

Computer Science Fundamentals

Graph Theory – Introduction

Technische Hochschule Rosenheim Winter 2021/22 Prof. Dr. Jochen Schmidt

Fakultät für Informatik CSF – Graph Theory – Intro 1

Seven Bridges of Königsberg (Königsberger Brückenproblem) Hochschule

Euler 1736:

Is there a circular route through Königsberg that crosses each of the seven bridges over the Pregel exactly once?

Das Haus vom Nikolaus

Find a way through the labyrinth!

General Example/Terms

Vertices (*Knoten*): $V = \{a, b, c, d\}$

Edges (*Kanten*): $E = \{e_1, e_2, ..., e_8\}$

Incidence mapping (Inzidenzabbildung):

 $I = \{(e_1, \{a, b\}), (e_2, \{a, c\}), \dots, (e_8, \{a\})\}$ defines which edges connect which vertices

Loop (Schlinge):

Edge is incident on a single vertex

parallel edges:

Edges are incident on the same vertex

Simple (schlichter) graph: has neither loops nor parallel edges

Definition: Graph

A (non-directed) graph G consists of a

- set of vertices (or nodes, Knoten) V
- set of edges (Kanten) E
- incidence mapping I that maps edges to vertices
- Adjacency (Adjazenz)
 - the two nodes a, b of an edge e are called adjacent
- Incidence (*Inzidenz*)
 - the edge e that connects the nodes a, b, is incident on a and b
- If V is countably infinite, then G is called an infinite graph

Visualization: Graph Drawing

- Graphs are visualized by drawing vertices and edges
- There are many different diagrams for the same graph don't confuse the graph with its drawing

$$V = \{p, q, r, s, t\}$$

$$E = \{\{p, q\}, \{p, s\}, \{p, t\}, \{q, r\}, \{q, s\}, \{q, t\}, \{r, s\}, \{s, t\}\}$$
 Simplified notation for simple graphs

Directed Graphs

A directed (gerichteter) graph G consists of a

- set of vertices V
- set of directed edges E
 - consisting of ordered pairs of vertices $(a, b) \in V \times V$
 - a is called start node
 - b is called end node

Degree of a Vertex – Undirected Graphs

- degree (*Grad*) of vertex x_i : $d(x_i)$ = number of incident edges
- Degree sum formula for a graph with n vertices and k edges:

$$\sum_{i=1}^{n} d(x_i) = 2k$$

Degree of a Vertex – Directed Graphs

- outdegree (Ausgangsgrad) $d^+(x_i)$ = number of edges starting at x_i
- indegree (Eingangsgrad) $d^-(x_i)$ = number of edges ending at x_i
- Degree sum formula for a graph with n vertices and k edges:

$$\sum_{i=1}^{n} d^{+}(x_{i}) = \sum_{i=1}^{n} d^{-}(x_{i}) = k$$

Complete Graph

- a graph is called complete (vollständig) if there is an edge from each node to each other
- a complete (undirected) graph with n nodes has $\binom{n}{2}$ edges

Walks

A sequence of adjacent edges from vertex v_0 to $v_n(v_0, v_1)$, (v_1, v_2) , ..., (v_{n-1}, v_n) is called a walk (Kantenfolge, Kantenzug) of length n

Edges and vertices may be repeated

• closed walk: $v_0 = v_n$

Walk from x to z (but not a trail or path): 1, 7, 7, 2 (x, y, w, y, z)

Trail (Weg): A walk, where all edges are pairwise disjoint

Trail from x to z (but not a path): 6, 8, 3, 9, 7, 2 (x, w, z, u, w, y, z)

Trail (Weg): A walk, where all edges are pairwise disjoint

• Closed trail (*Kreis*): $v_0 = v_n$

Closed trail (but not a cycle): 6, 5, 4, 9, 7, 1 (x, w, v, u, w, y, x)

Path (Pfad): A walk, where all vertices are pairwise disjoint

Path from x to z: 6, 5, 4, 3 (x, w, v, u, z)

Path (Pfad): A walk, where all vertices are pairwise disjoint

• Cycle (Zyklus): closed path $v_0 = v_n$ (Start-/end nodes are exempt from the rule that all vertices must be pairwise disjoint)

Cycle: 6, 8, 2, 1 (x, w, z, y, x)

Walks – Summary

- A sequence of adjacent edges from vertex v_0 to $v_n(v_0, v_1), (v_1, v_2), ..., (v_{n-1}, v_n)$ is called a walk (Kantenfolge, Kantenzug) of length n
 - edges and vertices may be repeated
 - closed walk: $v_0 = v_n$
- Trail (Weg): A walk, where all edges are pairwise disjoint
 - Closed trail (Kreis): $V_0 = V_n$
- Path (Pfad): A walk, where all vertices are pairwise disjoint
 - Cycle (Zyklus): closed path $v_0 = v_n$ (Start-/end nodes are exempt from the rule that all vertices must be pairwise disjoint)

Note: These terms are not used consistently in the literature

Connection

- Two nodes v, w are called connected (verbunden) if there is a path from v to w
- A graph G is said to be connected (zusammenhängend) if and only if all pairs of vertices of G are connected
 - each connected graph with n vertices has at least n-1 edges
- A connected component (*Zusammenhangskomponente*) of G is a connected subgraph G(U) induced by a set of vertices $U \subseteq V$ that has the maximum number of vertices possible

Connection – Example

- r is an isolated vertex
- s and t are connected
- s and y are not connected
- This is **one** graph. The graph is disconnected
- it consists of three connected components
 - {r}
 - {s, t}
 - {x, y, z, u, v, w}

Vertex Separator

- A vertex separator (*Trenner*) is a subset of vertices of a graph that separates the graph into distinct connected components if removed (together with the incidental edges).
- Special case: A single vertex is called separating (trennend) if, after removing this vertex (and the incidental edges), the residual graph has more components than before.
- Examples
 - there are no separating nodes in the graph on the previous slide
 - in the following graph, only v is a separating vertex:

• A cut (Schnitt) is a partitioning of a graph induced by removing a set of edges (cut-set)

• Examples: W u

Graph Isomorphism

• Two graphs G_1 and G_2 are said to be isomorphic (isomorph) if and only if there exists a bijective mapping h of vertex set V_1 to V_2 such that

$$\forall v, w \in V_1: \{v, w\} \in E_1 \Leftrightarrow \{h(v), h(w)\} \in E_2$$

- i.e., if (v, w) is an edge of G_1 then (h(v), h(w)) is an edge of G_2
- G_2 emerges from G_1 by renaming the vertices
- isomorphic graphs have the same properties
- h is called isomorphism and denoted as $G_1 \simeq G_2$

Graph Isomorphism – Example

isomorphic: nodes renamed (and drawn rotated)

not isomorphic: different number of vertices and edges

Graph Isomorphism – Example

isomorphic: vertices renamed and moved

not isomorphic: same number of vertices & edges, but connected differently

Graph Isomorphism – Exercise

Which of the following graphs are isomorphic? In case of isomorphism, give a bijective mapping of the vertices!

Weighted Graphs

- Assign values to the edges of a graph: this is called a weighted (gewichteter) graph
- Examples:
 - Distances/Lengths
 - Time
 - Costs
 - Probabilities
- in some cases, negative weights can be useful
 - however, these lead to problems with distance calculations
 - therefore, it is assumed here that weights are not negative
- unweighted graph: special case, all weights equal 1

Weighted Graphs

Length of a walk: Sum of all edge weights

- Distance d(v, w) of two vertices v, w:
 - Minimum of all walks from v to w
 - If there is no walk: $d(v, w) = \infty$

Distance between a and d: 140

Adjacency Matrix

- Representation of a graph in matrix form
- Graph with n edges results in an n x n matrix A
- The elements a_{ii} of A for a given labeling of the vertices are

$$a_{ij} = \begin{cases} 1, & \text{if } (x_i, x_j) \text{ is an edge of the graphen} \\ 0 & \text{otherwise} \end{cases}$$

- A is called adjacency matrix (Adjazenzmatrix) of the graph
 - symmetric for non-directional graphs
 - in general asymmetric for directed graphs
 - weighted graphs: Use edge weights instead of 0 and 1

Adjacency Matrix – Example

order of vertices is arbitrary!

$$\mathbf{A} = \begin{pmatrix} 0 & 50 & 0 & 0 & 60 \\ 50 & 0 & 70 & 110 & 100 \\ 0 & 70 & 0 & 50 & 200 \\ 0 & 110 & 50 & 0 & 80 \\ 60 & 100 & 200 & 80 & 0 \end{pmatrix}$$

Adjacency Matrix – Example/Exercise

$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

$$A = ?$$

Adjacency Matrix – Directed Graphs

- Powers A^r of the adjacency matrix A give us information about existence and number of walks in directed graphs
- Number of different walks of length r from x_i to x_j = element a_{ij} of matrix A^r
- Graph with n vertices is acyclic (azyklisch), if there exists an r with $1 \le r < n$ such that: $A^r \ne 0$, but $A^s = 0 \ \forall \ s > r$

This is said to be a Directed Acyclic Graph (DAG)

Powers of the Adjacency Matrix – Example

Graph with n vertices is acyclic (azyklisch), if there exists an r with $1 \le r < n$ such that $A^r \ne 0$, but $A^s = 0 \ \forall \ s > r$

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\mathbf{A}^{2} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \mathbf{A}^{3} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \mathbf{A}^{4} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\mathbf{A}^3 = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\boldsymbol{A}^4 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

all powers A, A^2 , A^3 , A^4 are unequal $0 \Leftrightarrow \text{graph has cycles}$

Path Matrix

• The path matrix (Wegematrix) W indicates whether a path from x_i to x_j exists:

$$w_{ij} = \begin{cases} 1, & \text{if there exists a path from } x_i \text{ to } x_j \\ 0 & \text{otherwise} \end{cases}$$

• W can be obtained by adding up all relevant powers of the adjacency matrix $A + A^2 + A^3 + ... + A^n$

and replacing all non-zero elements by 1

Path Matrix – Example

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \mathbf{A}^2 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \mathbf{A}^3 = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \mathbf{A}^4 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\boldsymbol{A}^2 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\mathbf{A}^3 = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\boldsymbol{A}^4 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Path Matrix – Exercise

- 1. Determine the adjacency matrix and its powers.
- 2. What can be said about the graph from these results?
- 3. Determine the path matrix

Data Structures

- Adjacency matrix
 - undirected graphs: it is sufficient to store half the matrix
 - often contains many zeros
- Adjacency list
 - Linked list of vertices
 - for each vertex: contains a linked list of its neighbors
 - more compact than the adjacency matrix

Adjacency List – Example

