IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In Re Application of:

John N. Glover

Examiner:

David L. Sorkin

Serial No.:

09/320,950

Art Unit:

1723

Filed:

May 27, 1999

Attorney Docket No.

105218.04

For:

FILTERING MEDIUM AND METHOD FOR CONTACTING SOLIDS CONTAINING FEEDS FOR CHEMICAL REACTORS

SUPPLEMENTAL DECLARATION OF JOHN N. GLOVER

I, John N. Glover, declare that I am over the age of twenty-one (21) years of age and am fully competent to make this declaration. I have personal knowledge of the facts set forth in this declaration and they are true and correct. I declare:

- 1. I am the President of Crystaphase International, Inc. and its related corporate entities (hereinafter "Crystaphase"), and maintain an office at Crystaphase at 16945 Northchase Drive, Suite 1610, Houston, TX, 77060-6029. I have been employed by Crystaphase since 1989 to the present as the President. I am the named inventor in the above-identified patent application and am familiar with the disclosure in the above-identified patent application.
- 2. I have worked in the petroleum refining and petrochemical industries for at least twenty-five years. I am familiar with ceramic filter units, catalysts, and recycling of these units.
- 3. I am a named inventor of the subject application and thus would be considered of above-ordinary skill in the art of ceramic filter units and associated methods. In my position of President, I have supervised numerous individuals and therefore am knowledgeable about the level of understanding of one with ordinary skill in the art in the field of ceramic filter units.

4. My educational experience includes undergraduate studies in Biology and Chemistry. I have performed numerous experiments on the subject matter of the above referenced patent application. I am extremely familiar with terms in the industry and the understanding associated with those terms throughout the industry

. . .

- 5. As discussed in my previous Declaration dated November 5, 2003, I participated in an experiment in which comparative performance data was obtained for ceramic filter units comparing ceramic units in accordance with embodiments of the presently claimed methods having combinations of elliptical and circular openings, along with flutes, to ceramic units in accordance with prior art units having combinations of circular openings and flutes (See Table I). Five prior art ceramic units (Products A, B, C, D, and E) were compared to three ceramic units made in accordance with the presently claimed embodiments (Products F, G, and H, as shown in FIG. 4 of the present application).
- 6. As discussed in my previous Declaration dated November 5, 2003, the maximum flow rate in a cell, among other parameters, was measured for all of the tested ceramic units. The maximum flow in a cell was determined by measuring the flow rates of each active cell and determining the highest flow rate of those cells. In this experiment, the lower the maximum flow rate, the better. The best performing ceramic unit tested was Product F with only a 4.46% maximum flow rate in any one cell (See Table I). The best performing prior art ceramic unit was Product C with an 8.45% maximum flow rate in any one cell (See Table I). The best embodiment of the presently claimed methods, Product F, performed approximately 47% better than the best performing prior art ceramic unit tested, Product C (See Table I).
- 7. In this Supplemental Declaration, new rows 10 and 11 have been added to the initial test results of Table I to demonstrate additional unexpected and surprisingly advantageous properties discovered by Applicant. In particular, rows 10 and 11 demonstrate that unit F having elliptical openings in an embodiment of the presently claimed methods has improved lateral displacement and volumetric distribution properties when compared to the prior art units A-E.
- 8. Table II of this Supplemental Declaration includes a second set of test results, in HOU 406,204,114v1 12/27/2007

which comparative performance data was obtained for ceramic filter units comparing ceramic units having trisoid shaped openings to ceramic units in accordance with prior art units having combinations of (i) triangular and (ii) circular, oval and triangular openings. The test results show that trisoid shaped openings (see Table II, column D) displayed unexpected and surprisingly advantageous fluid distribution properties, in particular, maximum flow rate and volumetric distribution, when compared to the prior art units of Table II, columns A-C, and of Table I, column C.

- 9. In Table II, the best performing ceramic unit tested was Applicant's Product D with only a 6.40% maximum flow rate in any one cell. In contrast, the best performing prior art ceramic unit in Table II was Product B with an 11.19% maximum flow rate in any one cell. The best performing prior art ceramic unit in Table I was Product C with an 8.45% maximum flow rate in any one cell. In other words, Applicant's Product D performed better than the best performing prior art ceramic units tested, Products C and B, from Tables I and II, respectively. Although Product D does not include a central opening, I believe that these test results are generally indicative of the fact that units having trisoid shaped openings such as Product D perform unexpectedly and surprisingly better than prior art units having differently shaped openings such as those tested herein.
- 10. Crystaphase has enjoyed much commercial success from the sale of these ceramic units. Crystaphase began selling the ceramic units made in accordance with embodiments of the presently claimed methods in 1998. Since then, Crystaphase has sold more than eight million dollars worth of units made in accordance with embodiments of the presently claimed methods, which approximates 40,000 cubic feet of product being sold, which correlates to about 30% 35% of the total market in recent years. With so many units sold, the ceramic units should be deemed to have met an unfilled need in the industries in which these ceramic units have been sold.
- 11. I believe there is no motivation for one of ordinary skill in the field of ceramic filter units to utilize ceramic disc units containing a central circular opening and at least three elliptical openings, or trisoid shaped openings, in accordance with embodiments of the presently claimed methods, at least without resorting to hindsight after viewing the present invention.

ز خ

12. I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true, and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Sec. 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the publication or any patent issued thereon.

Date: 2/25/2008

John N. Glover

T.A.	BLE 1 - S	UMMARY	Y OF CO	TABLE I - SUMMARY OF COLD FLOW EXPERIMENT RESULTS	EXPERIN	ENT RES	SULTS	
300			PRIOR ART			PF	PRESENT INVENTION	Z
Suape	Spheres	新学生工作		Cylindrical Openings			Elliptical Openings	
Product	. A (3/4° 3∄ . Ceramic balls) ⊮©	B (3/4"	C(5/8" TK-10)	D:(7/8" TK-10)	E (5/8" Dypor (607)	F (5/8" BG- 1000)	G (7/8" BG- 1000)	H (7/8" BG- 1002)
Top layer - Depth	9	12.	.9-	.9	**************************************	.9	.9	.9.
Shape	Sphere	Sphere	Disc wth? Cylindrical Openings	Cylindrical openings	Disc with one cylindrical opening and six	Disc with four elliptical and one central circular openings	Disc with four elliptical and one central cylindrical openings	Elongated Disc with four elliptical and one central cylindrical openings
Void space	· · · · · · · · · · · · · · · · · · ·	** **n/a		114. S. 55% -		%09	%09	63%
Sottom laver - Depth	9		.9.7	.9	1.1.9. The	9	.9	.9
Size and Shape	%".Sphere		₹.5%" Sphere	- %" Sphere	: :2/1.:Sphere	3/" Sphere	%" Sphere	%" Sphere
Void space	-39 %: ::		∵∵∵∵≏36 <i>%</i>	%-66		~39 %	~38 %	~39 %
Total number of active cells	361-1		1589	46	. 29	88	69	84
2. % of active cells	14.23%	्र्र्यः 18.18% इंड	松子 32.92%	18 18%	23:32%	33.99%	27.27%	33.20%
3. Area of Active Cells	- 49 · · · · ·	100	[43]	小能 。 72 · · · ·	120元	180	121	153
4. Number of active cells greater than 5 cells distance from center	0	0 4	<u>.</u> B	0.		4	2	10
5. Number of active cells greater than 6 cells distance from center		0	<u> </u>	F. 1.0		0	0	<u>o</u>
6. Average Flow Rate per Active Cell	2.78%	2.17%	1.72%	- ST 217%	1.69%	1.16%	1.45%	1.19%
Maximum Flow Rate in a Cell	10.42%	7.03% III	8.45%	10.39%	9.07%	4.46%	7.17%	9.74%
8. Percentage of active cells greater than 3% of total flow	27.78%	23.91%	[17.24%]	26.09%	23.73%	10.47%	8.70%	8.33%
Percentage of active cellsgreater than 5% of total flow	25.00%	%02.8	×1.2%	÷ 6.52%	5:08%	0.00%	7.25%	3.57%
10. Lateral Displacement (0 – 100)	38.88	55.55	68.99	Y NA	. KINA	72.21	NA	ΑN
11. Volumetric Distribution (0 – 100)	71.04	69.04	71.83	NA NA	NA	29:00	NA	NA

TABLE 2 - SUMMARY	MMARY OF ADDITIONAL COLD FLOW EXPERIMENT RESULTS	
	· 以对一个人们的制制,可能能够与宣传的制	PRESENT INVENTION
Shape	Linangistopenings: The Trangistopenings Circular Openings Circular	Trisoid Openings
Product	F SUAN (1:3/47/AES)	D (7/8" BG-4000)
Top layer – Depth		
Shape	A CONTROL OF THE CONT	Disc with five trisoid openings
Void space		%09~
	64 建建筑的现在形式。在1000年的第一位,1000年的第一位,1000年的1000年的1000年的1000年的1000年的1000年的1000年的1000年	
Bottom layer – Depth	14.40 E.W. 5.40 E.W. 18.14 E.W. 18.14 E.W. 19.15 E.	.0
Size and Shape	是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	
Void space		
1. Total number of active cells	[1] 1月2月2日 1月2日 1月2日 1月2日 1月2日 1月2日 1月2日 1月	52
2. % of active cells	是现代的一种1665人的影响。	20.55%
3. Area of Active Cells	1000000000000000000000000000000000000	144
4. Number of active cells greater than 5 cells distance from center		4
5. Number of active cells greater than 6 cells distance from center		-
6. Average Flow Rate per Active Cell	1975 A 1976 A 1977 A 19	1-92%
7. Maximum Flow Rate in a Cell	15.000000000000000000000000000000000000	6.40%
8. Percentage of active cells greater than 3% of total flow	2.77% (1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	3.95%
9. Percentage of active cells greater than 5% of total flow	建 加速的60分割。	0.79%
10. Lateral Displacement (0 – 100)	63.94 (63.94) (63.94) (66.89) (66.89) (63.94) (63.95) (63.94) (63.94) (63.94) (63.94)	99.99
11. Volumetric Distribution (0 – 100)	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	85.56

BT-750 - 3/4" D

Pentaring - 7/8" D

BG-4000 - 7/8" D

35 U.S.C. §103(a) Rejection - Kramer in view of Fulton, and further in view of Hung:

Claims 59, 61 – 67, and 69 – 85 were rejected under the provisions of 35 U.S.C. § 103(a), as allegedly being unpatentable over Kramer, US 4,615,796 (hereinafter "Kramer"), in view of "CE Refresher: Catalyst Engineering, Part 2" by John Fulton (hereinafter "Fulton"), and further in view of Hung et al., DE 3,539,195 (hereinafter "Hung").

In response to this rejection, Applicant has amended dependent claims 79-81 to specify that the elliptical openings are non-circular, that is, the eccentricity of the elliptical openings is greater than zero. In this regard, it is understood in the relevant art that a circle has an eccentricity equal to zero.

Applicant also hereby resubmits the arguments which were previously presented in Applicant's office action responses dated November 5, 2003, and February 17, 2005, and in Applicant's appeal brief originally filed March 13, 2006, including all subsequent amendments.

Further, Applicant hereby submits the enclosed second set of test results performed by inventor John N. Glover (See Exhibit D, which includes both Applicant's first set of test results (Table 1) which was previously submitted as well as Applicant's new second set of test results (Table 2)). These new experiments show that the units of the present invention having trisoid-shaped openings (see Table 2, column D) displayed unexpected and surprisingly advantageous fluid distribution properties when compared to triangular openings (see Table 2, columns A & B).

Applicant further submits that the initial experimental results (Table 1) show that units of the present invention having non-circular elliptical openings display unexpected and surprisingly advantageous fluid distribution properties compared to units with circular openings substantially similar to those shown in Fulton. New rows 10 and 11 have been added to the initial test results for certain sized units to show additional advantageous properties discovered by Applicant. In this regard, Applicant submits that the advantages provided by non-circular elliptical openings as compared to circular openings are not recognized by the Hung reference cited by the Examiner and would not be readily recognizable to one skilled in the art. Regardless of what Hung may teach, Applicant's test results show that non-circular elliptical openings simply perform better

than circular openings. Applicant's commercial success in selling units having non-circular elliptical openings further reinforces this assertion.

CONCLUSION

In view of the foregoing information, Applicant submits that Claims 59, 61 – 67, and 69 – 88 are novel, not obvious and patentable in view of the cited prior art.

In commenting upon the references and in order to facilitate a better understanding of the differences that are expressed in the claims, certain details of distinction between the references and the present invention have been mentioned, even though such differences do not appear in all of the claims. It is not intended by mentioning any such unclaimed distinctions to create any implied limitations in the claims. Not all of the distinctions between the prior art and Applicant's present invention have been made by Applicant. For the foregoing reasons, Applicant reserves the right to submit additional evidence showing the distinctions between Applicant's invention to be novel and nonobvious in view of the prior art.

The foregoing remarks are intended to assist the Examiner in examining the application and in the course of explanation may employ shortened or more specific or variant descriptions of some of the claim language. Such descriptions are not intended to limit the scope of the claims; the actual claim language should be considered in each case. Furthermore, the remarks are not to be considered to be exhaustive of the facets of the invention that render it patentable, being only examples of certain advantageous features and differences which Applicant's attorney chooses to mention at this time.

In view of the foregoing Amendment, Applicant respectfully submits that the presently presented claims are allowable, and Applicant respectfully requests the issuance of a Notice of Allowance.

The Commissioner is hereby authorized to charge all fees and any additional fees that may be required or credit any overpayment to Deposit Account No. 50-0259 (Order No. 020781.04).

Date: June 8, 2007

Respectfully submitted,

Ben D. Tobor Reg. No. 27,760

and

BRACEWELL & GIULIANI LLP P.O. Box 61389

Houston, Texas 77002 Telephone: 713/223-2900 Facsimile: 713/221-1212

ATTORNEYS FOR ASSIGNEE,

CRYSTAPHASE INTERNATIONAL, INC

TA	TABLE I - SUMMARY OF COLD FLOW EXPERIMENT RESULTS	IARY O	F COL	D FLOW	EXPERIN	IENT RES	SULTS	
Chang	THE PROPERTY OF THE	· · · · · · · · · · · · · · · · · · ·	PRIOR ART	MRIMAL		PR	PRESENT INVENTION	7
Silabe	Selection Spheres		O	Cylindrical Openings	7 (4) 3 (4)		Elliptical Openings	
Product	に、A (3)4 開始 第 B (3)4。 Ceramic balls) ※ eramic balls)	Services.	C(5/8" TK-10)	_D(7/8" TK-10)	E (5/8"Dypor (607)	F (5/8" BG- 1000)	G (7/8" BG- 1000)	H (7/8" BG- 1002)
Top layer – Depth	12.		* * * * * * * * * * * * * * * * * * *	.9	TOP STREET	.9	.9	.9
Shape	Sphere		Disc with 7 Cylindical Operings	Sylindreal openings	Disc with one Cylindrical opening and six	Disc with four elliptical and one central circular openings	Disc with four elliptical and one central cylindrical openings	Elongated Disc with four elliptical and one central cylindrical openings
Void space	THE WATER THE WAY		2	(4) \$2.5% ·		%09	%09	63%
	高速 医皮肤 医甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基		经过程的		"我当地地大学,"			
Bottom layer - Depth	《建立分数数数据 通知图》,"是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	.9	1	9. 3.	当山西湖974年20	6"	.9	6"
Size and Shape	- %":Spherete: 和"图片	1760年	3%. Sphere	% Sphere	S. M. Sphere	%" Sphere	%" Sphere	%" Sphere
Void space	39.% HE WILLIAM		39.%	.∵	36 <i>‰</i> 3	~39 %	~38 %	~39 %
1. Total number of active cells	14 Sec. 14 14 Sec. 1	146 - 14	28	94,74	65	86	69	48
2. % of active cells	一.14.23%。三二二年118118%;		2.92%	_3.€18.18%.	F 23.32%	33.99%	27.27%	33.20%
3. Area of Active Cells	-1-1-149		143	21 2 - 1 S	120	180	121	153
4. Number of active cells greater than 5 cells distance from center				0		4	2	10
5. Number of active cells greater than 6 cells distance from center			0			0	0	8
6. Average Flow Rate per Active Cell	2.17%		1.72%	-217%	7691	1.16%	1.45%	1.19%
7. Maximum Flow Rate in a Cell	10.42%	7.03% "师子"	8.45%	10.39%		4.46%	7.17%	9.74%
Percentage of active cells greater than 3% of total flow	27.78% 🚎 🖺 = 23.91%		17.24%	76.09%	2373%	10.47%	8.70%	8.33%
 Percentage of active cells greater than 5% of total flow 	25.00%		2(1%		7.80'5	0.00%	7.25%	3.57%
 Lateral Displacement (0 – 100) 	99:88	55.55 Will 3-17.66	68.99	NA NA	ZN/	72.21	NA	AN
 Volumetric Distribution – 100) 	71.04 学		71.83	NA	M	79.00	AN.	NA

Les

TABLE 2 - SUI	MIMARY OF ADDITIONAL COLD FLOW EXPERIMENT RESULTS	FLOW EXPERIM	ENT RESULTS	
	- AND THE WASHINGTON OF THE PRIOR ART	ART	ASTRICT CONTRA	PRESENT INVENTION
Shape	spingo openings		Circular, Oval and Triangle	Trisoid Openings
Product		, s	形 (D (7/8" BG-4000)
Top layer – Depth			THE CALL SHAPE SHA	
Shape	A CONTROL OF THE PROPERTY OF T	24790 1417-15	Lose with Nicentral Groular in Contral of the Contr	Disc with five trisoid openings
Void space	(1) SHESS 175% TO THE CONTRACT 160% STATES	*	2000年12年12%/SS=15条114年114年114年114年114年114年114年114年114年114	%09~
	是这种侧形的外侧侧的外侧上侧侧的小侧侧侧侧侧侧侧侧侧侧侧侧侧侧侧侧侧侧侧侧侧侧侧侧侧侧侧侧	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	河北海河南南南部沿海河南岸	
Bottom layer - Depth			图别类型语语的	0.
Size and Shape	但可能要理由的目的表示它是一种形式的理解和多位		国政制设计院国际机关设备的 及企业	
Void space			HILL WELL WITH THE	
1. Total number of active cells	[1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	1212 2 6 7 4 12 12 12 12 12 12 12 12 12 12 12 12 12	[6] 10] 10] 10] 10] 10] 10] 10] 10] 10] 10	52
2. % of active cells		对埃子地	117.39%了。11.据4	20.55%
3. Area of Active Cells	15		数据性引起性(0015的复数形式)	144
4. Number of active cells greater than 5 cells distance from center				4
5. Number of active cells greater than 6 cells distance from center				-
6. Average Flow Rate per Active Cell	12 1 2 1 9 2 9 2 9 2 9 2 9 2 1 1 1 1 1 1		第2:27% 卡克斯	1.92%
7. Maximum Flow Rate in a Cell	15.00%		14.17%	6.40%
8. Percentage of active cells greater than 3% of total flow	人名马克拉勒 15日本 (1255) 1763 1463 1463 1463 1463 1463 1463 1463 14		83.56% St. 1.18	3.95%
 Percentage of active cells greater than 5% of total flow 	1985]] <u> 1985]</u>		10.00 FEST	0.79%
10. Lateral Displacement (0 – 100)	15. 63.948 1 66.89			99.99
11. Volumetric Distribution (0 – 100)	第一種子,20.32程,每半零一,并是16.3.87至		· 75:00] [1]	85.56

BT-750 - 3/4" D

BG-4000 - 7/8" D