Hypothesis Testing with Two Samples

MAT 152 - STATISTICAL METHODS I

LECTURE 2

INSTRUCTOR: DUSTIN ROTEN

FALL 2020

Two-Sample Hypothesis Testing

If two groups are independent simple random samples from two distinct populations:

- 1. If the sample sizes are small, the distributions should be normal
- 2. If the sample sizes are large, the distributions are not important

(The test comparison of two independent population means with unknown and **possibly unequal population standard deviations** is called the Aspen-Welch t-test.)

Differences depend on sample means and sample standard deviations. Very different means can occur if the variations are large.

Null and alternative hypotheses are still constructed.

Example

A study is done by a community group in two neighboring colleges to determine which one graduates students with more math classes. **College A** samples 11 graduates. Their average is 4 math classes with a standard deviation of 1.5 math classes. **College B** samples 9 graduates. Their average is 3.5 math classes with a standard deviation of 1 math class. The community group believes that a student who graduates from **College A** has taken more math classes, on average. Both populations have a normal distribution. Test at the 1% significance level.

Q1: Is this a test of two means or two proportions?

Two means

Q2: Are the population standard deviations known or unknown?

Unknown

Q3: Which distribution should be used?

Student's t

Statistic	College A	College B
n	11	9
\bar{x}	4	3.5
S	1.5	1
Std. Err.	$\frac{s_A}{\sqrt{n}} = \frac{1.5}{\sqrt{11}} \approx 0.452$	$\frac{s_B}{\sqrt{n}} = \frac{1}{\sqrt{9}} \approx 0.\overline{3}$
ν	10	8

A study is done by a community group in two neighboring colleges to determine which one graduates students with more math classes. **College A** samples 11 graduates. Their average is 4 math classes with a standard deviation of 1.5 math classes. **College B** samples 9 graduates. Their average is 3.5 math classes with a standard deviation of 1 math class. The community group believes that a student who graduates from College A has taken more math classes, on average. Both populations have a normal distribution. Test at the 1% significance level.

How do we construct H_0 and H_a for two means?

Q4: What is the random variable?

Look at the differences in the two means: $\bar{X}_A - \bar{X}_B$

Q5: What are the null and alternative hypotheses?

 H_0 : $\mu_A \leq \mu_B$

 H_a : $\mu_A > \mu_B$

Q6: Will this be a right-, left-, or two-tailed test?

Right-tailed test

Let's rewrite our hypotheses:

$$H_0: \mu_A \le \mu_B$$
 $H_0: \mu_A - \mu_B \le 0$
 $H_a: \mu_A > \mu_B$ $H_a: \mu_A - \mu_B > 0$

We are interested in the differences:

 H_0 : $\Delta \mu \leq 0$

(The difference of the means is less than zero; μ_A is smaller)

 H_a : $\Delta \mu > 0$

(The difference of the means is greater than zero; μ_A is larger)

We are now ready to test! We assume that H_0 is true. (No difference in the mean $\Delta \mu = 0$).

Assuming the null hypothesis to be true, we need to determine the t-score of our sample mean. In our case: $\bar{x}_A - \bar{x}_B = \Delta \bar{x} = 4 - 3.5 = 0.5$.

- •Normally, $t = \frac{\bar{x} \mu}{\frac{\bar{S}}{\sqrt{n}}}$ where $\frac{\bar{S}}{\sqrt{n}}$ is the standard error (SE). The variance would be $SE^2 = \left(\frac{\bar{S}}{\sqrt{n}}\right)^2 = \frac{\bar{S}^2}{n}$.
- •We now have two sample variances that we must combine!

 $V_A + V_B = \frac{s_A^2}{n_A} + \frac{s_B^2}{n_B}$. We can take the square root of this combined variance to get our combined standard error:

$$SE = \sqrt{\frac{s_A^2}{n_A} + \frac{s_B^2}{n_B}}$$

Q7: What is the t-score of our value? (Assuming $\Delta \mu = 0$)

$$t = \frac{\Delta \bar{x} - \Delta \mu}{SE} = \frac{\Delta \bar{x} - \Delta \mu}{\sqrt{SE_A^2 + SE_B^2}} = \frac{0.5 - 0}{\sqrt{0.452267^2 + 0.333333^2}} \approx 0.8899$$

Q8: How many degrees of freedom are there? Aspin-Welch approximates ν as follows:

$$v = df = \frac{\left(SE_A^2 + SE_B^2\right)^2}{\left(\frac{SE_A^4}{\nu_A}\right) + \left(\frac{SE_B^4}{\nu_B}\right)}$$

$$v = df = \frac{\left(SE_A^2 + SE_B^2\right)^2}{\left(\frac{SE_A^4}{v_A}\right) + \left(\frac{SE_B^4}{v_B}\right)} = \frac{\left(0.45^2 + 0.33^2\right)^2}{\left(\frac{0.45^4}{10}\right) + \left(\frac{0.33^4}{8}\right)} \approx 17.37$$

A study is done by a community group in two neighboring colleges to determine which one graduates students with more math classes. **College A** samples 11 graduates. Their average is 4 math classes with a standard deviation of 1.5 math classes. **College B** samples 9 graduates. Their average is 3.5 math classes with a standard deviation of 1 math class. The community group believes that a student who graduates from **College A** has taken more math classes, on average. Both populations have a normal distribution. **Test at the 1% significance level**.

We now know that $P(\Delta \bar{x} > 0.5) = 0.19284$ or roughly 19.28%.

At the 1% significance level: $\alpha = 0.01$ and $\alpha .$

At the 1% significance level, there is NOT sufficient evidence provided by the samples to conclude that a student who graduates from College A has taken more math classes, on average, than a student who graduates from College B.

Known Population Standard Deviations

In the previous problem, we did not know the populations' standard deviations. In rare cases where this is known a normal distribution can be used.

$$\Delta \bar{X} \sim N \left[\Delta \mu, \sqrt{\frac{(\sigma_1)^2}{n_1} + \frac{(\sigma_2)^2}{n_2}} \right]$$

Standard Deviation:
$$\sigma = \sqrt{\frac{(\sigma_1)^2}{n_1} + \frac{(\sigma_2)^2}{n_2}}$$

Z-score:
$$z = \frac{\Delta \bar{x} - \Delta \mu}{\sigma} = \frac{\Delta \bar{x} - \Delta \mu}{\sqrt{\frac{(\sigma_1)^2}{n_1} + \frac{(\sigma_2)^2}{n_2}}}$$

Review

Two samples from two populations can be compared. This is done by comparing the differences between their means: μ_1 and μ_2 .

The same process applies:

- 1) Assume the null hypothesis is true.
- 2) Calculate the probability of the random sample occurring. (t-test or z-test)

$$t = \frac{\Delta \bar{x} - \Delta \mu}{SE} = \frac{\Delta \bar{x} - \Delta \mu}{\sqrt{SE_A^2 + SE_B^2}}$$

$$t = \frac{\Delta \bar{x} - \Delta \mu}{SE} = \frac{\Delta \bar{x} - \Delta \mu}{\sqrt{SE_A^2 + SE_B^2}}$$

$$v = df = \frac{\left(SE_A^2 + SE_B^2\right)^2}{\left(\frac{SE_A^4}{v_A}\right) + \left(\frac{SE_B^4}{v_B}\right)}$$