Chapitre 4

Arbres binaires particuliers

Introduction

Certains arbres binaires possèdent des propriétés particulières qui peuvent être exploitées pour améliorer l'efficacité des traitements (recherche, insertion) ou pour effectuer des algorithmes spécifiques.

Par exemple:

- les arbres binaires de recherche (ABR)
- les tas

1) Arbres binaires de recherche

Un arbre dont les valeurs sont toutes différentes et tel que

Exemple: un ABR d'entiers

Intérêt des ABR

La recherche et l'insertion d'une valeur nécessitent de parcourir *une seule branche* de l'arbre au lieu de sa totalité

hors arbre \rightarrow 23 absent

30 < 42 & pas de filsg → insertion à gauche

Suppression d'un nœud

La suppression d'un nœud doit préserver les propriétés de l'arbre

Suppression d'un nœud

- Le nœud est une feuille
 - Supprimer ce noeud
- Le nœud possède au moins un fils
 - Trouver la valeur immédiatement inférieure (ou supérieure)
 - Remplacer le nœud par cette valeur
 - Supprimer cette valeur de la même manière

Exemple: suppression de 20

Exemple : arbre résultat

Chapitre 4 suite

Arbres complets / parfaits

2) Arbres complets et parfaits

- Un arbre binaire **complet** est un arbre binaire dont chaque nœud interne a 2 fils.
- Un arbre binaire **parfait** est un arbre binaire complet dont toutes les feuilles sont à la même hauteur.
- Un arbre binaire **quasi-parfait** est un arbre binaire parfait dont le dernier niveau peut être réduit par la droite.

Exemple: arbre complet

Exemple: arbre quasi-parfait

Exemple: arbre parfait

Intérêt des arbres complets

Un arbre complet peut être représenté dans un tableau de manière contiguë sans perte de place

Les accès se font par calcul.

rac	nive	eau 1	niveau 2				niveau 3		
85	10	23	18	12	9	42	4	8	9

3) Tas min et tas max

Un tas max est un arbre binaire quasi-parfait tel que la valeur d'un nœud est supérieure à celle de tous ses descendants

Un tas min est un arbre binaire quasi-parfait tel que la valeur d'un nœud est *inférieure* à celle de tous ses descendants

Exemple: un tas max

Exemple: un tas min

Utilisation des tas

Les tas (min ou max) sont utilisés dans le *tri par tas*, en O(n log₂ n)

Deux opérations sont nécessaires :

- ajout d'une valeur quelconque
- retrait de la plus grande (ou plus petite) valeur

en préservant les propriétés du tas

Ajout dans un tas max

Principe

- La valeur est ajoutée comme feuille la plus à droite du dernier niveau (l'arbre reste complet)
- La valeur est permutée avec la valeur de son père tant qu'elle est supérieure

Suppression dans un tas max

Principe

- La valeur retirée est toujours la racine
- La racine est remplacée par la feuille la plus à droite du dernier niveau (l'arbre reste complet)
- Cette valeur est permutée avec la valeur du plus grand fils tant qu'elle est inférieure à l'un de ses fils

Exemple: suppression

Retrait de la racine (85)

Remplacement par la dernière feuille

Remplacement par la dernière feuille

Permutations avec un fils

Permutations avec un fils

Exemple: suppression

Tri par tas

Principe

- ajouter une par une les valeurs à trier dans le tas
- retirer une par une les valeurs du tas : on obtient les valeurs dans l'ordre croissant (pour un tas min) ou décroissant (pour un tas max)

Tri par tas

Lorsque la séquence à trier est stockée dans un tableau, ce tableau représente directement le tas

il n'est pas nécessaire d'introduire une seconde structure de données

Chapitre 5

Arbres n-aires

Arbres (n-aires)

Dans un arbre quelconque, le nombre de fils d'un nœud n'est pas limité (0, 1, 2, ... n)

Les fils ne sont pas ordonnés (pas de fils gauche ni droit)

Parcours standards d'arbres

On retrouve (presque) les mêmes parcours standard :

- Parcours en profondeur
 - Préfixe ou DGD (descendant gauche droite)
 - Postfixe ou AGD (ascendant gauche droite)
- Parcours en largeur

En revanche le parcours infixe (ou symétrique) n'est possible que pour les arbres binaires

Parcours préfixe ou DGD

On étudie le nœud courant puis ses sous-arbres

Parcours postfixe ou AGD

On étudie les sous-arbres puis le nœud courant

Parcours préfixe : a <u>b e f c d g h i</u>

Parcours préfixe : a <u>b e f c d g h i</u> Parcours postfixe : <u>e f b c g h i d</u> a

Parcours préfixe : a <u>b e f c d g h i</u> Parcours postfixe : <u>e f b c g h i d</u> a Parcours en largeur : a b c d e f g h i

Spécifications d'un arbre n-aire

- On retrouve les mêmes groupes de primitives que pour les arbres binaires :
- Primitives d'initialisation et de test
- Primitives de déplacement du nœud courant
- Primitives de consultation et de modification du nœud courant
- Primitives d'ajout et de retrait d'une feuille

Spécifications d'un arbre n-aire

Problème : comment gérer le nombre variable de fils d'un nœud ?

Plusieurs solutions:

- 1. Soyons frères!
- 2. Le patriarche!

Soyons frères!

 Chaque nœud est relié à son premier fils et à son frère droit

Nécessite

- Modification de la structure t_noeud
 - Ajout de struct noeud * frere
- frere renvoie vrai si le noeud a un frère
- ajout_frere ajoute un frere

Exemple

Exemple : liens vers le père

Exemple : liens vers le premier fils

Exemple : liens vers le frère droit

$$a$$

$$b \longrightarrow c \longrightarrow d$$

$$e \longrightarrow f \qquad g \longrightarrow h \longrightarrow i$$

Exemple: tous les liens

Le patriarche!

- Chaque nœud possède un lien direct vers chacun de ses fils
 - posit_fils(n) positionne sur le n-ième fils
- Nécessite
 - Modification de la structure t_noeud
 - La variables fils est désormais une « collection » de struct noeud *
 - Ajout d'une variable permettant de connaître le nombre de fils (taille de la collection fils)
 - Gestion mémoire statique ou dynamique ?

Exemple

Exemple : liens vers le père

Exemple: liens vers les fils

Exemple: tous les liens

Mise en œuvre des arbres n-aires

Mise en œuvre par pointeurs

