

 $C \times Cn = r^{n} (\alpha (n+r) - \alpha (n))$ $X = r^{n} (\alpha (n+r) - \alpha (n))$

- 2
- a h(+) = u(+) a(+) = et h(+-T) -> +
 - te J(+)= JoTh(+-T) dT =
 - $\frac{t}{3(4)} = \int_{-\infty}^{t} e^{T} dt = e^{T} \Big|_{-\infty}^{t} = e^{t}$
 - (b) h(t) = u(t) n(t) = e t u(t) h(t-1)
 - t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t < 0 t
 - $-\frac{1}{2}$, $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
 - (t-1) t-1 t t-1 7
 - $-1 < t + 1 < 0 \Rightarrow -r < t < -1$ $\exists (+) = \int dT = t + r'$
- $\frac{t_{-1}}{t_{-1}} + \frac{t_{-1}}{t_{-1}} = \frac{t_{-1}}{t_{-1}} + \frac{t_{-1}}{t_{-1}} = \frac{t_{-1}}{t_{-1}} = \frac{t_{-1}}{t_{-1}}$

Year.

Month.

y (1) = a(+) + h(+)

= ~ (+) » (b(++ =) -+ × b(t - a))

= (n(+) & & (t - 1) - 1 (n(+) & & (t - 1 =))

J(t) = n(t+ =) + 7 n (+ + =)

t < - < J C+) = 0

 $-\frac{\vee}{Y}(\zeta+\zeta-\frac{\omega}{Y})=\chi(\chi(\zeta+\frac{\omega}{Y})-1)=\zeta+\frac{1}{2}(\chi(\zeta+\frac{\omega}{Y})-1)=\zeta+$

 $-\frac{2}{\sqrt{2}} < t \leq -\frac{\pi}{\sqrt{2}} \qquad \exists (t) = \left(7 \left(t - \frac{\pi}{\sqrt{2}} \right) - 1 \right) - \frac{\pi}{\sqrt{2}} \left(7 \left(t - \frac{2\pi}{\sqrt{2}} \right) - 1 \right)$

-- < t < - + J(+) = (Y(t - =) -1) + Y(Ln(t -=))

-1 < t < 1 y C+) = Ln(++ m) + re t-1 = 1

- (t < " & C+) = E+ "

=<t] C+1 = 0

Year.

Month. Day. PAYA

a Linear: ", (1) -> J, (1) + d (M (4)

 $a m_{i, \uparrow} b m_{\uparrow}$ (+) $d (a m_{\uparrow}(+) + b m_{\uparrow}(+)) = d$ $d (a m_{\uparrow}(+) + b m_{\uparrow}(+)) = d$

mu y, (+) = d (m (+)

 $J_{r}(t-7) = d(m_{1}(t-7)) \qquad \boxed{J}$ $J_{t}(t-7) = d(m_{1}(t-7))$ $J_{t}(t-7) = d(m_{1}(t-7))$ $J_{t}(t-7) = d(m_{1}(t-7))$

(b) $\lambda(t) = \frac{ds(t)}{dt}$ Garden

S(4) = U(+) + K(+) = h(+) + U(+) = Jh(+) U(+-T) dT

ds(+) = h(+)

Year.

Month.

Day.

(a) $h(t) = e^{-\frac{\pi}{2}t}$ $h(x) = e^{-\frac{\pi}{2}t}$ $e^{-\frac{\pi}{2}t}$ $e^{-\frac{\pi}{2}t}$

h(r) = C.5 (82) = 1 7 9 memory Less @

 $\int_{-\infty}^{\infty} |cr_{n}(t)| dt = \int_{-\infty}^{\infty} |cr_{n}(t)| dt =$

stuble 0

Ch(t): sin(t) (1(t)

 $t \qquad t \qquad = \frac{57}{2} = \frac{57}{2} = \frac{4}{2} = \frac{1}{2} = \frac{1}{2}$

Time the contract of the formation of the standard of the stan

Day. Month.

(e) h[n] = (1) u[-n]

(9 | h [n] = (-5 (7 n) u [n+1)

(5) L(+)=	15
	7
	· · · · · · · · · · · · · · · · · · ·
n(f) =	e Y
	n(1-T) t 1 T
h(+) x a (+)	₽
	$\int h(f) m(t-T) dT =$
t-1>,2 y	t 7, d
45t-152	Tites fredt firet dt
a <t-1<1< th=""><th>1 < t < r / re the Jue the Jue that</th></t-1<1<>	1 < t < r / re the Jue the Jue that
4-	t-1 Y 2
6-1 (0	t <1 fre the fre the

6 J(t) = M(t) + h(t) hr=hr=6 he = 6(t-1) J(+) = J,(+) + J~(+) + J,(+) J. (+) = n(+) + h, (+) Jr (+) = 2 4 4 (+) & hr (+) = (may & hr (+)) = hr (+) JE (1) = wct) & he(f) = (wct) & he(t) J(+) = n(+) = (n(+) = hr(+) | = hr(+) + (n(+) = hr(+)) = he(+) J(+) = nt & (h+(+) + (hx(+) & hx(+) + (hx(+) & hx(+))) heg = e u(+) + G(+) + U(1-1) - U(+-1) heate hy(+) & ha(+) = hx(+) & 6(t-1) = hx(+-1) = U(t-1) - U(t-1) General hr(t) shr(t) - Shr(t) hr(t-T) dT hr(t-T) tx0 G(1)=0 + hx(1) $extx1 G(t) = \int dT = t$ 64): t> r 6-41=0

reat. Worth.	Day.		
) h[n] on[n] =	E a ngn-k]	=] [n]	
h [n-i] an[n]	= \(\times \times \tau \tau \left(n - k \right) \\ k=1 \end{array}	- 1 (y[n] - a[n])
~ J[n-1] =		7) J[n]: n[n]	

Subject:

Year.

Month.

Day.

(S) h, - e uct) h, (+) = 6(+) + 6(+)

if h, phr = 5 CH invortable

h.(+) = h(+) = (e u(+) = 6(+)) + (e u(+) = 6(+))

-t u(+) = -t u(+) + e 6(+)

b U[n] → (S[n] S[n-1]) = U[n] S[n] _ U[n] S[n-1]
U[n] → U[n] S[n] _ U[n] S[n]