

KURS RÓWNANIA RÓŻNICZKOWE

Lekcja 1 Równania różniczkowe o zmiennych rozdzielonych

ROZWIĄZANIE ZADANIA DOMOWEGO

Część 1: TEST

Pytanie 1: b

Pytanie 2: c

Pytanie 3: d

Pytanie 4: a

Pytanie 5: a

Pytanie 6: b

Pytanie 7: b

Pytanie 8: d

Pytanie 9: d

Pytanie 10: d

Część 2: ZADANIA

Zad. 1

a).
$$y = Ce^{2x}$$

b).
$$y = \pm \sqrt{2x - x^2 + C}$$

c).
$$y = C\sqrt[7]{x}$$

d).
$$y = C\sqrt[3]{x}$$

e).
$$y = Ce^{\frac{1}{2}x^2}$$

f).
$$y = Ce^{x^2} - \frac{1}{2}$$

g).
$$y = \frac{Cx}{1 - Cx}$$

h).
$$y = \pm \sqrt{\left(-\sqrt{3+x^2} + C\right)^2 - 3}$$

i).
$$y = Ce^{-2x}$$

Zad. 2

a).
$$y = -\frac{1}{2}x^2 + x + 8\ln|x+1| + 1$$

b).
$$y = 2e^{\frac{1}{2}x^2} - 1$$

c).
$$y = \ln\left(4e^{\frac{1}{2}x^2} - 3\right)$$

d).
$$\ln y - \frac{1}{2}y^2 = \ln x + \frac{1}{x} - \frac{3}{2}$$

zad. 3

a).
$$y = tg(arctgx + C)$$

b).
$$y = \frac{2}{1 + Cx^2}$$

c).
$$y = \pm \sqrt{\frac{1}{1 + Ce^{x^2}}}$$

KONIEC