Hypergeometric Motives

Fernando Rodriguez Villegas

The Abdus Salam International Centre for Theoretical Physics

 $\mathrm{Dec}\ 2014$

▶ Letter of Grothendieck to Serre in 1964.

- ▶ Letter of Grothendieck to Serre in 1964.
- lacktriangleright Piece V of cohomology of a smooth projective variety.

- ▶ Letter of Grothendieck to Serre in 1964.
- ightharpoonup Piece V of cohomology of a smooth projective variety.
- \blacktriangleright E.g. E an elliptic curve over $\mathbb Q$

- ▶ Letter of Grothendieck to Serre in 1964.
- ightharpoonup Piece V of cohomology of a smooth projective variety.
- ightharpoonup E.g. E an elliptic curve over $\mathbb Q$
- ▶ Motive of rank d = 2

$$V=H^1(E,\mathbb{Q})$$

▶ It has an associated *L*-function.

$$\Lambda(s) = N^{s/2} L_{\infty}(s) \prod_{p} L_{p}(p^{-s})^{-1}$$

▶ It has an associated *L*-function.

$$\Lambda(s) = N^{s/2} L_{\infty}(s) \prod_{p} L_{p}(p^{-s})^{-1}$$

▶ Generically $L_p(T)$ has degree d=2 and weight w=1.

▶ It has an associated *L*-function.

$$\Lambda(s) = N^{s/2} L_{\infty}(s) \prod_{p} L_{p}(p^{-s})^{-1}$$

- ▶ Generically $L_p(T)$ has degree d=2 and weight w=1.
- ▶ Functional equation $s \mapsto w + 1 s$.

▶ It has an associated *L*-function.

$$\Lambda(s) = N^{s/2} L_{\infty}(s) \prod_{p} L_{p}(p^{-s})^{-1}$$

- ▶ Generically $L_p(T)$ has degree d=2 and weight w=1.
- ▶ Functional equation $s \mapsto w + 1 s$.

$$L_p(T) = \prod_{i=1}^{2} (1 - \alpha_i T), \qquad |\alpha_i| = p^{w/2}$$

▶ It has an associated *L*-function.

$$\Lambda(s) = N^{s/2} L_{\infty}(s) \prod_{p} L_{p}(p^{-s})^{-1}$$

- ▶ Generically $L_p(T)$ has degree d=2 and weight w=1.
- ▶ Functional equation $s \mapsto w + 1 s$.

Þ

$$L_p(T) = \prod_{i=1}^{2} (1 - \alpha_i T), \qquad |\alpha_i| = p^{w/2}$$

• Gamma factor $L_{\infty}(s) := (2\pi)^{-s} \Gamma(s)$

▶ It has an associated *L*-function.

$$\Lambda(s) = N^{s/2} L_{\infty}(s) \prod_{p} L_{p}(p^{-s})^{-1}$$

- ▶ Generically $L_p(T)$ has degree d=2 and weight w=1.
- ▶ Functional equation $s \mapsto w + 1 s$.

Þ

$$L_p(T) = \prod_{i=1}^{2} (1 - \alpha_i T), \qquad |\alpha_i| = p^{w/2}$$

- Gamma factor $L_{\infty}(s) := (2\pi)^{-s} \Gamma(s)$
- \triangleright N is the conductor.

$$X_{\psi}: \qquad x_1^5 + \dots + x_5^5 - 5\psi x_1 \dots x_5 = 0$$

•

$$X_{\psi}: \qquad x_1^5 + \dots + x_5^5 - 5\psi x_1 \dots x_5 = 0$$

▶ Middle cohomology $H^3(X_{\psi}, \mathbb{Q})$ is of dimension 204.

•

$$X_{\psi}: \qquad x_1^5 + \dots + x_5^5 - 5\psi x_1 \dots x_5 = 0$$

- ▶ Middle cohomology $H^3(X_{\psi}, \mathbb{Q})$ is of dimension 204.
- ► Contains motive V of rank d=4 (fixed subspace by $x_i \mapsto \zeta_i x_i$, $\zeta_i^5 = \zeta_1 \cdots \zeta_5 = 1$).

$$X_{\psi}: \qquad x_1^5 + \dots + x_5^5 - 5\psi x_1 \dots x_5 = 0$$

- ▶ Middle cohomology $H^3(X_{\psi}, \mathbb{Q})$ is of dimension 204.
- ► Contains motive V of rank d=4 (fixed subspace by $x_i \mapsto \zeta_i x_i$, $\zeta_i^5 = \zeta_1 \cdots \zeta_5 = 1$).
- ▶ Get L-function with $L_p(T)$ generically of degree d=4 and weight w=3.

$$X_{\psi}: \qquad x_1^5 + \dots + x_5^5 - 5\psi x_1 \dots x_5 = 0$$

- ▶ Middle cohomology $H^3(X_{\psi}, \mathbb{Q})$ is of dimension 204.
- ► Contains motive V of rank d=4 (fixed subspace by $x_i \mapsto \zeta_i x_i$, $\zeta_i^5 = \zeta_1 \cdots \zeta_5 = 1$).
- ▶ Get L-function with $L_p(T)$ generically of degree d=4 and weight w=3.

$$L_{\infty}(s) = (2\pi)^{-2s} \Gamma(s) \Gamma(s-1)$$

Hodge numbers

▶ Refinement of rank d that determines $L_{\infty}(s)$.

$Hodge\ numbers$

▶ Refinement of rank d that determines $L_{\infty}(s)$.

$$h^{p,q} \in \mathbb{Z}_{\geq 0}, \qquad p+q=w$$

Hodge numbers

▶ Refinement of rank d that determines $L_{\infty}(s)$.

$$h^{p,q} \in \mathbb{Z}_{\geq 0}, \qquad p+q = w$$

$$h^{p,q} = h^{q,p}, \qquad \sum_{p,q} h^{p,q} = d$$

Hodge numbers

▶ Refinement of rank d that determines $L_{\infty}(s)$.

•

$$h^{p,q} \in \mathbb{Z}_{\geq 0}, \qquad p+q=w$$

$$h^{p,q} = h^{q,p}, \qquad \sum_{p,q} h^{p,q} = d$$

► Hodge vector

$$\mathbf{h} := (h^{w,0}, h^{w-1,1}, \dots, h^{0,w})$$

▶ Elliptic curve

$$\mathbf{h} = (1, 1)$$

▶ Elliptic curve

$$h = (1, 1)$$

▶ Quintic family

$$\mathbf{h}=(1,1,1,1)$$

▶ Elliptic curve

$$h = (1, 1)$$

▶ Quintic family

$$\mathbf{h} = (1, 1, 1, 1)$$

ightharpoonup Modular form of weight k

$$\mathbf{h} = (1, 0, \dots, 0, 1), \qquad w = k - 1$$

▶ Elliptic curve

$$h = (1, 1)$$

▶ Quintic family

$$\mathbf{h}=(1,1,1,1)$$

ightharpoonup Modular form of weight k

$$\mathbf{h} = (1, 0, \dots, 0, 1), \qquad w = k - 1$$

► Artin representation rank d

$$\mathbf{h} = (d)$$

$Motives\ in\ practice$

▶ How do we find motives, over \mathbb{Q} say, in practice?

Motives in practice

- \blacktriangleright How do we find motives, over \mathbb{Q} say, in practice?
- ▶ How are these distributed according to Hodge vectors \mathbf{h} and conductor N?

Hypergeometric functions

► Gauss hypergeometric series

$$1 + \frac{ab}{1 \cdot c}z + \frac{a(a+1)b(b+1)}{1 \cdot 2 \cdot c(c+1)}z^2 + \cdots$$

$Hypergeometric\ functions$

► Gauss hypergeometric series

$$1 + \frac{ab}{1 \cdot c}z + \frac{a(a+1)b(b+1)}{1 \cdot 2 \cdot c(c+1)}z^2 + \cdots$$

▶ Satisfies linear differential equation of order 2

$$[\theta(\theta+c-1)-z(\theta+1)(\theta+b)]y=0$$

$Hypergeometric\ functions$

► Gauss hypergeometric series

$$1 + \frac{ab}{1 \cdot c}z + \frac{a(a+1)b(b+1)}{1 \cdot 2 \cdot c(c+1)}z^2 + \cdots$$

▶ Satisfies linear differential equation of order 2

$$[\theta(\theta+c-1) - z(\theta+1)(\theta+b)]y = 0$$

▶ Gives rise to a monodromy representation

$$\pi_1(\mathbb{P}^1 \setminus \{0, 1, \infty\}) \to \mathrm{GL}(V)$$

$Hypergeometric\ functions$

► Gauss hypergeometric series

$$1 + \frac{ab}{1 \cdot c}z + \frac{a(a+1)b(b+1)}{1 \cdot 2 \cdot c(c+1)}z^{2} + \cdots$$

▶ Satisfies linear differential equation of order 2

$$[\theta(\theta+c-1) - z(\theta+1)(\theta+b)]y = 0$$

▶ Gives rise to a monodromy representation

$$\pi_1(\mathbb{P}^1 \setminus \{0, 1, \infty\}) \to \mathrm{GL}(V)$$

▶ $V := \text{space of local solutions of the DE at } z = t \in \mathbb{P}^1 \setminus \{0, 1, \infty\}.$

ightharpoonup For a,b,c rational V is the incarnation of a motive.

- ightharpoonup For a, b, c rational V is the incarnation of a motive.
- ▶ In fact a family of motives $\mathcal{H}(t)$ for varying t.

- \blacktriangleright For a, b, c rational V is the incarnation of a motive.
- ▶ In fact a family of motives $\mathcal{H}(t)$ for varying t.
- ▶ Set

$$q_{\infty}(T) := (T - e^{2\pi i a})(T - e^{2\pi i b})$$
 $q_0(T) := (T - e^{2\pi i (1 - c)})(T - 1)$

- \blacktriangleright For a, b, c rational V is the incarnation of a motive.
- ▶ In fact a family of motives $\mathcal{H}(t)$ for varying t.
- ► Set

$$q_{\infty}(T) := (T - e^{2\pi i a})(T - e^{2\pi i b})$$
 $q_0(T) := (T - e^{2\pi i (1 - c)})(T - 1)$

▶ If q_{∞}, q_0 are coprime and in $\mathbb{Z}[T]$ then $\mathcal{H}(t)$ is irreducible and defined over \mathbb{Q} .

- \blacktriangleright For a, b, c rational V is the incarnation of a motive.
- ▶ In fact a family of motives $\mathcal{H}(t)$ for varying t.
- ► Set

$$q_{\infty}(T) := (T - e^{2\pi i a})(T - e^{2\pi i b})$$
 $q_0(T) := (T - e^{2\pi i (1 - c)})(T - 1)$

- ▶ If q_{∞}, q_0 are coprime and in $\mathbb{Z}[T]$ then $\mathcal{H}(t)$ is irreducible and defined over \mathbb{Q} .
- ▶ It has rank d = 2 and a certain computable weight w.

Hypergeometric Motives

▶ $q_0, q_\infty \in \mathbb{Z}[T]$, coprime, same degree d, roots are roots of unity.

$Hypergeometric\ Motives$

- ▶ $q_0, q_\infty \in \mathbb{Z}[T]$, coprime, same degree d, roots are roots of unity.
- ▶ Get associated family of motives $\mathcal{H}(t)$ with $t \in \mathbb{P}^1 \setminus \{0, 1, \infty\}$.

Hypergeometric Motives

- ▶ $q_0, q_\infty \in \mathbb{Z}[T]$, coprime, same degree d, roots are roots of unity.
- ▶ Get associated family of motives $\mathcal{H}(t)$ with $t \in \mathbb{P}^1 \setminus \{0, 1, \infty\}$.
- \triangleright $\mathcal{H}(t)$ has rank d and a computable weight w in terms of q_0, q_{∞} .

Hypergeometric Motives

- ▶ $q_0, q_\infty \in \mathbb{Z}[T]$, coprime, same degree d, roots are roots of unity.
- ▶ Get associated family of motives $\mathcal{H}(t)$ with $t \in \mathbb{P}^1 \setminus \{0, 1, \infty\}$.
- ▶ $\mathcal{H}(t)$ has rank d and a computable weight w in terms of q_0, q_∞ .
- ▶ In fact, can also compute the Hodge vector **h**.

Hypergeometric Motives

- ▶ $q_0, q_\infty \in \mathbb{Z}[T]$, coprime, same degree d, roots are roots of unity.
- ▶ Get associated family of motives $\mathcal{H}(t)$ with $t \in \mathbb{P}^1 \setminus \{0, 1, \infty\}$.
- ▶ $\mathcal{H}(t)$ has rank d and a computable weight w in terms of q_0, q_∞ .
- ▶ In fact, can also compute the Hodge vector **h**.
- ightharpoonup By Griffits transversality **h** is a symmetric composition of d.

Conductor

ightharpoonup N is hard to compute.

Conductor

- ightharpoonup N is hard to compute.
- ▶ Roughly for governed by

$$h(t) + h(1-t) + h(M),$$
 $t \in \mathbb{P}^1 \setminus \{0, 1, \infty\}$

Conductor

- ightharpoonup N is hard to compute.
- ► Roughly for governed by

$$h(t) + h(1-t) + h(M),$$
 $t \in \mathbb{P}^1 \setminus \{0, 1, \infty\}$

▶ Here h means height, M is a sort of discriminant of $\mathcal{H}(t)$ computable from q_0, q_∞ .

▶ Rank d = 24. Number of possible Hodge vectors: 4096.

- ▶ Rank d = 24. Number of possible Hodge vectors: 4096.
- ▶ Total number of family of motives: 464, 247, 183

- ▶ Rank d = 24. Number of possible Hodge vectors: 4096.
- ▶ Total number of family of motives: 464, 247, 183

	h	#
	[9, 1, 1, 2, 1, 1, 9]	0
	[7,1,1,1,1,2,1,1,1,1,7]	0
	[1, 6, 1, 1, 1, 1, 2, 1, 1, 1, 1, 6, 1]	0
•	[4, 1, 3, 1, 1, 1, 2, 1, 1, 1, 3, 1, 4]	0
	[5, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 5]	0
	[6, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 6]	0
	[4, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 4]	0
	[4, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 4]	0

h	#
[6, 2, 1, 1, 1, 2, 1, 1, 1, 2, 6]	2
[8, 1, 1, 1, 2, 1, 1, 1, 8]	4
[1, 22, 1]	4
[8, 1, 1, 4, 1, 1, 8]	6
[6, 1, 2, 1, 1, 2, 1, 1, 2, 1, 6]	8
[6, 1, 3, 1, 2, 1, 3, 1, 6]	8
[10, 1, 2, 1, 10]	10
:	:
[1, 3, 4, 4, 4, 4, 3, 1]	6082776
[2, 5, 5, 5, 5, 2]	6850823
[1, 3, 8, 8, 3, 1]	6868016
[1, 5, 6, 6, 5, 1]	7637828
[1, 2, 4, 5, 5, 4, 2, 1]	7982874
[2, 4, 6, 6, 4, 2]	9504072
[1, 4, 7, 7, 4, 1]	9905208

Densities

Graph of logarithmic densities, rank $d=24\,$

