Fingerprint Modeling + Orientation Field Estimation

Prof. Arun Ross

Michigan State University rossarun@cse.msu.edu http://iprobe.cse.msu.edu

Thanks to:

Dr. Jianjiang FengTsinghua University

Fingerprint Modeling

Ridge pattern in a local area of a fingerprint can be approximated by a cosine wave

$$w(x,y) = A\cos(2\pi f(x\cos\theta + y\sin\theta))$$
pixel value amplitude frequency orientation

10

15

20

Local fingerprint region

Shown as surface

25

20

15

Fingerprint Model

- $w(x,y) = A\cos(2\pi f(x\cos\theta + y\sin\theta))$
- The local fingerprint region can be modeled using this equation
- Consider:
 - A 300 x 300 blank image (as an example)
 - Some values for parameters f, θ , A
- By varying (x, y) in the range 1:300, the pixel intensity at (x, y) can be computed

Fingerprint Model

Examples

$$A = 50$$
; $f = 10$; $\theta = \pi/4$;

$$A = 50; f = 0.1; \theta = \pi;$$

$$A = 80; f = 0.01; \theta = \pi/4;$$

$$A = 50$$
; $f = 0.01$; $\theta = \pi/2$;

2 methods to compute orientation field

- The first one is based on the Fourier Transform applied to the local region
- The second one is based on filtering the image using edge detection filters

Ridge orientation & frequency estimation

2D Fourier transform of cosine wave

$$W(u,v) = \frac{A}{2} \left[\delta(u - f\cos\theta, v - f\sin\theta) + \delta(u + f\cos\theta, v + f\sin\theta) \right]$$

Let (\hat{u}, \hat{v}) denote the location of the maximum magnitude, then

$$\hat{\theta} = \arctan\left(\frac{\hat{v}}{u}\right), \hat{f} = \sqrt{\hat{u}^2 + \hat{v}^2}$$

Magnitude spectrum

Magnitude spectrum shown as surface

Orientation field smoothing

- Orientation field computed using the above method is vulnerable to noise.
- Orientation field is particularly important for extracting minutiae. To deal with noise, we should smooth the orientation field.
- Special consideration on ridge orientation:
 - defined in the range $[0,\pi)$
 - $-\theta$ and $(\theta + \pi)$ are the same orientation
 - the average value between θ and $(\theta + \pi)$ should be θ rather than $\frac{2\theta + \pi}{2}$

Orientation field smoothing

3 steps to smooth orientation field:

- Construct a vector field $V = (V_x, V_y) = (\cos 2\theta, \sin 2\theta)$;
- Perform low pass filtering on the two components of the vector field separately to obtain the smoothened vector field $V' = (V_x', V_y')$;
- Smoothened orientation field is given by $\frac{1}{2} \arctan(\frac{V_y'}{V_x'})$.

Orientation field smoothing

Edge Detection

- Image filters can be used to detect edges in an image
- An edge corresponds to a collection of pixels
- The pixel intensity changes sharply across the edge
 - An edge may correspond to the boundary of an object
 - In the case of fingerprints, the contours of the ridges may be viewed as "boundaries"
- The magnitude of the gradient or difference in pixel intensities in the neighborhood of a pixel can help in detecting edge pixels

Edge Filters (Kernels)

- Gradient can be computed in the horizontal and vertical directions
- Prewitt Filters:

$$P_{X} = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ +1 & +1 & +1 \end{bmatrix}$$
 This will highlight horizontal edges

$$P_{y} = \begin{bmatrix} -1 & 0 & +1 \\ -1 & 0 & +1 \\ -1 & 0 & +1 \end{bmatrix}$$
 This will highlight vertical edges

Edge Filters (Kernels)

- Gradient can be computed in the horizontal and vertical directions
- Sobel Filters:

$$S_{X} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ +1 & +2 & +1 \end{bmatrix}$$
 This will highlight horizontal edges

$$S_{y} = \begin{bmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{bmatrix}$$
 This will highlight vertical edges

Convolution: Gradient Images

• The image, I_v is convolved with the edge filters to obtain two gradient images, G_x and G_v

$$-G_x = I \otimes S_x$$

$$-G_y = I \otimes S_y$$

Convolution: Gradient Images

• The image, I_v is convolved with the edge filters to obtain two gradient images, G_x and G_v

$$-G_x = I \otimes S_x$$

$$-G_y = I \otimes S_y$$

• Magnitude of Gradient at a pixel (a,b) is $[G_X(a,b)]^2 + [G_Y(a,b)]^2$

Edge direction at the pixel can also be computed

Computing Orientation Field

• O(x,y) = $\frac{1}{2} \tan^{-1} \left[\frac{\sum_{i=-k}^{k} \sum_{j=-k}^{k} 2Gx(x+i,y+j) G_y(x+i,y+j)}{\sum_{i=-k}^{k} \sum_{j=-k}^{k} G_x^2(x+i,y+j) - G_y^2(x+i,y+j)} \right]$

- So first apply the two filters independently on the image
- Based on the two filtered outputs, compute the orientation at a pixel

Singularity extraction

Let O[i], $i = 0, \dots, 7$, denote the orientations at 8 neighbors of point x.

3
 4
 x
 6
 7

Poincaré index (PI) at x is:

$$PI = \frac{1}{\pi} \sum_{i=0}^{7} \delta(O[(i+1)_{\text{mod } 8}] - O[i]),$$

where

$$\delta(\theta) = \begin{cases} \theta - \pi, & \text{if } \theta > \pi/2 \\ \theta, & \text{if } -\pi/2 \le \theta \le \pi/2 \\ \theta + \pi, & \text{if } \theta < -\pi/2 \end{cases}$$

This function is used to make sure the orientation change is within ± 90 degrees Note that above equations assume "radians".

Poincaré index in fingerprint

Here, angle is specified in "degrees". In some cases, it will be specified in "radians"

Pattern classification

We can classify a fingerprint into one of 6 major pattern types based on singular points (SP):

- plain arch: contains no SP.
- left loop: contains 1 delta and 1 loop whose direction points to the left side of the delta.
- right loop: contains 1 delta and 1 loop whose direction points to the right side of the delta.

Pattern classification

- tented arch: contains 1 delta and 1 loop whose direction points toward the delta.
- whorl: contains at least 2 loops and 2 deltas where ridge orientation field around the two loops form a circular orbit.
- twin loop: contains at least 2 loops and 2 deltas where the ridge orientation field around the two loops do not form a circular orbit.

Ridge extraction

- A straightforward method is binarization.
- Problems:
 - Sweat pores on ridges are brighter than the surrounding pixels;
 - ridges can be broken due to cuts or creases;
 - adjacent ridges may appear to be joined due to wet skin or large pressure.
- Countermeasure: fingerprint enhancement.
- General purpose image enhancement is not effective for fingerprint.
- A successful fingerprint enhancement method is contextual filtering, such as Gabor filtering.

2D Gabor filters

2D Gabor wavelet:

$$G(x,y) = e^{-\pi[(x-x_0)^2/\alpha^2 + (y-y_0)^2/\beta^2]} e^{-2\pi i[u_0(x-x_0) + v_0(y-y_0)]}$$

where (x_0, y_0) denote the position in the image, (α, β) denote the effective width and length, and (u_0, v_0) denote the wave direction with a spatial frequency $\omega_0 = \sqrt{u_0^2 + v_0^2}$.

Real parts of Gabor filters (8 orientations and 3 scales)

Effect of Gabor filtering

Ridge extraction

- Enhanced image can be converted into a binary image by comparing with thresholds (e.g. local mean).
- A morphological operation, thinning, is used to obtain the skeleton image.
- Thinning is a common technique in image processing, which involves iteratively removing outer ridge pixels.

Minutiae extraction

- Minutiae are special points on ridges:
 - ridge bifurcation (3 neighbors are black)
 - ridge ending (1 neighbor is black)
- Direction of a ridge ending:
 - Trace the associated ridge with a fixed distance (say 10 pixels) from x to a. The direction xa is the minutia direction.
- Direction of a bifurcation:
 - Trace the ridges to get three directions. The direction is the mean of the two smallest different directions.

Minutiae verification

- Previous method considers only 3×3 window, producing false minutiae due to:
 - artifacts in image processing
 - noise in a fingerprint
- A minutia is classified as false if it meets any of the following conditions:
 - has no adjacent ridge on either side
 - be close in location and opposite in direction
 - too many minutiae in a small neighborhood

Handbook of fingerprint recognition

