Die Bschlangaul-Sammlung Normalformen Einstieg

Normalformen Einstieg

(Drei-Schemata)

Stichwörter: Boyce-Codd-Normalform, Dritte Normalform, Zweite Normalform, Synthese-Algorithmus

Es seien folgende Relationenschemata mit den jeweiligen Mengen funktionaler Abhängigkeiten gegeben:

$$S_1(P,Q,R)$$
 mit

$$F_1 = \left\{\right.$$

$$\{P,Q\} \rightarrow \{R\},$$

$$\{P,R\} \rightarrow \{Q\},$$

$$\{Q,R\} \rightarrow \{P\},$$

 $S_2(P, R, S, T)$ mit

$$F_2 = \left\{ \right.$$

$$\{P,S\} \to \{T\},$$

 $S_3(P, S, U)$ mit

$$F_3 = \left\{ \right.$$

(a) Welche der drei Schemata sind in BCNF, welche in 3NF, welche in 2NF? Begründe!

Lösungsvorschlag

 S_1 : BCNF

 S_2 : 1NF aber nicht 2NF

 S_3 : BCNF

 (S_1, F_1) und (S_3, F_3) sind offenbar in BCNF und daher auch in 3NF und 2NF. (S_2, F_2) ist offenbar nicht in 2NF, da der Schlüsselkandidat PRS ist und T von einem Teil dieser Schlüsselkandidaten, nämlich PS, abhängig ist und daher auch nicht in 3NF oder BCNF.

(b) Wenden Sie auf (S_2, F_2) den Synthesealgorithmus an, und bestimmen Sie auch die Mengen aller nichttrivialen einfachen funktionalen Abhängigkeiten, die über den erhaltenen Teilrelationen gelten. Ihr Lösungsweg muss nachvollziehbar sein.

Die Bschlangaul-Sammlung Normalformen Einstieg

Lösungsvorschlag

(i) Kanonische Überdeckung

— Die kanonische Überdeckung - also die kleinst mögliche noch äquivalente Menge von funktionalen Abhängigkeiten kann in vier Schritten erreicht werden.

$$F_2 = \left\{ \left\{ P, S \right\} \to \left\{ T \right\}, \right.$$

(ist schon in der kanonische Überdeckung)

(ii) Relationsschemata formen

— Erzeuge für jede funktionale Abhängigkeit $\alpha o \beta \in F_c$ ein Relationenschema $\mathcal{R}_\alpha := \alpha \cup \beta$. —

$$R_{21}(P, S, T)$$

(iii) Schlüssel hinzufügen

— Falls eines der in Schritt 2. erzeugten Schemata R_{α} einen Schlüsselkandidaten von \mathcal{R} bezüglich F_c enthält, sind wir fertig, sonst wähle einen Schlüsselkandidaten $\mathcal{K} \subseteq \mathcal{R}$ aus und definiere folgendes zusätzliche Schema: $\mathcal{R}_{\mathcal{K}} := \mathcal{K}$ und $\mathcal{F}_{\mathcal{K}} := \emptyset$ —

$$R_{21}(P, S, T)$$
 mit

$$F_{21}=\left\{ \ \left\{ \ PS
ight\}
ightarrow \left\{ \ T
ight\} ,$$

$$R_{22}(\underline{P,S,R})$$
 mit

$$F_{22} = \Big\{$$

(iv) Entfernung überflüssiger Teilschemata

— Eliminiere diejenigen Schemata R_{α} , die in einem anderen Relationenschema $R_{\alpha'}$ enthalten sind, d. h. $R_{\alpha} \subseteq R_{\alpha'}$.

Ø Nichts zu tun

Die Bschlangaul-Sammlung

Hermine Bschlangaul and Friends

Eine freie Aufgabensammlung mit Lösungen von Studierenden für Studierende zur Vorbereitung auf die 1. Staatsexamensprüfungen des Lehramts Informatik in Bayern.

Die Bschlangaul-Sammlung Normalformen Einstieg

Diese Materialsammlung unterliegt den Bestimmungen der Creative Commons Namensnennung-Nicht kommerziell-Share Alike $4.0\,\mathrm{International\text{-}Lizenz}.$

Hilf mit! Die Hermine schafft das nicht allein! Das ist ein Community-Projekt! Verbesserungsvorschläge, Fehlerkorrekturen, weitere Lösungen sind herzlich willkommen - egal wie - per Pull-Request oder per E-Mail an hermine.bschlangaul@gmx.net.Der TEX-Quelltext dieses Dokuments kann unter folgender URL aufgerufen werden: https://github.com/bschlangaul-sammlung/examens-aufgaben/blob/main/Module/10_DB/50_Relationale-Entwurfstheorie/30_Normalformen/10_Synthesealgorithmus/Aufgabe_Drei-Schemata.tex