A new prediction of wavelength selection in radial viscous fingering involving normal

and tangential stresses.

Mathias Nagel^{1, a)} and François Gallaire¹

Laboratory of Fluid Mechanics and Instabilities - EPFL Lausanne,

Switzerland

(Dated: 9 January 2015)

We reconsider the radial Saffman-Taylor instability, when a fluid injected from a point

source displaces another fluid with a higher viscosity in a Hele-Shaw cell, where

the fluids are confined between two neighboring flat plates. The advancing fluid

front is unstable and forms fingers along the circumference. The so-called Brinkman

equations is used to describe the flow field, which also takes into account viscous

stresses in the plane and not only viscous stresses due to the confining plates like the

Darcy equation. The dispersion relation agrees better with the experimental results

than the classical linear stability analysis of radial fingering in Hele-Shaw cells that

uses Darcy's law as a model for the fluid motion.

PACS numbers: 47.15.gp

Keywords: Saffman-Taylor instability, Hele-Shaw cell, Brinkman equation

a) Electronic mail: mathias.nagel@epfl.ch

1

I. INTRODUCTION

Viscous fingering, also called Saffman-Taylor¹ instability, is considered as an archetype of pattern forming instability (see Couder 2000² for an insightful review). It has also been widely studied in the context of industrial research, such as petroleum extraction in particular. The phenomenon belongs to the broad family of instabilities of growth in Laplacian fields, which includes solidification, aggregation, etc... It was first studied by Saffman and Taylor¹ in 1958, who observed the formation of patterns upon injection of a fluid into a channel filled with another more viscous fluid. Saffman and Taylor¹ studied the formation of fingers in shallow rectangular channels and observed that the formation of fingers was dependent on the ratio of channel height to channel width. The extension to radial geometry, depicted in figure ??a, dates back to Bataille³, Wilson⁴ and Paterson⁵.

REFERENCES

- ¹Saffman, P. G., Taylor, G. I. 1958 The Penetration of a Fluid into a Porous Medium or Hele-Shaw Cell Containing a More Viscous Liquid. *Proc. Roy. Soc. A* **245** (1242) 312-329 ²Couder Y. 2000 Viscous fingering as an archetype of growth patterns *In Perspectives in fluid dynamics, edited by Batchelor, G. K., Moffatt H. K. and Worster, M. G.* 53-104 ³Bataille, J. 1968 Stabilité d'un déplacement radial non miscible *Revue Inst. Pétrole* **23** 1349-1364
- ⁴Wilson, S.D.R 1975 A note on the measurement of dynamic contact angles. *Journal of Colloid and Interface Science* **51**(3)
- ⁵Paterson, L. 1981 Radial fingering in a Hele Shaw cell. J. Fluid Mech. 113 513-529
- ⁶Maxworthy, T. 1989 Experimental study of interface instability in a Hele-Shaw cell. *Phys. Rev. A*, **39** (11) 5863-5866
- ⁷Chuoke, R. L., van Meurs, P. and van der Pol, C. 1959 The instability of slow immiscible viscous liquid-liquid displacements in permeable media *Petrol. Trans. AIME* **216** 188-194
- ⁸Dai, W.-S., Shelley, M. J A numerical study of the effect of surface tension and noise on an expanding Hele-Shaw bubble *Phys. Fluids* **5**(9) 2131-2146
- ⁹Paterson, L. 1985 Fingering with miscible fluids in a Hele Shaw cell. *Phys. Fluids*, **28** (1) 26-30

- ¹⁰Kim, H., Funada, T., Joseph, D. D., Homsy, G. M. Viscous potential flow analysis of radial fingering in a Hele-Shaw cell. *Phys. Fluids* 21 074106
- ¹¹Ben Amar M. and Boudaoud A. 2009 Suction in Darcy and Stokes interfacial flows: Maximum growth rate versus minimum dissipation. *Eur. Phys. J. Special Topics* **166** 83–88
- ¹²Logvinov, O. A., Ivashnyov, O. E., Smirnov, N. N. 2010 Evaluation of viscous fingering width in Hele-Shaw flows. Acta Astronautica 67 53-59
- ¹³J. Fernandez, J., Kurowski P., Limat L. and Petitjeans P. 2001 Wavelength selection of fingering instability inside Hele-Shaw cells *Phys. Fluids* 13 3120-3125
- ¹⁴Carlès P., Huang Z., Carbone G. and Rosenblatt C. 2006 Rayleigh-Taylor Instability for Immiscible Fluids of Arbitrary Viscosities: A Magnetic Levitation Investigation and Theoretical Model *Phys. Rev. Lett.* 96 104501
- ¹⁵Boos W. and Thess, A. 1997 Thermocapillary flow in a Hele-Shaw cell *J. Fluid Mech.* **352** 305-320
- ¹⁶Gallaire F., Meliga P., Laure P. and Baroud, C. 2013 Marangoni-induced force on a drop in a Hele-Shaw cell *submitted*
- ¹⁷Park, C.-W., Homsy, G. M. 1984 Two-phase displacement in Hele Shaw cells: theory. J. Fluid Mech. 139 291-308