

UNIVERSITY OF GHANA

(All rights reserved)

BACHELOR OF SCIENCE IN ENGINEERING FIRST SEMESTER EXAMINATIONS: 2015/2016

DEPARTMENT OF COMPUTER ENGINEERING
CPEN 101: ENGINEERING COMPUTATIONAL TOOLS (2 Credits)

INSTRUCTION: Answer all Questions in Section A, two (2) Questions from Section B, and two (2) Questions from Section C.

TIME ALLOWED: TWO (2) HOURS

SECTION A (40 Marks) Answer all questions in this section

1

- a. Briefly explain what an engineering computational tool is and why it is considered important. List four (4) mathematical computational tools that could be used to solve engineering and scientific problems.

 [6 marks]
- b. List and briefly describe two (2) major engineering achievements since the introduction of computers and computational tools.
 C. Evaloir the 100
- c. Explain the difference between hardware system and software system. Draw a diagram of the computer hardware architecture of your computer and discuss how the processor interacts with the memory to execute instructions. [5 marks]
- d. Explain the difference between operating system (OS) and application software. Illustrate your answer using a simple diagram of the software architecture and its interaction with the various domains.
- e. Draw the layered structure diagram of the computer language hierarchy and explain the function in each hierarchy. Give two (2) examples of a low-level language and two (2) examples of a high-level language.

 [5 marks]
- f. What is the difference between a compiler and an interpreter? Explain why we

need the two systems and give one (1) advantage and one (1) disadvantage of each type. [5 marks]

- g. Engineering problem can be broadly classified into five (5) main areas. Briefly describe any read give one (1) example of each type. [5 marks]
- h. Briefly describe the steps you will follow to solve a typical engineering problem in work field of study. State the problem to be solved. [5 marks]

SPREADSHEET (30 Marks)

The section of this section

 $\mathcal{L} = \mathcal{L}$ is defined as follows:

-4=0

The second spreadsheet to solve the equation for the second spreadsheet to solve the second s

The state of the s

E-C4<D4,C4*D4,"BAD"), B4*D4)

D4,C4*D4,"bad"), "bad")

te following spreadsheet terms: [4 marks]

entransity of the conficultion (VBA)

(courses taken and the grades obtained) of

F17 to compute the CGPA of the student for

Page 2 of 5

the academic year? [3 marks]

- (ii) What function will you put in cell F18 to *count* the number of courses the students had taken more than once? [2 marks]
- (iii) What function will you put in cell F19 to determine the number of courses the students scored A? [2 marks]
- (iv) What will be the content of cell F20 if the following function "=IF(C8 > 2, IF(E13 < 4, C42*E4, C8*E8), C2*E2)" is entered in that cell? [2 marks]
- (v) What will be the content of cell G20 if the following function "=IF(C8 < 2, IF(E13 < 4, C42*E4, C8*E8), C2*E2)" is entered in that cell? [2 marks]

Table 1 - Student GPA calculation

	119		(*	f.												
di A	- 1	· 8	·c.	, l*	/D	1300	· E	./s.F:	. (G	40	H ² ,8	學	4.4		
		CODE	CRED	IT :	GRADE	.GRA	DEPOINT	CPA							ì	
		CPEN101	2		F	1	0				•					
7		FAEN201	4		В		3				-				•	
1		CPEN201	3		A		4.									
5		CPEN203	3		Α		4	•								
6		CPEN205	2	•	D	•	1							•		
7		CPEN101	2		Α .		4			-	•		•			
3		CPEN207	3		C+		2.5									
9		FAEN102	4		F		0		-							_
0		FAEN202	4		D+		1.5		•							
1		FAEN206	3		Α	• •	4	•								
12		CPEN202	2 2		Α		4				٠.		.:			
12 13		CPEN204	3		В		3			·						
14		FAEN102	2 4		A		4	. i ,							. 1	
15		CPEN206	5 3	-	C+		2.5						ļ			
16															: .	٠,
17		1	·						:.							
18		100									*		_		7	
19						**				-			ـــ			
20				•						4						

- 4. (a) Suppose we want to generate random numbers between 10 and 100 to fill the cell range B1:B10. Describe the excel function and how you will use the function achieve this. [2 marks]
 - (b) Suppose the data in Table 2 below shows the population of students in the Computer Engineering Department from 2004 to 2015.
 - (i) What excel expression will you put in cells D15 and D16 to compute the total *min* and *max* number of students? [2 marks]
 - (ii) What excel functions will you put in cell D17 to compute the average number of students that entered the Department from 2004 to 2015? What is this value? [3 marks]

- When expression will you put in D18 to count the number of years in which female students were admitted in the Department [2 marks]
- expression will you put in cell D19 to count the total students above 21? What is this value? [3 marks]
- excel expression will you put in cell D20 to find the total of students between 50 and 100 from 2004 to 2015?

 [3 marks]

Table 2 - Student supulation from 2004 - 2015

4112			<u>څر</u>					
**1	unio de	(2)	:	D	E	F	G I	<u>4°.</u>
5,	'sterve:	(Dath-Mes	≉तां नेध्यक्षांस	Total				
		₫.	¥	1.2		is a second		
- B	mares.	. (2 18 6)	Ð	18			·	
V		. ≛	2	15				
		177	- 1	15				
S. F	: Seene		2	14				
2			3	21				
			ž.	31			1	
36 L	marin (.≃5.	2	19				
	· JEETS	Œ	2	29				
and.		250	≇.	35				
	2 122312	<u>, 25</u> ,	4	23				
720	THE PARTY.	T.E.	\$	27				
201		ŕ						
	X	* 4:1 * = 1						
-	Į.			-		·		,
		1.8						
in all a		100						
7								
6		V						

SECTION C - MATLAB (30 Marks)

- 1. Convert user input temperature values measured in Colsius (C) and also from degree Celsius (C) to [7 marks]
 - Supplies and the second at the bank with interest that has accrued the second to the expression:

The second at the end of the n-th month, x(n) is the second at the end of the n-th month, x(n) is the second at the end of the n-th month, x(n) is the second at the end of the n-th month, x(n) is the second at the end of the n-th month, x(n) is the second at the end of the n-th month, x(n) is the second at the end of the n-th month, x(n) is the second at the end of the n-th month, x(n) is the second at the end of the n-th month, x(n) is the second at the end of the n-th month, x(n) is the second at the end of the n-th month, x(n) is the second at the end of the n-th month, x(n) is the second at the end of the n-th month, x(n) is the second at the end of the n-th month, x(n) is the second at the end of the n-th month, x(n) is th

bank interest rate r is 15%, write a Matlab function to compute y(n) for n = 48 when y(0) is 300, and x(n) is 50 for $n \ge 1$. [8 marks]

- 2. (a) Suppose the voltage signal in the socket of your room is given by the function $y = A\sin(2\pi f t + 40^{\circ})$, where A and f are the amplitude and frequency, write a Matlab code to generate the signal y over the t = -10:0.01:10, for arbitrary user values of A and f. [5 marks]
 - (b) A ball is released from a height of 10m to the ground. The ball bounces to 80% of its height with each bounce. The bouncing process of the ball can be modeled as the geometric sum as defined below. Find the initial value and the ratio and write a Matlab code for a user to find how high a ball bounces on any bounce, example the 10th bounce. [6 marks]

$$S_n = \sum_{k=0}^{n-1} ar^k = a \frac{(1-r^n)}{(1-r)}$$

(c) Suppose the function describing the motion of a space shuttle is given as:

$$3x^4 + 4x^3 - 2x = 300.$$

Find the roots of the function in Matlab. How will you evaluate the function at x = 6 at the Matlab command prompt. [4 marks]

3. (a) Suppose you opened an account at a bank with an initial sum y(0) of GHc250. Assume you plan to deposit monthly amount x(n) of GHc50. If the bank annual interest rate (r) is 18%, write a short script in Matlab to compute how long in months (n) it will take you to save a sum of GHc1,000,000 in the account. Your script should allow users the flexibility to change the amounts and interest rates. Assume the savings at the end of the n-th is given by the expression: [8 mark]

$$y(n) = (1 + r/12)*y(n-1) + x(n)$$

(b) A system of linear equations AX = B is defined as follows:

$$5x_1 + 2x_2 + 8x_3 = 46$$

$$4x_1 - x_2 = 12$$

$$6x_1 + 7x_2 + 4x_3 = 50$$

- (i) Describe the steps you will follow working from the command prompt in Matlab to solve equation for the solution. [4 marks]
- (ii) Write an expression in Matlab for the transpose of the matrix A and put the content of the transpose in D. Find the contents of D(2,1), D(2,3), and D(2,1)*D(1,3). [3 marks]

