I Restitution du cours

1 - Énoncer le théorème fondamental de l'analyse et donner la définition de l'intégrale généralisée sur un intervalle [a;b] de \mathbb{R} .

2 - Donner la définition d'une fonction continue par morceaux sur un segment [a;b] de \mathbb{R} et donner une primitive de $x \longmapsto \tan(x)$.

3 - Énoncer la relation de Chasles, la positivité de l'intégrale, la croissance de l'intégrale et l'inégalité triangulaire sur un intervalle I de $\mathbb R$ et donner une primitive de $x \longmapsto \frac{1}{\cos^2(x)}$.

II Questions de cours

1 - Donner la nature de $\int_0^1 \frac{1}{t^{\alpha}} dt$.

2 - Donner la nature et la valeur éventuelle de $\int_0^{+\infty} e^{-\lambda t} dt$.

3 - Donner la nature de $\int_1^{+\infty} \frac{1}{t^{\alpha}} dt$.

III Exercices

 $\underline{Exercice\ 1:}$

1 - Pour $x \ge 0$, calculer $F(x) = \int_0^x \sqrt{1 + \sqrt{t}} dt$.

2 - Montrer que l'intégrale $\int_1^{+\infty} \frac{\mathrm{d}t}{t(1+t^2)} \mathrm{d}t$ converge et calculer sa valeur.

Exercice 2

1 - Pour $x \in \mathbb{R}$, calculer $\int_0^x \operatorname{Arctan}(t) dt$.

2 - Montrer que l'intégrale $\int_{-\infty}^{+\infty} \frac{1}{1+t^2} \mathrm{d}t$ converge et calculer sa valeur.

1 - Calculer $\int_{0}^{\frac{\pi}{2}} \sin^{2}(u) \cos(u) du.$

2 - Déterminer la nature et la valeur éventuelle de l'intégrale $\int_0^{\frac{\pi}{2}} \frac{\cos(u)}{\sqrt{\sin(u)}} du$.

Exercice 4:

1 - Calculer $\int_0^1 \ln(1+x) dx$.

2 - En déduire la limite de $\left(\frac{(2n)!}{n!n^n}\right)^{\frac{1}{n}}$.

3 - Retrouver ce résultat à l'aide de la formule de Stirling.

Exercice 5:

1 - Montrer l'existence de $I = \int_0^{+\infty} \frac{x^2}{(1+x^2)^2} dx$ et calculer sa valeur.

2 - En déduire la valeur de $J = \int_0^{+\infty} \frac{1}{(1+x^2)^2} dx$.

Exercice 6

1 - Pour b > 0, calculer $\int_1^b \frac{\ln(x)}{(1+x)^2} dx$ en fonction de b.

2 - En déduire la valeur de $\int_1^{+\infty} \frac{\ln(x)}{(1+x)^2} dx$.

Exercice 7:

On considère les intégrales suivantes :

$$I = \int_0^{+\infty} \frac{1}{t^3 + 1} dt$$
 et $J = \int_0^{+\infty} \frac{t}{t^3 + 1} dt$

1 - Montrer l'existence de I et de J et montrer que J=I.

2 - Calculer $A = \int_0^{+\infty} \frac{1}{u^2 - u + 1} du$.

3 - En considérant I+J, donner la valeur de I.