Probabilité et statistique

Alexandre Allauzen allauzen@limsi.fr

Université Paris Sud - LIMSI

février 2017

Variable aléatoire?

- variable aléatoire = le résultat d'une expérience; sa valeur change chaque fois qu'elle est regardée
- variable aléatoire = fonction qui permet d'associer un événement à un nombre (plus précisément c'est une fonction de l'espace des événements vers un espace mesurable)

Les 3 étages de la fusée

Distribution de probabilité

- Fonction qui associe une probabilité à la réalisation d'une V.A (pour toutes les réalisations possibles).
- Caractérise une VA (discrète ou continue)
- Elle définit par un ensemble de paramètres (approche paramètrique)

Les paramètres

Ils sont à estimer à partir d'un échantillon :

- représentatif? grand? fiable?
- → les données d'estimation

Données d'estimation

- Plus il y en a, mieux c'est! Mais ...
- L'estimation des paramètres n'est qu'une version compressée des données d'estimation

Exemple 1 : données d'apprentissage

Refund	Status	Tax.inc.	Age	Cheat
X_1	X_2	X_3	X_4	Y
Yes	Single	125,6	25	No
No	Married	100,9	45	No
No	Single	70,0	33	No
Yes	Married	120,2	78	No
No	Divorced	95,5	72	Yes
No	Married	60,1	55	No
Yes	Divorced	220,7	41	No
No	Single	85,5	49	Yes
No	Married	75,0	37	No
No	Single	90,8	42	Yes

5 V.As: X_1, X_2, X_3, X_4, Y :

- discrètes et binaires :
 X₁, Y
- discrète : X_2
- continues : X_3, X_4

Espace de réalisation :

- $\bullet \ \mathcal{A}_{X_1} = \mathcal{A}_Y = \{No, Yes\}$
- $\mathcal{A}_{X_2} = \{S., M., D.\}$
- $\mathcal{A}_{X_3} = \mathcal{A}_{X_3} = \mathbb{R}$

Plan

Variable aléatoire discrète

2 Variable aléatoire continue

Caractérisation d'une distribution de probabilité

Variable aléatoire (VA) discrète

Définition

Le triplet $X = (x, \mathcal{A}_X, \mathcal{P}_X)$ représente une variable aléatoire.

- x est la réalisation de la VA
- $\mathcal{A}_X = \{x_1, ... x_K\}$: le domaine de réalisation de X
- les probabilités associées sont définis par $\mathcal{P}_X = \{\beta_1, ... \beta_K\}$

$$\sum_{x_i \in \mathcal{A}_X} P(X = x_i) = \beta_i$$

$$\sum_{x_i \in \mathcal{A}_X} P(X = x_i) = 1$$

$$0 \le \beta_i \le 1$$

Exemple

Nombre de pages visitées *i* par visite

_	TOILIDIC	uc p	uges	V 151tC	csιp	ui vii	,110							
	i	1	2	3	4	5	6	7	8	9	10	11	12	Total
_	n(i)	7	33	58	116	125	126	121	107	56	37	25	4	815
	fréquence	0,01	0,04	0,07	0,14	0,15	0,15	0,15	0,13	0,07	0,05	0,03	0,1	1

Graphiquement

distribution de probabilité = base de données

Exemple 1 : 1 variable aléatoire

	Status			Cheat
	X_2		X_4	Y
Yes	Single	125,6	25	No
	Married			No
	Single			No
	Married			No
	Divorced			Yes
	Married			No
	Divorced			No
	Single			Yes
	Married			No
	Single			Yes

- X₂ : Marital status
- $\mathcal{A}_{X_2} = \{M., S., D.\}$
- $\mathcal{P}_{X_2} = (\beta_i)_{i=1}^{|\mathcal{A}_{X_2}|} = (\beta_{M.}, \beta_{S.}, \beta_{D.})$
- $\beta_{M_1} + \beta_{S_2} + \beta_{D_3} = 1$
- Estimation:

$$\begin{split} P(X_2 = M.) &= \beta_{M.} \\ &= \frac{n(X_2 = M.)}{n(X_2 = *)} \\ &= \frac{n(X_2 = M.)}{\sum_{x \in \mathcal{A}_{X_2}} n(X_2 = x)} \end{split}$$

$$P(X_2 = x)$$
:

Exemple 1 : 1 (autre) variable aléatoire

Refund				Cheat
X_1				Y
Yes	Single	125,6	25	No
No				No
No				No
Yes				No
No				Yes
No				No
Yes				No
No				Yes
No				No
No				Yes

- X_1 : Refund
- $\bullet \ \mathcal{A}_{X_1} = \{No, Yes\}$
- $\mathcal{P}_{X_1} = (\beta_i)_{i=1}^{|\mathcal{A}_{X_1}|} = (\beta_{No}, \beta_{Yes})$
- $\bullet \ \beta_{No} + \beta_{Yes} = 1$
- $\bullet \ \beta_{No} = 1 \beta_{Yes}$
- Estimation:

$$P(X_1 = Yes) = \beta_{Yes} = 1 - \beta_{No}$$
$$= \frac{n(X_1 = Yes)}{n(X_1 = *)}$$

• De même pour Y

Exemple $1: X_2$ et Y, probabilité jointe - 1

Cheat
Y
No
No
No
No
Yes
No
No
Yes
No
Yes

- X_2 : Refund, et Y: la classe
- $\mathcal{A}_Y = \{No, Yes\}$
- $\mathcal{A}_{X_2} = \{M., S., D.\}$
- $\mathcal{P}_{X_2,Y} = (\beta_{x_2,y}) \forall x_2 \in \mathcal{A}_X$, et $y \in \mathcal{A}_Y$
- $|\mathcal{A}_Y| \times |\mathcal{A}_{X_2}|$ paramètres
- Estimation:

$$P(X_2 = x_2, Y = y) = \beta_{x_2, y}$$

$$= \frac{n(X_2 = x_2)}{n(X_2 = *, Y = *)}$$

$$\frac{n(X_2 = x_2, Y = y)}{\sum_{x \in \mathcal{A}_X, y \in \mathcal{A}_Y} n(X_2 = x, Y = y)}$$

Exemple $1: X_2$ et Y, probabilité jointe - 2

Status	Cheat
X_2	Y
Single	No
Married	No
Single	No
Married	No
Divorced	Yes
Married	No
Divorced	No
Single	Yes
Married	No
Single	Yes

Probabilité jointe en 2D

- plusieurs variables aléatoires peuvent interagir
- P(X = x, Y = y) = P(X = x et Y = y) = "P(x, y)"

$$\sum_{x,y} P(X=x, Y=y) = 1$$

Probabilité jointe en 3D

- plusieurs variables aléatoires peuvent interagir
- P(X = x, Y = y, Z = z) = P(X = x et Y = y et Z = z)

Exemple $1: X_2$ et Y, probabilité conditionnelle - 1

Status	Cheat
X_2	Y
Single	No
Married	No
Single	No
Married	No
Divorced	Yes
Married	No
Divorced	No
Single	Yes
Married	No
Single	Yes

- X_2 : Refund, et Y: la classe
- $\bullet \ \mathcal{A}_Y = \{N, Y\}$
- $\mathcal{A}_{X_2} = \{M., S., D\}$
- Conditionnelle : une variable est fixée (connue)

	Status	Cheat
	X_2	Y
Fixons $Y = Yes$:	Divorced	Yes
	Single	Yes
	Single	Yes

• Une distribution sur X_2 à Y = y fixé

$$\sum_{x_1} P(X_2 = x_2 | Y = Yes) = 1$$

Exemple 1 : X_2 et Y, probabilité conditionnelle - 2

Status	Cheat
X_2	Y
Divorced	Yes
Single	Yes
Single	Yes

- Pour chaque réalisation de Y : une distribution sur X₂
- $|\mathcal{A}_Y| \times |\mathcal{A}_{X_2}|$ paramètres

Probabilité conditionnelle en 2D

- une des variables est connue
- revient à prendre une « tranche »

Quelle différence avec la distribution jointe?

$$\sum_{y} P(X = x | Y = y) = 1$$

Probabilité conditionnelle en 3D

Probabilité jointe et conditionnelle

$$P(X_2 = x_2, Y = y) = P(Y = y) \times P(X_2 = x_2 | Y = y)$$

 $P(X_2 = x_2, Y = Yes) = P(Y = Yes) \times P(X_2 = x_2 | Y = Yes)$

Status	Cheat
X_2	Y
Single	No
Married	No
Single	No
Married	No
Divorced	Yes
Married	No
Divorced	No
Single	Yes
Married	No
Single	Yes

Status	Cheat
X_2	Y
Single	No
Married	No
Single	No
Married	No
Divorced	Yes
Married	No
Divorced	No
Single	Yes
Married	No
Single	Yes

Status	Cheat
X_2	Y
Divorced	Yes
Single	Yes
Single	Yes

Probabilité marginale en 1D

Probabilité marginale

$$\sum_{z} P(x, y, z)$$

$$P(x, y) = \sum_{z} P(x, y, z)$$

Distributions jointe, conditionnelles et marginales

La distribution jointe *contient* les distributions conditionnelles et marginales.

- Marginalisation : $P(X, Y) \rightarrow P(X)$ et P(Y)
- Passage au conditionnel :

$$P(Y|X) = \frac{P(X, Y)}{P(X)}$$
$$P(X|Y) = \frac{P(X, Y)}{P(Y)}$$

Estimation des probabilités jointe et conditionnelle

$$M(i,j) = compte(X = x_i \text{ et } Y = y_j)$$

- Remplir la matrice avec les comptes des tirages
- La différence se fait à la normalisation.

(in)dépendance statistique

deux variables sont indépendantes si et seulement si

$$P(X = x, Y = y) = P(X = x) \times P(Y = y)$$

• deux variables sont conditionnellement indépendantes si :

$$P(X = x, Y = y | Z = z) = P(X = x | Z = z) \times P(Y = y | Z = z)$$

Exemple 1 : Vraisemblance des données pour X_2

	Status	
X_1	X_2	X_3
Yes	Single	125,6
	Married	
	Single	
	Married	
	Divorced	
	Married	
	Divorced	
	Single	
	Married	
	Single	

Connaissant la distribution de X_2 (ses paramètres) Soit les observations :

$$\mathcal{D} = (x_{2,1}, x_{2,2}, ..., x_{2,N}) = (x_{2,i})_{i=1}^{N}$$

Hypothèse i.i.d : indépendament et identiquement distribuées

$$P(\mathcal{D}) = \prod_{i=1}^{N} P(X_2 = x_{2,i}) = \prod_{i=1}^{N} \beta_{x_{2,i}}$$
$$= \beta_{S.} \times \beta_{M.} \times \beta_{S.} \times \beta_{M.} \times \beta_{D.} \times \cdots$$
$$= \beta_{S.}^{c(S.)} \times \beta_{M.}^{c(M.)} \times \beta_{D.}^{c(D.)}$$

Exemple 1 : Vraisemblance des données pour X_1

Refund	
X_1	
Yes	Single
No	
No	
Yes	
No	
No	
Yes	
No	
No	
No	

Connaissant la distribution de X_1 (son paramètre) Soit les observations :

$$\mathcal{D} = (x_{1,1}, x_{1,2}, ..., x_{1,N}) = (x_{1,i})_{i=1}^{N}$$

Hypothèse i.i.d : indépendament et identiquement distribuées

$$P(\mathcal{D}) = \prod_{i=1}^{N} P(X_1 = x_{1,i}) = \prod_{i=1}^{N} \beta_{x_{1,i}}$$

$$= \beta_{Yes} \times \beta_{No} \times \beta_{No} \times \beta_{Yes} \times \beta_{No} \times \cdots$$

$$= \beta_{Yes} \times (1 - \beta_{Yes}) \times (1 - \beta_{Yes}) \times \beta_{Yes} \times (1 - \beta_{Yes}) \times \cdots$$

$$= \beta_{Yes}^{c(Yes)} \times (1 - \beta_{Yes})^{c(No)}$$

Théorème de Bayes

$$P(Y = y_j | X = x_i) = \frac{P(X = x_i, Y = y_j)}{P(X = x_i)} = \frac{P(X = x_i, Y = y_j)}{\sum_{y_j \in \mathcal{A}_Y} P(X = x_i, Y = y_j)}$$

$$= \frac{P(X = x_i | Y = y_j) P(Y = y_j)}{P(X = x_i)}$$

$$= \frac{P(X = x_i | Y = y_j) P(Y = y_j)}{\sum_{y_j \in \mathcal{A}_Y} P(X = X_i | Y = y_j) P(Y = y_j)}$$

Interprétation

- Supposons que *Y* représente la classe du modèle et *X* l'observation.
- Inversion des dépendances statistiques
- Réécriture de l'inférence statistique

Que peut-on faire avec une distribution de probabilité?

- générer des données (sampling)
- calcul d'une probabilité jointe : déterminer la probabilité d'une configuration donnée
- inférence certaines v.a. sont connues, quelle est la valeur des autres v.a.?
- estimation : on observe un ensemble de réalisations d'une distribution ; comment retrouver les paramètres de celle-ci ?

Plan

Variable aléatoire discrète

- 2 Variable aléatoire continue
- Caractérisation d'une distribution de probabilité

Variable aléatoire continue

- X = taille d'un homme donné
- solution la plus simple : on discrétise les tailles possibles : $P(X \in [1, 90, 1, 95])$
- que se passe-t-il si on diminue le pas de discrétisation?

Variable aléatoire continue

- X = taille d'un homme donné
- solution la plus simple : on discrétise les tailles possibles : $P(X \in [1, 90, 1, 95])$
- que se passe-t-il si on diminue le pas de discrétisation?

Variable aléatoire continue

Si X est une variable aléatoire continue :

- P(X = x) = 0: la probabilité que la variable prenne exactement une valeur donnée est toujours nulle.
- on ne peut connaître que la probabilité que X soit dans un intervalle donné : $P(a \le X \le b)$
- la distribution de la masse de probabilité est caractérisé par densité de probabilité f(x):

$$P(a < X \le b) = \int_{a}^{b} f(x) \cdot dx$$

• $f(x) \cdot dx$ aire d'un intervalle de taille infinitésimal d(x)

Rappel: loi normale

En dimension 1

$$f(x) = \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \times e^{\frac{-1}{2} \left(\frac{x - \mu}{\sigma}\right)^2}$$

avec :
$$\begin{cases} \mu = \mathbb{E}[x] & \text{moyenne} \\ \sigma^2 = \mathbb{E}[(x - \mu)^2] & \text{variance} \end{cases}$$

En dimension d

$$f(\mathbf{x}) = \frac{1}{(2 \cdot \pi)^{\frac{d}{2}} \cdot ||\Sigma||^{\frac{1}{2}}} e^{-\frac{1}{2}(\mathbf{x} - \mu)'\Sigma^{-1}(\mathbf{x} - \mu)}$$

avec:

$$\begin{cases} \mu = \mathbb{E}[\mathbf{x}] & \text{vecteur moyenne} \\ \Sigma = \mathbb{E}\left[(\mathbf{x} - \mu)(\mathbf{x} - \mu)^t \right] & \text{matrice de covariance (matrice carré définie positive)} \end{cases}$$

Graphiquement (en 1D)

Interprétation des paramètres

Graphiquement (en 2D)

Plan

1 Variable aléatoire discrète

- 2 Variable aléatoire continue
- 3 Caractérisation d'une distribution de probabilité

Moyenne et variance

Soit $x_1, x_2, ..., x_n$ un ensemble de valeurs générées par une distribution de probabilité inconnue

On peut caractériser cette distribution par :

- moyenne $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ qui caractérise le centre de la distribution
- variance $\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{x})^2$ qui mesure la dispersion de la distribution
- (a)symétrie de la distribution (skewness)

Variance, Covariance et corrélation

Variance

$$var(x) = \frac{1}{N} \sum_{n=1}^{N} (x_n - \overline{x})^2$$

Covariance : les variations de deux variables sont-elles liées :

$$cov(x, y) = \frac{1}{N} \sum_{n=1}^{N} (x_n - \overline{x})(y_n - \overline{y})$$

Corrélation, une covariance normalisée

$$cor(x, y) = \frac{cov(x, y)}{var(x)var(y)} = \frac{cov(x, y)}{cov(x, x)cov(y, y)}$$

elle quantifie la qualité de l'approximation linéaire de x par y (et recipr.)

Corrélation illustrée

Espérance (d'une VA)

Définition

L'espérance d'une VA discrète X est définie par :

$$\mathbb{E}(X) = \sum_{x \in \mathcal{A}_X} x P(x) = \sum_{i=1}^m x_i p_i$$

Avec f(X) une fonction quelconque de X

$$\mathbb{E}(f(X)) = \sum_{x \in \mathcal{A}_X} f(x) P(x)$$

Variance et écart type

$$var[X] = \sigma^2 = \mathbb{E}((X - \mathbb{E}(X))^2) = \sum_{x \in \mathcal{A}_X} (x - \mathbb{E}(X))^2 P(x)$$

La racine carrée de la variance est l'écart-type (ou standard deviation)

Propriétés et interprétation

- l'écart-type est toujours positif,
- il est nul *ssi* toute la masse de probabilité est concentrée en un point (distribution de Dirac).
- L'espérance peut être interprétée comme le "centre" de la VA, autour de laquelle se dispersent les autres valeurs.
- L'écart-type rend compte de la dispertion autour de l'espérance.

Corrélations et covariances

Mesure du lien statistique entre 2 VA

Définitions

Corrélation

$$\mathbb{E}(XY) = \sum_{x \in X} \sum_{y \in \mathcal{Y}} xy P(x, y)$$

Covariance

$$\sigma_{XY}^2 = \mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y))) \tag{1}$$

$$= \sum_{x \in \mathcal{A}_Y} \sum_{y \in \mathcal{A}_Y} (x - \mathbb{E}(X))(y - \mathbb{E}(Y))P(x, y) \tag{2}$$

Interprétation

- La covariance est une mesure du degré de dépendance entre deux VA.
- X et Y indépendantes $\Rightarrow \sigma_{XY} = 0$ (pas équivalence).

Vecteurs de VA

Généralisation aux VA multidimensionnelles

Notation vectorielle

$$X = (X_1, X_2, \dots, X_n)$$

 \mathcal{A}_X produit cartésien $\mathcal{A}_{X_1} \times \mathcal{A}_{X_2} \dots \mathcal{A}_{X_n}$

Vecteur espérance

$$\mu_X = \mathbb{E}(X) = (\mathbb{E}(X_1), \mathbb{E}(X_2), \dots \mathbb{E}(X_n))$$

Matrice de covariance

$$\Sigma_X = \mathbb{E}((X - \mathbb{E}(X))(X - \mathbb{E}(X))^T) = (\sigma_{i,j})$$

$$\sigma_{i,j} = \mathbb{E}((X_i - \mathbb{E}(X_i))(X_j - \mathbb{E}(X_j))^T)$$