

United International **University**School of Science and Engineering

Final Exam; Year 2021; Trimester: Spring Course: PHY 106; Title: Physics Lab

Full Marks: 15(experiment) +5(viva); Section: D; Time: 120 Min

- Q1a. Determine the current and corresponding resistance in a series circuit with a constant resistance of 20_Ω and 30_Ω using Ammeter by increasing supply voltage by an amount 5V, 10V, 15 V, 20 V, 25V, and with a constant supply voltage of 30 V_ for a total resistance of two resistors is (20+30 Ω =) 50 Ω_ and a consecutive increment order is 5 Ω_ [Take maximum 5 observations]. Determine the resistance from *I-V* graph of current-voltage data. Also calculate the error and accuracy in Ohm's law Experiment.
- Q1b. Determine the current and corresponding resistance in a series circuit with a constant resistance of 15_ Ω and 10_ Ω using Ammeter by increasing supply voltage by an amount 5V, 10V, 15 V, 20 V, 25V, and with a constant supply voltage of 25 V_ for a total resistance of two resistors is (10+15 Ω =) 25 Ω and a consecutive increment order is 8 Ω [Take maximum 5 observations]. Determine the voltage and Verify Ohm's law from *I-R_T* graph. Also calculate the error and accuracy in Ohm's law Experiment.
- Q1c. Determine the current and corresponding resistance in a series circuit with a constant resistance of 10 Ω and 30 Ω using Ammeter by increasing supply voltage by an amount 7V, 12V, 17 V, and with a constant supply voltage of 40 V Ω for a total resistance of two resistors is $(18+12 \Omega =) 30 \Omega$ and a consecutive increment order is 6 Ω [Take maximum 3 observations]. Determine the resistance from I-V graph of current-voltage data and the voltage from $I-R_T$ graph to verify Ohm's law. Also calculate the error and accuracy in Ohm's law Experiment.
- Q1d. Determine the current and resistance for 10V_supply for a circuit (given) with a total series resistance of 78Ω _ and a consecutive increment order is 3Ω _ Plot I-R_T graph to verify Ohm's law. Also calculate the error and accuracy in Ohm's law Experiment. [Take maximum 7 observations]
- Q1e. Determine the current and resistance for 15V_supply for a circuit (given) with a total series resistance of 60 Ω. The increment order of voltage is 8V_. Plot *I-V* graph to find out resistance. Also calculate the error and accuracy in Ohm's law Experiment. [Take maximum 7 observations]
- Q1f. Determine the current and resistance for 23V_supply for a circuit (given) with a total series constant resistance of 45 Ω. The increment order of voltage is 15V_. Plot *V-I* graph to find out resistance. Also calculate the error and accuracy in Ohm's law Experiment. [Take maximum 7 observations]
- Q1g. Determine the current and resistance for 13V_supply for a circuit (given) with a total series constant resistance of 35 Ω. The increment order of voltage is 20V_. Plot *I-V* graph to find out resistance. Also calculate the error and accuracy in Ohm's law Experiment. [Take maximum 6 observations]

- Q1h. Determine the current and corresponding resistance in a series circuit with a constant resistance of 15_ Ω and 50_ Ω using Ammeter by increasing supply voltage by an amount 13V, 23V, 33V, 43V, 53V, and with a constant supply voltage of 63V__ for a total resistance of two resistors is $(40+25 \Omega =) 65 \Omega_{\underline{}}$ and a consecutive increment order is 11 $\Omega_{\underline{}}$ [Take maximum 4 observations]. Determine the resistance from *I-V* graph of current-voltage data. Also calculate the error and accuracy in Ohm's law Experiment.
- Q1i. Determine the current and corresponding resistance in a series circuit with a constant resistance of $25 \underline{\Omega}$ and $35 \underline{\Omega}$ using Ammeter by a given supply voltage of $25 \underline{V}$, the increasing supply voltage order is $12\underline{V}$, and with a constant supply voltage of $37\underline{V}$ for a total resistance of two resistors is $(25+8 \Omega =) 33 \Omega$ and a consecutive increment order is 4Ω [Take maximum 5 observations]. Determine the voltage and Verify Ohm's law from $I-R_T$ graph. Also calculate the error and accuracy in Ohm's law Experiment.
- Q1j. Determine the current and resistance for 35V_supply for a circuit (given) with a total series constant resistance of 35 Ω. The increment order of voltage is 17V_. Plot *V-I* graph to find out resistance. Also calculate the error and accuracy in Ohm's law Experiment. [Take maximum 6 observations]
- Q1k. Determine the current and resistance for 55V_supply for a circuit (given) with a total series resistance of 48 Ω _ and a consecutive increment order is 17Ω _ Plot *I-R_T* graph to verify Ohm's law. Also calculate the error and accuracy in Ohm's law Experiment. [Take maximum 5 observations]
- Q11. Determine the current and corresponding resistance in a series circuit with a constant resistance of $10 \underline{\Omega}$ and $17 \underline{\Omega}$ using Ammeter by increasing supply voltage by an amount 11V, 17V, 23V, and with a constant supply voltage of 28.7 V $\underline{\Omega}$ for a total resistance of two resistors is $(28+15 \Omega =) 43 \Omega_{\underline{\Omega}}$ and a consecutive increment order is $10.4 \Omega_{\underline{\Omega}}$ [Take maximum 3 observations]. Determine the resistance from I-V graph of current-voltage data and the voltage from I-R_T graph to verify Ohm's law. Also calculate the error and accuracy in Ohm's law Experiment.
- Q2a. Determine the value of the average time period of oscillation for 5___no of oscillations and the value of "g" using "L=60cm" of the Compound pendulum [Take at least 4 observations]. Find the error and accuracy in Compound pendulum with standard gravitational constant in "Earth".
- Q2b. Determine the time period of oscillation of 1st, 2nd, 4th, 6th, and 8th no holes from the knife-edge on only one side of C.G of the bar (one observation per hole is enough) for 8___no of oscillations and draw the *T-d* graph (only one side of C.G). Also compare your result, if any, with standard gravitational constant 'g' in "Earth" environment.
- Q2c. Determine the value of the time period of oscillation for 13____no of oscillations for the holes no 2, 4, 6 (take at least one observation per hole) and draw the *T-d* graph (draw at least two lines). Find out the value of "g" of the Compound pendulum and also find the error and accuracy in Compound pendulum compared with standard gravitational constant in "Earth".

- Q2d. Determine the value of the average time period of oscillation for 3_no of oscillations and the value of "g" using "L=48.5cm" of the Compound pendulum [Take at least 6 observations]. Find the error and accuracy in Compound pendulum with standard gravitational constant in "Uranus" environment.
- Q2e. Determine the time period of oscillation of 2nd, 3rd, 4th, 5th, and 7th no holes from the knife-edge on only one side of C.G of the bar (one observation per hole is enough) for 12_no of oscillations and draw the *T-d* graph (only one side of C.G). Using "L=56cm" and the time period obtained from 5th_no hole, determine the value of "g". Also compare your result with standard gravitational constant 'g' in "Earth" environment.
- Q2f. Determine the value of the time period of oscillation for 7___no of oscillations for the holes no 1, 3, 5 (take at least one observation per hole) and draw the *T-d* graph (draw at least two lines). Find out the value of "g" of the Compound pendulum and also find the error and accuracy in Compound pendulum compared with standard gravitational constant in "Earth".
- Q2g. Determine the value of the time period of oscillation for 14____no of oscillations for the holes no 3, 5, 8 (take at least one observation per hole) and draw the *T-d* graph (draw at least two lines). Find out the value of "g" of the Compound pendulum and also find the error and accuracy in Compound pendulum compared with standard gravitational constant in "Neptune".
- Q2h. Determine the time period of oscillation of 1st, 2nd, 5th, 6th, and 7th no holes from the knife-edge on only one side of C.G of the bar (one observation per hole is enough) for 6_no of oscillations and draw the *T-d* graph (only one side of C.G). Using "L=53cm" and the time period obtained from 2nd_no hole, determine the value of "g". Also compare your result with standard gravitational constant 'g' in "Venus" environment.
- Q2i. Determine the value of the time period of oscillation for 4___no of oscillations for the holes no 1, 2, 3, (take at least one observation per hole) and draw the *T-d* graph (draw at least two lines). Find out the value of "g" of the Compound pendulum and also find the error and accuracy in Compound pendulum compared with standard gravitational constant in "Uranus".
- Q3a. Determine the gravitational acceleration 'g' by finding time period and its square for time of 7___ oscillations while the length variation of 0.65___m, 0.75___m, 0.85___m, and 0.95___m of a simple pendulum. The constant mass is 0.45 kg. Draw T² vs L graph and finding the slope and 'g'. Also compare your result with standard gravitational constant 'g' in "Earth" environment.
- Q3b. Determine the effect of length on time period for time of 17___ oscillations and the time period for the length variation of 0.58 m___, 0.68 m___, 0.78 m___, and 0.98 m___ of a simple pendulum while the constant mass is 0.85 kg. Also, Verify of the formula $T=2\pi\sqrt{(L/g)}$ for the length of 0.35 m___ and time of 5__ oscillations of a simple pendulum. Compare your result with obtained time period and the theoretical time period.
- Q3c. Determine the gravitational acceleration 'g' by finding time period and its square for time of 4____ oscillations while the length variation of 0.27__m, 0.37__m, 0.47__m, 0.57__m, 0.67__m, and 0.77__m of a simple pendulum. Take the average of both the

length and T ² for finding the slope. Also compare your result with standard gravitational constant 'g' in "Earth" environment.
Q3d. Determine the effect of mass variation on time period for time of 12 oscillations and the time period for the mass variation of 0.58 kg, 0.68 kg, 0.78 kg, and 0.98 kg of a simple pendulum while the constant length is 0.85m. Also, Verify of the formula $T=2\pi\sqrt{(L/g)}$ for the length of 0.97 m and time of 9 oscillations of a simple pendulum. Compare your result with obtained time period and the theoretical time period.
Q3e. Determine the gravitational acceleration 'g' by finding time period and its square for time of 6 oscillations while the length variation of 0.33m, 0.43m, 0.53m, and 0.63m of a simple pendulum. The constant mass is 0.77 kg. Draw T² vs L graph and finding the slope and 'g'. Also compare your result with standard gravitational constant 'g' in "Earth" environment.
Q3f. Determine the effect of length on time period for time of 13 oscillations and the time period for the length variation of 0.35 m, 0.45 m, 0.55 m, and 0.65 m of a simple pendulum while the constant mass is 0.65 kg. Also, Verify of the formula $T=2\pi\sqrt{(L/g)}$ for the length of 0.65 m and time of 10 oscillations of a simple pendulum. Compare your result with obtained time period and the theoretical time period.
Q3g. Determine the gravitational acceleration 'g' by finding time period and its square for time of 3 oscillations while the length variation of 0.26m, 0.36m, 0.46m, and 0.56m of a simple pendulum. The constant mass is 0.56 kg. Draw T² vs L graph and finding the slope and 'g'. Also compare your result with standard gravitational constant 'g' in "Earth" environment.
Q3h. Determine the gravitational acceleration 'g' by finding time period and its square for time of 11 oscillations while the length variation of 0.53m, 0.63m, 0.73m, 0.83m, 0.93m, and 1.0m of a simple pendulum. Take the average of both the length and T² for finding the slope. Also compare your result with standard gravitational constant 'g' in "Jupiter" environment.
Q4a. Determine the effective mass 'm' for a given spring (use graph after collecting data to determine 'm') by drawing necessary graph. Given the initial load 100 gm, increment order of the load 40 gm and no of complete vibrations 9 The mass of the spring is 32 gm. Also compare your result with obtained effective mass from graph. [Take 5 observations]
Q4b. Determine the spring constant 'k' for a given spring (use graph after collecting data to determine 'k') by drawing necessary graph. Given the initial load 64 gm, increment order of the load 30 gm [Take 8 observations]
Q4c. Determine the spring constant 'k' and effective mass 'm' for a given spring (use graph after collecting data to determine 'k' and 'm') by drawing necessary graphs. Given the initial load 75 gm, increment order of the load 60 gm The mass of the spring is 40 gm. Also compare your result with obtained effective mass from graph. [Take 3 observations]

- Q51. Prove KCL for a given data/circuit of sample 6
- Q5m. Prove KCL for a given data/circuit of sample 8
- Q5n. Determine the measured current through resistor and also with CDR if R_1 =56.3 Ω , R_2 =76.3 Ω , and R_3 =96.3 Ω . Given the Total current is 1.09A ___ in KCL Experiment and the source voltage is 26V. Also calculate the error and accuracy in KCL Experiment.
- Q50. Determine R_T , voltage drop, and apply VDR if R_1 =62.4 Ω , R_2 =72.4 Ω , and R_3 =82.4 Ω . Given the source voltage is 23.7V ___ in KVL Experiment. Also compare your result.
- Q6a. Determine the diameters of Newton's 6 to 8 no rings and draw n- D^2 graph for these 3 observations.
- Q6b. Determine the radius of curvature of a lens by drawing *n-D*² graph using Newton's ring method. Find the diameters of Newton's 2, 4, to 6 no rings observations. Given the radius of a lens is 70 cm___. Also compare your result with obtained radius of curvature from the graph. Given wavelength of light=5893 A°.
- Q6c. Determine the diameters of Newton's 5th and 7th no ring also determine the radius of curvature of a lens for the obtained data by drawing *n-D*² graph. Given the radius of a lens is 80 cm___. Also compare your result with obtained radius of curvature from graph. Given wavelength of light=5890 A°.
- Q6d. Determine the diameters of Newton's 1st, 2nd and 3rd no ring also determine the radius of curvature of a lens for the obtained data. Given the radius of a lens is 90 cm___. Also compare your result with obtained radius of curvature from graph. Given wavelength of light=5896 A°.
- Q6e. Determine the diameters of Newton's 9 to 11 no rings and draw D^2 vs ring no graph for these 3 observations with 'Air' medium and "Sodium light" source.
- Q6f. Determine the radius of curvature of a lens by drawing n- D^2 graph using Newton's ring method in 'Air' medium. Find the diameters of Newton's 1, 2, 4, 5 no rings observations. Given the radius of a lens is 63 cm___. Also compare your result with obtained radius of curvature from the graph. Given wavelength of Sodium light=5896 A°.
- Q6g. Determine the diameters of Newton's 3rd and 8th no ring also determine the radius of curvature of a lens for the obtained data in 'Water' medium with 'Green light' source. Given the radius of a lens is 50 cm___. Also compare your result with obtained radius of curvature from graph. Given wavelength of light=5320 A°.
- Q6h. Determine the diameters of Newton's 1st, 3rd and 5th no ring also determine the radius of curvature of a lens for the obtained data in 'Acetone' medium with "Red light" source. Given the radius of a lens is 95 cm___. Also compare your result with obtained radius of curvature from graph. Given wavelength of light=6700 A°.
- Q6i. Determine the diameters of Newton's 7th, 9th and 11th no ring and also determine the wavelength of light for the obtained data in 'Kerosene' medium with "Neon light"

