Executive Summary

Describes the Data Set

Summary:

The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests, and the ability to turn around test results quickly, rather than actual disease spread or true infection rates.

Data information:

Johns Hopkins' county-level COVID-19 case and death data, paired with population and rates per 100,000. Source: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker <a href="https://data.world/associatedpress/johns-hopkins-hopkins-hopkins-hopkins-hopkins-hopkins-hopkins-hopkins-hopkins-hopkins-hopkins-hopkins-hopkin

Variables:

This data set has the variables, annd Ten (10) columns and 3,269 rows:

Date: last update: In which the database has been updated by The Associated Press johns-hopkins. Highlighting this database is automatically updated from the data.world page since it is directly connected to this project.

Ubication Geographic: Data set collected in the United Stated by Location type, State, County_name, County name long.

Coordinate: Fips code, Latitude, Longitude.

Size of population by geographic: NCHS Urbanization: Medium metro, small metro, non core, large fringe metro, micropolitan.

Population segmentation: Total Population subdivide by Confirmed (covic) and Confirmed per 100.000.

Population segmentation by Deaths and Deaths per 100.000 (covic).

Summarizes the Goal of project:

This project has the objective to analyze the actual pandemic issue that has affected the society, families and the economy, the emphasis is to identifique what are the places with more impact in the state of the United States. To accomplish this objectives we performed the next steps: data cleaning, exploration, visualization, model approach and finally prediction.

Double-click (or enter) to edit

Installing libraries

```
1 install.packages('caret')
    Installing package into '/usr/local/lib/R/site-library'
    (as 'lib' is unspecified)
    also installing the dependencies 'numDeriv', 'SQUAREM', 'lava', 'prodlim', 'iterators', 'data.table', 'gower', 'ipred', 'timeDate', 'foreach'

1 install.packages('mlbench')
    Installing package into '/usr/local/lib/R/site-library'
```

Importing libraries

(as 'lib' is unspecified)

```
1 library(dplyr)
2 library(magrittr)
3 library(knitr)
4 library(MASS)
5 library(lattice)
6 library(tidyverse)
7 library(mibench)
8 library(tidyverse)
9 library(ggplot2)
```

10 library(caret)

▼ How many CPU cores are there?

```
1 library(parallel)
2 detectCores(all.tests = FALSE, logical = TRUE)

2

1 #Load data set directt from data world page.
2 #Read File and Columns name. and deleted unnecesary columns.
3 df <- read.csv('https://query.data.world/s/e7co64e3e47t3sdnrviomq3sasf6g2')
4 df$location_type <- NULL
5 df$county_name_long <- NULL
6 df$fips_code <- NULL
7 df$county_name <- NULL
8 head(df)</pre>
```

A data.frame: 6 × 10

	last_update	state	lat	lon	NCHS_urbanization	total_population	confirmed	confirmed_per_100000	deaths	deaths_per_100000
	<chr></chr>	<chr></chr>	<db1></db1>	<db1></db1>	<chr></chr>	<dbl></dbl>	<int></int>	<dbl></dbl>	<int></int>	<db1></db1>
1	2021-02-12 00:23:16 UTC	Alabama	32.53953	-86.64408	Medium metro	55200	5970	10815.22	81	146.74
2	2021-02-12 00:23:16 UTC	Alabama	30.72775	-87.72207	Small metro	208107	18960	9110.70	240	115.33
3	2021-02-12 00:23:16 UTC	Alabama	31.86826	-85.38713	Non-core	25782	2030	7873.71	46	178.42
4	2021-02-12 00:23:16 UTC	Alabama	32.99642	-87.12511	Large fringe metro	22527	2377	10551.78	54	239.71

```
1 #Create a data sett My data and replace nan from original data set
2 my_data <- as_tibble(df)
3 my_data <- replace(my_data, is.na(my_data), 0)

1 #filter only integer data to developmente the differents analysis.
2 new_data = my_data %>% select_if(is.numeric)
```

The principal variable that we will analyze is, how many cases of infected by Covic have been given in different states of the United States, now we have that the average of confirmed by covic is 834 the median is 2073. In the other hands, the mean for the deaths cause by covic is 8324 and the median is 37, standard deviation 557. Note that this data set is automatically update every day, this data can be change.

```
1 #Mean, Media and Standard deviation of confirmed by Covic 19
2 mean=mean(new_data[['confirmed']])
3 median=median(new_data[['confirmed']])
4 standard_deviation= sd(new_data[['confirmed']])
5 print((paste0('Mean of Confirmed cases cause for Covic:', mean)))
6 print((paste0('Median of Confirmed cases cause for Covic:', median)))
7 print((paste0('Standar Deviation of Confirmed cases cause by Covic:', standard_deviation)))
   [1] "Mean of Confirmed cases cause for Covic:8373.55858060569"
   [1] "Median of Confirmed cases cause for Covic:2098"
   [1] "Standar Deviation of Confirmed cases cause by Covic:31571.8279383445"
1 meean=mean(df[['deaths']])
2 median=median(df[['deaths']])
3 sd=sd(df[['deaths']])
4 print((paste0('Mean of deaths cases cause for Covic:', mean)))
5 print((paste0('Median of deaths cases cause for Covic:', median)))
6 print((paste0('Standar Deviation of deaths cases cause by Covic:', sd)))
   [1] "Mean of deaths cases cause for Covic:8373.55858060569"
   [1] "Median of deaths cases cause for Covic:38"
   [1] "Standar Deviation of deaths cases cause by Covic:563.256882265914"
```

Covariance data set Covic

For a sample of cases confirmed of 100,000 inhabitants, the covariance is of the 3% and the correlation is the 1% deaths by covic.

```
1 cov(new_data)
```

A matrix: 7×7 of type dbl

	lat	lon	total_population	confirmed	confirmed_per_100000	deaths	deaths_per_100000
lat	65.29220	-101.2963	5.238697e+03	-3.504861e+03	7084.046	-4.563559e+01	8.262083e+01
lon	-101.29632	340.8037	-2.280191e+05	-1.820301e+04	-19946.458	1.614169e+02	-2.880707e+02
total_population	5238.69725	-228019.0918	1.049150e+11	9.878597e+09	1351737.672	1.678893e+08	-1.217842e+06
confirmed	-3504.86116	-18203.0148	9.878597e+09	9.967803e+08	5773206.100	1.642123e+07	-3.436224e+04

Correlacion data set Covic

deaths ner 100000 82 62083 -288 0707 -1 217842e+06 -3 436224e+04 196588 062 3 522653e+03 1 115755e+04

1 cor(new_data)

A matrix: 7 × 7 of type dbl

	lat	lon	total_population	confirmed	confirmed_per_100000	deaths	deaths_per_100000
lat	1.000000000	-0.67906429	0.002001584	-0.01373854	0.267204308	-0.01002690	0.09679980
lon	-0.679064288	1.00000000	-0.038132937	-0.03123140	-0.329311132	0.01552353	-0.14772789
total_population	0.002001584	-0.03813294	1.000000000	0.96599911	0.001271939	0.92023298	-0.03559488
confirmed	-0.013738536	-0.03123140	0.965999112	1.00000000	0.055732701	0.92342045	-0.01030380
confirmed_per_100000	0.267204308	-0.32931113	0.001271939	0.05573270	1.000000000	0.03513731	0.56723818
deaths	-0.010026896	0.01552353	0.920232977	0.92342045	0.035137311	1.00000000	0.05920780
deaths_per_100000	0.096799798	-0.14772789	-0.035594882	-0.01030380	0.567238183	0.05920780	1.00000000

```
1 #Read File and Columns name str.
```

2 str(new data)

Summary show us the minimu, max and median and mean the all data set.

```
1 summary(new_data)
```

```
lon
                                                total_population
                                                                              confirmed
Min. : 0.00 Min. :-174.16 Min. : 0 Min. : 1st Qu.:34.02 lst Qu.: -97.73 lst Qu.: 10447 lst Qu.:
Median :38.04 Median : -89.52 Median : 25324 Median : 2098
Mean :37.18 Mean : -89.66 Mean : 99546 Mean : 8374
3rd Qu.:41.65 3rd Qu.: -82.51 3rd Qu.: 65558 3rd Qu.: 5475
Max. :69.31 Max. : 0.00 Max. :10098052 confirmed_per_100000 deaths deaths_per_10
                                                                          Max. :1155491
                                                        deaths_per_100000
                     Min.: 0.0 Min.: 0.00
1st Qu.: 13.0 1st Qu.: 80.77
Median: 38.0 Median:142.46
Min. : 0
1st Qu.: 6564
Median: 8497
                          Mean : 145.3 Mean :156.02
3rd Qu.: 90.0 3rd Qu.:211.01
Mean : 8310
3rd Qu.:10276
                            Max. :18519.0 Max. :788.57
        :33481
Max.
```

```
1 str(df)
```

```
'data.frame': 3269 obs. of 10 variables:
                              "2021-02-12 00:23:16 UTC" "2021-02-12 00:23:16 UTC" "2021-02-12 00:23:16 UTC" "2021-02-12 00:23:16 UTC" ...
$ last update
                      : chr
                       : chr "Alabama" "Alabama" "Alabama" ...
$ state
                      : num 32.5 30.7 31.9 33 34 ...
$ lat
$ lon
                      : num -86.6 -87.7 -85.4 -87.1 -86.6 ...
\ NCHS_urbanization \ : chr "Medium metro" "Small metro" "Non-core" "Large fringe metro" \dots
$ total_population : num 55200 208107 25782 22527 57645 ... $ confirmed : int 5970 18960 2030 2377 5955 1136 1886 12539 3305 1738 ...
$ confirmed_per_100000: num 10815 9111 7874 10552 10330 ...
                      : int 81 240 46 54 116 32 64 257 92 37 ...
$ deaths
$ deaths_per_100000 : num 147 115 178 240 201 ...
```

1 summary(df)

```
last_update
    Length: 3269
                      Length:3269
                                         Min. :17.98
                                                        Min. :-174.16
    Class :character
                     Class :character
                                         1st Qu.:34.34
                                                        1st Qu.: -97.93
    Mode :character
                                         Median :38.19
                                                        Median : -89.92
                      Mode :character
                                         Mean :37.96
                                                        Mean : -91.54
                                         3rd Qu.:41.71
                                                       3rd Qu.: -82.95
                                         Max. :69.31
NA's :67
                                                        Max. : -65.29
NA's :67
    NCHS_urbanization total_population
                                           confirmed
                                                          confirmed_per_100000
    Length: 3269
                      Min. :
                                 102
                                         Min. :
                                                          Min. :
    Class :character
                                                    845
                                                          1st Qu.: 6713
                      1st Qu.:
                                         1st Qu.:
                                 11309
                                         Median:
                                                    2098
                                                          Median : 8562
    Mode :character
                      Median :
                                 26212
                                         Mean :
3rd Qu.:
                                                    8374
                      Mean
                            : 101884
                                                          Mean : 8505
                      3rd Qu.:
                                66842
                                                    5475
                                                           3rd Qu.:10323
                      Max. :10098052
                                        Max. :1155491
                                                          Max. :33481
                             :75
                                                          NA's
                      NA's
                     deaths_per_100000
        deaths
               0.0
                     Min. : 0.00
    Min. :
              1 2 N
1 df$deaths <- factor(df$deaths,</pre>
2
             levels=c(0, 1),
             labels=c('confirmed', 'deaths'))
                     NA's
                            :75
1 summary(new_data$deaths)
                             Mean 3rd Qu.
      Min. 1st Ou. Median
                                            Max.
                           145.3
                                   90.0 18519.0
      0.0
            13.0
                    38.0
1 which.max(df[['deaths']])
2 which.max(df[['confirmed']])
   204
```

Group by NCHS Urbanization and State from United States, in Medium, small, large, micropolitan and non-core

```
1 dataset <- df %>% group_by(NCHS_urbanization, state)
```

1 dataset %>% summarise(
2 confirmed=mean(confirmed),
3 deaths=mean(deaths)

Analysis cases confirmed and deaths group by states.

```
1 ggplot(new_data, aes(deaths, confirmed)) + geom_point()
```

1 dataset %>% filter(total_population==max(total_population))

	A grouped_df: 250×10											
last_	update	state	lat		_			confirmed_per_100000				
	<chr></chr>	<chr></chr>	<db1></db1>	<db1></db1>	<chr></chr>	<db1></db1>	<int></int>	<db1></db1>	<fct></fct>	<db1></db1>		
202	21-02-12 216 UTC		34.45947	-85.80783	Non-core	71200	8332	11702.25	NA	227.53		
202	21-02-12 1:16 UTC	Alabama	33.55555	-86.89506	Large central metro	659892	69117	10473.99	NA	191.70		
202	21-02-12 1:16 UTC	Alabama	34.36976	-86.30487	Micropolitan	95145	11057	11621.21	NA	200.75		
202	21-02-12	Alabama	30.78472	-88.20842	Medium metro	414659	34555	8333.35	NA	160.86		
202	21-02-12	Alabama	33.26880	-86.66233	Large fringe metro	211261	21098	9986.70	NA	90.88		
202	21-02-12	Alaska	61.14998	-149.14270	Medium metro	296112	26011	8784.18	NA	51.33		
202	21-02-12			-146.56927	Small metro	99653	6018	6038.96	NA	26.09		
202	21-02-12			-134.20044	Micropolitan	32330	1205	3727.19	NA	15.47		
202	:16 UTC 21-02-12			-151.53889	Non-core	58220	3958	6798.35	NA	37.79		
202	21-02-12			-109.48924	Non-core	71522	10036	14032.05	NA	480.97		
202	21-02-12			-112.49182	Large central metro	4253913	494345	11620.95	NA	195.26		
202	21-02-12			-110.32190	Micropolitan	108705	15060	13854.01	NA	426.84		
	21-02-12			-111.78900	Medium metro	1019722	105909	10386.07	NA	198.39		
	:16 UTC 21-02-12									165.82		
	:16 UTC 21-02-12			-111.34495	Large fringe metro	419721	44439	10587.75	NA			
00:23	:16 UTC 21-02-12			-112.55386	Small metro	224645	16616	7396.56	NA	193.19		
00:23	:16 UTC 21-02-12		36.34039	-93.54270	Non-core	27887	2690	9646.07	NA	143.44		
00:23	:16 UTC	Arkansas	35.83018	-90.63236	Small metro	105701	12563	11885.41	NA	164.62		
00:23	21-02-12 1:16 UTC	Arkansas	35.21247	-90.30839	Large fringe metro	49013	5580	11384.73	NA	183.62		
00:23	21-02-12 1:16 UTC	Arkansas	34.77054	-92.31355	Medium metro	393463	36192	9198.32	NA	140.80		
00:23	21-02-12 ::16 UTC	Arkansas	35.25688	-91.74908	Micropolitan	78804	6964	8837.11	NA	126.90		
	21-02-12 ::16 UTC	California	39.66728	-121.60053	Small metro	227075	10594	4665.42	NA	65.18		
	21-02-12 ::16 UTC	California	38.20537	-120.55291	Non-core	45235	1850	4089.75	NA	55.27		
	21-02-12 ::16 UTC	California	36.75734	-119.64670	Medium metro	978130	91876	9393.03	NA	131.17		
	21-02-12 ::16 UTC	California	40.69923	-123.87604	Micropolitan	135768	3009	2216.28	NA	23.57		
	21-02-12 ::16 UTC	California	34.30828	-118.22824	Large central metro	10098052	1155491	11442.71	NA	183.39		
	21-02-12 ::16 UTC	California	34.84060	-116.17747	Large fringe metro	2135413	280068	13115.40	NA	105.04		
	21-02-12 ::16 UTC	Colorado	39.64977	-104.33536	Large fringe metro	636671	46525	7307.54	NA	99.89		
	21-02-12 ::16 UTC	Colorado	38.86246	-107.86313	Non-core	30346	2404	7921.97	NA	184.54		
	21-02-12 ::16 UTC	Colorado	39.76018	-104.87257	Large central metro	693417	57283	8260.97	NA	107.73		
	÷	:	÷	:	i	:	:	i	:	÷		
00:23	21-02-12 1:16 UTC	Utah	40.11667	-111.66577	Medium metro	590440	87084	14749.00	NA	51.32		

00:23:16 UTC	Vermont	44.46323	-73.08359	Small metro	162052	4301	2654.09	NA	50.60
2021-02-12 00:23:16 UTC	Vermont	43.57724	-73.03742	Micropolitan	59273	1109	1871.00	NA	15.18
2021-02-12 00:23:16 UTC	Vermont	42.98698	-72.71269	Non-core	43150	847	1962.92	NA	25.49
2021-02-12 00:23:16 UTC	Virginia	38.02081	-78.55481	Small metro	106355	4164	3915.19	NA	36.67
2021-02-12 00:23:16 UTC	Virginia	38.83678	-77.27566	Large fringe metro	1143529	62854	5496.49	NA	72.23

1 dataset %>% filter(confirmed_per_100000==max(confirmed_per_100000))

A grouped_df: 250 × 10

last_update	state	lat	lon	${\tt NCHS_urbanization}$	total_population	confirmed	confirmed_per_100000	deaths	deaths_per_100000
<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<db1></db1>	<int></int>	<dbl></dbl>	<fct></fct>	<dbl></dbl>
2021-02-12 00:23:16 UTC	Alabama	32.99642	-87.12511	Large fringe metro	22527	2377	10551.78	NA	239.71
2021-02-12 00:23:16 UTC	Alabama	31.68100	-87.83549	Non-core	24387	3367	13806.54	NA	176.32
2021-02-12 00:23:16 UTC	Alabama	32.76039	-87.63285	Small metro	14887	2011	13508.43	NA	382.88
2021-02-12 00:23:16 UTC	Alabama	34.78144	-85.99750	Micropolitan	52094	6401	12287.40	NA	165.09
2021-02-12 00:23:16 UTC	Alabama	33.55555	-86.89506	Large central metro	659892	69117	10473.99	NA	191.70
2021-02-12 00:23:16 UTC	Alabama	32.15973	-86.65158	Medium metro	10236	1283	12534.19	NA	410.32
2021-02-12 00:23:16 UTC	Alaska	61.14998	-149.14270	Medium metro	296112	26011	8784.18	NA	51.33
2021-02-12 00:23:16 UTC	Alaska	60.90980	-159.85618	Non-core	18040	3498	19390.24	NA	94.24
2021-02-12 00:23:16 UTC	Alaska	64.80726	-146.56927	Small metro	99653	6018	6038.96	NA	26.09
2021-02-12 00:23:16 UTC	Alaska	58.45032	-134.20044	Micropolitan	32330	1205	3727.19	NA	15.47

¹ plot(new_data\$deaths, new_data\$confirmed)

Visualization cases confirmed compared with the deaths.

1 plot(new_data\$confirmed_per_100000, new_data\$deaths)

1 plot(df\$confirmed_per_100000, df\$total_population)
2 title(plot(df\$deaths_per_100000, df\$total_population))

 $1 \ \, \text{dataset \$>\$} \ \, \text{filter(deaths_per_100000==max(deaths_per_100000))}$

A grouped_df: 250 x 10

last_update	state	lat	lon	${\tt NCHS_urbanization}$	total_population	confirmed	confirmed_per_100000	deaths	deaths_per_100000
<chr></chr>	<chr></chr>	<db1></db1>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<int></int>	<db1></db1>	<fct></fct>	<dbl></dbl>
2021-02-12 00:23:16 UTC	Alabama	33.26984	-85.85836	Non-core	13378	1386	10360.29	NA	396.17
2021-02-12 00:23:16 UTC	Alabama	32.32688	-87.10867	Micropolitan	40029	3269	8166.58	NA	314.77
2021-02-12 00:23:16 UTC	Alabama	32.76039	-87.63285	Small metro	14887	2011	13508.43	NA	382.88
2021-02-12 00:23:16 UTC	Alabama	33.55555	-86.89506	Large central metro	659892	69117	10473.99	NA	191.70
2021-02-12 00:23:16 UTC	Alabama	32.15973	-86.65158	Medium metro	10236	1283	12534.19	NA	410.32
2021-02-12 00:23:16 UTC	Alabama	33.80271	-87.30027	Large fringe metro	64493	6325	9807.27	NA	362.83
2021-02-12 00:23:16 UTC	Alaska	61.14998	-149.14270	Medium metro	296112	26011	8784.18	NA	51.33
2021-02-12 00:23:16 UTC	Alaska	64.80726	-146.56927	Small metro	99653	6018	6038.96	NA	26.09
2021-02-12 00:23:16 UTC	Alaska	58.45032	-134.20044	Micropolitan	32330	1205	3727.19	NA	15.47
2021-02-12 00:23:16 UTC	Alaska	59.89098	-140.36015	Non-core	689	66	9579.10	deaths	145.14
2021-02-12 00:23:16 UTC	Arizona	35.39465	-109.48924	Non-core	71522	10036	14032.05	NA	480.97
2021-02-12 00:23:16 UTC	Arizona	33.34836	-112.49182	Large central metro	4253913	494345	11620.95	NA	195.26
2021-02-12 00:23:16 UTC	Arizona	35.39977	-110.32190	Micropolitan	108705	15060	13854.01	NA	426.84
2021-02-12 00:23:16 UTC	Arizona	32.09713	-111.78900	Medium metro	1019722	105909	10386.07	NA	198.39
2021-02-12 00:23:16 UTC	Arizona	32.90526	-111.34495	Large fringe metro	419721	44439	10587.75	NA	165.82
2021-02-12 00:23:16 UTC	Arizona	32.76896	-113.90667	Small metro	207829	35910	17278.63	NA	360.87
2021-02-12 00:23:16 UTC	Arkansas	35.21247	-90.30839	Large fringe metro	49013	5580	11384.73	NA	183.62
2021-02-12 00:23:16 UTC	Arkansas	36.38177	-91.81729	Non-core	12139	1052	8666.28	NA	362.47
2021-02-12 00:23:16 UTC	Arkansas	33.70376	-94.23469	Small metro	12417	1102	8874.93	NA	322.14
2021-02-12 00:23:16 UTC	Arkansas	35.91947	-93.21613	Micropolitan	7848	669	8524.46	NA	331.29
2021-02-12 00:23:16 UTC	Arkansas	35.19606	-94.27163	Medium metro	127461	14140	11093.59	NA	194.57
2021-02-12 00:23:16 UTC	California	33.03931	-115.36690	Small metro	180216	26589	14753.96	NA	324.06
2021-02-12 00:23:16 UTC	California	36.51112	-117.41120	Non-core	18085	1176	6502.63	NA	188.00
2021-02-12 00:23:16 UTC	California	34.30828	-118.22824	Large central metro	10098052	1155491	11442.71	NA	183.39
2021-02-12 00:23:16 UTC	California	34.84060	-116.17747	Large fringe metro	2135413	280068	13115.40	NA	105.04

Visualization compared total population with cases confirmed and deaths.

2021-02-12

¹ plot(new_data\$confirmed_per_100000, new_data\$deaths, type='1')

- 1 #Barplot compared deaths
- 2 barplot(table(new_data\$deaths))

- 1 hist(new_data\$total_population)
 2 hist(new_data\$confirmed_per_100000, breaks=10)

Visualization show differents the states with most deaths us that california is one the most deaths had.

```
1 ggplot(df, aes(x=deaths, y=state)) + geom_point()

Wyoning-
Wicconsin-
Washington-
Virginal-
Verroria-
Verroria-
Texas-
Texas-
Soft transcer-
Soft transce
```

```
1 geopoin <- subset(df, state == 'deaths')
2 qmplot(lon, lat, data=df, colour=I('red'), size=I(3), darken=.3)
Using zoom = 3...</pre>
```


▼ Prediction

The prediction show us that for 24 people infected 2 would death and this prediction has 0.915 of accuracy and the precision is 0.913, data that confirmed that the average of death for this virus can oscillate into 2% or 3% of impacted in the all population infected.

```
4 rowsums = apply(cm, 1, sum)
5 colsums = apply(cm, 2, sum) #predictions
6 p = rowsums / num_instances # distribution of instances over the actual classes
7 q = colsums / num_instances # distribution of instances over the predicted classes
1 accuracy = sum(diag) / num_instances
2 accuracy
   0.915254237288136
1 precision = diag / colsums
2 recall = diag / rowsums
3 f1 = 2 * precision * recall / (precision + recall)
1 data.frame(precision, recall, f1)
                A data.frame: 2 × 3
              precision
                          recall
                   <db1>
                            <db1>
                                       <db1>
    confirmed 0.8888889 0.9230769 0.9056604
               0.9375000 0.9090909 0.9230769
     deaths
1 macroPrecision = mean(precision)
2 macroRecall = mean(recall)
3 \text{ macroF1} = \text{mean(f1)}
1 data.frame(macroPrecision, macroRecall, macroF1)
                A data.frame: 1 x 3
    macroPrecision macroRecall macroF1
             <db1>
                           <db1>
                                     <db1>
          0.9131944
                        0.9160839 0.9143687
```

Machine Learning in R:

Building a Linear Regression Model 1

We build the model Linear Regression to analyze the relationship between differents variable, as size of states more infectioned and deaths or analysis what is the most relevant variante. The coefficient and residuals give us the R-squared is 0.8478 and .8557 with p value of 2.2 a tendeced to increase the cases of deaths.

```
1 lmcovic = lm(confirmed~deaths, data = df)
2 summary(lmcovic)
   Call:
   lm(formula = confirmed ~ deaths, data = df)
   Residuals:
               1Q Median
       Min
   -260937
            -1201
                    -717
                              141 196026
   Coefficients:
               Estimate Std. Error t value Pr(>|t|)
   (Intercept) 856.5516 218.9690 3.912 9.35e-05 ***
   deaths
               51.7635
                           0.3767 137.410 < 2e-16 ***
   Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
   Residual standard error: 12120 on 3267 degrees of freedom
   Multiple R-squared: 0.8525, Adjusted R-squared: 0.8525
   F-statistic: 1.888e+04 on 1 and 3267 DF, p-value: < 2.2e-16
1 lmcovic2 = lm(confirmed~deaths + confirmed_per_100000, data=df)
2 summary(lmcovic2)
```

```
lm(formula = confirmed ~ deaths + confirmed per 100000, data = df)
   Residuals:
        Min
                  1Q Median
                                    3Q
                                            Max
    -263662
               -1514
                         -590
                                   504
                                        188963
   Coefficients:
                             Estimate Std. Error t value Pr(>|t|)
1048.3445 624.7193 -1.678 0.09342.
                           -1048.3445
   (Intercept)
                                            0.3723 139.981 < 2e-16 ***
   deaths
                               52.1098
1 plot(lmcovic$residuals, pch=16, col='blue')
2 abline(lmcovic)
```



```
1 plot(lmcovic2$effects, pch=16, col='blue')
2 abline(lmcovic2)
Warning message in abline(lmcovic2):
    "only using the first two of 3 regression coefficients"
```


→ Linear Regression Model 2

The second model we created a validation data set divide to analysis in 652 and 2617, also a training and test set the prediction show us confirmed the cases of deaths have been increase.

```
1 set.seed(100)
2 validationIndex <- caret::createDataPartition(df$deaths, p=0.80, list=FALSE)
3 validation <- df[-validationIndex,]
4 dataset <- df[validationIndex,]
5 dim(validation)
6 dim(dataset)
652·14
2617·14</pre>
```

```
300
```

```
1 #Stratified random split of the data set
2 TrainingIndex <- createDataPartition(df$deaths, p=0.8, list = FALSE)</pre>
3 TrainingSet <- df[TrainingIndex,] # Training Set</pre>
4 TestingSet <- df[-TrainingIndex,] # Test Set
1 # Build Training model
2 Model <- train(deaths ~ confirmed, data = TrainingSet,</pre>
                 method = "lm",
                 na.action = na.omit,
                 preProcess=c("scale","center"),
5
                 trControl= trainControl(method="none")
7)
1 # Apply model for prediction
2 Model.training <-predict(Model, TrainingSet) #model to make prediction on Training set
3 Model.testing <-predict(Model, TestingSet) #model to make prediction on Testing set
1 \# Scatter plot of Training set performance matrics
2 plot(TrainingSet$confirmed,Model.training, col = "blue" )
```


1 plot(TestingSet\$deaths,Model.testing, col = "blue")


```
1 ggplot(data = new_data) +
2    geom_smooth(mapping = aes(x = confirmed, y = deaths), color="red", fill="blue", size=2)
```

 $\ensuremath{\mbox{`geom_smooth()`}}\ \mbox{using method} = \ensuremath{\mbox{'gam'}}\ \mbox{and formula 'y} \sim s(x, bs = \ensuremath{\mbox{"cs"}})'$

Conclusion:

This project shows us in real time how the cases of infection by the Civic 19 virus are evolving, it presents the most relevant analyzes either by states, infected and deaths, which is the maximum and minimum of each one, which is the probability of increasing or decreasing. Persuading self-care turns out to be the greatest impact that this type of information can have on society, as it raises awareness of the risks of not paying attention to biosafety care, the greatest limitation that was found is the few variables to analyze. In the future, different databases could be merged to obtain more information that can assist society in keeping it more informed.