### 决策数确定最佳参数算法:

后剪枝算法 (prune) 和采样暴力搜索法 (tune)

# -、开发的对象GBP **DTGetBestParas**

```
from sklearn.datasets import load boston
boston = load boston()
X = boston.data
y = boston.target
#init
op = DTGetBestParas (method='tune', figtitle='boston')
#fit
op.fit(X,y)
#print(op.clf)
#predict
op.clf.predict(X)
#get result
print(op.max depth,
      op.min samples leaf,
      op.min samples split,
      op.max leaf nodes)
```

#### 获取决定树的复杂度的4个参数:

树的深度:max\_depth

子节点下最小样本数:min\_sample\_leaf

父节点下最小样本数:min\_sample\_split

树的最大叶子节点数:max\_leaf\_nodes

#### 二、GBP特色

- > 支持5种类型方法获取最优参数:
  - ➤ 'none': sklearn 默认设置
  - ➤ 'cal': 通过样本量换算相关参数
  - > 'tune':暴力搜索获取树的最佳深度
  - ➤ 'prune': 通过后剪枝算法获取最优参数
  - ▶ 'both': 先通过暴力搜索获取最佳深度后再后剪枝
- > 剪枝优化和暴力搜索优化都支持多线程并行 运算(如:n\_jobs = 4),大幅加快运算速度
- 文持返回所选取的方法下最优的树对象clf,可以用来直接预测,如 GBP.fit(X,y).clf.predict(X1)

#### GBP后剪枝算法

1.00

0.75

0.70

#### GBP后剪枝算法简介:

- 1. 对于原始的CART树A0,先剪去一棵子树,生成子树A1,然后再从A1剪去一棵子树生成A2, 直到最后剪到只剩一个根结点的子树An。于是得到了A0-AN一共n+1棵子树。然后再用n+1棵 子树预测独立的验证数据集,谁的误差最小就选谁
- 对于每次剪的时候到底取哪个节点来剪,取决于误差增益alpha,每次剪最小alpha对应的叶节点:
- 3. 采用固定比例的洗牌抽样法选取测试集,迭代一定的次数,然后检验测试集合的效果。选取测 试集合打分最高对应的叶子节点数

Cbairong\_traincsv\_prune

Number of leaf nodes

Prune

250

200



50

回归:neg\_MSE

### 四、结果测试

#### 数据集(5个分类,5个回归,测试集合数量占总数30%)

| 数据集名称      | 数据描述          | 布尔型特征 | 连续性特征 | 样本总数   | 测试样本  | 训练样本  | 特征数目 | 目标变量    | 类型 | 来源                                                                              |
|------------|---------------|-------|-------|--------|-------|-------|------|---------|----|---------------------------------------------------------------------------------|
| white_wine | 白酒质量          | 0     | 11    | 4898   | 1470  | 3428  | 11   | quality | 回归 | https://archive.ics.uci.edu/ml/dat<br>asets/Wine+Quality                        |
| parkins    | 帕金森CT         | 1     | 20    | 5875   | 1763  | 4112  | 21   | PPE     | 回归 | https://archive.ics.uci.edu/ml/dat<br>asets/Parkinsons+Telemonitori<br>ng       |
| bikeshare  | 共享单车          | 3     | 10    | 17379  | 5214  | 12165 | 13   | cnt     | 回归 | https://archive.ics.uci.edu/ml/dat<br>asets/Bike+Sharing+Dataset                |
| facebook   | Facebook的post | 15    | 38    | 41049  | 12315 | 28734 | 53   | 53      | 回归 | https://archive.ics.uci.edu/ml/dat<br>asets/Facebook+Comment+Vol<br>ume+Dataset |
| cont       |               | 7     | 20    | 96366  | 28910 | 67456 | 27   | TargetD | 回归 | 刘帅                                                                              |
| С          | 活性化合物分析       | 113   | 31    | 4279   | 1284  | 2995  | 144  | Outcome | 分类 | https://www.kaggle.com/uciml/bioassay-datasets                                  |
| А          | 活性化合物分析       | 124   | 31    | 59788  | 17937 | 41851 | 155  | Outcome | 分类 | https://www.kaggle.com/uciml/bioassay-datasets                                  |
| В          | 活性化合物分析       | 123   | 31    | 59795  | 17939 | 41856 | 154  | Outcome | 分类 | https://www.kaggle.com/uciml/bi<br>oassay-datasets                              |
| DPFINAL    | 金融            | 57    | 124   | 90000  | 27001 | 62999 | 181  | TARGET  | 分类 | 刘帅                                                                              |
| bairong    | 金融            | 74    | 69    | 100800 | 30240 | 70560 | 143  | flag    | 分类 | 刘帅                                                                              |

#### 测试集性能上的表现



性能: <mark>both</mark> > prune > cal > tune > none



性能: tune > <mark>both</mark> > prune > cal > none

#### 最佳深度表现





深度: none > cal > prune > tune > <mark>both</mark>

### 子节点下最小样本数



min\_sample\_leaf : cal > prune > tune > both > none

Prune 总是大于tune

### 父节点下最小样本数



min\_sample\_split : cal > prune > both > tune > none

Prune 总是大于tune

#### 树的最大叶子节点数



max\_leaf\_nodes : none > tune > cal > prune > both

## 所耗时间表现



耗时长短: prune > both > tune > cal > none

#### 五、结论

- 1. Both的综合性能在单棵决策树中表现最好,在测试集的表现最佳
- 2. Both方法比prune的速度还快,原因是先使得树变得小一些,降低了后面的剪枝的复杂度
- 3. Both方法继承了tune的深度,并且通过剪枝方法,深度小于tune
- 4. Both的子节点下最小样本数和tune的接近,父节点下最小样本数总是介于tune和prune之间
- 5. Both的最大叶子节点数和prune接近,相比于其他方法最小