Ojanpohjien luotaussuunnitelma

UTU, Paavo N., helmi-2021

Pikselien poisto $\rightarrow \delta = 0.03 \ m \dots 0.26 \ m$

Suunnattu kaarevuus

$$\kappa_{\alpha}(p) = \frac{\beta(\alpha)}{L_{\alpha}}$$
, $L_{\alpha} = (l_{\alpha} + l_{\alpha+\pi})/2$, β_{α} : suunnan muutos pisteessä p

9x9 –ikkunan entropian minimi valitsee kaarevuuspikselin kuvista I_{α} (sillä kohtaa "informatiivisimman" kaarevuuskuvan tieto valitaan)

 $\delta = 0.26 \text{ m}, \alpha = 0,30,60,90,120,150^{\circ}$

A proposal for harvester ruts (and for forest dikes)

- 5 m⁻² point cloud \rightarrow TIN with scale regularization [1] or information theoretic regularization \rightarrow ground surface height raster with a variable raster constant δ
- $\delta \approx 0.4$ m (approx 3 pixels per rut width) and 6 directions for
 - directed curvature and directed slope
 - image completion even the sparse sampling used
- Minimum entropy [1] decides the direction at each pixel \rightarrow
 - directional height profile, slope profile, curvature profile
- CNN to register ruts (or forest dikes) in another project?
- Height, slope and curvature all used to estimate the depth and profile

A proposal for harvester ruts (and for forest dikes)

- $\kappa(\alpha)$ usually good for this kind of detection, since mean_{crosslength} $\kappa(\alpha) \approx 0$
- (z, s, κ) (ditch length) are a good candidate for clustering
- (z, s, κ) (ditch length) mapping learned afterwards by CNN