

11 – Advanced Computer Vision for Robotics

Robotics and Computer Vision BPC-PRP

Ing. Petr Šopák Brno University of Technology 2025

Basic Computer Vision

Example:

Basic Computer Vision

Real-world robotics demands perception that is reliable, adaptive, and fast.

Disadvantages:

- Manual Feature engineering
- Fragility (lighting, perspective, occlusions and noise)
- Poor generalization
- Scalability
- Limited Robustness
- Real-time Constraints

What will we learn today?

- Convolutional Neural Networks
- CNN Basic and Extended Architectures
- CNN Uses in Robotics and other fields
- Beyond CNN: Advanced CV Techniques
 - Visual SLAM
 - GAN, Diffusion Models
 - 3D reconstruction (Structure-from-Motion)
 - Multi-modal Vision Systems

My neural network

What is Advanced Computer Vision?

Introduction to Advanced Computer Vision and CNN applications.

What is Advanced Computer Vision?

- Using Deep Learning
- Autonomously extract relevant features from data
- Capable of generalizing to new scenarios

Advantages:

- Automatic Feature learning
- Higher Performance
- Adaptivity
- Complex tasks

Disadvantages:

- Large training dataset
- Sensitivity to Bias, Overfitting, Difficult Interpretability

Convolutional Neural Networks

- Optimized for image processing
- Leverages image properties
 - Local dependencies
 - Translational invariance
- Lower Layers detects Simple Features (Edge, Colors)
- Higher Layers combines features into more complex structures (entire object or parts)
- Automatically learns which features are important

Convolutional Layers:

- Applying small filters (e.g. 3x3) to input data
- Detects basic patterns like edges, corners, textures
- Using 2D Convolution operation:

$$Y(i,j) = \sum_{m} \sum_{n} K(m,n) \times X(i+m,j+n)$$

- Parameters:
 - **Stride** How many pixels the filter moves
 - Padding Adding extra pixels around the input
 - Number of Filters Detect different types of features

2	4	9	1	4
2	1	4	4	6
1	1	2	9	2
7	3	5	1	3
2	3	4	8	5

Image

1	2	3
-4	7	4
2	-5	1

X

Filter / Kernel

	51	66	
=			

Feature

• Activation Function Layers:

- Applying a non-linear function to the output of the convolutional layer
- Allows CNN to learn complex patterns
- Linear layers can only model straight lines or planes not complex decision boundaries
- Activation layers bend the feature space
- Common Activation functions:
 - ReLU
 - Sigmoid
 - Tanh
 - Leaky ReLU

ReLU activation function

LeakyReLU activation function

• Extended Layers:

Batch Normalization Layers

- Normalizes the activation (neuron outputs) within a mini-batch during training
- Stabilizes and speeds up training
- Reduces the sensitivity to initialization

Dropout Layer

- Randomly sets some neuron outputs to zero
- Reduces overfitting and increases the robustness

Residual Connections

- Directly add the input of a layer to its output
- Train deeper networks easily

Global Average Pooling (GAP)

Reduces the number of parameters compared to FC layer

(b) After applying dropout.

- 1. Yadav, H. "Dropout in Neutral Networks". Towards, 2022. [online]. Available: <u>Dropout in Neural Networks | Towards Data Science</u>
- 2. Yadav, H. "Residual Blocks in Neutral Networks". Towards, 2022. [online]. Available: <u>Dropout in Neural Networks | Towards Data Science</u>

• Extended Layers:

- Dilated (Atrous) Convolution
 - Increases the receptive field without increasing computation
 - Inserts gaps (zeros) between filter elements
 - Commonly used in segmentation and dense prediction

Attention Mechanism

- Dynamically focuses on relevant parts of the input
- Captures global relationships between any elements
- Computes weighted combinations of the input features

(a) Deconvolution operation

(b) Dilated convolution operation

CNN – Object Detection

- Producing where the objects are located (bounding box) and what they are (label)
- Essential for scene understanding, obstacle detection, grasping objects, autonomous navigation and more
- Common Models:
 - YOLOv8 CNN-based real-time detector
 - Divides the images into a grid and predicts bounding boxes and classes
 - DETR transformer-based end-to-end object detector
 - Object detection as a set prediction problem
 - Sparse R-CNN
 - Small set of learnable queries to predict with sparse supervision

- 1. Darmadi, D, ed. "Traffic Counting using YOLO Version-8". ASTONJADRO, 2024. [online]. Available: 10.32832/astonjadro.v13i1.14489
- 2. Rath, R. S. "Train DETR on Custom Dataset". DEBUGGER CAFE, 2023. [online]. Available: Train DETR on Custom Dataset

CNN – Semantic & Instance Segmentation

- Semantic segmentation: Assigns a class label to every pixel
- Instance segmentation: Separates different objects of the same class
- Common Models:
 - Mask2Former transformer-based universal model
 - **DeepLabV3** CNN with Atrous (dilated) convolution for multi-scale semantic segmentation
 - **SAM** prompt-based segmentation

- Detect keypoints of objects (usually human joints)
- Estimate body or hand poses in 2D or 3D images
- Commonly used: Human-robot interaction, sport analysis
- Common Models:
 - OpenPose Open-source system keypoint detection, using confidence maps and affinity fields
 - MediaPipe Pose real-time pose estimator optimized for mobile devices

CNN – Depth Estimation

- Predict a depth value (distance to the camera) for every pixel.
- Generate relative or absolute depth maps from monocular images.
- Commonly used: 3D obstacle avoidance for robots, scene reconstruction, AR/VR depth sensing
- Common Models:
 - MiDaS Trained on diverse datasets to generalize monocular depth estimation
 - DPT (Dense Prediction Transformer) prediction tasks like depth and segmentation

CNN – Visual Odometry

- Estimate camera movement based on consecutive image frames
- Track relative pose changes without external localization like GPS
- Commonly used: Robot navigation, drone flight stabilization, autonomous driving
- Common Models:
 - DeepVO CNN + RNN to directly predict ego-motion from image sequences
 - DeepTAM Combines learned feature maps with classical tracking and mapping ideas

FACULTY OF ELECTRICAL department of control **ENGINEERING** and instrumentation AND COMMUNICATION

Is Advanced CV only CNN and Deep Learning?

Exploring SLAM, 3D Reconstruction, GANs, and more.

Visual SLAM (Simultaneous Loalization and Mapping)

- Builds a map of an unknown environment while simultaneously estimating the robot's location.
- Uses: Autonomous robot navigation, AR/VR tracking, drone mapping

Implementation Steps:

- Feature extraction (e.g., ORB)
- Feature matching between frames
- Motion estimation (pose)
- Map update (3D landmarks)
- Loop closure detection and optimization

Common Models:

 ORB-SLAM3 (feature-based), LSD-SLAM (direct), DROID-SLAM (deep-learning + direct)

Structure-from-Motion (SfM)

11 – Advanced Computer Vision for Robotics

- Track relative pose changes without external localization like GPS
- Uses: 3D scene reconstruction, photogrammetry

Implementation Steps:

- Detect and match features between images
- Estimate relative camera poses
- Triangulate 3D points to build a sparse 3D structure
- Perform global optimization (bundle adjustment)

Common Models:

COLMAP (feature-based), OpenMVG

- Two networks (generator and discriminator) compete, resulting in realistic synthetic image generation
- The generator tries to fool the discriminator by producing fake images; the discriminator tries to detect fakes
- Uses: Data augmentation, Image-to-image translation
- Implementation Steps:
 - Train the generator to create realistic images
 - Train the discriminator to distinguish real from fake
 - Alternate optimization (adversarial learning)

Common Models:

 CycleGAN (unpaired image-to-image translation), Pix2Pix (paired image-to-image translation)

Diffusion Models

- Generate high-quality images by gradually denoising random noise, conditioned on inputs like text
- Noise Addition (Forward Process) x Noise Removal (Reverse Process)
- Uses: Text-to-image generation, visual content creation for AR/VR

Implementation Steps:

- Encode the prompt (optional for conditional generation)
- Start from random noise
- Perform multiple denoising steps according to the learned model

Common Models:

Stable Diffusion, DALL-E 2

- 1. Steins. "Stable Diffusion Clearly Explained!". DORAVEN, 2023. [online]. Available: <u>Stable Diffusion Clearly Explained! CodoRaven.</u>
- 2. Spektor, I. "From DALL-E to Stable Diffusion: how do text-to-image generation models work?!". tryolabs, 2022. [online]. Available: From DALL-E to Stable Diffusion: how do text-to-image generation models work?! Tryolabs

Multi-Modal Vision models

- Models that process and combine visual (images, videos) and textual (language) information
- Uses: Robotic perception + language understanding
- Implementation Steps:
 - Use a vision encoder to process the image
 - Use a language encoder to process the text
 - Train both encoders so that matching image-text pairs are close together in the embedding space
 - Use learned embeddings for retrieval, classification, or generation.

Common Models:

 CLIP (Contrastive Learning of Image and Text), Flamingo (Few-shot vision-language model)

- Advanced Computer vision its challenges and applications
- Convolutional Neural Networks
 - Architecture layers
 - Applications
- Further Techniques in Advanced Computer Vision
 - Visual SLAM
 - 3D reconstruction Structure-from-Motion
 - GAN
 - Diffusion Models
 - Multi-Modal Vision Systems

Summary

- Advanced Computer vision its challenges and applications
- Convolutional Neural Networks
 - Architecture layers
 - Applications
- Further Techniques in Advanced Computer Vision
 - Visual SLAM
 - 3D reconstruction Structure-from-Motion
 - GAN
 - Diffusion Models
 - Multi-Modal Vision Systems

25

- Advanced Computer vision its challenges and applications
- Convolutional Neural Networks
 - Architecture layers
 - Applications
- Further Techniques in Advanced Computer Vision
 - Visual SLAM
 - 3D reconstruction Structure-from-Motion
 - GAN
 - **Diffusion Models**
 - Multi-Modal Vision Systems

Ing. Petr Šopák

xsopak00@vutbr.cz

Brno University of Technology
Faculty of Electrical Engineering and Communication
Department of Control and Instrumentation

Robotics and Al Research Group