1/1分

1/1 分

通过条件 80% 或更高

Week 2 - Problem Set

最新提交作业的评分

100%

- 1. Consider the following five events:
 - 1. Correctly guessing a random 128-bit AES key on the first try.
 - 2. Winning a lottery with 1 million contestants (the probability is $1/10^6$)
 - 3. Winning a lottery with 1 million contestants 5 times in a row (the probability is $(1/10^6)^5$).
 - 4. Winning a lottery with 1 million contestants 6 times in a row.
 - 5. Winning a lottery with 1 million contestants 7 times in a row

What is the order of these events from most likely to least likely?

- 2, 3, 4, 1, 5
- 2, 3, 4, 5, 1
- 3, 2, 5, 4, 1

/ 正确

- The probability of event (1) is 1/2^128.
- The probability of event (5) is 1/(10^6)^7 which is about 1/2^{139}. Therefore, event (5) is the least likely.
- The probability of event (4) is 1/(10^6)^6 which is about 1/2^{119.5} which is more likely than event (1).
- The remaining events are all more likely than event (4).
- 2. Suppose that using commodity hardware it is possible to build a computer

for about \$200 that can brute force about 1 billion AES keys per second.

Suppose an organization wants to run an exhaustive search for a single

128-bit AES key and was willing to spend 4 trillion dollars to buy these

machines (this is more than the annual US federal budget). How long would

it take the organization to brute force this single 128-bit AES key with

these machines? Ignore additional costs such as power and maintenance.

- More than a week but less than a month
- lacktriangle More than a billion (10 9) years
- More than a 100 years but less than a million years
- More than a year but less than 100 years
- More than a month but less than a year

The answer is about 540 billion years.

- # machines = 4*10^12/200 = 2*10^10
- # keys processed per sec = 10^9 * (2*10^10) = 2*10^19
- # seconds = 2^128 / (2*10^19) = 1.7*10^19

This many seconds is about 540 billion years.

3. Let $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a secure PRF

(i.e. a PRF where the key space, input space, and output space are all $\{0,1\}^n$) and say n=128.

Which of the following is a secure PRF (there is more than one correct answer):

 $ightharpoonup F'((k_1,k_2),\ x)=F(k_1,x)\ \parallel\ F(k_2,x)$ (here \parallel denotes concatenation)

✓ 正确

Correct. A distinguisher for F^\prime gives a distinguisher for F.

 $\prod F'(k, x) = k \bigoplus x$

 $F'((k_1, k_2), x) = F(k_1, x) \bigoplus F(k_2, x)$

Correct. A distinguisher for F^\prime gives a distinguisher for F.

 $F'(k,x) = F(k, x \bigoplus 1^n)$

Correct. A distinguisher for F^\prime gives a distinguisher for F.

4. Recall that the Luby-Rackoff theorem discussed in <u>The Data Encryption Standard lecture</u> states that applying a **three** round Feistel network to a secure PRF gives a secure block cipher. Let's see what goes wrong if we only use a **two** round Feistel.

Let $F: K imes \{0,1\}^{32} o \{0,1\}^{32}$ be a secure PRF.

Recall that a 2-round Feistel defines the following PRP

$$F_2: K^2 \times \{0,1\}^{64} \rightarrow \{0,1\}^{64}$$
:

Here R_0 is the right 32 bits of the 64-bit input and L_0 is the left 32 bits.

One of the following lines is the output of this PRP F_2 using a random key, while the other three are the output of a truly random permutation $f:\{0,1\}^{64} \to \{0,1\}^{64}$. All 64-bit outputs are encoded as 16 hex characters.

Can you say which is the output of the PRP? Note that since you are able to distinguish the output of F_2 from random, F_2 is not a secure block cipher, which is what we wanted to show

Hint: First argue that there is a detectable pattern in the xor of $F_2(\cdot, 0^{64})$ and $F_2(\cdot, 1^{32}0^{32})$. Then try to detect this pattern in the given outputs.

igodeligap On input 0^{64} the output is "290b6e3a 39155d6f".

On input $1^{32}0^{32}$ the output is "d6f491c5 b645c008".

- \bigcirc On input 0^{64} the output is "5f67abaf 5210722b".
 - On input $1^{32}0^{32}$ the output is "bbe033c0 0bc9330e"
- \bigcirc On input 0^{64} the output is "9d1a4f78 cb28d863". On input $1^{32}0^{32}$ the output is "75e5e3ea 773ec3e6".
- $\hfill \bigcirc$ On input 0^{64} the output is "7b50baab 07640c3d".

On input $1^{32}0^{32}$ the output is "ac343a22 cea46d60".

/ 正确

Observe that the two round Feistel has the property that

the left of
$$F(\cdot,0^{64})\bigoplus F(\cdot,1^{32}0^{32})$$
 is $1^{32}.$

The two outputs in this answer are the only ones with this property.

5. Nonce-based CBC. Recall that in Lecture 4.4 we said that if one wants to use CBC encryption with a non-random unique nonce then the nonce must first be encrypted with an **independent** PRP key and the result then used as the CBC IV.

1/1 分

(OpenSSI

1/1 分

1/1 分

Let's see what goes wrong if one encrypts the nonce with the **same** PRP key as the key used for CBC encryption.

Let $F:K imes\{0,1\}^\ell o\{0,1\}^\ell$ be a secure PRP with, say, $\ell=128$. Let n be a nonce and suppose one encrypts a message m by first computing IV = F(k,n) and then using this V in CBC encryption using F(k,n). Note that the same key k is used for computing the IV and for CBC encryption. We show that the resulting system is not nonce-based CPA

The attacker begins by asking for the encryption of the two block message $m=(0^\ell,0^\ell)$ with nonce $n=0^\ell$. It receives back a two block ciphertext (c_0, c_1) . Observe that by definition of CBC we know that $c_1 = F(k, c_0)$.

Next, the attacker asks for the encryption of the one block message $m_1 = c_0 \oplus c_1$ with nonce $n = c_0$. It receives back a one block ciphertext c_0'

What relation holds between c_0, c_1, c_0' ? Note that this relation lets the adversary win the nonce-based CPA game with advantage 1.

(a) $c_1 = c'_0$

 $\bigcirc c_1 = c_0$

 $\bigcirc c'_0 = c_0 \bigoplus 1^{\ell}$

 $\bigcirc c_0 = c_1 \bigoplus c'_0$

Construction 1': nonce-based CBC

An example Crypto API

正確

This follows from the definition of CBC with an encrypted nonce as defined in the question.

Let m be a message consisting of ℓ AFS blocks.

(say $\ell=100$). Alice encrypts m using CBC mode and transmits

the resulting ciphertext to Bob. Due to a network error,

ciphertext block number $\ell/2$ is corrupted during transmission.

All other ciphertext blocks are transmitted and received correctly.

Once Bob decrypts the received ciphertext, how many plaintext blocks

will be corrupted?

 $\bigcirc \ell/2$

② 2

0

	✓ 正确 Take a look at the CBC decryption circuit. Each ciphertext	
	blocks affects only the current plaintext block and the next.	
	blocks affects only the current plaintext block and the next.	
7.	Let m be a message consisting of ℓ AES blocks (say $\ell=100$). Alice encrypts m using randomized counter mode and	1/1 分
	transmits the resulting ciphertext to Bob. Due to a network error,	
	ciphertext block number $\ell/2$ is corrupted during transmission.	
	All other ciphertext blocks are transmitted and received correctly.	
	Once Bob decrypts the received ciphertext, how many plaintext blocks	
	will be corrupted?	
	○ ℓ/2	
	1	
	$\bigcirc 1 + \ell/2$	
	○ 2	
	O 0	
	✓ 正确	
	Take a look at the counter mode decryption circuit Each	
	ciphertext block affects only the current plaintext block.	
8.	Recall that encryption systems do not fully hide the length of	1/1 分
	transmitted messages. Leaking the length of web requests <u>hasbeen used</u> to eavesdrop on encrypted HTTPS traffic to a number of	
	web sites, such as tax preparation sites, Google searches, and	
	healthcare sites.	
	Suppose an attacker intercepts a packet where he knows that the	
	packet payload is encrypted using AES in CBC mode with a random IV. The	
	encrypted packet payload is 128 bytes. Which of the following	
	messages is plausibly the decryption of the payload:	. /
	We see immediately that one needs little information to	1
	begin to break down the process.'	
	○ 'The most direct computation would be for the enemy to try	16
	all 2^r possible keys, one by one.'	.0
	○ 'To consider the resistance of an enciphering process to being broken we should	
	assume that at same times the enemy knows everything but the key being used and	
	to break it needs only discover the key from this information.'	
	In this letter I make some remarks on a general principle	
	relevant to enciphering in general and my machine.'	2_
	✓ 正确	
	The length of the string is 107 bytes, which after padding becomes 112 bytes,	
	and after prepending the IV becomes 128 bytes.	
۵	Let $R:=\{0,1\}^4$ and consider the following PRF $F:R^5 imes R o R$ defined as follows:	1/1 分
Э.		1/12
	$F(k,x) := \left\{ \begin{array}{l} t = k[0] \\ \text{for } i{=}1 \text{ to } 4 \text{ do} \\ \text{if } (x[i-1] == 1) t = t \oplus k[i] \\ \text{output } t \end{array} \right.$	
	That is, the key is $k=(k[0],k[1],k[2],k[3],k[4])$ in R^5 and the function at, for example, 0101 is defined as $F(k,0101)=k[0]\oplus k[2]\oplus k[4]$.	
	For a random key \emph{k} unknown to you, you learn that	
	$F(k,0110) = 0011 \ { m and} \ F(k,0101) = 1010 \ { m and} \ F(k,1110) = 0110 .$	
	What is the value of $F(k, 1101)$? Note that since you are able to predict the function at a new point, this PRF is insecure.	

 $\bigcirc 1 + \ell/2$ $\bigcirc 1$