Descripción de Acciones de Gravedad en el Lenguaje de Formas Diferenciales

Cuevas Gómez Eduardo¹ Díaz Saldaña Alberto Isaac¹ Lopez Dominguez Julio Cesar¹ Rosales Quintero José Eduardo²

¹Universidad Autónoma de Zacatecas ²Benemérita Universidad Autónoma de Puebla

Resumen

En este trabajo se presenta de manera breve los ingredientes fundamentales para la **construcción de acciones de gravedad utilizando el lenguaje de formas diferenciales** en donde se hace uso extensivo de los denominados haces fibrados los cuales han sido exitosos para la descripción de las interacciones fundamentales de la naturaleza.

Haces Fibrados?

Un haz fibrado (fiber bundle) sirve para relacionar espacios de cualquier tipo usualmente se relaciona un espacio topológico (topological manifold) con otro espacio, se suelen usar espacios vectoriales y se les llama haces vectoriales (vector bundles) permitiendo describir interacciones.

Conexión y Curvatura

Parte de considerar un haz es definir una **conexión**, un **mapeo** entre las fibras de modo que se **codifique** la información de la variedad y sus propiedades de interés, que posteriormente se verán reflejadas en lo que entendemos como **curvatura** o bien como **torsión** (tras realizar un transporte paralelo).

En **RG** se considera el haz tangente denotado como **TM** (donde **M** es el espaciotiempo) y se usa una conexión libre de torsión llamada conexión de Levi-Civita, de modo que la derivada covariante es:

$$\nabla_{\mu} x^{\nu} = \partial_{\mu} x^{\nu} + \Gamma^{\nu}_{\mu \rho} x^{\rho} \tag{1}$$

Tétrada y Conexión de Espín

Haciendo uso de la tétrada e se puede hacer una especie de mapeo entre lo que se entiende de las fibras, preservando su información ante el transporte paralelo y se llega que de la ecuación (1) se puede reemplazar por:

$$Dv^{I} = dv^{I} + \omega^{I}_{J} \wedge v^{J} \tag{2}$$

donde D es la derivada exterior covariante, d es la derivada exterior, w es la 1-forma de conexión de espín, esto se entiende como pasando de espacios vectoriales a formas diferenciales:

$$\nabla x = \partial x + \Gamma x \underset{e}{\mapsto} Dv = dv + \omega \wedge v$$

De modo que se puede incluir la 2-forma de torsión y de curvatura como:

$$\mathsf{T}^{\mathsf{A}} = \mathsf{d}\theta^{\mathsf{A}} + \omega_{\mathsf{B}}^{\mathsf{A}} \wedge \theta^{\mathsf{B}} = \mathsf{D}\theta \tag{3}$$

La cual, por el postulado de la tétrada en este caso $T_A = 0$ y la 2-forma de curvatura

$$R^{a}_{b} \equiv d\omega^{a}_{b} + \omega^{a}_{c} \wedge \omega^{c}_{b} = \frac{1}{2} R^{a}_{\mu\nu b} dx^{\mu} \wedge dx^{\nu}$$
 (4)

donde $\theta = e^I_\mu \, dx^\mu \, y \, \omega^I_J = \omega^I_{\mu J} \, dx^\mu \, son \, 1$ -formas y aparte existe la relación entre formas:

$$\epsilon_{\mu\nu\rho\sigma} \, dx^{\mu} \wedge dx^{\nu} \wedge dx^{\rho} \wedge dx^{\sigma} = d^4x \tag{5}$$

donde ϵ es el símbolo de Levi-Civita.

Acciones de Gravedad

Acción de Einstein-Hilbert (en el vacío y sin constante cosmológica)

$$S_{EH} = \int_{M} \sqrt{-g} R d^{4}x = \frac{1}{2} \int_{M} \epsilon_{ABCD} \theta^{A} \wedge \theta^{B} \wedge R^{CD}$$
 (6)

Einstein-Cartan, formulación de primer orden

$$S_{EC}[\theta, \omega] = \frac{1}{32\pi G} \int \epsilon_{IJKL} \, \theta^{I} \wedge \theta^{J} \wedge \left(R^{KL}(\omega) - \frac{\Lambda}{6} \, \theta^{K} \wedge \theta^{L} \right)$$
 (7)

Acción de MacDowell-Mansouri

$$\mathcal{F}^{IJ} = R^{IJ}(\omega) - \frac{\Lambda}{3} \,\theta^{I} \wedge \theta^{J} \tag{8}$$

donde

$$S_{MM}[e, \omega] = -\frac{3}{64\pi GA} \int \epsilon_{IJKL} \mathcal{F}^{IJ} \wedge \mathcal{F}^{KL}$$
 (9)

Figure 1: Haces Fibrados y vibracion de Hopf

Resultados

Ecuaciones de campo

$$\epsilon_{ABCD} \,\theta^{A} \wedge R^{CD} = 0 \tag{10}$$

$$\epsilon_{ABCD} \theta^{A} \wedge \left(R^{CD} - \frac{\Lambda}{3} \theta^{C} \wedge \theta^{D} \right) = \epsilon_{ABCD} \theta^{A} \wedge \mathcal{F}^{CD} = 0 \quad (11)$$

$$\epsilon_{ABCD} D \mathcal{F}^{AB} = 0 \tag{12}$$

Euler topológico en lenguaje tensorial usual

$$\epsilon_{ABCD} R^{AB} \wedge R^{CD} = (R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} - 4R_{\mu\nu} R^{\mu\nu} + R^2) d^4x$$
(13)

Conclusiones

- Este formalismo compacta y simplifica la descripción de teorías gravitacionales, facilitando su análisis geométrico.
- optimiza cálculos numéricos y mejora eficiencia computacional.
- El enfoque permite extender las teorías gravitacionales y explorar nuevos modelos en gravitación cuántica.

