Fall'19 CSCE 629

Analysis of Algorithms

Fang Song
Texas A&M U

Lecture 10

Longest common subsequence

Credit: based on slides by A.Smith and K.Wayne

Longest common subsequence (LCS)

- Input. Two subsequences x[1, ..., m] and y[1, ..., n]
- Output. A longest subsequence common to both.

- Other names you may heard of
 - Sequence alignment
 - Edit distance: n lenth(LCS(x, y))
 - •

Motivation

- String matching [Levenshtein 1965]
 - Auto corrector
 - Spell checker
 - Speech recognition
 - Machine translation

- Computational biology [Needleman-Wunsch, 1970's]
 - simple measure of genome similarity

ACGTACGTACGTACGTACGTACGTACGTACGTACGT

ACGTACGTACGTACGTACGTA T ATCGTACGT

ACGTACGTACGTACGTACGTA ATCGTACGT

ACGTACGTACGTACGTACGTA ATCGTACGT

DP1: develop a recursion

- Input. Two subsequences x[1, ..., m] and y[1, ..., n]
- Output. A longest subsequence common to both.
 - (Simplification) Look at the length of a longest-common subsequence
 - Extend the algorithm to find the LCS itself

Notation. Denote the length of a sequence s by |s|.

Def.
$$c(i,j) := |LCS(x[1,...,i], y[1,...,j])|$$

- Goal. Find c(m, n)
- Basis: c(i,j) = 0 if i = 0 or j = 0
- Recursion: how to define c(i, j) recursively?

DP1: develop a recursion

• Case1:
$$x[i] = y[j]$$
 $c(i,j) = c(i-1,j-1) + 1$

• Case2:
$$x[i] \neq y[j]$$
 $c(i,j) = \max\{c[i-1,j], c[i,j-1]\}$

$$c(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c(i-1,j-1) + 1 & \text{if } x[i] \neq x[j] \\ \max \{c(i-1,j), c(i,j-1)\} & \text{if } x[i] \neq x[j] \end{cases}$$

DP2: build up solutions

- Subproblems: O(mn)
- Memoization data struture
 - 2-D array c[0, ... m, 0, ..., n]
- Dependencies
 - Each c(i,j) depends on its three neighbors c(i-1,j-1), c(i,j-1), c(i-1,j)
- Evaluation order
 - Left-to-right, row by row

DP2: build up solutions

■ Running time: *O(mn)*

```
LCSLen(x[1,...,m],y[1,...,n])
//c(i,j) memoize subproblem values
For j = 0, ..., n
   c[0,j] \leftarrow 0
For i = 1, ..., m // row by row
   c[i,0] \leftarrow 0
   For j = \dots, n //left to right
       If x[i] = y[j]
           c(i, j) = c(i - 1, j - 1) + 1
       Else
           c(i, j) = min\{c(i, j - 1), c(i - 1, j)\}
```

Example

DP3: constructing an optimal solution

Reconstruct LCS by tracing backwards

$$LCS(x, y) = BCBA$$

NB. Multiple solutions are possible.

- **■ Space**: *O*(*mn*)
 - Can you do it in $min\{m, n\}$? (Hint: divide and conquer)

Further development

[MasekPaterson']CSS1980] $O(n^2/\log n)$

A Faster Algorithm Computing String Edit Distances*

How about $O(n^{1.9999})$?

Quadratic Barrier

[BI'STOC2015]

Edit Distance Cannot Be Computed in Strongly Subquadratic Time (unless SETH is false)

[BEG'SODA2018]

Approximating Edit Distance in Truly Subquadratic Time: Quantum and MapReduce*†

[CDGKS'FOCS2018]

2018 IEEE 59th Annual Symposium on Foundations of Computer Science

Approximating Edit Distance Within Constant Factor in Truly Sub-Quadratic Time

[HRS'STOC2019]

Near-Linear Time Insertion-Deletion Codes and $(1+\varepsilon)$ -Approximating Edit Distance via Indexing

[BGHS'STOC2019]

 $1 + \epsilon$ Approximation of Tree Edit Distance in Quadratic Time*