Let's not lose sight of the goal in RL: find an optimal policy

Previously:

- Indirect policy search by estimating value:
 - With models: VI, PI, LQR, MPC
 - Without models: Fitted-Q, TD, Monte Carlo, SARSA, Q-Learning

Let's not lose sight of the goal in RL: find an optimal policy

Previously:

- Indirect policy search by estimating value:
 - With models: VI, PI, LQR, MPC
 - Without models: Fitted-Q, TD, Monte Carlo, SARSA, Q-Learning

Today:

Don't be "blinded by the beauty of the Bellman Equation" -Andrew Moore:

Idea: parameterize policy directly $\pi_{\theta}: x \mapsto a$

Idea: parameterize policy directly $\pi_{\theta}: x \mapsto a$

roll out trajectory under current policy: $\xi = (x_0, a_0, \dots, x_{T-1}, a_{T-1})$

calculate reward
$$R(\xi) = \sum_{t=0}^{T-1} r(x_t, a_t)$$

objective
$$J(\theta) = E_{p(\xi|\theta)}[R(\xi)] = E_{p(\xi|\theta)}\left[\sum_{t=0}^{T-1} r(x_t, a_t)\right]$$

Goal: find policy parameters that maximize expected total reward

Pros:

- Policy does not directly depend on the size of the state space
- Policy can be very simple compared to MDP (small action space / manifold)
- Domain knowledge can be inserted into the policy directly
- Only need access to the reset model

Cons:

Policy parameterization matters a lot!

$$\pi_{\theta}(x) = \underset{a \in \mathbb{A}}{\operatorname{argmin}} \ \theta^T f(x, a)$$

How should we optimize a policy directly?

How should we optimize a policy directly?

Gradient Ascent / Descent :

- Analytic gradient
- Autodiff
- Finite differencing (be careful if gradient estimate is noisy!)
- Policy gradient methods (stay tuned!)

What if gradient is hard to estimate / doesn't exist?

How should we optimize a policy directly?

Coordinate Descent

(line search along one coordinate direction at current point at each iteration)

How should we optimize a policy directly?

Coordinate Descent

(line search along one coordinate direction at current point at each iteration)

Simulated Annealing

small random perturbations $\theta + \Delta$. If $J(\theta + \Delta) > J(\theta)$, update parameter $\theta \leftarrow \theta + \Delta$. Otherwise update parameter randomly anyway according to "temperature." Lower temperature over time.

How should we optimize a policy directly?

- Coordinate Descent
 - (line search along one coordinate direction at current point at each iteration)
- Simulated Annealing
 - small random perturbations $\theta + \Delta$. If $J(\theta + \Delta) > J(\theta)$, update parameter $\theta \leftarrow \theta + \Delta$. Otherwise update parameter randomly anyway according to "temperature." Lower temperature over time.
- Genetic Algorithms / Evolutionary Algorithms

Evolution inspired: randomly generate parameters. Best parameters "survive" and "reproduce." Parameter space explored via "crossover" and "mutation."

How should we optimize a policy directly?

Coordinate Descent

(line search along one coordinate direction at current point at each iteration)

Simulated Annealing

small random perturbations $\theta + \Delta$. If $J(\theta + \Delta) > J(\theta)$, update parameter $\theta \leftarrow \theta + \Delta$. Otherwise update parameter randomly anyway according to "temperature." Lower temperature over time.

• Genetic Algorithms / Evolutionary Algorithms

Evolution inspired: randomly generate parameters. Best parameters "survive" and "reproduce." Parameter space explored via "crossover" and "mutation."

Cat Swarm Optimization

Inspired by the behavior of cats. This is real. Look it up.

How should we optimize a policy directly?

Nelder-Mead (simplex search)

"There are occasions where it has been spectacularly good... Mathematicians hate it because you can't prove convergence; engineers seem to love it because it often works." - John Nelder

Tries to find the optimum of a function by iteratively modifying a simplex to surround it. What fminsearch implements

Framed as minimization. Builds an n+1-dimensional simplex to find parameters in an n-dimensional space.

How should we optimize a policy directly?

Nelder-Mead

Sample n+1 points.

One iteration consists of three steps:

- Ordering: find worst, second-worst, and best vertex.
- Centroid: find centroid of best side (opposite worst vertex)
- Transformation: sequential rules for transforming simplex

How should we optimize a policy directly?

Nelder-Mead: Transformation

Reflect: compute x_r , if better than second worse x_s but not as good as best x_l , replace worst x_h with x_r .

How should we optimize a policy directly?

Nelder-Mead: Transformation

Expand: compute x_r , if best so far, expand to x_e . If better than x_r replace worst x_h , with x_e . Otherwise replace x_h with x_r .

How should we optimize a policy directly?

Nelder-Mead: Transformation

Contract (outside): compute x_r , if worse than x_s , but better than x_h , compute x_c . If x_c is better than x_r , replace x_h with x_c .

How should we optimize a policy directly?

Nelder-Mead: Transformation

Contract (inside): compute x_r , if worse than x_h , compute x_c . If x_c is better than x_h , replace.

How should we optimize a policy directly?

Nelder-Mead: Transformation

Shrink: if none of the above work, shrink the simplex toward the best point.

Termination: when simplex is sufficiently small, or values are sufficiently close, or two many iterations, terminate.

How should we optimize a policy directly?

Nelder-Mead: animations of wikipedia

How should we optimize a policy directly?

Cross Entropy Method

- 1. Start with distribution of samples over parameter space (typically Gaussian)
- 2. Evaluate each sample.
- 3. Keep top 1-5% of samples ("elite set").
- 4. Estimate parameters of new distribution from elite set (e.g. mean, covariance). Can interpolate with previous distribution.
- 5. Resample

How should we optimize a policy directly?

Cross Entropy Method

How should we optimize a policy directly?

Cross Entropy Method

Issues:

- does not handle multi-modal distributions well
- covariance can become singular, need to regularize
- may not converge if policy is stochastic

Issues with Black Box Optimization:

- It is hard! May not converge, typically finds local optima.
- Must evaluate $J(\theta)$ many times. This can be **really** expensive.