Topologie

Exercice 1 Topologie de Zariski Soit k un corps algébriquement clos et n un entier strictement positif. Pour tout $E \subset k[X_1, \ldots, X_n]$ on note

$$Z(E) = \{(x_1, \dots, x_n) \in k^n ; P(x_1, \dots, x_n) = 0, \forall P \in E\}.$$

On cherche a définir une topologie \mathcal{T} sur k^n . Pour cela on définit les éléments de \mathcal{T} comme les complémentaires des Z(E).

- 1. Montrer que \mathcal{T} définit bien une topologie sur k^n .
- 2. Montrer que tous les ouverts non-vides de cette topologie sont denses.
- 3. Montrer que pour $x, y \in k^n$ on peut trouver un ouvert contenant x mais pas y. Cette topologie est-elle séparée?
- 4. Sur \mathbb{C} comparer la topologie usuelle à celle de Zariski, les ouverts de l'une sont-ils des ouverts de l'autre?

Exercice 2

Soit E un evn, B_r une boule ouverte de E de rayon r et x_0 un point de $E \setminus B_r$.

- 1. Montrer qu'il existe une forme linéraire continue f de E dans \mathbb{R} , telle que $\forall y \in B_r$, $f(y) < f(x_0)$. On dit alors que l'hyperplan $[f = f(x_0)]$ sépare B_r et x.
- 2. Montrer que l'on peut aussi séparer deux boules ouvertes B_r et B_s disjointes. C'est à dire qu'il existe une forme linéaire f telle que $\forall y, z \in B_r \times B_s$, f(y) < f(z).

Exercice 3 Pour $p \in [1, +\infty]$, on définit le conjugué de p par l'unique $p' \in [1, +\infty]$ tel que $\frac{1}{p} + \frac{1}{p'} = 1$.

- 1. En considérant l'application θ qui associe à $(a_n) \in l^{p'}$, la forme linéaire φ_a définie sur l^p par $(c_n) \stackrel{\varphi_a}{\mapsto} \Sigma_n a_n c_n$, montrer que le dual de l^p est isométrique à $l^{p'}$ pour $p \in [1, +\infty[$, et que l^1 se plonge isométriquement dans le dual de l^∞ . (Indication: Dans le cas $1 , pour montrer que <math>\|\varphi_a\| \ge \|a\|$, on pourra considérer la suite $c_n = |a_n|^{p'-1} arg(\bar{a}_n)$)
- 2. Montrer que ce plongement n'est pas surjectif. (Indication : On pourra considérer la forme linéaire $(x_n)_n \mapsto \lim_n x_n$ sur un certain sous-espace vectoriel de l^{∞} .)

Exercice 4 Soit $E = [0, 1]^{]0,1[}$ l'espace des applications de]0, 1[dans [0, 1], muni de la topologie produit.

1. Montrer que E est compact.

Nous allons montrer que E n'est pas métrisable. A chaque suite finie $0 = r_0 < r_1 < \cdots < r_n = 1$ de rationnels de [0, 1], on associe une fonction continue $f : [0, 1] \to [0, 1]$ telle que $f(r_i) = 0$ pour tout $i \le n$, et $f(\frac{r_{i+1}+r_i}{2}) = 1, 0 \le i \le n-1$, et f affine entre ces points (faire un dessin). En considérant la restriction de f à]0,1[, on obtient un élément de E. Soit F l'ensemble des fonctions ainsi obtenue lorsque l'on fait varier r_i et l'entier n).

- 1. Montrer que F est dénombrable et dense dans E. En déduire que tout élément de E est valeur d'adhérence de la suite obtenue en indexant les éléments de F par les entiers.
- 2. Montrer que "très peu" d'éléments de E sont limite d'une suite extraite de cette suite,
 - (a) Par un argument de cardinal.
 - (b) Par le théorème de convergence dominée de Lebesgue.
 - (c) Par le théorème de Baire.
- 3. Conclure.

Exercice 5 Soit H un espace de Hilbert réel. On considère une forme bilinéaire a sur H que l'on suppose continue et coercive (i.e. $\exists C > 0, \exists \alpha > 0$ tq $\forall x, y \in H, |\alpha(x, y)| \le C||x|| ||y||$ et $\forall x \in H, a(x, x) \ge \alpha ||x||^2$.)

- 1. Démontrer qu'il existe un opérateur continu T sur H tel que $\forall x,y \in H, a(x,y) = < T(x), y > .$
- 2. Montrer que T(H) est dense dans H.
- 3. Montre que pour tout x dans H, $||T(x)|| \ge \alpha ||x||$. En déduire que T est injectif et que T(H) est fermé.
- 4. En déduire que T est un isomorphisme bicontinu (T et T^{-1} continus) de H sur lui-même.
- 5. Soit L une forme linéaire continue sur H. Déduire des questions précédentes qu'il existe un unique $u \in H$ tel que $\forall y \in H, a(u, y) = L(y)$.
- 6. On suppose dans cette question que a est symétrique et on définit $\Phi(x) = \frac{1}{2}a(x,x) L(x)$. Démontrer que le point u est caractérisé par la condition $\Phi(u) = \min_{x \in H} \Phi(x)$.

Calcul différentiel

Exercice 6

Soit ϕ de \mathbb{R} dans $GL_n(\mathbb{R})$ une application continue telle que $\phi(s+t) = \phi(s)\phi(t)$ pour tout $(t,s) \in \mathbb{R}^2$. Montrer qu'il existe $A \in M_n(\mathbb{R})$ telle que pour tout $t \in \mathbb{R}$, $\phi(t) = e^{tA}$.

Exercice 7 Soit I un intervalle ouvert de \mathbb{R} , et $h: \mathbb{R}^n \to \mathbb{R}^n$ une application continue. On suppose de plus qu'il existe C telle que

$$\forall x, y \in \mathbb{R}^n, \langle h(x) - h(y), x - y \rangle \ge C|x - y|^2.$$

On va montrer que h est un homéomorphisme de E dans E.

- 1. Soit (J,x) une solution de $x'(t) = -h(x(t)), x(t_0) = x_0$, pour un certain $(t_0,x_0) \in I \times \mathbb{R}^n$. Montrer que $\forall t \in J$, $|x'(t)| \leq |x'(0)|e^{-Ct}$. (Indication: On pourra poser $u_{\varepsilon}(t) := ||x(t+\varepsilon) x(t)||^2$, pour ε suffisamment petit.)
- 2. En déduire que l'équation différentielle ci-dessus admet une solution x définie sur \mathbb{R}^+ , montrer que x a une limite l en $+\infty$ et donner la valeur de h(l).
- 3. Conclure en appliquant le même raisonnement à $\tilde{h}(x) = -h(x) + z$ pour tout z dans \mathbb{R}^n .

Exercice 8 Soit $F \subset \mathbb{R}^n$ une partie fermée. On suppose que pour tout $x \in \Omega := \mathbb{R}^n \backslash F$ il existe un et un seul point $p(x) \in F$ tel que |x - p(x)| = d(x, F). On veut montrer que F est convexe.

- 1. Montrer que l'application $\delta: x \mapsto d(x, F)$ est de classe \mathcal{C}^1 sur Ω . (Indication: On pourra considérer pour $x \in \Omega$ l'ensemble fermé $A(x) := \{f \in F | ||x f|| = d(x, F)\}$ et montrer que si $A(x) = \{f\}$, alors $\lim_{h\to 0} d(A(x+h), f) = 0$.)
- 2. Soit $\omega \in \Omega$; Montrer qu'il existe une fonction $x_{\omega} : \mathbb{R}_+ \to \Omega$ de classe \mathcal{C}^1 telle que :

$$\begin{cases} x_{\omega}(0) = \omega \\ x'_{\omega}(t) = \nabla \delta(x_{\omega}(t)) \end{cases}$$

Calculer $\delta(x_{\omega}(t))$ en fonction de t et de $\delta(\omega)$.

3. Montrer que pour tout $t \in \mathbb{R}_+, p(x_\omega(t)) = p(\omega)$. En déduire :

$$\forall t \in \mathbb{R}_+, \ x_{\omega}(t) = \omega + t \nabla \delta(\omega).$$

4. Conclure en utilisant la caractérisation suivante des convexes de \mathbb{R}^n : Une partie F fermée de \mathbb{R}^n est convexe si et seulement si pour tout $x \in \Omega$, il existe un hyperplan H_x ne contenant pas x et tel que F est contenu dans un demi-espace fermé délimité par H_x .