Bayesian Networks II

Lecture: Bayesian networks

Definitions: Probabilistic Programming

Inference: Probabilistic Inference

Inference: Forward Backward

Inference: Particle Filtering

Probabilistic programs

Joint distribution:

$$\mathbb{P}(B=b,E=e,A=a) = p(b)p(e)p(a\mid b,e)$$

Probabilistic program: alarm

 $B \sim \mathsf{Bernoulli}(\epsilon)$

 $E \sim \mathsf{Bernoulli}(\epsilon)$

$$A = B \vee E$$

def Bernoulli(epsilon):

return random.random() < epsilon</pre>

Key idea: probabilistic program

A randomized program that sets the random variables.

Probabilistic program: example

Probabilistic program: object tracking 7

$$X_0 = (0,0)$$
 For each time step $i=1,\ldots,n$: if $\operatorname{Bernoulli}(\alpha)$:
$$X_i = X_{i-1} + (1,0) \text{ [go right]}$$
 else:
$$X_i = X_{i-1} + (0,1) \text{ [go down]}$$

Probabilistic inference: example

Question: what are possible trajectories given evidence $X_{10} = (8, 2)$?

(press ctrl-enter to save)

Run

Application: language modeling

Can be used to score sentences for speech recognition or machine translation

Probabilistic program: Markov model

For each position $i=1,2,\ldots,n$: Generate word $X_i \sim p(X_i \mid X_{i-1})$

Application: object tracking

Probabilistic program: hidden Markov model (HMM) -

For each time step $t = 1, \ldots, T$:

Generate object location $H_t \sim p(H_t \mid H_{t-1})$

Generate sensor reading $E_t \sim p(E_t \mid H_t)$

Inference: given sensor readings, where is the object?

Application: multiple object tracking

Probabilistic program: factorial HMM

For each time step $t = 1, \ldots, T$:

For each object $o \in \{a, b\}$:

Generate location $H_t^o \sim p(H_t^o \mid H_{t-1}^o)$

Generate sensor reading $E_t \sim p(E_t \mid H_t^{\mathsf{a}}, H_t^{\mathsf{b}})$

Application: document classification

Probabilistic program: naive Bayes ¬

Generate label $Y \sim p(Y)$

For each position $i = 1, \ldots, L$:

Generate word $W_i \sim p(W_i \mid Y)$

Inference: given a text document, what is it about?

Application: topic modeling

Probabilistic program: latent Dirichlet allocation -

Generate a distribution over topics $\alpha \in \mathbb{R}^K$ For each position $i=1,\ldots,L$:

Generate a topic $Z_i \sim p(Z_i \mid \alpha)$

Generate a word $W_i \sim p(W_i \mid Z_i)$

Inference: given a text document, what topics is it about?

CS221

18

Application: medical diagnosis

Probabilistic program: diseases and symptoms -

For each disease $i = 1, \ldots, m$:

Generate activity of disease $D_i \sim p(D_i)$

For each symptom $j = 1, \ldots, n$:

Generate activity of symptom $S_j \sim p(S_j \mid D_{1:m})$

Inference: If a patient has some symptoms, what diseases do they have?

Application: social network analysis

CS221

Probabilistic program: stochastic block model 7

For each person $i = 1, \ldots, n$:

Generate person type $H_i \sim p(H_i)$

For each pair of people $i \neq j$:

Generate connectedness $E_{ij} \sim p(E_{ij} \mid H_i, H_j)$

Inference: Given a social network graph, what types of people are there?

Summary

- Probabilistic program specifies a Bayesian network
- Many different types of models
- Common paradigm: come up with stories of how the quantities of interest (output) generate the data (input)
- Opposite of how we normally do classification!

Lecture: Bayesian networks

Definitions: Probabilistic Programming

Inference: Probabilistic Inference

Inference: Forward Backward

Inference: Particle Filtering

CS221 26

Review: Bayesian network

Random variables:

cold C, allergies A, cough H, itchy eyes I

Joint distribution:

$$\mathbb{P}(C = c, A = a, H = h, I = i) = p(c)p(a)p(h \mid c, a)p(i \mid a)$$

Definition: Bayesian network -

Let $X = (X_1, \dots, X_n)$ be random variables.

A **Bayesian network** is a directed acyclic graph (DAG) that specifies a joint distribution over X as a product of local conditional distributions, one for each node:

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) \stackrel{\mathsf{def}}{=} \prod_{i=1}^n p(x_i \mid x_{\mathsf{Parents}(i)})$$

Review: probabilistic inference

Question: $\mathbb{P}(C \mid H = 1, I = 1)$

_Input

Bayesian network: $\mathbb{P}(X_1,\ldots,X_n)$

Evidence: E=e where $E\subseteq X$ is subset of variables

Query: $Q \subseteq X$ is subset of variables

-Output

 $\mathbb{P}(Q \mid E = e) \quad \longleftarrow \quad \mathbb{P}(Q = q \mid E = e) \text{ for all values } q$

Reduction to Markov networks

Bayesian network = Markov network with normalization constant ${\cal Z}=1$

Reminder: single factor that connects all parents!

Conditioning on evidence

p(a)

 $\prod p(i=1\mid a)$

Markov network:

$$\mathbb{P}(C = c, A = a \mid H = 1, I = 1) = \frac{1}{Z}p(c)p(a)p(h = 1 \mid c, a)p(i = 1 \mid a)$$

Bayesian network with evidence = Markov network with $Z=\mathbb{P}(H=1,I=1)$

Solution: run any inference algorithm for Markov networks (e.g., Gibbs sampling)! [demo]

Leveraging additional structure: unobserved leaves

Markov network:

$$\mathbb{P}(C=c,A=a,I=i\mid H=1)=\tfrac{1}{Z}p(c)p(a)p(h=1\mid c,a)p(i\mid a),$$
 where $Z=\mathbb{P}(H=1)$

Question: $\mathbb{P}(C=1 \mid H=1)$

Can we reduce the Markov network before running inference?

Leveraging additional structure: unobserved leaves

Markov network:

$$\mathbb{P}(C = c, A = a \mid H = 1) = \sum_{i} \mathbb{P}(C = c, A = a, I = i \mid H = 1)$$

$$= \sum_{i} \frac{1}{Z} p(c) p(a) p(h = 1 \mid c, a) p(i \mid a)$$

$$= \frac{1}{Z} p(c) p(a) p(h = 1 \mid c, a) \sum_{i} p(i \mid a)$$

$$= \frac{1}{Z} p(c) p(a) p(h = 1 \mid c, a)$$

Throw away any unobserved leaves before running inference!

Leveraging additional structure: independence

Markov network:

CS221

$$\mathbb{P}(C = c \mid I = 1) = \sum_{a,h} \mathbb{P}(C = c, A = a, H = h \mid I = 1)$$

$$= \sum_{a,h} \frac{1}{Z} p(c) p(a) p(h \mid c, a) p(i = 1 \mid a)$$

$$= \sum_{a} \frac{1}{Z} p(c) p(a) p(i = 1 \mid a)$$

$$= p(c) \sum_{a} \frac{1}{Z} p(a) p(i = 1 \mid a)$$

$$= p(c)$$

Throw away any disconnected components before running inference!

Summary

- Condition on evidence (e.g., I=1)
- Throw away unobserved leaves, e.g., I for $\mathbb{P}(C=1\mid H=1)$
- ullet Discard disconnected components, e.g., A and I for $\mathbb{P}(C=c\mid I=1)$
- Define Markov network out of remaining factors
- Run your favorite inference algorithm (e.g., manual, Gibbs sampling)

42

Lecture: Bayesian networks

Definitions: Probabilistic Programming

Inference: Probabilistic Inference

Inference: Forward Backward

Inference: Particle Filtering

CS221 44

Hidden Markov models for object tracking

Inference questions

Question (filtering):

$$\mathbb{P}(H_2 \mid E_1 = 0, E_2 = 2)$$

Question (smoothing):

$$\mathbb{P}(H_2 \mid E_1 = 0, E_2 = 2, E_3 = 2)$$

Note: filtering is a special case of smoothing if marginalize unobserved leaves

Lattice representation

- Edge start \Rightarrow $H_1 = h_1$ has weight $p(h_1)p(e_1 \mid h_1)$
- Edge $H_{i-1} = h_{i-1} \Rightarrow H_i = h_i$ has weight $p(h_i \mid h_{i-1})p(e_i \mid h_i)$
- Each path from start to end is an assignment with weight equal to the product of edge weights

Key: $\mathbb{P}(H_i = h_i \mid E = e)$ is the weighted fraction of paths through $H_i = h_i$

Forward and backward messages

Forward: $F_i(h_i) = \sum_{h_{i-1}} F_{i-1}(h_{i-1}) \text{Weight}(\boxed{H_{i-1} = h_{i-1}}, \boxed{H_i = h_i})$

sum of weights of paths from start to $H_i=h_i$

Backward: $B_i(h_i) = \sum_{h_{i+1}} B_{i+1}(h_{i+1}) \text{Weight}(\boxed{H_i = h_i}, \boxed{H_{i+1} = h_{i+1}})$ sum of weights of paths from $\boxed{H_i = h_i}$ to $\boxed{\text{end}}$

Define $S_i(h_i) = F_i(h_i)B_i(h_i)$: sum of weights of paths from start to end through $H_i = h_i$

Putting everything together

Algorithm: forward-backward algorithm -

Compute F_1, F_2, \ldots, F_n

Compute $B_n, B_{n-1}, \ldots, B_1$

Compute S_i for each i and normalize

Running time: $O(n|\mathsf{Domain}|^2)$

[demo]

Summary

- Lattice representation: paths are assignments
- Dynamic programming: compute sums efficiently
- Forward-backward algorithm: compute all smoothing questions, share intermediate computations

CS221 5

Lecture: Bayesian networks

Definitions: Probabilistic Programming

Inference: Probabilistic Inference

Inference: Forward Backward

Inference: Particle Filtering

CS221 55

Review: Hidden Markov models for object tracking

Review: inference in Hidden Markov models

Filtering questions:

$$\mathbb{P}(H_1 \mid E_1 = 0)
\mathbb{P}(H_2 \mid E_1 = 0, E_2 = 2)
\mathbb{P}(H_3 \mid E_1 = 0, E_2 = 2, E_3 = 2)$$

Problem: many possible location values for H_i

Forward-backward is too slow $(O(n|\mathsf{Domain}|^2))...$

Beam search for HMMs

Idea: keep $\leq K$ partial assignments (particles)

Algorithm: beam search

Initialize $C \leftarrow [\{\}]$ For each $i=1,\ldots,n$:
 Extend:
 $C' \leftarrow \{h \cup \{H_i:v\}: h \in C, v \in \mathsf{Domain}_i\}$ Prune:
 $C \leftarrow K$ particles of C' with highest weights

Normalize weights to get approximate $\hat{\mathbb{P}}(H_1,\ldots,H_n\mid E=e)$

Sum probabilities to get any approximate $\hat{\mathbb{P}}(H_i \mid E = e)$

[demo: beamSearch({K:3})]

Beam search problems

- ullet Extend: slow because requires considering every possible value for H_i
- ullet Prune: greedily taking best K doesn't provide diversity

Particle filtering solution (3 steps): propose, weight, resample

Step 1: propose

Old particles: $\approx \mathbb{P}(H_1, H_2 \mid E_1 = 0, E_2 = 2)$

 ${H_1:0,H_2:1}$ ${H_1:1,H_2:2}$

Key idea: proposal distribution

For each old particle (h_1, h_2) , sample $H_3 \sim p(h_3 \mid h_2)$.

$$\begin{vmatrix} h_i & p(h_i \mid h_{i-1}) \\ h_{i-1} - 1 & 1/4 \\ h_{i-1} & 1/2 \\ h_{i-1} + 1 & 1/4 \end{vmatrix}$$

New particles: $\approx \mathbb{P}(H_1, H_2, H_3 \mid E_1 = 0, E_2 = 2)$

 ${H_1:0,H_2:1,H_3:1}$ ${H_1:1,H_2:2,H_3:2}$

Step 2: weight

Old particles: $\approx \mathbb{P}(H_1, H_2, H_3 \mid E_1 = 0, E_2 = 1)$

```
\{H_1:0,H_2:1:H_3:1\}
\{H_1:1,H_2:2:H_3:2\}
```


Key idea: weighting based on evidence

For each old particle (h_1, h_2, h_3) , weight it by $p(e_3 = 2 \mid h_3)$.

$$h_3$$
 $p(e_3 = 2 \mid h_3)$
0 0
1 1/4
2 1/2

New particles: $\approx \mathbb{P}(H_1, H_2, H_3 \mid E_1 = 0, E_2 = 1, E_3 = 2)$

$${H_1:0, H_2:1:H_3:1}$$
 $(1/4)$
 ${H_1:1, H_2:2:H_3:2}$ $(1/2)$

Step 3: resample

Old particles: $\approx \mathbb{P}(H_1, H_2, H_3 \mid E_1 = 0, E_2 = 2, E_3 = 2)$

```
\{H_1:0,H_2:1:H_3:1\}\ (1/4)\Rightarrow 1/3
\{H_1:1,H_2:2:H_3:2\}\ (1/2)\Rightarrow 2/3
```


Key idea: resampling

Normalize weights and draw K samples to redistribute particles to more promising areas.

New particles: $\approx \mathbb{P}(H_1, H_2, H_3 \mid E_1 = 0, E_2 = 2, E_3 = 2)$

 $\{H_1:1,H_2:2:H_3:2\}$ $\{H_1:1,H_2:2:H_3:2\}$

Why sampling?

distribution

K with highest weight

not representative

K sampled from distribution

more representative

Sampling is especially important when there is high uncertainty!

Particle filtering

Algorithm: particle filtering

Initialize $C \leftarrow [\{\}]$

For each $i = 1, \ldots, n$:

Propose:

$$C' \leftarrow \{h \cup \{H_i : h_i\} : h \in C, h_i \sim p(h_i \mid h_{i-1})\}$$

Weight:

Compute weights $w(h) = p(e_i \mid h_i)$ for $h \in C'$

Resample:

$$C \leftarrow K$$
 particles drawn independently from $\frac{w(h)}{\sum_{h' \in C} w(h')}$

[demo: particleFiltering({K:100})]

16

Particle filtering: implementation

For filtering questions, can optimize:

- ullet Keep only value of last H_i for each particle
- Store count for each unique particle

Particle filtering demo

[see web version]

CS221 80

Summary

$$\mathbb{P}(H_3 \mid E_1 = 0, E_2 = 2, E_3 = 2)$$

• Use particles to represent an approximate distribution

Propose (transitions) Weight (emissions) Resample

- Can scale to large number of locations (unlike forward-backward)
- Maintains better particle diversity (compared to beam search)

Overall Summary: Bayesian Networks II

- Probabilistic programs as equivalent to Bayesian Networks
- Gibbs sampling is an algorithm for estimating marginal probabilities
- Forward Backward algorithm: Dynamic programming for inference (filtering and smoothing)
- Particle Filtering: Approximate inference for HMMs with large domains
- Next: learning the parameters of Bayesian networks