Randomized Algorithms Quiz 1 Solutions to the quiz

- 1. (2) Failures are independent, therefore probability that all four links fail is $0.4^4 = 0.0256$. Therefore probability that at least one link is correct is 1 0.0256 = 0.9744.
- 2. (2) No. There are n! permutations of A. At each iteration the algorithm produces one of the n^n possibles outputs. If each permutation was equally possible, we should have that $\frac{n^n}{n!}$ is an integer, but if n is odd, that is not possible.
- 3. (2) Let A be event of having the coin C-C and B the event of having a head. We want $\mathbf{Pr}[A|B] = \frac{\mathbf{Pr}[A \cap B]}{\mathbf{Pr}[B]}$. Note $\mathbf{Pr}[B] = 3/4$ and $A \cap B = A \Rightarrow \mathbf{Pr}[A \cap B] = \mathbf{Pr}[A]$, so $\mathbf{Pr}[A|B] = \frac{1/2}{3/4} = \frac{2}{3}$.
- 4. (4) There are 7 balls in the bag initially, 3 of which are red. All balls are equally likely to be drawn from the bag so the probability of a red ball is 3/7. After drawing the red ball there are now 6 balls in the bag, 2 red and 4 white. The probability of now drawing a white ball is therefore 4/6 and \mathbf{Pr} [red then white] = \mathbf{Pr} [red first \cap white second] = $3/7 \times 4/6 = 0.28$

$$\mathbf{Pr}$$
 [white second] = \mathbf{Pr} [white second | red first] \mathbf{Pr} [red first]
+ \mathbf{Pr} [white second | white first] \mathbf{Pr} [white first]
= $4/6 \times 3/7 + 3/6 \times 4/7 = 0.57$

 \mathbf{Pr} [red first] \mathbf{Pr} [white second] = $3/7 \times 0.57 = 0.24$.

But \mathbf{Pr} [red first \cap white second] = $0.28 \neq \mathbf{Pr}$ [red first] \mathbf{Pr} [white second], therefore the events are not independent.

When the first ball is put back into the bag, the probability of the second ball being white is now 4/7 rather than 4/6 so

Pr [red then white] = $3/7 \times 4/7 = 0.2448$.

$$\begin{aligned} \mathbf{Pr} \, [\text{white second}] &= \mathbf{Pr} \, [\text{white second} \, | \, \text{red first}] \, \mathbf{Pr} \, [\text{red first}] \\ &+ \mathbf{Pr} \, [\text{white second} \, | \, \text{white first}] \, \mathbf{Pr} \, [\text{white first}] \\ &= 4/7 \times 3/7 + 4/7 \times 4/7 = 4/7 \end{aligned}$$

Therefore \mathbf{Pr} [red first] \mathbf{Pr} [white second] $+ = 3/7 + 4/7 = \mathbf{Pr}$ [red then white] and the events are independent.