Sustainable Wind Power Development

Aleksandra Vasiljevic

Ming Chun Tang

Sudipta Roy

Contents

- 1. Sustainable wind power development
 - Suitability assessment
 - II. Visibility analysis
 - III. Recommendations
- 2. Soil erosion risk
 - I. USLE calculation and mapping
 - Land cover and slope analysis
 - III. Recommendations
- 3. Questions

Sustainable wind power development: project overview

- Which areas in the Lake Waging region are most suited to wind power development?
- Tasks
 - ► GIS-based suitability assessment
 - Visibility analysis
- Considerations
 - Wind energy potential
 - Physical constraints
 - Planning constraints

Pre-processing

- Problems
 - Data was in multiple projections (Gauss-Kruger zone 4, WGS 84, ETRS 1989, etc.)
 - Some data was on a state (Bavaria) or regional (Upper Bavaria) scale
 - Missing data (land use, railways, water bodies, rivers, power lines)
- Solutions
 - Reprojected data to Gauss-Kruger zone 4 to match data frame
 - Clipped data to fit study area
 - Downloaded additional data from Geofabrik

Analysis of constraints

- Physical and planning constraints
 - Residential areas
 - Dispersed buildings
 - Highways and streets
 - Industrial and commercial areas
 - Recreational areas
 - Railways
 - Waterways
 - Conservation areas
 - Slope

Buffer areas

- Buffers
 - Residential areas: 800 m
 - ▶ Dispersed houses: 500 m
 - ► Industrial/commercial areas: 300 m
 - Leisure/sports facilities: 300 m
 - Railway lines: 300 m
 - Power lines: 300 m
 - Rivers: 40 m
 - Major roads: 40 m
 - Minor roads: 30 m
- Combined all buffers into one using union

Exclusion and potential areas

Exclusion areas (all buffers)

Potential areas for development, obtained using *erase*

Distance rasters

Distance raster for flora, fauna and habitat (FFH) protection areas

Wind speed and slope

Wind speed map, as provided

Slope raster, obtained from DEM

Weighting

- Scenario 1: equal weighting of wind energy potential and ecological factors
 - ▶ Wind energy potential: 40%
 - ► Slope: 20%
 - ▶ Biotopes/landscape/biosphere/FFH: 10% each = 40% total
- Scenario 2: wind energy potential prioritized
 - ▶ Wind energy potential: 60%
 - ► Slope: 20%
 - Biotopes/landscape/biosphere/FFH: 5% each = 20% total
- Scenario 3: ecological factors prioritized
 - ▶ Wind energy potential: 20%
 - Slope: 16%
 - ► Biotopes/landscape/biosphere/FFH: 16% each = 64% total
- Combined using weighted overlay
- ► Three sites selected in each scenario

Scenario 1: equal weighting

Scenario 2: prioritizing wind energy

Scenario 3: prioritizing ecological factors

Visibility analysis

- How visible are the wind turbines from across the Lake Waging area?
- How can their visual intrusion be minimized?
- Additional criteria for site selection: visual impact
 - For each site: *viewshed* at a height of 150 m above ground
 - ▶ DEM used to provide elevation data
 - Best site chosen from each scenario based on visual impact

ttp://www.windhoist.co.uk/wp-content/uploads/sites/102/2017/12/20171219_110053-e1513850416934.jpg

Unsuitable sites

Visible

Not visible

Site 1, from scenario 1 (north of Taching am See)

Site 5, from scenario 2 (offshore in Lake Waging)

Suitable sites: scenario 1

Site 2: the most suitable site that balances power generation and ecological considerations

Suitable sites: scenario 2

Site 4: the most suitable site that prioritizes wind power generation

Suitable sites: scenario 3

Site 8: the most suitable site that prioritizes ecological considerations

Soil erosion risk

- Universal soil loss equation (USLE): mathematical model for calculating soil erosion risk

 - Assumed P = 1
- K-factor: soil erodability factor
- C-factor: crop/vegetation factor
- R-factor: rainfall and runoff factor
- S-factor: slope factor
- L-factor: slope length factor
- ► P-factor: support practice factor

K-factor

C-factor

Water bodies: 0 Urban areas: 0

Industrial/commercial areas: 0

Sport/leisure facilities: 0

Forests: 0.004

Grasslands: 0.008

Agricultural land: 0.08

Based on Corine land cover data

R-factor

□ R_factor.tif
 C_Districts.r_factor
 107
 ■ 116

Traunstein: 107

Berchtesgadener Land: 116

S-factor

Slope based on filled DEM

L-factor

$$L = (\lambda / 22.1)^{m}$$

Calculated based on flow direction, flow accumulation and slope

Final USLE

<VALUE>

USLE overlaying land cover map

USLE overlaying slope raster

Observations and recommendations

Observations

- Almost all high-risk areas are heavily inclined, particularly south of Waging am See and in the Lauter/Surberg area
- Some high-risk areas are close to residential areas and on the edges of forests, with a few inside the forests
- Very few high-risk areas around the lakes, except around the forest to the south of Lake Waging

Recommendations

- ► Keep soil covered as much as possible
 - ▶ Plant grass and shrubs to hold the soil in place with roots
 - Add mulch to limit runoff
- Stabilize heavily eroded slopes
 - Build retaining walls
 - ▶ Plant trees to prevent landslides on steep slopes
- Use agricultural practices that prevent erosion
 - Crop rotation
 - Conservation tillage (low-till or no-till planting)
 - Contour farming
 - Strip farming

THANK YOU FOR YOUR ATTENTION!