Instant Health Scan

K.Renu Sreeja , A.Shivani , K.Sahithi

Under the esteemed guidance of

Mr. B. Srinivasulu

Assistant Professor

Bachelor of Technology
Department of Information Technology
BVRIT HYDERABAD College of Engineering for Women

September 30, 2023

Overview

- Introduction
- 2 Literature Survey
- Problem Statement
- Proposed Method
- Modules
- 6 Implementation status
- References

Introduction

- Integrating technology in healthcare enhances patient care and drives cost-saving opportunities for stakeholders.
- A Profound understanding of data processing is crucial, facilitating rapid, precise analysis in medical diagnostics.
- Cutting-edge methods are revolutionizing medical diagnostics, achieving near-human accuracy in interpreting large medical images, from MRI's to X-rays.

Figure: Instant Health Scan

Literature Survey

S.	Title of the paper	Author(s) &	Description
No		Journal Details	
1	Predicting dis-	MD. Atikur	In this paper, they have used
	ease from several	Rahman, Tania	algorithms e KNN (K-Nearest
	symptoms using	Ahmed Nipa,	Neighbor) that is 98.37 and the
	machine learning	Md. Assaduzza-	lowest accuracy for NB (Naive
	approach.	man	Bayes) which was 97.76. More-
		- 2023	over, other models are DT,
			SVM, LR and RF Classifiers
			also the accuracy is accordingly
			98.27, 98.17, 98.0, and 97.86).
2	Health Care Ap-	Ajinkya Padule,	In this paper, they have
	plication using	Aman Patel,	predicted 5 diseases: Di-
	Machine Learn-	Arsalan Patel,	abetes(Random Forest -
	ing and Deep	Aman Shaikh,	84.01) Heart(SVM - 81.57)
	Learning	Jyoti Gavhane	Liver(Random Forest - 83.33)
		- 2022	Malaria(VGG16 - 94.29) Pneu-
			monia (□VGG16 - 95.48). 📱 🥠 🧠

S.	Title of the paper	Author(s) &	Description
No		Journal Details	
3	Prediction Of	Vaibhav Kulka-	The system utilizes machine
	Diseases using	rni, Sushant	learning with Naïve Bayes for
	Machine Learn-	Surwase, Kedar	disease prediction, KNN for
	ing	Pingale, Saurabh	classification, Logistic Regres-
		Sarage, Prof.	sion for feature extraction, and
		Abhijeet Karve -	Decision Trees for dataset par-
		2020	titioning.

Problem Statement

Amidst COVID-19 disruptions, this project employs technology for accessible disease detection, addressing healthcare barriers caused by limited hospital access or online consultations.

Proposed Method

Developing a hybrid disease detection framework using machine learning and deep learning techniques to replace traditional doctor consultations, enabling faster and more accurate diagnoses for seven diverse diseases in the healthcare sector

Modules and Functionalities of modules

- MultiDisease Predictor Module:
 - Module 1 performs disease prediction (heart, diabetes, brain tumor, Alzheimer's) using advanced data analysis
 - It is done by aggregating datasets from diverse sources, preparing, and analyzing them for predictive modeling and insights.
- Infection and Imaging Module:
 - Module 2 focuses on infection detection (COVID-19, Breast cancer, Pneumonia) through clinical assessments and diagnostic tools.

Implementation

Module	Description	Status
Module 1	MultiDisease Predictor Mod-	In progress
	ule(Heart, Diabetes, Brain tu-	
	mor, Alzheimer's)	
Module 2	Infection and Imaging Mod-	Information Gathering
	ule (COVID-19, Breast cancer,	and Algorithm Justifica-
	Pneumonia)	tion

MultiDisease Predictor Mod- ule	Datasets	Proposed Algorithm
Heart	UCI Dataset	Supprot vector machine
Diabetes	PIMA Dataset	Random forest
Brain Tumor	Brain Tumor MRI Dataset(demo)	Conventional Neural Networks
Alzheimer	Alzheimer Dataset(demo)	Conventional Neural Networks

References

- MD. Atikur Rahman, Tania Ahmed Nipa, Md. Assaduzzaman, "Predicting disease from several symptoms using a machine learning approach.", International Research Journal of Engineering and Technology (IRJET),2023
 https://www.irjet.net/archives/V10/i7/IRJET-V10I7116.pdf
- Ajinkya Padule, Aman Patel, Arsalan Patel, Aman Shaikh, Jyoti Gavhane.
 "Health Care Application using Machine Learning and Deep Learning", International Research Journal of Engineering and Technology (IRJET),2022
 - https://www.irjet.net/archives/V9/i6/IRJET-V9I6162.pdf
- Kedar Pingale, Sushant Surwase, Vaibhav Kulkarni, Saurabh Sarage, Prof. Abhijeet Karve." Disease Prediction using Machine Learning", International Research Journal of Engineering and Technology (IR-JET),2019
 - https://www.irjet.net/archives/V6/i12/IRJET-V6I12122.pdf

Thank you