## UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERIA EN CIENCIAS Y SISTEMAS INTELIGENCIA ARTIFICIAL 1



MANUAL TECNICO: CHATXD

## **INTEGRANTES:**

CRISTIAN NOE AXPUAC ASPUAC 202004763
YONATHAN ALEXANDER HERNÁNDEZ SATZ 201900619
PABLO JAVIER BATZ CONTRERAS 201902698

GUATEMALA, DICIEMBRE 2024

## **DESCRIPCION**

ChatXD es un chatbot interactivo desarrollado con TensorFlow en Python, utilizando una red neuronal feed-forward con dos capas ocultas. Está diseñado para responder preguntas sencillas en español. El chatbot está disponible a través de GitHub Pages en el siguiente enlace: <a href="https://v0naldez.github.io/ChatXD/">https://v0naldez.github.io/ChatXD/</a>.

## LENGUAJES DE PROGRAMACION

Python 3.12

Node v20.16.0

## LIBRERIAS UTILIZADAS

**Pytorch.py:** Utilizado para construir y entrenar el modelo de red neuronal feed-forward.

**NLTK (Natural Language Toolkit):** Herramientas para preprocesamiento de texto, como tokenización y limpieza de datos.

**Numpy:** Para cálculos matemáticos y operaciones en matrices durante el procesamiento de datos y el entrenamiento del modelo.

**Tensorflow.py:** Usado como framework complementario para optimizar el modelo y explorar la interoperabilidad con TensorFlow.js.

**Tensorflow.js:** Para migrar el modelo entrenado a un entorno de JavaScript y permitir su ejecución en el navegador.

**textProcessing.js:** Para manejar el texto y las consultas de los usuarios en el entorno del navegador.

**React:** Framework de frontend utilizado para diseñar la interfaz de usuario del chatbot y gestionar la interacción.

2

## **MODELO UTILIZADO**

El modelo implementado es una red neuronal feed-forward con dos capas ocultas, diseñada para interpretar texto en español y responder preguntas básicas. Este modelo fue optimizado para realizar tareas de clasificación de texto y generar respuestas basadas en datos preentrenados.

## **IMPLEMENTACION**

#### **DATASET**

Se utilizó un dataset sencillo en español con ejemplos predefinidos de preguntas y respuestas. El dataset fue preparado y limpiado con NLTK para garantizar consistencia en el entrenamiento.

## **ENTRENAMIENTO DEL MODELO**

El modelo fue entrenado utilizando las siguientes librerías:

- Pytorch.py: Para definir y entrenar el modelo base de red neuronal.
- NLTK y Numpy: Para procesar los datos del texto y preparar las entradas del modelo.
- TensorFlow.py: Para optimizar el modelo y prepararlo para su interoperabilidad con TensorFlow.js.

## Proceso de entrenamiento:

- Preprocesamiento de datos: Tokenización, eliminación de stopwords y vectorización.
- Configuración del modelo: Diseño de la arquitectura feed-forward.
- Ajuste de hiperparámetros: Tamaño del lote, tasa de aprendizaje, y épocas.

## MIGRACIÓN A JS

- El modelo entrenado en Python fue exportado a TensorFlow.js para su integración con la interfaz del navegador.
- Se utilizó textProcessing.js para manejar la entrada y salida del texto, extraído en el frontend.

# **DESPLIEGUE**

- La interfaz fue desarrollada con React.
- El despliegue final del chatbot se realizó en GitHub Pages.