Niveau: Première année de PCSI

COLLE 12 = ÉTUDES LOCALES ET ASYMPTOTIQUES

Connaître son cours:

- 1. Calculer le développement limité à l'ordre 5 en 0 de la fonction composée $(x \mapsto e^{\cos(x)})$.
- 2. Calculer successivement les développements en 0 à l'ordre 5 de $\left(x \mapsto \frac{1}{\cos(x)}\right)$ et de la fonction sin. Retrouver le développements en 0 à l'ordre 5 de la fonction tan.
- 3. Calculer le développement limité suivant : $(x \mapsto \arccos(x))$ à l'ordre 5 en 0

Exercices:

Exercice 1. (*)

- 1. Donner le développement limité à l'ordre 1 au point x = 0 de $\arctan x$.
- 2. En déduire la limite

$$\lim_{n\to\infty} \left(\frac{2}{\pi}\arctan n\right)^n.$$

Exercice 2. (**)

Soit $f \in \mathcal{C}^1([0,1], \mathbb{R})$, montrer que :

$$\int_0^1 t^n f(t) dt = \int_{n \to +\infty} \frac{f(1)}{n} + o\left(\frac{1}{n}\right)$$

Exercice 3. (*)

Déterminer

$$\lim_{x \to 0} \left(\frac{2 - 2\cos x}{x^2} \right)^{1/x^2}.$$

Exercice 4. (***)

On note $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=0$ et pour tout $n\in\mathbb{N}$: $u_{n+1}=\sqrt{u_n+n^2}$. Montrer que

$$u_n = n - \frac{1}{2} - \frac{3}{8n} + o\left(\frac{1}{n}\right)$$

Exercice 5. (*)

Déterminer

$$\lim_{x \to \infty} \left(\sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x} \right).$$

Exercice 6. (**)

Montrer que :

$$\int_0^1 \frac{e^{-xt}}{1+t^2} dt \ \mathop{=}\limits_{x\to +\infty} \ \frac{1}{x} + \ O\left(\frac{1}{x^2}\right)$$