toxFlow v.0.1 Tutorial

Dimitra Danai Varsou
School of Chemical Engineering, National Technical University of Athens
Conctact: dimitra.varsou@gmail.com

July 31, 2017

Introduction

toxFlow is an application of web tools for Gene Set Variation Analysis (GSVA) and toxicity prediction using read across technique and it is released under GNU General Public License. The application consists of three main parts, in three different tabs (as can be seen in Fig.1). The first two parts can be used independently, while the third part depends on model training, thus it cannot be performed prior to the second part:

- 1. GSVA: In this part, the user can employ the provided tools in order to perform Gene Set Variation Analysis [1] through the samples of an expression data set. Different omics data types could be analysed (genomics, proteomics). Using GSVA analysis tools a group of all statistically significant gene set are presented in a table along with corresponding acyclic graphs and heatmaps, also providing links to pathway databases whenever possible.
- 2. Read across training: In this part training of a toxicity-prediction model is performed, via read across techniques [2] and leave-one-out cross-validation method [4]. Using read across technique a table that contains all nanoparticles (NPs) with a successful prediction for the toxicity index is presented, as well as correlation coefficient R^2 (as an index of successful prediction) and a diagram of NPs with their neighbours (NPs' universe).
- 3. Read across prediction: After model training, the user can predict the unknown value of toxicity indices of a nanoparticles' (NPs) data set. After prediction a table that contains the predicted value of toxicity index for all the NPs is presented along with the NPs' universe diagram.

The web application is available in: http://147.102.86.129:3838/, the source code and the manual are available at GitHub (https://github.com/DemetraDanae/toxFlow, doi: 10.5281/zenodo.595814) and a video tutorial on YouTube.

1 GSVA

1.1 Input data

Before running the GSVA analysis, the user should import two files by selecting from the drop-down list Import files (Fig. 2C), of the inner tab Input data (Fig. 2B). The first file (Biological data) must contain the samples of an expression data set. The file must have a specific form, in order to be read properly: it must be a .csv file where the columns contain samples and the rows contain genes or proteins. Additionally, the first column must contain the names of genes or proteins and the first row must contain the names of the samples (Fig. 4). The second file (Data classification) should be a .csv file with two columns. The first column (named «ID») must contain the names of the samples, while the second column (named «classification») the classification of the samples into categories (Fig. 5), which will be used for the creation of the design matrix. By selecting from the drop-down list Use demo dataset the

Figure 1: User interface of toxFlow application. On the top ribbon are shown the three tabs (each for every main part).

user can see an example of the analysis for anionic-cationic classification (Fig. 3A). The dataset comes from Walkey *et al.* (2014) published article [3] which consists of protein corona fingerprint for 84 gold NPs with diameter 15, 30 and 60 nm, from LC/MS-MS analysis experiments. These nanoparticles were incubated with cells of A549 cell line (human lung epithelial cancer cells).

The supplied data set could be normalized, by clicking on the check-box (**Scaling of raw data-**(Fig. 2D), according to the following equation:

$$c_{\rm sc} = \frac{c_{\rm in} - min}{max - min} \tag{1}$$

Where $c_{\rm in}$, the value of the parameter before normalization, min, the minimum value of the parameter in the set, max, the maximum value of the parameter in the set and $c_{\rm sc}$, the normalized value of the parameter.

Furthermore, the user can select from a drop-down list the **Accession ID** of the gene or protein names (Uniprot, EntrezID, RefSeq or Symbol), as it can be seen in Fig.2E.

1.2 Parameters of analysis

In the section **Gene set collection** of the inner tab **Parameters of analysis** (Fig.2F) the user can select between the C5: GO gene sets, MF: GO molecular function (GO-MF) and CTD Disease-GO molecular function associations (CTD-MF) gene set collections (Fig.2G). GO-MF

Figure 2: Input data and adjustment of parameters of the GSVA analysis: A. Informative messages, B. Inner tab "Input data", C. Choice of files, D. Scaling of raw data, E. Accession ID selection, F. Inner tab "Parameters of the analysis", G. Gene set collections and H. Run button.

Figure 3: Adjustment of parameters of the GSVA analysis: A. Number of bootstraps, B. Gene set size, C. Adjusted p-value cut off and D. GO mapping.

		Samples								
		Α	В	С	D	E	F	G	Н	I
	1		G15.AC	G15.AHT	G15.Ala.SH	G15.Asn.SH	G15.AUT	G15.CALNN	G15.CIT	G15.CTAB
	2	P01024	0.073492144	0.021656535	0.08105939	0.084718923	0.024524313	0.043650794	0.127461707	0.091865358
	3	P01834	0.011657375	0.015957447	0.005617978	0.011876485	0.014799154	0.005952381	0.028993435	0.019635344
	4	P0C0L4	0.027369488	0.055091185	0.017656501	0.015835313	0.054968288	0.034391534	0.038840263	0.074333801
	5	P02647	0.004561581	0.007978723	0.005617978	0.007125891	0.012684989	0.008597884	0.018052516	0.047685835
	6	P01871	0.016725798	0.018237082	0.008025682	0.015043547	0.016490486	0.006613757	0.011487965	0.00911641
	7	P01857	0.014698429	0.015577508	0.003210273	0.004750594	0.006342495	0.014550265	0.032275711	0.021037868
	8	P02649	0.085656361	0.001899696	0.107544141	0.102137767	0.012262156	0.010582011	0.012035011	0.01542777
	9	B9A064	0.003547897	0.002659574	0.001605136	0.005542359	0.002536998	0.003306878	0.013676149	0.00911641
	10	P10909	0.012671059	0.005319149	0.00882825	0.005542359	0.008033827	0.007936508	0.007658643	0.010518934
Proteins	11	P01876	0.008109478	0.011398176	0.005617978	0.006334125	0.009302326	0.007936508	0.019693654	0.021037868
	12	P04004	0.033451597	0.021656535	0.085072231	0.071258907	0.095560254	0.054232804	0.037199125	0.036465638
	13	Q14624	0.002534212	0.00493921	0.002407705	0.003958828	0.002536998	0.022486772	0.064551422	0.025245442
	14	P01009	0.006588951	0.016717325	0.006420546	0.003167063	0.01987315	0.009920635	0.006564551	0.0371669
	15	P04114	0.079574252	0.021276596	0.016853933	0.026128266	0.023678647	0	0.007658643	0.04628331
	16	P00734	0.061834769	0.263677812	0.123595506	0.106096595	0.226638478	0.141534392	0.024617068	0.0371669
	17	P0C0L5	0.001520527	0.007598784	0.001605136	0.002375297	0.005496829	0.001322751	0	0.003506311
	18	P01766	0.000506842	0.000759878	0	0.000791766	0.000422833	0.001322751	0.002188184	0.000701262
	19	P01008	0.112012164	0.047112462	0.313001605	0.288202692	0.043128964	0.185846561	0.085339168	0.066619916
	20	P04196	0.044095286	0.001899696	0.031300161	0.040380048	0.001691332	0.072089947	0.019146608	0.011921459
	21	P02652	0.003041054	0.003039514	0.010433387	0.006334125	0.003382664	0	0.00273523	0.010518934
	22	P04003	0.031931069	0.127279635	0	0.001583531	0.101057082	0	0.010393873	0.001402525
	23	P02766	0.002027369	0.004179331	0.004815409	0.003958828	0.024524313	0.003306878	0.001094092	0.007713885
	24	P01860	0.005068424	0.001139818	0.001605136	0.000791766	0.002114165	0.00462963	0.007111597	0.004207574

Figure 4: Required format of the .csv file with a sample of input data for GSVA analysis.

is taken from MSigDB v5.1 and contains 396 gene sets in GO terms and *CTD-MF* is taken from Comparative Toxicogenomics Database and contains 3992 gene sets in GO IDs. The user can also import another gene set collection in order to perform the analysis. In this case, the file must be in .csv format with two columns. The first column must contain GO terms and the second the corresponding EntrezIDs (Fig. 6).

Additionally, in **Number of bootstraps** (Fig. 3A) field the user can choose the number of bootstrap iterations to be performed in GSVA function (default value is 1 bootstrap) and in **Gene set size** (Fig. 3B) can control the minimum and maximum size of the resulting gene sets (default value is 1 and 6000 respectively). In **Adjusted p-value cut off** the user can control the threshold of adjusted p-value in order to select the significant of the gene sets that result from the linear analysis of the GSVA enrichment scores (Fig. 3C). Finally the user in **GO mapping for acyclic graph** can choose between GOMFPARENTS and GOMFCHILDREN, as the main parameter of the acyclic graph that depicts the significant gene sets and the hierarchical relations with other gene sets of Gene Ontology (Fig. 3D).

1.3 Results

If all the required files are uploaded, by clicking **Run analysis** the application is performing the analysis, according to the parameters above (Fig. 2H). Otherwise the corresponding button remains disabled till all necessary files are provided. The application displays messages in order to help the user to handle the inputs (Fig. 2A). After running the analysis, the application exports a table that contains the significant gene sets, their GO ID, their size, the adjusted p-value based on Benjamini-Hochberg (BH) [5] multiple correction method of the linear model, and the counts (the number of genes in the initial data set that are found in the gene sets of the gene set collection). The user can download the table in the form of a .csv file. In addition the application produces a heatmap with the gene sets that result from GSVA and an acyclic graph (Fig. 14). Both the heatmap and the acyclic graph can be downloaded too.

	А	В	С
1	cnano.ids	Classification	
2	G15.AC	Anionic	
3	G15.AHT	Cationic	
4	G15.Ala.SH	Anionic	
5	G15.Asn.SH	Anionic	
6	G15.AUT	Cationic	
7	G15.CALNN	Anionic	
8	G15.CIT	Anionic	
9	G15.CTAB	Cationic	
10	G15.DDT.BDHDA	Cationic	
11	G15.DDT.CTAB	Cationic	
12	G15.DDT.DOTAP	Cationic	
13	G15.DDT.ODA	Cationic	
14	G15.DDT.SA	Anionic	
15	G15.DDT.SDS	Anionic	
16	G15.DTNB	Anionic	
17	G15.F127	Anionic	
18	G15.Gly.SH	Anionic	
19	G15.HDA	Cationic	
20	G15.LA	Anionic	
21	G15.MAA	Anionic	
22	G15.MBA	Anionic	
23	G15.MES	Anionic	
24	G15.Met.SH	Anionic	
25	G15.MHA	Anionic	
26	G15.MHDA	Anionic	
27	G15.MPA	Anionic	

Figure 5: Required format of the .csv file with a sample of input data for classification.

	А	В	С
1 (GOterm	EntrezID	
2 1	0-hydroxy-9-(phosphonooxy)octadecanoate phosphatase activity	1914	
3 1	1-beta-hydroxysteroid dehydrogenase (NADP+) activity	2800	
4 1	1-beta-hydroxysteroid dehydrogenase [NAD(P)] activity	2801	
5 1	1-beta-hydroxysteroid dehydrogenase [NAD(P)] activity	2800	
6 1	1-cis retinal binding	5068	
7 1	,1-dichloro-2-(dihydroxy-4-chlorophenyl)-(4-chlorophenyl)ethene 1,2-dioxygenase activity	298	
8 1	,2-bis(4-hydroxyphenyl)-2-proponol dehydratase activity	91	
9 1	,2-dihydroxy-5,6,7,8-tetrahydronaphthalene extradiol dioxygenase activity	298	
10 1	,2-dihydroxyfluorene 1,1-alpha-dioxygenase activity	298	
11 1	,2-dihydroxynaphthalene-6-sulfonate 1,8a-dioxygenase activity	298	
12 1	,2-dihydroxy-phenanthrene glycosyltransferase activity	3332	
13 1	,2-dihydroxy-phenanthrene glycosyltransferase activity	591	
14 1	,2-dihydroxy-phenanthrene glycosyltransferase activity	587	
15 1	,2-dihydroxy-phenanthrene glycosyltransferase activity	588	
16 1	,2-dihydroxy-phenanthrene glycosyltransferase activity	2291	
17 1	,2-dihydroxy-phenanthrene glycosyltransferase activity	589	
18 1	,2-dihydroxy-phenanthrene glycosyltransferase activity	592	
19 1	,2-dihydroxy-phenanthrene glycosyltransferase activity	4473	
20 1	,2-dihydroxy-phenanthrene glycosyltransferase activity	4477	
21 1	,2-dihydroxy-phenanthrene glycosyltransferase activity	586	
22 1	,2-dihydroxy-phenanthrene glycosyltransferase activity	2408	
23 1	,2-dihydroxy-phenanthrene glycosyltransferase activity	4605	
24 1	,2-dihydroxy-phenanthrene glycosyltransferase activity	2244	
25 1	,2-dihydroxy-phenanthrene glycosyltransferase activity	3653	
26 1	,2-dihydroxy-phenanthrene glycosyltransferase activity	590	
27 1	,2-dihydroxy-phenanthrene glycosyltransferase activity	2243	

Figure 6: Required format of the .csv file with a sample of a gene set collection.

2 Read across training

2.1 Import data

The user must upload two .csv files in the application (from the drop-down list **Import files**, Fig. 9B) of the inner tab **Input data** (Fig. 9A): The first one (**Physicochemical data**) must contain the values of physicochemical descriptors (samples in columns and descriptors in rows). The second one (**Biological data**) must contain the samples of an expression data set (samples in columns and genes or proteins in rows). Both files should include in the first row and in the first column the names of the samples and the indeces respectively and should have the same number of columns (same nanoparticles). Also, both files must contain the values of the toxicity

index, which will be predicted by the model, in the second row (Fig. 7 and 8). By selecting from the drop-down list **Use demo dataset** the user can see an example of the analysis. The dataset comes from Walkey *et al.* (2014) published article [3]. For defining similarity physicochemical descriptors and protein corona composition data were used, while cell association was used as the end-point.

						San	nples _F				
		A	В	С	D			G	Н		J
	. 1		G15.AC	G15.AHT	G15.Ala-SH	G15.Asn-SH	G15.AUT	G15.CALNN	G15.CIT	G15.CTAB	G15.DDT@BDHDA
Tox	cicity	index	0.02751	0.49705	0.02203	0.01955	0.40174	0.0071	0.02336	0.01719	0.00637
	3	class	1	0	1	1	0	1	1	0	0
	4	lspri_synth	0.182530253	0.458209658	0.223533915	0.273619886	0.365435833	0.206909736	0.210430919	0.326141556	0.266578823
	5	lspri_serum	0.454404195	0.525747071	0.274761252	0.327264445	0.389573359	0.26532699	0.292836119	0.365810851	0.317133738
	6	lspri_relative	2.48947332	1.147394127	1.22917031	1.196055046	1.066051338	1.28233207	1.391602152	1.121632137	1.189643401
	7	lspri_diff	0.271873942	0.067537412	0.051227337	0.053644559	0.024137526	0.058417254	0.082405201	0.039669294	0.050554915
	8	lspri_rel_ch	1.48947332	0.147394127	0.22917031	0.196055046	0.066051338	0.28233207	0.391602152	0.121632137	0.189643401
	9	zav_synth	22.36	30.95	22.64	23.09	23.8	25.22	18.65	15.6	23.15
	10	zav serum	57.53	90.06	44.43	37.75	55.98	38.8	54.03	59.7	47.03
Decemina		pdi_synth	0.084	0.399	0.147	0.15	0.326	0.144	0.138	0.465	0.187
Descript	ors	pdi serum	0.27	0.215	0.184	0.207	0.273	0.154	0.217	0.371	0.336
	13	vol synth	21.94	11.76	22.32	21.22	4.11	21.32	19.47	2.75	22.84
	14	vol_serum	21.75	67.79	44.8	74.66	221.93	36.99	38.58	69.66	175.14
	15	num_synth	23.49	47.5	35.03	23.04	29.49	23.12	28.3	35.99	27.78
	16	num_serum	18.38	53.87	34.07	31.4	25.25	34.38	32.35	17.68	23.34
	17	int_synth	23.49	47.5	35.03	23.04	29.49	23.12	28.3	35.99	27.78
	18	int serum	70.97	106.7	63.72	68.92	83.34	41.33	64.47	105.1	140.15
	19	hdlayer synth	7.46	16.05	7.74	8.19	8.9	10.32	3.75	0.7	8.25
	20	hdlayer serur	42.63	75.16	29.53	22.85	41.08	23.9	39.13	44.8	32.13
	21	hdrel synth	1.500671141	2.077181208	1.519463087	1.54966443	1.597315436	1.69261745	1.251677852	1.046979866	1.553691275
	22	hdrel_serum	3.861073826	6.044295302	2.981879195	2.533557047	3.75704698		3.156375839		
	23	zav_ch	35.17	59.11	21.79	14.66	32.18	13.58	35.38	44.1	23.88
	24	pdi_ch	0.186	-0.184	0.037	0.057	-0.053	0.01	0.079	-0.094	0.149

Figure 7: Required format of the .csv file with a sample of physicochemical data.

		A	В	С	D	E	Sample	s G	Н	1	J	K
	1	cnano ids	G15.AC	G15.AHT	G15.Ala.SH	G15.Asn.SH			G15.CIT	G15.CTAB	G15.DDT.BDHDA	G15.DDT.CTAB (
	Toci	city inde	0.02751	0.49705	0.02203	0.01955	0.40174	0.0071	0.02336	0.01719	0.00637	0.00519
	3	P01024	0.07349214	0.02165654	0.08105939	0.08471892	0.02452431	0.04365079	0.12746171	0.09186536	0.1032197	0.09298999
	4	P01834	0.011657375	0.015957447	0.005617978	0.011876485	0.014799154	0.005952381	0.028993435	0.019635344	0.039772727	0.022174535
	5	P02647	0.004561581	0.007978723	0.005617978	0.007125891	0.012684989	0.008597884	0.018052516	0.047685835	0.047348485	0.057939914
	6	P01871	0.016725798	0.018237082	0.008025682	0.015043547	0.016490486	0.006613757	0.011487965	0.00911641	0.03125	0.017167382
	7	P01857	0.014698429	0.015577508	0.003210273	0.004750594	0.006342495	0.014550265	0.032275711	0.021037868	0.026515152	0.011444921
	8	P02649	0.085656361	0.001899696	0.107544141	0.102137767	0.012262156	0.010582011	0.012035011	0.01542777	0.015151515	0.015736767
Protei	ne -	B9A064	0.003547897	0.002659574	0.001605136	0.005542359	0.002536998	0.003306878	0.013676149	0.00911641	0.005681818	0.005722461
Trote	113	P04004	0.0334516	0.02165654	0.08507223	0.07125891	0.09556025	0.0542328	0.03719912	0.03646564	0.01893939	0.03004292
	11	Q14624	0.002534212	0.00493921	0.002407705	0.003958828	0.002536998	0.022486772	0.064551422	0.025245442	0.007575758	0.039341917
	12	P01009	0.006588951	0.016717325	0.006420546	0.003167063	0.01987315	0.009920635	0.006564551	0.0371669	0.053030303	0.034334764
	13	P04114	0.079574252	0.021276596	0.016853933	0.026128266	0.023678647	0	0.007658643	0.04628331	0.303030303	0.178111588
	14	P0C0L5	0.001520527	0.007598784	0.001605136	0.002375297	0.005496829	0.001322751	0	0.003506311	0.003787879	0.002145923
	15	P01008	0.11201216	0.04711246	0.31300161	0.28820269	0.04312896	0.18584656	0.08533917	0.06661992	0.01988636	0.04864092
	16	P04196	0.044095286	0.001899696	0.031300161	0.040380048	0.001691332	0.072089947	0.019146608	0.011921459	0	0.007868383
	17	P04003	0.031931069	0.127279635	0	0.001583531	0.101057082	0	0.010393873	0.001402525	0.001893939	0.00286123
	18	P02766	0.002027369	0.004179331	0.004815409	0.003958828	0.024524313	0.003306878	0.001094092	0.007713885	0.016098485	0.005007153
	19	P01023	0.011657375	0.004559271	0.00882825	0.004750594	0.005496829	0.011904762	0.010940919	0.011220196	0.005681818	0.005007153
	20	P01620	0.001520527	0.001139818	0	0	0	0	0.004376368	0.000701262	0.002840909	0.001430615
	21	P01042	0.020273695	0	0.016853933	0.017418844	0	0.056878307	0.074945295	0.050490884	0	0.033619456

Figure 8: Required format of the .csv file with a sample of biological data.

Furthermore the user can select if the physicochemical and expression data should be normalized (Scaling of physicochemical data, Scaling of biological data, Fig. 9C) according to equation 1. Also the user can select whether only the significant genes or proteins (according to the data) from the GSVA analysis will be used (Fig. 9D). It is implied that in the previous section the user will have analysed the same biological data. If no GSV Analysis is performed the check-box remains disabled.

In case that only one file of input data (either the physicochemical or the biological) is available, the user can select the appropriate check-box (**Only one file available**) and he is enabled to upload the corresponding file and proceed to the analysis. The file must follow the format presented before.

2.2 Adjust parameters of analysis

In order to reduce the noise of the data for the analysis, the user can filter the attributes according to the absolute value of their correlation to the endpoint. For this purpose, two

Figure 9: Read across input files: A. Inner tab "Input data", B. Choice of files, C. Scaling of raw data, D. Use of differentially expressed proteins from GSVA, E. Determine whether only one file is available and F. Selection of available file.

sliders are available in order to define the filtering level of the absolute values of the attribute's correlation (2) to the endpoint. For the estimation of similarity between NPs, the user can choose from a drop-down list (Similarity calculation method) one of the following options: cosine similarity (3), Manhattan (4) and Euclidean (5) distance (Fig. 10). The user can define the physicoshemical and biological threshold that control the selection of neighbouring NPs from numeric inputs (Fig. 11C). Finally, in **Prediction base** the user can choose if the prediction will be calculated on a physicochemical or on biological base (Fig. 11D). In case that only one file is uploaded the user can control only the corresponding level of attribute filtering and similarity threshold and the prediction base is selected automatically, according to the input file. By pressing the button **Training** (Fig. 11E) the model training begins. This button remains disabled till all necessary files are provided. The user can change the similarity method, the calculation base and the two thresholds and the results will be updated automatically.

Figure 10: Similarity calculation measure selection

$$r = \frac{\sum\limits_{i=1}^{N}(A_i - \overline{A})(B_i - \overline{B})}{\sqrt{\sum\limits_{i=1}^{N}(A_i - \overline{A})^2}\sqrt{\sum\limits_{i=1}^{N}(B_i - \overline{B})^2}}$$
 (2)

Where A_i , the i^{th} value of the vector A, B_i , the i^{th} value of the vector B,

 \overline{A} , the average value of the vector A and \overline{B} , the average value of the vector B.

$$cos(\theta) = \frac{\sum\limits_{i=1}^{N} A_{i}B_{i}}{\sqrt{\sum\limits_{i=1}^{N} A_{i}^{2}\sqrt{\sum\limits_{i=1}^{N} B_{i}^{2}}}}$$
 (3)

$$d_1 = \sum_{i=1}^{N} |A_i - B_i| \tag{4}$$

$$d_2 = \sqrt{\sum_{i=1}^{N} (A_i - B_i)^2} \tag{5}$$

Where A_i , the i^{th} value of the vector A, B_i , the i^{th} value of the vector B and N, the total number of samples.

Also the user can visualize the NPs «universe»: the user can choose a reference NP (Fig. 11F) and observe its neighbours in color code, by adjusting the physicochemical and biological thresholds (Fig. 11I-J). Also, by selecting Nanoparticles' diameter and Nanoparticles' classification (Fig. 11G-H) the user can upload two corresponding files and observe the reference's neighbours according to their size and their classification. The file with the NPs size must be a .csv file. The 1st column must contain the samples and the 2nd samples' diameter (Fig. 12). The file with the NPs classification must be a .csv file. The 1st column must contain the samples and the 2nd samples' phenotype or other categorical variable of interest (Fig. 5). Every time the user changes the reference NP, imports the size and/or the classification file, and the thresholds, the user should press the button Visualize (Fig. 11K), in order to update the diagram. All parameters are shown in Figure 11.

2.3 Results

The analysis produces a table that contains all NPs with a successful prediction for the toxicity index, with the actual and the predicted value of this index. The prediction value is calculated using the same units as the actual values. The user can download this table in the form of a .csv file. In addition the correlation coefficient R^2 is presented, as well as the NPs' universe diagram (Fig. 15).

3 Read across prediction

3.1 Import data

The last section of the application can be used <u>after</u> the read across training. If training is not performed the Prediction button (see below) remains disabled. In that way, the toxicity index of a data set can be predicted, when all the physicochemical and biological indices that where used in training are known values. The user must upload two .csv files in the application (Fig. 13A-B): The first one (**Physicochemical data**) must contain the values of physicochemical descriptors (samples in columns and descriptors in rows). The second one (**Biological data**) must contain the samples of an expression data set (samples in columns and genes or proteins in rows). In both files, the first row and the first column must contain the names of indices and samples. In case that training is performed using only one file, the user is enabled to upload only one file for the prediction.

Figure 11: Read across training parameters: A. Inner tab "Parameters of analysis", B. Adjustment of filtering attribute level, C. Similarity measure selection, D. Physicochemical and biological threshold adjustment, E. Prediction base selection, F. Training button, G. Reference NP for visualization, H-I. Additional files for visualization, J-K. Physicochemical and biological thresholds for visualization and L. Visualization button.

1 cnano.ids Diameter 2 G15.AC 15 3 G15.AHT 15 4 G15.Ala.SH 15 5 G15.ASn.SH 15 6 G15.AUT 15 7 G15.CALNN 15 8 G15.CIT 15 9 G15.CTAB 15 10 G15.DDT.BDHDA 15 11 G15.DDT.CTAB 15 12 G15.DDT.COTAP 15 13 G15.DDT.ODA 15 14 G15.DDT.SO 15 15 G15.DDT.SO 15 16 G15.DTNB 15 17 G15.F127 15 18 G15.GIS.SH 15 20 G15.LA 15 21 G15.MAA 15 22 G15.MBA 15 23 G15.MES 15 24 G15.MHA 15 25 G15.MHDA 15		A	В
3 G15.AHT 15 4 G15.Ala.SH 15 5 G15.ASn.SH 15 7 G15.CALNN 15 8 G15.CIT 15 9 G15.CTAB 15 10 G15.DDT.BDHDA 15 11 G15.DDT.CTAB 15 12 G15.DDT.ODTAP 15 13 G15.DDT.ODA 15 14 G15.DDT.SDS 15 15 G15.DDT.SDS 15 16 G15.DDT.SDS 15 17 G15.F127 15 18 G15.GJS.SH 15 19 G15.HDA 15 20 G15.HDA 15 21 G15.HDA 15 22 G15.MBA 15 23 G15.MBA 15 24 G15.MBS 15 24 G15.MBS 15 25 G15.MHDA 15 26 G15.MHDA 15 26 G15.MHDA 15 27 G15.MBS 15 28 G15.MBS 15 29 G15.MBS 15 20 G15.MBS 15 20 G15.MBS 15 21 G15.MBS 15 22 G15.MBS 15 23 G15.MBS 15 24 G15.MBS 15 25 G15.MHDA 15 26 G15.MHDA 15 26 G15.MHDA 15 27 G15.MHDA 15 28 G15.MHDA 15 29 G15.MHDA 15 20 G15.MHDA 15 20 G15.MHDA 15	1	cnano.ids	Diameter
4 G15.Ala.SH 15 5 G15.ASn.SH 15 6 G15.AUT 15 7 G15.CALNN 15 8 G15.CTAB 15 10 G15.DDT.BDHDA 15 11 G15.DDT.CTAB 15 12 G15.DDT.DOTAP 15 13 G15.DDT.SDA 15 14 G15.DDT.SDA 15 15 G15.DDT.SDA 15 16 G15.DDT.SD 15 17 G15.F127 15 18 G15.GIS.BDT.SD 15 17 G15.F127 15 18 G15.GIS.BDT.SD 15 17 G15.F127 15 18 G15.GIS.BDT.SD 15 19 G15.HDA 15 20 G15.MAA 15 21 G15.MAA 15 22 G15.MBA 15 23 G15.MES 15 24 G15.MES 15 25 G15.MHDA 15 26 G15.MHDA 15 26 G15.MHDA 15	2	G15.AC	15
5 G15.Asn.SH 15 6 G15.AUT 15 7 G15.CALNN 15 8 G15.CIT 15 9 G15.CTAB 15 10 G15.DDT.BDHDA 15 11 G15.DDT.CTAB 15 12 G15.DDT.ODA 15 13 G15.DDT.ODA 15 14 G15.DDT.SA 15 15 G15.DDT.SDS 15 16 G15.DTNBB 15 17 G15.F127 15 18 G15.GlS.SH 15 19 G15.HDA 15 20 G15.MBA 15 21 G15.MBA 15 22 G15.MBA 15 23 G15.MBS 15 24 G15.MES 15 25 G15.MHDA 15 26 G15.MHDA 15 26 G15.MHDA 15	3	G15.AHT	15
6 G15.AUT 15 7 G15.CALNN 15 8 G15.CIT 15 9 G15.CTAB 15 10 G15.DDT.BDHDA 15 11 G15.DDT.CTAB 15 12 G15.DDT.DOTAP 15 13 G15.DDT.DOTAP 15 14 G15.DDT.SA 15 15 G15.DDT.SDS 15 16 G15.DDT.SDS 15 17 G15.F127 15 18 G15.GLS.SH 15 19 G15.HDA 15 20 G15.HDA 15 20 G15.HDA 15 21 G15.MBA 15 22 G15.MBA 15 23 G15.MES 15 24 G15.MES 15 24 G15.MHDA 15 26 G15.MHDA 15 26 G15.MHDA 15	4	G15.Ala.SH	15
7 G15 CALNN 15 8 G15 CIT 15 9 G15 CTAB 15 10 G15 DDT BDHDA 15 11 G15 DDT. CTAB 15 12 G15 DDT. DDTAP 15 13 G15 DDT. ODTAP 15 14 G15 DDT. SA 15 15 G15 DDT. SD 15 16 G15 DDT. SD 15 17 G15 F127 15 18 G15 Gly. SH 15 19 G15 HDA 15 20 G15 HDA 15 21 G15 MAA 15 22 G15 MBA 15 23 G15 MES 15 24 G15 MES 15 26 G15 MHDA 15 26 G15 MHDA 15 26 G15 MHDA 15 27 G15 MHDA 15 28 G15 MES 15 29 G15 MHDA 15 20 G15 MHDA 15 20 G15 MHDA 15 21 G15 MBA 15 22 G15 MBA 15 23 G15 MES 15 24 G15 MHDA 15 25 G15 MHDA 15 26 G15 MHDA 15	5	G15.Asn.SH	15
8 G15.CIT 15 9 G15.CTAB 15 10 G15.DDT.BDHDA 15 11 G15.DDT.CTAB 15 12 G15.DDT.DOTAP 15 13 G15.DDT.SDA 15 14 G15.DDT.SDA 15 15 G15.DDT.SDS 15 16 G15.DTNB 15 17 G15.F127 15 18 G15.Gly.SH 15 19 G15.HDA 15 20 G15.LA 15 21 G15.MAA 15 22 G15.MBA 15 23 G15.MES 15 24 G15.MHS 15 24 G15.MHA 15 26 G15.MHDA 15	6	G15.AUT	15
9 G15.CTAB 15 10 G15.DDT.BDHDA 15 11 G15.DDT.CTAB 15 12 G15.DDT.CDAP 15 13 G15.DDT.ODA 15 14 G15.DDT.SA 15 15 G15.DDT.SDS 15 16 G15.DDT.SD 15 17 G15.F127 15 18 G15.Gly.SH 15 19 G15.HDA 15 20 G15.LA 15 21 G15.MAA 15 22 G15.MBA 15 23 G15.MES 15 24 G15.MES 15 26 G15.MHDA 15 26 G15.MHDA 15	7	G15.CALNN	15
10 G15.DDT.BDHDA 15 11 G15.DDT.CTAB 15 12 G15.DDT.DOTAP 15 13 G15.DDT.ODA 15 14 G15.DDT.SA 15 15 G15.DDT.SDS 15 16 G15.DDT.SDS 15 16 G15.DDT.SD 15 17 G15.F127 15 18 G15.Gly.SH 15 19 G15.HDA 15 20 G15.LA 15 21 G15.MAA 15 22 G15.MBA 15 23 G15.MES 15 24 G15.MES 15 26 G15.MHDA 15 26 G15.MHDA 15 27 G15.MHDA 15 28 G15.MHDA 15 29 G15.MHDA 15 20 G15.MHDA 15 20 G15.MHDA 15 21 G15.MHDA 15 22 G15.MHDA 15 23 G15.MHDA 15 24 G15.MHDA 15	8	G15.CIT	15
11 G15.DDT.CTAB 15 12 G15.DDT.DDTAP 15 13 G15.DDT.ODA 15 14 G15.DDT.SA 15 15 G15.DDT.SDS 15 16 G15.F127 15 18 G15.Gly.SH 15 19 G15.HDA 15 20 G15.LDA 15 21 G15.MAA 15 22 G15.MBA 15 23 G15.MES 15 24 G15.MES 15 25 G15.MHA 15 26 G15.MHDA 15	9	G15.CTAB	15
12 G15.DDT.DOTAP 15 13 G15.DDT.ODA 15 14 G15.DDT.SA 15 15 G15.DDT.SDS 15 16 G15.DTNB 15 17 G15.F127 15 18 G15.Gly.SH 15 19 G15.HDA 15 20 G15.LA 15 21 G15.MAA 15 22 G15.MBA 15 23 G15.MES 15 24 G15.MES 15 26 G15.MHDA 15 26 G15.MHDA 15	10	G15.DDT.BDHDA	15
13 G15.DDT.ODA 15 14 G15.DDT.SA 15 15 G15.DDT.SDS 15 16 G15.DDT.SDS 15 17 G15.F127 15 18 G15.Gly.SH 15 19 G15.HDA 15 20 G15.LA 15 21 G15.MAA 15 22 G15.MBA 15 23 G15.MES 15 24 G15.MES 15 26 G15.MHDA 15 26 G15.MHDA 15	11	G15.DDT.CTAB	15
14 G15.DDT.SA 15 15 G15.DDT.SDS 15 16 G15.DDT.SDS 15 17 G15.F127 15 18 G15.Gly.SH 15 19 G15.HDA 15 20 G15.LA 15 21 G15.MAA 15 22 G15.MBA 15 23 G15.MES 15 24 G15.MES 15 25 G15.MHA 15 26 G15.MHA 15 26 G15.MHA 15	12	G15.DDT.DOTAP	15
15 G15.DDT.SDS 15 16 G15.DTNB 15 17 G15.F127 15 18 G15.Gly.SH 15 19 G15.HDA 15 20 G15.LA 15 21 G15.MAA 15 22 G15.MBA 15 23 G15.MES 15 24 G15.Met.SH 15 25 G15.MHA 15 26 G15.MHDA 15	13	G15.DDT.ODA	15
16 G15.DTNB 15 17 G15.F127 15 18 G15.Gly.SH 15 19 G15.HDA 15 20 G15.LA 15 21 G15.MAA 15 22 G15.MBA 15 23 G15.MES 15 24 G15.MES 15 25 G15.MHA 15 26 G15.MHA 15 26 G15.MHA 15	14	G15.DDT.SA	15
17 G15.F127 15 18 G15.Gly.SH 15 19 G15.HDA 15 20 G15.LA 15 21 G15.MAA 15 22 G15.MBA 15 23 G15.MES 15 24 G15.MES 15 25 G15.MHA 15 26 G15.MHA 15	15	G15.DDT.SDS	15
18 G15 Gly. SH 15 19 G15 HDA 15 20 G15 LA 15 21 G15 MAA 15 22 G15 MBA 15 23 G15 MES 15 24 G15 MES 15 25 G15 MHA 15 26 G15 MHDA 15	16	G15.DTNB	15
19 G15.HDA 15 20 G15.LA 15 21 G15.MAA 15 22 G15.MBA 15 24 G15.MES 15 24 G15.Met.SH 15 25 G15.MHA 15 26 G15.MHDA 15	17	G15.F127	15
20 G15 LA 15 21 G15 MAA 15 22 G15 MBA 15 23 G15 MES 15 24 G15 Met SH 15 25 G15 MHA 15 26 G15 MHDA 15	18	G15.Gly.SH	15
21 G15.MAA 15 22 G15.MBA 15 23 G15.MES 15 24 G15.Met.SH 15 25 G15.MHA 15 26 G15.MHDA 15	19	G15.HDA	15
22 G15 MBA 15 23 G15 MES 15 24 G15 Met SH 15 25 G15 MHA 15 26 G15 MHDA 15	20	G15.LA	15
23 G15.MES 15 24 G15.Met.SH 15 25 G15.MHA 15 26 G15.MHDA 15	21	G15.MAA	15
24 G15.Met.SH 15 25 G15.MHA 15 26 G15.MHDA 15	22	G15.MBA	15
25 G15.MHA 15 26 G15.MHDA 15	23	G15.MES	15
26 G15.MHDA 15	24	G15.Met.SH	15
	25	G15.MHA	15
27 G15.MPA 15	26	G15.MHDA	15
	27	G15.MPA	15

Figure 12: Required format of the .csv file with a sample of size data.

Figure 13: Parameters of prediction: A-B. Choice of input files, C. Prediction button, D. Reference NP for visualization, E. Additional files for visualization, F-G. Physicochemical and biological thresholds for visualization and H. Visualization button.

3.2 Adjust parameters of analysis

The normalization of input data, the filtering based on the significant data points (genes or proteins) given by GSVA analysis, the attribute filtering level, the calculation of similarity method and the thresholds are the same as defined at the training section. By clicking on **Prediction** (Fig. 13C) begins the prediction process.

The user can visualize the NPs «universe»: the user can choose a reference NP (Fig. 13D) and observe its neighbours in the training set in color code, by adjusting the physicochemical and biological thresholds and by importing the files (Fig. 13E) with the NPs' size and their classification (if they are available). Every time the user changes the reference NP, imports the size and/or the classification file, and the thresholds (Fig. 13F-G), the user should press the button **Visualize** (Fig. 13H) in order to update the diagram. All parameters are shown in Figure 13.

3.3 Results

The analysis produces a table that contains the predicted value of toxicity index for all the NPs, which the user can download in the form of a .csv file. In addition the NPs' universe diagram is presented (Fig 16).

Figure 14: Sample GSVA results' presentation

Figure 15: Sample Read across model results' presentation

Figure 16: Sample Read across prediction results' presentation

References

- [1] S. Hänzelmann, R. Castelo, J. Guinney, *GSVA: gene set variation analysis for microar-ray and RNA-Seq data*, BMC Bioinformatics, 14:7, 2013, Available online in: http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-7
- [2] I. Shah, J. Liu, R. S. Judson, R. S. Thomas, G. Patlewicz, Systematically evaluating readacross prediction and performance using a local validity approach characterized by chemical structure and bioactivity information, Regulatory Toxicology and Pharmacology, 79: 12-24, 2016
- [3] C. D. Walkey, J. B. Olsen, F. Song, R. Liu, H. Guo, W. Olsen, Y. Cohen, A. Emili, W. C. W. Chan, *Protein Corona Fingerprinting Predicts the Cell Association of Gold Nanoparticles*, ACS Nano, 8 (3), 2439-2455, 2014, Available online in: https://www.researchgate.net/publication/263941898_Protein_Corona_Fingerprinting_Predicts_the_Cellular_Interaction_of_Gold_and_Silver_Nanoparticles
- [4] P.N. Tan, M. Steinbach, V. Kumar, *Introduction to Data Mining*, Pearson Addison-Wesley, 2005
- [5] J. D. Storey, R. Tibshirani, Statistical significance for genomewide studies, PNAS, vol.100, no. 16, 2003