

MODELISATION DES SYSTEMES ASSERVIS

TP 6

MODELISATION FREQUENTIELLE DES SYSTEMES ASSERVIS

Compétences:

- Analyser : Caractériser les écarts
- **Modéliser** : Modéliser la structure de l'asservissement du système
- **Résoudre** : Proposer une démarche de résolution et mettre en <u>oeuvre</u> la résolution analytique et numérique : stabilité, précision et rapidité des SLCI
- **Expérimenter** : Proposer et justifier un protocole expérimental

1 Presentation et proposition d'organisation de TP

1.1 Problématique

Problématique:

Modéliser le comportement fréquentiel d'un système en boucle ouverte.

1.2 Supports étudiés

Dans ce TP, nous pourrons étudiés les systèmes suivants :

- Nacelle de drone
- ControlX
- Bras beta
- Cheville du robot NAO

1.3 Organisation du TP

- Ce TP est à réaliser en îlot :
 - Coordinateur du groupe : Utiliser la synthèse du TP5 pour choisir les conditions de simulation et d'expérimentation.
 Restituer les résultats sous la forme d'un poster.
 - o Modélisateur : mettre en œuvre les résultats à l'aide du fichier comparer_bf_bo_exp_simu_eleve.slx
 - o Expérimentateur/simulateur : affiner le modèle en boucle ouverte du système en fréquentielle

2 MODELISATION EN BOUCLE FERMEE

Modélisation

Expérimentation

Activité 1. Modélisation de l'asservissement

- Reprendre les modèles élaborés par le groupe précédent en boucle ouverte et vérifier les performances en boucle fermée
- On pourra utiliser le fichier comparer_bf_bo_exp_simu.slx

Activité 2. Caractérisation en boucle fermée

- Pour la nacelle de drone : se connecter avec .\labo_psi et mot de passe : labo_psi
- Mettre en œuvre les systèmes en **boucle fermée** en temporel avec uniquement un PID avec une action proportionnelle **Ki=Kd=0**.

Système	Cheville NAO	Nacelle de drone	Bras béta	ControlX
Valeur de Kp	200	1000	1 (par défaut)	1
Vidéo de mise	(m) \ 2.6.4(m)	meses in	FETDHENIA 25	III - 264III
en œuvre		国際政策国		
expérimentale	1291 J. 2364		366 236 3 670	344(1.446s
	Karasilanskii		38949 3267	
	43345067		3424 (74282	\$55X^XXX

- Vérifier les performances : temps de réponse à 5%, stabilité (dépassement), précision
- Exporter les données au format excel sous le nom essai_bf.xlsx.

3 MODELISATION EN BOUCLE OUVERTE

Activité 3. Modélisation de l'asservissement

- Utiliser le fichier comparer_bf_bo_exp_simu_eleve.slx disponible sur le site de la classe.
- Faire une résolution fréquentielle en boucle ouverte avec le modèle initial
- Tracer le diagramme de Bode et remplir le tableau **BODE_Eleve.xlsx** partie simulation

Expérimentation

Résolution

Activité 4. Caractérisation en boucle ouverte

- Pour la nacelle de drone : se connecter avec .\labo_psi et mot de passe : labo_psi
- Mettre en œuvre les systèmes en boucle ouverte en fréquentiel avec uniquement un PID avec une action proportionnelle Ki=Kd=0.

Système	Cheville NAO	Nacelle de drone	Bras béta	ControlX
Valeur de Kp	200	1000	1 (par défaut)	1
Vidéo de mise en œuvre expérimentale				

- Obtenir le comportement fréquentiel en boucle ouverte en sollicitant le système avec différentes entrées sinusoïdales.
- remplir le tableau BODE_Eleve.xlsx partie expérimentation

Activité 5. Comparer les modèles de comportement en BO et en BF en fréquentiel

- Proposer un modèle de comportement pour la boucle ouverte en utilisant le résultat de l'activité 4.
- Ajuster un éventuel retard en boucle ouverte pour faire coller les diagrammes de Bode expérimental et simulés.

4 VALIDATION EN BOUCLE FERME

Activité 6. Validation en BF

Sésolution Synthèse

- Vérifier le comportement en Boucle Fermée en simulation et en expérimentation avec le fichier essai_bf.xlsx.
- Faire varier le gain proportionnel du correcteur.
- Conclure.