Universitat de les Illes Balears

Escola Politècnica Superior

21719 - Avaluació del Comportament de Sistemes Informàtics.

Actividad 5: Tema 5 - Aplicaciones del Análisis Operacional

Parte 2

Khaoula Ikkene Grupo 102 khaoula.ikkene1@estudiant.uib.cat 2. Programad un pequeño algoritmo que resuelva con MVA idénticamente al problema y el modelo en QNAP del apartado 1 (ver libro página 136 o transparencias del tema 5). 2 Comprobad que los resultados de vuestro programa salen iguales al ejercicio 5.1 del libro y vuestro modelo en QNAP hasta el apartado 1b.

<u>C:\Users\h</u>	∖.jdl	ks\corrett	:o-18.0.2\bi	n\java	<u>а.ехе</u> "-ja	nvaagent:C:\F	rogra	am Files\J	JetBrains∖Inte
Trabajos	- 1	R_CPU	R_DISCO	-1	R	Xo	- 1	N_CPU	N_DISCO
1	- 1	0,0300	0,1000	- 1	0,9400	0,1119	- 1	0,0268	0,0783
2	- 1	0,0308	0,1078	- 1	1,0013	0,2222	- 1	0,0548	0,1677
3	- 1	0,0316	0,1168	- 1	1,0705	0,3307	- 1	0,0837	0,2703
4	- 1	0,0325	0,1270	- 1	1,1493	0,4372	- 1	0,1137	0,3888
5	- 1	0,0334	0,1389	- 1	1,2394	0,5412	- 1	0,1446	0,5261
6	- 1	0,0343	0,1526	- 1	1,3430	0,6422	- 1	0,1764	0,6860
7	- 1	0,0353	0,1686	- 1	1,4626	0,7398	- 1	0,2089	0,8731
8	- 1	0,0363	0,1873	- 1	1,6013	0,8332	- 1	0,2417	1,0925
9	- 1	0,0373	0,2092	- 1	1,7628	0,9219	- 1	0,2747	1,3503
10	- 1	0,0382	0,2350	- 1	1,9511	1,0049	I	0,3074	1,6533

Codigo fuente en JAVA

```
public static void main(String[] args) {
 int USERS = 10;
 double[] R_CPU = new double[USERS+1];
 double[] Xn = new double[USERS+1];
 double[] R_TOTAL = new double[USERS+1];
 double[] N_CPU = new double[USERS+1];
 double[] R_DISCO = new double[USERS+1];
 double[] N_DISCO = new double[USERS+1];
 double TS_CPU = 0.03;
 double TS_DISCO = 0.1;
 int RZ_disco = 7, RZ_CPU = 8;
 int Z = 8:
 DecimalFormat df = new DecimalFormat("#.###");
 for (int n = 1; n <= USERS; n++) {
  R_{CPU}[n] = (N_{CPU}[n-1] + 1) * TS_{CPU};
  R_DISCO[n] = (N_DISCO[n - 1] + 1) * TS_DISCO;
  R\_TOTAL[n] = (RZ\_CPU * R\_CPU[n]) + (RZ\_disco * R\_DISCO[n]);
  Xn[n] = (double) n / (Z + R_TOTAL[n]);
  N_{CPU[n]} = Xn[n] * RZ_{CPU} * R_{CPU[n]};
  N_DISCO[n] = Xn[n] * RZ_disco * R_DISCO[n];
  System.out.printf("%d\t\t\t| %.4f %.4f | %.4f %.4f | %.4f %.4f\n", n, R_CPU[n],
R_DISCO[n], R_TOTAL[n], Xn[n], N_CPU[n], N_DISCO[n]);
```