METHOD FOR AVERTING INFLUENCE OF HEMOGLOBIN

Publication number: JP60168050 Publication date:

1985-08-31

Inventor:

NIIMI YASUMASA; SENDA SHIGEO; MURAMATSU

HARUTO; ISA TAKAYUKI; MOGI HIDEAKI

Applicant:

WAKO PURE CHEM IND LTD

Classification:

- International:

G01N33/49; G01N33/48; G01N33/72; G01N33/49;

G01N33/48; G01N33/72; (IPC1-7): G01N33/48

- European:

G01N33/72B

Application number: JP19840024865 19840210 Priority number(s): JP19840024865 19840210

Report a data error here

Abstract of JP60168050

PURPOSE:To prevent easily and surely generation of an error in measuring the components to be inspected in a sample blood by adding 1 or >=2 kinds of surface active agents selected from specific 4 kinds to the sample to conjugate instantaneously said agents with hemoglobin thereby eliminating the absorption thereof. CONSTITUTION:1 or >=2 kinds of surface active agents selected from the group expressed by the formulas I , II, III, IV (R<1> is 11-16C alkyl, R<2> is 1-3C alkyl, M is an alkali metal, Y is a mineral or org. acid, X is halogen or lnorg. or org. acid residue) are added to a sample blood. Then the hemoglobin in the blood is immediately conjugated by addition of the surface active agents by which the light absorption of the hemoglobin is changed to the absorption without disturbing the absorption of the intended component. Then absorbancy of the intended component in the blood is measured quickly by using such phenomenon and the exact analysis is made possible.

Data supplied from the esp@cenet database - Worldwide

引用文献4

⑩日本国特許庁(JP)

(13)特許出顧公開

母公開特許公報(A)

昭60-168050

@Int_Cl_*

製別記号

庁内整理委号

❸公開 昭和60年(1985)8月31日

G 01 N 33/48 33/72 B-8305-2G 8305-2G

審査請求 未請求 発明の数 1 (全9頁)

分発明の名称 ヘモグロビンの影響回避方法

❷特 顧 昭59-24865

金出 顧 昭59(1984)2月10日

東京都板橋区成増3-1-7-307 成増アーバンライフ 康 匪 兄 伊発 明春 川越市的場1287-3 堆 命器 朗 Œ 川越市新宿町3-15-8 朗 者 村 松 人 砂発

⑦発明者 伊佐 隆幸 東京都豊島区目由5−21−4 五色コーポ201号

砲 弱 弱 茂 木 秀 明 三鷹市深大寺4024

⑪出 顋 人 和光純某工業株式会社 大阪市東区道修町3丁目10番地

明 翻 看

1. 発明の名称

ヘモグロビンの影響回避方法

2. 特件辦求の範囲

(1)へモグロビンの吸収又はその吸収の経時的変動が際床化学分析に与える正久の概差を回避する目的で、試液中に下記一般式の、②、③、④から成る群より過ばれた一般又は二種以上の界面活性 形を添加することを特徴とする臨床化学分析方法。

Wen s - A O

ON W-US UM

OD R' - N He · Y

CHEPS

Ø R' = N® = R' • X♥ . R^z

式中、別は炭素数1~16のアルキル病、財、 財は炭素数1~3のアルキル部、Mはアルカリ 金属、Yは鉱根又は有機酸、Xはヘロゲン又は 無機酸、有機酸の熟悉、を表わす。

3. 発明の詳細な説明

本務明は、陈床化学分析に於けるへモグロビンの影像回避方法に関する。

更に詳しくは、ヘモクロビンの吸収又はその吸収の種母的変物に伴なり正負の誤落を回避するために、特定の外面估性剤を用いることを特徴とする、ヘモクロビンの影響回疎方法に関する。

剛定に対して正角の観光を与えることに対する回 雅技術はこれまで資額に近かった。このようなへ モグロビンの影響は、従来の御定方法。即ち、分 析する際に本後とは別に検体重視専用のチャンネ ~を限け、別個に翻足した検体育検を本検値より 悲し引くという方法をとっていたころは、それ任 ど周期にはならなかった。ところが、分析視器の 路遮に作ない、例えば、試料と、発色成分の1部 な含むか、又は発色成分を全く含まない第1世報 との餌合唇液の吸光度を初めに測定し(第1点の 吸光度)、次いで、残りの発色成分、又は全発色 成分を含む第2 財務を添加して、目的成分を発色 させ、再度吸光度を制定し(解え点の吸光度)、 解1点の吸光度を凝熱依偎に模倣して、解2点剤 足の吸光度より楽し引き、盲検ナオンネルを使用せ ずに検体育検をより高精度にキャンセルする機構 (この機構を以後、2点側足法と略称する。)が 開発されるようになると、何たに、ヘモグロビン の影響が大きな問題となってきた。即ち、ヘモグ ロビンに関しては、彼性、試験服成、反応条件に

特開昭60~168050(2)

従って、この2点側足法では、第1点の吸光度 調定から排2点の吸光度側定までのあいだは、 取対象物の吸収以外の妨害物質の吸収が変化しないことが、より高精度な育検相正の絶対条件であ り、かかる目的に適う、すぐれたヘモグロビンの 影響回避方法の出現が無限されていた。

最近、血液中のヘモグロビンを削足するにあた

り、そのヘモグロビンの吸収を固定することを目的として、関筋機関級スルホン酸塩を用いる方法が特別間の56-120991分)されている。しかしながら、このスルホン酸塩を、ヘモグロビン以外の目的対象物を対象であるというの影響回避のために、その測定系に用いるというのとはこれまでに全くなされておらず、このスルホン酸域が目的物の測定に影響を与えずに、ヘモグロビンの吸収を固定することができるかどうかは念く不明であった。

定性や溶解性を考慮して、適宜選択して第1 飲飲に低加すれば、目的物の創定に影響を与えず、徐経開間的にヘモグロビンと結合し、その吸収を固定して緩停的変動を押え、自的物の測定に対し、ヘモグロビンによる正負の限急を発展完全に回避できることを見出し、本端明を完成するに到った。本発明は、ヘモグロビンの吸収又はその吸収の

経時的変動が、臨床化学分析に与える正負の負益を何親する目的で、試液中に下記一般式①,②。
③、④から成る押より遊ばれた一種又は二種以上の界面活性剤を設加することを特徴とする臨巣化学分析方法である。

OR' - S UaM

Ø R) - U 9 U≥M

3) H - N H2. Y

CH = Ph

(0 H₁ - N@-H₂ •Xe

式中、 R¹は炭無数 11 ~ 16 のアルキル据、 R²、 R³は炭異数 1 ~ 3 のアルキル据、 M はアルカリ 金瓶、Yは鉱限又は有機酸、Xはハロゲン又は 誘機酸、有機線の残断、を表わす。

上記式中、Plで数わされる災果数11~16のブルール がたしては、ウンデンル病、ドデンル病、トリテンル病、ベンタデンル病、ベンタデンル病、スペッテンル病がなけられ、Pl。 Riで表わされる。 展来数1~3のアルキル病としては、メテルが、アルカリを強イオンとしては、ナトリカがない、カリウムイオン、リテウムイオンの神がない、アルカリウムイオン、リテウムイオンの神がない、アルカリウムイオン、リテウムイオンの神がない、アルカリウムイオン、リテウムイオンの神がない。 Y としては、塩酸、硫酸等の無限ない、フロイン、又はHSUP等の無限なが、

本発明の方法によれば、オキシへのグロビンの 教取は解除に破壊されてシアンメトへもグロビン に類似の吸収に変わる為。へモクロビンの妨害を 受ける恐れのある郷定対象物の間違に於て、へも グロビンの吸収及びその吸収の経時的変動によっ て生ずる棚定機差を同意でき、しかも目的物の問

袋1 に、本発明に係る各種界面信性利とこれら を能加した場合のヘキグロビンの吸収変動の関係 を示す。

没中、例えば 0.160 ↓ は、へモクロビンの吸収が当初のものより 0.160 低下することを示しており、本婦明に係る特定の罪固治性別を旅加した場合には、始めは大きく低下し、そのあとの低下は少ないが、無磁加の場合には、4~6分娩に除ても相当機の低下が見られる。即ち、本務明に係る特定の別面活性別を振加した場合には極めて短時間の内にヘモグロビンが固定化されて、以後は殆

特別昭60-168050 (3)

定には何ら影響を与えず、より正確な側定値が得 られる。

平1回に、ヘモグロビンの吸収曲線(a)、及びへ モグロビンに本発明に係る界面活性剤を振加した 場合の吸収的額(b)、並びにシアンメトへモグロビ ンの吸收曲線(c)を示す。即ち、第1回に於て、(a) はヘモクロピン啓被(159/dl) 20 slに p R = 8.300.01 M 昨 段ソーダ格報 6.0 配を扱かし た場合、(b)は同ヘモグロビン混痕に 0.5 多のラウ リル保限ソーグを含むpH= 8.3 0 0.0 1 M酢酸 ソーダ溶液 5.0 配を繋がした場合、付は同じく、 ドラブキン試液(KCN 0.005 も、フェリシアン化 カリウム 0.0 2 年、 反旋酸ナトリウム 0.1 ラ)5.D mb を添加した場合。に於ける夫々の吸収曲線を示 している。第1図から明らかな如く、ヘモグロビ ンに本発明に係る特定の界面機性部であるラウリ ル飢酸ソーダ(SDS)を霡加すると、麻時にま キシへモクロピンの吸収(a)が破験され、シアンメ トヘモクロビン(c)に類似の吸収(b)に変わる。.

本発明に係る界面指性剤とヘモダロビンの給合

んど変化しなくなるが、無路加の場合にはいつま でも変化し続けていることが判る。

本発明代係る各種界而活性剤とヘモグロビンの吸収変動

ROE

へモグロビン智器(1000サ/41)100月に、は仮20mlを移加し、543

尤度变化を确定する。

特問昭60-168050(4)

	000000 (0001) a0191	5 4 9 nm)	▲分後の
L 0.1191 0.1604 0.1604 0.1604 0.1624 0.1624	a0191	1E/4-6A	
L 0.191 0.019 a 0.1604 0.002 a 0.1524 0.002 a 0.1524 0.003			収収パターン
A 0.1604 0.002 ME 0.1624 0.002 I3COOH 0.1624 0.003		0.0 0 8 ↓	オキゲーをグロビンクを使って
######################################		0.0014	3DS- ~€∮aビン
13 0.1554 0.003		0.0011	108~~** 10 K
0.1551 0.003		0.0011	•
		6.0014	
電化ペンサルで表 ケム C ₁₁ E ₁₁ - C	0.0061	0.0021	
近代セクルコニカム (元) CMJxx-N ²⁰ -CM ₁ ・C1 ⁶ 0.144 0.006 1 CM ₂ Ph		0.0021	
CuthSOMs 0.1724 0.0024	0.0021	0.0011	•
セチルスルホンスソータ CrEuSO3Ns 0.1584 0.0044	0.0041	0.0024	
CH, (CH2), CH = CH(CH2), 11-180, 10 0 1 4 7 4 0.0 0 16 4	0.000.0	0.0 0 2 1	•

Bri-35【ボリオキシエテレンラクリルエーテル:花王Tトラス铝商品名)を 0.2 多合み、本発的に係る許回活性型を 0.5 多含化d = 8.3 の 0.0 1 M酢酸ソーダ溶液を静動する。【前定操作】

以下に本ி別に係る契約例を示すが、本希男は これらに限定されるものではない。

疼痛例 1. 解ビリルビンの側定(ラウリル硫酸ナトリウム使用)

〔然科〕

ブール血清 1 配、及びプール血清各 0.9 配に各機機能のヘモグロビンを 0.1 配すつ協加し、ヘモグロビン 破死を失べ0、50、100、150、200、250、400、450、500、700、1000円付1 としたものを使用。

また、本品明の特定の界面指性剤を感加すると、 ヘモグロビンの吸収が 540~590 nm にかけて約1/2 に低下するため、2点側定法のみたらず1点側定 法でも、ヘモグロビンの影響を約半減することが できるので好ましい。

本発明は、ヘモグロビンの吸収又はその吸収の 低時的変動により翻定観発を生ずる恐れのある臨

[試感]

OF 1 試練

 カフェイン
 2.5 秀

 安息新穂ソーダ
 3.8 秀

 酢酸ソーダ
 6.3 秀

 易D T A - 4Na
 0.1 秀

 Brij - 36 (花王アトラス側商品名) 0.2 秀

 ラウリル保険ソーダ
 0.5 秀

② 年 2 民 液

· スルファニル酸 0.1 ff 塩酸 0.1 N

これらを、使用時に 0.2 多の更确像ソータ母 被と 1 0 : 1 に混合する。

【胡龙方法】

日文競作所自動分析機 736 聚を使用。

特別昭60-168050(5)

光度を構定する。第1点の吸光度差(Bi)を410 信して第2点吸光度差(Bi)から差し引き、同様の操作で得た標準の吸光度より、試料中のビリルビン最便を算出する。

比 飲 例 1.

【积料】

表施例』に同じ。

(飲業)

の部 1 飲被

実施例 1.の第 1 武液からラウリル硫酸ソーダを 除いたもの。

② 据 2 試 版

突旋例1.に同じ。

〔柳定方法〕

央施例 1. に同じ。

実施例 1.及び比較例 1.の総ピリルピン機関の期 定結果を表えた示す。

75 2

研定方法 飲料中の ペモグロビンの政政	実 崩 例 1. 9ウリル師設ナトリウ△ 0.5 多 含 有	ル 較 例 1. タウリル 例或サトリウム を含まない
0 mg/d1	0.5 mg/di	0.5 mg/d1
50	0.5	0.3
100	0.4	0.0
150	0.4	– 0. 3
200	0.4	– 0.6
250	0.4	- 1.0
300	0.4	- 1.2
350	0.3	- 1. 5
400	0.4	- 1.7
450	0.4	- 2.0
500	0. 3	— 2. 1
700	0.3	- 3.4
1000	0.3	- 4.9

段2より明らかな如く、本発明の方法、即ちラウリル値段ナトリウムを誘加した場合には、ヘモ グロビンがかなりの最混入していても、例定値に さはどの影響は認められないが、 ヲウリル強酸ナトリウムを添加しない場合には、 ヘモグロビンによる色の服務が振めて大きく、 ヘモグロビンの最によっては、 御足傶がマイナスの鍼をとる。

また、東訪例 1 及び比較例 1 に於て、ヘモグロビン機定(ゆ/dl) 0 ((1)及び(1))、500((2)及び(2))、1000((3)及び(3))の場合の各々の反応タイムコースを、失々第2図及び第3図に示す。

即ち、第3屆では、顧加したへモグロビンが徐々に移住し、第1都定点で移た機体育機値から複 頻機算した環論資機値を、律2例定点の優先度Bt より禁し引くと負の値となり、大幅を負担落とな るのに対し、第2個に示す如く、ラクリル修設ナトリウムを0.5多磁加した試験を使用した場合に は、第1試液を混合核、1分以内に吸光度は安定と 都1棚だ点と第2側定点のあいたのへモグロビン の吸光度変化が強んとなくなり、正確を研究結果 が得られることがわかる。

このように、ピリルピンの例気に於て、本発明

に係る特量の界面倍性剤であるラウリル健康ナトリクムを蘇加することにより、'容易に且つ効果的にヘモグロビンの影響を回避できる。

実施例 & 際ビリルビンの側足(塩化ペンザルコニウム使用)

(試療)

OD 第 1 試被

カフェイン 2.5 % 安息特徴ソーダ 3.8 % 昨歳ソーダ 6.3 % B D T A - 4 Na 0.1 % Brij - 3 5 0.2 % 塩化ペンザルコニウム 0.2 %

②邻2盆放

スルファロル酸

0.1 6

按除

0. 1 N

これ6を、使用時に 0.2 % の頭硝酸ソーダ溶板 と10:1 に混合する。

【则定方法】

日本双子クリナライザー VX-1000 を使用。

疼妨例 3. に何じ。

第1試被として、実施約3.の第1試被から塩化ベンザルロニウムを除いたものを用いる。第2試 彼は実施約3.に同じ。

〔朔冠方法〕

夾飾例 3. に同じ。

実施例 3.及び比較例 3.の総ピリルピン機関の測定 結果を要 3 に示す。

获

試料中 をグロビンの設備	突 旅 例 3. 塩化ベンザルコニウム 0.2 声 含有	比 較 例 2. 塩化ペンザルコニウム を含まない
0 19/01	0.9 5 mg/d1	0.8 4 mg/d1
5 0	1.02	0.7 7
100	1.02	0.7 1
150	1.04	0.61
200	1.04	0.4 7
250	1.16	0.3 6
300	1, 2 2	0.2 6
350	1.15	0,0 4
400	1.23	-0.13
4 5.0	1.23	-0.27
500	1.19	- O. 4 2

特牌昭60-168050(8)

試料15 ml 化解1 試版 4 0 0 mlを加え、これを水 1 6 5 ml で仮の管に沸き、37 ℃に 2.5 分放性して、深 1 点映光度 (Di) を 5 4 0 n m で間足した後、深 2 試発 1 0 0 ml を水 100 ml で押し出し、3 7 ℃で 2 3 分放数した後、第 2 点吸光度 (Bi) を 5 4 0 n m で間定する。部 1 点吸光度 (Bi) を 780 値して、第 2 点吸光度 (Bi) より共し引き、 間頭の機作で得た構造の吸光度より、試料中のビリルビン機械を算出する。

本数加切に於ける検報額を第4 図に示す。 来相例 3. 総ピリルピンの調定(塩化ペンザルコニウム使用)

[减聚]

実施例 2. に向じ。

(柳龙方法)

就料を被として、人血精中に各種機関のヘモグロビンを修加したものを各15g| 用いる。以下の網足方法は実施例2に同じ。

比败例 2.

〔殷科〕

級3より明らかな知く、ビリルビンの初定に於て、本発明に係る特定の界面信性剤である塩化ペンザルコニウムを誘加することにより、ヘモクロビンの負債無が大幅に改善されていることがわかる。

実施例4、 単ビリルビンの側定(同時再規位)

取料としてプール血清及び高値プール血情を使用し、実施例 2.と同じは実(塩化ペンザルコニウム使用)を用い、実施例 2.と同じ側定方法(日本電子クリナライザー VXー1000使用)により繰り返し際ビリルピンの例定を行う。物果を表 4 に示す。

B: 4

Na	プール血情	高俊プール東南	NΔ	ブール血病	高低ブール血清
1	1.39 mg/dl	5.5 6mg/d1	1.8	1.4 2mg/dl	5,7 2 mg/d l
2	1.4 0	5.6 2	19	1.4 1	5.6 0
3	1.40	5.6 1	20	1.4 2	5.6 8
4	1.3 6	5.5 2	2 1	1.3 7	5.7 4
5	1.3 4	5.6 8	22	1.4 3	5.5 3
6	1.3 7	5.4 0	23	L4 1	5.5 4
7	1.40	5.5 2	2 4	1.3 9	6.4 0
8	1.38	B.5 4	25	1.4 4	5.6 1
9	1.4 4	6.5 5	26	1.4 2	5.5 4
1 D	1.4 0	5.6 2	27	1.4 5	5.6 6
tΙ	2.4 4	5,6 1	28	1.4 1	5.5 6
1, 2	1.8 0	5,6 1	29	1.3 8	5.6 8
1 3	1.3 6	5.5 B	30	1.4 6	5.6 B
14	1.44	ន. 5 5	平均	1.4 0 6	5.5 8 2
15	1.4 1	5.4 1	課事	0.0300	0.0834
16	1.4 1	5.5 8	個熱		
17	1.4 3	B.6 3	係数	2.1 4 %	1.494

*5*3 5

Na.	A.B. 1915.	比较例 3.	No.	英牌列 5.	此 教例 8. ×
1	0.3 5mg/61	0.3 7 09/4)	16	2.1 9 =92/81	1.9 3 ₹2/63
Z	0.5 1	0.6 1	17	3.1 8	2.8 9
.3	0.5 6	0.5 9	18	5.1 8	5.1 1
4	0.4 4	0.3 1	19	1 1.2 7	i 1.1 2
5	0.8 3	0.3 0	20	4.4 I	4.3 2
6	0.41	0.3 8	2 1	3.4 4	3.4 8
7	0.6 9	0.6 8	2 2	2.1 5	2.1 3
8	0.5 0	0.4 7	23	8.8 7	8.7 5
9	0.2 8	0.2 4	2 4	1 2.6 4	1 2.5 0
10	0.7 1	0.7 1	25	4.4 7	4.2 6
11	0.4 8	0.4 8	2 6	8.2 0	7.9 0
1 2	8 8.0	0.3 2 -	2*	1.1 9	-0.1 8
1 3	0.6 9	0.4 5	28	1.9 8	1.8 3
1 4	2.8 9	2,9 3	29	0.3 7	0.2 6
15	2.2 7	2.1 9	30	0.4 7	0.8 8

米州 27 位帮而試料

表を及び称を閉より朝らかたように、 暦血のた

特開昭60-168050 (ア)

裂もより切らかな如く、本側逆法は非常にパラッキが少ない。

異路例 5. 能ビリルビンの創定(相関)

[跌科]

人血槽 3 0 検体使用

(終課)

突施例2に同じ。

[講觉方法]

発辞四2. に向じ。

比較例 3.

C 配料 7

災崩例5と同じ検休(人血清30検体)

(既然)

実施例 5 の試集から塩化ペンザルコニウムを除いたもの

【都定方数】

発剤的5 に同じ、

不添明の側定方法である実施例 5. (塩化ペンザルコニウム使用)と、従来法である比較例 3. の相関を役 5 及び解 5 図に示す。

い 悦 体 に 於 て。 本 盗 は 従 来 法 と 良 い 相 例 を 示 し て い ね。 (¥ = 1.0 1 1 X + 0.0 5 4 8 , r=0.999)
4. 凶 間 の 簡 単 な 税 朝

据 1 図は、ヘモグロビン器被(159/d1)中に、(A) pH = 8.3 の 0.0 1 M 酢酸ソーダ溶液を施加した場合。(b) 0.5 多のラクリル(酸ソーダを含む pH = 8.3 の 0.0 1 M 酢酸ソーダ 形骸を添加した場合。(c) ドラブキン 放放(K C N 0.0 0 5 多。フェリンナン化カリウム 0.0 2 多、 承贷酸ナトリウム 0.1 多)を添加した場合に於ける夫々の吸収的形を示し、機動は吸収波及(n m)を、機動は吸火液(O D) を契わす。

四2 図は、京和例 1 に於ける反応 * イムコースを示したもので、(1)、(2)、(3)は、犬々ヘモグロビン機関(四/dl)の、500、100の場合の反応 * イムコースであり、提続は 5 4 6 n m の吸光吹き 5 00 n m の吸光 関の吸光 解析 (UD) × 10 を示し、機動は時間(砂)を凝わす。また、いは第 1 試験報加点、 5 は 第 1 側 定点、 ku は 第 2 就 概 成 加点、 bu は 第 2 和 定点 表 示し、 B2(1)、 B2(2)、 B2(2)、 B2(2)、 B2(2)、 B2(4)、 B2(4

B2 (3)は、夫々(1)、(2)、(3)のB2点に於ける理論育佼佼 (B)に於ける資検値を放散補正したもの)を示している。

係3回は、比較例1に於ける反じタイムコースを示したもので、(1)、(2)、(3)は、失々へモクロビン機能(阿/dl)の,500,1000場合の反応タイムコースであり、縦軸は545 nmの吸光腔を600 nmの吸光度の吸光度熱(UD)×
10'を示し、横軸は時間(砂)を扱わす、また、汎は第1 放棄係加点、単は第1 側定点、H2は第2 放棄務加点、B2世第2 側定点を示し、四 (1)、E (2)、(3) が の B2 点に於ける 原軸 前棟傾(D1に於ける 官検領を被集補正したもの)を示している。

群4 包は、実施例2.に於ける検景線を示し、機 軸はピリルビン構準能の発釈課を、機能はピリル ピン濃度(砂/ 引)を要わす。

第5 関は、本類明の方法である実施例 5. (塩化ベンザルコニウム使用)と従来法である比較例 3. (塩化ベンザルコニウム使用せず)との相關を示

特別昭 50-168050 (8)

したもので、候価子は本法に於けるピリルピン側 定似(呵 / dl) を、機動又は従来海に於けるピリ ルピン剛定額(呵 / dl) を扱わす。

停許出頭人 和光納果工茶株式会社

— 326 —
PAGE 18/64 * RCVD AT 4/11/2007 4:19:30 PM [Eastern Daylight Time] * SVR:USPTO-EFXRF-1/9 * DNIS:2738300 * CSID:612-455-3801 * DURATION (mm-ss):17-18

PAGE 19/64 * RCVD AT 4/11/2007 4:19:30 PM [Eastern Daylight Time] * SVR:USPTO-EFXRF-1/9 * DNIS:2738300 * CSID:612-455-3801 * DURATION (mm-ss):17-18

特許法第17条の2の規定による補正の掲載

昭和 59 年特許願第 24865 号 (特別昭 60-168050 号,昭和 60 年 8 月 31 日 発行 公開特許公報 60-1681 号掲載)につ いては特許法第17条の2の規定による補正があっ たので下記のとおり掲載する。 6 (1)

Int. C1.	識別記号	庁内整理番号
GOIN 33/48 33/72		B-7055-2G - 7055-2G
		,

6. 精正の対象

明細密の関節の簡単な説明の側。

7. 袖正の内容

(1)昭和会25页4行目から5行目にかけて記載の「(15g/d]) 中に、」を「(15g/d]) 20g1中に、

」と榊正する。

(2)明報會25頁8行目から10行目にかけて記録の「選換設ナトリウム 0.1%)を認知した場合」を「選戻設ナトリウム 0.1%)を表々5.0ml 取加した場合」と補近する。

以上

千成 3.5.29 発行

. 手 統 神 正 響

平成 3年 1月31日

特許疗摄官 限

噩

1. 事件の設示

昭和59年特許朝第24866号

2. 発明の名称

ヘモグロビンの影響回過方法

3、特正をする会

李件との関係 特許出願人

郵製養券 541

住用 大阪府大阪市中央区道修可三丁目1番2号 「中成元年2年13日住居表示変更」

名称 和光路聚工类株式会社

代表者 田 中 好 妈

4. 代理人

住所 東京都中央区日本橋本町4丁目5帶13号 和光額要工能株式会社 東京支展內

氏名 (8078) 弁型士 年井原二(成

道路先 特許獎(東京)TEL03-3270-9145

5、補正命令の日付

A 45

5. 5. 1 }