一、填空题(每题 4 分, 共 20 分)

1、设
$$f(x) = \begin{cases} 3x^2 + a, & x \le 0 \\ \frac{\sin^2 4x}{x^2}, & x > 0 \end{cases}$$
, 当 $a =$ ______时,函数 $y = f(x)$ 在 $x = 0$ 处连续。

- $2 \lim_{n\to\infty} \sqrt[n]{2^n + 5^n} = \underline{\qquad}$
- 3、设 $y = 3^{\sin 2x}$,则 dy =______
- 4、曲线 $y = \ln x$ 上一点,其横坐标 x = 2,则曲线在该点处的切线方程

为_____。

5、已知 $f(x) = e^{-2x}$,则 $f^{(n)}(0) = _____$

二、单项选择题 (每题 4 分, 共 16 分)

- 1、设f(x) = |x|,则f'(x)()
- (A) =x; (B) =|x|; (C) 不存在; (D) 以上都不对。
- 2、当x→0时,下列无穷小中最高阶的是()
 - (A) $x^2 + x^6$; (B) $\sin x \tan x$; (C) $1 \cos^2 x$; (D) $1 \cos x^2$.
- 3、设 $\lim_{x\to 0} (1-mx)^{\frac{1}{x}} = e^2$,则m = ()
 - (A) $\frac{1}{2}$; (B) 2; (C) -2; (D) $-\frac{1}{2}$.
- 4、点 x = 1 是函数 $f(x) = \begin{cases} 3x + 4, x > 1 \\ 12 5x, x \le 1 \end{cases}$ 的 ()
- (A) 可去间断点; (B) 跳跃间断点; (C) 第二类间断点; (D) 连续点。

三、计算题 (每题 8 分, 共 24 分)

1、计算
$$\lim_{x\to 4} \frac{\sqrt{1+2x}-3}{\sqrt{x}-2}$$

2、计算
$$\lim_{n\to\infty} \left(\frac{1}{n^k} + \frac{2}{n^k} + \dots + \frac{n}{n^k}\right)$$

3、证明: 当
$$x \to 0$$
时, $\ln(1+x) - x = o(e^x - 1)$

四、计算题 (每题 8 分, 共 24 分)

1、求函数
$$y = x \arctan \frac{x}{a} - \frac{a}{2} \ln(a^2 + x^2)$$
 的导数。

2、读
$$\begin{cases} x = 1 + t^2 \\ y = t^2 - t^3 \end{cases}$$
, 读
$$\frac{dy}{dx}, \frac{d^2y}{dx^2}$$
。

3、设函数
$$y = y(x)$$
 由 $y - xe^y = 1$ 所确定,求 $\frac{dy}{dx}\Big|_{x=0}$ 。

五、解答题(每题8分,共16分)

2、设f(x), g(x)都在区间 | 可导,

证明 f(x) 的任意两个零点之间必有方程 f'(x)+g'(x)f(x)=0 的根

21

一、填空题 (每题 4 分, 共 36 分)

$$1, \lim_{x \to \infty} \left(\frac{\sin x}{x} - x \sin \frac{1}{x} \right) = \underline{\qquad}$$

$$2, \lim_{x\to\infty}(1-\frac{2}{x})^x = \underline{\hspace{1cm}}$$

$$3 \cdot d \underline{\hspace{1cm}} = \frac{1}{\sqrt{x}} dx$$

4、曲线
$$y = e^x$$
 在点 (0.1) 处的法线方程为_____

5、已知
$$f(x) = \sin x$$
,则 $f^{(10)}(\frac{\pi}{2}) =$ ______

$$6, \lim_{x \to \infty} \frac{5 - 8x + 7x^7}{3 + 4x^5 - 6x^7} = \underline{\hspace{1cm}}$$

8、
$$x_0 = 0$$
 是函数 $f(x) = \frac{1}{e^{\frac{x}{1-x}} - 1}$ 的第_____类间断点。

9、设
$$f'(0) = 2$$
,则 $\lim_{h \to 0} \frac{f(0-h) - f(0)}{2h} = \underline{\hspace{1cm}}$

二、计算题 (每题 8 分, 共 24 分)

1、计算
$$\lim_{x\to 0} \frac{\tan x - x}{\sin^3 x}$$

3、求函数 $y = \arctan x \cdot \ln \sqrt{1 + x^2}$ 的导数。

三、计算题 (每题 8 分, 共 24 分)

1、设
$$\begin{cases} x = a \cos t \\ y = b \sin t \end{cases}$$
,求 $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ 。

2、设函数
$$y = y(x)$$
 由 $y^3 + 2x^2 - xy + 1 = 0$ 所确定,求 $\frac{dy}{dx}\Big|_{x=0}$ 。

3、设函数 $f(x) = \begin{cases} x^2, & x \le 1 \\ ax + b, x > 1 \end{cases}$ 为了使函数 f(x) 在 x = 1 处连续且可导,a, b 应取

什么值?

四、解答题(每题8分,共16分)

- 1、设 f(x) 在 [a,b] 上连续,并且 $f(x) \in [a,b]$,证明至少存在一点 $c \in [a,b]$,使得 f(c) = c。
- 2、设 f(x) 在[0,1]上连续,在(0,1)内可导,并且 f(0) = f(1) = 0,

证明: 存在 $\xi \in (0,1)$, 使得 $f(\xi) + f'(\xi) = 0$ 。