MAST90125: Bayesian Statistical learning

Lecture 3: Bayes and Minimax Estimation

Guoqi Qian

Outline

§1 Loss, risk, minimax risk and Bayes risk

§2 Bayes estimator

§3 Example and Remark

Loss and risk

- ▶ Recall the MSE of an estimator T of $\tau(\theta)$, MSE(T) = $E[T \tau(\theta)]^2$, measures the *expected squared* error loss associated with T. One can consider other types of loss function.
- **Loss function** $L(t;\theta)$ is a real-valued function of an estimator T and parameter θ such that $L(t;\theta) \geq 0$ for every value of T, and $L(t;\theta) = 0$ when $t = \tau(\theta)$. Note that by default the estimator $T = t(\mathbf{X}_n)$ is a function of the data $\mathbf{X} = (X_1, \cdots, X_n)^T$ and is for estimating $\tau(\theta)$.
- ▶ **Risk function** $R_T(\theta)$ is the expectation of the loss function w.r.t. the data, i.e.

$$R_T(\theta) = E[L(T; \theta)] = \int L(t(\mathbf{x}_n); \theta) f(\mathbf{x}_n | \theta) d\mathbf{x}_n$$

where $f(\mathbf{x}_n|\theta)$ is the joint pdf (or pmf) of \mathbf{X}_n .

Minimization of loss and risk?

- Adopting a specific risk function $R_T(\theta)$ as the criterion, naturally the best estimator of $\tau(\theta)$ would be a T^* which minimizes $R_T(\theta)$ for all possible values of θ .
- Unfortunately, such a T^* usually does not exist except in very few cases. In other words, it is mostly impossible to find an estimator which is better than any other estimator in terms of $R_T(\theta)$.
- ▶ **Admissibility:** An estimator T_1 **dominates** another estimator T_2 iff $R_{T_1}(\theta) \leq R_{T_2}(\theta)$ for all $\theta \in \Theta$, and $R_{T_1}(\theta) < R_{T_2}(\theta)$ for at least some $\theta \in \Theta$. T is an **admissible estimator** iff no other estimators dominate it.
- It is not worth to consider inadmissible estimators.

Mini-max or min-expectation?

If we really want to find a "best" estimator w.r.t. $R_T(\theta)$, there are two possible ways.

- 1. Find a *minimax* estimator from the class of admissible estimators.
 - An estimator T_1 is a **minimax estimator** of $\tau(\theta)$

if
$$\max_{\theta} R_{T_1}(\theta) \leq \max_{\theta} R_T(\theta)$$
 for every estimator T of $\tau(\theta)$.

Namely,
$$T_1 = \arg \min_{T} \{ \max_{\theta} R_T(\theta) \}.$$

► The minimax approach is conservative in general. Not much is known about its performance, but will not be pursued in this subject.

Mini-max or min-expectation?

- 2. Use Bayes approach: The key is to regard the parameter θ as a random variable having a pdf $p(\theta)$, where $p(\theta)$ is called the **prior distribution** or **prior density**.
 - ► Then Bayes risk is defined to be

$$A_T = E_{\theta}[R_T(\theta)] = \int_{\Theta} R_T(\theta)p(\theta)d\theta,$$

which is just an expected risk w.r.t. the prior distribution.

▶ Bayes estimator is defined to be the estimator T* which minimizes the Bayes risk:

$$E_{\theta}[R_{T^*}(\theta)] \leq E_{\theta}[R_T(\theta)]$$
 for every estimator T of $\tau(\theta)$.

Namely,
$$T^* = \arg\min_{T} A_T = \arg\min_{T} E_{\theta}[R_T(\theta)].$$

How to find the Bayes estimator? (1)

$$E_{\theta}[R_{T}(\theta)] = \int_{\Theta} R_{T}(\theta)p(\theta)d\theta = \int_{\Theta} \left[\int_{\mathbf{x}_{n}} L(t(\mathbf{x}_{n});\theta)f(\mathbf{x}_{n}|\theta)d\mathbf{x}_{n} \right] p(\theta)d\theta$$

$$= \int_{\Theta} \int_{\mathbf{x}_{n}} L(t(\mathbf{x}_{n});\theta)f(\mathbf{x}_{n}|\theta)p(\theta)d\mathbf{x}_{n}d\theta$$

$$= \int_{\mathbf{x}_{n}} \left[\int_{\Theta} L(t(\mathbf{x}_{n});\theta)\frac{f(\mathbf{x}_{n}|\theta)p(\theta)}{\int_{\Theta} f(\mathbf{x}_{n}|\theta)p(\theta)d\theta}d\theta \right] \left[\int_{\Theta} f(\mathbf{x}_{n}|\theta)p(\theta)d\theta \right] d\mathbf{x}_{n}$$

$$= \int_{\mathbf{x}_{n}} \left[\int_{\Theta} L(t(\mathbf{x}_{n});\theta)p(\theta|\mathbf{x}_{n})d\theta \right] f(\mathbf{x}_{n})d\mathbf{x}_{n}$$

$$= \int_{\mathbf{x}_{n}} E_{\theta}[L(T;\theta)|\mathbf{x}_{n}]f(\mathbf{x}_{n})d\mathbf{x}_{n} = E_{\mathbf{x}_{n}}(E_{\theta}[L(T;\theta)|\mathbf{x}_{n}])$$

Thus if an estimator \tilde{T} minimizes $E_{\theta}[L(T;\theta)|\mathbf{x}_n]$ for any given \mathbf{x}_n , it must also minimize $E_{\theta}[R_T(\theta)]$.

How to find the Bayes estimator? (2)

Therefore, finding the Bayes estimator is equivalent to finding the estimator that minimizes $E_{\theta}[L(T;\theta)|\mathbf{x}_n]$ for any given \mathbf{x}_n .

Theorem (Bayes estimator under squared loss)

Suppose we choose to use the squared loss function $L(T; \theta) = [T - \tau(\theta)]^2$, then

$$T^* = E_{\theta}[\tau(\theta)|\mathbf{x}_n] = \int_{\Theta} \tau(\theta)p(\theta|\mathbf{x}_n)d\theta$$

is the Bayes estimator of $\tau(\theta)$ that minimizes $E_{\theta}([T - \tau(\theta)]^2 | \mathbf{x}_n)$.

Proof: $E_{\theta}([T - \tau(\theta)]^2 | \mathbf{x}_n) = T^2 - 2TE_{\theta}[\tau(\theta)|\mathbf{x}_n] + E_{\theta}[\tau(\theta)^2 | \mathbf{x}_n]$ is a convex quadratic function of T, it follows that $\arg\min_{\boldsymbol{r}} E_{\theta}([T - \tau(\theta)]^2 | \mathbf{x}_n) = E_{\theta}[\tau(\theta)|\mathbf{x}_n]$.

How to find the Bayes estimator? (3)

Remarks

- 1. Unless stated otherwise, we will use the squared loss function $L(T; \theta) = [T \tau(\theta)]^2$.
- 2. $f(\mathbf{x}_n) = \int_{\Theta} f(\mathbf{x}_n|\theta)p(\theta)d\theta$ is the marginal pdf of \mathbf{X}_n .
- 3. The conditional pdf $p(\theta|\mathbf{x}_n) = \frac{f(\mathbf{x}_n|\theta)p(\theta)}{\int_{\Theta} f(\mathbf{x}_n|\theta)p(\theta)d\theta}$ is called the **posterior pdf** of θ .
- 4. The Bayes estimator T^* is interpreted as the posterior mean of $\tau(\theta)$ (provided that the squared loss is used).

Example 2.1 (1)

Example 2.1 Consider a random sample $X_n = (X_1, \dots, X_n)$ from a Bernoulli distribution with pdf $f(x|\theta) = \theta^x (1-\theta)^{1-x}$; x = 0, 1. Let the prior pdf of θ be Uniform(0,1), i.e. $p(\theta) = I(0 < \theta < 1)$.

- 1. Find the Bayes estimator of θ .
- 2. Find the risk of the Bayes estimator of θ .
- 3. Find the Bayes risk of the Bayes estimator of θ .
- 4. Find the Bayes estimator of θ^2 .
- 5. Formulate the risk of the Bayes estimator of θ^2 .

Example 2.1 (2)

 \triangleright First the posterior pdf of θ is

$$\rho(\theta|\mathbf{x}_{n}) = \frac{f(\mathbf{x}_{n}|\theta)p(\theta)}{\int_{\Theta} f(\mathbf{x}_{n}|\theta)p(\theta)d\theta} = \frac{\prod_{i=1}^{n} \theta^{x_{i}} (1-\theta)^{1-x_{i}} I(0<\theta<1)}{\int \prod_{i=1}^{n} \theta^{x_{i}} (1-\theta)^{1-x_{i}} I(0<\theta<1)d\theta} \\
= \frac{\theta^{\sum_{i=1}^{n} x_{i}} (1-\theta)^{n-\sum_{i=1}^{n} x_{i}}}{\int_{0}^{1} \theta^{\sum_{i=1}^{n} x_{i}} (1-\theta)^{n-\sum_{i=1}^{n} x_{i}} d\theta} \\
= \frac{\Gamma(n+2)}{\Gamma(\sum_{i=1}^{n} x_{i}+1)\Gamma(n-\sum_{i=1}^{n}+1)} \theta^{\sum_{i=1}^{n} x_{i}} (1-\theta)^{n-\sum_{i=1}^{n} x_{i}}$$

which is a beta
$$\left(a = \sum_{i=1}^{n} x_i + 1, b = n - \sum_{i=1}^{n} x_i + 1\right)$$
 pdf.

Example 2.1 (3)

1. Then the Bayes estimator of θ is

$$T_1^* = E(\theta|\mathbf{x}_n) = \frac{a}{a+b} = \frac{\sum_{i=1}^n x_i + 1}{n+2}.$$

Note the MLE of θ is $\hat{\theta} = \frac{\sum_{i=1}^{n} x_i}{n}$.

- 2. Risk $R_{T_1^*}(\theta) = E[T_1^* \theta]^2 = \frac{(n-4)\theta(1-\theta)+1}{(n+2)^2}$. This result is obtained by using the fact that $\sum_{i=1}^n X_i \stackrel{d}{=} \text{binomial}(n,\theta)$ conditional on θ .
- 3. Bayes risk $A_{\mathcal{T}_1^*} = \int R_{\mathcal{T}_1^*}(\theta) p(\theta) d\theta = \int_0^1 \frac{(n-4)\theta(1-\theta)+1}{(n+2)^2} \times 1 d\theta = \frac{1}{6(n+2)}.$

Example 2.1 (4)

4. The Bayes estimator of θ^2 is

$$T_2^* = E(\theta^2 | \mathbf{x}_n) = \frac{a(a+1)}{(a+b+1)(a+b)} = \frac{(\sum_{i=1}^n x_i + 1)(\sum_{i=1}^n x_i + 2)}{(n+3)(n+2)}.$$

Note the MLE of θ^2 is $\hat{\theta}^2 = \left(\frac{\sum_{i=1}^n x_i}{n}\right)^2$.

5. The risk of T_2^* is

$$R_{T_2^*}(\theta) = E[T_2^* - \theta^2]^2 = E\left[\frac{(\sum_{i=1}^n x_i + 1)(\sum_{i=1}^n x_i + 2)}{(n+3)(n+2)} - \theta^2\right]^2$$

which can still be calculated using the fact $(\sum_{i=1}^{n} X_i) | \theta \stackrel{d}{=} b(n, \theta)$.

Remarks

- 1. The idea involved in Bayes estimation is very appealing. Without any information or with only prior information about θ , we would estimate $\tau(\theta)$ by its prior mean. Once the data are observed, new information about θ is available, we then would estimate $\tau(\theta)$ by its posterior mean.
- 2. The posterior mean may be analytically intractable if the posterior pdf is mathematically complicated. This difficulty may be overcome by using a Monte Carlo technique to approximate the posterior mean. Monte Carlo statistical approaches are more and more popular which will be addressed in next chapter.
- 3. Bayes confidence intervals and testing are studied elsewhere.

Example 2.2 (1)

Example 2.2 Consider a random sample $X_n = (X_1, \dots, X_n)$ from a Poisson distribution with pdf

§2 Bayes estimator

$$f(x|\theta) = \frac{\theta^x}{x!}e^{-\theta}; \quad x = 0, 1, \cdots.$$

Let the prior pdf of θ be Gamma (β, κ) with mean $\kappa\beta$ and variance $\kappa\beta^2$, i.e.

$$p(\theta) = \frac{1}{\beta^{\kappa} \Gamma(\kappa)} \theta^{\kappa - 1} e^{-\theta/\beta}; \ \theta > 0; \beta > 0, \kappa > 0.$$

Find the Bayes estimator of θ and the associated risk.

Example 2.2 (2)

The posterior distribution or posterior pdf of θ is

$$\begin{split} & p(\theta|\mathbf{x}_n) = \frac{f(\mathbf{x}_n|\theta)p(\theta)}{\int_{\Theta} f(\mathbf{x}_n|\theta)p(\theta)d\theta} \\ & = \left[\frac{e^{-n\theta}\theta^{\sum_{i=1}^n x_i}\theta^{\kappa-1}e^{-\theta/\beta}}{\prod_{i=1}^n (x_i!)\beta^{\kappa}\Gamma(\kappa)} \right] / \left[\int \frac{e^{-n\theta}\theta^{\sum_{i=1}^n x_i}\theta^{\kappa-1}e^{-\theta/\beta}}{\prod_{i=1}^n (x_i!)\beta^{\kappa}\Gamma(\kappa)}d\theta \right] \\ & = \frac{e^{-n\theta}\theta^{\sum_{i=1}^n x_i}\theta^{\kappa-1}e^{-\theta/\beta}}{\int e^{-n\theta}\theta^{\sum_{i=1}^n x_i}\theta^{\kappa-1}e^{-\theta/\beta}d\theta} = \frac{\theta^{\sum_{i=1}^n x_i+\kappa-1}e^{-\theta(n+1/\beta)}}{\int_0^{\infty}\theta^{\sum_{i=1}^n x_i+\kappa-1}e^{-\theta(n+1/\beta)}d\theta} \\ & = \frac{\theta^{\sum_{i=1}^n x_i+\kappa-1}e^{-\theta(n+1/\beta)}}{(n+1/\beta)^{-(\sum_{i=1}^n x_i+\kappa)}\Gamma(\sum_{i=1}^n x_i+\kappa)} \end{split}$$

which is a Gamma $((n+1/\beta)^{-1}, \sum_{i=1}^n x_i + \kappa)$ pdf.

Example 2.2 (3)

The Bayes estimator of θ is therefore

$$T = E(\theta|\mathbf{x}_n) = (n+1/\beta)^{-1} (\sum_{i=1}^n x_i + \kappa)$$

which is very close to the MLE, $\hat{\theta} = \bar{x}_n$, if β is large and κ is small. The risk in this case is

$$R_{T}(\theta) = E[T - \theta]^{2} = Var(T) + [E(T) - \theta]^{2}$$

$$= \frac{nVar(X)}{(n + 1/\beta)^{2}} + \left[\frac{n\theta + \kappa}{n + 1/\beta} - \theta\right]^{2}$$

$$= \frac{n\theta + [\kappa - \theta/\beta]^{2}}{(n + 1/\beta)^{2}}$$

where we have used the fact that, given θ , $\sum_{i=1}^{n} X_i \stackrel{d}{=} Poisson(n\theta)$.

Example 2.3

Example 2.3 Consider a random sample $Y_n = (Y_1, \dots, Y_n)$ with $Y_i \stackrel{d}{=} \text{Poisson}(e^{\beta x_i})$ and x_i being given, $i = 1, \dots, n$. Let the prior pdf of β be N(0,1).

Then the posterior pdf of β is

$$p(\beta|\mathbf{y}_{n},\mathbf{x}_{n}) = \frac{f(\mathbf{y}_{n}|\beta,\mathbf{x}_{n})p(\beta)}{\int_{B} f(\mathbf{y}_{n}|\beta,\mathbf{x}_{n})p(\beta)d\beta}$$

$$= \frac{(\prod_{i=1}^{n} y_{i}!)^{-1}e^{-\sum_{i=1}^{n} e^{\beta x_{i}}}e^{\beta\sum_{i=1}^{n} x_{i}y_{i}}(\sqrt{2\pi})^{-1}e^{-\beta^{2}/2}}{\int_{-\infty}^{\infty} (\prod_{i=1}^{n} y_{i}!)^{-1}e^{-\sum_{i=1}^{n} e^{\beta x_{i}}}e^{\beta\sum_{i=1}^{n} x_{i}y_{i}}(\sqrt{2\pi})^{-1}e^{-\beta^{2}/2}d\beta}.$$

The Bayes estimator of β is

$$T = E(\beta|\mathbf{y}_n, \mathbf{x}_n) = \int_{-\infty}^{\infty} \beta p(\beta|\mathbf{y}_n, \mathbf{x}_n) d\beta$$

which does not have a closed form and will have to be calculated using a Monte Carlo method.