Functions for the module Robotik

Get Started:

- 1. Download the robotic.tns file.
- 2. Open the robotic.tns file with the TI-Nspire™ CX CAS Student Software.
- 3. Connect your TI-Nspire™ CX CAS over the USB cable with your PC.
- 4. In the software go to File/Save to Handheld...
- 5. Double click on your TI-Nspire™ CX CAS in the appeared window.
- 6. Go to "MyLib", rename the file to "robotic" and press Save.
- 7. Open a new Calculator page on your TI-Nspire™ CX CAS.
- 8. Press the "doc" button.
- 9. Update the libraries by pressing the number 6.
- To access the new functions, press the library button, the number 6 and search for "robotic".

Download this function documentation as pdf.

Functions:

robotic/atan2(y,x)

Function to calculate the arctan2. See Wikipedia

Parameters:

- y: sinus
- x: cosinus

Returns:

Related angle θ

Note: Works for rad and deg. Calculater settings are crucial.

$robotic/rotx(\theta)$

Function to get the rotation matrix around the x-axis. Parameters: • θ: Angle around the x-axis. Works for rad and deg. Calculater settings are crucial. Returns: • rotation matrix (4x4). robotic/roty(θ) Function to get the rotation matrix around the y-axis. Parameters: • θ: Angle around the y-axis. Works for rad and deg. Calculater settings are crucial. Returns: rotation matrix (4x4). robotic/rotz(θ) Function to get the rotation matrix around the z-axis. Parameters: • θ: Angle around the z-axis. Works for rad and deg. Calculater settings are crucial. Returns: rotation matrix (4x4). robotic/xyzangles(r)

Function to calculate the retransformation angles according to the X-Y-Z Roll-Gier-Nick

Convention.					
Parameters:					
• r (3x3): Rotation matrix.					
Returns:					
• β					
• a					
• Y					
robotic/zyzangles(r)					
Function to calculate the retransformation angles according to the Z-Y-Z Euler Convention.					
Parameters:					
• r (3x3): Rotation matrix.					
Returns:					
• β					
αγ					
robotic/xyzmatrix(α, β, γ)					
Function to calculate the retransformation matrix according to the X-Y-Z Roll-Gier-Nick Convention.					
Parameters:					
• a					
• β					
• γ					

Returns:

• r (3x3): Rotation matrix.

robotic/zyxmatrix(α , β , γ)

Function to calculate the retransformation matrix according to the Z-Y-X Euler Convention.

Parameters:

- a
- β
- \

Returns:

• r (3x3): Rotation matrix.

robotic/zyzmatrix(α, β, γ)

Function to calculate the retransformation matrix according to the Z-Y-Z Euler Convention.

Parameters:

- α [rad]
- β [rad]
- γ[rad]

Returns:

• r (3x3): Rotation matrix.

robotic/dhttransform(dh)

Function returns all transformation matrices for the intermediate steps and at the end the total transformation matrix.

Parameters:

• dh (nx4): The Denavit-Hartenberg matrix is entered according to the following convention:

Gelenk Nr.	Linklänge a_i	Linkdrehung α_i	Link Offset d_i	Gelenkwinkel θ_i
i				
i+1				

Returns:

transformation matrices

robotic/trapezbahn(s1, s2, v1, v2, a1, a2)

Function returns parameters for a fully synchronous PTP motion with trapezoidal velocity profile.

Parameters:

• s1: distance 1

• s2: distance 2

• v1: speed 1

v2: speed 2

• a1: acceleration 1

• a2: acceleration 2

Returns:

- acceleration time
- · constant travel time
- total time
- synchronized acceleration
- synchronized speed

robotic/jacobi(xe,ye,Φe,θ1,θ3,d2)

Function to calculate the Jacobi matrix. The Jacobi matrix of a robot arm describes the mapping of joint velocities to the linear velocity of the TCP and the temporal changes of the orientation of the end-effector.

Parameters: [rad]

- xe: Position in X-direction of the TCP.
- ye: Position in Y-direction of the TCP.
- Φe: Angle of the TCP.
- θ1: Angle of the first section of the robot.
- θ3: Angle of the last section of the robot.
- d2: Lenght of the first section of the robot.

Returns:

Jacobi matrix