خدمتكم طريق خضناه لرضي الله

2021

أسئلة سنوات فاينال كالكولاس 101

سنافر البوليتكنك

بسم الله الرحمن الرحيم

نقدم لكم نحن أسرة فريق (لجنة السنافر)

مجموعة أسئلة اختبارات إلكترونية تم تجميعها خلال الفصول الماضية سائلين المولى أن يوفقنا وإياكم لكل خير

تنویه

يوجد بعض الأسئلة عليها إجابات قد تحتمل الصواب وقد تحتمل الخطأ فالمنطأ في فإن أصبنا فما هو إلا توفيق من الله وإن أخطأنا فمن أنفسنا

#خدمتكم طريق خضناه لرضى الله #الإتجاه الاسلامي #بسواعدنا نبنيها #لجنة السنافر

#هي لله

$$\int x(1-x)^{99}dx =$$

$$\int \frac{dx}{(9x^2+6x+1)^2} =$$

Select one:

$$\frac{-1}{27(3x+1)^3} + c$$

The maximum value for the integral

$$\int\limits_{0}^{2}\sqrt{x^{3}+2}dx$$
 is

$$0 2\sqrt{12}$$

$$-2\sqrt{10}$$

The maximum value for the integral

$$\int_{0}^{3} \sqrt{x^3 + 3} dx$$
 is

$$\bigcirc$$
 $3\sqrt{3}$

$$\int \frac{dx}{\left(4x^2 + 4x + 1\right)^2} =$$

Select one:

$$\frac{-1}{6(2x+1)^3} + c$$

Given that f'(6)=3 , g'(1)=6 and g''(1)=4 then

c. 15

od. 12

The natural domain of the function

$$f(x) = \frac{2\sqrt{x-2}}{\sqrt{x-2}}$$

- c. R
- \bigcirc d. $\mathbb{R}\setminus\{2\}$

Compute the following integral:

$$\int \sin 5x \cot 5x \, dx =$$

- a.
- b.
- $oldsymbol{o}$ c. $\sin 5x + c$
- \bullet d. $\frac{1}{5}\sin 5x + c$

Evaluate:

- c. 0
- d. 2

Evaluate the following integral:

$$0$$
 d. $\frac{-1}{4x+6}+c$

Evaluate the following limit:

- \bullet d. -3

Evaluate the following limit:

d. 0

Given that $\,f(x)=x^4+16x+1\,$ then

- o. 15
- d. 6

Given that
$$f(x)=rac{x}{x-3}$$
 is a 1-1 function then $f^{-1}(x)=$

$$\bigcirc$$
 c. $\frac{3x}{x+1}$

$$\bigcirc$$
 d. $\frac{3x}{x-1}$

If $y=x^{\lambda}$ satisfies the differential equation :

$$x^2y'' - 12y = 0$$
 , $x > 0$

then the set of all possible values of λ is:

Select one:

$$\bullet$$
 b. $\{-3, -4\}$

$$\bigcirc$$
 c. $\{3, 4\}$

$$\bigcirc$$
 d. $\{-3,4\}$

Given that, $\lim_{x o 1^+} f(x) = 10$, $\lim_{x o 1^-} f(x) = 16$ and f(1) = 4

- b. 10
- c. does not exist
- d. 16

The area of the surface generated by revolving the line segment

$$y = \sqrt{3} x + 1 \quad , \quad 0 \le x \le 2$$

about the x-axis is given by:

Select one:
$$4\pi \int\limits_{0}^{2}(\sqrt{3}\,x+2)\,dx$$
 b.
$$4\pi \int\limits_{0}^{2}(\sqrt{3}\,x+1)\,dx$$

$$ext{le c. } 2\pi \int\limits_{0}^{2} \left(\sqrt{3} \ x + 2 \right) dx$$

$$\bigcirc$$
 d. $2\pi\int\limits_0^2\left(\sqrt{3}\;x+1
ight)dx$

If f is a continuous function then:

Evaluate the following integral:

$$\frac{1}{4x+6}+c$$

Evaluate the following limit:

$$\lim_{x \to 2} \frac{6x-12}{2-x} =$$

c. 6

d. − 6

Evaluate the following integral:

d. $4\tan x^4 + c$

Achieve the following integral:

 \bigcirc d. $-\csc x \cot x + c$

The function $f(x)=\sqrt{x^2-9}$ is decreasing on

- \bigcirc c. $[3,\infty)$
- \bullet d. $(-\infty, -3]$

The range of the function

- c. $[0,2) \cup \{9\}$
- ullet d. $[0,2] \cup \{9\}$

Evaluate the following limit:

- c. −∞
- d. 5

If
$$f(x)=\sqrt[3]{(x-4)^2}$$
 then $f''(x)=$

Select one:

od.
$$\frac{2}{9\sqrt[3]{(x-4)^4}}$$

Given that,
$$\lim_{x o 1^+} f(x) = 5$$
 , $\lim_{x o 1^-} f(x) = 8$ and $f(1) = 4$

$$\lim_{x \to 3^+} f(4-x) =$$
Select one:

- a. 5
- b. does not exist
- c. 4
- d. 8

Using the cylindrical shells method, the volume of the solid generated when the region bounded by

 $x=y^2-3y\,$ and the y-axis if it is revolved about the x-axis, is given by:

Selectione:
$$3 (y^3 - 3y^2) dy$$

b. $2\pi \int_0^3 (3y^2 - y^3) dy$

c. $\pi \int_0^3 (3y^2 - y^3) dy$

$$=$$
 d. $\pi\int\limits_0^3 \left(y^3-3y^2\right)dy$

Evaluate the following limit:

- C. −∞
- d. 5

If
$$f(x)=\sqrt[3]{(x-4)^2}$$
 then $f''(x)=$

Select one:

$$\frac{}{}$$
 d. $\frac{2}{9\sqrt[3]{(x-4)^4}}$