I. Relații

Se numește **relație binară** pe o mulțime X nevidă, o submulțime nevidă $\rho \subseteq X \times X$, unde $X \times X = \{(x,x) : x \in X\}$ (numit produsul cartezian dintre mulțimile X și X). Pentru $(x,y) \in \rho$, notăm $x \rho y$ și citim "x este în relație cu y".

O relație ρ pe o multime X se numește:

- reflexivă, dacă $x \rho x, \forall x \in X$;
- simetrică, dacă $x \rho y \implies y \rho x, \forall x, y \in X;$
- antisimetrică, dacă $x\rho y$ si $y\rho x \implies x = y, \forall x, y \in X;$
- tranzitivă, dacă $x \rho y$ si $y \rho z \implies x \rho z, \forall x, y, z \in X$.

O relație ρ pe o mulțime X nevidă se numește de **echivalență** dacă este **reflexivă**, **simetrică** și **tranzitivă**. De obicei, relațiile de echivalență se notează cu \sim .

O relație ρ pe o mulțime X nevidă se numește de **ordine** dacă este **reflexivă**, **anti-simetrică** si **tranzitivă**. De obicei, relațiile de ordine se notează cu \leq .

O mulțime X nevidă pe care definim o relație de ordine \leq se numește **mulțime** ordonată și se noteaza (X, \leq) .

O mulțime ordonată se numește **total ordonată** dacă orice două elemente ale ei se pot compara, adică dacă pentru orice x și $y \in X$ avem $x \le y$ sau $y \le x$.

Exemple: mulțimea (\mathbb{C}, \leq) nu este total ordonată, iar mulțimea (\mathbb{Q}, \leq) este total ordonată, unde \leq este relația de ordine uzuală.

II. Infimumul si supremumul unei multimi

Fie (X, \leq) o mulțime nevidă total ordonată, $A \subseteq X$ o submulțime nevidă a lui X.

- $x \in X$ se numește majorant al lui A dacă $a \le x$, pentru orice $a \in A$. Dacă A are cel puțin un majorant, atunci A este mărginită superior;
- $x \in X$ se numește minorant al lui A dacă $x \leq a$, pentru orice $a \in A$. Dacă A are cel puțin un minorant, atunci A este mărginită inferior;
- dacă există un majorant în A, atunci acesta este unic și se numește maximul lui A (notație: maxA);
- dacă există un minorant în A, atunci acesta este unic și se numește minimul lui A (notație: minA);
- spunem că A este mărginită inferior cu infimum dacă există un cel mai mare minorant in X (notație infA);
- spunem că A este mărginită superior cu supremum dacă există un cel mai mic majorant in X (notație supA);

Observații:

- 1. Dacă există minA, atunci există infA și este egal cu minA. Inversa nu este întot-deauna adevarată.
- 2. Dacă există maxA, atunci există supA și este egal cu maxA. Inversa nu este întotdeauna adevarată.
- 3. Dacă există infA, atunci orice alt minorant al lui A este mai mic decât infA.
- 4. Dacă există supA, atunci orice alt majorant al lui A este mai mare decât supA.
- 5. A este nemărginită superior sau inferior \iff există un șir $(x_n)_n \subseteq A$ astfel încât $\lim_{n\to\infty} x_n = \pm \infty$.
- 6. A este finită $\implies A$ este mărginită și are minA și maxA.

Exemplu: Considerăm mulțimea (\mathbb{R}, \leq) , unde \leq este relația de ordine uzuala și mulțimea $A \subseteq \mathbb{R}, A = (-\sqrt{7}, \sqrt{5}) \cap \mathbb{Q}$. Atunci

- majoranți ai mulțimii A sunt 4, 5, 7.2, etc;
- mulțimea tuturor majoranților este $[\sqrt{5}, \infty)$;
- $sup A = \sqrt{5}$, $inf A = -\sqrt{7}$;
- nu există maxA, minA;
- A este mărginită superior și inferior.

III. Exerciții

- 1. Fie $A ext{ si } B \subset \mathbb{R}$. Definim suma acestor mulțimi prin $A + B = \{a + b : a \in A, b \in B\}$. Arătați că dacă $A ext{ si } B ext{ sunt mărginite, atunci } A + B ext{ este mărginită si } sup(A + B) = supA + supB, iar <math>inf(A + B) = infA + infB$.
- 2. Fie A și B două submulțimi mărginite ale lui $\mathbb R$ astfel încât $A\subseteq B$. Arătați că $supA\leq supB$ și $infA\geq infB$.
- 3. Fie A și B două mulțimi măriginite de numere reale. Arătați că $sup(A \cup B) = max(supA, supB)$ și $inf(A \cup B) = min(infA, infB)$.
- 4. Să se determine $inf(-1,1] \cup [\sqrt{2},\sqrt{5}]$ și $sup(-1,1] \cup [\sqrt{2},\sqrt{5}]$.
- 5. Determinați infA, supA pentru mulțimile:
 - (a) $A = \{x \in \mathbb{R} \setminus \{-5\} : \frac{3x-1}{x+5} < 2\}$
 - (b) $A = \{\frac{m}{n} : m, n \in \mathbb{N} \setminus \{0\}, m < 5n\}$

(c)
$$A = \{(-1)^{n+1} \frac{m+n}{2m+1} : m, n \in \mathbb{N} \setminus \{0\}\}$$

(d) $A = \{n + \frac{(-1)^n}{4n} : n \in \mathbb{N} \setminus \{0\}\}$
(e) $A = \{\frac{2mp}{m^2 + p^2 + 1} : m, p \in \mathbb{N} \setminus \{0\}\}$

(d)
$$A = \{ n + \frac{(-1)^n}{4n} : n \in \mathbb{N} \setminus \{0\} \}$$

(e)
$$A = \{\frac{2mp}{m^2 + n^2 + 1} : m, p \in \mathbb{N} \setminus \{0\}\}$$

I. Şiruri de numere reale

Fie $(x_n)_n \subseteq \mathbb{R}$ un sir de numere reale.

Spunem că șirul $(x_n)_n$ este **convergent** cu limita $l \in \mathbb{R}$ dacă pentru orice $\varepsilon > 0$, există $n_{\varepsilon} > 0$ astfel încât $|x_n - l| < \varepsilon$, pentru orice $n \ge n_{\varepsilon}$.

Spunem că șirul $(x_n)_n$ are limita $+\infty$ dacă pentru orice $\varepsilon > 0$, există $n_{\varepsilon} > 0$ astfel încât $x_n > \varepsilon$, pentru orice $n \ge n_{\varepsilon}$.

Spunem că sirul $(x_n)_n$ are limita $-\infty$ dacă pentru orice $\varepsilon > 0$, există $n_{\varepsilon} > 0$ astfel încât $x_n < -\varepsilon$, pentru orice $n \ge n_{\varepsilon}$.

Spunem că șirul $(x_n)_n$ este **șir Cauchy** dacă pentru orice $\varepsilon > 0$, există $n_{\varepsilon} > 0$ astfel încât $|x_n - x_m| < \varepsilon$, pentru orice $n, m \ge n_{\varepsilon}$, $n, m \in \mathbb{N}$. Aceasta condiție poate fi reformulată astfel: dacă pentru orice $\varepsilon > 0$, există $n_{\varepsilon} > 0$ astfel încât $|x_{n+p} - x_n| < \varepsilon$, pentru orice $n \ge n_{\varepsilon}$, $n, p \in \mathbb{N}$, atunci șirul $(x_n)_n$ este **șir Cauchy**.

Teoremă (Weierstrass): Un șir monoton și mărginit este convergent.

Criteriul Cauchy: Un șir este convergent dacă și numai dacă este șir Cauchy.

Criteriul cleștelui: Fie $(a_n)_n$, $(b_n)_n$, $(x_n)_n$ trei șiruri de numere reale cu proprietățile:

- există $n_0 \in \mathbb{N}$ astfel încât $(a_n)_n \leq (x_n)_n \leq (b_n)_n$, pentru orice $n \in \mathbb{N}$, $n \geq n_0$
- $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = l \in \mathbb{R}$

Atunci șirul $(x_n)_n$ este **convergent** cu limita l.

<u>Teorema Stolz-Cesàro</u>: Fie $(x_n)_n$, $(y_n)_n$ două șiruri de numere reale, astfel încât șirul $(y_n)_n$ este strict crescător și $\lim_{n\to\infty} y_n = \infty$. Dacă există $\lim_{n\to\infty} \frac{x_{n+1}-x_n}{y_{n+1}-y_n} \in \overline{\mathbb{R}}$, atunci există și $\lim_{n\to\infty} \frac{x_n}{y_n}$ și

$$\lim_{n\to\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}=\lim_{n\to\infty}\frac{x_n}{y_n}$$

.

II. Exerciții

1. Arătați, cu ajutorul definiției (cu ε), că următoarele șiruri au limită:

(a)
$$x_n = 2^n - \frac{1}{n^2} + 4, n \in \mathbb{N}^*.$$

(b)
$$x_n = \sqrt{n^2 + 1} - n, n \in \mathbb{N}$$
.

(c)
$$x_n = \ln \frac{3n+2}{n+3}, n \in \mathbb{N}.$$

2. Folosind criteriul Cauchy, arătați că următoarele șiruri sunt convergente:

(a)
$$x_n = \frac{(\cos 1)^3}{4^2} + \frac{(\cos 2)^3}{4^4} + \dots + \frac{(\cos n)^3}{4^{2n}}, n \ge 1.$$

(b)
$$x_n = \sum_{k=1}^n \frac{1}{k^2}, n \ge 1.$$

3. Arătați că șirul $(x_n)_{n\geq 1}$, $x_{n+1}=x_n^2-2x_n+2$, $x_1\in [1,2]$, este convergent și calculați $\lim_{n\to\infty}x_n$.

4. Calculați limita șirului $(a_n)_{n\geq 1}$,

$$a_n = \sum_{k=1}^n \frac{k}{n^2 + 1}.$$

5. Calculați

$$\lim_{n\to\infty}\frac{1+\sqrt{2}+\ldots+\sqrt{n}}{n\sqrt{n}}.$$

6. Studiați convergența șirului de numere reale $(x_n)_{n\geq 1}$ cu proprietatea că

$$|x_{n+2} - x_{n+1}| < \frac{3n}{4n-1} \cdot |x_{n+1} - x_n|$$
, pentru orice $n \ge 1$.

I. Exerciții rămase de data trecută

1. Folosind criteriul Cauchy, arătați că următorul șir este convergent:

$$x_n = \sum_{k=1}^n \frac{1}{k^2}, n \ge 1.$$

- 2. Arătați că șirul $(x_n)_{n\geq 1}$, $x_{n+1}=x_n^2-2x_n+2$, $x_1\in [1,2]$, este convergent și calculați $\lim_{n\to\infty}x_n$.
- 3. Calculați limita șirului $(a_n)_{n\geq 1}$,

$$a_n = \sum_{k=1}^n \frac{k}{n^2 + 1}.$$

4. Calculați

$$\lim_{n\to\infty}\frac{1+\sqrt{2}+\ldots+\sqrt{n}}{n\sqrt{n}}.$$

5. Studiați convergența șirului de numere reale $(x_n)_{n\geq 1}$ cu proprietatea că

$$|x_{n+2} - x_{n+1}| < \frac{3n}{4n-1} \cdot |x_{n+1} - x_n|$$
, pentru orice $n \ge 1$.

II. Limita superioară și inferioară a unui șir

Definiție 1. Fie $(x_n)_n$ un șir de numere reale și $l \in \mathbb{R}$. l se numește **punct limită** al șirului (x_n) dacă există un subșir $(x_{n_k})_{k\in\mathbb{N}}$ al șirului (x_n) astfel încât $\lim_{n\to\infty} x_{n_k} = l$.

Notație 2. Notăm cu $\mathcal{L}(x_n) = \{l \in \mathbb{R} | l$ -punct limită al șirului $(x_n)\}$ mulțimea punctelor limită ale șirului (x_n) .

Exemplu 3. Fie șirul $(x_n)_{n\in\mathbb{N}}$, $x_n=(-1)^n$. Atunci $\mathcal{L}(x_n)=\{-1,1\}$.

Observația 4. Condiția necesară si suficientă ca un șir $(x_n)_{n\in\mathbb{N}}$ să aibă limită este ca mulțimea punctelor sale limită să se reducă la un singur punct: $|\mathcal{L}(x_n)| = 1$.

Definiția 5. Fie $(x_n)_{n\in\mathbb{N}}$ un șir de numere reale. Limita superioară a șirului (x_n) este

$$\lim \sup(x_n) = \overline{\lim}_{n \to \infty} x_n = \sup(\mathcal{L}(x_n))$$

iar limita inferioară a șirului (x_n) este

$$\lim\inf(x_n) = \underline{\lim}_{n\to\infty} x_n = \inf(\mathcal{L}(x_n)).$$

III. Exerciții

1. Determinați limita superioară și inferioară a șirurilor:

(a)
$$x_n = \frac{1 + (-1)^n}{2} + (-1)^n \cdot \frac{n}{2n+1}, n \ge 0.$$

(b)
$$x_n = \left(1 + \frac{1}{n}\right)^{4n} \cdot \left[1 + \left(\frac{-1}{6}\right)^n\right] + 3\sin\frac{n\pi}{2}, n \ge 1.$$

(c)
$$x_n = \sin\left(\frac{2n\pi + \pi}{4}\right) + (-1)^{3n} \sqrt[n]{\ln n}, n \ge 2.$$

(d)
$$x_n = (-1)^{\frac{n(n+1)(n+2)}{3}} + \left(\frac{-1}{6}\right)^n + \cos n\pi, n \ge 0.$$

(e)
$$x_n = (-1)^n \cdot \frac{n}{2n+1} + \frac{n^2}{2n^2+3} \cdot \sin\left(\frac{n\pi}{2}\right), n \ge 1.$$

I. Serii de numere reale

Definiția 1. Fie $(x_n)_n \subseteq \mathbb{R}$ și fie $s_n = \sum_{k\geq 1}^n x_k$ șirul sumelor parțiale asociat. Seria $\sum_n x_n$ se numește convergentă dacă șirul s_n este convergent și atunci limita șirului s_n este suma seriei, notată $\sum_n x_n$. În caz contrar, seria se numește divergentă.

Definiția 2. Seria $\sum_{n} x_n$ se numește absolut convergentă dacă seria $\sum_{n} |x_n|$ este convergentă. Orice serie absolut convergentă este convergentă, reciproca fiind falsa.

Seria geometrică cu rația $q, \sum_{n\geq 1} q^n$. Atunci

$$\sum_{n\geq 1} q^n = \begin{cases} \text{convergent} , \text{ cu suma } \frac{q}{1-q} &, \text{ dacă } q \in (-1,1) \\ \text{divergent} , \text{ altfel} \end{cases}$$

Seria armonică generalizată. Fie $\alpha \in \mathbb{R}$ și fie seria $\sum_{n \geq 1} \frac{1}{n^{\alpha}}$. Atunci

$$\sum_{n\geq 1} \frac{1}{n^\alpha} = \begin{cases} \text{convergent} &\text{, dac} \alpha > 1\\ \text{divergent} &\text{, altfel} \end{cases}$$

II. Criterii de convergență pentru serii cu termeni pozitivi

1. Criteriul raportului (pentru expresii cu rapoarte, factorial, etc.). Fie seria $\sum_n a_n \text{ și fie } l = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}. \text{ Atunci}$

$$\sum_n a_n = \begin{cases} \text{convergentă} &, \text{dacă } l < 1 \\ \text{divergentă} &, \text{dacă } l > 1 \\ \text{nu știm} &, \text{dacă } l = 1. \ \hat{\text{Incercăm să folosim 5.}} \end{cases}$$

2. Criteriul radicalului (pentru funcții putere, etc.). Fie seria $\sum_{n} a_n$ și fie $l = \lim_{n \to \infty} \sqrt[n]{a_n}$. Atunci

$$\sum_n a_n = \begin{cases} \text{convergent} &, \text{ dacă } l < 1\\ \text{divergent} &, \text{ dacă } l > 1\\ \text{nu știm} &, \text{ dacă } l = 1. \ \hat{\text{Incercăm să folosim } 6.} \end{cases}$$

3. Criteriul comparației cu limite (pentru ln de ceva care tinde la 1, pentru funcții trigonometrice). Fie seria $\sum_{n} a_n$ și seria $\sum_{n} b_n$ (pe care trebuie să o gasim noi) astfel încât $\lim_{n\to\infty} \frac{a_n}{b_n} \in (0,\infty)$. Atunci seriile $\sum_{n} a_n$ și $\sum_{n} b_n$ au aceeași natură.

- 4. Criteriul condensării (pentru ln de ceva care tinde la infinit). Fie $a_n \ge a_{n+1} \ge 0, \forall n \in \mathbb{N}$. Atunci seriile $\sum_{n} a_n$ și $\sum_{n} 2^n \cdot a_{2^n}$ au aceeași natură.
- 5. Criteriul Raabe-Duhamel. Fie seria $\sum_{n} a_n$ și fie $l = \lim_{n \to \infty} n \cdot \left(\frac{a_n}{a_{n+1}} 1\right)$. Atunci

$$\sum_n a_n = \begin{cases} \text{convergentă} &, \text{dacă } l > 1 \\ \text{divergentă} &, \text{dacă } l < 1 \\ \text{nu știm} &, \text{dacă } l = 1. \ \hat{\text{Incercăm să folosim } 3.} \end{cases}$$

- 6. Dacă $\lim_{n\to\infty} x_n \neq 0$, atunci seria $\sum_n x_n$ este divergentă.
- 7. Criteriul comparației. Fie seria $\sum_{n} a_n$ și seria $\sum_{n} b_n$ și presupunem ca $a_n \leq b_n$. Atunci

 - Dacă ∑_n b_n este convergentă, atunci ∑_n a_n este convergentă.
 Dacă ∑_n a_n este divergentă, atunci ∑_n b_n este divergentă.

III. Criterii de convergență pentru serii cu termeni alternanți

- 1. Criteriul Leibniz. Fie seria cu termeni alternanți $\sum_{n} (-1)^n \cdot a_n$. Dacă a_n este șir descrescător care tinde la 0, atunci seria este convergentă.
- Fie $(x_n)_n \subseteq \mathbb{R}$ și $(y_n)_n \subseteq \mathbb{R}$. Dacă este îndeplinit 2. Criteriul Abel-Dirichlet. unul dintre cele doua seturi de condiții:
 - șirul $(x_n)_n$ este descrescător și tinde la 0, și există $N \in \mathbb{R}$ astfel încât $|y_1|$ $y_2 + \ldots + y_n | \le N, \forall n \in \mathbb{N};$
 - șirul $(x_n)_n$ este monoton și mărginit și seria $\sum_n y_n$ este convergentă.

atunci, seria $\sum_{n} x_n \cdot y_n$ este convergentă.

IV. Exerciții

1. Să se studieze natura următoarelor serii:

(a)
$$\sum_{n=m}^{\infty} \frac{(n-m+1)(n-m+2)...(n-1)n^2}{n!}.$$

(b)
$$\sum_{n=1}^{\infty} \cos \frac{\alpha}{2} \cos \frac{\alpha}{2^2} ... \cos \frac{\alpha}{2^n}, \alpha \in (0, \pi).$$

(c)

$$\sum_{n=0}^{\infty} 3^n \sin \frac{\pi}{5^n}.$$

(d)

$$\sum_{n=1}^{\infty} \frac{1}{n} (\sqrt{n^2 + n + 1} - \sqrt{n^2 - n - 1}).$$

(e)

$$\sum_{n=1}^{\infty} \frac{1}{3^n(n+1)\sqrt{n+1}x^{2n}}, x \in (0, \infty).$$

(f)

$$\sum_{n=1}^{\infty} \left(\frac{3n-1}{3n+2} \right)^n$$

(g)

$$\sum_{n=1}^{\infty} \frac{\ln n}{n^3} x^n, x \in (0, \infty).$$

(h)

$$\sum_{n=1}^{\infty} \frac{a^n \cdot n!}{n^n}, a > 0.$$

2. Să se studieze convergența și absolut convergența următoarelor serii:

(a)

$$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{1}{n \cdot 2^n}.$$

(b)

$$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{1}{n - \ln n}.$$

(c)

$$\sum_{n=1}^{\infty} x^n \cdot \arctan \frac{1}{n^{\alpha}}, \alpha \in \mathbb{R}.$$

I. Exerciții

1. Să se studieze natura următoarelor serii:

$$\sum_{n=1}^{\infty} \frac{1}{n} (\sqrt{n^2 + n + 1} - \sqrt{n^2 - n - 1}).$$

$$\sum_{n=1}^{\infty} \left(\frac{-2n+a}{-2n+b} \right)^{-2n}, a, b \in \mathbb{R}$$

(c)

$$\sum_{n=1}^{\infty} \frac{\ln n}{n^3} x^n, x \in (0, \infty).$$

(d)

$$\sum_{n=1}^{\infty} \frac{a^n \cdot n!}{n^n}, a > 0.$$

(e)

$$\sum_{n=1}^{\infty} \left(\frac{xn^2 + 7n + 8}{n^2 + 5n + 2} \right)^n, x \in (0, \infty).$$

(f)

$$\sum_{n=1}^{\infty} \frac{n! \cdot (n+3)!}{(2n+1)! x^n}, x \in (0, \infty).$$

(g)

$$\sum_{n=1}^{\infty} 4^n \cdot \tan\left(\frac{n^2+1}{4^n(n^3+5)}\right).$$

2. Să se studieze convergența și absolut convergența următoarelor serii:

(a)

$$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{1}{n \cdot 2^n}.$$

(b)

$$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{1}{n - \ln n}.$$

(c)

$$\sum_{n=1}^{\infty} x^n \cdot \arctan \frac{1}{n^{\alpha}}, \alpha \in \mathbb{R}.$$

I. Analiza topologică a unei mulțimi din $\mathbb R$

Definiția 1. Fie $x, r \in \mathbb{R}$, r > 0. Intervalul deschis (x - r, x + r) se numește bila de centru x si raza r și se notează $\mathcal{B}(x, r) = (x - r, x + r)$.

Definiția 2. O mulțime $V \subseteq R$ se numește **vecinătate a punctului** $x \in \mathbb{R}$ dacă și numai dacă există $r \in \mathbb{R}$, r > 0 astfel încât $\mathcal{B}(x,r) \subseteq V$. Notăm cu V_x mulțimea tuturor vecinătăților punctului x.

Definiția 3. Fie o mulțime $A \subseteq \mathbb{R}$. Vom spune că $x \in A$ se numește **punct interior al mulțimii** A dacă A este vecinătate pentru x (altfel spus, dacă există r > 0 astfel încât $(x - r, x + r) \subseteq A$). Mulțimea tuturor punctelor interioare ale mulțimii A se numește interiorul mulțimii A și se notează cu \mathring{A} .

Definiția 4. Mulțimea $A \subseteq \mathbb{R}$ se numește **deschisă** dacă $\forall x \in G, \exists r > 0$ astfel încât $\mathcal{B}(x,r) \subseteq A$.

Proprietăți:

- \mathring{A} este cea mai mare mulțime deschisă inclusă în A.
- $\mathring{A} \subseteq A$ si \mathring{A} este mulțime deschisă.
- A este deschisă dacă și numai dacă $\mathring{A} = A$.
- $\bullet \ A \subseteq B \implies \mathring{A} \subseteq \mathring{B}.$
- $\bullet \ \ A \overset{\circ}{\cap} B = \mathring{A} \cap \mathring{B}.$
- $A \stackrel{\circ}{\cup} B \supset \mathring{A} \cup \mathring{B}$.

Teorema 5. O mulțime $A \subseteq \mathbb{R}$ se numește **închisă** dacă $C_F = \mathbb{R} \setminus A$ este mulțime deschisă.

Proprietăți:

- 1. \emptyset și \mathbb{R} sunt mulțimi deschise;
- 2. intersecția a două mulțimi deschise este mulțime deschisă;
- 3. \emptyset , \mathbb{R} , \mathbb{N} și \mathbb{Z} sunt mulțimi închise;
- 4. reuniunea a doua mulțimi închise este mulțime închisă;
- 5. există multimi care sunt si deschise si închise;
- 6. există mulțimi care nu sunt deschise, nici închise $(A = [1, 3), \mathbb{Q}, \mathbb{R} \setminus \mathbb{Q})$;
- 7. mulțimile deschise din R sunt de forma $(a, b), (-\infty, a), (a, \infty),$ unde $a, b \in \mathbb{R}, a < b$.

Definiția 6. $x \in \mathbb{R}$ se numește **punct aderent mulțimii** A dacă, $\forall V \in V_x$, $V \cap A \neq \emptyset$. Notăm cu \bar{A} mulțimea punctelor aderente.

Teorema 7. O mulțime A este **închisă** dacă și numai dacă $A = \bar{A}$.

Definiția 8. $x \in \mathbb{R}$ se numește **punct de acumulare al mulțimii** A dacă, $\forall V \in V_x$, $(V \setminus \{x\}) \cap A \neq \emptyset$. Notăm cu A' mulțimea punctelor de acumulare a mulțimii A.

Definiția 8'. $x \in \mathbb{R}$ este **punct de acumulare al mulțimii** A dacă și numai dacă în orice vecinătate a punctului x se găsesc o infinitate de elemente din A.

Definiția 9. Frontiera mulțimii A este $FrA = \bar{A} \setminus \mathring{A}$.

Proprietăți:

- $\bullet \ C_{\bar{A}} = \mathring{C}_{A}.$
- $\bullet \ C_{\mathring{A}} = \bar{C}_{A}.$
- $\bullet~\bar{A}$ este cea mai mică mulțime închisă care conține pe A.
- $\bar{A}\supseteq A$ și \bar{A} este mulțime închisă.
- A este închisă dacă și numai dacă $\bar{A} = A$.
- $A \subseteq B \implies \bar{A} \subseteq \bar{B}$.
- $A \cap B = \bar{A} \cap \bar{B}$.
- $\bullet \ \ A \,\bar{\cup}\, B \subseteq \bar{A} \cup \bar{B}.$
- $A' \subseteq \bar{A}$.
- $\bullet \ \bar{A} = A' \cup A.$
- $\bullet \ A \subseteq B \implies A' \subseteq B'.$
- $\bullet \ (A \cup B)' = A' \cup B'.$
- $\bullet \ (A')' \subseteq A'.$
- $\bullet \ \bar{A}' = A'.$
- A este deschisă $\iff A \cap FrA = \emptyset$.
- A este închisă $\iff FrA \subseteq A$.
- FrA este mulțime închisă.
- $Fr(A \cup B) \subseteq FrA \cup FrB$
- $Fr(A \cap B) \subseteq FrA \cup FrB$
- A este **mărginită** dacă și numai dacă $\exists x, r \in \mathbb{R}, r > 0$ astfel încât $A \subseteq \mathcal{B}(x r, x + r)$.

II. Exerciții

- 1. Determinați $\mathring{A}, \bar{A}, A', FrA$ și decideți dacă A este închisă, deschisă sau mărginită:
 - (a) $A = \{1, 2, 3, 4\}$
 - (b) $A = (0, 5] \cup \{7\}$
 - (c) $A = \mathbb{Q}$
 - (d) $A = [1, 2) \cap \mathbb{Q}$
 - (e) $A = \{\frac{(-1)^n}{n} : n \in \mathbb{N}^*\}$
 - (f) $A = [0,1) \cup \{-\frac{1}{4^n} : n \in \mathbb{N}\}$
 - (g) $A = [-4,7) \cup \{10,11\} \cup [(-9,-8) \cap \mathbb{Q}]$
 - (h) $A = (-3, 0] \cup \{\frac{n+\sqrt{2}}{3n+\sqrt{3}} : n \in \mathbb{N}\}$

I. Analiza topologică a unei mulțimi din $\mathbb R$

Definiția 1. Fie $A\subseteq\mathbb{R}$. Vom spune că A este **compactă** dacă A este închisă și mărginită.

Definiția 2. O mulțime este conexă într-un spațiu topologic dacă și numai dacă nu este reuniunea a doua mulțimi nevide, deschise, disjuncte.

Propoziție 3. O mulțime $A \subseteq \mathbb{R}$ este conexă dacă și numai dacă este interval.

II. Exerciții

- 1. Determinați $\mathring{A}, \bar{A}, A', FrA$ și decideți dacă A este închisă, deschisă, mărginită, compactă sau conexă:
 - (a) $A = \{1, 2, 3, 4\}$
 - (b) $A = (0, 5] \cup \{7\}$
 - (c) $A = \mathbb{Q}$
 - (d) $A = [1, 2) \cap \mathbb{Q}$
 - (e) $A = \{\frac{(-1)^n}{n} : n \in \mathbb{N}^*\}$
 - (f) $A = [0,1) \cup \{-\frac{1}{4^n} : n \in \mathbb{N}\}$
 - (g) $A = [-4,7) \cup \{10,11\} \cup [(-9,-8) \cap \mathbb{Q}]$
 - (h) $A = (-3, 0] \cup \{\frac{n+\sqrt{2}}{3n+\sqrt{3}} : n \in \mathbb{N}\}$

I. Continuitatea, derivabilitatea funcțiilor. Exerciții

1. Studiați continuitatea și derivabilitatea următoarelor funcții:

(a)
$$f \colon \mathbb{R} \to \mathbb{R}, f(x) = \begin{cases} x \arctan \frac{1}{x}, \text{ dacă } x \in \mathbb{R} \setminus \{0\} \\ 0, \text{ dacă } x = 0 \end{cases}$$

(b)
$$f \colon \mathbb{R} \to \mathbb{R}, f(x) = \begin{cases} e^{-\frac{1}{x}}, \text{ dacă } x > 0 \\ 0, \text{ dacă } x \le 0 \end{cases}$$

(c)
$$f \colon [0, \infty) \to \mathbb{R}, f(x) = \begin{cases} x \cos \frac{1}{x} + \frac{\ln(x^2 + x + 1)}{2x}, \text{ dacă } x > 0 \\ \frac{1}{2}, \text{ dacă } x = 0 \end{cases}$$

(d)
$$f \colon [0, \infty) \to \mathbb{R}, f(x) = \begin{cases} \sin(x+1) - \frac{2\sin x}{x}, & \text{dacă } x > 0 \\ -2 + \sin 1, & \text{dacă } x = 0 \end{cases}$$

(e)
$$f: (-\infty, 0] \to \mathbb{R}, f(x) = \begin{cases} \arctan(\frac{1}{x^2}) + \frac{\ln(1-x)}{2x}, \text{ dacă } x \in (-\infty, 0) \\ \frac{\pi-1}{2}, \text{ dacă } x = 0 \end{cases}$$

(f)
$$f: (0, \infty) \to \mathbb{R}, f(x) = \frac{|\ln x|}{\sqrt{x}}$$

- 2. Fie $a, b \in \mathbb{R}, a < b$. Studiați dacă există funcții bijective $f: [a, b] \to \mathbb{R}$ și care au proprietatea lui Darboux.
- 3. Fie $f,g:[a,b]\to\mathbb{R},\ f,g$ continue pe [a,b], derivabile pe (a,b). Știind că f(a)=f(b)=0, arătați că există $c\in(a,b)$ astfel încât $f'(c)+f(c)\cdot g'(c)=0.$
- 4. Fie $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt{x^2 + 3}$. Demonstrați că $f(x+1) f(x) \le 1$, $\forall x \in \mathbb{R}$.

I. Uniform continuitatea funcțiilor reale

Definiția 1. Fie $f: A \subseteq \mathbb{R} \to \mathbb{R}$, $H \subseteq A$ o mulțime. Spunem că f este **uniform** continuă pe H dacă $\forall \varepsilon > 0$, $\exists \delta_{\varepsilon} > 0$ astfel încăt $\forall x,y \in H$ cu $|x-y| < \delta_{\varepsilon} \Longrightarrow |f(x) - f(y)| < \varepsilon$.

Propoziția 1. O funcție continuă pe un interval compact este uniform continuă.

Propoziția 2. O funcție $f: H \subseteq \mathbb{R} \to \mathbb{R}$ uniform continua duce orice șir Cauchy într-un șir Cauchy.

Cum folosim această propoziție în exerciții? Dacă găsim $(x_n)_n \subseteq H$ șir Cauchy (adică convergent), dar $(f(x_n))_n$ nu este șir Cauchy (convergent), atunci f nu este uniform continuă.

Propoziția 3. Fie $f: H \subseteq \mathbb{R} \to \mathbb{R}$. Atunci sunt echivalente afirmațiile:

- f este uniform continuă pe H;
- $\forall (x_n)_n, (y_n)_n \subseteq H$ cu $\lim_{n \to +\infty} (x_n y_n) = 0$, avem $\lim_{n \to +\infty} (f(x_n) f(y_n)) = 0$.

Cum folosim această propoziție în exerciții? Dacă găsim $(x_n)_n, (y_n)_n \subseteq H$ astfel încât $\lim_{n \to +\infty} (x_n - y_n) = 0$, dar $\lim_{n \to +\infty} (f(x_n) - f(y_n)) \neq 0$, atunci f nu este uniform continuă.

Propoziția 4. Orice funcție Lipschitz (i.e. $\exists M>0$ astfel încât $|f(x)-f(y)|\leq M|x-y|$, $\forall x,y)$ este uniform continuă.

În exerciții vom folosi următorul corolar: Orice funcție derivabilă cu derivata mărginită este funcție Lipschitz, deci uniform continuă.

Propoziția 5. Dacă $f: I \cup J \to \mathbb{R}$ astfel încât $I \cap J \neq \emptyset$ și f este uniform continuă pe I si J, atunci f este uniform continuă pe $I \cup J$.

Propoziția 6. Fie $f:(a,b]\to\mathbb{R}$. Atunci sunt echivalente afirmațiile:

- f este uniform continuă pe (a, b];
- $\exists \tilde{f} \colon [a,b] \to \mathbb{R}$ continuă, astfel încât $\tilde{f}_{\lfloor (a,b]} = f$.

II. Exerciții

1. Studiați continuitatea, derivabilitatea si uniform continuitatea următoarelor funcții:

(a)
$$f \colon \mathbb{R} \to \mathbb{R}, f(x) = \begin{cases} x \arctan \frac{1}{x}, \text{ dacă } x \in \mathbb{R} \setminus \{0\} \\ 0, \text{ dacă } x = 0 \end{cases}$$

(b)
$$f \colon \mathbb{R} \to \mathbb{R}, f(x) = \begin{cases} e^{-\frac{1}{x}}, \text{ dacă } x > 0 \\ 0, \text{ dacă } x \le 0 \end{cases}$$

(c)
$$f \colon [0, \infty) \to \mathbb{R}, f(x) = \begin{cases} x \cos \frac{1}{x} + \frac{\ln(x^2 + x + 1)}{2x}, \text{ dacă } x > 0 \\ \frac{1}{2}, \text{ dacă } x = 0 \end{cases}$$

(d)
$$f \colon [0, \infty) \to \mathbb{R}, f(x) = \begin{cases} \sin(x+1) - \frac{2\sin x}{x}, & \text{dacă } x > 0 \\ -2 + \sin 1, & \text{dacă } x = 0 \end{cases}$$

(e)
$$f: (-\infty, 0] \to \mathbb{R}, f(x) = \begin{cases} \arctan(\frac{1}{x^2}) + \frac{\ln(1-x)}{2x}, \text{ dacă } x \in (-\infty, 0) \\ \frac{\pi-1}{2}, \text{ dacă } x = 0 \end{cases}$$

(f)
$$f: (0, \infty) \to \mathbb{R}, f(x) = \frac{|\ln x|}{\sqrt{x}}$$

2. Studiați uniform continuitatea următoarelor funcții:

(a)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = e^x$.

(b)
$$f: (0,1] \to \mathbb{R}, f(x) = \frac{\sin x}{x}$$

(c)
$$f: (0,1] \to \mathbb{R}, f(x) = \sin \frac{1}{x}$$
.

(d)
$$f: (0, \infty) \to \mathbb{R}, f(x) = \frac{2}{x^2 + 3x}$$
.

I. Şiruri de funcții. Convergență simplă și uniformă. Exerciții

- 1. Considerăm șirul de funcții $f_n : [0,1] \to \mathbb{R}$, $f_n(x) = nx(1-x)^n$, pentru orice $x \in [0,1]$ și $n \in \mathbb{N}^*$. Studiați convergența simplă și uniformă a șirului $(f_n)_{n \ge 1}$.
- 2. Considerăm șirul de funcții $f_n \colon [0,1] \to \mathbb{R}$, $f_n(x) = \frac{x^n}{1+x^{2n}}$, pentru orice $x \in [0,1]$ și $n \in \mathbb{N}^*$. Studiați convergența simplă și uniformă a șirului $(f_n)_{n \geq 1}$.
- 3. Considerăm șirul de funcții $f_n \colon [0,\infty) \to \mathbb{R}$, $f_n(x) = \frac{x^2 + nx}{n + x + 1}$, pentru orice $x \in [0,\infty)$ și $n \in \mathbb{N}^*$. Studiați convergența simplă și uniformă a șirului $(f_n)_{n \geq 1}$ pe intervalele [0,1] si $[1,\infty)$.
- 4. Considerăm șirul de funcții $f_n \colon [0,\infty) \to \mathbb{R}$, $f_n(x) = \frac{xe^{2x+1}}{x^2+n^2}$, pentru orice $x \in [0,\infty)$ și $n \in \mathbb{N}^*$. Studiați convergența simplă și uniformă a șirului $(f_n)_{n \geq 1}$.
- 5. Considerăm șirul de funcții $f_n : (-\infty, 0) \to \mathbb{R}$, $f_n(x) = \frac{e^{nx}-1}{e^{nx}+1}$, pentru orice $x \in (-\infty, 0)$ și $n \in \mathbb{N}^*$. Studiați convergența simplă și uniformă a șirului $(f_n)_{n \geq 1}$.
- 6. Considerăm șirul de funcții $f_n : [5,6] \to \mathbb{R}$, $f_n(x) = \frac{(x+n)^3}{(n+2)^4}$, pentru orice $x \in [5,6]$ și $n \in \mathbb{N}^*$. Studiați convergența simplă și uniformă a șirului $(f_n)_{n \ge 1}$.
- 7. Considerăm șirul de funcții $f_n : [0, \infty) \to \mathbb{R}$, $f_n(x) = \frac{x+2n}{x+n+1} \sin(x+1)$, pentru orice $x \in [0, \infty)$ și $n \in \mathbb{N}^*$. Studiați convergența simplă și uniformă a șirului $(f_n)_{n \geq 1}$.

I. Integrabilitate Riemann. Exerciții.

1. Calculați următoarele limite:

(a)
$$\lim_{n \to \infty} \left(\frac{n}{(n+1)^2} + \frac{n}{(n+2)^2} + \frac{n}{(n+3)^2} + \dots + \frac{n}{(n+n)^2} \right)$$

(b)
$$\lim_{n \to \infty} \left(\frac{1}{n+1 - \frac{1}{\sqrt{1}}} + \frac{1}{n+2 - \frac{1}{\sqrt{2}}} + \dots + \frac{1}{n+n - \frac{1}{\sqrt{n}}} \right)$$

(c)
$$\lim_{n \to \infty} \left(\frac{1}{3n+2} + \frac{1}{3n+5} + \dots + \frac{1}{3n+(3n-1)} \right)$$

(d)
$$\lim_{n \to \infty} \frac{1}{n\sqrt{n}} \left(\sqrt{1} + \sqrt{2} + \sqrt{3} + \dots + \sqrt{n} \right)$$

(e)
$$\lim_{n \to \infty} \frac{1}{n^2} \left(\frac{1}{\sqrt[n]{e}} + \frac{2}{\sqrt[n]{e^2}} + \frac{3}{\sqrt[n]{e^3}} + \dots + \frac{n}{\sqrt[n]{e^n}} \right)$$

2. Stabiliți dacă următoarele funcții sunt integrabile Riemann:

(a)
$$f\colon [-1,1]\to \mathbb{R}, f(x)=\begin{cases} \frac{1}{x^2}, \ \mathrm{dac}\ x\neq 0\\ 2, \ \mathrm{dac}\ x=0 \end{cases}$$

(b)
$$f\colon [0,1]\to \mathbb{R}, f(x)=\begin{cases} x^2\sin\frac{1}{x^2}, \; \mathrm{dac} \ x\neq 0\\ 0, \; \mathrm{dac} \ x=0 \end{cases}$$

(c)
$$f\colon [1,4]\to \mathbb{R}, f(x)=\begin{cases} \frac{1}{x}, \ \mathrm{dacă}\ x\geq 2\\ x^2+x+1, \ \mathrm{dacă}\ x<2 \end{cases}$$