# Itération 4 Tower defense & machine learning

**Tuteur: THOMAS Vincent** 

BOURDON-BORTOLOTTI-DUCHENE-ROTH

# Sommaire

- ☐ Introduction
- Rappel
- ☐ Fonctionnalités
- Diagrammes
- Graphiques de l'évolution
- Planning

### Introduction

#### **Objectif itération 4:**

- Réaliser des diagrammes de séquence pour clarifier le fonctionnement du projet.
- Réaliser un refactoring du code.
- Ajout d'un behavior d'évitement des murs
- Adapter l'algorithme évolutionnaire pour 1 agent à la structure du projet.
- Tempérer les attaques des ennemis et des défenses en fonction du moteur de jeu et retirer le timer.
- Obtenir une simulation fonctionnelle.
- Faire évoluer les groupes d'ennemis plutôt que les ennemis individuellement (débuter et potentiellement finaliser en itération 5).

# Rappel



| Genre     | Comportement |
|-----------|--------------|
| Géant     | Normal       |
| Ninja     | Fuyard       |
| Druide    | Healer       |
| Berserker | Kamikaze     |

### Fonctionnalités

#### Prévue initialement :

- Ennemies se déplacent en fonction de son comportement
- ☐ Attaque des défenses et des ennemies
- Prioriser une défense à attaquer (type)
- Lancer une partie qui se finit si X ennemis sont arrivés ou si la limite de manches est atteinte
- Accélérer le temps d'une partie
- Afficher des informations dans les logs

## Fonctionnalités

#### Prévue initialement :

- Ennemies se déplacent en fonction de son comportement
- Attaque des défenses et des ennemies
- Prioriser une défense à attaquer (type)
- Lancer une partie qui se finit si X ennemis sont arrivés ou si la limite de manches est atteinte
- Accélérer le temps d'une partie
- Afficher des informations dans les logs

# Fonctionnalités

#### Itération 4:

- ☐ Mise en place de déplacement sans A\*, uniquement Steering behavior
- Évolution d'un ennemi unique en simulation et graphiquement
- Évolution de groupes d'ennemis en simulation et graphiquement
- Génération d'un fichier CSV pour réaliser des graphes sur l'évolution

# Diagrammes













#### Evolution ModeleLabyrinthe Main Ennemy Evolution List <Ennemy> ennemies loop new HashMap<Ennemy, double> stats [ennemies] loop stats.put(e, 0) evaluate(stats) loop [stats] creerLabyrinthe(e) scoreSimu = simuler(jeu) stats.add(e, scoreSimu) evolve(stats) List<Ennemy> ennemiesEvolved Ennemy Evolution ModeleLabyrinthe Main

#### Diagramme d'activité méthode evolve :



# Graphiques de l'évolution

#### Évolution pour 1 individu





# Graphiques de l'évolution

<u>Évolution pour 1</u> groupe d'individus







### Evolution de 40 groupes de 20 ennemies sur 50 manches



### Evolution de 40 groupes de 20 ennemies sur 50 manches



### Evolution de 40 groupes de 20 ennemies sur 100 manches



# **Planning**

#### Fonctionnalités prévues pour l'itération 5 :

- ☐ Ajouter un arrival behavior
- Ajouter l'accélération du temps en version graphique
- Ajouter l'évolution avec steering behavior
- Pouvoir charger un labyrinthe
- Intégrer une génération de graphique en fin de partie