

DIABETES PREDICTION ANALYSIS

Project 4 Team Members:

- 1. Eva Brown
- 2. Jeff He
- 3. Magdalene Singh

CONTENT

- Introduction
- Proposed Approach
- Background
- Overview of Machine Learning
- Exploring the Data
- Modelling the Data
- Comparison
- Page Launch

INTRODUCTION

Welcome to our Diabetes Prediction Analysis presentation.

Applications used:

- ✓ Python Pandas
- ✓ Python Matplotlib
- ✓ Numpy
- ✓ Scikit-learn
- ✓ Streamlit

PROPOSED APPROACH

- Our project aim was to predict the probability of developing
 Diabetes by applying Machine Learning.
- ☐ Logistic Regression & Random Forest were used to evaluate the accuracy of the prediction outcome.
- ☐ The dataset of 100,000 entries was obtained from kaggle.com:

https://www.kaggle.com/datasets/iammustafatz/diabetes-prediction-dataset

BACKGROUND

DIABETES

- □ Chronic medical condition
- Elevated levels of blood glucose (or blood sugar).
- The body either does not produce enough insulin or cannot use the insulin it produces.
- ☐ Three main types of diabetes:

1. Type 1 Diabetes:

- Immune system destroys insulin-producing beta cells in the pancreas.
- Insulin injections or an insulin pump required to manage blood sugar levels.

2. Type 2 Diabetes:

- Inability to use insulin properly (insulin resistance) or insufficient production of insulin.
- Lifestyle factors: obesity, lack of physical activity & genetic predisposition.
- Managed through lifestyle modifications, oral medications & insulin therapy.

3. Gestational Diabetes:

- Occurs during pregnancy.
- Resolves after childbirth.

Common symptoms of diabetes:

increased thirst	unexplained weight loss	fatigue
frequent urination	blurred vision	

If left untreated, diabetes can lead to serious health consequences such as:

heart disease	kidney damage	vision problems
stroke	nerve damage	

Management of diabetes:

maintaining blood glucose	lifestyle changes such as
levels within a target range	healthy eating, regular
through a combination of	physical activity, stress
medication	management
regular glucose monitoring	regular medical check-ups

Regular medical check-ups are essential for early detection of health consequences and effective diabetes management.

The prevalence of diabetes has been increasing globally and varies by region.

OVERVIEW OF MACHINE LEARNING

EXPLORING THE DATA

1. Read the diabetes_prediction_dataset.csvdata into a Pandas DataFrame.

2. Fields:

gender	hypertension	heart_disease	HbA1c_level	diabetes
age	smoking_history	bmi	blood_glucose_level	

- 3. Transformed the data.
 - renamed & regrouped the smoking_history & gender fields

```
# Check the `gender` column's values
diab_pred_df.gender.value_counts()

Female 56161
Male 39967
Other 18
Name: gender, dtype: int64
```

```
# Check the `smoking_history` column's values diab_pred_df.smoking_history.value_counts()

never 34398
No Info 32887
former 9299
current 9197
not current 6367
ever 3998
Name: smoking_history, dtype: int64
```

EXPLORING THE DATA

4. Checked for missing data

```
RangeIndex: 100000 entries, 0 to 99999
Data columns (total 9 columns):
    Column
                        Non-Null Count
                                        Dtype
                                       object
    gender
                        100000 non-null
                       100000 non-null
                                       float64
    age
    hypertension
                    100000 non-null int64
    heart_disease 100000 non-null int64
    smoking_history 100000 non-null object
    bmi
                       100000 non-null float64
    HbA1c_level
                 100000 non-null float64
    blood_glucose_level 100000 non-null int64
    diabetes
                        100000 non-null int64
dtypes: float64(3), int64(4), object(2)
```

EXPLORING THE DATA

5. Dropped duplicated rows

```
diab_pred_df.duplicated().sum()
3854
```

6. Find the correlation between each feature and diabetes outcome.

gender	-0.04
smoking_history	0.12
heart_disease	0.17
hypertension	0.20
bmi	0.21
age	0.26
HbA1c_level	0.41
blood_glucose_level	0.42
diabetes	1.00
Name: diabetes, dtype:	float64

Visualising the data distribution plots p = df1.hist(figsize = (20,20))

MODELLING THE DATA

- 1. The dataset was split into training and testing datasets.
- 2. Evaluated the data.
 - Used Logistic Regression as the initial model.
 - According to studies, Random Forest was shown to be a more accurate model for health predictions.
- 3. We used the Random Forest model for our Diabetes Predictor web page.

COMPARE CLASSIFICATION REPORTS

LOGISTIC REGRESSION

RANDOM FOREST

	precision	recall	f1-score	support
0	0.96	0.99	0.98	21912
1	0.83	0.63	0.71	2120
accuracy			0.96	24032
macro avg	0.90	0.81	0.85	24032
weighted avg	0.95	0.96	0.95	24032

		precision	recall	f1-score	support
	0	0.97	1.00	0.98	21912
	1	0.94	0.69	0.79	2120
accur	acy			0.97	24032
macro	avg	0.96	0.84	0.89	24032
weighted	avg	0.97	0.97	0.97	24032

- > The Random Forest model has a higher precision (94% vs. 83%), indicating fewer false positives.
- The Random Forest model has a higher recall (69% vs. 63%), meaning it captures more true positives among all actual positives.
- > The f1-score for class 1 is notably higher for the Random Forest model (79% vs. 71%).

HOLD ON TO YOUR SEATS WHILE WE ...

LAUNCH OUR PAGE

The page can be launched directly from GitHub:

https://github.com/EvaB5050/Diabetes-Prediction-Analysis.git

Thank you for watching our presentation

And that, my dear fellow students, marks the end of our Data Analytics BootCamp.

Let's embrace life once again

