

Jacobiano

Para aprobar y regularizar la materia, en cada trabajo práctico debe tener aprobado los ejercicios marcados como **obligatorios**. Se recomienda realizar todos los ejercicios para lograr un mayor entendimiento de los conceptos teóricos volcados en las clases, además le servirán también para la elaboración del trabajo final integrador. Se atenderán consultas de todos los ejercicios por igual.

Ejercicio 1: considere el robot planar de 2 g.d.l. de la siguiente figura:

Se puede determinar que la cinemática directa está dada por:

$$x = a_1 \cos(\theta_1) + a_2 \cos(\theta_1 + \theta_2)$$

$$y = a_1 \sin(\theta_1) + a_2 \sin(\theta_1 + \theta_2)$$

$$z = 0$$

$$\alpha = 0$$

$$\beta = 0$$

$$\gamma = \theta_1 + \theta_2$$

Estas ecuaciones se pueden hallar geométricamente o mediante el análisis de la transformación 0T_2 que surge de aplicar DH (es necesario convertir ángulos).

Mediante el método geométrico se puede hallar un sistema para la cinemática inversa correspondiente a la formulación $\bar{q} = f(x, y, \gamma)$:

$$\theta_1 = atan2(y - a2sin(\gamma), x - a2cos(\gamma))$$

 $\theta_2 = \gamma - \theta_1$

ROBOTICA I

Trabajo Práctico N°6

1. Mediante derivación respecto del tiempo obtenga el Jacobiano del robot que corresponde a:

$$\dot{p} = J(q)\dot{q}$$

Donde:

$$- \dot{p} = [\dot{x} \quad \dot{y} \quad \dot{z} \quad \dot{\alpha} \quad \dot{\beta} \quad \dot{\gamma}]^T$$

-
$$q = [\theta_1 \quad \theta_2]^T$$

- 2. Calcule la velocidad del extremo \dot{p} , en m/s para $q=[\pi/6 \quad \pi/6]$, en rad y $\dot{q}=[0 \quad -1]$ en rad/s. Suponga longitud de eslabón unitaria. Observe el gráfico del robot e interprete los resultados.
- 3. Trabaje solo con las coordenadas X-Y (primeras 2 filas del J) y verifique mediante la inversa algebraica que $\dot{q} = J^{-1}(q)\dot{p}$ se cumple.

Ejercicio 2: halle el Jacobiano en forma general de los 3 robots siguientes:

1.

2.

3.

Trabajo Práctico N°6

<u>Ejercicio 3</u>: el siguiente código de ejemplo se puede utilizar para obtener el Jacobiano del ejercicio 1 de forma general. Haga los cambios necesarios para verificar los resultados del ejercicio 2. Tenga en cuenta que con las identidades trigonométricas se puede cambiar radicalmente una misma expresión.

<u>Ejercicio 4</u>: agregando el código siguiente al código anterior, se puede observar una expresión simplificada del determinante del Jacobiano del mismo robot. Es importante recordar que una matriz cuadrada tiene inversa únicamente si su determinante es distinto de cero.

```
Jr = J(1:2,:);
DJr = simplify(det(Jr));
disp(DJr)
```

- 1. Determine para qué valores de $q = [\theta_1 \quad \theta_2]^T$ será cero el determinante.
- 2. Interprete qué tienen de particular las soluciones del punto anterior.

Ejercicio 5: trabaje con el primer robot del ejercicio 2:

- 1) Adapte el código anterior para analizar el Jacobiano simbólico y halle la expresión del determinante. ¿Puede aplicar los puntos 1 y 2 del ejercicio anterior?
- 2) Trabaje numéricamente con longitud de eslabón 1m, 0.8m y 0.6m. Calcule el Jacobiano y su determinante para $q=\lceil \pi/6 \quad 0 \quad \pi/6 \rceil$, en rad. Verifique que el determinante es cero. Verifique que el rango de la matriz es menor que los g.d.l. del robot (función "rank"). Ejecute la función "jsingu(J)" e interprete y relacione el resultado con el robot del ejercicio 1.
- 3) Para la posición articular anterior:
 - a. Calcule la velocidad articular requerida para lograr las siguientes velocidades cartesianas en el extremo operativo: $v=\begin{bmatrix}1&0&0\end{bmatrix}$ en m/s. Use el jacobiano reducido.
 - b. ¿Por qué existe inversa?
 - c. ¿Cuál es el número de condición del jacobiano reducido?
 - d. Asuma que q_2 no es cero, sino que está cerca: $q_2=0.001$. ¿Cuánto valen las velocidades articulares para lograr el mismo v?
 - e. ¿Cuánto valen el determinante y el número de condición del jacobiano en este caso?
 - f. ¿Qué conclusión puede sacar sobre la proximidad del punto singular?

ROBOTICA I Trabajo Práctico N°6

<u>Ejercicio TF (obligatorio)</u>: trabaje con su robot:

Trate de hallar el jacobiano y el determinante simbólico de su robot.

Intente determinar los puntos singulares a partir del determinante simbólico. En caso de que no se puedan calcular (expresiones muy extensas), identifique al menos 3 mediante observaciones y análisis, y verifique que el determinante sea nulo en esos casos.

Estudie si en la aplicación elegida se trabajará en las proximidades de algún punto singular.