CSC 505, Spring 2018 Homework #1

1)

(a) If f(n) is O(g(n)) then g(n) is O(f(n))

Sol: FALSE

Counter example:

Let $f(n) = 2n^2$

 $G(n) = n^3$

 $2n^2 <= c1 n^3$

Divide the equation by n³

→ 2/n <= c1

 \rightarrow C1> = 2/n

→ If we put n=1

→ C1>=2.

→ Now put n=2

→ C1>=1

→ Considering the most restricted value for c1, we can say that c1>=2.

 \rightarrow Since we have found an lower bound for c, we can say that f(n) is O(g(n)).

 \rightarrow Where f(n) = $2n^2$ and G(n) = n^3 .

Now consider g(n) is O(f(n)):

 $N^3 \le c2 * 2n^2$

- → Divide the whole equation by n²
- → N <= c2 * 2
- \rightarrow C2 >= n/2
- → C2 is a constant and being bounded to the value on n.
- → Since n is a variable here, we cannot get a bounding for c.
- \rightarrow Thus, g(n) is not O(f(n)).
- → Hence proved.

(b) If f(n) and g(n) are both ≥ 1 for sufficiently large n, and f(n) is O(g(n)), then $\lg f(n)$ is $O(\lg g(n))$.

Sol: TRUE

Given: f(n) = O(g(n))

$$\rightarrow$$
f(n) <=c * g(n)

- → Multiply by log on both sides of equation
- \rightarrow Log f(n) <=log(c* g(n))
- → Log f(n) <= log c + log(g(n)) [log(a*b) = log a + log b]
- → Log f(n) <=logc + log(g(n)) <= c' * log(g(n)) if we consider a new constant c' and multiply with log(g(n)), it's value will be greater than a constant c added to log(g(n))
- $\rightarrow \log(f(n)) \le c' * \log(g(n))$

Hence proved.

(c) If f(n) is O(g(n)) then g(n) is $\Omega(f(n))$.

Sol: TRUE

 \rightarrow Given: f(n) <=c1 * g(n)

- → now divide both sides by c1
- → 1/c1 * f(n) <=g(n)
- → g(n) >= 1/c1 * f(n)
- → Since 1/c1 is also constant, we can replace it with c2
- \rightarrow g(n) >=c2 * f(n)
- \rightarrow This is the definition of g(n) is $\Omega(f(n))$.
- → Hence proved

(d) f(n) is $\Theta(f(n/2))$.

Sol: False

Counter example:

To prove that f(n) is $\Theta(f(n/2))$, we need to prove that f(n) is O(f(n/2)) and f(n) is O(f(n/2)).

First taking Big O:

Consider $f(n) = e^{y}$

- → $f(n/2) = e^{y/2}$
- → Assume it holds for Big O
- → $e^{y} <= c e^{y/2}$
- → Divide both sides by e^{y/2}
- \rightarrow $e^{y} / e^{y/2} < = c * e^{y/2} / e^{y/2}$
- $ightharpoonup e^{y/2} <= c$
- → Here we cannot bound value for c.
- \rightarrow Thus that f(n) is not O (f(n/2))
- → Therefore f(n) is not $\Theta(f(n/2))$.

```
Team members :
Harika Malapaka ( hsmalapa)
Bhanu Sreekar Reddy karumuri (bkarumu)
```

(e) If g(n) is o(f(n)) then f(n) + g(n) is O(f(n))

Sol: TRUE

Given:

$$g(n) < c1 * f(n)$$

 \rightarrow divide the equation by f(n)

$$\rightarrow$$
g(n)/f(n) < c1

To prove f(n) + g(n) is $\Theta(f(n))$, we need to prove

$$f(n) + g(n)$$
 is $O(f(n))$ and $f(n) + g(n)$ is $\Omega(f(n))$

- \rightarrow f(n) + g(n) <= c2 * f(n)
- → divide the whole equation by f(n)
- \rightarrow 1 + g(n)/f(n) <= c2
- \rightarrow 1 + (c3) <=c2 where (c3 <c1.) from above equation which is in bold
- → We can see that there is bound for the value c2.
- → The value of c2 should be greater than or equal to some constant (1+ c3)
- \rightarrow Thus f(n) + g(n) is O(f(n))

Now consider f(n) + g(n) is $\Omega(f(n))$

- → F(n) + g(n) >= c4 * f(n)
- → Divide the equation by f(n)
- → 1+ g(n)/f(n) >= c4
- → 1+ c3 >=c4 from above equation which is in bold
- → Here also we have a bound for c4.
- → It should be smaller than some constant (1 +c3)

Therefore f(n) + g(n) is $\Omega(f(n))$

$$f(n) + g(n)$$
 is $\Theta(f(n))$.

Hence proved.

Team members:

Harika Malapaka (hsmalapa)

Bhanu Sreekar Reddy karumuri (bkarumu)

2)

(a) Let
$$f(n) = 2n^3 + 7n^2$$
 prove that $f(n) \in O(n^3)$.

Sol:

Method 1:

Concider: $2n^3 + 7n^2 \le 2n^3 + 7n^3$ for all $n \ge 1$

- \rightarrow 2n³ + 7n² <= 9n³
- → $2n^3 + 7n^2 \in O(n^3)$

For a constant c, where c=9 in this above case.

- \rightarrow Hence there exists a constant c >1 and n_0 >=1 for the above functions
- → Hence proved.

Method 2:

There exists c,n such that

- \rightarrow 2n³ + 7n² <=cn³ for n>n0.
- → Divide both sides by n³
- → 2 +7/n< =c
- → If n=1 then c<=2+7
- **→** C>=9
- → If n=2, 2+3.5 <=c
- **→** C>=5.5
- → Taking the most restricted value for c, which is c>=9, we have found a bound for the value c, the above statement is correct.
- \rightarrow Thus $2n^3 + 7n^2 <= 9n^3$
- \rightarrow Hence there exists a constant c >1 and $n_0 >= 1$ for the above functions
- → Hence proved.

(b) Let $f(n) = 3n^3 - 5n^2$ and prove that $f(n) \in \Omega(n^3)$.

Sol: Method 1:

There exists c, no such that

 $3n^3 - 5n^2 > = c * n^3$ for n > n0.

Divide both sides of equation by n³

- → 3 -5/n <=c
- → If n=5 :
- **→** 3-1 <= c
- **→** c>=2.
- → There fore, we have found a bound for the value of c.
- → Thus,
- \rightarrow f(n) $\in \Omega(n^3)$ where f(n) = $3n^3 5n^2$.

Method 2:

Let $3n^3 - 5n^2 >= 3n^3 - n^3$ for n >= 5

- \rightarrow 3n³ 5n² >= 2n³
- → Here we can write it as
- → $3n^3 5n^2 > = cn^3$ where c=2
- → Since we have found a bound for c, this statement is true.

Thus $f(n) \in \Omega(n^3)$.

Where $f(n) = 3n^3 - 5n^2$.

(c) Let $f(n) = 8n^3 + 4n^2$ and prove that $f(n) \in O(n^4)$. Note that the exponent on n is 4

Sol: Method 1:

There exists c, n such that

Let $8n^3 + 4n^2 <= cn^4$ for n > n0

Divide the equation by n⁴

$$8/n + 4/n^2 <= c$$

Put n=2, we get

4+1 <=c

- **→** C>=5
- → Therefore we have found a bound for the value c.
- → Thus this statement is valid.
- \rightarrow Hence f(n) \in O(n⁴) where f(n) = $8n^3 + 4n^2$

Method 2:

Let $8n^3 + 4n^2 <= 8n^4 + 4n^4$ for n >= 1

Ex : put n=1.5

8*3.375 + 4(2.25) <=8 (5.0625) + 4(5.0625)

27 +10 <=60.75

We can see that 37<=60.47

Thus we can write it as

$$8n^3 + 4n^2 <= 12n^4$$

- **→** $8n^3 + 4n^2 ∈ O(n^4)$
- → Hence prove

```
Team members :
Harika Malapaka ( hsmalapa)
Bhanu Sreekar Reddy karumuri (bkarumu)
```

Q3)

(a)
$$T(n) = 15T(n/4) + n^2$$

Sol:

A=15

B=4

$$F(n) = n^2$$

$$\rightarrow$$
 $N^{logb(a)} = n^{log 4 (15)} = n^{1.95}$

- → Now compare f(n) with N^{logb(a)}
- → We can take case 3 of Master's theorem,
- → If $f(n) = \Omega(n\log^{b(a)-\epsilon})$, then $T(n) = \Theta(f(n))$
- \rightarrow Here we have f(n) = n² and N^{logb(a)} = n^{1.95}
- \rightarrow When we compare both, if f(n) is larger, the Master's theorem says that T(n) = $\Theta(f(n))$.
- \rightarrow Thus we can say that case 3 applies and T(n) = $\Theta(n^2)$.

(b)
$$T(n) = 2T(n/2) + n lg^2 n$$

Sol:

A=2

B=2

 $F(n) = n \lg^2 n$

$$N^{\log b (a)} = n^{\log 2(2)} = n$$

Here we cannot compare F(n) and N^{log b (a)}.

So Master's theorem cannot be applied.

The alternate method is tree/levels method.

Let T(1) =c where c is a constant

$$\rightarrow$$
 n/2^k =1

→ cost/instance when there the instant size is 1 is c

level	No of instances	Instant size	Cost/instances	Total cost
0	1	n	nlog ² n	N log ² n
1	2 ¹	n/2 ¹	n/2 log ² n/2	Nlog ² n/2 ¹
2	2 ²	n/2 ²	$n/2^2 \log^2 n/2^2$	$N \log^2 n/2^2$
	•••			
•••	•••	•••	•••	•••
i	2 ⁱ	n/2 ⁱ	$n/2^{i}\log^{2}n/2^{i}$	N log ² n/2 ⁱ
k	2 ^k	n/2 ^k	С	C * 2 ^k

$$\rightarrow$$
 c * 2^k + $\sum_{i=0}^{k-1}$ n log² n/2ⁱ

•
$$c * 2^k + n[\sum_{i=0}^{k-1} \log^2 n - \log^2 2^i]$$

•
$$c * 2^k + n[(K * log^2 n) - \sum_{i=0}^{k-1} i^2]$$

•
$$c * 2^k + n[(K * log^2 n) - (0 + 1 + 2^2 + 3^2 + ...(k-1)^2)]$$

•
$$c * 2^k + n[(K * log^2 n) - \{ (k-1) k (2k-1) / 6 \}]$$

•
$$c * 2^k + nk log^2 n - n[(2k^3 - k^2 - 2k^2 - k)/6]$$

•
$$c * 2^k + nk log^2 n - n[(2k^3 - 3k^2 - k)/6]$$

•
$$c * 2^k + nk log^2 n - n [(2log^3 n - 3 log^2 n - log n)/6]$$

Arranging in descending order of terms, we have

$$n/3 \log^3 n + + nk \log^2 n + n/2 \log^2 n + n/6 * (logn) + c * 2^k$$

Therefore the highest order term is nlog³ⁿ

$$T(n) = O(n \log^3 n)$$

Team members:

Harika Malapaka (hsmalapa)

Bhanu Sreekar Reddy karumuri (bkarumu)

(c)
$$T(n) = 4T(n/2) + n^2 \lg \lg n$$

A = 4

B=2

$$F(n) = n^2 \lg \lg n$$

$$N^{\log b (a)} = n^{\log 2(4)} = n^2$$

Now we cannot compare F(n) with N log b (a)

So Master's theorem cannot be applied.

The alternate method is tree/levels method.

Let T(1) =c where c is a constant

→
$$n/2^k = 1$$

→ cost/instance when there the instant size is 1 is c

level	No of instances	Instant size	Cost/instances	Total cost
0	1	n	N ² log ² n	N ² log log n
1	4 ¹	n/2 ¹	$(n/2^1)^2 \log^2 n/2$	$N^2 * (\log \log n/2^1)$
2	4 ²	n/2 ²	$(n/2^2)^2 \log^2 n/2^2$	N^2 *(loglog n/2 ²)
•••	•••	•••		
•••	•••	•••		
i	4 ⁱ	n/2 ⁱ	$(n/2^{i})^{2} \log^{2} n/2^{i}$	N^2 *(log log n/2 ⁱ)
k	4 ^k	n/2 ^k	С	C * 4 ^k

$$c * 4^k + \sum_{i=0}^{k-1} n^2 \log \log n/2^i$$

$$c * 4^k + n^2 [\sum_{i=0}^{k-1} log(log n - log 2^i]$$

$$c * 4^k + n^2 \left[\sum_{i=0}^{k-1} \log(k-i) \right]$$

$$c * 4^k + n^2 [log(k-0) + log(k-1) + log(k-2)....log(k-(k-1))]$$

$$c * 4^k + n^2 [log(k * (k-1) * (k-2) * ...(2) * (1)]$$

$$c * 4^k + n^2 log(k!)$$

Since n=2^k

K=log n

$$\rightarrow$$
 c * 4 $\log n + n^2 \log (\log n!)$

→ rearranging the terms in decreasing order, n² log(log n!) is the highest order term

 \rightarrow therefore T(n) = O(n² log (log n!))

(d)
$$T(n) = 5T(n/4) + n / lg^2 n$$

Sol:

A=5

b=4

$$f(n) = n/lg^2 n$$

 $n^{\log b (a)} = n^{\log 4(5)} = n^{1.15}$

Now we compare F(n) with N^{log b (a)}
Comparing with case 1 of Master's theorem,

→Even if we consider € as very small value, n^{1.15-€} will be growing at a rate greater than f(n)

Ex : consider € = 0.15.

 $n^{\log b (a) - \epsilon} = n^1$, this function still grows faster than $n/\lg^2 n$

We can even plot the values and see that $n^{\log b (a) - \epsilon}$ grows faster than f(n).

→Even if we change € by small values, the growth rate of f(n) is still smaller than n log b (a).

Now the case 1 of Master theorem where $T(n) = T(n) = \Theta(n^{1.15})$

- ⇒Because f(n) has the power of one over n in numerator and because of $\lg^2 n$ in the denominator, it's growth rate will be slower than $n^{1.15-\epsilon}$ even for small values for ϵ .
- \rightarrow The growth rate of \lg^2 n is much high, and since it's in denominator, the overall growth rate of f(n) will be diminishing compared to $n^{\log b \, (a)}$
- \rightarrow So assuming case 1 of Master's theorem is applicable, we get T(n) = $\Theta(n^{1.15})$

```
Team members :
Harika Malapaka ( hsmalapa)
Bhanu Sreekar Reddy karumuri (bkarumu)
```

Q4)

(a) Prove that the number of key comparisons during insertion sort is ≥ the number of inversions in the original array. Under what condition is the number of key comparisons equal to the number of inversions?

Sol:

Algorithm for insertion sort:

```
For j=1 to n
key=arr[j];
i=j-1;
while(i>=0 && ++compare>0 && arr[i]>key)

arr[i+1]=arr[i];
inversion++;
i--;

arr[i+1]=key;
```

- → The counter for compare in while loop will determine the number of times comparison has been made in the algorithm
- → The counter for inversions inside the while loop will determine the number of inversions that have been made by the algorithm.
- → In best case (where elements are sorted in correct order), the number of comparisons will be n-1 where n is the number of elements in the array.

```
This is because \sum_{j=1}^{n-1} 1 = 1 + 1 + 1...(n-1 \text{ times}) = n-1
```

- → In best case (where elements are sorted in correct order), the array is sorted in correct order, so there are no inversions required. Thus number of inversions required is 0.
- → In worst case, where array elements are sorted in reverse order, number of comparisons is

$$\sum_{j=1}^{n-1} j = 1 + 2 + + (n-2) + (n-1) = n(n-1)/2$$

→ In worst case, where array elements are sorted in reverse order, number of inversions is $\sum_{j=1}^{n-1} j = 1 + 2 + + (n-2) + (n-1) = n(n-1)/2$

→ Considering both best and worst case :

n-1 >= 0 (LHS is comparisons in best case and RHS is inversions in best case) -- for n>= 1 n(n-1)/2 >= [(n(n-1)/2] (LHS is comparisons in worst case and RHS is inversions in worst case) -- for n>= 1.

Thus always the number of comparisons is always greater than or equal to inversions in insertion sort.

 \rightarrow In worst case, the number of comparisons is equal to number of inversions.

(b) What is the worst-case number of key comparisons as a function of the number of inversions. Your answer should be in the form I(A) + f(n), where I(A) is the number of inversions in A and f(n) is a function of n. Prove your answer.

Sol:

Here we want a worst case (maximum) for the function f(n).

Considering best case:

I(A) – No of inversions

Let C(A) equal to number of comparisons

$$I(A) = 0$$

$$C(A) = n-1$$

So
$$I(A) + f(n) = C(A)$$

- \rightarrow F(n) = C(A) I(A)
 - \rightarrow F(n) = (n-1) (0)
 - \rightarrow F(n) = n-1

Consider the worst case:

$$I(A) = n(n-1)/2$$

$$C(A) = n(n-1)/2$$

So
$$I(A) + f(n) = C(A)$$

- \rightarrow F(n) = C(A) I(A)
- \rightarrow F(n) = n(n-1)/2 n(n-1)/2 =0
- \rightarrow F(n) = 0

Since we are looking for upper bound on f(n), we consider best case where f(n) = n-1.

```
Team members :
Harika Malapaka ( hsmalapa)
Bhanu Sreekar Reddy karumuri (bkarumu)
```

Q5)

(a) Modify Merge-Sort so that it returns the number of inversions in its input (array or list). Prove that your algorithm is correct. This is much easier if you use the linked-list version and recursion invariants (see lecture notes titled recursive list algorithms on the Moodle site).

Sol:

The algorithm for Merge sort using linked list representation is:

```
Mergesort(L) is
Inversion1,inversion2,inversion3= 0
List_A, inversion1 +=MergeSort(firstHalf(L))
List _B, inversion 2+= MergeSort(secondHalf(L))
                                                                // inversion while calling first half of list
                                                               // inversion while calling second half of list
List C, Inversion3+= Merge(List A,List B)
Return inversion1+inversion2+inversion3
end MergeSort
Merge(L1, L2) is
       Int inversion=0
        if L1 is empty then return L2, inversion
        else if L2 is empty then return L1, inversion
        else if first(L2) < first(L1) then
                inversion ++
                Merged List, Merged inversion = Merge(L1, rest(L2))
        // We return the list and the inversion count in each instance
                return (first(L2) + MergedList) , (inversion + Merged_inversion)
        Else
                Merged_list, Merged_inversion = Merge(rest(L1), L2)
                return (first(L1) + Merged list), (inversion + Merged inversion)
```

end Merge

Correctness of the algorithm:

The algorithm works correctly because it will count the number of inversion which are happening while sorting 2 sublists independently.

And while combining the 2 sorted sublists, we again compare the elements of 2 submists before merging.

So

(b) Suppose there are no inversions in the original list, i.e., the list is sorted to begin with. Exactly how many key comparisons does Merge-Sort do in this case? What if the list is in reverse order? You may assume that n, the number of elements, is a power of 2 to get an exact answer.

Sol:

Number of comparisons in merge sort :

Case 1:

When an array is sorted in ascending order:

- When there are n elements in the list where n=2^k
- The first element in list 1 would be less than first element in list 2
- The same is with all elements in list 1 and list 2
- Therefore in this manner the number of comparisons is n/2 in merge step.
- So considering a recursive call , let C(n) be the number of comparisons.
- C(n) = 2 C(n/2) + n/2
- Since we divide 2 times a list into 2 halves, we get n/2 as the new size in recursive call.
- These 2 recursive calls are from the Merge sort step.
- And since this is done twice we have 2 * C(n/2).

Case 2:

- When an array is sorted in reverse order:
- When there are n elements in the list where n=2^k
- The first element in the list is greater than the first element of list2.
- The same is with all elements in list 1 and list2.
- Therefore in this manner the number of comparisons is n/2 in merge step.
- So considering a recursive call, let C(n) be the number of comparisons.
- C(n) = 2 C(n/2) + n/2
- Since we divide 2 times a list into 2 halves, we get n/2 as the new size in recursive call.
- These 2 recursive calls are from the Merge sort step.
- And since this is done twice we have 2 * C(n/2).

Team members :

Harika Malapaka (hsmalapa)

Bhanu Sreekar Reddy karumuri (bkarumu)

Now if we add the 2 recursive calls and merge step comparisons, we get:

$$C(n) = 2 C(n/2) + n/2$$

Taking forward iteration method:

C(1) = 0 base case

Because if we have only 1 element, the number of comparisons is 0.

$$C(2^1) = 2 C(1) + 1 = 2 (0) + 1 = 1$$

$$C(2^2) = 2 C(2) + 2 = 2 (1) + 2 = 4$$

$$C(2^3) = 2 C(4) + 4 = 2 (4) + 4 = 12$$

....

$$C(2^k) = K * 2^{k-1}$$

$$C(2^k) = \log n * 2^k / 2$$

$$C(2^k) = \log n * n/2$$
 since $n = 2^k$

There fore number of comparisons in merge sort is *n/2 logn* when the elements are sorted in both ascending or descending order.