"What is a great man does, is follows by others; people go by the example he sets"

.....

Definition and some examples, relative topology, weak topology, open basis, open sub basis, continuity and homeomorphism, compact spaces, product spaces, compactness in a metric space.

Separation axioms $(T_1, T_2, T_3, Housdorff spaces)$, connected spaces, components, totally disconnected space, locally connected space.

Remark: $\bigcap_{\lambda \in \phi} A_{\lambda} = X$, $\bigcup_{\lambda \in \phi} A_{\lambda} = \phi$.

Topology: Let X be a nonempty set. A collection T of subsets of X is called a topology on X if

- $(1) X \in T$
- (2) $\phi \in T$,
- (3) $A \in T$, $B \in T \Rightarrow A \cap B \in T$,

(Intersection of any two members of T is also a member of T),

(1) If $\{A_{\lambda} | \lambda \in \Lambda\}$ is a collection of members of T, then $\bigcup_{\lambda \in \Lambda} A_{\lambda} \in T$

(Union of any collection of members of T is a member of T).

Remark: If T is a topology on X, then (X, T) is called a topological space. Members of T are called T-open sets or simply open sets.

Examples

- (1) $X = \{1, 2, 3\}$, collection of all subsets of $X = P(X) = \{\phi, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$. Then $T_1 = \{\phi, \{1\}, \{2\}\}, T_2 = \{\{1, 2, 3\}, \phi, \{1, 2\}, \{2, 3\}\}$ and $T_3 = \{\{1, 2, 3\}, \phi, \{1\}, \{2\}\}$ are not topologies on X.
- (2) Indiscrete topology $I = \{X, \phi\}$
- (3) Discrete topology D =collection of all subsets of X.
- (4) Cofinite topology: Let X be a infinite set. Let T consists of ϕ and all those subsets of X whose complements are finite. Then T is a topology called the cofinite topology.

Remarks

- (1) Intersection of any family of topologies on X is a topology on X.
- (2) Union of two topologies on X is not necessarily a topology on X.

Closed Set: Let (X, T) be a topological space and A be a subset of X. Then A is said to be T – closed or simply closed if X – A is T- open.

Example: $X = \{1, 2, 3\}, T = \{\{1, 2, 3\}, \phi, \{1\}, \{2, 3\}, \{1\} \text{ is open as well as closed. } \{1, 2\} \text{ is neither open nor closed.}$

Properties of Closed Sets: (i) X is closed, (ii) ϕ is closed, (iii) Union of any two closed sets is closed, (iv) Arbitrary intersection of closed sets is closed.

Neighbourhood: Let (X, T) be a topological space. N be a subset of X and, a be an element of X, N is called a T – neighbourhood of 'a' if there exists a T-open set G such that $a \in G \subset N$.

Example: $X = \{1, 2, 3, 4\}, T = \{X, \phi, \{2\}, \{1, 2\}, \{2, 3\}, \{1, 2, 3\}\}, N = \{1, 2, 3\}.$ N is nbd of 1, N is not a nbd of 4. N is nbd of 2.

Remarks

(1) Set of all neighbourhoods of x is denoted by N_x .

(2) N

€

- (4) N_x , $M \supset N$

- (6) $M \in N_x$.
- (7) $N \in N_x$, $M \in N_x N \cup M \in N_x$, $N \cap M \in N_x$.

Theorem: A set G is open if and only if G is a neighbourhood of each of its points.

Limit Point or Accumulation Point: Let (X,T) be a topological space and A be a subset of X. Let p be a point of X. p is called a limit point of A if every open set G containing p contains at least one point of A other than p.

If for every open set G containing p, $(G \cap A) - \{p\}$, or $(G - \{p\}) \cap A$.

- (1) Collection of all limit points of the set A is called the derived set of A and is denoted by A' or d(A) or D(A).
- (2) p is said to be an isolated point of A if $p \in A$ but p is not a limit point of
- (3) A is said to be isolated set if each point of A is an isolated point of A.

Example: $X = \{1, 2, 3, 4\}, T = \{X, \{1\}, \{1, 2\}, \{1, 3\}, \{1, 2, 3\}\}, A = \{2, 3, 4\}, A = \{1, 2, 3, 4$ 3, 4\}. $4 \in D(A)$, $1 \notin D(A)$, $2 \notin D(A)$. 2 and 3 are isolated points of A. 1 is neither a point of A nor a limit point of A. Thus $D(A) = \{4\}$.

Theorem: (1) $A \subset B \Rightarrow D(A) \subset D(B)$, (2) $D(A \cap B) \subset D(A) \cap D(B)$, (3) $D(A \cup B)$ $= D(A) \cup D(B).$

Theorem: A subset F of a topological space X is closed iff F contains all its limit points, i.e., $D(F) \subset F$.

Adherent point: A point p is called an adherent point of A if every open set containing p contains at least one point of A. Set of all adherent points of A is called adherence of A and is denoted by adh(A).

Remark:

- (1) $adh(A) = A \cup D(A)$.
- (2) Every point of A is an adherent point of A.
- (3) If $p \notin A$ and p is an adherent point of A then p is also a limit point of A.

Example: $X = \{1, 2, 3\}, T = \{X, \{1\}, \{2\}, \{1, 2\}\}, A = \{2, 3\}.$ 2 is not a limit point of A but 2 is an adherent point of A.

Closure: Let (X,T) be a topological space and A be a subset of X. Closure of A is the intersection of all closed supersets of A and is denoted by \overline{A} or C(A).

Theorem

- (1) A is the smallest closed superset of A.
- (2) $A \subset B \Rightarrow \overline{A} \subset \overline{B}$.
- (3) A set A is closed iff $A = \overline{A}$.
- $(4) \ \overline{A \cap B} \subset \overline{A} \cap \overline{B}.$

- (5) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- (6) $\overline{A} = A \cup D(A) = adh A$.

Interior: Let (X, T) be a topological space and A be a subset of X. Let a be any point of X. a is called an interior point of A if A is nbd of a. Collection of all interior points of A is called the interior of A and is denoted by A^o or i(A).

Theorem

- (1) $A^o = \bigcup \{ G | G \text{ is open and } G \subset A \}.$
- (2) A^o is the largest open subset of A.
- (3) A is open iff $A^o = A$.
- (4) $A \subset B \Rightarrow A^o \subset B^o$.
- $(5) (A \cap B)^o = A^o \cap B^o.$
- (6) $A^o \cup B^o \subset (A \cup B)^o$.

Exterior: Interior of complement of A is called exterior of A and is denoted by e(A) or ext(A), i.e., $ext(A) = (X - A)^o$

Theorem: 1. $(X - A)^o = X - \overline{A}$. 2. $\overline{X - A} = X - A^o$. 3. $\overline{A} = X - (X - A)^o$.

Boundary of A or Frontier of A: Let (X,T) be a topological space, and A be a subset of X. Boundary of A written as b(A) is the set of those points of X which are neither interior point of A nor interior point of X - A. Therefore $b(A) = X - (A^o \cup (X - A)^o) = X - (A^o \cup ext(A)) = (X - A^o) \cap (X - (X - A)^o) = \overline{X - A} \cap \overline{A}$.

Theorem: Let R be the set of real numbers. Let U consists of null set and those subsets A of R such that for every $x \in A$ there exists a real number $p \in \mathcal{D}$ such that $|x - p|_{X \to Y} = |C|_{X \to Y} = |C|_{X \to Y}$. Then U is a topology for R called the usual topology.

......

Remarks

- (1) Every open interval is an open set.
- (2) Every closed interval is a closed set.
- (3) In the usual topology no nonempty finite set is open.
- (4) In (R, U), if p is a limit point of A then every open set containing p contains infinite points of A.
- (5) If p is a limit point of A then every open interval containing p contains infinite points of A.
- (6) In usual topology no finite set can have a limit point.
- (7) Every finite set is closed in usual topology.

Definition:

- (1) A is dense in itself if $A \subset A'$.
- (2) A is closed if $A' \subset A$.
- (3) A is perfect if A = A'

Example

- (1) Every open interval is dense in itself. But no open interval is a closed set.
- (2) Every closed interval is a perfect set.

Exercise

- (1) Give an example to illustrate that intersection of members of a topology may not be a member of topology.
- (2) Give an example to show that union of closed sets may not be a closed set.

(3) Give an example in which $\overline{A \cap B} \neq \overline{A} \cap \overline{B}$.

Subspace: A topological space (Y, T_Y) is called a subspace of (X, T) if $Y \subset X$ and for every $H \in T_Y$ there exists G in T such that $H = Y \cap G$.

Example: $X = \{1, 2, 3, 4\}, T = \{X, \phi, \{1, 2\}, \{2, 3\}, \{2\}, \{1, 2, 3\}\}, Y = \{2, 3, 4\}, T_Y = \{\{2, 3, 4\}, \phi, \{2\}, \{2, 3\}\}.$

Remark: T_Y is called *relative topology on* Y or *topology relativized by* T *on* Y and (Y, T_Y) is called a subspace of (X, T).

Theorem: Let (X,T) be a topological space and Y be a subspace of X. Let $T_Y = \{Y \cap G | G \in T\}$. Then T_Y is a topology for Y. (Y,T_Y) is called subspace of (X,T).

Theorem: Let (Y, V) be a subspace of (X, T). Let F be a subset of Y. Then F is V-closed iff $F = Y \cap H$ for some T-closed set H.

Theorem: If (Z, W) is a subspace of (Y, V) and (Y, V) is a subspace of (X, T). Then (Z, W) is a subspace of (X, T).

Theorem: Let (X^*, T^*) be a subspace of (X, T). Let A be a subset of X^* . Let $y \in X^*$. Then y is a T^* -limit point of A iff y is a T-limit point of A.

Lemma: y is a T^* -adherent point of A iff y is a T-adherent point of A.

Theorem: Let (X^*, T^*) be a subspace of (X, T). Let A be a subset of X^* . Then T^* -closure of $A = X^* \cap (T$ -closure of A), or, $C^*(A) = X^* \cap C(A)$.

Weak topology: Let (X, T_1) and (X, T_2) be two topological spaces. If $T_1 \subset T_2$, then T_1 is weaker than T_2 , or T_2 is stronger than T_1 , or T_1 is coarser than T_2 , or T_2 is finer than T_1 , or T_1 is smaller than T_2 , or T_2 is larger than T_1 . If $T_1 \not\subset T_2$ and $T_2 \not\subset T_1$, we say that T_1 and T_2 are not comparable.

Example: $X = \{1, 2, 3\}, T_1 = \{X, \phi, \{1\}\}, T_2 = \{X, \phi, \{2\}\}, T_3 = \{X, \phi, \{1\}, \{2\}, \{1, 2\}\}, T_1 \text{ and } T_2 \text{ are not comparable, } T_1 \subset T_3, T_2 \subset T_3.$

Complete lattice: A complete lattice is a partially ordered set in which every nonempty subset has a least upper bound and greatest lower bound.

Theorem: The set of all topologies on a set X is a 'complete lattice' with respect to 'inclusion' relation.

Base: Let (X,T) be a topological space. A collection B of subsets of X is called a base for T if (i) B \subset T, (ii) for every G in T and x in G, there exists B in B such that $x \in B \subset G$.

Example: $X = \{a, b, c, d\}, T = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}, B = \{\{a\}, \{b\}, \{a, b\}, \{c, d\}\}\}.$ For $G = \{a, c, d\}, c \in \{c, d\} \subset G$.

Theorem: Let (X,T) be a topological space. A collection B of members of T is a base iff each member of T is expressible as a union of some subfamilies of B.

Theorem: Let (X,T) be a topological space and B be a base for T. Then T is identical with the collection of unions of all subfamilies of B.

Example: $X = \{1, 2, 3\}, T = \{X, \phi, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}, B = \{\{1\}, \{2\}, \{3\}\}.$ Family of unions of subfamilies of B = T, therefore B is a base for T

Example: Is $B = \{\{0, 1\}, \{1, 2\}\}$ a base for some topology on $X = \{1, 2, 3\}$? **Solution:** If B is a base for a topology T on X, then T must be the collection of unions of all subfamilies of B, i.e., $T = \{\phi, \{0, 1\}, \{1, 2\}, \{0, 1, 2\}\}$. But T is not a topology for X and hence B is not a base for any topology on X.

Theorem: Let X be a nonempty set. A collection B of subsets of X is a base for some topology T on X if and only if (i) $\cup \{B|B \in B\} = X$, (ii) For $U, V \in B$ and $x \in U \cap V$ there exists W in B such that $x \in W \subset U \cap V$.

Or

What is the necessary and sufficient condition for a family to become a base for a topology.

Theorem: Let B be a collection of subsets of X such that (i) $\cup \{B|B \in B\}$ = X, (ii) $U, V \in B \Rightarrow U \cap V \in B$. Then B is a base for some topology on X.

Sub-base: $X = \{0, 1, 2\}, S = \{\{0, 1\}, \{1, 2\}\}, B = \{X, \{\{0, 1\}, \{1, 2\}\}, T = \{\phi, X, \{1\}, \{0, 1\}, \{1, 2\}\}.$

Definition: Let X be any nonempty set and S be a collection of subsets of X. Let B be the collection of intersections of all finite subfamilies of S. Then $\cup \{B|B \in B\} = X$ and intersection of any two members of B is a member of B. Hence B is a base for some topology on X, say T. S is called a sub-base for T and T is called the topology generated by S.

Remark: If S is a sub-base for topology T. Then T is the smallest topology containing S.

Continuity

If $X = \{1, 2, 3, 4, 5, 6, 7\}$, $Y = \{a, b, c, d, p, q, r, s, t\}$, $f : X \to Y$ such that f(1) = a, f(2) = a, f(3) = a, f(4) = d, f(5) = d, f(6) = p, f(7) = q, $A = \{2, 3, 4, 6\}$, $f(A) = \{a, d, p\}$, $f^{-1}(f(A)) = f^{-1}\{a, d, p\} = \{1, 2, 3, 4, 5, 6\} \neq A$. $A \subset f^{-1}(f(A))$ and $A = f^{-1}(f(A))$ if f is one-one. Similarly $f(f^{-1}(E)) = E$ if f is onto.

Continuous function: Let (X,T) and (Y,V) be two topological spaces and f be a function from X to Y. Let $a \in X$. f is said to be T-V continuous at a if for every V-open set H containing f(a) there exists at least one T-open set G containing a such that $f(G) \subset H$. f is said to be a T-V continuous if f is continuous at each point of X.

Theorem: Let (X,T) and (Y,V) be two topological spaces and f be a function from X to Y. Then f is T-V continuous iff inverse image of each V-open set under f is T-open.

Theorem: Let (X,T) and (Y,V) be two topological spaces and f be a function from X to Y. Then f is T-V continuous iff for every V-closed set E, $f^{-1}(E)$ is T-closed.

Theorem: Let (X,T) and (Y,V) be two topological spaces and f be a function from X to Y. Then f is T-V continuous iff $f(\overline{E}) \subset \overline{f(E)}$ for every $E \subset X$.

Open and Closed functions: Let (X,T) and (Y,V) be two topological spaces and f be a function from X to Y.

- (1) f is called an open function if for every T-open set G, f(G) is V-open.
- (2) f is called a closed function if for every T-closed set H, f(H) is V-closed.

Example: Give an example of a function which is continuous, open but not closed.

Solution: $X = \{a, b, c\}, T = \{X, \phi, \{a\}, \{b, c\}\}, Y = \{1, 2, 3\}, V = \{Y, \phi, \{1\}\}\}.$ $f: X \to Y$ such that f(a) = f(b) = f(c) = 1. Then f is the required function

Example: Give an example of a function which is continuous and closed but not open.

Theorem: Let (X,T) and (Y,V) be two topological spaces and f be a function from X to Y. Then f is T-V closed mapping iff $\overline{f(E)} \subset f(\overline{E})$ for every $E \subset X$.

Theorem: Let (X,T) and (Y,V) be two topological spaces and f be a function from X to Y. Then f is an open function iff $f(E^o) \subset (f(E))^o$ for every $E \subset X$.

Homeomorphism: Let (X,T) and (Y,V) be two topological spaces and f be a function from X to Y. f is called a homeomorphism if (i) f is one-one and onto, (ii) f is T-V continuous, (iii) f^{-1} is V-T continuous.

(X,T) and (Y,V) are said to be homeomorphic spaces if there exists a homeomorphism between X and Y.

Bi-continuous: f is called *bi-continuous* if f is continuous and open.

Theorem: Let (X,T) and (Y,V) be two topological spaces and f is a one-one function from X onto Y. Then the following conditions are equivalent.

(i) f is homeomorphism, (ii) f is continuous and open, (iii) f is continuous and closed.

Theorem: Homeomorphism is an equivalence relation in the set of all topological spaces.

Theorem: Let (X,T) and (Y,V) be two topological spaces and f be a 1-1 function from X onto Y. Then f is a homeomorphism iff $\overline{f(E)} = f(\overline{E})$ for every $E \subset X$.

Theorem: Let (X,T) and (Y,V) be two topological spaces and f be a 1-1 function from X onto Y. Then f is a homeomorphism iff $f(A^o) = (f(A))^o$ for every $A \subset X$.

Theorem: Let (X,T) and (Y,V) be two topological spaces and f be a function from X to Y. Then f is continuous iff $\overline{f^{-1}(E)} \subset f^{-1}(\overline{E})$ for every $E \subset Y$.

Theorem: Let (X,T) and (Y,V) be two topological spaces and f be a function from X to Y. Then f is continuous iff $f^{-1}(E^o) \subset (f^{-1}(E))^o$ for every $E \subset Y$.

Theorem: Let (X,T) and (Y,V) be two topological spaces and B be a base for V. Let f be a function from X to Y. Then f is continuous iff inverse image of each member of B under f is in T.

Theorem: Let (X,T) and (Y,V) be two topological spaces and S be a base for V. Let f be a function from X to Y. Then f is continuous iff inverse image of each member of S under f is in T, i. e., $f^{-1}(S) \in T$ for every $S \in S$.

Open Cover: Let (X,T) be a topological space and A be a subset of X. A collection $\{G\lambda | \lambda \in \Lambda\}$ of T-open sets is called a T-open cover of A if $A \subset \bigcup_{\lambda \in \Lambda} G_{\lambda}$.

Compact Space: Let (X,T) be a topological space and A be a subset of X. A is said to be T-compact set if every T-open cover of A has a finite subscover.

X is called *compact space* if every T-open cover of X has a finite subcover.

Example: $A = \{1, 2, 3, 4, 5, 6\}, G_1 = \{1, 2, 3\}, G_2 = \{2, 3, 4\}, G_3 = \{3, 4, 5\}, G_4 = \{4, 5, 6\}, G_5 = \{5, 6, 7\}.$ Then $A \subset G_1 \cup G_2 \cup \ldots$

Example: Let $C_1 = \{]$ - n, $n [| n \in N \}$, $C_2 = \{]$ - 3n, $3n [| n \in N \}$, $C_3 = \{]$ 2n - 1, 2n + 1 [,]2n, $2n + 2 [| n \in N \}$. Then C_1 , C_2 , C_3 are all U-open covers of R and C_2 is a subcover of C_1 .

Theorem: Let (Y, T_Y) be a subspace of (X, T), and A be a subset of Y. Then A is T_Y -compact if and only if A is T-compact, or, Compactness is an absolute property of the set.

Theorem: Every closed set in a compact space is compact.

Finite Intersection property (FIP): A family of sets is said to have *finite* intersection property if for every finite subfamily has a nonempty intersection.

Example: $A_1 = \{1, 2, 3, ...\}, A_2 = \{2, 3, 4, ...\}, ...$ Consider $\{A_1, A_2, A_3, ...\}$. Then $A_2 \cap A_7 \cap A_{123} = A_{123}$ and $A_1 \cap A_2 \cap ... = \phi$

Theorem: A topological space X is compact iff every family of T-closed sets having FIP have a nonempty intersection.

Example: Consider the following class of open intervals $A = \{(0, 1), (0, 1/2), (0, 1/3), \ldots\}$. Now A has the FIP because $(0, a_1) \cap (0, a_2) \cap \ldots \cap (0, a_n) = (0, b)$, where $b = min(a_1, a_2, \ldots, a_m) > 0$. Observe that A itself has an empty intersection.

Topological Property: A property P possessed by a topological space X is called a *topological property* if P is possessed by every homeomorphic image of X.

Theorem: Continuous image of a compact space is compact, or, Compactness is a topological property, Or Compactness is preserved under continuity.

Theorem: (R, U) is not compact.

Theorem: Every closed interval is a compact set.

Heine - Borel Theorem: A subset A of R is compact iff it is closed and bounded.

letric Spaces: Let X be a nonempty set. A mapping d: $X \times X \rightarrow R$ is called a

Metric Spaces: Let X be a nonempty set. A mapping d: $X \times X \rightarrow R$ is called a metric on X if d satisfies the following conditions:

- (1) $d(x, y) \ge 0$;
- (2) $d(x,y) = 0 \Leftrightarrow x = y$;
- (3) d(x, y) = d(y, x); Symmetric property
- (4) $d(x, y) \leq d(x, z) + d(z, y)$ for all $x, y, z \in X$. Triangle inequality

If d is a metric on X, then (X, d) is called the metric space.

Examples

- (1) d(x,y) = |x y| is a metric on R.
- (2) $d(z_1, z_2) = |z_1 z_2|$ is a metric on C.
- (3) $d: R^n \to R^n: d(x,y) = \sum_{i=1}^n [(x_i y_i)^2]^{1/2}$ is a metric on R^n
- (4) Let X be a-nonempty set. Then the mapping d: $X \times X \rightarrow R$ defined by d(x, y) = 0, if x = y, and d(x, y) = 1 for $x \neq y$ is a metric for X called the *discrete metric* for X.

Examples

- **1.** Show that $|d(x,z) d(y,z)| \le d(x,y)$.
- **2.** Prove that $|d(x, y) d(x_1, y_1)| \le d(x, x_1) + d(y, y_1)$.

Open Sphere, open ball, open neighbourhood (centered on x and radius r) is $S_r(x) = S(x, r) = B(x, r) = N_r(x) = \{ y \in X \mid d(y, x) \mid r \}.$

Remark: x belongs to $S_r(x)$, i.e., ball is always nonempty.

Example: For a discrete metric space $X = \{1, 2, 3, 4, 5, 6, 7, 8\}$, $S_{3/4}(3) = \{3\}$, $S_{13}(3) = \{1, 2, 3, 4, 5, 6, 7, 8\}$, $S_{1010}(3) = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Closed Sphere: (centered on x and radius r) is $S_r[x] = \{ y \in X \mid d(y, x) \leq r \}$.

Example: Find the open sphere in R and C.

Open Sets: A subset A of a metric space X is said to be open if for all $x \in X$ there exists a real number r ≥ 0 such that $S_r(x) \subset A$.

Closed Sets: A subset A of X is closed if its complement is open.

Remarks:

(1) Every open sphere is an open set and every closed sphere is a closed set.

- (2) Empty set and the full space X are open.
- (3) Arbitrary union of a family of open sets is open.
- (4) Finite intersection of a family of open sets is open.

Sequence in a metric space: Let X be a non-empty set. A mapping f: $N\rightarrow X$ is called a sequence in X.

Subsequence: A sequence $\langle x_{n_k} \rangle$ is a subsequence of $\langle x_n \rangle$ if (i) $n_k \geqslant k$, (ii) $n_1 \mid n_2 < \dots$

Convergent sequence: A sequence $\{x_n\}$ in X is said to be convergent if there exists x in X such that for every $\in 0$ there exists a positive integer n_0 such that $n \ge n_0 \Rightarrow d(x_n, x) < 0$.

Remarks:

- (1) Every convergent sequence in a metric space X has a unique limit.
- (2) If $ix_n i$ is an infinite sequence then its limit is also its limit point.
- (3) Let (X, d) be a metric space and A be a subset of X and x be a limit point of A then there is an infinite sequence $\langle x_n \rangle$ in A such that $x_n \to x$.

Cauchy Sequence: A sequence $\{x_n\}$ in X is said to be a Cauchy sequence in X if for every $\in 0$ there exists a positive integer n_0 such that $m, n \ge n_0 \Rightarrow d(x_m, x_n) < \in$.

Theorem: every convergent sequence in a metric space X is a cauchy sequence but the converse is not true.

Complete metric space: A metric space X is called complete if every Cauchy sequence in X is convergent in X.

Remarks

- (1) If a sequence $\langle \mathbf{x}_n \rangle$ converges to x then every subsequence of $\langle \mathbf{x}_n \rangle$ converges to x.
- (2) A non convergent sequence may have convergent subsequence.
- (3) If $\langle \mathbf{x}_n \rangle$ is a Cauchy sequence and $\langle x_{n_k} \rangle$ is a subsequence of $\langle \mathbf{x}_n \rangle$ such that $x_{n_k} \to \mathbf{a}$ then $\mathbf{x}_n \to \mathbf{a}$.

Topology induced by a metric: Let (X, d) be a metric space and T be the collection of d-open sets. Then T is a topology on X induced by the metric d.

A topological space (X, T) is called a metrizable topological space if there exists a metric d on X such that the collection of d-open sets is same as T.

Theorem: Let (X, d) be any metric space. Let T_d consists of null set and all those subsets G of X such that for every x in G there is a real number r > 0 such that $S_r(x) \subset X$. Then T_d is a topology for X induced by d.

Example: (R, U) is a metrizable topological space.

Remarks: In a metric space X

- (1) If x is a limit point of A then every open set containing x contains infinite points of A.
- (2) A finite set has no limit points.
- (3) Every finite set is closed.

Bolzano Weierstrass Property (BWP): A metric space X is said to have BWP if every infinite subset of X has at least one limit point in X.

Sequentially Compact Metric Space: A metric space X is said to be a sequentially compact if every sequence in X has a convergent subsequence.

Theorem: Every compact space has BWP.

Theorem: Every metric space having BWP is sequentially compact.

Theorem: A metric space X is sequentially compact iff X has BWP.

 \in - **net:** A finite set of points, say $\{a_1, a_2, \ldots, a_n\}$ in a metric space X is called an \in - net if $X = \bigcup_{i=1}^{n} S_{\in}(a_i)$.

Totally Bounded or Precompact: A metric space X is said to be totally

bounded if there exists an \in - net in X for every \in > 0.

Theorem: Every sequentially compact metric space is totally bounded.

Diameter: Diameter of $A = diam \ A = d(A) = \delta_A = sup \ \{d(x,y) \mid x,y \in A\}.$ Remark: $\delta_l S_r(a) \leq 2r$.

Lebesgue Number: Let $\{G\lambda | \lambda \in \Lambda\}$ be an open cover of a metric space X. A positive real number r is called a lebesgue number of $\{G\lambda | \lambda \in \Lambda\}$ if for every subset A of X such that diam A < r there is a $\lambda \in \Lambda$ such that $A \subset G_{\lambda}$.

Remark: If r is a lebesgue number and $0 \mid r_1 \mid r$ then r_1 is also a lebesgue number. Big Set: If B is a subset of X which is not contained in any of G_{λ} 's then B is

called a 'Big Set' and B contains at least two elements and diam B > 0.

Lebesgue Covering Lemma: In a sequentially compact metric space every open cover has a lebesgue number.

Theorem: Every sequentially compact metric space is compact.

Uniformly Continuous Function: Let (X_1, d_1) and (X_2, d_2) be two metric spaces and f be a function from X_1 to X_2 . f is said to be uniformly continuous if for every $\in > 0$ there exists $\delta > 0$ such that $d_1(a, b) < \delta \Rightarrow d_2(f(a), f(b)) < \in$.

Theorem: Every continuous function defined on a compact metric space is uniformly continuous.

Theorem: A metric space X is compact iff X is complete and totally bounded.

Theorem: Let (X,d) be a complete metric space and Y be a closed subspace of X. Then Y is compact iff Y is totally bounded.

Separable Space: X is separable if X has a countable dense subset, i.e., there is a countable subset A of X such that $\overline{A} = X$.

Theorem: Every compact metric space is separable, Or, Every totally bounded metric space is separable.

Second Countable Space: A space X is second countable space (or second axiom space) if X has a countable base.

Remark: A space X is said to satisfy second axiom of countability if X has a countable base.

Theorem: Every second axiom (or second countable) space is separable.

Theorem: Every separable metric space is a second axiom space.

Theorem: A topological space X is compact iff every basic open cover of X has a finite subcover.

Local Bases: Let p be any arbitrary point of a topological space X. A class B_p of open sets containing p is called a local base at p iff for each open set G containing p there exists G_p in B_p such that $p \in G_p \subset G$.

Example: $X = \{1, 2, 3, 4, 5\}, T_1 = \{X, \phi, \{1\}, \{2, 3\}, \{1, 2, 3\}\}, B_1 = \{\{1, 2, 3, 4, 5\}, T_1 = \{1, 2, 3, 4, 5\}, T_2 = \{1, 2, 3, 4, 5\}, T_3 = \{1, 2, 3, 4, 5\}, T_4 = \{1, 2, 3, 4,$ $\{2\}, X\}, B_2 = \{\{2, 3\}, X\}, B_3 = \{\{1, 2, 3\}\}.$ Find whether B_1, B_2, B_3 form local base at 1, 2, 3 respectively or not?

Answer: B_1 is not a local base at 1, B_2 is a local base at 2, and B_3 is not a local base at 3.

First Countable Space: A topological space X is said to be first countable space (or first axiom space) if there exists a countable base at every point p of X.

Theorem: Every second countable space is first countable space.

Theorem: Let A be any subset of a second countable space X. If G is an open cover of A, then G is reducible to a countable cover.

Or

Let X be a second countable space. If a nonempty open set G in X is represented as the union of a class $\{G_i\}$ of open sets, then G can be represented as a countable union of G_i 's.

Theorem: Let G be a base for a second countable space X. Then G is reducible to a countable base for X.

Or

Let X be a second countable space. Then any open base for X has a countable subclass which is also an open base.

Lindelof Space: A space X is said to be a Lindelof space if every open cover of X has a countable subcover.

Lindelof's Theorem: Every second countable space is a Lindelof space.

SEPARATION AXIOMS

 \mathbf{T}_o -space: A space (X,T) is called a T_o -space if for any two distinct points x and y there exists an open set G containing one of x and y but not the other.

 \mathbf{T}_1 - **Space**: A topological space is said to be a T_1 space if given any two distinct points x an y of X there exists open sets G and H such that $x \in G$, $y \notin G$, and $y \in H$, $x \notin H$.

T₂- space or Housdorff space: X is said to be a T_2 space or Housdorff if given any two distinct points x any of X there exists open sets G and H such that $x \in G$, $y \in H$ and $G \cap H = \phi$.

Regular Space: A space X is called a *regular* space if given any closed set E and a point $a \notin E$ there exist open sets G and H such that $E \subset G$, $a \in H$ and $G \cap H = -\phi$.

 T_3 -space: A regular T_1 - space is called a T_3 - space.

Normal Space: A space X is *normal* if given any two disjoint closed sets E and F in X there exists open sets G and H such that $E \subset G$, $F \subset H$ and $G \cap H = -\phi$. **T₄-space:** A normal T_1 -space is called a T_4 -space.

Completely Regular Space: A topological space X is said to be completely regular if for every closed subset F of X and every point $x \in X - F$ ($x \notin F$) there exists a continuous function $f: X \to [0, 1]$ such that f(x) = 0 and f(F) = 1.

Tychonoff Space or $T_{3\frac{1}{2}}$ - Space: A completely regular T_1 - space is called a *Tychonoff space*.

Remark: Every T_2 – space is T_1 but the converse is not necessarily true.

Theorem: (X,T) is T_1 iff each singleton set in X is closed.

Convergent sequence: A sequence $\langle x_n \rangle$ in a topological space (X,T) is said to be convergent to a in X if given any open set G containing a there exists a positive integer m such that $n \geqslant m \Rightarrow x_n \in G$.

Example: $X = \{a, b, c\}, T = \{X, \phi, \{c\}, \{a, b\}\}\$. Then the sequence (a, b, a, b, a, b, a, b, a, b, c, c, c, c, a, b, c, c, c, c)

Theorem: In a hausdorff topological space every convergent sequence has a unique limit.

Theorem: If (X, T) is a hausdorff space and E is a compact subset of X and a is a point of X such that $a \notin E$ then there are open sets G and H such that $E \subset G$, $a \in H$, $G \cap H = \phi$.

Or

In a Hausdorff space any point and disjoint compact subspace can be separated by open sets, in the sense that they have disjoint neighbourhoods.

Theorem: Every compact set in a hausdorff space is closed.

Theorem: If (X,T) is a compact space and (Y,V) is a hausdorff space then every one-to-one continuous function f from X onto Y is a homeomorphism.

Theorem: Every compact hausdorff space is normal.

Hereditary property: A property P possesses by a topological space is called a hereditary property if P is possessed by every subspace of X.

Theorem:

- (1) The property of being a T_o -space is hereditary, i.e., every subspace of a T_o -space is also a T_o -space
- (2) The property of being a T_1 -space is hereditary.
- (3) The property of being a T_2 -space is hereditary.
- (4) The property of being a regular space is hereditary.
- (5) A closed subspace of a normal space is normal.

Theorem: $T_4 \Rightarrow T_3 \Rightarrow T_2 \Rightarrow T_1 \Rightarrow T_o$.

Examples:

- (1) $X = \{1, 2, 3\}, T = \{X, \phi, \{1\}, \{1, 2\}, \{2\}\}\$. Then (X, T) is T_1 .
- (2) Every metric space is a T_1 , and Housdorff space.
- (3) Every finite subset of a T_1 -space is a closed set.
- (4) If (X,T) is a finite T_1 -space, then T is the discrete topology.
- (5) Every discrete space is T_2 .
- (6) Every finite T_2 -space is discrete.
- (7) Every finite subset of a T_2 -space is closed.
- (8) If $f: X \to Y$ is continuous then $x_n \to x$ in X implies $f(x_n) \to f(x)$.
- (9) (R, U) is T_1, T_2, T_3 , and T_4 .
- (10) Let X be an infinite set and let T be co-finite topology on X, then (X, T) is T_1 but not T_2 .

Connectedness

Separated sets: Let (X,T) be a topological space and A,B be subsets of X, then A and B are called separated if $A \cap \overline{B} = \overline{A} \cap B = \phi$.

Or

Two subsets A and B in a topological space X are separated if $(A \cap \overline{B}) \cup (\overline{A} \cap B) = A$

Remark: Separated sets are always disjoint but disjoint sets may not be separated.

Example: If A = [0, 1], B = [1, 2], $A \cap B = \emptyset$, then A and B are disjoint sets. $\overline{A} = [0, 1]$, $\overline{B} = [1, 2]$, $A \cap \overline{B} = \{1\} \neq \emptyset$. $A \cap B = \emptyset$ are not separated.

Separation of two sets: Let E be a subset of X. Two subsets A and B of X are said to form a partition or separation of E if $E = A \cup B$, $A \cap \overline{B} = \overline{A} \cap B = \phi$, $A \neq \phi$, $B \neq \phi$. In this case we write E = A|B.

Disconnected space: (X,T) is disconnected if there exists two nonempty sets A and B such that $X = A \cup B$, $A \cap \overline{B} = \overline{A} \cap B = -\phi$.

Connected space: A topological space is said to be connected if it is not disconnected.

Theorem: Let (X,T) be a topological space. Then the following conditions are equivalent:

- (1) X is disconnected
- (2) There exist two nonempty closed sets A and B such that $X = A \cup B$, $A \cap B = \phi$.
- (3) There exists a nonempty proper subset of X which is both open and closed in X.
- (4) There exist two nonempty open sets A and B such that $X = A \cup B$, $A \cap B = \phi$.

Example: $X = \{1, 2, 3\}, T = \{X, \phi, \{1\}, \{2, 3\}\}.$ Then X is disconnected, because $X = \{1\} \cup \{2, 3\}, \{1\} \cap \{2, 3\} = \phi$.

Theorem: Continuous image of a connected space is connected.

Or

Connectedness is a topological property.

Interval: A subset X of R is called an interval if $x, z \in X$, $x < y < z \Rightarrow y \in X$.

Theorem: A subspace X of R is an interval iff X is connected.

Remark: Real line is connected.

Theorem: Range of every continuous real valued function defined on a connected space X is an interval.

Theorem: A topological space X is disconnected iff there exists a continuous function from X onto discrete space on $\{0, 1\}$.

Disconnected set: Let (X,T) be a topological space and $E \subset X$. E is said to be T-disconnected if there exist two nonempty set A,B in X such that $E=A \cup B$, $A \cap \overline{B} = \overline{A} \cap B = -\phi$.

Theorem: Connectedness is an absolute property of the set.

Or

If (Y, T_Y) is a subspace of (X, T), and $E \subset Y$, then E is T_Y- connected iff E is T- connected.

Theorem: (1) If A and B forms a separation of a space X and E is a connected subset of X then either $E \subset A$ or $E \subset B$. (2) Let E be any connected subset of a topological space such that $E \subset G \subset \overline{E}$, then G is connected. In particular \overline{E} is connected (i.e. closure of a connected set is connected).

Theorem: If X is a topological space such that given any pair x, y of distinct points of X, there is a connected set E in X containing x and y. Then X is connected.

Theorem: Let (X,T) be a topological space. If $\{A\lambda | \lambda \in \Lambda\}$ is a family of connected sets in X such that $\bigcap_{\lambda \in \Lambda} A_{\lambda} \neq \phi$, then $\bigcup_{\lambda \in \Lambda} A_{\lambda}$ is connected.

Components: A subset E of a topological space X is called a component if (i) E is connected (ii) E is not properly contained in any connected set in X.

Or

A maximal connected set in X is called a component.

Remark: If X is connected space then X is the only component of X.

Totally disconnected space: A topological space X is said to be a totally disconnected space if given any two distinct points a, b in X there exist two nonempty open sets A, B in X such that $a \in A$, $b \in B$, $X = A \cup B$, $A \cap B = \phi$.

Remark: Every totally disconnected space is a Hausdorff space.

Example: $X = \{a\}, T = \{X, \phi\}$. Then X is not disconnected but X is totally disconnected.

Remark: If a totally disconnected space contains more than one point then the space is disconnected also.

Theorem: If X is totally disconnected space then its components are its singleton sets.

Or

Components of a totally disconnected space are its points.

Theorem: Let X be a compact Hausdorff space. X is totally disconnected iff X has an open base whose each member is closed also.

Locally Connected Space: A topological space X is said to be locally connected if given open set G and x in G there exists an open set H in X such that $x \in H \subset G$.

Theorem: Let (X,T) be a locally connected space and Y be an open subspace of X. Every component C in Y is open in X. In particular, every component of X is open in X.

Theorem: For any arbitrary topological space X

- (1) Every point in a topological space X is contained in one and only one component of X.
- (2) Every nonempty connected set is always contained in a component.
- (3) Every nonempty connected set which is both open and closed is a component.
- (4) Every component in a topological space X is closed.

PRODUCT SPACE

Theorem: Let (X,T) and (Y,V) be two topological spaces. Then the collection $B = \{G \times H | G \in T, H \in V\}$ is a base for some topology of $X \times Y$.

Product Space: Let (X,T) and (Y,V) be two topological spaces. Then the topology W whose base is $B = \{G \times H | G \in T, H \in V\}$ is called the product topology of $X \times Y$ and $(X \times Y, W)$ is called the product space of X and Y.

Theorem: Let (X,T) and (Y,V) be two topological spaces and B_1 a base for T and B_2 a base for V. Then $B = \{B_1 \times B_2 | B_1 \in B_1, B_2 \in B_2\}$ is a base for the product topology W of $X \times Y$.

Projection Mapping: The mapping p_x : $X \times Y \to X$: $p_x((x,y)) = x$ and p_y : $X \times Y \to Y$: $p_y((x,y)) = y$ for all (x,y) in X×Y are called the projections of $X \times Y$ onto X and Y respectively.

Theorem: Projections are continuous and open. The product topology T is the coarsest topology for which the projections are continuous.

Example: Let $X = \{a, b, c\}$ and $T = \{X, \phi, \{a\}\}$. $Y = \{p, q, r, s\}$, $V = \{Y, \{p\}, \{q\}, \{p, q\}, \{r, s\}, \{p, r, s\}, \{q, r, s\}\}$. Find a base for the product topology of $X \times Y$.

Theorem: The collection $S = \{p_1^{-1}(U)|U \text{ is open in } X\} \cup \{p_2^{-1}(V)|V \text{ is open in } Y\}$ is a subbasis for the product topology on $X \times Y$

Theorem: Let $y_o \in Y$ and let $A = X \times \{y_o\}$. Then the restriction of p_x to A is a homeomorphism of the subspace A of $X \times Y$ onto X. Similarly the restriction p_y to $B = \{x_o\} \times Y$ is a homeomorphism.

Projections: Let $X = \prod_{i \in I} X_i = \times \{X_i | i \in I\}$. Then the mapping $p_i \colon X \to X_i$ defined by $p_i(x) = x_i$ for all x in X is called the i^{th} projection.

Theorem: Each projection map p_i is continuous, open but not closed.

Theorem: Let f be a mapping of a space Y into a product space $X = \prod_i X_i$. Then f is continuous $\Leftrightarrow p_i \circ f: Y \to X_i$ is continuous.

Product Topology and Product Space: Let (X_i, T_i) be a collection of topological spaces and $X = \prod_{i \in I} X_i$. Then the topology T for X which has subbase

the collection $S = \{p_i^{-1}(G_i)|i \in I, G_i \in T_i\}$ is called the product topology (or Tychonoff Topology) for X and (X,T) is called the product space.

Remarks: (1) The collection S is called the defining subbase for T. The collection B of all finite intersections of elements of S would then form a base for T.

- (2) Since $p_i^{-1}(G_i)$ are open sets with respect to the product topology where G_i is any open set in X_i . It follows that the projection p_i is a continuous map for each i in I.
- (3) For countable collection of topological spaces $\{X_i | i = 1, 2, ..., \}$ the product space $X = \prod_{n \in N} X_n = \{x = (x_1, ..., x_n, ...)\}$. Moreover $p_a^{-1}(G_a) = X_1 \times X_2 \times ... \times X_{n-1} \times G_n \times X_{n+1} \times ...$
- $X_1 \times X_2 \times \ldots \times X_{a-1} \times G_a \times X_{a+1} \times \ldots$ (4) A base for this topology is a set $B = \bigcap \{p_i^{-1}(G_i) | i \in I'\}$ where I' is a finite subset of I and $G_i \in T_i$ for some I in I'.

Theorem: Let (X_i, T_i) be an arbitrary collection of topological spaces and let $X = \prod_{i \in I} X_i$. Let T be the topology for X. Then the following statements are equivalent: (1) T is the product topology for X; (2) T is the smallest topology for which the projections are continuous.

EXERCISE - 1

- (1) Define discrete topological space, homeomorphism, second countable space, sequentially compact metric space. 05
- (2) State and prove Lindelof's theorem. 05
- (3) Continuous image of a connected space is connected. 05
- (4) One to one continuous mapping of a compact space onto a hausdorff space is a homeomorphism. 02, 05
- (5) Compact hausdorff space is normal. 02, 05
- (6) Define Topological space, compactness in metric space,

locally connected space, hausdorff space. 04

- (1) Continuous image of a compact space is compact. 04
- (2) Every second countable space is separable. 04
- (3) Components of a totally disconnected space X are the singleton subsets of X. 04
- (4) Homeomorphism is an equivalence relation. 04
- (5) A metric space is separable if it is second countable. 04
- (6) Let T be the collection of subsets of N consisting of empty set and all subsets of the form $G_m = \{m, m+1, m+2, \ldots\}, m \in N$. Show that T is a topology for N. What are open sets containing 5. 04
- (7) Every compact subset in a hausdorff space X is closed. 03
- (8) Every subspace of a hausdorff space is a hausdorff. 03
- (9) If (Z, W) is a subspace of (Y, V) and (Y, V) is a subspace of (X, T).

Then (Z, W) is a subspace of (X, T). 03

- (1) Give an example of a T_2 -space which is not T_3 . 03
- (2) Let (X,T) and (Y,V) be two topological spaces and f be a 1-1 function from X onto Y.

Then f is a homeomorphism iff $\overline{f(E)} = f(\overline{E})$ for every $E \subset X$. 03

- (1) Define a regular space and prove that the property of a space being regular space is a topological property. 03
- (2) Prove that the closure of a set is union of that set and its derived set. 02
- (3) Show that a space whose topology has a countable base is separable. 02
- (4) The property of a space being a T_2 -space is a topological property. 02
- (5) X is topological space, Y is a hausdorff space. If f and g are continuous functions of X into Y.

Then the set $\{x \in X | f(x) = g(x)\}$ is closed. 02

(1) Let (X,T) and (Y,V) be two topological spaces and f be a function from X to Y.

Then f is T - V continuous iff $f(\overline{E}) \subset \overline{f(E)}$ for every $E \subset X$. 02

- (1) Let $d_1(x,y) = min \{1, d(x,y)\}$. Show that d_1 is a metric and d and d_1 are equivalent. 02
- (2) A family B of sets is a base for a topology for the set $X = \bigcup \{G | G \in B\}$ iff for every G_1 , G_2 in B and every x in $G_1 \cap G_2$ there exists G in B such that $x \in G \subseteq G_1 \cap G_2$. 01

True/False

- (1) Every topological space is metrizable.
- (2) A subset of a topological space is open if it is closure of each of its points.
- (3) Every component of a topological space is open.
- (4) Every component of a locally connected space is a closed set.

.....

.....

EXTRA

EXERCISE - 2

- (1) Indiscrete topology: $I = \{X, \phi\}$
- (2) **Discrete topology:** D =collection of all subsets of X.
- (3) Particular point topology: $p \in X(\text{fixed})$. Then $T = \{A \subset X : p \in A\} \cup \{\phi\}$.
- (4) Excluded point topology: $x \in X(\text{fixed})$. $T_x = \{A \subset X : x \notin A\} \cup \{X\}$.
- (5) **Usual topology for R:** Let R be the set of real numbers. Let U consists of null set and those subsets A of R such that for every $x \in A$ there exists a real number p $\downarrow 0$ such that $]x p, x + p [\subset A]$. Then U is a topology for R called the usual topology.
- (6) Usual topology on a metric space: Let (X, d) be any metric space. Let T_d consists of null set and all those subsets G of X such that for all x in G there is a real $r_{i,0}$ 0 such that $S_r(x) \subset G$. then T_d is a topology called the metric topology.
- (7) Co-finite topology or finite complement topology: Let X be a infinite set. Let T consists of ϕ and all those subsets of X whose complements are finite. Then T is a topology called the cofinite topology.
- (8) Co-countable topology: Let X be a set; let $T_C = \{A \subset X | X A \text{ is either countable or is all of } X\}.$
- (9) Lower limit topology or right half open interval topology or RHO topology on R (R_l) : Let R_l consists of null set and all those subsets A

- of R such that for every x in A there exists a right half open interval [a, b[, a;b such that $x \in [a, b] \subset A$.
- (10) **Upper limit topology:** Same defined as above.
- (11) Left ray topology for R: For each a in R define $L_a = \{x \in R | x_i a\} = (-\infty, a) = \text{open left ray of real numbers.}$ The point a is called right and point of L_a . Let T consist all possible left rays together with ϕ and R.
- (12) $T = \{\phi\} \cup \{R\} \cup \{\]a, \infty[\ : a \in R\}$ is a topology for R called the **right ray topology** but $T_1 = \{\phi\} \cup \{R\} \cup \{\ [a, \infty[\ : a \in R\}\ \text{is not a topology for } R.$
- (13) Let T be the collection of subsets of N consisting of empty set and all subsets $G_m = \{m, m+1, m+2, \ldots\}, m \in N$. Then T is a topology for N.
- (14) **Metrizable Spaces:** A topological space (X, T) is said to be metrizable if there is a metric d for X such that $T_d = T$.
- (15) **Example:** Give an example of a topological space which is not metrizable.
- (16) **Answer:** Let $X = \{a, b\}$, $a \neq b$. Define $T = \{X, \phi, \{a\}\}$. Then (X, T) is a topological space. Let d be any metric on X and let d(a, b) = r. Since $a \neq b, r > 0$. Then $S_r(b) = \{b\}$ and hence $\{b\}$ is d open set but $\{b\}$ is not T-open. Hence (X, T) is not metrizable.

EXERCISE - 3

- (1) Co-finite topology on a finite set is the same as the discrete topology.
- (2) Let $f: X \to Y$ be a function from a nonempty set X into a topological space Y. If T is a topology on Y. Then $\{f^{-1}(G)|G\in T\}$ is a topology on X.
- (3) $\overline{A} = \{x \mid \text{ each neighbourhood of } x \text{ intersects } A\}.$
- (4) A^o , extA and Fr(A) are disjoint and $X = A^o \cup ext(A) \cup Fr(A)$.
- (5) A subset A of a topological space X is closed iff it contains its boundary.
- (6) A subset of a topological space has empty boundary iff it is both open and closed.
- (7) A set A is perfect iff it is closed and has no isolated points.
- (8) A closed set is nowhere dense iff its complement is everywhere dense.
- (9) The boundary of a closed set is nowhere dense.
- (10) For (R, U), $B = \{(a, b) | a, b \in R\}$ is a base for U.
- (11) For the discrete space (X, D), $B = \{\{x\} | x \in X\}$ is a base for D.
- (12) Indiscrete topology is the weakest topology on a set X and the discrete topology is the strongest topology on X.
- (13) For (X, D), $B_x = \{\{x\}\}\$ is local base at x in X.
- (14) For (R, U) and x in R, $\{(x -r, x + r) \mid r \not\in 0\}$ and $\{(x -1/n, x + 1/n) \mid n \in N\}$ are local bases at x.
- (15) (R, U), (X, D) are first countable.
- (16) (R, U) is second countable. B= $\{(r, s)| r, s \text{ are rational}\}\$ is a countable base for U.
- (17) (X, D) is not second countable.
- (18) Let T and T' be topologies for X which has a common base B. Then T = T'.
- (19) Every metric space is first countable because $B_x = \{S_{1/n}(x) \mid n \in N\}$ is a countable local base at x.
- (20) $f:(R,T)\to(R,V)$ such that f(x)=1 for all x in R is continuous function.

- (21) If f is a mapping from a discrete space to any topological space, then f is continuous.
- (22) A mapping f from a topological space X to indiscrete space I is always continuous.
- (23) If $f:(X,T)\to (Y,V)$ is continuous and T* is finer than T, then f is T*-V continuous.
- (24) If $f:(X,T)\to (Y,V)$ is continuous and V* is coarser than V, then f is T-V* continuous.
- (25) Let Y be a subspace of X. If U is open in Y and Y is open in X, then U is open in X.
- (26) If B is a basis for the topology of X then the collection B $Y = \{B \cap Y | B \in B\}$ is a basis for the subspace topology on Y.
- (27) Is the collection $T\infty = \{U \mid X U \text{ is infinite or empty or all of } X\}$ a topology on X?
- (28) If $X = \{a, b, c\}$, $T_1 = \{X, \phi, \{a\}, \{a, b\}\}$ and $T_2 = \{X, \phi, \{a\}, \{b, c\}\}$. Find the smallest topology containing T_1 and T_2 , and the largest topology contained in T_1 and T_2 .
- (29) Let $\{T_{\alpha}\}$ be a family of topologies on X. Show that there is a unique smallest topology on X containing all the collections T_{α} , and a unique largest topology contained in all T_{α} .
- (30) A topological space (X, T) is said to be a **door space** if every subset of X is either open or closed. Give an example of door space.
- (31) $\{a\}$ is closed in usual topology for R.
- (32) Give an example of a proper nonempty subset of a topological space such that it is both open and closed.
- (33) Give an example of a topological space different from the discrete spaces in which open sets are exactly the same as closed sets.
- (34) Hint: Let T consists of all those subsets G of R having the property that x in G implies x in G. Then (R, T) is the required space.
- (35) Which of the following subsets of R are U-neighbourhoods of 1? (i)]0, 2[, (ii)]0, 2[, (iii) [1, 2], (iv) $[0, 2] \{1/2\}$
- (36) Consider the topology $T = \{X, \phi, \{a\}, \{b, c\}\}$ on X and $V = \{Y, \phi, \{r\}, \{p, q\}\}$ on $Y = \{p, q, r\}$. Find which of the mappings defined as follows are
- (i) continuous, (ii) open, (iii) closed, (iv) bicontinuous, (v) homeomorphism
 - (a) f(a) = r, f(b) = r, f(c) = r, (b) g(a) = p, g(b) = q, g(c) = p,
 - (c) h(a) = r, h(b) = p, h(c) = q, (d) I(a) = r, I(b) = q, I(c) = p,
 - (e) j(a) = p, j(b) = q, j(c) = r.

EXERCISE – 4 CONNECTED SPACE

- (1) Let $\{A_{\alpha}\}$ be the collection of connected subsets of a space X such that no two members of $\{A_{\alpha}\}$ are mutually separated, then $\cup_{\alpha} A_{\alpha}$ is also connected.
- (2) Any two distinct components are mutually disjoint.
- (3) Every space is the disjoint union of its components.
- (4) Indiscrete space (X, I) is connected.
- (5) If (X, D) has more than one point, then (X, D) is connected.
- (6) If (X,T) is disconnected and $T \subset T_1$ (i.e., T_1 is finer than T) then (X,T_1) is disconnected.
- (7) If (X,T) is connected and T_1 is coarser than T, then (X,T_1) is connected.

- (8) In every topological space singleton sets are connected, therefore components are nonempty.
- (9) (X, D) is totally disconnected.
- (10) (X, D) is locally connected.
- (11) Give two examples of locally connected spaces which are not connected.

EXERCISE – 5 SEPERATION AXIOMS

T_o Space

- (1) (X, D) is T_o but (X, I) is not T_o .
- (2) If T^* is finer that T, then T is T_o topology implies T^* is To topology.
- (3) The property of a space being a T_o space is a topological property.
- (4) X is T_o iff for any distinct arbitrary points x, y of X, the closure of $\{x\}$ and $\{y\}$ are distinct.

T_1 -Space

- (1) (R, U) is T_1 .
- (2) For a topological space X following are equivalent: (1) X is T_1 ; (2) Every singleton set in X is closed; (3) Every finite set in X is closed; (4) The intersection of all neighbourhoods of an arbitrary point of X is a singleton.
- (3) Every metric space is T_1 .
- (4) Every finite T_1 space is discrete.
- (5) A space (X,T) is T₁ iff T contains the cofinite topology on X.
- (6) Every topology finer than a T_1 -topology on a set X is a T_1 -topology.
- (7) For any set X there exists a unique smallest topology T such that (X, T) is T_1 .
- (8) Let A be any subset of a T_1 space X. Then x is accumulation point of A iff every open set containing x contains infinitely many distinct points of A.

T_2 -Space

- (1) Show that (X, D) is T_2 .
- (2) No indiscrete space consisting of at least two points is Hausdorff.
- (3) (R, U), (R, S) are Hausdorff.
- (4) Co-finite topology on an infinite set X is not T_2 .
- (5) Co-countable topology on an uncountable set is not T_2 .
- (6) Every metric space is T_2 .
- (7) T^* is finer than a T_2 -topology T, then T^* is T_2 .
- (8) Every singleton set in a T_2 space is closed.
- (9) Every finite hausdorff space is discrete.
- (10) Every T_2 -space is T_1 but not converse.
- (11) X is topological space, Y is a hausdorff space. If f and g are continuous functions of X into Y. Then the set $\{x \in X | f(x) = g(x)\}$ is closed.
- (12) The property of being a T_2 space is a topological property.
- (13) Let (X, T) be a topological space and (Y, V) be a hausdorff space. Let $f: X \rightarrow Y$ be a one-one continuous mapping, then (X, T) is also a hausdorff.
- (14) Let (X, T) be a T_2 space and f be a continuous map of X into itself. Then the set $A = \{x \in X | f(x) = x\}$ is T-closed.

Regular Space, T_3 -space

- (1) $X = \{a, b, c\}, T = \{X, \phi, \{a\}, \{b, c\}\}\$. Then (X, T) is regular but not T_3 .
- (2) (R, U) is T_3 .
- (3) Every T_3 space is T_2 but not converse.

- (4) A topological space X is regular iff every point x in X and every nbd N of x, there exists nbd M of x such that $\overline{M} \supset N$. In other words, a topological space is regular iff the collection of all closed nbds of x forms a local base at x.
- (5) The property of being a regular space is a topological property.
- (6) Every compact hausdorff space is a T_3 -space.
- (7) Every metric space is regular (T_3) .
- (8) Let A be any compacet subset of a regular space X. If G is an open set containing A, then there exists a closed set H such that $A \subset H \subset G$.

Normal Space, T_4 space

- (1) $X = \{a, b, c\}, T = \{X, \phi, \{a\}, \{b, c\}\}.$ Then X is normal but not T_2 .
- (2) X is normal iff for any closed set F and open set G containing F, there exists an open set V such that $F \subset V$ and $\overline{V} \supset G$.
- (3) Normality is a topological property.
- (4) (R, U) is T_4 .
- (5) Every T_4 space is T_3 .
- (6) X = {a, b, c}, T = {X, ϕ , {a}, {b}, {a, b}}. Then X is normal but not regular.
- (7) Every compact regular space is normal.
- (8) The property of being a T₄ space is a topological property.
- (9) Closed subspace of a normal space is normal
- (10) Every metric space is normal.