Searching PAJ Page 1 of 2

PATENT ABSTRACTS OF JAPAN

(11)Publication number: 03-195278

(43) Date of publication of application: 26.08.1991

(51)Int.Cl. H04N 5/335

H01L 27/148 H01L 29/76

(21)Application number: 01-337457 (71)Applicant: NEC CORP

(22)Date of filing: 25.12.1989 (72)Inventor: TAKEUCHI EIICHI

(54) PHOTOELECTRIC CONVERSION CONTROL METHOD FOR SOLID-STATE IMAGE PICKUP DEVICE

(57)Abstract:

PURPOSE: To control a photoelectric characteristic of a solid-state image pickup device optionally without blooming by increasing a ϕsub bias voltage at the initial charge storage period and a ϕPS bias voltage more than a voltage at the end of charge period.

CONSTITUTION: A ϕsub bias voltage is V1 up to an optional time t1 on the way of storage period and a ϕPS bias voltage is V4. In this state, a PD1 applies blooming suppression and the signal charge is stored. Then the ϕsub bias voltage is changed to a voltage V2 at the time t1 and the ϕPS bias voltage is changed to a voltage V3. The storage of the signal charge is further enabled by the change in the two bias voltages.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration] Searching PAJ Page 2 of 2

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

◎ 公開特許公報(A) 平3-195278

⑤Int. Cl. 5

識別記号

庁内整理番号

43公開 平成3年(1991)8月26日

H 04 N 5/335 H 01 L 27/148 29/76 F 8838-5C

Y 8422-5F 8122-5F

22-5F H 01 L 27/14

В

審査請求 未請求 請求項の数 3 (全8頁)

60発明の名称

固体撮像装置の光電変換制御方法

②特 願 平1-337457

②出 願 平1(1989)12月25日

@発 明 者

願 人

②出

竹 内 映 一 日本電気株式会社

東京都港区芝5丁目33番1号 日本電気株式会社内

東京都港区芝5丁目7番1号

倒代 理 人 弁理士 内 原 晋

明 細 書

1. 発明の名称

固体撮像装置の光電変換制御方法

2. 特許請求の範囲

(1) 第1導電型の半導体基板上の第2導電型のウェルに選択的に設けられた第1導電型の領域との間で接合を形成してなるフォトダイオードと、前記第1導電型の半導体基板又は前記第2導電型のウェルの直上部に設けられた第1の絶縁に前記第2導に型のウェルの直上に第2の絶縁にある出し及び転送を行うゲート電極上に第2の絶域の直上の変ができるである。 と介して設けられた前記第1導電型の領域とで介して設けられた前記第1導電型の半導体基板と前記第2導電型ウェルをの間に基板バイアス電圧を印加し、前記フォトシールド電極と前記第2導電型ウェル との間にフォトシールドバイアス電圧を印加した固体撮像素子において、電荷蓄積期間の初期における第1の基板バイアス電圧と第1のフォトシールドバイアス電圧を蓄積期間の終点時以前に前記第1の基板バイアス電圧より低い第2の基板バイアス電圧と、前記第1の基板バイアス電圧と、前記第1の基板バイアス電圧と前記第1のボイアス電圧より高い第2のフォトシールドバイアス電圧より高い第2のフォトシールドバイアス電圧より高い第2のフォトシールドバイアス電圧を印加することによって、フォトダイオードの各々に蓄積で基板に吸収することを特徴とする固体撮像装置の光電変換制御方法。

- (2) 電荷蓄積期間中に前記基板バイアス電圧を順 次低くし、前記フォトシールドバイアス電圧を 前記基板バイアス電圧と同時に順次高くするよ うに復数回階段状に変化させることを特徴とす る特許請求の範囲第1項記載の固体撮像装置の 光電変換制御方法。
- (3) 電荷蓄積期間中の任意の期間から前記基板バ

イアス電圧を直線状に低くし、前記フォトシールドバイアス電圧を前記基板バイアス電圧と同時に直線上に高く変化させることを特徴とする特許請求の範囲第1項記載の固体擬像装置の光電変換制御方法。

3. 発明の詳細な説明

〔産業上の利用分野〕

本発明は電荷転送素子を用いた撮像装置に関するものであり、詳しくは、固体撮像装置の光電変 換特性を制御する方法に関するものである。

〔従来の技術〕

一般に、撮像装置において、ダイナミックレンジを大きくするために光電変換のガンマ特性を変 化させる方法は信号処理を用いて行なわれている。

従来電荷転送装置、特に電荷結合素子(CCD)を用いた転送装置の光電変換特性側御方法については特開50-76918号、或いは1976年アイイーイーイ インターナショナル ソリッドステート サーキット カンファレンス(IEEE

- 3 **-**

をする。従って従来の撮像方式による撮像画面を 観察すると光強度の高い入射像ではブルーミング 現象 (基板ブルーミング) の上に光の強い部分の 画像が現われるため見苦しい撮像画面となってい た。

[発明が解決しようとする課題]

上述した従来の電荷転送撮像装置のダイナミックレンジを広げる方式において、蓄積期間の終点時に至るまでに最大蓄積電荷量以上の電荷が発生した場合、オーバーフロードレインを持っていない為,その過剰電荷が基板を拡散して飽和した絵素近傍の電位井戸へ吸収される。これはブルーミングという見苦しい画面になる欠点があった。

本発明の目的はブルーミング現象を抑制してか つダイナミックレンジを広げられる固体撮像装置 の光電変換制御方法を提供することにある。

[課題を解決するための手段]

本発明によれば、第1導電型の半導体基板上の 第2導電型のウェルに選択的に設けられた第1導 電型の領域との間で接合を形成してなるフォトダ

International Solid-State Circuits Conference) のダイジェスト オブ テクニカル ペーパー (Digest of Technical Paper) の第 38頁から第39頁までのメソッド フォーベ リィング ガンマ イン チャージ カップルド イメージャーズ (Method for varying Gamm in Charge-Coupled Imagers) に見られるよう にCCD撮像装置の光情報を蓄積する電荷蓄積電 極のバイアス電圧が電荷蓄積期間の初期より終点 時を大きくすることにより電荷転送撮像装置のダ イナミックレンジを広げる方式が提案されている。 しかしこの従来の方式において蓄積期間における 最大蓄積電荷量は蓄積電極電位によって決まり、 最大蓄積電荷が発生した場合、その電荷は基板内 に掃き出される。しかしこの掃き出された過剰電 荷は基板内を拡散して飽和絵素近傍の電位井戸へ 吸収される。これはブルーミング現象(基板ブ ルーミング)で撮像装置として好ましくない。蓄 積期間の終点近くで蓄積電極の電位を大きくする と、すでに飽和している電位井戸は再び電荷蓄積

- 4 -

[実施例]

次に、図面を参照して本発明をより詳細に説明 する。

先ず本発明の原理を説明する。第5図に示す様なN-型フォトダイオード1(以後PDとする)

は完全に空乏化させて使用している。このためPD 1以外の垂直レジスタ2や垂直転送ゲート電極を 遮光しているフォトシールド電極 4 (以後 P S 電 極とする) はフローティング状態だと表面側の電 位が不安定なため、接地あるいは第5図の様に一 定電圧(DC)を印加していた。実験によればP S電極4に印加する電圧(以後 φ psバイアス電圧 とする)とCCD出力電圧の関係は第7図の様に なりCCD出力電圧はφpsバイアス電圧Vpsに大 きく依存する。 φ PSバイアス電圧 V PSを挙げると それに比例してCCD出力も増加し、逆にφrsバ イアス電圧Vpsを下げるとCCD出力も減少する。 この現象を第6図を用いて説明する。PD1は開 口率が狭く、遮光アルミニウムが厚いため、アル ミニウムの側面から電気力線6がPD1の前面に 作用して等価的に遮光アルミニウムがPD1を 覆っているのと同様になり蓄積電化量が φ PS バイ アス電圧Vpsで制御されると考えられている。一 方、第8図の様にVpsでVsubの制御特性も変化 する。

<u>%</u> 7 −

ロック図を示す。本発明においては、1周期内に 占める蓄積期間が2つの周期に分割され、かつそ れぞれの周期で φ s o b , φ p s の バイアス 電圧 値 が 異なることに特徴がある。蓄積期間中の途中の任 意の時刻 t ₁までφsubバイアス電圧はV ιに、φpsバ イアス電圧はVィである。この状態でPD1はブ ルーミング抑制をし、かつ信号電荷の蓄積も可能 である。次に時刻t」でφsubバイアス電圧はV2 に、 ø ss バイアス電圧は V 3 に変化する。 この 2 つのバイアス電圧の変化によって、さらに信号電 荷の蓄積が可能な状態となる。第3図は第2図に 示す ø subバイアス電圧、 ø rsバイアス電圧が印 加されたときにPD1に蓄積される電荷量と蓄積 時間の関係を示す図である。

øsubバイアス電圧 Vı、φρςバイアス電圧Vιの場合と、φςubバイ アス電圧V2、 φPSバイアス電圧V3の場合のそれ ぞれに対応して蓄積される最大電荷量をQ1,Q2 としている。また曲線101,102,103は それぞれ異なる入射光量に応じて蓄積される電荷 量の時間変化を示すものであり、それぞれの傾き 電荷の蓄積動作は第9図に示すタイミングチャートに示す。電荷の蓄積はφsubバイアス電圧に通常使用電圧,本発明では10Vに設定する。またφpsバイアス電圧はφsubバイアス電圧の逆極性のパルスであり、PD1に十分電荷を蓄積出来る電圧5Vに設定する。

電荷のPD1からの引き抜きは、前述の2つのパルスを同じタイミングで逆極性にすることに依って行なわれる。 øsubバイアス電圧はハイレベルの40V、 ørsバイアス電圧はローレベルー10Vに設定することに依り、PD1に蓄積されていた電荷は基板側に引き抜かれる。この様にして高輝度被写体撮像時のブルーミング現象を完全に抑制するができる。また蓄積期間 t₂を一定としたときの入射光量に応じてPD1に蓄積される信号電荷量は比例する。すなわちガンマ"1"であることも知られている。

第1図は本発明の一実施例の撮像装置、第2図はそのタイミングチャートを示す。第1図においては1セルの断面図とφsub、φpsの駆動回路ブ

, -. 8 --

が入射光量に対応している。すなわち傾きが大きいほど入射光量が大きいことを示している。 同図において、直線101に示す入射光量以下の光照射に対しては、入射光量と蓄積電荷量は比例している。すなわちガンマは1である。ところが直線101と曲線102の間の入射光量に対する蓄積電荷量は、最大電荷量Q1で一旦飽和したのち、時刻 t1以降で再び蓄積が開始され、蓄積間間となる。このことは入射光量に対する蓄積電荷量の割合が、直線101に示す入射光量以下の場合に比べて圧縮されていることを示している。

次に、曲線102に示す入射光量以上の光照射、例えば曲線103に対する蓄積電荷は電荷量Q2で必ず飽和する。以上に述べた入射光量と蓄積電荷量の関係をまとめると第4図の実線のごとくなる。ここでは従来の光電特性を破線で示している。同図に示すごとく、本発明による光電変換制御方法によれば、入射光量に対して蓄積電荷量が圧縮された領域201が存在するため、撮像可能な入

射光量範囲を拡大することができる。すなわち、被写体コントラスト比が非常に大きい場合でも、出力される映像振幅は規定値に抑えられるので、固体撮像装置の後段に設けられる映像信号処理回路で白の圧縮、白クリップ等を行う必要はない。なお第2図において、ゆsubバイアス電圧、ゆいバイアス電圧を審積期間の終了時刻t。の間で破線で示すごとく直線状に低くしても、前述したのと全く同様な光電変換特性が得られる。

第10図は本発明の他の実施例のタイミングチャートである。駆動パルスのゆsubバイアス電圧、ゆpsバイアス電圧を蓄積期間中の時刻t,とt,とで、実線で示す様に2回階段状に変化させるか、あるいは破線で示す様に直線状の電圧変化の傾きを2回変化させている。第3図の説明に従うと、この場合の入射光量に対する蓄積電荷量の関係は、第11図に示すように3点の折れ曲り点a,b,c,ができ、振像可能な入射光量範囲をさらにすることができる。

[発明の効果]

- IM -

れた撮像装置の光電変換特性の一例を示すグラフである。第5図は従来の駆動回路の断面図、第6図はフォトシールド(PS)の影響を説明する図、第7図はCCD出力のVps依存性を示すグラフ、第8図はCCD出力のVsub依存性を示すグラフ、第9図は1フィールドのタイミングチャート、第10図は本発明の他の実施例のタイミングチャート、第11図は本発明の他の実施例より得られた撮像装置の光電変換特性の一例を示す図である。

1……フォトダイオード (PD)、2……垂直 レジスタ、3……垂直転送ゲート電極、4…… フォトシールド電極 (PS電極)、5……タイミ ング発生回路、6……電気力線。

代理人 弁理士 内 原 晋

以上説明したように、本発明によれば光電変換素子に蓄積できる最大電荷量以上の過剰電荷をゆsubバイアス電圧、ゆpsバイアス電圧を使って半導体基板に吸収する機能を備えた固体撮像装置において、電荷蓄積期間初期のゆsubバイアス電圧、ゆpsバイアス電圧を蓄積期間終了時の電圧により大きくすることにより、ブルーミング現象のない固体撮像装置の光電特性を任意に制御できる。

なお、本発明による撮像装置の駆動において、再生画像の雑音を少なくするためには、第 2 図あるいは第 1 0 図に示す、 ϕ subバイアス電圧、 ϕ rs バイアス電圧の変化を水平ブランキング期間中で行わせるのが好ましい。

4. 図面の簡単な説明

第1図は本発明の一実施例による光量制御回路の図、第2図は本発明の一実施例のタイミングチャート、第3図は蓄積時間と蓄積電荷量の関係を示した本発明の一実施例の動作を説明するためのグラフ、第4図は本発明の一実施例により得ら

-12 + 1

第 1 図

第 2 図

