# JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH

## PŘÍRODOVĚDECKÁ FAKULTA



## FYZIKÁLNÍ PRAKTIKUM IV

Úloha: Comptonův rozptyl

Datum: 11.10.2023

Provedl(a): Jitka Vysloužilová

Obor: Biofyzika Hodnocení:

## 1 Úkoly

- a) Ukažte, jak se mění energie gama záření v závislosti na úhlu rozptylu.
- b) Vykreslete graf převrácených hodnot energií  $\frac{1}{E'}$  jako funkce  $(1 \cos \theta)$ .
- c) Určete původní energii gama záření E a klidovou hmotnost elektronu  $m_0$ . Srovnejte výsledky se známými hodnotami.

### 2 Seznam pomůcek

Zdroj gama záření LABKIT-SR-Cs137, detektor Osprey, počítač s programem ProSpect, Radiagem 2000, podložka s úhloměrem, ocelový kůl

#### 3 Teorie

Albert Einstein popsal fotoelektrický jev pomocí předpokladu, že kvantum elektromagnetického záření se může chovat jako částice. Tento předpoklad byl poprvé potvrzen americkým fyzikem Arthurem Comptonem v roce 1922 [1].

Compton nechal paprsky rentgenového záření o známé vlnové délce dopadat na uhlíkový terč. Následně měřil vlnové délky a intenzity rozptýlených paprsků pod různými úhly. Rozptýlené paprsky vykazovaly dva výrazné peaky v intenzitě. Jeden v oblasti původní vlnové délky  $\lambda$  a druhý posunutý do hodnoty  $\lambda'$  [2].

$$\Delta \lambda = \lambda' - \lambda \tag{1}$$

Rozdíl  $\Delta\lambda$  definovaný v rovnici 1 nazýváme Comptonův posuv. Jeho hodnota je závislá na úhlu, pod kterým záření dopadá na terčík [2].

Matematicky lze tento jev popsat vztahem

$$\lambda' - \lambda = \frac{h}{m_0 c} \left( 1 - \cos \vartheta \right), \tag{2}$$

kde h je Planckova konstanta,  $m_0$  je hmotnost elektronu a  $\vartheta$  je úhel rozptylu.

Nabízí se otázka, proč se v měřeních rozptýlených paprsků stále objevuje peak v oblasti vlnové délky dopadajícího záření. Pokud bychom uvažovali rozptyl fotonu na volném elektronu, dojde ke ztrátě energie a tím pádem k poklesu vlnové délky. Ovšem v terčíku jsou některé elektrony pevně navázány, a proto nedochází k tomuto posunu vlnové délky [3].

### 4 Postup měření

- 1. Radiagram 2000 byl zapnut a umístěn na levý okraj stolu tak, aby zaznamenával největší ionizující záření.
- 2. Do středu úhloměru na podložce byl umístěn ocelový kůl.
- 3. Na podložku s úhloměrem byl do polohy 0° umístěn detektor Osprey.
- 4. Detektor byl propojen s počítačem a připojen k softwaru ProSpect.
- 5. Multikanálový analyzátor byl nastaven podle pokynů poskytnutých vedoucím praktika.
- 6. Na podložku do polohy 180° byl umístěn zdroj záření.
- 7. Ze zdroje byl odejmut bezpečnostní uzávěr a detektorem bylo snímáno záření po dobu 10 minut.
- 8. Po skončení měření byl zdroj překryt bezpečnostním uzávěrem.
- 9. Výsledný graf byl přeškálován podle známých hodnot energetických hladin.
- 10. Naměřené hodnoty byly uloženy do souboru.

- 11. Detektor byl posunut o 10° a měření bylo zopakováno.
- 12. Měření bylo opakováno vždy s posunem o 10° až do hodnoty 90°

## 5 Naměřené hodnoty

Naměřené hodnoty byly vyneseny do grafů.



Graf 1: Závislost počtu detekovaných gama kvant na energii pro úhel  $\vartheta=0^\circ$ 



Graf 3: Závislost počtu detekovaných gama kvant na energii pro úhel  $\vartheta=20^\circ$ 



Graf 5: Závislost počtu detekovaných gama kvant na energii pro úhel  $\vartheta=40^\circ$ 



Graf 2: Závislost počtu detekovaných gama kvant na energii pro úhel  $\vartheta=10^\circ$ 



Graf 4: Závislost počtu detekovaných gama kvant na energii pro úhel  $\vartheta=30^\circ$ 



Graf 6: Závislost počtu detekovaných gama kvantna energii pro úhel  $\vartheta=50^\circ$ 



Graf 7: Závislost počtu detekovaných gama kvantna energii pro úhel  $\vartheta=60^\circ$ 



Graf 9: Závislost počtu detekovaných gama kvant na energii pro úhel  $\vartheta = 80^{\circ}$ 



Graf 8: Závislost počtu detekovaných gama kvant na energii pro úhel  $\vartheta = 70^{\circ}$ 



Graf 10: Závislost počtu detekovaných gama kvant na energii pro úhel  $\vartheta = 90^{\circ}$ 

### 6 Zpracování výsledků

Následující výpočty byly provedeny pro všechny rozptylové úhly. Jako modelový příklad jsou použity hodnoty neměřené pro úhel 40°.

Z naměřených hodnot byl sestrojen graf na obrázku 5. Na základě tohoto grafu byla určena oblast peaku odražených kvant. Tyto hodnoty byly fitovány parabolou danou předpisem

$$y = ax^2 + bx + c. (3)$$



Graf 11: Oblast vrcholu peaku s kvadratickým fitem.

Z koeficientů byl určen vrchol paraboly pomocí vztahu

$$V_x = -\frac{a}{2b},\tag{4}$$

kde  $V_x$  je souřadnice x vrcholu paraboly, a a b jsou koeficienty z obecného předpisu kvadratické funkce z rovnice 3. Poloha vrcholu paraboly je zároveň hodnota energie fotonu rozptýleného na tyči.

Byla určena standardní chyba koeficientů a a b kvadratické regrese. Dále při výpočtu polohy peaku byla chyba určena pomocí vztahu pro chybu nepřímo měřené veličiny

$$\delta V_x = \sqrt{\left(\frac{\partial V_x}{\partial a} \cdot \delta a\right)^2 + \left(\frac{\partial V_x}{\partial b} \cdot \delta b\right)^2} \tag{5}$$

Výsledné hodnoty pro všechny měřené úhly i s chybou měření byly zaznamenány do tabulky 1 a vyneseny do grafu 12.

| <b>∂</b><br>[°] | E'<br>[keV] | δE'<br>[keV] |
|-----------------|-------------|--------------|
| 0               | 662,32      | 32,56805352  |
| 10              | 658,42      | 25,6568451   |
| 20              | 641,42      | 108,2016372  |
| 30              | 567,71      | 99,31402783  |
| 40              | 502,37      | 38,15253059  |
| 50              | 441,23      | 28,52308892  |
| 60              | 395,77      | 18,12199244  |
| 70              | 352,97      | 60,27813533  |
| 80              | 320,02      | 25,51297723  |
| 90              | 290,35      | 16,97527187  |

Tabulka 1: Hodnoty energií rozptýlených fotonů.



Graf 12: Závislost energie rozptýleného fotonu na rozptylovém úhlu.

Z hodnotE'byla vypočítána převrácená hodnota  $\frac{1}{E'}.$  Byla určena chyba měření podle rovnice

$$\delta\left(\frac{1}{E'}\right) = \frac{\partial\left(\frac{1}{E'}\right)}{\partial E'} \cdot \delta E'. \tag{6}$$

Byly vypočítány hodnoty  $\frac{1}{E'}$  na  $(1-\cos\vartheta)$ . Tyto hodnoty byly zaznamenány do tabulky 2. Do grafu 13 byla vynesena závislost  $\frac{1}{E'}$  na  $(1-\cos\vartheta)$ .

| 1/E'   | δ(1/E') | 1-cos(ϑ) |
|--------|---------|----------|
| [keV]  | [keV]   | [-]      |
| 0,0015 | 0,0001  | 0,00     |
| 0,0015 | 0,0001  | 0,02     |
| 0,0016 | 0,0003  | 0,06     |
| 0,0018 | 0,0003  | 0,13     |
| 0,0020 | 0,0002  | 0,23     |
| 0,0023 | 0,0001  | 0,36     |
| 0,0025 | 0,0001  | 0,50     |
| 0,0028 | 0,0005  | 0,66     |
| 0,0031 | 0,0002  | 0,83     |
| 0,0034 | 0,0002  | 1,00     |

Tabulka 2: Převrácené hodnoty energií, jejich chyby a hodnoty  $(1 - \cos \vartheta)$ 



Graf 13: Závislost převrácené hodnoty energie rozptýleného fotonu na funkci  $\frac{1}{E'}$  na  $(1-\cos\vartheta)$ 

Byla provedena lineární regrese hodnot z tabulky 2 přímkou. Přímka je definována předpisem

$$y = kx + q. (7)$$

Z rovnic 7 a 2 a vztahu mezi energií a vlnovou délkou  $E=\frac{h}{\lambda}$  vyplývá, že pro parametry k a q platí:

$$k = \frac{1}{m_0 c^2} \tag{8}$$

$$q = \frac{1}{E}. (9)$$

Ze vztahu 8 byla určena klidová hmotnost elektronu  $m_0$  jako

$$m_0 = (504, 86 \pm 9, 12) \text{ keV/c}^2.$$
 (10)

Ze vztahu 9 byla určena původní energie gama záření jako

$$E = (665, 00 \pm 8, 02) \text{ keV}.$$
 (11)

#### 7 Diskuse

V rámci úlohy byl vykreslen graf energií rozptylových peaků jako funkce úhlů. Závislost je klesající, ovšem ne lineárně. Pro úhly 20° a 30° vznikla v porovnání s ostatním úhly velká chyba měření. Je to dáno tím, že peaky v oblasti původní a rozptylové energetické hladiny se výrazně překrývají a proto je poloha peaku určena méně přesně. Je to patrné na grafech 3 a 4. Pro úhly 0° a 10° se peaky překrývaly natolik, že je nebylo možné rozeznat (viz grafy 1 a 2).

Z těchto chyb vznikly větší nepřesnosti při určování ealších nepřímo měřených veličin, jako je  $\frac{1}{E'}$ .

Změřená hodnota klidové hmotnosti elektronu  $m_0 = (504, 86 \pm 9, 12) \text{ keV/c}^2$  odpovídá v rámci chyby měření tabulkové hodnotě, tedy 510, 998 keV/c². [4]

Změřená původní energie gama záření  $E=(665,00\pm 8,02)$  keV Je v rámci chyby měření odpovídající tabulkové hodnotě 661,49 keV. [5]

Redukovat chyby měření by bylo možné delším měřením či lepším odstíněním přirozeného gama záření. Také software, který zvládne oddělit dublet v grafech by zmenšil chybu měření.

#### 8 Závěr

Energie gama záření se zvětšujícím se úhlem klesá (viz graf 12).

Byů vykreslen graf převrácených hodnot energi<br/>í $\frac{1}{E'}$ jako funkce  $(1-\cos\vartheta)$  (viz graf 13).

Byla určena klidová hmotnost elektronu  $m_0$  jako

$$m_0 = (504, 86 \pm 9, 12) \text{ keV/c}^2.$$

Byla určena původní energie gama záření jako

$$E = (665, 00 \pm 8, 02) \text{ keV}.$$

#### Reference

- [1] REICHL, Jaroslav a Martin VŠETIČKA. Foton. Encyklopedie fyziky.[online]. [cit. 2023-10-18]. Dostupné z http://fyzika.jreichl.com/main.article/view/726-foton
- [2] HALLIDAY, David; RESNICK, Robert a WALKER, Jearl. Fyzika. Druhé přepracované vydání. Přeložil Miroslav ČERNÝ. Překlady vysokoškolských učebnic. V Brně: Vysoké učení technické v Brně - Nakladatelství VUTIOM, [2013], s. 1070-1071. ISBN 978-80-214-4123-1.
- [3] BEISER, Arthur a BRDIČKA, Miroslav. Úvod do moderní fyziky. Vydání překladu 2. Přeložil Josef ČADA. Praha: Academia, 1978, s. 85.
- [4] Fundamental Physical Constants; 2018 CODATA recommended values. NIST, květen 2019. [online]. [cit. 2023-10-18]. Dostupné z https://physics.nist.gov/cgi-bin/cuu/Value?me|search\_for=atomnuc!
- [5] TAYLOR, H.W., J. SVOBODA, G.H.R. HENRY a R.W. WEIN. Post-Chernobyl 134Cs and 137Cs Levels at Some Localities in Northern Canada. Arctic. 1988, roč. 41, NO.4, s. 293-296.