PyPEC Documentation

Release 0.1

Milan Skocic

CONTENTS

1	Getting Started	1
2	User Guide	15
3	Release Notes	19
4	Autogenerated Documentation	21
5	Bibliography	29
6	Indices and tables	31
Bi	bliography	33
Python Module Index		35
In	dex	37

CHAPTER

ONE

GETTING STARTED

1.1 Description

PyPEC aims at fitting PEC data with an graphical interface.

In terminal enter the following command:

```
python -m pypec
```

A pdf version of the documentation can be found here PyPEC3. The source code can be viewed on GitHub.

1.2 How to install

```
$ python setup.py install
```

or

\$ pip install pypec3

1.3 Dependencies

```
numpy>=1.17
scipy>=1.5
matplotlib>=3.0.0
```

1.4 License

```
GNU GENERAL PUBLIC LICENSE
```

Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. http://fsf.org/
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program—to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it.

For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and

modification follow.

TERMS AND CONDITIONS

0. Definitions.

"This License" refers to version 3 of the GNU General Public License.

"Copyright" also means copyright-like laws that apply to other kinds of works, such as semiconductor masks.

"The Program" refers to any copyrightable work licensed under this License. Each licensee is addressed as "you". "Licensees" and "recipients" may be individuals or organizations.

To "modify" a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a "modified version" of the earlier work or a work "based on" the earlier work.

A "covered work" means either the unmodified Program or a work based on the Program.

To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well.

To "convey" a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays "Appropriate Legal Notices" to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The "source code" for a work means the preferred form of the work for making modifications to it. "Object code" means any non-source form of a work.

A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language.

The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of

(continues on next page)

1.4. License 3

packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it.

The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users' Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions:

- a) The work must carry prominent notices stating that you modified it, and giving a relevant date.
- b) The work must carry prominent notices stating that it is released under this License and any conditions added under section7. This requirement modifies the requirement in section 4 to "keep intact all notices".
- c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it.
- d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work,

(continues on next page)

1.4. License 5

and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an "aggregate" if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways:

- a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange.
- b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge.
- c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b.
- d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements.
- e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work.

A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product.

"Installation Information" for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.

"Additional permissions" are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent

(continues on next page)

1.4. License 7

that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms:

- a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or
- b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or
- c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or
- d) Limiting the use for publicity purposes of names of licensors or authors of the material; or
- e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or
- f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered "further restrictions" within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions;

the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License.

An "entity transaction" is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if

(continues on next page)

1.4. License 9

the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it.

11. Patents.

A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's "contributor version".

A contributor's "essential patent claims" are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, "control" includes the right to grant patent sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To "grant" such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. "Knowingly relying" means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify

or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it.

A patent license is "discriminatory" if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others' Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the

(continues on next page)

1.4. License 11

option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found.

{one line to give the program's name and a brief idea of what it does.}
Copyright (C) {year} {name of author}

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode:

{project} Copyright (C) {year} {fullname}
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box".

You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read http://www.gnu.org/philosophy/why-not-lgpl.html.

1.4. License 13

CHAPTER

TWO

USER GUIDE

2.1 PhotoElectrochemistry

2.1.1 Basics

Photo-electrochemistry characterizations are used to study films at macroscopic, mesoscopic, and microscopic scales. The latter advances were used to support (photo-)electrochemical studies of the electronic and optical properties of passive films and oxidized metals, and of their interfaces with electrolytes, providing informations on the nature and structure of these materials and to use properties such as the oxidation behaviour of a metallic substrate.

Basically, two kinds of curves are recorded in the course of photoelectrochemical characterization experiments, photocurrent voltammograms and photocurrent energy spectra. In photocurrent voltammograms, photocurrents are measured as a function of the potential, V, applied to the semiconducting electrode, at a given photon energy, $E=h\nu$. In photocurrent energy spectra, photocurrents are recorded, at a given applied potential, V, as a function of the photon energy, E. The analysis of the shapes of photocurrent voltammograms may allow to obtain informations such as the semiconducting type of the material, the energy of the surface band levels, the presence of macroscopic defects inducing photogenerated electron—hole pairs recombinations.

However, despite attempts to refine the Gartner-Butler model by taking into account surface or volume recombination, a complete description of the photocurrent voltammograms remains difficult, for the latter developments make use of a high number of adjustable parameters, most of them being very difficult to assess. The analysis of the photocurrent energy spectra is intended to identify the chemical nature of the material constituting the semi-conducting electrode, through the value of their bandgap energies, E_g as, on the one hand, bandgap energy values have been reported in the literature for numerous compounds, and as, on the other hand, bandgap values may be estimated from thermodynamic extensive atomic data. Practically, photocurrent energy spectra are usually analyzed by means of linear transforms to take benefit of the fact that, using the simplified form of the Gartner–Butler model, the quantum yield, η , of the photocurrent is proportional to the light absorption coefficient.

In such conditions, η , obeys to the following relationship:

$$(\eta * E)^{1/n} = K(E - E_g)$$

where C is a constant (things other than E being equal), E_g is the bandgap energy of the semiconductor, and n depends on the band to band transition type, n=1/2 for an allowed direct transition, and n=2 for an allowed indirect transition. Direct transitions are rarely observed in more or less disordered thin oxide films.

2.1.2 Fitting

Linear transformations were successfully performed for oxides made of one or two constituents. However, for complex oxide scales formed of several p-type and n-type phases, the complete description of the photocurrent energy spectra could not be achieved, and only semi-quantitative and/or partial informations could be obtained on the oxides present in the scales.

As I_{PH}^* is measured under modulated light conditions and thus actually is a complex number, the real and the imaginary parts of the photocurrent should be considered simultaneously when analyzing and fitting the photocurrent energy spectra, rather than their modulus [1].

$$I_{PH}^* = |I_{PH}^*| \cos \theta + j |I_{PH}^*| \sin \theta$$

$$I_{PH}^* = \sum_{i=1}^{i=N} J_{PH,i} \cos \theta_i + j \sum_{i=1}^{i=N} J_{PH,i} \sin \theta_i$$
(2.1)

where $J_{PH,i}$ and θ_i represent the modulus and phase shift, respectively, of the photocurrent issued from the ith semiconducting constituent of the oxide layer. For thin semiconducting films, the space charge regions are low compared to penetration depth of the light. $J_{PH,i}$ may thus be expected, at a given applied potential, to follow the simplified form of the Gartner–Butler model.

$$(J_{PH,i} * E)^{1/n} = K_i(E - E_{g,i})$$

where $E_{g,i}$ and K_i represent the energy gap and a value proportional to $C(I_{PH}^*)$ is proportional to but not equal to η) for the ith semiconducting constituent.

For a given vector of m (K_i , θ_i , $E_{g,i}$) triplets, m representing the supposed number of semiconducting phases contributing to the photocurrent, the scalar function to be minimized by the Nelder-Mead function was defined as the product of the square roots of two quantities:

$$D_{Re} = \sqrt{\sum_{E} (ReI_{PH,exp}^* - ReI_{PH,calc}^*)^2}$$

$$D_{Im} = \sqrt{\sum_{E} (ImI_{PH,exp}^* - ImI_{PH,calc}^*)^2}$$

$$D = D_{Re}.D_{Im}$$

The 3 m variables can be locked or not by the user. Initial estimates can be provided by the user or can be randomly generated. Several successive calls of the Nelder-Mead procedure are necessary to reach the minimum of the scalar function and a stable set of the output parameters. The user is free to set the number of successive calls of the Nelder-Mead procedure. Constraints on the 3 m variables can be set by the user.

2.2 **GUI**

The main window contains all the elements necessary to run the fit. The design is cluttered but it allows exposing directly all the fitting settings to the user without deep menus.

The different steps, presented in the left pane, for performing the fit are:

- load data: the accepted formats are:
 - *.dot files files which are ascii files developped in the SiMaP Lab
 - *.data files files which are generic ascii files
- set the number of semiconductive contributions (*Parameter Table*)

At this point the fit can be ran.

If needed select custom choice for all the fitting parameter in the left pane.

2.2.1 *.dot files

They have a specific formating and they are provided by the PEC setup in the SiMaP Lab.

2.2.2 *.data files

The *.data files are generic ascii files where:

- the first column is the energy of the incident light in eV.
- the second column is the modulus of the photocurrent in A.
- the thrid column is the phase shift of the photocurrent in degrees.

2.2.3 Parameter Table

The parameter table allows for fitting the 3m variables. The table is structured as shown below:

Ki	Fit Kgi	theta i	Fit Phase i	Egi	Fit Egi
K 1	0 or 1	Phase 1	0 or 1	Eg 1	0 or 1
K 2	0 or 1	Phase 2	0 or 1	Eg 2	0 or 1
	•••	•••			
Κn	0 or 1	Phase n	0 or 1	Eg n	0 or 1

Each parameter K_i , θ_i and Eg_i can be locked by setting the **Fit X** column to 0.

2.2. GUI 17

CHAPTER

THREE

RELEASE NOTES

3.1 PyPEC3 0.1 Release Notes

3.1.1 Highlights

PyPEC aims at Fitting PEC data with an graphical interface. The program was initially developed in Python 2.7 during my PhD from 2012 to 2015 and the code is available on github PyPEC (Python 2).

In 2016, the code was rewritten in Python 3 at the end of my PhD with slight modifications of the original code. The code remained untouched for almost 3 years and is now again under development in this repository.

This is the first release after migrating to github which will serve as a backup for the version developed during my PhD with completed documentation. No modification to the original code.

3.1.2 New Features

- Load data: *.dot files (data format developped in Grenoble Lab SiMaP)
- multi-process fitting: N processes x M fits x L loops
- automatic creation of result folder based on sample name and fitting parameters
- results saved in a folder

3.1.3 Contributors

Milan Skocic

3.1.4 Commits

N/A

AUTOGENERATED DOCUMENTATION

4.1 Graphical FrontEnd

Graphical frontend for fitting photo-current spectra.

class pypec.Analyse_PEC.Analyse_PEC(master=None)

Construct a frame widget with the parent MASTER.

Valid resource names: background, bd, bg, borderwidth, class, colormap, container, cursor, height, highlightbackground, highlightcolor, highlightthickness, relief, takefocus, visual, width.

Methods

update_nb_runs()	Update the number of cpu and run per process on
	the graphical interface.

AddFiles_cb	
Fit_cb	
ask_quit	
autoscale	
create_fit_lines	
get_progress	
on_Run_Fit	
on_hv_limits	
on_start_workers	
on_stop_button	
plot_Graph	
plot_Re_Im	
plot_fit_lines	
plot_ligne_V	
prm_binary	
process_queue	
remove_fit_folder	
remove_fit_lines	
start	
update_figure	
update_legend	
update_nb_fit_in_run	

AddFiles_cb()

Fit_cb()

```
ask_quit()
     autoscale(chart)
     create_fit_lines()
     get_progress(run=1, fit=0)
     on_Run_Fit()
     on_hv_limits(*args)
     on_start_workers()
     on_stop_button()
     plot_Graph()
     plot_Re_Im()
     plot_fit_lines(*args)
     plot_ligne_V()
     prm_binary()
     process_queue()
     remove_fit_folder()
     remove_fit_lines()
     start()
     update_figure()
     update_legend(axes, run=1, fit=0, location='upper left')
     update_nb_fit_in_run()
     update_nb_runs()
          Update the number of cpu and run per process on the graphical interface.
class pypec.Analyse_PEC.ParameterTable(master, prm, last_prm_folder, **kwargs)
     Construct a frame widget with the parent MASTER.
     Valid resource names: background, bd, bg, borderwidth, class, colormap, container, cursor, height, high-
     lightbackground, highlightcolor, highlightthickness, relief, takefocus, visual, width.
```

class pypec.Analyse_PEC.ParameterWindow(master, prm_init, last_prm_folder)

Construct a toplevel widget with the parent MASTER.

Valid resource names: background, bd, bg, borderwidth, class, colormap, container, cursor, height, highlightbackground, highlightcolor, highlightthickness, menu, relief, screen, takefocus, use, visual, width.

Methods

get_paths get_prm

get_paths()

get_prm()

class pypec.Analyse_PEC.ScrolledFrame(master, **kwargs)

Construct a frame widget with the parent MASTER.

Valid resource names: background, bd, bg, borderwidth, class, colormap, container, cursor, height, highlightbackground, highlightcolor, highlightthickness, relief, takefocus, visual, width.

4.2 Iph Functions

Modules - Iph Functions

This module contains functions requiered for computing and optimizing the photo-current values from input parameters i.e. triplets (K_i, θ_i, Eg_i) and experimental data for each semi-conductive phase [1].

pypec.iph_functions.get_Iph_calc(hv, prm_array, phi_N)

Compute the complex values of Iph based on the values and states of the triplets (K_i, θ_i, Eq_i) [1].

$$Iph^* = \frac{Iph}{\Phi_N}$$

Parameters

hv: 1d array Vector of energies for which the complex Iph has to be computed.

prm_array: 2d array Represents the values and states of the triplets (K_i, θ_i, Eg_i) .

phi_N: 1d array Represents the values of the normalized photon flux to the maximum value. If nphf is a unity vector, the true photo-current is returned otherwise the asmeasured photo-current is returned.

Returns

iph_calc_complex: 1d array Vector of the computed complex values of *Iph*.

pypec.iph_functions.get_LCC(iph_exp_complex, iph_calc_complex)

pypec.iph_functions.get_distance(iph_exp_complex, iph_calc_complex)

Compute the distance D between Iph_{exp} and Iph_{calc} . The distance is computed by multiplying the distances

4.2. Iph Functions 23

on real and imaginary parts of Iph:

$$\Delta Re = Re \, Iph_{exp} - Re \, Iph_{calc}$$

$$\Delta Im = Im \, Iph_{exp} - Im \, Iph_{calc}$$

$$D_{Re} = \sqrt{\sum \Delta Re^2}$$

$$D_{Im} = \sqrt{\sum \Delta Im^2}$$

$$D = D_{Re} \cdot D_{Im}$$

Parameters

iph_exp_complex: 1d numpy array Contains the complex values of the Iph_{exp} . iph_calc_complex: 1d numpy array Contains the complex values of the Iph_{calc} .

Returns

D: float The computed distance on real and imaginary parts of Iph:.

pypec.iph_functions.get_exp_data(filepath)

Get the data array of data files according to their extension.

Supported files are .dot files recorded by PECLab software and .data files were the first three columns represent $h\nu$, $|Iph^*|$, θ .

Parameters

filepath: string Path to the data file.

Returns

data_array: 2d array Experimental data.

pypec.iph_functions.get_header_footer_dot_file(filepath)

Find the number of lines in header and footer in .dot files.

Parameters

filepath: path to the dot file

Returns

skip_header: int number of lines in header **skip_footer:** int number of lines in footer **nbpoints:** int number of data lines

pypec.iph_functions.get_random_prm_values(prm_array , K_bound =(1e-12, 0.1), theta_bound=(-180.0, 180.0), Eg_bound =(0.1, 6.2), phase_flag=True)

Generates random values for the triplets (K_i, θ_i, Eg_i) to be fitted based on the states given by the *prm_array*.

By default, the limits are:

- K_i : $[10^{-12}, 10^{-1}]$
- θ_i : $[-\pi, +\pi]$
- Eg_i : [0.1, 6.0]

Parameters

prm_array: 2d array Represents the values and states of the triplets (K_i, θ_i, Eg_i) .

K_bound:tuple Contains the lower and upper limits for the K_i values.

theta_bound: tuple Contains the lower and upper limits for the θ_i values.

Eg_bound:tuple Contains the lower and upper limits for the Eg_i values.

phase_flag: bool Indicates if the values of θ_i have to be randomized.

Returns

random_prm_array: 2d array Represents the values and states of the triplets (K_i, θ_i, Eg_i) .

pypec.iph_functions.get_results_array(hv, iph_exp_complex, iph_calc_complex)

Build the data array of the experimental and calculated data: $h\nu$, $|Iph_{exp}|$, θ_{exp} , $|Iph_{calc}|$ and θ_{calc}

Parameters

hv: 1d numpy array Contains the energy vector.

iph_exp_complex: 1d array Contains the complex values of Iph_{exp} .

iph_calc_complex: 1d array Contains the complex values of Iph_{calc} .

Returns

data_array: 2d array Array containing the .

pypec.iph_functions.get_summary(fit_folder)

List result files for the triplets (K_i, θ_i, Eg_i) at the end and the minimum of each run.

Compute the distance, the LCCs for the energy interval that was used for minimizing the the triplets (K_i, θ_i, Eg_i) .

The results are saved in 4 files: .SumEnd, .SumEndEg, *.SumMin, *.SumMinEg.

Parameters

fit_folder: string Path of the fit folder.

pypec.iph_functions.import_prm_file(filepath)

Import the triplets (K_i, θ_i, Eg_i) from text file where each line represents a contributing semi-conductive phase.

Parameters

filepath: string Absolute or relative file path to the text file.

Returns

prm_array: 2d array Represents the values and states of the triplets (K_i, θ_i, Eg_i) .

pypec.iph_functions.minimize(hv, iph_exp_complex, phi_N, weights, prm_array, Ki_log_flag=True, maxiter=None, maxfun=None, xtol=1e-11, ftol=1e-23, full_output=True, retall=False, disp=False, callback=None)

Execute the Nelder-Mead algorithm based on parameter values given by prm_array and energy vector $h\nu$.

First, the prm_array is flattened and the parameters (K_i, θ_i, Eg_i) to be fitted are extracted and sent to the target_function() through the Nelder-Mead algorithm.

Once the parameters were computed by the Nelder-Mead algorithm, the prm_array is updated with the new values.

Parameters

hv: 1d numpy array Contains the energy vector.

iph_exp_complex: 1d numpy array Contains the complex values of the experimental photo-current.

phi_N: 1d array Contains the normalized photon spectrum.

weights: 1d array Contains the weights of the data.

prm_array: 2d array Represents the values and states of the triplets (K_i, θ_i, Eg_i) .

Ki_log_flag: bool Indicates if the K_i values are in logarithmic space.

maxiter [int, optional] Maximum number of iterations to perform.

maxfun [number, optional] Maximum number of function evaluations to make.

4.2. Iph Functions 25

```
xtol [float, optional] Relative error in xopt acceptable for convergence.
```

ftol [number, optional] Relative error in func(xopt) acceptable for convergence.

full_output [bool, optional] Set to True if fopt and warnflag outputs are desired.

retall [bool, optional] Set to True to return list of solutions at each iteration.

disp [bool, optional] Set to True to print convergence messages.

callback [callable, optional] Called after each iteration, as callback(xk), where xk is the current parameter vector.

Returns

```
prm_array: 2d array Represents the updated values and states of the triplets (K_i, \theta_i, Eg_i). fopt [float] Value of function at minimum: fopt = func(xopt).
```

pypec.iph_functions.plot_summary(fit_folder)

Plot the result files that were created by the $get_summary()$ for he triplets (K_i, θ_i, Eg_i) at the end and the minimum of each run.

The results are saved in 2 files: -0-End.pdf, -0-Min.pdf.

Parameters

fit_folder: string Path of the fit folder.

```
pypec.iph_functions.save_pdf(filepath, hv, iph exp complex, iph calc complex, mask, all results)
```

```
pypec.iph_functions.save_results(run, process_id, fit_folder, datafilepath, suffix, hv, mask, iph_exp_complex, phi_N, prm_min_run, prm_end_run, distance_min_run, distance_end_run, minimization_results, header_minimization_results)
```

pypec.iph_functions.scatter_logpolar(ax, theta, r_, ticks=5, bullseye=0.0, **kwargs)

```
pypec.iph_functions.shift_phase(prm_array, theta_bound=(-180.0, 180.0))
```

Compute the modulo of θ_i values with 2π and then shift the values of θ_i by the amplitude of the boundaries in order to be in between the boundaries.

By default, the boundaries for θ_i are set to $[-\pi, +\pi]$.

Parameters

```
prm_array: 2d array Represents the values and states of the triplets (K_i, \theta_i, Eg_i).
```

theta_bound: tuple Contains the lower and upper limits for the :math`theta _i` values.

Returns

prm_array: 2d array Represents the values and states of the triplets (K_i, θ_i, Eg_i) where the θ_i values were shifted.

pypec.iph_functions.sort_prm_Eg(prm_array)

Sort the prm_array based on values of Eg_i .

Parameters

```
prm_array: 2d array Represents the values and states of the triplets (K_i, \theta_i, Eg_i).
```

Returns

prm_array: 2d array Represents the sorted values and states of the triplets (K_i, θ_i, Eg_i) .

```
pypec.iph_functions.target_func(p, hv, prm\_array, iph\_exp\_complex, phi\_N, weights, Ki\_log\_flag=True)
```

Update the triplets (K_i, θ_i, Eg_i) from the flattened parameter vector p sent by the optimization algorithm. The prm_array will be flattened and the indexes of the parameters to be fitted will be updated with p vector.

The calculated complex values of Iph will be sent along the experimental values to the $get_distance()$ function. The value of the distance between the experimental and calculated data will sent back to the optimization algorithm.

Parameters

p: 1d array Parameter vector sent by the optimization algorithm which is always. flattened.

hv: 1d array Vector of energies for which the complex values of Iph have to be calculated.

prm_array: 2d array Represents the values and states of the triplets (K_i, θ_i, Eg_i) .

 $iph_exp_complex: 1d numpy array$ Contains the complex values of the experimental Iph.

phi_N: 1d array Represents the values of the normalized photon flux to the maximum
value.

weights: 1d array Contains the values of the data weights.

 Ki_{log_flag} : bool Indicates if the K_i values are in logarithmic space.

Returns

distance: float Calculated distance between experimental and calculated data values. See the *get_distance()* function.

pypec.iph_functions.validate_prm(prm_array , $K_bound=(1e-12, 0.1)$, $Eg_bound=(0.1, 6.2)$) Check if the values of K_i and Eg_i are within the boundaries.

Parameters

prm_array: 2d array Represents the values and states of the triplets (K_i, θ_i, Eg_i) .

K_bound:tuple Contains the lower and upper limits for the K_i values.

Eg_bound:tuple Contains the lower and upper limits for the Eg_i values.

Returns

valid: bool Set to True if value of K_i or Eg_i is out of the boundaries.

4.3 Parallel Processes

Module for controlling the parallel processes running during the fitting procedure

class pypec.Parallel_Process.MinimizationProcess(output_queue, name, prm_init, nb_run, nb_SC, init_type, random_loops, hv, iph_exp_complex, iph_exp_complex_CI, phi_N, phi_N_CI, weights, hv_limits, nb_fit_in_run, fit_folder, filepath, suffix, NelderMead_options=(1e-11, 1e-23, 200, 200), ParameterConstraints=((1e-12, 0.1), (-180, 180), (0.1, 6.2), True), update_every=5)

Methods

run()	Method to be run in sub-process; can be overridden
	in sub-class

shutdown

run()

Method to be run in sub-process; can be overridden in sub-class

shutdown()

class pypec.Parallel_Process.PlotSummaryProcess(fit_folder)

Parameters

fit_folder: str Path to the folder where the summary files will be saved.

Attributes

fit_folder: str Path to the folder where the summary files will be saved.

Methods

run()	Method to be run in sub-process; can be overridden
	in sub-class

run()

Method to be run in sub-process; can be overridden in sub-class

pypec.Parallel_Process.get_cpu_number()

DocString

pypec.Parallel_Process.get_queue()

DocString

pypec.Parallel_Process.initialize_processes(n, daemon=True, **kwargs)

Create N processes as daemons and return them in a list.

Parameters

n: int Number of processes to be created.

daemon: bool Flag for creating daemon process.

kwargs: dict See MinimizationProcess

pypec.Parallel_Process.start_processes(workers)

Parameters

workers: subprocess workers

Returns

0: return integer

CHAPTER

FIVE

BIBLIOGRAPHY

5.1 Bibliography

CHAPTER

SIX

INDICES AND TABLES

- genindex
- modindex
- search

BIBLIOGRAPHY

[1]	Photoelectrochemistry of Oxidation Layers: A Novel Approach to Analyze Photocurrent Energy Spectra. Petit jp., boichot, r., loucif, a. et al. <i>Oxidation of Metals</i> , 2013.

34 Bibliography

PYTHON MODULE INDEX

p

pypec.Analyse_PEC, 21
pypec.iph_functions, 23
pypec.Parallel_Process, 27

INDEX

A	M
<pre>AddFiles_cb() (pypec.Analyse_PEC.Analyse_PEC method), 21</pre>	MinimizationProcess (class in pypec.Parallel_Process), 27
Analyse_PEC (class in pypec.Analyse_PEC), 21 ask_quit() (pypec.Analyse_PEC.Analyse_PEC	minimize() (in module pypec.iph_functions), 25 module
method), 21 autoscale() (pypec.Analyse_PEC.Analyse_PEC method), 22	<pre>pypec.Analyse_PEC, 21 pypec.iph_functions, 23 pypec.Parallel_Process, 27</pre>
С	0
<pre>create_fit_lines()</pre>	on_hv_limits() (pypec.Analyse_PEC.Analyse_PEC method), 22
22	on_Run_Fit() (pypec.Analyse_PEC.Analyse_PEC method), 22
F	on_start_workers()
Fit_cb() (pypec.Analyse_PEC.Analyse_PEC method), 21	(pypec.Analyse_PEC.Analyse_PEC method), 22
G	on_stop_button() (pypec.Analyse_PEC.Analyse_PEC method), 22
<pre>get_cpu_number() (in module</pre>	P
get_distance() (in module pypec.iph_functions), 23	ParameterTable (class in pypec.Analyse_PEC), 22
<pre>get_exp_data() (in module pypec.iph_functions), 24</pre>	ParameterWindow (class in pypec.Analyse_PEC), 22
<pre>get_header_footer_dot_file() (in module</pre>	<pre>plot_fit_lines() (pypec.Analyse_PEC.Analyse_PEC</pre>
<pre>get_Iph_calc() (in module pypec.iph_functions), 23 get_LCC() (in module pypec.iph_functions), 23</pre>	<pre>plot_Graph() (pypec.Analyse_PEC.Analyse_PEC</pre>
<pre>get_paths() (pypec.Analyse_PEC.ParameterWindow method), 23</pre>	<pre>plot_ligne_V() (pypec.Analyse_PEC.Analyse_PEC</pre>
get_prm() (pypec.Analyse_PEC.ParameterWindow method), 23	plot_Re_Im() (pypec.Analyse_PEC.Analyse_PEC method), 22
<pre>get_progress() (pypec.Analyse_PEC.Analyse_PEC</pre>	<pre>plot_summary() (in module pypec.iph_functions), 26</pre>
method), 22	PlotSummaryProcess (class in
get_queue() (in module pypec.Parallel_Process), 28	pypec.Parallel_Process), 28 prm_binary() (pypec.Analyse_PEC.Analyse_PEC
<pre>get_random_prm_values() (in module</pre>	method), 22
<pre>get_results_array() (in module</pre>	process_queue() (pypec.Analyse_PEC.Analyse_PEC method), 22
get_summary() (in module pypec.iph_functions), 25	<pre>pypec.Analyse_PEC module, 21</pre>
1	pypec.iph_functions
<pre>import_prm_file() (in module pypec.iph_functions),</pre>	module, 23
25	pypec.Parallel_Process
initialize_processes() (in module	module, 27
pypec.Parallel_Process), 28	

```
R
remove_fit_folder()
        (pypec.Analyse_PEC.Analyse_PEC method),
        22
remove_fit_lines()
        (pypec.Analyse_PEC.Analyse_PEC method),
        (pypec.Parallel_Process.MinimizationProcess
run()
        method), 28
       (pypec.Parallel_Process.PlotSummaryProcess
run()
        method), 28
S
save_pdf() (in module pypec.iph_functions), 26
save_results() (in module pypec.iph_functions), 26
scatter_logpolar()
                              (in
        pypec.iph_functions), 26
ScrolledFrame (class in pypec.Analyse_PEC), 23
shift_phase() (in module pypec.iph_functions), 26
shutdown() (pypec.Parallel_Process.MinimizationProcess
        method), 28
sort_prm_Eg() (in module pypec.iph_functions), 26
start() (pypec.Analyse_PEC.Analyse_PEC method),
        22
start_processes()
                                          module
                             (in
        pypec.Parallel_Process), 28
Т
target_func() (in module pypec.iph_functions), 26
update_figure() (pypec.Analyse_PEC.Analyse_PEC
        method), 22
update_legend() (pypec.Analyse_PEC.Analyse_PEC
        method), 22
update_nb_fit_in_run()
        (pypec.Analyse_PEC.Analyse_PEC method),
update_nb_runs() (pypec.Analyse_PEC.Analyse_PEC
        method), 22
V
```

validate_prm() (in module pypec.iph_functions), 27

38 Index