```
In [2]: # Import necessary libraries
        import numpy as np # For numerical operations
        import pandas as pd # For handling datasets
        from sklearn.model_selection import train_test_split # Splitting data into train & test sets
         from sklearn.linear_model import LinearRegression # Linear Regression Model
         from sklearn.preprocessing import StandardScaler # Standardization of data
         from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score # Evaluation metrics
        C:\Users\OM\AppData\Roaming\Python\Python311\site-packages\pandas\core\arrays\masked.py:60: UserWarning: Pandas requires version '1.3.6' or newer of 'bottleneck' (version '1.3.5' currently installed). from pandas.core import (
In [3]: # Importing Keras (for Neural Network)
        import keras
         from keras.models import Sequential # To define a sequential model
         from keras.layers import Dense # Fully connected layers
In [4]: boston = pd.read_csv("boston_house_prices.csv") # Reads CSV file into a DataFrame
        # Selecting Features and Target
        # Selecting 3 input features:
        # 1. LSTAT (Percentage of lower status population)
        # 2. RM (Average number of rooms per dwelling)
        # 3. PTRATIO (Pupil-teacher ratio by town)
        X = boston[['LSTAT', 'RM', 'PTRATIO']]
        # Target variable: House Price
        y = boston['PRICE']
        # Splitting the Dataset into Training and Testing Sets
        # 80% of data used for training, 20% for testing
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=4)
In [11]: # Standardizing the Dataset (Feature Scaling)
        # Standardization improves model performance by normalizing feature values
        scaler = StandardScaler() # Initializing StandardScaler
        X_train_scaled = scaler.fit_transform(X_train) # Fit and transform training data
        X_{test\_scaled} = scaler.transform(X_{test}) # Transform test data using the same scaler
        # Linear Regression Model
        lr_model = LinearRegression() # Initializing Linear Regression Model
        lr_model.fit(X_train_scaled, y_train) # Training the model using scaled training data
        # Predicting house prices on test data
        y_pred_lr = lr_model.predict(X_test_scaled)
        # Evaluating Linear Regression Model
        mse_lr = mean_squared_error(y_test, y_pred_lr) # Mean Squared Error
        mae_lr = mean_absolute_error(y_test, y_pred_lr) # Mean Absolute Error
        r2_lr = r2_score(y_test, y_pred_lr) # R² Score (Model accuracy measure)
        # Displaying evaluation metrics
        print("Linear Regression Model Evaluation:")
        print(f"Mean Squared Error: {mse_lr}")
        print(f"Mean Absolute Error: {mae_lr}")
        print(f"R2 Score: {r2_lr}")
        # Neural Network (ANN) Model
        # Creating a Deep Learning Model using Keras Sequential API
        model = Sequential([
        Dense(128, activation='relu', input_dim=3), # Input layer (3 features) & first hidden layer (128 neurons)
        Dense(64, activation='relu'), # Second hidden layer with 64 neurons
        Dense(32, activation='relu'), # Third hidden layer with 32 neurons
        Dense(16, activation='relu'), # Fourth hidden layer with 16 neurons
        Dense(1) # Output layer (Predicting a single value - House Price)
        # Compiling the model
        model.compile(optimizer='adam', loss='mse', metrics=['mae'])
        # Optimizer: Adam (Adaptive Learning Rate Optimization)
        # Loss function: Mean Squared Error (MSE) - Suitable for regression problems
        # Metric: Mean Absolute Error (MAE) - Helps measure performance
        Linear Regression Model Evaluation:
Mean Squared Error: 30.340105190234596
Mean Absolute Error: 3.5844321029226935
        R2 Score: 0.6733732528519258
        C:\Users\OM\AppData\Roaming\Python\Python311\site-packages\keras\src\layers\core\dense.py:87: UserWarning: Do not pass an `input_shape'/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer
        in the model instead.
          super().__init__(activity_regularizer=activity_regularizer, **kwargs)
In [12]: # Training the Neural Network
```

history = model.fit(X_train_scaled, y_train, epochs=100, validation_split=0.05,

```
verbose=1)
# Training for 100 epochs
# Using 5% of training data as validation set to monitor overfitting
# `verbose=1` displays detailed training progress
#Epoch 1/100
#12/12
                                            4s 26ms/step - loss: 547.8306 - #mae: 21.6359 - val_loss: 445.7750 - va
#Epoch 2/100
#12/12 -
                                            Os 8ms/step - loss: 550.6208 - #mae: 21.6498 - val loss: 403.5681 - val
#Epoch 3/100
#12/12 -
                                             Os 8ms/step - loss: 433.7596 -
Epoch 1/100
[1m12/12 [0m [32m
                                            -[Om[37m[0m [1m12s[0m 86ms/step - loss: 543.6867 - mae: 21.7232 - val_loss: 426.0903 - val_mae: 1
Epoch 2/100
                                           [1m12/12 [Om [32m
Epoch 3/100
[1m12/12 [Om [32m
                                            -[Om[37m[0m [1m0s[0m 15ms/step - loss: 393.6682 - mae: 18.1779 - val loss: 208.3057 - val mae: 13
Epoch 4/100
[1m12/12 [Om [32m
                                            [0m[37m[0m [1m0s[0m 17ms/step - loss: 199.0245 - mae: 12.3191 - val loss: 64.2445 - val mae: 7.0-
Epoch 5/100
[1m12/12[Om [32m
                                            -[Om[37m[Om [1m0s[Om 15ms/step - loss: 58.2551 - mae: 6.0617 - val_loss: 48.5511 - val_mae: 4.923
Epoch 6/100
[1m12/12 [0m [32m
Epoch 7/100
                                            -[Om[37m[Om [1mOs[Om 15ms/step - loss: 55.6602 - mae: 5.3771 - val_loss: 30.6176 - val_mae: 4.212
                                           _[0m[37m[0m [1m0s[0m 12ms/step - loss: 41.0048 - mae: 4.6306 - val loss: 24.5015 - val mae: 3.751
[1m12/12 [Om [32m
Epoch 8/100
[1m12/12 [Om [32m
                                            [0m[37m[0m [1m0s[0m 13ms/step - loss: 32.7700 - mae: 4.3268 - val loss: 24.1418 - val mae: 3.617-
Epoch 9/100
[1m12/12 [0m [32m
                                            [0m[37m[0m [1m0s[0m 14ms/step - loss: 34.6469 - mae: 4.2185 - val_loss: 20.9367 - val_mae: 3.507-
Epoch 10/100
[1m12/12 [Om [32m
                                            -[Om[37m[Om [1m0s[Om 13ms/step - loss: 32.1898 - mae: 4.0009 - val loss: 21.4170 - val mae: 3.460
Epoch 11/100
[1m12/12[Om [32m
                                           -[Om[37m[Om [1m0s[Om 11ms/step - loss: 30.5013 - mae: 4.0704 - val_loss: 19.4947 - val_mae: 3.328
Epoch 12/100
[1m12/12 [Om [32m
                                           Epoch 13/100
[1m12/12 [Om
                                           [0m[37m[0m [1m0s[0m 12ms/step - loss: 26.6472 - mae: 3.8434 - val_loss: 18.2322 - val_mae: 3.198
Epoch 14/100
[1m12/12 [Om [32m
                                            [0m[37m[0m [1m0s[0m 11ms/step - loss: 29.1395 - mae: 3.8823 - val loss: 16.0675 - val mae: 3.070-
Epoch 15/100
[1m12/12[Om [32m
                                            [Om [37m [0m [1m0s [0m 12ms/step - loss: 24.6831 - mae: 3.5222 - val loss: 16.0994 - val mae: 3.018
Epoch 16/100
[1m12/12 [Om [32m
                                           [0m[37m[0m [1m0s[0m 16ms/step - loss: 20.8788 - mae: 3.3663 - val_loss: 14.2841 - val_mae: 2.916 -
Epoch 17/100
[1m12/12[Om [32m
                                            -[Om[37m[Om [1m0s[Om 13ms/step - loss: 22.3232 - mae: 3.4255 - val_loss: 15.3348 - val_mae: 2.957
Epoch 18/100
Γ1m12/12 Γ0m
                                           _[Om[37m[Om [1m1s[Om 39ms/step - loss: 17.3776 - mae: 3.0663 - val_loss: 12.1229 - val_mae: 2.774
Epoch 19/100
[1m12/12[Om [32m
                                            -[Om[37m[0m [1m0s[0m 19ms/step - loss: 24.4867 - mae: 3.4381 - val loss: 14.1247 - val mae: 2.850
Epoch 20/100
[1m12/12 [0m [32m
                                            [0m[37m[0m [1m0s[0m 19ms/step - loss: 20.2957 - mae: 3.3028 - val_loss: 11.0734 - val_mae: 2.643-
Fnoch 21/100
[1m12/12 [0m [32m
                                           [0m [37m [0m [1m0s [0m 24ms/step - loss: 21.5813 - mae: 3.1854 - val_loss: 12.2201 - val_mae: 2.658
Epoch 22/100
[1m12/12[Om [32m
                                            -[Om[37m[Om [1m0s[Om 20ms/step - loss: 17.0770 - mae: 3.1312 - val_loss: 10.7931 - val_mae: 2.558
Epoch 23/100
[1m12/12 [Om
                                            [0m[37m[0m [1m0s[0m 14ms/step - loss: 21.4717 - mae: 3.2729 - val_loss: 11.2300 - val_mae: 2.612-
Epoch 24/100
[1m12/12[Om [32m
                                            [0m[37m[0m [1m1s[0m 16ms/step - loss: 21.0031 - mae: 3.2462 - val_loss: 10.2366 - val_mae: 2.524
Epoch 25/100
[1m12/12 [0m [32m
                                           -[Om[37m[Om [1m0s[Om 15ms/step - loss: 19.5689 - mae: 3.0302 - val_loss: 10.3037 - val_mae: 2.546
Epoch 26/100
[1m12/12 [Om [32m
                                            -[Om[37m[0m][1m0s[0m]11ms/step - loss: 21.0289 - mae: 3.0690 - val loss: 9.7249 - val mae: 2.5349
Epoch 27/100
[1m12/12[Om [32m
                                            ·[Om[37m[Om [1m0s[0m 14ms/step - loss: 24.1059 - mae: 3.1886 - val loss: 8.8359 - val mae: 2.4088
Epoch 28/100
Γ1m12/12 Γ0m
                                            -[Om[37m[Om [1mOs[Om 13ms/step - loss: 21.8863 - mae: 3.0241 - val_loss: 9.1360 - val_mae: 2.5164
Epoch 29/100
[1m12/12 [Om [32m
                                            -[Om[37m[Om [1mOs[Om 13ms/step - loss: 16.5263 - mae: 2.8124 - val_loss: 8.3687 - val_mae: 2.4316
Epoch 30/100
[1m12/12 [0m [32m
                                           -[Om[37m[0m [1m0s[0m 11ms/step - loss: 12.7324 - mae: 2.5649 - val_loss: 8.1404 - val_mae: 2.4198
Epoch 31/100
[1m12/12 [Om [32m
                                           Epoch 32/100
                                            -[Om[37m[Om [1m0s[Om 11ms/step - loss: 21.7684 - mae: 3.0349 - val_loss: 8.1820 - val_mae: 2.5039
[1m12/12 [0m [32m
Epoch 33/100
[1m12/12 [0m [32m
                                            -[Om[37m[0m [1m0s[0m 10ms/step - loss: 11.8373 - mae: 2.4046 - val loss: 8.1994 - val mae: 2.4883
Epoch 34/100
[1m12/12[Om [32m
                                            [0m[37m[0m [1m0s[0m 14ms/step - loss: 14.2739 - mae: 2.6427 - val_loss: 9.0508 - val_mae: 2.6023-
Epoch 35/100
[1m12/12 [Om [32m
                                           -[Om[37m[0m [1m0s[0m 14ms/step - loss: 14.5830 - mae: 2.6371 - val loss: 7.2982 - val mae: 2.3821
Epoch 36/100
[1m12/12[Om [32m
                                            -[Om[37m[0m [1m0s[0m 18ms/step - loss: 13.5659 - mae: 2.5972 - val loss: 9.2852 - val mae: 2.6430
Epoch 37/100
[1m12/12 [0m [32m
                                           -[Om[37m[Om [1m0s[Om 14ms/step - loss: 15.9864 - mae: 2.9435 - val_loss: 7.5030 - val_mae: 2.4333
Epoch 38/100
[1m12/12 [0m [32m
                                           Epoch 39/100
[1m12/12 [0m [32m
                                           -[Om[37m[Om [1mOs[Om 14ms/step - loss: 14.8476 - mae: 2.7120 - val_loss: 7.5730 - val_mae: 2.4164
Epoch 40/100
[32m] [1m12/12] [0m
                                           -[Om[37m[Om [1m0s[Om 12ms/step - loss: 12.8046 - mae: 2.4625 - val_loss: 8.9290 - val_mae: 2.6225
Epoch 41/100
[1m12/12[Om [32m
                                           [0m[37m[0m [1m0s[0m 14ms/step - loss: 23.0360 - mae: 2.9777 - val_loss: 6.8944 - val_mae: 2.3022
Epoch 42/100
[1m12/12 [Om
                                           [0m[37m[0m [1m0s[0m 11ms/step - loss: 15.2815 - mae: 2.5849 - val_loss: 10.2947 - val_mae: 2.795 -
Epoch 43/100
[1m12/12[Om [32m
                                           Epoch 44/100
[1m12/12 [Om [32m
                                           Epoch 45/100
[1m12/12 [Om [32m
                                            -[Om[37m[0m [1m0s[0m 23ms/step - loss: 19.0243 - mae: 2.8394 - val loss: 7.4203 - val mae: 2.4036
Epoch 46/100
[1m12/12 [Om
           [32m
                                            [Om [37m[Om [1mOs[Om 16ms/step - loss: 15.2788 - mae: 2.6085 - val_loss: 7.8858 - val_mae: 2.4385
```

F 47/400												
Epoch 47/100 [1m12/12[0m	[32m————————————————————————————————————	-[Om [37m [Om	Γ1mΩc ΓΩm	13mc/stan	- 1000	13 3263 -	mae.	2 /1936 -	val loce	8 7293 -	val mae.	2 /1921
Epoch 48/100	[32.11	[0 [37 [0	[11103 [0111	1311373669	1033.	13.3203	mac.	2.4330	vu1_1055.	0.7233	var_mac.	2.4521
[1m12/12 [0m	[32m————————————————————————————————————	-[Om [37m [Om	[1m0s [0m	11ms/step	- loss:	17.7264 -	- mae:	2.8079 -	val_loss:	6.5557 -	val_mae:	2.1882
Epoch 49/100 [1m12/12[0m	[32m	-[Om [37m [Om	[1mOs [Om	11ms/step	- loss:	21.8197 -	- mae:	2.8009 -	val loss:	8.0497 -	val mae:	2.4369
Epoch 50/100									_			
[1m12/12 [0m Epoch 51/100	[32m-	-[Om [37m [Om	[1m0s [0m	11ms/step	- loss:	11.0437 -	- mae:	2.4622 -	val_loss:	8.2025 -	val_mae:	2.4671
[1m12/12 [0m	[32m	-[Om [37m [Om	[1mOs [Om	11ms/step	- loss:	14.8936 -	- mae:	2.6519 -	val loss:	7.4570 -	val mae:	2.3165
Epoch 52/100			_	·					_		_	
[1m12/12 [0m Epoch 53/100	[32m————————————————————————————————————	-[Om [37m [Om	[1mOs [Om	11ms/step	- loss:	14.8528 -	- mae:	2.5916 -	val_loss:	7.91/8 -	val_mae:	2.465/
[1m12/12 [0m	[32m————————————————————————————————————	-[Om [37m [Om	[1m0s [0m	10ms/step	- loss:	13.0678 -	- mae:	2.4546 -	val_loss:	8.1344 -	val_mae:	2.4450
Epoch 54/100	raa		F10- F0	11/	1	11 0100		2 4700		0 2027		2 5001
[1m12/12 [0m Epoch 55/100	[3211]	-[Om [37m [Om	[IIIO S [UIII	Tims/step	- 1055;	11.0199 -	- mae:	2.4/99 -	va1_1055:	9.3937 -	vai_mae:	2.5801
[1m12/12 [0m	[32m————————————————————————————————————	-[Om [37m [Om	[1m0s [0m	15ms/step	- loss:	19.5630 -	- mae:	2.8624 -	val_loss:	6.6416 -	val_mae:	2.1562
Epoch 56/100 [1m12/12[0m	Г32m————————————————————————————————————	-[Om [37m [Om	Γ1mOs Γ0m	13ms/step	- loss:	15.5945 -	- mae:	2.5871 -	val loss:	10.6892	- val mae	: 2.733
Epoch 57/100			_	·					_		_	
[1m12/12 [0m Epoch 58/100	[32m————————————————————————————————————	-[Om [37m [Om	[1mOs [Om	10ms/step	- loss:	12.1568 -	- mae:	2.4836 -	val_loss:	7.5099 -	val_mae:	2.2/29
[1m12/12 [Om	[32m	-[Om [37m [Om	[1m0s [0m	11ms/step	- loss:	15.7663 -	- mae:	2.6998 -	val_loss:	7.1794 -	val_mae:	2.2729
Epoch 59/100 [1m12/12[0m	[32m	-[Om [37m [Om	[1mOs [Om	10ms/sten	- loss:	20.9249 -	- mae:	2.9092 -	val loss:	7.6805 -	val mae:	2.3824
Epoch 60/100				-								
[1m12/12 [0m Epoch 61/100	[32m-	-[Om [37m [Om	[1m0s [0m	10ms/step	- loss:	12.2927 -	- mae:	2.3870 -	val_loss:	9.4301 -	val_mae:	2.5326
[1m12/12 [0m	[32m	-[Om [37m [Om	[1m0s [0m	11ms/step	- loss:	11.1233 -	- mae:	2.4303 -	val_loss:	8.0139 -	val_mae:	2.3748
Epoch 62/100	122	FO F27 F0	F1==0== F0==	10==/=+==	1	12 2200		2 5024	wal lass.	0 2102	ual maa.	2 5241
[1m12/12 [0m Epoch 63/100	[3211]	-[Om [37m [Om	[IIIO S [UIII	Tullis/Step	- 1055;	12.2299 -	- mae:	2.5824 -	va1_1055:	9.3103 -	vai_mae:	2.5341
[1m12/12 [0m	[32m————————————————————————————————————	-[Om [37m [Om	[1m0s [0m	10ms/step	- loss:	14.8777 -	- mae:	2.6149 -	val_loss:	6.7354 -	val_mae:	2.1907
Epoch 64/100 [1m12/12[0m	[32m	-[Om [37m [Om	[1mOs [Om	13ms/sten	- loss	11.7033 -	- mae:	2.4568 -	val loss	10.5510	- val mae	: 2.680
Epoch 65/100												
[1m12/12 [0m Epoch 66/100	[32m————————————————————————————————————	-[Om [37m [Om	[1m0s [0m	17ms/step	- loss:	13.2904 -	- mae:	2.6771 -	val_loss:	8.8410 -	val_mae:	2.5046
[1m12/12 [Om	[32m	-[Om [37m [Om	[1m0s [0m	10ms/step	- loss:	13.6509 -	- mae:	2.6170 -	val_loss:	7.2300 -	val_mae:	2.2516
Epoch 67/100	[22m	- [0m [27m [0m	[1m0c [0m	11mc/c+on	loce	15 0402	mao:	2 6274	val loss:	0 2105	wal mage	2 5200
[1m12/12 [0m Epoch 68/100	[32111	-[Om [37m [Om	[IIIIO S [UIII	Tillis/Step	- 1055.	13.0462 -	- IIIae.	2.03/4 -	va1_1055.	9.3103 -	vai_illae.	2.3200
[1m12/12 [0m	[32m	-[Om [37m [Om	[1m0s [0m	11ms/step	- loss:	12.1291 -	- mae:	2.4542 -	val_loss:	7.6533 -	val_mae:	2.3286
Epoch 69/100 [1m12/12[0m	[32m	-[Om [37m [Om	[1mOs [Om	16ms/step	- loss:	10.9769 -	- mae:	2.4600 -	val loss:	7.3979 -	val mae:	2.2292
Epoch 70/100			_	·					_		_	
[1m12/12 [0m Epoch 71/100	[32m	-[Om [37m [Om	[1m0s [0m	15ms/step	- loss:	13.5058 -	- mae:	2.4917 -	val_loss:	7.9313 -	val_mae:	2.3350
[1m12/12 [Om	[32m	-[Om [37m [Om	[1m0s [0m	13ms/step	- loss:	11.7679 -	- mae:	2.5099 -	val_loss:	9.3719 -	val_mae:	2.5486
Epoch 72/100 [1m12/12[0m	[32m————————————————————————————————————	-[Om [37m [Om	Γ1mΩs ΓΩm	15ms/sten	- loss:	13 6345 -	mae.	2 5247 -	val loss:	7 0106 -	val mae:	2 1462
Epoch 73/100	[32.11	[011]	[11103 [0111	1311373сср	1033.	13.0343	mac.	2.3247	vai_1033.	7.0100 -	vai_mac.	2.1402
[1m12/12 [0m Epoch 74/100	[32m	-[Om [37m [Om	[1m0s [0m	14ms/step	- loss:	12.6449 -	- mae:	2.3881 -	val_loss:	9.1002 -	val_mae:	2.4980
[1m12/12 [0m	[32m	-[Om [37m [Om	[1mOs [Om	11ms/step	- loss:	15.9245 -	- mae:	2.5901 -	val_loss:	8.1376 -	val_mae:	2.3719
Epoch 75/100	F22	FO FO FO	F10- F0	15 /	1	15 0226		2 6007		7 (25)		2 2272
[1m12/12 [0m Epoch 76/100	[32m	-[Om [37m [Om	[1mus [um	15ms/step	- 10SS:	15.8226 -	- mae:	2.6097 -	val_loss:	7.6356 -	val_mae:	2.23/2
[1m12/12 [Om	[32m	-[Om [37m [Om	[1m0s [0m	17ms/step	- loss:	12.7828 -	- mae:	2.3728 -	val_loss:	10.1217	- val_mae	2.638
Epoch 77/100 [1m12/12[0m	[32m————————————————————————————————————	-[Om[37m[Om	[1mOs [Om	14ms/sten	- loss:	12.3740 -	- mae:	2.3993 -	val loss:	6.4866 -	val mae:	2.1118
Epoch 78/100			_	·					_		_	
[1m12/12 [0m Epoch 79/100	[32m————————————————————————————————————	-[Om [37m [Om	[1m0s [0m	14ms/step	- loss:	12.8350 -	- mae:	2.4980 -	val_loss:	11.4893	- val_mae	: 2.727
[1m12/12 [Om	[32m	-[Om [37m [Om	[1m0s [0m	15ms/step	- loss:	15.1856 -	- mae:	2.5562 -	val_loss:	6.9320 -	val_mae:	2.1697
Epoch 80/100 [1m12/12[0m	[22m	- [Om [37m [Om	[1m0c [0m	14ms/ston	loce	12 0645	mao:	2 4415	val loss:	0 0015	wal mage	2 4572
Epoch 81/100	[32111	[0111 [37111 [0111	[IIIO] COIII	14111373 CEP	- 1033.	12.0043 -	· IIIae.	2.4413 -	va1_1055.	0.0043 -	vai_illae.	2.4372
[1m12/12 [0m Epoch 82/100	[32m————	-[Om [37m [Om	[1m0s [0m	13ms/step	- loss:	14.3679 -	- mae:	2.4548 -	val_loss:	7.4752 -	val_mae:	2.2098
[1m12/12 [0m	[32m————————————————————————————————————	-[Om [37m [Om	[1m0s [0m	11ms/step	- loss:	13.6894 -	- mae:	2.4690 -	val_loss:	7.4541 -	val_mae:	2.2210
Epoch 83/100	raa	FO FO FO	F10- F0	11/	1	11 5407		2 2552		0.0003		2 4705
[1m12/12 [0m Epoch 84/100	[32m	-[Om [37m [Om	[IMUS [UM	iims/step	- 1055:	11.5407 -	- mae:	2.3552 -	vai_ioss:	9.0693 -	vai_mae:	2.4/05
	[32m————————————————————————————————————	-[Om [37m [Om	[1m0s [0m	13ms/step	- loss:	13.6930 -	- mae:	2.5886 -	val_loss:	8.0108 -	val_mae:	2.3253
Epoch 85/100 [1m12/12 [0m	[32m	-[Om [37m [Om	Γ1mOs Γ0m	17ms/step	- loss:	14.5838 -	- mae:	2.5502 -	val loss:	8.0225 -	val mae:	2.2982
Epoch 86/100			_	·					_		_	
[1m12/12 [0m Epoch 87/100	[32m————————————————————————————————————	-[Om [37m [Om	[1mOs [Om	22ms/step	- loss:	11.0885 -	- mae:	2.29// -	val_loss:	9./583 -	val_mae:	2.5485
[1m12/12 [Om	[32m	-[Om [37m [Om	[1m0s [0m	14ms/step	- loss:	15.1284 -	- mae:	2.6252 -	val_loss:	6.8525 -	val_mae:	2.1456
Epoch 88/100 [1m12/12[0m	[32m	-[Om [37m [Om	Γ1mΩs ΓΩm	15ms/sten	- loss:	12 8842 -	mae.	2 4832 -	val loss:	8 0403 -	val mae:	2 2982
Epoch 89/100	[32	[011]	[11103 [0111	15111373 ССР	1033.	12.0042	mac.	2.4032	va1_1033.	0.0403	vai_mac.	2.2302
[1m12/12 [0m Epoch 90/100	[32m	-[Om [37m [Om	[1m0s [0m	19ms/step	- loss:	12.1975 -	- mae:	2.3512 -	val_loss:	7.7076 -	val_mae:	2.2314
[1m12/12 [0m	[32m	-[Om [37m [Om	[1m0s [0m	12ms/step	- loss:	14.9518 -	- mae:	2.5006 -	val_loss:	8.7125 -	val_mae:	2.4210
Epoch 91/100	F22	FO F27 F0	F1=0= F0=	12ma/atan	1	12 2752		2 4206	wal lass.	7 4007	ual maa.	2 2262
[1m12/12 [0m Epoch 92/100	[32	-[Om [37m [Om	[IIIO S [UIII	12IIIS/Step	- 1055;	12.2/52 -	- mae:	2.4206 -	Va1_1055:	7.4087 -	vai_mae:	2.2303
[1m12/12 [0m	[32m————————————————————————————————————	-[Om [37m [Om	[1m0s [0m	13ms/step	- loss:	12.2730 -	- mae:	2.4045 -	val_loss:	8.7600 -	val_mae:	2.3716
Epoch 93/100 [1m12/12[0m	[32m	-[Om [37m [Om	[1mOs [Om	11ms/step	- loss:	12.9999 -	- mae:	2.4086 -	val loss:	7.5932 -	val mae:	2.2497
Epoch 94/100			_	·					_		_	
[1m12/12 [0m Epoch 95/100	[32m-	-[Om [37m [Om	[1m0s [0m	11ms/step	- loss:	11.4558 -	- mae:	2.3021 -	val_loss:	10.6551	- val_mae	: 2.694
[1m12/12 [Om	[32m	-[Om [37m [Om	[1m0s [0m	10ms/step	- loss:	13.4010 -	- mae:	2.5193 -	val_loss:	7.6782 -	val_mae:	2.2079
Epoch 96/100 [1m12/12[0m	[32m	-[Om [37m [Om	[1mne rnm	10mc/cton	- 1000	15 8320	. mao.	2 4969	val locci	7 21/1/	val mae:	2 1522
Epoch 97/100		ניווין בין ווויסן	נייויט בטווו	roms/step	1022;	13.0329 -	mae;	∠.₩JUJ -	A01 ⁻ 1022;	144 -	var_mae:	۷.1333
[1m12/12 [Om	[32m	-[Om [37m [Om	[1m0s [0m	11ms/step	- loss:	15.9514 -	- mae:	2.5868 -	val_loss:	7.2622 -	val_mae:	2.1412
Epoch 98/100 [1m12/12[0m	[32m	-[Om [37m [Om	[1m0s [0m	13ms/step	- loss:	14.0789 -	- mae:	2.5148 -	val_loss:	10.4689	- val mae	2.607
Epoch 99/100			_	·					_		_	
[1m12/12 [Om	[32M-	-[Om [37m [Om	[IMUs [Om	ı₃ms/step	- loss:	11.8978 -	- mae:	2.4677 -	val_loss:	/.6535 -	val_mae:	2.1700

```
Epoch 100/100
                                                    — [Om[37m[0m [1m0s[0m 11ms/step - loss: 15.0442 - mae: 2.5918 - val_loss: 9.1131 - val_mae: 2.4900
        [1m12/12 [Om [32m-
In [14]: # Evaluating the Neural Network Model
         y\_pred\_nn = model.predict(X\_test\_scaled) # Predicting house prices on test data
         mse_nn, mae_nn = model.evaluate(X_test_scaled, y_test) # Evaluating model performance
         # Displaying Neural Network Evaluation Metrics
         print("\nNeural Network Model Evaluation:")
         print(f"Mean Squared Error: {mse_nn}")
         print(f"Mean Absolute Error: {mae_nn}")
         # House Price Prediction for New Data
         new_data = np.array([[0.1, 10.0, 5.0]])
         # New input values: LSTAT=0.1, RM=10.0, PTRATIO=5.0
         new_data_scaled = scaler.transform(new_data)
         # Applying the same standardization as training data
         # Predicting price using trained neural network model
         prediction = model.predict(new_data_scaled)
        [1m4/4[0m [32m-
                                                  — [Om [37m [Om [1mOs [Om 6ms/step
                                                  - [Om [37m [Om [1mOs [Om 12ms/step - loss: 17.5633 - mae: 2.7298
        [1m4/4 [0m [32m-
        Neural Network Model Evaluation:
        Mean Squared Error: 21.3414363861084
Mean Absolute Error: 2.894954204559326
        [1m1/1 [0m [32m-
                                                  - [Om [37m [Om [1mOs [Om 69ms/step
         C:\ProgramData\anaconda3\Lib\site-packages\sklearn\base.py:439: UserWarning: X does not have valid feature names, but StandardScaler
         was fitted with feature names
  warnings.warn(
        [1m1/1 [0m [32m-
                                                    [Om [37m [Om [1mOs [Om 71ms/step
In [15]: # Displaying the predicted house price
         print("\nPredicted House Price:", prediction[0][0])
        Predicted House Price: 81.10206
 In [ ]:
```