Doğrusal Fonksiyonlar

Dr. Öğr. Üyesi Işık İlber Sırmatel

T.C. Trakya Üniversitesi Mühendislik Fakültesi Elektrik - Elektronik Mühendisliği Bölümü Kontrol Anabilim Dalı Kaynak (source)

Lecture Slides for Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares. Stephen Boyd, Lieven Vandenberghe

Konu listesi

1. Doğrusal ve afin fonksiyonlar

2. Örnek: Taylor yaklaşıklığı

3. Örnek: Bağlanım modeli

Bölüm 1

Doğrusal ve afin fonksiyonlar

Toplanırlık ve doğrusal fonksiyonlar

 $ightharpoonup f: \mathbb{R}^n \to \mathbb{R}$, f'in n-vektörleri sayılara eşleyen bir fonksiyon olduğu anlamına gelir

ightharpoons

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

ifadesi bütün α ve β sayıları ile bütün x ve y n-vektörleri için sağlanıyorsa f toplanırlık (superposition) özelliğine sahiptir

- bu ifadeyi çok dikkat ederek (notasyon anlamında) çözümleyin
- ► toplanırlık özelliğine sahip fonksiyonlara *doğrusal* (linear) denir

İç çarpım fonksiyonu

▶ bir *a n*-vektörü ile

$$f(x) = a^{T}x = a_1x_1 + a_2x_2 + \dots + a_nx_n$$

fonksiyonu bir iç çarpım fonksiyonudur

- ightharpoonup f(x), x'in elemanlarının bir ağırlıklı toplamıdır
- ► iç çarpım fonksiyonu doğrusaldır:

$$f(\alpha x + \beta y) = a^{T}(\alpha x + \beta y)$$

$$= a^{T}(\alpha x) + a^{T}(\beta y)$$

$$= \alpha (a^{T}x) + \beta (a^{T}y)$$

$$= \alpha f(x) + \beta f(y)$$

İç çarpım fonksiyonu

Bütün doğrusal fonksiyonlar birer iç çarpım fonksiyonudur.

- $f: \mathbb{R}^n \to \mathbb{R}'$ in doğrusal olduğunu varsayalım
- **b** bu halde f, bazı a'lar için $f(x) = a^T x$ olarak ifade edilebilir (özel olarak: $a_i = f(e_i)$)
- ▶ bu özellik şu ifadelerden kaynaklanır

$$f(x) = f(x_1e_1 + x_2e_2 + \dots + x_ne_n)$$

= $x_1f(x_1) + x_2f(e_2) + \dots + x_nf(e_n)$

Afin fonksiyonlar

- ► doğrusal bir ifade ile bir sabitin toplamı formundaki fonksiyonlara afin (*affine*) fonksiyon denir
- lacktriangle genel formu $f(x)=a^Tx+b$ şeklindedir (a n-vektör, b skaler)
- ▶ $f: \mathbb{R}^n \to \mathbb{R}$ ile verilen bir fonksiyon ancak ve ancak (if and only if)

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

ifadesi, $\alpha+\beta=1$ şartını sağlayan bütün α ve β sayıları ile bütün x ve y vektörleri için sağlanıyorsa afindir

 bazen (hatalı şekilde) afin fonksiyonlardan doğrusal olarak bahsedilir

Doğrusal vs. afin fonksiyonlar

Doğrusal fonksiyon $(f: \mathbb{R}^2 \to \mathbb{R})$

$$f(x) = 2x_1 + 3x_2 = \begin{bmatrix} 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Afin fonksiyon $(f: \mathbb{R}^2 \to \mathbb{R})$

$$f(x) = 2x_1 + 3x_2 + 5 = \begin{bmatrix} 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 5$$

Karesel fonksiyon ($f: \mathbb{R}^2 \to \mathbb{R}$)

$$f(x) = 2x_1^2 + 3x_2^2$$

Bölüm 2

Örnek: Taylor yaklaşıklığı

Birinci-derece Taylor yaklaşıklığı

- $lackbox{} f:\mathbb{R}^n
 ightarrow \mathbb{R}$ fonksiyonunu ele alalım
- f'in z noktası civarındaki birinci-derece Taylor yaklaşıklığı (approximation):

$$\hat{f}(x) = f(z) + \frac{\partial f}{\partial x_1}(z)(x_1 - z_1) + \dots + \frac{\partial f}{\partial x_n}(z)(x_n - z_n)$$

- $ightharpoonup x_i$ 'lerin hepsi z_i 'lere yakın olduğunda $\hat{f}(x)$ f(x)'e çok benzerdir
- $ightharpoonup \hat{f}$ x'in bir afin fonksiyonudur
- ► iç çarpım ile

$$\hat{f}(x) = f(z) + \nabla f(z)^T (x - z)$$

formunda yazılabilir. buradaki n-vektör $\nabla f(z)$, f'in z noktasındaki gradyanıdır

Not: Gradyan

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(x) \\ \frac{\partial f}{\partial x_2}(x) \\ \vdots \\ \frac{\partial f}{\partial x_n}(x) \end{bmatrix}$$

Birinci-derece Taylor yaklaşıklığı - Örnek

$$f(x) = x^{2}$$

$$z = 3$$

$$\frac{df}{dx}(x) = 2x$$

$$\frac{df}{dx}(z) = 6$$

$$\hat{f}(x) = f(z) + \frac{df}{dx}(z)(x - z)$$

$$\hat{f}(x) = 9 + 6(x - 3)$$

$$\hat{f}(x) = 6x - 9$$

Bölüm 3

Örnek: Bağlanım modeli

► bağlanım (regression) modeli

$$\hat{y} = \beta^T x + \nu$$

şeklindedir ve x'in bir afin fonksiyonudur

- ightharpoonup x bir öznitelik (*feature*) vektörüdür; elemanları x_i 'lere açıklayıcı değişken (*regressor*) denir
- ightharpoonup n-vektör β 'ya ağırlık vektörü denir
- ightharpoonup skaler ν 'ye kayma (offset) denir
- ightharpoonup skaler \hat{y} 'ye öngörü (prediction) denir (bazı gerçek sonuçlarla ilgili, veya y ile gösterilen bağımlı değişkenlerle ilgili öngörü)

örnek: ev fiyatı tahmin sistemi

- ▶ y ev satış fiyatı (belirli bir konum ve zaman aralığı için)
- ► açıklayıcı değişken vektörü x:

$$x = \begin{bmatrix} \text{alan} \\ \text{oda sayısı} \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

► ağırlık vektörü ve kayma:

$$\beta = \begin{bmatrix} 1.6 \\ -9.4 \end{bmatrix} \qquad \nu = 55$$

lacktriangle ev satışları verisinden eta ve u parametrelerinin nasıl tahmin edileceğine daha sonra bakacağız

örnek: ev fiyatı tahmin sistemi

$$\hat{y} = \underbrace{\begin{bmatrix} 1.6 & -9.4 \end{bmatrix}}_{\beta^T} \underbrace{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}_{x} + \underbrace{55}_{\nu}$$

ev no.	x_1 (alan, m 2)	x_2 (oda sayısı)	y (fiyat, $\times 10^3$ \$)	\hat{y} (fiyat öngörüsü, $\times 10^3$ \$)
1	80	2	115.00	164.20
2	125	4	234.50	217.40
3	110	6	198.00	174.60
4	280	8	528.00	427.80
5	370	10	572.00	553.00

örnek: ev fiyatı tahmin sistemi

