Recall that a free module is a module with a basis: a subset that is both spanning and linearly independent over the base ring.

Statement: Let R be a commutative ring and M a free R-module. Dimension of M is well-defined, that is all basis of M have the same cardinality.

The strategy is to reduce the problem to dimension of vector spaces. Let I be a maximal ideal of R, and let k = R/I. The R-module N = M/IM is actually a vector space over k.

Now let $(x_j)_{j\in J}$ be a basis of M: - Clearly x_j+IM generates M. - Let $\sum_{j\in J}\overline{\lambda_j}\overline{x_j}=0$ with $\lambda_i\in R, \overline{\lambda_i}\in k$ and only finitely many λ_j 's nonzero. It translates to $\sum_{j\in J}\lambda_jx_j\in IM$, meaning we have some $\mu_i\in I$ such that $\sum\lambda_jx_j=\sum\mu_jx_j$. By the basis property, we must have $\lambda_j=\mu_j$, up to a permutation, and $\lambda_j\in I$ means precisely $\overline{\lambda_j}=0$, that is $(\overline{x_j})_{j\in J}$ is linearly. Since $(x_j)_{j\in J}$ corresponds bijectively to a basis of the k-vector space N and dimension of a vector space is well-defined, we are done.