Aircraft Sizing Algorithm Documentation

Team 7:

Cooper LeComp, John A. Papas Dennerline, Ian Greene, Christos Levy, Daniel Qi, Hans Suganda

27th August 2022

Contents

1	Rationale	3
2	Sizing Methodology	3
3	Common Definitions	3
4	Stall Speed Constraint	4
5	Climb Rate Constraint	4
6	Estimation of Motor Power Rating	5
7	Textual References	5

1 Rationale

We need to determine 2 very important things:

- 1. The thrust to weight ratio affects:
 - acceleration:
 - climb rate:
 - maximum speed:
 - turn rate:
 - Aircraft Endurance:
- 2. The stall speed is directly determined by the wing loading and the maximum lift coefficient. Wing Loading will affect:
 - stall speed
 - induced drag
 - take-off distance

2 Sizing Methodology

- 1. First Method:
 - (a) Firstly use the stall speed to determine wing loading Stall speed should be independent of engine size
 - (b) After figuring out wing loading, determine the thrust to weight ratio based on takeoff distance Rate of climb
- 2. Second Alternative Method:
 - (a) Determine the Thrust to Weight Ratio
 - (b) Determine the wing loading by direct computation

3 Common Definitions

q is the dynamic pressure of an aircraft flying. It is defined as

$$q = \frac{1}{2}\rho v^2$$

wherein ρ represents the density of the air, v represents the velocity the aircraft is flying at. The Matlab script below defines the global variables that is needed for this entire simulation,

```
%Global variable list
global L_wi; %This is a wing loading (N/m^2)
global T_W; %This is the thrust to weight ratio (dimensionless)
global rho; %This is the air density (kg/m^3)
global v_stall; %This is the stall speed of our aircraft (m/s)
global c_Lmax; %This is an estimation of how good is our biggest possible lift coefff
global q; %This is the dynamic pressure
global c_DO; %This is the drag coefficient near stall speed
global A_r; %Aspect ratio of the main wing
global e; %efficiency of the wing due to deviating from elliptic lift distribution
global G; %Gradient of ascent = rise of flight/run of flight
```

The script below handles the global variable initializations,

```
%Give Definition of Global variable
Global_Variables;

%Variables which are known/guessed (independent)
rho = 1.225; %This is the density of the air
v_stall = 8; %This is the estimation for stall speed
c_Lmax = 1.2; %the maximum lift coefficient we can get
climb_angle = 25; %This is from the RFP
c_D0 = 0.03; %This is the drag coefficient near stall speed
A_r = 9; %Aspect ratio of the main wing, typical values
e = 0.8; %efficiency of the wing due to deviating from elliptic lift distribution

%Variables that are dependent on other variables (dependent)
q = 1/2*rho*v_stall^2; %This is the dynamic pressure
G = tan(deg2rad(climb_angle)); %Gradient of ascent = rise of flight/run of flight
```

4 Stall Speed Constraint

Wing loading is basically the weight of the aircraft divided by the total wing area.

$$L_{wi} = \frac{W}{S} = \frac{1}{2}\rho v_{stall}^2 c_{L,max}$$

Our typical would be around $c_{L,max} \approx 1.2 \rightarrow 1.5$, Sweep only reduces your maximum coefficient of lift. The Matlab implementation is shown below,

```
%Give Definition of Global variable
Global_Variables;

%This Matlab script is used to compute the wing loading using the stall speed of the aircraft.

%We are getting the stall speed from the Requirements for the aircraft.

L_wi = 1/2*rho*(v_stall^2)*c_Lmax;
```

5 Climb Rate Constraint

The cimb rate G is defined as the ratio between vertical and horizontal distance travelled when the aircraft is climbing D is going to represent drag.

$$\frac{D}{W} = \frac{T}{W} - G \tag{1}$$

There is also another relation for drag to weight ratio,

$$\frac{D}{W} = \frac{qc_{D,0}}{L_{wi}} + L_{wi} \frac{1}{q\pi A_r e} \tag{2}$$

wherein A_r is the aspect ratio of the wings, and e represents the efficiency factor due to deviating from the elliptic lift distribution. Substituting equation 1 into equation 2 and solving for $\frac{T}{W}$,

$$\frac{D}{W} = \frac{T}{W} - G = \frac{qc_{D,0}}{L_{wi}} + L_{wi} \frac{1}{q\pi A_r e}$$

$$\frac{T}{W} = \frac{qc_{D,0}}{L_{wi}} + L_{wi} \frac{1}{q\pi A_r e} + G$$

wherein $c_{D,0}$ represents the zero-lift drag coefficient of an aircraft. For a clean propeller aircraft, $c_{D,0} = 0.02$. For a dirty propeller aircraft, then $c_{D,0} = 0.03$. The expression for thrust to weight ratio computations are implemented below,

```
%Give Definition of Global variable Global_Variables;  
%This computes the thrust to weight ratio based on the climb rate T_W = (q*c_D0)/(L_wi) + L_wi/(q*pi*A_r*e) + G;
```

6 Estimation of Motor Power Rating

The equation below was found in page 118,

$$\frac{T}{W} = \left(\frac{\eta_p}{V}\right) \left(\frac{P}{W}\right)$$

wherein η_p represents the propeller efficiency, P represents power of the engines, W represents the weight of the aircraft, V represents the true air speed of the aircraft.

7 Textual References

- 1. Page 117 has table for thrust to weight of typical aircrafts.
- 2. Page 119 has a table for power to weight ratio of typical aircrafts.
- 3. Page 124 has a tabel for typical wing loadings.
- 4. Page 126 has description on typical $c_{L,max}$ values.
- 5. Page 135 has descriptions of what $c_{D,0}$ should be.