1830

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»			
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»			
Лабораторная работа № <u>3</u>			
Тема Программно-алгоритмическая реализация моделей на основе			
ОДУ второго порядка с краевыми условиями II и III рода.			
Студент Брянская Е.В.			
Группа ИУ7-62Б			
Оценка (баллы)			
Odenka (oasisibi)			
Произиратом Градор D M			
Преподаватель Градов В.М.			

Задание

Тема. Программно- алгоритмическая реализация моделей на основе ОДУ второго порядка с краевыми условиями II и III рода.

Цель работы. Получение навыков разработки алгоритмов решения краевой задачи при реализации моделей, построенных на ОДУ второго порядка.

Исходные данные.

1. Задана математическая модель.

Квазилинейное уравнение для функции Т(х)

$$\frac{d}{dx}\left(\lambda(T)\frac{dT}{dx}\right) - 4 \cdot k(T) \cdot n_p^2 \cdot \sigma \cdot (T^4 - T_0^4) = 0 \tag{1}$$

Краевые условия:

$$\begin{cases} x = 0, -\lambda(T(0))\frac{dT}{dx} = F_0, \\ x = l, -\lambda(T(l))\frac{dT}{dx} = \lambda(T(l) - T_0) \end{cases}$$
 (2)

2. Функции $\lambda(T), k(T)$ заданы таблицей

Таблица 1

T, K	λ , Bt/(cm K)	T, K	k, cm(-1)
300	$1.36 \cdot 10^{-2}$	293	$2.0 \cdot 10^{-2}$
500	$1.63 \cdot 10^{-2}$	1278	$5.0 \cdot 10^{-2}$
800	$1.81 \cdot 10^{-2}$	1528	$7.8 \cdot 10^{-2}$
1100	$1.98 \cdot 10^{-2}$	1677	$1.0 \cdot 10^{-1}$
2000	$2.50 \cdot 10^{-2}$	2000	$1.3 \cdot 10^{-1}$
2400	$2.74 \cdot 10^{-2}$	2400	$2.0 \cdot 10^{-1}$

- 3. Разностная схема с разностным краевым условием при x=0. Получена в Лекции \mathbb{N} 7, и может быть использована в данной работе. Самостоятельно надо получить интегро-интерполяционным методом разностный аналог краевого условия при x=l, точно так же, как это было сделано применительно к краевому условию при x=0 в указанной лекции. Для этого надо проинтегрировать на отрезке $[x_{N-\frac{1}{2}},x_N]$ записанное выше уравнение 1 и учесть, что поток $F_N=\alpha_N(y_N-T_0)$, а $F_{N-\frac{1}{2}}=\chi_{N-\frac{1}{2}}(\frac{y_{N-1}-y_N}{h})$
- 4. Значения параметров для отладки (все размерности согласованы) $n_p=1.4$ коэффициент преломления, 1=0.2 см толщина слоя, $T_0=300{
 m K}$ температура окру-

жающей среды, $\sigma = 5.668 \cdot 10_{-12} \; \mathrm{Bt/(cm2K4)}$ - постоянная Стефана- Больцмана, $F_0 = 100 \; \mathrm{Bt/cm2}$ - поток тепла, $\alpha = 0.05 \; \mathrm{Bt/(cm2\,K)}$ – коэффициент теплоотдачи.

5. Выход из итераций организовать по температуре и по балансу энергии, т.е.

$$max \left| \frac{y_n^s - y_n^{s-1}}{y_n^s} \right| \le \varepsilon_1, n = 0, 1, ..., N$$
(3)

$$\max \left| \frac{f_1^s - y_2^s}{f_1^s} \right| \le \varepsilon_2 \tag{4}$$

где

$$f_1 = F_0 - \alpha (T(l) - T_0) \tag{5}$$

И

$$f_2 = 4n_p^2 \sigma \int_0^l k(T(x))(T^4(x) - T_0^4) dx \tag{6}$$

Результаты работы.

- 1. Представить разностный аналог краевого условия при x=l и его краткий вывод интегро -интерполяционным методом.
- 2. График зависимости температуры T(x) от координаты x при заданных выше параметрах.

Выяснить, как сильно зависят результаты расчета T(x) и необходимое для этого количество итераций от начального распределения температуры и шага сетки.

3. График зависимости T(x) при $F_0 = -10 \text{ Bt/cm}2$.

Cnpaeка. При отрицательном тепловом потоке слева идет съем тепла, поэтому производная T(x) должна быть положительной.

4. График зависимости T(x) при увеличенных значениях α (например, в 3 раза). Сравнить с п.2.

Cnpaeка. При увеличении теплосъема и неизменном потоке F_0 уровень температур T(x) должен снижаться, а градиент увеличиваться.

5. График зависимости T(x) при $F_0 = 0$.

Cnpaeка. В данных условиях тепловое нагружение отсутствует, причин для нагрева нет, температура стержня должна быть равна температуре окружающей среды T_0 (разумеется с некоторой погрешностью, определяемой приближенным характером вычислений).

6. Для указанного в задании исходного набора параметров привести данные по балансу энергии, т.е. значения величин

$$f_1 = F_0 - \alpha (T(l) - T_0) \tag{7}$$

И

$$f_2 = 4n_p^2 \sigma \int_0^l k(T(x))(T^4(x) - T_0^4) dx \tag{8}$$

Каковы использованные в работе значения точности выхода из итераций ε_1 (по температуре) и ε_2 (по балансу энергии)?

Вопросы при защите лабораторной работы

- 1. Какие способы тестирования программы можно предложить?
- 2. Получите простейший разностный аналог нелинейного краевого условия при x=l $x=l,-k(l)\frac{dT}{dx}=\alpha_N(T(l)-T_0)+\phi(T)$. где $\phi(T)$ заданная функция. Производную аппроксимируйте односторонней разностью
- 3. Опишите алгоритм применения метода прогонки, если при x=0 краевое условие квазилинейное (как в настоящей работе), а при x=l, как в п.2
- 4. Опишите алгоритм определения единственного значения сеточной функции y_p в одной заданной точке р. Использовать встречную прогонку, т.е. комбинацию правой и левой прогонок (лекция №8). Оба краевых условия линейные.

Код программы

Листинг $1-$ Лабораторная работа №3