## CS411 Database Systems

04: Relational Algebra

## Why Do We Learn This?

## Querying the Database

• Goal: specify what we want from our database

UIUC-employee (SSN, name, address, salary)

IRS-IL (SSN, city, year-of-filed-return)

• Find all the employees who earn more than \$50,000 and pay taxes in Champaign-Urbana.

## Querying the Database

- Could write in C++/Java, but bad idea
- Instead use *high-level query languages*:
  - Theoretical: Relational Algebra, Datalog
  - Practical: SQL
  - Relational algebra: a basic set of operations on relations that provide the basic principles.
- Worry free

## Motivation by analogy: The Stack

- To use the "stack" data structure in my program, I need to know
  - what a stack looks like
  - what (useful) operations I can perform on a stack
    - PUSH and POP
- Next, I look for an implementation of stack
  - browse the Web
  - find many of them
  - choose one, say LEDA

## Motivation: The Stack (cont.)

- LEDA already implements PUSH and POP
- It also gives me a simple language L, in which to define a stack and call PUSH and POP
  - $-S = init\_stack(int);$
  - S.push(3); S.push(5);
  - int x = S.pop();
- Can also define more complex operations
  - $-T = init\_stack(int);$
  - T.push(S.pop());

## Motivation: The Stack (cont.)

- To summarize, I know
  - definition of stack
  - its operations (PUSH, POP): that is, a stack algebra
  - an implementation called LEDA, which tells
     me how to call PUSH and POP in a language L
  - I can use this implementation to manipulate stacks
  - LEDA hides the implementation details
  - LEDA optimizes implementation of PUSH and POP

#### Now Contrast It with Rel. Databases

• To summarize, I know

Defn. of relations

relational algebra

- definition of stack
- its operations (PUSH, POP): that is, a stack algebra
- an implementation called LEDA, which tells language
   me how to call PUSH and POP in a language L
- I can use these implementations to manipulate stacks
- LEDA hides the implementation details
- LEDA optimizes implementation of PUSH and POP

operation and query optimization

**SQL** 

## What is an "Algebra"?

- Mathematical system consisting of:
  - Operands --- variables or values from which new values can be constructed.
  - Operators --- symbols denoting procedures that construct new values from given values.

### Q: Example algebra?

• Arithmetic algebra. Linear algebra.

• What are operands?

• What are operators?

## What is Relational Algebra?

- An algebra whose operands are relations or variables that represent relations.
- Operators are designed to do common things that we need to do with relations in a database.
- The result is an algebra that can be used as a *query language* for relations.

## Relational Algebra at a Glance

- Operators: relations as input, new relation as output
- Five basic RA operations:
  - Basic Set Operations
    - union, difference (no intersection, no complement)
  - Selection: σ
  - Projection:  $\pi$
  - Cartesian Product: X
- When our relations have attribute names:
  - Renaming: ρ
- Derived operations:
  - Intersection, complement
  - "Join"s (natural, equi-join, theta join)

## Basic RA Operations

## **Set Operations**

- Union, difference
- Binary operations

## Set Operations: Union

- Union: all tuples in R1 or R2
- Notation: R1 U R2
- R1, R2 must have the same schema
- R1 U R2 has the same schema as R1, R2
- Example:
  - ActiveEmployees U RetiredEmployees

## Set Operations: Difference

- Difference: all tuples in R1 and not in R2
- Notation: R1 R2
- R1, R2 must have the same schema
- R1 R2 has the same schema as R1, R2
- Example
  - AllEmployees RetiredEmployees

#### Selection

- Returns all tuples which satisfy a condition
- Notation:  $\sigma_{c}(R)$
- c is a condition (uses =, <, >, and, or, not)
- Output schema: same as input schema
- Find all employees with salary more than \$40,000:
  - $-\sigma_{Salary > 40000}$  (Employee)

#### **Selection Example**

#### **Employee**

| SSN      | Name  | DepartmentID | Salary |
|----------|-------|--------------|--------|
| 99999999 | John  | 1            | 30,000 |
| 77777777 | Tony  | 1            | 32,000 |
| 88888888 | Alice | 2            | 45,000 |

Find all employees with salary more than \$40,000.  $\sigma_{Salary > 40000}$  (Employee)

| SSN      | Name  | DepartmentID | Salary |
|----------|-------|--------------|--------|
| 88888888 | Alice | 2            | 45,000 |

#### **Selection Example**

#### **Employee**

| SSN      | Name  | DepartmentID | Salary |
|----------|-------|--------------|--------|
| 99999999 | John  | 1            | 30,000 |
| 77777777 | Tony  | 1            | 32,000 |
| 88888888 | Alice | 2            | 45,000 |

# salary more than \$30,000 and department id = 2 $\sigma_{Salary > 40000}$ (Employee)

| SSN      | Name  | DepartmentID | Salary |
|----------|-------|--------------|--------|
| 88888888 | Alice | 2            | 45,000 |

## Projection

- Unary operation: returns certain columns
- Eliminates duplicate tuples!
- Notation:  $\Pi_{A1,...,An}(R)$
- Input schema R(B1,...,Bm)
- Require:  $\{A1, ..., An\} \subseteq \{B1, ..., Bm\}$
- Output schema S(A1,...,An)
- Example: project social-security number and names:
  - $\Pi_{SSN, Name}$  (Employee)

#### **Projection Example**

#### **Employee**

| SSN      | Name  | DepartmentID | Salary |
|----------|-------|--------------|--------|
| 99999999 | John  | 1            | 30,000 |
| 77777777 | Tony  | 1            | 32,000 |
| 88888888 | Alice | 2            | 45,000 |

## $\Pi_{SSN, Name}$ (Employee)

| SSN      | Name  |
|----------|-------|
| 99999999 | John  |
| 77777777 | Tony  |
| 88888888 | Alice |

## Q: Comparing projection and selection?

• Think of relation as a table.

• How are they similar?

• How are they different?

• Why do you need both?

#### Cartesian Product

- Each tuple in *R1* with each tuple in *R2*
- Notation: R1 x R2
- Input schemas R1(A1,...,An), R2(B1,...,Bm)
- Condition:  $\{A1, ..., An\} \cap \{B1, ...Bm\} = \Phi$
- Output schema is *S*(*A1*, ..., *An*, *B1*, ..., *Bm*)
- Notation: R1 x R2
- Example: Employee x Dependents
- Very rare in practice; but joins are very common

#### **Cartesian Product Example**

**Employee** 

| Name | SSN      |
|------|----------|
| John | 99999999 |
| Tony | 77777777 |

**Dependents** 

| EmployeeSSN | Dname |
|-------------|-------|
| 99999999    | Emily |
| 77777777    | Joe   |

**Employee x Dependents** 

| Name | SSN       | EmployeeSSN | Dname |
|------|-----------|-------------|-------|
| John | 99999999  | 99999999    | Emily |
| John | 999999999 | 77777777    | Joe   |
| Tony | 77777777  | 99999999    | Emily |
| Tony | 77777777  | 77777777    | Joe   |

#### Cartesian Product

- Each tuple in *R1* with each tuple in *R2*
- Notation: R1 x R2
- Input schemas R1(A1,...,An), R2(B1,...,Bm)
- Condition:  $\{A1, ..., An\} \cap \{B1, ...Bm\} = \Phi$
- Output schema is *S*(*A1*, ..., *An*, *B1*, ..., *Bm*)
- Notation: R1 x R2
- Example: Employee x Dependents
- Very rare in practice; but joins are very common

#### Cartesian Product

- Each tuple in *R1* with each tuple in *R2*
- Notation: R1 x R2
- Input schemas R1(A1,...,An), R2(B1,...,Bm)
- Condition:  $\{A1,...,An\} \cap \{B1,...Bm\} = \Phi$
- Output schema is *S*(*A1*, ..., *An*, *B1*, ..., *Bm*)
- Notation: R1 x R2
- Example: Employee x Dependents
- Very rare in practice; but joins are very common

## Renaming

- Does not change the relational instance
- Changes the relational schema only
- Notation:  $\rho_{S(B1,...,Bn)}(R)$
- Input schema: R(A1, ..., An)
- Output schema: *S*(*B1*, ..., *Bn*)
- Example:

 $\rho_{RenamedEmployee(LastName, SocSocNo)}$  (Employee)

#### **Renaming Example**

#### **Employee**

| Name | SSN      |
|------|----------|
| John | 99999999 |
| Tony | 77777777 |

## $\rho_{RenamedEmpl(LastName, SocSocNo)}$ (Employee)

| LastName | SocSocNo |
|----------|----------|
| John     | 99999999 |
| Tony     | 77777777 |

## Derived RA Operations

- 1) Intersection
- 2) Most importantly: Join

## Set Operations: Intersection

- Difference: all tuples both in R1 and in R2
- Notation:  $R1 \cap R2$
- R1, R2 must have the same schema
- $R1 \cap R2$  has the same schema as R1, R2
- Example
   UnionizedEmployees ∩ RetiredEmployees
- Intersection is derived:

$$R1 \cap R2 = R1 - (R1 - R2)$$

## Joins

- Theta join
- Natural join
- Equi-join
- etc.

#### Theta Join

- A cartesian product followed by a selection
- Notation:  $R1 \bowtie_{\theta} R2$  where  $\theta$  is a condition
- Input schemas: R1(A1,...,An), R2(B1,...,Bm)
- Output schema: S(A1,...,An,B1,...,Bm)
- Derived operator:

$$R1 \bowtie_{\theta} R2 = \sigma_{\theta} (R1 \times R2)$$

• Note that in output schema, if an attribute of R1 has the same name as an attribute of R2, we need renaming, as in Cartesian Product.

#### Theta-Join

- $R3 := R1 \text{ JOIN}_C R2$ 
  - Take the product R1 x R2.
  - Then apply SELECT<sub>C</sub> to the result.
- As for SELECT, C can be any boolean-valued condition.
  - Historic versions of this operator allowed only A theta
     B, where theta was =, <, etc.; hence the name "theta-join."</li>

## Example

| Sells( | bar,  | beer,  | price |
|--------|-------|--------|-------|
|        | Joe's | Bud    | 2.50  |
|        | Joe's | Miller | 2.75  |
|        | Sue's | Bud    | 2.50  |
|        | Sue's | Coors  | 3.00  |

Bars( name, addr Joe's Maple St. Sue's River Rd.

BarInfo := Sells JOIN Sells.bar = Bars.name Bars

BarInfo(

| bar,  | beer,  | price, | name, | addr      |
|-------|--------|--------|-------|-----------|
| Joe's | Bud    | 2.50   | Joe's | Maple St. |
| Joe's | Miller | 2.75   | Joe's | Maple St. |
| Sue's | Bud    | 2.50   | Sue's | River Rd. |
| Sue's | Coors  | 3.00   | Sue's | River Rd. |

#### Natural Join

- Notation:  $R1 \bowtie R2$
- Input Schema: *R1(A1, ..., An), R2(B1, ..., Bm)*
- Output Schema: *S*(*C1*, ..., *Cp*)
  - Where  $\{C1, ..., Cp\} = \{A1, ..., An\} \ U \{B1, ..., Bm\}$
- Meaning: combine all pairs of tuples in R1 and R2 that agree on the attributes:
  - $-\{A1,...,An\} \cap \{B1,...,Bm\}$  (called the join attributes)
- Equivalent to a cross product followed by selection
- Example **Employee**  $\bowtie$  **Dependents**

#### **Natural Join Example**

**Employee** 

| Name | SSN      |
|------|----------|
| John | 99999999 |
| Tony | 77777777 |

**Dependents** 

| SSN      | Dname |
|----------|-------|
| 99999999 | Emily |
| 77777777 | Joe   |

#### **Employee** $\bowtie$ **Dependents** =

 $\Pi_{\text{Name, SSN, Dname}}(\sigma_{\text{SSN=SSN2}}(\text{Employee x }\rho_{\text{SSN2, Dname}}(\text{Dependents}))$ 

| Name | SSN      | Dname |
|------|----------|-------|
| John | 99999999 | Emily |
| Tony | 77777777 | Joe   |

#### Natural Join

$$\bullet R = \begin{array}{c|ccc} A & B \\ \hline X & Y \\ \hline X & Z \\ \hline Y & Z \\ \hline Z & V \\ \end{array}$$

$$S = \begin{array}{c|cc} B & C \\ \hline Z & U \\ \hline V & W \\ \hline Z & V \\ \end{array}$$

| • | R > | $\triangleleft S$ | = |
|---|-----|-------------------|---|
|---|-----|-------------------|---|

| A | В | С |
|---|---|---|
| X | Z | U |
| X | Z | V |
| Y | Z | U |
| Y | Z | V |
| Z | V | W |

#### Natural Join

• Given the schemas R(A, B, C, D), S(A, C, E), what is the schema of  $R \bowtie S$ ?

• Given R(A, B, C), S(D, E), what is  $R \bowtie S$ ?

• Given R(A, B), S(A, B), what is  $R \bowtie S$ ?

## Equi-join

• Most frequently used in practice:

$$R1 \bowtie_{A=B} R2$$

• A lot of research on how to do it efficiently

## Summary of Relational Algebra

• Basic primitives:

```
\begin{array}{c|c} E ::= & R \\ & \boldsymbol{O}_{C}(E) \\ & \boldsymbol{\pi}_{A1, A2, ..., An} (E) \\ & | E1 \times E2 \\ & | E1 \cup E2 \\ & | \boldsymbol{\rho}_{S(A1, A2, ..., An)}(E) \end{array}
```

• Abbreviations:

#### Relational Algebra

- Six basic operators, many derived
- Combine operators in order to construct queries: relational algebra expressions, usually shown as trees

## **Building Complex Expressions**

- Algebras allow us to express sequences of operations in a natural way.
- Example
  - in arithmetic algebra: (x+4)\*(y-3)
  - in stack "algebra": T.push(S.pop())
- Relational algebra allows the same.
- Three notations:
  - 1. Sequences of assignment statements.
  - 2. Expressions with several operators.
  - 3. Expression trees.

#### Sequences of Assignments

- Create temporary relation names.
- Renaming can be implied by giving relations a list of attributes.
- Example:  $R3 := R1 \text{ JOIN}_C R2$  can be written:

 $R4 := R1 \times R2$ 

 $R3 := SELECT_C(R4)$ 

#### Expressions with Several Operators

- Example: the theta-join R3 := R1 JOIN<sub>C</sub> R2 can be written: R3 := SELECT<sub>C</sub> (R1 x R2)
- Precedence of relational operators:
  - 1. Unary operators --- select, project, rename --- have highest precedence, bind first.
  - 2. Then come products and joins.
  - 3. Then intersection.
  - 4. Finally, union and set difference bind last.
- But you can always insert parentheses to force the order you desire.

#### **Expression Trees**

• Leaves are operands (relations).

• Interior nodes are operators, applied to their child or children.

#### Example

• Given Bars(name, addr), Sells(bar, beer, price), find the names of all the bars that are either on Maple St. or sell Bud for less than \$3.

#### As a Tree:



#### Q: How to do this?

• Using Sells(bar, beer, price), find the bars that sell two different beers at the same price.

#### More Queries

```
Product (pid, name, price, category, maker-cid)
Purchase (buyer-ssn, salesperson-ssn, store, pid)
Company (cid, name, stock price, country)
Person(ssn, name, phone number, city)
```

Find phone numbers of people who bought gizmos from Fred.

# **Expression Tree**



# Operations on Bags (and why we care)

- Union:  $\{a,b,b,c\}$  U  $\{a,b,b,b,e,f,f\}$  =  $\{a,a,b,b,b,b,c,e,f,f\}$ 
  - add the number of occurrences
- Difference:  $\{a,b,b,c,c\} \{b,c,c,c,d\} = \{a,b,b\}$ 
  - subtract the number of occurrences
- Intersection:  $\{a,b,b,c,c,c\}$   $\{b,b,c,c,c,c,d\} = \{b,b,c,c\}$ 
  - minimum of the two numbers of occurrences
- Selection: preserve the number of occurrences
- Projection: preserve the number of occurrences (no duplicate elimination)
- Cartesian product, join: no duplicate elimination

## Summary of Relational Algebra

- Why bother? Can write any RA expression directly in C++/Java, seems easy.
- Two reasons:
  - Each operator admits sophisticated implementations (think of  $\bowtie$  ,  $\sigma_{C}$ )
  - Expressions in relational algebra can be rewritten:
     optimized