Your grade: 100%

Your latest: 100% • Your highest: 100% • To pass you need at least 80%. We keep your highest score.

Next item →

1.	Check all the techniques that can be used to improve the accuracy of detecting objects and encapsulating them entirely within a single bounding box.	1/1 point
	✓ Increase the size of the bounding box until the object fits entirely in it.	
	✓ Use Selective Search technique	
	Scale down the image and then detect the object within it using the bounding box	
2.	Check all that are true for Selective Search.	1/1 point
	✓ Image segmentation is used in this technique	
	☐ The biggest bounding box detected of the smaller objects in the end becomes the final bounding box around the identified object.	
	✓ It tries to identify larger objects by grouping together initially identified smaller objects.	
	⊘ correct Correct!	
3.	The technique of selecting the best bounding box based on the highest intersection over union (IOU) between the true label and several predicted bounding boxes is called non-maximum (NMS). (Hint: it is a one word answer)	1/1 point
	suppression	
	⊘ Correct	

4. Consider the following image, according to the NMS technique which coloured bounding box will be eventually selected as the best bounding box around the football?

1/1 point

O Green	(# 1)
---------	-------

Correct!

O Yellow (# 2)

Purple (# 4)

O Red (# 3)

 $Correct!\ As\ this\ bounding\ box\ encapsulates\ the\ maximum\ area\ of\ the\ object.$ 5. One of the differences between R-CNN and Fast R-CNN is that, Fast R-CNN proposes regions of interest to the 1/1 point input image (generates), whereas in R-CNN regions of interest are expected to be an input (as opposed to generating them) to the model. O True False **⊘** Correct Correct! R-CNN generates regions of interest to the input image, whereas in Fast R-CNN regions of interest are an input (as opposed to generating them). 6. Consider the following code and check all that are true. 1/1 point viz_utils.visualize_boxes_and_labels_on_image_array(image_np_with_detections[0], result['detection_boxes'][0], (result['detection_classes'][0] + label_id_offset).astype(int), result['detection_scores'][0], category_index, use_normalized_coordinates=True, min_score_thresh=.40, Setting use_normalized_coordinates=True indicates that your bounding box coordinates are not normalized, so you want them to be normalized. image_np_with_detections[0] is a numpy array containing the image, and 0 index shows there are multiple input images being passed to this function. min_score_threshis used to leave out object labels and their bounding boxes if their score falls below the set threshold. **⊘** Correct Correct! label_id_offsetis an adjustment in case the 'detection classes' starting index and actual starting index have an offset between them. **⊘** Correct Correct! 7. The following code initializes a model and restores pre-trained weights, detection_model, using the .config 1/1 point configs = config_util.get_configs_from_pipeline_file("xyz.config") model_config = configs['model'] model_config.ssd.num_classes = num_classes model_config.ssd.freeze_batchnorm = True

detection_model = model_builder.build(model_config=model_config, is_training=True)

False

O True

⊘ Correct

Correct! The code here only initializes a new model architecture with "empty" weights and does not restore pre-trained weights.

С	for varName in myModel.trainables:
	print(varName.name)
C	for varName in myModel.trainableVariables:
	print(varName.name)
•	for varName in myModel.trainable_variables:
	print(varName.name)
C	for varName in myModel.Variables:
	print(varName.name)
	⊘ Correct
	Correct!