Lecture 8

Topics:

- 1. Set Operations
- 2. Set Identities
- 3. De Morgan's Law for Set Operations

2.2 Set Operations

Definition 1: Let A and B be sets. The union of the sets A and B, denoted by A U B, is the set that contains those elements that are either in A or in B, or in both. An element x belongs to the union of the sets A and B if and only if x belongs to A or x belongs to B.

This tells us that $A \cup B = \{x \mid x \in A \lor x \in B\}$.

EXAMPLE 1: The union of the sets $\{1, 3, 5\}$ and $\{1, 2, 3\}$ is the set $\{1, 2, 3, 5\}$; that is, $\{1, 3, 5\} \cup \{1, 2, 3\} = \{1, 2, 3, 5\}$

EXAMPLE 3: The intersection of the sets $\{1, 3, 5\}$ and $\{1, 2, 3\}$ is the set $\{1, 3\}$; that is, $\{1, 3, 5\} \cap \{1, 2, 3\} = \{1, 3\}$.

Venn Diagram

A ∪ B is shaded.

 $A \cap B$ is shaded.

Disjoint Set

Definition 3: Two sets are called disjoint if their intersection is the empty set.

EXAMPLE 5:

Let $A = \{1, 3, 5, 7, 9\}$ and $B = \{2, 4, 6, 8, 10\}$. Because $A \cap B = \emptyset$, A and B are disjoint.

Principle of inclusion-exclusion

We are often interested in finding the cardinality of a union of two finite sets A and B. Note that $|\mathbf{A}| + |\mathbf{B}|$ counts each element that is in A but not in B or in B but not in A exactly once, and Be careful not to overcount! each element that is in both A and B exactly twice. Thus, if the number of elements that are in both A and B is subtracted from $|\mathbf{A}| + |\mathbf{B}|$, elements in $\mathbf{A} \cap \mathbf{B}$ will be counted only once.

Hence,
$$|A \cup B| = |A| + |B| - |A \cap B|$$
.

The generalization of this result to unions of an arbitrary number of sets is called the principle of **inclusion–exclusion**. The principle of inclusion–exclusion is an important technique used in enumeration. We will discuss this principle and other counting techniques in detail in Chapters 6 and 8.

Difference of two sets

Definition 4: Let A and B be sets. The difference of A and B, denoted by A – B, is the set containing those elements that are in A but not in B. The difference of A and B is also called the complement of B with respect to A.

Remark: The difference of sets A and B is sometimes denoted by $A \setminus B$. An element x belongs to the difference of A and B if and only if $x \in A$ and $x \notin B$. This tells us that $A - B = \{x \mid x \in A \land x \notin B\}$.

EXAMPLE 6: The difference of {1, 3, 5} and {1, 2, 3} is the set {5};

that is, $\{1, 3, 5\} - \{1, 2, 3\} = \{5\}$. This is different from the difference of $\{1, 2, 3\}$ and $\{1, 3, 5\}$, which is the set $\{2\}$

Complement of a set

Definition 5: Let U be the universal set. The complement of the set A, denoted by A^c, is the complement of A with respect to U.

Therefore, the complement of the set A is U - A.

Remark: The definition of the complement of A depends on a particular universal set U. This definition makes sense for any superset U of A. If we want to identify the universal set U, we would write "the complement of A with respect to the set U." An element belongs to A^c if and only if $x \notin A$.

This tells us that $A^c = \{x \in U \mid x \notin A\}$.

Venn Diagram

Venn diagram for the difference of A and B

Venn diagram for the complement of the set A.

2.2.2 Set Identities

Identity	Name			
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws			
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws			
$A \cup A = A$ $A \cap A = A$	Idempotent laws			
$(A^c)^c = A$	Complementation law			
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws			

Identity	Name		
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws		
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws		
$(A \cap B)^{c} = A^{c} \cup B^{c}$ $(A \cup B)^{c} = A^{c} \cap B^{c}$	De Morgan's laws		
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws		
$A \cup \bar{A} = U$ $A \cap \bar{A} = \emptyset$	Complement laws		

EXAMPLE 10 Prove that $(A \cap B)^c = A^c \cup B^c$

Do it by yourself

Proof of DeMorgan's theorem

EXAMPLE 11 Use set builder notation and logical equivalences to establish the first De Morgan law $(A \cap B)^c = A^c \cup B^c$

Solution: We can prove this identity with the following steps.

$$(A \cap B)^c = \{x \mid x \notin A \cap B\}$$
 by definition of complement

=
$$\{x \mid \neg(x \in (A \cap B))\}\$$
 by definition of does not belong symbol

=
$$\{x \mid \neg(x \in A \land x \in B)\}\$$
 by definition of intersection

=
$$\{x \mid \neg(x \in A) \lor \neg(x \in B)\}\$$
 by the first De Morgan law for logical equivalences

=
$$\{x \mid x \notin A \lor x \notin B\}$$
 by definition of does not belong symbol

=
$$\{x \mid x \in A^c \lor x \in B^c\}$$
 by definition of complement

=
$$\{x \mid x \in A^c \cup B^c\}$$
 by definition of union

$$= A^{c} \cup B^{c}$$
 by meaning of set builder notation

Union and Intersection of several sets

(a) A U B U C is shaded.

(b) $A \cap B \cap C$ is shaded.

Ex 13: Use a membership table to show that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

A	В	C	B U C	A ∩ (B ∪ C)	(A ∩ B)	(A ∩ C).	$(\mathbf{A} \cap \mathbf{B}) \cup (\mathbf{A} \cap \mathbf{C})$
1	1	1	1	1	1	1	1
1	1	0	1	1	1	0	1
1	0	1	1	1	0	1	1
1	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0

EXAMPLE 14: Let A, B, and C be sets. Let A, B, and C be sets.

Show that $(A \cup (B \cap C))^c = (C \cap B \cap A^c)$.

Solution: We have $(A \cup (B \cap C))^c$

- $= A^c \cap (B \cap C)^c$ by the first De Morgan law
- $= A^c \cap (B^c \cup C^c)$ by the second De Morgan law
- = $(B ^c \cup C ^c) \cap A^c$ by the commutative law for intersections
- $= (C \circ \cup B \circ) \cap A^c$ by the commutative law for unions.

Union and intersection of a collection of sets

Definition 6 The union of a collection of sets is the set that contains those elements that are members of at least one set in the collection.

We use the notation $A_1 \cup A_2 \cup \cdots \cup A_n$

$$=\bigcup_{i=1}^{n}$$
, A_i to denote the union of the sets A_1, A_2, \ldots, A_n

Definition 7 The intersection of a collection of sets is the set that contains those elements that are members of all the sets in the collection.

We use the notation
$$A_1 \cap A_2 \cap \cdots \cap A_n = \bigcap_{i=1}^n A_i$$

The end