Problem Set 8

D. Zack Garza

November 13, 2019

Contents

1	Prol	blem 1																											
	1.1	Part a																											1
	1.2	Part 2																											2

1 Problem 1

1.1 Part a

Define a map

$$\phi_{\mathrm{ev}} : \hom_{\mathbb{Z}}(\mathbb{Z}_m, A) \to A$$

 $(f : \mathbb{Z}_m \to A) \mapsto f(1)$

Then noting that ϕ_{ev} is a homomorphism, forcing $f(\overline{0}) = 0_A$ (where $\overline{0} : \mathbb{Z}_m \to A$ is the zero map), we must have

$$0 = f(0) = f(m) = mf(1),$$

we must have mf(1) = 0 in A. So

im
$$\phi_{\text{ev}} = \{ a \in A \mid ma = 0 \} := A[m].$$

It is also the case that

$$\ker \phi_{\text{ev}} = \{ f \in \text{hom}_{\mathbb{Z}}(\mathbb{Z}_m, A) \mid f(1) = 0 \} = \{ \overline{0} \},$$

which follows from the fact that $\mathbb{Z}_m = \langle 1 \mod m \rangle$ and $A = \langle 1_A \rangle$ as \mathbb{Z} -modules, so if $f(1 \mod m) = 0_A$ then

$$f(n \mod m) = nf(1 \mod m) = 0$$

and so f is necessarily the zero map. So $ker\phi = \overline{0}$.

We can then apply the first isomorphism theorem,

$$\frac{\hom_{\mathbb{Z}}(\mathbb{Z}_m, A)}{\ker \phi_{\text{ev}}} \cong \operatorname{im} \phi_{\text{ev}} \implies \hom_{\mathbb{Z}}(\mathbb{Z}_m, A) \cong A[m].$$

1.2 Part 2

The claim is that $\mathbb{Z}_n[m] \cong \mathbb{Z}_{(m,n)}$, from which the result immediately follows by part 1. Define a map

$$\phi: \mathbb{Z} \to \mathbb{Z}_n[m]$$
$$x \mapsto x \mod n$$

Then ϕ is clearly surjective, since it is a quotient map, and

$$\ker \phi = \{x \in \mathbb{Z} \ni x \equiv 0 \mod n \text{ and } mx = 0\}$$

$$= \{x \in \mathbb{Z} \ni x \equiv 0 \mod m \text{ and } x \equiv 0 \mod n\}$$

$$= \{x \in \mathbb{Z} \ni x \equiv 0 \mod \gcd(m, n)\}$$

$$= \mathbb{Z}_{\gcd(m, n)}.$$

By the first isomorphism theorem, we have

$$\frac{\mathbb{Z}}{\ker \phi} \cong \operatorname{im} \phi \implies \mathbb{Z}_{\gcd(m,n)} \coloneqq \frac{\mathbb{Z}}{\gcd(m,n)\mathbb{Z}} \cong \mathbb{Z}_n[m].$$