Cálculo Vetorial — Simulado

Modalidades. Este teste é opcional e não será contabilizado. Ele consiste em seis exercícios, e será distribuído aos alunos na segunda-feira, 10/06, às 11h10. Os alunos terão uma hora para resolvê-los.

Exercício 1. Calcule a integral curvilínea ao longo do segmento de reta entre (0,1) e (2,2) do campo escalar $f(x,y) = xe^{y^2-x}$.

Exercício 2. Calcule a integral curvilínea ao longo da curva parametrizada por $t \mapsto (t, t^2, t^3)$, para $t \in [0, 1]$, do campo vetorial $F(x, y, z) = (x + z, y^3, 1 - x)$.

Exercício 3. Calcule a integral curvilínea ao longo do triângulo de vértices (0,0), (2,0) e (0,1), orientado neste sentido, do campo vetorial $F(x,y) = (-\sin(x+y), x\cos(y))$. Sugestão: Use o teorema de Green.

Exercício 4. Calcule a integral de superfície sobre $S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1, z \ge 1/2\}$ do campo escalar f(x, y, z) = z.

Exercício 5. Calcule a integral de superfície sobre $S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = z^2, 0 \le z \le 1\}$, orientada para fora, <u>do rotacional</u> do campo $F(x, y, z) = (-z^2y, z^2x, z^4)$.

Sugestão: Use o teorema de Stokes.

Exercício 6. Calcule a integral de superfície do campo vetorial $F(x, y, z) = (4x - z^2, x + 3z, 6 - z)$ sobre a fronteira, orientada para fora, do sólido

$$\Omega = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z \le 1 \ x, y, z \ge 0\}$$

Sugestão: Use o teorema de Gauss.