Concepts in Programming Languages – Recitation 4: Untyped Lambda Calculus

Oded Padon & Mooly Sagiv (original slides by Kathleen Fisher, John Mitchell, Shachar Itzhaky, S. Tanimoto)

Reference:

Types and Programming Languages by Benjamin C. Pierce, Chapter 5

Computation Models

- Turing Machines
- Wang Machines
- Counter Programs
- Lambda Calculus

Historical Context

Like Alan Turing, another mathematician, Alonzo Church, was very interested, during the 1930s, in the question "What is a computable function?"

He developed a formal system known as the pure lambda calculus, in order to describe programs in a simple and precise way.

Today the Lambda Calculus serves as a mathematical foundation for the study of functional programming languages, and especially for the study of "denotational semantics."

Reference: http://en.wikipedia.org/wiki/Lambda_calculus

Untyped Lambda Calculus - Syntax

```
\begin{array}{ccc} t ::= & & terms \\ x & & variable \\ \lambda x. \ t & abstraction \\ t \ t & application \end{array}
```

- Terms can be represented as abstract syntax trees
- Syntactic Conventions:
 - Applications associates to left:
 e₁ e₂ e₃ ≡ (e₁ e₂) e₃
 - The body of abstraction extends as far as possible: λx . λy . x y $x \equiv \lambda x$. $(\lambda y$. (x y) x)
- Examples (taken from 2015 exams):
 - (λx. λx. (λx.x) x) ((λx. x x) λx.x)
 - (λt. λf. t) (λx.x) ((λx.x) (λs. λz. s z))

Free vs. Bound Variables

- An occurrence of x in t is bound in λx . t
 - otherwise it is free
 - $-\lambda x$ is a binder
- Examples
 - $-\lambda x. x$
 - $-\lambda y. x (y z)$
 - $-\lambda z. \lambda x. \lambda y. x (y z)$
 - $-(\lambda x. x) x$

FV: $t \rightarrow P(Var)$ is the set free variables of t

$$FV(x) = \{x\}$$

$$FV(\lambda x. t) = FV(t) - \{x\}$$

$$\mathsf{FV}\ (\mathsf{t}_1\ \mathsf{t}_2) = \mathsf{FV}(\mathsf{t}_1) \cup \mathsf{FV}(\mathsf{t}_2)$$

Semantics: Substitution, β -reduction, α -conversion

Substitution

$$[x\mapsto s] \ x = s$$

 $[x\mapsto s] \ y = y$ if $y \neq x$
 $[x\mapsto s] \ (\lambda y. \ t_1) = \lambda y. \ [x\mapsto s] \ t_1$ if $y \neq x$ and $y \notin FV(s)$
 $[x\mapsto s] \ (t_1 \ t_2) = ([x\mapsto s] \ t_1) \ ([x\mapsto s] \ t_2)$

• β-reduction

$$(\lambda x. t_1) t_2 \Rightarrow_{\beta} [x \mapsto t_2] t_1$$

α-conversion

$$(\lambda x. t) \Rightarrow_{\alpha} \lambda y. [x \mapsto y] t$$
 if $y \notin FV(t)$

Beta-Reduction: Examples

$$\frac{(\lambda x. t_1) t_2}{\text{redex}} \Rightarrow_{\beta} [x \mapsto t_2] t_1 \qquad (\beta\text{-reduction})$$

$$\frac{(\lambda x. x) y}{(\lambda x. x) (\lambda x. x) (u r)} \Rightarrow_{\beta} y$$

$$\frac{(\lambda x. x (\lambda x. x)) (u r)}{(\lambda x. x) (\lambda x. x)} \Rightarrow_{\beta} u r (\lambda x. x)$$

$$(\lambda x (\lambda w. x w)) (y z) \Rightarrow_{\beta} \lambda w. y z w$$

Substitution Subtleties

$$\begin{array}{lll} (\lambda \; x. \; t_1) \; t_2 \Rightarrow_{\beta} \left[x \; \mapsto t_2 \right] \; t_1 & (\beta \text{-reduction}) \\ [x\mapsto s] \; x = s & & \text{if } y \neq x \\ [x\mapsto s] \; (\lambda y. \; t_1) = \lambda y. \; [x\mapsto s] \; t_1 & \text{if } y \neq x \; \text{and } y \not\in \mathsf{FV}(s) \\ [x\mapsto s] \; (t_1 \; t_2) = ([x\mapsto s] \; t_1) \; ([x\mapsto s] \; t_2) & & \\ (\lambda x. \; (\lambda x. \; x)) \; y \Rightarrow_{\beta} \; [x\mapsto y] \; (\lambda x. \; x) = \; \lambda x. \; y? \\ & (\lambda x. \; (\lambda y. \; x)) \; y \Rightarrow_{\beta} \; [x\mapsto y] \; (\lambda y. \; x) = \; \lambda y. \; y? \\ \end{array}$$

 $(\lambda x. (\lambda x. x))$ y and $(\lambda x. (\lambda y. x))$ y are stuck! They have no β -reduction

Alpha – Conversion

Alpha conversion:

Renaming of a bound variable and its bound occurrences

$$(\lambda x. t) \Rightarrow_{\alpha} \lambda y. [x \mapsto y] t \text{ if } y \notin FV(t)$$

$$(\lambda x. (\lambda x. x)) y \Rightarrow_{\alpha} (\lambda x. (\lambda z. z)) y \Rightarrow_{\beta} [x \mapsto y] (\lambda z. z) = \begin{cases} \lambda z. z \neq \lambda x. y \\ \lambda z. z \neq \lambda y. y \end{cases}$$

$$(\lambda x. (\lambda y. x)) y \Rightarrow_{\alpha} (\lambda x. (\lambda z. x)) y \Rightarrow_{\beta} [x \mapsto y] (\lambda z. x) = \lambda z. y \neq \lambda y. y$$

Non-Deterministic Operational Semantics

$$(\lambda x. t_1) t_2 \Rightarrow [x \mapsto t_2] t_1$$

$$t_1 \Rightarrow t'_1$$

$$t_1 \Rightarrow t'_1$$

$$t_1 t_2 \Rightarrow t'_1 t_2$$

$$t_1 t_2 \Rightarrow t_1 t'_2$$

$$t_1 t_2 \Rightarrow t_1 t'_2$$

Why is this semantics non-deterministic?

$$(\lambda x. (add x x)) (add 2 3) \Rightarrow (\lambda x. (add x x)) (5) \Rightarrow add 5 5 \Rightarrow 10$$
 $(\lambda x. (add x x)) (add 2 3) \Rightarrow (add (add 2 3) (add 2 3)) \Rightarrow$
 $(add 5 (add 2 3)) \Rightarrow (add 5 5) \Rightarrow 10$

This example: same final result but lazy performs more computations

$$(\lambda x. t_1) t_2 \Rightarrow [x \mapsto t_2] t_1$$

$$t_1 \Rightarrow t'_1$$

$$t_1 \Rightarrow t'_1$$

$$t_2 \Rightarrow t'_1 t_2$$

$$t_1 t_2 \Rightarrow t_1 t'_2$$

$$t_1 t_2 \Rightarrow t_1 t'_2$$

$$(\lambda x. \lambda y. x)$$
 3 (div 5 0) \Rightarrow Exception: Division by zero

$$(\lambda x. \lambda y. x) 3 (\text{div } 5 0) \Rightarrow (\lambda y. 3) (\text{div } 5 0) \Rightarrow 3$$

This example: lazy suppresses erroneous division and reduces to final result

Can also suppress non-terminating computation.

Many times we want this, for example:

if i < len(a) and a[i]==0: print "found zero"</pre>

Divergence

$$(\lambda x. t_1) t_2 \Rightarrow_{\beta} [x \mapsto t_2] t_1$$
 (β-reduction)
 $(\lambda x.(x x)) (\lambda x.(x x))$

Divergence

$$(\lambda x. t_1) t_2 \Rightarrow_{\beta} [x \mapsto t_2] t_1$$
 (β-reduction)
 $(\lambda x.(x x)) (\lambda x.(x x))$

$$(\lambda x. t_1) t_2 \Rightarrow_{\beta} [x \mapsto t_2] t_1$$
 (β-reduction)
 $(\lambda x.y) ((\lambda x.(x x)) (\lambda x.(x x)))$

$$(\lambda x. t_1) t_2 \Rightarrow_{\beta} [x \mapsto t_2] t_1$$
 (β-reduction)
 $(\lambda x.y) ((\lambda x.(x x)) (\lambda x.(x x)))$

$$(\lambda x. t_1) t_2 \Rightarrow_{\beta} [x \mapsto t_2] t_1$$
 (β-reduction)
 $(\lambda x.y) ((\lambda x.(x x)) (\lambda x.(x x)))$


```
def f():
    while True: pass

def g(x):
    return 2
```

print g(f())

Summary Order of Evaluation

- Full-beta-reduction
 - All possible orders
- Applicative order call by value (strict)
 - Left to right
 - Fully evaluate arguments before function
- Normal order
 - The leftmost, outermost redex is always reduced first
- Call by name (lazy)
 - Evaluate arguments as needed
- Call by need
 - Evaluate arguments as needed and store for subsequent usages
 - Implemented in Haskell

Call By Value

Call By Name (Lazy)

Normal Order

Call-by-value Operational Semantics

Currying – Multiple arguments

Say we want to define a function with two arguments:

$$-$$
 "f = $\lambda(x, y)$. s"

We do this by Currying:

```
- f = \lambda x. \lambda y. s
```

- f is now "a function of x that returns a function of y"
- Currying and β -reduction:

```
f v w = (f v) w = ((\lambda x. \lambda y. s) v) w

\Rightarrow (\lambda y.[x \mapsto v]s) w \Rightarrow [x \mapsto v] [y \mapsto w] s
```

Conclusion:

$$- "f = \lambda(x, y). s" \rightarrow f = \lambda x. \lambda y. s$$

$$- "f (v,w)" \rightarrow f v w$$

Church Booleans

```
Define: tru = \lambda t. \lambda f. t fls = \lambda t. \lambda f. t test = \lambda l. \lambda m. \lambda m. l m n
test tru then else = (\lambda I. \lambda m. \lambda n. I m n) (\lambda t. \lambda f. t) then else
  \Rightarrow(\lambdam. \lambdan. (\lambdat. \lambdaf. t) m n) then else
  \Rightarrow(\lambdan. (\lambdat. \lambdaf. t) then n) else
  \Rightarrow (\lambda t. \lambda f. t) then else
  \Rightarrow(\lambdaf. then) else
  ⇒then
test fls then else = (\lambda I. \lambda m. \lambda n. I m n) (\lambda t. \lambda f. f) then else
  \Rightarrow(\lambdam. \lambdan. (\lambdat. \lambdaf. f) m n) then else
  \Rightarrow(\lambdan. (\lambdat. \lambdaf. f) then n) else
  \Rightarrow(\lambdat. \lambdaf. f) then else
  \Rightarrow(\lambdaf. f) else
  ⇒else
and = \lambda b. \lambda c. b c fls
or =
```

not =

Church Numerals

- $c_0 = \lambda s. \lambda z. z$
- $c_1 = \lambda s. \lambda z. s z$
- $c_2 = \lambda s. \lambda z. s (s z)$
- $c_3 = \lambda s. \lambda z. s (s (s z))$
- •
- $scc = \lambda n. \lambda s. \lambda z. s (n s z)$
- plus = λ m. λ n. λ s. λ z. m s (n s z)
- times = $\lambda m. \lambda n. m$ (plus n) c_0
- iszero =

Combinators

- A combinator is a function in the Lambda Calculus having no free variables
- Examples
 - $-\lambda x$. x is a combinator
 - $-\lambda x$. λy . (x y) is a combinator
 - $-\lambda x$. λy . (x z) is not a combinator
- Combinators can serve nicely as modular building blocks for more complex expressions
- The Church numerals and simulated Booleans are examples of useful combinators

Iteration in Lambda Calculus

- omega = $(\lambda x. x x) (\lambda x. x x)$ - $(\lambda x. x x) (\lambda x. x x) \Rightarrow (\lambda x. x x) (\lambda x. x x)$
- Y Combinator

- $Y = \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))$
- $Z = \lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))$
- Recursion can be simulated
 - Y only works with call-by-name semantics
 - Z works with call-by-value semantics
- Defining factorial:
 - $g = \lambda f. \lambda n.$ if n==0 then 1 else (n * (f (n 1)))
 - fact = Y g (for call-by-name)
 - fact = Z g (for call-by-value)