R-C and R-L Circuits

Ariful Islam
Department of EEE

First-Order Circuits

- Introduction
- The Source Free RC Circuit
- The Source Free RL Circuit
- Step Response of an RC Circuit
- Step Response of an RL Circuit

First-Order Circuits: Introduction

- A first-order circuit can only contain one energy storage element (a capacitor or an inductor)
- The circuit will also contain resistance.
- So there are two types of first--order circuits:
 - > RC circuit
 - > RL circuit
- A first-order circuit is characterized by a first-order differential equation.

- A source-free circuit is one where all independent sources have been disconnected from the circuit after some switch action
- The voltages and currents in the circuit typically will have some transient response due to initial conditions (initial capacitor voltages and initial inductor currents)
- We will begin by analyzing source-free circuits as they are the simplest type. Later we will analyze circuits that also contain sources after the initial switch action

- A source free RC circuit occurs when its dc source is suddenly disconnected.
- The energy already stored in the capacitor is released to the resistors.

•Since the capacitor is **initially charged**, we can assume that at time t=0, the initial voltage is

$$v(0) = V_0$$

the energy stored:

$$w(0) = \frac{1}{2}CV_0^2$$

Applying KCL at the top node

, $i_C = C \frac{dv}{dt}$ and $i_R = v/R$. Thus,

$$C\frac{dv}{dt} + \frac{v}{R} = 0$$
$$\frac{dv}{dt} + \frac{v}{RC} = 0$$

$$\frac{dv}{dt} + \frac{v}{RC} = 0$$

- This is a first--order differential equation, since only the first derivative of v is involved.
- Rearranging the terms:

$$\int \frac{dv}{v} = -\frac{1}{RC} dt \quad \boxed{\blacksquare}$$

Integrating both sides:

$$\ln v = -\frac{t}{RC} + \ln A$$

• $\ln A$ is the integration constant. Thus

$$\ln \frac{v}{A} = -\frac{t}{RC}$$

Taking powers of e produces:

$$v(t) = Ae^{-t/RC}$$

• From the *initial conditions*: $v(0)=A=V_0$

$$v(t) = V_0 e^{-t/RC}$$

 The natural response of a circuit refers to the behavior (in terms of voltages and currents) of the circuit itself, with no external sources of excitation.

General form of the Differential Equations (**DE**) and the response for a **1st--order** source--free circuit:

In general, a first--order D.E. has the form:

$$\frac{dx}{dt} + \frac{1}{\tau}x(t) = 0 \quad \text{for} \quad t \ge 0$$

Solving this DE (as we did with the RC circuit) yields:

$$x(t) = x(0)e^{-\frac{t}{\tau}} \quad for \quad t \ge 0$$

• here τ = (Greek letter "Tau") = time constant(in seconds)

- Notes concerning τ :
- 1) For the Source--Free RC circuit the DE is: $\frac{dv}{dt} + \frac{1}{RC}v(t) = 0$ for $t \ge 0$
 - So, for an RC circuit: τ =RC
- 2) τ is related to the rate of exponential decay in a circuit as shown below.

3) It is typically easier to sketch a response in terms of multiples of τ than to be concerning with scaling of the graph.

Ex. 7.1: In Fig. 7.5, let $v_C(0) = 15$ V. Find v_C , v_x and i_x for t > 0.

Solution

Equivalent Circuit for the above circuit can be generated:

we can use voltage division to get v_x Finally,

$$v_x = \frac{12}{12 + 8}v = 0.6(15e^{-2.5t}) = 9e^{-2.5t}V$$
 $i_x = \frac{v_x}{12} = 0.75e^{-2.5t}A$

$$i_x = \frac{v_x}{12} = 0.75e^{-2.5t} A$$

Equivalent Resistance seen by a Capacitor

- For the RC circuit in the previous example, it was determined that τ= RC. But what value of R should be used in circuits with multiple resistors?
- In general, a first--order RC circuit has the following time constant:

$$\tau = R_{EQ}C$$

- where R_{EQ} is the Thevenin resistance seen by the capacitor.
- More specifically,

 $R_{EQ} = R$ (seen from the terminals of the capacitor for t>0 with independent sources killed.)

Ex.: Refer to the circuit below. Let $v_c(0) = 45$ V. Determine v_c , v_x and i_o for $t \ge 0$.

Solution

Consider R_{eq} seen from the capacitor.

$$R_{eq} = \frac{12 \times 6}{18} + 8 = 12 \square$$

- Time constant τ : $\tau = R C_{eq} = 12 \times \frac{1}{3} = 4s$
- Then: $v_C(t) = v_C(0)e^{\frac{-t}{4}} = 45e^{-0.25t} \text{ V}$

$$v_x(t) = \frac{4}{4+8}v_C(t) = \frac{1}{3}45e^{-0.25t} = 15e^{-0.25t} \text{ V}$$

$$i_o(t) = \frac{v_x(t) - v_C(t)}{8} = \frac{15e^{-0.25t} - 45e^{-0.25t}}{8} = -3.75e^{-0.25t} \text{ V}$$

Ex. 7.2: The switch in the circuit below has been closed for a long time, and it is opened at t=0. Find v(t) for $t\ge 0$. Calculate the initial energy stored in the capacitor.

Solution

• For t < 0 the switch is closed; the capacitor is an **open circuit to dc**, as represented in

$$v_C(t) = \frac{9}{9+3}(20) = 15 \text{ V}, \quad t < 0$$

 $v_C(0) = V_0 = 15 \text{ V}$

• For t>0 the switch is opened, and we have the RC circuit shown in Fig. (b).

$$R_{\rm eq} = 1 + 9 = 10 \,\Omega$$

- Time constant τ : $\tau = R_{\rm eq} C = 10 \times 20 \times 10^{-3} = 0.2 \; {\rm s}$
- Then: $v(t) = v_C(0)e^{-t/\tau} = 15e^{-t/0.2} = 15e^{-5t} V$

(b)

• The initial energy stored in the capacitor: $w_C(0)=\frac{1}{2}Cv_C^2(0)=\frac{1}{2}\times 20\times 10^{-3}\times 15^2=2.25~\mathrm{J}$

Ex.: If the switch in Fig. below opens at t=0, find v(t) for $t\geq 0$ and $w_c(0)$.

Solution

For t < 0 the switch is closed; the capacitor is an open circuit to dc as shown in Fig. (a).

$$v_c(t) = \frac{3}{3+6} 24 = 8 \text{ V} \quad \text{for} \quad t < 0$$

 $v_c(0) = V_0 = 8 \text{ V}$

• For t>0 the switch is opened, and we have the RC circuit shown in Fig. (b).

$$R_{eq} = \frac{12 \times 4}{16} = 3 \square$$

- $R_{eq} = \frac{12 \times 4}{16} = 3 \square$ $\tau = R_{eq} = 3 \times \frac{1}{6} = 0.5 s$ Time constant τ:
- $v(t) = v_c(0)e^{\frac{-t}{0.5}} = 8e^{-2t} \text{ V}$ • Then:
- The initial energy stored in the capacitor:

Ex.: The switch in the circuit shown had been closed for a long time and then opened at time t = 0.

- a) Determine an expression for v(t).
- b) Graph v(t) versus t.
- c) How long will it take for the capacitor to completely discharge?
- d) Determine the capacitor voltage at time t=100ms.
- e) Determine the time at which the capacitor voltage is 10V.

- A source--free RL circuit occurs when its dc source is suddenly disconnected.
- The **energy already stored** in the inductor is released to the resistors.

At time, t=0, the intuctor has **the initial** current:

$$i(0) = I_0$$

Then the energy stored:

$$w(0) = \frac{1}{2} L I_0^2$$

• We can apply **KVL** around the loop above :

$$v_L + v_R = 0$$

• By definition, $v_L = L \frac{di}{dt}$ and $v_R = Ri$. Thus,

$$L\frac{di}{dt} + Ri = 0$$
$$\frac{di}{dt} + \frac{R}{I}i = 0$$

- This is a *first-order differential equation*, since only the *first derivative* of *i* is involved.
- Rearranging the terms and integrating:

$$\int_{I_0}^{i(t)} \frac{di}{i} = -\int_0^t \frac{R}{L} dt$$

Then: $\ln i(t) - \ln I_0 = -\frac{Rt}{L} + 0$ $\ln \frac{i(t)}{L} = -\frac{Rt}{L}$

Taking powers of e produces:

$$i(t) = I_0 e^{-Rt/L}$$

Time constant for RL circuit becomes:

$$\tau = \frac{L}{R}$$

$$i(t) = I_0 e^{-t/\tau}$$

The **natural response** of the *RL* circuit is an exponential decay of the initial current.

General form of the Differential Equations (**DE**) and the response for a **1st--order** source--free circuit:

In general, a first--order D.E. has the form:

$$\frac{dx}{dt} + \frac{1}{\tau}x(t) = 0 \quad \text{for} \quad t \ge 0$$

Solving this DE (as we did with the RL circuit) yields:

$$x(t) = x(0)e^{-\frac{t}{\tau}} \quad \text{for} \quad t \ge 0$$

Then:
$$i(t) = i(0)e^{-\frac{t}{\tau}} = I_0 e^{-\frac{t}{\tau}}$$
 for $t \ge 0$

Where:
$$\tau = \frac{L}{R}$$

For the RL circuit, it was determined that $\tau = L/R$. As with the RC circuit, the value of R should actually be the equivalent (or Thevenin) resistance seen by the inductor.

In general, a first--order RL circuit has the following time constant:

$$\tau = \frac{L}{R_{EQ}}$$

where R_{EO} is the Thevenin resistance seen by the inductor.

More specifically,

 $R_{EQ} = R$ (seen from the terminals of the capacitor for t>0 with independent sources killed.)

Ex. 7.4: The switch in the circuit below has been closed for a long time. At t=0 the switch is opened. Calculate i(t) for t>0.

Solution

When t<0 the switch is closed, and the inductor acts as a short circuit to dc,

- $\begin{array}{c|c}
 i_1 & 2 \Omega & 4 \Omega \\
 \hline
 & & & & \\
 \hline
 & & & \\
 \hline
 & & & & \\
 \hline
 &$
- Using current division: $i(t) = \frac{12}{12 + 4}i_1 = 6 \text{ A}, \quad t < 0$
- Current through an inductor cannot change instantaneously,

$$i(0) = i(0^{-}) = 6 \text{ A}$$

Ex. 7.4: The switch in the circuit below has been closed for a long time. At t=0 the switch is opened. Calculate i(t) for t>0.

Solution

When t>0 the switch is open and the voltage source is disconnected. We now have the source-free RL circuit in Fig. (b).

$$R_{\rm eq} = (12 + 4) \parallel 16 = 8 \,\Omega$$

· The time constant is:

 $\tau = \frac{L}{R_{\rm eq}} = \frac{2}{8} = \frac{1}{4}$

Thus,

$$i(t) = i(0)e^{-t/\tau} = 6e^{-4t} A$$

Ex.: Determine an expression for i(t). Sketch i(t) versus t.

Step Response (DC forcing functions)

- Consider circuits having DC forcing functions for t > 0 (i.e., circuits that have independent DC sources for t > 0).
- The general solution to a differential equation has two parts:
- $x(t) = x_h + x_p$ = homogeneous solution + particular solution
- or
- $x(t) = x_n + x_f = \text{natural solution} + \text{forced solution}$

```
Complete response = natural response + forced response independent source
```

- x_n is due to the initial conditions in the circuit
- and x_f is due to the forcing functions (independent voltage and current sources for t > 0).
- x_f in general take on the "form" of the forcing functions,
- So DC sources imply that the forced response function will be a constant(DC),
- Sinusoidal sources imply that the forced response will be sinusoidal, etc.

Step Response (DC forcing functions)

- Since we are only considering DC forcing functions in this chapter, we assume that : $x_f = B$ (constant).
- Recall that a 1st-order source--free circuit had the form $Ae^{-t/\tau}$. Note that there was a natural response only since there were no forcing functions (sources) for t > 0. So the natural response was

$$x_n = Ae^{-t/\tau}$$
 for $t > 0$

• The complete response for 1st--order circuit with DC forcing functions therefore will have the form: $x(t) = x_f + x_n$

$$x(t) = B + Ae^{-t/\tau}$$

• The "Shortcut Method": An easy way to find the constants B and A is to evaluate x(t) at 2 points. Two convenient points at t=0 and $t=\infty$ since the circuit is under dc conditions at these two points. This approach is sometimes called the "shortcut method."

- Step Response (DC forcing functions)
- The "Shortcut Method":

So,
$$x(0) = B + Ae^0 = B + A$$

And $x(\infty) = B + Ae^{-\infty} = B$

Complete response yields the following expression:

$$x(t) = x(\infty) + [x(0) - x(\infty)]e^{-t/\tau}$$

- The Shortcut Method-- Procedure: The shortcut method will be the key method used to analyze 1st--order circuit with DC forcing functions:
- 1. Analyze the circuit at $t = \theta$ -: Find $x(\theta -) = x(\theta +)$
- 2. Analyze the circuit at $t = \infty$: Find $x(\infty)$
- 3. Find $\tau = R_{EQ}C$ or $\tau = L/R_{EQ}$
- 4. Assume that x(t) has the form $x(t) = x(\infty) + [x(0) x(\infty)] e^{-t/\tau}$ using x(0) and $x(\infty)$

Step Response (DC forcing functions)

• Notes: The "shortcut method" also works for source--free circuits, but $x(\infty) = B=0$ since the circuit is dead at $t = \infty$. If variables other than vC or iL are needed, it is generally easiest to solve for vC or iL first and then use the result to find the desired variable.

Ex. 7.10: The switch in Fig. Below has been in position A for a long time. At t=0 the switch moves to B. Determine v(t) for t>0 and calculate its value at t=1 s and 4 s. $3 \text{ k}\Omega$

Solution

• Voltage across the capacitor just before t=0. Capacitor is open circuit under dc conditions:

$$v(0^-) = \frac{5}{5+3}(24) = 15 \text{ V}$$

- Capacitor voltage cannot change instantaneously: $v(0) = v(0^-) = v(0^+) = 15 \, \mathrm{V}$
- For t>0 (switch to B). Thevenin Resistance connected to the capacitor: $R_{
 m Th}=4~{
 m k}\Omega_{
 m c}$
- Time constant: $\tau = R_{\rm Th}C = 4 \times 10^3 \times 0.5 \times 10^{-3} = 2 \, {\rm s}$

Ex. 7.10: The switch in Fig. below has been in position A for a long time. At t=0 the switch moves to B. Determine v(t) for t>0 and calculate its value at t 1 s and 4 s. $3 \text{ k}\Omega$

Solution

• Since the capacitor acts like an open circuit to dc at steady state, $v(\infty) = 30 \text{ V}$. Thus,

$$v(t) = v(\infty) + [v(0) - v(\infty)]e^{-t/\tau}$$

$$= 30 + (15 - 30)e^{-t/2} = (30 - 15e^{-0.5t}) \text{ V}$$
At $t = 1$,
$$v(1) = 30 - 15e^{-0.5} = 20.9 \text{ V}$$
At $t = 4$,
$$v(4) = 30 - 15e^{-2} = 27.97 \text{ V}$$

Ex. 1: Find v(t) and i(t) for $t \ge 0$.

Ex. 2: Find v(t) and i(t) for $t \ge 0$.

