

I²C

- "two-wire interface" standard
- Used to attach low-speed peripherals to embedded systems
- The Bone has two I²C controllers (Section 21 of TRM)

Hardware - Bone

You can see which ones are configured at boot time

```
beagle$ dmesg | grep i2c

[ 0.156139] omap_i2c 44e0b000.i2c: bus 0 rev0.11 at 400 kHz

[ 0.157673] input: tps65217_pwr_but as
/devices/ocp.2/44e0b000.i2c/i2c-0/0-0024/input/input0

[ 0.169206] omap_i2c 44e0b000.i2c: unable to select pin group

[ 0.170889] omap_i2c 4819c000.i2c: bus 1 rev0.11 at 100 kHz

[ 0.172685] omap_i2c 4819c000.i2c: unable to select pin group

[ 0.762708] i2c /dev entries driver

Two buses each running at different speeds
```

Time in seconds

Hardware - TMP101

• Goal: Interface to a TMP101 temp sensor

Parameter Name	Value
Typical Accuracy (°)	±2.0°C from -25°C to +85°C (max) ±3.0°C from -55°C to +125°C (max)
Supply Current (µA)	45 μ A, 0.1 μ A Standby
Resolution	9- to 12-Bits,
Operating Voltage Range (V)	2.7V to 5.5V
Device Description	Serial Output Temp Sensor

 $\underline{http://www.ti.com/lit/gpn/tmp101}$

2-wire bus

- The two wires are
 - Serial Clock (SCL), is an input to the TMP101 and is used to clock data into and out of the TMP101.
 - Serial Data (SDA), is bidirectional and carries the data to and from the TMP101.
- The only other two pins on the TMP101 that you need to use are the Power Supply (Vdd) and Ground.

Software - bone

• See what's on a bus with i2cdetect

I have 2, TMP102's and an LED matrix.

- The TMP102's are at 1001 000 and 1001 001
- Convert to hex **0x48** and **0x49**

Registers

• Each TMP101 has four registers

Table 2. Pointer Addresses of the TMP100 and TMP101 Registers

P1	P0	REGISTER
0	0	Temperature Register (READ Only)
0	1	Configuration Register (READ/WRITE)
1	0	TLOW Register (READ/WRITE)
1	1	THIGH Register (READ/WRITE)

- Read with \$ i2get -y 1 0x48 00
- **0x18** which is 24C or 75.2F

Table 6. Configuration Register Format

BYTE	D7	D6	D5	D4	D3	D2	D1	D0
1	OS/ALERT	R1	R0	F1	F0	POL	TM	SD

Table 2. Pointer Addresses of the TMP100 and TMP101 Registers

Registers

5	P1	P0	REGISTER
	0		Temperature Register (READ Only)
	0	1	Configuration Register (READ/WRITE)
	1		TLOW Register (READ/WRITE)
	1	1	THIGH Register (READ/WRITE)

• Read with \$ i2get -y 1 0x48 01

• 0x80 which is 1000 0000

Table 6. Configuration Register Format

		_			-			
BYTE	D7	D6	D5	D4	D3	D2	D1	D0
1	OS/ALERT	R1	R0	F1	F0	POL	TM	SD

SD – Shutdown Mode

TM - Thermostat Mode

POL-Polarity

F1/F0 – Fault Queue

R1/R0 – Converter Resolution

OS - OS/Alert

86.0 ⁻¹	Davis Sang. Sansar	Curdso Lago:	E O SOA
040 O-F	AD Carrector	David Interface	1-O ADDR
ALERT O.3	280	Confty and Time Repoter	±0 w

Table 8. Resolution of the TMP100 and TMP101

R1	R0	RESOLUTION	(typical)
0	0	9 Bits (0.5°C)	40ms
0	1	10 Bits (0.25°C)	80ms
1	0	11 Bits (0.125°C)	160ms
1	1	12 Bits (0.0625°C)	320ms

I²C via C - myi2cget.c

I²C via C

I²C via C

myi2ctest

- See exercises/i2c/myi2ctest.c for an example that controls an LED grid
- See exercises/i2c/i2c-tools-3.1.0 for source code for ic2 tools