## LAB-03 06/10/24



Intialization

3. 8-Puzzle Problem

- Manhattan - A\* algorithm

1. Stort at initial array of the given matrix (3x3). 2. Compare each element in the index to the final state and see how for H is from the final state

c. - lost of each spall

h → heuristic search f → total cost (e+h)

4. manhatten ( wirent\_wat, final\_state)

if the tile is not in blank tile (covernt x, coverenty) = position of the coverent the

+staldstartigoalx, goal 1) = (evoruntx - goal x)+(evorunty-

goed 4)

return totaldistance

If at each kill it marked the goal state we terminate the algorithm & trouback the path.

start\_state=[---]

DFS

goal - state = ( - - - )

Stack = puch (start - state)

F(i,j) = goal\_state
visited\_state = add. sustant = state, mones=0

it sture that = goal state

if Inorth Wisited-state)

leftz F(i, j-1)





Code: def Manhattan (puzzle, goal): dist =0 for i in range (9): if puzzle [i] != 0. goal-idz = goal. index (pwzzle [i])

dist += abs(i/3 - goal-idx//3) +

abs(i/3 - goal-idx//3) return dist manhattan\_dfsc puzzle, goal, visited, path): if (puzzle == goal); return path visited. add (typle (puzzle)) idz = puzzle. index (0) moules = [(1,3), (-1,3), (3,1), (-3,1)] next\_statu = [] for move, cond in moves: nlw\_idx = idx + moule 1 0 L = new\_index 29 and (new\_index 1/3 === ide 113 or new-ida 33 = 2 idx 73): new: puzzle = puzzle (:) new-puzzle [idx], new-puzzle (nw-idx]= new-puzzzle (new-idx) new-puzzle Cidx) if ruple (new-puzzle) not in wisited, next-statu append ((new-puzzle)manbatan enew-puzzlegoal m) next\_staty, sort ( Rey = Lambda x: x (1)) for state, in rust states: 1es = dof-maihattan (State goal, visked, path + (state)

|    | i res.                                                                           |
|----|----------------------------------------------------------------------------------|
|    | cetorn res                                                                       |
|    | return None                                                                      |
|    |                                                                                  |
|    | det prettify (rel):                                                              |
|    | 1=0                                                                              |
|    | for j'in range (3).                                                              |
| +  | for jin range (3):  tork in range (3):  print (res[i], end = "")                 |
|    | print (res[i], end="")                                                           |
|    | 1+=1                                                                             |
|    | print ("In")                                                                     |
|    | start = (1,2,3,4,0,5,6,7,8]                                                      |
|    | goal = [0,1,2,3,4,5,6,7;8]                                                       |
|    | goal = [0,1,2,3,4,5,6,7;8]  result = dfs_manhaltan (stant, goal, set(), Estant)) |
|    |                                                                                  |
|    | for i in result:                                                                 |
|    | pruttify(i)  print("")                                                           |
|    | print                                                                            |
| -> | Output:                                                                          |
| 0) | Cragation,                                                                       |
|    | n 1 2 3 27 12 3                                                                  |
|    | . 405                                                                            |
|    | 678 6478                                                                         |
|    |                                                                                  |
|    |                                                                                  |
|    |                                                                                  |
|    | 37 0 12 -                                                                        |
|    | 3 4 5                                                                            |
|    | 6 7-11                                                                           |
|    | 1: () (26                                                                        |
|    | 20/8/10/0                                                                        |
|    |                                                                                  |

```
Step 0:
123
4 0 5
6 7 8
Step 2:
023
1 4 5
6 7 8
Step 4:
230
1 4 5
6 7 8
Step 6:
2 3 5
104
6 7 8
Step 8:
0 2 5
1 3 4
6 7 8
Step 10:
1 2 5
3 0 4
6 7 8
Step 12:
120
3 4 5
6 7 8
Step 14:
012
3 4 5
6 7 8
Total moves: 15
```