PRÁCTICA CALIFICADA 3 ALGEBRA MATRICIAL Y GEOMETRÍA ANALÍTICA 2020-2

ALUMNO: HUARINGA LAURA, ABEL JONATHAN

Pregunta

1

Correcta Puntúa 2.00 sobre 2.00

Marcar pregunta Considere los puntos A(2;-1;0), B(1;1;-1), C(0;2;1) y D(3;0;2), y sean

- · El plano ${\cal P}$ que pasa por los puntos A, B y D.
- · La recta $\mathcal L$ que pasa por C y es paralela al vector \overrightarrow{AD} .

La ecuación de una recta perpendicular a ${\cal P}$ y que corta a ${\cal L}$ es:

Seleccione una:

$$\bigcirc$$
 a. $(x;y;z)=(-3;-1;-5)+\lambda(5;-1;-3), \lambda\in\mathbb{R}.$

$$\bigcirc$$
 b. $(x;y;z)=(-3;-1;-5)+\lambda(5;-1;3), \lambda\in\mathbb{R}.$

$$\bigcirc$$
 c. $(x;y;z)=(-3;-1;5)+\lambda(5;1;3), \lambda\in\mathbb{R}.$

$$\bigcirc \quad \mathsf{d.} \ (x;y;z) = (2;4;5) + \lambda(-5;1;-3), \lambda \in \mathbb{R}.$$

$$\bigcirc$$
 e. $(x;y;z)=(2;4;5)+\lambda(-5;-1;3), \lambda\in\mathbb{R}.$

$$\bullet$$
 f. $(x;y;z)=(-3;-1;-5)+\lambda(5;1;-3), \lambda\in\mathbb{R}$.

~

$$\bigcirc$$
 g. $(x;y;z)=(-3;-1;-5)+\lambda(-5;-3;1), \lambda\in\mathbb{R}.$

Respuesta correcta

La respuesta correcta es: $(x; y; z) = (-3; -1; -5) + \lambda(5; 1; -3), \lambda \in \mathbb{R}$.

Pregunta

2

Correcta

Puntúa 2.00 sobre 2.00

Marcar pregunta Sean $L_1: P=(x_0;2;2)+t(1;3;3), \ \ t\in R$ y $L_2: P=s(3;3;3), \ \ s\in R$, dos rectas en el espacio. Determine para qué valores reales de x_0 las rectas dadas son alabeadas.

Seleccione una:

- 0 a. $x_0 \neq \frac{2}{3}$
- O b. $x_0 \neq 1$
- \bigcirc c. $x_0
 eq 3$
- \bigcirc d. $x_0
 eq 0$
- e. Ninguna de las respuestas mostradas es la solución
- Of. $x_0 \neq -1$
- Og. $x_0 \neq -3$

Respuesta correcta

La respuesta correcta es: Ninguna de las respuestas mostradas es la solución

Pregunta

3

Correcta

Puntúa 2.00 sobre 2.00

Marcar pregunta Dado el punto $\mathcal{Q}(2;3;-1)$, determine las ecuaciones cartesianas de los planos que distan de \mathcal{Q} en $\sqrt{3}$ unidades y son perpendiculares a la recta \mathcal{L} que pasa por los puntos (1;3;0) y (2;1;1).

Seleccione una:

- \circ a. $\mathcal{P}: x-2y+z+2=0; x-2y+z+8=0$
- O b. $\mathcal{P}: x-2y+z-2=0; x-2y+z+8=0$
- \bigcirc c. $\mathcal{P}: x-2y+z+2=0; x-2y-z+8=0$
- O d. $\mathcal{P}: x-2y+z+2=0; x-2y+z-8=0$
- $P: 2x + 3y z + 5 + \sqrt{18} = 0; 2x + 3y z + 5 \sqrt{18} = 0$
- f. $\mathcal{P}: x-2y+z+5+\sqrt{18}=0; x-2y+z+5-\sqrt{18}=0$

~

Respuesta correcta

La respuesta correcta es: $\mathcal{P}: x-2y+z+5+\sqrt{18}=0; x-2y+z+5-\sqrt{18}=0$

Pregunta

4

Incorrecta

Puntúa 0.00 sobre 2.00

Marcar pregunta Dados los vectores $\overrightarrow{a}=\left(-2;-2\sqrt{2};3\right)$, \overrightarrow{b} y \overrightarrow{c} , tales que $\overrightarrow{b}\times\overrightarrow{c}$ tiene la misma dirección y sentido que $\overrightarrow{v}=(1;1;0)$ y que $\parallel\overrightarrow{b}\times\overrightarrow{c}\parallel=2\sqrt{2}$.

Calcule el valor absoluto del producto mixto $\left[\overrightarrow{a}, \overrightarrow{b} + \overrightarrow{c}, \overrightarrow{c} + \overrightarrow{a}\right]$.

Seleccione una:

- O a. 8
- 0 b. $4 + 4\sqrt{2}$
- O c. $4\sqrt{2}-4$
- O d. $4\sqrt{2}$
- e. Ninguna de las respuestas mostradas es la correcta x

Respuesta incorrecta.

La respuesta correcta es: $4+4\sqrt{2}$

Pregunta

5

Correcta

Puntúa 2.00 sobre 2.00

Marcar pregunta Dados M(4;2;6), N(2;-y;1) y Q(1;-1;3) vértices del cuadrilátero MNPQ. Si se sabe que:

a)
$$Comp_{(0;1;0)}\overrightarrow{MN}=2$$

b)
$$Proy_{\overrightarrow{PO}}\overrightarrow{QN}=rac{2}{3}(1;2;2)$$

Halle el valor de y y las coordenadas del punto H ubicado en el segmento \overrightarrow{PQ} tal que \overrightarrow{NH} es perpendicular a \overrightarrow{PQ} .

Seleccione una:

O a.
$$y=-4$$
 y $H(rac{4}{3};rac{2}{5};rac{1}{3})$

O b.
$$y=4$$
 y $H(rac{1}{3};rac{2}{3};rac{5}{3})$

o c.
$$y = 4 \text{ y } H(\frac{4}{3}, \frac{2}{3}, \frac{1}{3})$$

$$lacksquare$$
 d. $y=-4$ y $H(rac{5}{3};rac{1}{3};rac{13}{3})$

e. Ninguna de las respuestas mostradas es la correcta

Respuesta correcta

La respuesta correcta es: $\,y=-4\,$ y $\,H(rac{5}{3};rac{1}{3};rac{13}{3})\,$

Pregunta

6

Finalizado

Puntúa 5.00 sobre 5.00

Marcar pregunta

Analice el valor de verdad de las siguientes afirmaciones, justificando sus respuestas.

Dados el punto $P_0(3;1;5)$ y la recta L definida por las ecuaciones 2x+y=3;z=4.

- a) Si la recta L_2 pasa por el punto Q(-8;-1;-1) e interseca perpendicularmente a la recta L, entonces la ecuación de la recta L_2 es $P=(-8;-1;-1)+t(8;4;5), t\in\mathbb{R}.$
- b) Si la recta L_1 pasa por el punto P_0 y es paralela a la recta L, entonces la distancia entre las rectas L_1 y L es $\sqrt{\frac{21}{5}}$.
- PC3 P6 20193668.pdf

Comentario:

- a) Bien
- b) Bien

Pregunta

Finalizado

Puntúa 5.00 sobre 5.00

Marcar pregunta

a) Dados los vectores $ec{a}=(-2;1;3)$, $ec{b}=(2;0;4)$ y $ec{c}=(2;-1;4)$, halle $\left[ec{a},ec{b},ec{c}
ight]$.

(1,5 pt)

- b) Sean los vectores \vec{u} , \vec{v} y \vec{w} en \mathbb{R}^3 , tales que:
- Los vectores \vec{u} y \vec{v} forman un ángulo de 30°.
- El vector \vec{w} es perpendicular a los vectores \vec{u} y \vec{v} .
- $||\vec{u}|| = 8, ||\vec{v}|| = 6, ||\vec{w}|| = 4.$

Halle el volumen del paralelepípedo generado por los vectores \vec{u}, \vec{v} y \vec{w} .

(3,5 pt)

PC3 P7 20193668.pdf

Comentario:

- a) bien
- b) bien

anni P

Ploro

