Intelligenza Artificiale 1

Andrea Latella, Roberto Pesando, Davide October 13, 2014

 $^{^1\}mathrm{Relazione}$ IA-LAB

Contents

1	Intr	troduzione															1							
	1.1	Strate	gie																					1
		1.1.1	Astar																					1

Chapter 1

Introduzione

Nel progetto sono stati affrontati alcuni dei vari problemi che riguardano l'intelligenza artificiale. In questa relazione spiegheremo quali soluzioni sono state adottate, i vantaggi e gli svantaggi e alcuni miglioramenti che possono esser fatti al nostro progetto

1.1 Strategie

Per svolgere il progetto di IA-LAB sono state implementate 4 strategie in maniera incrementale:

- FIFO WAIT: la strategia usa la politica fifo come politica di scelta degli ordini.
- FIFO: Simile alla precendente, ma in caso di ostacolo che non permette di servire un ordine, l'ordine viene messo al fondo.
- LOW PENALITY: strategia che si basa sulla penalità per effettuare la scelta dell'ordine.
- HARD: a differenza delle altre 3 strategia, questa permette di gestire più ordini in contemporanea. Come la precedente si basa sulle penalità

Ogni strategia è stata suddivisa in fasi dove ogni fase si occupa di uno specifico sotto-problema. Questa suddivisione ci ha permesso sia uno sviluppo incrementale all'interno della stessa strategia, sia tra strategie diverse, dove è bastato andare a sviluppare in modo più articolato una fase oppure nell'inserire nuove fasi.

1.1.1 Astar

Tutte le strategia utilizzano il modulo Astar per pianificare dei piani che permettano al nostro robot di spostarsi da un punto A a un punto B. Il punto A è la posizione del robot al momento della pianificazione mentre il goal (il punto B) è dato dalla cella destinazione. La cella destinazione può essere un dispenser, un cestino o un tavolo. Il modulo astar calcolerà quali sono i 4 punti di accesso alla nostra destinazione e si fermerà non appena arriverà a uno di esso.

La strategia può terminare fornendo un piano, oppure può fallire. Per memorizzare il piano creato vengono usate due strutture:

```
(deftemplate plane
        (slot plane-id)
        (multislot pos-start)
        (multislot pos-end)
        (slot direction)
        (slot cost)
        (slot status (allowed-values ok failure))
)
(deftemplate step-plane
        (slot plane-id)
        (slot action)
        (slot direction)
        (multislot pos-start)
        (slot father)
        (slot child)
)
```

La struttura step-plane indica i vari passi per eseguire il piano plane. I piani vengono memorizzati in modo tale che il robot non debba ripianificare più volte uno stesso percorso. Vengono memorizzati solo i piani principali; nel caso in cui un piano fallisca il piano "riparatore" non viene memorizzato.