GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIOS

NO MODE DE LA ACIONIATION	
I NOMBRE DE LA ASIGNATURA	
NOMBRE BE BUILDING	
	Ingeniería de Confiabilidad
	ingeniena de comiabilidad
	<u> </u>

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Sexto Semestre	140601	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar los fundamentos básicos de la Ingeniería de Confiabilidad, para que el alumno aprenda a aplicar y analizar estos fundamentos (Conceptos, Técnicas y Métodos) para diseñar y mantener productos, procesos y servicios de tal manera que no sufran fallas durante su uso u operación.

TEMAS Y SUBTEMAS

1. Introducción a la Ingeniería de Confiabilidad

- 1.1 Definición de Ingeniería de Confiabilidad
- 1.2 Desarrollo de la ingeniería de confiabilidad
- 1.3 Concepto de falla
- 1.4 Dispositivos reparables y no reparables
- 1.5 Normas de fallas

2. Matemáticas para la confiabilidad

- 2.1 Introducción
- 2.2 Variación
- 2.3 La probabilidad y sus reglas
- 2.4 Funciones de distribución continua
- 2.5 Variación discreta
- 2.6 Métodos inferenciales no paramétricos

3. Gráficas de probabilidad

- 3.1 Introducción
- 3.2 La distribución weibull
- 3.3 Usando el método weibull
- 3.4 Proceso más complejos de la distribución de weibull
- 3.5 Procesos continuos

4. Interferencia Carga-Resistencia

- 4.1 Introducción
- 4.2 Carga y resistencia distribuida
- 4.3 Análisis de interferencia carga-resistencia
- 4.4 Efecto del margen de seguridad y carga sobre la confiabilidad

5. Diseño de experimentos

- 5.1 Introducción
- 5.2 Diseño estadístico de experimentos y análisis de varianza
- 5.3 Métodos no paramétricos
- 5.4 Selección al azar de datos
- 5.5 Análisis en interpretación de resultados
- 5.6 El método de Taguchi

6. Modelado y predicción de la confiabilidad

- 6.1 Introducción
- 6.2 Limitaciones de la predicción de confiabilidad
- 6.3 Confiabilidad de la base de datos
- 6.4 El método práctico
- 6.5 Diagramas de bloque y sistemas reparables
- 6.6 Causa común de falla
- 6.7 Análisis mediante el árbol de falla
- 6.8 Diagramas de árbol de eventos
- 6.9 Análisis espacio-estado (Análisis de Markov)

7. Confiabilidad en diseño mecánico

- 7.1 Especificación de confiabilidad y sistema de medidas
- 7.2 Asignación de confiabilidad
- 7.3 Métodos de diseño
- 7.4 Análisis de falla
- 7.5 Seguridad del sistema y análisis mediante el árbol de falla

8. Confiabilidad en elementos mecánicos y sistemas

- 8.1 Introducción
- 8.2 Esfuerzo mecánico, resistencia, falla, fatiga, desgaste, corrosión
- 8.3 Vibración y choque
- 8.4 Materiales
- 8.5 Procesos

9. Confiabilidad de sistemas electrónicos

- 9.1 Introducción
- 9.2 Confiabilidad de componentes electrónicos
- 9.3 Tipos de componentes y mecanismos de falla
- 9.4 Predicción de la confiabilidad en el sistema electrónico
- 9.5 Confiabilidad en el diseño del sistema electrónico

10. Confiabilidad de Software

- 10.1 Dispositivos programables
- 10.2 Fallas de software
- 10.3 Modelado de fallas de software
- 10.4 Predicción y medida de confiabilidad del software

11. Pruebas de confiabilidad

- 11.1 Introducción
- 11.2 Planeación de la prueba de confiabilidad
- 11.3 Pruebas ambientales

12. Administración de la confiabilidad

- 12.1 Política para confiabilidad
- 12.2 Programas de confiabilidad
- 12.3 Manual de confiabilidad
- 12.4 Proyecto del plan de confiabilidad
- 12.5 Organización para la confiabilidad

13. Confiabilidad de manufactura

- 13.1 Introducción
- 13.2 Control de variabilidad en la producción
- 13.3 Control de la variación humana
- 13.4 Muestreo de aceptación
- 13.5 Mejorar el proceso
- 13.6 Control de calidad en la producción de la electrónica
- 13.7 Revisión de la tensión
- 13.8 Análisis del reporte de falla en producción y sistema de acción correctivo

14. Mantenimiento

14.1 Concepto de mantenimiento

- 14.2 Procesos de decisiones en el mantenimiento
- 14.3 Sustitución óptima
- 14.4 Repuestos óptimos
- 14.5 Prueba-prueba óptima
- 14.6 Supervisión

15. Mantenibilidad

- 15.1 Análisis de tiempo muerto
- 15.2 Distribución del tiempo de reparación
- 15.3 Procesos estocásticos
- 15.4 Tiempo de reparación del sistema
- 15.5 Sistemas estado-dependientes con la reparación

16. Disponibilidad

- 16.1 Conceptos y definiciones
- 16.2 Modelo de disponibilidad exponencial
- 16.3 Sistema de disponibilidad
- 16.4 Modelo de disponibilidad de inspección y reparación

ACTIVIDADES DE APRENDIZAJE

Sesiones de clases dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora, los retroproyectores y la videograbadora. Asimismo, se desarrollarán programas computacionales sobre los temas y los problemas del curso.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales que tendrá una equivalencia del 50% y un examen final que tendrá 50%. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso; la suma de estos dos porcentajes dará la calificación final.

Además se considerará el trabajo extra-clase, la participación durante las sesiones del curso y la asistencia a las asesorías.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL, AÑO Y Nº DE EDICIÓN)

Libros Básicos:

Practical Reliability Engineering, O'Connor, Patrick D. T, Newton, David W. y Bromley, Richard C., John Wiley & Son Ltd. New York, Fourth Edition, 2003.

Reliability Maintainability and Risk: Practical Methods for Engineers Including Reliability Centred Maintenance Safety-Related Systems, Smith, David J., Ed. Butterworth-Heinemann Ltd, Oxford, Seventh Edition, 2005.

Libros de Consulta:

Introduction to Reliability and Maintainability Engineering, Ebeling, Charles E., McGraw Hill Publication, Boston, Third Edition, 2005.

Basic Reliability: An Introduction to Reliability Engineering, Summerville, Nicholas, Publisher: Lightning Source Inc., First Edition, 2004.

Reliability Engineering: Theory and Practice, Birolini, Alessandro, Ed. Springer Verlag, England, Fourth Edition, 2003.

PERFIL PROFESIONAL DEL DOCENTE

Ingeniero Mecánico con experiencia en Ingeniería de Confiabilidad y de preferencia con Postgrado.