Information for mapping CESM2 (CAM-chem or WACCM) gas and aerosol species to WRF-Chem species for various mechanisms

Louisa Emmons, Gabriele Pfister, Alma Hodzic ACOM/NCAR 22 August 2019

Example mozbc.inp for mapping CESM2/CAM-chem and WACCM6 output to WRF-Chem MOZART gas phase species:

```
&control
do bc = .true.
do ic = .true.
domain = 1
dir_wrf = '/glade/scratch/pfister/WRFreal_WACCM/'
dir moz = './'
fn moz = 'output_WACMM_0001.nc'
moz_var_suffix = '
def missing var = .true.
spc_map = 'o3 -> 03', 'n2o -> N2O', 'no -> NO',
       'no2 -> NO2', 'nh3 -> NH3', 'hno3 -> HNO3', 'hno4 -> HO2NO2',
       'n2o5 -> N2O5', 'h2o2 -> H2O2',
'ch4 -> CH4', 'co -> CO', 'ch3ooh -> CH3OOH',
       'hcho -> CH2O', 'ch3oh -> CH3OH', 'c2h4 -> C2H4', 
'ald -> CH3CHO', 'acet -> CH3COCH3', 'mgly -> CH3COCHO',
      'pan -> PAN', 'mpan -> MPAN', 'macr -> MACR',
'mvk -> MVK', 'c2h6 -> C2H6', 'c3h6 -> C3H6', 'c3h8 -> C3H8',
'c2h5oh -> C2H5OH', 'c10h16 -> MTERP',
       'isopr -> ISOP', 'acetol -> HYAC', 'mek -> MEK',
      'bigene -> BIGENE', 'bigalk -> BIGALK',

'tol -> TOLUENE', 'benzene -> BENZENE', 'xylenes -> XYLENES',

'cres -> CRESOL', 'dms -> DMS', 'so2 -> SO2'
For MOZCART gas species replace:
'tol -> TOLUENE', 'benzene -> BENZENE', 'xylenes ->XYLENES',
'tol -> TOLUENE+BENZENE+XYLENES',
```

VOC species mapping between MOZART and other mechanisms

MOZART-T1	SAPRC-99	RADM2	CBMZ	
C2H6	ALK1	ETH	C2H6	
C3H8	ALK2	HC3	PAR	
BIGALK	ALK3+ALK4+ALK5	HC5	PAR	
C2H4	ETHE	OL2	ETH	
C3H6	OLE1		PAR	
BIGENE	OLE2	OLET+OLEI	OLET, OLEI, PAR	
TOLUENE	ARO1	TOL	TOL	
XYLENES	ARO2	XYL	XYL	
ISOP	ISOPRENE	ISO	ISOP	
СНЗОН	MEOH		СНЗОН	
CH2O	НСНО	НСНО	НСНО	
СН3СНО	ССНО	ALD	ALD2	
СНЗСООН		ORA2	RCOOH	
GLYOXAL		GLY		
GLYALD		ALD	ALD2	
СНЗООН		OP1	СНЗООН	
C2H5OOH		OP2	ETHOOH	
СНЗСОООН		PAA		
CH3COCH3	ACET	KET	AONE	
HYAC		KET	AONE	
СНЗСОСНО		MGLY	MGLY	
ONIT+NOA+ALKNIT		ONIT	ONIT	
MEK	MEK+PRD2	KET	AONE	
MVK	MVK		ISOPRD	
MACR	METHACRO		ISOPRD	
MPAN				
HYDRALD			ISOPRD	
BIGALD			OPEN	
ONITR			ISOPN	
CRESOL		CSL	CRES	

MAM4 Aerosols [X. Liu, GMD, doi:10.5194/gmd-9-505-2016, 2016]

Aerosol Mode	CESM label	type	σ _g	Size range (μm)
Aitken	_a2	dst, ncl, so4, soa*, num	1.6	0.015 - 0.053
Accumulation	_a1	bc, pom, dst, ncl, so4, soa*, num	1.8	0.058 - 0.27
Coarse	_a3	dst, ncl, so4, num	1.8	0.8 – 3.65
Primary carbon	_a4	bc, pom, num	1.8	0.058 - 0.27

soa* = soa1, soa2, soa3, soa4, soa5 in mechanisms with VBS-SOA; =soa in MAM-SOA num = total number (all aerosol types) for each mode

Matching the Modal Aerosol Model (MAM) in CESM (CAM-chem and WACCM) to WRF-Chem aerosol models

CESM with MAM4 -> MOSAIC 8-bin in WRF-Chem

```
oc a01->0.0093*pom a1+0.7510*soa1 a2+0.0093*soa1 a1+0.7510*soa2 a2+
0.0093*soa2 a1+0.7510*soa3 a2+0.0093*soa3 a1+0.7510*soa4 a2+0.0093*soa4 a1+
0.7510*soa5_a2+0.0093*soa5_a1;1.e9',
                                        oc a02->0.1123*pom a1+0.2376*soa1 a2+0.1123*soa1 a1+0.2376*soa2 a2+
0.1123*soa2 a1+0.2376*soa3 a2+0.1123*soa3 a1+0.2376*soa4 a2+0.1123*soa4 a1+
0.2376*soa5 a2+ 0.1123*soa5 a1;1.e9'
                                       oc a03->0.3835*pom a1+0.0113*soa1 a2+0.3835*soa1 a1+0.0133*soa2 a2+
0.3835*soa2 a\overline{1}+0.0113*soa3 a\overline{2}+0.3838*soa3 a\overline{1}+0.0113*soa4 a\overline{2}+0.3838*soa4 a\overline{1}+0.0113*soa4 a\overline{1}+0.01
0.0113*soa5 a2+ 0.3838*soa5 a1;1.e9'
                                        oc_a04->0.3783*pom_a1+0.0001*soa1_a2+0.3783*soa1 a1+0.0001*soa2 a2+
0.3783*soa2 a1+0.0001*soa3 a2+0.3783*soa3 a1+0.0001*soa4 a2+0.3783*soa4 a1+
0.0001*soa5_a2+ 0.3783*soa5_a1;1.e9',
                                        oc a05->0.1077*pom a1+0.0000*soa1 a2+0.1077*soa1 a1+0.0000*soa2 a2+
0.1077*soa2\_a1+0.0000*soa3\_a2+0.1077*soa3\_a1+0.0000*soa4\_a2+0.1077*soa4\_a1+0.0000*soa4\_a2+0.1077*soa4\_a1+0.0000*soa4\_a2+0.1077*soa4\_a1+0.0000*soa4\_a2+0.1077*soa4\_a1+0.0000*soa4\_a2+0.1077*soa4\_a1+0.0000*soa4\_a2+0.1077*soa4\_a1+0.0000*soa4\_a2+0.1077*soa4\_a1+0.0000*soa4\_a2+0.1077*soa4\_a1+0.0000*soa4\_a2+0.1077*soa4\_a1+0.0000*soa4\_a2+0.1077*soa4\_a1+0.0000*soa4\_a2+0.1077*soa4\_a1+0.0000*soa4\_a2+0.1077*soa4\_a1+0.0000*soa4\_a2+0.1077*soa4\_a1+0.0000*soa4\_a2+0.1077*soa4\_a1+0.0000*soa4\_a2+0.1077*soa4\_a1+0.0000*soa4\_a2+0.1077*soa4\_a1+0.0000*soa4\_a2+0.1077*soa4\_a1+0.0000*soa4\_a2+0.1077*soa4\_a1+0.0000*soa4\_a2+0.1077*soa4\_a1+0.0000*soa4\_a2+0.1077*soa4\_a1+0.0000*soa4\_a2+0.1077*soa4\_a1+0.0000*soa4\_a2+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.0000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*soa4\_a1+0.000*so
0.0000*soa5_a2+ 0.1077*soa5_a1;1.e9'
                                        oc a06->0.0087*pom a1+0.0000*soa1 a2+0.0087*soa1 a1+0.0000*soa2 a2+
0.0087*soa2 a1+0.0000*soa3 a2+0.0087*soa3 a1+0.0000*soa4 a2+0.0087*soa4 a1+
0.0000*soa5 a2+ 0.0087*soa5 a1;1.e9',
                                       oc a07->0.0002*pom a1+0.0000*soa1 a2+0.0002*soa1 a1+0.0000*soa2 a2+
0.0002*soa2\_a1+0.0000*soa3\_a2+0.0002*soa3\_a1+0.0000*soa4\_a2+0.0002*soa4\_a1+0.0000*soa4\_a2+0.0002*soa4\_a1+0.0000*soa4\_a2+0.0002*soa4\_a1+0.0000*soa4\_a2+0.0002*soa4\_a1+0.0000*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*soa4\_a2+0.0002*so4_a2+0.0002*so4_a2+0.0002*so4_a2+0.0002*so4_a2+0.0002*so4_a2+0.0002*so4_a2+0.0002*so4_a2+0.0002*so4_a2+0.0002*so4_a2+0.0002*so4_a2+0.0002*so4_a2+0.0002*so4_a2+0.0002*so4_a2+0.0002*so4_a2+0.0002*so4_a2+0.0002*so4_a2+0.0002*so4_a2+0.0000*so4_a2+0.0000*
0.0000*soa5 a2+ 0.0002*soa5 a1;1.e9'
                                        oc a08->0.0000*pom a1+0.0000*soa1 a2+0.0000*soa1 a1+0.0000*soa2 a2+
0.0000*soa2\_a\overline{1} + 0.0000*soa3\_a2 + 0.0000*soa3\_a1 + 0.0000*soa4\_a2 + 0.0000*soa4\_a1 + 0.000*soa4\_a1 + 0.0
0.0000*soa5 a2+ 0.0000*soa5 a1;1.e9'
                                       'bc a01->0.0093*bc_a1+0.0093*bc_a4;1.e9',
                                       'bc a02->0.1123*bc a1+0.1123*bc a4;1.e9',
                                       'bc_a03->0.3835*bc_a1+0.3835*bc_a4;1.e9',
                                       'bc_a04->0.3783*bc_a1+0.3783*bc_a4;1.e9'
                                       'bc_a05->0.1077*bc_a1+0.1077*bc_a4;1.e9'
                                       'bc a06->0.0087*bc a1+0.0087*bc a4;1.e9
                                      'bc a07->0.0002*bc a1+0.0002*bc a4;1.e9
                                       'bc a08->0.0000*bc a1+0.0000*bc a4;1.e9'
                                       'so4 a01->0.7510*so4 a2+0.0093*so4 a1+0.0000*so4 a3;1.e9',
                                       'so4 a02->0.2376*so4 a2+0.1123*so4 a1+0.0000*so4 a3;1.e9',
                                       'so4 a03->0.0113*so4_a2+0.3835*so4_a1+0.0000*so4_a3;1.e9',
                                       'so4_a04->0.0001*so4_a2+0.3783*so4_a1+0.0002*so4_a3;1.e9',
                                        'so4_a05->0.0000*so4_a2+0.1077*so4_a1+0.0061*so4_a3;1.e9'
                                        'so4 a06->0.0000*so4 a2+0.0087*so4 a1+0.0934*so4 a3;1.e9'
                                       'so4_a07->0.0000*so4_a2+0.0002*so4_a1+0.4020*so4_a3;1.e9'
                                       'so4_a08->0.0000*so4_a2+0.0000*so4_a1+0.4983*so4_a3;1.e9'
                                       'nh4 a01->0.1410*so4 a2+0.0033*so4 a1+0.0000*so4 a3;1.e9',
                                       'nh4 a02->0.0446*so4 a2+0.0017*so4 a1+0.0000*so4 a3;1.e9',
                                       'nh4_a03->0.0021*so4_a2+0.0210*so4_a1+0.0000*so4_a3;1.e9',
                                       'nh4_a04->0.0000*so4_a2+0.0720*so4_a1+0.0000*so4_a3;1.e9',
                                       'nh4_a05->0.0000*so4_a2+0.0202*so4_a1+0.0011*so4_a3;1.e9',
                                       'nh4_a06->0.0000*so4_a2+0.0001*so4_a1+0.0175*so4_a3;1.e9',
                                       'nh4_a07->0.0000*so4_a2+0.0000*so4_a1+0.0755*so4_a3;1.e9'
                                       'nh4_a08->0.0000*so4_a2+0.0000*so4_a1+0.0935*so4_a3;1.e9'
                                       'no3_a01->0.0000*so4_a2+0.0000*so4_a1+0.0000*so4_a3;1.e9'
                                       'no3 a02->0.0000*so4 a2+0.0000*so4 a1+0.0000*so4 a3;1.e9'
                                       'no3 a03->0.0000*so4 a2+0.0000*so4 a1+0.0000*so4 a3;1.e9'
                                       'no3_a04->0.0000*so4_a2+0.0000*so4_a1+0.0000*so4_a3;1.e9'
                                       'no3_a05->0.0000*so4_a2+0.0000*so4_a1+0.0000*so4_a3;1.e9'
                                       'no3_a06->0.0000*so4_a2+0.0000*so4_a1+0.0000*so4_a3;1.e9'
                                       'no3_a07->0.0000*so4_a2+0.0000*so4_a1+0.0000*so4_a3;1.e9
                                       'no3_a08->0.0000*so4_a2+0.0000*so4_a1+0.0000*so4_a3;1.e9',
                                       'na a01->0.2954*ncl a2+0.0037*ncl_a1+0.0000*ncl_a3;1.e9'
                                       'na a02->0.0935*ncl a2+0.0442*ncl a1+0.0000*ncl a3;1.e9',
```

```
'na_a03->0.0045*ncl_a2+0.1509*ncl_a1+0.0000*ncl_a3;1.e9',
'na_a04->0.0000*ncl_a2+0.1488*ncl_a1+0.0000*ncl_a3;1.e9',
'na a05->0.0000*ncl a2+0.0424*ncl a1+0.0024*ncl a3;1.e9',
'na_a06->0.0000*ncl_a2+0.0034*ncl_a1+0.0367*ncl_a3;1.e9',
'na_a07->0.0000*ncl_a2+0.0000*ncl_a1+0.1582*ncl_a3;1.e9'
'na_a08->0.0000*ncl_a2+0.0000*ncl_a1+0.1960*ncl_a3;1.e9
'cl a01->0.4555*ncl a2+0.0056*ncl a1+0.0000*ncl a3;1.e9
'cl a02->0.1441*ncl a2+0.0681*ncl a1+0.0000*ncl a3;1.e9
'cl_a03->0.0068*ncl_a2+0.2326*ncl_a1+0.0000*ncl_a3;1.e9'
'cl a04->0.0000*ncl a2+0.2295*ncl_a1+0.0000*ncl_a3;1.e9'
'cl a05->0.0000*ncl a2+0.0654*ncl a1+0.0037*ncl a3;1.e9',
'cl_a06->0.0000*ncl_a2+0.0055*ncl_a1+0.0567*ncl_a3;1.e9'
'cl_a07->0.0000*ncl_a2+0.0001*ncl_a1+0.2439*ncl_a3;1.e9'
'cl_a08->0.0000*ncl_a2+0.0000*ncl_a1+0.3023*ncl_a3;1.e9'
oin a01->0.7510*dst a2+0.0093*dst a1+0.0000*dst a3;1.e9
oin_a02->0.2376*dst_a2+0.1123*dst_a1+0.0000*dst_a3;1.e9
'oin_a03->0.0113*dst_a2+0.3835*dst_a1+0.0000*dst_a3;1.e9
'oin a04->0.0001*dst a2+0.3783*dst a1+0.0002*dst a3;1.e9'
'oin a05->0.0000*dst a2+0.1077*dst a1+0.0061*dst a3;1.e9'
oin a06->0.0000*dst a2+0.0087*dst a1+0.0934*dst a3;1.e9'
oin_a07->0.0000*dst_a2+0.0002*dst_a1+0.4020*dst_a3;1.e9'
oin_a08->0.0000*dst_a2+0.0000*dst_a1+0.4983*dst_a3;1.e9',
'num a01->0.9502*num a2+0.2509*num a1+0.0000*num a3;1.0',
'num a02->0.0494*num a2+0.4626*num a1+0.0000*num a3;1.0
'num a03->0.0004*num a2+0.2470*num a1+0.0007*num a3;1.0'
'num a04->0.0000*num a2+0.0377*num a1+0.0232*num a3;1.0'
'num a05->0.0000*num a2+0.0016*num a1+0.1886*num a3;1.0',
'num a06->0.0000*num a2+0.0000*num a1+0.4372*num a3;1.0',
'num a07->0.0000*num a2+0.0000*num a1+0.2935*num a3;1.0',
'num a08->0.0000*num a2+0.0000*num a1+0.0566*num a3;1.0'
```

CESM -> MOSAIC 4 bin

Sum the 8-bin MOSAIC bins (above) for each aerosol type:

4bin_a01 = 8bin_a01 + 8bin_a02 4bin_a02 = 8bin_a03 + 8bin_a04

4bin a03 = 8bin a05 + 8bin a06

4bin_a04 = 8bin_a07 + 8bin_a08

CESM/MAM4 -> GOCART in WRF-Chem

'BC1 -> 1.0*bc_a4;1.e9',

'BC2 -> 1.0*bc_a1;1.e9',

'OC1 -> 1.0*pom_a4;1.e9',

'OC2 -> 1.0*pom a1;1.e9',

'SEAS_1 -> 1.0*ncl_a1+1.0*ncl_a2;1.e9',

'SEAS 2 -> 0.5*ncl a3;1.e9',

'SEAS_3 -> 0.5*ncl_a3;1.e9',

'SEAS 4 -> 0.0*ncl a3;1.e9'

'DUST_1 -> 0.02*dst_a3;1.e9',

'DUST_2 -> 0.93*dst_a3;1.e9',

'DUST_3 -> 0.05*dst_a3;1.e9',
'DUST_4 -> 0.0*dst_a3;1.e9',

'DUST 5 -> 0.0*dst a3;1.e9',