C4 Analysis

Robin Adams

November 1, 2022

Definition 0.1 (Limit of a Function). Let $A \subseteq \mathbb{R}$ and $f: A \to \mathbb{R}$. Let a be an accumulation point of A and $b \in \mathbb{R}$. Then we say b is the *limit* of f at a, and write $f(x) \to b$ as $x \to a$ or $\lim_{x \to a} f(x) = b$, iff for every $\epsilon > 0$, there exists $\delta > 0$ such that, for all $x \in A - \{a\}$, if $|x - a| < \delta$ then $|f(x) - b| < \epsilon$.

Proposition 0.2. Let $A \subseteq \mathbb{R}$ and $f: A \to \mathbb{R}$. Let a be an accumulation point of A and $b, c \in \mathbb{R}$. If $f(x) \to b$ as $x \to a$ and $f(x) \to c$ as $x \to a$ then b = c.

Proof:

- $\langle 1 \rangle 1. \ \forall \epsilon > 0. |b c| < \epsilon$
 - $\langle 2 \rangle 1$. Let: $\epsilon > 0$
 - (2)2. Pick $\delta > 0$ such that $\forall x \in A \{a\}.|x-a| < \delta \Rightarrow |f(x)-b| < \epsilon/2 \land |f(x)-c| < \epsilon/2$
 - $\langle 2 \rangle 3$. Pick $x \in (A \{a\}) \cap (a \delta, a + \delta)$
 - $\langle 2 \rangle 4$. $|f(x) b| < \epsilon/2$
 - $\langle 2 \rangle 5$. $|f(x) c| < \epsilon/2$
 - $\langle 2 \rangle 6$. $|b-c| < \epsilon$

П

Proposition 0.3 (Choice). Let $A \subseteq \mathbb{R}$ and $f: A \to \mathbb{R}$. Let a be an accumulation point of A. Let $b \in \mathbb{R}$. Then $f(x) \to b$ as $x \to a$ if and only if, for any sequence (x_n) in $A - \{a\}$, if $x_n \to a$ as $n \to \infty$ then $f(x_n) \to b$ as $n \to \infty$.

- $\langle 1 \rangle 1$. If $f(x) \to b$ as $x \to a$ then, for any sequence (x_n) is $A \{a\}$, if $x_n \to a$ as $n \to \infty$ then $f(x_n) \to b$ as $n \to \infty$.
 - $\langle 2 \rangle 1$. Assume: $f(x) \to b$ as $x \to a$
 - $\langle 2 \rangle 2$. Let: (x_n) be a sequence in $A \{a\}$
 - $\langle 2 \rangle 3$. Assume: $x_n \to a$ as $n \to \infty$
 - $\langle 2 \rangle 4$. Let: $\epsilon > 0$
 - $\langle 2 \rangle$ 5. Pick $\delta > 0$ such that, for all $x \in A \{a\}$, if $|x-a| < \delta$, then $|f(x)-b| < \epsilon$
 - $\langle 2 \rangle 6$. Pick N such that $\forall n \geq N . |x-a| < \delta$
 - $\langle 2 \rangle 7. \ \forall n \geq N. |f(x) b| < \epsilon$
- $\langle 1 \rangle 2$. If, for any sequence (x_n) is $A \{a\}$, if $x_n \to a$ as $n \to \infty$ then $f(x_n) \to b$ as $n \to \infty$, then $f(x) \to b$ as $x \to a$.
 - $\langle 2 \rangle 1$. Assume: $f(x) \not\rightarrow b$ as $x \rightarrow a$

- $\langle 2 \rangle 2$. Pick $\epsilon > 0$ such that, for all $\delta > 0$, there exists $x \in A \{a\}$ such that $|x-a| < \delta$ and $|f(x)-b| \ge \epsilon$
- $\langle 2 \rangle 3$. For all $n \in \mathbb{Z}^+$, PICK $x_n \in A \{a\}$ such that $|x_n a| < 1/n$ and $|f(x_n) b| \ge \epsilon$
- $\langle 2 \rangle 4$. $x_n \to a \text{ as } n \to \infty$
- $\langle 2 \rangle 5$. $f(x_n) \not\to b$ as $n \to \infty$

Proposition 0.4. Let $A, B \subseteq \mathbb{R}$. Let $f: A \to \mathbb{R}$ and $g: B \to \mathbb{R}$. Let a be an accumulation point of $A \cap B$. Let $b, c \in \mathbb{R}$. Assume $f(x) \to b$ as $x \to a$ and $g(x) \to c$ as $x \to a$. Then $f(x) + g(x) \to b + c$ as $x \to a$.

Proof:

- $\langle 1 \rangle 1$. Let: $\epsilon > 0$
- $\langle 1 \rangle 2$. PICK $\delta > 0$ such that, for all $x \in A \{a\}$, if $|x a| < \delta$ then $|f(x) b| < \epsilon/2$, and for all $x \in B \{a\}$, if $|x a| < \delta$ then $|g(x) c| < \epsilon/2$
- $\langle 1 \rangle 3$. Let: $x \in (A \cap B) \{a\}$
- $\langle 1 \rangle 4$. Assume: $|x a| < \delta$
- $\langle 1 \rangle 5. |(f(x) + g(x)) (b+c)| < \epsilon$

Proposition 0.5. Let $A, B \subseteq \mathbb{R}$. Let $f : A \to \mathbb{R}$ and $g : B \to \mathbb{R}$. Let a be an accumulation point of $A \cap B$. Let $b, c \in \mathbb{R}$. Assume $f(x) \to b$ as $x \to a$ and $g(x) \to c$ as $x \to a$. Then $f(x)g(x) \to bc$ as $x \to a$.

Proof:

- $\langle 1 \rangle 1$. Let: $\epsilon > 0$
- $\langle 1 \rangle 2$. Let: $d = \epsilon/2|b|$ if $b \neq 0$, or d = 1 if b = 0
- $\langle 1 \rangle 3$. PICK $\delta > 0$ such that, for all $x \in A \{a\}$, if $|x a| < \delta$ then $|f(x) b| < \epsilon/2(d + |c|)$, and for all $x \in B \{a\}$, if $|x a| < \delta$ then |g(x) c| < d
- $\langle 1 \rangle 4$. Let: $x \in (A \cap B) \{a\}$
- $\langle 1 \rangle 5$. Assume: $|x a| < \delta$
- $\langle 1 \rangle 6$. $|f(x)g(x) bc| < \epsilon$

Proof:

$$|f(x)g(x) - bc| \le |f(x) - b||g(x)| + |b||g(x) - c|$$

$$\epsilon/2 + \epsilon/2$$

$$-\epsilon$$

Proposition 0.6. Let $A \subseteq \mathbb{R}$ and $f: A \to \mathbb{R}$. Let a be an accumulation point of A and b > 0 Suppose $\lim_{x \to a} f(x) = b$. Then there exists δ such that, for all $x \in A - \{a\}$, if $|x - a| < \delta$ then f(x) > b/2.

PROOF: Take $\epsilon = b/2$ in the definition of limit. \square

Proposition 0.7. Let $A \subseteq \mathbb{R}$ and $f: A \to \mathbb{R}$. Let a be an accumulation point of A. Let $b \in \mathbb{R} - \{0\}$. Suppose $f(x) \to b$ as $x \to a$. Then a is an accumulation point of $\{x \in A: f(x) \neq 0\}$ and $1/f(x) \to 1/b$ as $x \to a$.

Proof:

- $\langle 1 \rangle 1$. a is an accumulation point of $\{x \in A : f(x) \neq 0\}$.
 - $\langle 2 \rangle 1$. Let: $\delta > 0$
 - $\langle 2 \rangle 2$. Assume: w.l.o.g. $\forall x \in A \{a\} | |x a| < \delta \Rightarrow f(x) \neq 0$
 - $\langle 2 \rangle 3$. Pick $x \in (a \delta, a + \delta) \cap (A \{a\})$
 - $\langle 2 \rangle 4. \ x \in (a \delta, a + \delta) \cap (\{x \in A : f(x) \neq 0\} \{a\})$
- $\langle 1 \rangle 2$. For all $\epsilon > 0$, there exists $\delta > 0$ such that, for all $x \in A \{a\}$, if $f(x) \neq 0$ and $|x a| < \delta$ then $|1/f(x) 1/b| < \epsilon$
 - $\langle 2 \rangle 1$. Let: $\epsilon > 0$
 - (2)2. Pick $\delta > 0$ such that $\forall x \in A \{a\}.|x-a| < \delta \Rightarrow |f(x)-b| < \epsilon |b|^2/2$ and $\forall \in A \{a\}.|x-a| < \delta \Rightarrow |f(x)| > |b|/2$

Proof: Proposition 0.6.

- $\langle 2 \rangle 3$. Let: $x \in A \{a\}$ satisfy $f(x) \neq 0$ and $|x a| < \delta$
- $\langle 2 \rangle 4$. $|1/f(x) 1/b| < \epsilon$

Proof:

$$|1/f(x) - 1/b| = |f(x) - b|/|f(x)||b|$$

$$< \epsilon \qquad (\langle 2 \rangle 2)$$

Definition 0.8 (Continuity at a Point). Let $A \subseteq \mathbb{R}$. Let $a \in A$ be an accumulation point of A. Then f is *continuous* at a if and only if $f(x) \to f(a)$ as $x \to a$.

f is *continuous* if and only if every point of A is an accumulation point of A and f is continuous at every point of A.

Proposition 0.9. Let $A, B \subseteq \mathbb{R}$. Let $f : A \to \mathbb{R}$ and $g : B \to \mathbb{R}$. Let $a \in A \cap B$ be an accumulation point of $A \cap B$. Assume f and g are continuous at a. Then f + g and fg are continuous at a.

Proof: Propositions 0.4 and 0.5. \square

Corollary 0.9.1. Every polynomial is continuous on \mathbb{R} .

Proposition 0.10. Let $A \subseteq \mathbb{R}$. Let $f : A \to \mathbb{R}$. Let $a \in A$ be an accumulation point of A. Assume f is continuous at a and $f(a) \neq 0$. Then 1/f is continuous at a.

Proof: Proposition 0.7. \square

Proposition 0.11. Let $A, B \subseteq \mathbb{R}$. Let $f : A \to \mathbb{R}$ and $g : B \to \mathbb{R}$. Let $a \in A$ be an accumulation point of A. Assume $f(a) \in B$ and f(a) is an accumulation point of B. If f is continuous at a and g is continuous at f(a) then $g \circ f$ is continuous at a.

- $\langle 1 \rangle 1$. Let: $\epsilon > 0$
- $\langle 1 \rangle$ 2. PICK $\delta_1 > 0$ such that, for all $y \in B \{f(a)\}$, if $|y f(a)| < \delta_1$ then $|g(y) g(f(a))| < \epsilon$

- $\langle 1 \rangle 3$. PICK $\delta_2 > 0$ such that, for all $x \in A \{a\}$, if $|x a| < \delta_2$ then $|f(x) f(a)| < \delta_1$
- $\langle 1 \rangle 4$. For all $x \in A \{a\}$, if $|x a| < \delta_2$ then $|g(f(x)) g(f(a))| < \epsilon$

Definition 0.12 (Relatively Open). Let $A \subseteq \mathbb{R}$ and $B \subseteq A$. Then B is relatively open in A iff there exists an open set $V \subseteq \mathbb{R}$ such that $B = A \cap V$.

Lemma 0.13. Let $B \subseteq A \subseteq \mathbb{R}$. Then B is relatively open in A iff, for all $x \in B$, there exists an open interval I containing x such that $I \cap A \subseteq B$.

Proof:

- $\langle 1 \rangle 1$. If B is relatively open in A then, for all $x \in B$, there exists an open interval I containing x such that $I \cap A \subseteq B$
 - $\langle 2 \rangle 1$. Assume: B is relatively open in A.
 - $\langle 2 \rangle 2$. PICK an open set V such that $B = A \cap V$
 - $\langle 2 \rangle 3$. Let: $x \in B$
 - $\langle 2 \rangle 4$. PICK an open interval I such that $x \in I \subseteq V$
 - $\langle 2 \rangle 5$. $I \cap A \subseteq B$
- $\langle 1 \rangle 2$. If, for all $x \in B$, there exists an open interval I containing x such that $I \cap A \subseteq B$, then B is relatively open in A.
 - $\langle 2 \rangle 1.$ Assume: For all $x \in B,$ there exists an open interval I containing x such that $I \cap A \subseteq B$
 - $\langle 2 \rangle 2$. Let: V be the union of all the open intervals I such that $I \cap A \subseteq B$
- $(2)3. B = A \cap V$

Theorem 0.14. Let $A \subseteq \mathbb{R}$ be a set such that every point in A is an accumulation point of A. Let $f: A \to \mathbb{R}$. Then f is continuous if and only if, for every open set W, we have $f^{-1}(W)$ relatively open in A.

- $\langle 1 \rangle 1$. If f is continuous then, for every open set W, we have $f^{-1}(W)$ is relatively open in A.
 - $\langle 2 \rangle 1$. Assume: f is continuous.
 - $\langle 2 \rangle 2$. Let: W be an open set.
 - $\langle 2 \rangle$ 3. For all $x \in f^{-1}(W)$, there exists an open interval containing I such that $I \cap A \subseteq f^{-1}(W)$
 - $\langle 3 \rangle 1$. Let: $x \in f^{-1}(W)$
 - $\langle 3 \rangle 2$. Pick $\epsilon > 0$ such that $(f(x) \epsilon, f(x) + \epsilon) \subseteq W$
 - $\langle 3 \rangle 3.$ PICK $\delta>0$ such that, for all $y\in A-\{x\},$ if $|y-x|<\delta$ then $|f(y)-f(x)|<\epsilon$
 - $\langle 3 \rangle 4$. Let: $I = (x \delta, x + \delta)$ Prove: $I \cap A \subseteq f^{-1}(W)$
 - $\langle 3 \rangle$ 5. Let: $y \in I \cap A$
 - $\langle 3 \rangle 6. \ f(y) \in (f(x) \epsilon, f(x) + \epsilon)$
 - $\langle 3 \rangle 7. \ f(y) \in W$
 - $\langle 2 \rangle 4$. $f^{-1}(W)$ is relatively open in A.

PROOF: Lemma 0.13.

- $\langle 1 \rangle 2$. If, for every open set W, we have $f^{-1}(W)$ is relatively open in A, then f is continuous.
 - $\langle 2 \rangle 1$. Assume: For every open set W, we have $f^{-1}(W)$ is relatively open in A.
 - $\langle 2 \rangle 2$. Let: $x \in A$
 - $\langle 2 \rangle 3$. Let: $\epsilon > 0$
 - $\langle 2 \rangle 4.$ $f^{-1}((f(x) \epsilon, f(x) + \epsilon))$ is relatively open in A.
 - $\langle 2 \rangle$ 5. PICK $\delta > 0$ such that $(x \delta, x + \delta) \cap A \subseteq f^{-1}((f(x) \epsilon, f(x) + \epsilon))$ PROOF: Lemma 0.13.
- (2)6. For all $y \in A \{x\}$, if $|y x| < \delta$ then $|f(y) f(x)| < \epsilon$

Proposition 0.15. Let $C \subseteq \mathbb{R}$ be compact and be such that every element of C is an accumulation point of C. Let $f: C \to \mathbb{R}$ be continuous. Then f(C) is compact.

Proof:

- $\langle 1 \rangle 1$. Let: \mathcal{A} be an open covering of f(C).
- $\langle 1 \rangle 2$. $\{ W \in \mathcal{P}\mathbb{R} : W \text{ is open}, \exists A \in \mathcal{A}.f^{-1}(A) = W \cap C \}$ is an open covering of C.

PROOF: Theorem 0.14.

- $\langle 1 \rangle 3$. PICK a finite subcover $\{W_1, \ldots, W_n\}$ of C.
- $\langle 1 \rangle 4$. For $i = 1, \ldots, n$, PICK $A_i \in \mathcal{A}$ such that $f^{-1}(A_i) = W_i \cap C$
- $\langle 1 \rangle 5. \{A_1, \dots, A_n\} \text{ covers } f(C).$

Corollary 0.15.1. Let $C \subseteq \mathbb{R}$ be compact and be such that every element of C is an accumulation point of C. Let $f: C \to \mathbb{R}$ be continuous. Then f(C) has a maximum and a minimum value.

Lemma 0.16. Let $A \subseteq \mathbb{R}$. Then A is connected if and only if there do not exist nonempty disjoint sets B, C relatively open in A such that $A = B \cup C$.

PROOF:

- $\langle 1 \rangle 1.$ If $A=B \cup C$ where B and C are nonempty, disjoint and relatively open in A, then A is disconnected.
 - $\langle 2 \rangle$ 1. Assume: $A = B \cup C$ where B and C are nonempty, disjoint and relatively open in A.
 - $\langle 2 \rangle 2$. Pick open sets B_1 and C_1 such that $B = B_1 \cap A$ and $C = C_1 \cap A$
 - $\langle 2 \rangle 3$. B contains no accumulation point of C.
 - $\langle 3 \rangle 1.$ Assume: for a contradiction $b \in B$ and b is an accumulation point of C
 - $\langle 3 \rangle 2$. b is an accumulation point of $\mathbb{R} B_1$
 - $\langle 3 \rangle 3. \ b \in \mathbb{R} B_1$

PROOF: Since $\mathbb{R} - B_1$ is closed.

 $\langle 3 \rangle 4$. Q.E.D.

PROOF: This contradicts the fact that $b \in B$.

 $\langle 2 \rangle 4$. C contains no accumulation point of B.

PROOF: Similar.

- $\langle 1 \rangle 2$. If A is disconnected then there exist nonempty, disjoint sets B and C relatively open in A such that $A = B \cup C$.
 - $\langle 2 \rangle 1$. Assume: A is disconnected
 - $\langle 2 \rangle 2$. PICK disjoint nonempty sets B and C such that $A = B \cup C$ and neither of B and C contains an accumulation point of the other.
 - $\langle 2 \rangle 3$. B is relatively open in A

PROOF: $B = A \cap (\mathbb{R} - \overline{C})$

 $\langle 2 \rangle 4$. C is relatively open in A

PROOF: Similar.

Theorem 0.17. Let $C \subseteq \mathbb{R}$ be connected and such that every element of C is an accumulation point of C. Let $f: C \to \mathbb{R}$ be continuous. Then f(C) is connected.

Proof:

 $\langle 1 \rangle 1$. Assume: for a contradiction $f(C) = B \cup D$ where B and D are nonempty, disjoint and relatively open in f(C)

Proof: Lemma 0.16.

- $\langle 1 \rangle 2$. PICK open sets B', D' such that $B = f(C) \cap B'$ and $D = f(C) \cap D'$
- $(1)3. C = f^{-1}(B') \cup f^{-1}(D')$
- $\langle 1 \rangle 4$. $f^{-1}(B')$ and $f^{-1}(D')$ are relatively open in C

PROOF: Theorem 0.14

- $\langle 1 \rangle 5. \ f^{-1}(B')$ and $f^{-1}(D')$ are nonempty and disjoint
- $\langle 1 \rangle 6$. Q.E.D.

Proof: This contradicts the fact that C is connected by Lemma 0.16.

Corollary 0.17.1. The continuous image of a closed interval is a closed inter-

Corollary 0.17.2 (Intermediate Value Theorem). Let $f : [a,b] \to \mathbb{R}$ be continuous. Let c be between f(a) and f(b). Then there exists $c \in [a,b]$ such that f(c) = c.

Proposition 0.18. Let $f:[a,b] \to \mathbb{R}$ be continuous and injective. Then f^{-1} is continuous.

- $\langle 1 \rangle 1$. Let: $y \in f([a,b])$
- $\langle 1 \rangle 2$. Let: $\epsilon > 0$
- $\langle 1 \rangle 3$. Let: x be the point such that f(x) = y
- $\langle 1 \rangle 4$. $f([x \epsilon/2, x + \epsilon/2] \cap [a, b])$ is a closed interval.
- $\langle 1 \rangle$ 5. PICK $\delta > 0$ such that $(y \delta, y + \delta) \subseteq f([x \epsilon/2, x + \epsilon/2] \cap [a, b])$
- $\langle 1 \rangle$ 6. Let: $z \in f([a,b]) \{y\}$ be such that $|y-z| < \delta$
- $\langle 1 \rangle 7$. $|f^{-1}(z) x| < \epsilon$

Definition 0.19 (Uniformly Continuous). Let $A \subseteq \mathbb{R}$ be such that every point of A is an accumulation point of A. Let $f: A \to \mathbb{R}$. Then f is uniformly continuous iff, for every $\epsilon > 0$, there exists $\delta > 0$ such that, for all $x, y \in A$, if $|x - y| < \delta$ then $|f(x) - f(y)| < \epsilon$.

Theorem 0.20. Let $A \subseteq \mathbb{R}$ be compact and such that every point of A is an accumulation point of A. Let $f: A \to \mathbb{R}$. If f is continuous then f is uniformly continuous.

```
Proof:
```

- $\langle 1 \rangle 1$. Let: $\epsilon > 0$
- $\langle 1 \rangle 2$. Let: \mathcal{B} be the set of all sets of the form $\{(z-\delta,z+\delta):z\in A,\delta>0, \forall u\in A.|z-u|<2\delta\Rightarrow |f(z)-f(u)|<\epsilon/2\}$
- $\langle 1 \rangle 3$. \mathcal{B} covers A.
- $\langle 1 \rangle 4$. PICK a finite subcover $\{(z_1 \delta_1, z_1 + \delta_1), \dots, (z_n \delta_n, z_n + \delta_n)\}$
- $\langle 1 \rangle 5$. Let: $\delta = \min(\delta_1, \dots, \delta_n)$
- $\langle 1 \rangle 6$. Let: $x, y \in A$ with $|x y| < \delta$
- $\langle 1 \rangle 7$. PICK i such that $x \in (z_i \delta_i, z_i + \delta_i)$
- $\langle 1 \rangle 8. |f(x) f(z_i)| < \epsilon/2$
- $\langle 1 \rangle 9. |y z_i| < 2\delta_i$
- $\langle 1 \rangle 10. |f(y) f(z_i)| < \epsilon/2$
- $\langle 1 \rangle 11. |f(y) f(x)| < \epsilon$

1 Infinite Series

Definition 1.1 (Infinite Series). Let (a_n) be a sequence of real numbers. The infinite series $\sum_n a_n$ is the sequence $(\sum_{i=0}^n a_i)$. The term $\sum_{i=0}^n a_i$ is the nth partial sum of the series. If the series converges, its limit is called the sum of the series and denoted $\sum_{i=0}^{\infty} a_i$.

Theorem 1.2 (Cauchy Criterion). Let (a_n) be a sequence of real numbers. Then $\sum_{n=1}^{\infty} a_n$ converges if and only if, for any $\epsilon > 0$, there exists N such that, for all $m \ge n \ge N$, we have $|\sum_{i=m}^n a_i| < \epsilon$.

PROOF: Since the reals are Cauchy complete.

Corollary 1.2.1. If $\sum_{n=1}^{\infty} a_n$ converges then $a_n \to 0$ as $n \to \infty$.

Corollary 1.2.2 (Comparison Test). Let (a_n) be a sequence of non-negative real numbers, and (b_n) a sequence of real numbers. If $\sum_{n=1}^{\infty} a_n$ converges and $\forall n.|b_n| \leq a_n$ then $\sum_{n=1}^{\infty} b_n$ converges.

Proof: Since $|sum_{i=m}^n b_i| \leq \sum_{i=m}^n a_i$. \square

Proposition 1.3. For $k \geq 2$ an integer, the series $\sum_{n=1}^{\infty} 1/n^k$ converges.

 $\langle 1 \rangle 1$. The series $\sum_{n=1}^{\infty} 1/n(n+1)$ converges. PROOF: The Nth partial sum is

$$\sum_{n=1}^{N} 1/n(n+1) = \sum_{n=1}^{N} (1/n - 1/(n+1))$$

$$= 1 - 1/(N+1)$$

$$\to 1 \quad \text{as } N \to \infty$$

 $\langle 1 \rangle 2$. The series $\sum_{n=1}^{\infty} 1/n^2$ converges. PROOF: By the Comparison Test, we have $\sum_{n=1}^{\infty} 1/(n+1)^2$ converges. $\langle 1 \rangle 3$. For $k \geq 2$ an integer, the series $\sum_{n=1}^{\infty} 1/n^k$ converges.

PROOF: By the Comparison Test.

Proposition 1.4. If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ converge then

$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$

Proof: Apply Theorem ?? to the partial sums. \square

Proposition 1.5. If $\sum_{n=1}^{\infty} a_n$ converges then, for $\lambda \in \mathbb{R}$, we have $\sum_{n=1}^{\infty} \lambda a_n =$ $\lambda \sum_{n=1}^{\infty} a_n$.

Proof: Easy. \square

Proposition 1.6. Let (a_n) and (b_n) be sequences of positive real numbers. Let c be a positive real. Assume $a_n/b_n \to c$ as $n \to \infty$. Then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=1}^{\infty} b_n$ converges.

- $\langle 1 \rangle 1.$ Assume: $\sum_{n=1}^{\infty} b_n$ converges. $\langle 1 \rangle 2.$ Let: $\epsilon > 0$
- $\langle 1 \rangle 3$. Pick N such that, for all $m, n \geq N$, we have $\sum_{i=m}^{n} b_i < \epsilon/(c+1)$ and for all $n \ge N$ we have $|a_n/b_n - c| < 1$
- $\langle 1 \rangle 4$. Let: $m, n \geq N$ $\langle 1 \rangle 5$. $\sum_{i=m}^{n} a_i < \epsilon$ Proof:

$$\sum_{i=m}^{n} a_i < \sum_{i=m}^{n} b_i(c+1)$$
$$= (c+1) \sum_{i=m}^{n} b_i$$

Proposition 1.7 (Geometric Series). Let $b, r \in \mathbb{R}$ with |r| < 1. Then $\sum_{n=0}^{\infty} br^n =$ b/(1-r).

PROOF:
$$\langle 1 \rangle 1$$
. $\sum_{i=0}^{n} br^{i} = b(1 - r^{n+1})/(1 - r)$
PROOF:

$$(1-r)\sum_{i=0}^{n} br^{i} = \sum_{i=0}^{n} br^{i} - \sum_{i=1}^{n+1} br^{i}$$
$$= b - br^{n+1}$$

$$\langle 1 \rangle 2$$
. $\sum_{i=0}^{\infty} br^i = b/(1-r)$
PROOF: Lemma ??

Proposition 1.8. Let $b, r \in \mathbb{R}$ with $|r| \geq 1$. Then $\sum_{n=0}^{\infty} br^n$ diverges.

PROOF: Since br^n does not converge to 0. \square

Proposition 1.9 (Harmonic Series). $\sum_{n=1}^{\infty} 1/n$ diverges.

Proof: Since $\sum_{i=1}^{2^n} 1/i \ge 1 + n/2$. \square

Definition 1.10 (Absolute Convergence). A series $\sum_n a_n$ converges absolutely iff $\sum_{n} |a_n|$ converges.

Proposition 1.11. An absolutely convergent series converges.

PROOF: By the Comparison Test.

Theorem 1.12 (Alternating Series Test). Let (a_n) be a decreasing sequence of nonnegative real numbers that converges to 0. Then $\sum_{n} (-1)^n a_n$ converges.

Proof:

 $\langle 1 \rangle 1$. For natural numbers $m \leq n$,

LET: $R_{mn} = \sum_{i=m}^{n} (-1)^{i} a_{i}$ $\langle 1 \rangle 2$. For natural numbers $m \leq n$, $(-1)^{m} R_{mn} \geq 0$ PROOF: It is $\sum_{0 \leq j, m+2j+1 \leq n} (a_{m+2j} - a_{m+2j+1})$ if n-m is even, or $\sum_{0 \leq j, m+2j+1 \leq n} (a_{m+2j} - a_{m+2j+1}) + a_{n}$ if n-m is odd.

 $\langle 1 \rangle 3$. For natural numbers $m \leq n, (-1)^m R_{mn} \leq a_m$

PROOF: It is $a_m + \sum_j (-a_{m+2j+1} + a_{m+2j+2})$ if n - m is odd, or $a_m + \sum_j (-a_{m+2j+1} + a_{m+2j+2}) - a_n$ if n - m is even. $\langle 1 \rangle 4$. For natural numbers $m \leq n$, $|R_{mn}| \leq a_m$

 $\langle 1 \rangle 5$. Let: $\epsilon > 0$

 $\langle 1 \rangle 6$. Pick N such that $\forall n \geq N.a_n < \epsilon$

 $\langle 1 \rangle 7$. For all m, n, if $N \leq m \leq n$ then $|R_{mn}| < \epsilon$

 $\langle 1 \rangle 8$. Q.E.D.

PROOF: By the Cauchy criterion.

Definition 1.13 (Remainder of a Series). Let $\sum_{n=0}^{\infty} a_n$ be a series and $N \in \mathbb{N}$. The remainder of the series after the Nth term is the series $\sum_{n=N+1}^{\infty} a_n$.

Proposition 1.14. If the series $\sum_{n=0}^{\infty} a_n$ converges, then

$$\sum_{n=N}^{\infty} a_n \to 0 \text{ as } N \to \infty$$

Proof:

 $\begin{array}{l} \text{1.605}\text{r.} \\ \langle 1 \rangle 1. \text{ For all } N, k \text{ with } N \leq k, \text{ we have } \sum_{n=0}^k a_n = \sum_{n=0}^{N-1} a_n + \sum_{n=N}^k a_n \\ \langle 1 \rangle 2. \sum_{n=0}^\infty a_n = \sum_{n=0}^{N-1} a_n + \sum_{n=N}^\infty a_n \\ \text{PROOF: Taking limits.} \\ \langle 1 \rangle 3. \sum_{n=N}^\infty a_n = \sum_{n=0}^\infty a_n - \sum_{n=0}^{N-1} a_n \\ \langle 1 \rangle 4. \sum_{n=N}^\infty a_n \to 0 \text{ as } N \to \infty \\ \text{PROOF:} \end{array}$

$$\sum_{n=0}^{\infty} a_n - \sum_{n=0}^{N-1} a_n \to \sum_{n=0}^{\infty} a_n - \sum_{n=0}^{\infty} a_n$$
 as $N \to \infty$

Theorem 1.15 (Ratio Test). Let (a_n) be a sequence of non-zero real numbers.

- 1. If $(|a_{n+1}/a_n|)$ converges to a limit < 1, then $\sum_{n=0}^{\infty} a_n$ converges absolutely.
- 2. If $(|a_{n+1}/a_n|)$ converges to a limit > 1 or diverges to $+\infty$, then $\sum_{n=0}^{\infty} a_n$ diverges.

PROOF:

- $\langle 1 \rangle 1$. If $(|a_{n+1}/a_n|)$ converges to a limit < 1, then $\sum_{n=0}^{\infty} a_n$ converges absolutely.
 - $\langle 2 \rangle 1$. Assume: $|a_{n+1}/a_n| \to b < 1$ as $n \to \infty$
 - $\langle 2 \rangle 2$. Pick N such that $\forall n \geq N. ||a_{n+1}/a_n| b| < (1-b)/2$
 - $\langle 2 \rangle 3$. Let: c = (1+b)/2
 - $\langle 2 \rangle 4$. $\forall n \geq N . |a_{n+1}/a_n| \leq c$
 - $\langle 2 \rangle 5. \ \forall n \geq N. |a_{n+1}| < c|a_n|$
 - $\langle 2 \rangle 6. \ 0 < c < 1$
 - $\langle 2 \rangle 7. \ \forall n \ge N. \sum_{i=N}^{n} |a_i| \le |a_N|/(1-c)$

$$\sum_{i=N}^{n} |a_i| \le |a_N| \sum_{i=N}^{n} c^{n-N}$$

$$\leq |a_N|(1/(1-c))$$

- $\leq |a_N|(1/(1-c))$ $\langle 2 \rangle 8. \ \forall n \geq N. \sum_{i=0}^n |a_i| \leq \sum_{i=0}^{N-1} |a_i| + |a_N|/(1-c)$ $\langle 2 \rangle 9. \ \sum_{i=0}^n |a_i| \text{ converges.}$ $\langle 1 \rangle 2. \ \text{If } |a_{n+1}/a_n| \text{ converges to a limit } > 1, \text{ then } \sum_{n=0}^{\infty} a_n \text{ diverges.}$
 - $\langle 2 \rangle 1$. Assume: $|a_{n+1}/a_n| \to b > 1$ as $n \to \infty$
 - $\langle 2 \rangle 2$. PICK N such that $\forall n \geq N . ||a_{n+1}/a_n| b| < (b-1)/2$
 - $\langle 2 \rangle 3$. Let: c = (b+1)/2
 - $\langle 2 \rangle 4. \ \forall n \geq N. |a_{n+1}/a_n| > c$
 - $\langle 2 \rangle 5.$ c > 1

$$\langle 2 \rangle 6. \ \forall n \ge N. |a_n| \ge |a_N|$$

$$\langle 2 \rangle 7$$
. $a_n \not\to 0$ as $n \to \infty$

 $\langle 1 \rangle 3$. If $|a_{n+1}/a_n|$ diverges to $+\infty$ then $\sum_{n=0}^{\infty} a_n$ diverges.

- $\langle 2 \rangle 1$. Assume: $|a_{n+1}/a_n|$ diverges to $+\infty$
- $\langle 2 \rangle 2$. PICK N such that $\forall n \geq N . |a_{n+1}/a_n| > 2$
- $\langle 2 \rangle 3. \ \forall n \geq N. |a_n| \geq |a_N|$
- $\langle 2 \rangle 4$. $a_n \not\to 0$ as $n \to \infty$

Proposition 1.16. $u^n/n! \to 0$ as $n \to \infty$

Proof:

 $\langle 1 \rangle 1$. For $n \in \mathbb{N}$,

Let: $a_n = u^n/n!$

 $\langle 1 \rangle 2$. $|a_{n+1}/a_n| \to 0$ as $n \to \infty$

PROOF: Since $a_{n+1}/a_n = u/(n+1)$

 $\langle 1 \rangle 3$. $\sum_{n=0}^{\infty} a_n$ converges absolutely.

PROOF: By the Ratio Test.

 $\langle 1 \rangle 4$. $a_n \to 0$ as $n \to \infty$

Definition 1.17 (Rearrangement). A rearrangement of a series $\sum_{n=0}^{\infty} a_n$ is a series of the form $\sum_{n=0}^{\infty} a_{\sigma(n)}$ for a permutation σ of \mathbb{N} .

Proposition 1.18. Let $\sum_{n=0}^{\infty} a_{\sigma(n)}$ be a rearrangement of a series $\sum_{n=0}^{\infty} a_n$. If $\sum_{n=0}^{\infty} a_n$ converges absolutely, then $\sum_{n=0}^{\infty} a_{\sigma(n)}$ converges and $\sum_{n=0}^{\infty} a_{\sigma(n)} = \sum_{n=0}^{\infty} a_n$.

Proof:

- $\langle 1 \rangle 1$. For all $\epsilon > 0$, there exists N such that $\forall n \geq N . |\sum_{i=0}^{n} a_i \sum_{i=0}^{n} a_{\sigma(i)}| < \epsilon$
 - $\langle 2 \rangle 1$. Let: $\epsilon > 0$
 - $\langle 2 \rangle 2$. PICK N such that $\forall m \geq n \geq N$. $\sum_{i=n}^{m} |a_i| < \epsilon/2$
 - $\langle 2 \rangle 3$. Let: P be the least integer such that $0, \ldots, N \in \{\sigma(0), \ldots, \sigma(P)\}$
 - $\langle 2 \rangle 4$. Let: $n \geq P$
 - $\langle 2 \rangle 5$. $|\sum_{i=0}^{n} a_i \sum_{i=0}^{n} a_{\sigma(i)}|$

Proof:

$$\left| \sum_{i=0}^{n} a_i - \sum_{i=0}^{n} a_{\sigma(i)} \right| = \left| \sum_{i=N+1}^{n} a_i - \sum_{0 \le i \le n, \sigma(i) > N} a_{\sigma(i)} \right|$$

$$\leq \sum_{i=N+1}^{n} |a_i| + \sum_{i=N+1}^{\max(\sigma(0), \dots, \sigma(n))} |a_i|$$

 $\langle 1 \rangle 2$. $(\sum_{i=0}^{n} a_i)$ and $(\sum_{i=0}^{n} a_{\sigma(i)})$ converge to the same limit.

Proposition 1.19. Let $\sum_n a_n$ be a series that converges but does not converge absolutely. Let r be any real number. Then there exists a rearrangement of $\sum_{n} a_n$ that converges to r.

PROOF: The series has infinitely many positive terms and infinitely many negative terms. The subseries of positive terms diverges to $+\infty$ and the subseries of negative terms diverges to $-\infty$. Select positive terms until the sum is > r, then negative terms until the sum is > r, etc. \square

Definition 1.20 (Infinite Decimal). An *infinite decimal* $a_0.a_1a_2\cdots$ consists of an integer a_0 and a sequence (a_1, a_2, \ldots) of natural numbers < 10.

Theorem 1.21. Given any infinite decimal $a_0.a_1a_2\cdots$, the series $a_0+\sum_{n=1}^{\infty}a_n10^{-n}$ converges.

PROOF: By comparison with $\sum_{n} 10^{-(n-1)}$. \square

Definition 1.22. The sum $a_0 + \sum_{n=1}^{\infty} a_n 10^{-n}$ is the number represented by the infinite decimal $a_0.a_1a_2\cdots$.

Lemma 1.23. Every real number is represented by an infinite decimal, unique except that $a_0.a_1a_2\cdots a_n000\cdots$ and $a_0.a_1a_2\cdots a_{n-1}(a_n-1)999\cdots$ represent the same number.

Definition 1.24. A complex number z is the *limit* of the sequence (a_n) of complex numbers iff, for every real $\epsilon > 0$, there exists an integer N such that, for all $n \geq N$, we have $|a_n - z| < \epsilon$.

Proposition 1.25. A sequence of complex numbers has at most one limit.

Definition 1.26 (Cauchy sequence). A sequence of complex numbers (a_n) is a Cauchy sequence iff, for every real $\epsilon > 0$, there exists an integer N such that, for all $m, n \geq N$, we have $|a_m - a_n| < \epsilon$.

Proposition 1.27. For (a_n) and (b_n) sequences of real numbers, we have $(a_n + b_n i)$ is Cauchy iff (a_n) and (b_n) are Cauchy.

Proposition 1.28. A sequence of complex numbers is Cauchy if and only if it converges.