Математическая логика

Свойства булевых операций. Двойственность

Лектор: к.ф.-м.н., доцент кафедры
прикладной информатики и теории вероятностей РУДН
Маркова Екатерина Викторовна
markova_ev@pfur.ru

Курс математической логики

	Наименование	Содержание раздела					
п/п	раздела дисциплины						
1.	Введение в алгебру	Прямое произведение множеств. Соответствия и функции. Алгебры.					
	логики	Функции алгебры логики. Суперпозиции и формулы. Булева Алгебра.					
		Принцип двойственности. Совершенная дизъюнктивная нормальная					
		форма (СДНФ). Совершенная конъюнктивная нормальная форма					
		(СКНФ). Разложение булевых функций по переменным. Построение					
		СДНФ для функции, заданной таблично.					
2.	Минимизация	Проблема минимизации. Порождение простых импликантов.					
	булевых функций	Алгоритм Куайна и Мак-Клоски. Таблицы простых импликантов.					
3.	Полнота и	Замкнутые классы. Класс логических функций, сохраняющий					
	замкнутость систем	константы 0 и 1. Определение и доказательство замкнутости. Класс					
	логических функций	самодвойственных функций. Определение и лемма о					
		несамодвойственной функции. Класс монотонных функций.					
		Определение и лемма о немонотонной функции. Класс линейных					
		функций. Определение и лемма о нелинейной функции.					
4.	Исчисление	Общие принципы построения формальной теории. Интерпретация,					
	высказываний и	общезначимость, противоречивость, логическое следствие. Метод					
	предикатов	резолюций для исчисления высказываний. Понятие предиката.					
		Кванторы. Алфавит. Предваренная нормальная форма. Алгоритм					
		преобразования формул в предваренную нормальную форму.					
		Скулемовская стандартная форма. Подстановка и унификация.					
		Алгоритм унификации. Метод резолюций в исчислении предикатов.					

Литература

- Зарипова Э.Р., Кокотчикова М.Г., Севастьянов Л.А. Лекции по дискретной математике: Учеб. пособие. Математическая логика. Москва: РУДН, 2014. 118 с.
- Светлов В.А., Логика: учебное пособие, изд-во: Логос, 2012 г. 429 с.
- Микони С.В., Дискретная математика для бакалавра. Множества, отношения, функции, графы. СПб., Изд-во Лань, 2013 г., 192 с.
- Горбатов В.А., Горбатов А.В., Горбатова М.В., Дискретная математика, М.: АСТ, 2014 г, 448 с.
- Сайт кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс). Режим доступа: http://api.sci.pfu.edu.ru/ свободный.
- Учебный портал кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс) Режим доступа: http://stud.sci.pfu.edu.ru для зарегистрированных пользователей.
- Учебный портал РУДН, раздел «Математическая логика» http://web-local.rudn.ru/web-local/prep/rj/index.php?id=209&p=26522

Суперпозиции и формулы

Суперпозицией функций $f_1, ..., f_m$ называется функция f, полученная с помощью подстановок этих функций друг в друга, а формулой называется выражение, описывающее эту суперпозицию.

$$f_3(f_1(x_3,x_1)) \wedge f_2(x_1,f_3(x_1,x_2))$$
 - формула.

Глубина формулы

Символы переменных $x_1, ..., x_n, ...$ будем считать формулами глубины 0, k = 0)

Формула $F = f(F_1, ..., F_m)$ имеет глубину k, если $F_1, ..., F_m$ — формулы, максимальная из глубин которых равна k-1.

 F_1, \dots, F_m - подформулы F ; все подформулы формул F_1, \dots, F_m также называются подформулами формулы F .

Глубина формулы. Примеры

- 1) $f_2(x_1, x_2)$ это формула глубины 1,
- 2) $f_3(f_1(x_3,x_1) \wedge f_2(x_1,f_3(x_1,x_2)))$ формула глубины 3, содержащая одну подформулу глубины 2 и две подформулы глубины 1. Если f_1 обозначает дизъюнкцию, f_2 – конъюнкцию, а f_3 – сложение по mod 2, то приведенная формула примет более привычный вид: $((x_3 \lor x_1) \oplus (x_1 \& (x_1 \oplus x_2)))$.
- 3) х какая глубина?

Как можно задать функцию?

Функция задается

- 1) таблично (единственное представление),
- 2) через формулу (представление не единственно).

Примеры задания через формулы:

$$f_{14}(x_1, x_2) = x_1 \mid x_2 = \overline{x_1} \lor \overline{x_2} = \overline{x_1 x_2},$$

$$f_8(x_1, x_2) = x_1 \downarrow x_2 = \overline{x_1} \cdot \overline{x_2} = \overline{x_1} \lor \overline{x_2}.$$

Эквивалентность (равносильность) формул

Формулы, представляющие одну и ту же функцию, называются эквивалентными или равносильными. Эквивалентность формул обозначается знаком равенства:

$$\overline{x_1 \cdot x_2} = \overline{x_1} \vee \overline{x_2} , \qquad \overline{x_1} \vee \overline{x_2} = \overline{x_1} \cdot \overline{x_2} .$$

Эти формулы являются законом де Моргана.

Для того чтобы выяснить, эквивалентны формулы или нет, можно по каждой формуле восстановить таблицу функции, а затем эти таблицы сравнить.

Доказательство эквивалентности формулы

Доказать истинность формулы $x_1 \cdot x_2 = x_1 \vee x_2$.

Строим таблицу истинности для правой и левой части.

x_1	x_2	$x_1 \cdot x_2$	$\overline{x_1 \cdot x_2}$	$\overline{x_1}$	$\overline{x_2}$	$\overline{x_1} \vee \overline{x_2}$
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	<mark>1</mark>
1	1	1	0	0	0	0

Жирным отмечены левая и правая части формулы, видим, что они равны.

<u>Д3</u> слушателям: доказать истинность формулы $x_1 \lor x_2 = x_1 \cdot x_2$.

Эквивалентность (равносильность) формул

Существует и другой метод определения эквивалентности формул, называемый методом эквивалентных преобразований.

Необходимо привести формулы с помощью эквивалентных преобразований к одному виду.

Булева алгебра логических функций

Алгебра $\{P_2; \lor, \&, \neg\}$, основным множеством которой является все множество логических функций, а операциями — дизъюнкция, конъюнкция и отрицание, называется булевой алгеброй логических функций.

Свойства булевых операций

1. **Ассоциативность**: (меняем порядок действий) $(x_1 \cdot (x_2 \cdot x_3)) = ((x_1 \cdot x_2) \cdot x_3), \text{ (относительно конъюнкции)}$ $(x_1 \vee (x_2 \vee x_3)) = ((x_1 \vee x_2) \vee x_3). \text{ (относительно дизьюнкции)}.$

2. Коммутативность: (местами меняем)

$$x_2 \cdot x_1 = x_1 \cdot x_2$$
,
 $x_2 \lor x_1 = x_1 \lor x_2$.

3. **Дистрибутивность** конъюнкции относительно дизъюнкции:

$$(x_1 \cdot (x_2 \lor x_3)) = (x_1 \cdot x_2) \lor (x_1 \cdot x_3).$$

Свойства булевых операций

4. Дистрибутивность дизъюнкции относительно конъюнкции:

$$(x_1 \vee (x_2 \cdot x_3)) = (x_1 \vee x_2) \cdot (x_1 \vee x_3).$$

5. Идемпотентность:

$$x \cdot x = x$$
, $(x \lor x) = x$.

6. Двойное отрицание:

$$\overline{\overline{x}} = x$$
.

7. Свойства констант:

$$x \cdot 1 = x$$
, $x \cdot 0 = 0$, $x \vee 1 = 1$,
 $x \vee 0 = x$, $\overline{0} = 1$, $\overline{1} = 0$

Свойства булевых операций

8. Закон де Моргана:

$$(\overline{x_1 \cdot x_2}) = (\overline{x_1} \vee \overline{x_2}), \quad (\overline{x_1} \vee \overline{x_2}) = (\overline{x_1} \cdot \overline{x_2}).$$

9. Закон противоречия:

$$x \cdot \overline{x} = 0$$
.

10. Закон «исключения третьего»:

$$x \vee \overline{x} = 1$$
.

Свойства 1-10 справедливы даже в том случае, если вместо переменных подставить любые логические функции (вместо одной и той же переменной нужно подставлять одну и ту же функцию).

Эквивалентные преобразования

1) Поглощение

$$x \lor xy = x$$

2) Склеивание

$$xy \lor x\overline{y} = x$$

- 3) Обобщенное склеивание $xz \lor y\overline{z} \lor xy = xz \lor y\overline{z}$
- 4) Расщепление $x \lor \overline{x}y = x \lor y$

Эквивалентные преобразования

1) Поглощение

$$x \lor xy = x$$

Док-во:

$$x \lor xy = x \cdot 1 \lor xy = x(1 \lor y) = x \cdot 1 = x$$
.

2) Склеивание

$$xy \lor x\overline{y} = x$$

Док-во:

$$xy \lor x\overline{y} = x(y \lor \overline{y}) = x \cdot 1 = x$$
.

Эквивалентные преобразования

3) Обобщенное склеивание $xz \lor y\overline{z} \lor xy = xz \lor y\overline{z}$

Док-во:

$$xz \lor y\overline{z} \lor xy = xz \lor y\overline{z} \lor xyz \lor xy\overline{z} = xz \lor y\overline{z}$$
.

4) Расщепление

$$x \lor \overline{x}y = x \lor y$$

Док-во:

$$x \vee \overline{x}y = xy \vee x\overline{y} \vee \overline{x}y =$$

$$= xy \vee x\overline{y} \vee xy \vee \overline{x}y = x \cdot 1 \vee y \cdot 1 = x \vee y$$

Двойственность функции

Двойственность функции проверяется:

- 1) таблично,
- 2) по определению двойственности,
- 3) по принципу двойственности.

Определение двойственной функции

Функция $f^*(x_1,...,x_n)$, равная $\overline{f(\overline{x}_1,...,\overline{x}_n)}$, называется двойственной функцией к функции $f(x_1,...,x_n)$.

Пример:
$$f(x_1, x_2, x_3) = (x_1 \lor x_2) \cdot x_3$$
,

Двойственная функция:

$$f^*(x_1, x_2, x_3) = \overline{\left(\overline{x_1} \vee \overline{x_2}\right) \cdot \overline{x_3}} = \overline{\left(\overline{x_1} \vee \overline{x_2}\right)} \vee \overline{x_3} =$$

$$= =$$

$$= x_1 \cdot x_2 \vee x_3 = x_1 \cdot x_2 \vee x_3$$

Определение самодвойственной функции

Функция, двойственная самой себе, является самодвойственной. $f^* = f$.

<u>Например</u>, функции x и \overline{x} являются самодвойственными функциями.

Из определения двойственности следует, что f = x,

$$f^*(x) = (\overline{f(\overline{x})}) = \overline{x} = x$$

т.е. f = x является самодвойственной функцией.

Табличное определение двойственной функции

Таблица для двойственной функции (при фиксированном порядке наборов значений переменных) получается из таблицы для функции $f(x_1,...,x_n)$ инвертированием (т.е. заменой 0 на 1 и 1 на 0) столбца функции и его переворачиванием.

Для одной переменной 4 функции:

<i>r</i> 1	r 1	<u> </u>		1 2	1			
$\boldsymbol{\mathcal{X}}$	f_0	f_1	f_2	f_3	${f_0}^*$	f_1^{*}	${f_2}^*$	f_3^*
0	0	0	1	1	1	0	1	0
1	0	1	0	1	1	1	0	0

 $f_1^* = f_1$, $f_2^* = f_2$, т.е. f_1 и f_2 - самодвойственные.

Табличное определение двойственной функции

Рассмотрим две функции для двух переменных:

x_1	\mathcal{X}_2	\int_{0}	f_1	f_0^*	f_1^*
0	0	0	0	1	0
0	1	0	0	1	1
1	0	0	0	1	1
1	1	0	1	1	1

Какие функции f_0 и f_0^* ? f_1 и f_1^* ?

Видим, что константа 0 двойственна 1, конъюнкция двойственна дизъюнкции.

Табличное определение двойственной функции

Пример:
$$f(x_1, x_2, x_3) = (x_1 \lor x_2) \cdot x_3$$
,

Таблично получаем

$$f(x_1, x_2, x_3) = (00010101),$$

$$f^*(x_1, x_2, x_3) = (01010111)$$

Принцип двойственности

Если формула $F = F(f_1, ..., f_m)$ реализует функцию $\varphi(x_1, ..., x_n)$, то формула $F^* = F(f_1^*, ..., f_m^*)$ полученная из F заменой функций $f_1, ..., f_m$ на $f_1^*, ..., f_m^*$, реализует функцию $\varphi^*(x_1, ..., x_n)$.

функция 0 двойственна функции 1, функция 1 двойственна функции 0, функция x двойственна функции x, функция \overline{x} двойственна функции \overline{x} , функция $x_1 \cdot x_2$ двойственна функции $x_1 \cdot x_2$, функция $x_1 \cdot x_2$ двойственна функции $x_1 \cdot x_2$.

Маркова Екатерина Викторовна. Лк. 3 по МЛ. Свойства булевых операций. Двойственность.

Принцип двойственности

<u>Пример</u>: $f(x_1, x_2, x_3) = (x_1 \lor x_2) \cdot x_3$,

Двойственная функция по принципу двойственности:

$$f^*(x_1, x_2, x_3) = x_1 \cdot x_2 \vee x_3$$
,

Последовательность действий в двойственной функции всегда сохраняется!

Ответ совпадает с ответом, полученным с помощью определения двойственности.

Тема следующей лекции:

«Совершенная дизъюнктивная нормальная форма (СДНФ)».