景润杯试题选(微分方程和空间解析几何)

一、设直线 $L: \frac{x-1}{2} = \frac{y}{1} = \frac{z+1}{-1}$ 在 xoy 平面的投影直线为 L_1 ,在 yoz 平面的投影直线为 L_2 ,

试问 L_1 与 L_2 是否异面?若异面,请求出公垂线段的长度及公垂线方程。(第八届景润杯试题)

- 二、求一条曲线,使它通过点(0,1),且其上任一点P(x,y)处的切线和法线在x轴上截下的 线段长度为 y^2+1 。(第八届景润杯试题)
- 三、设f(x)可微,且满足 $x = \int_0^x f(t)dt + \int_0^x tf(t-x)dt$,求
 - (1) f(x) 的表达式; (2) $\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}} |f(t)|^n dt$ (其中 $n=2,3,\cdots$) (第十一届景润杯试题)
- 四、已知椭球面 Σ : $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ (0 < c < a < b),试求过 x 轴并与曲面 Σ 的交线是圆
- 五、已知两条异面直线为 $L_1: \frac{x-1}{2} = \frac{y+2}{2} = \frac{z+2}{1}$ 和 $L_2: \begin{cases} x=z-2 \\ y=1 \end{cases}$,求此二直线相切的最

小球面方程。(第十五届景润杯试题)

的平面方程。(第十四届景润杯试题)

- 七、已知平面 Π 与平面 Π_1 : 13x-5y-10z+13=0 关于平面 Π_2 : x-2y+3z+1=0 对称,

八、已知 $y = e^{2x} + (1+x)e^x$ 是二阶常系数线性微分方程 $y'' + \alpha y' + \beta y = \gamma e^x$ 的一个特解,