウム化合物, ハフニウム化合物ーハフニウム化合物の組み合わせが好適である。この組み合わせの中で、ジルコニウム化合物とハフニウム化合物との組合わせを用いた場合、混合遷移金属化合物中のジルコニウム化合物の含有量は、好ましく1~99モル%、より好ましくは2~95モル%、さらに好ましくは5~90モル%,特に好ましくは10~80モル%の範囲である。

る。もちろんこれらに限定されるものではない。

【0043】本発明において、周期律表第4族の遷移金属化合物として、上記(A-1)~(A-5)成分などのシクロペンタジエニル骨格を有する周期律表第4族の遷移金属化合物を用いる場合、助触媒として、(B-1)アルミニウムオキシ化合物、(B-2)上記遷移金属化合物と反応してカチオンに変換しうるイオン性化合物及び(B-3)粘土,粘土鉱物及びイオン交換性層状化合物の中から選ばれた少なくとも一種を用いることが好ましい。上記(B-1)成分のアルミニウムオキシ化合物としては、一般式(VI)

[0044]

【化8】

$$\begin{array}{c}
R^{17} \\
R^{17}
\end{array}$$

$$A \quad 1 - O \quad \longrightarrow \quad A \quad 1 - O \quad \longrightarrow \quad A \quad 1 < R^{17} \quad \cdots \quad (VI)$$

【0045】 (式中、R"は炭素数1~20、好ましくは1~12のアルキル基、アルケニル基、アリール基、

(2, 1'ーイソプロピリデン)ービス(3-メチルシ

2'-メチレン) (2, 1'-メチレン) -ビス (3-*

クロペンタジエニル)ジルコニウムジクロリド、(1,

アリールアルキル基などの炭化水素基あるいはハロゲン 50 原子を示し、wは平均重合度を示し、通常2~50、好

ましくは2~40の整数である。なお、各R"は同じで も異なっていてもよい。) で示される鎖状アルミノキサ ン、及び一般式 (VII)

化91

* [0046]

 $\cdot \cdot \cdot (VII)$

【0047】 (式中、R"及びwは上記一般式 (VI) に おけるものと同じである。)で示される環状アルミノキ サンを挙げることができる。上記アルミノキサンの製造 法としては、アルキルアルミニウムと水などの縮合剤と を接触させる方法が挙げられるが、その手段については 特に限定はなく、公知の方法に準じて反応させればよ い。例えば、①有機アルミニウム化合物を有機溶剤に溶 解しておき、これを水と接触させる方法、②重合時に当 初有機アルミニウム化合物を加えておき、後に水を添加 する方法、30金属塩などに含有されている結晶水、無機 物や有機物への吸着水を有機アルミニウム化合物と反応※

> $((L^{1}-R^{18})^{b})_{a}((Z)^{-})_{b}$ $([L^2]^{b+})_a([Z]^{-})_b$

(ただし、L² はM⁵, R¹⁹R²⁰M⁶, R²¹, C又はR²² M⁶ である。)

〔(VIII), (IX) 式中、L¹はルイス塩基、〔Z〕 - は、非配位性アニオン〔Z¹〕 - 又は〔Z²〕 - 、こ こで〔Z¹〕 は複数の基が元素に結合したアニオン、 すなわち [M'G'G'・・・G'] (ここで、M'は 周期律表第5~15族元素、好ましくは周期律表第13 ~ 15 族元素を示す。 $G' \sim G'$ はそれぞれ水素原子、 ハロゲン原子, 炭素数1~20のアルキル基, 炭素数2 ~40のジアルキルアミノ基, 炭素数1~20のアルコ 30 N, N-ジメチルアニリン, トリメチルアミン, トリエ キシ基、炭素数6~20のアリール基、炭素数6~20 のアリールオキシ基、炭素数7~40のアルキルアリー ル基, 炭素数7~40のアリールアルキル基, 炭素数1 ~20のハロゲン置換炭化水素基,炭素数1~20のア シルオキシ基、有機メタロイド基、又は炭素数2~20 のヘテロ原子含有炭化水素基を示す。G'~G'のうち 2つ以上が環を形成していてもよい。 f は〔(中心金属 M'の原子価) +1〕の整数を示す。)、〔Z'〕 な、酸解離定数の逆数の対数(p K。)が-10以下 のプレンステッド酸単独又はプレンステッド酸及びルイ ス酸の組合わせの共役塩基、あるいは一般的に超強酸と 定義される共役塩基を示す。また、ルイス塩基が配位し ていてもよい。また、R®は水素原子,炭素数1~20 のアルキル基、炭素数6~20のアリール基、アルキル アリール基又はアリールアルキル基を示し、R®及びR ²⁰はそれぞれシクロペンタジエニル基, 置換シクロペン タジエニル基、インデニル基又はフルオレニル基、R^a は炭素数1~20のアルキル基,アリール基,アルキル アリール基又はアリールアルキル基を示す。R²²はテト

※させる方法、④テトラアルキルジアルミノキサンにトリ アルキルアルミニウムを反応させ、さらに水を反応させ る方法などがある。なお、アルミノキサンとしては、ト 10 ルエン不溶性のものであってもよい。

【0048】これらのアルミニウムオキシ化合物は一種 用いてもよく、二種以上を組み合わせて用いてもよい。 一方、(B-2)成分としては、上記遷移金属化合物と 反応してカチオンに変換しうるイオン性化合物であれ ば、いずれのものでも使用できるが、特に効率的に重合 活性点を形成できるなどの点から、次の一般式 (VIII), (IX)

· · · (VIII)

 $\cdot \cdot \cdot (IX)$

配位子を示す。hは $[L^1 - R^n]$, $[L^2]$ のイオン 価数で $1\sim3$ の整数、aは1以上の整数、 $b=(h\times$ a) である。M⁵ は、周期律表第1~3、11~13、 17族元素を含むものであり、M⁶は、周期律表第7~ 12族元素を示す。〕で表されるものを好適に使用する ことができる。

【0049】ここで、L¹の具体例としては、アンモニ ア, メチルアミン, アニリン, ジメチルアミン, ジエチ ルアミン, N-メチルアニリン, ジフェニルアミン, チルアミン, トリーnープチルアミン, メチルジフェニ ルアミン, ピリジン, p-プロモ-N, N-ジメチルア ニリン, p-ニトローN, N-ジメチルアニリンなどの アミン類、トリエチルホスフィン、トリフェニルホスフ ィン、ジフェニルホスフィンなどのホスフィン類、テト ラヒドロチオフェンなどのチオエーテル類、安息香酸エ チルなどのエステル類、アセトニトリル、ベンゾニトリ ルなどのニトリル類などを挙げることができる。

【0050】R10の具体例としては水素、メチル基、エ チル基、ベンジル基、トリチル基などを挙げることがで き、R®, R®の具体例としては、シクロペンタジエニ ル基、メチルシクロペンタジエニル基、エチルシクロペ ンタジエニル基、ペンタメチルシクロペンタジエニル基 などを挙げることができる。R²¹の具体例としては、フ エニル基、p-トリル基、p-メトキシフェニル基など を挙げることができ、R2の具体例としてはテトラフェ ニルポルフィン, フタロシアニン, アリル, メタリルな どを挙げることができる。また、M⁶の具体例として は、Li, Na, K, Ag, Cu, Br, I, I,など ラフェニルポルフィリン,フタロシアニンなどの大環状 50 を挙げることができ、M゚の具体例としては、Mn,F

30

26

e, Co, Ni, Znなどを挙げることができる。 【0051】また、 $[Z^1]^-$ 、すなわち $[M^4G^1G]$ ²・・・G^f] において、M^fの具体例としてはB, A 1, Si, P, As, Sbなど、好ましくはB及びAl が挙げられる。また、 G^1 , $G^2 \sim G^f$ の具体例として は、ジアルキルアミノ基としてジメチルアミノ基、ジエ チルアミノ基など、アルコキシ基若しくはアリールオキ シ基としてメトキシ基, エトキシ基, n-プトキシ基, フェノキシ基など、炭化水素基としてメチル基、エチル 基, n-プロピル基, イソプロピル基, n-ブチル基, イソプチル基, n-オクチル基, n-エイコシル基, フ ェニル基, p-トリル基, ベンジル基, 4-t-プチル フェニル基、3、5-ジメチルフェニル基など、ハロゲ ン原子としてフッ素, 塩素, 臭素, ヨウ素, ヘテロ原子 含有炭化水素基としてp-フルオロフェニル基, 3, 5 ジフルオロフェニル基、ペンタクロロフェニル基、 3, 4, 5-トリフルオロフェニル基, ペンタフルオロ フェニル基、3、5-ビス(トリフルオロメチル)フェ ニル基、ビス(トリメチルシリル)メチル基など、有機 メタロイド基としてペンタメチルアンチモン基、トリメ チルシリル基、トリメチルゲルミル基、ジフェニルアル シン基、ジシクロヘキシルアンチモン基、ジフェニル硼 素などが挙げられる。

【0052】また、非配位性のアニオンすなわちpKa が-10以下のプレンステッド酸単独又はプレンステッ ド酸及びルイス酸の組合わせの共役塩基 [Z²] の具 体例としてはトリフルオロメタンスルホン酸アニオン (CF, SO,) -, ビス (トリフルオロメタンスルホ ニル) メチルアニオン、ビス (トリフルオロメタンスル ホニル) ベンジルアニオン, ビス (トリフルオロメタン スルホニル) アミド, 過塩素酸アニオン (C1 O₄) ⁻, トリフルオロ酢酸アニオン(CF₃C O_2), \land + \forall D_2 \land + D_3 \land + ⁻,フルオロスルホン酸アニオン(FSO₁)⁻,クロ ロスルホン酸アニオン (C1SO₁)⁻, フルオロスル ホン酸アニオン/5-フッ化アンチモン(FSO:/S b F_s) -, フルオロスルホン酸アニオン/5-フッ化 砒素 (FSO₃/AsF₅)⁻, トリフルオロメタンス ルホン酸/5-フッ化アンチモン (CF,SO,/Sb F₀) などを挙げることができる。

【0053】このような(B-2)成分化合物の具体例 としては、テトラフェニル硼酸トリエチルアンモニウ ム,テトラフェニル硼酸トリーn-プチルアンモニウ ム、テトラフェニル硼酸トリメチルアンモニウム、テト ラフェニル硼酸テトラエチルアンモニウム、テトラフェ ニル硼酸メチル (トリーn-プチル) アンモニウム, テ トラフェニル硼酸ベンジル (トリーnープチル) アンモ ニウム、テトラフェニル硼酸ジメチルジフェニルアンモ ニウム, テトラフェニル硼酸トリフェニル (メチル) ア ンモニウム、テトラフェニル硼酸トリメチルアニリニウ 50

ム、テトラフェニル硼酸メチルピリジニウム、テトラフ ェニル硼酸ベンジルピリジニウム, テトラフェニル硼酸 メチル (2-シアノピリジニウム), テトラキス (ペン タフルオロフェニル) 硼酸トリエチルアンモニウム, テ トラキス (ペンタフルオロフェニル) 硼酸トリーn-ブ チルアンモニウム, テトラキス (ペンタフルオロフェニ ル) 砌酸トリフェニルアンモニウム, テトラキス (ペン タフルオロフェニル) 硼酸テトラーnープチルアンモニ ウム、テトラキス (ペンタフルオロフェニル) 硼酸テト 10 ラエチルアンモニウム, テトラキス (ペンタフルオロフ ェニル) 硼酸ベンジル (トリーn-ブチル) アンモニウ ム, テトラキス (ペンタフルオロフェニル) 硼酸メチル ジフェニルアンモニウム, テトラキス (ペンタフルオロ フェニル) 硼酸トリフェニル (メチル) アンモニウム, テトラキス (ペンタフルオロフェニル) 硼酸メチルアニ リニウム, テトラキス (ペンタフルオロフェニル) 硼酸 ジメチルアニリニウム, テトラキス (ペンタフルオロフ ェニル) 硼酸トリメチルアニリニウム, テトラキス (ペ ンタフルオロフェニル) 硼酸メチルピリジニウム, テト ラキス (ペンタフルオロフェニル) 硼酸ベンジルピリジ ニウム、テトラキス (ペンタフルオロフェニル) 硼酸メ チル (2-シアノピリジニウム), テトラキス (ペンタ フルオロフェニル) 硼酸ベンジル (2-シアノピリジニ ウム), テトラキス (ペンタフルオロフェニル) 硼酸メ チル(4-シアノピリジニウム), テトラキス (ペンタ フルオロフェニル) 硼酸トリフェニルホスホニウム, テ トラキス [ビス (3, 5-ジトリフルオロメチル) フェ ニル〕硼酸ジメチルアニリニウム、テトラフェニル硼酸 フェロセニウム、テトラフェニル硼酸銀、テトラフェニ ル硼酸トリチル、テトラフェニル硼酸テトラフェニルポ ルフィリンマンガン, テトラキス (ペンタフルオロフェ ニル) 硼酸フェロセニウム, テトラキス (ペンタフルオ ロフェニル) 硼酸 (1, 1'-ジメチルフェロセニウ ム), テトラキス (ペンタフルオロフェニル) 硼酸デカ メチルフェロセニウム,テトラキス(ペンタフルオロフ エニル) 硼酸銀、テトラキス (ペンタフルオロフェニ ル) 硼酸トリチル, テトラキス (ペンタフルオロフェニ ル) 硼酸リチウム, テトラキス (ペンタフルオロフェニ ル) 硼酸ナトリウム, テトラキス (ペンタフルオロフェ 40 ニル) 硼酸テトラフェニルポルフィリンマンガン, テト ラフルオロ硼酸銀、ヘキサフルオロ燐酸銀、ヘキサフル オロ砒素酸銀, 過塩素酸銀, トリフルオロ酢酸銀, トリ フルオロメタンスルホン酸銀などを挙げることができ る。

【0054】この(B-2)成分である、該(A)成分 の遷移金属化合物と反応してカチオンに変換しうるイオ ン性化合物は一種用いてもよく、また二種以上を組み合 わせて用いてもよい。(B-3)成分として、粘土,粘 土鉱物又はイオン交換性層状化合物が用いられる。粘土 とは、細かい含水ケイ酸塩鉱物の集合体であって、適当

20

30

40

rtープチルジフェニルシリルクロリド,フェネチルジ メチルシリルクロリド等のトリアルキルシリルクロリド 類、ジメチルシリルジクロリド、ジエチルシリルジクロ リド、ジイソプロピルシリルジクロリド、ビスジフェネ チルシリルジクロリド, メチルフェネチルシリルジクロ リド、ジフェニルシリルジクロリド、ジメシチルシリル

シリルジクロリド類、メチルシリルトリクロリド、エチ ルシリルトリクロリド、イソプロピルシリルトリクロリ ド、フェニルシリルトリクロリド、メシチルシリルトリ クロリド、トリルシリルトリクロリド、フェネチルシリ

ジクロリド、ジトリルシリルジクロリド等のジアルキル

28

ルトリクロリド等のアルキルシリルトリクロリド類、及 び上記クロリドの部分を他のハロゲン元素で置き換えた ハライド類、ビス(トリメチルシリル)アミン、ビス

(トリエチルシリル) アミン, ビス (トリイソプロピル シリル) アミン, ビス (ジメチルエチルシリル) アミ ン, ビス (ジエチルメチルシリル) アミン, ビス (ジメ チルフェニルシリル) アミン, ビス (ジメチルトリルシ リル) アミン, ビス (ジメチルメシチルシリル) アミ ン、N, Nージメチルアミノトリメチルシラン, (ジェ

チルアミノ) トリメチルシラン, N- (トリメチルシリ ル) イミダゾール等のシリルアミン類、パーアルキルポ リシロキシポリオールの慣用名で称せられるポリシラノ ール類、トリス (トリメチルシロキシ) シラノール等の シラノール類、N, O-ビス (トリメチルシリル) アセ トアミド, ビス (トリメチルシリル) トリフルオロアセ トアミド, N- (トリメチルシリル) アセトアミド, ビ ス (トリメチルシリル) 尿素, トリメチルシリルジフェ

チルシクロペンタンシロキサン等の環状シロキサン類、 ジメチルジフェニルシラン, ジエチルジフェニルシラ ン、ジイソプロピルジフェニルシラン等のテトラアルキ ルシラン類、トリメチルシラン、トリエチルシラン、ト リイソプロピルシラン, トリー t ープチルシラン, トリ

ニル尿素等のシリルアミド傾、1,3-ジクロロテトラ メチルジシロキサン等の直鎖状シロキサン類、ペンタメ

ン、メチルジフェニルシラン、ジナフチルメチルシラ ン, ビス (ジフェニル) メチルシラン等のトリアルキル シラン類、四塩化ケイ素、四臭化ケイ素等の無機ケイ素 化合物が挙げられる。これらのうち、好ましくはシリル

フェニルシラン, トリトリルシラン, トリメシチルシラ

アミン類であり、より好ましくはトリアルキルシランク ロリド類である。シラン系化合物は、これらの内から一 種類用いてもよいが、場合によっては二種類以上を任意

に組み合わせて用いることも可能である。

【0057】さらに、(B-3)成分の処理に用いる有 機アルミニウム化合物としては特に制限はないが、例え ば、後述する一般式(X)と同様の式で表されるアルキ ル基含有アルミニウム化合物、上記一般式(VI)で表さ れる直鎖状アルミノキサン又は上記一般式 (VII)で表さ リド,tert-ブチルジメチルシリルクロリド,te 50 れる環状アルミノキサンもしくは環状アルミノキサンの

量の水を混ぜてこねると可塑性を生じ、乾くと剛性を示 し、髙温度で焼くと焼結するような物質をいう。また、 粘土鉱物とは、粘土の主成分をなす含水ケイ酸塩をい う。イオン交換性層状化合物とは、イオン結合等によっ て構成される面が互いに弱い結合力で平行に積み重なっ た結晶構造をとる化合物であり、含有するイオンが交換 可能なものをいう。大部分の粘土鉱物は、イオン交換性 層状化合物である。これらは、天然産のものに限らず、 人工合成したものであってもよい。イオン交換性層状化 合物として、例えば、六方最密パッキング型、アンチモ モン型、塩化カドミウム型、ヨウ化カドミウム型等の層 状の給晶構造を有するイオン結品性化合物等を挙げるこ とができる。

【0055】(B-3)成分の具体例としては、カオリ ン、ベントナイト、木節粘土、ガイロメ粘土、アロフェ ン、ヒシンゲル石、パイロフィライト、タルク、ウンモ 群、モンモリロナイト群、バーミキュライト、リョクデ イ石群、パリゴルスカイト、カオリナイト、ナクライ ト、ディッカイト、ハロイサイト等が挙げられる。(B -3)成分としては、水銀圧入法で測定した半径20Å 以上の細孔容積が、0.1ミリリットル/g以上、特に は、0.3~5ミリリットル/g以上のものが好ましい。 また、粘土中の不純物除去又は構造及び機能の変化とい う点から、化学処理を施すことも好ましい。ここで、化 学処理とは、表面に付者している不純物を除去する表面 処理と粘土の結晶構造に影響を与える処埋の何れをもさ す。具体的には、酸処理、アルカリ処理、塩類処理、有 機物処埋等が挙げられる。酸処理は表面の不純物を取り 除く他、結晶構造中のアルミニウム、鉄、マグネシウム 等の陽イオンを溶出させることによって表面積を増大さ せる。アルカリ処理では粘土の結晶構造が破壊され、粘 土の構造の変化をもたらす、また、塩類処理、有機物処 理では、イオン複合体、分子複合体、有機複合体などを 形成し、表面積や層間距離等を変化させることができ る。イオン交換性を利用し、層間の交換性イオンを別の 嵩高いイオンと置換することによって、層間が拡大され た状態の層間物質を得ることもでさる。まだ、主触媒が 存在する重合反応場を層間の中に確保することも可能で ある。

【0056】上記(B-3)成分はそのまま用いてもよ いし、新たに水を添加吸着させたものを用いてもよく、 あるいは加熟脱水処埋里したものを用いてもよい。(B -3)成分として、好ましいものは粘土または粘土鉱物 であり、最も好ましいものはモンモリロナイトであろ。 (B-3) 成分は、シラン系化合物及び/又は有機アル ミニウム化合物により処理することが好ましい。この処 理により、活性が向上することがある。このシラン系化 合物としては、例えば、トリメチルシリルクロリド、ト リエチルシリルクロリド,トリイソプロピルシリルクロ

30

会合体を好ましく用いることができる。 貝体的には、トリメチルアルミニウム,トリエチルアルミニウム,トリ プロピルアルミニウム,トリイソプチルアルミニウム,トリー t ープチルアルミニウム等のトリアルキルアルミニウム、ジメチルアルミニウムクロリド,ジエチルアルミニウムクロリド,ジメチルアルミニウムメトキシド,ジメチルアルミニウムとドロキシド,ジエチルアルミニウムとドロキシド等のハロゲン,アルコキシ基あるいは水酸基含有のアルキルアルミニウム、ジメチルアルミニウムとドリド,ジイソプチルアルミニウム、メチルアルミノキサン,エチルアルミノキサン,イソプチルアルミノキサン等のアルミノキサン等であり、これらのうち、特にトリメチルアルミニウムが好ましい。

(B-3) 成分の処理に用いる有機アルミニウム化合物 は、これらの内から一種用いてもよく、二種以上を組み合わせて用いてもよい。

【0058】 (B-3) 成分の処理に用いるシラン系化 合物及び有機アルミニウム化合物の使用割合については 待に制限はないが、(B-3)成分が粘土または粘土鉱 物の場合は、(B-3)成分中の水酸基1モルに対し、 シラン系化合物中のケイ素原手が通常0.1~10000 0モル、好ましくは0.5~10000モルとなる割合 で、また有機アルミニウム化台物を用いる場合は、有機 アルミニウム化合物中のアルミニウム原子が通常0.1~ 100000モル、好ましくは0.5~10000モルと なる割合で用いられる。また、(B-3)成分が粘土又 は粘土鉱物以外の場合は、(B-3)成分1gに対し、 シラン系化合物中のケイ素原子が0.001~100gと なる割合で、また有機アルミニウム化合物を用いる場合 は、有機アルミニウム化合物中のアルミニウム原子が0. 001~100gとなる割合で用いことが好ましい。上 記の割合の範囲外では重合活性が低下することがある。

(B-3) 成分の処理は、窒素等の不活性気体中あるいはペンタン、ヘキサン、トルエン、キシレン等の炭化水素中で行ってもよい。さらに、この処理は、重合温度下で行うことができることはもちろん、-30℃から使用溶媒の沸点の間、特に室温から使用溶媒の沸点の間で行うことが好ましい。

【0059】触媒成分として、上記(A-1)~(A-5)成分などのシクロペンタジエニル骨格を有する周期律表第4族の遷移金属化合物を用いる場合、助触媒成分として用いる(B-1)成分、(B-2)成分及び(B-3)成分は単独で用いてもよく、また、これらを組み合わせて用いてもよい。(A-1)~(A-5)成分などのシクロペンタジエニル骨格を有する周期律表第4族の遷移金属化合物と助触媒成分との使用割合は、助触媒成分として(B-1)化合物を用いた場合には、モル比で好ましくは $1:1\sim1:10^\circ$ 、より好ましくは $1:1\sim1$

10~1:10′の範囲が望ましく、上記範囲を逸脱す る場合は、単位重量ポリマーあたりの触媒コストが高く なり、実用的でない。 (B-2) 化合物を用いた場合に は、モル比で好ましくは10:1~1:100、より好 ましくは2:1~1:10の範囲が望ましい。この範囲 を逸脱する場合は単位重量ポリマーあたりの触媒コスト が高くなり、実用的でない。また、(B-3) 化合物と して粘土又は粘土鉱物を用いた場合、上記遷移金属化合 物と(B-3)化合物中の水酸基のモル比で好ましくは 1:0.1~1:100000、より好ましくは1:0.5 ~1:10000の範囲が望ましい。さらに、(B-3) 化合物としてイオン交換性層状化合物を用いた場 合、上記遷移金属化合物と(B-3)化合物の使用割合 は、重量比で好ましくは1:1~1:100000であ る。この範囲を逸脱する場合は単位重量ポリマー当たり の触媒コストが高くなり、実用的でない。

【0060】さらに、本発明において用いる触媒は、上記の(A)成分及び(B)成分を主成分として含有するものであってもよいし、また、(A)成分、(B)成分並びに(C)有機アルミニウム化合物及び/又は担体を主成分として含有するものであってもよい。この担体は、触媒が(B)成分として(B-3)成分を含有しないものである場合、使用することが好ましい。

【0061】ここで、(C)成分の有機アルミニウム化 合物としては、一般式(X) R²³, A1Q₃₇ ・・・(X)

(式中、R²¹は炭素数1~10のアルキル基、Qは水素 原子、炭素数1~20のアルコキシ基、炭素数6~20 のアリール基又はハロゲン原子を示し、vは1~3の整 数である)で示される化合物が用いられる。上記一般式 (X) で示される化合物の具体例としては、トリメチル アルミニウム、トリエチルアルミニウム、トリイソプロ ピルアルミニウム、トリイソプチルアルミニウム、ジメ チルアルミニウムクロリド, ジエチルアルミニウムクロ リド、メチルアルミニウムジクロリド、エチルアルミニ ウムジクロリド、ジメチルアルミニウムフルオリド、ジ イソプチルアルミニウムヒドリド, ジエチルアルミニウ ムヒドリド、エチルアルミニウムセスキクロリド等が挙 げられる。好ましくは、トリメチルアルミニウム, トリ 40 エチルアルミニウム, トリイソプチルアルミニウムであ る。これらの有機アルミニウム化合物は一種用いてもよ く、二種以上を組合せて用いてもよい。また、(A)触 媒成分と所望により用いられる(C)有機アルミニウム 化合物との使用割合は、モル比で好ましくは1:1~ 1:20000、より好ましくは1:5~1:200 0、さらに好ましくは1:10~1:1000の範囲が 望ましい。有機アルミニウム化合物を用いることによ り、遷移金属化合物1g当たりの重合活性を向上させる ことができるが、あまりに多い場合、特に上記範囲を逸 50 脱する場合は有機アルミニウム化合物が無駄になるとと

30

40

32

もに、重合体中に多量に残存し、また少ない場合は充分 な触媒活性が得られず、好ましくない場合がある。

【0062】本発明においては、各触媒成分の少なくとも一種を適当な担体に担持して用いることができる。

(C) 成分の担体の種類については特に制限はなく、無機酸化物担体、それ以外の無機担体及び有機担体のいずれも用いることができるが、特にモルホロジー制御の点から無機酸化物担体あるいはそれ以外の無機担体が好ましい。無機酸化物担体としては、具体的には、SiO₂, $A1_2O_3$, MgO, ZrO_2 , TiO_2 , Fe2O₃, B_2O_3 , CaO, ZnO, BaO, ThO_2 やこれらの混合物、例えばシリカアルミナ、ゼオライト、フェライト、グラスファイバーなどが挙げられる。これらの中では、特に SiO_2 または $A1_2O_3$ が好ましい。なお、上記無機酸化物担体は、少量の炭酸塩、硝酸塩,硫酸塩などを含有してもよい。

【0063】一方、上記以外の担体として、MgC 12, Mg (OC₂ H₅)₂ などのマグネシウム化合物な どで代表される一般式MgR3,X7,で表されるマグ ネシウム化合物やその錯塩などを挙げることができる。 ここで、R³³は炭素数1~20のアルキル基、炭素数1 ~20のアルコキシ基又は炭素数6~20のアリール 基、X'はハロゲン原子又は炭素数1~20のアルキル 基を示し、xは $0\sim2$ 、yは $0\sim2$ であり、かつx+y=2である。各R33及び各X1はそれぞれ同一でもよ・ く、また異なってもいてもよい。また、有機担体として は、ポリスチレン、スチレンージビニルベンゼン共重合 体、ポリエチレン、ポリプロピレン、置換ポリスチレ ン、ポリアリレートなどの重合体やスターチ、カーボン などを挙げることができる。本発明において用いられる 担体としては、MgCl2, MgCl(OC2Hs), Mg (OC₂H₅)₂, SiO₂, Al₂O₅などが好ま しい。また担体の性状は、その種類及び製法により異な るが、平均粒径は通常1~300μm、好ましくは10 $\sim 200 \mu m$ 、より好ましくは $20 \sim 100 \mu m$ であ る。粒径が小さいと重合体中の微粉が増大し、粒径が大 きいと重合体中の粗大粒子が増大し嵩密度の低下やホッ パーの詰まりの原因になる。また、担体の比表面積は、 通常1~1000m²/g、好ましくは50~500m ²/g、細孔容積は通常0.1~5 c m³/g、好ましく $t0.3\sim3$ c m 3 / g である。

【0064】比表面積又は細孔容積のいずれかが上記範囲を逸脱すると、触媒活性が低下することがある。なお、比表面積及び細孔容積は、例えばBET法に従って吸着された窒素ガスの体積から求めることができる(J. Am. Chem. Soc,第60巻,第309ページ(1983年)参照)。さらに、上記担体は、通常 $150\sim1000$ ℃、好ましくは $200\sim800$ ℃で焼成して用いることが望ましい。触媒成分の少なくとも一

種を上記担体に担持させる場合、(A)触媒成分及び

- (B) 助触媒成分の少なくとも一方を、好ましくは
- (A) 触媒成分及び(B) 助触媒成分の両方を担持させるのが、モルホロジー制御、気相重合などプロセスへの適用性などの点から望ましい。

【0065】該担体に、(A)成分及び(B)成分の少なくとも一方を担持させる方法については、特に制限されないが、例えば①(A)成分及び(B)成分の少なくとも一方と担体とを混合する方法、②担体を有機アルミニウム化合物又はハロゲン含有ケイ素化合物で処理したのち、不活性溶媒中で(A)成分及び(B)成分の少なくとも一方と混合する方法、③担体と(A)成分又は

- (B) 成分あるいはその両方と有機アルミニウム化合物 又はハロゲン含有ケイ素化合物とを反応させる方法、② (A) 成分又は(B) 成分を担体に担持させたのち、
- (B) 成分又は(A) 成分と混合する方法、⑤(A) 成分と(B) 成分との接触反応物を担体と混合する方法、⑥(A) 成分と(B) 成分との接触反応に際して、担体を共存させる方法などを用いることができる。なお、上記②、⑤及び⑥の反応において、(C) 成分の有機アルミニウム化合物を添加することもできる。

【0066】このようにして得られた触媒は、いったん溶媒留去を行って固体として取り出してから重合に用いてもよく、そのまま重合に用いてもよい。本発明においては、(A)成分は担体1g当たり、通常 $10^4 \sim 10^3$ モル、好ましくは $3 \times 10^4 \sim 10^3$ モルの量で用いられる。また、(A)成分に対する(B)成分〔(B-1)成分,(B-2)成分,(B-3)成分〕の使用割合は前述のとおりである。

【0067】該(B)成分[(B-1)成分, (B-2) 成分, (B-3) 成分〕と担体との使用割合、又は (A) 成分と担体との使用割合が上記範囲を逸脱する と、活性が低下することがある。このようにして調製さ れた本発明で用いる予備重合触媒の平均粒径は、通常2 ~500 µ m、好ましくは10~400 µ m、特に好ま しくは20~200μmであり、比表面積は、通常20 $\sim 1000 \,\mathrm{m}^2/\mathrm{g}$ 、好ましくは $50 \sim 500 \,\mathrm{m}^2/\mathrm{g}$ である。平均粒径が 2 μ m未満であると重合体中の微粉 が増大することがあり、500μmを超えると重合体中 の粗大粒子が増大することがある。比表面積が20m2 /g未満であると活性が低下することがあり、1000 m²/gを超えると重合体の嵩密度が低下することがあ る。このように担体に担持することによって工業的に有 利な高い嵩密度と優れた粒径分布を有するポリオレフィ ンを得ることができる。

【0068】本発明のポリオレフィンの製造方法は、上記触媒の存在下、オレフィン系マクロモノマーと炭素数2~20のα-オレフィン、環状オレフィン及びスチレン類から選ばれる一種以上のコモノマーとからなるポリオレフィンを製造する方法であるが、このオレフィン系70マクロモノマーは以下の(1)、(2)及び(3)

(1) ①重量平均分子量が200~100000であり、

②全不飽和末端に占めるビニル基の割合が60%以上であり、かつ

③エチレン又はプロピレン含有量が50モル%を超える ポリオレフィンである。

(2) ①重量平均分子量が200~100000であり、

②極限粘度〔η〕 (デシリットル/g) と末端ビニル濃度C (個/炭素原子1000個) との積〔η〕・Cが0.05~2.0の範囲にあり、

③エチレン又はプロピレン含有量が50モル%を超える ポリオレフィンである。

(3) ①炭素数2~20のα-オレフィン、環状オレフィン及びスチレン類から選ばれる一種以上のコモノマーとポリエンとからなり、かつ重量平均分子量が200~*

装置:本体 Waters ALC/GPC150C

カラム 東ソー製 TSK MH+GMH6×2本

条件:温度 135℃

溶媒 1, 2, 4-トリクロロベンゼン

流量 1.0ミリリットル/分

【0070】また、マクロモノマー(1)において、全不飽和末端に占めるビニル基の割合が60%以上であるが、70%以上が好ましい。さらに、エチレン又はプロビレン含有量は50モル%を超えるものであるが、70モル%以上であることが好ましい。上記マクロモノマー(2)において、重量平均分子量は200~100000であるが、400~90000が好ましく、500~80000がより好ましい。また、マクロモノマー

(2) において、極限粘度 [n] (デシリットル/g) 30 と末端ビニル濃度 C (個/炭素原子1000個) との積 [n] ・ C は0.05~2.0の範囲にあるが、この値が0.05より小さい場合は、マクロモノマーが高分子量体であるか又は末端ビニル濃度が極端に低いことを示しており、共重合が効率的に進行しない。また、2.0を超える場合は、末端ビニル濃度は高いものの、マクロモノマーの分子量が低く、本願発明の特徴である高溶融張力化や相溶化の性能を十分に示すポリオレフィンを製造することができない。このような観点から [n] ・ C は0.07~1.8が好ましく、特に0.09~1.5が好ましい。極限 40 粘度 [n] は、デカリン溶媒中、温度135℃において測定したものである。この極限粘度 [n] は0.001~2.0デシリットル/gの範囲にあることが好ましく、特に0.005~1.5デシリットル/gの範囲が好ましい。

*100000であり、

②極限粘度〔 η 〕(デシリットル/g)と、末端ビニル 濃度とポリエン由来の炭素-炭素二重結合濃度の和C' (個/炭素原子1000個)との積〔 η 〕・C'が0.05~10の範囲にあり、

34

③ポリエン含有量が0を超え20モル%以下であるポリオレフィンである。

のいずれかであることを要する。

【0069】上記マクロモノマー(1)において、重量 10 平均分子量は200~10000であるが、400~9000が好ましく、500~8000のがより好ましい。この重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により、下記の装置及び条件にて測定したポリエチレン換算の重量平均分子量である。

にて、907cm⁻¹におけるピークの透過率を測定し、 文献記載の方法〔「高分子分析ハンドブック」日本分析 化学会編,240頁参照〕に基づき、以下の式から求め た値を炭素原子1000個当たりの末端ビニル濃度とす る。

 $C=1.14 \times log (I_0/I) \times (1/(D \times T))$ 式中、各記号は次の内容を示す。

C;炭素原子1000個当たりの末端ビニル濃度

30 I。;ベースラインの透過率

I ;907cm⁻¹の透過率

D ;マクロモノマー(2)の密度(g/cc)

T ;フィルム厚さ (mm)

【0072】また、末端ビニル濃度を核磁気共鳴スペク トルを常法により算出することも可能である。マクロモ ノマー(2)において、エチレン又はプロピレン含有量 は50モル%を超えるものであるが、70モル%以上で あることが好ましい。上記マクロモノマー(3)は、炭 素数2~20のα-オレフィン、環状オレフィン及びス チレン類から選ばれる一種以上のコモノマーとポリエン とからなるものである。炭素数2~20のα-オレフィ ンとしては、エチレン、プロピレン、1-プテン、3-メチルー1ブテン, 1ーペンテン, 1ーヘキセン, 4-メチルー1ーペンテン, 1ーオクテン, 1ーデセン, 1 ードデセン、1ーテトラデセン、1ーヘキサデセン、1 ーオクタデセン、1-エイコセンなどが挙げられ、環状 オレフィンとしては、シクロペンテン、シクロヘキセ ン,シクロヘプテン,ノルボルネン,1-メチルノルボ ルネン、5-メチルノルボルネン、7-メチルノルボル

* 基を有するジエン化合物などが挙げられる。

リメチルノルボルネン,5-5エチルノルボルネン,5 -エチル-2-ノルボルネン、5-プロピルノルボルネ ン、5-フェニルノルボルネン、テトラシクロドデセン などが挙げられる。スチレン類としては、スチレン、o -メチルスチレン, m-メチルスチレン, p-メチルス チレン、2、4-ジメチルスチレン、2、5-ジメチル スチレン、3、4-ジメチルスチレン、3、5-ジメチ ルスチレン、2、4、5-トリメチルスチレン、2、 4, 6-トリメチルスチレン, p-t-プチルスチレン などのアルキルスチレン、p-クロロスチレン, m-ク ロロスチレン, o-クロロスチレン, p-プロモスチレ ン, m-プロモスチレン, o-プロモスチレン, p-フ ルオロスチレン, m-フルオロスチレン, o-フルオロ スチレン、0-メチル-p-フルオロスチレンなどのハ ロゲン化スチレン、4-ビニルビフェニル、3-ビニル ビフェニル、2-ビニルビフェニルなどのビニルビフェ ニル類などが挙げられる。

【0074】該直鎖又は分岐の非環式ジエン化合物としては、例えば1,4ーペンタジエン、1,5ーヘキサジエン、1,6ーヘプタジエン、1,7ーオクタジエン、1,9ーデカジエン、1,11ードデカジエン、2ーメチルー1,4ーペンタジエン、2ーメチルー1,5ーヘキサジエン、3ーエチルー1,7ーオクタジエンなどが挙げられ、単環脂環式ジエン化合物としては、例えば1,3ーシクロペンタジエン、1,4ーシクロヘキサジコン、1,5ーシクロオクタジエン、1,5ーシクロドデカジエン、1,2ージビニルシクロヘキサンなどが挙げられる。

36

【0073】ポリエンとしては、αーオレフィン残基、スチレン残基及び環状オレフィン残基の中から選ばれた少なくとも2個の同種又は異種の残基から形成された化合物及び環状ジエン化合物の中から選ばれた多官能性単量体が好ましく用いられる。このような多官能性単量体としては、例えば直鎖又は分岐の非環式ジエン化合物、単環脂環式ジエン化合物、多環脂環式ジエン化合物、シクロアルケニル置換アルケン類、芳香族環を有するジエン化合物、一分子中にαーオレフィン残基とスチレン残*

【0075】また、多環脂環式ジエン化合物としては、例えばジシクロペンタジエン、ノルボルナジエン、テトラヒドロインデン、メチルテトラヒドロインデン、5-メチル-2,5-ノルボルナジエン、さらにはアルケニル、アルキリデン、シクロアルケニル及びシクロアルキリデンのノルボルネンであって、例えば5-メチリデン-2-ノルボルネン、5-イソプロピリデン-2-ノルボルネン、5-ビニルノルボルネン、5-(3-シクロペンテニル)-2-ノルボルネン、及び式

イン残基とスチレン残* 【化10】

[0076]

(n=0∼4)

【0077】で示される化合物などが挙げられる。シクロアルケニル置換アルケン類としては、例えばアリルシクロヘキセン、ビニルシクロオクテン、アリルシクロデセン、ビニルシクロドデセンなどが挙げられ、芳香族環を有するジエン化合物としては、例えばpージビニルベンゼン、mージビニルベンゼン、oージビニルベンゼン、ジー(pービニルフェニル)メタン、1,3ービス(pービニルフェニル)プロパン、1,5ービス(pービニルフェニル)ペンタンなどが挙げられる。

-オクテニル) スチレン、p- (1-メチル-3-プテ ニル)スチレン、p-(2-メチル-3-プテニル)ス チレン、m-(2-メチル-3-プテニル) スチレン、 -メチル-3-プテニル) スチレン、p-(2-エチル -4-ペンテニル)スチレン、p-(3-プテニル)-40 α -メチルスチレン、m-(3-プテニル) $-\alpha$ -メチ ルスチレン、ο-(3-プテニル)-α-メチルスチレ ン、4-ビニルー4'- (3-プテニル) ビフェニル、 4-ビニルー3'-(3-プテニル) ビフェニル、4-ピニルー4'-(4-ペンテニル) ビフェニル、4-ビ ニルー2'-(4ーペンテニル) ビフェニル、4ービニ ルー4'-(2-メチル-3-プテニル) ビフェニルな どが挙げられる。これらのジオレフィン類は、一種用い てもよいし、二種以上を組み合わせて用いてもよい。

【0078】一分子中にαーオレフィン残基とスチレン 残基とを有するジエン化合物としては、例えばp-(2 ープロペニル)スチレン、m-(2-プロペニル)スチレン、p-(3-プテニル)スチレン、m-(3-プテニル)スチレン、p-(3-プテニル)スチレン、p-(4-ペンテニル)スチレン、m-(4-ペンテニル)スチレン、p-(7 50

【0079】マクロモノマー(3)において、重量平均

20

40

分子量は200~100000であるが、250~90 000が好ましく、300~8000がより好まし い。また、マクロモノマー(3)において、極限粘度 [η] (デシリットル/g) と、末端ビニル濃度とポリ エン由来の炭素ー炭素二重結合濃度の和C'(個/炭素 原子1000個) との積〔η〕・C'は0.05~10の 範囲にあるが、この値が0.05未満では、マクロモノマ ーが高分子量体であるか又は末端ビニル濃度が極端に低 いことを示しており、共重合が効率的に進行しない。ま た、10を超える場合は、ゲル化等の問題が生じ、好ま しくない。このような観点から〔η〕・C'は0.06~ 8が好ましく、特に0.07~7が好ましい。この極限粘 度〔η〕は0.001~2.0デシリットル/gの範囲にあ ることが好ましく、特に0.005~1.5デシリットル/ gの範囲が好ましい。マクロモノマー(3)において、 ポリエン含有量が0を超え20モル%以下であるが、ポ リエン含有量は0.01~15%が好ましい。マクロモノ

1) ポリエンが直鎖又は非環式ジエン化合物である場合 上記マクロモノマー(2)の末端ビニル濃度Cと同様に して測定した値をC'とする。

マー(3)の、末端ビニル濃度及びポリエン由来の炭素

一炭素二重結合濃度は以下のようにして求めることがで

2) ポリエンが上記1) 以外である場合

末端ビニル基と、ポリエン由来の炭素-炭素二重結合濃 度は上記マクロモノマー(2)と同様にして算出でき る。それ以外の炭素-炭素二重結合は、核磁気共鳴スペ クトル測定により、主鎖の炭素原子1000個当たり、 すなわちモノマー繰り返し500個当たりの炭素-炭素 二重結合残基の個数を測定する。このようにして測定し た測定値の和をC'とする。また、末端ビニル濃度及び 炭素-炭素二重結合濃度は、核磁気共鳴スペクトルで常 法により算出することも可能である。この場合は、モノ マー繰り返し単位500個当たりの末端ビニル数と炭素 -炭素二重結合残基数との和をC'とする。

【0080】マクロモノマーとして、上記(1),

(2) 又は(3) の条件を満たさないものを用いた場 合、本発明の特徴である溶融張力や相溶性などが十分に 発揮されないなどの不都合が生ずる。

【0081】このようなオレフィン系マクロモノマー は、例えばオレフィン重合用触媒の存在下にプロピレン 単独、またはエチレン、炭素数4~20のα-オレフィ ン、環状オレフィン及びスチレン類から選ばれる一種以 上のコモノマーとプロピレンとを重合させることにより 得られる。この場合、オレフィン重合用触媒としては、 上述した(A)周期律表第4族の遷移金属化合物の中か ら選ばれた少なくとも一種を含む触媒成分と(B)助触 媒成分とからなる触媒が好適に使用される。重合形式と しては、回分式、連続式のいずれであってもよく、ま た、スラリー重合法, 気相重合法, 塊状重合法, 溶液重 50

合法などの中から、任意の方法を採用することができ

38

【0082】スラリー重合又は溶液重合を実施する場合 に使用する重合溶媒としては、例えばプロパン、ブタ ン,ペンタン,ヘキサン,ヘプタン,オクタン,デカ ン、ドデカン、灯油などの脂肪族炭化水素、シクロペン タン、シクロヘキサン、メチルシクロヘキサンなどの脂 環式炭化水素、ベンゼン、トルエン、キシレンなどの芳 香族炭化水素、エチレンクロリド、クロロベンゼン、ジ クロロメタン、クロロホルムなどのハロゲン化炭化水素 などが挙げられる。これらの溶媒は単独で用いてもよ く、二種以上を混合して用いてもよい。重合条件につい ては、重合温度は、通常-50~200℃、好ましくは 0~150℃、より好ましくは20~100℃の範囲で ある。重合圧力は、通常0.1~100kg/cm²G、 好ましくは $0.5 \sim 80 \text{ kg/cm}^2\text{ G}$ 、より好ましくは 1~60kg/cm2Gの範囲である。また、重合時間 は、通常、0.1秒~10時間、好ましくは5秒~9時 間、より好ましくは1分~8時間の範囲である。さら に、触媒の使用量は、原料モノマー/上記(A)成分モ ル比が、好ましくは10°~10°、より好ましく10 3~10°となるように選ぶのが有利である。

【0083】また、本発明においては、(A)成分及び (B) 成分の少なくとも一方の担体への担持操作を重合 系内で行うことにより触媒を生成させることができる。 例えば(A)成分及び(B)成分と担体とさらに必要に より上記有機アルミニウム化合物を加え、オレフィンを 0.1~50kg/cm²加えて、-20~200℃で1 分~40時間程度予備重合を行い触媒粒子を生成させる 方法を用いることができる。マクロモノマーや目的とす るポリオレフィンの極限粘度の制御(分子量の制御) は、重合触媒の各成分の使用割合や重合触媒の使用量、 重合温度、重合圧力などを、上記範囲内で適宜選定する ことにより、行うことができる。

【0084】本発明の製造方法においては、上記触媒の 存在下、上記(1), (2) 又は(3) の要件を満たす オレフィン系マクロモノマーと、炭素数2~20のα-オレフィン、環状オレフィン及びスチレン類から選ばれ る一種以上のコモノマーとを共重合させることによりポ リオレフィンを製造する。この場合、上記触媒には必要 により有機アルミニウム化合物を加えることができる。 ここで、有機アルミニウム化合物としては、上述した一 般式(X)で表されるものを用いることができる。

(A) 触媒成分と所望により用いられる有機アルミニウ ム化合物との使用割合は、(A)成分と(B)成分とか らなる触媒がが有機アルミニウム化合物を含まないもの である場合は、モル比で好ましくは1:1~1:200 00、より好ましくは1:5~1:2000、さらに好 ましくは1:10~1:1000の範囲が望ましい。ま た、上記触媒が有機アルミニウム化合物を含むものであ

る場合は、その使用量によって変化するが、有機アルミ ニウム化合物を全く用いないか、または予備重合触媒中 の遷移金属化合物と有機アルミニウム化合物とのモル比 を1:0.5~1:10000、より好ましくは1:2~ 1:8000の範囲で有機アルミニウム化合物を用いる ことにより、遷移金属当たりの重合活性を向上させるこ とができるが、あまり多い場合、特に上記範囲を逸脱す る場合は有機アルミニウム化合物が無駄になるととも に、重合体中に多量に残存し、また少ない場合は充分な 触媒活性が得られず、好ましくない場合がある。

【0085】ポリオレフィンの製造に用いる炭素数2~ 200α-オレフィン、環状オレフィン、スチレン類と しては、マクロモノマー(3)において例示したものと 同様のものが挙げられる。重合形式や重合条件は、前記 マクロモノマーの製造と同様のものとすることができ る。また、プロック共重合法により、マクロモノマーの 製造とは異なる反応条件によりオレフィンのプロック共 重合体を製造することもできる。この場合、異なる反応 条件とは、例えば、①前記触媒を用い、まずポリプロピ レンの単独重合体を製造した後、次の反応ステップで、 エチレン、炭素数4~20のα-オレフィン、環状オレ フィン及びスチレン類から選ばれた単量体とプロピレン とを共重合することや②上記①と同様にして、エチレ ン、炭素数4~20のα-オレフィン、環状オレフィン 及びスチレンから選ばれた単量体とプロピレンとを共重 合した後、次のステップで単量体の仕込み組成を変化さ せ、共重合組成の変化したプロック共重合体を製造する こと等であり、単量体種、重合温度、圧力、時間、単量 体仕込組成を変化させ、二段階以上で重合反応を行うこ とを指す。

> 直径2.095mm, 長さ8.0mm, 流入角90度 キャピラリー

* 30

40

20

シリンダー径 : 9.0 mm シリンダー押出速度 : 10mm/分 巻き取り速度 3.14m/分

温度 230℃

【0088】上記ポリオレフィンの嵩密度は、0.2~0. 5g/ccが好ましく、特に0.3~0.45g/ccが好 ましい。なお、嵩密度はJIS K6721に準拠して 求めた。

[0089]

【実施例】次に、本発明を実施例によりさらに詳しく説 明するが、本発明は、これらの例によってなんら限定さ れるものではない。

調製例1

シリカ担持メチルアルミノキサンのn-ヘプタン懸濁液 の調製

S i O₂ (富士シリシア化学社製, 商品名: P-10) 27.1gを200℃で2時間減圧乾燥処理し、乾燥シリ カ25.9gを得た。この乾燥シリカをドライアイス/メ タノール浴で−78℃に冷却したトルエン400ミリリ 50 サンの担持量は23.12重量%であった。このようにし

40

*【0086】本発明の方法で得られたポリオレフィンの 融点は通常50℃以上、好ましくは60℃以上、より好 ましくは65℃以上、さらに好ましくは70~165℃ の範囲である。なお、この融点は、下記の方法により測 定した値である。すなわち、示差走査型熱量計〔セイコ 一電子工業(株)製、DSC200型〕を用い、室温か ら10℃/分の速度で200℃まで昇温し、200℃で 3分間保持したのち、10℃/分で30℃まで降温す る。30℃で5分間保持したのち、10℃/分で昇温 10

し、その際に現れる融解ピークの温度を融点とする。こ のポリオレフィンは、メルトインデックスMIが0.01 ~1000g/10分の範囲にあるものが好ましい。こ のMIが0.01g/10分未満では溶融流動性が不充分 であり、1000g/10分を超えると機械物性が著し く低下し、好ましくない。溶融流動性及び機械物性のバ ランスなどの面から、より好ましいMIは0.05~80 0g/10分の範囲であり、特に0.08~700g/1 0分の範囲が好ましい。なお、このMIは、ASTM D1238-T65に準拠し、温度230℃,荷重2.1 6 k g の条件で測定した値である。

【0087】上記ポリオレフィンの溶融張力MSは、メ ルトインデックスMIによって大きく変化するが、通常 0.2~50gの範囲にあることが好ましい。このMSが 0.2 g未満では、成形時にドローダウンが発生し、好ま しくない。また、50gを超えると、溶融時の延伸性が 劣る。より好ましいMSは0.4~45gの範囲であり、 特に0.6~30gの範囲が好ましい。なお、溶融張力M Sは、酸化防止剤を加えた試料について、東洋精機社製 キャピログラフを用い、下記の条件で測定した値であ

ットル中に投入し、攪拌しながら、これに1.5モル/リ ットルのメチルアルミノキサントルエン溶液 1 45. 5 ミ リリットルを1.0時間かけて滴下ロートにより滴下し た。この状態で4.0時間放置したのち、-78℃から2 0℃まで6.0時間で昇温し、さらにこの状態で4.0時間 放置した。その後、20℃から80℃まで1.0時間で昇 温し、80℃で4.0時間放置することにより、シリカと メチルアルミノキサンとの反応を完了させた。

【0090】この懸濁液を60℃でろ過し、得られた固 形物を60℃にて、400ミリリットルのトルエンで2 回、さらに60℃にて、400ミリリットルのn-ヘキ サンで2回洗浄を実施した。洗浄後の固形物を60℃で 4.0時間減圧乾燥処理することにより、シリカ担持メチ ルアルミノキサン33.69gを得た。メチルアルミノキ

40

て得られたシリカ担持メチルアルミノキサン全量に、n -ヘプタンを加えて全容量を500ミリリットルとし、 メチルアルミノキサン濃度0.27モル/リットルの懸濁 液を調製した。

【0091】調製例2

シリカ担持メタロセン触媒の調製

調製例1で得られたシリカ担持メチルアルミノキサン懸 濁液9.26ミリリットル (メチルアルミノキサン2.5ミ リモル)を、乾燥窒素置換容器に採取し、n-ヘプタン 20ミリリットルを加えて攪拌した。この懸濁液に、遷 移金属化合物として、rac-ジメチルシランジイル-ビスー (2-メチルーインデニル) ジルコニウムジクロ \forall F [rac-Me₂Si (2-Me-Ind)₂Zr C12]のトルエン溶液10マイクロモルを添加し、室 温で0.5時間攪拌した。その後、攪拌を停止し、固体触 媒成分を沈降させ、沈降した固体触媒成分が淡黄色であ り、溶液は無色透明であることを確認した。このように して、シリカ担持メタロセン触媒を調製した。

【0092】調製例3

チタン固体触媒成分の調製

攪拌機付き500ミリリットルの反応器を窒素ガスで十 分置換した後、マグネシウムジエトキシド30g、精製 ヘプタン150ミリリットル、四塩化ケイ素4.5ミリリ ットル、フタル酸ジーnープチル5.4ミリリットルを加 え、攪拌を開始した。系内を90℃に保ちながら、四塩 化チタン144ミリリットルを加え、さらに、110℃ にて2時間攪拌を行った後、固体成分を分離して80℃ の精製へプタンで洗浄した。さらに、四塩化チタン22 8ミリリットルを加え、110℃にて2時間攪拌を行っ た後、固体成分を分離して80℃の精製へプタンで十分 に洗浄し、固体触媒成分を得た。上記と同様反応器を窒 素ガスで十分に置換した後、精製ヘプタン230ミリリ ットル、上記固体触媒成分25g、該固体触媒成分中の チタン原子に対してトリエチルアルミニウムを1.0モル /モル、ジシクロペンチルジメトキシシランを1.8モル /モルの比率で加えた。次に、プロピレンを分圧0.3 k g/cm²Gまで導入し、25℃にて4時間重合を行っ た。重合終了後、固体触媒成分を精製ヘプタンで数回洗 浄し、さらに、二酸化炭素を供給し24時間攪拌した。

【0093】調製例4

シラン化合物処理モンモリロナイトのトルエン懸濁液の 調製

市販のモンモリロナイト(クニミネ工業社製、クニピア F) 40gを粉砕機で4時間粉砕した。容積500ミリ リットルの三つ口フラスコに粉砕したモンモリロナイト 20gを入れ、塩化マグネシウム六水和物20gを溶解 させたイオン交換水100ミリリットルを加えて分散さ せた。攪拌下、90℃にて0.5時間処理した。処理後、 濾過して得られた固体成分を100ミリリットルの水に 42

もう一度繰り返した。次にこの固体成分を塩酸160ミ リリットルに分散させ、攪拌しながら還流下、2時間処 理した。処理後、濾過して得られた固体成分に対して、 濾液が中性になるまで水洗を繰り返し、室温にて真空間 乾燥し、化学処理モンモリロナイトを得た。この化学処 理モンモリロナイト1.0gを容積300ミリリットルの シュレンク管に入れ、トルエン25ミリリットルを加え て分散させた。ここにメチルフェネチルシリルジクロリ ド1.13g (5.2ミリモル)を加え、室温において60 時間攪拌後、さらに100℃にて1時間攪拌した。攪拌 終了後、静置して上澄み液を抜き出し、残った固体成分 にトルエン200ミリリットルを加えて攪拌した後、静 置して上澄み液を抜き出す操作を3回繰り返した。得ら れた固体にトルエンを加えて全量を50ミリリットルと し、懸濁液を調製した。

【0094】調製例5

シラン化合物処理モンモリロナイト担持メタロセン触媒

調製例4にて得られたシラン化合物処理モンモリロナイ ト懸濁液50ミリリットルに(1, 2'-エチレン) 20 (2, 1'-エチレン) ビスインデニルハフニウムジク ロリド [Et2 (Ind) 2HfCl2] のトルエン溶 液10マイクロモルを添加し、室温において0.5時間攪 拌した。攪拌終了後、静置して上澄み液を抜き出し、得 られた固体にトルエンを加えて全容量を50ミリリット ルとし、触媒の懸濁液を調製した。

【0095】実施例1

マクロモノマーの製造

攪拌装置付き1.4リットルステンレス鋼製耐圧オートク レーブを80℃に加熱し、十分に減圧乾燥した後、乾燥 窒素で大気圧に戻し、室温においてこのオートクレーブ に、乾燥脱酸素トルエン400ミリリットル、1,6-ヘプタジエン15ミリモル、メチルアルミノキサン(ア ルベマール社製、トルエン溶液) 5ミリモル、ペンタメ チルシクロペンタジエニルハフニウムジクロリド (Cp *HfC12) 0.02ミリモルを投入し、500rpm で10分間攪拌した。重合温度を80℃とし、プロピレ ンを5リットル/分、エチレンを0.1リットル/分の流 量で供給し、全圧を4.0 kg/cm²Gに保持しなが ら、220分間共重合を実施した。重合終了後、未反応 モノマーを脱圧し、メタノールを少量添加した。反応混 合物をフラスコに回収し、蒸発乾固により溶媒、未反応 モノマーを除去した後、触媒残渣を分離するためヘプタ ンでポリマーを抽出分離し、回収した。収量は35.5 g であった。ゲルパーミエーションクロマトグラフ (GP C) 法により求めた重量平均分子量は34000であ り、デカリン中135℃で測定した極限粘度〔η〕は0. 05であり、'H-NMRの測定から算出した末端ビニ ル濃度Cは97個/炭素原子1000個)であり、従っ て3回洗浄した。上記塩化マグネシウム処理及び水洗を 50 て〔 η 〕・Cは4.85であった。また、1,6 -ヘプタ

ジエン含有量は14.5 モル%、プロピレン含有量は71.0 モル%であった。

【0096】実施例2

マクロモノマーとプロピレンとの共重合体の製造 攪拌装置付き1.4リットルステンレス鋼製耐圧オートクレープを80℃に加熱し、十分に減圧乾燥した後、乾燥 窒素で大気圧に戻し、室温においてこのオートクレープに、乾燥脱酸素 n ーヘプタン400ミリリットル、トリイソブチルアルミニウム(トルエン溶液)1.0ミリモル、実施例1で製造したマクロモノマー2gを投入し、500rpmで10分間攪拌した。これに、調製例2で調製したシリカ担持メタロセン触媒を投入し(ジルコニウム原子換算で10マイクロモル)、反応温度を55℃に制御しながらプロピレンを8kg/cm²Gの圧力で連続的に供給し、90分間重合を実施した。重合終了後、未反応プロピレンを脱圧し、大量のメタノールで触媒を失活し、ろ過乾燥処理してポリプロピレン152gを得た。

【0097】実施例3

マクロモノマーとプロピレンとの共重合体の製造 実施例2において、ジルコニウム触媒成分の代わりに調 製例3で調製した触媒をチタン原子換算で3.3マイクロ* 44

*モル用い、さらに、ジシクロペンチルジメトキシシラン 0.033ミリモル用い、水素ガスを0.5 kg/cm²G 供給した後、プロピレンを全圧が8 kg/cm²Gとなるように連続的に供給し、60分間重合を実施した。なお、重合温度は80℃とした。重合終了後、未反応プロピレンを脱圧し、大量のメタノールで触媒を失活し、ろ過乾燥処理してポリプロピレン143gを得た。これらのポリプロピレンについて、メルトインデックスMI,極限粘度〔η〕、溶融張力MS、融点Tm、嵩密度を明細書本文に記載した方法に従って求め、評価した。結果を第1表に示す。

【0098】実施例4

実施例2において、調製例2で調製したシリカ担持メタロセン触媒(ジルコニウム原子換算で10マイクロモル)の代わりに調製例5にて得られたシラン化合物処理モンモリロナイト懸濁液5ミリリットルを添加し、重合温度を50℃、重合時間を100分とした以外は実施例1と同様に実施した。得られた共重合体について実施例1と同様の測定を行った。結果を第1表に示す。

20 【0099】 【表1】

第 1 表

		実施例 2	実施例3	実施例 4
収量	(g)	1 5 2	1 4 3	140
M I	(g/10分)	1 5. 4	7. 3	1 0
極限粘度〔η〕	(dl/g)	1. 3 6	1.73	1. 2 0
融点	(°C)	1 4 6. 8	164	1 4 3, 5
嵩密度	(g/cc)	0. 3 5	0. 3 5	0. 2 0
溶融張力	(g)	0, 8	1. 6	0, 9 5

[0100]

【発明の効果】本発明によれば、溶融張力が高く、樹脂※

※相溶性に優れ、嵩密度の高いポリオレフィンを、安価 に、かつ効率よく製造することができる。

フロントページの続き

Fターム(参考) 4J027 AA08 AJ04 AJ06 BA02 BA03 BA05 CD01

4J028 AA01A AB01A AC01A AC04A
AC05A AC06A AC07A AC09A
AC10A AC27A AC28A BA00A
BA01B BB00A BB01B BC12B
BC15A BC16A BC25B CA05A
CA08A CA30B CB27A CB42A
CB52A CB53A CB54A CB57A
CB66A EA01 EB01 EB02
EB04 EB07 EB08 EB09 EB17
EB18 EB21 FA01 FA02

4J100 AA02P AA03P AA04Q AA07Q
AA09Q AA15Q AA15R AA16Q
AA17Q AA19Q AB02Q AB04Q
AB08Q AB09Q AB10Q AB13Q
AB15R AB16R AR03R AR04Q
AR09Q AR11Q AR16R AR17R
AR18R AR21R AR22R AS11R
AS15R BC43Q CA04 CA05
CA27 DA01 DA16 DA22 DA24
DA42 FA10 HC01 HG23