class13

Izabelle Querubin

Class 13 Mini-Project

Section 1. Differential Expression Analysis

```
library(DESeq2)
```

Loading required package: S4Vectors

Loading required package: stats4

Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min

Attaching package: 'S4Vectors'

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars

```
Loading required package: Biobase
Welcome to Bioconductor
    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.
Attaching package: 'Biobase'
The following object is masked from 'package:MatrixGenerics':
    rowMedians
The following objects are masked from 'package:matrixStats':
    anyMissing, rowMedians
  metaFile <- "GSE37704_metadata.csv"</pre>
  countFile <- "GSE37704_featurecounts.csv"</pre>
  # Import metadata and take a peak
  colData = read.csv(metaFile, row.names=1)
  head(colData)
              condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
SRR493369
               hoxa1_kd
               hoxa1 kd
SRR493370
               hoxa1_kd
SRR493371
  # Import countdata
  countData = read.csv(countFile, row.names=1)
  head(countData)
```

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENSG00000186092		0				
ENSG00000279928		0				
ENSG00000279457		46				
ENSG00000278566		0				
ENSG00000273547		0				
ENSG00000187634	2	258				

Q1. Complete the code below to remove the troublesome first column from ${\tt countData}$.

```
# Note we need to remove the odd first $length col
countData <- as.matrix(countData[, -1])
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

Q2. Complete the code below to filter countData to exclude genes (i.e. rows) where we have 0 read count across all samples (i.e. columns).

```
# Filter count data where you have 0 read count across all samples.
countData = countData[rowSums(countData) > 0, ]
head(countData)
```

		SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
El	NSG00000279457	23	28	29	29	28	46
Εľ	NSG00000187634	124	123	205	207	212	258

ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

Running DESeq2

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
dds = DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
dds
```

class: DESeqDataSet

dim: 15975 6

metadata(1): version

assays(4): counts mu H cooks

rownames(15975): ENSG00000279457 ENSG00000187634 ... ENSG00000276345

ENSG00000271254

rowData names(22): baseMean baseVar ... deviance maxCooks colnames(6): SRR493366 SRR493367 ... SRR493370 SRR493371

colData names(2): condition sizeFactor

```
res = results(dds, contrast=c("condition", "hoxa1_kd", "control_sirna"))
summary(res)
```

out of 15975 with nonzero total read count

adjusted p-value < 0.1

LFC > 0 (up): 4349, 27% LFC < 0 (down): 4396, 28% outliers [1] : 0, 0% low counts [2] : 1237, 7.7%

(mean count < 0)</pre>

[1] see 'cooksCutoff' argument of ?results

[2] see 'independentFiltering' argument of ?results

Volcano Plot

```
plot( res$log2FoldChange, -log(res$padj) )
```


Q4. Improve this plot by completing the below code, which adds color and axis labels

```
# Make a color vector for all genes
mycols <- rep("gray", nrow(res) )

# Color red the genes with absolute fold change above 2
mycols[ abs(res$log2FoldChange) > 2 ] <- "red"

# Color blue those with adjusted p-value less than 0.01
# and absolute fold change more than 2
inds <- (res$padj < 0.01) & (abs(res$log2FoldChange) > 2 )
mycols[ inds ] <- "blue"

plot( res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log(</pre>
```


Adding gene annotation

Q5. Use the mapIDs() function multiple times to add SYMBOL, ENTREZID and GENE-NAME annotation to our results by completing the code below.

```
library("AnnotationDbi")
  library("org.Hs.eg.db")
  columns(org.Hs.eg.db)
 [1] "ACCNUM"
                    "ALIAS"
                                   "ENSEMBL"
                                                   "ENSEMBLPROT"
                                                                  "ENSEMBLTRANS"
 [6] "ENTREZID"
                    "ENZYME"
                                   "EVIDENCE"
                                                   "EVIDENCEALL"
                                                                  "GENENAME"
[11] "GENETYPE"
                    "GO"
                                                   "IPI"
                                   "GOALL"
                                                                  "MAP"
[16] "OMIM"
                    "ONTOLOGY"
                                   "ONTOLOGYALL" "PATH"
                                                                  "PFAM"
[21] "PMID"
                    "PROSITE"
                                   "REFSEQ"
                                                   "SYMBOL"
                                                                  "UCSCKG"
[26] "UNIPROT"
  res$symbol = mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                      column="SYMBOL",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  res$entrez = mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                      column="ENTREZID",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  res$name =
               mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                      column="GENENAME",
                      multiVals="first")
```

```
head(res, 10)
```

log2 fold change (MLE): condition hoxa1_kd vs control_sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 10 rows and 9 columns

	baseMean	log2FoldChange	lfcSH	E stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<pre>> <numeric></numeric></pre>	<numeric></numeric>
ENSG00000279457	29.913579	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.229650	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.188076	-0.6927205	0.0548465	-12.630158	1.43990e-36
ENSG00000187961	209.637938	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.255123	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.979750	0.5428105	0.5215598	1.040744	2.97994e-01
ENSG00000188290	108.922128	2.0570638	0.1969053	3 10.446970	1.51282e-25
ENSG00000187608	350.716868	0.2573837	0.1027266	2.505522	1.22271e-02
ENSG00000188157	9128.439422	0.3899088	0.0467163	8.346304	7.04321e-17
ENSG00000237330	0.158192	0.7859552	4.0804729	0.192614	8.47261e-01
	padj	symbol	entrez		name
	<numeric></numeric>	<character> <cl< td=""><td>haracter></td><td></td><td><pre><character></character></pre></td></cl<></character>	haracter>		<pre><character></character></pre>
ENSG00000279457	6.86555e-01	NA	NA		NA
ENSG00000187634	5.15718e-03	SAMD11	148398	sterile alpl	ha motif
ENSG00000188976	1.76549e-35	NOC2L		NOC2 like no	
ENSG00000187961	1.13413e-07	KLHL17	339451	kelch like	family me
ENSG00000187583	9.19031e-01	PLEKHN1	84069	pleckstrin l	homology
ENSG00000187642	4.03379e-01	PERM1	84808	PPARGC1 and	ESRR ind
ENSG00000188290	1.30538e-24	HES4	57801	hes family 1	bHLH tran
ENSG00000187608	2.37452e-02	ISG15		ISG15 ubiqu	
ENSG00000188157	4.21963e-16	AGRN	375790	-	agrin
ENSG00000237330	NA	RNF223	401934	ring finger	protein
					-

Q6. Finally for this section let's reorder these results by adjusted p-value and save them to a CSV file in your current project directory.

```
res = res[order(res$pvalue),]
write.csv(res, file="deseq_results.csv")
```

Section 2. Pathway Analysis

KEGG Pathways

```
library(pathview)
```

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

The pathview downloads and uses KEGG data. Non-academic uses may require a KEGG license agreement (details at http://www.kegg.jp/kegg/legal.html).

```
library(gage)
```

```
library(gageData)
  data(kegg.sets.hs)
  data(sigmet.idx.hs)
  # Focus on signaling and metabolic pathways only
  kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
  # Examine the first 3 pathways
  head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
[1] "10" "1544" "1548" "1549" "1553" "7498" "9"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
             "1066"
                      "10720" "10941"
                                       "151531" "1548"
                                                          "1549"
                                                                  "1551"
                                        "1807"
 [9] "1553"
             "1576"
                      "1577"
                               "1806"
                                                 "1890"
                                                         "221223" "2990"
[17] "3251"
             "3614"
                      "3615"
                               "3704"
                                        "51733" "54490"
                                                         "54575"
                                                                  "54576"
```

```
[25] "54577"
               "54578"
                         "54579"
                                  "54600"
                                            "54657"
                                                      "54658"
                                                                "54659"
                                                                          "54963"
[33] "574537"
               "64816"
                         "7083"
                                  "7084"
                                            "7172"
                                                      "7363"
                                                                "7364"
                                                                          "7365"
                                            "7378"
                                                                          "83549"
[41] "7366"
               "7367"
                         "7371"
                                  "7372"
                                                      "7498"
                                                                "79799"
[49] "8824"
               "8833"
                         "9"
                                  "978"
$`hsa00230 Purine metabolism`
  [1] "100"
                "10201"
                          "10606"
                                   "10621"
                                             "10622"
                                                       "10623"
                                                                 "107"
                                                                           "10714"
  [9] "108"
                "10846"
                          "109"
                                    "111"
                                             "11128"
                                                       "11164"
                                                                 "112"
                                                                           "113"
 [17] "114"
                "115"
                          "122481" "122622"
                                             "124583"
                                                       "132"
                                                                 "158"
                                                                           "159"
                "171568" "1716"
                                    "196883" "203"
                                                       "204"
                                                                 "205"
 [25] "1633"
                                                                           "221823"
 [33] "2272"
                "22978"
                          "23649"
                                    "246721"
                                             "25885"
                                                       "2618"
                                                                 "26289"
                                                                           "270"
 [41] "271"
                "27115"
                          "272"
                                    "2766"
                                             "2977"
                                                       "2982"
                                                                 "2983"
                                                                           "2984"
                "2987"
                                                                 "318"
                                                                           "3251"
 [49] "2986"
                          "29922"
                                    "3000"
                                             "30833"
                                                       "30834"
 [57] "353"
                "3614"
                          "3615"
                                    "3704"
                                             "377841" "471"
                                                                 "4830"
                                                                           "4831"
 [65] "4832"
                "4833"
                          "4860"
                                             "4882"
                                                       "4907"
                                                                 "50484"
                                                                           "50940"
                                    "4881"
                                                                 "5139"
 [73] "51082"
                "51251"
                          "51292"
                                    "5136"
                                             "5137"
                                                       "5138"
                                                                           "5140"
 [81] "5141"
                "5142"
                          "5143"
                                    "5144"
                                             "5145"
                                                       "5146"
                                                                 "5147"
                                                                           "5148"
 [89] "5149"
                "5150"
                          "5151"
                                    "5152"
                                             "5153"
                                                       "5158"
                                                                 "5167"
                                                                           "5169"
 [97] "51728"
                "5198"
                          "5236"
                                    "5313"
                                             "5315"
                                                       "53343"
                                                                 "54107"
                                                                           "5422"
                                                                 "5432"
[105] "5424"
                "5425"
                          "5426"
                                    "5427"
                                             "5430"
                                                       "5431"
                                                                           "5433"
[113] "5434"
                "5435"
                          "5436"
                                    "5437"
                                             "5438"
                                                       "5439"
                                                                 "5440"
                                                                           "5441"
[121] "5471"
                "548644" "55276"
                                    "5557"
                                             "5558"
                                                       "55703"
                                                                 "55811"
                                                                           "55821"
                "5634"
[129] "5631"
                          "56655"
                                    "56953"
                                             "56985"
                                                       "57804"
                                                                 "58497"
                                                                           "6240"
[137] "6241"
                "64425"
                          "646625" "654364"
                                             "661"
                                                       "7498"
                                                                 "8382"
                                                                           "84172"
[145] "84265"
                "84284"
                          "84618"
                                    "8622"
                                             "8654"
                                                       "87178"
                                                                 "8833"
                                                                           "9060"
[153] "9061"
                "93034"
                          "953"
                                    "9533"
                                             "954"
                                                       "955"
                                                                 "956"
                                                                           "957"
[161] "9583"
                "9615"
  foldchanges = res$log2FoldChange
  names(foldchanges) = res$entrez
  head(foldchanges)
     1266
               54855
                           1465
                                    51232
                                                 2034
                                                            2317
-2.422719
           3.201955 -2.313738 -2.059631 -1.888019 -1.649792
  # Get the results
  keggres = gage(foldchanges, gsets=kegg.sets.hs)
  attributes(keggres)
```

```
[1] "greater" "less"
                        "stats"
  # Look at the first few down (less) pathways
  head(keggres$less)
                                         p.geomean stat.mean
                                                                    p.val
hsa04110 Cell cycle
                                     8.995727e-06 -4.378644 8.995727e-06
hsa03030 DNA replication
                                      9.424076e-05 -3.951803 9.424076e-05
hsa03013 RNA transport
                                      1.375901e-03 -3.028500 1.375901e-03
hsa03440 Homologous recombination
                                      3.066756e-03 -2.852899 3.066756e-03
hsa04114 Oocyte meiosis
                                      3.784520e-03 -2.698128 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 8.961413e-03 -2.405398 8.961413e-03
                                            q.val set.size
                                                                   exp1
hsa04110 Cell cycle
                                      0.001448312 121 8.995727e-06
hsa03030 DNA replication
                                     0.007586381
                                                       36 9.424076e-05
hsa03013 RNA transport
                                     0.073840037
                                                      144 1.375901e-03
hsa03440 Homologous recombination 0.121861535
hsa04114 Oocyte meiosis 0.121861535
                                                       28 3.066756e-03
                                      0.121861535 102 3.784520e-03
hsa04114 Oocyte meiosis
hsa00010 Glycolysis / Gluconeogenesis 0.212222694
                                                      53 8.961413e-03
  pathview(gene.data=foldchanges, pathway.id="hsa04110")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/izabellehannah/Desktop/2022-2023/Spring Quarter 2023/BIMM
Info: Writing image file hsa04110.pathview.png
  ## Focus on top 5 upregulated pathways here for demo purposes only
  keggrespathways <- rownames(keggres$greater)[1:5]</pre>
  # Extract the 8 character long IDs part of each string
  keggresids = substr(keggrespathways, start=1, stop=8)
  keggresids
```

\$names

[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"

```
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/izabellehannah/Desktop/2022-2023/Spring Quarter 2023/BIMM
Info: Writing image file hsa04640.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/izabellehannah/Desktop/2022-2023/Spring Quarter 2023/BIMM
Info: Writing image file hsa04630.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/izabellehannah/Desktop/2022-2023/Spring Quarter 2023/BIMM
Info: Writing image file hsa00140.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/izabellehannah/Desktop/2022-2023/Spring Quarter 2023/BIMM
Info: Writing image file hsa04142.pathview.png
Info: some node width is different from others, and hence adjusted!
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/izabellehannah/Desktop/2022-2023/Spring Quarter 2023/BIMM
```

pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")

Info: Writing image file hsa04330.pathview.png

```
# Extract the top 5 down-regulated pathways
  keggresdownpathways <- rownames(keggres$less)[1:5]</pre>
  # Extract the 8-character long IDs part of each string
  keggresdownids <- substr(keggresdownpathways, start = 1, stop = 8)</pre>
  # Plot the pathview figures for the top 5 down-regulated pathways
  pathview(gene.data = foldchanges, pathway.id = keggresdownids, species = "hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/izabellehannah/Desktop/2022-2023/Spring Quarter 2023/BIMM
Info: Writing image file hsa04110.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/izabellehannah/Desktop/2022-2023/Spring Quarter 2023/BIMM
Info: Writing image file hsa03030.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/izabellehannah/Desktop/2022-2023/Spring Quarter 2023/BIMM
Info: Writing image file hsa03013.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/izabellehannah/Desktop/2022-2023/Spring Quarter 2023/BIMM
Info: Writing image file hsa03440.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/izabellehannah/Desktop/2022-2023/Spring Quarter 2023/BIMM
Info: Writing image file hsa04114.pathview.png
```

Section 3. Gene Ontology (GO)

```
data(go.sets.hs)
  data(go.subs.hs)
  # Focus on Biological Process subset of GO
  gobpsets = go.sets.hs[go.subs.hs$BP]
  gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)
  lapply(gobpres, head)
$greater
                                             p.geomean stat.mean
                                                                        p.val
GO:0007156 homophilic cell adhesion
                                          8.519724e-05 3.824205 8.519724e-05
GO:0002009 morphogenesis of an epithelium 1.396681e-04 3.653886 1.396681e-04
GO:0048729 tissue morphogenesis
                                          1.432451e-04 3.643242 1.432451e-04
GO:0007610 behavior
                                          2.195494e-04 3.530241 2.195494e-04
GO:0060562 epithelial tube morphogenesis 5.932837e-04 3.261376 5.932837e-04
GO:0035295 tube development
                                          5.953254e-04 3.253665 5.953254e-04
                                              q.val set.size
                                                                     exp1
GO:0007156 homophilic cell adhesion
                                                         113 8.519724e-05
                                          0.1951953
GO:0002009 morphogenesis of an epithelium 0.1951953
                                                         339 1.396681e-04
GO:0048729 tissue morphogenesis
                                          0.1951953
                                                         424 1.432451e-04
GO:0007610 behavior
                                                         427 2.195494e-04
                                          0.2243795
GO:0060562 epithelial tube morphogenesis 0.3711390
                                                         257 5.932837e-04
GO:0035295 tube development
                                                         391 5.953254e-04
                                          0.3711390
$less
                                            p.geomean stat.mean
                                                                       p.val
GO:0048285 organelle fission
                                         1.536227e-15 -8.063910 1.536227e-15
GO:0000280 nuclear division
                                         4.286961e-15 -7.939217 4.286961e-15
GO:0007067 mitosis
                                         4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
GO:0007059 chromosome segregation
                                         2.028624e-11 -6.878340 2.028624e-11
GO:0000236 mitotic prometaphase
                                         1.729553e-10 -6.695966 1.729553e-10
                                                q.val set.size
                                                                       exp1
GO:0048285 organelle fission
                                         5.841698e-12
                                                           376 1.536227e-15
GO:0000280 nuclear division
                                         5.841698e-12
                                                           352 4.286961e-15
GD:0007067 mitosis
                                                           352 4.286961e-15
                                         5.841698e-12
GO:0000087 M phase of mitotic cell cycle 1.195672e-11
                                                           362 1.169934e-14
```

1.658603e-08

1.178402e-07

142 2.028624e-11

84 1.729553e-10

GO:0007059 chromosome segregation

GO:0000236 mitotic prometaphase

\$stats

```
G0:0007156 homophilic cell adhesion 3.824205 3.824205 G0:0002009 morphogenesis of an epithelium 3.653886 3.653886 G0:0048729 tissue morphogenesis 3.643242 3.643242 G0:0007610 behavior 3.530241 3.530241 G0:0060562 epithelial tube morphogenesis 3.261376 3.261376 G0:0035295 tube development 3.253665 3.253665
```

sig_genes <- res[res\$padj <= 0.05 & !is.na(res\$padj), "symbol"]</pre>

Section 4. Reactome Analysis

```
print(paste("Total number of significant genes:", length(sig_genes)))
[1] "Total number of significant genes: 8147"

write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quenes.txt", row.names=FALSE, col.names=FALSE, quenes.txt
```

Q8: What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods?

The "Cell Cycle, Mitotic" has the most significant "Entities p-value". While my previous KEGG results include DNA Replication, Nucleocytoplasmic Transport, Homologous Recombination, etc., the Reactome Analysis' most significant pathways include Cell Cycle (Mitotic), Cell Cycle, Mitotic Spindle Checkpoint, Amplification of signal from unattached kinetochores via a MAD2 inhibitory signal, etc. These differences could be caused by the database content. These are two different databases, which suggests that some pathways or genes may be more unique to one database than the other. These differences could also be caused by the statistical algorithms each database may possess. KEGG and Reactome could employ different statistical approaches to their data which could lead to variances in p-values and significance levels.