```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model selection import train test split
from sklearn.linear_model import LinearRegression
data = pd.read_csv('housing.csv')
data.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 20640 entries, 0 to 20639
     Data columns (total 10 columns):
      # Column
                              Non-Null Count Dtype
      0
         longitude
                               20640 non-null
                                               float64
          latitude
                               20640 non-null float64
          housing_median_age
                              20640 non-null
                                               float64
          total_rooms
                               20640 non-null float64
          total_bedrooms
                               20433 non-null
                                               float64
          population
                               20640 non-null float64
      6
                               20640 non-null
          households
                                               float64
                               20640 non-null
                                              float64
          median_income
          median_house_value
                              20640 non-null
                                               float64
          ocean_proximity
                               20640 non-null
                                               object
     dtypes: float64(9), object(1)
     memory usage: 1.6+ MB
data.columns
Index(['longitude', 'latitude', 'housing_median_age', 'total_rooms', 'total_bedrooms', 'population', 'households', 'median_income',
             'median_house_value', 'ocean_proximity'],
           dtype='object')
median_house_values = data['median_house_value']
# Create a histogram
plt.figure(figsize=(10, 6))
plt.hist(median_house_values, bins=30, color='blue', edgecolor='black', alpha=0.7)
plt.title('Histogram of Median House Values')
plt.xlabel('Median House Value')
plt.ylabel('Frequency')
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.show()
₹
                                                Histogram of Median House Values
         1400
         1200
         1000
          800
```



```
plt.figure(figsize=(10, 6))
sns.scatterplot(x='total_bedrooms', y='median_house_value', data=data, alpha=0.5, color='blue')
plt.title('Total Bedrooms vs. Median House Value')
```

```
plt.xlabel('Total Bedrooms')
plt.ylabel('Median House Value')
plt.grid(True)
plt.show()
```





sns.pairplot(data)
plt.figure(figsize=(8,5))
plt.show()





<sup>&</sup>lt;Figure size 800x500 with 0 Axes>

<sup>#</sup> Remove non-numeric columns
numeric\_data = data.select\_dtypes(exclude=['object'])

<sup>#</sup> Calculate the correlation matrix
corr\_matrix = numeric\_data.corr()

# Plot the heatmap
sns.heatmap(corr\_matrix)





y=data['median\_house\_value']

from sklearn.model\_selection import train\_test\_split x\_train,x\_test,y\_train,y\_test=train\_test\_split(x,y,test\_size=0.3,random\_state=42)

x\_train

| <b>→</b> |       | longitude       | latitude | housing_median_age | total_rooms | total_bedrooms | population | households | median_income | median_house_val |
|----------|-------|-----------------|----------|--------------------|-------------|----------------|------------|------------|---------------|------------------|
|          | 7061  | -118.02         | 33.93    | 35.0               | 2400.0      | 398.0          | 1218.0     | 408.0      | 4.1312        | 193800           |
|          | 14689 | -117.09         | 32.79    | 20.0               | 2183.0      | 534.0          | 999.0      | 496.0      | 2.8631        | 169700           |
|          | 17323 | -120.14         | 34.59    | 24.0               | 1601.0      | 282.0          | 731.0      | 285.0      | 4.2026        | 259800           |
|          | 10056 | <b>-</b> 121.00 | 39.26    | 14.0               | 810.0       | 151.0          | 302.0      | 138.0      | 3.1094        | 136100           |
|          | 15750 | -122.45         | 37.77    | 52.0               | 3188.0      | 708.0          | 1526.0     | 664.0      | 3.3068        | 500001           |
|          |       |                 |          |                    |             |                |            |            |               |                  |
|          | 11284 | -117.96         | 33.78    | 35.0               | 1330.0      | 201.0          | 658.0      | 217.0      | 6.3700        | 229200           |
|          | 11964 | -117.43         | 34.02    | 33.0               | 3084.0      | 570.0          | 1753.0     | 449.0      | 3.0500        | 97800            |
|          | 5390  | -118.38         | 34.03    | 36.0               | 2101.0      | 569.0          | 1756.0     | 527.0      | 2.9344        | 222100           |
|          | 860   | -121.96         | 37.58    | 15.0               | 3575.0      | 597.0          | 1777.0     | 559.0      | 5.7192        | 283500           |
|          | 15795 | -122.42         | 37.77    | 52.0               | 4226.0      | 1315.0         | 2619.0     | 1242.0     | 2.5755        | 325000           |

14448 rows × 10 columns

 $from \ sklearn.linear\_model \ import \ LinearRegression$ 

 $from \ sklearn.ensemble \ import \ Random ForestRegressor$ 

rg=LinearRegression()

```
x_train_encoded = pd.get_dummies(x_train)
x_test_encoded = pd.get_dummies(x_test)

# Instancier le modèle
rg = RandomForestRegressor()

# Entraîner le modèle
rg.fit(x_train_encoded, y_train)

The results of the
```

scatter=plt.scatter(y\_test,predictions)



sns.displot(y\_test-predictions,bins=50);

