21 de noviembre del 2001 Total: 31 puntos Tiempo: 2 h. 20 m.

TERCER EXAMEN PARCIAL

1. Use el método de inducción matemática para demostrar las siguientes proposiciones:

(a)
$$\sum_{i=2}^{n} (i^2 - i) = \frac{n(n^2 - 1)}{3}$$
 (5 puntos)

- (b) $4^{n-1} + 15n 16$ es divisible por 9, para $n \geq 2$ (5 puntos)
- 2. Determine la fórmula explícita para cada una de las relaciones de recurrencia:

(a)
$$\begin{cases} a_n = \frac{1}{2}a_{n-1} + \frac{1}{2}a_{n-2}; & \text{si } n \ge 3\\ a_1 = 3\\ a_2 = 5 \end{cases}$$
 (3 puntos)

(a)
$$\begin{cases} a_n = \frac{1}{2}a_{n-1} + \frac{1}{2}a_{n-2}; & \text{si } n \ge 3\\ a_1 = 3\\ a_2 = 5 \end{cases}$$
 (3 puntos)
$$\begin{cases} U_n = 3U_{n-2} + 2U_{n-3}; & \text{si } n \ge 3\\ U_0 = 1\\ U_1 = 2\\ U_2 = 7 \end{cases}$$
 (5 puntos)

- 3. En \mathbb{R} se define la operación \otimes como $a \otimes b = a + b + 6$. Pruebe que (\mathbb{R}, \otimes) es un grupo abeliano. (5 puntos)
- 4. En $\mathbb{R} \times \mathbb{R}^*$ se define la operación \perp como: (2 puntos)

$$(a,b) \perp (c,d) = (a+c+2,7bd)$$

Suponga que $(\mathbb{R} \times \mathbb{R}^*, \perp)$ es un grupo abeliano. Determine su elemento neutro y el inverso del elemento arbitrario (a, b).

- 5. Pruebe que si $ax < ay \land a > 0$ entonces x < y. (3 puntos)
- 6. Pruebe, usando la definición de valor absoluto, que si x < 0 y y > 0 entonces se cumple $|x + y| \le |x| + |y|$ (3 puntos)