Lecture 4 Sequential units. Registers

Computing platforms, semester 2

Novosibirsk State University University of Hertfordshire

D. Irtegov, A.Shafarenko

2019

Some terminology

- Combinational units: pure logical functions.
 - Output depends only on input
 - No side effect (except delay)
 - Can be described by single logical expression
- Sequential units: have internal state
 - Output depends not only on the inputs
 - Input can have side-effect (changing internal state)
 - Depend on timing
 - Require triggers, latches and memory

Some final words on combinatory circuits

X	y	Ζ	out
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
_1	1	1	0

Implementing arbitrary truth table

- Draw input lines. Also add inverted lines
- For every row yielding 1, add AND gate and connect it to corresponding input lines (may be to inverted one)
- Connect outputs of AND gates to OR gate
- This is called minterm approach (normal disjunctive form)
- FPGA design tools do this automatically
- Optimization steps (optional)
 - If table has more rows yielding 1 than 0, build device for inverted table and invert the output
 - Delete unused direct or inverted input lines

$$Q = AB + (B+C) * BC$$

By distributing the BC into (B+C) we get:

$$Q = AB + (BBC + CBC)$$

Using the multiplicative idempotent law again we know that B*B = B and that

$$C^*C=C$$
 so we get:
 $Q = AB + (BC + BC)$

Using the additive idempotent law (B + B

$$Q = AB + BC$$

By factoring out the B, we get the final answer of

$$Q = B(A+C)$$

Edge detector

- One of the simplest sequential devices
- Detects input transition from low to high
- Generates pulse when transition occurs

Edge detector

Flip-flop

S	R	Q	\overline{Q}	
0	0	Режим хранения		
		информации		
0	1	0	1	
1	0	1	0	
1	1	Запрещенное		
		состояние		

- Also known as Set-Reset trigger, RS-trigger, RS-latch, etc
- Detects and remembers change in R and S signals
- Edge-triggered (like edge detector)

D-trigger

- Remembers value of D when clock is high
- When D changes on high clock, we have problem

D-trigger in Logisim

Master-slave latch

- Two D-triggers connected sequentially, with inverted clock
- First trigger latches D on high clock
- Second trigger latches stable value of (Q) on low clock

MSL timing diagram

T-trigger

JK-trigger

входы		выходы		Режимработы	
O	Ј	K	Ø	lơ	
0	Х	Х	Q	Ы	Хранение
1365300	0	0	Q	0	ļ
	0	1	0	1	Запись 0
\downarrow	1	0	1	0	Запись1
	1	1	Ø	Q	Иверсия

Other interesting devices

- Edge-triggered D-latch <u>http://www.falstad.com/circuit/e-edgedff.html</u>
- JK-trigger http://www.falstad.com/circuit/e-jkff.html
- 4-bit ripple counter built on JK-triggers
 http://www.falstad.com/circuit/e-counter.html
- 4-bit synchronous counter (simplified carry lookahead) http://www.falstad.com/circuit/e-synccounter.html
- Decimal (BCD) counter
 http://www.falstad.com/circuit/e-deccounter.html

D-latch using CMOS PTL

- Six transistors
- The D-latch on logic gates used 22 transistors!

Master-slave latch on PTL

Multiported register

Multiport register features

- Multibit storage (4 bit on previous slide)
- Controlled latching. Has clock and Enable signals.
 - In CdM-8, most instructions operate on a single register.
 - Other registers must remain unchanged.
- Multiple three-state outputs
 - In CdM-8, only selected register values are needed on each clock
 - Using three-state outputs, we can attach all registers to a single bus or to several buses

Finite state machine

- A formal computation model
- Used in many branches of computing
 - Network protocols
 - Parsers and lexers
 - Event-driven programming
 - Hardware design
 - etc
- Formally, any digital device (including von Neumann computer) is a Finite State Machine
- Can be represented as graph of states and transitions
- Can be directly implemented in hardware

Hardware FSM

One possible next step: microprogramming

(a) Hardwired control

(b) Microprogrammed control

Microprogramming

- Most modern CPU are actually microprogrammed machines
- Many peripherial computer devices (those which do not have it's own CPU inside) also are implemented as microprogrammed machines or FSM
- But we won't go into this now