Algorithm Course Lab Report - Lab 1

Title: Lab 1 **Date:** 9-14-2025 **Name:** Robert Rice **Student ID:** 657588340

1. Introduction

Objective. Analyze a algorithm for Domino and Tromino Tiling. The goal of this lab is to formalize the recurrence, argue correctness at a high level, implement the solution, and analyze complexity with small sanity checks.

Problem (summary). Given a $2 \times n$ board, count the tilings using 2×1 dominoes and L-shaped trominoes (rotations allowed). Return the answer modulo $10^9 + 7$. Constraints: $1 \le n \le 1000$. Examples: $n=1 \Rightarrow 1$, $n=3 \Rightarrow 5$.

2. Results

All goals achieved: Yes All sample tests passed: Yes

Sample outputs.

\overline{n}	ways
1	1
2	2
3	5
4	11
5	24
6	53
7	117
8	258
9	569
10	1255

3. Algorithm Framework

Let F(n) be the number of tilings for a $2 \times n$ board. Define G(n) as the number of almost-filled width configurations n ending with a single cell "stair" gap. This leads to the following transitions:

$$F(n) = F(n-1) + F(n-2) + 2G(n-2),$$

$$G(n) = F(n-1) + G(n-1).$$

Remove G to get $n \geq 3$:

$$F(n) = 2F(n-1) + F(n-3)$$

with 3 Base Cases - F(0)=1, F(1)=1, F(2)=2.

4. Complexity Analysis

The algorithm runs in O(n) time while requiring only O(n) space, or O(1) with optimization.

5. Lessons Learned, Feedback, and Conclusion

Since this was my first Lab, I spent extra time getting familiar with the tools/libraries. I enjoy this method of delivering assignments

6. References and Use of Tools

[List any other references you used in a standard citation format.]