

AP® Computer Science A Elevens Lab Student Guide

The AP Program wishes to acknowledge and thank the following individuals for their contributions in developing this lab and the accompanying documentation.

Michael Clancy: University of California at Berkeley

Robert Glen Martin: School for the Talented and Gifted in Dallas, TX

Judith Hromcik: School for the Talented and Gifted in Dallas, TX

Elevens Lab Student Guide

Introduction

The following activities are related to a simple solitaire game called Elevens. You will learn the rules of Elevens, and will be able to play it by using the supplied Graphical User Interface (GUI) shown at the right. You will learn about the design and the Object Oriented Principles that

suggested that design. You will also implement much of the code.

Table of Contents

Introduction	1
Activity 1: Design and Create a Card Class	3
Activity 2: Initial Design of a Deck Class	5
Activity 3: Shuffling the Cards in a Deck	7
Activity 4: Adding a Shuffle Method to the Deck Class	11
Activity 5: Testing with Assertions (Optional)	
Activity 6: Playing Elevens	19
Activity 7: Elevens Board Class Design	21
Activity 8: Using an Abstract Board Class	25
Activity 9: Implementing the Elevens Board	29
Activity 10: ThirteensBoard (Optional)	33
Activity 11: Simulation of Elevens (Optional)	35
Glossary	39
References	40

Activity 9: Implementing the Elevens Board

Introduction:

In Activity 8, we refactored (reorganized) the original ElevensBoard class into a new Board class and a much smaller ElevensBoard class. The purpose of this change was to allow code reuse in new games such as Tens and Thirteens. Now you will complete the implementation of the methods in the refactored ElevensBoard class.

Exercises:

1. Complete the ElevensBoard class in the Activity9 Starter Code folder, implementing the following methods.

Abstract methods from the Board class:

a. isLegal — This method is described in the method heading and related comments below.
 The implementation should check the number of cards selected and utilize the ElevensBoard helper methods.

```
/**
 * Determines if the selected cards form a valid group for removal.
 * In Elevens, the legal groups are (1) a pair of non-face cards
 * whose values add to 11, and (2) a group of three cards consisting of
 * a jack, a queen, and a king in some order.
 * @param selectedCards the list of the indexes of the selected cards.
 * @return true if the selected cards form a valid group for removal;
 * false otherwise.
 */
@Override
public boolean isLegal(List<Integer> selectedCards)
```

b. anotherPlayIsPossible — This method should also utilize the helper methods. It should be very short.

```
/**
 * Determine if there are any legal plays left on the board.
 * In Elevens, there is a legal play if the board contains
 * (1) a pair of non-face cards whose values add to 11, or (2) a group
 * of three cards consisting of a jack, a queen, and a king in some order.
 * @return true if there is a legal play left on the board;
 * false otherwise.
 */
@Override
public boolean anotherPlayIsPossible()
```

ElevensBoard helper methods:

c. containsPairSum11 — This method determines if the selected elements of cards contain a pair of cards whose point values add to 11.

d. contains JQK — This method determines if the selected elements of cards contains a jack, a queen, and a king in some order.

When you have completed these methods, run the main method found in ElevensGUIRunner.java. Make sure that the Elevens game works correctly.

Questions:

- 1. The size of the board is one of the differences between *Elevens* and *Thirteens*. Why is size not an abstract method?
- 2. Why are there no abstract methods dealing with the selection of the cards to be removed or replaced in the array cards?

3. Another way to create "IS-A" relationships is by implementing interfaces. Suppose that instead of creating an abstract Board class, we created the following Board interface, and had ElevensBoard implement it. Would this new scheme allow the Elevens GUI to call isLegal and anotherPlayIsPossible polymorphically? Would this alternate design work as well as the abstract Board class design? Why or why not?

```
public interface Board
{
   boolean isLegal(List<Integer> selectedCards);
   boolean anotherPlayIsPossible();
}
```