Billiards in right triangles are unstable

W. Patrick Hooper

Northwestern University

October 27, 2007

Comparing billiard paths in different triangles

- Mark the edges of our triangles by {1,2,3}.
- The orbit-type $\mathcal{O}(\widehat{\gamma})$ of a periodic billiard path $\widehat{\gamma}$ is the bi-infinite periodic sequence of markings corresponding to the edges hit.

A periodic billiard path $\widehat{\gamma}$ with orbit type $\mathcal{O}(\widehat{\gamma}) = \overline{123123}$.

Comparing billiard paths in different triangles

Open Question

Does every triangle have a periodic billiard path?

- \bullet Let ${\mathcal T}$ be the space of marked triangles up to similarities preserving the markings.
- ullet We coordinatize ${\mathcal T}$ by the angles of the triangles:

$$\mathcal{T} = \{ (\alpha_1, \alpha_2, \alpha_3) \in \mathbb{R}^3 \mid \alpha_1 + \alpha_2 + \alpha_3 = \pi \text{ and each } \alpha_i > 0 \}.$$

- The tile of a periodic billiard path $\widehat{\gamma}$ is the subset $\mathit{tile}(\widehat{\gamma}) \subset \mathcal{T}$ consisting of all triangles $\Delta \in \mathcal{T}$ with periodic billiard paths $\widehat{\eta}$ with the same orbit type as $\widehat{\gamma}$.
- \bullet The question above becomes equivalent to "Can ${\mathcal T}$ be covered by tiles?"

Theorem (Classification of tiles)

Let $\widehat{\gamma}$ be a periodic billiard path in a triangle Δ . Then either

- **1** $tile(\widehat{\gamma})$ is an open subset of \mathcal{T} , or
- $oldsymbol{2}$ tile $(\widehat{\gamma})$ is an open subset of a rational line of the form

$$\{(\alpha_1, \alpha_2, \alpha_3) \in \mathcal{T} \mid n_1\alpha_1 + n_2\alpha_2 + n_3\alpha_3 = 0\}$$

for some integers n_1 , n_2 , n_3 (not all zero).

- In the first case, $\widehat{\gamma}$ is called **stable**. In any sufficiently small perturbation of Δ , we can find a periodic billiard path with the same orbit-type.
- Almost every triangle only has stable periodic billiard paths!
- But for example, right triangles may have unstable periodic billiard paths. Since if $\alpha_1 = \frac{\pi}{2}$, then

$$\alpha_1 - \alpha_2 - \alpha_3 = 0.$$

Example of an unstable periodic billiard path

- A periodic billiard path $\widehat{\gamma}$ with orbit type $\mathcal{O}(\widehat{\gamma}) = \overline{1323}$ is unstable.
- By similar triangles, $tile(\widehat{\gamma})$ is the collection of isosceles triangles with base marked '3'.

$$\textit{tile}(\widehat{\gamma}) = \{(\alpha_1, \alpha_2, \alpha_3) \in \mathcal{T} \mid \alpha_1 - \alpha_2 = 0\}.$$

Theorems on stability in right triangles

The following settles a conjecture of Vorobets, Galperin, and Stepin.

Theorem (H)

Right triangles do not have stable periodic billiard paths.

Let $\mathcal{R} \subset \mathcal{T}$ denote the collection of right triangles.

Theorem (H)

If $\widehat{\gamma}$ is a stable periodic billiard path in a triangle, then tile($\widehat{\gamma}$) is contained in one of the connected components of $\mathcal{T} \setminus \mathcal{R}$.

When are billiard paths stable? (1 of 4)

- Given a triangle Δ we can build a Euclidean cone surface $\mathcal{D}(\Delta)$ by doubling the triangle across its boundary. (A triangular pillowcase.)
- Let Σ denote the collection of cone singularities on $\mathcal{D}(\Delta)$.

- There is a natural folding (or ironing) map $\mathcal{D}(\Delta) \to \Delta$.
- The billiard flow on Δ can be pulled back to the geodesic flow on $\mathcal{D}(\Delta) \smallsetminus \Sigma$.
- Each periodic billiard path $\widehat{\gamma}$ on Δ pulls back to a closed geodesic γ on $\mathcal{D}(\Delta)$.

When are billiard paths stable? (2 of 4)

- Let $\theta: T_1\mathbb{R}^2 \to \mathbb{R}/2\pi\mathbb{Z}$ be the function which measures angle.
- The closed 1-form $d\theta$ on $T_1\mathbb{R}^2$ is invariant under the action of $\mathrm{Isom}_+(\mathbb{R}^2)$.
- It pulls back to closed 1-form on the unit tangent bundle of any locally Euclidean surface.
- ullet If γ is a closed geodesic on a locally Euclidean surface then

$$\int_{\gamma'} d\theta = 0.$$

• Because $d\theta$ is closed, this is a homological invariant of the curve γ' in the unit tangent bundle.

When are billiard paths stable? (3 of 4)

• In our case, the surface is the double of a triangle $\mathcal{D}(\Delta)$.

- The homology group of the unit tangent bundle, $H_1(T_1\mathcal{D}(\Delta) \setminus \Sigma, \mathbb{Z}) \cong \mathbb{Z}^3$, is generated by derivatives of curves which travel around the punctures.
- If $[\![x]\!]=n_1\beta_1'+n_2\beta_2'+n_3\beta_3'\in H_1(T_1\mathcal{D}(\Delta)\smallsetminus \Sigma,\mathbb{Z})$ then

$$\int_{[\![x]\!]} d\theta = 2\textit{n}_1\alpha_1 + 2\textit{n}_2\alpha_2 + 2\textit{n}_3\alpha_3.$$

When are billiard paths stable? (4 of 4)

• Consequently, in order for a homology class $\llbracket x \rrbracket = n_1 \beta_1' + n_2 \beta_2' + n_3 \beta_3' \in H_1(T_1 \mathcal{D}(\Delta) \setminus \Sigma, \mathbb{Z})$ to contain the derivative of a closed geodesic, it must be

$$n_1\alpha_1+n_2\alpha_2+n_3\alpha_3=0.$$

- Suppose, $\widehat{\gamma}$ is a stable periodic billiard path. Let γ be the pull back to $\mathcal{D}(\Delta)$. Then γ' must be homologous to zero in $\mathcal{T}_1\mathcal{D}(\Delta) \setminus \Sigma$.
- Remark: In fact, this is a sufficient condition for stability. This can be seen by checking that all remaining conditions for a homotopy class in $\mathcal{D}(\Delta) \setminus \Sigma$ to contain a geodesic are open conditions.

Theorem (Classification of tiles)

Let $\widehat{\gamma}$ be a periodic billiard path in a triangle Δ . Then tile($\widehat{\gamma}$) is stable iff γ' is null homologous. Otherwise, tile($\widehat{\gamma}$) is an open subset of a rational line.

Translation surfaces (1 of 2)

- A translation surface is a Euclidean cone surface whose cone angles are all in $2\pi\mathbb{N} \cup \{\infty\}$.
- These surfaces appear naturally from the point of view of the previous discussion.
- Consider the group homomorphism

$$\Theta: \pi_1(T_1\mathcal{D}(\Delta) \setminus \Sigma) \to \mathbb{R}: [x] \mapsto \int_x d\theta.$$

- Let $\phi: T_1\mathcal{D}(\Delta) \setminus \Sigma \to \mathcal{D}(\Delta) \setminus \Sigma$.
- Let $G = \phi_*(\ker \Theta) \subset \pi_1(\mathcal{D}(\Delta) \setminus \Sigma)$.
- A homotopy class [γ] in D(Δ) \ Σ must lie in G in order to contain a geodesic.
- The cover of $\mathcal{D}(\Delta)$ branched over Σ associated to G is a translation surface $MT(\Delta)$.

Translation surfaces (2 of 2)

- We call $MT(\Delta)$ the minimal translation surface cover of $\mathcal{D}(\Delta)$.
- We will now describe a less technical definition of $MT(\Delta)$.
- Let H be the group $\mathbb{Z}_2 * \mathbb{Z}_2 * \mathbb{Z}_2$ generated by r_1, r_2, r_3 .
- Let $\rho: H \to \text{Isom } \mathbb{R}^2$ which sends each generator r_i to reflection in the *i*-th side of Δ .
- $MT(\Delta)$ is $\{h(\Delta) \mid h \in H\}$ with some identifications:
 - **①** Identify $h_1(\Delta)$ and $h_2(\Delta)$ along the edge i if $h_1 \circ h_2^{-1} = r_i$.
 - ② Identify triangles $h_1(\Delta)$ and $h_2(\Delta)$ if $\rho(h_1 \circ h_2^{-1})$ is a translation.

Example minimal translation surfaces

- The minimal translation surface for the 30-60-90 triangle is a hexagonal torus.
- The minimal translation surface of a right triangle whose other angles are not rational multiples of π is an infinite union of rombi.

Closed geodesics on translation surfaces

- Every closed geodesic on a Euclidean cone surface $\mathcal{D}(\Delta)$ lifts to the minimal translation surface cover of $MT(\Delta)$.
- The direction map $\theta: T_1\mathbb{R}^2 \to \mathbb{R}/2\pi\mathbb{Z}$ lifts to a map $\theta: T_1MT(\Delta) \to \mathbb{R}/2\pi\mathbb{Z}$.
- The direction map θ is invariant under the geodesic flow. Thus, closed geodesics on $MT(\Delta)$ never intersect.
- Moreover, two geodesics which travel in the same direction can not intersect.
- This is the main idea behind the proof of

Theorem

Right triangles don't have stable periodic billiard paths.

We will now discuss the proof.

No stable trajectories (1 of 4)

- It is sufficient to prove that a right triangle Δ whose other angles are not rational multiples of π has no stable periodic billiard paths.
- A periodic billiard path $\widehat{\gamma}$ in Δ lifts to a closed geodesic γ in $\mathcal{D}(\Delta)$.
- γ lifts to a closed geodesic $\tilde{\gamma}$ in $MT(\Delta)$.

No stable trajectories (2 of 4)

- MT(Δ) supports a rotation by π, ρ, which preserves each rhombus.
- This rotation by π , ρ , is an automorphism of the cover

$$MT(\Delta) \rightarrow \mathcal{D}(\Delta)$$

No stable trajectories (3 of 4)

- Sketch of proof: Right triangles only have unstable periodic billiard paths.
- We will show that the pair of curves γ and ρ(γ) bound a cylinder in MT(Δ) containing two centers of rhombi, C₁ and C₂.

No stable trajectories (4 of 4)

• Then in homology on MT_{Δ} ,

$$[\![\widetilde{\gamma}]\!] + [\![\rho(\widetilde{\gamma})]\!] = [\![\partial C_1]\!] + [\![\partial C_2]\!]$$

Under the covering map

$$\phi: MT_{\Delta} \to \mathcal{D}_{\Delta},$$

- $\qquad \phi(\llbracket \partial \mathbf{C}_1 \rrbracket) = \phi(\llbracket \partial \mathbf{C}_2 \rrbracket)$
- ► Thus,

$$\llbracket \gamma \rrbracket = \phi(\llbracket \partial C_1 \rrbracket) \neq 0$$

• The geodesic γ is **unstable**!

Finding the cylinder (1 of 3)

Claim 1: $\tilde{\gamma} \cup \rho(\tilde{\gamma})$ intersects each edge of each rhombus an even number of times.

Proof:

- Fixing the direction $\tilde{\gamma}$ travels, there are only 3 possible ways $\tilde{\gamma}$ can cross each rhombus R_k .
- The claim is equivalent to showing that the number of type $\bf A$ crossings of $\widetilde{\gamma}$ equals the number of type $\bf C$ crossings of $\widetilde{\gamma}$.
- But, $\tilde{\gamma}$ must close up. So, each time it passes from R_{k+1} to R_{k-1} it must later pass from R_{k-1} to R_{k+1} .

Finding the cylinder (2 of 3)

Claim 2: $\widetilde{\gamma} \cup \rho(\widetilde{\gamma})$ disconnects $MT(\Delta)$. At least one component contains no singularities with infinite cone angle. **Proof:**

- By claim 1, each rhombus
 R_k \ (γ̃ ∪ ρ(γ̃)) may be colored
 so that each infinite cone point is
 blue, and colors alternate
 blue/green by adjacency.
- The colorings of each rhombus agree along the boundaries of the rhombi. So, the green and blue components are distinct.

Finding the cylinder (3 of 3)

- The only oriented Euclidean surface with one or two geodesic boundary components is a cylinder.
- We still must show that the cylinder contains two centers of rhombi.
- By construction, the rotation by π must preserve the cylinder. A rotation by π of a cylinder has 2 fixed points. The only fixed points of the rotation by π of $MT(\Delta)$ are the centers.

The generalization

• The right triangles consist of three lines ℓ_1 , ℓ_2 , and ℓ_3 in the space of triangles \mathcal{T} .

Theorem (H)

If $\widehat{\gamma}$ is a stable periodic billiard path in a triangle, then tile($\widehat{\gamma}$) is contained in one of the four components of $\mathcal{T} \setminus (\ell_1 \cup \ell_2 \cup \ell_3)$.

The argument in action (1 of 2)

- Here is a stable periodic billiard path in a slightly obtuse triangle.
- Let's prove that a periodic billiard path with the same orbit type can not appear in a triangle where this obtuse angle becomes right or acute.

The argument in action (2 of 2)

- The proof follows from the "general principle" that intersections between geodesics on locally Euclidean surfaces are "essential."
- For every triangle Δ with a geodesic in this homotopy class on $\mathcal{D}(\Delta)$, we can find an intersection A with similar topological properties.

The argument in action (3 of 2)

- This angle a must satisfy 0 < a < π.
- We compute this angle using a "detecting curve" η' on the unit tangent bundle.

$$a=\int_{\eta'} d\! heta$$

• Thus, for all $\Delta \in tile(\widehat{\gamma})$,

$$0<\int_{\eta'} d\! heta_{\Delta} < \pi$$

The argument in action (4 of 4)

We compute

$$a = \int_{\eta} d\theta$$

$$= 2\alpha_3 - 2\alpha_1 - 2\alpha_2$$

$$= 4\alpha_3 - 2\pi$$

• For all $\Delta \in \textit{tile}(\widehat{\gamma})$,

$$0 < a < \pi$$

So,

$$\frac{\pi}{2} < \alpha_3 < \frac{3\pi}{4}$$

The argument in action (5 of 5)

Iterating over all intersections gives a convex bounding box for the tile.

