Motivation

Operations Research in R Stefan Feuerriegel

Outline

- 1 Introduction to Optimization
- 2 Motivation

Motivation 2

Outline

- 1 Introduction to Optimization
- 2 Motivation

Mathematical Optimization

- Optimization uses a rigorous mathematical model to determine the most efficient solution to a described problem
- ► One must first identify an objective
 - Objective is a quantitative measure of the performance
 - Examples: profit, time, cost, potential energy
 - In general, any quantity (or combination thereof) represented as a single number

Applications of Optimization

- Management
 - Determining product portfolios
 - Location planning
 - Investments decisions
- ► Game theory
 - Comparing players' strategies
- ► Logistics
 - Finding optimal routes and schedules
- Design decisions
 - Constructing processes, plants and other equipment
- Operation
 - Adjustment to changes in environmental conditions, production planning, control, etc.
- Mathematical modeling
 - Parameter estimation
 - Model discrimination

Optimization Problem

Optimization is the minimization or maximization of a function subject to (s. t.) constraints on its variables

Notation: General form

$$\min_{\mathbf{x}} f(\mathbf{x})$$
 s.t. $h(\mathbf{x}) = 0$ $g(\mathbf{x}) \le 0$

with

- ▶ $\mathbf{x} \in \mathbb{R}^n$ as the variable, unknown or parameter
- ▶ Objective function $f: D \to \mathbb{R}$, $D \subseteq \mathbb{R}^n$
- ▶ Equality constraints $h: D_h \to \mathbb{R}^l$, $D_h \subseteq \mathbb{R}^n$
- ▶ Inequality constraints $g: D_g \to \mathbb{R}^k$, $D_g \subseteq \mathbb{R}^n$

Properties of Optimization Problems

Objective Linear, quadratic, non-linear, etc.

Constraints Equality and inequality

Variable types x can be continuous, integer, mixed

Direction $\min_{\mathbf{x}} f(\mathbf{x}) \Leftrightarrow \max_{\mathbf{x}} -f(\mathbf{x})$

Bounds Lower $x_L \le x$ or upper $x \le x_U$

Dimension One dimensional if n = 1, or multi-dimensional if n > 1

Optima Isolated, local or global nature

Classification of Optimization Problems

- ► Linear Programming (LP)
 - Objective function and constraints are linear
 - $\qquad \min_{\mathbf{x}} \mathbf{c}^{\mathsf{T}} \mathbf{x} \text{ s.t. } A\mathbf{x} \leq \mathbf{b}, \, \mathbf{x} \geq 0$
- ► Quadratic Programming (QP)
 - Objective function is quadratic and constraints are linear
 - $\qquad \min_{\mathbf{x}} \mathbf{x}^T Q \mathbf{x} \text{ s. t. } A \mathbf{x} \leq \mathbf{b}, \, \mathbf{x} \geq 0$
- ► Non-Linear Programming (NLP): objective function or at least one constraint is non-linear
- Integer Programming (IP): all variables are discrete
- ► Mixed Integer Programming (MIP)
 - Continuous and discrete variables
 - Problem can be linear (MILP) or non-linear (MINLP)

Classification of Optimization Problems

- Dynamic Optimization: solution is a function of time
- Stochastic Optimization
 - Model cannot be fully specified, but has uncertainties with confidence estimates
 - Optimize expected performance given uncertainty

Question

What type is the following optimization problem?

$$\max_{x,y} 3x + y^2$$
 s.t. $x + y < 10$ and $y \in \{1,2,4,8\}$

- MIP
- MILP
- MINLP
- Visit webpage with course quiz.

Optimal Solution

▶ x^* is a global minimum if $x^* \in D$ and

$$f(x^*) \le f(x)$$
 for all $x \in D$

 \rightarrow Global minimizers are desired, though often one has only local knowledge of $\it f$

Optimal Solution

Examples of optimal solutions:

Isolated global solution

One global, two local solutions

A local but no global solution

Many non-isolated, global solutions

Optimization Procedure

Formulation and solution of optimization problems usually follows:

- Analysis of environment to determine the variables of interest
- Definition of optimality criteria as an objective function with (additional) constraints
- 3 Formulation as a mathematical model with degrees of freedom
- 4 Numerical optimization to find a solution
- 5 Verification of the solution through sensitivity analysis (with respect to the assumptions made in the problem formulation)

Outline

Introduction to Optimization

2 Motivation

Production Scheduling

Problem

- ▶ Given plants i = 1,...,M where each manufactures P_i goods
- ► Each plant has a maximal output O_i
- ▶ Each plant manufactures at a capacity-specific cost $C_i(P_i)$, which gives the cost as a function of the production
- ► Each customer j = 1, ..., N requests C_j goods

Objective function: find the optimal production schedule such that the manufacturing and shipment costs are minimized

Portfolio Optimization

Problem

- Investor wants to invest money such that it maximizes the investor's utility
- ▶ Utility *U* depends on daily return μ and risk σ^2
- ▶ Given risk taking κ , then $U(\mu, \sigma^2) = \mu \frac{\kappa}{2}\sigma^2$

Objective function: Maximize $U(\mu, \sigma^2)$ among a range of stocks $s_1, \dots s_N$

$$\Rightarrow \max_{\mathbf{x}} \mathbf{c}^T \mathbf{x} - \frac{\kappa}{2} \mathbf{x}^T Q \mathbf{x}$$
 s.t. $x_i \ge 0$ and $\sum_i x_i = 1$

Portfolio Optimization in R

```
library(quadproq) # load necessary library
kappa <- 4 # set risk taking
# objective function
c \leftarrow c(0.02, 0.05, 0.01)
0 \leftarrow \text{matrix}(\mathbf{c}(0.1, 0.02, 0.02, 0.02, 0.1, 0.02,
               0.02, 0.02, 0.1), nrow=3
# constraints
A \leftarrow \text{matrix}(c(1,1,0,0,1,0,1,0,1,0,0,1), nrow=4)
b < -c(1, 0, 0, 0)
sol <- solve.QP(kappa/2*Q, c, t(A), b, meq=1) # call solver
sol$solution # ratio of stocks in portfolio
## [1] 0.2916667 0.4791667 0.2291667
sol$value # minimum value of objective function
## [1] 0.01729167
```

Outlook

- 1 Introduction to R
- 2 Advanced R
 - Programming prerequisites
 - Visualize optimization routines
- 3 Numerical Analysis:
 - Mathematical prerequisites to derive and formalize optimization routines
- 4 Optimization in R:
 - ► Use of built-in optimization routines