### **MODULE 2.1: FRAMEWORK**



ramework

- ... something composed of parts fitted together and united
- ... a structural frame
- ... a basic structure



- Explain what a universal framework is
- Describe how various smart devices can be seamlessly integrated
- Recognize how data & information collection can be automated

# Framework benefits

- 1. Overcomes <u>incompatibility</u> of competing technologies and communication protocols (e.g., BACnet, Lon, etc.)
- 2. Connects devices together
- 3. Obtains <u>real-time access</u> to data and status that originates at the device level
- 4. <u>Integrates data</u> from multiple points-of-origin into a common graphical user interface (GUI)
- 5. Equips operators with the ability to <u>monitor and/or control</u> systems and equipment
- 6. Enables <u>enterprise-wide and Internet access</u> to equipment, systems and buildings
- 7. Automates trend data collection (histories), alarming and notification

#### Web browser

You can use the Niagara framework to monitor, manage and control (in real time) any building or system over the Internet using a web browser like Internet Explorer or Mozilla Firefox.



#### QUESTIONS FOR REVIEW:

- 1. How does the Niagara framework overcome the problem of device incompatibility?
- 2. What are the benefits of having a universal framework like Niagara<sup>AX</sup>?
- 3. TRUE or FALSE? Once having integrated a building's or system's diverse systems and devices, the power of the Niagara Framework allows you to monitor, manage and control them from a centralized monitoring station, or from anywhere in the world through a web browser.

### **MODULE 2.2: NORMALIZATION**



To cause to conform to a standard or norm

In the case of Niagara<sup>AX</sup>, that standard is called BAJA.



- Understand the concept of normalization.
- Describe the role of the Common Object Model in normalization.
- Identify the 8 Niagara object types used in the Common Object Model.
- Explain the overall process of discovering what is in a smart device and how those items become Niagara objects.

### Objectives

**BAJA** 

### Building Automation Java Architecture

The core standard (open specification) to which the Niagara framework conforms

# Common Object Model

The Niagara<sup>AX</sup> <u>Common Object Model</u> makes it possible for diverse connected systems to talk to each other and to the enterprise. The Framework takes the data elements such as the following from the various devices:

- Inputs
- Outputs
- Setpoints
- Schedules
- Control parameters

and processes these items into normalized software components.

This conversion normalizes the attributes of the devices (both data and behavior), creating a database of objects that talk to and work coherently with each other in real time.

## Niagara objects

The <u>device drivers</u> for a particular family of smart devices specify how individual data points map to a collection of **8 simple Niagara objects**.

These data points can be any data from a remote object, such as:

- space temperature
- lighting status
- valve position
- pump speed

The decision to establish a connection to <u>one or more</u> data points then becomes a matter of <u>selecting</u> which of these Niagara objects is best suited for the task. Those objects can then be configured <u>and</u> presented <u>graphically</u> to more easily monitor and control.

These objects are **integral to the driver architecture** that is the foundation on which all device integration rests. They are either read-only or writable and are color-coded for ease of identification:

- Boolean green
- Numeric purple
- Enumerated orange
- String gray

| Read-only                       | <b>READ-ONLY</b> objects have <u>output only</u> , and are used for <b>monitoring</b> only. They can be fed as inputs to writable objects.                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Writable                        | <ul> <li>WRITABLE objects represent data items that can be written (programmed) as well as read.</li> <li>- 16 different input properties correspond to priority levels such as emergency and operator override.</li> </ul>                                                                                                                                                                                                                                                                                   |
| Boolean<br>objects              | Boolean objects represent a binary value with only 2 possible states, typically coded as a TRUE or FALSE condition. However, each condition can be shown in a way that is most meaningful for the application:  ON / OFF YES / NO OPEN / CLOSED                                                                                                                                                                                                                                                               |
|                                 | OCCUPIED / UNOCCUPIED  Boolean objects are color-coded GREEN.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Numeric<br>objects              | Numeric objects represent an <u>analog value</u> such as a:  Temperature Current Rate (or similar floating point number)  Numeric objects are color-coded PURPLE.                                                                                                                                                                                                                                                                                                                                             |
| Enumerated<br>(Enum)<br>objects | Enumerated objects (enum) represent <u>multiple states</u> (more than one) such as a multi-speed fan or pump (or varying count: integers → 1, 2, 3, etc.)  ■ OFF / SLOW / FAST  Enumerated objects are color-coded ORANGE.                                                                                                                                                                                                                                                                                    |
| String objects                  | String objects represent one or more ASCII characters, often with literal meaning.  ASCII characters  ASCII stands for American Standard Code for Information Interchange. ASCII is a code for representing English characters as numbers, with each letter assigned a number from 0 to 127. For example, the ASCII code for uppercase M is 77. Most computers use ASCII codes to represent text, which makes it possible to transfer data from one computer to another. String objects are color-coded GRAY. |

# Discovery process

The process by which Niagara "learns" which data points exist in any given smart device

Before data originating in a remote device, like a chill plant controller, can be used, the device and information from that device must be pulled into the Niagara software. **Discover** allows you to find <u>devices</u> and <u>data</u> items (points/components) that are defined using a driver's framework.

Online "device learns" are possible using the **Device Manager** for many drivers. Data points are discovered using the **Points Manager**. Whenever available, this method is the easiest way to accurately add devices and device components to the station database.

Most device/point learns in Niagara<sup>AX</sup> are a 2-step process where you first:

- 1. <u>Discover</u> device/point candidates to include in the station database.
- 2. <u>Select</u> and <u>Add</u> from those candidates, creating device components in the network.



### Workplace<sup>AX</sup>

WorkPlace<sup>AX</sup> (Tridium's branded version of the Workbench) provides an integrated development environment (IDE) for non-programmers to develop their own customized applications.

The Workbench has features of a file explorer and a computer-aided design (CAD) application. It allows Niagara<sup>AX</sup> installation or maintenance professional to graphically review and edit the contents and behavior of a Niagara<sup>AX</sup> **station**, as well as the configuration of a Niagara **platform** -- the computer on which the station is running.

At a high level, the main window (from left to right) of the Workbench is typically split into 2 sections:

### 1. SIDEBAR:

- a. Navigation tree displays the station as a tree structure
- b. <u>Palettes</u> displayed under the Navigation tree; used to add additional functionality and logic to the station

#### 2. VIEWPANE:

Displays additional information and details about whatever is selected in the Navigation tree, and can display a number of different views

### **CBT Course Notes**



Device Manager

Points Manager

(unique to each network type)



Discovery Process

- Niagara Objects
- Normalization



You will have opportunity to practice discovering networks, devices and objects in the Niagara Technical Certification Program on-site training course.



### **QUESTIONS FOR REVIEW:**

- 1. For the Common Object Model, normalization is the process by which a complex smart device is ...?
- 2. Given an example, match it to the appropriate type of Niagara object.
- 3. TRUE or FALSE? Discovery is the process in which Niagara detects the objects in a smart device or smart devices in a network that can be graphically represented in a station.