Software Development Project 1

Welcome to the Software Development Project 1 course!

Agile software development and Scrum

- During this week, we will learn:
 - What is the course about?
 - Our How is the course assessed?
 - What is the course schedule?
 - What is agile software development?
 - What is the software development licecycle?
 - What is Scrum?
 - How software requirements are managed in an agile software development process?

About the course

- So far during the studies we have mostly worked on fairly small applications by ourselfs.
- Different kind of problems arise while we work on more complicated applications in a software development team.
- These problems aren't *only technical*, the *management* of the software development process can be quite tricky.
- During this course, we will learn how to manage the software development process and how to work as a member of a software development team.
- We will learn these skills in practice by developing a *software development project* in groups of 4-5 students.

About the course

- Each group will be developing a project described on the course page.
- The project is a web application implemented with *Java* programming language using the *Spring Boot framework*.
- JavaScript and React is used as a frontend technology.
- The development of the project is split into *three* two-week iterations called *Sprints*.
- Each Sprint has high-level requirements, but groups should make most of the technical decisions themselves.
- The project starts on week three.

Course assesment

- The assessment is based on the *group's project* and the *personal contributions* of a group member.
- The project assessment is based on the following aspects:
 - Technical implementation.
 - Project management.
 - Documentation.
 - Following the schedule.
- Each of the three Sprints is assessed based on the Sprint requirements.
- The group can earn up to 10 points from each Sprint which adds up to the maximum number of 30 points from the project.

Course assesment

- Each group member's personal assessment is based on the following aspects:
 - Activity in group work.
 - Technical contributions.
 - Project management and documentation contributions.
 - Exercise submissions.
- The personal assessment is done based on the teacher's observations and peer reviews from the group members.
- Each group member can earn up to 10 points based on their personal efforts towards the project.

Course assesment

- The final grade (1-5) is composed of the project points (maximum of 30 points) and the personal points (maximum of 10 points).
- The following are necessary to pass the course:
 - At least 70% of the first two week's exercises have to be completed before their deadlines to pass the course.
 - Written peer review for each group member.
 - Passing grade from the peer reviews.

Course schedule

- There's weekly sessions during which we will cover different topics.
- Attendance on weekly sessions is *mandatory*.
- During the first two weeks, we will cover topics that are important to grasp before starting to work on the project.
- The group work with the project starts on week three.
- During the group work we will learn about new topics, but most importantly we will learn how to apply our new knowledge in practice.
- Both individual exercises and project exercises have deadlines.
- The detailed schedule can be found on the course page.

Agile software development

able to move quickly and easily

- Dictionary definition for the word agile
- The word *agile* is often used in many industries to describe the way of working in organizations.
- The word is commonly used in a positive manner, for example, "we are an *agile* organization", or "we work in a *agile* manner".
- In *agile software development*, the development process follows values and principles that have been found to lead to successful software development projects.
- These values and principles have been constituted and written down as the Manifesto for Agile Software Development by famous software development pioneers

Agile software development

- One of the key value is the attitude towards *change*.
- For example, there is often need to change the software's requirements during the development process.
- Agile software development process should welcome any kind of change with open arms.
- That is, because *change is inevitable and frequent* in many business environments.
- The Manifesto for Agile Software Development doesn't go into details on how to actually *implement* these values in practice.
- Different Agile software development process frameworks, such as *Scrum* and *SAFe* describe a detailed process that follows these values.

Software development lifecycle

- It requires *different phases* to be completed so that an idea of what we can do with a software becomes an actual working software which provides the desired features.
- The software development process is divided into different phases:
 - i. Requirements phase
 - ii. Design phase
 - iii. Implementation phase
 - iv. Test phase
 - v. Deployment phase
 - vi. Maintenance phase
- The phases are commonly performed in the mentioned order and the whole process is often called the *software development lifecycle*.

Requirements phase

- In the *requirements phase*, the development team collects requirements from several stakeholders such as customers, internal and external experts, and managers
- The requirements cover use cases that describe user interactions that the software must provide.
- For example, "As a blog reader I want to browse list of blog posts of a blog so that I can find interesting posts to read" could be a requirement for a blog application.
- These requirements are written down as the *software requirement specification document*.

Design phase

- In the *design phase*, the development team analyzes requirements and identifies the best solutions to create the software.
- For example, they may consider integrating pre-existing modules, making technology choices, and identifying development tools.
- During the design phase different kind of documentation, such as architecture diagrams, are produced to support the *implementation phase*.

Implementation phase

- In the *implementation phase*, the development team codes the product.
- They analyze the requirements to identify smaller coding tasks they can do daily to achieve the final result.
- The organization of the collaboration during the implementation phase isn't simple and it requires the development team to carefully follow mutually agreed *process*.
- The development team needs to use different kind of tools to ease the collaboration, such as *version control tools*, which we will cover later.

Test phase

- In the *test phase*, the development team combines automation and manual testing to check that the software works as intended.
- Test phase is usually tightly coupled with the implementation phase.
- This means that software developers usually implement a small coding task, write automated test cases for the task and moves on to the next task.
- Testing the software is usually consired to be the responsibility of the software developer who wrote the code, because *they are most familiar with the implementation*.

Deployment and maintenance phase

- In the deployment phase, the implemented software is distributed to the users.
- For example, a web application is published online so that users can access it with their browsers.
- Once the software is distributed, it needs to be constantly *maintained*.
- In the *maintenance phase*, among other tasks, the development team fixes bugs, resolves customer issues, and manages software changes.

Software development licefycle in agile software development

- Agile software development has an *iterative* approach in the software development lifecycle.
- In this approach, the software is developed in short, typically one or two-week-long iterations.
- Each iteration starts with the requirements phase and during the iteration design, implementation, test, deployment, and maintenance phases are completed.
- The outcome of each iteration is working software that users can actually use and give feedback
- This cycle repeats in every iteration.

Benefits of the iterative approach

- The benefits of the iterative approach is the ability to *respond to change quickly* and the *feedback loop* it provides.
- After each iteration the requirements can change which makes it easy to respond to new user and business needs.
- After each iteration the users of the software can get their hands on new features which they can give feedback on.
- The feedback can be used to define requirements for the next iterations.
- This forms the *feedback loop* which is the heartbeat of the agile software development process

Scrum

- *Scrum* is an iterative software development process framework that defines practical ways to carry out agile software development principles
- The offical guide to Scrum process is the *Scrum Guide* which describes each aspect of the process in detail.
- In the Scrum process, the *Scrum Team* developes software in fixed length iterations called *Sprints*.
- In each Sprint, there are fixed *events*, which help the Scrum Team to organize their work and keep track on the progress of the Sprint.
- During the course we will use Scrum to manage our software development process while working on the project.

Scrum Team

Scrum Events

Agile requirement specification

Writing good user stories

Meet your group