MODEL: PM250 ANTENNA

Point Mobile

Customer	Point Mobile					
	EN' GR	CHKD	APPD			
Customer's Approved	Uh. Parl		6 g 45 45			
Approval Date	2008.12. 09		2008.12. 09			

Date of Issue: 2008. 12. 04

CONFIDENTIAL

This Document contains confidential and proprietary information, cannot discourse to third party without the prior written Authorization of Mobinus

PM250

PAGE: 2/8

	Mechanical Part	Electrical Part	Approval			
Part Division	alten	£	Hit			
	12 / 4	12/4	12/4			
Part Name	SB0632T0A					
Model Name	PM250					

CONTENTS --

- 1. Revision History
- 2. General Application
- 3. Technical Specification
 - 3.1 Electrical Specification
 - 3.2 Mechanical Specification
- 4. Measurement Data
 - 4.1 Matching Circuit
 - 4.2 VSWR & Smith Chart
 - 4.3 Test Result (3D Efficiency)
 - 4.4 Radiation Pattern
- 5. Reliability Specification
- 6. Packing Specification
- 7. Drawing

PM250

PAGE: 3/8

1. Revision History

NO.	Before	After	Reason	Date
1				- MA-1-1
2				
3				
4				
5				
6				
7	·			
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				

PM250

PAGE: 4/8

2. General ApplicationThis document specifies the chip antenna for the mobile communication terminal.

Model Number	SB0633T0A
Application	Bluetooth

3. Technical Specification

3.1 Electrical Specification

. No	Item	Specification	Remarks
1	Frequency Range	2.4GHz ~ 2.48GHz	
2	VSWR	2:1	
3	Impedance	50 Ω	
4	3D Efficiency	Board:55%, Set:50%	
5	Polarization	Linear	
6	Radiation Pattern	Omni directional	

3.2 Mechanical Specification

No	Item	Specification	Remarks
1	Dimension	12.5*12.9*2.0 (H) mm	
2	Operating Temperature	-30℃ ~ +80℃	
3	Operating Humidity	10% ~ 90%	
4	Weight	0.5g	
5	Connector Type	Solder	Reel Packing

PM250

PAGE: 5/8

4. Measurement Data

4.2 VSWR & Smith Chart

Fig 2. VSWR & Smith Chart

PM250

PAGE: 6/8

4.3 Test Result (3D Efficiency)

								1				
		2	7479 3		0,01		66	8	mini j emie		``` `	10
Frequency(MHz)	2400	2410	2420	2430	(:	2440		2450	2460	2470	2480	2490
					20	r Jewin fişirl	1					
Efficiency(dB)	~3.48	-3.38	-3.18	-3.09	1,1	-2.75	Г	-2.80	-2,55	-2.35	-1.93	-2.27
Efficiency(%)	44.92	45,93	48,06	49.14		53.06	Γ	52.43	55.60	58.25	64,13	59.27
TRG(dB)	-3.48	-3,38	-3.18	-3.09		-2.75		-2.80	-2,55	-2.35	-1,93	-2.27
TRG _{Thats} (dB)	-€,8 4	-6.€7	-6.61	-6.40		-8.00		-6.09	-5,91	-5.61	-5.48	-5,95
TRG _{Phi} (dB)	-6.16	-6.12	-5.81	-5.81		-5,54		-5.55	-5.24	-5.12	-4,46	-4.70
UHRG(dB)	-8,98	-6,83	-6,55	-6.41		-6.07		-6,09	-\$.77	-5.49	-5.03	+5,34
UHRG/TRG(%)	44,66	45,15	45.00	46.52	. T.	45.61		48,90	47.59	48.47	48.98	49,33
H-Plane	-6.71	-6.56	-6.52	-€.30		÷S.87		-5.91	-5.70	-5.35	-5.26	-5.77
E1-Plane, AVG(dB)	-5.94	-5.91	-5.97	-5.84		-5.52		-5.73	-5.65	-5.45	-5.39	-5.91
E2-Plane, AVG(dB)	-8.53	-8.31	-6.19	-5.93		-5.45	÷	-5.44	-5.13	-4,72	-4,48	-4.82
Peak Gain(dB)	9.97	89.0	1.00	0.95		1.20		1.05	1.12	1,20	1.48	1.06
Directivity(dB)	4,44	4,35	4.18	4 04		3.98		3.85	3.67	3.55	3,41	3,33
Minimum Gain(dB)	-9.00	-8.34	-7.78	-7.29	::	-7.05		-7.11	-7.81	- ∂.83	-8.85	-7.09
Test Condition								.				
Antenna Type					Ï							

Average Efficiency -2.75 dB. 53.08 %

4.4 Radiation Pattern

Fig 3. Radiation Pattern

	Efficiency (%)	Efficiency (dB)	UHRG(dB)	Peak Gain
Radiation	53%	-2.75	-6.5	1.2dB

PM250

PAGE: 7/8

5. Reliability Specification

No	Item	Conditions and Method
1	Temperature Shock	● Perform 10 cycles as follow ■ High Temp.: 30min, +85°C ■ Low Temp.: 30min, -40°C ■ Repeat : 10 times ● Stabilize at room temperature for measurement
2	Dry Heat Test	 Dwell in +85°C chamber for 72 hours Stabilize at room temperature for measurement
3	Low Temperature Test	 Dwell in -40°C chamber for 72 hours Stabilize at room temperature for measurement
4	Humidity Test	 Dwell in test chamber at +50C and 95% RH for 24 hours Stabilize at room temperature for measurement
5	Drop Test	Conditions Drop height: 1.5 m Drop angle: 45 °/ 90 ° Drop cycle: Each 5 times Weight: 150 g
6	Salt Spray Test	 After exposing to 5% sodium atmosphere at +35° C for 72 hours and washing pure water, test within 2 hours

6. Packing Specification

Item	Quantity	Materials	Remarks
Tray	100EA	P.S/PET	
			The first Market Standard Control of the Control of

PM250

PAGE: 8/8

