Лабораторная работа №2.2.6 Определение энерги активации по температурной зависимости вязкости жидкости

Рожков А. В. Преподаватель Яворский В. А.

11 марта 2024 г.

Цель работы: 1) измеренеи объёмов форвакуумной и высоковакуумной частей установки; 2) определение скорости откачки системы в стационарном режиме, а также по ухудшению и по улучшению вакуума.

В работе используются: вакуумная установка с манометрами: масляным ($\sigma_h = 1$ мм), термопарным ПМТ-2 ($\varepsilon_p = 30\%$) и ионизационным ПМИ-2 ($\varepsilon_p = 35\%$).

1 Экспериментальная установка

Рис. 1: Схема экспериментальной установки.

Установка изготовлена из стекла и состоит из форвакуумного баллона (Φ Б), высоковакуумного диффузионного насоса (θ H), высоковакуумного баллона (θ B), масляного (θ M) и ионизационного (θ M) манометров, термопарных манометров (θ M1 и θ M2), форвакуумного насоса (θ M) и соединительных кранов (θ M2). Кроме того, в состав установки входят: вариатор (автотрансформатор с регулируемым выходным напряжением), или реостат и амперметр для регулирования тока нагревателя диффузионного насоса.

Маслянный манометр: Представляет собой U-образную трубку, до половины наполненную вязким маслом, обладающим весьма низким давлением насыщенных паров. Так как плотность масла мала, $\rho = 0,885 \ r/cm^3$, то при помощи манометра можно измерить только небольшие разности давлений (до нескольких торр). Во время откачки и заполнения установки атмосферным воздухом кран K_4 соединяющий оба колена манометра, должен быть открыт во избежание выброса масла и загрязнения установки. Кран K_4 закрывается только при измерении давления U-образным манометром.

Термопарный манометр: Чувствительным элементом манометра является термопара, заключенная в стеклянный баллон. Устройство термопары поясненона (Рис. 2). По нити накала НН пропускается ток постоянной величины. Термопара ТТ присоединяется к милливольтметру, показания которого определяются температурой нити накала и зависят от отдачи тепла вокружающее пространство. Потери тепла определяются теплопроводностью нити и термопары, теплопроводностью газа, переносом тепла конвективными потоками газа внутри лампы и теплоизлучением нити (инфракрасноетепловое излучение). В обычном режимелампы основную роль играет теплопроводность газа. При давлениях >1 торр теплопроводность газа, а вместе с ней и ЭДС термопары практически не зависят от давления газа, и прибор не работает. При улучшении вакуума средний свободный пробег молекул становится сравнимым с диаметром нити, теплоотвод падает и температура спая возрастает. При вакууме 10⁻³ торр теплоотвод, осуществляемый газом, становится сравнимым с другими видами потерь теплаи температура нити становится практически постоянной. Градуировочная кривая термопарного манометра приведена на (Рис. 3).

Рис. 2: Схема термопаного манометра.

Рис. 3: Градуировочная кривая термопарного манометра.

Ионизационный манометр: Схема ионизационного манометра изображена на (Рис. 4). Он представляет собой трехэлектродную лампу. Электроны испускаются накаленным катодом и увлекаются электрическим полем к аноду, имеющему вид спирали. Проскакивая за ее витки,электроны замедляются полем коллектора и возвращаются к катоду, а от него вновь увлекаются к аноду. Прежде чем осесть на аноде, они успевают много раз пересечь пространство между катодом и коллектором. На своем пути электроны ионизуют молекулы газа. Ионы, образовавшиеся между анодом и коллектором, притяги ваются полем коллектора и определяют его ток. Ионный ток в цепи коллектора пропорционален плотности газа и поэтому может служить мерой давления. Вероятность ионизации зависит от рода газа, заполняющего лампу (а значит, и откачиваемый объем). Калибровка манометра верна, если остаточным газом является воздух. Накаленный катод ионизационного манометра перегорает, если давление в системе превышает 10^{-3} торр. Поэтому включать ионизационный манометр можно, только убедившись по термопарному манометру, что давление в системе не превышает 10^{-3} торр. При измерении нить ионизационного манометра сильно греется. При этом она сама, окружающие ее электроды и стенки стеклянного баллона могут десорбировать поглощенные ранее газы. Выделяющиеся газы изменяют давление в лампе и приводят к неверным показаниям. Поэтому перед измерениями ионизационный манометр прогревается (обезгаживается) в течение 10–15 мин. Для прогрева пропускается ток через спиральный анод лампы.

Рис. 4: Схема ионизационного манометра.

Диффузионный насос: Откачивающее действие диффузионногонасоса основано на диффузии (внедрении) молекул разреженного воздуха в струю паров масла. Попавшие в струю молекулы газа увлекаются ею и уже не возвращаются назад. Устройство одной ступени масляного диффузионного насоса схематически показано на (Рис. 5) (в лабораторной установке используется несколько откачивающих ступеней). Масло, налитое в сосуд А, подогревается электрической печкой. Пары масла поднимаются по трубе Б и вырываются из сопла В. Струя паров увлекает молекулы газа, которые поступают из откачиваемого сосуда через трубку ВВ. Дальше смесь попадает в вертикальную трубу Г. Здесь масло осаждаетсяна стенках трубы и маслосборников и стекает вниз, а оставшийся газчерез трубу ФВ откачивается форвакуумным насосом. Диффузионный насос работает наиболее эффективно при давлении, когда длинасвободного пробега молекул воздуха примерно равна ширине кольцевого зазора между соплом В и стенками трубы ВВ. В этом случае пары масла увлекают молекулы воздуха из всего сечения зазора. Давление насыщенных паров масла при рабочей температуре, создаваемой обогревателем сосуда A, много больше $5 \cdot 10^{-2}$ торр. Именно поэтому пары масла создают плотную струю, которая и увлекаетс собой молекулы газа. Если диффузионный насос включить при давлении, сравнимом с давлением насыщенного пара масла, то последнее никакой струи не создаст и масло будет просто окисляться и угорать.

Диффузионный насос, используемый в нашей установке, имеет две ступени и соответственно два сопла (Рис. 6). Одно сопло вертикальное (первая ступень), второе сопло горизонтальное (вторая ступень). За второй ступенью имеется еще одна печь, но пар из этой печи поступает не в сопло, а по тонкой трубке подводится ближе к печке первой ступени. Эта печь осуществляет фракционирование масла. Легколетучие фракции масла, испаряясь, поступают в первую ступень, обогащая ее легколетучей фракцией масла. По этой причине плотность струи первой ступени выше и эта ступень начинает откачивать при более высоком давлении в форвакуумной части установки. Вторая ступень обогощается малолетучими фракциями. Плотность струи второй ступени меньше, но меньше и давление насыщенных паров масла в этой ступени. Соответственно в откачиваемый объем поступает меньше паров масла и его удается откачать до более высокого вакуума, чем если бы мы работали только с одной ступенью.

Рис. 6: Диффузионный насос используемый в нашей работе.

2 Теоретическая часть

Процесс откачки: Производительность насоса определяется скоростью откачки W (π /c): W — это объем газа, удаляемого из сосуда при данном давлении за единицу времени. Скорость откачки форвакуумного насоса равна емкости воздухозаборной камеры, умноженной на число оборотов в секунду.

Обозначим через $Q_{\rm д}$ количество газа, десорбирующегося с поверхности откачиваемого объема в

единицу времеи, через $Q_{\rm u}$ – количество газа, проникающего в единицу времени в этот объем извне – через течи. Будем считать, что насос обладает скоростью откачки W и в то же время сам является источником газа; пусть $Q_{\rm H}$ — поток газа, поступающего из насоса назад в откачиваемую систему. $Q = Q_{\rm J} + Q_{\rm H} + Q_{\rm H}$ измеряем в единицах (моль/с). Получаем формулу

$$-\frac{VdP}{RT} = \left(\frac{PW}{RT} - Q\right)dt$$

При предельном давлении dP = 0 и поэтому получаем

$$Q = \frac{P_{\rm np}W}{RT}$$

Подставляя получаем

$$-VdP = W(P - P_{\rm np})dt$$

Интегрируем полученное ур-е и получаем

$$P - P_{\text{np}} = (P_0 - P_{\text{np}}) \exp\left(-\frac{W}{V}t\right) \tag{1}$$

Пренебрегая $P_{\rm np}$ относитеьно P_0

$$P = P_0 \exp\left(-\frac{W}{V}t\right) \tag{2}$$

Как видим, величина $\tau = V/W$ показывает характерное время откачки системы.

Теперь попробуем понять чем обусловлена скорость откачки. Очевидно, скорость W зависит от скорости откачки насоса $W_{\rm H}$, но она так же зависит от трубопровода соединяющего насос к откачиваемой части, т.к. если трубопровод не сможет обеспечить достаточное количество газа к входу насоса то, производительность упадет.

Рис. 7: Схема насоса с трубопроводом.

Попробуем описать систему математически. Пусть у нас есть насос со скоростью откачки $W_{\rm H}$ и трубопровод с пропускной способностью C. Давление в откачиваемом объеме – P_1 . Исследовав схему 7 получаем

$$C(P_1 - P_2) = W_{\scriptscriptstyle \rm H} P_2 \Rightarrow P_2 = \frac{CP_1}{C + W_{\scriptscriptstyle \rm H}} \Rightarrow WP_1 = W_{\scriptscriptstyle \rm H} P_2 = \frac{CW_{\scriptscriptstyle \rm H}}{C + W_{\scriptscriptstyle \rm H}} P_1$$

Как видим, для результирующей скорости W верно соотношение

$$\frac{1}{W} = \frac{1}{W_{\scriptscriptstyle \rm H}} + \frac{1}{C}$$

Обобщая это выражение для последовательно соединенных труб получаем

$$\frac{1}{W} = \frac{1}{W_{\rm H}} + \frac{1}{C_1} + \frac{1}{C_2} + \dots \tag{3}$$

Заметим только что данные формулировки верны при молекулярном режиме течения, когда вязкое трение не имеет большого вклада в движение газа.

Течение газа через трубу: Для количества газа, протекающего через трубу в условиях высокого вакуума или, как говорят, в кнудсеновском режиме, справедлива формула

$$\frac{d(PV)}{dt} = \frac{4}{3}r^3\sqrt{\frac{2\pi RT}{\mu}}\frac{P_2 - P_1}{L}$$
 (4)

где r и L соответственно радиус и длина трубы. Если пренебречь давлением P_1 у конца, обращенного к насосу, получаем формулу для пропускной способности трубы

$$C_{\rm TP} = \frac{dV}{dt} = \frac{4}{3} \frac{r^3}{L} \sqrt{\frac{2\pi RT}{\mu}} \tag{5}$$

Для пропускной способности отверстия (например в кранах) имеем формулу

$$C_{\text{\tiny OTB}} = S \frac{\bar{v}}{4} \tag{6}$$

3 Ход работы

- 3.1 Определение объёма форваакуумной и высоковакуумной частей установки
- 3.1.1 Открываем все краны установки
- 3.1.2 Впускаем в установку атмосферный воздух
- 3.1.3 Изолируем объём капилляра.

$$V_{\rm Kall} = (50 \pm 1) \text{cm}^3$$

3.1.4 Закрываем кран, соединяющий установку с атмосферой, и кран между установкой и форвакуумным насосом. Включаем форвакуумный насос

В течение 2 минут насос откачивает сам себя и патрубок установки.

- 3.1.5 Открываем кран и откачиваем установку
- 3.1.6 Включаем вакуумметры в сеть

При достижении давления $1.9*10^{-2}$ мм.рт.ст останавливаем процесс откачки.

- 3.1.7 Отсоединяем установку от форвакуумного насоса
- 3.1.8 Отсоединяем высоковакуумную часть установки от форвакуумной
- 3.1.9 Закрыв кран, вводим в работу масляный манометр
- 3.1.10 Выпускаем запертый в капилляре воздух в установку
- 3.1.11 Выпущенный воздух повышает давление в установке

Это давление измеряется масляным манометром.

Верхнее значение: $h_1 = (34.6 \pm 0.1)$ см.масл.ст Нижнее значение: $h_2 = (5.4 \pm 0.1)$ см.масл.ст Разность уровней: $\Delta h_{\rm db} = (29.2 \pm 0.2)$ см. масл.ст

Находим объём форвакуумной части установки 3.1.12

Пренебрегаем остаточным давлением $1.9*10^{-2}$ мм.рт.ст, так как оно в ~ 1000 раз меньше остальных давлений.

$$P_{\text{атм}} = (100.43 \pm 0.01) \text{ Па}$$
 $\rho_{\text{масла}} = (0.885 \pm 0.001) \text{ г/см}^3$

$$V_{\Phi^{
m B}} = rac{P_{
m atm}V_{
m kan}}{P_{
m mahometpa}} = rac{P_{
m atm}V_{
m kan}}{
ho_{
m mac,na}g\Delta h_{\Phi^{
m B}}} = 1980~{
m cm}^3$$

$$\sigma_{V_{\Phi B}} = V_{\Phi B} \sqrt{\left(\frac{\sigma_{P_{\text{atm}}}}{P_{\text{atm}}}\right)^2 + \left(\frac{\sigma_{V_{\text{Kall}}}}{V_{\text{Kall}}}\right)^2 + \left(\frac{\sigma_{\rho_{\text{масла}}}}{\rho_{\text{масла}}}\right)^2 + \left(\frac{\sigma_g}{g}\right)^2 + \left(\frac{\sigma_{\Delta h_{\Phi B}}}{\Delta h_{\Phi B}}\right)^2} = 50 \text{ cm}^3$$

Находим объём всей установки 3.1.13

Для этого открываем кран, соединяющий высоковакуумную и форвакуумную части и по показаниям масляного манометра аналогично вычисляем полный объём обоих частей.

Верхнее значение: $h_2 = (11.0 \pm 0.1)$ см.масл.ст Нижнее значение: $h_3 = (29.7 \pm 0.1)$ см.масл.ст Разность уровней: $\Delta h_{\text{полн}} = (18.7 \pm 0.2) \text{ см.масл.ст}$

$$V_{\text{полн}} = \frac{P_{\text{атм}}V_{\text{кап}}}{P_{\text{манометра}}} = \frac{P_{\text{атм}}V_{\text{кап}}}{\rho_{\text{масла}}g\Delta h_{\text{полн}}} = (3096 \pm 80) \text{ см}^3$$

Открываем кран масляного манометра, чтобы избежать переброса масла в уста-3.1.14

3.1.15Находим объём высоковакуумной части установки

$$V_{\text{вв}} = V_{\text{полн}} - V_{\Phi \text{в}} = 1113 \text{ см}^3$$
 (7)

$$V_{\text{вв}} = V_{\text{полн}} - V_{\text{фв}} = 1113 \text{ cm}^3$$
 (7)
 $\sigma_{V_{\text{вв}}} = \sqrt{\sigma_{V_{\text{полн}}}^2 + \sigma_{V_{\text{фв}}}^2} = 90 \text{ cm}^3$ (8)

Повторяем измерения ещё раз 3.1.16

Результаты приведены в таблице 1

Случайная и полная погрешность средних объёмов по формулам:

$$\sigma^{\text{случ}} = \sqrt{\frac{1}{2} \sum_{i=1}^{2} (V_i - \langle V \rangle)^2}$$

$$\sigma = \sqrt{\sigma^{\text{приб}^2} + \sigma^{\text{случ}^2}}$$

	Изм. 1	Изм. 2
h_1, c_M	(34.6 ± 0.1)	(34.7 ± 0.1)
h_2, cm	(5.4 ± 0.1)	(5.2 ± 0.1)
$\Delta h_{\Phi^{\mathrm{B}}}$	(29.2 ± 0.2)	(29.5 ± 0.2)
h_3 , cm	(29.7 ± 0.1)	(29.5 ± 0.1)
h_4, cm	(11.0 ± 0.1)	(10.9 ± 0.1)
$\Delta h_{\text{полн}}$	(18.7 ± 0.2)	(18.6 ± 0.2)
$V_{\Phi^{\mathrm{B}}}$	(1980.0 ± 50.0)	(1960.0 ± 50.0)
$V_{\scriptscriptstyle m BB}$	(1110.0 ± 90.0)	(1150.0 ± 90.0)
$V_{\text{полн}}$	(3100.0 ± 80.0)	(3110.0 ± 80.0)

Таблица 1: Результаты измерений объёмов установки

$$\langle V_{\Phi \rm B} \rangle = (1970 \pm 50) \; {
m cm}^3$$

 $\langle V_{\rm BB} \rangle = (1130 \pm 90) \; {
m cm}^3$
 $\langle V_{\rm полн} \rangle = (3100 \pm 80) \; {
m cm}^3$

3.2 Получение высокого вакуума и измерение скорости откачки

3.2.17 Откачаем воздух из всей установки

3.2.18 Убедимся, что все краны открыты и воздух откачивается их всех объёмов установки

3.2.19 Откачивание останавливаем при достижении давления $\sim 1*10^{-2}$ мм.рт.ст Также проверяем ЭДС вакуумметров по приведённой выше градуировочной кривой.

3.2.20 Приступаем к высоковакуумного боллона при помощи диффузионного насоса Для этого нужно закрыть кран K6.

3.2.21 Включаем источник питания

Прогреваем масло в течение 5 минут на малой мощности, затем включаем полную.

3.2.22 Дожидаемся давления $\sim 3*10^{-4}$ мм.рт.ст в высоковакуумной части

При приближении давления к данной величине масло закипит, необходимо убедиться, что количество капель, стекающих из сопла второй ступени диффузионного насоса, составляет не менее 12-15 в минуту.

3.2.23 Включаем ионнизационный манометр

Запускаем инициализацию. Затем ждём достижения давления ниже $1*10^{-4}$ мм.рт.ст и производим дегазацию.

3.2.24 Определяем предельное значение давления в высоковакуумной части

$$P_{\text{пред}} = (9.0 \pm 0.1) * 10^{-5} \text{ мм.рт.ст}$$

3.2.25 Находим скорость откачки по ухудшению и улучшению вакуума

- 1. Сначала закроем кран диффузионного насоса и измерим ухужшение вакуума в высоковауумной части. Дожидаемся давления $6*10^{-4}$ мм.рт.ст. Результаты в таблице 2 и на графике 8.
- 2. Откроем тот же кран и измерим улучшение вакуума. Результаты в табдице 2 и на графике 9. Повторим измерения ещё раз (табл. 2 и графики 10, 11).

Рис. 8: Ухудшение вакуума 1

Рис. 9: Улучшение вакуума 1

Рис. 10: Ухудшение вакуума 2

Рис. 11: Улучшение вакуума 2

3. Из графиков 8 и 10 по МНК получаем коэффициенты прямых:

$$k_1 = (-0.101 \pm 0.001) \text{ c}^{-1}$$

 $k_2 = (-0.105 \pm 0.001) \text{ c}^{-1}$
 $k_{\text{cp}} = (-0.103 \pm 0.002) \text{ c}^{-1}$

4. Рассчитываем скорость откачки

Из формулы (2) приборная погрешность скорости откачки:

$$\sigma_W^{\text{приб}} = W \sqrt{\left(\frac{\sigma_{V_{\text{вв}}}}{V_{\text{вв}}}\right)^2 + \left(\frac{\sigma_t}{t}\right)^2 + \left(\frac{\sigma_{P-P_{\text{пред}}}}{(P-P_{\text{пред}})ln(P-P_{\text{пред}})}\right)^2}$$
 $\sigma_W = \sqrt{\sigma_W^{\text{случ}2} + \sigma_W^{\text{приб}^2}} = 70 \text{ см}^3/\text{с}$

Итого:

$$W = -k_{\rm cp} * V_{\scriptscriptstyle \rm BB} = (400 \pm 70) \text{ cm}^3/\text{c}$$

3.2.26 Оцениваем величину потока газа, поступающего из насоса назад в откачиваемую систему

Воспользуемся уравнением

$$V_{\rm BB}dP = (Q_{\rm II} + Q_{\rm II})dt$$

Получаем зависимость (k - средний из двух коэффициентов наклона прямых графиков в координатах P(t) при ухудшении вакуума)

$$Q_{\scriptscriptstyle \rm I\hspace{-.1em}I} + Q_{\scriptscriptstyle \rm I\hspace{-.1em}I} = k V_{\scriptscriptstyle \rm BB}$$

Зная также, что $P_{\rm np}W = Q_{\rm д} + Q_{\rm u} + Q_{\rm h},$ получим

$$\begin{split} Q_{\rm H} &= P_{\rm пред}W - kV_{\rm BB} = 210 \; \frac{\rm _{MM.PT.CT}}{\rm _{C*CM}^3} \\ \sigma_{Q_{\rm H}}^{\rm _{CЛуч}} &= \sqrt{\left(\frac{PV_{\rm _{BB}}}{t}\right)^2 \left(\left(\frac{\sigma_P}{P}\right)^2 + \left(\frac{\sigma_{V_{\rm _{BB}}}}{V_{\rm _{BB}}}\right)^2 + \left(\frac{\sigma_t}{t}\right)^2\right) + \left(P_{\rm _{IIPed}}W\right)^2 \left(\left(\frac{\sigma_{P_{\rm _{IIPed}}}}{P_{\rm _{IIPed}}}\right)^2 + \left(\frac{\sigma_W}{W}\right)^2\right)} \\ \sigma_{Q_{\rm H}} &= 70 \; \frac{\rm _{MM.PT.CT}}{\rm _{C*CM}^3} \end{split}$$

3.2.27 Оцениваем пропускную способность трубки от высоковакуумного баллона до насоса

Параметры трубки: $L=(10\pm 0.1)$ см, $d=(0.8\pm 0.1)$ см

 $T = (295.2 \pm 0.1) \text{ K}$

Вычислим по формуле (5) и соответсвующей формуле для приборной погрешности.

 $C_{\rm Tp} = (600 \pm 500) \, \, \text{cm}^3/\text{c}$

Как видим, полученное значение вполне согласуется с рассчитанной ранее производительностью насоса.

3.2.28 Вводим искуственную течь в систему

То есть открываем кран между форвакуумной и высоковакуумными частями установки. В результате через 3-5 минут в обеих частях установились разные давления:

$$P_{
m yct} = (2.0 \pm 0.1) * 10^{-4} \;
m mm.pt.ct$$

 $P_{
m \phib} = (1.0 \pm 0.1) * 10^{-3} \;
m mm.pt.ct$

${f 3.2.29}$ Рассчитаем производительность диффузионного насоса через $P_{ ext{ycr}}$ и $P_{ ext{фв}}$

$$P_{ ext{пред}}W=Q_1, \quad P_{ ext{yct}}W=Q_1+rac{(PV)_{ ext{кап}}}{dt}$$

$$W=rac{C_{ ext{тр}}P_{ ext{фв}}}{P_{ ext{yct}}-P_{ ext{пред}}}$$

Аналогично предыдущим пунктам рассчитываем полную погрешность и само значение:

$$W = (5 \pm 4) \; \pi/c$$

Напомним, что ранее мы получили производительность насоса $W=(0.40\pm0.07)~{\rm cm^3/c}.$

4 Вывод

Измерили объёмы формвакуумной и высоковакуумной частей установки. Определили скорость откачки системы в стационарном режиме, а также по ухудшению и по улучшению вакуума. Полученные результаты сравнимы в пределах погрешностей.

Ухудшение 1		Улучшение 1		Ухудшение 2		Улучшение 2	
t, сек	$p, \text{MM.pt.ct} * 10^{-4}$						
0	1.0	0	1.5	0	1.3	0	1.9
1	1.1	1	1.4	1	1.4	1	1.7
2	1.2	2	1.3	2	1.5	2	1.5
3	1.4	3	1.2	3	1.7	3	1.3
4	1.5	4	1.1	4	1.9	4	1.2
5	1.6	5	1.1	5	2.0	5	1.1
6	1.8	6	1.0	6	2.1	6	1.0
7	1.9	7	0.98	7	2.3	7	1.0
8	2.0	8	0.97	8	2.4	8	0.95
9	2.1	9	0.96	9	2.5	9	0.92
10	2.2	10	0.96	10	2.7	10	0.89
11	2.4	11	0.95	11	2.8	11	0.87
12	2.5	12	0.94	12	2.9	12	0.86
13	2.6			13	3.0	13	0.84
14	2.7			14	3.2	14	0.83
15	2.8	1		15	3.3	15	0.82
16	2.9			16	3.4	16	0.81
17	3.0			17	3.5		
18	3.1			18	3.6		
19	3.2			19	3.7		
20	3.3	#		20	3.8	1	
21	3.4	#		21	3.9		
22	3.5	1		22	4.0		
23	3.6			23	4.1		
24	3.7	#		24	4.2		
25	3.8			25	4.3		
26	3.9			26	4.4		
27	4.0	1		27	4.5		
28	4.1			28	4.6		
29	4.2	1		29	4.7		
30	4.3	#		30	4.8	1	
31	4.4	#		31	4.9		
32	4.5	1		32	4.9		
33	4.6	1		33	5.0		
34	4.7	1		34	5.1		
35	4.8	1		35	5.2		
36	4.9	1		36	5.3		
37	5.0	1		37	5.4		
38	5.0	1		38	5.5		
39	5.1	1		39	5.6		
40	5.2	1		40	5.7		
41	5.3	1		41	5.8		
42	5.4	1		42	5.8		
43	5.5	1		43	5.9		
44	5.6	1		44	6.0		
45	5.7						
46	5.8						
47	5.8						
48	5.9						
49	6.0	#		1		1	

Таблица 2: Результаты измерения давления в высоковакуумной части