1 Outline

Silverman proves a version of mordell's theorem for curves having a point of order two. The goal of this project will be the following.

Theorem 1.1. Let

$$E: y^2 = x^3 + ax^2 + bx + c$$

be an elliptic curve containing a point of order 3, then $E(\mathbb{Q})$ is finitely generated.

Potentially we even get the following for free.

Corollary 1.2. Let

$$E: y^2 = x^3 + ax^2 + bx + c$$

be an elliptic curve containing a point of order 3, then $E(\mathbb{Q}(\sqrt{-3}))$ is finitely generated.

Our strategy will be to broadly follow Silverman's proof, namely we will use a specific case of the Descent Theorem from namely:

Theorem 1.3. Let A be an abelian group. Suppose that there exists a function $h: A \to \mathbb{R}$ with the following properties.

1. Let $Q \in A$. There exists $C_1(A,Q)$, such that for all $P,Q \in A$

$$h(P+Q) \le 2h(P) + C_1(A,Q).$$

2. There is $C_2(A)$, such that for all $P \in A$

$$h(3P) \ge 9h(P) - C_2(A).$$

3. For every $C_3 \in \mathbb{R}$ the set

$$\{P \in A : h(P) \le C_3\}$$

is finite.

If furthermore A/3A is finite then A is finitely generated.

We shall prove this theorem and then prove all its hypotheses in order of increasing difficulty. Firstly, we shall define such a function $H: \mathbb{Q} \to \mathbb{R}$. And then generalise it to elliptic curves.

Definition 1.4. Let $x = p/q \in \mathbb{Q}$ with gcd(p,q) = 1. Then we define the height of x as $H(x) = \max\{|p|, |q|\}$.

And now for Elliptic Curves. We shall understand E to be an Elliptic Curve.

Definition 1.5. Define the height of a rational point P = (x, y) on E as H(P) := H(x).

Now the lemmas.

Lemma 1.6. For all constants $m \in \mathbb{R}$ we have that the set

$${P \in E(\mathbb{Q}) : H(P) \le m}$$

is finite.

This is a result which holds more generally and its proof is straightforward.

Bachelor Project: Outline Levi Moes S4145135

Lemma 1.7. Let $P_0 \in E(\mathbb{Q})$, then there exists $b \in \mathbb{R}$ such that for every $P \in E(\mathbb{Q})$

$$h(P+P_0) \le 2h(P) + b.$$

Which also holds more generally. The next result significantly deviates from Silverman's.

Lemma 1.8. There is $k \in \mathbb{R}$ such that for every point $P \in E(\mathbb{Q})$ we have

$$H(3P) \ge 9H(P) - k.$$

Which is harder to prove. And lastly:

Lemma 1.9. Suppose $E(\mathbb{Q})$ has a point of order 3. Then the subgroup $3E(\mathbb{Q})$ has finite index.