#### **BFS Algorithm**

Time Complexity: O(V + E), V = number of vertices in the graph, E = number of edges in the graph

Space Complexity : O(V + E)

### Dijkstra Algorithm

Time Complexity :  $O(V^2)$ , V = number of vertices in the graph

Space Complexity: O(V)

|          | dnm  | Map01 | Map02 | Map03 | Map04 | Map05 | Map06 | Map07 | Map08 | Map09 | Map10 | pisa | tokyo | triumph | vatican |
|----------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|-------|---------|---------|
| BFS      | 1ms  | 87ms  | 103ms | 340ms | 55ms  | 61ms  | 54ms  | 71ms  | 75ms  | 214ms | 305ms | 69ms | 137ms | 183ms   | 380ms   |
| Dijkstra | 11ms | 68ms  | 77ms  | 217ms | 78ms  | 79ms  | 99ms  | 55ms  | 92ms  | 480ms | 120ms | 89ms | 338ms | 302ms   | 333ms   |

### **Shortest Paths**

(Red line = Dijkstra, White line = BFS)

## dnm



Map01



Map02



Map03



Map04



# (Red line = Dijkstra, White line = BFS)

Map05



Map06



Map07



Map08



Map09



Map10



Pisa



Tokyo



(Red line = Dijkstra, White line = BFS)

Triumph



Vatican

