Интеграл Лебега

Опр. 1 Заданная на измеримом пространстве (X, A) измеримая функция $f(x), x \in X$ называется ступенчатой, если множество её значений конечно.

Опр. 2 (интеграл Лебега) Пусть на измеримом пространстве (X, \mathcal{A}, μ) с мерой задана измеримая функция $f(x), x \in X$. Определим для неё интеграл Лебега:

1 этап. Рассмотрим ступенчатую функцию f(x), принимающую попарно различные значения y_1, \ldots, y_n на попарно непересекающихся множествах $A_1, \ldots, A_n, A_i \in \mathcal{A}, i =$ $1,\ldots,n, X=A_1\sqcup\cdots\sqcup A_n.$

1 случай. Если $\mu(X) < \infty$, любая измеримая ступенчатая функция является интегрируемой (суммируемой), полагаем

$$\int_{X} f(x)d\mu = \sum_{k=1}^{n} y_k \mu(A_k); \tag{1}$$

2 случай. Если $\mu(X) = \infty$, измеримая ступенчатая функция интегрируема (суммируема), если из того, что $\mu(A_k) = \infty$ следует, что $y_k = 0$, интеграл для такой функции определяем формулой (1), включая в сумму только слагаемые для которых $y_k \neq 0$.

2 этап. Пусть измеримая $f(x) \geq 0 \ \forall x \in X$, тогда существует последовательность измеримых ступенчатых функций $f_n(x) > 0$: $f_n(x) \uparrow f(x)$ в X.

1 случай. Если $\mu(X) < \infty$, то каждая $f_n(x)$ суммируема. Положим

$$\int_{X} f(x)d\mu = \lim_{n \to \infty} \int_{X} f_n(x)d\mu; \tag{2}$$

если предел в правой части равенства (2) существует и конечен, функция f интегрируема (суммируема) по определению, если бесконечен, то функция f не является суммируемой (интегрируемой), полагаем $\int\limits_X f(x)d\mu=\infty$. 2 случай. Если $\mu(X)=\infty$, может оказаться, что $\exists n_0: f_{n_0}$ не суммируема, тогда

считаем функцию f(x) не суммируемой (не интегрируемой), но полагаем $\int f(x)d\mu = \infty$.

Eсли все $f_n(x)$ суммируемы, действуем так же, как и в случае 1 этапа $\hat{2}$ определения. 3 этап. Ещё не было на лекции.

- 1. На отрезке X=[0,1] задана мера Лебега μ . Вычислите $\int\limits_{Y}D(x)d\mu$, где D(x) функция Дирихле. Является ли функция Дирихле интегрируемой по мере Лебега, если $X = \mathbb{R}$?
- 2. Пусть (X, \mathcal{A}, μ) измеримое пространство с мерой, функция q(x) измерима, f(x)суммируема, $\forall x \in X \ 0 \le g(x) \le f(x)$. Докажите, что g(x) суммируема.
- 3. Пусть (X, \mathcal{A}, μ) измеримое пространство с мерой, f(x), g(x) измеримые функции, $f_n(x), g_n(x)$ – измеримые ступенчатые функции: $\forall x \in X \ 0 \le g(x) \le f(x), \ f_n(x), g_n(x) \ge 0,$ $f_n \uparrow f, g_n \uparrow g$. Положим $\forall x \in X \ \tilde{g}_n(x) = \min(f_n(x), g_n(x))$. Покажите, что $\tilde{g}_n \uparrow g$.
 - 4. Доказать неравенство Чебышева

$$\mu\{x \mid f(x) \ge \varepsilon\} \le \frac{1}{\varepsilon} \int_X f d\mu,$$

предполагая $f(x) \ge 0$ суммируемой, а $\varepsilon > 0$.

Вывести, что если $\int_{Y} f d\mu = 0$, где $f \ge 0$, то f(x) = 0 почти всюду.