# Lecture 07 Standard I/O and Dynamic Arrays

CS211 – Fundamentals of Computer Programming II Branden Ghena – Fall 2021

Slides adapted from: Jesse Tov

#### Administrivia

- Homeworks are getting harder! Remember to start early
  - Homework 4 builds on top of Homework 3
- Remember that there will be a break after homework 4
  - Homework 4 due October 21
  - Nothing due October 28
  - Homework 5 due November 4

# Today's Goals

- Explore input and output to files
  - What C library functions allow interacting with files?
  - How do stdin, stdout, and stderr work?
- Practice dynamic memory allocation with arrays
  - How do we make a dynamically-sized array?
- Introduce linked lists as another approach for dynamic data storage

#### Getting the code for today

```
cd ~/cs211/lec/ (or wherever you put stuff)
tar -xkvf ~cs211/lec/07_stdio_arrays.tgz
cd 07 stdio arrays/
```

#### **Outline**

File Input and Output in C

Standard Input and Output

Dynamic Arrays

Linked Lists

#### **Files**

- Collections of data
  - Usually in permanent storage on your computer
- Types of files
  - Regular files
    - Arbitrary data
    - Think of as a big array of bytes (just like memory)
  - Directories
    - Collections of regular files
  - Special files
    - Links, pipes, devices (see CS343)

#### How do we interact with files?

- Analogy: think of a file as a book
  - Big array of characters (bytes)

- 1. Open the book, starting at the first page
- 2. Read from the book
- 3. Write to the book
- 4. Change pages (without reading everything in between)
- 5. Close the book when finished

# System calls for interacting with files

- 1. Open the book, starting at the first page
  - fopen()
- 2. Read from the book
  - fread()
- 3. Write to the book
  - fwrite()
- 4. Change pages (without reading everything in between)
  - fseek()
- 5. Close the book when finished
  - fclose()

#### Opening files

```
FILE* fopen(const char* filename, const char* mode);
```

- filename is the string path for the file
  - "/home/brghena/class/cs211/f21/hw/hw01/src/circle.c"
  - "./arguments.c"
  - "arguments.c"
- mode specifies what you intend to do with the file
  - "r" read only (must exist)
  - "w" write (overwrites if exists)
  - "a" append (starts writing at end of file if exists)

# Open returns a FILE object

```
FILE* fopen(const char* filename, const char* mode);
```

- Pointer type for an object used to interact with the file
  - A "handle" to the file
- Other file interaction functions will take in a FILE\* as an argument
  - Don't need to remember the file path and look it up every time
- NULL instead specifies an error attempting to open the file

#### Reading files

```
size_t fread(void* ptr, size_t size, size_t count, FILE* stream);
```

- ptr is a pointer to an array to read into
  - At least size \* count bytes in length
- size is the number of bytes for each element in the array
- count is the number of elements to read
- stream is the file pointer returned from a previous call to fopen()
- Note: nowhere do we specify where to start reading
  - Library keeps track of a file offset with the file
  - Updated on each read
    - First read of 100 bytes starts at zero, next starts 100 bytes in

#### How do we know when we finished the file?

```
size_t fread(void* ptr, size_t size, size_t count, FILE* stream);
```

- Return from read is the count of elements actually read
  - Less than count means there was either an error or end-of-file was reached
- feof() lets you check if end-of-file was reached
- ferror() lets you check for particular errors

# Writing files looks a lot like reading

 Array to write from, size of elements in the array, number of elements to write, and a file pointer

Returns number of elements actually written

Write occurs at the current file offset

#### Moving the file offset

```
int fseek(FILE* stream, long int offset, int origin);
```

- Moves to offset for this file descriptor based on origin:
  - SEEK\_SET set to offset (essentially start of file plus offset)
  - SEEK\_CUR current location plus the offset
  - SEEK\_END end of file plus the offset (which can be negative)
- Returns zero if successful
  - Anything else means an error occurred
- ftell() gets the current location in a file
  - So you can seek back there later

#### Closing a file

```
int fclose(FILE* stream);
```

- Closes the file
- Returns zero on success
- It is an error to keep using the file descriptor after it is closed
  - Just like with dynamic memory management

#### References

- https://www.cplusplus.com/reference/cstdio/
  - Explanation of and links for everything in <stdio.h>

#### Buffered I/O

- C standard library buffers your interactions to make them more efficient
  - One big write to a file is MUCH faster than many small writes
- Sometimes you want to write to output right now
  - fflush() guarantees that the buffer is written now
  - Otherwise no write is guaranteed until fclose() is called

- Example: printf() buffers until a newline is reached
  - So a print right before a fault might not appear unless it includes a '\n'

#### Example: kitten tool

- Command line tool: cat prints out the contents of files
  - Does so very efficiently
- Our program: kitten prints out the contents of one file
  - No efficiency promises
- Writing kitten only requires file I/O mechanisms we've discussed!

Live coding: implement kitten

kitten.c

- Requirements
  - Parse argv[] to find file to open
  - Open the file
  - Read in lines from the file repeatedly
    - If end-of-file is reached, break
    - Print contents of file
  - Handle errors

#### **Outline**

File Input and Output in C

Standard Input and Output

Dynamic Arrays

Linked Lists

# How do programs talk to users?

- We glossed over this before
  - printf()
  - scanf()



- Work through the same file mechanism
  - Three special files created for each program
  - stdin standard input
  - stdout standard output
  - stderr standard error
- printf() -> fprintf(stdout) -> handle arguments & fwrite(stdout)

#### Standard I/O is a process thing, not a C thing

- You can access them in Python, for instance
  - https://docs.python.org/3/library/sys.html#sys.stdin

```
sys.stdin
sys.stdout
sys.stderr
```

File objects used by the interpreter for standard input, output and errors:

- stdin is used for all interactive input (including calls to input());
- stdout is used for the output of print() and expression statements and for the prompts of input();
- The interpreter's own prompts and its error messages go to stderr.

These streams are regular text files like those returned by the open() function. Their parameters are chosen as follows:

#### Standard I/O is configured by the shell

 When you run a program in command line, the shell attaches a standard input, standard output, and standard error to it

#### Defaults

- stdin read from terminal
- stdout write to terminal
- stderr write to terminal

kitten.c

# Live coding: kitten upgrades

Errors should be written to stderr

- Output can be written to stdout directly using fwrite()
  - Instead of using printf() in a loop to do it for us

# Redirecting standard I/O

- Shells by default setup standard I/O to connect to the keyboard and the screen
  - But any file will also work
- Shell I/O redirection commands
  - COMMAND < filename
    - Connect standard input to filename
  - COMMAND > filename
    - Connect standard output to filename (overwrite)
  - COMMAND >> filename
    - Connect standard output to filename (append)

# Piping commands

 A command shell desire is to run multiple commands where the output of the first feeds into the second

- COMMAND1 | COMMAND2
  - Connects stdout of COMMAND1 to stdin of COMMAND2
- Example: print out files and sort by size
  - Is -lah | sort -h

#### Sidebar: super useful command for testing

- tee [OPTION] . . . [FILE] . . .
  - Reads from stdin and write to both stdout and file
- Example: prints out a list of files and saves results
  - Is -lah | tee results.txt

• I run this with various programs I'm testing, so I can record the results, but also seem them in real-time.

# Example: redirection with kitten

- Standard I/O redirection is handled when the process is created
  - So it does not need to be aware of it at all
- Our kitten tool works with redirection automatically!
  - ./kitten arguments.c > OUTPUT\_FILE

#### Break + Thinking Excercise

Take a look at the cat command to see the other commands

How hard would they be to implement in kitten?

#### **Outline**

File Input and Output in C

Standard Input and Output

Dynamic Arrays

Linked Lists

# Dealing with dynamic input

 What if you want to read in data, but you don't know how much data there might be?

- Arrays in C are a fixed size
- But you can malloc() as many times as needed
  - Request some memory
  - Use until you run out
  - Request more memory and copy existing values over
  - realloc() makes this simple

# Example of dynamic memory: read\_line()

```
char* read_line(void)
```

- Reads an entire line at a time from stdin
  - Can't know in advance how many bytes there will be to read
  - Keeps reading in bytes until \\n' character or end-of-file
  - Needs to request more memory until it holds the entire line

Note: part of the 211 library, not standard C

readline.c

# Live coding: implement read\_line()

```
char* read_line(void)
```

- Requirements
  - Read from stdin until '\n' or end-of-file (EOF)
  - Allocate an array to hold the read characters
    - Make sure to end it with a \\0'
  - Returns
    - NULL pointer if EOF was reached immediately
    - Pointer to string otherwise (not including the newline character)

#### Realloc versus malloc

• We could just malloc() and copy ourselves, what does realloc() add?

- realloc() can be far more efficient
  - Doesn't have to copy data at all if there is room in the heap to expand
- Also simpler for programmers
  - Can't forget to free the old memory if realloc() does it for you

# Default string size will change efficiency

- Memory efficiency
  - Pointer returned could have way more memory than characters
  - User might hold on to memory for a while before freeing
  - The less wasted memory, the less memory the program needs
- Runtime speed
  - malloc() and realloc() are slow
  - The fewer times we call them, the faster the program will run
- Need to pick a sweet spot to balance the two of these
  - Real program: starts at 80 characters, doubles size when reallocating

#### Does efficiency really matter though?

If you're writing a CS211 homework: no

- If you're writing a Javascript interpreter for Firefox,
  - Which has millions of users
  - times hundreds of websites per day for each user
  - times hundreds of lines of code per website
  - and each line of code is read with read line()

#### YES

#### Break + relevant xkcd



https://xkcd.com/2347/

#### **Outline**

File Input and Output in C

Standard Input and Output

Dynamic Arrays

Linked Lists

#### The problem with arrays

- They make a lot of sense when you have fixed data
- But they're not very flexible for dynamic data

- Not smooth or simple to grow/shrink arrays
  - Lots of thought for how to dynamically change memory

#### An alternative: linked allocations





#### C code for a linked list structure

Array version:

```
int myarray[];
```

Linked List version:

```
struct node {
  int value;
  struct node* next;
};
typedef struct node node_t;
node_t head;
```

#### Rules for linked lists

- The variable holding the "list" is actually a pointer to the first node of the list
  - Just like an array is a pointer to the first element in the array
- Each node must have a pointer to the next node in the list

The last node in the list has a NULL pointer

Live coding example

linked\_list.c

- Working with a linked list
  - Determine length
  - Print values
  - Add elements to the list

#### **Outline**

File Input and Output in C

Standard Input and Output

Dynamic Arrays

Linked Lists