IMPORTING THE REQUIRED LIBRARIES:

Additionally, if you plan to use advanced machine learning techniques, you might consider importing libraries like scikit-learn, TensorFlow, or Porch for building more complex models.
Import pandas as pd
Import numpy as np
Import matplotlib.pyplot as plt
Import seaborn as sns
From sklearn.model_selection import train_test_split
From sklearn.preprocessing import StandardScaler
From sklearn.linear_model import LinearRegression
From sklearn.metrics import mean_squared_error, r2_score
IMPORTING THE DATASET (READ DATA SET; CREATE MATRIX):

Make sure you have the file 'your_dataset.csv' in the same directory as your Python script or provide the full path if it's located elsewhere. This will load the data into a pandas DataFrame, which you can then use for data manipulation and analysis

# Load your dataset	
Data = pd.read_csv('path_to_your_dataset.csv')	
#	
# INITIALIZE THE IMPUTER	
Imputer = Simple Imputer (missing_values=np.nan, strategy='mean') # You can use 'median', 'most_frequent' or 'constant' as strategy	
# FIT AND TRANSFORM THE DATA	
THE AND TRANSFORM THE DATA	
Data_imputed = imputer.fit_transform(data)	
In this case, strategy can be set to 'mean', 'median', 'most_frequent', or 'constant' depending on how you want to impute the missing values.	
ENCODING THE CATEGORICAL DATA:	

To encode categorical data in Python, you can use techniques like Label Encoding and One-Hot Encoding.

Here's an example using the pandas library:

Import pandas as pd

ALTERNATIVELY, FOR ONE-HOT ENCODING

data = pd.get_dummies(data, columns=['red'])
Now 'RED' COLUMN HAS BEEN ENCODED. YOU CAN USE THE UPDATED DATAFRAME FOR FURTHER ANALYSIS OR MODELLING.
Make sure to replace "path_to_your_dataset.csv" with the actual path to your dataset file.
FEATURE SCALING AND IMPORT STANDARDSCALER:
To perform feature scaling and import the StandardScaler in Python, you can use the following code:
Python
Import pandas as pd
From sklearn.preprocessing import StandardScaler

Make sure to replace 'path_to_your_dataset.csv' with the actual path of your dataset. Also, ensure you have the necessary libraries installed.