Properties of the Differential Amplifier

Tommaso Bertelli

CO-526-B - Electronics Lab

Instructor Uwe Pagel

24/11/2024

1 Introduction - Prelab

1.1 Simulation of a Differential Amplifier

Measured voltages and currents:

 $V_{BE} = -47.09 - (-720.71) = 767.8 \text{mV}, \ V_C = 5.382 \text{V}, \ I_C = 2.099 \text{mA}, \ I_E = 2.109 \text{mA}, \ I_{RE} = 4.219 \text{mA}.$

By changing one transistor the V_{BE} , V_C , I_C , I_E values are not symmetric anymore (ex.: $V_C(Q1) = 5.911V$, $V_C(Q2) = 4.837V$), therefore the circuit cannot work properly.

2. Single ended input analysis

Green line: $V_C(Q1)$, blue line: $V_C(Q2)$. (peak to peak: 2.923V)

To calculate A_{Vdiff} I need V_{od} and $V_{id}.$

Top pane: V_{o1} , bottom pane: V_{i1} $V_{id} = V_{i1} - V_{i2} = 100 \text{mV}$ peak to peak $V_{od} = V_{o1} = 3 \text{V}$ peak to peak $A_{Vdiff} = 20 log(\frac{V_{od}}{V_{id}}) = 29.5 \text{ dB}.$

3. Common mode input analysis

 $V_C({\rm Q1})$ and $V_C({\rm Q2})$ are overlapping. (peak to peak: 49.17mV). To calculate A_{Vcm} I need V_{oc} and $V_{ic}.$

Top pane: V_{o1} , bottom pane: V_{i1}

$$\begin{split} V_{ic} &= (V_{i1} + V_{i2})/2 = 100 \text{mV peak to peak} \\ V_{oc} &= V_{o1} = 49.18 \text{mV peak to peak} \\ A_{Vcm} &= 20 log(\frac{V_{oc}}{V_{ic}}) = \text{-}6.16 \text{ dB}. \end{split}$$

4. Common mode rejection

 $CMRR = 20log(\frac{A_{Vdiff}}{A_{V}cm}) = 35.7 \mathrm{dB}.$ current source: 4.219 from top to bottom

5. Replacing R4 by equivalent current source

6. Analyses using the current source

$(a) \ \, \mathbf{DC} \, \, \mathbf{operation} \, \, \mathbf{point} \, \, \mathbf{analysis}$

$$V_{BE} =$$
 -47.11 - (-720.74) = 767.85mV, $V_C =$ 5.381V, $I_C =$ 2.099mA, $I_E =$ 2.109mA, $I_{RE} =$ 4.219mA. (current source)

By changing one transistor the V_{BE} , V_C , I_C , I_E values are not symmetric anymore (ex.: $V_C(Q1) = 5.913V$, $V_C(Q2) = 4.841V$), therefore the circuit cannot work properly.

(b) Single ended input analysis

Green line: $V_C(Q1)$, blue line: $V_C(Q2)$. (peak to peak: 2.95V)

To calculate A_{Vdiff} I need V_{od} and $V_{id}.$

Top pane: V_{o1} , bottom pane: V_{i1} $V_{id} = V_{i1} - V_{i2} = 100 \text{mV}$ peak to peak $V_{od} = V_{o1} = 2.95 \text{V}$ peak to peak $A_{Vdiff} = 20 log(\frac{V_{od}}{V_{id}}) = 29.4 \text{ dB}.$

c

(c) Common mode input analysis

 $V_C(\mathrm{Q1})$ and $V_C(\mathrm{Q2})$ are overlapping. (peak to peak: $21.93\mu\mathrm{V}$).

To calculate A_{Vcm} I need V_{oc} and V_{ic} .

Top pane: V_{o1} , bottom pane: V_{i1}

$$\begin{split} V_{ic} &= (V_{i1} + V_{i2})/2 = 100 \text{mV peak to peak} \\ V_{oc} &= V_{o1} = 21.93 \mu\text{V peak to peak} \\ A_{Vcm} &= 20 log(\frac{V_{oc}}{V_{ic}}) = \text{-}73.28 \text{ dB}. \end{split}$$

(d) Common mode rejection

$$CMRR = 20log(\frac{A_{Vdiff}}{A_{V}cm}) = 102.6 \text{dB}.$$

_

2 Experimental Set-up and Results

2.1 Differential amplifier using a fixed emitter resistor

- 1. COMPARE DC VALUES
- 2. CMRR calculation

Output voltage in single ended mode:

Output voltage in common mode:

Since the input is $100 \mathrm{mV}$ peak to peak

$$V_{vdm} = 20log \frac{3300}{100} = 30.4 dB$$

$$V_{vcm} = 20log \frac{51.5}{100} = -5.76 dB$$

$$\text{CMRR} = 20 log \frac{V_{vdm}}{V_{vcm}} = \frac{\frac{3300}{100}}{\frac{51.5}{100}} = 36.1 \text{dB}$$

2.2 Differential amplifier using a current source

- 1. COMPARE DC VALUES
- 2. CMRR calculation

Output voltage in single ended mode:

Output voltage in common mode:

The output voltage in common mode is too small to be precisely measured by the oscilloscope, for the calculation I'll use the simulated value instead (21.93 μ V peak to peak).

Since the input is 100mV peak to peak

$$V_{vdm} = 20log \frac{3180}{100} = 30.05 dB$$

$$V_{vcm} = 20log \frac{0.0219}{100} = -73.2 dB$$

CMRR =
$$20log \frac{V_{vdm}}{V_{vcm}} = \frac{\frac{3180}{100}}{\frac{0.0219}{100}} = 83.2 dB$$

3. Performance comparison

While using a fixed emitter resistor the differential voltage gain is almost the same as when using a current source (30.4dB vs 30.5dB), the common mode rejection ratio is around 224 times bigger when using a fixed current source (36.1dB vs 83.2dB).

3 Lab 3 Prelab

3.1 Biasing of Bipolar Junction Transistor

1. Calculations

- 1. (a) Calculate V_B , V_E , V_{CE} , and V_C .
 - (b) Calculate I_B , I_E , and I_C .

LTSpice simulation

3.2 Constant Current Source

1. Calculations and simulation on LTSpice

2. $R1 = 215\Omega$, $R2 = 993\Omega$

3. To have a constant current V_{CE} has to be higher than 0.3V (from 2N2222 datasheet) to stay in active mode. So the condition for RL is $V_{RL} < V_{CC} - 0.3V - V_2 = V_{RL} < 4.7V$ so R_L must be lower than $\frac{4.7}{0.004} = 1175 \Omega$.

4. Max R_L in LTSpice

At 1275Ω the current is 4mA, at 1375Ω the current is 10% less (3.6mA).

3.3 Amplifier circuit

2. DC operation point values

$$I_C = 0.011 \; \text{A}, \, I_B = 54.7 \; \text{uA}$$
 $V_B = 5.87 \text{V}, \, V_E = 5.15 \; \text{V}, \, V_C = 9.09 \text{V}, \, V_B E = 0.12, \, V_C E = 3.94 \text{V}$

3. Transient analysis at $50 \mathrm{mV}$

Green line: V_B : 17.7mV peak to peak, red line: V_{BE} : 15.4mV peak to peak.

Green line: V_i : 20.5mV peak to peak, blue line: V_o : 2.67V.

Gain: $\frac{V_o}{V_i} = 130$.

4. Harmonic distortion analysis

According to the FFT the harmonic distortion is similar between $50 \mathrm{mV}$ and $100 \mathrm{mV}$ as input amplitude and is much worse when using $200 \mathrm{mV}$.

1.4

5. AC analysis

6. Bandwidth measurement

 $\begin{array}{l} {\rm Lower~\text{-}3dB~frequency:~326.2~Hz} \\ {\rm Upper~\text{-}3dB~frequency:~479.5~kHz} \end{array}$

Bandwidth: 479.3 kHz