## Classifying Disaster Tweets

## The problem

#### Company

disaster relief organizations / news agencies

#### Context

- Twitter has become an important communication channel in times of emergency.
- The ubiquitousness of smartphones enables people to announce an emergency they're observing in real-time.
- agencies are interested in programatically monitoring Twitter.

#### Problem statement

 It's not always clear whether a person's words are actually announcing a disaster.

#### Data Wrangling and Exploratory Data Analysis (EDA)

The data set contains Train and Test sets and taken from Kaggle
 https://www.kaggle.com/c/nlp-getting-started/data

- Train set has 7613 instances, 4 features, binary target variable.
- Test set has 3265, same features but no target variable.
- Missing values in both sets for (location and keyword features)

|      | id    | keyword           | location    | text                                                                                                               | target |
|------|-------|-------------------|-------------|--------------------------------------------------------------------------------------------------------------------|--------|
| 7091 | 10156 | upheaval          | Connecticut | A look at state actions a year after Ferguson's upheaval http://t.co/vXUFtVT9AU                                    | 1      |
| 3002 | 4313  | dust%20storm      | NaN         | So I just watched the trailed for The Dust Storm and I think part of me just died Colin is so perfect my goodness. | 0      |
| 6437 | 9210  | suicide%20bombing | USA         | Turkish troops killed in Kurdish militant 'suicide attack' http://t.co/wD7s6S0vci                                  | 1      |



#### **Inspecting Train Data**

Target Class Distribution



- There are 110 text duplicates and 18 has labeling inconsistency
- Duplicates dropped and inconsistent labels fixed manually

| 18   | id   | keyword  | location | text                                                      | target |
|------|------|----------|----------|-----------------------------------------------------------|--------|
| 5641 | 8044 | refugees | NaN      | wowo=== 12000 Nigerian refugees repatriated from Cameroon | 0      |
| 5620 | 8018 | refugees | NaN      | wowo=== 12000 Nigerian refugees repatriated from Cameroon | 1      |

 Target Class Distribution after cleaning duplicates.



#### Inspecting the "location" feature

- 33% of the location feature is missing.
- The are 3341 unique location for the tweets.
- The naming of location in this data set is not consistent. We see some tweets' location as a country and others as a city.
- the USA is the most frequent location for the tweets, followed by New York, then united states representing (1.37%, 0.93%, and 0.66%) of the tweets respectively.
- With this large number of missing values, it is not feasible to clean the location values. The location in this data set is not good to be predictive feature and will not be considered in the modeling.

| missing values count |      | %         |  |
|----------------------|------|-----------|--|
| location             | 2533 | 33.272035 |  |

|      | location                    | count | % of dataset |
|------|-----------------------------|-------|--------------|
| 0    | USA                         | 104   | 1.37         |
| 1    | New York                    | 71    | 0.93         |
| 2    | United States               | 50    | 0.66         |
| 3    | London                      | 45    | 0.59         |
| 4    | Canada                      | 29    | 0.38         |
|      |                             |       |              |
| 3336 | Republica Dominicana        | 1     | 0.01         |
| 3337 | Republic of the Philippines | 1     | 0.01         |
| 3338 | Regalo Island               | 1     | 0.01         |
| 3339 | Redondo Beach, CA           | 1     | 0.01         |
| 3340 |                             | 1     | 0.01         |

#### Inspecting the "keyword" feature

- There are 61 (0.8%) missing keywords
- keywords derailment, wreckage, and debris
  are only appeared in the disaster tweets with
  disaster probability = 1. Also, outbreak,
  typhoon, oil%20omb, suicide%20bombing and
  rescuers has more than 90%
- keywords aftershock, body%20bags, ruin, blazing, body%20bag, electrocute, screaming, traumatised, and blew%20up are mostly appeared in the non disaster tweets, near zero probability of disaster tweets.
- many other keywords that are existed in both classes. The keyword without the context can not be a good predictive of the disaster tweets.

Top 15 keywords with highest probability of indicating disaster tweet

|                    | count | % of dataset rows | Probability of Disaster |
|--------------------|-------|-------------------|-------------------------|
| keyword            |       |                   |                         |
| wreckage           | 39    | 0.51              | 1.000000                |
| debris             | 37    | 0.49              | 1.000000                |
| derailment         | 39    | 0.51              | 1.000000                |
| outbreak           | 40    | 0.53              | 0.975000                |
| oil%20spill        | 38    | 0.50              | 0.973684                |
| typhoon            | 38    | 0.50              | 0.973684                |
| suicide%20bombing  | 33    | 0.43              | 0.969697                |
| suicide%20bomber   | 31    | 0.41              | 0.967742                |
| bombing            | 29    | 0.38              | 0.931034                |
| rescuers           | 35    | 0.46              | 0.914286                |
| suicide%20bomb     | 35    | 0.46              | 0.914286                |
| nuclear%20disaster | 34    | 0.45              | 0.911765                |
| evacuated          | 36    | 0.47              | 0.888889                |
| razed              | 35    | 0.46              | 0.885714                |
| wildfire           | 33    | 0.43              | 0.878788                |



#### Tweets Metadata Analysis

Tweets length (number of characters) distribution for Disaster and None Disaster classes



#### Tweets Meta Data Analysis

Word count distribution for tweets



#### Tweets Metadata Analysis

- Average and Maximum word length in a tweet
  - The Meta data features of both classes have a similar distribution
  - None of these Metadata features seems to be a good predictor of the disaster tweets
  - We will further check the predictive power of these features



#### **Exploring Common Words and Phrases**

The distribution of top bigrams after removing stop words

 The data needs to be cleaned from URLs and stop words should be removed to have a meaningful distribution of common phrases in both classes

 There is a noticable difference of N-Gram output for each class



#### **Exploring Linguistic Features**

#### Part of Speech Analysis using Spacy











Average pnoun\_count for disaster tweet is 2.9607843137254903 Average pnoun\_count for none disaster tweet is 2.300988733042079



#### 1. Predictive Power of the Imputed Features

- As we noticed from the distribution analysis of the metadata features, the PPS confirms that the computed meta features have no predictive power to the target variable (PPS = 0 for all variables), "disaster" in this case.
- Pearson correlation showed some weak correlation of these metadata variables with the maximum word length being the highest (r = 0.25).
- However, Pearson correlation can give misleading results for a binary classification problem (i.e. examining binary target variable), at least, it is not good option.
   Chick this for more details.

Based on PPS values, these variables should not be used in modeling.



# Data Pre-Processing and Modeling

## Modeling Approaches

#### Bag of Words (TF-IDF)

- Multinomial Naive Bayes
- Logistic Regression
- XGboost with Bayesian
   Hyperparameter Optimization
- Deep Learning:
  - Simple Neural Network
  - Recurrent Neural Network (LSTM)
  - Convolutional Neural Network (CNN)

#### Transfer Learning / Deep Learning

- Bidirectional Encoder Representations from Transformers (BERT):
  - Distilled BERT uncased
  - BERT base uncased

#### Pre-processing

- Remove stop word
- Remove urls
- Remove digits
- Remove hashtags
- Remove tags
- Lower case text
- Text lemmatization

#### Multinomial Naive Bayes





#### **Logistic Regression**





#### XGboost / Bayesian Hyperparameter Optimization





#### Recurrent Neural Network with LSTM with Dropout

F1 Score=0.739

precision

0.79

0.80

0.79

recall f1-score

0.83

0.74

0.79

0.78

0.79

0.87

0.69

0.78

0.79

support

435

327

762

762

762

Details:

accuracy

weighted avg



#### **Model Architecture**

Model: "sequential 3"

| Layer (type)            | Output Shape   | Param # |
|-------------------------|----------------|---------|
| embedding_3 (Embedding) | (None, 23, 32) | 472768  |
| lstm (LSTM)             | (None, 60)     | 22320   |
| dense_4 (Dense)         | (None, 1)      | 61      |

Total params: 495,149 Trainable params: 495,149 Non-trainable params: θ



0.80

0.71

0.76

0.76

accuracy

macro avg weighted avg 0.77

0.75

0.76

0.76

0.79

0.73

0.76

435

327

762

762

762



#### **Model Architecture**

| Model: | "sequential_6" |  |
|--------|----------------|--|
|        |                |  |

| Layer (type)                 | Output | Shape   | Param # |
|------------------------------|--------|---------|---------|
| embedding_6 (Embedding)      | (None, | 23, 32) | 472768  |
| conv1d_6 (Conv1D)            | (None, | 23, 64) | 8256    |
| dropout_3 (Dropout)          | (None, | 23, 64) | 0       |
| max_pooling1d_6 (MaxPooling1 | (None, | 11, 64) | 0       |
| conv1d_7 (Conv1D)            | (None, | 11, 32) | 8224    |
| max_pooling1d_7 (MaxPooling1 | (None, | 5, 32)  | 0       |
| conv1d_8 (Conv1D)            | (None, | 5, 8)   | 1032    |
| max_pooling1d_8 (MaxPooling1 | (None, | 2, 8)   | 0       |
| flatten_5 (Flatten)          | (None, | 16)     | 0       |
| dense_9 (Dense)              | (None, | 256)    | 4352    |
| dropout_4 (Dropout)          | (None, | 256)    | 0       |
| dense_10 (Dense)             | (None, | 1)      | 257     |

Trainable params: 494,889 Non-trainable params: 0

#### Transfer Learning / Deep Learning

#### Bidirectional Encoder Representations from Transformers (BERT)



### Model Architecture - DistilBERT

[(None, 32)]

[(None, 32)]



#### Bidirectional Encoder Representations from Transformers (BERT)



| Freeling the Minning Name of |    | text                                                                                                                                        | Disaster Prediction |
|------------------------------|----|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Evaluating the Winning Model |    | Just happened a terrible car crash                                                                                                          | 1                   |
| on Unlabeled Test Set        | 1  | Heard about #earthquake is different cities, stay safe everyone.                                                                            | 1                   |
| 2                            |    | there is a forest fire at spot pond, geese are fleeing across the street, I cannot save them all                                            | 1                   |
|                              | 3  | Apocalypse lighting. #Spokane #wildfires                                                                                                    | 1                   |
|                              | 4  | Typhoon Soudelor kills 28 in China and Taiwan                                                                                               | 1                   |
|                              | 5  | We're shakingit's an earthquake                                                                                                             | 1                   |
|                              | 6  | They'd probably still show more life than Arsenal did yesterday, eh? EH?                                                                    | 0                   |
|                              | 7  | Hey! How are you?                                                                                                                           | 0                   |
|                              | 8  | What a nice hat?                                                                                                                            | 0                   |
|                              | 9  | Fuck off!                                                                                                                                   | 0                   |
|                              | 10 | No I don't like cold!                                                                                                                       | 0                   |
|                              | 11 | NOOOOOOO! Don't do that!                                                                                                                    | 0                   |
|                              | 12 | No don't tell me that!                                                                                                                      | 0                   |
|                              | 13 | What if?!                                                                                                                                   | 0                   |
|                              | 14 | Awesome!                                                                                                                                    | 0                   |
|                              | 15 | Birmingham Wholesale Market is ablaze BBC News - Fire breaks out at Birmingham's Wholesale Market                                           | 1                   |
|                              | 16 | @sunkxssedharry will you wear shorts for race ablaze ?                                                                                      | 0                   |
|                              | 17 | #PreviouslyOnDoyinTv: Toke MakinwaĴÛ³s marriage crisis sets Nigerian Twitter ablaze                                                         | 1                   |
|                              | 18 | Check these out: #nsfw                                                                                                                      | 0                   |
|                              | 19 | PSA: I)Û°m splitting my personalities.\n\n?? techies follow @ablaze_co\n?? Burners follow @ablaze                                           | 0                   |
|                              | 20 | beware world ablaze sierra leone & guap.                                                                                                    | 0                   |
|                              | 21 | Burning Man Ablaze! by Turban Diva via @Etsy                                                                                                | 0                   |
|                              | 22 | Not a diss song. People will take 1 thing and run with it. Smh it's an eye opener though. He is about 2 set the game ablaze @CyhiThePrynce  | 0                   |
|                              | 23 | Rape victim dies as she sets herself ablaze: A 16-year-old girl died of burn injuries as she set herself ablaze <b>l</b> Û_                 | 1                   |
|                              | 24 | SETTING MYSELF ABLAZE                                                                                                                       | 1                   |
|                              | 25 | @CTVToronto the bins in front of the field by my house wer set ablaze the other day flames went rite up the hydro pole wonder if it was him | 1                   |
|                              | 26 | #nowplaying Alfons - Ablaze 2015 on Puls Radio #pulsradio                                                                                   | 0                   |
|                              | 27 | 'Burning Rahm': Let's hope City Hall builds a giant wooden mayoral effigy 100 feet tall & Dys sets it ablaze. @John_Kass                    | 0                   |
|                              | 28 | @PhilippaEilhart @DhuBlath hurt but her eyes ablaze with insulted anger.                                                                    | 0                   |
|                              | 29 | Accident cleared in #PaTurnpike on PATP EB between PA-18 and Cranberry slow back to #traffic                                                | 1                   |

#### Conclusion and Performance Evaluation

- Both BertDistill and Bert\_large\_uncased have produced the best performance.
- Bert\_large\_uncased is the winning model with slightly better performance.
- However, training Bert\_large\_uncased with 109,876,994 trainable parameters for 30 epochs required more than 9 hours on 16GB Ram / 4 cores CPU laptop.
- Next we verify the winning model performance on the unlabeled tweets in the test dataset.

- Although Distilled Bert provided slightly less prediction performance, it is faster considerably faster than Bert base model.
- For predicting a streaming tweets in realtime, scalability and latency are a big deal. Depending on the production environment, a trade-off need to be considered between slightly more performance and faster execution time.

