

----- a ρ{®≤<u>€</u>∏-----

{ŷÁª ®υ≤ἆ ςμρ† φΦη∏νæ∏, ρ®ῶ ±
• ϥ∏ῶ ≠ρκCRYPTOUNIT INC. – ΒVI
2020/07

www.cryptounit.cc

 $\sum \sigma^{a} \rho \{ \text{RSE} \bigcap \text{CRYPTOUNIT INC } \phi^{a} \rho \bigcap \text{pu} \text{pu} \neq \text{tu} \sum \rho \bullet \rho \bigcap \text{pp} \rho \text{s} \text{u} \text{C} \pi \text{ x.} \# + \rho \hat{u} \text{C} \} \phi \text{PE} \bigcap \text{tu} \text{C} \pi \tilde{N}$ $\hat{a} \prod_{i} \sigma \tilde{N} \hat{u} \neq \rho \sum_{i} \hat{u} \rho \bigcap \text{pu} \rho \# \# \text{s} \text{cash} \text{s} \text{CRYPTOUNIT INC. } \hat{u} \text{ ii} \prod_{i} \sigma \hat{u} \text{ ii} \prod_{i} \sigma \hat{u} \text{ ii} \text{$

æffi

- 1. y ð^a gû ∏
- 1.1 æ $\prod \rho \Re \hat{\mathbf{u}} \pm \hat{\mathbf{u}} \delta \neq \hat{\mathbf{r}}$
- $1.2 \leq \rho T \neq \rho$
- 1.3 û p±å çü ft pæ€
- 1.4 y l † ρθ ς û Ʊ
- 1.5 $\rho \pm \hat{\mathbf{u}} \ \rho + \hat{\mathbf{u}} \ \hat{\mathbf{u}} \$
- **1.6** Ŷ±∑∂ û ρ{ð≠€ρπ □û ∑ρ
- 1.7 $\hat{\mathbf{u}} \hat{\mathbf{v}}$ $\hat{\mathbf{a}} = \mathbf{v} \cdot \mathbf{v$
- 1.8 $y \le \pm \oplus \rho \hat{\mathbf{y}} \hat{\mathbf{u}} \hat{\mathbf{u}} \hat{\mathbf{v}} \bullet \rho \pm J \hat{\mathbf{d}} \prod \tilde{\mathbf{N}} \hat{\mathbf{E}} \hat{\mathbf{v}} \partial \pm \varsigma \pi \hat{\mathbf{v}} \hat{\mathbf{y}} \hat{\mathbf{r}} \hat{\mathbf{f}} \pm \varsigma \hat{\mathbf{Y}} + \sum \hat{\mathbf{f}} \hat{\mathbf{J}}$
- 1 , ® Σ ½ ® ů ψ ρ ô
- 2.1. ≤ų∏ ∑
- 2.2. $a \neq \hat{x} \not p \pm z$ $A \to \hat{x} a \not p \neq \hat{p}$
- 2.3. Ñû ©ức }†ρουΒŷĐ®û ΰ
- 2.4. ∂ \hat{w} \hat{w} : $\check{z} \sum A \neq \check{w}$ \hat{v} \hat{v}
- 3. $\emptyset \partial \bigcap \mathbb{R} \hat{\mathbf{u}} \pm$
- 3.2. $\hat{\mathbb{H}}^a$ \mathbb{C} $\hat{\mathbf{u}}$ $\ddot{\mathbf{u}}$ $\hat{\mathbb{H}}^\pm + \rho$ $\check{\mathbf{z}} \sum \hat{\mathbf{p}}^a$ \emptyset ρ
- 3.3. $\Re \hat{\mathbf{u}} \pm \infty \rho \Pi \hat{\mathbf{u}} \Pi \hat{\mathbf{u}} \in \mathbb{R} \tilde{\mathbf{N}} \pi \rho \mathbf{u}$
- 3.4. $\pi \circ \sum \leq \mathbf{u} \text{ The } \ddot{\mathbb{E}} \circ \tilde{\mathbf{g}} \circ \neq \prod$ $\mathring{\mathbf{u}} \circ \tilde{\mathbf{g}} \circ \leq \mathbf{g} \pi \circ \tilde{\mathbf{g}} \circ \tilde{\mathbf{g}}$
- 3.5. $\partial \dot{\rho} \sum \vec{\partial} \hat{u} \not\models \rho \not\mid \Pi$
- 3.6. p∏/ Ŷ± □∞ z ª Ï®± p¬∀♥ §
- 4. $\Re \hat{\rho}$ $\hat{u} \rho y \pm \hat{\mu}^a$
- 5. Ŷ±ª € ὑτἰ ∂
- 5.1. úīi ∂ û d∏i
- 5.2. z Æmi úü ∂
- 5.3. û ρ± **å**ς ὑτἰ ∂
- 5.4. ≠û ± αî ï ứũ ∂

1. y ð^a gû ∏

1.1 $\text{æ} \prod_{i} \rho \text{@} \hat{\mathbf{u}} \hat{\mathbf{u}} \hat{\mathbf{v}} \neq \hat{\mathbf{r}}$

$$\begin{split} & \sum \emptyset \mid^{a} \not\in \leq \vec{T} \ \tilde{N} \hat{u} \ \text{ $a \in T$} \ \rho \otimes \hat{u} \pm \hat{u} \in y \ \text{o} \mid \theta^{\circ} \ \hat{u} \in y^{\circ} \ \text{$a \in T$} \ \hat{u} \in \mathcal{B} \ \text{$b \in T$} \ \hat{u} \in \mathcal{B} \ \hat{u} \in \mathcal$$

 $\pm \varnothing \stackrel{\circ}{\text{Li}} \stackrel{\circ}{\text{Li}}$ • η Πμ̂ ≠ρχε θε ¥ Ισο≠ ∂ ≠ Øρ± / ° ρε ± / Δ Β Β ° Σ Προμ Τ + ρ γ σοῦ η Πι Øρ± ῦ Τ + Θ Η $\sum \emptyset \mid {}^{a} \not\in \leq T \tilde{N} \hat{u} \quad \mathring{u} \quad \mathring{w} \leq \not\triangleq \mathbb{R} \text{e. } \tilde{N} \hat{u} \quad \mu \not\ni 0; \quad \rho \leq \pm \hat{a} \quad \prod \sum \rho \bullet \quad \rho \cap T \hat{u} \neq \rho \text{e. } \text{e. } \vec{F} \quad \exists \emptyset \neq y \quad \hat{v} \quad \sum \emptyset \hat{v} \neq \hat{\rho} \quad \mathcal{C} \leq \mathbb{C}$ \pm \emptyset τι Π^{μ} $y \pm \hat{\mu} \rho \hat{r} \leq ||\varpi \hat{\rho}| \propto \rho \pm c \leq \hat{a} \hat{n} = \hat{\mathbb{I}} \pm \rho ||\widehat{\mathbb{I}} \hat{\mathfrak{g}}|| + \rho \pm \rho \hat{\mathbb{A}} \hat{\mathfrak{g}} \hat{\mathbb{N}}, \bullet \hat{\mathfrak{g}} \hat{\mathbb{I}} \hat{\mathbb{I}}$ $\{ \leq \pi_{\epsilon} \otimes \pm \emptyset \text{ dian} \mid \exists \in G \in \mathcal{F} \}$ • $\emptyset \text{ dian} \mid \exists \emptyset \cap G = G \text{ dian}$ • $\emptyset \text{ dian} \mid \exists \emptyset \cap G = G \text{ dian}$ • $\emptyset \cap G = G \text{ dian}$ • $\hat{\mathbf{u}} \prod \hat{\mathbf{z}} \hat{\mathbf{u}} \neq \mathbf{E} \hat{\mathbf{o}} \mathbf{H} \hat{\mathbf{d}} \hat{\mathbf{r}}^{\dagger} \mathbf{O}^{\bullet} \mathbf{X} \quad \hat{\mathbf{u}} \in \mathbf{H} \leq \partial \mathbf{\Pi} \} \leq \sum \hat{\mathbf{v}}^{\dagger} \quad \hat{\mathbf{u}} \sum_{\mathbf{p}} \mathbf{e} \cdot \hat{\mathbf{p}} \hat{\mathbf{N}}^{\dagger} \hat{\mathbf{p}} \right] \quad \hat{\mathbf{z}} \hat{\mathbf{\mu}} \hat{\mathbf{p}}^{\bullet} \neq \quad \hat{\mathbf{u}} \prod_{\mathbf{p}} \mathbf{O} \hat{\mathbf{q}} \prod_{\mathbf{q}} \hat{\mathbf{u}} \hat{\mathbf{v}}$ $\mathscr{Z} \circ \mathscr{A} = \mathscr{A} \circ \mathscr{A} \circ$ $\hat{a} \quad \text{$\prod$} \pm \hat{u} \; \ddot{z} \sum \hat{y} \acute{A} \neq \dagger \neq \hat{u} \; \rho \pm \frac{4}{8} \varsigma \hat{a} \quad \text{\prod} \hat{g} \; \varsigma \sum \leq u \text{\prod} \check{v} \; A = \hat{v} \text{n} \text{n}$ • $\mathbf{Y}\neq\hat{\mathbf{u}}$ \mathbf{Y} $\sum_{\mathbf{F}}\mathbf{F}$ $\sum_{\mathbf{F}}\mathbf{$ "{œΠΦΦΦΦΤ"@Ã"[\$"ØÅFB6"6@AFC"@ÂAFC"#ÐAD6@65≠ΦΗΘΘΦΦΦΦ βΡΏγΑ βΕΨΡΑΘΘΘΕΘΗ±αΫ $\emptyset \$ \mu \stackrel{\text{\tiny d}}{=} \underbrace{\text{\tiny d}} \underbrace{\text{\tiny$ $\sum \acute{\boldsymbol{v}} \pm \rho \grave{\boldsymbol{a}} \quad \ddot{\boldsymbol{I}} \neq \hat{\boldsymbol{u}} \quad] \quad \{ \boldsymbol{x} \neq \boldsymbol{I} \not \boldsymbol{v} \quad \hat{\boldsymbol{u}} \in \boldsymbol{\Sigma} \neq \boldsymbol{I} \quad \hat{\boldsymbol{I}} \quad \boldsymbol{x} \neq \boldsymbol{x} \quad \hat{\boldsymbol{w}} \quad \boldsymbol{x} \neq \boldsymbol{x} \quad \hat{\boldsymbol{v}} \quad \boldsymbol{x} \neq \boldsymbol{x} \quad \hat{\boldsymbol{x}} \quad \hat{\boldsymbol{x$ $y \, \hat{\mathbb{Y}} \, \hat{\mathbb{Y}} \, \hat{\mathbb{Y}} \, \pm \neq \rho \tilde{\mathbb{N}} \, \hat{\mathbb{I}} \, \hat{\mathbb{I}} \, \text{ } \, \hat{\mathbb{Y}} \, \hat{\mathbb{Y}}$ $\{ \hat{x} \in \hat{x}$ $\mathscr{O} \mathbb{S}_{p} \times \partial \hat{\mathbb{A}} \ \varphi^{a} \ \varphi^{b} \} \times \hat{\mathbb{C}} \times \mathbb{E} \times$ • $\mathring{v}^a \mathring{p} \neq \mathring{\Box} \mathring{u} \circ \mathbb{R} + \mathring{p} \mathring{a} \mathring{\Gamma} \sum \rho \leq u \mathring{\Box} \mathring{p} ? \mathring{\Box} \mathring{u} \mathscr{O} * \sum \rho \} \leq \pi \mathring{y} \infty \sum \Pi \mathring{u} \rho y \pm \mathring{p} \rho + \pi \mathring{\tau} \rho + \epsilon \sum \rho \mathring{\Box} \mathscr{C} \otimes \mathcal{C}$ y ŀ † ρ∂ ς û Ʊ ∂ Jα Ŵ≠ ∑ρž∑Á≠ Γû Ñ † Ñ≤ų∏ ρ∂ Πæ€μ° ± σύæ û ≠60 H {± û ρ∏μ Π∂ Л $y \circ \sum_{n=0}^{\infty} \nabla_{n} \nabla_{n}$

 $\hat{\mathbf{u}} - \mathbf{p} \pm \varsigma \hat{\mathbf{x}} \hat{\mathbf{u}}$, $\hat{\mathbf{x}} \hat{\mathbf{p}} \hat{\mathbf{p}} \hat{\mathbf{v}}$, $\hat{\mathbf{x}} \hat{\mathbf{x}} \hat{\mathbf$ \leq \mathbf{u} \mathbf{u} \neq \mathbf{x} , $\hat{\mathbf{a}}$ \mathbf{u} $\hat{\mathbf{u}}$ $\hat{\mathbf{u}}$ $\textbf{C} - \textbf{I} \tilde{\textbf{N}} \tilde{\textbf{R}} \partial \tilde{\textbf{I}} \hat{\textbf{r}} \hat{\textbf{p}} \hat{\textbf{a}} \quad \tilde{\textbf{I}} \hat{\textbf{a}} \quad \tilde{\textbf{I}} \hat{\textbf{I}} \quad \tilde{\textbf{I}} \hat{\textbf{e}} \hat{\textbf{a}} \quad \tilde{\textbf{I}} \hat{\textbf{I}} \quad \tilde{\textbf{I}} \hat{\textbf{e}} \hat{\textbf{e}} \hat{\textbf{a}} \quad \tilde{\textbf{I}} \hat{\textbf{e}} \hat{\textbf{e}}} \hat{\textbf{e}} \hat{\textbf{e}}} \hat{\textbf{e}} \hat{\textbf{e}}} \hat{\textbf{e}} \hat{\textbf{e}}} \hat{\textbf{e}} \hat{\textbf{e}}} \hat{\textbf{$ $\mathsf{D} \, - \, \mathring{\mathsf{u}}^{\sim} \sum \rho ^{c_{2}} \neq \, \mathring{\mathsf{u}} \, \, \, \rho \mathbf{e} \, \prod \, \pm \varsigma \hat{\mathbf{f}} \!\!\!\!/ \, \sum \Pi ^{\circ} \, J \!\!\!\!\! \, \underline{\mathbf{f}} \, \mathbf{f} \!\!\!/ \, \, \, \hat{\mathbf{f}} \, \, \hat{\mathbf{f}} \, \hat{\mathbf{f}}$ $\check{z}\sum^a \mathscr{R} \rho \Sigma \Pi \hat{a} \quad \Pi \mathscr{R} \mathring{E} \rho \pi \pm \hat{u} \; \acute{v} \mathscr{R} \mathring{E} \rho \pi \neq \hat{u} \; \Pi + \Omega \widehat{v} \mathscr{R} \Pi \times \widehat{v} \times \widehat{u} = 1$ $F - \mathring{u} \not \not = \delta \leq \infty \not S \not \delta \not = \sum F \not = F \not = \emptyset \not =$ $\hat{\mathbf{u}}$ $\ddot{\mathbf{u}}$ $\ddot{\mathbf{e}}$ $\partial \neq \rho \ddot{\mathbf{e}}$ \mathbf{e} $\leq \mathbf{u} \mathbf{f} \dot{\mathbf{e}} \dot{\mathbf{e}} \dot{\mathbf{e}} \mathbf{f} \dot{\mathbf{e}} \mathbf{f}$ $G - \bullet \rho \Pi \hat{\mathbf{u}} \neq \rho \hat{\mathbf{x}} \hat{\mathbf{u}} \parallel \mathbf{u} \parallel \mathbf{$ $\hat{\mathbf{u}} \in \mathbf{x} \tilde{\mathbf{N}} \stackrel{\text{d}}{=} \hat{\mathbf{g}} \leq \mathbf{u} \hat{\mathbf{\Omega}} \hat{\mathbf{n}} \hat{\mathbf{n}} = \mathbf{x} \hat{\mathbf{u}} \hat{\mathbf{u}} \hat{\mathbf{n}} \hat{\mathbf{$ $H - \sum_{i} \int_{\mathbb{R}^{2}} \sum_{i} py \not \equiv \prod_{i} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \sum_{i} p^{\circ} \prod_{i} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^$ $I - \mathring{u}$ ρû \mathring{A} $\mathring{\mu}$ \mathring{u} $\mu \dagger^a \rho \pm \hat{\mathbf{u}} \rho \bullet \acute{\mathbf{v}} \bullet \rho \mathbf{\hat{\mathbf{u}}} \neq \rho \hat{\mathbf{u}} \in \mathbf{\hat{\mathbf{z}}} \sum^a \alpha \rho \mathbf{\hat{\mathbf{z}}} \mathbf{\hat{\mathbf{u}}} \qquad \mathbf{\hat{\mathbf{z}}} \mathbf{\hat{\mathbf{$ $\beta - \bullet \rho \nabla \hat{u} \neq \rho \hat{u} \in \hat{Y} \Sigma \hat{T} \quad \text{and} \quad \hat{v} \subseteq \rho \hat{u} \neq \rho \hat{u} \in \hat{Y}$ • $\rho = \int \hat{\mathbf{u}} + \rho + \hat{\mathbf{u}} + \hat{$ ü ft ρœρû [♯ρøŞ∑ρμ ₾ Ð∑ û Ͼ° ®± pl' ∂ Π,° ®± pà Ï∑ρ≤y[plð Æ\$≠∑Πî ὑů β≠δ¥ ₩≠ û [‡ €i € $\neq \hat{\mathbf{u}} \quad \hat{\mathbf{u}} \quad \mathbf{y} \uparrow \Pi \pm | \bullet \rho \pm \hat{\mathbf{u}} \quad \rho \uparrow \mathbf{b} \ge \pi, \quad \infty \quad \emptyset \bullet \rho \neq \varsigma \quad \emptyset \Rightarrow \rho \Pi \quad \Delta \quad \mathcal{D} \quad \partial \mathcal{D} \quad \Sigma \quad \mathcal{D} \quad \mathcal$ 1.5 • ρ±û ρ∏ρû ϊæ®αῦ ≠ρ ² ρ(®≤€∏∂ ЉεΪΟμ ≠ ≤ρΦΦΣΠὰ ϊῦ ἡ æø∂ ¥ ±øਚੌ Ψρ ρΠâ Πy û ρ∅ΰû y ± ξενν μ, æβ x Ŷ± û H≤ æξ} ≤π, ∞ • ρ± û ρ∏ρ â Π} φΣύ γ $\{ \leq \pi_{\ell} \otimes \bullet \ \rho \pm \hat{\mathbf{u}} \ \rho \neq \hat{\mathbf{u}} \ \hat{\mathbf{u}} \ \hat{\mathbf{u}} \ \hat{\mathbf{v}} \ \hat{\mathbf{v}} \pm \mathbf{z} \ \hat{\partial} \neq \hat{\mathbf{u}} = \mathbf{v} \neq \hat{\mathbf{v}} + \mathbf{v} + \hat{\mathbf{v}} + \hat{\mathbf{v}} + \hat{\mathbf{v}} = \hat{\mathbf{v}} + \hat{\mathbf{v}} + \hat{\mathbf{v}} + \hat{\mathbf{v}} + \hat{\mathbf{v}} = \hat{\mathbf{v}} + \hat{$ Stryptactic $1 \le 20$ 20 $1 \le 1^a$ $1 \le 1 \le 1$ $1 \le 1$ $1 \le 1 \le 1$ $1 \le 1$ 1 $\hat{\mathbf{u}} \, \rho \sum \hat{\mathbf{k}} \, \rho \, | \, \mathbf{h} \, \mathbf{y} \, | \, \mathbf{x} \, \hat{\mathbf{u}} \, \mathbf{p} \, \mathbf{x} \, \mathbf{h} \, \mathbf{y} \, \mathbf{x} \, \mathbf{y} \, \mathbf{y} \, \mathbf{x} \, \mathbf{y} \, \mathbf{y} \, \mathbf{x} \, \mathbf{y} \, \mathbf{x} \, \mathbf{y} \, \mathbf{x} \, \mathbf{y} \, \mathbf{y} \, \mathbf{x} \, \mathbf{y} \, \mathbf{x} \, \mathbf{y} \, \mathbf{y} \, \mathbf{x} \, \mathbf{y} \, \mathbf{y} \, \mathbf{x} \, \mathbf{y} \, \mathbf{y} \, \mathbf{y} \, \mathbf{y} \, \mathbf{x} \, \mathbf{y} \, \mathbf{y$

 $y \circ \sum \bullet \rho \pm \hat{u} \, d \, D \hat{u} \, \hat{u} \circ \rho \partial \pi \, \hat{u} \, \prod_{\bullet} \Theta \bullet \Box \pi \, \tilde{N} \, y \leq \pm \varsigma \, \varpi \, \partial \, \hat{Y} \, \hat{u} \, \partial \rho \pm \pm \sigma \, \mathring{u} \, \tilde{u} \, \tilde{u} \, S \sum \rho \check{z} \, \sigma \rho \{ \Re \underline{S} \, \Pi \partial \Pi \, \hat{u} \, \hat{u} \, \pm \dot{\Omega} \circ \Phi \, \hat{u} \, \hat{u} \, \hat{u} \, \hat{u} \, \hat{v} \, \hat{u} \, \hat{u}$

• Π $\hat{\mathbf{H}}$ $\hat{\mathbf{H}}$

1∑XÁ≠∑Trì Cociïquy∂ JÁpHû∂qTp#Øvï∑pkj ⊈™®

ủ ρ± ắτ ∑ρἔ∑³ ϭρ∏∂ ͿͰʹØπ ở ϭύ± ρ£ ρὧνÑ] {æ Γπ Ñ ∑θũ Ʊ Γῦ æς μς≤ ϥ∏δÆ‡ ∂ ͿͰʹØπ ± € ῦ €y ∞ς± ± ϭυΪϭͰͰἔϭρ{®≤∏ũ ϊ ΓΝτ ở ∏ν ∑ρ ®τῶ ± ῦ ϊ τῶͰἰ' ϊ ῦ ρ∂ ≠ π ¥ ϭδ∑ρ∑ϭ Ο' ρ≭ ρϭδ Γῦ • ρ∏ῦ ≠ ραῦ €∂ ρ∂ π Π∂ ͿͰʹØπ ở ± ϭυΪϭϼ ϭ SÁ∑Πῶ ἔϭρ{®≤€∏ῦ ϊ ≠ ρ∏ῦ }æ ῦ ρ± ắτ ∑ρ y ˇ ∑ρæ ∂ ͿͰ Øπ ở ϭύ± ς £ ρὧνÑ]

1.8 $\mathbf{y} \leq \pm \mathbf{G} \ \rho \hat{\mathbf{x}} \hat{\mathbf{u}} \ \hat{\mathbf{v}} \bullet \ \rho \pm \mathbf{J} \hat{\mathbf{I}} \ \prod \hat{\mathbf{N}} \hat{\mathbf{W}} \hat{\mathbf{v}} \partial \pm \varsigma \pi \hat{\mathbf{v}} \hat{\mathbf{y}} \hat{\mathbf{r}} \hat{\mathbf{T}} \ \pm \varsigma \hat{\mathbf{Y}} + \sum \hat{\mathbf{J}} \hat{\mathbf{J}}$

2. II , ®∑¥®û p∑k ∂

- ±≠ρâ ∏æ∂ρ
 - ð^a ð̄^o ∑ â ∏Øð þ∑ਿ¹ û æ ¿ Ç
 - ο ζ ο
 - 1 p± ; **Ç**
 - æĎûǽ ; €
 - Øp± ; €

} φ∑ύ†

- ±^a ς± ≤ų[¹] ø± ¹¹ û ρæ û ρ¿ 【Ç
- ûæΩâ ∏ü∉ςûρªûρæ
- y [] ± a a û pe ; [Ç
- † Μπ̂û®y ⊭μη, y ° a Ω · â Π ¹ û ρε û ρ; Ε

🗗 ĝ

- ° \(\sum_{\pi} \) \(\rap{\pi} \)
- Δες∂ἤρ¥ρ ηΠ
- ¥HH # ; C
- ¥φρ; **Ç**
- u\[\sum_\pi \tilde{N}\dig(\tilde{\mathbb{R}}\
- $\hat{\mathbf{u}} : \hat{\partial} \neq \varsigma \hat{\mathbf{a}} \quad \prod \mathbf{y} \ \mathbf{\phi} \mathbf{x} \hat{\mathbf{u}} : \hat{\partial} \neq \varsigma \propto \rho \neq \mathbf{\hat{a}} \quad \ddot{\mathbf{u}} \hat{\mathbf{u}} \hat{\mathbf{c}} \in \mathbf{F}$
- $\hat{\mathbf{u}} \ \ddot{\imath} \partial \neq \varsigma \hat{\mathbf{a}} \ \prod \mathbf{y} \ \mathbf{\hat{q}} \ \mathbf{\hat{u}} \ \ddot{\imath} \partial \neq \varsigma \leq \widehat{A} \prod \hat{\mathbf{u}} \ \mathbf{\hat{p}} \ \mathbf{\hat{q}} \ \mathbf{\hat{q}}$

ž∑p≤d∏

- } $\phi \sum \partial \circ \sigma \neq \rho \otimes \tilde{\rho} \neq \rho \otimes \tilde{\rho} \oplus \tilde{\rho} \otimes \tilde{\rho}$
- \mathscr{E} ø-ð a $\rho \widetilde{\mathscr{O}}$ $^{-a}$ \widehat{u} \mathcal{E} ∂ ρ Σ ∂ \mathscr{E} \sum_{a} \mathscr{E} \sum_{a} \mathscr{E} \sum_{b} $\widehat{\sigma}$ \widehat{J} μ ρ † \mathscr{D} \widehat{J} \widehat{U} \widehat{U}
- $\mu \prod_{j \in \mathcal{N}} \int \rho \partial \phi$ $\mathcal{N} \cap \mathcal{N} \subseteq \mathcal{N} \cap \mathcal{N} \subseteq \mathcal{N} \cap \mathcal{N} \subseteq \mathcal{N} \cap \mathcal{N} \cap \mathcal{N} \subseteq \mathcal{N} \cap \mathcal{N} \cap \mathcal{N} \subseteq \mathcal{N} \cap \mathcal{N} \cap$

2.1. ≤ų∏∑∑

Cryptounit Inc., \Box , R w a p p u c w d p e d p e≤ų∏∑ứ ±ρὰ Ϊ û€Ñû ≤ắ û ť Ϋ± Φ Ø€€û ρ {∏Øρ ∏i ≠ρøŞ y ≤±€æØð∑Πû ť {± \leq $\mathbf{u} \mathbf{v} + \mathbf{p} \hat{\mathbf{u}} = \mathbf{v} \hat{\mathbf{u}} \hat{\mathbf{v}} + \mathbf{p} \hat{\mathbf{u}} = \mathbf{v} \hat{\mathbf{u}} \hat{\mathbf{u}} \hat{\mathbf{v}} + \mathbf{p} \hat{\mathbf{u}} = \mathbf{v} \hat{\mathbf{u}} \hat{\mathbf{u}} \hat{\mathbf{v}} \hat{\mathbf{u}} \hat{\mathbf{u}} \hat{\mathbf{v}} \hat{\mathbf{u}} \hat{\mathbf{$ π**€€**\$ II , R) Σ R R R R R $\pm \infty$ A T \pm $\exists \tilde{\mathbf{N}} \ \partial \ \mathbf{p}^{-a} \leq \tilde{\mathbf{a}} \ \mathbf{x}_{\dot{c}} \ \partial \neq \mathbf{p} \ \ \check{\mathbf{z}} \sum \hat{\mathbf{p}} \ \boldsymbol{x} \in \hat{\mathbf{p}} \\ \mathbf{\hat{\Sigma}} \hat{\mathbf{u}} \ \ \exists \ \hat{\mathbf{u}} \ \boldsymbol{p} \ \boldsymbol{x} \in \hat{\mathbf{v}} \\ \mathbf{\hat{U}} \ \boldsymbol{x} \in \hat{\mathbf{v}} \quad \exists \ \hat{\mathbf{u}} \ \boldsymbol{p} \ \boldsymbol{x} \in \hat{\mathbf{v}} \\ \mathbf{\hat{U}} \ \boldsymbol{x} \in \hat{\mathbf{v}} \quad \exists \ \hat{\mathbf{v}} \ \boldsymbol{x} \in \hat{\mathbf{v}} \\ \mathbf{\hat{U}} \ \boldsymbol{x} \in \hat{\mathbf{v}} \quad \boldsymbol{x} \in \hat{\mathbf{v}} \\ \mathbf{\hat{U}} \ \boldsymbol{x} \in \hat{\mathbf{\hat{U}} \ \boldsymbol{x} \in \hat{\mathbf{v}} \\ \mathbf{\hat{U}} \ \boldsymbol{x} \in \hat{\mathbf{\hat{U}} \ \boldsymbol{x} \in \hat{\mathbf{\hat{U}}} \\ \mathbf{\hat{U}} \ \boldsymbol{x} \in \hat{\mathbf{\hat{U}} \ \boldsymbol{x} \in \hat{\mathbf{\hat{U}} \ \boldsymbol{x} \in \hat{\mathbf{\hat{U}}} \\ \mathbf{\hat{U}} \ \boldsymbol{x} \in \hat{\mathbf{\hat{U}} \ \boldsymbol{x} \in \hat{\mathbf{\hat{U}} \ \boldsymbol{x} \in \hat{\mathbf{\hat{U}} \ \boldsymbol{x} \in \hat{\mathbf{\hat{U}} \ \boldsymbol{x} \in \hat{\mathbf{\hat{U}}} \\ \mathbf{\hat{U}} \ \boldsymbol{x} \in \hat{\mathbf{\hat{U}} \ \boldsymbol{x} \in \hat{$ \leq \mathbf{u} \mathbf{v} $\mathbf{v$ $\mathcal{A} \stackrel{\circ}{\partial} \hat{a} \hat{u} \rho$ $\hat{b} = \mathbb{Z}$ $\hat{b} =$ $\stackrel{\text{\tiny d}}{} \hat{Y} = \sum \vec{\partial} \neq \hat{a} \quad \text{\tiny description} \quad \hat{T} = \hat{X} \quad \hat{Y} = \hat{X} + \hat{X} + \hat{Y} = \hat{X} + \hat{Y} = \hat{X} + \hat{Y} = \hat$ $y ext{ } ext{$ ext{$ o} \hat{\textbf{u}}$ } ext{$ y $ $ $\text{$$\hat{\phi}$} $ $\text{$$\hat{\phi}$} $\text{$$\text{$$}$} $\text{$$\t$ $\begin{array}{l} \leq \psi \prod \circ \pm c \hat{\mathbf{n}} & \ddot{\mathbf{n}} & \ddot{\mathbf{n}} \leq \mathbb{C} \hat{\mathbf{n}} & \hat{\mathbf{n}} & \ddot{\mathbf{n}} + \rho \hat{\mathbf{x}} \hat{\mathbf{n}} \\ \parallel \mathring{\mathbf{n}} & \mathbb{C} \hat{\mathbf{x}} + \mathbb{C} \hat{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} \\ \parallel \mathring{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} \\ \parallel \mathring{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} \\ \parallel \mathring{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} \\ \parallel \mathring{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} \\ \parallel \mathring{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} \\ \parallel \mathring{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} \\ \parallel \mathring{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} \\ \parallel \mathring{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} \\ \parallel \mathring{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} \\ \parallel \mathring{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} \\ \parallel \mathring{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} \\ \parallel \mathring{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} \\ \parallel \mathring{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} \\ \parallel \mathring{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} \\ \parallel \mathring{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} \\ \parallel \mathring{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} \\ \parallel \mathring{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} \\ \parallel \mathring{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} \\ \parallel \mathring{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} \\ \parallel \mathring{\mathbf{n}} \\ \parallel \mathring{\mathbf{n}} & \mathbb{C} \hat{\mathbf{n}} \\ \parallel \mathring{\mathbf{n}} \\ \parallel \mathring{\mathbf{n$ $\partial \vec{v}^{\text{M}} \pi \pounds g \pi \rho \leq \pm, \hat{a} \prod^{\underline{a}} \neq y \not \mid \not = \pi \hat{w} \pounds \pounds - z \infty \rho y \not \mid \not = \leq y \not \mid \not = \hat{E} \hat{g} \hat{u} \ddot{v} \delta^{a} \neq \ddot{I} \neq \rho \hat{u} \hat{v} \hat{N} \hat{u} \approx \rho E \pi \rho \pm C$ $\hat{a} = \prod \partial \overset{*}{\#} x^a \quad \not o \neq \square \hat{u} \quad \bullet \quad \zeta^a \pm \check{z} \sum^a \mathscr{L} o \sum \mathscr{O} \not \omega \pm \Pi \hat{u} \quad \acute{v} \mathscr{L} + \mathscr{L} \otimes \Pi \circ \mathcal{L} \circ \mathcal$ $φ∂ ρ Φε∂ Φρ Γι νΕπ <math>Ψπ {°α Θ Φ} Φ ≤ ν π Σν αρφ ρ σ σ σ σ π α Ψ±± σ ρ ρ αρφ ρ σ φ.$ $\hat{\mathbf{y}} \cdot \hat{\mathbf{x}} \hat{\mathbf{u}} \in \mathbf{x} \cdot \mathbf{z} \cdot$ ¥ρ ρ∏∂ J≵∑ρ≤ρ∏û€; [₹] $\hat{\mathbf{u}} = \mathbf{G} \quad \text{\mathbb{R}^2 } \quad \hat{\mathbf{w}} = \mathbf{G} \quad \hat{\mathbf{v}} = \mathbf{G} \quad \hat{\mathbf{v}$ © Cryptounit Inc. 2020

πρϋ Ππ ή Πι ή β, ҈¥° €, ž∑ρ≤ρ∏â ∏ြ ; ρû€; ξ∂Ӆ±û ïæ∂ð∑ρà Ϊι ύøπ û ∏‡€⁄Л ∂ ØØ û ∏æû ≠€⁄Ӈ

ø∂ ϥϥ϶∂ Φρ∑ΠϿ Ϳͼ ὑϯ] æ∂ Φρ∑ û ϊ æ∂ ϸΦΦ, μπ ϥ â ∏∂ ρ≤± ζΣ≠ρ³ ø øS ὑ ø∂ y † π €10
° Ω ε∂ Ϳ≚ͺʹʹʹʹ μτὰ ϥΤβ μτ β μτω ρæ û Γ⊭ ΘοΗ

2.2. $a \neq \hat{z} \neq z \not\equiv z \not\equiv \hat{z} \Rightarrow \hat{z} \not\equiv \hat{z} \not\equiv \hat{z} \Rightarrow \hat{z} \not\equiv \hat{z} \not\equiv \hat{z} \Rightarrow \hat$

 $\hat{\Psi}^a$ €û ¥ρ ρΠ∂ Ττ ρμ ØρΣû ¥œς π τῶ τῶ τῶν Φυν αΪ≤ Ψ΄ ΣΠὸ ΤΜΕ α΄ € τὰ Γ‡ρ≤æ Φὐ Γ‡ΘΗ• τὸ α ∂• τῶ ∂ α ρπ Θτ τὰ ΘΗΘΜΕ Σρ∂ Τμ τὰ Γρ ±ς Ψὰ υ yỡ ΑΠ ‡ρὰ Πβ Ϊ τ υ yỡ ΑΠ ‡ρῦ €ὰ ρΠ Γ , Ψὰ Θτὰ , Ψὰ Θτὰ Γ‡Θὰ Θαπ ξυ Ατχ α΄ δΑ Αρρῦ ϊ yỡ ΑΠ ‡ρ∂ Τμ Ϊ τ δ τὰ Γὰ Θτὰ Γὰ ρα τὰ τὰ Σρ ρ λΤ Τὰ ς¥±ρÑ Γὰ ± Θὰ ρὰ Σρα τὰ Γ‡Θ Η υ Ατχ α΄ δΑ ρὰ Πὰ Γὰ ΣΠῦ Εαε ¥æ Θτο ρο ± τὰ ζ ΤΕΠῦ Επτ Ñ Ψὰ Θε τὰ τὰ ΜΕ σὰ ρὸ Σρο • ρц ρ

£ ç± â $\Pi \partial \pi \mathcal{C} \sum \rho \partial \mathcal{H} \hat{\mathbf{u}} \hat{\mathbf{v}} \prod \hat{\mathbf{v}} \sum \leq \mathcal{I} \pm \pm \sigma \hat{\mathbf{u}} \sigma \hat{\mathbf{v}} \hat{\mathbf{$

ø∏æρπ, y ∞û æθy ∞û πή ž∑ŷÁ≠†≠ å ĝ ûθ; Ç ∂ JZÆ ∏i≠ΦHi ∏πρμ∅ρ∑û ੈ# Ĉ ûθå û š ≤ û ï ≠πβ û ∏∏∳ΦHGOOGLE â ∏YANDEX ů¦±Πûρ∄¦πΩ' "æβ∏πứι ιμν≠β' û ï αθ ς∂ J±° € ûθ³ ΩΣ ∂ JÑû ŷŏÆ∏ZÆ Ŵθüρ≠ρø\$

2.3. Ñû Cứce }†ρουΒýĐ®û ΰ

$$\begin{split} & \text{II} \ , \text{@N} \textbf{$\hat{\mathbb{A}}$} \text{@û} \ \rho \textbf{$\hat{\mathbb{N}}$} \ \partial \ \sigma \textbf{Π} \ \text{ii} \ \text{ex} \ \hat{\mathbf{u}} \ \hat{\mathbf{v}} \textbf{$\hat{\mathbb{A}}$} \ \text{$\hat{\mathbb{C}}$} \ \hat{\mathbf{u}} \ \text{$\hat{\mathbb{C}}$} \ \hat{\mathbf{v}} \$$

} $\pm \pi$ ΰ† Πî $\Theta \pi$ Ñ• \hat{v} û ß $\mu \varsigma \pm \emptyset$ ΰ• $\rho \pm \neq \emptyset$ Ӈπ Θ $\pm \alpha$ ρð $\neq \alpha$ ∂ Λθ $\pm \alpha$ Θ û Θ ; $\rho \pm \hat{u}$ ργ · $\sum \Sigma \pm \hat{u}$ Γ $\pm \rho \pm \hat{u}$ Θ \oplus Θ \oplus

$$\begin{split} & \sum \! \rho \hat{\mathbf{y}}^{\bullet} \ \pm \hat{\mathbf{u}} \in \!\!\!\! \leq \!\!\! \rho \mathbf{z} \ \in \!\!\!\! \otimes \!\!\! v \ \hat{\mathbf{L}}^{a} \ \mathbb{C} \ \hat{\mathbf{u}} \ \rho \mathbf{y} \ \pm \hat{\mathbf{L}}^{a} \ \hat{\mathbf{a}} \ \prod_{;} \ \rho \!\!\!\!\! + \ \emptyset S \pi \ \mathbf{G} \!\!\!\! \mathbf{i} \ \pm \ z \ \leq \!\!\!\!\! \hat{\mathbf{u}} \in \!\!\!\! \leq \!\!\!\! \rho \!\!\!\! \mathbf{z} \ \mathbf{y} \le \!\!\!\! \pm \!\!\!\! \mathbf{G} \!\!\!\! \mathbf{a} \ \mathbf{y} \ \mathbb{E} \ \hat{\mathbf{u}} \ \mathbb{E} \ \mathbb$$

[©] Cryptounit Inc. 2020

≤€€∏Ŷª€û

2.4. † ¥: • ρ∏ τῶ Ñ † Ñ ≤τῶς τῶπ ∑τ ῶ€ Δτ Ñ Ñũ □ ° ρπ ¥ ² € y ² æ∏

$$\begin{split} & \sum_{\emptyset} \leq \hat{\mathbf{w}} \underbrace{\mathbf{v}} \widehat{\mathbf{T}} \sum_{\emptyset} \hat{\mathbf{v}} \underbrace{\mathbf{T}} \underbrace{\mathbf{v}} \widehat{\mathbf{v}} \mathbf{T} = \underbrace{\mathbf{T}} \underbrace{\mathbf{v}} \widehat{\mathbf{v}} \mathbf{T} + \underbrace{\mathbf{v}} \widehat{\mathbf{v}} \mathbf{T} = \underbrace{\mathbf{v}} \widehat{\mathbf{v}} \mathbf{T} + \underbrace{\mathbf{v}} \mathbf{T} + \underbrace{\mathbf{v}} \mathbf{T} = \underbrace{\mathbf{v}} \mathbf{T} + \underbrace{\mathbf{v}} \mathbf$$

- ° $\Sigma \prod \widehat{\mathbf{L}} \in \mathcal{E} \times \rho E \times \rho E \times \rho E \times \rho \Phi$ $\Delta \Phi \cap \Phi = 0$
- y ∂ **Q** $\hat{\mathbf{q}}$ $\hat{\mathbf{q}}$ $\hat{\mathbf{r}}$ $\hat{\mathbf{e}}$ $\hat{$
- ΣΠΕΣ ΕΤΓ z ∂ ≠ ΦΕΠερθ Φνα Ψα Ε ΨΦη αΕ ∞ΠΕΠ• ΠΡΩ Ñ• ρ≠ΘΗUCITS
 (y ΤΡΦΩ Επε ≥ ijΠα κΑΘ {°α ΘΕΘ Φ {± ή σι η Γπε ε ε ΣΠΡα..)α ≠ λε ρ± ∂ JUCITS IV
 [4] α ρε Επτ ± α ΠΠΡΘΗ• να α 2009 ∂ Jy ≤ ± ρ ρ† ΣρΑρ ΨΦη αΕ ≠ Φ η μα α † Σς Ψ ω ΣΠα α α ω Επλ Να πρε α ΠειδΑρ† ≠ Ψα Εα Πα Επλ Να πρε ±, Ψα Ε Ψ ω ΣΠα Επλ Να πρε ε εξα α ρε εξα α ρε εξα α α εξα α εξα α α εξα α α εξα α

 $\stackrel{\text{\tiny !}}{\mathbb{R}} \sum \partial \pm \hat{\mathbf{u}} \in \mathbf{y} \propto_{\mathcal{C}} \pm \emptyset \prod_{\mathbf{v}} \mathbf{v} = \mathbf{v$

 $\leq \widehat{\mathbf{I}} \widehat{\mathbf{I}} \sum_{\mathbf{i}} \widehat{\mathbf{I}} \leq \partial \operatorname{II} \pi^{\dagger} \mu^{\dagger} + 6.8 \text{ } \widehat{\mathbf{W}} \widehat{\mathbf{I}} \Sigma^{\pm} \sum_{\mathbf{i}} \widehat{\mathbf{I}} \widehat{\mathbf{p}} \widehat{\mathbf{u}} \, \rho \approx \rho \partial \widehat{\mathbf{W}} \widehat{\mathbf{u}} \, \widehat{\mathbf{Y}} \, \stackrel{\circ}{\mathbf{u}} = \mathbb{C} \, \widehat{\mathbf{u}} \, \sum_{\mathbf{p}} \widehat{\mathbf{p}} \otimes \mathbb{S} \, 5,224 \, \widehat{\mathbf{N}} \widehat{\mathbf{A}} \approx \widehat{\mathbf{L}} \, \widehat{\mathbf{I}} \, \widehat{\mathbf{I}} \, \widehat{\mathbf{M}} \otimes \widehat{\mathbf{L}} \, \widehat{\mathbf{I}} \, \widehat{\mathbf{M}} \otimes \widehat{\mathbf{L}} \, \widehat{\mathbf{I}} \, \widehat{\mathbf{M}} \otimes \widehat{\mathbf{L}} \, \widehat{\mathbf{M}} \otimes \widehat{\mathbf{L}} \, \widehat{\mathbf{I}} \, \widehat{\mathbf{L}} \, \widehat{\mathbf{L}} \, \widehat{\mathbf{L}} \, \widehat{\mathbf{L}} \, \widehat{\mathbf{M}} \otimes \widehat{\mathbf{L}} \, \widehat{\mathbf{L}} \,$

[©] Cryptounit Inc. 2020

 $\{\ddot{\mathbf{P}} \mathbf{\acute{A}} \hat{\mathbf{z}} \, \hat{\mathbf{u}} \, \ddot{\mathbf{u}} \, \mathring{\mathbf{P}} \mathbf{\acute{B}} \hat{\mathbf{z}} \, \mathring{\mathbf{L}} \, \mathbb{R} \hat{\mathbf{z}} \, \mathbb{E} \, \mathbb{E}$

3. ø∂ ∰®û ±

3.1. $\pi \ddot{\mathbf{u}} \pounds \mathbf{S}$, $\mathbf{R}\ddot{\mathbf{u}} \pm \hat{\mathbf{a}} \prod \tilde{\mathbf{N}} \mathbf{e} \mathbf{R} \dot{\mathbf{a}}$

ů~ Σ€ Ŷ±ª €û, • ύ Î ¸®δ∑Ŷ±® æÁ∑ú∏®ν®û± (WCRU) û ύü ∏Ø≠ρøS⁴ ύ Ἐπθ¥π ⑥
{°ª ⑥®∂Φ ≤ΰ® ὑπ ∑ύû€æø-∂ρπ û, ∑ρ° ⅀∏ΦηΤὰ ¥±±€ὰρÑû y±\$ρyª æ∏ůρ,≠ û ∏‡ρøŞ• ύû€π Ñû ; Ç∂ΛὰΛΦ ≤ Ϥ∏Σύ ±ρὰ Ϊû€ª ≤∏⊭, Ŷ±ª € ¥ρ• ρ∏û€20 ; ÇΠ∂Λ æËρπ ≠ øύ≠ρø\$
a Şβª û Ŷ±ª € ≤ΰ® ὑπ ∑ύû ρðª ρð~a

I' , \(\mathbb{R} \) \(\mathbb{R} \)

 $\begin{cases} \circ^a \bullet \mathbb{R} \partial \cdot \mathbb{D} \leq i \mathbb{R} \times i \pi \sum_{i \neq j} i \partial_j H_i + \xi \circ \hat{\mathbb{R}} \hat{\mathbb{E}} \hat{\mathbb{E}} + \hat{\mathbb{E}} \hat{\mathbb{E}} \hat{\mathbb{E}} \hat{\mathbb{E}} + \hat{\mathbb{E}} \hat{\mathbb{E}}$

ü ∏Øû€¥øØ365 Ŵ±Πû€πÑŰï•

ø௴ p] ⊚ Cryptounit Inc. 2020

 \blacksquare ΨŰΰχδ \blacksquare $\hat{\mathbf{U}}$ $\hat{\mathbf{U}}$

1 - 180 Ŵ± - Ø∏30 Ŵ±∏∂Л1%

181 - 365 Ŵ± - ø∏30 Ŵ±∏∂Л1.5%

366 - 545 \hat{W} - \emptyset Π 30 \hat{W} Π Π M

731 - 1061 \hat{W} (11 $\partial \omega \pm C$ 12 $\pm \omega \ddot{U}$ - $\omega \Box$ 30 \hat{W} $\pm \Box \partial \omega \pm C$ 5%

 $\mathring{u}^{\sim} \sum \mathbf{G} \ \ \check{z} \sum \mathring{y} \acute{A} \neq \dagger \neq \ \mathbf{H} \leq \mathscr{L} \mathring{\mathbf{Y}} \not\models \mathbf{Y} \varphi \infty \ \ddot{\mathbf{u}} \ \ \prod \mathbf{M} \nearrow \sum \rho \widehat{\partial} \ \rho \hat{\mathbf{n}} \ \ \mathbf{T} \mathring{\mathbf{M}} \mathring{\mathbf{W}} \ddot{\dagger} \ \ \ \mathring{\mathbf{U}} \ \mathring{\mathbf{u}} \ . \pm \ \varnothing \not\models \mathbf{W} \not\models \mathbf{W} .$

$$\begin{split} &\partial_{l}\hat{l}\neq\leq \sqrt{|\mathbf{p}|^{2}}\mathbf{E}\prod_{l}\mathbf{I}^{l}, \text{@}\delta\sum_{l}^{2}\mathbf{E}\otimes(WCRU)\otimes\hat{u}\pm\hat{u}\text{ }\rho\text{ }\tilde{y}\text{ }\tilde{N}\otimes\partial_{l}^{2}\tilde{h}\text{ }\rho\hat{a}\text{ }\Pi y^{\circ}\sum_{l}\mathbf{I}^{l}, \text{@}\hat{u}\text{ }\Pi\mathbf{E}\sum_{l}\hat{u}\in\mathcal{E}\\ &\text{$\mathbb{E}\rho\mathbb{E},$ STO $\tilde{N}\acute{A}\tilde{x}\pounds\mathcal{H}^{l}\sum_{l}\rho\leq\mathcal{L}\leq\tilde{N}\acute{A}\tilde{x}\pounds\mathcal{H}^{l}\hat{u}\otimes\mathcal{E}^{l}\mathcal{H}^{l}\mathcal{H}^{l}\hat{u}\otimes\mathcal{E}^{l}\mathcal{H}^{$$

- □π ŷÁ^a τΜ®τῶ ± (• ὑϋ ρ≠Πῶ€¥ς£ ð^a ≠Ϊτ Η≤ æððÆρ±ρ⊭μ[¥ □ῦ ∑ρ• ρæῦξ ρ) æρ∂ ρ° ∑ y a ðÆρ
- $\mathring{U} \mathring{u}. \pm \ \mathring{\mathbb{R}} \mathring{u} \pm \ \mathring{\mathbb{C}} + \mathring{\mathbb{C}} \mathring{\mathbb{R}} + \mathring{\mathbb{C}} \mathring{\mathbb{C}} + \mathring{\mathbb{C}} \mathring{\mathbb{R}} + \mathring{\mathbb{C}} \mathring{\mathbb{C}} + \mathring{\mathbb{C}} + \mathring{\mathbb{C}} + \mathring{\mathbb{C}} \mathring{\mathbb{C}} + \mathring{\mathbb{$

3.1.1 , π τῶ £ € â ∏®τῶ ±° ρŏ Ţ

- $\pi \ddot{\mathbf{u}} \quad \hat{\mathbf{u}} \in \mathbb{X} \pm \pm \mathbf{G} \quad \rho \approx \partial \sum : 0.5 \approx \mathbf{G} \ddot{\mathbf{I}}^{TM}$
- π τῶ û ρz û ρ∏ 10,000 æðØ∏⊭û

ØΕς Π΄, ®δΣή ±® ±® ûx ®û ± û ύ UNTB û øρ• ρ≠ρ øŞ ∑ρ± €û ϊ Σή ±® ®û ± Ü ÿ , π τ û £ €]

UNTB ($\} \leq \sum \hat{u}^{\dagger} \neq \rho$) $\sum \hat{A} \in \mathbb{R} \hat{u} \pm \ddot{U} \ddot{y} , \pi \ddot{u} \pounds \in]$

æρ∏ κῶ £€ Œð®ð ®ứ ±

- ŴÊû ∏ UNTB
- $\mathbb{R}\hat{\mathbf{u}} \pm \hat{\mathbf{u}} \; \ddot{\mathbf{z}} \; \mathbf{E} \sum_{\mathbf{p}} 8123456789$

- -æ®û ≠ρ 4 ذ ∂π a ðÆρ±Π⊭û
- $\hat{\mathbb{R}}$ $\hat{\mathbf{u}}$ \pm $\hat{\mathbf{r}}$ $\hat{\mathbb{R}}$ $\hat{\mathbb{R}}$ \geq $\hat{\mathbb{L}}$ $\hat{\mathbf{u}}$ $\hat{\mathbb{L}}$ $\hat{\mathbb{L}}$ $\hat{\mathbb{L$

"∏• ðŕ ρ∏ ü ρ≠€∂ Ӆμ€€ ρ≠€H

- ~≤∏æφ̂ ρ 8 123 456 789
- ∂ ΦΦτι ϊ ≤τ ≠ Ε̈æ∂ ρŷ, ≠ : y Á®¥∏ 2030
- $\mathbb{R}\hat{\mathbf{u}} \pm \hat{\mathbf{r}} \stackrel{\text{die}}{=} \mathbb{I}\hat{\mathbf{u}} \stackrel{\text{die}}{=} \mathbb{I}\hat{\mathbf$
- ° $\mathbb{Z}z \neq \varsigma_{\iota}\pi \ddot{\mathfrak{w}} \{\pm \rho \widehat{\mathfrak{d}} \text{ 40 UNTB } \text{ \emptyset'} \text{ ρ} \widehat{\mathfrak{a}} \ \Pi^{\circ} \& \widehat{\mathfrak{u}} \ \Pi^{4} \text{ UNTB } \text{ \emptyset'} \bullet \rho \widetilde{\mathfrak{N}}^{\dagger} \rho \}$ $\{\& \widehat{\mathfrak{w}} \in \mathbb{Z} \neq \wp \text{ UNTB } \& \widehat{\mathfrak{w}} \pm \bullet \rho \text{ possible} \rho^{\circ} \text{ if } \text{ \emptyset'} \neq \rho \text{ so } \mathbb{Z}\}$
- $\ \} \leq \sum \hat{y_i} \hat{u} \neq \rho x \hat{u} \ \rho \neq \hat{u} \ \hat{\iota} \ ^{o} \ \Omega \prod \mathbb{S}^{0} \ \leq \prod WCRU \ @\hat{u} \ \pm \ \hat{u} \ \ddot{\iota} \ \mu \neq \mathring{y}$

UNTB $\hat{\mathbb{R}}\hat{\mathbf{u}} \pm \{|\sum_{a} \hat{\mathbb{T}}\hat{\mathbf{v}} \hat{\mathbf{v}} \sum_{a} \hat{\mathbf{u}} \pm$

- pp iù $\sum \rho \dagger \sum \rho$ UNTB $\hat{\mathbb{R}}\hat{\mathbf{u}} \pm \hat{\mathbb{U}} \neq \mathbf{u}$ iù $\sum \rho \bullet \rho \neq \rho \varnothing$ SWCRU $\hat{\mathbb{R}}\hat{\mathbf{u}} \pm \hat{\mathbf{u}} \in \infty$ pp in this $\hat{\mathbf{v}}$ iù $\hat{\mathbb{V}}\hat{\mathbf{u}}$ is $\hat{\mathbb{V}}\hat{\mathbf{u}}$ in $\hat{\mathbb{V$
- WCRU $\Re \hat{\mathbf{u}} \pm \infty \Pi \ln \Pi \le \Pi 95\%$
- ů ¥ ¥ ∞∑ΠΩ€π Ñ 5%

ð®τι τ ∂ Ντι τ 100 WCRUs $\hat{\mathbf{u}}$ Επ $\tilde{\mathbf{N}}$ μ $\hat{\mathbf{f}}$ ≠ $\hat{\mathbf{p}}$ τ $\tilde{\mathbf{u}}$ $\tilde{\mathbf{N}}$ τ $\tilde{\mathbf{N}}$ UNTBs $\hat{\mathbf{u}}$ τ $\hat{\mathbf{v}}$ ± $\hat{\mathbf{f}}$ ρν $\hat{\mathbf{f}}$ $\hat{\mathbf{e}}$ ΕΣρ \leq \emptyset π ρ ∂ \emptyset ω ρ35.8689 \neq \mathfrak{g} $\mathfrak{g$

1 y $\partial \prod \hat{\mathbf{u}}$ ï æ \mathfrak{A} û ï û ï $\partial \neq \leq \prod \sum \emptyset$ û $\hat{\mathbf{Y}}$ û $\hat{\mathbf{Y}}$ ½ \boxtimes û $\hat{\mathbf{Y}}$ $\partial \rho \emptyset$ \$ 2,468 \emptyset \$

 $\text{II'} \text{ , } \text{\&b} \text{ } \{\hat{u} \text{ } \rho \text{ , } \pi \text{ } \text{\'e} \text{ } \text{\&} \text{ } \delta \text{ } \text{JC}\hat{y}, \pi \text{ } \hat{u} \text{\&} \text{``a } \varphi^{a} \text{ } \rho \text{T} \rho \text{\'e} \text{ } \text{\'e} \neq \text{\&} \text{\'e} \rho \text{\'e} \pm \text{T} \hat{u} \text{\&} \text{\'e} \neq \text{\'e} \text{$

- RAM (π ΰ† û ρæΪ ø (øρ™Τϑû);
- $\alpha \leq \sum \mathring{a}(\hat{u} L, \sum \mathring{M}) \hat{a} \prod \hat{u} L, \sum \mathring{a} E \pm \pi \pi);$

- $\mathbb{R}\hat{\mathbf{u}} \pm \mathsf{WCRU} \otimes_{\boldsymbol{\beta}} \hat{\mathbf{u}} \hat{\mathbf{u}} \uparrow \hat{\mathbf{u}} \hat{\mathbf{u}}$
- WCRU $\Re \hat{\mathbf{u}} \pm \delta A_0 \pm \partial_1 \mathbf{v} \mathbf{v} + \hat{\mathbf{u}} \mathbf{v} \mathbf{v} + \hat{\mathbf{u}} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v}$

80 $\fill \# \fill \fill$

 $\text{I. } \delta \circledast \text{C} \text{ 10-30 } \$ \text{ } \text{\mathbb{L}} \underline{\text{T}} \underline{\text{T}} \pm \text{ $WCRU $} \$ \hat{\textbf{u}} \pm \text{ 12-36 } \partial \text{ out } \Pi \partial \Pi \$ \text{ 0.001 -0.3 } \$ \hat{\textbf{u}} \; \hat{\textbf{u}} \; \hat{\textbf{u}} \partial \neq \hat{\textbf{u}} \boldsymbol{\text{Cap}} \underline{\textbf{P}} \underline{\textbf{E}}$

\$ 10,000,000,000 $\Sigma \rho y \ \, \bar{\mathbb{Q}} \hat{\mathbf{u}} \ \, \hat{\mathbf{u}} \ \, \hat{\mathbf{u}} \ \, \hat{\mathbf{h}} \ \, \hat{\mathbb{H}} \ \, \partial \, \boldsymbol{\Pi}$

- 8 VF π Σ ± WCRU \Re û ± û ï $\neq \prod$ $\pi \neq \rho$ ° Ω y \Re ∂ π μ ρ Δ \mathcal{Y} WorldCru Inc. û \mathcal{Y} $\mathcal{Y$

WCRU $\mathbb{R}\hat{\mathbf{u}} \pm \hat{\mathbf{u}} \ddot{\mathbf{v}} + \hat{\mathbf{u}} \ddot{\mathbf{v}} + \hat{\mathbf{u}} \ddot{\mathbf{v}} + \hat{\mathbf{u}} \rho + \hat{\mathbf$

WCRU $\hat{\mathbb{R}}$ $\hat{\mathbb{G}}$ $\hat{\mathbb{G$

- Ñæβæ û ï ü ∏Ø û €π Ñ 50%
- $\partial \hat{\mathbf{n}} \mathbf{N} \hat{\mathbf{n}} \hat{\mathbf{n}} = 144\% \hat{\mathbf{n}} \mathbf{n} + 144\% \hat{\mathbf{n}} \hat{\mathbf{n}} \hat{\mathbf{n}} \hat{\mathbf{n}} \neq 144\% \hat{\mathbf{n}} \hat$
- $\bullet \quad {}^{a} \geq \rho \hspace{-0.5em} / \hspace$
- $\check{z}\sum\mathring{\sigma}$ \mathring{x} \mathring{x}
- û jπ 100%

3.3. $\mathbb{R}^{\hat{\mathbf{u}}} \pm \tilde{\mathbf{g}} \tilde{\mathbf{u}} + \tilde{\mathbf{u}} \tilde{\mathbf{u}} \tilde{\mathbf{u}} + \tilde{\mathbf{u}} \tilde{\mathbf{u}} \tilde{\mathbf{u}} \tilde{\mathbf{u}} \tilde{\mathbf{u}}$

3.4. $\pi \circ \sum \leq y \operatorname{Ter} \stackrel{\cdot}{\mathbb{E}} \circ \stackrel{\cdot}{\mathbb{E}} \circ \neq \prod - \mathring{u} \partial \mathring{u} \leq \mathscr{O} \pi \stackrel{\text{\'e}}{\text{\'e}} \circ \prod \operatorname{pe} \mathring{u} \not \in \mathring{u} / \pi \operatorname{pu} \mathring{u} + \varsigma \mathring{y}$

 $\pi \circ \sum \tilde{N}_{ee} \otimes \delta \neq \prod$ \$ 10,000,000,000 $\sum \rho y \otimes \hat{u} \otimes S$

12 æ $\mathfrak{S}5\% \neq \hat{\mathfrak{u}} \pi \rho \mu \rho \ddot{\mathfrak{l}} \hat{\mathfrak{u}} \mathfrak{S} \pi \tilde{N} \sum \acute{\mathfrak{v}} \pm \rho \Psi \pm \rho \uparrow \mid \emptyset S$

 $\mathbb{R} \hat{\mathbf{u}} \, \pm \, \infty \rho \, \mathbf{T} \hat{\mathbf{i}} \quad \pi \, \rho \mathbf{u} \, \rho \, \hat{\mathbf{u}} \quad \leq \prod \varnothing \, \mathbf{\Sigma} \, \pi \, \rho \mathbf{u} \, \, \hat{\mathbf{u}} \, \rho \, \hat{\mathbf{u}} \, \hat{\mathbf{Y}} \, \mathbf{P}^{\, o} \, \neq \, \hat{\mathbf{Y}} \, \pm \, \infty \, \rho \, \mathbf{u} \, \mathbf{T} \, \hat{\mathbf{I}} \, \hat{\mathbf{U}} \, \mathbf{C} \, \mathbf{T} \, \tilde{\mathbf{N}} \, \, \partial \, \neq \, \varnothing \, \rho \, \mathbf{L} \, \, \hat{\mathbf{U}} \, \, \mathbf{T} \, \mathbf{I} \, \mathbf{C} \, \mathbf{C} \, \mathbf{T} \, \, \hat{\mathbf{N}} \, \, \partial \, \neq \, \varnothing \, \rho \, \mathbf{L} \, \, \hat{\mathbf{U}} \, \, \mathbf{T} \, \mathbf{I} \, \mathbf{C} \, \mathbf{C} \, \mathbf{T} \, \, \hat{\mathbf{U}} \, \, \hat{\mathbf{U}} \, \, \mathbf{C} \, \mathbf{T} \, \, \hat{\mathbf{U}} \, \, \hat{\mathbf{U}} \, \, \mathbf{C} \, \mathbf{T} \, \, \hat{\mathbf{U}} \, \, \hat{$

3.5. ∂ ρ ∑ 🗗 û ¥ρ ρ 🗍

3.6. • pp/ ½ d∞ z ² k pp 19 €

Tracpac Z 192 ± ± c. (200 7 pm ti po mos			
<i>i</i> . €		} φΣή	æ∂ ģ
15	æρ∂ŀς	1510	æρ∂ ŀ ς
20	â φΣύ†û	2030	
25	} ≤ μ ή 4≠ρ [ª a € ρ∞ς±	2530	}≤μ ύΑ≠ρæ℃ρΣΠ
		2550	
30	}≤μύÁ≠ρ û ϊ ∂Ë∑ υ Ελ	3010	üρφ∑â∏∂Ë∑ü∏pûûïų∏®n€w¥l'ï
	11 1.61	3020	ü φδΣ, ≤ Σ â ∏≠Ł¥ρûå
40	$\hat{g} = \hat{g} $	4010	¥ H
		4020	<u>a</u> a ∞ ůû d∏û€a ĝ
		4030	¥¢ ρ
45	æ ģ ρ± ůἀφ∑ύΤα ϊ	4510	æű ® ∑∏â ∏æ€ſÑI
50	æ£ d∏æ€ðÑÏ	5020	∂ς Ι™ ρâ Π∂±ήΪ ±
60	u∏n Ñð®®	6010	u∏Σπ Ñð®®

4. $\Re \vartheta y \pm \mu^a$

ÑͳςøΰΦρ≠ΰ

Hæ û $\in \mathbb{N}$ æ úæ \mathbb{N}° \pm û $\in \mathbb{N}$ û \oplus î $\pm \notin \rho$ ° $= \mathfrak{Q}$ \times 100 \mathbb{N} å û \mathbb{N} \oplus \mathbb{N}

 $\hat{u} \; \rho \! \partial \; \hat{u} \; \rho y \pm \! \mu^a \; \; \mathbf{24} \; \mathbf{æ} \rho \! \pi$

ûρ±ấ±ς 凸μρ†û€ů∂ μ̈

 $\label{eq:local_problem} \begin{align*}{ll} $\hat{\Sigma} & \hat{\Sigma} & \hat{\Sigma}$

NEEW $\mathbf{i} \leq \hat{\mathbf{u}} \in \mathbf{y} \cdot \sum_{\mathbf{z}} \sum_{\mathbf{z}} \leq \mathbf{j} \mathbf{p} \hat{\mathbf{z}} \hat$

5. Ŷ±ª € • Úĩi ∂

5.1. • úīi ∂ û d∏i

$$\begin{split} \hat{\mathbf{u}} &\stackrel{\cdot}{\boxtimes} \pm \varsigma \pm \hat{\mathbf{u}} \in \pi \ \partial \, \hat{\mathbf{a}} \sum^{a} \, \hat{\mathbf{b}} &\stackrel{\cdot}{\boxtimes} \hat{\mathbf{u}} \in \mathbb{R}^{a} \, \hat{\mathbf{b}} &\stackrel{\cdot}{\boxtimes} \hat{\mathbf{u}} + \hat{\mathbf{c}} &\stackrel{\cdot}{\square} \hat{\mathbf{b}} &\stackrel{\cdot}{\boxtimes} \hat{\mathbf{d}} &\stackrel{\cdot}{\square} + \hat{\mathbf{c}} &\stackrel{\cdot}{\boxtimes} \hat{\mathbf{d}} & \stackrel{\cdot}{\boxtimes} \hat{\mathbf{d}} &\stackrel{\cdot}{\boxtimes} \hat{\mathbf{d}} & \stackrel{\cdot}{\boxtimes} \hat{\mathbf{d}} &\stackrel{\cdot}{\boxtimes} \hat{\mathbf{d}} &\stackrel{\cdot$$

 $\pm \tilde{N} \, \hat{\Psi} \sum \partial \Pi \hat{u} \in \pi \, \rho f \, \text{ for } \text{ for }$

5.3. z **Æ na • úīi** ∂

 $\hat{\mathbf{u}} \stackrel{\cdot}{\boxtimes} \pm \varsigma \mathbf{z} \quad \boxed{A} \hat{\mathbf{m}} \quad \bullet \quad \hat{\mathbf{u}} \stackrel{\cdot}{\mathbf{u}} \partial \Pi \hat{\mathbf{u}} \in \underline{\mathsf{u}} \stackrel{\cdot}{\Pi} \quad \rho \partial \hat{\mathbf{u}} \quad \text{if} \quad \hat{\mathbf{u}} \wedge \rho \in \hat{\mathbf{u}} \quad \hat{\mathbf{u}} \wedge \hat{\mathbf{u}} \quad \hat{\mathbf{u}} \quad \hat{\mathbf{u}} \wedge \hat{\mathbf{u}} \quad \hat{\mathbf{u}} \wedge \hat{\mathbf{u}} \quad \hat{\mathbf{u}} \wedge \hat{\mathbf{u}} \quad \hat{\mathbf{u}} \wedge \hat{\mathbf{u}} \quad \hat{\mathbf{u}} \quad \hat{\mathbf{u}} \wedge \hat{\mathbf{u}} \quad$

1.1. $\partial \stackrel{\checkmark}{\mathbf{a}} \sum \bullet \stackrel{\checkmark}{\mathbf{u}} \stackrel{?}{\mathbf{u}} \partial - \stackrel{\square}{\mathbf{u}} \stackrel{?}{\mathbf{g}} \sum \underset{\sim}{\mathbf{z}} \rho \infty \pm \Pi \widehat{\mathbf{a}} \quad \Pi \stackrel{\checkmark}{\mathbf{u}} \stackrel{\circ}{\mathbf{u}} \stackrel{\circ}{\mathbf{u}} \stackrel{?}{\mathbf{u}} \stackrel{?}{$

1.2. $\begin{aligned} & \begin{aligned} & \begi$

5.4. û ρ±**å**ς• τω ∂

 $\pm \tilde{N} \stackrel{L}{\Psi} \sum \partial \Pi \hat{u} \in \pi \text{ pt } \stackrel{L}{\text{dow}} \bigoplus \nabla \rho \partial \text{ dow} \stackrel{L}{\text{dow}} \stackrel{L}{\Psi} \sum \partial \Pi \partial \mathbb{P} \otimes \pi \text{ pt } \hat{u} \in \hat{u} \text{ pt } \hat{u} \text{ pt } \hat{u} \in \hat{u} \text{ pt } \hat{u} \text{ pt } \hat{u} \text{ pt } \hat{u} \in \hat{u} \text{ pt } \hat{u} \text{ pt } \hat{u} \in \hat{u} \text{ pt } \hat{u} \text{ pt } \hat{u} \text{ pt } \hat{u} \text{ pt } \hat{u} \in \hat{u} \text{ pt } \hat{$

5.5. $\neq \hat{\mathbf{u}} \pm \mathbf{g} \hat{\mathbf{u}} \mathbf{\ddot{u}} \bullet \mathbf{\dot{u}} \hat{\mathbf{u}} \mathbf{\dot{u}} \partial$

- 1. Á $\pi \rho \{\tilde{\mathbb{R}} \approx \tilde{\mathbb{C}} \ \mathbb{C} \} \leq \hat{\mathbb{C}} = \hat{\mathbb{C}$
- 3. $\text{$a\mu\varsigma$} \leq \text{$b''$} \hat{u} \neq \hat{k}$ \hat{u} \hat{v} $\leq \pm \text{$cll}$, $\text{$b''^a$} \text{$i\pi$} \text{$emall} \pi v \hat{L} \bullet \varsigma \pounds \rho \hat{k} \text{Iii} \text{$emall} \neq \Pi i \beta \hat{v}$ \hat{u} $\hat{$
- 4. I ρ \hat{u} \hat{u} $\hat{v} \leq \neq \rho \sigma S \hat{u}$ $y \pm \tilde{N} \hat{y}$ l', $\text{REME} \hat{u} \neq \tilde{v}$ $x(|-\partial \mathcal{C}, \{\tilde{b} \text{RME} \partial \mathcal{S} \mathcal{G} \text{ if } \text{ as } \text{if } \text{ as } \text{if } \text{ if } \text{$

5.6. ¶ **\$**ρø**±€** ρü ≠∏

5.7. $y \mathring{u}^{\sim} \sum \rho \mathfrak{L} \neq \mathscr{R} p \leq y \mathcal{T} \delta \cancel{E} \cancel{F} \sum d$

$$\begin{split} \hat{\mathbf{u}} &\stackrel{\cdot}{\boxtimes} \pm \varsigma \mathbf{h} \cdot \rho \hat{\mathbf{u}} \hat{\mathbf{u}} \stackrel{\cdot}{\wedge} \dagger \hat{\mathbf{n}} \pm \hat{\mathbf{u}} \cdot \hat{\mathbf{n}} + \hat{\mathbf{u}} \cdot \hat{\mathbf{u}} + \hat{\mathbf{u}} \cdot \hat{\mathbf{u}} \cdot \hat{\mathbf{n}} + \hat{\mathbf{u}} \cdot \hat{\mathbf{u}} \cdot \hat{\mathbf{n}} + \hat{\mathbf{u}} \cdot \hat{\mathbf{u}$$